Zadania z matematyki dyskretnej, lista nr 8

- 1. Oblicz sumę $\sum 2^{-k}$ braną po wszystkich takich $k \in \mathbb{N}$, że 2, 3, 5, 7 nie dzielą k.
- 2. Niech A(x) będzie funkcją tworzącą ciągu a_n . Wylicz funkcje tworzące ciągów a_{2n} i a_{3n} .
- 3. Oblicz $a_n = \sum_{i=1}^{n} F_i F_{n-i}$.
- 4. Korzystając z wzoru Taylora pokaż, że dla $a \in \mathbb{R}$ zachodzi: $(1+x)^a = \sum_{n=0}^{\infty} \frac{a^n}{n!} x^n$.
- 5. Wylicz funkcje tworzące ciągów określonych rekurencyjnie:
 - (a) $a_0 = a_1 = a_2 = 1$, $a_{n+3} = a_{n+2} + a_{n+1} + a_n + 1$;
 - (b) $a_0 = 0, a_1 = 1, a_{n+2} = a_{n+1} + a_n + \frac{1}{n+1}$
 - (c) $a_0 = 1$, $a_{n+1} = \sum_{k=0}^{n} \frac{a_{n-k}}{k!}$;
- 6. Nieporządkiem nazywa się taką permutację elementów, w której żaden element i nie znajduje się na pozycji i-tej. Niech d_n oznacza liczbę nieporządków utworzonych z n kolejnych liczb naturalnych. Wyprowadź zależność rekurencyjną $d_{n+1} = n(d_n + d_{n-1})$. Jakie należy przyjąć warunki początkowe dla tej zależności? Pokaż też przez indukcję, że $d_n = nd_{n-1} + (-1)^n$. Jak z tego ostatniego wzoru wynika ogólny wzór na d_n ?
- 7. Zastosuj wykładniczą funkcję tworzącą do rozwiązania zależności $d_{n+1} = n(d_n + d_{n-1}), d_0 = 1, d_1 = 0.$
- 8. Dana jest zależność rekurencyjna $a_{n+1} = n(a_n + a_{n-1})$ z warunkami początkowymi $a_0 = \alpha, a_1 = \beta$. Znajdź rozwiązanie tej zależności korzystając z faktu, że d_n i n! spełniają tę zależność (być może z innymi warunkami początkowymi).
- 9. Udowodnij, że liczba sposobów, w jaki n-kąt wypukły na płaszczyźnie można podzielić na rozłączne trójkąty za pomocą n-3 przekątnych nie przecinających się wewnątrz tego wielokąta jest równa liczbie Catalana c_{n-2} . Pokaż też, że liczba triangulacji, w których jest wybrana przekątna wynosi $c_{i-1}c_{n-i-1}$, gdzie i zależy od przekątnej. Suma tych wyrażeń po wszystkich przekątnych jest (n-3) razy większa od liczby wszystkich triangulacji, czyli

$$\frac{n}{2} \sum_{i=2}^{n-2} c_{i-1} c_{n-i-1} = (n-3)c_{n-2}.$$

Jak z powyższego wzoru wynika, że $nc_{n-1} = 2(2n-3)c_{n-2}$? Wyprowadź z tego zależność $c_n = \frac{1}{n+1} {2n \choose n}$.

- 10. Danych jest 2n punktów na okręgu. Na ile sposobów można te punkty połączyć n nieprzecinającymi się odcinkami, takimi że każdy z punktów jest końcem dokładnie jednego odcinka.
- 11. Wylicz funkcje tworzące dla liczby podziałów liczby n (rozkładów na sumę składników naturalnych, gdy rozkładów różniących się kolejnością nie uważamy za różne):
 - (a) na składniki parzyste,

- (c) na różne składniki nieparzyste,
- (b) na składniki mniejsze od m,
- (d) na różne potęgi dwójki.
- 12. Niech p_n i r_n będą odpowiednio liczbami wszystkich podziałów n i podziałów n na różne składniki. Niech P(x) i R(x) będą ich funkcjami tworzącymi. Pokaż, że

$$P(x) = R(x)P(x^2).$$

13. Permutację nazywamy inwolucją gdy złożenie jej ze sobą jest identycznością. Niech a_n będzie liczbą inwolucji n-elementowych. Pokaż, że wykładniczą funkcją tworzącą ciągu a_n jest $e^{x+x^2/2}$.

Wsk.: Pokaż najpierw, że $a_{n+1} = a_n + na_{n-1}$

14. Liczby Stirlinga pierwszego rodzaju $\binom{n}{k}$ definiujemy jako liczbę permutacji n-elementowych, które rozkładają się na k cykli. Pokaż, że $\binom{n}{k} = (n-1)\binom{n-1}{k} + \binom{n-1}{k-1}$. Posługując się tą zależnością rekurencyjną udowodnij, że

$$x^{\overline{n}} = x(x+1)\cdots(x+n-1) = \sum_{k=0}^{\infty} {n \brack k} x^k.$$

15. Pokaż, że wykładnicza funkcja tworząca $G_e(z)$ dowolnego ciągu jest powiązana ze zwykłą funkcją tworzącą G(z) za pomocą równania

$$\int_{0}^{\infty} G_e(zt)e^{-t}dt = G(z)$$

jeśli tylko całka ta istnieje.