Anwendungen der Integralrechnung: Teil 2

Yannis Bähni

XXM1.AN2

13.03.2024

Überblick

Bogenlänge einer Kurve

Bogenlänge einer Kurve

- Mantelfläche von Rotationskörpern
- Schwerpunkt ebener Flächen
- Schwerpunkt von Rotationskörpern

Bogenlänge einer Kurve: Konzept

Bogenlänge einer Kurve

Ziel: Länge einer Kurve berechnen

Schwerpunkt ebener Flächen

Berechnungsidee:

- Approximation der Kurve durch Geradenstücke
- Approximative Länge als Summe der Längen aller Geradenstücke
- Exakte Länge im Limes unendlich feiner Unterteilung

Bogenlänge einer Kurve: Berechnung

Bogenlänge einer Kurve

Zerlegung in n Stücke; Länge I_k des k-ten Geradenstücks:

$$I_k = \sqrt{\Delta x_k^2 + \Delta y_k^2} = \Delta x_k \cdot \sqrt{1 + \left(\frac{\Delta y_k}{\Delta x_k}\right)^2}.$$

Approximation f
ür die Gesamtlänge:

$$L_n = \sum_{k=1}^n I_k$$

Exaktes Resultat im Limes $n \to \infty$:

$$L = \lim_{n \to \infty} L_n = \lim_{n \to \infty} \sum_{k=1}^n I_k = \lim_{n \to \infty} \sum_{k=1}^n \Delta x_k \cdot \sqrt{1 + \left(\frac{\Delta y_k}{\Delta x_k}\right)^2}.$$

Notation als Integral:

$$L = \int_{a}^{b} \sqrt{1 + (f'(x))^2} \, \mathrm{d}x.$$

Bogenlänge einer Kurve: Resultat, Beispiel

Satz

Bogenlänge einer Kurve

Sei f(x) eine auf dem Intervall [a, b] definierte Funktion. Die Länge der Funktionskurve von f(x) im Intervall [a, b] ist

Schwerpunkt ebener Flächen

$$L = \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} \, \mathrm{d}x.$$

Beispiel

Berechnen Sie die Länge der Funktionskurve der Funktion $f(x) = 1 + \frac{x}{2}$ im Intervall I = [0, 2]

i) mit einer elementargeometrischen Formel,

ii) mit der Integralformel.

Bogenlänge einer Kurve: Beispiel

Beispiel

Berechnen Sie die Länge der Funktionskurve der Funktion $f(x) = x^2$ im Intervall I = [0, 1].

Bogenlänge einer Kurve: Beispiel

Bogenlänge einer Kurve 0000

Beispiel

Berechnen Sie die Länge der Funktionskurve der Funktion $f(x) = \frac{1}{2}(e^x + e^{-x})$ im Intervall I = [-2, 2].

Mantelfläche: Konzept

Rotationskörper einer Funktionskurve:

Schwerpunkt ebener Flächen

Ziel: Berechnung der Mantelfläche, d.h. der Oberfläche ohne Boden/Deckel

Vorgehen zur Berechnung der Mantelfläche:

- Approximation des Körpers durch Kegelstümpfe
- Approximative Mantelfläche als Summe der Mantelflächen aller Kegelstümpfe
- Exakte Mantelfläche im Limes unendlich feiner Unterteilung
- Kombination von Elementen der Berechnung von Rotationsvolumina und Bogenlängen

Mantelfläche: Kegelstumpf

Bogenlänge einer Kurve

Vorbereitung: Kegelstumpf

Schwerpunkt ebener Flächen

Tatsachen über einen Kegelstumpf:

- Mantelfläche: $M = \pi \cdot m \cdot (R + r)$
- Länge der Mantellinie m: $m = \sqrt{h^2 + (R r)^2}$
- Also

$$M = \pi \cdot \sqrt{h^2 + (R-r)^2 \cdot (R+r)}$$

Mantelfläche: Berechnung

Zerlegung in n Kegelstümpfe (Zylinderstücke genügt nicht);
 Mantelfläche M_k des k-ten Kegelstumpfs:

$$M_k = \pi \cdot \sqrt{h_k^2 + (R_k - r_k)^2} \cdot (R_k + r_k)$$

• Mit $h_k = \Delta x_k$, $r_k = f(x_k)$, $R_k = f(x_{k+1})$, also $R_k - r_k = f(x_{k+1}) - f(x_k) = \Delta y_k$ ergibt sich daraus

$$M_k = \pi \cdot (f(x_k) + f(x_{k+1})) \cdot \sqrt{\Delta x_k^2 + \Delta y_k^2}$$

= $\pi \cdot (f(x_k) + f(x_{k+1})) \cdot \sqrt{1 + \left(\frac{\Delta y_k}{\Delta x_k}\right)^2} \cdot \Delta x_k$

Approximation f
ür die ganze Mantelfl
äche:

$$M_n = \sum_{k=1}^n A_k$$

Mantelfläche: Berechnung [Fortsetzung]

• Exakte Formel im Limes $n \to \infty$:

$$M = \lim_{n \to \infty} M_n = \lim_{n \to \infty} \sum_{k=1}^n A_k$$
$$= \lim_{n \to \infty} \pi \cdot \sum_{k=1}^n (f(x_k) + f(x_{k+1})) \cdot \sqrt{1 + \left(\frac{\Delta y_k}{\Delta x_k}\right)^2} \cdot \Delta x_k.$$

Notation als Integral:

$$M = 2\pi \int_a^b f(x) \cdot \sqrt{1 + (f'(x))^2} dx.$$

Schwerpunkt ebener Flächen

Mantelfläche: Resultat

Satz

Sei f(x) eine auf dem Intervall [a, b] definierte Funktion mit $f(x) \ge 0$ für alle $x \in [a, b]$. Die Mantelfläche des durch Rotation von f(x) um die x-Achse entstehenden Rotationskörpers ist

$$M = 2\pi \int_{a}^{b} f(x) \cdot \sqrt{1 + (f'(x))^2} dx.$$

Mantelfläche: Beispiel

Beispiel

Berechnen Sie die Mantelfläche des Rotationskörpers der Funktion

Schwerpunkt ebener Flächen

$$f(x)=\frac{x}{2}+1$$

im Intervall I = [0, 2]

i) mit der elementargeometrischen Formel,

ii) mit der Integralformel.

Mantelfläche: Beispiel

Beispiel

Berechnen Sie die Mantelfläche des Rotationskörpers der Funktion

$$f(x) = \sqrt{x}$$

im Intervall I = [0, 1].

Schwerpunkt ebener Flächen: Konzept

Ziel: Schwerpunkt einer ebenen Fläche berechnen

Schwerpunkt ebener Flächen

Berechnungsidee:

- Approximation der Fläche durch Rechtecke
- Approximativer Schwerpunkt als gewichtetes Mittel aller Teilschwerpunkte
- Exaktes Resultat im Limes unendlich feiner Unterteilung

Schwerpunkt ebener Flächen: Berechnung

• Teilungspunkte $a = x_0 < x_1 < ... < x_n = b$, Approximation der Fläche durch n Rechtecke Schwerpunkt S_k des k-ten Rechtecks:

$$S_k pprox \left(\xi_k; \frac{1}{2}(f(\xi_k) + g(\xi_k))\right),$$

wobei $ξ_k$ ∈ [x_{k-1}, x_k].

Schwerpunkt der Gesamtfigur, durch Rechtecke approximiert:

$$\vec{r}(S) \approx \sum_{k=1}^{n} \vec{r}(S_k) \cdot \frac{\Delta A_k}{A}$$

wobei ΔA_k : Fläche des k-ten Rechtecks, A: Gesamtfläche

x-Koordinate von S:

$$x_{\mathcal{S}} \approx \sum_{k=1}^{n} \xi_k \cdot \frac{(f(\xi_k) - g(\xi_k)) \cdot \Delta x_k}{A} = \frac{1}{A} \sum_{k=1}^{n} \xi_k \cdot (f(\xi_k) - g(\xi_k)) \cdot \Delta x_k$$

Schwerpunkt ebener Flächen: Berechnung [Fortsetzung]

x-Koordinate von S:

$$x_{S} \approx \sum_{k=1}^{n} \xi_{k} \cdot \frac{(f(\xi_{k}) - g(\xi_{k})) \cdot \Delta x_{k}}{A} = \frac{1}{A} \sum_{k=1}^{n} \xi_{k} \cdot (f(\xi_{k}) - g(\xi_{k})) \cdot \Delta x_{k}$$

y-Koordinate von S:

$$y_S \approx \sum_{k=1}^n \frac{1}{2} (f(\xi_k) + g(\xi_k)) \cdot \frac{(f(\xi_k) - g(\xi_k)) \cdot \Delta x_k}{A}$$
$$= \frac{1}{2A} \sum_{k=1}^n (f(\xi_k)^2 - g(\xi_k)^2) \cdot \Delta x_k.$$

 Exakte Formeln im Übergang zu unendlich vielen und unendlich dünnen Rechtecken!

Schwerpunkt ebener Flächen

• Im Limes $n \to \infty$ Übergang von Summe zu Integral:

Satz

Bogenlänge einer Kurve

Schwerpunkt $S = (x_S; y_S)$ einer ebenen Fläche mit Flächeninhalt A, die von den Kurven y = f(x) und y = g(x) sowie den Geraden x = aund x = b berandet wird:

$$x_S = \frac{1}{A} \int_a^b x \cdot (f(x) - g(x)) dx$$

 $y_S = \frac{1}{2A} \int_a^b (f(x)^2 - g(x)^2) dx$

Berechnung von A ebenfalls durch ein Integral:

$$A = \int_a^b (f(x) - g(x)) \, \mathrm{d}x.$$

Wenn möglich Symmetrien ausnutzen!

Beispiel

Bestimmen Sie den Schwerpunkt des Quadrats mit Eckpunkten (0,0), (0,1), (1,1), (0,1).

Schwerpunkt ebener Flächen

0000

Beispiel

Bestimmen Sie den Schwerpunkt des Dreiecks mit Eckpunkten (0,0), (-1,0) und (0,1).

Die x-Koordinate des Schwerpunkts $S = (x_S; 0; 0)$ eines Rotationsköpers mit Volumen V, der durch Rotation der Kurve y = f(x) um die x-Achse zwischen x = a und x = b gebildet wird,

y = f(x) um die x-Achse zwischen x = a und x = b gebildet wird, wobei a < b und $f(x) \ge 0$ für alle $a \le x \le b$ gilt, ist durch folgende Formel gegeben:

$$x_{S} = \frac{\pi}{V} \int_{a}^{b} x \cdot f(x)^{2} \, \mathrm{d}x$$

Beispiel

Berechnen Sie den Schwerpunkt des durch Rotation der Kurve $y=\sqrt{4-x}$ um die x-Achse, $0\leq x\leq 4$, entstehenden Rotationskörpers.