

Propoziția 1.48

Pentru orice formulă φ , $\vdash \varphi \rightarrow \varphi$.

Dem.:

- (1) $\vdash (\varphi \to ((\varphi \to \varphi) \to \varphi)) \to ((\varphi \to (\varphi \to \varphi)) \to (\varphi \to \varphi))$ (A2) (cu φ , $\psi := \varphi \to \varphi$, $\chi := \varphi$) și Propoziția 1.40.(i)
- (2) $\vdash \varphi \rightarrow ((\varphi \rightarrow \varphi) \rightarrow \varphi)$ (A1) (cu φ , $\psi := \varphi \rightarrow \varphi$) și Propoziția 1.40.(i)
- (3) $\vdash (\varphi \rightarrow (\varphi \rightarrow \varphi)) \rightarrow (\varphi \rightarrow \varphi)$ (1), (2) și Propoziția 1.40.(iii). Scriem de obicei (MP): (1), (2)
- (4) $\vdash \varphi \to (\varphi \to \varphi)$ (A1) (cu $\varphi, \ \psi := \varphi$) și Propoziția 1.40.(i)
- (5) $\vdash \varphi \rightarrow \varphi$ (MP): (3), (4)

Teorema deducției

Teorema deducției 1.49

Fie $\Gamma \subseteq Form$ și $\varphi, \psi \in Form$. Atunci

$$\Gamma \cup \{\varphi\} \vdash \psi \; \mathsf{ddac} \; \Gamma \vdash \varphi \to \psi.$$

Dem.: " \Leftarrow " Presupunem că $\Gamma \vdash \varphi \rightarrow \psi$.

- (1) $\Gamma \vdash \varphi \rightarrow \psi$ ipoteză
- (2) $\Gamma \cup \{\varphi\} \vdash \varphi \rightarrow \psi$ Propoziția 1.42.(i)
- (3) $\Gamma \cup \{\varphi\} \vdash \varphi$ Propoziția 1.40.(ii)
- (4) $\Gamma \cup \{\varphi\} \vdash \psi$ (MP): (2), (3).

Teorema deducției

$$\Sigma := \{ \psi \in \mathit{Form} \mid \Gamma \vdash \varphi \to \psi \}.$$

Trebuie să demonstrăm că $Thm(\Gamma \cup \{\varphi\}) \subseteq \Sigma$. O facem prin inducție după $\Gamma \cup \{\varphi\}$ -teoreme.

- Fie ψ o axiomă sau o formulă din Γ . Atunci
- (1) $\Gamma \vdash \psi$

Propoziția 1.40.(i), (ii)

- (2) $\Gamma \vdash \psi \rightarrow (\varphi \rightarrow \psi)$ (A1) și Propoziția 1.40.(i)
- (3) $\Gamma \vdash \varphi \rightarrow \psi$ (MP): (1), (2).

Aşadar $\psi \in \Sigma$.

• Fie $\psi = \varphi$. Atunci $\varphi \to \psi = \varphi \to \varphi$ este teoremă, conform Propoziției 1.48, deci $\Gamma \vdash \varphi \to \psi$. Așadar $\psi \in \Sigma$.

Teorema deducției

• Demonstrăm acum că Σ este închisă la modus ponens. Presupunem că $\psi,\psi\to\chi\in\Sigma$ și trebuie să arătăm că $\chi\in\Sigma$. Atunci

- (1) $\Gamma \vdash \varphi \rightarrow \psi$ ipoteza inducție
- (2) $\Gamma \vdash \varphi \rightarrow (\psi \rightarrow \chi)$ ipoteza inducție
- (3) $\Gamma \vdash (\varphi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \chi))$ (A2) şi P. 1.40.(i)
- (4) $\Gamma \vdash (\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \chi)$ (MP): (2), (3).
- (5) $\Gamma \vdash \varphi \rightarrow \chi$ (MP): (1), (4).

Aşadar $\chi \in \Sigma$.

3

Câteva consecințe

Teorema deducției este unul din cele mai utile instrumente pentru a arăta că o formulă e teoremă.

Propoziția 1.50

Pentru orice formule φ, ψ, χ ,

$$\vdash (\varphi \to \psi) \to ((\psi \to \chi) \to (\varphi \to \chi)).$$
 (1)

Dem.: Folosind teorema deductiei observăm că

$$\vdash \frac{(\varphi \to \psi)}{} \to ((\psi \to \chi) \to (\varphi \to \chi))$$

$$\updownarrow$$

$$\{\varphi \to \psi\} \vdash \frac{(\psi \to \chi)}{} \to (\varphi \to \chi)$$

$$\updownarrow$$

$$\{\varphi \to \psi, \psi \to \chi\} \vdash \frac{\varphi}{} \to \chi$$

$$\updownarrow$$

$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \chi.$$

Câteva consecinte

În acest fel am reformulat ceea ce aveam de demonstrat. A demonstra teorema inițială este echivalent cu a demonstra

$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \chi.$$

(1)
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi$$
 Propoziția 1.40.(ii)

(2)
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi \to \psi$$
 Propoziția 1.40.(ii)

(3)
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi$$
 (MP): (1), (2)

(4)
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi \to \chi$$
 Propoziția 1.40.(ii)

(5)
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \chi$$
 (MP): (3), (4).

Câteva consecințe

Propoziția 1.51

Pentru orice multime de formule Γ și orice formule φ, ψ, χ ,

$$\Gamma \vdash \varphi \rightarrow \psi \text{ si } \Gamma \vdash \psi \rightarrow \chi \quad \Rightarrow \quad \Gamma \vdash \varphi \rightarrow \chi.$$
 (2)

ipoteză

(MP): (3), (4).

Dem.:

(1)
$$\Gamma \vdash \varphi \rightarrow \psi$$
 ipoteză

(2)
$$\Gamma \vdash (\varphi \rightarrow \psi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi))$$
 P. 1.50 și P. 1.42.(ii)

(3)
$$\Gamma \vdash (\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi)$$
 (MP): (1), (2)

(4)
$$\Gamma \vdash \psi \rightarrow \chi$$

(5)
$$\Gamma \vdash \varphi \rightarrow \chi$$

Câteva consecinte

Propoziția 1.52

Pentru orice formule φ, ψ ,

$$\{\psi, \neg \psi\} \vdash \varphi$$
 (3)

$$\vdash \neg \psi \to (\psi \to \varphi) \tag{4}$$

$$\vdash \neg \neg \varphi \to \varphi \tag{5}$$

$$\vdash \varphi \to \neg \neg \varphi \tag{6}$$

$$\{\psi, \neg \varphi\} \vdash \neg (\psi \to \varphi).$$
 (7)

Dem.: Exercițiu.

Propoziția 1.53

Pentru orice mulțime de formule Γ și orice formule φ, ψ ,

$$\Gamma \cup \{\psi\} \vdash \varphi \text{ si } \Gamma \cup \{\neg\psi\} \vdash \varphi \Rightarrow \Gamma \vdash \varphi. \tag{8}$$

Dem.: Exercițiu.

SINTAXA și SEMANTICA

Corectitudine

Teorema de corectitudine (Soundness Theorem) 1.54

Orice Γ-teoremă este consecință semantică a lui Γ, adică,

$$\Gamma \vdash \varphi \Rightarrow \Gamma \vDash \varphi$$

pentru orice $\varphi \in Form$ și $\Gamma \subseteq Form$.

Dem.: Fie

$$\Sigma := \{ \varphi \in \mathit{Form} \mid \Gamma \vDash \varphi \}.$$

Trebuie să demonstrăm că $Thm(\Gamma) \subseteq \Sigma$. O facem prin inducție după Γ -teoreme.

- Axiomele sunt în Σ (exerciţiu).
- ▶ Evident, $\Gamma \subseteq \Sigma$.
- ▶ Demonstrăm acum că Σ este închisă la modus ponens. Presupunem că $\varphi, \varphi \to \psi \in \Sigma$, adică, $\Gamma \vDash \varphi$ și $\Gamma \vDash \varphi \to \psi$. Conform Propoziției 1.31.(i), obținem că $\Gamma \vDash \psi$, adică, $\psi \in \Sigma$.

Sintaxă și semantică

Notații

Pentru orice variabilă $v \in V$ și orice evaluare $e: V \to \{0,1\}$,

$$v^e = egin{cases} v & \mathsf{dac}reve{a} \ e(v) = 1 \
eg v & \mathsf{dac}reve{a} \ e(v) = 0. \end{cases}$$

Aşadar, $e^+(v^e) = 1$.

Pentru orice mulțime $W = \{x_1, \dots, x_k\}$ de variabile, notăm

$$W^e = \{v^e \mid v \in W\} = \{x_1^e, x_2^e, \dots, x_k^e\}.$$

Sintaxă și semantică

Propoziția 1.55

Fie $e: V \to \{0,1\}$ o evaluare. Pentru orice formulă φ ,

- (i) Dacă $e^+(\varphi) = 1$, atunci $Var(\varphi)^e \vdash \varphi$.
- (ii) Dacă $e^+(\varphi) = 0$, atunci $Var(\varphi)^e \vdash \neg \varphi$.

Dem.: Prin inducție după formule. Avem următoarele cazuri:

- $\varphi = v$. Atunci $Var(\varphi)^e = \{v^e\}$ și $e^+(v) = e(v)$.
 - Dacă e(v) = 1, atunci $v^e = v$, deci, $\{v^e\} \vdash v$.
 - Dacă e(v) = 0, atunci $v^e = \neg v$, deci, $\{v^e\} \vdash \neg v$.
- $\varphi = \neg \psi$. Atunci $Var(\varphi) = Var(\psi)$, deci $Var(\varphi)^e = Var(\psi)^e$.

Dacă $e^+(\varphi) = 1$, atunci $e^+(\psi) = 0$, deci, conform ipotezei de inducție pentru ψ , $Var(\psi)^e \vdash \neg \psi$, adică, $Var(\varphi)^e \vdash \varphi$.

Dacă $e^+(\varphi) = 0$, atunci $e^+(\psi) = 1$, deci, conform ipotezei de inducție pentru ψ , $Var(\psi)^e \vdash \psi$, adică, $Var(\varphi)^e \vdash \psi$. Deoarece $\vdash \psi \rightarrow \neg \neg \psi$ ((6) din Propoziția 1.52), putem aplica

(MP) pentru a obține $Var(\varphi)^e \vdash \neg \neg \psi = \neg \varphi$.

Sintaxă și semantică

 $ightharpoonup \varphi = \psi \to \chi$. Atunci $Var(\varphi) = Var(\psi) \cup Var(\chi)$, deci $Var(\psi)^e$, $Var(\chi)^e \subseteq Var(\varphi)^e$.

Dacă
$$e^+(\psi \to \chi) = 0$$
, atunci $e^+(\psi) = 1$ și $e^+(\chi) = 0$. Avem

$$Var(\psi)^e \vdash \psi$$

ipoteza de inducție pentru ψ

$$Var(\chi)^e \vdash \neg \chi$$

ipoteza de inducție pentru χ

$$Var(\varphi)^e \vdash \{\psi, \neg \chi\}$$

 $Var(\varphi)^e \vdash \{\psi, \neg \chi\}$ $Var(\psi)^e, Var(\chi)^e \subseteq Var(\varphi)^e$ şi P.1.42.(i)

$$\{\psi, \neg\chi\} \vdash \neg(\psi \to \chi)$$

 $\{\psi, \neg \chi\} \vdash \neg(\psi \rightarrow \chi)$ (7) din Propozitia 1.52

$$Var(arphi)^{\mathsf{e}} dash \lnot (\psi
ightarrow \chi)$$

 $Var(\varphi)^e \vdash \neg(\psi \rightarrow \chi)$ Propoziția 1.42.(iv).

Sintaxă și semantică

Dacă $e^+(\psi \to \chi) = 1$, atunci fie $e^+(\psi) = 0$, fie $e^+(\chi) = 1$.

În primul caz, obținem

$$Var(\psi)^e \vdash \neg \psi$$
 ipoteza de inducție pentru ψ

$$Var(\psi)^e \vdash \neg \psi \rightarrow (\psi \rightarrow \chi)$$
 (4) din P. 1.52 și P.1.42.(ii)

$$Var(\psi)^e \vdash \psi \to \chi$$
 (MP)

$$Var(\varphi)^e \vdash \psi \rightarrow \chi$$
 $Var(\psi)^e \subseteq Var(\varphi)^e$ și P.1.42.(i).

În al doilea caz, obținem

$$Var(\chi)^e \vdash \chi$$
 ipoteza de inducție pentru χ

$$Var(\chi)^e \vdash \chi \rightarrow (\psi \rightarrow \chi)$$
 (A1) și Propoziția 1.40.(i)

$$Var(\chi)^e \vdash \psi \to \chi$$
 (MP)

$$Var(\varphi)^e \vdash \psi \rightarrow \chi$$
 $Var(\chi)^e \subseteq Var(\varphi)^e$ şi P.1.42.(i).

Demonstrația propoziției anterioare ne dă o construcție efectivă a unei demonstrații a lui φ sau $\neg \varphi$ din premizele $Var(\varphi)^e$.

Teorema de completitudine

Teorema 1.56 (Teorema de completitudine)

Pentru orice formulă φ .

$$\vdash \varphi \quad \mathsf{ddac} \mathsf{a} \vdash \varphi.$$

Dem.: " \Rightarrow " Se aplică Teorema de corectitudine 1.54 pentru $\Gamma = \emptyset$. " \Leftarrow " Fie φ o tautologie și $Var(\varphi) = \{x_1, \dots, x_n\}$. Demonstrăm prin inducție după k următoarea proprietate:

(*) pentru orice
$$k \le n$$
, pentru orice $e: V \to \{0, 1\}$, $\{x_1^e, \dots, x_{n-k}^e\} \vdash \varphi$.

Pentru k = n, (*) ne dă $\vdash \varphi$.

k=0. Fie $e:V\to\{0,1\}$. Decarece φ este tautologie, $e^+(\varphi)=1$. Aplicând Propoziția 1.55, obținem că

$$Var(\varphi)^e = \{x_1^e, \dots, x_n^e\} \vdash \varphi.$$

Teorema de completitudine

 $k \Rightarrow k+1$. Presupunem că (*) este adevărată pentru k și fie $e:V \to \{0,1\}$. Trebuie să arătăm că $\{x_1^e,\ldots,x_{n-k-1}^e\} \vdash \varphi$. Considerăm evaluarea $e' := e_{x_{n-\nu} \leftarrow \neg e(x_{n-\nu})}$. Așadar, e'(v) = e(v)pentru orice $v \neq x_{n-k}$ și

$$e'(x_{n-k})=egin{cases} 0 & \operatorname{dacreve{a}} e(x_{n-k})=1 \ 1 & \operatorname{dacreve{a}} e(x_{n-k})=0. \end{cases}$$

Rezultă că $x_i^{e'} = x_i^e$ pentru orice $i \in \{0, \dots, n-k-1\}$ și

$$x_{n-k}^{e'} = \begin{cases} \neg x_{n-k} & \text{dacă } x_{n-k}^e = x_{n-k} \\ x_{n-k} & \text{dacă } x_{n-k}^e = \neg x_{n-k}. \end{cases}$$

Din (*) pentru $e ext{ și } e'$, obținem

$$\{x_1^e,\ldots,x_{n-k-1}^e,x_{n-k}\}\vdash \varphi \text{ si } \{x_1^e,\ldots,x_{n-k-1}^e,\neg x_{n-k}\}\vdash \varphi.$$

Aplicăm acum Propoziția 1.53 cu $\Gamma := \{x_1^e, \dots, x_{n-k-1}^e\}$ și $\psi := x_{n-k}$ pentru a conclude că $\{x_1^e, \dots, x_{n-k-1}^e\} \vdash \varphi$.

Consecință utilă

Propoziția 1.57

Fie $\Gamma \cup \{\varphi, \psi\} \subseteq Form$. Presupunem că $\varphi \sim \psi$. Atunci

$$\Gamma \vdash \varphi \iff \Gamma \vdash \psi.$$

Dem.: Observăm că

$$\begin{array}{cccc} \varphi \sim \psi &\iff & \models \varphi \rightarrow \psi \text{ \sharp} \models \psi \rightarrow \varphi \\ & & \text{(conform Propoziţiei 1.18)} \\ & \iff & \vdash \varphi \rightarrow \psi \text{ \sharp} \vdash \psi \rightarrow \varphi \\ & & \text{(conform Teoremei de completitudine)}. \end{array}$$

"⇒" Presupunem că $\Gamma \vdash \varphi$. Deoarece $\vdash \varphi \to \psi$, rezultă din Propoziția 1.42.(ii) că $\Gamma \vdash \varphi \to \psi$. Aplicăm acum (MP) pentru a obține că $\Gamma \vdash \psi$.

Fie Γ o mulțime de formule și φ o formulă.

Notații

 $\Gamma \not\vdash \varphi$: $\Leftrightarrow \varphi$ nu este Γ -teoremă $\not\vdash \varphi$: $\Leftrightarrow \varphi$ nu este teoremă

 $\Gamma \not\models \varphi$: \Leftrightarrow φ nu este consecință semantică a lui Γ

 $\not\vdash \varphi$: $\Leftrightarrow \varphi$ nu este tautologie.

Mulțimi consistente

Definiția 1.58

Fie Γ o mulțime de formule.

- ▶ Γ este consistentă dacă există o formulă φ astfel încât $\Gamma \not\vdash \varphi$.
- ▶ Γ este inconsistentă dacă nu este consistentă, adică, $\Gamma \vdash \varphi$ pentru orice formulă φ .

Observatie

Fie Γ, Δ mulțimi de formule a.î. $\Gamma \subseteq \Delta$.

- Dacă Δ este consistentă, atunci și Γ este consistentă.
- ▶ Dacă Γ este inconsistentă, atunci și Δ este inconsistentă.

Mulțimi consistente

Propoziția 1.59

- (i) ∅ este consistentă.
- (ii) Mulțimea teoremelor este consistentă.

Dem.:

- (i) Dacă ⊢ ⊥, atunci, conform Teoremei de corectitudine 1.54, ar rezulta că ⊨ ⊥, o contradicție. Așadar ⊬ ⊥, deci ∅ este consistentă.
- (ii) Aplicând Propoziția 1.42.(iv) pentru $\Gamma = \emptyset$, obținem că Thm = Thm(Thm), adică, pentru orice φ ,

 $\vdash \varphi$ ddacă $Thm \vdash \varphi$.

Din (i) rezultă că *Thm* este consistentă.