Math 174E Lecture 15

Moritz Voss

September 1, 2022

References

Hull

Chapter 14.2, 14.3, 14.4, 14.6, 14.7

Brownian motion with drift and diffusion coefficient

Also called **generalized Wiener process**:

Definition 14.5

Let $(B_t)_{t\geq 0}$ be a standard Brownian motion. For $x_0, \mu \in \mathbb{R}$ and $\sigma > 0$ the process $(X_t)_{t\geq 0}$ defined as

$$X_t = x_0 + \mu t + \sigma B_t \quad (t \ge 0)$$

is called Brownian motion with drift parameter μ and variance parameter σ^2 .

In particular:

- $X_t \sim \mathcal{N}(x_0 + \mu t, \sigma^2 t)$ for all $t \geq 0$.
- ▶ stationary and independent increments with $X_t X_s \stackrel{d}{=} X_{t-s} X_0 \sim \mathcal{N}(\mu(t-s), \sigma^2(t-s))$ and $X_t X_s$ is independent of X_s (for 0 < s < t)
- ▶ standard Brownian motion: $\mu = 0$, $\sigma^2 = 1$, $x_0 = 0$.

Illustration: Generalized Wiener Process

$$X_{4} = 0.3 \cdot \xi + 1.5 \cdot B_{4}$$
 $\mathbb{E}[X_{4}] = 0.3 +$

Simulating Generalized Wiener Process

Consider simulating a generalized Wiener process on [0, T] with parameters x_0, μ, σ :

- ▶ grid of discrete time points $0 = t_0 < t_1 < ... < t_n = T$
- by stationary and independent increments, with $X_{t_0} = x_0$,

$$X_{t_i} = X_{t_{i-1}} + \mu \cdot (t_i - t_{i-1}) + \sigma \cdot (B_{t_i} - B_{t_{i-1}})$$
 $(i = 1, 2, ..., n)$

where $B_{t_i} - B_{t_{i-1}} \sim \mathcal{N}(0, t_i - t_{i-1})$ independent of $B_{t_{i-1}}$

lacktriangledown recursive representation: Z_1,\ldots,Z_n i.i.d. $\sim \mathcal{N}(0,1)$

$$X_{t_i} = X_{t_{i-1}} + \mu \cdot (t_i - t_{i-1}) + \sigma \sqrt{t_i - t_{i-1}} \cdot Z_i \quad (i = 1, 2, ..., n)$$

- ightharpoonup generates the samples $X_{t_0}, X_{t_1}, \dots, X_{t_n}$ on the discrete time grid
- ▶ typically equally spaced time points: $t_i = i \cdot \frac{T}{n}$ and hence $t_i t_{i-1} = T/n$

Differential Form

Generalized Wiener process:

$$X_t = x_0 + \mu t + \sigma B_t \qquad (t \ge 0)$$

• in a small time interval $[t, t + \Delta t]$ the change in the value of X is given by

$$\underbrace{X_{t+\Delta t} - X_t}_{\Delta X} = \mu \cdot \underbrace{(t + \Delta t - t)}_{\Delta t} + \sigma \underbrace{(B_{t+\Delta t} - B_t)}_{\Delta B \sim \mathcal{N}(0, \Delta t)}$$
$$\Delta X = \mu \cdot \Delta t + \sigma \cdot \Delta B \sim \mathcal{N}(\mu \Delta t, \sigma^2 \Delta t)$$

▶ in the limit as $\Delta t \rightarrow 0$ we formally write

$$dX_t = \mu dt + \sigma dB_t$$
 (differential form)

- Interpretation:
 - ▶ $dX_t \approx$ changes of X_t in an *infinitesimal* small time interval dt
 - deterministic linear term μdt (drift term)
 - ▶ random perturbation $\sigma dB_t \sim \mathcal{N}(0, \sigma^2 dt)$ (diffusion term)

Model for the Stock Price Process 1/5

Dynamics of the risk-free asset:

- risk-free asset = bank account (or risk-free zero-coupon bond) earning the risk-free interest rate r > 0 (continuous compounding)
- r = risk-free asset's rate of return (per annum)
- $S_t^0 = \text{value of the risk-free asset at time } t \geq 0 \text{ (in years)}$
- $S_0^0 = x \text{ initial value (capital) today at time } t = 0$ $S_t^0 = S_0^0 \cdot e^{r \cdot t} = x \cdot e^{r \cdot t} \qquad (t \ge 0)$
- ▶ note that $(S_t^0)_{t\geq 0}$ as a function in time t is solving a (linear) ordinary differential equation (ODE)

$$\frac{dS_t^0}{dt} = r \cdot S_t^0 \quad \Leftrightarrow \quad \frac{dS_t^0}{S_t^0} = r \, dt \quad \Leftrightarrow \quad dS_t^0 = r \cdot S_t^0 \, dt$$

with initial condition $S_0^0 = x$

Model for the Stock Price Process 2/5

Interpretation of the ODE:

$$\frac{dS_t^0}{dt} = r \cdot S_t^0 \quad \Leftrightarrow \quad \frac{dS_t^0}{S_t^0} = r \, dt \quad \Leftrightarrow \quad dS_t^0 = r \cdot S_t^0 \, dt$$

- the ODE is deterministic (no uncertainty/randomness)
- ▶ dS_t^0 = change of the **risk-free asset's price** (= value) in an *infinitesimal* small time interval dt
- ▶ $dS_t^0 = r \cdot S_t^0 dt$: changes in the price during dt are proportional to S_t^0 with rate of return $r \cdot dt$
- $ightharpoonup \frac{dS_t^0}{S_t^0} = r dt$: risk-free asset's return during dt is $r \cdot dt$
- lacktriangleright in a small time interval $[t,t+\Delta t]$ the change in the risk-free asset's value is given by

$$\underbrace{S^0_{t+\Delta t} - S^0_t}_{\Delta S^0} = r \cdot S^0_t \cdot \underbrace{\left(t + \Delta t - t\right)}_{\Delta t} \quad \Leftrightarrow \quad \Delta S^0 = r \cdot S^0 \cdot \Delta t$$

Model for the Stock Price Process 3/5

Dynamics of the risky asset:

- risky asset = stock
- ho μ = risky asset's (expected) return (per annum)
- ▶ S_t = price (value) of the risky stock at time $t \ge 0$
- $S_0 = s$ initial share price today at time t = 0
- ▶ we use a **stochastic** (linear) differential equation (SDE) to model the dynamics of $(S_t)_{t\geq 0}$

$$\frac{dS_t}{S_t} = \mu \, dt + \sigma \, dB_t$$
randomness (noise)
$$\Leftrightarrow dS_t = \mu \cdot S_t \, dt + \sigma \cdot S_t \, dB_t = S_t \cdot \underbrace{\left(\mu \, dt + \sigma \, dB_t\right)}_{\text{random return}}$$

with initial condition $S_0 = s$

Model for the Stock Price Process 4/5

Interpretation of the SDE:

$$dS_t = S_t \cdot (\mu \, dt \, + \sigma \, dB_t) \quad \Leftrightarrow \quad \frac{dS_t}{S_t} = \mu \, dt + \sigma \, dB_t$$

- the SDE is stochastic (uncertainty)
- ▶ dS_t = change of the **stock price** in an *infinitesimal* small time interval dt
- $ightharpoonup \frac{dS_t}{S_t}$ = risky stock's return during dt
 - deterministic part μdt (= expected rate of return)
 - ▶ random fluctuations $\sigma dB_t \sim \mathcal{N}(0, \sigma^2 dt)$
 - σ = volatility (standard deviation) of the annual returns (captures the unpredictable variability of the stock return)
- in a small time interval $[t, t + \Delta t]$ the change in the stock price is given by

$$\underbrace{S_{t+\Delta t} - S_t}_{\Delta S} = \mu \cdot S_t \cdot \underbrace{\left(t + \Delta t - t\right)}_{\Delta t} + \sigma \cdot S_t \cdot \underbrace{\left(B_{t+\Delta t} - B_t\right)}_{\Delta B \sim \mathcal{N}(0, \Delta t)}$$

$$\Leftrightarrow \qquad \Delta S = \mu \cdot S \cdot \Delta t + \sigma \cdot S \cdot \Delta B$$

Model for the Stock Price Process 5/5

Question:

What is the solution to the stochastic differential equation

$$dS_t = S_t \, \mu \, dt + S_t \, \sigma \, dB_t \quad ?$$

In other words, how does the stochastic process $(S_t)_{t\geq 0}$ modeling the stock price look like, i.e., what is

$$S_t = ?$$

To answer this question we will need **Itô's formula** ("Itô calculus").

Simulating the Stock Price Process

Idea: Discretization of the SDE (Euler method)

$$dS_t = \mu \cdot S_t dt + \sigma \cdot S_t dB_t, \quad S_0 = s$$

- grid of discrete time points $0 = t_0 < \ldots < t_n = T$
- ▶ set $S_0 = s$ and compute recursively for i = 1, ..., n:

$$S_{t_i} = S_{t_{i-1}} + S_{t_{i-1}} \cdot \mu \cdot (t_i - t_{i-1}) + S_{t_{i-1}} \cdot \sigma \cdot \sqrt{t_i - t_{i-1}} \cdot Z_i$$

where Z_1,\ldots,Z_n i.i.d. $\sim \mathcal{N}(0,1)$

- lacktriangle generates the stock prices $S_{t_0}, S_{t_1}, \dots, S_{t_n}$ on the discrete grid
- ▶ typically equally spaced time points: $t_i = i \cdot \frac{T}{n}$ and hence $t_i t_{i-1} = T/n$

Illustration

Possible evolution of the stock price $(S_t)_{0 \le t \le 1}$ with volatility $\sigma = 30\%$ per annum and expected return $\mu = 15\%$ per annum. Initial price is $S_0 = 100$.

Itô Processes and Itô's Lemma 1/4

KIYOSI ITÔ (1915 – 2008) was a Japanese mathematician. He pioneered the theory of *stochastic integration* and *stochastic differential equations*, also known as the **Itô calculus**. Its basic concept is the **Itô integral**, and among the most important results is a change of variable formula known as **Itô's lemma**.

Itô Processes and Itô's Lemma 2/4

Very informal definition:

Definition 14.6

Let $(B_t)_{t\geq 0}$ be a standard Brownian motion. Let $(H_t)_{t\geq 0}$ and $(K_t)_{t\geq 0}$ be stochastic processes (satisfying suitable technical assumptions).

A continuous-time stochastic process with dynamics (differential form)

$$dX_t = K_t dt + H_t dB_t, \quad X_0 = x$$

is called Itô process.

 K_t : drift coefficient, H_t : diffusion coefficient.

Note: We can also have that $K_t = K(t, X_t)$ and $H_t = H(t, X_t)$ are (deterministic) functions of t and X_t .

Itô Processes and Itô's Lemma 3/4

Example 14.7

Let $(B_t)_{t\geq 0}$ be a standard Brownian motion.

- 1. The standard Brownian motion $(B_t)_{t\geq 0}$ is an Itô process with $K_t=0$ and $H_t=1$.
- 2. The Brownian motion with drift parameter $\mu \in \mathbb{R}$ and variance parameter $\sigma^2 > 0$ (generalized Wiener process from Definition 14.5) with dynamics

$$dX_t = \mu \, dt + \sigma \, dB_t$$

is an Itô process with $K_t = \mu$ and $H_t = \sigma$.

3. The stock price process (from above) with dynamics

$$dS_t = \mu S_t dt + \sigma S_t dB_t$$

is an Itô process with $K_t = \mu S_t$ and $H_t = \sigma S_t$.

Excursion: Itô Processes and Itô's Lemma 4/4

Theorem 14.8 (Itô's Formula)

Let

$$dX_t = K_t dt + H_t dB_t$$

be an Itô process and let $g:[0,\infty)\times\mathbb{R}\to\mathbb{R}$ be a twice continuously differentiable function. Then, the stochastic process $Z_t=g(t,X_t)$ is again an Itô process with dynamics

$$\begin{split} dZ_t &= dg(t, X_t) \\ &= \underbrace{\left(\frac{\partial g}{\partial t}(t, X_t) + \frac{\partial g}{\partial x}(t, X_t) \cdot K_t + \frac{1}{2} \cdot \frac{\partial^2 g}{\partial x^2}(t, X_t) \cdot H_t^2\right)}_{\text{drift coefficient}} dt \\ &+ \underbrace{\frac{\partial g}{\partial x}(t, X_t) \cdot H_t}_{\text{diffusion coefficient}} dB_t. \end{split}$$

Application: Computing the Stock price process

We are now able to compute the stock price process $(S_t)_{t\geq 0}$ with dynamics (SDE)

$$dS_t = \mu \cdot S_t dt + \sigma \cdot S_t dB_t, \quad S_0 = s \qquad (\star)$$

Example 14.9

Let $(B_t)_{t\geq 0}$ be a standard Brownian motion, $S_0>0, \mu\in\mathbb{R}$ and $\sigma>0$.

Show that the process

$$S_t = S_0 \cdot e^{(\mu - \frac{1}{2}\sigma^2)t + \sigma B_t} \qquad (t \ge 0)$$

solves the stochastic differential equation in (\star) .

Hint: Compute the dynamics of $log(S_t)$ using the dynamics of S_t in (\star) and $lt\hat{o}$'s formula.

See Lecture Notes.

Geometric Brownian Motion

Definition 14.10

Let $(B_t)_{t\geq 0}$ be a standard Brownian motion. For $S_0, \mu \in \mathbb{R}$ and $\sigma>0$ the process $(S_t)_{t\geq 0}$ defined as

$$S_t = S_0 \cdot e^{(\mu - \frac{1}{2}\sigma^2)t + \sigma B_t} \quad (t \ge 0)$$

is called geometric Brownian motion.

The geometric Brownian motion is used as a model for the **stock price** in the **Black-Scholes-Merton model**.

Log-normal distribution

Definition 14.11

A positive random variable X has a **log-normal** distribution with parameters $\mu \in \mathbb{R}$ and $\sigma^2 > 0$ if

$$\log(X) \sim \mathcal{N}(\mu, \sigma^2).$$

Notation: $X \sim \text{Lognormal}(\mu, \sigma^2)$.

Note:

- ▶ If $X \sim \mathsf{Lognormal}(\mu, \sigma^2)$ then $X = e^{Z}$ where $Z \sim \mathcal{N}(\mu, \sigma^2)$
- ▶ log-normal distribution takes only values in \mathbb{R}^+ and has a known density function

$$f(x) = \frac{1}{x\sigma\sqrt{2\pi}} e^{-\frac{(\log(x)-\mu)^2}{2\sigma^2}} \quad (x > 0)$$

Properties of the geometric Brownian motion 1/2

Lemma 14.12

The stock price process $S_t = S_0 \cdot e^{(\mu - \frac{1}{2}\sigma^2)t + \sigma B_t}$ is log-normally distributed, i.e.,

$$S_t \sim \mathsf{Lognormal}\left(\mathsf{log}(S_0) + \left(\mu - rac{1}{2}\sigma^2
ight)t, \sigma^2 t
ight).$$

Interpretation:

- $S_t = \text{price at time } t \geq 0 \text{ (years)}$
- ► $R_t = \log\left(\frac{S_t}{S_0}\right) = (\mu \frac{1}{2}\sigma^2)t + \sigma B_t \sim \mathcal{N}((\mu \frac{1}{2}\sigma^2)t, \sigma^2 t)$ represents the **log-return** (= continuously compounded return) on [0, t]
- $ightharpoonup \sigma = extstyle exts$
- $ightharpoonup \sigma$ models the **uncertainty** (= riskiness) of the stock price

Properties of the geometric Brownian motion 2/2

Lemma 14.13

The expected value of the stock price process $S_t = S_0 e^{(\mu - \frac{\sigma^2}{2})t + \sigma B_t}$ is given by

$$\mathbb{E}[S_t] = \mathbb{E}[S_0 \cdot e^{R_t}] = S_0 \cdot e^{\mu \cdot t} \quad (t \ge 0).$$

Proof: See Lecture Notes.

Interpretation:

• $\mu =$ expected rate of return (per annum) (depends on riskiness, higher than risk-free rate r)

Density of the stock price distribution

Density of the stock price S_T in T=1/2 years (6 months) with initial price $S_0=\$40$, expected return 16% p.a.; with different volatilities σ p.a. (note $\mathbb{E}[S_T]=S_0e^{0.16\cdot T}=\43.33)