인공지능개론 (Introduction to Artificial Intelligence)

시간/장소

금요일 1,2,3교시 / 인문사회관(6호관)-6132

교재

Artificial Intelligence: A Modern Approach by Stuart Russell and Peter Norvig (4th edition)

평가

출석 20% / 중간고사 30% / 기말고사 30% / 핵심역량평가 5% / 과제 15%

강사

Al융합학과 겸임교수 백성복 / sbbaik@gmail.com

강의 계획

주차	강의 내용
1	교과목 오리엔테이션 및 강의 소개
2	인공지능의 역사와 배경
3	인공지능 기반 문제 해결 방식
4	로직 에이전트 및 1차 논리
5	불확실한 상황에서 작업 수행 방식
6	베이즈 정리와 베이지안 네트워크
7	견본을 통한 학습
8	중간고사
9	학습과 지식
10	딥러닝 기본
11	딥러닝 응 용
12	강화학습
13	자연어 처리
14	로보틱스
15	보충 및 보강 주
16	기말고사

구성원 성향 및 강의 방향

무기명 설문 조사

I. MBTI

Ⅱ. 전공 배경

Ⅲ. 수강목표

과제 작성 방법

Github 게재

- I. 각자의 github 계정 아래 AIMA 리포지토리 생성(public)
 - https://github.com/{계정명}/AIMA
- II. AIMA 폴더 아래에 각 주차별 하위 폴더 만들기
- wk1, wk2, ... wk15까지 생성
- Ⅲ. 평가 기준
 - 작성 내용 퀄리티 + Contribution Activity(홈화면)
- IV. 제출 기한: 다음 강의 시작시간 이전 까지

인공지능 소개

목차

l. 인공지능의 정의

Ⅱ. 인공지능의 배경

Ⅲ. 최근 동향

I. 인공지능의 정의

인공지능이 갖추어야 할 특성

- 지각: 센서가 제공하는 데이터의 조작 및 해석
- **액션**: 다양한 작업을 수행하기 위해 이펙터를 제어하고 사용함
- 추론: 타당한 (논리적) 추론, 유도적 추론
- **학습**: 변화하는 환경에 더 잘 대처하기 위한 행동 적응, 패턴 발견, 추론, 계획 및 행동 학습.
- 소통: 신호, 표지, 아이콘 등을 사용하여 인간을 포함한 다른 지능적 에이전트와의 소통, 등
- 계획: 외부적 또는 내부적으로 결정된 목표를 달성하기 위한 행동의 순서 또는 계획의 수립

AI란 무엇인가?

사람같이 생각하는 것?

컴퓨터가 사고하도록 하는 새로운 흥미로운 노력... 정말로 마음을 가진 기계... (하우겔랜드, 1985)

"우리가 인간의 사고와 관련된 활동, 의사 결정, 문제 해결, 학습 등을 자동화하는 것" (벨먼, 1978)

사람같이 행동하는 것?

"사람이 하는 것과 같이 지능이 필요한 기능을 수행하는 기계를 만드는 예술." "인간은 점점 기계처럼 될 것이고, 기계는 점점 인간처럼 될 것이다"(커즈와일, 1990)

"사람들이 더 잘하는 일을 컴퓨터가 수행하도록 하는 방법에 대한 연구." (리치와 나이트, 1991)

합리적으로 생각하는 것?

"컴퓨터 모델을 통해 정신적 능력을 연구하는 것." (차니악 & 맥더모트, 1985)

"지각, 추론 및 행동이 가능하도록 하는 계산의 연구." (윈스턴, 1992)

합리적으로 행동하는 것?

"계산 지능은 지능적 에이전트의 설계에 관한 연구이다." (풀 등, 1998)

"AI ... 는 인공물에서의 지능적인 행동에 관한 것이다." (닐슨, 1998)

인간처럼 행동하기: 튜링 테스트

앨런 튜링(1950) - 지능의 운용적 정의

"기계가 생각할 수 있는가?"에서 "기계가 우리가(생각하는 실체로서) 할 수 있는 것을 할 수 있는가?"로 질문을 바꿀 것을 제안

https://www.britannica.com/biography/Alan-Turing

- (1) 인간의 심문관이 다른 인간과 컴퓨터(또는 "로봇")에게 몇 가지 문제를 제시
- (2) 컴퓨터는 만일 심문관이 쓰여진 답변이 인간 응답자인지 컴퓨터인지 구별할 수 없다면 테스트 합격

(*) **"뢰브너 상" 경연대회** (1990년부터): '주제에 제한이 없는' 챗봇 테스트 경연대회 (> *튜링 테스트*)

"인공지능의 여섯 가지 분야"

튜링 테스트를 통과하기 위해서는 다음과 같은 능력이 필요

- o 자연어 처리 (NLP): 인간 언어로 소통하기 위한 능력
- o **지식 표현**: 컴퓨터가 알고 있는 것을 저장하는 기능
- o **자동 추론**: 질문에 답하고 새로운 결론을 도출하는 기능
- **기계 학습 (ML):** 새로운 상황에 적응하고 패턴을 감지하는 기능

튜링 테스트는 실제 세계와의 상호작용을 필요로 함.

- 컴퓨터 비전 (CV) 및 음성 인식: 주변 환경을 인식하는 능력
- o **로봇공학:** 주변을 이동하고 물체를 조작하는 능력
- (*) 현재 AI 분야에서 가장 활발하고 수요가 높은 분야는 기계 학습(ML), 컴퓨터 비전(CV), 자연어 처리(NLP) 및 로봇공학입니다.

인간처럼 사고하기: 인지 모델링

프로그램이 인간처럼 사고한다고 말하기 위해서는 먼저 인간이 어떻게 사고하는지를 알아야 함

- 사람이 생각하는 방법을 알아내는 3가지 방식
 - 내성(introspection) 생각하는 과정을 스스로 되짚어 포착하는 것
 - 심리학 실험 사람이 행동하는 것을 관찰하는 것
 - **뇌이미징** MRI 등으로 뇌 활동을 관찰하는 것
- 범용 문제 해결자 (GPS, General Problem Solver) (뉴울과 사이먼, 1961)
 - => 인간의 해결 방법과 더불어 **추론 단계**도 비교

ㅍ인지 과학은 인간의 마음에 대한 이론을 구축하기 위해 다음을 결합

- AI 분야의 컴퓨터 모델
- 심리학 분야의 실험 기술

합리적으로 사고하기: 사유의 법칙

논리를 사용하여 문제를 표현하고 지능적인 시스템을 생성하는 프로그램을 구축

단점:

비형식적인(때로는 불확실한) 지식을 형식에 맞추어 논리적인 표기법에 따라 설명하는 것이 쉽지 않음

원리적으로 문제를 해결하는 것과 실제 현실에서 그 문제를 해결하는 것 사이에 큰 차이가 존재

합리적으로 행동하기: 합리적 에이전트

이 수업은 합리적인 에이전트를 디자인하는 것에 관한 것

- 에이전트: 인식하고 행동하는 개체
- 합리적인 에이전트는 최상의 결과를 달성하기 위해 행동하는 개체

AI의 기초를 이루는 학문분야

철학에서 AI에 기여한 질문

- 형식적 규칙을 사용하여 유효한 결론을 도출할 수 있는가?
- 물리적인 뇌에서 어떻게 비물리적인 마음이나 정신이 생겨 나는가?
- 지식은 어디에서 오는가?
- 지식은 어떻게 행동으로 이어지는가?"
 - ✓ 아리스토텔레스(기원전 384-322년): 마음의 합리적 부분을 규정하는 정확한 규칙 집합을 처음으로 설정. 기계적인 추론이 가능한 삼단논법 개발
 - ✓ 데카르트(1596-1650): 이원론. 마음과 물질 간의 구별에 대한 첫 명확한 논리 전개. 물리적인 개념 만으로 마음(정신)을 설명하면 자유의지에 대한 여지가 없어짐. 마음이 완전히 물리적인 법칙에 의해 지배된다면, 그것은 바위가 아래로 굴러가려고 "결정"하는 것만큼 자유의지가 없을 것임

수학으로부터

- 유효한 결론을 도출하기 위한 형식적인 규칙은 무엇인가?
- 계산 가능한 부분은 어떤 것인가?
- 불확실한 정보를 가지고 어떻게 추론하는가?"

- ✓ 조지 부울(1815–1864): 명제 논리 또는 불리언 논리의 세부사항제시 (부울, 1847)
- ✓ 확률 이론: 불확실한 정보가 있는 상황에서 논리를 일반화하는 것

경제학으로부터

- 각자의 선호를 어떻게 반영하여 결정을 내리는가?
- 다른 사람들이 동의하지 않을 때는 어떻게 하는가?
- 보상이 먼 미래에 있을 때 어떻게 하는가?
 - ✓ 확률 이론과 효용 이론을 결합한 의사 결정 이론은 불확실한 상황에서 이루어지는 개인의 결정(경제적 또는 기타)에 대한 형식적이고 완전한 프레임워크를 제공
 - ✓ 최적화 이론(Operations Research): 2차 세계대전 당시 영국이 레이더 설치 장소를 결정하기위해 사용한 이론 => 마코프 결정 프로세스, 강화학습, 등 발전

신경과학

• 뇌가 정보를 처리하는 방식/원리

✓ 미래학자들의 주장: "컴퓨터가 초인적인 성능 수준에 도달하는 특이점이 온다"(빈지, 1993; 커즈와일, 2005) ... 2045년???

심리학

- 인간과 동물은 어떻게 생각하고 행동하는가?
 - ✓ 행동주의자들은 동물에게 제공된 인지(또는 자극)의 객관적 측정 결과와
 그 결과로 나타나는 행동(또는 반응)만을 연구
 => 행동주의는 쥐와 비둘기(또는, 무당 벌레)에 대해 많은 것을
 발견했지만 인간을 이해하는 데는 실패
 - ✓ 인지 심리학은 뇌를 정보 처리 장치로 가정하고 연구

컴퓨터 공학

- 효율적인 컴퓨터를 만드는 방법은?
 - ✓ 무어의 법칙: 컴퓨터 성능이 약 18개월마다 두 배로 증가 (~2005년까지만)
 - ✓ 2012년부터 2018년까지는 30만 배 증가하여 대략 100일마다 두 배로 증가
 - ✓ 슈퍼컴퓨터에 비해 30조배 빠른 양자 컴퓨터가 다음 주자로 대기 중

컴퓨터 과학은?

제어이론 & 사이버네틱스

• 인공물이 자체적으로 제어되도록 구현하는 방법은?

- ✓ 알렉산드리아의 케시비오스(기원전 약 250년경)는 최초의 자기 제어 기계인 물시계를 제작
- ✓ 사이버네틱스: 생물의 자기 제어(自己制御)의 원리를 기계 장치에 적용하여 통신·제어·정보 처리 등의 기술을 종합적으로 연구하는 학문 분야.

=> 목적지향적 행동: 현재 상태와 목표 상태 간의 "오차"를 최소화하려는 규제 메커니즘으로 구현

언어학

• 언어는 어떻게 사고와 연관지어 지는가?

- ✓ 스키너의 "언어행동론" vs. 노암 촘스키의 "구문 구조론" (부모가 가르쳐 준다 vs. 배우지 않은 문장도 생성)
- ✓ 계산 언어학 또는 자연어 처리라는 분야로 발전
- ✓ 지식 표현

II. AI 역사 (1)

• 1943 맥컬러와 피츠: 인공 뉴런 모델

• 1950 튜링의 "계산 기계와 지능"

• 1956 맥카시, 민스키, 뉴얼, 사이먼, 샤넌, 나시 등 다트머스 워크숍: "인공지능" 탄생

• 1952-69 초창기의 열정, 큰 기대, 초기에 어렵다고 생각되었던 일부 문제에 대한 초기 성공에 의해 낙관론 만연

• 1966-73 인공지능 연구의 침체: 예상보다 느리게 발전 비현실적인 예측, 허버트 사이먼 (1957년) 인공지능 계산 복잡성 발견(HW만 가지고 해결 불가)

II. AI 역사 (2)

• 1969-86 전문가 시스템(Expert systems)

• 1980- AI 기술의 산업화 진행. 하지만 곧 AI의 겨울이 닥침 (1988-93)

• 1986- 신경망이 다시 각광을 받기 시작함

• 1987- 확률적 추론과 머신 러닝 기술이 부각되기 시작함

II. AI 역사 (3)

- 1995- 지능적 에이전트 개발
 - AI 기술이 계속해서 적용되고 있는 분야
 - ✓ 정보 검색
 - ✓ 데이터 마이닝 및 지식 발견
 - ✓ 맞춤형 소프트웨어 시스템
 - ✓ 스마트 장치 (예: 가전제품, 자동차)
 - ✓ 필요에 따라 유연하고 신속하게 변경 가능항 제조 시스템
 - ✓ 자율 주행 차량
 - ✓ 생물정보학
 - ✓ 인터넷 도구 검색 엔진, 추천 시스템, 등
 - AI 기반 기술(근본적인 연구 주제)에 대한 지속적인 발전 진행 중

II. AI 역사 (4)

- 2001- 빅 데이터 (예: ImageNet)
- 2011- 딥러닝
 - 대규모 실제 세계 응용에서의 성공적인 대형 응용
 - ✓ 이미지 인식
 - ✓ 자연어 처리
 - ✓ 음성 인식
 - ✓ 기계 번역
 - 합성곱 신경망 (CNNs)
 - 챗 생성형 사전 학습 트랜스포머 (ChatGPT)
 - 딥 페이크, 구글 제미니, OpenAl SORA, 등

인공지능 분야의 튜링상 수상자

1969 마빈 민스키(MIT) (*) 퍼셉트론의 한계 밝힘

(*) 튜링상은 ACM에서 컴퓨터과학 분야에 업적을 남긴 사람에게 매년 시상하는 상. "**컴퓨터과학의** 노벨상"

1971 존 매카시(Stanford) (*) AI라는 용어 만듬, LISP도 국가 과학 훈장(1990)

1975 알렌 뉴얼 (카네기 멜론) (*) General Problem 국가과학훈장 (1992년)

인공지능 창시자 (AI의 아버지들)

허버트 사이먼 (카네기 멜론) (*) 제한된 상황에서의 의사 결정 모델 의사 결정 모델 국가과학훈장 (1986년)

1994 에드워드 파이겐바움 (스탠포드)^{(*) 전문가 시스템의 아버지}라지 레디 (카네기 멜론) 미국 뉴스

미국 뉴스가 발표한 2023년 인공지능 컴퓨터 과학 프로그램 순위:

2011 쥬디아 펄 (UCLA)(*) ^{의사결정론}

• 카네기 멜론 대학교

2018 요슈아 벤지오 (U 몬트리올) 제프리 힌튼 (U 토론토) 얀 르쿤 (NYU 및 Facebook)

- 매사추세츠 공과대학교 (MIT)
- 스탠포드 대학교
- 버클리 대학교
- ..

학문적 계보

Ⅲ. 최신 기술 동향

- 게임 분야
 - Chinook는 인간 체커 챔피언을 이김 (1994)
 - 딥블루 (IBM)는 현 세계 체스 챔피언인 개리 카스파로프를 이김 (1997)
 - 슈퍼컴퓨터 왓슨 (IBM)는 "Jeopardy"에서 인간 챔피언들을 이김 (2011)
 - 알파고 (구글)는 세계 1위 기사인 이세돌을 바둑에서 이김(2017)
 - 리브라투스 (카네기 멜론 대학)는 세계 최고의 텍사스 홀덤 포커 플레이어들을 개인 대결에서 이김 (2017)
 - 6인 플레이어 대전에서도 이김(2019)
 - "알파스타" (구글)는 스타크래프트 2에서 인간 프로들을 이김 (2019)

(cont'd)

• 로봇 차량

- ✓ Stanley (스탠포드 대학) DARPA 그랜드 챌린지에서 우승(2005)
- ✔ Boss (카네기 멜론 대학) DARPA 어반 챌린지에서 우승(2007)
- (*) 테슬라, 구글 등에 의해 개발된 자율주행 자동차

Stanley

Boss

Tesla car crash Florida, 2016

Legged robots (Boston Dynamics)

Google car

Handle

(cont'd)

• 테슬라 휴머노이드, "옵티머스"

(cont'd)

- 자율 계획
 - ✓ NASA의 Remote Agent 프로그램 :우주선의 일정 운영 제어(2000)
 - ✓ 우버와 구글 맵은 수백만 명의 사용자에 대해 최적의 경로를 계획하여 제공
- 음성 인식
 - ✓ 자동화된 시스템과의 대화를 통한 항공편 예약
 - ✓ 실시간 음성 대 음성 번역
- 이미지 이해
 - ✓ ImageNet 객체 인식 합성곱 신경망 (CNNs)의
 ✓ 이미지 캡션 생성 항범위한 활용
 - ✓ 신경망 (CNNs)을 사용한 얼굴 인식 (비행기, 고속열차 탑승 등)
- 자연어 처리
 - ✓ OpenAI의 ChatGPT는 사용자가 대화를 조율하고 개선하는 방식(2022)

주의사항, 단점 및 실패 사례

• 인공지능은 중세 연금술인가?

Science, 2018년 5월 4일, 360권 6388호, 478쪽

- ✓ 엄격한 접근의 부족 (철저한 과학적 방법론 부족)
- ✓ 왜 일부 알고리즘은 작동하고 다른 알고리즘은 작동하지 않는지에 대한 설명이 없음
- ✓ 다른 사람들이 결과를 재현할 수 없음
- 2021년, 기계 학습의 문제점에 대해 많은 의문이 제기됨

IEEE Spectrum, 2021년 12월 27일

- ✓ 딥러닝 시스템을 학습시키는데 필요한 엄청난 양의 계산 및 에너지 비용
- ✓ 인공지능의 불안정한 과거와 불확실한 미래 (붐 앤 버스트 사이클)
- ✓ 딥러닝은 충분히 깊은 것인가요?
- ✔ 인공지능의 취약성, 내재된 편향, 망각이라는 치명적인 문제, 설명 가능성, 상식 등
- (*) "인공지능은 과학은 아니지만 우리의 삶을 바꾸고 있다는 것은 분명한 사실이다."

과제 작성 방법

Github 게재

- I. 각자의 github 계정 아래 AIMA 리포지토리 생성(public)
 - https://github.com/{계정명}/AIMA
- II. AIMA 폴더 아래에 각 주차별 하위 폴더 만들기
- wk1, wk2, ... wk15까지 생성
- Ⅲ. 평가 기준
 - 작성 내용 퀄리티 + Contribution Activity(홈화면)
- IV. 제출 기한: 다음 강의 시작시간 이전 까지

깃헙(GitHub) 사용법

[로컬 저장소와 원격 저장소]

로컬 저장소 (Local Repository) : <u>내 PC</u>에 파일이 저장되는 개인 전용 저장소원격 저장소 (Remote Repository) : <u>원격 서버에 저장</u>되어 관리되는 저장소.(여러 사람이 함께 공유)

깃헙에 코드를 올리는 과정

- 1. 내 컴퓨터에 폴더하나를 정하고 커맨드 창에서 '여기에 Git을 쓸 거다! ' 명령한다.(git init)
- 2. 즐겁게 숙제를 하고 그 폴더에 파일을 저장한다.
- 3. 내가 변경한 파일 중 올리길 원하는 것만 선택한다. (git add)
- 4. 선택한 파일들을 한 덩어리로 만들고 설명 적어주기 (git commit -m "첫 페이지 제작")
- 5. 깃헙 사이트에서 프로젝트 저장소 만들기 (블로그 만드는 거랑 동일)
- 6. 내 컴퓨터 프로젝트 폴더에 깃헙 저장소 주소 알려주기 (git remote add)
- 7. 내 컴퓨터에 만들었던 덩어리 깃헙에 올리기 (git push)

원격 저장소

원격 저장소

로컬 저장소

https://git-scm.com/ 에서 git 다운로드 및 설치

로컬 저장소

Git Bash 실행

```
NINGW64:/c/Users/sbbaik
sbbaik@seongBok-THINKPAD MINGW64 ~
```

로컬 저장소

숙제 폴더로 이동 "cd /d/01_AIMA/hw"

```
MINGW64:/d/01_AIMA/hw
sbbaik@SEONGBOK-THINKPAD MINGW64 /c
$ cd /d/01_AIMA/hw/
sbbaik@SEONGBOK-THINKPAD MINGW64 /d/01_AIMA/hw (main)
$ 11
total 0
drwxr-xr-x 1 sbbaik 197121 0 Mar 5 18:03 wk1/
drwxr-xr-x 1 sbbaik 197121 0 Mar 6 11:09 wk2/
sbbaik@SEONGBOK-THINKPAD MINGW64 /d/01_AIMA/hw (main)
```

로컬 PC의 Git Bash에서 실행할 명령

● git 환경 설정

```
git config --global user.name "Name"
git config --global user.email "E-mail"
git config --list
```

● git을 생성하고 리모트의 github와 숙제 폴더를 연결

git init

git remote add origin https://github.com/"user_id"/"repository_name"

● 리모트 GitHub의 Repository에 숙제 올리기

cd 숙제 폴더

git add.

git commit -m "이것은 첫번째 숙제임..."

git push origin master

과제

#1

I. 과제 게시용 Github 주소 통보 => sbbaik@gmail.com

II. 오늘 강의 내용 중 가장 마음에 들었던 주제에 대해 수필 작성 (1,500자 이상, 파일 포맷: MS-Word/아래한글/단순 텍스트)

III. 기한: 다음 강의 시작시간 이전 까지 (~3.15, Fri, 9am)