META Analysis

Basic concepts

- Basic concepts
 - 여러 독립적인 연구 결과를 종합하여 전반적인 치료 효과를 평가하거나 새로운 연구를 계획하는 데 필요 한 결론을 얻도록 해 주는 통계분석 방법
- META 분석의 응용
 - 교육학, 심리학 등 사회과학 분야에서 주로 발전
 - 최근 의학/보건학에서도 활발하게 연구
 - 동일한 치료 효과를 평가하기 위해 비슷한 임상시험계획서 (protocol)에 의한 임상연구가 수행
 - 대상자 범위, 표본 크기 등 연구의 제약 조건 차이 존재
 - 동일 목적의 연구 결과를 합리적이고 체계적으로 종합할 필 요성 대두

- Representative studies
 - Chalmers(1977): 급성심근경색(myocardial infarction)의 치료에서 응고억제제의 효과를 평가하는 32개 연구 결과를 종합
 - Baum(1981): 대장수술(colon surgery) 직후에 todrlss 상처감염을 억제하는 항생제의 효과를 평가하는 26개 연구 결과를 종합

- META 분석을 위한 기본적인 검토 사항
 - 각 연구의 연구 설계
 - 연구를 위한 대상자의 범위와 표본크기
 - 분석 방법 등
- 기본 META 분석 과정
 - 연구 결과 결합 방법
 - 각 연구의 p-값
 - 검정 통계량 등을 이용하여 계산한 유효크기
 - 결합을 위한 동질성 및 가정에 대한 검정

EXAMPLE 1: Comparison study

- Data: 대조군과 실험군으로 나누어 어떤 치료의 효과를 비교한 10개 연구 결과
 - 개별 연구의 (대립)가설 : 실험군의 치료 효과가 대조 군보다 더 좋다

Od 77 (:)	표본크기		7ŀ	
연구(i)	대조군(C)	실험군(E)	p-값	
1	118	136	0.0029	
2	40	40	0.0510	
3	61	64	0.6310	
4	77	114	0.3783	
5	32	32	0.0034	
6	45	45	0.0305	
7	30	30	0.0341	
8	10	10	0.0367	
9	70	71	0.5740	
10	60	59	0.3517	

- [요약] 연구 결과를 결합할 때의 고려 사항
 - 단순한 결합은 결과 왜곡 원인
 - 독립연구 결과의 결합 방법과 검토 내용
 - p-값의 결합과 동질성 검토
 - 유효크기의 추정 및 결합, 동질성 검토
 - [정의] 유효크기 (effective size) : 연구의 비교 가능한 효과의 크기를 의미
 - 유효크기의 계산 및 결합: p-값 이외의 검정통계량 등 많은 정보를 활용하여 유효크기를 정의하여 결합하는 것이 바람직
 - 치료효과 크기에 대해 연구마다 척도가 다른 경우는 비교 가능한 척도로 통일

1. 유의확률의 결합

- 기본가정 : 각 연구마다 유의확률이 공표된 경우
 - 개별 연구의 가설

$$H_{0j}: \theta_j$$
 (treatment effects of j) = 0 ($j = 1, \dots, K$)

- 개별 연구의 p-값은 [0,1]사이의 균일분포
- 복합(결합) 가설 : 독립적인 모든 연구에서 치료 효과 의 차이가 없다고 귀무가설을 설정

$$H_0: \theta_1 = \theta_2 = \cdots = \theta_K = 0$$

- 결합 방법
 - 순서통계량에 의한 의한 방법
 - 역-카이제곱법(inverse chi-square method)
 - 역-정규법(inverse normal method)
 - 로짓방법(logit method)

1) 순서통계량에 의한 방법

- Tippett(1931)
 - K개의 p-값 중 가장 작은 최소치 $p_{_{(1)}}$ 의 분포를 구하여 유의수준 lpha일 때 다음의 기각 기준을 제공

$$p_{(1)} < 1 - (1 - \alpha)^{1/K}$$

- 일반 형태에 대한 연구(Wilkinson, 1951)
 - r번째 작은 p-값 $p_{(r)}$ ~ Beta = 이용
 - Tippett 방법에 비해 극단치의 영향을 받지 않음

2) 역-카이제곱법 (inverse chi-square method)

- Fisher(1932)
 - 결합 결과의 유의성 검정 중 가장 널리 이용되는 방법
 - 균일분포와 카이제곱분포와의 관계를 이용한 방법
 - 개별연구의 귀무가설 H_{0j} 가 참인 조건에서 유의확률 p-값 은 균일분포를 따르므로 $-2 \ln p_i \sim \chi^2(2)$ 이 된다
 - 따라서 복합귀무가설 H_0 하에서

$$-2 \ln (p_1 p_2 \cdots p_K) = -2 \sum_{i=1}^{K} \ln p_i \sim \chi^2 (2K)$$

- 기각역 : 유의수준 lpha 일 때, 여기서 1-lpha 는 누적수준을 의미

$$-2 \ln (p_1 p_2 \cdots p_K) = -2 \sum_{i=1}^{K} \ln p_i > \chi_{1-\alpha}^2 (2K)$$

3) 역-정규법 (inverse normal method)

- Stouffer et al(1949), Liptak(1958)
 - 개별 연구의 p_i 에 해당하는 표준정규분포 점수 z_i 로 지환한 후 평균화하여 얻은 통계량을 이용하여 검정하는 방법
 - 개별 연구에서 H_{0j} 가 참일 때 z_i 가 표준정규분포를 따르므로 복합귀무가설의 검정통계량 Z 도 정규분 포를 따름 $Z = \frac{\sum_{i=1}^{K} z_i}{\sqrt{K}} \sim N(0,1) \text{ where } \sum_{i=1}^{K} z_i \sim N(0,K)$
 - 기각역 : 유의수준 α 일 때 $Z>z_{1-\alpha}$ 이면 귀무가설 기각

4) 로짓방법 (logit method)

- George and Mudholkar
 - 개별 연구에 대한 로짓 변환 방법을 제안

$$L = \sum_{i=1}^{K} \ln \left(\frac{p_i}{1 - p_i} \right)$$

- 복합귀무가설 H₀ 가 참일 때

$$L^* = L \sqrt{\frac{3(5K+4)}{\pi^2 K (5K+2)}} \sim T (5K+4)$$

• 기각역 : 유의수준 α 일 때 $L^* > T (1-\alpha, 5K+4)$ 이면 귀무가설 기각

Example: 유의확률의 결합

- 순서통계량 방법
 - 예제 1의 비교연구 자료에서 최소값 $p_{(1)} = 0.0029$
 - 유의수준 0.05에서 다음의 조건을 만족하므로 귀무가설을 기각

$$p_{(1)} (= 0.0029) < 0.005 \left[= 1 - (1 - \alpha)^{1/K} = 1 - (1 - 0.05)^{1/10} \right]$$

• 역-카이제곱법: 유의수준 0.05에서 귀무가설 기각

$$\left(-2\sum_{i=1}^{K}\log_{e}p_{i}=\right)55.42>31.41\left(=\chi_{1-0.05}^{2}\left(2\times10\right)\right)$$

• 역-정규법: 유의수준 0.05에서 귀무가설 기각

$$p - \frac{1}{4} = \Pr(|Z = -4.0344| > z) = 0.000027 < 0.05$$

• 로짓방법 : 유의수준 0.05에서 귀무가설 기각 $p - \widetilde{\alpha} = \Pr\left(L^*\right) = \Pr\left(-4.4041 \mid > T(54)\right) = 0.000025 < 0.05$

p-값	순서 통계량	역-카이제곱법	역-정규법	로짓방법	
0.0029	최소값	11.68609	-2.75888	-5.84014	
0.0510		5.95186 -1.6352		-2.92358	
0.6310		0.92090	0.33450	0.53651	
0.3783		1.94414	-0.30995	-0.49677	
0.0034		11.36796	-2.70648	-5.68057	
0.0305		6.98006	-1.87350	-3.45905	
0.0341		6.75692	-1.82368	-3.34376	
0.0367		6.60996	-1.79034	-3.26759	
0.5740		1.11025	0.18657	0.29819	
0.3517		2.08995	-0.38073	-0.61158	
검정통계량	0.0029	55.4180777	-12.75772	-24.78835	
			-4.03435	-4.40407	
기각값	0.05	3.5552E-05 0.00003		0.00003	
판단	기각	기각	기각	기각	

• 유의수준 0.05에서 귀무가설 기각되므로 실험군의 치료효과가 대조 군의 치료효과보다 더 좋다고 결론

2. 유의확률의 동질성 검정

- 개별연구의 p-값이 서로 유의하게 다르면, 결합하여 결론을 내린다는 것은 바람직하지 못하므로 p-값의 동질성검토가 필요
 - 유의확률 p-값의 동일성에 대한 검정
 - 가설 $H_0: p_1 = p_2 = \cdots = p_K$
- 검정 과정
 - ① 개별연구 p-값에 대응되는 표준정규분포점수 z_i 로 변환
 - ② 표본크기가 크다면 귀무가설 참인 조건에서 z_i 는 근사 정규분포를 따르므로 $Q = \sum_{i=1}^{K} (z_i \bar{z})^2 \sim app \cdot \chi^2(K-1)$
 - ③ 유의수준 α 일 때, $Q > \chi^2_{1-\alpha}(K-1)$ or p-값 = $\Pr(Q > \chi^2(K-1)) < \alpha$ 이면, 귀무가설 기각(= 최소한 하나의 p-값은 다름)

[예제]

역-정규법	동질성검정		
-2.7589	2.1996		
-1.6352	0.1292		
0.3345	2.5930		
-0.3100	0.9328		
-2.7065	2.0469		
-1.8735	0.3573		
-1.8237	0.3002		
-1.7903	0.2648		
0.1866	2.1384		
-0.3807	0.8011		
-1.2758			
-12.7577	11 7(22		
-4.0344	11.7633		
0.00003	0.22698		
기각	채 택		
	-1.6352 0.3345 -0.3100 -2.7065 -1.8735 -1.8237 -1.7903 0.1866 -0.3807 -1.2758 -12.7577 -4.0344 0.00003		

$$Q = \sum_{i=1}^{K} (z_i - \overline{z})^2 = 11.763 < 16.92 \left\{ = \chi^2_{0.95} (9) \right\}$$
$$p - \frac{7}{14} = \Pr(11.763 > \chi^2(9)) = 0.2270 < 0.05$$

- 유의수준 5%에서 귀무가설 채택
- 10개 연구의 p-값들 모두 같다(동일성 만족)고 판단

3. 유효크기의 추정

- 유효크기 추정의 필요성
 - 동일한 척도로 계산된 효과의 크기 추정이 필요
 - 유효크기(effect size): 동일한 치료 효과에 대한 연구의 사용 척도가 서로 다를 때, 결과를 결합하기 위해 효과의 크기를 동일한 척도로 변환하는 (표준화)과정에 의해 계산된 효과의 크기를 의미
- 연속형 자료에 대한 유효크기의 정의
 - 표준화된 평균 차이의 유효크기
 - 이산형 자료에 적합한 유효크기
 - 척도무관한 유효크기 : 상관계수

1) 유효크기의 추정: 단일연구로 가정

- 가정:
 - 연속형의 반응 자료에 대한 비교 연구를 가정
 - 관측자료~i.i.d Normal
 - 비교 그룹의 분산은 동일하다고 가정
- 정의 : 평균의 차이로 유효크기를 추정
 - 실험군 $Y_i^E \sim i.i.d.$ $N\left(\mu^E,\sigma^2\right)$, 대조군 $Y_i^C \sim i.i.d.$ $N\left(\mu^C,\sigma^2\right)$
 - 각 그룹의 표본은 동일하지 않아도 무방
 - 유효크기의 정의=표준화된 평균의 차이로 정의

$$\delta = \frac{\mu^E - \mu^C}{\sigma}$$

• 유효크기의 추정량

- 직관적인 추정량
$$\hat{\delta_1} = rac{ar{Y}^E - ar{Y}^C}{S_P}$$

• 추정량의 분포 $\sqrt{\tilde{n}}\,\hat{\delta}_1$ ~ noncentral $\left(\sqrt{\tilde{n}}\,\delta\right)\,T\left(n^E+n^C-2\right)$

where
$$S_p = \sqrt{\frac{(n^E - 1)(S^E)^2 + (n^C - 1)(S^C)^2}{n^E + n^C - 2}}$$
, $\tilde{n} = \frac{n^E n^C}{n^E + n^C}$

- 두 모평균 차이 검정 $\mu^E = \mu^C$ 과 동일한 추정량
- GLASS(1976) : 모분산이 다르다는 가정하에 s^c 사용 제안
- 일반적으로 두 모분산 동일하다는 가정이 성립하는 경 우가 많이 발생

$-\delta$ 에 대한 근사 불편 추정량

$$\hat{\delta}_2 = d = \frac{4(N-3)}{(4N-9)} \times \hat{\delta}_1$$

where $N = n^E + n^C$,

$$\frac{4(N-3)}{(4N-9)}$$
 is the value for the correction of deviation of $\hat{\delta}_1$

- *d* is the MVUE.(Hedge, 1981)
- $\hat{\delta}_1$ and $\hat{\delta}_2$ approaches approximately Normal as n is large

- δ 에 대한 최대우도 추정량(m.l.e.)

$$\hat{\delta}_3 = \sqrt{\frac{N}{N-2}} \times \hat{\delta}_1$$

- $\hat{\delta}_3$ is the consistent and approximately efficient estimator.
- the shrinkage estimator (Stein, 1964)

$$\hat{\delta}_4 = \left(\frac{N-4}{N-2}\right) \times \frac{4(N-3)}{(4N-9)} \times \hat{\delta}_1$$

- $MSE(\hat{\delta}_4) < MSE(\hat{\delta}_2)$
- $V(\hat{\delta}_3) \ge V(\hat{\delta}_1) \ge V(\hat{\delta}_2) \ge V(\hat{\delta}_4)$
- If N is large, all estimators are equal.

2) 유효크기(d) 의 신뢰구간

- 가정: all estimators assume a large sample distribution
- n^E 와 n^C 가 같은 비율로 증가해 n^E/N , n^C/N 가 일정하다고 가정할 때,

$$d \sim N(\delta, \sigma_{\infty}^{2}(d))$$

$$\sigma_{\infty}^{2}(d) = \frac{n^{E} + n^{C}}{n^{E} n^{C}} + \frac{\delta^{2}}{2(n^{E} + n^{C})}$$

$$-\hat{\sigma}^{2}(d) \quad 의 추정량 \\ \hat{\sigma}^{2}(d) = \frac{n^{E} + n^{C}}{n^{E} n^{C}} + \frac{d^{2}}{2(n^{E} + n^{C})}$$

• δ 에 대한 $100(1-\alpha)$ % 신뢰구간 $(\delta_L, \delta_U) = (d - z_{1-\alpha/2} \hat{\sigma}(d), d + z_{1-\alpha/2} \hat{\sigma}(d))$

Example: 혈액응고효과 비교

- 식이요법에 대한 혈액응고효과 비교
 - 각 그룹마다 10마리 동물 대상으로 식이요법 실시
 - 그룹1: 평균 혈액응고시간 65초, 표준편차 5초
 - 그룹2: 평균 혈액응고시간 62.53초, 표준편차 3초
 - 》유효크기 추정 $n^{E} = n^{C} = 10 \text{ and } S_{P} = \sqrt{\frac{9 \times 5^{2} + 9 \times 3^{2}}{18}} = 4.12$
 - 유효크기

$$\hat{S}_1 = \frac{\overline{Y}^E - \overline{Y}^C}{S_P} = \frac{65.0 - 62.53}{4.12} = 0.60$$

$$\hat{\delta}_2 = d = \frac{4(N-3)}{4N-9} \times \hat{\delta}_1 = \frac{4 \times (20-3)}{4 \times 20-9} \times 0.60 = 0.57$$

 \triangleright $\hat{\delta}_2 = d$ 의 95% 신뢰구간

$$\hat{\sigma}^{2}(d) = \frac{n^{E} + n^{C}}{n^{E} n^{C}} + \frac{d^{2}}{2(n^{E} + n^{C})} = \frac{10 + 10}{10 \times 10} + \frac{(0.57)^{2}}{2 \times (10 + 10)} = 0.208$$

✔ 유효 크기의 신뢰구간

$$(\delta_L, \delta_U) = (d - z_{1-\alpha/2} \hat{\sigma}(d), d + z_{1-\alpha/2} \hat{\sigma}(d))$$

$$= (0.57 - 1.96 \times \sqrt{0.208}, 0.57 + 1.96 \times \sqrt{0.208})$$

$$= (-0.324, 1.464)$$

[참고] 분산안정화 변환을 이용한 d의 분산 추정

- 1) 역쌍곡사인함수(inverse hyperbolic sine function)를 이용한 변수변환
 - d 에 대한 분산안정화 변환 $h(d) = \sqrt{2} \sinh^{-1} \frac{a}{a}$ 여기서 $a = \sqrt{4 + 2\binom{n^E}{n^C} + 2\binom{n^C}{n^E}}$
 - 근사 분포 $\sqrt{N}(h(d) h(\delta)) \sim N(0,1)$
 - $\eta = h(\delta)$ 의 신뢰구간 $(\eta_L, \eta_U) = (h_L(\delta), h_U(\delta)) = \left(h(d) z_{1-\alpha/2} \frac{1}{\sqrt{N}}, \ h(d) + z_{1-\alpha/2} \frac{1}{\sqrt{N}}\right)$
 - δ 의 신뢰구간: 여기서 $h^{-1}(\eta) = a \times \sinh\left(\frac{\eta}{\sqrt{2}}\right)$ $\left(\delta_L, \delta_U\right) = \left(h^{-1}(\eta_L), h^{-1}(\eta_U)\right)$

2) Kraemer의 변수변환

• 유효크기 δ 와 상관계수의 분포를 이용한 변환

$$\rho = \frac{\delta}{\sqrt{\delta^2 + v}} \qquad \text{OFJM} \qquad v = \frac{N(N-2)}{n^E n^C}$$

- 추정량 $r = \frac{d}{\sqrt{\delta^2 + \nu}}$

여기서
$$u = \frac{\rho - r}{1 - \rho r}$$

• *u* 의 신뢰구간

$$(\rho_L, \rho_U) = \left(\frac{u_U - r}{r u_U - 1}, \frac{u_L - r}{r u_L - 1}\right)$$

• δ 의 신뢰구간

$$\left(\delta_{L}, \delta_{U}\right) = \left(\frac{\rho_{L}\sqrt{r}}{\sqrt{1 - \rho_{L}^{2}}}, \frac{\rho_{U}\sqrt{r}}{\sqrt{1 - \rho_{U}^{2}}}\right)$$

[예제] 교재 p.p. 216-217 참조

4. 유효크기의 결합

[가정]

- 대조군(case group)과 실험군(experimental group)을 비교하는 서로 독립적으로 수행된 k 개의 연구 존재
- 각 연구는 관측 자료 분포 : $i(=1,^{-},k)$ 는 연구 일련번호
 - 실험군: $Y_{ij}^E \sim i.i.d.$ $N(\mu_i^E, \sigma_i^2) (j = 1, 2, \dots, n_i^E)$
 - 대조군: $Y_{ii}^{C} \sim i.i.d.$ $N(\mu_{i}^{C}, \sigma_{i}^{2})(j = 1, 2, \dots, n_{i}^{C})$
 - 개별 연구마다 등분산 가정
- 개별 연구의 유효크기(=모수) $\delta_i = \frac{\mu_i^E \mu_i^C}{\sigma_i}$
- 관심사항: 결합유효크기의 추정과 검정(효과 차이 존재여부)
 - 개별연구의 유효크기 결합하여 추정된 결합유효크기를 검정
 - 결합 시 유효크기의 동질성(동일성) 가정 : 동일성 검정 필요(개별 연구에서의 유효크기가 동일하다는 가정)

4.1 유효크기의 가중선형결합

- 결합유효크기 검정 시 개별 연구의 척도 및 표본크기만 다를 뿐 동일한 효과를 측정한다고 가정 (유효크기가 동일하다 $(\delta_1 = ... = \delta_k = \delta^*)$ 고 가정한다는 의미)
- 가중선형결합 : 동일한 유효크기 δ^* 의 추정치
 - 각 연구의 표본크기를 반영하여 결합하는 방법
 - 결합유효크기의 가중선형결합 $\delta_w = w_1 d_1 + w_2 d_2 + \dots + w_k d_k$
 - 여기서 d_i, w_i 는 (i)번째 연구의 유효크기 추정치와 가중치
 - 가중치의 추정량

$$w_{i} = \frac{1/\sigma^{2}(d_{i})}{\sum 1/\sigma^{2}(d_{i})} - \frac{\text{large sample theory}}{\sum 1/\sigma^{2}(d_{i})} \rightarrow w_{i} = \frac{1/\sigma^{2}(d_{i})}{\sum 1/\sigma^{2}(d_{i})}$$

- 여기서

$$\sigma_{\infty}^{2}(d_{i}) = \frac{(n_{i}^{E} + n_{i}^{C})}{n_{i}^{E} \cdot n_{i}^{C}} + \frac{\delta^{*2}}{2(n_{i}^{E} + n_{i}^{C})}$$

• 결합유효크기의 가중선형결합 추정치

$$\hat{\delta}_{W} = d_{+} = \frac{\sum_{i=1}^{d_{i}} \hat{\sigma}^{2}(d_{i})}{\sum_{i=1}^{d_{i}} \hat{\sigma}^{2}(d_{i})}, \quad \text{GIM } \hat{\sigma}^{2}(d_{i}) = \frac{\left(n_{i}^{E} + n_{i}^{C}\right)}{n_{i}^{E} \cdot n_{i}^{C}} + \frac{d_{i}^{2}}{2\left(n_{i}^{E} + n_{i}^{C}\right)}$$

$$= \frac{d_{i}^{2}}{2\left(n_{i}^{E} + n_{i}^{C}\right)}$$

• 가중선형결합 추정치의 특성

$$d_+ \sim app. N(\delta^*, \sigma_{\infty}^2(d_+))$$

$$\begin{array}{c} \left(\overrightarrow{\sigma} \right) | \overrightarrow{H} \\ \sigma_{\infty}^{2} \left(d_{+} \right) = \left[\sum_{i=1}^{k} \frac{1}{\sigma_{\infty}^{2} \left(d_{i} \right)} \right]^{-1} \xrightarrow{\tilde{\gamma} \cdot \tilde{\gamma} \cdot \tilde{\gamma}} \hat{\sigma}^{2} \left(d_{+} \right) = \left[\sum_{i=1}^{k} \frac{1}{\hat{\sigma}^{2} \left(d_{i} \right)} \right]^{-1} \end{array}$$

- 동일한 유효크기 δ^* 에 대한 신뢰구간 $\left(\delta_{\scriptscriptstyle L},\delta_{\scriptscriptstyle U}\right) = \left(d_{\scriptscriptstyle +} z_{\alpha_{/\!\!2}} \times \hat{\sigma}(d_{\scriptscriptstyle i})\;,\; d_{\scriptscriptstyle +} + z_{\alpha_{/\!\!2}} \times \hat{\sigma}(d_{\scriptscriptstyle i})\right)$
 - 신뢰구간 내에 "0"가 포함된다면, 결합된 유효크기가 "0"라는 의미로 해석 $(H_a:\delta^*=0)$ 채택, 실험군과 대조군의 효과차이 없음 의미) 29

Example:

- 개요: 새로운 치료법과 기존 치료법이 환자의 폐활량에 미치는 영향 연구 자료
 - 분석 목적: 18개의 개별 연구 결과로부터 두 치료법 의 효과 차이를 분석

[참고] 결합유효크기의 계산과정

- 1) 개별 연구마다 유효크기의 분산 추정치(s_d) 계산
- 2) 분산추정치의 역수(s_1=1/s_d) 및 역수합(s_u) 계산
- 3) 가중치(w=s_1/s_u) 계산
- 4) 가중선형결합 추정치(d+=d*w=d*s_1/s_u) 계산
- 5) 추정치의 분산 추정치(s_d+=1/s_u) 계산

연구번호	실험군	대조군	유효크기(d)	분산추정(s_d)	s_1=1/s_d	w	w*d	d*s_1 =d/s_d
1	100	180	0.100	0.01557	64.2120	0.1156	0.0116	6.4212
2	131	138	-0.162	0.01493	66.9849	0.1206	-0.0195	-10.8515
3	40	40	-0.090	0.05005	19.9798	0.0360	-0.0032	-1.7982
4	40	40	-0.049	0.05002	19.9940	0.0360	-0.0018	-0.9797
5	97	47	-0.046	0.03159	31.6524	0.0570	-0.0026	-1.4560
6	28	61	-0.010	0.05211	19.1908	0.0345	-0.0003	-0.1919
7	60	55	-0.431	0.03566	28.0457	0.0505	-0.0218	-12.0877
8	72	102	-0.261	0.02389	41.8610	0.0754	-0.0197	-10.9257
9	87	45	0.134	0.03378	29.5994	0.0533	0.0071	3.9663
10	80	49	0.019	0.03291	30.3863	0.0547	0.0010	0.5773
11	79	55	0.175	0.03095	32.3057	0.0582	0.0102	5.6535
12	40	109	0.056	0.03418	29.2527	0.0527	0.0029	1.6382
13	36	93	0.045	0.03854	25.9482	0.0467	0.0021	1.1677
14	9	18	0.103	0.16686	5.9929	0.0108	0.0011	0.6173
15	14	16	0.121	0.13417	7.4531	0.0134	0.0016	0.9018
16	21	22	-0.482	0.09578	10.4411	0.0188	-0.0091	-5.0326
17	133	124	0.290	0.01575	63.5044	0.1143	0.0332	18.4163
18	82	45	0.342	0.03488	28.6715	0.0516	0.0177	9.8057
합계					555.4759	1.0000	0.0105	5.8418

$$s_u = 555 .4759 , \hat{\sigma}^2(d_+) = (s_u)^{-1} = (555 .4759)^{-1} = 0.0018$$

$$\hat{\delta}_{W} = d_{+} = \sum w_{i} d_{i} = \sum \frac{d_{i} / \hat{\sigma}^{2}(d_{i})}{\sum \left[1 / \hat{\sigma}^{2}(d_{i})\right]} = \frac{\sum d_{i} \times s_{1}}{s_{u}} = \frac{5.8418}{555.4759} = 0.0105$$

- 95% 신뢰구간 $(\delta_L, \delta_U) = (-0.0726, 0.0937)$
 - $\overline{O} | \overline{O} | \delta_L = d_+ 1.96 \sqrt{\hat{\sigma}^2(d_+)} = 0.0105 1.96 \sqrt{0.0018} = -0.0726$
 - 상한 $\delta_U = d_+ + 1.96 \sqrt{\hat{\sigma}^2(d_+)} = 0.0105 + 1.96 \sqrt{0.0018} = 0.0937$
- [해석]
 - 95% 신뢰구간 내에 "0"가 포함되므로 <u>18개 연구의 유</u><u>효크기가 동일하다는 가정하에서 추정된 결합유효크기</u> 가 "0"라는 의미이므로 두 방법의 효과 차이가 없음을 의미함.
 - 유의수준 5%에서 $H_o: \delta^* = 0$ 를 기각하지 못한다는 결과와 동일하게 해석

4.2 변수변환에 의한 결합

 k 개의 연구로부터 유효크기의 추정치를 결합할 때, 최 적선형결합가중치는 각 유효크기의 분산에 의존

$$\hat{\delta}_{W} = d_{+} = \sum_{i} w_{i} d_{i} = \sum_{i} \frac{d_{i} / \hat{\sigma}^{2}(d_{i})}{\sum_{i} [1 / \hat{\sigma}^{2}(d_{i})]}$$

- 변수변환을 이용한 결합을 위한 가정 : $n_i^E = n_i^C = n_i$
 - (1) 역쌍곡사인함수를 이용한 변수변환 :

$$-h(d_i) = \sqrt{2} \sinh^{-1}\left(d_i/2\sqrt{2}\right) \sim app. N\left(h(\delta^*), \frac{1}{2}n_i\right)$$

- 최소분산을 갖는 가중선형결합 추정량과 결합유효크기 추정량 : 표본 총크기 $N=2\sum n_i$ 이라 하면,

$$\hat{h}\left(\delta^*\right) = h_+ = \sum_{i=1}^k \frac{n_i h(d_i)}{N}$$
 — 역반환 $\rightarrow \hat{\delta}^* = 2\sqrt{2} \sinh^{-1}\left(\frac{h_+}{\sqrt{2}}\right)$

- 가중선형결합 추정량의 특성

$$h_+ \sim app$$
. $N(h(\delta^*), \sigma_\infty^2(h_+))$, where $\sigma_\infty^2(h_+) = \frac{1}{2\sum n_i} = \frac{1}{N}$

 $-\eta = h(\delta^*)$ 에 대한 신뢰구간

$$(\eta_L, \eta_U) = \left(h_+ - z \times \frac{1}{\sqrt{N}}, h_+ + z \times \frac{1}{\sqrt{N}}\right)$$

 $-s^*$ 에 대한 신뢰구간

$$\left(\delta_L^*, \delta_U^*\right) = \left(2\sqrt{2} \sinh\left(\frac{\eta_L}{\sqrt{2}}\right), 2\sqrt{2} \sinh\left(\frac{\eta_U}{\sqrt{2}}\right)\right)$$

- (2) 유효크기와 상관계수의 관계를 이용한 변환
 - 개별 연구에서의 유효크기(d)를 이용한 상관계수의 추정

$$r_i \cong \frac{d_i}{\sqrt{d_i+4}} \xrightarrow{\text{Fisher } !!!!!} z_i = \frac{1}{2} \ln \frac{1+r_i}{1-r_i} \sim app \; . \; N \left(\frac{1}{2} \ln \frac{1+\rho_i}{1-\rho_i}, \frac{1}{2n_i-3} \right)$$

- z 를 이용한 결합 추정량

$$z_{+} = \sum_{i=1}^{k} \frac{(2n_{i} - 3)z_{i}}{N - 3k} \sim app \cdot N\left(\xi, \frac{1}{N - 3k}\right) \text{ where } \xi = \frac{1}{2} \ln \frac{1 + \rho}{1 - \rho}$$

- 결합 상관계수의 추정량과 δ^* 의 추정량

$$r_{+} = \frac{\exp(2z_{+}) - 1}{\exp(2z_{+}) + 1} \longrightarrow \hat{\delta}^{*} = \frac{2r_{+}}{\sqrt{1 - r_{+}^{2}}} \quad \text{where} \quad N = 2\sum n_{i}$$

- 炎(결합추정치의 모수)에 대한 신뢰구간

$$(\xi_L, \xi_U) = \left(z_+ - z_{\alpha/2} \frac{1}{\sqrt{N - 3k}}, z_+ + z_{\alpha/2} \frac{1}{\sqrt{N - 3k}}\right)$$

- 결합 상관계수에 대한 신뢰구간

$$(\rho_L, \rho_U) = \left(\frac{\exp(2\xi_L) - 1}{\exp(2\xi_L) + 1}, \frac{\exp(2\xi_U) - 1}{\exp(2\xi_U) + 1}\right)$$

 $-\delta^*$ 에 대한 신뢰구간

$$\left(\delta_L^*, \delta_U^*\right) = \left(\frac{2\rho_L}{\sqrt{1-\rho_L^2}}, \frac{2\rho_U}{\sqrt{1-\rho_U^2}}\right)$$

Example:

번호	표본크기	d	r	Z	(2n-3)z
1	22	0.563	0.2710	0.2779	11.3943
2	10	0.308	0.1522	0.1534	2.6078
3	10	0.081	0.0405	0.0405	0.6883
4	10	0.598	0.2865	0.2947	5.0102
5	39	-0.178	-0.0886	-0.0889	-6.6662
6	50	-0.234	-0.1162	-0.1167	-11.3233
합계	141				1.7110

• 결합상관계수 및 결합 유효크기의 추정치

$$r_{+} = \frac{\exp(2z_{+}) - 1}{\exp(2z_{+}) + 1} = 0.0065 \longrightarrow \hat{\delta}^{*} = \frac{2r_{+}}{\sqrt{1 - r_{+}^{2}}} = 0.0130$$

• 신뢰구간

$$z_{+} \pm \frac{z_{\alpha/2}}{\sqrt{N - 3k}} = 0.0065 \pm \frac{1.96}{\sqrt{284}} \Rightarrow (\xi_{L}, \xi_{U}) = (-0.1142, 0.1271)$$
$$\Rightarrow (\rho_{L}, \rho_{U}) = (-0.1137, 0.1264) \Rightarrow (\delta_{L}, \delta_{U}) = (-0.2288, 0.2549)$$

5. 유효크기의 동질성 검정

 유효크기의 결합: 개별 연구의 유효크기가 동일하다는 가정이 요구(유효크기의 동질성 여부 검정을 우선 수행)

5. 1 대표본 근사를 이용한 검정

- 귀무가설 $H_o: \delta_1 = \delta_2 = \cdots = \delta_k$
- 통계량 : Hedge(1982)

$$Q = \sum_{i=1}^{k} \left(\frac{\left(d_i - d_+\right)^2}{\hat{\sigma}^2(d_i)} \right) \sim app. \quad \chi^2(k-1) \quad \text{when} \quad n_i \text{ is large}$$

- $p-2k := Pr(\chi^2(k-1) > Q \mid H_o)$
- 기각의 의미: 최소한 하나의 연구 결과에 대한 유효 크기는 동일하지 않으므로 유효크기를 결합하지 않는 것이 바람직함.

(유효크기는 개별 연구의 표본크기에 영향을 받음. 표본크기가 크고 분산이 작으면 기각 가능성이 높음)

Example :

연구번호	실험군	대조군	유효크기(d)	분산추정(s_d)	1/s_d	W	w*d	d/s_d	Q
1	100	180	0.100	0.01557	64.2120	0.1156	0.0116	6.4212	0.5142
2	131	138	-0.162	0.01493	66.9849	0.1206	-0.0195	-10.8515	1.9936
3	40	40	-0.090	0.05005	19.9798	0.0360	-0.0032	-1.7982	0.2019
4	40	40	-0.049	0.05002	19.9940	0.0360	-0.0018	-0.9797	0.0708
5	97	47	-0.046	0.03159	31.6524	0.0570	-0.0026	-1.4560	0.1011
6	28	61	-0.010	0.05211	19.1908	0.0345	-0.0003	-0.1919	0.0081
7	60	55	-0.431	0.03566	28.0457	0.0505	-0.0218	-12.0877	5.4671
8	72	102	-0.261	0.02389	41.8610	0.0754	-0.0197	-10.9257	3.0861
9	87	45	0.134	0.03378	29.5994	0.0533	0.0071	3.9663	0.4513
10	80	49	0.019	0.03291	30.3863	0.0547	0.0010	0.5773	0.0022
11	79	55	0.175	0.03095	32.3057	0.0582	0.0102	5.6535	0.8740
12	40	109	0.056	0.03418	29.2527	0.0527	0.0029	1.6382	0.0605
13	36	93	0.045	0.03854	25.9482	0.0467	0.0021	1.1677	0.0309
14	9	18	0.103	0.16686	5.9929	0.0108	0.0011	0.6173	0.0513
15	14	16	0.121	0.13417	7.4531	0.0134	0.0016	0.9018	0.0910
16	21	22	-0.482	0.09578	10.4411	0.0188	-0.0091	-5.0326	2.5327
17	133	124	0.290	0.01575	63.5044	0.1143	0.0332	18.4163	4.9604
18	82	45	0.342	0.03488	28.6715	0.0516	0.0177	9.8057	3.1505
합계					555.4759	1.0000	0.0105	5.8418	23.6476

$$Q = \sum_{i=1}^{k} \left(\frac{(d_i - d_+)^2}{\hat{\sigma}^2(d_i)} \right) = \sum_{i=1}^{k} \left(\frac{d_i^2}{\hat{\sigma}^2(d_i)} \right) - d_+^2 \sum_{i=1}^{k} \left(\frac{1}{\hat{\sigma}^2(d_i)} \right) = 23.6476$$

$$p - value = \Pr(\chi^2(15) > 23.6476) = 0.0713$$

5. 2 변수변환에 근거한 검정

- 기본가정 $n_i^E = n_i^C = n_i$
- 1) 역쌍곡사인함수를 이용한 변환
 - 기본 변환 $h(d_i) = \sqrt{2} \sinh^{-1} \left(\frac{d_i}{2} \sqrt{2} \right) \sim app. \ N\left(h(\delta^*), \frac{1}{2} n_i \right)$
 - 유효크기가 동일하다는 가설의 표현 $H_o: h(\delta_1) = h(\delta_2) = \cdots = h(\delta_k)$
 - 검정통계량

$$Q_{1} = 2\sum_{i=1}^{k} n_{i} (h(d_{i}) - h_{+})^{2} = 2\sum_{i=1}^{k} n_{i} h(d_{i})^{2} - N \cdot h_{+}^{2} \sim app. \quad \chi^{2}(k-1)$$
where
$$h_{+} = \sum_{i=1}^{k} n_{i} h(d_{i}) / N$$

2) 상관계수를 이용한 변환

- 기본변화

$$r_{i} \cong \frac{d_{i}}{\sqrt{d_{i}+4}} \xrightarrow{Fisher} \stackrel{\text{Hiltown}}{\longrightarrow} z_{i} = \frac{1}{2} \ln \frac{1+r_{i}}{1-r_{i}} \sim app . \ N\left(\frac{1}{2} \ln \frac{1+\rho_{i}}{1-\rho_{i}}, \frac{1}{2n_{i}-3}\right)$$

$$z_{+} = \sum_{i=1}^{k} \frac{\left(2n_{i}-3\right)z_{i}}{N-3k} \sim app . \ N\left(\xi, \frac{1}{N-3k}\right) \text{ where } \xi = \frac{1}{2} \ln \frac{1+\rho_{i}}{1-\rho_{i}}$$

- 기본가설 $H_o: \delta_1 = \delta_2 = \cdots = \delta_k$
- 검정통계량

$$Q_2 = \sum_{i=1}^k (2n_i - 3)(z_i - z_+)^2 \sim app \cdot \chi^2(k-1)$$

6. 유효크기 결합 :이산형 자료연구

• 연구 목적 : 사건 비율(event rate)과 같은 이산 형 변수의 분석

방법

	Peto 방법	DerSimonian-Laird 방법
연구자	Yusuf et al., 1985	DerSimonian, Laird, 1986
분석 기본 개념	분할표 자료 결합 방법 확장 (Mantel-Haenzel 방법 수정) 오즈비와 표준오차 결합	개별연구의 대조군과 처리군 사이의 사건비율 차이 이용
가중치	연구내 변동(within)만 고려	연구간 변동(between)도 고려

6.1 Peto 방법

- 기본 개념 : 여러 개의 분할표로부터 자료를 결 합하는 Mantel-Haenzel 방법을 수정한 방법
- 개별연구에 대한 가정
 - (i)번째 개별연구의 그룹별 표본크기 : 전체 N_i
 - 처리군/대조군: n_i and $N_i n_i$
 - 사건의 발생 크기 : 전체 d_i , 처리군 O_i , 대조군 $d_i O_i$
 - when N_i , n_i and d_i are given, O_i is a Hypergeome tric distributu on.
 - 처리군의 기대 사건 수 : 처리효과가 없다는 가정

$$E_i = \binom{n_i}{N_i} \cdot d_i$$

$$-O_{i} - E_{i}$$
의 특성: 처리효과의 차이가 없다는 가설에서
$$E(O_{i} - E_{i}) = 0 \text{ and } V(O_{i} - E_{i}) = E_{i} \left(\frac{N_{i} - n_{i}}{N_{i}}\right) \left(\frac{N_{i} - d_{i}}{N_{i} - 1}\right)$$

• 처리효과가 없다는 가설에 대한 검정통계량

$$\frac{\left[\sum_{i=1}^{k} (O_i - E_i)\right]^2}{\sum_{i=1}^{k} V(O_i - E_i)} \sim app. \quad \chi^2(1)$$

• 결합 오즈비의 추정량(pooled odds ratio)

$$\hat{O}R = \exp\left(\frac{\sum_{i=1}^{k} (O_{i} - E_{i})}{\sum_{i=1}^{k} V(O_{i} - E_{i})}\right)$$

$$- \ln\left(\hat{O}R\right) \stackrel{\text{def}}{=} \text{SE}\left(\ln\left(\hat{O}R\right)\right) = \left(\sqrt{\sum_{i=1}^{k} V(O_{i} - E_{i})}\right)^{-1}$$

$$\ln\left(\hat{O}R\right) / SE\left(\ln\left(\hat{O}R\right)\right) \sim N(0,1)$$

• 오즈비(odds)에 대한 신뢰구간

$$\exp\left[\frac{\sum_{i=1}^{k} (O_{i} - E_{i})}{\sum_{i=1}^{k} V(O_{i} - E_{i})} \pm Z_{\alpha/2} \left(\frac{1}{\sqrt{\sum_{i=1}^{k} V(O_{i} - E_{i})}}\right)\right]$$

• 오즈비 동질성에 대한 검정통계량

$$Q = \sum_{i=1}^{k} \left(\frac{(O_i - E_i)^2}{V(O_i - E_i)} \right) - \frac{\left(\sum_{i=1}^{k} (O_i - E_i)\right)^2}{\sum_{i=1}^{k} V(O_i - E_i)} \sim app. \quad \chi^2(k-1)$$

• p- \mathbb{Z} $p-value = \Pr\left(\chi^{2}(k-1) > Q \mid H_{o}\right)$

Example:

• 동일한 효과를 연구한 4개 결과에 대한 메타분석

연구번호	표본	크기	人	ŀ건 발생	수	처리군	사건 수	ОГ	\/(O_F)
	실험군	대조군	소계	실험군	대조군	사례수(O)	기대값(E)	O-E	V(O-E)
1	100	100	52	32	20	32	26	6	9.6683
2	100	100	45	28	17	28	22.5	5.5	8.7626
3	250	250	130	52	78	52	65	-13	24.0982
4	250	250	131	48	83	48	65.5	-17.5	24.2179
합계								-19	66.7470

- 처리효과가 없다는 가설에 대한 검정통계량

$$\frac{\left[\sum_{i=1}^{k} (O_i - E_i)\right]^2}{\sum_{i=1}^{k} V(O_i - E_i)} = \frac{(-19)^2}{66.747} = 5.4085 \quad -\frac{\chi^2(1)}{2} \Rightarrow p - value = 0.020$$

46

- 오즈비에 대한 신뢰구간

$$\exp\left[\frac{\sum_{i=1}^{k} (O_{i} - E_{i})}{\sum_{i=1}^{k} V(O_{i} - E_{i})} \pm Z_{\alpha/2} \left(\frac{1}{\sqrt{\sum_{i=1}^{k} V(O_{i} - E_{i})}}\right)\right] \Rightarrow \exp(-0.285 \pm 0.240)$$

$$\Rightarrow (\exp(-0.5246), \exp(-0.0448))$$

$$\Rightarrow (0.592, 0.956)$$

- 오즈비 구간 내에 "1"이 포함되지 않으므로 오즈비가 동질적 이지 않음을 의미함.
- 오즈비의 동질성에 대한 검정

$$Q = \sum_{i=1}^{k} \left(\frac{\left(O_{i} - E_{i}\right)^{2}}{V\left(O_{i} - E_{i}\right)} \right) - \frac{\left(\sum_{i=1}^{k} \left(O_{i} - E_{i}\right)\right)^{2}}{\sum_{i=1}^{k} V\left(O_{i} - E_{i}\right)} = 26.8342 - 5.4085 = 21.4258$$

$$-\frac{\chi^{2}(3)}{2} \rightarrow p - value = \Pr\left(\chi_{3}^{2} > 21.4258\right) = 0.0008$$

6.2 DerSimonian-Laird 방법

- 기본 개념: 처리군과 대조군의 사건 비율 차이를 이용한 방법
- 개별연구에 대한 가정
 - (i)번째 개별연구의 그룹별 표본크기 : 전체 $N_i = n_i^T + n_i^C$
 - 처리군/대조군: n_i^T and n_i^C
 - 발생 사건의 수 : 전체 d_i , 처리군 d_i^T , 대조군 d_i^C
 - 사건 비율의 차이에 대한 추정량과 분산추정량

$$\hat{\theta}_{i} = \hat{p}_{i}^{T} - \hat{p}_{i}^{C} = \frac{d_{i}^{T}}{n_{i}^{T}} - \frac{d_{i}^{C}}{n_{i}^{C}}$$

with
$$\hat{V}(\hat{\theta}_i) = S_i = \hat{V}(\hat{p}_i^T - \hat{p}_i^C) = \hat{p}_i^T (1 - \hat{p}_i^T) / n_i^T + \hat{p}_i^C (1 - \hat{p}_i^C) / n_i^C$$

개별 연구의 사건 비율의 차이가 동일하다는 가설에 대한 검정

$$Q = \sum_{i=1}^{k} w_i \left(\hat{\theta}_i - \overline{\theta}_W\right)^2 \xrightarrow{n_i^T \text{ and } n_i^C \text{ are large}} \to app. \quad \chi^2(k-1)$$
where $w_i = \frac{1}{S_i}$ and $\overline{\theta}_W = \frac{\sum_{i=1}^{k} w_i \hat{\theta}_i}{\sum_{i=1}^{k} w_i}$

- 사건 비율의 차이를 결합하는 방법
 - 개별 연구에서의 차이 θ_i 의 평균(=결합 처리효과)과 분산 추정치

$$Var : \hat{\tau}^2 = \max \left[0, \frac{Q - (k - 1)}{\sum_{i} w_i - \sum_{i} w_i^2 / \sum_{i} w_i} \right]$$

mean :
$$\hat{\mu} = \frac{\sum w_i^* \hat{\theta}_i}{\sum w_i^*}$$
 where $w_i^* = \frac{1}{(S_i + \hat{\tau}^2)}$

with
$$SE(\hat{\mu}) = \sqrt{\sum_{i} w_{i}^{*}}$$

Example:

연구		표본	크기	사건 날	발생 수	차이	분산	w=1/분산	242	- 101	0	+	- 1 ∩1+
번호		실험군	대조군	실험군	대조군	AFUI	正位	W=1/군신	w2=w^2	차이_w	Q	w*	차이_w*
	1	100	100	32	20	0.12	0.0038	264.8305	70135.1982	31.7797	7.8256	54.4655	6.5359
	2	100	100	28	17	0.11	0.0034	291.8004	85147.4784	32.0980	7.6485	55.5209	6.1073
	3	250	250	52	78	-0.104	0.0015	658.9491	434213.8575	-68.5307	1.7887	62.1048	-6.4589
	4	250	250	48	83	-0.14	0.0015	663.2848	439946.7240	-92.8599	5.1482	62.1431	-8.7000
합계								1878.8648	1029443.2582	-0.0519	22.4110	234.2343	-0.0107

- 차이=개별 연구의 비율 차이
- 분산=개별 연구의 비율차이에 대한 분산
- 개별 연구의 비율 차이에 대한 가중평균

$$\overline{\theta}_{W} = \frac{\sum_{i=1}^{k} w_{i} \hat{\theta}_{i}}{\sum_{i=1}^{k} w_{i}} = -97.5129 / 1878.8648 = -0.0519$$

- 차이의 동질성에 대한 검정통계량

$$Q = \sum_{i=1}^{k} w_i (\hat{\theta}_i - \overline{\theta}_W)^2 = 22.4110 \implies p - value = \Pr(\chi_3^2 > 22.4110) = 0.0001$$

- 연구간 분산 추정치와 결합 처리효과 추정치

$$\hat{\tau}^2 = \frac{(22.411 - 3)}{(1878.8648 - (1029443 .258)_{1878.8648})} = 0.0146$$

- 연구간 분산 추정치와 결합 처리효과 추정치

$$\hat{\tau}^2 = \frac{(22.411 - 3)}{(1878.8648 - (1029443 .258)_{1878.8648})} = 0.0146$$

$$\hat{\mu} = \frac{\sum_{i=1}^{4} w_{i}^{*} \hat{\theta}_{i}}{\sum_{i=1}^{4} w_{i}^{*}} = -0.0107 \quad \text{where} \quad w_{1}^{*} = \frac{1}{\left(S_{1} + \hat{\tau}^{2}\right)} = 54.4655 \quad \text{etc.}$$

with
$$SE(\hat{\mu}) = \sqrt{\frac{1}{\sqrt{\sum w_i^*}}} = \sqrt{\frac{1}{\sqrt{234.2343}}} = 0.0653$$

- 결합 처리효과에 대한 신뢰구간

$$\hat{\mu} \pm z_{\alpha/2} \times SE(\hat{\mu}) = \hat{\mu} \pm z_{\alpha/2} \times \sqrt{\frac{1}{\sum w_i^*}} = -0.0107 \pm 1.96 \times 0.0653$$

$$\Rightarrow (-0.1388, 0.1173)$$

- (해석): 신뢰구간내에 "0"가 포함되므로 95%신뢰수준(혹은 5% 유의수준)에서 결합한 처리효과는 차이가 없다는 것을 의미

META 분석 시 고려 사항

- **인용 연구의 처리효과나 유의확률이 비슷하다**는 가정(동 질성 가정)하에 분석
- 적절한 가중치를 부여하여 결합
 - 모형을 이용한 유효크기의 결합: 모수효과 모형 혹은 변량효과
 모형 이용
- 처리효과 및 유의확률 결합 전 반드시 동질성 검정
 - 개별 연구의 동질성이 기각되면 개별 연구 특성 반드시 검토
- 개별 연구의 특성을 신중하게 검토하여 반영
 - 여러 독립적인 연구 결합 시 각 연구의 실험설계나 연구의 방법, 분석 방법의 차이
 - 연구 관리 체계
 - 대상의 수, 연구집단의 차이로 인한 표본오차 차이
- 메타분석은 앞으로의 연구 방향 탐색에 이용하는 것이 바 람직