Cyclistic Case Study Mar21

Hezar K

2022-11-29

This is an analysis for Cyclistic Case Study for Google Data Analytics Course. This is an analysis for March 2021.

STEP ONE: INSTALL REQUIRED PACKAGES AND IMPORT DATA

Install the required packages. **Tidyverse** package to import and wrangling the data and **ggplot2** package for visualization of the data. **Lubridate** package for date parsing and **anytime** package for the datetime conversion.

- install.packages("tidyverse")
- install.packages("ggplot2")
- install.packages("lubridate")
- install.packages("anytime")

```
library(tidyverse)
library(lubridate)
library(data.table)
library(ggplot2)
library(anytime)
```

Import data from local drive.

```
Mar21 <- read_csv("C:/Users/theby/Documents/202103-divvy-tripdata.csv")
```

STEP TWO: EXAMINE THE DATA

Examine the dataframe for an overview of the data. Review column names, **colnames()**, dimensions of the dataframe by row and column, **dim()**, the first, **head()**, and the last, **tail()**, six rows in the dataframe, the summary, **summary()**, statistics on the columns of the dataframe, and review the data type structure of columns, **str()**.

View(Mar21)

```
colnames (Mar21)
   [1] "ride id"
                              "rideable_type"
                                                    "started at"
   [4] "ended at"
                                                    "start_station_id"
                              "start station name"
##
   [7] "end station name"
                                                    "start_lat'
                              "end station id"
## [10] "start lng"
                              "end lat"
                                                    "end lng"
## [13] "member_casual"
nrow(Mar21)
```

```
## [1] 228496
```

```
dim(Mar21)
```

```
## [1] 228496 13
```

head(Mar21)

```
## # A tibble: 6 × 13
##
                     ridea…¹ started at
                                                                          start...2 start...3
     ride id
                                                    ended at
##
     <chr>
                     <chr>
                             <dttm>
                                                    <dttm>
                                                                          <chr>
                                                                                  <chr>
## 1 CFA86D4455AA1... classi... 2021-03-16 08:32:30 2021-03-16 08:36:34 Humbol...
## 2 30D9DC61227D1... classi... 2021-03-28 01:26:28 2021-03-28 01:36:55 Humbol... 15651
## 3 846D87A15682A... classi... 2021-03-11 21:17:29 2021-03-11 21:33:53 Shield... 15443
## 4 994D05AA75A16... classi... 2021-03-11 13:26:42 2021-03-11 13:55:41 Winthr... TA1308...
## 5 DF7464FBE92D8... classi... 2021-03-21 09:09:37 2021-03-21 09:27:33 Glenwo... 525
## 6 CEBA8516FD17F... classi... 2021-03-20 11:08:47 2021-03-20 11:29:39 Glenwo... 525
   # ... with 7 more variables: end station name <chr>, end station id <chr>,
## #
       start_lat <dbl>, start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
## #
       member_casual <chr>, and abbreviated variable names ¹rideable_type,
## #
       <sup>2</sup>start station name, <sup>3</sup>start station id
```

```
tail(Mar21)
```

```
## # A tibble: 6 × 13
##
   ride id ridea...¹ started at
                                                                       start...2 start...3
                                                  ended at
##
                    <chr> <dttm>
                                                  <dttm>
## 1 081549DEA616C... electr.. 2021-03-14 01:59:38 2021-03-14 03:13:09 Larrab... TA1309...
## 2 9397BDD14798A... docked... 2021-03-20 14:58:56 2021-03-20 17:22:47 Michig... 13042
## 3 BBBEB8D51AAD4... classi... 2021-03-02 11:35:10 2021-03-02 11:43:37 Kingsb... KA1503...
## 4 637FF754DA0BD... classi... 2021-03-09 11:07:36 2021-03-09 11:49:11 Michig... 13042
## 5 F8F43A0B978A7... classi... 2021-03-01 18:11:57 2021-03-01 18:18:37 Kingsb... KA1503...
## 6 3AE64EA5BF43C... electr... 2021-03-26 17:58:14 2021-03-26 18:06:43 <NA>
## # ... with 7 more variables: end station name <chr>, end station id <chr>,
## # start_lat <dbl>, start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
       member_casual <chr>, and abbreviated variable names <sup>1</sup>rideable_type,
## #
       2start_station_name, 3start_station_id
```

summary(Mar21)

```
ride id
                      rideable type
                                          started at
                                         Min. :2021-03-01 00:01:09.00
##
   Length:228496
                      Length:228496
                      Class :character
                                        1st Ou.:2021-03-10 10:45:36.75
##
   Class :character
   Mode :character
                      Mode :character
                                         Median :2021-03-19 17:37:20.50
##
                                         Mean :2021-03-17 23:22:08.81
##
                                         3rd Qu.:2021-03-25 08:39:23.25
##
                                         Max. :2021-03-31 23:59:08.00
##
##
      ended at
                                    start_station_name start_station_id
##
   Min. :2021-03-01 00:06:28.00
                                    Length: 228496
                                                      Length: 228496
   1st Qu.:2021-03-10 11:04:40.25
                                    Class :character
                                                      Class : character
##
   Median :2021-03-19 17:55:05.00
                                   Mode :character Mode :character
##
   Mean :2021-03-17 23:45:00.76
##
##
   3rd Qu.:2021-03-25 08:54:12.75
   Max. :2021-04-06 11:00:11.00
##
##
                                          start lat
                                                          start lng
##
   end station name end station id
##
   Length:228496
                      Length:228496
                                         Min. :41.65
                                                        Min. :-87.78
   Class :character Class :character
                                         1st Qu.:41.88
                                                        1st Qu.:-87.66
##
##
   Mode :character Mode :character
                                         Median :41.90
                                                        Median :-87.64
##
                                         Mean :41.90
                                                        Mean :-87.64
##
                                         3rd Qu.:41.93
                                                        3rd Qu.:-87.63
##
                                         Max. :42.07
                                                        Max. :-87.53
##
##
      end_lat
                      end_lng
                                    member_casual
   Min. :41.64
                   Min. :-88.07
##
                                    Length: 228496
##
   1st Qu.:41.88
                   1st Qu.:-87.66
                                    Class :character
##
   Median :41.90
                   Median :-87.64
                                    Mode :character
                   Mean :-87.65
   Mean :41.90
##
   3rd Qu.:41.93
                   3rd Qu.:-87.63
##
   Max. :42.08
                   Max. :-87.53
##
  NA's
         :167
                   NA's
                         : 167
```

str(Mar21)

```
## spc_tbl_ [228,496 x 13] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
                       : chr [1:228496] "CFA86D4455AA1030" "30D9DC61227D1AF3" "846D87A15682A284" "994D05AA75A168
## $ ride_id
F2"
                       : chr [1:228496] "classic bike" "classic bike" "classic bike" ...
## $ rideable type
                       : POSIXct[1:228496], format: "2021-03-16 08:32:30" "2021-03-28 01:26:28" ...
##
   $ started at
                       : POSIXct[1:228496], format: "2021-03-16 08:36:34" "2021-03-28 01:36:55" ...
##
   $ ended at
## $ start_station_name: chr [1:228496] "Humboldt Blvd & Armitage Ave" "Humboldt Blvd & Armitage Ave" "Shields A
ve & 28th Pl" "Winthrop Ave & Lawrence Ave" ...
## $ start station id : chr [1:228496] "15651" "15651" "15443" "TA1308000021" ...
## $ end station name : chr [1:228496] "Stave St & Armitage Ave" "Central Park Ave & Bloomingdale Ave" "Halsted
St & 35th St" "Broadway & Sheridan Rd" ..
   $ end_station_id : chr [1:228496] "13266" "18017" "TA1308000043" "13323" ...
##
##
   $ start_lat
                       : num [1:228496] 41.9 41.9 41.8 42 42 ...
##
   $ start_lng
                       : num [1:228496] -87.7 -87.7 -87.6 -87.7 -87.7 ...
                       : num [1:228496] 41.9 41.9 41.8 42 42.1 ...
##
   $ end lat
                      : num [1:228496] -87.7 -87.7 -87.6 -87.6 -87.7 ...
##
   $ end lng
                      : chr [1:228496] "casual" "casual" "casual" ...
##
   $ member_casual
    - attr(*, "spec")=
##
##
    .. cols(
##
         ride_id = col_character(),
     . .
##
    . .
         rideable type = col character(),
##
        started at = col datetime(format = ""),
    . .
    .. ended at = col datetime(format = ""),
##
##
         start_station_name = col_character(),
##
         start station id = col character(),
     . .
##
         end station name = col character(),
     . .
##
         end station id = col_character(),
##
         start_lat = col_double(),
     . .
         start_lng = col_double(),
##
     . .
##
         end_lat = col_double(),
     . .
##
     . .
         end_lng = col_double(),
##
         member_casual = col_character()
     . .
##
    ..)
   - attr(*, "problems")=<externalptr>
##
```

Create new columns as for date, month, day, year, day_of_week, and ride_length in seconds.

```
Mar21$date <- as.Date(Mar21$started_at)
Mar21$month <- format(as.Date(Mar21$date), "%m")
Mar21$month <- month.name[as.numeric(Mar21$month)]
Mar21$day <- format(as.Date(Mar21$date), "%d")
Mar21$year <- format(as.Date(Mar21$date), "%Y")
Mar21$year <- format(as.Date(Mar21$date), "%A")
Mar21$ride_length <- difftime(Mar21$ended_at,Mar21$started_at)</pre>
```

Convert ride_length column to numeric in order to run calculations on the data. First, check to see if the data type is numeric, and then convert if needed.

```
is.numeric(Mar21$ride_length)

## [1] FALSE
```

Recheck ride_length data type.

```
Mar21$ride_length <- as.numeric(as.character(Mar21$ride_length))
is.numeric(Mar21$ride_length)</pre>
```

```
## [1] TRUE
```

STEP THREE: CLEAN DATA

na.omit() will remove all NA from the dataframe.

```
Mar21 <- na.omit(Mar21)
```

Remove rows with the ride_id column character length is not 16. This will remove all the scientific ride ids that we noticed while examining the data.

```
Mar21 <- subset(Mar21, nchar(as.character(ride_id)) == 16)</pre>
```

Remove rows with the ride_length less than 60 seconds or 1 minute.

```
Mar21 <- subset (Mar21, ride_length > 59)
```

STEP FOUR: ANALYZE DATA

Analyze the dataframe by find the mean, median, max (maximum), and min (minimum) of ride_length.

```
mean(Mar21$ride_length)

## [1] 1382.506
```

```
median(Mar21$ride_length)
```

```
## [1] 757
```

```
max(Mar21$ride_length)
```

```
## [1] 1900899
```

```
min(Mar21$ride_length)
```

```
## [1] 60
```

Run a statistical summary of the ride_length.

```
summary(Mar21$ride_length)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 60 426 757 1382 1411 1900899
```

Compare the members and casual users

```
aggregate(Mar21$ride_length ~ Mar21$member_casual, FUN = mean)
```

```
## Mar21$member_casual Mar21$ride_length
## 1 casual 2326.5148
## 2 member 830.4462
```

```
aggregate(Mar21$ride_length ~ Mar21$member_casual, FUN = median)
```

```
aggregate(Mar21$ride_length ~ Mar21$member_casual, FUN = max)
```

```
## Mar21$member_casual Mar21$ride_length
## 1 casual 1900899
## 2 member 88022
```

```
aggregate(Mar21$ride length ~ Mar21$member casual, FUN = min)
```

Aggregate the average ride length by each day of the week for members and users.

```
aggregate(Mar21$ride_length ~ Mar21$member_casual + Mar21$day_of_week, FUN = mean)
```

```
##
      Mar21$member_casual Mar21$day_of_week Mar21$ride_length
## 1
                                    Friday
                                                  1785.3258
                   casual
## 2
                   member
                                     Friday
                                                     755.9209
## 3
                   casual
                                    Monday
                                                    2738.6136
## 4
                                    Monday
                   member
                                                    835.1038
## 5
                                                    2546.0976
                   casual
                                   Saturday
## 6
                   member
                                   Saturday
                                                     944.7101
## 7
                                                    2484.9655
                   casual
                                    Sunday
## 8
                   member
                                     Sunday
                                                     967.2553
## 9
                   casual
                                   Thursday
                                                    1818.6938
## 10
                                                     717.0502
                   member
                                   Thursday
## 11
                   casual
                                    Tuesday
                                                    2222.4294
## 12
                   member
                                    Tuesday
                                                     805.6395
## 13
                   casual
                                  Wednesday
                                                    1767.3636
## 14
                                                    763.3547
                   member
                                  Wednesday
```

Sort the days of the week in order.

```
Mar21$day_of_week <- ordered(Mar21$day_of_week, levels=c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"))
```

Assign the aggregate the average ride length by each day of the week for members and users to x.

```
x <- aggregate(Mar21$ride_length ~ Mar21$member_casual + Mar21$day_of_week, FUN = mean)
head(x)</pre>
```

```
##
    Mar21$member_casual Mar21$day_of_week Mar21$ride_length
## 1
                  casual
                                    Sunday
                                                    2484.9655
## 2
                  member
                                                     967.2553
                                    Sunday
## 3
                  casual
                                    Monday
                                                    2738.6136
## 4
                  member
                                    Monday
                                                     835.1038
## 5
                                   Tuesday
                                                    2222,4294
                  casual
                  member
                                   Tuesday
                                                    805.6395
```

Find the average ride length of member riders and casual riders per day and assign it to y.

```
## # A tibble: 6 × 4
##
     member casual weekday number of rides average duration
##
    <chr>
                    <int>
                                      <int>
                                                        <dbl>
## 1 casual
                                                        2485.
                                      15794
                         1
## 2 casual
                          2
                                      10665
                                                        2739.
## 3 casual
                         3
                                       9229
                                                        2222.
## 4 casual
                          4
                                       7619
                                                        1767.
## 5 casual
                                       4771
                                                        1819.
## 6 casual
                          6
                                       6807
                                                        1785.
```

Analyze the dataframe to find the frequency of member riders, casual riders, classic bikes, docked bikes, and electric bikes.

```
table(Mar21$member_casual)
```

```
##
## casual member
## 75059 128349
```

```
table(Mar21$rideable_type)
```

```
##
## classic_bike docked_bike electric_bike
## 150390 15571 37447
```

```
table(Mar21$day_of_week)
```

```
##
      Sunday
                                                           Friday
##
                 Monday
                          Tuesday Wednesday
                                               Thursday
                                                                    Saturday
##
       32067
                  30986
                             30117
                                       27852
                                                  19020
                                                             22629
                                                                       40737
```

STEP FIVE: VISUALIZATION

Display full digits instead of scientific number.

```
options(scipen=999)
```

Plot the number of rides by user type during the week.

Days of the Week 20000 -15000 Number of Rides member casual casual 10000 member 5000 0 Tuesday Wednesday Thursday Friday Sunday Monday Saturday Days of Week

Plot the duration of the ride by user type during the week.

Days of the Week vs Average Duration

Create new dataframe for plots for weekday trends vs weekend trends.

```
mc<- as.data.frame(table(Mar21$day_of_week,Mar21$member_casual))</pre>
```

Rename columns

```
mc<-rename(mc, day_of_week = Var1, member_casual = Var2)
head(mc)</pre>
```

```
##
     day_of_week member_casual Freq
## 1
                        casual 15794
         Sunday
## 2
         Monday
                        casual 10665
## 3
        Tuesday
                        casual
                                9229
## 4
      Wednesday
                        casual 7619
                        casual 4771
## 5
       Thursday
## 6
          Friday
                        casual
                                6807
```

Weekday trends (Monday through Friday).

Weekend trends (Sunday and Saturday).

Weekends Trends 20000 15000 15000 15000 Sunday vs Saturday Sunday vs Saturday

Create dataframe for member and casual riders vs ride type

```
rt<- as.data.frame(table(Mar21$rideable_type,Mar21$member_casual))
```

Rename columns.

```
rt<-rename(rt, rideable_type = Var1, member_casual = Var2)
head(rt)</pre>
```

```
##
     rideable_type member_casual
                                   Freq
## 1 classic bike
                         casual
                                  44982
## 2
      docked bike
                          casual
                                 15571
## 3 electric_bike
                         casual 14506
## 4 classic bike
                         member 105408
## 5
      docked bike
                          member
## 6 electric_bike
                                 22941
                         member
```

Plot for bike user vs bike type.

Rides and Ride Types

STEP SIX: EXPORT ANALYZED DATA

Save the analyzed data as a new file. fwrite(Mar21, "Mar21.csv")