UFFS - Ciência da Computação - Matemática Discreta Lista 3 - Demonstração - Data: 12/09/2023 - Profa. Rosane R. Binotto

- 1ª Questão Use uma demonstração direta para mostrar que a soma de dois números inteiros ímpares é par.
- 2ª Questão Mostre que o inverso aditivo (ou simétrico), de um número par é um número par, usando a demonstração direta.
- **3ª** Questão Mostre que se m+n e n+p são números inteiros pares, então m+p é par. Que tipo de demonstração você utilizou?
- 4ª Questão Use uma demonstração direta para mostrar que o produto de dois números inteiros ímpares é ímpar.
- 5ª Questão Use uma demonstração por contradição para provar que a soma de um número irracional e um número racional é irracional.
- 6ª Questão Use uma demonstração direta para mostrar que o produto de dois números racionais é racional.
- 7ª Questão Demonstre ou contrarie que o produto de dois números irracionais é irracional.
- **8º** Questão Demonstre que se x é racional e $x \neq 0$, então $\frac{1}{x}$ é racional.
- 9ª Questão Prove que dois números inteiros consecutivos não podem ser ambos pares.
- $10^{\underline{a}}$ Questão Demonstre que se n é inteiro e 3n+2 é par, então n é par, usando:
 - a) uma demonstração por contraposição.
 - $\mathbf{b})$ uma demonstração por contradição.
- 11ª Questão Mostre que $\sqrt{3}$ é um número irracional.
- 12ª Questão Assuma P(n) como a proposição "Se a e b são números reais positivos, então $(a+b)^n \ge a^n + b^n$. Mostre que P(1) é verdadeira. Qual tipo de demonstração você utilizou?

- 13ª Questão Demonstre que se n é um número inteiro positivo, então n é ímpar se, e somente se, 5n + 6 for ímpar.
- 14ª Questão Demonstre que $m^2 = n^2$ se, e somente se, m = n ou m = -n.
- $15^{\underline{a}}$ Questão Mostre que essas três proposições são equivalentes, em que a e b são números reais:
 - i) a < b,
 - ii) a média de a e b é maior que a e,
 - iii) a média de a e b é menor que b.
- **16ª Questão** Os passos abaixo para encontrar as soluções de $\sqrt{x+3} = 3-x$ estão corretos?
 - 1) $\sqrt{x+3} = 3 x$ é dado.
 - 2) $x + 3 = x^2 6x + 9$, obtido tirando a raiz quadrada de ambos os lados de (1).
 - 3) $0 = x^2 7x + 6$, obtido pela subtração de x + 3 dos dois lados de (2).
 - 4) 0 = (x-1)(x-6), obtido pela fatoração do lado direito de (3).
 - 5) x = 1 ou x = 6, obtido a partir de (4).
- 17ª Questão Demonstre que $n^2 + 1 \ge 2^n$ quando n é um inteiro positivo com $1 \le n \le 4$.
- 18ª Questão Demonstre por exaustão que se $n \in \mathbb{Z}_+$ com $n \leq 2$, então $(n+1)^2 \geq 3^n$.
- 19ª Questão Demonstre por exaustão que se $n \in \mathbb{Z}_+$ com $n \leq 3$, então $n! < 2^n$.
- **20ª Questão** Dados dois números reais positivos x e y, sua média aritmética é $\frac{x+y}{2}$ e sua média geométrica é \sqrt{xy} . Mostre que $\frac{x+y}{2} > \sqrt{xy}$, quando $x \neq y$.

(**Dica:** Comece a demonstração supondo que $(x-y)^2 > 0$, quando $x \neq y$.)

Nos exercícios de 1 a 11, use a indução matemática para provar que as proposições dadas são verdadeiras para todo inteiro positivo n.

1.
$$2+4+6+...+2n=n(n+1)$$
.

2.
$$1+5+9+...+(4n-3)=n(2n-1).$$

3.
$$1+3+6+\ldots+\frac{n(n+1)}{2}=\frac{n(n+1)(n+2)}{6}$$
.

4.
$$1^3 + 2^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$$
.

5. 1.3 + 2.4 + 3.5 + ... +
$$n(n+2) = \frac{n(n+1)(2n+7)}{6}$$
.

6.
$$1 + a + a^2 + \dots + a^{n-1} = \frac{a^n - 1}{a - 1}$$
 para $a \neq 0$ e $a \neq 1$.

7.
$$\frac{1}{1 \cdot 3} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$
.

8. Prove que $n^2 > 2n + 3$, para $n \ge 3$.

Dica: Use que 2n+1>2, uma vez que $n\geq 3$.

9. Prove que $n! > n^2$, para $n \ge 4$.

Dica: Use que $n^2 > n+1$, uma vez que $n \ge 4$.

10. Prove que $2^n < n!$, para $n \ge 4$.

Dica: Use que 2 < n+1, uma vez que $n \ge 4$.

11. Prove que $(1 + 2 + \dots + n) < n^2$ para n > 1.

Dica: Use que n < 2n, uma vez que n > 1.