Геномные интервалы. Формат BED

зачем используются геномные интервалы какие варианты бывают у используемого для представления интервалов формата BED, какие операции можно проделывать с геномными интервалами при помощи bedtools

Page • Tag • 1 backlink

Геномные интервалы

Формат BED

Расширенный BED

Bedtools

Команды

Пересечение интервалов

Объединение

Вычет (комплемент)

Расчет покрытия

BEDgraph

BEDOPS

Задача

Геномные интервалы

• универсально описывают участки генома в координатных последовательностях

- экзоны, интроны, промоторы, энхансеры, повторы и прочее можно выделить в виде интервала
- видим в каждом гене: начало, направление транскрипции, экзоны (толстые), интроны между, конец
- верхний трек с гистограммами: покрытие, прямоугольники интервал покрытия

Формат BED

- 1. 3 необходимые колонки (\t)
- 2. до 9 опциональных колонок

- 3. 0-based: длина интервала
 - = chrEnd chrBegin
- genome.ucsc.edu

Genome Browser FAQ

Frequently Asked Questions: Data File Formats Topics General formats Axt format BAM format BED detail format bedGraph format barChart and bigBarChart format bigBed format bigGenePred table ...

Формат BED подразумевает нумерацию последовательности с 0 и не включает нуклеотид справа. Таким образом, интервал [0,5) содержит 5 нуклеотидов

Расширенный BED

- name имя
- score число, 0..1000
- trand нить ДНК (+ или -)
- thickStart,thickEnd начало/конец широкого интервала (маленькие прямоугольники это UTR)

- itemRgb цвет в RGB (e.g. 0,0,255)
- blockCount количество суб-элементов (экзонов)
- blockSizes размер суб-элементов (через запятую)

• blockStarts - начало суб-элементов (через запятую)

chr7	127471196	127472363	Pos1	0	+	127471196	127472363	255,0,0
chr7	127472363	127473530	Pos2	0	+	127472363	127473530	255,0,0
chr7	127473530	127474697	Pos3	0	+	127473530	127474697	255,0,0
chr7	127474697	127475864	Pos4	0	+	127474697	127475864	255,0,0
chr7	127475864	127477031	Neg1	0	-	127475864	127477031	0,0,255
chr7	127477031	127478198	Neg2	0	_	127477031	127478198	0,0,255
chr7	127478198	127479365	Neg3	0	-	127478198	127479365	0,0,255
chr7	127479365	127480532	Pos5	0	+	127479365	127480532	255,0,0
chr7	127480532	127481699	Neg4	0	-	127480532	127481699	0,0,255
			0.00					

Строка track

- позволяет разделить BED на несколько трэков
- позволяет задавать их номера, цвет, и тип

```
browser position chr7:127471196-127495720
track name="TilingArray" description="TilingArray demonstration" visibility=2 useScore=1 height=30
7 127471196 127472363 Pos1 700 + 127471196 127472363 255,0,0
7 127472363 127473530 Pos2 800 + 127472363 127473530 255,0,0
7 127473530 127474697 Pos3 900 + 127473530 127474697 255,0,0

browser position chr7:127471196-127495720
track name="Histogram" description="Histogram demonstration" visibility=2 useScore=3 height=30
7 127471196 127472363 Pos1 700 + 127471196 127472363 255,0,0
7 127472363 127473530 Pos2 800 + 127472363 127473530 255,0,0
7 127473530 127474697 Pos3 900 + 127473530 127474697 255,0,0
```

Bedtools

https://quinlanlab.org/tutorials/bedtools.html

- программа для работы с интервальными данными
- сортировка, пересечение, статистика и тд

Команды

bedtools sort - сортировка

- хромосомы по алфавиту, координаты по возрастанию
- числа: chr1,chr10,chr11,...,chr2,chr21,chr22,chrM,chrX,chrY

• сортировка ускоряет многие операции

```
Bash v
bedtools sort -k1,1 -k2,2n file.bed > file.sorted.bed
```

Пересечение интервалов

можно оставить оригинал (А,В), подсчитать нуклеотиды в пересечении, найти только непересекающиеся, и т.д.

-wa все, включение из А, -v что не включилось в интервал

bedtools выше 2.21.0

Объединение

merge I — все объединить по границе или наложении в интервал merge I (-d 10) — с пересечением до 10 п.н. merge I (-n) — по количеству лежащих рядом

Вычет (комплемент)

• находит регионы, не покрытые входящими интервалам

Расчет покрытия

		0.100								
Input (I) (e.g. BAM)					Personal	# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ature (e nment, ç	" / "split" g., RNA-seq ene in BED12 mat	
genomecov (-d)	11	222	333	111111	000	111111	1111	1111	11111111	11111111
genomecov (- <mark>bg</mark>)	1	2	3	1	0 0 0 0	1	1	1	1	1
genomecov (-bga)	1	2	3	1	0	1	1	1	1	1
genomecov (-d -split)	11	222	333	111111	000	111111	0000	1111	00000000	11111111
genomecov (-bga -split)	1	2	3	1	0	1	0	1	0	1

- -d подсчет покрытия на каждый нукдеотид
- -bg -bga интервальный расчет в единый (bga учитывает нули)
- -d -split прочтения на геном из транскриптома (экзон-интронную структуру позволяет учитывать)

BEDgraph

• визуализация - прямоугольники или точки

"priority bedgraph" — это заранее заданный порядок треков, если их больше одного. т.е. можно прописать от 1 до 20, и браузер выстроит их в нужном порядке

BEDOPS

BEDOPS: the fast, highly scalable and easily-parallelizable genome analysis toolkit — BEDOPS v2.4.41

BEDOPS: the fast, highly scalable and easily-parallelizable genome analysis toolkit¶ BEDOPS is an open-source command-line toolkit that performs highly efficient and scalable Boolean and other set ope...

- 1. быстрые и хорошо параллелизуемые программы
- 2. упор на очень большие файлы

Задача

Скачайте <u>аннотацию</u> генома *D. melanogaster* от консорциума RefSeq, и распакуйте ее. Полученный файл должен содержать 12 колонок, разделенных знаками табуляции. Идентификаторы транскриптов в 4-й колонке должны начинаться с символов NM_{-} (в случае протеин-кодирующих транскриптов) или NR_{-} (в случае некодирующих транскриптов). Используя полученный файл, а также консольные команды **grep**, **cut**, **sort**, **wc**, и **uniq** (и их комбинирование при помощи **pipe**), определите, сколько уникальных протеин-кодирующих и некодирующих транскриптов присутствует в данной аннотации. Введите числа в указанном порядке через запятую, без пробела.

```
Plain Text > cut -f 2 file.txt | sort | uniq | wc -l
```

- grep 'NM' выводит все строки файла, содержащие данную подстроку
- wc I считает число строк в файле
- uniq удаляет из файла одинаковые строки, но ТОЛЬКО ЕСЛИ ОНИ ИДУТ ПОДРЯД. Поэтому нам нужно сортировать файл перед применением этой команды при помощи sort
- поскольку в задании просят найти число уникальных транскриптов, и приведён пример со второй строкой, возникает желание считать одинаковыми те транскрипты, которые начинаются с одной позиции. На самом деле одинаковыми следует считать транскрипты, имеющие одно и то же имя
- вместо cut можно использовать awk '{print \$<column_number>}'

Используя полученный ранее 12-колоночный BED-файл с аннотацией генома *D. melanogaster* от RefSeq, превратите его в 6-колоночный BED, в котором каждый интервал будет соответствовать индивидуальному экзону из аннотации. Для конвертации используйте команду **bedtools bed12tobed6**. Далее, при помощи

команды **grep** сосчитайте количество экзонов, приходящихся на (+)-нить ДНК, на (-)-нить ДНК, а также их общее количество. Введите три числа в указанном порядке, через запятую и без пробелов

```
Plain Text \times
bedtools bed12tobed -i dm6_refseq.bed > dm6.bed
grep -e '+' dm6.bed | cut -f 6 | sort | uniq -D | wc -l
grep -e '-' -e '+' dm6.bed | cut -f 6 | sort | uniq -D | wc -l
```