Localized Cluster Enhancement: TFCE revisited with valid error control

Samuel Davenport, Wouter Weeda, Jelle Goeman

University of California, San Diego

June 26, 2024

TFCE recap

- Suppose that we want to test for activation using a test-statistic $T: \mathcal{V} \to \mathbb{R}$ at each voxel in the brain.
- TFCE is a widely used method for identifying activation with over 5000 citations.
- At each voxel v, TFCE transforms T to

$$S_v(T) = \int_{h_0}^{T_v} h^H e_v(h, T)^E \mathrm{d}h.$$

- Here h is the height and $e_v(h,T)$ is the extent of the test statistic at the level h for the voxel v.

Understanding the TFCE integral

TFCE recap

$$S_v(T) = \int_{h_0}^{T_v} h^H e_v(h, T)^E \mathrm{d}h.$$

- In practice H = 2, E = 0.5 and $h_0 = 0$ are the default parameters typically chosen.
- Permuted TFCE test-statistics: $S_{v,1}^*, \ldots, S_{v,P}^*$ are calculated.
- cutoff t^* chosen based on the 95% quantile of the permutation distribution of $\max_{1 \le p \le P} S_{v,p}^*$. Reject v such that $S_v(T) > t^*$.

Thresholded TFCE

We apply TFCE to 20 subjects from the HCP to the primary social contrast.

However TFCE borrows information from across its support.

TFCE support

We apply TFCE to 20 subjects from the HCP to the primary social contrast.

TFCE thus can be used to make a global statement but stuggles to localize activation.

Thresholded TFCE

TFCE can have inflated error rates

TFCE can have inflated error rates

TFCE issues

- TFCE was designed to improve on cluster extent inference however it doesn't control cluster error rates
- One of the main motativations for TFCE was to reduce researcher degrees of freedom, to make it "threshold free". However the TFCE transformation is defined as:

$$S_v = \int_{h_0}^{T_v} h^H e_v(h)^E dh.$$
 (1)

- In particular h_0 acts as a threshold so TFCE is not threshold free.

Localized Cluster Enhancement

To localize TFCE for a region $R \subset \mathcal{V}$ let

$$S_{v,R}(T) = S_v(T \times 1[R]) = \int_{h_0}^{T_v} h^H e_v(h, T \times 1[R])^E dh.$$

Then we can say R contains at least one active voxel if $\max_{v \in R} S_{v,R}(T) > t^*$ where t^* is the original TFCE cutoff.

The t-statistic based on 20 subjects (for the HCP Gambling task)

Apply a mask of the Middle Frontal Gyrus

Apply a mask of the Middle Frontal Gyrus

Apply a mask of the Middle Frontal Gyrus

Apply TFCE transformation to obtain $\max_{v \in R} S_{v,R}(T)$

Reject if $\max_{v \in R} S_{v,R}(T) > t^*$.

Advantages of Localized Cluster Enhancement

- If $\max_{v \in R} S_{v,R}(T) > t^*$, then LCE claims that there is at least one active voxel within the region R.
- This is provably valid (with an error rate of 5%) simultaneously over all regions R so LCE can make local claims unlike TFCE.
- LCE can be applied to pre-defined regions based on an atlas or to data-driven regions such as clusters.
- Allows the user to explore the data and find the regions R of interest.

Regional activation (HCP - Social)

(a) Localized Cluster Enhancement, $h_0 = 0$

```
0.02
0.018
0.016
0.014
0.012
0.01
0.008
0.006
0.004
0.002
```

Regional activation (HCP - Social)

(a) Localized Cluster Enhancement, $h_0 = 0$

(b) Localized Cluster Enhancement $h_0 = 3.1$

Conclusions

- TFCE as classically used can have inflated voxel and clusterwise error rates.
- Localized Cluster Enhancement provably controls clusterwise and regional error rates and allows for increases in power and localization.
- TFCE is not threshold free as it (strongly) depends on a threshold h_0 . The default choice of $h_0 = 0$ means that TFCE typically can only make the weak global statement in practice.
- For localized cluster enchancement we recommend a threshold of $h_0 = 3.1$ in line with the default for clustersize inference.

Thanks

- Slides for this talk are available on my website: sjdavenport.github.io/talks
- Code to implement LCE and a tutorial on TFCE are available in the StatBrainz MATLAB package available at: sjdavenport.github.io/software
- Further details available at my poster: 1871

Power comparison for a regional analysis

Theory

Suppose that the data satisfies an exchangeability assumption. Then

Theorem: $\mathbb{P}(S_{v,R}(T) < t^* \text{ for all inactive } R) \geq 1 - \alpha.$

Global vs voxel vs cluster level inference

There are 3 types of inference statements typically used.

- 1. Voxel: Every highlighted voxel is active
- 2. Cluster: Every cluster contains at least one active voxel
- 3. Global: There is some voxel active somewhere in the brain.

Classifying fMRI inference methods

There are 3 types of inference statements typically used.

1. Voxel: Every highlighted voxel is active

Voxelwise inference

2. Cluster: Every cluster contains at least one active voxel Clustersize inference

3. Global: There is some voxel active somewhere in the brain.

TFCE