

Getting familiar with Numerical Weather Prediction models Lesson 1

Arianna Valmassoi email: avalmass@uni-bonn.de

Klima dynamic

November 2, 2022

Outline

Introduction

Why do we use a NWP?

For what do we use a NWP?

NWP as atmospheric dynamics equations?

WPS - Geogrid

WPS - Ungrib

WPS - Metgrid

Namelist

Linux

Basics

Graphics

Download and view

Ncview

Python/MatLab.. R?

Introduction

Introduction

Why do we use a NWP?

For what do we use a NWP?

NWP as atmospheric dynamics equations?

WPS - Geogrid

WPS - Ungrib

WPS - Metgrid

Namelist

Linux

Basics

Graphics

Download and view

Neview

Python/MatLab.. R?

Why do we use a NWP?

Why do we use a Numerical Weather Prediction (NWP) model?

Why do we use a Numerical Weather Prediction (NWP) model?

- No analytical solutions to Navier-Stokes → approximations (e.g. turbulence closure)
- Atmospheric dynamics scales → discretization
- lacktriangleright Initial condition and representativity o too many points

• ..

Richardson's Fantastic forecast factory

For what do we use a NWP?

Typical applications:

- Weather forecast
- Seasonal-to-subseasonal (S2S) forecast
- Climate projection
- Reanalyses
- Research (atmospheric physics, chemistry, climate, detection and attribution, etc)
- Teaching

Hot topics:

- Climate change
- Coupled Earth system modelling
- Applications: air quality, wind energy, hydrology, etc

NWP is not only about momentum conservation

Tendency advection PGF in eta coordinates Coriolis,
$$\partial_t U + (\nabla \cdot \mathbf{V} u) - \partial_x (p\phi_\eta) + \partial_\eta (p\phi_x) = F_U \\ \partial_t V + (\nabla \cdot \mathbf{V} v) - \partial_u (p\phi_n) + \partial_n (p\phi_n) = F_V$$

$$\begin{array}{ll} \partial_t U + (\nabla \cdot \mathbf{V} u) - \partial_x (p\phi_\eta) + \partial_\eta (p\phi_x) = F_U & \text{X-component} \\ \partial_t V + (\nabla \cdot \mathbf{V} v) - \partial_y (p\phi_\eta) + \partial_\eta (p\phi_y) = F_V & \text{Y-component} \\ \partial_t W + (\nabla \cdot \mathbf{V} w) - g(\partial_\eta p - \mu) = F_W & \text{Z-component} \end{array}$$

$$\partial_t \Theta + (\nabla \cdot \mathbf{V} \theta) = F_{\Theta}$$

$$\partial_t \mu + (\nabla \cdot \mathbf{V}) = 0$$

$$\partial_t \phi + \mu^{-1}[(\mathbf{V} \cdot \nabla \phi) - gW] = 0$$

$$p = p_0 (R_d \theta / p_0 \alpha)^{\gamma}.$$

$$\partial_{\eta}\phi = -\alpha\mu,$$

$$\nabla \cdot \mathbf{V}a = \partial_x (Ua) + \partial_y (Va) + \partial_\eta (\Omega a),$$

$$\mathbf{V} \cdot \nabla a = U \partial_x a + V \partial_u a + \Omega \partial_n a.$$

.. and it becomes worst with moisture

$$\partial_{t}U + (\nabla \cdot \mathbf{V}u)_{\eta} + \mu_{d}\alpha \partial_{x}p + (\alpha/\alpha_{d})\partial_{\eta}p\partial_{x}\phi = F_{U}$$

$$\partial_{t}V + (\nabla \cdot \mathbf{V}v)_{\eta} + \mu_{d}\alpha \partial_{y}p + (\alpha/\alpha_{d})\partial_{\eta}p\partial_{y}\phi = F_{V}$$

$$\partial_{t}W + (\nabla \cdot \mathbf{V}w)_{\eta} - g[(\alpha/\alpha_{d})\partial_{\eta}p - \mu_{d}] = F_{W}$$

$$\partial_{t}\Theta + (\nabla \cdot \mathbf{V}\theta)_{\eta} = F_{\Theta}$$

$$\partial_{t}\mu_{d} + (\nabla \cdot \mathbf{V})_{\eta} = 0$$

$$\partial_{t}\phi + \mu_{d}^{-1}[(\mathbf{V} \cdot \nabla\phi)_{\eta} - gW] = 0$$

$$\partial_{t}Q_{m} + (\mathbf{V} \cdot \nabla q_{m})_{\eta} = F_{Q_{m}}$$

NWP structure

ICON (DWD forecast model)

Code structure → modular:

- each box is its own contained routine
- interchanges between processes are regulated by the solver (or the driver)
- .. But there is not only atmospheric processes! E.g.
 - Snow
 - Ground humidity
 - .. but many more:

NWP is not only about the atmospheric dynamics equations

NWP is not only physics

11

Preparing NWP simulations:

Initial Condition/Boundary Condition

As a race..

Initial condition: you need a starting line defined!

Boundary condition: you have to keep on track to run the race!

The Weather Research Forecast (WRF) model

Limited area model (LAM) → Needs initial and boundary conditions

WRF-specific Pre-processor (WPS):

Geographical informations:

Geogrid is used for **time-independent** geographical informations.

It defines:

- 1. Map informations: e.g. 2D gridded latitude and longitude, Coriolis parameter, *projection*..
- 2. Topographic informations: e.g. terrain elevation, vegetation fraction, soil categories, land use characterization..
- 3. Dimensions and resolution of the domains

N.B. The projection changes depending on the location, for mid-latitudes use: *Lambert conformal*.

Examples of invariant data:

Atmospheric Initial/Boundary conditions (ungrib)

Un-grib.. what is a GRIB?

GRIB file format is a WMO standard file format for gridded fields. It is a binary compressed file, fields are identified with a code \rightarrow you need a table with the code to determine the corresponding fields.

This is why we need the so-called **Vtable** (stands for Variable table). WPS and WRF have an already coded table you always use, e.g.:

GRIB1 Param		From Level1		metgrid Name	metgrid Units	metgrid Description				GRIB2 Level
1	1	0		PSFC	Pa	Surface pressure	0	3	0	1 1
1	7	0		PTROP	Pa	Tropopause pressure	0	3	0	7
1	6	0	¥	PMAXW	Pa	Pressure at max wind level	0	3	0	6
11	1	0	19	SKINTEMP	K	Skin temperature	0	0	0	1 1
11	100	*		П	K	Temperature	0	0	0	100
11	105	2		TT	K	Temperature at 2 meters	0	0	0	103
11	112	0	10	ST000010	K	Soil temperature 0-10 cm below ground	0	0	0	106
11	112	10	200	ST010200	K	Soil temperature 10-200 cm below ground			V 200	
11	7	0		TTROP	K	Tropopause temperature	0	0	0	7
11	6	0		TMAXW	K	Temperature at max wind level	0	0	0	6
144	112	0	10	SM000010	fraction		2	0	192	106
144	112	10	200	SM010200	fraction	Soil moisture 10-200 cm below ground	1			1 1
2	102	0		PMSL	Pa	Pressure at mean sea level	0	3	1	101
33	100	*	8	UU	m s-1	u-wind component	10	2	2	100
33	105	10		UU	m s-1	u-wind component at 10 meters	0	2	2	103

Boundary conditions

Metgrid, put together ungrib and geogrid:

it interpolates horizontally the meteorological data (ungrib) to the chosen domain (geogrid). Here we:

create the staggered grid:

- interpolate the masked fields, e.g. you cannot have SST points in the Po Valley.
- rotate wind components, to have U and V along the WRF simulation grid.

A summary scheme of the main use of WPS and real

How do you tell the model all these info?


```
STUDENTI#arianna.valmassoi@str957-cluster: ~/Build WRF/WRFV3/test/em b wave >
File Edit View Search Terminal Help
history interval
frames per outfile
 o form boundary
 lebua level
time step
time step fract num
time step fract den
```

Use of namelist

- Decide time period and domain(s) location(s)
- Decide timestep and model integration
- Choose parameterizations
- Define boundary conditions timestep
- .. and much more!

Most of simulations is done modifying namelist.input!

Linux

Introduction

Why do we use a NWP?

For what do we use a NWP?

NWP as atmospheric dynamics equations?

WPS - Geogrid

WPS - Ungrib

WPS - Metgrid

Namelis

Linux

Basics

Graphics

Download and view

Neview

Python/MatLab.. R'

Linux Basics

Linux shell: bash

- it's a command line interface, not a graphic one!
- it allows to interact directly with the operative system
- you can do everything with the terminal, and usually the mouse it's pretty useless!

```
| Transfer | Transfer
```

Things to get familiar with:

- Open the terminal: Alt+T (if you work with Ubuntu settings)
- Where we are in our PC? Type *ls*:

```
| The control of the
```

this is my "home" folder!

- Enter a folder: cd namefolder, e.g. cd Documents
- Now go back to the previous folder as: cd..
- Create a folder (or directory): mkdir namefolder, e.g. mkdir wrf_tutorial (NO space in names!)
- Remove: rm -rf namefile/foldername; it can be used to remove every kind of object.
- Copy: *cp file newfile*

Text files: How it works if this is NOT a graphical interface?

vi

- On the terminal: type "vi test" ← this creates and open the file called "test"
- let's type something.. Type "i" to enter the editing mode!
- Finish editing: press "Esc"
- To save and exit from vi type ":wq"
- To exit without saving the edits: type ":q!"

More infos at: https://www.vim.org/docs.php

Remote connection

- Connection: sshType "ssh username@IPaddress", e.g. ssh user@137.204.50.71
- Move files cluster-PC and vice-versa: scp
 Type "scp file_original_location file_wanted_location", e.g. user@137.204.50.71:./WRF/wrfoutput.nc.

WRF output. Forget Excel: we use NetCDF!

- It is auto-descriptive dataset and machine-independent.
- On your PC install neview and netcdf to work with it: sudo apt-get install neview netcdf*
- Copy on your PC one of my netcdf tests: scp user@ip:./test.nc onlytest.nc
- To see the output: ncview onlytest.nc

ncview

Let's get familiar with it...

... even if you can't present this plot in a paper/thesis!

Python/MatLab.. R?

Python

- Free software.
- Widely used: from mobile phone games to high computing.
- A lot of free packages for applications and integrations.

MatLab

- Non-free software.
- Used for data analysis, not compatible for integrations.
- A lot of packages (free and not), some are not well maintained.

Other things you can do

Our exercise with python

Main aim:

- 1. Getting familiar with dealing with netCDF files
- 2. Do basic plots and operations

Things we will do:

- 1. map of the diurnal maximum temperature averaged over all timesteps
- 2. extract a specific longitude/latitude, and do a timeserie
- 3. select a region and plot the average values as a timeserie

If you get bored, try:

- 1. load the wrf.nc dataset and do the same
- 2. compare the t2 diurnal maximum and minimum temperatures between wrf.nc and exp1.nc: what and where is the difference between the two simulations?