CONTROL SYSTEM SIMULATION FOR A SINGLE-LINK FLEXIBLE ARM(U) MAYAL POSTGRADUATE SCHOOL MONTEREY CA K S PARK SEP 87 AD-A187 037 1/1 UNCLASSIFIED F/G 13/7 NL

MICROCOPY RESOLUTION TEST CHART
MANUNAL HURRAU DE STANDARDS 1964 A

OTIC FILE CORY

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

CONTROL SYSTEM SIMULATION FOR A SINGLE-LINK FLEXIBLE ARM

Ъу

Ki Soon Park

September 1987

Thesis Advisor

Liang-Wey Chang

Approved for public release; distribution is unlimited

87 12

L. C.

A	DA	1870	37
\mathcal{L}		$\omega - \omega$	

			REPORT DOCU	MENTATION	PAGE		
TA REPORT UN	SECURITY CLASSIF	SIFICATION I ED		16 RESTRICTIVE	MARKINGS		
2a SECURIT	Y CLASSIFICATION	ON AUTHORITY		3 DISTRIBUTION	A AVAILABILITY O	F REPORT	
26 DECLASS	FICATION / DO	WNGRADING SCHEDU	ILE	Approve	d for pub	lic rel	lease;
			ution is				
4 PERFORM	NG ORGANIZA	TION REPORT NUMBE	R(S)	5 MONITORING	ORGANIZATION R	EPORT NUM	8ER(S)
64 NAME O	FPERFORMING	ORGANIZATION	60 OFFICE SYMBOL (If applicable)	78 NAME OF M	ONITORING ORGA	NIZATION	
Naval F	ostgrad	uate School	69	Naval Postgraduate School			
6c ADDRESS	icity State at	ad ZIP Code)		76 ADDRESS (C)	ty State and ZIP	(ode)	
Monter	rey, Cal	ifornia 939	43-5000	Monter	rey, Calif	onia 91	3943-5000
SA NAME OF ORGANIZ	FUNDING SPO ATION	DASORING	8D OFFICE SYMBOL (If applicable)	9 PROCUREMEN	Ci THAMURTENI T	ENT-F-CATIO	N NUMBER
BC ADDRESS	(City. State, and	d ZIP Code)		10 SOURCE OF	FUNDING NUMBER	15	
				PROGRAM ELEMENT NO	PROJECT NO	TASK NO	WORK UNIT ACCESSION NO
CONTROL SYSTEM SIMULATION FOR A SINGLE_LINK FLEXIBLE ARM PERSONAL AUTHORIS) Park, ki Soon The Type of Report (Year Month Day) IS PAGE COUNT							
Master'	s Thesis	S FROM	10	87 sep	t.		88
1							
	COSAT		18 SUBJECT TERMS (Continue on revers	e if necessary and	identify by	block number)
<u> </u>	GROUP	SUB-GROUP	Flexi	ble Manipu	ılator. 🤃		
				·			
To control a lightweight manipulator, a validated dynamic model based on the Equivalent Rigid Link System (ERLS), is used to formulate a control algorithm. The required torque to drive the manipulator to a desired angle is calculated. Since the control system includes an electrohydraulic actuator, the required current is also calculated by the inverse dynamics of the hydraulic servo. A computer simulation is performed with various loading conditions, gain values, and desired angles.							
		LITY OF ABSTRACT	PT DTIC USERS	21 ABSTRACT SE UNCLASS	CURITY CLASSIFIC	ATION	
		, Code 69Ck		226 TELEPHONE	include Area Code) 55¢ OH!	e symeol 530k

DD FORM 1473, 84 MAR

B3 APR edition may be used until exhausted. All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

Approved for public release; distribution is unlimited.

Control System Simulation for a Single-Link Flexible Arm

by

Ki Soon Park
Major, Republic of Korean Air Force
B.S., Korean Air Force Accademy 1978
M.B.A., Chungnam University of Korea 1984

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL September 1987

Author:	Dark la soon	
	Ki Soon Park	
Approved by:	Lig-Wey Chang	
	Liang-Wey Chang, Thesis Advisor	
	hulfteels	
	Anthon, J. Healey, Chairman, Department of Mechanical Engineering	
	gles charles	
	Gordon E. Schacher,	
	LIBAR OL SCIENCE AND ENGINEERING	

ABSTRACT

To control a lightweight manipulator, a validated dynamic model based on the Equivalent Rigid Link System (ERLS), is used to formulate a control algorithm. The required torque to drive the manipulator to a desired angle is calculated. Since the control system includes an electrohydraulic actuator, the required current is also calculated by the inverse dynamics of the hydraulic servo. A computer simulation is performed with various loading conditions, gain values, and desired angles.

TABLE OF CONTENTS

I.	INT	RODUCTION	10
	A.	MOTIVATION	10
	В.	NATURE OF THE PROBLEM	10
	C.	LITERATURE REVIEW	11
	D.	RESEARCH OBJECTIVE	12
II.		DEL FORMULATION FOR A SINGLE LINK FLEXIBLE NIPULATOR	13
	A.	PHYSICAL PLANT	13
	В.	EQUIVALENT RIGID LINK SYSTEM FOR A SINGLE- LINK MANIPULATOR	13
	C.	SHAPE FUNCTION DERIVATION	20
	D.	HYDRAULIC ACTUATION	21
Ш.	CO	NTROL SCHEME	24
	A.	REQUIRED TORQUE	24
	В.	REQUIRED CURRENT	26
IV.	RES	SULT	29
	A.	INPUTS AND MOTION OUTPUTS	29
	В.	REQUIRED TORQUES	31
	C.	CURRENT CALCULATIONS	32
	D.	THE REDUCTIONS OF THE REQUIRED TORQUE	33
	E.	THE REDUCTION OF VIBRATION	34
	F.	THE ELECTROHYDRAULIC SATURATION	35
V.	CO	NCLUSIONS AND RECOMMENDATIONS	62
	Α.	CONCLUSIONS	62
	R	RECOMMENDATIONS	63

APPENDIX A:	DERIVATION OF THE EQUATIONS OF MOTION FOR THE SINGLE - LINK FLEXIBLE			
	MANIPULATOR	54		
APPENDIX B:	SIMULATION PROGRAM	7 1		
LIST OF REFER	ENCES	85		
INITIAL DISTR	IBUTION LIST	86		

LIST OF TABLES

1.	ARM PARAMETERS	. 14
2.	INITIAL CONDITIONS	. 29
3.	GAIN VALUES	. 30
	MAXIMUM OF TOTAL-ANGLE VELOCITY AND TOTAL-ANGLE ACCELERATION	. 32
5.	MAXIMUM REQUIRED TORQUE	. 33
6.	MAXIMUM TOROUE FOR INPUT FUNCTIONS	. 34

LIST OF FIGURES

2.1 2.2 2.3 2.4 2.5 3.1 4.1 4.2 4.3 4.4 4.5	A Single-Link Flexible Manipulator System A Manipulator in Intermediate Position with 2.115kg Loading Details of Transverse Bridges and Tip Loading The Equivalent Rigid Link System (ERLS) An overall Plant A Schematic Diagram of the Feedback Control System Total Angle Response (0 kg) Total Angle Response (2.115 kg) Total Angle Response (4.233 kg) Total-Angle Velocity (4.233kg) Total-Angle Acceleration(4.233kg)
2.3 2.4 2.5 3.1 4.1 4.2 4.3 4.4 4.5	A Manipulator in Intermediate Position with 2.115kg Loading Details of Transverse Bridges and Tip Loading The Equivalent Rigid Link System (ERLS) An overall Plant A Schematic Diagram of the Feedback Control System Total Angle Response (0 kg) Total Angle Response (2.115 kg) Total Angle Response (4.233 kg) Total-Angle Velocity (4.233kg) Total-Angle Acceleration(4.233kg)
2.4 2.5 3.1 4.1 4.2 4.3 4.4 4.5	Details of Transverse Bridges and Tip Loading The Equivalent Rigid Link System (ERLS) An overall Plant A Schematic Diagram of the Feedback Control System Total Angle Response (0 kg) Total Angle Response (2.115 kg) Total Angle Response (4.233 kg) Total-Angle Velocity (4.233kg) Total-Angle Acceleration(4.233kg)
2.5 3.1 4.1 4.2 4.3 4.4 4.5	The Equivalent Rigid Link System (ERLS) An overall Plant A Schematic Diagram of the Feedback Control System Total Angle Response (0 kg) Total Angle Response (2.115 kg) Total Angle Response (4.233 kg) Total-Angle Velocity (4.233kg) Total-Angle Acceleration(4.233kg)
3.1 4.1 4.2 4.3 4.4 4.5 4.6	An overall Plant A Schematic Diagram of the Feedback Control System Total Angle Response (0 kg) Total Angle Response (2.115 kg) Total Angle Response (4.233 kg) Total-Angle Velocity (4.233kg) Total-Angle Acceleration(4.233kg)
4.1 4.2 4.3 4.4 4.5 4.6	A Schematic Diagram of the Feedback Control System Total Angle Response (0 kg) Total Angle Response (2.115 kg) Total Angle Response (4.233 kg) Total-Angle Velocity (4.233kg) Total-Angle Acceleration(4.233kg)
4.2 4.3 4.4 4.5 4.6	Total Angle Response (0 kg) Total Angle Response (2.115 kg) Total Angle Response (4.233 kg) Total-Angle Velocity (4.233kg) Total-Angle Acceleration(4.233kg)
4.3 4.4 4.5 4.6	Total Angle Response (4.233 kg) Total-Angle Velocity (4.233kg) Total-Angle Acceleration(4.233kg)
4.4 4.5 4.6	Total-Angle Velocity (4.233kg)
4.5 4.6	Total-Angle Acceleration(4.233kg)
4.6	
	To the of Dominion Co. Victory Deviced Application
	Total Angle Responses for Various Desired Angles(2.115kg)
4.7	Total-Angle Velocities for Various Desired Angles(2.115kg)
4.8	Total-Angle Accelerations for Various Desired Angles(2.115kg)
4.9	Required Torque (0 kg)
4.10	Required Torque (2.115 kg)
4.11	Required Torque (4.233 kg)
4.12	Required Torques for Various Desired Angles(2.115kg)
4.13	Required Current (0 kg)
4.14	Required Current (2.115 kg)
4.15	Required Current (4.233 kg)
4.16	A Planned Input of the Desired Angle(4.233 kg)
4.17	Total Angle Responses for Various Input Functions(4.233kg)
4.18	Required Torques for Various Input Functions(4.233 kg)
4.19	Require Currents for Various Input Functions(4.233kg)
4.20	Total Angle Responses for Various Damping Ratios(no load)
4.21	Large motion for Various Damping Ratios (no load)
4.22	Small Motion for Various Damping Ratios (no load)
	4.9 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20 4.21

4.23	Required Torque for Various Damping Ratios (no load)
4.24	Required Currents for the Ideal and Saturated cases(4.233kg)
4.25	Required Torques for the Ideal and Saturated cases(4.233 kg)
4.26	Total Angle Responses for the Ideal and Saturated cases (4.233kg) 60

ACKNOWLEDGEMENT

I wish to express my sincerest gratitude to my advisor, Professor Liang-Wey Chang, for his invaluable guidance and unselfish giving of his time in support of this research.

Appreciation is extended to the Korean Air Force Authority for the opportunity to study in Naval Postgraduate School.

I also want to thank my wife, Mi Sook and my daughter, Soo Yeun for their patience and encouragement in my study.

I. INTRODUCTION

A. MOTIVATION

The robotic manipulator plays an important role in a wide range of applications. Present and possible future applications focus on implementing automation in environments which are hostile to humankind. More demand is being placed on robots with higher speeds, smaller actuators, and higher payload capacity in applications.

In the past, efforts were made to control manipulators using rigid body assumptions. However, the demands for lightweight and higher performance manipulators have led to the consideration of flexible-body models. A new controller is needed for the flexible manipulators.

B. NATURE OF THE PROBLEM

Control of most manipulators is based upon dynamic models assuming perfectly rigid links. Accordingly, accurate manipulator motion control is dependent upon the great stiffness of the structural members. This assumption does not always hold, particularly at high-speed and heavy-load operations where a linkage may undergo severe elastic deformation due to the inertia. It can no longer perform its intended function in actual operations.

Lightweight flexible manipulators promise the advantages of increased speed of operation, ease of transportability, reduced material requirement, reduced power consumption, lowered mounting strength and rigidity requirement, and lower overall cost [Ref. 1]. On the other hand, the oscillatory behavior of the flexible links makes the end-point motions difficult to be controled. The central problem lies in the control of the end-point motion by applying the proper torques at the actuating point. Flexibility effect on manipulators is a necessary consideration in the move toward designing lighter, faster and more accurate robot systems. A dynamics model of manipulators with flexibility is needed for design and control purposes. To benefit from the advantages of lightweight, flexible manipulators, it is also necessary to implement a control design capable of achieving end effector positioning accuracy and stable control.

C. LITERATURE REVIEW

The earliest studies concerning the control of flexible manipulators began in the early to mid 1970's. There has been considerable research recently in the development of flexible manipulator control strategies. A brief survey of this research follows.

Book [Ref. 2] introduced a modeling approach utilizing 4×4 transformation for control purposes. His model was limited in the assumption that the mass of the manipulator is negligible compared to the mass of the load. The assumption is acceptable in space applications where the manipulator is very light and operates at low speeds, but the assumption can not be applied to the industrial robotic manipulators in most cases.

Sunada and Dubowsky [Ref. 3] applied 4 × 4 transformation matrix and the Lagrangian approach to model the flexible system with geometrically irregular links by finite element techniques. Component Mode Synthesis was used to reduce the number of generalized coordinates and improve the computational efficiency without losing much accuracy. Based on this scheme, they can obtain the flexibility and mass properties of the links through available finite element programs. But, this model ignored the effect of the small motion interaction on the large motion. The consideration of the coupling effect between the small motion and the large motion was not completed.

Chang [Ref. 4] introduced the Equivalent Rigid Link System(ERLS) dynamic model of flexible manipulator. Global motions were separated into large motions and small motions. The ERLS described the kinematics of the large motion. The small motion displacements were described relative to the ERLS. The finite element method was used to discretize deformations and Lagrangian formation was used to derive the equations of motion. Two sets of coupled, non-linear ordinary differential equations - large motion equations and small motion equations resulted. The set of large motion equations were non-linear in both the large and small motion variables. The set of small motion equations were linear in the small motion variable but non-linear in the large motion variable. The model is complete being able to describe large motions, small motions and their coupling. The model presented the computational potential by using the Sequential Integration Method developed.

Petroka [Ref. 5] performed an experimental validation of the ERLS model. He designed a hydraulically actuated, single - link flexible arm. A cubic shape function was assumed to present the transverse displacement of the flexible manipulator. Tip position was determined from the motion picture studies.

Gannon [Ref. 6] served a continuation of the experimental validation of the ERLS model. A piezo-resistive accelerometer and strain gages were used for tip position and strain information. The natural mode shape functions of a beam was used to present the flexural motion of the single-link flexible arm in the Gannon's study. Results of the validation suggested the potential usefulness of the model in determining tip position.

Canon and Schmitz [Ref. 7] reported on experimental studies of the "End - Point Control of a Flexible One Link Robot". Their controller design was based upon a linearized and truncated model. Measurements available for control included rigid body angle and velocity, strain measurements and direct optical measurement of end-point position. Controller design was discussed from a variety of standpoints using both classical and modern control methods. The authors reported that the non -colocated(end -point position) feedback improves the speed of response at the cost of reducing the stability margins.

Flexibility effect is a very important consideration in designing lighter, faster and more accurate robot systems. In this research, the ERLS dynamic model is used to design a control system since the model presents a complete consideration of the system motion and exhibits computational superiority. Nonlinear motion is compensated in the control algorithm.

D. RESEARCH OBJECTIVE

The objective of this research is to design a controller for single-link flexible manipulator. The validated dynamic model-the Equivalent Rigid Link System - is used to formulate the control algorithm. The control algorithm involves the computation of the required torque to drive the manipulator achieving a desired angle of the end of the flexible manipulator. Since the control system includes an electrohydraulic actuator, the required current is also calculated by inverse hydraulic dynamics. The ways to reduce the actuator effort and structural vibrations will be discussed.

II. MODEL FORMULATION FOR A SINGLE LINK FLEXIBLE MANIPULATOR

A. PHYSICAL PLANT

A flexible arm was designed by Petroka [Ref. 5] for the validation of the Equivalent Rigid Link System Model. The flexible arm shown in Figures 2.1 - 2.2 is a one meter long flexible structure which can be bend freely in the vertical plane but is stiff in the torsion and horizontal bending. The basic configuration of the arm includes two parallel, flexible steel, flat bars connected by the thin steel strips to transverse steel bridges. External loading is attached to the arm tip end transverse bridge by the securing of the load on the four welded studs shown in Figure 2.3. Table 1 shows the geometric and mass properties of the flexible arm. The flexible arm is driven by a electohydraulic system shown in Figure 2.1. The system consists of a York hydraulic power unit, a Berd-Johnson 3 - axis Hyd-Ro- Wrist, a Moog 760-100 servovalve, and associated Moog servocontroller and high pressure filter assembly [Ref. 5].

B. EQUIVALENT RIGID LINK SYSTEM FOR A SINGLE-LINK MANIPULATOR

The basic idea of ERLS [Ref. 4] is to separate the motion of the flexible link system into the large rigid-body motion and the small-motion displacement due to the flexibility of the structure. The large motion is defined by the movement of ERLS for a single - link flexible manipulator. The small-motion displacements are described with respect the ERLS. A schematic diagram of the ERLS for a single - link manipulator is shown in Figure 2.4.

The three generalized coordinates chosen are the large motion joint variable, θ , and two nodal displacements, V(0) and $\varphi(0)$, which can be measured at the end of the link. The large motion joint variable θ , is the angle between the ERLS and the horizontal axis of inertia coordinate. Homogenous transformations is applied for a deformed point on the single-link to obtain the absolute position of the point. The displacements for each point along the flexible arm are the functions of the location and time; therefore, it is necessary to discretize the deformations in terms of generalized coordinates in oder to apply Lagrangian's equation. The techniques of the Finite Element Method (FEM) are utilized for this discretization. The nodal displacements at the end of the single-link represent the small motion.

	BLE 1 RAMETERS	
Parameter	Value	Unit
Arm Length (L)	0.9985	m
Beam Thickness(t)	0.003175	m
Beam Width(w)	0.0762	m
Distance Between Each Beam	0.05715	m
Arm Mass(m _t)	4.8565	kg
Modulus of Elasticity(E)	2.0 E11	N/m ²
Density unit Volume(ρ)	7861.05	kg/m ³

After describing the kinematics relationships between the large and small motions, kinetics is introduced to complete the derivation of the equation motion.

The Lagrangian dynamics approach is used for the derivation due to its straightforward and systematic nature which is helpful in the analysis of complex systems. The kinetic energy is the sum of the kinetic energies of each link, actuator, and any loading. The potential energy is contributed the elastic strain energy and from gravity. Generalized forces are included due to any applied forces and damping forces. After making considerable effort in mathematical manipulations, rearrangements, and simplifications, the Lagrangian equations yield two sets of non-linear, coupled, second order, ordinary differential equations. One set describes the large motions and the other set describes the small motions.

These equations are represented as follow;

$$M_{qq} \ddot{\theta} + M_{qn} \ddot{U} = F_q + TORQUE$$
 (2.1)

Figure 2.1 A Single-Link Flexible Manipulator System.

Figure 2.2 A Manipulator in Intermediate Position with 2.115kg Loading.

Figure 2.3 Details of Transverse Bridges and Tip Loading.

X. Y : INERTIA COORDINATE

 \mathbf{x}, \mathbf{y} : LOCAL COORDINATE

θ : LARGE MOTION JOINT VARIABLE

 $\phi(0)$: ARM TIP SLOPE

V(0) : ARM TIP DEFLECTION

Φ : TOTAL ANGLE

EZZEGEGEGE BIOLOGOGOMANARGOGOGOGO ALMASSOCIO A PO

Figure 2.4 The Equivalent Rigid Link System (ERLS).

$$M_{nq} \ddot{\theta} + M_{nn} \ddot{U} + K_n U = F_n$$
 (2.2)

where

<u>A PARA PERSONAN ESCRIPTOR PERSONA ESCRIPTOR DE PERSONANTE ESCRIPTOR DE PERSONANTE DE PERSONANTE DE PERSONANTE DE PERSONA</u>

 $M_{00} = 1 \times 1$ effective inertia matrix for large motions

 $M_{qn} = 1 \times 2$ coupled inertia matrix of the small motion effect on large motions

 $M_{nq} = 2 \times 1$ coupled inertia matrix of the large motion effect on the small motions

 $M_{nn} = 2 \times 2$ effective inertia matrix for small motions

 $K_n = 2 \times 2$ stiffness matrix for small motions

 $F_q = 1 \times 1$ load vector for large motions

 $F_n = 2 \times 1$ load vector for small motions

 θ = generalized coordinate of the large motions

 $U = 2 \times 1$ generalized coordinate of the small motions

The vector of small motion is limited to the transverse displacement of the end of the link. Axial deformation and torsion are neglected in this research for single-link manipulators. We assume that the displacement of the end of the link is small.

$$Tan^{-1}(V/L) \sim V/L \tag{2.3}$$

where V is a shorthand of V(0).

We also assume that the slope of the arm tip is not measured for the simple feedback control system. The tip displacement V(0) is the only generalized coordinate chosen for small motions. Then all coefficient of the matrixs of non-linear, coupled, second-order ordinary differential equations is reduced to $I \times I$ matrix. A total angle of the end of the link can be represented as follows;

$$\mathbf{\Phi} = \mathbf{\theta} + \mathbf{V}/\mathbf{L} \tag{2.4}$$

$$\dot{\mathbf{\Phi}} = \dot{\mathbf{\theta}} + \dot{\mathbf{V}}/\mathbf{L} \tag{2.5}$$

$$\mathbf{\ddot{\Phi}} = \mathbf{\ddot{\theta}} + \mathbf{\ddot{V}}/L \tag{2.6}$$

A more detailed derivation of the equations of motion is included in Appendix A.

C. SHAPE FUNCTION DERIVATION

The natural-mode shape function of a beam is needed to present the flexural motion of the single-link flexible arm [Ref. 4]. The flexible manipulator arm is modeled as a continuous Euler-Bernoulli cantilever beam. The transverse displacement for the single link flexible arm is represented in the following forms;

$$U(x,t) = a_1 \{t\} \chi_1 \{x\} + a_2 \{t\} \chi_2 \{x\}$$

$$= a_1 \{A_1 \{\cos\beta_1 x + \cosh\beta_1 x\} + \{\sin\beta_1 x + \sinh\beta_1 x\}\}$$

$$+ a_2 \{A_2 \{\cos\beta_2 x + \cosh\beta_2 x\} + \{\sin\beta_2 x + \sinh\beta_2 x\}\}$$
(2.7)

where

$$\beta_1 L = 1.875104069$$

 $\beta_2 L = 4.694091133$

$$A_{i} = \frac{\sin \beta_{i} L + \sinh \beta_{i} L}{\cos \beta_{i} L + \cosh \beta_{i} L}$$
 (2.8)

Upon reduction, Gannon [Ref. 6] yielded a 3 \times 2 shape function matrix Ψ , and the 2 \times 1 nodal displacement vector, U. a 3 \times 1 deformation vector, d, was expressed as follow;

$$\mathbf{d} = \mathbf{\Psi} \mathbf{U} = \begin{bmatrix} 0 \\ 0 \\ V(\mathbf{x}) \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \mathbf{M} & \mathbf{N} \end{bmatrix} \begin{bmatrix} V(0) \\ \mathbf{\phi}(0) \end{bmatrix}$$

The coefficents M and N are defined as:

$$\begin{split} \mathbf{M} &= \{ C_1 \{ A_1' \{ \cos\beta_1 x + \cosh\beta_1 x \} + \{ \sin\beta_1 x + \sinh\beta_1 x \} \} \\ &+ C_2 \{ A_2' \{ \cos\beta_2 x + \cosh\beta_2 x \} + \{ \sin\beta_2 x + \sinh\beta_2 x \} \} \} \\ \mathbf{N} &= \{ C_3 \{ A_1' \{ \cos\beta_1 x + \cosh\beta_1 x \} + \{ \sin\beta_1 x + \sinh\beta_1 x \} \} \end{split}$$

+
$$C_4 \{ A_2' \{ \cos \beta_2 x + \cosh \beta_2 x \} + \{ \sin \beta_2 x + \sinh \beta_2 x \} \} \}$$

where

$$C_1 = 2 \beta_2 / \{4 A_1' \beta_2 - 4 A_2' \beta_1\}$$

$$C_2 = -2 \beta_1 / \{4 A_1' \beta_2 - 4 A_2' \beta_1\}$$

$$C_3 = -2 A_2' / \{4 A_1' \beta_2 - 4 A_2' \beta_1\}$$

$$C_4 = 2 A_1' / \{4 A_1' \beta_2 - 4 A_2' \beta_1\}$$

In this research, since the slope function of the arm tip is not measured, the shape function, Ψ , is reduced to a 3 \times 1 matrix. Now the 3 \times 1 deformation vector can be rewritten as follows;

$$d = \Psi U = \begin{bmatrix} 0 \\ 0 \\ V(x) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ M \end{bmatrix} \begin{bmatrix} V(0) \end{bmatrix}$$

New shape function matrix is now in a convenient form for computer coding. A more detailed derivation of the shape function was included in Gannon's work.

D. HYDRAULIC ACTUATION

The single-link flexible manipulator uses electrohydraulic actuation to drive the plant. The inclusion of the electrohydraulic power system involves the transformation of an input current to an output torque. Figure 2.5 illustrates the relationship of hydraulic dynamics to the overall system.

The hydraulic dynamics is represented by servovalve dynamics and actuator dynamics. Moog, the manufacture of the servovalve, simplified the description of servovalve dynamics to a single equation [Ref. 8].

$$Q = I K \sqrt{P_{v}}$$
 (2.9)

where

Q = flow delivered from servovalve

I = input current

K = valve sizing constant, contributes to hydraulic system damping

 $P_v = valve pressure drop, P_s-P_L$

Figure 2.5 An overall Plant.

Actuator dynamics consists of a form of the continuity equation and the torque output equation. Actuator dynamics consists of a form of the continuity equation and the torque output equation [Ref. 9].

$$Q = D_{m} \dot{\theta} + C_{tm} P_{L} + \frac{V_{t} \dot{P}_{L}}{4 \beta_{e}}$$
 (2.10)

$$T_{d} = \eta_{t} P_{L} D_{ra} \qquad (2.11)$$

Where

Q = flow delivered to actuator

 $D_m \dot{\theta}$ = flow causing actuator rotation

 β_e = effective bulk modulus of fluid

 V_t = total compressed volume including actuator lines and chambers

 $V_t P_L / (4 \beta_e) = compressability flow$

 T_d = torque required to overcome inertia and move the load

 η_t = torque efficiency

 P_L = load pressure drop

D_m = motor displacement

 $C_{tm}P_L$ = leaking flow in actuator

The preceding hydraulic dynamic equations and relationships are incorporated into the main computer program for solving the dynamic equation of motion.

III. CONTROL SCHEME

A. REQUIRED TORQUE

In feedback control system, desired angles are compared with the measurements of the actual system responses. The difference is used via the chosen control algorithm. The control algorithm calculates the required torque to derive the manipulator achieving a desired angle of the end of the arm.

Recall the equations that can be written as two sets of equations - large motions and small motions equations - and the total angle equation of the end of the arm for derivation of the required torque equation.

$$M_{qq} \ddot{\theta} + M_{qn} \ddot{V} = F_q + TORQUE$$
 (3.1)

$$M_{nq} \dot{\theta} + M_{nn} \dot{V} + K_n V = F_n$$
 (3.2)

where

 $M_{qq} = 1 \times 1$ effective inertia matrix for large motions

 $M_{qn} = 1 \times 1$ coupled inertia matrix of the small motion effect on large motions

 $M_{nq} = 1 \times 1$ coupled inertia matrix of the large motion effect on the small motions

 $M_{nn} = 1 \times 1$ effective inertia matrix for small motions

 $K_n = 1 \times 1$ stiffness matrix for small motions

 $F_q = 1 \times 1$ load vector for large motions

 $F_n = 1 \times 1$ load vector for small motions

 θ = generalized coordinate of the large motions

 $v = 1 \times 1$ generalized coordinate of the displacments

$$\mathbf{\theta} = \mathbf{\Phi} \cdot \mathbf{V} \, \mathbf{L} \tag{3.3}$$

$$\dot{\mathbf{\theta}} = \dot{\mathbf{\Phi}} \cdot \dot{\mathbf{V}}/\mathbf{L} \tag{3.4}$$

$$\ddot{\boldsymbol{\theta}} = \dot{\boldsymbol{\Phi}} - \dot{\mathbf{V}}/\mathbf{L} \tag{3.5}$$

Equations 3.3-3.5 can be substituted into Equations 3.1 and 3.2 and rearranged as follows;

$$M_{qq}(\Phi \cdot V/L) + M_{qn} \ddot{V} \cdot F_q = TORQUE$$
 (3.6)

$$M_{nq} (\mathbf{\dot{\Phi}} \cdot \mathbf{\ddot{V}} L) + M_{nn} \mathbf{\ddot{V}} + K_n \mathbf{V} - F_n = 0$$
(3.7)

After eliminating V, a governing equation for Φ is given as;

$$(M_{qq} - D M_{nq}) \stackrel{\bullet}{\Phi} + (D F_n - D K_n - F_q) V = TORQUE$$
 (3.8)

where

$$D = \frac{(M_{qq} - (M_{qq}/L))}{(M_{nq} - (M_{nq}/L))}$$
(3.9)

Let

$$N = M_{qq} - D M_{nq}$$

Equation 3.8 can be expressed in short as follows;

$$N \dot{\Phi} + FC (V, \dot{V}, \theta, \dot{\theta}) = TORQUE$$
 (3.10)

where

$$FC(V, \dot{V}, \theta, \dot{\theta}) = (D F_n - D K_n - F_q) V$$

• is measured and fed back to controller. The required torque to drive the manipulator achieving a desired angle of the end of the arm is calculated via a controller. The inverse problem is applied to calculate the required torque. Figure 3-1 shows a schematic diagram of the feedback control system.

The equation of the required torque is represented as follows;

$$T_r = N(\dot{\Phi}_d + K_v(\dot{\Phi}_d - \dot{\Phi}) + K_p(\Phi_d - \Phi)) + FC$$
 (3.11)

where

 $T_r = a$ required torque

 $\mathbf{\Phi}_{d}$ = a desired angular acceleration

 $\mathbf{\Phi}$ = a total angular acceleration

 $\mathbf{\Phi}_d$ = a desired angular velocity

 Φ = a total angular velocity

 Φ_d = a desired angle

 Φ = a total angle

 $K_v = a$ velocity gain

 $K_D = a position gain$

The torque of the Equation 3.10 is equals to the required torque of the Equation 3.11. System errors of a second order control system can be represented as follows;

$$(\mathbf{\ddot{\Phi}_d} - \mathbf{\ddot{\Phi}}) + K_v(\mathbf{\dot{\Phi}_d} - \mathbf{\dot{\Phi}}) + K_p(\mathbf{\Phi_d} - \mathbf{\Phi}) = 0$$
(3.12)

B. REQUIRED CURRENT

Since the control system includes an electrohydraulic actuator, the inverse hydraulic dynamic involves the transformation of input torque to an output current. For the input current to the hydraulic dynamics, the inverse hydraulic dynamics can be applied to calculate the required current according to the required torque. A desired load pressure drop and desired flow should be calculated by the inverse hydraulic dynamic equations.

$$P_{Lr} = T_d / (\eta_t D_m) \tag{3.13}$$

Figure 3.1 A Schematic Diagram of the Feedback Control System.

$$Q_{r} = D_{m} \dot{\theta} + C_{tm} P_{Lr} + (V_{t} \dot{P}_{Lr})/(4 B_{e}) \qquad (3.14)$$

$$I_{r} = Q_{d} /(K \sqrt{P_{v}})$$
 (3.15)

where

 T_r = a required torque

P_{Lr} = a required load pressure drop

Q_r = a required flow delivered to actuator

I_r = a required current

IV. RESULT

A control algorithm for a single-link flexible manipulator is based upon the Equivalent Rigid Link System Model. The control algorithm calculates the required torque to control the end position of the manipulator. Comparisons of the required torque and required current are made in terms of the three parameters (i.e., loading condition, gain value, and desired angle). Additionally, the way to reduce the required currents and required torques is discussed. The effect of the current saturation to system dynamics behavior is also presented.

A. INPUTS AND MOTION OUTPUTS

The loading conditions are no load, a 2.115 kg ,and a 4.233kg load. The external loading is attached to the arm tip end transverse bridge by securing the load on the four welded studs. The initial condition for all runs is the horizontal position of the flexible arm. The initial tip deformations as determined by the Euler-Beroulli cantilever beam theory are converted to an angle. These angles in Table 2 are the initial conditions input into the simulation program.

	BLE 2 CONDITIONS
Load (Kg)	Angle (radian)
0.0	-0.06111
2.115	-0.14628
4.233	-0.23155

Only point to point control in open space is considered. An input variable to the closed-loop system is the desired angle of the end-point. The desired angular acceleration and the desired angular velocity are zero in this research. To compare the

system responses, two step inputs, which are two desired angles of the end-point, (i.e., 1 radian and 1.5 radian), are applied respectively.

The outputs of the system responses for the step input of the desired angle are total-angle accelerations, total-angle velocities and total angles of the end-point, which are also fed back to the controller. First, the desired angle of 1 radian is input as the step function. Figures 4.1-4.3 show the movements of the end-point for all loading conditions. Each figure has three curves according to selected gain values for all loading conditions. In this research, a velocity gain (K_v) and a position gain (K_p) are selected for critically damped systems. In other words, the movements of the total angle of the end-point will not exceed the desired angle of the end-point. The position gain can be expressed in terms of the velocity gain for the critically damped systems as fellows;

$$K_p = K_v^2 / 4$$

THE PERSONAL PROPERTY OF THE PERSONAL PROPERTY

Table 3 shows the three cases of gain values for this research:

	TABLE 3 GAIN VALUES	
Case	Velocity Gain	Position Gain
1	2	1
2	4	4
3	8	16

For the evaluation of the system performances for the step input, a settling time corresponding to a 2 % tolerance is measured in terms of time constant ($T = 1 / K_p^{1/2}$). Settling time ($t_s = 4 T$) are 4 sec, 2 sec and 1 sec according to the position gains 1, 4 and 16. All results of the total angles of the end-point meet error criteria of 2 % according to the gain values. The figures of the total angle of the end-point with larger gain values show faster movement. Another observation is that the total angle

of the end-point with the same gain value have the same movement in terms of the time constant for the different loading conditions. These results indicate that the nonlinear plant is controlled to perform a linear behavior. Errors of the system can be represented as the second-order control system as follows;

$$(\ddot{\boldsymbol{\Phi}}_{d} - \ddot{\boldsymbol{\Phi}}) + K_{v}(\dot{\boldsymbol{\Phi}}_{d} - \dot{\boldsymbol{\Phi}}) + K_{p}(\boldsymbol{\Phi}_{d} - \boldsymbol{\Phi}) = 0$$

Figures 4.4-4.5 show the total-angle velocity and total-angle acceleration approaching the desired angle of 1 radian for the 4.233 kg loading condition. All initial velocities start from zero and being increasing to achieve the desired angle with fast movement as gain values are increasing during transients and converge to zero velocity as the total angle of the end-point approachs to the desired angle.

Figure 4.6 shows the comparison of the total angle response for the step inputs of 1 radian and 1.5 radian with the position gain of 4, the velocity gain of 4 and 2.115 kg loading condition. The total angle movement of the 1.5 radian is faster than the movement of the desired angle of 1 radian. But both of the total angle response have same settling time since they have the same position (4) and velocity gain values(4). Figures 4.7-4.8 show the comparisons of the total-angle velocity and total-angle acceleration between the 1 radian and 1.5 radian of the desired angle with same position gain for the 2.115kg loading condition. The figures of the total-angle velocity and total-angle acceleration indicate that total-angle velocities and accelerations are increasing as desired angle is increasing with same gain value during the transients. The maximum of total-angle velocities and total-angle accelerations for the desired angles are shown in Table 4.

B. REQUIRED TORQUES

In the feedback control system, the desired angle of the end-point is compared with the measurements of the actual system responses. The differences are used via the chosen control algorithm to calculate the required torque. In other words, the control algorithm calculates the required torques to drive the manipulator to achieve the desired angle of the end-point according to the chosen gain values. The equation of the required torque was represented as follows;

$$T_r = N(\dot{\Phi}_d + K_v(\dot{\Phi}_d \cdot \dot{\Phi}) + K_p(\Phi_d \cdot \Phi)) + FC$$

	TABLE 5	
MAXIMUM	REQUIRED	TORQUE

Load(kg)	Postion Gain	Torque(N-m)
No Load	1	82.559
	4	84.041
	16	89.969
2.115	1	148.11
	4	155.64
	16	185.76
4.233	1	125.73
	4	139.68
	16	183.44

the required currents for all loading conditions. Each figure has the three curves according to three gain values. Figures indicate that the required currents have fluctuations based upon required torques during the transients, and settle to the steady-state values.

D. THE REDUCTIONS OF THE REQUIRED TORQUE

The magnitudes of the required torques and required currents are related to the selection of size of the electrohydraulic actuator. The selections of the electrohydraulic actuator which depend upon the required torques and required currents, are also related to the weight, and cost. To reduce the required torques and required currents is very important in terms of the selection of the size of electrohydraulic actuator. In this research, a planned desired angle trajectory is used as the input replacing the step input.

The planned input is the combination of ramp and step function applied to the 4.233kg load with the position gain of 16. The initial point of the ramp function coincides with the initial angle of the flexible arm. The slope of the ramp function is selected as 2. Figure 4.16 shows the planned input of the desired angle as the combination function. Figures 4.17-4.19 show comparisons of the results between the step input and planned input. The difference of the maximum required torque for input functions is tabulated in Table 6.

TABLE 6 MAXIMUM TORQUE FOR INPUT FUNCTIONS		
Input Function	Max. Torque(N-m)	
Step input	183.41	
Planned Input	106.58	

Table 6 indicates that the plan of the input function for the desired angle could results in the reduction of the maximum required torque and maximum required current. The total angle responses might be slower. We can expect different reductions of the required torques or required currents for same loading conditions and gain value when we change the input function of the desired angle.

E. THE REDUCTION OF VIBRATION

44000000 440000000 6544444

The system damping is considered to reduce the structural vibration. A damping ratio is applied to the small motion equation as follows;

$$M_{nq}\ddot{\theta} + M_{nn}\ddot{v} + 2\zeta W_n\dot{v} + K_n V = F_n$$

The no load fundamental frequency is predicted to be 2 HZ. A damping ratio (ζ) of 0.5 is applied to no load condition with the position gain of 2. Figures 4.20-4.23 show graphical results of the comparison of the no damping case with the damping case that has a 0.5 damping ratio. These result show that the movement of the end-point of the damping case is faster than the movement of the no damping. The system damping

yields the noticeable reduction of the vibration of small motion. The required torques of the system damping case show less fluctuations.

F. THE ELECTROHYDRAULIC SATURATION

The previous results for the required torques and required currents are for an ideal condition. When the electrohydraulic actuator is saturated at 15 milliamp current, all current exceeded 15 milliamp will be limited at 15 milliamp current. Figures 4.24-4.26 show the effect of the saturation for the 4.233 kg loading condition with the position gain of 16. The total angle responses with the saturated current show slightly slower movements compared to the ideal movement during transients. The required torques are also reduced due to the saturated current during the initial transients.

Figure 4.1 Total Angle Response (0 kg).

Figure 4.2 | Total Angle Response (2.115 kg).

SECOND VISCOSSES NECESSAGE VISCOSSES

ESCRIPTION OF THE STATE OF THE

Figure 4.3 Total Angle Response (4.233 kg).

Figure 4.4 Total-Angle Velocity (4.233kg).

Figure 4.5 Total-Angle Acceleration 4.233kg).

Figure 4.6 Total Angle Response for Various Desired Angles(2.115kg).

Figure 4.7 Total-Angle Velocities for Various Desired Angles (2.115kg).

Figure 4.8 Total-Angle Accelerations for Various Desired Angles(2.115kg).

Figure 4.9 Required Torque (0 kg).

Figure 4.10 Required Torque (2.115 kg).

Figure 4.11 Required Torque (4.233 kg).

Figure 4.12 Required Torques for Various Desired Angles(2.115kg).

Figure 4.13 Required Current (0 kg).

Figure 4.14 Required Current (2.115 kg).

Figure 4.15 Required Current (4.233 kg).

Figure 4.16 A Planned Input of the Desired Angle(4.233 kg).

THE RESIDENCE OF THE PROPERTY OF THE PROPERTY

Figure 4.17 Total Angle Responses for Various Input Functions(4.233kg).

Figure 4.18 Required Torque for Various Input Functions(4.233 kg).

CONTROL BOOKERS CONTROL CONTROL CONTROL CONTROL CONTROL

Figure 4.19 Require Current for Various Input Functions(4.233kg).

Figure 4.20 Total Angle Response for Various Damping Ratios(no load).

Figure 4.21 Large motion for Various Damping Ratios (no load).

Figure 4.22 Small Motion for Various Damping Ratios (no load).

Figure 4.23 Required Torque for Various Damping Ratios (no load).

Figure 4.24 Required Currents for the Ideal and Saturated cases(4.233kg).

Figure 4.25 Required Torques for the Ideal and Saturated cases(4.233 kg).

Figure 4.26 Total Angle Responses for the Ideal and Saturated cases(4.233kg).

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

1000000

The purpose of this research is to design a controller for a single-link flexible manipulator using the Equivalent Rigid Link System. The control algorithm is formulated calculating the required torque to control the desired angle of the end-position. Comparisons of the system responses and required torques were made in the different conditions.

The results indicate that system responses and required torques are related to the selected gain values for all loading conditions. The movements of the end-point with higher gain values are faster to achieve the desired position. For different desired positions with the same gain, the end-point movements have the same pattern. These results indicate that non-linear motion is compensated in the control algorithm.

The required torques are increasing to deliver the load and overcome the inertial forces during transient times as gain values are increasing. The system rapidly settles to the steady state. Because of no steady state error, the required torques at the steady state have same values for the same desired positions even though the gains are different.

The maximum of the required torques and required currents are related to the capacity of the electrohydraulic actuator. The selection of size of electrohydraulic actuator affects the weight and cost of the control system. Since more demand is being placed on robot control with higher speeds and smaller actuators, it is important to reduce the maximum required torques and required currents. The application of the planned input of the desired angle as a combination of ramp and step functions lead a noticeable reduction of the maximum required torques and required currents. However, slower movements of the end-point are yielded during the transient period. The maximum required torques and required currents can be adjusted by the slope of the ramp function.

The results also indicate that the system damping provides a noticeable reduction of the structural vibration.

In addition, when the electrohydraulic actuator is saturated, the movement of the end-point is slower than the ideal case without saturation. The simulation serves an

useful method to run the physical plant within the operating limit of the selected electrohydraulic actuator.

B. RECOMMENDATIONS

The long-term goal of this research is to design a controller being capable of achieving end effector positioning accuracy and stable movements. Simulation studies need to be continued for flexible multi-link system design using the ERLS model. In addition, the effects of the robustness and spillover problems need to be studied. Extention of the controller design and implementation to the multi-link of the ERLS model is eventually needed if the advantages of flexible manipulator is to be realized in practical industrial application.

APPENDIX A

DERIVATION OF THE EQUATIONS OF MOTION FOR THE SINGLE - LINK FLEXIBLE MANIPULATOR

The motion of the flexible link manipulator has been separated into large motions and small motions by the ERLS. The generalized coordinates are chosen to describe the large motions by the joint variable of ERLS and to describe the small motions by nodal displacements of link. The two generalized coordinates chosen are the rigid body rotation, θ , and the nodal displacement, U(0) which can be measured at the end of the link. The following are the two sets Lagrange equations used to develop the equations of motion;

$$d/dt\{ \partial KE/\partial \theta \} - \partial KE/\partial \theta + \partial PE/\partial \theta = F$$

$$d/dt\{ \partial KE/\partial U \} - \partial KE/\partial U + \partial PE/\partial U = 0$$

where

THE PRODUCTION STORY OF THE PROPERTY OF THE PR

KE - kinetic energy

PE - potential energy

θ - large motion joint variable measured between the ERLS link and the absolute x axis.

U - small motion displacement and slope

F - generalized force for large motion

The total kinetic energy is due to kinetic energy of the link motion $(KE)_L$ and that of the actuators $(KE)_a$;

$$KE = (KE)_{I} + (KE)_{a}$$

The actuator are much more rigid than the link, the actuator is treated as a rigid body and all kinetic energy terms are calculated separatly. Generalized forces include any applied force and damping forces. The expressions utilized for the determination of the kinetic energy of the system are as follows;

KE(arm) =
$$1/2 \int \mu \dot{R}^{\dagger} \{\dot{R}\} dv$$

arm
volume

KE(load) = 1/2 Trace
$$\int \mu_L \dot{R}_L^t \{\dot{R}_L\}$$
 dv load volume

KE(rotor) = 1.2 Trace
$$\int \mu_r \dot{R}_r^t \{\dot{R}_r\} dv$$

rotor
volume

The absolute position vector of the arm is determined from the following transformation;

$$R = W(r + D)$$

W = the 3 \times 3 transformation matrix of function of theta, θ , only.

r = the 3 × 1 local position vector of the arm measured from the coordinate system whose origin is the end of the ERLS link.

d = the 3 × 1 deformation vector that only includes the transverse displacement, derivation of this vector is discussed in chapter2.

 μ = the mass density of the steel arm.

The absolute position vector of load is determined from the following transformation;

 $R_L = W D_L r_L$

 D_L = the 3 × 3 transformation matrix due to the local deformation of the arm tip.

 r_L = the 3 × 1 local position vector for the load

 μ_{I} = mass density of the steel load

The absolute position vector of the hydraulic actuator is given by the following transformation;

 $R_R = A_R r_R$

 A_R = the 3 × 3 transformation matrix due to the large motion rotation of the rotor

 r_R = the 3 × 1 local position vector for the rotor

 μ_R = the mass density of the actuator rotor, aluminum

Potential energy of the flexible arm comes from strain energy $(PE)_g$ of the structure due to deformation and the gravitational energy $(PE)_g$ of the system. The strain energy is produced by bending, tortion and extention. Along modeling, the lateral shear deflections are neglected so that the system energy of bending is due to flexure only. The expressions used for the determination of potential energy are as followes;

$$PE_d = 1/2 \int E I_{ZZ} (v'')^2 dx$$

$$\lim_{length}$$

$$PE_{g} = -\int \mu r^{t} g dv$$

$$\lim_{volume}$$

$$PE_{gL} = -\int \mu_{L} r^{t} g dv$$

$$load$$
volume

where

E I_{ZZ} = the flexural rigidity in the z direction, perpendicular to the plane of motion

v = second derivative of the transverse displacement V with respect to the local x coordinate direction expressed in terms of V(0)

g = gravitational acceleration vector

The following definitions for the inertia terms are utilized to simplify the computations and the resultant expressions in the equations motion;

$$I_{L} = \text{ the 3} \times 3 \text{ inertia matrix of the load}$$

$$= \int \mu_{L} r_{L} r_{L}^{t} dv$$

$$= \begin{cases} load \\ volume \end{cases}$$

$$I_R$$
 = the 3 × 3 inertia matrix of the rotor
= $\int \mu_R r_R r_R^t dv$
rotor
volume

IIII(
$$W_{\theta}^{t}$$
, W_{θ}) = $\int \mu r^{t} W_{\theta}^{t} W_{\theta} r dv$

$$\lim_{volume}$$

III2(
$$W_{\theta}^{t}$$
, W) = $\int \mu r^{t} W_{\theta}^{t} W \Psi r dv$

$$\lim_{volume}$$

I121(W^t, W_{\theta}) =
$$\int \mu \Psi^t W_{\theta}^t W dv$$

$$\lim_{volume}$$

I122(W^t, W) =
$$\int \mu \Psi^t W^t W \Psi dv$$

$$\lim_{v \text{olume}}$$

I122(W^t,
$$\dot{W}_R$$
) = $\int \mu \Psi^t \dot{W}^t W_R \Psi dv$

$$\lim_{volume} V_{volume}$$

I122(
$$W_{\theta}^{t}$$
, \mathring{W}) = $\int \mu \Psi^{t} W_{\theta}^{t} \mathring{W} \Psi dv$

$$\lim_{v \text{olume}}$$

I122(
$$W_{\theta}^{t}$$
, W_{θ}) = $\int \mu \Psi^{t} W_{\theta}^{t} W_{\theta} \Psi dv$

$$\lim_{volume}$$

$$I_{yy} = \int \mu_L y^2 dv$$

$$I_{xx} = \int \mu_L x^2 dv$$

where

 Ψ = the 3 × 2 link shape matrix

 W_{θ} = derivative of the 3 × 3 matrix W with respect to the joint variable θ

 \ddot{W}_R = result of the simplification of the second time derivative of the transformation matrix W and is termed the residual acceleration.

The following definitions are utilized to simplify the computations and the expressions used for computer coding of the equations of motion;

$$K_{11} = \int \Gamma^{t} C \Gamma dx$$

$$\lim_{length}$$

$$H_{11} = \int \mu r^{t} dv$$

$$\lim_{volume}$$

$$H_{21} = \int \mu_l \ \Psi^t \ dv$$

$$\lim_{\substack{link \\ volume}}$$

$$H_{41} = \int \mu_L r_L^t dv$$

$$\lim_{volume}$$

 Γ = the second derivative of the shape function matrix

 $C = \text{the } 3 \times 3 \text{ flexural rigidity matrix including only } E I^{ZZ}$

The actual derivation of the equations of motion requires detailed, tedious substitution of the expressions for the kinetic energy and potential energy into the Lagrange equations, and the Lagrangian formulation yields two sets of equations, One set describes the large motions and the other set describes the small motions. These two sets of equations are non-linear, coupled, second - order, ordinary differential equations represented as follows;

$$M_{qq} \ddot{\theta} + M_{qn} \ddot{U} = F_q + TORQUE$$

$$M_{nq} \ddot{\theta} + M_{nn} \ddot{U} + K_n U = F_n$$

where

 $M_{qq} = 1 \times 1$ effective inertia matrix for large motions

 $M_{qn} = 1 \times 2$ coupled inertia matrix of the small motion effect on large motions

M_{nq} = 2 × 1 coupled inertia matrix of the large motion effect on small motions

 $M_{nn} = 2 \times 2$ effective inertia matrix for small motions

 $K_n = 2 \times 2$ stiffness matrix for small motions

 $F_q = 1 \times 1$ load vector for large motions

 $F_n = 2 \times 1$ load vector for small motions

θ = generalized coordinate of the large motions

U = 2 × 1 generalized coordinate of the deformations representing the small motions-the displacement and slope.

The coefficients for the terms are defined as follows;

$$\begin{split} & M_{qq} = IIII(W_{\theta}^{t}, W_{\theta}) + U^{t} II22(W_{\theta}^{t}, W_{\theta}) \ U \\ & + Trace (W_{\theta} D_{L} I_{L} D_{L}^{t} W_{\theta}^{t} + A_{R} I_{R} A_{R}^{t}) \end{split}$$

$$& M_{qn} = II12(W_{\theta}^{t}, W_{\theta}) + ((M_{L} L + M_{x}), (M_{x} L + I_{xx} + I_{yy})) \end{split}$$

$$& F_{q} = 2 U^{t} II22(W_{\theta}^{t}, W) U + H_{11} W_{\theta}^{t} + U^{t} H_{21} W_{\theta}^{t} g - Trace (W_{\theta} D_{L} I_{L} D_{L}^{t} W_{r}) + 2 W_{\theta} D_{L} I_{L} D_{L}^{t} W + A_{R} \theta I_{R} \ddot{A}_{R}^{t}) + H_{11} D_{L}^{t} W_{\theta} g + T \end{split}$$

$$& M_{nq} = (Trace (W_{\theta} D_{L} I_{L} D_{L11}^{t} W^{t}), Trace (W_{\theta} D_{L} I_{L} D_{L12}^{t} W^{t} + II21(W^{t}, W_{\theta})) \\ & M_{nn} = II22 (W^{t}, W) + M_{L} (\ddot{v}(0)) + (I_{xx} + I_{yy}) \times (\ddot{\phi}(0)) \\ & K_{n} = K^{11} + I122 (W^{t}, W_{R}) \\ & F_{n} = H_{21} W^{t} g - (Trace (W_{R} D_{L} I_{L} D_{L11} W^{t}), + 2 W D_{L} I_{L} D_{L11}^{t} W^{t}), Trace (W_{R} D_{L} I_{L} D_{L12}^{t} W^{t} + 2 W D_{L} I_{L} D_{L12}^{t} W^{t})) \\ & + H_{41} D_{L11}^{t} W^{t} g, H_{41} D_{L12}^{t} W^{t} g \end{split}$$

where

L = the arm length

 M_L = the mass of the load

 M_y = the first moment of the load with respect to the local y axis.

T = the externally applied torque

 A_{RR} = a result of simplification of the second time derivative of the transformation matrix A_R and is termed D_{12} residual acceleration.

 $A_R\theta$ = a derivative of A_R with respect to the joint variable theta.

 D_{L11} , D_{L12} = the derivatives of the arm tip deformation transformation matrix differentiated with respect to nodal deflection displacement and the nodal slope displacement respectively.

These expressions are coded and solved for in the computer program listed in Appendix B.

STATES STATES OF STATES OF

APPENDIX B SIMULATION PROGRAM

TTLE THESI9V(2.11kg)
DNST GKV=2.0, GKP=1.0,DEA=1.0
THESIS COPY TITLE CONST SIMULATION FOR DESIGN A CONTROL ALGORITHM THIS PROGRAM IS TO CALCULATE THE REQUIRED TORQUE AND REQUIRED CURRENT TO CONTROL THE END POSITION OF THE SINGLE- LINK ARM. THE ARM PARAMETERS ARE INPUTTED AND THE HYDRAULIC ACTUATION DYNAMICS ARE INCLUDED IN THE SIMULATION.

THE INPUTS OF THE SYSTEM ARE THE DESIRED ANGLE OF THE END OF ARM. THE OUTPUTS OF THE SYSTEM ARE THE TOTAL ANGLE, TOTAL ANGULAR VELOCITY, ANGULAR ACCELERATION WHICH ARE FED BACK TO THE CONTROLLER. THE CODING CONSISTS OF A MAIN PROGRAM AND SUBROUTINES AND ARE DESCRIBED BELOW. THE FOLLOWING PARAMETERS ARE DEFINED:
1.A-EFFECTIVE CROSS-SECTIONAL AREA OF FLEXIBLE ARM
2.ARRDD-3X3 SECOND TIME DERIVATIVE OF ROTOR RESIDUAL ACCELERATION MATRIX 3.ARTH-3X3 ROTOR TRANSFORMATION MATRIX DIFFERENTIATED WITH RESPECT TO THETA 4.BE-EFFECTIVE BULK MODULUS OF FLUID
5.BIGF-2X1 RIGHT-HAND SIDE VECTOR FOR LARGE AND SMALL MOTION
ACCELERATIONS 6.BIGM-2X2 MATRIX OF LARGE AND SMALL MOTION ACCELERATION COEFFICIENTS 6.BIGM-2XZ MATRIX OF LARGE AND SMALL MOTION ACCELERATION
COEFFICIENTS
7.CTM-TOTAL LEAKAGE COEFFICIENT OF THE ACTUATOR
8.DEFM-DISPLACEMENT DEFORMATION VARIABLE
9.DEFMD-TIME DERIVATIVE OF DISPLACEMENT DEFORMATION VARIABLE
10.DIFF, OERR, OERR1, FACTOR-DUMMY VARIABLES
11.DL1-3X3 DEFORMATION MATRIX
12.DL11-3X3 DEFORMATION MATRIX DIFFERENTIATED WITH RESPECT TO THE DISPLACEMENT DEFORMATION VARIABLE
13.DL1D-3X3 FIRST TIME DERIVATIVE OF DEFORMATION MATRIX
14.DM-ACTUATOR DISPLACEMENT
15.E-MODULUS OF ELASTICITY OF STEEL
16.FN- RIGHT-HAND SIDE FOR SMALL MOTION ACCELERATIONS
17.FQ-RIGHT-HAND SIDE FOR LARGE MOTION ACCELERATIONS
18.G-3X1 GRAVITATIONAL ACCELERATION VECTOR
19.H11-1X3 LINK FIRST MOMENT OF INERTIA VECTOR
20.H21-1X3 LINK SHAPE MATRIX FIRST MOMENT OF INERTIAVECTOR
21.H41-1X3 LOAD FIRST MOMENT OF INERTIA VECTOR
22.KCE-TOTAL FLOW PRESSURE COEFFICIENT
23.PL-LOAD HYDRAULIC PRESSURE DROP
24.PS-HYDRAULIC SUPPLY PRESSURE
25.OL-FLOW DELIVERED FROM THE SERVOVALVE
26.SOL-2XI VECTOR OF LARGE AND SMALL MOTION ACCELERATIONS
27.TE-TORQUE EFFICIENCY
28.TH-13DGE MOTION DOSITION WARDIBLE 27.TE-TORQUE EFFICIENC 27.TE-TORQUE EFFICIENCY
28.TH-LARGE MOTION POSITION VARIABLE
29.THD-TIME DERIVATIVE OF LARGE MOTION VARIABLE
30.TORQUE-APPLIED TORQUE BY ACTUATOR
31.U-2X1 ARM TIP DEFORMATION OF DISPLACEMENT
32.UD-ARM TIP DEFORMATION DIFFERENTIATED WITH RESPECT TO TIME
33.VT-TOTAL COMPRESSED VOLUME INCLUDING ACTUATOR LINES AND CHAMBERS
34.W-3X3 LINK TRANSFORMATION MATRIX
35.WD-3X3 FIRST TIME DERIVATIVE OF LINK TRANSFORMATION MATRIX
36.WRDD-3X3 SECOND TIME DERIVATIVE OF LINK RESIDUAL ACCELERATION

MATRIX

```
37.WTH-3X3 TRANSFORMATION MATRIX DIFFERENTIATED WITH RESPECT TO
                     THETA
               38.XIFRAC-VARIABLE FRACTIONAL AMOUNT OF INPUT CURRENT TO SERVO-
                        VALVE
              39.XIINP-CURRENT INPUT EQUAL TO INITIAL AND FRACTIONAL AMOUNTS
40.XIL-3X3 INERTIA MATRIX OF THE LOAD
41.XIO-INITIAL INPUT CURRENT TO SERVOVALVE
42.XIR-3X3 ROTOR INERTIA MATRIX
43.XK11- PARTIAL LINK STIFFNESS
44.XKN- LINK STIFFNESS
45.XKV-SERVOVALVE SIZING CONSTANT
             45.XKV-SERVOVALVE SIZING CONSTANT
46.XLL-LENGTH OF FLEXIBLE ARM
47.XML-MASS OF LOAD
48.XMNN-COEFFICIENT OF SMALL MOTION ACCELERATIONS IN THE SMALL MOTION DYNAMIC EQUATIONS
49.XMNO- COEFFICIENT OF LARGE MOTION ACCELERATIONS IN THE SMALL MOTION DYNAMIC EQUATIONS
50.XMON- COEFFICIENT OF SMALL MOTION ACCELERATIONS IN THE LARGE MOTION DYNAMICS EQUATION
51.XMOQ-COEFFICIENT OF LARGE MOTION ACCELERATION IN THE LARGE MOTION DYNAMICS EQUATION
52.XMOQP- DUMMY MATRIX FOR USE IN FORMULATING THE EQUATIONS OF MOTION
53.XMR-MASS OF ACTUATOR ROTOR
              53.XMR-MASS OF ACTUATOR ROTOR
54.XMU-MASS DENSITY OF STEEL FLEXIBLE ARM
55.XMX-FIRST MOMENT OF LOAD WITH RESPECT TO THE LOCAL COORDINATE
               Y AXIS
56.ZI-AREA MOMENT OF INERTIA OF FLEXIBLE ARM
              57.TAg- TOTAL total angle
58.TAG1- TOTAL ANGULAR VELOCITY
59.TAG2- TOTAL ANGULAR ACCELERATION
              60.RETO- REQUIRED TORQUE
61.REIC -REQUIRED CURRENT
INITIAL
                           INITIAL VALUES OF PARAMETERS ARE INPUTTED VIA XINIT SUBROUTINE
             DIMENSION U( 1), XMOO(1), XMOOP(1 ), DL1(3,3), WTH(3,3), ARTH(3,3), #XIR(3,3), XMON(1 ), UD(1 ), HI1(1,3), G(3,1), H21(1,3), #WRDD(3,3), DL1D(3,3), WD(3,3), ARRDD(3,3), H41(1,3), XK11(1 ), #XMNO(1 ), W(3,3), XMNN(1 ), XKN(1 ), FN(1 ), BIGM(2,2), #BIGF(2,1), XIL(3,3), DL11(3,3), DEFMD(1), SOL(2), THD(1), #A(1), E(1), ZI(1), FO(1), GPOS(3), XITH(1), #XMU(1), XLL(1), XML(1), XMR(1), XMX(1), TH(1), TORQUE(1), DEFM(1), #PS(1), CTM(1), VT(1), BE(1), DM(1), XKV(1), TE(1), #PS(1), CTM(1), VII, XIINP(1), OERR1(1), QERR(1), FACTOR(1), #rEIC(1), rETO(1), FTT(1), CTB(1), FCO(1), DIF(1), DEPL(1)

D I
D
FIXED
NOSORT
                  COMMON/FCDATA/C1,C2, A1P,A2P,BETA1,BETA2
                     C1=0.515462194
C2=-0.205906794
A1P=1.362220557
A2P=0.981867539
                      BETA1=1.877920950
                      BETA2=4.701142847
                      CALL XINIT(TH.THD.DEFM.DEFMD , VO, POSO, A, XML, XMU, ... XLL, XMR, E, ZI, PS , CTM, VT, BE, DM, XKV, TE, QL, ... PL, PLIC, REIC)
DERIVATIVE
                           COEFFICIENTS FOR BOTH LARGE AND SMALL MOTION ACCELERATIONS AND THE RIGHT-HAND SIDES ARE COMPUTED IN THE FOLLOWING SUBROUTINES. ALSO, THE HYDRAULIC DYNAMICS ARE INCLUDED IN THE MAIN PROGRAM.
```

STATES STATES VANDONIAL VANDONIA POSTINGO

```
NOSORT
           HYDRAULIC DYNAMICS
       XIINP(1)=DEIC(1)
IF(PL(1).GT.PS(1)) GO TO 2
GO TO 3
PL(1)=PS(1)
QERR1(1)=(XIINP(1)*XKV(1)*DSQRT(PS(1)-PL(1)))-(DM(1)*THD(1))
QERR(1)=QERR1(1)/CTM(1)
DIFF(1)=QERR(1)-PL(1)
FACTOR(1)=VT(1)/(4.0D0*BE(1)*CTM(1))
DIFF1(1)=DIFF(1)
 2
SORT
         PL1=INTGRL(PLIC,DIFF1,1)
NOSORT
         PL(1)=PL1(1)/FACTOR(1)
TORQUE(1)=TE(1)*PL(1)*DM(1)
       MATRIX AND VECTOR FORMULATION SUBROUTINE
         CALL FORM(W,WTH,WD,DL1,DL1D,XIL.XIR,ARTH,WRDD,ARRDD,U,UD,... XMOOP,G,H11,H21,DL11 ,H41,XK11,A,XMU,XML,XLL,TH,THD,... DEFM,DEFMD ,E,ZI,XMR,XMX )
       COEFFICIENT OF LARGE MOTION ACCELERATION IN LARGE MOTION DYNAMICS
*
       EQUATION SUBROUTINE
         CALL XLMMQQ(XMQQ,U,XMQQP,DL1,WTH,ARTH,XIL,XIR,A,XMU,TH,DEFM
       COEFFICIENTS OF SMALL MOTION ACCELERATIONS IN LARGE MOTION DYNAMICS
       EQUATION SUBROUTINE
         CALL XLMMON(XMON, A, XMU, XML, XLL, XMX, DEFM)
       RIGHT-HAND SIDE FOR LARGE MOTION DYNAMICS EQUATION SUBROUTINE
        CALL XLMFQ(FQ,U,XMQQP,DL1,WTH,ARTH,XIL,XIR,UD,H11,G,H21,WRDD,...DL1D,WD,ARRDD,H41,TH,THD,DEFM,DEFMD,A,XMU,XML,XLL,...TORQUE,FTT)
       LINK STIFFNESS MATRIX SUBROUTINE
         CALL SMKN(XKN, XK11, XMQQP, A, XMU, THD)
       COEFFICIENTS OF LARGE MOTION ACCELERATION IN SMALL MOTION
       DYNAMICS EQUATIONS SUBROUTINE
                                                                              A,XMU,...
         CALL SMMNQ(XMNQ, DL1, WTH, XIL, DL11
                                                         ,W,TH,DEFM,
       RIGHT-HAND SIDE OF SMALL MOTION DYNAMICS EQUATIONS SUBROUTINE
         CALL SMFN(FN, H21, W, G, WRDD, DL1, XIL, DL11,
                                                                  WD, DL1D, H41, TH, ...
         THD, DEFM, DEFMD)
        COEFFICIENTS OF SMALL MOTION ACCELERATIONS IN SMALL MOTION DYNAMICS
       EQUATIONS SUBROUTINE
         CALL SMMNN(XMNN, XMQQP, XML, A, XMU)
       ACCELERATION COEFFICIENTS MATRIX AND RIGHT-HAND SIDE VECTOR
       FORMULATION SUBROUTINE
         CALL BIGFOR(BIGM, BIGF, XMQQ, XMQN, FQ, XMNQ, XMNN, XKN, FN, U, DEFMD)
       LINEAR EQUATION SOLVER FOR ACCELERATIONS SUBROUTINE
         CALL XLEQ(BIGM, BIGF, SOL)
```

```
INTEGRATE ACCELERATIONS AND THEN VELOCITY TO GET LARGE MOTION
           ANGULAR POSITION AND SMALL MOTION, LOCAL COORDINATE, TIP POSITION
            DO 5 I=1,2
SOL1(I)=SOL(I)
CONTINUE
SORT
             VEL=INTGRL(VO,SOL1,2)
NOSORT
             THD(1)=VEL(1)
DEFMD(1)=VEL(2)
DO 10 I=1,2
VEL1(1)=VEL(I)
           CONTINUE
    10
SORT
             POS=INTGRL(POSO, VEL1, 2)
NOSORT
             TH(1)=POS(1)
                       ANG-TH(1)
CUR=XIINP(1)
            DEFM(1)=POS(2)
AC1=SOL1(1)
AC2=SOL1(2)
            VE1=VEL(1)
VE2=VEL(2)
PO1=POS(1)
             PO2=POS(2)
           ANGULAR ACCELERATION, VELOCITY, ANGLE.
             TAG2=AC1+AC2/0.9985D0
TAG1=VE1+VE2/0.9985D0
TAG =PO1 +PO2/0.9985D0
           COEFFICIENT OF THE CONTROL ALGORITHM CALL CCO(XMOQ,XMON,XMNN,XMNQ,FTT,FN,XKN,... DEFM,CTB,FCO, DEFMD)
           CALCULATE THE REQUIRED TORQUE
             CALL REQTO(RETO, CTB, TAG1, TAG, FCO, GKV, GKP, DEA)
           INVERSE HYDRAUIC DYNAMIC
           CALCULATE THE REQUIRED CURRENT
             CALL REC(RETO,PL,TE,DM,VT,THD,PS,CTM,XKV,REIC,BE)
TORK=DETO(1)
CU=DEIC(1)
TERMINAL
METHOD ADAMS
PRINT 12.0E-3, TAG ,TORK ,CU
SAVE 6.0E-3,TAG
CONTROL FINTIM=5.000 ,DELT=0.006
PARAM GKV=4.0 ,GKP=4.0
END
           GKV=8.0,GKP=16.0

(G1.DE=TEK618) TIME(UN=SEC),TORK

(G1.DE=TEK618) TIME(UN=SEC),TAG

(G2.DE=TEK618) TIME(UN=SEC),TAG

(G2.LOAD=2.1151 KG

(G3.DE=TEK618)TIME,CU

(G3.LOAD=2.1151 KG

(G4.DE=TEK618) TIME,TAG1

(G4.LOAD=2.1151 KG

(G5.DE=TEK618) TIME,TAG2

(G5.DE=TEK618) TIME,TAG2

(G5.LOAD=2.1151 KG
PARAM
GRAPH
LABEL
GRAPH
LABEL
GRAPH
LABEL
GRAPH
LABEL
GRAPH
```

CLUSTICAL PRODUCCION NEROCOCCON NECESTRALISMO POR PORTO

```
END
STOP
           LISTING OF SUBROUTINES
FORTRAN
             SUBROUTINE XINIT(TH,THD,DEFM,DEFMD,VO,POSO,A,ML,MU,LL,

#MR,E,ZI,PS,CTM,VT,BE,DM,KV,TE,QL,PL,PLIC,REIC)

REAL*8 VO(2),POSO(2),ML,MU,LL,MR,TH,THD,DEFM,DEFMD,

#A,E,ZI,ITORQ,PS,CTM,VT,BE,DM,KV,TE,QL,PL,PLIC,

#C1,C2,AP1,AP2,BETA1,BETA2,rEIC,

#DEPL,DEQ,DI,DEFP,DEIC1,DEIC2
                ITORQ= 44.554950510000000
DM=6.2271D-05
TE=.90000000000000
PL=ITORQ/(DM*TE)
                PLIC=PL
CTM=3.7064772D-13
QL=CTM*PL
RV=2.402963D-09
PS=1.37888D+07
VT=3.05127D-04
                BE=690.D6
A=6.17795D-04
                MR=9.00011451000000
                 E=2.0D11
                THD=VO(1)
DEFM=POSO(2)
DEFMD=VO(2)
                 REIC=4.0
                 RETURN
                 END
                DOUBLE PRECISION FUNCTION ONE(X)
REAL*8 C1,C2, A1P,A2P,BETA1,BETA2
COMMON/FCDATA/C1,C2 ,A1P,A2P,BETA1,BETA2
                                                                 C1*(A1P*(COS(BETA1*X)+COSH
(BETA1*X))+(SIN(BETA1*X)+SINH(BETA1*X)))+
C2*(A2P*(COS(BETA2*X)+COSH(BETA2*X))+
(SIN(BETA2*X)+SINH(BETA2*X)))
                 ONE=
                 RETURN
                 END
C
                 DOUBLE PRECISION FUNCTION TWO(X)
REAL*8 C1,C2, A1P,A2P,BETA1,BETA2
COMMON/FCDATA/C1,C2, A1P,A2P,BETA1,BETA2
                                                                 (C1*(A1P*(COS(BETA1*X)+COSH
(BETA1*X))+(SIN(BETA1*X)+SINH(BETA1*X)))+
C2*(A2P*(COS(BETA2*X)+COSH(BETA2*X))+
(SIN(BETA2*X)+SINH(BETA2*X))))**2
                 RETURN
                 END
DOUBLE PRECISION FUNCTION SIX(X)
REAL*8 C1,C2, A1P,A2P,BETA1,BETA2
COMMON/FCDATA/C1,C2, A1P,A2P,BETA1,BETA2
                 END
```

CONTRACTOR OF STREET

```
.9985*(C1*(A1P*(COS(BETA1*X)+COSH
(BETA1*X))+(SIN(BETA1*X)+SINH(BETA1*X)))+
C2*(A2P*(COS(BETA2*X)+COSH(BETA2*X))+
(SIN(BETA2*X)+SINH(BETA2*X)))+
X*(C1*(A1P*(COS(BETA1*X)+COSH
(BETA1*X))+(SIN(BETA1*X)+SINH(BETA1*X)))+
C2*(A2P*(COS(BETA2*X)+COSH(BETA2*X))+
(SIN(BETA2*X)+SINH(BETA2*X)))
   SIX=
 ####
   RETURN
   END
   DOUBLE PRECISION FUNCTION EIGHT(X)
   REAL*8 C1,C2, A
COMMON/FCDATA/C1,C2,
                                           A1P, A2P, BETA1, BETA2
                                                          A1P, A2P, BETA1, BETA2
                      (C1*BETA1*BETA1*(A1P*(-COS
(BETA1*X)+COSH(BETA1*X))+(-SIN(BETA1*X)+SINH(BETA1*X))
C2*BETA2*BETA2*(A2P*(-COS(BETA2*X)+COSH(BETA2*X))
(-SIN(BETA2*X)+SINH(BETA2*X))))*
    EIGHT=
   RETURN
    END
```

Section 1

22223

```
UD = DEFMD
CALL DQG4(-LL,0.D0,TW0,Y)
```

```
CONTINUE
     CONTINUE
       RETURN
         END
       SUBROUTINE XLMMQQ(MQQ,U,XMQQP,DL1,WTH,ARTH,XIL,XIR,A,MU,TH,DEFM)
REAL*8 MQQ,UT,P,DL1T(3,3),WTH(3,3),ARTHT(3,3),P1(3,3)
REAL*8 P2(3,3),P3(3,3),P4(3,3),P5(3,3),P6(3,3),P7(3,3),MU
REAL*8 U,XMQQP,DL1(3,3),WTH(3,3),ARTH(3,3),XIL(3,3)
REAL*8 XIR(3,3),A,TH,DEFM ,SP,TP
         M=2
         L=1
     N=3
MOQ=0.000000000000000
CALL TRANS(U,UT,L,L)
CALL MATMUL(UT,XMQOP,L,L,L,P)
CALL MATMUL(P,U,L,L,L,SP)
CALL TRANS(DL1,DL1T,N,N)
CALL TRANS(ARTH,ARTHT,N,N)
CALL TRANS(WTH,WTHT,N,N)
CALL MATMUL(WTH,DL1,N,N,N,P1)
CALL MATMUL(P1,XIL,N,N,N,P2)
CALL MATMUL(P2,DL1T,N,N,N,P3)
CALL MATMUL(P3,WTHT,N,N,N,P4)
CALL MATMUL(P3,WTHT,N,N,N,P4)
CALL MATMUL(ARTH,XIR,N,N,N,P5)
CALL MATMUL(ARTH,XIR,N,N,N,P6)
CALL MATMUL(P5,ARTHT,N,N,N,P6)
CALL MATADD(P4,P6,N,N,P7)
CALL TRACE(P7,N,TP)
MOQ=((1./3.)*A*MU) + (A*MU*SP) + TP
RETURN
END
        N=3
     SUBROUTINE XLMMQN(XMQN,A,MU,ML,LL,MX

REAL*8 XMQN ,MU,ML,LL,MX,A, DEFM

REAL*8 C1,A1P,BETA1,Y,SIX ,C2,A2P,BETA2

EXTERNAL SIX

CALL DQG4(-LL,0.D0,SIX ,Y)

XMQN = (A*MU*Y)+(ML*LL)+MX
                                                                                                                                                                                                                    , DEFM
       XMON
RETURN
       END
SUBROUTINE XLMFQ(FO,U,XMQQP,DL1,WTH,ARTH,XIL,XIR,UD,H11,G,H21,#WRDD,DL1D,WD,ARRDD,H41,TH,THD,DEFM,DEFMD,A,MU,ML,LL,#TORQUE,FTT)

REAL*8 FOP,P ,P1(1,3),P2(1,3),P3(1,3),P4(3,3),P5(3,3)

REAL*8 P6(3,3),P7(3,3),P8(3,3),P9(3,3),P10(3,3),P11(1,3),P12(1,3)

REAL*8 FPFH(3,3),FHP(3,3),FPT(3,3),DL1DT(3,3),WDT(3,3),ARRDDT(3,3)

REAL*8 UT,DL1T(3,3),WRDDT(3,3),FPF(3,3),FPS(3,3),WTHT(3,3)

REAL*8 U,XMQQP,DL1(3,3),WTH(3,3),ARTH(3,3),XIL(3,3)

REAL*8 XIR(3,3),UD,H11(1,3),G(3,1),H21(1,3),WRDD(3,3)

REAL*8 DL1D(3,3),WD(3,3),ARRDD(3,3),H41(1,3),MU,LL,ML

REAL*8 FP,SP,TP,TFP,FTHP,FTT

M=2
```

25555550 VESTSTEE

```
L=1
N=3
CALL TRANS(U,UT,L,L)
FOP=XMOOP *THD
CALL MATMUL(UT,FQP,L,L,L,P)
CALL MATMUL(P,UD,L,L,L,FP)
CALL TRANS(WTH,WTHT,N,N)
CALL MATMUL(H11,WTHT,L,N,N,P1)
CALL MATMUL(P1,G,L,N,L,SP)
CALL MATMUL(P2,WTHT,L,N,N,P3)
CALL MATMUL(P2,WTHT,L,N,N,P3)
CALL MATMUL(P3,G,L,N,L,TP)
CALL TRANS(URDD,WRDDT,N,N)
CALL TRANS(WRDD,WRDDT,N,N)
CALL MATMUL(P4,XIL,N,N,N,P4)
CALL MATMUL(P5,DLIT,N,N,N,P5)
CALL MATMUL(P6,WRDDT,N,N,N,FFF)
CALL TRANS(DLID,DLIDT,N,N)
CALL TRANS(DLID,DLIDT,N,N)
CALL TRANS(DLID,DLIDT,N,N)
CALL TRANS(DLID,DLIDT,N,N)
CALL MATMUL(P7,XIL,N,N,N,P7)
CALL MATMUL(P7,XIL,N,N,N,P8)
CALL MATMUL(P8,DLIDT,N,N,N,P9)
CALL MATMUL(P9,WDT,N,N,N,P9)
CALL MATMUL(P9,WDT,N,N,N,P9)
CALL TRANS(ARRDD,ARRDDT,N,N)
CALL TRANS(ARRDD,ARRDDT,N,N,N,P10)
CALL MATMUL(P10,ARRDDT,N,N,N,PTT)
DO 30 I=1,3
DO 40 J=1,3
  N=3
    DO 30 I=1,3
DO 40 J=1,3
FPS(I,J)=FPS(I,J)*2.
CONTINUE
 CONTINUE
  CONTINUE

CALL MATADD(FPF, FPS, N, N, FPFH)

CALL MATADD(FPFH, FPT, N, N, FHP)

CALL TRACE(FHP, N, TFP)

CALL MATMUL(H41, DL1T, L, N, N, P11)

CALL MATMUL(P11, WTHT, L, N, N, P12)

CALL MATMUL(P12, G, L, N, L, FTHP)

FTT=(-2.*A*MU*FP) + SP + TP - TFP + FTHP

FQ=FTT+TORQUE

RETURN

FND
     END
    SUBROUTINE SMKN(XKN,XK11,XMQQP,A,MU,THD)
REAL*8 XKN,KNP,XMQQP,XK11,A,THD,MU
KNP =XMQQP *(-A)*MU*(THD**2)
XKN =KNP +XK11
      RETURN
      END
      SUBROUTINE SMMNQ(XMNQ,DL1,WTH,XIL,DL11,W,TH,DEFM,A,MU,
#LL)
     REAL*8 XMNO ,DL11T(3,3),WT(3,3),P1(3,3),P2(3,3)
REAL*8 P3(3,3),P4(3,3),DL1(3,3),WTH(3,3),XIL(3,3)
REAL*8 W(3,3),DL11(3,3),TH,DEFM ,A,MU,LL
REAL*8 C1,A1P,BETA1
REAL*8 SIX,Y ,C2,A2P,BETA2
EXTERNAL SIX
      M=2
        L=1
       N=3
      CALL TRANS(DL11,DL11T,N,N)
CALL TRANS(W,WT,N,N)
CALL MATMUL(WTH,DL1,N,N,N,P1)
CALL MATMUL(P1,XIL,N,N,N,P2)
CALL MATMUL(P2,DL11T,N,N,N,P3)
```

L=1

oced Dississional Described Described Described

 $\langle \psi_i, \psi_i \rangle$, $\langle \psi_i, \psi_i \rangle$

```
CALL MATMUL(P3,WT,N,N,N,P4)
CALL TRACE(P4,N,TFP1)
CALL DOG4(-LL,0.D0,SIX ,Y)
XMNQ =TFP1 + (Y*A*MU)
RETURN
               END
          SUBROUTINE SMFN(FN,H21,W,G,WRDD,DL1,XIL,DL11, WD,DL1D #THD,DEFM,DEFMD)

REAL*8 FN,P1(1,3),P2(3,3),P3(3,3),P4(3,3),P5(3,3),P6(3,3)

REAL*8 P7(3,3),P8(3,3),P9(3,3)

REAL*8 P14(1,3),P15(1,3),TP,FP,SP

REAL*8 FN1(3,3),G(3,1),H21(1,3),WRDD(3,3),DL1D(3,3)

REAL*8 WD(3,3),H41(1,3),XIL(3,3),W(3,3),DL11(3,3)

REAL*8 DL1(3,3),DL11T(3,3),WT(3,3)

REAL*8 TH,THD,DEFM,DEFMD,TFN1,FN3
               M=2
                L=1
           N=3
CALL TRANS(W,WT,N,N)
CALL MATMUL(H21,WT,L,N,N,P1)
CALL MATMUL(P1,G,L,N,L,FP)
CALL TRANS(DL11,DL11T,N,N)
CALL MATMUL(WRDD,DL1,N,N,N,P2)
CALL MATMUL(P2,XIL,N,N,N,P3)
CALL MATMUL(P3,DL11T,N,N,N,P4)
CALL MATMUL(P4,WT,N,N,N,P5)
CALL MATMUL(WD,DL1D,N,N,N,P6)
CALL MATMUL(WD,DL1D,N,N,N,P7)
CALL MATMUL(P6,XIL,N,N,N,P7)
CALL MATMUL(P7,DL11T,N,N,N,P8)
CALL MATMUL(P8,WT,N,N,N,P9)
DO 10 I=1,3
DO 20 J=1,3
P9(I,J)= P9(I,J)*2.
CONTINUE
                N=3
             CONTINUE
               CALL MATADD(P5,P9,N,N,FN1)
CALL TRACE(FN1,N,TFN1)
SP =TFN1
CALL MATMUL(H41,DL11T,L,N,N,P14)
CALL MATMUL(P14,WT,L,N,N,P15)
CALL MATMUL(P15,G,L,N,L,FN3)
                 TP =FN3
                FN=FP -SP + TP
                RETURN
                END
                 SUBROUTINE SMMNN(XMNN, XMQQP, ML, A, MU
                REAL*8 XMNN, XMQQP , ML, MU, A
XMNN =ML
                 XMNN =XMNN + XMQQP *A*MU
                RETURN
                END
                SUBROUTINE MATMUL(A,B,M,L,N,C)
REAL*8 A(M,L),B(L,N),C(M,N)
DO 10 I=1,M
DO 20 J=1,N
C(I,J)=0.0
DO 30 INDEX=1,L
             DO 30 INDEX=1,L
C(I,J)=C(I,J) + A(I,INDEX)*B(INDEX,J)
CONTINUE
30
20
              CONTINUE
             CONTINUE
```

THE PROPERTY OF THE PROPERTY PROPERTY STATES OF THE PROPERTY STATES OF THE PROPERTY OF THE PRO

```
RETURN
             END
           SUBROUTINE TRANS(A,B,M,L)
REAL*8 A(M,L),B(L,M)
DO 10 I=1,M
DO 20 J=1,L
B(J,I)=A(I,J)
CONTINUE
CONTINUE
DETUNN
20
             RETURN
             END
             SUBROUTINE TRACE (A, M, TRAC)
           REAL*8 A(M,M)
TRAC=0.0
DO 10 I=1,M
TRAC=TRAC + A(I,I)
CONTINUE
             RETURN
             END
          MATRIX ADDITION SUBROUTINE
           SUBROUTINE MATADD(A,B,M,L,C)
REAL*8 A(M,L),B(M,L),C(M,L)
DO 10 I=1,M
DO 20 J=1,L
C(I,J)=A(I,J) + B(I,J)
CONTINUE
20
           CONTINUE
RETURN
10
             END
             SUBROUTINE BIGFOR(BIGM, BIGF, MOQ, XMQN, FQ, XMNQ, XMNN, XKN, FN, U, DEFMD)
REAL*8 BIGM(2,2), BIGF(2,1), XMQN , XMNQ , XMNN , XKN
REAL*8 FN , U , MQQ, P , FQ, DEFMD , FQ, DEFMD
             M=2
             L=1
            L=1
BIGM(1,1)=MQQ
BIGM(1,2)=XMQN
BIGM(2,1)=XMNQ
BIGM(2,2)=XMNN
BIGF(1,1)=FQ
CALL MATMUL(XKN,U,L,L,L,P)
BIGF(2,1)=FN -P
RETURN
END
             SUBROUTINE XLEQ(BIGM, BIGF, SOL)
REAL*8 BIGM(2,2), BIGF(2,1), SOL(2), WKAREA(18)
             M=1
             N=2
           CALL LEGT2F (BIGM,M,N,N,BIGF,M,WKAREA,IER)
DO 10 I=1,2
SOL(I)=BIGF(I,1)
CONTINUE
             RETURN
END
      SUBROUTINE LEQT2F (IMSL)
```

```
- LINEAR EQUATION SOLUTION - FULL STORAGE MODE - HIGH ACCURACY SOLUTION
PURPOSE
USAGE
                                                   - CALL LEOT2F (A,M,N,IA,B,IDGT,WKAREA,IER)
ARGUMENTS
                                                   - INPUT MATRIX OF DIMENSION N BY N CONTAINING
                                                             THE COEFFICIENT MATRIX OF THE EQUATION
                                                             AX = B
                                                  AX = B.

- NUMBER OF RIGHT-HAND SIDES. (INPUT)

- ORDER OF A AND NUMBER OF ROWS IN B. (INPUT)

- ROW DIMENSION OF A AND B EXACTLY AS SPECIFIED IN THE DIMENSION STATEMENT IN THE CALLING PROGRAM. (INPUT)

- INPUT MATRIX OF DIMENSION N BY M CONTAINING THE RIGHT-HAND SIDES OF THE EQUATION AX = B. ON OUTPUT, THE N BY M MATRIX OF SOLUTIONS
                                 IA
                                 В
                                                             REPLACES B.
                                                  REPLACES B.

- INPUT OPTION.

IF IDGT IS GREATER THAN 0, THE ELEMENTS OF
A AND B ARE ASSUMED TO BE CORRECT TO IDGT
DECIMAL DIGITS AND THE ROUTINE PERFORMS
AN ACCURACY TEST.

IF IDGT EQUALS 0, THE ACCURACY TEST IS
BYPASSED.
ON OUTPUT IDGT CONTAINS THE APPROXIMATE
                                 IDGT
                                ON OUTPUT, IDGT CONTAINS THE APPROXIMATE
NUMBER OF DIGITS IN THE ANSWER WHICH
WERE UNCHANGED AFTER IMPROVEMENT.
WKAREA - WORK AREA OF DIMENSION GREATER THAN OR EQUAL
TO N**2+3N.
                                                   - ERROR PARAMETER. (OUTPUT)
                                 IER
                                                       ERROR PARAMETER. (OUTPUT)
WARNING ERROR
IER = 34 INDICATES THAT THE ACCURACY TEST
FAILED. THE COMPUTED SOLUTION MAY BE IN
ERROR BY MORE THAN CAN BE ACCOUNTED FOR
BY THE UNCERTAINTY OF THE DATA. THIS
WARNING CAN BE PRODUCED ONLY IF IDGT IS
GREATER THAN 0 ON INPUT. (SEE THE
CHAPTER L PRELUDE FOR FURTHER DISCUSSION.)
                                                        TERMINAL ERROR
                                                            IRMINAL ERROR

IER = 129 INDICATES THAT THE MATRIX IS

ALGORITHMICALLY SINGULAR. (SEE THE

CHAPTER L PRELUDE).

IER = 131 INDICATES THAT THE MATRIX IS TOO

ILL-CONDITIONED FOR ITERATIVE IMPROVEMENT
                                                                  TO BE EFFECTIVE
REQD. IMSL ROUTINES - SINGLE/LUDATN, LUELMN, LUREFN, UERTST, UGETIO - DOUBLE/LUDATN, LUELMN, LUREFN, UERTST, UGETIO, VXADD, VXMUL, VXSTO
        SUBROUTINE LEQT2F (A,M,N,IA,B,IDGT,WKAREA,IER)
                                                        A(IA,1),B(IA,1),WKAREA(1)
A,B,WKAREA,D1,D2,WA
FIRST EXECUTABLE STATEMENT
        DIMENSION
        DOUBLE PRECISION
                                                                               INITIALIZE IER
        IER=0
        JER=0
         J = N*N+1
        K = J+N
        MM = K+N
KK = 0
        MM1 = MM-1
         JJ=1
                 5 L=1,N
DO 5 I=1,N
                          WKAREA(JJ)=A(I,L)
                           JJ=JJ+ĺ
  5 CONTINUE
                                                                               DECOMPOSE A
```

عناها ومحمده في الأمام مندن

```
WA, IER)

IF (IER.GT.128) GO TO 25

IF (IDGT .EQ. 0 .OR. IER .NE. 0) KK = 1

DO 15 I = 1,M
         CALL LUDATN (WKAREA, N, N, A, IA, IDGT, D1, D2, WKAREA(J), WKAREA(K),
                                                PERFORMS THE ELIMINATION PART OF
                                                AX = B
              CALL LUELMN (A, IA, N, B(1, I), WKAREA(J), WKAREA(MM))
REFINEMENT OF SOLUTION TO AX = B
             B(II,I) = WKAREA(MM1+II)
             CONTINUE
     10
    IF (JER.NE.0) GO TO 20
15 CONTINUE
     GO TO 25
20 IER = 131
     25 JJ=1
         DO 30 J = 1,N

DO 30 I = 1,N

A(I,J)=WKAREA(JJ)

JJ=JJ+1
     30 CONTINUE
 IF (IER .EQ. 0) GO TO 9005
9000 CONTINUE
         CALL UERTST (IER, 6HLEQT2F)
 9005 RETURN
         END
ź
*
            SUBROUTINE DOG4 (IMSL SUBROUTINE)
*
                TO COMPUTE INTEGRAL (FCT (X), SUMMED OVER X FROM XL TO XU)
            USAGE
            CALL DOG4 (XL,XU,FCT,Y)
PARAMETER FCT REQUIRES AN EXTERNAL STATEMENT
DESCRIPTION OF PARAMETERS
                          - DOUBLE PRECISION LOWER BOUND OF THE INTERVAL.
- DOUBLE PRECISION UPPER BOUND OF THE INTERVAL.
- THE NAME OF AN EXTERNAL DOUBLE PRECISION FUNCTION SUBPROGRAM USED.
                XL
                ΧU
                FCT
                          - THE RESULTING DOUBLE PRECISION INTEGRAL VALUE.
            METHOD
                EVALUATION IS DONE BY MEANS OF 4-POINT GAUSS QUADRATURE FORMULA, WHICH INTEGRATES POLYNOMIALS UP TO DEGREE 7
                EXACTLY. FOR REFERENCE, SEE
V.I.KRYLOV, APPROXIMATE CALCULATION OF INTEGRALS,
MACMILLAN, NEW YORK/LONDON, 1962, PP.100-111 AND 337-340.
         SUBROUTINE DQG4(XL,XU,FCT,Y)
         DOUBLE PRECISION XL, XU, Y, A, B, C, FCT
         A=.5D0*(XU+XL)
         B=XU-XL
          C=.43056815579702629D0*B
         Y=.17392742256872693D0*(FCT(A+C)+FCT(A-C))
C=.16999052179242813D0*B
         Y=B*(Y+.32607257743127307D0*(FCT(A+C)+FCT(A-C)))
         RETURN
         END
          SUBROUTINE CCO(XMOO, XMON, XMNN, XMNO, FTT, FN, XKN, DEFM, CTB, FCO,
      #DEFMD)
           REAL*8 XMQQ, XMNN, XMQN, FTT, FN, XKN, U, CTB, FCO, CTA, B11, B22
```

```
REAL*8 B33,B44,F11,F22,DEFMD,F33 - B11=XMOQ/0.9985 B22=XMON-B11
                           B33=XMNO/0.9985
B44=XMNN-B33
                            CTA=B22/B44
                           CTB=XZZ/B44

CTB=XMOQ-CTA*XMNQ

F11=CTA*FN

F22=(CTA*XKN)*DEFM

F33=(CTA*0.00)*DEFMD

FCO=F11-F22-FTT -F33
                           RETURN
                           END
                           SUBROUTINE REQTO(RETO,CTB,TAG1,TAG,FCO,GKV,GKP,DEA)
REAL*8 DETO1,DETO2,rETO,GKV,GKP,DEA,TAG1,TAG,FCO,CTB
DETO1=(-GKV*TAG1)+GKP*(DEA-TAG)
DETO2=CTB*DETO1
                               RETO=DETO2+FCO
                              RETURN
                              END
                        SUBROUTINE REC(RETO, PL, TE, DM, VT, THD, PS, CTM, XKV, DEIC, BE)
REAL*8 RETO, PL, TE, DM, VT, THD, PS, CTM, XKV, REIC, BE
REAL*8 DI, DEQ, DEFP, DEIC1, DEIC2
DEPL =DETO / (TE *DM )
DI =VT *(DEPL +PL )/(4.0D0*BE *0.006D0)
DEQ =DM *THD +CTM *DEPL +DI
                        DEO =DM *THD +CTM
DEFP = (PS - DEPL)
IF(DEFP .LT.O.O) GO TO 13
DEIC1=DSQRT(DEFP)
                        GO TO 14
13
                    DEFP=-DEFP
                    DEIC1=DSORT(DEFP)
DEIC2=DEIC1*XKV
14
                        REIC
REIURN
                                         =DEQ
                                                         /(DEIC2
```

LIST OF REFERENCES

- 1. Whitney, D. E., Book, W. J., and Lynch, P. M., "Design and Control Configurations for Industrial and Space Manipulators." Proc. JACC, 1974.
- 2. Book, W. J., "Feedback Control of Two Beam, Two Joint Systems With Distributed Flexibility," Journal of Dynamic Systems, Measurement and Control, Vol. 97, No. 4, pp. 424-430, Dec. 1975.
- 3. Sunada, H. H., and Dubowsky, S., "On the Dynamic Analysis and Behavior of Industrial Robotic Manipulators with Elastic Members," ASME Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 105, pp. 42-51, Mar. 1983.
- 4. Chang, L. W., Dynamic Analysis of Robotic manipulators with Flexible links, Ph.D. Thesis, Purdue University, Dec. 1984.
- 5. Petroka, R. P., Computer Simulation And Experimental Validation Of A Dynamic Model (Equivalent Rigid Link System) On A Single -Link Flexible Manipulator, M.S. Thesis, Naval Postgraduate School, Monterey, CA, Oct. 1982.
- 6. Gannon, K. P., Modeling And Experimental Validation Of A Single Link Flexible Manipulator, M.S. Thesis, Naval Postgraduate School, Monterey, CA, Dec. 1986.
- 7. Cannon, R. H. and Schmitz, E., "Initial Experiments on the End Point Control of a Flexible One- Link Robot Flexible," The International Journal for Robotics Research, Vol. 3, No. 3, pp. 62-75, Fall, 1984.
- 8. MOOG INC. MOOG Series 760 Two-Stage Flow Control Servovalve Catalog, MOOG INC., EAST Aurora, N.Y.
- 9. Merrit, H. E., "Hydraulic Controls Systems", Wiley, N.Y., 1967.

INITIAL DISTRIBUTION LIST

		No.	Copie
1.	Defense Technical Information Center Cameron Station Alexandria, VA 22304-6145	2	
2.	Library, Code 0142 Naval Postgraduate School	2	
3.	Monterey, CA 93943-5002 Department Chairman, Code 69 Dept. of Mechanical Engineering Naval Postgraduate School Monterey, CA 93943-5000	1	
4.	Prof. L. W. Chang, Code 69Ck Dept. of Mechanical Engineering Naval Postgraduate School Monterey, CA 93943-5000	6	
5.	Dr. Kil Soo Kim, Code 69Ki Dept. of Mechanical Engineering Naval Postgraduate School Monterey, CA 93943-5000	1	
6.	Park, Ki Soon Busong Dong 534, I Ri City, Jon Ra Buk Do, Republic of Korea	7	
7.	Air Force Central Library Sindaeban Dong, Kwanak Gu, Seoul, Republic of Korea	1	
8.	Library of Air Force Academy Chongwon Gun, Chung Cheong Buk Do, Republic of Korea	1	
9.	Department of Mechanical Engineering Air Force Academy Chongwon Gun, Chung Cheong Buk Do, Republic of Korea	3	1
10.	Prof. David Smith, Code 69Sm Dept. of Mechanical Engineering Naval Postgraduate School	1	

The second of the second of the second	this test attack attack at a chartest of a chartest altack actual actual actual actual attack attack at a chartest actual
¥	
11	Chief of Naval Operations
11.	OP-02
9	Navy Department
	Washington, D.C. 20350-2000
2	
12.	Chief of Naval Operations
2	OP-03
19	Navy Department
R	Washington, D.C. 20350-2000
13.	Chief of Naval Operations
*	OP-05
X	Navy Department Washington, D.C. 20350-2000
M -	Washington, D.C. 20350-2000
1.4	De Alan I Mayrovitz Codo /33
14.	Dr. Alan L. Meyrowitz, Code 433 ONR
. ?	800 N. Quincy St.
8	Arlington, VA 22217
Ď.	
K	
2	
*	
5	
14.	
8	
Y .	
R	
X	
\$	
2	
&	
X	
<u> </u>	
Ç.	
ď	
R	
S	
2	
V	^-
	87
() ·	
5	
K	
S	
K	
K	
P .	
K	
K	

END DATE FILMED JAN 1988