Introduction to machine learning

Maksim Kretov

Lecture 4: Examples of methods

Course information

Course

10 lectures + 2 seminars; February-May 2017.

Schedule and up-to-date syllabus

https://goo.gl/xExEuL

Contact information and discussion

Maksim Kretov (kretovmk@gmail.com)

Slack group: https://miptmlcourse.slack.com

to get an invite, send e-mail to kretovmk@gmail.com.

Plan of the course

Math and basics of ML (1-2)Theoretical Some of ML methods (3) tasks **Today** Seminar on ML basics (4) Basics of neural networks (5) **Start playing with** NNs (6)Deep learning overview Training deep networks (7)Practical tasks DL for Computer Vision (8-9)**Solving more** complex ML DL for time series prediction (10-11)tasks using NNs Concluding seminar (12)

Plan for the lecture

- A. Previous lecture
- B. Classification task
- C. Discriminative models
 - 1. Logistic regression
- D. Generative models
 - 1. Linear Discriminant Analysis
- E. Conclusions
- F. Homework

A. Previous lecture

Machine learning tasks: Supervised learning

Given: $D = \{(\mathbf{x}_i, y_i), i = 1,...N\}$

Desired output: policy $\delta: D \to A$

Bayesian approach

Parameters θ of $p(\mathbf{x}, y|\theta)$ are treated as random variables.

Frequentist approach

Parameters θ of $p(\mathbf{x}, y|\theta)$ are unknown but fixed values.

High-level steps:

- 1. Select model M parameterized by parameters $\theta \Rightarrow p(\mathbf{x}, y | M, \theta)$
- 2. Infer best θ that explains given dataset D OR calculate posterior distribution
- 3. Specify loss function L(y, a)
- 4. Design decision procedure δ

A. Previous lecture

Bayesian decision theory

Use accuracy hereinafter:

$$L(y,a) = \begin{cases} 0 & if \ y = a \\ 1 & if \ y \neq a \end{cases}$$

Corresponding policy:

$$\delta(\mathbf{x}) = \operatorname{argmax}_{y \in Y} p(y | \mathbf{x}, \theta)$$

Bayesian classification rule

Point estimates (MAP, MLE): $p(y|\mathbf{x}, \theta)$

Posterior distribution: $p(y|\mathbf{x}, D)$

B. Classification task

Binary classification task

Classifier parts feature space into regions by partition function $g: \mathbb{R}^l \to \mathbb{R}$

$$g(x) = p(c = 1|x) - p(c = 0|x)$$

Class 1: g(x) > 0

Class 2: g(x) < 0

Discriminative and generative classifiers

$$p(\mathbf{x}, y | \tilde{\theta}) = p(y | \mathbf{x}, \theta) p(\mathbf{x} | \pi)$$

discriminative

$$p(\mathbf{x}, y | \tilde{\theta}) = p(\mathbf{x} | y, \theta) p(y | \pi)$$

generative

Model specification for binary classification

Discriminative classifier => directly models $p(y|\mathbf{x}, \theta)$:

$$p(y|\mathbf{x},\theta) = \text{Ber}(y|\sigma(\theta^T\mathbf{x}))$$
 $\sigma(x) = \frac{1}{1+\exp(-x)}$ sigmoid function

$$p(y = 1 | \mathbf{x}, \theta) = \sigma(\theta^T \mathbf{x}) \Rightarrow \ln \frac{p(y=1|\mathbf{x}, \theta)}{p(y=0|\mathbf{x}, \theta)} = \theta^T \mathbf{x}$$
 ratio of posteriors (log odds)

Advantages

- Relatively easy to fit
- Easy to extend to multi-class tasks
- Clear interpretation (using log odds)

Model fitting: MLE

Consider negative log likelihood:

$$\begin{aligned} \text{NLL}(\theta) &= -\sum_i \log[(\sigma(\theta^T \mathbf{x}_i))^{y_i} (1 - \sigma(\theta^T \mathbf{x}_i))^{1 - y_i}] = \\ &= -\sum_i y_i \log s_i + (1 - y_i) \log(1 - s_i) & \text{binary cross-entropy} \\ s_i &\triangleq \sigma(\theta^T \mathbf{x}_i) & \text{Note: That means we can use cross-entropy as a loss} \\ s_i &\triangleq \sigma(\theta^T \mathbf{x}_i) & \text{function and receive the same algorithm in ERM framework.} \end{aligned}$$

=> Minimization of NLL w.r.t. θ is performed iteratively, for example by gradient descent (steepest descent).

Optimization of parameters: gradient descent

Gradient:
$$g = \frac{\partial \text{NLL}(\theta)}{\partial \theta} = \mathbf{X}^T (s - y)$$

Hessian:
$$H = \frac{\partial g^T}{\partial \theta} = \mathbf{X}^T R \mathbf{X}$$
 $R = diag\{s_i(1 - s_i)\}$

H is positive semi-definite, so $NLL(\theta)$ has **unique minimum**.

=> Gradient descent:
$$\theta^{i+1} = \theta^i - \alpha^i g^i = \theta^i - \alpha^i \mathbf{X}^T (s^i - y)$$

Exercise: Prove that Hessian is positive semi-definite (just use definition).

Gradient descent: learning rate

* Image from [3]

Gradient descent: line search for learning rate

Taylor series expansion:

$$f(\theta + \alpha d) \approx f(\theta) + \alpha g^T d$$

In case of gradient descent:

$$d = -g$$

=> If we choose α small enough, then

$$f(\theta + \alpha d) < f(\theta)$$

We can pick such α to minimize $f(\theta^i + \alpha d^i)$

=> Line search in direction d^i

Other 1st order methods

Momentum: $\theta^{i+1} = \theta^i - \alpha^i g^i + \beta_k (\theta^i - \theta^{i-1})$

Second order methods

Newton's algorithm:

$$\theta^{i+1} = \theta^i - \alpha^i H_i^{-1} g^i$$

=> Quasi-Newton methods (for example, BFGS).

Exercise: Prove formula for Newton's algorithm.

Decision policy

Follows directly from Bayesian classification rule: select $argmax_{y \in Y} p(y | \mathbf{x}, \theta)$

Regularization

If classes are linearly separable then $\underline{\text{sigmoid}} \rightarrow \underline{\text{step function}}$ according to MLE,

and $\|\theta\| \to \infty$ => w/o regularization this results in overfitting.

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

Multi-class logistic regression

$$p(y = c | \mathbf{x}, \theta) = \frac{\exp \theta_c^T \mathbf{x}}{\sum_{c'} \exp \theta_{c'}^T \mathbf{x}} \quad \varphi_{ic} = p(y = c | \mathbf{x}_i, \theta)$$

$$NLL(\theta_1, \theta_2, ... \theta_M) = -\sum_i \sum_c y_{ic} \log \varphi_{ic} \Rightarrow g_c = \frac{\partial NLL}{\partial \theta_c} = \sum_i (\varphi_{ic} - y_{ic}) \mathbf{x}_i$$

Exercise: Prove formulas multiclass regression.

10 minute break..

Multivariate normal distribution (MVN)

$$N(\mathbf{x}|\mu,\Sigma) \triangleq \frac{1}{(2\pi)^{D/2}|\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right]$$

Model specification: Discriminant analysis

Generative classifier => $p(\mathbf{x}, y | \tilde{\theta}) = p(\mathbf{x} | y, \theta) p(y | \theta')$ $p(\mathbf{x} | y = c, \theta_c) = N(\mathbf{x} | \mu_c, \Sigma_c)$

MLE for parameters of MVN

$$\hat{\mu} = \frac{1}{N} \sum_{n} x_{n} = \bar{x}$$

$$\hat{\Sigma} = \frac{1}{N} \sum_{n} (x_{i} - \bar{x}) (x_{i} - \bar{x})^{T}$$

Example: binary classification task

* Image from [3]

Model fitting: MLE

Need $p(y|\mathbf{x}, \tilde{\theta})$ for Bayesian classification rule:

$$p(y|\mathbf{x}, \tilde{\theta}) = \frac{p(\mathbf{x}|y, \theta)p(y|\pi)}{\sum_{y} p(\mathbf{x}|y, \theta)p(y|\pi)} \sim p(\mathbf{x}|y, \theta)p(y|\pi)$$

Parameters π in $p(y|\pi)$ may be estimated as empirical counts (MLE):

$$\hat{\pi}_c = N_c/N$$

Parameters θ may be estimated using MLE for MVN:

$$\theta = \{\mu, \Sigma\}$$

$$\hat{\mu} = \frac{1}{N} \sum_{n} x_n = \bar{x} \qquad \hat{\Sigma} = \frac{1}{N} \sum_{n} (x_i - \bar{x}) (x_i - \bar{x})^T$$

Model specification : Quadratic DA (QDA)

$$p(y|\mathbf{x},\theta) = \frac{\pi_c |\Sigma_c|^{-1/2} \exp\left[-\frac{1}{2}(x-\mu_c)^T \Sigma_c^{-1}(x-\mu_c)\right]}{\sum_c \pi_c |\Sigma_c|^{-1/2} \exp\left[-\frac{1}{2}(x-\mu_c)^T \Sigma_c^{-1}(x-\mu_c)\right]}$$

Exercise: Prove decision line is quadratic.

Model specification: Linear DA (LDA)

$$p(y = c | \mathbf{x}, \theta) = \frac{\pi_c |\Sigma_c|^{-1/2} \exp\left[-\frac{1}{2}(x - \mu_c)^T \Sigma_c^{-1}(x - \mu_c)\right]}{\sum_c \pi_c |\Sigma_c|^{-1/2} \exp\left[-\frac{1}{2}(x - \mu_c)^T \Sigma_c^{-1}(x - \mu_c)\right]}$$
$$-\frac{1}{2}(x - \mu_c)^T \Sigma_c^{-1}(x - \mu_c) = -\frac{1}{2}x^T \Sigma_c^{-1}x + \mu_c^T \Sigma_c^{-1}x + -\frac{1}{2}\mu_c^T \Sigma_c^{-1}\mu_c$$

Additional assumption: $\Sigma_c = \Sigma \Rightarrow x^T \Sigma^{-1} x$ cancels out:

$$p(y = c | \mathbf{x}, \theta) = \frac{\exp(\beta_c^T x + \gamma_c)}{\sum_{c'} \exp(\beta_{c'}^T x + \gamma_{c'})}$$
 softmax function
$$\beta_c = \Sigma^{-1} \mu_c$$

$$\gamma_c = -\frac{1}{2}\mu_c^T \Sigma^{-1} \mu_c + \log \pi_c$$

Decision surface for LDA

By definition on decision surface: $p(y = c | \mathbf{x}, \tilde{\theta}) = p(y = c' | \mathbf{x}, \tilde{\theta})$

$$\beta_c^T x + \gamma_c = \beta_{c'}^T x + \gamma_{c'}$$
$$x^T (\beta_{c'} - \beta_c) = \gamma_c - \gamma_{c'}$$

=> Decision boundary is straight line.

* Image from [3]

LDA

$$p(y = c | \mathbf{x}, \theta) = \frac{\exp(\beta_c^T x + \gamma_c)}{\sum_{c'} \exp(\beta_{c'}^T x + \gamma_{c'})}$$
$$\beta_c = \Sigma^{-1} \mu_c$$
$$\gamma_c = -\frac{1}{2} \mu_c^T \Sigma^{-1} \mu_c + \log \pi_c$$

Logistic Regression

$$p(y = c | \mathbf{x}, \theta) = \frac{\exp \theta_c^T x}{\sum_{c'} \theta_{c'}^T x}$$

(shift included in x)

Distribution over class labels has the same form => linear decision boundary in both cases. **BUT**:

- 1. Other generative models can result in the same form of distribution over class labels => LDA makes stronger assumptions.
- 2. Different training process (optimization objective).

D. Conclusions

Generative models

handle missing features easier to fit classes separately

Discriminative models

feature preprocessing weaker assumptions

D. Conclusions

Methods covered

- 1. Bayesian approach: Bayesian inference, MAP.
- 2. Frequentist approach: MLE, ERM.

In the next lectures we will focus on ERM for neural networks:

$$\theta_{opt} = \operatorname{argmin}_{\theta} \frac{1}{N} \sum_{n=1}^{N} L(y_n, f(\mathbf{x}_n | \theta)) + \lambda P(\theta)$$

All our preferences are quantified through loss function.

Next week

Starting main part of the course: Neural Networks

- 1. Basic neural networks
 - a) Universal approximation theorem
 - b) Types of neural networks
- 2. Training techniques
 - a) Backpropagation
 - b) Other (genetic algorithms)

E. Homework

For all:

- 1. ML: [3] ch. 4, 8 or [5] ch. 7.
- 2. Exercises from presentation.

Refs

1. Thorough review of relevant math topics:

http://info.usherbrooke.ca/hlarochelle/ift725/review.pdf

- 2. Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning.
- 3. Kevin P. Murphy, Machine Learning: A probabilistic perspective.
- 4. David Barber, Bayesian Reasoning and Machine Learning.
- 5. Sergios Theodoridis, Machine Learning: A Bayesian and optimization perspective.