Diffie-Hellman Problem and Elgamal Encryption Scheme

Yu Zhang

HIT/CST/NIS

Cryptography, Spring, 2012

Outline

1 Cyclic Groups and Discrete Logrithms

2 Diffie-Hellman Assumptions and Applications

3 The Elgamal Encryption Scheme

Content

1 Cyclic Groups and Discrete Logrithms

2 Diffie-Hellman Assumptions and Applications

3 The Elgamal Encryption Scheme

Cyclic Groups and Generators

 \mathbb{G} is a finite group and $g \in \mathbb{G}$, the set

$$\langle g \rangle \stackrel{\text{def}}{=} \{ g^0, g^1, \dots, \} = \{ g^0, g^1, \dots, g^{i-1} \}.$$

- The **order** of g is the smallest positive integer i with $g^i = 1$.
- \mathbb{G} is a **cyclic group** if $\exists g$ has order $m = |\mathbb{G}|$. $\langle g \rangle = \mathbb{G}$, g is a **generator** of \mathbb{G} .
- lacksquare $\langle g \rangle$ is a subgroup of \mathbb{G} , and $|\langle g \rangle| \mid |\mathbb{G}|$.
- If \mathbb{G} is a group of prime order p, then \mathbb{G} is cyclic. All elements of \mathbb{G} except the identity are generators of \mathbb{G} .

Theorem 1

If p is prime, then \mathbb{Z}_p^* is cyclic.

Examples of Cyclic Groups

- \blacksquare \mathbb{Z}_{15} with '+' is cyclic and the '1' is a generator.
- \mathbb{Z}_7 with '+' is cyclic and all non-zero elements are generators.
- For \mathbb{Z}_7^* , 2 is not a generator, but 3 is.

 $\mathbb G$ is a cyclic group of order n, and g is a generator of $\mathbb G$. Then the mapping $f:\mathbb Z_n\to\mathbb G$ given by $f(a)=g^a$ is an isomorphism. For $a,a'\in\mathbb Z_n$,

$$f(a+a') = g^{[a+a' \mod n]} = g^{a+a'} = g^a \cdot g^{a'} = f(a) \cdot f(a').$$

All cyclic groups of the same order are "the same" in an algebraic sense, but this is not true in a computational sense.

Discrete Logarithm

If $\mathbb G$ is a cyclic group of order q, then \exists a generator $g\in\mathbb G$ such that $\{g^0,g^1,\dots,g^{q-1}\}=\mathbb G.$

- $\blacksquare \ \forall h \in \mathbb{G}, \ \exists \ \mathsf{a} \ \mathsf{unique} \ x \in \mathbb{Z}_q \ \mathsf{such that} \ q^x = h.$
- lacksquare $x = \log_q h$ is the discrete logarithm of h with respect to g.
- If $g^{x'} = h$, then $\log_q h = [x' \mod q]$.
- $\log_q 1 = 0$ and $\log_q (h_1 \cdot h_2) = [(\log_q h_1 + \log_q h_2) \bmod q].$

The Discrete Logarithm Assumption

The discrete logarithm experiment $\mathsf{DLog}_{\mathcal{A},\mathcal{G}}(n)$:

- **1** Run a group-generating algorithm $\mathcal{G}(1^n)$ to obtain (\mathbb{G}, q, g) , where \mathbb{G} is a cyclic group of order q (with $\|q\|=n$), and g is a generator of \mathbb{G} .
- **2** Choose $h \leftarrow \mathbb{G}$. $(x' \leftarrow \mathbb{Z}_q \text{ and } h := g^{x'})$
- **3** \mathcal{A} is given \mathbb{G} , q, g, h, and outputs $x \in \mathbb{Z}_q$.
- 4 $\mathsf{DLog}_{\mathcal{A},\mathcal{G}}(n)=1$ if $g^x=h$, and 0 otherwise.

Definition 2

The discrete logarithm problem is hard relative to $\mathcal G$ if \forall PPT algorithm $\mathcal A$, \exists negl such that

$$\Pr[\mathsf{DLog}_{\mathcal{A},\mathcal{G}}(n) = 1] \leq \mathsf{negl}(n).$$

Overview of Discrete Logarithm Algorithms

- Given a generator $g \in \mathbb{G}$ and $y \in \langle g \rangle$, find x such that $g^x = y$.
- Brute force: $\mathcal{O}(q)$, $q = \operatorname{ord}(g)$ is the order of $\langle g \rangle$.
- Baby-step/giant-step method [Shanks]: $O(\sqrt{q} \cdot polylog(q))$.
- **Pohlig-Hellman** algorithm: when q has small factors.
- Index calculus method: $\mathcal{O}(\exp(\sqrt{n \cdot \log n}))$.
- The best-known algorithm is the **general number field sieve** with time $\mathcal{O}(\exp(n^{1/3} \cdot (\log n)^{2/3}))$.
- Elliptic curve groups vs. \mathbb{Z}_p^* : more efficient for the honest parties, but that are equally hard for an adversary to break. (Both 1024-bit \mathbb{Z}_p^* and 132-bit elliptic curve need 2^{66} steps.)

The Baby-Step/Giant-Step Algorithm

Algorithm 1: The baby-step/giant-step algorithm

```
\begin{array}{l} \textbf{input} &: g \in \mathbb{G} \text{ and } y \in \langle g \rangle; \ q = \operatorname{ord}(g) \ (t := \lfloor \sqrt{q} \rfloor) \\ \textbf{output} : \log_g y \\ \\ \textbf{1} & \textbf{for } i = 0 \textbf{ to } \lfloor q/t \rfloor \textbf{ do compute } g_i := g^{i \cdot t} \quad / * \text{ giant steps */} \\ \textbf{2} & \textbf{sort the pairs } (i, g_i) \text{ by } g_i \\ \textbf{3} & \textbf{for } i = 0 \textbf{ to } t \textbf{ do} \\ \textbf{4} & | \textbf{ compute } y_i := y \cdot g^i \qquad / * \text{ baby steps */} \\ \textbf{5} & | \textbf{ if } y_i = q_k \text{ for some } k \textbf{ then return } \lceil kt - i \bmod q \rceil \\ \end{array}
```

The time complexity is $\mathcal{O}(\sqrt{q} \cdot \mathsf{polylog}(q))$.

Example of Baby-Step/Giant-Step Algorithm

In
$$\mathbb{Z}_{20}^*$$
, $q = 28$, $q = 2$, $y = 17$.

t=5, compute the giant steps:

$$2^0 = 1, \ 2^5 = 3, \ 2^{10} = 9, \ 2^{15} = 27, \ 2^{20} = 23, \ 2^{25} = 11.$$

compute the baby steps:

$$17 \cdot 2^0 = 17, \ 17 \cdot 2^1 = 5, \ 17 \cdot 2^2 = 10,$$

 $17 \cdot 2^3 = 20, \ 17 \cdot 2^4 = 11, \ 17 \cdot 2^5 = 22.$

$$2^{25} = 11 = 17 \cdot 2^4$$
. So $\log_2 17 = 25 - 4 = 21$.

The Pohlig-Hellman Algorithm

Idea: when q is known and has small factors, reduces the discrete logarithm instance to multiple instances in groups of smaller order.

According to CRT: If $q = \prod_{i=1}^k q_i$ and $\forall i \neq j, \gcd(q_i, q_j) = 1$, then

$$\mathbb{Z}_q\simeq \mathbb{Z}_{q_1} imes\cdots imes \mathbb{Z}_{q_k}$$
 and $\mathbb{Z}_q^*\simeq \mathbb{Z}_{q_1}^* imes\cdots imes \mathbb{Z}_{q_k}^*$

$$(g_i)^x \stackrel{\text{def}}{=} (g^{q/q_i})^x = (g^x)^{q/q_i} = y^{q/q_i} \text{ for } i = 1, \dots, k.$$

We have k instances in k smaller groups, $\operatorname{ord}(g_i) = q_i$. Use any other algorithm to solve $\log_{g_i}(y^{q/q_i})$.

Answers are $\{x_i\}_{i=1}^k$ for which $g_i^{x_i} \equiv y^{q/q_i} \equiv g_i^x$.

 $\forall i, x \equiv x_i \pmod{q_i}$. $x \mod q$ is uniquely determined (CRT).

The time complexity is $\mathcal{O}(\max_i \{\sqrt{q_i}\} \cdot \mathsf{polylog}(q))$.

¹If $p \mid q$, then $\operatorname{ord}(g^p) = q/p$.

Example of Pohlig-Hellman Algorithm

In
$$\mathbb{Z}_{31}^*$$
, $q = 30 = 5 \cdot 3 \cdot 2$, $g = 3$, $y = 26 = g^x$.

$$(g^{30/5})^x = y^{30/5} \Longrightarrow (3^6)^x = 26^6 \Longrightarrow 16^x \equiv 1$$

$$(g^{30/3})^x = y^{30/3} \Longrightarrow (3^{10})^x = 26^{10} \Longrightarrow 25^x \equiv 5$$

$$(g^{30/2})^x = y^{30/2} \Longrightarrow (3^{15})^x = 26^{15} \Longrightarrow 30^x \equiv 30$$

$$x \equiv 0 \pmod{5}, \ x \equiv 2 \pmod{3}, x \equiv 1 \pmod{2},$$

so $x \equiv 5 \pmod{30}$.

The Index Calculus Method

Idea: find a relatively small factor base and build a system of ℓ linear equations related to g; find a linear equation related to y; solve $\ell+1$ linear equations to give $\log_q y$.

- **1** for \mathbb{Z}_p^* , choose a base $B = \{p_1, \dots, p_k\}$ of prime numbers.
- 2 find $\ell \geq k$ distinct x_1, \ldots, x_ℓ for which $[g^{x_i} \mod p]$ decompose into the elements of B: $g^{x_i} \equiv \prod_{j=1}^k p_j^{e_j} \pmod{p}$.
- **3** ℓ equations: $x_i = \sum_{j=1}^k e_{i,j} \cdot \log_q(p_j) \pmod{p-1}$.
- 4 find x^* for which $[g^{x^*} \cdot y \mod p]$ can be factored.
- **5** new equation: $x^* + \log_q y = \sum_{i=1}^k e_i^* \cdot \log_q(p_i) \pmod{p-1}$.
- **6** Use linear algebra to solve equations and give $\log_a y$.

The time complexity is identical to that of the quadratic sieve.

Example of Index Calculus Method

$$p=101$$
, $g=3$ and $y=87$. $B=\{2,5,13\}$. $3^{10}\equiv 65\pmod{101}$ and $65=5\cdot 13$. Similarly, $3^{12}\equiv 80=2^4\cdot 5\pmod{101}$ and $3^{14}\equiv 13\pmod{101}$. The linear equations:

$$x_1 = 10 \equiv \log_3 5 + \log_3 13 \pmod{100}$$

 $x_2 = 12 \equiv 4 \cdot \log_3 2 + \log_3 5 \pmod{100}$
 $x_3 = 14 \equiv \log_3 13 \pmod{100}$.

We also have
$$x^* = 5$$
, $3^5 \cdot 87 \equiv 32 \equiv 2^5 \pmod{101}$, or $5 + \log_3 87 \equiv 5 \cdot \log_3 2 \pmod{100}$.

Adding the 2nd and 3rd equations and subtracting the 1st, we derive $4 \cdot \log_3 2 \equiv 16 \pmod{100}$. So $\log_3 2$ is 4, 29, 54, or 79. Trying all shows that $\log_3 2 = 29$. The last equation gives $\log_3 87 = 40$.

Content

1 Cyclic Groups and Discrete Logrithms

2 Diffie-Hellman Assumptions and Applications

3 The Elgamal Encryption Scheme

Diffie-Hellman Assumptions

■ Computational Diffie-Hellman (CDH) problem:

$$\mathsf{DH}_g(h_1,h_2) \stackrel{\mathsf{def}}{=} g^{\log_g h_1 \cdot \log_g h_2}$$

■ Decisional Diffie-Hellman (DDH) problem: Distinguish $DH_g(h_1, h_2)$ from a random group element h'.

Definition 3

DDH problem is hard relative to \mathcal{G} if \forall PPT \mathcal{A} , \exists negl such that

$$\begin{split} |\Pr[\mathcal{A}(\mathbb{G},q,g,g^x,g^y,g^z) = 1] - \Pr[\mathcal{A}(\mathbb{G},q,g,g^x,g^y,g^{xy}) = 1]| \\ \leq \mathsf{negl}(n). \end{split}$$

Intractability of DL, CDH and DDH

DDH is easier than CDH and DL.

Why Prime-Order Groups

- The discrete logarithm problem is hardest in such groups.
- Finding a generator in such groups is trivial.
- Any non-zero exponent will be invertible modulo the order.
- A necessary condition for the DDH problem to be hard is that $DH_g(h_1,h_2)$ by itself should be indistinguishable from a random group element. This is (almost) true for such groups:

$$\Pr[\mathsf{DH}_g(g^{x_1}, g^{x_2}) = 1] = 1 - \left(1 - \frac{1}{q}\right)^2 = \frac{2}{q} - \frac{1}{q^2},$$

and $\forall y \neq 1$:

$$\Pr[\mathsf{DH}_g(g^{x_1}, g^{x_2}) = y] = \frac{1}{q} \cdot \left(1 - \frac{1}{q}\right) = \frac{1}{q} - \frac{1}{q^2}.$$

Working in (Subgroups of) \mathbb{Z}_p^*

- $y \in \mathbb{Z}_p^*$ is a quadratic residue modulo p if $\exists x \in \mathbb{Z}_p^*$ such that $x^2 \equiv y \pmod{p}$.
- The set of quadratic residues modulo p is a subgroup with (p-1)/2 = q elements, since $x^2 \equiv (p-x)^2 \pmod{p}$.
- **p** is a **strong prime** if p = 2q + 1 with q prime.

Algorithm 2: A group generation algorithm \mathcal{G}

input : Security parameter 1^n

output: Cyclic group \mathbb{G} , its order q, and a generator g

- 1 **generate** a random (n+1)-bit strong prime p
- q := (p-1)/2
- **3 choose** an arbitrary $x \in \mathbb{Z}_p^*$ with $x \neq \pm 1 \mod p$
- 4 $g := x^2 \bmod p$
- 5 return p, q, g

Recall Secure Key-Exchange Experiment

The key-exchange experiment $KE_{\mathcal{A},\Pi}^{eav}(n)$:

- I Two parties holding 1^n execute protocol Π . Π results in a **transcript** trans containing all the messages sent by the parties, and a **key** k that is output by each of the parties.
- 2 A random bit $b \leftarrow \{0,1\}$ is chosen. If b=0 then choose $\hat{k} \leftarrow \{0,1\}^n$ u.a.r, and if b=1 then set $\hat{k}:=k$.
- **3** \mathcal{A} is given trans and \hat{k} , and outputs a bit b'.
- **4** $\mathsf{KE}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n) = 1$ if b' = b, and 0 otherwise.

Definition 4

A key-exchange protocol Π is secure in the presence of an eavesdropper if \forall PPT \mathcal{A} , \exists negl such that

$$\Pr[\mathsf{KE}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n) = 1] < \frac{1}{2} + \mathsf{negl}(n).$$

Diffie-Hellman Key-Exchange Protocol

$$k_A = k_B = k = g^{xy}.$$

 $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}} \text{ denote an experiment where if } b = 0 \text{ the adversary is given } \hat{k} \leftarrow \mathbb{G}.$

Theorem 5

If DDH problem is hard relative to \mathcal{G} , then DH key-exchange protocol Π is secure in the presence of an eavesdropper (with respect to the modified experiment $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}$).

Security

Insecurity against active adversaries (Man-In-The-Middle).

Proof of Security in DH Key-Exchange Protocol

Proof.

$$\begin{split} &\Pr\left[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}} = 1\right] \\ &= \frac{1}{2} \cdot \Pr\left[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}} = 1 | b = 1\right] + \frac{1}{2} \cdot \Pr\left[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}} = 1 | b = 0\right] \end{split}$$

If b=1, then give true key; otherwise give random g^z .

$$\begin{split} &= \frac{1}{2} \cdot \Pr\left[\mathcal{A}(g^{x}, g^{y}, g^{xy}) = 1\right] + \frac{1}{2} \cdot \Pr\left[\mathcal{A}(g^{x}, g^{y}, g^{z}) = 0\right] \\ &= \frac{1}{2} \cdot \Pr\left[\mathcal{A}(g^{x}, g^{y}, g^{xy}) = 1\right] + \frac{1}{2} \cdot (1 - \Pr\left[\mathcal{A}(g^{x}, g^{y}, g^{z}) = 1\right]) \\ &= \frac{1}{2} + \frac{1}{2} \cdot (\Pr\left[\mathcal{A}(g^{x}, g^{y}, g^{xy}) = 1\right] - \Pr\left[\mathcal{A}(g^{x}, g^{y}, g^{z}) = 1\right]) \\ &\leq \frac{1}{2} + \frac{1}{2} \cdot |\Pr\left[\mathcal{A}(g^{x}, g^{y}, g^{xy}) = 1\right] - \Pr\left[\mathcal{A}(g^{x}, g^{y}, g^{z}) = 1\right]| \end{split}$$

Constructing Collision-Resistant Hash Functions

Construction 6

Define a fixed-length hash function (Gen, H):

- Gen: on input 1^n , run $\mathcal{G}(1^n)$ to obtain (\mathbb{G}, q, g) and then select $h \leftarrow \mathbb{G}$. Output $s := \langle \mathbb{G}, q, g, h \rangle$ as the key.
- H: given a key $s = \langle \mathbb{G}, q, g, h \rangle$ and input $(x_1, x_2) \in \mathbb{Z}_q \times \mathbb{Z}_q$, output $H^s(x_1, x_2) := g^{x_1} h^{x_2}$.

Theorem 7

If the discrete logarithm problem is hard relative to G, then Construction is a fixed-length CRHF.

Proof of Security of Construction

Proof.

 \mathcal{A}' uses \mathcal{A} to solve the discrete logarithm problem:

- **1** \mathcal{A}' is given input $s = \langle \mathbb{G}, q, g, h \rangle$.
- **2** Run $\mathcal{A}(s)$ and obtain output x, x'.
- If $x \neq x' \wedge H^s(x) = H^s(x')$ then:
 - If h = 1 return 0;
 - Otherwise, parse x as (x_1, x_2) and x' as (x_1', x_2') . Return $[(x_1 - x_1') \cdot (x_2' - x_2)^{-1} \mod q]$.

$$H^{s}(x_{1}, x_{2}) = H^{s}(x'_{1}, x'_{2}) \implies g^{x_{1}} h^{x_{2}} = g^{x'_{1}} h^{x'_{2}}$$

$$\implies g^{x_{1} - x'_{1}} = h^{x'_{2} - x_{2}}$$

 $\implies \log_g h = [(x_1 - x_1') \cdot (x_2' - x_2)^{-1} \mod q].$

Content

1 Cyclic Groups and Discrete Logrithms

2 Diffie-Hellman Assumptions and Applications

3 The Elgamal Encryption Scheme

Lemma on Perfectly-secret Private-key Encryption

Lemma 8

 \mathbb{G} is a finite group and $m \in \mathbb{G}$ is an arbitrary element. Then choosing random $g \leftarrow \mathbb{G}$ and setting $g' := m \cdot g$ gives the same distribution for g' as choosing random $g' \leftarrow \mathbb{G}$. I.e, $\forall \hat{g} \in \mathbb{G}$:

$$\Pr[m \cdot g = \hat{g}] = 1/|\mathbb{G}|.$$

Proof.

Let $\hat{g} \in \mathbb{G}$ be arbitrary, then

$$\Pr[m \cdot g = \hat{g}] = \Pr[g = m^{-1} \cdot \hat{g}].$$

Since g is chosen u.a.r, the probability that g is equal to the fixed element $m^{-1} \cdot \hat{g}$ is exactly $1/|\mathbb{G}|$.

The Elgamal Encryption Scheme

An algorithm \mathcal{G} , on input 1^n , outputs a description of a cyclic group \mathbb{G} , its order q (with ||q|| = n), and a generator g.

Construction 9

- Gen: on input 1^n run $\mathcal{G}(1^n)$ to obtain (\mathbb{G}, q, g) . Choose a random $x \leftarrow \mathbb{Z}_q$ and compute $h := g^x$. $pk = \langle \mathbb{G}, q, g, h \rangle$ and $sk = \langle \mathbb{G}, q, g, x \rangle$.
- Enc: on input pk and $m \in \mathbb{G}$, choose a random $y \leftarrow \mathbb{Z}_q$ and output $\langle c_1, c_2 \rangle = \langle g^y, h^y \cdot m \rangle$.
- Dec: on input sk and $\langle c_1, c_2 \rangle$, output $m := c_2/c_1^x$.

Theorem 10

If the DDH problem is hard relative to G, then the Elgamal encryption scheme is CPA-secure.

Example of Elgamal Encryption

$$q = 83$$
, $p = 2q + 1 = 167$, $g = 2^2 = 4 \pmod{167}$, $\hat{m} = 011101$

The receiver chooses secrete key $37 \in \mathbb{Z}_{83}$.

The public key is $pk = \langle 167, 83, 4, [4^{37} \mod 167] = 76 \rangle$.

 $\hat{m} = 011101 = 29, \ m = [(29+1)^2 \mod 167] = 65.$

Choose y = 71, the ciphertext is

 $\langle [4^{71} \mod 167], [76^{71} \cdot 65 \mod 167] \rangle = \langle 132, 44 \rangle.$

Decryption: $m = [44 \cdot (132^{37})^{-1}] \equiv [44 \cdot 66] \equiv 65 \pmod{167}$. 65 has the two square roots 30 and 137, and 30 < q, so $\hat{m} = 29$.

Proof of Security of Elgamal Encryption Scheme

Proof.

Idea: Prove that Π is secure in the presence of an eavesdropper by reducing an algorithm D for DDH problem to the eavesdropper \mathcal{A} .

Modify Π to $\tilde{\Pi}$: the encryption is done by choosing random $y\leftarrow \mathbb{Z}_q$ and $z\leftarrow \mathbb{Z}_q$ and outputting the ciphertext:

$$\langle g^y, g^z \cdot m \rangle$$
.

- lacksquare $ilde{\Pi}$ is not an encryption scheme.
- lacksquare g^y is independent of m.
- $g^z \cdot m$ is a random element independent of m (Lemma 8).

$$\Pr\left[\mathsf{PubK}^{\mathsf{eav}}_{\mathcal{A},\tilde{\Pi}}(n) = 1\right] = \frac{1}{2}.$$

Proof (Cont.)

D receives $(\mathbb{G}, q, g, g^x, g^y, g_3)$ where g_3 equals either g^{xy} or g^z , for random x, y, z:

Proof (Cont.)

Case I: $g_3 = g^z$, ciphertext is $\langle g^y, g^z \cdot m_b \rangle$.

$$\Pr[D(g^x,g^y,g^z)=1] = \Pr\left[\mathsf{PubK}^{\mathsf{eav}}_{\mathcal{A},\tilde{\Pi}}(n)=1\right] = \frac{1}{2}.$$

Case II: $g_3 = g^{xy}$, ciphertext is $\langle g^y, g^{xy} \cdot m_b \rangle$.

$$\Pr[D(g^x,g^y,g^{xy})=1] = \Pr\left[\mathsf{PubK}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n)=1\right] = \varepsilon(n).$$

Since the DDH problem is hard,

$$\begin{split} \mathsf{negl}(n) & \geq |\mathrm{Pr}[D(g^x, g^y, g^z) = 1] - \mathrm{Pr}[D(g^x, g^y, g^{xy}) = 1]| \\ & = |\frac{1}{2} - \varepsilon(n)|. \end{split}$$

CCA in Elgamal Encryption

Constructing the ciphertext of the message $m \cdot m'$.

Given
$$pk = \langle g, h \rangle$$
, $c = \langle c_1, c_2 \rangle$, $c_1 = g^y$, $c_2 = h^y \cdot m$, **Method I**: compute $c_2' := c_2 \cdot m'$, and $c' = \langle c_1, c_2' \rangle$.

$$\frac{c_2'}{c_1^x} = \frac{h^y \cdot m \cdot m'}{g^{xy}} = \frac{g^{xy} \cdot m \cdot m'}{g^{xy}} = m \cdot m'.$$

Method II: compute $c_1'':=c_1\cdot g^{y''}$, and $c_2'':=c_2\cdot h^{y''}\cdot m'$.

$$c_1'' = g^y \cdot g^{y''} = g^{y+y''}$$
 and $c_2'' = h^y m \cdot h^{y''} m' = h^{y+y''} m m'$

so $c'' = \langle c_1'', c_2'' \rangle$ is an encryption of $m \cdot m'$.

Elgamal Implementation Issues

- Encoding binary strings: depends on the particular type of group.
 - the subgroup of quadratic residues modulo a strong prime p=(2q+1).
 - \blacksquare a string $\hat{m} \in \{0,1\}^{n-1}$, n = ||q||.
 - map \hat{m} to the plaintext $m = [(\hat{m} + 1)^2 \mod p]$.
 - The mapping is one-to-one and efficiently invertible.
- Sharing public parameters: \mathcal{G} generates parameters \mathbb{G} , q, g.
 - generated "once-and-for-all".
 - used by multiple receivers.
 - lacktriangle each receiver must choose their own secrete values x and publish their own public key containing $h=g^x$.

Parameter sharing

In the case of Elgamal, the public parameters can be shared, but in the case of RSA, parameters cannot be shared.

Summary

- cyclic group, discrete log., baby-step/giant-step
- CDH, DDH, DHKE protocol.
- Elgamal encryption, sharing public parameters.