Ypok №7

Повідомлення мети уроку

Ви зможете:

- зрозуміти, завдяки чому вода належить до найпоширеніших розчинників;
- пояснити вплив різних чинників на розчинність речовин;
 - пояснити утворення водневого зв'язку;
 - розрізнити насичені й ненасичені розчини.

Перевірка домашнього завдання

Які системи називаються розчинами?

Чим відрізняються істинні розчини від дисперсних систем?

Наведіть приклади різних дисперсних систем, у тому числі й розчинів, які можна віднести до того чи іншого класифікаційного типу.

Актуалізація опорних знань

Які типи хімічного зв'язку ви знаєте?

Визначте тип хімічного зв'язку і напишіть електронну формулу молекули води.

Якою є геометрична будова молекули?

Мотивація навчальної діяльності

3 життєвим досвідом людина усвідомила, що є багато речовин, які здатні розчинювати в собі інші речовини, тобто бути розчинником. Насамперед – це вода, в ній розчиняється багато речовин, серед них кислоти, луги, солі, більшість оксидів, як основних так і кислотних.

Розчинником може бути бензин та етиловий спирт (медичний спирт). В спирті розчиняють ароматичні витяжки естерів, які мають запах квітів та ягід. Спиртові розчини цих речовин використовують для виготовлення парфумів та багато харчових продуктів, які споживає людина. Але основу життя і життєвої діяльності всіх живих організмів складають водні розчини.

Чому ж вода являється таким універсальним розчинником?

До складу води входять два атоми Гідрогену й один атом Оксигену.

H_2O

молекулярна формула

кулестержнева молекула

структурна формула

Молекула води має кутову форму. З одного боку концентрується позитивний заряд, а з другого негативний.

Вивчення нового матеріалу

Електронегативність Оксигену більша за електронегативність Гідрогену. Утворені за рахунок спільних електронних пар зв'язки О-Н у молекулі води ковалентні полярні. Вони розміщені під кутом 104,5°, і це спричинює асиметричність структури і виникнення <u>диполя</u>.

<u>Диполь</u> - система з двох зарядів протилежних за знаком і однакових за величиною.

$$\mathbf{H}^{\delta+} - \mathbf{O}^{\delta-} \ \mathbf{H}$$

Асиметричність розподілу електричних зарядів у молекулах води є причиною утворення між ними водневих зв'язків.

Водневий зв'язок

Водневий зв'язок - слабкий зв'язок. (приблизно в 10 разів слабкіший за ковалентний).

Наявність водневого зв`язку зумовлює такі властивості води:

- відносно висока температура кипіння (100°С);
- рідкий агрегатний стан;
- здатність бути розчинником.

Водневий зв'язок

Міцність водневого зв'язку приблизно в 10 разів менша звичайного ковалентного зв'язку. З підвищенням температури водневий зв'язок легко розривається – цим пояснюється перехід води із твердого стану в рідкий.

Водневі зв'язки у кристалічній структурі льоду

Сніжинки складаються з кристаликів льоду

Схема утворення водневого зв'язку

Формування поняття «розчинність»

Розчинність — це здатність речовини розчинятися у воді або іншому розчиннику з утворенням істинного розчину.

Речовини

Розчинні

Розчиняється понад 1г речовини в 100 г води

NaCl, KNO₃

Малорозчинні

Розчиняється від 0,01г до 1г речовини в 100 г води

CaSO₄, Ca(OH)₂

Практично нерозчинні

Розчиняється менше 0,01г речовини в 100 г води

BaSO₄, CaCO₃, AgCl

Вплив температури на розчинність твердих речовин

Попрацюйте групами

Користуючись таблицею розчинності кислот, основ, амфотерних гідроксидів і солей у воді, з`ясуйте:

Розчинність кислот, основ і солей у воді

Аніони		Катіони																	
	H*	Li*	Na⁺	K+	Mg ²⁺	Ca ²⁺	Ba ²⁺	Al ³⁺	Cr³+	Fe ²⁺	Fe ³⁺	Ni ²⁺	Mn ²⁺	Zn ²⁺	Ag*	Hg ²⁺	Cu ²⁺	Pb ²⁺	Sn ²
OH-	0 0	P	P	P	М	М	P	н	н	н	н	н	н	н	I	-	н	н	Н
F-	P	М	Р	P	М	М	М	М	P	М	н	P	Р	Р	P	_	P	М	р
cl-	P	P	Р	P	P	P	P	P	P	P	P	P	Р	P	н	P	Р	М	P
Br	P	P	P	P	P	P	P	P	P	P	P	P	P	P	н	М	P	М	P
r	P	P	P	P	P	P	P	P	P	P	_	P	P	P	н	М	_	М	М
S ² -	P	P	P	P	_	_	P	_	_	н	_	н	н	н	н	н	н	н	н
SO ₃ ² -	P	P	Р	P	М	М	М	-	_	М	_	н	М	Р	н	-		М	_
SO ₄ 2-	P	P	Р	P	Р	М	н	P	Р	P	P	P	Р	Р	М	Р	P	М	Р
PO4 ³ -	P	М	Р	P	М	н	н	н	н	н	н	н	М	н	н	_	_	н	н
CO ₃ ² -	P	P	P	P	М	н	н	_	_	н	_	_	н	н	М	_	_	н	_
SiO ₃ ² -	н	P	Р	P	н	н	н		_	н	_	-	н	н	_	_	_	н	_
NO ₃ -	P	P	Р	P	Р	P	P	P	P	P	P	P	Р	Р	P	P	Р	P	P
CH₃COO-	P	Р	Р	Р	Р	Р	Р	Р	Р	Р		Р	Р	Р	Р	Р	Р	Р	Р

Р – розчиняється (понад 10 г/л); М – малорозчинна (від 10 до 0,01 г/л);

Н – нерозчинна (менше 0,01 г/л); — сполука не існує, або розкладається водою.

чи є серед кислот нерозчинні речовини;

чи є серед амфотерних гідроксидів розчинні у воді речовини;

усі солі якої кислоти розчинні у воді;

усі солі яких металічних елементів розчинні у воді;

хлориди й сульфати яких металічних елементів нерозчинні чи малорозчинні у воді.

Робота в зошиті

Зазначте характеристики, за якими укладено такий перелік речовин:

Натрій карбонат, кальцій хлорид, хлоридна кислота, калій гідроксид.

- А. Оксигеновмісні речовини;
- Б. Речовини з йонним хімічним зв'язком;
- В Добре розчинні у воді речовини;
- Г Речовини, що відрізняються за агрегатним станом.

Робота в зошиті

Користуючись графіками розчинності у воді деяких солей, з`ясуйте, якою є розчинність кожної з речовин за температур + 45.

 $MgSO_4 - 54 r$

 $BaCl_2 - 50 r$

KCl – 45 г

NaCL - 44 г

 $Ba(NO_3)_2 - 10 r$

 $K_2SO_4 - 10 r$

Користуючись малюнком до попередньої задачі, розташуйте назви солей у послідовності збільшення розчинності цих речовин за температури +80°C.

А.барій хлорид Б.калій сульфат В.магній сульфат Г.барій нітрат Взаємоперевірка: Б.калій сульфат Г.барій нітрат А.барій хлорид В.магній сульфат

Робота в зошиті

Використовуючи малюнок до завдання 27, обчисліть масову частку натрій хлориду в його насиченому за температури +20° С розчині.

Дано:

$$m(NaCl) = 44 r$$

$$m(H_2O) = 100 r$$

Розв`язання:

- 1. Знаходимо масу розчину: m(розчину)= 100 г + 44 г = 144 г
- 2. Обчислюємо масову частку NaCl у розчині:

3. W(NaCl) =
$$\frac{44 \, \Gamma}{144 \, \Gamma}$$
 · 100% = 31%

Поміркуйте

Який тип хімічного зв`язку в молекулі вуглекислого газу?

Чи здатна ця речовина утворювати диполі, якщо у просторі всі атоми розміщені на одній лінії, тобто валентний кут дорівнює 180°? Відповідь обгрунтуйте.

Узагальнення та систематизація знань

Яке значення розчинів в житті людини?

Яка роль води як універсального розчинника в природі?

Який тип зв'язку спостерігається в молекулі води? Яка її будова з точки зору електронної будови атома?

Що таке диполь і в результаті чого молекула води є диполем?

Домашнє завдання

Опрацювати параграф №4,5;
Зробити конспект уроку