CLASSIFICATION

MODEL SELECTION

Performed during model building

- Select a model that is not overly complex
 - (potential concerns for overly complex model: overfitting)
- Estimate generalization error
 - validation set
 - model complexity

MODEL SELECTION: USING VALIDATION SET

- Divide <u>training</u> data into two parts:
 - Training set:
 - Validation set:
 - use for estimating generalization error

- Drawback:
 - less data available for training

MODEL SELECTION: INCORPORATING MODEL COMPLEXITY

- Rationale: Occam's Razor
 - Given two models of similar generalization errors, one should prefer the simpler model

- A complex model has a greater chance of overfitting
- Include model complexity when evaluating a model

Generalization Error(Model) = Train. Error(Model, Train. Data) + α x Complexity(Model)

ESTIMATING THE COMPLEXITY OF DECISION TREES

Pessimistic Error Estimate of decision tree T with k leaf nodes:

$$err_{gen}(T) = err(T) + \Omega \times \frac{k}{N_{train}}$$

- err(T): error rate on all training records
- $lacktriangleq \Omega$: trade-off hyper-parameter (similar to α)
 - Relative cost of adding a leaf node
- k: number of leaf nodes
- N_{train}: total number of training records

ESTIMATING THE COMPLEXITY OF DECISION TREES: EXAMPLE

Decision Tree, T_R

Decision Tree, T₁

$$err_{gen}(T) = err(T) + \Omega \times \frac{k}{N_{train}}$$

$$e(T_L) = 4/24$$

$$e(T_R) = 6/24$$

$$\Omega = 1$$

Pessimistic errors for both trees

$$e_{gen}(T_L) = 4/24 + 1*7/24 = 11/24 = 0.458$$

$$e_{gen}(T_R) = 6/24 + 1*4/24 = 10/24 = 0.417$$

ESTIMATING THE COMPLEXITY OF DECISION TREES

- Resubstitution Estimate:
 - optimistic error estimate: using training error as an estimate of generalization error

$$e(T_L) = 4/24$$

$$e(T_R) = 6/24$$

+: 3

-: 6

MINIMUM DESCRIPTION LENGTH (MDL)

X	у		Yes No	
X ₁	1		0 B?	
X ₂	0		B_1 B_2	
X_3	0	^	C? 1	В
X_4	1	A	C_1 C_2	
		\mathbb{R}^{-1}	0 1	χ
X _n	1			Y,
	•		/	/

X	У
X ₁	?
X_2	?
X_3	?
X_4	?
X _n	?

- Cost(Model, Data) = Cost(Data|Model) + $\alpha \times$ Cost(Model)
 - Cost is the number of bits needed for encoding.
 - Search for the least costly model.
- Cost(Data|Model) encodes the misclassification errors.
- Cost(Model) uses node encoding (number of children) plus splitting condition encoding.

MODEL SELECTION FOR DECISION TREES

- Pre-Pruning (Early Stopping Rule)
 - Stop the algorithm before it becomes a fully-grown tree
 - Typical stopping conditions for a node:

Stop if all instances belong to the same class

or Stop if all the attribute values are the same

- More restrictive conditions:
 - Stop if the number of instances is < some user-specified threshold
 - or Stop if class distribution of instances are independent of the available features (e.g., using χ^2 test)
 - or Stop if expanding the current node does not improve impurity measures

(e.g., Gini or information gain).

or Stop if estimated generalization error falls below certain threshold

MODEL SELECTION FOR DECISION TREES

Post-pruning

- Grow decision tree to its entirety
- Subtree replacement
 - Trim the nodes of the decision tree in a bottom-up fashion
 - If generalization error improves after trimming, replace sub-tree by a leaf node
 - Class label of leaf node is determined from majority class of instances in the sub-tree

EXAMPLE OF POST-PRUNING

Class = Yes	8
Class = No	4

Class = Yes	3
Class = No	4

$$err_{gen}(T) = err(T) + \Omega \times \frac{k}{N_{train}}$$

Training Error (Before splitting) = 10/30Pessimistic error = (10 + 0.5)/30 = 10.5/30

Training Error (After splitting) = 9/30

Pessimistic error (After splitting)

$$= (9 + 4 \times 0.5)/30 = 11/30$$

PRUNE!

EXAMPLE OF POST-PRUNING

EXAMPLES OF POST-PRUNING

```
Decision Tree:
depth = 1:
 breadth > 7 : class 1
  breadth <= 7:
    breadth <= 3:
      ImagePages > 0.375 : class 0
      ImagePages <= 0.375 :
         totalPages <= 6 : class 1
         totalPages > 6:
           breadth <= 1 : class 1
           breadth > 1 : class 0
    width > 3:
      MultilP = 0:
       ImagePages <= 0.1333 : class 1
       | ImagePages > 0.1333 :
       breadth <= 6 : class 0
          breadth > 6 : class 1
      MultiIP = 1
         TotalTime <= 361 : class 0
        TotalTime > 361 : class 1
depth > 1:
| MultiAgent = 0:
 | depth > 2 : class 0
 | depth <= 2 :
  | | | MultilP = 1: class 0
      MultiIP = 0:
        breadth <= 6 : class 0
        breadth > 6:
           RepeatedAccess <= 0.0322 : class 0
         | RepeatedAccess > 0.0322 : class 1
  MultiAgent = 1:
```

```
Simplified Decision Tree:
              depth = 1:
               | ImagePages <= 0.1333 : class 1
Subtree
               I ImagePages > 0.1333:
Raising
                   breadth <= 6 : class 0
                  breadth > 6 : class 1
              depth > 1:
                MultiAgent = 0: class 0
                MultiAgent = 1:
                   totalPages <= 81 : class 0
                   totalPages > 81 : class 1
      Subtree
   Replacement
```

MODEL EVALUATION

- Purpose:
 - Estimate performance of classifier on test set
- Holdout
 - Reserve k% for training and (100-k)% for testing
 - Random subsampling: repeated holdout
- Cross validation K fold: 5 cm : }
 - Partition data into k disjoint subsets
 - k-fold: train on k-I partitions test on the remaining one

id	data
I	+
2	+
, ,	
₽ ² [
7	+
ار ا	+
72 (10	-

CROSS-VALIDATION EXAMPLE

VARIATIONS ON CROSS-VALIDATION

- Repeated cross-validation
 - Perform cross-validation for multiple times
 - Give an estimate of the variance of the generalization error
- Stratified cross-validation
 - Guarantee the same percentage of class labels in training and test
 - Good for imbalanced datasets and small samples
- Use nested cross-validation approach for model selection and evaluation