

Langages, Automates et Compilation

Dr Mouhamadou GAYE

UFR Sciences Et Technologies Département d'Informatique Licence 3 en Informatique Option Génie Logiciel

24 novembre 2020

Grammaires formelles

Grammaire

Définition 1.

Une grammaire est un quadriplet $G = (V_T, V_N, S, P)$, où

- V_T est l'ensemble fini des symboles terminaux, appelé vocabulaire terminal;
- V_N est un ensemble fini (disjoint de V_T) de symboles dits non-terminaux, appelé vocabulaire non terminal;
- S est un symbole initial non terminal appelé source ou axiome;
- P est un ensemble de règles de productions, appelées aussi règles de réécriture.

Règle de production

Définition 2.

Une règle de production $\alpha \to \beta$ précise que la séquence de symboles α ($\alpha \in (V_T \cup V_N)^+$) peut être remplacée par la séquence de symboles β ($\beta \in (V_T \cup V_N)^*$).

 α est appelé partie gauche de la production et β partie droite.

Convention: On utilisera des mots commençant par une majuscule pour les non terminaux, et des lettres minuscules ou des symboles spéciaux (+, x, etc.) pour les terminaux.

Règle de production

Exemple :
$$G = (V_T, V_N, S, P)$$
 avec

- $V_T = \{a, b, c, d, e\}$
- $V_N = \{S, A, B\}$
- $\begin{array}{c} \bullet \ \mathsf{P} = \{\mathsf{S} \to \mathsf{aSb} \mid \mathsf{cd} \mid \mathsf{SAe} \\ \mathsf{A} \to \mathsf{aAdB} \mid \varepsilon \\ \mathsf{B} \to \mathsf{bb} \} \end{array}$

Dérivation

Définition 3.

Une dérivation est l'application d'une ou de plusieurs règles de production à partir d'une mot de $(V_T \cup V_N)^+$).

- \bullet On note \to une dérivation obtenue par l'application d'une seule règle de production ;
- $\xrightarrow{*}$ est utilisé pour noter une dérivation obtenue par l'application de n règles de production, $(n \ge 0)$;
- + est utilisé pour noter une dérivation obtenue par l'application de n règles de production, (n > 0).

Langage engendré par une grammaire

Définition 4.

Etant donné une grammaire G, on note L(G) le langage engendré par G défini par :

$$L(G) = \{\omega \in (V_{\mathcal{T}})^+ : S \xrightarrow{*} \omega\}$$

Arbres de dérivation

Définition 5.

Un arbre de dérivation est un arbre tel que :

- la racine est l'axiome,
- les feuilles sont des symboles terminaux,
- les nœuds sont des symboles non terminaux,
- les fils d'un nœud X sont β_1 , ..., β_n si et seulement si X $\rightarrow \beta_1...\beta_n$ est une production ($\beta_i \in V_T \cup V_N$).

Arbres de dérivation

Exemple:

Grammaire régulière à droite

Définition 6.

Une grammaire $G = (V_T, V_N, S, P)$ est régulière à droite si toutes les productions sont de la forme :

$$\mathsf{A} \to \alpha \mathsf{B}$$
, $\mathsf{A} \to \alpha$ ou $\mathsf{A} \to \varepsilon$

avec A, B \in V_N et $\alpha \in$ V_T.

Grammaire régulière à gauche

Définition 7.

Une grammaire $G = (V_T, V_N, S, P)$ est régulière à gauche si toutes les productions sont de la forme :

$$A \rightarrow B\alpha$$
, $A \rightarrow \alpha$ ou $A \rightarrow C$

avec A, B \in V_N et $\alpha \in$ V_T.

Grammaire régulière

Définition 8.

Une grammaire est régulière si elle est régulière à gauche ou régulière à droite.

Grammaire ambiguë

Définition 9.

Une grammaire est ambiguë s'il existe un mot de L(G) ayant plusieurs arbres de dérivation distincts.

```
Exemple: La grammaire donnée par P = \{ instr \rightarrow if (expr) instr else instr instr <math>\rightarrow if (expr) instr instr \rightarrow ... expr \rightarrow ... \}
```

est ambiguë car le mot m = if (x > 0) if (y < 0) a = 1 else a = 0 a deux arbres de dérivation distincts.

Hiérarchie de Chomsky

Grammaire	Règle de production
générale ou de type 0	lpha ightarrow eta
contextuelle ou de type 1	$lphaAeta ightarrow lpha\gammaeta$, avec $\gamma eq \epsilon$
algébrique ou de type 2	$A o \gamma$, avec $\gamma eq \epsilon$
rationnelle ou de type 3	$A o lpha B$, $A o lpha$, avec $lpha eq \varepsilon$
à choix finis ou de type 4	$A o lpha$, avec $lpha eq \epsilon$

Construction d'un AFD à partir d'une grammaire régulière

Soit la grammaire régulière à droite $G = (V_T, V_N, S, P)$. L'automate $A = (\Sigma, E, E_o, F, \delta)$ telle que :

- $E = V_N \cup \{X\}$
- $\Sigma = V_T$
- $E_o = S$
- dont les transitions sont :
 - $\delta(q_i, a) = q_i$ pour les productions $q_i \rightarrow aq_i$
 - $\delta(q_i, a) = q_i$ pour les productions $q_i \rightarrow aq_i$
- $F = \{X\} \cup \{A : A \rightarrow \epsilon\}$

reconnait le même langage que la grammaire G.

