

Edited CT2 Question Set 3

Artificial Intelligence (SRM Institute of Science and Technology)

Scan to open on Studocu

Reg.No.															
---------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

SRM Institute of Science and Technology College of Engineering and Technology **School of Computing**

Mode of Exam **OFFLINE**

SET C

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tanhmauu

Academic Year: 2023-24 (EVEN)

Date: 2nd April 2024 Test: CLAT-2

	Course Code Year & Sem:		:21CSC	C206T -	- Artifici	al Intel	ligence									2 periods ks: 50	8
_	Course Artic		Matrix	:									1,	·zuA			
	Course			•			PO									PSO	
	Outcome	1	2	3	4	5	6	7	8	9	10	11	1	12	1	2	3
	CO1	1	2	-	-	-	-	-	-	-	-	-		-	-	-	-
	CO2	1	2	3	-	-	-	-	-	-	-	-		-	-	_	-
	CO3	1	2	2	-	-	-	-	-	-	1	-		-	-	-	ı
	CO4	1	2	-	-	-	-	-	-	-	-	-		-	-	-	ı
	CO5	3	2	3	-	-	-	-	-	2	-	-		-	-	-	-
Q. No					Quest	ion					Marks		ا بـ		PO	PI Code	Mark Score
7	Part – A ($10 \times 1 = 10 \text{ Marks}$) Instructions: Answer ALL												<u> </u>	0		<u> </u>	
1	Ans: n-1	is the	maxim		nber of e								1	2	1	1.6.1	
2	If there are n	-	paths to	a nod	e in UCS	with t	he same	cost, UC	CS expl	ores the			1			1.61	
	in order.											2	1	1.6.1			
3	Uninformed search methods are also known as search methods. Ans: Blind Search											2	1	1.6.1			
4	An agent is	compose			_								1	2	1	1.6.1	
_	Ans: Architecture and Program											_			11011		
5	Match the following: Simple reflex agents Smart Sprinkler System															2.7.1	
	model-based agents Utilizes internal state information													3	2	2.7.1	
6	Identify the																
	Constraint propagation																
	 Constrai 	nt relaxa	ation										1	3	2	2.7.1	
	 Forward 	Checkin	ng														
	• Minimu	m remai	ning va	lues he	uristic ar	iswer											
7	Which of the	e follow	ing state	ements	is true?												
	• Goal-based agents exhibit purposeful decision-making																
	• Goal-base	_	-		_		ely					ı [1	3	2	2.7.1	
	• Goal-base	_			-	_	4:										
	• Goal-base	a agents	aiways	reach	ine optin	nai solu	uon										
8	Which of the								ic"?								
	Cryptarith							error									
	All cryptarithmetic puzzles can be solved mentally												1	4	1	1.6.1	
	 Cryptarithmetic puzzles have identical solutions for variations Brute force is often impractical for solutions 																
	• Brute force	e is ofte	n ımpra	ctical t	or soluti	ons											
9	Which of the	e follow	ing state	ements	is false a	bout th	e "Dept	h Limite	d Searc	h"?		+					
	 Depth Lin 						-									161	
	• Stops sear	-		-								l	1	4	1	1.6.1	
	• Facilitates						n depth										
.0	• Avoids in: Which of t	finite loc	ops by l	imiting	search o	lepth	Pulkit Shi	ringi (nulk	itshringii	12 @ am:	ail.com)		1	4	1	1.6.1	

			_			1		
		suitable for solutions away from the source.						
		searching vertices						
		closer to the given						
		source.						
	Applications	BFS is used in DFS is used in various applications such						
		various applications as acyclic graphs and finding strongly						
		such as bipartite connected components etc. graphs, shortest						
		paths, etc.						
		pains, etc.						
12	(a) Discuss the	importance of flexibility in intelligent agents. How does						
1-		attribute to the adaptability and robustness of agents in varying						
	environments							
	Intelligent Agents(2							
		ligent Agents (6 Marks) should respond in timely fashion to the perceived						
	environment.	should respond in timery lusinon to the perceived						
	Pro-active: It sho	ald exhibit opportunistic, goal-directed behaviour and take						
	the initiative, whe							
		be able to interact when they are deemed appropriate with agents, or humans in order to compete problem solving.						
		intelligent agent should have are as follows:						
	Mobility: It is r	ecommended that an intelligent agent should be mobile						
		wledge and carry out desired work/ decision-making.						
	Veracity: Intelligent information or lie.	ent agent should be truthful. It is not expected to hide						
		nould avoid conflict and should do what is told.						
		ould act to maximise the expected performance.						
		mance is increased with learning. It should have learning						
	_	tial for true autonomy.	8	2	3	2	2.7.1	
		(OD)						
	(b) Describe the o	(OR) concept of Alpha-Beta pruning. How does it improve the						
		he Mini-Max algorithm?						
	Alpha-Beta prunii	ng (2 marks)						
		player will only update the value of alpha.						
		layer will only update the value of beta. ctracking the tree, the node values will be passed to upper nodes						
	instead of values of							
	• We will or	aly pass the alpha, beta values to the child nodes.						
		inimax(node, depth, alpha, beta, maximizingPlayer) is						
	one example(4 Ma	rks) iciency of the Mini-Max algorithm((2 Marks)						
		search algorithm that the number of game states it has to						
	examine are e	xponential in depth of the tree. Since we cannot eliminate the						
		we can cut it to half. Hence there is a technique by which						
		ing each node of the game tree we can compute the correct sion, and this technique is called pruning . This involves two						
		meter Alpha and beta for future expansion, so it is called alpha -						
	beta pruning	. It is also called as Alpha-Beta Algorithm.						
13		ble of knowledge representation in designing intelligent agents.	8	2	4	2	2.7.1	
		ples to illustrate its importance. Representation (4 marks)						
	Example(4 Marks)							
		(OR)						
		components of a knowledge-based agent. How does knowledge						
		facilitate the decision-making process in such agents? nowledge-based agent:						
	Environment	iowiedge-vascu agent.						
	Knowledge Base							
	Percepts							
	Actions	rant naada Iznatirlardaadasttarituullik Shripai Vuutkishtinatii 2 Markaita	am)					
	-An memgent ag	ent needs knowledgedealbouftulkhehringal(puwitaldingfili?@gakai)go	1'''					

Knowledge = (sentences) expressed in a knowledge representation language The Knowledge-base is a set of representations of facts of the world. A knowledge-based agent should be able to do the following: - represent states, actions, etc. - incorporate new percepts - update the internal representation of the world - deduce appropriate actions. Part - C (1 x 10 = 10 Marks) Instructions: Answer any ONE 16 3 2 2 2 2.8.1 4 Given the graph below, demonstrate how the A* algorithm searches for the shortest path from node A to node J. In your explanation, infallight how A* combines the advantages of Breadth First Search (BFS) and Best First Search (BFS) through its use of heuristics. Also, discuss the importance of the chosen heuristic being both admissible and consistent. Part - C														
• The Knowledge-base is a set of representations of facts of the world. • A knowledge-base agent should be able to do the following: - represent states, actions, etc incorporate new percepts - update the internal representation of the world - deduce the internal representation of the world - deduce appropriate actions. Part – C (Is 10 = 10 Marks) Instructions: Answer any ONE Given the graph below, demonstrate how the A* algorithm searches for the shortest path from node A to node J. In your explanation, highlight how A* combines the advantages of Breadth First Search (BFS) and Best First Search (BFS) through its use of heuristics. Also, discuss the importance of the chosen heuristic being both admissible and consistent. Part – C Fource node = A Destruction node: T State how Ref () = g(n) + h(n) B B C 5 D 7 E 3 F 6 G 5 H 3 T 10 T 0	\top			Kno	wledge = {se	ntences} expres	ssed in a know	ledge representation						
A knowledge-based agent should be able to do the following: - represent states, actions, etc represent states, actions, etc update the internal representation of the world - deduce the internal representation of the world - deduce the internal representation of the world - deduce appropriate actions. Part - C (1 x 10 = 10 Marks) Instructions: Answer any ONE 4 Given the graph below, demonstrate how the A algorithm searches for the shortest path from node A to node J. In your explanation, highlight how A* combines the advantages of Breadth First Search (BFS) and Best First Search (BFS) through its use of heuristics. Also, discuss the importance of the chosen heuristic being both admissible and consistent. Part - C. **First Search (BFS) and Dest First Search (BFS) through its use of heuristics. Also, discuss the importance of the chosen heuristic being both admissible and consistent. **First Search (BFS) through its use of heuristic being both admissible and consistent. **First Search (BFS) through its use of heuristic being both admissible and consistent. **First Search (BFS) through its use of heuristic being both admissible and consistent. **First Search (BFS) through its use of heuristic being both admissible and consistent. **First Search (BFS) through its use of heuristic being both admissible and consistent. **First Search (BFS) through its use of heuristic being both admissible and consistent. **First Search (BFS) through its use of heuristic being both admissible and consistent. **First Search (BFS) through its use of heuristic being both admissible and consistent. **First Search (BFS) through its use of heuristic being both admissible and consistent. **First Search (BFS) through its use of heuristic being both admissible and consistent. **First Search (BFS) through its use of heuristic being both admissible and consistent. **First Search (BFS) through its use of heuristic being both admissible and consistent. **First Search (BFS) through its use of heuristic being both admissible	- 1	_	_											
- represent states, actions, etc. - incorporate new percepts - update the internal representation of the world - deduce appropriate actions. Part - C(1 x 10 = 10 Marks) Instructions: Answer any ONE Given the graph below, demonstrate how the A* algorithm searches for the shortest path from node A to node J. In your explanation, highlight how A* combines the advantages of Breadth First Search (BFS) and Best First Search (BFS) through its use of heuristics. Also, discuss the importance of the chosen heuristic being both admissible and consistent. Part - C. Fource node = A Destination node = T State h(n) A 10 B 8 C 5 D 7 E 3 F 6 G 5 H 3 T 1 T 0	- 1			_	•	e world.								
- incorporate new percepts - update the internal representation of the world - deduce appropriate actions. Part - C (1 x 10 = 10 Marks) Instructions: Answer any ONE Given the graph below, demonstrate how the A* algorithm searches for the shortest path from node A to node J. In your explanation, highlight how A* combines the advantages of Breadth First Search (BFS) and Best First Search (BFS) through its use of heuristics. Also, discuss the importance of the chosen heuristic being both admissible and consistent. Part - C. Source node = A Destination node = J Station how A 10 B 8 C 55 D 7 E 3 F 6 G 5 H 3 T 1 T 0	- 1			-	_									
- update the internal representation of the world - deduce the internal representation of the world - deduce appropriate actions. Part – C (1 x 10 = 10 Marks) Instructions: Answer any ONE Given the graph below, demonstrate how the A* algorithm searches for the shortest path from node A to node J. In your explanation, highlight how A* combines the advantages of Breadth First Search (BFS) and Best First Search (BFS) through its use of heuristics. Also, discuss the importance of the chosen heuristic being both admissible and consistent. Part – C. F(n) = g(n) + h(n) Source node = A Destination node = J State h(n) B B C 5 H 3 F 6 G 5 H 3 T 1 1 1 1 1 1 1 1 1 1 1 1		торг				cepts								
- deduce appropriate actions. Part - C (1x10 = 10 Marks) Instructions: Answer any ONE Given the graph below, demonstrate how the A* algorithm searches for the shortest path from node A to node J. In your explanation, highlight how A* combines the advantages of Breadth First Search (BFS) and Best First Search (BFS) through its use of heuristics. Also, discuss the importance of the chosen heuristic being both admissible and consistent. Part - C. ###							the world							
Given the graph below, demonstrate how the A* algorithm searches for the shortest path from node A to node J. In your explanation, highlight how A* combines the advantages of Breadth First Search (BFS) and Best First Search (BFS) through its use of heuristics. Also, discuss the importance of the chosen heuristic being both admissible and consistent. Part - C. A Destination mode = A Destination mode = J Statt h(n) A 10 B 8 C 5 D 7 E 3 F 6 G 5 H 3 T 1 T 0						_	f the world							
Given the graph below, demonstrate how the A* algorithm searches for the shortest path from node A to node J. In your explanation, highlight how A* combines the advantages of Breadth First Search (BFS) and Best First Search (BFS) through its use of heuristics. Also, discuss the importance of the chosen heuristic being both admissible and consistent. Part - C			- (deduc										
path from node A to node J. In your explanation, highlight how A* combines the advantages of Breadth First Search (BFS) and Best First Search (BFS) through its use of heuristics. Also, discuss the importance of the chosen heuristic being both admissible and consistent. Part - C	Т	Givo	n the (aranh						3	1 2	12	281	
Final and a series of the seri		path advai use c	from ntages of heu	node s of E ristic	A to node J. Breadth First S. s. Also, discus	In your explana earch (BFS) and	tion, highlight h I Best First Sea	ow A* combines the rch (BFS) through its		3	2	2	2.0.1	
Source node = A Destination node = J					6/	A 3	F F							
Fig. 3 F. 6 G. 5 H. 3 T. 1 J. 0					8 (B)	2 5 G	7 (H) 3							
F 6 G 5 H 3 T 0					3	1 3	1 2							
Source node = A Destination node = J					5	5	/3							
Source node = A Destination node = J						3 5)							
F 6 G 5 H 3 T 0						Part-C.								
Jestination node = A Destination node = J States h(m) A 10 B 8 C 5 D 7 E 3 F 6 G 5 H 3 I I J 0														
Destination rade = J . State h(n) A 10 B 8 C 5 D 7 E 3 F 6 G 5 H 3 T 1 J 0			14)	8	Source ne									
A 10 B 8 C 5 D 7 E 3 F 6 G 5 H 3 T 1 T 0														
B 8 C 5 D 7 E 3 F 6 G 5 D T T T T O					States	h (n)								
C 5 D 7 E 3 F 6 G 5 H 3 T 1 J 0					- A ·	10	1000							
C 5 D 7 E 3 F 6 G 5 H 3 T 1 J 0					, n	0-								
D 7 E 3 F 6 G 5 H 3 T 1 J 0				/	15	0								
E 3 F 6 G 5 H 3 T 0					C	5								
E 3 F 6 G 5 H 3 T 0					D	7	V-1							
F 6 5 1 4 3 T 0						1	the permater	77						
Г Г Г Г Г Г Г Г Г Г Г Г Г Г Г Г Г Г Г					E. I	3	1/25 1							
H 3 T 0					F	6	1							
T O O				-	G	5 (4								
T O			-	-	11	3	101							
J O				34										
				1	I	- 5.0	in the first							
Theration 1: $f(A \rightarrow F) = 3 + 10 = 13 (Choosen)$ $f(A \rightarrow B) = 6 + 8 = 14 \rightarrow (Hold) K$ Choosen path = $A \rightarrow F$				-	J	0	(1)							
Theration 1: $f(A \rightarrow F) = 3 + 10 = 13 (Choosen)$ $f(A \rightarrow B) = 6 + 8 = 14 \rightarrow (Hold) K$ Choosen path = A \rightarrow F				L			1							
$f(A \rightarrow F) = 3 + 10 = 13 (Choosen)$ $f(A \rightarrow B) = 6 + 8 = 14 \rightarrow (Hold) K$ $Choosen path = A \rightarrow F$				TLO	ration 1:		S. A. P. 1919							
$f(A \rightarrow B) = 6 + 8 = 14 \rightarrow (Hold) $ [Choosen path = $A \rightarrow F$]				1	1/2 (=)	= 3 + 10	= 1,3 (Choose	ien)						
Choosen path = A > F					(A > B)	= 6+8	= 14 -> (Hold) K						
Choosen Path-11			1	+	(1)		F1							
			1		choosen	Jan I								
Downloaded by Pulkit Shringi (pulkitshringi02@gmail.cqm)						Downloado	d hv Pulkit Shringi	(nulkitshringi02@amail.co	m)					

Iteration 2: $f(A \rightarrow f \rightarrow A) = 4+5 = 9 \text{ (choosen)} \leftarrow f(A \rightarrow f \rightarrow H) = 10+3 = 13 \text{ (Hold)} \times \text{ Choosen path} = A \rightarrow f \rightarrow G$ Iteration 3: $f(A \rightarrow f \rightarrow G - I) = 7+1 = 8 \text{ (choosen)}$ $[Choosen path = A \rightarrow f \rightarrow G \rightarrow I]$ Iteration 4: $f(A \rightarrow f \rightarrow G \rightarrow I \rightarrow J) = 10 (Its distination on the final of the constant of the final of the constant of the final of the final$						
Solve the following crypt arithmetic problem and write the step-by-step process. CROSS + ROADS DANGER	16	3	3	2	2.8.1	
Total (50)	16	3	3	2	2.8.1	

Course Outcome (CO)and Bloom's Level (BL) Coverage in Questions

Approved by the Course Coordinator