MICCAI Journal Report

QIU Liangdong 邱梁东

 $\mathrm{CUHK}(\mathrm{SZ})$ SRIBD

November 28, 2019

Paper Lists

FocusNet: Imbalanced Large and Small Organ Segmentation for Head and Neck CT Images

Harnessing 2D Networks and 3D Features for Automated Pancreas Segmentation from Volumetric CT Images

Introduction

FocusNet

FocusNet: Imbalanced Large and Small Organ Segmentation for Head and Neck CT Images (MICCAI 2019) • FocusNet

► Segmentation of Head and Neck Organs

Figure 1: a CT image on axial plane

Related work

FocusNet

Related work of HaN organ segmentation

- ► Atlas-based methods
- ► CNN-based methods

Figure 2: U-Net

Current problem

FocusNet

- ▶ The numbers of voxels of organs vary on magnitude.
- Current methods perform poorly on segmentation of small organs.

Figure 3: The numbers of voxels of organs

Network structure

FocusNet

S-Net, SOL-Net for locating and SOS-Net for fine segmentation

Figure 4: FocusNet structure

Network structure

FocusNet

S-Net: main segmentation network

- ▶ One time down sample
- ▶ Dense ASPP

Figure 5: S-Net structure

Evaluation

FocusNet

- ► Their own collected data
- ► Contain labels of 10 small organs (below the dash line)

Organs	Atlas-based	SERes U-Net	DeepLab	Ours
Brain Stem	80.6 ± 1.7	$79.2 \!\pm\! 1.8$	84.0 ± 1.2	$85.8 {\pm} 1.4$
Lens L	$-\bar{24}.\bar{0}\pm 8.\bar{3}$	60.8 ± 4.2	59.2±8.4	-80.8 ± 4.7
Lens R	$26.9 \!\pm\! 1.5$	$57.1\!\pm\!6.2$	$64.3 {\pm} 6.6$	$\bf 79.0 \!\pm\! 6.4$
Opt. Ner. L	$47.7 \!\pm\! 10.6$	56.0 ± 3.7	$52.7 {\pm} 9.9$	$63.9 {\pm} 3.9$
Opt. Ner. R	$48.5 {\pm} 6.0$	$49.3 \!\pm\! 9.5$	$57.1 \!\pm\! 21.4$	$\bf 61.7 \!\pm\! 12.1$
Opt. Chiasm	$54.8 {\pm} 9.0$	54.0 ± 7.6	$55.6 \!\pm\! 11.3$	$63.8 \!\pm\! 11.4$
Pituitary	$44.6\!\pm\!12.0$	$67.6\!\pm\!12.7$	$78.1 {\pm} 10.8$	$76.9 \!\pm\! 7.2$
Mid. Ear L	$56.4 {\pm} 9.7$	$55.2 \!\pm\! 15.6$	51.9 ± 25.3	$\bf 56.7 \!\pm\! 16.7$
Mid. Ear R	$\bf 56.2 \!\pm\! 14.5$	$47.4\!\pm\!13.4$	$46.6 \!\pm\! 21.8$	52.2 ± 20.9
T.M.J.L	$46.9\!\pm\!14.1$	$56.5 {\pm} 8.1$	$64.7 {\pm} 3.9$	$58.4 {\pm} 7.3$
T.M.J. R	$50.3 \!\pm\! 18.8$	$55.1 \!\pm\! 12.1$	$66.1 {\pm} 8.4$	57.2 ± 5.6
Average	62.3	66.5	69.4	72.5

Figure 6: Evaluation on their own data

Evaluation

FocusNet

- ▶ MICCAI 2015 HaN organs dataset
- ► Compared with Top 4 Teams

Organs	MICCAI 2015 [6]	Ren et al. [7]	Wang et al. [9]	Zhu et al. [11]	S-Net	FocusNet
Extra Data	×	×	×	\checkmark	×	×
Brain Stem	88.0	N/A	90.3 ± 4	86.7 ± 2	86.8 ± 2.9	87.5 ± 2.6
Chiasm	55.7	58 ± 17	N/A	$53.2 \!\pm\! 15$	57.4 ± 25.1	$59.6 {\pm} 18.1$
Mandible	93.0	N/A	94.4 ± 1	92.5 ± 2	92.5 ± 1.5	93.5 ± 1.9
Opt. Ner. L	64.4	72 ± 8	N/A	$72.1 \!\pm\! 6$	$71.8 \!\pm\! 6.9$	$73.5 {\pm} 9.6$
Opt. Ner. R	63.9	70 ± 9	N/A	70.6 ± 10	71.9 ± 9.9	74.4 ± 7.2
Parotid L	82.7	N/A	82.3 ± 6	$\textbf{88.1} \!\pm\! \textbf{2}$	86.1 ± 2.6	86.3 ± 3.6
Parotid R	81.4	N/A	82.9 ± 6	87.4 ± 4	$87.8 \!\pm\! 4.6$	$87.9 {\pm} 3.1$
Subman. L	72.3	N/A	N/A	$\textbf{81.4} {\pm} \textbf{4}$	79.4 ± 9.8	$79.8 \!\pm\! 8.1$
Subman. R	72.3	N/A	N/A	$\textbf{81.3} \!\pm\! \textbf{4}$	79.7 ± 4.5	80.1 ± 6.1
$\mathbf{A}\mathbf{verage}$	74.9	N/A	N/A	79.25	79.24	80.29

Figure 7: Evaluation on MICCAI 2015 HaN dataset

Summary FocusNet

Starting point

- ▶ Problem-oriented
- ► Imitate oncologists

Network detail

- ► Locate small organs and fine segment
- ▶ Reduce the times of down-sampling

Introduction

Harness 2D and 3D

Harnessing 2D Networks and 3D Features for Automated Pancreas Segmentation from Volumetric CT Images (MICCAI 2019) • Harnessing 2D and 3D

Figure 8: Pancreas Refinement

Related work

Harness 2D and 3D

- ▶ 2D network for refinement
- ► Tri-planar scheme (2.5D)

Figure 9: Tri-planar

Current problem

Harness 2D and 3D

Computational waste

- ▶ ROI refinement
- ▶ Not make good use of 2D network

Figure 10: ROI Pooling

Coarse Network Structure

Harness 2D and 3D

▶ Revise loss function to emphasize "Recall"

$$Loss_{bias_dice} = 1 - \frac{2(\sum_{i=1}^{N} p_i g_i + \epsilon)}{\sum_{i=1}^{N} p_i (1 - g_i) + 2\sum_{i=1}^{N} g_i p_i + \beta \times \sum_{i=1}^{N} g_i (1 - p_i) + \epsilon}$$

Figure 11: Coarse segmentation network

Fine Network Structure

Harness 2D and 3D

combine 2d and 3d networks

Figure 12: Fine segmentation network

Network Structure

Harness 2D and 3D

► Convert 2D slices to 3D

Figure 13: dimension adaptive module

Evaluation

Harness 2D and 3D

Method	Mean DSC (%)	Max DSC (%)	Min DSC (%)	Time (m)
Roth et al. [5]	71.42 ± 10.11	86.29	23.99	6-8
Roth et al. [6]	78.01 ± 8.20	88.65	34.11	2-3
Roth et al. [7]	81.27 ± 6.27	88.96	50.69	2-3
Cai et al. [1]	82.4 ± 6.7	90.10	60.00	N/A
Zhou et al. [11]	82.50 ± 6.14	89.98	56.33	0.9
Zhu et al. [12]	84.59 ± 4.86	91.45	69.62	4.1
Xia et al. [9]	84.63 ± 5.07	91.57	61.58	1.4
Yu et al. [10]	84.50 ± 4.97	91.02	62.81	1.3
Our proposed (no parallel training)	83.99 ± 5.34	91.41	66.62	0.40
Our proposed	85.09 ± 4.13	91.26	71.42	0.40
Our proposed (integrated)	$\textbf{85.22} \pm \textbf{4.07}$	91.36	71.40	0.44

Figure 14: Evaluation on NIH dataset

Summary Harness 2D and 3D

Method-oriented

- ▶ Bias dice loss function
- ► Combine 2D features in a 3D way