Regular Expressions and Finite Automata

CSCI 3136: Principles of Programming Languages

Agenda

- Announcements
- Readings:
 - Today: 2.2.1 (From optional text)
 - Next: 2.2.1
 - Note: I recommend using alternative texts for this part of the course:
 - E.g., Hopcroft et al, "Introduction to Automata Theory"
- Lecture Contents
 - Motivation
 - Regular Expressions
 - Deterministic Finite Automata
 - Nondeterministic Finite Automata

Specifying Regular Languages

- There are many ways to specify a regular language
 - {a,ab,abc}
 - {a}*
 - {a,b,c}*
 - $\{1^n0 \mid n > 0\}$
 - Set of all positive integers (base 10)
 - $\{\Sigma\Sigma^* @ \Sigma\Sigma^* (. \Sigma\Sigma^*)^n | \Sigma = \{a,b,c,...z\}, n \ge 0\}$
- Problems:
 - The specification is not standard
 - Hard for a program to interpret the specifications above.
- Does some of the notation above look familiar?

Regular Expressions

- Idea: Regular expressions (REs) are a concise way to specify regular languages
- Theorem: L is regular if and only if there is a regular expression R that specifies L
- Recursive definition:

Base cases:

- Ø defines the empty language (no words)
- a, $a \in \Sigma$ defines the language $\{a\}$
- ε defines the language {ε}

Inductive step: If R, R₁, and R₂, are REs:

- R₁|R₂ defines L₁ U L₂, (union) where R_i specifies L_i
- R₁R₂ defines L₁L₂, (concatenation) where R_i specifies L_i
- R* defines L*, (Kleene-*) where R specifies L

Examples of Regular Expressions

```
• ab c
```

•
$$0*[1-9][0-9]*$$

Corresponding Language

$${a}^*$$

$$\{1^n0 \mid n>0\}$$

Set of all positive integers

$${a^ib^jc^k | i>0,j>1,k>2}$$

Binary strings with no adjacent 1s

Note: Notation [a - z] = (a|b|c|d|...|z)

Applications and History

Applications:

- Search (and replace)
- editors, string manipulation libraries,
- scanners
- specification of tokens.

History

- Stephen Cole Kleene, 1956
 "Representation of events in nerve nets and finite automata"
- Ken Thompson developed editors: QUE, ed, grep
- Used in awk, emacs, vi, lex, etc...
- Henry Spencer, 1986, C regex library used in Tcl, Perl, etc...

How to Build a Scanner

- We now have a standard (machine-friendly) way to specify regular languages.
- So what?
- We now need a way to decide if a given string σ is in a given regular language L.
- How do we do this?
- We use a *Deterministic Finite Automata* (DFA).

Deterministic Finite Automata

- A DFA M is a machine that
 - Takes a string $\sigma \in \Sigma^*$ as input
 - Either *accepts* σ if $\sigma \in L$
 - Or <u>rejects</u> σ if σ ∉ L
- M <u>recognizes</u> L if it accepts σ if and only if $\sigma \in L$
- A DFA consists of:
 - set of states
 - start state
 - set of final states
 - transition function

Operation of a DFA

A DFA

- Starts in the start state
- Reads in string σ one character at a time
- Computes the next state based on current state and character
- Transitions to the next state
- Accepts σ if and only if it is in a *final* state after reading σ .

What Language Does this DFA Recognize?

(0|1)*1

Formal Definition of a DFA

- A DFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$
 - Q set of states
 - Σ alphabet
 - δ transition function (complete): $\delta: Q \times \Sigma \rightarrow Q$
 - q_0 start state, $q_0 \in Q$
 - F set of final states, F ⊆ Q
- A DFA M accepts a string $\sigma \in \Sigma *$ if and only if it is in a final state after reading σ .
- A DFA M recognizes language L if and only if it only accepts all the strings in L

```
L(M) = {\sigma \in \Sigma^* \mid M \text{ accepts } \sigma}
```

Examples of DFAs

DFA that accepts all binary strings that have no consecutive 1s.

$$M = (\Sigma, Q, \delta, q_0, F)$$

•
$$\Sigma = \{0,1\}$$

•
$$Q = \{q_0, q_1, q_2\}$$

•
$$F = \{q_0, q_1\}$$

• δ:

State	Symbol	New State
q_0	0	q_0
q_0	1	q_1
q_1	0	q_0
q_1	1	q_2
q_2	0	q_2
q_2	1	q_2

DFA that accepts L = (0|1)*1

$$M = (\Sigma, Q, \delta, q_0, F)$$

•
$$\Sigma = \{0,1\}$$

•
$$Q = \{q_0, q_1\}$$

•
$$F = \{q_1\}$$

•	X	•
	U	•

State	Symbol	New State
q_0	0	q_0
q_0	1	q_1
q_1	0	q_0
q_1	1	q_1

More Examples

- L ⊆ {a, b}* : all strings containing an odd number of b's
- L \subseteq [0 9]* : all integers divisible by 100
- L \subseteq [a z, @.]* : all valid email addresses
- L \subseteq {0, 1}* : all binary numbers not divisible by 3

Nondeterministic Finite Automata (NFA)

- A DFA is deterministic in that it has a single transition for each symbol and state
 - I.e., A DFA traces a single path for each input
- An NFA is like a DFA except it may have a choice of transitions for a given state and character.
 - I.e., An NFA may trace multiple paths for an input
- Two kinds of nondeterministic choices:
 - **E transitions:** transition to another state without reading a character
 - multiple successor states: multiple transitions to different states from same state and same character
- An NFA accepts a string σ if one of the paths ends in a final state

Example of an NFA

NFA that accepts binary strings ending in 01 or 001

$$L = (0|1) * 0(1|01)$$

$$M = (\Sigma, Q, \delta, q_0, F)$$

- $\Sigma = \{0, 1\}$
- Q = $\{q_0, q_1, q_2, q_3\}$
- $F = \{q_3\}$
- δ:

State	Symbol	New State
q_0	0	q_0
q_0	0	q_1
q_0	1	q_0
q_1	0	q_2
q_1	3	q_2
q_2	1	q_3

Formal Definition of an NFA

- An NFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$
 - Q set of states
 - Σ alphabet
 - δ transition function: $\delta: Q \times (\Sigma \cup \{\epsilon\}) \rightarrow 2^Q$
 - q_0 start state, $q_0 \in Q$
 - F set of final states, $F \subseteq Q$
- Every input σ induces a set of paths traced by δ as σ is read
- NFA M accepts a σ if and only if one of the paths ends in a final state
- NFA M recognizes $L(M) = {\sigma \in \Sigma^* | M \text{ accepts } \sigma}$
- Question: Are NFAs more powerful than DFAs?

NFA Example 1

NFA that accepts L = (0|1)*1

$$M = (\Sigma, Q, \delta, q_0, F)$$

- $\Sigma = \{0, 1\}$
- $Q = \{q_0, q_1\}$
- $F = \{q_1\}$
- δ:

State	Symbol	New State
q_0	0	q_0
q_0	1	q_0
q_0	1	q_1

NFA Example 2

NFA that accepts L = (0|1)*(010|101)

 $M = (\Sigma, Q, \delta, q_0, F)$

- $\Sigma = \{0,1\}$
- $Q = \{q_0, q_1, q_2\}$
- $F = \{q_0, q_1\}$
- δ:

State	Symbol	New State
q_0	0	q_0
q_0	1	q_0
q_0	0	q_1
q_0	1	q_3
q_1	1	q_2
q_2	0	q_5
q_3	0	q_4
q_4	1	q_5

More NFA Examples

- L ⊂ {a, b}* : all strings containing an odd number of a's or b's
- L ⊂ {0, 1}* : all binary strings containing the substring 101 or 010

Are these all the same?

- We have discussed a variety of specifications: RLs, RE, DFAs, NFAs
 - RLs: a class of languages
 - RE a way to specify RLs
 - DFAs: a way to implement scanners for RLs
 - NFAs: a simpler way to implement scanners for RLs

• Questions:

- Are these all of equal power?
- Are NFAs same as DFAs?
- Do REs specify only regular languages?

Regular Languages Equivalence Theorem

- Thm: The following statements are equivalent:
 - i. L is a regular language.
 - ii. L is the language described by a regular expression.
 - iii. L is recognized by an NFA.
 - iv. L is recognized by a DFA.
- We will prove: (i) ≡ (ii) ≡ (iii) ≡ (iv)

Regular Languages are equivalent to Regular Expressions

- Every regular language can be specified by a regular expression.
- Every regular expression specifies a regular language.
- Idea: There is a one-to-one correspondence between definitions of RLs and REs

Apart from notation, the recursive definitions are identical.

Operation	Regular Language	Regular Expression
Empty Language	Ø	Ø
Empty String	{ε}	ε
Single character	{a}, a ∈ Σ	a
Disjunction	$L_1 \cup L_2$	$R_1 \mid R_2$
Concatenation	L_1L_2	R_1R_2
Kleene-*	L*	R*