Data Mining Project – Bank Customer

Data description

DataFrame.describe

	customer_id	credit_score o	country	gender	age
count	1.000000e+04	10000.000000	10000	10000	10000.000000
unique	NaN	NaN	3	2	NaN
top	NaN	NaN	France	Male	NaN
freq	NaN	NaN	5014	5457	NaN
nean	1.569094e+07	650.528800	NaN	NaN	38.921800
		96.653299			10.487806
min	1.556570e+07	350.000000	NaN	NaN	18.000000
		584.000000			32.000000
50%	1.569074e+07	652.000000	NaN	NaN	37.000000
75%	1.575323e+07	718.000000	NaN	NaN	44.000000
max	1.581569e+07	850.000000	NaN	NaN	92.000000
	tenure	balance	produc	cts_numb	er credit_card
count	10000.000000	10000.000000	100	000.000	00 10000.00000
unique	NaN	NaN		N	aN NaN
cop	NaN	NaN		N	
freq	NaN	NaN 76485.889288		N	aN NaN
mean	5.012800	76485.889288		1.5302	0.70550
std	2.892174	62397.405202		0.5816	0.45584
min	0.00000	0.000000		1.0000	0.00000
25%	3.000000	0.000000		1.0000	0.00000
50%	5.000000	97198.540000		1.0000	00 1.00000
75%	7.000000	127644.240000		2.0000	00 1.00000
max	10.000000	250898.090000		4.0000	00 1.00000
		estimated_sala			
count		10000.000000 1		000.000	00
unique	NaN	NaN		N	aN
cop	NaN	NaN		N	aN
freq	NaN	N	laN	N	aN
mean	0.515100	100090.2398	881	0.2037	00
std	0.499797	57510.4928	318	0.4027	69
min	0.00000	11.5800	000	0.0000	00
25%	0.00000	51002.1100	000	0.0000	00
50%	1.000000	100193.9150	000	0.0000	00
75%	1.000000	149388.2475	500	0.0000	00
nax	1.000000	199992.4800	000	1.0000	00

Attributes Explain

因爲缺乏文件說明檔,所以以下是根據單字定義推測其屬性的意思。

• customer_id: 客戶的 ID

• credit_score: 客戶的信貸評分, 一般介於 300~850 之間, 其中

Excellent: 800-850 Very Good: 740-799

Good: 670-739
Fair: 580-669
Poor: 300-579

• country: 未知,有可能是客戶所在國家或者銀行所在國家

• gender: 客戶的性別

• age: 客戶的年齡

• tenure: 客戶的貸款期限,單位未知,貸款分為短期貸款(1年內)和中長期貸款

• balance: 客戶目前戶頭內的金額

• products_number: 客戶的產品數量

• credit_card: 客戶是否持有金融卡, 是:1, 否:0

• active_member: 客戶是否爲活躍用戶,是:1,否:0

• estimated_salary: 客戶的預估薪酬,單位未知

• churn: 客戶是否流失,是:1,否:0

Data Distributions

1. 客戶總流失率: 約 20.4%

2. 各屬性的流失率比較圖

連續型屬性:由箱形圖觀察可知流失的客戶跟非流失的客戶相比,信貸評分稍低,年齡中位數稍高,貸款期限分佈較分散,戶頭內金額偏高,products_number 和 estimated_salary 看不出明顯差別。

類別型 / binary 屬性: 由對抗圖觀察可知流失的客戶比例較高的屬性爲, country 爲德國, 性別爲女, 不屬於活躍用戶的資料。

Decision Tree Classifier

The rules used to classify the data

- 1. 資料處理: 有將 country, gender 類別內的值映射到數字, 且有將所有連續型屬性做 Standard Scaler
- 2. 設定 Parameter Grid:

```
p_grid = {
    'criterion': ['entropy', 'gini'],
    'splitter': ['best', 'random'],
    'max_depth': [5, 7, 9],
    'min_samples_leaf': [1, 3, 5],
    'min_samples_split': [2, 3, 4],
    'max_features': [6, 7, 8],
    'random_state': [123]
}
```

3. 使用 GridSearchCV 且設定 cv=10 使用 10-fold cross validation 尋找最佳解

Performance evaluation

```
'min samples split': 2, 'random state': 123,
      'splitter': 'best'}
Classification report :
          precision recall f1-score support
            0.88 0.97 0.92
        0
                                   7963
        1
            0.78
                    0.47
                           0.58
                                   2037
                           0.86 10000
  accuracy
  macro avg
           0.83 0.72
                           0.75
                                   10000
weighted avg
            0.86
                    0.86
                           0.85
                                  10000
```

Discussions or comments

觀察 classification report 中對 churn=1 的預測評鑑可得知 decision tree classifier model 在預測 churn=1 的表現普通。

我認爲可能是因爲從資料分析的各個對抗圖來看,並沒有找到明顯影響判斷 churn=0 或 churn=1 的因素, decision tree classifier model 對於深層規則的探索能力有限。

或者是因爲此份資料的目標屬性比例上有偏差,可以考慮資料增強的方法來增加準確度。

Random Forest Classifier

The rules used to classify the data

- 1. 資料處理: 有將 country, gender 類別內的值映射到數字, 且有將所有連續型屬性做 Standard Scaler
- 2. 設定 Parameter Grid:

```
p_grid = {
    'n_estimators': [50, 100, 120],
    'criterion': ['gini', 'entropy', 'log_loss'],
    'max_depth': [7, 8, 9],
    'max_features': [7, 8, 9],
    'min_samples_split': [3, 5, 7]
}
```

3. 使用 GridSearchCV 且設定 cv=10 使用 10-fold cross validation 尋找最佳解

Performance evaluation

Best score : 0	.866				
Classification	report : precision	recall	f1-score	support	
0	0.89	0.98	0.94	7963	
1	0.88	0.55	0.68	2037	
accuracy			0.89	10000	
macro avg	0.89	0.76	0.81	10000	
weighted avg	0.89	0.89	0.88	10000	

Discussions or comments

因爲的預測效果普通,我想要使用 bagging 的方式增加準確度,我選擇嘗試 random forest classifier。

結果顯示在判斷 churn=1 的 f1-score 比 decision tree classifier 的高出 0.1, 訓練所花的時間增加了半小時以上。

關於之後可以做的改進的方面,目前最佳超參數其中 n_estimators 的數值是 120,表示 random forest 長了 120 棵樹時得到了最佳結果,在我設定的 parameter grid 中是最高的數字,有可能再增加更高的參數會得到更好的結果。

另外也可以參考金融會計相關的知識,瞭解信貸評分參考的因素來源還有評分機制,比對此資料屬性有無重複,並建構更適合金融相關資料預測的演算法。