

OKD
10/17/02

612.40801X00
4711/NAS

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Yannick PEYSSON et al
Serial No.: 09/985,730
Filed: November 6, 2001
For: METHOD OF DETERMINING THE THERMAL PROFILE OF A DRILLING FLUID IN A WELL
Art Unit: 2856
Examiner: Jay L. Politzer

CLAIM FOR PRIORITY

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

September 22, 2003

Sir:

Under the provisions of 35 U.S.C. §119 and 37 C.F.R. §1.55, Applicants
hereby claim the right of priority based on:

French Patent Appl. No. 0014305, filed November 8, 2000.

A certified copy of the French application is attached.

Respectfully submitted,

Donald E. Stout
Registration No. 26, 422
ANTONELLI, TERRY, STOUT & KRAUS, LLP
(703) 312-6600

Attachments
DES:dlh

BEST AVAILABLE COPY

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

22 OCT. 2001

Fait à Paris, le _____

Pour le Directeur général de l'Institut
national de la propriété industrielle
Le Chef du Département des brevets

Martine PLANCHE

BEST AVAILABLE COPY

REQUÊTE EN DÉLIVRANCE 1/2

Cet imprimé est à remplir lisiblement à l'encre noire

DB 540 W / 260899

Réservé à l'INPI

REMISE DES PIÈCES

DATE 8 NOV 2000

LIEU 75 INPI PARIS

N° D'ENREGISTREMENT

NATIONAL ATTRIBUÉ PAR L'INPI

DATE DE DÉPÔT ATTRIBUÉE

PAR L'INPI

0014305

- 8 NOV. 2000

Vos références pour ce dossier

(facultatif) 00/0106-NAS/CLN

Confirmation d'un dépôt par télécopie

 N° attribué par l'INPI à la télécopie

2 NATURE DE LA DEMANDE

Cochez l'une des 4 cases suivantes

Demande de brevet

Demande de certificat d'utilité

Demande divisionnaire

Demande de brevet initiale
ou demande de certificat d'utilité initiale

N°

Date

N°

Date

Transformation d'une demande de
brevet européen Demande de brevet initiale

N°

Date

3 TITRE DE L'INVENTION (200 caractères ou espaces maximum)

MÉTHODE DE DÉTERMINATION D'UN PROFIL THERMIQUE D'UN FLUIDE DE FORAGE DANS UN PUITS

4 DÉCLARATION DE PRIORITÉ

OU REQUÊTE DU BÉNÉFICE DE

LA DATE DE DÉPÔT D'UNE

DEMANDE ANTÉRIEURE FRANÇAISE

Pays ou organisation

Date

N°

Pays ou organisation

Date

N°

Pays ou organisation

Date

N°

 S'il y a d'autres priorités, cochez la case et utilisez l'imprimé « Suite »

5 DEMANDEUR

 S'il y a d'autres demandeurs, cochez la case et utilisez l'imprimé « Suite »

Nom ou dénomination sociale

INSTITUT FRANCAIS DU PETROLE

Prénoms

Forme juridique

Organisme Professionnel

N° SIREN

Code APE-NAF

Adresse

Rue

1 et 4 avenue de Bois Préau

Code postal et ville

92852 Rueil-Malmaison cedex

Pays

France

Nationalité

Française

N° de téléphone (facultatif)

01 47 52 60 00

N° de télécopie (facultatif)

01 47 52 70 03

Adresse électronique (facultatif)

REMISE DES PIÈCES		Réervé à l'INPI
DATE	8 NOV 2000	
LIEU	75 INPI PARIS	
N° D'ENREGISTREMENT		
NATIONAL ATTRIBUÉ PAR L'INPI		0014305

DB 540 W /260899

6 MANDATAIRE			
Nom		ELMALEH	
Prénom		Alfred	
Cabinet ou Société		INSTITUT FRANCAIS DU PETROLE	
N° de pouvoir permanent et/ou de lien contractuel			
Adresse	Rue	1 et 4 avenue de Bois Préau	
	Code postal et ville	92852	Rueil-Malmaison cedex
N° de téléphone (facultatif)		01 47 52 60 00	
N° de télécopie (facultatif)		01 47 52 70 03	
Adresse électronique (facultatif)			
7 INVENTEUR (S)			
Les inventeurs sont les demandeurs		<input type="checkbox"/> Oui	<input checked="" type="checkbox"/> Non Dans ce cas fournir une désignation d'inventeur(s) séparée
8 RAPPORT DE RECHERCHE		Uniquement pour une demande de brevet (y compris division et transformati n)	
Etablissement immédiat ou établissement différé		<input checked="" type="checkbox"/>	<input type="checkbox"/>
Paiement échelonné de la redevance		Paiement en deux versements, uniquement pour les personnes physiques	
		<input type="checkbox"/> Oui	<input checked="" type="checkbox"/> Non
9 RÉDUCTION DU TAUX DES REDEVANCES		Uniquement pour les personnes physiques	
		<input type="checkbox"/> Requise pour la première fois pour cette invention (joindre un avis de non-imposition)	
		<input type="checkbox"/> Requise antérieurement à ce dépôt (joindre une copie de la décision d'admission pour cette invention ou indiquer sa référence)	
Si vous avez utilisé l'imprimé «Suite», indiquez le nombre de pages jointes			
10 SIGNATURE DU DEMANDEUR OU DU MANDATAIRE (Nom et qualité du signataire)		VISA DE LA PRÉFECTURE OU DE L'INPI	
Alfred ELMALEH, Chef du Département Brevets (N° 422-5/PP.253)		VI MARTIN	

DÉPARTEMENT DES BREVETS

26 bis, rue de Saint Pétersbourg
75800 Paris Cedex 08
Téléphone : 01 53 04 53 04 Télécopie : 01 42 93 59 30

CERTIFICAT D'UTILITÉ

Code de la propriété intellectuelle - Livre VI

DÉSIGNATION D'INVENTEUR(S) Page N° 1.../1...

(Si le demandeur n'est pas l'inventeur ou l'unique inventeur)

Cet imprimé est à remplir lisiblement à l'encre noire

DB 113 W /260899

Vos références pour ce dossier (facultatif)	00/0106 NAS/CLN
N° D'ENREGISTREMENT NATIONAL	0011305
TITRE DE L'INVENTION (200 caractères ou espaces maximum) MÉTHODE DE DÉTERMINATION DU PROFIL THERMIQUE D'UN FLUIDE DE FORAGE DANS UN PUITS	
LE(S) DEMANDEUR(S) : INSTITUT FRANÇAIS DU PÉTROLE	
DESIGNE(NT) EN TANT QU'INVENTEUR(S) : (Indiquez en haut à droite «Page N° 1/1» Si il y a plus de trois inventeurs, utilisez un formulaire identique et numérotez chaque page en indiquant le nombre total de pages).	
Nom	PEYSSON
Prénoms	Yannick
Adresse	Rue 36, rue de la Montagne Ste Geneviève
Code postal et ville	75005 Paris
Société d'appartenance (facultatif)	
Nom	HERZHAFT
Prénoms	Benjamin
Adresse	Rue 6 bis, rue de Saint-Cloud
Code postal et ville	92150 Suresnes
Société d'appartenance (facultatif)	
Nom	
Prénoms	
Adresse	Rue
Code postal et ville	
Société d'appartenance (facultatif)	
DATE ET SIGNATURE(S) DU (DES) DEMANDEUR(S) OU DU MANDATAIRE (Nom et qualité du signataire) Alfred ELMALEH, Chef du Département Brevets (N° 422-5/PP.253)	
BEST AVAILABLE COPY	

La présente invention concerne une méthode de détermination du profil thermique d'un fluide de forage dans un puits.

Au cours d'un forage, la boue injectée dans le train de tiges du puits et remontant par l'annulaire correspondant va subir des variations de température importantes. Le fluide peut rencontrer des températures pouvant aller de 2 °C pour les puits en Offshore profond, jusqu'à plus de 180 °C pour les puits très chauds. De nombreuses propriétés de la boue, comme la rhéologie ou la densité, dépendent de la température. Ainsi, le calcul des pertes de charge en cours de forage peut être amélioré si on connaît une estimation du profil de température dans le puits. Il est donc important d'être capable de prévoir le profil de température dans la boue en écoulement à partir des données de puits et des caractéristiques de la boue.

La mesure du profil thermique du fluide dans un puits en cours de forage nécessiterait l'instrumentation complète du puits, c'est-à-dire l'installation de capteurs dans le train de tiges et dans l'annulaire régulièrement espacés permettant une mesure de température à différentes profondeurs. Mais la mise en place d'un tel système de mesure impose trop de contraintes, seuls des mesures ponctuelles captées par des appareils montés dans la garniture permettent de connaître certains points de température sur le trajet du fluide de forage.

Face à ce manque de données, des modèles analytiques basés sur des équations de transfert de chaleur ont été développés pour évaluer les profils thermiques du fluide le long du puits en cours de forage. Certains de ces modèles analytiques sont implémentés dans des logiciels et permettent de fournir une estimation de profils thermiques à partir d'un certain nombre de données plus ou moins difficiles à obtenir. Ainsi, en connaissant les caractéristiques du site et du matériel de forage, en donnant une valeur de la température du fluide à l'entrée du puits, ces logiciels peuvent prédire le profil de température du fluide de forage.

Cependant une comparaison entre les résultats donnés par les méthodes analytiques et les mesures faites sur chantier montre que les écarts peuvent être importants. De plus, la complexité des logiciels, qui utilisent des méthodes de calcul numériques, rend difficile leur mise en œuvre en temps réel.

D'autre part, une étude de la bibliographie concernant les modèles thermiques montre une similitude de forme de profils de température pour la plupart des cas, s'articulant autour des trois points : température d'entrée, température de sortie et température de fond.

Le but de cette étude est donc de proposer une méthode pour déterminer en temps réel un profil thermique dans la boue à partir de trois points de mesures disponibles sur le chantier, c'est-à-dire la température d'injection, de sortie et la température en fond de puits mesurée par un capteur monté sur la garniture. La forme du profil entre ces trois points sera représentée par une courbe type représentative des profils thermiques dans un puits en forage, estimée à partir de considérations physiques sur les transferts thermiques dans le puits.

La méthode de détermination du profil thermique d'un fluide de forage en circulation dans un puits en cours de forage selon l'invention est définie par la succession des étapes suivantes :

- a) on détermine une expression générale θ_1 du profil thermique du fluide à l'intérieur du train de tiges dans le puits et une expression générale θ_2 d'un profil thermique du fluide dans l'annulaire correspondant, en utilisant l'équation de propagation de la chaleur qui prend en compte un profil thermique du milieu environnant le puits,
- b) on mesure la température du fluide à l'entrée T1, au fond T2 et en sortie T3 du puits,
- c) on impose aux expressions θ_1 et θ_2 de vérifier les conditions limites de températures T1, T2 et T3.

d) on trace le profil thermique du fluide de forage en fonction de la profondeur.

Pour obtenir en temps réel un profil de température avec la méthode présentée ci-avant, on peut réitérer les étapes b), c) et d).

Selon la méthode de l'invention, à l'étape a), les expressions générales θ_1 et θ_2 peuvent comporter des constantes inconnues, et à l'étape c), on peut imposer aux expressions θ_1 et θ_2 de vérifier les conditions limites de températures T1, T2 et T3 en déterminant lesdites constantes inconnues.

Pour déterminer une expression générale θ_1 du profil thermique du fluide à l'intérieur du train de tiges dans le puits et une expression générale θ_2 d'un profil thermique du fluide dans l'annulaire correspondant on peut, selon la méthode de l'invention à l'étape a), utiliser l'équation de propagation de la chaleur qui prend en compte au moins l'équation thermique du milieu environnant le puits, le débit du fluide et le bilan des échanges thermiques subis par le fluide, lesdits échanges thermiques comprenant au moins les échanges entre le fluide de forage ascendant et descendant et/ou utiliser l'équation de propagation de la chaleur dans un milieu homogène sur un cylindre de hauteur infinie centré sur le puits, ledit cylindre comportant le train de tiges qui guide le fluide descendant et l'annulaire, enveloppant ledit train de tiges, qui guide le fluide ascendant.

Selon la méthode de l'invention, on peut décomposer les expressions générales θ_1 et θ_2 , obtenues à l'étape a), en plusieurs équations indépendantes, et à l'étape c), imposer en plus aux profils et aux dérivées des profils thermiques du fluide à l'intérieur du train de tige et dans l'annulaire correspondant d'être continus.

On peut notamment utiliser la méthode selon l'invention pour calculer les pertes de charge du fluide de forage en circulation dans un puits en cours de forage,

ou dans une autre application, pour déterminer les zones de formation d'hydrates dans le fluide pendant l'opération de forage.

Par rapport aux méthodes de détermination du profil thermique d'un fluide de forage dans un puits selon l'art antérieur, la présente invention offre notamment les avantages suivants:

le profil de température déterminé est plus précis puisqu'il vérifie trois points de mesure de la température du fluide de forage tout en gardant une expression analytique du profil thermique entre les points de mesure physiquement justifiée, en effectuant les mesures de température à chaque instant, la méthode permet d'obtenir le profil de température en temps réel et d'en observer l'évolution dans le temps.

La présente invention sera mieux comprise et ses avantages apparaîtront plus clairement à la lecture de la description suivante d'exemples de réalisation, nullement limitatifs, illustrés par les figures annexées parmi lesquelles :

- la figure 1 schématisse l'architecture d'un puits en cours de forage,
- les figures 2, 3 et 4 représentent la forme du profil de température du fluide de forage dans un puits Onshore vertical,
- la figure 5 représente la forme du profil de température du fluide de forage dans un puits Offshore vertical,
- la figure 6 représente la forme du profil de température du fluide de forage dans un puits Offshore dévié,
- la figure 7 représente l'évolution en fonction du temps du profil de température du fluide de forage dans un puits Offshore vertical.

En utilisant des considérations assez simples d'échange de chaleur c'est-à-dire l'équation de propagation de la chaleur, il est possible de donner une expression analytique pour le profil thermique dans le puits et l'annulaire de forage.

Ce modèle est basé sur l'établissement des bilans de chaleur dans le puits. Dans une première approche, seuls les régimes permanents sont considérés (l'écoulement de la boue de forage est supposé stabilisé depuis un certain temps de telle sorte que les températures n'évoluent plus). Certaines hypothèses sont nécessaires au calcul : les échanges de chaleur sont mesurés dans un plan perpendiculaire à l'écoulement laminaire de la boue, les différentes constantes sont supposées indépendantes de la température, et enfin, l'influence de la température du milieu environnant le puits se fait sentir sur un diamètre utile R_f choisi à priori.

Il suffit alors d'utiliser l'équation de propagation de la chaleur dans un milieu homogène sur un cylindre de hauteur infinie centré sur le puits représenté sur la figure 1. Dans chaque tranche de puits, on écrit l'égalité des pertes de chaleurs en considérant deux fonctions de température : $\theta_1(z)$ à l'intérieur du train de tiges et $\theta_2(z)$ dans l'annulaire.

Soient

θ_f la température de la formation,

λ_f la conductivité thermique du milieu environnant le puits,

λ_a la conductivité thermique du tubing (métal),

C_p la capacité calorifique du fluide de forage,

R_1 le rayon interne du train de tiges,

R_2 le rayon externe du train de tiges,

R_t le rayon de l'annulaire,

R_f le rayon effectif (pour l'apport de chaleur) autour du puits,

D le débit du fluide de forage,

ρ la densité du fluide de forage.

Les bilans de chaleur par unité de profondeur sont les suivants :

- Chaleur apportée par le milieu environnant le puits au fluide dans l'annulaire :

$$Q_1 = \frac{2\pi\lambda_f}{\ln\left(\frac{R_t}{R_f}\right)} (\theta_2 - \theta_f)$$

- Chaleur transportée du fluide dans l'annulaire vers le fluide à l'intérieur du train de tiges :

$$Q_2 = \frac{2\pi\lambda_a}{\ln\left(\frac{R_2}{R_1}\right)} (\theta_1 - \theta_2)$$

- Chaleur accumulée par le fluide dans le train de tiges et dans l'annulaire :

$$Q_t = D\rho C_p \Delta\theta_1$$

$$Q_a = D\rho C_p \Delta\theta_2$$

Les bilans de chaleurs conduisent au système suivant :

$$Q_r = Q_2$$

$$Q_a = Q_1 + Q_2$$

soit

$$\frac{d\theta_2}{dz} = \frac{2\pi\lambda_f}{D\rho C_p \ln\left(\frac{R_t}{R_f}\right)} (\theta_2 - \theta_f) - \frac{2\pi\lambda_a}{D\rho C_p \ln\left(\frac{R_2}{R_1}\right)} (\theta_1 - \theta_2)$$

$$\frac{d\theta_1}{dz} = -\frac{2\pi\lambda_a}{D\rho C_p \ln\left(\frac{R_2}{R_1}\right)} (\theta_1 - \theta_2)$$

Ces équations sont résolues par diagonalisation et inversion de matrice et conduisent aux résultats suivants :

$$\theta_1(z) = -K_1 B e^{n_1 z} - K_2 B e^{n_2 z} + \theta_f - \frac{\alpha}{B}$$

$$\theta_2(z) = -K_1(B + r_1)e^{r_1 z} - K_2(B + r_2)e^{r_2 z} + \theta_f$$

avec :

$$A = \frac{2\pi\lambda_f}{D\rho C_p \ln\left(\frac{R_f}{R_i}\right)} \quad B = \frac{2\pi\lambda_a}{D\rho C_p \ln\left(\frac{R_2}{R_1}\right)}$$

$$r_1 = \frac{A + \sqrt{A^2 + 4AB}}{2} \quad r_2 = \frac{A - \sqrt{A^2 + 4AB}}{2}$$

$\theta_f = \alpha.z + \theta_o$ étant l'équation thermique du milieu environnant le puits et α le gradient thermique.

K_1 et K_2 sont les constantes d'intégration dépendant des conditions aux limites.

Il est donc possible, en utilisant quelques hypothèses simplificatrices, d'obtenir une expression analytique du profil de température du fluide de forage dans un puits. Si tous les paramètres sont connus, en donnant la température d'entrée et en écrivant que les deux températures θ_1 et θ_2 sont égales au fond du puits, le profil est entièrement déterminé. Les principaux logiciels connus utilisent ce type de démarche prédictive. Cependant une étude des résultats des modèles comparés à des données chantiers montre la difficulté d'utiliser ces estimations de façon prédictive.

Dans la présente invention, le système est basé sur la connaissance de trois points de mesures sur site : température d'entrée, température de sortie et température de fond. Pour estimer le profil thermique dans le puits à partir des trois mesures que sont les températures d'injection et de sortie en surface et la température de fond (intérieur ou extérieur du train de tiges), la méthode selon l'invention consiste à relier les trois points de mesure par une expression générale représentative de l'évolution d'un profil thermique dans un puits de forage, telle qu'obtenue selon la méthode détaillée ci-dessus..

Nous reprenons donc les équations obtenues par des calculs d'échange de chaleur :

$$\theta_1(z) = -K_1 Be^{r_1 z} - K_2 Be^{r_2 z} + \theta_f - \frac{\alpha}{B}$$

$$\theta_2(z) = -K_1(B+r_1)e^{r_1 z} - K_2(B+r_2)e^{r_2 z} + \theta_f$$

Selon l'invention, oncale ces formes de courbes sur les trois points de mesure de la température du fluide de forage à l'entrée T1, en fond T2 et en sortie T3 du puits.

Afin d'utiliser ces trois points de mesure comme conditions aux limites, nous choisissons de découpler les deux équations (dans le train de tiges et dans l'annulaire) en utilisant des constantes d'intégration différentes tout en conservant l'expression générale. Nous obtenons deux expressions générales du profil de température dans le train de tiges θ_1 et dans l'annulaire θ_2 qui ont une signification physique mais qui comportent deux degrés de liberté. Ainsi les expressions θ_1 et θ_2 peuvent être ajustées en fixant lesdits degrés de liberté afin de vérifier les conditions de température T1, T2 et T3. Nous décidons donc que les équations dans les tiges et dans l'annulaire ont la forme suivante

$$\theta_1(z) = -K_1 Be^{r_1 z} - K_2 Be^{r_2 z} + \theta_f - \frac{\alpha}{B}$$

$$\theta_2(z) = -K_3(B+r_1)e^{r_1 z} - K_4(B+r_2)e^{r_2 z} + \theta_f$$

Ainsi, nous nous retrouvons avec quatre constantes d'intégration K_1, K_2, K_3 et K_4 plutôt que deux, ce qui nécessite quatre conditions aux limites pour déterminer le profil de température. Ces quatre conditions aux limites sont alors : mesures de la température en entrée, en fond, en sortie de puits et une condition d'égalité au fond entre la température dans le train de tiges θ_1 et la température dans l'annulaire θ_2 . A chaque instant, le profil est ajusté pour passer par les points de mesure : nous avons

donc une estimation du profil thermique en temps réel. Une programmation avec un logiciel de type tableur permet d'obtenir aisément la représentation du profil évoluant en temps réel.

Les figures 2, 3 et 4 représentent respectivement le profil de température du fluide de forage dans un puit Onshore vertical à un débit de 500l/min, 1000l/min et 2000l/min. L'expression analytique déterminée permet très simplement de calculer la température T en degrés Celsius du fluide dans le train de tiges (courbe 01) et dans l'annulaire (courbe 02) en fonction de la profondeur P en mètre. L'expression analytique dépend de plusieurs paramètres qui peuvent être fixés au départ. Nous utilisons par défaut des valeurs typiques de ces paramètres. Pour déterminer le profil de température des figures 2, 3 et 4, le gradient géothermique α est supposé constant pour correspondre à la situation Onshore du puits. En effectuant les mesures de température, 20°C en entrée, 35°C en fond et 24°C en sortie du puits, le profil de température est entièrement déterminé.

Le cas du puits Offshore vertical peut être abordé en considérant que le profil géothermique du milieu environnant le puits se décompose en deux domaines : soient θ_m le profil thermique de la mer et θ_s le profil thermique du sol. Le gradient thermique α est supposé constant sur chacun des domaines mais discontinu au passage d'un domaine à l'autre. Soient α_m le gradient thermique de la mer et α_s le gradient thermique du sol. Nous considérons alors deux séries d'équations (une pour chaque domaine) pour chacune des expressions générales dans les tiges et dans l'annulaire. On obtient ainsi quatre équations découpées qui représentent le profil thermique du fluide de forage dans le puits. L'équation $\theta_{11}(z)$ correspond au profil de température dans le train de tiges dans la mer, $\theta_{12}(z)$ correspond au profil de température dans le train de tiges dans le sol, $\theta_{21}(z)$ correspond au profil de température dans l'annulaire dans le sol et $\theta_{22}(z)$ correspond au profil de

température dans l'annulaire dans la mer, θ_{11} étant indépendante de θ_{12} et θ_{21} étant indépendante de θ_{22} :

$$\begin{aligned}\theta_{11}(z) &= -K_1 Be^{r_1 z} - K_2 Be^{r_2 z} + \theta_m - \frac{\alpha s}{B} \\ \theta_{12}(z) &= -K_3 Be^{r_1 z} - K_4 Be^{r_2 z} + \theta_m - \frac{\alpha m}{B} \\ \theta_{21}(z) &= -K_5(B+r_1)e^{r_1 z} - K_6(B+r_2)e^{r_2 z} + \theta_m \\ \theta_{22}(z) &= -K_7(B+r_1)e^{r_1 z} - K_8(B+r_2)e^{r_2 z} + \theta_m\end{aligned}$$

Ceci porte à huit le nombre de constantes d'intégrations (K_1 à K_8). Les conditions aux limites sont alors : mesures des températures en entrée, en sortie, en fond de puits, condition d'égalité au fond entre la température tige et la température annulaire auxquelles nous ajoutons la continuité des profils thermiques dans le train de tiges et dans l'annulaire à la jonction des deux domaines et la continuité de la dérivée des profils thermiques dans le train de tiges et dans l'annulaire à la jonction des deux domaines. De la même façon, il est alors possible d'obtenir en temps réel un profil thermique réaliste physiquement qui passe par les points de mesure. La figure 5 représente le profil de température thermique d'un fluide de forage dans un puits Offshore à partir des quatre équations θ_{11} , θ_{12} , θ_{21} et θ_{22} . Le fluide circule à 500l/min et les températures mesurées sont 20°C en entrée, 15°C en sortie et 30°C en fond du puits. Les gradients thermiques sont choisis constants dans chacun des domaines traversés par le puits.

Les puits déviés représentent la majorité des forages actuels. Le problème physique n'est pas fondamentalement différent et peut être traité de la même façon que le forage Offshore : il suffit de découper le puits en deux domaines, chaque domaine étant caractérisé par un gradient thermique différent correspondant au milieu environnant le puits. Dans le cas du puits dévié, la profondeur correspond à la distance parcourue en suivant le trajet du puits. Les expressions générales θ_1 et θ_2

représentatives du profil thermique sont découpées chacune en deux d'équations indépendantes. La partie verticale est caractérisée par le gradient thermique α du milieu environnant le puits, la partie déviée est caractérisée par une équation du profil thermique du milieu environnant le puits $\theta_d = \alpha \cdot \sin(\phi) \cdot z + \theta_0$, ϕ étant l'angle d'inclinaison. Les mêmes conditions aux limites (mesures de températures en entrée, en sortie et en fond de puits, égalité au fond entre la température tige et la température annulaire, et la continuité des profils thermiques et de la dérivée des profils thermiques dans le train de tiges et dans l'annulaire à la jonction des deux domaines) permettent alors de résoudre les équations et d'obtenir l'expression du profil de température dans les tiges et dans l'annulaire.

Il est possible de combiner la manière de procéder pour le puits Offshore vertical et le puits Onshore dévié afin de déterminer le profil de température dans un puits Offshore dont le forage dans le sol est dévié. Le domaine est découpé en trois domaines différents : soient θ_m le profil thermique du domaine vertical dans la mer, θ_s le profil thermique du domaine vertical dans le sol et θ_d le profil thermique du domaine dévié dans le sol. La figure 6 représente le profil thermique de forage dans un puits Offshore dévié. Le fluide circule à 500l/min et les températures mesurées sont de 20°C en entrée, 23°C en fond et 15°C en sortie de puits.

Selon la même méthode que pour le puits Offshore vertical ou le puits Onshore dévié, on peut déterminer le profil thermique d'un puits vertical Onshore dont le gradient thermique de la formation change en fonction de la profondeur. Le puits est découpé en domaines caractérisés par une équation thermique du milieu environnant le puits. Les expressions générales θ_1 et θ_2 représentatives du profil thermique sont alors découpées chacune en autant d'équations indépendantes que de domaines différents. Les mêmes conditions aux limites (mesures de températures en entrée, en sortie et en fond de puits, égalité au fond entre la température tige et la température annulaire, et la continuité des profils thermiques et de la dérivée des profils thermiques dans le train de tiges et dans l'annulaire à la jonction des deux

domaines) permettent alors de résoudre les équations et d'obtenir l'expression du profil de température dans les tiges et dans l'annulaire.

En répétant à chaque nouvelle mesure de température le calcul pour obtenir l'expression du profil de température du fluide de forage, nous obtenons une représentation du profil de température évoluant dans le temps. La figure 7 représente l'évolution du profil de température du fluide de forage dans un puits Offshore au cours du temps. Le graphique disposé sur la partie supérieure de la figure 7 représente l'évolution en fonction du temps t en seconde des paramètres de débit D en l/min du fluide de forage, de température T en °C du fluide de forage en entrée T_1 , en fond T_2 et en sortie T_3 du puits. Les trois graphiques en partie inférieure représentent le profil de température à trois temps différents et permettent d'observer son évolution.

La connaissance du profil thermique du fluide de forage à chaque instant permet de calculer en temps réel les pertes de charge dans le puits en prenant en compte les effets thermiques. Ceci donne une meilleure estimation des pressions de fond et pression d'injection pour les puits complexes.

Une autre utilisation de la détermination du profil thermique du fluide de forage en temps réel est la prévention de la formation des hydrates. Les hydrates se forment dans les conditions de basses températures et de hautes pressions, conditions qui sont réunies notamment dans les puits-offshore profonds à l'interface sol/mer. La connaissance du profil de température permet de déterminer les zones où la température du fluide de forage est inférieur au minimum à partir duquel se forment les hydrates, puis d'agir en conséquence, par exemple en augmentant le débit ou en réchauffant le fluide afin d'éviter cette formation d'hydrates.

REVENDICATIONS

- 1) Méthode de détermination du profil thermique d'un fluide de forage en circulation dans un puits en cours de forage dans laquelle on effectue les étapes suivantes :
 - a) on détermine une expression générale θ_1 du profil thermique du fluide à l'intérieur du train de tiges dans le puits et une expression générale θ_2 d'un profil thermique du fluide dans l'annulaire correspondant, en utilisant l'équation de propagation de la chaleur qui prend en compte un profil thermique du milieu environnant le puits,
 - b) on mesure la température du fluide à l'entrée T1, au fond T2 et en sortie T3 du puits,
 - c) on impose aux expressions θ_1 et θ_2 de vérifier les conditions limites de températures T1, T2 et T3.
- 2) Méthode selon la revendication 1 dans laquelle après l'étape c) on effectue l'étape :
 - d) on trace le profil thermique du fluide de forage en fonction de la profondeur.
- 3) Méthode selon la revendication 1 et 2 dans laquelle on réitère les étapes b), c) et d) pour obtenir un profil de température en temps réel.
- 4) Méthode selon l'une des revendications 1 à 3 dans laquelle :
 - à l'étape a), les expressions générales θ_1 et θ_2 comportent des constantes inconnues,
 - à l'étape c), on impose aux expressions θ_1 et θ_2 de vérifier les conditions limites de températures T1, T2 et T3 en déterminant lesdites constantes inconnues.

5) Méthode selon l'une des revendications 1 à 4 dans laquelle à l'étape a) on utilise l'équation de propagation de la chaleur qui prend en compte au moins l'équation thermique du milieu environnant le puits, le débit du fluide et le bilan des échanges thermiques subis par le fluide, lesdits échanges thermiques comprenant au moins les échanges entre le fluide de forage ascendant et descendant

6) Méthode selon l'une des revendications 1 à 5 dans laquelle à l'étape a) on utilise l'équation de propagation de la chaleur dans un milieu homogène sur un cylindre de hauteur infinie centré sur le puits, ledit cylindre comportant le train de tiges qui guide le fluide descendant et l'annulaire, enveloppant ledit train de tiges, qui guide le fluide ascendant.

7) Méthode selon l'une des revendications 1 à 6 dans laquelle :

- à l'étape a), les expressions générales θ_1 et θ_2 se décomposent chacune en plusieurs équations indépendantes,
- à l'étape c), en plus, on impose aux profils et aux dérivées des profils thermiques du fluide à l'intérieur du train de tiges et dans l'annulaire correspondant d'être continus.

8) Méthode selon l'une des revendications 1 à 5 appliquée à un puits offshore vertical dans laquelle :

- à l'étape a), on décompose chacune des expressions générales θ_1 et θ_2 en deux équations indépendantes respectivement θ_{11} et θ_{12} , θ_{21} et θ_{22} , en prenant en compte le profil thermique du milieu environnant le puits,
- à l'étape c), en plus, on impose aux profils et aux dérivées des profils thermiques du fluide à l'intérieur du train de tiges et dans l'annulaire correspondant d'être continus.

- 9) Utilisation de la méthode selon l'une des revendications 1 à 7 pour calculer les pertes de charge du fluide de forage en circulation dans un puits en cours de forage.
- 10) Utilisation de la méthode selon l'une des revendications 1 à 7 pour déterminer les zones de formation d'hydrates dans le fluide pendant l'opération de forage.

FIG.1

INSTITUT NATIONAL
DE LA PROPRIÉTÉ INDUSTRIELLE

FIG.2

2/5

FIG.3

FIG.4

BEST AVAILABLE COPY

FIG.6

BEST AVAILABLE COPY

