Assignment 1 - Problem 53

Vishnu Gollamudi

January 2022

1 Introduction

Question 53) Suppose (X,Y) follows bivariate normal distribution with means $\mu 1\mu 2$, standard deviations $\sigma 1,\sigma 2$ and correlation coefficient ρ , where all parameters are un-known. Then, testing Ho: $\sigma 1 = \sigma 2$ is equivalent to testing the independence of

- 1.) X and Y
- 2.) X and X-Y
- 3.) X+Y and Y
- 4.) X+Y and X-Y

Answer: 4, X+Y and X-Y

Solution: Given X and Y are bi-variate random variables. Bivariate random variables are distribution of normal distribution to two coordinates. If any two random variables, $X_1 and X_2$ are said independent, then it follows that the correlation co-efficient $\rho[X_1, X_2]$ is equal to 0.

$$\rho[X_1, X_2] = 0$$

We know that, for a bi-variate random variable correlation is given as follows: $\rho[X,Y] = \text{COV}[X,Y] \ / \ \sqrt{Var[X]*Var[Y]}$

For fortesting independence of [X+Y,X-Y], we need to see if $\rho[X+Y,X-Y]$ becomes 0. if $\rho[X+Y,X-Y]=0$, then it follows from the bivariate random distribution that COV[X+Y,X-Y] equates to 0

We know that COV[X+Y,Z] = COV[X,Z] + COV[Y,Z] COV[X,X] = Var[X]

$$\begin{aligned} &\operatorname{Now}, \operatorname{COV}[X+Y,X-Y] \\ &= \operatorname{COV}[(X+Y)*X] - \operatorname{COV}[(X+Y)*Y] \\ &= \operatorname{COV}[(X,X)] + \operatorname{COV}[X,Y] - \operatorname{COV}[X*Y] - \operatorname{COV}[Y*Y] \\ &= \operatorname{Var}[X] - \operatorname{Var}[Y] \end{aligned}$$

Now testing for $\sigma_1 = \sigma_2 => COV[X+Y,X-Y] = 0 => \rho[X+Y,X-Y] = 0$ Hence testing for $\sigma_1 = \sigma_2 => X+Y,X-Y$ are independent.