

SQL Server 2008

SQL07 – Recursos de Otimização para o desenvolvedor

Módulo 04 - Otimizador de consultas

Query optimizer

- Parsing
 - Parse e binding
- Algebrizer
 - Novo componente no SQL 2005 (substitui o normalizer)
 - Saída: query tree
- Query optimization

Query optimizer

- Cost-based optimizer
 - Tenta encontrar um plano de execução que tenha um custo razoável, perto do mínimo teórico
 - Algoritmo de complexidade exponencial
- Dividido em diversas fases, que analisam combinações específicas para sair com um plano "bom o suficiente"

Etapas da otimização

Plano trivial

- Insert sem indexed view
- Select sem group by e índices

Não encontrou plano? Etapa de simplificações

- Outer join para Inner Join
- Operações comutativas
- Carrega estatísticas
- Tenta permutações

Etapas da otimização

Fase 0 (custo < 0.2) (pode não ser executada)

- Pelo menos quatro tabelas
- Somente considera hash joins e nested loops
- Acredita no reordenamento dos joins

Fase 1 (quick plan)

- Mais transformações
- Não paralelo
- Leva em conta o "cost threshold for parallelism"

Etapas de otimização

- Fase 1 (quick plan + paralelismo)
 - Encontra o melhor plano paralelo
 - Mudanças na ordenação do plano acontecem
- Fase 2 (Full Optimization)
 - Tenta todas as abordagens conhecidas (faltantes)
- Sys.dm_exec_query_optimizer_info

Cache e execução

- Após a otimização, o plano de execução é posto em cache a menos que seja definido o contrário.
 - Note que não foi mencionado se é um procedimento ou consulta!
- Depois o SQL Server passa o plano (em um formato interno) para o query executor.
 - Quando o plano foi definido como paralelo, o número de threads será definido no momento da execução, de acordo com os recursos disponíveis.

Paralelismo

- Sendo o max degree of paralellism e cost threshold for paralellism duas configurações importantes para o SQL Server, como deve ser configurado?
 - → MAXDOP = 1
 - ◆ MAXDOP = 0?
 - → MAXDOP = N?
 - ◆ Cost = 5?
 - Cost = 10?
- Diferenciação entre ambientes OLTP e espelhos para extração de relatórios?

Estatísticas

- O SQL Server precisa de estatísticas para tentar criar bons planos de execução.
- Estatísticas são criadas automaticamente nos índices definidos pelo DBA.
- Mas novas estatísticas podem ser criadas automaticamente pelo SQL Server, sendo nomeadas como _WA_SYS_....
 - → É um indicativo de que o query optimizer precisou desses dados para montar um plano.
 - Merece um índice?

Estatísticas

- A geração automática de estatísticas somente se dá para uma coluna, isto é, não são geradas estatísticas sobre combinação de colunas.
- E qual o custo de se manter as estatísticas?
 - Eventuais recompilações das estatísticas.
 - Muito pouco espaço em disco.
- Então é interessante mantermos muitas estastísticas?
 - → SIM!

Estatísticas

- Como analisar as estatísticas?
 - •DBCC SHOW_STATISTICS (objeto, índice)

⊞ R	esults Messages										
	Name					Updated		Rows	Rows Sampled	Steps	Density
1	PK_SalesOrder	Deta	il_SalesOrder	ID_S	SalesOrderDe	eta Dec 10 2009 9:05PM		121317	121317	151	0.2696693
٠ <u>-</u>											
	All density	Average Length (Columns						
1	3.178134E-05	4		SalesOrderID							
2	8.242868E-06 8 SalesOrderII				lesOrderID, S	alesOrderDetailID					
	RANGE_HI_KE	NGE_HI_KEY RANG		NGE_ROWS		DISTINCT_RANGE_ROWS		AVG_RANGE_ROWS			
1	43659		0		12	0		1	1		
2	43692	282			28	32		8.8125			
3	43898 716			28	205		3.492683				
4	44079 403		403		27	180		2.238889			
5	44288		766		34	208		3.682692			

Demo

Um dos recursos mais elaborados do SQL Server

Conclusão

- O query optimizer é o mecanismo mais elaborado do SQL Server e continuamente recebe melhorias.
- Falta de estatísticas e consultas mal escritas são normalmente as causas da má escolha dos planos pelo SQL Server.
 - Erros acontecem, mas são raros ou bugs! ©
- → É interessante deixar o QO trabalhar, pois eventualmente ele pode trazer novos planos (e melhores) para suas consultas.

Dúvidas

Recursos

- Statistics Used by the Query Optimizer in Microsoft SQL Server 2008 (http://msdn.microsoft.com/enus/library/dd535534.aspx)
- Statistics Used by the Query Optimizer in Microsoft SQL Server 2005 (http://technet.microsoft.com/enus/library/cc966419.aspx)

