Problem 3 lecture

O: Sketch plot of Gvc

7: Select value of RI+RZ

2: Find desired gain at

Wross (Gain-wcross ~ Kop RB)

3: Find WZc = Wcross/3
Select RF and CF

4: Find Wpc = 3 wordss
Select Ro, RB and CB

58 Simulate in LT Spice

a) Build power circuit

b) Build current controller

c) Build controller

d) Simulate the converter.

Specification: Co = 300uF -> 330uF, L1=200uH, RL=8.2 Ohm, Vd=400, NP/NS=5, Vo = 24 V

 $W_{cross} = 20000 \text{ rad/s}$

Answer 0: Sketch plot of $G_{\nu c}$

Select a capacitor from the list of capacitors the nearest standard capacitance to 300uF is 330 uF, notice have to look out for RMS current rating is not exceeded.

Rc = 54mOhm

Rs: Shunt resistor value used to measure the current of the transistor is selected to be:

Rs = 1 ohm

Forward converter model implemented in LT spice $~G_{\rm vc} = \tilde{v}_{_{\! O}} \, / \, \tilde{v}_{\rm FB} \,$:

At 1 Hz the gain is 32.2 dB and at 2.5kHz (15707 rad/s) the gain is $^{\sim}0$ dB.

At $w_c = 3.183$ kHz (20000 rad/s) the gain is -1.9 dB and the phase is -70 deg.

Answer 1: Find R1 and R2

We know that Vref inside the TL431 is 2.5 V and the output voltage is Vo = 24 V. R2 is selected to be **R2=1kOhm** and the current of R2 is then 2.5 mA. From the voltage divider equation R1 is determined:

$$2.5V = 24V \frac{R_2}{R_1 + R_2}$$

R1 is found to be R1 = 8.6 kOhm.

Answer 2: Find desired gain at w_{cross}

Compensator design type II.

The compensator function is:

$$G_c = \frac{\tilde{v}_{FB}}{\tilde{v}_o} = -\frac{w_i}{s} \frac{1 + s / w_{zc}}{1 + s / w_{pc}}$$

$$w_i = \frac{K_{op} R_B}{R_D R_1 C_F}$$

$$w_{zc} = \frac{1}{(R_1 + R_F) C_F}$$

$$w_{pc} = \frac{1}{R_B C_B}$$

The gain of G_c is sketched in the below plot and location of w_{zc} , w_c w_{pc} is indicated:

Here w_c is locacted at the center so $w_c = \sqrt{w_{zc}w_{pc}}$ and from specifications $w_c = 20000$ rad/s and from forward converter transfer function the gain at $w_c = 20000$ rad/s calculated to be -1.9 dB. The gain of the compensator must then be $G_c(w_c) = 1.9$ dB to obtain an open loop gain $G_{op} = 1$ dB at $w_c = 20000$ rad/s.

Now we need to know what the gain of $G_c(w)$ at $w=w_c$ is and therefore $s=jw_c=j\sqrt{w_{zc}w_{pc}}$ is substituted into the G_c function.

$$G_{c}(w_{c}) = -\frac{w_{i}}{j\sqrt{w_{zc}w_{pc}}} \frac{1+j\sqrt{\frac{w_{pc}}{w_{zc}}}}{1+j\sqrt{\frac{w_{zc}}{w_{pc}}}}$$

$$\|G_c(w_c)\| = \frac{w_i}{\sqrt{w_{zc}w_{pc}}} \frac{\sqrt{1 + \frac{w_{pc}}{w_{zc}}}}{\sqrt{1 + \frac{w_{zc}}{w_{pc}}}}$$

And this is reduced to the result:

$$\left\|G_c(w_c)\right\| = \frac{w_i}{w_{cc}}$$

If RF << R1 then

$$\|G_c(w_c)\| = \frac{w_i}{w_{cc}} = \frac{K_{op}R_B}{R_D}$$

We need to find K_{op} R_B and R_D , remember $\|G_c(w_c)\| = 1.9$ dB $\|G_c(w_c)\| = 1.244$

Answer 3: Find $w_{zc} = w_{cross}/3$ select R_F and C_F

Select $\mathbf{R}_F = \mathbf{100}$ Ohm and with $\mathbf{w}_{zc} = \mathbf{w}_c/3$ and $\mathbf{w}_{zc} = 1/((\mathbf{R}_F + \mathbf{R}_1)^* \mathbf{C}_F)$ then $\mathbf{C}_F = 3/(\mathbf{w}_c(\mathbf{R}_F + \mathbf{R}_1))$ and \mathbf{C}_F is found to be $\mathbf{C}_F = \mathbf{17nF}$.

Answer 4: Find $w_{pc} = 3w_{cross}$ select R_D , R_B and C_B

We use:
$$\|G_c(w_c)\| = \frac{w_i}{w_{zc}} = \frac{K_{op}R_B}{R_D}$$

And need to find K_{op}, R_B and R_D:

Finding K_{op}

Select opto coupler 4N26 and make a small test circuit in LTspice shown on figure

$$Gain = \frac{i_C}{i_F}$$

I_c = transistor collector current and i_F is diode current

The test results are:

i _F current ->	1mA	10 mA	20 mA
V1=10V, R1=1k : Gain = i _C /i _F	0.8	0.67	0.49
V1=3.3 V, R1=100: Gain= i _C /i _F	0.8	0.67	0.56

So for an I_F in the range of 1mA to 10 mA the Gain is 0.7 and K_{op} =0.7

NOTICE: R1 is here identical with RB so RB must be in the range of 100 ohm..... when V1 = 3.3 V, If R1 is chosen larger ex. In the kohm range the Gain are much more dependent of i_F .

Finding R_D

Here is assumed that the TL341 cathode voltage must be higher than 2.5 V and during this condition the current must be minimum 1 mA. So V_{Kmin} = 2.5 V at i_F = 1mA assuming an opto coupler voltage of 1.1 V so V_{opto} = 1.1 V.

Then $R_{\text{\scriptsize D}}$ can be calculated

$$R_D \le (V_o - V_{opto} - V_{K \min}) / i_{F \min}$$

$$R_D \le (24-1.1-2.5)/1mA$$

 R_D < 20 kOhm, but since R_B are selected next and and it has to be in the 100 ohm region range to obtain a stabile gain of the opto coupler, R_D =200 ohm – see next paragraph where R_B is found:

Finding R_B

$$R_B = \frac{\left\| G_c(w_c) \right\| R_D}{K_{on}}$$

$$R_B = \frac{1.244 \cdot 200}{0.7}$$

$R_B = 355 Ohm$

In literature reference 'Designing with the TL431' paragraph 6. is it stated that $w_{zc}=w_c/3$ and it is selected that $w_{pc}=3*w_c$

Find C_B

Select w_{pc} = 3 w_c and w_{pc} = 1/(C_B R_B). Here R_B was calculated to R_B =355 Ohm with w_c = 20000 rad/s C_B is found to be C_B = 47nF.

The compensator is now implemented in LT spice $~\tilde{v}_{\scriptscriptstyle FB}$ / $\tilde{v}_{\scriptscriptstyle o}$:

The function shows the desired Gain of 2dB at the cross over frequency 3.187 kHz.

Summary

So all capacitors and resistors and Kop are now found

 $R_F = 100 \text{ Ohm } C_F = 17 \text{nF}$ R1 = 8.6 kOhm R2=1kOhm R_B = 355 Ohm CB = 47 nF R_D= 200 Ohm K_{op} = 0.7

The total open loop T_{OL} function response is now modeled and calculated.

Green line: T_{OL} , Red line: Forward converter model, Blue line: Compensator model

It is noticed that the green line showing the response of T_{OL} have a crossover frequency at 3.1915kHz close to the desired 20000 rad/s.

Answer 5: Simulate in LTspice

5a) Build Power circuit:

Simulation gives:

The non controlled behavior of converter is as expected and the $V(o)^{\sim}24 \text{ V}$ at a duty cycle of D=0.3.

5b) Build current controller:

Notice: C1 = 0.2n, ESR=100 ohm Right click on capacitor C1 to add the value of ESR to capacitor.

Notice V(s_blank) is limited to the current reference voltage 1V. The inductor current is also well controlled.

5c) Build the controller:

5d) Simulate converter

Plots of v(o) and i(L1) and v(FB)

