Ao LIU

Ph.D. in Computer Science

Research Software Engineer at Google
☐ +1 (518) 233-4797
☐ aoliu.cs@gmail.com
☐ aoliu-cs.github.io

Summary

Research Machine Learning (Recommendation Systems, Learning to Rank, Algorithm Design, etc.),

Interests Differential Privacy, Computational Social Choice, and Quantum Computation

Experience 1+ years of industry experience in personalization, recommendation systems, LLM, theoretical computer science, differential privacy, learning to rank, and adversarial robustness

Academic Published 20+ papers, filed 2 patents, and received 250+ citations to date. Reviewed 50+ papers for top AI conferences or journals.

Education

1/2018 – 5/2023 **Ph.D.** in **Computer Science**, Rensselaer Polytechnic Institute (RPI) Troy, NY Thesis: *Group Decision Makings from Partial Preferences* [Link]

8/2015-5/2018 M.Eng. in Material Engineering, Rensselaer Polytechnic Institute (RPI) Troy, NY Focus on optics and polymer physics, received Presidential Graduate Research Fellowship

8/2010-5/2014 **B.S.** in **Mathematics and Physics**, Tsinghua University Beijing, China *Minor in Computer Technology*, and *in Academic Talent Program*

Experience

7/2023–Present Research Software Engineer at Google Core ML Mountain View, CA
Design and Research More Efficient Transformers for Recommendation Systems

5/2022 - 8/2022 Research Intern at Google Core ML Mountain View, CA

Project: Unbiased Learning to Rank with a More Accurate Position Bias Estimator

- O Significantly more accurate ($\sim 6\%$) on predictions v.s. state-of-the-art without any cost
- Proposed a novel probabilistic model to more accurately estimate position bias and designed an unbiased recommendation system based on it.
- Implemented the data pipeline and machine learning algorithm for the proposed unbiased recommendation system. Integrated all into Google codebase. (Python, TensorFlow, C/C++)

5/2019-8/2019 Visiting Scholar at MIT-IBM Watson AI Lab

Cambridge, MA

and 9/2018-1/2019 Project: Certifiably Robust Interpretation via Rényi Differential Privacy

- 9/2018-1/2019 O Delivered one academic paper (on top AI journal and conference) and two patents.
 - O Significantly more robust (\sim 12%) and more accurate v.s. state-of-the-art without any cost. Note that we improved two trade-off properties at the same time.
 - O Designed the first-ever algorithm with theoretically guaranteed top-k robustness against ℓ_{∞} -norm attacks, where the theoretical proofs use Rényi differential privacy.
 - Implemented the proposed robust algorithm and tested its robustness, accuracy, and computational
 efficiency on various tasks, including neural network interpretation, image classification, and
 objective detection. (PyTorch, TorchRay, TensorFlow, MATLAB)

Skills

Coding Python, C/C++, TensorFlow, PyTorch, TorchRay, MATLAB, LATEX

Design & Algorithm design, Time & Sample-complexity analysis, User-modeling, MCMC, Statistics, Theory Privacy analysis, Robustness analysis, Model identifiability, Smoothed analysis

Review Services

Journal Information Sciences, ACM ToIS, TMLR, DMLR, Sankhya B

Conference NeurIPS (20, 21, 22, 23, & 24), ICML (22, 23 & 24), ICLR (23 & 24), AAAI (21 & 22), IJCAI-22

	Selected Publications
TMLR	Smoothed Differential Privacy [PDF] <u>Ao Liu</u> , Yu-Xiang Wang, and Lirong Xia
UAI-23	Accelerating Voting by Quantum Computation [PDF] <u>Ao Liu</u> , Qishen Han, Lirong Xia, and Nengkun Yu
AIJ and $AAAI$ -23 (oral)	Certifiably Robust Interpretation via Rényi Differential Privacy [Link] [ArXiv] <u>Ao Liu</u> , Xiaoyu Chen, Sijia Liu, Lirong Xia, and Chuang Gan
AAAI-22	The Semi-Random Likelihood of Doctrinal Paradoxes [PDF] $\underline{Ao\ Liu}$ and Lirong Xia
UAI-20 (oral)	How Private Are Commonly-Used Voting Rules? [PDF] <u>Ao Liu</u> , Yun Lu, Lirong Xia, and Vassilis Zikas
AAAI-19 (oral)	Near-Neighbor Methods in Random Preference Completion [PDF] <u>Ao Liu</u> , Qiong Wu, Zhenming Liu, and Lirong Xia
AAAI-19 (oral)	Learning Plackett-Luce Mixture from Partial Preferences [PDF] <u>Ao Liu</u> , Zhibing Zhao, Chao Liao, Pinyan Lu, and Lirong Xia
ETRA-19 (oral)	Differential Privacy for Eye-Tracking Data [PDF] <u>Ao Liu</u> , Lirong Xia, Andrew Duchowski, Reynold Bailey, Kenneth Holmqvist, and Eakta Jain
AAAI-23 (oral)	Differentially Private Condorcet Voting [PDF] Zhechen Li, <u>Ao Liu</u> , Lirong Xia, Yongzhi Cao, and Hanpin Wang
IJCAI-22 (oral)	Learning Mixtures of Random Utility Models with Features from Incomplete Preferences Zhibing Zhao, $\underline{Ao\ Liu}$, and Lirong Xia [PDF]
JAIR and IJCAI-23 (oral)	Learning to Design Fair and Private Voting Rules [PDF] Farhad Mohsin, <u>Ao Liu</u> , Pin-Yu Chen, Francesca Rossi, and Lirong Xia
	Let It Snow: Adding Pixel Noise to Protect the Users Identity [Link] Brendan John, <u>Ao Liu</u> , Lirong Xia, Sanjeev Koppal, and Eakta Jain
-	Simulation of Pulse Responses of Lithium Salt-Doped Poly-Ethyleneoxide [Link] <u>Ao Liu</u> , F. Zeng, Y. Hu, S. Lu, W. Dong, X. Li, C. Chang, and D. Guo
	$ ightharpoonup View \ All \ Publications \ at \ [Personal \ Website] \ [Google \ Scholar]$
	Patents
US 11687777 B2	Certifiably Robust Interpretation [PDF] <u>Ao Liu</u> , Sijia Liu, Bo Wu, Lirong Xia, Qi Cheng Li, and Chuang Gan
US 11341598 B2	Interpretation Maps with Guaranteed Robustness [PDF] <u>Ao Liu</u> , Sijia Liu, Abhishek Bhandwaldar, Chuang Gan, Lirong Xia, and Qi Cheng Li
	Awards and Teaching
9/2019 - 5/2022	RPI-IBM AI Horizon Scholarship
9/2016 - 5/2017	RPI Presidential Graduate Research Fellowship [Certificate]
1/2023 - 5/2023	Teaching Assistant of CSCI 4150: Introduction to AI
9/2017 - 1/2018	Teaching Assistant of MATH 1020: Calculus II
4/2021	Guest Lecture at CSCI 4967/6967: Economics and Computation