

COVID-19 HACKATHON

Sponsored by

doLoopTech®

Analytics. Software. Solutions.

MEDICAL IMAGING PROJECT

Devleena Banerjee QA Manager / Business Analytics, IIM Indore https://spotle.ai/DevleenaBanerjee

Priyank Jha
PGP in Data Science @ Aegis
https://spotle.ai/Priyankjha1

Md Modabbir Tarique
Student @ IIT Guwahati
https://spotle.ai/MdModabbirTarique

Vidhya Subramaniam

HR Professional / Business Analytics, IIM Indore
https://spotle.ai/VidhyaSubramaniam

Chiranjeevi Karthik Student @Vardhaman College https://spotle.ai/Karthikchiranjeevi

TABLE OF CONTENTS

PROBLEM

To detect the possibility of a SARS-CoV-2 (Coronavirus) infection in a person using their chest X-Ray scans.

OBJECTIVE

To use deep learning techniques to create a classifier on the data of chest X-Ray images to detect if a patient is infected or not.

METHODOLOGY

Framework

Keras API with tensorflow backend

Data Augmentation

To increase the diversity of data and to increase the training samples

Data

Data is gathered from multiple sources

Architecture

A custom 17-layered CNN architecture is defined for this problem

Metric	Training set	Testing set	
Accuracy	95.22 %	96.00 %	
AUC	0.95	0.96	

** AUC stands for 'Area under the curve'. For a random model AUC score is 0.5 & anything greater than that is good. Our model is obtaining approximately 96% accuracy on testing dataset solely based on X-Ray images. We have also obtained 100% sensitivity and 98% specificity.

(i) Confusion Matrix

"From confusion matrix, we can say that no person who is actually normal is predicted to be infected"

	precision	recall	f1-score	support
0	1.00	0.92	0.96	25
1	0.93	1.00	0.96	25
accuracy			0.96	50
macro avg	0.96	0.96	0.96	50
eighted avg	0.96	0.96	0.96	50
anne o actividad in rived and valu				

IMPACT

PRODUCTIONIZING OUR MODEL

- Model can be further improvised and then deployed to any of the cloud platforms.
- This can be offered as a service to the hospitals and diagnostic centers, assisting radiologists.
- People with access to the service, can use it with a simple API call.

REFERENCES

- Kaggle–Coronavirus dataset : https://www.kaggle.com/tags/covid19
- Positive Cases :https://github.com/ieee8023/covid-chestxray-dataset
- Normal Cases: https://www.kaggle.com/paultimothymooney/chestxray-pneumonia
- Ministry of Health and Family Welfare : https://www.mohfw.gov.in/

