

Simulación

©DIEECS-Universidad de Oviedo

1

Simulación, Modelado y Compatibilidad Electromagnética de Sistemas Eléctricos y Electrónicos de Potencia

Universidad de Oviedo

Visión general del proceso de Diseño Asistido por Computador (CAE)

2

Simulación

©DIEECS-Universidad de Oviedo

3

Simulación, Modelado y Compatibilidad Electromagnética de Sistemas Eléctricos y Electrónicos de Potencia

Universidad de Oviedo

ÍNDICE DE LA PRESENTACIÓN

- 1.- La Simulación en el Proceso de Diseño
- 2.- El Programa de Simulación y su Entorno
- 3.- El Proceso de Simulación
- 4.- Descripción del Circuito
- 5.- Análisis de los Resultados de Simulación
- 6.- Especificación de la Simulación: Tipos de Análisis Posibles
- 7.- Ejecución de la Simulación: Opciones
- 8.- Librerías de Elementos y Atributos
- 9.- Aspectos prácticos
- 10.- Simulación de Sistemas de Potencia

1.- La Simulación en el Diseño Electrónico

Simulación ©DIEECS-Universidad de Oviedo 5

Simulación, Modelado y Compatibilidad Electromagnética de Sistemas Eléctricos y Electrónicos de Potencia

ÍNDICE DE LA PRESENTACIÓN

- 1.- La Simulación en el Proceso de Diseño
- 2.- El Programa de Simulación y su Entorno
- 3.- El Proceso de Simulación
- 4.- Descripción del Circuito
- 5.- Análisis de los Resultados de Simulación
- 6.- Especificación de la Simulación: Tipos de Análisis Posibles
- 7.- Ejecución de la Simulación: Opciones
- 8.- Librerías de Elementos y Atributos
- 9.- Aspectos prácticos
- 10.- Simulación de Sistemas de Potencia

2.-El Programa de Simulación y su Entorno

OrCAD Release 9

OrCAD Pspice A/D Simulación Mixta

- Editor de Estímulos
- Editor de Modelos
- Optimización
 - Post-procesado

OrCAD Capture
Captura de Esquemas

OrCAD Express
Síntesis y Simulación
PLDs y FPGAs

OrCAD Layout Diseño de Placas

Simulación

©DIEECS-Universidad de Oviedo

7

Simulación, Modelado y Compatibilidad Electromagnética de Sistemas Eléctricos y Electrónicos de Potencia

Universidad de Oviedo

El Núcleo de la Herramienta: PSPICE

SPICE:

Simulation Program with Integrated Circuit Emphasis Programa en Fortran desarrollado en Berkeley (Universidad de California) en los años 70

SPICE2 (versión mejorada del anterior)

PSPICE:

Versión de SPICE para PC de MicroSim, (Enero 1984) Versión 3.0 (1987) re-escrito en C Hasta versión 6 entrada con fichero de texto Versión 9: integración con OrCAD

Otros "hijos" de Spice: Hspice, IsSpice,...

ÍNDICE DE LA PRESENTACIÓN

- 1.- La Simulación en el Proceso de Diseño
- 2.- El Programa de Simulación y su Entorno
- 3. El Proceso de Simulación
- 4.- Descripción del Circuito
- 5.- Análisis de los Resultados de Simulación
- 6.- Especificación de la Simulación: Tipos de Análisis Posibles
- 7.- Ejecución de la Simulación: Opciones
- 8.- Librerías de Elementos y Atributos
- 9.- Aspectos prácticos
- 10.- Simulación de Sistemas de Potencia

Simulación

©DIEECS-Universidad de Oviedo

9

Simulación, Modelado y Compatibilidad Electromagnética de Sistemas Eléctricos y Electrónicos de Potencia

Universidad de Oviedo

3.- El Proceso de Simulación: tres pasos

Paso 1: Descripción del Circuito (Capture)

- · Elementos del Circuito
 - Valores
 - · Modelos
 - · Atributos de los modelos
- · Diseños Jerárquicos
- Subcircuitos
- Conexiones
- Pseudocomponentes
- Texto

LIBRFRÍ*AS*

DE SÍMBOLOS

(.OLB)

Simulación

©DIEECS-Universidad de Oviedo

11

Simulación, Modelado y Compatibilidad Electromagnética de Sistemas Eléctricos y Electrónicos de Potencia

Paso 2: Simulación (PSpice A/D)

- · Tipo de Análisis para el Circuito
 - · Time Domain (Transient)-> Transitorio / Fourier
 - · DC Sweep -> Continua / Barrido en Continua
 - · AC Sweep/Noise -> Barrido en Alterna / Ruido
 - · Bias Point -> Punto de funcionamiento
- ·Múltiples Simulaciones / Avanzadas
 - Monte Carlo / Worst Case -> Montecarlo/Caso peor
 - Parametric Sweep -> Paramétrico
 - · Temperature -> Temperatura
- ·Opciones de Simulación / Control
 - Tolerancia en cálculos
 - Número de iteraciones máximas
 - · Condiciones Iniciales en nodos

Paso 3: Análisis de Resultados (PSpice A/D y .out)

- · Fichero de Resultados de Texto (.out)
 - · Resultados "no gráficos" de simulaciones
 - ·> Punto de funcionamiento
- Resultados Gráficos: PspiceA/D-Probe (.dat/.csd)
 - ·> Barrido en DC
 - ·> Barrido en AC
 - ·> Transitorio
 - · Análisis de Formas de Onda
 - · Cálculo de Valores
 - · Análisis Post-Simulación: Funciones/Macros

Simulación

©DIEECS-Universidad de Oviedo

13

Simulación, Modelado y Compatibilidad Electromagnética de Sistemas Eléctricos y Electrónicos de Potencia

Universidad de Oviedo

¿Qué necesita PSpice para simular?

- Elementos del Circuito y sus Conexiones
- Tipo de Análisis que se quiere realizar
- Modelos de Comportamiento de los Elementos
- Definición de Estímulos en el circuito
- Opciones de simulación

¿Dónde lo va a buscar?:

- A ficheros relacionados con el circuito (.cir, .sim) que son de texto, y contienen referencias a otros ficheros, de texto, que PSpice necesita leer.

i Conocidas las sintáxis de esos ficheros, sólo se precisaría un editor de texto!

Entorno de trabajo (OrCAD 9): Project Manager

- Se lanza ejecutando Capture.exe
- Contiene referencias a todos los recursos de un proyecto (fichero .opj)
 - Carpetas de Esquemas
 - Páginas de Esquemas
 - Librerías de Elementos
 - Elementos
 - Ficheros VHDL
 - Ficheros de Salida

.OPJ es ASCII y apunta a esos otros ficheros

Simulación

©DIEECS-Universidad de Oviedo

15

Simulación, Modelado y Compatibilidad Electromagnética de Sistemas Eléctricos y Electrónicos de Potencia

Universidad de Oviedo

Creación de un nuevo proyecto

1.- Ejecutar Capture.exe

Ventana de registro de sesión (Session log)

2.- File -> New -> Project

Tipo: Analog or Mixed Signal Wizard
Asignar el nombre del proyecto y el path (camino)
Agregar las librerías (.olb). Por defecto las de simulación
Se crea un proyecto con un diseño (.dsn), y con una
carpeta y esquema raiz (Schematic-Page1)

El gestor de proyectos (Project Manager)

(Session Log: registro de sesión Capture)

Simulación

©DIEECS-Universidad de Oviedo

17

Simulación, Modelado y Compatibilidad Electromagnética de Sistemas Eléctricos y Electrónicos de Potencia

Universidad de Oviedo

Estructura de Ficheros / Enlace de la Simulación

Ficheros más importantes

Fichero del Circuito (.cir)
Descripción de la simulación
Referencias al resto de ficheros

Generados por Capture

Fichero de Conexiones (.net) Lista de: Elementos, Valores y Conexiones

Configuración de los ficheros en Capture

Localización de Modelos, Estímulos e Inclusión:

- · Perfiles de Simulación: configuran los ficheros a usar
- · Permiten añadir, eliminar ficheros de la configuración y definir el orden de búsqueda
- "Alcance" de un fichero:
 LOCAL (Design): sólo para el diseño actual
 GLOBAL: para cualquier diseño

Acceso a Perfiles

1ª Vez: PSpice PSpice > New Simulation Profile Edición de un perfil: PSpice > Edit Simulation Settings

Simulación

©DIEECS-Universidad de Oviedo

21

Simulación, Modelado y Compatibilidad Electromagnética de Sistemas Eléctricos y Electrónicos de Potencia

Universidad de Oviedo

Búsqueda de Modelos en Librerías

PSpice -> Edit Simulation Settings -> Libraries

Existe una librería índice (configurada siempre)

NOM.LIB: no tiene modelos directamente "apunta" a todas las librerías de modelos tiene sus nombres

Se generan Ficheros índices de librerías (.ind) que no son de texto los emplea el simulador para localizar modelos más rápido

"Salidas de PSpice"

K ****

Post-Procesado Gráfico

pspice.exe (Probe)

Datos (Resultados)

(Probe)

(.dat) datos binarios

- Barrido ACBarrido DC
- (.csd) texto formato CSDF
- Transitorio

Salida de Texto (.out)

- Pto.Funcionamiento

Netlist, Comandos
Opciones, Resultados

- Ruido térmico
- Sensibilidad
- Función de Transferencia

Simulación

©DIEECS-Universidad de Oviedo

23

Simulación, Modelado y Compatibilidad Electromagnética de Sistemas Eléctricos y Electrónicos de Potencia

Universidad de Oviedo

ÍNDICE DE LA PRESENTACIÓN

- 1.- La Simulación en el Proceso de Diseño
- 2.- El Programa de Simulación y su Entorno
- 3.- El Proceso de Simulación
- 4. Descripción del Circuito
- 5.- Análisis de los Resultados de Simulación
- 6.- Especificación de la Simulación: Tipos de Análisis Posibles
- 7.- Ejecución de la Simulación: Opciones
- 8.- Librerías de Elementos y Atributos
- 9.- Aspectos prácticos
- 10.- Simulación de Sistemas de Potencia

4. - Captura de Esquemas: Circuito a simular

©DIEECS-Universidad de Oviedo

Simulación, Modelado y Compatibilidad Electromagnética

de Sistemas Eléctricos y Electrónicos de Potencia

Universidad de Oviedo

25

¿Qué tienen las páginas de un esquema?

Simulación

Componentes de un esquema: nomenclatura

©DIEECS-Universidad de Oviedo

Simulación, Modelado y Compatibilidad Electromagnética de Sistemas Eléctricos y Electrónicos de Potencia

Librerías de Símbolos (.olb)

- · Contienen los elementos (Parts)
- · Se les pueden asignar modelos para simulación (contenidos en librerías .lib)
- · Se editan desde Capture
- · Formados por:

Part Propierties (propiedades)

- -Modelo
- -Nombre
- -Referencia
- Valor
- -Otros atributos

Librerías de Símbolos <> Modelos

©DIEECS-Universidad de Oviedo

Simulación, Modelado y Compatibilidad Electromagnética de Sistemas Eléctricos y Electrónicos de Potencia

Universidad de Oviedo

29

¿Cuándo se puede simular un elemento?

Simulación

¿Cuándo se puede simular un Circuito?

- Todos los elementos (Parts) tienen modelo
- Se cumplen ciertas reglas eléctricas (ERC: Electrical Rules Check)
 - Existe nodo 0 (masa)
 - Hay camino en continua a masa desde cualquier nodo del circuito
 - · Pines conectados pertenecen a modelos
 - · Nodos conectados a 2 elementos
- · Ficheros .LIB, .INC y .STL configurados

Simulación

©DIEECS-Universidad de Oviedo

31

Simulación, Modelado y Compatibilidad Electromagnética de Sistemas Eléctricos y Electrónicos de Potencia

Universidad de Oviedo

Edición de un Circuito: Elementos (Parts)

Edición de un Circuito: otros elementos

- Situar Conexiones:

Place > Wire (Conexión simple)

Place > Bus (Conjunto homogéneo de señales)

Place > Junction (Unión entre conexiones)

Place > Bus Entry (Conexión a un bus)

- Situar otros elementos eléctricos:

Place > Net Alias (Etiqueta un nodo)

Place > Power/Ground (Masa/ Alimentación)

Place > No Connect (Indica un pin sin conexión)

Elementos para hojas múltiples y diseños jerárquicos

- Situar otros elementos no eléctricos:

Place > Title Block (Cajetín)

Place > Bookmark (Punto de referencia)

- Situar otros elementos gráficos (no eléctricos):

Place > Text, Line, Rectangle, Ellipse, Arc, Polyline, Picture

Simulación

©DIEECS-Universidad de Oviedo

33

Simulación, Modelado y Compatibilidad Electromagnética de Sistemas Eléctricos y Electrónicos de Potencia

Universidad de Oviedo

Edición de un Circuito: asignación de valores

Asignar valores funcionales a los Elementos

Edit > Propierties (o Doble click sobre el Elemento)

Ventana de Asignación / Visualización

Los valores a asignar Dependen del Elemento:

Valores del Elemento (p.e. resistencia)

Valores de Parámetros del Modelo

Valores Iniciales (Transitorios)

Referencias a otros elementos

(p.e. núcleos a bobinas acopladas)

Valores de Elementos y Parámetros (I)

Notación coma flotante (p.e. 1.2E-5)

·Se pueden emplear prefijos multiplicación:

F=f=10 ⁻¹⁵	(femto)	MIL=mil=25.4*10-6	(mil)
P=p= 10 ⁻¹²	(pico)	$K=k=10^3$	(kilo)
N=n=10 ⁻⁹	(nano)	$MEG=meg=10^6$	(mega)
U=u=10 ⁻⁶	(micro)	G=g=10 ⁹	(giga)
$M=m=10^{-3}$	(mili)	T=t=10 ¹²	(tera)

- ·No se diferencian mayúsculas y minúsculas
- •Se pueden poner unidades para documentación, no se verifican las dimensiones en la simulación (se ignoran después de números o prefijos, p.e. 10MVoltios ó 10MV)

Simulación

©DIEECS-Universidad de Oviedo

35

Simulación, Modelado y Compatibilidad Electromagnética de Sistemas Eléctricos y Electrónicos de Potencia

Universidad de Oviedo

Valores de Elementos y Parámetros (II)

Parámetros variables y fórmulas para la asignación

·Se evalúan fórmulas incluidas entre llaves: { }

p.e.: R={carga/(1-radio)} donde carga y radio son parámetros con un valor asignado mediante pseudocomponente PARAM o parámetros estándar (TIME o TEMP)

•Fórmulas con operadores aritméticos (+,-,*,/,**), funciones internas de Spice (manual de referencia) o funciones definidas por el usuario en fichero .INC

Diseños jerárquicos

Simulación ©DIEECS-Universidad de Oviedo 37

Simulación, Modelado y Compatibilidad Electromagnética de Sistemas Eléctricos y Electrónicos de Potencia

Diseño jerárquico: elementos de interconexión

Forma de conectar hojas en un diseño multi-hoja

Diseño jerárquico: tipos de diseños jerárquicos

- 1) Diseño plano (FLAT)
- 2) Diseño jerárquico simple (SIMPLE)
- 3) Diseño jerárquico complejo (COMPLEX)
- 4) Forma alternativa: uso de Subcircuitos

1. Diseño jerárquico plano (Flat)

Jerarquía

- La conexión entre hojas se realiza mediante Off-Page Connector (Conectores externos) de igual nombre
- · Todas las hojas están al mismo nivel en la jerarquía

Simulación

©DIEECS-Universidad de Oviedo

39

Simulación, Modelado y Compatibilidad Electromagnética de Sistemas Eléctricos y Electrónicos de Potencia

Universidad de Oviedo

2. Diseño jerárquico simple (Simple)

- · La conexión entre hojas se realiza:
 - · En la hoja "madre": Hier. Block (representa la sub-hoja) y Hier. Pin
 - · En la hoja "hija": Hier. Ports de igual nombre que los pines
- Cada hoja "hija" aparece UNA SÓLA VEZ en la hoja "madre"

3. Diseño jerárquico complejo (Complex)

- · La conexión entre hojas se realiza igual que en el caso simple:
 - · En la hoja "madre": Hier. Block (representa la sub-hoja) y Hier. Pin
 - · En la hoja "hija": Hier. Ports de igual nombre que los pines
- · Alguna hoja "hija" aparece VARIAS VECES en la hoja "madre"

Simulación

©DIEECS-Universidad de Oviedo

41

Simulación, Modelado y Compatibilidad Electromagnética de Sistemas Eléctricos y Electrónicos de Potencia

Cómo crear bloques jerárquicos y atributos externos

2.-Definir propiedades externas al bloque (Opcional)

Cerramos la definición del bloque jerárquico (Podríamos definir más propiedades/atributos)

Simulación

©DIEECS-Universidad de Oviedo

43

Simulación, Modelado y Compatibilidad Electromagnética de Sistemas Eléctricos y Electrónicos de Potencia

Universidad de Oviedo

3. - Situamos los pines de conexión

4. - Seleccionar bloque y descender en jerarquía (Botón derecho o View > Descend Hierarchy...)

Entramos en una nueva página donde hay tantos ports de interface como pines se hayan puesto en el bloque

5. - Editamos el esquema interno

Se puede usar la propiedad definida externamente para asignar valores internos.

Precedido del carácter "@" y entre llaves { }

6.- Guardamos y salimos a la página principal

Simulación

©DIEECS-Universidad de Oviedo

45

Simulación, Modelado y Compatibilidad Electromagnética de Sistemas Eléctricos y Electrónicos de Potencia

Universidad de Oviedo

Ejemplo de Análisis (I)

Elementos básicos

Alimentación, y fuentes (Librerías Source.slb, Sourcestm.slb)

·VDC/IDC: sólo DC

·VAC/IAC: análisis AC

VEXP/IEXP: exponencial (en t)

VPULS/IPULSE: pulsatoria

·VSIN/ISIN: senoidal

·VSTIM/ISTIM: mediante editor de estímulos

Elementos pasivos (Librería Analog)

· Resistencia: R

· Condensadores: C

Bobinas: L

Alimentación/Masa (Librerías Capstm.olb y Source.olb)

- Power
- Ground

Ejemplo de Análisis (II)

Circuito a analizar:

PSPice -> Markers -> Voltage Level

Place -> Ground -> O/Source

Simulación

©DIEECS-Universidad de Oviedo

47

Simulación, Modelado y Compatibilidad Electromagnética de Sistemas Eléctricos y Electrónicos de Potencia

Universidad de Oviedo

Ejemplo de Análisis (III)

Ejemplo: V1=2,V2=10,TD=20u,TR=1u,TF=2u,PW=3u,PER=10u

Ejemplo de Análisis (IV)

Asignación de valores

Resistencia

Condensador

Simulación

©DIEECS-Universidad de Oviedo

49

Simulación, Modelado y Compatibilidad Electromagnética de Sistemas Eléctricos y Electrónicos de Potencia

Ejemplo de Análisis (V)

Perfil de simulación y opciones de análisis mínimas:

Transitorio

Tiempo de simulación

Prontuario para creación de un diseño (I)

1.- Crear un Proyecto:

File > New > Project

Seleccionando un circuito Analog or Mixed Signal y su ubicación Se configuran las Librerías de símbolos .olb, y se pasa a Capture 2.- Tomar los elementos (parts) de las librerías y situarlos: Place > Part (Añadir librerías símbolos si es preciso)

3.- Conectar elementos: Place > Wire

Etiquetar nodos: Place > Net Alias

Comentarios: Place > Text

4.- Asignar valores: Doble click sobre el valor si es visible o sobre el componente para Editor de Propiedades (atributos del elemento)

Simulación

©DIEECS-Universidad de Oviedo

51

Simulación, Modelado y Compatibilidad Electromagnética de Sistemas Eléctricos y Electrónicos de Potencia

Universidad de Oviedo

Prontuario para creación de un diseño (II)

5.- Especificar la simulación: (perfil de simulación)

Edit > Simulation settings

- ·Tipo de Análisis
- Ficheros de Inclusión (.inc) y de Modelos (.lib)
- · Ficheros de Estímulos
- · Opciones de control del simulador
- Configuración de PROBE (datos a guardar)
- 6.- Ejecutar la Simulación:
 - · Salvar el esquema
 - · Arrancar el análisis: Pspice > Run
- 7.- Visualizar resultados:
 - Numéricos (.out): Pspice>View Output File
 - Gráficos (.dat): Pspice>View Simulation Results
 PROBE (Post-procesador gráfico)

ÍNDICE DE LA PRESENTACIÓN

- 1.- La Simulación en el Proceso de Diseño
- 2.- El Programa de Simulación y su Entorno
- 3.- El Proceso de Simulación
- 4.- Descripción del Circuito
- 5. Análisis de los Resultados de Simulación
- 6.- Especificación de la Simulación: Tipos de Análisis Posibles
- 7.- Ejecución de la Simulación: Opciones
- 8.- Librerías de Elementos y Atributos
- 9.- Aspectos prácticos
- 10.- Simulación de Sistemas de Potencia

Simulación

©DIEECS-Universidad de Oviedo

53

Simulación, Modelado y Compatibilidad Electromagnética de Sistemas Eléctricos y Electrónicos de Potencia

Universidad de Oviedo

5. - Análisis de los Resultados de Simulación

Generación de Resultados:

Numéricos (.out):

- Netlist
- Alias
- · Modelos de elementos
- · Resultados de simulación.

Bias Point
Sensitivity
Transfer Function
Noise Analysis
Fourier analysis
.PRINT y .PLOT

Gráficos (.dat ó .txt)

Pspice A/D (Probe)

· Análisis de formas de onda

Datos de un perfil de simulación

Creación de un perfil: PSpice > New Simulation Profile

• Edición de un perfil: PSpice >Edit Simulation Settings

Simulación, Modelado y Compatibilidad Electromagnética de Sistemas Eléctricos y Electrónicos de Potencia

Configuración de salida (especificación simulación)

Perfiles de Simulación configuran:

- Ficheros de la simulación, tipo de análisis a realizar y opciones (más adelante)
- Datos a guardar (Data collection)
- Configuración de Pspice A/D (Probe Window)

Acceso a Perfiles

1a Vez: PSpice PSpice > New Simulation Profile

Edición de un perfil: PSpice > Edit Simulation Settings

Post-procesador gráfico: Pspice A/D (Probe)

Simulation Settings -> Data Collection (Datos a guardar)

- Todas las tensiones, corrientes y estados (digital)
- · Todos, excepto datos internos en subcircuitos
- Sólo Sondas (Markers)
- Ninguno
- · Además, se puede guardar los datos en formato .CSD (texto)

iiEsta selección influye sobre el Tamaño del fichero!!

Simulation Settings -> Probe Window (Visualización)

- Abrir la ventana de visualización (Probe) durante, o después de la simulación
- · Al abrir a ventana de visualización, mostrar:
 - · La última visualización o
 - · Sólo las sondas (Markers)

Simulación

©DIEECS-Universidad de Oviedo

57

Simulación, Modelado y Compatibilidad Electromagnética de Sistemas Eléctricos y Electrónicos de Potencia

Universidad de Oviedo

Post-procesador gráfico: Pspice A/D (Probe)

1. - Añadir formas de onda:

- a) Con Trace -> Add Trace
- · Especificar Tensión
- · Especificar Corriente
- Especificar una expresión con tensiones y/o corrientes donde pueden intervenir funciones (de Probe) o Macros (de usuario), puede entrar también el tiempo de simulación (variable Time)
- Otras trazas: Trace -> Fourier(FFT)

Trace -> Performace.. (análisis múltiple)

b) Situando Markers (sondas) en el esquema)
Pspice -> Markers -> Tipo

Añadiendo formas de onda (II)

Especificación de Tensiones y Corrientes:

Disponibles en una ventana Visufijo ACI (nodo nodo)

 $V[sufijo\ AC]\ (nodo,nodo)$ V(1,2) $V[sufijo\ AC]\ (elemento:terminal)$ V(Q2:

V[sufijo AC] (elemento:terminal) V(Q2:B)
Vterminal[sufijo AC] (elemento) VBP(Q1)

I[sufijo AC] (elemento) I(R2)

Sufijos AC válidos (para AC sweep):

ninguno ó M:magnitud DB:magnitud en dB
G:retraso de grupo I:parte imaginaria

P:fase R:parte real

Simulación

©DIEECS-Universidad de Oviedo

59

Simulación, Modelado y Compatibilidad Electromagnética de Sistemas Eléctricos y Electrónicos de Potencia

Universidad de Oviedo

Añadiendo formas de onda (III)

Operadores y Funciones válidas:

- · Seleccionamibles desde el menú
- Aritméticas
- Trigonométricas
- Exponenciales y logarítmicas
- Potencias
- Diferenciales e integrales:

d(Y): derivada de Y respecto a la var. del eje x

s(Y): integral de Y por dif.var. eje x

AVG(Y): valor medio de Y resp.var. eje x

RMS(Y): valor eficaz de Y resp.var. eje x

Post-procesador gráfico: PSpice A/D (Probe)

2.- Modificar ejes x/y, rangos, escalas:

Plot -> Axis Settings

- ·Ajustes eje x: cambiar rango, escala lineal o log, datos usados, variable del eje x, FFT, variación de parámetros, rejillas
- Ajustes eje y: rango, escala, varios ejes y escalas diferentes

Plot -> Add/Delete Y Axis: Agrega/borra eje Y Plot -> Add/Delete Plot: Agrega/borra gráfica Plot -> Label: Agrega elementos gráficos para documentación: texto, lineas, flechas, etc

Simulación ©DIEECS-Universidad de Oviedo 61

Simulación, Modelado y Compatibilidad Electromagnética de Sistemas Eléctricos y Electrónicos de Potencia

Post-procesador gráfico: PROBE

3. - Visualización, medida y documentación:

- View: zooms, interno, externo, etc
- Trace -> Cursor: situa 2 cursores que permiten medir, y buscar puntos significativos (max,min, etc)
- Plot -> Label: situar etiquetas, marcar puntos, señalar, etc
- Edit: copiar, cortar y pegar "trazas"
- Window -> Copy to Clipboard: copia al portapapeles
- Window -> Display Control: guarda/recupera la configuración de la visualización

Post-procesador gráfico: Pspice A/D (Probe)

4. - Configuración: colores, presentación

• Editando fichero PSPICE.INI en carpeta de windows normalmente. Se puede cambiar el color de fondo, de las trazas, etc.

POR DEFECTO:

[PROBE DISPLAY COLORS]
NUMTRACECOLORS=6
BACKGROUND=BLACK
FOREGROUND=WHITE
TRACE_1=BRIGHTGREEN
TRACE_2=BRIGHTRED
TRACE_3=BRIGHTBLUE
TRACE_4=BRIGHTYELLOW
TRACE_5=BRIGHTMAGENTA
TRACE_6=BRIGHTCYAN

Para tener fondo blanco y poder incluir directamente mediante cortar/pegar en documentos, cambiar a:

BACKGROUND=BRIGHTWHITE

 Otras configuraciones, desde Pspice A/D:

Tools -> Options

FOREGROUND=BLACK

Simulación

@DIEECS-Universidad de Oviedo

63