Gráficas y Ecuaciones

William Humberto Callao López Ing.Informatica UMSS Facultad Ciencias y Tecnología (Dated: 14 de abril de 2021)

En el presente informe se refleja el proceso de graficar los datos experimentales y la obtención de las ecuaciones de ajuste de curvas por el método gráfico.

Se trabajo con tres tablas de valores correspondientes a cilindros, discos y esferas, los gráficos presentes ayudan a tener una adecuada representación visual de los datos a tratar y facilitan la obtención de la relación entre las variables

1. CONCEPTOS PRELIMINARES

Generalmente trabajamos con dos variables una independiente que se localiza en el eje de las x y otra variable dependiente que se localiza en el eje y

La representación gráfica nos ayuda a identificar las variaciones que se presentan en los datos con los que trabajamos

1.1. Relación Lineal

Una relación lineal es aquella que se puede representar mediante una linea recta. su modelo matemático es:

$$y = A + Bx \tag{1}$$

Donde A es la ordenada al origen y B es la pendiente de la recta que se calcula mediante:

$$B = \frac{\Delta y}{\Delta x} \tag{2}$$

1.2. Relación no lineal

Curva	Modelo Matemático
Parábola	$y = ax^2$
Hipérbola	$y = ax^{-1}$
Cubica	$y = ax^3$
Recta	$y = ax^1$

Cuando la representación de los datos no presentan una tendencia central, no es posible encontrar directamente la ecuación de la relación.

Por lo que se busca un modo de linealizarlo

1.3. Cambio de Variable

Este método consiste en identificar un modelo para el comportamiento de los datos y luego realizar el cambio de variable

2. OBJETIVO

El objetivo de este informe es representar gráficamente los conjuntos de datos y determinar las ecuaciones de ajustes lineales para cada gráfica

3. MATERIALES Y MÉTODOS

Para la representación gráfica y manejo de datos se usó el programa estadístico ${\cal R}$

Primeramente se analizo cada conjunto de datos y se procedió a estimar a que modelo matemático se asemejaba

Luego con el uso las formulas mencionadas anteriormente y aplicando el correspondiente procedimiento para cada modelo matemático se obtuvieron los resultados

4. PROCEDIMIENTO Y RESULTADOS

4.1. Tabla C.1 Cilindros

La Tabla C.1 es un registro de datos experimentales de la altura y la masa de distintos cilindros.

N	H[cm]	m[g]	
1	1.00	8.65	
2	2.00	17.30	
3	3.00	25.95	
4	4.00	34.63	
5	5.00	43.31	
6	6.00	51.95	

En la figura 1 se puede observar que los puntos aparentemente tienen una tendencia lineal, y podemos deducir que el valor de interseccion con el eje de las ordenadas sera muy proximo a 0

UMSS - FCyT Dep. Física

Figura 1: Masa en función de la altura

La ecuación de ajuste para la recta es:

$$m = A + Bh \tag{3}$$

Una vez definida la ecuación de ajuste procedemos a determinar los parámetros de la recta

$$A = 0 B = \frac{51,95 - 8,65}{6 - 1} = 8,66 (4)$$

$$m = 8,66 \ h$$
 (5)

4.2. Tabla D.1 Discos

La tabla D.1 es un registro experimental de el diámetro y la masa de distintos discos

N	D[cm]	m[g]	
1	1.00	1.22	
2	2.00	4.90	
3	3.00	10.40	
4	4.00	19.52	
5	5.00	30.71	
6	6.00	43.75	

En la figura 2 se puede estimar que el comportamiento de los datos sigue la ecuación de una parábola.

Tomamos en cuenta el siguiente modelo matemático:

$$m = aD^2 (6)$$

Figura 2: Masa en función del diámetro

Recurrimos a la linealizacion aplicando el cambio de variable de $z=D^2$

N	$z = D^2[cm^2]$	m[g]
1	1	1.22
2	4	4.90
3	9	10.40
4	16	19.52
5	25	30.71
6	36	43.75

A partir de la gráfica ya linealizada podemos observar que A=0 y para calcular la pendiente tomamos en cuenta los puntos que están sobre la recta:

$$A = 0 B = \frac{\Delta m}{\Delta D} = 1,22 (7)$$

$$m = 1,22 D^2$$
 (8)

2

UMSS - FCyT Dep. Física

4.3. Tabla E.1 Esferas

La Tabla E.1 es un registro de datos experimentales de el diámetro y la masa de distintas esferas

N	D[cm]	m[g]	
1	0.713	1.47	
2	0.998	4.50	
3	1.501	13.75	
4	1.746	21.70	
5	1.905	28.20	
6	2.222	44.75	

Figura 3: Masa en función del Diámetro

Se puede observar que el gráfico no presenta una tendencia lineal recta, procedemos a la linealización por el método logarítmico

En base a la ecuación de potencia simple tenemos

$$y = ax^b (9)$$

Aplicamos logaritmos a ambos miembro de la ecuación

$$\log(y) = \log(a) + b\log(x) \tag{10}$$

Dando como resultado la siguiente tabla

N	log(D[cm])	log(m[g])
1	-0.34	0.38
2	0.00	1.50
3	0.40	2.62
4	0.56	3.08
5	0.64	3.34
6	0.80	3.80

$$a = 10^{A} = 31,62$$
 $b = \frac{\Delta \log(m)}{\Delta \log(D)} = 3$ (11)

$$m = 31,62 + D^3 \tag{12}$$

5. CONCLUCIONES

La representación gráfica nos sirven como ayuda visual y muestra claramente las variaciones que presentan nuestros conjuntos de datos,nos facilita la obtención de la ecuación de relación entre variables solo la experiencia y el buen sentido nos ayudaran a identificar las curvas