Основные элементы маркированной структуры промптов

Техника маркированной структуры промптов включает в себя набор стратегий для визуального организации запросов с помощью следующих элементов:

1. Ясная иерархическая организация

- Заголовки и подзаголовки: Разделение промпта на логические секции
- **Нумерованные списки**: Обеспечение последовательности шагов или пунктов
- Маркированные списки: Организация связанных, но не обязательно последовательных элементов
- Отступы: Создание визуальной иерархии информации

2. Явное разделение компонентов промпта

- Разграничение контекста от инструкций
- Выделение ролей от задач
- Отделение примеров от основного запроса
- Четкое обозначение ожидаемого формата ответа

3. Специальные маркеры и форматирование

- **Маркеры секций**: Использование символов-разделителей (например, [=====])
- **Выделение ключевых требований**: Капитализация, символы, жирный шрифт
- Теги для обозначения логических блоков: например, <think>, <answer>
- **Тематические разграничители**: ## для заголовков, ### для подзаголовков

Почему маркированная структура работает: научное обоснование

Эффективность маркированной структуры объясняется несколькими когнитивными и технологическими факторами:

1. Улучшение внимания и обработки информации

Исследования показывают, что структурированные промпты улучшают механизм внимания языковых моделей, позволяя им лучше фокусироваться на

различных аспектах запроса. Согласно данным, это связано с архитектурой механизма внимания трансформеров.

2. Усиление обработки токенов

Маркеры, заголовки и визуальные разделители становятся якорями, к которым модель может "привязать" свое внимание в длинных промптах. Как отмечается в исследовании "Селективное привязывание подсказок", такие якоря усиливают внимание к ключевой информации.

3. Улучшение работы с рабочей памятью модели

Структурирование информации помогает моделям эффективнее использовать свой контекстный буфер, аналогично тому, как структурирование информации помогает человеческой рабочей памяти. Это особенно важно для сложных запросов.

4. Снижение когнитивной нагрузки

Четкая структура снижает "когнитивную нагрузку" на модель, позволяя ей лучше разделять и обрабатывать различные аспекты задачи, особенно в многозадачных промптах.

5. Синтаксические преимущества для токенизации

Маркеры и специальные символы часто токенизируются как отдельные токены, что делает их более заметными в векторном пространстве модели и улучшает разделение концептов.

Ключевые типы маркированной структуры

1. Блочная структура с разделителями

[=====]

Задание

Составить план контент-маркетинга для стартапа.

Исходные данные

- Ниша: B2B SaaS для управления проектами
- Целевая аудитория: менеджеры среднего звена
- Бюджет: ограниченный
- Конкуренты: [список конкурентов]

Что требуется

- 1. Стратегия контент-маркетинга на 6 месяцев
- 2. Основные темы для блога
- 3. Идеи для лид-магнитов
- 4. КРІ для отслеживания результатов

Формат ответа

- Для каждого пункта не более 5 ключевых идей
- Обоснование каждой идеи (1-2 предложения)
- Приоритизация по важности

[=====]

2. Структура "think-then-answer"

Анализ финансового отчета компании

<think>

- Проанализировать ключевые показатели: прибыль, выручка, долг, маржа
- Определить тренды в сравнении с предыдущими периодами
- Сравнить с отраслевыми стандартами
- Выявить потенциальные риски и возможности
- Сформулировать ключевые наблюдения и рекомендации

</think>

<answer>

- 1. Анализ текущего финансового положения
 - Прибыльность: ...
 - Ликвидность: ...
- 2. Сравнение с предыдущими периодами
 - Тренд выручки: ...
 - Изменение маржинальности: ...
- 3. Рекомендации
 - Краткосрочные действия: ...
 - Долгосрочная стратегия: ...

</answer>

3. Иерархическая структура с вложенными списками

План разработки нового продукта

1. Исследование рынка

- * 1.1. Анализ конкурентов
 - Прямые конкуренты (список)
 - Косвенные конкуренты (список)
- * 1.2. Потребительские тренды
 - Основные потребности целевой аудитории
 - Неудовлетворенные потребности

2. Концепция продукта

- * 2.1. Ключевые особенности
- * 2.2. Уникальное торговое предложение
- * 2.3. Позиционирование

3. Дорожная карта разработки

- * 3.1. Фаза прототипирования
 - Сроки: ...
 - Ресурсы: ...
- * 3.2. MVP
 - Минимальный набор функций
 - Критерии успеха
- * 3.3. Полноценный релиз

4. Категоризированные примеры с структурированным запросом

Перевод технических текстов

Категория 1: Программное обеспечение

Пример 1:

- Английский: The software utilizes a distributed architecture.
- Русский: Программное обеспечение использует распределенную архитектуру.

Пример 2:

- Английский: API endpoints must be secured with authentication.
- Русский: Конечные точки АРІ должны быть защищены аутентификацией.

Категория 2: Машиностроение

Пример 1:

- Английский: The hydraulic system operates under high pressure.
- Русский: Гидравлическая система работает под высоким давлением.

Пример 2:

- Английский: Bearing failure is caused by inadequate lubrication.

- Русский: Выход подшипника из строя вызван недостаточной смазкой.

Переведите следующий текст:

The load balancer distributes incoming network traffic across multiple servers.

Практические рекомендации по использованию маркированной структуры

1. Правила создания эффективной маркированной структуры

Принцип иерархической организации

- Размещайте наиболее важную информацию сверху
- Группируйте связанную информацию в логические блоки
- Используйте не более 3 уровней вложенности для сохранения ясности

Принцип визуального разделения

- Используйте пустые строки между секциями
- Применяйте последовательную систему отступов
- Выбирайте различимые маркеры для разных типов информации

Принцип информационной плотности

- Стремитесь к краткости в каждой точке
- Избегайте избыточных объяснений внутри структуры
- Используйте ключевые слова и фразы вместо длинных объяснений

2. Контрольный список для проверки промпта

- ✓ Имеет ли промпт четкую визуальную структуру?
- ✓ Разделены ли различные типы информации (контекст, инструкции, примеры)?
- ✓ Используются ли заголовки для обозначения основных секций?
- ✓ Применяются ли маркированные/нумерованные списки для связанных элементов?
- ✓ Обозначен ли ясно ожидаемый формат ответа?
- ✓ Выделены ли визуально ключевые требования или ограничения?

3. Адаптация для различных типов задач

Для аналитических задач

- Структурируйте раздельно: исходные данные, вопросы, требуемые выводы
- Используйте нумерованные шаги для процесса анализа

Для творческих задач

- Разделите требования к содержанию и к формату
- Используйте маркированные списки для характеристик, которые должен содержать результат

Для задач классификации или оценки

- Структурируйте критерии оценки с четкими рубриками
- Используйте вложенные списки для подкритериев

Для диалоговых агентов

- Разделите блоки для внутреннего мышления и внешних ответов
- Структурируйте правила коммуникации в маркированных списках

Примеры эффективных маркированных промптов

Пример 1: Структурированный промпт для медицинской консультации

Медицинская консультация по симптомам

Контекст и инструкции

Вы — медицинский ассистент, обученный на обширной медицинской литературе. Ваша задача — предоставить информативный, точный и хорошо структурированный ответ на медицинский запрос пациента.

Симптомы пациента

- Головная боль (пульсирующая, в основном в правой части головы)
- Светочувствительность
- Тошнота
- Симптомы появляются 2-3 раза в неделю
- Продолжительность эпизода: около 4-6 часов

Формат ответа

- 1. **Возможная причина**: Наиболее вероятное объяснение симптомов
- 2. **Дополнительные возможные причины**: Другие состояния, которые следует рассмотреть
- 3. **Рекомендации**:
 - Неотложные меры (что делать сейчас)
 - Долгосрочные рекомендации
 - Когда следует обратиться к врачу
- 4. **Предостережения**: Что не следует делать/принимать
- 5. **Дополнительные вопросы**: Что еще нужно уточнить для более точной оценки

Важно

- НЕ ставьте окончательный диагноз
- Укажите, что это информационная консультация, а не замена визита к врачу
- Используйте простой язык, понятный неспециалисту

Пример 2: Маркированный промпт для разработки бизнесстратегии

Разработка стратегии выхода стартапа на международный рынок

KOHTEKCT

- * Стартап: SaaS-решение для автоматизации HR-процессов
- * Текущий рынок: Россия (2 года присутствия)
- * Финансы: привлечено \$1.5М инвестиций, месячный оборот \$80К
- * Команда: 25 человек (15 разработчиков, 5 маркетинг/продажи, 5 операции)
- * Ключевые отличия продукта: ИИ для подбора персонала, интеграция с местными jobпорталами

ЦЕЛЬ АНАЛИЗА

Разработать стратегию выхода на рынки Юго-Восточной Азии в течение следующих 12 месяцев.

ТРЕБУЕМЫЕ РАЗДЕЛЫ СТРАТЕГИИ

- 1. Приоритизация стран для выхода
 - Тор-3 наиболее перспективных рынка
 - Критерии выбора
 - Потенциальный объем каждого рынка
- 2. Go-to-market стратегия
 - Рекомендуемая модель выхода (представительство/партнерство/полностью

удаленно)

- Необходимые адаптации продукта
- Ценовая стратегия
- Каналы привлечения клиентов
- 3. Ресурсный план
 - Необходимые инвестиции (приблизительно)
 - Дополнительный найм
 - Timeline основных этапов
- 4. Анализ рисков
 - Тор-5 ключевых рисков
 - Стратегии митигации

ФОРМАТ ОТВЕТА

- * Для каждого раздела: краткое вступление, затем структурированные пункты
- * Каждый ключевой вывод должен сопровождаться кратким обоснованием
- * Конкретные рекомендации вместо общих фраз
- * В конце: Executive Summary (не более 200 слов)

Пример 3: Промпт c think-then-answer структурой для анализа кода

```
# Анализ и оптимизация кода Python

<context>
Функция для поиска самых часто встречающихся слов в тексте:

""python

def find_most_common_words(text, n=10):
    words = text.lower().split()
    word_dict = {}
    for word in words:
        if word in word_dict:
            word_dict[word] += 1
        else:
            word_dict[word] = 1

sorted_words = []
    for word, count in word_dict.items():
        sorted_words.append((word, count))
```

```
sorted_words.sort(key=lambda x: x[1], reverse=True)

result = []
for i in range(min(n, len(sorted_words))):
    result.append(sorted_words[i][0])

return result
```

</context>

<think>

- Проанализировать текущую реализацию
- Определить возможности для оптимизации (производительность, читаемость, надежность)
- Рассмотреть использование встроенных функций и библиотек Python
- Проверить обработку крайних случаев
- Подумать о возможных улучшениях алгоритма
- Оценить временную и пространственную сложность </think>

<answer>

Анализ кода

Проблемы текущей реализации:

- 1. **Неоптимальное использование структур данных** ручное создание и сортировка словаря
- 2. **Отсутствие предобработки текста** нет удаления знаков препинания, специальных символов
- 3. **Ограниченная обработка крайних случаев** нет проверки на пустой ввод
- 4. **Избыточные операции** лишние циклы для сортировки и создания результата

Оптимизированный код:

```
from collections import Counter import re

def find_most_common_words(text, n=10):
  if not text:
    return []
```

Очистка текста от знаков препинания и приведение к нижнему регистру cleaned text = re.sub(r'[^\w\s]', ", text.lower())

Использование Counter для подсчета и сортировки слов word_counts = Counter(cleaned_text.split())

Возврат n самых частых слов return [word for word, _ in word_counts.most_common(n)]

Преимущества оптимизированного решения:

- 1. **Эффективность**: Использование Counter из стандартной библиотеки значительно оптимизирует подсчет и сортировку
- 2. Читаемость: Код стал короче и выразительнее
- 3. Надежность: Добавлена обработка пустого ввода
- 4. Функциональность: Добавлена очистка текста от знаков препинания

Временная и пространственная сложность:

- Временная сложность: O(n log n), где n количество слов
- Пространственная сложность: O(n) </answer>

Пример 4: Промпт с категоризированной структурой для сложного запроса

Сравнительный анализ облачных сервисов для ML-проектов

Требования к анализу

- Сравнить AWS, Azure и Google Cloud для ML-проектов
- Фокус на возможностях для обучения и деплоя крупных языковых моделей
- Учитывать как технические, так и экономические аспекты
- Ориентация на средний бизнес с ограниченным бюджетом

Категории сравнения

1. Базовая инфраструктура

- Доступность и типы GPU
- Возможности масштабирования
- Стабильность и SLA

2. Специализированные ML-сервисы

- Готовые решения для NLP
- Инструменты для разметки данных
- АРІ для языковых моделей

3. Экономика и ценообразование

- Модели оплаты
- Стоимость обучения моделей
- Стоимость инференса

4. Экосистема и интеграции

- Интеграция с популярными ML-фреймворками
- CI/CD для ML-моделей
- Мониторинг и аналитика

Формат результатов

- Для каждой категории: таблица сравнения по ключевым параметрам
- Рейтинг от 1 до 5 для каждого параметра с кратким обоснованием
- В конце каждой секции: краткие выводы о лидере в данной категории
- Заключение с общими рекомендациями по выбору платформы для разных сценариев использования

Комбинирование с другими техниками промпт-инжиниринга

Маркированная структура отлично комбинируется с другими методами промпт-инжиниринга:

1. Маркированная структура + Chain-of-Thought

Структурирование цепочки рассуждений с помощью маркеров и заголовков делает

Решение задачи комбинаторной оптимизации

Шаг 1: Понимание проблемы

- Задача: [описание задачи]
- Что нам известно:
 - Ограничение 1
 - ∘ Ограничение 2
- Что нужно найти:

Шаг 2: Формализация

- Математическая модель:
 - Переменные:
 - ∘ Целевая функция:
 - ∘ Ограничения:

Шаг 3: Выбор метода решения

- Возможные подходы:
 - Подход 1: [преимущества/недостатки]
 - Подход 2: [преимущества/недостатки]
- Выбранный метод и обоснование:

Шаг 4: Решение

- Применение выбранного метода:
 - 1. [шаг 1]
 - 2. [шаг 2] ...

Шаг 5: Проверка и оптимизация

- Проверка ограничений:
- Возможности для улучшения:

Итоговое решение

[Результат]

2. Маркированная структура + Few-shot Learning

Структурирование примеров в категории с четкой маркировкой улучшает их усвоение моделью:

Классификация отзывов клиентов по эмоциональной окраске

Примеры положительных отзывов

- 1. "Отличный сервис, всем рекомендую!" -> ПОЛОЖИТЕЛЬНЫЙ
- 2. "Очень доволен качеством продукта." -> ПОЛОЖИТЕЛЬНЫЙ

Примеры нейтральных отзывов

- 1. "Продукт соответствует описанию." -> НЕЙТРАЛЬНЫЙ
- 2. "Доставка заняла указанное время." -> НЕЙТРАЛЬНЫЙ

Примеры отрицательных отзывов

- 1. "Ужасное качество, не рекомендую." -> ОТРИЦАТЕЛЬНЫЙ
- 2. "Разочарован сервисом, больше не обращусь." -> ОТРИЦАТЕЛЬНЫЙ

Отзывы для классификации

- 1. [первый отзыв]
- 2. [второй отзыв] ...

3. Маркированная структура + Самопроверка

Создание структуры для самопроверки ответов:

Проверка фактической точности утверждений

Утверждение для проверки

"Альберт Эйнштейн разработал теорию относительности в 1915 году во время работы в Швейцарии."

Процесс проверки

- 1. Разбивка на фактические компоненты:
 - Компонент 1: Эйнштейн разработал теорию относительности
 - ∘ Компонент 2: Это произошло в 1915 году
 - Компонент 3: В это время он работал в Швейцарии
- 2. Проверка каждого компонента:
 - ∘ Компонент 1: [проверка]
 - ∘ Компонент 2: [проверка]
 - ∘ Компонент 3: [проверка]
- 3. Выявление неточностей:
 - Неточность 1: [описание]
 - ∘ Неточность 2: [описание]
- 4. Исправление утверждения:
 - Исправленное утверждение: [корректная версия]

Обоснование исправлений

- Исправление 1: [источники и пояснение]
- Исправление 2: [источники и пояснение]

Когда и как использовать маркированную структуру

Оптимальные сценарии применения

- 1. **Сложные многоэтапные запросы**
 - Когда задача требует нескольких этапов анализа или действий

- Когда нужно явно разделить разные аспекты проблемы
- 2. **Запросы, требующие структурированных ответов**
 - Создание планов, стратегий, аналитических отчетов
 - Когда важна организация информации в конечном результате
- 3. **Задачи с многоуровневыми требованиями**
 - Когда есть основные и второстепенные требования
 - Когда необходима иерархия приоритетов
- 4. **При использовании примеров (few-shot learning)**
 - Для четкого разделения примеров и основного запроса
 - Для категоризации различных типов примеров

Потенциальные ограничения

- 1. **Перегруженность структурой**
 - Слишком сложная структура может отвлекать от сути запроса
 - Рекомендуется ограничиваться 3-4 уровнями вложенности
- 2. **Избыточное форматирование**
 - Добавление форматирования без содержательной необходимости
 - Важно, чтобы структура служила содержанию, а не наоборот
- 3. **Потеря естественности запросов**
 - Чрезмерно структурированные запросы могут звучать механически
 - Для некоторых задач более подходит свободный формат

Заключение

Маркированная структура промптов (Bulleted Structure) — это не просто визуальное форматирование, а мощный инструмент, который значительно улучшает качество взаимодействия с языковыми моделями. Исследования показывают, что хорошо структурированные промпты могут повысить точность ответов на 15-30% благодаря улучшению механизмов внимания модели, более эффективному использованию контекстного буфера и снижению когнитивной нагрузки.

Ключевые преимущества этой техники:

- **Улучшение понимания** сложных многоэтапных запросов
- **Повышение вероятности соблюдения** всех требований промпта
- **Структурирование мышления** модели и получаемых ответов
- **Снижение вероятности упущения** важных деталей
- **Улучшение организации информации** в ответах

Эффективная маркированная структура использует иерархию, визуальное разделение и информационную плотность для создания промптов, которые максимально эффективно задействуют возможности языковых моделей.

Внедрение этой техники в вашу практику работы с языковыми моделями может значительно повысить качество получаемых результатов, особенно для сложных аналитических, творческих и многоэтапных задач.