Bubble Sort

- Considere uma seqüência de n elementos que se deseja ordenar. O método da bolha resolve esse problema através de várias passagens sobre a seqüência
- Não é um algoritmo eficiente, é estudado para fins de desenvolvimento de raciocínio
- funcionamento:
 - Na primeira passagem, uma vez encontrado o maior elemento, este terá sua colocação trocada até atingir a última posição
 - Na segunda passagem, uma vez encontrado o segundo maior elemento, este terá sua colocação trocada até atingir a penúltima posição
 - E assim por diante

 \bullet Tempo total $O(n^2)$

```
Algorithm bubbleSort(A)
Input array A com n elementos
Output array A ordenado
for i=0 até n-2
for j=0 até n-2-i
if (A[j] > A[j+1])
aux \leftarrow A[j]
A[j] \leftarrow A[j+1] \leftarrow aux
```

Bubble Sort

Select Sort

- O método de ordenação por Seleção Direta é levemente mais eficiente que o método Bubblesort
- Trata-se de um algoritmo apenas para estudo e ordenação de pequenos arranjos
- funcionamento:
 - Varre-se o arranjo comparando todos os seus elementos com o primeiro.
 - Caso o primeiro elemento esteja desordenado em relação ao elemento que está sendo comparado com ele no momento, é feita a troca.
 - Ao se chegar ao final do arranjo, teremos o menor valor (ou o maior, conforme a comparação) na primeira posição do arranjo

ightharpoonup Tempo total $O(n^2)$

```
Algorithm selectSort(A)
Input array A com n elementos
Output array A ordenado
for i=0 até n-2
for j=i+1 até n-1
if (A[j] < A[i])
aux \leftarrow A[j]
A[i] \leftarrow A[i]
```

Select Sort

- 5 4 2 3 1
- 4 5 2 3 1
- 2 5 4 3 1
- 2 5 4 3 1
- 1 5 4 3 2
- 1 4 5 3 2
- 1 3 5 4 2

- 1 2 5 4 3
- 1 2 4 5 3
- 1 2 3 4 5
- 1 2 3 4 5

Insert Sort

- O método de ordenação por Inserção Direta é o mais rápido entre os outros métodos considerados básicos (Bubblesort e Seleção Direta)
- A principal característica deste método consiste em ordenarmos nosso arranjo utilizando um sub-arranjo ordenado localizado em seu inicio.
- A cada novo passo, acrescentamos a este subarranjo mais um elemento, até que atingimos o último elemento do arranjo fazendo assim com que ele se torne ordenado

 \bullet Tempo total $O(n^2)$

```
Algorithm insertSort(A)
    Input array A com n elementos
    Output array A ordenado
   for i=1 até n-1
        aux \leftarrow A[i]
       j \leftarrow i - 1
        while (j \ge 0 \ e \ aux < A[j])
           A[j+1] \leftarrow A[j]
            j \leftarrow j - 1
        A[j+1] \leftarrow aux
```

Insert Sort

- 5 4 2 3 1
- 5 4 2 3 1
- 4 5 2 3 1
- 2 4 5 3 1
- 2 4 5 3 1
- 2 3 4 5 1
- 1 2 3 4 5

Heap-Sort

- Considere uma fila de prioridade com n itens implementado com um heap
 - O espaço usado é O(n)
 - métodos insert e removeMin rodam em tempo O(log n)
 - métodos size, isEmpty, e
 min rodam em tempo
 O(1)

- Usando uma fila de prioridade baseada em heap, podemos ordenar uma sequência de n elementos em tempo O(n log n)
- O algoritmo é chamado de *heap-sort*
- heap-sort é muito mais rápido do que algoritmos quadráticos, como inserção e seleção

Divisão e Conquista

- Divisão e Conquista é um paradigma de desenvolvimento de algoritmo:
 - Divisão: divida a entrada S em dois conjuntos disjuntos S_1 and S_2
 - Recursão: solucione os problemas associados com
 S₁ e S₂
 - Conquista: Combine as soluções para S_1 e S_2 dentro da solução S
- O caso base para a recursão são problemas de tamanho 0 ou 1

- Merge-sort é um algoritmo baseado no paradigma divisão e conquista
- Como o heap-sort
 - Ele usa um comparador
 - O tempo é $O(n \log n)$
- Diferente heap-sort
 - Não usa uma fila de prioridade auxiliar
 - Ele acessa os dados de forma sequencial

Merge-Sort

- Merge-sort com uma sequência de entrada S com n elementos consiste de três passos:
 - Divide: dividir S em duas sequencias S_1 and S_2 de aproximadamente n/2 elementos cada
 - Recursão:
 recursivamente ordene S₁
 e S₂
 - Conquista: junte S₁ e S₂
 em uma única sequência ordenada

Algorithm mergeSort(S, C)Input sequence S with nelements, comparator COutput sequence S sorted according to Cif S.size() > 1 $(S_1, S_2) \leftarrow partition(S, n/2)$ $mergeSort(S_1, C)$ $mergeSort(S_2, C)$

 $S \leftarrow merge(S_1, S_2)$

Juntando Duas Sequencias Ordenadas

- O passo de conquista do merge-sort consiste de juntar duas sequências ordenadas A e B em uma sequência S contendo a união dos elementos de A e B
- ♦ Unindo duas sequências ordenadas, cada uma com n/2 elementos e implementado por uma lista duplamente encadeada leva o tempo O(n)

```
Algorithm merge(A, B)
   Input sequences A and B with
        n/2 elements each
   Output sorted sequence of A \cup B
   S \leftarrow empty sequence
   while \neg A.isEmpty() \land \neg B.isEmpty()
       if A.first().element() < B.first().element()
           S.insertLast(A.remove(A.first()))
       else
           S.insertLast(B.remove(B.first()))
   while \neg A.isEmpty()
       S.insertLast(A.remove(A.first()))
   while \neg B.isEmpty()
       S.insertLast(B.remove(B.first()))
   return S
```

Árvore Merge-Sort

- Uma execução do merge-sort pode ser vista como uma árvore binária
 - Cada nó representa uma chamada recursiva do merge-sort e armazena
 - Sequências desordenadas antes da execução e suas partições
 - Sequências ordenadas no fim da execução
 - A raiz é a chamada inicial
 - As folhas são chamadas de subsequências de tamanho 0 ou 1

Análise do Merge-Sort

- A altura h da árvore merge-sort é $O(\log n)$
 - Em cada chamada recursiva a sequência é dividida pela metade
- lacktriangle A quantidade de trabalho no nó de profundidade $i \not\in O(n)$
 - Nós particionamos e juntamos 2^i seqüências de tamanho $n/2^i$
 - Nós fazemos 2^{i+1} chamadas recursivas
- \bullet Assim, o tempo do merge-sort é $O(n \log n)$

Quick-Sort

- Quick-sort é um algoritmo aleatório baseado no paradigma de divisão e conquista
- paradigma:
 - Divisão: pegue um elemento x aleatório (chamado pivô) e particione
 S em
 - L elementos menor que x
 - E elementos igual a x
 - G elementos maiores que x
 - Recursão: ordene L e G
 - Conquista: junte L, E e G

Partição

- Particiona-se a sequência de entrada da seguinte forma:
 - Remover cada elemento y de S e
 - Inserer y em L, E or G, dependendo do resultado da comparação com o pivô x
- Cada inserção e remoção é feita no início ou fim da sequênciais, e leva o tempo
 O(1)
- A partição do quick-sort leva um tempo proporcional a O(n)

```
Algorithm partition(S, p)
    Input sequence S, position p of pivot
    Output subsequences L, E, G of the
        elements of S less than, equal to,
        or greater than the pivot, resp.
   L, E, G \leftarrow empty sequences
   x \leftarrow S.remove(p)
    while \neg S.isEmpty()
       y \leftarrow S.remove(S.first())
       if y < x
            L.insertLast(y)
        else if y = x
            E.insertLast(y)
        else \{y > x\}
            G.insertLast(y)
    return L, E, G
```

Árvore Quick-Sort

- Uma execução do quick-sort pode ser vista como uma árvore binária
 - Cada nó representa uma chamada recursiva do quick-sort e armazena
 - Sequencia desordenada antes da execução e seu pivô
 - Sequência ordenada no final da execução
 - A raiz é a chamada inicial
 - As folhas são chamadas de subsequências de tamanho 0 ou 1

Tempo de Excução no Pior Caso

- O pior caso para o quick-sort ocorre quando o pivô é estritamente o elemento mínimo or máximo
- Um deles L ou G tem tamanho n-1 e o outro tem tamanho 0
- O tempo é proporcional a soma

$$n + (n - 1) + ... + 2 + 1$$

- \bullet Assim, o pior caso do quick-sort é $O(n^2)$
- O tempo esperado do quick-sort randomizado é $O(n \log n)$

Resumo dos Algoritmos de Ordenação

Algoritmo	Tempo	OBS
Bubble-sort	$O(n^2)$	lento (bom para pequenas entradas)
selection-sort	$O(n^2)$	lento (bom para pequenas entradas)
insertion-sort	$O(n^2)$	lento (bom para pequenas entradas)
quick-sort	$O(n \log n)$ esperado	randomizadomuito rápido (bom para grandes entradas)
heap-sort	$O(n \log n)$	rápido (bom para grandes entradas)
merge-sort	$O(n \log n)$	rápido (bom para entradas muito grandes)