2. Изоморфизм графов

Опр. Рассмотрим графы $G_1(X_1,U_1)$ и $G_2(X_2,U_2)$. Они называются изоморфными, если между множествами вершин X_1 и X_2 установлено взаимно однозначное соответствие такое, что между U_1 и U_2 устанавливается также взаимно однозначное соответствие. А именно каждое ребро из U_2 инцидентно 2 своим концевым вершинам из $X_2 \iff$ когда соответствующие им вершины из X_1 инцидентны ребру из множества U_1

Теорема. Изоморфизм графом является отношением эквивалентности:

- 1. Рефлексивность граф изоморфен сам себе $G \leftrightarrow G$
- 2. Симметричность $f:G_1\leftrightarrow G_2\implies f^{-1}:G_2\leftrightarrow G_1$
- 3. Транзитивность:
 - $ullet f_1:G_1\leftrightarrow G_2$
 - $ullet f_2:G_2\leftrightarrow G_3$
 - $ullet f_3=f_1\circ f_2$
 - $f_3:G_1\leftrightarrow G_3$

Из теоремы следует, что множество всех графов разбивается на классы эквивалентности такие, что в пределах каждого класса все графы изоморфны, а графы из разных классов не изоморфны ("с точностью до изоморфизма").

Части графа

Рассмотрим граф G(X, U)

Опр. Граф $G_1(X_1,U_1)$ называется частью графа G, если он находится в отношении включения к нему: $G_1 \subseteq G$ $(X_1 \subseteq X, U_1 \subseteq U)$

Опр. Часть графа называется подграфом, если включение строгое: $G_1 \subset G$ $(X_1 \subset X, U_1 \subset U)$ Обозначение удаления ребра: $G - (x_i, x_i)$

Опр. Часть графа называется субграфом, если $X_1=X$, а $U_1\subset U$

Способы задания графа

- 1. Матричный
- 2. Аналитический основан на понятии отображения
 - Обоз. Γ_{x_i}
 - Пример:
 - $\Gamma_{x_1} = \{x_2\}$ исходящие рёбра
 - $\Gamma_{x_2} = \varnothing$
 - $\bullet \ \ \varGamma_{x_3} = \{x_2\}$
 - $\Gamma_{x_{\Lambda}} = \varnothing$
 - $\bullet \ \ \varGamma_{x_5} = \{x_1\}$
 - $\Gamma_{x_e} = \varnothing$
 - ullet $\Gamma_{x_1}^{-1} = \{x_5\}$ входящие рёбра
- 3. Списковые структуры данных
 - Вектор Айлифа:

4. Массив рёбер или пар смежных вершин

x_1	x_2
x_5	x_1
x_1	x_4
x_3	x_2
x_5	x_6

Матричный способ

1. Матрица смежности

Матрица смежности - квадратная булева матрица M порядка n=|X|.

ullet $M_{ij}=1$, если x_i и x_j смежны

ullet $M_{ij}=0$, если x_i и x_j не смежны

	x_1	x_2	x_3	x_4	x_5	x_6
x_1		1		1	1	
x_2	1		1			
x_3		1				
x_4	1					
x_5	1					1
x_6					1	

- Сумма элементов равна числу рёбер графа
- Самый быстрый, но затратный по памяти способ
- Матрицу смежности можно построить для рёбер

2. Матрица инциденций

Матрица порядка m imes n, где m = |X|, n = |U| Для неографов:

- ullet $H_{ij}=1$, если x_i инцидентна u_j
- $H_{ij} = 0$, иначе
- Сумма столбца = 2
 Для орграфов:

- ullet $H_{ij}=1$, если x_i инцидента u_j и является конечной для него
- ullet $H_{ij}=0$ 1, если x_i не инцидента u_j
- $H_{ij}=-1$, если x_i инцидента u_j и является начальной для него
- Сумма столбца = 0

По строкам матрицы можно вычислить степени и полустепени вершин.