Plan

- 2 Images
 - L'image en informatique
 - Bitmap vs vectoriel
 - Les principaux modèles d'images bitmap
 - Formats de stockage
 - Exemples de procédés de compression
 - Primitives graphiques

Ou comment passer du format vectoriel au format bitmap

Ou comment passer du format vectoriel au format bitmap

```
segment( 2,2 , 16,28 ).tracer(bleu)
cercle( 35,14 , 12 ).remplir(rouge)
Description vectorielle
```

Ou comment passer du format vectoriel au format bitmap

```
segment( 2,2 , 16,28 ).tracer(bleu)
cercle( 35,14 , 12 ).remplir(rouge)
```

Description vectorielle

Image bitmap correspondante

cas d'une pente inférieure à 1

cas d'une pente inférieure à 1

Tracé idéal

cas d'une pente inférieure à 1

Tracé des pixels intersectés par le segment

cas d'une pente inférieure à 1

Tracé d'un pixel par abscisse

Equation de la droite Δ contenant le segment S = [(x1, y1), (x2, y2)]

Algo. de Bresenham (cas $dx = x2 - x1 \ge dy = y2 - y1 \ge 0$)

Equation de la droite Δ contenant le segment S = [(x1, y1), (x2, y2)] $y = y1 + \frac{dy}{dx}(x - x1)$

Algo. de Bresenham (cas $dx = x2 - x1 \ge dy = y2 - y1 \ge 0$)

Equation de la droite Δ contenant le segment S = [(x1, y1), (x2, y2)] $\iff F(x, y) = 2 \ dx \ (y - y1) - 2 \ dy \ (x - x1) = 0$

$$P = (x, y)$$
 en dessous de la droite $\Delta \iff F(P) = F(x, y) < 0$

$$P = (x, y)$$
 sur la droite $\Delta \iff F(P) = F(x, y) = 0$

$$P = (x, y)$$
 en dessus de la droite $\Delta \iff F(P) = F(x, y) > 0$

Algo. de Bresenham (cas $dx = x2 - x1 \ge dy = y2 - y1 \ge 0$)

1) Initialisation

Point initial P = (x1, y1) sur $\Delta : FP = F(P) = 0$

Algo. de Bresenham (cas
$$dx = x2 - x1 \ge dy = y2 - y1 \ge 0$$
)

2) Boucle

Connaissant $P = (x, y) \rightarrow$ choisir le pixel suivant P' deux possibilités : P' = (x + 1, y) ou P' = (x + 1, y + 1)

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Algo. de Bresenham (cas $dx = x2 - x1 \ge dy = y2 - y1 \ge 0$)

2) Boucle

Point M au dessous de Δ : FM = F(M) = FP + dx - 2 dy < 0 $\Rightarrow P' = (x + 1, y + 1) : F(P') = FP + 2 dx - 2 dy$

4□ > 4□ > 4□ > 4□ > 4□ > 90

Algo. de Bresenham (cas $dx = x2 - x1 \ge dy = y2 - y1 \ge 0$)

2) Boucle

Point M au dessus de (ou sur) Δ : $FM = F(M) = FP + dx - 2 dy \ge 0$ $\Rightarrow P' = (x + 1, y) : F(P') = FP - 2 dy$

4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 6 m b

Cas
$$x_1 \le x_2$$
, $y_1 \le y_2$, $dx = |x^2 - x^1| \ge dy = |y^2 - y^1|$

```
// Initialisation
dx \leftarrow |x2 - x1|
dy \leftarrow |y2 - y1|
x \leftarrow x1
y \leftarrow y1
F \leftarrow 0
dFM \leftarrow dx - 2 dy
dFcas1 \leftarrow 2 dx - 2 dy
dFcas2 \leftarrow -2 dy
```

```
Boucle principale
tant_que x \neq x2 faire
  DessinerPixel(x,y)
  si F + dFM < 0 alors
 y \leftarrow y + 1
F \leftarrow F + dFcas1
  sinon
  F \leftarrow F + dFcas2
  fin_si
fin_tant_que
DessinerPixel(x,y)
```

Cas
$$x_1 \ge x_2$$
, $y_1 \le y_2$, $dx = |x_2 - x_1| \ge dy = |y_2 - y_1|$

```
// Initialisation
dx \leftarrow |x2 - x1|
dy \leftarrow |y2 - y1|
x \leftarrow x1
y \leftarrow y1
F \leftarrow 0
dFM \leftarrow dx - 2 dy
dFcas1 \leftarrow 2 dx - 2 dy
dFcas2 \leftarrow -2 dy
```

```
Boucle principale
tant_que x \neq x2 faire
  DessinerPixel(x,y)
  si F + dFM < 0 alors
 y \leftarrow y + 1
F \leftarrow F + dFcas1
  sinon
  F \leftarrow F + dFcas2
fin_tant_que
DessinerPixel(x,y)
```

Cas
$$x_1 \le x_2$$
, $y_1 \le y_2$, $dx = |x^2 - x^1| \ge dy = |y^2 - y^1|$

```
// Initialisation
dx \leftarrow |x2 - x1|
dy \leftarrow |y2 - y1|
x \leftarrow x1
v \leftarrow v1
F \leftarrow 0
dFM \leftarrow dx - 2 dy
dFcas1 \leftarrow 2 dx - 2 dy
dFcas2 \leftarrow -2dy
```

```
Boucle principale
tant_que x \neq x2 faire
  DessinerPixel(x,y)
  si F + dFM < 0 alors
 y \leftarrow y + 1
F \leftarrow F + dFcas1
  sinon
  F \leftarrow F + dFcas2
  fin_si
fin_tant_que
DessinerPixel(x,y)
```

Cas
$$x_1 \le x_2$$
, $y_1 \le y_2$, $dx = |x^2 - x^1| \le dy = |y^2 - y^1|$

```
// Initialisation
dx \leftarrow |x2 - x1|
dy \leftarrow |y2 - y1|
x \leftarrow x1
v \leftarrow v1
F \leftarrow 0
dFM \leftarrow dy - 2 dx
dFcas1 \leftarrow 2 dy - 2 dx
dFcas2 \leftarrow -2 dx
```

```
Boucle principale
tant_que y \neq y2 faire
   DessinerPixel(x,y)
  \textbf{si} \ F + \texttt{dFM} < 0 \ \textbf{alors}
   \begin{vmatrix} x \leftarrow x + 1 \\ F \leftarrow F + dFcas1 \end{vmatrix}
   sinon
  F \leftarrow F + dFcas2
fin_tant_que
DessinerPixel(x,y)
```


Tracé du bord du triangle

Remplissage du triangle

Remplissage par balayage horizontal

Remplissage par balayage horizontal

Polygone

Polygone

Tracé du bord du polygone

Polygone

Remplissage du polygone