Elementary Set Theory

Xianghui Shi

School of Mathematical Sciences Beijing Normal University

Fall 2023

Coming up next

Cardinal Numbers

Cardinal

Cardinal arithmetic, I

Cofinality

Cardinality

We use injective functions to compare the size of sets.

Definition 1

- 1. $X \approx Y$ iff there is a bijection from X to Y.
- 2. $X \leq Y$ iff there is an injection from X to Y.
- 3. $X \prec Y$ iff $X \preceq Y$ and $\neg (Y \preceq X)$.

¹Note that empty function is injective.

Cardinality

We use injective functions to compare the size of sets.

Definition 1

- 1. $X \approx Y$ iff there is a bijection from X to Y.
- 2. $X \leq Y$ iff there is an injection from X to Y.
- 3. $X \prec Y$ iff $X \preccurlyeq Y$ and $\neg (Y \preccurlyeq X)$.

Easy to check:

Proposition 2

- 1. \approx is an equivalence relation.
- 2. \leq is transitive.

¹Note that empty function is injective.

Cantor-Bernstein

Next is a much deeper result

Theorem 3 (Cantor-Bernstein-Schröder)

Let X, Y be any two sets. Then

$$X \preccurlyeq Y \land Y \preccurlyeq X \implies X \approx Y$$
.

A bit history

As it is often the case in mathematics, the name of this theorem does not truly reflect its history.

- ► The traditional name "Schröder-Bernstein" is based on two proofs published independently in 1898.
- Cantor is often added because he investigated it around 1870s, and first stated it as a theorem in 1895,
- while Schröder's name is often omitted because his proof turned out to be flawed
- ▶ and while the name of the mathematician who first proved it (Dedekind, 1887, 1897) is not connected with the theorem.

If f (or g) is onto, then we are done! f (or g^{-1}) is a bijection.

$$\begin{split} g[Y] - gf[X] &\approx Y - f[X] \text{ via } g^{-1} \\ X - g[Y] &\approx f[X] - fg[Y] \text{ via } f \end{split}$$

Thus $X-X_1\approx Y-Y_1$, also we have $f:X_1\to Y_1,\ g:Y_1\to X_1.$

Let $X^* = \bigcap_i X_i$ and $Y^* = \bigcap_i Y_i$. By induction, $X - X^* \approx Y - Y^*$

Coming up next

Cardinal Numbers

Cardinal

Cardinal arithmetic, I

Cofinality

Cardinal

Thus we can assign to each set X its **cardinal number** $\left|X\right|$ so that

$$X \approx Y$$
 iff $|X| = |Y|$

Cardinal numbers can be defined

- either via equivalence classes (need Regularity),
- (von Neumann) or using ordinals (need AC).

Cardinal

Thus we can assign to each set X its **cardinal number** $\left|X\right|$ so that

$$X \approx Y$$
 iff $|X| = |Y|$

Cardinal numbers can be defined

- either via equivalence classes (need Regularity),
- (von Neumann) or using ordinals (need AC).
 - We shall use this definition.

Cardinality

One determines the size of a finite set by counting it. More generally,

Definition 4

If X can be well-ordered, then $X \approx \alpha$ for some $\alpha \in \operatorname{Ord}$, and the least such α is called the **cardinality** of X, |X|.

Some simple facts.

- ▶ If $X \leq \alpha$, then X can be well-ordered.
- $|\alpha| \le \alpha$, for all $\alpha \in Ord$.
- ▶ Under AC, every set can be well-ordered, so |X| is defined for every X.

For the rest of this Chapter, we assume AC.

Cardinal

Definition 5

An ordinal α is a **cardinal** if $|\alpha| = \alpha$.

We use κ, λ, δ etc to denote cardinals.

Some simple facts.

- $ightharpoonup \alpha$ is a cardinal iff $\forall \beta < \alpha \ (\beta \not\approx \alpha)$.
- ▶ If $|\alpha| \le \beta \le \alpha$, then $|\beta| = |\alpha|$.
- Every infinite cardinal is a limit ordinal.
- ► For every $n \in \omega$, $n \not\approx n + 1$.
- ▶ If $n \in \omega$, then for all α , $\alpha \approx n \to \alpha = n$.

Corollary 6

 ω is a cardinal and each $n \in \omega$ is a cardinal.

Corollary 6

 ω is a cardinal and each $n \in \omega$ is a cardinal.

Definition 7

- ▶ X is **finite** iff $|X| < \omega$. **Infinite** means not finite.
- ► X is **countable** iff $|X| \le \omega$. **Uncountable** means not countable.

Example

- ▶ Every $n \in \omega$ is finite.
- $\blacktriangleright \ \omega, \mathbb{N}, \mathbb{Z}, \mathbb{Q}$ is countable. (To be discussed later)
- ightharpoonup (Cantor). $\mathbb R$ is uncountable. (To be proved in Chapter 4)

Example

- **Every** $n \in \omega$ is finite.
- $\blacktriangleright \ \omega, \mathbb{N}, \mathbb{Z}, \mathbb{Q}$ is countable. (To be discussed later)
- ightharpoonup (Cantor). $\mathbb R$ is uncountable. (To be proved in Chapter 4)

REMARK. One cannot prove on the basis of ZFC – **Power Set** that uncountable sets exist. In fact, it is consistent with ZFC – **Power Set** that the only infinite cardinal is ω .

Uncountable Cardinal

Before Cantor's proof of " \mathbb{R} is uncountable", it was not known that there are more than one infinite cardinal.

Theorem 8

For any set X, $X \prec \mathscr{P}(X)$.

Uncountable Cardinal

Before Cantor's proof of " \mathbb{R} is uncountable", it was not known that there are more than one infinite cardinal.

Theorem 8

For any set X, $X \prec \mathscr{P}(X)$.

Proof.

- ▶ Identify every set X with its characteristic function $C_X: X \to \{0,1\}$. Hence $\mathscr{P}(X) \approx {}^X 2$.
- ▶ Suppose $F: X \to {}^X 2$ is an arbitrary injection. Construct an $Z \in {}^X 2 \operatorname{ran}(F)$ by diagonalization:

$$C_Z(x) = 1$$
 iff $C_{f(x)}(x) = 0$,

i.e. $Z = \{x \in X \mid x \notin f(x)\}$. F is not surjective!

In fact, Card is "unbounded" along Ord.

Corollary 9

For any set $S \subset \operatorname{Card}$, there is a cardinal κ s.t.

$$\forall \lambda \in S \, (\lambda < \kappa).$$

In fact, Card is "unbounded" along Ord.

Corollary 9

For any set $S \subset \operatorname{Card}$, there is a cardinal κ s.t.

$$\forall \lambda \in S \, (\lambda < \kappa).$$

Without assume AC, the following is not easy to prove.

Theorem (Halbeisen and Shelah, 1994)

For all infinite set A,

$$fin(A) \prec \mathscr{P}(A),$$

where $fin(A) := \{x \subseteq A \mid x \text{ is finite}\}.$

Coming up next

Cardinal Numbers

Cardinal

Cardinal arithmetic, I

Cofinality

Operations on Cardinals

The arithmetic operations on cardinals are defined as follows

Definition 10

- 1. $\kappa + \lambda = |\kappa \times \{0\} \cup \lambda \times \{1\}|$
- 2. $\kappa \cdot \lambda = |\kappa \times \lambda|$.
- 3. $\kappa^{\lambda} = |{}^{\lambda}\kappa|$.

 κ, λ on the right are referred as sets.

Operations on Cardinals

The arithmetic operations on cardinals are defined as follows

Definition 10

- 1. $\kappa + \lambda = |\kappa \times \{0\} \cup \lambda \times \{1\}|$
- 2. $\kappa \cdot \lambda = |\kappa \times \lambda|$.
- 3. $\kappa^{\lambda} = |{}^{\lambda}\kappa|$.

 κ, λ on the right are referred as sets.

Exercise

Verify that these definitions are well defined.

Operations on Cardinals

The arithmetic operations on cardinals are defined as follows

Definition 10

- 1. $\kappa + \lambda = |\kappa \times \{0\} \cup \lambda \times \{1\}|$
- 2. $\kappa \cdot \lambda = |\kappa \times \lambda|$.
- 3. $\kappa^{\lambda} = |{}^{\lambda}\kappa|$.

 κ, λ on the right are referred as sets.

Exercise

Verify that these definitions are well defined.

We've shown that $|\mathscr{P}(X)| = 2^{|X|}$ and $\forall \kappa \, (\kappa < 2^{\kappa})$.

Simple Facts About Cardinal Arithmetics

- ► Unlike the ordinal operations, + and · are associative, commutative and distributive.
- $(\kappa \cdot \lambda)^{\mu} = \kappa^{\mu} \cdot \lambda^{\mu}.$
- $(\kappa^{\lambda})^{\mu} = \kappa^{\lambda \cdot \mu}.$
- ▶ If $\kappa \leq \lambda$, then $\kappa + \mu \leq \lambda + \mu$, $\kappa \cdot \mu \leq \lambda \cdot \mu$ and $\kappa^{\mu} \leq \lambda^{\mu}$.
- ▶ If $0 < \lambda \le \mu$, then $\kappa^{\lambda} \le \kappa^{\mu}$.
- $\kappa^0 = 1$, $1^{\kappa} = 1$, $0^{\kappa} = 0$ if $\kappa > 0$.
- ▶ When $\kappa, \lambda < \omega$, $\kappa + \lambda$, $\kappa \cdot \lambda$ and κ^{λ} are the same as the corresponding operations on natural numbers.

Alephs

Since $Card \subset Ord$, Card is well-ordered and the elements of Card can be enumerated with Ord as indices. Consider infinite cardinals only.

Definition 11

For any cardinal κ , κ^+ denotes the least cardinal $> \kappa$. The Aleph function \aleph is define by the transfinite recursion:

$$\begin{split} \aleph_0 &= \omega, \\ \aleph_{\alpha+1} &= \aleph_\alpha^+, \\ \aleph_\sigma &= \lim_{\alpha \to \sigma} \aleph_\alpha, \quad \lambda \text{ is a limit ordinal}. \end{split}$$

An infinite cardinal is called a **successor** cardinal if it is of the form $\aleph_{\alpha+1}$ for some α , otherwise is called a **limit** cardinal.

Alephs

 \aleph_{α} are often written as ω_{α} .

This definition is legitimate due to the following facts

- For every κ , there is a λ s.t. $\kappa < \lambda$. Hence, κ^+ exists for every cardinal κ .
- ► For every set $S \subset \operatorname{Card}$, $\sup(S)$ is a cardinal. In particular, $\lim_{\alpha < \sigma} \aleph_{\alpha}$ is a cardinal.

These ensure that $dom(\aleph) = Ord$. Since for each $\alpha \in Ord$,

$$\aleph_{\alpha} = \min \{ \kappa \in \text{Card} \mid \forall \beta < \alpha \, (\aleph_{\beta} < \kappa) \},$$

 $ran(\aleph) = Card \setminus \omega.$

Alephs

<u>Remark</u>. The existence of κ^+ (κ infinite) can be shown without referring to 2^{κ} and AC:

 $\kappa^+ = \sup\{\operatorname{ordertype}(\prec) \mid (\kappa, \prec) \text{ is a well-ordering.}\}$

Alephs

<u>Remark</u>. The existence of κ^+ (κ infinite) can be shown without referring to 2^{κ} and AC:

 $\kappa^+ = \sup\{\text{ordertype}(\prec) \mid (\kappa, \prec) \text{ is a well-ordering.}\}$

Lemma 12

Card is a proper class.

In general, $A \subset \operatorname{Ord}$ is unbounded iff A is proper.

Cardinality of Sets,

Corollary 13

The following sets are countable:

- $\triangleright \mathbb{Z}, \mathbb{Q}$ are countable.
- ▶ The set of all algebraic numbers, \mathbb{A} , is countable.

Assume that $|\mathbb{R}| = 2^{\aleph_0}$. Then the following sets are of size 2^{\aleph_0} .

- ▶ The set of all points in the n-dimensional space, \mathbb{R}^n .
- The set of all complex numbers, C.
- ► The set of all ω-sequences of natural numbers, $ω^ω$.
- ► The set of all ω-sequences of real numbers, \mathbb{R}^{ω}

Lemma 14 (AC)

If
$$|A| < |B|$$
 then $|B - A| = |B|$.

In fact, one can prove the following without using AC.

Lemma 15

If
$$A \subseteq B$$
, $|A| = \aleph_0$ and $|B| = 2^{\aleph_0}$, then $|B - A| = 2^{\aleph_0}$.

As corollary, we have

Corollary 16

The set of irrationals, $\mathbb{R} - \mathbb{Q}$, and the set of transcendental numbers, $\mathbb{R} - \mathbb{A}$, are of cardinality 2^{\aleph_0} .

Addition and Multiplication are trivial

Theorem 17 (AC)

Let κ, λ be infinite cardinals. Then

1.
$$\kappa + \lambda = \kappa \cdot \lambda = \max{\{\kappa, \lambda\}}$$
.

2.
$$|^{<\omega}\kappa| = \kappa$$
.

They follow from the lemma on next page.

Lemma 18

For every $\alpha \in \text{Ord}$, $\aleph_{\alpha} \cdot \aleph_{\alpha} = \aleph_{\alpha}$.

Proof of Theorem.

We prove (2) only.

- ▶ For each $n \in \omega$, pick an injection $f_n : {}^n\kappa \to \kappa$.
- Combining them gives us an injection

$$f: \bigcup_{n} {}^{n}\kappa \to \omega \times \kappa, \quad f(\sigma) = (|\sigma|, f_{|\alpha|}(\sigma))$$

whence $|{}^{<\omega}\kappa| \le \omega \cdot \kappa = \kappa$.

Next, we prove the lemma.

$$(a_1, b_1) \prec (a_2, b_2) \Leftrightarrow \max(a_1, b_1) < \max(a_2, b_2)$$

 $\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 < b_2)$
 $\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 = b_2 \land a_1 < a_2)$

$$(a_1, b_1) \prec (a_2, b_2) \Leftrightarrow \max(a_1, b_1) < \max(a_2, b_2)$$

 $\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 < b_2)$
 $\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 = b_2 \land a_1 < a_2)$

$$(a_1, b_1) \prec (a_2, b_2) \Leftrightarrow \max(a_1, b_1) < \max(a_2, b_2)$$

 $\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 < b_2)$
 $\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 = b_2 \land a_1 < a_2)$

$$(a_1, b_1) \prec (a_2, b_2) \Leftrightarrow \max(a_1, b_1) < \max(a_2, b_2)$$

 $\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 < b_2)$
 $\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 = b_2 \land a_1 < a_2)$

$$(a_1, b_1) \prec (a_2, b_2) \Leftrightarrow \max(a_1, b_1) < \max(a_2, b_2)$$

 $\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 < b_2)$
 $\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 = b_2 \land a_1 < a_2)$

$$(a_1, b_1) \prec (a_2, b_2) \Leftrightarrow \max(a_1, b_1) < \max(a_2, b_2)$$

 $\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 < b_2)$
 $\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 = b_2 \land a_1 < a_2)$

$$(a_1, b_1) \prec (a_2, b_2) \Leftrightarrow \max(a_1, b_1) < \max(a_2, b_2)$$

 $\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 < b_2)$
 $\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 = b_2 \land a_1 < a_2)$

$$(a_1, b_1) \prec (a_2, b_2) \Leftrightarrow \max(a_1, b_1) < \max(a_2, b_2)$$

 $\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 < b_2)$
 $\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 = b_2 \land a_1 < a_2)$

$$(a_1, b_1) \prec (a_2, b_2) \Leftrightarrow \max(a_1, b_1) < \max(a_2, b_2)$$

 $\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 < b_2)$
 $\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 = b_2 \land a_1 < a_2)$

$$(a_1, b_1) \prec (a_2, b_2) \Leftrightarrow \max(a_1, b_1) < \max(a_2, b_2)$$

 $\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 < b_2)$
 $\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 = b_2 \land a_1 < a_2)$

$$(a_1, b_1) \prec (a_2, b_2) \Leftrightarrow \max(a_1, b_1) < \max(a_2, b_2)$$

 $\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 < b_2)$
 $\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 = b_2 \land a_1 < a_2)$

$$(a_1, b_1) \prec (a_2, b_2) \Leftrightarrow \max(a_1, b_1) < \max(a_2, b_2)$$

 $\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 < b_2)$
 $\lor (\max(a_1, b_1) = \max(a_2, b_2) \land b_1 = b_2 \land a_1 < a_2)$

Small cardinals, when no full AC (Woodin, 2006)

Impact of AC

AC is equivalent to the assertion that

"Every set can be well-ordered". (WO)

Many of the basic properties of cardinals need AC.

Write $X \preceq^* Y$ if $X = \emptyset$ or there is a surjection $f: Y \xrightarrow{\text{onto}} X$.

Lemma 19 (AC)

- 1. If $X \leq^* Y$, then $X \leq Y$.
- 2. If $\kappa \geq \omega$ and $X_{\alpha} \leq \kappa$ for all $\alpha < \kappa$, then $\bigcup_{\alpha < \kappa} X_{\alpha} \leq \kappa$.

Proof.

- 1. Let \prec well-orders X. Define $g: Y \to X$ as $q(y) = \prec$ -least element of $f^{-1}(\{y\})$.
- 2. For each α , pick an injection $f_{\alpha}: X_{\alpha} \to \kappa$. f_{α} are selected via a well-ordering of $\mathscr{P}(\bigcup X_{\alpha} \times \kappa)$.
 - Use them to define an injection from $\bigcup X_{\alpha} \to \kappa \times \kappa$.

Proof.

- 1. Let \prec well-orders X. Define $g:Y\to X$ as $g(y)= \prec \text{-least element of } f^{-1}(\{y\}).$
- 2. For each α , pick an injection $f_{\alpha}: X_{\alpha} \to \kappa$. f_{α} are selected via a well-ordering of $\mathscr{P}(\bigcup X_{\alpha} \times \kappa)$.
 - Use them to define an injection from $\bigcup X_{\alpha} \to \kappa \times \kappa$.

An important application of Lemma 19-2 is the **Downward Löwenheim-Skolem-Tarski Theorem** in model theory.

An Application, Definitions

Definition 20

- 1. An *n*-ary operation on X is a function $f: X^n \to X$ if n > 0, or an element of X if n = 0.
- 2. If $Y \subset X$, Y is closed under f iff $f[Y^n] \subset Y$ (or $f \in B$ when n = 0).
- 3. A **finitary operation** is an n-ary operation for some $n < \omega$.
- 4. If $\mathcal E$ is a set of finitary operations on X and $Y\subset X$, the closure of Y under $\mathcal E$, denoted as $\mathrm{cl}_{\mathcal E}(Y)$, is the least $Y^*\subset X$ such that $Y\subset Y^*$, and Y^* is closed under all the operations in $\mathcal E$.

An Application, Theorem

Theorem 21 (AC)

Let κ be an infinite cardinal. Suppose $Y \subset X$, $Y \leq \kappa$, and \mathcal{E} is a set of $\leq \kappa$ finitary operations on X. Then $|\operatorname{cl}_{\mathcal{E}}(Y)| \leq \kappa$.

An Application, Theorem

Theorem 21 (AC)

Let κ be an infinite cardinal. Suppose $Y \subset X$, $Y \leq \kappa$, and \mathcal{E} is a set of $\leq \kappa$ finitary operations on X. Then $|\operatorname{cl}_{\mathcal{E}}(Y)| \leq \kappa$.

EXAMPLE. Every infinite group has a countably infinite subgroup.

An Application, Theorem

Proof.

- ▶ Let $E_0 \subset \mathcal{E}$ be the set of all 0-ary operations in \mathcal{E} .
- ▶ Let $C_0 = Y \cup E_0$. We may assume that \mathcal{E} has no 0-ary operations.
- ▶ By induction on $n < \omega$, define

$$C_{n+1} = C_n \cup (\bigcup \{f[^kC_n] \mid f \in \mathcal{E}, f \text{ is } k\text{-ary.}\})$$

▶ Take $C_{\omega} = \bigcup_{n} C_{n}$. Check that $C_{\omega} = \operatorname{cl}_{\mathcal{E}}(Y)$.

Homework (Midterm Quiz)

- 1. Prove the following statements.
 - 1.1 If $x \cap y = \emptyset$ and $x \cup y \leq y$, then $\omega \times x \leq y$.
 - 1.2 If $x \cap y = \emptyset$ and $\omega \times x \leq y$, then $x \cup y \approx y$.
- 2. Ex.3.1-3.3 in textbook.
- 3. Prove that $\kappa^{\kappa} < 2^{\kappa \cdot \kappa}$.
- 4. If $A \preceq B$, then $A \preceq^* B$.
- 5. If $A \preceq^* B$, then $\mathscr{P}(A) \preceq \mathscr{P}(B)$.²
- 6. Let X be a set. If there is an injective function $f:X\to X$ such that $\operatorname{ran}(f)\subsetneq X$, then X is infinite.

²Don't forget the case $A = \emptyset$.

Remark.

- ▶ Assuming AC, the converse of (4) is true (see Lemma 19).
- ▶ (6) is related to so called "Dedekind-infinite". (see textbook Ex.3.14-3.16)

Exercises*

- 1. α is called an **epsilon number** iff $\alpha = \omega^{\alpha}$ (ordinal exponentiation). Show that
 - the first epsilon number ε_0 is countable.
 - ▶ for each $\alpha \in \text{Ord} \{0\}$, \aleph_{α} is an epsilon number.
 - for each $\alpha \in \operatorname{Ord} \{0\}$, the set of epsilon numbers is unbounded below \aleph_{α} . Hence, there are \aleph_{α} epsilon numbers below \aleph_{α} .
- 2. There is a well-ordering of the class of all finite sequences of ordinals such that for each α , the set of all finite sequences in ω_{α} is an initial segment and its order-type is ω_{α} .

Continuum Hypothesis

Since Cantor could show (under AC) that $\aleph_1 \leq 2^{\aleph_0}$, and had no way producing cardinals between \aleph_1 and 2^{\aleph_0} , he conjectured that

CONTINUUM HYPOTHESIS (CH)

$$\aleph_1 = 2^{\aleph_0}$$
?

Continuum Hypothesis

More generally,

GENERALIZED CONTINUUM HYPOTHESIS (GCH)

For every $\alpha \in Ord$,

$$\aleph_{\alpha+1}=2^{\aleph_{\alpha}}$$
?

Continuum Hypothesis

More generally,

GENERALIZED CONTINUUM HYPOTHESIS (GCH)

For every $\alpha \in Ord$,

$$\aleph_{\alpha+1}=2^{\aleph_{\alpha}}$$
?

REMARK. Without AC, it is possible that $\aleph_1 \nleq 2^{\aleph_0}$; however, one can still show that $\aleph_{\alpha+1} < 2^{2^{\aleph_{\alpha}}}$, for every $\alpha \in \operatorname{Ord}$. (see textbook Ex.3.7-3.11)

Coming up next

Cardinal Numbers

Cardinal

Cardinal arithmetic, I

Cofinality

Lemma 22

If $\lambda \geq \omega$ and $2 \leq \kappa \leq \lambda$, then $\kappa^{\lambda} = 2^{\lambda}$.

Lemma 22

If $\lambda \geq \omega$ and $2 \leq \kappa \leq \lambda$, then $\kappa^{\lambda} = 2^{\lambda}$.

Under GCH, κ^{λ} can be easily computed, but the notion of **cofinality** is needed.

Cofinality

Definition 23

- 1. If $f: \alpha \to \beta$, f maps α cofinally iff $\operatorname{ran}(f)$ is unbounded in β .
- 2. The cofinality of β , $cf(\beta)$, is the least α s.t. there is a map from α cofinally into β .

Cofinality

Definition 23

- 1. If $f: \alpha \to \beta$, f maps α cofinally iff $\operatorname{ran}(f)$ is unbounded in β .
- 2. The cofinality of β , $cf(\beta)$, is the least α s.t. there is a map from α cofinally into β .

Clearly, $cf(\alpha) \leq \alpha$, and

- ▶ if α is a successor, $cf(\alpha) = 1$.
- ▶ if α is a limit ordinal, $cf(\alpha)$ is a limit ordinal $\geq \omega$.

Cofinality

Definition 23

- 1. If $f: \alpha \to \beta$, f maps α cofinally iff $\operatorname{ran}(f)$ is unbounded in β .
- 2. The cofinality of β , $cf(\beta)$, is the least α s.t. there is a map from α cofinally into β .

Clearly, $cf(\alpha) \leq \alpha$, and

- ▶ if α is a successor, $cf(\alpha) = 1$.
- if α is a limit ordinal, $cf(\alpha)$ is a limit ordinal $\geq \omega$.

EXAMPLE.
$$cf(\omega^n) = cf(\aleph_\omega) = \omega$$
.

Properties of $cf(\cdot)$

Lemma 24

- 1. There is a cofinal map $f : cf(\alpha) \to \alpha$ which is strictly increasing, i.e. $\xi < \eta \to f(\xi) < f(\eta)$.
- 2. If α is a limit ordinal and $f: \alpha \to \beta$ is a strictly increasing cofinal map, then $cf(\alpha) = cf(\beta)$.

Properties of $cf(\cdot)$

Lemma 24

- 1. There is a cofinal map $f : cf(\alpha) \to \alpha$ which is strictly increasing, i.e. $\xi < \eta \to f(\xi) < f(\eta)$.
- 2. If α is a limit ordinal and $f: \alpha \to \beta$ is a strictly increasing cofinal map, then $cf(\alpha) = cf(\beta)$.

Corollary 25

- 1. $\operatorname{cf}(\operatorname{cf}(\alpha)) = \operatorname{cf}(\alpha)$.
- 2. If α is a limit ordinal, then $cf(\aleph_{\alpha}) = cf(\alpha)$.

Regular Cardinal

Definition 26

 α is **regular** iff α is a limit ordinal and $cf(\alpha) = \alpha$. Otherwise, α is **singular**.

Regular Cardinal

Definition 26

 α is regular iff α is a limit ordinal and $cf(\alpha) = \alpha$. Otherwise, α is singular.

Lemma 27

- 1. For every limit ordinal α , $cf(\alpha)$ is regular. In particular, ω is regular.
- 2. If α is regular, then α is a cardinal.

Singular Cardinal

Lemma 28 (AC)

An infinite cardinal κ is singular iff there exists a cardinal $\lambda < \kappa$ and a family $\{S_{\xi} \mid \xi < \lambda\}$ of subsets of κ s.t. $|S_{\xi}| < \kappa$ for each $\xi < \kappa$, and $\kappa = \bigcup_{\xi < \lambda} S_{\xi}$. The least cardinal λ that satisfies the condition is $\operatorname{cf}(\kappa)$.

Singular Cardinal

Lemma 28 (AC)

An infinite cardinal κ is singular iff there exists a cardinal $\lambda < \kappa$ and a family $\{S_{\xi} \mid \xi < \lambda\}$ of subsets of κ s.t. $|S_{\xi}| < \kappa$ for each $\xi < \kappa$, and $\kappa = \bigcup_{\xi < \lambda} S_{\xi}$. The least cardinal λ that satisfies the condition is $\operatorname{cf}(\kappa)$.

Corollary 29 (AC)

For each α , $\aleph_{\alpha+1}$ is regular.

Singular Cardinal

Lemma 28 (AC)

An infinite cardinal κ is singular iff there exists a cardinal $\lambda < \kappa$ and a family $\{S_{\xi} \mid \xi < \lambda\}$ of subsets of κ s.t. $|S_{\xi}| < \kappa$ for each $\xi < \kappa$, and $\kappa = \bigcup_{\xi < \lambda} S_{\xi}$. The least cardinal λ that satisfies the condition is $\operatorname{cf}(\kappa)$.

Corollary 29 (AC)

For each α , $\aleph_{\alpha+1}$ is regular.

REMARK. Without AC, it is consistent that $cf(\omega_1) = \omega$, i.e., ω_1 is a countable union of countable sets. In contrast, in ZF one can show that ω_2 cannot be a countable union of countable sets.

Large cardinals

- ► There are arbitrarily large singular cardinals. For each α , $cf(\aleph_{\alpha+\omega}) = \omega$.
- ▶ It is unknown whether one can prove in ZF that there exists a cardinal κ with $\operatorname{cf}(\kappa) > \omega$.
- ▶ (Hausdroff, 1908) κ is **weakly inaccessible** if κ is a regular limit cardinal. Every weak inaccessible is a fix point of the \aleph -sequence. The first weakly inaccessible cardinal is rather large. And it's existence is independent of ZFC.
- (Sierpiński-Tarski, Zermelo, 1930). κ is **strongly** inaccessible iff $\kappa > \omega$, κ is regular and $\forall \lambda < \kappa \, (2^{\lambda} < \kappa)$. Strong inaccessibles are weak inaccessibles. Under GCH, these two notions coincide.

Theorem 30 (König)

Assume AC. If κ is an infinite cardinal then $\kappa < \kappa^{\mathrm{cf}(\kappa)}$.

Theorem 30 (König)

Assume AC. If κ is an infinite cardinal then $\kappa < \kappa^{\mathrm{cf}(\kappa)}$.

Proof.

- Let $\{f_{\alpha} \mid \alpha < \kappa\}$ be an arbitrary subset of $^{\mathrm{cf}(\kappa)}\kappa$ of size κ .
- ▶ Construct an $f : cf(\kappa) \to \kappa$ different from all f_{α} , $\alpha < \kappa$.
- ▶ Suppose $\kappa = \lim_{\xi < \operatorname{cf}(\kappa)} \alpha_{\xi}$. For each $\xi < \operatorname{cf}(\kappa)$, $f(\xi)$ is selected to ensure that at ξ , $f \neq f_{\alpha}$ for all $\alpha < \alpha_{\xi}$.

Theorem 30 (König)

Assume AC. If κ is an infinite cardinal then $\kappa < \kappa^{\operatorname{cf}(\kappa)}$.

Proof.

- Let $\{f_{\alpha} \mid \alpha < \kappa\}$ be an arbitrary subset of $^{\mathrm{cf}(\kappa)}\kappa$ of size κ .
- ▶ Construct an $f : cf(\kappa) \to \kappa$ different from all f_{α} , $\alpha < \kappa$.
- ▶ Suppose $\kappa = \lim_{\xi < \operatorname{cf}(\kappa)} \alpha_{\xi}$. For each $\xi < \operatorname{cf}(\kappa)$, $f(\xi)$ is selected to ensure that at ξ , $f \neq f_{\alpha}$ for all $\alpha < \alpha_{\xi}$.

Corollary 31 (AC)

If $\lambda \geq \omega$, then $cf(2^{\lambda}) > \lambda$.

Theorem 30 (König)

Assume AC. If κ is an infinite cardinal then $\kappa < \kappa^{\operatorname{cf}(\kappa)}$.

Proof.

- ▶ Let $\{f_{\alpha} \mid \alpha < \kappa\}$ be an arbitrary subset of $^{cf(\kappa)}\kappa$ of size κ .
- ▶ Construct an $f : cf(\kappa) \to \kappa$ different from all f_{α} , $\alpha < \kappa$.
- ▶ Suppose $\kappa = \lim_{\xi < \operatorname{cf}(\kappa)} \alpha_{\xi}$. For each $\xi < \operatorname{cf}(\kappa)$, $f(\xi)$ is selected to ensure that at ξ , $f \neq f_{\alpha}$ for all $\alpha < \alpha_{\xi}$.

Corollary 31 (AC)

If $\lambda \geq \omega$, then $cf(2^{\lambda}) > \lambda$.

Further results in cardinal arithmetics will appear in Chapter 5.