University of South Bohemia

Faculty of Science

Praktika IV

Comptnův rozptyl

Datum: 18.10.2023 Jmeno: Martin Skok

Obor: Fyzika Hodnoceni:

1 Úkoly

 experimetálně zjistit hodnotu elektrického elementárního náboje e pomocí Milikanova experimentu

2 Pomůcky

Základní deska, mikroskop s milimetrovou škálou, deskový kondenzátor, osvětlovací zařízení, olej, rozprašovač oleje, gumový balónek

3 Teorie

Millikan rozprašoval malé kapky oleje do komory. V jeho prvním experimentu jednoduše měřil, jak rychle kapky padají pod vlivem gravitace. Poté bylo možné vypočítat hmotnost jednotlivých kapek. Následně rozprašoval olejové kapky a aplikoval na ně elektrický náboj tím, že pomocí rentgenových paprsků svítil shora skrz spodní část zařízení. Rentgenové paprsky ionizovaly vzduch, což způsobilo, že se elektrony připojovaly k olejovým kapkám. Olejové kapky nabraly statický náboj a byly zavěšeny mezi dvěma nabitými destičkami. Millikan byl schopen sledovat pohyb olejových kapek mikroskopem a zjistil, že se kapky řadily do určitého uspořádání mezi destičkami v závislosti na počtu elektrických nábojů, které získaly.

Millikan využil tuto informaci k výpočtu náboje elektronu. Jeho výsledek byl náboj 1.5924×10^{-19} C, kde C značí coulomb. Dnes je přijímaná hodnota náboje elektronu $1.602176487\times10^{-19}$ C.

Sutherlandův vztah pro zjištěné dynamické vyskozity vzduchu

$$\eta_{vzduch} = \eta_0 \frac{T_0 + C}{T + C} \left(\frac{T}{T_0}\right)^{3/2} [uPa] \tag{1}$$

Kde $\eta_0=18,27\mu Pa,\,T_0=291.15K,\,C=120K$ je Sutherlandova konstanta. Tlak saturovaných par

$$p_{sat} = 6.1087 \cdot 10^{\frac{7.5T}{T + 237.3}} [hPa] \tag{2}$$

Kde teplota je v $^{\circ}C$

Tlak vodních par

$$p_v = \phi p_{sat}[hPa] \tag{3}$$

Kde ϕ je vlhkost vzduchu.

Parciální tlak suchého vzduchu

$$p_d = p - p_v[hPa] \tag{4}$$

Hustota vzduchu

$$\rho_1 = \frac{p_d}{R_d T} + \frac{p_v}{R_v T} [kg \cdot m^{-3}] \tag{5}$$

Kde $R_d=287.058[JKg^{-1}K^{-1}]$ je měrná plynová konstanta suchého vzduchu a $R_v=461.495[JKg^{-1}K^{-1}]$ je měrná plynová konstanta vodních par.

Poloměr kapky

$$r = \sqrt{\frac{9}{2} \frac{\eta \frac{\Delta x}{\Delta t}}{(p_2 - p_1)g}} \tag{6}$$

Kde η je viskozita vzduchu, $\rho_2=873$ je hustota oleje, g=9.81je gravitační zrychlení.

Náboj kapky

$$q = 9\pi \frac{d}{U} \sqrt{\frac{2\eta^3 v^3}{(p_2 - p_1)g}} \tag{7}$$

Kde d=6mmje vzdálenost mezi deskami kondenzátoru, Uje napětí.

Korekce náboje kapky

$$q_c = \frac{q}{\sqrt{\left(1 + \frac{A}{r}\right)^3}}\tag{8}$$

Kde $A=0.07776\mu m$ je koeficient tření olejové kapky

4 Data

Tabulka 1:

Napětí $U[V]$	Vzdálenost $\Delta s[mm]$	$\check{\operatorname{Cas}} \Delta t[s]$	Teplota $T[K]$	Tlak $p[hPa]$	Vlhkost ϕ [%]
323	0.5	4.362	21.6	964.7	40
425	1.5	1.588	-	-	-
424	2.0	4.579	-	-	-
64	0.5	21.303	-	-	-
112	0.5	21.303	-	-	-
168	0.5	2.128	-	-	-
173	0.5	2.04	-	-	-
78	0.5	6.738	22.0	965.0	40
116	0.5	13.675	-	-	-
130	0.5	9.521	-	-	-
150	0.5	7.563	-	-	-
80	0.5	11.318	-	-	-
36	0.5	11.456	22.1	965.2	39
120	0.5	18.594	-	-	-
42	0.5	11.659	-	-	-

Následující hodnoty jsem počítal podle vzorců 1 až 5 a potom jsem tři hodnoty, které mi vyšli, aritemticky zprůměroval

Dynamická viskozita vzduchu $\eta_{vzduch}=18.463[\mu Pa]$ Tlak saturovaných par $p_{sat}=26.278[hPa]$ Tlak vodních par $p_v=10.422[hPa]$ Parciální tlak suchého vzduchu $p_d=954.543[hPa]$ Hustota vzduchu $\rho_1=1.134[kgm^{-3}]$

Tabulka 1:

Poloměr kapky $r[m \cdot 10^{-6}]$	Náboj kapky $q[C \cdot 10^{-19}]$	korekce náboje kapky $q[C \cdot 10^{-19}]$
1.055	7.82	7.029
3.029	140.583	135.338
2.06	44.308	41.912
0.477	3.657	2.916
0.477	2.089	1.666
1.511	44.121	40.922
1.543	45.648	42.403
0.849	16.866	14.789
0.596	3.923	3.263
0.714	6.025	5.16
0.801	7.375	6.419
0.655	7.554	6.384
0.651	16.484	13.918
0.511	2.392	1.934
0.645	13.762	11.603