

Licence 2^e année Parcours Renforcé

2017-2018 M4 - Probabilités et fonctions

SOLUTIONS DE L'INTERROGATION

28 mars 2018

[durée : 1 heure]

Exercice 1

On considère pour $n \in \mathbb{N}$ la fonction $f_n = \frac{nx}{1 + (nx)^3}$.

- a) Étudier la convergence simple et uniforme de la suite $(f_n)_{n\geqslant 1}$ sur \mathbb{R}_+ et sur $[\varepsilon,\infty[$ pour $\varepsilon>0$.
- b) Étudier la convergence simple et uniforme de la série $\sum_{n\geqslant 1} f_n$ sur ces mêmes ensembles.

Solution:

a) Soit $f(x) = \frac{x}{1+x^3}$. Nous avons $f'(x) = \frac{(1+x^3)-x(3x^2)}{(1+x^3)^2} = \frac{1-2x^3}{(1+x^3)^2}$, d'où la tableau de variations

x	0	$\frac{1}{\sqrt[3]{2}}$	$+\infty$
f'(x)		+ 0	_
f(x)	0 /	$\frac{2}{3\sqrt[3]{2}}$	0

et donc $\sup_{\mathbb{R}_+} |f| = f(\frac{1}{\sqrt[3]{2}}) > 0$. De plus $\lim_{x \to \infty} f(x) = 0$.

Comme $f_n(x) = f(nx)$, nous avons d'après l'étude de f que pour x > 0, $\lim_{n\to\infty} f_n(x) =$ $\lim_{n\to\infty} f(nx) = 0$ et comme $f_n(0) = 0$, on trouve la limite simple $\lim_{n\to\infty} f_n = 0$ sur \mathbb{R}_+ . Par contre comme $\sup_{\mathbb{R}_+} |f_n| = \sup_{\mathbb{R}_+} |f| \to 0$, la suite $(f_n)_{n \geq 1}$ ne converge pas uniformément sur

Soit $\varepsilon > 0$, pour n assez grand $(n > \frac{1}{\varepsilon}(\frac{1}{\sqrt[3]{2}}))$, la fonction f_n est positive et décroissante sur $[\varepsilon, \infty[$, donc $\sup_{[\varepsilon,\infty[}|f_n|=f_n(\varepsilon)=f(n\varepsilon)\to 0$ quand $n\to 0$. Ainsi la suite $(f_n)_{n\geqslant 1}$ est uniformément convergente sur $[\varepsilon, \infty[$ pour $\varepsilon > 0$.

b) Pour x = 0, $\sum_{n \ge 1} f_n(0) = 0$. Pour x > 0, $f_n = \frac{nx}{1 + (nx)^3} \sim \frac{1}{(nx)^2}$ quand $n \to \infty$, et donc $\sum_{n \ge 1} f_n$ converge car $\sum_{n\geqslant 1}\frac{1}{(nx)^2}=\frac{1}{x^2}\sum_{n\geqslant 1}\frac{1}{n^2}$ converge. Ainsi $\sum_{n\geqslant 1}f_n$ converge simplement sur \mathbb{R}_+ . Mais d'après la question précédente, cette convergence n'est pas uniforme, car la suite $(f_n)_{n\geq 1}$ ne converge pas uniformément (vers 0) sur \mathbb{R}_+ .

De même que dans la question précédente, pour n assez grand $\sup_{[\varepsilon,\infty[}|f_n|=f_n(\varepsilon))$ et comme la série $\sum_{n\geqslant 1} f_n(\varepsilon)$ converge (d'après la convergence simple), alors $\sum_{n\geqslant 1} f_n$ converge normalement, et donc uniformément, sur $[\varepsilon, \infty[$.

Exercice 2

L'équation y''(x) = -y(x), sur tout intervalle de \mathbb{R} contenant 0, admet une unique solution qui vérifie les conditions initiales y(0) = 0 et y'(0) = 1, cette solution est appelée $\sin(x)$. Il existe également une unique solution qui vérifie les conditions initiales y(0) = 1 et y'(0) = 0, cette solution est appelée $\cos(x)$. On rappelle que la fonction exponentielle est la valeur de la série $e^z = \sum_{k=0}^{\infty} \frac{z^k}{k!}$ pour $\forall z \in \mathbb{C}$.

- a) Montrer que $\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{(2k+1)}}{(2k+1)!}$ et $\cos(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{(2k)}}{(2k)!}$ pour $\forall x \in \mathbb{R}$.
- **b)** Montrer la formule d'Euler $e^{ix} = \cos(x) + i\sin(x)$ pour $x \in \mathbb{R}$

Solution:

a) Soient $e_k(x) = \frac{x^k}{k!}$, $c_k(x) = \frac{(-1)^k x^{(2k)}}{(2k)!} = (-1)^k e_{2k}(x)$ et $s_k(x) = \frac{(-1)^k x^{(2k+1)}}{(2k+1)!} = (-1)^k e_{2k+1}(x)$. Sur l'intervalle [-M, M] nous avons $\sup_{[-M,M]} e_n = e_n(M)$ et comme la série $\sum e_n(M)$ converge (et a pour valeur e^M), on peut conclure que les séries $\sum_{k=0}^{\infty} (-1)^k e_{2k}$ et $\sum_{k=0}^{\infty} (-1)^k e_{2k+1}$ convergent normalement, et donc uniformément, sur cet intervalle. De même, comme $e'_k = e_{k-1}$ pour $k \ge 1$ et $e'_0 = 0$, les séries dérivées $\sum_{k=1}^{\infty} (-1)^k e_{2k-1}$ et $\sum_{k=0}^{\infty} (-1)^k e_{2k}$, ainsi que les séries dérivées secondes $\sum_{k=1}^{\infty} (-1)^k e_{2k-2}$ et $\sum_{k=1}^{\infty} (-1)^k e_{2k-2}$ convergent normalement sur [-M, M].

D'après ces convergences uniformes nous pouvons intervertir la somme et la dérivée et en utilisant $s'_k = c_k$, $c'_k = -s_{k-1}$ et $c'_0 = 0$ on obtient

$$\left(\sum_{k=0}^{\infty} s_k(x)\right)'' = \sum_{k=1}^{\infty} -s_{k-1}(x) = -\sum_{k=0}^{\infty} s_k(x),$$

$$\left(\sum_{k=0}^{\infty} s_k(x)\right)_{x=0} = \sum_{k=0}^{\infty} s_k(0) = 0 \quad \text{et} \quad \left(\sum_{k=0}^{\infty} s_k(x)\right)'_{x=0} = \sum_{k=0}^{\infty} c_k(0) = 1,$$

et donc $\sin(x) = \sum_{k=0}^{\infty} s_k(x)$ sur [-M, M] pour $\forall M > 0$. Par conséquent ces deux fonctions coïncident sur tout le \mathbb{R} . De même

$$\left(\sum_{k=0}^{\infty} c_k(x)\right)'' = \sum_{k=1}^{\infty} -c_{k-1}(x) = -\sum_{k=0}^{\infty} c_k(x),$$

$$\left(\sum_{k=0}^{\infty} c_k(x)\right)_{x=0} = \sum_{k=0}^{\infty} c_k(0) = 1 \quad \text{et} \quad \left(\sum_{k=0}^{\infty} c_k(x)\right)'_{x=0} = \sum_{k=1}^{\infty} -s_{k-1}(0) = 0,$$

et donc $\cos(x) = \sum_{k=0}^{\infty} c_k(x)$ sur [-M, M] pour $\forall M > 0$. Par conséquent ces deux fonctions coïncident sur tout le \mathbb{R} .

b) En remplaçant x par ix dans la série entière de l'exponentielle et en utilisant les expressions en séries entières de $\sin(x)$ et de $\cos(x)$ démontrées dans la question précédente, on trouve

$$e^{ix} = \sum_{k=0}^{\infty} \frac{(ix)^k}{k!} = \underbrace{\sum_{k=0}^{\infty} \frac{(-1)^k x^{(2k)}}{(2k)!}}_{\text{Les termes pairs}} + \underbrace{\sum_{k=0}^{\infty} \frac{i(-1)^k x^{(2k+1)}}{(2k+1)!}}_{\text{Les termes impairs}} = \cos(x) + i\sin(x).$$