Siddhardhan

Linear Regression - Mathematical Understanding

$$Y = mX + c$$

X --> X value

Y --> Y value

m --> Slope

c --> Intercept

Loss Function

Loss function measures how far an estimated value is from its true value.

It is helpful to determine which model performs better & which parameters are better.

Loss =
$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Loss Function

Randomly assigned Parameters: m = 3; c = 2

Х	У	ŷ
2	10	8
3	14	11
4	18	14
5	22	17
6	26	20

Loss Function

Х	У	ŷ
2	10	8
3	14	11
4	18	14
5	22	17
6	26	20

Loss =
$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Loss =
$$[(10-8)^2 + (14-11)^2 + (18-14)^2 + (22-17)^2 + (26-20)^2] / 5$$

Loss =
$$[4+9+16+25+36] / 5$$

$$Loss = 18$$

Low Loss value → High Accuracy

Best Fit