Properties of Data

Digging into Data: Jordan Boyd-Graber

University of Maryland

February 11, 2013

COLLEGE OF INFORMATION STUDIES

Roadmap

- Munging data
 - Unavoidable step
 - ► Example of how I do it
- Goal
 - Not to teach you how
 - What end results you need to tell stories from data
 - Telling those stories with pictures
 - Same thing necessary for making predictions and clustering
 - Homework 1
- CaBi

Caveat

- This is super important—everything else we do in the class won't work if the data aren't preprocessed well
- What I'm doing is not optimal
 - Probably not efficient to add columns in R, python, and Google spreadsheets
 - I'm doing it to show the breadth of options
 - Pick your poison and do what you need to do
 - You can (and should) use different tools: excel, SQL, java, perl, text editor

Outline

- Data Terminology
- 2 Testbed: Capital Bikeshare
- Adding Columns in R
- Visualizing and Summarizing Data in Rattle
- **5** Adding Columns in Python
- ggplot2
- Wrapup

(Confusing) Terminology

- A dataset has different components
- Input: what you always know
 - Sometimes called independent variable
 - Sometimes called regressor
 - Sometimes called feature
- Output: what you're trying to learn
 - Sometimes called independent variable
 - Sometimes called the regressand
 - Sometimes called the response variable
 - Sometimes called the "label"

(Confusing) Terminology

- A dataset has different components
- Input: what you always know
 - Sometimes called independent variable
 - Sometimes called regressor
 - Sometimes called feature
- Output: what you're trying to learn
 - Sometimes called independent variable
 - Sometimes called the regressand
 - Sometimes called the response variable
 - Sometimes called the "label"
 - Does not exist for unsupervised learning

Terminology

- But not all data are usable
- Most data also have an identifier
- Could also be metadata
 - When data was collected
 - Who collected it
 - How much it cost
- Often important to exclude such data from your algorithms

Terminology

- But not all data are usable
- Most data also have an identifier
- Could also be metadata
 - When data was collected
 - Who collected it
 - How much it cost
- Often important to exclude such data from your algorithms
- Why?

Terminology

Discrete Data

- Also called categoric
- Bins that you group data into
- There is no "in between"
- You can ask most frequent value

Continuous Data

- Also called numeric
- Numeric values that represent data
- There is an "in between"
- You can take the average
- It makes sense to ask questions like what if this were 10% more X

- Height
- Gender
- Location

- Height
 - Numeric
- Gender
- Location

- Height
 - Numeric
- Gender
 - Categorical
- Location

- Height
 - Numeric
- Gender
 - Categorical
- Location
 - Zip codes are numbers
 - Latitude and altitude are great numerical predictors of temperature

Outline

- Data Terminology
- 2 Testbed: Capital Bikeshare
- Adding Columns in R
- Visualizing and Summarizing Data in Rattle
- **5** Adding Columns in Python
- ggplot2
- Wrapup

Capital Bikeshare

- Largest bikeshare system in US
- Publicly share data
- Important problems:
 - Where should new stations be?
 - Rebalancing
 - Pricing
 - Coordinating with other transit

Downloading CaBi Data

CSV File

http://www.capitalbikeshare.com/trip-history-data

Duration, Start date, Start Station, End date, End Station, Bike#, Subscription Type
0h 7m 28s, 12/31/2012 23:58, Eastern Market Metro / Pennsylvania Ave & 7th St SE, 1/1/2013 0:05,
0h 6m 24s, 12/31/2012 23:56, 14th & V St NW, 1/1/2013 0:02, Massachusetts Ave & Dupont Circle NW,
0h 6m 58s, 12/31/2012 23:56, 14th & V St NW, 1/1/2013 0:03, Massachusetts Ave & Dupont Circle NW,
2h 23m 50s, 12/31/2012 23:51, Lincoln Park / 13th & East Capitol St NE, 1/1/2013 2:15, Lincoln P.
W007704, Casual

What story do you want to tell?

- What data are there?
- What information do you want?
- How to get from point A to point B?

What story do you want to tell?

- What data are there?
- What information do you want?
- How to get from point A to point B?
 - More art than science
 - No right answers

Import into Google Spreadsheet

Loads nicely into columns

It would be nice to have more

- Real world locations
- Elevation
- CaBi has some of this information
- Google (Maps) knows the rest . . .

Creating a new sheet just for stations

Load columns from the xml file

Α	В	C	D	E
)	Station Name	Lat	Long	Elevation
	1 20th & Bell St	source:		512 #ERROR
	Pentagon City Metro / 12th & 2 Hayes St	http://www.capitalbikeshare.com/d		986
	3 20th & Crystal Dr			492
	4 15th & Crystal Dr			276

We now have columns for lat, long for every station

Create a script to look up elevation

Write the script

```
function getElevation(lat, long, id) {
Utilities.sleep(150 * id);
elevSampler = Maps.newElevationSampler();
elevResults = elevSampler.samplelocation(lat, long);
elevation = elevResults.results[0].elevation;
return elevation;
}
```

Now we can call this function in the spreadsheet to make a new elevation column for each station

Call the script

В	С	D	E	
Station Name	Lat	Long	Elevation	
20th & Bell St	38.8	-77.0	512 = getElevation(C	2,D2)

Now we can attach a location to each row in the original sheet

Α	B	c	D	E	F	G	н	1.
Duration	Start	Start Station	End date	End Station	Bike#	Subscripti Type	LatStart	LongStart
0h 7m 28s	12/31/201 23:58:00			14th & D St SE	W01301	Subscribe	38.884	=vlookup(C2,stationsIA:C,3,fal

Now we've added neat new columns to the spreadsheet; time to download

Outline

- Data Terminology
- 2 Testbed: Capital Bikeshare
- Adding Columns in R
- Visualizing and Summarizing Data in Rattle
- **5** Adding Columns in Python
- ggplot2
- Wrapup

Loading a dataset

- Creates a "data frame"
- This is the basic unit of R data (Rattle creates these automatically for you)
- Very easy to add columns
- Use the \$ to access columns

Functions in R

- Defined using the command "function"
- Can take untyped arguments
- Return a value with the return command
- Assigned to a variable name

Functions in R

```
earthDistance <- function(loc1, loc2) {
  leftFields = strsplit(loc1, ":")
  rightFields = strsplit(loc2, ":")
  lat1 = as.numeric(leftFields[[1]][1]) \star PI / 180.0
  lat2 = as.numeric(rightFields[[1]][1]) * PI / 180.0
  lon1 = as.numeric(leftFields[[1]][2]) * PI / 180.0
  lon2 = as.numeric(rightFields[[1]][2]) * PI / 180.0
 x = (lon2-lon1) * cos((lat1+lat2)/2);
  v = (lat2-lat1);
 d = sgrt(x*x + y*y) * EARTH RADIUS;
  return(d)
```

Adding columns in R

- Adds additional columns to the dataframe
- apply function works on the dataset we loaded from the csv
- You can download the script from the source page to see more function examples (earthDistance is the most complicated)
- "apply" works on the dataset rides's rows (1) to apply the specified function to each row (based on the input accessed from the columns)

Loading a modified dataframe in Rattle

Read in the data

```
rides <- read.csv("cabi-rides.ext.cvs")</pre>
```

- Do what you need to do (i.e. add columns)
- Choose "R Dataset" as our source

Writing out the csv

```
write.csv(rides, "data/cabi-rides.ext.cvs")
```

- In case you want to do something else in a spreadsheet
- For future reference
- To get help

Outline

- Data Terminology
- Testbed: Capital Bikeshare
- Adding Columns in R
- Visualizing and Summarizing Data in Rattle
- **a** Adding Columns in Python
- ggplot2
- Wrapup

Summarizing Data

Getting Output Directly

- "Explore" tab
- Click: "summary"

```
duration
                                                            startStation
Min. : 0.0000
               Massachusetts Ave & Dupont Circle NW
                                                                 : 116
1st Ou.: 0.1000
               15th & P St NW
                                                                 . 97
Median: 0.1667 Columbus Circle / Union Station
                                                                 : 94
Mean : 0.2418 Thomas Circle
                                                                 : 79
3rd Qu.: 0.2667 Eastern Market Metro / Pennsylvania Ave & 7th St SE: 74
Max. :13.5667 17th & Corcoran St NW
                                                                 : 70
NA's : 2.0000
               (Other)
                                                                 :3629
```

Summarizing Data

Getting Output Directly

- "Explore" tab
- Type: "summary"

```
endStation
                                            distance
                                                            startHour
Massachusetts Ave & Dupont Circle NW: 148
                                         Min. :
                                                          Min.
                                                                : 0.1333
15th & P St NW
                                  : 103
                                         1st Ou.: 921.5 1st Ou.:10.5500
Thomas Circle
                                    94
                                         Median : 1515.5
                                                          Median :15.1500
17th & Corcoran St NW
                                : 86
                                        Mean : 1785.3
                                                          Mean :14.6237
Columbus Circle / Union Station : 82
                                         3rd Ou.: 2402.2
                                                          3rd Ou.:18.3500
North Capitol St & F St NW
                                 : 74
                                         Max. :13166.5
                                                          Max. :23.9667
(Other)
                                  :3572
                                                          NA's : 1.0000
```

Descriptive Statistics: Quartiles

- Order your data
- Find the middle data point this is your median
 - If even number of data points, average points in the middle
- Repeat on two halves on either side of median these are your first and third quartiles

Descriptive Statistics

- min smallest data point
- max largest data point
- mean sum of all data divided by number of data points

Descriptive Statistics

- min smallest data point
- max largest data point
- mean sum of all data divided by number of data points

$$\mu = \sum_{i} x_i / N \tag{1}$$

What to look for ...

- Are the min / max reasonable?
- Is there a lot of missing data (NA)?
- Do the most frequent levels for categorical data make sense?

Box Plots

- Show median, mean, Q1, Q2, max and min
- Show if distributions are skewed
- Easier to see than reading off numbers
- Introduced by Tukey
- Under "Explore", "Distributions"

Box Plots

Histogram

- Chop your range into bins (art to this)
- Count how many data fall in each bin
- Gives a better sense of shape of distribution
- Under "Explore", "Histogram"

Outline

- Data Terminology
- Testbed: Capital Bikeshare
- Adding Columns in R
- Visualizing and Summarizing Data in Rattle
- **adding Columns in Python**
- 6 ggplot2
- Wrapup

Python support for csv

- Python has built in DictReader and DictWriter classes
- Easy to add columns
- Example on course webpage
 - Counts up check outs and check ins per station
 - Bins time into human-readable categories (e.g. early morning, afternoon)
 - Output csv also available

Outline

- Data Terminology
- Testbed: Capital Bikeshare
- Adding Columns in R
- Visualizing and Summarizing Data in Rattle
- **5** Adding Columns in Python
- ggplot2
- Wrapup

ggplot2

```
1 install.packages("ggplot2")
2 install.packages("maps")
3 library(maps)
4 library(ggplot2)
```

- Library created by Hadley Wickham
- Load it by using "library(ggplot2)"
- Creates very attractive plots
- Very easy to customize

ggplot2 maps

Get an outline of DC

Draw it

```
p <- ggplot(stations)
p <- p + geom_polygon( data=states, aes(x=long, y=lat))</pre>
```

ggplot2 maps

ggplot2 maps

ggplot2 facets

ggplot2 facets (resorted)

ggplot2 scatterplots

```
p <- ggplot(rides)
p <- p + geom_smooth(aes(x=startHour, y=distance))
p <- p + coord_cartesian(ylim=c(1000,2500))</pre>
```


ggplot2 histograms

```
p <- ggplot(rides)
p <- p + geom_histogram(aes(x=duration), binwidth = .1)
p <- p + scale_y_sqrt()
p <- p + facet_grid(subscription ~ .)
p <- p + scale x continuous(limits=c(0, 4))</pre>
```


Outline

- Data Terminology
- Testbed: Capital Bikeshare
- Adding Columns in R
- Visualizing and Summarizing Data in Rattle
- **5** Adding Columns in Python
- ggplot2
- Wrapup

We've done a lot

- You don't have to be able to do everything we did today
- You have to be able to do some of it
- Play around with the way of manipulating data you feel most comfortable with

First assignment

- Find some data
- Edit it so it is in a usable form
- Find interesting relationships in your data
- Use Rattle/ggplot2 to display those relationships (be creative and thorough!)