Want more revision exercises? Get MathsFit for \$2.95/topic - New from projectmaths

2015 12 Find
$$f'(x)$$
, where $f(x) = \frac{x^2 + 3}{x - 1}$.

Using the quotient rule,

Let
$$u = x^2 + 3$$
 $u' = 2x$
Let $v = x - 1$ $v' = 1$

$$\frac{dy}{dx} = \frac{vu' - uv'}{v^2}$$

$$= \frac{(x - 1) \cdot 2x - (x^2 + 3) \cdot 1}{(x - 1)^2}$$

$$= \frac{2x^2 - 2x - x^2 - 3}{(x - 1)^2}$$

$$= \frac{x^2 - 2x - 3}{(x - 1)^2}$$

State Mean: **1.67**

2

Board of Studies: Notes from the Marking Centre

(c) The majority of candidates used the quotient rule to successfully find the derivative. Those candidates who used the product rule often made careless algebraic errors.

Common problems were:

- using an incorrect formula, for example $\frac{uv'\pm vu'}{v^2}$
- not including brackets in the answer, for example $\frac{2x(x-1)-x^2+3}{(x-1)^2}$
- making algebraic errors when expanding and/or simplifying
- using incorrect derivatives for u and v.

^{*} These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.