

What you will Learn Today?

✓ IoT Based Data Monitoring System using ARM CORTEX M4 & ESP8266 —Thingspeak Cloud

What is Internet of Things

Hardware Required

SOFTWARE REQUIRED

- STM2CUBE IDE
- SALEA LOGIC ANALYZER
- Thingspeak

What is Thingspeak

Analytic IoT platform

- Collect data from sensors, "things"
- Visualize data instantly
- Has more than 60,000 users

Analyze data

 MATLAB integration allows users to run scheduled code on data coming into ThingSpeak

Act on data

 E.g. send a tweet when the temperature in your backyard reaches 32 degrees

SCHEMATIC DESIGN

//PB6->TX //PB7->RX ->ESP8266 TX //RELAY -PA5

Block Diagram

UART Parameters

- Baud Rate 115200
- Number of Data Bits (7, 8)
- Parity Bit (On, Off)
- Stop Bits (0, 1, 2)
- Flow Control (None, On, Hardware)

AT COMMANDS

AT commands used for data transmission

- AT+RST
- AT+CWJAP="WIFINAME", "Password"
- AT+CIPSTART="TCP","184.106.153.149",80
- AT+CIPSEND=49
- AT+CLOSE

Connection Details

STEPS FOR UART TRANSMIT

```
//Enable clock access to GPIOA

//SET PA2,PA3 MODE TO Alternate function Mode

//SET PA2 ,PA3 Alternative function type to UART_TX (AF07)

//CONFIGURE UART MODULE

//ENABLE CLOCK ACCESS TO UART2

//CONFIGURE BAUDRATE

//CONFIGURE TRANSFER DIRECTION

//ENABLE UART MODULE
```

Block Diagram

USART1-FUNCTIONAL MAPPING

-			AF00	AF01	AF02	AF03	AF04	AF05	AF06	AF07	-
Port		Port	SYS_AF	TIM1/TIM2	TIM3/ TIM4/ TIM5	TIM9/ TIM10/ TIM11	I2C1/I2C2/ I2C3	SPI1/I2S1S PI2/ I2S2/SPI3/ I2S3	SPI2/I28 2/ SPI3/ I2S3/SPI4/ I2S4/SPI5/ I2S5	SPI3/I2S3/ USART1/ USART2	US
		PB0		TIM1_CH2N	TIM3_CH3	2 (-	4	SPI5_SCK /I2S5_CK		
		PB1	9	TIM1_CH3N	TIM3_CH4	2 1	(2)	121	SPI5_NSS /I2S5_WS		
		PB2	6	26	- 4	24	~	-	ē	3 <u>2</u>	
		PB3	JTDO- SWO	TIM2_CH2	- B	100		SPI1_SCK/I 2S1_CK	SPI3_SCK /I2S3_CK	USART1_ RX	
		PB4	JTRST	2	TIM3_CH1	57.	(A)	SPI1_MISO	SPI3_MISO	I2S3ext_S D	
		PB5			Tilvi3_CH2	= 2	A A	SPI1 MOSI /I2S1_SD	SPI3_MOSI/		
		PB6	(.	•	TIM4_CH1	-	I2C1_SCL	a#1	i.e.	USART1_ TX	
	В	РВ7	-	-1	TIM4_CH2	= 3	I2C1_SDA	.=	:-	USART1_ RX	
	ō		X	**	- 20			*			T

FUNCTIONAL MAPPING

	١
ŀ	ı
ľ	ı

Table 9. Alternate function mapping

DocID026289 Rev 7

		AF00	AF01	AF02	AF03	AF04	AF05	AF06	AF07	AF08	AF09	AF10	AF11	AF12	AF13	AF14	AF15
Port		SYS_AF	TIM1/TIM2	TIM3/ TIM4/ TIM5	TIM9/ TIM10/ TIM11	12C1/I2C2/ I2C3	SPI1/I2S1S PI2/ I2S2/SPI3/ I2S3	SPI2/I2S2/ SPI3/ I2S3/SPI4/ I2S4/SPI5/ I2S5	SPI3/I2S3/ USART1/ USART2	USART6	12C2/ 12C3	OTG1_FS		SDIO			
	PA0		TIM2_CH1/ TIM2_ETR	TIM5_CH1		S48	•	9	USART2_ CTS			-	-	-	-	36	EVENT OUT
	PA1	9	TIM2_CH2	TIM5_CH2	40	2	SPI4_MOSI /I2S4_SD	-	USART2_ RTS	-		-	-	127	-		EVENT OUT
ĺ	PA2		TIM2_CH3	TIM5_CH3	TIM9_CH1	-	I2S2_CKIN	*	USART2_ TX	(#)		*	-	-	-		EVENT OUT
	PA3		TIM2_CH4	TIM5_CH4	TIM9_CH2		I2S2_MCK	ž.	USART2_ RX	(7)				m)	2		EVENT OUT
	PA4	300				S48	SPI1_NSS/I 2S1_WS	SPI3_NSS/I2 S3_WS	USART2_ CK			-		-	-	36	EVENT OUT
	PA5	9	TIM2_CH1/ TIM2_ETR		49	2	SPI1_SCK/I 2S1_CK	9	4	-		-	-	- 127	-		EVENT OUT
	PA6		TIM1_BKIN	TIM3_CH1			SPI1_MISO	I2S2_MCK		(#)		(-	-	SDIO_ CMD	-		EVENT OUT
Port A	PA7	z.	TIM1_CH1N	TIM3_CH2			SPI1_MOSI /I2S1_SD	*	7.	(7)	-	185		.70			EVENT OUT
Por	PA8	MCO_1	TIM1_CH1			I2C3_ SCL		340	USART1_ CK	•	*	USB_FS_ SOF		SDIO_ D1	÷	30	EVENT OUT
	PA9	4	TIM1_CH2	Heli	(#C)	I2C3_ SMBA	*	*	USART1_ TX	(4)		USB_FS_ VBUS	-	SDIO_ D2	*		EVENT OUT

ALTERNATE FUNCTIONS

Address offset: 0x20 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	AFRL	7[3:0]			AFRL	.6[3:0]			AFRI	_5[3:0]		AFRL4[3:0]					
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	AFRL	.3[3:0]			AFRL	2[3:0]			AFRI	_1[3:0]	[3:0]		AFRI				
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw		
				0	1	1	1		01)		, e			P	-		

Bits 31:0 **AFRLy:** Alternate function selection for port x bit y (y = 0..7)

These bits are written by software to configure alternate function I/Os

AFRLy selection:

0000: AF0 1000: AF8 1001: AF9 0001: AF1 0010: AF2 1010: AF10 0011: AF3 1011: AF11 0100: AF4 1100: AF12 0101: AF5 1101: AF13 0110: AF6 1110: AF14 0111: AF7 1111: AF15

BAUD RATE CALCULATION

- Peripheral Clock =16000000
- BAUDRATE=9600
- BRR =((16000000+(9600/2))/9600)
- BRR= 1667
- HEX VALUE OF BRR =0X0683
- BAUDRATE=115200
- BRR = ((16000000+(115200/2))/115200)
- BRR= 139
- HEX VALUE OF BRR =0X008B

UART WRITE

```
7 void uart2_write(int ch)
8 {
9     //Make sure the transmit data register is empty
9     while(!(*USART2_SR & 0x0080)){}
1     //write to transmit data register
2     *USART2_DR =(ch&0XFF);
8 }
```

TXE: Transmit data register empty

This bit is set by hardware when the content of the TDR register has been transferred into the shift register. An interrupt is generated if the TXEIE bit =1 in the USART_CR1 register. It is cleared by a write to the USART_DR register.

0: Data is not transferred to the shift register

1: Data is transferred to the shift register)

26.6.1 Status register (USART_SR)

Address offset: 0x00

Reset value: 0x00C0 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved					CTS	LBD	TXE	TC	RXNE	IDLE	ORE	NF	FE	PE
		nese	erved			rc_w0	rc_w0	r	rc_w0	rc_w0	r	r	r	r	r

USART DATA REGISTER

Data register (USART_DR)

Address offset: 0x04

Reset value: 0xXXXX XXXX

Bits 31:9 Reserved, must be kept at reset value

Bits 8:0 DR[8:0]: Data value

Contains the Received or Transmitted data character, depending on whether it is read from or written to.

The Data register performs a double function (read and write) since it is composed of two registers, one for transmission (TDR) and one for reception (RDR)

The TDR register provides the parallel interface between the internal bus and the output shift register (see Figure 1).

The RDR register provides the parallel interface between the input shift register and the internal bus.

When transmitting with the parity enabled (PCE bit set to 1 in the USART_CR1 register), the value written in the MSB (bit 7 or bit 8 depending on the data length) has no effect because it is replaced by the parity.

When receiving with the parity enabled, the value read in the MSB bit is the received parity bit.

CONNECTION DETAILS

```
//PB6->TX->ESP8266 RX
//PB7->RX ->ESP8266 TX
//RELAY -PA5
```

HOME PAGE

CHANNEL CREATION

CREATE FIELDS

New Channel Arduino-IoT-Matlab Name Description MQ2 Field 1 V TEMP Field 2 DISTANCE Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Metadata

Help

Channels store all the data that a ThingSpeak application collects. Each channel includes eight fields that can hold any type of data, plus three fields for location data and one for status data. Once you collect data in a channel, you can use ThingSpeak apps to analyze and visualize it.

Channel Settings

- Percentage complete: Calculated based on data entered into the various fields
 of a channel. Enter the name, description, location, URL, video, and tags to
 complete your channel.
- Channel Name: Enter a unique name for the ThingSpeak channel.
- · Description: Enter a description of the ThingSpeak channel.
- Field#: Check the box to enable the field, and enter a field name. Each ThingSpeak channel can have up to 8 fields.
- Metadata: Enter information about channel data, including JSON, XML, or CSV data.
- Tags: Enter keywords that identify the channel. Separate tags with commas.
- Link to External Site: If you have a website that contains information about your ThingSpeak channel, specify the URL.
- . Show Channel Location:
 - Latitude: Specify the latitude position in decimal degrees. For example, the latitude of the city of London is 51.5072.
 - Longitude: Specify the longitude position in decimal degrees. For example, the longitude of the city of London is -0.1275.
 - o Elevation: Specify the elevation position meters. For example, the

CHANNEL CREATED

READ AND WRITE API KEYS

API KEY SETTINGS

API Keys Settings . Write API Key: Use this key to write data to a channel. If you feel your key has been compromised, click Generate New Write API Key. . Read API Keys: Use this key to allow other people to view your private channel feeds and charts. Click Generate New Read API Key to generate an additional read key for the channel. . Note: Use this field to enter information about channel read keys. For example, add notes to keep track of users with access to your channel. API Requests Write a Channel Feed https://api.thingspeak.com/update?api_key=4GPW0Q6KLJ5M0UQB&field1=0 Read a Channel Feed GET https://api.thingspeak.com/channels/1161425/feeds.json?api_key=1 Read a Channel Field GET https://api.thingspeak.com/channels/1161425/fields/1.json?api_ke Read Channel Status Updates GET https://api.thingspeak.com/channels/1161425/status.json?api_key=

DEMO

Mindset Activity

- Write Down Your Top 10 Goals.(1 Mark)
- Write Down Your Top 10 Ideas to Achieve Your Goal. (1 Mark)
- 30 Minutes for Workout (5000-7000 Steps a Day)(2 Mark).
- 15 Minutes to Meditate (2 Mark)
- 10 Minutes to Visualize of Achieving Your Goals(1)
- 10 Minutes to Focus on the Day Plan (1)

2 Hr's for Learning and Take Notes. (2 Mark)

https://www.facebook.com/groups/embeddedsystemsandiot/

THANK YOU