Συναρτήσεις Μη πεπερασμένο όριο στο x_0

Κωνσταντίνος Λόλας

 10^o ΓΕΛ Θεσσαλονίκης

Στο άπειρο λοιπόν...

Λάθος συλλογισμός

Το άπειρο ΔΕΝ ΕΙΝΑΙ ΑΡΙΘΜΟΣ!

Ορισμός απείροι

Αν για κάθε $k \in \mathbb{R}$ μπορώ να βρώ $m \in \mathbf{A}$ ώστε m > k, τότε λέμε ότι το \mathbf{A} έχει οσοδήποτε μεγάλους αριθμούς.

άρα

Ορισμός μη πεπερασμένου ορίοι

Εστω συνάρτηση $f: \mathbf{A} \to \mathbb{R}$. Αν για κάθε $k \in \mathbb{R}$ υπάρχει $x_0 \in \mathbf{A}$ ώστε για κάθε x σε κατάλληλη περιοχή γύρω από το x_0 να ισχύει f(x) > k

Λάθος συλλογισμός

Το άπειρο ΔΕΝ ΕΙΝΑΙ ΑΡΙΘΜΟΣ!

Ορισμός απείρου

Αν για κάθε $k\in\mathbb{R}$ μπορώ να βρώ $m\in \mathbf{A}$ ώστε m>k, τότε λέμε ότι το \mathbf{A} έχει οσοδήποτε μεγάλους αριθμούς.

άρα

Ορισμός μη πεπερασμένου ορίοι

Εστω συνάρτηση $f: A \to \mathbb{R}$. Αν για κάθε $k \in \mathbb{R}$ υπάρχει $x_0 \in A$ ώστε για κάθε x σε κατάλληλη περιοχή γύρω από το x_0 να ισχύει f(x) > k

Λάθος συλλογισμός

Το άπειρο ΔΕΝ ΕΙΝΑΙ ΑΡΙΘΜΟΣ!

Ορισμός απείρου

Αν για κάθε $k \in \mathbb{R}$ μπορώ να βρώ $m \in A$ ώστε m > k, τότε λέμε ότι το Aέχει οσοδήποτε μεγάλους αριθμούς.

άρα

Ορισμός μη πεπερασμένου ορίου

Εστω συνάρτηση $f: A \to \mathbb{R}$. Αν για κάθε $k \in \mathbb{R}$ υπάρχει $x_0 \in A$ ώστε για κάθε x σε κατάλληλη περιοχή γύρω από το x_0 να ισχύει f(x)>k

Συναρτήσεις 3/21

Ελληνικά!

Ορισμός μη πεπερασμένου ορίου

Εστω συνάρτηση $f: \mathbf{A} \to \mathbb{R}$. Θα λέμε ότι τείνει στο άπειρο αν μεγαλώνει συνεχώς όταν πλησιάζουμε στο x_0 . Τότε θα γράφουμε

$$\lim_{x \to x_0} f(x) = +\infty$$

ΜΟΝΟ ΕΓΩ θα επιτρέπεται να γράφω σκέτο ∞ και θα εννοώ $+\infty$ και εννοείται επειδή ξεχνάω!

Ελληνικά!

Ορισμός μη πεπερασμένου ορίου

Εστω συνάρτηση $f: \mathbf{A} \to \mathbb{R}$. Θα λέμε ότι τείνει στο άπειρο αν μεγαλώνει συνεχώς όταν πλησιάζουμε στο x_0 . Τότε θα γράφουμε

$$\lim_{x \to x_0} f(x) = +\infty$$

MONO ΕΓΩ θα επιτρέπεται να γράφω σκέτο ∞ και θα εννοώ $+\infty$ και εννοείται επειδή ξεχνάω!

Το άλλο άπειρο?

Ορισμός μη πεπερασμένου ορίου

Εστω συνάρτηση $f: \mathbf{A} \to \mathbb{R}$. Θα λέμε ότι τείνει στο μείον άπειρο αν μικραίνει συνεχώς όταν πλησιάζουμε στο x_0 . Τότε θα γράφουμε

$$\lim_{x\to x_0}f(x)=-\infty$$

Αυτό δεν μπορώ να το παραβλέψω και αναγκαστικά το γράφω και εγώ!

Το άλλο άπειρο?

Ορισμός μη πεπερασμένου ορίου

Εστω συνάρτηση $f: A \to \mathbb{R}$. Θα λέμε ότι τείνει στο μείον άπειρο αν μικραίνει συνεχώς όταν πλησιάζουμε στο x_0 . Τότε θα γράφουμε

$$\lim_{x\to x_0}f(x)=-\infty$$

Αυτό δεν μπορώ να το παραβλέψω και αναγκαστικά το γράφω και εγώ!

Συναρτήσεις 5/21

Πάμε στα γνωστά

Συναρτήσεις που πηγαίνουν στο $+\infty$. Πάμε...

- $\frac{1}{x}$
- x^2
- $\frac{1}{x^{2k}}$
- ln a
- $\bullet \ \varepsilon \varphi(x)$

Πάμε στα γνωστά

Συναρτήσεις που πηγαίνουν στο $+\infty$. Πάμε...

- $\frac{1}{x}$
- $\frac{1}{x^{27}}$
- ln a
- $\bullet \ \varepsilon \varphi(x)$

Πάμε στα γνωστά

Συναρτήσεις που πηγαίνουν στο $+\infty$. Πάμε...

- \bullet $\frac{1}{x}$

- $\bullet \ \ln x$
- $\quad \bullet \quad \varepsilon \varphi(x)$

Το άπειρο δεν είναι παιχνίδι (part 1)

Γρίφος time!

- Υπάρχει ένα ξενοδοχείο με άπειρα δωμάτια.
- Ερχεται ένας ταλαιπωρημένος οδηπόρος και ζητάει δωμάτιο!!!!!
- Ο ξενοδόχος του λέει ότι όλα τα δωμάτια είναι κατελημένα και δεν έχει ελεύθερο.
- Επειδή ο οδηπόρος είστε εσείς και κάνετε μαθηματικά με τον Λόλα, του δίνετε την λύση και τελικά παίρνετε το δωμάτιο 4.
- Προτείνετε μία λύση

Το άπειρο δεν είναι παιχνίδι (part 2)

Μπορώ πολύ εύκολα να αποδείξω ότι $1+2+3+4+\cdots=-\frac{1}{12}$

Μα, μα, μα... Είπαμε δεν είναι αριθμός!, αλλά, αν μπορώ να μεγαλώνω συνέχεια και...

- προσθέσω έναν αριθμό?
- αφαιρέσω έναν αριθμό?
- πολλαπλασιάσω με αριθμό πάνω από 1?
- διαιρέσω με αριθμό?
- υψώσω σε δύναμη?
- πολλαπλασιάσω με άλλο τόσο?
- αφαιρέσω άλλο τόσο?
- πολλαπλασιάσω με 0?
- διαιρέσω με άλλο τόσο?

Αρα προσοχή σε όσα δεν ορίζονται

Μα, μα, μα... Είπαμε δεν είναι αριθμός!, αλλά, αν μπορώ να μεγαλώνω συνέχεια και...

- προσθέσω έναν αριθμό?
- αφαιρέσω έναν αριθμό?
- πολλαπλασιάσω με αριθμό πάνω από 1?
- διαιρέσω με αριθμό?
- υψώσω σε δύναμη?
- πολλαπλασιάσω με άλλο τόσο?
- αφαιρέσω άλλο τόσο?
- πολλαπλασιάσω με 0?
- διαιρέσω με άλλο τόσο?

Αρα προσοχή σε όσα δεν ορίζονται!

Μα, μα, μα... Είπαμε δεν είναι αριθμός!, αλλά, αν μπορώ να μεγαλώνω συνέχεια και...

- προσθέσω έναν αριθμό?
- αφαιρέσω έναν αριθμό?
- πολλαπλασιάσω με αριθμό πάνω από 1?
- διαιρέσω με αριθμό?
- υψώσω σε δύναμη?
- πολλαπλασιάσω με άλλο τόσο?
- αφαιρέσω άλλο τόσο?
- πολλαπλασιάσω με 0?
- διαιρέσω με άλλο τόσο?

Αρα προσοχή σε όσα δεν ορίζονται!

Μα, μα, μα... Είπαμε δεν είναι αριθμός!, αλλά, αν μπορώ να μεγαλώνω συνέχεια και...

- προσθέσω έναν αριθμό?
- αφαιρέσω έναν αριθμό?
- πολλαπλασιάσω με αριθμό πάνω από 1?
- διαιρέσω με αριθμό?
- υψώσω σε δύναμη?
- πολλαπλασιάσω με άλλο τόσο?
- αφαιρέσω άλλο τόσο?
- πολλαπλασιάσω με 0?
- διαιρέσω με άλλο τόσο?

Αρα προσοχή σε όσα δεν ορίζονται!

Μα, μα, μα... Είπαμε δεν είναι αριθμός!, αλλά, αν μπορώ να μεγαλώνω συνέχεια και...

- προσθέσω έναν αριθμό?
- αφαιρέσω έναν αριθμό?
- πολλαπλασιάσω με αριθμό πάνω από 1?
- διαιρέσω με αριθμό?
- υψώσω σε δύναμη?
- πολλαπλασιάσω με άλλο τόσο?
- αφαιρέσω άλλο τόσο?
- πολλαπλασιάσω με 0?
- διαιρέσω με άλλο τόσο?

Αρα προσοχή σε όσα δεν ορίζονται!

Μα, μα, μα... Είπαμε δεν είναι αριθμός!, αλλά, αν μπορώ να μεγαλώνω συνέχεια και...

- προσθέσω έναν αριθμό?
- αφαιρέσω έναν αριθμό?
- πολλαπλασιάσω με αριθμό πάνω από 1?
- διαιρέσω με αριθμό?
- υψώσω σε δύναμη?
- πολλαπλασιάσω με άλλο τόσο?
- αφαιρέσω άλλο τόσο?
- πολλαπλασιάσω με 0?
- διαιρέσω με άλλο τόσο?

Αρα προσοχή σε όσα δεν ορίζονται!

Μα, μα, μα... Είπαμε δεν είναι αριθμός!, αλλά, αν μπορώ να μεγαλώνω συνέχεια και...

- προσθέσω έναν αριθμό?
- αφαιρέσω έναν αριθμό?
- πολλαπλασιάσω με αριθμό πάνω από 1?
- διαιρέσω με αριθμό?
- υψώσω σε δύναμη?
- πολλαπλασιάσω με άλλο τόσο?
- αφαιρέσω άλλο τόσο?
- πολλαπλασιάσω με 0?
- διαιρέσω με άλλο τόσο?

Αρα προσοχή σε όσα δεν ορίζονται!

Μα, μα, μα... Είπαμε δεν είναι αριθμός!, αλλά, αν μπορώ να μεγαλώνω συνέχεια και...

- προσθέσω έναν αριθμό?
- αφαιρέσω έναν αριθμό?
- πολλαπλασιάσω με αριθμό πάνω από 1?
- διαιρέσω με αριθμό?
- υψώσω σε δύναμη?
- πολλαπλασιάσω με άλλο τόσο?
- αφαιρέσω άλλο τόσο?
- πολλαπλασιάσω με 0?
- διαιρέσω με άλλο τόσο?

Αρα προσοχή σε όσα δεν ορίζονται!

Μα, μα, μα... Είπαμε δεν είναι αριθμός!, αλλά, αν μπορώ να μεγαλώνω συνέχεια και...

- προσθέσω έναν αριθμό?
- αφαιρέσω έναν αριθμό?
- πολλαπλασιάσω με αριθμό πάνω από 1?
- διαιρέσω με αριθμό?
- υψώσω σε δύναμη?
- πολλαπλασιάσω με άλλο τόσο?
- αφαιρέσω άλλο τόσο?
- πολλαπλασιάσω με 0?
- διαιρέσω με άλλο τόσο?

Αρα προσοχή σε όσα δεν ορίζονται!

Μα, μα, μα... Είπαμε δεν είναι αριθμός!, αλλά, αν μπορώ να μεγαλώνω συνέχεια και...

- προσθέσω έναν αριθμό?
- αφαιρέσω έναν αριθμό?
- πολλαπλασιάσω με αριθμό πάνω από 1?
- διαιρέσω με αριθμό?
- υψώσω σε δύναμη?
- πολλαπλασιάσω με άλλο τόσο?
- αφαιρέσω άλλο τόσο?
- πολλαπλασιάσω με 0?
- διαιρέσω με άλλο τόσο?

Αρα προσοχή σε όσα δεν ορίζονται!

Μα, μα, μα... Είπαμε δεν είναι αριθμός!, αλλά, αν μπορώ να μεγαλώνω συνέχεια και...

- προσθέσω έναν αριθμό?
- αφαιρέσω έναν αριθμό?
- πολλαπλασιάσω με αριθμό πάνω από 1?
- διαιρέσω με αριθμό?
- υψώσω σε δύναμη?
- πολλαπλασιάσω με άλλο τόσο?
- αφαιρέσω άλλο τόσο?
- πολλαπλασιάσω με 0?
- διαιρέσω με άλλο τόσο?

Αρα προσοχή σε όσα δεν ορίζονται!

όπου $a \in \mathbb{R}$ και δεν προκύπτει από όριο, δηλαδή είναι αριθμός

$$\bullet \ \pm \infty + a = \pm \infty$$

$$\bullet$$
 $\pm \infty - a = \pm \infty$

•
$$\pm \infty \cdot a = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ \frac{\pm \infty}{a} = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \end{cases}$$

$$\bullet \ (+\infty)^a = \begin{cases} +\infty, & a > 0 \\ -\infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ a^{+\infty} = \begin{cases} 0, & 0 \le a < 1 \\ ?, & a = 1 \\ +\infty, & a > 1 \end{cases}$$

$$a^{-\infty} = \begin{cases} +\infty, & 0 \le a < 1 \\ ?, & a = 1 \\ 0, & a > 1 \end{cases}$$

όπου $a \in \mathbb{R}$ και δεν προκύπτει από όριο, δηλαδή είναι αριθμός

$$\bullet \ \pm \infty + a = \pm \infty$$

$$\bullet$$
 $\pm \infty - a = \pm \infty$

$$\bullet \pm \infty \cdot a = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ \frac{\pm \infty}{a} = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \end{cases}$$

$$(+\infty)^a = \begin{cases} +\infty, & a > 0 \\ -\infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ a^{+\infty} = \begin{cases} 0, & 0 \le a < 1 \\ ?, & a = 1 \\ +\infty, & a > 1 \end{cases}$$

όπου $a \in \mathbb{R}$ και δεν προκύπτει από όριο, δηλαδή είναι αριθμός

$$\bullet \ \pm \infty + a = \pm \infty$$

$$\bullet$$
 $\pm \infty - a = \pm \infty$

•
$$\pm \infty \cdot a = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ \frac{\pm \infty}{a} = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \end{cases}$$

$$\bullet \ (+\infty)^a = \begin{cases} +\infty, & a > 0 \\ -\infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ a^{+\infty} = \begin{cases} 0, & 0 \le a < 1 \\ ?, & a = 1 \\ +\infty, & a > 1 \end{cases}$$

όπου $a \in \mathbb{R}$ και δεν προκύπτει από όριο, δηλαδή είναι αριθμός

$$\bullet$$
 $\pm \infty + a = \pm \infty$

$$\bullet$$
 $+\infty - a = +\infty$

$$\bullet \ \frac{\pm \infty}{a} = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \end{cases}$$

$$(+\infty)^a = \begin{cases} +\infty, & a > 0 \\ -\infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ a^{+\infty} = \begin{cases} 0, & 0 \le a < 1 \\ ?, & a = 1 \\ +\infty, & a > 1 \end{cases}$$

όπου $a \in \mathbb{R}$ και δεν προκύπτει από όριο, δηλαδή είναι αριθμός

$$\bullet \pm \infty + a = \pm \infty$$

$$\bullet \ \pm \infty - a = \pm \infty$$

$$\bullet \pm \infty \cdot a = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ \, \frac{\pm \infty}{a} = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \end{cases}$$

$$(+\infty)^a = \begin{cases} +\infty, & a > 0 \\ -\infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

•
$$a^{+\infty} = \begin{cases} 0, & 0 \le a < 1 \\ ?, & a = 1 \\ +\infty, & a > 1 \end{cases}$$

$$a^{-\infty} = \begin{cases} +\infty, & 0 \le a < 1 \\ ?, & a = 1 \\ 0, & a > 1 \end{cases}$$

όπου $a \in \mathbb{R}$ και δεν προκύπτει από όριο, δηλαδή είναι αριθμός

$$\bullet \ \pm \infty + a = \pm \infty$$

$$\bullet$$
 $\pm \infty - a = \pm \infty$

$$\bullet \pm \infty \cdot a = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ \, \frac{\pm \infty}{a} = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \end{cases}$$

$$\bullet \ (+\infty)^a = \begin{cases} +\infty, & a > 0 \\ -\infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ a^{+\infty} = \begin{cases} 0, & 0 \le a < 1 \\ ?, & a = 1 \\ +\infty, & a > 1 \end{cases}$$

όπου $a \in \mathbb{R}$ και δεν προκύπτει από όριο, δηλαδή είναι αριθμός

$$\bullet \ \pm \infty + a = \pm \infty$$

$$\bullet$$
 $\pm \infty - a = \pm \infty$

$$\bullet \pm \infty \cdot a = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ \frac{\pm \infty}{a} = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \end{cases}$$

$$(+\infty)^a = \begin{cases} +\infty, & a > 0 \\ -\infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ a^{+\infty} = \begin{cases} 0, & 0 \le a < 1 \\ ?, & a = 1 \\ +\infty, & a > 1 \end{cases}$$

$$a^{-\infty} = \begin{cases} +\infty, & 0 \le a < 1 \\ ?, & a = 1 \\ 0, & a > 1 \end{cases}$$

όπου $a \in \mathbb{R}$ και δεν προκύπτει από όριο, δηλαδή είναι αριθμός

$$\bullet \ \pm \infty + a = \pm \infty$$

$$\bullet$$
 $+\infty - a = +\infty$

$$\bullet \pm \infty \cdot a = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ \frac{\pm \infty}{a} = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \end{cases}$$

$$\bullet \ (+\infty)^a = \begin{cases} +\infty, & a > 0 \\ -\infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ a^{+\infty} = \begin{cases} 0, & 0 \le a < 1 \\ ?, & a = 1 \\ +\infty, & a > 1 \end{cases}$$

όπου $a \in \mathbb{R}$ και δεν προκύπτει από όριο, δηλαδή είναι αριθμός

$$\bullet \ \pm \infty + a = \pm \infty$$

$$\bullet$$
 $\pm \infty - a = \pm \infty$

$$\bullet \pm \infty \cdot a = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ \frac{\pm \infty}{a} = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \end{cases}$$

$$\bullet \ (+\infty)^a = \begin{cases} +\infty, & a > 0 \\ -\infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ a^{+\infty} = \begin{cases} 0, & 0 \le a < 1 \\ ?, & a = 1 \\ +\infty, & a > 1 \end{cases}$$

$$\bullet \ a^{-\infty} = \begin{cases} +\infty, & 0 \le a < 1 \\ ?, & a = 1 \\ 0, & a > 1 \end{cases}$$

όπου $a \in \mathbb{R}$ και δεν προκύπτει από όριο, δηλαδή είναι αριθμός

$$\bullet \ \pm \infty + a = \pm \infty$$

$$\bullet$$
 $+\infty - a = +\infty$

$$\bullet \pm \infty \cdot a = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ \frac{\pm \infty}{a} = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \end{cases}$$

$$(+\infty)^a = \begin{cases} +\infty, & a > 0 \\ -\infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ a^{+\infty} = \begin{cases} 0, & 0 \le a < 1 \\ ?, & a = 1 \\ +\infty, & a > 1 \end{cases}$$

$$\bullet \ a^{-\infty} = \begin{cases} +\infty, & 0 \le a < 1 \\ ?, & a = 1 \\ 0, & a > 1 \end{cases}$$

όπου $a \in \mathbb{R}$ και δεν προκύπτει από όριο, δηλαδή είναι αριθμός

$$\bullet \ \pm \infty + a = \pm \infty$$

$$\bullet$$
 $+\infty - a = +\infty$

$$\bullet \pm \infty \cdot a = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ \frac{\pm \infty}{a} = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \end{cases}$$

$$\bullet (+\infty)^a = \begin{cases} +\infty, & a > 0 \\ -\infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ a^{+\infty} = \begin{cases} 0, & 0 \le a < 1 \\ ?, & a = 1 \\ +\infty, & a > 1 \end{cases}$$

$$\bullet \ a^{-\infty} = \begin{cases} +\infty, & 0 \le a < 1 \\ ?, & a = 1 \\ 0, & a > 1 \end{cases}$$

όπου $a \in \mathbb{R}$ και δεν προκύπτει από όριο, δηλαδή είναι αριθμός

$$\bullet \ \pm \infty + a = \pm \infty$$

$$\bullet$$
 $\pm \infty - a = \pm \infty$

$$\bullet \pm \infty \cdot a = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ \frac{\pm \infty}{a} = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \end{cases}$$

$$\frac{a}{+\infty} = 0$$

$$\bullet \ (+\infty)^a = \begin{cases} +\infty, & a > 0 \\ -\infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$a^{+\infty} = \begin{cases} 0, & 0 \le a < 1 \\ ?, & a = 1 \\ +\infty, & a > 1 \end{cases}$$

$$\bullet \ a^{-\infty} = \begin{cases} +\infty, & 0 \le a < 1 \\ ?, & a = 1 \\ 0, & a > 1 \end{cases}$$

όπου $a \in \mathbb{R}$ και δεν προκύπτει από όριο, δηλαδή είναι αριθμός

$$\bullet \ \pm \infty + a = \pm \infty$$

$$\bullet$$
 $\pm \infty - a = \pm \infty$

$$\bullet \pm \infty \cdot a = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ \frac{\pm \infty}{a} = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \end{cases}$$

$$\frac{a}{+\infty} = 0$$

$$\bullet \ (+\infty)^a = \begin{cases} +\infty, & a > 0 \\ -\infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ \mathbf{a}^{+\infty} = \begin{cases} 0, & 0 \le a < 1 \\ ?, & a = 1 \\ +\infty, & a > 1 \end{cases}$$

$$\bullet \ a^{-\infty} = \begin{cases} +\infty, & 0 \le a < 1 \\ ?, & a = 1 \\ 0, & a > 1 \end{cases}$$

όπου $a \in \mathbb{R}$ και δεν προκύπτει από όριο, δηλαδή είναι αριθμός

$$\bullet \ \pm \infty + a = \pm \infty$$

•
$$\pm \infty - a = \pm \infty$$

$$\bullet \pm \infty \cdot a = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ \frac{\pm \infty}{a} = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \end{cases}$$

$$\frac{a}{+\infty} = 0$$

$$\bullet \ (+\infty)^a = \begin{cases} +\infty, & a > 0 \\ -\infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

•
$$a^{+\infty} = \begin{cases} 0, & 0 \le a < 1 \\ ?, & a = 1 \\ +\infty, & a > 1 \end{cases}$$

$$\bullet \ a^{-\infty} = \begin{cases} +\infty, & 0 \le a < 1 \\ ?, & a = 1 \\ 0, & a > 1 \end{cases}$$

όπου $a \in \mathbb{R}$ και δεν προκύπτει από όριο, δηλαδή είναι αριθμός

$$\bullet \ \pm \infty + a = \pm \infty$$

$$\bullet$$
 $\pm \infty - a = \pm \infty$

$$\bullet \pm \infty \cdot a = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \\ ?, & a = 0 \end{cases}$$

$$\bullet \ \frac{\pm \infty}{a} = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \end{cases}$$

$$\frac{a}{+\infty} = 0$$

$$\bullet \ (+\infty)^a = \begin{cases} +\infty, & a>0 \\ -\infty, & a<0 \\ ?, & a=0 \end{cases}$$

•
$$a^{+\infty} = \begin{cases} 0, & 0 \le a < 1 \\ ?, & a = 1 \\ +\infty, & a > 1 \end{cases}$$

$$\bullet \ a^{-\infty} = \begin{cases} +\infty, & 0 \le a < 1 \\ ?, & a = 1 \\ 0, & a > 1 \end{cases}$$

όπου $a \in \mathbb{R}$ και δεν προκύπτει από όριο, δηλαδή είναι αριθμός

$$\bullet \ \pm \infty + a = \pm \infty$$

$$\bullet \ \pm \infty - a = \pm \infty$$

$$\bullet \pm \infty \cdot a = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \\ ?. & a = 0 \end{cases}$$

$$\bullet \ \frac{\pm \infty}{a} = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \end{cases}$$

$$\bullet \ (+\infty)^a = \begin{cases} +\infty, & a>0 \\ -\infty, & a<0 \\ ?, & a=0 \end{cases}$$

•
$$a^{+\infty} = \begin{cases} 0, & 0 \le a < 1 \\ ?, & a = 1 \\ +\infty, & a > 1 \end{cases}$$

$$\bullet a^{-\infty} = \begin{cases} +\infty, & 0 \le a < 1 \\ ?, & a = 1 \\ 0, & a > 1 \end{cases}$$

όπου $a \in \mathbb{R}$ και δεν προκύπτει από όριο, δηλαδή είναι αριθμός

$$\bullet \ \pm \infty + a = \pm \infty$$

$$\bullet \ \pm \infty - a = \pm \infty$$

$$\bullet \pm \infty \cdot a = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \\ ?. & a = 0 \end{cases}$$

$$\bullet \ \frac{\pm \infty}{a} = \begin{cases} \pm \infty, & a > 0 \\ \mp \infty, & a < 0 \end{cases}$$

$$\bullet \ (+\infty)^a = \begin{cases} +\infty, & a>0 \\ -\infty, & a<0 \\ ?, & a=0 \end{cases}$$

•
$$a^{+\infty} = \begin{cases} 0, & 0 \le a < 1 \\ ?, & a = 1 \\ +\infty, & a > 1 \end{cases}$$

$$\bullet a^{-\infty} = \begin{cases} +\infty, & 0 \le a < 1 \\ ?, & a = 1 \\ 0, & a > 1 \end{cases}$$

$$\frac{\pm \omega}{\pm \infty} = ?$$

$$(+\infty)^{+\infty} = +\infty$$

$$(+\infty)^{-\infty} = 0$$

Kratáme ta
$$\infty \cdot 0$$
, ∞^0 , $1^{\pm \infty}$, $+\infty + (-\infty)$, $\frac{\pm \infty}{\pm \infty}$, $\frac{0}{0}$

 \bullet $+\infty + +\infty = +\infty$

$$-\infty + (-\infty) = -\infty$$

$$+\infty + (-\infty) = ?$$

$$\pm\infty \cdot \pm\infty = \pm\infty$$

Κρατάμε τα
$$\infty \cdot 0$$
, ∞^0 , $1^{\pm \infty}$, $+\infty + (-\infty)$, $\frac{\pm \infty}{+\infty}$, $\frac{0}{0}$

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 11/21

•
$$+\infty + +\infty = +\infty$$

• $-\infty + (-\infty) = -\infty$

$$\mathbf{v} = \mathbf{w} + (-\mathbf{w}) = -\mathbf{w}$$

$$\bullet + \infty + (-\infty) = ?$$

$$\bullet$$
 $\pm \infty \cdot \pm \infty = \pm \infty$

$$\bullet \ \ \frac{\pm \infty}{\pm \infty} = ?$$

$$(+\infty)^{+\infty} = +\infty$$

$$(+\infty)^{-\infty} = 0$$

Κρατάμε τα
$$\infty \cdot 0$$
, ∞^0 , $1^{\pm \infty}$, $+\infty + (-\infty)$, $\frac{\pm \infty}{\pm \infty}$, $\frac{0}{0}$

$$\bullet + \infty + (-\infty) = ?$$

$$\bullet$$
 $\pm \infty \cdot \pm \infty = \pm \infty$

$$\bullet \ \ \frac{\pm \infty}{\pm \infty} = ?$$

$$(+\infty)^{+\infty} = +\infty$$

$$(+\infty)^{-\infty} = 0$$

Kratáme ta
$$\infty \cdot 0$$
, ∞^0 , $1^{\pm \infty}$, $+\infty + (-\infty)$, $\frac{\pm \infty}{\pm \infty}$, $\frac{0}{0}$

$$\bullet$$
 $+\infty + +\infty = +\infty$

$$\bullet$$
 $-\infty + (-\infty) = -\infty$

$$\bullet$$
 + ∞ + ($-\infty$) = ?

$$\bullet$$
 $+\infty$ $+\infty$ = $+\infty$

$$\bullet \quad \frac{\pm \infty}{+\infty} = ?$$

$$(+\infty)^{+\infty} = +\infty$$

$$(+\infty)^{-\infty} = 0$$

Kratáme ta
$$\infty \cdot 0$$
, ∞^0 , $1^{\pm \infty}$, $+\infty + (-\infty)$, $\frac{\pm \infty}{\pm \infty}$, $\frac{0}{0}$

$$\bullet$$
 $+\infty + +\infty = +\infty$

$$\bullet$$
 $-\infty + (-\infty) = -\infty$

$$\bullet$$
 + ∞ + ($-\infty$) = ?

$$\bullet$$
 $\pm \infty \cdot \pm \infty = \pm \infty$

$$\bullet \ \ \frac{\pm \infty}{\pm \infty} = ?$$

$$(+\infty)^{+\infty} = +\infty$$

$$(+\infty)^{-\infty} = 0$$

Kratáme ta
$$\infty \cdot 0$$
, ∞^0 , $1^{\pm \infty}$, $+\infty + (-\infty)$, $\frac{\pm \infty}{\pm \infty}$, $\frac{0}{0}$

$$\bullet$$
 $+\infty + +\infty = +\infty$

$$\bullet$$
 $-\infty + (-\infty) = -\infty$

$$\bullet$$
 + ∞ + ($-\infty$) = ?

$$\bullet$$
 $\pm \infty \cdot \pm \infty = \pm \infty$

$$\bullet \ \ \frac{\pm \infty}{\pm \infty} = ?$$

$$(+\infty)^{+\infty} = +\infty$$

$$(+\infty)^{-\infty} = 0$$

Kratáme ta
$$\infty \cdot 0$$
, ∞^0 , $1^{\pm \infty}$, $+\infty + (-\infty)$, $\frac{\pm \infty}{\pm \infty}$, $\frac{0}{0}$

$$\bullet$$
 $+\infty + +\infty = +\infty$

$$\bullet$$
 $-\infty + (-\infty) = -\infty$

$$\bullet$$
 + ∞ + ($-\infty$) = ?

$$\bullet$$
 $\pm \infty \cdot \pm \infty = \pm \infty$

$$\bullet \ \ \frac{\pm \infty}{\pm \infty} = ?$$

$$(+\infty)^{+\infty} = +\infty$$

$$(+\infty)^{-\infty} = 0$$

Κρατάμε τα
$$\infty \cdot 0$$
, ∞^0 , $1^{\pm \infty}$, $+\infty + (-\infty)$, $\frac{\pm \infty}{\pm \infty}$, $\frac{0}{0}$

$$\bullet$$
 $+\infty + +\infty = +\infty$

$$\bullet$$
 $-\infty + (-\infty) = -\infty$

$$\bullet$$
 + ∞ + ($-\infty$) = ?

$$\bullet$$
 $\pm \infty \cdot \pm \infty = \pm \infty$

$$\bullet \ \ \frac{\pm \infty}{\pm \infty} = ?$$

$$(+\infty)^{+\infty} = +\infty$$

$$(+\infty)^{-\infty} = 0$$

Kratáme ta
$$\infty \cdot 0$$
, ∞^0 , $1^{\pm \infty}$, $+\infty + (-\infty)$, $\frac{\pm \infty}{\pm \infty}$, $\frac{0}{0}$

$$\bullet$$
 $+\infty + +\infty = +\infty$

$$\bullet$$
 $-\infty + (-\infty) = -\infty$

$$\bullet$$
 + ∞ + ($-\infty$) = ?

$$\bullet$$
 $\pm \infty \cdot \pm \infty = \pm \infty$

$$(+\infty)^{+\infty} = +\infty$$

$$(+\infty)^{-\infty} = 0$$

Kratáme ta
$$\infty \cdot 0$$
, ∞^0 , $1^{\pm \infty}$, $+\infty + (-\infty)$, $\frac{\pm \infty}{\pm \infty}$, $\frac{0}{0}$

$$\bullet$$
 $+\infty + +\infty = +\infty$

$$\bullet$$
 $-\infty + (-\infty) = -\infty$

$$\bullet$$
 + ∞ + ($-\infty$) = ?

$$\bullet$$
 $\pm \infty \cdot \pm \infty = \pm \infty$

$$\bullet \ \ \frac{\pm \infty}{\pm \infty} = ?$$

$$\bullet \ (+\infty)^{+\infty} = +\infty$$

$$(+\infty)^{-\infty} = 0$$

Kratáme ta
$$\infty\cdot 0$$
, ∞^0 , $1^{\pm\infty}$, $+\infty+(-\infty)$, $\frac{\pm\infty}{\pm\infty}$, $\frac{0}{0}$

$$\bullet$$
 $+\infty + +\infty = +\infty$

$$\bullet$$
 $-\infty + (-\infty) = -\infty$

$$\bullet$$
 + ∞ + ($-\infty$) = ?

$$\bullet$$
 $\pm \infty \cdot \pm \infty = \pm \infty$

$$\bullet \ \ \frac{\pm \infty}{\pm \infty} = ?$$

$$\bullet \ (+\infty)^{+\infty} = +\infty$$

$$(+\infty)^{-\infty} = 0$$

Κρατάμε τα
$$\infty \cdot 0$$
, ∞^0 , $1^{\pm \infty}$, $+\infty + (-\infty)$, $\frac{\pm \infty}{\pm \infty}$, $\frac{0}{0}$

$$\bullet$$
 $+\infty + +\infty = +\infty$

$$\bullet$$
 $-\infty + (-\infty) = -\infty$

$$\bullet$$
 + ∞ + ($-\infty$) = ?

$$\bullet$$
 $\pm \infty \cdot \pm \infty = \pm \infty$

$$\bullet \ (+\infty)^{+\infty} = +\infty$$

$$(+\infty)^{-\infty} = 0$$

Kratáme ta
$$\infty \cdot 0$$
, ∞^0 , $1^{\pm \infty}$, $+\infty + (-\infty)$, $\frac{\pm \infty}{\pm \infty}$, $\frac{0}{0}$

$$\bullet$$
 $+\infty + +\infty = +\infty$

$$\bullet$$
 $-\infty + (-\infty) = -\infty$

$$\bullet$$
 + ∞ + ($-\infty$) = ?

$$\bullet$$
 $\pm \infty \cdot \pm \infty = \pm \infty$

$$(+\infty)^{+\infty} = +\infty$$

$$(+\infty)^{-\infty} = 0$$

Kratáme ta
$$\infty \cdot 0$$
, ∞^0 , $1^{\pm \infty}$, $+\infty + (-\infty)$, $\frac{\pm \infty}{\pm \infty}$, $\frac{0}{0}$

$$\bullet$$
 $+\infty + +\infty = +\infty$

$$\bullet$$
 $-\infty + (-\infty) = -\infty$

$$\bullet$$
 + ∞ + ($-\infty$) = ?

$$\bullet$$
 $\pm \infty \cdot \pm \infty = \pm \infty$

$$(+\infty)^{+\infty} = +\infty$$

$$(+\infty)^{-\infty} = 0$$

Kratáme ta
$$\infty \cdot 0$$
, ∞^0 , $1^{\pm \infty}$, $+\infty + (-\infty)$, $\frac{\pm \infty}{\pm \infty}$, $\frac{0}{0}$

Στο σχήμα lacktriangle φαίνεται η γραφική παράσταση μιας συνάρτησης f(x). Να υπολογίσετε τα παρακάτω όρια (εφόσον υπάρχουν):

- $\lim_{x \to 1} f(x), \lim_{x \to 1} |f(x)|, \lim_{x \to 1} \sqrt{f(x)}$ και $\lim_{x \to 1} \frac{1}{f(x)}$
- $\lim_{x \to 0} f(x)$, $\lim_{x \to 0} |f(x)|$ και $\lim_{x \to 0} \frac{1}{f(x)}$
- $\lim_{x \to 3} f(x)$, $\lim_{x \to 3} |f(x)|$ και $\lim_{x \to 3} \frac{1}{f(x)}$
- $\lim_{x \to 4} \frac{1}{f(x)}$, $\lim_{x \to 6} \frac{1}{f(x)-3}$ kal $\lim_{x \to 7} \frac{1}{f(x)}$

Συναρτήσεις 12/21

Στο σχήμα ullet Geogebra φαίνεται η γραφική παράσταση μιας συνάρτησης f(x). Να υπολογίσετε τα παρακάτω όρια (εφόσον υπάρχουν):

- $\bullet \ \lim_{x \to 1} f(x) \text{, } \lim_{x \to 1} |f(x)| \text{, } \lim_{x \to 1} \sqrt{f(x)} \text{ kal } \lim_{x \to 1} \frac{1}{f(x)}$
- ο $\lim_{x \to 0} f(x)$, $\lim_{x \to 0} |f(x)|$ και $\lim_{x \to 0} \frac{1}{f(x)}$
- ο $\lim_{x \to 3} f(x)$, $\lim_{x \to 3} |f(x)|$ και $\lim_{x \to 3} \frac{1}{f(x)}$
- $\bullet \ \lim_{x\to 4} \frac{1}{f(x)} \text{, } \lim_{x\to 6} \frac{1}{f(x)-3} \text{ kal } \lim_{x\to 7} \frac{1}{f(x)}$

Στο σχήμα lacktriangle φαίνεται η γραφική παράσταση μιας συνάρτησης f(x). Να υπολογίσετε τα παρακάτω όρια (εφόσον υπάρχουν):

- $\lim_{x \to 1} f(x), \lim_{x \to 1} |f(x)|, \lim_{x \to 1} \sqrt{f(x)}$ και $\lim_{x \to 1} \frac{1}{f(x)}$
- $\bullet \lim_{x \to 0} f(x)$, $\lim_{x \to 0} |f(x)|$ kal $\lim_{x \to 0} \frac{1}{f(x)}$
- $\lim_{x \to 4} \frac{1}{f(x)}$, $\lim_{x \to 6} \frac{1}{f(x)-3}$ kal $\lim_{x \to 7} \frac{1}{f(x)}$

Συναρτήσεις 12/21

Στο σχήμα ullet Geogebra φαίνεται η γραφική παράσταση μιας συνάρτησης f(x). Να υπολογίσετε τα παρακάτω όρια (εφόσον υπάρχουν):

- $\bullet \ \lim_{x \to 1} f(x) \text{,} \lim_{x \to 1} |f(x)| \text{,} \lim_{x \to 1} \sqrt{f(x)} \text{ kal } \lim_{x \to 1} \frac{1}{f(x)}$
- $\lim_{x \to 0} f(x)$, $\lim_{x \to 0} |f(x)|$ kal $\lim_{x \to 0} \frac{1}{f(x)}$
- $\bullet \ \lim_{x \to 3} f(x) \text{, } \lim_{x \to 3} |f(x)| \ \text{kal} \lim_{x \to 3} \frac{1}{f(x)}$
- $\bullet \ \lim_{x\to 4}\frac{1}{f(x)}\text{, } \lim_{x\to 6}\frac{1}{f(x)-3} \ \mathrm{kal} \lim_{x\to 7}\frac{1}{f(x)}$

- $\mathbf{1} \lim_{x \to 3} \frac{1}{|x-3|}$
- $\lim_{x \to 1} \frac{x 3}{(x 1)^2}$
- $\lim_{x \to 2} \frac{2x+1}{x-2}$
- $4 \lim_{x \to 0} \frac{1+\sqrt{x}}{x}$

- $2 \lim_{x \to 1} \frac{x-3}{(x-1)^2}$
- $\lim_{x \to 2} \frac{2x+1}{x-2}$
- $\lim_{x \to 0} \frac{1 + \sqrt{x}}{x}$

- 2 $\lim_{x \to 1} \frac{x-3}{(x-1)^2}$
- 3 $\lim_{x \to 2} \frac{2x+1}{x-2}$
- $\lim_{x \to 0} \frac{1 + \sqrt{x}}{x}$

- 2 $\lim_{x \to 1} \frac{x-3}{(x-1)^2}$
- 3 $\lim_{x \to 2} \frac{2x+1}{x-2}$
- $\lim_{x \to 0} \frac{1 + \sqrt{x}}{x}$

Να βρείτε, (αν υπάρχει) το $\lim_{x \to 1} \frac{3x+2}{x^2-1}$

Για τις διάφορες τιμές του λ να βρείτε το $\lim_{x \to 2} \frac{x^2 - \lambda x + \lambda}{(x-2)^2}$

Να βρείτε την τιμή του $\alpha\in\mathbb{R}$ για την οποία το $\lim_{x\to 1}rac{\alpha x^2+x-2}{x^2-x}$ είναι πραγματικός αριθμός

Λόλας (10^{o} ΓΕΛ) Συναρτήσεις 16/21

Εστω μια συνάρτηση $f:(0,+\infty)\to\mathbb{R}$ για την οποία ισχύει:

$$f(x) \leq x - rac{1}{x}$$
 για κάθε $x > 0$

- $\lim_{x \to 0} f(x)$
- $\lim_{x \to 0} \frac{|f(x) 3|}{f^2(x) 3f(x)}$

Εστω μια συνάρτηση $f:(0,+\infty)\to\mathbb{R}$ για την οποία ισχύει:

$$f(x) \leq x - rac{1}{x}$$
 για κάθε $x > 0$

- $\lim_{x \to 0} f(x)$
- $2 \lim_{x \to 0} \frac{|f(x) 3|}{f^2(x) 3f(x)}$

Αν για μια συνάρτηση ισχύει:

$$|x-2|f(x) \ge x-1$$
 για κάθε $x \ne 2$

Αν για μια συνάρτηση ισχύει:

$$|x-2|f(x) \ge x-1$$
 για κάθε $x \ne 2$

- $2 \lim_{x \to 2} f(x) \eta \mu \frac{1}{f(x)}$

Εστω $f:\mathbb{R} \to \mathbb{R}$ μια συνάρτηση, για την οποία ισχύει $\lim_{x \to 0} \left(x^2 f(x)\right) = 1.$ Να βρείτε τα όρια

- $\ \, \mathbf{1} \ \, \lim_{x\to 0} f(x)$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 19/21

Εστω $f:\mathbb{R} \to \mathbb{R}$ μια συνάρτηση, για την οποία ισχύει $\lim_{x \to 0} \left(x^2 f(x)\right) = 1$. Να βρείτε τα όρια

- $\ \, \mathbf{1} \ \, \lim_{x\to 0} f(x)$
- $\lim_{x \to 0} \frac{x-1}{f(x)}$

Να βρείτε (αν υπάρχουν) τα παρακάτω όρια.

Να βρείτε (αν υπάρχουν) τα παρακάτω όρια.

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση