<u>Documentação – Simulador</u>

Alunos

- 1) Domitila Crispim Pietropaolo
- 2) Marcelo Mendonça Borges

Ambiente de Simulação

O Programa foi feito em Python 3, e, portanto, deve ser executado utilizando python 3 pela linha de comando da máquina. O arquivo a ser executado está nomeado de programa_principal.py, e os demais arquivos devem estar na mesma pasta. Esse programa realiza simulações de eventos baseado no Modelo de Fila MM1.

Logo que o programa for executado será disponibilizado uma estrutura que simula um terminal para utilização do programa. Nele pode ser utilizado os seguintes comandos (em parênteses o nome da variável no programa):

- 1. sair: Encerra o programa
- **2. set_variaveis_globais:** Que permite alterar as seguintes variáveis gerais do programa:
 - **a.** Limite da fila (limite fila)
 - **b.** Número de eventos de uma execução (numero_eventos)
 - **c.** Número de simulações de um evento (numero_simulacoes)
 - d. Alfa para os cálculos estatísticos (alfa)
- **3. set_variaveis_chegada:** Que permite alterar as seguintes variáveis, relacionadas às entradas/chegadas do sistema:
 - a. Tipo de distribuição (variaveis_chegada[0])
 - b. Lambda para distribuição exponencial no tempo (erviço e_chegada[1])
 - c. Media para distribuição normal no tempo (erviço e_chegada[2])
 - **d.** Desvio padrão para distribuição normal no tempo (erviço e_chegada[3])
 - e. Valor inferior para distribuição uniforme no tempo (erviço e_chegada[4])
 - **f.** Valor superior para distribuição uniforme no tempo (erviço e_chegada[5])
 - g. Valor determinístico para chegada no tempo (erviço e_chegada[6])
- **4. set_variaveis_servico:** Que permite alterar as seguintes variáveis, relacionadas aos serviços do sistema:
 - a. Tipo de distribuição (variáveis_servico[0])
 - **b.** Lambda para distribuição exponencial no tempo (variáveis_servico[1])
 - **c.** Media para distribuição normal no tempo (variáveis_servico[2])
 - **d.** Desvio padrão para distribuição normal no tempo (variáveis_servico[3])

- e. Valor inferior para distribuição uniforme no tempo (variáveis_servico[4])
- **f.** Valor superior para distribuição uniforme no tempo (variáveis_servico[5])
- **g.** Valor determinístico para serviço no tempo (variáveis_servico[6])
- **5. set_variaveis_numeros:** Que permite alterar as seguintes variáveis, relacionadas à geração de números aleatórios:
 - a. Seed (seed)
 - **b.** A (a)
 - **c.** B (b)
 - **d.** M (m)
- **6. executar:** Que permite realizar a execução da simulação utilizando os parâmetros definidos. Inicialmente as variáveis já começam com valores predefinidos sendo eles:
 - limite_fila = math.inf (representa infinito)
 - numero eventos = 10
 - numero simulações = 20
 - alfa = 0.05
 - variáveis_chegada = ["expo", 1, 10, 3, 6, 9, 5]
 - variáveis_servico = ["expo", 1, 10, 3, 6, 9, 5]
 - seed = 777
 - a = 13
 - b = 66
 - m = 512

Como executar o programa?

Após executar o programa do arquivo "programa_principal.py", aparecerá um terminal escrito "simulador:", e é por ali que os comandos serão inseridos:

B:\Trabalhos da Faculdade\Trabalhos - 07 - Sétimo Período\GBC065 - MS\MS_Trabalho02>python programa_principal.py simulador:

Cada comando realizado, realiza sua função e retorna para o terminal. Em seguida você pode ver a estrutura de inserção de cada comando:

1. set_variaveis_globais (int) (int) (int) (int)

2. set_variaveis_chegada (string) (int) (int) (int) (int) (int) (int) Observação: Essa primeira string deve ser "deter" para valores determinísticos de chegada, "expo" para distribuição exponencial, "norm" para distribuição normal ou "unif" para distribuição uniforme.

imulador: set_variaveis_chegada deter 10 10 10 10 10 10 ′ariaveis de Chegada:						
Tipo de Dist.	+ Lambda (Expo)	Media (Norm)	Desvio P. (Norm)	 Inf. (Unif)	Sup. (Unif)	Temp. (Deter)
deter	10	10	10	10	10	10
simulador:						

3. set_variaveis_servico (string) (int) (int) (int) (int) (int) (int) Observação: Essa primeira string deve ser "deter" para valores determinísticos de chegada, "expo" para distribuição exponencial, "norm" para distribuição normal ou "unif" para distribuição uniforme

ui iii	orric.				
simulador: set_variaveis_servico Variaveis de Servico:	deter 10 10 10	10 10 10			
Tipo de Dist. Lambda (Expo)	Media (Norm)	Desvio P. (Norm)	Inf. (Unif)	Sup. (Unif)	 Temp. (Deter)
deter 10	10	10	10	10	10
simulador:					

4. set_variaveis_numeros (int) (int) (int) (int)

5. sair

simulador: sair 3:\Trabalhos da Faculdade\Trabalhos - 07 - Sétimo Período\GBC065 - MS\MS_Trabalho02>

6. executar

Logo após realizar o comando "executar" são realizadas as simulações onde, para cada simulação fica indicado seu índice e seus dados de geração de números aleatórios (seed, a, b, m).

+		+	+		++
Simulacao 0	ES	TF	TR	HC	HS
0	1	0	0	1	1
1	0	0	1	1	999999
2	1	0	1	2	3
3	1	1	2	5	3
4	1	0	3	5	4
5	0	0	4	5	999999
6	1	0	5	6	6
7	0	0	6	6	999999
8	1	0	6	7	8
9	1	1	7	9	8
10	1	0	8	9	11
11	1	1	9	13	11
12	1	0	11	13	12
13	0	0	12	13	999999
14	1	0	13	14	16
15	1	1	14	16	16
16	1	0	16	16	17
17	1	1	16	17	17
18	1	0	17	17	19
19	1	1	17	18	19
+	+	+	+	+	· ++

Depois é apresentada essa tabela, com 5 valores, para cada simulação realizada:

ES = Estado do Servidor (Ocioso ou Ocupado)

TF = Tamanho da Fila

TR = Tempo do Relógio da Simulação

HC = Tempo da Próxima Chegada

HS = Tempo da Próxima Saída

Por fim são apresentados os cálculos estatísticos referentes à execução realizada. Onde:

- espera_fila = tempo médio de espera na fila
- probabilidade_fila = probabilidade de um cliente esperar na fila
- probabilidade ocioso = probabilidade de o sistema ficar ocioso
- tempo_servico = tempo médio de serviço
- tempo sistema = tempo médio dispendido no sistema