两相混合式步进电机专用集成电路使用说明

一、管脚定义:

二、管脚说明:

管脚编号	管脚名称	属性	功能说明		
28	S0	数字、输入	细分数选择端(见细分数控制表)		
1	S1	数字、输入	细分数选择端(见细分数控制表)		
2	S2	数字、输入	细分数选择端(见细分数控制表)		
3	VCC	数字电源	芯片工作电源(+5V)		
4	UA	数字、大电流输出	A相H桥上端控制端		
5	DA	数字、大电流输出	A相H桥下端控制端		
6	UA-	数字、大电流输出	A相H桥上端控制端		
7	DA-	数字、大电流输出	A相H桥下端控制端		
8	UB	数字、大电流输出	B相H桥上端控制端		
9	DB	数字、大电流输出	B相H桥下端控制端		
10	UB-	数字、大电流输出	B相H桥上端控制端		
11	DB-	数字、大电流输出	B相H桥下端控制端		
12	CPI	数字、输入	步进脉冲输入端,下降沿有效		
13	RESET	数字、输入	芯片复位端,低电平有效		
14	GND	数字地	电源地		
15	U/D	数字、输入	旋转方向控制端		
16	FREE	数字、输入	脱机控制端,低电平有效		

17	JB	模拟、双向	B相电流检测输入端		
18	PFDB	模拟、输入	B相 PFD 调节输入端		
19	RCB	模拟、双向	B 相斩波频率控制(外接 RC)端		
20	VCC	模拟电源 芯片工作电源(+5V)			
21	GND 模拟地 电源地		电源地		
22	REF	模拟、输入	电流大小调节输入端		
23	RCA	模拟、双向	A 相斩波频率控制(外接 RC)端		
24	PFDA	模拟、输入	A相PFD调节输入端		
25	JA	模拟、双向	A相电流检测输入端		
26	Select (0)	数字、输入	NC		
27	DOWN	数字、输入	半流锁定外部控制端(见四)		

三、细分数控制

S[2; 1; 0]	000	001	010	011	100	101	110	111
细分数	2	16	32	64	5	10	20	40

四、外部控制半流锁定(以开漏方式输出 down 信号)

- (1) 芯片的 down 信号高有效,只输出。
- (2) cpi 的周期小于 0.5 秒时芯片的 down 信号变为逻辑"1"输出,接外部电路后, down 信号有效时,变为逻辑"0"输出,具体应用见下图:

五、衰减方式控制(A、B相可分别单独控制)

控制电压 PFDA/PFDB	衰减模式
PFDA<1.1V	快速衰减模式
PFDA>3V	慢速衰减模式
1.1V <pfda<3v< th=""><th>混合衰减模式</th></pfda<3v<>	混合衰减模式

六、封装形式:

- 1、SOP-28 封装(见图一):
- 2、SSOP-28L 封装(见图二):

(图一)

(图二)

附: BY-5064 的使用说明

注:(这里细分数只选用四个细分状态进行说明,用户可根据需要按照上述细分 表设置选择)。

这是一款小型化,多功能,效率高,使用方便的两相混合式步进电机专用电路,配合简单的外围电路即可实现高性能的驱动电路。

- 一、细分选择:两个管脚(P2, P28)可选择四个细分状态(见细分数控制表)。
- 二、UA 至 DB-(P4 至 P11)为环形分配器输出端,分别控制驱动电路的相序,如图

其中, DA、DA-、DB、DB-为 H 桥下半桥控制端,每端有约 20mA 的瞬间驱动能力,在输出电流小于 2A 时,可直接推动功率管。

- 三、CP2(P12)输入脉冲控制端,内部已含有施密特触发器。
- 四、RESET (P13) 复位端,必须外接 RC 复位信号,典型值,R1=330K,C1=2.2U。 如图 (二):

- 五、U/D (P15),正、反转控制端。U/D=1时,正转;U/D=0时反转。内部已含有施密特触发器。
- 六、FREE (P16), 脱机端, 低电平有效。FREE=1 时, 芯片正常工作; FREE=0 时, 芯片输出全部为零。不用此功能时, 此端可直接接 VCC
- 七、JB (P17), JA (P25) 分别为 A、B 相电流采样控制端,典型应用为:

检测电阻一般为 0.12 欧至 0.20 欧 滤波参数为 R=2K, C=1500P。

上拉电阻为 18K 左右,必须注意的是,此端为电流精确检测端,对检测电阻及 RC 滤波电路的参数有非常精确的要求(如 1%精度),并且与 R、C 的比例有关。一般情况下,我们使用的元件不能达到要求,从而会引起芯片内部运算放大器的失调,造成控制波形,尤其是细分状态下的阶梯波的波形偏移。此时电机会出现步矩不均匀,噪音大等现象。解决这一问题的方法是:先固定检测电阻及滤波电路中 R、C 的值,不必考虑精度,把这部分当作整体输入,这时只需调节上拉电阻 P1, P2,用示波器监视电阻上的波形(即芯片内部已设定的的波形)调至标准的正弦波即可。如图:

标准波形:

2 细分步数	16 细分步数	A 相绕组电流	5 细分步数	10 细分步数	A 相绕组电流
1	1	0.0%		1	0.0%
	2	9.8%	1	1	0.07,
	3	19.5%		2	15.6%
	4	29%	2	3	30.9%
	5	38.3%] -		001378
	6	47.1%		4	45.4%
	7	55.6%	3	5	58.8%
	8	63.4%		_	
2	9	70.7%		6	70.7%
	10	77.3%	4	7	80.9%
	11	83.1%		8	00.1%
	12	88.2%		8	89.1%
	13	92.4%	5	9	95.1%
	14 95.7%			10	98.8%
	15	98.1%		10	75.5%
	16	99.5%	6	11	100%

八、PFDB (P18)、PFDA (P24): 衰减方式控制端。

一般建议为:细分状态下用快衰减方式,即设定 PFDB=0, PFDA=0。此时电机细分步矩均匀,运行平稳。否则振动较明显。

不细分(即1/2步)时,建议用慢衰减方式,此时电机发热小,无噪音。

九、RCB(P19)、RCA(P23): 斩波时间调整端。如图(四):

典型应用为:

一般建议为:细分状态下(即快衰减方式下),R1=R2=20K,C1=C2=1500P

不细分状态下(即慢衰减方式下), R1=R2=33K, C1=C2=1500P

十、REF(P22)端:电流设定端。此端电位设定的大小直接决定驱动桥电流的大小。 R1、R3为电位电阻,R2为电位器,调节R2可直接改变设定电流。如图(五):

