1 Symbols and Modeling Values

1.1 List of Important Notations

$a \in \mathbb{R}$ $\beta_s \in \mathbb{R}$	degree of symmetry in construction of asymmetric RNNs in eq.(??)
$\beta_s \in \mathbb{R}$ $\beta \in \mathbb{R}$	trial-to-trial correlation defined in rq.(??) parameter that defines the dimensionality in construction of covari-
, –	ance matrix for input. In varies contexts, there are β_{dim} , β_{spont} , and
-/ A ~ ~ ~	$\beta_{\text{Low}} \text{ with } \beta_{\text{Low}} < \beta_{\text{dim}} < \beta_{\text{spont}}.$
$\bar{c}(\Delta \tilde{t}) \in \mathbb{R}$	intra-trial stability defined in eq.(??)
$d_{ ext{eff}} \in \mathbb{R}$	the linear effective dimensionality defined in eq.(??). $d_{\text{eff, ana}}$ is the
	analytical formulation and $d_{\rm eff,\;emp}$ the empirical for effective dimen-
	sionality
$\gamma \in \mathbb{R}$	the alignment of evoked activity to spontaneous activity
$h \in \mathbb{R}^{n \times 1}$	mean firing rates feedforward inputs to recurrent network. If not oth-
	erwise defined in contexts, characterizing generally the feedforward
~ 1	inputs.
$\tilde{h} \in \mathbb{R}^{n \times 1}$	feedforward inputs with modifications mentioned in section ??
$I_n \in \mathbb{R}^{n \times n}$	identity matrix
$J \in \mathbb{R}^{n \times n}$	interaction matrix for recurrent network
$n \in \mathbb{R}$	number of neurons in recurrent network
$N \in \mathbb{R}$	number of trials
$r \in \mathbb{R}^{n \times 1}$	response from recurrent network
$r^* \in \mathbb{R}^{n \times 1}$	steady state response from recurrent network determined by (??)
$R \in \mathbb{R}$	radius for eigenvalue distribution
$\sigma_{ ext{trial}} \in \mathbb{R}$	variance constant for trial-to-trial correlation
$\sigma_{\text{time}} \in \mathbb{R}$	variance constant for intra-trial stability
$\Sigma \in \mathbb{R}^{n \times n}$	covariance matrix for input patterns. There are Σ^{Dim} , Σ_{spont} , and
~ ID	$\Sigma_{ m Low}$ for different contexts.
$\nu \in \mathbb{R}$ $\nu^* \in \mathbb{R}^{n \times 1}$	feedforward recurrent alignment score
$\nu \in \mathbb{R}^{\dots}$	steady state for feedforward recurrent interaction during Hebbian
$W \in \mathbb{R}^{n \times 1}$	learning of feedforward interaction
$VV \in \mathbb{R}$	feedforward interaction matrix (vector) for feedforward recurrent network in section ??
$0_v \in \mathbb{R}^{n \times 1}$	
$ \rho \in \mathbb{R} $	zero vector in length of number of neurons n projection ratio
$b \subset \mathbb{R}$	projection ratio

1.2 Modeling Values

Notations	Values
n	200
R	0.85
$ au_r$	1
$\sigma_{ m trial}$	0.05
$\sigma_{ m time}$	0.3
$M_{ m dim}$	50
$M_{ m spont}$	100
Δt	0.1
$\Delta ilde{t}$	20
T	120
N	500
$eta_{ m Low}$	5
κ	5
$eta_{ m dim}$	10
$\beta_{ m spont}$	20
$M_{ m Low}$	25
$T_{ m Hebb}$	50