Adder Architectures

Dr. Shubhajit Roy Chowdhury,

Centre for VLSI and Embedded Systems Technology, IIIT Hyderabad, India

Email: src.vlsi@iiit.ac.in

Types of Adders

- Single-bit Addition
- Carry-Ripple Adder
- Carry-Skip Adder
- Carry-Lookahead Adder
- Carry-Select Adder
- Tree Adder
- Higher Valency Trees

Single bit addition

Half Adder

$$C_{\text{out}} =$$

Α	В	C_{out}	S
0	0		
0	1		
1	0		
1	1		

Full Adder

$$S =$$

$$C_{out} =$$

Α	В	С	C_{out}	S
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Propagate, Generate and Kill

- For a full adder, define what happens to carries
 - Generate: C_{out} = 1 independent of C
 - G =
 - Propagate: C_{out} = C
 - P =
 - Kill: C_{out} = 0 independent of C
 - K =

Full Adder Design I (using 32 transistors)

■ Brute force implementation from eqns

$$S = A \oplus B \oplus C$$
$$C_{\text{out}} = MAJ(A, B, C)$$

Full Adder Design II (using 28 transistors)

□ Factor S in terms of C_{out}

$$S = ABC + (A + B + C)(\sim C_{out})$$

Critical path is usually C to C_{out} in ripple adder

Layout of 28 transistor Full Adder

Modified Layout of 28T full adder

- Clever layout circumvents usual line of diffusion
 - Use wide transistors on critical path
 - Eliminate output inverters

Full Adder Design III

- □ Complementary Pass Transistor Logic (CPL)
 - Slightly faster, but more area

Carry Propagate Adder

- N-bit adder called CPA
 - Each sum bit depends on all previous carries
 - How do we compute all these carries quickly?

Ripple Carry Adder

- Simplest design: cascade full adders
 - Critical path goes from C_{in} to C_{out}
 - Design full adder to have fast carry delay

Inversions

- Critical path passes through majority gate
 - Built from minority + inverter
 - Eliminate inverter and use inverting full adder

Propagate and Generate Logic

- Equations often factored into G and P
- Generate and propagate for groups spanning i:j

$$G_{i:j} =$$

$$P_{i:j} =$$

Base case

$$G_{i:i} \equiv G_i =$$

$$P_{i:i} \equiv P_i =$$

$$G_{0:0} \equiv G_0 =$$

$$P_{0:0} \equiv P_0 =$$

Sum:

$$S_i =$$

PG Logic

Carry Ripple Revisited

Carry Ripple PG Diagram

Notion of Gray Cell, Black Cell and Buffer

Carry Skip Adder

- Carry-ripple is slow through all N stages
- Carry-skip allows carry to skip over groups of n bits
 - Decision based on n-bit propagate signal

Carry Skip PG Diagram

For k n-bit groups (N = nk)

$$t_{\rm skip} =$$

Carry Look Ahead Adder

- Carry-lookahead adder computes G_{i:0} for many bits in parallel.
- Uses higher-valency cells with more than two inputs.

CLA PG Diagram

Higher Valency Cells

Carry Select Adder

- ☐ Trick for critical paths dependent on late input X
 - Precompute two possible outputs for X = 0, 1
 - Select proper output when X arrives
- Carry-select adder precomputes n-bit sums
 - For both possible carries into n-bit group

Tree Adders

- If lookahead is good, lookahead across lookahead!
 - Recursive lookahead gives O(log N) delay
- Many variations on tree adders

Brent Kung Adder

Kogge Stone Adder

Tree Adder Taxonomy

- Ideal N-bit tree adder would have
 - -L = log N logic levels
 - Fanout never exceeding 2
 - No more than one wiring track between levels
- \square Describe adder with 3-D taxonomy (*I*, *f*, *t*)
 - Logic levels: L + I
 - Fanout: $2^f + 1$
 - Wiring tracks: 2^t
- Known tree adders sit on plane defined by

$$I + f + t = L-1$$

Tree Adder Taxonomy

Higher Valency Trees

- □ Combine 3 or 4 groups at each level
- ☐ High fan-in gates better suited to domino circuits

Thank You

