AI Planning for Autonomy

Solution Problem Set V: Delete Relaxation

1.

- If computed with respect to each food it's roughly a Minimum Spanning Tree (techincally a Steiner Tree, since paths can branch in non-food location, i.e. the Steiner Points)
- $h_{max} << h^+ << h^*$, $h_{max} << h^+ << h_{add}$. h^* dominates admissible heuristics, that's why it doesn't dominate h_{add} .

2.

- Compute $h^{add}(s_0)$ for this blocks-world problem. $h^{add}(s_0) = 5$. For computation, see below.
- Compute $h^{max}(s_0)$ for this blocks-world problem. $h^{max}(s_0) = 2$. For computation, see below.

		I amount inneleyant on (x1)												
Iteration	d(A)	Jelis)	(l(c)	On Tolle (A),	ontable (B)		On (A,C)	on (A,B),	on (73, C)	$\int_{A}^{\infty} h(A)$	h(0).	h(c)	ArmFree	
0	0	0	∞	00	O	0	0	00	<i>∞</i>	2	<i>\(\)</i>	~	0	
1	0	0	1	. ~	O	0	0	00	<i>∞</i> 5	1	1	∠ ∪	0	
2	0	0	1	2	6	0	0	7	7	2				
										// \	1	$\langle - \rangle$	0	
									/	/				
	,	(,	J		/								

The table for h_{add} changes only the value for on(B,C) to 3, hence h value of the Goal is 5.