Chapter 3 Applications of Derivatives

3.4 Limits at Infinity; Horizontal Asymptotes

Example. What is the limit of $f(x) = \frac{x^2 - 1}{x^2 + 1}$ when x becomes large?

x	$\int f(x)$	$\begin{bmatrix} x & 1 \\ x & 1 \end{bmatrix}$	$\int f(x)$
10	≈ 0.99 ≈ 0.9998	10000	≈ 0,9999998
100	2 0. 4998 	160 000	≈ 0.99999998
1000	≈ 0.999998		:
	1	↓	1
	$\lim_{x\to\infty}\frac{x^2-1}{x^2+1}=$	1	

1 Intuitive Definition of a Limit at Infinity Let f be a function defined on some interval (a, ∞) . Then

$$\lim_{x \to \infty} f(x) = L$$

means that the values of f(x) can be made arbitrarily close to L by requiring x to be sufficiently large.

Example. What is the limit of $f(x) = \frac{x^2 - 1}{x^2 + 1}$ when x becomes large?

x	f(x)	x	f(x)		
~10	≈ 0.99	-100 000	0.999999998		
		1			
-10000	≈ 0.9999998	\downarrow	<u>1</u>		
$\lim_{x \to -\infty} \frac{x^2 + 1}{x^2 - 1} = 1$					

Definition Let f be a function defined on some interval $(-\infty, a)$. Then

$$\lim_{x \to -\infty} f(x) = L$$

means that the values of f(x) can be made arbitrarily close to L by requiring x to be sufficiently large negative.

Definition The line y = L is called a **horizontal asymptote** of the curve y = f(x) if either

$$\lim_{x \to \infty} f(x) = L$$
 or $\lim_{x \to -\infty} f(x) = L$

EXAMPLE 1 Find the infinite limits, limits at infinity, and asymptotes for the function *f* whose graph is shown in Figure 5.

FIGURE 5

Rules for Limits at infinity.

4 Theorem If r > 0 is a rational number, then

$$\lim_{x \to \infty} \frac{1}{x^r} = 0$$

If r > 0 is a rational number such that x^r is defined for all x, then

$$\lim_{x \to -\infty} \frac{1}{x^r} = 0$$

EXAMPLE 3 Evaluate

$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1}$$

EXAMPLE 4 Find the horizontal and vertical asymptotes of the graph of the function

$$f(x) = \frac{\sqrt{2x^2 + 1}}{3x - 5}$$

EXAMPLE 5 Compute $\lim_{x\to\infty} (\sqrt{x^2+1}-x)$.

Infinite Limits at Infinity.

The notation

$$\lim_{x\to\infty} f(x) = \infty$$

means that the values of f(x) become larger and larger as the values of x becomes larger and larger. Similar meanings are attached to the following symbols:

$$\lim_{x \to -\infty} f(x) = \infty$$
, $\lim_{x \to \infty} f(x) = -\infty$ and $\lim_{x \to -\infty} f(x) = -\infty$.

WARNING!!

EXAMPLE 8 Find $\lim_{x\to\infty} x^3$ and $\lim_{x\to-\infty} x^3$.

EXAMPLE 9 Find $\lim_{x\to\infty} (x^2 - x)$.