ЛИНЕЙНАЯ РЕГРЕССИЯ. КРИВОЛИНЕЙНАЯ РЕГРЕССИЯ

3адание. Конденсатор заряжен до напряжения U_0 , отвечающего моменту начала отсчета времени, после чего он разряжается через некоторое сопротивление. Напряжение измеряется с округлением до 5 В. Исследовать зависимость напряжения U от времени t. Основные результаты и выводы по пунктам оформить письменно.

t	0	1	2	3	4	5	6	7	8	9	10
U	95	75	55	40	30	20	15	10	10	5	5

- 1. Построить корреляционное поле.
- 2. Вычислить выборочный коэффициент корреляции, проверить его значимость на уровне значимости $\alpha = 0.05$.
- 3. По характеру расположения точек на корреляционном поле и на основании проверки значимости коэффициента корреляции сделать вывод о соответствии или несоответствии линейной модели экспериментальным данным.
- 4. Составить систему нормальных уравнений для определения по методу наименьших квадратов коэффициентов линейного уравнения регрессии, найти выборочное уравнение линейной регрессии, построить прямую на корреляционном поле.
- 5. Подтвердить либо опровергнуть вывод пункта 3.
- 6. С помощью Мастера диаграмм в Excel получить (если это возможно) уравнения следующих зависимостей:

a)
$$y = b_0 + b_1 x$$
;
б) $y = b_0 + b_1 x + b_2 x^2$;
в) $y = b_0 + \frac{b_1}{x}$;
г) $y = b_0 + b_1 \ln x$;
д) $y = a e^{bx}$;
е) $y = ax^b$;
ж) $y = \frac{1}{b_0 + b_1 x}$.

Yказание I. Если все значения переменной y отрицательны, для получения зависимостей д) и е) следует сделать замену Y = |y|.

Указание 2. Для получения гиперболических зависимостей в) и ж) нужно построить линейные зависимости на новых диаграммах, сделав соответствующие замены переменных.

- 7. Сравнить уравнение а) с полученным в пункте 4.
- 8. На основании значений коэффициента детерминации R^2 сделать вывод о наилучшей модели из допустимых.
- 9. *В случае б): составить систему нормальных уравнений для определения по методу наименьших квадратов коэффициентов квадратичного уравнения регрессии; найти выборочное квадратичное уравнение регрессии.

В случаях в)-ж): указать замену переменных, позволяющую свести выбранную зависимость к линейной; построить корреляционное поле в новых переменных; составить систему нормальных уравнений для определения по методу наименьших квадратов коэффициентов линейного уравнения регрессии

в новых переменных; найти выборочное уравнение линейной регрессии, построить прямую на корреляционном поле; сделав обратную замену, получить уравнение регрессии в натуральных переменных.

Контрольные вопросы

- 1. Виды зависимостей между двумя СВ.
- 2. В чем различие между статистической и функциональной зависимостями двух СВ?
- 3. Что такое регрессионная зависимость между двумя СВ?
- 4. Основные задачи корреляционного анализа.
- 5. Основные задачи регрессионного анализа.
- 6. На основании чего осуществляется выбор вида функции регрессии?
- 7. Что называется корреляционным полем?
- 8. Почему наиболее часто используется модель линейной регрессии?
- 9. Какой статистический показатель используется в качестве количественной меры линейной связи между двумя наблюдаемыми величинами?
 - 10. Свойства выборочного коэффициента корреляции.
 - 11. Какие значения может принимать выборочный коэффициент корреляции?
- 12. Какие значения принимает выборочный коэффициент корреляции, если наблюдаемые величины независимы?
- 13. Какие значения принимает выборочный коэффициент корреляции, если наблюдаемые величины связаны линейной зависимостью?
 - 14. Что показывает знак выборочного коэффициента корреляции?
 - 15. Для чего проводится проверка значимости коэффициента корреляции?
- 16. Как проводится проверка значимости коэффициента корреляции в случае, если наблюдаемые величины имеют совместное нормальное распределение?
 - 17. В чем суть метода наименьших квадратов?
 - 18. Система нормальных уравнений метода наименьших квадратов.
- 19. Как связан коэффициент детерминации с коэффициентом корреляции в случае линейной регрессионной модели?
- 20. С помощью какой замены переменных можно свести к линейной следующие зависимости: a) $y = b_0 + \frac{b_1}{x}$; б) $y = b_0 + b_1 \ln x$; в) $y = a e^{bx}$; г) $y = ax^b$; д) $y = \frac{1}{b_0 + b_1 x}$?

Пример и методические указания по выполнению лабораторной работы

1. По результатам n = 11 измерений исследуем зависимость напряжения U от времени t.

Построим корреляционное поле. По виду корреляционного поля можно предположить, что выборочный коэффициент корреляции отрицателен и значимо отличается от 0. (Почему?)

2. Обозначим через x независимую переменную t (время), через y — зависимую переменную U (напряжение).

Расчетная	таблица
1 ucaciiiiuzi	muoman

	The tentility millotting					
	x_i	y_i	$x_i y_i$	x_i^2	y_i^2	
1	0	95	0	0	9025	
2	1	75	75	1	5625	
3	2	55	110	4	3025	
4	3	40	120	9	1600	
5	4	30	120	16	900	
6	5	20	100	25	400	
7	6	15	90	36	225	
8	7	10	70	49	100	
9	8	10	80	64	100	
10	9	5	45	81	25	
11	10	5	50	100	25	
\sum_{i}	55	360	860	385	21050	

Выборочный коэффициент корреляции вычислим по формуле

$$r_{x;y} = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\sqrt{D_{\scriptscriptstyle B}(x)D_{\scriptscriptstyle B}(y)}},$$

где

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i} = \frac{55}{11} = 5; \qquad \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i} = \frac{360}{11} \approx 32,7;$$

$$\overline{xy} = \frac{1}{n} \sum_{i=1}^{n} x_{i} y_{i} = \frac{860}{11} \approx 78,2;$$

$$D_{\text{B}}(x) = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - (\overline{x})^{2} = \frac{385}{11} - 5^{2} = 10;$$

$$D_{\text{B}}(y) = \frac{1}{n} \sum_{i=1}^{n} y_{i}^{2} - (\overline{y})^{2} = \frac{21050}{11} - 32,7^{2} \approx 844,35.$$

Тогда

$$r_{x;y} = \frac{78,2-5\cdot32,7}{\sqrt{10\cdot844,35}} \approx -0.928.$$

Что можно сказать о зависимости между величинами, если выборочный коэффициент корреляции отрицательный?

Проверка значимости коэффициента корреляции. Вычислим расчетное значение критерия Стьюдента:

$$t_{\text{расч}} = \left| r_{x; y} \right| \sqrt{\frac{n-2}{1-r_{x; y}^2}} = 0.928 \sqrt{\frac{11-2}{1-0.928^2}} \approx 7.47 > t_{\text{табл}} = t_{\alpha; n-2},$$

и найдем по таблице квантилей распределения Стьюдента

$$t_{\text{табл}} = t_{0,05;9} \approx \frac{2,23+2,31}{2} = 2,27.$$

Поскольку $t_{\text{расч}} = 7,47 > t_{\text{табл}} = 2,27$, то *при уровне значимости* $\alpha = 0,05$ коэффициент корреляции считаем значимо отличающимся от нуля, а следовательно, <u>связь между величинами x, у признается статистически значимой</u>, т.е. *результаты исследований не случайны и могут быть признаны достоверными*.

- 3. Поскольку коэффициент корреляции признается значимо отличающимся от нуля, можно принять предположение о линейной регрессионной зависимости между наблюдаемыми величинами. Однако расположение точек на корреляционном поле свидетельствует о другой, криволинейной зависимости.
- 4. Система нормальных уравнений для определения МНК-коэффициентов b_0 и b_1 линейного эмпирического уравнения регрессии $\hat{y} = b_0 + b_1 x$.

$$\begin{cases} nb_0 + b_1 \sum_{i=1}^n x_i = \sum_{i=1}^n y_i, \\ b_0 \sum_{i=1}^n x_i + b_1 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i y_i. \end{cases}$$

$$\begin{cases} 11b_0 + 55b_1 = 360, \\ 55b_0 + 385b_1 = 860. \end{cases}$$

Какими методами можно решить систему линейных алгебраических уравнений? Итак, эмпирическое линейное уравнение регрессии имеет вид $\hat{y} = 75,45-8,55x$.

Прямая на корреляционном поле: если x = 0, то $\hat{y} = 75,45$; если x = 10, то $\hat{y} = -10,05$.

Согласно МНК, **построенная прямая приближает экспериментальные** данные наилучшим образом. **Что это означает?**

5. Подтверждаем вывод пункта 3 о том, что полученная прямая удовлетворительно приближает экспериментальные данные, однако расположение экспериментальных точек свидетельствует о <u>наличии другой</u>, криволинейной зависимости между наблюдаемыми величинами.

При выполнении пунктов 1-5 в Excel можно использовать встроенные функции Аргументы функции

КОРРЕЛ			
	Массив 1	<u> </u>	массив
	Массив2	<u>+</u> =	массив
		=	
Возвращает	т коэффициент к	орреляции между двумя множествами	данных.

Аргументы функции		? ×
стьюдент.обр.2х		
Вероятность	1 = число	
Степени_свободы	± = число	
Возвращает двустороннее обратно		
Вероятност	 вероятность, связанная с двусторонн Стьюдента, число от 0 до 1 включите 	
Аргументы функции		? ×
МОБР		
Массив	<u>†</u> = массив	
Возвращает обратную матрицу (матр	= ица хранится в массиве).	
Массив	числовой массив с равным количество диапазон или массив.	ом строк и стол6цов, ли6о

Выделяем массив (в который будет записана обратная матрица), вызываем функцию =MOБР и нажимаем сочетание клавиш **Ctrl+Shift+Enter** (<u>три клавиши вместе!</u>).

Для построения корреляционного поля выделите массив данных и выберите Bcmaska o Диаграммы o Точечная.

Фрагмент рабочего листа. Главная Вставка Рисование Разметка страницы Рецензирование Вид Разработчик Справка Foxit PDF Конструктор Формат 🗘 Помощн 🔎 Поделиться B C D E F G H I J K L M N O Формат линии тренда Исходные данные Параметры линии тренда 🔻 U 120 5 xiyi xi^2 yi^2 6 9025 Логарифмическая 5625 100 110 3025 О Полиномиальная Степень 120 1600 10 120 900 Степенная 80 Скользящее 12 22 13 49 100 60 Название линии тренда 15 45 16 50 100 40 Другое 17 19 r= 7,65 tтабл= 2,262 0,0 период 20 0,0 21 Система нормальных уравнений: 22 установить пересечение 0 23 385 860 y = -8,5458x + 75,455.10 ✓ показывать уравнение на диаграмме 24 25 $R^2 = 0.8667$ 0,318 -0,045 b0= -20 достоверности аппроксимации (R^2) -0,045 0,009 b1=

6. С помощью Excel подберем наилучшую аппроксимирующую функцию для исходных данных. Заполните таблицу в письменном отчете в соответствии с решением Вашего варианта

Вид зависимости	Уравнение зависимости	Коэффициент	Примечание
		детерминации R^2	
а) Линейная	y = -8,5455x + 75,455	0,8667	
б) Квадратичная	$y = 1,1772x^2 - 20,317x + 93,112$	0,995	
в) Гиперболическая	_	_	есть значение $x = 0$
г) Логарифмическая	_	_	есть значение $x = 0$
д) Экспоненциальная	$y = 99,157 e^{-0,31x}$	0,9896	
е) Степенная	_	_	есть значение $x = 0$

ж) Гиперболическая
$$y = \frac{1}{0,0193x - 0,0222}$$
 0,8427

Фрагмент рабочего листа по выполнению пункта 6 в Excel.

Чтобы получить на диаграмме уравнение регрессии, щелкните правой кнопкой мыши по одной из точек на диаграмме и выберите Добавить линию тренда..., укажите тип линии тренда и поставьте две галочки:

- ✓ показывать уравнение на диаграмме
- √ поместить на диаграмму величину достоверности аппроксимации (R^2)
- 7. Полученное в расчетах пункта 4 уравнение регрессии $\hat{y} = 75,45 8,55x$ совпадает с уравнением линейной линии тренда y = -8,5455x + 75,455; квадрат коэффициента корреляции $r_{x;y}^2 = (-0,928)^2 \approx 0,861$ приблизительно равен коэффициенту детерминации $R^2 = 0,8667$ (различие объясняется округлениями при вычислениях в пункте 4).
- 8. Выберем из полученных уравнений наилучшую аппроксимирующую функцию, учитывая значения коэффициента детерминации R^2 и сложность модели.

Наибольший коэффициент детерминации R^2 имеет квадратичная зависимость, однако это значение $R^2 = 0.995$ незначительно превышает значение $R^2 = 0.9896$ для экспоненциальной модели, которая проще в том смысле, что содержит меньше параметров (коэффициентов).

Вид корреляционного поля (точки группируются вдоль убывающей кривой, вторая ветвь параболы не прослеживается) и физическая сущность данных (напряжение с течением времени должно уменьшаться и стремиться к нулю) свидетельствуют в пользу экспоненциальной модели.

Таким образом, наилучшей аппроксимирующей функцией признаем экспоненциальную функцию $y = 99,157 \,\mathrm{e}^{-0,31x}\,$ с $R^2 = 0,9896.$

9. * Параметры экспоненциальной зависимости $y = a e^{bx}$ могут быть получены с помощью МНК, поскольку эта зависимость может быть сведена к линейной с помощью логарифмирования:

$$\ln y = \ln a + \ln e^{bx} \implies \ln y = \ln a + bx.$$

Если ввести новые переменные $Y = \ln y$, X = x, исходная зависимость сведется к линейной $Y = b_0 + b_1 X$, коэффициенты которой могут быть найдены по МНК. Тогда коэффициенты искомой зависимости определятся из соотношений $a = e^{b_0}$, $b = b_1$.

Для проверки того, удачно ли выбран вид зависимости, построим новое корреляционное поле на плоскости OXY (см. фрагмент рабочего листа Excel).

На диаграмме точки $(X_i; Y_i)$ располагаются вдоль прямой, коэффициент корреляции $r_{X \cdot Y} = -0.99$, а значит, вид зависимости y от x подобран правильно.

Коэффициенты линейного уравнения регрессии $Y = b_0 + b_1 X$ в новых переменных найдем из системы нормальных уравнений МНК:

$$\begin{cases} nb_0 + b_1 \sum_{i=1}^n X_i = \sum_{i=1}^n Y_i, \\ b_0 \sum_{i=1}^n X_i + b_1 \sum_{i=1}^n X_i^2 = \sum_{i=1}^n X_i Y_i; \end{cases}$$

$$\begin{cases} 11b_0 + 55b_1 = 33, 5, \\ 55b_0 + 385b_1 = 133, 3. \end{cases}$$

Решая систему матричным методом, получим:

$$b_0 = 4,597, b_1 = -0,31 \implies Y = 4,597 - 0,31X.$$

Следовательно,

$$a = e^{b_0} = e^{4,597} = 99,16, b = b_1 = -0,31 \implies y = 99,16e^{-0,31x},$$

что совпадает с уравнением экспоненциальной линии тренда, полученным в пункте 6.

Замечание. В таблице указаны преобразования, с помощью которых можно «выровнять» некоторые зависимости, наиболее часто встречающиеся на практике.

Вид зависимости	Уравнение	Замена переменных,	Выражение параметров
	зависимости	сводящая зависимость к	зависимости через
		линейной $Y = b_0 + b_1 X$	коэффициенты b_0, b_1
Гиперболическая	$y = a + \frac{b}{x}$	$Y = y, X = \frac{1}{x}$	$a=b_0,b=b_1$
Логарифмическая	$y = a + b \ln x$	$Y = y, X = \ln x$	$a = b_0, b = b_1$
Экспоненциальная	$y = a e^{bx}$	$Y = \ln y, X = x$	$a=\mathrm{e}^{b_0},b=b_1$
Степенная	$y = ax^b$	$Y = \ln y, \ X = \ln x$	$a = e^{b_0}, b = b_1$
Гиперболическая	$y = \frac{1}{a + bx}$	$Y = \frac{1}{y}, X = x$	$a = b_0, b = b_1$