CS & IT ENGINERING

Theory of Computation

Regular Languages

Mallesham Devasane Sir

Lecture No.- 04

Recap of Previous Lecture

Topic

Basics of TOC

Topics to be Covered

Topic

Regular Expressions

Problem Language (Set)

How to check given number is even or not? $L = \{0, 2, 4, 6, 8, \dots\}$ In malks $L = \{0, 2, 4, 6, 8, \dots\}$ In TOC over $\{0, 4, 6, 6, \dots\}$

TOPIC: Regular Language

Regular Language [Type-3 Language]

Regular Finite Regular Expression Automata Grammar

TOPIC: Regular Expression:


```
It represents a regular language (generates)
       (describes)
-) It uses 4 operators
   I) OR I) Concatenation III) Kleene IV) Kleene plus
                           Star
                                  Unary
         Binary
```


TOPIC: Operators:

Unary operator: L> one operand associated wilk unary operator

Binary

Binary

operands

TOPIC:

OR +	Concatenation.	Kleene star *	Kleme plus +
$a+b$ $aa+b$ $ab+aaa$ R_1+R_2 Slide 7	a.b aa.bbb ab.bba R1R2	(ab)* (daa)* (R**)	a^{\dagger} $(aaa)^{\dagger}$ R

$$(a+)b$$

TOPIC: OR

$$L(a+b) = L(a) U L(b)$$
= $a + b + b + c$
= $a + b + c$
= $a + b + c$

Rej Exp: $E + \Phi = \Xi$ Set: $g \in J \cup d = d \in J$ Carguest

Carguest

In on empty exp -> empty expression -> empty string -> empty language Ly no strong generates (E) = { E }

TOPIC: Simplify the expression.

$$a+a=a$$

$$a+\varepsilon=a+\varepsilon$$

a+b

a or b

aUb

L= 9a, 67

TOPIC:

$$a+b$$
 $(a)+b$
 $(a)+(b)$
 $(a)+(b)$

$$a(+)b X$$
 $(a+)b X$
 $a(+b) X$

TOPIC: Concatenation

R₁·R₂
R₁ R₂
R₁ Followed by R₂

TOPIC:

Set = Six of set = no of objects in set
$$\left| \left\{ a, bb, ab \right\} \right| = 3$$

$$\left| \left\{ string \right| = \text{Lenglk of String} \right|$$

$$\left| \left| aa \right| = 2$$

$$\{a,b\}=\{b,a\}$$
 \neq $\{a,a,b\}$ $\{a,a,b\}$ $\{a,b\}$

TOPIC:

$$a.a = aa = a$$

$$\mathbb{V}$$

$$a.\phi = \phi$$

$$a+a=a$$

TOPIC: Simplify expressions

$$a + a = a$$

$$(4) \quad \varepsilon \cdot \varepsilon = \varepsilon$$

$$\Phi \cdot \Phi = \Phi$$

$$(6) \quad \alpha \cdot \alpha = \alpha \alpha$$

$$(7) \quad \varepsilon + a = \varepsilon + a$$

$$\widehat{U} \quad \mathcal{E} \cdot \Phi = \Phi$$

(12)
$$\phi.a = \phi$$

$$\Phi R = R \cdot \Phi - \Phi$$

$$\mathcal{E} \cdot \mathcal{R} = \mathcal{R} \cdot \mathcal{E} = \mathcal{R}$$

#Q1.
$$a+\varepsilon+\phi=$$

- A a
- Φ

- 2+E
 - oa a

#Q2.
$$\phi + (\varepsilon.\phi). \alpha$$

- **A**
- 3

- Ba
- D aa

- A
- <u>Б</u>

- B
- **D** 00

- A C
- <mark>c</mark> 中

- B
- oa

2 mins Summary

Topic

Regular Language

Topic

Regular Expression

Topic

Operators

OR:

Concatenation

THANK - YOU