1) The diodes D_1 and D_2 in the circuit shown below are identical and characterized by a constant voltage drop of 0.7 V when forward biased. Find the output voltage V_0 and the diode currents I_{D1} and I_{D2} labeled in the figure.

(5 points)

2) The Zener diode in the circuit below is characterized by $V_Z = 5.0 \text{ V}$ at $I_Z = 5 \text{ mA}$, $V_{ZK} = V_{Z0}$, and $r_Z = 10 \Omega$. Find the output voltage V_O . If the +10V supply voltage varies $\pm 1 \text{ V}$, what voltage variation will appear at the output?

(5 points)

3) For the circuit below, the diodes D_1 and D_2 are identical and assumed to be <u>ideal</u> diodes. All the three resistances (denoted by R) in the circuit are identical. Sketch the transfer characteristic (v_0 vs. v_1) indicating all the important points and slopes. Give expressions for v_0 as a function of v_1 for all the sections of the transfer characteristic.

(7 points)

	s of operation, i.e., <i>Active</i> , <i>Saturation</i> and <i>Cutoff</i> , which ollowing applications: i) Amplification, ii) Switching.
	(3 points)
b) For a BJT, the <i>Emitter</i> is more do	oped than the <i>Base</i> . State the reason. (3 points)
c) Briefly explain how a built-in vol	Itage is generated at a <i>pn</i> junction. (3 points)
d) What is the name of the effect that gives rise to the fin Briefly describe the cause of this effect.	

* * .

5) The BJT in the circuit below is characterized by the following parameters: $\beta = 80$ (in the *Active Mode*), $V_{EB} = 0.7 \text{ V}$, $V_A = \infty$. Assume that the BJT is operating in the *Active Mode*. Find the values for R_B and R_C to give $I_C = 0.05$ mA and $V_{EC} = 3$ V.

(5 points)

6) The BJTs Q_1 and Q_2 in the circuit below are characterized by the following parameters: $\beta = 50$ (in the *Active Mode*), $|V_{BE}| = 0.7 \text{ V}$, $V_A = \infty$. Assume that the input voltage V_I is -5 V. Answer the following questions.

- a) What is the operating mode of each BJT?
 (2 points)
- b) Find the values of I_1 , I_2 , V_B , and V_O as indicated in the circuit. (7 points)

7) This problem deals with the BJT amplifier below, where the BJT is characterized by the following parameters: $\beta = 100$ (in the *Active* mode), $V_{BE} = 0.7$ V, $V_A = \infty$. All the capacitors in the circuit are very large. Answer the following questions. Assume $V_T = 25$ mV.

a) Find the value of I_C . Show that the BJT is operating in the *Active Mode*.

(5 points)

-		~	~	
U	uestion	1.	Cor	ıt'd.

8 × .

b)	Sketch and label a small-signal equivalent circuit of the amplifier using the "T" n	nodel. (4 points)
c)	Find expressions for the input resistance R_{in} and the output resistance R_{out} as the circuit. Calculate their numerical values.	indicated in (6 points)
15		
a)	Find an expression for the voltage gain v_0/v_s and calculate the numerical value.	(5 points)

...

- 8) Each of the following questions refers to the physical structure and operating principles of *Metal-Oxide-Semiconductor Field-Effect Transistors* (MOSFETs).
 - a) The BJT uses two pn junctions to control the current through the device. In the MOSFET, how many pn junctions are used to control the current through the device?

(2 points)

b) How does the structure of a <u>depletion-type</u> PMOS device differ from that of the enhancement type? What is the effect of this difference in terms of V_t ?

(3 points)

c) Briefly explain the cause of the Early Effect in the MOSFET.

(3 points)

d) Assume that the circuit below is used for integrated circuit applications. The connections to the bodies of the MOSFETs Q_1 and Q_2 in the circuit are not shown. Does Q_1 exhibit the Body Effect? What about Q_2 ? Explain the reasons of your answers.

(4 points)

- 9) Answer the following questions.
 - a) In the circuit below, the NMOS Q_1 is characterized by $k_n'\left(\frac{W}{L}\right) = 1 \text{ mA/V}^2$, $V_t = 3.5 \text{ V}$, and

 $V_A = \infty$. Find V_1 and V_2 indicated in the circuit assuming that the NMOS is operating in the Saturation Mode. Verify that the assumption is correct.

(5 points)

b) Now, the constant current source of 4.5 mA in the above circuit is implemented by the circuit below. Find the value of R if Q_1 , Q_2 and Q_3 are all matched and assumed to have $V_A = \infty$.

(3 points)

10) This problem deals with the MOSFET amplifier below, where the NMOS is characterized by the following parameters: $k_n'\left(\frac{W}{L}\right) = 0.4 \text{ mA/V}^2$, $V_t = 1 \text{ V}$, and $V_A = \infty$. All the capacitors in the circuit are very large. Answer the following questions.

a) Quantitatively justify that the NMOS is operating in saturation.

(5 points)

Question 10, Cont'd.	
b) Sketch and label a small-signal equivalent circuit of the amplifier.	(4 points)

d) Find an expression for the voltage gain v_0/v_s and calculate the numerical value. (5 points)