Presentation | 2023-5-30

Paper Reading: Modeling Gene Regulatory Networks Using Neural Network Architectures

Yuzhe Wang¹, Shan Liu²

- ¹ Peking University
- ² Beijing Computational Science Research Center

Outline

- Background and Motivation
 - Single-cell RNA Sequencing
 - Single-cell Computational Tasks
 - Overview of DeepSEM
- Methods
 - Variational Autoencoder (VAE)
 - Structural Equation Model (SEM)
 - DeepSEM: Framework and Implementation
- Model Performance
 - GRN Inference
 - Single-cell Clustering and Embedding
 - scRNA-seq Data Simulation

Outline

- Background and Motivation
 - Single-cell RNA Sequencing
 - Single-cell Computational Tasks
 - Overview of DeepSEM
- Methods
 - Variational Autoencoder (VAE)
 - Structural Equation Model (SEM)
 - DeepSEM: Framework and Implementation
- Model Performance
 - GRN Inference
 - Single-cell Clustering and Embedding
 - scRNA-seq Data Simulation

Single-cell RNA Sequencing

- Single-cell ENA Sequencing (scRNA-seq)
 - Experimental noise introduces biases in the gene expression
 - Deep learning benefits single-cell transcriptome data analysis

Single-cell Computational Tasks

- GRN Inference
 - Methods relying on side measurements
 - single-cell chromatin accessibility or TF binding motifs
 - Introduce additional noise
 - Methods solely based on scRNA-seq data
 - Focus on the co-expression networks instead of decoding the casual relationships among TFs and their corresponding target genes
 - Methods that incorporate linear models or tree-based models
 - Hard to directly generalize these to more comprehensive nonlinear frameworks and benefit from the computational power that the deep learning model brought to us

Single-cell Computational Tasks

- scRNA-seq Data Visualization
 - Uniform Manifold Approximation Projection (UMAP)
 - The data is uniformly distributed on Riemannian manifold
 - The Riemannian metric is locally (approximately) constant
 - The manifold is locally connected

Single-cell Computational Tasks

- scRNA-seq Data Simulation
 - Single-cell generative adversarial neural networks (scGAN)
 - Conditional single-cell generative adversarial neural networks (cscGAN)

$$W(P_{r}, P_{s}) = \inf_{\gamma \in \Pi(P_{r}, P_{s})} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \gamma} ||\mathbf{x} - \mathbf{y}||$$

Bahrami, M., Maitra, M., Nagy, C., Turecki, G., Rabiee, H. R., & Li, Y. (2021). Deep feature extraction of single-cell transcriptomes by generative adversarial network. *Bioinformatics*, *37*(10), 1345-1351.

Marouf, M., Machart, P., Bansal, V., Kilian, C., Magruder, D. S., Krebs, C. F., & Bonn, S. (2020). Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks. *Nature communications*, 11(1), 166.

Overview of DeepSEM

• DeepSEM: β-VAE + SEM

Outline

- Background and Motivation
 - Single-cell RNA Sequencing
 - Single-cell Computational Tasks
 - Overview of DeepSEM
- Methods
 - Variational Autoencoder (VAE)
 - Structural Equation Model (SEM)
 - DeepSEM: Framework and Implementation
- Model Performance
 - GRN Inference
 - Single-cell Clustering and Embedding
 - scRNA-seq Data Simulation

Generative Models

- Goal: Learn a probability distribution p(x) over x such that
- 1. Generation: If we sample $x_{\rm new} \sim p(x)$, $x_{\rm new}$ should look like a real image
- 2. Density Estimation: p(x) should be high if x looks like a real image, and low otherwise (anomaly detection)
- **3. Unsupervised Representation Learning**: We should be able to learn high level features of these images
- Key questions: how to construct and learn p(x)?

- Learning as Density Estimation
 - Goal: construct p_{θ} as *close* as possible to p_{data} (where we assume the dataset \mathcal{D} come from)

- Learning as Density Estimation
 - Goal: construct p_{θ} as *close* as possible to p_{data} (where we assume the dataset \mathcal{D} come from)
 - Measurement of closeness: KL-divergence

$$KL(p_{\text{data}}||p_{\theta}) = \mathbb{E}_{x \sim p_{\text{data}}} \left(\log \frac{p_{\text{data}}(x)}{p_{\theta}(x)} \right)$$
$$= \sum_{x} p_{\text{data}}(x) \log \frac{p_{\text{data}}(x)}{p_{\theta}(x)}$$

 Minimizing KL-divergence is equivalent to maximizing the expected loglikelihood

$$\underset{p_{\theta}}{\operatorname{arg\,min}} \operatorname{KL}(p_{\text{data}} || p_{\theta}) = \underset{p_{\theta}}{\operatorname{arg\,max}} \mathbb{E}_{x \sim p_{\text{data}}} \log p_{\theta}(x)$$

Latent Variable Models

- Latent variables z corresponds to high-level features, p(x|z) could be much simpler that p(x) if z chosen properly
- Deep Latent Variable Models

• Learn p(x|z) via deep neural networks

- Variational Inference for Latent Variable Models
 - Evidence Lower Bound (ELBO)

$$\log p_{\theta}(x) \ge \mathbb{E}_{z \sim q(z)} \log \frac{p_{\theta}(x, z)}{q(z)}$$

$$= \mathbb{E}_{z \sim q(z)} \log p_{\theta}(x, z) - \mathbb{E}_{z \sim q(z)} \log q(z)$$

$$= \mathbb{E}_{z \sim q(z)} \log p_{\theta}(x, z) + H(q)$$

• Maximize the **expected log-likelihood** $\log p_{ heta}(x)$ by maximizing **ELBO**

Variational Autoencoders

 $\mathcal{L}(x; \theta, \phi) = \mathbb{E}_{q_{\phi}(z|x)} \left(\log p_{\theta}(x, z) - \log q_{\phi}(z|x) \right)$ $= \mathbb{E}_{q_{\phi}(z|x)} \left(\log p_{\theta}(x|z) + \log p(z) - \log q_{\phi}(z|x) \right)$ $= \mathbb{E}_{q_{\phi}(z|x)} \log p(x|z; \theta) - \text{KL} \left(q_{\phi}(z|x) || p(z) \right)$

Intuition of Variational Autoencoders

- Take a data point \boldsymbol{x}^i
 - Encoder maps x^i to \hat{z} by sampling from $q_\phi(z|x^i)$
 - **Decoder** reconstruct \hat{x} by sampling from $p_{\theta}(x|\hat{z};\theta)$

Intuition of Variational Autoencoders

- First term encourages $\hat{x} \approx x^i$ (x^i likely under $p(x|\hat{z};\theta)$)
- ullet Second term encourages z to be likely under the prior p(z)

Example: Inference and Generation of MNIST Dataset using VAE

Structural Equation Model (SEM)

- Structural Equation Model
 - Gaussian linear latent variable model
 - Linearity of the relations between the variables
 - Normality, Gaussian distribution for the residuals of the latent variables and the residuals of the observed variables
 - Linear **measurement** model: relate the latent variables $m{X}$ to the observed variables $m{Y}$

$$Y = AX + \varepsilon$$

• Linear structural model: relate the latent variables $m{X}$ to each other (self-regression problem)

$$X = W^T X + Z$$

which gives

$$\boldsymbol{X} = (\boldsymbol{I} - \boldsymbol{W}^T)^{-1} \boldsymbol{Z}$$

$$\boldsymbol{Z} = (\boldsymbol{I} - \boldsymbol{W}^T) \boldsymbol{X}$$

• ε, Z are noise matrices of multivariate Gaussian distribution

Structural Equation Model (SEM)

- Deep Structural Equation Model
 - Gaussian linear latent variable model
 - Linearity of the relations between the variables
 - Normality, Gaussian distribution for the residuals of the latent variables and the residuals of the observed variables
 - Deep measurement model: relate the latent variables $m{X}$ to the observed variables $m{Y}$ with deep neural networks (e.g. MLP)
 - Deep structural model: relate the latent variables $m{X}$ to each other (self-regression problem)

multilayer neural network $f_1,\,f_2$

$$oldsymbol{X} = f_1((oldsymbol{I} - oldsymbol{W}^T)^{-1}oldsymbol{Z}) \ oldsymbol{Z} = (oldsymbol{I} - oldsymbol{W}^T)f_2(oldsymbol{X})$$

Structural Equation Model (SEM)

Deep Structural Equation Model → VAE

- Deep measurement model: relate the latent variables $m{X}$ to the observed variables $m{Y}$ with deep neural networks (e.g. MLP)
- Deep structural model: relate the latent variables $m{X}$ to each other (self-regression problem)

multilayer neural network $f_1,\,f_2$ as Decoder and Encoder

$$oldsymbol{X} = f_1((oldsymbol{I} - oldsymbol{W}^T)^{-1}oldsymbol{Z}) \ oldsymbol{Z} = (oldsymbol{I} - oldsymbol{W}^T)f_2(oldsymbol{X})$$

Framework of DeepSEM

Framework of DeepSEM

Framework of DeepSEM

Shu, H., Zhou, J., Lian, Q., Li, H., Zhao, D., Zeng, J., & Ma, J. (2021). Modeling gene regulatory networks using neural network architectures. *Nature Computational Science*, 1(7), 491-501.

Framework of DeepSEM

- Implementation Details
 - β-VAE: a simple variant of vanilla VAE

$$\mathcal{L} = -E_{q(\boldsymbol{X})}[\log p(\boldsymbol{X}|\boldsymbol{Z})] + \beta \operatorname{KL}(q(\boldsymbol{Z}|\boldsymbol{X})||p(\boldsymbol{Z})) + \alpha ||\boldsymbol{W}||_{1}$$

$$\mathcal{L}(x; \theta, \phi) = \mathbb{E}_{q_{\phi}(z|x)} \log p(x|z; \theta) - \text{KL} \left(q_{\phi}(z|x) || p(z) \right)$$

- First term encourages $\hat{x} \approx x^i$ (x^i likely under $p(x|\hat{z};\theta)$)
- Second term encourages z to be likely under the prior p(z)
- Input: log-transformed scRNA-seq expression data (z-normalized)
- ullet Model training: RMSprop to avoid unstable behavior of Adam; optimize MLPs and $oldsymbol{W}$ alternately
- Initialization: matrix diagonal of W are set as zeros (no self-interactions)

Outline

- Background and Motivation
 - Single-cell RNA Sequencing
 - Single-cell Computational Tasks
 - Overview of DeepSEM
- Methods
 - Variational Autoencoder (VAE)
 - Structural Equation Model (SEM)
 - DeepSEM: Framework and Implementation
- Model Performance
 - GRN Inference
 - Single-cell Clustering and Embedding
 - scRNA-seq Data Simulation

GRN Inference

• Performance of GRN Inference

GRN Inference

- Performance of GRN Inference
 - Metric: EPR (Early precision ratio)

Shu, H., Zhou, J., Lian, Q., Li, H., Zhao, D., Zeng, J., & Ma, J. (2021). Modeling gene regulatory networks using neural network architectures. *Nature Computational Science*, 1(7), 491-501.

Single-cell Clustering and Embedding

Performance of Single-cell clustering and embedding

Single-cell Clustering and Embedding

Performance of Single-cell clustering and embedding

Single-cell Clustering and Embedding

Performance of Single-cell clustering and embedding

scRNA-seq Data Simulation

Simulation Performance

ullet Perturb the hidden vector Z with Gaussian noise

$$\hat{m{Z}} = m{\mu} + m{n}m{\sigma}$$

$$m{n} \sim \mathcal{N}(0, m{I})$$

scRNA-seq Data Simulation

Simulation Performance

scRNA-seq Data Simulation

Simulation Performance

GRN consistency = $\frac{\text{Number of overlap edges in top } N \text{ predicted edges between real and simulated cells}}{N}$

 $N = K\% \times \text{number of predicted GRN in real cells}$

Discussion: Inspirations and Critics

- Inspirations
 - Utilize deep neural networks for enhanced model capacity
 - One model for various single-cell computational tasks
 - Combination of deep learning and causal inference gives explainablility
- Critics
 - The model need to be trained from scratch for each set of scRNA-seq data, and the training procedure is (notoriously) unstable, though the training speed is comparably acceptable

 TFs are omitted in GRN, thus he predicted regulatory interactions are suspicious

Thank you

Yuzhe Wang¹, Shan Liu²

¹ Peking University

² Beijing Computational Science Research Center