Tensor 介绍

- 1、搜索陈列 what is tensor
- 2、领域:数学、物理、计算列举几种 tensor
- 3、对这个符合的想法如 NamedTensor, 我的想法 TypeTensor
- 4、tensor再tf、pytorch的区别,接口陈述
- 5、tensor 计算的优化方式

1、各种 Product:

	中文	符号	等效性	意义/计算	特点	其他关系	
inner Product	内积	<a, b=""></a,>		丁峰7806	# T806 丁橋 T806 丁橋 T806		https://en.wikiped ia.org/wiki/Inner_ product_space
Dot Product	点积	点符号:	同内积	Σaibi	TMT	§06	TM 7806
	丁峰7806	•			T 1806		
Scalar product	na	丁峰7806	同内积	丁峰7806	丁烯丁	306 7806	T№ 7806
Exterior Product	外积	楔形符号: wedg		丁峰 7806	3 维/ 7维 存在意 义。	Hodge star	https://en.wikiped ia.org/wiki/Exterio r_algebra
		€ ⊤™ [™] 1806		丁峰7806	其他维度不确定		https://math.stack exchange.com/qu
	丁峰 7806	工權1806		丁順 7806	7推T806 丁號T		estions/720813/do -four- dimensional- vectors-have-a-
		丁镰7806		丁峰7806	丁峰下		cross-product- property
Cross Product	叉积	X 叉符 号	同外积?	丁峰7806	3 维下明 确的计算 和意义	Levi- Civita tensor	https://en.wikiped ia.org/wiki/Cross_ product

Wedge product	na	- 7906	同外积	- 7906	丁峰 1806	7406	丁峰 1806	74 (806
Tensor Product	张量积	8	丁峰 7806	7 00 10	丁峰7806	200		1.180e
Outer Product	na T# 7806	丁峰7806	同张量积	丁峰7806	丁峰7806	丁礦 7806	丁峰7806	丁峰T806 丁塘T806
Kronecker Product	na TM 7806	丁醇7806	同张量 积	tensorflo w	丁峰7806	丁峰下106	丁峰 7806	https://en.wikiped ia.org/wiki/Kronec ker_product
	丁峰7806	丁峰7806	丁峰 1806	丁線7806	丁峰7806	丁峰7106		https://math.stack exchange.com/qu estions/203947/te
	丁峰7806	丁峰7806	丁峰 1806	T## 7806	丁峰7806	丁烯7806		nsor-product-and- kronecker-product https://www.statle
	丁峰7806	丁峰7806	7歳7806	T# 7806	丁峰7806	丁峰7806		ct.com/matrix- algebra/Kronecker -product

matrix multiplication?

The cross product $\mathbf{a} \times \mathbf{b}$ is orthogonal to the bivector $\mathbf{a} \wedge \mathbf{b}$

https://en.wikipedia.org/wiki/Bivector

https://math.stackexchange.com/questions/1107690/exterior-product-vs-cross-product

2、Tensor wiki 摘要

https://en.wikipedia.org/wiki/Tensor

- 1` In mathematics, a **tensor** is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space.
- 2` Tensors are defined independent of any basis, although they are often referred to by their components in a basis related to a particular coordinate system.
- 3` any tensor with respect to a basis is represented by a multidimensional array. For example, a linear operator is represented in a basis as a two-dimensional square $n \times n$ array. The numbers in the multidimensional array are known as the *scalar components* of the tensor or simply its *components*.

// 往往在固定了基础 base (新base 是基础base 的线性组合),那么 tensor 就是可 高维的 array,其实就是已经被数字化建模可用来直接计算。 这里和 tensor 是和 base 无关的并没用冲突。 因为在 array 里面并没有写 base 是具体什么 e,具体的 e 的物理意义可再进行更换。

// 在 tensor 等 object 进行数字化之后, 高维情况如 3 维,其实描述所谓的 "行向量" "列向量" 失去 意义,所谓高坐标和低座标应该有更好的表示方法

3' dual vector sapce

任何线性变化可将 V 空间下的任意向量 v 转换为 scalar in F

V -> F

对任何向量空间的操作,可非常"捷径"的转换为 base 的基础操作,因为此空间下的任何其他元素可表示为 base 的线性组合。 那么 V base $\{e1, e2 \dots en\}$ 那么定义一个 dual space V_star base $\{<e1|_>, <e2|_> \dots <en|_> \}$

V_star 下的任何元素可线性组合其 base,任意的一个 g = a1w1 + a2w2 +anwn) 可见 g 可将任意原空间向量 v 转换为标量。

(a1w1+a2w2+.....anwn) * (b1e1+b2e2+.....bnen) // 很多 '行' 元素其实隐含着 加号

从上面看,所谓的 object 不仅仅是'数'还可'运算', 当进 '行多项式乘法' 这一个基本操作时候, 这个乘法可不是常规的数字乘法,而是先记录一个为抽象的 tensor_product , 然后再具体的 base 上再表明'具体意义'如 a1w1 tensor_product b1e1 定义为 <a1e1|b1e1>=1 <a1e1|b2e2>=0 这样的先 tensor_product 再 具体定义线性变化,也正是 Universal property of tensor product:

另外这里的也将具体 base(后续可变,所以不是依赖based),来简洁的找到第一步骤本质:多项式展开,第二部本质:base tensor 的具体定义和算法。