Metryki sukcesu

REGRESJA

Obliczanie błędu

Residual Error =
$$y - \hat{y}$$

Podstawowe obliczenie

Wartość prawdziwa	Wartość przewidywana	Błąd
100	130	-30
180	150	30
100	100	0

Regresja – metryki sukcesu

Podstawowe metryki sukcesu dla regresji to:

mean squared error (MSE)

mean absolute error (MAE)

root mean square error (RMSE)

root mean square logarithm error (RMSLE)

Mean absolute error (MAE)

$$\mathsf{MAE} = \frac{\sum_{i=1}^{n} |y_i - \hat{y}_1|}{n}$$

Mean absolute error (MAE)

Actual Value (y)	Predicted Value (y hat)	Error (difference)	Absolute Error
100	130	-30	30
150	170	-20	20
200	220	-20	20
250	260	-10	10
300	325	-25	25
		Mean:	21

Mean Square Error (MSE)

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y})^2$$

Mean Square Error (MSE)

Actual Value (y)	Predicted Value (y hat)	Error (difference)	Squared Error
100	130	-30	900
150	170	-20	400
200	220	-20	400
250	260	-10	100
300	325	-25	625
		Mean:	485

Analiza wykresów - MSE

Root mean square error (RMSE)

RMSE =
$$\sqrt{\frac{1}{n}} \sum_{i=1}^{n} (y_i - \hat{y})^2$$

Root mean square error (RMSE)

Actual Value (y)	Predicted Value (y hat)	Error (difference)	Absolute Error
100	130	-30	900
150	170	-20	400
200	220	-20	400
250	260	-10	100
300	325	-25	625

Mean: 485

Square root of mean 22,02271555

Analiza wykresów - RMSE

Root mean squared log error (RMSLE)

RMSLE=
$$\sqrt{\frac{1}{n}} \sum_{i=1}^{n} (\log (y_i + 1) - (\widehat{y+1})^2)$$

Root mean squared log error (RMSLE)

Actual Value (y)	Predicted Value (y hat)	Actual	Predicted Value + 1	log (Actual)	Log (Predicted)	Error (difference)	Squared Error
100	130	101	131	2,0043214	2,1172713	-0,11294992	0,01275768
150	170	151	171	2,1789769	2,2329961	-0,05401916	0,00291807
200	220	201	221	2,3031961	2,3443923	-0,04119622	0,00169713
250	260	251	261	2,3996737	2,4166405	-0,01696679	0,00028787
300	325	301	326	2,4785665	2,5132176	-0,0346511	0,0012007

Mean: 0,00377229

Squre root of mean: 0,06141898

Analiza wykresów – RMSLE – historia ze sklepem

Specyfikacja metryk

	MAE	RMSE	RMSLE
Zakres wejściowy	(-∞, +∞)	(-∞, +∞)	[1, +∞)
Zakres wyjściowy	[0, +∞)	[0, +∞)	[0, +∞)
Wartość idealna	0	0	0
Kara za wartości odstające	liniowa	kwadratowa	exp. i log
Jednostka	taka sama jak danych	taka sama jak danych	taka sama jak danych
Symetryczny?	tak	tak	nie

MAE vs (R)MSE - podsumowanie

MAE	(R)MSE	
Zalety:	Zalety:	
Mniej czułe na wartości dostające	Ma pierwszą i drugą pochodną Dobrze działa, w przypadku rozkładu normalnego (lub zbliżonego)	
Wady:	Wady:	
Brak pierwszej pochodnej w pkt zero i drugiej pochodnej – co w konsekwencji sprawie, że algorytmy oparte o pochodne (praktycznie większość obecnie) nie działają	Czuła na wartości wyraźne odstające – próbuje wychwycić je za wszelką cenę, kosztem pozostałych danych	

Bibliografia

https://medium.com/human-in-a-machine-world/mae-and-rmse-which-metric-is-better-e60ac3bde13d

https://en.wikipedia.org/wiki/Mean squared error

https://en.wikipedia.org/wiki/Mean absolute error

https://en.wikipedia.org/wiki/Root-mean-square deviation

https://www.slideshare.net/KhorSoonHin/rmsle-cost-function

https://pl.qwe.wiki/wiki/Mean squared error

http://www.mblachnik.pl/lib/exe/fetch.php/dydaktyka/zajecia/ai/ci wyklady.pdf

https://medium.com/analytics-vidhya/root-mean-square-log-error-rmse-vs-rmlse-935c6cc1802a

https://www.analyticsvidhya.com/blog/2019/08/11-important-model-evaluation-error-metrics/