3

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2007 NUMERICAL METHODS AND PROGRAMMING

SEMESTER - 3

Time: 3 Hours]		[Full Marks : 70

GROUP - A

			(Multiple C	hoice Type (Juestions)	
1.	Choo	se th	e correct alternatives for	any ten of th	e following :	10 × 1 = 10
	1)	The	no. of significant digits in	n 1·00234 is		
		a)	4	b)	. .6	
		c)	3	d)	5.	
	- ii)	Whie	ch of the following relation	ns is / are tr	ue?	
		a)	$\Delta \cdot \nabla = \Delta - \nabla$	b)	$\Delta \cdot \nabla = \Delta + \nabla$	
		c)	Δ . ∇ = Δ / ∇	d)	all of these.	
÷	iii)	The	output of the following p	rogram will b	e:	
			#include <stdio.h></stdio.h>			
			main()			
			{			
			int $i = 0, x = 0$;	*** *** *** *** *** *** *** *** *** **		
			while (i < 0) {			
			if $(i\%5 = 0)$			•
•			$\mathbf{x} + = \mathbf{i}; $			
			++ 1 ; }			
		•	printf("\nx = %d", x) ;			
	* * * * * * * * * * * * * * * * * * *		}			
		a)	25	b)	30	

d)

none of these.

c)

35

iv)	The	degree of precision of Trapezo	idal rul	e is
	a)		b)	2
	c)	3	d)	4.
v)	Whi	ich of the following methods is	an itera	tive method?
	a)	Gauss Elimination Method	b)	Gauss-Jordan Method
•	c)	Gauss-Jacobi Method	d)	Crout's Method.
vi)	Met	hod of Bisection is		
	a)	conditionally convergent	b)	always Convergent
	c)	non-convergent	d)	none of these.
vii)	Whi	ch of the following relations is	true ?	
	a)	$E = 1 + \Delta$	b)	$E = 1 - \Delta$
	c)	$E = 1 / \Delta$	d)	None of these.
viii)	Reg	ula-Falsi Method is used to		
,	a)	find the root of a system of lin	near sin	nultaneous equations
	b)	differentiate		
	c)	find the root of an algebraic of	r transc	cendental equation
	d)	solve linear differential equat	ions.	
ix)	The	value of $\left(\frac{\Delta^2}{E}\right) x^3$ is	* * * * * * * * * * * * * * * * * * * *	
	a)	$3x^2$	b)	6 <i>x</i>
	c)	$6x^2$	d)	6.

d)

5.

c)

3

- xi) When Gauss Elimination method is used to solve AX = B, A is transformed to a
 - null matrix

upper triangular matrix

identity matrix

- diagonally dominant matrix.
- If $\frac{dy}{dx} = x + y$ and y(1) = 0, then y(1.1) according to Euler's method is
 - a) 0.1 0.3

c) 0.5

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

Given the following table, find f(x) and hence find f(6):

x :	0	11	2	3	4	5
f(x):	41	43	47	53	61	71

The values of sin x are given below, for different values of x. Form a difference table 3. and from this table find the sin 32°.

x:	30°	35°	40°	45°	50°	55°
$y = \sin x$:	0.5000	0.5736	0.6428	0.7071	0.7660	0.8192

- What are subscripts? How are they written? What restrictions apply to the values that can be assigned to subscripts?
- Evaluate $\sqrt{12}$ to three places of decimals by Newton-Raphson method. 5.
- Find a root of the equation $x^3 3x 5 = 0$ by the method of false position. 6.
- 7.

by Gauss-Jordan method.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

 $3 \times 15 = 45$

- Find by the method of fixed point iteration the root of $x^2 6x + 2 = 0$, which lies 8. a) between 5 and 6 correct upto four significant figures.
 - Given $\frac{dy}{dx} = \frac{y-x}{y+x}$ with intial condition y = 1 at x = 0, find y for x = 0.1 by b) Euler's method, correct upto 4 decimal places, taking step length h = 0.02.

10 + 5

Solve the following system of linear equations by Gauss-Jordan elimination 9. method:

$$5x_1 - x_2 = 9$$

$$-x_1 + 5x_2 - x_3 = 4$$

$$-x_2 + 5x_3 = -6$$

with and the lind of and hence Calculate by Simpson's $\frac{1}{3}$ rule, the value of the integral $\int \frac{x}{1+x} dx$, correct b)

upto three significant figures by taking six intervals. 10 + 5

Solve the following system of equations by LU-factorization method: 10. $8x_1 - 3x_2 + 2x_3 = 20$; $4x_1 + 11x_2 - x_3 = 33$; $6x_1 + 3x_2 + 12x_3 = 36$.

Using Gauss-Seidel method, find the solution of the following system of the b) linear equations correct upto 2 place of decimal.

$$3x + y + 5z = 13$$
, $5x - 2y + z = 4$, $x + 6y - 2z = -1$. $8 + 7$

Find f(0.9) by using Newton divided difference formula. Given 11.

x:	0	i	2	4
f(x):	5	14	41	98

b) Estimate the missing values from the following table:

x:	1	3	5	7	9	11
y:	2	?	27	64	?	216

State the necessary assumption.

c) Find y'(1.1), given that

x:	1.0	1.1	1.2	1.3	1.4
y(x):	7.989	8-403	8.781	9.129	9.451

5 + 5 + 5

- 12. a) Solve the equation $\frac{dy}{dx} = x^2 + y^2$; y(0) = 1, for x = 0.1 by using Runge-Kutta 4th order method and find the solution correct upto 4 place of dicimal. (h = 0.05)
 - b) Find the solution of the following differential equation by Euler's method for x = 1, by taking h = 0.2, $\frac{dy}{dx} = xy$, with y = 1 when x = 0.
 - c) Using Taylor's series method solve $\frac{dy}{dx} = 1 + xy$ with y(0) = 2. Find the value of y(0.2).
- 13. a) Write a program in C to sove the equation $x^3 x 4 = 0$ within (1, 2) by Bisection method, correct upto 3 place of decimals.
 - b) Solve the equation $\frac{dy}{dx} = x + y$ with intial condition y(0) = 1.0 and h = 0.1, using predictor-corrector method, to find y(0.2).
 - c) Write a program in C using recursive function to calculate the sum of all digits of any number.

 6 + 5 + 4

END