A Framework for Computing the Privacy Scores of Users in Online Social Networks

Kun Liu

February 4, 2011

Problem Description

How to measure privacy risk of social network users

- Privacy protection Related works.
 - Spamming and Phishing.
 - Social network Attacks.
 - Access control privacy control.
 - Multi-party collaborative privacy control.
 - ...
- What is the privacy risk level?

Contributions of This Paper

- A privacy score computation model.
- Model validation method.

General Observations and Intuitions

- Different profile items(e.g. name, age, address etc.) can contribute differently to the privacy score calculation.
 - We call this difference sensitivity.
 - This property usually depends on the item itself. E.g. some items are inherently more sensitive than others.
- It is common that the more people who can see user's online information, the higher risk user will have. Thus, we can use the scope of information visibility as a factor for privacy score calculation.
 - We call this factor visibility in the privacy score model.

Modeling Social Network Users

$$\Longrightarrow R_{n,N} = \begin{pmatrix} R_{1,1} & R_{1,2} & \cdots & R_{1,N} \\ R_{2,1} & R_{2,2} & \cdots & R_{2,N} \\ \vdots & \vdots & \ddots & \vdots \\ R_{n,1} & R_{n,2} & \cdots & R_{n,N} \end{pmatrix}$$

The Item Response Theory(IRT) Model

$$P_{ij} = \frac{1}{1 + e^{-\alpha_i(\theta_j - \beta_i)}}$$

IRT based Privacy Score model.

We can use IRT to model the privacy score estimation. But we need to reinterpret the IRT model as follows.

- Examinee mapped to a user and question mapped to profile item.
- **②** The ability of examinee θ_j corresponses to attitude of user j.
- **3** The difficulty β_i corresponses to *sensitivity* of of profile item *i*.
- Question discrimination parameter α_i is ignored, and it can be used to adjust the analysis of items and users.

Definition of the Privacy Score

Intuitively, the privacy score should be monotonically increasing with both sensitivity and visibility. So, this paper defines privacy score of user j for item i as $PR(i,j) = \beta_i \times V(i,j)$, and by summing up all the item privacy for user j, we get the privacy score for user j as

$$PR(j) = \sum_{i=1}^{n} PR(i,j) = \sum_{i=1}^{n} \beta_i \times V(i,j).$$

In this definition, V(i,j) represents the visibility of item i for user j, and it can be calculated by

$$V(i,j) = P_{ij} \times 1 + (1 - P_{ij}) \times 0 = P_{ij}$$

where

$$P_{ij} = Prob\{\mathbf{R}(i,j) = 1\}.$$

So, in order to calculate the privacy score PR(j), we need to estimate sensitivity β_i and visibility V(i,j).

Estimating sensitivity $\xi_i = (\alpha_i, \beta_i)$ when $\overrightarrow{\theta} = (\theta_1, \dots, \theta_N)$ is known.

Use Maximum Likelihood Estimation(MLE).

$$\xi_i^{MLE} = \arg\max_{\xi} \prod_{j=1}^N P_{ij}^{R(i,j)} (1 - P_{ij})^{1 - R(i,j)}$$

Partition social network users $\{1, ..., N\}$ into K non-overlapping groups $\{F_1, ..., F_K\}$ s.t. $\bigcup_{g=1}^K F_g = \{1, ..., N\}$. We can derive log-likelihood function as:

$$\xi_i^{MLE} = \arg\max_{\xi} \sum_{q=1}^K [r_{ig}logP_i(\theta_g) + (f_g - r_{ig})log(1 - P_i(\theta_g))]$$

K is the total number of groups; r_{ig} is the number of users in group g who set item i to one; θ_g is the attitude of group g and $f_g = |F_g|$ is total number of users within group F_g . Estimating sensitivity $\xi_i = (\alpha_i, \beta_i)$ when $\overrightarrow{\theta} = (\theta_1, \dots, \theta_N)$ is unknown.

Use Expectation Maximization (EM) method.

E-Step: compute $E[f_g]$ and $E[r_{ig}]$ as follows:

$$E[f_g] = \overline{f_g} = \sum_{j=1}^{N} P(\theta_g | R^j, \overrightarrow{\xi})$$

$$E[r_{ig}] = \overline{r_{ig}} = \sum_{j=1}^{N} P(\theta_g | R^j, \overrightarrow{\xi} \times R(i, j)).$$

 $P(\theta_g|R^j, \overrightarrow{\xi})$ denote the posterior probability distribution of a user's attitude.

M-Step: With the values of $\overline{f_g}$ and $\overline{r_{ig}}$, we can compute a new estimate of $\overrightarrow{\xi}$ with the Newtown-Raphson item-parameters estimation procedure.

Calculating the Posterior Probability of Attitudes

$$P(\theta_j|R^j, \overrightarrow{\xi}) = \frac{P(R^j|\theta_j, \overrightarrow{\xi})g(\theta_j)}{\int P(R^j|\theta_j, \overrightarrow{\xi})g(\theta_j)d\theta_j}$$

By partitioning user attitude into different groups, we can transform the \int to \sum as show below:

$$P(\theta_j|R^j, \overrightarrow{\xi}) = \frac{P(R^j|X_t, \overrightarrow{\xi})g(X_t)}{\sum_{t=1}^K P(R^j|X_t, \overrightarrow{\xi})g(X_t)}$$

In this formula, K is the number of groups of user attitudes, and user attitudes are partitioned into points $\{X_1, X_2, \ldots, X_K\}$. $A(X_t)$ is the attribute probability value determined by X_t and $\sum_{t=1}^K A(X_t) = 1$.

IRT-Based Computation of visibility

$$V(i,j) = P_{ij} = Prob\{R(i,j) = 1\}$$

- If $\overrightarrow{\theta}$, $\overrightarrow{\alpha}$, $\overrightarrow{\beta}$. Visibility can be calculated using IRT probability formula.
- If parameters are not given, they can be estimated using MLE/EM method, and similarly, $\overrightarrow{\theta}$ can be estimated with MLE method as follows:

$$\overrightarrow{\theta^{MLE}} = \arg\max_{\xi} \sum_{i=1}^{n} [R(i,j)logP_{ij} + (1 - R(i,j))log(1 - P_{ij})]$$

Polytomous Privacy score computation

The above dichotomous privacy model can be easily promoted to the one with multiple privacy settings. (Omitted currently)

A naive privacy score computation method

Naive computation of Sensitivity:

$$\beta_i = \frac{N - |R_i|}{N}$$

 $|R_i|$ is the number of users who set item i as visible. or

$$\beta_{ik}^* = \frac{N - \sum_{j=1}^{N} I_{R(i,j) \le k}}{N}$$

for polychotomous case.

Naive computation of Visibility:

$$P_{ij} = \frac{|R_i|}{N} \times \frac{|R^j|}{n}$$

and

$$P_{ijk} = \frac{\sum_{j=1}^{N} I_{(R(i,j)=k)}}{N} \times \frac{\sum_{i=1}^{n} I_{R(i,j)=k}}{n}$$

for polychotomous case.

Experiment results

Figure 2. Testing the group-invariance property of item parameter estimation using IRT (Figure 2(a)) and Naive (Figure 2(b)) models.

Weakness of this paper

- This paper fails to explicitly consider the effects of social graph.
- This paper doesn't consider the balance between privacy and utility. Utility here is not clearly defined.

The End, Thanks!