2^{ème} année Sciences Expérimentales

Série : Les Suites Numériques

Exercice 1:

Déterminer la limite de la suie (u_n) définie par : $(\forall n \in \mathbb{N})$: $u_n = 1 - \frac{1}{3} - \frac{1}{9} - \frac{1}{27} - \dots - \frac{1}{3^n}$

Exercice 2:

Déterminer la limite de la suite (u_n) dans les cas suivants :

1.
$$u_n = \frac{5n^2 + 3}{2n - 7}$$

2.
$$u_n = \frac{7n + (-1)^n}{5n + 3}$$

3.
$$u_n = \frac{\cos(n)}{n^2 + 3}$$

4.
$$u_n = \frac{1}{\sqrt{1+n^2}} + \frac{1}{\sqrt{2+n^2}} + \frac{1}{\sqrt{3+n^2}} + \dots + \frac{1}{\sqrt{n+n^2}}$$

$$5. \quad u_n = \frac{3^n + 5^n}{3^n + 4 \times 5^n}$$

Exercice 3:

Considérons la suite (u_n) définie par : $u_0 = 10$ et $u_{n+1} = \frac{17}{19}u_n + \frac{18}{19}$ pour tout n de \mathbb{N}

- **1.** Montrer que : $u_n \ge 9$, pour tout n de \mathbb{N}
- **2.** Montrer que (u_n) est décroissante, puis déduire qu'elle est convergente.
- **3.** On pose, $v_n = u_n 9$ pour tout n de \mathbb{N}
 - a- Montrer que (v_n) est une suite géométrique
 - b- Calculer v_n en fonction de n
 - c- Déduire u_n en fonction de n, puis calculer $\lim_{n\to+\infty} u_n$

Exercice 4:

Considérons la suite (u_n) définie par : $u_0 = 3$ et $u_{n+1} = \frac{12 - 8u_n}{4 - 3u_n}$ pour tout n de \mathbb{N}

- **1.** Montrer par récurrence que : $u_n > 2$, pour tout n de \mathbb{N}
- **2.** On pose: $v_n = \frac{u_n}{u_n 2}$ pour tout n de \mathbb{N}
 - a- Montrer que (v_n) est une suite arithmétique
 - b- Calculer v_n en fonction de n

c- Déduire u_n en fonction de n, puis calculer $\lim_{n\to +\infty} u_n$

Exercice 5:

Considérons la suite (u_n) définie par : $u_0 = 2$ et $u_{n+1} = \frac{7u_n + 2}{2u_n + 7}$ pour tout n de \mathbb{N}

- **1.** Montrer par récurrence que : $u_n \ge 1$, pour tout n de \mathbb{N}
- 2. Montrer que (u_n) est décroissante et qu'elle est convergente
- **3.** On pose: $v_n = \frac{u_n 1}{u_n + 1}$ pour tout n de \mathbb{N}
 - a- Montrer que (v_n) est une suite géométrique
 - **b-** Calculer v_n en fonction de n
 - **c-** Déduire u_n en fonction de n, puis calculer $\lim_{n\to+\infty} u_n$

Exercice 6:

Considérons la fonction f définie sur I = [0,1] par : $f(x) = \frac{4x+3}{3x+4}$

- **1.** Etudier les variations de f sur I = [0,1]
- **2.** Montrer que $f(I) \subset I$
- **3.** Etudier la position de (C_f) avec l'axe (Δ) : y = x sur I = [0,1]
- **4.** Considérons la suite numérique (u_n) définie par : $u_0 = \frac{1}{2}$ et $u_{n+1} = f(u_n)$ pour tout n de

N

- a- Montrer que $0 \le u_n \le 1$, pour tout n de \mathbb{N}
- b- Etudier la monotonie de (u_n)
- c- Calculer $\lim_{n\to+\infty} u_n$