91258 - Natural Language Processing

Lesson 4. Naïve Bayes

Alberto Barrón-Cedeño

Alma Mater Studiorum-Università di Bologna a.barron@unibo.it @_albarron_

10/10/2023

Table of Contents Into ML Naïve Bayes Training a Machine Learning Model

Previously	
Pre-processing (e.g., tokenisation, stemming, stopwording)BoW representation	
► One rule-based sentiment analyser	

Into ML		

Machine Learning

- "[\dots] an umbrella term for **solving problems** for which development of algorithms by human programmers would be cost-prohibitive"
- "[...] the problems are solved by helping machines "discover" their "own" algorithms, without needing to be explicitly told what to do by any human-developed algorithms."

https://en.wikipedia.org/wiki/Machine_learning

Supervised vs Unsupervised

Supervised The algorithms build a mathematical model of a set of data including...

- **▶** the inputs
- **▶** desired outputs

Unsupervised The algorithms take a set of data that contains...

▶ only inputs

https://en.wikipedia.org/wiki/Machine_learning

...and find structure in the data

- 1. Introduced in the IR community by Maron (1961)
- 2. First machine learning approach
- 3. It is a **supervised** model
- 4. It applies Bayes' theorem with strong (naïve) independence assumptions between the features
 - ► they are independent
 - ► they contribute "the same"

Naïve Bayes'

Using Bayes' Theorem

The conditional probability $p(C_k \mid x_1, \dots, x_n)$ can be decomposed as

$$p(C_k \mid \mathbf{x}) = \frac{p(C_k) \ p(\mathbf{x} \mid C_k)}{p(\mathbf{x})}$$
(3)

Which can be read as

$$\mathsf{posterior} = \frac{\mathsf{prior} \times \mathsf{likelihood}}{\mathsf{evidence}}$$

But p(x) does not depend on the class (since it is constant):

$$p(C_k \mid \mathbf{x}) \sim p(C_k) \ p(\mathbf{x} \mid C_k) \tag{4}$$

From

https://en.wikipedia.org/wiki/Naive_Bayes_classifier

Naïve Bayes

A conditional probability model

Given an instance represented by a vector

$$\mathbf{x} = (x_1, \dots, x_n) \tag{1}$$

representing n independent features $x_1, x_2, x_3, \ldots, x_{n-2}, x_{n-1}, x_n$ n could be |V| (the size of the vocabulary)

The model assigns to instance x the probability

$$p(C_k \mid \mathbf{x}) = p(C_k \mid x_1, \dots, x_n) \tag{2}$$

for each of the k possible outcomes C_k

where $C_k = \{c_1, ..., c_k\}$

From

https://en.wikipedia.org/wiki/Naive_Bayes_classifier

Naïve Bayes

Going deeper (assuming a binary classifier)

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})}$$
 (5)

 $posterior \ probability = \frac{class \ prior \ probability \times likelihood}{predictor \ prior \ probability}$

 $p(C \mid \mathbf{x})$ Posterior probability of the class given the input¹

if p > 0.5:
 class = positive
else:
 class = negative

 $^1\mbox{Symbol}\ |\ \mbox{means}\ \mbox{"given": the probability of the class given the representation vector$

Going deeper (assuming a binary classifier)

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})} \tag{6}$$

$$posterior \ probability = \frac{class \ prior \ probability \times likelihood}{predictor \ prior \ probability}$$

p(C) Class **prior** probability
How many **positive** instances I have seen (during training)?

Rough Idea

- ► The value of a particular feature is **independent** of the value of any other feature, given the class variable
- ► All features contribute the same to the classification
- ► Naïve Bayes' tries to find keywords in a set of documents that are predictive of the target (output) variable
- ► The internal coefficients will try to map tokens to scores
- ► Same as VADER, but without manually-created rules the machine will estimate them!

Naïve Bayes

Going deeper (assuming a binary classifier)

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})} \tag{7}$$

$$posterior \ probability = \frac{class \ prior \ probability \times likelihood}{predictor \ prior \ probability}$$

 $p(\mathbf{x} \mid C)$ Likelihood The probability of the document given the class

Naïve Bayes

A toy example: Should I ride my bike today?

One single factor: zone (flag)

overcast

(here come some dense slides)

From (Lane et al., 2019, p. 65-68)

A toy example: Should I ride my bike today?

Should I Dat a	ride my	bike
Flag	<i>₹</i> 0	
	yes	
	yes	
	no	
	yes	
	no	

no

yes

no

no

Computing **all** the probabilities by "counting"

Frequency table

rrequericy table			
	<i>తె</i> ల		
Flag	yes	no	
	3	2	
	4	0	
	2	3	

Likelihood table

Flag	yes	no
	3/9	2/5
	4/9	0/5
	2/9	3/5

Adapted from http://www.saedsayad.com/naive_bayesian.htm

Naïve Bayes

A toy example: Should I ride my bike today?

If... ⊨ let's ride 🕬!

Naïve Bayes

A toy example: Should I ride my bike today?

Likelihood table

	<i>₫</i> ?	<u>9</u>	1
Flag	yes	no	$p(x \mid c) = p(yes) = 3/9 = 0.3$
	3/9 ¹	2/5	p(c) = p(yes) = 9/14 = 0.64
	4/9	0/5	, , , , ,
	2/9	3/5	$p(x) = p(\sim) = 5/14 = 0.36$
	9/14 ²	5/14	

What is the Naïve Bayes' probability of **yes** if ??

$$p(c \mid x) = p(c)p(x \mid c)/p(x)$$

$$p(yes \mid \sim) = p(yes)p(\sim \mid yes)/p(\sim)$$

$$p(yes \mid \sim) = 0.64 * 0.33/0.36$$

$$p(yes \mid \sim) = 0.59$$

Adapted from http://www.saedsayad.com/naive_bayesian.htm

Naïve Bayes

A toy example: Should I ride my bike today?

Considering more data

Flag	Temp	Humidity	Windy	<i>₹</i> 0
	hot	high	false	no
	hot	high	true	no
	hot	high	false	yes
	mild	high	false	yes
	cool	normal	false	yes
	cool	normal	true	no
	cool	normal	true	yes
	mild	high	false	no
	cool	normal	false	yes
	mild	normal	false	yes
	mild	normal	true	yes
	mild	high	true	yes
	hot	normal	false	yes
	mild	high	true	no

 ${\tt Adapted\ from\ http://www.saedsayad.com/naive_bayesian.htm}$

A toy example: Should I ride my bike today? Frequency tables

Flag	yes	no
	3	2
	4	0
	2	3

Humidity	yes	no
high	3	4
normal	6	1

Temp	yes	no
hot	2	2
mild	4	2
cool	3	1

Windy	yes	no
false	6	2
true	3	3

Adapted from http://www.saedsayad.com/naive_bayes:

Likelihood tables

Flag	yes	no
	3/9	2/5
	4/9	0/5
	2/9	3/5

Humidity	yes	no
high	3/9	4/5
normal	6/9	1/5

Temp	yes	no
hot	2/9	2/5
mild	4/9	2/5
cool	3/9	1/5
Windy	yes	no
false	6/9	2/5

-				/	
/1,71,71,7	saedsavad	com/naive	hawesian	h+m	

Naïve Bayes

Back to the definition...

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})}$$
(8)

The probability p(x) is constant for any given input

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})} \tag{9}$$

$$p(c \mid \mathbf{x}) \propto p(c)p(\mathbf{x} \mid c) \tag{10}$$

Naïve Bayes Likelihood tables

Flag	yes	no
	3/9	2/5
	4/9	0/5
~	2/9	3/5
		,
Humidity	yes	no
Humidity high	,	,

remp	yes	110
hot	2/9	2/5
mild	4/9	2/5
cool	3/9	1/5
	/	/
Windy	yes	no

flag	temp	humidity	windy	ride
	cool	high	true	?

$$p(\text{yes} \mid x) = \frac{p(\text{yes})p(\text{|e} \mid \text{yes})p(\text{cool} \mid \text{yes})p(\text{high} \mid \text{yes})p(\text{true} \mid \text{yes})}{p(\text{|e} \mid p(\text{cool})p(\text{high})p(\text{true})}$$

$$= \frac{9/14 \times 2/9 \times 3/9 \times 3/9 \times 3/9}{5/14 \times 4/14 \times 7/14 \times 6/14}$$

$$= 0.00529/0.02811 = 0.188 \sim 0.2 \text{ no } \text{@} \text{o}$$

Adapted from http://www.saedsayad.com/naive_bayesian.htm

Naïve Bayes

Back to the definition...

$$p(c \mid \mathbf{x}) \propto p(c)p(\mathbf{x} \mid c) \tag{11}$$

Remember that \mathbf{x} is a vector

$$p(c \mid x_1 \dots x_n) \propto p(c)p(x_1 \mid c) \times p(x_2 \mid c) \times \dots \times p(x_n \mid c)$$
 (12)

Eq. (12) can be rewritten as

$$p(c \mid x_1 \dots x_n) \propto p(c) \prod_{i=1}^n p(x_i \mid c)$$
 (13)

The classification process

Back to the toy example

$$p(\text{yes} \mid x) \propto p(\text{yes})p(\text{in} \mid \text{yes})p(\text{cool} \mid \text{yes})p(\text{high} \mid \text{yes})p(\text{true} \mid \text{yes})$$

 $\propto 9/14 \times 2/9 \times 3/9 \times 3/9 \times 3/9$
 $\propto 0.00529$, which is not a probability

Classification: the maximum for all the classes

$$c \propto \arg\max_{c} p(c) \prod_{i=1}^{n} p(x_i \mid c)$$
 (14)

```
compute p(yes|x)
compute p(no|x)
if p(yes|x) > p(no|x):
    yes
else:
    no
```

The dataset

We need a bunch of items (documents) with their associated class

kind	examples
binary	{positive, negative}
	{0, 1}
	{-1, 1}
multiclass	{positive, neutral, negative}
	{0,1,2}

In our case, we need the sentiment:

Training a Machine Learning Model

The dataset

Option 1 Use a corpus created by somebody else

Option 2 Build your own corpus²

- (a) You have/hire experts to do it
- (b) You engage non-experts through gamification
- (c) You hire non-experts through explicit crowdsourcing
- (d) There are many other ways to get annotated data

²Stay tuned: a course on this topic will start in November

Let us go and build a classifier with a corpus built by Hutto and Gilbert $(2014)^3$

For this, you have to download and install the software companion of NLP in Action:

https://github.com/totalgood/nlpia

References

Hutto, C. and E. Gilbert

2014. VADER:A parsimonious rule-based model for sentiment analysis of social media text. In *Eighth International Conference on Weblogs and Social Media (ICWSM-14)*, Ann Arbor, MI.

Lane, H., C. Howard, and H. Hapkem

2019. *Natural Language Processing in Action*. Shelter Island, NY: Manning Publication Co.

Maron, M.

1961. Automatic indexing: An experimental inquiry. *Journal of the ACM*, 8:404–417.

What I did on OsX and GNU Linux

I use pipenv⁴

\$ pipenv install --skip-lock nlpia

On Github they explain how to install it with conda or pip if you plan to contribute to the project

</>> Let us see it working

4https://pipenv.readthedocs.io/en/latest/

³http://comp.social.gatech.edu/papers/icwsm14.vader.hutto.pdf