Lecture 01B

Timing Analysis of Sequential Circuit

What is a sequential circuit

- Sequential Circuit:
 - a digital circuit with storage element to memorize current state
 - Figure 5-1:

- the counter part -- Combinational Circuit
 - a digital circuit without storage element

The key to design hardware

imagine how a circuit works

Note: we are talking about Synchronous Clocked Circuit

All flip flops receive the same clock signal

Cycle-based vs. Actual Timing

Analysis for actual timing

minimum clock period time

Core Question

What's the minimum clock period time to make the circuit works correctly?

What's the clock for?

- Answer: to make the circuit doing step-by-step computation
 - clock signal is fed to all flip flops of the circuit
 - to let a sequential circuit performs its task in step-by-step manner
 - forms a sequence of state change on flip flops
 - imagine the flip flops as variables for programming

Core Question

What's the maximum one-step computation time?

 $delay(A, B) \leq ?$

Core Question

What's the maximum one-step computation time?

 $delay(A, B) \leq ?$

Recall: property of D flip-flop

Core Question

• What's the maximum one-step computation time? $delay(A, B) \le (clock period time)$

Analysis Example

Problem Description

 find the maximum clock frequency (minimum clock period time) of the circuit

delay of AND-gate: 3 ns

delay of OR-gate: 4 ns

setup time of D-FF: 2 ns

clock-to-output time of D-FF: 1 ns

Delay of a gate

Delay for a flip-flop

Problem Description

 find the maximum clock frequency (minimum clock period time) of the circuit

delay of AND-gate: 3 ns

delay of OR-gate: 4 ns

setup time of D-FF: 2 ns

clock-to-output time of D-FF: 1 ns

Analysis method

- start from the outputs of D-FFs
- mark critical points in the circuit
- find-out signal stable time for each point

- delay of AND-gate: 3 ns
- delay of OR-gate: 4 ns
- setup time of D-FF: 2 ns
- clock-to-output time of D-FF: 1 ns

- delay of AND-gate: 3 ns
- delay of OR-gate: 4 ns
- setup time of D-FF: 2 ns
- clock-to-output time of D-FF: 1 ns

- delay of AND-gate: 3 ns
- delay of OR-gate: 4 ns
- Timing analysis: setup time of D-FF: 2 ns
 - clock-to-output time of D-FF: 1 ns

- delay of AND-gate: 3 ns
 - delay of OR-gate: 4 ns

Clock period time and frequency

$$frequency \le \frac{1}{10ns} = 100 \text{MHz}$$

The next lecture

Next Lecture

- circuit design to realize a state-diagram
 - Section 5-5

Your work before the next meeting

- Preview the textbook: Section 5-5
- Review "digital circuit": combinational circuit design from the truth table
 - Chap. 2: Boolean algebra
 - Chap. 3: K-map simplification
- Review "discrete mathematics": finite automata
 - also named finite-state machine