

Global Navigation Satellite Systems

LO53 Part II

Frédéric Lassabe

Université de Technologie de Belfort-Montbéliard

www.utbm.fr

- Global Navigation Satellite System
- ② Global Positioning System Basics GPS Augmentation Systems
- 3 Other GNSS GLONASS Galileo

Plan Global Navigation Satellite System Global Positioning System Other GNSS

- Global Navigation Satellite System
- 2 Global Positioning System
- 3 Other GNSS

Definition

- Global Navigation Satellite System
- Defined by :
 - Accuracy/Precision
 - Longitude/Latitude
 - Constellation
 - History

Accuracy and precision

- Precision : quality of points between themselves,
- Accuracy: quality compared to the true location.

Definition: Latitude/Longitude

- Latitude : from 0 to 90, oriented N/S from the equator
- ullet Longitude : Greenwich Meridian, from -180 to +180

Definition: Constellation

• Orbiting satellites

GNSS history

• 1957 : Spoutnik

• 1960-70 : System Transit (Doppler, accuracy ≤1km, 1100 km,106min)

• 1978 : first GPS satellite

• 1982 : first Glonass satellite

GNSS history

- 1983 : KAL flight 007 shot down by soviet army
- Consequence: U.S.A Pdt. Ronald Reagan announced GPS availability to civilian applications.

GNSS history

• 1994 : GPS constellation complete

• 1995 : Glonass constellation complete

• 2000 : Selective Availability discontinued

• 2004 : first Galileo satellite

- 1 Global Navigation Satellite System
- ② Global Positioning System Basics GPS Augmentation Systems
- 3 Other GNSS

Segments (GPS)

Space Segment : constellation (1)

- Nominal GPS constellation
 - Semi-major axis : a=26560km
 - Altitude 20200km
 - Excentricity < 0.01 (almost circular orbit)
 - Period : $\leq 12h$ (v = 4000 m.s⁻¹)
 - Six orbital plans (A-F) every 60°
 - 4 satellites on each plan, unequally distributed (failure tolerance)
 - Requires 24 satellites

Space Segment (2)

- Currently 31 satellites (old ones)
 - Redundant measurements
 - Improves
 - Reliability
 - availability
- Almost everywhere on Earth: at least 6 satellites within line of sight

Control Segment (1)

- Monitor Stations
 - Receive orbital data
- Ground antennas (uplink stations)
 - Transmit updates to satellites
- Master Station
 - · Data processing
 - Time and orbits updates

Control Segment (2)

- Schriever AF base
 - 2nd Space Operations Squadron (2SOPS)
 - Receives tracking data from monitor stations
 - Sends navigational updates to satellites through ground antennas
 - Synchronizes atomic clocks a few ns from each other
 - Adjusts ephemeris of satellites internal orbital model
 - Based on Kalman filter on various inputs

Satellite trajectory change

- Not precised by GPS standards
- Mark satellite as "unhealthy"
 - Users won't use it
- Move it
- Orbit tracked
- Ephemeris updated and uploaded
- Satellite marked "healthy" again

User Segment (1)

- Who? Army fleet management agriculture navigation emergency services – customers = you
- Receivers with various qualities
- Shared functions :
 - Satellites (in sight) identification
 - Computation of distance between user and satellites, then trilatération
- Additional functions :
 - Ease and/or improve positioning
 - Add services (route, integration to communication systems, etc.)

User Segment (2)

- GPS receiver composed of
 - An antenna
 - tuned to the satellite frequencies
 - Receiver processors
 - Highly stable clock (crystal oscillator)
- Defined by number of channels
 - Number of satellites simultaneously tracked
 - At the beginning 4 or 5 channels
 - Nowadays, from 12 to 20

User Segment (3)

- Transmits data to a PC by
 - NMEA protocol
 - NMEA 0183
 - NMEA 2000
 - Allow open source tools (gpsd)
 - Proprietary protocols
 - SiRF
 - MTK
- Can transmit througs serial, USB, bluetooth, etc.

Frequencies

- L1
 - 1575.42 MHz
 - C/A and encrypted P(Y) code
- L2
 - 1227.60 MHz
 - P(Y) code
- L3, L4, L5 for further use

GPS signals

- Each satellite broadcasts a navigation message
 - 50 bps
 - 25 frames (30 seconds each)
 - 12.5 min required to receive the whole data
- Each frame
 - 5 subframes (300 bits)
- Each subframe
 - 10 words (30 bits)

Frame structure

- TLM (Telemetry Word)
 - Marks beginning of subframe
 - Sync. with navigation message
- HOW (Hand Over Word)
 - Timing information
 - Identify subframe
 - Time next subframe was sent

Subframe 1 to 3

- Subframe 1 : clock correction data
 - Status and accuracy of current satellite
 - Satellite clock and relation to GPS time
- Subframes 2 & 3 : ephemeris (current sat.)
 - Current satellite precise orbit
 - Updated every 2 hours
 - Valid for 4 hours
 - The older the ephemeris, the longer the warm start

Subframes 4 & 5 : almanac data

- Coarse data
 - Orbits
 - Status
 - For EACH satellite
 - Each frame is 1/25 almanac data
- When no almanac
 - Cold start
 - Up to 12.5 min to get all data from nothing
- Purposes of the almanac
 - Acquisition of satellites
 - Relates GPS time to UTC time
 - Allow single-frequency receiver to correct ionospheric error
 - · Global ionospheric model

Decoding C/A signals

- C/A (Coarse Acquisition) gold code
 - 1023 bits
 - 1025 different codes
- Problems
 - Doppler shift
 - Requires the almanac

How it works: basics (1)

- Triangulation
 - Angle-based method
 - Easy to use and measure
- Trilateration
 - Distance-based method
 - Easy to automate
 - Hard to measure (accuracy)

How it works: basics (2)

• Distance determination :

$$d = c \cdot \tau$$

with c being light speed

$$c \simeq 30000000m.s^{-1}$$

- Works with synchronisation
- $1\mu s$ error gives a 300 meters error

How it works: time

- Satellite : atomic clock
 - Very precise, low deviation, high cost
 - Problem : relativity
- Receiver : quartz clock
 - Low cost , high deviation (relative to satellites atomic clocks)
- Deviation measurement is critical

How it works : formula

• Formula to compute (x_u, y_u, z_u) coordinates according to 4 satellites

$$\begin{cases} \rho_{1} = \sqrt{(x_{s_{1}} - x_{u})^{2} + (y_{s_{1}} - y_{u})^{2} + (z_{s_{1}} - z_{u})^{2}} + c \cdot \delta t_{u} \\ \rho_{2} = \sqrt{(x_{s_{2}} - x_{u})^{2} + (y_{s_{2}} - y_{u})^{2} + (z_{s_{2}} - z_{u})^{2}} + c \cdot \delta t_{u} \\ \rho_{3} = \sqrt{(x_{s_{3}} - x_{u})^{2} + (y_{s_{3}} - y_{u})^{2} + (z_{s_{3}} - z_{u})^{2}} + c \cdot \delta t_{u} \\ \rho_{4} = \sqrt{(x_{s_{4}} - x_{u})^{2} + (y_{s_{4}} - y_{u})^{2} + (z_{s_{4}} - z_{u})^{2}} + c \cdot \delta t_{u} \end{cases}$$

Pseudo ranging

$$\rho = \sqrt{(x_s - x_u)^2 + (y_s - y_u)^2 + (z_s - z_u)^2} + c \cdot t_u + c \cdot t_a + E_j + \eta$$

- t_a : atmospheric error, related to propagation through ionosphere and troposphere ($t_{iono} + t_{tropo}$)
- E_i ephemeris error
- η are other errors

How it works: notes

- A receiver requires at least 4 satellites to determine its location
- Satellites must be in sight of the receiver
- The more satellites are on sight, the better the location determination

DOP

- DOP = Dilution of Precision
- GDOP = Global Dilution of Precision
- VDOP = Vertical Dilution of Precision
- HDOP = Horizontal Dilution of Precision

DOP computation

- From statistical data
 - Errors
 - Variances : σ_E^2 , σ_N^2 , σ_U^2 , σ_d^2

$$\begin{split} GDOP &= \frac{\sqrt{\sigma_E^2 + \sigma_N^2 + \sigma_U^2 + \sigma_d^2}}{\sigma} \\ PDOP &= \frac{\sigma}{\sqrt{\sigma_E^2 + \sigma_N^2 + \sigma_U^2}} \\ HDOP &= \frac{\sigma}{\sqrt{\sigma_E^2 + \sigma_N^2}} \\ VDOP &= \frac{\sigma_U}{\sigma} \\ TDOP &= \frac{\sigma_d}{\sigma} \end{split}$$

GDOP

- Sat. Position (when measuring) greatly interferes on the location estimation.
- Instant quality of positioning bound to satellites locations is given by GDOP
- Good GDOP: close to 1

Basics GPS Augmentation Systems

Errors

Segment	Error source	PPS	SPS	SA
Space	Clock stability	3	3	3
	Satellites	1	1	1
	Selective Availability			32.2
	Other	0.5	0.5	0.5
Control	Ephemeris	4.2	4.2	4.2
	Other	0.9	0.9	0.9
User	Ionospheric	2.3	5	5
	Tropospheric	2	1.5	1.5
	Receiver noise	1.5	1.5	1.5
	Multipath	1.2	2.5	2.5
	Other	0.5	0.5	0.5
Total		6.6	8	33.3

Accuracy

- Real-time :
 - GIS constraints
 - Generally 15 meters error
 - Hard to estimate the error
- DGPS
 - Longer measurements
 - Error of about 10 cm

Interferences

- Jamming
- Radio waves
- Canyon (cities)
- Sun
- Weather
- Time of the day
- Multipath

Limits

- Good relative position
- Requires a free-sight to the sky
- Depends on only one provider
- No integrity
- Easy to jam (civilian applications)

Conclusion

- Advantages
 - Fully operational
 - Good accuracy/precision
 - Existing augmentation systems (EGNOS, WAAS)
- Drawbacks
 - Under U.S.A military control
 - Only one civilian mode

NMEA Protocol

- National Marine Electronics Association
- Initially, protocol designed for sea navigation
- Extended to GPS use, well documented, about 30 frames defined

Example

\$GPGGA,064036.289,4836.5375,N,00740.9373,E,1,04,3.2,200.2,M,,,,0000*0E

- 064036.289 : frame time 06h40m36.289s
- 4836.5375,N: latitude 48° 36.5375' North
- 00740.9373,E : longitude 7° 40.9373' East
- 1 : positioning type (1 stands for GPS)
- 04 : number of satellites used to compute coordinates
- 3.2 : Horizontal precision (HDOP : Horizontal dilution of précision)
- 200.2,M : Altitude 200.2 , meters
- ,,,,,0000 : other data might be displayed in these fields
- *0E : Checksum, simple XOR on the frame string

Main GPS frames (1)

- GPALM : almanac status (for a specified satellite)
- · GPGBS : satellite fault detection
 - Expected errors for a GPGGA/GNS frame
- GPGGA : GPS fix data
 - Latitude/Longitude specified with minutes (convert to degree)
- GPGST : pseudo-range noise (associated to GGA)
- GPGSA: PDOP, VDOP, HDOP

Main GPS frames (2)

- GPGSV : satellites in view
- A lot of other frames
 - From ship sensors (radar, sounder)
 - About waypoints and destination
 - Autopilot
 - Depth data
 - Engines
 - ...

GNSS Augmentation

- Enhance
 - Reliability
 - Availability
 - Accuracy/precision
- Based on
 - External information

GPS Errors

- Ephemeris
 - Global
- Atmosphere
 - Troposphere
 - Ionosphere
- Multipath
 - Varying

Augmentation Methods

- Data about errors
 - · Clock drift
 - Ephemeris
 - · lonospheric delay
- Measurements about past errors
- Additionnal vehicle information

Augmentation systems

• Satellite Based :

WAAS : USAEGNOS : EuropeMSAS : Japan

• Ground Based : DGPS

 Receivers must be adapted

Selective Availability Use

- GPS available for civilian use
 - Foreign military use too
 - DoD feared other armies might use GPS for guided weapons
- Selective Availability
 - Solution
 - Accurate enough for civilian use

Differential GPS (DGPS)

- Selective Availability
 - High error
- Other systems
 - LORAN, VOR
 - High cost (million \$)
- GPS would replace all (spare money)
- DoD rejected requests from FAA (disable S/A)

DGPS: main ideas

- Selective Availability signal not changed frequently
 - Positioning error not varying (too much)
 - Uniform error on wide area
- Transmit the error to GPS users
 - Moreover, ionosphere errors correction
 - Final accuracy : 10 meters
- 1996 : limited use (DGPS stations in harbours)
- Then: most populated areas equipped

Principles

- Differential methods
 - User's location related directly to reference station's location
 - Station range up to 370 km
- Common errors corrected by difference
 - Simple difference
 - Double difference
 - Triple difference

Errors corrected

- Clock derivation
 - Between satellites and receiver
- Ephemeris (ground updates not perfect)
- Relativist effects (speed, gravitational field)
- Ionospheric error (signal slowed)
- Tropospheric error

Simple/Double/Triple Difference

- Observations on 1, 2 or 3 satellites
- Example on simple difference

$$R_1-R_2 = d_1-d_2+c(dt_1-dt_2)+e_{iono_1}-e_{iono_2}+e_{tropo_1}-e_{tropo_2}+e_{ephe_1}-e_{ephe_2}+e_{relat_1}-e_{relat_2}+e_{reste}$$

- With:
 - R : distance computed
 - D : true distance
 - dt : time difference
- Tropospheric, ephemeris and relativist errors are the same

Consequences

- DGPS deployement
 - GBAS
 - · Cost for stations
 - Not deployed in rural environment
- Selective Availability
 - Useless because of DGPS
- To improve coverage
 - SBAS (WAAS, EGNOS, MSAS)

Conclusion

- DGPS developed as GBAS
- Evolutions to SBAS
 - WAAS
 - EGNOS
 - MSAS

Why enhance GPS?

- FAA (Federal Aviation Administration)
 - ILS too expensive
 - Without WAAS, GPS not accurate enough to be used in precision approach
 - Main GPS error
 - Ionosphere
 - Move slowly
 - Monitoring and correcting ionospheric error to improve GPS accuracy

WAAS

- Wide Area Augmentation System
- Improves GPS
 - Accuracy
 - Integrity
 - Availability
- Main purpose
 - Aircrafts can rely on WAAS for all phases of flight, including precision approach
 - WAAS is certified SoL Cat. I

WAAS Ground Segment

- 38 Wide-area Reference Stations (WRS)
 - Collect information on GPS signals
- 3 Wide-area Master Stations (WMS)
 - Generate 2 corrections
 - Slow (errors varying slowly (ionospheric), ephemeris error)
 - Fast (errors varying fast (satellites instant location and clock error))
- 2 pairs of Ground Uplink Stations (GUS)
 - Transmission to WAAS space segment

WAAS Space Segment

- 2 commercial satellites
 - PanAmSat (Galaxy 15) and Telesat (Anik F1R)
 - Geostationnary orbit
 - Each hour on each day, same position
 - Broadcast WAAS + regular GPS messages

WAAS footprint

WAAS User Segment

- GPS and WAAS receivers
 - Can read both signals
- Uses fast and slow correction signals
 - Fast corrections are included immediatly in GPS calculation
 - Then, slow correction is applied
- Slow correction data updated every minute
 - 2 min for ephemeris and ionosphere data

WAAS stations

- Ground-based reference stations
 - In USA and Hawaii
- Master stations
 - Queue messages from reference stations
 - Send to geostationnary WAAS satellites
 - Every 5 seconds.
- WAAS sats.
 - Broadcast correction messages to Earth
 - WAAS-capable receivers can use it

WAAS objectives

- Accuracy
 - 95% with 7.6m accuracy or better (H+V)
- Integrity
 - Detect misleading data within 6.2 seconds
- Availability
 - Meet accuracy and integrity requirements
 - Unavailability 5 mins with WAAS, 4 hours else (each year)

WAAS benefits

- Addresses all of the navigation problem
- Highly accurate position, low cost (GPS receiver)
- Any airport can have precision approach
- Works between airports (reduce distances)
- Cost compared to ILS
 - Installation (50k\$ for GPS, 1.5M\$ for ILS)
 - Maintenance : saves 5 M\$ each year

Limits

- Geostationnary orbit
 - Less than 10° for locations above 71.4° lattitude
 - Aircraft hardly lock WAAS signals
- WAAS receivers for aircraft cost at least 10 k\$
- Cannot provide cat. II and III precision approach

Future

- Improvements to aviation operations
 - Current : cat. I (above 200 feet)
 - Extension down to 200 feet
- Software improvements
 - Improve cover in Alaska
- Space Segment upgrade
 - Adding a satellite
 - Use L5

EGNOS

- European Geostationary Navigation Overlay Service
- 40 Ground stations
- Glonass and GPS compliant (Galiléo)
- 3 satellites
- EU and ESA fundings
- Launched in 2005

EGNOS

Space Segment

- 3 satellites
 - INMARSAT Organization
 - IOR-W (PRN 126)
 - AOR-E (PRN 120)
 - ESA
 - Artemis (PRN 124)
 - Tests

User Segment

- GPS receivers with compatibility
 - SiRF III
 - EGNOS service now available
- Available since July 2005
 - Accuracy: 2m
 - Availability: above 99%
- Used to track Tour de France cyclists
- Intended to be certified for SoL in 2010

SISNet

- Combining GNSS and Internet
- Give EGNOS SIS (Signal In Space) data through Internet (2G+)
 - GSM
 - GPRS
- No EGNOS receiver required
- 2006 : SISNet 3.1
- Now?

EGNOS: Performances

GPS Military Applications

- Navigation
 - Night operations
 - Coordination of troops and supplies
- Target tracking
 - Weapon use GPS to track ground/air targets
 - Air-to-ground weapons
- Missile guidance

GPS Military Applications

- Search and Rescue
 - Downed pilots located w/ GPS receiver
- Recon and map creation
- Nuclear Detection
- In France
 - GNSS used in FELIN

- 1 Global Navigation Satellite System
- 2 Global Positioning System
- **3** Other GNSS GLONASS Galileo

GLONASS

- GLONASS : GLObal'naya NAvigatsionnaya Sputnikovaya Sistema
- Former Soviet Union Satellite Navigation System
- Development began in 1976
- Constellation complete: 1995
- Fell into disrepair (collapse of Russian economics)
- 2001 : GLONASS restoration began

GLONASS purpose

- Replace Tsikada/Tsiklon system
 - Not instantaneous (poor accuracy)
- Ballistic missiles
- Peak efficiency (99.7%)
 - Positioning accuracy
 - 57-70m horizontal
 - 70m vertical
 - Velocity within 15cm/s
 - Time transfer within $1\mu s$

Orbital Characteristics

- Operationnal GLONASS constellation
 - 24 satellites
 - 21 for transmission
 - 3 for spare
 - 3 orbital plans
 - Every 120°
 - 8 sats. Each
 - 64.8° from Earth
 - Altitude : 19100 km
 - Orbital period 11h15

Orbital Characteristics

- Each plan has a 15° latitude displacement
 - One satellite at a time crosses equator
- With full constellation, everywhere Number_{sat} ≥ 5
- Each satellite has a slot number (1 to 24)
 - 1 to 8 on first orbit, 9 to 16 on the second one, etc.
 - Every satellite passes on same point every 8th sideral day
 - 8 satellites on each orbit: every day, a satellite passes over the same point.

GLONASS Galileo

GLONASS coverage

FIGURE: GLONASS coverage (2012).

Satellite Signals

- Two signals
 - Standard Precision (SP)
 - High Precision (HP): obfuscated
- SP Signal
 - Same code
 - Different frequencies
 - 15 channels FDMA
 - Channels -7 to 7
 - L1 band : $1602 + n \times 0.5625$ MHz

Satellite Signals

- High Precision Signals
 - ullet Frequencies of L1 imes 10
 - · Other details not disclosed
- L2 frequency
 - $1246 + n \times 0.4375 \text{ MHz}$
 - Broadcast by all satellites except 1 (the oldest one)

Satellites

- Satellites are Uragan (Russian for hurricane) models
 - GRAU designation 11F654
 - Cosmos-NNNN
- 4 generations launched
 - 18 prototypes (1982-1985)
 - Type 1 : 6 Uragan (1985-86)
 - Type 2 : 14 Uragan-M (2001-2007)
 - Type 3 : Uragan-K (2009-n/d)

Ground Control

- Located in former USSR
- Moscow
 - Ground Control Center
 - Time Standards
- Telemetry and Tracking Stations
 - Saint Petersburg
 - Ternopol
 - Eniseisk
 - Komsomolsk-na-Amure

GLONASS Galileo

Receivers

- some Garmin eTrex
- Xiaomi Phone 2
- Sony Ericsson
- ZTE
- Huawei
- Samsung
 - Galaxy S3
 - Galaxy Note and Note II
- Apple
 - iPhone 4S, 5
 - iPad Mini (LTE only)
 - iPad III (LTE only)
- HTC
- LG
- Nokia
- Motorola

Current Status

- February 2009
 - 20 satellites
 - 19 operational
 - 1 under maintenance
- Coverage of Russia
 - Requires 18 satellites
 - Currently, 100% of Russian Federation

History

- From 1968 to 1969
 - Ministry of Defense, Academy of Science and Soviet Navy
- 1970 : requirements
- December 1976: plan for developing GLONASS
- From 1982 to 1991 : USSR launched 43 GLONASS satellites
 + 5 test satellites
- 1991 : 12 functional satellites in 2 plans : limited usage

Decay

- 1991 : disintegration of USSR
- GLONASS development undertaken by Russian Federation
- Sept. 1994 : GLONASS declared operationnal
- Constellation completed in 1995
- 1995-2001 : Russia unable to maintain GLONASS
- April 2002 : 8 satellites, GLONASS useless

Restoration and Modernization

- Aug. 20, 2001
 - Special program
 - Restore GLONASS by 2011
 - Deploy 24 satellites
- April 2007: Russia committed to accelerated launches
 - 8 satellites scheduled
 - Global coverage in 2009

Further developments

- 2007, prime minister Sergei Ivanov
 - 18 satellites available
 - 24 satellites in 2010
- December 2008
 - Russian Space agency stated
 - 30 satellites in 2011

Cooperation with Indian government

- Januar 2004 : joint venture with India's Space Agency
- Satellites built by Russia
 - Launched either from India or Russia
 - Coverage for both
- Russia and India share development cost for GLONASS-K satellites
- India obtained High Precision signal

Discussions with USA

- Benefits of changing GLONASS signals pattern to GPS ones
 - Receivers can use both
- GLONASS from FDMA to CDMA
 - Current status?

Civilian signals available

- May 18, 2007, Vladimir Putin signed a decree
 - Open access to the GLONASS civilian navigation signals
 - Russian consumers
 - Foreign consumers
 - Free of charge
 - Without limitation
 - Directed Federal Space Agency to maintain, develop and enable GLONASS to civilian and commercial needs
- Mr. Putin acquired a GLONASS-enabled collar for his black labrador
 - Show the use of GLONASS in cattle monitoring

Galileo

- European GNSS
- Currently under development
- Decision taken in 2001
- Organization dedicated to Galileo
 - Private and public funds
 - · Lots of administrations
 - Explanation for Galileo being late?

Galileo short description

- Dependancy from GPS
 - Various restrictions
 - Positioning accuracy
 - Reliability
 - Continuity in some locations
 - Continuity for political reasons
- Decision to make Europe's own system

Galileo funding

- Under civilian control
 - Opposed to GPS/GLONASS
- 2 entities
 - European Union
 - European Space Agency
- ESNIS (European Satellite Navigation Industries)
 - Formerly Galileo Industries (GAIN)

Galileo funding

- ESNIS created in 2003
- Based in Bruxelles (Belgium)
- ESNIS was a failure
- Since the end of 2007: direct funding from ESA
- Employment
 - 15-20000 jobs for development
 - 2000 jobs for maintenance

10 signals

- 6 for free services
- 2 for commercial service
- 2 for public regulated service (PRS)
- Used for 5 services

Open service

- Counterpart for current civilian GPS use
- 2 frequencies
 - 1164-1214 MHz
 - 1563-1591 MHz
- Using both : accuracy H < 4m, V < 8m
- Using only one : H < 5m, V < 35m
- Similar to GPS civilian accuracy
- No integrity

Commercial service

- Has a cost (paid to Galileo provider)
- Numerous services
 - Guarantee of service
 - Integrity
 - Signal continuity
 - Encrypted data broadcast through 2 signals
- Uses OS frequences + 1260-1300 MHz
- Accuracy < 1 m
- With ground signals, accuracy < 10 cm

Safety of Life service

- SoL service
 - Secure
 - Certified
- Airports precision approach must be SoL
- Used for services critical for life

Public Regulated Service

- For public services requiring
 - high accuracy
 - Signal quality
 - Transmission reliability
- Examples
 - Emergency services
 - Hazardous mat. transport
 - 2 encrypted signals and prevents
 - Malicious signals
 - jamming

Search and Rescue service

- Based on Cospas-Sarsat beacons (406 MHz)
- Locates all beacons
- Acknowledges distress signals
- Cospas-Sarsat
 - Worldwide SAR system
 - Based on old Argos

Galileo and EGNOS

- EGNOS : first european GNS
- Waiting for Galileo (30 satellites In 2014/2015)
 - Improve GPS and GLONASS
 - Will work with Galileo
- 2 consortiums building Galileo
 - InavSat
 - EADS, Thales, Inmarsat
 - Eurely
 - Alcatel, Finmeccanica, AENA, Hispasat

Cost

- Investment estimation: 3.4 GE
- Annual cost (operating, maintenance): 220 ME
- Initially
 - 33% from public entities
 - 67% from iNavSat and Eurely
- Rivalry between partners: at least 5 years delay
- Now : 100% funded by public entities

Cooperation

- USA tried to cancel the project
 - Fear that enemies could use it for weapons
 - Avoid independance of EU in GNSS
 - Potential interferences issues with GPS
- Finally, they accept and participate in Galileo
- Agreement
 - Provide GPS M-code with civilian signals disabled
 - Provide PRS with open service disabled

Application fields

- Civilian domain
 - Commercial navigation
 - Aviation
- Military domain
 - Discussed (Galileo is a civilian program under civilian control)
 - PRS used by firemen and police
 - Why not by the armies?

Galileo segments

- 4 segments
 - Space segment
 - Ground control segment
 - Ground mission segment
 - User test segment

Space segment

- 30 satellites on 3 orbits
- Altitude : 23616 km
- Each satellite
 - 700 kg
 - 1500 W solar panels
 - · Several atomic clocks
 - Radio transmitter and receiver

Ground Control Segment

- In charge of satellite control
- Composed of
 - 3 control centers in Europe
 - 5 control stations for satellites
 - Command
 - Measure

Ground Mission Segment

- Create message broadcast by the satellite
- Detect anomalies
 - Alert users
- Performances measurements
- Composed of
 - 3 mission centers (with control stations)
 - 10 to 12 uplink stations
 - 40 world wide monitor stations

User Test Segment

- Real-time validation of Galileo
- Test User Segment (TUS) receiver
 - Prototype
 - Built by Thales

Current Status and Schedule

- 2 satellites
 - GIOVE-A (dec. 28, 2005)
 - GIOVE-B (apr. 27, 2008)
- GIOVE-A2
 - Ready to launch
- 2010
 - IOV (In Orbit Validation): 4 satellites
- From 2010 to 2013
 - Full constellation (FOC : Full Operational Capability) : 26 satellites

Theoretical equations vs. reality

- Theory
 - 4 distances and 4 points give a position
 - exact distances
- Practically
 - distances are estimated
 - no exact value
- How to take care about the errors?

Equations

- r_i is true distance between satellite i and mobile device,
- (x_M, y_M, z_M) , (x_i, y_i, z_i) are coordinates of mobile device and satellite i,
- t_i is the traveling time (measured) of signal issued by satellite
 i,
- T is the clock error between mobile device and satellites,
- δ_i includes other errors (ionosphere, etc.) for signal transmitted by satellite i.

$$r_i = \sqrt{(x_M - x_i)^2 + (y_M - y_i)^2 + (z_M - z_i)^2}$$

and

$$r_i = c \cdot (t_i + T) + \delta_i^{1}$$

1. After this step, δ_i will be neglected.

Computation

We can write:

$$\sqrt{(x_M - x_i)^2 + (y_M - y_i)^2 + (z_M - z_i)^2} - c \cdot (t_i + T) = 0$$

T is a variable to solve too.

We can write
$$f_i(x_M, y_M, z_M, T) = \sqrt{(x_M - x_i)^2 + (y_M - y_i)^2 + (z_M - z_i)^2} - c \cdot (t_i + T) = 0$$
 therefore, we have an equation system :

$$\overrightarrow{f}(x_M, y_M, z_M, T) = \begin{pmatrix} f_1(x_M, y_M, z_M, T) \\ f_2(x_M, y_M, z_M, T) \\ \vdots \\ f_N(x_M, y_M, z_M, T) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Linearize

To solve the equation, we have to linearize. Let (x_0, y_0, z_0, T_0) an approximate solution and $\Delta x = x_M - x_0$ (same for Δy , Δz and ΔT). $\Delta \overrightarrow{u} = {}^T (\Delta x, \Delta y, \Delta z, \Delta T)$. So we can write :

$$\overrightarrow{f}(x_0, y_0, z_0, T_0) + J \cdot \Delta \overrightarrow{u} + \overrightarrow{\varepsilon}^2 = \overrightarrow{0}$$

where J is the jacobian matrix of \overrightarrow{f} near (x_0, y_0, z_0, T_0) :

$$J = \begin{pmatrix} \frac{\partial f_1}{\partial x_M} & \frac{\partial f_1}{\partial y_M} & \frac{\partial f_1}{\partial z_M} & \frac{\partial f_1}{\partial T} \\ \frac{\partial f_2}{\partial x_M} & \frac{\partial f_2}{\partial y_M} & \frac{\partial f_2}{\partial z_M} & \frac{\partial f_2}{\partial T} \\ \dots & & & \\ \frac{\partial f_N}{\partial x_M} & \frac{\partial f_N}{\partial y_M} & \frac{\partial f_N}{\partial z_M} & \frac{\partial f_N}{\partial T} \end{pmatrix}_{(x_0, y_0, z_0, T_0)}$$

2. Will be neglected too.

Solving

- Iterative :
 - Solve linear system, get (x_1, y_1, z_1, T_1) ,
 - Replace in first non linear equation, and solve again,
 - until convergence.
- Try it (2D) with : A(1,1), B(10,11), C(1,9), AM = 12.83, BM = 1.1 and CM = 9.16
- How do you solve with another point D(-4,8) so that DM = 14.24?

Thank you for your attention

Questions?