

(1) Publication number: 0 461 079 A2

12

EUROPEAN PATENT APPLICATION

(21) Application number: 91810428.2

2 Date of filing: 05.06.91

(f) Int. Cl.⁵: **C07D 405/04**, C07D 405/14, C07D 413/10, C07D 239/52, C07D 403/06, C07D 409/06, C07D 401/06, C07D 491/04, C07D 413/06, A01N 43/54

- 30 Priority: 07.06.90 US 534794 21.12.90 US 633592
- (43) Date of publication of application: 11.12.91 Bulletin 91/50
- Designated Contracting States:
 AT BE CH DE DK ES FR GB GR IT LI LU NL SE
- 71 Applicant : SANDOZ LTD. Lichtstrasse 35 CH-4002 Basel (CH)
- (4) BE CH DK ES FR GB GR IT LI LU NL SE
- (1) Applicant: SANDOZ-PATENT-GMBH Humboldtstrasse 3 W-7850 Lörrach (DE)
- 84) DE
- 7 Applicant: SANDOZ-ERFINDUNGEN Verwaltungsgesellschaft m.b.H. Brunner Strasse 59 A-1235 Wien (AT)
- (84) AT

(72) Inventor: Anderson, Richard James 3367 Kenneth Drive Palo Alto, CA 94303 (US) Inventor: Cloudsdale, Ian Stuart 730 Rebecca Drive Boulder Creek, CA 95006 (US) Inventor: Hokama, Takeo 715 Quetta Avenue Sunnyvale, CA 94087 (US)

- (54) Substituted phthalides and heterocyclic phthalides.
- Substituted phthalides and heterocyclic phthalides and derivatives thereof which are useful as herbicides.

The present invention concerns substituted phthalides and heterocyclic phthalides and derivatives thereof, processes for their production, compositions containing them and their use in agriculture.

More particularly, the invention concerns compounds of formula I

wherein ring system A is selected from

- a) phenyl or naphthyl
- b) pyridyl which may be fused by its (b) or (c) side to benzene
- c) pyridyl-N-oxide or pyrazinyl-N-oxide
- d) pyrimidinyl

5

10

15

20

25

30

35

40

- e) pyrazinyl
- f) 3- or 4- cinnolynyl or 2-quinoxalinyl, and
- g) a five membered heteroaromatic ring comprising oxygen, sulphur or nitrogen as heteroatom(s) which ring may be fused to a benzene ring or may comprise nitrogen as an additional heteroatom.

R is cyano, formyl, $CX_1X_2X_3$, a ketone forming group, a carboxyl group which may be in the form of the free acid or in ester or salt form, a thiocarboxyl group which may be in the form of the free acid or in ester form, a carbamoyl group or a mono- or di- substituted carbamoyl group, hydroxyalkyl, hydroxybenzyl, -CH=NOH, - CH=NO-lower alkyl, the group -CH₂-O-C(O)- and bridges adjacent carbon atoms in ring A, or a ring C

Y₁, Y₂ and Y₃ are attached to carbon atoms and are independently hydrogen, halogen, hydroxy, alkyl, alkenyl, alkynyl, alkynyl, alkynyloxy, alkylsulfonyloxy, dialkylsulfamoyloxy, alkylsulfonyloxy, alkylsulfinyl, dialkylcarbamoyloxy, alkylthlo, alkenylthio or alkynylthio each of which may in turn be substituted by 1 to 6 halogen atoms; dialkoxymethyl, conjugated alkoxy, hydroxyalkyl, carboxyl, acyl, acylalkyl, acyloxy, acyloxyalkyl, trialkylsilyloxy, trialkylsilyl, cyano, nitro, amino or substituted amino, aminosulfonyl; cycloalkyl, aryl, aralkyl, aralkenyl, aralkynyl, aryloxy, aralkoxy, arylsulfonyl, arylsulfinyl, arylthio or aralkylthio, each of which may be substituted by one to three substitutents selected from halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, nitro, cyano, alkylthio, acyl, amino or substituted amino; a group

45

55

wherein R' is hydrogen, lower alkyl, or lower alkoxy; or Y₁ and R taken together on adjacent carbon atoms form a bridge having the formula

wherein E is a direct bond or a 1 to 3 membered linking group with elements selected from methylene, substituted methylene,

5 and oxygen.

or Y₁ and Y₂ taken together on adjacent carbon atoms form a 3- to 5-membered bridge comprised of elements selected from methylene, substituted methylene,

oxygen, and

15

10

each of W₁, W₂, W₃, W₄ and W₅ is independently CH, CR₃ or nitrogen; W₆ is NH, oxygen, sulfur,

20

25

Z is a 2- or 3-membered bridge comprised of elements selected from methylene, substituted methylene,

30

-N=, oxygen and

35

R₁ and R₃ each is independently hydrogen; halogen; alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkynyloxy, alkylthio, alkenylthio or alkynylthio, each of which may in turn be substituted by 1 to 6 halogen atoms; cycloalkyl, heterocycloalkoxy, aryloxy, aralkoxy or aralkylthio each of which may be substituted by 1 to 3 substituents selected from halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, nitro, cyano, alkylthio, acyl, amino or substituted amino; aminoxy; substituted aminoxy; iminoxy; substituted iminoxy; amino; substituted amino; amido; substituted amido; alkylsulfonyl methyl; cyano; nitro; or

45

50

55

wherein Y4 is hydrogen, lower alkyl, lower alkoxy, hydroxy or unsubstituted or substituted phenyl.

R4 is as defined for Y1 except for hydrogen.

X and Y each is independently hydrogen, hydroxy, halogen, cyano, alkyl, alkoxy, alkoxycarbonyl, alkoxycarbonyloxy, hydroxyalkyl, haloalkyl, acyl, acyloxy, carbamoyl, carbamolyoxy, alkylthio, alkylsulfinyl, alkylsulfonyl or alkylsulfonyloxy; aryl, aryloxy, arylS(O)_p, aralkyl, aralkoxy, aralkS(O)_p, arylsulphonyloxy, each of which may in turn be substituted by 1 to 3 substituents selected from halogen, alkyl, haloalkyl, alkoxy, haloalkoxy, nitro, cyano, alkylthic, acyl; amino, substituted amino or together represent =O, =S, =NH, =NOR₁₂, or =CR₁₃R₁₄; or

X and R together may form a bridge having the formula

wherein the carbonyl is attached to A and R₂ represents hydrogen, alkyl, haloalkyl, alkoxyalkyl, alkoxy, aralkoxy, unsubstituted or substituted or substituted or substituted or substituted.

P is 0, 1 or 2.

 X_1 , X_2 and X_3 are independently hydrogen, hydroxy, alkylthio, hydroxyalkyl or hydroxybenzyl whereby at least one of X_1 , X_2 and X_3 is other than hydrogen; or X_3 represents hydrogen and X_1 and X_2 together form a four or five membered bridge comprising elements selected from $-O(CH_2)_nO$ -,

-0C(CH₂)_m0-

and -S(CH₂)_n-S-.

R₁₂ is hydrogen or alkyl,

R₁₃ and R₁₄ are independently hydrogen, alkyl or halogen,

m is one or two.

n' is two or three

with the proviso that when R is carboxyl in free ester or salt form and X and Y together are =O one of rings A and B contains a hetero atom.

When R is a ketone forming group this is preferably

30

5

10

15

20

25

wherein R" is alkyl, haloalkyl, alkoxyalkyl, alkenyl, alkynyl, unsubstituted or substituted aryl, unsubstituted or substituted aralkyl.

When R is a carboxyl or thiocarboxyl group in ester form it is preferably of formula -COOR₅ or -COSR₅ wherein R₅ is alkyl, haloalkyl, alkoxyalkyl, alkenyl, haloalkenyl, alkynyl, haloalkynyl, unsubstituted or substituted aryl, unsubstituted or substituted aralkyl, hydroxyalkyl, cycloalkyl, cyanoalkyl, aralkoxyalkyl; a group -N=C(R₁₅)(R₁₆); a group -(CH₂)_n-CH(R₁₇)(R₁₈); a group

40

45

50

55

R₁₅ and R₁₆ are independently hydrogen or alkyl,

 R_{17} and R_{18} are independently $S(O)_n$ alkyl, $COOR_0$, alkoxy, amino, substituted amino, benzyloxy, trimethylsilyl, cyano,. $-C(R_{10})SR_{20}$ or additionally one thereof may be hydrogen.

R₁₉ is hydrogen or alkyl,

R₂₀ is alkyl or aryl,

R₉, R₁₀ and R₁₁ are independently hydrogen, alkyl, haloalkyl, alkoxyalkyl, unsubstituted or substituted aryl or unsubstituted or substituted aralkyl,

n and n" are independently zero, one or two, and

X₄ is oxygen or sulfur.

When R is a carbamoyl group or a mono- or di-substituted carbamoyl group it is preferably of formula $CONR_7R_8$ wherein R_7 and R_8 are independently hydrogen or an aliphatic or a saturated or unsaturated cyclic or heterocyclic group each of which may be unsubstituted or substituted.

 R_7 and R_8 are preferably each independently (a) hydrogen, halogen; (b) alkyl, alkenyl, alkynyl alkoxy, alkoxyalkoxy, alkenyloxy, alkynyloxy, alkylS(O)_p, alkenylS(O)_p or alkynylS(O)_p, alkylS(O)_palkyl, alkenylS(O)_palkyl, alkynylS(O)_palkyl, each of which may in turn be substituted by 1 to 6 halogen atoms and each

of which may be attached to the adjacent nitrogen atom via alkyl; (c) acyl, acylalkyl, acyloxy, acyloxyalkyl; (d) cycloalkyl, cycloalkyl, heterocycloalkyl, heterocycloalkyl, heterocycloalkyl, aryloxy, aralkyl, alkyl, alkenyl, alkoxy, alkoxyalkoxy, alkenyloxy, alkylyloxy, alkyls(b), alkenyls(O), alkyl, alkenyl, alkoxy, alkoxyalkoxy, alkenyloxy, alkylyloxy, alkyls(b), alkenyls(O), alkyl, alkenyls(O), alkyl, alkenyls(O), alkyl, aralkyl, each of which may in turn be substituted by 1 to 6 halogen atoms; and (iii) nitro, cyano, acyl, amino, substituted amino, aminosulfonyl, aminoalkyl or substituted aminoalkyl; (e) amino, substituted amino, amido, substituted amido, aminosulfonyl, cyano, nitro, or -(CHR₄')n"'-C(O)Y₄',

wherein Y_4 ' is hydrogen, lower alkyl, lower alkoxy or hydroxy and n"' is 0, 1, 2 or 3 and p is 0, 1 or 2. R_4 ' is as defined for Y_1 .

When R is carboxyl in salt form the salt is preferably formed with an alkali metal, alkali earth metal, optionally substituted ammonium cation, a trialkyl sulfonium cation, a trialkyl sulfoxonium cation or a phosphonium cation, especially the cation of an alkali metal (e.g. the Li or Na cation) or of an earth alkali metal (e.g. the Ca or Mg cation); the ammonium cation; a substituted ammonium cation [such as a C_{1-5} alkylammonium cation, a di- C_{1-5} alkylammonium cation, a tri- C_{1-6} alkyl-ammonium cation, a tetra- C_{1-6} almmonium cation, a (C_{1-6} alkyl)ammonium cation; a phosphonium cation; a tri(C_{1-8} alkyl)sulfoxonium cation.

When Y_1 , Y_2 and/or Y_3 is a carboxyl group this may be in ester or salt form or in amide form (i.e. a carbamoyl) and as such is as described above for R in these forms. Where A has meaning g) it contains one to three heteroatoms and signifies for example thienyl, furanyl, pyrrolyl, oxazolyl, thiazolyl, isoxazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl or thiadiozalyl.

Where A has one of the above defined heteroaromatic significances, b) through g), the substituted hetero ring is particularly selected from pyridyl, quinolyl, pyridyl-N-oxide, pyrimidinyl, pyrazinyl, thienyl or furyl, more particularly from pyridyl or thienyl.

Alkyl moieties unless otherwise specified contain 1 to 8 carbon atoms, preferably 1 to 5, especially 1 to 4, e.g. 1 or 2 carbon atoms. Lower alkyl moieties contain 1 to 4, e.g. 1 or 2 carbon atoms. Alkyl moieties as or present in $R_{\underline{6}}$, R_{7} or R_{8} contain 1 to 24 preferably 1 to 12, especially 1 to 6 whereby one of R_{7} and R_{8} is preferably hydrogen when the other is alkyl.

Alkyl moieties as bridging groups may be straight chain or branched and preferably contain 1 to 4, e.g. 1 or 2 carbon atoms. They may be optionally substituted by aryl or substituted aryl and may optionally be interrupted by or attached via an oxygen or sulfur atom.

"Conjugated alkoxy" stands for an alkoxy group interrupted in its alkyl moiety by one or more oxygen atoms eg alkoxyalkoxy, alkoxyalkoxy, etc.

Alkenyl and alkynyl moieties contain 2 to 8, preferably 2 to 4, especially 2 or 3 carbon atoms.

Halogen is preferably F, Cl or Br, especially for Cl.

10

15

20

35

45

50

55

Aryl moieties are preferably as defined for meanings a) to g) of ring system A or as ring B and preferred meanings of each, especially phenyl. Such aryl moieties may be unsubstituted or substituted and in the latter case carry 1 to 3 substituents as defined for Y₁ unless otherwise specified.

Substituted amino, -amido, -aminoxy, -aminoalkyl, -iminoxy, -carbamyl (other than as R) is preferably substituted by one or two substitutents selected from alkylalkoxy, haloalkyl, acyl, alkoxyalkyl, unsubstituted or substituted aralkyl.

Substituted methylene is preferably substituted by one or two groups as defined for Y₁.

Acyl as or as part of a substituent is conveniently

wherein R"' is as defined for Y₁ (for example alkyl, haloalkyl, cycloalkyl, alkoxyalkyl, unsubstituted or substituted aryl (especially phenyl). Examples of acyl include acetyl, propionyl, butyryl, unsubstituted or substituted benzoyl, pivaloyl or chloracetyl, especially acetyl or unsubstituted or substituted benzoyl.

Cycloalkyl is preferably of 3 to 6 carbon atoms especially cyclopropyl, cyclopentyl or cyclohexyl, heterocyclo is preferably 5 or 6 membered and as defined for A definitions b) to g) and preferences or saturated and containing O, S or N as heteroatom, eg tetrahydrofuryl, piperidinyl, morpholinyl.

For convenience bridging members such as

are so written but are to be understood as embracing

10

Carbamoyl or substituted carbamoyl moieties are attached to the molecule which they substitute via their carbonyl. Amido or substituted amido moieties are attached to the molecule which they substitute via their nitrogen atom.

A particular group of compounds of formula I (compounds Ia) comprises those wherein ring system A is selected from phenyl, pyridyl or pyridyl-N-oxide.

R is a carboxyl group which may be in the form of the free acid or in ester or salt form, a thiocarboxyl group which may be in the form of the free acid or in ester form, a carbamoyl group or a mono- or di-substituted carbamoyl group.

Y₁, Y₂ and Y₃ are attached to carbon atoms and are independently hydrogen, halogen, alkyl, alkoxy; each of W₁, W₂, W₃, W₄ and W₅ is independently CH, CR₃ or nitrogen; W₆ is NH or oxygen;

Z is a 2- or 3-membered bridge comprised of elements selected from methylene, substituted methylene or

25

30

20

 R_1 and R_3 each is independently hydrogen, halogen, alkyl, alkoxy, aryloxy or aralkoxy. X and Y each is independently hydrogen, hydroxy, cyano, alkoxy, acyloxy or together represent =0; or X and R together form a bridge having the formula

35

40

45

50

wherein the carbonyl is attached to A.

When R is carboxyl or thiocarboxyl in ester form it is preferably of formula -COORs or COSRs;

wherein each R₆ is independently alkyl, alkoxyalkyl, alkenyl, alkynyl, substituted aryl or unsubstituted or substituted aralkyl.

When R is carboxy or thiocarboxyl in salt form the salt is preferably formed with an alkali metal, alkali earth metal, optionally substituted ammonium cation especially the cation of an alkali metal (e.g. the Li or Na cation) or of an earth alkali metal (e.g. the Ca or Mg cation); the ammonium cation; a substituted ammonium cation (such as a C_{1-6} alkylammonium cation, a di- C_{1-6} alkylammonium cation, a tetra- C_{1-6} alkylammonium cation.

When R is carbamoyl or mono- or di- substituted carbamoyl it is preferably of formula $CONR_7R_8$ wherein R_7 is hydrogen, alkyl, haloalkyl, alkoxyalkyl, unsubstituted or substituted aryl or unsubstituted or substituted aralkyl and R_8 is hydrogen, alkyl, NH_2 , NHR_6 or OR_6 wherein R_6 is as defined for R_7 .

A particular compound group (compounds lb) comprises those compounds of formula I wherein ring system A represents phenyl, pyridyl or thienyl; B represents pyrimidinyl or triazinyl; R represents a ring C especially oxazole, oxazolone, oxazolidine or oxazolidinone; carboxyl in the form of the free acid or in ester or salt form; substituted carbamoyl, cyano or together with X represent

Y₁, Y₂ and Y₃ each represent independently hydrogen, halogen, alkyl, alkoxy, alkylthio or arylthio.

X, Y each represent independently hydrogen, hydroxy, alkoxy, acyloxy, a ring B, halogen, alkylthio or arylthio or together =O or =NH

and R₁ and R₃ each represent independently halogen, alkoxy, alkyl, haloalkoxy, optionally substituted aryloxy, aralkoxy, alkylnyloxy, alkenyloxy.

A further compound group comprises compounds Ib wherein Y1, Y2 and Y3 additionally may each represent independently aralkoxy, alkenyloxy or alkynyloxy.

B is especially pyrimidinyl, particularly 4,6-dimethoxy-2-pyrimidinyl.

A is especially phenyl or pyridyl substituted as defined above.

X and Y are preferably hydrogen, halogen, cyano, hydroxy, alkoxy or together -O, especially hydrogen, hydroxy or together =0.

A further group of compounds according to the invention (Compounds Ic) comprises those of formula I wherein ring system A is pyridyl,

R is CONR₇'R₈'

5

10

15

20

25

35

٠....

wherein R7' and R8' represent independently hydrogen, alkoxy, alkyl; or aryl or aralkyl each of which may be unsubstituted or substituted,

X is hydrogen,

Y is OR₃', SR₃' on OCOR₃'

wherein R3' is alkyl; or aryl; or aralkyl each of which may be unsubstituted or substituted,

or X and Y together represent -O or =S and ring system B is m-CF₃ phenyl.

Within this group Ic, compounds are preferred wherein X is OH and Y is H or X and Y together represent =O, A is 2- or 3-pyridyl, R7 is hydrogen or alkyl especially methyl, R8 is phenyl or benzoyl which may be unsubstituted or substituted eg 1-3 times by halogen, alkyl and/or alkoxy. The following meanings are preferred independently for each substituent.

a) meanings a) and b) Α

b) phenyl

c) pyridyi

a) carboxyl in the form of the free acid or in salt or ester form or carbamoyl or mono- or di-substituted R carbamoyl

b) COOR₅ wherein R₅ is hydrogen alkyl, COO⁺Ma⁻ wherein Ma is an alkali metal cation or CONR₇R₈ wherein R7 is hydrogen or alkyl and R8 is alkyl, aryl or substituted aryl

c) COO-Na+, COOCH3, CONHC8H13, CONH(CH3) phenyl

a) hydrogen, halogen, alkyl or alkoxy Y₁

b) halogen, especially fluorine or chlorine

a) hydrogen or halogen, alkyl or alkoxy

b) hydrogen or halogen

c) hydrogen

N

W₁

 W_2 a) CH or N

b) CH

 W_3 CR₃

W.

W₅ a) CH or N

b) N

a) 0 We

a) elements selected from methylene, substituted methylene, Ζ

a) taken with X, =Ob) hydrogen

55

Y

R

a) alkvi

b) alkoxy

R"

a) alkyl b) methyl

R"

a) alkyl

10

15

25

30

35

40

b) aryl, especially phenyl

Ring A, Ring B

a) at least one contains a heteroatom

b) ring A = a phenyl or a pyridine

ring B = a pyrimidine especially 3,5 dimethoxy pyrimidine

Combinations of the above listed preferred meanings are especially preferred. One such combination comprises compounds of formula (I) in .vhich

A is phenyl or pyridyl;

R is a carboxyl group in the form of a free acid or salt; carbamoyl; COOR5" wherein R5" is C1-8alkyl or C2-salkenyl or CONR7"R8" wherein

 R_7 " is C_{1-12} alkyl, amino, C_{1-4} alkylamino, anilino, haloanilino, benzyl, halobenzyl, C_{1-4} alkylbenzyl, 20 C₁₋₄alkoxybenzyl, phenyl, halophenyl, C₁₋₄alkylphenyl or C₁₋₄alkoxyphenyl;

R₈" is hydrogen or C₁₋₄alkyl;

Y₁, Y₂ and Y₃ are independently hydrogen or halogen;

W₁ and W₄ are N;

W2 is CH;

W₃ is CR₃ wherein R₃ is C₁₋₅alkoxy;

R₁ is C₁₋₅alkoxy;

X is hydroxyl or C_{1-4} alkoxycarbonyloxy or taken with Y is =0;

Y is hydrogen or taken with Y is =O; or

X and R together form a bridge having the formula -C(O)O- wherein the carbonyl is attached to A, and Y is hydrogen or C2-8gacyloxy.

Examples of preferred compounds according to the invention are compound nos. 13, 40, 53, 55, 58, 64, 77, 78, 82, 91, 103, 111, 124, 125, 130, 143, 149, 163, 170, 175, 183, 199, 204, 205, 211, 219, 220, 224, 247. 249, 258, 262, 263, 265, 266, 267, 273 and 277.

Compounds having the formula

especially those wherein X is CN may exist in the alternate tautomeric form

45

50

55

The compounds of formula I according to the invention may be prepared as follows.

a) when X and R combine to form a bridging group as defined above and Y is hydrogen, cyano, arylthio, arylsulfinyl or arylsulfonyl, reacting a compound of formula II

wherein A is as defined above, Y' represents hydrogen, cyano, arylthio, arylsulfinyl or arylfulfonyl and Z₁ represents oxygen, sulfur or NR₂ wherein R₂ is as defined above except for hydrogen, with a compound of formula III

$$\begin{array}{ccc}
& \omega_1 & \mathcal{R}_1 \\
& \mathcal{R}_2 & \mathcal{R}_2 \\
& \omega_1 = \omega_3
\end{array}$$
(III)

wherein W_1 , W_2 , W_3 , W_4 are as defined above and R_{21} represents methylsulfonyl, or halogen to obtain the corresponding compound of formula Ip

30

35

40

45

50

25

20

5

10

b) treating a compound of formula Ip wherein Y' represents cyano or arylsulfonyl and Z_1 represents oxygen and the other symbols are as defined above.

- (i) by hydrolysis to give a corresponding compound of formula I wherein R and X form a bridge and Y is hydroxy or a compound of formula I wherein X and Y together form =O
- (ii) with an amine to give a corresponding compound of formula I wherein R is an optionally substituted carbamoyl group and X and Y together form =0
- (iii) with a group

MOR₂₂

wherein M is an alkali metal and R_{22} is hydrogen or alkyl, to give a corresponding compound wherein R and X form a bridge and Y is hydroxy or alkoxy,

- c) hydrolyzing a compound of formula Ip wherein Y' represents hydrogen and Z₁ represents oxygen to give a compound of formula I wherein R is a carboxyl group optionally in salt form, X is hydrogen and Y is hydroxy d) ring opening a compound of formula Ip wherein Y' represents hydroxy and Z₁ represents oxygen to give a compound of formula I wherein R is a carboxyl group optionally in salt form and X and Y together are =0 e) esterifying a compound of formula I wherein R is a carboxyl group optionally in salt form and X and Y are =0 to give the corresponding compound wherein R is a carboxyl group in ester form
- f) halogenating a compound of formula Ip wherein Y' represent hydroxy to give a compound of formula I wherein X and R together form a bridging group and Y' is halogen
- g) reacting a compound of formula lp wherein Z_1 is oxygen and Y' is halogen with a group R_2NH_2 and a group HOR_{23} wherein R_{23} represents alkyl, acyl or aryl and R_2 is as defined above to give the corresponding compound wherein Z_1 is NR_2 and Y' is alkoxy, aryloxy or acyloxy
- h) oxidizing a compound of formula lp wherein Y' represents hydrogen to give the corresponding compound wherein Y' represents hydroxy
- i) reacting a compound of formula IV

$$\begin{array}{c}
Y_1 \\
X_2
\end{array}$$

$$\begin{array}{c}
R_{24}
\end{array}$$
(IV)

with a compound of formula V

5

10

15

35

40

45

50

55

to produce a compound of formula Iq

where in A, R, R_1 , W_1 , W_2 , W_3 , W_4 , Y_1 , Y_2 and Y_3 are as defined above and X" and Y" are hydrogen and R_{24} is alkyl, especially methyl

j) mono-or di-halogenating a compound of formula Iq wherein X" and Y" are hydrogen to produce the corresponding compound of formula Iq wherein one or both of X" and Y" are halogen

k) oxidizing a compound of formula Iq wherein X" and Y" are both hydrogen or X" is halogen and Y" is hydrogen to produce the corresponding compound wherein X" and Y" together represent =O or one represents hydrogen and the other represents hydroxy

I) alkylating a compound of formula Iq wherein X" represents hydrogen and Y" represents hydrogen to produce the corresponding compound wherein X" represents alkyl and Y" represents hydrogen

m) introducing an alkoxy or alkylthio group into a compound of formula Iq wherein X" represents halogen and Y" represents hydrogen to produce the corresponding compound wherein X" represents alkoxy or alkylthio and Y" represents hydrogen

n) acylating a compound of formula Iq wherein X" represents hydroxy and Y represents hydrogen to produce the corresponding compound wherein X" represents acyloxy amd Y" represents hydrogen

o) reacting a compound of formula Ip wherein Z_1 is oxygen and Y' is hydrogen with a group R_7NH_2 wherein R_7 is as defined above to give a compound of formula I wherein R is monosubstituted carbamoyl, X is hydrogen and Y is hydroxy

p) sulfonylating, carbamoylating, acylating or carbalkoxylating a compound of formula Ip wherein Z₁ is oxygen and Y' is hydroxy to produce the corresponding compound of formula I wherein R and X form a

bridge and Y represents sulfonyloxy, carbamoyloxy, acytoxy or alkoxycarbonoyloxy q) reacting a compound of formula Ip wherein Z_1 is oxygen and Y' is halogen with a group R_7R_8NH wherein R_7 and R_8 are as defined above (R_7 and $R_8 \neq H$) to give a compound of formula I wherein R is disubstituted carbamoyl, and X and Y together represent =0.

and recovering any compound wherein R is a carboxyl or thiocarboxyl group in free form or in ester form and any compound wherein R is carboxyl in free form or in salt form.

The following table is illustrative of suitable reaction conditions.

REACTION CONDITIONS

	Reaction Reagents	Solvents	Temperature Others
5	a) 1) a) base eg LDA or b) base eg NaH 2) III	1) and 2) inert eg DMF, ether, cyclic ether eg THF	a) reduced eg -70° b) R.T.
10	b) i)1) base eg NaOH 2) acidify	inert eg ether, cyclic ether eg THF or alcohol eg methanol	R.T.
	b)ii) 1) amine	inert eg ether, cyclic ether eg THF	
15	b)iii) MOR ₂₂	alcohol eg methanol, cyclic ether eg THF	
20	c) base eg LiOH	water optionally with an alcohol or cyclic ether eg THF	R.T.
	d) base eg NaOH	as c)	R.T.
25	e) halide eg IR ₅ base eg K ₂ CO ₃ , NaH	inert eg DMF, 2-butanone (MEK)	elevated eg 50-80°
	f) halogenating agent eg SOCl ₂ , DMF	inert eg chlorinated hydrocarbon eg CCl ₄ CH ₂ Cl ₂	elevated eg 50-80°
30	g) 1) R ₇ NH ₂₂ ; R ₂₂ OH	as f)	elevated eg 50-80°
	h) 1) oxidizing agent eg NaOCl	1), 2) and 3) inert eg H ₂ O optionally with alcohol	elevated eg 50°
35	2) base eg NaOH 3) acid eg HCl	eg methanol	R.T. R.T.
	i) 1) base eg LDA	1) anhyd. inert eg ether such as cyclic ether eg THF	reduced eg -30°
40	2) AcOH 3) DDQ 4)aq NaOH	2), 3) and 4) ether, H ₂ O	R.T. reduced eg 0° elevated eg 75°
	j) NBS, benzoylperoxide	inert eg halogenated hydrocarbon such as CCl,	elevated eg 75°
45	k) DMSO, Na ₂ CO ₃	DMSO	elevated eg 50-60°
	l) base eg NaH, alkyl balide	inert eg ether, THF	0° → R.T.
50	m) MOR ₂₂ MSR ₂₂ eg NaOCH ₃	inert eg DMF, alcohol	R.T. → 50°

REACTION CONDITIONS (cont.)

	Reaction Reagents	Solvents	Temperature	Others
5				
	o			
10	 n) acyl chloride eg CH₃CO or anhydride eg Ac₂O; amine eg triethylamine 	cl inert eg ether, THF pyridine	R.T. → 30°	
	o) amine, eg α-methyl benzylamine	alcohol eg methnol	R.T. → 80°	
15	<u>or</u> amine, eg aniline, <u>CH</u> 3SO2NH2; Me3Al (ca	inert eg toluene talyst) CH ₂ Cl ₂	R.T.	
20	 p) acylchloride eg acetyl- chloride, ethylchloro- formate or anyhdride; a eg DMAP, triethylamine 		R.T.	
	or isocyanate eg methylisoc amine eg triethylamine	zyanate; -"-		
25	or sulfonyl chloride eg met sulfonyl chloride; amine triethylamine			
30	q) R,R,NH, triethylamine, DMAP	inert eg CH ₂ Cl ₂		

Process a) through p) also form part of the invention.

35

55

The starting materials of formula II or III are either known or may be prepared analogously to known methods.

The compounds of formula I have herbicidal activity as observed after their pre-emergent or post-emergent application to weeds or a weed locus.

The term "herbicide" (or "herbicidal") refers to an active ingredient (or an effect) which modifies the growth of plants because of plant growth regulating or phytotoxic properties so as to retard the growth of the plant or damage the plant sufficiently to kill it.

Application of a compound of formula I is made according to conventional procedure to the weeds or their locus using a herbicidally effective amount of the compound, usually from 10 g to 10 kg/ha.

Compounds according to the invention may be used in the control of both broad-leaf and grassy weeds on both pre- and post-emergent application. Compounds may also exhibit selectivity in various crops and are thus suited for use in weed control in crops such as com, cotton, wheat and soybean.

The optimum usage of a compound of formula I is readily determined by one of ordinary skill in the art using routine testing such as greenhouse testing and small plot testing. It will depend on the compound employed, the desired effect (a phytotoxic effect requiring a higher rate than a plant growth regulating effect), the conditions of treatment and the like. In general satisfactory phytotoxic effects are obtained when the compound of formula I is applied at a rate in the range of from 0.01 to 5.0 kg, more preferably of from 0.05 to 2.5 kg per hectare, eg 0.05 to 5.0 kg per hectare, especially 0.1 to 2.5 kg kper hectare.

The compounds of formula I may be advantageously combined with other herbicides for broadspectrum weed control. Examples of herbicides which can be combined with a compound of the present invention include those selected from the carbamates, thiocarbamates, chloroacetamides, dinitroanilines, benzoic acids, glycerol ethers, pyridazinones, semicarbazones, uracils and ureas for controlling a broad spectrum of weeds.

The compounds of formula I are conveniently employed as herbicidal compositions in association with agriculturally acceptable diluents. Such compositions also form part of the present invention. They may contain, aside from a compound of formula I as active agent, other active agents, such as herbicides or compounds

having antidotal, fungicidal, insecticidal or insect attractant activity. They may be employed in either solid or liquid forms eg in the form of a wettable powder or an emulsifiable concentrate incorporating conventional diluents. Such compositions may be produced in conventional manner, eg by mixing the active ingredient with a diluent and optionally other formulating ingredients such as surfactants.

Agriculturally acceptable additives may be employed in herbicidal compositions to improve the performance of the active ingredient and to reduce foaming, caking and corrosion, for example.

The term "diluent" as used herein means any liquid or solid agriculturally acceptable material which may be added to the active constituent to bring it in an easier or improved applicable form, respectively, to a usable or desirable strength of activity. It can for example be talc, kaolin, diatomaceous earth, xylene or water.

"Surfactant" as used herein means an agriculturally acceptable material which imparts emulsifiability, spreading, wetting, dispersibility or other surface-modifying properties. Examples of surfactants are sodium lignin sulfonate and lauryl sulfate.

Particularly formulations to be applied in spraying forms such as water dispersible concentrates or wettable powders may contain surfactants such as wetting and dispersing agents, for example the condensation product of formaldehyde with naphthylene sulphonate, an ethoxylated alkylphenol and an ethoxylated fatty alcohol.

In general, the formulations include from 0.01 to 90% by weight of active agent and from 0 to 20% by weight of agriculturally acceptable surfactant, the active agent consisting either of at least one compound of formula I or mixtures thereof with other active agents. Concentrate forms of compositions generally contain between about 2 and 90%, preferably between about 5 and 70% by weight of active agent. Application forms of formulation may for example contain from 0.01 to 20% by weight of active agent.

Typical herbicidal compositions, according to this invention, are illustrated by the following Examples A, B and C in which the quantities are in parts by weight.

EXAMPLE A

25

30

5

10

15

20

Preparation of a Dust

10 Parts of a compound according to this invention and 90 parts of powdered talc are mixed in a mechanical grinder-blender and are ground until a homogeneous, free-flowing dust of the desired particle size is obtained. This dust is suitable for direct application to the site of the weed infestation.

EXAMPLE B

Preparation of a Wettable Powder

35

40

45

55

25 Parts of a compound according to this invention are mixed and milled with 25 parts of synthetic fine silica, 2 parts of sodium lauryl sulphate, 3 parts of sodium ligninsulphonate and 45 parts of finely divided kaolin until the mean particle size is about 5 micron. The resulting wettable powder is diluted with water before use to a spray liquor with the desired concentration.

EXAMPLE C

Preparation of Emulsifiable Concentrate (EC)

13.37 Parts of a compound according to this invention are mixed in a beaker with 1.43 parts of Toximul 360A (a mixture of anionic and nonionic surfactants containing largely anionic surfactants), 5.61 parts of Toximul 360A (a mixture of anionic and non-ionic surfactants containing largely non-ionic surfactants), 23.79 parts of dimethylformamide and 55.8 parts of Tenneco 500-100 (predominantly a mixture of alkylated aromatics such as xylene and ethylbenzene) until solution is effected. The resulting EC is diluted with water for use.

The following examples are provided to illustrate the practice of the present invention. Temperature is given in degrees Celsius.

Abbreviations used in this specification.

THF = tetrahydrofuran

LDA = lithiumdiisopropylamide

RT = room temperature

DMF = dimethylformamide

DDQ = 2,3-dichloro-5,6-dicyanobenzoquinone

NBS = N-bromosuccinimide

DMSO = Dimethylsulfoxide
MEK = Methylethylketone
DMAP = Dimethylaminopyridine

Individual alkyl substituents listed in the following tables from A to F are in the "n" isomeric form unless otherwise indicated.

EXAMPLE 1

7-chloro-3-(4,6-dimethoxy-2-pyrimidinyl)phthalide (Table A, cpd. no. 6)

10

5

1.68 g (0.01 mol) of 7-chlorophthalide is added to 100 ml of dry THF and the mixture cooled to -70°C. 6.8 ml (0.01 mol) of 1.5 M LDA is then added over 3 minutes and the reaction mixture stirred at -70°C for 15 minutes. 2.18 g (0.01 mol) of 2-methylsulfonyl-4,6-dimethoxypyrimidine in 50 ml of THF is then added and the mixture stirred for 4 hrs with temperature being maintained at -75 to -70°C. The reaction mixture is neutralized with 1.5 g of NH₄Cl in 5 ml of water, warmed and concentrated on a rotovaporator. The concentrate is partitioned between CH₂Cl₂/H₂O (50 ml each) and the aqueous phase separated and treated with further 30 ml of CH₂Cl₂. The combined CH₂Cl₂ phases are washed with 30 ml of water, separated and concentrated. The concentrate was flash chromatographed on silica gel using 80/20 hexane/ethyl acetate (500 ml), 50/50 hexane/ethyl acetate (500 ml) and 80/20 acetone/methanol (500 ml) (30 fractions X 50 ml). The title compound (fractions 9-23) was obtained after recrystalization from hexane/CH₂Cl₂ as a white solid, m.p. 148-149°C.

EXAMPLE 2

5-(4,6-dimethoxy-2-pyrimidinyl)-furo[3,4,b] pyridine-7(5H)-one (Table B, cpd. no. 40)

25

20

A solution of 1.3 g (0.0096 mols) of furo [3,4-b]pyridine-7(5H)-one in 50 ml of dry THF is cooled to -75° C and 8 ml (0.0192 mols) of 2.5 M LDA added dropwise over 5 minutes. The mixture is allowed to react for 1 hr at -75° C and 2.1 g (0.0096 mol) of 2-methylsulfonyl-4,6-dimethoxypyrimidine in 30 ml of dry THF added dropwise over 10 minutes. The mixture is allowed to warm to RT, 1.6 ml of HCl added and the THF evaporated off. The residue is dissolved in 75 ml of CH_2Cl_2 , washed with water (2 x 50 ml) and the organic phase concentrated to give a yellowish white gummy solid. This is chromatographed on a silica gel column using 50/50 hexane/ethylacetate (500 ml), ethyl acetate (500 ml) and 80/20 acetone/methanol (1000 ml) (30 fractions). The crystalline residue (fractions 18-21) of the title product has m.p. of 167-168°C.

35 EXAMPLE 3

7-chloro-3-methoxy-3-(4,,6-dimethoxy-2-pyrimidinyl)-2-methylisoindol-1(3H)-one (Table C, cpd. no. 54)

A mixture of 0.5 g of 7-chloro-3-hydroxy-3-(4,6-dimethoxy-2-pyrimidinyl)phthalide, 30 ml of CCl₄, 2 ml of SOCl₂ and 4 drops of DMF is heated at 65°C for 1½ hrs, cooled and excess SOCl₂ and CCl₄ removed on a rotovaporator. The residue is diluted with 20 ml of CH₂Cl₂ and added to a mixture of 5 ml of 40% aq methylamine and 10 ml of methanol with stirring over ½ hr. The mixture is placed on a rotovaporator and the residue partitioned between 50 ml each of CH₂Cl₂ and water. The organic phase is concentrated and flash chromatographed on silica gel using 50/50 hexane/ethyl acetate (800 ml), ethyl acetate (500 ml) and 80/20 acetone/ methanol (200 ml) (30 fractions X 50 ml). The product (fractions 19-21) was obtained as a yellow gum.

EXAMPLE 4

7-chloro-3-hydroxy-3-(4,6-dimethoxy-2-pyrimidinyl)phthalide (Table A, cpd. no. 13)

50

A mixture of 1.8 g of 7-chloro-3-cyano-3-(4,6-dimethoxy-2-pyrimidinyl)phthalide, 50 ml of 1% NaOH and 50 ml of THF are stirred at room temperature for 3 hrs. The THF is removed by evaporation and the mixture is diluted with water and extracted twice with ethyl acetate. The aqueous solution is acidified with 2N-H₂SO₄. The resulting acid solution is extracted with 3 x 100 ml ethyl acetate and the organic phases combined, dried over Na₂SO₄ and concentrated to give a pale yellow solid. This residue is taken up in ethyl acetate and treated with activated charcoal until the yellow base line material is removed to give the title product as a white solid m.p. 188-190°C.

EXAMPLE 5

5

10

15

20

25

30

35

50

7-chloro-3-methoxy-3-(4,6-dimethoxy-2-pyrimidinyl)phthalide (Table A, cpd. no. 30)

1.0 g of 7-chloro-3-cyano-3-(4,6-dimethoxy-2-pyrimidinyl)phthalide is slurried in 20 ml of methanol and the solution cooled with ice and 0.6 ml of sodium methoxide added dropwise. After stirring for 10 min a further 1 ml of sodium methoxide is added and stirring continued for 10 min and the mixture is then quenched with 2N H₂SO₄. Methanol is removed on a rotovaporator and the residue partitioned between water and ethyl acetate. The organic phase is dried over Na₂SO₄ and concentrated. Flash chromatography of the residue over silica gel using 25% ethyl acetate/hexane yields a white solid m.p. 180-183°C.

EXAMPLE 6

- a) Methyl 2-chloro-6-(4,6-dimethoxy-2-pyrimidinylcarbonyl)benzoate (Table C, cpd. no. 55), and
- b) 7-chloro-3-chloro-(4,6-dimethoxy-2-pyrimidinyl)phthalide (Table A, cpd. no. 21)

A mixture of 0.7 g of 7-chloro-3-hydroxy-3-(4,6-dimethoxy-2-pyrimidinyl)phthalide, 30 ml of CCl₄, 2 ml of SOCl₂ and 4 drops of DMF are refluxed at 60° for $1\frac{1}{2}$ hrs. The mixture is then cooled, excess SOCl₂ and CCl₄ removed on a rotovaporator. The residue is diluted with 20 ml of CH₂Cl₂ and added to a stirred mixture of 10 ml of methanol and 2 ml of diethylamine. After $2\frac{1}{2}$ hrs the mixture is stripped on a rotovaporator to remove excess CH₂Cl₂ and methanol and the residue partitioned between CH₂Cl₂ (50 ml) and water (50 ml). The organic phase is separated, concentrated and the gummy residue flash chromatographed over silica gel using 80/20 hexane/ethyl acetate (500 ml), 60/40 hexane/ethyl acetate (500 ml) (28 fractions X 50 ml). Fractions 18 to 20 yielded title compound a) and fractions 11 to 16 the compound b).

EXAMPLE 7

7-chloro-3-cyano-3-(4,6-dimethoxy-2-pyrimidinyl)phthalide (Table A, cpd. no. 27)

600 mg of 7-chloro-3-cyanophthalide are added to an ice-cold suspension of hexane washed 60% NaH (160 mg) in DMF (20 ml). After 15 min, 710 mg of 2-methylsulfonyl-4,6-dimethoxypyrimidine are added. After stirring at RT for $1\frac{1}{2}$ hr the mixture is poured onto 200 ml of ice/water acidified with 2N H_2SO_4 and stired. The precipitate is filtered and dried in a vacuum oven to yield the title product, m.p. 159-161°c.

EXAMPLE 8

7-chloro-3,3-bis(4,6-dimethoxy-1,3,5-triazin-2-yl)phthalide (Table A, cpd. no. 36)

1.48 g of 7-chlorophthalide are dissolved in 80 ml of THF. The solution is cooled to -70°C and 1.5 M LDA in THF (6 ml) is syringed in at -70°C over 3 min. Stirring is continued for 15 min at -70°, 1.54 g of 2-chloro-4,6-dimethoxy-1,3,5-triazine in 50 ml of THF added dropwise and the mixture is then allowed to warm to -20°. The mixture is again cooled to -70° and 1 ml of conc. HCl in 10 ml of water is added. The mixture is stirred for 25 min and allowed to warm to RT and the THF is removed by evaporation. The residue is partitioned between CH₂Cl₂ and water (50 ml each) and the aqueous phase extracted with an additional 30 ml of CH₂Cl₂. The combined organic phases are washed with 30 ml of water and concentrated to give a yellow gum. This is flash chromatographed on silica gel using 60/40 hexane/ethyl acetate (1000 ml), ethyl acetate (400 ml), 80/20 acetone/ methanol (500 ml) (30 fractions X 50 ml, 1 X 200 ml). Fractions 21 and 22 yielded a yellow gum which upon recrystalization from hexane yielded title product m.p. 126-127° as a yellow solid.

EXAMPLE 9

Lithium 2-chloro-6-(4,6-dimethoxy-α-hydroxy-2-pyrimidinylmethyl)benzoate (Table C, cpd. no. 53)

A mixture of 1.0 g of 7-chloro-3-(4,6-dimethoxy-2-pyrimidinyl)phthalide, 0.136 g of LiOH.H₂O, 2 ml of water and 10 ml of methanol is stirred overnight at RT. The mixture is evaporated to dryness on a rotovaporator. Further drying in a drying pistol yield the title compound as a white solid, m.p. 153-157°C.

EXAMPLE 10

Lithium 3-[(4,6-dimethoxy-α-hydroxy-2-pyrimidinyl)methyl]pyridine-2-carboxylate (Table D, cpd. no. 64)

A mixture of 0.490 g of 5-(4,6-dimethoxy-2-pyrimidinyl)furo [3,4,b]pyridine-7(5H)-one, 0.0768 gm of LiOH.H₂O, 10 ml of methanol and 2 ml of water is stirred for 24 hrs under nitrogen at RT and the solvent stripped off. The yellowish solid is dried for a further 2 hrs to yield the title product, m.p. >250°C (decomp.).

EXAMPLE 11

10

15

5

Sodium 2-chloro-6-[(4,6-dimethoxy-2-pyrimidinyl)carbonyl]benzoate (Table C, cpd. no. 58)

1.24 g of 7-chloro-3-hydroxy-3-(4,6-dimethoxy-2-pyrimidinyl)phthalide, 154 mg NaOH, 25 ml THF and 25 ml water are mixed until a yellow homogenous solution is achieved. The solvents are stripped on a rotovaporator and then on a Kugelrohr at 100°C ω produce the title compound as a yellow solid, m.p. 276-278°C.

EXAMPLE 12

3-[(4,6-dimethoxy-2-pyrimidinyl)carbonyl]-pyridine-2-carboxylic acid (Table D, cpd. no. 63)

20

490 mg of 5-(4,6-dimethoxy-2-pyrimidinyl)-furo[3,4-b]pyridine-7(5H)one is dissolved in 50 ml of methanol and the mixture heated with stirring at 50°C until a homogenous solution is formed (ca $\frac{1}{2}$ hr). 2.6 g of NaOCl is added dropwise and the solution heated for a further $\frac{1}{2}$ hr at 55°C. 0.208 g of 50% NaOH is added at 55° and the mixture heated for a further $\frac{1}{2}$ hr at this temperature and then cooled in an ice-bath and acidified with 1 ml conc. HCl. The solvent is evaporated and the residue partitioned between 50 ml of CH₂Cl₂ and 50 ml of water. The organic phase is concentrated to give a white solid, m.p. 71-73°.

EXAMPLE 13

2-[(4,6-dimethoxy-2-pyrimidinyl)-α-iminomethyl]benzoic acid (Table C, cpd. no. 51)

2.67 g of isopropyl 2-bromobenzoate are dissolved in 100 ml of dry diethylether, the solution cooled to -100° C and 6.6 ml of 1.6 M n-butylithium solution added. Stirring is continued for 10 min and 12 g of 2-cyano-4,6-dimethoxypyrimidine in 60 ml of diethylether is added over 2 min at -100°C. The mixture is stirred for $\frac{1}{2}$ hr at -80° and then allowed to warm to RT. 3 g of NH₄Cl in 30 ml of water is added to the reaction mixture, cooled in an ice-bath. The ether layer is separated off, washed with water (2 x 30 ml) and concentrated. The gummy residue is dissolved in 20 ml of 85/15 hexane/ethyl acetate, and CH₂Cl₂, and flash chromatographed on silica gel using 800 ml 85/15 hexane/ethyl acetate, 500 ml 1% methanol in ethyl acetate, 500 ml 5% methanol in ethyl acetate and 500 ml of 80/20 acetone/methanol (40 fractions at 50 ml; 1 at 200 ml). Fractions 7 to 10 yielded title compound which on recrystallization from CH₂Cl₂ melted at 225-235°C.

EXAMPLE 14

5-Chloro-5-(4,6-dimethoxy-2-pyrimidinyl)furo[3,4,b]pyridine-7(5H)one (Table B, cpd. no. 68)

45

55

A mixture of 490 mg of 5-(4,6-dimethoxy-2-pyrimidinyl)furo[3,4,b]pyridine-7(5H)one and 50 ml of methanol is heated at 55° for 1/2 hour or until a homogenous solution is formed. 2.6 g of NaOCI (common house bleach) is added dropwise. The mixture is taken up in dichloromethane an the organic phase separated and evaporated to dryness to yield the title compound.

EXAMPLE 15

3-[(4,6-dimethoxy-2-pyrimidinyl)carbonyl]-pyridine-2-carboxylic acid (Table E, cpd. no. 63)

0.208 g of 50% NaOH is added at 55° to a solution of 0.551 g of 5-chloro-5-(4,6-dimethoxy-2-pyrimidinyl)-furo[3,4,b]pyridine (Table B, cpd. no. 68) in 50 ml methanol. The mixture stirred for a further 1/2 hr at 55°, cooled in an ice-bath, acidified with 1 ml of concentrated HCl and the solvent evaporated. The residue is partitioned between 50 ml of CH_2Cl_2 and 50 ml H_2O and the CH_2Cl_2 layer concentrated to give 0.39 g of the title product

as a white solid, m.p. 71-73°C.

EXAMPLE 16

5 2-(2-(4,4-dimethyl-oxazolin-2-yl)-benzyl)-4,6-dichloropyrimidine (Table C, cpd. no. 61)

To a mixture of 1.25 g of 2-o-tolyl-4,4-dimethyl-oxazoline in 20 ml of ether under N₂ atmosphere at -30°C is added by syringe 4.2 ml of 1.6 M n-butyllithium in hexane with stirring which is continued for 1 hr at -10°C. 0.98 g of 4,6-dichloropyrimidine in 20 ml of ether are added slowly to the reaction mixture which is then stirred at -45 to -30°C for 30 min and at 0°C for a further 30 min. The reaction mixture is quenched with acetic acid (0.4 ml) and water (0.1 ml) in THF (1.3 ml) and then treated with 1.5 g of 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) in 6 ml of THF. The temperature is brought to RT and the mixture stirred for 5 min after cooling to 0°C. 7.6 ml of 1N NaOH (cooled) are added and the mixture stirred for 5 min. The organic phase is separated and dried over Na₂SO₄ filtered and the solvent removed. Following chromatography (10/90 ether/hexane) the title product is obtained.

EXAMPLE 17

2-(2-(4,4-dimethyl-oxazolin-2-yl)-benzyl)-4,6-dimethoxypyrimidine (Table C, cpd. no. 48)

20

25

15

To a solution of 1.7 g of 2(2-(4,4-dimethyl-oxazolin-2-yl)-benzyl)-4,6-dichloropyrimidine in 100 ml of methanol are added 2.18 g of 25% methanolic NaOCH₃ and the mixture heated for 10 hrs at 65°C with stirring. The temperature is lowered to 60° and stirring continued overnight. The solvent is stripped and the residue taken up in 80 ml of toluene and 50 ml of water. The toluene layer was separated and washed with 50 ml of water, separated and concentrated to give the title compound as a yellow oil.

EXAMPLE 18

2-(2-(4,4-dimethyl-oxazolin-2-yl)-α-bromobenzyl)-4,6-dimethoxy pyrimidine (Table C, cpd. no. 62)

30

0.55 g of 2-(2-(4,4-dimethyl-oxazolin-2-yl)-benzyl)-4,6-dimethoxypyrimidine, 0.30 g of a N-bromosuccinimide, 0.03 g of benzoyi peroxide are dissolved in 60 ml of CCl₄ and heated under reflux overnight at 75°C. The reaction mixture is filtered and the filtrate washed with 5% NaHCO₃ solution (50 ml), 50 ml of water and the organic phase separated and concentrated to give the title compound.

35

EXAMPLE 19

2-(2-(4,4-dimethyl-oxazolin-2-yl)-benzoyl)4,6-dimethoxypyrimidine (Table C, cpd. no. 49)

A mixture of 1.2 g of 2-(2-(4,4-dimethyl-oxazolin-2-yl)-α-bromobenzyl)-4,6-dimethoxy-pyrimidine and 2 g of Na₂CO₃ in 30 ml of DMSO is heated with stirring at 50-60°C for 3 hrs. The mixture is poured into 150 ml of water and extracted with toluene. The toluene extract is washed twice with water (2 x 50 ml) separated and concentrated. The thus obtained gum is chromatographed with 800 ml of 80/20 hexane/ethyl acetate, 500 ml 70/30 hexane/ethyl acetate, 60/40 ml hexane/ethyl acetate (50 ml fractions) fractions 29 to 34 yielded the title compound.

EXAMPLE 20

2-chloro-6-(4,6-dimethoxy-2-pyrimidinylcarbonyl)-benzoic acid dimethylamide (Table C, cpd. no. 57)

50

55

1.0 g of 7-chloro-3-cyano-3-(4,6-dimethoxy-2-pyrimidinyl) phthalide is dissolved in 15 ml of THF. 0.7 ml of a 40% aqueous dimethylamine solution is then added via syringe whereupon the solution darkens. Stirring is continued at R.T. for 15 minutes and the mixture diluted with water and partitioned between ethyl acetate and water. The organic phase is separated, washed with 2N H₂SO₄, then brine, dried and concentrated. The residue is purified on silica gel, eluant 200 ml of 50% ethyl acetate/hexane then 100% ethyl acetate. Fractions 12 to 15 yielded the title compound, m.p. 141-142°C.

EXAMPLE 21

3-acetoxy-7-chloro-3-(4,6-dimethyloxy-2-pyrimidinyl)phthalide (Table A, cpd. no. 125)

1.1gof7-chloro-3-(4,6-dimethoxy-2-pyrimidinyl)-3-hydroxy-phthalide is dissolved in 20 ml of pyridine and 0.3 ml of acetic anhydride added with stirring. After stirring for 20 min the mixture is poured into 2N HCl and extracted with two portions of ethylacetate. The combined ethyl acetate extracts are washed once with 2N HCl, once with H₂O and once with brine and dried over magnesium sulfate. Filtration and evaporation produced the title compound as a white solid, m.p. 213-215°.

10

EXAMPLE 22

3-[(4,6-dimethoxy-α-hydroxy-2-pyrimidinyl)methyl]pyridine-2-carboxamide (Table E, cpd. no. 82)

To a solution of 0.9 g of ammonia, in 15 ml of methanol, is added 0.5 g of 3[(4,6-dimethoxy-2-pyrimidinyl)-7-azaphthalide. After stirring for 2 hrs at RT, the methanol is removed under reduced pressure and the concentrate recrystallized from toluene to give the title compound as a white solid, m.p. 135-137°C.

EXAMPLE 23

20

15

3[(4,6-dimethoxy-2-hydroxy-2-pyrimidinyl)methyl]pyridine-2-[carboxy(4-isopropyl)anilide] (Table E, cpd. no. 183)

To a solution of 3 ml of 4-isopropylaniline in 50 ml of toluene is syringed in 4 ml of 15.6% trimethylaluminum in hexane at RT. The mixture is stirred for 0.5 hr at RT and 0.5 g of 3-[(4,6-dimethoxy-2-pyrimidinyl)7-azaphthalide is added. The mixture is stirred for 2 hrs at RT and acidified with 30 ml of 10% hydrochloric acid at 5-10°C. The toluene solution is separated, washed with 20 ml of 10% hydrochloric acid, 20 ml of 5% sodium carbonate and 20 ml of water, dried and concentrated. The concentrate is recrystallized from hexane to yield the title compound as a white solid, m.p. 113-114°C.

30

TABLE 24

3-[(4,6-dimethoxy-α-(ethoxycarbonyloxy)-2-pyrimidinyl)methyl]pyridine-2-carbaxamide (Table E, cpd. no. 129)

35

To a solution of 0.5 g of 3-[(4,6-dimethoxy-α-hydroxy-2-pyrimidinyl)methyl]pyridine-2-carboxamide, 0.05 g of 4-(dimethylamino)pyridine, and 1 ml of triethylamine, in 20 ml of toluene and 10 ml of dichloromethane is added 1 ml of ethyl chloroformate at RT. After stirring for 1 hr at ambient temperature, the mixture is washed with water (2x30 ml), dried and concentrated on a rotoevaporator. The concentrate is digested with v/v mixture of hexane-toluene, 10 ml, at 50°C, cooled to RT and filtered to isolate 0.45 g of the title compound as a yellow solid, m.p. 112-114°C.

EXAMPLE 25

3-[(4,6-dimethoxy-α-benzoyloxy-2-pyrimidinyl)methyl]pyridine-2-(N,N-dibenzoyl)carboxamide (Table E, cpd. no. 159)

To a solution of 0.05 g of 3-[(4,6-dimethoxy-α-hydroxy-2-pyrimidinyl)methyl]-2-carboxamide, 0.5 g, 4-(dimethylamino)pyridine and 4 ml of triethylamine in 30 ml of dichloromethane is added 1.4 g of benzoyl chloride at RT in two portions. The reaction mixture is stirred at RT for 17 hrs and washed with 30 ml of water, 30 ml of 5% hydrochloric acid and 30 ml of water. The dichloromethane solution is concentrated and the concentrate flash chromatographed through 300 ml silica gel, 230-400 mesh, using 1 L 70/30 hexane-ethyl acetic and 500 ml 50/50 hexane-ethyl acetate as eluting solvent mixtures. Fractions 18-21 gave after recrystallization from 70/30 hexane ethyl acetate the title compound as a white solid, m.p. 168-170°C.

EXAMPLE 26

 $3-([4,6-dimethoxy-\alpha-(N-methylcarbamoyloxy)-2-pyrimidinyl)$ methyl]-2-pyridine carbox(N-allyl)amide (Table E, cpd. no. 133)

To a solution of 0.5 g of 3-[(4,6-dimethoxy- α -hydroxy-2-pyrimidinyl)methyl]-2-pyridine carbox(N-allyl)amide and 3 drops of triethylamine, in 20 ml of dichloromethane is added 3 ml of methyl isocyante, in three 1 ml portion/day while stirring at RT for 3 days. The reaction mixture is washed with water (2x50ml), dried and concentrated. The concentrate is flash chromoatographed through 300 ml silica gel, 230-400 mesh, using 1 L 50/50 hexane-ethyl acetate, 500 ml ethyl acetate, 500 ml 80/20 ethyl acetate methanol taking 34 fractions (50 m/m). Fractions 21-25 give 0.4 g of the title product as a yellow gum.

The following compounds may be prepared analogously to the preceding examples or as otherwise described herein.

TABLE A

5		N0	CH3		¥1.	•	1	R ₁			OCH ₃
10	H1	N=\ N=\ OC.	E ₃		Y2		}-{	-\(\big _{\bigve{4}^{-\bigve{4}}}^{-\bigve{1}_{2}}\)		H2= -\(\frac{1}{N}\)	=V _{OCH3}
											melting point
	Cpd No	<u>Y</u> 1	<u>Y</u> 2	Y 3	Y	$\underline{\mathtt{W}}_{1}$	\underline{W}_2	<u>W</u> 3	$\underline{\mathbf{W}}_{4}$	<u>R</u> 1	(° C)
15	1	н	H	H	OH	N	CH	C-OCH3	N	OCH3	136-138
	2	н .	H	H	H	N	CH	C-OCH3	N	OCH3	102-104
	3	H	H	H	OCCH ₃ 0	ĸ	C-Br	C-OCH ₃	N	OCH ₃	215-225
20	4	н	н	н	H	N	C-Br	СН	N	OCH ₃	136-138
	5	н	Н	5-C1	Н	N	СН	C-OCH ₃	N	OCH ₃	151-153
	6	7-C1	н	н	н	N	CH	C-OCH ₃	N	OCH ₃	148-149
25	7	н	6-C1	н	Н	N	CH	C-OCH ₃	N	OCH ₃	138-139
	8	н	н	н	н	N	СН	C-Cl	N	OCH ₃	152-153
	9	7-C1	н	н	н	N	CH	C-Cl	N	OCH ₃	128-130
	10	н	н	4-C1	н	N	СН	C-OCH ₃	N	OCH ₃	98- 99
30	11	7-CH ₃	н	н	н	N	СН	C-OCH ₃	N	OCH ₃	138-140
	12	н	Н	н	н	N	СН	C-Cl	N	CH ₃	133-135
	13	7-Cl	н	H	ОН	N	СН	C-OCH ₃	N	OCH ₃	188-190
	14	7-C1	н	н	н	N	СН	C-OiC ₃ H ₇	N	OCH ₃	101-102
35	15	7-OCH ₃	н	4-Br	Н	N	СН	C-OCH ₃	N	OCH ₃	126-128
	16	7-C1	н	н	Н	N	СН	C-OCH ₂ CF ₃	N	OCH3	112-113
40	17	7-C1	н	н	н	N	СН	C-OCH3	N	·	136-138
	18	7-C1	Н	н	н	N	сн с	-0-CH ₂	N	OCH3	115-116
45	19	7-C1	н	н	н	N	СН	C-OCH ₃	N -	оснұ 🗘	85- 88
	20	7-C1	н	н	н	N	СН	C-OCH3	N	-0C2H2	98-100
50	21	7-C1	H	H	Cl	N	CH	C-OCH3	N	-OCH ₃	163-165
~	22	7-C1	Н	H	н	N	CH C-	OCH ₂ C=CCH ₃	N	-OCH ₃	131-133

TABLE A (cont)

5											melting point
	Cpd i	No Y ₁	<u>Y</u> 2	<u>Y</u> 3	<u>¥</u>	$\underline{\mathbf{y}}_{1}$	$\underline{\mathbf{W}}_{2}$	<u>w</u> 3	<u>W</u> 4	\underline{R}_1	(°_C)
	23	7-C1	H	H	SCH ₃	N	CH (C-OCH ₂ C=CCH ₃	N	-OCH ₃	134-136
	24	7-C1	H	H	Н	N	CH	C-OCH ₃	N	-OCH2CH	-CH ₂ 72-75
10	25	7-C1	н.	H	H	N	N	C-OCH ₃	N	-OCH3	157-160
	26	7-0CH ₃	H	H	H	N	CH	C-OCH3	N	-OCH3	152-154
	27	7- C1	H	H	CN	N	CH	C-OCH3	N	-OCH3	159-161
	28	7-C1	H	H	CN	N	N	C-OCH3	N	-OCH3	184-186
15	29	7-C1	6-C1	н	H	N	СН	C-OCH ₃	N	-OCH ₃	194-195
	30	7- C 1	н	Н	OCH ₃	N	СН	C-OCH ₃	N	-OCH ₃	180-183
20	31	7-S) н	н	CN	N	СН	C-OCH3	N	-OCH ₃	169-171
	32	7-OCH ₃	6-OCH	з Н	-s ()	N	N	C-OCH ₃	N	-OCH ₃	134-136
25	33	7-C1	H	H	н	N	CH	C-CH ₃	N	-CH ₃	164-166
30	34	н	н	н		o ls L n	СН	C-OCH3	N	-OCH3	163-176
	35	Н	5-C1	н	"H1"	N	СН	C-OCH3	N	-OCH3	151-153
	36	7-C1	H	Н	"H2"	N	N	C-OCH3	N	-OCH3	126-127
35	37	н	H	H	ОН	N	C-Cl	C-OCH3	N	OCH3	162-165
~	38	7-F	H	H	CN	N	CH	C-OCH ₃	N	OCH3	132-134
	69	7-C1	Н	H	OC ₂ H ₅	N	CH	C-OCH3	N	OCH ₃	148-151
	72	7-OCH ₃	Н	H	CN	N	CH	C-OCH3	N	OCH3	159-163
40	73	H	H	Н	CH ₃	N	CH	C-OCH ₃	N	OCH ₃	87-89
	75	H	H	H	"H1"	N	CH	C-OCH3	N	OCH ₃	168-170
45	88	7-C1	н	н	н	Ŋ	СН	C-OCH ₂ CH ₃	N	-OCH ₃	gum, NMR
	98	7-C1	H	н	н	N	CH C-	OCH CH3	N	-OCH ₃	97-98
50	101	7-C1	н	Н	н	N	СН	C-OCH ₂	N	-OCH ₃	125-127

TABLE A (cont)

5											melting point
	Cpd	No Y1	¥2	Y 3	¥	<u>¥</u> 1	W ₂	<u>W</u> 3	₩.	R ₁	(* C)
10	102	7- C 1	н	н	н	N	СН	C-OCH ₂	N	-OCH ₃	83-85
	104	7CH3OC2H4-	- н	Н	CN	N	СН	C-OCH3	N	-OCH3	105-108
15	105	7CH ₃ OC ₂ H ₄ OCH ₂ O -	Н	H	OH	N	СН	C-OCH3	N	-OCH ₃	109-110
	109	7-F	н	н	осн3	N.	СН	C-OCH ₃	N	-OCH ₃	172-173.5
	113	7-F	н	Н	н	N	СН	C-OCH ₃	N	-OCH ₃	138-140
	117	7-F	Н	н	ОН	N	СН	C-OCH ₃	N	-OCH ₃	183.5-185.5
20	118	7-OH	Н	Н	он	N	СН	C-OCH3	N	-OCH ₃	121-122
	120	7-0-CH ₂ -	Н	H	CN	N	СН	С-ОСН ₃	N	-OCH ₃	174-176
25	125	7-C1	н	н	acetoxy	N	СН	C-OCH ₃	· N	-OCH ₃	213-215
	134	7-OH	н	н	ОН	N	CH	C-OCH ₃	N	-OCH ₃	138-141
								•		-	(decomp)
30	135	7CH3SO2O	н	н	CN	Ŋ	СН	C-OCH3	N	-OCH3	159-161
	137	7-000H(C,H,),	н	н	CN	N	CH	C-OCH3	N	-OCH3	123-125
	138	7propergyloxy	H	H	CN	N	СН	C-OCH ₃	N	-OCH ₃	174-175
35	139	7-0CH ₂	н	н	CN	N	СН	C-OCH3	N	-OCH3	170-171
	140	7-0CH ₂	н	н	CN	N	CH	C-OCH ₃	N	-OCH3	169-172
40	145	7-OCH ₂ (1)	Н	н	Н	N	СН	C-OCH ₃	N	-OCH ₃	108-110
45	146	7-0CH ₂	Н	н	H	N	СН	C-OCH3	N	-OCH ₃	115-118
~	147	7-0CH ₃	н	H	OH	N	СН	C-OCH ₃	N	-OCH3	174-176
	153	7propargyloxy	н	н	н	N	СН	C-OCH3	N	-OCH3	130-131

50

TABLE A (cont)

5											
											melting point
	Cpd	No Y ₁	<u>Y</u> 2	<u>Y</u> 3	Y	$\underline{\mathtt{W}}_{1}$	<u>W</u> 2	$\underline{\mathbf{w}}_{3}$	<u>W</u>	R_1	(° C)
	15/	7-0CH ₂	٠								
10	154	7-0CH ₂ (-)) н	. н	CN	N	CH	C-OCH3	N	-OCH ₃	182-185
	366	7 000									(decomp)
	166	.7-0CF ₃		H	OH	N	CH	C-OCH3	N	-OCH3	131-132
15	167	7-0CH ₃	H	Н	acetoxy	N	CH	C-OCH3	N	-OCH3	201-202
	100-										
		-conto		H	Н	N	CH	C-OCH3	N	-OCH ₃	133-136
	190		H	H	Н	N	CH	C-OCH3	N	-OCH3	109-110
20	195	7-CF ₃ O		H	acetoxy	N	СН	C-OCH3	N	-OCH ₃	165-166
	203	7-C1	H	Н	propionoxy	N	CH	C-OCH3	N	-OCH ₃	178-180
	204	7-Cl	H	Н	hexanoyloxy	K	CH	C-OCH3	N	-OCH3	131-133
	205	7-C1	H	H	cyclopropyl-	N	CH	C-OCH ₃	N	-OCH ₃	177-179
25					carbonyloxy						
	208	7- C1	Н	н	benzoyloxy	N	CH	C-OCH3	N	-OCH ₃	192-194
	240	7-CL	H	H	crotonyloxy	N	СН	C-OCH3	N	-OCH3	158-160
	250	7-C1	H	4-C1	ОН	N	CH	C-OCH3	N	-OCH ₃	171-175
30	253	7-C1	H	Н	cinnamoyloxy	N	CH	C-OCH3	N	-0CH3	221-224
	256	7-C1	H	Н	OCC ₁₇ H ₃₅ (I O	N	СН	C-OCH3	N	-OCH3	102-103
	258	7-C1	Н	H	2-butenoxy	N	CH	C-OCH ₃	N	-0CH ₃	102-103
35	263	7-C1	H	4-Cl	OCCH3	N	СН	C-OCH3	N	-OCH ₃	163-164
40	265	7-C1	Н	4-C1	il 5 22 O		СН	C-OCH3	N	-OCH ₃	87-91
	266	7-C1	H	4-C1	oc. □	N	CH	C-OCH3	N	-OCH3	137-138
45	267	7- C1	Н	4-C1	OCCH-CHCH 0	i ₃ N	CH	C-OCH3	N	-OCH ₃	128-131
	268	7-F	н	4-F	CN	N	СН	C-OCH ₃	N	-OCH ₃	135-136
	269	7-C1	Н	4-C1	CN	N	CH	C-OCH ₃	N	-OCH ₃	123-126
	270	7-C1	н	4-C1		N	CH	C-OCH ₃	N	-OCH ₃	156-161
50	307	4-C1	н	н	ОН	N	СН	C-OCH ₃	N	-OCH ₃	146-150
								3		3	

TABLE A (cont)

5											melting point
	Cpd No	Y1	<u>Y</u> 2	<u>Y</u> 3	<u>¥</u>	\underline{v}_1	\underline{W}_2	<u>W</u> 3	W.	\mathbb{R}_1	(° C)
	319	4-C1	H	H	CN	N	CH	C-OCH3	N	-OCH3	132-133
	320	4-C1	H .	H	OCH3	N	СН	C-OCH3	N	-OCH ₃	168-168.5
10	326	7-C1	н	н	OCIC ₃ H ₇ II O	N	CH	C-OCH3	N	-OCH3	142-143
15	409	7-C1	н	H	OCtC4Ha O	N	СН	C-OCH ₃	N	-OCH ₃	162-163
10											

0

5					melting point	(° C)	149-151	167-168	ofl NMR	120-126	166-169	oil NMR	75- 80	oil NMR	98-101		173-176	129-131	116-119
10																			
15		R ₁				ß ₁	-OCH	-OCH3	-OCH3	-OCH ₃	-OCH ₃	-OCH3	-0CH3	оснз	OCH ₃	осн	ОСН	-OCH3	-OCH3
20	TABLE B	~{	大	W ₁₀ Y		Ŋ	z	z	z	z	z	z	z	z	z	Z	z	z	z
	H	;	# * * * * * * * * * * * * * * * * * * *	\$		K)	C-OCH3	C-UCH3	C-OCH3	C-OCH3	C-OCH3	с-осн3	с-осн3	с-осн3	C-OCH3	C-OCH ₃	C-OCH ₃	C-OCH ₃	C-OCB,CF,
25						W ₂	CH	ਲ	ਲ	픙	ਝ	z	z	ᄄ	CH	ਲ	ਲ	픙	CH
30		ľζ		F2		<u>-1</u>	Z	z	z	z	z	Z	z	z	z	z	N	z	z
~		₹	_	oc#F2	;	≻ 4	×	I	×	=	=	=	=	=	ਲਿ	ដ	"H1"	×	æ,
35		3		2	:	<u>W</u> 10	z	E 5	СН	æ	품	픙	픙				- ਲ		СН
		1	* *		•	₩ 8	H	3	z	СН	CH	C-C ₂ H ₅	ස	#	뚱	픙	.	픙	픙
40																		E	
					:	표,	풍	'z	표	품	z	z	z	£	풍	z	z	පි-ට	z
45	•				:	O D	6	0	_	2	6	.	ا	so.	_	•	_	68	~
					ć	3	m	4	4	4	4	4	4	4	4	3	×	80	6

5			melting point	(3 .)	193-195	147-149	ofl NMR	140-142	133-135	112-114	ofl NMR	168-170	150-153	(decomb)	158-160	145-147	212-213	172-178	203-204
10																			
15		Ę		R _I	-CH3	-OCH3	-OCH ₃	-осн3	-OCH ₃	-OCH ₃	-OCH3	-OCH3	-OCH ₃		æ [`]	OCHF2	ОСН3	ОСН3	OCH3
		(con		Ž	z	z	z	z	z	z	Z.	z	z		Z	z	z	z	z
20		TABLE B (cont)		W ₃	C-CH3	g 10-0	C-0CH2(_)	C-0C3H,	C-OC2H3	C-Oallyl	-соснсн-сисн, N	С-осн3	с-осн3		C-OCH3	C-OCHF2	с-осн3	C-OCH3	с-осн3
25			;	M ₂	G	CH	당	CH	CH	품	품	픙	픙		E C	CH	E	픙	픙
30				Т Ж	N H	N	z	N H	Z Z	z H	z	z	N		Z	z	"H1" N	N HO	N HO
35	·		:	H10	CH	5	#5	5	픙	픙	CH	8	CH		₹	5	T.		8
			:	ŠÍ	CH	CH	CH	픙	픙	CH	S	CH	3		3	Ç	E	E.	G
40			:	≱	СН	픙	품	СН	æ	CH	픙	z	z		ਝ	CH CH	뚱	£	22
45				Cpd No M7	2								•						
50			,	당	6	Ó	6	6	10	10	10	11	121		13	14	14	17.	26

. **55**

5		melting point (° C)	130-132	(decomp) 138-140 168-170
10				
15	7	\mathbb{R}_1	осн3	сн3
20	TABLE B (cont)	ă	z	zz
	TABLE	<u>₩</u>	с-осн3	C-0CH ₃
25		M	ਝ	5 5
30		¥	N HO	CH H N CH -n(ch,)och, N
35		W10 2	ъ	CH FE
40		™	В	5 5
		34	z	8 8
45		Cpd No W7	C-COOH N	zz
50		pdo	261	317

5			melting point	oil NMR	oil NMR	150-152	225-235	(ire atia) 94-95 153-157 (L* salı)
10			R ₁	-och3	-0CH ₃	-ocH ₃	-осн	-och ₃
15			ň	_	_	_	_	
20	W, W, W,	Very 3	H	C-OCH ₃ N				
25	TABLE C	8	M_2	CH	æ	Н	#5	# # # # # # # # # # # # # # # # # # #
			Ħ	z	z	z	z	zz
30	×.	24	×	æ	9	x	HNI	= =
35			×I	x		x	•	н
40			ద	£ 65.5	3	Esters Esters	Н000	COOH
45			×	Ħ	×	#	×	# #
			겼	x	=	Ξ	I	x x
50			Σ,	Ħ	×	æ	Ξ	2-c1 2-c1
			Cpd # X1	8	67	20	51	52 53
55 .								

5		melting point (* C) oil NMR	110-111	130-132	276-278	(Na + salı)	148-150	185 (dec.)	(Li* salt) NMR		158-160	(Li' salt) >250	(Li* salı) 66-67	81-83
10														
15		В1 - ОСН ₃	-0CH ₃	-0CH	- OCH3		-OCH ₃	- OCH ₃	ជ	осн3	осн	OCH ₃	ен20	OCH ₃
		ă z	Z . 2	: z	z		z	z	Z	z	z	z	z	z
20	<u>1</u> E.)	<u>и</u> з с-осн ₃	с-осн	C-OCH ₃	C-OCH ₃		с-осн ₃	C-OCH ₃	C-C1	c-ocH ₃	с-осн3	с-осн3	C-OCH3	C-OCH3
25	TABLE C (cont)	8 B	8 8	품	뜻		#	8	. H	5	.	땅	H	₩
30	TABI	S z	z z	2	z		z	z	z	z	z	z	z	z
•		X OCH ₃	≖ 9	9	P		×	I	æ	Ħ	н	СН3	Ŷ	Ŷ
35		×I	≅	•	•		OCH ₃	HO	x	Br	용	Ю		
40		-CO-N-CO-N-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-	- COOCH ₃	-CON(CH ₃) ₂	Н000	(CONH	нооэ	The second	1 = 1	Н000	Нооэ	C00C2H5	C00ally1
45		r r	= =	×	Ξ		x	x	æ	×	=	×	=	×
		# K	= =	x	x		I	×	×	x	=	×	=	×
50		. Xı 2-cı	2-C1 2-C1	2-C1	2-c1		2-C1		x	æ	æ	×	2-c1	2C1
55		Cpd # 54	55 56	27	28		29	09	61	62	11	74	9/	11

5		melting point	63 87	46-70	99-101		153-154		110-111	ofl NMR	161-163		74-80	105-107	101-106	97-99	92-93	137,130	601-104	24-57		138-140	61-65	142-143	Li salt	220-240 (decomp)
15		à	OCH.	OCH.	OCH,	,	OCH ₃		осн	OCH ₃	•ноо	,	ОСН	OCH;	осн.	, 0CH3	S HOO	OCH,	?	ОСН	,	ОСН	ОСК	ОСН	OCH3	
20		ä	i 2	: 2	Z		z		z	z	z		z	Z	z	Z	z	z		z		z	z	z	z	
25	ont)	Š	c-och	C-OCH,	с-осн3		с-осн3		C-OCH ₃	C-OCH ₃	C-OCH ₃	•	C-OCH ₃	C-OCH ₃	C-OCH ₃	C-OCH ₃	C-OCH,	C-OCH3	•	C-OCH3		C-OCH3	C-OCH3	C-OCH ₃	C-OCH3	
	TABLE C (cont)	W,	.	퓽	8		æ		품	품	E		3	품	중	3	CH	픙		СН		CH	3	ਲ	CH	
30	TA	ź	z	z	Z		z		z	Z	z		z	z	z	z	z	z		z		z	z	Z	z	
35		> -	9	Ŷ	Ю		Но		Ŷ	×	Ю		×	?	٩	Ŷ	Ŷ	9		9		የ	Ŷ	Ŷ	×	
		×								픙			ᆼ												OH	
40		գ	C00buten-3-y1	C00benzy1	-CO-N-	1Č ₃ H,	-N-00-	.	$-CO-N(C_2H_3)_2$	COObenzyl	-N-00-	phenyl	-CO-N(C2H ₅) ₂	-CONCH ₃ (benzyl)	-COOCH3	-C00allyl	-COOallyl	-C00 2-methyl-	-allyl	-C00-3-methyl-	<pre>but-2-enyl</pre>	-COOpropargyl	-COObut-2-enyl	-cooch3	H000-	
45		ź	×	×	×		=		×	×	I		×	z	I	×	Ŧ	Ŧ		×		×	Œ			
		×	×	×	I		×		I	X	I		×	×	=	Ξ	×	X		×		×	×	=	=	
50							2C1		2C1	=	×		2-C1	2-C1	2-F	2-F	×	2-C1		2-C1		2-C1	2-C1	2-0CH ₃	2-F	
55		Cpd #	78	79	80		81		85	86	87		96	103	115	116	122	123		124		126	143	156	163	

5		melting point	(3 .)	100-101	Li salt	158-159	80-82 (decomp)	L1 salt	170-174 (decomp) Li* salt	225-227 (decomp) Li ⁺ salt	195-198 (decomp) Li salt	>200 (decomp)	oil NMR	127-128	154-155	Li ⁺ salt >273 (decomp)
																٠
15			찗	OCH	OCH		ОСН3	осн	осн	осн	OCH3		ОСН3	0СН3	осн	осн
20			Ą	z	z		z	z	z	z	z		z	z	z	Z
25	ont)	;	W ₃	C-OCH3	C-OCH3		C-OCH3	C-OCH ₃	C-OCH3	C-OCH3	C-OCH3		C-OCH ₃	C-0CH3	G-0CH3	C-0CH ₃
	TABLE C (cont)	:	Z	풍	СН	i	ਲ	픙	3	æ	CH.	i	H	#5	8	E
30	TABL	:	¥	z	z	:	z	z	z	z	z	:	Z.	z	z	2
35		;	H	Ŷ	I	(P	x	×	æ	x	Ó	Ç	Ŷ	Ŷ	æ
		>	đ		동		;	E	НО	Но	Ю					НО
40		۵	a :	-cooallyl	Н000	5000	COOCHI	H000	H000	Н000	C00H		S. H.	$conch_2$ C	$conch_2 \left\langle \begin{array}{c} \\ \\ \\ \\ \end{array} \right\rangle$	Н000
45			₹:	ı;		5	: :	=	I	=	Ŧ		=	æ	×	x
		>	₹ :	= ;	5	a	= :	=	=	=	×		덕	æ	=	×
50		, >	Z &1	Les 2-OCH3 H	2-0CH ₂ (ָר ה	z-Cr30		5-01	4-C1	2-pro-	pargyloxy	7-7	2-61	2-c1	2-0G ₃ H ₇
55		6		COT	181	נסנ	161	767	194	197	202	9	817	219	220	222

5		melting point (°C)	Na ⁺ salt	>210 (decomp) Na* salt	>205 (decomp) 86-87	112-113	Nat salt	>295 (decomp) Li salt	276 (decomp) 63.65	130-132	107-108	89-90	ofl NMR	Na salt	>295 (decomp)	NMR	NMR	70-71	NMR
10																			
15		R ₁	ОСН	ОСН	ОСН3	осн	ОСН3	ОСН3	OCH,	OCH,	ОСН	осн3	OCH ₃	осн		OCH ₃	ОСН	ОСН	OCH3
		শ্ৰ	z	z	z	Z	z	z	z	z	z	z	z	Z		z	z	z	z
20	ne)	W ₃	c-ocH ₃	C-OCH ₃	C-OCH ₃	с-осн3	C-OCH3	C-OCH3	C-OCH ₃	C-OCH ₃	C-OCH ₃	C-OCH ₃	C-OCH ₃	с-осн3		C-OCH3	C-OCH ₃	C-OCH3	C-OCH ₃
25	TABLE C (cont)	75	СН	æ	СН	СН	СН	Н	СН	CH	CH	#5	СН	CH		ਲ	CH	СН	땅
30	TABL	W,	z	Z	z	z	Z	Z	Z	z	z	z	z	z		z	z	Z	z
		×	Ŷ	±	٩	æ	Ŷ	Ŷ	Ŷ	٩	Ŷ	Ŷ	Ŷ	P		o	9	٩	Ŷ
35		×		НО	둱	OCH3													
40		83	Н000	СООН	COOCH2	CON-"H1" CH3	Н000	НООО	соос _з н,	COOCH3	COOCH2CH-CHC	COOally1	C00C12H25	H000	;	6H,2002	C00C ₅ H ₁₁	COOC ₆ H ₁₃	C00C,H ₁₅
45		χ	×	z	=	=	=	×	=		×	×	=	×	:	I.	×	×	
		χ	5-C1	5-C1	<u>=</u>	æ	Ξ	×	×	2-C1	X	5-C1	2-C1	5-F	;	I	×	x	=
50		X,	2-C1	2-C1	2-C1	2-C1	x	2-F	2-C1	2-C1	2-C1	2-C1	2-C1	2-F	1	2-C1	2-C1	2-C1	2-C1
55		Cpd #	228	235	239	242	243	244	247	546	251	262	764	274	:	277	281	287	299

5			melting point	NAB	Na ⁺ salt	266-276 (decomp)	NAR	92-94	115-116	109-110	115-116
15			ž	i ocii	ОСН3		осн	OCH ₃	OCH,	OCH,	OCH3
20				z	z		z	z	z	z	z
25		ont	W ₃	C-OCH ₃	C-OCH3		C-OCH3	с-осн	C-OCH ₃	C-OCH3	C-OCH ₃
	\$ \$	TABLE C (cont.)		N CH			H CH			CH	
30	E	≓ 1		o o			z o	2 0	H	2 0	N 0
35			×						Н		
40			21	COOC ₉ H ₁ 7	Н000	:	C00C12H25	COOCHC ₂ H ₅ CH ₃	CH ₂ OH	COOC3H,	соосн3
45			×		Ħ	;	I	x	=	I	×
50			A	I	×	:	T,	×	=	=	I
~			Ϋ́	2-C1	5-C1				2-C1		
55			Cpd #	300	306	6	308	314	315	316	321

5			melting point (°C)	125-127	ofl NMR	Lit salt	>283 (decomp) ofl NMR	109-111	Li salt	160-165 (decomp)	oil NWR	142-145 (decomp)	ofl NMR	129-131	oil NMR
10															
15			R	осн3	с ноо .	OCH3	OCH ₃	OCH3	ОСН3		ОСН3	ОСН3	OCH3	OCH ₃	осн
20			Ä	z	z	Z	z	z	z	:	z	z	z	z	z
25	q	E B L	겨	C-OCH ₃	C-OCH3	C-OCH3	C-OCH3	C-OCH3	C-OCH ₃	i	EHOO-5	C-OCH3	C-OCH3	C-OCH3	C-OCH3
	TABLE D	*	A.	5	z	ਲ	3	CH	æ	į	3	ಕ	æ	픙	픙
30	54	××	¥.	z	z	z	z	z	z	:	z	z	z	z	z
		4	×	×	Ħ	CH ₃	×	×	=	:	=	=	×		=
35														Ŷ	
			×			Ю	Ю	Z Ö	ᆼ	5	5	동	HO		x
40	·		~	ი ე=0	္ ပု = ၀	НО0Э	CONHCH3	COOC ₂ H ₅	C00H	11 011100	COMPOSITA	Н000	СООСН3	COOCH ₃	соосн3
45 50		·	Cpd No A (anti clockwise)*	-S-CH=CH-	-S-CH-CH-	- CH-CH - CH-N-	-ç-и-сн-сн- с1	-CH - CH-CH - N-	-CH-CH-CH-N-			-CH-CH-CH-N-	-CH-CH-CH-N-	-CH-CH-CH-N-	-C-N-CH-CH- 0CH ₃
55			Cpd No	65	99	29	119	142	149		120	173	174	176	

5		melting point	Li salt	>240 (decomp) 147-149	Na ⁺ salt	235 125-126	Nat salt	242 (decomp) o11 NMR	oil nmr	oil NMR	oil NMR	oil NMR	103-104
10													
15		~	ОСН	ОСН3	OCH ₃	осн	осн3	осн3	оси	ОСН3	осн	осн	осн
20		Z	z	Z	2	z	z	z	z	z	z	z	Z
	ont.)	æĨ	с-осн3	C-OCH ₃	C-0CH ₃	с-осн3	с-осн3	C-OCH3	с-осн3	C-OCH3	с-осн3	C-OCH ₃	с-осн3
25	TABLE D (cont)	W ₂	CH	ES.	CH	ਲ	H CH	₹	æ	CH	CH	СН	æ
30	TAB	Ħ	z	z	z	Z	z	z	z	z	Z	z	z
35		×	×	٩	٩	#	x	Ξ	æ	æ	*	æ	9
•		×I	æ			Br.	Ю	acetoxy	z	Br	Br	Br	
40		~ 3	Н000	соосн	Н000	соосн	НООО	соосн	COOC ₂ H ₅	COOC ₂ H ₅	C00C2H3	COOC2H3	COOC2H3
45		Cpd No A (anti clockwise)*	-c-N-cH-cH- och,	-C-N-CH-CH- och3	-N-CH-CH- CH ₃	-N-CH-CH-	-CH - CH-CH - N-	-N-CH-CH- 7H3	-N-CH - CH-	-N-CH-CH-	-N-CH-CH- 1 ₂ Br	.N-CH-CH- 120C0CH3	-C-N-CH-CH- † CH ₃
55		Cpd No A.	179 00	186	187	198	199 -CF	506 206 206	216	236 - C-	237 <u>-</u> C-	238 = C- CH	248 -C-

5		melting point	180-185	(decomp) 69-72	K* salt	220-230 (decomp)	136-138						
15		R	осн	ОСН	OCH3		OCH3		CF_3	CF ₃	CF ₃	CF_3	CF_3
20		Ž	z	z	z	Z	z		#5	СЖ	СН	.	CH
25	ont)	ξ	C-OCH3	C-OCH3	C-OCH ₃	C-OCH	C-OCH ₃		8	н	픙	Ж	3 5
	TABLE D (cont)	W ₂	СН	CH	E,	3	픙		H 5	픙	CH.	æ	3
30	TABL	W ₁	Z	z	z	z	z		픙	ਝ	#5	픙	#5
		×		×	×	×	ЮН			=	x	×	
35			Ŷ			_ع	•		Ŷ				Ŷ
		×		×	픙	OEC,		\		Ю	F OH	Ю	
40		~	Н000	CON(C ₂ H ₅) ₂	H000	CON(C,H,), OEC,H	-x-5-		COON	S S S S S S S S S S S S S S S S S S S	CONH	CONH	-colv
45 50		Cpd No A (anti clockwise)	-C-N-CH-CH-	CH - CH-CH - N-	CH - CHCH- N-	-CH-CH-CH-N-	- N-CH - CH-CH -		-CH - CHCH - N-	-CH - CH-CH - N-	-CH - CH-CH - N-	-CH - CH-CH - N-	- N=CH - CH=CH -
55		Cpd No A	254 -		302	330			415 -(416 –(417(418(416 -P

5		melting point (° C)			
10					
15		କ୍ଷ	CF3	. CF3	CF3
20		Ä	ES CH	СН	Н.
25	TABLE D (cont)	æ	85	CH	CH
	BLR D	M ₂	5	CH	5
30	TAI	W	СН	E 5	ਲ
35		×	æ	æ	æ
40		R X	-con	-conh	-conh
45 50		Cpd No A (anti cluckwise)*	-N-CH - CH-CH -	- N=CH - CH=CH -	- N-CH - CH-CH -
55		Cpd No	420	421	422

*Left hand atom attached to R-bearing carbon

						salt)	() v m														
5					164-166	>250 (K ⁺	135-137	NMR	NMR	119-121	NMR	127-129	ofl NMR	69-69	ofl NMR	NMR	NMR	112-114			
10				c	₽1 OCH,	OCH,	осн,	OCH,	OCH,	OCH,	OCH,	МЭО	OCH,	OCH ₃	OCH,	осн	осн	OCH,	•		
15				5	íz	z	z	z	z	z	Z	z	z	Z	z	z	z	z			_
20		_		ä	C-0CH,	C-OCH ₃	C-OCH ₃	C-OCH3	C-OCH ₃	C-OCH ₃	C-OCH ₃	C-OCH3	C-OCH3	C-OCH ₃	C-OCH3	с-осн3	C-OCH3	C-OCH ₃		potassium salt m.p. >230°)	(decomb)
		~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)	á	3 E	ਝ	CH	СН	CH	СН	CH	СН	땅	CH	땅	#5	CH	픙		salt m.	
25	ы	3=	-3	3	Z	z	z	z	z	z	z	z	z	z	z	z	z	z		ium s	
00	TABLE E	×,	•	>	1	×	×	×	×		æ	#	Ξ	Ξ	Ħ	×	×	æ		potass	
30 35		-2- -2- -2-	× × ×	×	P	НО	НО	НО	НО	9	ЮН	но	Ю	НО	НО	benzoyloxy	acetoxy	ethoxy-	carbonyloxy	sodium salt m.p. >190°;	(decomb)
40								_							l,					sodium sa	
45				œ	COOH	Н00Э	CONH2	CONHbenzyl	CONHallyl	COOCH3	COObenzy1	CONHCH ₃	CONHC ₃ H,	CONHC ₆ H ₁₃	CONH(1)C3H,	CONHallyl	CONHally1	CONH ₂		(64: free acid m.p. 90-92°;	
				۶ ۲	ì =	×	×	=	=	×	=	=	Œ	=	=	×	×	Œ		g.	
50				×	i =	×	×	×	×	×	X	×	×	×	Ŧ	=	Ħ	X		acid	
				×	i ≖	×	Ξ	Ħ	Ξ	Ŧ	x	×	×	×	×	I	×	×		free	
55				# Cod	63	79	82	83	84	91	6	108	110	111	112	127	128	129		: 79)	

5		ç E	17 T	OII NMR	79-80	75-78	NMR	102-104		oil NMR		oil NMR		99-59		102 - 104	115-116	021 031	0/1-001		88-90		138-140
10		œ	150	OCH3	C.H.J	OCH3	OCH ₃	ОСН		OCH ₃		осн		енэ0	700	Emon	OCH ₃	00.			OCH3		осн3
		ž	1 2	5 2	= ;	z	z	z		z		z		z	2	:	z	z	;	:	z		z
15		Ħ	G-DCH.	ביים בי		C-OCH3	C-OCH ₃	C-OCH3		C-0CH3		C-OCH ₃		C-OCH ₃	G-0CH,		с-осн3	C-OCH	,		ار الم		C.OCH3
20		W	H	3	5 8	5	E E	픙		픙		5		픙	E		CH	CH		5	5		CH
	Cont	ञ्	z	z	: 2	5	z	z	:	z	:	z		z	z		z	z		2	\$		z
25	TABLE E (cont)	≻i	Ξ	Ξ	=	: ;	I	×	:	I.	;	I		×	×		# .	H		=	:		I
30	TAB	×ı	Ю	НО	8		OCONHCH3	HO	ē	E)	ā	5	,	¥	Ю		benzoyloxy	benzoyloxy		HO	}		000 () -C ₂ H ₅
35 40			NHC ₁₂ H ₂₅	CONHC2H4OCH3	NH2NH2	CONTRACTOR	Wilding A.	connpropargy L	CONH. CH.		HO-HNOO		:	CONHC ₁₈ H ₃ 7	CONHCH ₂	L ₃	CONH ₂	CON(benzoyl) ₂		CONH CH CH.	Jf		H ₂
45		_													8	į	3	8		S		.6	CONH2
				×	×	7	: =	5	Ξ		2	:	:	Ę	×	;	E	×		I		:	=
			I	×	X	2	: :	4	=	•	I	:	:	5	X	:	E	X		×		;	II.
50		χ	x	I	×	=	: =	5	=	•	7	:	=	E	I	:	I.	æ		I		:	E
	:	Cpd #	130	131	132	111	777	<u> </u>	151		152			664	157		807	159		160			191

5	m.р. 198-200	91-94	103-106	135-137	109-110	NMR	140-142	NMR	117-120
10	R ₁ OCH ₃	осн	осн	ОСН3	OCH3	осн	оснз	0CH ₃	осн
	зiz	z	z	Z	z	z	Z	z	z
15	₩3 C-OCH ₃	C-0CH3	C-OCH ₃	G-0CH ₃	C-OCH3	с-осн	C-OCH ₃	с-осн3	c-ocH ₃
20	W ₂ CH	СН	푱	E	2	E.	СН	8	СН
	TABLE E (cone)	z	Z	z	z	z	z	z	z
25	X X H	=	Ŧ	æ	I	I	×	=	Ħ
30	X 0CO-()-C ₂ H ₅	НО	НО		Ю	но	НО	НО	HO
35	N	_e		•		5 0			
40	$\frac{R}{\cos(\cos\left\langle \frac{1}{2}\right\rangle c_2 H_5)_2}$	CONHCH ₂	CONHCH ₂		CONHINH (t) C4H9	CONHCH ₂ C ₂ H ₅	CONHCH ₂	CONHC ₂ H ₄ N(CH ₃) ₂	CONHINH
45	ង្	æ	×	æ	×	æ.	æ	×	=
	× ×	×	×	x	×	=	æ	=	=
50	х ж	×	=	I	×	x	æ	×	=
50	Cpd #	164	168	169	170	171	172	177	182

EP 0 461 079 Å2

5		m.p.	132-133	133_135	115-117	97-99	oil NMR	oil NMR	Na ⁺ salt	89-91	OII NMR
10	A	ia S		OCH.	OCH ₃	OCH ₃	осн	осн,	осн	осн	осн
	3	มี้ 2	: z	z	z	z	z	z	z	z	z
15	á	בן. ה-2	C-OCH ₃	C-OCH ₃	C-OCH3	C-OCH3	с-осн³	с-осн3	C-0CH3	С-ОСН3	G-OCH3
20	2 2	i 5	5	ਝ	픙	품 :	E	8	5	끉	픙
	(cont.) W,	iz	z	z	z	z ;	z	z	z	z	z
25	TABLE E (cont) Y W,	*	æ	×	×	x :	=	Ħ	×	×	×
30	×	Ю	но	Ю	но	HO O	5	Ю	НО	НО	но
35)-1C3H,			-61	сн.	e e	R			⋄ ~
40	2 4	CONH	CONH	CONHSO ₂ CH ₃	CONH-	CONHCH2COOCH3	1C ₃ H ₇	CONHCHA	Н000	CONHCHA	CONHCH ₂
45	×	×	×	×	=	= =	:	=	×	=	Ħ
	K K	X	=	×	=	= =	· ·	Ŧ	Ξ	×	×
50	¥.	×	=	×	×	= =	:	=	×	×	×
	# pd5	183	184	185	188	189		196	199	200	201

5		m.p.	118-119	NMR	119-121	125-127	oil NMR	oil NMR	oil NMR	119-120	182-183
10		B ₁	OCH ₃	осн	осн	осн3	осн3	осн3	осн3	осн3	OCH ₃
		Ä	z	Z	z	z	z	z	z	Z	z
15		Si .	C-OCH3	C-OCH3	C-OCH ₃	c-och3	C-0CH3	с-осн3	с-осн3	с-осн ₃	C-OCH ₃
20		M ₂	CH	СН	H	픙	품	CH	ਲ	CH	СН
	(cont)	M ₁	z	z	z	z	z	z	z	z	z
25	TABLE E (cont)	×	×	æ	=	I	x	æ	x	æ	æ
30		' ≭I	dichloro-	ОН	НО	НО	НО	но	но	но	Ю
35											
40		84	CONH2	CONHCH-phenyl	CONHCHAZO CONHCHAZO	CONHCH ₂ CH ₃	CONHCH2 (SO2NH2	CONHCH ₂	CONHCH ₂ (5)	CONH ()-OCH3	CONH
45		첫	=	×	=	×		x	×	æ	æ
		X2	×	×	×	×	æ	æ	×	×	×
50		ĭ,	Ŧ	Ŧ	=	=	×	×	×	×	×
		Cpd #	207	209	210	211	212	213	214	215	217

5	м.р. 105-106	130-131	149-150	98-100	40-45	NMR	121-123	130-132	138-140	152-154	NMR NMR
10	R ₁ OCH ₃	осн	осн	осн	0CH ₃	осн	осн	осн	осн	осн	OCH ₃
	e z	Z	Z	z	z	z	z	z	z	z	zz
15	₩3 C-OCH ₃	c-och3	C-OCH ₃	C-OCH ₃	C-OCH3	c-och3	C-0CH3	с-осн3	с-осн	C-OCH3	C-OCH ₃
20	CH K2	CH	CH	3	ਲ	. . E	#	E C	æ	СН	es cs
	Ccont. W ₁	z	z	Z	z	z	z	z	Z	z	zz
25	TABLE E (cont) Y W ₁ H N	x	×	æ	æ	I	æ	æ	æ	×	# #
30	× ¥	Ю	Ю	НО	но	НО	НО	НО	НО	но	но
35	8 02		3	£ £3			H,	. 69			2
40	B CONHCH2	CONHCH ₂	CONHINH () G	CONHCH ₂ CH ₃	CONH-NO	CONHC2H4-N	CONHINH () OCH,	соинин С	CONH	CONH	CONHC ₃ H ₆ (CH ₃) ₂ CONHC ₂ H ₄ N(C ₂ H ₅) ₂
45	× =	=	= .	=	=	×		×	=	×	= =
	KZ H	æ	I	x	=	×	=	=	×	=	* *
50	χ H	=	I	Ŧ	=	=	=	=	×	Ħ	= =
av .	Cpd #	223	224	225	226	227	229	230	231	232	233

5	m.p. Li ⁺ salt 158-160	150-154	133-134	150-151	52-54	NMR	94-56	137-138	Li salt	210 (decomp) 147-149
10	R ₁ OCH ₃	осн,	осн	ОСН3	осн	осн	осн	осн	осн	осн
15	Яz	z	z	z	z	z	z	z	z	z
20	ω ₃ C-OCH ₃	С-ОСН3	с-осн3	C-OCH ₃	C-0CH ₃	c-0CH3	с-осн3	£.	С-ОСН3	C-OCH3
	CH R2	H	СН	CH	СН	СН	СН	с-осн _з	СН	Н
25	Cont. W1	z	z	z	z	z	z	픙	z	z
	TABLE E (cont) Y <u>Wı</u> "H1" N	I	#	×	I	±	×	z		
30	TAB								Ŷ	Ŷ
35	X HO	НО	Но	НО	Но	НО	но	НО		
40 <u>.</u>		E 2	e E	H - Br	$\binom{\circ}{z}$	CONHINHCHZ	, ₆ H ₁₇	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	İ	
45	B COOH	CONHNH-	СОМНИН	CONHINH	CONH-N	CONHIN	CONHC ₆ H ₁₇		C00H	SON TO SEE
	Ж×	Ħ	×	I	=	=	x	=	x	=
50	я я	I	=	=	×	x	=	=	2	x
•	×χ	= .	I	=	×	×	x	=	=	=
55	Cpd # 241	245	246	252	255	257	259	271	272	273

5	m.p.	158-160	Na ⁺ salt 195 (decomp)	<pre>K* salt (255 decomp) 45-47 49-51</pre>	58-62	103-105	NMR	NMR	NMR	NMR	182-184
10	ŭ	осн	оснз	осн ₃	ОСН3	осн	осн	осн,	осн ₃	оси	осн
15	ă	Z	z	Z Z	z	z	z	z	z	z	z
20	K.	с-осн3	С-0СН3	C-0CH ₃ C-0UH ₃	C-OCH3	C-OCH ₃	C-OCH ₃	C-OCH3	C-OCH ₃	c-och ₃	C-OCH ₃
	K	8	픙	5 5	뜻	СН	픙	픙	.	5	픙
25	TABLE E (cont) Y W ₁	z	z	zz	z	z	z	z	z :	z	z
	E	×		* *	Ħ	×	Ħ	×	= :	E	æ
30	TABI		?								
35	×I	Но		но	НО	НО	ю	ಕ i	.	5	8
40				H ₁₉ 0H21		21Pr	CONHCH2CH(OCH3)2	(CH ₃) ₂ -C=CH	49 . 74 Ord	ch,	a ()
4 5	~	СОИНИН	нооэ	CONHC ₂ H ₁₉ CONHC ₂₀ H ₂₁	CONHINH	CONHCH21Pr	СОМНСН	CONH-C	CONHCAHO	- E	CONHINH
	×	×	Ħ	= =	×	×	= :	= :	= =	=	x
50	X	×	×	= =	x	Ħ	= :	= :	= =	=	x
	×	æ	×	= =	×		=	= :	= :	5	Ξ
55	Cpd #	275	276	278	280	282	283	284	285	007	288

5	m, p,	181-183	NMR	NMR NMR	131-132	124-126	NMR	88-90	NMR
10	2	ОСН	осн	OCH ₃	осн	осн	осн	осн	ОСН3
	Ä	z	z	zz	z	z	Z	z	z
15	H ₃	c-och ₃	C-OCH ₃	C-OCH ₃	C-0CH3	c-och³	C-0CH3	с-осн ₃	C-OCH ₃
20	M ₂	CH	ਲ	# # #	H.	3	CH	СН	СН
	(cont)	z	z	zz	z	z	Z	z	Z
25	TABLE E (cont) Y H ₁	Ħ	z .	# #	æ	æ	*	x	×
30									
	×	НО	8	9 H	용	Ю	W OH	но	НО
35							-		
40	3	CONHINH (CONH CONH	CONHC ₆ H ₁₂ N(CH ₃) ₂ CONHC ₄ H ₆ N(CH ₃) ₂	CONHINH	CONHINH	CONHCH ₂ CON S	CONHCH ₂	CONHCH ₂ (COM)
45	Ķ	æ	æ	= =	×	×	×	æ	I
	72	I	Z.	= =	=	æ	×	×	=
50	\underline{X}_1	x	I	x x	I	×	×	×	×
w	Cpd //	289	290	291 292	293	294	295	296	297

EP 0 461 079 A2

5		m.p.	NMR	NMR	54-56	D(+) 64-68 L(-) NMR	133-134	102-104	122-123	126-128	106-108
10		R ₁	осн,	осн	оснэ	OCH ₃	осн	осн3	осн	осн	OCH3
		Ä	z	z	z	z	z	z	z	z	z
15		Е	C-0CH ₃	C-OCH ₃	с-осн ₃	с-осн3	C-OCH ₃	с-осн3	C-OCH ₃	c-och³	C-OCH3
20		W ₂	E.	СН	E CH	CH	픙	CH	픙	СН	CH
	cont)	Δĺ	z	z	z	z	z	z	z	z	Z
25	TABLE E (cont)	×	x	æ	×	I.	æ	æ	· #	Ħ	×
30											
		×I	픙	8	용	용	Ю	Ю.	НО	НО	Н
35											4
40		8	CONHCH2CHCH3	CONH (COCH)	CONH P-NCH3)	CONHÇ-(L)	CONH ()-3KH3	CONH ()	SHED-CONH	CONHINH	CONHCH2 ()-N(CH3)2
45		Я		×	×	I	æ	×	×	=	×
		X	=	Ħ	×	I	#	x	æ	=	æ
50		×	=	æ	Ξ	æ	I	æ	×	×	×
		Cpd #	298	303	304	305	309	310	311	312	313

5		M.D.	Li salt	185-188 (decomp)	Li salt	>195 (decomp)	Li salt	>225 (decomp)	Li salt	195 (decomp)	Lf salt	225 (decomp)	86-96		114-116		•	146-148						
,,,			_		_				Hs				H3		H ₃		_	ę.		-E	چ.	. E		. E
		R.	CH ₃		ਲੋਂ		Ξ		OC ₂ H ₅		ជ		OCH ₃		OCH ₃		Š	E C		00	0	0	00	OCH3
15		×	z	:	z		z		z		z		z		z		2	4		z	z	Z	z	z
20		W ₃	C-OCH ₃	į	C-OCH ₃		C-OCH3		C-OCH3		C-OCH3		C-OCH ₃		C-OCH3		מ-סמ	5000		C-OCH3	с-осн3	C-OCH ₃	с-осн3	c-ocH ₃
25		3	ਲ	į	5		æ		3		3		સ		5		3	;		뚱	품	ਲ	CH	æ
	cont	Z	z	2	z	1	z		z		z		z		z		2	:		z	z	z	z	z
30	TABLE E (cont)	×	×	2	I,	;	Ξ		II.		I		I								Ξ		x	
	TAB														Ŷ		9	•		9		Ŷ		9
35		×I	픙	ā	5	į	Ho	:	НО		НО		×								НО		НО	
40														-	§		3					~	8	
45		R	C00H	7000	E000		H000		Н000		C00H	(CONH		Y Zes	ร์	CON) E	•	CON(C2H5)2	CON(C2H5)2	CON(1C3H,)	CON(1C3H7)	con-och ₃
50		×	X	=	E.	:	x		=		Ξ		×	,	×		=	:		×	×	×	×	=
		X_2	×	=	E.	:	Œ.		I		I		x		I		Ξ	:		I	Ξ	×	I	Ħ
		\underline{Y}_1	x	=	I.	;	×		×		I		æ		I		=	:		Ŧ	Ŧ	×	×	=
55		Cpd #	318	6	322	!	323		324		325		327		328		320)		379	380	381	382	383

			í	II. P.																		
5	•			<u>-</u> 5			وي د			9								_	_	-	_	
10			α	OCH ₃		H)O	ОСН		OCH,)		OCH ₃		OCH ₃		осн	į	OCH3	OCH		OCH	OCH ₃
10			3	źz		z	z		z			Z		Z		z	2	Z	z		z	z
15			E,	C-OCH	ı	C-OCH ₃	с-осн3		C-OCH3	,		C-OCH3		C-OCH3		C-OCH3	מיי	£100-0	C-OCH3	•	с-осн3	C-OCH3
20				픙		5	픙		CH			5		СН		CH	3	5	CH		æ	СН
		(cont	я	z	:	Z	z		z		;	z		z		Z	2	:	z		z	z
25		TABLE E (cont)	×I	#			x				:	=				=			H			×
		T.				?			٩					Ŷ			Ŷ				9	
30			×I	НО		į	Ho				5	5 .			į	E			но			Ю
35																						
40		•	≃ 3	CON-OCH ₃	CONCCHE	7/Sun \ 100	CON(CH ₃) ₂	СНЭ	CON-N-NOO	CH ₃	N-NOO	CH ₃	(COON			CON) (CON		CONCER13	CONC ₆ H ₁₃ CH,
45		;	X	×	×				×		=	:			2	5	×		×		I	I
••			X		×	=	5		=		=	:		æ	2	5	×		×		=	x
			Ā		×	=	5		x		=	:		×	2	5	×		=		=	x
50		7	Cpd #	384	385	200	986		387		388))		389	300	065	391		392		393	394

	m.p.							
5								
	B ₁ OCH ₃	оснэ	енэо	осн	осн	осн	оси	осн3
10	.	Z	z	z	Z	z	z	Z
15	₩3 C-OCH₃	с-осн3	с-осн ₃	C-0CH3	C-OCH ₃	C-OCH3	c-och	c-och3
20	CH E	E 5	СН	СН	CH	CH	3	æ
	Cont. W1 N	z	z	Z	Z	z	z	z
25	TABLE E (cont) Y W ₁ O N	×		x		×		×
	PAT O		Ŷ		Ŷ		9	
30	×	Но		Но		НО		НО
35							ಕ	ક
40	$\begin{array}{ccc} & \mathbb{R} & \\ & \text{con-ch}_2 & \\ & & \text{ch}_3 & \end{array}$	CON-CH ₂	CON-CH ₂	con-ch ₂ Ch ₃	CONCH ₂ C	coych ₂	CONCH ₂ CH ₃	coych ₂
45	× ×	æ	×	×	# # #	×	×	×
	z z	x	=	×	x	I	=	x
	H X	×		×	×	×	æ	×
50	395	396	397	398	399	400	401	402

5			M.D.					gun NMR	gun NMR gun NMR
10			R ₁	OCH ₃	осн	осн	осн	• ноо	OCH ₃
			ЗĬ	z	z	Z	z	z	2 Z
15			W ₃	C-OCH ₃	C-OCH ₃	C-OCH3	C-0CH3	C-OCH3	c-och ₃
20		~	N ₂	#5	CH	CH	픐	퓽	H C
		(cont	M M	z	z	z	Z	z	zz
25		TABLE E (cont)	×		=		I	Ħ	x
		TAI		ç		9			9
30			•						
			×		Ю.		8	Ю	#o
35	•								
40			, (H3		G. S.	N CH3	SH, CH,	IC2H4S	CONHC2H,SpC4H9 CON-CH2-C=CH CH3
			~ 3	CON CH3	N-5	N-5	CH3	CONHC ₂ F	
45			×	x	æ	æ	=	æ	= =
			X	æ	I	x	×	=	= =
50			Χ̈́	×	æ	×	æ	æ	= =
-			Cpd #	403	707	405	406	407	411

TABLE F

5			<u> </u>			
10			X Y N — OCH ₃			
	Cpd #	AA _O	OCH3	X	¥	ш.р.
15	90			Н	H	123-125
20	331	SN COOH		-	•0	
25	332	-11-		ОН	н	
30	333	COOH		-	0	
	334			ОН	н	
35	335	NN COOM		-	0	
40	336			ОН	н	
45	337	[N] COOH			o	
	338	u		ОН	H	

50

TABLE F (cont)

			INDIE	(conc)			
	Cpd	<u># AA</u>			<u>x</u>	Ā	<u>п.р.</u>
5	339	STOOH				= 0	
	340				ОН	Н	
10	341	NT COOH			,	- 0	
15	342	n			ОН	н	
20	343	NT COOH			•	-0	
	344				ОН	н	
25	345	COOH			•	- 0	
30	346				ОН	Н	
35	347	MT COOH			-	- 0	
	348	()			OH	н	
40	349	COOH		·	•	•0	
45	350	—u—			ОН	н	

50

. **55**

TABLE F (cont)

		TERRITE	F (COILC)			
	Cpd #	<u>AA</u>	2	<u> </u>	¥	m.p.
5	351	STICOUH			- 0	
10	352	u	o	Н	н	
	353	5 COOH		-	- 0	
15	354		0	Н	н	
20	355	N= COOIT		_	0	
25	356		O	Н	H	
	357	COOIT		*	0	
30	358	— n —	OI	H	н	
35	359	COCH		_	0	
40	360	II	OI	н	H	
***	361	CT COOH		_	0	
45	362	!!	OI	H	н	

50

TABLE F (cont)

			TABLE F (cont)			
	Cpd #	<u>AA</u>		<u>x</u>	¥	ш.р.
5	363	COOH			- 0	
10	364	·		ОН	н	
15	365	15 T COCH		,	- 0	
15	366	tı		ОН	Н	
20	367	N'N COOH		•	- 0	
25	368	———		ОН	н	
	3 <u>6</u> 9	N LOOH		-	ю	
30	370			ОН	н	
35	371	N-ICOOH		-	0	
40	372		·	ОН	н	
	373	N COOH		=	0	
45	374	u		ОН	н	

50

TABLE F (cont)

	Cpd # AA	X	¥	m.p.
5	375 COOH		- 0	
10	376 — II — COOH	ОН	Н	
15	377	ОН	-0 H	
		On	А	
20	410 CON(CH3)	н	н	122-123
25				
	412 — ii —	н	OtC.	H ₉ gum NMR

Compounds of Table F wherein COOH is replaced by other meanings of R as listed in Tables C, D and E above for R may be prepared analogously.

NMR data ['H nmr (CDCl₃)]

NMR data [1H nmr (CDCl₃)]

35 Cpd No

30

40

- 41 8: 3.95 (s, 6H, OCH₃), 5.95 (s, 1H, pyrimidine H), 6.45 (s, 1H, OCH), 7.7-9.1 (m, 3H, pyridinc H).
- δ: 1.32 (t, 3H, CH₃), 2.87 (q, 2H, CH₂), 4.05 (s, 6H, OCH₃), 6.3 (s, 1H, OCH), 7.82 (d, 1H, arom.), 8.72 (d, 1H, arom.).
- δ: 1,32 (t, 3H, CH₃), 2.85 (q, 2H, CH₂), 3.87 (s, 6H, OCH₃), 5.97 (s, 1H, pyrimidine H), 6.32 (s, 1H, OCH), 8.08 (d, 1H, pyridine H), 8.71 (d, 1H, pyridine H).
- 8: 1.25 (s, 6H, CH₃), 3.85 (s, 6H, OCH₃), 3.95 (2H, OCH₂), 4.65 (s, 2H, CH₂), 5.85 (s, 1H, pyrimidine H), 7.2-8.0 (4H, aromatic).
- 8: 1.00 (s, 6H, CH₃), 3.65 and 3.75 (d of d, 2H, OCH₂), 6.05 (s, 1H, pyrimidine H), 7.2-8.1 (4H, aromatic H).
- 54 δ: 2.9 (s, 3H, CH₃N), 3.10 (s, 3H, CH₃O), 3.90 (s, 6H aromatic OCH₃), 6.10 (s, 1H, pyrimidine H), 7.2-7.9 (3H, aromatic H).
 - 61 δ: 1.24 (s, 6H, CH₃), 3.98 (s, 2H, CH₂O), 4.74 (s, 2H, CH₂), 7.16 (s, 1H, pyrimidine H).
 - δ: 3.96 (s, 6H, OCH₃), 5.96 (s, 1H, pyrimidine H), 6.32 (s, 1H, OCH), 7.27 (d, 1H, thienyl H), 7.85 (d, 1H, thienyl H).
- 50 66 δ: 4.08 (s, 6H, OCH₃), 6.27 (s, 1H, OCH), 7.18 (d, 1H, thienyl H), 7.95 (d, 1H, thienyl H).
 - 8: 1.63 (t, 3H, CH₂CH₃), 3.91 (s, 6H, OCH₃), 4.1 (q, 2H, OCH₂), 6.08 (s, 1H, pyrimidine H), 7.2-7.8 (m, 3H, aromatic H).

 - 84 δ: 3.85 (s, 6H, OCH₃), 4.05 (t, 2H, NCH₂), 5.0-5.45 (m, 3H, CH-CH₂), 5.85 (s, 1H, pyrimidine), 6.80 (s, 1H, OCH), 7.2-8.6 (m, 3H, pyridine).
 - 86 8: 3.85 (s, OCH₃), 5.37 (s, OCH₂Ar), 5.85 (s, pyrimidine), 6.80 (d, OCH), 7.2-8.2 (m, aromatic), mixt-

ure with cpd. 40.

5

15

- 88 δ: 4.00 (s, 3H, OCH₃), 5.50 (s, 2H, OCH₂), 6.05 (s, 1H, pyrimidine H), 6.27 (s, 1H, O-CH) 7.1-7.7 (m, 8H, aromatic H).
- 8: 3.85 (s, 6H, OCH₃), 5.42 (s, 2H, OCH₂), 6.05 (s, 1H, OCH), 6.42 (s, 1H, pyrimidine), 7.05-7.35 (s, 5H, aromatic), 7.35-7.768 (m, 11H, pyridine), 7.78-8.1 (d, 1H, pyridine), 8.81-9.01 (d, 1H, pyridine).
- 97 8: 3.80 (s, 6H, OCH₃), 5.35 (s, 2H, OCH₂Ar), 6.85 (s, 1H, pyrimidine), 6.65 (s, 1H, OCH), 7.15-8.6 (m, 8H, aromatic), mixture with cpd. 40.
- 8: 1.92 (s, 3H, C≡CCH₃), 3.98 (s, 6H, OCH₃), 4.92 (s, 2H, OCH₂), 6.07 (s, 1H, OCH), 6.58 (s, 1H, pyrimidine), 7.52-7.88 (m, 1H, pyridine), 8.10-8.32 (d, 1H, pyridine), 8.90-8.91 (d, 1H, pyridine).
- 10 110 δ: 0.75-1.12 (t, 3H, CH₃), 3.18-3.48 (m, 2H, CH₂), 3.81 (s, 6H, OCH₃), 4.42-4.91 (m, 3H, OH and NCH₂), 5.82 (s, 1H, OCH), 6.72 (s, 1H, pyrimidine), 7.21-7.52 (m, 1H, pyridine), 7.82-8.08 (d, 1H, pyridine), 8.32-8.61 (d, 1H, pyridine).
 - δ: 1.12-1.31 (d, 6H, CH3), 3.81 (s, 6H, OCH₃), 4.12-4.32 (m, 1H, NCH), 5.85 (s, 1H, OCH), 6.71 (s, 1H, pyrimidine), 7.21-7.52 (q, 1H, pyridine), 7.81-8.09 (d, 1H, pyridine), 8.12-8.31 (m, 1H, NH), 8.39-8.55 (d, 1H, pyridine).
 - 5: 3.05 (d, 3H, NCH₃), 3.94 (s, 6H, OCH₃), 5.20 (s, 1H, OH), 5.75 (s, 1H, OCH), 5.98 (s, 1H pyrimidine H), 7.26 (d, 1H, pyridine H), 7.82 (q, 1H, NH), 8.28 (d, 1H, pyridine H).
 - 8: 3.75 (s, 6H, OCH₃), 4.05 (t, 2H, NCH₂), 5.05-5.5 (m, 3H, CH=CH₂), 5.85 (s, 1H, pyrimidine), 7.2-8.6 (m, 9H, aromatic + OCH).
- 20 128 δ: 2.20 (s, 3H, CH₃), 3.75 (s, 6H, OCH₃), 4.10 (t, 2H, NCH₂), 5.0-6.6 (m, 3H, CH=CH₂), 5.85 (s, 1H, pyrimidine), 7.2-8.6 (m, 5H, pyridine + NH, OCH).
 - 5: 0.75-1.61 (m, 15H, aliphatic), 1.61-3.02 (m, 8H, aliphatic), 3.15-3.61 (m, 2H, NCH₂), 3.81 (s, 6H, OCH₃), 5.82 (s, 1H, OCH), 6.81 (s, 1H, pyrimidine), 7.21-7.52 (q, 1H, pyridine), 7.92-8.15 (d, 1H, pyridine), 8.17-8.32 (m, 1H, NH), 8.35-8.52 (d, 1H, pyridine).
- 25 133 δ: 2.85 (d, 3H, NCH₃), 3.85 (s, 6H, OCH₃), 4.10 (t, 2H, NCH₂), 5.0-6.0 (m, 3H, CH=CH₂), 5.85 (s, 1H, pyrimidine), 7.2-8.6 (m, 4H, pyridine + OCH).
 - 5 0.96 (t, 3H, CH₃), 1.68 (m, 2H, CH₂CH₂CH₃), 3.50 (m, 2H, NCH₂), 3.93 (s, 6H, OCH₃), 5.92 (s, 1H, pyrimidine H), 6.17 (d, 1H, OCH), 7.21 (d of d, 1H, pyridine H), 8.07 (d of d, 1H, pyridine H), 8.66 (t, 1H, NH).
- 30 151 δ: 1.41-1.61 (d, 3H, CH₃), 3.82 (s, 6H, OCH₃), 4.92-5.35 (m, 2H, NCH, OH), 5.81 (s, 1H, OCH), 6.85 (s, 1H, pyrimidine), 7.12-7.51 (m, 6H, aromatic and pyridine), 7.82-8.10 (d, 1H, pyridine), 8.38-8.50 (d, 1H, pyridine) 8.51-8.82 (m, 1H, NH).
 - δ: 2.25 (s, 3H, CH₃), 3.89 (s, 6H, OCH₃), 3.42-3.61 (d, 2H, NCH₂), 5.81 (s, 1H, OCH), 6.85 (s, 1H, pyrimidine), 7.03 (s, 4H, aromatic), 7.12-7.52 (q, 1H, pyridine), 7.85-8.12 (d, 1H, pyridine), 8.58-8.72 (m, 1H, NH).
 - δ: 1.24 (t, 3H, CH₃), 2.60 (q, 2H, CH₂), 3.86 (s, 6H, OCH₃), 4.62 (d, 2H, NCH₂), 5.86 (s, 1H, pyrimidine H), 6.90 (d, 1H, OCH), 7.0-8.54 (m, 7H, aromatic H), 8.60 (bs, 1H, NH).
 - 8: 3.83 (s, 3H, OCH₃), 3.90 (s, 6H, OCH₃), 5.83 (s, 1H, pyrimidine H), 6.60 (d, 1H, OCH), 7.30 (d of d, 1H, pyridine H), 8.23 (d of d, 1H, pyridine H), 8.70 (d of d, 1H, pyridine H).
- δ: 2.20 (s, 6H, CH₃), 2.31-2.60 (m, 2H, CH₂N), 3.31-3.75 (q, 2H, NCH₂), 3. 7 8 (s, 6H, OCH₃), 5.75 (s, 1H, OCH), 6.61(s, 1H, pyrimidine), 7.13-7.42 (q, 1H, pyridine), 7.71-7.91 (d, 1H, pyridine), 8. 31-8. 51 (d, 1H, pyridine).
 - 178 δ: 3.85 (s, 9H, OCH₃), 3.95 (s, 3H, OCH₃), 4.14 (s, 2H, CH₂), 5.82 (s, 1H, pyrimidine H), 6.90 (d, 1H, pyridine H), 8.12 (d, 1H, pyridine H).
- 45 187 δ: 3.70 (s, 9H, OCH₃), 5.82 (s, 1H, pyrimidine H), ;6.80 (d, 1H, pyridine H), 8.10 (d, 1H, pyridine H).
 - 8: 0.85-1.05 (d, 6H, CH₃), 3.85 (s, 6H, OCH₃), 4.53-4.82 (q, 1H, CH), 5.25-5.55 (m, 2H, OH and NCH), 5.82 (s, 1H, OCH), 6.88 (s, 1H, pyrimidine), 7.25-7.51 (q, 1H, pyridine), 7.83-8.05 (d, 1H, pyridine), 8.41-8.60 (d, 1H, pyridine), 8.72-8.85 (d, 1H, NH).
- 50 δ: 3.78 (s, 6H, OCH₃), 4.51-4.78 (d, 2H, NCH₂), 5.35 (s, 1H, OH), 5.81 (s, 1H, OCH), 6.28 (s, 2H, furfuryl), 6.81 (s, 1H, pyridine), 7.12-7.43 (m, 2H, furfuryl), 7.82-8.05 (d, 1H, pyridine), 8.31-8.43 (d, 1H, pyridine), 8.52-8.71 (m, 1H, NH).
 - δ: 1.87-2.04 (m, 4H, CH₂ and tetrahydrofuran), 3.71-3.92 (m, 9H, OCH₃ and tetrahydrofuran), 5.86 5.87 (m, 2H, OCH and OH), 6.71 (d, 1H, pyrimidine), 7.31-7.42 (d, 1H, pyridine), 7.81-7.92 (d, 1H, pyridine), 8.41-8.50 (d, 2H, NH and pyridine).
- 55 208 δ: 2.22 (s, 1H, CH₃), 3.85 (s, 6H, OCH₃), 3.92 (s, 3H, OCH₃), 3.97 (s, 3H, OCH₃), 5.86 (s, 1H, pyridine H), 6.80 (s, 1H, OCH), 7.10 (d, 1H, pyridine H), 8.16 (d, 1H, pyridine H).
 - 8: 3.63-3.74 (t, 9H, OCH₃), 5.48-5.81 (m, 4H, CHO, OH, COCH), 6.88-7.42 (m, 8H, phenyl, pyrimidine, pyridine), 7.94-7.97 (d, 1H, pyridine), 8.45-8.47 (d, 1H, pyridine) 9.24-9.26 (d, 1H, NH).

- δ: 3.85 (s, 6H, OCH₃), 4.41-4.52 (m, 2H, NCH₂), 5.21-5.72 (d, s, 4H, NH₂, OCH, OH), 6.61 (s, 1H, pyrimidine), 7.12-7.32 (m, 3H, pyridine, benzylsulfon), 7.71-7.80 (m, 3H, pyridine, benzylsulfon), 8.3 (d, 1H, pyridine), 8.71 (m, 1H, NH).
- 213 δ: 3.61 (s, 6H, OCH₃), 4.60-5.18 (m, 3H, ArCH₂, OH), 5.72 (s, 1H, OCH), 6.72 (s, 1H, pyrimidine), 7.15-7.17 (t, 5H, pyridine), 7.84-7.86 (d, 1H, pyridine), 8.38-8.44 (d, 2H, pyridine), 9.12 (s, 1H, NH).

5

10

20

45

- 8: 3.75 (s, 6H, OCH₃), 4.72-4.74 (d, 2H, NCH₂), 5.84 (s, 1H, OCH), 6.86-6.96 (d, 3H, pyrimidine, thiophenyl), 7.14-7.16 (d, 1H, pyridine), 7.32-7.36 (d, 1H, pyridine), 7.94-7.97 (d, pyridine), 8.39-8.40 (d, 1H, pyridine), 8.71 (d, 1H, NH).
- 216 δ: 1.31 (t, 3H, CH₃), 2.62 (s, 3H, CH₃), 3.87 (s, 6H, OCH₃), 4.21 (s, 2H, CH₂), 4.40 (q, 2H, OCH₂), 5.83 (s, 1H, pyrimidine H), 7.13 (d, 1H, pyridine H), 8.44 (d, 1H, pyridine H).
- 218 δ: 284 (3.08) (s, 3H, NCH₃), 3.92 (s, 6H, OCH₃), 4.50-5.03 (m, 2H, NCH₂), 6.10 (s, 1H, pyrimidine H), 7.10-7.80 (m, 7H, aromatic H).
- 8: 1.50 (m, 6H, CH2), 2.40 (m, 6H, NCH₂), 3.55 (q, 2H, NCH₂), 3.80 s, 6H, OCH₃), 5.85 (s, 1H, pyrimidine H), 6.70 (s, 1H, OCH), 7.15-8.60 (m, 1H, 3 pyridine H + NH).
- 5. 1.80 (q, 2H, CH₂), 2.25 (s, 6H, NCH₃), 2.35 (q, 2H, NCH₂), 3.45 (q, 2H, NCH₂), 3.80 (s, 6H, CH₃), 5.80 (s, 1H, pyridine), 6.65 (s, 1H, OCH), 7.15-850 (m, 3H, pyridine).
 - 8: 1.00 (t, 6H, CH₃), 2.60 (m, 6H, NCH₂), 3.50 (q, 2H, NCH₂), 3.92 (s, 6H, OCH₃), 5.80 (s, 1H, pyrimidine H), 6.80 (s, 1H, OCH), 7.15-8.7 (m, 3H, pyridine).
 - 8: 1.37 (t, 3H, CH₃), 2.56 (s, 3H, CH₃), 3.87 (s, 6H, OCH₃), 4.43 (q, 2H, OCH₂), 5.87 (s, 1H, pyrimidine H), 6.12 (s, 1H, CHBr), 7.90 (d, 1H, pyridine H), 8.56 (d, 1H, pyridine H).
 - 8: 1.40 (t, 3H, CH₃), 3.87 (s, 6H, OCH₃), 4.43 (q, 2H, OCH₂), 4.70 (s, 2H, CH₂Br), 5.88 (s, 1H, pyrimidine H), 6.23 (s, 1H, CHBr), 8.07 (d, 1H, pyridine H), 8.65 (d, 1H, pyridine H).
 - 238 δ: 1.37 (t, 3H, CH₃), 2.06 (s, 3H, CH₃), 3.88 (s, 6H, OCH₃), 4.40 (q, 2H, OCH₂), 5.28 (s, 2H, OCH₂), 5.87 (s, 1H, pyrimidine H), 6.23 (s, 1H, CHBr), 8.04 (d, 1H, pyridine H), 8.64 (d, 1H, pyridine H).
- 25 257 δ: 3.82 (s, 6H, OCH₃), 4.06 (s, 2H, NCH₂), 5.05-5.10 (s, 1H, OH), 5.42-5.45 (s, 1H, NH), 5.87 (s, 1H, OCH), 6.76-6.86 (s, 1H, pyrimidine), 7.32-7.38 (m, 6H, pyridine, aromatic), 7.94-7.98 (d, pyridine), 8.45-8.49 (d, 1H, pyridine), 9.55 (s, 1H, NH).
 - 264 δ: 0.8-1.9 (br s, 25H, aliphatic), 3.85-3.90 (s, 6H, 2XOMe), 6.15 (s, 1H, ArH, pyrimidine), 7.4 (s, 2H, ArH).
- 30 277 8: 0.90 (t, 3H, CH₃), 1.2-1.7 (m, 4H, aliphatic), 3.95 (s, 6H, OCH₃), 4.08 (t, 2H, OCH₂), 6.15 (s, 1H, pyrimidine H), 7.5-7.7 (m, 3H, aromatic).
 - 8: 0.90 (t, 3H, CH₃), 1.3 (m, 4H, aliphatic), 1.6 (m, 2H, aliphatic), 3.95 (s, 6H, OCH₃), 4.08 (t, 2H, OCH₂), 6.15 (s, 1H, pyrimidine H), 7.4-7.7 (m, 3H, aromatic).
- 283 8: 3.40 (s, 6H, OCH₃), 3.43 (m, 2H, NCH₂), 3.82 (s, 6H, OCH₃), 4.47 (t, 1H, CH), 5.86 (s, 2H, OCH, 35 OH), 6.77 (s, 1H, pyrimidine), 7.41-7.43 (m, 1H, pyridine), 7.94-7.98 (d, 1H, pyridine), 8.47-8.48 (d, 1H, NH)
 - 8: 1.71-1.76 (s, 6H, CH₃), 2.31 (s, 1H, C≡CH), 3.82 (s, 6H, OCH₃), 5.61-5.63 (d, 1H, OH), 5.85 (s, 1H, OCH), 6.86-6.96 (d, 1H, pyrimidine), 7.44-7.48 (m, 1H, pyridine), 7.94-7.98 (d, 1H, pyridine), 8.44-8.45 (d, 2H, NH).
- 8: 0.75-1.13 (m, 4H, aliphatic), 1.28-1.77 (m, 3H, aliphatic), 3.23-3.52 (m, 2H, NCH₂), 3.82 (s, 6H, OCH₃), 5.73-5.88 (m, 2H, OH, OCH), 6.60-6.81 (d, 1H, pyrimidine), 7.21-7.45 (q, 1H, pyridine), 7.78-8.01 (d, 1H, pyridine), 8.32-8.55 (d, 2H, pyridine, NH).
 - 8: 1.21-1.32 (d, 2H, CH₂o), 3.38-3.58 (d, 6H, CH₃), 3.85 (s, 6H, OCH₃), 4.18-4,48 (m, 2H, NCH, OH), 5.88 (s, 1H, OCH), 6.73 (s, 1H, pyrimidine), 7.28-7.52 (q, 1H, pyridine), 7.81-8.08 (d, 1H, pyridine), 8.43-8.62 (d, 2H, pyridine, NH).
 - 8: 3.74 (s, 9H, OCH₃), 5.44 (bs, 1H, OH), 5.73 (s, 1H, pyrimidine), 6.62 (bs, 1H, OCH), 6.9-8.6 (m, aromatic, 7H), 10.22 (s, 1H, NH).
 - 291 δ : 1.40 (m, 8H, CH₂), 2,28 (s, 6H, NCH₃), 2.68 (m, 2H, NCH₂), 3.40 (m, 2H, NCH₂), 3.80 (s, 6H, OCH₃), 5.80 (s, 1H, pyrimidine), 6.70 (s, 1H, OCH), 7.2-8.6 (m, 4H, pyridine H + OH).
- 50 292 δ: 1.60 (m, 4H, CH₂), 2.25 (s, 6H, NCH₃), 2.25 (m, 2H, NCH₂), 3.48 (m, 2H, NCH₂), 3.65 (s, 6H, OCH₃), 5.80 (s, 1H, pyrimidine), 6.65 (s, 1H, OCH), 7.2-8.6 (m, 4H, pyridine + OH).
 - 8: 3.74 (s, 6H, OCH₃), 3.80 (s, 6H, OCH₃), 4.50 (d, 2H, NCH₂), 5.84 (s, 1H, pyrimidine), 6.5-8.6 (m, 8H, aromatic, OCH, NH).
 - 297 δ: 3.65 (s, 6H, OCH₃), 3.77 (s, 6H, OCH₃), 4.50 (d, 2H, NCH₂), 5.64 (d, 1H, OH), 5.80 (s, 1H, pyrimidine), 6.25-6.60 (m, 3H, aromatic), 6.8 (d, 1H, OCH), 7.2-8.6 (m, 3H, pyridine).
 - 8: 3.82 (s, 6H, OCH₃), 5.81 (s, 1H, OCH), 6.29-7.58 (m, 8H, OH, NH, pyrimidine, aromatic, pyridine), 7.80-8.25 (d, 1H, pyridine), 8.48-8.62 (d, 1H, pyridine), 9.74-9.93 (br, 1HNH).
 - 299 δ: 0.85 (t, 3H, CH₃), 1.2 (m, 8H, aliphatic), 1.6 (m, 2H, aliphatic), 3.95 (s, 6H, OCH₃), 4.08 (t, 2H,

OCH₂), 6.15 (s, 1H, pyrimidine H), 7.4-7.7 (m, 3H, aromatic).

- 8: 0.90 (t, 3H, CH₃), 1.2 (m, 10H, aliphatic), 1.6 (m, 2H, aliphatic), 3.95 (s, 6H, OCH₃), 4.08 (t, 2H, OCH₃), 4.08 (t, 2H, OCH₂), 6.15 (s, 1H, pyrimidine H), 7.4-7.7 (m, 3H, aromatic).
- 8: 3.80 (s, 6H, OCH₃), 3.90 (d, 6H, OCH₃), 5.45 (d, 1H, OH), 5.80 (s, 1H, pyrimidine), 6.85 (s, 1H, OCH), 7.0-8.6 (m, 6H, aromatic), 10.2 (s, 1H, NH).
- 305L(-) δ: 1.60 (d, 3H, CH₃), 3.75 (2s, 6H, OCH₃), 5.25 (m, 1H, OH), 5.75 (s, 1H, pyrimidine), 6.75 (d, 1H, OCH), 7.2-8.6 (m, 8H, aromatic).
- δ: 0.88 (t, 3H, CH₃), 1.25 (bs, 18H, aliphatic), 1.6 (m, 2H, aliphatic), 3.95 (s, 6H, OCH₃), 4.07 (t, 2H, O-CH₂), 6.15 (s, 1H, pyrimidine H), 7.55-7.7 (m, 3H, aromatic).
- 5: 1.05 (m, 6H, NCH₂CH₃), 1.27 (s, 9H, C(CH₃)₂), 2.3 (m, 4H, NCH₂), 3.8 (s, 6H, OCH₃), 5.8 (s, 1H, pyrimidine H), 5.9 (s, 1H, CH-Ot-Bu), 7.18 (d of d, 1H, pyridine H), 7.45 (d of d, 1H, pyridine H).
 - δ: 3.18 (m, 2H, CH₂S), 3.65 (m, 2H, CH₂N), 3.95 (s, 6H, OCH₃), 5.85 (s, 1H, pyrimidine), 6.80 (s, 1H, OCH), 7.0-8.7 (m, 8H, aromatic).
- 5: 1.90 (t, 3H, CH₃), 1.55 (m, 4H, CH₂), 2.65 (m, 4H, CH₂S), 3.62 (m, 2H, CH₂N), 3.82 (s, 6H, CH₃O), 5.90 (s, 1H, pyrimidine), 6.75 (s, OCH), 7.2-8.65 (m, 3H, pyridine).
 - δ: 1.37 (s, 9H, tBuO), 3.30 (s, 3H, CH₃N), 3.90 (s, 6H, CH₃), 5.95 (s, 1H, pyrimidine), 5.97 (s, 1H, OCH), 6.5-7.6 (m, 10H, aromatic).
- δ: 2.23 (s, 1H, C=CH), 3.12-3.23 (d, 3H, N-CH3), 3.93 (s, 8H, OCH₃, N-CH₂C≡), 6.155 (s, 1H, pyridine), 7.47-7.52 (m, 1H, pyridine), 8.142-8.168 (m, 1H, pyridine), 8.69-8.709 (t, 1H, pyridine).

Claims

5

25 1. A compound of formula I

 $\begin{array}{c|c}
Y_2 & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
&$

35 wherein

30

40

45

50

ring A is selected from

- a) phenyl or naphthyl
- b) pyridyl which may be fused by its (b) or (c) side to benzene
- c) pyridyl-N-oxide or pyrazinyl-N-oxide
- d) pyrimidinyl
- e) pyrazinyl
- f) 3- or 4-cinnolynyl or 2-quinoxalinyl, and
- g) a five membered heteroaromatic ring comprising oxygen, sulphur or nitrogen as heteroatom(s) which ring may be fused to a benzene ring or may comprise nitrogen as an additional heteroatom; R is cyano, formyl, CX₁X₂X₃, a ketone forming group, a carboxyl group which may be in the form of the free acid or in ester or salt form, a thiocarboxyl group which may be in the form of the free acid or in ester form, a carbamoyl group or a mono- or di- substituted carbamoyl group, hydroxyC₁₋₈alkyl, hydroxybenzyl, -CH=NOM, -CH=NOC₁₋₈alkyl, the group -CH₂-O-C(O)- and bridges adjacent carbon atoms in ring A, or a ring C

 Y_1 , Y_2 and Y_3 are attached to carbon atoms and are independently hydrogen, halogen, hydroxy, C_{1-8} -alkyl, C_{2-8} alkenyl, C_{2-8} alkenyl, C_{2-8} alkenyl, C_{2-8} alkenyl, C_{1-8} alkylsulfonyl, C_{1-8} alkylsulfonyl, C_{1-8} alkylsulfinyl, di(C_{1-8} alkyl)carbamoyloxy, C_{1-8} alkylthio, C_{2-8} alkenylthio or C_{2-8} alkynylthio each of which may in turn be substituted by 1 to 6 halogen atoms; di(C_{1-8} alkoxy)methyl, conjugated C_{1-8} alkoxy, hydroxy C_{1-8} alkyl, carboxyl, C_{2-8} acyl, C_{2-8} acyl, C_{2-8} acyloxy, C_{2-8} acyloxy, C_{2-8} acyloxy, C_{1-8} alkyl, tri(C_{1-8} alkyl)silyloxy, tri(C_{1-8} alkyl)silyl, cyano, nitro, amino or substituted amino, aminosulfonyl; C_{3-8} cycloalkyl, aryl, aryl C_{1-8} alkyl, aryl C_{2-8} alkenyl, aryl C_{2-8} alkynyl, C_{1-8} aryloxy, aryl C_{1-8} alkoxy, arylsulfonyl, arylsulfinyl, arylthio or aryl C_{1-8} alkylthio, each of which may be substituted by one to three substituents selected from halogen, C_{1-8} alkyl, C_{1-8} alkoxy, C_{1-8} alkoxy, nitro, cyano, C_{1-8} alkylthio, C_{2-8} acyl, amino or substituted amino; a group -C(O)-R' wherein R' is hydrogen, C_{1-8} alkyl, or C_{1-8} alkoxy; or

Y₁ and R taken together on adjacent carbon atoms form a bridge having the formula -C(S)-O-, -C(O)-O-E- or -C(O)-N(R₂)-E- wherein E is a direct bond or a 1 to 3 membered linking group with elements selected from methylene, substituted methylene, -N(R₂)- and oxygen; or

 Y_1 and Y_2 taken together on adjacent carbon atoms form a 3- to 5-membered bridge comprised of elements selected from methylene, substituted methylene, -CH=, -C(R₄)=, -NH-, oxygen and -S(O)n-; each of W₁, W₂, W₃, W₄ and W₅ is independently CH, CR₃ or nitrogen;

We is NH, oxygen, sulfur, -CR4=, -CH= or -C(O)-;

Z is a 2- or 3-membered bridge comprised of elements selected from methylene, substituted methylene, -CH=, -C(R_4)=, -C(O)-, -NH-, -N=, oxygen and -S(O)n-;

 R_1 and R_3 each is independently hydrogen, halogen, C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{1-8} alkoxy, C_{2-8} alkenyloxy, C_{2-8} alkynyloxy, C_{1-8} alkylthio, C_{2-8} alkenylthio or C_{2-8} alkynylthio, each of which may in turn be substituted by 1 to 6 halogen atoms; C_{3-8} cycloalkyl, a 5- or 6-membered heterocyclo C_{1-8} alkoxy, aryl C_{1-8} alkoxy or aryl C_{1-8} alkylthio each of which may be substituted by 1 to 3 substituents selected from halogen, C_{1-8} alkyl, C_{1-8} haloalkyl, C_{1-8} alkoxy, C_{1-8} haloalkoxy, nitro, cyano, C_{1-8} alkylthio, C_{2-8} -acyl, amino or substituted amino; aminoxy, substituted aminoxy; iminoxy; substituted iminoxy; amido; substituted amido; C_{1-8} alkylsulfonylmethyl; cyano; nitro; or $-C(O)-Y_4$, wherein Y_4 is hydrogen, C_{1-8} alkyl, C_{1-8} alkoxy, hydroxy or unsubstituted or substituted phenyl;

 R_2 is hydrogen, C_{1-8} alkyl, C_{1-8} haloalkyl, C_{1-8} alkoxyalkyl, C_{1-8} alkoxy, aryl C_{1-8} alkoxy, unsubstituted or substituted aryl C_{1-8} alkyl;

R₄ is as defined for Y₁ except for hydrogen;

X and Y each is independently hydrogen, hydroxy, halogen, cyano, C_{1_8} alkyl, C_{1_8} alkoxy, C_{1_8} alkoxy, C_{1_8} alkoxycarbonyl, C_{1_8} alkoxycarbonyloxy, hydroxy C_{1_8} alkyl, C_{1_8} alkyl, C_{2_8} acyl, C_{2_8} acyl, C_{2_8} acyloxy, carbamoyl, carbamoyloxy, C_{1_8} alkylsulfinyl, C_{1_8} alkylsulfinyl or C_{1_8} alkylsulfonyloxy; aryl, aryloxy, aryl C_{1_8} alkylsulfonyloxy, each of which may in turn be substituted by 1 to 3 substituents selected from halogen, C_{1_8} alkyl, C_{1_8} alkoxy, C_{1_8} alkylthio, C_{2_8} acyl; amino, substituted amino or together represent =0, =\$. =NH, =NOR₁₂ or = C_{1_3} R₁₄; or

X and R together may form a bridge having the formula -C(O)-O-, -C(O)-S or -C(O)-NR₂- wherein the carbonyl is attached to A;

P is 0, 1 or 2;

5

10

15

20

25

30

35

40

45

50

55

 X_1 , X_2 and X_3 are independently hydrogen, hydroxy, C_{1-8} alkoxy, C_{1-8} alkylthio, hydroxy C_{1-8} alkyl or hydroxybenzyl whereby at least one of X_1 , X_2 and X_3 is other than hydrogen; or

 X_3 is hydrogen and X_1 and X_2 together form a 4- or 5-membered bridge comprising elements selected from $-O(CH_2)_n$, $-O_1$, $-OC(O)(CH_2)_mO_1$ and $-S(CH_2)_n$, S_1 ;

R₁₂ is hydrogen or C₁₋₈alkyl;

R₁₃ and R₁₄, are independently hydrogen, C₁₋₈alkyl or halogen;

m is 1 or 2;

n is 0, 1 or 2; and

n' is 2 or 3:

with the proviso that when R is carboxyl in free ester or salt form and X and Y together are =O one of rings A and B contains a hetero atom.

2. A compound of formula (I) according to Claim 1 wherein

R is a carboxyl group which may be in the form of the free acid or in ester or salt form, a carbamoyl

group or a mono- or di-substituted carbamoyl group; or

X and R together form a bridge having the formula -C(O)-O-, wherein the carbonyl is attached to A; and Y_1 , Y_2 and Y_3 are attached to carbon atoms and are independently hydrogen, C_{1-8} alkyl, C_{1-8} alkoxy, halogen, C_{1-8} alkylthio, arylthio or aryl C_{1-8} alkoxy whereby the aryl is optionally substituted by a halogen, C_{2-8} -alkenyloxy or C_{2-8} allynyloxy.

3. A compound of formula (I) according to Claims 1 to 2 wherein

X and Y each is independently hydrogen, hydroxy, cyano, C_{1-8} alkoxy, C_{2-8} acyloxy, halogen, C_{1-8} alkylthio, C_{1-4} alkoxycarbonyloxy, aryl or arylthio optionally substituted by one or more halogen, C_{1-4} alkoxy or C_{1-4} haloalkoxy or together =0 or =NH; and

 R_1 and R_3 each is independently halogen, C_{1-8} alkoxy, C_{1-8} alkyl, C_{1-8} haloalkyl, C_{1-8} haloalkoxy, aryloxy or aryl C_{1-8} alkoxy whereby the aryl is optionally substituted by halogen or C_{1-4} alkyl, C_{2-8} alkynyloxy or C_{2-8} alkenyloxy.

- 4. A compound of formula (I) according to Claims 1 to 3 wherein A is pyridyl, phenyl, pyridyl-N-oxide or thienyl.
- 5. A compound of formula (I) according to Claims 1-4 wherein

W₁ and W₄ are N;

W2 is N or CH; and

W₃ is CR₃.

5

10

15

20

25

30

35

50

55

6. A compound of formula (I) according to Claim 1 wherein

ring A is phenyl or pyridyl;

R is a carboxyl group in the form of a free acid or salt; carbamoyl; COOR₅" wherein R₅" is C_{1_5}salkyl or C_{2-5} alkenyl; or CONR₇"R₈" wherein

 R_7 " is C_{1-12} alkyl, amino, C_{1-4} alkylamino, anilino, haloanilino, benzyl, halobenzyl, C_{1-4} alkylbenzyl, C_{1-4} alkoxybenzyl, phenyl halophenyl, C_{1-4} alkylphenyl or C_{1-4} alkoxybenzyl;

R₈" is hydrogen or C₁₋₄alkyl;

Y₁, Y₂ and Y₃ are independently hydrogen or halogen

W₁ and W₄ are N;

W₂ is CH;

W₃ is CR₃ wherein R₃ is C₁₋₅alkoxy;

 R_1 is $C_{1-\delta}$ alkoxy;

X is hydroxyl or C₁₋₄alkoxycarbonyloxy or taken with Y is =0;

Y is hydrogen or taken with Y is =0; or

X and R together form a bridge having the formula -C(O)O- wherein the carbonyl is attached to A, and Y is hydrogen or C_{2-8} acyloxy.

- A herbicidal composition comprising an herbicidally effective amount of a compound of formula (I) according to Claims 1-6.
- 8. A method for combatting weeds which comprises applying thereto or to a locus thereof an herbicidally effective amount of a compound of formula (I) according to Claims 1-6.
 - 9. A process for preparing a compound of formula (I) according to Claim 1 comprising a) when X and R combine to form a bridging group as defined in claim 1 and Y is hydrogen, cyano, arylthio, arylsulfinyl or arylsulfonyl, reacting a compound of formula II

wherein ring A, Y₁, Y₂ and Y₃ are as defined in claim 1, Y' represents hydrogen, cyano, aryithio, aryi-

sulfinyl or arylsulfonyl and Z_1 represents oxygen, sulfur or NR_2 wherein R_2 is as defined in claim 1 with a compound of formula III

$$R_{2i} \leftarrow \begin{pmatrix} \omega_i & R_i \\ \beta & \omega_z \\ \omega_i = \omega_3 \end{pmatrix}$$
 (III)

wherein W_1 , W_2 , W_3 , W_4 and R_1 are as defined in claim 1 and R_{21} represents methylsulfonyl or halogen to obtain the corresponding compound of formula Ip

15
$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c}$$

b) treating a compound of formula Ip wherein Y' represents cyano or arylsulfonyl and Z_1 represents oxygen and the other symbols are as defined in claim 1:

(i) by hydrolysis to give a corresponding compound of formula I wherein R and X form a bridge and Y is hydroxy or a compound of formula I wherein X and Y together form =0;

(ii) with an amino to give a corresponding compound of formula I wherein R is an optionally substituted carbamoyl group and X and Y together form =0;

(iii) with a group

MOR₂

wherein M is an alkali metal and R_{22} is hydrogen or C_{1-8} alkyl, to give a corresponding compound wherein R and X form a bridge and Y is hydroxy or C_{1-8} alkoxy;

c) hydrolyzing a compound of formula Ip wherein Y' represents hydrogen, Z₁ represents oxygen and the other symbols are as defined in claim 1 to give a compound of formula I wherein R is a carboxyl group optionally in salt form, X is hydrogen and Y is hydroxy;

d) ring opening a compound of formula Ip wherein Y' represents hydroxy, Z_1 represents oxygen and the other symbols are as defined in claim 1 to give a compound of formula I wherein R is a carboxyl group optionally in salt form and X and Y together are =0

e) esterifying a compound of formula I wherein R is a carboxyl group optionally in salt form and X and Y are =0 and the other symbols are as defined in claim 1 to give the corresponding compound wherein R is a carboxyl group in ester form;

f) halogenating a compound of formula ip wherein Y' represents hydroxy, Z_1 is as defined in part a) and the other symbols are as defined in claim 1 to give a compound of formula I wherein X and R together form a bridging group and Y' is halogen;

g) reacting a compound of formula Ip wherein Z_1 is oxygen, Y' is halogen and the other symbols are as defined in claim 1 with a group R_2NH_2 and a group HOR_{23} wherein R_{23} represents C_{1_8} alkyl, C_{2_8} acylor aryl and R_2 is as defined in claim 1 to give the corresponding compound wherein Z_1 is NR_2 and Y' is C_{1_8} alkoxy, aryloxy or C_{2_8} acyloxy;

h) oxidizing a compound of formula p wherein Y' represents hydrogen, Z_1 is as defined in part a) and the other symbols are as defined in claim 1 to give the corresponding compound wherein Y' represents hydroxy;

i) reacting a compound of formula IV

55

5

10

25

30

35

40

45

$$\begin{array}{c}
Y_1 \\
Y_2 \\
Y_3
\end{array}$$

$$\begin{array}{c}
R_{24} \\
\end{array}$$
(IV)

with a compound of formula V

10

5

$$\bigvee_{\mathbf{W}_{\Delta}}^{\mathbf{W}_{1}} \underbrace{\bigvee_{\mathbf{W}_{\Delta}}^{\mathbf{R}_{1}}}_{\mathbf{W}_{3}}$$
 (V)

to produce a compound of formula Iq

20

15

25

wherein ring A, R, R₁, W₁, W₂, W₃, W₄, Y₁, Y₂ and Y₃ are as defined in claim 1 and X" and Y" are hydrogen and R_{24} is C_{1-8} alkyl,

30

j) mono- or di-halogenating a compound of formula Iq wherein X" and Y" are hydrogen and the other symbols are as defined in part i) to produce the corresponding compound of formula Iq wherein one or both of X" and Y" are halogen;

35

k) oxidizing a compound of formula Iq wherein X" and Y" are both hydrogen or X" is halogen and Y" is hydrogen and the other symbols are as defined in claim 1 to produce the corresponding compound wherein X" and Y" together represent =O or one represents hydrogen and the other represents hydroxy; I) alkylating a compound of formula Iq wherein X" represents hydrogen and Y" represents hydrogen and the other symbols are as defined in claim 1 to produce the corresponding compound wherein X" represents C₁₋₈alkyl and Y" represents hydrogen;

40

m) introducing a C_{1-8} alkoxy or C_{1-8} alkylthio group into a compound of formula Iq wherein X" represents halogen, Y" represents hydrogen and the other symbols are as defined in claim 1 to produce the corresponding compound wherein X" represents C_{1-8} alkoxy or C_{1-8} alkylthio and Y" represents hydrogen; n) acylating a compound of formula Iq wherein X" represents hydroxy, Y represents hydrogen and the other symbols are as defined in claim 1 to produce the corresponding compound wherein X" represents acyloxy and Y" represents hydrogen;

45

o) reacting a compound of formula !p wherein Z₁ is oxygen, Y' is hydrogen and the other symbols are as defined in claim 1 with a group R₇NH₂ wherein R₇ is (a) hydrogen, halogen; (b) alkyl, alkenyl, alkynyl alkoxy, alkoxyalkoxy, alkenyloxy, alkynyloxy, alkylS(O)_p, alkenylS(O)_p or alkynylS(O)_p, alkylS(O)_p, acyloxylsylS(O)_p, acyloxylsylS(O)_p, acyloxylsylS(O)_p, aralkylS(O)_p, aralkylS(O)_p, aralkylS(O)_p, aralkylS(O)_p, aralkylS(O)_p, alkylS(O)_p, al

C(O)Y4', wherein Y4' is hydrogen, lower alkyl, lower alkoxy or hydroxy and n"' is 0, 1, 2 or 3 and p is 0,

50

1 or 2 and R_4 ' is as defined for Y_1 ; to give a compound of formula I wherein R is monosubstituted carbamoyl, X is hydrogen and Y is hydroxy;

- p) sulfonylating, carbamoylating, acylating or carbalkoxylating a compound of formula Ip wherein Z_1 is oxygen, Y' is hydroxy and the other symbols are as defined in claim 1 to produce the corresponding compound of formula I wherein R and X form a -C(O)-O- bridge and Y represents sulfonyloxy, carbamoyloxy, C_{2-8} acyloxy or C_{1-8} alkoxycarbonyloxy;
- q) reacting a compound of formula Ip wherein Z_1 is oxygen, Y' is halogen and the other symbols are as defined in claim 1 with a group R_7R_8NH wherein R_7 is as defined in part o) and R_8 is as defined for R_7 to give a compound of formula I wherein R is disubstituted carbamoyl, and X and Z together represent =0:

and recovering any compound wherein R is a carboxyl or thiocarboxyl group in free form or in ester form and any compound wherein R is carboxyl in free form or in salt form.