Non-Hierarchical Clustering K-Means Method

Contents

- 1. Cluster Analysis-Quick Recap
- 2. K-Means Clustering in Python
- 3. Elbow Method to Select K

Cluster Analysis

Cluster analysis is a class of statistical techniques that can be used to classify objects or cases into groups called **Clusters**.

- A cluster is a group of relatively homogeneous cases or observations.
- The observations are dissimilar to objects outside the cluster, particularly objects in other clusters.

Cluster Analysis is one of the unsupervised learning method.

K-Means Clustering

- K-Means Clustering is one of the most popular non-hierarchical clustering methods
- K -Means method is suitable for large data sets and widely used for customer segmentation in BFSI or retail domains
- The number of clusters (k) must be known a priori (Though in reality this may not be the case)
- Alternatively, cluster solutions can be observed for different k and evaluated to get the best possible cluster solution

K-Means Clustering – Steps

Case Study

Background

 A FMCG company has recorded information of customers based on their buying behaviour for a period of 1 year and would like to implement strategies by segmenting these customers into tiers.

Objective

• To create segment of customers.

Available Information

- Sample size is 1158.
- Variables : Custid, nsv, n_brands , n_bills, growth, region

Data Snapshot

RETAILERS DATA

NET/TEERS D/T/					
Variables					
Custid nsv n_br		brands n_bills	growth	region	
	1001 2119456	7		Mumbai	-
	1002 1460163	12		Mumbai	_
	1003 147976	4	6 2.81	Mumbai	_
Columns	Description	Type	Measur	ement P	Possible values
Custid	Unique customer IE	numeric	-		-
nsv	Net Sales Value	numeric	Rs	. I	positive values
n_brands	Number of unique brands purchased	numeric	-	I	positive values
n_bills	Number of bills generated	numeric	-	ľ	positive values
growth	Growth in net sales value	numeric	-	n	Positive & negative values
region	City of Customer	characte	Delhi, Ko r Mum Nagp	bai,	4
	1018 2213576 1019 2433971	11	14 5.69	Delhi Delhi	-

K-Means Method in Python

```
# Importing Data
import pandas as pd
custsales = pd.read_csv("RETAILERS DATA.csv")
custsales cl = custsales
custsales cl = custsales cl.drop(["Custid", "region"], axis = 1)
             read csv() is used to import csv file. Our data is saved as an object
              named custsales. The subset of numeric variables is created.
# Scale (standardize) all variables.(subtract mean and divide by
# standard deviation)
import sklearn.preprocessing
custsales cl2 = sklearn.preprocessing.scale(custsales cl)
custsales cl2
# Output
array([[ 1.3415212 , -0.57045618, -0.27177323, -1.40755324],
      [0.57976648, 0.03183071, 1.2604777, -1.39462362],
      [-0.93634948, -0.93182832, -0.70955921, -0.41628239],
      [ 1.04097324, 0.03183071, 0.43962899, -1.08862262],
```

[-0.76570907, -0.57045618, -0.76428245, -0.19647886], [1.55237455, 2.8023504, 2.13604966, 1.37016007]])

K-Means Method in Python

K means clustering

```
from sklearn.cluster import KMeans
CL = KMeans(n_clusters=4)
CL.fit(custsales_c12)

# Compute centroids
centroids = CL.cluster_centers_
centroids
```

KMeans() performs kmeans clustering on data matrix. The function requires data object and number of clusters to be formed.

Output

```
array([[-0.83216038, -0.84148529, -0.72147912, -0.53311303],

[ 1.18689039, -0.02445287, 0.30461312, -0.62608288],

[ 1.0594337 , 1.50599957, 1.62269348, 1.6235293 ],

[-0.5018609 , 0.09301541, -0.37791895, 0.05653806]])
```

K-Means Method in Python

Create Segments

```
segment = pd.DataFrame(CL.labels_)
custsales = custsales.assign(segment = segment)
custsales.head()
```

Output

	Custid	nsv	n_brands	n_bills	growth	region	segment
0	1001	2119456	7	14	-1.79	Mumbai	1
1	1002	1460163	12	42	-1.73	Mumbai	1
2	1003	147976	4	6	2.81	Mumbai	0
3	1004	1350474	13	30	-0.99	Delhi	1
4	1005	1414461	15	29	13.56	Delhi	2

K-Means Method in Python: Summarize Clusters Using Original Variables

Aggregating data based on segments

```
nsv = custsales.groupby('segment')['nsv'].mean()
n_brands = custsales.groupby('segment')['n_brands'].mean()
n_bills = custsales.groupby('segment')['n_bills'].mean()
growth = custsales.groupby('segment')['growth'].mean()
pd.concat([nsv,n_brands,n_bills,growth],axis=1)
```

Output

	nsv	n_brands	n_bills	growth
segment				
0	2.381509e+05	4.750000	5.782178	2.267847
1	1.985624e+06	11.532751	24.532751	1.836419
2	1.875311e+06	24.238095	48.619048	12.275762
3	5.240226e+05	12.507937	12.060317	5.004127

Interpretation:

- Cluster 3 is group of 'Platinum' clusters.
- Cluster 1 is a group of 'non-performers'

K-Means Method in Python Elbow Method

Optimum value of K by Elbow method

```
Error =[]
import matplotlib.pyplot as plt
for i in range(1, 10):
   CL = KMeans(n clusters = i).fit(custsales cl2)
   Error.append(CL.inertia )
plt.plot(range(1, 10), Error)
plt.title('Elbow method')
                               We use Elbow method to find
plt.xlabel('No of clusters')
                                optimum value of K in which the
plt.ylabel('Error')
                                sum of square distances from each
plt.show()
                                point to its assigned center is
                                calculated. (Within Sum of Squares)
                                CL.inertia gives Within Sum of
```

Squares

K-Means Method in Python Elbow Method

Output

Interpretation:

- The location of a bend in the plot is generally considered as an indicator of the appropriate number of clusters.
- Here K= 3 or 4 is a good solution.
- The method is termed as Elbow Method.

Quick Recap

K-Means Clustering in R

- **kMeans()** function in Python performs K-Means Clustering
- The KMeans function requires data object and value of K

Elbow Method

• Elbow method is used to determine optimum value of K