BAX 452 HW 3

Course Instructor: Dr. Rahul Makhijani

Submit the assignment on canvas. The deadline is Tuesday Feb 11 11:59 pm

Bagging and Boosting on California Housing DataSet 20 points

1. Using the RandomForestRegressor from sklearn.ensemble, train a Random Forest model on the California Housing Dataset. Experiment with n_estimators=100, random_state=42. Train the model and print its default parameters.

2. Tune the hyperparameters:

- Task: Use Grid Search or Random Search (GridSearchCV or RandomizedSearchCV) to optimize key hyperparameters such as:
 - Number of trees (n_estimators).
 - Maximum depth of trees (max_depth).
 - Minimum samples per leaf (min_samples_leaf).
- Question: How does each parameter (above) influence the model's performance?
- 3. How does Gradient Boosting perform compared to other methods?
 - Create a residual plot (actual values vs. predicted values) to analyze the model's errors.
 - Are there any observable patterns in the prediction errors? Are errors larger for certain ranges of house prices?
 - Calculate the percentage error for high-price and low-price houses. Does the model perform equally well across the entire target range?
 - Observe how a very low or high value affects model accuracy, convergence speed, and overfitting.

4. Experiment with the learning rate:

• Observe how a very low or high value affects model accuracy, convergence speed, and overfitting.

IRIS multi-classification

Dataset Exploration and Preparation

- Select the *Iris* dafrom scikit-learn for classification. Load the dataset using sklearn.datasets.load_* functions.
- Display the dataset's feature names, target names, and a sample from the dataset. **Question:** Is the dataset well-balanced across the class labels? Comment on the distribution of target labels.

Data Preprocessing

- Split the dataset into training and testing datasets (80/20 split) using train_test_split.
- Normalize the feature values using StandardScaler.
- Explain the importance of feature scaling in KNN.

Implementing K-Nearest Neighbors

- Use scikit-learn's KNeighborsClassifier to train the KNN model.
- Train the model using the default parameters (n_neighbors=5, metric='minkowski', p=2 for Euclidean distance).
 - Fit the model on the training dataset and test the performance in terms of F1 score, precision and recall on the test set.
 - Evaluate the impact of different values of k (n_neighbors):
 - Train the model for different values of k ranging from 1 to 20.
 - Create a line plot of k vs. accuracy (for classification).
 - Find the optimal value of k.
 - Question: What value of k gives the best performance? Explain
 why the choice of k affects the model's performance.

Model Evaluation

- Generate a confusion matrix and a classification report (using classification_report) for y_test predictions.
- Interpret the confusion matrix and explain the precision, recall, and F1-score for each target class.
- Tune the KNN model's hyperparameters.
 - * Perform grid search or random search (GridSearchCV
 - · Number of neighbors (n_neighbors).
 - · Distance metrics (metric, e.g., Euclidean, Manhattan).
 - · Weighting schemes (weights, e.g., uniform, distance).
 - * Question: How does choosing different distance metrics (e.g., Euclidean vs. Manhattan) affect model performance?

Comparison with Other Algorithms

- * Compare KNN's performance with other models like:
 - · Multinomial Logistic Regression.
 - · Random Forest
- * Explore the impact of dropping certain features on the KNN model's performance.

- Visualization:

- * For 2D datasets (e.g., *Iris*), visualize decision boundaries using matplotlib for different values of k.
- * Comment on how decision boundaries change as k increases.

Implementing K-Means Clustering from Scratch (Iris Dataset)

The goal of this problem is to implement the K-Means clustering algorithm from scratch without relying on pre-built libraries like scikit-learn (except for loading or preprocessing the dataset). You will cluster data points into k groups using only the numeric features from the **Iris dataset**.

1. Dataset Preparation:

- * Load the Iris dataset from sklearn.datasets.
- * Use only the numeric features (sepal length, sepal width, petal length, petal width).
- * Normalize the features using a scaler (e.g., StandardScaler or MinMaxScaler).

2. K-Means Implementation:

- * Randomly initialize k centroids, choosing k data points randomly from the dataset. (**Note** this is slightly different from the initialization we had in class but this works as well)
- * Assign each data point to the nearest cluster centroid by calculating the Euclidean distance.
- * Update the cluster centroids to the mean of all points assigned to each cluster.
- * Repeat these steps until:
 - · The cluster assignments do not change.
 - · A maximum number of iterations (e.g., 100) is reached.
- * Implement the algorithm in Python, structuring it with reusable helper functions:
 - · A function to calculate distances between points and centroids.
 - · A function to assign clusters.
 - · A function to update centroids.

3. Evaluation:

* Use the **Elbow Method**:

- · Apply your K-Means implementation for k ranging from 1 to 10.
- · Calculate the total within-cluster variance for each value of k.
- · Plot the total within-cluster variance values to identify the optimal number of clusters (elbow point).

4. Cluster Visualization:

- * Reduce the numeric data to 2D or 3D using **PCA** (Principal Component Analysis).
- * Visualize the clusters and centroids using a scatter plot.

5. Analysis and Implementation Questions:

- * What are the final centroids of the clusters for the chosen value of k?
- * How does the within-cluster variance change as k increases?
- * Does your algorithm perform well for the Iris dataset? Why or why not?

Decision Tree

Consider a two-category classification task with the following training data:

attr1	attr2	attr3	attr4	class
a	1	\mathbf{c}	-1	c1
b	0	\mathbf{c}	-1	c1
a	0	\mathbf{c}	1	c1
b	1	\mathbf{c}	1	c1
b	0	\mathbf{c}	1	c2
a	0	a	-1	c2
a	1	a	-1	c2
b	1	\mathbf{c}	-1	c2

Table 1: Training Data for Two-Category Classification Task

- 1. Using the training data provided in Table 1, construct a complete, unpruned decision tree.
- 2. Use **information gain** as your splitting criterion for selecting the best attribute at each node.
- 3. Show all calculations for:
 - * The entropy of the dataset at each node.
 - * The weighted entropy for splits on each attribute.
 - * The information gain for each attribute.
- 4. Continue splitting until all examples in a node belong to the same class.

Hints and Definitions

* The formula for **entropy** for a dataset D is:

$$H(D) = -\sum_{i=1}^{C} p_i \log_2(p_i)$$

where p_i is the proportion of examples belonging to class i, and C is the number of classes.

* The **information gain** for a split on attribute A is:

$$IG(D, A) = H(D) - \sum_{v \in \text{values}(A)} \frac{|D_v|}{|D|} H(D_v)$$

where:

- \cdot H(D) is the entropy of dataset D before the split.
- · D_v is the subset of D where attribute A has value v.
- · $|D_v|/|D|$ is the weight of subset D_v relative to the entire dataset.
- · $H(D_v)$ is the entropy of subset D_v .
- * Use the provided formulas for entropy and information gain to decide the best attribute to split at each step.