ELL409 - Assignment 1 Report

Priyal Jain, 2021MT60949

August 2024

Objective 1

The aim is to clean the data provided and then build a Linear Regression model to fit on the data, minimizing the least squares loss using algorithms of gradient descent and stochastic gradient descent, implemented from scratch.

2 Assumptions

- The convergence criterion is fixed at $\epsilon = 1 \times 10^{-5}$.
- \bullet Total number of epochs is taken to be 10,000 .
- \bullet Outliers are removed using interquartile range method with IQR factor = 1.5 .
- Normalization has been done to speed up the convergence.
- Moving average window size is taken to be k = 10.
- Given data is split into training (80%) and validation (20%) sets.
- Decaying learning rate is incorporated in SGD to achieve convergence in a finite number of epochs.

Gradient Descent 3

Results 3.1

Learning Rate	Iterations to converge	Time(s)	Final Parameters	Training Loss	Validation Loss
0.001	8213	2.21	[126.84, 237.55]	23890.33	22395.17
0.01	932	0.53	[126.87, 237.58]	23890.33	22395.25
0.1	100	0.04	[126.88, 237.59]	23890.33	22395.28

Table 1: Gradient Descent Results with Different Learning Rates

Training and Validation Loss Plots 3.2

(a) Learning Rate: 0.1

(b) Learning Rate: 0.01

(c) Learning Rate: 0.001

Figure 1: Batch size is entire dataset

4 Stochastic Gradient Descent

4.1 Results

Learning Rate	Batch Size	Time (s)	Iterations	Final Parameters	Training Loss	Validation Loss
0.1	1	42.00	921	[126.90, 237.59]	23890.33	22395.25
0.1	10	3.02	688	[126.89, 237.60]	23890.33	22395.28
0.1	100	0.41	462	[126.88, 237.60]	23890.33	22395.31
0.1	1000	0.13	269	[126.89, 237.60]	23890.33	22395.30
0.01	1	25.13	692	[126.88, 237.60]	23890.33	22395.29
0.01	10	2.01	466	[126.88, 237.60]	23890.33	22395.31
0.01	100	0.41	263	[126.88, 237.61]	23890.33	22395.32
0.01	1000	0.24	807	[126.58, 237.23]	23890.58	22394.60
0.001	1	180.03	4592	[126.89, 237.60]	23890.33	22395.31
0.001	10	9.77	2166	[126.89, 237.59]	23890.33	22395.26
0.001	100	3.037	5723	[126.57, 237.22]	23890.59	22394.60
0.001	1000	0.17	223	[126.58, 237.23]	23890.56	22394.61

Table 2: Stochastic Gradient Descent Results for different batch sizes for each learning rate

4.2 Training and Validation Loss Plots

(a) Learning Rate: 0.1

(b) Learning Rate: 0.01

Figure 2: Batch size 1

(c) Learning Rate: 0.001

(a) Learning Rate: 0.1

(b) Learning Rate: 0.01

(c) Learning Rate: 0.001

Figure 3: Batch size 10

(a) Learning Rate: 0.1

(b) Learning Rate: 0.01

(c) Learning Rate: 0.001

(a) Learning Rate: 0.1

(b) Learning Rate: 0.01

(c) Learning Rate: 0.001

Figure 5: Batch size 1000

Observations 5

- As learning rate is decreased, more iterations are required for convergence.
- As batch size is increased, the time taken to converge reduces.
- For SGD, time for convergence is very high because the cost values oscillate.
- Learning rate decay after every epoch:
 - When $lr \ge 0.01$, $lr = lr \times 0.99$ is used.
 - When lr < 0.01, $lr = lr \times 0.999$ is used.
- For outlier detection, Interquartile range method gives better results here as compared to z-score because the data is not normally distributed and has some extreme values.