Lógica El

	2° Teste — 29 de maio de 2019 ————	duração: 2 horas ———	
nome:		n	úmero

Grupo I

Este grupo é constituído por 6 questões. Em cada questão, deve dizer se a afirmação indicada é verdadeira (V) ou falsa (F), assinalando o respetivo quadrado. Em cada questão, a cotação atribuída será 1 valor, -0,25 valores ou 0 valores, consoante a resposta esteja certa, errada, ou não seja assinalada resposta, respetivamente. A cotação total neste grupo é no mínimo 0 valores.

Grupo II

Responda a cada uma das questões deste grupo no espaço disponibilizado a seguir à questão, sem apresentar justificações.

Considere o tipo de linguagem $L = (\{0, s, +\}, \{P, =\}, \mathcal{N})$ em que $\mathcal{N}(0) = 0$, $\mathcal{N}(s) = 1$, $\mathcal{N}(+) = 2$ $\mathcal{N}(P) = 1$ e $\mathcal{N}(=) = 2$. Seja $E = (\mathbb{Z}, \overline{})$ a estrutura de tipo L tal que:

$$\overline{0} = 0 \qquad \overline{P} = \{z \in \mathbb{Z} : z > 0\}
\overline{s} : \mathbb{Z} \to \mathbb{Z} \text{ tal que } \overline{s}(z) = -z \qquad \overline{=} \{(z_1, z_2) \in \mathbb{Z}^2 : z_1 = z_2\}
\overline{+} : \mathbb{Z}^2 \to \mathbb{Z} \text{ tal que } \overline{+}(z_1, z_2) = z_1 + z_2$$

1. Dê exemplo de um termo de tipo L com exatamente 3 subtermos.

Para quaisquer $\varphi, \psi, \sigma \in \mathcal{F}^{CP}$, $\varphi \lor \psi, \psi \lor \sigma \vdash \varphi \lor \sigma$

Resposta:

2. Seja a a atribuição em E tal que, para todo $i \in \mathbb{N}_0$, $a(x_i) = i + 2$. Indique $s(x_1 + s(x_3 + 0))$ [a].

Resposta:

3. Indique uma fórmula de tipo L válida em E que represente a afirmação: A soma de um número qualquer com o seu simétrico é nula.

Resposta:

4. Seja φ a fórmula $(\neg \exists x_1 \, \mathsf{s}(x_1) = 0) \land (\exists x_2 \, \mathsf{P}(x_2))$ de tipo L. Indique uma fórmula de tipo L que seja logicamente equivalente a φ e esteja em forma normal prenexa.

Resposta:

Grupo III

- 1. Construa uma derivação que mostre que $\neg p_1 \rightarrow (p_2 \leftrightarrow (p_2 \lor p_1))$ é um teorema de DNP.
- 2. Sejam $\varphi \in \mathcal{F}^{CP}$ e $\Gamma \subseteq \mathcal{F}^{CP}$. Mostre que se $\Gamma \vdash \varphi$ e $\Gamma \vdash \neg \varphi$, então Γ é sintaticamente inconsistente.
- 3. Considere o tipo de linguagem L do Grupo II. Seja ψ a fórmula $P(x_2) \to \forall x_1 P(x_1 + x_2)$ de tipo L.
 - (a) Mostre que x_2 está livre para s(0) em ψ .
 - (b) Indique, justificando, quais são as variáveis que estão livres para $x_1 + x_2$ em ψ .
- 4. Considere de novo o tipo de linguagem L e a estrutura $E = (\mathbb{Z}, \overline{})$ de tipo L do Grupo II. Seja φ a fórmula $\forall x_0 (\neg P(x_0) \rightarrow (x_0 = 0 \lor P(s(x_0))))$ de tipo L.
 - (a) Prove que φ é válida em E.
 - (b) Mostre que φ não é universalmente válida.
- 5. Sejam L um tipo de linguagem, φ e ψ fórmulas de tipo L e x uma variável tal que $x \notin LIV(\varphi)$. Prove que $\forall x(\varphi \lor \psi) \models (\varphi \lor \forall x \psi)$.

Cotações	I	II	III	
Cotações	6	1 + 1 + 1 + 1	2+1,5+1,5+3,5+1,5	