

1

AZ ELŐADÁS SORÁN MEGISMERJÜK:

- · az alapvető anyagi tulajdonságok csoportosítását;
- a rugalmas és a képlékeny alakváltozás jellemzőit;
- a valódi és a mérnöki rendszer feszültség és alakváltozás fogalmát;
- a rugalmas test anyagjellemzőit;
- a szakítóvizsgálattal meghatározható alakváltozási, feszültségi és szívóssági mérőszámokat;
- · a keménységmérést;
- a kúszás, a fáradás és a törés fogalmát.

Mechanikai tulajdonságok

2/29

2

SZERKEZET, FOLYAMAT ÉS **TULAJDONSÁGOK** Az anyag *tulajdonsága* függ a *szerkezetétől*; Pl: az acél keménységének és szerkezetének kapcsolata 600 500 400 200 Lehűlési sebesség (°C/s) 100 0.01 0.1 10 100 1000 Folyamat is megváltoztathatja a szerkezetet; Pl.: Szerkezetváltozás a lehűlési sebesség hatására

ANYAGTULAJDONSÁG CSOPORTOK

- Mechanikai (terhelés és alakváltozás hatása)
- Elektromos (elektromos tér hatása)
- · Hőfizikai (hőmérsékletmező hatása)
- Mágneses (mágneses tér hatása)
- Optikai (elektromágneses tér hatása)
- · Károsodási (kémiai reaktivitás hatása)

Mechanikai tulajdonságok

4/29

4

7

10

MECHANIKAI MENNYISÉGEK				
Mérnöki rendszer Valódi rendszer				
$\varepsilon = \frac{l - l_0}{l_0}$ $\varepsilon = \frac{S_0}{S} - 1$	Alakváltozás	$\varphi = \ln \frac{l}{l_0}$ $\varphi = \ln \frac{S_0}{S}$		
$\sigma^{M} = \frac{F}{S_{0}}$	Feszültség	$\sigma = \frac{F}{S}$		
$\mathbf{W}_{c} = \int_{0}^{\varepsilon_{u}} \mathbf{\sigma}^{M} \dot{c}$	Fajlagos törési munka [J/cm³]	$W_{c} = \int_{0}^{\phi_{a}} \sigma d\phi$		
	Mechanikai tulajdonságok	11/29		

13

KÜLÖNBÖZŐ ANYAGOK MECHANIKAI TULAJDONSÁGAI 20°C-ON

Anyag	E [GPa]	R _{p0.2} [MPa]	R _m [MPa]	A [%]
Acél	190-210	200-1700	400-1800	65-2
Alumínium-ötv.	69-79	35-550	90-60	45-4
Réz és ötv.	105-150	75-1100	140-1300	65-3
Titán és ötv.	80-130	340-1400	410-1450	25-7
Kerámiák	70-1000	-	140-2600	0
Gyémánt	820-1050	-	-	-
Polimerek	1,4-3,4	-	7-80	1000-5
Karbonszál	275-415	-	2000-3000	0
Kevlárszál	62-120	-	2800	0

Mechanikai tulajdonságok

17

KEMÉNYSÉGMÉRÉS

- A (statikus) keménység fogalma:
 - A vizsgált anyag ellenállása az adott geometriájú szúrószerszám behatolásával szemben.
- · A keménység kapcsolata más tulajdonságokkal:
 - Keménységi adatokból becsülhetők a szilárdsági és technológiai tulajdonságok.
- · A keménységmérés kivitelezése:
 - Alakváltozás létrehozásával
 - Fizikai hatások alkalmazásával

lechanikai	tulajdonságok

18/29

1	О
T	Ω
	_

BRINELL-KEMÉNYSÉGMÉRÉS

F – terhelő erő [N]

A – lenyomat felület $\lceil mm^2 \rceil$

D – golyóátmérő [mm]

d – lenyomat átmérő [mm]

h – lenyomat mélység [mm]

Átlagos keménység értéket ad (inhomogén anyag vizsgálatánál előnyös). Következtetni lehet az anyag szilárdságára. Öntöttvasak, színes- és könnyűfémek, lágyacélok mérésére alkalmazható.

Mechanikai tulajdonságok

19/29

19

VICKERS-KEMÉNYSÉGMÉRÉS

 $HV = \frac{0.102F}{A} = 0.189 \frac{F}{d^2}$

F – terhelő erő $\lceil N \rceil$

A – lenyomat felület $\lceil mm^2 \rceil$

d – lenyomat átló [mm]

Lokális keménység pontos meghatározása. Tetszőleges anyagminőség laboratóriumi vizsgálata. A kis terhelésű és mikro-Vickers eljárás vékony lemezek, rétegek és szövetelemek vizsgálatára használható.

Mechanikai tulajdonságok

20/29

20

KÚSZÁS

- Tartósfolyás vagy kúszás: állandó terhelés hatására növekszik az anyag alakváltozása
- Tartósfolyási határ: az a feszültség, amely végtelenül hosszú idő alatt sem okoz az előírtnál nagyobb alakváltozást $(\sigma_{T0.2})$
- Időtartam szilárdság: az a feszültség, amely t idő alatt előírt $\epsilon_{\rm t}$ alakváltozást hoz létre (pl. $\sigma_{0.2/10}{}^3$)
- Tartósfolyás tipikusan nagy hőmérsékleten lejátszódó jelenség. T > 0.4 T_{olv} [K]
- Alacsony olvadáspontú fémek, ötvözetek (pl. forraszok) kúszási jelensége már szobahőmérsékleten is jelentős lehet
- Mérnöki alkalmazás: gázturbina üzemi hőmérséklete 1300 °C
- Utasszállító repülőgép leszállás nélkül átrepüli az óceánt

Mechanikai tulajdonságok

21/29

22

A KÚSZÁSI GÖRBE HÁROM SZAKASZA

I.Elsődleges (primer) kúszás

Az alakváltozási sebesség az idővel és az alakváltozással csökken. A diszlokáció sűrűség nő, a diszlokációs cellaméret csökken az idővel és az alakváltozással.

II. Másodlagos (szekunder) kúszás (állandósult állapot) A keményedési és a megújulási folyamatok egyensúlyban vannak.

III. Harmadlagos (tercier) kúszás Rekrisztallizáció, a második fázisú részecskék durvulása kezdődik, az üregek és repedések kialakulása indul be.

Mechanikai tulajdonságok

23

FÁRADÁS A kifáradás jelenségét A. Wöhler ismerte fel az 1800-as évek végén. Biztonságra méretezett vasúti tengelyek hosszabb üzemidő után az ismétlődő igénybevételek hatására eltörtek, annak ellenére hogy a terhelő feszültség jóval a folyáshatár alatt volt. Ez a jelenség hívta fel a figyelmet a kifáradásra.

25

26

TÖRÉS

Törés: az anyagban folytonossági hiány jön létre, amitől darabokra eshet szét.

Törés folyamata:

- Repedés keletkezése;
- Repedés terjedése és a törés létrejötte.

Képlékeny (szívós) **törés:** a törést megelőzően jelentős mértékű képlékeny alakváltozás lép fel.

Ridegtörés: hirtelen bekövetkező jelenség, minimális képlékeny alakváltozás előzi meg. A kis hőmérséklet, a bonyolult húzó feszültségi állapot és a nagy terhelési sebesség elősegíti a ridegtörés fellépését.

Repedés mindig van az anyagban, legfeljebb nem tudjuk kimutatni.

Mechanikai tulajdonságok

28/29

28

REPEDÉS KELETKEZÉSE AZ ÜZEMELÉS SORÁN

- · Időleges túlterhelés, illetve környezeti tényezők hatása
- Korróziós fáradás
- · Feszültségkorrózió
- Hidrogén okozta elridegedés
- Hőmérséklet és mechanikai terhelés együttes hatása, kúszási repedés
- · Hősokk okozta repedés.

Repedések kimutatása:

roncsolásmentes anyagvizsgálati módszerekkel.

Mechanikai tulajdonságok

29/29