

SpaceCube v2.0 Space Flight Hybrid Reconfigurable Data Processing System

2014 IEEE Aerospace Conference

Track 7.01:

High Performance Space Processing and High-Speed Performance Satellite Architectures and Standards

Dave Petrick
Embedded Systems Group Leader

SCIENCE DATA PROCESSING BRANCH
Code 587 "NASA GSFC

SpaceCube

SpaceCube Family Overview

v1.0

2009 STS-125
2009 MISSE-7
2013 STP-H4
2015 STP-H5

v1.5

2012 SMART

v2.0-EM

2013 STP-H4
2015 STP-H5

v2.0-FLT

2015 GPS Demo
- Robotic Servicing
- Numerous proposals
for Earth/Space/Helio

SpaceCube, Target Applications

- Small, light-weight, reconfigurable multi-processor platform for space flight applications demanding extreme processing capabilities
 - Reconfigurable components: FPGA, Software, Mechanical
 - Promote reuse between applications
- Hybrid Flight Computing: hardware acceleration of algorithms to enable onboard data processing and increased mission capabilities
- Example Applications: Instrument Data Interfacing and On-Board Processing, Autonomous Operations, Situational Awareness, Scalable Computing Architectures

Hardware Algorithm Acceleration

Application	Xilinx Device	Acceleration vs CPU
SAR	Virtex-4	79x vs PowerPC 405
Altimeter	FX60	(250MHz, 300 MIPS)
RNS GN FIR	Virtex-4	25x vs PowerPC 405
FPU, Edge	FX60	(250MHz, 300 MIPS)
HHT	Virtex-1	3x vs Xeon Dual-Core
EMD, Spline	2000	(2.4GHz, 3000 MIPS)
Hyperspectral Data Compression	Virtex-1 1000	2x vs Xeon Dual-Core (2.4GHz, 3000 MIPS)
GOES-8 GndSys Sun correction	Virtex-1 300E	6x vs Xeon Dual-Core (2.4GHz, 3000 MIPS)

Notes:

- All functions involve processing large data sets (1MB+)
- All timing includes moving data to/from FPGA
- SpaceCube 2.0 is 4x to 20x more capable than these earlier systems

On-Board Data Reduction

Example SpaceCube Processing

Real-Time Image Tracking of Hubble

Fire Classification

Gigabit Instrument
Interfacing

Xilinx ISS Radiation Data

Data Calibration

Image Compression

High Performance Space Processing System

- “ What defines a %High Performance Space Processing System+?
 - . Memory bandwidth and density, processing speed, reconfigurable, number of processors, I/O bandwidth, scalable, power, size and weight, temperature range, reliability, radiation, software flexibility
 - . Mission Context: differing driving requirements
- “ Problem: All of these system variables push against each other
 - . Not taking the time to fully understand the dynamics between these variables will result in an unoptimized, inefficient design
- “ Our Solution: SpaceCube v2.0
 - . Design Methodology
 - . Pushes all edges of technology for space flight
 - . Maintains excellent reliability standards

Balanced Design Closure of System Variables

Design Flow for Constrained System

SpaceCube v2.0 System

- “ Reconfigurable multi-processing platform based on Xilinx Virtex-5 FPGAs
- “ Extended 3U Compact PCI mechanical standard

Design Heritage

Processor Comparison

Processor	MIPS	Power	MIPS/W
MIL-STD-1750A	3	15W	0.2
RAD6000	35	15W	2.33
ColdFire	60	7W	8
RAD750	250	14W	18
LEON 3FT	89	5.5W	16
LEON3FT Dual-Core	200	10W	20
BRE440 (PowerPC)	266	5W	53
Maxwell SCS750	1200	25W	48
SpaceCube 1.0	3000	7.5W	400
SpaceCube 2.0			
PowerPC (4x)	5000	9W	550
MicroBlaze (4x)	600	8W	75
SpaceCube Mini	2500	5W	400

v2.0 Processor Engineering Model

- 6U Board Design board layout to simulate a 3U layout for major components
- Test sample circuits, layout techniques, and interfacing architectures
- Roll lessons learned into flight system
 - Back-to-Back layout strategy for all like parts
 - Signal integrity solutions
 - Oscillator and power architecture
 - Connector selection
 - Unique layout strategy for accomplishing IPC 6012B Class 3/A PWB

SpaceCube v2.0 Flight System

Power Card

- " 22-38V Input, 7A limit
- " 5V/80W, 3.3V/53W,
- +/-12V/24W

Backplane Card

- " 4 slots
- " Point-to-Point
- " Gigabit
- " 2 processors, 1 I/O
- " 3 processors

Chassis: 12.7 x 23 x 27 cm³

Processor Card

Power Draw: 6-12W

Weight: 0.98-lbs

22 Layers, Via-in-Pad

IPC 6012B Class 3/A

- “ 2x Xilinx Virtex-5 (QV) FX130T FPGAs
 - “ 1x Aeroflex CCGA FPGA
 - . Xilinx Configuration, Watchdog, Timers
 - . Auxiliary Command/Telemetry port
 - “ 1x 64Mb PROM, contains initial Xilinx bitfile (will also support 128Mb PROM)
 - “ 1x 16MB SRAM, rad-hard with auto EDAC/scrub feature
 - “ 4x 512MB DDR SDRAM
 - “ 2x 4GB NAND Flash
 - “ 16-channel Analog/Digital circuit for system health
 - “ Optional 10/100 Ethernet interface
 - “ Gigabit interfaces: 4x external, 2x on backplane
 - “ 12x Full-Duplex dedicated differential channels
 - “ 88 GPIO/LVDS channels directly to Xilinx FPGAs
 - “ Mechanical support for heat sink options and stiffener for Xilinx devices

Design Analysis

Thermal: -40°C to 65°C

Power Integrity

Structural

Signal Integrity

Crosstalk:

Critical net < 10mV
Non Critical net < 70mV

ISS SpaceCube Experiment 2.0

Image Credit: DoD Space Test Program

SpaceCube v2.0 EM

SCIENCE DATA PROCESSING BRANCH • Code 587 • NASA GSFC

STP-H4 Operational on ISS

Next Up: STP-H5 and Sounding Rocket Launch in 2015

ISE2.0 Results

Operations

- GSFC Command Center
- August 2013 - Present

Radiation

FPGA	SEUs
1	17
2	13
3	17

~1 SEU/FPGA/Week
System Resets: TBD

FireStation Instrument Data Processing

Satellite Servicing

STP-H5 Autonomous Rendezvous and Docking Payload

- “ SpaceCube v2.0 EM
- “ Leverages SpaceCube v1.0 RNS/Argon demonstrations

Objective: Robotic Satellite Servicing Mission

- “ SpaceCube v2.0 Flight System
- “ 2 Processors/SpaceCube
- “ 3 SpaceCubes controlling AR&D and robotic tasks

Raven ConOps

Conclusions

- An advanced HPC for space requires well balanced system variables
- Imperative to iterate on design plan before starting schematics
 - No use starting something that will not close on requirements
 - System Designer: Know what you want to build, and how to build it
 - Pull all disciplines into design cycle at the beginning
- SpaceCube design methodology successful in converging on a cutting-edge HPC design given constrained size requirements
 - SIZE/WEIGHT = \$\$ → Make it smaller!!!
 - Back-to-Back parts placement
 - Extensive analysis
 - Built to high reliability standards
- SpaceCube v2.0 Flight System
 - Design heritage leveraged from 3 prior systems
 - Operations heritage leveraged from 5 flights
 - By 2015, 9 SpaceCube systems flown → 22 Xilinx FPGAs in space
 - Competitive HPC for space
 - Multiple mission applications, reconfigurable