Contents

Table 1: table part 1 All vars except HAKZAA by source 2000-2010 $\,$

	Canno	COOOO	C0004	Canne	COOOO	C2010
	S2000	S2002	S2004	S2006	S2008	S2010
n	1793	2048	2094	2075	1746	1779
ACEARBCH	`	585 (666 (808 (687 (756 (42.5)
= YES (%)	NaN)	28.6)	31.8)	39.5)	39.3)	00 74 (10 00)
ADMDBP	80.95	81.76	81.43	80.83	81.88	80.74 (16.69)
$egin{array}{c} ({ m mean} \ ({ m SD})) \end{array}$	(16.56)	(16.82)	(17.32)	(16.78)	(17.26)	
ADMECG (%)						
NONST	729 (969 (1003 (1073 (922 (939 (52.8)
(EXCL.	40.7)	47.4)	47.9)	51.7)	52.8)	
UND.ECG)	,	,	,	,	,	
\mathbf{ST}	1006 (1011 (1025 (895 (761 (776 (43.6)
	56.1)	49.4)	48.9)	43.2)	43.6)	
UND.	57 (65 (66 (106 (63 (64 (3.6)
ECG	3.2)	3.2)	3.2)	5.1)	3.6)	
ADMHR	81.38	81.37		81.07		$79.88 \ (19.39)$
(mean	(20.63)	(20.69)	(21.28)	(20.37)	(20.16)	
(SD))	1.00	1.00	1.00	1.00	4.40	1 21 (2 22)
ADMKLP	1.29	1.32	1.32	1.26	1.18	$1.21\ (0.60)$
(mean	(0.68)	(0.69)	(0.66)	(0.63)	(0.54)	
(SD)) ADMSBP	141.61	142.39	142.67	141.42	141.78	140.86 (28.62)
(mean	(29.29)	(29.72)	(30.61)	(28.14)	(29.02)	140.00 (20.02)
(SD))	(29.29)	(29.12)	(30.01)	(20.14)	(23.02)	
ADMST						
(%)						
NO ST-T	148 (202 (294 (382 (354 (102 (15.5)
CHANGES	20.5)		(29.3)	35.6)		,
WITH ST	327 (418 (458 (431 (362 (328 (50.0)
DEPRES- SION	45.3)	44.2)	45.7)	40.2)	39.3)	
WITH T	247 (325 (251 (260 (206 (226 (34.5)
INVER-	34.2)	34.4)	25.0)	24.2)	22.3)	220 (31.3)
SION	- /	- /	/	,	- /	
ADMSY1	1483 (1734 (1138 (1186 (1501 (1518 (85.3)
= YES (%)	82.7)	84.7)	54.3)	57.2)	86.0)	` '
ADMSY2	136 (106 (932 (732 (160 (123 (6.9)
= YES (%)	7.6)	5.2)	44.5)	,		
ADMSY3	115 (174 (177 (413 (23.2)
= YES $(%)$	6.4)	8.5)	8.5)	14.7)	27.7)	- 0 (; ; ;)
ADMSY4	52 (34 (61 (48 (49 (79 (4.4)
= YES (%)	2.9)	1.7)	2.9)	2.3)	2.8)	09 (47)
ADMSY5	29 (53 (82 (51 (72 (83 (4.7)
= YES (%) $ADMSY6$	1.6)	2.6)	3.9)	2.5)	4.1)	150 (2 0)
= YES (%)	140 (7.8)	135 (6.6)	318 (15.2)	0 (NaN)	258 (14.8)	159 (8.9)
<u>= 1E5 (%)</u>	7.8)	0.0)	15.2)	main)	14.8)	

Table 2: table part 1 : All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
n	1885	1791	1778	1750	1755	
ACEARBCH	I 786 (755 (681 (622 (556 (NaN
= YES (%)	41.7)	42.2)	38.3)	35.5)	31.7)	
ADMDBP	79.93	81.66	82.13	82.87	83.32	< 0.001
(mean	(15.60)	(15.67)	(16.14)	(17.09)	(16.62)	
(SD)						
ADMECG						< 0.001
(%)						
NONST	1070 (1001 (1007 (999 (984 (
(EXCL.	56.8)	55.9)	56.6)	57.1)	57.0)	
UND.ECG)						
\mathbf{ST}	748 (713 (706 (705 (670 (
	39.7)	39.8)	39.7)	40.3)	38.8)	
UND.	67 (77 (65 (46 (73 (
ECG	3.6)	4.3)	3.7)	2.6)	4.2)	
ADMHR	79.05	80.40	80.08	80.57	79.78	0.001
(mean	(18.97)	(18.59)	(18.29)	(19.25)	(19.08)	
(SD))	1.00		1.00	1.01	4.40	0.004
ADMKLP	1.20	1.15	1.20	1.21	1.13	< 0.001
(mean	(0.58)	(0.51)	(0.60)	(0.58)	(0.45)	
(SD)	1.41.05	1.40.55	1 40 05	1 4 4 0 1	1 1 1 1 7	0.001
ADMSBP	141.85	142.75	143.95	144.21	144.45	0.001
(mean	(28.21)	(27.27)	(27.34)	(28.41)	(26.96)	
(SD))						<0.001
ADMST						< 0.001
(%) NO ST-T	239 (158 (143 (220 (230 (
CHANGES	28.4)	23.0)	21.0)	34.5)	37.7)	
WITH ST	351 (320 (312 (281 (220 (
DEPRES-	41.7)	46.6)	45.7)	44.0)	36.1)	
SION	11.1)	10.0)	10.1)	11.0)	90.1)	
WITH T	251 (208 (227 (137 (160 (
INVER-	29.8)	30.3)	33.3)	21.5)	26.2)	
SION	,	,	,	,	,	
ADMSY1	1702 (1473 (1415 (1318 (1282 (< 0.001
= YES (%)	90.3)	82.2)	79.6)	75.3)	73.0)	
ADMSY2	0 (173 (214 (262 (171 (NaN
= YES (%)	NaN)	9.7)	12.0)	15.0)	9.7)	
ADMSY3	477 (468 (485 (337 (330 (< 0.001
= YES (%)	25.3)	26.1)	27.3)	19.3)	18.8)	
ADMSY4	96 (70 (82 (73 (45 (< 0.001
= YES (%)	5.1)	3.9)	4.6)	4.2)	2.6)	
ADMSY5	73 (50 (0 (0 (0 (NaN
= YES $(%)$	3.9)	2.8)	NaN)	NaN)	NaN)	
ADMSY6	347 (273 (149 (105 (112 (NaN
= YES (%)	18.4)	15.2)	8.4)	6.0)	6.4)	

Table 3: table part 2 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
ACE						
AGE	63.84	64.07	64.16	63.46	63.26	$63.64\ (12.67)$
(mean	(13.18)	(13.03)	(13.33)	(13.05)	(13.18)	
(SD))	0 (0 (۲ (0 (0 (17 (1 0)
AMIO_CHR	,	0 (5 (0 (0 (17 (1.0)
= YES (%)	NaN)	NaN)	0.2)	NaN)	NaN)	
$egin{array}{c} ext{AMIT} \ (\%) \ 1 \end{array}$	0 (0 (0 (0 (1245 (1302 (91.5)
1	NaN)	NaN)	NaN)	NaN)	90.5)	1302 (91.5)
2	0 (0 (0 (0 (71 (77 (5.4)
4	NaN)	NaN)	NaN)	NaN)	5.2)	11 (3.4)
3	0 (0 (0 (0 (2 (0 (0.0)
U	NaN)	NaN)	NaN)	NaN)	0.1)	0 (0.0)
4A	0 (0 (0 (0 (31 (29 (2.0)
111	NaN)	NaN)	NaN)	NaN)	2.3)	20 (2.0)
4B	0 (0 (0 (0 (3 (3 (0.2)
	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	NaN)	NaN)	0.2)	()
5	0 (0 (0 (0 (24 (12 (0.8)
	\hat{NaN}	\hat{NaN}	NaN)	NaN)	1.7)	,
ANCO_CHE	R 0 (46 (83 (74 (74 (59 (3.3)
= YES (%)	NaN)	2.2)	4.0)	3.6)	4.3)	
ANGIO =	1047 (1410 (1582 (1685 (1524 (1596 (89.7)
YES (%)	58.4)	68.8)	75.5)	81.2)	87.3)	
ANGIOALL	0 (0 (1585 (1726 (1541 (1610 (90.5)
= YES (%)	NaN)	NaN)	75.7)	83.2)	88.3)	
ANTERIOR	`	724 (664 (691 (531 (532 (29.9)
= YES $(%)$	38.3)	35.4)	31.7)	33.3)	30.4)	- ()
ANYBLEED	_ \	0 (0 (0 (0 (0 (NaN)
= YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	1000 (71.0)
ANYPCI	673 (1003 (1189 (1298 (1197 (1269 (71.3)
= YES (%) $ANYPCIIB$	37.5)	49.0)	56.8)	62.6)	68.6)	465 (96 1)
= YES (%)	183 (10.2)	613 (29.9)	561 (26.8)	641 (30.9)	545 (31.2)	465 (26.1)
ARR_DIAG	10.2)	29.9)	20.8)	30.9)	31.2)	
(%)						
NSTEMI	345 (639 (723 (821 (705 (712 (40.0)
~	19.3)	31.2)	34.5)	39.6)	40.4)	(10.0)
STE MI	1009 (1013 (1031 (915 (773 (784 (44.1)
	56.4)	49.5)	49.2)	44.2)	44.3)	- (-)
\mathbf{UAP}	434 (394 (340 (336 (268 (283 (15.9)
	24.3)	19.3)	16.2)	16.2)	15.3)	` /

Table 4: table part 2 : All vars except HAKZAA by source 2013-2024

AGE (3.97 64.67 64.28 64.20 64.81 0.006 (mean (12.91) (12.82) (12.69) (12.31) (12.11) (SD)) AMIO_CHR 21 (18 (19 (13 (12 (NaN EYES (%) 1.1) 1.2) 2.7) 0.7) 0.7)		S2013	S2016	S2018	S2021	S2024	p
(mean (12.91) (12.82) (12.69) (12.31) (12.11) (SD)) AMIO_CHR 21 (18 (19 (13 (12 (NaN EYES (%) 1.1) 1.2) 2.7) 0.7) 0.7)	AGE						
(SD) AMIO_CHR 21 (0.000
AMIO_CHR 21 (18 (19 (13 (12 (NaN eyes (%) 1.1) 1.2) 2.7) 0.7) 0.7) AMIT (%) 1	`	(12.01)	(12:02)	(12.00)	(12.01)	(12:11)	
= YES (%) 1.1) 1.2) 2.7) 0.7) 0.7) AMIT (%) 1348 (1299 (1284 (1445 (647 (93.5) 93.3) 92.3) 95.4) 96.3) 96.3) 2 65 (59 (60 (48 (21 (4.5 (4.5) 4.2) 4.3) 3.2) 3.1) 3.1) 3 4 (1 (0 (4 (0 (4.5 (3.3) 4.4) 4.3) 3.2) 3.1) 4A 11 (16 (37 (3 (1 (4.5 (3.4 (3.4) 4.4) 4.4) 4.4) 4.4) 4.4) 4.4) 1.1 (1.5 (3.4 (3.4) 4.4) 4.4) 4.4 4B 0 (7 (4 (5 (3.4 (3.4) 4.4) 4.4) 4.4) 4.4) 4.4) 4.4) 4.4 1.0 (0 (3.4 (3.4) 4.4) 4.4) 4.4) 4.4) 4.4 5 14 (11 (6 (10 (0 (3.4 (3.4) 4.4) 4.4) 4.4) 4.4) 4.4) 4.4) 4.4)	` ' '	21 (18 (19 (13 (12 (NaN
AMIT (%)						,	
93.5) 93.3) 92.3) 95.4) 96.3) 2 65 (59 (60 (48 (21 (4.5) 4.2) 4.3) 3.2) 3.1) 3 4 (1 (0 (4 (0 (3.3) 0.0) 4.4) 0.0) 0.3) 0.0) 4A 11 (16 (37 (3 (1 (3.4) 0.0) 0.3) 0.0) 4B 0 (7 (4 (5 (3 (3.4) 0.0) 0.3) 0.4) 5 14 (11 (6 (10 (0 (3.4) 0.0) 0.3) 0.4) 5 14 (11 (6 (10 (0 (3.4) 0.0) 0.3) 0.4) 5 14 (11 (6 (10 (0 (3.4) 0.0) 0.3) 0.4) 5 14 (11 (6 (10 (0 (3.4) 0.0) 0.3) 0.4) ANCO_CHR 77 (102 (98 (108 (83 (NaN S) 0.4) 0.7) 0.0) ANGIO = 1676 (1671 (1655 (1653 (1647 (<0.001 0.0) 0.3) 0.3) 0.3) 0.3) ANGIOALL 1677 (1678 (1655 (1654 (1648 (NaN S) 0.4) 0.7) 0.0) ANTERIOR 316 (308 (278 (347 (289 (<0.001 0.0) 0.0) 0.3) 0.3) 0.3) ANYBLEED_30D 46 (69 (48 (22 (NaN S) 0.4) 0.7) 0.0) ANYPCI 1305 (1290 (1131 (1381 (1363 (<0.001 0.0) 0.0) 0.0) 0.0) ARR_DIAG (%)	` '			,	,		NaN
2 65 (59 (60 (48 (21 (4.5) 4.2) 4.3) 3.2) 3.1) 3 4 (1 (0 (4 (0 (0 (0.3) 0.1) 0.0) 0.3) 0.0) 4A 11 (16 (37 (3 (1 (0.4) 0.1) 0.0) 0.3) 0.0) 4B 0 (7 (4 (5 (3 (0.4) 0.1) 0.0) 0.5) 0.3) 0.3) 0.4) 5 14 (11 (6 (10 (0 (0 (0.4) 0.1) 0.0) 0.5) 0.3) 0.3) 0.4) 5 14 (11 (6 (10 (0 (0 (0.4) 0.1) 0.0) 0.8) 0.4) 0.7) 0.0) ANCO_CHR 77 (102 (98 (108 (83 (NaN (0.4) 0.7) 0.0) 0.1) ANGIO = 1676 (1671 (1655 (1653 (1647 (<0.001 0.1) 0.1) 0.1) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1	1348 (1299 (1284 (1445 (647 (
4.5 4.2 4.3 3.2 3.1 3		93.5)	93.3)	92.3)	95.4)	96.3)	
3	2	65 (59 (60 (48 (21 (
4A 11 (16 (37 (3 (1 (4.5)	4.2)	4.3)	3.2)	3.1)	
4A	3	,	,	`	,	(
4B 0 (7 (4 (5 (3 (0.0) 0.5) 0.3) 0.3) 0.4) 5 14 (11 (6 (10 (0 (1.0) 0.8) 0.4) 0.7) 0.0) ANCO_CHR 77 (102 (98 (108 (83 (NaN = YES (%) 4.1) 6.5) 10.0) 6.2) 4.7) ANGIO = 1676 (1671 (1655 (1653 (1647 (<0.001 YES (%) 88.9) 93.3) 93.1) 94.5) 93.8) ANGIOALL 1677 (1678 (1655 (1654 (1648 (NaN = YES (%) 89.0) 93.7) 93.1) 94.5) 93.9) ANTERIOR 316 (308 (278 (347 (289 (<0.001 = YES (%) 16.8) 17.2) 15.6) 19.8) 16.5) ANYBLEED_30D 46 (69 (48 (22 (NaN = YES (%) NaN) 2.6) 4.7) 3.2) 1.9)		0.3)	,	,	,	,	
4B	4A	\	. `	.`	`	``	
0.0) 0.5) 0.3) 0.3) 0.4) 5 14 (11 (6 (10 (0 (1.0) 0.8) 0.4) 0.7) 0.0) ANCO_CHR 77 (102 (98 (108 (83 (NaN = YES (%) 4.1) 6.5) 10.0) 6.2) 4.7) ANGIO = 1676 (1671 (1655 (1653 (1647 (<0.001 YES (%) 88.9) 93.3) 93.1) 94.5) 93.8) ANGIOALL 1677 (1678 (1655 (1654 (1648 (NaN = YES (%) 89.0) 93.7) 93.1) 94.5) 93.9) ANTERIOR 316 (308 (278 (347 (289 (<0.001 = YES (%) 16.8) 17.2) 15.6) 19.8) 16.5) ANYBLEED_30D 46 (69 (48 (22 (NaN = YES (%) NaN) 2.6) 4.7) 3.2) 1.9) ANYPCII 1305 (1290 (1131 (1381 (1363 (<0.001 <th></th> <th></th> <th></th> <th>/</th> <th>,</th> <th>,</th> <th></th>				/	,	,	
5	4B	(((,	(
1.0) 0.8) 0.4) 0.7) 0.0) ANCO_CHR 77 (102 (98 (108 (83 (NaN = YES (%) 4.1) 6.5) 10.0) 6.2) 4.7) ANGIO = 1676 (1671 (1655 (1653 (1647 (<0.001 YES (%) 88.9) 93.3) 93.1) 94.5) 93.8) ANGIOALL 1677 (1678 (1655 (1654 (1648 (NaN = YES (%) 89.0) 93.7) 93.1) 94.5) 93.9) ANTERIOR 316 (308 (278 (347 (289 (<0.001 = YES (%) 16.8) 17.2) 15.6) 19.8) 16.5) ANYBLEED_30D 46 (69 (48 (22 (NaN = YES (%) NaN) 2.6) 4.7) 3.2) 1.9) ANYPCI 1305 (1290 (1131 (1381 (1363 (<0.001 = YES (%) 69.2) 72.0) 63.6) 78.9) 77.7) ANYPCIIB 338 (295 (214 (64 (242 (<0.001 = YES (%) 17.9) 16.5) 12.0) 3.7) 13.8) ARR_DIAG (%)		,			,	- :	
ANCO_CHR 77 (102 (98 (108 (83 (NaN = YES (%) 4.1) 6.5) 10.0) 6.2) 4.7) ANGIO = 1676 (1671 (1655 (1653 (1647 (<0.001 YES (%) 88.9) 93.3) 93.1) 94.5) 93.8) ANGIOALL 1677 (1678 (1655 (1654 (1648 (NaN = YES (%) 89.0) 93.7) 93.1) 94.5) 93.9) ANTERIOR 316 (308 (278 (347 (289 (<0.001 = YES (%) 16.8) 17.2) 15.6) 19.8) 16.5) ANYBLEED_30D 46 (69 (48 (22 (NaN = YES (%) NaN) 2.6) 4.7) 3.2) 1.9) ANYPCI 1305 (1290 (1131 (1381 (1363 (<0.001 = YES (%) 69.2) 72.0) 63.6) 78.9) 77.7) ANYPCIIB 338 (295 (214 (64 (242 (<0.001 = YES (%) 17.9) 16.5) 12.0) 3.7) 13.8) ARR_DIAG (%)	5	,			`	`	
= YES (%) 4.1) 6.5) 10.0) 6.2) 4.7) ANGIO = 1676 (1671 (1655 (1653 (1647 (<0.001 YES (%) 88.9) 93.3) 93.1) 94.5) 93.8) ANGIOALL 1677 (1678 (1655 (1654 (1648 (NaN = YES (%) 89.0) 93.7) 93.1) 94.5) 93.9) ANTERIOR 316 (308 (278 (347 (289 (<0.001 = YES (%) 16.8) 17.2) 15.6) 19.8) 16.5) ANYBLEED_30D 46 (69 (48 (22 (NaN = YES (%) NaN) 2.6) 4.7) 3.2) 1.9) ANYPCI 1305 (1290 (1131 (1381 (1363 (<0.001 = YES (%) 69.2) 72.0) 63.6) 78.9) 77.7) ANYPCIIB 338 (295 (214 (64 (242 (<0.001 = YES (%) 17.9) 16.5) 12.0) 3.7) 13.8) ARR_DIAG (%)	ANGO GIII		,	,		,	37 37
ANGIO = 1676 (1671 (1655 (1653 (1647 (<0.001 YES (%) 88.9) 93.3) 93.1) 94.5) 93.8) ANGIOALL 1677 (1678 (1655 (1654 (1648 (NaN = YES (%) 89.0) 93.7) 93.1) 94.5) 93.9) ANTERIOR 316 (308 (278 (347 (289 (<0.001 = YES (%) 16.8) 17.2) 15.6) 19.8) 16.5) ANYBLEED_30D 46 (69 (48 (22 (NaN = YES (%) NaN) 2.6) 4.7) 3.2) 1.9) ANYPCI 1305 (1290 (1131 (1381 (1363 (<0.001 = YES (%) 69.2) 72.0) 63.6) 78.9) 77.7) ANYPCIIB 338 (295 (214 (64 (242 (<0.001 = YES (%) 17.9) 16.5) 12.0) 3.7) 13.8) ARR_DIAG (%)		,	`	`	,	`	NaN
YES (%) 88.9) 93.3) 93.1) 94.5) 93.8) ANGIOALL 1677 (1678 (1655 (1654 (1648 (NaN = YES (%) 89.0) 93.7) 93.1) 94.5) 93.9) ANTERIOR 316 (308 (278 (347 (289 (<0.001		,		,	,	,	رم مرم درم مرم
ANGIOALL 1677 (1678 (1655 (1654 (1648 (NaN = YES (%) 89.0) 93.7) 93.1) 94.5) 93.9) ANTERIOR 316 (308 (278 (347 (289 (<0.001 = YES (%) 16.8) 17.2) 15.6) 19.8) 16.5) ANYBLEED_30D 46 (69 (48 (22 (NaN = YES (%) NaN) 2.6) 4.7) 3.2) 1.9) ANYPCI 1305 (1290 (1131 (1381 (1363 (<0.001 = YES (%) 69.2) 72.0) 63.6) 78.9) 77.7) ANYPCIIB 338 (295 (214 (64 (242 (<0.001 = YES (%) 17.9) 16.5) 12.0) 3.7) 13.8) ARR_DIAG (%)		\	(\	\	`	< 0.001
= YES (%) 89.0) 93.7) 93.1) 94.5) 93.9) ANTERIOR 316 (308 (278 (347 (289 (<0.001 = YES (%) 16.8) 17.2) 15.6) 19.8) 16.5) ANYBLEED_30D 46 (69 (48 (22 (NaN = YES (%) NaN) 2.6) 4.7) 3.2) 1.9) ANYPCI 1305 (1290 (1131 (1381 (1363 (<0.001 = YES (%) 69.2) 72.0) 63.6) 78.9) 77.7) ANYPCIIB 338 (295 (214 (64 (242 (<0.001 = YES (%) 17.9) 16.5) 12.0) 3.7) 13.8) ARR_DIAG (%)		,			,		NI - NI
ANTERIOR 316 (308 (278 (347 (289 (<0.001 = YES (%) 16.8) 17.2) 15.6) 19.8) 16.5) ANYBLEED_30D 46 (69 (48 (22 (NaN = YES (%) NaN) 2.6) 4.7) 3.2) 1.9) ANYPCI 1305 (1290 (1131 (1381 (1363 (<0.001 = YES (%) 69.2) 72.0) 63.6) 78.9) 77.7) ANYPCIIB 338 (295 (214 (64 (242 (<0.001 = YES (%) 17.9) 16.5) 12.0) 3.7) 13.8) ARR_DIAG <0.001		,		,	,	,	man
= YES (%) 16.8) 17.2) 15.6) 19.8) 16.5) ANYBLEED_30D 46 (69 (48 (22 (NaN = YES (%) NaN) 2.6) 4.7) 3.2) 1.9) ANYPCI 1305 (1290 (1131 (1381 (1363 (<0.001 = YES (%) 69.2) 72.0) 63.6) 78.9) 77.7) ANYPCIIB 338 (295 (214 (64 (242 (<0.001 = YES (%) 17.9) 16.5) 12.0) 3.7) 13.8) ARR_DIAG <0.001 (%) <0.001				,		,	<0.001
ANYBLEÉD_30D 46 (69 (48 (22 (NaN = YES (%) NaN) 2.6) 4.7) 3.2) 1.9) ANYPCI 1305 (1290 (1131 (1381 (1363 (<0.001 = YES (%) 69.2) 72.0) 63.6) 78.9) 77.7) ANYPCIIB 338 (295 (214 (64 (242 (<0.001 = YES (%) 17.9) 16.5) 12.0) 3.7) 13.8) ARR_DIAG (%)		,	,	,	,	,	<0.001
= YES (%) NaN) 2.6) 4.7) 3.2) 1.9) ANYPCI 1305 (1290 (1131 (1381 (1363 (<0.001 = YES (%) 69.2) 72.0) 63.6) 78.9) 77.7) ANYPCIIB 338 (295 (214 (64 (242 (<0.001 = YES (%) 17.9) 16.5) 12.0) 3.7) 13.8) ARR_DIAG (%) <0.001		,	,	,	,		NeN
ANYPCI 1305 (1290 (1131 (1381 (1363 (<0.001 = YES (%) 69.2) 72.0) 63.6) 78.9) 77.7) ANYPCIIB 338 (295 (214 (64 (242 (<0.001 = YES (%) 17.9) 16.5) 12.0) 3.7) 13.8) ARR_DIAG (%) <0.001		` .	,	,	`		11411
= YES (%) 69.2) 72.0) 63.6) 78.9) 77.7) ANYPCIIB 338 (295 (214 (64 (242 (<0.001 = YES (%) 17.9) 16.5) 12.0) 3.7) 13.8) ARR_DIAG <0.001 (%)	` ,	,	,	,	,		< 0.001
ANYPCIIB 338 (295 (214 (64 (242 (<0.001 = YES (%) 17.9) 16.5) 12.0) 3.7) 13.8) ARR_DIAG (%) <0.001		\	`	\	,	. `	(0.001
= YES (%) 17.9) 16.5) 12.0) 3.7) 13.8) ARR_DIAG <0.001 (%)		,	,	,		,	< 0.001
ARR_DIAG <0.001 (%)		,	`			,	
	` '	,	,	/	,	,	< 0.001
	(%)						
NSTEMI 849 (872 (930 (716 (587 (1 /	849 (872 (930 (716 (587 (
(45.0) (48.7) (52.3) (40.9) (33.4)		45.0)	48.7)	52.3)	40.9)	33.4)	
STE MI 756 (713 (706 (705 (670 (STE MI	,	`	`	,	670 (
$40.1) \qquad 39.8) \qquad 39.7) \qquad 40.3) \qquad 38.2)$,	,	,	,	,	
UAP 280 (206 (142 (329 (498 (\mathbf{UAP}	280 (206 (`	,	,	
14.9) 11.5) 8.0) 18.8) 28.4)		14.9)	11.5)	8.0)	18.8)	28.4)	

Table 5: table part 3 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
ARR_REP (mean (SD))	85.21 (145.73)	186.43 (587.39)	160.44 (345.34)	128.33 (497.43)		97.71 (231.70)
ASA_CHR = YES (%)	0 (NaN)	875 (42.7)	924 (44.6)	1023 (49.8)	871 (50.1)	885 (50.1)
BARE = YES (%)	0 (NaN)	0 (NaN)	822 (80.0)	775 (64.5)	861 (79.1)	845 (73.4)
BARR = YES (%)	0 (NaN)	0 (NaN)	22 (100.0)	33 (100.0)	43 (2.5)	44 (2.5)
BASA = YES (%)	480 (100.0)	550 (100.0)	598 (100.0)	1402 (67.6)	1254 (71.8)	1176 (66.1)
BBB = YES (%)	0 (NaN)	0 (NaN)	0 (NaN)	141 (6.8)	102 (5.8)	388 (21.8)
BBL_CHR $= YES (\%)$	0 (NaN)	603 (29.4)	755 (36.5)	764 (37.3)	654 (37.6)	692 (39.3)
BCPR_DCS = YES (%)		34 (100.0)	29 (100.0)	60 (2.9)	0 (42 (100.0)
BECG = YES (%)	0 (NaN)	0 (NaN)	0 (NaN)	705 (100.0)	1511 (86.5)	0 (NaN)
BHEP = YES (%)	232 (100.0)	296 (100.0)	344 (100.0)	839 (40.4)	761 (43.6)	491 (27.6)
BILIVALL = YES (%)	0 (NaN)	0 (NaN)	0 (NaN)	80 (3.9)	92 (5.3)	106 (6.0)
BMI (mean (SD))	NaN (NA)	27.02 (4.05)	27.23 (4.27)	27.66 (4.49)	27.70 (4.53)	27.94 (5.20)
BNAR = YES (%)	0 (NaN)	0 (NaN)	0 (NaN)	220 (100.0)	358 (20.5)	197 (11.1)
BTICL = YES (%)	0 (NaN)	0 (NaN)	0 (NaN)	138 (6.7)	255 (14.6)	449 (25.2)
BTIMI (mean (SD))	NaN (NA)	NaN (NA)	NaN (NA)	NaN (NA)	0.89 (1.15)	0.80 (1.11)
Biguanides_0 = YES (%)	Choro(n NaN)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)
Biguanides_ = YES (%)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)
Biguanides_1 = YES (%)		0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)
CABG_30D = YES (%)	166 (9.3)	209 (10.2)	176 (8.4)	176 (8.5)	163 (9.3)	138 (7.8)
CABL_CHR = YES (%)		400 (19.5)	426 (20.6)	395 (19.3)	382 (22.0)	362 (20.5)

Table 6: table part 3 : All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	р
ARR_REP		79.65		117.12	131.21	< 0.001
(mean	(164.23)	(102.65)	(79.24)	(233.21)	(345.20)	
(SD))	/					
ASA_CHR	933 (804 (732 (687 (634 (NaN
= YES (%)	49.9)	47.5)	49.4)	39.3)	36.1)	37.37
BARE =	503 (36 (9 (0 (0 (NaN
YES (%)	42.0)	3.0)	0.8)	NaN)	NaN)	NT NT
BARR = (27)	38 (0 (0 (0 (0 (NaN
YES (%)	2.0)	NaN)	NaN)	NaN)	NaN)	رم مرم دم مرم
$BASA = VES_{(07)}$	1354 (1393 (1271 (1202 (1095 (< 0.001
YES (%)	71.8)	77.8)	71.5)	89.5)	83.1)	NI - NI
BBB = VES (07)	133 (0 (0 (0 (0 (NaN
YES (%) BBL_CHR	7.1) 700 (NaN)	NaN)	NaN)	NaN)	NaN
= YES (%)	37.5)	624 (39.8)	555 (44.1)	501 (28.6)	432 (24.6)	man
BCPR DCS		50 (53 (58 (40 (< 0.001
= YES (%)	4.1)	2.8)	3.0)	3.3)	2.3)	<0.001
$\mathbf{BECG} =$	1792 (1680 (1661	1219 (1085 (NaN
YES (%)	95.1)	93.8)	(100.0)	94.1)	86.7)	11011
BHEP =	776 (745 (692 (702 (550 (< 0.001
YES (%)	41.2)	41.6)	38.9)	71.3)	60.3)	(0.001
BILIVALL	136 (44 (3 (57 (54 (NaN
= YES (%)	7.2)	(2.5)	0.2)	3.3)	(3.1)	
BMI	31.16	27.98	28.01	27.85	27.96	< 0.001
(mean	(28.83)	(4.70)	(4.57)	(4.87)	(4.75)	
(SD)	,	,	,	, ,	,	
BNAR =	278 (0 (0 (0 (0 (NaN
YES (%)	14.7)	NaN)	NaN)	NaN)	NaN)	
BTICL =	431 (293 (296 (184 (73 (NaN
$\mathbf{YES}\ (\%)$	22.9)	16.4)	16.6)	32.5)	14.1)	
BTIMI	0.94	0.82	1.04	1.12	0.85	< 0.001
(mean	(1.24)	(1.16)	(1.25)	(1.22)	(1.13)	
(SD))						
Biguanides_0	,	382 (366 (0 (0 (NaN
= YES (%)	NaN)	67.0)	71.6)	NaN)	NaN)	
	0 (377 (369 (0 (0 (NaN
= YES $(%)$		69.7)	72.8)	NaN)	NaN)	NT NT
Biguanides_]	- \	243 (371 (0 (0 (NaN
= YES (%)	NaN)	45.8)		NaN)	NaN)	0.000
CABG_30D			98 (132 (122 (0.003
= YES (%)	7.5)	7.7)	6.6)	8.8)	10.2)	NI_NI
CABL_CHR	,	369 (315 (291 (218 (NaN
= YES (%)	18.8)	24.5)	35.9)	16.6)	12.4)	

Table 7: table part 4 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
CACEI =	0 (0 (534 (0 (560 (613 (34.8)
YES (%)	NaN)	NaN)	25.8)	NaN)	32.2)	
CALDO =	0 (0 (0 (0 (21 (51 (2.9)
$\mathbf{YES}\ (\%)$	NaN)	NaN)	NaN)	NaN)	1.2)	
CALL_ECG	NaN	NaN	186.74	146.91	155.16	$71.41\ (275.29)$
(mean	(NA)	(NA)	(785.98)	(610.41)	(1760.22)	
(SD))						
CALL_REP	NaN	308.69		195.43	141.49	$133.48 \ (96.45)$
(mean	(NA)	(1890.16	3)(321.80)	(566.72)	(143.29)	
(SD))	0 /	2 (100 (2 /	1.10 (121 (2 =)
CARBL =	0 (0 (0 (140 (154 (8.7)
YES (%)	NaN)	NaN)	6.7)	NaN)	8.1)	. ()
CAUSE_AC		`	16 (12 (11 (4 (1.5)
= YES (%)		1.8)	1.8)	1.6)	2.4)	0 (0 0)
CAUSE_BE	5 (7 (6 (8 (4 (0 (0.0)
= YES (%)	0.5)	0.7)	0.7)	1.1)	0.9)	40 (14 7)
CAUSE_CA	`	146 (135 (114 (68 (40 (14.7)
= YES (%)	15.1)	15.1)	15.0)	15.5)	14.8)	1 (0 4)
CAUSE_CO	1 (0 (1 (2 (0 (1 (0.4)
= YES (%) CAUSE_CO		0.0)	0.1)	0.3)	0.0)	15 (5 5)
		46 (45 (5.0)	36 (4.9)	44 (15 (5.5)
$= YES (\%)$ $CAUSE_CV$		4.7) 97 (5.0) 93 (83 (9.6) 54 (35 (12.8)
= YES (%)	9.5)	10.0)	10.3)	11.3)	11.8)	33 (12.6)
CAUSE_DIA			147 (147 (95 (64 (23.4)
= YES (%)	,	17.1)	16.4)	20.0)	20.7)	04 (25.4)
CAUSE_HE		638 (587 (502 (354 (200 (73.3)
= YES (%)	59.6)	65.8)	65.3)	68.2)	77.3)	200 (10.0)
CAUSE_INE			184 (192 (126 (94 (34.4)
= YES (%)		20.0)	20.5)	26.1)	27.5)	
CAUSE_IN		61 (60 (64 (37 (22 (8.1)
= YES (%)	7.0)	(6.3)	(6.7)	8.7)	8.1)	,
CAUSE_KII		150 (179 (152 (131 (80 (29.3)
= YES (%)	(14.1)	15.5)	(19.9)	20.7)	28.6)	, ,
CAUSE_LA	916	969	899	736	458	273 (100.0)
= NO $(%)$	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	
CAUSE_LIV		16 (17 (11 (7 (9 (3.3)
= YES (%)	2.1)	1.7)	1.9)	1.5)	1.5)	
CAUSE_MU	0 (1 (1 (2 (0 (0 (0.0)
= YES (%)	0.0)	0.1)	0.1)	0.3)	0.0)	
CAUSE_OT	`	EXTE (2 (5 (2 (1 (0.4)
= YES (%)	0.1)	0.3)	0.2)	0.7)	0.4)	

Table 8: table part 4 : All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	р
CACEI =	`	490 (,	,		NaN
$\mathbf{YES}\ (\%)$	29.8)	31.4)	36.0)	20.3)	18.5)	
CALDO =	,	0 (0 (0 (0 (NaN
$\mathbf{YES}\ (\%)$	2.8)	NaN)	NaN)	NaN)	NaN)	
CALL_ECG		97.55	105.18	64.72		< 0.001
(mean	(266.08)	(424.53)	(1408.52)	(234.17)	(255.11)	
(SD))						
$CALL_REP$	147.25	127.44	115.09	205.02	174.59	< 0.001
(mean	(201.00)	(160.87)	(133.69)	(368.45)	(311.64)	
(SD))						
CARBL =	239 (275 (272 (271 (238 (NaN
YES (%)	12.8)	18.4)	31.8)	15.5)	13.6)	
CAUSE_AC	CIDENT	Γ 0 (0 (0 (0 (NaN
= YES (%)		NaN)	NaN)	NaN)	NaN)	
CAUSE_BE		0 (0 (0 (0 (NaN
= YES (%)	0.9)	NaN)	NaN)	NaN)	NaN)	
CAUSE_CA	N CZE(R	0 (0 (0 (0 (NaN
= YES (%)		NaN)	NaN)	NaN)	NaN)	
CAUSE_CC	0 (0 (0 (0 (0 (NaN
= YES (%)	0.0)	NaN)	NaN)	NaN)	NaN)	
CAUSE_CO	PI D7 (0 (0 (0 (0 (NaN
= YES (%)		NaN)	NaN)	NaN)	NaN)	
CAUSE_CV	21 (0 (0 (0 (0 (NaN
= YES (%)	9.3)	NaN)	NaN)	NaN)	NaN)	
CAUSE_DIA	ABETTES	0 (0 (0 (0 (NaN
= YES (%)	19.6)	NaN)	NaN)	NaN)	NaN)	
CAUSE_HE	166 (0 (0 (0 (0 (NaN
= YES (%)	73.8)	NaN)	NaN)	NaN)	NaN)	
CAUSE_INI			0 (0 (0 (NaN
= YES $(%)$	25.8)	NaN)	NaN)	NaN)	NaN)	
CAUSE_IN	23 (0 (0 (NaN
= YES (%)	10.2)	NaN)	NaN)	NaN)	NaN)	
CAUSE_KII			0 (0 (0 (NaN
= YES (%)	31.1)	NaN)	,	/	NaN)	
CAUSE_LA		(0 (0 (0 (NA
= NO $(%)$	(100.0)	NaN)	NaN)	NaN)	NaN)	
CAUSE_LIV	,	0 (0 (0 (0 (NaN
= YES (%)	0.9)	NaN)		NaN)	NaN)	
CAUSE_MU			- (0 (0 (NaN
= YES $(%)$	0.0)	NaN)	NaN)	NaN)	NaN)	
CAUSE_OT	,	,	0 (0 (0 (NaN
= YES (%)	0.4)	NaN)	NaN)	NaN)	NaN)	

Table 9: table part 5 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
CAUSE_PE		969	899	736	458	273 (100.0)
= NO (%)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	
CAUSE_SU	,	1 (3 (2 (1 (0 (0.0)
= YES (%)	0.1)	0.1)	0.3)	0.3)	0.2)	
CCUDAYS	5.72	4.89	4.84	4.65	4.38	4.08(2.62)
(mean	(4.66)	(5.09)	(4.10)	(3.59)	(3.57)	
(SD))						
CENTER						
(%)						
\mathbf{AFL}	52 (74 (86 (78 (67 (65 (3.7)
	2.9)	3.6)	4.1)	3.8)	3.8)	
\mathbf{ASF}	83 (84 (125 (131 (101 (116 (6.5)
	4.6)	4.1)	6.0)	6.3)	5.8)	
AST	0 (0 (0 (0 (0 (0 (0.0)
	0.0)	0.0)	0.0)	0.0)	0.0)	
\mathbf{BAR}	65 (55 (83 (73 (52 (64 (3.6)
	3.6)	2.7)	4.0)	3.5)	3.0)	, , ,
BKH	84 (57 (63 (50 (41 (36 (2.0)
	4.7)	2.8)	3.0)	2.4)	2.3)	
\mathbf{CAR}	72 (92 (63 (101 (72 (87 (4.9)
	4.0)	4.5)	3.0)	4.9)	4.1)	(>
HAS	57 (46 (53 (46 (45 (28 (1.6)
	3.2)	2.2)	2.5)	2.2)	2.6)	(
HLY	46 (91 (81 (80 (61 (45 (2.5)
	2.6)	4.4)	3.9)	3.9)	3.5)	25 (2 5)
HSE	85 (42 (66 (80 (70 (65 (3.7)
****	4.7)	2.1)	3.2)	3.9)	4.0)	
HSH	66 (73 (65 (45 (33 (27 (1.5)
TOTT	3.7)	3.6)	3.1)	2.2)	1.9)	110 (0 0)
ICH	105 (117 (127 (139 (114 (110 (6.2)
TZ A D	5.9)	5.7)	6.1)	6.7)	6.5)	CC (9.7)
KAP	50 (93 (72 (88 (68 (66 (3.7)
LAN	2.8)	4.5)	3.4)	4.2)	3.9)	100 (0 0)
LAN	68 (69 (79 (79 (85 (106 (6.0)
MCB	3.8)	3.4)	3.8)	3.8)	4.9)	89 (5.0)
MICD	100 (5.6)	126 (6.2)	106 (5.1)	96 (4.6)	78 (4.5)	og (5.0)
MIR	89 (75 (70 (99 (4.5) 75 (82 (4.6)
1/111/	.`	3.7)	3.3)	4.8)	4.3)	02 (4.0)
MNI	5.0)	3.7) 13 (/	0 (0.0)
TATTAT	7 (0.4)	0.6)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
	0.4)	0.0)	0.0)	0.0)	0.0)	

Table 10: table part 5 : All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
CAUSE_PE	225	0 (0 (0 (0 (NA
= NO (%)	(100.0)	NaN)	NaN)	NaN)	NaN)	
CAUSE_SU	(0 (0 (0 (0 (NaN
= YES (%)	0.0)	NaN)	NaN)	NaN)	NaN)	
CCUDAYS	4.03	4.01	3.95	3.87	3.72	< 0.001
(mean	(2.98)	(4.07)	(3.84)	(4.27)	(3.53)	
(SD)) CENTER						< 0.001
(%)						<0.001
AFL	68 (92 (51 (58 (61 (
	3.6)	5.1)	2.9)	3.3)	(3.5)	
\mathbf{ASF}	108 (145 (144 (104 (61 (
	5.7)	8.1)	8.1)	5.9)	3.5)	
\mathbf{AST}	0 (0 (51 (49 (48 (
	0.0)	0.0)	2.9)	2.8)	2.7)	
\mathbf{BAR}	85 (63 (49 (80 (62 (
DIZII	4.5)	3.5)	2.8)	4.6)	3.5)	
BKH	0 (0 (0 (0 (0 (
\mathbf{CAR}	0.0) 102 (0.0) 72 (0.0)	0.0) 57 (0.0)	
CAK	5.4)	4.0)	3.8)	3.3)	96 (5.5)	
HAS	23 (29 (47 (44 (38 (
11715	1.2)	1.6)	2.6)	2.5)	2.2)	
HLY	79 (116 (102 (60 (98 (
	4.2)	$(6.5)^{\circ}$	5.7)	(3.4)	$(5.6)^{\circ}$	
HSE	54 (85 (51 (62 (75 (
	(2.9)	(4.7)	(2.9)	3.5)	4.3)	
HSH	21 (13 (13 (50 (56 (
	1.1)	0.7)	0.7)	2.9)	3.2)	
ICH	110 (104 (69 (52 (33 (
TZ A D	5.8)	5.8)	3.9)	3.0)	1.9)	
KAP	60 (70 (61 (3.4)	67 (115 (
LAN	3.2) 73 (3.9) 49 (3.4) 44 (3.8) 67 (6.6) 47 (
LAN	3.9)	$\frac{49}{2.7}$	(2.5)	3.8)	2.7)	
MCB	60 (71 (103 (90 (61 (
·- - -	3.2)	4.0)	5.8)	5.1)	3.5)	
MIR	95 (79 (71 (81 (105 (
	5.0)	4.4)	4.0)	(4.6)	(6.0)	
MNI	0 (0 (0 (24 (20 (
	0.0)	0.0)	0.0)	1.4)	1.1)	

Table 11: table part 6 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
NAH	84 (74 (111 (109 (77 (110 (6.2)
	4.7)	3.6)	5.3)	5.3)	4.4)	
\mathbf{NIT}	0 (0 (0 (0 (13 (4 (0.2)
Nam	0.0)	0.0)	0.0)	0.0)	0.7)	04 (4 =)
NZT	28 (16 (24 (23 (28 (31 (1.7)
DOD	1.6)	0.8)	1.1)	1.1)	1.6)	F O (O O)
POR	44 (76 (79 (61 (52 (50 (2.8)
\mathbf{RAM}	2.5)	3.7)	3.8)	2.9)	3.0)	105 (5 0)
KAM	86 (4.8)	121 (5.9)	123 (5.9)	109 (5.3)	99 (5.7)	105 (5.9)
ROT	60 (75 (62 (38 (41 (48 (2.7)
101	3.3)	3.7)	3.0)	1.8)	2.3)	40 (2.1)
\mathbf{SMC}	107 (145 (132 (125 (105 (110 (6.2)
SIVIC	6.0)	7.1)	6.3)	6.0)	6.0)	110 (0.2)
SZJ	85 (105 (128 (84 (108 (70 (3.9)
220	4.7)	5.1)	6.1)	4.0)	6.2)	. 0 (3.0)
\mathbf{TEL}	124 (146 (146 (168 (100 (113 (6.4)
	(6.9)	7.1)	7.0)	8.1)	5.7)	()
\mathbf{WOL}	89 (122 (82 (82 (92 (106 (6.0)
	(5.0)	$(6.0)^{\circ}$	3.9)	4.0)	(5.3)	, ,
YTL	13 (11 (16 (31 (10 (1 (0.1)
	0.7)	0.5)	0.8)	1.5)	0.6)	
\mathbf{ZFT}	44 (50 (52 (60 (59 (45 (2.5)
	2.5)	2.4)	2.5)	2.9)	3.4)	
CFAP =	0 (0 (0 (102 (67 (35 (2.1)
YES (%)	NaN)	NaN)	NaN)	5.5)	4.0)	0 (0 0)
CFEPS =	0 (0 (0 (1 (1 (0 (0.0)
$\begin{array}{c} \text{YES (\%)} \\ \text{CFICD} = \end{array}$	NaN)	NaN)	NaN)	0.1)	0.1)	0 (0 0)
YES (%)	0 (NaN)	0 (NaN)	0 (NaN)	4 (0.2)	2 (0.1)	0 (0.0)
CFPER =	0 (0 (0 (0.2)	2 (4 (0.2)
YES (%)	NaN)	NaN)	NaN)	NaN)	0.1)	1 (0.2)
CFPM =	0 (0 (0 (4 (3 (1 (0.1)
YES (%)	NaN)	NaN)	NaN)	0.2)	0.2)	(-)
CFSTMÍ	0 (0 (0 (0 (0 (0 (NaN)
= YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	,
CFTHR =	0 (0 (0 (0 (13 (6(0.4)
YES (%)	NaN)	NaN)	NaN)	NaN)	0.8)	
CFTHRH	0 (0 (0 (0 (10 (6 (100.0)
= YES (%)	NaN)	NaN)	NaN)	NaN)	83.3)	

Table 12: table part 6 : All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
NAH	104 (110 (107 (128 (106 (
	5.5)	6.1)	6.0)	7.3)	6.0)	
\mathbf{NIT}	9 (0 (4 (0 (0 (
	0.5)	0.0)	0.2)	0.0)	0.0)	
NZT	32 (26 (30 (50 (70 (
	1.7)	1.5)	1.7)	2.9)	4.0)	
POR	62 (35 (32 (77 (57 (
	3.3)	2.0)	1.8)	4.4)	3.2)	
$\mathbf{R}\mathbf{A}\mathbf{M}$	103 (63 (42 (64 (58 (
	5.5)	3.5)	2.4)	3.7)	3.3)	
ROT	59 (48 (49 (64 (51 (
	3.1)	2.7)	2.8)	3.7)	2.9)	
\mathbf{SMC}	134 (109 (121 (72 (96 (
	7.1)	6.1)	6.8)	4.1)	5.5)	
SZJ	166 (206 (153 (54 (141 (
	8.8)	11.5)	8.6)	3.1)	8.0)	
\mathbf{TEL}	119 (85 (150 (131 (88 (
	6.3)	4.7)	8.4)	7.5)	5.0)	
\mathbf{WOL}	89 (93 (89 (89 (69 (
3.700 T	4.7)	5.2)	5.0)	5.1)	3.9)	
\mathbf{YTL}	9 (0 (10 (6 (0 (
ADD	0.5)	0.0)	0.6)	0.3)	0.0)	
\mathbf{ZFT}	61 (28 (67 (70 (43 (
CDA D	3.2)	1.6)	3.8)	4.0)	2.5)	NT NT
CFAP = VFG(0)	64 (54 (0 (43 (31 (NaN
YES (%)	4.7)	3.5)	NaN)	3.0)	2.8)	N a N
CFEPS = YES (%)	0 (0.0)	1 (0.1)	0 (NaN)	0 (0.0)	1 (0.1)	NaN
CFICD =	2 (2 (0 (5 (6 (NaN
YES (%)	0.1)	0.1)	NaN)	0.3)	0.5)	man
CFPER =	0.1)	0.1)	0 (0.3)	0.5)	NaN
YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	11/411
CFPM =	4 (1 (0 (2 (1 (NaN
YES (%)	0.3)	0.1)	NaN)	0.1)	0.1)	11011
CFSTMI	0.5)	6 (4 (2 (0 (NaN
= YES (%)	NaN)	0.4)	0.3)	0.1)	NaN)	1.021
CFTHR =	6 (5 (0 (2 (4 (NaN
YES (%)	0.4)	0.3)	NaN)	0.1)	0.4)	,,,,
CFTHRH	6 (4 (0 (1	2 (NaN
= YES (%)	(3.4)	50.0)	NaN)	(100.0)	66.7)	
				. /		

Table 13: table part 7 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
CFUNS =	0 (0 (0 (0 (0 (0 (NaN)
YES (%)	NaN)	\hat{NaN}	NaN)	NaN)	NaN)	,
CHF_30D	348 (238 (183 (303 (162 (161 (9.1)
= YES (%)	19.4)	11.6)	8.7)	14.6)	9.3)	
CLOP_CHF	0 (63 (82 (155 (202 (221 (12.5)
= YES (%)	NaN)	3.1)	3.9)	7.6)	11.6)	
CMP22T	11 (11 (12 (11 (7 (7 (87.5)
= IS-	78.6)	73.3)	85.7)	91.7)	63.6)	
CHEMIC						
(%)						
COMP1 =	321 (214 (142 (257 (131 (139 (7.8)
YES (%)	18.4)	10.4)	6.8)	12.5)	7.5)	
COMP10	71 (40 (35 (54 (36 (34 (1.9)
= YES $(%)$	4.0)	2.0)	1.7)	2.6)	2.1)	
COMP11	45 (23 (29 (49 (17 (23 (1.3)
= YES $(%)$	2.5)	1.1)	1.4)	2.4)	1.0)	
COMP12	88 (77 (74 (0 (0 (0 (NaN)
= YES $(%)$	5.0)	3.8)	3.5)	NaN)	NaN)	24 (4.0)
COMP13	64 (49 (26 (52 (21 (34 (1.9)
= YES (%)	3.6)	2.4)	1.2)	2.5)	1.2)	11 (00)
COMP14	21 (9 (11 (22 (23 (11 (0.6)
= YES (%)	1.2)	0.4)	0.5)	1.1)	1.3)	01 (1 7)
COMP15	120 (81 (10 (39 (23 (31 (1.7)
= YES (%)	6.8)	4.0)	0.5)	1.9)	1.3)	0 (05)
COMP16	62 (42 (2.1)	7 (18 (0.9)	12 (9 (0.5)
= YES (%) $COMP19$	3.5)	1 (0.3) 5 (1 (0.7) 6 (3 (0.2)
= YES (%)	0.2)	0.0)	0.2)	0.0)	0.3)	3 (0.2)
COMP2 =	189 (182 (152 (190 (116 (88 (4.9)
YES (%)	10.7)	8.9)	7.3)	9.2)	6.6)	00 (4.5)
COMP20	65 (47 (15 (67 (28 (30 (1.7)
= YES (%)	3.7)	2.3)	0.7)	3.2)	1.6)	33 (111)
COMP21	5 (2 (2 (9 (3 (1 (0.1)
= YES (%)	0.3)	0.1)	0.1)	0.4)	0.2)	()
COMP22	15 (16 (14 (12 (11 (9 (0.5)
= YES (%)	(0.9)	(0.8)	(0.7)	0.6)	(0.6)	` ,
COMP23	34 (40 (41 (0 (0 (0 (NaN)
= YES (%)	1.9)	(2.0)	(2.0)	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	•
COMP24	139 (177 (142 (111 (77 (108 (6.1)
= YES (%)	7.9)	8.6)	6.8)	5.4)	4.4)	
COMP25	44 (39 (21 (38 (26 (19 (1.1)
= YES (%)	2.5)	1.9)	1.0)	1.8)	1.5)	

Table 14: table part 7 : All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
CFUNS = YES (%)	0 (NaN)	15 (1.0)	17 (1.2)	26 (1.8)	0 (NaN)	NaN
CHF_30D = YES (%)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	NaN
CLOP_CHF = YES (%)	253 (13.5)	196 (11.4)	190 (15.6)	155 (8.9)	102 (5.8)	NaN
CMP22T	9 (9 (7 (6 (100.0)	6	0.569
= IS- CHEMIC (%)	75.0)	90.0)	70.0)	(100.0)	(100.0)	
COMP1 = YES (%)	115 (6.1)	105 (5.9)	131 (7.4)	148 (8.5)	178 (10.3)	< 0.001
COMP10 = YES (%)	35 (1.9)	24 (1.3)	36 (2.0)	34 (1.9)	13 (0.8)	< 0.001
$\begin{array}{l} \text{COMP11} \\ = \text{YES } (\%) \end{array}$	25 (1.3)	19 (1.1)	19 (1.1)	23 (1.3)	16 (0.9)	< 0.001
$\begin{array}{l} \text{COMP12} \\ = \text{YES } (\%) \end{array}$	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	NaN
$ \begin{array}{l} \text{COMP13} \\ = \text{YES } (\%) \end{array} $	22 (1.2)	23 (1.3)	23 (1.3)	25 (1.4)	21 (1.2)	< 0.001
$\begin{array}{l} \text{COMP14} \\ = \text{YES } (\%) \end{array}$	10 (0.5)	11 (0.6)	8 (0.5)	13 (0.7)	11 (0.6)	0.008
$\begin{array}{l} \text{COMP15} \\ = \text{YES } (\%) \end{array}$	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	NaN
$\begin{array}{l} \text{COMP16} \\ = \text{YES } (\%) \end{array}$	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	NaN
$\begin{array}{l} \text{COMP19} \\ = \text{YES } (\%) \end{array}$	1 (0.1)	1 (0.1)	0 (0.0)	0 (0.0)	0 (0.0)	0.012
$ \begin{array}{l} \text{COMP2} = \\ \text{YES (\%)} \end{array} $	82 (4.4)	56 (3.1)	59 (3.3)	64 (3.7)	59 (3.4)	< 0.001
$\begin{array}{l} \text{COMP20} \\ = \text{YES } (\%) \end{array}$	40 (2.1)	20 (1.1)	15 (0.8)	31 (1.8)	25 (1.4)	< 0.001
$ \begin{array}{l} \text{COMP21} \\ = \text{YES } (\%) \end{array} $	4 (0.2)	2 (0.1)	5 (0.3)	4 (0.2)	4 (0.2)	0.289
$\begin{array}{l} \text{COMP22} \\ = \text{YES } (\%) \end{array}$	11 (0.6)	9 (0.5)	8 (0.5)	6 (0.3)	6 (0.3)	0.592
$\begin{array}{l} \text{COMP23} \\ = \text{YES } (\%) \end{array}$	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	NaN
$ \begin{array}{l} \text{COMP24} \\ = \text{YES } (\%) \end{array} $	86 (4.6)	91 (5.1)	87 (4.9)	117 (6.7)	71 (4.4)	< 0.001
COMP25 = YES (%)	18 (1.0)	9 (0.5)	11 (0.6)	20 (1.1)	11 (0.6)	< 0.001

Table 15: table part 8 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
COMP26	238 (137 (115 (129 (63 (35 (2.0)
= YES (%)	13.7)	6.7)	5.5)	6.2)	3.6)	00 (2.0)
COMP3 =	94 (77 (68 (86 (48 (56 (3.1)
YES (%)	5.3)	3.8)	3.2)	4.2)	(2.7)	33 (312)
COMP4 =	21 (20 (11 (22 (27 (42(2.4)
YES (%)	1.2)	1.0)	0.5)	1.1)	1.5)	,
$\overrightarrow{\text{COMP5}} =$	15 (9 (13 (5 (11 (2 (0.1)
YES (%)	(0.8)	0.4)	0.6)	0.2)	0.6)	,
COMP6 =	32 (28 (8 (0 (0 (0 (NaN)
YES (%)	1.8)	1.4)	0.4)	NaN)	NaN)	, ,
COMP7 =	0 (0 (0 (14 (23 (10 (0.6)
YES (%)	NaN)	NaN)	NaN)	0.7)	1.3)	
COMP8 =	18 (19 (13 (17 (8 (6(0.3)
YES (%)	1.0)	0.9)	0.6)	0.8)	0.5)	
COMP9 =	11 (3 (6 (5 (9 (5 (0.3)
$\mathbf{YES} (\%)$	0.6)	0.1)	0.3)	0.2)	0.5)	
COMPAF	134 (132 (103 (132 (94 (90 (5.1)
= YES (%)	7.6)	6.4)	4.9)	6.4)	5.4)	
COMPAVBI	,	61 (44 (52 (39 (38 (2.1)
= YES $(%)$	4.2)	3.0)	2.1)	2.5)	2.2)	, , ,
COMPBLTF	`	0 (0 (0 (24 (28 (54.9)
= YES $(%)$	NaN)	NaN)	NaN)	NaN)	36.4)	
COMPHSR						
(%)	0 (0 /	0 (0 /	0 /	0 (0 0)
No	0 (0 (0 (0 (0 (0 (0.0)
NO	NaN)	NaN)	NaN)	0.0)	0.0)	1750 (00.0)
NO	0 (0 (0 (2049 (1722 (1756 (98.8)
Yes	NaN)	NaN)	NaN)	99.2)	98.7)	0 (0 0)
ies	0 (NaN)	0 (NaN)	0 (NaN)	0 (0.0)	0 (0.0)	0 (0.0)
YES	0 (0 (0 (17 (23 (21 (1.2)
1 123	NaN)	NaN)	NaN)	0.8)	23 (1.3)	21 (1.2)
COMPINE	0 (0 (0 (0.8)	76 (122 (6.9)
= YES (%)	NaN)	NaN)	NaN)	NaN)	4.4)	122 (0.9)
COMPMEC	,	0 (0 (0 (0 (0 (NaN)
= YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	5 (- 1.662 1)
CP2Y12 =	0 (0 (0 (0 (202 (227 (12.8)
YES (%)	NaN)	NaN)	NaN)	NaN)	11.6)	, ,
CPLAT =	0 (63 (82 (155 (202 (227 (12.9)
YES (%)	$\hat{\text{NaN}}$	3.1)	(3.9)	7.6)	11.6)	` ,

Table 16: table part 8 : All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
COMP26	38 (23 (21 (22 (18 (< 0.001
= YES (%)	2.0)	1.3)	1.2)	1.3)	1.0)	
COMP3 =	62 (35 (55 (55 (43 (< 0.001
YES (%)	(3.3)	(2.0)	3.1)	(3.2)	(2.5)	
$\widehat{\text{COMP4}} =$	17 (32 (49 (39 (11 (< 0.001
YES (%)	0.9)	1.8)	2.8)	(2.3)	(0.7)	
COMP5 =	1 (3 (2 (3 (3 (< 0.001
YES (%)	0.1)	0.2)	0.1)	0.2)	0.2)	
COMP6 =	0 (0 (0 (0 (0 (NaN
YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	
COMP7 =	15 (13 (5 (11 (11 (NaN
YES (%)	0.8)	0.7)	0.3)	0.6)	0.6)	
COMP8 =	9 (9 (9 (12 (12 (0.222
YES (%)	0.5)	0.5)	0.5)	0.7)	0.7)	
COMP9 =	0 (3 (3 (7 (1 (0.006
YES (%)	0.0)	0.2)	0.2)	0.4)	0.1)	
COMPAF	78 (66 (75 (66 (58 (< 0.001
= YES $(%)$	4.1)	3.7)	4.2)	3.8)	3.4)	0.004
COMPAVBE	,	25 (26 (18 (22 (< 0.001
= YES (%)	1.5)	1.4)	1.5)	1.0)	1.3)	NT NT
COMPBLTF	52 (29 (39 (26 (6 (NaN
= YES (%)	2.8)	1.6)	2.2)	66.7)	54.5)	NT NT
$\begin{array}{c} \text{COMPHSR} \\ (\%) \end{array}$						NaN
No	0 (0 (0 (0 (1719 (
	(0.0)	(0.0)	(0.0)	0.0)	99.6)	
NO	1875 (1777 (1769 (1733 (0 (
	99.6)	99.4)	99.5)	99.3)	(0.0)	
Yes	0 (0 (0 (0 (7 (
	0.0)	0.0)	0.0)	0.0)	0.4)	
YES	8 (11 (8 (13 (0 (
	0.4)	0.6)	0.5)	0.7)	0.0)	
COMPINE	0 (0 (0 (0 (0 (NaN
= YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	
COMPMEC	,	24 (17 (34 (28 (NaN
= YES $(%)$	2.2)	1.3)	1.0)	1.9)	1.6)	37.37
CP2Y12 =	280 (242 (261 (210 (160 (NaN
YES (%)	14.9)	13.5)	14.7)	12.0)	9.1)	AT AT
CPLAT = VPG(0)	280 (242 (261 (0 (0 (NaN
YES (%)	14.9)	14.4)	22.5)	NaN)	NaN)	

Table 17: table part 9 All vars except HAKZAA by source 2000-2010 $\,$

(mean (NA) $(1738.86)(1789.16)(1904.43)(1887.98)$ (SD))	0 (NaN) 37.00 (1804.98) 670 (38.4) 0 (NaN) 10 (0.6)
YES (%) NaN) NaN) NaN) NaN) NaN) CRCI NaN 5780.32 5814.91 5988.91 6047.93 603 (mean (NA) (1738.86)(1789.16)(1904.43)(1887.98) (SD)) CSMOK = 615 (681 (717 (778 (679 (YES (%) 35.3) 33.3) 34.2) 38.1) 38.9)	37.00 (1804.98) 670 (38.4) 0 (NaN)
CRCI NaN 5780.32 5814.91 5988.91 6047.93 603 (mean (NA) $(1738.86)(1789.16)(1904.43)(1887.98)$ (SD)) CSMOK = 615 (681 (717 (778 (679 (YES (%) 35.3) 33.3) 34.2) 38.1) 38.9)	670 (38.4) 0 (NaN)
(mean(NA) $(1738.86)(1789.16)(1904.43)(1887.98)$ (SD))CSMOK = 615 (681 (717 (778 (679 (YES (%) 35.3) 33.3) 34.2) 38.1) 38.9)	670 (38.4) 0 (NaN)
(SD)) CSMOK = 615 (681 (717 (778 (679 (YES (%) 35.3) 33.3) 34.2) 38.1) 38.9)	0 (NaN)
YES (%) 35.3) 33.3) 34.2) 38.1) 38.9)	0 (NaN)
	, ,
\mathbf{CTICGR} 0 (0 (0 (0 (, ,
	10 (0.6)
= YES (%) NaN) NaN) NaN) NaN) NaN)	10 (0.6)
CVA_TIA 19 (18 (14 (21 (14 (
= YES (%) 1.1) 0.9) 0.7) 1.0) 0.8)	
CWARFARIN 0 (0 (0 (0 (0 (NaN)
= YES (%) NaN) NaN) NaN) NaN) NaN)	
	1401 (79.5)
= YES (%) 55.5) 67.0) 70.8) 76.3) 74.7)	
	1253 (71.1)
YES (%) 58.3) 63.4) NaN) NaN) 66.9)	
DACOAG 122 (54 (72 (94 (86 (79 (4.5)
= YES (%) 8.1) 2.6) 3.4) 4.8) 5.0)	110 (00)
DALDO = 0 (0 (113 (143 (89 (143 (89 (143 (14	110 (6.2)
YES (%) NaN) NaN) 5.4) 7.2) 5.2)	150 (00)
$\mathbf{DARBL} = 0 \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} $	158 (9.0)
YES (%) NaN) NaN) NaN) 8.1)	z (0, 0)
$\mathbf{DARR} = 86 (96 (52 (0 (0 (William 1995))))) $	5 (0.3)
YES (%) 5.4) 4.7) 2.5) NaN) NaN)	1004 (05 7)
	1684 (95.7)
YES (%) 93.7) 89.8) 91.4) 96.7) 95.4) DBB = 1211 (1523 (1655 (1661 (1392 (1490 (01 1)
DBB = 1211 (1523 (1655 (1661 (1392 (YES (%) 74.4) 74.4) 79.0) 83.0) 81.3)	1428 (81.1)
$\mathbf{DCANT} = 253 \left(\begin{array}{ccc} 265 & 294 & 0 \\ \end{array} \right) 332 \left(\begin{array}{ccc} 332 & 332 \\ \end{array} \right)$	304 (17.2)
YES (%) 16.2) 12.9) 14.0) NaN) 19.5)	304 (11.2)
DCARDIAC 121 (85 (94 (77 (58 (51 (2.9)
= YES (%) 7.2) 4.3) 4.7) 3.8) 3.4)	01 (2.0)
DCAUSE	
(%)	
CARDIAC 87 (61 (58 (54 (42	34 (100.0)
93.5) $87.1)$ $86.6)$ $94.7)$ (100.0)	` /
NON 5 (7 (6 (3 (0 (0 (0.0)
CARDIAC 5.4) 10.0) 9.0) 5.3) 0.0)	,
OTHER 1 (2 (3 (0 (0 (0.0)
(2.9) (4.5) (0.0) (0.0)	

Table 18: table part 9 : All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	
CPRAS =	18 (23 (19 (26 (27 (NaN
YES (%)	1.0)	1.3)	1.6)	1.5)	$\frac{27}{1.5}$	Ivaiv
CRCI	6108.94	6030.15	NaN	NaN	NaN	< 0.001
(mean		3)(1878.16		(NA)	(NA)	70.001
(SD))	(=001.00)(10.011	/) (1:11)	(1111)	(1111)	
CSMOK =	740 (690 (764 (723 (685 (< 0.001
YES (%)	39.3)	38.5)	(43.0)	41.3)	39.0)	
CTICGR	9 (26 (53 (29 (31 (NaN
= YES $(%)$	0.5)	1.5)	4.5)	1.7)	1.8)	
CVA_TIA	15 (11 (0 (0 (0 (NaN
= YES (%)	0.8)	0.6)	NaN)	NaN)	NaN)	
CWARFARI	,	37 (19 (14 (9 (NaN
= YES (%)	3.0)	2.1)	1.9)	0.8)	0.5)	
DACEARB	1419 (1305 (1304 (1255 (1071 (< 0.001
= YES $(%)$	75.6)	81.5)	91.4)	71.7)	61.0)	
DACEI =	1179 (1037 (1010 (904 (743 (NaN
YES (%)	62.8)	65.2)	77.8)	52.8)	42.9)	
DACOAG	113 (130 (164 (141 (123 (< 0.001
= YES (%)	6.0)	7.4)	17.1)	8.2)	7.1)	37.37
DALDO =	178 (0 (0 (0 (0 (NaN
YES (%)	9.5)	NaN)	NaN)	NaN)	NaN)	NT NT
$DARBL = VEC_{(02)}$	256 (273 (275 (356 (332 (NaN
YES (%)	13.6)	18.8)	32.2)	20.8)	19.2)	NI - NI
$DARR = VES_{(07)}$	12 (8 (13 (4 (5 (NaN
YES (%) $DASA =$	0.6) 1769 (0.6) 1673 (1.9) 1639 (0.2) 1550 (0.3) 1320 (< 0.001
YES (%)	94.1)	95.7)	98.3)	90.5)	76.1)	< 0.001
DBB =	1450 (1340 (1271 (1267 (1050 (< 0.001
YES (%)	77.2)	82.7)	87.7)	74.0)	60.6)	<0.001
DCANT =	363 (325 (280 (324 (247 (NaN
YES (%)	19.3)	22.1)	32.1)	18.9)	14.3)	11011
DCARDIAC	,	30 (45 (45 (30 (< 0.001
= YES (%)	(2.7)	1.8)	67.2)	88.2)	83.3)	
DCAUSE	.,	-/	,	/	,	0.012
(%)						
CÁRDIAC	31 (24 (41 (36 (21 (
	86.1)	82.8)	78.8)	94.7)	91.3)	
NON	5 (5 (11 (2 (2 (
CARDIAC	13.9)	17.2)	21.2)	5.3)	8.7)	
OTHER	0 (0 (0 (0 (0 (
	0.0)	0.0)	0.0)	0.0)	0.0)	

Table 19: table part 10 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
DDIABT	292 (347 (238 (357 (310 (330 (18.5)
= YES (%)	18.3)	16.9)	11.4)	17.9)	17.8)	10 (1 0)
DDIGIT = YES (%)	55 (3.5)	46 (2.2)	50 (2.4)	42 (2.1)	25 (1.5)	18 (1.0)
DDIUR =	372 (422 (470 (460 (406 (391 (22.5)
YES (%)	23.2)	20.6)	22.4)	23.0)	23.8)	301 (22.3)
$\mathbf{DEZET}' =$	0 (0 (0 (55 (26 (27 (1.5)
YES (%)	NaN)	NaN)	0.0)	2.8)	1.5)	, ,
DFIBR = VFG(0)	53 (63 (100 (108 (101 (90 (5.1)
$\begin{array}{c} \text{YES (\%)} \\ \text{DIED} = \end{array}$	3.4) 1047 (3.1) 1102 (4.8) 1037 (5.4) 849 (5.9) 567 (413 (23.2)
DE-	58.4)	53.8)	49.5)	40.9)	32.5)	410 (20.2)
CEASED	001-)	33.3)			3=13)	
(%)						
DIED1095	349 (361 (355 (316 (254 (228 (15.4)
= DE-	19.8)	17.7)	17.1)	15.3)	15.1)	
CEASED (%)						
DIED1826	454 (481 (486 (452 (341 (316 (21.4)
= YES (%)	25.8)	23.6)	(23.4)	21.9)	20.2)	,
DIED30 =	154 (112 (114 (96 (76 (75 (4.2)
DE-	8.6)	5.5)	5.5)	4.6)	4.4)	
CEASED (%)						
DIED365	242 (224 (233 (203 (140 (143 (8.1)
= DE-	13.5)	11.0)	11.2)	9.8)	8.1)	110 (0.1)
CEASED	,	,	,	,	,	
(%)	/		/			
DIED3652	688 (825 (808 (764 (196	183 (100.0)
= YES (%) DIED7 =	39.0) 93 (40.6) 67 (39.0) 65 (37.2) 60 ((100.0) 45 (39 (2.2)
DE-	5.2)	3.3)	3.1)	2.9)	2.6)	00 (2.2)
CEASED	,	,	,	,	,	
(%)						
DIED730	293 (289 (297 (272 (196 (183 (12.4)
= DE-CEASED	16.6)	14.2)	14.3)	13.2)	11.5)	
(%)						
DIEHOS	116 (110 (95 (81 (72 (59 (3.3)
= DE-	6.5)	5.4)	4.5)	3.9)	4.1)	
CEASED						
(%)	0 (9F (20. (0 (16 (19 (0.7)
$DIG_CHR = YES (\%)$	0 (NaN)	25 (1.2)	20 (1.0)	0 (NaN)	16 (0.9)	12 (0.7)
DINSUL =	69 (103 (145 (170 (143 (190 (10.8)
YES (%)	4.4)	5.0)	6.9)	8.5)	8.4)	` /
DISCH						
(%)	0 (0 (0 (0 (16 (99 (1 9)
DECEASED IN HOS-	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	46 (2.7)	23 (1.3)
PITAL	0.0)	0.0)	0.0)	0.0)	2.1)	
DISCHARG	1524 (1886 (1909 (1890 (1634 (1626 (93.3)
FROM	96.3)	95.4)	979^{2}	95.1)	94.9)	
HOSPI-			10			
TAL	0 (26 (14 (17 (25 (73 (4.2)
LOST TO	0 (26 (14 (47 (25 (73 (4.2)

Table 20: table part 10: All vars except HAKZAA by source 2013-2024

-			1		v	
	S2013	S2016	S2018	S2021	S2024	р
DDIABT = YES (%)	395 (21.0)	460 (25.7)	453 (25.5)	567 (78.8)	358 (48.6)	< 0.001
DDIGIT = YES (%)	17 (0.9)	19 (1.3)	9 (1.3)	3 (0.2)	5 (0.3)	< 0.001
DDIUR = YES (%)	365 (19.4)	326 (22.4)	284 (32.9)	235 (13.7)	225 (13.0)	< 0.001
DEZET = YES (%)	45 (2.4)	0 (74 (275 (497 (NaN
DFIBR = YES (%)	62 (3.3)	0 (43 (NaN
DIED = DE- CEASED (%)	333 (175 (9.8)	149 (106 (0 (NaN)	NaN
DIED1095 = DE- CEASED (%)	262 (14.6)		0 (NaN)			NaN
DIED1826 = YES (%)		0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	NaN
DIED30 = DE- $CEASED$ $(%)$	69 (3.7)	`	73 (4.3)	44 (2.5)	,	<0.001
DIED365 = DE- CEASED (%)	`	`	131 (8.9)	`	0 (NaN)	NaN
DIED3652 = YES (%)		0 (NaN)		0 (NaN)		NaN
DIED7 = DE-CEASED (%)		28 (46 (33 (18 (< 0.001
DIED730 = DE- CEASED (%)	211 (11.7)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	NaN
DIEHOS = DE- CEASED (%)	53 (2.8)	43 (2.4)	,	51 (2.9)	28 (1.6)	< 0.001
DIG_CHR = YES (%)	13 (0.7)	5 (0.3)	4 (0.6)	4 (0.2)	330 (18.8)	NaN
$\begin{array}{l} ext{DINSUL} = \\ ext{YES (\%)} \end{array}$	246 (13.1)	282 (53.2)		228 (31.7)		< 0.001
DISCH (%)						< 0.001
DECEASED IN HOS- PITAL		16 (0.9)	11 (0.8)	17 (1.2)	13 (1.1)	
DISCHARG FROM HOSPI- TAL		1616 (91.8)	1387 (29 ^{5.4})			
LOST TO	452 (99 (39 (0 (0 (

Table 21: table part 11 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
STILL IN	59 (64 (41 (50 (16 (20 (1.1)
HOSPI- TAL	3.7)	3.2)	2.1)	2.5)	0.9)	
DISCRE	NaN	NaN	NaN	NaN	NaN	NaN (NA)
(mean	(NA)	(NA)	(NA)	(NA)	(NA)	11411 (1111)
(SD))	(= :==)	(= := =)	()	(= := =)	(- :)	
DISDIA						
(%)						
NON Q	380 (599 (646 (899 (873 (928 (52.7)
MI	21.3)	29.2)	30.9)	43.9)	50.9)	, , ,
Q WAVE	901 (891 (891 (724 (498 (484 (27.5)
MI	50.4)	43.5)	42.6)	35.4)	29.0)	242 (40.0)
UNSTABLE	505 (558 (557 (425 (345 (348 (19.8)
AP	28.3)	27.2)	26.6)	20.8)	20.1)	20 (2.1)
$\begin{array}{l} \text{DISDIE} = \\ \text{DE-} \end{array}$	94 (5.2)	72 (3.5)	68 (3.2)	59 (2.8)	44 (2.5)	38 (2.1)
CEASED	5.2)	3.9)	3.2)	2.0)	2.9)	
(%)						
DISDINEW						
(%)						
Microvascula	0 (0 (0 (0 (0 (0 (0.0)
	(0.0)	0.0)	(0.0)	0.0)	(0.0)	
MINOCA	0 (0 (0 (0 (0 (0 (0.0)
- VA-	0.0)	0.0)	0.0)	0.0)	0.0)	
SOSPAS-						
TIC,	200 (500 /	0.40 (571	coo /	000 (07 0)
NSTEMI	380 (599 (646 (751 (633 (669 (37.6)
OTHER	21.3)	29.2) 0 (30.9)	36.3) 0 (36.3) 0 (0 (0.0)
OTHER	0.0)	0.0)	0.0)	0.0)	0.0)	0 (0.0)
STE MI	901 (891 (891 (892 (767 (760 (42.8)
212111	50.4)	43.5)	42.6)	43.1)	44.0)	100 (1210)
Thromboemb	,	0 (0 (0 (0 (0 (0.0)
	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	,
UAP	505 (558 (557 (425 (345 (348 (19.6)
	28.3)	27.2)	26.6)	20.6)	19.8)	
DISECG						
(%)	00 7 (5 04 /	004/	001 /	F01 /	5 00 (04.0)
ANTERIOR	687 (724 (664 (691 (531 (532 (34.3)
INFERIOR	44.7) 570 (42.2)	40.8) 599 (35.3) 614 (33.3)	525 (33.8)
INFERIOR	579 (37.6)	673 (39.2)	36.8)	31.4)	530 (33.3)	⊎2⊎ (33. 8)
LATERAL	116 (112 (151 (151 (120 (105 (6.8)
DILLIUAL	7.5)	6.5)	9.3)	7.7)	7.5)	100 (0.0)
POSTERIOR		18 (30 (13 (16 (12 (0.8)
	1.1)	1.0)	1.8)	0.7)	1.0)	(3.5)
	-/	~ /	-,	/	~/	

Table 22: table part 11: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
STILL IN HOSPI-	22 (1.2)	30 (1.7)	17 (1.2)	5 (0.3)	8 (0.7)	
TAL	1.2)	1.1)	1.2)	0.3)	0.7)	
DISCRE	NaN	1.55	1.30	1.22	1.07	0.421
(mean	(NA)	(14.55)	(3.22)	(3.86)	(0.83)	
(SD)	, ,	,	, ,	, ,	, ,	
DISDIA						< 0.001
(%)	/	/				
NON Q	246 (287 (259 (336 (311 (
MI Q WAVE	25.1)	31.7)	31.9)	39.7)	38.1)	
MI	445 (45.5)	357 (39.4)	375 (46.2)	348 (41.1)	304 (37.3)	
UNSTABLE	288 (261 (177 (162 (201 (
AP	29.4)	28.8)	21.8)	19.1)	24.6)	
DISDIE =	37 (30 (52 (39 (23 (< 0.001
DE-	(2.0)	1.7)	(2.9)	(2.2)	1.3)	
CEASED						
(%)						
DISDINEW						< 0.001
(%)	0 /	0 /	0 /	9. /	0 /	
Microvascula	`	0 (0 (3 (0 (
MINOCA	0.0)	0.0)	0.0)	0.2) 20 (0.0)	
- VA-	0.0)	0.0)	0.0)	1.2)	0.0)	
SOSPAS-	0.0)	0.0)	0.0)	1.2)	0.0)	
TIC,						
NSTEMI	793 (814 (885 (835 (749 (
	42.1)	46.2)	51.3)	48.9)	47.6)	
OTHER	77 (0 (0 (0 (0 (
COD MI	4.1)	0.0)	0.0)	0.0)	0.0)	
STE MI	727 (38.6)	686 (39.0)	664 (38.5)	687 (40.2)	622 (39.6)	
Thromboeml	,	0 (0 (2 (0 (
1 in omboein	0.0)	0.0)	0.0)	0.1)	0.0)	
UAP	288 (261 (177 (162 (201 (
	15.3)	14.8)	10.3)	$9.5)^{}$	12.8)	
DISECG						< 0.001
(%)						
ANTERIOR	,	308 (278 (347 (289 (
INIEEDIOD	43.3)	46.2)	44.9)	50.5)	46.5)	
INFERIOR	360 (49.3)	318 (304 (302 (44.0)	278 (44.8)	
LATERAL	49.3) 33 (47.7) 33 (49.1) 24 (21 (39 (
DATERAL	4.5)	4.9)	3.9)	3.1)	6.3)	
POSTERIO		5 (8 (11 (9 (
	1.2)	0.7)	1.3)	1.6)	1.4)	

Table 23: table part 12 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
RIGHT VENTRI- CLE	4 (0.3)	5 (0.3)	2 (0.1)	6 (0.3)	1 (0.1)	2 (0.1)
UNDETERM	`	184 (183 (480 (395 (376 (24.2)
DISQW =	8.8) 901 (10.7) 891 (11.2) 891 (24.6) 743 (24.8) 529 (517 (29.5)
YES (%)	70.3)	59.8)	58.0)	37.1)	31.4)	
DISTO (%)						
CARDIOTH	0 (0 (0 (162 (145 (137 (7.9)
SURGERY	0.0)	0.0)	0.0)	8.1)	8.5)	
CONVALES	`	94 (118 (131 (84 (83 (4.8)
${ m FACIL}$ - ${ m ITY/UNIT}$	3.5)	4.8)	5.8)	6.5)	4.9)	
HOME	782 (963 (1035 (1140 (1104 (1147 (65.9)
11011111	46.2)	49.2)	51.2)	56.7)	64.9)	1111 (00.0)
INTERNAL	666 (721 (612 (503 (315 (301 (17.3)
MEDICINE	39.3)	36.8)	30.3)	25.0)	18.5)	, ,
OTHER	113 (94 (130 (36 (22 (15 (0.9)
OTHER	6.7)	4.8)	6.4)	1.8)	1.3)	5 0 (0 0)
$egin{array}{c} ext{OTHER} \ ext{WARD} \end{array}$	74 (87 (126 (6.2)	38 (32 (1.9)	58 (3.3)
DIUR_CHR	4.4) 0 (4.4) 292 (399 (1.9)	326 (328 (18.4)
= YES (%)	NaN)	14.3)	19.3)	NaN)	18.7)	920 (10.4)
DLIPID =	901 (1365 (1658 (1891 (1593 (1675 (95.1)
YES (%)	(55.4)	66.7)	79.2)	94.3)	92.9)	,
DLMW =	270 (352 (264 (211 (143 (105 (6.0)
YES (%)	17.0)	17.2)	12.6)	10.8)	8.4)	
DNIT =	744 (619 (397 (0 (145 (117 (6.6)
YES (%) $DP2Y12 =$	45.6)	30.2)	19.0)	NaN)	8.5)	1501 (05 2)
YES (%)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	1350 (79.1)	1501 (85.3)
DPLAT =	501 (1047 (1302 (1520 (1350 (1501 (85.3)
YES (%)	32.3)	51.1)	62.2)	76.2)	79.1)	1001 (00.0)
DPP_IV_C	0 (0 (0 (0 (0 (0 (NaN)
= YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	
DPP_IV_D	`	0 (0 (0 (0 (0 (NaN)
= YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	0 (37.37)
DPP_IV_H	`	0 (0 (0 (0 (0 (NaN)
= YES (%) DPRAS =	NaN)	NaN)	NaN)	NaN)	NaN)	6 (0.3)
YES (%)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	0 (0.3)
	1,01,	1,411)	1,011)	11011)	11011)	

Table 24: table part 12: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	
RIGHT	2 (0 (0 (1 (0 (
	,	,	0.0)		0.0)	
CLE	0.0)	0.0)	0.0)	0.1)	0.0)	
UNDETERM	TIMED	3 (5 (5 (6 (
CIVELLETON	`	,	,	0.7)	`	
DISQW =	,	357 (/			< 0.001
YES (%)	,	,	,	,	`	\0.001
DISTO	01.1)	00.1)	99.1)	00.0)	10.1)	< 0.001
(%)						70.001
CARDIOTH	162 (139 (72 (88 (75 (
SURGERY	,	,		5.2)	,	
CONVALES	CENCE	46 (56 (79 (1 (
FACIL-	,	2.6)	,	4.7)	0.1)	
ITY/UNIT	- /	- /	- /	.,	- /	
HOME	1320 (1304 (1345 (1359 (1510 (
				80.2)		
INTERNAL		100 /	196 (65 (
MEDICINE	,	11.1)	,	7.1)	,	
OTHER	0 (0 (36 (28 (32 (
		(0.0)	(2.1)	1.7)	1.9)	
OTHER		56 (21 (40 /	19 (
\mathbf{WARD}	1.5)	3.2)	1.2)	1.1)	1.1)	
DIUR_CHR	294 (242 (191 (116 (112 (NaN
= YES (%)				6.6)	6.4)	
DLIPID =		1643		1618 (,	< 0.001
YES~(%)		(100.0)		94.5)	,	
DLMW =	176 (85 (61 (0 (0 (NaN
		4.9)	6.0)	NaN)		
DNIT =		77 (96 (56 (47 (NaN
` '		5.4)			2.7)	
DP2Y12 =		1536 (1622 (NaN
YES (%)		88.1)	98.1)	87.3)		
DPLAT =	1586 (0 (NaN
YES (%)	84.5)	88.1)				NT NT
DPP_IV_C			117 (0 (NaN
= YES (%)		16.9)	21.5)	. *	NaN)	NI. NI
DPP_IV_D		97 (99 (0 (0 (NaN
= YES (%)	NaN)	22.9)	17.9)	NaN)	NaN)	NI - NI
DPP_IV_H	0 (48 (101 (0 (0 (NaN
= YES (%)	NaN)	11.9)	18.2)	NaN)	NaN)	M. M
DPRAS = VFS (%)	511 (437 (387 (461 (513 (NaN
YES (%)	27.3)	24.9)	23.5)	26.9)	29.6)	

Table 25: table part 13 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
DRUG =	0 (0 (162 (432 (276 (394 (34.2)
YES (%)	NaN)	NaN)	15.8)	36.0)	25.4)	
DSTAT =	858 (1352 (1648 (1880 (1575 (1672 (94.9)
YES (%)	53.5)	66.0)	78.7)	93.7)	91.9)	0 (37 37)
DTICGR	0 (0 (0 (0 (0 (0 (NaN)
= YES (%) DTICL =	NaN)	NaN) 1047 (NaN)	NaN) 1520 (NaN) 1350 (1495 (84.9)
YES (%)	501 (32.3)	51.1)	1302 (62.2)	76.2)	79.1)	1495 (64.9)
ECGLOC	02.0)	01.1)	02.2)	10.2)	10.1)	
(%)						
ÀMBULANC	C E 0 (0 (0 (0 (492 (304 (17.1)
	NaN)	NaN)	NaN)	NaN)	28.6)	
\mathbf{ED}	0 (0 (0 (0 (979 (920 (51.9)
HOME	NaN)	NaN)	NaN)	NaN)	56.9)	104 (0.0)
HOME	0 (NaN)	0 (NoN)	0 (NoN)	0 (NoN)	179 (164 (9.2)
HOSPITAL	0 (NaN) 0 (NaN) 0 (NaN) 0 (10.4) 72 (94 (5.3)
WARD	NaN)	NaN)	NaN)	NaN)	4.2)	J4 (5.5)
PRIMARY	0 (0 (0 (0 (0 (0 (0.0)
CLINIC /	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	\hat{NaN}	(0.0)	,
'MOKED'						
PRIMARY	0 (0 (0 (0 (0 (291 (16.4)
CLINIC /	NaN)	NaN)	NaN)	NaN)	0.0)	
MOKED	NI_NI	NI - NI	160 10	202 15	207.16	100 00 (417 67)
ECG_1WRD (mean	(NA)	$ \text{NaN} \\ (\text{NA}) $	160.18	202.15	227.16 (1252.12)	188.98 (417.67)
(SD)	(IVA)	(\mathbf{IVA})	(320.01)	(1133.13)(1202.12)	
ECG_REP	NaN	NaN	149.91	167.77	112.20	109.54 (82.97)
(mean	(NA)	(NA)	(330.86)	(824.62)	(113.94)	,
(SD)						
EDUC (%)		,		,	,	,
ELEMENTA	0 (0 (0 (0 (0 (394 (26.4)
HIGH	NaN)	NaN)	NaN)	NaN)	NaN)	644 (43.2)
SCHOOL	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	044 (45.2)
HIGHER	,		0 (452 (30.3)
EDUCA-		NaN)	NaN)	NaN)	NaN)	- ()
TION /	,	,	,	,	,	
ACA-						
DEMIC						
EF_CLASS						
(%) MILD	356 (470 (564 (531 (405 (365 (27.2)
(EF40-	29.4)	31.1)	31.7)	30.3)	29.2)	500 (21.2)
50%)	_0.1)	J1.1)	J1.1)	55.5)		
MODERATE	306 (355 (347 (320 (213 (238 (17.7)
(EF30-	25.3)	(23.5)	19.5)	18.3)	15.3)	, ,
40%)						
4070)						

Table 26: table part 13: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
DRUG =	698 (1146 (1056 (0 (0 (NaN
YES (%)	58.2)	94.6)	98.1)	NaN)	NaN)	
DSTAT =	1725 (1643 (1655 (1603 (1389 (< 0.001
YES (%)	91.8)	97.9)	99.6)	93.6)	80.2)	37.37
DTICGR	288 (545 (821 (595 (382 (NaN
= YES $(%)$	15.5)	31.1)	49.8)	34.8)	22.0)	0.004
DTICL =	807 (565 (456 (439 (391 (< 0.001
YES (%)	43.0)	32.5)	27.6)	25.6)	22.6)	NT NT
ECGLOC						NaN
(%) AMBULANC	TD 67 (401 (272 (120 (150 (
AMBULANC	19.5)	401 (22.4)	373 (21.0)	428 (24.5)	458 (26.5)	
ED	951 (869 (891 (920 (958 (
ED	50.5)	48.5)	50.1)	52.7)	55.4)	
HOME	119 (60 (98 (72 (37 (
11011111	6.3)	3.4)	5.5)	4.1)	$\frac{37}{2.1}$	
HOSPITAL	78 (68 (84 (61 (97 (
WARD	4.1)	3.8)	4.7)	3.5)	5.6)	
PRIMARY	0 (0 (0 (0 (180 (
CLINIC /	(0.0)	(0.0)	(0.0)	(0.0)	10.4)	
'MOKED'	/	/	/	/	- /	
PRIMARY	370 (393 (332 (266 (0 (
CLINIC /	19.6)	21.9)	18.7)	15.2)	(0.0)	
$\mathbf{MOKED}^{'}$,	,	,	,	,	
ECG_1WRD	244.61	278.49	NaN	NaN	NaN	0.001
(mean	(386.66)	(453.85)	(NA)	(NA)	(NA)	
(SD))						
ECG_REP	118.26	96.80	NaN	NaN	NaN	0.015
(mean	(165.15)	(106.36)	(NA)	(NA)	(NA)	
(SD)						
EDUC (%)	100 (221 (200 (2-2 /	222 (NaN
ELEMENTA	480 (321 (260 (273 (226 (
шап	32.8)	29.4)	28.3)	21.3)	21.2)	
HIGH SCHOOL	551 (468 (387 (580 (468 (
HIGHER	37.7) 431 (42.9) 301 (42.1) 272 (45.3) 428 (43.8) 374 (
EDUCA-	29.5)			`	35.0)	
TION /	29.0)	21.0)	29.0)	55.4)	33.0)	
ACA-						
DEMIC						
EF CLASS						< 0.001
(%)						
MILD	372 (391 (436 (456 (434 (
(EF40-	27.9)	27.7)	28.8)	28.4)	28.1)	
50%)	,	,	,	,	,	
MODERATE	216 (208 (233 (262 (239 (
(EF30-	16.2)	14.7)	15.4)	16.3)	15.4)	
40%)	•		•		•	

Table 27: table part 14 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
NORMAL	394 (514 (673 (764 (675 (639 (47.6)
$(\mathrm{EF}{>}50\%)$	32.6)	34.0)	37.8)	43.6)	48.6)	
SEVERE	153 (173 (195 (136 (96 (101 (7.5)
$(\mathrm{EF}{<}30\%)$	12.7)	11.4)	11.0)	7.8)	6.9)	
EZE_CHR	0 (0 (28 (0 (19 (27 (1.5)
= YES (%)	NaN)	NaN)	1.4)	NaN)	1.1)	
$\begin{array}{c} \mathbf{FANGIO} \\ (\%) \end{array}$						
9	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
NO	1369 (90.3)	1846 (93.9)	1791 (95.1)	1693 (92.0)	1546 (92.4)	1559 (93.5)
YES	147 (119 (93 (147 (127 (109 (6.5)
125	9.7)	6.1)	4.9)	8.0)	7.6)	100 (0.0)
FANGT =	43 (21 (15 (21 (37 (25 (23.6)
URGENT	33.1)	17.6)	16.7)	17.1)	29.4)	(,
(%)	/	/	/	. ,	- /	
FARR =	10 (7 (18 (29 (17 (11 (0.7)
YES (%)	0.7)	0.4)	1.0)	1.6)	1.0)	` ,
FARRH =	10	7	18	17 (14 (8 (80.0)
YES (%)	(100.0)	(100.0)	(100.0)	68.0)	82.4)	
FCABG =	54 (69 (70 (123 (131 (122 (7.3)
YES (%)	3.6)	3.5)	3.7)	6.6)	7.8)	
${f FCABGT} \ (\%)$						
NÓ	0 (0 (0 (0 (0 (0 (0.0)
	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	` /
SCHEDULE	D 38 (44 (45 (86 (117 (109 (92.4)
	76.0)	66.7)	66.2)	79.6)	92.9)	
URGENT	12 (22 (23 (22 (9 (9 (7.6)
	24.0)	33.3)	33.8)	20.4)	7.1)	
FCHF (%)						
No	0 (0 (0 (0 (0 (0 (0.0)
	0.0)	0.0)	0.0)	0.0)	0.0)	
NO	1471 (97.0)	1933 (98.4)	1834 (97.3)	1769 (95.7)	1627 (97.5)	1629 (98.4)
Yes	0 (0 (0 (0 (0 (0 (0.0)
100	0.0)	0.0)	0.0)	0.0)	0.0)	0 (0.0)
YES	45 (32 (50 (79 (41 (27 (1.6)
- ~	3.0)	1.6)	(2.7)	4.3)	(2.5)	- · (-···)

Table 28: table part 14: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
NIODATAT						Р
NORMAL	670 (729 (751 (823 (784 (
$(EF{>}50\%)$ SEVERE	50.3)	51.7)	49.7)	51.2)	50.7)	
	73 (83 (92 (6.1)	66 (4.1)	90 (
$(EF{<}30\%)$ EZE_CHR	5.5)	5.9)	,	,	5.8)	MaM
= YES (%)	40 (2.1)	43 (4.3)	67 (134 (7.7)	161 (9.2)	NaN
FANGIO	2.1)	4.5)	9.0)	(.1)	9.2)	< 0.001
(%)						<0.001
9	45 (0 (0 (0 (0 (
9	3.2)	0.0)	0.0)	0.0)	0.0)	
NO	1292 (1480 (1300 (1342 (1022 (
110	92.6)	94.6)	93.3)	92.9)	91.1)	
YES	59 (84 (94 (103 (100 (
1 LS	4.2)	5.4)	6.7)	7.1)	8.9)	
FANGT =	17 (16 (18 (18 (11 (0.002
URGENT	28.8)	19.3)	20.5)	17.6)	11.1)	0.002
(%)	20.0)	10.0)	20.0)	11.0)	11.1)	
FARR =	6 (9 (9 (5 (6 (0.001
YES (%)	0.4)	0.6)	0.6)	0.3)	0.5)	0.001
FARRH =	2 (4 (5 (0 (3 (NaN
YES (%)	1.4)	40.0)	$55.\hat{6})$	NaN)	50.0)	
FCABG' =	81 (102 (50 (78 (39 (< 0.001
YES (%)	(6.0)	$(6.5)^{}$	(3.6)	(5.4)	3.5)	
FCABGT	,	,	,	,	,	< 0.001
(%)						
NO	0 (0 (0 (0 (3 (
	0.0)	0.0)	0.0)	0.0)	7.5)	
SCHEDULE	,	51 (29 (32 (25 (
	58.5)	57.3)	67.4)	41.0)	62.5)	
URGENT	34 (38 (14 (46 (12 (
	41.5)	42.7)	32.6)	59.0)	30.0)	
FCHF (%)						NaN
No	0 (0 (1383 (0 (0 (
	NaN)	NaN)	99.0)	0.0)	0.0)	
NO	0 (0 (0 (1418 (1101 (
	NaN)	NaN)	0.0)	98.3)	98.2)	
Yes	0 (0 (14 (0 (0 (
	NaN)	NaN)	1.0)	0.0)	0.0)	
YES	0 (0 (0 (24 (20 (
	NaN)	NaN)	0.0)	1.7)	1.8)	

Table 29: table part 15 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
FCHFH =	45	32	50	37 (26 (21 (80.8)
YES (%)	(100.0)	(100.0)	(100.0)	53.6)	65.0)	
FDCAUS	10 (10 (7 (5 (14 (14 (40.0)
= NON-	22.7)	29.4)	16.3)	17.9)	29.2)	
CARDIAC						
(%) FIBR_CHR	0 (57 (57 (87 (74 (76 (4.3)
= YES (%)	NaN)	2.8)	2.8)	4.3)	4.3)	70 (4.3)
FIRST (%)	man)	2.0)	2.0)	4.0)	4.0)	
CCU OR	0 (0 (176 (178 (213 (272 (15.4)
CATH	NaN)	NaN)	8.6)	9.0)	12.3)	2.2 (13.1)
LAB	,	,	0.0)	0.0)	,	
CHEST	0 (0 (3 (0 (0 (0 (0.0)
PAIN	$\hat{\text{NaN}}$	NaN)	0.1)	(0.0)	(0.0)	, ,
\mathbf{ER}	0 (0 (1874 (1810 (1522 (1489 (84.6)
	NaN)	NaN)	91.3)	91.0)	87.7)	
Other	0 (0 (0 (0 (0 (0 (0.0)
	NaN)	NaN)	0.0)	0.0)	0.0)	10 (0.0)
FMI =	0 (31 (16 (14 (25 (13 (0.8)
YES (%)	NaN)	8.2)	4.1)	0.8)	1.5)	19 (100.0)
$FMIH = VES_{(07)}$	0 (NoN)	(100.0)	16 (4.1)	13 (92.9)	19 (82.6)	$13\ (100.0)$
YES (%) FNCHOS	NaN) 60 ((100.0) 67 (59 (78 (64 (61 (25.8)
= YES (%)	16.6)	17.7)	15.1)	22.5)	23.0)	01 (25.6)
FPCI =	10.0)	97 (91 (123 (118 (88 (5.3)
YES (%)	6.9)	4.9)	4.8)	6.7)	7.1)	0.0)
FPCIT	/	- /	- /	/	. ,	
(%)						
NO	0 (0 (0 (0 (0 (0(0.0)
	0.0)	0.0)	0.0)	0.0)	0.0)	
SCHEDULE	63 (80 (73 (75 (89 (71 (82.6)
	64.9)	82.5)	82.0)	72.1)	76.7)	
URGENT	34 (17 (16 (29 (27 (15 (17.4)
EDMICD	35.1)	17.5)	18.0)	27.9)	23.3)	1 (0 1)
$\begin{array}{l} \text{FPMICD} \\ = \text{YES } (\%) \end{array}$	0 (0.0)	0 (0.0)	2 (6 (0.3)	5 (0.3)	1 (0.1)
FPMICDT	0.0)	0.0)	0.1)	4	0.3)	0 (NaN)
=	NaN)					o (ivaiv)
$\stackrel{-}{ ext{URGENT}}$	11011)	11011)	110011)	(100.0)	11011)	
(%)						
FREHOS	361 (379 (390 (377 (343 (316 (19.8)
= YES (%)	(21.3)	19.2)	19.3)	20.1)	(21.0)	, ,
FREHP	,	,	,	,	,	
(%)						

Table 30: table part 15: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
FCHFH =	0 (0 (0 (14 (12 (NaN
YES (%)	NaN)	NaN)	NaN)	70.0)	63.2)	
FDCAUS	3 (5 (5 (4 (7 (0.160
= NON-	27.3)	45.5)	55.6)	30.8)	43.8)	
CARDIAC						
(%)						
FIBR_CHR	66 (46 (34 (39 (14 (NaN
= YES (%)	3.5)	4.6)	4.7)	2.2)	0.8)	
FIRST (%)	202 (222 (222 (110 (100 (NaN
CCU OR	293 (328 (336 (416 (423 (
CATH	15.5)	18.3)	18.9)	23.8)	24.6)	
LAB	0 (0 (0 (0 (0 (
CHEST	0 (0 (0 (0 (0 (
PAIN ER	0.0)	0.0)	0.0) 1430 (0.0) 1307 (0.0) 1273 (
ER	1592 (84.5)	1463 (81.7)	80.4)	74.7)	74.0)	
Other	0 (0 (12 (26 (25 (
Other	0.0)	0.0)	0.7)	1.5)	1.5)	
FMI =	0.0)	0.0)	0.1)	0 (0 (NaN
YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	11011
FMIH =	0 (0 (0 (0 (0 (NaN
YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	
FNCHOS	66 (71 (90 (46 (46 (< 0.001
= YES (%)	37.1)	34.6)	40.0)	21.3)	23.7)	
$\mathbf{FPCI} = \mathbf{}$	50 (71 (81 (105 (92 (< 0.001
YES (%)	3.7)	4.5)	5.8)	7.3)	8.2)	
FPCIT						< 0.001
(%)						
NO	0 (0 (0 (0 (56 (
	0.0)	0.0)	0.0)	0.0)	38.1)	
SCHEDULE	37 (58 (64 (86 (86 (
LIDODAM	72.5)	82.9)	82.1)	82.7)	58.5)	
URGENT	14 (27.5)	12 (14 (18 (5 (
FPMICD	6 (17.1) 3 (17.9) 6 (17.3) 6 (3.4) 8 (0.004
= YES (%)	0.3)	0.2)	0.4)	0.4)	0.7)	0.004
FPMICDT	1	2	3	4 (3 (NaN
=	(100.0)	(100.0)	(100.0)	66.7)	37.5)	11011
$\stackrel{-}{ ext{URGENT}}$	(100.0)	(100.0)	(100.0)	00.1)	31.0)	
(%)						
FREHOS	214 (276 (229 (216 (198 (< 0.001
= YES (%)	15.4)	16.9)	16.4)	14.9)	17.5)	
FREHP		,	,		,	NaN
(%)						

Table 31: table part 16 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
NO	0 (NaN)	0 (NaN)	0 (NaN)	365 (58.1)	1358 (82.0)	1261 (84.0)
SCHEDULEI TO PAR-	O 0 (NaN)	0 (NaN)	0 (NaN)	0 (0 (0 (0.0)
TICIPATE YES	0 (NaN)	0 (NaN)	0 (NaN)	263 (41.9)	298 (18.0)	240 (16.0)
FREHR = YES (%)	0 (NaN)	0 (NaN)	0 (NaN)	641 (34.2)	758 (45.6)	892 (53.2)
FREHT = YES (%)	139 (7.8)	129 (6.3)	75 (3.6)	185 (53.3)	113 (40.6)	112 (47.5)
FREMI = YES (%)	107 (7.1)	102 (5.0)	46 (2.4)	64 (3.5)	63 (3.8)	47 (2.8)
$\begin{array}{l} \text{FSTAT} = \\ \text{YES} \ (\%) \end{array}$	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	1512 (92.6)	1559 (95.0)
FSTROKE = YES (%)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)
${f FTIMI} \ ({f mean} \ ({f SD}))$	NaN (NA)	NaN (NA)	NaN (NA)	2.77 (0.66)	2.78 (0.65)	2.84 (0.60)
FUAP = YES (%)	0 (NaN)	72 (19.0)	28 (7.2)	51 (2.8)	47 (2.8)	36 (2.2)
FUAPH = YES (%)	0 (NaN)	72 (100.0)	28 (7.2)	29 (63.0)	35 (77.8)	31 (86.1)
FUNC (%) MILDLY	0 (0 (367 (253 (204 (213 (12.0)
IM- PAIRED NORMAL	NaN)	NaN)	17.6)	12.2)	11.7)	1501 (94 5)
SIGNIFICA:	0 (NaN) 0 (0 (NaN) 0 (1639 (78.6) 79 (1718 (83.0) 99 (1485 (85.2) 54 (1501 (84.5) 63 (3.5)
IM- PAIRED	NaN)	NaN)	3.8)	4.8)	3.1)	03 (3.3)
GFR (mean (SD))	NaN (NA)	71.71 (24.54)	80.28 (129.46)	79.25 (72.92)	73.60 (27.07)	75.28 (28.51)
GLP1_Chro = YES (%)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)
GLP1_Disch = YES (%)	$\hat{\text{NaN}}$	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)
GLP1_Hosp = YES (%)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)
GRACE (mean (SD))	NaN (NA)	NaN (NA)	102.11 (30.66)	108.67 (35.24)	105.61 (34.50)	105.74 (33.60)

Table 32: table part 16: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
NO	1069 (1239 (1076 (878 (664 (
	81.7)	82.6)	80.8)	64.9)	59.7)	
SCHEDULE	,	0 (0 (99 (228 (
TO PAR-	0.0)	0.0)	0.0)	7.3)	20.5)	
TICIPATE						
YES	239 (261 (255 (375 (221 (
	18.3)	17.4)	19.2)	27.7)	19.9)	
FREHR =	687 (911 (792 (1092 (1158 (NaN
$\mathbf{YES}\ (\%)$	51.7)	59.2)	58.1)	67.7)	75.1)	
FREHT =	56 (76 (59 (73 (48 (< 0.001
YES~(%)	50.5)	57.1)	43.7)	44.0)	32.7)	
FREMI =	30 (21 (21 (28 (19 (< 0.001
YES~(%)	2.2)	1.3)	1.5)	1.9)	1.7)	
FSTAT =	1240 (1483 (1280 (1224 (933 (NaN
YES (%)	91.5)	99.3)	98.8)	83.3)	86.2)	
FSTROKE	0 (3 (5 (3 (3 (NaN
= YES (%)	NaN)	0.2)	0.4)	0.2)	0.3)	
\mathbf{FTIMI}	2.73	2.79	2.81	2.86	2.86	0.002
(mean	(0.80)	(0.66)	(0.63)	(0.52)	(0.52)	
(SD))						
FUAP =	0 (0 (0 (0 (0 (NaN
$\mathbf{YES}\ (\%)$	NaN)	NaN)	NaN)	NaN)	NaN)	
FUAPH =	0 (0 (0 (0 (0 (NaN
YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	
FUNC (%)						NaN
MILDLY	0 (0 (0 (0 (0 (
IM-	NaN)	NaN)	NaN)	NaN)	NaN)	
PAIRED						
\mathbf{NORMAL}	0 (0 (0 (0 (0 (
	NaN)	NaN)	NaN)	NaN)	NaN)	
SIGNIFICA	0 (0 (0 (0 (0 (
IM-	NaN)	NaN)	NaN)	NaN)	NaN)	
PAIRED						
GFR	118.16	75.59	74.24	358526.1		0.343
(mean	(889.38)	(28.14)	(28.51)	(142549)	16(290)87)	
(SD))	2 /	10 (22 /	•		
GLP1_Chro	0 (16 (22 (26	44 (NaN
= YES $(%)$	NaN)	2.6)	4.1)	(100.0)	5.9)	37.37
GLP1_Disch	,	9 (18 (35 (45 (NaN
= YES (%)	NaN)	2.1)	3.2)	4.9)	6.1)	NT NT
GLP1_Hosp	0 (6 (18 (19 (10 (NaN
= YES (%)	NaN)	1.5)	3.2)	2.6)	1.3)	-0.004
GRACE	104.13	106.12	107.37	104.57	103.74	< 0.001
(mean	(32.81)	(31.71)	(32.26)	(30.01)	(29.09)	
(SD))						

Table 33: table part 17 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
HACEARB	926 (1303 (1502 (1590 (1304 (1419 (79.9)
= YES (%)	51.6)	63.6)	71.7)	77.4)	74.9)	,
HACEI =	892 (1246 (0 (0 (1187 (1279 (72.0)
YES (%)	51.7)	60.8)	NaN)	NaN)	68.2)	
HACOAG	376 (26 (76 (83 (73 (71 (4.0)
= YES (%)	21.9)	1.3)	3.6)	4.2)	4.2)	
HAGGR =	51 (99 (187 (101 (22 (38 (2.1)
YES (%)	3.1)	4.8)	8.9)	4.9)	1.3)	
HAICD =	5 (5 (7 (6 (9 (11 (0.6)
YES (%)	0.3)	0.2)	0.3)	0.3)	0.5)	
HALDO =	0 (0 (0 (141 (83 (111 (6.2)
YES (%)	NaN)	NaN)	NaN)	6.9)	4.8)	1004 (60 1)
HANGIO	982 (1141 (1102 (1254 (1094 (1094 (62.1)
= YES (%)	55.9)	55.7)	52.9)	61.1)	63.2)	425 (24 C)
$\begin{array}{l} { m HANT} = \\ { m YES} \ (\%) \end{array}$	326 (258 (427 (641 (545 (435 (24.6)
HARBL =	19.1) 0 (12.6)	20.4)	30.9)	31.2) 138 (156 (8.8)
YES (%)	NaN)	NaN)	NaN)	NaN)	7.9)	150 (6.6)
HARR =	158 (151 (92 (0 (0 (26 (1.5)
YES (%)	9.2)	7.4)	4.4)	NaN)	NaN)	20 (1.0)
HASA =	1694 (1885 (2021 (2012 (1702 (1740 (97.8)
YES (%)	96.0)	92.0)	96.5)	97.0)	97.5)	-1-0 (31.0)
HAVA (%)	,	/	,	/	,	
ВОТН	0 (0 (0 (0 (0 (0 (NaN)
	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$,
FEMORAL	0 (0 (0 (0 (0 (0 (NaN)
	NaN)	NaN)	NaN)	NaN)	NaN)	
RADIAL	0 (0 (0 (0 (0 (0 (NaN)
	NaN)	NaN)	NaN)	NaN)	NaN)	
HBB =	1191 (1520 (1719 (1729 (1434 (1483 (83.4)
YES (%)	68.6)	74.2)	82.1)	83.3)	82.1)	, ,
HCABG =	116 (145 (129 (78 (68 (30 (1.7)
YES (%)	6.7)	7.1)	6.2)	3.8)	3.9)	224 (12.2)
$HCANT = VEC_{(07)}$	225 (254 (330 (0 (337 (324 (18.2)
$\begin{array}{c} \text{YES (\%)} \\ \text{HDCS} = \end{array}$	13.2)	12.4)	15.8)	NaN)	19.4)	69 (3.9)
YES (%)	107 (6.2)	48 (2.3)	63 (3.0)	82 (4.0)	52 (3.0)	09 (3.9)
HDIABT	240 (2.3) 292 (248 (331 (3.0) 265 (257 (14.4)
= YES (%)	14.0)	14.3)	11.8)	16.2)	15.2)	201 (14.4)
<u> </u>	14.0)	14.0)	11.0)	10.2)	10.2)	

Table 34: table part 17: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	
						p
HACEARB	1491 (1373 (1319 (932 (768 (< 0.001
= YES (%)	79.1)	82.7)	90.7)	53.3)	43.8)	
HACEI =	1273 (1113 (1059 (752 (568 (NaN
YES (%)	67.5)	67.8)	81.0)	43.0)	32.4)	
HACOAG	104 (104 (116 (100 (102 (< 0.001
= YES (%)	5.5)	5.8)	12.8)	5.7)	5.8)	
HAGGR =	106 (0 (0 (0 (0 (NaN
YES (%)	5.6)	NaN)	NaN)	NaN)	NaN)	
HAICD =	9 (4 (8 (14 (11 (0.146
YES (%)	0.5)	0.2)	0.4)	0.8)	0.6)	
HALDO =	193 (0 (0 (0 (0 (NaN
YES (%)	10.2)	NaN)	NaN)	NaN)	NaN)	
HANGIO	1129 (1127 (1167 (988 (1091 (< 0.001
= YES $(%)$	60.9)	64.1)	65.7)	56.7)	63.1)	
HANT =	255 (163 (51 (0 (0 (NaN
YES (%)	13.6)	9.1)	5.3)	NaN)	NaN)	37.37
HARBL =	249 (289 (281 (191 (209 (NaN
YES (%)	13.2)	19.3)	33.1)	10.9)	11.9)	NT NT
$HARR = VEC_{(07)}$	29 (14 (13 (4 (7 (NaN
YES (%)	1.5)	1.0)	1.9)	0.2)	0.4)	-0.001
$HASA = VES_{(07)}$	1813 (1742 (1674 (1154 (986 (< 0.001
YES (%)	96.2)	97.3)	98.0)	65.9)	56.2)	NT NT
HAVA (%)	0 (10 /	26 (10 /	<i>c</i> (NaN
ВОТН	0 (19 (26 (10 (6 (
FEMORAL	NaN)	1.7) 187 (3.1) 99 (1.0) 93 (0.6)	
FEMORAL	0 (NaN)	16.7)	99 (11.9)	95 (9.5)	54 (5.2)	
RADIAL	0 (917 (710 (871 (987 (
TOTAL	NaN)	81.7)	85.0)	89.4)	94.3)	
HBB =	1530 (1428 (1316 (961 (779 (< 0.001
YES (%)	81.2)	79.7)	89.4)	54.9)	44.4)	
HCABG =	88 (62 (62 (116 (114 (< 0.001
YES (%)	4.7)	$(3.5)^{}$	$(3.5)^{}$	(6.7)	$(6.6)^{\circ}$	
HCANT =	434 (332 (187 (172 (137 (NaN
YES (%)	(23.0)	(22.1)	(23.1)	9.8)	7.8)	
HDCS =	39 (40 (37 (49 (55 (< 0.001
YES (%)	2.1)	2.2)	2.1)	2.8)	3.2)	
HDIABT	371 (308 (245 (316 (206 (< 0.001
= YES (%)	19.7)	17.2)	13.8)	42.6)	27.5)	

Table 35: table part 18 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
HDIGIT =	56 (48 (72 (56 (38 (25 (1.4)
YES~(%)	3.3)	2.3)	3.4)	2.7)	2.2)	
HDIUR =	488 (509 (633 (615 (507 (486 (27.9)
YES (%)	28.2)	24.9)	30.2)	29.9)	29.1)	
HECHO =	1227 (1403 (1655 (1746 (1390 (1420 (79.8)
YES (%)	69.7)	68.5)	79.0)	84.4)	79.7)	
HEFBY (%)						
ECHO	0 (0 (1634	1714 (1332 (1319 (98.2)
Leno	NaN)	NaN)	(100.0)	97.5)	96.0)	1015 (50.2)
RADIONUC	,	0 (0 (2 (1 (3 (0.2)
\mathbf{SCAN}	NaN)	NaN)	(0.0)	0.1)	0.1)	- (-)
VENTRICU	0 (0 (0 (42 (55 (21 (1.6)
	$\hat{\text{NaN}}$	\hat{NaN}	(0.0)	(2.4)	4.0)	,
HEFT1	689.12	628.84	388.30	535.10	586.03	724.70 (1721.07)
(mean	(2465.32))(1821.60)(930.46)	(1471.13)(1802.82	
(SD)			. /	•	-	
HEFT10	NaN	4974.53	NaN			2589.67 (2496.26)
(mean	(NA)	(4570.48	(NA)	(3590.22)	(3041.07	
(SD))						
HEFT2	142.97	151.88	121.77	102.08	92.20	88.57 (191.72)
(mean	(1245.51)	(1352.38))(538.04)	(405.44)	(397.25)	
(SD)						
HEFT3	201.23	177.47		156.25	150.58	$146.00\ (273.38)$
(mean	(460.53)	(356.19)	(261.98)	(238.17)	(205.59)	
(SD))	000 50	702.07	400.20	000 50	C70.0C	091 09 (1047 05)
HEFT4	809.52	783.87	499.32	666.53	672.26	831.83 (1847.95)
(mean	(2719.38))(2400.89)(1142.01)(1723.55))(1924.57)
(SD)) HEFT5	984.38	942.03	627.43	770.13	794.51	959.09 (1851.50)
(mean				(1586.81		959.09 (1651.50)
(SD))	(2031.21	(2400.10	(1101.01	(1000.01	(1300.4)	
HEFT6	80.18	146.00	74.62	65.63	44.12	53.07 (33.82)
(mean			(142.81)		(38.16)	00.01 (00.02)
(SD)	,	,	,	,	,	
HEFT7	110.58	237.60	199.17	146.58	97.84	97.74 (238.63)
(mean				(577.80)		
(SD))		,	,	,	,	
HEPRGALL	,	1096 (1051 (1241 (1032 (986 (55.4)
= YES (%)	75.3)	53.5)	50.2)	59.8)	59.1)	
HEPS =	0 (0 (0 (2 (6 (6 (0.3)
YES (%)	NaN)	NaN)	NaN)	0.1)	0.3)	0 (37.37)
HET =	62 (29 (46 (0 (0 (0 (NaN)
YES (%)	3.6)	1.4)	2.2)	NaN)	NaN)	07 (1 5)
$HEZET = VES_{(07)}$	0 (NoN)	0 (NoN)	1 (60 (21 (27 (1.5)
YES (%)	NaN)	NaN)	0.0)	2.9)	1.2)	80 (5 0)
HFIBR = YES (%)	45 (2.7)	49 (2.4)	105 (101 (98 (5.6)	89 (5.0)
IES (70)	4.1)	2.4)	5.0)	4.9)	5.6)	

Table 36: table part 18: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
HDIGIT = YES (%)	20 (1.1)	19 (1.3)	11 (1.6)	4 (0.2)	5 (0.3)	< 0.001
HDIUR =	467 (340 (270 (232 (183 (< 0.001
YES (%) HECHO =	24.8) 1485 (22.6) 1055 (32.5) 1207 (13.3) 1618 (10.4) 1551 (< 0.001
${ m YES}~(\%) \ { m HEFBY}$	79.7)	59.0)	68.0)	93.4)	94.1)	NaN
(%) ECHO	1315 (1405 (1509 (0 (0 (
RADIONUC	98.9)	99.6)	99.8)	NaN) 0 (NaN) 0 (
\mathbf{SCAN}	0.2)	0.1)	0.2)	\hat{NaN}	$\hat{\text{NaN}}$	
VENTRICU	12 (0.9)	3 (0.2)	0 (0.0)	0 (NaN)	0 (NaN)	
HEFT1 (mean	532.37 (1288 13	447.01)(1261.35	341.38	1360.59 (4483.77	824.74)(2669.69	<0.001
(SD)			, , ,	`		
HEFT10 (mean	2977.64 (2912.47	2772.84 (3042.04		2950.80 (6455.60		< 0.001
$\mathrm{(SD)}) \ \mathrm{HEFT2}$	97.69	102.56	78.14	190.20	114.30	0.025
(mean (SD))	(345.97)	(418.96)	(309.25)	(1850.73)(653.46)	
HEFT3 (mean	199.85	242.45 (445.52)	194.88	528.09	311.86	< 0.001
(SD)	, ,	, ,	, ,	`	`	0.004
HEFT4 (mean	618.70 (1359.28	527.51 (1298.47)	402.34)(797.34)	1526.67 (5235.66	849.02 (2617.74)	<0.001)
$(\mathrm{SD})) \ \mathrm{HEFT5}$	775.53	709.55	596.78	1942.05	1127.69	< 0.001
(mean (SD))		(1348.01				
HEFT6 (mean	40.36 (29.58)	46.21 (27.23)	30.67 (14.31)	NaN (NA)	39.80 (17.60)	0.293
(SD)	,	,	, ,	` ,	,	
HEFT7 (mean		79.74 (104.83)			116.71 (291.54)	< 0.001
$(\mathrm{SD}))$ HEPRGALL	1483 (1450 (1322 (1504 (1370 (< 0.001
= YES (%) HEPS $=$	78.7) 1 (81.0) 1 (74.4) 1 (85.9) 0 (78.1) 1 (NaN
YES (%)	0.1)	0.1)	0.1)	0.0)	0.1)	
$egin{array}{l} \mathrm{HET} = \ \mathrm{YES} \; (\%) \end{array}$	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	NaN
HEZET = YES (%)	43 (2.3)	0 (NaN)	40 (5.8)	175 (10.0)	374 (21.3)	NaN
HFIBR = YES (%)	63 (3.3)	0 (NaN)	26 (3.9)	17 (1.0)	18 (1.0)	NaN
	5.5)	11011)	9.9)	1.0)	1.0)	

Table 37: table part 19 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
HHEP =	1323 (926 (861 (855 (639 (769 (43.2)
YES (%)	76.5)	45.2)	41.1)	42.9)	36.8)	
HINSUL =	161 (171 (274 (282 (253 (328 (18.5)
YES (%)	9.5)	8.3)	13.1)	13.8)	14.5)	
HINTEG	84 (128 (352 (542 (521 (425 (23.9)
= YES $(%)$	5.1)	6.2)	16.8)	26.1)	29.8)	
HIOB =	83 (90 (74 (99 (84 (81 (4.6)
YES (%)	4.8)	4.4)	3.5)	4.8)	4.8)	1 100 (50 0)
HISTORY	1293 (1487 (1541 (1616 (1342 (1406 (79.0)
= YES $(%)$	72.1)	72.6)	73.6)	77.9)	76.9)	70 (4 4)
HIVINAG	0 (0 (106 (119 (58 (79 (4.4)
= YES (%) HLIPID $=$	NaN)	NaN)	5.1)	5.8)	3.3)	1707 (07 1)
	671 (39.1)	1214 (59.3)	1591 (76.0)	1928 (1653 (94.7)	1727 (97.1)
YES (%) $HLMW =$	451 (975 (1290 (93.5) 1176 (869 (815 (45.9)
YES (%)	26.1)	47.6)	61.6)	58.5)	50.0)	615 (45.9)
HMO (%)	20.1)	41.0)	01.0)	90.9)	50.0)	
CLALIT	0 (0 (1381 (1415 (1111 (1120 (63.6)
CLITLII	NaN)	NaN)	66.4)	69.1)	64.2)	1120 (00.0)
IDF	0 (0 (0 (0 (0 (0 (0.0)
	NaN)	\hat{NaN}	(0.0)	(0.0)	(0.0)	,
LEUMIT	0 (0 (183 (168 (163 (176 (10.0)
	\hat{NaN}	$\hat{\text{NaN}}$	8.8)	8.2)	9.4)	, ,
MACCABI	0 (0 (328 (309 (294 (282 (16.0)
	NaN)	NaN)	15.8)	15.1)	17.0)	
MEUHEDET	Γ 0 (0 (158 (145 (145 (171 (9.7)
	NaN)	NaN)	7.6)	7.1)	8.4)	
OTHER	0 (0 (31 (11 (18 (11 (0.6)
	NaN)	NaN)	1.5)	0.5)	1.0)	
HNIT =	1338 (1228 (531 (0 (480 (422 (23.7)
YES (%)	76.7)	60.0)	25.4)	NaN)	27.6)	1=1 00 (11 00)
HOSCHO	199.19	194.57	192.63	184.64	178.86	174.88 (44.30)
(mean	(43.57)	(47.82)	(43.52)	(44.35)	(46.09)	
(SD)) $HOSCRE$	NaN	1.19	1.28	1.16	1.24	1.22 (0.92)
		(0.66)		(0.80)		1.22 (0.92)
$egin{array}{c} ({ m mean} \ ({ m SD})) \end{array}$	(\mathbf{IVA})	(0.00)	(0.99)	(0.80)	(0.92)	
HOSEF =	1219 (1540 (1801 (1768 (1389 (1343 (76.2)
YES (%)	68.9)	75.2)	87.2)	85.6)	80.8)	1010 (10.2)
HOSEFV	NaN	NaN	NaN	46.57	47.88	47.37 (11.89)
(mean	(NA)	(NA)	(NA)	(11.54)	(11.62)	(11.00)
(SD))	()	()	()	()	(-)	

Table 38: table part 19: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
HHEP =	1004 (797 (404 (0 (0 (NaN
YES (%)	53.3)	44.7)	37.1)	NaN)	NaN)	
HINSUL =	376 (292 (320 (150 (128 (< 0.001
YES~(%)	20.0)	54.6)	64.3)	20.2)	17.1)	
HINTEG	231 (0 (0 (0 (0 (NaN
= YES (%)	12.3)	NaN)	NaN)	NaN)	NaN)	
HIOB =	44 (40 (35 (34 (18 (< 0.001
YES (%)	2.3)	2.2)	2.0)	1.9)	1.1)	
HISTORY	1474 (1390 (0 (0 (0 (NaN
= YES (%)	78.2)	77.6)	NaN)	NaN)	NaN)	
HIVINAG	98 (0 (0 (0 (0 (NaN
= YES (%)	5.2)	NaN)	NaN)	NaN)	NaN)	
HLIPID =	1754 (1496	1398 (1310 (1082 (< 0.001
YES (%)	93.1)	(100.0)	94.8)	74.9)	61.7)	
HLMW =	789 (599 (428 (0 (0 (NaN
YES $(\%)$	41.9)	33.5)	38.8)	NaN)	NaN)	
HMO (%)						NaN
CLALIT	1144 (1054 (1000 (997 (988 (
	60.7)	58.8)	56.2)	57.0)	56.9)	
\mathbf{IDF}	0 (0 (0 (0 (2 (
	0.0)	0.0)	0.0)	0.0)	0.1)	
LEUMIT	188 (170 (176 (158 (138 (
	10.0)	9.5)	9.9)	9.0)	7.9)	
MACCABI	336 (344 (386 (392 (381 (
	17.8)	19.2)	21.7)	22.4)	21.9)	
MEUHEDE'	,	195 (192 (190 (218 (
	10.3)	10.9)	10.8)	10.9)	12.6)	
OTHER	22 (28 (24 (13 (9 (
	1.2)	1.6)	1.3)	0.7)	0.5)	
HNIT =	313 (206 (134 (89 (83 (NaN
YES (%)	16.6)	13.9)	17.6)	5.1)	4.7)	
HOSCHO	175.75	171.58	168.61	169.92	169.29	< 0.001
(mean	(46.50)	(46.66)	(44.97)	(47.47)	(49.33)	
(SD))						
HOSCRE	1.78	1.24	1.17	1.11	1.08	< 0.001
(mean	(7.87)	(3.00)	(1.01)	(0.87)	(0.76)	
(SD))						
HOSEF =	1331 (1411 (1512 (1618 (1551 (< 0.001
YES (%)	71.5)	80.0)	85.3)	93.4)	94.1)	
HOSEFV	48.43	48.91	48.03	48.16	48.16	< 0.001
(mean	(11.98)	(11.65)	(11.49)	(10.99)	(11.27)	
(SD))						

Table 39: table part 20 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
HOSGLU	NaN	NaN	172.43	137.72	147.97	150.21 (77.54)
(mean	(NA)	(NA)	(90.64)	(65.64)	(73.97)	100.21 (11.01)
(SD)	()	()	()	()	()	
HOŚHB	NaN	13.17	12.95	13.68	13.81	13.61 (1.85)
(mean	(NA)	(1.98)	(2.00)	(1.78)	(1.79)	, ,
(SD)						
HOSHDL	NaN	42.46	42.01	40.95	39.95	40.18 (11.95)
(mean	(NA)	(12.42)	(14.74)	(11.08)	(13.75)	
(SD))						
HOSLDL	NaN	121.54	118.33	111.75	107.81	$105.38 \ (37.63)$
(mean	(NA)	(38.77)	(37.21)	(37.53)	(39.19)	
(SD))	051 /	cro (40F (100 /	017 /	090 (07 0)
HOSMB = VES (07)	951 (653 (405 (128 (217 (236 (67.0)
YES (%) HOSPCABG	76.2)	80.0)	73.6)	76.2)	74.1)	75 (4 2)
= YES (%)	0 (NaN)	0 (NaN)	134 (8.8)	124 (6.0)	109 (6.2)	75 (4.2)
HOSPCK	1054.21	1034.74	951.39	986.92	809.56	467.54 (492.93)
(mean		(2270.18)				401.04 (402.00)
(SD)	(1101.11	(2210.10	(1010.02	(2020.00	(1210.11	
HOSTG	NaN	165.68	170.52	165.71	162.99	156.34 (108.91)
(mean	(NA)	(121.77)		(107.98)		,
(SD)	,	,	,	,	,	
HOSTIE =	0 (531 (687 (773 (746 (702 (76.4)
YES (%)	NaN)	81.2)	71.6)	79.5)	73.6)	
HOSTRI	NaN	NaN	27.43	17.28	22.71	$18.33 \ (46.63)$
(mean	(NA)	(NA)	(71.30)	(40.35)	(108.85)	
(SD))		(/	/	/	
HOSTRO	158 (793 (1108 (1309 (1223 (1358 (79.1)
= YES (%)	59.6)	79.6)	75.9)	78.1)	76.1)	9 09 (15 17)
HOSTRT	NaN	NaN	8.99	11.38	16.86	$3.23\ (15.17)$
$egin{array}{c} ({ m mean} \ ({ m SD})) \end{array}$	(NA)	(NA)	(54.88)	(140.03)	(146.78)	
HOSTTE						
(%)						
0.3	0 (0 (1 (0 (0 (0 (0.0)
	$\hat{\text{NaN}}$	0.0)	0.2)	0.0)	0.0)	` '
NO	0 (109 (202 (179 (150 (234 (25.7)
	NaN)	27.9)	32.1)	24.9)	23.3)	
YES	0 (281 (427 (540 (494 (676 (74.3)
	NaN)	72.1)	67.8)	75.1)	76.7)	,
HOSWBC	NaN	NaN	11176.4	NaN		$10955.50 \ (4324.96)$
(mean	(NA)	(NA)	(4387.76	(NA)	(7310.90	
(SD))	55 /	77 (10 (0 (0. ($0 (N_0N)$
$\begin{array}{l} \text{HOTHER} \\ = \text{YES } (\%) \end{array}$	55 (3.3)	77 (3.8)	48 (87.3)	0 (NaN)	0 (NaN)	0 (NaN)
= 1ES (70) $HP2Y12 =$	0 (0 (0 (0 (1540 (1684 (94.7)
YES (%)	NaN)	NaN)	NaN)	NaN)	88.8)	1004 (34.1)
HPACE =	7 (12 (11 (7 (9 (9 (0.5)
	0.4)	0.6)	0.5)	0.3)	0.5)	(/
YES (%)		0.6)	,		,	. ,

Table 40: table part 20 : All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
HOSGLU (mean (SD))	164.46 (96.26)	166.87 (87.04)	165.19 (84.41)	167.31 (86.71)	155.01 (76.24)	<0.001
HOSHB (mean (SD))	14.23 (9.39)	13.74 (1.94)	13.90 (1.94)	13.89 (1.93)	14.16 (1.83)	< 0.001
HOSHDL (mean (SD))	38.73 (12.03)	39.93 (14.08)	71.29 (1162.44	40.67 (12.70)	40.63 (12.59)	0.462
HOSLDL (mean (SD))	106.19 (40.95)	103.20 (40.29)	100.15 (38.86)	100.93 (41.92)	99.68 (43.51)	< 0.001
HOSMB = YES (%)	0 (NaN)		0 (NaN)	0 (NaN)	0 (NaN)	NaN NaN
HOSPCABG = YES (%) HOSPCK	5.9) 820.66	96 (5.4) 837.34	75 (4.2) 953.13	123 (7.0) 815.08	115 (6.6) 844.84	NaN <0.001
$egin{array}{l} ext{(mean} \\ ext{(SD))} \\ ext{HOSTG} \end{array}$	(1465.45 275.30	(1519.56 151.00	(2774.97 158.33	(1346.61 156.72	(1598.10 151.92	0.390
(mean (SD)) HOSTIE =	(4415.48))(129.57)	(116.91)	(127.53)	(113.21)	
YES (%) HOSTRI	888 (69.4) 16.16	654 (76.0) 7691.57	493 (82.4) 28257.84	719 (86.2) 25887.00	649 (79.9) 20093.96	NaN <0.001
$egin{array}{l} ext{(mean} \\ ext{(SD))} \\ ext{HOSTRO} \end{array}$	(39.55) 1556 ((27554.65 1557 (î	Î	3()45691.5 1203 (,
= YES (%) HOSTRT	83.9) 52.33	91.3) 1451.20	95.7) 3270.93	92.8) 1802.41	88.1) 5670.59	< 0.001
$(mean \ (SD)) \ HOSTTE$	(520.79)	(3360.67))(8659.22)(3672.55)(33706.3	6) NaN
(%) 0.3	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	
NO	399 (36.9)	91 (9.1)	82 (7.3)	115 (13.2)	163 (22.7)	
YES	682 (63.1)	909 (1041 (92.7)	754 (86.8)	554 (77.3)	0.004
HOSWBC (mean (SD))	1904633 (734280	120.94 (1037.82	10.32 (4.45)	10.49 (4.20)	10.18 (3.78)	< 0.001
HOTHER = YES (%) HP2Y12 =	0 (NaN) 1797 (0 (NaN) 1622 (0 (NaN) 1658 (0 (NaN) 1470 (0 (NaN) 1219 (NaN NaN
YES (%) HPACE = YES (%)	95.4) 7 (0.4)	90.7) 5 (0.3)	98.1) 9 (0.5)	84.0) 7 (0.4)	69.5) 8 (0.5)	0.959

Table 41: table part 21 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
HPC2BS	0 (0 (0 (146 (154 (109 (64.1)
= DUR-	NaN)	NaN)	NaN)	45.1)	60.9)	
ING/AFTEI						
PCI (%)						
HPCI =	567 (760 (701 (882 (774 (781 (43.9)
YES (%)	32.8)	37.1)	33.5)	42.5)	44.3)	
HPCIAN	0 (0 (0 (45 (74 (39 (5.0)
= YES (%)	NaN)	NaN)	NaN)	2.2)	9.6)	
HPCICL	0 (0 (670 (811 (697 (730 (93.5)
= YES (%)	NaN)	NaN)	95.6)	39.1)	90.1)	10 (01)
HPCIT1 =	0 (0 (0 (20 (17 (16 (2.1)
YES (%)	NaN)	NaN)	NaN)	1.0)	2.2)	0.40 (.44.0)
HPCIT2 =	0 (0 (0 (410 (353 (340 (44.2)
YES (%)	NaN)	NaN)	NaN)	19.8)	46.2)	045 (21.0)
HPCIT3 =	0 (0 (0 (269 (245 (245 (31.9)
YES (%) HPCIT4 =	NaN)	NaN)	NaN)	13.0)	32.1)	040 (20 4)
	0 (0 (0 (293 (265 (249 (32.4)
YES (%) $HPCIT5 =$	NaN)	NaN)	NaN) 0 (14.1) 36 (34.7) 25 (25 (3.3)
YES (%)	0 (NaN)	0 (NaN)	NaN)	1.7)	3.3)	29 (3.3)
HPCIT6 =	0 (0 (0 (0 (4 (8 (1.1)
YES (%)	NaN)	NaN)	NaN)	0.0)	0.5)	0 (1.1)
HPCIW2B	117 (428 (273 (356 (255 (170 (21.8)
= YES (%)	20.6)	56.3)	38.9)	17.2)	32.9)	110 (21.0)
HPCIWS	426 (635 (624 (813 (713 (707 (90.5)
= YES (%)	75.1)	83.6)	89.0)	39.2)	92.1)	(0 0 0 0)
HPCLS =	0 (0 (0 (218 (168 (59 (8.1)
DUR-	$\hat{\text{NaN}}$	\hat{NaN}	$\hat{\text{NaN}}$	(27.7)	24.2)	` /
ING/AFTEI	,	,	,	,	,	
PCI (%)						
HPGL_CHF	R 0 (392 (424 (461 (394 (415 (23.3)
= YES (%)	NaN)	19.1)	20.6)	22.5)	22.6)	
HPLAT =	298 (1001 (1591 (1710 (1540 (1684 (94.7)
YES (%)	17.5)	48.9)	76.0)	83.3)	88.8)	
HPRAS =	0 (0 (0 (0 (0 (2(0.1)
YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	,
HREOP =	201 (15 (2 (9 (2 (2(0.1)
YES (%)	12.3)	0.7)	0.1)	0.4)	0.1)	(0 (0 5)
HRESUC	121 (55 (63 (78 (50 (63 (3.5)
= YES (%)	7.0)	2.7)	3.0)	3.8)	2.9)	O (NT NT)
$HSGC = VEC_{(07)}$	25 (11 (7 (0 (0 (0 (NaN)
YES (%)	1.4)	0.5)	0.3)	NaN)	NaN)	1794 (07 0)
HSTAT = YES (%)	630 (1204 (1579 (75.4)	1917 (1633 (93.6)	1724 (97.0)
IES (70)	37.2)	58.8)	10.4)	92.9)	90.0)	

Table 42: table part 21 : All vars except HAKZAA by source 2013-2024 $\,$

	S2013	S2016	S2018	S2021	S2024	p
HPC2BS = DUR- ING/AFTEI	81 (82.7)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	NaN
PCI (%) HPCI = YES (%)	768 (40.7)	766 (42.8)	623 (35.0)	745 (75.4)	831 (76.4)	< 0.001
$\begin{array}{l} \text{HPCIAN} \\ = \text{YES (\%)} \end{array}$	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	NaN
HPCICL = YES (%)	512 (66.7)	629 (55.8)	534 (46.7)	446 (46.0)	288 (24.7)	NaN
HPCIT1 = YES (%) $HPCIT2 =$	20 (2.6) 374 (34 (4.5) 386 (39 (6.3) 303 (42 (4.3) 344 (32 (2.9) 413 (NaN NaN
YES (%) HPCIT3 =	48.8) 237 (50.4) 237 (48.6) 223 (34.8) 233 (37.9) 246 (NaN
YES (%) $HPCIT4 =$	30.9) 280 (31.0) 248 (35.8) 211 (23.6) 232 (22.5) 231 (NaN
$\begin{array}{l} {\rm YES}~(\%)\\ {\rm HPCIT5} = \end{array}$	36.5) 29 (32.5) 26 (33.9) 11 (23.5) 20 (21.2) 11 (NaN
YES (%) HPCIT6 =	3.8)	3.5)	1.9)	2.0)	1.0)	NaN
YES (%) HPCIW2B	0.0) 99 (0.3) 95 (0.5) 80 (0.1)	0.4) 86 (< 0.001
= YES (%) HPCIWS = YES (%)	12.9) 700 (91.1)	8.4) 793 (70.4)	6.9) 849 (72.9)	6.6) 718 (73.6)	8.0) 770 (70.9)	< 0.001
HPCLS = DUR-ING/AFTEI	52 (7.0)	130 (20.5)	84 (15.4)	116 (26.8)	196 (47.8)	NaN
PCI (%) HPGL_CHF		467 (459 (512 (365 (NaN
= YES (%) HPLAT =	25.9) 1797 (26.1) 1622 (25.8) 0 (69.1)	48.8)	NaN
$\begin{array}{l} {\rm YES}~(\%) \\ {\rm HPRAS} = \end{array}$	95.4) 595 (90.7) 478 (NaN) 358 (NaN) 476 (NaN) 489 (NaN
YES (%) $HREOP =$	31.6) 1 (26.7)	33.3)	27.2)	27.9) 0 (NaN
YES (%) HRESUC	0.1) 36 (NaN) 24 (NaN) 36 (NaN) 44 (NaN) 39 (< 0.001
= YES (%) HSGC = YES (%)	1.9) 0 (NaN)	1.3) 0 (NaN)	2.0) 0 (NaN)	2.5) 0 (NaN)	2.3) 0 (NaN)	NaN
$ \begin{array}{c} \text{HSTAT} = \\ \text{YES (\%)} \end{array} $	1752 (93.0)	1496 (95.0)	1390 (94.2)	1273 (72.7)	1007 (57.4)	< 0.001

Table 43: table part 22 All vars except HAKZAA by source 2000-2010 $\,$

HSTRES 0 (0 (0 (0 (34 (39 (2.2) EYES (%) NaN) NaN) NaN) NaN) 2.0) HTEE = 29 (19 (51 (0 (0 (0 (NaN) YES (%) 1.7) 0.9) 2.4) NaN) NaN) HTICGR 0 (0 (0 (0 (0 (5 (0.3) EYES (%) NaN) NaN) NaN) NaN) NaN) HTICL = 298 (1001 (1591 (1710 (1540 (1682 (94 YES (%) 17.5) 48.9) 76.0) 83.3) 88.8) HTPM = 68 (45 (55 (49 (43 (30 (1.7 YES (%) 3.9) 2.2) 2.6) 2.4) 2.5)		S201	S2008	S2006	S2004	S2002	S2000	
HTEE = 29 (19 (51 (0 (0 (0 (NaN YES (%)) 1.7) 0.9) 2.4) NaN) NaN) NaN) HTICGR 0 (0 (0 (0 (0 (5 (0.3) = YES (%) NaN) NaN) NaN) NaN) NaN) HTICL = 298 (1001 (1591 (1710 (1540 (1682 (94 YES (%) 17.5) 48.9) 76.0) 83.3) 88.8) HTPM = 68 (45 (55 (49 (43 (30 (1.7	.2)	39 (2	34 (0 (0 (0 (0 (HSTRES
YES (%) 1.7) 0.9) 2.4) NaN) NaN) HTICGR 0 (0 (0 (0 (5 (0.3) = YES (%) NaN) NaN) NaN) NaN) NaN) HTICL = 298 (1001 (1591 (1710 (1540 (1682 (94 YES (%) 17.5) 48.9) 76.0) 83.3) 88.8) HTPM = 68 (45 (55 (49 (43 (30 (1.7			2.0)	NaN)	NaN)	NaN)	NaN)	
HTICGR 0 (0 (0 (0 (5 (0.3) = YES (%) NaN) NaN) NaN) NaN) NaN) HTICL = 298 (1001 (1591 (1710 (1540 (1682 (94 YES (%) 17.5) 48.9) 76.0) 83.3) 88.8) HTPM = 68 (45 (55 (49 (43 (30 (1.7	ıN)	0 (Na	0 (0 (51 (,		
= YES (%) NaN) NaN) NaN) NaN) NaN) HTICL = 298 (1001 (1591 (1710 (1540 (1682 (94 YES (%) 17.5) 48.9) 76.0) 83.3) 88.8) HTPM = 68 (45 (55 (49 (43 (30 (1.7			NaN)	NaN)	2.4)	0.9)	1.7)	
HTICL = 298 (1001 (1591 (1710 (1540 (1682 (94 YES (%) 17.5) 48.9) 76.0) 83.3) 88.8) HTPM = 68 (45 (55 (49 (43 (30 (1.7	.3)	5 (0	0 (0 (,	0 (
YES (%) 17.5) 48.9) 76.0) 83.3) 88.8) HTPM = 68 (45 (55 (49 (43 (30 (1.7			,	,	,	,	,	
$\mathbf{HTPM} = 68 (45 (55 (49 (43 (30 (1.7)))))$	94.5)	1682 (\	,	,	`	`	
			,	,	/	,		
YES $(\%)$ 3.9) 2.2) 2.6) 2.4) 2.5)	.7)	30 (1	`	,		,		
	,			,	,	,	,	
HVENT = 186 (112 (96 (135 (78 (88 (4.9)))))	9)	88 (4		`		`	,	
YES (%) 10.7) 5.5) 4.6) 6.6) 4.5)	>	- /		/	,	/	/	` /
Hypoglyc_o 0 (0 (0 (0 (NaN	ıN)	0 (Na		,	`	,	,	v
= YES (%) NaN) NaN) NaN) NaN) NaN)	2.7\	0 (37	,	,	,	,	,	
Hypoglyc_other_(Dischi) 0 0 0 0 NaN	ıN)	0 (Na	`	,	,	,		
= YES (%) NaN) NaN) NaN) NaN) NaN)	3.7\	0 / 37	,	,	/	,	,	` ,
Hypoglyc_o 0 (0 (0 (0 (NaN	ıN)	0 (Na	`	,		` .		
= YES (%) NaN) NaN) NaN) NaN) NaN)	0.0)	145 /	,	,		,		
INS_CHR 0 (70 (115 (122 (129 (145 (8.2	5.2)	145 (,	`		,		
= YES (%) NaN) 3.4) 5.6) 6.0) 7.4)			7.4)	6.0)	5.6)	3.4)	NaN)	
IRA (%)	7.0)	044 (/	011 /	051 (250 (0 (0 (
LAD 0 (0 (250 (251 (211 (244 (47.4	(1.0)	244 (4	,	`	,	,	,	LAD
NaN) NaN) 53.5) 57.3) 48.1) LCX 0 (0 (63 (54 (54 (71 (13.7)	27)	71 / 1	/	/		/		ICV
LCX 0 (0 (63 (54 (54 (71 (13.7 NaN) NaN) 13.5) 12.3)	3.7)	11 (1				,	,	LCA
LMCA 0 (0 (8 (3 (5 (1.0)	0)	5 (1		,	,			IMCA
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0)	0 (1		,		,	(LIVICA
Other 0 (0 (0 (0 (0 (0.0)	0)	0 (0				,	,	Other
Graft NaN NaN 0.0 0.0 0.0	0)	0 (0		1	1	,	,	
RAMUS 0 (0 (1 (0 (7 (0 (0.0)	.0)	0 (0	,	,	,			
NaN) NaN) 0.2) 0.0) 1.6)	0)	0 (0	,	,		\		
RCA 0 (0 (140 (127 (158 (192 (37.	7.0)	192 (3	,	,	,	,	/	RCA
NaN) NaN) 30.0) 29.0) 36.0)	,	-9- (9	`	`	`	,	,	
SVG 0 (0 (5 (3 (6 (7 (1.3)	.3)	7 (1	,	,	,		/	SVG
NaN) NaN) 1.1) 0.7) 1.4)	,	. (-	`	,		\	,	
ISHDAYS 7.97 7.55 6.37 7.09 5.89 5.21 (4.2)	.22)	5.21 (4	,	,		,	,	ISHDAYS
(mean (5.78) (9.33) (5.06) (6.24) (5.67)	,	,						(mean
(SD)			` '	, ,	, ,	, ,	, ,	,
KLP_COMP 457 (414 (310 (405 (245 (280 (15.	5.7)	280 (1	245 (405 (310 (414 (4 57 (KLP_COMP
= YES (%) 25.5) 20.2) 14.8) 19.5) 14.0)			14.0)	19.5)	14.8)	20.2)	25.5)	= YES (%)

Table 44: table part 22: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
HSTRES	38 (28 (20 (6 (6 (NaN
= YES (%)	(2.0)	1.6)	1.1)	0.3)	0.3)	
HTEE =	0 (0 (0 (0 (0 (NaN
YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	
HTICGR	375 (640 (782 (622 (380 (NaN
= YES (%)	19.9)	35.8)	61.7)	35.5)	21.7)	
HTICL =	1118 (822 (643 (480 (383 (< 0.001
YES (%)	59.3)	46.0)	52.5)	27.4)	21.8)	
HTPM =	26 (21 (17 (15 (14 (< 0.001
YES (%)	1.4)	1.2)	1.0)	0.9)	0.8)	0.004
HVENT =	83 (48 (62 (117 (87 (< 0.001
YES (%)	4.4)	2.7)	3.5)	6.7)	5.1)	NT NT
Hypoglyc_o		52 (40 (21 (19 (NaN
= YES (%)	NaN)	8.4)	7.4)	2.8)	2.5)	NI - NI
Hypoglyc_or = YES (%)	NaN)	11.3)	39 (7.0)	13 (1.8)	14 (NaN
Hypoglyc_o	,	33 (40 (6 (1.9) 6 (NaN
= YES (%)	NaN)	8.2)	7.2)	0.8)	0.8)	man
INS_CHR	186 (246 (216 (193 (153 (NaN
= YES (%)	9.9)	42.5)	45.2)	26.0)	20.5)	11011
IRA (%)	0.0)	12.0)	10.2)	20.0)	20.0)	NaN
LAD	268 (278 (261 (348 (285 (
	46.0)	48.0)	47.0)	48.8)	45.7)	
LCX	100 (80 (70 (113 (102 (
	17.2)	13.8)	12.6)	15.8)	16.3)	
LMCA	6 (4 (3 (10 (7 (
	1.0)	0.7)	0.5)	1.4)	1.1)	
Other	0 (4 (1 (2 (6 (
Graft	0.0)	0.7)	0.2)	0.3)	1.0)	
RAMUS	0 (3 (2 (7 (1 (
D.C.A	0.0)	0.5)	0.4)	1.0)	0.2)	
RCA	200 (207 (213 (229 (220 (
CIVO	34.4)	35.8)	38.4)	32.1)	35.3)	
SVG	8 (1.4)	$\frac{3}{0.5}$	$\frac{5}{0.9}$	4 (0.6)	$\frac{3}{0.5}$	
ISHDAYS	5.25	5.06	$\frac{0.9}{4.54}$	4.62	4.19	< 0.001
(mean	(4.83)	(5.46)	(4.18)	(5.87)	(4.82)	<u>√0.001</u>
(SD))	(1.00)	(0.40)	(1.10)	(0.01)	(1.02)	
KLP_COMI	P 259 (196 (0 (0 (0 (NaN
= YES (%)	13.7)	10.9)	NaN)	NaN)	NaN)	

Table 45: table part 23 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
LLD_CHR	0 (594 (708 (972 (879 (951 (53.5)
= YES (%)	0.0)	29.0)	33.8)	46.8)	50.3)	
LMHEPALL	452 (986 (1296 (1206 (940 (844 (47.4)
= YES (%)	25.2)	48.1)	61.9)	58.1)	53.8)	
MACE =	476 (381 (305 (341 (219 (184 (10.3)
YES (%)	26.5)	18.6)	14.6)	16.4)	12.5)	
MACE1 =	0 (0 (0 (147 (123 (109 (6.1)
YES (%)	NaN)	NaN)	NaN)	7.1)	7.0)	
MACE2 =	0 (0 (0 (0 (135 (116 (6.5)
YES (%)	NaN)	NaN)	NaN)	NaN)	7.7)	
MACE3 =	0 (0 (0 (0 (213 (175 (9.8)
YES $(\%)$	NaN)	NaN)	NaN)	NaN)	12.2)	
MACE4 =	480 (384 (308 (340 (220 (182 (10.2)
YES (%)	26.8)	18.8)	14.7)	16.4)	12.6)	
MACE5 =	222 (202 (177 (183 (148 (128 (7.2)
YES (%)	12.4)	9.9)	8.5)	8.8)	8.5)	
MAIN_REA						
(%)			,			
ACCIDENTS	,	12 (13 (12 (9 (1 (0.4)
(V01-	1.3)	1.2)	1.4)	1.6)	2.0)	
99,W00-						
99,X00-						
59,Y85-						
Y86,800-						
869,880-						
899,900-						
929)	10- (10- (101/	101 (2 0 /	22 (11 2)
CANCER(C	127 (127 (124 (101 (56 (30 (11.0)
C97,140-	13.9)	13.1)	13.8)	13.7)	12.2)	
208,238.6,27		_ /	_ /	2 (2 (
CHRONIC	12 (7 (7 (3 (3 (4 (1.5)
LIVER	1.3)	0.7)	0.8)	0.4)	0.7)	
DIS(K70-						
K77,571)				2 (0 (0 (0 0)
CONGENIT	1 (0 (1 (2 (0 (0 (0.0)
ANOMALIE	0.1)	0.0)	0.1)	0.3)	0.0)	
Q99,740-						
759)	92 /	10 /	45 /	15 (10 /	0 (11)
COPD(J40-	22 (16 (15 (17 (10 (3 (1.1)
47,490-	2.4)	1.7)	1.7)	2.3)	2.2)	
494,496)	FO /	90 (11	07/	01 /	19 (4 0)
CVA(I60-	50 (36 (44 (27 (21 (13 (4.8)
69,G45,430-	5.5)	3.7)	4.9)	3.7)	4.6)	
438)	D-1714 /	01 /	OF /	69 /	20. /	97 (0 0)
DIABETES(I	,	91 (85 (63 (39 (27 (9.9)
E14,250)	8.2)	9.4)	9.5)	8.6)	8.5)	109 (27 4)
HEART	387 (436 (359 (292 (196 (102 (37.4)
(I00-	42.2)	45.0)	39.9)	39.7)	42.8)	
I09,I11,I13,I						
I51,390-						
398,402,404,4						
429)	Q 97 (26 (20 (94 (16 (10 (70)
INFECTIOU	,	36 ($\frac{30}{45}$ (3.3)	34 (16 (19 (7.0)
DISEASES(A	70A:A)	3.7)	5.5)	4.6)	3.5)	
A32,A34-						
A99,B00-						

B99.1-

Table 46: table part 23: All vars except HAKZAA by source 2013-2024

S2013 S2016 S2018 S2021 S2024 p							
= YES (%) 51.8) 50.7) 43.0) 41.5) 37.4) LMHEPALL 870 (689 (594 (135 (81 <0.001 = YES (%) 46.2) 38.5) 33.4) 7.7) 4.6) MACE = 196 (159 (143 (172 (87 <0.001 YES (%) 10.4) 8.9) 8.4) 9.8) 7.4) MACE1 = 92 (71 (89 (69 (51 (Na)) 1.4) 1.4) MACE2 = 106 (86 (0 (0 (0 (0 (Na)) 1.4) 1.4) 1.4) YES (%) 4.9) 4.0) 5.3 3.9 4.3 MACE2 = 106 (86 (0 (0 (0 (0 (Na)) 1.4) 1.4) 1.4) MACE3 = 140 (155 (0 (0 (0 (0 (Na)) 1.4) 1.4) 1.4) MACE4 = 190 (154 (0 (0 (0 (Na)) 1.4) 1.4) 1.4) MACE4 = 190 (154 (0 (0 (0 (Na)) 1.4) 1.4) 1.4) 1.4) MACE5 = 140 (123 (0 (0 (0 (Na)) 1.4) 1.4) 1.4) 1.4) 1.4) 1.4) 1.4) 1.		S2013	S2016	S2018	S2021	S2024	р
LMHEPALL 870 (689 (594 (135 (81 (<0.001	 -	`	`	,	`	,	< 0.001
= YES (%) 46.2) 38.5) 33.4) 7.7) 4.6) MACE = 196 (159 (143 (172 (87 (<0.001 YES (%) 10.4) 8.9) 8.4) 9.8) 7.4 MACE = 92 (71 (89 (69 (51 (NaN YES (%) 4.9) 4.0) 5.3) 3.9) 4.3) MACE2 = 106 (86 (0 (0 (0 (0 (NaN YES (%) 5.6) 4.8) NaN) NaN) NaN) NaN) NaN) MACE3 = 140 (105 (0 (0 (0 (0 (NaN YES (%) 5.6) 4.8) NaN) NaN) NaN) NaN) NaN) MACE4 = 190 (154 (0 (0 (0 (0 (NaN YES (%) 7.4) 5.9) NaN) NaN) NaN) NaN) NaN) NaN NaN NaN N	, ,	,	,	,	,	,	<0.001
MACE = 196 (159 (143 (172 (87 (<0.001 YES (%) 10.4) 8.9) 8.4) 9.8) 7.4) MACE1 = 92 (71 (89 (69 (51 (NaN YES (%) 4.9) 4.0) 5.3) 3.9) 4.3) MACE2 = 106 (86 (0 (0 (0 (NaN YES (%) 5.6) 4.8) NaN) NaN) NaN) NaN) MACE3 = 140 (105 (0 (0 (0 (0 (NaN YES (%) 7.4) 5.9) NaN) NaN) NaN) NaN) MACE4 = 190 (154 (0 (0 (0 (NaN YES (%) 10.1) 8.6) NaN) NaN) NaN) NaN) MACE5 = 140 (123 (0 (0 (0 (NaN YES (%) 10.1) 8.6) NaN) NaN) NaN) NaN) MACE5 = 140 (123 (0 (0 (0 (NaN YES (%) 10.1) 8.6) NaN) NaN) NaN) NaN) MAIN_REA (%) ACCIDENTS 3 (0 (0 (0 (0 (0 (NaN YES (%) 1.3) NaN) NaN) NaN) NaN) NaN) MAN) MAIN_REA (%) CANCER(C 40 (0 (0 (0 (0 (0 (0 (NaN YES (%) 1.3) NaN) NaN) NaN) NaN) NaN) NaN) System (CHRONIC 0 (0 (0 (0 (0 (0 (NaN YES (%) 1.3) NaN) NaN) NaN) NaN) NaN) NaN) DIS(K70-K77,571) CONGENIT 0 (0 (0 (0 (0 (0 (0 (NaN YES (%) 1.3) NaN) NaN) NaN) NaN) NaN) NaN) COPD(J40- 8 (0 (0 (0 (0 (0 (0 (Nan YES (%) 1.3) NaN) NaN) NaN) NaN) NaN) NaN) COPD(J40- 8 (0 (0 (0 (0 (0 (0 (Nan YES (%) 1.3) NaN) NaN) NaN) NaN) NaN) NaN) DIABETES(E106- (0 (0 (0 (0 (0 (Nan YES (%) 1.3) NaN) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 (0 (Nan YES (%) 1.3) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 (Nan YES (%) 1.3) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 (Nan YES (%) 1.3) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 (Nan YES (%) 1.3) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 (Nan YES (%) 1.3) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 (Nan YES (%) 1.3) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 (Nan YES (%) 1.3) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 (Nan YES (%) 1.3) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 (Nan YES (%) 1.3) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 (Nan YES (%) 1.3) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 (Nan YES (%) 1.3) NaN) NaN) NAN NAN NAN NAN) NAN) NAN) NAN) NAN NAN NAN NAN) NAN)		,	`	,	,	,	<0.001
YES (%) 10.4) 8.9) 8.4) 9.8) 7.4) MACE1 = 92 (71 (89 (69 (51 (NaN YES (%) 4.9) 4.0) 5.3) 3.9) 4.3) MACE2 = 106 (86 (0 (0 (0 (0 (NaN YES (%) 5.6) 4.8) NaN) NaN) NaN) NaN) MACE3 = 140 (105 (0 (0 (0 (NaN YES (%) 7.4) 5.9) NaN) NaN) NaN) NaN) MACE4 = 190 (154 (0 (0 (0 (NaN YES (%) 7.4) 5.9) NaN) NaN) NaN) NaN) MACE5 = 140 (123 (0 (0 (0 (NaN YES (%) 7.4) 6.9) NaN) NaN) NaN) NaN) MACE5 = 140 (123 (0 (0 (0 (NaN YES (%) 7.4) 6.9) NaN) NaN) NaN) NaN) MAIN_RE4 (%) CV01- 1.3) NaN NaN) NaN) NaN) NaN) MAN) MACE6 = 140 (123 (0 (0 (0 (0 (NaN YES (%) 7.4) 6.9) NaN) NaN) NaN) NaN) MAIN_RE5 (%) 7.4) 6.9) NaN) NaN) NaN) NaN) MAIN_RE6 (%) CV01- 1.3) NaN NaN) NaN) NaN) NaN) NaN) P9, W00- P9, X00- P9, X	, ,						< 0.001
MACE1 = 92 (71 (89 (69 (51 (NaN YES (%) 4.9) 4.0) 5.3) 3.9) 4.3) MACE2 = 106 (86 (0 (0 (0 (0 (NaN YES (%) 5.6) 4.8) NaN) NaN) NaN) NaN) MACE3 = 140 (105 (0 (0 (0 (0 (NaN YES (%) 7.4) 5.9) NaN) NaN) NaN) NaN) MACE4 = 190 (154 (0 (0 (0 (0 (NaN YES (%) 10.1) 8.6) NaN) NaN) NaN) NaN) MACE5 = 140 (123 (0 (0 (0 (NaN YES (%) 7.4) 6.9) NaN) NaN) NaN) NaN) MACE5 = 140 (123 (0 (0 (0 (NaN YES (%) 7.4) 6.9) NaN) NaN) NaN) NaN) MAIN_RE.4 (%) ACCIDENTS 3 (0 (0 (0 (0 (0 (0 (0 (V01- 1.3) NaN) NaN) NaN) NaN) NaN) NaN) 99,W00- 99,W00- 99,W00- 99,W00- 99,W00- 999,W00- 929) CANCER(C 40 (0 (0 (0 (0 (0 (0 (V01- 1.8) NaN) NaN) NaN) NaN) NaN) NaN) DIS(K70- K77,571) CONGENIT 0 (0 (0 (0 (0 (0 (ANOMALIE 0.0) NaN) NaN) NaN) NaN) NaN) Q99,740- 759) COPD(J40- 8 (0 (0 (0 (0 (0 (0 (ANOMALIE 0.0) NaN) NaN) NaN) NaN) NaN) NaN) 494,496) CVA(160- 7 (0 (0 (0 (0 (0 (0 (ANOMALIE 0.0) NaN) NaN) NaN) NaN) NaN) NaN) 494,496) CVA(160- 7 (0 (0 (0 (0 (0 (0 (COP) 14.5) NaN) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 (0 (COP) 14.5) NaN) NaN) NaN) NaN) NaN) NaN) NaN) 109,111,113,E 151,390- 398,402,404,429) INFECTIOUS 6 (0 (46 (0 (0 (0 (O (DISEASES(AOD-7) NaN) NaN) NaN) NaN) NaN) NaN) NaN) Na		`	,	`	`	•	<0.001
YES (%) 4.9) 4.0) 5.3) 3.9) 4.3) MACE2 = 106 (86 (0 (0 (0 (NaN YES (%) 5.6) 4.8) NaN) NaN) NaN) MACE3 = 140 (105 (0 (0 (0 (0 (NaN YES (%) 7.4) 5.9) NaN) NaN) NaN) MACE4 = 190 (154 (0 (0 (0 (0 (NaN YES (%) 10.1) 8.6) NaN) NaN) NaN) MACE5 = 140 (123 (0 (0 (0 (0 (NaN YES (%) 7.4) 6.9) NaN) NaN) NaN) MACE5 = 140 (123 (0 (0 (0 (0 (NaN YES (%) 7.4) 6.9) NaN) NaN) NaN) MAIN_RE4 (%) ACCIDENTS 3 (0 (0 (0 (0 (0 ((V01- 1.3) NaN) NaN) NaN) NaN) NaN) 99,W00-99,W00-999,W00-929) CANCER(C 40 (0 (0 (0 (0 (0 (C97,140- 17.8) NaN) NaN) NaN) NaN) NaN) NaN) 208,238.6,27: CHRONIC 0 (0 (0 (0 (0 (0 (NaN) NaN) NaN) NaN) NaN) NaN) DIS(K70- K77,571) CONGENIT 0 (0 (0 (0 (0 (0 (NaN) NaN) NaN) NaN) NaN) NaN) Q99,740-759) COPD(J40- 8 (0 (0 (0 (0 (0 (NaN) NaN) NaN) NaN) NaN) NaN) 494,496) CVA(160- 7 (0 (0 (0 (0 (0 (0 (NaN) NaN) NaN) NaN) NaN) NaN) NaN) DIABETES(E166- (0 (0 (0 (0 (0 (NaN) NaN) NaN) NaN) NaN) NaN) NaN) 109,111,113,E 151,390-398,402,404,429) INFECTIOUS 6 (0 (Man) NaN) NaN) NaN) NaN) NaN) A32,A34-A99,B00-	` ,	,	,	,	,	,	NaN
MACE2 = 106 (86 (0 (0 (0 (NaN YES (%) 5.6) 4.8) NaN) NaN) NaN) NAN) MACE3 = 140 (105 (0 (0 (0 (0 (NaN YES (%) 7.4) 5.9) NaN) NaN) NaN) NaN) MACE4 = 190 (154 (0 (0 (0 (0 (NaN YES (%) 7.4) 5.9) NaN) NaN) NaN) NaN) MACE5 = 140 (123 (0 (0 (0 (0 (NaN YES (%) 7.4) 6.9) NaN) NaN) NaN) NaN) MACE5 = 140 (123 (0 (0 (0 (0 (NaN YES (%) 7.4) 6.9) NaN) NaN) NaN) NaN) MAIN_RE4 (%) ACCIDENTS 3 (0 (0 (0 (0 (0 ((VOI- 1.3) NaN) NaN) NaN) NaN) NaN) 99,W00- 99,X00- 59,X00- 59,X85- Y86,800- 869,880- 899,900- 929) CANCER(C 40 (0 (0 (0 (0 (0 ((VOI- 1.3) NaN) NaN) NaN) NaN) NaN) NaN) DIS(K70- K77,571) CONGENIT 0 (0 (0 (0 (0 (((VOI- 1.3) NaN) NaN) NaN) NaN) NaN) NaN) DIS(K70- K77,571) CONGENIT 0 (0 (0 (0 (0 ((((((VOI- 1.3) NaN) NaN) NaN) NaN) NaN) NaN) NaN) Q99,740- 759) COPD(J40- 8 (0 (0 (0 (0 (((((((((((,			`	`	11011
YES (%) 5.6) 4.8) NaN) NaN) NaN) NaN) MACE3 = 140 (105 (0 (0 (0 (NaN YES (%) 7.4) 5.9) NaN) NaN) NaN) NaN) MACE4 = 190 (154 (0 (0 (0 (NaN YES (%) 10.1) 8.6) NaN) NaN) NaN) NaN) MACE5 = 140 (123 (0 (0 (0 (NaN YES (%) 7.4) 6.9) NaN) NaN) NaN) NaN) MAIN_RE.4 (%) ACCIDENTS 3 (0 (0 (0 (0 (0 ((NaN NaN) NaN) NaN) NaN) NaN) NaN) N			,	,	- :	,	NaN
YES (%) 7.4) 5.9) NaN NaN NaN NaN NAN MACE4 = 190 (154 (0 (0 (0 (NaN YES (%) 10.1) 8.6) NaN NaN NAN) NAN NAN MACE5 = 140 (123 (0 (0 (0 (0 (NaN YES (%) 7.4) 6.9) NaN NaN) NaN) NAN NAN MAIN_RE4 (%) MAIN_RE4 (%) ACCIDENTS 3 (0 (0 (0 (0 (0 ((V01- 1.3) NaN) NaN) NaN) NaN) NaN NaN NaN NaN Na		`	,	,	,		
MACE4 = 190 (154 (0 (0 (0 (NaN YES (%) 10.1) 8.6) NaN, NaN, NaN, NaN) NaN) MACE5 = 140 (123 (0 (0 (0 (NaN YES (%) 7.4) 6.9) NaN, NaN) NaN) MAIN_RE4 (%) ACCIDENTS 3 (0 (0 (0 (0 (0 ((V01- 1.3) NaN) NaN) NaN) NaN) 99,W00- 99,W00	MACE3 =	140 (105 (0 (0 (0 (NaN
YES (%) 10.1) 8.6) NaN NaN NaN NaN NAN MACE5 = 140 (123 (0 (0 (0 (NaN YES (%) 7.4) 6.9) NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	YES (%)	7.4)	5.9)	NaN)	NaN)	NaN)	
MACE5 = 140 (123 (0 (0 (0 (NaN YES (%) 7.4) 6.9) NaN NaN NaN NaN NaN NaN NaN NaN NaN Na		,	,	,	,	,	NaN
YES (%) 7.4 6.9 NaN NaN NaN NaN MAIN_REA (%) MAIN_REA (%) ACCIDENTS 3 (0 (0 (0 (0 (0 ((V01- 1.3) NaN (NaN (NaN (NaN (NaN (NaN (NaN (NaN	, ,	,	,	. ′		. ′	
MAIN_RE# (%) ACCIDENTS 3 (0 (0 (0 (0 (0 (,	`	,	,	,	NaN
(%) ACCIDENTS 3 (0 (0 (0 (0 ((V01- 1.3) NaN) NaN) NaN) NaN) NaN) 99,W00- 99,W00- 99,X00- 59,Y85- Y86,800- 869,880- 899,900- 929) CANCER(C 40 (0 (0 (0 (0 (0 (C97,140- 17.8) NaN) NaN) NaN) NaN) NaN) NaN) 208,238.6,27: CHRONIC 0 (0 (0 (0 (0 (0 (LIVER 0.0) NaN) NaN) NaN) NaN) NaN) NaN) DIS(K70- K77,571) CONGENIT 0 (0 (0 (0 (0 (0 (ANOMALIE 0.0) NaN) NaN) NaN) NaN) NaN) Q99,740- 759) COPD(J40- 8 (0 (0 (0 (0 (0 (ANOMALIE 0.0) NaN) NaN) NaN) NaN) NaN) Q99,740- 759) COPD(J40- 8 (0 (0 (0 (0 (0 (A7,490- 3.6) NaN) NaN) NaN) NaN) NaN) NaN) 494,496) CVA(I60- 7 (0 (0 (0 (0 (0 (G9,645,430- 3.1) NaN) NaN) NaN) NaN) NaN) NaN) 438) DIABETES(E106- (0 (0 (0 (0 (0 (E14,250) 7.1) NaN) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 (10 (100- 41.8) NaN) NaN) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (10 (10 (100- 41.8) NaN) NaN) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (10 (10 (100- 41.8) NaN) NaN) NaN) NaN) NaN) NaN) NaN) Na		7.4)	6.9)	NaN)	NaN)	NaN)	NT NT
ACCIDENTS 3 (0 (0 (0 (0 ((VOI- 1.3) NaN) NaN) NaN) NaN) NaN) 99,W00- 99,W00- 59,Y85- Y86,800- 869,880- 899,900- 929) CANCER(C 40 (0 (0 (0 (0 (0 (C97,140- 17.8) NaN) NaN) NaN) NaN) NaN) 208,238.6,27: CHRONIC 0 (0 (0 (0 (0 (0 (LIVER 0.0) NaN) NaN) NaN) NaN) NaN) DIS(K70- K77,571) CONGENIT 0 (0 (0 (0 (0 (0 (ANOMALIF 0.0) NaN) NaN) NaN) NaN) NaN) Q99,740- 759) COPD(J40- 8 (0 (0 (0 (0 (0 (47,490- 3.6) NaN) NaN) NaN) NaN) NaN) NaN) 494,496) CVA(160- 7 (0 (0 (0 (0 (0 (69,G45,430- 3.1) NaN) NaN) NaN) NaN) NaN) NaN) 438) DIABETES(E106- (0 (0 (0 (0 (0 (E14,250) 7.1) NaN) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 (10 (10 (10 (1							NaN
(V01- 99,W00- 99,X00- 59,Y85- Y86,800- 869,880- 899,900- 929) CANCER(C 40 (0 (0 (0 (0 (0 (C97,140- 17.8) NaN) NaN) NaN) NaN) NaN) 208,238.6,27: CHRONIC 0 (0 (0 (0 (0 (0 (LIVER 0.0) NaN) NaN) NaN) NaN) NaN) DIS(K70- K77,571) CONGENIT 0 (0 (0 (0 (0 (ANOMALIF 0.0) NaN) NaN) NaN) NaN) NaN) Q99,740- 759) COPD(J40- 8 (0 (0 (0 (0 (0 (A7,490- 3.6) NaN) NaN) NaN) NaN) NaN) 494,496) CVA(160- 7 (0 (0 (0 (0 (0 (69,G45,430- 3.1) NaN) NaN) NaN) NaN) NaN) 438) DIABETES(E106- (0 (0 (0 (0 (0 (0 (E14,250) 7.1) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 (0 (10 (10 (10		3 (0 (0 (0 (0 (
99,W00- 99,X00- 59,Y85- Y86,800- 869,880- 899,900- 929) CANCER(C 40 (0 (0 (0 (0 (C97,140- 17.8) NaN) NaN) NaN) NaN) NaN) 208,238.6,27: CHRONIC 0 (0 (0 (0 (0 (0 (LIVER 0.0) NaN) NaN) NaN) NaN) NaN) NaN) DIS(K70- K77,571) CONGENIT 0 (0 (0 (0 (0 (0 (ANOMALIF 0.0) NaN) NaN) NaN) NaN) NaN) Q99,740- 759) COPD(J40- 8 (0 (0 (0 (0 (0 (47,490- 3.6) NaN) NaN) NaN) NaN) NaN) 494,496) CVA(I60- 7 (0 (0 (0 (0 (0 (69,G45,430- 3.1) NaN) NaN) NaN) NaN) NaN) 438) DIABETES(E106- 0 (0 (0 (0 (0 (E14,250) 7.1) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 (10 (10 (10 (1		`	,	,	,	,	
99,X00- 59,Y85- Y86,800- 869,880- 899,900- 929) CANCER(C 40 (0 (0 (0 (0 (0 (C97,140- 17.8) NaN) NaN) NaN) NaN) 208,238.6,27: CHRONIC 0 (0 (0 (0 (0 (0 (LIVER 0.0) NaN) NaN) NaN) NaN) NaN) DIS(K70- K77,571) CONGENIT 0 (0 (0 (0 (0 (0 (ANOMALIF 0.0) NaN) NaN) NaN) NaN) NaN) Q99,740- 759) COPD(J40- 8 (0 (0 (0 (0 (0 (47,490- 3.6) NaN) NaN) NaN) NaN) NaN) 494,496) CVA(I60- 7 (0 (0 (0 (0 (0 (69,G45,430- 3.1) NaN) NaN) NaN) NaN) NaN) NaN) 438) DIABETES(EII6- (0 (0 (0 (0 (0 (E14,250) 7.1) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 (0 (10,C14,250) 7.1) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 (10,C14,250) 7.1) NaN) NaN) NaN) NaN) NaN) I09,I11,I13,I: I51,390- 398,402,404, 429) INFECTIOUS 6 (0 (46,0 (0 (0 (0 (DISEASES(A00-7) NaN) NaN) NaN) NaN) NaN) A32,A34- A99,B00-	•	1.0)	11(011)	11411)	11011)	11011)	
59,Y85- Y86,800- 869,880- 899,900- 929) CANCER(C 40 (0 (0 (0 (0 (0 (C97,140- 17.8) NaN) NaN) NaN) NaN) NaN) 208,238.6,27: CHRONIC 0 (0 (0 (0 (0 (0 (0 (LIVER 0.0) NaN) NaN) NaN) NaN) NaN) NaN) DIS(K70- K77,571) CONGENIT 0 (0 (0 (0 (0 (0 (ANOMALIE 0.0) NaN) NaN) NaN) NaN) NaN) NaN) Q99,740- 759) COPD(J40- 8 (0 (0 (0 (0 (0 (47,490- 3.6) NaN) NaN) NaN) NaN) NaN) NaN) 494,496) CVA (160- 7 (0 (0 (0 (0 (0 (69,G45,430- 3.1) NaN) NaN) NaN) NaN) NaN) NaN) 438) DIABETES(E106- 0 (0 (0 (0 (0 (E14,250) 7.1) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 ((100- 41.8) NaN) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 ((100- 41.8) NaN) NaN) NaN) NaN) NaN) NaN) I09,111,113,1: I51,390- 398,402,404, 429) INFECTIOUS 6 (0 (46 0 (0 (0 (0 (DISEASES(A09-7) NaN) NaN) NaN) NaN) NaN) NaN) A32,A34- A99,B00-	*						
Y86,800- 869,880- 899,900- 929) CANCER(C 40 0 0 0 0 0 0 0 C97,140- 17.8) NaN) NaN) NaN) NaN) 208,238.6,27: CHRONIC 0 0 0 0 0 0 0 LIVER 0.0) NaN) NaN) NaN) NaN) DIS(K70- K77,571) CONGENIT 0 0 0 0 0 0 0 ANOMALIE 0.0) NaN) NaN) NaN) NaN) Q99,740- 759) COPD(J40- 8 0 0 0 0 0 0 A7,490- 3.6) NaN) NaN) NaN) NaN) 494,496) CVA(I60- 7 0 0 0 0 0 0 CVA(I60- 7 0 0 0 0 0 CYA(I60- 7 0 0 0 0 0 0 CYA(I60- 7 0 0 0 0 CYA(I60- 7 0 0 0 CYA(I60- 7 0 0 0 0 CYA(I60- 7 0 0 CYA(I60- 7 0 0 0 CYA(I60- 7 0	•						
869,880- 899,900- 929) CANCER(C 40 (0 (0 (0 (0 (0 (C97,140- 17.8) NaN) NaN) NaN) NaN) NaN) 208,238.6,27: CHRONIC 0 (0 (0 (0 (0 (0 (LIVER 0.0) NaN) NaN) NaN) NaN) NaN) DIS(K70- K77,571) CONGENIT 0 (0 (0 (0 (0 (0 (ANOMALIE 0.0) NaN) NaN) NaN) NaN) NaN) Q99,740- 759) COPD(J40- 8 (0 (0 (0 (0 (0 (47,490- 3.6) NaN) NaN) NaN) NaN) NaN) NaN) 494,496) CVA(I60- 7 (0 (0 (0 (0 (0 (69,645,430- 3.1) NaN) NaN) NaN) NaN) NaN) NaN) 438) DIABETES(E100- (0 (0 (0 (0 (0 (E14,250) 7.1) NaN) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 ((10 (10 (10 (•						
929) CANCER(C 40 (0 (0 (0 (0 (C97,140- 17.8) NaN) NaN) NaN) NaN) NaN) 208,238.6,27: CHRONIC 0 (0 (0 (0 (0 (0 (LIVER 0.0) NaN) NaN) NaN) NaN) NaN) DIS(K70- K77,571) CONGENIT 0 (0 (0 (0 (0 (0 (ANOMALIE 0.0) NaN) NaN) NaN) NaN) NaN) Q99,740- 759) COPD(J40- 8 (0 (0 (0 (0 (0 (47,490- 3.6) NaN) NaN) NaN) NaN) NaN) NaN) 494,496) CVA(I60- 7 (0 (0 (0 (0 (0 (69,G45,430- 3.1) NaN) NaN) NaN) NaN) NaN) NaN) A38) DIABETES(E100- (0 (0 (0 (0 (0 (E14,250) 7.1) NaN) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 (10 (100- 41.8) NaN) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 (10 (100- 41.8) NaN) NaN) NaN) NaN) NaN) NaN) I09,I11,I13,I: I51,390- 398,402,404, 429) INFECTIOUS 6 (0 (46 0 (0 (0 (0 (DISEASES(A00-7) NaN) NaN) NaN) NaN) NaN) NaN) A32,A34- A99,B00-	·						
CANCER(C 40 (0 (0 (0 (0 (C97,140- 17.8) NaN) NaN) NaN) NaN) NaN) 208,238.6,27: CHRONIC 0 (0 (0 (0 (0 (0 (0 (LIVER 0.0) NaN) NaN) NaN) NaN) NaN) DIS(K70- K77,571) CONGENIT 0 (0 (0 (0 (0 (0 (ANOMALIF 0.0) NaN) NaN) NaN) NaN) NaN) Q99,740- 759) COPD(J40- 8 (0 (0 (0 (0 (0 (47,490- 3.6) NaN) NaN) NaN) NaN) NaN) A38) DIABETES(E110-(0 (0 (0 (0 (0 (69,G45,430- 3.1) NaN) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 (14,250) 7.1) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 (0 (10,25) 1.1) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 (0 (10,25) 1.1) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 (0 (0 (0 (0 (899,900-						
C97,140- 17.8) NaN NaN NaN NaN NaN NaN NaN 208,238.6,27: CHRONIC 0 (0 (0 (0 (0 (0 (LIVER 0.0) NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	929)						
208,238.6,27: CHRONIC 0 (0 (0 (0 (0 (0 (LIVER 0.0) NaN) NaN) NaN) NaN) NaN) DIS(K70- K77,571) CONGENIT 0 (0 (0 (0 (0 (0 (ANOMALIE 0.0) NaN) NaN) NaN) NaN) NaN) Q99,740- 759) COPD(J40- 8 (0 (0 (0 (0 (0 (47,490- 3.6) NaN) NaN) NaN) NaN) NaN) NaN) 494,496) CVA(I60- 7 (0 (0 (0 (0 (0 (69,G45,430- 3.1) NaN) NaN) NaN) NaN) NaN) NaN) 438) DIABETES(E166- (0 (0 (0 (0 (0 (E14,250) 7.1) NaN) NaN) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 ((100- 41.8) NaN) NaN) NaN) NaN) NaN) NaN) NaN) 109,I11,I13,I: I51,390- 398,402,404,429) INFECTIOUS 6 (0 (46 0 (0 (0 (0 (0 (0 (0 (0 (0 (0	`	`					
CHRONIC 0 (0 (0 (0 (0 (0 (LIVER 0.0) NaN) NaN) NaN) NaN) NaN) DIS(K70- K77,571) CONGENIT 0 (0 (0 (0 (0 (0 (ANOMALIF 0.0) NaN) NaN) NaN) NaN) NaN) Q99,740- 759) COPD(J40- 8 (0 (0 (0 (0 (0 (47,490- 3.6) NaN) NaN) NaN) NaN) NaN) NaN) 494,496) CVA(I60- 7 (0 (0 (0 (0 (0 (69,G45,430- 3.1) NaN) NaN) NaN) NaN) NaN) NaN) 438) DIABETES(E106- (0 (0 (0 (0 (0 (E14,250) 7.1) NaN) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 (0 (100- 41.8) NaN) NaN) NaN) NaN) NaN) NaN) I09,I11,I13,I: I51,390- 398,402,404,429) INFECTIOUS 6 (0 (46 0 (0 (0 (0 (0 (0 (0 (0 (0 (0		17.8)	NaN)	NaN)	NaN)	NaN)	
LIVER 0.0) NaN NaN NaN NaN NaN NaN DIS(K70-K77,571) CONGENIT 0 0 0 0 0 0 0 0 ANOMALIF 0.0) NaN NaN NaN NaN NaN NaN NaN NaN NaN Na		0 (0 /	0 (0 (0 (
DIS(K70- K77,571) CONGENIT 0 (0 (0 (0 (0 (ANOMALIE 0.0) NaN) NaN) NaN) NaN) NaN) Q99,740- 759) COPD(J40- 8 (0 (0 (0 (0 (0 (47,490- 3.6) NaN) NaN) NaN) NaN) NaN) NaN) 494,496) CVA(I60- 7 (0 (0 (0 (0 (0 (69,G45,430- 3.1) NaN) NaN) NaN) NaN) NaN) NaN) 438) DIABETES(E1166- (0 (0 (0 (0 (0 (E14,250) 7.1) NaN) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 ((100- 41.8) NaN) NaN) NaN) NaN) NaN) NaN) I09,I11,I13,I: I51,390- 398,402,404,429) INFECTIOUS 6 (0 (46 0 (0 (0 (0 (0 (0 (0 (0 (0 (0		,	,	,	,	,	
K77,571) CONGENIT 0 (0 (0 (0 (0 (ANOMALIE 0.0) NaN) NaN) NaN) NaN) Q99,740- 759) COPD(J40- 8 (0 (0 (0 (0 (0 (47,490- 3.6) NaN) NaN) NaN) NaN) NaN) 494,496) CVA(I60- 7 (0 (0 (0 (0 (0 (69,G45,430- 3.1) NaN) NaN) NaN) NaN) NaN) A38) DIABETES(E100-(0 (0 (0 (0 (0 (E14,250) 7.1) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 ((100- 41.8) NaN) NaN) NaN) NaN) NaN) I09,I11,I13,I: I51,390- 398,402,404,- 429) INFECTIOUS 6 (0 (46 0 (0 (0 (0 (0 (0 (0 (0 (0 (0		0.0)	man)	man)	man)	man)	
CONGENIT 0 (0 (0 (0 (0 (ANOMALIE 0.0) NaN) NaN) NaN) NaN) NaN) Q99,740- 759) COPD(J40- 8 (0 (0 (0 (0 (0 (47,490- 3.6) NaN) NaN) NaN) NaN) NaN) 494,496) CVA(I60- 7 (0 (0 (0 (0 (0 (69,G45,430- 3.1) NaN) NaN) NaN) NaN) NaN) NaN) 438) DIABETES(E100-(0 (0 (0 (0 (0 (E14,250) 7.1) NaN) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 ((100- 41.8) NaN) NaN) NaN) NaN) NaN) NaN) 109,I11,I13,I: I51,390- 398,402,404, 429) INFECTIOUS 6 (0 (46 0 (0 (0 (0 (DISEASES(A00-7) NaN) NaN) NaN) NaN) NaN) A32,A34- A99,B00-							
ANOMALIE 0.0) NaN NaN NaN NaN NaN NaN NaN Q99,740-759) COPD(J40- 8 (0 (0 (0 (0 (47,490- 3.6) NaN NaN NaN NaN NaN NaN NaN NaN NaN Na		0 (0 (0 (0 (0 (
Q99,740- 759) COPD(J40- 8 (0 (0 (0 (0 (47,490- 3.6) NaN) NaN) NaN) NaN) NaN) 494,496) CVA(I60- 7 (0 (0 (0 (0 (0 (69,G45,430- 3.1) NaN) NaN) NaN) NaN) NaN) 438) DIABETES(E106- (0 (0 (0 (0 (E14,250) 7.1) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 (100- 41.8) NaN) NaN) NaN) NaN) NaN) I09,I11,I13,I: I51,390- 398,402,404,4429) INFECTIOUS 6 (0 (46 0 (0 (0 (0 (0 (0 (0 (0 (0 (0					,	`	
759) COPD(J40- 8 (0 (0 (0 (0 (47,490- 3.6) NaN) NaN) NaN) NaN) NaN) 494,496) CVA(I60- 7 (0 (0 (0 (0 (69,G45,430- 3.1) NaN) NaN) NaN) NaN) NaN) 438) DIABETES(E106-(0 (0 (0 (0 (0 (E14,250) 7.1) NaN) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 ((100- 41.8) NaN) NaN) NaN) NaN) NaN) NaN) I09,I11,I13,I: I51,390- 398,402,404,429) INFECTIOUS 6 (0 (46 0 (0 (0 (DISEASES(A00-7) NaN) NaN) NaN) NaN) NaN) A32,A34- A99,B00-		0.0)	,	,)	,	
47,490- 3.6) NaN) NaN) NaN) NaN) 494,496) CVA(I60- 7 (0 (0 (0 (0 (69,G45,430- 3.1) NaN) NaN) NaN) NaN) NaN) 438) DIABETES(E1106- (0 (0 (0 (0 (0 (E14,250) 7.1) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 ((100- 41.8) NaN) NaN) NaN) NaN) NaN) I09,I11,I13,I: I51,390- 398,402,404, 429) INFECTIOUS 6 (0 (46 (0 (0 (0 (DISEASES(A00-7) NaN) NaN) NaN) NaN) NaN) A32,A34- A99,B00-							
494,496) CVA(I60- 7 (0 (0 (0 (0 (0 (69,G45,430- 3.1) NaN) NaN) NaN) NaN) NaN) 438) DIABETES(E106-(0 (0 (0 (0 (0 (E14,250) 7.1) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 ((100- 41.8) NaN) NaN) NaN) NaN) NaN) I09,I11,I13,I: I51,390- 398,402,404,429) INFECTIOUS 6 (0 (46 (0 (0 (0 (DISEASES(A00-7) NaN) NaN) NaN) NaN) NaN) A32,A34- A99,B00-	COPD(J40-	8 (0 (0 (0 (0 (
CVA(I60- 7 (0 (0 (0 (0 (0 (69,G45,430- 3.1) NaN) NaN) NaN) NaN) NaN) 438) DIABETES(E116-(0 (0 (0 (0 (0 (E14,250) 7.1) NaN) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 ((100- 41.8) NaN) NaN) NaN) NaN) NaN) I09,I11,I13,I: I51,390- 398,402,404,429) INFECTIOUS 6 (0 (46 0 (0 (0 (DISEASES(A00-7) NaN) NaN) NaN) NaN) NaN) A32,A34- A99,B00-	47,490-	3.6)	NaN)	NaN)	NaN)	NaN)	
69,G45,430- 3.1) NaN) NaN) NaN) NaN) 438) DIABETES(E106-(0 (0 (0 (0 (E14,250) 7.1) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 ((100- 41.8) NaN) NaN) NaN) NaN) NaN) I09,I11,I13,I: I51,390- 398,402,404,4 429) INFECTIOUS 6 (0 (46 0 (0 (0 (DISEASES(A00.7) NaN) NaN) NaN) NaN) NaN) A32,A34- A99,B00-							
438) DIABETES(E106-(0 (0 (0 (0 (0 (E14,250) 7.1) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 ((100- 41.8) NaN) NaN) NaN) NaN) NaN) NaN) I09,I11,I13,I: I51,390- 398,402,404,4 429) INFECTIOUS 6 (0 (46 0 (0 (0 (DISEASES(A00.7) NaN) NaN) NaN) NaN) NaN) A32,A34- A99,B00-	•	•		,	,	,	
DIÁBETES(E1166-(0 (0 (0 (0 (0 (E14,250) 7.1) NaN) NaN) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (0 ((100-41.8) NaN) NaN) NaN) NaN) NaN) NaN) I09,I11,I13,I: I51,390- 398,402,404,4 429) INFECTIOUS 6 (0 (46 0 (0 (0 (DISEASES(A00-7) NaN) NaN) NaN) NaN) NaN) A32,A34- A99,B00-		3.1)	NaN)	NaN)	NaN)	NaN)	
E14,250) 7.1) NaN) NaN) NaN) NaN) HEART 94 (0 (0 (0 (0 (((((((((((,	E 110° /	0 (0 (0 (0 (
HEART 94 (0 (0 (0 (0 (0 ((100-41.8) NaN) NaN) NaN) NaN) NaN) NaN) NaN) Na	,	,	,		,	`	
(I00- 41.8) NaN) NaN) NaN) NaN) I09,I11,I13,I: I51,390- 398,402,404, 429) INFECTIOUS 6 (0 (0 (0 (0 (DISEASES(A00-7) NaN) NaN) NaN) NaN) A32,A34- A99,B00-					,	,	
I09,I11,I13,I: I51,390- 398,402,404,4 429) INFECTIOUS 6 (0 (0 (0 (O (DISEASES(A00.7) NaN) NaN) NaN) NaN) A32,A34- A99,B00-		`		,	,	,	
I51,390- 398,402,404,· 429) INFECTIOUS 6 (0 (0 (0 (0 (DISEASES(A00.7) NaN) NaN) NaN) NaN) A32,A34- A99,B00-	`	11.0)	11(011)	11411)	11011)	11011)	
398,402,404,4 429) INFECTIOUS 6 (0 (0 (0 (DISEASES(A00-7) NaN) NaN) NaN) NaN) A32,A34- A99,B00-							
429) INFECTIOUS 6 (0 (0 (0 (0 (DISEASES(A00-7) NaN) NaN) NaN) NaN) NaN) A32,A34- A99,B00-	· ·						
INFECTIOUS 6 (0 (46 0 (0 (0 (DISEASES(A00-7) NaN) NaN) NaN) NaN) NaN) NaN) A32,A34-A99,B00-							
A32,A34- A99,B00-		S 6 (0 (460 (0 (0 (
A99,B00-	•	100. 7)	NaN)	NaN)	NaN)	NaN)	
·							
	A99,B00-						

B99.1-

Table 47: table part 24 All vars except HAKZAA by source 2000-2010 $\,$

S2000 S2002 S2004 S2006 S2008 S2010							
12, 5.1 4.6 5.8 5.2 4.6 N17-19, N25- 29,580- 589) WURDER		S2000	S2002	S2004	S2006	S2008	S2010
MÜRDER 0 (1 (1 (2 (0 (0 (0.0) & 0.0) & 0.0) 0.1) 0.1) 0.3) 0.0)	12, N17-19, N25- 29,580-	,	`	,		,	25 (9.2)
OTHER	MURDER & ASSAULT (X85- 99,YOO- Y09,Y87.1,96	0.0)	,	,		`	0 (0.0)
OTHER 1 (3 (2 (3 (2 (1 (0.4) EXTER- 0.1) 0.3) 0.2) 0.4) 0.4) 0.4) NAL (Y10- 34,Y40- Y84,Y87.2- Y88.3,Y89.9,870- 879,930- 949,980- 989) SUICIDE 1 (1 (3 (2 (1 (0 (0.0) (X60- 0.1) 0.1) 0.3) 0.3) 0.2) 84,Y87.0,950 959) MAIN_REASON_GROUP_NEW (%) ACCIDENT 12 (12 (13 (12 (9 (1 (0.4) (V01- 1.3) 1.2) 1.4) 1.6) 2.0) 99,W00- 99,W00- 99,W00- 99,W00- 99,S00- 59,Y85- Y86,800- 869,880- 899,900- 929) CANCER(C00-27 (127 (124 (101 (56 (30 (11.0) (1.5) (,		`		`	42 (15.4)
SUICIDE 1 (1 (3 (2 (1 (0 (0.0) (X60-0.1) 0.1) 0.1) 0.3) 0.3) 0.2) 84,Y87.0,950 959) MAIN_REASON_GROUP_NEW (%) ACCIDENT 12 (12 (13 (12 (9 (1 (0.4) (V01-1.3) 1.2) 1.4) 1.6) 2.0) 99,W00-99,X00-59,Y85-Y86,800-869,880-899,900-929) CANCER(C00\(\frac{2}{2}\) (127 (124 (101 (56 (30 (11.0) C97,140- 13.9) 13.1) 13.8) 13.7) 12.2) 208,238.6,273.3,289.8) CHRONIC 12 (7 (7 (3 (3 (4 (1.5) LIVER 1.3) 0.7) 0.8) 0.4) 0.7) DIS(K70-K77,571) CONGENITALI (0 (1 (2 (0 (0 (0.0) ANOMALIES(\(\mathbb{Q}\)000- 0.0) 0.1) 0.3) 0.0) Q99,740-759) COPD(J40- 22 (16 (15 (17 (10 (3 (1.1) 47,490- 2.4) 1.7) \frac{1.7}{4.7} 2.3) 2.2) 494,496) DIABETES(\(\mathbb{E}\)III- (91 (85 (63 (39 (27 (9.9) 44) 4.75) 1.7) 1.7 (1.0 (3 (1.1) 47,490- 2.4) 9.5) 8.6) 8.5)	EXTER- NAL (Y10- 34,Y40- Y84,Y87.2- Y88.3,Y89.9,8 879,930- 949,980-	1 (0.1)	3 (2 (3 (2 (1 (0.4)
(%) ACCIDENT 12 (12 (13 (12 (9 (1 (0.4) (V01- 1.3) 1.2) 1.4) 1.6) 2.0) 99,W00- 99,W00- 99,X00- 59,Y85- Y86,800- 869,880- 899,900- 929) CANCER(C00-27 (127 (124 (101 (56 (30 (11.0) (1.0)	SUICIDE (X60- 84,Y87.0,950 959)	0.1)	0.1)	0.3)			0 (0.0)
ACCIDENT 12 (12 (13 (12 (9 (1 (0.4) (V01- 1.3) 1.2) 1.4) 1.6) 2.0) 99,W00- 99,X00- 59,Y85- Y86,800- 869,880- 899,900- 929) CANCER(C00+27 (127 (124 (101 (56 (30 (11.0) C97,140- 13.9) 13.1) 13.8) 13.7) 12.2) 208,238.6,273.3,289.8) CHRONIC 12 (7 (7 (3 (3 (4 (1.5) LIVER 1.3) 0.7) 0.8) 0.4) 0.7) DIS(K70- K77,571) CONGENITALI (0 (1 (2 (0 (0 (0.0) ANOMALIES(QD0- 0.0) 0.1) 0.3) 0.0) Q99,740- 759) COPD(J40- 22 (16 (15 (17 (10 (3 (1.1) 47,490- 2.4) 1.7) 1.7) 1.7) 1.7 (2.3) 2.2) 494,496) DIABETES(ETG- (91 (85 (63 (39 (27 (9.9) E14,250) 8.2) 9.4) 9.5) 8.6) 8.5)		SON_C	GROUP_	_NEW			
CANCER(C001-27 (127 (124 (101 (56 (30 (11.0) C97,140- 13.9) 13.1) 13.8) 13.7) 12.2) 208,238.6,273.3,289.8) CHRONIC 12 (7 (7 (3 (3 (4 (1.5) LIVER 1.3) 0.7) 0.8) 0.4) 0.7) DIS(K70- K77,571) CONGENITALI (0 (1 (2 (0 (0 (0.0) ANOMALIES(QQQ0- 0.0) 0.1) 0.3) 0.0) Q99,740- 759) COPD(J40- 22 (16 (15 (17 (10 (3 (1.1) 47,490- 2.4) 1.7) 1.7) 1.7) 2.3) 2.2) 494,496) DIABETES(ETG-(91 (85 (63 (39 (27 (9.9) E14,250) 8.2) 9.4) 9.5) 8.6) 8.5)	ACCIDENT (V01- 99,W00- 99,X00- 59,Y85- Y86,800- 869,880- 899,900-	,	,	`	`	`	1 (0.4)
CHRONIC 12 (7 (7 (3 (3 (4 (1.5) LIVER 1.3) 0.7) 0.8) 0.4) 0.7) DIS(K70- K77,571) CONGENITAL1 (0 (1 (2 (0 (0 (0.0) ANOMALIES(QQQ)0- 0.0) 0.1) 0.3) 0.0) Q99,740- 759) COPD(J40- 22 (16 (15 (17 (10 (3 (1.1) 47,490- 2.4) 1.7) 47,77 2.3) 2.2) 494,496) DIABETES(ETG-(91 (85 (63 (39 (27 (9.9) 8.2) 9.4) 9.5) 8.6) 8.5)	CANCER(CO	13.9)	(13.1)	`	`	`	30 (11.0)
CONGENITALI (0 (1 (2 (0 (0 (0.0) ANOMALIES (QD)0- 0.0) 0.1) 0.3) 0.0) Q99,740-759) COPD(J40- 22 (16 (15 (17 (10 (3 (1.1) 47,490- 2.4) 1.7) 1.7) 1.7) 2.3) 2.2) 494,496) DIABETES (ETG)- (91 (85 (63 (39 (27 (9.9) E14,250) 8.2) 9.4) 9.5) 8.6) 8.5)	CHRONIC LIVER DIS(K70-	12 (7 (,		4 (1.5)
COPD(J40- 22 (16 (15 (17 (10 (3 (1.1) 47,490- 2.4) 1.7) 1.7) 2.3) 2.2) 494,496) DIABETES(ETG-(91 (85 (63 (39 (27 (9.9) E14,250) 8.2) 9.4) 9.5) 8.6) 8.5)	CONGENITA ANOMALIES Q99,740-	`	`		`	`	0 (0.0)
E14,250) 8.2) 9.4) 9.5) 8.6) 8.5)	COPD(J40- 47,490- 494,496)	2.4)	1.7)	$47^{7)}$	2.3)	2.2)	, ,
DISEASES 451 (489 (410 (328 (223 (120 (44 0)	•	8.2)	,	9.5)	`	,	

120 (440)

Table 48: table part 24: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
KIDNEY(NO 12, N17-19, N25- 29,580-	11 (4.9)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	
589) MURDER &	0 (0 (0 (0 (0 (
ASSAULT (X85- 99,YOO- Y09,Y87.1,96	0.0)	NaN)	NaN)	NaN)	NaN)	
969)	00-					
OTHER	36 (16.0)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	
OTHER EXTER- NAL (Y10- 34,Y40- Y84,Y87.2-	1 (0.4)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	
Y88.3,Y89.9,8 879,930- 949,980- 989)						
SUICIDE (X60- 84,Y87.0,950 959)	0 (0.0)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	
MAIN_REA (%)	SON_0	ROUP	_NEW			NaN
ACCIDENT (V01- 99,W00- 99,X00- 59,Y85- Y86,800- 869,880- 899,900- 929)	3 (1.3)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	
CANCER(CO C97,140- 208,238.6,273	17.8)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	
CHRONIC LIVER DIS(K70- K77,571)	0 (0.0)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	
CONGENITA ANOMALIE Q99,740- 759)	S(QQ)0-	ŕ	0 (NaN)	0 (NaN)	0 (NaN)	
COPD(J40- 47,490- 494,496)	8 (3.6)	0 (NaN)	0 (18 ^{NaN)}	0 (NaN)	0 (NaN)	
DIABETES(1 E14,250)	E 1106 - (7.1)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	

Table 49: table part 25 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
SUICIDE (X60- 84,Y87.0,950 959)	1 (0.1)	1 (0.1)	3 (0.3)	2 (0.3)	1 (0.2)	0 (0.0)
MAIN_REA	SON_I	LAMAS_	_COD			
A04700	1 (1 (4 (1 (2 (0 (0.0)
A 0.4800	0.1)	0.1)	0.4)	0.1)	0.4)	0 (0 0)
A04800	$\frac{2}{0.2}$	1 (0.1)	1 (0.1)	1 (0.1)	0 (0.0)	0 (0.0)
A09000	1 (2 (0 (1 (1 (0 (0.0)
A28800	0.1)	0.2)	0.0)	0.1)	0.2)	0 (0.0)
1120000	0.0)	0.0)	0.0)	0.0)	0.2)	0 (0.0)
A32700	0 (1 (0 (0 (0 (0 (0.0)
A39400	0.0)	0.1)	0.0)	0.0)	0.0)	0 (0.0)
	(0.0)	0.0)	(0.0)	(0.0)	0.2)	, ,
A41000	1 (0.1)	1 (0.1)	0 (0.0)	0 (0.0)	0 (0.0)	1 (0.4)
A41200	0.1)	0.1)	0.0)	0.0)	0.0)	1 (0.4)
4 44 700	0.0)	0.0)	0.0)	0.0)	0.0)	1 (0.4)
A41500	1 (0.1)	0 (0.0)	1 (0.1)	1 (0.1)	0 (0.0)	1 (0.4)
A41900	21 (27 (24 (26 (10 (15 (5.5)
A 49100	2.3)	2.8)	2.7)	3.5)	2.2)	0 (0 0)
A48100	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	1 (0.2)	0 (0.0)
$\mathbf{A48300}$	0 (0 (0 (1 (0 (0 (0.0)
A49900	0.0)	0.0)	0.0)	0.1)	0.0)	0 (0.0)
A40000	0.0)	0.0)	0.0)	0.1)	0.0)	0 (0.0)
B18200	0 (2 (0 (1 (0 (0 (0.0)
B21200	0.0)	0.2)	0.0)	0.1)	0.0)	0 (0.0)
	0.0)	0.1)	0.0)	0.1)	(0.0)	
B49000	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	1 (0.4)
C02900	0.0)	0.0)	0.0)	1 (0.0)	0 (0.0)
	(0.0)	(0.0)	0.0)	0.1)	0.0)	, ,
C06800	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
	0.0)	0.0)	0.0)	0.0)	0.0)	

Table 50: table part 25 : All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
SUICIDE	0 (0 (0 (0 (0 (
(X60-	0.0)	NaN)	NaN)	NaN)	NaN)	
84,Y87.0,950						
959)	CONT		COD			NT NT
MAIN_REA	ISON_I	JAMAS_	_COD			NaN
(%) A04700	0 (0 (0 (0 (0 (
A04700	0.0)	NaN)	0 (NaN)	NaN)	NaN)	
A04800	0.0)	0 (0 (0 (0 (
1101000	0.0)	NaN)	NaN)	NaN)	`	
A09000	1 (0 (0 (0 (0 (
	0.4)	\hat{NaN}	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	
A28800	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
A32700	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
$\mathbf{A39400}$	0 (0 (0 (0 (0 (
A 41 000	0.0)	NaN)	NaN)	NaN)	NaN)	
$\mathbf{A41000}$	0 (0 (0 (0 (0 (
A41200	0.0)	NaN)	NaN)	NaN)	NaN)	
A41200	0 (0.0)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	
A41500	0.0)	0 (0 (0 (0 (
1111000	0.0)	NaN)	NaN)	NaN)	NaN)	
A41900	5 (0 (0 (0 (0 (
	(2.2)	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	
A48100	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
$\mathbf{A48300}$	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
$\mathbf{A49900}$	0 (0 (0 (0 (0 (
D10000	0.0)	NaN)	NaN)	NaN)	NaN)	
B18200	0 (0.0)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	
B21200	0.0)	0 (0 (0 (0 (
121200	0.0)	NaN)	NaN)	NaN)	NaN)	
B49000	0.0)	0 (0 (0 (0 (
	(0.0)	NaN)	NaN)	NaN)	NaN)	
C02900	0 (0 (0 (0 (0 (
	(0.0)	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	
C06800	1 (0 (0 (0 (0 (
	0.4)	NaN)	NaN)	NaN)	NaN)	

Table 51: table part 26 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
C07000	1 (0 (0 (1 (0 (0 (0.0)
C1 4000	0.1)	0.0)	0.0)	0.1)	0.0)	0 (0 0)
C14000	0 (0.0)	1 (0.1)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
C15100	1 (0.1)	0.0)	0.0)	0.0)	0 (0.0)
010100	0.1)	0.0)	0.0)	0.0)	0.0)	0 (0.0)
C15500	0 (0 (0 (0 (0 (1 (0.4)
	(0.0)	0.0)	0.0)	0.0)	0.0)	
C15900	0 (4 (0 (2 (0 (0 (0.0)
G14000	0.0)	0.4)	0.0)	0.3)	0.0)	1 (0 4)
C16900	6 (3 (5 (3 (2 (1 (0.4)
C17000	0.7)	0.3)	0.6)	0.4)	0.4)	0 (0.0)
C17000	0.0)	0.1)	0.0)	0.0)	0.0)	0 (0.0)
C18200	0 (0 (0 (1 (0 (0 (0.0)
	(0.0)	(0.0)	(0.0)	0.1)	(0.0)	- ()
C18700	1 (1 (0 (0 (0 (0(0.0)
	0.1)	0.1)	0.0)	0.0)	0.0)	
C18900	9 (17 (15 (8 (7 (4 (1.5)
Q	1.0)	1.8)	1.7)	1.1)	1.5)	0 (0 0)
C19000	0 (1 (0 (0 (0 (0 (0.0)
C20000	0.0)	0.1)	0.0)	0.0)	0.0)	1 (0 4)
C20000	0 (0.0)	0.3)	0.2)	0.3)	0.4)	1 (0.4)
C22000	3 (1 (1 (0.5)	1 (0 (0.0)
02200	0.3)	0.1)	0.1)	0.0)	0.2)	0 (0.0)
C22100	1 (0 (2 (2 (0 (0 (0.0)
	0.1)	0.0)	0.2)	0.3)	0.0)	
C22900	0 (2 (0 (0 (0 (1 (0.4)
	0.0)	0.2)	0.0)	0.0)	0.0)	0 (0 0)
C23000	0 (0 (0 (1 (0 (0 (0.0)
C24000	0.0)	0.0)	0.0)	0.1)	0.0)	0 (0.0)
C24000	0 (0.0)	1 (0.1)	0 (0.0)	0 (0.0)	1 (0.2)	0 (0.0)
C24900	1 (0.1)	0.0)	0.0)	0.2)	0 (0.0)
	0.1)	(0.0)	(0.0)	0.0)	0.0)	()
C25000	0 (0 (1 (4 (0 (1(0.4)
	0.0)	0.0)	0.1)	0.5)	(0.0)	
C25900	11 (8 (12 (6 (4 (3 (1.1)
	1.2)	0.8)	1.3)	0.8)	0.9)	

Table 52: table part 26: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
C07000	0 (0 (0 (0 (0 (
	(0.0)	NaN)	NaN)	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	
C14000	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
C15100	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
C15500	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
C15900	0 (0 (0 (0 (0 (
~	0.0)	NaN)	NaN)	NaN)	NaN)	
C16900	1 (0 (0 (0 (0 (
Q	0.4)	NaN)	NaN)	NaN)	NaN)	
C17000	0 (0 (0 (0 (0 (
G10000	0.0)	NaN)	NaN)	NaN)	NaN)	
C18200	0 (0 (0 (0 (0 (
C10700	0.0)	NaN)	NaN)	NaN)	NaN)	
C18700	0 (0 (0 (0 (0 (
C19000	0.0)	NaN)	NaN)	NaN)	NaN)	
C18900	6 (0 (0 (0 (0 (
C19000	2.7)	NaN)	NaN) 0 (NaN)	NaN)	
C19000	0 (0.0)	0 (NaN)	NaN)	0 (NaN)	0 (NaN)	
C20000	0.0)	0 (0 (0 (0 (
C20000	0.0)	NaN)	NaN)	NaN)	NaN)	
C22000	0.0)	0 (0 (0 (0 (
C22000	0.0)	NaN)	NaN)	NaN)	NaN)	
C22100	0 (0 (0 (0 (0 (
022100	0.0)	NaN)	NaN)	NaN)	NaN)	
C22900	0 (0 (0 (0 (0 (
	(0.0)	$\hat{\text{NaN}}$	$\widehat{\text{NaN}}$	NaN)	$\hat{\text{NaN}}$	
C23000	0 (0 (0 (0 (0 (
	(0.0)	\hat{NaN}	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	NaN)	
C24000	0 (0 (0 (0 (0 (
	(0.0)	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	
C24900	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
C25000	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
C25900	3 (0 (0 (0 (0 (
	1.3)	NaN)	NaN)	NaN)	NaN)	

Table 53: table part 27 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
C30000	0 (0 (0 (0 (0 (0 (0.0)
Canno	0.0)	0.0)	0.0)	0.0)	0.0)	0 (0 0)
C32900	0 (0.0)	1 (0.1)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
C34100	1 (0.1)	0.0)	0.0)	0.0)	0 (0.0)
201100	0.1)	0.0)	0.0)	0.0)	0.0)	0 (0.0)
C34900	30 (25 (26 (24 (17 (3 (1.1)
	3.3)	(2.6)	(2.9)	3.3)	3.7)	, ,
C38400	1 (0 (0 (0 (0 (0 (0.0)
~	0.1)	0.0)	0.0)	0.0)	0.0)	0 (0 0)
C43700	0 (0 (0 (2 (0 (0 (0.0)
C43900	0.0)	0.0)	0.0)	0.3)	0.0)	0 (0 0)
C45900	2 (0.2)	$\frac{3}{0.3}$	$\frac{3}{0.3}$	1 (0.1)	1 (0.2)	0 (0.0)
C44900	0.2)	1 (0.5)	0.1)	1 (1 (0.4)
011000	0.0)	0.1)	0.0)	0.0)	0.2)	1 (0.1)
C45000	0 (0 (1 (0 (0 (0(0.0)
	(0.0)	(0.0)	0.1)	(0.0)	(0.0)	, ,
C45900	0 (0 (1 (0 (0 (0 (0.0)
	0.0)	0.0)	0.1)	0.0)	0.0)	, ,
C46900	0 (1 (0 (1 (0 (0 (0.0)
C 40 400	0.0)	0.1)	0.0)	0.1)	0.0)	0 (0 0)
C49400	0 (0 (1 (0 (0 (0 (0.0)
C49900	0.0)	0.0)	0.1)	0.0)	0.0)	0 (0.0)
C43300	0.1)	0.0)	0.0)	0.0)	0.0)	0 (0.0)
C50400	0 (0.0)	1 (0.0)	0.0)	0 (0.0)
	(0.0)	(0.0)	0.1)	(0.0)	(0.0)	, ,
C50900	6 (2 (7 (5 (2 (3(1.1)
	0.7)	0.2)	0.8)	0.7)	0.4)	
C51900	0 (0 (0 (1 (0 (0 (0.0)
Granon	0.0)	0.0)	0.0)	0.1)	0.0)	0 (0 0)
C53900	0 (1 (0 (0 (0 (0 (0.0)
C54100	0.0)	0.1)	0.0)	0.0)	0.0)	0 (0.0)
C04100	0.0)	0.0)	0.0)	0.1)	0.0)	0 (0.0)
C55000	0 (0 (0 (1 (1 (1 (0.4)
	0.0)	0.0)	(0.0)	0.1)	0.2)	(-)
C56000	0 (5 (1 (0 (0 (0 (0.0)
	0.0)	0.5)	0.1)	0.0)	0.0)	

Table 54: table part 27: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
C30000	1 (0 (0 (0 (0 (
	0.4)	NaN)	NaN)	NaN)	NaN)	
C32900	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
C34100	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
C34900	13 (0 (0 (0 (0 (
	5.8)	NaN)	NaN)	NaN)	NaN)	
C38400	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
C43700	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
C43900	3 (0 (0 (0 (0 (
~	1.3)	NaN)	NaN)	NaN)	NaN)	
C44900	1 (0 (0 (0 (0 (
G 17000	0.4)	NaN)	NaN)	NaN)	NaN)	
C45000	0 (0 (0 (0 (0 (
G 45000	0.0)	NaN)	NaN)	NaN)	NaN)	
C45900	0 (0 (0 (0 (0 (
C10000	0.0)	NaN)	NaN)	NaN)	NaN)	
C46900	0 (0 (0 (0 (0 (
C40400	0.0)	NaN)	NaN)	NaN)	NaN)	
C49400	0 (0 (0 (0 (0 (
C49900	0.0)	NaN)	NaN) 0 (NaN) 0 (NaN)	
C49900	0 (0.0)	0 (NaN)	NaN)	NaN)	0 (NaN)	
C50400	0.0)	0 (0 (0 (0 (
C30400	0.0)	NaN)	NaN)	NaN)	NaN)	
C50900	1 (0 (0 (0 (0 (
C90300	0.4)	NaN)	NaN)	NaN)	NaN)	
C51900	0 (0 (0 (0 (0 (
201000	0.0)	NaN)	NaN)	NaN)	NaN)	
C53900	1 (0 (0 (0 (0 (
	0.4)	NaN)	NaN)	NaN)	NaN)	
C54100	0 (0 (0 (0 (0 (
	0.0)	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	
C55000	0 (0 (0 (0 (0 (
	(0.0)	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	
C56000	3 (0 (0 (0 (0 (
	1.3)	NaN)	NaN)	NaN)	NaN)	

Table 55: table part 28 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
C61000	5 (5 (8 (7 (4 (2 (0.7)
G01000	0.5)	0.5)	0.9)	1.0)	0.9)	0 (0 0)
C61900	1 (0.1)	0 (0 (0 (0 (0 (0.0)
C62900	0.1)	0.0)	0.0)	0.0)	0.0)	0 (0.0)
C02500	0.0)	0.0)	0.1)	0.0)	0.0)	0 (0.0)
C64000	3 (5 (4 (2 (0 (1 (0.4)
	0.3)	0.5)	0.4)	0.3)	(0.0)	` '
C65000	1 (0 (0 (0 (0 (0 (0.0)
Ga F 000	0.1)	0.0)	0.0)	0.0)	0.0)	0 (0 0)
C67900	7 (7 (4 (5 (3 (0 (0.0)
C68800	0.8)	0.7)	0.4)	0.7)	0.7)	0 (0.0)
C00000	0.0)	0.0)	0.0)	0.1)	0.0)	0 (0.0)
C71900	2 (3 (2 (2 (3 (1 (0.4)
	0.2)	0.3)	0.2)	0.3)	0.7)	()
C73000	1 (1 (1 (0 (0 (0(0.0)
	0.1)	0.1)	0.1)	0.0)	0.0)	
C76000	0 (0 (0 (2 (0 (0 (0.0)
Czcooo	0.0)	0.0)	0.0)	0.3)	0.0)	0 (0 0)
C76200	0 (0.0)	0 (0.0)	1 (0.1)	0 (0.0)	0 (0.0)	0 (0.0)
C76300	0.0)	0.0)	0.1)	1 (0.0)	0 (0.0)
010000	0.0)	0.0)	0.0)	0.1)	0.0)	0 (0.0)
C78700	1 (0 (0 (1 (0 (0 (0.0)
	0.1)	(0.0)	(0.0)	0.1)	(0.0)	` '
C80000	8 (7 (7 (1 (4 (1 (0.4)
G 2.12.2	0.9)	0.7)	0.8)	0.1)	0.9)	0 (0 0)
C81900	0 (0 (0 (1 (0 (0 (0.0)
C83300	0.0)	0.0)	0.0)	0.1)	0.0)	0 (0.0)
C63300	0.1)	0.2)	0.1)	0.1)	0.2)	0 (0.0)
C83700	1 (0 (0 (0 (0 (0 (0.0)
	0.1)	(0.0)	(0.0)	(0.0)	0.0)	- ()
C84500	0 (1 (0 (1 (0 (0 (0.0)
	0.0)	0.1)	0.0)	0.1)	0.0)	
C85100	1 (1 (1 (0 (0 (1 (0.4)
Corpos	0.1)	0.1)	0.1)	0.0)	0.0)	0 (0 0)
C85700	0 (0 (0 (1 (0 (0 (0.0)
	0.0)	0.0)	0.0)	0.1)	0.0)	

Table 56: table part 28: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
C61000	1 (0 (0 (0 (0 (
	0.4)	NaN)	NaN)	NaN)	NaN)	
C61900	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
C62900	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
C64000	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
C65000	0 (0 (0 (0 (0 (
~	0.0)	NaN)	NaN)	NaN)	NaN)	
C67900	0 (0 (0 (0 (0 (
Gassas	0.0)	NaN)	NaN)	NaN)	NaN)	
C68800	0 (0 (0 (0 (0 (
C71000	0.0)	NaN)	NaN)	NaN)	NaN)	
C71900	2 (0 (0 (0 (0 (
C79000	0.9)	NaN)	NaN)	NaN)	NaN)	
C73000	1 (0 (0 (0 (0 (
C76000	0.4)	NaN)	NaN)	NaN)	NaN)	
C76000	0 (0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	
C76200	0.0)	0 (0 (0 (0 (
C70200	0.0)	NaN)	NaN)	NaN)	NaN)	
C76300	0.0)	0 (0 (0 (0 (
C10000	0.0)	NaN)	NaN)	NaN)	NaN)	
C78700	0.0)	0 (0 (0 (0 (
010100	0.0)	NaN)	NaN)	NaN)	NaN)	
C80000	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
C81900	0 (0 (0 (0 (0 (
	(0.0)	NaN)	NaN)	NaN)	$\hat{\text{NaN}}$	
C83300	1 (0 (0 (0 (0 (
	0.4)	NaN)	\hat{NaN}	\hat{NaN}	NaN)	
C83700	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
C84500	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
C85100	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
C85700	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	

Table 57: table part 29 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
C85900	4 (3 (2 (4 (1 (1 (0.4)
Cooooo	0.4)	0.3)	0.2)	0.5)	0.2)	0 (0 0)
C90000	2 (0.2)	1 (0.1)	4 (0.4)	1 (0.1)	0 (0.0)	0 (0.0)
C90100	0.2)	1 (0.4)	0.1)	0.0)	0 (0.0)
000100	0.0)	0.1)	0.0)	0.0)	0.0)	0 (0.0)
C91000	0 (0 (1 (0 (0 (1 (0.4)
	(0.0)	(0.0)	0.1)	(0.0)	(0.0)	,
C91100	2 (2 (3 (0 (0 (0(0.0)
	0.2)	0.2)	0.3)	0.0)	0.0)	
C91900	0 (1 (0 (0 (0 (0 (0.0)
Casasa	0.0)	0.1)	0.0)	0.0)	0.0)	0 (0 0)
C92000	5 (3 (2 (2 (0 (0 (0.0)
C00100	0.5)	0.3)	0.2)	0.3)	0.0)	0 (0 0)
C92100	$\frac{3}{0.3}$	0 (0.0)	0 (0.0)	1 (0.1)	0 (0.0)	0 (0.0)
C95000	0.3)	1 (0.0)	0.1)	0.0)	0 (0.0)
C 55000	0.0)	0.1)	0.0)	0.0)	0.0)	0 (0.0)
C95900	1 (0 (1 (0 (0 (1 (0.4)
	0.1)	(0.0)	0.1)	(0.0)	(0.0)	,
C96100	1 (0 (0 (0 (0 (0(0.0)
	0.1)	0.0)	0.0)	0.0)	0.0)	
C96200	0 (0 (0 (0 (0 (1 (0.4)
Q	0.0)	0.0)	0.0)	0.0)	0.0)	0 (0 0)
C97000	2 (1 (2 (0 (1 (0 (0.0)
D32000	0.2)	0.1)	0.2)	0.0)	0.2)	0 (0.0)
D32000	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
D32900	0.0)	0.0)	0.0)	0.0)	1 (0 (0.0)
20200	0.0)	0.0)	0.0)	0.0)	0.2)	0 (0.0)
D37400	0 (0 (1 (0 (0 (0 (0.0)
	(0.0)	(0.0)	0.1)	(0.0)	(0.0)	, ,
D38200	0 (0 (0 (1 (0 (0 (0.0)
	0.0)	0.0)	0.0)	0.1)	0.0)	
D42000	0 (0 (0 (1 (0 (0 (0.0)
D 48800	0.0)	0.0)	0.0)	0.1)	0.0)	0 (00)
D43200	0 (1 (2 (0 (0 (0 (0.0)
D43900	0.0)	0.1)	0.2)	0.0)	0.0)	0 (0.0)
D40300	0 (0.0)	0 (0.0)	1 (0.1)	0 (0.0)	0 (0.0)	0 (0.0)
	0.0)	0.0)	0.1)	0.0)	0.07	

Table 58: table part 29: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
C85900	0 (0 (0 (0 (0 (
	(0.0)	NaN)	NaN)	NaN)	NaN)	
C90000	1 (0 (0 (0 (0 (
	0.4)	NaN)	NaN)	NaN)	NaN)	
C90100	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
C91000	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
C91100	0 (0 (0 (0 (0 (
G01000	0.0)	NaN)	NaN)	NaN)	NaN)	
C91900	0 (0 (0 (0 (0 (
Conon	0.0)	NaN)	NaN)	NaN)	NaN)	
C92000	0 (0 (0 (0 (0 (
C92100	0.0)	NaN)	NaN)	NaN)	NaN)	
C92100	0 (0.0)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	
C95000	0.0)	0 (0 (0 (0 (
C93000	0.0)	NaN)	NaN)	NaN)	NaN)	
C95900	0.0)	0 (0 (0 (0 (
000000	0.0)	NaN)	NaN)	NaN)	NaN)	
C96100	0.0)	0 (0 (0 (0 (
000100	(0.0)	NaN)	NaN)	NaN)	NaN)	
C96200	0 (0 (0 (0 (0 (
	(0.0)	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	\hat{NaN}	\hat{NaN}	
C97000	0 (0 (0 (0 (0 (
	(0.0)	NaN)	NaN)	NaN)	NaN)	
D32000	1 (0 (0 (0 (0 (
	0.4)	NaN)	NaN)	NaN)	NaN)	
D32900	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
D37400	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
D38200	0 (0 (0 (0 (0 (
D 40000	0.0)	NaN)	NaN)	NaN)	NaN)	
D42000	0 (0 (0 (0 (0 (
D 42200	0.0)	NaN)	NaN)	NaN)	NaN)	
D43200	0 (0 (0 (0 (0 (
D43900	0.0)	NaN)	NaN)	NaN)	NaN)	
D49800	0 (0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	
	0.0)	mam)	mam)	mam)	mam)	

Table 59: table part 30 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
D45000	0 (0 (0 (1 (0 (0 (0.0)
D 46000	0.0)	0.0)	0.0)	0.1)	0.0)	0 (0 0)
D46900	0 (0.0)	$\frac{3}{0.3}$	1 (0.1)	$\frac{2}{0.3}$	1 (0.2)	0 (0.0)
D47100	2 (1 (1 (0.5)	1 (0 (0.0)
21,100	0.2)	0.1)	0.1)	(0.0)	0.2)	0 (0.0)
D48700	0 (0 (0 (0 (1 (0 (0.0)
	0.0)	0.0)	0.0)	0.0)	0.2)	
D59100	0 (0 (0 (0 (0 (1 (0.4)
D61900	0.0)	0.0)	0.0)	0.0)	0.0)	0 (0 0)
D01900	0 (0.0)	1 (0.1)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
D64900	1 (1 (3 (1 (1 (2 (0.7)
	0.1)	0.1)	0.3)	0.1)	0.2)	- (*)
D65000	1 (0 (0 (1 (0 (0 (0.0)
	0.1)	0.0)	0.0)	0.1)	0.0)	
D68600	1 (0 (0 (0 (0 (0 (0.0)
D68800	0.1)	0.0)	0.0)	0.0)	0.0)	0 (0 0)
D00000	0 (0.0)	0 (0.0)	0 (0.0)	1 (0.1)	0 (0.0)	0 (0.0)
D69600	0.0)	0.0)	2 (2 (0.0)	0 (0.0)
	0.0)	(0.0)	0.2)	0.3)	(0.0)	0 (0.0)
D70000	1 (0 (1 (1 (1 (0 (0.0)
	0.1)	0.0)	0.1)	0.1)	0.2)	
D72800	0 (0 (1 (0 (0 (0 (0.0)
E03900	0.0)	0.0)	0.1)	0.0)	0.0)	1 (0.4)
E03900	$\frac{2}{0.2}$	0 (0.0)	$\frac{3}{0.3}$	0 (0.0)	1 (0.2)	1 (0.4)
E05500	0 (0 (0 (0 (0 (1 (0.4)
	0.0)	0.0)	0.0)	0.0)	0.0)	(-)
$\mathbf{E}10500$	0 (0 (0 (0 (1 (0(0.0)
	0.0)	0.0)	0.0)	0.0)	0.2)	- ()
E10700	0 (1 (0 (0 (0 (0 (0.0)
E10900	0.0)	0.1)	0.0)	0.0)	0.0)	0 (0.0)
T-10900	1 (0.1)	0.1)	0.0)	1 (0.1)	0.0)	0 (0.0)
E11000	0 (0 (0 (1 (0 (0 (0.0)
	0.0)	0.0)	0.0)	0.1)	(0.0)	, ,
E11100	1 (0 (0 (0 (0 (0(0.0)
	0.1)	0.0)	0.0)	0.0)	0.0)	

Table 60: table part 30 : All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
D45000	0 (0 (0 (0 (0 (
	(0.0)	NaN)	NaN)	NaN)	NaN)	
D46900	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
D47100	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
D48700	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
D59100	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
D61900	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
D64900	1 (0 (0 (0 (0 (
	0.4)	NaN)	NaN)	NaN)	NaN)	
D65000	0 (0 (0 (0 (0 (
Bassas	0.0)	NaN)	NaN)	NaN)	NaN)	
D68600	0 (0 (0 (0 (0 (
Dagge	0.0)	NaN)	NaN)	NaN)	NaN)	
D68800	0 (0 (0 (0 (0 (
Danana	0.0)	NaN)	NaN)	NaN)	NaN)	
D69600	0 (0 (0 (0 (0 (
D70000	0.0)	NaN)	NaN)	NaN)	NaN)	
$\mathbf{D70000}$	0 (0 (0 (0 (0 (
D72800	0.0)	NaN)	NaN)	NaN)	NaN)	
D12800	0 (0.0)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	
E03900	0.0)	0 (0 (0 (0 (
E03300	0.0)	NaN)	NaN)	NaN)	NaN)	
E05500	0.0)	0 (0 (0 (0 (
L 00000	0.0)	NaN)	NaN)	NaN)	NaN)	
E10500	0 (0 (0 (0 (0 (
210000	0.0)	NaN)	NaN)	NaN)	NaN)	
E10700	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
E10900	1 (0 (0 (0 (0 (
	0.4)	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	
E11000	0 (0 (0 (0 (0 (
	(0.0)	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	\hat{NaN}	
E11100	0 (0 (0 (0 (0 (
	(0.0)	NaN)	NaN)	NaN)	NaN)	

Table 61: table part 31 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
E11200	2 (5 (2 (8 (1 (2 (0.7)
E11500	0.2)	0.5)	0.2)	1.1)	0.2)	0 (0 7)
E11500	1 (0.1)	1 (0.1)	0 (0.0)	1 (0.1)	4 (0.9)	2(0.7)
E11700	2 (8 (2 (3 (0.9)	0 (0.0)
LIIIO	0.2)	0.8)	0.2)	0.4)	0.0)	0 (0.0)
E11900	31 (32 (30 (14 (10 (1 (0.4)
	(3.4)	$(3.3)^{(1)}$	$(3.3)^{(1)}$	1.9)	(2.2)	()
E14000	1 (0 (1 (0 (0 (0(0.0)
	0.1)	0.0)	0.1)	0.0)	0.0)	
E14200	1 (5 (12 (4 (5 (4 (1.5)
	0.1)	0.5)	1.3)	0.5)	1.1)	1 (0 1)
E14500	4 (2 (1 (1 (1 (1 (0.4)
E1 4600	0.4)	0.2)	0.1)	0.1)	0.2)	0 (0 0)
$\mathbf{E}14600$	0 (1 (0 (0 (0 (0 (0.0)
E14700	0.0) 7 (0.1)	0.0) 5 (0.0)	0.0)	3 (1.1)
E14700	0.8)	0.3)	0.6)	0.4)	0.4)	3 (1.1)
E14900	24 (32 (32 (27 (15 (14 (5.1)
211000	2.6)	3.3)	3.6)	3.7)	3.3)	11 (0.1)
E16200	0 (0 (1 (0 (0 (0(0.0)
	(0.0)	(0.0)	0.1)	(0.0)	(0.0)	,
E34000	0 (0 (0 (1 (0 (0(0.0)
	0.0)	0.0)	0.0)	0.1)	0.0)	
$\mathbf{E}66800$	0 (0 (0 (1 (0 (0 (0.0)
Facco	0.0)	0.0)	0.0)	0.1)	0.0)	0 (0 0)
$\mathbf{E}66900$	0 (1 (1 (0 (0 (0 (0.0)
E78500	0.0)	0.1)	0.1)	0.0)	0.0)	0 (0.0)
E76500	0 ($\frac{2}{0.2}$	1 (0.1)	$\frac{3}{0.4}$	1 (0.2)	0 (0.0)
E78800	0.0)	0.2)	1 (0 (0.2)	0 (0.0)
2.0000	0.0)	0.0)	0.1)	0.0)	0.0)	0 (0.0)
E83800	0 (0 (0 (1 (0 (0(0.0)
	(0.0)	(0.0)	(0.0)	0.1)	(0.0)	()
$\mathbf{E}85000$	0 (1 (0 (0 (0 (0(0.0)
	0.0)	0.1)	0.0)	0.0)	0.0)	
E85900	1 (2 (0 (0 (0 (0 (0.0)
Fores	0.1)	0.2)	0.0)	0.0)	0.0)	0 (0 0)
$\mathbf{E}86000$	0 (1 (1 (4 (0 (0 (0.0)
-	0.0)	0.1)	0.1)	0.5)	0.0)	

Table 62: table part 31: All vars except HAKZAA by source 2013-2024

E11200		S2013	S2016	S2018	S2021	S2024	p
E11500	E11200	0 (0 (0 (0 (0 (
December 2016 December 201		(0.0)	,	NaN)	,	,	
E11700 0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 ($\mathbf{E}11500$,	,		,	,	
Description	T11500		/	,	,		
E11900 2 (0 (<	E11700	,	,		,	,	
D.9 NaN NaN NaN NaN NaN	E11000	,	,	,	,	,	
E14000 0 (<	E11900	,	`		`	,	
December 2016 December 201	E14000	- :		/		, ,	
E14200 1 (0 (<	211000	(\		,	,	
D.4 NaN NaN NaN NaN NaN	E14200	- :			,		
D.4 NaN NaN NaN NaN NaN		`	,	`	,		
E14600 0 (<	E14500	1 (0 (0 (0 (
D.0 NaN NaN NaN NaN NaN		0.4)	NaN)	NaN)	NaN)	NaN)	
E14700 0 (<	$\mathbf{E}14600$	`	,		,	`	
Doc NaN NaN NaN NaN NaN		- :					
E14900 11 (0 (0 (0 (0 (4.9) NaN) NaN) NaN) NaN) NaN) E16200 0 (<t< th=""><th>$\mathbf{E}14700$</th><th>`</th><th>` .</th><th></th><th>,</th><th>,</th><th></th></t<>	$\mathbf{E}14700$	`	` .		,	,	
E16200 0 (<t< th=""><th>T1 4000</th><th> ',</th><th>,</th><th>- /</th><th>,</th><th>- /</th><th></th></t<>	T1 4000	',	,	- /	,	- /	
E16200 0 (<	E14900	`		,	,	,	
E34000 0.0) NaN) NaN) NaN) NaN) E34000 0 (<t< th=""><th>F16200</th><th>,</th><th></th><th>,</th><th></th><th></th><th></th></t<>	F16200	,		,			
E34000 0 (<	E10200	`	` .	` .	` .	`	
E66800 0 (<	E34000	- :	,	,	,	,	
E66800 0 (0 (0 (0 (0 (0.0) NaN) NaN) NaN) NaN) NaN) E66900 0 (0 (0 (0 (0 (0 (0.0) NaN) NaN) NaN) NaN) NaN) NaN) E78800 0 (201000	(,	
E66900 0 (<	E66800	- :					
E78500 0.0) NaN) NaN) NaN) NaN) E78500 0 (<t< th=""><th></th><th>(0.0)</th><th>$\hat{\text{NaN}}$</th><th>,</th><th>,</th><th>,</th><th></th></t<>		(0.0)	$\hat{\text{NaN}}$,	,	,	
E78500 0 (<	E66900	0 (0 (0 (0 (
E78800 0.0) NaN) NaN) NaN) NaN) E78800 0 (<t< th=""><th></th><th>0.0)</th><th>NaN)</th><th>NaN)</th><th>NaN)</th><th>NaN)</th><th></th></t<>		0.0)	NaN)	NaN)	NaN)	NaN)	
E78800 0 (<	$\mathbf{E}78500$	0 (`	,	,	,	
E83800 0 (<t< th=""><th></th><th>,</th><th>,</th><th>,</th><th>,</th><th>,</th><th></th></t<>		,	,	,	,	,	
E83800 0 (<t< th=""><th>E78800</th><th>`</th><th>,</th><th></th><th>,</th><th>`</th><th></th></t<>	E78800	`	,		,	`	
E85000 0.0) NaN) NaN) NaN) NaN) E85000 0 (E99900	- :					
E85000 0 (<t< th=""><th>E83800</th><th>``</th><th>,</th><th>*</th><th>,</th><th></th><th></th></t<>	E83800	``	,	*	,		
E85900 0 (<t< th=""><th>E85000</th><th>- /</th><th>- /</th><th>. /</th><th>- /</th><th>- /</th><th></th></t<>	E85000	- /	- /	. /	- /	- /	
E85900 0 (0 (0 (0 (0 (0.0) NaN) NaN) NaN) NaN) E86000 0 (0 (0 (0 (0 (L30000	,	`		`	,	
0.0) NaN) NaN) NaN) NaN) (86000 0 (0 (0 (0 (0 (E85900	- /	- , '				
E86000 0 (0 (0 (0 (` .	*		,	
	E86000	0 (0 (,	,	,	
0.0)		(0.0)	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	NaN)	

Table 63: table part 32 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
E87000	1 (1 (0 (0 (1 (0 (0.0)
E97900	0.1)	0.1)	0.0)	0.0)	0.2)	0 (0 0)
E87200	1 (0.1)	2 (0.2)	1 (0.1)	1 (0.1)	4 (0.9)	0 (0.0)
E87500	0.1)	0.2)	2 (1 (1 (1 (0.4)
	0.0)	(0.0)	0.2)	0.1)	0.2)	(-)
$\mathbf{E}87600$	0 (0 (1 (0 (0 (0(0.0)
	0.0)	0.0)	0.1)	0.0)	0.0)	, ,
E88000	0 (0 (0 (3 (1 (0 (0.0)
F01100	0.0)	0.0)	0.0)	0.4)	0.2)	0 (0.0)
F 01100	0.0)	0 (0.0)	0 (0.0)	0.1)	0 (0.0)	0 (0.0)
F01900	1 (2 (1 (1 (1 (0 (0.0)
	0.1)	0.2)	0.1)	0.1)	0.2)	()
F03000	6 (6 (8 (1 (4 (0(0.0)
	0.7)	0.6)	0.9)	0.1)	0.9)	- ()
F05900	1 (0 (0 (0 (0 (0 (0.0)
F10300	0.1)	0.0)	0.0)	0.0)	0.0)	0 (0.0)
110300	0.0)	0.1)	0.0)	0.0)	0.0)	0 (0.0)
G06000	1 (0 (0 (0 (0 (0 (0.0)
	0.1)	0.0)	(0.0)	(0.0)	(0.0)	,
G12200	1 (0 (1 (2 (0 (0(0.0)
Gaaaa	0.1)	0.0)	0.1)	0.3)	0.0)	0 (0 0)
G20000	$\frac{3}{0.3}$	1 (0 (1 (1 (0 (0.0)
G25900	0.3)	0.1)	0.0)	0.1)	0.2)	0 (0.0)
G 2 5555	0.0)	0.1)	0.0)	0.0)	0.0)	0 (0.0)
G30900	4 (0 (3 (5 (1 (0 (0.0)
	0.4)	0.0)	0.3)	0.7)	0.2)	
G40900	1 (0 (0 (0 (0 (0 (0.0)
Ccanon	0.1)	0.0)	0.0)	0.0)	0.0)	0 (0 0)
G62900	0 (0.0)	0 (0.0)	1 (0.1)	0 (0.0)	0 (0.0)	0 (0.0)
G93100	4 (4 (6 (5 (3 (3 (1.1)
	0.4)	0.4)	0.7)	0.7)	0.7)	- ()
I05900	1 (1 (0 (1 (0 (0(0.0)
	0.1)	0.1)	0.0)	0.1)	0.0)	
I06100	0 (1 (0 (0 (0 (0 (0.0)
_	0.0)	0.1)	0.0)	0.0)	0.0)	

Table 64: table part 32: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
E87000	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
E87200	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
$\mathbf{E}87500$	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
$\mathbf{E}87600$	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
$\mathbf{E}88000$	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
F01100	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
F01900	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
$\mathbf{F03000}$	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
F05900	0 (0 (0 (0 (0 (
F10000	0.0)	NaN)	NaN)	NaN)	NaN)	
F10300	0 (0 (0 (0 (0 (
Cogooo	0.0)	NaN)	NaN)	NaN)	NaN)	
G06000	0 (0 (0 (0 (0 (
C19900	0.0)	NaN)	NaN)	NaN)	NaN)	
G12200	0 (0 (0 (0 (0 (
C20000	0.0)	NaN)	NaN)	NaN)	NaN)	
G20000	0 (0 (0 (0 (0 (
G25900	0.0)	NaN)	NaN)	NaN)	NaN)	
G25900	0 (0.0)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	
G30900	0.0)	0 (0 (0 (0 (
G30300	0.0)	NaN)	NaN)	NaN)	NaN)	
G40900	0.0)	0 (0 (0 (0 (
G 10000	0.0)	NaN)	NaN)	NaN)	NaN)	
G62900	0.0)	0 (0 (0 (0 (
2.0200	0.0)	NaN)	NaN)	NaN)	NaN)	
G93100	3 (0 (0 (0 (0 (
	1.3)	NaN)	NaN)	NaN)	NaN)	
I05900	1 (0 (0 (0 (0 (
	0.4)	NaN)	$\hat{\text{NaN}}$	NaN)	$\widehat{\text{NaN}}$)	
I06100	0 (0 (0 (0 (0 (
	(0.0)	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	

Table 65: table part 33 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
I07100	0 (1 (0 (1 (0 (0 (0.0)
-	0.0)	0.1)	0.0)	0.1)	0.0)	. ()
I08000	0 (1 (1 (1 (3 (1 (0.4)
I08100	0.0)	0.1)	0.1)	0.1)	0.7)	0 (0.0)
100100	0.0)	0.3)	0.1)	0.0)	0.0)	0 (0.0)
108800	0 (0 (2 (0 (0.0)	0 (0.0)
	(0.0)	(0.0)	0.2)	(0.0)	(0.0)	,
I08900	0 (0 (0 (0 (1 (0 (0.0)
	0.0)	0.0)	0.0)	0.0)	0.2)	- ()
109900	1 (0 (0 (0 (0 (0 (0.0)
I10000	0.1)	0.0)	0.0)	0.0)	0.0)	1 (0 4)
110000	4 (0.4)	2 (0.2)	$\frac{2}{0.2}$	$\frac{2}{0.3}$	1 (0.2)	1 (0.4)
I11000	2 (2 (1 (0.5)	0.2)	0 (0.0)
111000	0.2)	0.2)	0.1)	(0.0)	0.0)	0 (0.0)
I11900	1 (1 (0 (0 (0 (0 (0.0)
	0.1)	0.1)	0.0)	0.0)	0.0)	
I12000	4 (1 (0 (0 (0 (1 (0.4)
T12000	0.4)	0.1)	0.0)	0.0)	0.0)	0 (0 0)
I13000	0 (0.0)	0 (0.0)	0 (0.0)	$\frac{2}{0.3}$	0 (0.0)	0 (0.0)
I13100	0.0)	1 (0.0)	0.5)	0.0)	0 (0.0)
110100	0.0)	0.1)	0.0)	(0.0)	(0.0)	0 (0.0)
I20000	0 (0 (1 (1 (0 (0 (0.0)
	0.0)	0.0)	0.1)	0.1)	0.0)	
$\mathbf{I21000}$	4 (1 (0 (0 (0 (0 (0.0)
T01100	0.4)	0.1)	0.0)	0.0)	0.0)	0 (0 0)
I21100	2 (0.2)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0 (0.0)
I21900	136 (122 (122 (106 (0.0) 80 (45 (16.5)
121000	14.8)	12.6)	13.6)	14.4)	17.5)	10 (10.0)
I22000	0 (0 (0 (2 (0 (0 (0.0)
	(0.0)	(0.0)	(0.0)	0.3)	(0.0)	` '
I22900	1 (2 (0 (0 (0 (0 (0.0)
T0 4000	0.1)	0.2)	0.0)	0.0)	0.0)	0 (00)
I24800	3 (9 (1 (5 (5 (0 (0.0)
I24900	0.3)	0.9)	0.1)	0.7)	1.1)	0 (0.0)
124500	0.0)	0.2)	0.0)	0.0)	0.0)	0 (0.0)
	0.0)	0.2)	0.0)	0.0)	0.0)	

Table 66: table part 33: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
I07100	0 (0 (0 (0 (0 (
	(0.0)	NaN)	NaN)	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	
I08000	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
I08100	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
I08800	0 (0 (0 (0 (0 (
T00000	0.0)	NaN)	NaN)	NaN)	NaN)	
I08900	0 (0 (0 (0 (0 (
T00000	0.0)	NaN)	NaN)	NaN)	NaN)	
109900	0 (0.0)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	
I10000	0.0)	0 (0 (0 (0 (
110000	0.0)	NaN)	NaN)	NaN)	NaN)	
I11000	0.0)	0 (0 (0 (0 (
111000	0.0)	NaN)	NaN)	NaN)	NaN)	
I11900	0.0)	0 (0 (0 (0 (
111000	0.0)	NaN)	NaN)	NaN)	NaN)	
I12000	0 (0 (0 (0 (0 (
	(0.0)	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	
I13000	0 (0 (0 (0 (0 (
	(0.0)	NaN)	NaN)	\hat{NaN}	\hat{NaN}	
I13100	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
I20000	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
I21000	0 (0 (0 (0 (0 (
T01100	0.0)	NaN)	NaN)	NaN)	NaN)	
I21100	0 (0 (0 (0 (0 (
T01000	0.0)	NaN)	NaN)	NaN)	NaN)	
I21900	47 (0 (0 (0 (0 (
I22000	20.9)	NaN) 0 (NaN) 0 (NaN) 0 (NaN) 0 (
122000	0.0)	NaN)	NaN)	NaN)	NaN)	
I22900	0.0)	0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
I24800	2 (0 (0 (0 (0 (
	0.9)	NaN)	NaN)	NaN)	NaN)	
I24900	1 (0 (0 (0 (0 (
	0.4)	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	

Table 67: table part 34 All vars except HAKZAA by source 2000-2010 $\,$

-	S2000	S2002	S2004	S2006	S2008	S2010
I25000	5 (5 (4 (2 (0 (0 (0.0)
T05100	0.5)	0.5)	0.4)	0.3)	0.0)	16 (5 0)
I25100	39 (4.3)	55 (5.7)	31 (3.4)	30 (4.1)	25 (5.5)	16 (5.9)
I25200	20 (11 (6 (0 (0 (0 (0.0)
120200	2.2)	1.1)	(0.7)	(0.0)	(0.0)	0 (0.0)
I25500	4 (1 (2 (2 (5 (0 (0.0)
	0.4)	0.1)	0.2)	0.3)	1.1)	
I25800	20 (37 (27 (20 (16 (10 (3.7)
	2.2)	3.8)	3.0)	2.7)	3.5)	
$\mathbf{I25900}$	95 (115 (90 (72 (34 (14 (5.1)
I26900	10.4)	11.9)	10.0)	9.8)	7.4)	1 (0 4)
120900	0 (0.0)	0 (0.0)	1 (0.1)	0 (0.0)	1 (0.2)	1 (0.4)
127000	0.0)	1 (0.1)	0.0)	0.2)	0 (0.0)
12.000	0.0)	0.1)	0.0)	0.0)	0.0)	0 (0.0)
I27200	0 (1 (1 (2 (1 (0(0.0)
	(0.0)	0.1)	0.1)	0.3)	0.2)	()
I27900	0 (1 (0 (0 (1 (0(0.0)
	0.0)	0.1)	0.0)	0.0)	0.2)	
I31900	0 (1 (2 (0 (0 (0 (0.0)
Tagana	0.0)	0.1)	0.2)	0.0)	0.0)	0 (0 0)
I33000	0 (0 (1 (2 (0 (0 (0.0)
I34000	0.0) 3 (0.0)	0.1)	0.3)	0.0)	0 (0.0)
134000	0.3)	0.0)	0.2)	0.3)	0.0)	0 (0.0)
I35000	7 (4 (9 (7 (4 (2 (0.7)
	0.8)	0.4)	1.0)	1.0)	0.9)	()
I35800	0 (1 (0 (0 (0 (0(0.0)
	0.0)	0.1)	0.0)	0.0)	0.0)	
$\mathbf{I35900}$	2 (2 (2 (0 (2 (1 (0.4)
T00000	0.2)	0.2)	0.2)	0.0)	0.4)	0 (0 0)
I38000	0 (0 (0 (1 (0 (0 (0.0)
I40000	0.0)	0.0)	0.0)	0.1)	0.0)	0 (0.0)
140000	0 (0.0)	0 (0.0)	1 (0.1)	0 (0.0)	0 (0.0)	0 (0.0)
I42000	0.0)	2 (2 (1 (0.0)	0 (0.0)
	0.0)	0.2)	0.2)	0.1)	0.0)	- (0.0)
I42100	0 (0 (0 (1 (0 (0 (0.0)
	0.0)	0.0)	(0.0)	0.1)	(0.0)	

Table 68: table part 34: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
I25000	0 (0 (0 (0 (0 (
	(0.0)	NaN)	NaN)	NaN)	NaN)	
I25100	7 (0 (0 (0 (0 (
	3.1)	NaN)	NaN)	NaN)	NaN)	
$\mathbf{I25200}$	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
$\mathbf{I25500}$	0 (0 (0 (0 (0 (
T07000	0.0)	NaN)	NaN)	NaN)	NaN)	
I25800	5 (0 (0 (0 (0 (
Torono	2.2)	NaN)	NaN)	NaN)	NaN)	
I25900	17 (0 (0 (0 (0 (
T26000	7.6)	NaN)	NaN)	NaN)	NaN)	
I26900	0 (0 (0 (0 (0 (NoN)	
127000	0.0)	NaN)	NaN)	NaN)	NaN)	
127000	0 (0.0)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	
I27200	0.0)	0 (0 (0 (0 (
121200	0.0)	NaN)	NaN)	NaN)	NaN)	
I27900	0.0)	0 (0 (0 (0 (
12.000	0.0)	NaN)	NaN)	NaN)	NaN)	
I31900	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
I33000	0 (0 (0 (0 (0 (
	(0.0)	$\hat{\text{NaN}}$	\hat{NaN}	\hat{NaN}	NaN)	
I34000	2 (0 (0 (0 (0 (
	0.9)	NaN)	NaN)	NaN)	NaN)	
135000	1 (0 (0 (0 (0 (
	0.4)	NaN)	NaN)	NaN)	NaN)	
I35800	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
I35900	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
I38000	0 (0 (0 (0 (0 (
T 40000	0.0)	NaN)	NaN)	NaN)	NaN)	
I40000	0 (0 (0 (0 (0 (
I42000	0.0)	NaN)	NaN)	NaN)	NaN)	
142000	0 (0.0)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	
I42100	0.0)	0 (0 (0 (0 (
142100	0.0)	NaN)	NaN)	NaN)	NaN)	
	0.0)	many	rary)	rary)	rary)	

Table 69: table part 35 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
I42800	0 (1 (0 (0 (0 (0 (0.0)
T49000	0.0)	0.1)	0.0)	0.0)	0.0)	0 (0 0)
I42900	0 (0.0)	$\frac{3}{0.3}$	0 (0.0)	1 (0.1)	0 (0.0)	0 (0.0)
I44200	1 (1 (1 (0.1)	2 (0 (0.0)
	0.1)	0.1)	0.1)	0.0)	0.4)	- ()
I46100	0 (0 (2 (0 (0 (0(0.0)
	0.0)	0.0)	0.2)	0.0)	0.0)	- ()
I46900	0 (1 (1 (0 (0 (0 (0.0)
I47200	0.0)	0.1)	0.1)	0.0) 1 (0.0)	0 (0.0)
141200	0.1)	0.0)	0.1)	0.1)	0.2)	0 (0.0)
I48000	5 (8 (3 (3 (4 (0 (0.0)
	0.5)	0.8)	0.3)	0.4)	0.9)	` '
I49000	1 (1 (4 (0 (2 (1 (0.4)
T 40000	0.1)	0.1)	0.4)	0.0)	0.4)	1 (0.4)
I49900	3 (0.3)	2 (0.2)	$\frac{2}{0.2}$	0 (0.0)	1 (0.2)	1 (0.4)
150000	16 (28 (22 (20 (6 (8 (2.9)
20000	1.7)	2.9)	(2.4)	2.7)	1.3)	0 (2.0)
I50100	1 (3 (8 (0 (0 (1 (0.4)
	0.1)	0.3)	0.9)	0.0)	0.0)	
I50900	7 (3 (4 (2 (2 (0 (0.0)
I51300	0.8)	0.3)	0.4)	0.3)	0.4)	0 (0 0)
191900	0 (0.0)	0 (0.0)	0 (0.0)	1 (0.1)	0 (0.0)	0 (0.0)
I51600	1 (0.0)	0.0)	1 (0.0)	0 (0.0)
	0.1)	(0.0)	0.0)	0.1)	(0.0)	()
I51800	5 (1 (1 (1 (0 (1 (0.4)
	0.5)	0.1)	0.1)	0.1)	0.0)	. ()
I51900	0 (0 (0 (1 (0 (0 (0.0)
I61000	0.0)	0.0)	0.0)	0.1)	0.0)	0 (0.0)
101000	0.0)	0.0)	0.1)	0.0)	0.0)	0 (0.0)
I61300	0 (0 (1 (0 (0 (0 (0.0)
	(0.0)	(0.0)	0.1)	0.0)	(0.0)	
I61500	0 (0 (0 (1 (0 (0 (0.0)
Te1000	0.0)	0.0)	0.0)	0.1)	0.0)	9 (1 1)
I61900	6 (0.7)	$\frac{2}{0.2}$	$\frac{3}{0.3}$	1 (0.1)	$\frac{3}{0.7}$	3 (1.1)
	0.1)	0.4)	0.3)	0.1)	0.1)	

Table 70: table part 35: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
I42800	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
$\mathbf{I42900}$	0 (0 (0 (0 (0 (
T / / 200	0.0)	NaN)	NaN)	NaN)	NaN)	
I44200	0 (0 (0 (0 (0 (
T46100	0.0)	NaN)	NaN)	NaN)	NaN)	
I46100	0 (0 (0 (0 (0 (
I46900	0.0)	NaN) 0 (NaN)	NaN) 0 (NaN) 0 (
140900	0.0)	NaN)	0 (NaN)	NaN)	NaN)	
I47200	0.0)	0 (0 (0 (0 (
11.200	(0.0)	NaN)	NaN)	NaN)	NaN)	
I48000	1 (0 (0 (0 (0 (
	0.4)	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	\hat{NaN}	$\hat{\text{NaN}}$	
I49000	2 (0 (0 (0 (0 (
	0.9)	NaN)	NaN)	NaN)	NaN)	
I49900	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
I50000	5 (0 (0 (0 (0 (
TF0100	2.2)	NaN)	NaN)	NaN)	NaN)	
I50100	0 (0 (0 (0 (0 (
I50900	0.0)	NaN) 0 (NaN) 0 (NaN) 0 (NaN) 0 (
130300	0.4)	NaN)	NaN)	NaN)	NaN)	
I51300	0.4)	0 (0 (0 (0 (
10100	(0.0)	NaN)	NaN)	NaN)	NaN)	
I51600	0 (0 (0 (0 (0 (
	(0.0)	\hat{NaN}	\hat{NaN}	\hat{NaN}	$\hat{\text{NaN}}$	
I51800	1 (0 (0 (0 (0 (
	0.4)	NaN)	NaN)	NaN)	NaN)	
I51900	1 (0 (0 (0 (0 (
	0.4)	NaN)	NaN)	NaN)	NaN)	
I61000	0 (0 (0 (0 (0 (
TC1200	0.0)	NaN)	NaN)	NaN)	NaN)	
I61300	0 (0.0)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	
I61500	0.0)	0 (0 (0 (0 (
101000	0.0)	NaN)	NaN)	NaN)	NaN)	
I61900	2 (0 (0 (0 (0 (
3-2-2	0.9)	NaN)	NaN)	NaN)	NaN)	

Table 71: table part 36 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
I62000	2 (1 (0 (0 (1 (0 (0.0)
T00100	0.2)	0.1)	0.0)	0.0)	0.2)	0 (0 0)
I62100	1 (0.1)	0 (0.0)	0 (0 (0.0)	0 (0.0)	0 (0.0)
I62900	1 (1 (0.0)	0.0)	1 (0 (0.0)
102000	0.1)	0.1)	0.1)	0.0)	0.2)	0 (0.0)
I63900	5 (3 (4 (2 (2 (1 (0.4)
	0.5)	0.3)	0.4)	0.3)	0.4)	` '
I64000	25 (22 (19 (16 (7 (9 (3.3)
T	2.7)	2.3)	2.1)	2.2)	1.5)	0 (0 0)
I67800	0 (0 (1 (0 (0 (0 (0.0)
I67900	0.0)	0.0)	0.1)	0.0)	0.0)	0 (0.0)
107900	0.0)	0 (0.0)	0.0)	1 (0.1)	0 (0.0)	0 (0.0)
I69100	0 (1 (0 (0 (0 (0 (0.0)
	0.0)	0.1)	(0.0)	(0.0)	(0.0)	0 (010)
I69300	0 (0 (1 (0 (1 (0(0.0)
	0.0)	0.0)	0.1)	0.0)	0.2)	
$\mathbf{I69400}$	10 (6 (13 (6 (6 (0 (0.0)
T=0000	1.1)	0.6)	1.4)	0.8)	1.3)	0 (0 0)
I70200	0 (0 (0 (0 (0 (0 (0.0)
170900	0.0)	0.0)	0.0)	0.0)	0.0)	1 (0.4)
170900	0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	1 (0.4)
I71000	1 (0 (1 (1 (0 (0 (0.0)
	0.1)	(0.0)	0.1)	0.1)	(0.0)	- ()
I71100	0 (0 (0 (0 (1 (0(0.0)
	0.0)	0.0)	0.0)	0.0)	0.2)	
I71300	1 (1 (0 (0 (0 (0 (0.0)
T=1 400	0.1)	0.1)	0.0)	0.0)	0.0)	0 (0 0)
I71400	0 (1 (0 (0 (0 (0 (0.0)
I71800	0.0)	0.1)	0.0)	0.0)	0.0)	0 (0.0)
171000	0.1)	0.0)	0.0)	0.1)	0.0)	0 (0.0)
173900	3 (4 (4 (3 (3 (1 (0.4)
	0.3)	0.4)	0.4)	0.4)	0.7)	` /
I77000	0 (0 (0 (0 (1 (0(0.0)
	0.0)	0.0)	0.0)	0.0)	0.2)	
I80200	0 (1 (0 (2 (0 (0 (0.0)
-	0.0)	0.1)	0.0)	0.3)	0.0)	

Table 72: table part 36: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
I62000	0 (0 (0 (0 (0 (
	(0.0)	NaN)	NaN)	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	
I62100	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
162900	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
I63900	1 (0 (0 (0 (0 (
T0 4000	0.4)	NaN)	NaN)	NaN)	NaN)	
I64000	3 (0 (0 (0 (0 (
TC7000	1.3)	NaN)	NaN)	NaN)	NaN)	
I67800	0 (0.0)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	
I67900	0.0)	0 (0 (0 (0 (
107900	0.0)	NaN)	NaN)	NaN)	NaN)	
I69100	0.0)	0 (0 (0 (0 (
100100	0.0)	NaN)	NaN)	NaN)	NaN)	
I69300	0 (0 (0 (0 (0 (
	(0.0)	NaN)	NaN)	NaN)	NaN)	
I69400	1 (0 (0 (0 (0 (
	0.4)	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	\hat{NaN}	\hat{NaN}	
I70200	1 (0 (0 (0 (0 (
	0.4)	NaN)	NaN)	NaN)	NaN)	
I70900	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
I71000	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
I71100	0 (0 (0 (0 (0 (
T#1000	0.0)	NaN)	NaN)	NaN)	NaN)	
I71300	0 (0 (0 (0 (0 (
I71400	0.0)	NaN)	NaN)	NaN)	NaN)	
171400	1 (0.4)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	
I71800	0.4)	0 (0 (0 (0 (
171000	0.0)	NaN)	NaN)	NaN)	NaN)	
I73900	0.0)	0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
I77000	0 (0 (0 (0 (0 (
	(0.0)	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	
I80200	2 (0 (0 (0 (0 (
	0.9)	NaN)	NaN)	NaN)	NaN)	

Table 73: table part 37 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
185000	0 (0 (0 (0 (0 (1 (0.4)
T00000	0.0)	0.0)	0.0)	0.0)	0.0)	0 (0 0)
J09000	0 (0 (0 (0 (1 (0 (0.0)
J15900	0.0)	0.0)	0.0)	0.0)	0.2) 1 (0 (0.0)
313300	0.0)	0.0)	0.1)	0.0)	0.2)	0 (0.0)
J18100	0 (1 (0 (0.0)	0 (0 (0.0)
	0.0)	0.1)	(0.0)	(0.0)	(0.0)	()
J18900	20 (19 (12 (11 (4 (6(2.2)
	2.2)	2.0)	1.3)	1.5)	0.9)	
$\mathbf{J40000}$	0 (0 (0 (0 (0 (0 (0.0)
	0.0)	0.0)	0.0)	0.0)	0.0)	0 (0 0)
J43900	1 (0 (0 (0 (0 (0 (0.0)
T 4 4000	0.1)	0.0)	0.0)	0.0)	0.0)	1 (0 4)
$\mathbf{J44000}$	0 (0.0)	0 (0.0)	0 (0.0)	$\frac{2}{0.3}$	$\frac{2}{0.4}$	1 (0.4)
J44100	2 (2 (0.0)	3 (1 (0 (0.0)
344100	0.2)	0.2)	0.0)	0.4)	0.2)	0 (0.0)
J44900	19 (13 (15 (11 (7 (2 (0.7)
	2.1)	1.3)	1.7)	1.5)	1.5)	()
J45900	0 (1 (0 (0 (0 (0(0.0)
	0.0)	0.1)	0.0)	0.0)	0.0)	
$\mathbf{J47000}$	0 (0 (0 (1 (0 (0 (0.0)
	0.0)	0.0)	0.0)	0.1)	0.0)	2 (2 =)
J69000	7 (6 (4 (2 (3 (2(0.7)
J81000	0.8)	0.6)	0.4)	0.3)	0.7)	0 (0.0)
361000	6 (0.7)	7 (0.7)	$\frac{3}{0.3}$	$\frac{2}{0.3}$	$\frac{3}{0.7}$	0 (0.0)
J84100	0.1)	0.1)	0.5)	1 (0.1)	1 (0.4)
001100	0.0)	0.0)	0.0)	0.1)	0.0)	1 (0.1)
J84900	1 (0 (0 (0 (1 (0 (0.0)
	0.1)	(0.0)	(0.0)	(0.0)	0.2)	, ,
J85000	1 (0 (0 (0 (0 (0(0.0)
	0.1)	0.0)	0.0)	0.0)	0.0)	
J90000	0 (0 (1 (1 (0 (1 (0.4)
100000	0.0)	0.0)	0.1)	0.1)	0.0)	0 (0 0)
J93900	1 (0 (0 (0 (0 (0 (0.0)
J96000	0.1)	0.0)	0.0)	0.0)	0.0)	0 (0.0)
J 90000	0.1)	0.1)	0.1)	0.0)	$\frac{1}{0.2}$	0 (0.0)
	0.1)	0.1)	0.1)	0.0)	0.2)	

Table 74: table part 37: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
185000	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
J09000	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
J15900	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
$\mathbf{J18100}$	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
J18900	2 (0 (0 (0 (0 (
	0.9)	NaN)	NaN)	NaN)	NaN)	
$\mathbf{J40000}$	1 (0 (0 (0 (0 (
	0.4)	NaN)	NaN)	NaN)	NaN)	
J43900	0 (0 (0 (0 (0 (
7	0.0)	NaN)	NaN)	NaN)	NaN)	
J44000	0 (0 (0 (0 (0 (
7	0.0)	NaN)	NaN)	NaN)	NaN)	
J44100	1 (0 (0 (0 (0 (
T. 1.000	0.4)	NaN)	NaN)	NaN)	NaN)	
J44900	6 (0 (0 (0 (0 (
T 47000	2.7)	NaN)	NaN)	NaN)	NaN)	
J45900	0 (0 (0 (0 (0 (
T 4 7000	0.0)	NaN)	NaN)	NaN)	NaN)	
J47000	0 (0 (0 (0 (0 (
100000	0.0)	NaN)	NaN)	NaN)	NaN)	
J69000	2 (0 (0 (0 (0 (
T01000	0.9)	NaN)	NaN)	NaN)	NaN)	
J81000	2 (0 (0 (0 (0 (
T0.41.00	0.9)	NaN)	NaN)	NaN)	NaN)	
J84100	1 (0 (0 (0 (0 (
J84900	0.4)	NaN)	NaN)	NaN)	NaN)	
364900	0 (0 (NaN)	0 (NaN)	0 (NaN)	0 (NoN)	
J85000	0.0)	0 (0 (0 (NaN) 0 (
363000	0.0)	NaN)	NaN)	NaN)	NaN)	
J90000	1 (0 (0 (0 (0 (
30000	0.4)	NaN)	NaN)	NaN)	NaN)	
J93900	0.4)	0 (0 (0 (0 (
303000	0.0)	NaN)	NaN)	NaN)	NaN)	
J96000	0.0)	0 (0 (0 (0 (
30000	0.0)	NaN)	NaN)	NaN)	NaN)	
	0.0)	1,01,	11011)	1,011)	1,411)	

Table 75: table part 38 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
J96900	4 (2 (0 (1 (0 (1 (0.4)
T00100	0.4)	0.2)	0.0)	0.1)	0.0)	4 (0 4)
J98100	0 (0 (0 (0 (0 (1 (0.4)
J98400	0.0)	0.0)	0.0)	0.0)	0.0)	0 (0.0)
330400	0.0)	0.2)	0.0)	0.1)	0.0)	0 (0.0)
K26500	1 (1 (0 (1 (0.0)	0 (0.0)
	0.1)	0.1)	0.0)	0.1)	0.0)	()
K26900	1 (0 (0 (0 (0 (0(0.0)
	0.1)	0.0)	0.0)	0.0)	0.0)	
K27500	0 (0 (1 (2 (0 (0 (0.0)
T/0=000	0.0)	0.0)	0.1)	0.3)	0.0)	0 (0 0)
K27900	0 (1 (0 (0 (0 (0 (0.0)
K40400	0.0)	0.1)	0.0)	0.0)	0.0)	0 (0 0)
K40400	0 (0.0)	0 (0.0)	0 (0.0)	1 (0.1)	0 (0.0)	0 (0.0)
K43000	0.0)	0.0)	0.0)	0.1)	1 (0 (0.0)
1110000	0.0)	0.0)	0.0)	0.0)	0.2)	0 (0.0)
K55000	4 (7 (6 (1 (0 (0 (0.0)
	0.4)	0.7)	0.7)	0.1)	(0.0)	,
K55900	0 (2 (1 (1 (0 (0(0.0)
	0.0)	0.2)	0.1)	0.1)	0.0)	
K56200	1 (0 (0 (0 (1 (0 (0.0)
T770000	0.1)	0.0)	0.0)	0.0)	0.2)	0 (0 0)
K56600	1 (0 (1 (0 (1 (0 (0.0)
K57500	0.1)	0.0)	0.1)	0.0)	0.2)	0 (0.0)
K31300	0 (0.0)	0.0)	1 (0.1)	0 (0.0)	0 (0.0)	0 (0.0)
K57900	1 (0.0)	0.1)	1 (0.0)	0 (0.0)
110.000	0.1)	0.0)	0.0)	0.1)	0.0)	0 (0.0)
K59300	0 (0 (0 (0 (1 (0 (0.0)
	(0.0)	(0.0)	(0.0)	(0.0)	0.2)	, ,
K62500	0 (1 (0 (0 (0 (0(0.0)
	0.0)	0.1)	0.0)	0.0)	0.0)	
K62900	0 (0 (1 (0 (0 (0 (0.0)
T/09100	0.0)	0.0)	0.1)	0.0)	0.0)	0 (00)
K63100	0 (1 (1 (3 (0 (0 (0.0)
K65900	0.0)	0.1)	0.1)	0.4)	0.0)	0 (0.0)
1709900	0.1)	0.2)	0.2)	0.1)	0.0)	0 (0.0)
	0.1	0.2)	0.2)	0.1	0.0)	

Table 76: table part 38: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
J96900	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
J98100	0 (0 (0 (0 (0 (
T00.400	0.0)	NaN)	NaN)	NaN)	NaN)	
J98400	0 (0 (0 (0 (0 (
K26500	0.0)	NaN)	NaN)	NaN)	NaN)	
K20300	0 (0.0)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	
K26900	0.0)	0 (0 (0 (0 (
1120300	0.0)	NaN)	NaN)	NaN)	NaN)	
K27500	0.0)	0 (0 (0 (0 (
112.000	0.0)	NaN)	NaN)	NaN)	NaN)	
K27900	0 (0 (0 (0 (0 (
	(0.0)	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	\hat{NaN}	
K40400	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
K43000	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
K55000	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
K55900	1 (0 (0 (0 (0 (
TZEG000	0.4)	NaN)	NaN)	NaN)	NaN)	
K56200	0 (0 (NaN)	0 (0 (0 (
K56600	0.0)	0 (NaN) 0 (NaN) 0 (NaN) 0 (
K30000	0.0)	NaN)	NaN)	NaN)	NaN)	
K57500	0.0)	0 (0 (0 (0 (
113.330	0.0)	NaN)	NaN)	NaN)	NaN)	
K57900	0 (0 (0 (0 (0 (
	(0.0)	NaN)	NaN)	NaN)	NaN)	
K59300	0 (0 (0 (0 (0 (
	(0.0)	NaN)	NaN)	NaN)	NaN)	
K62500	1 (0 (0 (0 (0 (
	0.4)	NaN)	NaN)	NaN)	NaN)	
K62900	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
K63100	0 (0 (0 (0 (0 (
T/AFAAA	0.0)	NaN)	NaN)	NaN)	NaN)	
K65900	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	

Table 77: table part 39 All vars except HAKZAA by source 2000-2010 $\,$

-	S2000	S2002	S2004	S2006	S2008	S2010
K72000	1 (0 (0 (0 (0 (0 (0.0)
	0.1)	0.0)	0.0)	0.0)	0.0)	0 (0 0)
K72900	4 (1 (1 (0 (1 (0 (0.0)
1/7/200	0.4)	0.1)	0.1)	0.0)	0.2)	9 (1 1)
K74600	7 (0.8)	$\frac{2}{0.2}$	2 (0.2)	2(0.3)	1 (0.2)	3 (1.1)
K75900	0.8)	0.2)	0.2)	0.3)	1 (0 (0.0)
1110000	0.0)	0.0)	0.0)	0.0)	0.2)	0 (0.0)
K76100	0 (1 (0 (0 (0 (0 (0.0)
	0.0)	0.1)	0.0)	(0.0)	0.0)	(/
K76800	0 (3 (4 (1 (0 (1 (0.4)
	0.0)	0.3)	0.4)	0.1)	0.0)	
K80200	0 (1 (1 (0 (0 (0 (0.0)
T/00000	0.0)	0.1)	0.1)	0.0)	0.0)	0 (0 0)
K80300	0 (1 (0 (0 (0 (0 (0.0)
K81000	0.0)	0.1)	0.0)	0.0)	0.0)	0 (0 0)
K81000	1 (0.1)	0 (0.0)	0 (0.0)	0 (0.0)	1 (0.2)	0 (0.0)
K81800	0.1)	0.0)	1 (0.0)	0.2)	0 (0.0)
110100	0.0)	(0.0)	0.1)	(0.0)	(0.0)	0 (0.0)
K81900	1 (0 (1 (1 (2 (1 (0.4)
	0.1)	(0.0)	0.1)	0.1)	0.4)	` /
K82300	0 (1 (0 (0 (0 (0 (0.0)
	0.0)	0.1)	0.0)	0.0)	0.0)	
K83000	1 (0 (0 (1 (0 (0 (0.0)
T/08100	0.1)	0.0)	0.0)	0.1)	0.0)	1 (0 4)
K83100	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	1 (0.2)	1 (0.4)
K83800	0.0)	1 (0.0)	0.0)	1 (0 (0.0)
1103000	0.0)	0.1)	0.0)	0.0)	0.2)	0 (0.0)
K83900	0 (0 (0 (1 (0 (0 (0.0)
	0.0)	(0.0)	(0.0)	0.1)	(0.0)	(/
K85000	2 (0 (0 (0 (0 (0(0.0)
	0.2)	0.0)	0.0)	0.0)	0.0)	
K85800	0 (1 (0 (1 (0 (0 (0.0)
Trowns	0.0)	0.1)	0.0)	0.1)	0.0)	0 (0 0)
K85900	0 (0 (2 (1 (0 (0 (0.0)
K86100	0.0)	0.0)	0.2)	0.1)	0.0)	0 (0.0)
VOOTOO	0 (0.0)	$\frac{1}{0.1}$	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
	0.0)	0.1)	0.0)	0.0)	0.0)	

Table 78: table part 39: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
K72000	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
K72900	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
K74600	0 (0 (0 (0 (0 (
TT	0.0)	NaN)	NaN)	NaN)	NaN)	
K75900	0 (0 (0 (0 (0 (
T/70100	0.0)	NaN)	NaN)	NaN)	NaN)	
K76100	0 (0 (0 (0 (NaN)	0 (
K76800	0.0)	NaN)	NaN)	- /	NaN)	
K70800	0.0)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	
K80200	0.0)	0 (0 (0 (0 (
1100200	0.0)	NaN)	NaN)	NaN)	NaN)	
K80300	0 (0 (0 (0 (0 (
	(0.0)	NaN)	$\hat{\text{NaN}}$	NaN)	$\hat{\text{NaN}}$	
K81000	0 (0 (0 (0 (0 (
	(0.0)	\hat{NaN}	NaN)	\hat{NaN}	$\hat{\text{NaN}}$	
K81800	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
K81900	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
K82300	0 (0 (0 (0 (0 (
1700000	0.0)	NaN)	NaN)	NaN)	NaN)	
K83000	1 (0 (0 (0 (0 (
K83100	0.4)	NaN)	NaN)	NaN)	NaN)	
133100	0 (0.0)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	
K83800	0.0)	0 (0 (0 (0 (
1100000	0.0)	NaN)	NaN)	NaN)	NaN)	
K83900	0 (0 (0 (0 (0 (
	(0.0)	NaN)	$\hat{\text{NaN}}$	NaN)	$\hat{\text{NaN}}$	
K85000	0 (0 (0 (0 (0 (
	(0.0)	NaN)	NaN)	NaN)	NaN)	
K85800	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
K85900	0 (0 (0 (0 (0 (
Troods	0.0)	NaN)	NaN)	NaN)	NaN)	
K86100	0 (0 (0 (0 (0 (
-	0.0)	NaN)	NaN)	NaN)	NaN)	

Table 79: table part 40 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
K86900	0 (0 (2 (0 (0 (0 (0.0)
1/00000	0.0)	0.0)	0.2)	0.0)	0.0)	0 (0 0)
K90900	0 (0.0)	0 (0.0)	0 (0.0)	1 (0.1)	0 (0.0)	0 (0.0)
K92000	1 (0.0)	0.0)	0.1)	0.0)	0 (0.0)
	0.1)	(0.0)	(0.0)	(0.0)	(0.0)	0 (0.0)
K92200	2 (4 (3 (5 (4 (0(0.0)
	0.2)	0.4)	0.3)	0.7)	0.9)	
L02200	0 (0 (0 (0 (0 (0 (0.0)
L03100	0.0)	0.0)	0.0)	0.0)	0.0)	1 (0.4)
L03100	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	1 (0.4)
L08900	1 (0.0)	0.0)	0.0)	0.0)	0 (0.0)
	0.1)	(0.0)	(0.0)	(0.0)	0.0)	- ()
L12000	0 (0 (1 (0 (0 (0(0.0)
	0.0)	0.0)	0.1)	0.0)	0.0)	, ,
L12800	0 (0 (0 (1 (0 (0 (0.0)
L51200	0.0)	0.0)	0.0)	0.1)	0.0)	1 (0.4)
L31200	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	1 (0.4)
L89000	6 (4 (3 (5 (3 (1 (0.4)
	0.7)	0.4)	0.3)	0.7)	0.7)	()
M06900	0 (1 (0 (0 (0 (0(0.0)
	0.0)	0.1)	0.0)	0.0)	0.0)	- ()
M25900	0 (0 (1 (0 (0 (0 (0.0)
M31900	0.0)	0.0)	0.1)	0.0)	0.0)	0 (0.0)
11131300	0.0)	0.0)	0.0)	0.1)	0.0)	0 (0.0)
$\mathbf{M33200}$	0 (0 (1 (0 (0 (0 (0.0)
	(0.0)	0.0)	0.1)	0.0)	(0.0)	` /
$\mathbf{M34800}$	0 (0 (0 (0 (1 (0(0.0)
3.50.4000	0.0)	0.0)	0.0)	0.0)	0.2)	0 (0 0)
M34900	0 (0.0)	0 ($\frac{2}{0.2}$	0 (0 (0 (0.0)
M35900	0.0)	0.0)	1 (0.0)	0.0)	0 (0.0)
1.100000	0.0)	0.0)	0.1)	0.0)	0.0)	0 (0.0)
$\mathbf{M62800}$	0 (2 (0 (0 (0 (1 (0.4)
	0.0)	0.2)	(0.0)	(0.0)	(0.0)	` '
$\mathbf{M72600}$	1 (0 (0 (1 (0 (0(0.0)
	0.1)	0.0)	0.0)	0.1)	0.0)	

Table 80: table part 40: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	р
K86900	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
$\mathbf{K}90900$	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
K92000	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
K92200	2 (0 (0 (0 (0 (
	0.9)	NaN)	NaN)	NaN)	NaN)	
L02200	1 (0 (0 (0 (0 (
	0.4)	NaN)	NaN)	NaN)	NaN)	
L03100	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
L08900	0 (0 (0 (0 (0 (
_	0.0)	NaN)	NaN)	NaN)	NaN)	
L12000	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
L12800	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
$\mathbf{L51200}$	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
L89000	1 (0 (0 (0 (0 (
	0.4)	NaN)	NaN)	NaN)	NaN)	
M06900	0 (0 (0 (0 (0 (
7.5.0	0.0)	NaN)	NaN)	NaN)	NaN)	
$\mathbf{M25900}$	0 (0 (0 (0 (0 (
3.504.000	0.0)	NaN)	NaN)	NaN)	NaN)	
M31900	0 (0 (0 (0 (0 (
3.500000	0.0)	NaN)	NaN)	NaN)	NaN)	
M33200	0 (0 (0 (0 (0 (
3.50.4000	0.0)	NaN)	NaN)	NaN)	NaN)	
M34800	0 (0 (0 (0 (0 (
3 fo 1000	0.0)	NaN)	NaN)	NaN)	NaN)	
M34900	0 (0 (0 (0 (0 (
Marco	0.0)	NaN)	NaN)	NaN)	NaN)	
M35900	0 (0 (0 (0 (0 (
Mcgggg	0.0)	NaN)	NaN)	NaN)	NaN)	
$\mathbf{M62800}$	0 (0 (0 (0 (0 (
N/70000	0.0)	NaN)	NaN)	NaN)	NaN)	
$\mathbf{M72600}$	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	

Table 81: table part 41 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
M86900	3 (1 (1 (0 (4 (0 (0.0)
NIO 4000	0.3)	0.1)	0.1)	0.0)	0.9)	0 (0 0)
N04000	0 (0.0)	0 (0.0)	0 (0.0)	1 (0.1)	0 (0.0)	0 (0.0)
N04900	0.0)	0.0)	0.0)	1 (0.0)	0 (0.0)
	(0.0)	0.0)	0.0)	0.1)	0.0)	- ()
N12000	0 (0 (0 (1 (0 (0(0.0)
	0.0)	0.0)	0.0)	0.1)	0.0)	
N13300	0 (0 (0 (1 (0 (0 (0.0)
N17000	0.0)	0.0)	0.0)	0.1)	0.0)	0 (0.0)
1117000	0 (0.0)	0 (0.0)	1 (0.1)	0 (0.0)	0 (0.0)	0 (0.0)
N17900	11 (6 (16 (13 (2 (5 (1.8)
	1.2)	0.6)	1.8)	1.8)	0.4)	()
N18000	2 (10 (15 (3 (2 (8 (2.9)
	0.2)	1.0)	1.7)	0.4)	0.4)	
N18900	24 (17 (15 (15 (10 (10 (3.7)
N19000	2.6) 10 (1.8) 12 (1.7)	2.0)	2.2) 6 (2 (0.7)
1113000	1.1)	1.2)	0.4)	0.5)	1.3)	2 (0.1)
N20000	1 (0 (0 (1 (1 (0 (0.0)
	0.1)	(0.0)	0.0)	0.1)	0.2)	,
N20900	0 (0 (1 (0 (0 (0(0.0)
3 100000	0.0)	0.0)	0.1)	0.0)	0.0)	0 (0 0)
N28900	0 (0 (1 (0 (1 (0 (0.0)
N39000	0.0) 3 (0.0) 7 (0.1)	0.0) 7 (0.2)	4 (1.5)
1100000	0.3)	0.7)	0.7)	1.0)	0.4)	1 (1.0)
N40000	0 (0 (0 (0 (0 (0(0.0)
	(0.0)	0.0)	0.0)	0.0)	0.0)	. ,
N64900	1 (0 (0 (0 (0 (0 (0.0)
001000	0.1)	0.0)	0.0)	0.0)	0.0)	0 (0 0)
Q21000	1 (0.1)	0 (0.0)	0 (0.0)	1 (0.1)	0 (0.0)	0 (0.0)
Q21300	0.1)	0.0)	0.0)	1 (0.0)	0 (0.0)
2,2 1000	0.0)	0.0)	0.0)	0.1)	0.0)	0 (0.0)
Q61300	0 (0 (1 (0 (0 (0 (0.0)
	(0.0)	(0.0)	0.1)	0.0)	(0.0)	
R02000	0 (0 (1 (0 (0 (0 (0.0)
	0.0)	0.0)	0.1)	0.0)	0.0)	

Table 82: table part 41: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	р
M86900	1 (0 (0 (0 (0 (
	0.4)	NaN)	NaN)	NaN)	NaN)	
N04000	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
N04900	0 (0 (0 (0 (0 (
37	0.0)	NaN)	NaN)	NaN)	NaN)	
N12000	0 (0 (0 (0 (0 (
3 .11.0000	0.0)	NaN)	NaN)	NaN)	NaN)	
N13300	0 (0 (0 (0 (0 (
N11 7000	0.0)	NaN)	NaN)	NaN)	NaN)	
N17000	0 (0 (0 (0 (0 (
N117000	0.0)	NaN)	NaN)	NaN)	NaN)	
N17900	2 (0 (0 (0 (0 (
N18000	0.9) 5 (NaN)	NaN)	NaN)	NaN)	
1110000	$\frac{3}{2.2}$	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	
N18900	1 (0 (0 (0 (0 (
1110900	0.4)	NaN)	NaN)	NaN)	NaN)	
N19000	2 (0 (0 (0 (0 (
1110000	0.9)	NaN)	NaN)	NaN)	NaN)	
N20000	0 (0 (0 (0 (0 (
1.2000	(0.0)	NaN)	NaN)	NaN)	NaN)	
N20900	0 (0 (0 (0 (0 (
	(0.0)	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	
N28900	1 (0 (0 (0 (0 (
	0.4)	\hat{NaN}	\hat{NaN}	\hat{NaN}	\hat{NaN}	
N39000	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
N40000	1 (0 (0 (0 (0 (
	0.4)	NaN)	NaN)	NaN)	NaN)	
N64900	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
$\mathbf{Q21000}$	0 (0 (0 (0 (0 (
0-1	0.0)	NaN)	NaN)	NaN)	NaN)	
Q21300	0 (0 (0 (0 (0 (
0.01800	0.0)	NaN)	NaN)	NaN)	NaN)	
Q61300	0 (0 (0 (0 (0 (
D02000	0.0)	NaN)	NaN)	NaN)	NaN)	
R02000	0 (0 (NoN)	0 (NoN)	0 (NoN)	0 (NaN)	
	0.0)	NaN)	NaN)	NaN)	main)	

Table 83: table part 42 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
R09200	0 (1 (0 (0 (0 (0 (0.0)
D 40200	0.0)	0.1)	0.0)	0.0)	0.0)	0 (0 0)
R40200	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	1 (0.2)	0 (0.0)
R57000	1 (0.0)	1 (0.0)	0.2)	0 (0.0)
100.000	0.1)	0.0)	0.1)	0.0)	0.0)	0 (0.0)
R57100	0 (0 (0 (1 (0 (0 (0.0)
	0.0)	0.0)	0.0)	0.1)	0.0)	
R58000	0 (1 (0 (0 (1 (0(0.0)
D.70000	0.0)	0.1)	0.0)	0.0)	0.2)	0 (0 0)
R70000	0 (0.0)	0 (0.0)	0 (0.0)	1 (0.1)	0 (0.0)	0 (0.0)
R91000	1 (0.0)	0.0)	0.1)	0.0)	0 (0.0)
1001000	0.1)	0.0)	0.0)	0.0)	0.0)	0 (0.0)
R96000	3 (0 (5 (6 (2 (2 (0.7)
	0.3)	(0.0)	0.6)	0.8)	0.4)	` '
R98000	1 (0 (1 (0 (0 (0 (0.0)
Dance	0.1)	0.0)	0.1)	0.0)	0.0)	0 (0 0)
R99000	18 (26 (32 (21 (10 (8 (2.9)
R99999	2.0)	2.7) 9 (3.6) 8 (2.9)	2.2)	2 (0.7)
109999	0.9)	0.9)	0.9)	0.3)	0.2)	2 (0.1)
V09900	2 (1 (1 (0 (0 (0 (0.0)
	0.2)	0.1)	0.1)	(0.0)	0.0)	- ()
V29400	0 (0 (0 (1 (0 (0(0.0)
	0.0)	0.0)	0.0)	0.1)	0.0)	
V49400	0 (0 (0 (1 (0 (0 (0.0)
T. 40 F.00	0.0)	0.0)	0.0)	0.1)	0.0)	0 (0 0)
V49500	0 (0.0)	0 (0.0)	1 (0.1)	0 (0.0)	0 (0.0)	0 (0.0)
V69500	0.0)	0.0)	1 (0.0)	0.0)	0 (0.0)
V 00000	0.0)	0.0)	0.1)	0.0)	0.0)	0 (0.0)
V89200	1 (1 (0 (0 (1 (0(0.0)
	0.1)	0.1)	(0.0)	(0.0)	0.2)	` '
$\mathbf{W19900}$	2 (1 (3 (3 (1 (0(0.0)
TTT= 1000	0.2)	0.1)	0.3)	0.4)	0.2)	0 (0 0)
W74900	1 (0 (0 (1 (0 (0 (0.0)
Wenne	0.1)	0.0)	0.0)	0.1)	0.0)	0 (0 0)
W80900	0 (0.0)	0 (0.0)	0 (0.0)	1 (0.1)	0 (0.0)	0 (0.0)
	0.0)	0.0)	0.0)	0.1)	0.0)	

Table 84: table part 42: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
R09200	0 (0 (0 (0 (0 (
	(0.0)	NaN)	NaN)	NaN)	NaN)	
R40200	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
R57000	2 (0 (0 (0 (0 (
	0.9)	NaN)	NaN)	NaN)	NaN)	
R57100	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
R58000	0 (0 (0 (0 (0 (
D = 0000	0.0)	NaN)	NaN)	NaN)	NaN)	
R70000	0 (0 (0 (0 (0 (
D01000	0.0)	NaN)	NaN)	NaN)	NaN)	
R91000	0 (0 (0 (0 (0 (
Docooo	0.0)	NaN)	NaN)	NaN)	NaN)	
R96000	1 (0 (0 (0 (0 (
Dogooo	0.4)	NaN)	NaN)	NaN)	NaN)	
R98000	0 (0.0)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	
R99000	9 (0 (0 (0 (0 (
1199000	4.0)	NaN)	NaN)	NaN)	NaN)	
R99999	1 (0 (0 (0 (0 (
100000	0.4)	NaN)	NaN)	NaN)	NaN)	
V09900	0 (0 (0 (0 (0 (
. 00000	0.0)	NaN)	NaN)	NaN)	NaN)	
V29400	0 (0 (0 (0 (0 (
	(0.0)	NaN)	NaN)	NaN)	NaN)	
V49400	0 (0 (0 (0 (0 (
	(0.0)	\hat{NaN}	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	NaN)	
V49500	0 (0 (0 (0 (0 (
	(0.0)	NaN)	NaN)	NaN)	NaN)	
V69500	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
V89200	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
W19900	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
W74900	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
W80900	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	

Table 85: table part 43 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
W84900	2 (2 (0 (0 (0 (1 (0.4)
Waaaaa	0.2)	0.2)	0.0)	0.0)	0.0)	0 (0 0)
X09900	0 (0.0)	0 (0.0)	1 (0.1)	0 (0.0)	0 (0.0)	0 (0.0)
X59900	4 (7 (6 (5 (7 (0 (0.0)
1100000	0.4)	0.7)	0.7)	0.7)	1.5)	0 (0.0)
X68900	0 (0 (1 (0 (0 (0 (0.0)
	(0.0)	(0.0)	0.1)	(0.0)	(0.0)	` '
X70900	1 (0 (0 (0 (0 (0 (0.0)
37 = 4000	0.1)	0.0)	0.0)	0.0)	0.0)	0 (0 0)
X74900	0 (0 (0 (1 (1 (0 (0.0)
X76900	0.0)	0.0)	0.0)	0.1)	0.2)	0 (0.0)
A10900	0.0)	0 (0.0)	1 (0.1)	0 (0.0)	0 (0.0)	0 (0.0)
X80000	0.0)	0.0)	1 (0.0)	0.0)	0 (0.0)
	0.0)	(0.0)	0.1)	(0.0)	(0.0)	0 (010)
X80900	0 (0 (0 (1 (0 (0(0.0)
	(0.0)	(0.0)	(0.0)	0.1)	(0.0)	` '
X84900	0 (1 (0 (0 (0 (0 (0.0)
	0.0)	0.1)	0.0)	0.0)	0.0)	0 (0 0)
X95900	0 (1 (0 (1 (0 (0 (0.0)
V 00000	0.0)	0.1)	0.0)	0.1)	0.0)	0 (0 0)
X99900	0 (0.0)	0 (0.0)	0 (0.0)	1 (0.1)	0 (0.0)	0 (0.0)
Y09900	0.0)	0.0)	1 (0.1)	0.0)	0 (0.0)
100000	0.0)	(0.0)	0.1)	0.0)	0.0)	0 (0.0)
Y10900	0 (0 (1 (0 (0 (0 (0.0)
	0.0)	0.0)	0.1)	0.0)	0.0)	
Y11000	0 (1 (0 (0 (0 (0 (0.0)
	0.0)	0.1)	0.0)	0.0)	0.0)	0 (0 0)
Y12900	0 (0 (0 (1 (0 (0 (0.0)
Y14900	0.0)	0.0)	0.0)	0.1)	0.0)	0 (0.0)
1 14900	0.0)	0.1)	0.0)	0.0)	0 (0.0)	0 (0.0)
Y37000	0.0)	1 (0.0)	0.0)	0.0)	0 (0.0)
	0.0)	0.1)	(0.0)	(0.0)	0.0)	()
Y65800	1 (0 (0 (0 (0 (0(0.0)
	0.1)	0.0)	(0.0)	0.0)	(0.0)	
Y83000	0 (0 (0 (1 (0 (0(0.0)
	0.0)	0.0)	0.0)	0.1)	0.0)	

Table 86: table part 43: All vars except HAKZAA by source 2013-2024

W84900	2 (0 (
		0 (0 (0 (0 (
	0.9)	NaN)	NaN)	NaN)	NaN)	
X09900	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
X59900	1 (0 (0 (0 (0 (
	0.4)	NaN)	NaN)	NaN)	NaN)	
X68900	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
X70900	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
X74900	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
X76900	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
X80000	0 (0 (0 (0 (0 (
***********	0.0)	NaN)	NaN)	NaN)	NaN)	
X80900	0 (0 (0 (0 (0 (
3 70.4000	0.0)	NaN)	NaN)	NaN)	NaN)	
X84900	0 (0 (0 (0 (0 (
Wordoo.	0.0)	NaN)	NaN)	NaN)	NaN)	
X95900	0 (0 (0 (0 (0 (
Vacco	0.0)	NaN)	NaN)	NaN)	NaN)	
X99900	0 (0 (0 (0 (0 (
V 00000	0.0)	NaN)	NaN)	NaN)	NaN)	
Y09900	0 (0 (0 (NaN)	0 (0 (
Y10900	0.0)	NaN)	- /	NaN)	NaN)	
1 10900	0 (0.0)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	
Y11000	0.0)	0 (0 (0 (0 (
111000	0.0)	NaN)	NaN)	NaN)	NaN)	
Y12900	0.0)	0 (0 (0 (0 (
112000	0.0)	NaN)	NaN)	NaN)	NaN)	
Y14900	1 (0 (0 (0 (0 (
111000	0.4)	NaN)	NaN)	NaN)	NaN)	
Y37000	0 (0 (0 (0 (0 (
	(0.0)	NaN)	NaN)	NaN)	NaN)	
Y65800	0 (0 (0 (0 (0 (
	(0.0)	NaN)	NaN)	NaN)	NaN)	
Y83000	0 (0 (0 (0 (0 (
	(0.0)	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\widehat{\text{NaN}}$)	

Table 87: table part 44 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
Y83100	0 (0 (1 (0 (1 (0.2)	0 (0.0)
Y83800	0.0)	0.0)	0.1)	0.0)	0.2)	1 (0.4)
100000	0.0)	0.1)	0.0)	0.0)	0.0)	1 (0.4)
Y83900	0 (0 (0 (0 (1 (0 (0.0)
	(0.0)	(0.0)	(0.0)	(0.0)	0.2)	,
Y84600	0 (0 (0 (1 (0 (0 (0.0)
	0.0)	0.0)	0.0)	0.1)	0.0)	
MAJOR_30	0 (0 (0 (0 (0 (0 (NaN)
= YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	
$\begin{array}{c} \mathbf{MARIT} \\ (\%) \end{array}$						
DIVORCED	0 (0 (102 (0 (0 (167 (9.5)
DIVORCED	NaN)	NaN)	5.1)	NaN)	NaN)	101 (0.0)
MARRIED	0 (0 (1548 (0 (0 (1355 (77.2)
/ AT-	NaN)	NaN)	77.7)	NaN)	NaN)	, ,
TACHED						
SINGLE	0 (0 (74 (0 (0 (58 (3.3)
MIDOM	NaN)	NaN)	3.7)	NaN)	NaN)	170 (10 0)
WIDOW	0 (NaN)	0 (268 (13.5)	0 (NaN)	0 (NaN)	176 (10.0)
MARKERS	1016 (NaN) 1201 (1333 (1340 (1256 (1381 (96.4)
= YES (%)	96.2)	97.0)	95.8)	98.7)	97.6)	1301 (30.4)
MEASAT	00.2)	<i>31.0)</i>	00.0)	00.1)	01.0)	
(%)						
AMBULAN	0 (0 (0 (0 (458 (300 (16.9)
	NaN)	NaN)	NaN)	NaN)	26.3)	
CCU/CATH		0 (0 (0 (12 (20 (1.1)
LAB	NaN)	NaN)	NaN)	NaN)	0.7)	CCT (27 4)
$\mathbf{E}\mathbf{R}$	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	742 (42.6)	665 (37.4)
HOME	0 (0 (0 (0 (178 (243 (13.7)
HOWLE	NaN)	NaN)	NaN)	NaN)	10.2)	210 (10.1)
OTHER	0 (0 (0 (0 (306 (501 (28.2)
	$\hat{\text{NaN}}$	NaN)	NaN)	$\hat{\text{NaN}}$	17.6)	, ,
OTHER	0 (0 (0 (0 (47 (50 (2.8)
WARD	NaN)	NaN)	NaN)	NaN)	2.7)	0 (3)
MINOR_30	0 (0 (0 (0 (0 (0 (NaN)
= YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	120 (7.0)
$NITR_CHR$ = YES (%)	0 (NaN)	383 (18.7)	377 (18.3)	237 (11.6)	168 (9.7)	139 (7.9)
<u> – 1E5 (/0)</u>	mam)	10.1)	10.0)	11.0)	9.1)	

Table 88: table part 44: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
Y83100	0 (0 (0 (0 (0 (
	(0.0)	NaN)	NaN)	NaN)	NaN)	
Y83800	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
Y83900	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
Y84600	0 (0 (0 (0 (0 (
	0.0)	NaN)	NaN)	NaN)	NaN)	
MAJOR_30	0 (14 (50 (41 (16 (NaN
= YES $(%)$	NaN)	0.8)	3.4)	2.7)	1.4)	37.37
MARIT						NaN
(%)	1.40 /	140 /	184 /	100 /	100 /	
DIVORCED	149 (142 (154 (169 (160 (
MADDIED	8.2)	8.6)	9.3)	10.0)	9.9)	
MARRIED / AT-	1427 (78.2)	1313 (79.1)	1327 (1335 (78.9)	1299 (80.6)	
TACHED	10.2)	19.1)	80.1)	18.9)	80.0)	
SINGLE	70 (54 (69 (73 (54 (
SINGLE	3.8)	3.3)	4.2)	4.3)	3.3)	
WIDOW	179 (151 (107 (115 (99 (
WIDOW	9.8)	9.1)	6.5)	6.8)	6.1)	
MARKERS	1556 (1557 (1530 (1473 (1203 (< 0.001
= YES (%)	83.9)	91.3)	95.7)	92.8)	88.1)	(0.001
MEASAT)	/	,	/	/	NaN
(%)						
AMBULAN	534 (519 (528 (541 (556 (
	28.3)	(29.3)	43.6)	30.9)	32.1)	
CCU/CATH	0 (0 (0 (0 (0 (
LAB	0.0)	0.0)	0.0)	0.0)	0.0)	
$\mathbf{E}\mathbf{R}$	612 (489 (0 (654 (714 (
	32.5)	27.6)	0.0)	37.4)	41.2)	
HOME	56 (31 (46 (37 (28 (
	3.0)	1.8)	3.8)	2.1)	1.6)	
OTHER	619 (680 (590 (481 (403 (
OTHER	32.8)	38.4)	48.7)	27.5)	23.3)	
OTHER	64 (50 (47 (37 (30 (
WARD	3.4)	2.8)	3.9)	2.1)	1.7)	M. M
MINOR_30	0 (NoN)	34 (47 (20 (15 (NaN
= YES (%) NITR_CHR	NaN) 103 (1.9)	3.2) 62 (1.3)	1.3) 22 (NaN
= YES (%)	5.5)	67 (4.6)	8.1)	19 (1.1)	$\frac{22}{1.3}$	INGIN
= IES (%)	5.5)	4.6)	0.1)	1.1)	1.0)	

Table 89: table part 45 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
NOAC_CHI	0 (0 (0 (0 (0 (0 (NaN)
= YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	
NOREP2	0 (0 (0 (124 (94 (118 (12.6)
= YES (%)	NaN)	NaN)	NaN)	8.4)	12.8)	
NOREP3	0 (0 (0 (18 (25 (18 (1.9)
= YES (%)	NaN)	NaN)	NaN)	1.2)	3.4)	F (0 F)
NOREP4	0 (0 (0 (6 (6 (5 (0.5)
= YES (%)	NaN)	NaN)	NaN)	0.4)	0.8)	0 (0 0)
$ NOREP5 \\ = YES (\%) $	0 (NaN)	0 (NaN)	0 (NaN)	7 (0.5)	19 (2.6)	8 (0.9)
NOREP6	0 (0 (0 (405 (390 (586 (62.4)
= YES (%)	NaN)	NaN)	NaN)	27.4)	51.6)	300 (02.4)
NOREP7	0 (0 (0 (4 (3 (3 (0.3)
= YES (%)	NaN)	NaN)	NaN)	0.3)	0.4)	0 (0.0)
NOREP8	0 (0 (0 (34 (21 (17 (1.8)
= YES (%)	$\hat{\text{NaN}}$	NaN)	$\hat{\text{NaN}}$	(2.3)	(2.9)	()
ONLYANG	266 (280 (286 (326 (270 (298 (18.7)
= YES (%)	25.4)	19.9)	18.1)	19.3)	17.7)	, ,
ONS_ECG	NaN	NaN	577.14	690.23	732.96	733.60 (1687.54)
(mean	(NA)	(NA)	(1459.59)(1737.03))(2550.96)
(SD))						
ONS_PCI	227.05	551.85	420.48		358.50	$276.54 \ (342.10)$
(mean	(162.32)	(1290.88	(556.15)	(641.05)	(521.02)	
(SD)	10111	100.01		255 45	200.00	2=2.04 (222.24)
ONS_REP	194.44	436.91	355.51	355.15	399.99	$273.91 \ (332.34)$
(mean	(133.77)	(1084.32)(486.60)	(629.72)	(846.13)	
$(\mathrm{SD})) \ \mathbf{ONS_TLX}$	190.55	364.37	219.94	267.04	359.71	178.33 (165.52)
(mean				(307.66)		170.33 (103.32)
(SD))	(101.01)	(000.12)	(201.51)	(501.00)	(030.01)	
ORIGIN						
(%)						
ISRAELI	0 (0 (0 (313 (309 (322 (18.1)
ARAB	NaN)	NaN)	NaN)	15.2)	17.7)	,
ISRAELI	0 (0 (0 (1732 (1411 (1358 (76.3)
\mathbf{JEW}	NaN)	NaN)	NaN)		80.8)	
OTHER	0 (0 (0 (1 (2 (10 (0.6)
	NaN)	NaN)	NaN)	0.0)	0.1)	, .
OTHER	0 (0 (0 (7 (5 (77 (4.3)
ISRAELI	NaN)	NaN)	NaN)	0.3)	0.3)	10 (0 =)
TOURIST	0 (0 (0 (11 (19 (12 (0.7)
DAD	NaN)	NaN)	NaN)	0.5)	1.1)	(10 (24 4)
PAP = VES(07)	706 (750 (623 (872 (681 (610 (34.4)
YES (%)	40.3)	36.6)	29.8)	42.7)	39.0)	

Table 90: table part 45: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
NOAC CHI	11 (44 (65 (94 (75 (NaN
= YES(%)	0.6)	(2.5)	(3.7)	5.4)	4.3)	
NOREP2	48 (38 (36 (40 (40 (NaN
= YES (%)	23.9)	31.9)	33.6)	29.2)	22.3)	
NOREP3	0 (0 (0 (0 (0 (NaN
= YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	
NOREP4	2 (0 (5 (1 (5 (NaN
= YES (%)	1.0)	0.0)	4.7)	0.7)	2.8)	
NOREP5	0 (0 (0 (0 (0 (NaN
= YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	
NOREP6	44 (18 (20 (29 (37 (NaN
= YES (%)	21.7)	15.3)	18.7)	21.2)	20.7)	
NOREP7	1 (0 (0 (2 (0 (NaN
= YES (%)	0.5)	0.0)	0.0)	1.5)	0.0)	
NOREP8	9 (3 (7 (2 (1 (NaN
= YES $(%)$	4.5)	2.5)	6.5)	1.5)	0.6)	
ONLYANG	284 (324 (463 (159 (165 (< 0.001
= YES (%)	16.9)	19.4)	26.0)	9.1)	9.4)	0.004
ONS_ECG	581.09	513.13	412.74	1685.95	1009.47	< 0.001
(mean	(1287.15))(1306.23)(861.70)	(5343.21)(3289.85))
(SD))	016.00	074.00	001.00	0.45.00	400.07	10.001
ONS_PCI	316.93		281.20	845.90	482.87	< 0.001
(mean	(338.83)	(334.49)	(329.91)	(2005.22	(1051.98	
(SD))	212.40	272.00	201 02	1000 04	647 19	<0.001
ONS_REP	313.40	272.00	285.03	1098.04		< 0.001
$egin{array}{c} ({f mean} \ ({f SD})) \end{array}$	(331.89)	(320.42)	(338.24)	(5515.20)(2369.07))
ONS_TLX	128.33	143.38	NaN	NaN	NaN	0.002
(mean	(76.24)			(NA)	(NA)	0.002
(SD))	(10.24)	(43.00)	(1111)	(1111)	(1111)	
ORIGIN						NaN
(%)						11021
ISRAELI	375 (348 (391 (400 (474 (
ARAB	20.3)	19.5)	22.2)	22.9)	27.3)	
ISRAELI	1409 (1408 (1333 (1304 (1203 (
\mathbf{JEW}	76.2)	78.8)	75.6)	74.6)	69.3)	
OTHER	12 (11 (17 (8 (10 (
	0.6)	0.6)	1.0)	0.5)	0.6)	
OTHER	42 (12 (16 (32 (42 (
ISRAELI	(2.3)	(0.7)	0.9)	1.8)	(2.4)	
TOURIST	12 (7 (6 (4 (7 (
	0.6)	0.4)	0.3)	0.2)	0.4)	
PAP =	543 (500 (444 (0 (0 (NaN
YES (%)	28.9)	28.1)	25.7)	NaN)	NaN)	

Table 91: table part 46 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
PCABG =	154 (207 (233 (234 (171 (177 (10.0)
YES (%)	8.8)	10.1)	11.1)	11.3)	9.8)	
PCANC =	82 (85 (90 (0 (0 (81 (4.6)
YES (%)	4.7)	4.2)	4.3)	NaN)	NaN)	
PCCUANG	0 (0 (40 (45	16	$21\ (100.0)$
= YES (%)	NaN)	NaN)	10.3)	(100.0)	(100.0)	
PCCUCAB	0 (0 (12 (65	65	55 (100.0)
= YES (%)	NaN)	NaN)	3.1)	(100.0)	(100.0)	
PCCUPCI	0 (0 (24 (37	20	$12\ (100.0)$
= YES (%)	NaN)	NaN)	6.2)	(100.0)	(100.0)	
PCHF =	141 (145 (156 (181 (146 (150 (8.5)
YES~(%)	8.1)	7.1)	7.4)	8.7)	8.4)	
PCI =	125 (276 (479 (436 (442 (519 (92.8)
YES (%)	21.2)	45.1)	69.8)	73.2)	87.4)	
PCI2BS =	0 (0 (0 (201 (186 (211 (70.8)
DUR-	NaN)	NaN)	NaN)	71.0)	62.4)	
ING/AFTER	₹					
PCI (%)	2 (2 /	1100 (1000 (1210 (10-0 (-1 0)
PCIALL =	0 (0 (1192 (1326 (1210 (1279 (71.9)
YES (%)	NaN)	NaN)	75.2)	63.9)	69.3)	7 4 (0.0)
PCIANG	0 (0 (0 (35 (18 (51 (9.8)
= YES (%)	NaN)	NaN)	NaN)	1.7)	4.1)	200 (55 4)
PCIANT	73 (208 (300 (293 (299 (298 (57.4)
= YES (%)	97.3)	75.4)	58.6)	14.1)	67.6)	120 (25 2)
PCIAddVes	(100.0)	33	118 (38.1)	129 (31.2)	125 (28.9)	130 (25.2)
= YES (%) PCICL =	(100.0)	(100.0) 231 (36.1) 462 (31.2) 414 (392 (509 (98.1)
YES (%)	NaN)	83.7)	90.2)	20.0)	88.7)	309 (98.1)
PCICLS =	0 (0 (0 (173 (124 (84 (16.5)
DUR-	NaN)	NaN)	NaN)	43.2)	32.0)	04 (10.5)
ING/AFTER	,	11411)	11411)	40.2)	32.0)	
PCI (%)	·					
PCISTE =	77 (202 (420 (403 (388 (471 (90.8)
YES (%)	98.7)	73.2)	99.5)	19.4)	87.8)	1,1 (00.0)
PCIVA	/	/	,	- /	/	
(%)						
BOTH	0 (0 (0 (0 (0 (0 (0.0)
	NaN)	NaN)	\hat{NaN}	$\hat{\text{NaN}}$	\hat{NaN}	` '
FEMORAL	0 (0 (0 (0 (0 (376 (72.4)
	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$, ,
RADIAL	0 (0 (0 (0 (0 (143 (27.6)
	NaN)	NaN)	NaN)	NaN)	NaN)	
PCOPD =	136 (117 (127 (0 (0 (134 (7.6)
YES (%)	7.8)	5.7)	6.1)	NaN)	NaN)	

Table 92: table part 46: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	
PCABG =	172 (158 (162 (< 0.001
YES (%)	9.1)	8.8)	9.1)	128 (7.3)	98 (5.7)	<0.001
PCANC =	0 (122 (120 (117 (105 (NaN
YES (%)	NaN)	6.9)	6.9)	6.8)	6.5)	Ivaiv
PCCUANG	9	13	2	4	2	NaN
= YES (%)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	11011
PCCUCAB	36	49	18	32	11	NaN
= YES (%)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	
PCCUPCI	9	9	2	2	1	NaN
= YES (%)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	
PCHF =	149 (119 (184 (124 (152 (0.003
YES (%)	7.9)	(6.7)	10.4)	7.1)	8.8)	
PCI =	568 (565 (549 (702 (610 (< 0.001
YES (%)	93.4)	93.4)	30.9)	40.1)	34.8)	
PCI2BS =	228 (0 (0 (0 (0 (NaN
DUR-	92.7)	NaN)	NaN)	NaN)	NaN)	
ING/AFTE	R					
PCI (%)						
PCIALL =	1307 (1297 (1133 (1382 (1363 (NaN
YES (%)	69.3)	72.4)	63.7)	79.0)	77.7)	
PCIANG	0 (0 (0 (0 (0 (NaN
= YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	0.004
PCIANT	246 (211 (143 (144 (162 (< 0.001
= YES (%)	40.9)	35.2)	25.7)	21.6)	25.8)	د0.001
PCIAddVes	43 (50 (64 (88 (81 (< 0.001
= YES (%) $PCICL =$	7.6)	9.0)	11.9)	12.0)	12.6)	MaM
YES (%)	164 (27.2)	112 (18.7)	82 (14.8)	137 (18.7)	100 (15.5)	NaN
PCICLS =	26 (37 (27 (83 (65 (NaN
DUR-	15.1)	32.2)	32.1)	61.9)	65.0)	man
ING/AFTER	,	02.2)	02.1)	01.0)	00.0)	
PCI (%)	.0					
PCISTE =	527 (528 (515 (661 (566 (< 0.001
YES (%)	87.4)	89.6)	91.8)	89.3)	87.9)	
PCIVA	/	/	/	/	/	NaN
(%)						
BOTH	0 (9 (9 (11 (6 (
	0.0)	1.5)	1.6)	1.5)	0.9)	
FEMORAL	231 (127 (114 (108 (51 (
	39.5)	21.2)	20.3)	14.6)	8.0)	
RADIAL	354 (462 (438 (620 (582 (
D 00 5 5	60.5)	77.3)	78.1)	83.9)	91.1)	
PCOPD =	124 (86 (108 (107 (111 (NaN
YES (%)	6.6)	4.8)	6.1)	6.1)	6.4)	

Table 93: table part 47 All vars except HAKZAA by source 2000-2010 $\,$

	~				~	
	S2000	S2002	S2004	S2006	S2008	S2010
PCVA =	126 (176 (170 (181 (120 (145 (8.2)
YES (%)	7.2)	8.6)	8.1)	8.8)	6.9)	
PDIAB =	567 (654 (679 (690 (647 (674 (38.0)
YES (%)	32.2)	31.9)	32.4)	33.4)	37.1)	
PDIABT	0 (519 (0 (607 (617 (638 (96.8)
= TYPE 2	NaN)	91.5)	NaN)	91.3)	97.6)	
(%)						
PFAMH =	367 (378 (390 (539 (441 (505 (31.2)
YES (%)	21.2)	18.5)	18.6)	26.9)	27.0)	
PHLIP =	913 (1112 (1035 (1356 (1294 ($1337 \ (75.3)$
YES (%)	52.0)	54.3)	49.4)	65.8)	74.5)	
PHT =	845 (1033 (1186 (1238 (1031 (1171 (66.0)
YES (%)	48.0)	50.4)	56.6)	60.0)	59.2)	,
PMI =	523 (558 (580 (626 (539 (567 (32.0)
YES (%)	29.6)	27.2)	27.7)	30.2)	30.9)	1.17 (2.2)
PPVD =	181 (198 (146 (214 (145 (8.2)
YES (%)	10.3)	9.7)	7.0)	10.4)	8.2)	010 (10 0)
PRENAL	144 (173 (202 (216 (213 (12.0)
= YES (%)	8.2)	8.4)	9.6)	12.8)	12.4)	
PRESENT_	SYMPT	TOM				
(%)	206 (200 (044 (010 (226 (949 (19 9)
ATYPICAL	306 (289 (944 (819 (236 (242 (13.8)
COM- PLAINTS	17.1)	14.3)	45.3)	40.8)	13.6)	
TYPICAL	124 (151 (344 (163 (528 (406 (23.1)
& ATYPI-	6.9)	7.5)	16.5)	8.1)	30.4)	400 (23.1)
CAL	0.9)	1.5)	10.5)	0.1)	30.4)	
COM-						
PLAINTS						
TYPICAL	1359 (1583 (794 (1023 (973 (1112 (63.2)
CHEST	76.0)	78.3)	38.1)	51.0)	56.0)	1112 (00.2)
PAIN	,	,	30.1)	01.0)	55.5)	
PSMOK =	329 (310 (271 (492 (365 (432 (24.7)
YES (%)	19.3)	15.1)	12.9)	24.1)	,	- (- ')
PSPCI =	330 (392 (439 (580 (593 (598 (33.8)
YES (%)	18.7)	19.1)	21.0)	28.0)	34.0)	,
Prior_AFib	0 (,	0 (0 (0 (0 (NaN)
= YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	, ,
RAMBU						
(%)						
ADVICE	0 (0 (0 (0 (55 (25 (2.9)
$\mathbf{F}\mathbf{R}\mathbf{O}\mathbf{M}$	NaN)	NaN)	NaN)	NaN)	6.9)	
MEDICAL						
STAFF						,
AMBULAN	`	0 (0 (0 (2 (1 (0.1)
NOT	NaN)	NaN)	NaN)	NaN)	0.3)	
AVAIL-						
ABLE						
OTHER	0 (0 (0 (0 (40 (70 (8.1)
	NaN)	NaN)	NaN)	NaN)	5.0)	

Table 94: table part 47: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
PCVA =	158 (146 (164 (154 (158 (0.257
YES (%)	8.4)	8.2)	9.2)	8.8)	9.1)	
PDIAB =	735 (740 (742 (,	748 (< 0.001
YES (%)	39.1)	41.5)	41.8)	42.4)	43.2)	
PDIABT	729 (742 (742 (729 (681 (NaN
= TYPE 2	98.5)	99.1)	98.7)	99.0)	97.6)	
(%)						
PFAMH =	474 (480 (515 (436 (437 (< 0.001
YES (%)	,	33.4)	/	,	30.3)	
PHLIP =	1423 (1295 (1259 (1228 (,	< 0.001
YES (%)	,	72.7)	71.0)	70.4)	,	
PHT =	1244 (1154 (1194 (1107 (`	< 0.001
YES (%)	/	64.7)	67.3)	,		
PMI =	`	662 (690 (651 (642 (< 0.001
YES (%)	,	37.2)	38.8)	,	,	
PPVD =	134 (108 (139 (,	100 (< 0.001
YES (%)		6.0)	7.8)		5.8)	
PRENAL	238 (203 (203 (184 (180 (< 0.001
= YES $(%)$	12.6)	11.4)	11.4)	10.5)	10.4)	37.37
PRESENT_	SYMPT	MO				NaN
(%)	151 /	202 (0 (0 /	0 /	
ATYPICAL	171 (282 (0 (0 (0 (
COM-	9.1)	16.1)	NaN)	NaN)	NaN)	
PLAINTS	COT (50 0 (0 /	0 /	0 /	
TYPICAL	607 (536 (0 (0 (0 (
& ATYPI-	32.4)	30.5)	NaN)	NaN)	NaN)	
CAL COM-						
PLAINTS						
TYPICAL	1095 (937 (0 (0 (0 (
CHEST	58.5)	`	NaN)			
PAIN	90.9)	99.4)	11411)	11411)	rary)	
PSMOK =	388 (378 (332 (330 (311 (< 0.001
YES (%)	20.6)	21.1)	18.7)	,	17.7)	\0.001
PSPCI =	643 (594 (624 (611 (624 (< 0.001
YES (%)	34.2)	33.4)	35.2)	34.9)	36.1)	
Prior_AFib	134 (115 (138 (106 (98 (NaN
= YES (%)	7.1)	6.4)	7.8)	6.1)	(5.7)	
RAMBU	,	,	,	,	,	NaN
(%)						
ADVICE	83 (73 (25 (37 (39 (
\mathbf{FROM}	9.5)	9.8)	$(3.5)^{}$	(5.4)	(6.8)	
MEDICAL	,	,	,	,	,	
STAFF						
AMBULAN		0 (0 (1 (3 (
NOT	0.0)	0.0)	0.0)	0.1)	0.5)	
AVAIL-						
ABLE						
OTHER	51 (100 (52 (58 (19 (
	5.8)	13.4)	7.4)	8.4)	3.3)	

Table 95: table part 48 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
PATIENT'S		0 (0 (0 (701 (768 (88.9)
DECI-	NaN)	NaN)	NaN)	NaN)	87.8)	
SION	050 (105 (100 /	101 (00 (F1 (0 0)
REMISCH	273 (167 (133 (161 (82 (51 (2.9)
$= YES (\%)$ $REMI_30D$	15.2)	8.2) 70 (6.4)	7.8)	4.7)	91 (1 7)
= YES (%)	0 (NaN)	3.4)	37 (1.8)	51 (2.5)	47 (2.7)	31 (1.7)
$\frac{-1ES}{REP} = \frac{1}{2}$	591 (,	686 (,		559 (31.4)
YES (%)	33.0)	29.9)	32.8)	28.7)	29.0)	000 (01.1)
REPT (%)	33.0)	_0.0)	02.0)	_==::)	_0.0)	
ANGIO	0 (0 (0 (23 (11 (19 (1.2)
WITH-	(0.0)	(0.0)	(0.0)	1.1)	(0.8)	` ,
OUT PCI						
NO	1202 (1479 (1083 (66.0)
PRIM.REP.			,	,	65.5)	,
PRIMARY	,		,		,	519 (31.6)
PCI	6.7)	13.5)	22.9)		/	4 - (4 0)
TLX	470 (336 (206 (50 (17 (1.0)
URGENT	26.2) 0 (16.4)	9.9)	6.6)	3.4) 2 (4 (0.2)
CABG	0.0)	0.0)	0.0)	0.0)	0.1)	4 (0.2)
REUAPMI	348 (93 (5.2)
= YES (%)			8.4)			00 (0.2)
RHOSPLAP		NaN	,	,	,	19.26 (12.32)
(mean	(NA)	(NA)	(9.63)			,
(SD)	, ,	, ,	, ,	, ,	,	
RH_AFSVI	,			0 (78 (4.4)
= YES (%)			4.8)		4.2)	
RH_AVBL	,				0 (23 (1.3)
= YES (%)		1.3)				1000 (01.0)
RH_NSR	0 (,			1630 (91.6)
$= YES (\%)$ RH_VTVF	,	85.5)	,	,	92.0)	14 (0.8)
= YES (%)		1.0)	0.6)		7 (0.4)	14 (0.8)
S21BECG	0 (0 (0.0)	0 (0 (0 (NaN)
= YES (%)	NaN)	NaN)		NaN)	NaN)	0 (11011)
SEX =			1549 (1387 (1378 (77.5)
MALE $(\%)$					79.4)	,
SGLT2_Chr	0 (0 (0 (0 (0 (0 (NaN)
	NaN)	NaN)		NaN)	NaN)	
SGLT2_Disc		0 (0 (0 (0 (0 (NaN)
= YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	

Table 96: table part 48: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
PATIENT'S	743 (574 (629 (591 (515 (
DECI-	84.7)	76.8)	89.1)	,		
SION	,	,	,	,	,	
REMISCH	53 (31 (30 (40 (23 (< 0.001
= YES (%)	2.8)	1.7)	1.7)	(2.3)	1.3)	
$REMI_30D$	20 (15 (15 (22 (16 (NaN
= YES (%)	1.1)	0.8)	1.0)	1.5)	1.4)	
REP =	608 (605 (576 (758 (670 (< 0.001
YES (%)	32.3)	33.8)	32.4)	43.3)	38.2)	
REPT $(\%)$						< 0.001
ANGIO	19 (20 (16 (23 (16 (
WITH-	2.3)	2.8)	2.3)	2.6)	1.9)	
OUT PCI						
NO	212 (112 (109 (137 (179 (
PRIM.REP.	25.8)		15.9)	,	21.8)	
PRIMARY	568 (566 (549 (702 (610 (
PCI	69.2)	78.8)	80.1)	80.0)	74.3)	
TLX	15 (15 (6 (4 (6 (
LIDGENIE	1.8)	2.1)	0.9)	0.5)	0.7)	
URGENT	7 (5 (5 (12 (10 (
CABG	0.9)	0.7)	0.7)	1.4)	1.2)	رم مرم دم مرم
REUAPMI	81 (53 (51 (68 (53 (< 0.001
= YES (%) RHOSPLAP	4.3)	3.0)	2.9)	3.9)	3.0)	<0.001
			19.85	38.34		< 0.001
(mean (SD))	(13.54)	(12.24)	(12.51)	(28.47)	(28.23)	
RH_AFSVI	154 (102 (82 (92 (94 (NaN
$=\overline{YES}$ (%)		$5.7)^{}$	4.6)	$(5.3)^{\circ}$	(5.4)	
RH_AVBL	14 (20 (16 (11 (15 (NaN
= YES (%)	0.7)	1.1)	0.9)	0.6)	0.9)	
RH_NSR	1604 (1537 (1573 (1513 (1512 (NaN
= YES (%)	85.1)	85.8)	88.5)	86.5)	86.2)	
RH_VTVF	37 (15 (22 (24 (20 (NaN
= YES (%)	2.0)	0.8)	1.2)	1.4)	1.1)	
S21BECG	0 (0 (0 (1319 (0 (NaN
= YES (%)	NaN)	NaN)	NaN)	77.1)	NaN)	
SEX =	1453 (1414 (1427 (1391 (1431 (< 0.001
MALE (%)	77.1)	79.0)	80.3)	79.5)	81.6)	37.37
SGLT2_Chr	0 (6 (77 (161 (229 (NaN
= YES (%)	NaN)	1.0)	14.2)	21.7)	18.8)	37.37
SGLT2_Disc	`	6 (109 (265 (491 (NaN
= YES (%)	NaN)	1.4)	19.7)	36.8)	36.3)	

Table 97: table part 49 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
SGLT2_Hos	0 (0 (0 (0 (0 (0 (NaN)
= YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	
SOURCE						
(%)						
S2000	1793	0 (0 (0 (0 (0 (0.0)
	(100.0)	0.0)	0.0)	0.0)	0.0)	
S2002	0 (2048	0 (0 (0 (0 (0.0)
	0.0)	(100.0)	0.0)	0.0)	0.0)	
S2004	0 (0 (2094	0 (0 (0 (0.0)
	0.0)	0.0)	(100.0)	0.0)	0.0)	
S2006	0 (0 (0 (2075	0 (0 (0.0)
	0.0)	0.0)	0.0)	(100.0)	0.0)	
S2008	0 (0 (0 (0 (1746	0 (0.0)
	0.0)	0.0)	0.0)	0.0)	(100.0)	
S2010	0 (0 (0 (0 (0 (1779 (100.0)
	0.0)	0.0)	0.0)	0.0)	0.0)	- ()
S2013	0 (0 (0 (0 (0 (0 (0.0)
00010	0.0)	0.0)	0.0)	0.0)	0.0)	0 (0 0)
S2016	0 (0 (0 (0 (0 (0 (0.0)
Coolo	0.0)	0.0)	0.0)	0.0)	0.0)	0 (00)
S2018	0 (0 (0 (0 (0 (0 (0.0)
G0001	0.0)	0.0)	0.0)	0.0)	0.0)	0 (0 0)
S2021	0 (0 (0 (0 (0 (0 (0.0)
C0004	0.0)	0.0)	0.0)	0.0)	0.0)	0 (0 0)
S2024	0 (0 (0 (0 (0 (0 (0.0)
SPONRE	0.0)	0.0)	0.0)	0.0)	0.0)	
(%)						
NONE	1156 (1348 (1316 (1338 (1096 (1127 (63.4)
NONE	64.5)	65.8)	62.8)	64.5)	62.8)	1127 (03.4)
PRIMARY	591 (612 (686 (596 (506 (559 (31.4)
REP.	33.0)	29.9)	32.8)	28.7)	29.0)	003 (01.4)
SPONTANE	46 (88 (92 (141 (144 (93 (5.2)
REP.	2.6)	4.3)	4.4)	6.8)	8.2)	00 (0.2)
STAT_CHR	,	578 (685 (939 (858 (937 (53.1)
= YES (%)	NaN)	28.2)	33.1)	45.8)	49.5)	- 3. (22.1)
STENT =	496 (816 (1027 (1201 (1088 (1152 (90.8)
YES (%)	73.7)	81.4)	86.4)	92.5)	90.9)	()
Sulpinylureas	,	,	0 (0 (0 (0 (NaN)
$= \mathbf{YES}(\%)$	NaN)	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$, ,

Table 98: table part 49: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
SGLT2_Hos = YES (%)	0 (NaN)	1 (0.2)	67 (12.1)	142 (19.2)	330 (26.9)	NaN
SOURCE	,	,	,	,	,	< 0.001
(%)	- /	- /	- /	- /	- /	
S2000	0 (0 (0 (0 (0 (
S2002	0.0)	0.0)	0.0)	0.0)	0.0)	
52002	0.0)	0.0)	0.0)	0.0)	0.0)	
S2004	0.0)	0.0)	0.0)	0.0)	0.0)	
	(0.0)	(0.0)	(0.0)	(0.0)	0.0)	
S2006	0 (0 (0 (0 (0 (
	0.0)	0.0)	0.0)	0.0)	0.0)	
S2008	0 (0 (0 (0 (0 (
Goodo	0.0)	0.0)	0.0)	0.0)	0.0)	
S2010	0 (0 (0 (0 (0 (
S2013	0.0) 1885	0.0)	0.0)	0.0)	0.0)	
52015	(100.0)	0.0)	0.0)	0.0)	0.0)	
S2016	0 (1791	0.0)	0.0)	0.0)	
	(0.0)	(100.0)	(0.0)	(0.0)	(0.0)	
S2018	0 (0 (1778	0 (0 (
	0.0)	0.0)	(100.0)	0.0)	0.0)	
S2021	0 (0 (0 (1750	0 (
	0.0)	0.0)	0.0)	(100.0)	0.0)	
S2024	0 (0 (0 (0 (1755	
SPONRE	0.0)	0.0)	0.0)	0.0)	(100.0)	NaN
(%)						Ivaiv
NONE	1222 (1149 (0 (0 (0 (
	64.8)	64.2)	NaN)	NaN)	NaN)	
PRIMARY	608 (605 (0 (0 (0 (
REP.	32.3)	33.8)	NaN)	NaN)	NaN)	
SPONTANE	55 (37 (0 (0 (0 (
REP.	2.9)	2.1)	NaN)	NaN)	NaN)	37 37
STAT_CHR	966 (908 (754 (719 (652 (NaN
= YES (%) STENT =	51.7) 1199 (68.8) 1212 (67.8) 1077 (41.1) 1297 (37.2) 1246 (< 0.001
YES (%)	91.9)	94.0)	95.2)	93.9)	91.4)	₹0.001
Sulpinylureas	,	,	53 (0 (0 (NaN
= YES (%)	NaN)	15.3)	9.8)	NaN)	NaN)	1.011

Table 99: table part 50 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
Sulpinylurea		0 (0 (0 (0 (0 (NaN)
= YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	
Sulpinylureas		0 (0 (0 (0 (0 (NaN)
= YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	
TANT =	2 (2 (0 (0 (0 (0 (NaN)
YES (%)	0.1)	0.1)	0.0)	NaN)	NaN)	
TASA =	480 (550 (598 (550 (0 (0 (NaN)
YES $(\%)$	29.4)	26.9)	58.2)	26.9)	NaN)	
TCPR_DCS	,	34 (29 (40 (0 (42 (2.4)
= YES (%)	2.4)	1.7)	1.4)	2.0)	NaN)	. ()
THEP =	232 (296 (344 (302 (0 (0 (NaN)
YES (%)	14.3)	14.5)	33.5)	14.8)	NaN)	()
THR_30D	0 (0 (0 (0 (30 (15 (0.8)
= YES (%)	NaN)	NaN)	NaN)	NaN)	1.7)	(
TIME	4078.67	3485.08		3203.68		1907.75 (1015.95)
(mean	(2517.95))(1839.7 ₄	4)(1867.28	3)(1511.74	4)(1218.52)
(SD))	450 /	222 /	200 (40- /	~ ^ /	4 - (0 0)
TLX =	470 (336 (206 (137 (50 (17 (3.0)
YES (%)	79.5)	54.9)	30.0)	23.0)	9.9)	
TLXAG						
(%)	0 (0 (0 /	0 (0 /	0 (0 0)
Alteplase	0 (0 (0 (0 (0 (0 (0.0)
(tPA)	0.0)	0.0)	0.0)	0.0)	0.0)	0 (0 0)
OTHER	2 (0 (0 (0 (0 (0 (0.0)
DDA	0.4)	0.0)	0.0)	0.0)	0.0)	0 (0 0)
RPA	242 (0 (0 (0 (0 (0 (0.0)
STK	51.5)	0.0)	0.0)	0.0)	0.0)	10 (58.8)
SIK	187 (297 (149 (101 (39 (10 (58.8)
\mathbf{tPA}	39.8) 39 (86.8) 45 (75.6) 48 (73.7) 36 (78.0) 11 (7 (41.9)
tPA	,	`	24.4)	26.3)	22.0)	7 (41.2)
TLXANT	8.3) 125 (13.2) 3 (,			0 (NaN)
= YES (%)	29.3)	:	$ \begin{array}{c} 1 (\\ 0.5) \end{array} $	0 (NoN)	0 (NoN)	O (Ivaiv)
= TES (70) $TLXASA$	399 (0.9) 292 (182 (NaN)	NaN) 0 (0 (NaN)
= YES (%)	91.7)	86.9)	88.3)	0 (NaN)	NaN)	O (Ivaiv)
TLXD1 =	48 (88 (92	141 (144 (93 (9.9)
YES (%)	92.3)	48.1)	(100.0)	9.5)	19.6)	99 (9.9)
TLXHEP	387 (235 (113 (0 (0 (0 (NaN)
= YES (%)	88.4)	69.9)	54.9)	NaN)	NaN)	O (IVAIV)
TLXLMW	8 (45 (86 (0 (0 (0 (NaN)
= YES (%)	2.0)	13.4)	41.7)	NaN)	NaN)	U (INAIN)
— IES (70)	۷.0)	19.4)	41.1)	mainj	ranj	

Table 100: table part 50 : All vars except HAKZAA by source $2013\hbox{--}2024$

	S2013	S2016	S2018	S2021	S2024	p
Sulpinylurea	0 (83 (31 (0 (0 (NaN
= YES $(%)$	NaN)	19.6)	5.6)	NaN)	NaN)	NT NT
Sulpinylureas	\ -	57 (31 (0 (0 (NaN
= YES (%)	NaN)	14.2)	5.6)	NaN)	NaN)	N.T. N.T
$TANT = VEC_{(07)}$	0 (0 (0 (0 (0 (NaN
YES (%) $TASA =$	NaN)	NaN)	NaN)	NaN)	NaN)	NaN
YES (%)	0 (NaN)	NaN				
TCPR_DCS	67 (33 (40 (50 (33 (NaN
= YES (%)	3.6)	1.8)	2.2)	2.9)	1.9)	Ivaiv
THEP =	0 (0 (0 (0 (0 (NaN
YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	11011
THR_30D	21 (18 (9 (1 (4 (NaN
$= \overline{YES} $ (%)	1.1)	1.0)	0.6)	0.1)	0.3)	
TIME	1405.50	572.86	394.65	467.55	74.85	< 0.001
(mean	(529.28)	(159.07)	(198.60)	(94.43)	(49.45)	
(SD))						
TLX =	15 (15 (6 (4 (6 (< 0.001
YES (%)	2.5)	2.5)	0.3)	0.2)	0.3)	
TLXAG (%)						< 0.001
Alteplase	0 (0 (0 (0 (6	
(tPA)	0.0)	0.0)	0.0)	0.0)	(100.0)	
OTHER	0 (0 (0 (0 (0 (
	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	
RPA	0 (0 (0 (0 (0 (
	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	
\mathbf{STK}	11 (8 (3 (0 (0 (
	73.3)	66.7)	50.0)	0.0)	0.0)	
\mathbf{tPA}	4 (4 (3 (4	0 (
	26.7)	33.3)	50.0)	(100.0)	0.0)	
TLXANT	0 (0 (0 (0 (0 (NaN
= YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	NT NT
TLXASA = YES (%)	0 (NaN)	NaN				
TLXD1 =	55 (37 (29 (28 (22 (< 0.001
YES (%)	27.4)	31.1)	27.1)	20.4)	12.3)	
TLXHEP	0 (0 (0 (0 (0 (NaN
= YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	
TLXLMW	0 (0 (0 (0 (0 (NaN
= YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	

Table 101: table part 51 All vars except HAKZAA by source 2000-2010 $\,$

TMODE (%) MOBILE 502 (641 (781 (827 (689 (625 (35.1) ICCU 29.7) 31.9) 37.4) 40.1) 39.5) MOBILE 0 (0 (0 (0 (0 (0 (0 (0.0) ICU 0.0) 0.0) 0.0) 0.0) 0.0) 0.0) 0.0) NOT REL- 43 (135 (119 (90 (79 (180 (10.1) EVANT 2.5) 6.7) 5.7) 4.4) 4.5) EVANT 2.5) 6.7) 5.7) 4.4) 4.5) PATIENT) PRIVATE 771 (880 (940 (976 (795 (785 (44.1) CAR / IN- 45.6) 43.8) 45.0) 47.4) 45.6) DEPEN- DEPEN- DENTLY REGULAR 373 (354 (247 (168 (180 (189 (10.6) AMBU- 22.1) 17.6) 11.8) 8.2) 10.3) LANCE TNIT = 451 (479 (424 (2 (0 (0 (NaN) YES (%) 27.6) 23.4) 41.2) 0.1) NaN) TOTHY = 164 (212 (273 (0 (0 (0 (NaN) YES (%) 10.7) 10.4) 26.6) NaN) NaN) TROP1ST NaN NaN NaN NaN NaN NaN NaN NaN NaN Na		S2000	S2002	S2004	S2006	S2008	S2010
(%) MOBILE 502 (641 (781 (827 (689 (625 (35.1)) ICCU 29.7) 31.9) 37.4) 40.1) 39.5) MOBILE 0 (0 (0 (0 (0 (0 (0 (0 (0.0)) ICU 0.0) 0.0) 0.0) 0.0) 0.0) 0.0) NOT REL- 43 (135 (119 (90 (79 (180 (10.1) EVANT 2.5) 6.7) 5.7) 4.4) 4.5) EVANT 2.5) 6.7) 5.7) 4.4) 4.5) EVANT 45.6) 43.8) 45.0) 47.4) 45.6) PRIVATE 771 (880 (940 (976 (795 (785 (44.1) CAR / IN-45.6) 43.8) 45.0) 47.4) 45.6) DEPEN-DENTLY REGULAR 373 (354 (247 (168 (180 (189 (10.6) AMBU-22.1) 17.6) 11.8) 8.2) 10.3) LANCE TNIT = 451 (479 (424 (2 (0 (0 (NaN) YES (%) 27.6) 23.4) 41.2) 0.1) NaN) TOTHY = 164 (212 (273 (0 (0 (0 (NaN) YES (%) 10.7) 10.4) 26.6) NaN) NaN) TROPIST NaN NaN NaN NaN NaN NaN NaN NaN NaN (NA) (NA) (NA) (NA) (SD)) TROPISTELEV (0 (0 (0 (0 (0 (NaN) YES (%) NaN) NaN) NaN) NaN) TTLX = 10 (1 (0 (0 (0 (0 (NaN) YES (%) 0.6) 0.0) 0.0) NaN) NaN) URGENT 129 (124 (70 (98 (77 (59 (3.3) = YES (%) 7.2) 6.1) 3.3) 4.7) 4.4) VESSEL (%) (%) (%) (7.2) 6.1) 3.3) 4.7) 4.4 VESSEL (%) (%) (0 (0 (476 (549 (497 (501 (30.7) EYES (%) 1.8) NaN) NaN) NaN) NaN) NaN) NaN) NaN) Na	TMODE	52000	52002	52001	52000	52000	52010
MOBILE 502 (641 (781 (827 (689 (625 (35.1) ICCU 29.7) 31.9) 37.4) 40.1) 39.5) MOBILE 0 (0 (0 (0 (0 (0 (0 (0.0) 0.0							
ICCU		502 (641 (781 (827 (689 (625 (35.1)
MOBILE 0 (0 (0 (0 (0 (0 (0 (0 (0.0) 0.0) ICU 0 (0						,	- ()
NOT REL- 43 (135 (119 (90 (79 (180 (10.1) EVANT 2.5) 6.7) 5.7) 4.4) 4.5) EVANT 2.5) 6.7) 5.7) 4.4) 4.5) EVANT 2.5) 6.7) 5.7) 4.4) 4.5) PATIENT) PRIVATE 771 (880 (940 (976 (795 (785 (44.1) CAR / IN- 45.6) 43.8) 45.0) 47.4) 45.6) DEPEN- DENTLY REGULAR 373 (354 (247 (168 (180 (189 (10.6) AMBU- 22.1) 17.6) 11.8) 8.2) 10.3) LANCE TNIT = 451 (479 (424 (2 (0 (0 (NaN) YES (%) 27.6) 23.4) 41.2) 0.1) NaN) TOTHY = 164 (212 (273 (0 (0 (0 (NaN) YES (%) 10.7) 10.4) 26.6) NaN) NaN NaN NaN NaN NaN NaN NaN NaN N	MOBILE	,	,	/	/	0 (0 (0.0)
EVANT (E.G. IN-PATIENT) PRIVATE 771 (880 (940 (976 (795 (785 (44.1) CAR / IN- 45.6) 43.8) 45.0) 47.4) 45.6) DEPENDENTLY REGULAR 373 (354 (247 (168 (180 (189 (10.6) AMBU- 22.1) 17.6) 11.8) 8.2) 10.3) LANCE TNIT = 451 (479 (424 (2 (0 (0 (NaN) YES (%) 27.6) 23.4) 41.2) 0.1) NaN) TOTHY = 164 (212 (273 (0 (0 (0 (NaN) YES (%) 10.7) 10.4) 26.6) NaN NaN NaN NaN NaN NaN NaN NaN NaN Na		0.0)	0.0)	0.0)	0.0)	0.0)	
(E.G. IN-PATIENT) PRIVATE 771 (880 (940 (976 (795 (785 (44.1) CAR / IN- 45.6) 43.8) 45.0) 47.4) 45.6) DEPEN- DEPEN- DENTLY REGULAR 373 (354 (247 (168 (180 (189 (10.6) AMBU- 22.1) 17.6) 11.8) 8.2) 10.3) LANCE TNIT = 451 (479 (424 (2 (0 (0 (NaN) YES (%) 27.6) 23.4) 41.2) 0.1) NaN) TOTHY = 164 (212 (273 (0 (0 (NaN) NaN) NaN) NaN) TROP1ST NaN NaN NaN NaN NaN NaN NaN NaN NaN Na		,	`				180 (10.1)
PATIENT) PRIVATE 771 (880 (940 (976 (795 (785 (44.1) CAR / IN- 45.6) 43.8) 45.0) 47.4) 45.6) 785 (44.1) DEPEN- DENTLY REGULAR 373 (354 (247 (168 (180 (189 (10.6) AMBU- 22.1) 17.6) 11.8) 8.2) 10.3) LANCE TNIT = 451 (479 (424 (2 (0 (0 (NaN) 0 (NaN) YES (%) 27.6) 23.4) 41.2) 0.1) NaN) NaN) TOTHY = 164 (212 (273 (0 (0 (0 (NaN) YES (%) 10.7) 10.4) 26.6) NaN) NaN NaN NaN (NA) NaN (NA) <th< th=""><th></th><th>2.5)</th><th>6.7)</th><th>5.7)</th><th>4.4)</th><th>4.5)</th><th></th></th<>		2.5)	6.7)	5.7)	4.4)	4.5)	
PRIVATE 771 (880 (940 (976 (795 (785 (44.1) CAR / IN- 45.6) 43.8) 45.0) 47.4) 45.6) DEPENDENTLY REGULAR 373 (354 (247 (168 (180 (189 (10.6) AMBU- 22.1) 17.6) 11.8) 8.2) 10.3) LANCE TNIT = 451 (479 (424 (2 (0 (0 (NaN) YES (%) 27.6) 23.4) 41.2) 0.1) NaN) TOTHY = 164 (212 (273 (0 (0 (NaN) YES (%) 10.7) 10.4) 26.6) NaN NaN NaN NaN NaN NaN NaN NaN NaN Na							
CAR / IN-	,	771 (990 (040 (076 (705 (705 (11 1)
DEPÉN- DENTLY REGULAR 373 (354 (247 (168 (180 (189 (10.6) AMBU- 22.1) 17.6) 11.8) 8.2) 10.3) LANCE TNIT = 451 (479 (424 (2 (0 (0 (NaN) YES (%) 27.6) 23.4) 41.2) 0.1) NaN) TOTHY = 164 (212 (273 (0 (0 (NaN) YES (%) 10.7) 10.4) 26.6) NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN		,		,	`		765 (44.1)
DENTLY REGULAR 373 (354 (247 (168 (180 (189 (10.6) AMBU- 22.1) 17.6) 11.8) 8.2) 10.3) LANCE TNIT = 451 (479 (424 (2 (0 (0 (NaN) YES (%) 27.6) 23.4) 41.2) 0.1) NaN) TOTHY = 164 (212 (273 (0 (0 (NaN) YES (%) 10.7) 10.4) 26.6) NaN) NaN) TROP1ST NaN NaN NaN NaN NaN NaN NaN NaN NaN (NA) (MA) (NA) (NA) (NA) (NA) (SD)) TROP1STELEV (0 (0 (0 (0 (0 (NaN) YES (%) NaN) NaN) NaN) NaN) TTLX = 10 (1 (0 (0 (0 (NaN) NaN) NaN) NaN) TTLX = 10 (1 (0 (0 (0 (NaN) NaN) NaN) NaN) URGENT 129 (124 (70 (98 (77 (59 (3.3) YES (%) 7.2) 6.1) 3.3) 4.7) 4.4) VESSEL (%) 1 VESSEL 0 (0 (476 (549 (497 (501 (30.7) NaN) NaN) NaN) 32.8) 34.7) 32.4) 3 0 (0 (515 (591 (503 (495 (30.3) YES (30.3) YES (30.3) NaN) NaN) 32.8) 34.7) 32.4) 3 0 (0 (510 (495 (477 (574 (35.2) YES (30.3) NaN) NaN) NaN) NaN) 32.5) 29.1) 30.7) NONE 0 (0 (67 (68 (75 (61 (3.7) NaN) NaN) NaN) NaN) NaN) NaN) NaN) Na	•	40.0)	40.0)	40.0)	41.4)	40.0)	
REGULAR 373 (354 (247 (168 (180 (189 (10.6) AMBU- 22.1) 17.6) 11.8) 8.2) 10.3) LANCE TNIT = 451 (479 (424 (2 (0 (0 (NaN) YES (%) 27.6) 23.4) 41.2) 0.1) NaN) TOTHY = 164 (212 (273 (0 (0 (NaN) NaN) NaN) NaN) TROP1ST NaN							
AMBU- LANCE TNIT = 451 (479 (424 (2 (0 (0 (NaN) YES (%) 27.6) 23.4) 41.2) 0.1) NaN) TOTHY = 164 (212 (273 (0 (0 (NaN) YES (%) 10.7) 10.4) 26.6) NaN) NaN) TROP1ST NaN NaN NaN NaN NaN NaN NaN NaN (NA) (Ma) (NA) (NA) (NA) (NA) (NA) (SD)) TROP1STELEV (0 (0 (0 (0 (0 (NaN) YES (%) NaN) NaN) NaN) NaN) TTLX = 10 (1 (0 (0 (0 (0 (NaN) NaN) NaN) NaN) TTLX = 10 (1 (0 (0 (0 (0 (NaN) NaN) NaN) NaN) NaN) URGENT 129 (124 (70 (98 (77 (59 (3.3) 4.7) 4.4) YESSEL (%) 1 VESSEL (%) 1 VESSEL 0 (0 (476 (549 (497 (501 (30.7) NaN) NaN) NaN) NaN) NaN) NaN) NaN) VESSELS NaN NAN NAN 32.8) 34.7) 32.4) 3 0 (0 (510 (495 (477 (574 (35.2) YESSELS NaN) NaN) NaN) NaN) NaN) NaN) NaN) NaN		373 (354 (247 (168 (180 (189 (10.6)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,				` '
YES (%) 27.6) 23.4) 41.2) 0.1) NaN) TOTHY = 164 (212 (273 (0 (0 (0 (NaN) YES (%) 10.7) 10.4) 26.6) NaN) NaN) NaN TROP1ST NaN NaN NaN NaN NaN NaN NaN (NA) (SD)) TROP1STELEV (0 (0 (0 (0 (0 (NaN) 0 (NaN) YES (%) NaN) NaN) NaN) NaN) NaN) NaN) NaN) TTLX = 10 (1 (0 (0 (0 (NaN) 0 (NaN) YES (%) 0.6) 0.0) 0.0) NaN) NaN) NaN) URGENT 129 (124 (70 (98 (77 (59 (3.3) YESSEL (%) 7.2) 6.1) 3.3) 4.7) 4.4) VESSEL (%) 7.2) 6.1) 3.3 (4.97 (501 (30.7) NaN) NaN) NaN) 30.4) 32.2) 32.0) 2 0 (0 (<t< th=""><th></th><th>·</th><th></th><th></th><th></th><th></th><th></th></t<>		·					
TOTHY = 164 (212 (273 (0 (0 (0 (NaN) YES (%) 10.7) 10.4) 26.6) NaN) NaN) TROP1ST NaN NaN NaN NaN NaN NaN NaN (NA) (mean (NA) (NA) (NA) (NA) (NA) (NA) (NA) (SD)) TROP1STELEV (0 (0 (0 (0 (0 (NaN) NaN) NaN) NaN) NaN) NaN) NaN) Na			,			`	0 (NaN)
YES (%) 10.7) 10.4) 26.6) NaN) NaN NaN TROP1ST NaN NaN NaN NaN NaN NaN NaN (NA) (mean (NA) (NA) (NA) (NA) (NA) (NA) (NA) (SD)) TROP1STELEV (0 (0 (0 (0 (0 (NaN) NaN) TROP1STELEV (0 (0 (0 (0 (0 (0 (NaN) NaN) TELX = 10 (1 (0 (0 (0 (0 (0 (NaN) NaN) TLX = 10 (1 (0 (0 (0 (0 (0 (0 (NaN) NaN) NaN) URGENT 129 (124 (70 (98 (77 (59 (3.3) YESSEL (%) 7.2) 6.1) 3.3) 4.7) 4.4) 4.4) VESSEL 0 (0 (476 (549 (497 (501 (30.7) VESSELS NaN) NaN) NaN) <th></th> <th>,</th> <th>,</th> <th></th> <th></th> <th>,</th> <th>0 (31 31)</th>		,	,			,	0 (31 31)
TROPIST NaN NaN NaN NaN NaN NaN NaN NaN (NA) (mean (NA) (NA) (NA) (NA) (NA) (NA) (SD)) TROPISTELEV (0 (0 (0 (0 (0 (0 (NaN) NaN) NaN) NaN) NaN) TTLX = 10 (1 (0 (0 (0 (0 (NaN) NaN) NaN) NaN) TTLX = 10 (1 (0 (0 (0 (0 (NaN) NaN) NaN) NaN) NaN) URGENT 129 (124 (70 (98 (77 (59 (3.3) 4.7) 4.4) VESSEL (%) 1 VESSEL (%) NaN NaN 30.4) 32.2) 32.0) 2 0 (0 (476 (549 (497 (501 (30.7) NaN) NaN) NaN) NaN) 30.4) 32.2) 32.0) VESSELS NaN NaN NaN 32.8) 34.7) 32.4) 3 0 (0 (515 (591 (503 (495 (30.3) 4.7) 4.4) VESSELS NaN) NaN) 32.8) 34.7) 32.4) 3 0 (0 (67 (68 (75 (61 (3.7) NaN) NaN) NaN) 32.5) 29.1) 30.7) NONE 0 (0 (67 (68 (75 (61 (3.7) NaN) NaN) NaN) 4.3) 4.0) 4.8) WAIST NAN NAN NAN NAN 100.07 99.39 99.30 (15.25) (mean (NA) (NA) (NA) (13.92) (14.03)		,	,			`	0 (NaN)
(mean (NA) (NA) (NA) (NA) (NA) (NA) (SD)) TROP1STELEV (0 (0 (0 (0 (0 (NaN) PES (%) NaN) NaN) NaN) NaN) NaN) NaN) TTLX = 10 (1 (0 (0 (0 (0 (NaN) PES (%) 0.6) 0.0) 0.0) NaN) NaN) NaN) URGENT 129 (124 (70 (98 (77 (59 (3.3) PES (%) 7.2) 6.1) 3.3) 4.7) 4.4) VESSEL (%) 1 VESSEL 0 (0 (476 (549 (497 (501 (30.7) NaN) NaN) 30.4) 32.2) 32.0) 2 0 (0 (515 (591 (503 (495 (30.3) PES (30.3) VESSELS NaN) NaN) 32.8) 34.7) 32.4) 3 0 (0 (510 (495 (477 (574 (35.2) PES (30.3) PES (30	` '	,	,	,		,	NoN (NA)
(SD)) TROP1STELEV (0 (0 (0 (0 (0 (NaN) PES (%) NaN) NaN) NaN) NaN) NaN) NaN) TTLX = 10 (1 (0 (0 (0 (0 (NaN) PES (%) 0.6) 0.0) 0.0) NaN) NaN) URGENT 129 (124 (70 (98 (77 (59 (3.3) PES (%) 7.2) 6.1) 3.3) 4.7) 4.4) VESSEL (%) 1 VESSEL 0 (0 (476 (549 (497 (501 (30.7) NaN) NaN) NaN) 30.4) 32.2) 32.0) 2 0 (0 (515 (591 (503 (495 (30.3) PES (30.3) VESSELS NaN) NaN) 32.8) 34.7) 32.4) 3 0 (0 (510 (495 (477 (574 (35.2) PES (30.3) PES (30.3							Nan (NA)
TROP1STELEV (0 (0 (0 (0 (0 (NaN) PES (%) NaN) NaN) NaN) NaN) NaN) NaN) TTLX = 10 (1 (0 (0 (0 (0 (NaN) PES (%) 0.6) 0.0) 0.0) NaN) NaN) URGENT 129 (124 (70 (98 (77 (59 (3.3) PES (%) 7.2) 6.1) 3.3) 4.7) 4.4) VESSEL (%) 1 VESSEL 0 (0 (476 (549 (497 (501 (30.7) NaN) NaN) NaN) 30.4) 32.2) 32.0) 2 0 (0 (515 (591 (503 (495 (30.3) PES (30.3) VESSELS NaN) NaN) 32.8) 34.7) 32.4) 3 0 (0 (510 (495 (477 (574 (35.2) PES (30.3) PES (3	`	(1111)	(1111)	(1111)	(1111)	(1111)	
= YES (%) NaN) NaN) NaN) NaN) NaN) TTLX = 10 (1 (0 (0 (0 (NaN) YES (%) 0.6) 0.0) 0.0) NaN) NaN) URGENT 129 (124 (70 (98 (77 (59 (3.3) = YES (%) 7.2) 6.1) 3.3) 4.7) 4.4) VESSEL (%) (%) 4.7) 4.4) VESSEL 0 (0 (476 (549 (497 (501 (30.7) NaN) NaN) 30.4) 32.2) 32.0) 2 0 (0 (515 (591 (503 (495 (30.3) VESSELS NaN) NaN) 32.8) 34.7) 32.4) 3 0 (0 (510 (495 (477 (574 (35.2) VESSELS NaN) NaN) 32.5) 29.1) 30.7) NONE 0 (67 (68 (75 (61 (3.7) NaN) NaN) NaN) NaN) 100.07 9		LEV (0 (0 (0 (0 (0 (NaN)
YES (%) 0.6) 0.0) 0.0) NaN) NaN) URGENT 129 (124 (70 (98 (77 (59 (3.3) = YES (%) 7.2) 6.1) 3.3) 4.7) 4.4) VESSEL (%) (%) *** *** *** *** 1 VESSEL (%) 0 (0 (476 (549 (497 (501 (30.7) NaN) NaN) 30.4) 32.2) 32.0) 2 0 (0 (515 (591 (503 (495 (30.3) VESSELS NaN) NaN) 32.8) 34.7) 32.4) 3 0 (0 (510 (495 (477 (574 (35.2) VESSELS NaN) NaN) 32.5) 29.1) 30.7) NONE 0 (67 (68 (75 (61 (3.7) NaN) NaN) NaN 100.07 99.39 99.30 (15.25) (mean (NA) (NA) (NA) (NA) (13.92) (14.03) <th></th> <th>,</th> <th></th> <th></th> <th>•</th> <th>,</th> <th>()</th>		,			•	,	()
URGENT 129 (124 (70 (98 (77 (59 (3.3) = YES (%) 7.2) 6.1) 3.3) 4.7) 4.4) VESSEL (%) 1 VESSEL 0 (0 (476 (549 (497 (501 (30.7) NaN) NaN) 30.4) 32.2) 32.0) 2 0 (0 (515 (591 (503 (495 (30.3) VESSELS NaN) NaN) 32.8) 34.7) 32.4) 3 0 (0 (510 (495 (477 (574 (35.2) VESSELS NaN) NaN) 32.5) 29.1) 30.7) NONE 0 (0 (67 (68 (75 (61 (3.7) NaN) NaN) 4.3) 4.0) 4.8) WAIST NaN NaN NaN 100.07 99.39 99.30 (15.25) (mean (NA) (NA) (NA) (13.92) (14.03)		10 (0 (0 (0 (0 (NaN)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$, ,	,	,		,	,	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,	,		`	`	59 (3.3)
(%) 1 VESSEL 0 (0 (476 (549 (497 (501 (30.7) NaN) NaN) 30.4) 32.2) 32.0) 2 0 (0 (515 (591 (503 (495 (30.3) VESSELS NaN) NaN) 32.8) 34.7) 32.4) 3 0 (0 (510 (495 (477 (574 (35.2) VESSELS NaN) NaN) 32.5) 29.1) 30.7) NONE 0 (67 (68 (75 (61 (3.7) NaN) NaN) NaN) 4.0) 4.8) WAIST NaN NaN NaN 100.07 99.39 99.30 (15.25) (mean (NA) (NA) (NA) (NA) (13.92) (14.03)		7.2)	6.1)	3.3)	4.7)	4.4)	
1 VESSEL 0 (0 (476 (549 (497 (501 (30.7) NaN) NaN) 30.4) 32.2) 32.0) 2 0 (0 (515 (591 (503 (495 (30.3) VESSELS NaN) NaN) 32.8) 34.7) 32.4) 3 0 (0 (510 (495 (477 (574 (35.2) VESSELS NaN) NaN) 32.5) 29.1) 30.7) NONE 0 (67 (68 (75 (61 (3.7) NaN) NaN) 4.3) 4.0) 4.8) WAIST NaN NaN NaN 100.07 99.39 99.30 (15.25) (mean (NA) (NA) (NA) (13.92) (14.03)							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0 (0 (476 (549 (497 (501 (30.7)
2 0 (0 (515 (591 (503 (495 (30.3) VESSELS NaN) NaN) 32.8) 34.7) 32.4) 3 0 (0 (510 (495 (477 (574 (35.2) VESSELS NaN) NaN) 32.5) 29.1) 30.7) NONE 0 (0 (67 (68 (75 (61 (3.7) NaN) NaN) 4.3) 4.0) 4.8) WAIST NaN NaN 100.07 99.39 99.30 (15.25) (mean (NA) (NA) (NA) (13.92) (14.03)	I A ECOEED			`	`	,	501 (50.1)
VESSELS NaN) NaN) 32.8) 34.7) 32.4) 3 0 (0 (510 (495 (477 (574 (35.2) VESSELS NaN) NaN) 32.5) 29.1) 30.7) NONE 0 (0 (67 (68 (75 (61 (3.7) NaN) NaN) 4.3) 4.0) 4.8) WAIST NaN NaN 100.07 99.39 99.30 (15.25) (mean) (NA) (NA) (NA) (13.92) (14.03)	2	/	,	,	,	,	495 (30.3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		٠.	` .	. `	.`	.`	, ,
NONE 0 (0 (67 (68 (75 (61 (3.7) NaN) NaN) 4.3) 4.0) 4.8) WAIST NaN NaN 100.07 99.39 99.30 (15.25) (mean) (NA) (NA) (NA) (13.92) (14.03)		,	,		,	,	574 (35.2)
NaN) NaN) 4.3) 4.0) 4.8) WAIST NaN NaN 100.07 99.39 99.30 (15.25) (mean (NA) (NA) (NA) (13.92) (14.03)					,		
WAIST NaN NaN NaN 100.07 99.39 99.30 (15.25) (mean (NA) (NA) (NA) (13.92) (14.03)	NONE	`	,		`	`	61 (3.7)
(mean (NA) (NA) (NA) (13.92) (14.03)	TTTA TOTAL	,	,	,	,	,	00.00 (17.07)
							99.30 (15.25)
(811))	`	(NA)	(NA)	(NA)	(13.92)	(14.03)	
(SD)) WARD1	` ''						
(%)							
CCU/CARDIQLOGY1650 (1679 (1660 (1556 (1584 (89.0)		IODOG	Y 1650 (1679 (1660 (1556 (1584 (89.0)
83.4) 80.6) 81.3) 80.0) 89.2)	, -	,	,	`	,	`	()

Table 102: table part 51 : All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	
TMODE	52010	52010	52010	52021	52021	
(%)						< 0.001
MOBILE	682 (715 (760 (718 (0 (
ICCU	36.2)	39.9)	42.7)	43.5)	0.0)	
MOBILE	0 (0 (0 (0 (616 (
ICU	0.0)	0.0)	0.0)	0.0)	42.3)	
NOT REL-	95 (64 (108 (35 (26 (
EVANT	(5.0)	(3.6)	6.1)	2.1)	1.8)	
(E.G. IN-	,	,	,	,	,	
PATIENT)						
PRIVATE	877 (747 (706 (705 (589 (
CAR / IN-	46.5)	41.7)	39.7)	42.8)	40.4)	
DEPEN-						
DENTLY	/	/	/			
REGULAR	231 (265 (204 (226 (
AMBU-	12.3)	14.8)	11.5)	11.6)	15.5)	
$\begin{array}{c} \text{LANCE} \\ \text{TNIT} = \end{array}$	0 (0 (0 (0 (0 (NaN
YES (%)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	NaN
TOTHY =	0 (0 (0 (0 (0 (NaN
YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	110011
TROP1ST	NaN	1024.17	,	2272.23	2426.45	< 0.001
(mean	(NA)	(7727.02			(15349.8	
(SD)	,		,			
TROP1STEI	LEV (1272 (1353 (1302 (1119 (NaN
= YES (%)	NaN)	72.2)	77.3)	79.9)	77.9)	
TTLX =	0 (0 (0 (0 (0 (NaN
YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	
URGENT	69 (63 (41 (81 (30 (< 0.001
= YES (%)	3.7)	3.5)	2.3)	4.6)	1.7)	NT NT
VESSEL						NaN
(%) 1 VESSEL	558 (570 (461 (288 (276 (
I A ESSED	33.8)	34.5)	`		44.2)	
2	503 (499 (416 (244 (215 (
VESSELS	30.4)	30.2)	30.8)	33.3)	34.4)	
3	505 (503 (369 (167 (126 (
VESSELS	30.6)	30.4)	(27.3)	22.8)	20.2)	
NONE	87 (81 (104 (34 (8 (
	5.3)	4.9)	7.7)	4.6)	1.3)	
WAIST	NaN	NaN	NaN	NaN	NaN	0.253
(mean	(NA)	(NA)	(NA)	(NA)	(NA)	
(SD))						-0.001
WARD1						< 0.001
(%) CCU/CARD	വസ്ത	V 1555 /	1537 (1545 (1575 (
CCO/CARD	84.8)	86.8)	86.4)	88.3)	91.0)	
	04.0)	00.0)	00.4)	00.0)	91.0)	

Table 103: table part 52 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
INTERNAL	278 (352 (338 (381 (178 (168 (9.4)
MEDICINE	15.5)	17.2)	16.4)	18.4)	10.2)	
INTERNAL	0 (0 (0 (0 (0 (0 (0.0)
MEDICINE	0.0)	0.0)	0.0)	0.0)	0.0)	
\mathbf{WARD}						
OTHER	19 (45 (48 (34 (11 (27 (1.5)
	1.1)	2.2)	2.3)	1.6)	0.6)	
WEIGHT	NaN	77.46	77.94	79.41	79.71	$80.30\ (14.69)$
$egin{array}{c} ({f mean} \ ({f SD})) \end{array}$	(NA)	(13.39)	(13.66)	(15.22)	(15.40)	
ang_off =	0 (0 (0 (0 (496 (660 (41.6)
YES (%)	\hat{NaN}	\hat{NaN}	$\hat{\text{NaN}}$	$\hat{\text{NaN}}$	32.9)	` /
arr_off =	1096 (1261 (1354 (1335 (1143 (1221 (71.2)
YES (%)	68.0)	67.3)	66.9)	68.5)	66.4)	
$crechgge0_3$		0 (0 (0 (0 (0 (NaN)
= YES (%)	NaN)	NaN)	NaN)	NaN)	NaN)	
${f crechgpct}$	NaN	NaN	NaN	NaN	NaN	NaN (NA)
$egin{array}{c} ({ m mean} \ ({ m SD})) \end{array}$	(NA)	(NA)	(NA)	(NA)	(NA)	
days2ccu	NaN	NaN	NaN	NaN	0.72	2.29(2.13)
(mean (SD))	(NA)	(NA)	(NA)	(NA)	(1.26)	` '
event_cv	451 (482 (410 (328 (223 (120 (10.3)
= YES (%)	(26.7)	(24.5)	20.0)	16.0)	(14.0)	,
hours2ccu	NaN	NaN	NaN	NaŃ	22.24	52.16 (48.17)
$egin{array}{c} ({ m mean} \ ({ m SD})) \end{array}$	(NA)	(NA)	(NA)	(NA)	(59.56)	
troponin_ch	g_NpacNt	NaN	NaN	NaN	NaN	NaN (NA)
(mean (SD))	(NA)	(NA)	(NA)	(NA)	(NA)	, ,
FASP (%)						
NO	0 (0 (0 (0 (77 (66 (4.0)
	\hat{NaN}	\hat{NaN}	\hat{NaN}	\hat{NaN}	4.7)	` ,
Unknown	0 (0 (0 (0 (0 (0(0.0)
	NaN)	NaN)	NaN)	NaN)	0.0)	
YES	0 (0 (0 (0 (1559 (1576 (96.0)
	NaN)	NaN)	NaN)	NaN)	95.3)	
FCLOP (%)						
NO		0 (0 (0 (369 (274 (16.7)
	NaN)	,	NaN)	NaN)	22.7)	
Unknown	0 (0 (0 (0 (0 (0.0)
	NaN)	NaN)	,		0.0)	,
YES	0 (0 (0 (0 (,	1368 (83.3)
	NaN)	NaN)	NaN)	NaN)	77.3)	

Table 104: table part 52: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
INTERNAL	254 (220 (221 (184 (0 (
MEDICINE	13.5)	12.3)	12.4)	10.5)	(0.0)	
INTERNAL	0 (0 (0 (0 (144 (
MEDICINE	(0.0)	(0.0)	(0.0)	(0.0)	8.3)	
WARD	0.0)	0.0)	0.0)	0.0)	0.0)	
OTHER	33 (16 (20 (21 (12 (
OTHER	1.8)	0.9)	1.1)	1.2)	0.7)	
WEIGHT	81.50	81.27	82.12	81.60	81.85	< 0.001
(mean	(18.73)	(15.61)		(15.88)	(15.48)	<0.001
(SD)	(10.13)	(13.01)	(17.02)	(13.00)	, ,	
$ang_off =$	610 (630 (0 (0 (0 (NaN
$\mathbf{YES}\ (\%)$	40.1)	40.8)	NaN)	NaN)	NaN)	
$arr_off =$	1263 (1126 (0 (0 (0 (NaN
YES (%)	71.2)	66.8)	NaN)	NaN)	NaN)	
$crechgge0_3$	0 (100 (90 (88 (61 (NaN
= YES (%)	NaN)	6.2)	6.2)	6.0)	4.6)	
crechgpct	NaN	13.18	18.91	NaN	NaN	0.674
(mean	(NA)	(314.46)	(433.66)	(NA)	(NA)	
(SD)	,	,	,	,	,	
days2ccu	2.00	1.94	1.63	1.41	1.93	< 0.001
(mean	(2.56)	(2.42)	(1.78)	(2.44)	(1.94)	
(SD)	,	,	,	,	(/	
event_cv	105 (0 (0 (0 (0 (NaN
= YES (%)	(6.4)	\hat{NaN}	NaN)	\hat{NaN}	NaN)	
hours2ccu	46.96	50.66	38.22	44.96	46.28	< 0.001
(mean	(58.89)	(61.40)	(40.78)	(58.51)	(46.53)	
(SD))	(00.00)	(01.10)	(100)	(00.01)	(10.00)	
troponin_ch	e Made	Inf	Inf	29264.79	26679.49) NaN
(mean	(NA)	(NaN)	(NaN)		.7 51)28455.	
(SD))	(1111)	(11011)	(11011)	(211000	. 1 (2)20100.	33)
FASP (%)						NaN
NO	81 (64 (37 (212 (218 (2
= • •	6.0)	4.2)	3.0)	14.8)	19.4)	
Unknown	0.0)	0 (0 (0 (42 (
	0.0)	0.0)	0.0)	0.0)	3.7)	
YES	1274 (1468 (1207 (1216 (864 (
110	94.0)	95.8)	97.0)	85.2)	76.9)	
FCLOP	01.0)	55.0)	51.0)	00.2)	10.0)	NaN
(%)						11011
NO	786 (694 (444 (1093 (810 (
	58.4)	59.0)	53.5)	77.8)	72.1)	
Unknown	0 (0 (0 (0 (42 (
	0.0)	0.0)	0.0)	0.0)	3.7)	
YES	559 (482 (386 (311 (272 (
	41.6)	41.0)	46.5)	22.2)	24.2)	

Table 105: table part 53 All vars except HAKZAA by source 2000-2010 $\,$

	S2000	S2002	S2004	S2006	S2008	S2010
FACEI (%)						
NO	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	598 (36.8)	511 (31.2)
Unknown	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	0 (0 (0.0)
YES	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	1027 (63.2)	1129 (68.8)
FARBL (%)	ĺ	,	,	,	,	
NO	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	1487 (91.6)	1482 (90.3)
Unknown	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	0 (0.0)	0 (0.0)
YES	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	137 (8.4)	160 (9.7)
FBBLOCK = YES (%)	0 (NaN)	0 (NaN)	0 (NaN)	0 (NaN)	1312 (80.7)	1338 (81.5)
FANARR (%)						
NO	0 (NaN)	1574 (95.9)				
Unknown	0 (NaN)	0 (0.0)				
YES	0 (NaN)	68 (4.1)				
FP2Y12 = YES (%)	0 (NaN)	0 (NaN)				
Act_Can = YES (%)	0 (NaN)	0 (NaN)				
FBMJ = YES (%)	0 (NaN)	0 (NaN)				
FBMN = YES (%)	0 (NaN)	0 (NaN)				
ANG_30D = YES (%)	1177 (65.6)	1508 (73.6)	1639 (78.3)	1790 (86.3)	1559 (89.3)	1619 (91.0)
PCI_30D = YES (%)	758 (42.3)	1069 (52.2)	1236 (59.0)	1365 (65.8)	1224 (70.1)	1289 (72.5)

Table 106: table part 53: All vars except HAKZAA by source 2013-2024

	S2013	S2016	S2018	S2021	S2024	p
FACEI (%)						NaN
NO	517 (369 (237 (766 (607 (
	38.4)	29.0)	23.9)	53.6)	54.0)	
Unknown	0 (0 (0 (0 (42 (
	0.0)	0.0)	0.0)	0.0)	3.7)	
YES	830 (904 (753 (662 (475 (
E A D D I	61.6)	71.0)	76.1)	46.4)	42.3)	37.37
FARBL						NaN
(%)	1164 (700 (40 <i>C</i> (1005 (0.40 (
NO	1164 (87.1)	782 (76.9)	496 (69.5)	1205 (83.6)	848 (75.4)	
Unknown	0 (0 (09.5)	0 (42 (
Clikilowii	0.0)	0.0)	0.0)	0.0)	3.7)	
YES	173 (235 (218 (237 (234 (
122	12.9)	23.1)	30.5)	16.4)	20.8)	
FBBLOCK	1037 (1204 (989 (933 (0 (NaN
= YES (%)	76.9)	87.6)	88.6)	66.2)	$\hat{\text{NaN}}$	
FANARR	,	,	,	,	,	NaN
(%)	1999 /	020 (FO4 (1 400 (1077 (
NO	1333 (932 (594 (1466 (99.9)	1077 (
Unknown	99.6)	99.4)	98.7)	99.9)	95.8) 42 (
Ulikilowii	0 (0.0)	0 (0.0)	0.0)	0.0)	$\frac{42}{3.7}$	
YES	6 (6 (8 (1 (5 (
120	0.4)	0.6)	1.3)	0.1)	0.4)	
FP2Y12 =	1133 (1333 (1152 (1205 (881 (NaN
YES (%)	83.8)	91.4)	96.3)	82.0)	81.4)	
Act_Can	0 (26 (38 (26 (0 (NaN
= YES (%)	NaN)	1.5)	2.2)	1.5)	NaN)	
FBMJ =	15 (3 (3 (2 (0 (NaN
YES (%)	1.1)	0.2)	0.2)	0.1)	NaN)	
FBMN =	11 (9 (10 (7 (0 (NaN
YES (%)	0.8)	0.6)	0.7)	0.5)	NaN)	.0.004
ANG_30D	1685 (1682 (1660 (1655 (1650 (< 0.001
= YES (%)	89.4)	93.9)	95.1)	95.8)	96.7)	<0.001
PCI_30D	1312 (69.6)	1302 (1145 (1388 (1368 (< 0.001
= YES (%)	09.0)	72.7)	70.0)	83.0)	86.9)	