Machine Learning and Computational Statistics Support Vector Machine - SVM

Nhung Le

Intro: This document consists of concepts and exercises related to SVM.

1 Key Concepts

- 1. SVM set-up
 - Hypothesis space $\mathcal{F} = \langle f(x) = w^T x + b | w \in \mathbf{R}^d, b \in \mathbf{R} \rangle$
 - l_2 regularization
 - The margin: m = yf(x), which is a measure of how correct we are. We want to maximize the margin.
 - Hinge Loss: $l_{Hinge} = max\{1 m, 0\} = \{1 m\}_{+}$. Hinge loss is convex, upper bound on 0-1 loss, but not differentiable at m = 1. We have margin error when m < 1
 - Objective function

$$J(w) = \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^{n} \max(0, 1 - y_i[w^T x_i + b])$$

- SVM Key Take-aways
- 2. SVM Visualization
 - Sides of the hyperplane $w^Tv = a$, where a defines the value of the hyperplane w^Tv .
 - Signed distance from x to Hyperplane $w^T x$: If we have a vector $x \in \mathbf{R}^d$ and a hyperplane $cH = \{v | w^T v = b\}$, we can measure the distance from x to H by:

$$d(x, cH) = \left| \frac{w^T x - b}{\parallel w \parallel} \right|$$

Without the absolute value we get the signed distance.

- Hard Margin SVM: require linearly separable data.
 - Linearly separable: we say (x_i, y_i) for $i = 1, \dots, n$ are linearly separable if there is a $w \in \mathbf{R}^d$ and $b \in \mathbf{R}$ such that $y_i(w^Tx_i b) > 0$ for all i. The set $\langle v \in \mathbf{R}^d | w^Tv b = 0 \rangle$ is called a separating hyperplane.

- Geometric margin: Let cH be a hyperplane that separates the data (x_i, y_i) for $i = 1, \dots, n$. The geometric margin of this hyperplane is $\min_i d(x_i, cH)$, or the distance from the hyperplane to the closest data point.
- Maximizing margin

Maximizing margin

We want to:

maximize $\min_{i} d(x_i, H)$

Remember:

$$d(x_i, H) = \left| \frac{w^T x_i - b}{\|w\|_2} \right| = \frac{y_i(w^T x_i - b)}{\|w\|_2}.$$

So:

$$\operatorname{maximize}_{w,b} \min_{i} \frac{y_{i}(w^{T}x_{i}-b)}{\|w\|_{2}}.$$

Note, if $M = \min_i \frac{y_i(w^T x_i - b)}{\|w\|_2}$, then $\frac{y_i(w^T x_i - b)}{\|w\|_2} \ge M$ for all i

Maximizing margin

We can rewrite this in a more standard form:

$$\label{eq:maximize} \begin{array}{ll} \mathsf{maximize}_{w,b,M} & M \\ \mathsf{subject to} & \frac{y_i(w^Tx_i-b)}{\|w\|_2} \geq M \quad \mathsf{for all } i. \end{array}$$

fix
$$||w||_2 = 1/M$$
 to obtain

maximize_{w,b}
$$1/||w||_2$$

subject to $y_i(w^Tx_i - b) \ge 1$ for all i .

To find the optimal w, a we can instead solve the minimization problem

minimize_{w,b}
$$||w||_2^2$$

subject to $y_i(w^Tx_i - b) \ge 1$ for all i .

- Soft Margin SVM: remove restriction on linearly separable data, and allow vectors to violate the geometric margin requirements, but at a penalty.
 - Objective SVM function:

$$\min_{w,a} \parallel w \parallel + \frac{C}{n} \sum_{i=1}^{n} \epsilon_i$$
 subject to $y_i(w^T x_i + a) \geq 1 - \epsilon_i$ for all i

- Slack variable $\epsilon_i \geq 0$ corresponding x_i violates the geometric margin condition. ϵ_i measures the size of the violation in multiples of the geometric margin. For example, $\epsilon_i = 1$ means x_i lies on the decision hyperplane $w^T v + a = 0$, and $\epsilon_i = 3$ means x_i lies 2 margin widths past the decision hyperplane $w^T v + a = 0$.
- ullet Violation penalty C
- Support vectors: some subset of the x_i that either lie on the margin boundary $y_i(w^Tx_i + a) = 1$, or violate the margin boundary $y_i(w^Tx_i + a) < 1$, $\epsilon_i > 0$
- 3. SVM Notes
- 4. Uniqueness of SVM Solution
- 5. The SVM Dual Problem

SVM as a Quadratic Program

• The SVM optimization problem is equivalent to

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$

subject to
$$-\xi_i \leqslant 0 \text{ for } i = 1, \dots, n$$
$$\left(1 - y_i \left[w^T x_i + b\right]\right) - \xi_i \leqslant 0 \text{ for } i = 1, \dots, n$$

- Differentiable objective function
- n+d+1 unknowns and 2n affine constraints.
- A quadratic program that can be solved by any off-the-shelf QP solver.
- Let's learn more by examining the dual.

SVM Lagrange Multipliers

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
subject to
$$-\xi_i \leqslant 0 \text{ for } i = 1, \dots, n$$

$$\left(1 - y_i \left[w^T x_i + b\right]\right) - \xi_i \leqslant 0 \text{ for } i = 1, \dots, n$$

Lagrange Multiplier	Constraint
λ_i	$-\xi_i \leqslant 0$
α_i	$(1-y_i [w^T x_i + b]) - \xi_i \leq 0$

$$L(w, b, \xi, \alpha, \lambda) = \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^{n} \xi_i + \sum_{i=1}^{n} \alpha_i \left(1 - y_i \left[w^T x_i + b \right] - \xi_i \right) + \sum_{i=1}^{n} \lambda_i \left(-\xi_i \right)$$

SVM Lagrangian

• The Lagrangian for this formulation is

$$L(w, b, \xi, \alpha, \lambda) = \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \xi_i + \sum_{i=1}^n \alpha_i \left(1 - y_i \left[w^T x_i + b \right] - \xi_i \right) - \sum_i \lambda_i \xi_i$$

= $\frac{1}{2} w^T w + \sum_{i=1}^n \xi_i \left(\frac{c}{n} - \alpha_i - \lambda_i \right) + \sum_{i=1}^n \alpha_i \left(1 - y_i \left[w^T x_i + b \right] \right).$

Primal and dual:

$$p^* = \inf_{w,\xi,b} \sup_{\alpha,\lambda \succeq 0} L(w,b,\xi,\alpha,\lambda)$$

$$\geqslant \sup_{\alpha,\lambda \succeq 0} \inf_{w,b,\xi} L(w,b,\xi,\alpha,\lambda) = d^*$$

• Do we have $p^* = d^*$?

Strong Duality by Slater's constraint qualification

• The SVM optimization problem:

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$

subject to
$$-\xi_i \leqslant 0 \text{ for } i = 1, \dots, n$$
$$\left(1 - y_i \left[w^T x_i + b\right]\right) - \xi_i \leqslant 0 \text{ for } i = 1, \dots, n$$

- Convex problem + affine constraints ⇒ strong duality iff problem is feasible
- Constraints are satisfied by w = b = 0 and $\xi_i = 1$ for i = 1, ..., n,
 - so we have strong duality

$$p^* = \inf_{w,\xi,b} \sup_{\alpha,\lambda \succeq 0} L(w,b,\xi,\alpha,\lambda)$$
$$= \sup_{\alpha,\lambda \succeq 0} \inf_{w,b,\xi} L(w,b,\xi,\alpha,\lambda) = d^*$$

SVM Dual Function

• Lagrange dual is the inf over primal variables of the Lagrangian:

$$g(\alpha, \lambda) = \inf_{w, b, \xi} L(w, b, \xi, \alpha, \lambda)$$

$$= \inf_{w, b, \xi} \left[\frac{1}{2} w^{T} w + \sum_{i=1}^{n} \xi_{i} \left(\frac{c}{n} - \alpha_{i} - \lambda_{i} \right) + \sum_{i=1}^{n} \alpha_{i} \left(1 - y_{i} \left[w^{T} x_{i} + b \right] \right) \right]$$

- Taking inf of convex and differentiable function of w, b, \xi.
 - Quadratic in w and linear in E and b.
- Thus optimal point iff $\partial_w L = 0$ $\partial_b L = 0$ $\partial_{\varepsilon} L = 0$
- Note: $g(\alpha, \lambda) = -\infty$ when $\frac{c}{n} \alpha_i \lambda_i \neq 0$. (send $\xi_i \to \pm \infty$). This inf is NOT an optimum because it is never attained.

SVM Dual Function: First Order Conditions

Lagrange dual function is the inf over primal variables of L:

$$g(\alpha, \lambda) = \inf_{w, b, \xi} L(w, b, \xi, \alpha, \lambda)$$

$$= \inf_{w, b, \xi} \left[\frac{1}{2} w^{T} w + \sum_{i=1}^{n} \xi_{i} \left(\frac{c}{n} - \alpha_{i} - \lambda_{i} \right) + \sum_{i=1}^{n} \alpha_{i} \left(1 - y_{i} \left[w^{T} x_{i} + b \right] \right) \right]$$

$$\partial_{w} L = 0 \iff w - \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} = 0 \iff w = \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$$

$$\partial_{b} L = 0 \iff -\sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \iff \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\partial_{\xi_{i}} L = 0 \iff \frac{c}{n} - \alpha_{i} - \lambda_{i} = 0 \iff \alpha_{i} + \lambda_{i} = \frac{c}{n}$$

SVM Dual Function

- Substituting these conditions back into L, the second term disappears.
- First and third terms become

$$\frac{1}{2}w^Tw = \frac{1}{2}\sum_{i,j=1}^n \alpha_i\alpha_j y_i y_j x_i^T x_j$$

$$\sum_{i=1}^n \alpha_i (1 - y_i [w^T x_i + b]) = \sum_{i=1}^n \alpha_i - \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_j^T x_i - b \underbrace{\sum_{i=1}^n \alpha_i y_i}_{=0}.$$

• Putting it together, the dual function is

$$g(\alpha, \lambda) = \begin{cases} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_j^T x_i & \sum_{i=1}^{n} \alpha_i y_i = 0 \\ -\infty & \text{otherwise.} \end{cases}$$

SVM Dual Problem

The dual function is

$$g(\alpha, \lambda) = \begin{cases} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_j^T x_i & \sum_{i=1}^{n} \alpha_i y_i = 0 \\ -\infty & \text{otherwise.} \end{cases}$$

• The dual problem is $\sup_{\alpha,\lambda \succeq 0} g(\alpha,\lambda)$:

$$\sup_{\alpha,\lambda} \qquad \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i}$$
s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} + \lambda_{i} = \frac{c}{n} \quad \alpha_{i}, \lambda_{i} \geqslant 0, i = 1, \dots, n$$

6. SVM and Complementary Slackness

Support Vectors and The Margin

- Recall "slack variable" $\xi_i^* = \max(0, 1 y_i f^*(x_i))$ is the hinge loss on (x_i, y_i) .
- Suppose $\xi_i^* = 0$.
- Then $y_i f^*(x_i) \geqslant 1$
 - ullet "on the margin" (=1), or
 - "on the good side" (>1)

Complementary Slackness Conditions

• Recall our primal constraints and Lagrange multipliers:

Lagrange Multiplier	Constraint
λ_i	$-\xi_i \leqslant 0$
α_i	$(1-y_if(x_i))-\xi_i\leqslant 0$

- Recall first order condition $\nabla_{\xi_i} L = 0$ gave us $\lambda_i^* = \frac{c}{p} \alpha_i^*$.
- By strong duality, we must have complementary slackness:

$$\alpha_{i}^{*}(1 - y_{i}f^{*}(x_{i}) - \xi_{i}^{*}) = 0$$
$$\lambda_{i}^{*}\xi_{i}^{*} = \left(\frac{c}{n} - \alpha_{i}^{*}\right)\xi_{i}^{*} = 0$$

Consequences of Complementary Slackness

• By strong duality, we must have **complementary slackness**:

$$\alpha_i^* \left(1 - y_i f^*(x_i) - \xi_i^*\right) = 0$$
$$\left(\frac{c}{n} - \alpha_i^*\right) \xi_i^* = 0$$

- If $y_i f^*(x_i) > 1$ then the margin loss is $\xi_i^* = 0$, and we get $\alpha_i^* = 0$.
- If $y_i f^*(x_i) < 1$ then the margin loss is $\xi_i^* > 0$, so $\alpha_i^* = \frac{c}{n}$.
- If $\alpha_i^* = 0$, then $\xi_i^* = 0$, which implies no loss, so $y_i f^*(x) \ge 1$.
- If $\alpha_i^* \in (0, \frac{c}{n})$, then $\xi_i^* = 0$, which implies $1 y_i f^*(x_i) = 0$.

Complementary Slackness Results: Summary

$$\alpha_{i}^{*} = 0 \implies y_{i}f^{*}(x_{i}) \geqslant 1$$

$$\alpha_{i}^{*} \in \left(0, \frac{c}{n}\right) \implies y_{i}f^{*}(x_{i}) = 1$$

$$\alpha_{i}^{*} = \frac{c}{n} \implies y_{i}f^{*}(x_{i}) \leqslant 1$$

$$y_{i}f^{*}(x_{i}) < 1 \implies \alpha_{i}^{*} = \frac{c}{n}$$

$$y_{i}f^{*}(x_{i}) < 1 \implies \alpha_{i}^{*} \in \left[0, \frac{c}{n}\right]$$

$$y_{i}f^{*}(x_{i}) > 1 \implies \alpha_{i}^{*} = 0$$

Support Vectors

• If α^* is a solution to the dual problem, then primal solution is

$$w^* = \sum_{i=1}^n \alpha_i^* y_i x_i$$

with $\alpha_i^* \in [0, \frac{c}{n}]$.

- The x_i 's corresponding to $\alpha_i^* > 0$ are called support vectors.
- Few margin errors or "on the margin" examples \implies sparsity in input examples.

Complementary Slackness To Get b*

The Bias Term: b

For our SVM primal, the complementary slackness conditions are:

$$\alpha_{i}^{*} \left(1 - y_{i} \left[x_{i}^{T} w^{*} + b \right] - \xi_{i}^{*} \right) = 0 \tag{1}$$

$$\lambda_i^* \xi_i^* = \left(\frac{c}{n} - \alpha_i^*\right) \xi_i^* = 0 \tag{2}$$

- Suppose there's an i such that $\alpha_i^* \in (0, \frac{c}{n})$.
- (2) implies $\xi_i^* = 0$.
- (1) implies

$$y_{i} \left[x_{i}^{T} w^{*} + b^{*} \right] = 1$$

$$\iff x_{i}^{T} w^{*} + b^{*} = y_{i} \text{ (use } y_{i} \in \{-1, 1\})$$

$$\iff b^{*} = y_{i} - x_{i}^{T} w^{*}$$

The Bias Term: b

• The optimal b is

$$b^* = y_i - x_i^T w^*$$

- We get the same b^* for any choice of i with $\alpha_i^* \in (0, \frac{c}{n})$
 - With exact calculations!
- With numerical error, more robust to average over all eligible i's:

$$b^* = \operatorname{mean}\left\{y_i - x_i^T w^* \mid \alpha_i^* \in \left(0, \frac{c}{n}\right)\right\}.$$

- If there are no $\alpha_i^* \in (0, \frac{c}{n})$?
 - Then we have a **degenerate SVM training problem**¹ ($w^* = 0$).

¹See Rifkin et al.'s "A Note on Support Vector Machine Degeneracy", an MIT Al Lab Technical Report.