We have been given $a_i^{pre}(t)$ and $a_{ij}^{post}(t)$, and a Markov Chain X_t . We assume a constant discount factor v=

What is the Cash flow induced

We define $I_i(t) = \chi_{X_t=i}$. Which mean that you would get the following annuity at time t: $\sum_{i \in S} a_i^{pre}(t) \times I_i(t)$. Which ransition (death) benefit would you get at time t? You get $a_{ij}^{post}(t)$ if you are in state i at time t and in state j at t+1? ie $a_{ij}^{post}(t) \times I_i(t) \times I_j(t+1)$. In sum for the death benefit $\sum_{i,j\in S^2} a_{ij}^{post}(t) \times I_i(t) \times I_j(t+1).$

So the cash flow at times t can be calculated as

What is the value of this insurance cash flow?

We define the **Mathematical Reserve** as

In order to calculate the mathematical reserve you can substitute \tilde{A} in the formula below and ultimately what you need to calculate (keeping in mind the linearity of the \mathbb{E} functional as the following quantities:

$$\mathbb{E}[I_i(t+\tau)|X_t=j] = p_{ji}(t,t+\tau)$$

$$\mathbb{E}[I_i(t+\tau) \times I_k(t+\tau+1)|X_t=j] = ?$$

How do we do this?

$$\mathbb{E}[I_i(t+\tau) \times I_k(t+\tau+1) | X_t = j] = P[X_{t+\tau+1} = k, X_{t+\tau} = i | X_t = j]$$

Now we do the same as in the proof of the Chapman-Kolmogorov-Equation]

$$\mathbb{E}[I_{i}(t+\tau) \times I_{k}(t+\tau+1)|X_{t}=j] = P[X_{t+\tau+1}=k, X_{t+\tau}=i|X_{t}=j]$$

$$= \frac{P[X_{t+\tau+1}=k, X_{t+\tau}=i, X_{t}=j]}{P[X_{t}=j]}$$

$$= \frac{P[X_{t+\tau+1}=k, X_{t+\tau}=i, X_{t}=j]}{P[X_{t}=j]} \times \frac{P[X_{t}=j, X_{t+tau}=i]}{P[X_{t}=j, X_{t+tau}=i]}$$

$$= P[X_{t+\tau}=i|X_{t}=j] \times P[X_{t+\tau+1}=k|X_{t}=j, X_{t+\tau}=i]$$

$$= P[X_{t+\tau}=i|X_{t}=j] \times P[X_{t+\tau+1}=k|X_{t}=j, X_{t+\tau}=i]$$

$$= p_{ji}(t, t+\tau) \times p_{ik}(t+\tau, t+\tau+1)$$

If we put now all things together we can calcuate the mathematical reserves as follows

$$V_{j}(t) = \mathbb{E}\left[\sum_{\tau=0}^{\infty} v^{\tau} \tilde{A}(t+\tau) | X_{t} = j\right]$$

$$= \sum_{\tau=0}^{\infty} v^{\tau} \left(\sum_{i \in S} a_{i}^{pre}(t+\tau) \times p_{ji}(t,t+\tau) + \sum_{i,j \in S^{2}} a_{ij}^{post}(t+\tau) p_{ji}(t,t+\tau) \times p_{ik}(t+\tau,t+\tau+1) \times v\right)$$

Remark: With this formula we can also calculate the expected cash flows at time *t* as follows:

$$\mathbb{E}[A(t+\tau) \mid X_t = j] = \sum_{i \in S} a_i^{pre}(t+\tau) \times p_{ji}(t,t+\tau) + \sum_{i,j \in S^2} a_{ij}^{post}(t+\tau) p_{ji}(t,t+\tau) \times p_{ik}(t+\tau,t+\tau+1)$$

Thiele Difference Equation this is the relationship between the mathematical reserves between times t and t+1. The relationship is as follows:

$$V_{j}(t) = a_{j}^{pre}(t) + v \sum_{k \in S} p_{jk}(t, t+1) \times \left(a_{jk}^{post}(t) + V_{k}(k+1) \right)$$

To prove this equation we split the time-sum into $\tau=0$ and the rest. For $\tau=0$ we get

$$a_j^{pre}(t) + v \sum_{k \in S} p_{jk}(t, t+1) \times a_{jk}^{post}(t)$$

as per above.

In a second step we need to consider (**NEW AND IMPROVED FORMULA**:)

$$\sum_{\tau=1}^{\infty} v^{\tau} \left(\sum_{i \in S} a_i^{pre}(t+\tau) \times p_{ji}(t,t+\tau) + \sum_{(i,k) \in S^2} a_{ik}^{post}(t+\tau) p_{ji}(t,t+\tau) \times p_{ik}(t+\tau,t+\tau+1) \times v \right)$$

$$= \sum_{\tau=1}^{\infty} v^{\tau} \sum_{i \in S} p_{ji}(t,t+\tau) \times \left(a_i^{pre}(t+\tau) + \sum_{k \in S} a_{ik}^{post}(t+\tau) p_{ik}(t+\tau,t+\tau+1) \times v \right)$$

We can now calculate the quantity $p_{ii}(t, t + \tau)$ as follows, by means of the Chapman-Kolmorgorov equation

$$p_{ji}(t, t + \tau) = \sum_{l \in S} p_{jl}(t, t + 1) \times p_{li}(t + 1, t + \tau)$$

$$\begin{split} \sum_{\tau=1}^{\infty} v^{\tau} \Biggl\{ \sum_{i \in S} a_i^{pre}(t+\tau) \times p_{ji}(t,t+\tau) + \sum_{i,j \in S^2} a_{ij}^{post}(t+\tau) p_{ji}(t,t+\tau) \times p_{ik}(t+\tau,t+\tau+1) \times v \Biggr\} \\ &= \sum_{\tau=1}^{\infty} v^{\tau} p_{ji}(t,t+\tau) \times \Biggl\{ \sum_{i \in S} a_i^{pre}(t+\tau) + \sum_{i,j \in S^2} a_{ij}^{post}(t+\tau) p_{ik}(t+\tau,t+\tau+1) \times v \Biggr\} \\ &= \sum_{\tau=1}^{\infty} v^{\tau} \Biggl\{ \sum_{i \in S} p_{ji}(t,t+1) \times p_{li}(t+1,t+\tau) \Biggr\} \times \Biggl\{ \sum_{i \in S} a_i^{pre}(t+\tau) + \sum_{i,j \in S^2} a_{ij}^{post}(t+\tau) p_{ik}(t+\tau,t+\tau+1) \times v \Biggr\} \\ &= \sum_{l \in S} p_{jl}(t,t+1) \times v \times \Biggl\{ \sum_{\tau=0}^{\infty} v^{\tau} p_{li}(t+1,t+1+\tau) \times \Biggl\{ \sum_{i \in S} a_i^{pre}(t+1+\tau) + \sum_{i,j \in S^2} a_{ij}^{post}(t+1+\tau) p_{ik}(t+1+\tau,t+1+\tau+1) \times v \Biggr\} \\ &= \sum_{l \in S} p_{jl}(t,t+1) \times v \times \Biggl\{ \sum_{\tau=0}^{\infty} v^{\tau} p_{li}(t+1,t+1+\tau) \times \Biggl\{ \sum_{i \in S} a_i^{pre}(t+1+\tau) + \sum_{i,j \in S^2} a_{ij}^{post}(t+1+\tau) + \sum_{i$$

Remarks:

- 1) For one life we have a recursion of reals $A_x = q_x \times v + p_x \times v \times A_{x+1}$. In case of MR of a Markov model we have a recursion of vectors.
- 2) To solve it one needs boundary conditions as per before with $V_j(\omega)=0\ \forall j\in S$
- 3) Thiele Difference Equations leads to the same results as for the classical life insurance we have seen.