Machine Learning Worksheet 1

Linear Algebra – Refresher

Problem 1: Compute the eigenvalues and eigenvectors of the following matrix A by hand and using python/numpy. Hand in both your derivation and your code.

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

Problem 2: Suppose some matrix $B \in \mathbb{R}^{n \times n}$ has n linearly independent eigenvectors x_1, x_2, \ldots, x_n . Define the matrix U having these vectors as columns and the diagonal matrix D with the eigenvalues λ_i in the diagonal. Show that

$$\boldsymbol{B} = \boldsymbol{U}\boldsymbol{D}\boldsymbol{U}^{-1}$$

Problem 3: For a real symmetric matrix $B \in \mathbb{R}^{n \times n}$, show that

- **B** has real eigenvalues.
- its eigenvectors are orthogonal if the eigenvalues are pairwise distinct.

Problem 4: For a real symmetric matrix $\mathbf{B} \in \mathbb{R}^{n \times n}$ with distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$, show that for $|\cdot|$ (*Determinant*) and $tr(\cdot)$ (*Trace*) the following holds respectively:

$$|\boldsymbol{B}| = \prod_{i} \lambda_{i}, \quad tr(\boldsymbol{B}) = \sum_{i} \lambda_{i}.$$

Problem 5: A hyperplane or affine set H in \mathbb{R}^n defined by the equation $h(x) \equiv w_0 + w^T x = 0$ (in \mathbb{R}^2 this is a line). Show that

- for any point $\boldsymbol{x_0} \in H$, $\boldsymbol{w}^T \boldsymbol{x_0} = -w_0$.
- if x_1 and x_2 lie in H, then $w^T(x_1 x_2) = 0$.
- $\hat{\boldsymbol{w}} = \boldsymbol{w}/\|\boldsymbol{w}\|$ is the vector normal to the surface of H.
- if $x_0 \in H$, then the signed distance of any point x to H is given by $\hat{\boldsymbol{w}}^T(\boldsymbol{x} \boldsymbol{x_0}) = (\boldsymbol{w}^T \boldsymbol{x} + w_0) / \|\boldsymbol{w}\|$.