

TRAVAIL PRATIQUE 2: Inpainting par recherche dans une base d'images

Enseignante: Lama Seoud

Chargée de laboratoire: Faten M'hiri

Introduction

 Le projet à réaliser se base sur la méthode définie dans l'article suivant:

Computer Graphics Proceedings, Annual Conference Series, 2007

Scene Completion Using Millions of Photographs

James Hays Alexei A. Efros Carnegie Mellon University

Figure 1: Given an input image with a missing region, we use matching scenes from a large collection of photographs to complete the image.

Objectif

- Inpainting: méthode permettant de reconstruire/remplir des parties manquantes d'une image, en utilisant une partie d'une autre image la plus adéquate. Pour cela, il faut trouver l'image adéquate dans une grande base d'images.
- Ce TP est divisé en deux parties indépendantes :
 - 1. La recherche d'images similaires dans une base ;
 - 2. Inpainting: la composition des deux images.

Résumé des étapes de la méthode

Les étapes de la méthode Scene Completion

- Calcul du descripteur GIST sur la base de données (question 1)
- 2. Requête des images les plus proches dans la base
- 3. Translation optimale
- 4. Calcul du découpage optimal avec GraphCut
- 5. Composition avec l'algorithme de Poisson (question 2)

- L'idée est de trouver des images qui sont similaires sémantiquement à l'image qu'on veut remplir
- GIST est un descripteur de scène qui est très performant dans le groupement de scènes similaires. Exemple: regrouper des images de building ensemble, des images de forêts, des images de plages, etc

- Calcul du descripteur GIST sur la base de données (question 1)
- Descripteur GIST (implémenter la fonction descGist.m) :
 - Appliquer une convolution de l'image avec 30 filtres de Gabor (6 angles et 5 échelles différentes)

- Calcul du descripteur GIST sur la base de données (question 1)
- Descripteur GIST (implémenter la fonction descGist.m) :
 - Appliquer une convolution de l'image avec 30 filtres de Gabor (6 angles et 5 échelles différentes) :

 Calcul du descripteur GIST sur la base de données (question 1)

Différentes orientations

- 1.1. Construire les 30 filtres de gabors :
- Dans descGist, la fonction getGabor construit un filtre de Gabor selon une échelle et une orientation données [fourni]
- À faire: Vous devez implémenter la fonction getGabors qui permet de construire une matrice contenant plusieurs filtres de Gabor à des échelles et orientations différentes:
 - Échelle: La taille du filtre est fixée par filterSize = 64; on doit générer des filtres selon nbScales = 5 différents: par exemple: 64/2^{nbScale_i} avec nbScale_i qui va de 1 à 5
 - Orientation: Découper l'angle 180° en nbOri = 6 angles différents

1.2. Filtrer l'image source avec les 30 filtres de Gabor créés (i.e calculer le descripteur gist de l'image) :

1.2. Filtrer l'image source avec les 30 filtres de Gabor créés (i.e calculer le descripteur gist de l'image) : constructeur *descGist*

Image en niveaux de gris et redimensionnée

1.2. Filtrer l'image source avec les 30 filtres de Gabor créés (i.e calculer le descripteur gist de l'image) : constructeur *descGist*

Image en niveaux de gris et redimensionnée

1.2. Filtrer l'image source avec les 30 filtres de Gabor créés (i.e calculer le descripteur gist de l'image) : constructeur *descGist* À faire: *Pour chaque filtre de Gabor:*

1.2. Filtrer l'image source avec les 30 filtres de Gabor créés (i.e calculer le descripteur gist de l'image) : constructeur *descGist* À faire: *Pour chaque filtre de Gabor:*

1.2. Filtrer l'image source avec les 30 filtres de Gabor créés (i.e calculer le descripteur gist de l'image) : constructeur *descGist* À faire: *Pour chaque filtre de Gabor:*

La réponse de chaque filtre est moyennée sur les régions de l'image correspondant à une grille de 4x4

Image 4x4 à inclure à la matrice dst.values

1.2. Filtrer l'image source avec les 30 filtres de Gabor créés (i.e calculer le descripteur gist de l'image) : constructeur descGist

Refaire toutes ces étapes pour les 30 filtres de Gabor pour

remplir la matrice dst.values

Composition avec l'algorithme de Poisson (Question 2)

Composition avec l'algorithme de Poisson (Question 2)

- Vous utiliserez pour cela l'algorithme de Poisson, décrit dans cet article : Poisson Image Editing [Perez et al. 2003]
- Voir l'explication présentée ici: https://erkaman.github.io/posts/poisson blending.html

À faire aujourd'hui

- Télécharger les fichiers du TP2
- Lire l'énoncé du laboratoire
- Ouvrir les scripts Matlab:
 - Du code de départ vous est fourni
- D'ici les deux semaines prochaines: Travailler sur l'implémentation des deux descripteurs

Remise du travail

- Travail en équipe de deux
- Remettre le code matlab complet (tout le dossier matlab avec votre implémentation): Dossier doit porter le nom: TP2_Equipe_Numéro d'équipe
- Ajouter en commentaires en haut les noms et prénoms des membres de l'équipe
- À remettre sur Moodle le 9 octobre 2020 à 17h

Plan pour aujourd'hui

- Travail en équipe
- Question aujourd'hui: Utilisez le bouton "ask for help" dans zoom
- En dehors de la séance d'aujourd'hui, vous pouvez écrire vos questions sur le canal "Question de TP" dans Teams