Лабораторна робота № 10

Визначення температурного коефіцієнта опору металу

Тема. Вимірювання температурного коефіцієнта опору металу.

Мета: експериментально довести, що залежність електричного опору металевого провідника від температури ϵ лінійною; визначити температурний коефіцієнт опору міді.

Обладнання: мультиметр, термометр, пристрій для вивчення залежності опору металів від температури, нагрівник, посудина з водою, штатив із муфтою та лапкою, лампа на підставці.

Опис установки

У цій роботі пропонується за допомогою пристрою для вивчення залежності опору металів від температури переконатися на досліді, що залежність опору металевого провідника від його температури є лінійною. Пристрій для вивчення залежності опору металів від температури (рисунок) являє собою намотаний на картонний циліндр I мідний дріт 2, кінці якого з'єднані з клемами 3, розташованими на пластмасовій панелі 4 пристрою. Панель має отвір 5, призначений для термометра. Картонний циліндр із дротом вміщений у скляну пробірку.

Для виконання роботи збирають установку (кольоровий рисунок), яка складається з лабораторного пристрою для вивчення залежності опору металів від температури, мультиметра, електроплитки, посудини з водою, термометра та лабораторного штатива з муфтою і лапкою. Потім, нагріваючи воду в посудині і тим самим збільшуючи температуру досліджуваного мідного дроту, вимірюють мультиметром його опір за різних температур.

Хід роботи

- 1. Зберіть установку, подану на рисунку.
- 2. Перемкніть тумблер мультиметра на вимірювання опору , встановивши його на позначки Ω .
- 3. Виміряйте початкову температуру $t_{\text{кімн.}}$ та опір R мідного дроту за цієї температури.

Зверніть увагу! Торкатися клем пристрою щупами мультиметра слід тільки в момент вимірювання опору.

- 4. Увімкніть нагрівник і, слідкуючи за показами термометра, визначити опір дроту через кожні 10 °С в інтервалі від 30 до 90 °С. Вимкніть нагрівник.
- 5. Заповнити таблицю за результатами експерименту.

Температура <i>t</i> , °С	$t_{_{\text{Кімн.}}} =$	30	40	50	60	70	80	90
Опір <i>R</i> , Ом	R =							

6. За даними таблиці побудуйте графік залежності опору дроту від його температури -R(t). (Внаслідок похибки вимірювань експериментальні точки можуть не лежати на одній очікуваній лінії. У цьому випадку графік проводять так, щоб з обох боків від нього була приблизно однакова кількість точок. Якщо розташування якої-небудь точки значно відхиляється від області розташування інших точок, то її слід вважати промахом і не враховувати під час побудови графіка.)

<u> </u>	 	

7.	Продовживши	графік	залежност	ri R(t) д	о перетину	з віссю	ординат,	знайдіть	опір
R_{c}	мідного дроту	за темп	ератури 0	°C.					

$$R_0 =$$

8. Виберіть на графіку довільну точку та визначте для неї відповідні значення опору R і температури t мідного дроту.

$$R = \underline{\hspace{1cm}} t = \underline{\hspace{1cm}}$$

Скориставшись формулою $\alpha_{\text{cep}} = \frac{R - R_0}{R_0 t}$, визначте середнє значення температурного коефіцієнта опору міді.

9. Оцініть відносну й абсолютну похибки експерименту, порівнявши отриманий результат із табличним значенням температурного коефіцієнта опору міді:

$$\varepsilon_{\alpha} = \left| 1 - \frac{\alpha_{\text{cep}}}{\alpha_{\text{табл}}} \right|; \quad \Delta \alpha = \alpha_{\text{cep}} \cdot \varepsilon$$

10. Округлити результати вимірювання температурного коефіцієнта опору міді, скориставшись правилами округлення (абсолютну похибку завжди округлюють до однієї значущої цифри із завищенням, а результат вимірювання — до величини розряду, що залишився в абсолютній похибці після округлення), і подайте результати у вигляді: $\alpha = \alpha_{\text{сер}} \pm \Delta \alpha$

Висновок

Проаналізуйте експеримент і його результати. За результатами експерименту сформулюйте і запишіть висновок, у якому зазначте: 1) яку фізичну величину ви вимірювали; 2) яким ϵ результат вимірювання; 3) у чому причина похибки вимірювання.

Контрольні питання

1. Мідний і графітові стрижні однакової товщини з'єднані послідовно.

За якого співвідношення їхніх довжин опір цієї системи не буде залежати від температури?

2.Які властивості металів у надпровідному стані вам відомі.