Programare logică și funcțională - examen scris -

<u>Notă</u>

- 1. Subjectele se notează astfel: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Problemele Prolog vor fi rezolvate în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- 3. Problemele Lisp vor fi rezolvate în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).
- A. Fie următoarea definiție de predicat PROLOG f(list, integer), având modelul de flux (i, o):

```
 \begin{array}{l} f([], -1)\text{:-!}. \\ f([\_|T], \text{Rez})\text{:-} \ \underline{\textbf{f(T,S)}}, \text{S<1, !, Y is S+2.} \\ f([H|T], \text{Rez})\text{:-} \ \underline{\textbf{f(T,S)}}, \text{S<0, !, Y is S+H.} \\ f([\_|T], \text{Rez})\text{:-} \ \underline{\textbf{f(T,S)}}, \text{Y is S.} \end{array}
```

Rescrieți această definiție pentru a evita apelul recursiv **f(T,S)** în clauze. Nu redefiniți predicatul. Justificați răspunsul.

В.	mare divizor comun pentru lista (A B 12	al numerelor impare	de la nivelurile pare 5 F) 1) 15) C 9), rea	ale listei. Nivelul sur zultatul va fi 3. Se pr	perficial al listei se cor	care să calculeze cel mai nsideră 1. <u>De exemplu</u> , puțin un număr impar la

C. Să se scrie un program PROLOG care generează lista submulţimilor de sumă pară, cu elementele unei liste. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru lista L=[2, 3, 4] \Rightarrow [[],[2],[4],[2,4]] (nu neapărat în această ordine)

D. Se consideră o listă neliniară. Să se scrie o funcţie LISP care să aibă ca rezultat lista iniţială din care au fost eliminaţi toţi atomii numerici multipli de 3. Se va folosi o funcţie MAP.
<u>Exemplu</u>
a) dacă lista este (1 (2 A (3 A)) (6)) => (1 (2 A (A)) NIL)
b) dacă lista este (1 (2 (C))) => (1 (2 (C)))