Indian Institute of Technology, Delhi ELL304: Analog Electronic Circuits Minor 2, October 9, 2016

General instructions: No books, no notes. Assume $kT/q = v_T = 25$ mV. For BJTs, assume V_{BE} is 0.7 volts. For the MOS devices, $I_D = \mu C_{ox}/2 \cdot (W/L) \cdot (V_{GS} - V_T)^2$. Assume μC_{ox} for nMOS as well as pMOS devices are identical. Ignore g_{mb} . For every MOS device, $g_m r_o$ is 20.

1. In the circuit schematic of Fig. 1, the (W/L) of the individual devices are indicated in the schematic.

- (a) For the circuit in the left dashed region, evaluate an expression for the current I_0 . (3 marks)
- (b) Evaluate the g_m s of the essential devices in the right dashed region. Hint: g_m should be g_m will not be given. (2 marks)
 - (c) Draw the small signal incremental differential mode half circuit. If you could not answer the earlier questions, assume that the current is such that the g_m of each of the devices in the differential pair is 0.1 mS. Evaluate the differential mode gain. (2+4 marks)
 - (d) Draw the small signal common mode half circuit, showing essential parameters. (2 marks)
- 2. In the common-emitter amplifier shown in Fig. 2, what is the gain at DC? What should be the impedance at the emitter such that the gain increases $\sqrt{2}\times$? What is the +3 dB frequency? What is the gain when frequency is $3\times$ the +3 dB frequency? (4×1 marks)
- 3. The top view of an nMOS device is as shown below in Fig. 3(a). It has a width of 2 μ m, a length of 1 μ m. An analog circuit designer implemented the device as shown in Fig. 3(b).
 - (a) Is his implementation correct? (1 mark)
 - (b) What are the possible advantages and disadvantages of the implementation of Fig. 3(b) over the device of Fig. 3(a)? (2 marks)

Figure 2

Figure 3