Project 3 FYS4150

Kjetil Karlsen and Vilde Mari Reinertsen

October 5, 2017

Abstract

The program used in this project can be found at Github.

Contents

1	Introduction	2
2	Theory	2
3	Method	2
4	Result	2
5	Discussion	2
6	Conclusion	2

1 Introduction

2 Theory

Scaling:

$$a = \frac{v^2}{r} = \frac{F}{M_E} = \frac{GM_S}{r^2} \implies v^2 r = GM_o$$

Need:

Initial: y^0 , x^0

Initial: v_y^0 , v_x^0

$$x^{i+1} = x^i + \Delta t v_x^i$$

$$y^{i+1} = y^i + \Delta t v_y^i$$

$$v_x^{i+1} = v_x^i + \Delta t a_x^i$$

$$v_y^{i+1} = v_y^i + \Delta t a_y^i$$

$$a_x^{i+1} = -\frac{4\pi^2}{r^3} x_i$$

$$a_y^{i+1} = -\frac{4\pi^2}{r^3} y_i$$

- 3 Method
- 4 Result
- 5 Discussion
- 6 Conclusion

References