Annexe A Compléments de seconde et stages de réussite

A.1 Polynômes

Définition A.1 Soit $n \in \mathbb{N}$ et $a \in \mathbb{R}^*$. L'expression ax^n est un monôme en x de **degré** n.

Deux monômes sont semblables s'ils ont le même degré.

Un **polynôme** est une somme de monômes. Son **degré** est le **degré le plus élevé** de ses termes. Il est sous forme **ordonnée réduite** si ses monômes sont rangés par degré décroissant et ne sont pas semblables.

- Exemple A.1 $4x^3$ est un monôme de degré 3. Le coefficient est 4.
- -x est un monôme de degré 1. Le coefficient est -1.
- 5, 0 sont des termes constants, de degré 0.
- Exemple A.2 3x + 5 est un polynôme ordonné réduit de degré 1 (expression **affine** en x).
- $-3x^2 + 2x + 5$ est un polynôme ordonné réduit de degré 2 (expression **quadratique** en x).
- $5x^3 x^2 + 5$ est un polynôme ordonné réduit de degré 3 (expression **cubique** en x).

A.2 Fonctions affines

Définition A.2 La fonction f définie sur \mathbb{R} est **affine** s'il existe m et $p \in \mathbb{R}$ tel que

pour tout
$$x \in \mathbb{R}$$
 $f(x) = mx + p$

Proposition A.1 Pour toute fonction affine les écarts sur la variable image y sont proportionnels aux écarts sur la variable initiale x. Plus précisément il existe $m \in \mathbb{R}$ tel que :

Pour tout
$$x_A$$
 et $x_B \in \mathbb{R}$ $f(x_A) - f(x_B) = m(x_A - x_B)$

Le réel m est appelé **taux d'accroissement** de f. et on a pour $y_A = f(x_A)$ et $y_B = f(x_B)$:

$$m = \frac{f(x_A) - f(x_B)}{x_A - x_B} = \frac{y_A - y_B}{x_A - x_B}$$
 $x_A \neq x_B$

Figure A.1 – Graphiquement, m est le rapport de l'augmentation verticale sur l'augmentation horizontale. p = f(0) est l'ordonnée à l'origine

Déterminer l'expression réduite d'une fonction affine f tel que $y_A = f(x_A)$ et $y_B = f(x_B)$:

- On calcule m à l'aide du taux de variation entre x_A et x_B .
- On remarque que si y = f(x) alors $y = f(x) = m(x x_A) + y_A$
- On en déduit la forme réduite.

■ Exemple A.3 Soit f fonction affine tel que f(12) = 17 et f(16) = 25. Le taux de variation de 12 à 16: $m = \frac{f(12) - f(16)}{12 - 16} = \frac{17 - 25}{12 - 16} = \frac{-8}{-4} = 2$.

Pour tout
$$x \in \mathbb{R} : f(x) - f(12) = m(x - 12)$$

$$f(x) = 2(x - 12) + f(12)$$
$$= 2x - 24 + 17$$

$$f(x) = 2x - 7$$

A.2.1 Exercices: Fonction affines et applications

Exercice 1 — auto-positionnement, réactivation de la 2nde. Les questions sont indépendantes.

1. Le taux de variation d'une fonction entre les valeurs x = a et x = b est le rapport

- 2. Soit la fonction affine définie sur \mathbb{R} par f(x) = -3x + 2.
 - a) Déterminer l'image de 2.
 - b) Donner l'équation vérifiée par l'antécédent de 0 et déterminer le.

- d) Déterminer le taux de variation entre x = 2 et x = 5 de la fonction f.
- e) La représentation graphique de f est la droite d'ordonnée à l'origine
- 3. Déterminer l'expression réduite de la fonction affine f tel que f(-3) = 2 et f(4) = -1.

- 4. Entourer les fonctions affines décroissantes mais non linéaires :
 - **(B)** g(x) = 3x 5 **(C)** $h(x) = \frac{-2}{3}x + 1$ **(D)** u(x) = -3 **(E)** v(x) = -1 + x(A) f(x) = -5x
- 5. Donner l'expression de la fonction affine représentée ci-dessous :

6. Montrer que le taux de variation de la fonction affine définie par f(x) = 3x + 5 entre deux valeurs a et b est toujours égal à 3.

7. Déterminer par lecture graphique l'expression de la fonction affine représentée ci-contre :

$$m = \dots \dots \dots \dots$$

$$f(x) = \dots (x - \dots) + \dots$$

$$f(x) = \dots \dots x + \dots$$

8. Proposer une fonction affine dont le tableau de signe est

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x	$-\infty$		5		$+\infty$								
$\operatorname{de} f(x)$	de f(x)		_	0	+									

9. Déterminer les erreurs dans le tableau de signes cidessous:

x	$-\infty$		$\frac{10}{7}$		10		$+\infty$
-7x - 10		+	0	_		_	
x - 10		+		+	0	_	
k(x) = (-7x - 10)(x - 10)		+	0	-		+	

Pour une fonction f affine de taux d'accroissement m et tel que $\beta = f(\alpha)$.

Alors pour tout x:

$$f(x) = m(x - \alpha) + \beta$$

$$f(x) = \dots (x - \dots) + \dots f(x) = \dots (x - \dots) + \dots$$

$$f(x) = \dots (x - \dots) + \dots$$

$$f(x) = \dots f(x) = \dots f(x) = \dots f(x) = \dots f(x) = \dots$$

$$f(x) = \dots x + \dots$$

$$f(x) = \dots x + \dots$$

$$f(x) = \dots x + \dots$$

Exercice 3 — vu en 2nde. Déterminer l'expression réduite de la fonction affine f dans chaque cas.

- 1. le taux d'accroissement vaut $\frac{2}{3}$ et f(15) = 3
- **2.** f(-1) = 4 et f(2) = 3.
- 3. sa courbe représentative passe par A(3; -2) et B(-1; 3).
- 4. f est linéaire et f(-8) = 12.

Exercice 4 — vu en 2nde. Complétez les tableaux de variation et de signe des fonctions affines.

1. $f_1(x) = 3x + 2$

91()	
x	
variation de $f_1(x)$	
signe de $f_1(x)$	

2. $f_2(x) = -9x + 5$

x	
variation de $f_2(x)$	
signe de $f_2(x)$	

Exercice 5 — vu en 2nde. Détérminez le signe des fonctions suivantes selon les valeurs de x.

1. $f_1(x) = 7(x+2)(x-3)$

2. $f_2(x) = 5(-3x+1)(2x+3)$

x	$-\infty$	$+\infty$	x	$-\infty$		$+\infty$

Exercice 6 — vu en 2nde. Utiliser les tableaux de signe pour résoudre les inéquations suivantes :

 (I_1) -3(5x-4)(-3x-8) > 0

 (I_2) $-2(4x+3)(3x+5) \leq 0$

x	$-\infty$	$+\infty$ x	$-\infty$	$+\infty$

Exercice 7

- 1. Déterminer l'équation réduite de la droite (AB) passant par A(4;1) et B(6;2).
- 2. Déterminer l'équation réduite de la droite (CD) passant par C(-1, -2) et D(3, 10).
- 3. Les droites (AB) et (CD) se coupent en M. Écrire le système vérifié par les coordonnées de M et déterminer M.

A.3 Stage réussite octobre 2023

A.3.1 Pratique de récupération

La pratique de récupération consiste à reconstruire, à partir de notre mémore à long terme, quelque chose que nous avons appris par le passé, en y pensant au moment présent.

Ex	ercice 8 Sans relire vos notes de cours, répondez aux questions suivantes.											
1.	La forme réduite ordonnée d'une fonction quadratique est											
2.	Les racines d'une fonction quadratiques sont les solutions de l'équation											
3.	Les racines de la fonction définie par $f(x) = 3(2x - 5)(3x + 4)$ sont $r_1 = \dots$ et $r_2 = \dots$											
4.	La fonction quadratique définie sur \mathbb{R} par $f(x) = 2(x+3)^2 + 5$, est donnée par sa forme											
	avec $a = \ldots$, $\alpha = \ldots$ et $\beta = \ldots$											
	f admet pour (A) maximum (B) minimum $y = \dots$, qui est atteint pour $x = \dots$											
٦ ۲	La fonction quadratique définie sur \mathbb{R} par $f(x) = -2x(x+5)$, est donnée par sa forme											
J.												
	qui sont $r_1 = \ldots$ et $r_2 = \ldots$											
	Commme $a cdots 0$, f admet un (A) maximum (B) minimum											
6.	La fonction quadratique définie sur $\mathbb R$ par $f(x)=-(x-2)(x+3)$, atteint son (A) maximum											
	(B) minimum en $x = \dots$ L'extremum est égal à											
7	Le forme fectoricée de le fenction définie par $f(x)$ $(5x+1)(-x+4)$ est											
1.	La forme factorisée de la fonction définie par $f(x) = -(5x+1)(-x+4)$ est											
	Commme $a cdots 0$, f admet un (A) maximum (B) minimum											
8.	Proposer une expression d'une fonction quadratique ayant deux racines 5 et -1 et qui a un											
	maximum sur \mathbb{R} .											

A.3.2 Savoir-faire 1 : étude du sens de variation d'une fonction quadratique

■ Exemple A.4 — variation à partir de la forme réduite.

Étudier le sens de variation des fonction g définie sur \mathbb{R} par $g(x) = -3x^2 - 8x + 2$.

Il faut (1) déterminer la forme canonique (2) dresser le tableau de variation en justifiant par le signe de a (3) conclure en précisant la valeur du maximum ou minimum.

Solution. a = -3 < 0 ()

$$\Delta = b^{2} - 4ac = (-8)^{2} - 4(-3)(2) = 92 \qquad g(x) = -3x^{2} - 8x + 2$$

$$\alpha = \frac{-b}{2a} = \frac{-(-8)}{2(-3)} = \frac{-4}{3} \qquad = a(x - \alpha)^{2} + \beta$$

$$\beta = \frac{-\Delta}{4a} = \frac{-92}{4(-3)} = \frac{92}{12} = \frac{23}{3} \qquad = -3(x - (-3))^{2} + \frac{23}{3}$$

$$= -3(x + 3)^{2} + \frac{23}{3}$$

$$= -3(x + 3)^{2} + \frac{23}{3}$$

 $\therefore \frac{23}{3}$ est le maximum de g atteint pour x = -3

■ Exemple A.5 — et si on nous donne la forme factorisée?.

Étuder le sens de variation de la fonction f définie sur \mathbb{R} par f(x) = 3(x-9)(x+1)

Solution.

$$a = 3 > 0 \ (\smile)$$

deux racines
$$r_1 = -1$$
 et $r_2 = 9$.

$$\alpha = \frac{-b}{2a} = \frac{r_1 + r_2}{2} = \frac{(-1) + 9}{2} = 4$$

$$\beta = f(\alpha) = 3(4 - 9)(4 + 1) = -75$$

$$\beta = f(\alpha) = 3(4 - 9)(4 + 1) = -75$$

$$\beta = f(\alpha) = 3(4 - 9)(4 + 1) = -75$$

$$\beta = f(\alpha) = 3(4 - 9)(4 + 1) = -75$$

$$\beta = f(\alpha) = 3(4 - 9)(4 + 1) = -75$$

$$\beta = f(\alpha) = 3(4 - 9)(4 + 1) = -75$$

$$\beta = f(\alpha) = 3(4 - 9)(4 + 1) = -75$$

$$\beta = f(\alpha) = 3(4 - 9)(4 + 1) = -75$$

$$\beta = f(\alpha) = 3(4-9)(4+1) = -75$$

$$\therefore -75 \text{ est le minimum de } f \text{ atteint pour } x = 4$$

$$g(x) = 3(x-9)(x+1)$$

$$= a(x - \alpha)^2 + \beta$$

$$=3(x-4)^2+(-75)$$

$$-75)$$
 f

Exercice 9 Dresser dans chaque cas, le tableau de variation des fonctions quadratiques données par leur forme canonique.

7

1.
$$f(x) = \frac{1}{2}(x-1)^2 + 2$$

2.
$$f(x) = \frac{5}{3}(x-1)^2 - 3$$

3.
$$f(x) = \frac{1}{2}(x+1)^2 + \frac{1}{2}$$

3.
$$f(x) = \frac{1}{2}(x+1)^2 + \frac{1}{2}$$

4. $f(x) = \frac{1}{2}(x+2)^2 - 1$

Exercice 10 Déterminer la forme canonique puis dresser le tableau de variation :

1.
$$f(x) = 6x^2 + 3x - 14$$

3.
$$f(x) = -2(x-6)(x-10)$$

2.
$$f(x) = -3x^2 + 9x + 12$$

4.
$$f(x) = 4(x+3)(x+6)$$

Exercice 11 Même consignes, avec les variantes suivantes :

1.
$$f(x) = 2 - 4(x - 8)^2$$

3.
$$f(x) = 4x^2 + 9$$

2.
$$f(x) = 4x(5x + 30)$$

4.
$$f(x) = (12 - 3x)(2x - 8)$$

A.3.3 Savoir faire 2 : déterminer les racines d'une fonction quadratique

■ Exemple A.6 — factoriser pour déterminer les racines.

Déterminer les racines de f et g définies sur \mathbb{R} par f(x) = (8x - 3)(x + 1) et $g(x) = x^2 + 8x + 12$.

solution.

$$(8x-3)(x+1) = 0$$

$$8x-3 = 0 \quad \text{ou} \quad x+1 = 0$$

$$x = \frac{3}{8} \quad \text{ou} \quad x = -1$$

$$\mathscr{S} = \{\frac{3}{8}; -1\}$$

f(x) = 0

q(x) = 0

(8x-3)(x+1) = 0 $x^2 + 8x + 12 = 0$ $x^2 + 8x + 12 = 0$ $x^2 + 8x + 12 = 0$ x + 1 = 0

Exercice 12 Déterminer les racines des fonctions quadratiques suivantes par factorisation.

1.
$$f(x) = (3x - 5)(5x - 1)$$

4.
$$f(x) = x^2 + x - 6$$
 (somme/produit)

5. $f(x) = 4x^2 - 4x + 1$ (identité remarquable)

$$2. \ f(x) = (x+3)(x+7)$$

3. $f(x) = 3x^2 - 5x$

(facteur commun) 6.
$$f(x) = (x-5)^2 - 3$$

 $\mathcal{S} = \{-6; -2\}$

(identité remarquable)

Exercice 13 — la forme factorisée.

Déterminer pour chaque fonction sa forme factorisée $a(x-r_1)(x-r_2)$ et préciser les racines.

1)
$$f(x) = -3(2x - 6)(x + 3)$$

3)
$$f(x) = 5x(2x-1)$$

2)
$$f(x) = 2(5x - 2)(3x - 7)$$

4)
$$f(x) = x^2 - 5$$

■ Exemple A.7 — déterminer les racines pour déduire la forme factorisée.

Déterminer la forme factorisée de $f(x) = x^2 - 2x - 5$.

solution. $\Delta = (-2)^2 - 4(1)(-5) = 24 > 0$.

f admet deux racines $r_1 = \frac{-(-2) + \sqrt{24}}{2(1)} = 1 + \sqrt{6}$ et $r_2 = \frac{-(-2) - \sqrt{24}}{2(1)} = 1 - \sqrt{6}$.

Pour tout $x \in \mathbb{R}$: $f(x) = a(x-r_1)(x-r_2) = 1(x-(1+\sqrt{6}))(x-(1-\sqrt{6})) = (x-1-\sqrt{6})(x-1+\sqrt{6})$.

Exercice 14 Sans calculs supplémentaires, écrire la forme factorisée de chaque fonction :

1. $f(x) = 5x^2 - 60x + 135$ sachant que 3 et 9 sont des racines

2. $f(x) = -4x^2 + 32x - 28$ sachant que 1 et 7 sont des racines

3. $f(x) = -4x^2 + 24x + 108$ sachant que -3 et 9 sont des racines

Exercice 15 Déterminer les racines et déduire la forme factorisée de $f(x) = a(x - r_1)(x - r_2)$.

8

1)
$$f(x) = 4x^2 + 8x - 1$$

3)
$$f(x) = 2x^2 - 4x + 1$$

2)
$$f(x) = 3x^2 - 4x - 1$$

4)
$$f(x) = 2x^2 - 8xm + 5m^2$$

A.3.4 Savoir faire 3 : étude de signe et résolution d'inéquations

■ Exemple A.8 — résoudre une inéquation quadratique de la forme f(x) > 0.

Résoudre dans \mathbb{R} l'inéquation $2x^2 + 3x - 6 \ge 0$.

On pose $f(x) = 2x^2 + 3x - 6$. Il faut (1) déterminer la forme factorisée si elle existe (2) dresser le tableau de signe de f (3) donner l'ensemble de solution.

solution.
$$\Delta = (3)^2 - 4(2)(-6) = 57 > 0$$

f a deux racines distinctes $r = \frac{-3 \pm \sqrt{57}}{4}$

$$f(x) = a(x - r_1)(x - r_2)$$
$$= 2(x - \frac{-3 - \sqrt{57}}{4})(x - \frac{-3 + \sqrt{57}}{4})$$

■ Exemple A.9 — et si aucune racine?. Résoudre dans $\mathbb R$ l'inéquations $-2x^2+4x-3\leqslant 0$.

solution. $\Delta = (4)^2 - 4(-2)(-3) = -10 < 0$

f n'a pas de racines reeles ni factorisable.

■ Exemple A.10 — et si une racine unique?. Résoudre dans $\mathbb R$ l'inéquations $3x^2 + 24x + 48 > 0$.

solution. $\Delta = (24)^2 - 4(3)(48) = 0$

f a une racine double.

$$r = \frac{-b}{2a} = \frac{-24}{2(3)} = -4$$

$$f(x) = a(x - r)^2 = 3(x + 4)^2$$

Exercice 16 Résoudre dans \mathbb{R} les inéquations suivantes :

1.
$$x^2 - 4x - 1 > 0$$

$$2. \ 3x^2 - 5x + 9 > 0$$

3.
$$-5x^2 + 8x + 2 < 0$$

4. $9x^2 - 12x + 4 \le 0$

$$4. \ 9x^2 - 12x + 4 \leqslant 0$$

Exercice 17 Même consignes avec les variantes suivantes :

1.
$$2x + 3 \ge x^2$$

2.
$$x^2 - 3x < 0$$

3.
$$4x^2 \ge 12$$

3.
$$4x^2 \ge 12$$

4. $2(x-3)^2 - 5 < 10$

A.3.5 Savoir-faire 4 : Résolution d'(in)équations par changement de variable

■ Exemple A.11 Résoure dans $\mathbb R$ par un changement de variable $-2(x-2)^2+7(x-2)+15=0$.

solution. On pose t = x - 2, t vérifie :

$$-2t^2 + 7t + 15 = 0$$

$$\Delta = (7)^2 - 4(-2)(15) = 169$$

$$t_1 = \frac{-(7) + \sqrt{169}}{2(-2)} \quad t_2 = \frac{-(7) - \sqrt{169}}{2(-2)}$$
 2 solutions

$$t_1 = \frac{-3}{2} \quad t_2 = 5$$

$$x - 2 = \frac{-3}{2} \quad x - 2 = 5$$

$$x = \frac{1}{2} \quad x = 7$$
substtuer pour retrouver une équation pour x

Exercice 18 Résoudre par un changement de variable idoine les équations suivantes

1.
$$(2x-3)^2 - 3(2x-3) - 4 = 0$$

2.
$$5(2x+3)^2 + 3(2x+3) - 2 = 0$$

3.
$$(x-1)^2 - k(x-1) = 0$$

4.
$$\frac{5}{x^2} - \frac{2}{x} - 7 = 0$$

$$5. \ 3x + 9\sqrt{x} + 6 = 0$$

6.
$$4x - 8\sqrt{x} + 3 = 0$$

■ Exemple A.12 — équations bicarrées. Résoudre dans $\mathbb R$ l'équation $x^4-5x^2+4=0$.

$$x^4 - 5x^2 + 4 = 0$$

$$(x^2)^2 - 5x^2 + 4 = 0$$

On pose
$$t = x^2$$
 $t^2 - 5t + 4 = 0$

$$t = 1$$
 ou $t = 5$

$$x^2 = 1$$
 ou $x^2 = 5$

$$(t-1)(t-5)=0 \\ t=1 \quad \text{ou} \quad t=5 \\ x^2=1 \quad \text{ou} \quad x^2=5 \\ x=1 \quad \text{ou} \quad -1 \quad x=\sqrt{5} \quad \text{ou} \quad -\sqrt{5} \\ \mathcal{S}=\{1;-1;\sqrt{5};-\sqrt{5}\}$$
 resoudre pour t

Exercice 19 Résoudre les équations bicarrées suivantes

$$1. \ 2x^4 - 10x^2 - 12 = 0$$

2.
$$3x^4 + 18x^2 = 0$$

$$3. \ 4x^4 + 52x^2 + 160 = 0$$

$$4. \ x^4 - 12x^2 + 22 = 0$$

A.3.6 Savoir-faire 5 : factorisation par identification des coefficients

Théorème A.2 — admis. Soit P un polynôme de degré n.

Si $r \in \mathbb{R}$ est une racine de P alors P est factorisable par (x - r).

Il existe un polynôme de degré n-1 tel que pour tout $x \in \mathbb{R}$: P(x) = (x-r)Q(x).

Exemple A.13 Factoriser le polynôme $f(x) = 3x^2 + 10x + 8$

solution. $f(-2) = 3(-2)^2 + 10(-2) + 8 = 0$, f est factorisable par (x - (-2)) = (x + 2).

On cherche Q(x) = ax + b tel que : pour tout $x \in \mathbb{R}$ $3x^2 + 10x + 8 = (x+2)(ax+b)$ pour tout $x \in \mathbb{R}$ $3x^2 + 10x + 8 = ax^2 + (b+2a)x + 2b$ développer pour tout $x \in \mathbb{R}$ $3x^2 + 10x + 8 = ax^2 + (b+2a)x + 2b$ par identifie

a = 3 b + 2a = 10 2b = 8

$$\therefore f(x) = 3x^2 + 10x + 8 = (x+2)(3x+4)$$

Exercice 20 Factoriser les fonctions quadratiques suivantes en identifiant une racine évidente.

1. $f(x) = 2x^2 - 3x - 2$

3.
$$f(x) = 2x^2 - 5x + 3$$

2. $f(x) = 3x^2 + 14x + 8$

4.
$$f(x) = 4x^2 + 5x + 1$$

Exemple A.14 Factoriser le polynôme $f(x) = -x^3 - 8x^2 - x + 42$ en vérifiant que 2 est une racine.

solution. $f(2) = (2)^3 - 8(2)^2 - (2) + 42 = 0$, f est factorisable par (x - (2)) = (x - 2).

Il existe un polynôme de degré 2 $Q(x) = ax^2 + bx + c$ tel que :

pour tout $x \in \mathbb{R}$ $-x^3 - 8x^2 - x + 42 = (x-2)(ax^2 + bx + c)$

 $\begin{array}{ll} \text{pour tout } x \in \mathbb{R} & -x^3 - 8x^2 - x + 42 = (x-2)(ax^2 + bx + c) \\ \text{pour tout } x \in \mathbb{R} & -x^3 - 8x^2 - x + 42 = ax^3 + (-2a+b)x^2 + (-2b+c)x + (-2)c \end{array} \\ \begin{array}{l} \text{d\'evelopper} \\ \text{par identification des} \end{array}$

a=-1 -2a+b=-8 -2b+c=-1 -2c=42 coefficients it faut

$$a = -1$$
 $b = -10$ $c = -21$

$$\therefore f(x) = -x^3 - 8x^2 - x + 42 = (x - 2)(-x^2 - 10x - 21)$$

Exercice 21 Soit la fonction cubique définie sur \mathbb{R} par $f(x) = -2x^3 + 8x^2 + 6x - 36$.

- 1. Montrer que f(-2) = 0
- 2. Trouver le polynôme $Q(x) = ax^2 + bx + c$ tel que f(x) = (x+2)Q(x)
- 3. Résoudre dans \mathbb{R} l'équation f(x) = 0.

Exercice 22 Soit la fonction cubique définie sur $\mathbb R$ par $f(x)=-x^3+x^2+x-1$.

- 1. Montrer que f(-1) = 0
- 2. Trouver le polynôme $Q(x) = ax^2 + bx + c$ tel que f(x) = (x+1)Q(x)
- 3. Résoudre dans \mathbb{R} l'équation f(x) = 0.

A.3.7 Savoir-faire 6 : problèmes inverses

Les problèmes inverses consistent à déterminer l'expression d'une fonction quadratique $f(x)=ax^2+bx+c$ ou l'équation d'une parabole $y=ax^2+bx+c$ à partir de quelques informations. Typiquement on cherche à déterminer en premier une forme canonique, ou une forme factorisée.

■ Exemple A.15 Déterminer l'équation de la parabole ci-dessous :

On cherche la forme canonique de \mathscr{P} : $y = a(x - \alpha)^2 + \beta$.

Sommet de la parabole est S(3;-2), donc $\alpha=3$ et $\beta=-2$.

Pour tout $x : y = a(x - \alpha)^2 + \beta = a(x - 3)^2 + (-2)$, avec a > 0.

$$A(0;16) \in \mathscr{P} \iff f(0) = 16 \iff a(0-3)^2 - 2 = 16 \iff 9a - 2 = 16.$$

$$\therefore a = 2 \text{ et } \mathscr{P} \colon y = 2(x-3)^2 - 2$$

■ Exemple A.16 Déterminer une expression de la fonction quadratique f, dont les racines sont -3 et -2 et tel que f(-1) = 6

solution. On cherche l'expresion factorisée de $f(x) = a(x - r_1)(x - r_2)$.

Sachant que $r_1 = -3$ et $r_2 = -2$, alors pour tout $x \in \mathbb{R}$: f(x) = a(x+3)(x+2).

Sachant que f(-1) = 6, a vérifie l'équation a(-1+3)(-1+2) = 6.

$$2a = 6$$

 $\therefore a = 3$ et pour tout $x \in \mathbb{R}$: f(x) = 3(x+3)(x+2).

Exercice 23 Déterminer une expression (factorisée ou canonique) de la fonction quadratique f dans chaque cas

- 1. 2 est le maximum de f atteint pour x = -4. De plus f(-2) = 0.
- 2. 0 et -3 sont deux racines de f, et f(1) = 4.
- 3. -6 est le minimum de f atteint pour x = 4. De plus f(7) = 1.
- 4. f admet une unique racine -1. De plus f(2) = -3.

Exercice 24 Déterminer une équation de la parabole \mathscr{P} dans chaque cas. On cherchera une équation sous la forme $y = a(x - r_1)(x - r_2)$ ou $y = a(x - \alpha)^2 + \beta$.

- 1. S(-2;4) est le sommet de la parabole et $A(0,1) \in \mathscr{P}$.
- 2. $\mathscr P$ coupe l'axe des ordonnées en A(0,2) et l'axe des abscisses en B(3;0) et C(-1;0).
- 3. S(3;-1) est le sommet de la parabole et $A(0,2) \in \mathscr{P}$.

Exercice 25 Soit une fonction quadratique définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$. Sachant que f(0) = 4, f(1) = -5 et f(-2) = -8, déterminer a, b et c.

A.3.8 Savoir-faire 7 : résolution de systèmes et intersection de courbes

■ Exemple A.17 — problèmes d'intersection et systèmes. Déterminer les coordonnées des points d'intersection de la parabole \mathscr{D} : $y = 2x^2 + 12x - 29$ et la droite d: y = -8x + 19

Le point M(x;y) est intersection de \mathscr{P} et d alors :

$$\begin{cases} y = -8x + 19 & \text{car } M(x;y) \in d \\ y = 2x^2 + 12x - 29 & \text{car } M(x;y) \in \mathscr{P} \end{cases}$$

$$\iff \begin{cases} y = -8x + 19 \\ -8x + 19 = 2x^2 + 12x - 29 \end{cases}$$

$$\iff \begin{cases} y = -8x + 19 \\ 0 = 2x^2 + 20x - 48 \end{cases}$$

$$\Delta = (-20)^2 - 4(2)(-48) = 784 > 0$$

deux valeurs possible pour \boldsymbol{x}

$$\iff \begin{cases} y = -8x + 19 \\ x = 2 \text{ ou } x = -12 \end{cases}$$

$$\iff (x = 2; y = 3) \text{ ou } (x = -12; y = 115)$$

Exercice 26 Déterminer les coordonnées des points d'intersection de :

- 1. La parabole \mathscr{P} : $y = -x^2 + 3x + 9$ et la droite d: y = 2x 3
- 2. La parabole \mathscr{P} : $y = -x^2 + 4x 7$ et la droite d: y = 5x 4
- 3. La parabole \mathscr{P} : $y = 2x^2 x + 3$ et la parabole \mathscr{P} : $y = x^2 + x + 2$.

Exercice 27

Vérifiez vos réponses à l'aide de la numworks, en tracant les courbes de l'exercice précédent.

Exercice 28

Nous avons représenté une droite d et une parabole \mathscr{P} . Déterminer pour chaque représentation les coordonnées des points d'intersection de d et de \mathscr{P} en suivant la démarche indiquée :

- 1. Déterminer l'équation de la droite d.
- 2. Déterminer l'équation de la parabole ${\mathscr P}$ (savoir faire 6)
- 3. Écrire le système vérifiée par les coordonnées des points d'intersection et le résoudre.

13

A.3.9 Savoir-faire 8 : résolution d'(in)équations se ramenant à des quadratiques

Pour résoudre les inéquations produit et quotient :

- 1. Transformer en une comparaison à zéro
- 2. Mettre au même dénominateur et factoriser en terme quadratique ou affine.
- 3. Déterminer les racines des facteurs (affines ou quadratiques) et reporter les sur le tableau de signe.
- 4. Compléter le tableau de signe et justifier le signe des facteurs affines et des facteurs quadratiques.
- 5. Conclure.
- Exemple A.18 Résoudre dans \mathbb{R} l'inéquation $\frac{x^2 6x + 5}{-x^2 + 3x 2} \leq 0$.

solution.

$$\therefore \mathscr{S} =]-\infty; 1[\,\cup\,]1; 2[\,\cup\,[5; +\infty[$$

Exercice 29 Résouddre les inéquations produit et quotient suivantes.

$$1. \ \frac{x^2 + 2x + 6}{2x - 4} < 0$$

2.
$$(x^2 + 7x + 12)(-x - 5) \ge 0$$

3.
$$\frac{x-1}{-3x^2+3x+18} \le 0$$
4.
$$\frac{-4x^2+16x+20}{x^2+6x+10} < 0$$

4.
$$\frac{-4x^2 + 16x + 20}{x^2 + 6x + 10} < 0$$

A.3.10 Problèmes

Les problèmes suivants font appel à votre maitrise des savoir-faire précédents. À vous de décomposer le problème et de déterminer la démarche à suivre.

Autour de la représentation graphique

Exercice 30

La parabole \mathscr{P} : $y = -2x^2 + bx + c$ passe par les points A(0;4) et B(1;-2).

Déterminer les valeurs de b et c, et en déduire les coordonnées du sommet de la parabole.

Exercice 31

(d) est l'axe de symétrie de la parabole \mathscr{P} : $y=x^2+2x-1$. Soit le point $M(-3;b)\in \mathscr{P}$: $y=x^2+2x-1$. Déterminer les coordonées du point N symétrique de M par rapport à l'axe (d).

Exercice 32

La parabole \mathscr{P} : $y = ax^2 + bx + c$ a pour axe de symétrie la droite d: x = -1. Sachant que l'ordonnée à l'origine est -3, déterminer a, b et c.

Exercice 33 La représentation graphique \mathscr{P} de la fonction définie sur \mathbb{R} par $f(x) = x^2 + bx + c$ passe par les points A(2;2) et B(5;2).

On note C et D les points d'intersection de $\mathscr P$ avec l'axe des abscisses.

- 1. Donner un système vérifié par a et b et en déduire l'expression de f.
- 2. Déterminer les coordonnées des points C et D puis l'aire du quadrilatère ABCD.

Équations à paramètre

Exercice 34 La parabole \mathscr{P} : $y = mx^2 + 2x + m - 4m^2$ passe par l'origine du repère O(0;0). Déterminer les valeurs possibles pour m et déduire les coordonnées du sommet de la parabole.

Exercice 35 La parabole \mathcal{P} : $y = x^2 - bx + 4$ admet un unique point d'intersection avec l'axe des abscisses. Déterminer les valeurs possibles pour b.

Exercice 36

On considère la parabole \mathscr{P} : $y=x^2$ et la droite d: $y=(m^2-1)x+m^2$.

Pour quelles valeurs de m, \mathscr{P} et d admettent deux points d'intersection?

Exercice 37

Déterminer selon la valeur du paramètre m, le nombre de solution des équations suivantes :

1.
$$-x^2 + m + 1 = 0$$
 | 2. $-4x^2 + mx + 3 = 0$

Mise en équation

Exercice 38 Un triangle rectangle a pour hypothénuse de longueur 17 et de périmètre 40. Trouver les longueurs des deux petits côtés.

Exercice 39

Un rectangle a pour aire 225 cm². Sa longueur est 16 cm de plus que sa largeur. Trouvez la largeur.

Exercice 40

ABCD est un carré. M et N sont respectivement sur le segment [AB] et [BC]. On pose AM = BN = x.

- 1. Exprimer en fonction de x l'aire du triangle DMN.
- 2. Déterminez la position du point M pour laquelle l'aire du triangle MND soit minimale.

Exercice 41 — un problème d'optimisation.

Soit ABCD un carré de coté 5 cm. E, F, G et H sont des points appartenant aux cotés du carré tels que AE=BF=CG=DH=x. On admet que EFGH est aussi un carré.

- 1. Quelle est l'aire du quadrilatère *EFGH*?
- 2. Pour quelle valeur de x cette aire est-elle minimale? Quelle est la valeur de l'aire minimale?

solution de l'exercice 38.

Plutot deux inconnues : x et y les deux côtés de l'angle droit.

On a le système
$$\begin{cases} x+y+17=40 & \text{périmètre} \\ x^2+y^2=17^2 & \text{Pythagore} \end{cases}$$
. Par substitution x vérifie $x^2+(23-x)^2=17^2$, soit $2x^2-56x+240=0$

Deux solutions possibles. Expliquer pour quoi $14+2\sqrt{19}$ est à rejeter, et conclure $x=14-2\sqrt{19}$ et $y=9-2\sqrt{19}$.

solution de l'exercice 39.

Si x = largeur, alors Aire = x(x + 16) = 225. Donc x vérifie $x^2 + 16x - 225 = 0$. Deux solutiosn possibles, une négative à éliminer et x = 9.

solution de l'exercice 40.

Aire
$$DMN$$
 est $6^2 - 6x/2 - x(6-x)/2 - 6(6-x)/2 = -\frac{1}{2}x^2 - 3x + 18$.
Minimale en $x = \alpha = -\frac{b}{2a} = 3$, soit au milieu de $[AB]$.

A.4 Séance semaine voyage : suites, Python

Exercice 1 — suites et quadratiques bis.

Soit la suite (u_n) définie par $\begin{cases} u_1 = 1 \\ \text{pour tout } n \geqslant 1 \ u_{n+1} = (u_n)^2 - ku_n \end{cases}$

- 1. Exprimer u_2 en fonction de k
- 2. Montrer que $u_3 = 1 3k + 2k^2$
- 3. Sachant que $u_3 = 1$, déterminer la valeur de k.
- 4. En déduire $\sum_{n=1}^{100} u_n = u_1 + u_2 + u_3 + \dots u_{100}$.

Indication : calculer quelques valeurs de la suite

Exercice 2

Qu'affiche le script ci-contre? (A) o puis 2 puis o puis 2 for i in range(3): **(B)** 2 u = (2-u)/(1+u)(C) 1.33333 print(u) (D) 2 puis 0 puis 2

Exercice 3

Exercice 3 On considère la suite (u_n) définie $\begin{cases} u_0=1 \\ \text{pour tout } n\geqslant 1 \ u_{n+1}=\frac{1}{2}(u_n-n)-1 \end{cases}$

- 1. Déterminer u_3 par la méthode de votre choix.
- 2. On donne le script Python ci-dessous. On exécute l'instruction suiteA(3)

1	<pre>def suiteA(n) :</pre>
2	u = 1
3	i = 0
4	while i < n
5	u = (1/2)*(u-i)-1
6	i = i + 1
7	return u

a) Donner les valeurs successives prises par les variables :

u.....i.....i......

- b) Le programme retourne t'il $-\frac{23}{9}$?
- 3. Soit la suite (v_n) définie par $v_n = u_n + n$
 - a) Exprimer v_{n+1} en fonction de u_n et n.
 - b) En déduire que $\frac{v_{n+1}}{v_n} = \frac{1}{2}$.

Exercice 4 — Vrai ou faux.

```
On définit la suite (u_n) définie par \begin{cases} u_0 = -9 \\ \text{pour tout } n \geqslant 1 \ u_{n+1} = \frac{1}{2} u_n - 5 \end{cases}, et la suite (v_n) définie
par v_n = u_n + 10.
```

Affirmation: « Dans les Script 1 et Script 2, l'instruction calculA(n) et calculB(n) permettent de calculer le terme u_n »

Script 1 Script 2

```
def calculA(n):
                                              def calculB(n):
      u = -8
                                                     u = -9
      for i in range(n+1) :
                                                     i = 0
                                                     while i < n :
          u = (1/2) * u - 5
                                                         i = i + 1
      return u
                                                         u = (1/2)*u-5
                                                     return u
```

Exercice 5

Soit la suite (u_n) définie par $\begin{cases} u_0=26\\ \text{pour tout } n\geqslant 1\ u_{n+1}=1, 2u_n-5 \end{cases}$

Compléter les lignes 1, 2 et 3 de l'algorithme Python ci-dessous permettant de calculer et d'afficher la plus petite valeur du rang n tel que $u_n > 100$.

```
1 \quad n = \dots
               # contient les valeurs successives de u_n
  while u ... 100 :
      n = \dots
6 print(n)
```

Déterminer la valeur de n par la méthode de votre choix.

A.5 Stage réussite février 2024

A.5.1 Savoir-faire 1 : calcul de la fonction dérivée (1)

f(x)	f'(x)	Nom de la règle
$x \mapsto c \text{ constante}$	$x \mapsto 0$	dériver d'une constante
$x \mapsto x^n$	$x \mapsto nx^{n-1}$	$\mathbf{d\acute{e}river}\ x \mapsto x^n$
$x \mapsto cu(x)$	$x \mapsto cu'(x)$	constante fois une fonction
$x \mapsto u(x) + v(x)$	$x \mapsto u'(x) + v'(x)$	règle d'addition

Table A.1 – Règles simples de calcul de la fonction dérivée

■ Exemple A.19 — dérivée de somme, ou d'une multiplication par consante.

Donner le domaine de définition puis de dérivabilité et l'expressoin de la dérivée :

1.
$$f(x)=3x^2-2x+4$$

$$D=\mathbb{R} \quad \text{et} \quad D'=\mathbb{R}$$
 combinaison de $x\mapsto x^2 \text{ et } x\mapsto x \text{ et } x\mapsto 4, \text{ dérivable sur } \mathbb{R}$
$$f'(x)=3(2x)-2(1)+0=6x-2$$

2.
$$f(x)=\sqrt{x}+2x$$
 combinaison de $x\mapsto \sqrt{x}$, définie sur $[0;+\infty[$ et dérivable sur $D=[0;+\infty[$ $D'=]0;+\infty[$ et $x\mapsto x$, dérivable sur \mathbb{R}
$$f'(x)=\frac{1}{2\sqrt{x}}+2(1)=\frac{1}{2\sqrt{x}}+2$$

3.
$$f(x) = 7x - \frac{4}{x} + \frac{3}{x^3}$$
 combinaison de $x \mapsto \frac{1}{x}$ et $x \mapsto \frac{1}{x^3}$ définies et dérivables sur \mathbb{R}

$$f(x) = 7x - 4x^{-1} + 3x^{-3}$$
$$f'(x) = 7(1) - 4(-x^{-2}) + 3(-3x^{-4})$$
$$f'(x) = 7 + \frac{4}{x^2} - \frac{9}{x^4}$$

Exercice 1 Donner le domaine, le domaine de dérivation et l'expression de la fonction dérivée :

$$f_1(x) = 8x - 2$$

$$f_2(x) = -7$$

$$f_3(x) = 6x^2 - 3x + 7$$

$$f_4(x) = \pi x^4 + \frac{3}{x^9}$$

$$f_5(x) = \frac{8}{x}$$

$$f_6(x) = -2x^3$$

$$f_7(x) = -x - 3\sqrt{2}$$

$$f_8(x) = 5\sqrt{x}$$

$$f_9(x) = \frac{2}{x^2}$$

$$f_{10}(x) = \frac{-10}{x^8}$$

$$f_{11}(x) = \sqrt{2x}$$

$$f_{12}(x) = 2 - x\sqrt{3}$$

Exercice 2 Donner le domaine, le domaine de dérivation et l'expression de la fonction dérivée :

$$f_1(x) = x^7 + 2x^5 - 2x - 1$$

$$f_2(x) = 2x^4 + 4x^3 + 5\sqrt{x}$$

$$f_3(x) = 5x^6 - 3x^2 + 5$$

$$f_4(x) = 4x^8 + 3x^2 - 4 - x^{-3}$$

$$f_5(x) = 5x^{-3} + 2x^{-2} - 3x^{-1}$$

$$f_6(x) = 2\sqrt{x} + \frac{2}{x^6}$$

$$f_7(x) = \frac{1}{3x^5} - \frac{2}{x^3} + \frac{2x^3}{3}$$

$$f_8(x) = 3x^6 + 5x^2 - 2 + \frac{4}{x^3}$$

$$f_9(x) = \frac{x^{-2} - 3x^2 + 2x^7}{3x^5}$$

correction exercice 1.

$$f_1'(x) = 8; \quad f_2'(x) = 0; \quad f_3'(x) = 12x - 3; \quad f_4'(x) = 4\pi x^3 - \frac{18}{x^7}; \quad f_5'(x) = -\frac{8}{x^2}; \quad f_6'(x) = -6x^2;$$

$$f_7'(x) = -1; \quad f_8'(x) = \frac{5}{2\sqrt{x}}; \quad f_9'(x) = -\frac{4}{x^3}; \quad f_{10}'(x) = \frac{80}{x^9}; \quad f_{11}'(x) = \frac{\sqrt{2}}{2\sqrt{x}}; \quad f_{12}'(x) = -\sqrt{3};$$

correction exercice 2.

$$f_1'(x) = 7x^6 + 10x^4 - 2; f_2'(x) = 8x^3 + 12x^2 + \frac{5}{2\sqrt{x}}; f_3'(x) = 30x^5 - 6x; f_4'(x) = 32x^7 + 6x + \frac{3}{x^4};$$

$$f_5'(x) = \frac{3}{x^2} - \frac{4}{x^3} - \frac{15}{x^4}; f_6'(x) = -\frac{12}{x^7} + \frac{1}{\sqrt{x}}; f_7'(x) = 2x^2 + \frac{6}{x^4} - \frac{5}{3x^6}; f_8'(x) = 18x^5 + 10x - \frac{4}{x^2};$$

$$f_9'(x) = \frac{4x}{3} + \frac{3}{x^4} - \frac{7}{3x^8};$$

A.5.2 Savoir-faire 2 : nombre dérivé et pente de tangentes

$$f'(a) = \frac{\mathrm{d}f}{\mathrm{d}x}\Big|_{x=a}$$
 est

- $f'(a) = \frac{\mathrm{d}f}{\mathrm{d}x}\Big|_{x=a}$ est la pente de la tangente à la courbe \mathscr{C}_f au point d'abscisse a. le taux de variation (instantané/infinitésimal) de f(x) lorsque x varie au voisinage de a.

Exercice 3

La distance parcourue d'une voiture voyageant le long d'une route est donnée par $S(t) = 2t^2 + 4t$, où t est le temp écoulé en secondes. Déterminer $\frac{dS}{dt}$ et interpéter sa signification.

Exercice 4

Le coût de fabrication et vente de x objets connectés chaque semaine est donné par C(x) $1785 + 3x + 0.002x^2 \in$. Déterminer $\frac{dC}{dx}$ et interpréter sa signification.

■ Exemple A.20 — déterminer la pente de la tangente.

Soit \mathscr{C}_f la représentation graphique de f par $f(x)=x^2-\frac{4}{x}$. Déterminer la pente de la tangente à \mathcal{C}_f au point d'abscisse 2.

solution.
$$f(x)=x^2-\frac{4}{x}$$
 combinaison de $x\mapsto \frac{1}{x}$ définie et dérivable sur \mathbb{R}^* et $x\mapsto x^2$,
$$D=\mathbb{R}^* \quad \text{et} \quad D'=\mathbb{R}^* \quad \text{dérivable sur } \mathbb{R}$$

$$f(x)=x^2-4x^{-1}$$

$$f'(x)=2x-4(-x^{-2})$$

$$f'(x)=2x+\frac{4}{x^2}$$

$$f'(2)=2(2)+\frac{4}{(2)^2}=5.$$
 La pente de la tangente est $5.$

Exercice 5

Soit \mathcal{C}_f la représentation graphique de f. Déterminer la pente de la tangente au point d'abscisse x_0 dans les cas suivants :

- 1. f définie par $f(x) = x^2$, au point d'abscisse x = 2.
- 2. f définie par $f(x) = \frac{8}{x^2}$, au point d'abscisse x = 9.
- 3. f définie par $f(x) = 2x^2 3x + 7$, au point d'abscisse x = -1.
- 4. f définie par $f(x) = 2x \frac{5}{x}$ au point d'abscisse x = 2.
- 5. f définie par $f(x) = \frac{x^3 4x 8}{x^2}$ au point d'abscisse x = -1

Ci-contre sont représentées la fonction f donnée par $f(x)=\frac{1}{3}x^3+\frac{3}{4}x^2-\frac{5}{2}x-\frac{1}{4}$ ainsi que les tangentes aux points $A(-3\ ;\ 5)$ et $B(1\ ;\ -\frac{5}{3}).$

■ Exemple A.21 — déterminer le(s) points ou la pente de la tangente est connue.

Soit \mathscr{C}_f la représentation graphique de f par $f(x)=2x^2-5x-3$. En quel(s) points de la courbe \mathscr{C}_f la pente de la tangente est 13.

solution.
$$f(x)=2x^2+5x-3$$

$$D=\mathbb{R} \quad \text{et} \quad D'=\mathbb{R}$$
 combinaison de $x\mapsto x^2$ et $x\mapsto x$ définies et dérivables sur \mathbb{R}
$$f'(x)=2(2x)+5(1)-3(0)$$

$$f'(x)=4x+5$$

La tangente au point d'abscisse x vaut 13 si f'(x) = 13.

$$4x + 5 = 13$$

$$x = 2$$

$$f(2)=2(2)^2+5(2)-3=15$$
, la pente de la tangente vaut 13 au point $A(2\ ;\ 15)$

Exercice 7

Soit \mathscr{C}_f la représentation graphique de f par $f(x) = x^2 - 4x + 7$. Déterminer le(s) points de la courbe ou la pente de la tangente à \mathscr{C}_f vaut 2.

Exercice 8

Soit \mathscr{C}_f la représentation graphique de f par $f(x) = 3x^3 - 5x + 2$. Déterminer le(s) points de la courbe ou la pente de la tangente à \mathscr{C}_f vaut 4.

Exercice 9

Soit \mathscr{C}_f la représentation graphique de f par $f(x) = ax^2 + bx + c$. Déterminer le(s) points de la courbe ou la tangente est horizontale.

Ci-dessous est représenté la fonction f définie par $f(x) = -x^2 - 6x - 4$ et la tangente en A à \mathscr{C}_f . Déterminer les coordonnées de A.

■ Exemple A.22 — retrouver une expression à partir d'informations sur le nombre dérivé.

 $a,b \in \mathbb{R}$. Soit \mathscr{C}_f est la représentation de la fonction f définie par $f(x) = 2x^2 - ax + b$. Sachant que la tangente à \mathscr{C}_f au point A(2;7) est de pente 3, déterminer a et b.

solution.
$$f(x) = 2x^2 - ax + b$$
, $f'(x) = 4x - a$.

$$A(2; 7) \in \mathcal{C}_f \iff f(2) = 7 \iff 2(2)^2 - a(2) + b = 7.$$

pente de la tangente en A(2; 7) est $3 \iff f'(2) = 3 \iff 4(2) - a = 3$

En résolvant le système
$$\begin{cases} 8-2a+b=7\\ 8-a=3 \end{cases} \text{ on a} \begin{cases} a=5\\ b=9 \end{cases}, \therefore f(x)=2x^2-5x+9.$$

Exercice 11

Soit \mathscr{C}_f la représentation de la fonction f donnée par $f(x) = x^3 + ax + 5$. Déterminer a sachant que la tangente à \mathscr{C}_f au point d'asbcisse 1 est de pente 10.

Exercice 12

Soit \mathscr{C}_f la représentation de la fonction f donnée par $f(x) = -3x^3 + ax + b$. Déterminer a et b sachant que la tangente à \mathscr{C}_f au point d'asbcisse A(-3; 8) est de pente 9.

Exercice 13

Soit la courbe \mathscr{C} : $y = 2x^2 + a + \frac{b}{x}$. Déterminer a et b sachant que la tangente à \mathscr{C} au point d'asbeisse A(1; 11) est de pente -2.

Exercice 14

Soit la courbe \mathscr{C} : $y = x^3 + x^2 + ax + b$ et la tangente A(-2; -5) à \mathscr{C} au point A(-2; -5) représentées ci-dessous :

- 1. Déterminer la pente de la tangente en A.
- 2. Déterminer a et b.

Soit la fonction définie sur \mathbb{R} par $f(x) = ax^3 + bx^2 + cx - 4$.

- 1. Donner le domaine de dérivabilité et déterminer l'expression de la fonction dérivée f'.
- 2. On suppose f(2)=0, f'(1)=0 et f'(-2)=0. Écrire 3 équations vérifiées par a, b et c.
- 3. Résoudre le système obtenu et donner l'expression de la fonction f.

Exercice 16

Soit la fonction définie par $f(x) = \frac{a}{x+1} + bx + c$.

- 1. Donner le domaine de définition de la fonction f.
- 2. Donner le domaine de dérivabilité et déterminer l'expression de la fonction dérivée f'.
- 3. On sait que A(0;5) et $B(2,-\frac{23}{3}) \in \mathscr{C}_f$, et que la pente de la tangente en A est -9.

Pour chaque question entourer l'équation vraie :

a) (A)
$$f(5) = 0$$
 (B) $f'(5) = 0$ (C) $f(0) = 5$ (D) $f'(0) = 5$

b) (A)
$$f'(-9) = 0$$
 (B) $f'(5) = -9$ (C) $f'(0) = -9$ (D) $f'(-9) = 5$

c) (A)
$$f(2) = -\frac{23}{3}$$
 (B) $f'(2) = -\frac{23}{3}$ (C) $f(-\frac{23}{3}) = 5$ (D) $f'(-\frac{23}{3}) = 2$

- 4. Traduire les 3 affirmations précédentes par un système d'inconnues a, b et c.
- 5. Résoudre le système et déduire l'expression de la fonction f.

A.5.3 Savoir-faire 3 : nombre dérivé et équations de tangentes

La tangente à la courbe \mathscr{C}_f : y = f(x) au point d'abscisse a est d'équation

$$T_a$$
: $y = f'(a)(x - a) + f(a)$

■ Exemple A.23 — déterminer l'équation d'une tangente.

Soit f définie sur \mathbb{R} par $f(x) = x^2 + 1$, et sa représentation graphique \mathscr{C}_f . Déterminer (algébriquement) l'équation de la tangente à \mathscr{C}_f au point d'abscisse 1.

solution.

$$f(1) = (1)^2 + 1 = 2$$
. $A(1; 2) \in \mathscr{C}_f$

f est dérivable sur \mathbb{R} et f'(x) = 2x

$$f'(1) = 2(1) = 2$$

$$T: y = f'(1)(x-1) + f(1).$$

$$T: y = 2x$$
.

Exercice 1

On donne l'expression de la fonction f de représentation graphique \mathscr{C}_f . Déterminer pour chaque cas l'équation réduite de la tangente à \mathscr{C}_f au point d'abscisse x_0 .

- 1. pour tout x, $f(x) = x^2$ et $x_0 = 4$.
- 2. pour tout $x \in \mathbb{R}^*$, $f(x) = \frac{3}{x}$ et $x_0 = -1$.
- 3. pour tout $x \in \mathbb{R}$, $f(x) = 2x^2 + 5x + 3$ et $x_0 = -2$.
- **4.** pour tout $x \in \mathbb{R}$, $f(x) = x^3 + 3x$ et $x_0 = 0$.
- 5. pour tout $x \in \mathbb{R}^*$, $f(x) = x^2 + \frac{1}{x}$ et $x_0 = -1$.

Exercice 2 — utiliser l'équation de la tangente.

Déterminer l'équation de la tangente puis déduire les coordonnées du point demandé.

- 1. T est la tangente à \mathscr{C} : $y=2x^3+3x^2-x+4$ au point d'abscisse -1. Déterminer l'intersection de T avec l'axe des abscisses.
- 2. T est la tangente à \mathscr{C} : $y=3x^3-2x+1$ au point d'abscisse 1. Déterminer le point d'intersection de T avec l'axe des ordonnées.
- 3. T est la tangente à \mathscr{C} : $y=x^3+5$ au point $A(-2\ ;\ -3)$. Déterminer l'abscisse du point de T d'ordonnée y=2.
- 4. T est la tangente à \mathscr{C} : $y = \frac{2}{x} + 1$ au point A(-2; 0). Déterminer les coordonnées du point d'intersection de T avec D: y = 2x 3.

26

■ Exemple A.24 — trouver un autre point de rencontre avec la tangente.

Soit la fonction f définie sur \mathbb{R} par $f(x) = x^3 - 4x^2 - 6x + 8$ et sa représentation graphique \mathscr{C}_f . Soit T la tangente à \mathscr{C}_f au point d'abscisse 0. Déterminer les coordonnées du point ou T coupe \mathscr{C}_f à nouveau.

solution.

f est dérivable sur \mathbb{R} , et $f'(x) = 3x^2 - 8x - 6$

$$f(0) = (0)^3 - 4(0)^2 - 6(0) + 8 = 8$$
, $A(0; 8) \in \mathscr{C}_f$.

$$f'(0) = 3(0)^2 - 8(0) - 6 = -6$$
.

La tangente T à \mathcal{C}_f au point A est $T \colon y =$

$$-6(x-0) + 8 = -6x + 8.$$

Un point $P(x \; ; \; y)$ est sur \mathscr{C}_f et sur T si ses

coordonnées vérifient :

$$\begin{cases} y = x^3 - 4x^2 - 6x + 8 \\ y = -6x + 8 \end{cases}$$

Donc x est solution de

$$x^3 - 4x^2 - 6x + 8 = -6x + 8.$$

$$x^3 - 4x^2 = 0$$
$$x^2(x - 4) = 0$$

On sait que x = 0 est solution, on factorise par (x - 0)

$$\therefore x = 0 \text{ ou } x = 4.$$

Si x = 1 alors A(0; 8) que l'on connait déjà.

Si x = 4, y = -6(4) + 8 = -16. Donc la tangente T rencontre à nouveau \mathscr{C}_f au point B(4; -16).

Exercice 3

Pour chaque fonction f donnée, déterminer :

- l'équation de la tangente à \mathscr{C}_f au point x_0
- le point ou la tangente rencontre la courbe \mathscr{C}_f à nouveau.
- 1. f définie sur \mathbb{R} par $f(x) = 2x^3 5x + 1$ et $x_0 = -1$
- 2. f définie sur \mathbb{R}^* par $f(x) = x^2 + \frac{3}{x} + 2$ et $x_0 = 3$
- 3. f définie sur \mathbb{R} par $f(x) = x^3 + 5$ et $x_0 = 1,5$
- 4. f définie sur \mathbb{R}^* par $f(x) = x^3 + \frac{1}{x}$ et $x_0 = -1$

■ Exemple A.25 — trouver une tangente.

Soit \mathscr{C}_f la représentation graphique de la fonction f définie sur \mathbb{R} par $f(x) = x^2$. Déterminer l'équation de la tangente à \mathscr{C}_f passant par le point B(2; 3) (extérieur à \mathscr{C}_f).

Démonstration. Soit $a \in \mathbb{R}$, le point $A(a; a^2) \in \mathscr{C}_f$.

$$f'(x) = 2x$$
, donc $f'(a) = 2a$.

La tangente à \mathscr{C}_f au point A a pour équation T_a : $y=2a(x-a)+a^2$.

On cherche $a \in \mathbb{R}$ tel que $B(2; 3) \in T_a$. Donc a vérifie :

$$2a(2-a) + a^2 = 3$$
 .
$$0 = a^2 - 4a + 3$$

$$a = 1$$
 ou $a = 3$

Pour a = 1, alors T_1 : y = 2x - 1 au point $A_1(1; 1)$.

Pour a = 3, alors T_3 : y = 6x - 9 au point $A_3(3; 9)$.

Exercice 4

Soit f définie sur \mathbb{R} par $f(x) = x^2 - 3x$. On cherche à trouver les tangentes à \mathscr{C}_f qui passent par le point B(3; -4).

Soit $a \in \mathbb{R}$. On pose A le point de \mathscr{C}_f d'abscisse a, et T la tangente en A.

- 1. Préciser les coordonnées de A en fonction a.
- **2.** Montrer que $T: y = (2a 3)x a^2$.
- 3. Sachant que T passe par B, donner l'équation l'équation vérifiée par a et la résoudre en a.
- 4. Déterminer les points A et les équations réduites des tangentes à \mathscr{C}_f passant par B.

Exercice 5

Soit la \mathscr{C}_f la représentation graahique de f définie sur \mathbb{R} par $f(x) = x^3$. Déterminer les équations réduites de(s) tangente(s) à \mathscr{C}_f passant par le point B(-2; 0) (extérieur à \mathscr{C}_f).

Exercice 6

Soit la courbe \mathscr{C} : $y = \sqrt{x}$.

- 1. Quelle fonction est repréntée par la courbe \mathscr{C} . Préciser domaine et domaine de dérivabilité.
- 2. Déterminer les équations réduites de(s) tangente(s) à \mathscr{C} passant par B(5;3) (extérieur à \mathscr{C}_f).

A.5.4 Savoir-faire 4 : dérivée d'une composée par une fonction affine

■ Exemple A.26 — composée par une fonction affine.

f(x)	f'(x)
$x \mapsto u(ax+b)$	$x \mapsto au'(ax+b)$

Exercice 1

Pour la fonction composée $f: x \to u(v(x))$, préciser les expressions de u et v dans chaque cas.

1.
$$f(x) = (3x + 10)^3$$

2.
$$f(x) = \frac{1}{2x+4}$$

3.
$$f(x) = \sqrt{x^2 - 3x}$$

2.
$$f(x) = \frac{1}{2x+4}$$
 3. $f(x) = \sqrt{x^2 - 3x}$ **4.** $f(x) = \frac{10}{(3x-x^2)^3}$

■ Exemple A.27 — dérivée d'une composée.

Donner le domaine de dérivabilité et l'expressoin de la dérivée dans les cas suivants :

1.
$$f(x) = (5x+3)^3$$
 $D = \mathbb{R}$ et $D' = \mathbb{R}$ $\int compos\'{e}e\ u(v(x))\ de\ u\colon x \mapsto x^3\ d\'{e}rivable\ sur\ \mathbb{R}\ et\ v\colon x \mapsto 5x+3$ $u'(x) = 5u'(5x+3) = 15(5x+3)^2$

$$2. \quad f(x) = \frac{1}{2x-1}$$

$$D = \mathbb{R} \setminus \left\{ \frac{1}{2} \right\} \quad \text{et} \quad D' = \mathbb{R} \setminus \left\{ \frac{1}{2} \right\}$$

$$\int compos\acute{e}e \ u(v(x)) \ de \ u \colon x \mapsto \frac{1}{x} \ d\acute{e}rivable \ sur \ \mathbb{R}^* \ et \ v \colon x \mapsto 2x-1$$

$$f'(x) = 2u'(2x-1) = \frac{-2}{(2x-1)^2}$$

$$\int u'(x) = \frac{-1}{x^2}$$

3.
$$f(x) = \sqrt{4x - 1} = u(4x - 1)$$

$$D = \begin{bmatrix} \frac{1}{4}; +\infty \end{bmatrix}$$

$$D' = \begin{bmatrix} \frac{1}{4}; +\infty \end{bmatrix}$$

$$f'(x) = 4u'(x) = \frac{4}{2\sqrt{4x - 1}}$$

$$u: x \mapsto \sqrt{x} \text{ n'est pas d\'erivable en } 0$$

Exercice 2

Déterminer le domaine de définition et de dérivation de chaque fonction, ainsi que l'expression de la fonction dérivée f'.

1.
$$f(x) = \frac{1}{3x+6}$$

2.
$$f(x) = (3x+4)^3$$

3.
$$f(x) = (5 - 3x)^2$$

4.
$$f(x) = \sqrt{5x - 3}$$

5.
$$f(x) = 5x + \sqrt{3x + 18}$$

6.
$$f(x) = (ax + b)^3$$

7.
$$f(x) = \frac{5}{(2x-5)^2}$$

4.
$$f(x) = \sqrt{5x - 3}$$

5. $f(x) = 5x + \sqrt{3x + 18}$
6. $f(x) = (ax + b)^3$
7. $f(x) = \frac{5}{(2x - 5)^2}$
8. $f(x) = 3x + 1 + \frac{1}{2x + 8}$
9. $f(x) = \sqrt{-3x + 12}$

9.
$$f(x) = \sqrt{-3x + 12}$$

correction exercice 2.

$$f_1'(x) = -\frac{1}{3(x+2)^2}; \quad f_2'(x) = 9(3x+4)^2; \quad f_3'(x) = 6 \cdot (3x-5); \quad f_4'(x) = \frac{5}{2\sqrt{5x-3}}; \quad f_5'(x) = \frac{10\sqrt{x+6}+\sqrt{3}}{2\sqrt{x+6}}; \quad f_6'(x) = 3a(ax+b)^2; \quad f_7'(x) = -\frac{20}{(2x-5)^3}; \quad f_8'(x) = \frac{6x^2+48x+95}{2(x+4)^2}; \quad f_9'(x) = -\frac{\sqrt{3}}{2\sqrt{4-x}};$$

A.5.5 Savoir-faire 5 : signe de la fonction dérivée et sens de variation

- Exemple A.28 Soit la fonction f définie sur \mathbb{R} par $f(x) = 2x^3 + 3x^2 12x 5$.
- 1. Préciser le domaine de dérivabilité de f ainsi que l'expression de f'(x).
- 2. Dresser le tableau de signe de f' et dresser le tableau de variation de la fonction f.

solution.

- 1. $D' = \mathbb{R}$. pour tout $x \in \mathbb{R}$, et $f'(x) = 6x^2 + 6x 12$
- 2. Les valeurs critiques

$$f'(x) = 0$$

$$6(x+2)(x-1) = 0$$

$$x = -2$$
 ou $x = 1$

$$f(-2) = 2(-2)^3 + 3(-2)^2 - 12(-2) - 5 = 15$$

$$f(1) = 2(1)^3 + 3(1)^2 - 12(1) - 5 = -12$$

f est strictement décroissante sur l'intervalle [-2;1]

f est strictement croissante sur l'intervalle $]-\infty;-2]$ et sur l'intervalle $[1;+\infty[$

Exercice 1

Pour chacune des fonctions f suivantes :

- préciser le domaine de définition et de dérivabilité
- déterminer sa dérivée f' et résoudre f'(x) = 0.
- déterminer le sens de variation de f et préciser les extremum locaux.

1.
$$f(x) = 2x + 1$$

2.
$$f(x) = -3x + 2$$

3.
$$f(x) = x^2$$

4.
$$f(x) = -x^3$$

$$5. \ f(x) = 2x^2 + 3x - 4$$

6.
$$f(x) = x^3 - 6x^2$$

7.
$$f(x) = \frac{1}{x^4}$$

8. $f(x) = \frac{1}{x}$

8.
$$f(x) = \frac{1}{x}$$

9.
$$f(x) = -2x^3 + 4x$$

$$10. \ f(x) = -4x^3 + 15x^2 + 18x + 3$$

11.
$$f(x) = 2x^3 + 9x^2 + 6x - 6$$

12.
$$f(x) = 2x + \frac{8}{x}$$

■ Exemple A.29 — nature d'une valeur crique.

Soit \mathscr{C}_f la représentation graphique de la fonction f définie sur \mathbb{R} par $f(x) = x^3 - 3x^2 - 9x + 5$. Déterminer les points critiques de \mathscr{C}_f .

solution.

 $D=D'=\mathbb{R}$, f est dérivable sur \mathbb{R} et

$$f'(x) = 3x^2 - 6x - 9$$

$$= 3(x - 3)(x + 1)$$
 factoriser

La fonction admet un maximum local

en -1, et un minimum local en x = 3.

$$f(-1) = (-1)^3 - 3(-1)^2 - 9(-1) + 5 = 10$$
 et $f(3) = (3)^3 - 3(3)^2 - 9(3) + 5 = -22$

Les points critiques de la courbe \mathscr{C}_f sont A(-1; 10) et B(3; -22).

Exercice 2 — entrainement.

Pour chacune des fonctions f suivantes :

- préciser le domaine de définition et de dérivabilité
- déterminer f'(x).
- Déterminer les valeurs critiques solutions de f'(x) = 0
- Déterminer le sens de variation de f et préciser la nature des valeurs critiques.

1.
$$f(x) = x^2 - 2$$

$$4. f(x) = x^3 - 3x + 2$$

7.
$$f(x) = 2x + \frac{1}{x_{-}^2}$$

2.
$$f(x) = x^3 + 1$$

4.
$$f(x) = x^3 - 3x + 2$$

5. $f(x) = x^3 - 6x^2 + 12x + 1$
6. $f(x) = 4x - x^3$

7. $f(x) = 2x + \frac{1}{x^2}$
8. $f(x) = -x - \frac{9}{x}$
9. $f(x) = x^2 + \frac{16}{x}$

8.
$$f(x) = -x - \frac{9}{x}$$

3.
$$f(x) = x^4 - 2x^2$$

6.
$$f(x) = 4x - x^3$$

9.
$$f(x) = x^2 + \frac{1}{x^2}$$

■ Exemple A.30 — encadrement d'expressions. Donner un encadrement de $f(x) = x^3 - 6x^2 + 5$ lorsque $-2 \le x \le 5$.

solution.

Deux valeur criques en x = 0 et x = 4.

x	-2		0		4		5
signe de $f'(x)$		+	0	_	0	+	
variation de f	-27	/	, 5		-27	/	-20

La fonction admet un maximum local en 0, et un minimum local en x = 4.

On complète le tableau de variatio avec : $f(-2) = (-2)^3 - 6(-2)^2 + 5 = -27$, $f(0) = (0)^3 - 6(0)^2 + 5 = 5$,

$$f(4) = (4)^3 - 6(4)^2 + 5 = -27$$
 et $f(5) = (5)^3 - 6(5)^2 + 5 = -20$

∴
$$si - 2 \le x \le 5$$
 alors $-27 \le x^3 - 6x^2 + 5 \le 5$.

Exercice 3

Déterminer le maximum et le minimum des expressions suivantes.

1.
$$f(x) = x^3 - 12x^2 - 2$$
 pour $-3 \le x \le 5$

2.
$$f(x) = 4 - 3x^2 + x^3$$
 pour $-2 \le x \le 3$

3.
$$f(x) = x^3 + x^2 - 4x$$
 pour $-3 \le x \le 2$

4.
$$f(x) = -2x^3 - 2x^2 + 8x + 3$$
 pour $-2 \le x \le 2$

éléments de réponse pour exercice 1.

$$f'_1(x) = 2;$$

 $f'_2(x) = -3;$

$$f_3'(x) = 2x;$$

$$f_4'(x) = -3x^2;$$

$$f_5'(x) = 4\left(x + \frac{3}{4}\right);$$

$$f_6'(x) = 3x (x+4);$$

$$f_7'(x) = -\frac{4}{x^5};$$

$$f_8'(x) = -\frac{1}{x^2};$$

$$f_9'(x) = -6\left(x - \frac{\sqrt{6}}{3}\right)\left(x + \frac{\sqrt{6}}{3}\right);$$

$$f_{10}'(x) = -12(x - 3)\left(x + \frac{1}{2}\right);$$

$$f_{11}'(x) = 6\left(x^2 + 3x + 1\right);$$

$$f_{12}'(x) = \frac{2(x - 2)(x + 2)}{x^2};$$

éléments de réponse pour exercice 2.

$$f_1'(x) = 2x;$$

$$f_2'(x) = 3x^2;$$

$$f_3'(x) = 4x(x-1)(x+1);$$

$$f_4'(x) = 3(x-1)(x+1);$$

$$f_5'(x) = 3(x-2)^2$$
;

$$\begin{aligned}
f_6'(x) &= 4 - 3x^2; \\
f_7'(x) &= \frac{2(x-1)(x^2+x+1)}{x^3}; \\
f_8'(x) &= -\frac{(x-3)(x+3)}{x^2}; \\
f_9'(x) &= \frac{2(x-2)(x^2+2x+4)}{x^2}; \end{aligned}$$

éléments de réponse pour exercice 3.

$$f_1'(x) = 3x(x-8);$$

$$f_2'(x) = 3x(x-2);$$

$$f_3'(x) = 3\left(x + \frac{1}{3} + \frac{\sqrt{13}}{3}\right)\left(x - \frac{\sqrt{13}}{3} + \frac{1}{3}\right);$$

$$f_4'(x) = -6\left(x + \frac{1}{3} + \frac{\sqrt{13}}{3}\right)\left(x - \frac{\sqrt{13}}{3} + \frac{1}{3}\right);$$

A.5.6 Savoir-faire 6: règle de dérivation de produit et quotient

■ Exemple A.31 — dérivation d'un produit.

Donner le domaine de dérivabilité et l'expression de la dérivée dans les cas suivants :

$$f(x) = \sqrt{x}(2x+1)^3$$

$$produit de \ u \colon x \mapsto \sqrt{x} \ d\text{\'efinie sur } [0; +\infty[\ et \ D' =]0; +\infty[$$

$$d\text{\'erivable sur }]0; +\infty[\ et \ v \colon x \mapsto (2x+1)^3 \ d\text{\'erivable}$$

$$\text{sur } \mathbb{R}$$

$$f'(x) = u'(x)v(x) + u(x)v'(x)$$

$$= \frac{1}{2\sqrt{x}}(2x+1)^3 + \sqrt{x} \times 2 \times 3(2x+1)^2$$

$$= \frac{(2x+1)^3}{2\sqrt{x}} + 6\sqrt{x}(2x+1)^2$$

$$f(x) = (8x - 1)(2x^{2} - 5x - 3)$$

$$D' = \mathbb{R}$$

$$f'(x) = (8x - 1)'(2x^{2} - 5x - 3) + (8x - 1)(2x^{2} - 5x - 3)'$$

$$= 8(2x^{2} - 5x - 3) + (8x - 1)(2(2x) - 5(1) + 0)$$

$$= 16x^{2} - 40x - 24 + (8x - 1)(4x - 5)$$

$$produit de u: x \mapsto 8x - 1 \text{ et}$$

$$v: x \mapsto 2x^{2} - 5x - 3 \text{ toutes dérivables sur } \mathbb{R}$$

Exercice 4 Dériver en utilisant la règle de la dérivé d'un produit.

1.
$$f(x) = x^{2}(2x - 1)$$
 4. $f(x) = x^{2}(7 - 3x^{2})$ 7. $f(x) = \sqrt{x}(x^{2} + 1)$ 8. $f(x) = \sqrt{3}x - 12(x^{2} - 1)$ 9. $f(x) = (4x - 1)\sqrt{3}x - 15$

■ Exemple A.32 — dérivation d'un quotient.

 $=48x^2-84x-19$

Donner le domaine de dérivabilité et l'expression de la dérivée dans les cas suivants :

$$f(x) = \frac{1+3x}{x^2+1}$$

$$D = \mathbb{R} \quad D' = \mathbb{R}$$

$$f'(x) = \frac{(1+3x)'(x^2+1) - (1+3x)(x^2+1)'}{(x^2+1)^2}$$

$$f'(x) = \frac{3(x^2+1) - (1+3x)2x}{(x^2+1)^2}$$

$$= \frac{3x^2+3-2x-6x^2}{(x^2+1)^2}$$

$$= \frac{3-2x-3x^2}{(x^2+1)^2}$$
on applique $(\frac{u}{v})' = \frac{u'v-uv'}{v^2}$
on simplifie le numérateur sans développer le dénominateur

$$f(x) = \frac{1-2x}{3x+3}$$

$$D = \mathbb{R} \setminus \{-1\} \quad D' = \mathbb{R} \setminus \{-1\}$$

$$f'(x) = \frac{(1-2x)'(3x+3) - (1-2x)(3x+3)'}{(3x+3)^2}$$

$$= \frac{-2(3x+3) - (1-2x) \times 3}{(3x+3)^2}$$

$$= \frac{-9}{(3x+3)^2}$$

$$f(x) = \frac{\sqrt{x}}{(1-2x)^2}$$

$$D = [0; \frac{1}{2}[\cup]\frac{1}{2}; +\infty[\quad D' =]0; \frac{1}{2}[\cup]\frac{1}{2}[\cup]\frac{1}{2}; +\infty[\quad D' =]0; \frac{1}{2}[\cup]\frac{1}{2}[\cup]\frac{1}{2}[\cup]\frac{1}{2}[\cup]\frac{1}{$$

Donner les domaines de définition et de dérivabilité, puis dériver les fonctions suivantes.

Exercice 6

Soit \mathcal{C}_f la représentation graphique de f. Déterminer la pente de la tangente au point d'abscisse x_0 dans les cas suivants :

1.
$$f$$
 définie par $f(x) = x\sqrt{1-2x}$, au point d'abscisse $x = -4$.

2.
$$f$$
 définie par $f(x) = \frac{\sqrt{x}}{2x+1}$, au point d'abscisse $x=4$.

Exercice 7

Soit \mathscr{C}_f la représentation graphique de f donnée par $f(x) = \frac{x^2 - 3x + 1}{x + 2}$.

1. Déterminer le domaine et le domaine de dérivabilité de f.

2. Montrer que pour tout
$$x \in D'$$
, $f'(x) = \frac{x^2 + 4x - 7}{(x+2)^2}$.

3. Déterminer les points de \mathscr{C}_f ou la tangente est horizontale.

correction exercice 4.

$$\begin{split} f_1'(x) &= 6x^2 - 2x = 2x \left(3x - 1\right); \\ f_2'(x) &= 128x^3 + 144x^2 + 48x + 4 = 4\left(2x + 1\right)^2 \cdot \left(8x + 1\right); \\ f_3'(x) &= 63x^6 - 36x^5 + 5x^4 = x^4 \cdot \left(3x - 1\right) \left(21x - 5\right); \\ f_4'(x) &= -12x^3 + 14x = -2x \left(6x^2 - 7\right); \\ f_5'(x) &= -\frac{x^2}{2\sqrt{3-x}} + 2x\sqrt{3-x} = -\frac{x\left(5x - 12\right)}{2\sqrt{3-x}}; \\ f_6'(x) &= -\frac{27\sqrt{x}}{2} + \frac{4}{\sqrt{x}} = -\frac{27x - 8}{2\sqrt{x}}; \\ f_7'(x) &= \frac{5x^{\frac{3}{2}}}{2} + \frac{1}{2\sqrt{x}} = \frac{5x^2 + 1}{2\sqrt{x}}; \\ f_8'(x) &= \frac{3x^2}{2\sqrt{3x - 12}} + 2x\sqrt{3x - 12} - \frac{3}{2\sqrt{3x - 12}} = \frac{\sqrt{3} \cdot \left(5x^2 - 16x - 1\right)}{2\sqrt{x - 4}}; \\ f_9'(x) &= \frac{6x}{\sqrt{3x - 15}} + 4\sqrt{3x - 15} - \frac{3}{2\sqrt{3x - 15}} = \frac{\sqrt{3} \cdot \left(12x - 41\right)}{2\sqrt{x - 5}}; \end{split}$$

correction exercise 5.
$$f'_1(x) = \frac{7}{(x-2)^2}$$
;

$$f_2'(x) = \frac{2x(x+1)}{(2x+1)^2};$$

$$f_3'(x) = -\frac{x^2+3}{(x^2-3)^2};$$

$$f_4'(x) = \frac{2x+1}{2\sqrt{x}(2x-1)^2};$$

$$f_5'(x) = \frac{3(x^2-2x+3)}{x^2(x-3)^2};$$

$$f_6'(x) = -\frac{3x-2}{2(1-3x)^{\frac{3}{2}}};$$

A.6 Méthodes numériques : suites, python

Exercice 8 On considère la suite (u_n) définie $\begin{cases} u_0 = 2 \\ \text{pour tout } n \geqslant 1 \ u_{n+1} = \frac{1}{3}u_n + 4 \end{cases}$

1. Tracer la représentation graphique de la fonction définie par $f(x) = \frac{1}{3}x + 4$.

- 2. Construire le diagramme en escalier de la suite (A_n) en plaçant les termes successifs de A_0 à A_3 sur l'axe des abscisses (sans les calculer).
- 3. Conjecturer le sens de variation et la limite de la suite (A_n) .
- 4. Compléter les lignes 4 et 5 du script ci=dessous pour que l'instruction seuil() retourne le plus petit entier n tel que $u_n > 5.999$.

Propositions:

(E)
$$u = (1/3)*u +4$$

$$(F) u = u + 1$$

(G)
$$\mathbf{u} = u(n)$$

(D) while u<=5.999

5. Déterminer n de la question précédente par la méthode de votre choix.

Exercice 9 — résolution d'une équation par itération.

Soit
$$f(x) = x^3 + 3x^2 + 4x - 12$$
.

On admet que l'équation f(x) = 0 admet une solution unique $x^* \in [1; 2]$.

- 1. Montrer que x^* est aussi solution de l'équation $x = \sqrt{\frac{4(3-x)}{x+3}}$.
- 2. Soit la suite (x_n) définie par $\begin{cases} x_0 = 1 \\ \text{pour tout } n \geqslant 0 : x_{n+1} = \sqrt{\frac{4(3 x_n)}{x_n + 3}} \end{cases}$
- 3. Compléter les lignes 1, 2 et 3 de l'algorithme Python ci-dessous permettant de calculer et d'afficher les valeurs de u_1 à u_{100} .

```
1 u = ...
2 for n in range(2,....) :
      u = \dots
      print("u({})={}".format(n,u)) #affiche u(<valeur de n>)=<valeur de u>
```

- 4. Conjecturer par la méthode de votre choix, la limite x^* de la suite (x_n) . Vous donnerez une valeur approchée à 10^{-5} de la limite.
- 5. Un terme u_n est assez proche de la solution x^* recherchée lorsque $f(u_n) \approx 0 \pm 0{,}001$. Compléter les lignes 2, 3 et 4 du script ci-dessous pour qu'il affiche le premier rang n_0 de la suite qui vérifie $|f(u_n)| \leq 0.001$:

```
1 \quad \mathbf{n} = 0
2 u = ...
3 while abs(.....)....0.001 : #1'instruction abs(x) retourne |x|
     u = \dots
     n = n + 1
6 print("n_0={}".format(n))
```

6. Déterminer n_0 par la méthode de votre choix.

6. Determiner u_0 par a final section of u_0 parameters. Soit la suite (u_n) définie par $\begin{cases} u_1 = 1 \\ \text{pour tout } n \geqslant 1 \ u_{n+1} = au_n + 5 \end{cases}$

- 1. Exprimer u_2 en fonction de a
- 2. Montrer que $u_3 = a^2 + 5a + 5$
- 3. Sachant que $u_3 = 41$, déterminer les valeurs possibles de a.