组合数学例题讲解

Mobyw

版本:1.0

更新:2022年11月30日

本文为组合数学各章节的例题,由于部分答案为个人编撰,难免会出现错误,请保证使用 GitHub仓库 所发布的最新版本. 如遇问题可在 GitHub 上发布 Issue.

- 1 排列、组合及二项式定理
- 2 容斥原理

Exercise 1

求方程:

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 13 \\ 3 \le x_1 \le 6, 2 \le x_2 \le 6, x_3 \le 2 \end{cases}$$

正整数解的个数.

Solution 1

首先进行变量代换:

$$x'_1 = x_1 - 3, x'_2 = x_2 - 2, x'_3 = x_3 - 1, x'_4 = x_4 - 1$$

则方程变为:

$$\begin{cases} x_1' + x_2' + x_3' + x_4' = 6 \\ 0 \le x_1' \le 3, 0 \le x_2' \le 4, 0 \le x_3' \le 1, x_4' \ge 0 \end{cases}$$

等价为求集合 S_0 的 6-组合数,其中 S_0 为:

$$S_0 = \left\{ 3 \cdot x_1', 4 \cdot x_2', 1 \cdot x_3', \infty \cdot x_4' \right\}$$

用 A_1 表示 S 中至少含有 4 个 x_1' ; A_2 表示 S 中至少含有 5 个 x_2' ; A_3 表示 S 中至少含有 2 个 x_3' . 其中 S 为:

$$S = \left\{ \infty \cdot x_1', \infty \cdot x_2', \infty \cdot x_3', \infty \cdot x_4' \right\}$$

根据容斥原理,所求的6-组合数为:

$$\begin{aligned} & \left| \overline{A}_1 \cap \overline{A}_2 \cap \overline{A}_3 \right| \\ = & |S| - \sum_{i=1}^3 |A_i| + \sum_{i \neq j} |A_i \cap A_j| - |A_1 \cap A_2 \cap A_3| \\ = & F(4,6) - (F(4,2) + F(4,1) + F(4,4)) + F(4,0) - 0 \\ = & 84 - (10 + 4 + 35) + 1 \\ = & 36 \end{aligned}$$

故原方程的正整数解个数为 36.

Exercise 2

奔赴抗疫,全国 4 个片区共有 68 个医疗队,其中西南片区有 10 个,中部片区有 18 个,北方片区有 18 个,东部片区有 22 个. 假定同一片区的各个医疗队不加以区别,现在要从中选取 27 个医疗队入围. 考虑到不同片区的特殊情况,要求西南片区至少入围 4 个医疗队,北方片区至少入围 7 个医疗队,其他片区至少各入围 2 个医疗队,问理论上有多少种不同的选取方案?

Solution 2

用 x_1, x_2, x_3, x_4 表示四个片区的选取数目,则有:

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 27 \\ 4 \le x_1 \le 10, 2 \le x_2 \le 18, 7 \le x_3 \le 18, 2 \le x_4 \le 22 \end{cases}$$

3 鸽笼原理与 Ramsey 定理

Exercise 3

证明 11 个人中必定有 4 个人彼此相认或 3 个人彼此不相识.

Solution 3

在这 11 个人中任意挑选一个人 p,则剩下的 10 个人可以分成两个集合 F 和 S,其中 F 表示与 p 相识的人的集合; S 表示与 p 不相识的人的集合.

如果 S 中有 4 个及以上人,则这些人可能彼此相识或者至少有两个人彼此不相识. 第一种情况中有 4 个人彼此相识,命题成立;第二种情况中有两人彼此不相识,则这两个人也与 p 不相识,于是有 3 个人彼此不相识,命题成立.

如果在S中最多有3个人,则F中至少有7个人.

在 F 的 7 个人中任意挑选一个人 q,则剩下的 6 个人可以分成两个集合 G 和 T,其中 G 表示与 q 相识的人的集合; T 表示与 q 不相识的人的集合. 由鸽笼原理知,G 和 T 至少有一个有 3 个及以上人.

如果 T 中有 3 个及以上人,则这些人可能彼此相识或者至少有两个人彼此不相识. 第一种情况中有 3 个人彼此相识,同时也与 p 相识,于是有 4 个人彼此相识,命题成立;第二种情况中有两人彼此不相识,则这两个人也与 q 不相识,于是有 3 个人彼此不相识,命题成立.

如果 G 中有 3 个及以上人,则这些人可能彼此不相识或者至少有两个人彼此相识. 第一种情况中有 3 个人彼此不相识,命题成立;第二种情况中有两人彼此相识,则这两个人也与 q 和 p 相识,于是有 4 个人彼此相识,命题成立.

Exercise 4

证明 R(3,3) < 7.

Solution 4

根据公式:

$$R(a,b) \le R(a-1,b) + R(a,b-1)$$

$$R(a,b) = R(b,a)$$

$$R(a,2) = a$$

可得:

$$R(3,3) \le R(2,3) + R(3,2) = 2R(3,2) = 2 \cdot 3 = 6$$

 $R(3,3) \le 6$
 $R(3,3) < 7$

4 母函数

Exercise 5

求方程:

$$\begin{cases} x_1 + 3x_2 + x_3 + x_4 = 160 \\ 3 \le x_2 \le 10, x_3 \le 3 \end{cases}$$

正整数解的个数.

Solution 5

首先进行变量代换:

$$x'_1 = x_1 - 1, x'_2 = x_2 - 3, x'_3 = x_3 - 1, x'_4 = x_4 - 1$$

则方程变为:

$$\begin{cases} x_1' + 3x_2' + x_3' + x_4' = 148 \\ x_1' \ge 0, 0 \le x_2' \le 7, 0 \le x_3' \le 2, x_4' \ge 0 \end{cases}$$

其母函数为:

$$f(x) = (1 + x + x^{2} + \cdots)^{2} (1 + x^{3} + x^{6} + \cdots + x^{21}) (1 + x + x^{2})$$

$$= \frac{1}{(1 - x)^{2}} \cdot \frac{1 - x^{24}}{1 - x^{3}} \cdot \frac{1 - x^{3}}{1 - x}$$

$$= \frac{1 - x^{24}}{(1 - x)^{3}}$$

$$= \left(1 - x^{24}\right) \cdot \sum_{k=0}^{\infty} \binom{2 + k}{2} x^{k}$$

其中 x 系数是 148 的对应 k = 148 和 k = 148 - 24 = 124 两种取值:

$$a_{148} = \begin{pmatrix} 2+148 \\ 2 \end{pmatrix} - \begin{pmatrix} 2+124 \\ 2 \end{pmatrix}$$
$$= 3300$$

故原方程的正整数解个数为 3300.

Exercise 6

求方程:

$$\begin{cases} x_1 + x_2 + 4x_3 + x_4 = 160 \\ 2 \le x_3 \le 10, x_4 \le 3 \end{cases}$$

正整数解的个数.

Exercise 7

正偶数 $k_1, k_2, ..., k_n$ 满足 $k_i \neq k_j, i \neq j$. 写出求将正整数 r 分解为 $k_1, k_2, ..., k_n$ 的和的方法数的算法,要求 k_i 最多可被选中三次.

Solution 7

Solution.

Exercise 8

求不包含 3,5,7,出现偶数次 1,2,至少出现两次 4,8 的 r 位十进制数的个数.

Solution 8

Solution.

5 递归关系

Exercise 9

求解递归关系:

$$\begin{cases} a_n - 2a_{n-1} - 3a_{n-2} = 2 \cdot 3^n \\ a_0 = 1, a_1 = 2 \end{cases}$$

Solution 9

对应的齐次关系的特征方程为:

$$x^2 - 2x - 3 = 0$$

齐次方程的根为:

$$p_1 = -1, p_2 = 3$$

故通解为:

$$a_n^* = c_1 p_1^n + c_2 p_2^n = c_1 \cdot (-1)^n + c_2 \cdot 3^n$$

又有 $f(n) = 3^n$,且 3 是递归关系式的特征根,故设特解为:

$$\overline{a}_n = An \cdot 3^n$$

带入原递归关系得:

$$An \cdot 3^{n} - 2A(n-1) \cdot 3^{n-1} - 3A(n-2) \cdot 3^{n-2} = 2 \cdot 3^{n}$$
$$A = \frac{3}{2}$$

故通解为:

$$a_n = a_n^* + \overline{a}_n = c_1 \cdot (-1)^n + c_2 \cdot 3^n + \frac{3}{2}n \cdot 3^n$$

由初始条件得:

$$\begin{cases} c_1 + c_2 + 0 = 1 \\ -c_1 + 3c_2 + \frac{9}{2} = 2 \end{cases}$$

解得:

$$c_1 = \frac{11}{8}, c_2 = -\frac{3}{8}$$

故原递归关系的解为:

$$a_n = \frac{11}{8} \cdot (-1)^n + \left(\frac{3}{2}n - \frac{3}{8}\right) \cdot 3^n$$

Exercise 10

求解递归关系:

$$\begin{cases} a_n = 3a_{n-1} + 4a_{n-2} + 2 \cdot 4^n \\ a_0 = 1, a_1 = 1 \end{cases}$$

Exercise 11

证明
$$S_2(n, n-1) = \frac{n(n-1)}{2}$$
.

Solution 11

S2(n, n-1) 表示 n 个不同的球放入 n-1 个相同的盒子且盒子不空的方式数.

等价于首先从n个球中取出 2 个球出来放入某个盒子中,有 $\binom{n}{2}$ 种取法,然后把剩下的n-2个球放入n-2个盒子中,每个盒子中放一个球,有 1 种放法.

由乘法原理得:

$$S_2(n, n-1) = \binom{n}{2} \cdot 1 = \frac{n(n-1)}{2}$$