Questions de cours.

- Théorème de convergence monotone.
- Toute suite réelle convergente est bornée.
- Théorème des suites adjacentes.
- Les sous suites converges vers la même limite.
- Si les limites de (u_{2n}) et (u_{2n+1}) existent et sont égales, alors (u_n) converge.

Exercice 1. Soient A et B deux parties non vides de \mathbf{R} . On suppose que : $\forall (a,b) \in A \times B : a \leq b$.

- 1. Existence de $\sup A$, $\sup B$, $\inf A$, $\inf B$?
- 2. Montrer que sup $A \leq \inf B$.
- 3. Si on change $a \le b$ en a < b, a t-on sup $A < \inf B$?
- 4. Condition simple d'égalité ?

Exercice 2. On note u_n la somme des inverses des n premiers carrés (pour $n \ge 1$).

- 1. Montrer que (u_n) est croissante
- 2. Monter que pour tout $n \ge 1$: $\frac{1}{(n+1)^2} \le \frac{1}{n} \frac{1}{n+1}$ En déduire que (u_n) converge.

Exercice 3. Soit (u_n) une suite réelle. On suppose que les limites de (u_{2n}) , (u_{2n+1}) et (u_{n^2}) existent. Montrer que (u_n) admet une limite.

Exercice 4. Étudier la suite de terme générale : $w_n = n^{1/n}$.

Exercice 5. Soit (u_n) une suite d'entiers. Montrer que (u_n) converge si et seulement si elle est stationnaire.

Exercice 6. On considère (u_n) et (v_n) deux suites de limites respectives ℓ et ℓ' . On suppose $\ell < \ell'$. Montrer que $u_n < v_n$ APCR.

Exercice 7. Donner le terme général des suites suivantes :

- 1. $u_0 = 0$ et $u_{n+1} = 3u_n + 1$
- 2. $u_0 = 1$, $u_1 = -3$ et $u_{n+2} + 2u_{n+1} + u_n = 0$
- 3. $u_0 = 1$, $u_1 = 2$ et $u_{n+2} 2u_{n+1} + 2u_n = 0$

Exercice 8. Soit A une partie non vide et majorée de \mathbf{R} . On suppose que $M=\sup A\notin A$. Montrer que pour tout $\varepsilon>0$, l'ensemble $]M-\varepsilon,M[$ contient une infinité d'éléments de A. Illustrer l'importance de l'hypothèse $\sup A\notin A$ sur un contre-exemple où ce n'est pas le cas.

Exercice 9. Soit A une partie non vide et bornée de \mathbb{R} .

- 1. On pose $B = \{|x-y|\,(x,y)\in A^2\}$ Montrer que B est borné.
- 2. On considère $\delta = \sup B$. Montrer que $\delta = \sup A \inf B$.

Exercice 10. Soit A une partie non vide et majorée de \mathbb{R} .

- 1. Justifier l'existence de $\sup A$ et rappeler en une caractérisation.
- 2. Construisez une suite (a_n) d'éléments de A qui converge vers sup A.

Exercice 11. Trouver les fonctions $f: \mathbb{R}_+^* \longrightarrow \mathbb{R}_+^*$ qui vérifient

$$f \circ f + f = 2Id_{\mathbf{R}_{+}^{*}}$$