Kinga Wawrzyńczak 236688 Rok akademicki 2021/22 Wojciech Stefaniak 236657 środa, 12:00

METODY NUMERYCZNE – LABORATORIUM

Zadanie 4 – metody całkowania numerycznego

Opis rozwiązania

Celem zadania było zaimplementowanie dwóch metod całkowania numerycznego, w celu obliczenia przybliżonej wartości całki oznaczonej.

1. Metoda Newtona-Cotesa oparta na trzech węzłach (wzór Simpsona)

W metodzie Newtona-Cotesa zadany przedział całkowania (a; b) dzielimy na N podprzedziałów o równej długości. Następnie obliczamy wartości całkowalnej funkcji dla argumentów $x_i = a + i_h$. Przybliżoną wartość całki obliczamy za pomocą wzoru Simspona:

$$\int_{x_0}^{x_2} f(x) dx \approx \frac{h}{3} (y_0 + 4y_1 + y_2)$$

2. Kwadratura Gaussa-Hermite'a

Kwadratura obliczana jest na przedziale (-oo; oo) i ma postać:

$$\int_{-\infty}^{+\infty} e^{-x^2} f(x) \, dx$$

Korzystając ze znanych współczynników dla kwadratury Gaussa-Hermite'a możemy obliczyć przybliżoną wartość całki za pomocą następującego wzoru:

$$\int_{-\infty}^{\infty} e^{-x^2} f(x) dx \approx \sum_{i=0}^{n} A_i f(x_i)$$

Wyniki

1. Metoda Newtona-Cotesa

Funkcja	Wynik rzeczywisty	Przedział	Liczba iteracji	Dokładność	Wynik
$x^2 + 3$	6.2035	-00; 00	6580	0.001	6.2489
cos(2x)	0.6520	-00; 00	89834	0.00001	0.8969
$4\log\left(x+3\right)$	7.5708	-00; 00	14504	0.001	7.6325
x - 2	3.5466	-00; 00	18356	0.001	3.5881

2. Kwadratura Gaussa-Hermite'a

Funkcja	Wynik rzeczywisty	-00; 00				
Tunkeja	w ymk izeczy wisty	2 węzły	3 węzły	4 węzły	5 węzłów	
$x^2 + 3$	6.2035	6.2035	6.2035	6.2035	6.2035	
cos(2x)	0.6520	0.2764	0.7267	0.6414	0.6532	
$4\log\left(x+3\right)$	7.5708	7.5863	7.5735	7.5716	7.5711	
x - 2	3.5466	3.5449	3.5449	3.5449	3.5457	

Wnioski

- 1. Wyniki wyliczone przy użyciu naszego programu zgadzają się z wynikami uzyskanymi w programie Wolfram Alpha.
- 2. Kwadratura Gaussa-Hermite'a jest metodą zdecydowanie dokładniejszą, jak i wydajniejszą. Ilość iteracji w jej przypadku jest po prostu ilością użytych węzłów. W przypadku wzoru Simpsona, liczba iteracji może osiągać dziesiątki tysięcy, a wynik i tak nie będzie wystarczająco poprawny.
- 3. W metodzie Newtona-Cotesa bardzo ważny jest wybór odpowiedniej dokładności. Aby osiągnąć miarodajne wyniki zaleca się używanie wartości z zakresu 0.00001; 0.001.
- 4. Minusem metody Gaussa jest konieczność całkowania specyficznych funkcji wymagane jest użycie funkcji wagowej.
- 5. Wzór Simpsona jest oparty na 3 węzłach, czyli liczba przedziałów n = 2. Nie jest jednak stopnia trzeciego (n + 1), a aż

- czwartego (metoda jest dokładna dla wielomianów stopnia trzeciego). W praktyce nie stosuje się kwadratur Newtona-Cotesa wysokiego rzędu, ponieważ dla wysokich stopni zachodzi efekt Rungego, z powodu równoodległych węzłów.
- 6. Kwadratury Gaussa polegają na optymalizacji położenia węzłów interpolacyjnych oraz współczynników Ai(zawsze dodatnie). Węzły xi są pierwiastkami odpowiedniego wielomianu ortogonalnego (rzeczywiste oraz w przedziale [a,b]). Kwadratury Gaussa są dokładne dla wielomianów stopnia 2N + 1.
- 7. Błąd kwadratury zależy od długości przedziału. Aby policzyć całkę na szerokim przedziale, należy podzielić go na kilka mniejszych.