Deuxième exemple de document LEX

Mon Nom

19 septembre 2023

1 Mathématiques

Une grammaire hors contexte dans l'équation (1)

$$S \rightarrow aS'$$
 $S' \rightarrow bA$
 $A \rightarrow cA \mid aA'$
 $A' \rightarrow dB$
 $B \rightarrow cA \mid aA' \mid b$

$$(1)$$

Utilisons la formule de Stirling qui donne $n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$:

$$\binom{2n-1}{n-1} = \frac{(2n-1)!}{(n-1)! \cdot n!} = \frac{(2n)!}{2(n!)^2} \sim \frac{\sqrt{4\pi n} \left(\frac{2n}{e}\right)^{2n}}{4\pi n \left(\frac{n}{e}\right)^{2n}} = \frac{2^{2n-1}}{\sqrt{\pi n}} = \Omega(2^n)$$

Ensembles de nombres : $\mathbb{N} \subsetneq \mathbb{Z} \subsetneq \mathbb{D} \subsetneq \mathbb{Q} \subsetneq \mathbb{R} \subsetneq \mathbb{C}$

Formule logique : $\forall \vec{x} \phi(\vec{x}) \rightarrow \exists \vec{y} \psi(\vec{x}, \vec{y}).$

Axiome 1. Il existe une unique droite passant par un point parallèle à une droite donnée.

Démonstration. On ne prouve pas un axiome!

2 Tableaux et figures

Voici une description des liens des réseaux sociaux :

	Lien Implicite	
	Oui	Non
Lien explicite	Lien agglutinant existant Lien agglutinant potentiel	

Regardez le beau lapin-canard 1 de la Figure 1 :

^{1.} Téléchargé depuis http://commons.wikimedia.org/wiki/File:Duck-Rabbit_illusion.jpg

Coin! Ce texte est mis à droite du canardlapin grâce à un tableau dont chaque case fait .5\linewidth

FIGURE 1 – Un lapin-canard

Table 1 – Nombre d'erreurs

	Nombre d'erreurs (cas 1)	Nombre d'erreurs (cas 2)
A	11	6
В	12	6
\mathbf{C}	78	77
D	6	6
\mathbf{E}	7	6
F	0	0