Final Assessment Test Model Question Paper

Course: BMAT101L Calculus	Slot:
Max Marks: 100	Time: 3 hours

Answer Any Five Questions Each question carries 20 marks

1. (a) Examine the continuity and the differentiability of

$$f(x) = \begin{cases} x \sin(1/x), & x \neq 0, \\ 0, & x = 0. \end{cases}$$

at the origin.

(10 marks)

- (b) Find the area of the region under the graph of $f(x) = x\sqrt{4-x^2}$ between the ordinates x = -2 and x = 2. Further, use washer's method to obtain the volume of the solid generated by revolving the curve y = f(x) between the limits x = -2 and x = 2. (10 marks)
- 2. (a) If $f(t) = \sin^2 2t$, find the Laplace transforms of tf(t) and f(t)/t.

(10 marks)

(b) Find the inverse Laplace transform of $\frac{1}{(s+1)(s+2)(s^2+2s+10)}$.

(10 marks)

- 3. (a) A delivery company accepts only rectangular boxes the sum of whose length and the perimeter of a cross-section does not exceed 108 inches. Find the dimensions of an acceptable box of largest volume. (10 marks)
 - (b) Let $f(x, y) = \sin 2x \cos 3y$. Then find all the partial derivatives of upto third order at the origin, and then obtain a cubic approximation of f near the origin. (10 marks)
- 4. (a) Using the Gamma function, evaluate $\iint xy^2 dxdy$ over the region R enclosed by the coordinate axes and the astroid $x^{2/3} + y^{2/3} = 1$ in the first quadrant. (10 marks)
 - **(b)** If $u = x^2 + 4y^2 + 9z^2$, v = 4xy + 12yz + 6xz and w = x + 2y + 3z, compute the Jacobian of u, v and w with respect to x, y and z by the direct formula. Then obtain a functional relation among u, v and w. Also, find the Jacobian of u, v and w with respect to x, y and z by using the functional relation and the chain rule of partial differentiation. (10 marks)

- 5. (a) Sketch the region of integration of $I = \int_0^a \int_0^{b\sqrt{1-x^2/a^2}} x^3 y dy dx$, and evaluate it directly and also by using the transformation $x = ar \cos \theta$, $y = br \sin \theta$. (10 marks)
 - (b) If f(x, y, z) is the electrical charge-density of a solid bounding a volume V, it is known that $\iiint_V f(x, y, z) dV$ gives the charge inside the solid. If a uniform charge-density of f(x, y, z) = 3 Coulombs/cc prevails inside a solid, which is bounded above by the unit sphere $x^2 + y^2 + z^2 = 1$ and bounded below by the cone $z = \sqrt{x^2 + y^2}$, sketch the region, specify the appropriate limits and the volume element of triple integral, and then find charge stored in it. (10 marks)
- 6. (a) Using appropriate vector-identities, show that $\mathbf{f} = \frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{\left(x^2 + y^2 + z^2\right)^{3/2}}$ is both solenoidal and irrotational. (10 marks)
 - (b) Find the tangent plane and the normal line L to the level surface $x^2 + y^2 + z 9 = 0$ at the point (1,2,4). What will be the directional derivative of $x^2 + y^2 + z 9$ at that point along the normal L, and in the direction perpendicular to the normal L? (10 marks)
- 7. (a) Verify Green's theorem in the plane for $\mathbf{F} = x^2(\mathbf{i} + \mathbf{j})$ around the rectangle with vertices (0,0), (2,0), (0,1) and (2,1). (10 marks)
 - (b) Use Gauss' divergence theorem, compute $\iint \mathbf{f} \cdot \mathbf{N} dS$ over the convex portion of the cylinder $x^2 + y^2 = 9$, $0 \le z \le 2$, where $\mathbf{F} = y\mathbf{i} + x\mathbf{j} + z^2\mathbf{k}$. (10 marks)

PAJAMA PADHAI