

Simulación de datos de sensores industriales

Máster en Big Data Analytics

Autor: Pedro Henrique Mano Figueiredo Fernandes

Tutores: José Ramón Navarro Cerdán, Francisco Sánchez Cid

Índice

- 1. Motivación
- 2. Dataset
- 3. Reducción de dimensionalidad PCA
- 4. Primera simulación distribución Gaussiana
- 5. Series temporales ARIMA
- 6. Búsqueda del punto más cercano
- 7. Simulación con datos controlados
- 8. Arquitectura Big Data
- 9. Demostración

Motivación

Problemática:

- **IoT** (*Internet of Things*) en la industria.
- **Sensores** que efectúan mediciones en la cadena de producción.
- **Machine Learning** para extracción de conocimiento de los datos.
- **Gran volumen** de datos para crear modelos matemáticos más fiables.
- **Conocimiento extraído** para anticipación de anomalías o mejoras de rendimiento.
- **Cantidad de datos pequeña** al principio de los proyectos.

Objetivo:

- **Aprender y simular** datos de sensores industriales.
- Nuevos datos simulados de **mayor volumen**.
- Probar y depurar los algoritmos de **detección de averías** y de **predicción** en entornos Big Data.

Dataset

- Dataset de reducida dimensión (5MB).
- Poco estructurado.
- Campos separados por espacios y tabulaciones.
- Formatos de fechas inválidos.
- Mediciones en días distintos y con discrepancias.

Tiempoinicio	APHu	APVs	ACPv	ZSx	ZUs	Н7х	H1x	H2x	Н6х	НЗх	H4x	H5x	ACPx	Svo		
06-oct-2015 21:57 06-oct-2015 21:57 06-oct-2015 21:57 06-oct-2015 21:57	:12 :21	45.1 44.8	69.0 69.8	3.80	0.60	8.82	3276. 3276.	. 7	44.7	33.2 33.2	39.6 39.5	37.5 37.5	38.5 38.5	39.5 39.5	3.26 3.40	36.00 36.01 36.01 36.00

- Librería para lectura del dataset: pandas.
- Cabecera: Tiempoinicio APHu APVs ACPv ZSx ZUs H7x H1x H2x H6x H3x H4x H5x ACPx Svo
- Campo Tiempoinicio: formato fecha.
- Otros campos: formato decimal.

Reducción de dimensionalidad - PCA

Aportación de PCA en este estudio:

- Simulación
- Reducción de ruido
- Reducción de redundancia

- Estratégia PCA: NIPALS
- Numero de componentes a usar basado en los resultados del test T2 de Hotelling

Primera simulación - distribución Gaussiana

• Las componentes son variables independientes, se pueden simular nuevos valores de forma independiente para cada componente.

Primera simulación - reproyección al espacio original

Componentes PCA simuladas

Reproyección al espacio original

Características originales simuladas

	APHu	APVs	ACPv	ZSx	ZUs	Н7х	H1x	H2x	Н6х	Нзх	Н4х	H5x	ACPx	Svo
						/								- / 0
,														
ón														
)														
-														

Test T2 de Hotelling

Series temporales - ARIMA

Aportación de ARIMA en este estudio:

• Dotar la simulación de un patrón temporal aprendido previamente.

- Librería genérica para series temporales: pandas
- Librería para entrenamiento y predicción ARIMA: statsmodels

Búsqueda del punto más cercano

Simulación con datos controlados - PCA

Simulación con datos controlados - PCA

Ejemplo: sin-1 con ruido 0.05

sin-1 con ruido 0.05

- La inversión se hace correctamente
- Se reduce el ruido de la señal.

Simulación con datos controlados - PCA

Ejemplo: sin-1 con ruido 0.05

Reproyección al espacio original

Test T2 de Hotelling

Simulación de la primera componente, usando distribución Gaussiana

Inversión de sin 1 con ruido 0,05, usando distribución Gaussiana

Simulación con datos controlados - ARIMA

Ejemplo: sin-1 con ruido 0.05

Simulación de la componente 1, usando ARIMA y búsqueda de puntos en la simulación Gaussiana

Inversión de sin-1 con ruido 0.05, usando ARIMA y búsqueda de puntos en la simulación Gaussiana

Arquitectura Big Data

Conclusiones

Conclusiones:

- PCA se puede usar para simulación.
- Cuantos más componentes:
 - Mayor **similitud** entre los datos invertidos y los datos originales.
 - Mayor ruido de la señal.
- Datos de simulación **Gaussiana** permiten contener la predicción ARIMA.
- Cuantos más datos de simulación Gaussiana mejor.
- **Big Data** viabiliza la solución de búsqueda de puntos cercanos.

Trabajos futuros:

- Simulación con diferente número de componentes.
- Pruebas con distancia de Mahalanobis.
- Mejoras de la herramienta de visualización con matplotlib.
- Estudio de tiempos de ejecución y consumo de memoria.

Demostración

- Visualización del proceso de simulación en tiempo real.
- Librería de gráficos: matplotlib
- MongoDB como buffer de datos.
- Datos de simulación de componentes PCA y de la respectiva inversión.

