```
In [1]: import pandas as pd
data = pd.read_csv("AUTOMOBILE_DISTANCE_FILE.csv")
data.columns
```

```
In [2]: data.head( )
```

Out[2]:

	dual front air bags	ABS	RARE DEFOGGER	rear parking sensor	IRVM	ELECTRICAL ORVM	CENTRAL LOCKING	ALL FOR POWER WINDOWS	AUDIO SYSTEM	COMFO
0	4	4	0	4	5	4	2	2	3	
1	3	5	0	4	5	4	4	4	3	
2	4	3	3	3	3	5	3	4	3	
3	4	4	4	5	3	4	5	5	3	

4 rows × 21 columns

```
In [3]: from sklearn.metrics.pairwise import euclidean_distances
ans1= euclidean_distances(data)
ans1
```

```
In [4]: from sklearn.metrics.pairwise import manhattan_distances
    ans2= manhattan_distances(data)
    ans2
```

```
Out[4]: array([[ 0., 13., 37., 33.], [13., 0., 32., 24.], [37., 32., 0., 20.], [33., 24., 20., 0.]])
```

```
In [5]: from sklearn.metrics.pairwise import cosine distances
        cosine distances(data)
Out[5]: array([[0.
                         , 0.06303101, 0.20274155, 0.17515306],
               [0.06303101, 0., 0.15419114, 0.10349841],
               [0.20274155, 0.15419114, 0.
                                           , 0.07493224],
               [0.17515306, 0.10349841, 0.07493224, 0.
                                                            ]])
In [6]: from sklearn.metrics.pairwise import cosine_similarity
        cosine similarity(data)
Out[6]: array([[1.
                         , 0.93696899, 0.79725845, 0.82484694],
               [0.93696899, 1. , 0.84580886, 0.89650159],
               [0.79725845, 0.84580886, 1. , 0.92506776],
               [0.82484694, 0.89650159, 0.92506776, 1.
                                                            ]])
```