aduni.edu.pe

REPASO SAN MARCOS ACADEMIA

ADUNI

ADUNI

ACADEMIA

ADUNI

aduni.edu.pe

FÍSICA

Tema: Hidrostática, hidrodinámica y fenómenos térmicos

HIDROSTÁTICA

Presión en los líquidos

$$P_{H} = \rho_{L}.g.h. \text{ profundidad (m)}$$

$$densidad \ del \ liquido \ (\frac{kg}{m^{3}})$$

Observación:

$$P_{atm} = 101,3x10^3 Pa = 1atm$$

Presión absoluta

Nota:

La presión manométrica viene dada por

$$P_{man}^{A} = P_{abs}^{A} - P_{atm}$$

Principio fundamental de la hidrostática

Vasos comunicantes

$$P_{abs}^{A} = P_{abs}^{B} = P_{abs}^{C}$$

Principio de Pascal

Prensa hidráulica

$$\Delta P_1 = \Delta P_2$$

Se cumple:

$$\frac{\Delta F_1}{\mathbb{A}_1} = \frac{\Delta F_2}{\mathbb{A}_2}$$

Sumergido (en m^3)

Consideraciones a tomar en cuenta

1. La fuerza de empuje actúa en el CENTRO GEOMETRICO de la parte sumergida.

2. Si un cuerpo se encuentra sumergido ocupando varios líquidos, entonces experimenta varios empujes.

Peso aparente

Del equilibrio:

$$W_{aparente} = W_{real} - E$$

HIDRODINÁMICA

Veamos lo siguiente

Caudal (Q)

$$Q = \mathbb{A}v = \frac{\mathbb{V}}{t}$$
 Unidad: m^3/s

A: Área de la sección transversal

v: rapidez del fluido

V: volumen del fluido

t: tiempo

Ecuación de continuidad

$$\mathbb{A}_1 v_1 = \mathbb{A}_2 v_2$$

FENÓMENOS TÉRMICOS

CALOR

Energía en transito que fluye del cuerpo de mayor temperatura hacia un cuerpo de menor temperatura.

El calor fluye de B hacia A

Cuando se logra el equilibrio térmico ya no fluye calor.

Por conservación de la energía:

$$Q_{ganado} = |Q_{perdido}|$$

 Q_{ganado} : Cantidad de calor ganado.

 $Q_{perdido}$: Cantidad de calor perdido.

FENÓMENOS RELACIONADOS CON EL CALOR

CAMBIO DE TEMPERATURA

Dicha cantidad de calor se conoce como calor sensible (Q_s) . Unidad:

$$Q_s = c_e.\text{m.}\Delta T$$
 Joule (J) caloría (cal)

m: masa de la sustancia.

 ΔT : variación de la temperatura ($\Delta T = T_f - T_i$)

 c_e : calor específico (Depende del tipo de sustancia)

Para el agua:

$$c_{e(liquido)} = 1 \frac{cal}{g^{\circ}C}$$
 $c_{e(hielo)} = c_{e(vapor)} = 0.5 \frac{cal}{g^{\circ}C}$

CAMBIO DE FASE:

Para el agua:

La cantidad de calor que se necesita para que una sustancia saturada pueda cambiar de fase se denomina calor de transformación.

$$Q_T = m_{trans}$$
.L

 $Q_T = m_{trans}.L$ m_{trans} : masa transformada

L: calor latente

Para el agua:

$$L_{fusión} = L_{solidificación} = 80 \ cal/g$$

 $L_{vaporización} = L_{condensación} = 540 \ cal/g$

aduni.edu.pe

