情報数学 III	笋?	回小テスト	(1. th- L)	
用	歩 3	凹小アスト	(レハート)	,

学籍番号

 $\fbox{f 1}$ ある直交座標系において方程式 $x^2-2x-y^2-3y-1=0$ で表される図形 (曲線) を $\cal C$ とする.原点の移動(座標の平行移動)によっ て座標変換したら、C の方程式が $aX^2 + bY^2 = c$ になったとする。このときの以下の問に答えなさい。

- (1) (x,y) と (X,Y) の関係式を答えなさい。(3点)
- (2) XY-座標系における C の方程式 $aX^2 + bY^2 = c$ の定数 a,b,c を求めなさい。(4点)

x2-2x-y2-3y-1=0をななそれぞれに関いて平方完成すると $(x-1)^2 - (y+\frac{3}{2})^2 = -\frac{1}{4}$

2+13. (12 pr) 2

2736 X-Y2-6 2+231 - 10A

- $oxed{2}$ $\{O,ec{e}_1,ec{e}_2\}$ を平面の直交座標系とする。次の問に答えなさい。(各 3 点)
 - (1) $\vec{e'}_1 = \frac{1}{2}\vec{e}_1 \frac{\sqrt{3}}{2}\vec{e}_2, \vec{e'}_2 = p\vec{e}_1 + q\vec{e}_2$ と基底を変換するとき,

$$\left(\begin{array}{cc} \vec{e'}_1 & \vec{e'}_2 \end{array}\right) = \left(\begin{array}{cc} \vec{e}_1 & \vec{e}_2 \end{array}\right) A$$

を満たす行列 A (変換行列) を求めなさい。

- (2) $\{O, \vec{e}_1, \vec{e}_2\}$ 座標系における点 P の座標を (x, y), $\{O, \vec{e'}_1, \vec{e'}_2\}$ 座標系における点 P の座標を (x', y') とする. このとき, (x, y) と (x',y') の関係式 (変換式) を答えなさい。
- (3) $\{O,\vec{e'}_1,\vec{e'}_2\}$ が定める座標系も直交座標系となるとき p,q の値を求めなさい。ただし,A の行列式の値は正であるとする。

(2) $P(x,y) \rightarrow \overrightarrow{OP} = x\overrightarrow{e}_1 + y\overrightarrow{e}_2 = (\overrightarrow{e}_1 \overrightarrow{e}_2) \begin{pmatrix} x \\ y \end{pmatrix}$ P(x',y') - op = (=, =) (x) = (=, =) A (y') $(f_2 \not p)$ ", 7 $\begin{pmatrix} x \\ y \end{pmatrix} = A \begin{pmatrix} x' \\ y' \end{pmatrix}$ $(3) \quad E = +A \cdot A = \begin{pmatrix} \frac{1}{2} & -\frac{13}{2} \\ \frac{1}{2} & \frac{13}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ 5, 2 $\frac{1}{2}$ $\frac{1}{7} - \frac{\sqrt{3}}{1}$ $\frac{9}{2} \cdot \frac{9}{2}$ $\frac{9}{2} + \frac{9}{2} = 1$ det (A) = 1 # 9 3-a \$14 by 1= 1 1 8 = 1

③ 行列
$$A_1 = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, A_2 = \begin{pmatrix} 2 & -1 \\ 3 & 1 \end{pmatrix}$$
, ベクトル $\vec{d_1} = \begin{pmatrix} -3 \\ 1 \end{pmatrix}, \vec{d_2} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ に対し、点変換 f_1, f_2 を
$$f_1(\vec{p}) = A_1 \vec{p} + \vec{d_1}, \quad f_2(\vec{p}) = A_2 \vec{p} + \vec{d_2}$$

点/40点

で定義する. 以下の間に答えなさい. (各4点)

- (1) f_1 と f_2 の合成を $f_1 \circ f_2(\vec{p}) = B_1\vec{p} + \vec{v}_1$ とする. このとき、行列 B_1 とベクトル \vec{v}_1 を求めなさい.
- (2) f_1 の逆変換を $f_1^{-1}(\vec{p}) = B_2\vec{p} + \vec{v}_2$ とする。このとき、行列 B_2 とベクトル \vec{v}_2 を求めなさい。
- (3) $f_2 = f_1 \circ g$ を満たす点変換 g を $g(\vec{p}) = B_3 \vec{p} + \vec{v}_3$ とする、このとき、行列 B_3 とベクトル \vec{v}_3 を求めなさい。

(1)
$$f_{1}(f_{2}(\vec{p})) = A_{1}f_{2}(\vec{p}) + \vec{d}_{1} = A_{1}(A_{2}\vec{p}) + \vec{d}_{2}$$

$$= A_{1}A_{2})\vec{p} + (A_{1}d_{2} + \vec{d}_{1}) = (\frac{5}{8})\vec{p} + (\frac{-3}{0})\vec{p} + (\frac{-3}{0}$$

(2) $\vec{p} = f_1'(f_1(\vec{p}_1)) = B_2f_1\vec{p}_1 + \vec{u}_2 = B_2(A_1\vec{p}_1 + \vec{u}_1) + \vec{u}_1$ = $(B_2A_1)\vec{p}_1 + (B_2\vec{d}_1 + \vec{u}_2)$

この式はかれなアに対のも成り立。アニるを代入するとと、コーロマニーの で得る。したかの話局アン(多2人1)アーカスコー(2-1)

- (1) $R_{\theta}R_{\phi} = R_{\theta+\phi}$ が成り立つことを示しなさい.
- (2) R_{θ}^{-1} を求めなさい.
- (3) $S_{\theta} = AR_{\theta}$ を満たす行列 A を求めなさい.
- (1) 加法定理で使う、(备略)

(2)
$$R_o = E = \frac{1}{2}$$
 $R_o = \frac{R_{-0}}{\sqrt{\cos 0}}$

(3)
$$f_{2} = f_{1} \circ g \Leftrightarrow g = f_{1} \circ f_{2}$$

(1) ξ (3) f_{2}^{ξ} (2) ξ (3) ξ (4) ξ (5) ξ (6) ξ (7) ξ (7) ξ (7) ξ (8) ξ (8) ξ (9) ξ (9) ξ (10) ξ

$$2 \text{ And } \cos \theta$$

$$An^2 \theta - \cos^2 \theta$$

$$= \frac{\cos^2 \theta}{\cos^2 \theta} = \frac{\cos^2 \theta}{\cos^2 \theta} = \frac{\cos^2 \theta}{\cos^2 \theta}$$

= <u>ZQ</u> 2012.10.24 担当: 佐藤

提出期限: 10 月 29 日 (月) 16:30 (教育棟 1 階事務部)

2/3