Don't Trust The Data

Classification of Spotify Podcast Transcripts and Metadata

Team 9: Chris Cappiello, Keith McBride, Andrés Medina, Bryan Smith, Joseph Smith, Jessica Wheeler

The Problem and Goals

Facts: There are more than 800,000 active podcasts [Forbes 2019] and more than 50% of consumers in the US listen to podcasts [Statistica, 2019]

Problem: Content creators need to find their audience and connect with their listeners

Goal: Use podcast transcripts and metadata to classify podcasts based on their categories (e.g. True Crime vs. Kids & Family)

Data Cleaning

- Cleaned and vectorized 88 GB of transcript data from over 100,000 podcasts on Spotify (Bryan, Chris) [Clifton, 2020 arXiv:2004.04270]
 - Natural Language Toolkit (NLTK)
- Extracted show information from iTunes
 XML files (Andrés, Keith)
 - XML parsing, Spotify api (Spotipy)
- Performed cleaning and analysis on metadata (Jessica, Andrés, and Joey)
 - o Emoji cleaning, pattern recognition

Modeling

Preprocessing

- Hash vectorizer (Bryan)
- PCA (Joey)
- Lexical Complexity (Chris)

sklearn classification algorithms:

- SVC/LinearSVC (Bryan)
- MultiNB/GaussNB (Keith, Bryan)
- Random Forest (Jessica/Keith)
- Decision Trees (Jessica/Keith)
- SGDC (Bryan, Keith)
- KNN (Joey)
- Keras/TensorFlow
 - Neural Networks (Simple and LSTM) (Andrés)

Features

Duration

Explicit

Episode description lexical complexity

Transcript lexical complexity

Episode description contains emojis

Professional

Show frequency

Hash vectorized transcripts

Accuracy from models in sklearn:

MultiNB	Dec.Tree	GaussNB	Forest
20%	42%	44%	60%
SGDC	KNN	LinSVC	SVC
62%	66%	67%	70%

Results

Our models in sklearn achieved ~40-70% accuracy

By merging two neural networks (LSTM+DNN) we achieved ~80% category classification accuracy

LSTM+DNN Results

The Erdős Institute

Challenges

- Classifying "Games & Hobbies" due to small number of episodes
- Episodes sometimes misclassified as similar categories
- More computational time and resources for better model
- Actually getting the data

Next Steps

- Reduce or join similar categories
 - Additional data cleaning
- Test best performing model with larger hash vector size
- Explore ensemble methods for improved performance
- Unsupervised learning

Thank You!

TEAM 9: Don't Trust The Data

Chris Cappiello

cappiello.7@osu.edu

The Ohio State University

Keith McBride

mcbride.342@osu.edu

The Ohio State University

Andrés Medina

medina.101@osu.edu

The Ohio State University

Bryan Smith

smith.10851@osu.edu

The Ohio State University

Joseph Smith

smith.10838@osu.edu

The Ohio State University

Jessica Wheeler

wheeler.1011@osu.edu

The Ohio State University

*https://github.com/TheEssentials/TheEssentials

* Access on request

May 2020 Data Science Boot Camp

