## COL 106 Lecture 32

Topic: Graph Data Structures

Some interesting computational problems Given a graph G:

- 1. Reachability: Does there exist a path between 4 and 1?
- 2. Find a shortest path between u and v.
- 3. Connectivity: Does there exist a path between every pair of vertices?
- 4. Identify the connected components of G.

4 connected components/



The Graph ADT:

## Accessor Methods

- · is Adjacent (u,v)
- · list Neighbors (V)

Modifier Methods

- · add Vertex (v)
- · add Edge (uiv)
- · delete Edge (u,v)
- . delete Vertex (v)

Graph Representation 1: Vertex and Edge lists.





Graph Representation 2: Adjacency Matrix



Question: A: adjacency matrix of a graph. What do the entries of Ak represent?

#Walks of length k between two vertices

|   | <u>a</u> | Ь | C | d |
|---|----------|---|---|---|
| a | 0        | 1 | 0 | 0 |
| b | 1        | 0 | 1 | 1 |
| С | 0        | 1 | 0 | 1 |
| ۵ | 0        | 1 | 1 | 0 |

Graph Representation 3: Adjacency lists



Time/Space Complexity

Let n = # of vertices, m = # edges, dv = degree of v.

|              | Vertex and | Adjacency      | Adjacency                                   |
|--------------|------------|----------------|---------------------------------------------|
| Operation    | Edge lists | Matrix         | Lists                                       |
| Space        | n+m        | N <sup>2</sup> | n+m                                         |
| is Adj (u,v) | m          | 1              | min (du, dv) Traverse two lists in parallel |
| (istNbrs(v)  | m          | n              | 1<br>du                                     |

|                | Vertex and | Adjacency | Adjacency                                             |
|----------------|------------|-----------|-------------------------------------------------------|
| Operation      | Edge lists | Matrix    | Lists                                                 |
| add Vertex (v) | 1          | ?         | 1                                                     |
| add Edge (u,v) | 1          | 1         | 1. (if uvedge is guaranteed to not exist already)     |
| del Edge (4,N) | M          | 1         | du +dv                                                |
| del Vertex (v) | M          | depends!  | Z du<br>unbrotu                                       |
|                |            |           | Can be improved<br>to do with a<br>little trick. How? |