WHAT IS CLAIMED IS:

1. A compound of the formula (I):

$$(R^5)_2N$$

$$OH OH O R^3$$

$$(I)$$

wherein,

each R^1 , R^2 , and R^3 are independently alkyl substituted with aryl or heteroaryl, each of which is optionally substituted with 1-5 substituents selected from OR^6 , CN, NO_2 , NHR^7 , $N(R^7)_2$, halo, $CONHR^7$, $CON(R^7)_2$, CO_2R^8 , or C_{1-6} alkyl;

X is N, O, or S;

R⁴ is H, CON(R⁷)₂, CONHR⁷, CH₂OH, CH(OH)CH=CH₂, or C(O)NHCHR¹⁰CO₂H; each R⁵ is independently H, alkyl, alkenyl, aryl, heteroaryl, acyl, P¹, or C(O)CHR¹⁰NH₂;

each R⁶ is independently H, alkyl, or P³;

each R⁷ is independently H, alkyl, acyl, or P²;

each R⁸ is independently H, alkyl, aralkyl, or heteroaralkyl;

each R¹⁰ is independently an amino acid side chain;

each P1 and P2 is independently a nitrogen protecting group; and

each P³ is independently an oxygen protecting group;

or pharmaceutically acceptable salts thereof.

2. The compound of claim 1, wherein:

X is N or O;

R¹ is alkyl substituted with aryl, which is optionally substituted with 1-5 substituents selected from OR⁶, CN, NO₂, NHR⁷, N(R⁷)₂, halo, CONHR⁷, CON(R⁷)₂, CO₂R⁸, or C₁₋₆ alkyl;

R⁴ is H, CON(R⁷)₂, C(O)NHCHR¹⁰CO₂H, or CH₂OH; each R⁵ is independently H, alkyl, acyl, P¹, or C(O)CHR¹⁰NH₂; each R⁶ is independently H, alkyl, or P³; each R⁷ is independently H, alkyl, acyl, or P²; each R⁸ is independently H, alkyl, aralkyl, or heteroaralkyl; each R¹⁰ is independently an amino acid side chain; each P¹ and P² is independently a nitrogen protecting group; and each P³ is independently an oxygen protecting group.

3. The compound of claim 1, wherein:

X is N or O;

 R^1 is alkyl substituted with aryl, which is optionally substituted with 1-5 substituents selected from OR^6 , CN, NO_2 , halo, or C_{1-6} alkyl;

R⁴ is H, CONHR⁷, or CH₂OH; each R⁵ is independently H or alkyl; each R⁶ is independently H or alkyl; R⁷ is H, alkyl, or P²; and P² is a nitrogen protecting group.

4. The compound of claim 1, wherein:

X is N or O;

 R^1 is alkyl substituted with aryl, which is optionally substituted with 1-5 substituents selected from OH or C_{1-6} alkyl; and

R₄ is H, CONH₂, or CH₂OH.

5. The compound of claim 1, wherein:

X is N or O;

 R^1 is C_1 alkyl substituted with phenyl, which is substituted at the 2- and 6- positions with Me and is substituted at the 4- position with OH; and

R⁴ is H, CONH₂, or CH₂OH.

6. The compound of claim 1 having the formula (II):

$$(R^9)_n$$
 $(R^9)_n$
 $(R^9)_n$
 $(R^9)_n$
 $(R^9)_n$
 $(R^9)_n$
 $(R^9)_n$
 $(R^9)_n$

wherein,

X is N or O;

R⁴ is H, CON(R⁷)₂, CONHR⁷, CH₂OH, or C(O)NHCHR¹⁰CO₂H;

each R⁵ is independently H, alkyl, acyl, P¹, or C(O)CHR¹⁰NH₂;

each R⁶ is independently H, alkyl, or P³;

each R⁷ is independently H, alkyl, acyl, or P²;

each R⁸ is independently H, alkyl, aralkyl, or heteroaralkyl;

each R⁹ is independently OR⁶, CN, NO₂, NHR⁷, N(R⁷)₂, halo, CONHR⁷, CON(R⁷)₂,

CO₂R⁸, or C₁₋₆ alkyl;

each R¹⁰ is independently an amino acid side chain;

each n is independently 0, 1, 2, 3, 4, or 5;

each P1 and P2 is independently a nitrogen protecting group; and

each P³ is independently an oxygen protecting group.

7. The compound of claim 6, wherein:

R⁴ is H, CON(R⁷)₂, CONHR⁷, or CH₂OH;

each R⁵ is independently H, alkyl, or acyl;

each R⁶ is independently H or alkyl;

each R⁷ is independently H or alkyl;

each R^9 is independently OR^6 , CN, NO_2 , halo, or $C_{1\text{-}6}$ alkyl; and

each n is independently 0 1, 2, or 3.

8. The compound of claim 6, wherein:

P¹ is a BOC or Fmoc;

P² is a solid support; and

 P^3 is t-Bu, Bn, Me, or Ac.

9. The compound of claim 6, wherein:

R⁴ is H, CON(R⁷)₂, CONHR⁷, or CH₂OH;
each R⁵ is independently H, alkyl, acyl, or P¹;
each R⁶ is independently H or P³;
each R⁷ is independently H or P²;
each R⁹ is independently OR⁶ or C₁₋₆ alkyl;
each n is independently 0, 1, or 2;
P¹ is a BOC;
P² is a solid support; and
P³ is t-Bu.

10. The compound of claim 6, wherein:

R⁴ is H, CONH₂, or CH₂OH; each R⁵ is independently H, P¹, or C(O)CHR¹⁰NH₂; each R⁶ is H or alkyl each R⁹ is C₁₋₆ alkyl or OR⁶; each R¹⁰ is independently an amino acid side chain; each n is independently 1, 2, or 3; and P¹ is a nitrogen protecting group.

11. The compound of claim 1 that is formula (III):

wherein,

X is O or N; R^9 is C_{1-6} alkyl; and n is 2.

12. The compound of claim 1 that is formula (IV):

$$H_2N$$

$$\begin{array}{c}
OH \\
X \\
OH O
\end{array}$$

$$\begin{array}{c}
OH \\
NH_2
\end{array}$$

$$\begin{array}{c}
(IV)
\end{array}$$

wherein X is N or O.

13. The compound of claim 1 having the formula (V):

wherein

X is N or O; and R^4 is $CONH_2$, H, or CH_2OH .

14. The compound of claim 1 having the formula (VI):

$$(R^5)_2N$$
OH O R^3
OH O R^3
 R^4
(VI)

wherein,

each R^1 , R^2 , and R^3 is independently alkyl substituted with aryl or heteroaryl, each of which is optionally substituted with 1-5 substituents selected from OR^6 , CN, NO_2 , NHR^7 , $N(R^7)_2$, halo, $CONHR^7$, $CON(R^7)_2$, CO_2R^8 , or C_{1-6} alkyl;

 R^4 is H, CON(R^7)₂, CONHR⁷, CH₂OH, or CH(OH)CH=CH₂, or C(O)NHCHR¹⁰CO₂H;

each R⁵ is independently H, alkyl, alkene, aryl, heteroaryl, acyl, or P¹, or C(O)CHR¹⁰NH₂;

each R⁶ is independently H, alkyl, or P³; each R⁷ is independently H, alkyl, acyl, or P²; each R⁸ is independently H, alkyl, aralkyl, or heteroaralkyl; each R¹⁰ is independently an amino acid side chain; each P¹ and P² is independently a nitrogen protecting group; and each P³ is independently an oxygen protecting group.

15. The compound of claim 14, wherein:

each R¹, R², and R³ is independently alkyl substituted with aryl, each of which is optionally substituted with 1-5 substituents selected from OR⁶, CN, NO₂, halo, or C₁₋₆ alkyl; R⁴ is H, CON(R⁷)₂, or CONHR⁷, or C(O)NHCHR¹⁰CO₂H; each R⁵ is independently H, alkyl, acyl, P¹, or C(O)CHR¹⁰NH₂; and each R¹⁰ is independently an amino acid side chain.

16. A method of making a compound of the formula (VIII):

comprising coupling compounds of the formulas (XI) and (XII)

using a ruthenium catalyst, to give a compound of formula (IX); and

$$P^{1} \underset{H}{\overset{R^{11}}{\overset{}}} \underset{OH}{\overset{}} \underset{OH}{\overset{}} \underset{O}{\overset{}} \underset{R^{13}}{\overset{}} \underset{H}{\overset{}} \underset{H}{\overset{}} \stackrel{}{\overset{}} P^{2}}$$

$$(IX)$$

reacting the compound of formula (IX) with a deprotecting agent to give a compound of the formula (VIII);

wherein,

each R^1 , R^2 , and R^3 is independently alkyl substituted with aryl or heteroaryl, each of which is optionally substituted with 1-5 substituents selected from OR^6 , CN, NO_2 , NHR^7 , $N(R^7)_2$, halo, $CONHR^7$, $CON(R^7)_2$, CO_2R^8 , or C_{1-6} alkyl;

each R⁶ is independently H, alkyl, or P³;

each R⁷ is independently H, alkyl, acyl, or P⁴;

each R⁸ is independently H, alkyl, aralkyl, or heteroaralkyl;

each R¹¹, R¹², and R¹³ is independently alkyl substituted with aryl or heteroaryl, each of which is optionally substituted with 1-5 substituents selected from OR¹⁶, CN, NO₂,

 NHR^{17} , $N(R^{17})_2$, halo, $CONHR^{17}$, $CON(R^{17})_2$, CO_2R^{18} , or C_{1-6} alkyl;

each R¹⁶ is independently H, alkyl, or P³;

each R¹⁷ is independently H, alkyl, acyl, or P⁴;

each R¹⁸ is independently H, alkyl, aralkyl, or heteroaralkyl;

each P¹, P², and P⁴ is independently a nitrogen protecting group; and each P³ is independently an oxygen protecting group.

17. A method of making a compound of the formula (XVI):

$$H_2N$$
 OH
 OH
 OH
 R^3
 NH_2
 NH_2
 NH_2
 NH_2

comprising coupling compounds of the formulas (XI) and (XIII)

$$P^{1} \underset{H}{\overset{R^{11}}{\bigvee}} OH \qquad \qquad QH \qquad OH \qquad O$$

$$(XII) \qquad \qquad (XIII)$$

by first reacting the free alcohols with a silicon protecting group, and then treating the resulting compound with a ruthenium catalyst, giving a compound of the formula (VII);

reacting the compound of formula (VII) under pH conditions sufficient to remove acid labile protecting groups, if any;

treating the resulting product with peroxide and base under conditions sufficient to hydrolyze the thioester; and

coupling the resulting product with a solid phase peptide, giving a compound of the formula (XVI);

wherein,

each R^1 , R^2 , and R^3 is independently alkyl substituted with aryl or heteroaryl, each of which is optionally substituted with 1-5 substituents selected from OR^6 , CN, NO_2 , NHR^7 , $N(R^7)_2$, halo, $CONHR^7$, $CON(R^7)_2$, CO_2R^8 , or C_{1-6} alkyl;

each R⁶ is independently H, alkyl, or P³; each R⁷ is independently H, alkyl, acyl, or P⁴; each R⁸ is independently H, alkyl, aralkyl, or heteroaralkyl; each R^{11} and R^{12} is independently alkyl substituted with aryl or heteroaryl, each of which is optionally substituted with 1-5 substituents selected from OR^{16} , CN, NO_2 , NHR^{17} , $N(R^{17})_2$, halo, $CONHR^{17}$, $CON(R^{17})_2$ CO_2R^{18} , or C_{1-6} alkyl;

each R¹⁶ is independently H, alkyl, or P³;
each R¹⁷ is independently H, alkyl, acyl, or P⁴;
each R¹⁸ is independently H, alkyl, aralkyl, or heteroaralkyl;
each P¹ and P⁴ is independently a nitrogen protecting group; and
each P³ is independently an oxygen protecting group; and
P⁵ is a sulfur protecting group.

18. A method of making a compound of the formula (XIV):

$$H_2N$$
 OH
 OH
 OH
 O
 R^2
 (XIV)

comprising coupling compounds of formulas (XI) and (XIII),

$$P^{1} \underset{\text{H}}{\overset{R^{11}}{\bigvee}} OH OH O$$

$$(XII) (XIII)$$

with a ruthenium catalyst;

treating the resulting compound with peroxide and base under conditions sufficient to hydrolyze the thioester;

amidation or esterification of the resulting acid; and

treatment of the resulting compound with a deprotecting agent sufficient to remove protecting groups, giving a compound of the formula (XIV); wherein,

each R^1 , R^2 , and R^3 is independently alkyl substituted with aryl or heteroaryl, each of which is optionally substituted with 1-5 substituents selected from OR^6 , CN, NO_2 , NHR^7 , $N(R^7)_2$, halo, $CONHR^7$, $CON(R^7)_2$, CO_2R^8 , or C_{1-6} alkyl;

X is N or O:

R⁴ is H, CON(R⁷)₂, CONHR⁷, CH₂OH, or CH(OH)CH=CH₂;

each R⁶ is independently H, alkyl, or P³;

each R⁷ is independently H, alkyl, acyl, or P⁴;

each R⁸ is independently H, alkyl, aralkyl, or heteroaralkyl;

each R¹¹ and R¹² are independently alkyl substituted with aryl or heteroaryl, each of which is optionally substituted with 1-5 substituents selected from OR¹⁶, CN, NO₂, NHR¹⁷, N(R¹⁷)₂, halo, CONHR¹⁷, CON(R¹⁷)₂, CO₂R¹⁸, or C₁₋₆ alkyl;

each R¹⁶ is independently H, alkyl, or P³;

each R¹⁷ is independently H, alkyl, acyl, or P⁴;

each R¹⁸ is independently H, alkyl, aralkyl, or heteroaralkyl;

each P¹ and P⁴ is independently a nitrogen protecting group;

each P3 is independently an oxygen protecting group; and

P⁵ is a sulfur protecting group.

19. A method of making a compound of formula (XVII):

$$R^1$$
 R^2
 OH
 OH
 OH
 OH
 OH
 OH

comprising coupling compounds of formulas (XI) and (XIII)

with a ruthenium catalyst;

treating the resulting compound with peroxide and base under conditions sufficient to hydrolyze the thioester; and

reacting the free hydroxyls with an oxygen protecting group to give a compound of formula (XVIII)

$$P^1HN$$
 OP^3
 OP^3
 O
 OP^3
 O

coupling the compound of formula (XVIII) with an alcohol of formula $R^{13}(CHOH)CHOR^{16}$; and

treating the resulting compound with a deprotecting agent sufficient to remove protecting groups to give a compound of formula (XVII); wherein,

each R^1 , R^2 , and R^3 is independently alkyl substituted with aryl or heteroaryl, each of which is optionally substituted with 1-5 substituents selected from OR^6 , CN, NO_2 , NHR^7 , $N(R^7)_2$, halo, $CONHR^7$, $CON(R^7)_2$, CO_2R^8 , or C_{1-6} alkyl;

each R⁶ is independently H, alkyl, or P³;

each R⁷ is independently H, alkyl, acyl, or P⁴;

each R⁸ is independently H, alkyl, aralkyl, or heteroaralkyl;

each R¹¹, R¹², and R¹³ is independently alkyl substituted with aryl or heteroaryl, each of which is optionally substituted with 1-5 substituents selected from OR¹⁶, CN, NO₂, NHR¹⁷, N(R¹⁷)₂, halo, CONHR¹⁷, CON(R¹⁷)₂ CO₂R¹⁸, or C₁₋₆ alkyl;

each R¹⁶ is independently H, alkyl, or P³;

each R¹⁷ is independently H, alkyl, acyl, or P⁴;

each R¹⁸ is independently H, alkyl, aralkyl, or heteroaralkyl;

each P¹ and P⁴ is independently a nitrogen protecting group;

each P3 is independently an oxygen protecting group; and

P⁵ is a sulfur protecting group.

- 20. A composition comprising a compound of formula (I) in claim 1 and a pharmaceutically acceptable carrier.
- 21. A compound of formula (XIX):

$$(R^5)_2N$$
 (XIX)
 R^1
 OH
 R^2
 X
 R^4

wherein,

each R^1 , R^2 , and R^3 is independently alkyl substituted with aryl or heteroaryl, each of which is optionally substituted with 1-5 substituents selected from OR^6 , CN, NO_2 , NHR^7 , $N(R^7)_2$, halo, $CONHR^7$, $CON(R^7)_2$, CO_2R^8 , or C_{1-6} alkyl;

X is N, O, or S;

R⁴ is H, CON(R⁷)₂, CONHR⁷, CH₂OH, CH(OH)CH=CH₂, or C(O)NHCHR¹⁰CO₂H; each R⁵ is independently H, alkyl, alkenyl, aryl, heteroaryl, acyl, P¹, or C(O)CHR¹⁰NH₂;

each R⁶ is independently H, alkyl, or P³;
each R⁷ is independently H, alkyl, acyl, or P²;
each R⁸ is independently H, alkyl, aralkyl, or heteroaralkyl;
each R¹⁰ is independently an amino acid side chain;
each P¹ and P² is independently a nitrogen protecting group;
each P³ is independently an oxygen protecting group; and
or pharmaceutically acceptable salts thereof.

22. The compound of claim 21 wherein:

X is N or O;

 R^1 is alkyl substituted with aryl, which is optionally substituted with 1-5 substituents selected from OR^6 , CN, NO_2 , NHR^7 , $N(R^7)_2$, halo, $CONHR^7$, $CON(R^7)_2$, CO_2R^8 , or C_{1-6} alkyl;

R⁴ is H, CON(R⁷)₂, C(O)NHCHR¹⁰CO₂H, or CH₂OH; and each R⁵ is independently H, alkyl, acyl, P¹, or C(O)CHR¹⁰NH₂; each R¹⁰ is independently an amino acid side chain.

23. The compound of claim 21, wherein:

X is N or O;

 R^1 is alkyl substituted with aryl, which is optionally substituted with 1-5 substituents selected from OR^6 , CN, NO_2 , halo, or C_{1-6} alkyl;

R⁴ is H, CONHR⁷, or CH₂OH; each R⁵ is independently H or alkyl; each R⁶ is independently H or alkyl; and R⁷ is H, alkyl, or P².

24. The compound of claim 21, wherein:

X is N or O;

 R^1 is alkyl substituted with aryl, which is optionally substituted with 1-5 substituents selected from OH or C_{1-6} alkyl; and

R⁴ is H, CONH₂, or CH₂OH.

25. The compound of claim 21, wherein:

X is N or O;

 R^1 is C_1 alkyl substituted with phenyl, which is substituted at the 2- and 6- positions with Me and is substituted at the 4- position with OH; and

R⁴ is H, CONH₂, or CH₂OH.

26. The compound of claim 21, wherein

X is N;

R¹ is methyl substituted with phenyl, which is substituted at the 4- position with OH; and

 R^4 is $CONH_2$.

27. The compound of claim 21 having the formula (XX):

wherein,

X is N or O;

R⁴ is H, CON(R⁷)₂, CONHR⁷, CH₂OH, or C(O)NHCHR¹⁰CO₂H; each R⁵ is independently H, alkyl, acyl, P¹, or C(O)CHR¹⁰NH₂; each R⁶ is independently H, alkyl, or P³; each R⁷ is independently H, alkyl, acyl; or P²;

```
each R<sup>8</sup> is independently H, alkyl, aralkyl, or heteroaralkyl;
each R<sup>9</sup> is independently OR<sup>6</sup>, CN, NO<sub>2</sub>, NHR<sup>7</sup>, N(R<sup>7</sup>)<sub>2</sub>, halo, CONHR<sup>7</sup>, CON(R<sup>7</sup>)<sub>2</sub>,
CO<sub>2</sub>R<sup>8</sup>, or C<sub>1-6</sub> alkyl;
each R<sup>10</sup> is independently an amino acid side chain;
each n is independently 0, 1, 2, 3, 4, or 5;
each P<sup>1</sup> and P<sup>2</sup> is independently a nitrogen protecting group; and
each P<sup>3</sup> is independently an oxygen protecting group.
```

28. The compound of claim 27, wherein:

```
R^4 is H, CON(R^7)<sub>2</sub>, CONHR^7, or CH<sub>2</sub>OH;
each R^5 is independently H, alkyl, or acyl;
each R^6 is independently H or alkyl;
each R^7 is independently H or alkyl;
each R^9 is independently OR<sup>6</sup>, CN, NO<sub>2</sub>, halo, or C<sub>1-6</sub> alkyl; and
each n is independently 0 1, 2, or 3.
```

29. The compound of claim 27, wherein:

```
R<sup>4</sup> is H, CON(R<sup>7</sup>)<sub>2</sub>, CONHR<sup>7</sup>, or CH<sub>2</sub>OH;
each R<sup>5</sup> is independently H, alkyl, acyl, or P<sup>1</sup>;
each R<sup>6</sup> is independently H or P<sup>3</sup>;
each R<sup>7</sup> is independently H or P<sup>2</sup>;
each R<sup>9</sup> is independently OR<sup>6</sup> or C<sub>1-6</sub> alkyl;
each n is independently 0 or 1;
P<sup>1</sup> is a BOC;
P<sup>2</sup> is a solid support; and
P<sup>3</sup> is t-Bu.
```

30. The compound of claim 27, wherein:

```
R<sup>4</sup> is H, CONH<sub>2</sub>, or CH<sub>2</sub>OH;
each R<sup>5</sup> is independently H, P<sup>1</sup>, or C(O)CHR<sup>10</sup>NH<sub>2</sub>;
each R<sup>6</sup> is H or alkyl
each R<sup>9</sup> is C<sub>1-6</sub> alkyl or OR<sup>6</sup>;
```

each R^{10} is independently an amino acid side chain; each n is independently 1, 2, or 3; and P^{1} is a nitrogen protecting group.

31. The compound of claim 21 having the formula (XXI):

HO
$$(XXI)$$
 (XXI)

wherein,

X is O or N; R^4 is H, CONH₂, or CH₂OH; R^9 is C₁₋₆ alkyl; and n is 2.

32. The compound of claim 21 having the formula (XXII):

wherein

 R^2 is C_{1-6} alkyl; and n is 0, 1, or 2.

33. A method of making a compound of formula (XXIII):

$$H_2N$$
 H_2N
 H_2N
 H_2N
 H_3
 H_4
 H_5
 H_5

comprising coupling compounds of formulas (XXV) and (XIII)

using a ruthenium catalyst, giving a compound of the formula (XXIV);

treating the resulting product with peroxide and base under conditions sufficient to hydrolyze the thioester;

coupling the resulting product with a solid phase peptide; and

treating the resulting compound with a deprotecting agent, giving a compound of the formula (XXIII);

wherein,

each R^1 , R^2 , and R^3 is independently alkyl substituted with aryl or heteroaryl, each of which is optionally substituted with 1-5 substituents selected from OR^6 , CN, NO_2 , NHR^7 , $N(R^7)_2$, halo, $CONHR^7$, $CON(R^7)_2$, CO_2R^8 , or C_{1-6} alkyl;

each R⁶ is independently H, alkyl, or P³;

each R⁷ is independently H, alkyl, acyl, or P⁴;

each R⁸ is independently H, alkyl, aralkyl, or heteroaralkyl;

each R^{11} and R^{12} is independently alkyl substituted with aryl or heteroaryl, each of which is optionally substituted with 1-5 substituents selected from OR^{16} , CN, NO_2 , NHR^{17} , $N(R^{17})_2$, halo, $CONHR^{17}$, $CON(R^{17})_2$, CO_2R^{18} , or C_{1-6} alkyl;

each R¹⁶ is independently H, alkyl, or P³;

each R¹⁷ is independently H, alkyl, acyl, or P⁴;

each R¹⁸ is independently H, alkyl, aralkyl, or heteroaralkyl;

each P¹ and P⁴ is independently a nitrogen protecting group;

each P3 is independently an oxygen protecting group; and

P⁵ is a sulfur protecting group.

- 34. A composition comprising a compound of formula (XIX) in claim 21 or pharmaceutically acceptable salts thereof and a pharmaceutically acceptable carrier.
- 35. A method of treating a mu opioid receptor (MOR) mediated disorder in a subject comprising administering a compound of formula (I) in claim 1 or a compound of formula (XIX) in claim 21 or pharmaceutically acceptable salts thereof.
- 36. A method of treating a mu opioid receptor (MOR) mediated disorder in a subject comprising administering a composition comprising a compound of formula (I) in claim 1 or a compound of formula (XIX) in claim 21 or pharmaceutically acceptable salts thereof.
- 37. A method of treating pain in a subject, comprising administering to the subject a compound of formula (I) in claim 1 or of formula (XIX) in claim 21 or pharmaceutically acceptable salts thereof.
- 38. A library of compounds of formula (I) in claim 1 or formula (XIX) in claim 21.