Групповой проект H3K9me

Эпигенетическая модификация - Histone methylation

Полыгалов Богдан	<u>HR</u>	Histone modification erase
Матирко Кирилл	<u>MINA</u>	Histone modification erase
Бондаренко Артём	KDM1A	Histone modification erase
Седых Александр	KDM3A	Histone modification erase
Ахунова Анастасия	<u>SUV39H1</u>	Histone modification write
Козлова Екатерина	CBX3	Histone modification read
Романова Анастасия	<u>POGZ</u>	Histone modification read
Баран София	<u>JMJD1C</u>	Histone modification erase
Варшавер Александра	ERBB4	Histone modification cofactor
Сидорова Татьяна	<u>UHRF1</u>	Histone modification read, Histone modification write cofactor

HR	We performed a series of in vitro demethylation assays, which demonstrated that HR can demethylate monomethylated or dimethylated histone H3 lysine 9 (H3K9me1 or me2)
<u>MINA</u>	Управляет онкогенезом глиобластомы, регулируя циклины и циклинзавизимые киназы через деметилирование H3K9me3.
KDM1A	KDM1A способствует иммуносупрессии при гепатоцеллюлярной карциноме путем регуляции PD-L1 посредством деметилирования MEF2D. KDM1A может деметилировать H3K4me1/2 (Lys-4) и H3K9me1/2 (Lys-9), что означает, что он действует как коактиватор или корепрессор в зависимости от контекста.
KDM3A	KDM3A and KMD3B catalyze the demethylation of transcriptionally repressive mono- and di-methylated histone H3 lysine 9 (H3K9me1/me2) in vitro and in vivo with a preference for dimethylated residues, thereby mediating transcriptional activation
SUV39H1	Первая белковая метилтрансфераза. Вводит ди- и триметилирование в гистоне Н3 лизин 9 (Н3К9) и играет важную роль в поддержании гетерохроматина и экспрессии генов
CBX3	Chromobox protein 3 (i.e. CBX3) associated with the heterochromatin protein 1 (HP1) complex is a methyl reader that interprets H3K9me3 marks which are mediated by H3K9 methyltransferases (i.e., SUV39H1 or SUV39H2).
<u>POGZ</u>	POGZ is a potential reader of H3K9me3, as it contains a PHD finger that binds specifically to this histone mark. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is used to identify proteins that interact with various histone marks in bird cells, and POGZ was found to be enriched at genomic loci marked by H3K9me3.
<u>JMJD1C</u>	JMJD1A and JMJD1C belong to the KDM3 subfamily and both can demethylate H3K9
ERBB4	ErbB-4 — рецептор эпидермального роста семейства EGFR/ErbB. Было показано, что уровень H3K9me3 в клетках увеличивался при стимуляции рецепторов ErbB4 с помощью NRG-1 (за счет внутриклеточного домена).
UHRF1	UHRF1: играет роль в поддержании метилирования ДНК в клетках млекопитающих. Он связывается с метилированными гистонами H3K9 и H3K27, а также с ДНК метилтрансферазой DNMT1, что помогает поддерживать метилирование ДНК во время клеточного деления.

В какие комплексы входят выбранные белки?

HR	Функционирует сам по себе	
MINA	Функционирует сам по себе	
KDM1A	NuRD, BHC, SCL	
KDM3A	Функционирует сам по себе	
SUV39H1	eNoSc	
CBX3	RING2-L3MBTL2, L3MBTL1	
POGZ	Функционирует сам по себе	
JMJD1C	Функционирует сам по себе	
ERBB4	Функционирует сам по себе	
UHRF1	Функционирует сам по себе	

Экспрессия (ткани)

Ген	Название ткани + средний ТРМ
HR	Мозг: мозжечок (66), полушарие мозжечка (57), кора (23); кожа: открытая часть (94), закрытая (102); пищевод: слизистая (31);
MINA	Щитовидная железа (28.66); клетки: культивированные фибробласты (19.56); клетки: EBV-transformed лимфоциты (16.46)
KDM1A	Тестикулы: (194.0); Клетки: EBV-transformed лимфоциты (96.4); Яичник (86.78)
KDM3A	Тестикулы: (46.66); Кожа : подверженная солнцу, голени (42.54), не подверженная солнцу, надлобковая (40.88); Артерия : большеберцовая (34.71)
SUV39H1	Клетки: EBV-transformed лимфоциты (20.93); Тестикулы: (11.07); Селезенка (10.24)

Экспрессия (ткани)

CBX3	Клетки: EBV-transformed лимфоциты (175.7), Мозг: амигдала
POGZ	Мозг: мозжечок (123), полушарие мозжечка (116.5); яичник (105.3); г ипофиз (91.65)
<u>JMJD1C</u>	Мозг: мозжечок (55,06), полушария мозжечка (48,78); Легкие: (25,05); EBV- трансформированные лимфоциты (30,30)
ERBB4	Аорта (8.631); мозг: мозжечок (9.091), передняя поясная кора (8.62); тестикулы (5.018)
UHRF1	Культивируемые фибробласты (14.89); Лимфатические узлы (24.58); Пищевод (4.284); Мозг - Амигдала (0.6221); Кровь (1.376).

Доменная структура белка гена HR

References:

- W Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
- W Marchler-Bauer A et al. (2015), "CDD: NCBI's conserved domain database.", Nucleic Acids Res.43(D)222-6.
- 💹 Marchler-Bauer A et al. (2011), "CDD: a Conserved Domain Database for the functional annotation of proteins.", Nucleic Acids Res.39(D)225-9.
- Marchler-Bauer A, Bryant SH (2004), "CD-Search: protein domain annotations on the fly.", Nucleic Acids Res.32(W)327-331.

Доменная структура белка гена MINA

Доменная структура белка гена KDM1A

Доменная структура белка гена KDM3A

Доменная структура белка гена SUV39H1

W Marchler-Bauer A et al. (2011), "CDD: a Conserved Domain Database for the functional annotation of proteins.", Nucleic Acids Res.39(D)225-9.

Marchler-Bauer A, Bryant SH (2004), "CD-Search: protein domain annotations on the fly.", Nucleic Acids Res.32(W)327-331.

Help | Disclaimer | Write to the Help Desk NCBI | NLM | NIH

Доменная структура белка гена СВХЗ

Доменная структура белка гена POGZ

Доменная структура белка гена JMJD1C

Доменная структура белка гена ERBB4

Доменная структура белка гена UHRF1

