Time to darkness

2

$$log_{e}(BF_{01}) = 1.50$$
, $\widehat{\rho}_{Pearson}^{posterior} = -0.08$, $Cl_{95\%}^{HDI}$ [-0.30, 0.14], $r_{beta}^{JZS} = 1.41$

10 15

5

dusk

0-

#\$\frac{1}{5\text{todent}} \frac{1}{74\text{l}} = -0.06, p = 0.95, \hat{r}_{Pearson} = -6.79e-03, Cl_{95\%} [-0.23, 0.22], n_{pairs} = 76

$$t_{\text{Student}}(615) = 2.59, p = 9.88\text{e-}03, \hat{r}_{\text{Pearson}} = 0.10, \text{Cl}_{95\%} [0.03, 0.18], n_{\text{pairs}} = 617$$

 $log_e(BF_{01}) = -0.54$, $\hat{\rho}_{Pearson}^{posterior} = 0.10$, $Cl_{95\%}^{HDI}$ [0.02, 0.18], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(201) = 4.14, p = 5.03\text{e-}05, \hat{r}_{\text{Pearson}} = 0.28, \text{Cl}_{95\%}[0.15, 0.40], n_{\text{pairs}} = 203$$

$$log_{e}(BF_{01}) = -5.90$$
, $\hat{\rho}_{Pearson}^{posterior} = 0.28$, $Cl_{95\%}^{HDI}$ [0.14, 0.40], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(470) = -7.95, p = 1.45e-14, \hat{r}_{\text{Pearson}} = -0.34, \text{Cl}_{95\%} \text{ [-0.42, -0.26]}, n_{\text{pairs}} = 472$$

 $log_{e}(BF_{01}) = -26.79$, $\hat{\rho}_{Pearson}^{posterior} = -0.34$, $Cl_{95\%}^{HDI}$ [-0.42, -0.26], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(145) = -1.59, p = 0.11, \hat{r}_{\text{Pearson}} = -0.13, \text{Cl}_{95\%} \text{ [-0.29, 0.03]}, n_{\text{pairs}} = 147$$

$$t_{\text{Student}}(476) = -5.25, p = 2.25 \text{e-}07, \hat{r}_{\text{Pearson}} = -0.23, \text{Cl}_{95\%} \text{ [-0.32, -0.15]}, n_{\text{pairs}} = 478$$

$$log_{e}(BF_{01}) = -10.68$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.23$, $Cl_{95\%}^{HDI}$ [-0.31, -0.14], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(140) = -0.27, p = 0.79, \hat{r}_{\text{Pearson}} = -0.02, \text{Cl}_{95\%}$$
 [-0.19, 0.14], $n_{\text{pairs}} = 142$

$$log_{e}(BF_{01}) = 2.01$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.03$, $Cl_{95\%}^{HDI}$ [-0.19, 0.13], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(490) = -2.71, p = 6.90e-03, \hat{r}_{\text{Pearson}} = -0.12, \text{Cl}_{95\%} \text{ [-0.21, -0.03]}, n_{\text{pairs}} = 492$$

$$log_{e}(BF_{01}) = -0.96$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.12$, $Cl_{95\%}^{HDI}$ [-0.20, -0.03], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(197) = -1.63, p = 0.10, \hat{r}_{\text{Pearson}} = -0.12, \text{Cl}_{95\%} \text{ [-0.25, 0.02]}, n_{\text{pairs}} = 199$$

$$log_{e}(BF_{01}) = 0.91$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.11$, $Cl_{95\%}^{HDI}$ [-0.25, 0.03], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(152) = 0.27, p = 0.79, \hat{r}_{\text{Pearson}} = 0.02, \text{Cl}_{95\%}$$
 [-0.14, 0.18], $n_{\text{pairs}} = 154$

 $log_e(BF_{01}) = 2.05$, $\hat{\rho}_{Pearson}^{posterior} = 0.02$, $Cl_{95\%}^{HDI}$ [-0.12, 0.18], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(274) = 0.41, p = 0.68, \hat{r}_{\text{Pearson}} = 0.02, \text{Cl}_{95\%} \text{ [-0.09, 0.14]}, n_{\text{pairs}} = 276$$

 $log_e(BF_{01}) = 2.30, \hat{\rho}_{Pearson}^{posterior} = 0.02, Cl_{95\%}^{HDI} [-0.10, 0.14], r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(56) = 0.30, p = 0.77, \hat{r}_{\text{Pearson}} = 0.04, \text{Cl}_{95\%}$$
 [-0.22, 0.29], $n_{\text{pairs}} = 58$

 $log_e(BF_{01}) = 1.57$, $\hat{\rho}_{Pearson}^{posterior} = 0.04$, $Cl_{95\%}^{HDI}$ [-0.23, 0.27], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(1) = 2.26, p = 0.26, \hat{r}_{\text{Pearson}} = 0.91, \text{Cl}_{95\%} \text{ [NA, NA]}, n_{\text{pairs}} = 3$$

$$log_e(BF_{01}) = -0.15$$
, $\hat{\rho}_{Pearson}^{posterior} = 0.40$, $Cl_{95\%}^{HDI}$ [-0.39, 0.98], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(802) = 1.46, p = 0.14, \hat{r}_{\text{Pearson}} = 0.05, \text{Cl}_{95\%} \text{ [-0.02, 0.12]}, n_{\text{pairs}} = 804$$

 $log_e(BF_{01}) = 1.85$, $\hat{\rho}_{Pearson}^{posterior} = 0.05$, $Cl_{95\%}^{HDI}$ [-0.02, 0.12], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(393) = 3.95, p = 9.13\text{e-}05, \hat{r}_{\text{Pearson}} = 0.20, \text{Cl}_{95\%} \text{ [0.10, 0.29]}, n_{\text{pairs}} = 395$$

$$log_e(BF_{01}) = -5.05$$
, $\hat{\rho}_{Pearson}^{posterior} = 0.19$, $Cl_{95\%}^{HDI}$ [0.11, 0.29], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(66) = 1.36\text{e-}03, p = 1.00, \hat{r}_{\text{Pearson}} = 1.67\text{e-}04, \text{Cl}_{95\%} \text{ [-0.24, 0.24]}, n_{\text{pairs}} = 68$

 $log_{e}(BF_{01}) = 1.69$, $\hat{\rho}_{Pearson}^{posterior} = 4.31e-03$, $Cl_{95\%}^{HDI}$ [-0.22, 0.23], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(252) = -3.41, p = 7.52\text{e-}04, \hat{r}_{\text{Pearson}} = -0.21, \text{Cl}_{95\%} \text{ [-0.32, -0.09]}, n_{\text{pairs}} = 254$$

 $log_{e}(BF_{01}) = -3.29$, $\hat{\rho}_{Pearson}^{posterior} = -0.21$, $Cl_{95\%}^{HDI}$ [-0.32, -0.09], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(22) = -0.23, p = 0.82, \hat{r}_{\text{Pearson}} = -0.05, \text{Cl}_{95\%} \text{ [-0.44, 0.36]}, n_{\text{pairs}} = 24$$

$$log_{e}(BF_{01}) = 1.16$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.04$, $Cl_{95\%}^{HDI}$ [-0.39, 0.36], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(348) = 0.79, p = 0.43, \hat{r}_{\text{Pearson}} = 0.04, \text{Cl}_{95\%}$$
 [-0.06, 0.15], $n_{\text{pairs}} = 350$

 $log_e(BF_{01}) = 2.19$, $\hat{\rho}_{Pearson}^{posterior} = 0.04$, $Cl_{95\%}^{HDI}$ [-0.06, 0.14], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(301) = 2.10, p = 0.04, \hat{r}_{\text{Pearson}} = 0.12, \text{Cl}_{95\%}$$
 [7.83e-03, 0.23], $n_{\text{pairs}} = 303$

$$t_{\text{Student}}(946) = 3.65, p = 2.78\text{e-}04, \hat{r}_{\text{Pearson}} = 0.12, \text{Cl}_{95\%}[0.05, 0.18], n_{\text{pairs}} = 948$$

 $log_{e}(BF_{01}) = -3.60$, $\widehat{\rho}_{Pearson}^{posterior} = 0.12$, $Cl_{95\%}^{HDI}$ [0.06, 0.18], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(668) = 1.58, p = 0.11, \hat{r}_{\text{Pearson}} = 0.06, \text{Cl}_{95\%}$$
 [-0.01, 0.14], $n_{\text{pairs}} = 670$

 $log_e(BF_{01}) = 1.58$, $\hat{\rho}_{Pearson}^{posterior} = 0.06$, $Cl_{95\%}^{HDI}$ [-0.01, 0.13], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(145) = 1.30, p = 0.20, \hat{r}_{\text{Pearson}} = 0.11, \text{Cl}_{95\%}$ [-0.06, 0.26], $n_{\text{pairs}} = 147$

 $log_e(BF_{01}) = 1.24$, $\hat{\rho}_{Pearson}^{posterior} = 0.10$, $Cl_{95\%}^{HDI}$ [-0.06, 0.25], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(7) = -2.31, p = 0.05, \hat{r}_{\text{Pearson}} = -0.66, \text{Cl}_{95\%} \text{ [-0.92, 0.01]}, n_{\text{pairs}} = 9$

 $log_{e}(BF_{01}) = -0.76$, $\hat{\rho}_{Pearson}^{posterior} = -0.51$, $Cl_{95\%}^{HDI}$ [-0.86, 0.01], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(131) = 2.14, p = 0.03, \hat{r}_{\text{Pearson}} = 0.18, \text{Cl}_{95\%}[0.01, 0.34], n_{\text{pairs}} = 133$$

 $log_e(BF_{01}) = -0.19$, $\hat{\rho}_{Pearson}^{posterior} = 0.18$, $Cl_{95\%}^{HDI}$ [0.02, 0.34], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(18) = -1.90, p = 0.07, \hat{r}_{\text{Pearson}} = -0.41, \text{Cl}_{95\%} \text{ [-0.72, 0.04]}, n_{\text{pairs}} = 20$$

$$log_e(BF_{01}) = -0.34$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.36$, $Cl_{95\%}^{HDI}$ [-0.67, 0.05], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(136) = 0.87, p = 0.38, \hat{r}_{\text{Pearson}} = 0.07, \text{Cl}_{95\%} \text{ [-0.09, 0.24]}, n_{\text{pairs}} = 138$

 $log_e(BF_{01}) = 1.66$, $\hat{\rho}_{Pearson}^{posterior} = 0.07$, $Cl_{95\%}^{HDI}$ [-0.08, 0.24], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(144) = 2.23, p = 0.03, \hat{r}_{\text{Pearson}} = 0.18, \text{Cl}_{95\%}[0.02, 0.34], n_{\text{pairs}} = 146$

 $log_{e}(BF_{01}) = -0.33$, $\widehat{\rho}_{Pearson}^{posterior} = 0.18$, $Cl_{95\%}^{HDI}$ [0.03, 0.34], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(272) = -0.37, p = 0.71, \hat{r}_{\text{Pearson}} = -0.02, \text{Cl}_{95\%} \text{ [-0.14, 0.10]}, n_{\text{pairs}} = 274$$

$$log_e(BF_{01}) = 2.31$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.02$, $Cl_{95\%}^{HDI}$ [-0.14, 0.09], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(60) = -1.66, p = 0.10, \hat{r}_{\text{Pearson}} = -0.21, Cl_{95\%}$$
 [-0.44, 0.04], $n_{\text{pairs}} = 62$

$$log_{e}(BF_{01}) = 0.35, \hat{\rho}_{Pearson}^{posterior} = -0.20, Cl_{95\%}^{HDI} [-0.41, 0.05], r_{beta}^{JZS} = 1.41$$

 $log_{e}(BF_{01}) = 1.18$, $\hat{\rho}_{Pearson}^{posterior} = -0.10$, $Cl_{95\%}^{HDI}$ [-0.39, 0.25], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(26) = 0.87, p = 0.39, \hat{r}_{\text{Pearson}} = 0.17, \text{Cl}_{95\%} \text{ [-0.22, 0.51]}, n_{\text{pairs}} = 28$$

 $log_{e}(BF_{01}) = 0.92$, $\hat{\rho}_{Pearson}^{posterior} = 0.14$, $Cl_{95\%}^{HDI}$ [-0.19, 0.50], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(603) = -0.64, p = 0.53, \hat{r}_{\text{Pearson}} = -0.03, \text{Cl}_{95\%} \text{ [-0.11, 0.05]}, n_{\text{pairs}} = 605$

$$log_{e}(BF_{01}) = 2.57$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.03$, $Cl_{95\%}^{HDI}$ [-0.11, 0.05], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(306) = 2.66, p = 8.19\text{e-}03, \hat{r}_{\text{Pearson}} = 0.15, \text{Cl}_{95\%}[0.04, 0.26], n_{\text{pairs}} = 308$

$$log_{e}(BF_{01}) = -1.04$$
, $\hat{\rho}_{Pearson}^{posterior} = 0.15$, $Cl_{95\%}^{HDI}$ [0.04, 0.26], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(562) = -2.74, p = 6.38e-03, \hat{r}_{\text{Pearson}} = -0.11, \text{Cl}_{95\%} \text{ [-0.20, -0.03]}, n_{\text{pairs}} = 564$$

 $log_{e}(BF_{01}) = -0.97$, $\hat{\rho}_{Pearson}^{posterior} = -0.11$, $Cl_{95\%}^{HDI}$ [-0.19, -0.03], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(322) = 0.44, p = 0.66, \hat{r}_{\text{Pearson}} = 0.02, \text{Cl}_{95\%} \text{ [-0.08, 0.13]}, n_{\text{pairs}} = 324$$

 $log_e(BF_{01}) = 2.36$, $\hat{\rho}_{Pearson}^{posterior} = 0.02$, $Cl_{95\%}^{HDI}$ [-0.08, 0.13], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(606) = -5.40, p = 9.52 \text{e}-08, \hat{r}_{\text{Pearson}} = -0.21, \text{Cl}_{95\%} \text{ [-0.29, -0.14]}, n_{\text{pairs}} = 608$$

$$log_{e}(BF_{01}) = -11.41$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.21$, $Cl_{95\%}^{HDI}$ [-0.29, -0.14], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(447) = -2.86, p = 4.45 \text{e}-03, \hat{r}_{\text{Pearson}} = -0.13, \text{Cl}_{95\%} \text{ [-0.22, -0.04]}, n_{\text{pairs}} = 449$$

$$log_{e}(BF_{01}) = -1.40$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.13$, $Cl_{95\%}^{HDI}$ [-0.23, -0.05], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(256) = 0.34, p = 0.73, \hat{r}_{\text{Pearson}} = 0.02, \text{Cl}_{95\%} \text{ [-0.10, 0.14]}, n_{\text{pairs}} = 258$$

 $log_e(BF_{01}) = 2.29$, $\hat{\rho}_{Pearson}^{posterior} = 0.02$, $Cl_{95\%}^{HDI}$ [-0.10, 0.14], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(87) = -1.06, p = 0.29, \hat{r}_{\text{Pearson}} = -0.11, Cl_{95\%}$$
 [-0.31, 0.10], $n_{\text{pairs}} = 89$

$$log_e(BF_{01}) = 1.27$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.11$, $Cl_{95\%}^{HDI}$ [-0.31, 0.09], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(602) = -0.40, p = 0.69, \hat{r}_{\text{Pearson}} = -0.02, \text{Cl}_{95\%} \text{ [-0.10, 0.06]}, n_{\text{pairs}} = 604$$

 $log_e(BF_{01}) = 2.69$, $\hat{\rho}_{Pearson}^{posterior} = -0.01$, $Cl_{95\%}^{HDI}$ [-0.09, 0.07], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(315) = 3.18, p = 1.64\text{e-}03, \hat{r}_{\text{Pearson}} = 0.18, \text{Cl}_{95\%} [0.07, 0.28], n_{\text{pairs}} = 317$$

$$log_{e}(BF_{01}) = -2.47$$
, $\hat{\rho}_{Pearson}^{posterior} = 0.17$, $Cl_{95\%}^{HDI}$ [0.07, 0.28], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(374) = 3.64, p = 3.13\text{e-}04, \hat{r}_{\text{Pearson}} = 0.18, \text{Cl}_{95\%} [0.09, 0.28], n_{\text{pairs}} = 376$$

 $log_{e}(BF_{01}) = -3.92$, $\hat{\rho}_{Pearson}^{posterior} = 0.18$, $Cl_{95\%}^{HDI}$ [0.08, 0.28], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(205) = -2.72, p = 7.16e-03, \hat{r}_{\text{Pearson}} = -0.19, \text{Cl}_{95\%} \text{ [-0.31, -0.05]}, n_{\text{pairs}} = 207$$

$$log_{e}(BF_{01}) = -1.34$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.18$, $Cl_{95\%}^{HDI}$ [-0.31, -0.06], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(171) = 0.07, p = 0.94, \hat{r}_{\text{Pearson}} = 5.70 \text{e-} 0.03, \text{Cl}_{95\%} \text{ [-0.14, 0.15]}, n_{\text{pairs}} = 173$

 $log_{e}(BF_{01}) = 2.14$, $\widehat{\rho}_{Pearson}^{posterior} = 4.59e-03$, $Cl_{95\%}^{HDI}$ [-0.15, 0.15], $r_{beta}^{JZS} = 1.41$

dusk

Total Control of the Control of t

$$log_{e}(BF_{01}) = 0.71$$
, $\hat{\rho}_{Pearson}^{posterior} = 0.12$, $Cl_{95\%}^{HDI}$ [-0.41, 0.62], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(546) = 0.17, p = 0.87, \hat{r}_{\text{Pearson}} = 7.14\text{e-}03, \text{Cl}_{95\%} \text{ [-0.08, 0.09]}, n_{\text{pairs}} = 548$$

 $log_e(BF_{01}) = 2.71$, $\hat{\rho}_{Pearson}^{posterior} = 7.04e-03$, $Cl_{95\%}^{HDI}$ [-0.08, 0.09], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(187) = -0.14, p = 0.89, \hat{r}_{\text{Pearson}} = -0.01, \text{Cl}_{95\%}$$
 [-0.15, 0.13], $n_{\text{pairs}} = 189$

 $log_{e}(BF_{01}) = 2.18$, $\hat{\rho}_{Pearson}^{posterior} = -0.01$, $Cl_{95\%}^{HDI}$ [-0.15, 0.13], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(75) = 3.45, p = 9.14\text{e-}04, \hat{r}_{\text{Pearson}} = 0.37, \text{Cl}_{95\%} [0.16, 0.55], n_{\text{pairs}} = 77$

 $log_{e}(BF_{01}) = -3.59$, $\hat{\rho}_{Pearson}^{posterior} = 0.36$, $Cl_{95\%}^{HDI}$ [0.16, 0.53], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(5) = 0.18, p = 0.86, \hat{r}_{\text{Pearson}} = 0.08, \text{Cl}_{95\%}$ [-0.72, 0.79], $n_{\text{pairs}} = 7$

 $log_e(BF_{01}) = 0.62$, $\hat{\rho}_{Pearson}^{posterior} = 0.05$, $Cl_{95\%}^{HDI}$ [-0.56, 0.64], $r_{beta}^{JZS} = 1.41$

Time to darkness

 $log_{e}(BF_{01}) = 0.11$, $\hat{\rho}_{Pearson}^{posterior} = -0.22$, $Cl_{95\%}^{HDI}$ [-0.43, 0.03], $r_{beta}^{JZS} = 1.41$

0.0 2.5 5.0 7.5

Ó

0-

t_{Student}(52) = 1.15, p = 0.25, t̂_{Pearson} = 0.16, Cl_{95%} [-0.11, 0.41], n_{pairs} = 54

2

$$log_e(BF_{01}) = 0.95$$
, $\hat{\rho}_{Pearson}^{posterior} = 0.15$, $Cl_{95\%}^{HDI}$ [-0.09, 0.40], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(73) = 0.33, p = 0.74, \hat{r}_{\text{Pearson}} = 0.04, \text{Cl}_{95\%}$$
 [-0.19, 0.26], $n_{\text{pairs}} = 75$

 $log_{e}(BF_{01}) = 1.68$, $\hat{\rho}_{Pearson}^{posterior} = 0.04$, $Cl_{95\%}^{HDI}$ [-0.18, 0.25], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(37) = -1.16, p = 0.25, \hat{r}_{\text{Pearson}} = -0.19, \text{Cl}_{95\%} \text{ [-0.48, 0.14]}, n_{\text{pairs}} = 39$$

$$log_{e}(BF_{01}) = 0.80, \hat{\rho}_{Pearson}^{posterior} = -0.18, Cl_{95\%}^{HDI} [-0.46, 0.13], r_{beta}^{JZS} = 1.41$$

 $t_{\text{Student}}(217) = 1.12, p = 0.26, \hat{r}_{\text{Pearson}} = 0.08, \text{Cl}_{95\%}$ [-0.06, 0.21], $n_{\text{pairs}} = 219$

 $log_{e}(BF_{01}) = 1.64$, $\widehat{\rho}_{Pearson}^{posterior} = 0.07$, $Cl_{95\%}^{HDI}$ [-0.06, 0.20], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(250) = 0.21, p = 0.84, \hat{r}_{\text{Pearson}} = 0.01, \text{Cl}_{95\%} \text{ [-0.11, 0.14]}, n_{\text{pairs}} = 252$

 $log_e(BF_{01}) = 2.31$, $\hat{\rho}_{Pearson}^{posterior} = 0.01$, $Cl_{95\%}^{HDI}$ [-0.11, 0.13], $r_{beta}^{JZS} = 1.41$

Proof of the control of the contr

Time to darkness

3

2

 $log_e(BF_{01}) = 1.01$, $\hat{\rho}_{Pearson}^{posterior} = 0.12$, $Cl_{95\%}^{HDI}$ [-0.24, 0.49], $r_{beta}^{JZS} = 1.41$

4

2

Ó

dusk

0.0

Student (16) = 0.33, p = 0.75, r̂ Pearson = 0.08, Cl_{95%} [-0.40, 0.53], n pairs = 18

 $log_e(BF_{01}) = 1.00$, $\hat{\rho}_{Pearson}^{posterior} = 0.06$, $Cl_{95\%}^{HDI}$ [-0.38, 0.47], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(20) = -0.95, p = 0.35, \hat{r}_{\text{Pearson}} = -0.21, \text{Cl}_{95\%} \text{ [-0.58, 0.23]}, n_{\text{pairs}} = 22$$

$$log_{e}(BF_{01}) = 0.75$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.18$, $Cl_{95\%}^{HDI}$ [-0.57, 0.20], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(70) = 2.40, p = 0.02, \hat{r}_{\text{Pearson}} = 0.28, \text{Cl}_{95\%}[0.05, 0.48], n_{\text{pairs}} = 72$$

$$log_{e}(BF_{01}) = -0.96$$
, $\widehat{\rho}_{Pearson}^{posterior} = 0.26$, $Cl_{95\%}^{HDI}$ [0.04, 0.46], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(51) = 0.12, p = 0.91, \hat{r}_{\text{Pearson}} = 0.02, \text{Cl}_{95\%} \text{ [-0.25, 0.29]}, n_{\text{pairs}} = 53$

 $log_{e}(BF_{01}) = 1.56$, $\hat{\rho}_{Pearson}^{posterior} = 0.01$, $Cl_{95\%}^{HDI}$ [-0.23, 0.27], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(46) = 1.08, p = 0.29, \hat{r}_{\text{Pearson}} = 0.16, Cl_{95\%}$ [-0.13, 0.42], $n_{\text{pairs}} = 48$

 $log_e(BF_{01}) = 0.97$, $\hat{\rho}_{Pearson}^{posterior} = 0.15$, $Cl_{95\%}^{HDI}$ [-0.13, 0.40], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(182) = -0.70, p = 0.49, \hat{r}_{\text{Pearson}} = -0.05, \text{Cl}_{95\%} \text{ [-0.19, 0.09]}, n_{\text{pairs}} = 184$

$$log_{e}(BF_{01}) = 1.94$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.05$, $Cl_{95\%}^{HDI}$ [-0.19, 0.09], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(109) = 0.45, p = 0.66, \hat{r}_{\text{Pearson}} = 0.04, \text{Cl}_{95\%} \text{ [-0.14, 0.23]}, n_{\text{pairs}} = 111$

 $log_e(BF_{01}) = 1.83$, $\hat{\rho}_{Pearson}^{posterior} = 0.05$, $Cl_{95\%}^{HDI}$ [-0.14, 0.22], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(43) = 0.59, p = 0.56, \hat{r}_{\text{Pearson}} = 0.09, \text{Cl}_{95\%} \text{ [-0.21, 0.37]}, n_{\text{pairs}} = 45$

$$log_e(BF_{01}) = 1.32$$
, $\hat{\rho}_{Pearson}^{posterior} = 0.08$, $Cl_{95\%}^{HDI}$ [-0.20, 0.37], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(21) = -0.58, p = 0.57, \hat{r}_{\text{Pearson}} = -0.13, \text{Cl}_{95\%} \text{ [-0.51, 0.30]}, n_{\text{pairs}} = 23$

$$log_{e}(BF_{01}) = 1.01$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.11$, $Cl_{95\%}^{HDI}$ [-0.46, 0.30], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(36) = 0.46, p = 0.65, \hat{r}_{\text{Pearson}} = 0.08, \text{Cl}_{95\%} \text{ [-0.25, 0.39]}, n_{\text{pairs}} = 38$$

 $log_{e}(BF_{01}) = 1.30, \hat{\rho}_{Pearson}^{posterior} = 0.07, Cl_{95\%}^{HDI} [-0.24, 0.38], r_{beta}^{JZS} = 1.41$

dusk

0.5

1.0

1.5

2.0 Time to darkness

$$log_{e}(BF_{01}) = -1.16$$
, $\hat{\rho}_{Pearson}^{posterior} = 0.40$, $Cl_{95\%}^{HDI}$ [0.05, 0.68], $r_{beta}^{JZS} = 1.41$

3.0

2.5

0 1 2 3 4 5

$$t_{\text{Student}}(323) = 0.01, p = 0.99, \hat{r}_{\text{Pearson}} = 5.58\text{e-}04, \text{Cl}_{95\%} \text{ [-0.11, 0.11]}, n_{\text{pairs}} = 325$$

 $log_{e}(BF_{01}) = 2.46$, $\hat{\rho}_{Pearson}^{posterior} = 1.59e-03$, $Cl_{95\%}^{HDI}$ [-0.10, 0.11], $r_{beta}^{JZS} = 1.41$

$$log_e(BF_{01}) = 1.01$$
, $\hat{\rho}_{Pearson}^{posterior} = 0.10$, $Cl_{95\%}^{HDI}$ [-0.29, 0.48], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(419) = -0.25, p = 0.80, \hat{r}_{\text{Pearson}} = -0.01, \text{Cl}_{95\%}$$
 [-0.11, 0.08], $n_{\text{pairs}} = 421$

 $log_e(BF_{01}) = 2.56$, $\hat{\rho}_{Pearson}^{posterior} = -0.01$, $Cl_{95\%}^{HDI}$ [-0.10, 0.09], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(459) = -0.57, p = 0.57, \hat{r}_{\text{Pearson}} = -0.03, \text{Cl}_{95\%} \text{ [-0.12, 0.06]}, n_{\text{pairs}} = 461$$

$$log_e(BF_{01}) = 2.47$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.03$, $Cl_{95\%}^{HDI}$ [-0.11, 0.07], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(143) = -0.73, p = 0.47, \hat{r}_{\text{Pearson}} = -0.06, \text{Cl}_{95\%} \text{ [-0.22, 0.10]}, n_{\text{pairs}} = 145$

$$log_e(BF_{01}) = 1.80$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.06$, $Cl_{95\%}^{HDI}$ [-0.22, 0.11], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(64) = -0.28, p = 0.78, \hat{r}_{\text{Pearson}} = -0.03, \text{Cl}_{95\%} \text{ [-0.27, 0.21]}, n_{\text{pairs}} = 66$

$$log_{e}(BF_{01}) = 1.63$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.03$, $Cl_{95\%}^{HDI}$ [-0.28, 0.21], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(231) = 0.62, p = 0.53, \hat{r}_{\text{Pearson}} = 0.04, \text{Cl}_{95\%}$$
 [-0.09, 0.17], $n_{\text{pairs}} = 233$

 $log_e(BF_{01}) = 2.10$, $\hat{\rho}_{Pearson}^{posterior} = 0.04$, $Cl_{95\%}^{HDI}$ [-0.08, 0.17], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(151) = -3.61, p = 4.18e-04, \hat{r}_{\text{Pearson}} = -0.28, \text{Cl}_{95\%} \text{ [-0.42, -0.13]}, n_{\text{pairs}} = 153$$

$$log_{e}(BF_{01}) = -4.05$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.28$, $Cl_{95\%}^{HDI}$ [-0.42, -0.13], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(4) = -0.44, p = 0.68, \hat{r}_{\text{Pearson}} = -0.22, \text{Cl}_{95\%} \text{ [-0.87, 0.72]}, n_{\text{pairs}} = 6$

$$log_{e}(BF_{01}) = 0.50$$
, $\widehat{\rho}_{Pearson}^{posterior} = -0.12$, $Cl_{95\%}^{HDI}$ [-0.73, 0.53], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(31) = -1.84, p = 0.08, \hat{r}_{\text{Pearson}} = -0.31, \text{Cl}_{95\%} \text{ [-0.59, 0.03]}, n_{\text{pairs}} = 33$

 $log_{e}(BF_{01}) = -0.14$, $\widehat{\rho}_{Pearson}^{posterior} = -0.28$, $Cl_{95\%}^{HDI}$ [-0.57, 0.03], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(52) = -3.70, p = 5.21 \text{e-}04, \hat{r}_{\text{Pearson}} = -0.46, \text{Cl}_{95\%} \text{ [-0.65, -0.22]}, n_{\text{pairs}} = 54$

$$log_{e}(BF_{01}) = -4.20$$
, $\widehat{\rho}_{Pearson}^{posterior} = -0.44$, $Cl_{95\%}^{HDI}$ [-0.63, -0.21], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(60) = 2.48, p = 0.02, \hat{r}_{\text{Pearson}} = 0.30, \text{Cl}_{95\%}[0.06, 0.52], n_{\text{pairs}} = 62$

 $log_{e}(BF_{01}) = -1.16$, $\widehat{\rho}_{Pearson}^{posterior} = 0.29$, $Cl_{95\%}^{HDI}$ [0.07, 0.50], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(123) = -2.62, p = 9.91 \text{e-}03, \hat{r}_{\text{Pearson}} = -0.23, \text{Cl}_{95\%} \text{ [-0.39, -0.06]}, n_{\text{pairs}} = 125$$

$$log_{e}(BF_{01}) = -1.28$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.23$, $Cl_{95\%}^{HDI}$ [-0.39, -0.06], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(98) = 2.13, p = 0.04, \hat{r}_{\text{Pearson}} = 0.21, \text{Cl}_{95\%}[0.01, 0.39], n_{\text{pairs}} = 100$$

$$log_{e}(BF_{01}) = -0.28$$
, $\hat{\rho}_{Pearson}^{posterior} = 0.20$, $Cl_{95\%}^{HDI}$ [0.02, 0.38], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(5) = 3.33, p = 0.02, \hat{r}_{\text{Pearson}} = 0.83, \text{Cl}_{95\%}[0.21, 0.97], n_{\text{pairs}} = 7$

 $log_e(BF_{01}) = -1.36$, $\hat{\rho}_{Pearson}^{posterior} = 0.64$, $Cl_{95\%}^{HDI}$ [0.12, 0.95], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(25) = -0.96, p = 0.35, \hat{r}_{\text{Pearson}} = -0.19, \text{Cl}_{95\%} \text{ [-0.53, 0.21]}, n_{\text{pairs}} = 27$

 $log_{e}(BF_{01}) = 0.83$, $\hat{\rho}_{Pearson}^{posterior} = -0.16$, $Cl_{95\%}^{HDI}$ [-0.50, 0.20], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(66) = 0.39, p = 0.70, \hat{r}_{\text{Pearson}} = 0.05, \text{Cl}_{95\%}$ [-0.19, 0.28], $n_{\text{pairs}} = 68$

 $log_{e}(BF_{01}) = 1.61$, $\hat{\rho}_{Pearson}^{posterior} = 0.04$, $Cl_{95\%}^{HDI}$ [-0.19, 0.27], $r_{beta}^{JZS} = 1.41$

dusk

 t_{Student} () = NA, p = NA, = NA, $Cl_{95\%}$ [NA, NA], n_{pairs} = 2

$$log_e(BF_{01}) =$$
, $posterior = NA, Cl_{95\%}^{HDI} [NA, NA], r_{beta}^{JZS} = NA$

$$t_{\text{Student}}(189) = 0.03, p = 0.97, \hat{r}_{\text{Pearson}} = 2.33 \text{e-}03, \text{Cl}_{95\%} \text{ [-0.14, 0.14]}, n_{\text{pairs}} = 191$$

 $log_{e}(BF_{01}) = 2.20$, $\widehat{\rho}_{Pearson}^{posterior} = -6.63e-05$, $Cl_{95\%}^{HDI}$ [-0.14, 0.14], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(29) = 0.85, p = 0.40, \hat{r}_{\text{Pearson}} = 0.16, \text{Cl}_{95\%} \text{ [-0.21, 0.48]}, n_{\text{pairs}} = 31$$

 $log_e(BF_{01}) = 0.98$, $\hat{\rho}_{Pearson}^{posterior} = 0.14$, $Cl_{95\%}^{HDI}$ [-0.20, 0.45], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(202) = 1.84, p = 0.07, \hat{r}_{\text{Pearson}} = 0.13, \text{Cl}_{95\%} \text{ [-8.87e-03, 0.26]}, n_{\text{pairs}} = 204$

 $t_{\text{Student}}(25) = -0.15, p = 0.88, \hat{r}_{\text{Pearson}} = -0.03, \text{Cl}_{95\%} \text{ [-0.41, 0.35]}, n_{\text{pairs}} = 27$

 $log_{e}(BF_{01}) = 0.57$, $\hat{\rho}_{Pearson}^{posterior} = 0.13$, $Cl_{95\%}^{HDI}$ [-8.52e-03, 0.25], $r_{beta}^{JZS} = 1.41$

dusk

0-

1.5

Number of actions of the state of the state

Time to darkness

2.5

2.0

$$log_{e}(BF_{01}) = 1.23$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.03$, $Cl_{95\%}^{HDI}$ [-0.40, 0.32], $r_{beta}^{JZS} = 1.41$

3.0

2 4

Ó

$$t_{\text{Student}}(58) = 0.79, p = 0.43, \hat{r}_{\text{Pearson}} = 0.10, \text{Cl}_{95\%}$$
 [-0.16, 0.35], $n_{\text{pairs}} = 60$

 $log_e(BF_{01}) = 1.33$, $\hat{\rho}_{Pearson}^{posterior} = 0.10$, $Cl_{95\%}^{HDI}$ [-0.16, 0.33], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(64) = 0.08, p = 0.94, \hat{r}_{\text{Pearson}} = 0.01, \text{Cl}_{95\%} \text{ [-0.23, 0.25]}, n_{\text{pairs}} = 66$$

 $t_{\text{Student}}(196) = 0.32, p = 0.75, \hat{r}_{\text{Pearson}} = 0.02, \text{Cl}_{95\%} \text{ [-0.12, 0.16]}, n_{\text{pairs}} = 198$

 $log_e(BF_{01}) = 2.16$, $\hat{\rho}_{Pearson}^{posterior} = 0.02$, $Cl_{95\%}^{HDI}$ [-0.12, 0.15], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(37) = -0.69, p = 0.49, \hat{r}_{\text{Pearson}} = -0.11, \text{Cl}_{95\%} \text{ [-0.41, 0.21]}, n_{\text{pairs}} = 39$

 $log_{e}(BF_{01}) = 1.19, \hat{\rho}_{Pearson}^{posterior} = -0.11, Cl_{95\%}^{HDI} [-0.40, 0.18], r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}() = \text{NA}, p = \text{NA}, = \text{NA}, \text{Cl}_{95\%} [\text{NA}, \text{NA}], n_{\text{pairs}} = 1$

 $log_e(BF_{01}) =$, $posterior = NA, Cl_{95\%}^{HDI} [NA, NA], r_{beta}^{JZS} = NA$

$$t_{\text{Student}}(152) = 0.36, p = 0.72, \hat{r}_{\text{Pearson}} = 0.03, \text{Cl}_{95\%} \text{ [-0.13, 0.19]}, n_{\text{pairs}} = 154$$

 $log_e(BF_{01}) = 2.03$, $\hat{\rho}_{Pearson}^{posterior} = 0.03$, $Cl_{95\%}^{HDI}$ [-0.12, 0.18], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(91) = 0.76, p = 0.45, \hat{r}_{\text{Pearson}} = 0.08, \text{Cl}_{95\%} \text{ [-0.13, 0.28]}, n_{\text{pairs}} = 93$$

$$log_{e}(BF_{01}) = 1.56$$
, $\hat{\rho}_{Pearson}^{posterior} = 0.08$, $Cl_{95\%}^{HDI}$ [-0.11, 0.28], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(104) = -3.56, p = 5.57 \text{e-}04, \hat{r}_{\text{Pearson}} = -0.33, \text{Cl}_{95\%} \text{ [-0.49, -0.15]}, n_{\text{pairs}} = 106$$

$$log_{e}(BF_{01}) = -3.93$$
, $\widehat{\rho}_{Pearson}^{posterior} = -0.32$, $Cl_{95\%}^{HDI}$ [-0.49, -0.16], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}$$
() = NA, p = NA, = NA, $Cl_{95\%}$ [NA, NA], n_{pairs} = 2

$$log_e(BF_{01}) =$$
, $posterior = NA, Cl_{95\%}^{HDI} [NA, NA], r_{beta}^{JZS} = NA$

$$t_{\text{Student}}$$
 (78) = 0.50, $p = 0.62$, $\hat{r}_{\text{Pearson}} = 0.06$, $\text{Cl}_{95\%}$ [-0.16, 0.27], $n_{\text{pairs}} = 80$

 $log_e(BF_{01}) = 1.64$, $\hat{\rho}_{Pearson}^{posterior} = 0.05$, $Cl_{95\%}^{HDI}$ [-0.16, 0.26], $r_{beta}^{JZS} = 1.41$

$$log_{e}(BF_{01}) = 1.09$$
, $\widehat{\rho}_{Pearson}^{posterior} = 0.03$, $Cl_{95\%}^{HDI}$ [-0.37, 0.42], $r_{beta}^{JZS} = 1.41$

 $log_{e}(BF_{01}) = -0.53$, $\widehat{\rho}_{Pearson}^{posterior} = 0.32$, $Cl_{95\%}^{HDI}$ [5.07e-03, 0.58], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(18) = 0.73, p = 0.48, \hat{r}_{\text{Pearson}} = 0.17, \text{Cl}_{95\%} \text{ [-0.30, 0.57]}, n_{\text{pairs}} = 20$$

$$log_{e}(BF_{01}) = 0.87$$
, $\hat{\rho}_{Pearson}^{posterior} = 0.14$, $Cl_{95\%}^{HDI}$ [-0.27, 0.53], $r_{beta}^{JZS} = 1.41$

Time to darkness

2

 $log_{e}(BF_{01}) = -1.85$, $\hat{\rho}_{Pearson}^{posterior} = 0.42$, $Cl_{95\%}^{HDI}$ [0.13, 0.70], $r_{beta}^{JZS} = 1.41$

0.0 2.5 5.0 7.5

 $log_{e}(BF_{01}) = 0.19, \hat{\rho}_{Pearson}^{posterior} = -0.27, Cl_{95\%}^{HDI} [-0.61, 0.08], r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(17) = -0.29, p = 0.78, \hat{r}_{\text{Pearson}} = -0.07, \text{Cl}_{95\%} [-0.51, 0.40], n_{\text{pairs}} = 19$$

$$log_e(BF_{01}) = 1.04$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.06$, $Cl_{95\%}^{HDI}$ [-0.48, 0.35], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(12) = 2.14, p = 0.05, \hat{r}_{\text{Pearson}} = 0.53, \text{Cl}_{95\%} \text{ [-6.67e-03, 0.83]}, n_{\text{pairs}} = 14$$

$$log_{e}(BF_{01}) = -0.68, \widehat{\rho}_{Pearson}^{posterior} = 0.43, CI_{95\%}^{HDI} \ [9.94e-03, 0.81], r_{beta}^{JZS} = 1.41$$

$$t_{\text{Student}}(52) = 0.27, p = 0.79, \hat{r}_{\text{Pearson}} = 0.04, \text{Cl}_{95\%}$$
 [-0.23, 0.30], $n_{\text{pairs}} = 54$

 $log_{e}(BF_{01}) = 1.54$, $\hat{\rho}_{Pearson}^{posterior} = 0.03$, $Cl_{95\%}^{HDI}$ [-0.22, 0.29], $r_{beta}^{JZS} = 1.41$

dusk

$$t_{\text{Student}}(23) = 0.11, p = 0.92, \hat{r}_{\text{Pearson}} = 0.02, \text{Cl}_{95\%} \text{ [-0.38, 0.41]}, n_{\text{pairs}} = 25$$

 $log_{e}(BF_{01}) = 1.20$, $\hat{\rho}_{Pearson}^{posterior} = 0.02$, $Cl_{95\%}^{HDI}$ [-0.36, 0.37], $r_{beta}^{JZS} = 1.41$

 $log_e(BF_{01}) = -0.61$, $\hat{\rho}_{Pearson}^{posterior} = -0.36$, $Cl_{95\%}^{HDI}$ [-0.66, 2.58e-03], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(137) = -1.30, p = 0.19, \hat{r}_{\text{Pearson}} = -0.11, \text{Cl}_{95\%}$$
 [-0.27, 0.06], $n_{\text{pairs}} = 139$

 $log_{e}(BF_{01}) = 1.21$, $\hat{\rho}_{Pearson}^{posterior} = -0.11$, $Cl_{95\%}^{HDI}$ [-0.27, 0.05], $r_{beta}^{JZS} = 1.41$

$$log_e(BF_{01}) = 0.85$$
, $\hat{\rho}_{Pearson}^{posterior} = 0.16$, $Cl_{95\%}^{HDI}$ [-0.22, 0.52], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(96) = 1.37, p = 0.17, \hat{r}_{\text{Pearson}} = 0.14, \text{Cl}_{95\%} \text{ [-0.06, 0.33]}, n_{\text{pairs}} = 98$

 $log_{e}(BF_{01}) = 0.96$, $\widehat{\rho}_{Pearson}^{posterior} = 0.13$, $Cl_{95\%}^{HDI}$ [-0.06, 0.32], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(55) = -0.87, p = 0.39, \hat{r}_{\text{Pearson}} = -0.12, \text{Cl}_{95\%} \text{ [-0.37, 0.15]}, n_{\text{pairs}} = 57$

$$log_{e}(BF_{01}) = 1.25, \hat{\rho}_{Pearson}^{posterior} = -0.11, Cl_{95\%}^{HDI} [-0.35, 0.13], r_{beta}^{JZS} = 1.41$$

Time to darkness

2

 $log_e(BF_{01}) = 1.61$, $\hat{\rho}_{Pearson}^{posterior} = 0.05$, $Cl_{95\%}^{HDI}$ [-0.17, 0.28], $r_{beta}^{JZS} = 1.41$

0 5 10 15 20

0-

#Student (52) = -0.45, p = 0.66, r̂_Pearson = -0.06, Cl_{95%} [-0.32, 0.21], n_{pairs} = 54

$$log_{e}(BF_{01}) = 1.48, \hat{\rho}_{Pearson}^{posterior} = -0.06, Cl_{95\%}^{HDI} [-0.33, 0.19], r_{beta}^{JZS} = 1.41$$

 $log_e(BF_{01}) = 1.03$, $\hat{\rho}_{Pearson}^{posterior} = -0.06$, $Cl_{95\%}^{HDI}$ [-0.47, 0.35], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(12) = 0.83, p = 0.42, \hat{r}_{\text{Pearson}} = 0.23, \text{Cl}_{95\%} \text{ [-0.34, 0.68]}, n_{\text{pairs}} = 14$$

$$log_e(BF_{01}) = 0.65$$
, $\hat{\rho}_{Pearson}^{posterior} = 0.19$, $Cl_{95\%}^{HDI}$ [-0.29, 0.62], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(73) = -1.66, p = 0.10, \hat{r}_{\text{Pearson}} = -0.19, \text{Cl}_{95\%} \text{ [-0.40, 0.04]}, n_{\text{pairs}} = 75$

 $log_{e}(BF_{01}) = 0.43$, $\hat{\rho}_{Pearson}^{posterior} = -0.18$, $Cl_{95\%}^{HDI}$ [-0.40, 0.02], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(46) = -0.80, p = 0.43, \hat{r}_{\text{Pearson}} = -0.12, \text{Cl}_{95\%} \text{ [-0.39, 0.17]}, n_{\text{pairs}} = 48$$

 $log_{e}(BF_{01}) = 1.22$, $\hat{\rho}_{Pearson}^{posterior} = -0.10$, $Cl_{95\%}^{HDI}$ [-0.37, 0.17], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(39) = 2.36, p = 0.02, \hat{r}_{\text{Pearson}} = 0.35, \text{Cl}_{95\%} [0.05, 0.60], n_{\text{pairs}} = 41$

 $log_e(BF_{01}) = -1.00$, $\hat{\rho}_{Pearson}^{posterior} = 0.33$, $Cl_{95\%}^{HDI}$ [0.06, 0.58], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(1) = -0.45, p = 0.73, \hat{r}_{\text{Pearson}} = -0.41, \text{Cl}_{95\%} \text{ [NA, NA]}, n_{\text{pairs}} = 3$

 $log_{e}(BF_{01}) = 0.24$, $\widehat{\rho}_{Pearson}^{posterior} = -0.14$, $Cl_{95\%}^{HDI}$ [-0.87, 0.62], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(39) = 0.69, p = 0.50, \hat{r}_{\text{Pearson}} = 0.11, \text{Cl}_{95\%}$ [-0.21, 0.40], $n_{\text{pairs}} = 41$

$$log_{e}(BF_{01}) = 1.22$$
, $\hat{\rho}_{Pearson}^{posterior} = 0.10$, $Cl_{95\%}^{HDI}$ [-0.21, 0.38], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(1) = -16.19, p = 0.04, \hat{r}_{\text{Pearson}} = -1.00, \text{Cl}_{95\%} \text{ [NA, NA]}, n_{\text{pairs}} = 3$

$$log_{e}(BF_{01}) = , \hat{\rho}_{Pearson}^{posterior} = -0.40, Cl_{95\%}^{HDI} [-0.95, 0.96], r_{beta}^{JZS} = 1.41$$

 $log_{e}(BF_{01}) = 1.44$, $\hat{\rho}_{Pearson}^{posterior} = 0.05$, $Cl_{95\%}^{HDI}$ [-0.24, 0.32], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(14) = -1.49, p = 0.16, \hat{r}_{\text{Pearson}} = -0.37, \text{Cl}_{95\%} \text{ [-0.73, 0.15]}, n_{\text{pairs}} = 16$$

$$log_{e}(BF_{01}) = 0.12$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.31$, $Cl_{95\%}^{HDI}$ [-0.69, 0.12], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(48) = 0.53, p = 0.60, \hat{r}_{\text{Pearson}} = 0.08, \text{Cl}_{95\%} \text{ [-0.21, 0.35]}, n_{\text{pairs}} = 50$$

$$log_{e}(BF_{01}) = 1.40$$
, $\hat{\rho}_{Pearson}^{posterior} = 0.08$, $Cl_{95\%}^{HDI}$ [-0.20, 0.33], $r_{beta}^{JZS} = 1.41$

$$t_{\text{Student}}(53) = -0.82, p = 0.42, \hat{r}_{\text{Pearson}} = -0.11, \text{Cl}_{95\%} \text{ [-0.37, 0.16]}, n_{\text{pairs}} = 55$$

$$log_{e}(BF_{01}) = 1.26, \hat{\rho}_{Pearson}^{posterior} = -0.11, Cl_{95\%}^{HDI} [-0.35, 0.16], r_{beta}^{JZS} = 1.41$$

t_{Student}(25) = 0.41, p = 0.69, r̂_{Pearson} = 0.08, Cl_{95%} [-0.31, 0.45], n_{pairs} = 27

Time to darkness

2

3

$$log_e(BF_{01}) = 1.16$$
, $\hat{\rho}_{Pearson}^{posterior} = 0.07$, $Cl_{95\%}^{HDI}$ [-0.28, 0.44], $r_{beta}^{JZS} = 1.41$

2

dusk

0

#Student (6) = -3.12, p = 0.02, r̂_{Pearson} = -0.79, Cl_{95%} [-0.96, -0.18], n_{pairs} = 8

$$log_{e}(BF_{01}) = -1.39$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.61$, $Cl_{95\%}^{HDI}$ [-0.93, -0.10], $r_{beta}^{JZS} = 1.41$

 $t_{\text{Student}}(46) = -2.62, p = 0.01, \hat{r}_{\text{Pearson}} = -0.36, \text{Cl}_{95\%} [-0.59, -0.09], n_{\text{pairs}} = 48$

$$log_{e}(BF_{01}) = -1.52$$
, $\hat{\rho}_{Pearson}^{posterior} = -0.34$, $Cl_{95\%}^{HDI}$ [-0.57, -0.08], $r_{beta}^{JZS} = 1.41$

dusk

 $t_{\text{Student}}(2) = 0.86, p = 0.48, \hat{r}_{\text{Pearson}} = 0.52, \text{Cl}_{95\%} \text{ [-0.88, 0.99]}, n_{\text{pairs}} = 4$

 $log_e(BF_{01}) = 0.20$, $\hat{\rho}_{Pearson}^{posterior} = 0.25$, $Cl_{95\%}^{HDI}$ [-0.56, 0.83], $r_{beta}^{JZS} = 1.41$