

# R1.06 - Mathématiques discrètes TD 2 - Ensemble



## A. Ridard

# Exercice 1.

On considère l'ensemble  $E = \{0, 1, 2, 3, 4, 5, 6\}$  et  $A = \{1, 2, 3, 4, 5, 6\}$ ,  $B = \{1, 3, 5\}$ ,  $C = \{0, 1, 2\}$  trois de ses parties.

Résoudre dans  $\mathcal{P}(E)$  chacune des équations ensemblistes suivantes :

- 1.  $B \cap X = \{3\}$
- 2.  $B \cup X = \{1, 2, 3, 4, 5\}$
- 3.  $C \cap X = \emptyset$
- 4.  $C \cup X = B$
- 5.  $C \cap X = B$
- 6.  $B \cup X = A$

#### Exercice 2.

Écrire en langage mathématique les ensembles suivants :

- 1. Les entiers naturels divisibles par 7.
- 2. Les fractions d'entiers dont le dénominateur est une puissance de 3.
- 3. Les entiers qui sont la somme de deux carrés d'entiers.

#### Exercice 3.

Montrer que:

- 1.  $\{x \in \mathbb{R} \mid x^4 = 4x 2\} \subset \mathbb{R}_+$
- 2.  $\{(x, y) \in \mathbb{R}^2 \mid \exists t \in \mathbb{R}, \ x = 2t \text{ et } y = t^2 + 1\} \subset \{(x, y) \in \mathbb{R}^2 \mid x \le y\}$

# Exercice 4.

- 1. On considère les ensembles  $A = \{1, 2\}$  et  $B = \{2, 3\}$ .
  - (a) A-t-on  $\mathscr{P}(A \cap B) = \mathscr{P}(A) \cap \mathscr{P}(B)$ ?
  - (b) A-t-on  $\mathscr{P}(A \cup B) = \mathscr{P}(A) \cup \mathscr{P}(B)$ ?
- 2. Soit *A* et *B* deux ensembles.
  - (a) A-t-on  $\mathscr{P}(A \cap B) = \mathscr{P}(A) \cap \mathscr{P}(B)$ ?
  - (b) A-t-on  $\mathscr{P}(A \cup B) = \mathscr{P}(A) \cup \mathscr{P}(B)$ ?

# Exercice 5.



Soit *E* un ensemble et *A*, *B*,  $C \in \mathcal{P}(E)$ . Montrer que :

- 1.  $(\overline{A \cap B}) \setminus C = (\overline{C} \setminus B) \cup (\overline{A} \setminus C)$
- 2.  $A \cup B = B \cap C \iff A \subset B \subset C$
- 3.  $(E = A \cup B \text{ et } A \cap C \subset B \text{ et } B \cap C \subset A) \Longrightarrow C \subset A \cap B$
- 4.  $(A \cup B) \cap (B \cup C) \cap (C \cup A) = (A \cap B) \cup (B \cap C) \cup (C \cap A)$

## Exercice 6.



Soit *E* un ensemble et *A*, *B*,  $C \in \mathcal{P}(E)$ .

- 1. Calculer  $A\Delta A$ ,  $A\Delta \overline{A}$ ,  $A\Delta E$  et  $A\Delta \emptyset$
- 2. Démontrer l'associativité :  $A\Delta(B\Delta C) = (A\Delta B)\Delta C$
- 3. Démontrer l'implication :  $A\Delta B = A\Delta C \Longrightarrow B = C$