Cadeias de Markov

Distribuição Estacionária

Distribuição inicial $\pi^{(0)}$

Denota-se a distribuição inicial de uma cadeia de Markov por $\pi^{(0)}$

$$\begin{split} \boldsymbol{\pi}^{(0)} &= \left(\boldsymbol{\pi}^{(0)}(j)\right)_{j \in S} \quad \text{ou} \quad \left(\boldsymbol{\pi}_{j}^{(0)}\right)_{j \in S} \quad \text{ou} \quad \left(\boldsymbol{\pi}_{\scriptscriptstyle 0}(j)\right)_{j \in S} \\ & \boldsymbol{\pi}_{\scriptscriptstyle 0}(j) \stackrel{\text{ou}}{=} \boldsymbol{\pi}_{\scriptscriptstyle 0}^{(0)}(j) \stackrel{\text{ou}}{=} \boldsymbol{\pi}_{j}^{(0)} = P(X_0 = j) \quad \forall \, j \in S \end{split}$$

Distribuição da cadeia no instante n

Denota-se a distribuição da cadeia no instante $n\ (n\geq 1)$ por ${\pmb \pi}^{(n)}$

$$\boldsymbol{\pi}^{(n)} = \left(\pi^{(n)}(j)\right)_{j \in S} \quad \text{ou} \quad \left(\pi_j^{(n)}\right)_{j \in S} \quad \text{ou} \quad \left(\pi_n(j)\right)_{j \in S}$$
$$\pi_n(j) \stackrel{\text{ou}}{=} \pi^{(n)}(j) \stackrel{\text{ou}}{=} \pi_j^{(n)} = P(X_n = j) \quad \forall j \in S$$

Vetor $\pi^{(n)}$: distribuição de X_n

Pelo Teorema da Probabilidade Total, para todo $j \in S$

$$\pi^{(1)}(j) = \sum_{i \in S} \pi^{(0)}(i) \ p_{ij}$$

ou em termos matriciais: $\pi^{(1)} = \pi^{(0)} \mathbf{P}$ Analogamente

$$\pi^{(2)} = \pi^{(1)} \mathbf{P} = \pi^{(0)} \mathbf{P}^2$$

e para qualquer $n \geq 1$,

(*)
$$\boldsymbol{\pi}^{(n)} = \boldsymbol{\pi}^{(n-1)} \mathbf{P} = \boldsymbol{\pi}^{(n-2)} \mathbf{P}^2 = \dots = \boldsymbol{\pi}^{(1)} \mathbf{P}^{n-1} = \boldsymbol{\pi}^{(0)} \mathbf{P}^n$$

3/11

Distribuição $\pi^{(n)}$ de X_n - observações

 A longo prazo (n grande), se se a cadeia for "bem comportada", espera-se que ela se estabilize, ou entre em regime estacionário, ou esteja em equilíbrio, no sentido que

$$\pi^{(n)} = \pi^{(n-1)}$$

isto é, a distribuição da cadeia no instante n e no instante n-1 devam ser as mesmas.

Nesse caso, essa distribuição de equilíbrio, denotada por π , deve satisfazer, pela primeira igualdade da expressão (*),

$$\pi = \pi P$$

• Pelo último termo da expressão (*), **se** existir $\lim_{n\to\infty} \mathbf{P}^n$, esse limite está conectado com a distribuição de equilíbrio π (próximo tópico, próximo arquivo).

Distribuição Estacionária

Distribuição Estacionária - definição

O vetor (linha) π é chamado de distribuição estacionária da cadeia de Markov se satisfaz

(a) as equações de balanço global

$$\boldsymbol{\pi} = \boldsymbol{\pi} \boldsymbol{P} \quad \Longleftrightarrow \quad \pi_j = \sum_{k \in S} \pi_k p_{kj} \,, \quad \forall j \in S$$

(b) as condições de uma "distribuição" de probabilidade

$$\pi_j \ge 0, \ \forall j \in S \quad \mathbf{e} \quad \sum_{j \in S} \pi_j = 1$$

Nomenclatura: distribuição estacionária, distribuição invariante, distribuição de equilíbrio, ou ainda medida invariante ("medida" não precisa somar 1).

Existência, unicidade, exemplos

A distribuição estacionária é a solução do sistema linear estabelecido na definição.

O sistema pode ser

- impossível (não tem solução)
- possível e indeterminado (tem infinitas soluções)
- possível e determinado (tem uma única solução)

Perguntas:

- Quando (sob quais condições sobre os estados ou cadeia) existe solução?
 - → EXISTÊNCIA de distribuição estacionária
- Se existe, quando ela é unica?
 - → UNICIDADE da distribuição estacionária

Exemplos

Considere as cadeias com matriz de probabilidades de transição abaixo. Para cada cadeia,

- (a) classifique os estados e especifique os períodos;
- (b) verifique se existe distribuição estacionária (se o sistema tem solução);
- (c) verifique se existe uma única distribuição estacionária (a solução é única?).

$$\mathbf{P}_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\mathbf{P}_2 = \begin{pmatrix} 1 & 0 & 0 \\ 1/4 & 1/2 & 1/4 \\ 0 & 0 & 1 \end{pmatrix}$$

 $\mathbf{P}_3 = \mathsf{matriz}$ de transição do passeio aleatório simples simétrico em $\mathbb Z$

Resolução na lousa — resolver e tentar conectar existência e unicidade da distribuição estacionária com a classificação

Existência de distribuição estacionária

Dos exemplos observa-se que

- A existência da distribuição estacionária está relacionada com a existência de estados (ou classes) recorrentes positivos(as).
- A periodicidade é irrelevante para a existência da distribuição estacionária.
- Para a existência da distribuição estacionária precisa-se ter estado(s) recorrente(s) positivo(s), mas a cadeia não precisa ser irredutível podendo ter estados transitórios e/ou recorrentes nulos.

Mas quando a distribuição estacionária é única?

Unicidade da distribuição estacionária

Teorema 1 - Unicidade da Distribuição Estacionária

Para uma cadeia de Markov com espaço de estados <u>enumerável</u> (finito ou não), existe uma <u>única distribuição estacionária</u> se e somente se o espaço de estados contém <u>exatamente</u> uma classe de estados <u>recorrentes</u> positivos.

Note que a cadeia <u>não</u> precisa ser irredutível, podendo ter também outras classes, mas elas têm que ser transitórias e/ou recorrentes nulas.

A cadeia também não precisa ser aperiódica.

Demonstração omitida

Lema de recorrência de Kac

Lema de Kac

Seja $X = \{X_n, n \geq 0\}$ uma cadeia de Markov irredutível com espaço de estados S finito ou enumerável. Se X tem um única **medida** invariante π então

$$\mu_i = E(T_i \mid X_0 = i) = \frac{1}{\pi_i} \ \forall i \in S$$

Observação:

- Esse lema vale para o caso de uma cadeia irredutível transitória. Lembre-se do passeio aleatório com $p \neq \frac{1}{2}$ (para $i \in \mathbb{Z}$, $\mu_i = +\infty$ e **medida** invariante $\pi_i = 0$).
- Em uma cadeia finita e irredutível recorrente positiva, temos que
 - π é uma distribuição estacionária, $\mu_i < \infty$ e portanto $\pi_i > 0$ para todo $i \in S$.
 - π_i é a proporção do tempo que a cadeia dispende no estado i.

Exemplo: chove/não-chove

Considere a cadeia de Markov em $S=\{a,b\}$ cuja matriz de probabilidades de transição é

$$\mathbf{P} = \left(\begin{array}{cc} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{array} \right), \quad 0 < \alpha, \beta < 1.$$

- (a) A cadeia tem distribuição estacionária? Por que? Determine a distribuição estacionária $\pi=(\pi_a,\pi_b)$.
- (b) Mostre que a distribuição (de probab.) do **primeiro** retorno ao estado a é dada por

$$f_{aa}^{(1)}=1-\alpha \quad \text{ e } \quad f_{aa}^{(n)}=\alpha\beta(1-\beta)^{n-2}, \quad \text{ para } n=2,3,\dots$$

(c) Calcule o tempo médio de retorno ao estado $a,\,\mu_a=\sum_{n=1}^\infty n\,f_{aa}^{(n)},$ e verifique que $\pi_a=\frac{1}{\mu_a}.$

11/11