Relatorio de projeto de segunda VA

Réplica do trabalho:Simple face-detection algorithm based on minimum facial features

Ismael Cesar da Silva Araujo Departamento de computação Ciência da computação Universidade Federal Rural de Pernambuco (UFRPE) ismael.cesar@ufrpe.br

I. Introdução

II. CONCEITOS BÁSICOS

O algoritmo em [1] pode ser dividido em três passos diferentes. Detecção de Pele e cabelo, onde são computados os valores que representam os intervalos de cores de pele e cabelo para a binarização. Quantização de pele e cabelo, onde uma vez binarizadas as detecções são aplicadas operações morfológicas, são computatos os componentes conexos e suas características e aplica-se os filtros de tamanho. Ao final, é feita a união das características, procurando intesecções entre retângulos que contém componentes conexos de cabelo e retângulos que contém componente conexos de pele. Como as etapas de detecção de pele e de cabelo são feitas de modo ligeiramente diferente, a explanação do funcionamento de ambas foi colocada em duas seções diferentes. Porém as etapas de quantização e união de características ocorre de maneira similar, tanto para deteção de cabelo quanto para detecção de pele.

A. Detecção de pele

O modelo de cor normalizado, trata-se de um tipo de normalização feita por pixel. Considerando uma com canais RGB (Sigla em inglês para Vermelho, Verde e Azul), A normalização da imagem segundo o modelo de cor normalizada calcularia pra cada pixel o valor contido no canal dividido pela soma de todos os valores dos canais no pixel avaliado [1], [3]. Seja ε um valor da ordem de 10^{-8} , somado a o denominador para se evitar divisão por zero(1).

$$r = \frac{R}{R + G + B + \varepsilon}$$

$$g = \frac{G}{R + G + B + \varepsilon}$$

$$b = \frac{B}{R + G + B + \varepsilon}$$
(1)

A normalização das cores da imagem possibilitam a diminuição da sensibilidade do algorítmo de detecção em relação as variações de cores e illuminação. Normalizados os intervalos de valores do pixel, é necessário definir funções que avaliam os tons de vermelho que foram normalizados. Tais funções são utilizadas para a definição dos limites superiores e inferiores do intervalo de tons de pele em relação ao canal r [1], [4].

$$F_1(r) = -1.367r^2 + 1.0743r + 0.2$$

$$F_2(r) = -0.776r^2 + 0.5601r + 0.18$$
(2)

Para o aprimoramento da detecção de pele necessário definir funções para avaliação de tons e branco, em conjunto com valores de matiz ou Hue do píxel. A avaliação dos tons de branco é feita segundo os valores dos canais r e g do píxel. De modo que o píxel é considerado com algum tom de branco quando r=0.33 e g=0.33 [1]. Onde a diferença dos valores dos canais r,g e 0.33 é elevada ao quadrado para para que a mesma só retorne o valor absoluto caso r e g possuam valores menores que 0.33.

$$White(r,g) = (r - 0.33)^2 + (g - 0.33)^2$$
(3)

Para se constar se o píxel em questão tem algum tom de branco, verifica-se o resultado da comparação entre White(r,g) > 0.001. Para melhorar o desempenho da detecção de pele é necessário computar a relação entre o modelo de cor HSI (Hue

Saturation and Itensity) com o modelo RGB. Onde *Hue* descreve a cor que está sendo utilizada, o valor está no intervalo em [0,360] o qual representa o ângulo no circulo unitário. *Saturation* representa o nível de puresa da cor, e *Intensity* trata-se de um valor acromático, que representa a itesidade da cor. Tanto o valor de *Saturation* quanto o de *Itensity* estão no intervalo de [0,1]. A figura a seguir ilustra o espaço de cores do modelo HSI.

Fig. 1. Espaço de cores do modelo de cores HSI. fonte: [2]

Para o algoritmo de detecção de só é necessário computar os valores relativos a *Hue* e *Intensity*. O valor de *Hue* é atribuido segundo os valores B e G do esquema RGB. Porém, antes de se computar o valor de *Hue* é necessário computar o ângulo a qual o valor de RGB do pixel correspondem no espaço de cores do esquema HSI Fig. 1. As equações para computar os valores de ângulo, *Hue* e *Intensity* respectivamente encontra-se a seguir:

$$\theta(R, G, B) = \cos^{-1}\left(\frac{0.5((R-G) + (R-B))}{\sqrt{(R-G)^2 + (R-B)(G-R)}}\right) \tag{4}$$

$$Hue(B, G, \theta) = \begin{cases} \theta, & \text{if } B \leq G \\ 360^{\circ} - \theta, & \text{if } B > G \end{cases}$$
 (5)

$$I(R, G, B) = \frac{1}{3}(R + G + B) \tag{6}$$

Para se efetuar a detecção de pele numa imagem, faz-se uma binarização da imagem segundo os valores de computados segundo as equações mencionados.

$$SkinDetect = \begin{cases} 1, & \text{if } (g < F_1(r) \cap g > F_2(r) \cap White(r,g) > 0.001 \cap (Hue(B,G,\theta) > 240 \cup Hue(B,G,\theta) \leq 20)) \\ 0, & \text{otherwise} \end{cases}$$

$$(7)$$

B. Detecção de Cabelo

Para a detecção de tons de cabelo também é efetuada uma binarização da imagem. Ao se fazer a binarização da imagem utiliza apenas as equações (4)(5)(6) como sub-rotinas. Outros valores de comparação considerados são as diferenças entre o valor B e os valores R e G.

$$HairDetect = \begin{cases} 1, & \text{if } ((I(R, G, B) < 80 \cap ((B - G) < 15 \cup (B - R) < 15)) \cup (20 < Hue(B, G, \theta) \le 40)) \\ 0, & \text{otherwise} \end{cases}$$
 (8)

C. Quantização de pele e cabelo

A etapa de quantização ocorrre de forma semelhante tanto para detecção de cabelo quanto para detecção de pele. Uma vez retornada as binarizações da imagens com as detecções de pele e cabelo, são aplicadas operações morfológicas nos retornos SkinDetect e HairDetect. Os elementos estruturantes tem de tamanho 5×5 . A morfologia é calculada para determinar se um pixel numa região pertence a um componente conexo de cabelo ou pelo, ou se o pixel varrido é apenas ruido de detecção.

Em seguida, são computados os componentes conexos e as características dos mesmos de SkinDetetct e HairDetect. As características computadas são o centroide, a área do componente conexo e as posições (x,y) dos pixels mais externos, tanto o mais mais acima e mais a esquerda, quanto o mais abaixo mais a direita. Após a computação é feita uma filtragem de componentes conexos. Também chamado de filtro de tamanho, ou size filter. O filtro de tamanho verifica a área de cada componente conexo e exclui o componente conexo cuja área é menor que um limiar qualquer λ .

D. União de características

Para a união de características, faz-se o uso das posições (x, y) computadas dos componentes conexos da detecção de cabelo e pele. Isso é feito devido a o fato das posições computadas das features representarem um retângulo que contém o componente conexo. Onde para cada componente conexo em SkinDetect é verificado se há intersecção com algum componente conexo em Hair Detect. Caso afirmativo, o algoritmo considera que achou uma face. Na figura 2 são mostradas as relações de intesecção que são consideradas no algoritmo por simplicidade.

Fig. 2. Relações de intersecção entre retângulos que contém cabelo e pele, fonte: [1]

III. METODOLOGIA

REFERENCES

- [1] Y.-J. Chen and Y.-C. Lin, "Simple face-detection algorithm based on minimum facial features," in IECON 2007-33rd Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2007, pp. 455-460.
- [2] N. A. Ibraheem, M. M. Hasan, R. Z. Khan, and P. K. Mishra, "Understanding color models: a review," ARPN Journal of science and technology, vol. 2, no. 3, pp. 265-275, 2012.
- [3] M. Loesdau, S. Chabrier, and A. Gabillon, "Chromatic indices in the normalized rgb color space," in 2017 International Conference on Digital Image
- Computing: Techniques and Applications (DICTA). IEEE, 2017, pp. 1–8.
 [4] M. Soriano, B. Martinkauppi, S. Huovinen, and M. Laaksonen, "Using the skin locus to cope with changing illumination conditions in color-based face tracking," in IEEE Nordic Signal Processing Symposium, vol. 38, 2000, pp. 383-386.