

AGENT FOR PREVENTING DENTAL CARIES**Publication number:** JP2002114709**Publication date:** 2002-04-16**Inventor:** FUKUSHIMA KAZUO**Applicant:** UNIV NIHON**Classification:**

- international: A61K39/395; A61P1/02; A61P43/00; C07K16/40;
C12P21/08; A61K39/395; A61P1/00; A61P43/00;
C07K16/40; C12P21/08; (IPC1-7): C07K16/40;
C12P21/08; A61K39/395; A61P1/02; A61P43/00;
C12R1/91

- european:

Application number: JP20000304889 20001004**Priority number(s):** JP20000304889 20001004**Report a data error here****Abstract of JP2002114709**

PROBLEM TO BE SOLVED: To inhibit the formation of biofilm and suppress dental caries by using a mouse monoclonal antibody bonding to GTF-B of Streptococcus mutans and inhibiting the WIG synthesizing activity of the enzyme. **SOLUTION:** The active component of the objective agent for preventing dental caries is a monoclonal antibody against a glucose transferase-B(GTF-B) produced by Streptococcus mutans and inhibiting the WIG synthesizing activity.

Data supplied from the **esp@cenet** database - Worldwide

(19)日本国特許庁 (J P)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2002-114709

(P2002-114709A)

(43)公開日 平成14年4月16日(2002.4.16)

(51)Int.Cl.⁷

A 61 K 39/395
A 61 P 1/02
43/00
// C 07 K 16/40
C 12 P 21/08

識別記号

111
ZNA

F I

A 61 K 39/395
A 61 P 1/02
43/00
C 07 K 16/40
C 12 P 21/08

テ-マコ-ト[®](参考)

P 4 B 0 6 4
4 C 0 8 5
4 H 0 4 5
ZNA

審査請求 未請求 請求項の数 6 OL (全 28 頁) 最終頁に続く

(21)出願番号

特願2000-304889(P2000-304889)

(22)出願日

平成12年10月4日(2000.10.4)

(71)出願人 899000057

学校法人 日本大学

東京都千代田区九段南四丁目8番24号

(72)発明者 福島 和雄

千葉県松戸市栄町西2-870-1 日本大
学松戸歯学部内

(74)代理人 100091096

弁理士 平木 祐輔 (外1名)

F ターム(参考) 4B064 AG27 CA10 CA19 CC24 DA01
4C085 AA14 BA14 BB22 CC02 DD23
DD37 DD84 EE01 GG08
4H045 AA30 BA10 CA11 DA75 DA89
EA29 FA72 FA74

(54)【発明の名称】虫歯予防剤

(57)【要約】

【課題】ストレプトコッカス・ミュータンスのGTF-Bに結合しそのWIG合成活性を阻害するマウスモノクローナル抗体を用いて、バイオフィルム形成阻害および虫歯発生抑制を可能とする。

【解決手段】ストレプトコッカス・ミュータンスが產生するGTF-BのWIG合成活性を阻害する作用を有する該酵素に対するモノクローナル抗体を有効成分として含有することを特徴とする虫歯予防剤。

【特許請求の範囲】

【請求項1】ストレプトコッカス・ミュータンスが產生するグルコシルトランスフェラーゼ-Bの非水溶性グルカン合成活性を阻害する作用を有する該酵素に対するモノクローナル抗体を有効成分として含有することを特徴とする虫歯予防剤。

【請求項2】ストレプトコッカス・ミュータンスが產生するグルコシルトランスフェラーゼ-Bの非水溶性グルカン合成活性を阻害し、本菌がショ糖存在下で平滑歯面に固着・集落化するのを抑制する作用を有する該酵素に対するモノクローナル抗体を有効成分として含有することを特徴とする虫歯予防剤。

【請求項3】前記グルコシルトランスフェラーゼ-Bが、以下の(a)又は(b)に示すアミノ酸配列からなることを特徴とする請求項1或は請求項2記載の虫歯予防剤。

(a) 配列番号1記載のアミノ酸配列

(b) 配列番号1記載のアミノ酸配列において、1又は複数個のアミノ酸が消失、置換又は付加され、かつグルコシルトランスフェラーゼ-B活性を有するアミノ酸配列

【請求項4】前記モノクローナル抗体が、前記グルコシルトランスフェラーゼ-Bの活性部位の1つである配列番号2記載のアミノ酸配列で表されるデキストラン結合領域を認識し結合するモノクローナル抗体であることを特徴とする請求項3記載の虫歯予防剤。

【請求項5】前記モノクローナル抗体が、前記グルコシルトランスフェラーゼ-Bの他の活性基である配列番号3記載で表されるショ糖結合部位を含むペプチド断片を認識し結合するモノクローナル抗体であることを特徴とする請求項3記載の虫歯予防剤。

【請求項6】前記モノクローナル抗体が、マウスマウスハイブリドーマMHP126(FERM P-17566)により產生されるモノクローナル抗体、又はマウスマウスハイブリドーマMHP136(FERM P-17567)により產生されるモノクローナル抗体であることを特徴とする請求項1記載の虫歯予防剤。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】虫歯原因菌ストレプトコッカス・ミュータンスの主要な病原因子であるグルコシルトランスフェラーゼ-Bの非水溶性グルカン合成活性を強く阻害するモノクローナル抗体を使用して虫歯誘発性のバイオフィルム(歯垢)形成の抑制を図る受動免疫による虫歯予防剤に関する。

【0002】

【従来の技術】ヒトが歯を失う2大原因は虫歯(dental caries)と歯周炎である。世界中で最も蔓延している疾患である虫歯は、人類が確実な予防法を持たないため現在でもほとんどのヒトに発症し、身体や生活に多大な

影響を及ぼし続けている。本疾患は、歯垢(dental plaque)という歯面上に形成される細菌膜(バイオフィルム)中のミュータンスレンサ球菌(*mutans streptococci*)により人体中で最も硬い組織である歯質が不可逆的に侵される特異な細菌感染症である。

【0003】ミュータンスレンサ球菌は、1. マンニトール等の糖アルコールを発酵できる、2. ショ糖から付着性の非水溶性グルカン(water-insoluble glucan, 以下WIG)を合成できる、3. WIG合成を介して歯面上に固着・集落化し、そこに虫歯誘発性のバイオフィルムを形成できる、4. 動物に虫歯を誘発できる、等の共通の性質をもつストレプトコッカス・クリセツス(*Streptococcus cricetus*)、ストレプトコッカス・ラッタス(*Streptococcus rattus*)、ストレプトコッカス・ミュータンス(*Streptococcus mutans*)、ストレプトコッカス・ソブリヌス(*Streptococcus sobrinus*)、ストレプトコッカス・ダウネイ(*Streptococcus downei*)等の7菌種8血清型からなる一群の口腔連鎖球菌の総称である。

【0004】これらの中でヒトの口腔に棲息し虫歯発症に深く関わるのは、ストレプトコッカス・ミュータンスとストレプトコッカス・ソブリヌスの2菌種であり、ヒト口腔からの検出頻度の高いストレプトコッカス・ミュータンスが虫歯の主要原因菌と考えられている。これら2菌種は、染色体DNAのGC含量、細胞壁多糖の構造、溶血性、糖の発酵性、菌体内多糖やフルクタン合成能等、細菌学的性状を全く異なる別種の細菌であり、共通の特性である付着性WIG合成とそれを介した歯面への固着・集落化も、全く異なる酵素系及びメカニズムにより行われる。

【0005】ストレプトコッカス・ミュータンスは、染色体上にg t f B, g t f C及びg t f Dという3種のグルコシルトランスフェラーゼ(glucosyltransferase)遺伝子を持っており、それらの発現により各々グルコシルトランスフェラーゼ-B(以下GTF-B)、グルコシルトランスフェラーゼ-C(以下GTF-C)、グルコシルトランスフェラーゼ-D(以下GTF-D)と呼ばれるグルカン合成酵素を主として菌体表層上に产生分泌する。g t f Bとg t f Cの遺伝子産物であるGTF-BとGTF-Cは共にショ糖からWIGとイソマルトオリゴ糖を合成する類似した構造のイソ酵素であるが、WIG合成能はGTF-Bが、オリゴ糖合成能はGTF-Cが勝る。g t f D遺伝子産物であるGTF-Dはショ糖から水溶性グルカン(water-soluble glucan:以下WSG)を合成する酵素である。本菌種がGTF作用を介して歯面に固着・集落化し、そこに虫歯誘発性のバイオフィルムを形成するメカニズムに関しては、最近、遺伝子サイドからのアプローチが進み、PAc等と呼ばれる高分子量の菌体表層タンパク抗原とg t f C遺伝子産物であるGTF-Cが重要因子としてクローズアップされている。ストレプトコッカス・ミュータンスによる虫

歯誘発性バイオフィルムの形成は、1. 唾液タンパクの選択的吸着により歯面上にペリクルと呼ばれる薄膜が形成される、2. ペリクル面に本菌がP A cタンパクを介して初期付着する、3. 付着菌体はG T F - CのW I G合成作用によりその場に強固に固着する、4. 固着菌体に他の菌体が主にG T F - C作用を介して固着・集落化し、本菌に富む細菌膜(虫歯誘発性バイオフィルム)が形成される、という過程で進行するとの見解が現在一般化しつつある。

【0006】一方、ストレプトコッカス・ソブリヌスは、染色体上にg t f I, g t f U, g t f T及びg t f Sという4種のG T F遺伝子を持っており、それらの発現によりグルコシルトランスクレアーゼI(以下G T F - I)という1種類のW I G合成酵素と、グルコシルトランスクレアーゼ-U、-T、-S(以下G T F - U、-T、-S)と呼ばれる3種のW S G合成酵素を菌体外に產生分泌する。本菌種における付着性W I G合成と菌体の固着・集落化は、ストレプトコッカス・ミュータンスの場合と異なって、G T F - I酵素と3種のW S G合成酵素(未特定)の共同作用によりなされることが示唆されている。

【0007】虫歯病因論研究の進展に伴って、原因菌サイドから虫歯予防を図ろうとの応用研究、例えば、選択的殺菌剤、G T F阻害剤、バイオフィルム形成抑制剤、シーラント剤等の開発研究や原因菌及び病原因子に対する特異抗体を用いた受動免疫や能動免疫による虫歯予防研究等がこれまでにも数多く行われ、G T Fによるショ糖からのW I G合成や菌体固着作用を阻害したり、表層タンパク抗原の初期付着作用を阻止する手段により、虫歯予防が可能であることが動物実験等で立証されている。しかし、G T F阻害剤やシーラント剤など一部実用化されてはいるものの、歯磨きに替わりうる効果的で実用的な予防手段は未だ開発されていない。これから虫歯予防手段として最も有望視されているのは、安全性と有用性の点から、虫歯菌のG T Fや菌体表層タンパクの機能を阻害するモノクローナル抗体を使用した受動免疫法である。目的に合った機能阻害抗体をポリクローナルに作製することは比較的容易であり、実際、動物モデル実験で虫歯予防効果を示すストレプトコッカス・ミュータンスの菌体結合性G T F(主にG T F - BとG T F - Cからなる)に対する鶏卵抗体(I g Y)が得られている。しかしながら、この種の抗体をモノクローナルに作製することは極めて難しい。一旦、有用なモノクローナル抗体を産生するハイブリドーマを樹立できれば、同質のものを大量かつ安定に供給でき、バイオテクノロジ技法を駆使した大量生産化も可能である。

【0008】実際に、英国の研究グループは、ストレプトコッカス・ミュータンスの歯面ペリクルへの初期付着を阻害するP A cに対するI g Gタイプのマウスモノクローナル抗体を作成し、その虫歯予防効果をサルを用い

た動物モデル実験で実証している。さらに彼らは、その抗体遺伝子を植物細胞に導入して大量調製したリコンビナント抗体をヒトの歯面に塗布する手段により、口腔から3ヶ月間以上もの間、ストレプトコッカス・ミュータンスを完全除菌することに成功したと最近報告している(Nature medicine, 4:601-606, 1998)。しかしながら、彼らが作製した抗P A cモノクローナル抗体は特異性に問題があり、主要な歯垢構成細菌であるストレプトコッカス・サングイスなどの表層タンパク抗原とも反応性を示すため、その大量使用は口腔常在菌叢を大きく変える危険性がある。従って、受動免疫に使用する予防用抗体としては、特異性の高い虫歯菌G T Fに対する抗体が最適と思われる。

【0009】虫歯ペプチドワクチンの開発研究を行っている米国の研究グループは、ストレプトコッカス・ミュータンスのG T F - BやG T F - Cのショ糖結合領域(活性基の1つ)と同一配列のペプチドを化学合成し、それをマウスに免疫してG T F活性阻害能をもつI g Mタイプのモノクローナル抗体の作製に成功している。しかし、彼らが作製した抗体は、活性部位のアミノ酸配列が僅ながら異なるストレプトコッカス・ミュータンスのG T F - DのW S G合成活性とストレプトコッカス・ソブリヌスG T F - IのW I G合成活性に対しては阻害作用を示すものの、同一アミノ配列をもつ本命のG T F - B及びG T F - CのW I G合成活性に対しては全く阻害作用を示さない(Infec. Immun. 62:5470-5476, 1994)。従って、その種の抗体にストレプトコッカス・ミュータンスの除菌効果を期待することはできない。ストレプトコッカス・ソブリヌスの除菌用に使用できる可能性はあるが、効果が認められたとしてもI g Mタイプの抗体であるため、大量調製化は容易ではない。

【0010】先に、本発明者らの研究グループは、ストレプトコッカス・ミュータンスの3種のG T Fを分別定量する方法を確立する目的で、それぞれのG T Fと特異的に反応する数多くのマウスモノクローナル抗体を作製し、それら特異抗体の識別試薬としての有用性を明らかにした。さらに、G T F - Bと反応性を示す抗体のうちの幾つかは該酵素のW I G合成活性に対して強い阻害作用を示すことを見出した。(Infec. Immun. 61:323-328, 1993)。また、ストレプトコッカス・ソブリヌスの4種のG T Fを識別する特異モノクローナル抗体を同様の方法で作製し、G T F - Iと反応する1抗体が当該酵素のW I G合成活性を明らかに阻害することを見ている(FEBS Immunol. Microbiol. 27:9-15, 2000)。しかしながら、これらの活性阻害抗体が、虫歯誘発性のバイオフィルム形成を抑制できるか否か、虫歯菌を感染させた動物の虫歯発生を抑制できるか否か、ヒトにおいて虫歯予防効果を示すか否か、等については不明である。

【0011】

【発明が解決しようとする課題】そこで、本発明は、ス

トレプトコッカス・ミュータンスのGTF-Bに結合し、そのWIG合成活性を阻害するマウスモノクローナル抗体を用いて、バイオフィルム形成阻害および虫歯発生抑制を可能とする受動免疫用の虫歯予防剤を提供することを目的とする。

【0012】

【課題を解決するための手段】これまで、虫歯誘発性のバイオフィルム形成に最も重要な働きをするストレプトコッカス・ミュータンスの因子は、前述したように、本菌が産生するGTF-Cであると考えられてきた。この見解は、GTF-Cのみを発現する遺伝子組換え体或いは変異株が、無処理及び唾液処理したガラス等の平滑面にショ糖存在下で固着し集落化できるのに対し、GTF-B発現株は固着・集落化できない事実が根拠になっている。しかし、本発明者らは、既得の形質転換株と抗GTF-Bモノクローナル抗体を用いたバイオフィルム形成試験およびラット使用の虫歯誘発実験により、実際の口腔内における虫歯誘発性バイオフィルム形成過程においてはGTF-Bが最も重要な病原因子であることを明らかにし、本発明を完成するに至った。

【0013】即ち、本発明はストレプトコッカス・ミュータンスが産生するGTF-BのWIG合成活性を阻害する作用を有する該酵素に対するモノクローナル抗体を有効成分として含有することを特徴とする虫歯予防剤である。さらに、本発明はストレプトコッカス・ミュータンスが産生するGTF-BのWIG合成活性を阻害し、本菌がショ糖存在下で平滑歯面に固着・集落化し虫歯誘発性バイオフィルムを形成するのを抑制する作用を有する該酵素に対するモノクローナル抗体を有効成分として含有することを特徴とする虫歯予防剤である。

【0014】そして、前記GTF-Bとしては、以下の(a)又は(b)に示すアミノ酸配列からなるものが挙げられる。

(a) 配列番号1記載のアミノ酸配列

(b) 配列番号1記載のアミノ酸配列において、1又は複数個のアミノ酸が欠失、置換又は付加され、かつGTF-B活性を有するアミノ酸配列

【0015】また、上記モノクローナル抗体としては、GTF-Bの活性部位の1つである配列番号2記載のアミノ酸配列で表されるデキストラン結合領域を認識し結合するモノクローナル抗体、或いはGTF-Bの他の活性部位である配列番号3記載で表されるショ糖結合部位を含むペプチド断片を認識し結合するモノクローナル抗体が挙げられる。

【0016】さらに、上記モノクローナル抗体として、マウスマウスハイブリドーマ MHP126 (FERM P-17566) により産生されるモノクローナル抗体、又はマウスマウスハイブリドーマMHP136 (FERM P-17567) により産生されるモノクローナル抗体が挙げられる。

【0017】

【発明の実施の形態】以下、本発明を詳細に説明する。本発明において、既得のGTF-B、-C及び-Dを各自単独発現するストレプトコッカス・ミレリ形質転換株を用いるショ糖依存性菌体固着・集落化試験を行なって、虫歯誘発性バイオフィルム形成における3種のGTFの役割につき再検討を行った。その結果、GTF-Bを発現する株は、無処理又は唾液で被覆した平滑面には固着できないが、グルカンで被覆した表面には顕著に固着・集落化できることを見出した。通常のヒトの口腔内では、ペリクル面へ最初に付着する菌はストレプトコッカス・サングイスの仲間と考えられている。この菌群は主要なバイオフィルム構成菌の1つであり、菌体表層上に非付着性のグルカンを合成する能力があるため、ストレプトコッカス・ミュータンスは、GTF-Bの単独作用のみでその表面に固着・集落化できることになる。従って、実際の口腔内における虫歯誘発性バイオフィルム形成に最も重要な働きをする因子はGTF-Cではなく、GTF-Bであると考えられる。

【0018】従って、本発明の虫歯予防剤は、ストレプトコッカス・ミュータンスの最重要病原因子であるGTF-Bに特異的に反応し、該GTF-BのWIG合成活性を阻害するモノクローナル抗体を有効成分として含有することを特徴とする。「ストレプトコッカス・ミュータンスが産生するGTF-B」には、ストレプトコッカス・ミュータンスに属する微生物が産生する限り、いかなる菌株が産生するGTF-Bも含まれる。

【0019】「ストレプトコッカス・ミュータンスが産生するGTF-B」の具体例としては、以下の(a)又は(b)に示すアミノ酸配列からなるGTF-Bを例示できる。

(a) 配列番号1記載のアミノ酸配列

(b) 配列番号1記載のアミノ酸配列において、1又は複数個のアミノ酸が欠失、置換又は付加され、かつGTF-B活性を有するアミノ酸配列

【0020】ここで、配列番号1記載のアミノ酸配列において欠失、置換又は付加されるアミノ酸の個数は、欠失、置換又は付加されたアミノ酸配列からなるタンパク質がGTF-B活性を有する限り特に限定されないが、好ましくは1又は数個である。「1又は数個」とは、通常、本願の出願時において常用される技術、例えば、部位特異的変異誘発法(Nucleic Acids Res. 10, 6487 - 6500, 1982)により生じさせることができる個数を意味する。

【0021】本発明の虫歯予防剤の有効成分であるモノクローナル抗体には、ストレプトコッカス・ミュータンスが産生するGTF-Bに特異的に反応し、該GTF-Bの非水溶性グルカン合成活性を阻害する限り、いかなるモノクローナル抗体も含まれる。

【0022】その中でも、以下の①～④に示すモノクロ

ーナル抗体を好ましいものとして例示できる。

① 以下の(a)又は(b)に示すアミノ酸配列からなるGTF-Bに特異的に反応し、該GTF-BのWIG合成活性を阻害するモノクローナル抗体。

(a) 配列番号1記載のアミノ酸配列

(b) 配列番号1記載のアミノ酸配列において、1又は複数個のアミノ酸が欠失、置換又は付加され、かつGTF-Bの活性を有するアミノ酸配列

② 前記GTF-Bの活性部位の1つである配列番号2記載のアミノ酸配列で表されるデキストラン結合領域を認識し結合するモノクローナル抗体。

【0023】③ 前記GTF-Bの他の活性部位である配列番号3記載で表されるショ糖結合部位を含むペプチド断片を認識し結合するモノクローナル抗体。

④ マウスマウスハイブリドーマMHP126(FERM P-17566)により產生されるモノクローナル抗体、又はマウスマウスハイブリドーマMHP136(FERM P-17567)により產生されるモノクローナル抗体である。

【0024】ここで、GTF-Bが上記(a)に示すアミノ酸配列からなる場合、上記②に示すモノクローナル抗体が特異的に反応する領域は配列番号2に示すアミノ酸配列で表される領域、或いは上記③に示すモノクローナル抗体が特異的に反応する領域は配列番号3に示すアミノ酸配列で表される領域である。

【0025】本発明の虫歯予防剤の有効成分であるモノクローナル抗体は、ストレプトコッカス・ミュータンスが產生するGTF-Bに特異的に反応し、該GTF-Bの非水溶性グルカン合成活性を阻害するという性質に加え、ストレプトコッカス・ミュータンスが產生するGTF-Dに反応しないという性質を併せ持つことが好ましく、ストレプトコッカス・ミュータンスが產生するGTF-Cに反応しないという性質をさらに併せ持つことがさらに好ましい。

【0026】ストレプトコッカス・ミュータンスが產生するGTF-D及びGTF-Cには、ストレプトコッカス・ミュータンスに属する微生物が产生する限り、いかなる微生物が产生するGTF-D及びGTF-Cも含まれる。

【0027】ストレプトコッカス・ミュータンスが產生するGTF-Dの具体例としては、以下の(c)又は(d)に示すアミノ酸配列からなるGTF-Dを例示できる。

(c) 配列番号4記載のアミノ酸配列

(d) 配列番号4記載のアミノ酸配列において、1又は複数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列

また、ストレプトコッカス・ミュータンスが產生するGTF-Cの具体例としては、以下の(e)又は(f)に示すアミノ酸配列からなるGTF-Cを例示できる。

【0028】(e) 配列番号5記載のアミノ酸配列

(f) 配列番号5記載のアミノ酸配列において、1又は複数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列

ここで、配列番号4及び5記載のアミノ酸配列において欠失、置換又は付加されるアミノ酸の個数の意義は、上記と同義である。

【0029】ストレプトコッカス・ミュータンスが產生するGTF-Dに反応しないという性質と、ストレプトコッカス・ミュータンスが產生するGTF-Cに反応しないという性質とを併せ持つモノクローナル抗体としては、上記②に示すモノクローナル抗体及び上記③に示すモノクローナル抗体を例示できる。

【0030】ストレプトコッカス・ミュータンスが產生するGTF-Bに特異的に反応し、該GTF-BのWIG合成活性を阻害するモノクローナル抗体は、例えば、次の各工程により作成することができる。

(1) 抗原の調製

(2) 免疫及び抗体產生細胞の採取

(3) 細胞融合

(4) ハイブリドーマの選択及びクローニング

(5) モノクローナル抗体の採取

【0031】以下、各工程について説明する。

(1) 抗原の調製

抗原として使用するGTF-B標品は、ストレプトコッカス・ミュータンスの野生株や変異株(不活性化遺伝子挿入法によりgtfCやgtfDをノックアウトしたUA130CD株など)、全gtfBを発現する形質転換株(大腸菌SU20株やストレプトコッカス・ミレリKSB8株など)、或いはgtfBの活性部位領域を発現する形質転換株の培養上清または菌体表層抽出物より精製することにより調製する。また活性部位領域と同一配列のペプチド断片を化学合成し、これを血清アルブミン等と結合させたものを抗原として用いる。

【0032】(2) 免疫及び抗体產生細胞の採取

抗原をマウス、ラット、ハムスター、モルモット又はウサギ等の哺乳動物(ヒト抗体を產生するように遺伝子工学的に作出されたヒト抗体產生マウスのようなトランスジェニック動物も含む)、好ましくはマウス、ラット又はハムスターの皮下内、筋肉内、静脈内、フットパッド内あるいは腹腔内に1~数回注射することにより免疫操作を施し、通常、初回免疫から約1~14日毎に1~4回免疫を行い、最終免疫より約1~5日後に脾臓、リンパ節、骨髓あるいは扁桃等、好ましくは脾臓を摘出することにより行う。

【0033】(3) 細胞融合

モノクローナル抗体を分泌するハイブリドーマの調製は、ケーラー及びミルシュタインらの方法(Nature, 256:495-497, 1975)及びそれに準じる修飾方法に従って行うことができるが、抗体產生細胞と、マウス、ラッ

ト、モルモット、ハムスター、ウサギ又はヒト等の哺乳動物、より好ましくはマウス、ラット又はヒトに由来する自己抗体產生能のないミエローマ細胞とを細胞融合することにより調製される。ミエローマ細胞としては、例えばマウス由来ミエローマP3/X63-AG8.653(653)、P3/NS1/1-Ag4-1(NS-1)、P3/X63-Ag8.U1(P3U1)、SP2/O-Ag14(Sp2/O, Sp2)、PA1、FOあるいはBW5147、ラット由来ミエローマ210RCY3-Ag.2.3.、ヒト由来ミエローマU-266AR1、GM1500-6TG-A1-2、UC729-6、CEM-AGR、D1R11あるいはCEM-T15等を使用することができる。

【0034】(4) ハイブリドーマの選択及びクローニング

ハイブリドーマの選択方法は通常の方法に従えばよく、例えば、選択培地(HAT培地など)を入れたマイクロタイタープレート中で培養し、増殖の見られたウェルの培養上清の前述の免疫感作で用いた抗原に対する反応性を、RIAやELISA等の酵素免疫測定法によって測定することにより行うことができる。GTF-Bに特異的に反応するモノクローナル抗体を産生するハイブリドーマは、例えば、GTF-Bを用いたELISAによってスクリーニングできる。また、GTF-BのWIG合成活性を阻害するモノクローナル抗体を産生するハイブリドーマは、例えば、次のようにスクリーニングできる。GTF-B、ハイブリドーマ培養上清、リン酸カリウム緩衝液(pH6.0)及びアジ化ナトリウムを含有する混合物100～150μlを96穴マイクロプレートのウェルに入れ、37℃で10～30分間プレインキュベーション後、ショ糖含有リン酸カリウム緩衝液(pH6.0)20～50μlを加え、37℃で16～24時間インキュベーションする。インキュベーション後、反応プレートを黒紙上に置いてWIG合成による白濁形成の有無を判定することにより、活性阻害抗体を産生するハイブリドーマをスクリーニングする。目的のモノクローナル抗体を産生するハイブリドーマをクローニングする方法は、通常の方法に従えば良く、特に限定されない。ハイブリドーマのクローニングは、例えば、限界希釈法、軟寒天法、フィブリンゲル法、蛍光励起セルソーター法等により行なうことができる。

【0035】(5) モノクローナル抗体の採取

取得したハイブリドーマからのモノクローナル抗体の採取は、ハイブリドーマをインピトロ又はインピボ(マウス、ラット、モルモット、ハムスター若しくはウサギ等の腹水中等)で培養し、得られた培養上清又は哺乳動物の腹水から単離することにより行うことができる。インピトロで培養する場合には、培養する細胞種の特性、試験研究の目的及び培養方法等の種々条件に合わせて、ハイブリドーマを増殖、維持及び保存させ、培養上清中に

モノクローナル抗体を産生させるために用いられるような既知栄養培地あるいは既知の基本培地から誘導調製されるあらゆる栄養培地を用いて実施することができる。基本培地としては、例えば、Ham'F12培地、MCDB153培地あるいは低カルシウムMEM培地等の低カルシウム培地及びMCDB104培地、MEM培地、D-MEM培地、RPMI1640培地、ASF104培地あるいはRD培地等の高カルシウム培地等が挙げられ、該基本培地は、目的に応じて、例えば血清、ホルモン、サイトカイン及び/又は種々の無機若しくは有機物質等を含有することができる。モノクローナル抗体の単離及び精製は、上述の培養上清あるいは腹水を、飽和硫酸アンモニウム、ユーグロプリン沈殿法、カブロイン酸法、カブリル酸法、イオン交換クロマトグラフィー(DEAE又はDE52等)、抗イムノグロブリンカラム又はプロテインAカラム等のアフィニティカラムクロマトグラフィーに供すること等により行うことができる。採取したモノクローナル抗体が目的とするモノクローナル抗体であることの確認は、例えば精製GTF-Bに対するELISA、ウェスタンプロット法及びWIG合成活性阻害測定(後述)により行うことができる。

【0036】本発明の虫歯予防剤の形態は、虫歯予防効果を発揮し得る限り特に限定されない。本発明の虫歯予防剤の形態としては、例えば、ハイブリドーマの培養上清、腹水抗体、精製抗体の凍結乾燥標品又はこれらを製剤化したものを例示できる。製剤化したものの具体例としては、散剤、顆粒剤、錠剤(例えばトローチ剤)、液剤、カプセル剤等を例示でき、これらの製剤化は常法に従って行なうことができる。散剤、顆粒剤及び錠剤は、例えば、凍結乾燥させた抗体をそのまま、又はこれに賦形剤、結合剤、崩壊剤等の適当な添加剤を加えて(さらに必要に応じて着色剤、芳香剤、嗜味剤等を加えて)均等に混和した後、それぞれ適当な方法により粉末化、粒状化、圧縮成型することにより調製できる。液剤は、例えば、凍結乾燥させた抗体を溶剤に溶解し、必要に応じて安定剤、緩衝剤、嗜味剤、ゲル化剤、保存剤等の適当な添加剤を加えることにより調製できる。液剤に使用する溶剤は、通常精製水又は常水(例えば、水道水、井水)である。本発明の虫歯予防剤は、対象動物の口内に投与する。本発明の虫歯予防剤は、単独で口内へ投与してもよいし、食物や食餌等に混合して口内へ投与してもよい。

【0037】本発明の虫歯予防剤の投与回数は特に限定されないが、通常1～3回/日であり、好ましくは1回/日である。本発明の虫歯予防剤の対象となる動物は、歯を有する動物である限り特に限定されず、例えば、ヒト、イヌ、ネコ、マウス、ラット、ハムスター、ウマ、ウシ、ブタ、等の多くの動物に対して虫歯予防効果を発揮し得る。

【0038】

【実施例】次に、実施例を挙げて本発明を更に詳しく説明する。

実施例1 最重要GTFの特定

(1) 形質転換株の調製

既報 (Infect. Immun. 60 : 2815-2822, 1992) に準じて作製したストレプトコッカス・ミレリK S B 8形質転換株 (G T F - B 発現株) 、K S C 4 3形質転換株 (G T F - C 発現株) 及びN H 5形質転換株 (G T F - D 発現株) の凍結保存菌株より、発現量が高くかつ発現が安定なそれぞれの形質転換株を再分離して使用した。G T F 蛋白の発現量と安定性は、先に本発明者らがモノクローナル抗体を使用して開発した各G T F の產生レベルをセミ分別定量するための免疫学的手法 (FEMS Microbiol. Lett. 145:427-432, 1996) を用いて検定した。

【0039】(2) 固着・集落化試験

ガラス製とポリスチレン製の非被覆、唾液被覆、及びグルカン被覆試験管 (9×75 mm) を用いて形質転換株の固着・集落化能を下記の方法で比較検討した。成人5名からの加熱処理 (60°C、30分間) 混合唾液3mlを試験管に入れ、室温下で30分間インキュベーション後、唾液を除去し、十分に水洗したものを唾液被覆試験管とし

て用いた。グルカン被覆試験管は次のようにして調製した。ストレプトコッカス・ソブリヌスB 13 N株の培養上清から分離精製した純化G T F - I の0.5 μgと純化G T F - S 2 の0.25 μg、5.0 mMショ糖、酢酸ナトリウム緩衝液 (pH 5.5) からなる反応液3mlを試験管に入れ、37°C、30度傾斜下で16時間ローソク培養を行って付着性W I Gを試験管壁上に形成させた後、バイブレーター処理により弱く付着したグルカンを洗浄除去した。

【0040】このようにして調製した唾液及びグルカン被覆試験管及び非被覆試験管に5%ショ糖添加T H B 培地2mlを入れ、オートクレーブ滅菌後、供試菌株の全培養菌1白金耳を植菌し、37°C、16時間、30度傾斜下でローソク培養を行った。培養後、試験管をタッチミキサーを用いてボルテックス処理 (最大スピード、10秒間) して非・弱付着菌体と固着菌体に分別し、それぞれの菌体量を550 nmにおける濁度測定により求め、下記の式に従って固着率を算出した。

【0041】

【化1】

$$\text{固着菌体量} \times 100 \\ \text{固着率} = \frac{\text{固着菌体量}}{\text{固着菌体量} + \text{非・弱付着菌体量}} \quad [\text{表1}] \\ \text{【0042】結果を表1に示す。} \\ \text{【0043】}$$

ストレプトコッカス・ミレリ形質転換株の唾液被覆及びグルカン被覆

試験管壁への固着・集落化能

試験管	固着率 (%)		
	K S B 8 株	K S C 4 3 株	N H 5 株
非被覆ガラス	0.24	34.80	0.30
非被覆ポリスチレン	3.07	56.40	0.52
唾液被覆ガラス	0.00	31.30	0.33
唾液被覆ポリスチレン	0.00	51.10	0.00
グルカン被覆ガラス	65.30	38.00	1.08
グルカン被覆ポリスチレン	72.50	58.80	1.20

【0044】表1の結果は、G T F - B を発現するK S B 8株は無処理又は唾液で被覆した平滑面には固着できないものの、グルカンで被覆した表面には顕著に固着・集落化できることを示している。一方、G T F - C を発現するK S C 4 3株はいずれの平滑面にも遜色なく固着・集落化できるのに対し、G T F - D を発現するN H 5株はいずれの平滑面にも全く固着できないことを示した。通常のヒト口腔内では、ペリクル面へ最初に付着する菌はストレプトコッカス・サングイスの仲間と考えられている。主要なバイオフィルム構成菌の1つである本菌群は、ショ糖から水溶性グルカン (W S G) を合成する一種類のG T F を菌体外及び菌体表層上に產生分泌する。従って、ストレプトコッカス・サングイスが初期

付着した固層表面にはショ糖存在下でストレプトコッカス・ミュータンスがG T F - B の作用のみで固着・集落化できることになる。かくして、表1の結果は、実際の口腔内における虫歯誘発性バイオフィルム形成過程において最も重要な働きをする因子はG T F - C ではなく、G T F - B であることを強く示唆している。

【0045】実施例2 モノクローナル抗体の作製
以下の方法に従って、抗G T F - B モノクローナル抗体を調製した。

(1) G T F - B の調製

ストレプトコッカス・ミュータンスP S 1 4株 (血清型C) (以下、単に「P S 1 4株」という) からG T F - B を以下のように調製した。P S 1 4株を、1%硫酸ア

ンモニウム及び $10\text{ }\mu\text{M}$ p-アミノフェニルメチルスルホニルフルオライドを添加したM4培地の8L中で37℃にて18時間培養した後、培養液を遠心分離(8,000rpm, 10min)して、培養上清を回収した。この培養上清をPellicon cassette system (Millipore, Tokyo, Japan)で濃縮した後、硫酸アンモニウムを加えて飽和濃度を60%とした。一晩放置後、沈殿物を回収し、50mMリン酸カリウム緩衝液(pH 7.5)に溶解し、同緩衝液に対し透析した。ガラスカラム(2.9×13cm)に充填後、50mMリン酸カリウム緩衝液(pH 7.5)で平衡化したカルボキシメチルセルロースのカラムに、得られた粗酵素を添加した。吸着した酵素を50mMリン酸カリウム緩衝液(pH 7.5)で十分洗浄後、0~1Mの塩化ナトリウムを含む50mMリン酸カリウム緩衝液(pH 7.5)で濃度勾配溶出させた。溶出パターンを波長280nmでの吸光度とWIG合成活性により観察した。約0.7Mの塩化ナトリウム濃度で溶出したフラクションがWIG合成活性を有しており、このフラクションを回収し、精製GTF-Bを取得した。

【0046】非水溶性グルカン合成活性は、フラクションにショ糖含有リン酸カリウム緩衝液を加え、37℃で16時間インキュベーション後、反応混合物を超音波処理し、生成したWIGを分散させ、550nmの吸光度を分光光度計で測定した。測定された吸光度からWIG合成活性を算出した。

【0047】(2) 免疫及び細胞融合

(i) 免疫動物脾臓細胞の調製

免疫方法は8~10週令のBALB/cマウスの皮下あるいは、静脈内あるいは腹腔内に、精製GTF-Bを適当なアジュバンド、例えば、フロイントアジュバンドあるいは、リビアジュバンドシステム(Ribi Ajuvant System, RIBI IMMUNOCHEM RESEARC, INC社(製)、販売:フナコシ(株))とともに注射することにより初回(0日)免疫した。初回免疫から14日目、28日目、42日目に精製GTF-Bを皮下あるいは腹腔内に注射することにより追加免疫し、更に下記に述べるモノクローナル抗体産生ハイブリドーマ調製の前々日及び前日にも同様にして最終免疫し、マウスから脾細胞を調製して細胞融合に用いた。

【0048】(ii) マウス骨髄腫細胞の調製

8-アザグアニン耐性マウス骨髄細胞P3-U1を正常培地「RPMI-1640にグルタミン1.5mM及び牛胎児血清10%を加えた培地」に培養(37℃、CO₂、5%通気)し、4日後に2×10⁷以上の細胞を得た。

【0049】(iii) ハイブリドーマの作製

RPMI-1640(日本製薬社(製))でよく洗浄した免疫マウス脾細胞 1×10^8 個とマウス骨髄腫細胞 2×10^7 個を混合し、1500rpmで5分間遠心分離した。沈殿として得られた脾細胞とP3-U1の混合した

細胞群をほぐした後、攪拌しながら50%ポリエチレングリコール、10%DMSO溶液1mlを加え、2分後にRPMI-1640を徐々に加え、全容量が50mlとなるようにした。1000rpmで5分間遠心分離後、上清を捨て、ゆるやかに細胞をほぐした後、HAT培地「上記正常培地にヒポキサンチン 10^{-4}M 、チミジン $1.5\times10^{-5}\text{M}$ 、及びアミノブテリン $4\times10^{-7}\text{M}$ を加えた培地」30mlを加え、5ml溶メスピペットでゆるやかに細胞を懸濁し、5%CO₂インキュベーター中37℃で2時間培養した。1500rpmで5分間遠心分離後、上清を捨て、ゆるやかに細胞をほぐした後、HAT培地に懸濁し、96穴培養プレートに $200\mu\text{l}/\text{穴}$ ずつ分注し、5%CO₂インキュベーター中37℃で10~14日間培養した。

【0050】(3) ハイブリドーマのスクリーニング
抗GTF-Bモノクローナル抗体を産生するハイブリドーマのスクリーニングは、抗原を固相化したELISA(Enzyme-linked immuneabsorbent assay)を用いて行った。また、得られた抗体産生ハイブリドーマの中からGTF-BのWIG合成活性を阻害するモノクローナル抗体を産生するハイブリドーマのスクリーニングは、96穴EIAプレートを用いてWIG合成阻害に伴う濁度減少を調べることにより行った。

【0051】精製GTF-Bを150mMのNaClを含む20mMリン酸緩衝液(pH 7.4、以下「PBS」という)に $2\mu\text{g}/\text{ml}$ の濃度で調製後、96穴EIAプレートに $50\mu\text{l}/\text{穴}$ ずつ分注し、室温で2時間放置し抗原をプレートに固相化した。0.05%のTween20を含むPBS(以下「T-PBS」という)を $350\mu\text{l}/\text{穴}$ ずつ分注し、室温で1時間放置し底面上の蛋白結合性残基をブロックした。96穴EIAをT-PBSにより2回洗浄後、T-PBSをプレートに $50\mu\text{l}/\text{穴}$ 、さらに1次抗体としてハイブリドーマ培養上清を $100\mu\text{l}/\text{穴}$ ずつ添加し、4℃で一晩又は室温で2時間放置した。EIAプレートをT-PBSにより2回洗浄後、第2抗体としてヤギの抗マウスイムノグロブリンペルオキシダーゼ結合物(TAGO社(製)、販売:コスモバイオ(株))の5000倍希釈液を $50\mu\text{l}/\text{穴}$ ずつ分注し、室温で1時間放置した。EIAプレートをT-PBSにより2回洗浄後、OPD基質液(o-フェニレンジアミン2塩酸塩60mgをクエン酸-リン酸緩衝液(pH 5.2)20mlに溶かした溶液に、30%の過酸化水素 $20\mu\text{l}$ を加えた溶液)を $50\mu\text{l}/\text{穴}$ ずつ分注し、発色後、1Nの硫酸溶液を $50\mu\text{l}/\text{穴}$ ずつ分注し反応を停止させた。プレートリーダーにて吸光度を主波長492nm、副波長620nmで測定した。

【0052】次に、上記ELISA反応に強陽性を示す培養上清についてGTF-BのWIG合成活性に対する阻害能の有無を、ストレプトコッカス・ミレリKSB8形質転換株の培養上清から調製したGTF-Bの粗酵素標品

(調製法は後述)を用いて調べた。96穴EIAプレートの各穴に粗酵素50μl(約1mU)とハイブリドーマ上清50μlを添加し、室温に20分間放置後、300mMショ糖25μlと0.6Mリン酸緩衝液(pH6.0)25μlを加え、37℃のインキュベーター中で16時間反応させた。WIG合成に伴う濁度形成の認められない透明穴形成を指標にしてスクリーニングし、WIG合成阻害能を持つ抗体産生ハイブリドーマを数種取得了。

【0053】これらハイブリドーマについて限外希釈法によるクローニングを2~4回繰り返し、安定して抗体産生の認められた2株を抗GTF-Bモノクローナル抗体産生ハイブリドーマ株として選択し、通産省工業技術院生命工学工業技術研究所に、寄託番号FERM P-17566及びFERM P-17567として寄託した。

【0054】(4)モノクローナル抗体の調製
このようにして得られたハイブリドーマFERM P-17566及びFERMP-17567を10%牛胎児血清加RPMI1640培地に4~6日間培養した。その培養上清を集め、0.1%アジナトリウム存在下で冷蔵、或いは直ちに凍結乾燥したものを調製し、培養上清画分として用いた。さらに、冷蔵保藏した培養上清画分(約1リットル)に硫酸アンモニウムを50%飽和になるよう添加し、一晩放置後、生じた沈殿物を遠心分離にて回収した。この沈殿物を生理食塩水に溶解し、同液に対して4℃下で2日間透析後、凍結乾燥し、これを粗免疫グロブリン画分として用いた。なお、FERM P-17566から得られたモノクローナル抗体をMHP126と命名し、FERM P-17567から得られたモノクローナル抗体をMHP136と命名した。

【0055】実施例3 モノクローナル抗体の反応性

抗 体	免 疫 反 応 性		
	GTF-B	GTF-C	GTF-D
モノクローナル抗体 MHP126	++	-	-
モノクローナル抗体 MHP136	+++	-	-

【0057】表2中の「+++」は吸光度が1.5以上、「++」は吸光度が0.7以上、「-」は吸光度が0.2未満であったことを示す。吸光度が大きい値であるほど、抗体のGTF-Bに対する反応性が大きい。従って、モノクローナル抗体のGTF-Bに対する反応性は「+++」>「++」>「+」>「-」という関係で表される。

【0058】表2の結果は、モノクローナル抗体MHP126とMHP136とは、GTF-Bのみと強く反応し、GTF-C及びGTF-Dには全く反応しないこと

(1) GTF-B、GTF-C及びGTF-Dに対する反応性

得られた2種のハイブリドーマが産生するモノクローナル抗体について、GTF-B、GTF-C及びGTF-Dとの反応性をELISA及びウエスタンプロットティングによって調べた。反応性試験及び次の活性阻害試験に使用するGTF-B抗原及び反応性試験に使用するGTF-C抗原は、ストレプトコッカス・ミレリKSB8株及びKSC43株の培養上清より部分精製したリコンビナント酵素標品を下記のように調製し使用した。既報(Infec. Immun. 60:2815-2822, 1992)の方法で作製したKSB8株及びKSC43株をエリスロマイシン(10μg/ml)及び10μM p-APMSFを添加したTHB培地中で37℃にて18時間嫌気培養し、遠心分離によりそれぞれの培養上清を回収後、リコンビナントGTF-Bは硫酸アンモニウム沈殿、ハイドロキシルアバタイト及びトヨパールHW55のカラムクロマトグラフィー処理により、リコンビナントGTF-Cは硫酸アンモニウム沈殿及びトヨパールHW65の疎水カラムクロマトグラフィー処理により部分精製した。また、反応性試験に使用するGTF-D抗原は、ストレプトコッカス・ミュータンスPS14株の透析BHI培地培養上清より、馬場らの方法(Carbohydr. Res. 158:147-155, 1986)に準じて、硫酸アンモニウム沈殿、DEAEセルロース及びCMセルロースのカラムクロマトグラフィー処理を行なって得た純化標品を使用した。このようにして調製したGTF-BとGTF-Cのリコンビナント酵素、及びGTF-Dの純化酵素に対するモノクローナル抗体MHP126とMHP136の反応性を、上記と同様の方法で調べたELISAの結果を表2に示す。

【0056】

【表2】

を示している。なお、両抗体のGTF-Bに対する反応特異性はウエスタンプロットティングによても確認された。

【0059】(2) GTF-BのWIG合成活性の阻害能

リコンビナントGTF-Bの部分精製標品(6mU)、粗免疫グロブリン画分(10~50μg)、100mMリン酸緩衝液(pH6.0)及び0.01%アジナトリウムからなる反応液(625μl)を37℃で10分間ブレインキュベーションした後、300mMショ糖含有100mMリン酸緩衝液(pH6.0)を125μ

1加えた。37°C下で16時間インキュベーションした後、反応液を超音波処理(50W、3秒間)し、生成したWIGを分散させ、550nmの濁度を分光光度計で測定した。未培養の培地50μlを添加した反応液の濁度に対する百分

率を求め、それを阻害率とした。その結果を表3に示す。

【0060】

【表3】

抗体 及び 添加量		阻害率
MHP 126 抗体	10 μl	46.3%
	25 μl	68.8%
	50 μl	72.6%
MHP 136 抗体	10 μl	68.9%
	25 μl	85.2%
	50 μl	89.5%

【0061】表3の結果が示すように、MHP 126及びMHP 136モノクローナル抗体はいずれもGTF-BのWIG合成活性を著明に阻害することが確認された。

(3) 抗原認識部位の推定

MHP 126及びMHP 136モノクローナル抗体の抗原認識部位を推定する目的で、GTF-BのC末端領域(デキストラン結合領域)を欠落した不完全GTFに対する両モノクローナル抗体の反応性を上記と同様にEL

ISAにより調べた。C末端領域を欠落したGTFタンパク抗原は、加藤ら (FEBS Microbiol. Lett. 72:298-302, 1990) が構築した大腸菌クローンpCK41の培養菌体からの菌体抽出物を調製し使用した。また、KSB8株培養上清から部分精製したリコンビナントGTF-B標品を対照抗原として用いた。結果を表4に示す

【0062】

【表4】

抗体	抗原	
	pCK41抽出物	精製GTF-B
MHP 126	+	++
MHP 136	-	+++

【0063】表4中の「+++」は吸光度が1.5以上、「++」は吸光度が0.7以上、「-」は吸光度が0.2未満であったことを示す。表4の結果から、モノクローナル抗体MHP 126は、pCK41抽出物及び精製GTF-Bの両抗原と反応したので、MHP 126の抗原認識部位はN末端側活性部位、すなわち配列番号2記載のアミノ酸で表される領域に存在することが推測された。一方、モノクローナル抗体MHP 136は、pCK41とは全く反応せず、精製GTF-Bとのみ反応した。MHP 136の抗原認識部位はデキストラン結合部位、すなわち配列番号3記載のアミノ酸配列で表される領域に存在することが推測された。

【0064】(4) アイソタイプの決定

マウスモノクローナル抗体アイソタイプ決定キット(ZYMED社(製)、販売:コスマバイオ(株))を用い、該キット添付の実験操作プロトコールに従って操作を行い、モノクローナル抗体MHP 126及びMHP 136のアイソタイプを決定した。MHP 126及びMHP 136抗体のアイソタイプは共にIgG₁であった。

【0065】実施例4 モノクローナル抗体MHP 12

6及びMHP 136の虫歯予防効果

(1) 虫歯誘発性バイオフィルムの形成阻害能

上述の固着・集落化試験法に準じた方法で、MHP 126及びMHP 136の培養上清抗体を用いて虫歯誘発性バイオフィルム形成に対する阻害能を評価した。即ち、生食水に対し一夜透析し、ろ過滅菌した培養上清抗体を50~400μl、0.5%ショ糖および0.5%ブドウ糖を含むTHB培地2mlを小ガラス試験管に入れ、ストレプトコッカス・ミュータンスPS14株の前培養菌を1白金耳を植菌し、37°C、16時間、30度傾斜下でローソク培養を行った。培養後、試験管をタッチミキサーを用いてボルテックス処理(10秒間)し、非・弱付着菌体と固着菌体に分別後、それぞれの菌体量を550nmにおける濁度測定した。上述した計算式により固着率を求め、ストレプトコッカス・ソブリヌスのGTF-Tに対するマウスモノクローナル抗体(B19)を産生するハイブリドーマ培養上清添加の培養系(対照)の固着率との比より阻害率を算出した。結果を表5に示す。

【0066】

【表5】

添加抗体量		固着率	阻害率
B 1 9 抗体	400 μ l	47. 74 %	0. 0 %
M H P 1 2 6 抗体	50 μ l	18. 88 %	60. 5 %
	100 μ l	17. 16 %	64. 1 %
	200 μ l	16. 16 %	66. 1 %
	400 μ l	18. 10 %	62. 1 %
M H P 1 3 6 抗体	50 μ l	24. 87 %	47. 9 %
	100 μ l	18. 99 %	60. 2 %
	200 μ l	19. 17 %	59. 8 %
	400 μ l	18. 62 %	61. 0 %

【0067】表5の結果は、MHP126及びMHP136の両モノクローナル抗体が、ストレプトコッカス・ミュータンスPS14株の平滑面への固着・集落化、即ち虫歯誘発性バイオフィルム形成を著明に阻害する作用を持つことを強く示唆する。.

【0068】(2) 感染ラットに対する虫歯発生抑制能 GTF-BのWIG合成活性を阻害するモノクローナル抗体の口腔内投与で虫歯発生を抑制出来るか否かを、ストレプトコッカス・ミュータンスPS14株、モノクローナル抗体MHP126の粗免疫グロブリン画分、35%ショ糖含有虫歯誘発食及びSD系ラットを用いた下記の動物実験により調べた。その目的のため、以下のような実験群を設定した。

【0069】①グループA

ストレプトコッカス・ミュータンスに感染していない20日令ラット(6匹)に、モノクローナル抗体を含まない35%ショ糖食を与えて飼育する。

②グループB

ストレプトコッカス・ミュータンスPS14株を20日令ラット(6匹)に感染させ、モノクローナル抗体を含まない35%ショ糖食を与えて飼育する。

【0070】③グループC

ストレプトコッカス・ミュータンスPS14株を20日令ラット(6匹)に感染させ、モノクローナル抗体MHP126(凍結乾燥標品)を0.01%(w/w)濃度に添加した35%ショ糖食を与えて飼育する。グループA~Cの実験群において、上記の食餌を自由摂取にて57日間与えて飼育後、77日令で屠殺し、下顎に発生した虫歯の程度をカイズの方法(J. Dent. Res. 23:439-444, 1944)によりスコア化し、比較した。グループA~Cにおける結果をそれぞれ表6~8に示す。

【0071】

【表6】

グループA群ラットの虫歯スコア

ラット	平滑面虫歯	裂溝面虫歯	隣接面虫歯	合計
1	0	6	0	6
2	0	11	0	11
3	0	8	0	8
4	0	9	0	9
5	0	8	0	8
平均	0	8	0	8

【0072】

【表7】

グループB群ラットの虫歯スコア

ラット	平滑面虫歯	裂溝面虫歯	隣接面虫歯	合計
1	14	55	3	72
2	15	60	4	79
3	20	65	0	85
4	15	72	4	91
5	10	61	0	71
6	15	67	3	85
7	20	82	4	106
平均	16	66	3	85

【0073】

【表8】

グループC群ラットの虫歯スコア

ラット	平滑面虫歯	裂溝面虫歯	隣接面虫歯	合計
1	7	52	1	60
2	8	56	0	64
3	5	48	3	56
4	6	47	0	53
5	5	62	3	70
6	4	46	4	54
平均	6	52	2	60

【0074】表6及び表7に示されるように、グループBではグループAよりもスコア（虫歯の発生率）が有意に高かった。グループA及びグループBで与えられた食餌は同じであるので、このようなスコアの違いは、ストレプトコッカス・ミュータンスPS14株の感染の有無に基づく。すなわち、グループAではPS14株を感染させていないので虫歯の発生率は低いが、グループBではPS14株を感染させているので虫歯の発生率がグループAよりも有意（P<0.01）に高い。このことから、ストレプトコッカス・ミュータンス株が虫歯を誘発する原因であることは明らかである。

【0075】一方、表7及び表8に示されるように、グループCではグループBよりも虫歯の発生率、特に平滑面虫歯の発生率が有意（P<0.01）に低かった。グループB及びグループCではともにストレプトコッカス・ミュータンスPS14株を感染させているので、このような虫歯発生率の相違は、与えられた食餌の相違に基づく。グループBでは、モノクローナル抗体MHP126を含まない食餌が与えられたので虫歯の発生率が高い

が、グループCでは、モノクローナル抗体MHP126を含む食餌が与えられたので虫歯の発生率がグループBよりも有意に低くなっている。このことは、モノクローナル抗体MHP126にストレプトコッカス・ミュータンスによる虫歯の発生を予防する効果があることを示している。すなわち、モノクローナル抗体MHP126やMHP136のように、ストレプトコッカス・ミュータンスが産生するGTF-Bに特異的に反応し、該GTF-BのWIG合成活性を阻害するモノクローナル抗体が虫歯予防効果を有することが明らかとなった。

【0076】

【発明の効果】本発明により、ストレプトコッカス・ミュータンスが産生するGTF-Bに特異的に反応し、該GTF-BのWIG合成活性を阻害するモノクローナル抗体を有効成分として含有することを特徴とする虫歯予防剤が提供される。

【0077】

【配列表】

SEQUENCE LISTING

<110>; NIHON UNIVERSITY
 <120>; A medicament for dental prophylaxis
 <130>; P99-0389
 <140>;
 <141>;

<160>; 6

<;170>; PatentIn Ver. 2.0
 <;210>; 1
 <;211>; 1476
 <;212>; PRT
 <;213>; Streptococcus mutans
 <;400>; 1

Met	Asp	Lys	Lys	Val	Arg	Tyr	Lys	Leu	Arg	Lys	Val	Lys	Lys	Arg	Trp
1				5				10				15			
Val	Thr	Val	Ser	Val	Ala	Ser	Ala	Val	Met	Thr	Leu	Thr	Thr	Leu	Ser
	20					25					30				
Gly	Gly	Leu	Val	Lys	Ala	Asp	Ser	Asn	Glu	Ser	Lys	Ser	Gln	Ile	Ser
	35					40				45					
Asn	Asp	Ser	Asn	Thr	Ser	Val	Val	Thr	Ala	Asn	Glu	Glu	Ser	Asn	Val
	50					55				60					
Ile	Thr	Glu	Ala	Thr	Ser	Lys	Gln	Glu	Ala	Ala	Ser	Ser	Gln	Thr	Asn
	65					70				75			80		
His	Thr	Val	Thr	Thr	Ser	Ser	Ser	Ser	Thr	Ser	Val	Val	Asn	Pro	Lys
		85					90				95				
Glu Val Val Ser Asn Pro Tyr Thr Val Gly Glu Thr Ala Ser Asn Gly															
	100				105				110						
Glu	Lys	Leu	Gln	Asn	Gln	Thr	Thr	Thr	Val	Asp	Lys	Thr	Ser	Glu	Ala
	115					120				125					
Ala	Ala	Asn	Asn	Ile	Ser	Lys	Gln	Thr	Thr	Glu	Ala	Asp	Thr	Asp	Val
	130					135				140					
Ile	Asp	Asp	Ser	Asn	Ala	Ala	Asn	Leu	Gln	Ile	Leu	Glu	Lys	Leu	Pro
	145					150				155			160		
Asn	Val	Lys	Glu	Ile	Asp	Gly	Lys	Tyr	Tyr	Tyr	Tyr	Asp	Asn	Asn	Gly
		165				170				175					
Lys	Val	Arg	Thr	Asn	Phe	Thr	Leu	Ile	Ala	Asp	Gly	Lys	Ile	Leu	His
		180				185				190					
Phe	Asp	Glu	Thr	Gly	Ala	Tyr	Thr	Asp	Thr	Ser	Ile	Asp	Thr	Val	Asn
		195				200				205					
Lys	Asp	Ile	Val	Thr	Thr	Arg	Ser	Asn	Leu	Tyr	Lys	Lys	Tyr	Asn	Gln
		210				215				220					
Val	Tyr	Asp	Arg	Ser	Ala	Gln	Ser	Phe	Glu	His	Val	Asp	His	Tyr	Leu
	225					230				235			240		
Thr	Ala	Glu	Ser	Trp	Tyr	Arg	Pro	Lys	Tyr	Ile	Leu	Lys	Asp	Gly	Lys
		245				250				255					
Thr Trp Thr Gln Ser Thr Glu Lys Asp Phe Arg Pro Leu Leu Met Thr															
	260				265				270						
Trp	Trp	Pro	Asp	Gln	Glu	Thr	Gln	Arg	Gln	Tyr	Val	Asn	Tyr	Met	Asn
		275				280				285					
Ala	Gln	Leu	Gly	Ile	Asn	Lys	Thr	Tyr	Asp	Asp	Thr	Ser	Asn	Gln	Leu
		290				295				300					
Gln	Leu	Asn	Ile	Ala	Ala	Ala	Thr	Ile	Gln	Ala	Lys	Ile	Glu	Ala	Lys
	305					310				315			320		
Ile	Thr	Thr	Leu	Lys	Asn	Thr	Asp	Trp	Leu	Arg	Gln	Thr	Ile	Ser	Ala
		325				330				335					

Phe Val Lys Thr Gln Ser Ala Trp Asn Ser Asp Ser Glu Lys Pro Phe
 340 345 350
 Asp Asp His Leu Gln Asn Gly Ala Val Leu Tyr Asp Asn Glu Gly Lys
 355 360 365
 Leu Thr Pro Tyr Ala Asn Ser Asn Tyr Arg Ile Leu Asn Arg Thr Pro
 370 375 380
 Thr Asn Gln Thr Gly Lys Lys Asp Pro Arg Tyr Thr Ala Asp Asn Thr
 385 390 395 400
 Ile Gly Gly Tyr Glu Phe Leu Leu Ala Asn Asp Val Asp Asn Ser Asn
 405 410 415
 Pro Val Val Gln Ala Glu Gln Leu Asn Trp Leu His Phe Leu Met Asn
 420 425 430
 Phe Gly Asn Ile Tyr Ala Asn Asp Pro Asp Ala Asn Phe Asp Ser Ile
 435 440 445
 Arg Val Asp Ala Val Asp Asn Val Asp Ala Asp Leu Leu Gln Ile Ala
 450 455 460
 Gly Asp Tyr Leu Lys Ala Ala Lys Gly Ile His Lys Asn Asp Lys Ala
 465 470 475 480
 Ala Asn Asp His Leu Ser Ile Leu Glu Ala Trp Ser Asp Asn Asp Thr
 485 490 495
 Pro Tyr Leu His Asp Asp Gly Asp Asn Met Ile Asn Met Asp Asn Lys
 500 505 510
 Leu Arg Leu Ser Leu Leu Phe Ser Leu Ala Lys Pro Leu Asn Gln Arg
 515 520 525
 Ser Gly Met Asn Pro Leu Ile Thr Asn Ser Leu Val Asn Arg Thr Asp
 530 535 540
 Asp Asn Ala Glu Thr Ala Ala Val Pro Ser Tyr Ser Phe Ile Arg Ala
 545 550 555 560

 His Asp Ser Glu Val Gln Asp Leu Ile Arg Asp Ile Ile Lys Ala Glu
 565 570 575
 Ile Asn Pro Asn Val Val Gly Tyr Ser Phe Thr Met Glu Glu Ile Lys
 580 585 590
 Lys Ala Phe Glu Ile Tyr Asn Lys Asp Leu Leu Ala Thr Glu Lys Lys
 595 600 605
 Tyr Thr His Tyr Asn Thr Ala Leu Ser Tyr Ala Leu Leu Leu Thr Asn
 610 615 620
 Lys Ser Ser Val Pro Arg Val Tyr Tyr Gly Asp Met Phe Thr Asp Asp
 625 630 635 640
 Gly Gln Tyr Met Ala His Lys Thr Ile Asn Tyr Glu Ala Ile Glu Thr
 645 650 655
 Leu Leu Lys Ala Arg Ile Lys Tyr Val Ser Gly Gly Gln Ala Met Arg
 660 665 670
 Asn Gln Gln Val Gly Asn Ser Glu Ile Ile Thr Ser Val Arg Tyr Gly
 675 680 685
 Lys Gly Ala Leu Lys Ala Thr Asp Thr Gly Asp Arg Thr Thr Arg Thr
 690 695 700
 Ser Gly Val Ala Val Ile Glu Gly Asn Asn Pro Ser Leu Arg Leu Lys
 705 710 715 720

Ala Ser Asp Arg Val Val Val Asn Met Gly Ala Ala His Lys Asn Gln
 725 730 735
 Ala Tyr Arg Pro Leu Leu Leu Thr Thr Asp Asn Gly Ile Lys Ala Tyr
 740 745 750
 His Ser Asp Gln Glu Ala Ala Gly Leu Val Arg Tyr Thr Asn Asp Arg
 755 760 765
 Gly Glu Leu Ile Phe Thr Ala Ala Asp Ile Lys Gly Tyr Ala Asn Pro
 770 775 780
 Gln Val Ser Gly Tyr Leu Gly Val Trp Val Pro Val Gly Ala Ala Ala
 785 790 795 800
 Asp Gln Asp Val Arg Val Ala Ala Ser Thr Ala Pro Ser Thr Asp Gly
 805 810 815
 Lys Ser Val His Gln Asn Ala Ala Leu Asp Ser Arg Val Met Phe Glu
 820 825 830
 Gly Phe Ser Asn Phe Gln Ala Phe Ala Thr Lys Lys Glu Glu Tyr Thr
 835 840 845
 Asn Val Val Ile Ala Lys Asn Val Asp Lys Phe Ala Glu Trp Gly Val
 850 855 860
 Thr Asp Phe Glu Met Ala Pro Gln Tyr Val Ser Ser Thr Asp Gly Ser
 865 870 875 880
 Phe Leu Asp Ser Val Ile Gln Asn Gly Tyr Ala Phe Thr Asp Arg Tyr
 885 890 895
 Asp Leu Gly Ile Ser Lys Pro Asn Lys Tyr Gly Thr Ala Asp Asp Leu
 900 905 910
 Val Lys Ala Ile Lys Ala Leu His Ser Lys Gly Ile Lys Val Met Ala
 915 920 925
 Asp Trp Val Pro Asp Gln Met Tyr Ala Phe Pro Glu Lys Glu Val Val
 930 935 940
 Thr Ala Thr Arg Val Asp Lys Tyr Gly Thr Pro Val Ala Gly Ser Gln
 945 950 955 960
 Ile Lys Asn Thr Leu Tyr Val Val Asp Gly Lys Ser Ser Gly Lys Asp
 965 970 975
 Gln Gln Ala Lys Tyr Gly Gly Ala Phe Leu Glu Glu Leu Gln Ala Lys
 980 985 990
 Tyr Pro Glu Leu Phe Ala Arg Lys Gln Ile Ser Thr Gly Val Pro Met
 995 1000 1005
 Asp Pro Ser Val Lys Ile Lys Gln Trp Ser Ala Lys Tyr Phe Asn Gly
 1010 1015 1020

 Thr Asn Ile Leu Gly Arg Gly Ala Gly Tyr Val Leu Lys Asp Gln Ala
 1025 1030 1035 1040
 Thr Asn Thr Tyr Phe Asn Ile Ser Asp Asn Lys Glu Ile Asn Phe Leu
 1045 1050 1055
 Pro Lys Thr Leu Leu Asn Gln Asp Ser Gln Val Gly Phe Ser Tyr Asp
 1060 1065 1070
 Gly Lys Gly Tyr Val Tyr Tyr Ser Thr Ser Gly Tyr Gln Ala Lys Asn
 1075 1080 1085
 Thr Phe Ile Ser Glu Gly Asp Lys Trp Tyr Tyr Phe Asp Asn Asn Gly
 1090 1095 1100
 Tyr Met Val Thr Gly Ala Gln Ser Ile Asn Gly Val Asn Tyr Tyr Phe

1105	1110	1115	1120
Leu Ser Asn Gly Leu Gln Leu Arg Asp Ala Ile Leu Lys Asn Glu Asp			
1125	1130	1135	
Gly Thr Tyr Ala Tyr Tyr Gly Asn Asp Gly Arg Arg Tyr Glu Asn Gly			
1140	1145	1150	
Tyr Tyr Gln Phe Met Ser Gly Val Trp Arg His Phe Asn Asn Gly Glu			
1155	1160	1165	
Met Ser Val Gly Leu Thr Val Ile Asp Gly Gln Val Gln Tyr Phe Asp			
1170	1175	1180	
1185	1190	1195	1200
Glu Met Gly Tyr Gln Ala Lys Gly Lys Phe Val Thr Thr Ala Asp Gly			
Lys Ile Arg Tyr Phe Asp Lys Gln Ser Gly Asn Met Tyr Arg Asn Arg			
1205	1210	1215	
Phe Ile Glu Asn Glu Glu Gly Lys Trp Leu Tyr Leu Gly Glu Asp Gly			
1220	1225	1230	
Ala Ala Val Thr Gly Ser Gln Thr Ile Asn Gly Gln His Leu Tyr Phe			
1235	1240	1245	
Arg Ala Asn Gly Val Gln Val Lys Gly Glu Phe Val Thr Asp His His			
1250	1255	1260	
Gly Arg Ile Ser Tyr Tyr Asp Gly Asn Ser Gly Asp Gln Ile Arg Asn			
1265	1270	1275	1280
Arg Phe Val Arg Asn Ala Gln Gly Gln Trp Phe Tyr Phe Asp Asn Asn			
1285	1290	1295	
Gly Tyr Ala Val Thr Gly Ala Arg Thr Ile Asn Gly Gln His Leu Tyr			
1300	1305	1310	
Phe Arg Ala Asn Gly Val Gln Val Lys Gly Glu Phe Val Thr Asp Arg			
1315	1320	1325	
Tyr Gly Arg Ile Ser Tyr Tyr Asp Gly Asn Ser Gly Asp Gln Ile Arg			
1330	1335	1340	
Asn Arg Phe Val Arg Asn Ala Gln Gly Gln Trp Phe Tyr Phe Asp Asn			
1345	1350	1355	1360
Asn Gly Tyr Ala Val Thr Gly Ala Arg Thr Ile Asn Gly Gln His Leu			
1365	1370	1375	
Tyr Phe Arg Ala Asn Gly Val Gln Val Lys Gly Glu Phe Val Thr Asp			
1380	1385	1390	
Arg His Gly Arg Ile Ser Tyr Tyr Asp Gly Asn Ser Gly Asp Gln Ile			
1395	1400	1405	
Arg Asn Arg Phe Val Arg Asn Ala Gln Gly Gln Trp Phe Tyr Phe Asp			
1410	1415	1420	
Asn Asn Gly Tyr Ala Val Thr Gly Ala Arg Thr Ile Asn Gly Gln His			
1425	1430	1435	1440
Leu Tyr Phe Arg Ala Asn Gly Val Gln Val Lys Gly Glu Phe Val Thr			
1445	1450	1455	
Asp Arg Tyr Gly Arg Ile Ser Tyr Tyr Asp Ala Asn Ser Gly Glu Arg			
1460	1465	1470	
Val Arg Ile Asn			
1475			

<;210>; 2
 <;211>; 1017
 <;212>; PRT
 <;213>; Streptococcus mutans
 <;400>; 2
 Leu Val Lys Ala Asp Ser Asn Glu Ser Lys Ser Gln Ile Ser Asn Asp
 1 5 10 15
 Ser Asn Thr Ser Val Val Thr Ala Asn Glu Glu Ser Asn Val Ile Thr
 20 25 30
 Glu Ala Thr Ser Lys Gln Glu Ala Ala Ser Ser Gln Thr Asn His Thr
 35 40 45
 Val Thr Thr Ser Ser Ser Thr Ser Val Val Asn Pro Lys Glu Val
 50 55 60
 Val Ser Asn Pro Tyr Thr Val Gly Glu Thr Ala Ser Asn Gly Glu Lys
 65 70 75 80
 Leu Gln Asn Gln Thr Thr Val Asp Lys Thr Ser Glu Ala Ala Ala
 85 90 95
 Asn Asn Ile Ser Lys Gln Thr Thr Glu Ala Asp Thr Asp Val Ile Asp
 100 105 110
 Asp Ser Asn Ala Ala Asn Leu Gln Ile Leu Glu Lys Leu Pro Asn Val
 115 120 125
 Lys Glu Ile Asp Gly Lys Tyr Tyr Tyr Asp Asn Asn Gly Lys Val
 130 135 140
 Arg Thr Asn Phe Thr Leu Ile Ala Asp Gly Lys Ile Leu His Phe Asp
 145 150 155 160
 Glu Thr Gly Ala Tyr Thr Asp Thr Ser Ile Asp Thr Val Asn Lys Asp
 165 170 175
 Ile Val Thr Thr Arg Ser Asn Leu Tyr Lys Tyr Asn Gln Val Tyr
 180 185 190
 Asp Arg Ser Ala Gln Ser Phe Glu His Val Asp His Tyr Leu Thr Ala
 195 200 205
 Glu Ser Trp Tyr Arg Pro Lys Tyr Ile Leu Lys Asp Gly Lys Thr Trp
 210 215 220
 Thr Gln Ser Thr Glu Lys Asp Phe Arg Pro Leu Leu Met Thr Trp Trp
 225 230 235 240
 Pro Asp Gln Glu Thr Gln Arg Gln Tyr Val Asn Tyr Met Asn Ala Gln
 245 250 255
 Leu Gly Ile Asn Lys Thr Tyr Asp Asp Thr Ser Asn Gln Leu Gln Leu
 260 265 270

 Asn Ile Ala Ala Ala Thr Ile Gln Ala Lys Ile Glu Ala Lys Ile Thr
 275 280 285
 Thr Leu Lys Asn Thr Asp Trp Leu Arg Gln Thr Ile Ser Ala Phe Val
 290 295 300
 Lys Thr Gln Ser Ala Trp Asn Ser Asp Ser Glu Lys Pro Phe Asp Asp
 305 310 315 320
 His Leu Gln Asn Gly Ala Val Leu Tyr Asp Asn Glu Gly Lys Leu Thr
 325 330 335
 Pro Tyr Ala Asn Ser Asn Tyr Arg Ile Leu Asn Arg Thr Pro Thr Asn
 340 345 350

Gln Thr Gly Lys Lys Asp Pro Arg Tyr Thr Ala Asp Asn Thr Ile Gly
 355 360 365
 Gly Tyr Glu Phe Leu Leu Ala Asn Asp Val Asp Asn Ser Asn Pro Val
 370 375 380
 Val Gln Ala Glu Gln Leu Asn Trp Leu His Phe Leu Met Asn Phe Gly
 385 390 395 400
 Asn Ile Tyr Ala Asn Asp Pro Asp Ala Asn Phe Asp Ser Ile Arg Val
 405 410 415
 Asp Ala Val Asp Asn Val Asp Ala Asp Leu Leu Gln Ile Ala Gly Asp
 420 425 430

Tyr Leu Lys Ala Ala Lys Gly Ile His Lys Asn Asp Lys Ala Ala Asn
 435 440 445
 Asp His Leu Ser Ile Leu Glu Ala Trp Ser Asp Asn Asp Thr Pro Tyr
 450 455 460
 Leu His Asp Asp Gly Asp Asn Met Ile Asn Met Asp Asn Lys Leu Arg
 465 470 475 480
 Leu Ser Leu Leu Phe Ser Leu Ala Lys Pro Leu Asn Gln Arg Ser Gly
 485 490 495
 Met Asn Pro Leu Ile Thr Asn Ser Leu Val Asn Arg Thr Asp Asp Asn
 500 505 510
 Ala Glu Thr Ala Ala Val Pro Ser Tyr Ser Phe Ile Arg Ala His Asp
 515 520 525
 Ser Glu Val Gln Asp Leu Ile Arg Asp Ile Ile Lys Ala Glu Ile Asn
 530 535 540
 Pro Asn Val Val Gly Tyr Ser Phe Thr Met Glu Glu Ile Lys Lys Ala
 545 550 555 560
 Phe Glu Ile Tyr Asn Lys Asp Leu Leu Ala Thr Glu Lys Lys Tyr Thr
 565 570 575
 His Tyr Asn Thr Ala Leu Ser Tyr Ala Leu Leu Thr Asn Lys Ser
 580 585 590
 Ser Val Pro Arg Val Tyr Tyr Gly Asp Met Phe Thr Asp Asp Gly Gln
 595 600 605
 Tyr Met Ala His Lys Thr Ile Asn Tyr Glu Ala Ile Glu Thr Leu Leu
 610 615 620
 Lys Ala Arg Ile Lys Tyr Val Ser Gly Gly Gln Ala Met Arg Asn Gln
 625 630 635 640
 Gln Val Gly Asn Ser Glu Ile Ile Thr Ser Val Arg Tyr Gly Lys Gly
 645 650 655
 Ala Leu Lys Ala Thr Asp Thr Gly Asp Arg Thr Thr Arg Thr Ser Gly
 660 665 670
 Val Ala Val Ile Glu Gly Asn Asn Pro Ser Leu Arg Leu Lys Ala Ser
 675 680 685
 Asp Arg Val Val Val Asn Met Gly Ala Ala His Lys Asn Gln Ala Tyr
 690 695 700
 Arg Pro Leu Leu Leu Thr Thr Asp Asn Gly Ile Lys Ala Tyr His Ser
 705 710 715 720
 Asp Gln Glu Ala Ala Gly Leu Val Arg Tyr Thr Asn Asp Arg Gly Glu
 725 730 735

Leu Ile Phe Thr Ala Ala Asp Ile Lys Gly Tyr Ala Asn Pro Gln Val
 740 745 750
 Ser Gly Tyr Leu Gly Val Trp Val Pro Val Gly Ala Ala Ala Asp Gln
 755 760 765
 Asp Val Arg Val Ala Ala Ser Thr Ala Pro Ser Thr Asp Gly Lys Ser
 770 775 780
 Val His Gln Asn Ala Ala Leu Asp Ser Arg Val Met Phe Glu Gly Phe
 785 790 795 800
 Ser Asn Phe Gln Ala Phe Ala Thr Lys Lys Glu Glu Tyr Thr Asn Val
 805 810 815
 Val Ile Ala Lys Asn Val Asp Lys Phe Ala Glu Trp Gly Val Thr Asp
 820 825 830
 Phe Glu Met Ala Pro Gln Tyr Val Ser Ser Thr Asp Gly Ser Phe Leu
 835 840 845
 Asp Ser Val Ile Gln Asn Gly Tyr Ala Phe Thr Asp Arg Tyr Asp Leu
 850 855 860
 Gly Ile Ser Lys Pro Asn Lys Tyr Gly Thr Ala Asp Asp Leu Val Lys
 865 870 875 880
 Ala Ile Lys Ala Leu His Ser Lys Gly Ile Lys Val Met Ala Asp Trp
 885 890 895

 Val Pro Asp Gln Met Tyr Ala Phe Pro Glu Lys Glu Val Val Thr Ala
 900 905 910
 Thr Arg Val Asp Lys Tyr Gly Thr Pro Val Ala Gly Ser Gln Ile Lys
 915 920 925
 Asn Thr Leu Tyr Val Val Asp Gly Lys Ser Ser Gly Lys Asp Gln Gln
 930 935 940
 Ala Lys Tyr Gly Gly Ala Phe Leu Glu Glu Leu Gln Ala Lys Tyr Pro
 945 950 955 960
 Glu Leu Phe Ala Arg Lys Gln Ile Ser Thr Gly Val Pro Met Asp Pro
 965 970 975
 Ser Val Lys Ile Lys Gln Trp Ser Ala Lys Tyr Phe Asn Gly Thr Asn
 980 985 990
 Ile Leu Gly Arg Gly Ala Gly Tyr Val Leu Lys Asp Gln Ala Thr Asn
 995 1000 1005
 Thr Tyr Phe Asn Ile Ser Asp Asn Lys
 1010 1015
 <;210>; 3
 <;211>; 380
 <;212>; PRT
 <;213>; Streptococcus mutans
 <;400>; 3
 Trp Tyr Tyr Phe Asp Asn Asn Gly Tyr Met Val Thr Gly Ala Gln Ser
 1 5 10 15
 Ile Asn Gly Val Asn Tyr Tyr Phe Leu Ser Asn Gly Leu Gln Leu Arg
 20 25 30
 Asp Ala Ile Leu Lys Asn Glu Asp Gly Thr Tyr Ala Tyr Tyr Gly Asn
 35 40 45
 Asp Gly Arg Arg Tyr Glu Asn Gly Tyr Tyr Gln Phe Met Ser Gly Val
 50 55 60

Trp Arg His Phe Asn Asn Gly Glu Met Ser Val Gly Leu Thr Val Ile
 65 70 75 80
 Asp Gly Gln Val Gln Tyr Phe Asp Glu Met Gly Tyr Gln Ala Lys Gly
 85 90 95
 Lys Phe Val Thr Thr Ala Asp Gly Lys Ile Arg Tyr Phe Asp Lys Gln
 100 105 110
 Ser Gly Asn Met Tyr Arg Asn Arg Phe Ile Glu Asn Glu Glu Gly Lys
 115 120 125
 Trp Leu Tyr Leu Gly Glu Asp Gly Ala Ala Val Thr Gly Ser Gln Thr
 130 135 140

Ile Asn Gly Gln His Leu Tyr Phe Arg Ala Asn Gly Val Gln Val Lys
 145 150 155 160
 Gly Glu Phe Val Thr Asp His His Gly Arg Ile Ser Tyr Tyr Asp Gly
 165 170 175
 Asn Ser Gly Asp Gln Ile Arg Asn Arg Phe Val Arg Asn Ala Gln Gly
 180 185 190
 Gln Trp Phe Tyr Phe Asp Asn Asn Gly Tyr Ala Val Thr Gly Ala Arg
 195 200 205
 Thr Ile Asn Gly Gln His Leu Tyr Phe Arg Ala Asn Gly Val Gln Val
 210 215 220
 Lys Gly Glu Phe Val Thr Asp Arg Tyr Gly Arg Ile Ser Tyr Tyr Asp
 225 230 235 240
 Gly Asn Ser Gly Asp Gln Ile Arg Asn Arg Phe Val Arg Asn Ala Gln
 245 250 255
 Gly Gln Trp Phe Tyr Phe Asp Asn Asn Gly Tyr Ala Val Thr Gly Ala
 260 265 270
 Arg Thr Ile Asn Gly Gln His Leu Tyr Phe Arg Ala Asn Gly Val Gln
 275 280 285
 Val Lys Gly Glu Phe Val Thr Asp Arg His Gly Arg Ile Ser Tyr Tyr
 290 295 300
 Asp Gly Asn Ser Gly Asp Gln Ile Arg Asn Arg Phe Val Arg Asn Ala
 305 310 315 320
 Gln Gly Gln Trp Phe Tyr Phe Asp Asn Asn Gly Tyr Ala Val Thr Gly
 325 330 335
 Ala Arg Thr Ile Asn Gly Gln His Leu Tyr Phe Arg Ala Asn Gly Val
 340 345 350
 Gln Val Lys Gly Glu Phe Val Thr Asp Arg Tyr Gly Arg Ile Ser Tyr
 355 360 365
 Tyr Asp Ala Asn Ser Gly Glu Arg Val Arg Ile Asn
 370 375 380
 <;210>; 4
 <;211>; 486
 <;212>; PRT
 <;213>; Streptococcus mutans
 <;400>; 4
 Pro Ile Thr Ile Lys Thr Met Leu Ile Thr Tyr Ala Asp Ser Leu Gly
 1 5 10 15
 Lys Asn Leu Lys Glu Leu Asn Glu Asn Ile Glu Asn Tyr Phe Ala Asp
 20 25 30

Ala Val Gly Gly Val His Leu Leu Pro Phe Phe Pro Ser Thr Gly Asp
 35 40 45
 Arg Gly Phe Ala Pro Ile Asp Tyr His Glu Val Asp Ser Ala Phe Gly
 50 55 60
 Asp Trp Asp Asp Val Lys Arg Leu Gly Glu Lys Tyr Tyr Leu Met Phe
 65 70 75 80
 Asp Phe Met Ile Asn His Ile Ser Arg Gln Ser Lys Tyr Tyr Lys Asp
 85 90 95
 Tyr Gln Glu Lys His Glu Ala Ser Ala Tyr Lys Asp Leu Phe Leu Asn
 100 105 110
 Trp Asp Lys Phe Trp Pro Lys Asn Arg Pro Thr Gln Glu Asp Val Asp
 115 120 125
 Leu Ile Tyr Lys Arg Lys Asp Arg Ala Pro Lys Gln Glu Ile Gln Phe
 130 135 140
 Ala Asp Gly Ser Val Glu His Leu Trp Asn Thr Phe Gly Glu Glu Gln
 145 150 155 160
 Ile Asp Leu Asp Val Thr Lys Glu Val Thr Met Asp Phe Ile Arg Ser
 165 170 175
 Thr Ile Glu Asn Leu Ala Ala Asn Gly Cys Asp Leu Ile Arg Leu Asp
 180 185 190
 Ala Phe Ala Tyr Ala Val Lys Lys Leu Asp Thr Asn Asp Phe Phe Val
 195 200 205
 Glu Pro Glu Ile Trp Thr Leu Leu Asp Lys Val Arg Asp Ile Ala Ala
 210 215 220
 Val Ser Gly Ala Glu Ile Leu Pro Glu Ile His Glu His Tyr Thr Ile
 225 230 235 240
 Gln Phe Lys Ile Ala Asp His Asp Tyr Tyr Val Tyr Asp Phe Ala Leu
 245 250 255
 Pro Met Val Thr Leu Tyr Ser Leu Tyr Ser Gly Lys Val Asp Arg Leu
 260 265 270
 Ala Lys Trp Val Lys Met Ser Pro Met Lys Gln Phe Thr Thr Leu Asp
 275 280 285
 Thr His Asp Gly Ile Gly Val Val Asp Val Lys Asp Ile Leu Thr Asp
 290 295 300
 Glu Glu Ile Thr Tyr Thr Ser Asn Glu Leu Tyr Lys Val Gly Ala Asn
 305 310 315 320
 Val Asn Arg Lys Tyr Ser Thr Ala Glu Tyr Asn Asn Leu Asp Ile Tyr
 325 330 335

 Gln Ile Asn Ser Thr Tyr Ser Ala Leu Gly Asp Asp Asp Gln Lys
 340 345 350
 Tyr Phe Leu Ala Arg Leu Ile Gln Ala Phe Ala Pro Gly Ile Pro Gln
 355 360 365
 Val Tyr Tyr Val Gly Phe Leu Ala Gly Lys Asn Asp Leu Glu Leu Leu
 370 375 380
 Glu Ser Thr Lys Glu Gly Arg Ile Ile Asn Arg His Tyr Tyr Ser Ser
 385 390 395 400
 Glu Glu Ile Ala Lys Glu Val Lys Arg Pro Val Val Lys Ala Leu Leu
 405 410 415

Asn Leu Phe Thr Tyr Arg Ile Gln Ser Ala Ala Phe Asp Leu Asp Gly
 420 425 430
 Arg Ile Glu Val Glu Thr Pro Asn Glu Glu Asn Ile Val Ile Glu Arg
 435 440 445
 Gln Asn Lys Asp Gly Ser His Ile Ala Thr Ala Glu Ile Asn Leu Gln
 450 455 460
 Asp Met Thr Tyr Arg Val Thr Glu Asn Asp Gln Thr Ile Ser Leu Ser
 465 470 475 480
 Met Ile Ser Cys Gln Thr
 485

<;210>; 5
 <;211>; 1375
 <;212>; PRT
 <;213>; Streptococcus mutans
 <;400>; 5
 Met Glu Lys Lys Val Arg Phe Lys Leu Arg Lys Val Lys Lys Arg Trp
 1 5 10 15
 Val Thr Val Ser Ile Ala Ser Ala Val Val Thr Leu Thr Ser Leu Ser
 20 25 30
 Gly Ser Leu Val Lys Ala Asp Ser Thr Asp Asp Arg Gln Gln Ala Val
 35 40 45
 Thr Glu Ser Gln Ala Ser Leu Val Thr Thr Ser Glu Ala Ala Lys Glu
 50 55 60
 Thr Leu Thr Ala Thr Asp Thr Ser Thr Ala Thr Ser Ala Thr Ser Gln
 65 70 75 80
 Pro Thr Ala Thr Val Thr Asp Asn Val Ser Thr Thr Asn Gln Ser Thr
 85 90 95
 Asn Thr Thr Ala Asn Thr Ala Asn Phe Val Val Lys Pro Thr Thr Thr
 100 105 110

 Ser Glu Gln Ala Lys Thr Asp Asn Ser Asp Lys Ile Ile Thr Thr Ser
 115 120 125
 Lys Ala Val Asn Arg Leu Thr Ala Thr Gly Lys Phe Val Pro Ala Asn
 130 135 140
 Asn Asn Thr Ala His Pro Lys Thr Val Thr Asp Lys Ile Val Pro Ile
 145 150 155 160
 Lys Pro Lys Ile Gly Lys Leu Lys Gln Pro Ser Ser Leu Ser Gln Asp
 165 170 175
 Asp Ile Ala Ala Leu Gly Asn Val Lys Asn Ile Arg Lys Val Asn Gly
 180 185 190
 Lys Tyr Tyr Tyr Tyr Lys Glu Asp Gly Thr Leu Gln Lys Asn Tyr Ala
 195 200 205
 Leu Asn Ile Asn Gly Lys Thr Phe Phe Asp Glu Thr Gly Ala Leu
 210 215 220
 Ser Asn Asn Thr Leu Pro Ser Lys Lys Gly Asn Ile Thr Asn Asn Asp
 225 230 235 240
 Asn Thr Asn Ser Phe Ala Gln Tyr Asn Gln Val Tyr Ser Thr Asp Val
 245 250 255
 Ala Asn Phe Glu His Val Asp His Tyr Leu Thr Ala Glu Ser Trp Tyr

260

265

270

Arg Pro Lys Tyr Ile Leu Lys Asp Gly Lys Thr Trp Thr Gln Ser Thr
 275 280 285
 Glu Lys Asp Phe Arg Pro Leu Leu Met Thr Trp Trp Pro Asp Gln Glu
 290 295 300
 Thr Gln Arg Gln Tyr Val Asn Tyr Met Asn Ala Gln Leu Gly Ile His
 305 310 315 320
 Gln Thr Tyr Asn Thr Ala Thr Ser Pro Leu Gln Leu Asn Leu Ala Ala
 325 330 335
 Gln Thr Ile Gln Thr Lys Ile Glu Glu Lys Ile Thr Ala Glu Lys Asn
 340 345 350
 Thr Asn Trp Leu Arg Gln Thr Ile Ser Ala Phe Val Lys Thr Gln Ser
 355 360 365
 Ala Trp Asn Ser Asp Ser Glu Lys Pro Phe Asp Asp His Leu Gln Lys
 370 375 380
 Gly Ala Leu Leu Tyr Ser Asn Asn Ser Lys Leu Thr Ser Gln Ala Asn
 385 390 395 400
 Ser Asn Tyr Arg Ile Leu Asn Arg Thr Pro Thr Asn Gln Thr Gly Lys
 405 410 415
 Lys Asp Pro Arg Tyr Thr Ala Asp Arg Thr Ile Gly Gly Tyr Glu Phe
 420 425 430
 Leu Leu Ala Asn Asp Val Asp Asn Ser Asn Pro Val Val Gln Ala Glu
 435 440 445
 Gln Leu Asn Trp Leu His Phe Leu Met Asn Phe Gly Asn Ile Tyr Ala
 450 455 460
 Asn Asp Pro Asp Ala Asn Phe Asp Ser Ile Arg Val Asp Ala Val Asp
 465 470 475 480
 Asn Val Asp Ala Asp Leu Leu Gln Ile Ala Gly Asp Tyr Leu Lys Ala
 485 490 495
 Ala Lys Gly Ile His Lys Asn Asp Lys Ala Ala Asn Asp His Leu Ser
 500 505 510
 Ile Leu Glu Ala Trp Ser Tyr Asn Asp Thr Pro Tyr Leu His Asp Asp
 515 520 525
 Gly Asp Asn Met Ile Asn Met Asp Asn Arg Leu Arg Leu Ser Leu Leu
 530 535 540
 Tyr Ser Leu Ala Lys Pro Leu Asn Gln Arg Ser Gly Met Asn Pro Leu
 545 550 555 560
 Ile Thr Asn Ser Leu Val Asn Arg Thr Asp Asp Asn Ala Glu Thr Ala
 565 570 575

 Ala Val Pro Ser Tyr Ser Phe Ile Arg Ala His Asp Ser Glu Val Gln
 580 585 590
 Asp Leu Ile Arg Asn Ile Ile Arg Thr Glu Ile Asn Pro Asn Val Val
 595 600 605
 Gly Tyr Ser Phe Thr Thr Glu Glu Ile Lys Lys Ala Phe Glu Ile Tyr
 610 615 620
 Asn Lys Asp Leu Leu Ala Thr Glu Lys Lys Tyr Thr His Tyr Asn Thr
 625 630 635 640
 Ala Leu Ser Tyr Ala Leu Leu Leu Thr Asn Lys Ser Ser Val Pro Arg

645	650	655
Val Tyr Tyr Gly Asp Met Phe Thr Asp Asp Gly Gln Tyr Met Ala His		
660	665	670
Lys Thr Ile Asn Tyr Glu Ala Ile Glu Thr Leu Leu Lys Ala Arg Ile		
675	680	685
Lys Tyr Val Ser Gly Gly Gln Ala Met Arg Asn Gln Gln Val Gly Asn		
690	695	700
Ser Glu Ile Ile Thr Ser Val Arg Tyr Gly Lys Gly Ala Leu Lys Ala		
705	710	715
Thr Asp Thr Gly Asp Arg Thr Thr Arg Thr Ser Gly Val Ala Val Ile		
725	730	735
Glu Gly Asn Asn Pro Ser Leu Arg Leu Lys Ala Ser Asp Arg Val Val		
740	745	750
Val Asn Met Gly Ala Ala His Lys Asn Gln Ala Tyr Arg Pro Leu Leu		
755	760	765
Leu Thr Thr Asp Asn Gly Ile Lys Ala Tyr His Ser Asp Gln Glu Ala		
770	775	780
Ala Gly Leu Val Arg Tyr Thr Asn Asp Arg Gly Glu Leu Ile Phe Thr		
785	790	795
Ala Ala Asp Ile Lys Gly Tyr Ala Asn Pro Gln Val Ser Gly Tyr Leu		
805	810	815
Gly Val Trp Val Pro Val Gly Ala Ala Asp Gln Asp Val Arg Val		
820	825	830
Ala Ala Ser Thr Ala Pro Ser Thr Asp Gly Lys Ser Val His Gln Asn		
835	840	845
Ala Ala Leu Asp Ser Arg Val Met Phe Glu Gly Phe Ser Asn Phe Gln		
850	855	860
Ala Phe Ala Thr Lys Lys Glu Glu Tyr Thr Asn Val Val Ile Ala Lys		
865	870	875
Asn Val Asp Lys Phe Ala Glu Trp Gly Val Thr Asp Phe Glu Met Ala		
885	890	895
Pro Gln Tyr Val Ser Ser Thr Asp Gly Ser Phe Leu Asp Ser Val Ile		
900	905	910
Gln Asn Gly Tyr Ala Phe Thr Asp Arg Tyr Asp Leu Gly Ile Ser Lys		
915	920	925
Pro Asn Lys Tyr Gly Thr Ala Asp Asp Leu Val Lys Ala Ile Lys Ala		
930	935	940
Leu His Ser Lys Gly Ile Lys Val Met Ala Asp Trp Val Pro Asp Gln		
945	950	955
Met Tyr Ala Leu Pro Glu Lys Glu Val Val Thr Ala Thr Arg Val Asp		
965	970	975
Lys Tyr Gly Thr Pro Val Ala Gly Ser Gln Ile Lys Asn Thr Leu Tyr		
980	985	990
Val Val Asp Gly Lys Ser Ser Gly Lys Asp Gln Gln Ala Lys Tyr Gly		
995	1000	1005
Gly Ala Phe Leu Glu Glu Leu Gln Ala Lys Tyr Pro Glu Leu Phe Ala		
1010	1015	1020
Arg Lys Gln Ile Ser Thr Gly Val Pro Met Asp Pro Ser Val Lys Ile		
1025	1030	1035
1040		

Lys Gln Trp Ser Ala Lys Tyr Phe Asn Gly Thr Asn Ile Leu Gly Arg
 1045 1050 1055
 Gly Ala Gly Tyr Val Leu Lys Asp Gln Ala Thr Asn Thr Tyr Phe Ser
 1060 1065 1070
 Leu Val Ser Asp Asn Thr Phe Leu Pro Lys Ser Leu Val Asn Pro Asn
 1075 1080 1085
 His Gly Thr Ser Ser Ser Val Thr Gly Leu Val Phe Asp Gly Lys Gly
 1090 1095 1100
 Tyr Val Tyr Tyr Ser Thr Ser Gly Asn Gln Ala Lys Asn Ala Phe Ile
 1105 1110 1115 1120
 Ser Leu Gly Asn Asn Trp Tyr Tyr Phe Asp Asn Asn Gly Tyr Met Val
 1125 1130 1135
 Thr Gly Ala Gln Ser Ile Asn Gly Ala Asn Tyr Tyr Phe Leu Ser Asn
 1140 1145 1150
 Gly Ile Gln Leu Arg Asn Ala Ile Tyr Asp Asn Gly Asn Lys Val Leu
 1155 1160 1165
 Ser Tyr Tyr Gly Asn Asp Gly Arg Arg Tyr Glu Asn Gly Tyr Tyr Leu
 1170 1175 1180
 Phe Gly Gln Gln Trp Arg Tyr Phe Gln Asn Gly Ile Met Ala Val Gly
 1185 1190 1195 1200

 Leu Thr Arg Val His Gly Ala Val Gln Tyr Phe Asp Ala Ser Gly Phe
 1205 1210 1215
 Gln Ala Lys Gly Gln Phe Ile Thr Thr Ala Asp Gly Lys Leu Arg Tyr
 1220 1225 1230
 Phe Asp Arg Asp Ser Gly Asn Gln Ile Ser Asn Arg Phe Val Arg Asn
 1235 1240 1245
 Ser Lys Gly Glu Trp Phe Leu Phe Asp His Asn Gly Val Ala Val Thr
 1250 1255 1260
 Gly Thr Val Thr Phe Asn Gly Gln Arg Leu Tyr Phe Lys Pro Asn Gly
 1265 1270 1275 1280
 Val Gln Ala Lys Gly Glu Phe Ile Arg Asp Ala Asn Gly Tyr Leu Arg
 1285 1290 1295
 Tyr Tyr Asp Pro Asn Ser Gly Asn Glu Val Arg Asn Arg Phe Val Arg
 1300 1305 1310
 Asn Ser Lys Gly Glu Trp Phe Leu Phe Asp His Asn Gly Ile Ala Val
 1315 1320 1325
 Thr Gly Ala Arg Val Val Asn Gly His Ala Ser Ile Leu Ser Leu Met
 1330 1335 1340
 Val Phe Arg Leu Arg Glu Ser Ser Leu Gln Ser Val Lys Val Val Ser
 1345 1350 1355 1360
 Asn Thr Met Ile Leu Ile Pro Glu Met Lys Phe Val Ile Val Met
 1365 1370 1375
 <;210>; 6
 <;211>; 5684
 <;212>; DNA
 <;213>; Streptococcus mutans
 <;400>; 6
 gcatgcctat tgaggttatg gccaaggcggg gcattaaaaac attgctttat gggcccatga 60

atcgaaaccc tgcttaaagc tcgttataag tatgtttcag gcggtaaaggc catgcgaat 3120
caacagggtt gcaattctga aatcattacg tctgtccgct atggtaaagg tgctttaaaa 3180
gcaacggata caggggaccg caccacacgg acttcaggag tggcgtgat tgaaggcaat 3240
aacccttctt tacgttgaa ggcttctgat cgctgggtg tcaatatggg agcagcccat 3300
aagaaccaag cttaccgacc ttactcttg accacagata acggtatcaa ggcttatcat 3360
tccgatcaag aagcggctgg tttggtgcgc tacaccaatg acagaggaa attgatctt 3420
acagcggctg atattaaagg ctatgccaa cctcaagttt ctggatattt aggtgtctgg 3480
gttccagtag gcgctgccgc tgatcaagat gtgcgttg cgctagcac ggccccatca 3540
acagatggca agtctgtc aaaaaatgcg gcccttgatt cacgcgtcat gtttgaaggt 3600
ttctctaatt tccaagctt cgccactaaa aaagaggaat ataccaatgt tgtgatgtct 3660
aagaatgtgg ataagggttc ggaatgggg gtcacagact ttgaaatggc accgcagtat 3720
gtgttcaaa cggatggttc ttcttgat tctgtatcc aaaacggcta tgctttacg 3780
gaccgttatg atttggaaat ttccaaacct aataaatacg ggacagccga tgattttgt 3840
aaaggccatca aagcgttaca cagcaaggc attaaggtaa tggctgactg ggtgcctgat 3900
caaatgtatg cttccctga aaaagaagtg gtaactgcaa cccgtgtga taagtatggg 3960
actctgttg cagggagtca gataaaaaaaaac accctttatg tagttatgg taagaggct 4020
ggtaaagatc aacaaggccaa gtatgggg gctttcttag aggagctca agcgaagttat 4080
ccggagcttt ttgcgagaaaa acaaatttcc acaggggttc cgatggatcc ttctgttaag 4140
attaagcaat ggtctgccaat gtacttaat gggacaataa tttagggcg cggagcaggc 4200
tatgtcttaa aagatcaggc aactaataact tacttaataa tttaggatataa taaagaaata 4260
aacttcccttc ctAAAacatt gttaaaccaa gatagtcaag ttggttctc ttatgacgg 4320
aaagggttatg ttattatttc aacgagttgtt taccaagccaa aaaatacttt catcagcgaa 4380
ggtgataaat ggtatttttg tgataataac ggttatatgg tcactggc tcaatcaatt 4440
aacgggttta attattttt cttatcaaat ggcctacage tcagagatgc tattcttaag 4500
aatgaagatg gaacttacgc ttattatgg aatgacggc gccgttatga aaatggttat 4560
tatcaattca tgagttgtt atggcgtcac ttcaataatg gtggaaatgg tgttggatta 4620
actgttaattt atggcgttgtt tcaataactt gatggaaatgg gctatcaagc caaaggaaaa 4680
tttgttaacaa ctggcgatgg taaaataaga tattttgata agcaatctgg gaacatgtac 4740
cgtatcggtt ttattggaaa cgaagaaggtaa aatggctgt atctcggtga agatggc 4800
gcagtgacag gatctcaaac cattaacggtaa caacacctgt accttagagc aaacgggttt 4860
caggtcaagg gtgaattttgtt cactgaccac cacggccgtta tcagcttataa cgacggcaat 4920
tcaggggatc aaatccgcaaa ccgtttgtc cgcaatgtc agggtcaatg gttctacttt 4980
gataacaatg gctatggcgtt aaccgggtcc agaaccatca acggtaaca cctatacttt 5040
agagcaaaacg gtgttcaggtaa caagggtgaa ttgtcactg accgctacgg ccgtatcage 5100
tattacgacg gcaatttcagg ggatcaatc cgcaaccgtt ttgtccgaa tgctcagggtt 5160
caatggttctt actttgataa caatggctat gccgttaaccg gtggcagaac cattaacgg 5220
caacacccat acttttagagc aaacgggtttt caggtcaagg gtgaattttgtt cactgaccgc 5280
cacggccgtta tcagcttataa cgacggcaat tcaggggatc aaatccgcaaa ccgtttgtc 5340
cgcaatgtc agggtcaatg gttctacttt gataacaatg gctatggcgtt aaccgggtcc 5400
agaaccatca acggtaaca cctatactttt agagcaaaacg gtgttcaggtaa caagggtgaa 5460
tttgtcactg accgcccacgg ccgtatcagt tattacgatg ctaactctgg agaaccgg 5520
cgatggatcaactt aattggaaaaa acgctctttt aagttaattt agagggcggtt tcttagggtaa 5580
ggaggttttaa atattttttaa ttattttttt aaaaaatggaa gaattttcatt ataaatataat 5640
tacgatacat tttttttttt ttatagaagt gttacaatac tagt 5684

フロントページの続き

(51) Int. Cl. ⁷

(C 1 2 P 21/08

C 1 2 R 1:91)

識別記号

F I

(C 1 2 P 21/08

C 1 2 R 1:91)

テーマコード(参考)