Versuch V6

C405 Hardwarepraktikum II

Abnahme: 20. Januar 2025 Stand: 21. Januar 2025

 $Tom\ Mohr\\ Martin\ Ohmeyer$

Inhaltsverzeichnis

1	Allg	emeines 1	L
	1.1	Zähler	1
	1.2	Würfel	1
2	Log	ikgatter 2	2
	2.1	Wahrheitswerttabelle	2
	2.2	KV-Diagramme und vereinfachte Formeln	2
	2.3	Aufbau	3
3	Gal	Į.	5
	3.1	Zähler	5
		3.1.1 Mealy-Automat	5
		3.1.2 Wahrheitswerttabelle	5
		3.1.3 KV-Diagramme und vereinfachte Formeln	6
	3.2	Mapping Zähler auf Würfel	7
		3.2.1 Wahrheitswerttabelle	3
		3.2.2 KV-Diagramme und vereinfachte Formeln	3
	3.3		9
	3.4	Aufbau	9

1 Allgemeines

1.1 Zähler

Variablen, die zu einem Zähler gehören, tragen die Bezeichnung z_n .

1.2 Würfel

Variablen, die zum Würfel gehören, tragen die Bezeichnung w_n . Sie sind wie in Abbildung 1.1 dargestellt auf die Augen des Würfels verteilt.

 w_3 w_2 w_1 w_0

Abb. 1.1: Der Würfel

2 Logikgatter

2.1 Wahrheitswerttabelle

Im Nachfolgenden finden Sie die Wahrheitswerttabelle für das Abbilden des Zählers auf die low-active Pins des Würfels.

Zähler	Würfel	z_2	z_1	z_0	w_3	w_2	w_1	w_0
0	1	0	0	0	1	1	1	0
1	2	0	0	1	1	1	0	1
2	3	0	1	0	1	1	0	0
3	4	0	1	1	1	0	0	1
4	5	1	0	0	1	0	0	0
5	6	1	0	1	0	0	0	1

2.2 KV-Diagramme und vereinfachte Formeln

Hier wird die Wahrheitswerttabelle 2.1 in Formeln umgewandelt, welche dabei direkt grafisch vereinfacht werden.

2 Logikgatter

2.3 Aufbau

Die in 2.2 ermittelten Formeln wurden in Gleichungen aus nur NANDs umgewandelt und anschließend Aufgebaut.

2 Logikgatter

Abb. 2.1: Aufbau der Schaltung mit 3 NAND-Gattern

3 Gal

3.1 Zähler

3.1.1 Mealy-Automat

Als Hilfe zum Aufstellen einer Wahrheitswerttabelle für den internen Zähler, haben wir erst einen Mealy-Automaten entworfen.

3.1.2 Wahrheitswerttabelle

Aus dem Automat 3.1.1 lässt sich leicht die Wahrheitswerttabelle für den Zähler ablesen. Diese finden Sie im Anschluss.

Dez.	z_2	z_1	z_0	i	z_2^+	z_{1}^{+}	z_0^+
0	0	0	0	0	0	0	1
1	0	0	0	1	0	0	1
2	0	0	1	0	0	1	0
3	0	0	1	1	0	1	0
4	0	1	0	0	0	1	1
5	0	1	0	1	1	1	0
6	0	1	1	0	1	0	0
7	0	1	1	1	1	0	0
8	1	0	0	0	1	0	1
9	1	0	0	1	1	0	1
10	1	0	1	0	0	0	0
11	1	0	1	1	0	0	0
12	1	1	0	0	0	1	1
13	1	1	0	1	0	1	1
14	1	1	1	0	X	X	X
15	1	1	1	1	X	X	X

Tabelle 3.1: Wahrheitstabelle

3.1.3 KV-Diagramme und vereinfachte Formeln

Hier die vereinfachten Formeln, welche aus der Wahrheitswerttabelle 3.1 folgen.

3.2 Mapping Zähler auf Würfel

Es ist nun der Zählerzustände 3.1.3 auf die Pins des Würfels zu mappen. Dafür haben wir die folgenden Wahrheitswerttabelle aufgestellt.

3.2.1 Wahrheitswerttabelle

Dez.	WZ.	z_2	z_1	z_0	w_3	w_2	w_1	w_0
0	1	0	0	0	1	1	1	0
1	2	0	0	1	1	1	0	1
2	3	0	1	0	1	1	0	0
3	4	0	1	1	1	0	0	1
4	5	1	0	0	1	0	0	0
5	6	1	0	1	0	0	0	1
6	6	1	1	0	0	0	0	1

Tabelle 3.2: Wahrheitstabelle

3.2.2 KV-Diagramme und vereinfachte Formeln

3.3 Code

```
PIN 1 = clock;
PIN 2 = i ;
PIN 16 = z0; /* Pin nicht angeschlossen, fuer int. Funktion notwendig */
PIN 17 = z1; /* Pin nicht angeschlossen, fuer int. Funktion notwendig */
PIN 18 = z2; /* Pin nicht angeschlossen, fuer int. Funktion notwendig */
PIN 16 = w0;
PIN 17 = w1;
PIN 18 = w2;
PIN 19 = w3;
z2.d = !z2 & z1 & i # z2 & !z1 & !z0 # z1 & z0;
z1.d = z1 & !z0 # !z2 & !z1 & z0;
z0.d = !z0 & !i # !z1 & !z0 # z2 & z1;
w3.d = !z2 # !z1 & !z0;
w2.d = !z2 & !z0 # !z2 & !z1;
w1.d = !z2 & !z1 & !z0;
w0.d = z0 # z2 & z1;
```

3.4 Aufbau

Abb. 3.1: Aufbau der Schaltung mit Gal