Course Code	18CSC207J	Course Name	ADVANCED PRO	OGRAMMING PRACTICE		urse egory		С	Professional Core		_	L	T	Р	С								
Oouc		Hume			Out	cgory														3	U		4
Pre-requ Course	1780.50.202.1		Courses	CSC204J		Prog	ressi urses	IIV	il														
Course Off	fering Department	Сотри	ter Science and Engineering	Data Book / Codes/Standard	ds	Nil																	
Course Le	arning Rationale (CL	R): The pur	pose of learning this course is to:			Lea	arnin	g				Р	rogra	am L	earni	ing O	utcom	nes (P	,ro)				
CLR-1:	Create Real-time Appl	lication Progra	ms using structured, procedural and	object oriented programming paradigms	;	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2:	Create Real-time Appl	lication Progra	ms using event driven, declarative a	nd imperative programming paradigms											>-								
CLR-3:	Create Real-time Appl	lication Progra	ms using parallel, concurrent and fu	nctional programming paradigms		Ê	(%					arch			iii g								l
CLR-4:	Create Real-time Appl	lication Progra	ms using logic, dependent type and	network programming paradigms		loor	cy (%	ıt (%)	dge		ent	ese			aing		Nork		nce				l
CLR-5:	Create Real-time Appl	lication Progra	ms using symbolic, automata based	and graphical user interface program pa	radigm	g (Bl	_	inment	Snowledge	S	elopment	Š.	age	go.	Sustainability		am		Finar	DG.			l
CLR-6 ·						ing	ficiel	.≣	1,5	ysis	픙	<u>ig</u>	S	ture	οX		ea	듬	ш	Ξ		1	1

CLR-6:	Create Real-time Application	n Programs using different programming paradigms using python language	Thinkin	d Profic	d Attain
Course L	earning Outcomes (CLO):	At the end of this course, learners will be able to:	Level of	Expected	Expected
CLO-1:	Create Programs using stru	ctured, procedural and object oriented programming paradigms	3	85	80
CLO-2:	Create Programs using ever	nt driven, declarative and imperative programming paradigms	3	85	80
CLO-3:	Create Programs using para	allel, concurrent and functional programming paradigms	3	85	80
CLO-4:	Create Programs using logic	c, dependent type and network programming paradigms	3	85	80
CLO-5:	Create Programs using sym	bolic, automata based and graphical user interface programming paradigms	3	85	80
CLO-6:	Create Programs using diffe	rent programming paradigms using python language	3	85	80

				og	i uiii L	-cuiii	mg c	utooi	1103 (,				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO - 2	PSO - 3
Η	Н	Н	Н	Н	-	-	L	М	М	L	М	-	М	-
Н	Н	Н	Н	Н	-	-	L	М	М	L	М	-	-	-
Н	Н	Н	Н	Н	-	-	L	М	М	L	М	-	-	-
Н	Н	Н	Н	Н	-	-	L	М	М	L	М	-	-	-
Н	Н	Н	Н	Н	-	-	L	М	М	L	М	-	-	-
Н	Н	Н	Н	Н	-	-	L	М	М	L	М	-	-	-

Durati	on (hour)	15	15	15	15	15
	SLO-1	Structured Programming Paradigm	Event Driven Programming Paradigm	Parallel Programming Paradigm	Logic Programming Paradigm	Symbolic Programming Paradigm
S-1	SLO-2	Programming Language Theory	Event Object, handler, bind	Multi-threading, Multi-Processing	First-class function, Higher-order function, Pure functions, Recursion	Symbolic Maths, algebraic manipulations, limits, differentiation, integration, series
S-2	SLO-1	Bohm-Jacopini structured program theorem	Keypress events, Mouse events	Serial Processing, Parallel Processing	Packages: Kanren, SymPy	SymPy usage for symbolic maths
3-2	SLO-2	Sequence, selection, decision, iteration, recursion	Automatic events from a timer	Multiprocessing module in Python	PySWIP, PyDatalog	Equation Solving, Matrices
	SLO-1	Other languages: C, C++, Java, C#, Ruby	Other languages: Algol, Javascript, Elm	Process class, Pool class	Other languages: Prolog, ROOP, Janus	Other languages: Aurora, LISP, Wolfram
S-3	SLO-2		Demo: Event Driven Programming in Python	Demo: Parallel Programming in Python	Demo: Logic Programming in Python	Demo: Symbolic Programming in Python
S 4-5	SLO-1 SLO-2	Lab 1: Structured Programming	Lab 4: Event Driven Programming	Lab 7: Parallel Programming	Lab 10: Logic Programming	Lab 13: Symbolic Programming
	SLO-1	Procedural Programming Paradigm	Declarative Programming Paradigm	Concurrent Programming Paradigm	Dependent Type Programming Paradigm	Automata Based Programming Paradigm
S-6	SLO-2	Routines, Subroutines, functions	Sets of declarative statements	Parallel Vs Concurrent Programming		Finite State Machine, deterministic finite automation (dfa), nfa
	SLO-1	Using Functions in Python	Object attribute, Binding behavior	threading, multiprocessing	Dependent functions, dependent pairs	State transitions using python-automaton
S-7	SLO-2	logical view, control flow of procedural programming in various aspects	Creating Events without describing flow	concurrent.futures, gevent, greenlets, celery	Relation between data and its computation	Initial state, destination state, event (transition)
	SLO-1	Other languages: Bliss, ChucK, Matlab	Other languages: Prolog, Z3, LINQ, SQL	Other languages: ANI, Plaid	Other Languages: Idris, Agda, Coq	Other languages: Forth, Ragel, SCXML
S-8	SLO-2	Demo: creating routines and subroutines using functions in Python	Demo: Declarative Programming in Python	Demo: Concurrent Programming in Python	, ,,	Demo: Automata Based Programming in Python

S 9-10	SLO-1 SLO-2	Lab 2: Procedural Programming	Lab 5: Declarative Programming	Lab 8: Concurrent Programming	Lab 11: Dependent Type Programming	Lab 14: Automata Programming
	SLO-1	Object Oriented Programming Paradigm	Imperative Programming Paradigm	Functional Programming Paradigm	Network Programming Paradigm	GUI Programming Paradigm
S-11	SLO-2	Class, Objects, Instances, Methods	Program State, Instructions to change the program state		Socket Programming: TCP & UDP Connection oriented, connectionless	Graphical User Interface (GUI)
S-12		Encapsulation, Data Abstraction	Combining Algorithms and Data Structures		Sock_Stream, Sock_Dgram, socket(), bind(), recvfrom(), sendto(), listen()	Tkinter, WxPython, JPython
3-12		Polymorphism, Inheritance	Imperative Vs Declarative Programming	partial, functools	Server-Client; send(), recv(), connect(), accept(), read(), write(), close()	WxWidgets, PyQT5
	SLO-1	Constructor, Destructor	Other languages: PHP, Ruby, Perl, Swift	Other languages: F#, Clojure, Haskell	Other languages: PowerShell, Bash, TCL	Other languages: GTK, java-gnome
S-13	SI 0-2	Example Languages: BETA, Cecil, Lava Demo: OOP in Python	Demo: Imperative Programming in Python	Demo: Functional Programming in Python	Demo: Socket Programming in Python	Demo: GUI Programming in Python
S 14-15	SLO-1 SLO-2	Lab 3: Object Oriented Programming	Lab 6: Imperative Programming	Lab 9: Functional Programming	Lab 12: Network Programming	Lab 15: GUI Programming

Learning
Resources

- Elad Shalom, A Review of Programming Paradigms throughout the History: With a suggestion Toward a Future Approach, Kindle Edition, 2018
- John Goerzen, Brandon Rhodes, Foundations of Python Network Programming: The comprehensive guide to building network applications with Python, 2nd ed., Kindle Edition, 2010
- 3. Elliot Forbes, Learning Concurrency in Python: Build highly efficient, robust and concurrent applications, Kindle Edition, 2017
- 4. Amit Saha, Doing Math with Python: Use Programming to Explore Algebra, Statistics, Calculus and More, Kindle Edition, 2015
- Alan D Moore, Python GUI Programming with Tkinter: Develop responsive and powerful GUI applications with Tkinter, Kindle Edition, 2018
- 6. https://www.scipy-lectures.org/

Learning Asse	essment												
	Bloom's			Continuous Learning Assessment (50% weightage)							Final Examination (50% weightage)		
	Level of Thinking	CLA – 1 (10%)		CLA – 2 (15%)		CLA – 3 (15%)		CLA – 4	l (10%)#	Final Examination (50% weightage)			
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%		
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%		
Total 10		0 %	10	0 %	10	0 %	10	0 %	10	0 %			

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Sagar Sahani, Amadeus Software Labs, Bangalore, hello.sagarsahni@gmail.com	1. Dr. Rajeev Sukumaran, IIT Madras, rajeev@wmail.iitm.ac.in	1. Dr. R. Annie Uthra, SRMIST
2. Mr. Janmajay Singh, Fuji Xerox R&D, Japan, janmajaysingh14@gmail.com	2. Prof. R. Golda Brunet, GCE, goldabrunet@gcessalem.edu.in	2. Dr. Christhu Raj M R, SRMIST
		3. Ms. K. Somalakshmi, SRMIST
		4. Mr. C. Arun, SRMIST