4.2 Consider a 10⁴ kg spaceship in deep space. Suppose the spaceship's thruster produces 100 N of constant thrust. If the spaceship is moving at 50 m/s and the thruster is anti-aligned with the spaceship's velocity, how long should the thruster fire to bring the spaceship to rest with respect to absolute space?

Final

$$a = \frac{F_{throst}}{m}$$
 $a = \frac{F_{throst}}{m}$
 $a = \frac{mv_0 = 0}{m}$
 $a = \frac{mv_0 = 0}{m}$

4.6 Suppose frame $\mathcal{B} = (O', \mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3)$ is traveling in the \mathbf{e}_1 direction at a constant speed of v_0 with respect to stationary frame $\mathcal{I} = (O, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$, as shown in Figure 4.19. Mass m_P is connected to point O' by a spring with spring constant k and rest length r_0 . The spring can freely pivot about O'. Assume that the positions of O and O' are the same at time t = 0.

Figure 4.19 Problem 4.6.

- a. Using the coordinates of your choice, find the position $\mathbf{r}_{P/O'}$ and velocity ${}^{\mathcal{I}}\mathbf{v}_{P/O'}$ of the mass with respect to O' in \mathcal{I} . [HINT: Introduce a polar frame at O'.]
- b. Find the position $\mathbf{r}_{P/O}$ and velocity ${}^{\mathcal{I}}\mathbf{v}_{P/O}$ of the mass with respect to O in \mathcal{I} .
- c. Draw a free-body diagram for mass m_P . (There is no gravity in this problem.)
- d. Find the angular momentum ${}^{\mathcal{I}}\mathbf{h}_{P/O'}$ of the mass with respect to O' in \mathcal{I} .
- e. Show that the angular momentum of the mass with respect to O' in \mathcal{I} is conserved, but the angular momentum with respect to O in \mathcal{I} is not.

$$\sum M_{o'} = \frac{d}{dt} \left(\overline{h}_{o'} \right) = \frac{d}{dt} \left(\overline{r}_{l'o'} \times m \overline{v}_{l'} \right)$$

$$\overline{r}_{l'o'} \times m \overline{v}_{l'} = r e_{l'} \times m \left(r e_{l'o'} \times m \overline{v}_{l'} \right)$$

$$= m r e_{l'} \times e_{l'} + m r^{2} e_{l'} \cdot e_{l'} \cdot e_{l'}$$

$$= m r^{2} e_{l'} \cdot e_$$

$$r_0^2 \dot{\theta}_0 = \frac{1}{\sqrt{2}} r_0^2 \dot{\theta}_0 \implies \dot{\theta} = \frac{r_0^2 \dot{\theta}_0}{r_0^2}$$

$$\overline{ZM_o} = \overline{r_{0/o}} \times \overline{F_s} = (\overline{r_{0/o}} + \overline{r_{0/o}}) \times -kr\hat{e}_r$$

$$\overline{ZM_o} = \overline{r_{0/o}} \times -kr\hat{e}_r$$

$$\overline{ZM_o} = (vt\hat{b}_1) \times (-kr\hat{e}_r)$$

$$= (vt\hat{b}_1) \times (-kr)(\cos\theta\hat{b}_1 + \sin\theta\hat{b}_2)$$

$$\overline{ZM_o} = -krvt\sin\theta\hat{b}_3$$

$$e = \frac{-v'}{v_0}$$

$$O = \frac{-v'}{v_0}$$
 $\frac{1}{2}mv_0^2 + w = 0$ $w = -\frac{1}{2}mv_0^2$

$$mv_x + Fat = 0$$
 $mv_x + 0 = m\overline{v_3}$

