專案計劃書

1.題目: Plant Pathology Challenge [kaggle]

2. 資料描述:

傳統上使用人工的方式,消耗人力及費時。再者,對於疾病的錯誤判斷可能導致抗藥性的病原體產生,使得疾病難以被根治。此為CVPR2020的FGVC7研討會挑戰。 挑戰目標:

- 1. 準確分類test資料集中,健康圖片或不同患病的類別
- 2. 分類多種疾病類別
- 3. 可根據現實生活中的情況下量化疾病的研究程度
- 4. 處理少見的類別
- 5. 解決深度感知問題(葉子的角度、光線、陰影及年紀)
- 6. 將專家知識整合到識別中(量化及利用計算機視覺方法引導計算)

2-1 輸入與輸出

輸入

特徵(feature):

feature:RGB照片(1822張)

答案:

healthy, multiple_diseases, rust, scab

輸出

給定test資料集,所檢測的結果。

輸入答案 - scab

有明顯的棕色斑點、污漬,真菌或細菌引起的各種植物病害, 並導致在果實, 葉或根上形成硬殼狀斑點。

輸入答案 - rust

有明顯的棕黃色斑點, 特殊真菌感染

輸入答案 - multiple diseases

有黃色、棕色斑點, 每一種有兩種以上

輸入資料視覺化

棕色斑點的B通道(藍色)值較高

2-2 資料分佈情形

2-2-1 盒鬚圖分析

2-2-2 離散分佈

Distribution of red channel values

由上可知資料的分佈情形,綠色較多,藍色的較少,每個顏色都是呈現常態分佈

2-2-3 訓練集類別的分佈情形

scab最多, 多種疾病最少

3. 模型&訓練過程

Conv,k(3,3) 64*2、128*2、256*2、512*3 Maxpool,(2,2) acc:0.8	model accuracy 0.8 0.7 0.6 0.7 0.6 0.7 0.7 0.7 0.7
Conv,k(3,3) 64*2、128*2、256*2、512*3、512*3 Maxpool,(2,2) acc:0.9	0.9 train valid 0.6 0.7 0.5 0.0 0.5 1.0 1.5 20 2.5 3.0 3.5 4.0 0.5 0.0 0.0
DenseNet121 with GlobalAveragePooling2Dacc:0.9941	Accuracy vs. Epochs 1
DenseNet121-modified with GlobalAveragePooling2D Dense(2048) *2	Accuracy vs. Epochs 1
EfficientNetB7acc:0.9889	1
EfficientNetB7 - modifiedacc:0.9935	Accuracy vs. Epochs 1

InceptionResNetV2acc:0.969	0.95 Train valid:
	0 5 10 15 26 25 30 35 40 epoch
Model	
acc:	

The architecture for our baseline network EfficientNet-B0 is simple and clean, making it easier to scale and generalize.

類神經模型結構 - DenseNet

Figure 6. Schematic diagram of DenseNet model (compressed view).

[2]

類神經模型結構 - leafNet (our model)

類神經模型結構 - InceptionResNetV2

Figure 5. Schematic diagram of InceptionResNetV2 model (compressed view).

[2]

參數請參考附錄

4. 結果比較

縱軸: params, 橫軸:

5. 心得

上完一學期的類神經網路的課,也對深度學習有了更深的認識,也因為老師平常的作業練習及理 論的推導、參數的計算等等,使這次的期末作業也能如期的順利完成,雖然剛開始做Fine-tuning 的時候會很痛苦,看到好不容易計算好的model竟然準確度結果很差,後來我選擇站在巨人的肩 膀上,參考了VGG19的網路架構再做一點改善(因為直接使用VGG19效果不好),我加大 Maxpooling的原因是從訓練資料看有瑕疵的地方都不會很大,而且前面也有提到在藍色通道可以 看出瑕疵的地方,因此使用Maxpooling,而縮減VGG19的原因是,VGG19的參數比較多,有發 生under-fitting的問題,我們簡化網路少掉最後的三層512. 而達到0.95的準確率且over-fitting的問 題也不會很嚴重,雖然從曲線上看訓練有點不穩,validation的曲線程度震盪很大,因此可以加上 L1、L2制約、添加Dropout及增加epoch數可以使模型在更穩定。除此之外,而且stack overflow 也有許多的資源,Kaggle本身也有很多善心的大大提供更有效率的kernel,也讓我認識了一個互 動式的視覺化工具-plotly及Tensorflow分散化訓練(tpu及多GPU的training方式)及資料pipline的方 法, 改進了許多期中以前使用fit generator所遇到的問題, 有一些別人的方法也讓我認識到了一 些在做模型辨識state-of-art的演算法、從閱讀論文開始、了解近期的研究方向及別人是怎麼去設 計架構的,來增加往後設計模型的知識。我也觀察了別人重新訓練model的技巧,並改善了一點 最後幾層來做transfer learning,我們是把他們的最後一層拿掉,加上GlobalAvgPooling及加上幾 層的FCN層,因為這樣可以使得他們比較不會遇到單層線性不可分問題,改進了一點準確率,不 過在DenseNet反而使over-fitting問題更加嚴重。

特別感謝王豐緒老師一學期的用心教導,帶我們不只了解了FCN網路,更了解了CNN、RNN、LSTM、及臉部辨識的理論基礎及實作,也感謝專題老師賈叢林老師提供的運算資源,讓我能順利完成此份期末作業。有機會也會希望能再繼續修老師的進階深度學習的課程。

更詳細可以參考當天demo的投影片:

 $\frac{https://docs.google.com/presentation/d/1S1qe0ZPdjJQNO04-AOHunQ4qWvtONIWou6CSfR1E}{NGs/edit?usp=sharing}$

6. 採坑

● 圖片大小 image_size

原先使用800*800的resolution,因此在colab一直無法使用,因為讀圖片所需的RAM超過colab限制的12G,可以將image_size改小即可

● 訓練準確度很低

原先使用 800*800的圖片時,準確度會很低,大概在0.3-0.4,有試著將pool size放大去讓維度縮小,但效果不佳,可能需要更多時間去做調整,例如改Conv kernel與層數,目前已經試過加大 kernel size及pool size。

• OOM ...Memory... error

以前很常出現這錯誤,後來發現是flatten層與Dense差距過大就會產生此錯誤

7. 學到的小技巧

• Build TensorFlow input pipelines

在之前的作業裡面都是使用fit_generator的方式去做處理,發現處理資料佔大部分的時間 這次期末作業就找加快讀取的技巧,就是使用 tf.data,使用pipline的方式去平行處理,節 省等待時間。

8. 可以改進的地方

根據[7-13],我們知道了有一些論文著重在把背景去除,或者有部分是使用Object tracking的技術去擷取的水果的部位,雖然深度學習比起傳統特徵擷取方法對不同環境的適應性更高,但有時所需的計算資源可能也越多,以後可以試著去做擷取葉子的部分,來讓input的resolution較小,而不是等比例放大而已。

Fig. 12: (a) Image inputted, (b) Image result

Distributed training with TensorFlow

因為有部分模型我是使用Kaggle提供的GPU,也剛好學到了這個技巧,只要定義strategy 就可以使用tpu或者多GPU的分散式訓練方式

1. 定義

```
try:
    tpu = tf.distribute.cluster resolver.TPUClusterResolver()
    print('Running on TPU ', tpu.master())
except ValueError:
    tpu = None
if tpu:
    tf.config.experimental_connect_to_cluster(tpu)
    tf.tpu.experimental.initialize_tpu_system(tpu)
    strategy = tf.distribute.experimental.TPUStrategy(tpu)
    print('use tpu')
else:
    if tf.config.list_physical_devices('GPU'):
      strategy = tf.distribute.MirroredStrategy()
      print('use gpu')
    else: # use default strategy
      print('use cpu')
      strategy = tf.distribute.get_strategy()
使用多GPU: tf.distribute.MirroredStrategy()
使用TPU: tf.distribute.MirroredStrategy()
查看目前支援的加速裝置: tf.config.list_physical_devices()
        2. 使用定義好的strategy方式訓練
with strategy.scope():
    model3 = Sequential()
    model3.add(Conv2D(64, (3, 3),
input_shape=(image_size,image_size,3),padding='same'))
    model3.add(BatchNormalization(axis=-1))
    model3.add(Activation('relu'))
```

model3.add(Conv2D(64, (3, 3),padding='same'))

參考資料

- 1. Thapa, R., Snavely, N., Belongie, S., & Khan, A. (2020). The Plant Pathology 2020 challenge dataset to classify foliar disease of apples. *arXiv preprint arXiv:2004.11958*.
- 2. Mahdianpari, M., Salehi, B., Rezaee, M., Mohammadimanesh, F., & Zhang, Y. (2018). Very deep convolutional neural networks for complex land cover mapping using multispectral remote sensing imagery. *Remote Sensing*, *10*(7), 1119.
- 3. Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017, February). Inception-v4, inception-resnet and the impact of residual connections on learning. In *Thirty-first AAAI conference on artificial intelligence*.
- 4. Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 4700-4708).
- 5. Tan, M., & Le, Q. V. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. *arXiv* preprint *arXiv*:1905.11946.
- 6. Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., & Le, Q. V. (2019). Mnasnet: Platform-aware neural architecture search for mobile. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (pp. 2820-2828).
- 7. Mazen, F. M., & Nashat, A. A. (2019). Ripeness classification of bananas using an artificial neural network. *Arabian Journal for Science and Engineering*, *44*(8), 6901-6910.
- 8. Hassan, N. M. H., & Nashat, A. A. (2019). New effective techniques for automatic detection and classification of external olive fruits defects based on image processing techniques. *Multidimensional Systems and Signal Processing*, *30*(2), 571-589.
- Basri, H., Syarif, I., Sukaridhoto, S., & Falah, M. F. (2019). INTELLIGENT SYSTEM FOR AUTOMATIC CLASSIFICATION OF FRUIT DEFECT USING FASTER REGION-BASED CONVOLUTIONAL NEURAL NETWORK (FASTER R-CNN). Jurnal Ilmiah Kursor, 10(1).
- 10. Sahu, D., & Dewangan, C. (2017). Identification and classification of mango fruits using image processing. *Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol*, 2(2), 203-210.
- 11. Sahu, D., & Potdar, R. M. (2017). Defect identification and maturity detection of mango fruits using image analysis. *American Journal of Artificial Intelligence*, *1*(1), 5-14.
- 12. Thendral, R., & Suhasini, A. (2017). Automated skin defect identification system for orange fruit grading based on genetic algorithm. *Current Sci*, *112*(8), 1704-1711.
- 13. Ireri, D., Belal, E., Okinda, C., Makange, N., & Ji, C. (2019). A computer vision system for defect discrimination and grading in tomatoes using machine learning and image processing. *Artificial Intelligence in Agriculture*, 2, 28-37.
- 14. Veites-Campos, S. A., Ramírez-Betancour, R., & González-Pérez, M. (2018). Identification of cocoa pods with image processing and artificial neural networks. *International Journal of Advanced Engineering, Management and Science*, *4*(7).

網站資料

- https://www.tensorflow.org/guide/data
- https://www.tensorflow.org/guide/data_performance
- https://www.tensorflow.org/guide/distributed training
- https://ai.googleblog.com/2016/08/improving-inception-and-image.html
- https://ai.googleblog.com/2016/08/improving-inception-and-image.html
- https://becominghuman.ai/updated-my-99-40-solution-to-udacity-nanodegree-project-p2-

traffic-sign-classification-5580ae5bd51f

- https://ai.googleblog.com/2018/08/mnasnet-towards-automating-design-of.html
- https://arxiv.org/abs/1807.11626
- https://arxiv.org/abs/1801.04381
- https://en.wikipedia.org/wiki/Neural architecture search

附錄

leafNet(our model)

Layer (type)	Output Shape	Param #
conv2d_9 (Conv2D)		
		256
batch_normalization_11 (Batch_normalization_1)	30 III 10 Ai 45	
activation_12 (Activation)	(None, 224, 224, 64)	0
conv2d_10 (Conv2D)	(None, 224, 224, 64)	36928
batch_normalization_12 (Batch_	c (None, 224, 224, 64)	256
activation_13 (Activation)	(None, 224, 224, 64)	0
max_pooling2d_4 (MaxPooling2	2 (None, 74, 74, 64)	0
conv2d_11 (Conv2D)	(None, 74, 74, 128)	73856
batch_normalization_13 (Batch_	c (None, 74, 74, 128)	512
activation_14 (Activation)	(None, 74, 74, 128)	0
conv2d_12 (Conv2D)	(None, 74, 74, 128)	147584
batch_normalization_14 (Batch_	c (None, 74, 74, 128)	512
activation_15 (Activation)	(None, 74, 74, 128)	0
max_pooling2d_5 (MaxPooling2	2 (None, 24, 24, 128)	0
conv2d_13 (Conv2D)	(None, 24, 24, 256)	295168
)		
conv2d_13 (Conv2D)	(None, 24, 24, 256)	295168
oatch_normalization_15 (Batc	(None, 24, 24, 256)	1024
activation_16 (Activation)	(None, 24, 24, 256)	0
conv2d_14 (Conv2D)	(None, 24, 24, 256)	590080
oatch_normalization_16 (Batc	(None, 24, 24, 256)	1024
activation_17 (Activation)	(None, 24, 24, 256)	0
max_pooling2d_6 (MaxPooling2	(None, 8, 8, 256)	0
conv2d_15 (Conv2D)	(None, 8, 8, 512)	1180160
patch_normalization_17 (Batc	(None, 8, 8, 512)	2048
activation_18 (Activation)	(None, 8, 8, 512)	0
conv2d_16 (Conv2D)	(None, 8, 8, 512)	2359808
patch_normalization_18 (Batc	(None, 8, 8, 512)	2048
activation_19 (Activation)	(None, 8, 8, 512)	0
conv2d_17 (Conv2D)	(None, 8, 8, 512)	2359808
patch_normalization_19 (Batc	(None, 8, 8, 512)	2048
	(None, 8, 8, 512)	0
activation_20 (Activation)		
activation_20 (Activation) max_pooling2d_7 (MaxPooling2	(None, 2, 2, 512)	0
	(None, 2, 2, 512)	0

dense_3 (Dense)	(None,	2048)	4196352
batch_normalization_20 (Batc	(None,	2048)	8192
activation_21 (Activation)	(None,	2048)	0
dense_4 (Dense)	(None,	2048)	4196352
batch_normalization_21 (Batc	(None,	2048)	8192
activation_22 (Activation)	(None,	2048)	0
dense_5 (Dense)	(None,	4)	8196
activation_23 (Activation)	(None,	4)	0
Total params: 15,472,196 Trainable params: 15,459,140 Non-trainable params: 13,056			

EfficientNetB7

Model: "sequential_1"

Layer (type)	Output	Shape	Param #
efficientnet-b7 (Model)	(None,	16, 16, 2560)	64097680
global_average_pooling2d_1 ((None,	2560)	0
dense 1 (Dense)	(None,	4)	10244

Total params: 64,107,924 Trainable params: 63,797,204 Non-trainable params: 310,720

EfficientNet-modified

Output	Shape	Param #
(None,	16, 16, 2560)	64097680
(None,	2560)	0
(None,	2560)	6556160
(None,	2560)	6556160
(None,	4)	10244
	(None, (None, (None,	(None, 16, 16, 2560) (None, 2560) (None, 2560) (None, 2560) (None, 4)

Total params: 77,220,244
Trainable params: 76,909,524
Non-trainable params: 310,720

DenseNet

Layer (type)	Output	Shape	Param #
densenet121 (Model)	(None,	16, 16, 1024)	7037504
global_average_pooling2d (Gl	(None,	1024)	0
dense (Dense)	(None,	4)	4100

Trainable params: 6,957,956 Non-trainable params: 83,648

DenseNet - modified

Layer (type)	Output	Shape	Param #
densenet121 (Model)	(None,	16, 16, 1024)	7037504
global_average_pooling2d (G1	(None,	1024)	0
dense (Dense)	(None,	1024)	1049600
dense_1 (Dense)	(None,	1024)	1049600
dense_2 (Dense)	(None,	4)	4100

Total params: 9,140,804 Trainable params: 9,057,156 Non-trainable params: 83,648

Model

斯东什似 06160488 智紹的 0536036s 种花 05360138 在抗 06370136 薪鄉丞