Граф на Петерсен

Никол Христова Приложна математика, IV курс Факултетен номер: 31524

ДЕФИНИЦИЯ:

Граф на Petersen е 3-регулярен граф с 10 върха и 15 ребра

Върхово покриване с 6 върха

Доминиращо множество с 3 върха

ЗАБЕЛЕЖКА:

Граф на Petersen не може да бъде покрит с по-малко от 6 върха, защото само външният петоъгълник иска поне 3 върха, а независимо от това вътрешните 5 диагонала искат също поне 3 върха ⇒ 6 е долната граница за мощността на върховото покриване.

$$\tau(P) = 6$$

ЗАБЕЛЕЖКА:

Граф на Petersen не може да бъде доминиран от по-малко от 3 върха, защото е 3-регулярен, а в 3-регулярен граф един връх може да доминира наймного 4 върха общо (включително себе си) ⇒ кои да е два върха могат да доминират най-много 2.4 = 8 върха общо (включително себе си). Графът на Petersen има 10 върха, следователно не може да бъде доминиран от 2 върха.

$$\gamma(P) = 3$$

ТВЪРДЕНИЕ:

Графът на Petersen не е планарен.

Ще докажем това твърдение по различни начини:

- Теорема на Куратовски.
- Теорема на Вагнер.
- Теорема за връзката между *m* и *n* при планарни графи.

Теорема на Куратовски

Граф е планарен \Leftrightarrow не съдържа подграф, хомеоморфен на K_5 или $K_{3,3}$.

Графът на Petersen съдържа подграф, хомеоморфен на $K_{3,3}$. На следната рисунка е показан един такъв подграф, нарисуван с жълто върху графа на Petersen:

Жълтият подграф има върхове само от степени 2 и 3. Нека оцветим в червено и синьо върховете му от степен 3.

За да остане исканият подграф, ще изтрием ребрата, които не са оцветени в жълто:

И ще свием всички възможни ребра чрез върхове от степен 2.

Така ясно се вижда, че полученият граф е именно $K_{3,3}$, като върховете от единия му дял са червените върхове, а от другия му дял са сините върхове.

 \Rightarrow Графът на Петерсен съдържа подграф, хомеоморфен на $K_{3,3}$, следователно не е планарен

Теорема на Вагнер

Граф е планарен \iff не съдържа нито K_5 , нито $K_{3,3}$ като минори.

Графът на Петерсен съдържа K_5 по много очевиден начин — ако на следната рисунка на графа на Петерсен изтрием всяко едно от петте червени ребра, като идентифицираме двата му края, ще получим точно K_5 . \Rightarrow Графът на Петерсен не е планарен.

Теорема за връзката между m и n при планарни обикновени графи

За всеки планарен обикновен граф G (не непременно свързан) с поне две ребра, ако n = брой върхове, m = брой ребра и k = обхвата, то

$$m \le \frac{k}{k-2}(n-2) \ .$$

За графа на Петерсен k = 5, n = 10, тогава от теоремата:

$$m \le \frac{5}{5-2}(n-2) = \frac{5n}{3} - \frac{10}{3} = 13\frac{1}{3}$$

Но m=15, което значи, че графът на Петерсен има прекалено много ребра \Rightarrow не е планарен.