```
em;qmuo;fc;ft;fc0;
                               hp;qh0;pm0; ah;bh;ch;dh; as;ecc;gtol;itypey; wf;wf1;ft1;gtol=1.0d-4;
                                                              iendflag=0
irate ekffect=0;
                       isotropic=2; imaxsubinc=20;
                                                                                             df=0.85d0; istrrateflg=0
                                                                              bs=1.d0;
                                                                       e = \frac{1+\epsilon}{2-\epsilon}, where \epsilon = \frac{\bar{f}_t}{\bar{f}_b} \frac{\bar{f}_b^2}{\bar{f}_c^2}
fb=1.50d0*fc**(-0.075d0)*fc
par=ft/fb*(fb**tw-fc**tw)/(fc**tw-ft**tw)
ecc=(on+par)/(tw-par)
pm0=thr*(fc**tw-ft**tw)/fc/ft*ecc/(ecc+on)
e0=ft/em;
tkp=statev(1);
de(1:6)=dstran;
old_e(1:6)=statev(21:26);
plen=CELENT; e_rate=de;
                               isubinc_count=0;
                                                      isubinc_flag=0;
                                                                              iconvrg=1
cc=zr;
p1=em/(on+qmuo)/(on-tw*qmuo);
cc(1:3,1:3)=p1*qmuo;
cc(1,1)=(on-qmuo)*p1;
cc(2,2)=(on-qmuo)*p1;
cc(3,3)=(on-qmuo)*p1;
Gm=Em/(on+qmuo)/tw;
cc(4,4)=Gm;
cc(5,5)=Gm;
cc(6,6)=Gm;
ddsdde=cc;
cin=zr;
cin(1:3,1:3) = -on*qmuo/Em;
cin(1,1)=on/Em;
cin(2,2)=on/Em;
cin(3,3)=on/Em;
cin(4,4)=on/Gm;
```

cin(5,5)=on/Gm; cin(6,6)=on/Gm;

```
tot_e=old_e+de;
strain rate=de;
e_p=statev(3:8);
tot_e1=tot_e;
ttot_e=tot_e;
do while (iconvrg.eq.1.or.isubinc_flag.eq.1)
         el_e=ttot_e-e_p;
         sg_tr=matmul(cc,el_e)
         call khaigh(sg_tr,sv_tr,ro_tr,theta_tr,dinv_dsig_pr);
         call kff(sv_tr,ro_tr,theta_tr,tkp,yield);
         \bar{\mathbf{\sigma}}_{n+1} = \bar{\mathbf{\sigma}}_{n+1}^{trial} - \Delta \lambda \mathbf{C}_0 \mathbf{m} with \bar{\mathbf{\sigma}}_{n+1}^{trial} = \mathbf{C}_0 \left( \mathbf{\varepsilon}_{n+1} - \mathbf{\varepsilon}_n^p \right)
          F\left(\bar{\sigma}_{n+1}^{trial}, \kappa_n\right)^{-1} \leq 0, then this is an elastic state
         apex_sg=zr
         if(yield>zr) then
              irtype=0
              call kcheckvertex
(sv_tr,tkp,apex_sg,irtype)
              if (irtype.eq.1.or.irtype.eq.2) then call kvertexreturn(sg_tr,apex_sg,tkp,irtype,iconvrg,sg_tr)
              if(irtype.eq.0) then call regular_return(sg_tr,tkp,iendflag,sg_tr,iconvrg,tkp,pj,rs,pnorm_rs,pp,pxx)
         else
                  iconvrg=0;
                  do jj=1,6
                                     e_p(jj)=statev(jj+2) end do
                   exit
         end if
```

```
if (iconvrg.eq.1) then
              isubinc_counter=isubinc_counter+1;
              if (isubinc counter>imaxsubinc) then
                     write(*,*) 'erorrr'
                     call xit
C
              else if (isubinc_counter > imaxsubinc-1.and.tkp < on) then</pre>
                     tkp=on
              end if
              isubinc_flag=1;dtot_e=half*dtot_e;
              ttot_e=conv_e+dtot_e;pj_prev=pj;
      else if (iconvrg.eq.0.and.isubinc_flag.eq.0) then
              el_e=matmul(cin,sg_tr)
              e_p=tot_e-el_e;
      else if (iconvrg.eq.0.and.isubinc_flag.eq.1) then
              el_e=matmul(cin,sg_tr)
              e_p=ttot_e-el_e;conv_e=ttot_e
              dtot_e=tot_e-ttot_e;ttot_e=tot_e;
      end if
end do
```

```
if(itypey.eq.3) then
      wt o=0.d0; wc o=0.d0;
      eps t=0.d0;eps c=0.d0;
      pkdt=0.d0;pkdt1=0.d0;pkdt2=0.d0;
      pkdc=0.d0;pkdc1=0.d0;pkdc2=0.d0;
      rate fac=0.d0;alpha=0.d0
else
rate fac=statev(17);eps t=statev(19);eps c=statev(20)
pkdt=statev(9);pkdt1=statev(10);pkdt2=statev(11)
pkdc=statev(12);pkdc1=statev(13);pkdc2=statev(14)
wt_o=statev(15);wc_o=statev(16);alpha=statev(18)
call kc_alpha(sg_tr,sig_ekff_t,sig_ekff_c,alpha);
do jj=1,6
       el_e_old(jj)=statev(20+jj)-statev(jj+2)
end do
sg_old=matmul(cc,el_e_old)
parrr=0.d0
do jj=3,8
       parrr=parrr+(e p(jj-2)-statev(jj))**tw
end do
pnorm_inc_e_p=sqrt(parrr)
call kdamage(wc_o,wt_o,strain_rate,rate_fac,alpha,eps_t,eps_c,pkdt,pkdt1,pkdt2,pkdc,pkdc1,pkdc2,sg_tr,
tkp,pnorm_inc_e_p,plen,sg_old,statev(18),statev(2),
wc,wt,eps t,eps c,pkdt,pkdt1,pkdt2,pkdc,pkdc1,pkdc2,eps new)!statev(18) old alpha
end if
if (isotropic.eq.0) then
       sig=(on-wt)*sig_ekff_t+(on-wc)*sig_ekff_c
else if (isotropic.eq.1) then
      sig=(on-wt)*sg tr
else
      sig=(on-wt*(on-alpha))*(on-wc*alpha)*sg_tr
      modified from original code
C
end if
statev(1)=tkp;statev(3:8)=e_p;statev(2)=eps_new
statev(9)=pkdt;statev(10)=pkdt1;statev(11)=pkdt2;
statev(12)=pkdc;statev(13)=pkdc1;statev(14)=pkdc2;
statev(15)=wt;statev(16)=wc;
statev(17)=rate_fac;statev(18)=alpha;
statev(19)=eps_t;statev(20)=eps_c;
statev(21:26)=tot_e;
```

INPUT DATA $[t_n, t_n + \Delta t = t_{n+1}] \rightarrow \boldsymbol{\varepsilon}_n, r_n, \boldsymbol{\varepsilon}_{t_n+1}$

$$\text{Step 1} \rightarrow \text{Compute} \begin{cases} \overline{\sigma}_{n+1} = \mathbb{C} : \varepsilon_{n+1} \rightarrow \begin{cases} \tau_{\varepsilon_n} = \sqrt{\varepsilon_n : \mathbb{C} : \varepsilon_n} \\ \tau_{\varepsilon_{n+1}} = \sqrt{\varepsilon_{n+1} : \mathbb{C} : \varepsilon_{n+1}} \end{cases} = \sqrt{\overline{\sigma}_{n+1} : \varepsilon_{n+1}}$$

Step 3
$$\rightarrow$$
 If $\tau_{\varepsilon_{n+\alpha}} > r_n \rightarrow$ (Loading)
$$\begin{vmatrix} r_{n+1} = \frac{\left[\eta - \Delta t(1-\alpha)\right]}{\eta + \alpha \Delta t} r_n + \frac{\Delta t}{\eta + \alpha \Delta t} \tau_{\varepsilon_{n+\alpha}} ; d_{n+1} = 1 - \frac{q(r_{n+1})}{r_{n+1}} \\ \sigma_{n+1} = (1 - d_{n+1})\overline{\sigma}_{n+1} \\ \mathbb{C}^{vd}_{\text{alg},n+1} = (1 - d_{n+1})\mathbb{C} + \\ + \frac{\alpha \Delta t}{\eta + \alpha \Delta t} \frac{1}{\tau_{\varepsilon_{n+1}}} \frac{H_{n+1}r_{n+1} - q(r_{n+1})}{(r_{n+1})^2} (\overline{\sigma}_{n+1} \otimes \overline{\sigma}_{n+1}) \end{vmatrix}$$

$$\dot{\lambda} = \frac{\frac{\partial \bar{\sigma}_1}{\partial \bar{\sigma}} : \mathbf{D}_e : \dot{\boldsymbol{\varepsilon}}}{\frac{\partial \bar{\sigma}_1}{\partial \bar{\sigma}} : \mathbf{D}_e : \frac{\partial \bar{\sigma}_1}{\partial \bar{\sigma}} + \boldsymbol{H}_p}$$

$$\mathbf{D}_{\mathrm{epd}} = (1 - \omega) \left(\mathbf{D}_{\mathrm{e}} - \frac{\mathbf{D}_{\mathrm{e}} : \frac{\partial \bar{\sigma}_{1}}{\partial \bar{\sigma}} \otimes \frac{\partial \bar{\sigma}_{1}}{\partial \bar{\sigma}} : \mathbf{D}_{\mathrm{e}}}{\frac{\partial \bar{\sigma}_{1}}{\partial \bar{\sigma}} : \mathbf{D}_{\mathrm{e}}} : \frac{\partial \bar{\sigma}_{1}}{\partial \bar{\sigma}} + H_{\mathrm{p}} \right) - g_{\mathrm{d}}' \left(\frac{\mathbf{D}_{\mathrm{e}} : (\varepsilon - \varepsilon_{\mathrm{p}}) \otimes \frac{\partial \bar{\sigma}_{1}}{\partial \bar{\sigma}} : \mathbf{D}_{\mathrm{e}}}{\frac{\partial \bar{\sigma}_{1}}{\partial \bar{\sigma}} : \mathbf{D}_{\mathrm{e}} : \frac{\partial \bar{\sigma}_{1}}{\partial \bar{$$

$$\frac{d\sigma_{n+1}}{d\varepsilon_{n+1}} = \sum_{A=1}^{3} \sum_{B=1}^{3} \frac{d\hat{\sigma}_{A}}{d\hat{\varepsilon}_{B}} \mathbf{m}_{A}^{T} \mathbf{m}_{B} + \frac{(1 - D_{n+1})}{2} \times \sum_{A=1}^{3} \sum_{B \neq A} \left[\left(\frac{\hat{\sigma}_{B} - \hat{\sigma}_{A}}{\hat{\varepsilon}_{B} - \hat{\varepsilon}_{A}} \right) \left(\mathbf{m}_{AB}^{T} \mathbf{m}_{AB} + \mathbf{m}_{AB}^{T} \mathbf{m}_{BA} \right) \right]$$

$$\mathbf{m}_{A} = \mathbf{v}_{A}^{\mathrm{T}} \mathbf{v}_{A}, \quad \mathbf{m}_{AB} = \mathbf{v}_{A}^{\mathrm{T}} \mathbf{v}_{B}, \quad A \neq B.$$

$$\left(\hat{\sigma}_{B} - \hat{\sigma}_{A}\right) / \left(\hat{\varepsilon}_{B} - \hat{\varepsilon}_{A}\right) \text{ by } \partial \left(\hat{\sigma}_{B} - \hat{\sigma}_{A}\right) / \partial \hat{\varepsilon}_{B}$$

```
subroutine kregular_return(sg,pk,iendflag,sg2,iconvrg,pkp2,pj,resd,pnorm_res,pp,pxx)
              pnorm res(4), pincrmt(4), unkn1(4),
resd(4),
                                                   sg(6), sg2(6), sg3(6), sig_ten(3,3),
pkm, temp sg, dth(3), sg p tr(3), sg p(3),
dir(3,3),
              dir_tem(3),
                                                                  ddgdinvdk(2), dfdinv(2),
dgdinv(2),
                     ddkdldinv(2),
                                            ddgddinv(2,2),
                                                                                               ddg_ddinv(2,2),
                     ddk_dldinv(2),
                                            ddgdinv(2,2),
ddg_dinvdk(2),
                                                                  dinv_dsig_pr(3,3),
pj(4,4),pj2(4,4),
                     dthi(3),
                                    pp(3,3),pt(4,3),pr(3,3),pjr(3,3),pjr(3,3)
iter=0;itot iter=200;
pkm=em/thr/(on-tw*qmuo);gm=em/tw/(on+qmuo)
resd(1:4)=zr; pnorm res(1:4)=zr;
                                    pincrmt(1:4)=zr;
dl=zr;
call khaigh(sg,sv_tr1,ro_tr1,theta_tr1,dinv_dsig_pr)
call kvec to tens(sg,sig ten)
call kjacobi_eigenvalue(3,sig_ten,dir,sg_p)
sg_p_tr=sg_p
pkp=pk;
tkp1=pk;
sv=sv_tr1;
ro=ro tr1;
                \kappa_{n+1}

<u> trial</u>

                       \bar{\sigma}_{n+1}
         \kappa_{n+1}^{(0)}
                        \kappa_n
                        0
unkn1(1)=sv tr1;
unkn1(2)=ro tr1;
unkn1(3)=tkp1;
unkn1(4)=zr;
call kff(sv,ro,theta tr1,tkp1,resd(4));
ppnorm res=on;
ppnorm_res1=on;
iconvrg=0;
ggtol=gtol*1.d-2
do while (ppnorm res>ggtol)
       iter=iter+1
       pnorm res(1)=resd(1)/pkm;
       pnorm res(2)=resd(2)/tw/gm
       pnorm_res(3)=resd(3);
       pnorm res(4)=resd(4)
       ppnorm_res1=(pnorm_res(1)**tw+pnorm_res(2)**tw)**half
ppnorm res=(pnorm res(1)**tw+pnorm res(2)**tw+pnorm res(3)**tw+pnorm res(4)**tw)**half
       if (iter.gt.1) then
              if (ppnorm_res1<gtol*gtol*10.d0) then exit</pre>
       end if
       if(iter.eq.itot_iter) then
              if (ppnorm_res<gtol*1.d-2) then exit
              iconvrg=1
              exit
```

```
end if
                  if (ppnorm res>ggtol) then
                                             icomputeall=1
call kderv(sv,ro,theta_tr1,tkp1,icomputeall,dgdinv,dkdl,dfdinv,ddgddinv,dfdk,ddgdinvdk,ddkdldinv,ddk_dldk)
                                              pj(1,1)=on+pkm*dl*ddgddinv(1,1);
                                              pj(1,2)=pkm*dl*ddgddinv(1,2);
                                              pj(1,3)=pkm*dl*ddgdinvdk(1);
                                              pj(1,4)=pkm*dgdinv(1);
                                              pj(2,1)=tw*gm*dl*ddgddinv(2,1);
                                              pj(2,2)=on+tw*gm*dl*ddgddinv(2,2);
                                              pj(2,3)=tw*gm*dl*ddgdinvdk(2);
                                              pj(2,4)=tw*gm*dgdinv(2);pj(3,1)=dl*ddkdldinv(1);
                                              pj(3,2)=d1*ddkdldinv(2);pj(3,3)=d1*ddk dldk-on;
                                              pj(3,4)=dkdl;pj(4,1)=dfdinv(1);
                                              pj(4,2)=dfdinv(2);pj(4,3)=dfdk;pj(4,4)=zr;
\begin{bmatrix} 1 + K\Delta\lambda \frac{\partial m_{\rm V}}{\partial \bar{\sigma}_{\rm V}} & K\Delta\lambda \frac{\partial m_{\rm V}}{\partial \bar{\rho}} & K\Delta\lambda \frac{\partial m_{\rm V}}{\partial \kappa_{\rm p}} & Km_{\rm V} \\ 2G\Delta\lambda \frac{\partial m_{\rm D}}{\partial \bar{\sigma}_{\rm V}} & 1 + 2G\Delta\lambda \frac{\partial m_{\rm D}}{\partial \bar{\rho}} & 2G\Delta\lambda \frac{\partial m_{\rm D}}{\partial \kappa_{\rm p}} & 2Gm_{\rm D} \\ -\Delta\lambda \frac{\partial k_{\rm p}}{\partial \bar{\sigma}_{\rm V}} & -\Delta\lambda \frac{\partial k_{\rm p}}{\partial \bar{\rho}} & 1 & -k_{\rm p} \\ \frac{\partial f_{\rm p}}{\partial \bar{\sigma}_{\rm V}} & \frac{\partial f_{\rm p}}{\partial \bar{\rho}} & \frac{\partial f_{\rm p}}{\partial \kappa_{\rm p}} & 0 \end{bmatrix}
                                                                                                                                                                                                                \mathbf{R}_{\hat{\bar{\boldsymbol{\sigma}}}} = \hat{\bar{\boldsymbol{\sigma}}}_{n+1} + \Delta \lambda \hat{\mathbf{C}}_0 \mathbf{m} - \hat{\bar{\boldsymbol{\sigma}}}_{n+1}^{trial}
                                                                                                                                                                                                                \mathbf{R}_{\kappa} = \kappa_{n+1} - \Delta \lambda \, \mathbf{h} - \kappa_n
```

 $\mathbf{R}_{\Delta\lambda} = F\left(\hat{\bar{\mathbf{\sigma}}}_{n+1}, \kappa_{n+1}\right)$

```
call Kdet44(pj,parry)
                                if (abs(parry)<1.0d-10) then iconvrg=1 exit</pre>
                                                                                                                       end if
                                call kmatinv4(pj,pj2)
                                pincrmt=-matmul(pj2,resd)
                                unkn1=unkn1+pincrmt
                                if (unkn1(2)<zr) unkn1(2)=zr</pre>
                                if (unkn1(3)<pkp) unkn1(3)=pkp</pre>
                                if (unkn1(4) < zr) unkn1(4) = zr
                                sv=unkn1(1);ro=unkn1(2);
                                tkp1=unkn1(3);d1=unkn1(4);
call kderv(sv,ro,theta_tr1,tkp1,0,dgdinv,dkdl,dfdinv,ddg_ddinv,dfdk,ddg_dinvdk,ddk_dldinv,ddk_dldk)

\mathbf{R}_{\hat{\sigma}} = \hat{\sigma}_{n+1} + \Delta \lambda \hat{\mathbf{C}}_{0} \mathbf{m} - \hat{\sigma}_{n+1}^{trial} \\
\mathbf{R}_{\kappa} = \kappa_{n+1} - \Delta \lambda \mathbf{h} - \kappa_{n}

\mathbf{R}_{\Delta \lambda} = F\left(\hat{\sigma}_{n+1}, \kappa_{n+1}\right)

\bar{\sigma}_{V} = \bar{\sigma}_{V}^{tr} - K \Delta \lambda m_{V}(\bar{\boldsymbol{\sigma}}, \kappa_{p})

\bar{\rho} = \bar{\rho}^{tr} - 2G \Delta \lambda m_{D}(\bar{\boldsymbol{\sigma}}, \kappa_{p})

                                resd(1)=sv-sv tr1+pkm*dl*dgdinv(1)
                                resd(2)=ro-ro tr1+tw*gm*dl*dgdinv(2)
                                resd(3)=pkp-tkp1+dl*dkdl
                                call kff(sv,ro,theta tr1,tkp1,resd(4))
                     end if
```

```
if(iconvrg.eq.0) then
     sg p=zr;
     sg p(1)=sv+sqrt(tw/thr)*ro*dcos(theta tr1)
     sg_p(2)=sv+sqrt(tw/thr)*ro*dcos(theta_tr1-tw/thr*pi)
     sg_p(3)=sv+sqrt(tw/thr)*ro*dcos(theta_tr1+tw/thr*pi);
     sig ten=zr;
     sig ten(1,1)=sg p(1);
     sig_ten(2,2)=sg_p(2);
     sig_ten(3,3)=sg_p(3);
call ktens to vec(matmul(dir,matmul(sig ten,transpose(dir))),sg)
pk=tkp1
pj2(1:4,3)=pj2(1:4,3)*-1.d0;
pj(1,1)=pkm;
p_{j}(1,2) = pkm;
pj(1,3)=pkm
s1=sg_p_tr(1)*tw/thr-sg_p_tr(2)/thr-sg_p_tr(3)/thr
s2=sg p tr(2)*tw/thr-sg p tr(1)/thr-sg p tr(3)/thr
s3=sg_p_tr(3)*tw/thr-sg_p_tr(2)/thr-sg_p_tr(1)/thr;
par=tw*gm/ro_tr1;
pj(2,1)=par*s1;
pj(2,2)=par*s1;%%%%
pj(2,3)=par*s3;
pj(3,1)=zr;pj(3,2)=zr;pj(3,3)=zr
call kff(sv,ro,theta_tr1,pk,yield)
theta tr3=theta tr1-10.0d-3
call kff(sv,ro,theta_tr3,pk,yield1)
fb_th=(yield-yield1)/10.0d-3
sg3=zr;sg3(1)=sg_p(1);sg3(2)=sg_p(2);sg3(3)=sg_p(3);
call khaigh(sg3,sv_tr1,ro_tr2,theta_tr3,dinv_dsig_pr)
sg3(1)=sg_p(1)+tw/thr*10.0d-3;sg3(2)=sg_p(2)-10.0d-3/thr;
sg3(3)=sg_p(3)-10.0d-3/thr;
call khaigh(sg3,sv_tr1,ro_tr2,theta_tr2,dinv_dsig_pr)
par1=(theta_tr2-theta_tr3)/10.0d-3
sg3(2)=sg_p(2)+tw/thr*10.0d-3;
sg3(1)=sg_p(1)-10.0d-3/thr;
sg3(3)=sg p(3)-10.0d-3/thr;
call khaigh(sg3,sv_tr1,ro_tr2,theta_tr2,dinv_dsig_pr)
par2=(theta tr2-theta tr3)/10.0d-3
sg3(3)=sg p(3)+tw/thr*10.0d-3;
sg3(2)=sg p(2)-10.0d-3/thr;
sg3(1)=sg_p(1)-10.0d-3/thr;
call khaigh(sg3,sv_tr1,ro_tr2,theta_tr2,dinv_dsig_pr)
par3=(theta tr2-theta tr3)/10.0d-3
dth(1)=(tw*par1-par2-par3)/thr;
dth(2)=(tw*par2-par1-par3)/thr;
dth(3)=(tw*par3-par2-par1)/thr;
```

```
pj(4,1:3)=dth(1:3)*-fb_th;
pjr(1:2,1:3)=matmul(pj2(1:2,1:4),pj(1:4,1:3))
pjr(3,1:3) = dth
     pj(1,1)=on;
    pj(2,1)=on;
    pj(3,1)=on;
     pj(1,2)=on*sqrt(tw/thr)*dcos(theta_tr1);
     pj(2,2)=on*sqrt(tw/thr)*dcos(theta_tr1-tw/thr*pi);
     pj(3,2)=on*sqrt(tw/thr)*dcos(theta_tr1+tw/thr*pi);
     pj(1,3)=-on*sqrt(tw/thr)*ro*dsin(theta_tr1);
     pj(2,3)=-on*sqrt(tw/thr)*ro*dsin(theta_tr1-tw/thr*pi);
     pj(3,3)=-on*sqrt(tw/thr)*ro*dsin(theta_tr1+tw/thr*pi);
     pjr=matmul(pj(1:3,1:3),pjr);
     pt(1,1)=pkm;pt(1,2)=pkm;pt(1,3)=pkm
     par=tw*gm/ro_tr1;
     s1=sg_p_tr(1)*tw/thr-sg_p_tr(2)/thr-sg_p_tr(3)/thr
     s2=sg_p_tr(2)*tw/thr-sg_p_tr(1)/thr-sg_p_tr(3)/thr
     s3=sg_p_tr(3)*tw/thr-sg_p_tr(2)/thr-sg_p_tr(1)/thr;
     par=tw*gm/ro_tr1;
     pt(2,1)=par*s1;pt(2,2)=par*s2;pt(2,3)=par*s3
     pt(3,1)=zr;pt(3,2)=zr;pt(3,3)=zr;
     par=tw*gm/sqrt(tw/thr)/ro_tr1/dsin(theta_tr1);
     par1=par*(s1**tw/ro_tr1**tw-on);
     par2=par*(s1*s2/ro_tr1**tw);
     par3=par*(s1*s3/ro_tr1**tw);
     if (theta_tr1**tw<gtol) then</pre>
        par=tw*gm/sqrt(tw/thr)/ro_tr1/dsin(theta_tr1-tw/thr*pi);
        par1=par*(s1*s2/ro_tr1**tw);
        par2=par*(s2**tw/ro_tr1**tw-on);
        par3=par*(s2*s3/ro_tr1**tw);
     end if
     pt(4,1)=(tw*par1-par2-par3)/thr;
     pt(4,2)=(tw*par2-par1-par3)/thr;
     pt(4,3)=(tw*par3-par2-par1)/thr;
     pp(1,1)=on; pp(2,1)=on; pp(3,1)=on;
     pp(1,2)=on*sqrt(tw/thr)*dcos(theta_tr1);
     pp(2,2)=on*sqrt(tw/thr)*dcos(theta_tr1-tw/thr*pi);
     pp(3,2)=on*sqrt(tw/thr)*dcos(theta_tr1+tw/thr*pi);
     par=(sg_p(1)-sv)
     pp(1,3)=-par*dsin(theta_tr1)/dcos(theta_tr1);
     pp(2,3)=-par*dsin(theta_tr1-tw/thr*pi)/dcos(theta_tr1);
     pp(3,3)=-par*dsin(theta_tr1+tw/thr*pi)/dcos(theta_tr1);
    pr(1:2,1:2)=pj2(1:2,1:2)
```

```
pr(1:2,3)=pj2(1:2,4)*-fb_th*0
                   pr(3,1)=zr;
                  pr(3,2)=zr;
                  pr(3,3)=on;
                   pt(3,1:3)=pt(4,1:3);
                   pp=matmul(pp,matmul(pr,pt(1:3,1:3)))
                   pjr1(1:2)=pj2(3,1:2);pjr1(3)=pj2(3,4)*-fb_th*0;
                   pjr1(1:3)=matmul(pjr1,pt(1:3,1:3))
                   do i=1,3
                          do j=1,3
                                pxx(i,j)=sg_p(i)*pjr1(j)
                         end do
                   end do
         end if
         return
\delta \bar{\boldsymbol{\sigma}} = \sum_{I=1}^{3} \delta \bar{\sigma}_{I} \mathbf{n}_{I} \otimes \mathbf{n}_{I} + \sum_{I=1}^{3} \bar{\sigma}_{I} (\delta \mathbf{n}_{I} \otimes \mathbf{n}_{I} + \mathbf{n}_{I} \otimes \delta \mathbf{n}_{I})
```

$$\delta \mathbf{n}_1 = \frac{\delta \epsilon_{12}}{\epsilon_{\mathrm{e}1}^{\mathrm{tr}} - \epsilon_{\mathrm{e}2}^{\mathrm{tr}}} \mathbf{n}_2 + \frac{\delta \epsilon_{13}}{\epsilon_{\mathrm{e}1}^{\mathrm{tr}} - \epsilon_{\mathrm{e}3}^{\mathrm{tr}}} \mathbf{n}_3$$

$$\begin{split} \delta \bar{\sigma}_{11} &= \mathbf{n}_1 \cdot \bar{\boldsymbol{\sigma}} \cdot \mathbf{n}_1 = \delta \bar{\sigma}_1 \\ \delta \bar{\sigma}_{12} &= \mathbf{n}_1 \cdot \bar{\boldsymbol{\sigma}} \cdot \mathbf{n}_2 = \frac{\bar{\sigma}_1 - \bar{\sigma}_2}{\epsilon_{\text{e}1}^{\text{tr}} - \epsilon_{\text{e}2}^{\text{tr}}} \delta \epsilon_{12} \end{split}$$

$$2G_{12} = rac{ar{\sigma}_1 - ar{\sigma}_2}{arepsilon_{
m e1}^{
m tr} - arepsilon_{
m e2}^{
m tr}}$$

$$\bar{\sigma}_1 - \bar{\sigma}_2 = \sqrt{\frac{2}{3}} \bar{\rho} [\cos \theta^{tr} - \cos(\theta^{tr} - 2\pi/3)]$$

$$\epsilon_{e1}^{tr} - \epsilon_{e2}^{tr} = \sqrt{\frac{2}{3}} \rho_e^{tr} [\cos\theta^{tr} - \cos(\theta^{tr} - 2\pi/3)]$$

$$\delta \bar{\sigma}_1 = \delta \bar{\sigma}_{\mathrm{V}} + \sqrt{\frac{2}{3}} \cos \theta^{\mathrm{tr}} \delta \bar{\rho} - \sqrt{\frac{2}{3}} \bar{\rho} \sin \theta^{\mathrm{tr}} \delta \theta^{\mathrm{tr}}$$

$$\delta\theta^{\rm tr} = \frac{\sqrt{3}}{2J_{\rm e2}^3 \sin 3\theta^{\rm tr}} \left(\frac{3}{2} \sqrt{J_{\rm e2}} J_{\rm e3} \delta J_{\rm e2} - J_{\rm e2}^{3/2} \delta J_{\rm e3} \right) = \frac{\sqrt{3}}{2J_{\rm e2}^{5/2} \sin 3\theta^{\rm tr}} \left(\frac{3}{2} J_{\rm e3} \mathbf{e}_{\rm e}^{\rm tr} - J_{\rm e2} \mathbf{e}_{\rm e}^{\rm tr} \cdot \mathbf{e}_{\rm e}^{\rm tr} \right) : \delta\mathbf{e}$$

$$\begin{bmatrix} 1 + K \Delta \lambda \frac{\partial m_{V}}{\partial \bar{\sigma}_{V}} & K \Delta \lambda \frac{\partial m_{V}}{\partial \bar{\rho}} & K \Delta \lambda \frac{\partial m_{V}}{\partial \kappa_{p}} & K m_{V} \\ 2G \Delta \lambda \frac{\partial m_{D}}{\partial \bar{\sigma}_{V}} & 1 + 2G \Delta \lambda \frac{\partial m_{D}}{\partial \bar{\rho}} & 2G \Delta \lambda \frac{\partial m_{D}}{\partial \kappa_{p}} & 2G m_{D} \\ -\Delta \lambda \frac{\partial k_{p}}{\partial \bar{\sigma}_{V}} & -\Delta \lambda \frac{\partial k_{p}}{\partial \bar{\rho}} & 1 & -k_{p} \\ \frac{\partial f_{p}}{\partial \bar{\sigma}_{V}} & \frac{\partial f_{p}}{\partial \bar{\rho}} & \frac{\partial f_{p}}{\partial \bar{\rho}} & 0 \end{bmatrix} \begin{bmatrix} \delta \bar{\sigma}_{V} \\ \delta \bar{\rho} \\ \delta \kappa_{p} \\ \delta \lambda \end{bmatrix} = \begin{bmatrix} \delta \bar{\sigma}_{V}^{tr} \\ \delta \bar{\rho}^{tr} \\ \delta \kappa_{p} \\ \delta \lambda \end{bmatrix}$$

$$\begin{split} \delta \bar{\sigma}_{\mathrm{V}}^{\mathrm{tr}} &= K \boldsymbol{\delta} : \delta \boldsymbol{\varepsilon} \\ \delta \bar{\rho}^{\mathrm{tr}} &= \frac{2G}{\bar{\rho}^{\mathrm{tr}}} \mathbf{s}^{\mathrm{tr}} : \delta \mathbf{e} \end{split}$$

$$\delta \boldsymbol{\sigma} = (1 - \omega)\delta \bar{\boldsymbol{\sigma}} - \bar{\boldsymbol{\sigma}} \delta \omega$$

$$\delta\omega = g_{\rm d}' \,\delta\tilde{\varepsilon} = \frac{g_{\rm d}'}{x_{\rm s}} \left[\Delta\lambda \left(\frac{\partial m_{\rm V}}{\partial \bar{\sigma}_{\rm V}} - \frac{m_{\rm V} x_{\rm s}'}{x_{\rm s}} \right) \delta\bar{\sigma}_{\rm V} + \Delta\lambda \frac{\partial m_{\rm V}}{\partial \bar{\rho}} \,\delta\bar{\rho} + \Delta\lambda \frac{\partial m_{\rm V}}{\partial \kappa_{\rm p}} \,\delta\kappa_{\rm p} + m_{\rm V} \,\delta\lambda \right]$$

$$g_{\rm d}' = {\rm d}g_{\rm d}/{\rm d}\kappa_{\rm d}$$
 and $x_{\rm s}' = {\rm d}x_{\rm s}/{\rm d}\bar{\sigma}_{\rm V}$

$$g_{\mathrm{p}}(\bar{\sigma}_{\mathrm{V}}, \bar{\rho}; \kappa_{\mathrm{p}}) - g_{\mathrm{p}}(0, 0; \kappa_{\mathrm{p}}) \geqslant 0$$

```
subroutine khaigh(sg,sv,ro,thi,dinv_dsig_pr)
                                                                                                                                                    \bar{\sigma}_{V} = \frac{I_{1}}{3}
\bar{\rho} = \sqrt{2J_{2}}
J_{2} = \frac{1}{2}\bar{\mathbf{s}} : \bar{\mathbf{s}} = \frac{1}{2}\bar{\mathbf{s}}^{2} : \boldsymbol{\delta} = \frac{1}{2}\bar{\mathbf{s}}_{i}
J_{3} = \frac{1}{3}\bar{\mathbf{s}}^{3} : \boldsymbol{\delta} = \frac{1}{3}\bar{\mathbf{s}}_{ij}\bar{\mathbf{s}}_{jk}\bar{\mathbf{s}}_{ki}
sv = (sg(1) + sg(2) + sg(3)) / thr;
s=sg;
s(1:3) = sg(1:3) - sv
pj2=half*(s(1)**tw+s(2)**tw+s(3)**tw)+s(4)**tw+s(5)**tw+s(6)**tw
if (pj2<=gtol) THEN
             thi=zr;ro=zr
else
             ro=sqrt(tw*pj2);
pj3=s(1)**3+s(2)**3+s(3)**3+3*s(1)*(s(4)**2+s(6)**2)+sx*s(4)*s(5)*s(6)+3*s(2)*(s(4)**2+s(5)**tw)+3*s(3)*($(5)**
2+s(6)**2)
             pj3=pj3/thr;
             thi=thr*sqrt(thr)/tw*pj3/(pj2**(1.5d0));
                                                                                                                                                    ar{	heta} = rac{1}{3} \arccos \left( rac{3\sqrt{3}}{2} rac{J_3}{J_2^{3/2}} 
ight)
I_1 = ar{oldsymbol{\sigma}} : oldsymbol{\delta} = ar{\sigma}_{ij} \delta_{ij}
end if
if (thi>on) then
             thi=on
else if (thi<-on) then
             thi=-on
end if
```

thi= on/thr*dacos(thi)

```
subroutine kequ_e(sv,ro,th,equ_e)
par1=(on-ecc**tw);par2=(tw*ecc-on)
rcos=(fr*par1*dcos(th)**tw+par2**tw)
rcos=rcos/(tw*par1*dcos(th)+par2*sqrt(fr*par1*dcos(th)**tw+5.d0*ecc**tw-fr*ecc))
par_p=-pm0*(ro*rcos/sqrt(sx)/fc+sv/fc);
par_q=-1.5d0*ro**tw/fc**tw
equ_e=e0*(-half*par_p+sqrt(par_p**tw/fr-par_q))
if (equ_e.le.zr) equ_e=zr
```

$$\begin{split} f_{p}(\bar{\sigma}_{V},\bar{\rho},\bar{\theta};\kappa_{p}) &= \left\{ \left[1 - q_{h1}(\kappa_{p}) \right] \left(\frac{\bar{\rho}}{\sqrt{6}f_{c}} + \frac{\bar{\sigma}_{V}}{f_{c}} \right)^{2} + \sqrt{\frac{3}{2}} \frac{\bar{\rho}}{f_{c}} \right\}^{2} \\ &+ m_{0}q_{h1}^{2}(\kappa_{p})q_{h2}(\kappa_{p}) \left[\frac{\bar{\rho}}{\sqrt{6}f_{c}} r(\cos\bar{\theta}) + \frac{\bar{\sigma}_{V}}{f_{c}} \right] \\ &- q_{h1}^{2}(\kappa_{p})q_{h2}^{2}(\kappa_{p}) \end{split}$$

$$ilde{arepsilon} = arepsilon_0 rac{ar{\sigma}_{
m t}}{f_{
m t}} = ar{\sigma}_{
m t}/E$$

$$\tilde{\varepsilon} = \frac{\bar{\sigma}_{c} \varepsilon_{0}}{f_{c}} = \frac{\bar{\sigma}_{c} f_{t}}{E f_{c}}$$

$$\tilde{\tilde{\epsilon}} = \frac{\varepsilon_0 m_0}{2} \left(\frac{\bar{\rho}}{\sqrt{6} f_c} r(\cos \theta) + \frac{\bar{\sigma}_V}{f_c} \right) + \sqrt{\frac{\varepsilon_0^2 m_0^2}{4} \left(\frac{\bar{\rho}}{\sqrt{6} f_c} r(\cos \theta) + \frac{\bar{\sigma}_V}{f_c} \right)^2 + \frac{3\varepsilon_0^2 \bar{\rho}^2}{2f_c^2}}$$

$$\begin{aligned} \textbf{\textit{Ductility}} \quad \chi_h(\overline{\sigma}_V) = \begin{cases} A_h - (A_h - B_h) \exp(-R_h(\overline{\sigma}_V)/C_h), & \text{if } R_h(\overline{\sigma}_V) \geq 0 \\ E_h \exp(R_h(\overline{\sigma}_V)/F_h) + D_h, & \text{if } R_h(\overline{\sigma}_V) < 0 \end{cases}, \\ R_h(\overline{\sigma}_V) = \begin{cases} A_h - (A_h - B_h) \exp(-R_h(\overline{\sigma}_V)/C_h) & \text{if } R_h(\overline{\sigma}_V) \geq 0 \\ E_h \exp(R_h(\overline{\sigma}_V)/F_h) + D_h & \text{if } R_h(\overline{\sigma}_V) < 0 \end{cases} \end{aligned}$$

$$\begin{aligned} R_h(\overline{\sigma}_V) = \begin{cases} A_h - (A_h - B_h) \exp(-R_h(\overline{\sigma}_V)/C_h) & \text{if } R_h(\overline{\sigma}_V) \geq 0 \\ E_h \exp(R_h(\overline{\sigma}_V)/F_h) + D_h & \text{if } R_h(\overline{\sigma}_V) < 0 \end{cases}$$

$$x_{h}(\bar{\sigma}_{V}) = \begin{cases} A_{h} - (A_{h} - B_{h}) \exp(-R_{h}(\bar{\sigma}_{V})/C_{h}) & \text{if } R_{h}(\bar{\sigma}_{V}) \geqslant 0 \\ E_{h} \exp(R_{h}(\bar{\sigma}_{V})/F_{h}) + D_{h} & \text{if } R_{h}(\bar{\sigma}_{V}) < 0 \end{cases}$$

$$R_{\rm h}(\bar{\sigma}_{\rm V}) = -\frac{\bar{\sigma}_{\rm V}}{\bar{f}_{\rm c}} - \frac{1}{3}$$

$$E_{\rm h} = B_{\rm h} - D_{\rm h}$$

$$F_{\rm h} = \frac{(B_{\rm h} - D_{\rm h})C_{\rm h}}{A_{\rm h} - B_{\rm h}}$$

subroutine kductility(sv,th,icomput_deriv,duct_m,dduct_dinv)

$$\dot{\kappa}_{p} = \frac{\|\dot{\varepsilon_{p}}\|}{x_{h}(\bar{\sigma}_{V})} \left(2\cos\bar{\theta}\right)^{2} = \frac{\dot{\lambda}\|\mathbf{m}\|}{x_{h}(\bar{\sigma}_{V})} \left(2\cos\bar{\theta}\right)^{2}$$

```
par1=(tw*dcos(th))**tw;x=-on*(sv+fc/thr)/fc;
if (x<zr) then
      eh=bh-dh;fh=eh*ch/(ah-bh)
      duct_m=(eh*exp(x/fh)+dh)/par1
       if (icomput deriv.eq.1) then
                                         dduct_dinv(1)=eh/fh*exp(x/fh)/par1*(-on)/fc
                                         dduct dinv(1)=zr
                                                            end if
       else
else
      duct_m=(ah-(ah-bh)*exp(-x/ch))/par1
       if (icomput_deriv.eq.1) then dduct_dinv(1)=(bh-ah)/ch*exp(-x/ch)/par1/fc
                                     dduct dinv(1)=zr
                                                              end if
end if
```

subroutine kff(sv,ro,th,pkp,f)

$$\begin{split} f_{\mathrm{p}}(\bar{\sigma}_{\mathrm{V}},\bar{\rho},\bar{\theta};\kappa_{\mathrm{p}}) &= \left\{ \left[1 - q_{\mathrm{h1}}(\kappa_{\mathrm{p}}) \right] \left(\frac{\bar{\rho}}{\sqrt{6}f_{\mathrm{c}}} + \frac{\bar{\sigma}_{\mathrm{V}}}{f_{\mathrm{c}}} \right)^{2} + \sqrt{\frac{3}{2}} \frac{\bar{\rho}}{f_{\mathrm{c}}} \right\}^{2} \\ &+ m_{0}q_{\mathrm{h1}}^{2}(\kappa_{\mathrm{p}})q_{\mathrm{h2}}(\kappa_{\mathrm{p}}) \left[\frac{\bar{\rho}}{\sqrt{6}f_{\mathrm{c}}} r(\cos\bar{\theta}) + \frac{\bar{\sigma}_{\mathrm{V}}}{f_{\mathrm{c}}} \right] \\ &- q_{\mathrm{h1}}^{2}(\kappa_{\mathrm{p}})q_{\mathrm{h2}}^{2}(\kappa_{\mathrm{p}}) \end{split}$$

$$e = \frac{1+\epsilon}{2-\epsilon}, \quad \text{where } \epsilon = \frac{\bar{f}_{t}}{\bar{f}_{b}} \frac{\bar{f}_{b}^{2} - \bar{f}_{c}^{2}}{\bar{f}_{c}^{2} - \bar{f}_{t}^{2}}$$

par1=(on-ecc**tw);par2=(tw*ecc-on)

```
r(\cos \bar{\theta}) = \frac{4(1-e^2)\cos^2\bar{\theta} + (2e-1)^2}{2(1-e^2)\cos\bar{\theta} + (2e-1)\sqrt{4(1-e^2)\cos^2\bar{\theta} + 5e^2 - 4e}} rcos = (fr*par1*dcos(th)**tw+par2**tw) rcos = rcos/(tw*par1*dcos(th)+par2*sqrt(fr*par1*dcos(th)**tw+5.d0*ecc**tw-fr*ecc)) call \ kcqh1(pkp,int(0),qh1,dqh1_dk) call \ kcqh2(pkp,int(0),qh2,dqh2_dk) par1 = ro/(fc*sqrt(sx)) + sv/fc; par1 = (on-qh1)*par1**tw+sqrt(1.5d0)*ro/fc f = par1**tw+qh1**tw*qh2*pm0*(sv/fc+ro*rcos/(sqrt(tw*thr)*fc))-qh1**tw*qh2**tw
```

$\begin{aligned} & \text{subroutine kcqh2(par,icomput_deriv,qh1,dqh1_dk)} \\ & q_{h2}(\kappa_p) = \begin{cases} 1 & \text{if } \kappa_p < 1 \\ 1 + H_p(\kappa_p - 1) & \text{if } \kappa_p \geqslant 1 \end{cases} \\ & \text{if (par<on) then qh1=on} \\ & \text{else} & \text{qh1=on+(par-on)*hp} & \text{end if} \end{cases} \\ & \text{dqh1_dk=zr} \\ & \text{if (icomput_deriv.eq.1) then} \\ & \text{if (par<=on) then } & \text{dqh1_dk=zr} \\ & \text{else} & \text{dqh1_dk=hp} & \text{end if} \end{cases} \\ & \text{subroutine kcqh1(par,icomput_deriv,qh2,dqh2_dk)}$

$q_{ m h2}$ $q_{ m h1}$ $q_{ m h1}$

 $q_{\rm h1},\,q_{\rm h2}$

Fig. 3. The two hardening laws $q_{\rm h1}$ (solid line) and $q_{\rm h2}$ (dashed line).

```
q_{h1}(\kappa_{p}) = \begin{cases} q_{h0} + (1 - q_{h0}) \left(\kappa_{p}^{3} - 3\kappa_{p}^{2} + 3\kappa_{p}\right) - H_{p}\left(\kappa_{p}^{3} - 3\kappa_{p}^{2} + 2\kappa_{p}\right) & \text{if } \kappa_{p} < 1\\ 1 & \text{if } \kappa_{p} \geqslant 1 \end{cases}
```

```
subroutine kc_alpha(s,st,sc,alpha)
                                               !input s
call kvec to tens(s, sig ten)
call kjacobi_eigenvalue(3,sig_ten,dir,sig_pr)
pnorm_s=(sig_pr(1)**tw+sig_pr(2)**tw+sig_pr(3)**tw)
alpha_t=zr;s_pt=zr;s_pc=zr;
if (pnorm_s>zr) then
      do i=1,3
              if (sig_pr(i)>=zr) then
                     s_pt(i)=sig_pr(i);s_pc(i)=zr
              else
                     s_pc(i)=sig_pr(i);s_pt(i)=zr
              end if
              alpha_t=alpha_t+s_pt(i)*(s_pt(i)+s_pc(i))
       end do
       alpha_t=alpha_t/pnorm_s
end if
alpha=on-alpha_t
call kvec_to_tens(s_pt,sig_ten)
call ktens_to_vec(matmul(dir,matmul(sig_ten,transpose(dir))),st)
call kvec to tens(s pc, sig ten)
call ktens_to_vec(matmul(dir,matmul(sig_ten,transpose(dir))),sc)
```

$$[\boldsymbol{\sigma}] \rightarrow \text{diagonalization} \rightarrow [\boldsymbol{\sigma}]_{\text{diag}} = \begin{bmatrix} \boldsymbol{\sigma}_1 & 0 & 0 \\ 0 & \boldsymbol{\sigma}_2 & 0 \\ 0 & 0 & \boldsymbol{\sigma}_3 \end{bmatrix} \begin{bmatrix} \boldsymbol{\sigma}_{\text{diag}}^+ = \begin{bmatrix} \langle \boldsymbol{\sigma}_1 \rangle & 0 & 0 \\ 0 & \langle \boldsymbol{\sigma}_2 \rangle & 0 \\ 0 & 0 & \langle \boldsymbol{\sigma}_3 \rangle \end{bmatrix} \xrightarrow{\text{return to original}} \xrightarrow{\text{Positive counterpar of } [\boldsymbol{\sigma}]^+}$$

$$\mathbf{\sigma} = \sum_{i=1}^{i=3} \underbrace{\begin{array}{c} eigenvector"i" \\ \widehat{\mathbf{p}}_i \otimes \widehat{\mathbf{p}}_i \\ eigenvalue"i" \end{array}}$$

$$\mathbf{\sigma}^{+} = \sum_{i=1}^{i=3} \left\langle \boldsymbol{\sigma}_{i} \right\rangle \hat{\mathbf{p}}_{i} \otimes \hat{\mathbf{p}}_{i}$$

$$\sigma = \underbrace{(1-d)}_{>0} \overline{\sigma} \Rightarrow \sigma^+ = (1-d)\overline{\sigma}^+$$

$$\boldsymbol{\sigma} = (1 - \omega_t)\bar{\boldsymbol{\sigma}}_t + (1 - \omega_c)\bar{\boldsymbol{\sigma}}_c$$

subroutine kderv(sv,ro,th,tkp,icomputeall,dg_dinv,dkdl,dfdinv,ddg_ddinv,dfdk,ddg_dinvdk,ddk_dldinv,ddk_dldk)

call kcqh1(tkp,int(1),qh1,dqh1_dk);call kcqh2(tkp,int(1),qh2,dqh2_dk)

$$A_{\rm g} = \frac{3f_{\rm t}q_{\rm h2}}{f_{\rm c}} + \frac{m_0}{2}$$

ag=ft*qh2*thr/fc+pm0/tw;
bg_top=qh2/thr*(on+ft/fc)
bg_bottom=log(ag)-log(tw*df-on)-log(thr*qh2+pm0/tw)+log(df+on)
bg=bg_top/bg_bottom

$$B_{g} = \frac{B_{g1}}{B_{g2}} = \frac{\left(\frac{q_{h2}}{3}\right)\left(1 + \frac{f_{t}}{f_{c}}\right)}{\ln A_{g} - \ln(2D_{f} - 1) - \ln\left(3q_{h2} + \frac{m_{0}}{2}\right) + \ln(D_{f} + 1)}$$

$$\frac{\partial m_{g}}{\partial \bar{\sigma}_{v}} = \frac{A_{g}(\kappa_{p})}{f_{c}} \exp \frac{\bar{\sigma}_{v} - q_{h1}(\kappa_{p})f_{t}/3}{B_{g}(\kappa_{p})f_{c}}, \qquad \left[\frac{\partial m_{g}}{\partial \kappa_{p}}\right] = -\frac{A_{g}(\kappa_{p})f_{t}}{3f_{c}} \frac{dq_{h1}}{d\kappa_{p}} \exp \frac{\bar{\sigma}_{v} - q_{h1}(\kappa_{p})f_{t}/3}{B_{g}(\kappa_{p})f_{c}}$$

$$\frac{dB_{g1}}{d\kappa_{p}} = \frac{(1 + f_{t}/f_{c})}{3} \frac{dq_{h2}}{d\kappa_{p}}, \qquad \left[\frac{dB_{g2}}{d\kappa_{p}}\right] = \frac{1}{A_{g}} \frac{dA_{g}}{d\kappa_{p}} - \frac{1}{\left(q_{h2} + \frac{m_{0}}{6}\right)} \frac{dq_{h2}}{d\kappa_{p}}, \qquad \left[\frac{dB_{g1}}{d\kappa_{p}}\right] = (B_{g2})^{-1} \frac{dB_{g1}}{d\kappa_{p}} - B_{g1}(B_{g2})^{-2} \frac{dB_{g2}}{d\kappa_{p}}$$

r=(sv-ft/thr*qh2)/fc/bg;

$$m_{g}(\bar{\sigma}_{v}, \kappa_{p}) = A_{g}(\kappa_{p})B_{g}(\kappa_{p}) \exp \frac{\bar{\sigma}_{v} - q_{h1}(\kappa_{p})f_{t}/3}{B_{g}(\kappa_{p})f_{c}}$$

$$\frac{\partial m_{g}}{\partial \bar{\sigma}_{v}} = \frac{A_{g}(\kappa_{p})}{f_{c}} \exp \frac{\bar{\sigma}_{v} - q_{h1}(\kappa_{p})f_{t}/3}{B_{g}(\kappa_{p})f_{c}}$$

pmQ=ag*exp(r);

$$\begin{split} g_p(\bar{\sigma}_V,\bar{\rho};\kappa_p) &= \left\{ \left[1 - q_{h1}(\kappa_p) \right] \left(\frac{\bar{\rho}}{\sqrt{6} f_c} + \frac{\bar{\sigma}_V}{f_c} \right)^2 + \sqrt{\frac{3}{2}} \frac{\bar{\rho}}{f_c} \right\}^2 \\ &+ q_{h1}^2(\kappa_p) \left(\frac{m_0 \bar{\rho}}{\sqrt{6} f_c} + \frac{m_g(\bar{\sigma}_V,\kappa_p)}{f_c} \right) \end{split}$$

$$B_{1} = \frac{\bar{\rho}}{\sqrt{6}f_{c}} + \frac{\bar{\sigma}_{v}}{f_{c}}, \qquad B_{y} = \frac{\bar{\rho}}{\sqrt{6}f_{c}} r(\cos \bar{\theta}) + \frac{\bar{\sigma}_{v}}{f_{c}},$$

$$A_{1} = \left[1 - q_{h1}(\kappa_{p})\right] (B_{x})^{2} + \sqrt{\frac{3}{2}} \frac{\bar{\rho}}{f_{c}},$$

$$g_{p}(\bar{\sigma}_{V}, \bar{\rho}; \kappa_{p}) = (A_{1})^{2} + q_{h1}^{2}(\kappa_{p}) \left[\frac{m_{0}\bar{\rho}}{\sqrt{6}f_{c}} + \frac{m_{g}(\bar{\sigma}_{V}, \kappa_{p})}{f_{c}}\right]$$

$$\frac{\partial g_{p}}{\partial \bar{\rho}} = 2A_{1} \frac{\partial A_{1}}{\partial \bar{\rho}} + \frac{m_{0}q_{h1}^{2}(\kappa_{p})}{\sqrt{6}f_{c}}, \qquad \frac{\partial g_{p}}{\partial \bar{\sigma}_{V}} = 2A_{1} \frac{\partial A_{1}}{\partial \bar{\sigma}_{V}} + \frac{q_{h1}^{2}(\kappa_{p})}{f_{c}} \left(\frac{\partial m_{g}}{\partial \bar{\sigma}_{V}}\right),$$

$$\frac{\partial A_{1}}{\partial \bar{\rho}} = \frac{2\left[1 - q_{h1}(\kappa_{p})\right]B_{1}}{\sqrt{6}f_{c}} + \frac{\sqrt{1.5}}{f_{c}}, \qquad \frac{\partial A_{1}}{\partial \bar{\sigma}_{V}} = \frac{2\left[1 - q_{h1}(\kappa_{p})\right]B_{1}}{f_{c}},$$

$$\frac{\partial^{2}A_{x}}{\partial \bar{\rho}^{2}} = \frac{\left[1 - q_{h1}(\kappa_{p})\right]}{3f_{c}^{2}}, \qquad \frac{\partial^{2}A_{x}}{\partial \bar{\sigma}_{V}^{2}} = \frac{2\left[1 - q_{h1}(\kappa_{p})\right]}{f_{c}^{2}}, \qquad \frac{\partial^{2}A_{x}}{\partial \bar{\rho}\partial \bar{\sigma}_{V}} = \frac{2\left[1 - q_{h1}(\kappa_{p})\right]}{\sqrt{6}f_{c}^{2}}$$

```
Bl=sv/fc+ro/(fc*sqrt(sx));
Al=(1.0-qh1)*Bl**tw+sqrt(1.5)*ro/fc;
dg_dinv(1)=4.0*(1.0-qh1)/fc*Al*Bl+qh1**tw*pmQ/fc;
dg_dinv(2)=Al/(sqrt(sx)*fc)*(4.0*(1.0-qh1)*Bl+sx)+pm0*qh1**tw/(sqrt(sx)*fc);
```

$$\|\boldsymbol{m}\| = \left\| \frac{\partial g_{p}}{\partial \overline{\sigma}} \right\|$$

$$\boldsymbol{m} = \frac{\partial g}{\partial \overline{\sigma}} = \frac{\partial g}{\partial \overline{\sigma}_{V}} \frac{\partial \overline{\sigma}_{V}}{\partial \overline{\sigma}} + \frac{\partial g}{\partial \overline{\rho}} \frac{\partial \overline{\rho}}{\partial \overline{\sigma}}, \qquad \frac{\partial \overline{\sigma}_{V}}{\partial \overline{\sigma}} = \frac{\boldsymbol{\delta}}{3}, \qquad \frac{\partial \overline{\rho}}{\partial \overline{\sigma}} = \frac{\overline{\mathbf{s}}}{\overline{\rho}},$$

$$\bar{\rho} = \sqrt{2J_{2}} = \sqrt{\overline{\mathbf{s}} : \overline{\mathbf{s}}}, \qquad \bar{\sigma}_{V} = \frac{l_{1}}{3}, \qquad J_{2} = \frac{1}{2} \overline{\mathbf{s}} : \overline{\mathbf{s}},$$

$$\boldsymbol{\delta} : \boldsymbol{\delta} = 3, \boldsymbol{\delta} : \overline{\mathbf{s}} = 0, \overline{\mathbf{s}} : \overline{\mathbf{s}} = \overline{\rho}$$

$$\|\boldsymbol{m}\|^{2} = \left(\frac{\partial g}{\partial \overline{\sigma}_{V}} \frac{\boldsymbol{\delta}}{3} + \frac{\partial g}{\partial \overline{\rho}} \frac{\overline{\mathbf{s}}}{\overline{\rho}}\right) : (\dots) = \left(\left[\frac{\partial g}{\partial \overline{\sigma}_{V}}\right]^{2} \frac{1}{3} + \left[\frac{\partial g}{\partial \overline{\rho}}\right]^{2}\right)$$

equivaplentdg_dsg=sqrt(on/thr*dg_dinv(1)**tw+dg_dinv(2)**tw)

$$\bar{k}_{p} = \frac{\|\mathbf{\hat{\epsilon}}_{p}\|}{x_{h}(\bar{\sigma}_{v})} \cos^{2} \bar{\theta} = \frac{\dot{\lambda}\|\mathbf{m}\|}{x_{h}(\bar{\sigma}_{v})} \cos^{2} \bar{\theta}$$

$$\bar{k}_{p} = \dot{\lambda} k_{p}(\bar{\boldsymbol{\sigma}}, \kappa_{p})$$

$$\bar{k}_{p}(\bar{\boldsymbol{\sigma}}, \kappa_{p}) = \frac{\|\mathbf{m}(\bar{\boldsymbol{\sigma}}, \kappa_{p})\|}{x_{h}(\bar{\boldsymbol{\sigma}} : \delta/3)} \cos^{2} \bar{\theta}$$

call kductility(sv,th,1,duct_m,dduct_dinv)
dkdl=equivaplentdg_dsg/duct_m;

$$\begin{split} \mathbf{m} &= \frac{\partial \mathbf{g}}{\partial \bar{\boldsymbol{\sigma}}} = \frac{\partial \mathbf{g}}{\partial \bar{\boldsymbol{\sigma}}_{\mathrm{V}}} \frac{\partial \bar{\boldsymbol{\sigma}}_{\mathrm{V}}}{\partial \bar{\boldsymbol{\sigma}}} + \frac{\partial \mathbf{g}}{\partial \bar{\boldsymbol{\rho}}} \frac{\partial \bar{\boldsymbol{\rho}}}{\partial \bar{\boldsymbol{\sigma}}} \quad \mathbf{m} = \frac{\partial \mathbf{g}}{\partial \bar{\boldsymbol{\sigma}}} = \frac{\partial m_{\mathrm{g}}}{\partial \bar{\boldsymbol{\sigma}}_{\mathrm{V}}} \frac{\delta}{3f_{\mathrm{c}}} + \left(\frac{3}{f_{\mathrm{c}}} + \frac{m_{0}}{\sqrt{6}\bar{\boldsymbol{\rho}}}\right) \frac{\bar{\mathbf{s}}}{f_{\mathrm{c}}} \\ & \left[\begin{array}{ccc} 1 + K \Delta \lambda \frac{\partial m_{\mathrm{V}}}{\partial \bar{\sigma}_{\mathrm{V}}} & K \Delta \lambda \frac{\partial m_{\mathrm{V}}}{\partial \bar{\boldsymbol{\rho}}} & K \Delta \lambda \frac{\partial m_{\mathrm{V}}}{\partial \kappa_{\mathrm{p}}} & K m_{\mathrm{V}} \\ 2G \Delta \lambda \frac{\partial m_{\mathrm{D}}}{\partial \bar{\sigma}_{\mathrm{V}}} & 1 + 2G \Delta \lambda \frac{\partial m_{\mathrm{D}}}{\partial \bar{\boldsymbol{\rho}}} & 2G \Delta \lambda \frac{\partial m_{\mathrm{D}}}{\partial \kappa_{\mathrm{p}}} & 2G m_{\mathrm{D}} \\ & -\Delta \lambda \frac{\partial k_{\mathrm{p}}}{\partial \bar{\sigma}_{\mathrm{V}}} & -\Delta \lambda \frac{\partial k_{\mathrm{p}}}{\partial \bar{\boldsymbol{\rho}}} & 1 & -k_{\mathrm{p}} \\ & \frac{\partial f_{\mathrm{p}}}{\partial \bar{\boldsymbol{\sigma}}_{\mathrm{V}}} & \frac{\partial f_{\mathrm{p}}}{\partial \bar{\boldsymbol{\rho}}} & \frac{\partial f_{\mathrm{p}}}{\partial \bar{\boldsymbol{\rho}}} & 0 \end{array} \right] \end{split}$$

if (icomputeall.eq.1) then

$$r(\cos\bar{\theta}) = \frac{4(1 - e^2)(\cos\bar{\theta})^2 + (2e - 1)^2}{2(1 - e^2)(\cos\bar{\theta}) + (2e - 1)\sqrt{4(1 - e^2)(\cos\bar{\theta})^2 + 5e^2 - 4e}}$$

par1=(on-ecc**tw);par2=(tw*ecc-on)
rcos=(fr*par1*dcos(th)**tw+par2**tw)
rcos=rcos/(tw*par1*dcos(th)+par2*sqrt(fr*par1*dcos(th)**tw+5.d0*ecc**tw-fr*ecc))

$$f_{\mathrm{p}}(\bar{\sigma}_{\mathrm{V}},\bar{\rho},\bar{\theta};\kappa_{\mathrm{p}}) = \left\{ \left[1 - q_{\mathrm{h}1}(\kappa_{\mathrm{p}})\right] \left(\frac{\bar{\rho}}{\sqrt{6}f_{\mathrm{c}}} + \frac{\bar{\sigma}_{\mathrm{v}}}{f_{\mathrm{c}}}\right)^{2} + \sqrt{\frac{3}{2}} \frac{\bar{\rho}}{f_{\mathrm{c}}}\right\}^{2} + m_{0}q_{\mathrm{h}1}^{2}(\kappa_{\mathrm{p}})q_{\mathrm{h}2}(\kappa_{\mathrm{p}}) \left[\frac{\bar{\rho}}{\sqrt{6}f_{\mathrm{c}}}r(\cos\bar{\theta}) + \frac{\bar{\sigma}_{\mathrm{v}}}{f_{\mathrm{c}}}\right] - q_{\mathrm{h}1}^{2}(\kappa_{\mathrm{p}})q_{\mathrm{h}2}^{2}(\kappa_{\mathrm{p}})q_{\mathrm{h}$$

$$f_{\rm p}(\bar{\sigma}_{\rm V},\bar{\rho},\bar{\theta};\kappa_{\rm p}) = (A_1)^2 + m_0 q_{\rm h1}^2(\kappa_{\rm p}) q_{\rm h2}(\kappa_{\rm p}) B_1 - q_{\rm h1}^2(\kappa_{\rm p}) q_{\rm h2}^2(\kappa_{\rm p})$$

$$\frac{\partial f_{\rm p}}{\partial \bar{\sigma}_{\rm V}} = 2A_x \frac{\partial A_x}{\partial \bar{\sigma}_{\rm V}} + \frac{m_0 q_{\rm h1}^2 (\kappa_{\rm p}) q_{\rm h2} (\kappa_{\rm p})}{f_c}, \qquad \frac{\partial f_{\rm p}}{\partial \bar{\rho}} = 2A_x \frac{\partial A_x}{\partial \bar{\rho}} + \frac{m_0 q_{\rm h1}^2 (\kappa_{\rm p}) q_{\rm h2} (\kappa_{\rm p})}{\sqrt{6} f_c} r(\cos \bar{\theta})$$

dfdinv(1)=4.0*(1.0-qh1)/fc*Al*Bl+qh2*qh1**tw*pm0/fc
dfdinv(2)=Al/(sqrt(sx)*fc)*(4.0*(1.0-qh1)*Bl+sx)+rcos*pm0*qh2*qh1**tw/(sqrt(sx)*fc);

$$\begin{split} &\frac{\partial A_x}{\partial \overline{\rho}} = \frac{2[1 - q_{\text{h1}}(\kappa_{\text{p}})]B_x}{\sqrt{\delta}f_c} + \frac{\sqrt{1.5}}{f_c}, \frac{\partial A_x}{\partial \overline{\sigma}_{\text{V}}} = \frac{2[1 - q_{\text{h1}}(\kappa_{\text{p}})]B_x}{f_c}, \\ &\frac{\partial^2 A_x}{\partial \overline{\rho}^2} = \frac{\left[1 - q_{\text{h1}}(\kappa_{\text{p}})\right]}{3f_c^2}, \quad \frac{\partial^2 A_x}{\partial \overline{\sigma}_{\text{V}}^2} = \frac{2\left[1 - q_{\text{h1}}(\kappa_{\text{p}})\right]}{f_c^2}, \quad \frac{\partial^2 A_x}{\partial \overline{\rho} \partial \overline{\sigma}_{\text{V}}} = \frac{2\left[1 - q_{\text{h1}}(\kappa_{\text{p}})\right]}{\sqrt{\delta}f_c^2}, \quad \frac{\partial^2 A_x}{\partial \overline{\rho} \partial \overline{\sigma}_{\text{V}}} = -\frac{\partial q_{\text{h1}}}{\sqrt{\delta}f_c^2}, \frac{\partial A_x}{\partial \overline{\rho} \partial \kappa_{\text{p}}} = -\frac{\partial q_{\text{h1}}}{\partial \kappa_{\text{p}}}(B_x)^2, \\ &\frac{\partial^2 A_x}{\partial \kappa_{\text{p}}^2} = -\frac{\partial^2 q_{\text{h1}}}{\partial \kappa_{\text{p}}^2}(B_x)^2, \quad \frac{\partial^2 A_x}{\partial \overline{\rho} \partial \kappa_{\text{p}}} = -2\frac{\partial q_{\text{h1}}}{\partial \kappa_{\text{p}}}\frac{B_x}{\sqrt{\delta}f_c}, \quad \frac{\partial^2 A_x}{\partial \overline{\sigma}_{\text{V}} \partial \kappa_{\text{p}}} = -2\frac{\partial q_{\text{h1}}}{\partial \kappa_{\text{p}}}\frac{B_x}{f_c} \\ &\frac{\partial f_p}{\partial \kappa_{\text{p}}} = -2A_x \left[\frac{\partial q_{\text{h1}}}{\partial \kappa_{\text{p}}}(B_x)^2\right] + m_0 \left(2\frac{\partial q_{\text{h1}}}{\partial \kappa_{\text{p}}}q_{\text{h1}} + q_{\text{h1}}^2\frac{\partial q_{\text{h2}}}{\partial \kappa_{\text{p}}}\right) B_y - 2\left(q_{\text{h1}}^2 q_{\text{h2}}\frac{\partial q_{\text{h2}}}{\partial \kappa_{\text{p}}} + q_{\text{h1}}q_{\text{h2}}^2\frac{\partial q_{\text{h1}}}{\partial \kappa_{\text{p}}}\right) \end{split}$$

```
!ddgddinv
dmQ_dsv=ag/(bg*fc)*exp(r);
dAl_dsv=tw*(on-qh1)*Bl/fc
```

$$m_{g}(\bar{\sigma}_{v}, \kappa_{p}) = A_{g}(\kappa_{p})B_{g}(\kappa_{p}) \exp \frac{\bar{\sigma}_{v} - q_{h1}(\kappa_{p})f_{t}/3}{B_{g}(\kappa_{p})f_{c}}, \quad \left[\frac{\partial m_{g}}{\partial \bar{\sigma}_{v}}\right] = \frac{A_{g}(\kappa_{p})}{f_{c}} \exp \frac{\bar{\sigma}_{v} - q_{h1}(\kappa_{p})f_{t}/3}{B_{g}(\kappa_{p})f_{c}}, \quad \left[\frac{\partial m_{g}}{\partial \kappa_{p}}\right] = -\frac{A_{g}(\kappa_{p})f_{t}}{3f_{c}} \frac{dq_{h1}}{d\kappa_{p}} \exp \frac{\bar{\sigma}_{v} - q_{h1}(\kappa_{p})f_{t}/3}{B_{g}(\kappa_{p})f_{c}}$$

dBl_dsv=on/fc;

dAl_dro=tw*(on-qh1)*Bl/(fc*sqrt(sx))+sqrt(1.5d0)/fc
dBl_dro=on/(fc*sqrt(sx))

$$\begin{split} g_{\mathrm{p}}(\bar{\sigma}_{\mathrm{V}},\bar{\rho};\kappa_{\mathrm{p}}) &= (A_{1})^{2} + q_{\mathrm{h}1}^{2}(\kappa_{\mathrm{p}}) \left[\frac{m_{0}\bar{\rho}}{\sqrt{6}f_{c}} + \frac{m_{g}(\bar{\sigma}_{\mathrm{V}},\kappa_{\mathrm{p}})}{f_{c}} \right] \\ \frac{\partial g_{p}}{\partial \bar{\rho}} &= 2A_{1} \frac{\partial A_{1}}{\partial \bar{\rho}} + \frac{m_{0}q_{\mathrm{h}1}^{2}(\kappa_{\mathrm{p}})}{\sqrt{6}f_{c}}, \quad \frac{\partial g_{p}}{\partial \bar{\sigma}_{\mathrm{V}}} &= 2A_{1} \frac{\partial A_{1}}{\partial \bar{\sigma}_{\mathrm{V}}} + \frac{q_{\mathrm{h}1}^{2}(\kappa_{\mathrm{p}})}{f_{c}} \left(\frac{\partial m_{g}}{\partial \bar{\sigma}_{\mathrm{V}}} \right), \\ \frac{\partial^{2} g_{p}}{\partial \bar{\rho}^{2}} &= 2A_{1} \frac{\partial^{2} A_{1}}{\partial \bar{\rho}^{2}} + 2 \left(\frac{\partial A_{1}}{\partial \bar{\rho}} \right)^{2}, \\ \frac{\partial^{2} g_{p}}{\partial \bar{\sigma}_{\mathrm{V}}^{2}} &= 2A_{1} \frac{\partial^{2} A_{1}}{\partial \bar{\sigma}_{\mathrm{V}}^{2}} + 2 \left(\frac{\partial A_{1}}{\partial \bar{\sigma}^{2}} \right)^{2} + \frac{q_{\mathrm{h}1}^{2}(\kappa_{\mathrm{p}})}{f_{c}} \left(\frac{\partial^{2} m_{g}}{\partial \bar{\sigma}_{\mathrm{V}}^{2}} \right), \\ \frac{\partial^{2} g_{p}}{\partial \bar{\rho} \partial \bar{\sigma}_{\mathrm{V}}} &= 2A_{1} \frac{\partial^{2} A_{1}}{\partial \bar{\rho} \partial \bar{\sigma}_{\mathrm{V}}} + 2 \frac{\partial A_{1}}{\partial \bar{\rho}} \frac{\partial A_{1}}{\partial \bar{\sigma}_{\mathrm{V}}} \\ \frac{\partial^{2} g_{p}}{\partial \bar{\rho} \partial \bar{\sigma}_{\mathrm{V}}} &= 2A_{1} \frac{\partial^{2} A_{1}}{\partial \bar{\rho} \partial \bar{\sigma}_{\mathrm{V}}} + 2 \frac{\partial A_{1}}{\partial \bar{\rho}} \frac{\partial A_{1}}{\partial \bar{\sigma}_{\mathrm{V}}} \\ \frac{\partial A_{1}}{\partial \bar{\rho}} &= \frac{2[1 - q_{\mathrm{h}1}(\kappa_{\mathrm{p}})]B_{1}}{\sqrt{6}f_{c}} + \frac{\sqrt{1.5}}{f_{c}}, \qquad \frac{\partial A_{1}}{\partial \bar{\sigma}_{\mathrm{V}}} &= \frac{2[1 - q_{\mathrm{h}1}(\kappa_{\mathrm{p}})]B_{1}}{f_{c}}, \\ \frac{\partial^{2} A_{1}}{\partial \bar{\rho}^{2}} &= \frac{[1 - q_{\mathrm{h}1}(\kappa_{\mathrm{p}})]}{3f_{c}^{2}}, \frac{\partial^{2} A_{1}}{\partial \bar{\sigma}_{\mathrm{V}}^{2}} &= \frac{2[1 - q_{\mathrm{h}1}(\kappa_{\mathrm{p}})]}{\sqrt{6}f_{c}^{2}}, \\ \frac{\partial^{2} A_{1}}{\partial \bar{\rho}^{2} \partial \bar{\sigma}_{\mathrm{V}}} &= \frac{2[1 - q_{\mathrm{h}1}(\kappa_{\mathrm{p}})]}{\sqrt{6}f_{c}^{2}}, \\ \frac{\partial^{2} A_{1}}{\partial \bar{\rho}^{2}} &= \frac{2[1 - q_{\mathrm{h}1}(\kappa_{\mathrm{p}})]}{\sqrt{6$$

$$f_{\rm p}(\bar{\sigma}_{\rm V},\bar{\rho},\bar{\theta};\kappa_{\rm p}) = (A_1)^2 + m_0 q_{\rm h1}^2(\kappa_{\rm p}) q_{\rm h2}(\kappa_{\rm p}) B_1 - q_{\rm h1}^2(\kappa_{\rm p}) q_{\rm h2}^2(\kappa_{\rm p})$$

$$A_{1} = \left[1 - q_{\text{h1}}(\kappa_{\text{p}})\right](B_{x})^{2} + \sqrt{\frac{3}{2}} \frac{\bar{\rho}}{f_{\text{c}}},$$

$$\frac{\partial f_{\text{p}}}{\partial \kappa_{\text{p}}} = -2A_{x} \left[\frac{\partial q_{\text{h1}}}{\partial \kappa_{\text{p}}}(B_{x})^{2}\right] + m_{0} \left(2\frac{\partial q_{\text{h1}}}{\partial \kappa_{\text{p}}}q_{\text{h1}} + q_{\text{h1}}^{2}\frac{\partial q_{\text{h2}}}{\partial \kappa_{\text{p}}}\right) B_{y} - 2\left(q_{\text{h1}}^{2}q_{\text{h2}}\frac{\partial q_{\text{h2}}}{\partial \kappa_{\text{p}}} + q_{\text{h1}}q_{\text{h2}}^{2}\frac{\partial q_{\text{h1}}}{\partial \kappa_{\text{p}}}\right)$$

!ddgdinvdk

$$g_{\mathrm{p}}(\bar{\sigma}_{\mathrm{V}},\bar{\rho};\kappa_{\mathrm{p}}) = \left\{ \left[1 - q_{\mathrm{h}1}(\kappa_{\mathrm{p}})\right] \left(\frac{\bar{\rho}}{\sqrt{6}f_{\mathrm{c}}} + \frac{\bar{\sigma}_{\mathrm{v}}}{f_{\mathrm{c}}}\right)^{2} + \sqrt{\frac{3}{2}} \frac{\bar{\rho}}{f_{\mathrm{c}}}\right\}^{2} + q_{\mathrm{h}1}^{2}(\kappa_{\mathrm{p}}) \left[\frac{m_{0}\bar{\rho}}{\sqrt{6}f_{\mathrm{c}}} + \frac{m_{g}(\bar{\sigma}_{\mathrm{v}},\kappa_{\mathrm{p}})}{f_{\mathrm{c}}}\right] = (A_{x})^{2} + q_{\mathrm{h}1}^{2}(\kappa_{\mathrm{p}}) \left[\frac{m_{0}\bar{\rho}}{\sqrt{6}f_{\mathrm{c}}} + \frac{m_{g}(\bar{\sigma}_{\mathrm{v}},\kappa_{\mathrm{p}})}{f_{\mathrm{c}}}\right] + q_{\mathrm{h}1}^{2}(\kappa_{\mathrm{p}}) \left[\frac{m_{0}\bar{\rho}}{\sqrt{6}f_{\mathrm{c}}} + \frac{m_{g}(\bar{\rho},\kappa_{\mathrm{p}})}{f_{\mathrm{c}}}\right] +$$

$$m_g(\bar{\sigma}_{\rm v},\kappa_{\rm p}) = A_g(\kappa_{\rm p})B_g(\kappa_{\rm p})\exp\frac{\bar{\sigma}_{\rm v} - q_{\rm h1}(\kappa_{\rm p})f_t/3}{B_g(\kappa_{\rm p})f_c}, \qquad A_{\rm g} = \frac{3f_{\rm t}q_{\rm h2}}{f_{\rm c}} + \frac{m_0}{2} \rightarrow \frac{dA_{\rm g}}{d\kappa_{\rm p}} = \frac{3f_{\rm t}dq_{\rm h2}}{f_{\rm c}}$$

dag dk=dqh2 dk*thr*ft/fc;

$$B_{\rm g} = \frac{B_{\rm g1}}{B_{\rm g2}} = \frac{\left(\frac{q_{\rm h2}}{3}\right)\left(1 + \frac{f_{\rm t}}{f_{\rm c}}\right)}{\ln A_{\rm g} - \ln(2D_{\rm f} - 1) - \ln\left(\frac{3q_{h2}}{2} + \frac{m_0}{2}\right) + \ln(D_f + 1)}$$

$$\boxed{\frac{dB_{\rm g1}}{d\kappa_{\rm p}}} = \frac{(1+f_{\rm t}/f_{\rm c})}{3}\frac{dq_{\rm h2}}{d\kappa_{\rm p}}, \qquad \boxed{\frac{dB_{\rm g2}}{d\kappa_{\rm p}}} = \frac{1}{A_{\rm g}}\frac{dA_{\rm g}}{d\kappa_{\rm p}} - \frac{1}{\left(q_{\rm h2} + \frac{m_0}{6}\right)}\frac{dq_{\rm h2}}{d\kappa_{\rm p}}, \qquad \boxed{\frac{dB_{\rm g}}{d\kappa_{\rm p}}} = \left(B_{\rm g2}\right)^{-1}\frac{dB_{\rm g1}}{d\kappa_{\rm p}} - B_{\rm g1}\left(B_{\rm g2}\right)^{-2}\frac{dB_{\rm g2}}{d\kappa_{\rm p}}$$

dbg_top_dk=dqh2_dk/thr

dbg_bottom_dk=-thr*dqh2_dk/(thr*qh2+pm0/tw)

dbg_dk=(dbg_top_dk*bg_bottom-bg_top*dbg_bottom_dk)/(bg_bottom**tw)

$$\frac{\partial m_g}{\partial \bar{\sigma}_{\rm v}} = \frac{A_g(\kappa_{\rm p})}{f_c} \exp \frac{\bar{\sigma}_{\rm v} - q_{\rm h1}(\kappa_{\rm p})f_t/3}{B_g(\kappa_{\rm p})f_c}, \qquad \frac{\partial m_g}{\partial \kappa_{\rm p}} = -\frac{A_g(\kappa_{\rm p})f_t}{3f_c} \frac{dq_{\rm h1}}{d\kappa_{\rm p}} \exp \frac{\bar{\sigma}_{\rm v} - q_{\rm h1}(\kappa_{\rm p})f_t/3}{B_g(\kappa_{\rm p})f_c}$$

$$\boldsymbol{m} = \frac{\partial g}{\partial \overline{\boldsymbol{\sigma}}} = \frac{\partial g}{\partial \overline{\sigma}_{V}} \frac{\partial \overline{\sigma}_{V}}{\partial \overline{\boldsymbol{\sigma}}} + \frac{\partial g}{\partial \overline{\rho}} \frac{\partial \overline{\rho}}{\partial \overline{\boldsymbol{\sigma}}}$$

$$\frac{\partial \bar{\sigma}_{\mathrm{V}}}{\partial \overline{\boldsymbol{\sigma}}} = \frac{\boldsymbol{\delta}}{3}, \qquad \frac{\partial \bar{\rho}}{\partial \overline{\boldsymbol{\sigma}}} = \frac{\overline{\boldsymbol{s}}}{\bar{\rho}}, \qquad \bar{\rho} = \sqrt{2J_2} = \sqrt{\overline{\boldsymbol{s}} \colon \overline{\boldsymbol{s}}}, \qquad \bar{\theta} = \frac{1}{3} \arccos\left(\frac{3\sqrt{3}}{2} \frac{J_3}{J_2^{3/2}}\right), \qquad \bar{\sigma}_{\mathrm{V}} = \frac{I_1}{3}, \qquad J_2 = \frac{1}{2} \overline{\boldsymbol{s}} \colon \overline{\boldsymbol{s}}, \qquad J_3 = \frac{1}{3} \bar{s}_{ij} \bar{s}_{jk} \bar{s}_{ki}$$

$$\frac{\overline{\partial m_g}}{\partial \overline{\sigma_{\rm v}}} = \frac{A_g(\kappa_{\rm p})}{f_c} \exp \frac{\overline{\sigma_{\rm v}} - q_{\rm h1}(\kappa_{\rm p}) f_t/3}{B_g(\kappa_{\rm p}) f_c} = \frac{A_g(\kappa_{\rm p})}{f_c} \exp \left(\frac{R_{top}}{R_{bottom}}\right) \rightarrow \frac{\partial R_{top}}{\partial \kappa_{\rm p}} = -\frac{dq_{\rm h1}(\kappa_{\rm p})}{d\kappa_{\rm p}} \frac{f_t}{3}, \frac{\partial R_{bottom}}{\partial \kappa_{\rm p}} = f_c \frac{dB_{\rm g}}{d\kappa_{\rm p}}$$

R_top=(sv-ft/thr*qh2);R_bottom=fc*bg

dR_top_dk=-ft/thr*dqh2_dk;dR_bottom_dk=fc*dbg_dk
dR_dk=(dR_top_dk*R_bottom-R_top*dR_bottom_dk)/(R_bottom**tw)

$$\frac{\partial^2 m_g(\bar{\sigma}_{v}, \kappa_{p})}{\partial \bar{\sigma}_{v} \partial \kappa_{p}} = \frac{dA_{g}}{d\kappa_{p} f_{c}} \exp r + \frac{A_g(\kappa_{p})}{f_{c}} \exp r * \frac{dr}{d\kappa_{p}}$$

dmQ_dk=dag_dk*exp(r)+ag*dR_dk*exp(r);

$$A_{1} = \left[1 - q_{h1}(\kappa_{p})\right](B_{1})^{2} + \sqrt{\frac{3}{2}} \frac{\bar{\rho}}{f_{c}}, B_{1} = \frac{\bar{\rho}}{\sqrt{6}f_{c}} + \frac{\bar{\sigma}_{v}}{f_{c}}, \boxed{\frac{\partial A_{1}}{\partial \bar{\rho}} = \frac{2\left[1 - q_{h1}(\kappa_{p})\right]B_{1}}{\sqrt{6}f_{c}} + \frac{\sqrt{1.5}}{f_{c}}}$$

$$\frac{\partial A_{1}}{\partial \kappa_{p}} = -(B_{1})^{2} \frac{dq_{h1}}{d\kappa_{p}} \rightarrow \boxed{\frac{\partial^{2}A_{1}}{\partial \bar{\rho}\partial\kappa_{p}} = -2B_{1}} \frac{dq_{h1}}{d\kappa_{p}} \left(\frac{1}{\sqrt{6}f_{c}}\right), \boxed{\frac{\partial^{2}A_{1}}{\partial \bar{\sigma}_{v}\partial\kappa_{p}} = -2B_{1}} \frac{dq_{h1}}{d\kappa_{p}} \left(\frac{1}{f_{c}}\right)$$

$$g_{p}(\bar{\sigma}_{V}, \bar{\rho}; \kappa_{p}) = (A_{x})^{2} + q_{h1}^{2}(\kappa_{p}) \left[\frac{m_{0}\bar{\rho}}{\sqrt{6}f_{c}} + \frac{m_{g}(\bar{\sigma}_{v}, \kappa_{p})}{f_{c}}\right]$$

$$\frac{\partial g_{p}}{\partial \kappa_{p}} = 2A_{x} \frac{\partial A_{x}}{\partial \kappa_{p}} + 2\frac{\partial q_{h1}}{\partial \kappa_{p}} q_{h1}(\kappa_{p}) \left[\frac{m_{0}\bar{\rho}}{\sqrt{6}f_{c}} + \frac{m_{g}(\bar{\sigma}_{v}, \kappa_{p})}{f_{c}}\right] + q_{h1}^{2}(\kappa_{p}) \left[\frac{1}{f_{c}} \frac{\partial m_{g}(\bar{\sigma}_{v}, \kappa_{p})}{\partial \kappa_{p}}\right]$$

$$\begin{aligned} & \frac{\partial g}{\partial \kappa_{\mathbf{p}}} = 2A_{x} \frac{\partial A_{x}}{\partial \kappa_{\mathbf{p}}} + 2 \frac{\partial q_{\mathbf{h}1}}{\partial \kappa_{\mathbf{p}}} q_{\mathbf{h}1}(\kappa_{\mathbf{p}}) \left[\frac{M_{0}p}{\sqrt{6}f_{\mathbf{c}}} + \frac{M_{g}(\nabla V \wedge \mathbf{p})}{f_{\mathbf{c}}} \right] + q_{\mathbf{h}1}^{2}(\kappa_{\mathbf{p}}) \left[\frac{1}{f_{\mathbf{c}}} \frac{\partial M_{g}(\nabla V \wedge \mathbf{p})}{\partial \kappa_{\mathbf{p}}} \right] \\ & \frac{\partial g_{\mathbf{p}}}{\partial \bar{\sigma}_{V} \partial \kappa_{\mathbf{p}}} = 2A_{1} \frac{\partial^{2}A_{x}}{\partial \bar{\sigma}_{V} \partial \kappa_{\mathbf{p}}} + 2 \frac{\partial A_{x}}{\partial \kappa_{\mathbf{p}}} \frac{\partial A_{x}}{\partial \bar{\sigma}_{V}} + 2 \frac{\partial q_{\mathbf{h}1}}{\partial \kappa_{\mathbf{p}}} q_{\mathbf{h}1}(\kappa_{\mathbf{p}}) \frac{1}{f_{\mathbf{c}}} \left(\frac{\partial m_{g}}{\partial \bar{\sigma}_{V}} \right) + q_{\mathbf{h}1}^{2}(\kappa_{\mathbf{p}}) \left[\frac{1}{f_{\mathbf{c}}} \frac{\partial^{2}m_{g}(\bar{\sigma}_{V}, \kappa_{\mathbf{p}})}{\partial \kappa_{\mathbf{p}} \partial \bar{\sigma}_{V}} \right] \end{aligned}$$

 $\label{eq:dinvdk} ddg_dinvdk(1) = (-4*Al*Bl/fc+4*(1-qh1)/fc*-(Bl**tw)*Bl)*dqh1_dk+ tw*dqh1_dk* \\ \hline qh1*pmQ/fc+qh1*dmQ_dk/fc+qh$

$$\frac{\partial g_p}{\partial \bar{\rho} \partial \kappa_p} = 2A_1 \frac{\partial^2 A_1}{\partial \bar{\rho} \partial \kappa_p} + 2 \frac{\partial A_1}{\partial \kappa_p} \frac{\partial A_1}{\partial \bar{\rho}} + 2 \frac{\partial q_{h1}}{\partial \kappa_p} q_{h1} (\kappa_p) \frac{m_0}{\sqrt{6} f_c} = \left(-4A_1 B_1 - (B_1)^2 \left(4 \left[1 - q_{h1} (\kappa_p)\right] B_1 + 6\right) + m_0\right) \left(\frac{1}{\sqrt{6} f_c}\right) * 2 \frac{\partial q_{h1}}{\partial \kappa_p} q_{h1} (\kappa_p),$$

 $ddg_dinvdk(2) = (-4.0*Al*Bl - (Bl**tw)*(4.0*(on-qh1)*Bl+sx) + pm0)*tw*qh1*dqh1_dk/(sqrt(sx)*fc);$

$$\frac{\partial^2 A_x}{\partial \bar{\rho}^2} = \frac{\left[1 - q_{\text{h1}}(\kappa_{\text{p}})\right]}{3f_c^2}, \qquad \frac{\partial^2 A_x}{\partial \bar{\sigma}_{\text{V}}^2} = \frac{2\left[1 - q_{\text{h1}}(\kappa_{\text{p}})\right]}{f_c^2}, \qquad \frac{\partial^2 A_x}{\partial \bar{\rho} \partial \bar{\sigma}_{\text{V}}} = \frac{2\left[1 - q_{\text{h1}}(\kappa_{\text{p}})\right]}{\sqrt{6}f_c^2}$$

$$\dot{\kappa}_{\mathrm{p}} = \frac{\|\dot{\varepsilon_{\mathrm{p}}}\|}{\chi_{\mathrm{h}}(\bar{\sigma}_{\mathrm{V}})} \left(2\cos\bar{\theta}\right)^{2} = \frac{\dot{\lambda}\|\mathbf{m}\|}{\chi_{\mathrm{h}}(\bar{\sigma}_{\mathrm{V}})} \left(2\cos\bar{\theta}\right)^{2}$$

$$\dot{\kappa}_{\mathrm{p}} = \dot{\lambda} k_{\mathrm{p}}(\bar{\boldsymbol{\sigma}}, \kappa_{\mathrm{p}})$$

```
\|\boldsymbol{m}\|^{2} = \left(\frac{\partial g}{\partial \bar{\sigma}_{V}}\frac{\boldsymbol{\delta}}{3} + \frac{\partial g}{\partial \bar{\rho}}\frac{\bar{\boldsymbol{s}}}{\bar{\rho}}\right): (\dots) = \left(\left[\frac{\partial g}{\partial \bar{\sigma}_{V}}\right]^{2}\frac{1}{3} + \left[\frac{\partial g}{\partial \bar{\rho}}\right]^{2}\right)
```

end

!ddk_dldk
par1=dg_dinv(1)/equivaplentdg_dsg*ddg_dinvdk(1)
par1=tw/thr*par1

dEquivaplentdg_dstress_dk=(par1+tw*dg_dinv(2)/equivaplentdg_dsg*ddg_dinvdk(2))/tw
ddk_dldk= dEquivaplentdg_dstress_dk/duct_m

Damaget and Damgec

Duiii	aget and baniget
4	$\dot{\kappa} = \ \dot{oldsymbol{arepsilon}}_{ m p}\ = \dot{\lambda} igg\ rac{\partial g}{\partial ar{oldsymbol{\sigma}}}igg\ $
5	$\sigma_{ m y} = f_{ m t}(1+H_{ m p}\kappa)$
6	$oldsymbol{\sigma} = oldsymbol{\mathcal{D}}_{\mathrm{e}} \colon (oldsymbol{arepsilon} - (oldsymbol{arepsilon}_{\mathrm{p}} + \omega(oldsymbol{arepsilon} - oldsymbol{arepsilon}_{\mathrm{p}})))$
7	$oldsymbol{arepsilon}_{ m i} = oldsymbol{arepsilon}_{ m p} + \omega (oldsymbol{arepsilon} - oldsymbol{arepsilon}_{ m p})$
8	$\kappa_{ extsf{d1}} = \ oldsymbol{arepsilon}_{ extsf{p}}\ $
9	$\kappa_{ ext{d2}} = \max_{ au < t} \lVert oldsymbol{arepsilon} - oldsymbol{arepsilon}_{ ext{p}} Vert$
10	$f=\sigma-\sigma_{ m y}$
11	$\sigma = f_{t} igg(1 - rac{arepsilon_{i}}{arepsilon_{f}} igg)$
12	$arepsilon_{ m i} = \kappa_{ m d1} + \omega \kappa_{ m d2}$
13	$\sigma = (1 - \omega)E\kappa_{d2}$
14	$\omega = rac{f_{ m t} \kappa_{ m d1} + arepsilon_{ m f} E \kappa_{ m d2} - arepsilon_{ m f} f_{ m t}}{\kappa_{ m d2} (arepsilon_{ m f} E - f_{ m t})}$
15	$\kappa_{\rm d2} = \sigma_{\rm y}/E = \frac{f_{\rm t}}{E} (1 + H_{\rm p} \kappa_{\rm d1})$
16	$\omega = rac{f_{ m t} E \kappa_{ m d1} (1 + arepsilon_{ m f} H_{ m p})}{(1 + H_{ m p} \kappa_{ m d1}) \left(arepsilon_{ m f} \textit{E} f_{ m t} - f_{ m t}^2 ight)}$

$$\sigma = (1 - \omega)\bar{\sigma} = (1 - \omega)E(\varepsilon - \varepsilon_{p})$$

$$\sigma = E\{\varepsilon - [\varepsilon_{p} + \omega(\varepsilon - \varepsilon_{p})]\} = E(\varepsilon - \varepsilon_{i})$$

$$\sigma = \begin{cases} f_t - \frac{f_t - \sigma_1}{\epsilon_{f1}} \epsilon_i & \text{if } 0 < \epsilon_i \leqslant \epsilon_{f1} \\ \sigma_1 - \frac{\sigma_1}{\epsilon_f - \epsilon_{f1}} (\epsilon_i - \epsilon_{f1}) & \text{if } \epsilon_{f1} < \epsilon_i \leqslant \epsilon_f \\ 0 & \text{if } \epsilon_f \leqslant \epsilon_i \end{cases}$$

$$\varepsilon_{\rm i} = \kappa_{\rm dt1} + \omega_{\rm t} \kappa_{\rm dt2}$$

$$\sigma = (1 - \omega_{\rm t}) E \kappa_{\rm dt}$$

$$\omega_{t} = \begin{cases} \frac{(E\kappa_{dt} - f_{t})\epsilon_{f1} - (\sigma_{1} - f_{t})\kappa_{dt1}}{E\kappa_{dt}\epsilon_{f1} + (\sigma_{1} - f_{t})\kappa_{dt2}} & \text{if } 0 < \epsilon_{i} \leqslant \epsilon_{f1} \\ \frac{E\kappa_{dt}(\epsilon_{f} - \epsilon_{f1}) + \sigma_{1}(\kappa_{dt1} - \epsilon_{f})}{E\kappa_{dt}(\epsilon_{f} - \epsilon_{f1}) - \sigma_{1}\kappa_{dt2}} & \text{if } \epsilon_{f1} < \epsilon_{i} \leqslant \epsilon_{f} \\ 0 & \text{if } \epsilon_{f} < \epsilon_{i} \end{cases}$$

$$\omega_t = \begin{cases} \frac{(E\kappa_{dt} - f_t)w_{f1} - (\sigma_1 - f_t)\kappa_{dt1}h}{E\kappa_{dt}w_{f1} + (\sigma_1 - f_t)\kappa_{dt2}h} & \text{if } 0 < h\epsilon_i \leqslant w_{f1}h \\ \frac{E\kappa_{dt}(w_f - w_{f1}) + \sigma_1(\kappa_{dt1}h - w_f)}{E\kappa_{dt}(w_f - w_{f1}) - \sigma_1\kappa_{dt2}h} & \text{if } w_{f1} < h\epsilon_i \leqslant w_f \\ 0 & \text{if } w_f < h\epsilon_i \end{cases}$$

$$\sigma = f_{\mathsf{t}} \exp \left(-\frac{arepsilon_{\mathsf{i}}}{arepsilon_{\mathsf{fc}}}
ight) \quad ext{if } \ 0 < arepsilon_{\mathsf{i}}^{??}$$

Fig. 5. Bilinear softening.

```
subroutine kdamaget(pkdt,pkdt1,pkdt2,plen,wt_old,wt)!pkdt1,pkdt1,pkdt2,plen,wt_old output wt
inewton iter=100;ytol=gtol*10.d0;
if (pkdt>e0*(on-ytol)) then
         if (itypey.eq.0) then
                                                                      \omega_{t} = \begin{cases} \frac{(E\kappa_{dt} - f_{t})w_{f1} - (\sigma_{1} - f_{t})\kappa_{dt1}h}{E\kappa_{dt}w_{f1} + (\sigma_{1} - f_{t})\kappa_{dt2}h} & \text{if } 0 < h\epsilon_{i} \leqslant w_{f1}h \\ \frac{E\kappa_{dt}(w_{f} - w_{f1}) + \sigma_{1}(\kappa_{dt1}h - w_{f})}{E\kappa_{dt}(w_{f} - w_{f1}) - \sigma_{1}\kappa_{dt2}h} & \text{if } w_{f1} < h\epsilon_{i} \leqslant w_{f1}h \end{cases}
                  wt=(Em*pkdt*wf-ft*wf+ft*pkdt1*plen)/(Em*pkdt*wf-ft*plen*pkdt2)
         else if (itypey.eq.1) then
                   wt=(Em*pkdt*wf1-ft*wf1-(ft1-ft)*pkdt1*plen)/(Em*pkdt*wf1+(ft1-ft)*plen*pkdt2)
                   pari=plen*pkdt1+plen*wt*pkdt2
                   if (pari>wf1.and.pari<wf) then</pre>
                            wt=(Em*pkdt*(wf-wf1)-ft1*(wf-wf1)+ft1*pkdt1*plen-ft1*wf1)
                            wt=wt/(Em*pkdt*(wf-wf1)-ft1*plen*pkdt2)
                            pari=plen*pkdt1+plen*wt*pkdt2
                   else if (pari>wf) then
                            wt=on
                   end if
         else if (itypey.eq.2) then
                   !Exponential: Newton-Raphson
                                                                                                                                      if 0 < \epsilon_i
                                                                                                                 \sigma = f_{\rm t} \exp
                   wt=on;
                   residual=zr;
                   residualDerivative=zr;
                   iter=0;
                   pari=on;
                   do while (pari.eq.on)
                            iter=iter+1;
                            residual=(on-wt)*Em*pkdt-ft*EXP(-plen*(wt*pkdt2+pkdt1)/wf)
                            residualDerivative=-Em*pkdt+ft*plen*pkdt2*EXP(-plen*(wt*pkdt2+pkdt1)/wf)/wf
                            wt=wt-residual/residualDerivative
                             if(abs(residual/ft)<1.0d-8) pari=zr</pre>
                   end do
         else
                   wt=zr
         end if
         if(wt>on)
                                               wt=on
         if(wt<zr.or.wt<wt_old)</pre>
                                               wt=wt old
else
wt=zr
end if
return
```

```
f_{\rm dt} = \tilde{\varepsilon}_{\rm t}(\bar{\boldsymbol{\sigma}}) - \kappa_{\rm dt}
                                                                  \omega_{\mathsf{t}} = \mathsf{g}_{\mathsf{dt}}(\kappa_{\mathsf{dt}}, \kappa_{\mathsf{dt1}}, \kappa_{\mathsf{dt2}})
                                                                 \omega_{\rm c} = \mathbf{g}_{\rm dc}(\kappa_{\rm dc}, \kappa_{\rm dc1}, \kappa_{\rm dc2})
f_{\rm dc} = \alpha_{\rm c} \tilde{\varepsilon}_{\rm c}(\bar{\boldsymbol{\sigma}}) - \kappa_{\rm dc}
subroutine kdamagec(pkdc,pkdc1,pkdc2,wc_old,wc)
                                                                                    !pkdc,pkdc1,pkdc2,wc_old
if (isotropic.eq.1) then
          wc=zr;pkdc1=zr;pkdc2=zr;pkdc=zr
                                                                                                                     \sigma = f_{\mathrm{t}} \exp \left( -\frac{arepsilon_{\mathrm{i}}}{arepsilon_{\mathrm{fc}}} 
ight) \quad \mathrm{if} \ \ 0 < \widetilde{arepsilon_{\mathrm{i}}}^{?}
else
           inewton_iter=200;tol=gtol;ytol=gtol*10.d0;nite=0;
           residual=zr;dResdw=zr;
           if (pkdc>e0*(on-ytol)) then
                     do while(nite<inewton iter)</pre>
                                nite=nite+1;residual=(on-wc)*em*pkdc-ft*exp(-(pkdc1+wc*pkdc2)/efc)
                                dResdw=-em*pkdc+ft*pkdc2/efc*exp(-(pkdc1+wc*pkdc2)/efc);
                                wc=wc-residual/dResdw
                                errorOld = residual/ft
                                 if(wc<zr) then</pre>
                                                                           exit
                                                                                      end if
                                                             wc=zr
                                               if(nite.eq.inewton_iter) then
                                                        if(residual<zr) then wc=wc_old</pre>
                                                                                                               exit
                                                        else !disp('error')
                                                        end if
                                end if
                               if(abs(residual/ft)<tol) then exit</pre>
                     end do
          else
                     wc=zr
          end if
end if
if(wc>on) wc=on
if(wc<zr.or.wc<wc_old) wc=wc_old</pre>
```

subroutine kdamage(wc_old,wt_old,strain_rate,rate_fc,alpha,eps_t,eps_c,
pkdt_old,pkdt1,pkdt2,pkdc_old,pkdc1,pkdc2,sg_ekff,tkp,pnorm_inc_e_p,plen,sg_old,alpha_old,eps_old,
wc,wt,eps_t1,eps_c1, pkdt_new, pkdt1t,pkdt2t,pkdc_new,pkdc1t,pkdc2t,eps_new)

$$au_{arepsilon} = \left\| \mathbf{\epsilon}
ight\|_{\mathbb{C}^*} = \sqrt{\mathbf{\epsilon} : \mathbb{C}^* : \mathbf{\epsilon}}$$

Damage function (in strain space)

$$g(\varepsilon,r) = \tau_{\varepsilon} - r$$

Elastic domain (in strain space)

$$E_{\varepsilon} := \{ \varepsilon \in \mathbb{S} \mid g(\varepsilon, r) \equiv \tau_{\varepsilon} - r < 0 \}$$

Damage surface (in strain space)

$$\partial \mathbf{E}_{\varepsilon} := \{ \varepsilon \in \mathbb{S} \mid g(\varepsilon, r) \equiv \tau_{\varepsilon} - r = 0 \}$$

$$f_{
m dt} = ilde{arepsilon}_{
m t}(ar{oldsymbol{\sigma}}) - \kappa_{
m dt}$$

$$\dot{\tilde{\epsilon}}_t = \dot{\tilde{\epsilon}}$$

$$\kappa_{\mathrm{dt}} = \max_{\tau \le t} \tilde{\epsilon}_{\mathrm{t}},$$

$$\dot{\kappa}_{dt1} = \begin{cases} \frac{1}{\kappa_s} \|\dot{\boldsymbol{\epsilon}}_p\| & \text{if } \dot{\kappa}_{dt} > 0 \text{ and } \kappa_{dt} > \epsilon_0 \\ 0 & \text{if } \dot{\kappa}_{dt} = 0 \text{ or } \kappa_{dt} < \epsilon_0 \end{cases}$$

$$\dot{\kappa}_{dt2} = \frac{\dot{\kappa}_{dt}}{\chi_{s}(\overline{\sigma}_{v}, \overline{\rho})}$$


```
tol=gtol*10
if (rf.eq.zr) then
                          istep1flag=1; rf=on
                                                      end if
else
                          istep1flag=0
call kcheckunload(sg_ekff,sg_old,eps_old,gtol,pmin_equ_e,t_equ_e,iunload_flag)
eps new=t equ e;
if(iunload_flag.eq.0) then pmin_equ_e=eps_old
                                                     end if
dt=t_equ_e-eps_old;
dc=(pmin_equ_e-eps_old)*alpha_old+(t_equ_e-pmin_equ_e)*alpha
if(istrrateflg.eq.1.and.wc old.eq.zr.and.wt old.eq.zr)then
       call krate_fac(strain_rate,alpha,tol, t_rf)
       eps_t1=eps_t+dt/ t_rf;
       eps c1=eps c+dc/ t rf
       if((eps_c1>e0.or.eps_t1>e0).and.istep1flag.ne.1) then
              eps_t1=eps_t+dt/rf;
              eps_c1=eps_c+dc/rf
       else
              rf=t rf
       end if
else
       eps_t1=eps_t+dt/rf;
       eps_c1=eps_c+dc/rf
end if
call khaigh(sg_ekff,sv_el,ro_el,theta_el,dinv_dsig_pr)
if(sv el<zr) then</pre>
                      rs1=-6.0**0.5 *sv el/max(ro el,1.0d-16) else
                                                                                         end if xs=on+(as-on)*rs1;
                                                                          rs1=zr
                                                                                         f_{
m dt} = 	ilde{arepsilon}_{
m t}(ar{oldsymbol{\sigma}}) - \kappa_{
m dt}
                                                                          wt=zr;wc=zr;
d_pkdt=(eps_t1-pkdt_old);  d_pkdc=(eps_c1-pkdc_old);
```

$$\begin{split} & \dot{\tilde{\epsilon}}_t = \dot{\tilde{\epsilon}} \end{split} \quad \dot{\kappa}_{dt1} = \begin{cases} \frac{1}{x_s} \|\dot{\epsilon}_p\| & \text{if } \dot{\kappa}_{dt} > 0 \text{ and } \kappa_{dt} > \epsilon_0 \\ 0 & \text{if } \dot{\kappa}_{dt} = 0 \text{ or } \kappa_{dt} < \epsilon_0 \end{cases}$$

$$\begin{matrix} \kappa_s = 1 + (A_s - 1)R_s^s \\ \kappa_s = \begin{cases} -\frac{\sqrt{6}\bar{\sigma}_V}{\bar{\rho}} & \text{if } \bar{\sigma}_V \leqslant 0 \\ 0 & \text{if } \bar{\sigma}_V > 0 \end{cases}$$

$$\begin{split} \dot{\kappa}_{\text{dt2}} = & \frac{\dot{\kappa}_{\text{dt}}}{\chi_{\text{s}}} \\ \kappa_{\text{dt}} = & \max_{\tau \leq t} \tilde{\epsilon}_{\text{t}}, \quad \dot{\kappa}_{\text{dt1}} = & \frac{\parallel \dot{\epsilon}_{\text{p}} \parallel}{\chi_{\text{s}}(\overline{\sigma}_{\text{v}}, \overline{\rho})}, \quad \dot{\kappa}_{\text{dt2}} = & \frac{\dot{\kappa}_{\text{dt}}}{\chi_{\text{s}}(\overline{\sigma}_{\text{v}}, \overline{\rho})} \end{split}$$

$$f_{\text{dt}} = \tilde{\epsilon}_{\text{t}}(\overline{\boldsymbol{\sigma}}) - \kappa_{\text{dt}}$$

$$\begin{split} \alpha_c &= \sum_{i=1}^3 \frac{\bar{\sigma}_{pc\,i} \left(\bar{\sigma}_{pt\,i} + \bar{\sigma}_{pc\,i}\right)}{\left\|\bar{\sigma}_p\right\|^2} \\ \dot{\kappa}_{dc1} &= \begin{cases} \frac{\alpha_c \beta_c}{\kappa_s} \left\|\dot{\boldsymbol{\epsilon}}_p\right\| & \text{if } \dot{\kappa}_{dt} > 0 \wedge \kappa_{dt} > \epsilon_0 \\ 0 & \text{if } \dot{\kappa}_{dt} = 0 \vee \kappa_{dt} < \epsilon_0 \end{cases} \\ \text{and} \\ \dot{\kappa}_{dc2} &= \frac{\dot{\kappa}_{dc}}{\chi_s} \\ \text{In (48), the factor } \beta_c \text{ is} \end{split}$$

$$\beta_{\rm c} = \frac{f_{\rm t}q_{\rm h2}\sqrt{2/3}}{\bar{\rho}\sqrt{1+2D_{\rm f}^2}}$$

$$\dot{\tilde{\varepsilon}}_{c} = \alpha_{c}\dot{\tilde{\varepsilon}}_{t}$$

$$\kappa_{\rm dc} = \max_{\tau \le t} \tilde{\epsilon}_{\rm c}, \quad \dot{\kappa}_{\rm dc1} = \frac{\alpha_{\rm c} \beta_{\rm c} \|\dot{\epsilon}_{\rm p}\|}{\varkappa_{\rm s}(\overline{\sigma}_{\rm v}, \overline{\rho})}, \quad \dot{\kappa}_{\rm dc2} = \frac{\dot{\kappa}_{\rm dc}}{\varkappa_{\rm s}(\overline{\sigma}_{\rm v}, \overline{\rho})}$$

```
subroutine kcheckunload(sg,sg_old,eps_old,gtol,pmin_equ_e,equ_e_new,iunload_flag)
call khaigh(sg,sv,ro,th,dinv dsig pr);
                                                   call kequ e(sv,ro,th,equ e new)
dsg=sg-sg_old;
sg_plus=sg_old+0.01d0*dsg;
sg minus=sg old+0.99d0*dsg
call khaigh(sg_plus, sv,ro,th,dinv_dsig_pr);
                                                   call kequ_e(sv,ro,th,equ_e_plus)
call khaigh(sg_minus, sv, ro, th, dinv_dsig_pr);
                                                   call kequ_e(sv,ro,th,equ_e_minus)
pmin equ e=eps old;
p=equ_e_plus;
pm=equ_e_minus;
o=eps old;
pn=equ_e_new;
iunload_flag=0;grgtol=gtol*1.d-3
if ((p<o.and.pm<pn).and.(abs(p-o)>grgtol.and.abs(pm-pn)>grgtol)) then
      iunload_flag=1
      do i=1,100
            sg1=sg_old+dsg*i/100.0d0
            call khaigh(sg1,sv,ro,th,dinv_dsig_pr) call kequ_e(sv,ro,th,equ_e1)
                                                                                      end if
            else
                                                                             EXIT
      end do
end if
return
```

The response of concrete is strongly rate dependent.

If the loading rate is increased, the apparent tensile and compressive strength increase.

This increase is more pronounced in tension than in compression.

The greater the rate factor α_r , the greater is the delay of the onset of damage and, therewith, the strength.

For tension, Malvar and Ross.

For compression, CEB-FIP Model Code 1990.

$$\alpha_{\rm r} = (1 - \alpha_{\rm c}) \alpha_{\rm rt} + \alpha_{\rm c} \alpha_{\rm rc}$$

Accordingly, the factor α_r is defined as

tension

$$\alpha_{\text{rt}} = \begin{cases} 1 & \text{for } \dot{\epsilon}_{\text{max}} \leq 30 \times 10^{-6} \text{ s}^{-1} \\ \left(\frac{\dot{\epsilon}_{\text{max}}}{\dot{\epsilon}_{\text{t0}}}\right)^{\delta_s} & \text{for } 30 \times 10^{-6} \text{ s}^{-1} \leq \dot{\epsilon}_{\text{max}} \leq 1 \text{ s}^{-1} \end{cases}$$
$$\beta_s \left(\frac{\dot{\epsilon}_{\text{max}}}{\dot{\epsilon}_{\text{t0}}}\right)^{1/3} & \text{for } 1 \text{ s}^{-1} \leq \dot{\epsilon}_{\text{max}}$$

$$\delta_{\rm s} = \frac{1}{1 + 8f_{\rm c}/f_{\rm c0}}$$

$$\log \beta_{\rm s} = 6\delta_{\rm s} - 2$$

compression

$$\alpha_{rc} = \begin{cases} 1 & \text{for } |\dot{\epsilon}_{min}| \leq 30 \times 10^{-6} \text{ s}^{-1} \\ \left(\frac{\|\dot{\epsilon}_{min}\|}{\dot{\epsilon}_{c0}}\right)^{1.026\alpha_s} & \text{for } 30 \times 10^{-6} \text{ s}^{-1} \leq |\dot{\epsilon}_{min}| \leq 30 \text{ s}^{-1} \\ \gamma_s \left(\frac{\|\dot{\epsilon}_{min}\|}{\dot{\tilde{\epsilon}}_{c0}}\right)^{1/3} & \text{for } 30 \text{ s}^{-1} \leq |\dot{\epsilon}_{min}| \end{cases}$$

$$\alpha_{\rm s} = \frac{1}{5 + 9f_{\rm c}/f_{\rm c0}}$$

$$\log \gamma_{\rm s} = 6.156\alpha_{\rm s} - 2$$

```
subroutine krate_fac(strain_rate,alpha,tol,rate_fac)
           alphas=on/(5.d0+9.d0*fc/fc0);
           deltas=on/(on+8.d0*fc/fc0)
           gammas=exp((6.156d0*alphas-tw)*log(10.d0))!check log
           betas=exp((sx*deltas-tw)*log(10.d0))
           rate_t0=1.0d-6;
           rate_c0=-30.0d-6;
           rate t=on;
           rate c=on
           tmp=strain rate/tw;
           tmp(1)=tmp(1)*tw;
           tmp(2)=tmp(2)*tw;
           tmp(3)=tmp(3)*tw
           call kvec_to_tens(tmp,sig_ten)
           call kjacobi eigenvalue(3,sig ten,dir,strain pr)
           pmax = -1.0d - 20;
           pmin=1.0d20
           do i=1,3
                 if (pmax<strain_pr(i))</pre>
                                           pmax=strain_pr(i)
                 if (pmin>strain_pr(i))
                                           pmin=strain pr(i)
           end do
           rate =pmin
                                                       end if
           ratio_t=rate/rate_t0;ratio_c=rate/ratio_c0;
```

tension

$$\alpha_{\rm rt} = \begin{cases} 1 & \text{for } \dot{\varepsilon}_{\rm max} \leq 30 \times 10^{-6} \text{ s}^{-1} \\ \left(\frac{\dot{\varepsilon}_{\rm max}}{\dot{\varepsilon}_{\rm t0}}\right)^{\delta_{\rm s}} & \text{for } 30 \times 10^{-6} \text{ s}^{-1} \leq \dot{\varepsilon}_{\rm max} \leq 1 \text{ s}^{-1} \\ \beta_{\rm s} \left(\frac{\dot{\varepsilon}_{\rm max}}{\dot{\varepsilon}_{\rm t0}}\right)^{1/3} & \text{for } 1 \text{ s}^{-1} \leq \dot{\varepsilon}_{\rm max} \end{cases}$$

rate t=on

else if (rate>30.0d-6.and.rate<on) then</pre> rate_t=ratio_t**deltas rate_t=betas*ratio_t**(0.3333d0) end if else compression for $|\dot{\varepsilon}_{\min}| \leq 30 \times 10^{-6} \text{ s}^{-1}$ $1.026\alpha_s$ $\|\dot{arepsilon}_{\min}\|$ for $30\times 10^{-6}~{\rm s}^{-1} \leq |\dot{\epsilon}_{min}| \leq 30~{\rm s}^{-1}$ $\dot{arepsilon}_{
m c0}$ $\|\dot{arepsilon}_{\min}\|$ for 30 $s^{-1} \leq |\dot{\epsilon}_{min}|$ if (rate>-30.0d-6) then rate_c=<mark>on</mark> else if (rate>-30.0d0 .and. rate<-30.0d-6) then</pre> rate_c=ratio_c**(1.026d0*alphas) rate_c=gammas*ratio_c**(0.3333d0) end if rate_fac=(on-alpha)*rate_t+alpha*rate_c return

```
subroutine kcheckvertex(sv_tr,tkp,apex_sg,irtype)
                                                                                                                                             !sv_tr,tkp
 if(sv_tr>zr) then
                  irtype=1
                  if(tkp<on) then</pre>
                                                                      apex_sg=zr
                  else
                                                                       call kcqh2(tkp,int(0),qh2,dqh2_dk)
                                                                                                                                                                        apex_sg=qh2*fc/pm0
                                                                                                                                                                                                                                        end if
 else if (sv_tr <zr .and. tkp<on) then
                  irtype=2;apex_sg=zr
 else
                  irtype=0;apex_sg=zr
 end if
f_{\mathrm{p}}(\bar{\sigma}_{\mathrm{V}},\bar{\rho},\bar{\theta};\kappa_{\mathrm{p}}) = \left\{ \left[1 - q_{\mathrm{h}1}(\kappa_{\mathrm{p}})\right] \left(\frac{\bar{\rho}}{\sqrt{6}f_{\mathrm{c}}} + \frac{\bar{\sigma}_{\mathrm{v}}}{f_{\mathrm{c}}}\right)^{2} + \sqrt{\frac{3}{2}} \frac{\bar{\rho}}{f_{\mathrm{c}}}\right\}^{2} + m_{0}q_{\mathrm{h}1}^{2}(\kappa_{\mathrm{p}})q_{\mathrm{h}2}(\kappa_{\mathrm{p}}) \left[\frac{\bar{\rho}}{\sqrt{6}f_{\mathrm{c}}}r(\cos\bar{\theta}) + \frac{\bar{\sigma}_{\mathrm{v}}}{f_{\mathrm{c}}}\right] - q_{\mathrm{h}1}^{2}(\kappa_{\mathrm{p}})q_{\mathrm{h}2}^{2}(\kappa_{\mathrm{p}})
```

$$\theta = 0$$
 $\theta = 0$
 θ

```
subroutine kvertexreturn(sg,apex_sg,tkp,irtype,iconvrg,sg_ekff) !sg,apex_sg,tkp,irtype,iconvrg
ytol=gtol*1.d-2;
pkp0=tkp;
maxiter=250
call khaigh(sg,sv,ro,theta,dinv_dsig_pr)
                                          call kff(sv ,zr,zr,tkpi,y)
call kpp(pkp0,sv,ro,sv ,tkpi);
sv2 = apex sg;
                                        call kff(sv2,zr,zr,tkpi,y mid)
call kpp(pkp0,sv,ro,sv2,tkpi);
pari=zr
if(y*y_mid>=zr) then
       iconvrg=1;irtype=0;
else
  if(y<zr) then</pre>
       dsv=sv2-sv;svAnswer=sv2
  else
       dsv=sv-sv2;svAnswer=sv2
  end if
  do j=1,maxiter
   `dsv=half*dsv
    sv mid=svAnswer+dsv
    call kpp(pkp0,sv,ro,sv_mid,tkpi)
                                                                call kff(sv_mid,zr,zr,tkpi,y_mid)
    if(y_mid<=zr) then</pre>
                            svAnswer=sv mid
                                                   end if
       if (abs(y_mid)<ytol.and.y_mid<=zr) then</pre>
          call kratiopotential(svAnswer,tkpi,r1)
          r_trial=ro/(sv-svAnswer)
          if((r1>= r_trial.and.irtype.eq.1).or.(r1<= r_trial.and.irtype.eq.2))then exit</pre>
                     iconvrg=1; irtype=0; pari=on
          else
                                                            exit
       end if
  end do
   if (pari.eq.zr) then
       sg_ekff(1:3)=svAnswer; sg_ekff(4:6)=zr;
                                                        tkp=tkpi
                                                                              iconvrg=zr
  end if
end if
```

```
subroutine kratiopotential(sv,pkp,ratio) !input sv,pkp
ro=zr
call kcqh1(pkp,int(0),qh1,dqh1_dk)
call kcqh2(pkp,int(0),qh2,dqh2_dk)
ag=thr*ft*qh2/fc+pm0/tw;
bg top=qh2/thr*(on+ft/fc)
!log vs exp
bg_bottom=log(ag)-log(tw*df-on)-log(thr*qh2+pm0/tw)+log(df+on)
bg=bg top/bg bottom
r=(sv-qh2*ft/thr)/fc/bg
!log vs exp
pmg=ag*bg*fc*exp(r);
dmg=ag*exp(r);
\left| \frac{\partial m_g}{\partial \bar{\sigma}_{\rm v}} \right| = \frac{A_g(\kappa_{\rm p})}{f_c} \exp \frac{\bar{\sigma}_{\rm v} - q_{\rm h1}(\kappa_{\rm p}) f_t / 3}{B_g(\kappa_{\rm p}) f_c}
par1=ro/(fc*sqrt(sx))+sv/fc
par2=(on-qh1)*par1**tw+sqrt(1.5d0)*ro/fc
g_{\rm p}(\bar{\sigma}_{\rm V},\bar{\rho};\kappa_{\rm p}) = \left\{ \left[1 - q_{\rm h1}(\kappa_{\rm p})\right] \left(\frac{\bar{\rho}}{\sqrt{6}f_{\rm c}} + \frac{\bar{\sigma}_{\rm V}}{f_{\rm c}}\right)^2 + \sqrt{\frac{3}{2}\frac{\bar{\rho}}{f_{\rm c}}} \right\}^2
                       + q_{
m h1}^2(\kappa_{
m p}) \Biggl( rac{m_0 ar{
ho}}{\sqrt{6} f_{
m c}} + rac{m_{
m g}(ar{\sigma}_{
m V}, \kappa_{
m p})}{f_{
m c}} \Biggr)
```

