Quantifying Network Similarity using Graph Cumulants

Lee M. Gunderson¹ Pierre-André Maugis² Gecia Bravo-Hermsdorff 1 Carey E. Priebe³

¹Department of Statistical Science, University College London ²Google Research Zürich ³Department of Applied Mathematics and Statistics, Johns Hopkins University

Graph cumulants perform better $\mathcal{TL}; \mathcal{DR}$: and are more intuitive than the typical subgraph statistics

Using only moments is awkward

"The length of a human averages 1.7 meters, and their average squared length is 2.9 square meters"

Using **cumulants** is **easier** to understand

"The length of a human has: a variance of 0.01 meters, a **standard deviation** of 0.1 meters, a relative fluctuation of 6%"

Graph Cumulants: the Better Subgraph Statistics

Erdős-Rényi is the new Gaussian...

U L are graph cumulants better for testing? (than subgraph densities)

Apples-to-Apples: A Two-Sample Test

When estimating the covariance...

$$\mathsf{Cov}\big(\hat{\mu}_g,\hat{\mu}_{g'}\big) \; = \; \underbrace{\big\langle\hat{\mu}_g\;\hat{\mu}_{g'}\big\rangle}_{\text{``hard''}} \; - \; \underbrace{\big\langle\hat{\mu}_g\big\rangle\big\langle\hat{\mu}_g}_{\text{``easy''}}$$

...the "hard" part uses a combinatorial disjoint union rule

$$c_{\Lambda}c_{\prime} = 4c_{\Lambda} + 2c_{\Delta} + 2c_{\Delta} + 4c_{\Box} + c_{\Lambda}$$

Combinatorial Construction of Cumulants

Graph Cumulants Clearly Conquer

Graph cumulants outperform subgraph densities in general...

...and graph cumulants also work for single graph samples!

Why do graph cumulants perform better?

...because their **fluctuations** look more \mathcal{N} ormal!

Graph Cumulants in the (semi-)Wild!

0.75