Cartesian Coordinates

An oldie but a goodie, yet not always the best choice!

Area of a circle in Cartesian coordinates

$$\int_{-R}^{R} \int_{-\sqrt{R^2 - y^2}}^{\sqrt{R^2 - y^2}} dx \, dy \stackrel{pain}{\Longrightarrow} \pi R^2$$

Area of a circle in Polar coordinates

$$\int_0^{2\pi} \int_0^R r \, dr \, d\theta \stackrel{easy}{\Longrightarrow} \pi R^2$$

Area Element

$$dV = dx dy$$

Polar Coordinates

Polar to
$$x = r \cos[\theta]$$
 $y = r \sin[\theta]$ $\theta = 0$

$$\begin{bmatrix} r = \sqrt{x^2 + y^2} \\ \theta = \operatorname{ArcTan}\left[\frac{y}{x}\right] \end{bmatrix}$$
 Cartesian to Polar

Unit Vectors

$$\begin{bmatrix} \hat{x} = \cos[\theta] \hat{\rho} - \sin[\theta] \hat{\theta} \\ \hat{y} = \sin[\theta] \hat{\rho} + \cos[\theta] \hat{\theta} \end{bmatrix} \begin{bmatrix} \hat{r} = \cos[\theta] \hat{x} + \sin[\theta] \hat{y} \\ \hat{\theta} = -\sin[\theta] \hat{x} + \cos[\theta] \hat{y} \end{bmatrix}$$

Area Element

$$dV = r dr d\theta$$

Cylindrical Coordinates

$$x = \rho \operatorname{Cos}[\theta]$$
$$y = \rho \operatorname{Sin}[\theta]$$
$$z = z$$

$$\begin{bmatrix} x = \rho \cos[\theta] \\ y = \rho \sin[\theta] \\ z = z \end{bmatrix} \qquad \begin{bmatrix} \rho = \sqrt{x^2 + y^2} \\ \theta = \operatorname{ArcTan}\left[\frac{y}{x}\right] \\ z = z \end{bmatrix}$$

Volume Element

$$dV = r^2 \sin[\theta] dr d\theta d\phi$$

Spherical Coordinates

$$\begin{bmatrix} x = r \operatorname{Sin}[\theta] \operatorname{Cos}[\phi] \\ y = r \operatorname{Sin}[\theta] \operatorname{Sin}[\phi] \\ z = r \operatorname{Cos}[\theta] \end{bmatrix} \begin{bmatrix} r = \sqrt{x^2 + y^2 + z^2} \\ \theta = \operatorname{ArcTan}\left[\frac{(x^2 + y^2)^{1/2}}{z}\right] \\ \phi = \operatorname{ArcTan}\left[\frac{y}{x}\right] \end{bmatrix}$$

Volume Element

$$dV = r^2 \sin[\theta] dr d\theta d\phi$$

Dot Product

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$
$$= |\vec{A}| |\vec{B}| \cos[\theta]$$

- $\vec{A} \cdot \vec{B}$ is a scalar
- $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A} \longrightarrow \vec{A} \cdot \vec{A} = |\vec{A}|^2$
- For any *unit* vector \hat{n} , $\vec{A} \cdot \hat{n}$ represents the length of \vec{A} along the direction \hat{n}

Cross Product

$$\vec{A} \times \vec{B} = (A_y B_z - A_z B_y)\hat{x} \\ + A_z B_x - A_x B_z y \\ + A_x B_y - A_y B_x z$$

- $\vec{A} \times \vec{B}$ is a vector
- $\vec{A} \times \vec{B} = -\vec{B} \times \vec{A} \longrightarrow \vec{A} \times \vec{A} = \vec{0}$
- Direction given by right-hand rule and magnitude $|\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \text{Sin}[\theta]$ equal to parallelogram area

Law of Cosines

- Triangle defined by vectors \vec{A} and \vec{B}
- Thirds leg given by $\vec{C} = \vec{A} \vec{B}$

$$\left|\overrightarrow{C}\right|^2 = \left|\overrightarrow{A}\right|^2 + \left|\overrightarrow{B}\right|^2 - 2\left|\overrightarrow{A}\right|\left|\overrightarrow{B}\right|\cos[\theta]$$

$$\frac{\text{Proof}}{\vec{C} \cdot \vec{C} = (\vec{A} - \vec{B}) \cdot (\vec{A} - \vec{B})}$$

$$= |\vec{A}|^2 + |\vec{B}|^2 - 2 \vec{A} \cdot \vec{B}$$

Trig Functions

$$Sin[x] = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots = \sum_{j=0}^{\infty} (-1)^j \frac{x^{2j+1}}{(2j+1)!} = \frac{e^{ix} - e^{-ix}}{2}$$

$$Cos[x] = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots = \sum_{j=0}^{\infty} (-1)^j \frac{x^{2j}}{(2j)!} = \frac{e^{ix} + e^{-ix}}{2}$$

$$\cos[0] = 1 \qquad \qquad \sin[0] = 0$$

$$\cos\left[\frac{\pi}{6}\right] = \frac{\sqrt{3}}{2} \qquad \qquad \sin\left[\frac{\pi}{6}\right] = \frac{1}{2}$$

$$\cos\left[\frac{\pi}{4}\right] = \frac{\sqrt{2}}{2} \qquad \qquad \sin\left[\frac{\pi}{4}\right] = \frac{\sqrt{2}}{2}$$

$$\cos\left[\frac{\pi}{3}\right] = \frac{1}{2} \qquad \qquad \sin\left[\frac{\pi}{3}\right] = \frac{\sqrt{3}}{2}$$

$$\cos\left[\frac{\pi}{2}\right] = 0 \qquad \qquad \sin\left[\frac{\pi}{2}\right] = 1$$

$$\cos[\pi - x] = -\cos[x] \qquad \sin[\pi - x] = \sin[x]$$

$$Cos[\pi - x] = -Cos[x] Sin[\pi - x] = Sin[x]$$

$$Sin[x + y] = Sin[x]Cos[y] + Cos[x]Sin[y]$$

$$Cos[x + y] = Cos[x]Cos[y] - Sin[x]Sin[y]$$

$$Sin[2x] = 2Sin[x]Cos[x]$$

$$Cos[2x] = Cos[x]^2 - Sin[x]^2$$

$$= 2Cos[x]^2 - 1 = 1 - 2Sin[x]^2$$

- Bigger wrench yields more torque
- Force pointing at base point has $\vec{\tau} = 0$

Circular Motion

$$\vec{F}_{\text{tot}} = -\frac{mv^2}{r}\hat{r}$$

- Ex: Geostationary orbit, laboratory centrifuge, playground carousel
- Tighter circles require larger \vec{F}_{tot}

\vec{a}

Linearly Accelerating Frame

Fictitious force $\vec{F}_{linear} = -m\vec{a}$

- Bus starts moving → Pushed into seat
- Elevator moves up → You feel heavier

Rotating Reference Frame

Fictitious force $\vec{F}_{\rm cent} = m\omega^2 \vec{r}$

- Turn in a car → Pushed outwards
- Earth rotating → Oblate spheroid

Newton's Laws

1st: $\vec{a} = \vec{0}$ implies $\vec{v} = \text{constant}$

$$2^{\text{nd}}$$
: $\sum \vec{F} = \frac{d\vec{p}}{dt} = m\vec{a}$ (constant m)

3rd: Equal and opposite forces

Energy
$$E = \frac{1}{2}mv^2 + V[x]$$

$$F[x] = -\frac{dV}{dx}$$

Mass in potential V[x]

- m oscillates between x_1 and x_2
- v = 0 when $E = V[x_1] = V[x_2]$

Momentum

$$\vec{p} = m\vec{v}$$

Elastic collision with m = M

• Masses swap velocities

Elastic collision with $m \ll M$

- M's velocity nearly unchanged
- m's velocity increases to $v_m + 2v_M$

Elastic Collision

Masses rebound elastically → Energy conserved No net force → Momentum conserved

Inelastic Collision

Masses stick together → Energy *not* conserved No net force → Momentum conserved

Angular Momentum and Kinetic Energy

Point mass

$$\vec{L} = m\vec{r} \times \vec{v}$$
 $KE = \frac{1}{2}mv^2$

Extended body, pure rotation

$$\vec{L} = I\vec{\omega}$$

$$KE = \frac{1}{2}I\omega^2$$

Extended body, general motion

$$\vec{L} = M\vec{R}_{\text{CM}} \times \vec{V}_{\text{CM}} + I_{\text{CM}}\vec{\omega}_{\text{CM}}$$
$$KE = \frac{1}{2}MV_{\text{CM}}^2 + \frac{1}{2}I_{\text{CM}}\omega_{\text{CM}}^2$$

Moment of Inertia

 $I = \int r^2 dm$ (About an axis)

1D Rod $\frac{1}{12}ML^2$

Hollow Cylinder

 MR^2

Solid Cylinder $\frac{1}{2}MR^2$

Hollow Sphere $\frac{2}{3}MR^2$

Solid Cylinder $\frac{2}{5}MR^2$

Center of Mass

$$\vec{R}_{\text{CM}} = \frac{\sum_{j} m_{j} \vec{r}_{j}}{\sum_{j} m_{j}}, \quad \vec{V}_{\text{CM}} = \frac{\sum_{j} m_{j} \vec{v}_{j}}{\sum_{j} m_{j}}$$

Parallel Axis Theorem

$$I = I_{\rm CM} + Md^2$$

Example (1D Rod): $I_{CM} = \frac{1}{12}ML^2$

About end,
$$I = I_{CM} + M \left(\frac{l}{2}\right)^2 = \frac{1}{3}ML^2$$

Perpendicular Axis Theorem

(For flat objects on x-y plane)

$$I_z = I_x + I_y$$

Example (2D Disk): $I_z = \frac{1}{2}MR^2$ out of plane

$$I_x = I_y$$
 by symmetry $\rightarrow I_x = I_y = \frac{1}{4}MR^2$

Rotational Dynamics

$$\sum \vec{\tau} = \frac{d\vec{L}}{dt} = I\alpha$$
 (pure rotation)

