Parallelization of Successive Over-Relaxation Method

JERED DOMINGUEZ-TRUJILLO

Introduction

Objective:

 Develop a Program that Implements a Parallel Successive Over-Relaxation (SOR) Method to Solve the Steady
2-Dimensional Heat Equation on a Rectangular Grid

Motivation:

- To Reduce Computation Times
- Enable Larger, More Refined Models to be Computed

Applications:

- Mechanical Engineering
 - Computational Fluid Dynamic Simulations
 - Heat Transfer (Conduction, Convection, Radiation) Problems

Successive Over-Relaxation is an Iterative Method of Solving Partial Differential Equations

Methods: Heat Equation

Steady Problems:

2nd Order Partial Differential Equation

•
$$k\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}\right) + S(x, y) = 0$$

- $k = thermal\ conductivity$
- T(x,y) = Temperature
- S(x, y) = Heat Source

Given Heat Source: S(x, y)

Solving:

- Apply Boundary Conditions
 - Periodic, Constant Temperature/Heat Flux
- Discretize Region
- Discretize Equation
 - Where $\frac{\partial^2 T_i}{\partial x^2} \approx \frac{T_{i+1} 2T_i + T_{i-1}}{\Delta x^2}$
- · Use Numerical (Iterative) Method to Solve

Solution (Steady-State): T(x, y)

Methods: Successive Over-Relaxation

General Equation:

$$x_i^{k+1} = (1-\omega)x_i^k + \frac{\omega}{a_{ii}} \Big(b_i - \sum_{j>i} a_{ij} x_j^k - \sum_{j$$

Implementation for Heat Equation:

$$f(x_i, y_j)^{(k+1)} = \frac{2*\left[g(x_i, y_j)*\Delta x^2 + \left[f(x_{i-1}, y_j)^{(k+1)} + f(x_{i+1}, y_j)^{(k)}\right] + \left[f(x_i, y_{j-1})^{(k)} + f(x_i, y_{j+1})^{(k)}\right] * \frac{\Delta x^2}{\Delta y^2}\right]}{1 + \frac{\Delta x^2}{\Delta y^2}}$$

For
$$i = 1, ..., n_x$$
 and $j = 1, 2, ..., n_y$

Where k represents the iteration number, f(x, y) represents T(x, y)

And g(x, y) represents S(x, y)

Approach

OpenMP, Multithreading on a Single Process

• Simple, Practical, and Effective

y_4 0 0 0 0 y_3 0 0 0 0 y_2 0 0 y_1 0 0 y_0 x_1 x_2 x_3 χ_4 x_0

Challenges

- Data Dependency within the Grid
- i.e. Each Step through Each Iteration Requires Updated Grid Data

Legend

- Current
- Previously Updated
- In Use for Calculation
- O Not Updated

Implementation

Data-Dependence Solution:

Red-Black Ordering Method

Red-Black Ordering Method: y_4

- First, Update Red Nodes
- Then, Update Black Nodes
- Repeat Until Error is Smaller than Specified Tolerance

Eliminates Data Dependence, Allowing Parallelism to be

Allowing Parallelism to be Implemented

Implementation

Each Iteration has 2 Parallel Regions:

- 1. Parallel Region 1
- Spawn Threads
- Statically Assign Nodes
- Update Red Nodes
- 2. Join and Sync Threads with a Thread Barrier
- 3. Parallel Region 2
- Spawn Threads
- Statically Assign Nodes
- Update Black Nodes
- 4. Join Threads
- 5. Iterate Until Error is Below Specified Tolerance

Results: Speed-Up and Efficiency

Comments: Generally, Speed-Up Leveled Off at 16 Threads and Parallel Efficiency Decreased with Additional Threads

Results: Speed-Up and Efficiency

Comments: Anomaly at 1000 x 1000 System due to 1.5x Increase in Required Iterations

Conclusions

Computation Time Increases Quadratically Along with Grid Size

Long Computation Times for Large Systems

Upwards of an hour

Parallelism Decreased Computation Times to 15 Minutes for a 2000 x 2000 System

Trade-Offs Between

- System Size
- Number of Threads
- Speed-Up
- Efficiency

Must Have Balance for Optimal Performance

System Size