

Deep Learning for Medical Imaging

Olivier Colliot, PhD Research Director at CNRS ARAMIS Lab – www.aramislab.fr PRAIRIE – Paris Artificial Intelligence Research Institute

Maria Vakalopoulou, PhD **Assistant Professor at** CentraleSupelec **Center for Visual Computing**

Part 3 - Validation 3.1 Introduction

A random paper in deep learning for medical imaging

(ok, a very bad paper, not really a random one)

The ZorglubFormer network for automatic classification of Alzheimer's disease from MRI

Jane Doe¹ and John Due¹

¹University of Random studies, Earth

Our dataset included 280 MR images with Alzheimer's disease and 52 normal MR images.

	Accuracy
3D ResNet	87.1
TrickOfTheTradeCNN [11]	88.3
ZorglubFormer (proposed)	<u>89.7</u>

"We demonstrate that our new method outperformed the state of the art"

Should we be satisfied with this?

Our dataset included 280 MR images with Alzheimer's disease and 52 normal MR images.

What does it mean "images" with Alzheimer's? Are these different patients?

	Accuracy
3D ResNet	87.1
TrickOfTheTradeCNN [11]	88.3
ZorglubFormer (proposed)	<u>89.7</u>

Our dataset included 280 MR images with Alzheimer's disease and 52 normal MR images.

Same comment for the normal images

	Accuracy
3D ResNet	87.1
TrickOfTheTradeCNN [11]	88.3
ZorglubFormer (proposed)	<u>89.7</u>

Our dataset included 280 MR images with Alzheimer's disease and 52 normal MR images.

How many in training set? How many in testing set?

	Accuracy
3D ResNet	87.1
TrickOfTheTradeCNN [11]	88.3
ZorglubFormer (proposed)	89.7

Our dataset included 280 MR images with Alzheimer's disease and 52 normal MR images.

What are the characteristics of the acquisition? What type of MRI sequence? Which scanner?

	Accuracy
3D ResNet	87.1
TrickOfTheTradeCNN [11]	88.3
ZorglubFormer (proposed)	<u>89.7</u>

Our dataset included 280 MR images with Alzheimer's disease and 52 normal MR images.

From which dataset?

	Accuracy
3D ResNet	87.1
TrickOfTheTradeCNN [11]	88.3
ZorglubFormer (proposed)	89.7

Our dataset included 280 MR images with Alzheimer's disease and 52 normal MR images.

Characteristics of the patients? Age? Sex? Disease severity?

	Accuracy
3D ResNet	87.1
TrickOfTheTradeCNN [11]	88.3
ZorglubFormer (proposed)	89.7

Our dataset included 280 MR images with Alzheimer's disease and 52 normal MR images.

	Accuracy	
3D ResNet	87.1	Is this a relevant metric?
TrickOfTheTradeCNN [11]	88.3	
ZorglubFormer (proposed)	<u>89.7</u>	

Our dataset included 280 MR images with Alzheimer's disease and 52 normal MR images.

	Accuracy
3D ResNet	87.1
TrickOfTheTradeCNN [11]	88.3
ZorglubFormer (proposed)	<u>89.7</u>

Our dataset included 280 MR images with Alzheimer's disease and 52 normal MR images.

	Accuracy		
3D ResNet	87.1		
TrickOfTheTradeCNN [11]	88.3	\	Is this due to chance?
ZorglubFormer (proposed)	89.7		

"We demonstrate that our new method outperformed the state of the art"

That's a strong claim. Is it supported by evidence?

Introduction

- Validation aims at evaluating the performance of an ML model
- Ideally, it should be representative of how the model would perform in real life
 - Difficult to achieve in practice, at least at the stage of research
- At the very least, it should provide an unbiased estimate of how the model would perform on new data that is similar to that used for training (but not the same data of course!!)
- Provide information about the variability of the performance and the precision of its estimation

Introduction

- We want a model that performs well on new, never-before seen, data.
- That is equivalent to saying we want our model to generalise well.
 - We want it to recognise only those characteristics of the data that are general enough to also apply to some unseen data
 - ... while ignoring the characteristics of the training data that are overly specific to the training data
- Because of this, we never test on training data, but use separate test data

Introduction

- In this part, we address
 - How to quantify the performance of the model?
 - Performance metrics
 - How to estimate the performance metrics?
 - Validation strategies
 - What kind of statistical analysis should be performed?
 - How to make your research reproducible?
 - What should you report in a paper?

Part 3 - Validation 3.2 Performance metrics

Part 3 - Validation 3.2 Performance metrics for classification and regression

Part 3 - Validation 3.2.1 Metrics for classification

Confusion matrix

True Positives (TP): cases when the actual class of the data point was 1 and the predicted is also 1

Ex. The patient has cancer (1) and the model classifies his case as cancer(1)

True Negatives (TN): cases when the actual class of the data point was 0 and the predicted is also 0

Ex. The patient does not have cancer (0) and the model classifies his case as non-cancer (0)

False Negatives (FN): cases when the actual class of the data point was 1 and the predicted is 0

Ex. The patient has cancer (1) and the model classifies his case as non-cancer(0)

False Positives (FP): cases when the actual class of the data point was 0 and the predicted is also 0

Ex. The patient does not have cancer (0) and the model classifies his case as cancer (1)

Predicted positive by the model, i.e f(x) positive

False positives vs false negatives

- Example 1: cancer screening
 - We should not miss any cancer cases
 - One may consider requiring have very few false negatives even at the expense of relatively high proportion of false positives
 - Positive cases would then be reviewed by an expert or lead to additional explorations
- Example 2: spam detection
 - We should avoid flagging legitimate emails as spam
 - One may consider requiring have very few false postives even at the expense of relatively high proportion of false negatives
- Example 3: segmentation
 - In many cases, one can think that false positives and negatives are equally problematic

Sensitivity (also called recall)

How much of the positives do we retrieve?

$$Sensitivity = Recall = \frac{TP}{TP + FN}$$

Specificity

How much of the negatives do we retrieve?

$$Specificity = \frac{TN}{TN + FP}$$

Precision (also called positive predictive value - PPV)

How much of those classified as positives are indeed positives?

$$PPV = Precision = \frac{TP}{TP + FP}$$

Negative predictive value - NPV

How much of those classified as negatives are indeed negatives?

$$NPV = \frac{TN}{TN + FN}$$

The four previous metrics each describe only part of the confusion matrix

Often, one wants to have a summary in a single metric

Accuracy

Among all samples, how much are correctly classified?

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

Problem with accuracy

- Do not use when the data is imbalanced (the number of cases in each class is not the same)
 - Example:
 - 990 non-cancer and 10 cancer
 - Trivial majority classifier: nobody has cancer
 - Accuracy: 99%
- Possible solution: balanced accuracy (BA)

$$BA = \frac{Sensitivity + Specificity}{2}$$

Problem with balanced accuracy

Suppose that you take a diagnostic test for a given disease

- The test turns out positive
- The sensitivity of the test is 99%, i.e. 99% of sick people are detected
- The specificity is 90%, i.e. 10% of healthy people are diagnosed as positive
- So BA=95% which is excellent
- What is the probability that you have the disease?

We don't have enough information.

Sensitivity=P(test positive|sick)

Specificity=P(test negative|healthy)

We are interested in P(sick|test positive)

```
We are interested in P(sick|test positive)
P(sick|test positive)=P(test positive|sick)*P(sick)/P(test positive)
P(sick|test positive)=Sensitivity*P(sick)/P(test positive)
```

```
P(test positive)=P(test positive|healthy)*P(healthy)+ P(test positive|sick)*P(sick)
P(test positive)=(1-specificity)*(1-P(sick)) + sensitivity*P(sick)
```

Thus, we are missing P(sick) which is the prevalence of the disease.

Let the prevalence be 1/1000.

P(test positive)=0.10*0.999+0.99*0.001=0.0999+0.00099=10.089% P(sick|test positive)=0.99*0.001/0.10089=0.01

So you have only 1% chance to be sick!

Remember

- For a diagnostic test, sensitivity and specificity are not enough
- You need to also know the prevalence
 - Or the positive and negative predictive values
- Be careful at the prevalence in your sample. If you have a casecontrol study (for instance with equal numbers of cases and controls) the prevalence is likely wrong
- Ideally, you would need the prevalence in the situation in which the test is meant to be used (general population for a screening test)

NPV and PPV as a function of prevalence

Sensitivity and specificity are fixed

F1 score

True class

Harmonic mean of precision and recall

$$F1 = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}} = 2 \frac{Precision \times Recall}{Precision + Recall}$$

$$F1 = \frac{2TP}{2TP + FP + FN}$$

Coming back to the previous example

N= 10000 samples, prevalence= 0.001

Sensitivity: 0.99

Specificity: 0.99

PPV: 0.09

NPV: 0.9999

Accuracy: 0.99

Balanced accuracy: 0.99

F(: 0.16

Is a good diagnostics

N= 10000 samples, prevalence= 0.9999

Sensitivity: 0.99 Specificity: 0.99

PPV: 0.9999

NPV: 0.0098

Accuracy: 0.99

Balanced accuracy: 0.98

F1.0.994

Is a poor diagnostics

```
N= 10000 samples, prevalence= 0.9999
Sensitivity: 0.99
Specificity: 0.99
PPV: 0.9999
NPV: 0.0098
Accuracy: 0.99
Balanced accuracy: 0.98
                                       Is a poor diagnostics
F1: 0.994
Solution: switch classes
                                       Is a good diagnostics
F1: 0.019
               F1 should focus on the minority
               class to be informative
```

Matthews Correlation Coefficient (MCC)

$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP) \times (TP + FN) \times (TN + FP) \times (TN + FN)}}$$

Makes use of all the information in the confusion matrix

Ranges between +1 and -1

+1 is perfect prediction

0 is random prediction

-1 is perfectly wrong prediction

Coming back to the previous example

N= 10000 samples, prevalence= 0.9999

Sensitivity: 0.99

Specificity: 0.99

PPV: 0.9999

NPV: 0.0098

Accuracy: 0.99

Balanced accuracy: 0.98

F1: 0.994

MCC: 0.098

Good diagnostics

Conclusion

- Accuracy and BA are useful because they are easy to interpret.
 However, taken alone, they are not sufficient and can be misleading
- Same thing for F1
- MCC is a good summary metric but probably less intuitive

Continuous outputs

- Many ML methods output continuous values
- This is in particular the case of neural networks
- Often one simply takes the class with highest probability
- However, there are applications where one is interested to study the performance for varying thresholds on the output

Continuous outputs

- Many ML methods output continuous values
- This is in particular the case of neural networks
- Often one simply takes the class with highest probability
- However, there are applications where one is interested to study the performance for varying thresholds on the output

Continuous outputs

- Many ML methods output continuous values
- This is in particular the case of neural networks
- Often one simply takes the class with highest probability
- However, there are applications where one is interested to study the performance for varying thresholds on the output

ROC curve

Interpretation of ROC AUC: probability that a positive sample has a higher classification score (as positive) than a negative sample

ROC curve

Precision-Recall (PR) curve

Precision-Recall (PR) curve

Precision-Recall (PR) curve

Precision-Recall (PR) curve

Interpretation of the PR AUC depends on the prevalence

Imbalanced datasets

Example for prevalence=0.01

As accuracy, ROC AUC can be misleading when the dataset is imbalanced

Part 3 - Validation 3.2.2 Metrics for regression

Metrics for regression

Visualize prediction errors

Figure 6: Visualizing prediction errors – plotting the predicted outcome as a function of the observed one enables to detect structure in the error beyond summary metric. Here the error increases for large values of y, for which there is also a systematic undershoot.

Metrics for regression

R2 - coefficient of determination

$$R2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

$$SS_{res} = \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^{2}$$

$$SS_{tot} = \sum_{i=1}^{n} (y^{(i)} - \overline{y}^{(i)})^{2}$$

- This is computed on the test set (out-of-sample)
 - Can be negative (hence call it R2 and not R²)
 - Is not the square of the correlation coefficient
- Sort of "explained variance" (but for many authors, explained variance ignores bias)
- Do not use the correlation coefficient (between y and \hat{y}) because it discards errors on the mean and the scale -> important in practice
- Do not use to compare models because it depends on variance of y

See (Varoquaux and Colliot, Preprint, 2022 - https://hal.science/hal-03682454/)

Metrics for regression

Absolute error measures: RMSE and MAE

RMSE =
$$\sqrt{\frac{\sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^2}{n}}$$

$$MAE = \frac{\sum_{i=1}^{n} |y^{(i)} - \hat{y}^{(i)}|}{n}$$

See (Varoquaux and Colliot, Preprint, 2022 -

https://hal.science/h al-03682454/)

- Good to compare models
- Give an error in the scale of the outcome (e.g. outcome in years, error in years)
- MAE is easier to interpret
- RMSE will put more weight on rare large errors

$$error = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 100]$$

 $MAE = 10$ $RMSE \approx 30.17$

Note that if the error was uniformly equal to the same value (10, for instance), both measures would give the same result.

Part 3 - Validation 3.2.3 Metrics for segmentation

Here focus on semantic (not instance) segmentation

Segmentation can be seen as classification at each pixel, however:

- Of course, don't compute metrics across patients (need to compute one metric per patient, then average)
- TN are often meaningless since the background can be arbitrarily large
- Interest in the boundary and the shape of structures
 - Boundary-based metrics
- Interest in the volume of the structures
 - Simple volume agreement measures

Overlap metrics

Dice Similarity Coefficient (a.k.a. Soerensen-Dice Coefficient)

$$DSC = \frac{Vol(S_r \cap S_p)}{2(Vol(S_r) + Vol(S_p))}$$

 S_r is the reference (ground truth) segmentation S_p is the predicted segmentation Vol(S) denotes the volume of object S

Image from: Reinke et al, Preprint, 2021

https://arxiv.org/pdf/2104.05642.pdf

Dice is actually the same as the F₁ score

$$DSC = \frac{2TP}{2TP + FN + FP}$$

Indeed:

$$Vol(S_r) = TP + FN$$

 $Vol(S_p) = TP + FP$

Overlap metrics

IoU (Intersection over Union, a.k.a. Jaccard Coefficient)

$$IoU = \frac{Vol(S_r \cap S_p)}{Vol(S_r \cup S_p)}$$

 Dice and IoU provide the same information (they follow the same order) but Dice is always greater than IoU

$$IoU = \frac{DSC}{2 - DSC}$$

$$DSC = \frac{2IoU}{1 + IoU}$$

 No need to report both: report Dice which is more common in medical imaging

Overlap metrics

- Special cases
 - Want to put more emphasis on FP or FN?
 - Use F_β instead of Dice which is F₁
 - Dealing with tubular structures?
 - See "Center-line Dice" (cl-Dice)

Boundary metrics

Hausdorff Distance (HD) and HD95

From: Reinke et al, Preprint, 2021

- HD95 is less sensitive to outliers
- Allows to detect "spikes" in the automatic segmentation
- Still the most commonly used boundary metrics
- Have drawbacks when the boundary of the ground truth is imperfect

Boundary metrics

Average Surface Distances (ASSD and MASD)

From: Reinke et al, Preprint, 2021

- ASSD has the drawback that if a boundary is much larger, it will influence more the metric (solved by MASD)
- Have drawbacks when the boundary of the ground truth is imperfect

Boundary metrics

Normalized Surface Distance (NSD a.k.a. Surface Dice)

From: Reinke et al, Preprint, 2021

Synonyms: Surface Dice, Normalized Surface Distance

Boundary metrics

Normalized Surface Distance (NSD a.k.a. Surface Dice)

From: Reinke et al, Preprint, 2021

- Advantage: defines a tolerance on the distance (in particular useful to disregard small systematic imprecisions in the ground truth)
- Drawback: need to choose maximum tolerate distance τ

Volume metrics

- They take only into account the volume of the segmented structures
 - They can be misleading

Same volume but very bad segmentation

- However, they are useful
 - Volumetry is a key medical application of segmentation
 - They are easy to interpret
- But they should not be used in isolation

Volume metrics

- Normalized Volume Error Rate
 - Can detect systematic under-/over-estimation (but errors cancel out when averaged across the population)

$$NVER = \frac{Vol(S_p) - Vol(S_r)}{Vol(S_r)}$$

- Absolute Normalized Volume Error Rate
 - Errors don't cancel out

$$ANVER = \frac{|Vol(S_p) - Vol(S_r)|}{Vol(S_r)}$$

Pearson's correlation coefficient (across test set)

$$\mathbf{r} = \frac{\sum_{i=1}^{n} (\text{Vol}(S_{p}^{(i)}) - \overline{\text{Vol}(S_{p}^{(i)})})(\text{Vol}(S_{r}^{(i)}) - \overline{\text{Vol}(S_{r}^{(i)})})}{\sqrt{\sum_{i=1}^{n} (\text{Vol}(S_{p}^{(i)}) - \overline{\text{Vol}(S_{p}^{(i)})})^{2}} \sqrt{\sum_{i=1}^{n} (\text{Vol}(S_{r}^{(i)}) - \overline{\text{Vol}(S_{r}^{(i)})})^{2}}}$$

Consensus guidelines for metric in medical imaging

Maier-Hein et al, 2022 https://arxiv.org/abs/2206.01653

https://metrics-reloaded.dkfz.de/

Metrics for other tasks cover later in the course

Part 3 - Validation 3.2.4 Aggregate vs individual metrics

Aggregate vs individual metrics

- Aggregate metrics (at the level of a population)
 - Classification: Accuracy, AUC, Sensitivity, Specificity...
 - Regression: R2
- Individual metrics (at the level of a single sample, e.g. individual patient)
 - For classification, this would typically be 0s and 1s
 - For many tasks, one will have continuous individual metrics
 - E.g.
 - Absolute error (regression) $|y^{(i)} \hat{y}^{(i)}|$
 - Dice (segmentation)
 - Then they can be aggregated at the level of a population through averaging
 - E.g.
 - Mean absolute error` $\frac{\sum_{i=1}^{n}|y^{(i)}-\hat{y}^{(i)}|}{\sum_{i=1}^{n}|y^{(i)}-\hat{y}^{(i)}|}$
 - Mean Dice

Part 3 - Validation 3.3 Validation strategy

Samples

Hold out

sklearn.model_selection.ShuffleSplit(n_splits=1)

Samples

Training set

Validation set

Larger training set: better learning

Larger validation set: better estimation of performance

But data is not infinite → cross validation Idea: repeatedly exchange training and testing data

Stratification

Samples

sklearn.model_selection.StratifiedSuffleSplit(n_splits=1)

Training set

Validation set

Keep the same proportion of each class in the training and validation sets

In the above example 1/3 of samples are diseased and 2/3 are healthy

Stratification in a broader sense

In many cases, you want the distribution of several variables to be the same in the training and validation set (and not only the proportions of the different classes)

For example: age, sex...

This is very important for medical data (this issue may be less relevant in other areas such as computer vision)

Stratification in a broader sense

Example

Table 2. Summary of participant demographics, mini-mental state examination (MMSE) and global clinical dementia rating (CDR) scores at baseline for ADNI.

	Subjects	Sessions	Age	Gender	MMSE	CDR		
CN	330	1 830	74. 4 ± 5.8 [59.8, 89.6]	160 M / 170 F	29.1 ± 1.1 [24, 30]	0: 330		
AD	336	1 106	75.0 ± 7.8 [55.1, 90.9]	185 M / 151 F	23.2 ± 2.1 [18, 27]	0.5: 160; 1: 175; 2: 1		

Values are presented as mean ± SD [range]. M: male, F: female

Split into validation and test set while preserving the most important variables

Stratification in a broader sense

It is often very difficult to acheive identical (or almost identical) distributions, in particular when controlling for many variables

In practice, one would often be happy if the mean and SD (for continuous variables) and the proportion (for categorical variables) are approximately preserved

Stratification in a broader sense

Training set

	n_subjects	mean_age	std_age	min_age	max_age	sexF	sexM	mean_MMSI	std_MMSE	min_MMSE	max_MMSE
AD	236	74.995763	7.982102799	55.1	90.9	106	130	23.1694915	3 2.088325437	18	27
CN	230	74.42087	5.704597622	59.8	88.6	118	112	29.1217391	3 1.120153919	24	30

Validation set

	n_subjects	mean_age	std_age	min_age	max_age	sexF	sexM	mean_N	MMSE	std_MMSE	min_MMSE	max_MMSE
AD	100	74.993	7.330733319	55.9	90.3	45	5 55	i	23.25	1.986831649	19	27
CN	100	74.415	5.90662975	59.9	89.6	52	48		29.01	1.135737646	26	30

Stratification in a broader sense

There is no scikit-learn function to perform this

One will often do this using ad-hoc procedures

This is usually done for a separated test set but not for a cross-validation

k-fold cross validation

sklearn.model_selection.KFold

Samples

sklearn.model_selection.StratifiedKFold

Advantage: most efficient (efficient = less computation time) way to use all the samples for training and testing

Drawback: less comprehensive evaluation of the variability of the performance

Typical values of k: 5, 10

sklearn.model_selection.LeaveOneOut

Leave-one-out cross validation

Special case of k-fold with k=n

Samples

In general, one should prefer smaller values of k unless n is really small

Repeated hold out

sklearn.model_selection.ShuffleSplit(n_splits)

sklearn.model_selection.StratifiedSuffleSplit(n_splits)

Repeat k times (with large k, for instance 100)

Validation set

Training set

Advantage: comprehensive evaluation of the variability of the performance

Drawback: computationnally expensive

Is this enough?

- If there is no feature selection and a single model without any hyperparameter, yes
- But this is rarely the case

Use all samples for feature selection

Then cross-validate the model using the selected features as input

Use all samples for feature selection

Wen et al, 2018

Use all samples for dimensionality reduction (e.g PCA)

Then cross-validate the model using the reduced features as input

This should not be done but it is probably much less serious than in the case of feature selection

Do multiple runs of cross-validation to select the best hyperparameter

For instance the hyperparameter λ that controls the amount of regularization in I1 (LASSO) and I2 (ridge, SVM...) norm regularized approaches

Report the performance obtained on the validation set that was used to decide when to stop training (in deep learning)

Test many possible models and architectures using multiple runs of CV and report the performance of the best performing model

Data leakage

These bad practices are called **data leakage**: some information from the validation set has leaked into the building of the model

Is data leakage prevalent?

Litterature survey of studies using CNNs for Alzheimer's classification from anatomical MRI

(A) Studies without data leakage

Valliani and Soni, 2017

									_	
Study	DOI	Accuracy	Data leakage	Study	DOI	Accuracy	Data leakage	Cat	tegoi	ries
		AD vs CN				AD vs CN		1	2	3
Aderghal et al, 2017	10.1007/978-3-319-51811-4_56	83,70%	None detected	Aderghal et al, 2017	10.1145/3095713.3095749	91,41%	Unclear	Х		
Aderghal et al, 2018	10.1109/CBMS.2018.00067	90%	None detected	Hon and Khan, 2017	10.1109/BIBM.2017.8217822	96,25%	Unclear	Х		Х
Backstrom et al, 2018 *	10.1109/ISBI.2018.8363543	90,11%	None detected	Hosseini-Asl et al, 2018	10.2741/4606		Unclear	Х	X	
Cheng et al, 2017	10.1117/12.2281808	87,15%	None detected	Islam and Zhang, 2017	10.1007/978-3-319-70772-3_20	(CN/mild/moderate/ severe: 73,75%)	Unclear		x	
Cheng and Liu, 2017	10.1109/CISP- BMEI.2017.8302281	85,47%	None detected	Taqi et al, 2018	10.1109/MIPR.2018.00032	100%	Unclear		х	
Islam and Zhang, 2018 **	10.1186/s40708-018-0080-3	(CN/mild/moderate/ severe: 93,18%)	None detected	Vu et al, 2017	10.1109/BIGCOMP.2017.7881683	85,24%	Unclear	Х		
Korolev et al, 2017	10.1109/ISBI.2017.7950647		None detected	Wang et al, 2018	10.1007/s10916-018-0932-7	97,65%	Unclear		Х	
Li et al, 2018	10.1109/IST.2017.8261566	88,31%	None detected	Backstrom et al, 2018 *	10.1109/ISBI.2018.8363543	98,74%	Clear	Х		
Li et al, 2018	10.1016/j.compmedimag.2018.0 9.009	89,50%	None detected	Farooq et al, 2017	10.1109/IST.2017.8261460	(AD/LMCI/EMCI/ CN: 98,88%)	Clear	Х		
Liu et al, 2018	10.1007/s12021-018-9370-4	84,97%	None detected	Gunawardena et al, 2017	10.1109/M2VIP.2017.8211486	(AD/MCI/CN: 96%)	Clear	Х	Х	
Liu. et al, 2018	10.1016/j.media.2017.10.005	91,09%	None detected	Vu et al, 2018	10.1007/s00500-018-3421-5	86,25%	Clear	Х		Х
Liu. et al, 2018	10.1109/JBHI.2018.2791863	90,56%	None detected	Wang S. et al, 2017	10.1007/978-3-319-68600-4_43	(MCI/CN: 90,60%)	Clear	Х	L	
Senanayake et al, 2018	10.1109/ISBI.2018.8363832	76%	None detected							
Shmulev et al, 2018	10.1007/978-3-030-00689-1_9	(sMCI/pMCI: 62%)	None detected		Over 40	1% of st	udios			

Table 1. Summary of the studies performing classification of AD using CNNs on anatomical MRI. When brackets. (A) Studies without data leakage; (B) Studies with potential data leakage.

Data leakage categories: 1: Biased split; 2: No independent test set; 3: Late split.

10.1145/3107411.3108224

** Use of imbalanced accuracy on an imbalanced dataset, leading to an over-optimistic estimation of performance.

Over 40% of studies are suspect of data leakage!

(Wen*, Thibeau—Sutre* et al, 2020)

81,30% None detected

^{* (}Backstrom et al., 2018) experimented two data-partitioning strategies to study the consequences of a labels.

Fifty shades of data leakage

Bad split of samples between the training, validation and test sets

3D MRI Splitted at the slice level and not the patient level

5-fold accuracy (with 1.00 ± 0 [1.00, 1.00, 1.00, 1.00, 1.00] data leakage)

True 5 –fold accuracy 0.79 ± 0.04 [0.83, 0.83, 0.72, 0.82, 0.73]

Fifty shades of data leakage

Bad split of samples between the training, validation and test sets

Several visits per patient
Split at the visit level and not the patient level

One can use the following functions to do the split at the patient level (slices or visits will be grouped into patients)

sklearn.model_selection.LeaveOneGroupOut

sklearn.model_selection.LeavePGroupsOut

sklearn.model_selection.GroupKFold

What should we do?

Training, validation and test sets

Samples

Use to test different models, to choose when to stop training...

Often through cross-validation

Use only to report performance

What should we do?

Training, validation and test sets

Samples

Cross-validation

Standard (minimal) good practice for deep learning

Training, validation and test sets

Samples

Use cross-validation, often with k=3 to 5, to train the model, experiment with different architectures...

Use only to report performance

Where should I keep the test set?

In a safe!

The test set

When should I separate the test set?

Before starting the work

And make sure the person training the model doesn't have the key!

Other solution

Nested cross-validation

https://i.stack.imgur.com/vh1sZ.png

Nested cross-validation

Computationally expensive
Can be feasible with models with fast training

Standard (minimal) good practice for deep learning

Training, validation and test sets

Samples

Use cross-validation, often with k=3 to 5, to train the model, experiment with different architectures...

Use only to report performance

Even better

Use to train the model, experiment with different architectures...

Part 3 - Validation 3.4 Statistical analysis

	Balanced
	accuracy
3D ResNet	72.1
TrickOfTheTradeCNN [11]	72.3
ZorglubFormer (proposed)	72.7

Should we be satisfied with this?

- We are going to consider two cases
 - Trained models
 - The model has been trained, the only source of variation is the test set
 - Learning procedure
 - You want to know how variable is the performance with respect to different sources
 - Test set
 - Training set
 - Hyperparameters
 - Initialization
 -

- We are going to look at two types of statistics
 - Descriptive statistics
 - How variable is your performance?
 - Inferential statistics
 - How precise is the estimate of your performance?
 - Can you claim that one model is better than another?

• Can you give some examples of ways to assess of variability the performance?

- Can you give some examples of ways to assess of variability the performance?
 - Measures
 - Standard-deviation
 - IQR (inter-quartile range)
 - Min, max
 - Deciles, centiles
 - Graphs
 - Bar plots
 - Box plots
 - Violin plots
 - Jittered points

• Can you give some examples of ways to assess of precision of an estimate?

- Can you give some examples of ways to assess of precision of an estimate?
 - Measures
 - Confidence interval
 - Standard error
 - Graphs
 - Bar plots
 - Box plots
 - ...

Part 3 - Validation
3.4.1 Statistical analysis:
variability (descriptive statistics)

We are going to consider two cases

- Trained models
 - The model has been trained, the only source of variation is the test set
- Learning procedure
 - You want to know how variable is the performance with respect to different sources
 - Test set
 - Training set
 - Hyperparameters
 - Initialization
 - •

- We are going to consider two cases
 - Trained models
 - The model has been trained, the only source of variation is the test set
 - Learning procedure
 - You want to know how variable is the performance with respect to different sources
 - Test set
 - Training set
 - Hyperparameters
 - Initialization
 - •

- Assess the variability of the performance
 - Is it stable?
 - Are there extreme cases?
 (complete failures)
- What should we do?
 - Plot the distribution
 - Are mean and standard-deviation meaningful?
 - Report in tables
 - Mean and standard-deviation
 - or
 - Median and IQR
 - If enough space
 - Provide a graph

Assess the variability of the performance

- Is it stable?
- Are there extreme cases?
 (complete failures)

- Plot the distribution
 - Are mean and standard-deviation meaningful?
- Report in tables
 - Mean and standard-deviation
 - or
 - Median and IQR
- If enough space
 - Provide a graph

Assess the variability of the performance

- Is it stable?
- Are there extreme cases?
 (complete failures)

- Plot the distribution
 - Are mean and standard-deviation meaningful?
- Report in tables
 - Mean and standard-deviation
 - or
 - Median and IQR
- If enough space
 - Provide a graph

Assess the variability of the performance

- Is it stable?
- Are there extreme cases? (complete failures)

- Plot the distribution
 - Are mean and standard-deviation meaningful?
- Report in tables
 - Mean and standard-deviation
 - or
 - Median and IQR
- If enough space
 - Provide a graph

Assess the variability of the performance

- Is it stable?
- Are there extreme cases?
 (complete failures)

What should we do?

- Plot the distribution
 - Are mean and standard-deviation meaningful?
- Report in tables
 - Mean and standard-deviation
 - or
 - Median and IQR
- If enough space
 - Provide a graph

Error bars represent the standarddeviation computed on the test set

Assess the variability of the performance

- Is it stable?
- Are there extreme cases?
 (complete failures)

- Plot the distribution
 - Are mean and standard-deviation meaningful?
- Report in tables
 - Mean and standard-deviation
 - or
 - Median and IQR
- If enough space
 - Provide a graph

Maybe standard deviation was not enough

- Assess the variability of the performance
 - Is it stable?
 - Are there extreme cases? (complete failures)
- What should we do?
 - Plot the distribution
 - Are mean and standard-deviation meaningful?
 - Report in tables
 - Mean and standard-deviation
 - or
 - Median and IQR
 - If enough space
 - Provide a graph

Dice

The box extends from Q1 to Q3

Assess the variability of the performance

- Is it stable?
- Are there extreme cases?
 (complete failures)

What should we do?

- Plot the distribution
 - Are mean and standard-deviation meaningful?
- Report in tables
 - Mean and standard-deviation
 - or
 - Median and IQR
- If enough space
 - Provide a graph

Violin plot with median and jitter points