Estructura de datos - Reto 1

Yábir García Benchakhtir

4 de octubre de 2017

1. Usando la notación O, determinar la eficiencia de los siguientes segmentos de código:

```
1
            int n, j; int i=1; int x=0;
2
3
               j = 1;
               while (j \le n)
4
                  j=j*2;
5
6
                 x++;
7
               i++;
8
9
            \mathbf{while}(\mathbf{i} \ll \mathbf{n})
```

En la primera línea tenemos operaciones de asignación a variables con complejidad O(1). Encontramos un bucle do-while (líneas 2-9) que contiene:

- Una asignación de variable, O(1).
- Un bucle while que se repite log_2n veces con operaciones O(1). La complejidad de esta estructura es pues $log_2(n)$.
- Una operación de incremento que contamos como O(1).

La complejidad de esta última estructura es por tanto $nlog_2n$ ya que el bucle se repite n veces y la mayor complejidad en terminos de Big O es log_2n . Así la complejidad que obtenemos para el código completo es:

```
O(\max\{1, nlog_2 n\} = O(nlog_2 n)
            int n, j; int i=2; int x=0;
1
2
            do{
               j = 1;
3
               while (j \le i)
4
5
                  j=j*2;
6
                  x++;
7
               i++;
8
            \mathbf{while}(\mathbf{i} \ll \mathbf{n})
9
```

En el segundo caso estamos repitiendo todo el contenido del do-while n veces y dentro de este bucle tenemos una sentencia while que depende de una variable j que aumenta de dos en dos. Dentro de este solo tenemos sentencios de complejidad O(1) luego la expresión de la complejidad es del tipo:

$$\sum_{i=1}^{n} log_2(i) = log_2 \prod_{i=1}^{n} i = log_2(n!)$$

2. Para cada función f(n) y cada tiempo t de la tabla siguiente, determinar el mayor tamaño de un problema que puede ser resuelto en un tiempo t (suponiendo que el algoritmo para resolver el problema tarda f(n) microsegundos, es decir, $f(n)^{-6}sg$.

Para ello vamos a obtener una expresión sencilla de la función que la relaciones con el tiempo que se nos pide $t = f(n) \cdot 10^6$.

 $f(n) = log_2$

Tenemos que despejar el valor de n en la expresión: $10^{-6}log_2n = t$

$$10^{-6}log_2n = t \implies log_2n = t \cdot 10^6 \implies 2^{t \cdot 10^6} = n$$

 $f(n) = nlog_2 n$

$$nlog_2 n = t \cdot 10^6$$

En este caso no existe expresión analitica que podamos simplificar para resolver esta ecuación.

f(n) = n

$$n = t \cdot 10^6$$

 $f(n) = n^3$

$$n = \sqrt[3]{t \cdot 10^6} = 100\sqrt[3]{t}$$

 $f(n) = 2^n$

$$2^{n} = t \cdot 10^{6} \implies n = log_{2}(t \cdot 10^{6})$$

• f(n) = n!

$$n! = t \cdot 10^6$$

Usando las expresiones anteriores despejamos los valores de n para los tiempos dados:

f(n)	t				
	1 segundo	1 hora	1 semana	1 año	1000 años
log_2n	$9,9 \cdot 10^{301029}$	$2^{3600\cdot 10^6}$	$2^{6,04\cdot10^{12}}$	$2^{3,15\cdot 10^{13}}$	$2^{3,15\cdot 10^{16}}$
n	10^{6}	$3,600 \cdot 10^9$	$6,048 \cdot 10^{11}$	$3{,}1536 \cdot 10^{13}$	$3{,}1536 \cdot 10^{16}$
$nlog_2n$	62746	$1,33378 \cdot 10^8$	$1,77631 \cdot 10^{10}$	$7,97634 \cdot 10^{11}$	$6,41137 \cdot 10^{14}$
n^3	100	1532	8456	31593	315938
2^n	19	31	39	44	54
n!	9	12	14	16	18