Three-hop
Reasoning for
Emotion Cause
Analysis in Context



Nicolay Rusnachenko

### Outline

 Mean How to reason emotion states and causes by using LLMs

 How to align emotion state and causes within a single model

iii How to quick start with pretrained models

## Conversations from F.R.I.E.N.D.S. TV-show

Source of Data: SemEval-2024 (ECAC-2024) Competition

ECF dataset: <a href="https://arxiv.org/pdf/2110.08020">https://arxiv.org/pdf/2110.08020</a>

**1.3K** conversations and **13.5K** utterances, **9.2K** emotion-cause pairs are annotated, covering three modalities (text, visual, speech)



### Dialogue Structures (Textual Modality)



Emotion classes: joy, surprise, anger, sadness, disgust, fear, and neutral

| $u_{state} \backslash e^{u \to *}$ | JOY  | SUR  | ANG  | SAD  | DIS | FEA |
|------------------------------------|------|------|------|------|-----|-----|
| total                              | 2653 | 2092 | 1984 | 1336 | 518 | 296 |
| JOY                                | .89  | .06  | .03  | .01  | .01 | .00 |
| SURPRISE                           | .07  | .78  | .07  | .03  | .03 | .02 |
| ANGER                              | .01  | .07  | .83  | .06  | .02 | .02 |
| SADNESS                            | .02  | .09  | .06  | .81  | .01 | .01 |
| DISGUST                            | .03  | .07  | .14  | .06  | .70 | .01 |
| FEAR                               | .02  | .13  | .08  | .05  | .04 | .68 |
| NEUTRAL                            | .24  | .38  | .22  | .08  | .04 | .03 |

Emotion caused by person mostly driven by the emotional state of the speaker

Going with history of 3 utterances would cover **95% of emotion** causes in ECAC-2024

| Parameter                              | future | past |      |      |      |      |
|----------------------------------------|--------|------|------|------|------|------|
| $\delta = u_{id}^{tgt} - u_{id}^{src}$ | < 0    | 0    | 1    | 2    | 3    | 4    |
| Causes count                           | 377    | 4605 | 2759 | 810  | 332  | 160  |
| Average per $\delta$                   | 0.12   | 3.35 | 2.01 | 0.59 | 0.24 | 0.12 |
| Covering (%)                           | _      | 51.9 | 82.9 | 92.1 | 95.8 | 97.6 |

# Reasoning





Common sense reasoning domain

step-by-step reasoning for gaining the task answer

https://arxiv.org/abs/2205.11916



**Question:** How this could be applied in Emotion Causes extraction?

# Concept of Robust Reasoning

"I ask the fundamental question of rationality: why do you believe what you believe? What do you think you know and how do you think you know it? What makes you think Lucius wouldn't sacrifice you Draco shot Harry another odd look. "Just what do you kno way he'd sacrifice anything else for power?" "Um...seat on the Wizengamot, seat on Hogwarts' Board o incredibly wealthy, has the ear of Minister Fudge, has the ther?"

What and how if you breakdown the fundamental question of rationality.

- **Fact** (What do you think you know)
- Opinion on it? (how do you think you know it).

# Concept of Three-Hop Reasoning





### Methodology in Three Parts

For a conversation that involves speaker A and speaker B in conversation further:

- **Part 1:** Reasoning Emotion State of Speaker A
- **Part 2:** Reasoning **Emotion Cause** of Speaker A towards the speaker B
- **Part 3:** Revise Reasoning about speaker's A emotion state while Reasoning on Emotion it causes to B



### PART 1: Speakers Emotion States





**Step 1**:  $s'_1 = [C_1(X), \text{ which text spans are }]$ possibly causes emotion on  $u_{text}^{tgt}$ ?]

**Step 2**:  $o'_1 = [C_2(C_1, s'_1)]$ . Based on the common sense, what is the implicit opinion towards the mentioned text spans that causes emotion on  $u_{text}^{tgt}$ , and why?]



**Step 3**:  $e'_1 = [C_3(C_2, o'_1)]$ . Based on such opinion, what is the emotion state of  $u_{text}^{tgt}$ ?]

Context (X):

Text spans + target

We refer to u<sub>text</sub> (target) as the last conversation utterance.



### PART 2: Reasoning Caused Emotion





**Step 1**:  $s_2' = [C_1(X)]$ , which specific text span of  $u_{text}^{src}$  is possibly causes emotion?]

**Step 2**:  $o'_2 = [C_2(C_1, s'_2)]$ . Based on the common sense, what is the implicit opinion towards the cause of mentioned text span of  $u_{text}^{src}$ , and why?]

#### Context (X):

source + span + target



Step 3:  $e'_2 = [C_3(C_2, o'_2)]$ . Based on such opinion, what is the emotion caused by source towards the last conversation utterance?



We refer to u<sub>text</sub> (target) as the last conversation utterance.

### PART 3: Revise the Knowledge



Step 3.1:  $u_{state}^{\prime src} = [C_3(C_2, o_2^{\prime})]$ , Based on such opinion, what is the emotion state of  $u_{text}^{src}$ ?]

## Model Training Concept

Two stage approach for tuning 🔥 LLM (Flan-T5):



**Flan-T5:** https://arxiv.org/pdf/2210.11416



### Resources Construction (ECAC-2024)

Size of context X equals to 3. (k = 3)

**D**state Resource Construction

**D**cause Resource Construction

For train/dev we adopt 9:1 proportion split

| Source                     | TRAIN | TEST <sub>json</sub> |                 |
|----------------------------|-------|----------------------|-----------------|
| Part                       | train | dev                  | test            |
| $D_{\text{state}}$ (total) | 12144 | 1475                 |                 |
| NEUTRAL                    | 5299  | 630                  |                 |
| JOY                        | 2047  | 254                  |                 |
| SURPRISE                   | 1656  | 184                  |                 |
| ANGER                      | 1423  | 192                  |                 |
| SADNESS                    | 1011  | 136                  |                 |
| DISGUST                    | 372   | 42                   |                 |
| FEAR                       | 336   | 37                   |                 |
| D <sub>cause</sub> (total) | 30445 | 3612                 | 15794           |
| NEUTRAL                    | 23750 | 2765                 | 15794           |
| JOY                        | 2111  | 279                  | _               |
| SURPRISE                   | 1725  | 202                  | _               |
| ANGER                      | 1307  | 174                  | ( <del></del> ) |
| SADNESS                    | 932   | 120                  | -               |
| DISGUST                    | 387   | 47                   | -               |
| FEAR                       | 233   | 25                   | _               |

<sup>\*</sup> Amount of input contexts

### Statistics of Flan-T5 fine-tuning

#### Flan-T5-BASE (248M parameters):



Figure 2: Result analysis of the preliminary fine-tuning of Flan-T5<sub>base</sub> on  $D_{\text{state}}$  dev using THOR<sub>STATE</sub> technique per epoch by F1(E')

#### Stage 2:

#### **Emotion Cause Extraction**

On top of the pre-trained model from the STAGE 1.

# Stage 1: Emotion State Extraction



Figure 3: Flan-T5<sub>base</sub>† fine-tuning results comparison by F1(E') on  $D_{\text{cause}}$  dev part per each epoch across fine-tuning techniques: PROMPT, THOR<sub>CAUSE</sub>, and THOR<sub>CAUSE-RR</sub>.

### Results [Stage 2]

- We compare the results with the PROMPT-based approach trained on D-cause.
- The application of THoR-cause slightly surpasses / nearly similar to PROMPT-based
- 3. The application of Reasoning Revision results in 2.1% performance increment (dev) by F1(E')

| Source                    | dev    | test     |          |        |        |  |
|---------------------------|--------|----------|----------|--------|--------|--|
| Model                     | F1(E') | $F1_s^w$ | $F1_p^w$ | $F1_s$ | $F1_p$ |  |
| PROMPT                    |        |          |          |        | 03-03  |  |
| FT5 <sub>base</sub> ‡     | 43.51  | 9.68     | 22.27    | 10.05  | 22.21  |  |
| <b>THOR</b> <sub>CA</sub> | USE    |          |          |        |        |  |
| FT5 <sub>base</sub> ‡     | 43.72  |          | _        | -      | _      |  |
| <b>THOR</b> <sub>CA</sub> | USE-RR |          |          |        |        |  |
| FT5 <sub>base</sub> ‡     |        | 9.74     | 23.54    | 10.33  | 23.94  |  |

### Alignment

Worth to mention that result model has aligned emotion state and emotion causes after two-stage training process and Reasoning Revision Application

| $u_{state} \backslash e^{u \to *}$ | JOY | SUR | ANG | S   | DIS | FEA |
|------------------------------------|-----|-----|-----|-----|-----|-----|
| JOY                                | .87 | .08 | .02 |     | .01 | .00 |
| SURPRISE                           | .03 | .75 | .06 | .05 | .03 | .01 |
| ANGER                              | .05 | .14 | .68 | .08 | 03  | .01 |
| SADNESS                            | .06 | .11 | .03 | .76 | .02 | 02  |
| DISGUST                            | .07 | .11 | .07 | 05  | .68 | .01 |
| FEAR                               | .00 | .15 | .09 | .02 | .00 | .74 |
| NEUTRAL                            | .36 | .40 | .07 | .12 | .03 | .02 |

Table 8: Distribution statistics between speaker state  $(u_{state})$  and emotion speaker causes  $(e^{u \to *})$  for automatically extracted emotion-cause pairs by Flan-T5<sub>base</sub>‡ (THOR<sub>CAUSE-RR</sub> technique) from the evaluation data (TEST<sub>json</sub>); values in each row are normalized

| $u_{state} \backslash e^{* \to u}$ | TOY | SUR | ANG | SAD | DIS | FEA |
|------------------------------------|-----|-----|-----|-----|-----|-----|
| JOY                                | .97 | .01 | 01  | .00 | .01 | .00 |
| SURPRISE                           | .04 | .89 | .04 | 01  | .01 | .01 |
| ANGER                              | .04 | .05 | .83 | .05 | .02 | .01 |
| SADNESS                            | .02 | .02 | 03  | .89 | .02 | .01 |
| DISGUST                            | .02 | .04 | .05 | 07  | .81 | .01 |
| FEAR                               | .00 | .06 | .07 | .04 | 03  | .80 |
| NEUTRAL                            | .60 | .13 | .03 | .16 | .05 | .02 |

Table 9: Distribution statistics between speaker state  $(u_{state})$  and emotion caused on them  $(e^{*\rightarrow u})$ , for automatically extracted emotion-cause pairs by Flan-T5<sub>base</sub>‡ (THOR<sub>CAUSE-RR</sub> technique) from the evaluation data (TEST<sub>json</sub>); values in each row are normalized

### Demo

https://colab.research.google.com/github/nicolay-r/THOR-ECAC/blob/master/SemEval\_2024\_Task\_3\_FlanT5\_Finetuned\_Model\_Usage.ipynb

### Conclusion

- Mathematical How to reason emotion states and causes by using LLMs
  - Using Three-Hop reasoning concept
- How to align emotion state and causes within a single model
  - Using Reasoning-Revision technique
- iii How to quick start with pretrained models
  - Demo and other materials (next slide)

### Related Resources

#### Paper:

https://aclanthology.org/2024.semeval-1.4/

#### **Github:**

https://github.com/nicolay-r/THOR-ECAC

#### **Trained Model:**

https://huggingface.co/nicolay-r/flan-t5-emotion-cause-thor-base

#### **Competition details:**

https://codalab.lisn.upsaclay.fr/competitions/16141