Global Resource Management in Oracle RAC

By Ahmed Baraka

Objectives

In this lecture, you learn to understand the following concepts:

- Global Concurrency Control
- Global Resource Directory (GRD)
- Mastering and shadowing instances
- Global Cache Management scenarios for single block access

Single Instance Concurrency Control

Concurrency control:

- Memory structure: latches or mutexes
- Resource control: enqueue
- Cache management: buffer cache pins

Global Concurrency control:

- Library and row cache access: global locks control
- Resource access: global enqueues
- Buffer cache access: cache fusion

About Global Resource Directory (GRD)

- An object under global concurrency control is called a resource.
- Resource metadata is held in the Global Resource Directory (GRD).
- The GRD is distributed among all active instances of each database or ASM environment.
- The GRD uses memory from the shared pool
- It contains metadata of which instances are holding which resources

Global Resource Management Terms

- A resource is allocated the first time an entity is accessed
- Mastering instance is the one that contains the master metadata
- A shadow metadata is allocated in any of the instances that requests the same entity.
- Master metadata contains locking information of the entity in <u>all</u> the instances, whereas shadow metadata contains locking information of the entity in the <u>current</u> instance
- Each instance could be the resource master for some of the database entities

Global Resource Remastering

- Remastering: master metadata for a specific entity move to another instance
- It could happen in three levels:
 - Instance-level (also called lazy remastering) occurs when the mastering instance is gracefully shut down or a new instance starts up
 - File affinity remastering occurs when requests to access a specific datafile blocks come from an instance other than the mastering instance
 - Object-affinity remastering occurs when requests to access a specific object blocks come from an instance other than the mastering instance

Global Cache Management Scenarios for Single Block Access

There are several scenarios for single block reads:

- Read from Disk
- Read Read
- Read Write
- Write Write
- Write Read
- Write to Disk

Global Cache Management Scenarios: Read from Disk Summary

- LMS of the requesting instance sends the request to the master instances
- As the block does not exist in any of the instances, it creates a master metadata in it and grant the requesting instance to read the block from the disk
- The requesting creates a shadow metadata and sets the buffer header status to "SCUR"
- The foreground process is notified to read the block from the disk

Global Cache Management Scenarios: **Read Write** foreground process Instance 1 Instance 2 Instance 3 LMS LMS Shadow metadata Master metadata on inst 2 on inst 2 (SCUR) Instance 3 wishes to get the same block for update.

Global Cache Management Scenarios: **Read Write** foreground process Instance 1 Instance 2 Instance 3 LMS LMS Shadow metadata Master metadata on inst 2 on inst 2 (SCUR) The foreground process sends its request to the local LMS process

Global Cache Management Scenarios: **Read Write** foreground process Instance 1 Instance 2 Instance 3 LMS **LMS** Shadow metadata Master metadata on inst 2 on inst 2 (SCUR) As there is no shadow metadata resource locally for the block, instance 3 passes its request to instance 1.

Global Cache Management Scenarios: **Read Write** foreground process Instance 1 Instance 2 Instance 3 LMS **LMS** Shadow metadata Master metadata on inst 2 on inst 2 (SCUR) Instance 1 notifies instance 3 to get its requested block from instance 2

Global Cache Management Scenarios: **Read Write** foreground process Instance 1 Instance 2 Instance 3 LMS LMS **LMS** Shadow metadata Master metadata on inst 2 (SCUR) on inst 2, inst3 (SCUR) Instance 3 sends its request to instance 2 to obtain an image of the block.

Global Cache Management Scenarios: **Read Write** foreground process Instance 2 Instance 1 Instance 3 LMS LMS **LMS** Shadow metadata Master metadata Shadow metadata on inst 2 (CR) on inst 2, inst3 on inst 2 (CR) (SCUR) Instance 2 sends a block image to instance 2 and downgrade its state to Consistent Read (CR). CR: the buffer contains a block image that is

consistent with an earlier point in time.

Global Cache Management Scenarios: **Read Write** foreground process Instance 2 Instance 1 Instance 3 LMS **LMS** Shadow metadata Master metadata Shadow metadata on inst 2 (CR) on inst 2 (NULL), on inst 2 (CR) inst3 (XCUR) Master metadata updated: Block state becomes XCUR for instance 3 and it becomes NULL in instance 2. XCUR: the block image is to be updated

Global Cache Management Scenarios: **Read Write** foreground process Instance 2 Instance 1 Instance 3 LMS **LMS** Shadow metadata Master metadata Shadow metadata on inst 2 (XCUR) on inst 2 (NULL), on inst 2 (CR) inst3 (XCUR) In instance 3: - the block state in the shadow metadata changes to XCUR - the block is updated, its SCN is incremented and it gets sent to the foreground process

Global Cache Buffer States

State	Description
Shared Current (SC)	The buffer block image matches the one on disk.
Exclusive Current (XCUR)	The block image is about to be updated, or has been updated.
Consistent Read (CR)	The block image is consistent with an earlier point in time.
Past Image (PI)	The block image is XCUR but then shipped to another instance using cache fusion.

Note: States can be retrieved from cache fusion in V\$BH.STATUS

For Further Information

Summary

In this lecture, you should have learnt how to describe the following concepts:

- Global Concurrency Control
- Global Resource Directory (GRD)
- Mastering and shadowing instances
- Global Cache Management scenarios for single block access

