17.1 Introduction

Definition 17.1.1 (Convex function) A differentiable function $f : \mathbb{R}^n \to \mathbb{R}$ is **convex** if for any $x, y \in \mathbb{R}^n$, any $t \in [0, 1]$,

$$f(tx + (1-t)y) \le t \cdot f(x) + (1-t) \cdot f(y)$$

Consider the following problem: given function $f: \mathbb{R}^n \to \mathbb{R}$, minimize f(x). If f is convex, then any local minimal is the global minimal, as shown in the left; if f is not convex, then as shown in right diagram, local minimal is not necessarily global minimal.

For convex functions, a widely-used method to minimize their values is gradient descent. The algorithm is simple:

Algorithm 1 Gradient Descent

Given: Convex function $f: \mathbb{R}^n \to \mathbb{R}$, a randomly chosen x_0 in the domain of f, some positive step size η

1: **for** t = 1 to T **do**

2: $x_t \leftarrow x_{t-1} - \eta \nabla f(x_{t-1})$

In the following, we will explain some preliminaries from calculus and bound how fast it converges.

17.2 Preliminaries

First, recall theorems from calculus.

Theorem 17.2.1 (Taylor's Theorem with remainder) If $f : \mathbb{R}^n \to \mathbb{R}$ is at least twice differentiable at x, then

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(x) (y - x) + o((y - x)^{T} (y - x))$$

where $\nabla f(x)$ is the gradient of f(x), and $\nabla^2 f(x)$ is the Hessian matrix, i.e.,

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(x) \\ \vdots \\ \frac{\partial f}{\partial x_N}(x) \end{bmatrix} \qquad \nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(x) & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(x) \\ \vdots & \vdots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(x) & \dots & \frac{\partial^2 f}{\partial x_n \partial x_n}(x) \end{bmatrix}$$

Denote $f(y) - f(x) - \nabla f(x)(y-x) - \frac{1}{2}\nabla^2 f(x)(y-x)^2$ as R. By the theorem, R is in $o\left((y-x)^T(y-x)\right)$, i.e.

$$\lim_{y \to x} \frac{R}{(y-x)^2} = 0$$

This implies that R is also $O((y-x)^T(y-x))$.

Theorem 17.2.2 (Lagrange remainder) For $f : \mathbb{R}^n \to \mathbb{R}$ that is at least twice differentiable at x, then there exists $x' \in [x, y]$ such that

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(x') (y - x)$$

Proof: For simplicity, we only prove it for univariate function f. Let $F(\alpha) := f(\alpha) + f'(\alpha)(y - \alpha)$. Then F(y) = f(y), F(x) = f(x) + f'(x)(y - x).

Recall the generalized mean value theorem that, for any F, G continuous on [a, b], differentiable on (a, b), and $G'(x) \neq 0$ for any $x \in (a, b)$, there exists $c \in (a, b)$ such that

$$\frac{F(b) - F(a)}{G(b) - G(a)} = \frac{F'(c)}{G'(c)}$$

Substitute in F defined above and $G(\alpha) := (y - \alpha)^2$ on interval between x, y, y

$$F(y) - F(x) = \frac{F'(c)}{G'(c)} \cdot (G(y) - G(x))$$

$$= \frac{f''(c)(y - c)}{-2(y - c)} \cdot (0 - (y - x)^2)$$

$$= \frac{1}{2}f''(c)(x - y)^2$$

Thus,

$$f(y) = F(y) = F(x) + \frac{1}{2}f''(c)(x - y)^{2}$$
$$= f(x) + f'(x)(y - x) + \frac{1}{2}f''(c)(x - y)^{2}$$

When f is convex, Hessian matrix $\nabla^2 f(x)$ is positive-semi-definite, so $(y-x)^T \nabla^2 f(x)(y-x) \ge 0$, which together with Lagrange remainder theorem implies that

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

So if $x_t = x_{t-1} - \eta \nabla f(x_{t-1})$,

$$f(x_{t-1}) \ge f(x_t) + \nabla f(x_t)^T \cdot \eta \cdot \nabla f(x_{t-1})$$

$$\implies f(x_t) \le f(x_{t-1}) - \nabla f(x_t)^T \cdot \eta \cdot \nabla f(x_{t-1})$$

For convex function f and x_t, x_{t-1} that are not minimal, $f(x_t), f(x_{t-1})$ are positive, so $f(x_t)$ in gradient descent will decrease strictly monotonically until it reaches the global minimal. However, this doesn't give us any guarantee of how fast the gradient descent converges.

17.3 Convergence of gradient descent

Notation: $||\cdot||$ are all L-2 norms .

17.3.1 Assumptions

Besides f is convex, we in addition assume that f is

1. β -smoothness, i.e., the eigenvalues of $\nabla^2 f(x)$ is at most β . Equivalently, for any x, y in the domain,

$$||\nabla f(y) - \nabla f(x)|| \le \beta ||y - x||$$

2. α -strongly convex, i.e., the eigenvalues of $\nabla^2 f(x)$ is at least α . Equivalently, for any x, y in the domain,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\alpha}{2} \cdot ||y - x||^2$$

17.3.2 Bounding the convergence

Theorem 17.3.1 If $\eta \leq \frac{1}{\beta}$ we have that

$$||x_t - x^*||^2 \le (1 - \frac{\eta \cdot \alpha}{2})^t \cdot ||x_0 - x^*||^2,$$

i.e., x_t converges to the minimum x^* quickly. In addition

$$f(x_t) - f(x^*) \le \beta (1 - \frac{\eta \cdot \alpha}{2})^t \cdot ||x_0 - x^*||^2$$

i.e., the distance between $f(x^t)$ and $f(x^*)$ drops exponentially.

This shows that the gap between $f(x^*)$ and $f(x_t)$ in gradient descent decreases exponentially, and thus indicating gradient descent converges very fast. To prove the theorem, we first use the following lemma

Lemma 17.3.2 If f is β -smooth and α -strongly convex, then

$$\nabla f(x_t)^T (x_t - x^*) \ge \frac{\alpha}{4} ||x_t - x^*||^2 + \frac{1}{2\beta} ||\nabla f(x_t)||^2$$

Proof: We first prove the theorem 17.3.2 assuming the lemma 17.3.2. First, since $x_t := x_{t-1} + \eta \nabla f(x_{t-1})$,

$$||x_{t} - x^{*}||^{2} = ||x_{t-1} - x^{*} - \eta \nabla f(x_{t-1})||^{2}$$
$$= ||x_{t-1} - x^{*}||^{2} + \eta^{2} \cdot ||\nabla f(x_{t-1})||^{2} - 2\eta \nabla f(x_{t-1})^{T} (x_{t-1} - x^{*})$$

By the lemma above, this is at most

$$||x_{t-1} - x^*||^2 + \eta^2 \cdot ||\nabla f(x_{t-1})||^2 - 2\eta \left(\frac{\alpha}{4}||x_t - x^*||^2 + \frac{1}{2\beta}||\nabla f(x_t)||^2\right)$$
$$= (1 - \frac{\alpha \cdot \eta}{2})||x_{t-1} - x^*||^2 + (\eta^2 - 2\eta \cdot \frac{1}{2\beta})||\nabla f(x_t)||^2$$

Recall that we assumed $\eta \leq \frac{1}{\beta}$, so $0 \leq \eta^2 \leq \eta \cdot \frac{1}{\beta}$, and $\eta^2 - 2\eta \cdot \frac{1}{2\beta} \leq 0$. So it follows that

$$||x_{t} - x^{*}||^{2} \leq (1 - \frac{\alpha \cdot \eta}{2})||x_{t-1} - x^{*}||^{2} + (\eta^{2} - 2\eta \cdot \frac{1}{2\beta})||\nabla f(x_{t})||^{2}$$

$$\leq (1 - \frac{\alpha \cdot \eta}{2})||x_{t-1} - x^{*}||^{2}$$
(17.3.1)

For the convergence of function output, theorem 17.2.2 implies that

$$f(x^*) \ge f(x_t) + \nabla f(x_t)^T (x_t - x^*)$$
$$\Longrightarrow f(x_t) - f(x^*) \le \nabla f(x_t)^T (x_t - x)$$

Since x^* is a local minimal, $\nabla f(x^*)^T = \vec{0}$, so the inequality above can be rewritten as

$$f(x_t) - f(x^*) \le \left(\nabla (f(x_t)^T - \nabla f(x^*)^T)(x_t - x)\right)$$

By β -smoothness,

$$||f(x_t)^T - \nabla f(x^*)^T|| \le \beta ||x^t - x^*||$$

so combined,

$$f(x_t) - f(x^*) \le || \left(\nabla (f(x_t)^T - \nabla f(x^*)^T) (x_t - x) || \le \beta ||x_t - x^*||^2$$
 (17.3.2)

Thus, we have the theorem from inequalities 17.3.1 and 17.3.2.

Now we prove the 17.3.2. **Proof:** Note that if we can prove both of the followings, then the lemma follows from adding up two inequalities and divide by two

1.
$$\nabla f(x_t)(x_t - x^*) \ge \frac{\alpha}{2}||x_t - x^*||^2$$

2.
$$\nabla f(x_t)(x_t - x^*) \ge \frac{1}{\beta} ||\nabla f(x_t)||^2$$

To prove (1), we use α -strong convex,

$$f(x^*) \ge f(x_t) + \nabla f(x_t)^T (x^* - x_t) + \frac{\alpha}{2} \cdot ||x^* - x_t||^2$$

$$\implies \nabla f(x_t)^T (x_t - x^*) \ge \frac{\alpha}{2} \cdot ||x^* - x_t||^2 + f(x_t) - f(x^*)$$

Since f achieves the local minimal at x^* , $f(x_t) - f(x^*) \ge 0$ for any x_t , so it follows that

$$\nabla f(x_t)^T (x_t - x^*) \ge \frac{\alpha}{2} \cdot ||x^* - x_t||$$

To prove (2), we recall that by Lagrange Remainder theorem, there exists some x' between x_t, x^* such that,

$$\nabla f(x_t) = \nabla f(x^*) + \nabla^2 f(x')(x_t - x^*)$$

 $\nabla f(x^*) = 0$ as x^* is the global minimal, and it follows that

$$\nabla f(x_t) = 0 + \nabla^2 f(x')(x_t - x^*)$$

$$\Rightarrow \nabla^2 f(x')^{-1} \cdot \nabla f(x_t) = x_t - x^*$$

$$\Rightarrow \nabla f(x_t)^T \cdot \nabla^2 f(x')^{-1} \cdot \nabla f(x_t) = \nabla f(x_t)^T \cdot (x_t - x^*)$$

$$\Rightarrow \nabla f(x_t)^T \cdot (x_t - x^*) = \nabla f(x_t)^T \cdot \nabla^2 f(x')^{-1} \cdot \nabla f(x_t)$$

$$\geq \text{min eigenvalue of } \nabla^2 f(x')^{-1} \cdot ||\nabla f(x_t)||^2$$

The last inequality follows from the fact that for any symmetric matrix M, the minimum eigenvalue

$$\lambda_{min} = \min_{x \neq 0} \frac{x^T A x}{x^T x},$$

which follows from Courant-Fischer theorem

Also, for any square non-singular matrix M, the inverse of any eigenvalue of M is an eigenvalue of M^{-1} . Hessian matrix is symmetric and positive semi-definite, so all of its eigenvalues are non-negative real numbers. Thus, the minimal eigenvalue of $\nabla^2 f(x')^{-1}$ is the inverse of the max eigenvalue of the $\nabla^2 f(x')$, and

min eigenvalue of
$$\nabla^2 f(x')^{-1} = \frac{1}{\text{max eigenvalue of } \nabla^2 f(x')}$$

Combined with the inequality above, we have

$$\nabla f(x_t)^T \cdot (x_t - x^*) \ge \frac{1}{\text{max eigenvalue of } \nabla^2 f(x')} \cdot ||\nabla f(x_t)||^2$$

By β-smoothness, max eigenvalue of $\nabla^2 f(x') \leq \beta$, so

$$\nabla f(x_t)^T \cdot (x_t - x^*) \ge \frac{1}{\beta} \cdot ||\nabla f(x_t)||^2$$

17.4 Applications

There are many applications of gradient descent. One example is the interior point algorithm that solves LP problems. More details can be find in this note.

17.5 References

 $1.\ http://mitliagkas.github.io/ift6085/ift-6085-lecture-3-notes.pdf$