= КОМПЬЮТЕРНАЯ АЛГЕБРА =

УДК 004.92+004.94

О МЕХАНИЧЕСКОМ ДОКАЗАТЕЛЬСТВЕ ПЛАНИМЕТРИЧЕСКИХ ТЕОРЕМ РАЦИОНАЛЬНОГО ТИПА

© 2013 г. Н. Н. Осипов

Институт космических и информационных технологий СФУ 660074 Красноярск, ул. Киренского, 26 nnosipov@rambler.ru
Поступила в редакцию 01.09.2013

В статье предлагается элементарный подход к механическому доказательству планиметрических теорем рационального типа. Это подход реализован в виде программных модулей geom и его модифицированной версии geom_zeta, созданных в системе компьютерной алгебры Марle. Приводятся примеры механических доказательств сложных теорем планиметрии (как хорошо известных, так и сравнительно новых) на основе удобных рациональных параметризаций.

1. ВВЕДЕНИЕ

Механический метод доказательства геометрических теорем известен уже сравнительно давно (см., например, [1]). Он стал возможен благодаря двум обстоятельствам: во-первых, появлению и совершенствованию алгоритмов решения систем полиномиальных уравнений и, вовторых, бурному развитию как вычислительной техники, так и систем компьютерной алгебры, что способствовало эффективной практической реализации этих алгоритмов. Наиболее часто для механического доказательства теорем элементарной геометрии применяются алгоритм базисов Грёбнера и метод Ву (см., например [2, гл. 6]).

Между тем существует довольно много содержательных геометрических теорем так называемого рационального типа, при механическом доказательстве которых можно обойтись вполне элементарными средствами и тем самым избежать применения «тяжёлой артиллерии коммутативной алгебры» (В. И. Арнольд). В настоящей статье предлагается элементарный подход к механическому доказательству теорем рационального типа в планиметрии.

Этот подход основан на применении алгебры комплексных чисел и сводится к конечной последовательности вычислений, непосредственно вы-

текающей из формулировки теоремы. Вычисления с комплексными числами как метод доказательства теорем планиметрии применяются давно (см., например, [3, гл. III]); с появлением компьютеров и систем компьютерной алгебры этот метод получил новые возможности.

В данном случае под вычислениями понимаются обычные алгебраические операции в поле рациональных дробей

$$F(z_1,\ldots,z_n,u_1,\ldots,u_m),$$

где F — поле рациональных чисел $\mathbb Q$ или какоенибудь его конечное расширение. Все переменные z_k предполагаются комплексными и удовлетворяющими условию $|z_k|=1$, а все переменные u_l — вещественными. Предлагается некоторый набор стандартных вычислительных процедур и проверочных тестов, оформленный в виде модуля geom и его расширенной версии geom_zeta в системе компьютерной алгебры Maple.

Статья организована следующим образом.

В разделе 2 приводятся правила перевода наиболее употребительных геометрических условий (терминов) на язык алгебры комплексных чисел и затем вводится понятие планиметрической теоремы рационального типа.

Раздел 3 содержит довольно подробное описание модулей geom, geom_zeta и особенностей их программной реализации.

В разделе 4 предлагаются удобные рациональные параметризации различных элементов треугольника, позволяющие снимать внешние условия и тем самым избегать применения таких затратных процедур, как вычисление базисов Грёбнера и упрощение вложенных радикальных выражений. При этом эксплуатируется только возможность эффективной реализации обычных алгебраических операций в кольце многочленов $F[z_1, \ldots, z_n, u_1, \ldots, u_m]$ и операции нахождения НОД (или, как вариант, операции факторизации).

В завершающем разделе 5 собраны наиболее содержательные примеры механического доказательства планиметрических теорем рационального типа (как классических, так и недавно открытых) на основе предложенных рациональных параметризаций. В конце раздела демонстрируется одна интересная особенность механического доказательства на основе вычислений с рациональными дробями над некоторым круговым полем: наличие у этого поля нетривиальных автоморфизмов приводит к тому, что оказываются доказанными сразу несколько схожих геометрических теорем.

2. ТЕОРЕМЫ РАЦИОНАЛЬНОГО ТИПА

Чтобы сформулировать, что мы понимаем под планиметрической «теоремой рационального типа», предварительно укажем перевод на язык комплексных чисел некоторых стандартных геометрических величин, построений и условий.

Введём обозначения: l(P,v) — прямая, проходящая через точку P в направлении вектора v; c(O,P) — окружность с центром в точке O, проходящая через точку P. Комплексное число, ассоциированное с точкой (вектором) евклидовой плоскости, будем обозначать той же буквой, что и саму точку (вектор); черта сверху обозначает комплексное сопряжение.

1. Квадрат расстояния между точками P и Q равен

$$|P - Q|^2 = (P - Q)(\overline{P} - \overline{Q}).$$

2. (Ориентированная) площадь треугольника ABC равна

$$\frac{(\overline{B}-\overline{A})(C-A)-(B-A)(\overline{C}-\overline{A})}{4i}.$$

- 3. Вектор, полученный из вектора v поворотом на угол α в положительном направлении, равен w=zv, где $z=\cos\alpha+i\sin\alpha$.
- 4. Точка пересечения непараллельных прямых l(P,v) и l(Q,w) есть

$$\frac{v(Q\overline{w} - \overline{Q}w) - w(P\overline{v} - \overline{P}v)}{v\overline{w} - \overline{v}w}$$

5. Центр окружности, проходящей через неколлинеарные точки $P,\,Q,\,R,\,$ есть

$$\frac{(|Q|^2 - |P|^2)(P - R) - (|R|^2 - |P|^2)(P - Q)}{(P - Q)(\overline{P} - \overline{R}) - (\overline{P} - \overline{Q})(P - R)}.$$

6. Ортогональная проекция точки Z на прямую l(P,v) есть

$$\frac{Z\overline{v}+\overline{Z}v+P\overline{v}-\overline{P}v}{2\overline{v}}.$$

7. Точка, симметричная точке Z относительно прямой l(P,v), есть

$$\frac{\overline{Z}v + P\overline{v} - \overline{P}v}{\overline{v}}.$$

- 8. Точка, симметричная точке Z относительно точки O, есть 2O-Z.
- 9. Точка Z лежит на окружности c(O,P) тогда и только тогда, когда

$$|Z - O|^2 = |P - O|^2.$$

Точка Z лежит на окружности с центром в начале координат и радиусом 1 ($e\partial$ иничная окруженость) тогда и только тогда, когда $\overline{Z} = Z^{-1}$.

10. Векторы v и w коллинеарны тогда и только тогда, когда

$$v\overline{w} - \overline{v}w = 0.$$

11. Векторы v и w ортогональны тогда и только тогда, когда

$$v\overline{w} + \overline{v}w = 0.$$

12. Неколлинеарные точки P, Q, R, S лежат на одной окружности тогда и только тогда, когда

$$\frac{P-R}{Q-R}:\frac{P-S}{Q-S}=\frac{\overline{P}-\overline{R}}{\overline{Q}-\overline{R}}:\frac{\overline{P}-\overline{S}}{\overline{Q}-\overline{S}}.$$

13. Треугольники ABC и PQR подобны и одинаково ориентированы (подобие 1-го рода) тогда и только тогда, когда

$$AQ + BR + CP = BP + CQ + AR$$

(здесь AQ и т. д. — это произведение комплексных чисел A и Q).

14. Треугольники ABC и PQR подобны и противоположно ориентированы (подобие 2-го рода) тогда и только тогда, когда

$$A\overline{Q} + B\overline{R} + C\overline{P} = B\overline{P} + C\overline{Q} + A\overline{R}.$$

15. Прямая l(P,v) и окружность c(O,Q) касаются в точке T тогда и только тогда, когда $|T-O|^2 = |Q-O|^2$, где

$$T = \frac{O\overline{v} + \overline{O}v + P\overline{v} - \overline{P}v}{2\overline{v}}.$$

16. Окружности c(P,Z) и c(Q,W) с разными центрами касаются в точке T тогда и только тогда, когда $|T-P|^2 = |Z-P|^2$, где

$$\begin{split} T = \\ \frac{|Z|^2 - |W|^2 - Z\overline{P} - \overline{Z}P + W\overline{Q} + \overline{W}Q - \overline{P}Q + P\overline{Q}}{2(\overline{Q} - \overline{P})}. \end{split}$$

Предположим, что некоторым элементам A_1 , ..., A_s (это могут быть точки, углы, векторы и т. п.) данной в условии теоремы геометрической конфигурации сопоставлены некоторые (вообще говоря, комплекснозначные) параметры t_1 , ..., t_s , при этом все остальные элементы конфигурации B_1 , ..., B_r в переводе на язык комплексных чисел представляют собой рациональные выражения:

$$B_i = f_i(t_1, \dots, t_s), \quad j = 1, \dots, r.$$

(Коротко говоря, данная конфигурация допускает рациональную параметризацию.) Если, кроме того, заключение теоремы — некоторое условие $C(A_1, \ldots, A_s, B_1, \ldots, B_r)$ — равносильно проверке тожлества

$$R(t_1, \ldots, t_s, f_1(t_1, \ldots, t_s), \ldots, f_r(t_1, \ldots, t_s)) = 0,$$

где R — некоторая рациональная функция своих аргументов, то такую теорему мы будем называть теоремой рационального типа.

Довольно типичной является ситуация, когда элементы конфигурации последовательно получаются из «стартовых» элементов A_1, \ldots, A_s при помощи стандартных построений пп. 3-8, а заключение теоремы состоит в проверке одного из условий, указанных в пп. 9-16. Отметим, что

примерами теорем рационального типа являются большинство классических теорем планиметрии (см., например, [4]). Список геометрических построений и условий рационального типа можно было бы пополнить (например, добавив условие равенства двух ориентированных углов), однако представляется целесообразным делать это в процессе доказательства конкретных теорем.

3. МОДУЛИ GEOM И GEOM ZETA

Модуль geom и его модифицированный вариант geom_zeta созданы на базе системы компьютерной алгебры Maple и содержат в текущих версиях следующий набор функций и тестов, применяемых при механическом доказательстве планиметрических теорем рационального типа.

- ullet Collinear(a,b) тест на коллинеарность векторов a и b
- Concurrent (P,a,Q,b,R,c) тест на пересечение прямых $l(P,a),\ l(Q,b),\ l(R,c)$ в одной точке
- Concyclic(P,Q,R,S) тест на принадлежность точек $P,\,Q,\,R,\,S$ одной окружности
- ullet Equidistant (P,Q,R,S) тест на равенство длин отрезков PQ и RS
- Perpendicular(a,b) тест на перпендикулярность векторов a и b
- \bullet Similar(A,B,C,P,Q,R) тест на подобие 1-го рода треугольников ABC и PQR
- ullet Similar2(A,B,C,P,Q,R) тест на подобие 2-го рода треугольников ABC и PQR
- ullet Tangent (P,a,Q,R) тест на касание прямой l(P,a) и окружности c(Q,R)
- ullet Tangent2(P,Q,R,S) тест на касание окружностей c(P,Q) и c(R,S)
- ullet area(A,B,C) ориентированная площадь треугольника ABC
- center(P,Q,R) центр окружности, проходящей через точки P,Q,R
- centroid(A,B,C) точка пересечения медиан треугольника ABC

- ullet conjugate(X) выражение, комплексно сопряжённое к выражению X
- intersection(P,a,Q,b) точка пересечения прямых l(P,a) и l(Q,b)
- \bullet norm(X) квадрат модуля выражения X
- ullet orthocenter(A,B,C) точка пересечения высот треугольника ABC
- ullet projection(Z,P,a) ортогональная проекция точки Z на прямую l(P,a)
- radical(P,Q,R,S) точка пересечения прямой PR и радикальной оси окружностей c(P,Q) и c(R,S)
- ullet reflection(Z,P,a) точка, симметричная точке Z относительно прямой l(P,a)
- ullet secondpoint (P,a,Q) вторая точка пересечения прямой l(P,a) с окружностью c(Q,P)
- symmetry(Z,P) точка, симметричная точке Z относительно точки P

В модуле geom все вычисления выполняются в поле рациональных дробей над полем коэффициентов $F=\mathbb{Q}(i)$. Поскольку в условии теоремы отдельные элементы геометрических фигур могут быть конкретизированы (так, некоторые углы могут иметь фиксированные величины, соизмеримые с 180°), при вычислениях могут возникнуть рациональные дроби над каким-нибудь другим полем алгебраических чисел. В модуле geom_zeta в качестве поля коэффициентов рассматривается $F=\mathbb{Q}(i,\zeta)$, где ζ — корень из единицы некоторой степени.

Функция conjugate задействована (явно или неявно) во всех других тестах и функциях, поэтому необходимо пояснить, как она работает. Предполагается, что поступающее на вход этой функции рациональное выражение зависит от специальных переменных z_k , $k=1,\ldots,n$ (n=6 по умолчанию), значения которых считаются по модулю равными 1, и, возможно, некоторых других переменных u_l , $l=1,\ldots,m$, которые считаются вещественнозначными. Для модуля geom сопряжение данного выражения состоит в замене всех z_k на z_k^{-1} и замене мнимой единицы i на -i. В случае модуля geom zeta происходит

такая же замена специальных переменных и замена специальной константы η на η^{-1} . По определению, η обозначает такой корень из единицы, что

$$\mathbb{Q}(i,\zeta) = \mathbb{Q}(\eta),$$

где ζ — корень из единицы, который предполагается использовать в вычислениях. Нетрудно видеть, что

$$\deg \eta = \operatorname{HOK}(\deg \zeta, \deg i) = \operatorname{HOK}(\deg \zeta, 4).$$

Для корректной работы функции conjugate в рамках модуля geom_zeta необходимо проделать следующее:

- воспользоваться командой alias для того, чтобы задать η как корень *кругового много-члена* $\Phi_m(x)$, где $m = \deg \eta$;
- задать i и ζ как степени η (а именно, положить $i = \eta^{m/4}$ и $\zeta = \eta^{m/\deg \zeta}$).

В качестве примера укажем последовательность начальных команд в случае, когда предполагается использовать число $\zeta = \cos 60^{\circ} + i \sin 60^{\circ}$:

- > with(numtheory):
- > alias(eta=RootOf(cyclotomic(12,x)=0)):
- > i:=eta^3:
- > zeta:=eta^2:
- > read 'geom_zeta.txt':
- > with(geom_zeta):

Программная реализация остальных функций и тестов основана на утверждениях 1-16 раздела 2. Для упрощения рациональных дробей по умолчанию используется команда factor, которая, в частности, сокращает числитель и знаменатель дроби на их наибольший общий делитель. Текущие версии модулей geom и geom_zeta в виде соответствующих текстовых файлов доступны по ссылке [5].

4. РАЦИОНАЛЬНЫЕ ПАРАМЕТРИЗАЦИИ ТРЕУГОЛЬНИКА

При механическом доказательстве различных соотношений в треугольнике ABC обычно достаточно стандартной параметризации

$$A = z_1, \quad B = z_2, \quad C = z_3,$$

однако она не позволяет, например, рационально выразить такие элементы треугольника, как центры вписанной и вневписанных окружностей, биссектрисы и т. п. Поэтому часто бывает удобным ввести комплексную плоскость так, чтобы вписанная окружность треугольника ABC была единичной (инцентр I=0, радиус вписанной окружности r=1), а сам треугольник при этом задать точками касания

$$T_a = z_1, \quad T_b = z_2, \quad T_c = z_3$$
 (1)

со сторонами BC, CA, AB соответственно. Тогда многие точки и величины, связанные с треугольником ABC, можно представить в виде рациональных дробей $f(z_1, z_2, z_3)$ над \mathbb{Q} или $\mathbb{Q}(i)$.

Ниже приводится небольшой список таких элементов треугольника и соответствующих им рациональных выражений. Из геометрических соображений треугольник $T_aT_bT_c$ должен быть остроугольным; дополнительно считается, что он положительно ориентирован.

• Вершины:

$$A = \frac{2z_2z_3}{z_2 + z_3}.$$

• Основания высот:

$$H_a = \frac{\sigma_2 - z_1^2}{z_2 + z_3}.$$

• Центр масс (центроид):

$$G = \frac{2(\sigma_2^2 + \sigma_1 \sigma_3)}{3(\sigma_1 \sigma_2 - \sigma_3)}.$$

• Ортоцентр:

$$H = \frac{2(\sigma_2^2 - \sigma_1 \sigma_3)}{\sigma_1 \sigma_2 - \sigma_3}.$$

• Центр описанной окружности:

$$O = \frac{2\sigma_1\sigma_3}{\sigma_1\sigma_2 - \sigma_3}.$$

• Центр окружности Эйлера (окружности девяти точек):

$$N = \frac{\sigma_2^2}{\sigma_1 \sigma_2 - \sigma_3}.$$

• Точки Фейербаха:

$$F = \frac{\sigma_2}{\sigma_1}, \quad F_a = N - \frac{\sigma_2 - 2z_2z_3}{\sigma_1 - 2z_1} R_N,$$

где R_N — радиус окружности Эйлера.

• Точка пересечения симедиан:

$$K = \frac{2\sigma_3(\sigma_1^2\sigma_2 - 3\sigma_1\sigma_3 - 2\sigma_2^2)}{-2\sigma_1^3\sigma_3 + \sigma_1^2\sigma_2^2 + 4\sigma_1\sigma_2\sigma_3 - 2\sigma_2^3 - 9\sigma_3^2}.$$

• Точка Нагеля:

$$Na = \frac{2(\sigma_2^2 + \sigma_1 \sigma_3)}{\sigma_1 \sigma_2 - \sigma_3}.$$

• Точка Спикера:

$$Sp = \frac{\sigma_2^2 + \sigma_1 \sigma_3}{\sigma_1 \sigma_2 - \sigma_3}.$$

• Точки Брокара:

$$B^{(1)} = \frac{2\sigma_3(z_1^3 z_2 + z_2^3 z_3 + z_3^3 z_1 - \sigma_1 \sigma_3)}{z_1^4 z_2^2 + z_2^4 z_3^2 + z_3^4 z_1^2 - 3\sigma_3^2},$$

$$B^{(2)} = \frac{2\sigma_3(z_1 z_2^3 + z_2 z_3^3 + z_3 z_1^3 - \sigma_1 \sigma_3)}{z_1^2 z_2^4 + z_2^3 z_2^4 + z_2^3 z_1^4 - 3\sigma_2^2}.$$

 Расстояния от вершин до точек касания вписанной окружности со сторонами:

$$|AT_b| = |AT_c| = i \frac{z_2 - z_3}{z_2 + z_3}.$$

• Радиусы описанной и вневписанных окружностей:

$$R = -\frac{2z_1z_2z_3}{(z_1+z_2)(z_2+z_3)(z_3+z_1)},$$

$$r_a = -\frac{(z_1-z_2)(z_3-z_1)}{(z_1+z_2)(z_3+z_1)}.$$

- Радиус окружности Эйлера: $R_N = R/2$.
- Длины сторон:

$$a = -2i \, \frac{z_1(z_2 - z_3)}{(z_2 + z_1)(z_3 + z_1)}.$$

¹Все выражения можно получить при помощи модуля geom или geom_zeta. Для сокращения записи используются σ_1 , σ_2 , σ_3 — элементарные симметрические выражения от z_1 , z_2 , z_3 . Определение различных точек, связанных с треугольником, можно найти по ссылке [6].

• Длины высот:

$$h_a = \frac{(z_1 - z_2)(z_3 - z_1)}{z_1(z_2 + z_3)}.$$

• Площадь и полупериметр:

$$S = p = -i \frac{(z_1 - z_2)(z_2 - z_3)(z_3 - z_1)}{(z_1 + z_2)(z_2 + z_3)(z_3 + z_1)}.$$

• Косинусы и синусы углов при вершинах:

$$\cos \angle CAB = -\frac{1}{2} \left(\frac{z_2}{z_3} + \frac{z_3}{z_2} \right),$$
$$\sin \angle CAB = -\frac{1}{2i} \left(\frac{z_2}{z_3} - \frac{z_3}{z_2} \right).$$

Более полный список, включающий дополнительно рациональные выражения для оснований медиан, оснований биссектрис и оснований внешних биссектрис, центров вневписанных окружностей, точек касания вневписанных окружностей со сторонами, точек Эйлера, точки Жергонна, точек Ферма, котангенса угла Брокара и др., можно найти по ссылке [5].

Приведём некоторые примеры механического доказательства геометрических фактов, взятых из [4], на основе параметризации (1). Так, очевидны соотношения

$$G = \frac{H+2O}{3}, \quad N = \frac{H+O}{2},$$
$$G = \frac{Na}{3}, \quad Sp = \frac{Na}{2}.$$

В частности, точки O, G, N, H лежат на одной прямой (прямая Эйлера), это же верно и для точек I, G, Sp, Na (прямая Нагеля). Примеры менее очевидных, но легко проверяемых соотношений:

$$|IO|^2 = R^2 - 2Rr, \quad |IG|^2 = \frac{p^2 + 5r^2 - 16Rr}{9},$$

$$\frac{1}{r^3} = \frac{1}{r_a^3} + \frac{1}{r_b^3} + \frac{1}{r_c^3} + \frac{12R}{S^2}.$$

Формула для изогонального сопряжения относительно треугольника ABC имеет вид

$$z \mapsto \frac{2\sigma_3(\sigma_1 z\overline{z} - 2z - \sigma_3 \overline{z}^2)}{(\sigma_1 \sigma_2 - \sigma_3)z\overline{z} - 2\sigma_2 z - 2\sigma_1 \sigma_2 \overline{z} + 4\sigma_3}.$$

С её помощью можно убедиться, например, что пары точек G и K, H и O, $B^{(1)}$ и $B^{(2)}$ изогонально сопряжены.

Ещё одна удобная параметризация треугольника ABC состоит в его задании точками пересечения

$$X_a = z_1, \quad X_b = z_2, \quad X_c = z_3$$

отрезков AI, BI, CI со вписанной окружностью. Как и $T_aT_bT_c$, треугольник $X_aX_bX_c$ также должен быть остроугольным и положительно ориентированным, при этом имеем

$$T_a = -\frac{z_2 z_3}{z_1}, \quad T_b = -\frac{z_3 z_1}{z_2}, \quad T_c = -\frac{z_1 z_2}{z_3}$$
 (2)

(см. [3], пример 34 на стр. 190). Теперь появляется дополнительная возможность рационально выразить длины биссектрис, косинусы и синусы половинных углов при вершинах, расстояния от вершин до центра вписанной окружности и др. (см. [5]). Пример применения такой параметризации: проверка соотношения

$$\frac{1}{al_al_a'} + \frac{1}{cl_cl_c'} = \frac{1}{bl_bl_b'},$$

при условии a < b < c, где l_a , l_a' и т. д. — длины биссектрис и внешних биссектрис. Параметризацию (2) можно применить для рационализации элементов треугольника $T_aT_bT_c$; можно показать, что она бирационально эквивалентна параметризации (1) для треугольника ABC.

5. ПРИМЕРЫ

В этом разделе собраны более содержательные примеры механического доказательства планиметрических теорем рационального типа, однако сначала имеет смысл продемонстрировать пример типичной и, в некотором роде, «случайной» теоремы, принадлежность которой к рациональному типу очевидна (задача 05.68 [7]).

Биссектриса угла A треугольника ABC пересекает вписанную в этот треугольник окруженость в точках F и L. Пусть точка D — основание перпендикуляра из точки C на эту биссектрису, а точка K — основание перпендикуляра из центра вписанной окружности на прямую BD. Тогда точки F, L, B и K принадлежат одной окружности.

Эта теорема доказывается непосредственным применением к треугольнику ABC параметризации (2). Впрочем, здесь возможна и более экономная параметризация (с меньшим числом переменных). Положим $F=1,\ L=-1,\ T_a=z_1,\ T_b=z_2,\$ тогда $T_c=z_2^{-1}$ и далее последовательно находим

$$A = \frac{2z_2}{z_2^2 + 1}, \quad B = \frac{2z_1}{z_1 z_2 + 1}, \quad C = \frac{2z_1 z_2}{z_1 + z_2},$$
$$D = \frac{z_1 z_2 + 1}{z_1 + z_2}, \quad K = \frac{(z_1 - z_2)(z_1 z_2 + 1)}{z_1^2 z_2^2 - 2z_2^2 + 1}.$$

Завершает доказательство механическая проверка условия концикличности, которое оказывается выполненным.

Конечно, в общем случае поиск и само наличие рациональной параметризация может оказаться не столь тривиальным (разнообразные примеры можно найти по ссылке [5]).

5.1. Теорема Морли

Эта теорема хорошо известна (см., например, [4]), как и её различные доказательства, сводящиеся к вычислениям.

Если в произвольном треугольнике ABC провести трисектрисы AA_1 , AA_2 , BB_1 , BB_2 , CC_1 , CC_2 , то точки пересечения пар трисектрис BB_1 и CC_2 , CC_1 и AA_2 , AA_1 и BB_2 образуют правильный треугольник.

На примере теоремы Морли мы продемонстрируем ещё один работающий вариант параметризации треугольника ABC, связанный с его углами α , β , γ . Положим

$$a = \cos(\alpha/3) + i\sin(\alpha/3) = z_1, b = \cos(\beta/3) + i\sin(\beta/3) = z_2, c = \cos(\gamma/3) + i\sin(\gamma/3) = \zeta z_1^{-1} z_2^{-1},$$

где $\zeta = \cos 60^{\circ} + i \sin 60^{\circ}$. Обозначим точки пересечения указанных пар трисектрис через X, Y, Z соответственно. Положив A = 0 и B = 1, вы-

числим точку C, а затем точки Z, X, Y:

$$C = l(A, a^{3}) \cap l(B, b^{-3}) = \frac{z_{1}^{6}(z_{2}^{6} - 1)}{z_{1}^{6}z_{2}^{6} - 1},$$

$$Z = l(A, a) \cap l(B, b^{-1}) = \frac{z_{1}^{2}(z_{2}^{2} - 1)}{z_{1}^{2}z_{2}^{2} - 1},$$

$$X = l(B, b^{-2}) \cap l(C, (B - C)c^{-1}) = \frac{z_{1}^{2}(z_{2}^{2} - 1)(z_{1}^{2}z_{2}^{2} + z_{1}^{2} + \zeta - 1)}{(z_{1}^{2}z_{2}^{2} - 1)(z_{1}^{2}z_{2}^{2} + \zeta)},$$

$$Y = l(A, a^{2}) \cap l(C, (A - C)c) = \frac{z_{1}^{4}(z_{2}^{2} - 1)(z_{1}^{2}z_{2}^{2} + \zeta)}{(z_{1}^{2}z_{2}^{2} - 1)(z_{1}^{2}z_{2}^{2} + \zeta)}.$$

Теперь достаточно убедиться в справедливости равенства

$$Y - Z = \zeta(X - Z),$$

которое, как показывает прямая проверка, оказывается равенством в поле рациональных дробей $\mathbb{Q}(\zeta)(z_1,z_2)$, т. е. тождеством.

5.2. Теорема о четырёхугольниках Брокара

Впервые эта теорема (в виде правдоподобной, но недоказанной гипотезы) была сформулирована А. Заславским ещё в 2006 году и имеет компьютерное происхождение (см., например, [8]).

Точкой Брокара выпуклой ломаной ABCD называется такая точка P, для которой

$$\angle PAB = \angle PBC = \angle PCD.$$
 (3)

Точку Брокара ломаной ABCD будем обозначать Br(ABCD). Теорема о четырёхугольниках Брокара состоит в следующем.

Пусть ABCD-произвольный вписанный четырёхугольник. Положим

$$P_1 = Br(ABCD),$$
 $P_2 = Br(BCDA),$
 $P_3 = Br(CDAB),$ $P_4 = Br(DABC);$
 $Q_1 = Br(DCBA),$ $Q_2 = Br(ADCB),$
 $Q_3 = Br(BADC),$ $Q_4 = Br(CBAD).$

Тогда четырёхугольники $P_1P_2P_3P_4$ и $Q_1Q_2Q_3Q_4$ равновелики.

Механическое доказательство этого факта было найдено в 2008 году автором этих строк.

Пусть
$$A=z_1,\, B=z_2,\, C=z_3,\, D=z_4$$
 и $z=\cos\phi+i\sin\phi,$

где ϕ — общее значение углов (3). Условие конкурентности трёх прямых PA, PB и PC позволяет однозначно определить z^2 , а именно:

$$z^2 = -\frac{z_2^2 z_1 - 2 z_3 z_2 z_1 + z_3 z_1 z_4 - z_4 z_3 z_2 + z_3^2 z_2}{z_3 z_2 z_1 + 2 z_4 z_3 z_2 - z_2 z_1 z_4 - z_3 z_2^2 - z_4 z_3^2}.$$

Тогда точку Брокара Br(ABCD) можно найти как точку пересечения прямых PA и PB, выражение для которой зависит именно от z^2 :

$$Br(ABCD) = \\ \frac{z_1 z_2^2 z_4 - z_2 z_1 z_3^2 + z_1 z_4 z_3^2 - z_1 z_4 z_3 z_2 - z_2^2 z_4 z_3 + z_3^2 z_2^2}{-z_3 z_2 z_1 - 2 z_4 z_3 z_2 + z_2 z_1 z_4 + z_3 z_2^2 + z_4 z_3^2}.$$

Таким образом, построение точки Брокара является рациональной операцией. Как следствие, проверка заключения теоремы не представляет затруднений и оказывается успешной.

Найденная формула для точки Брокара позволяет столь же легко установить другие факты о четырёхугольниках $P_1P_2P_3P_4$ и $Q_1Q_2Q_3Q_4$. Например, доказать, что каждый из них является вписанным; можно обосновать равенства

$$\frac{|P_1 P_2|}{|Q_1 Q_2|} = \frac{|BC|}{|CD|}, \quad \frac{|P_2 P_3|}{|Q_2 Q_3|} = \frac{|CD|}{|DA|}$$

ит. д.

8

Первое геометрическое доказательство теоремы о четырёхугольниках Брокара было опубликовано в 2013 году [9].

5.3. Теорема об инцентрах

Эта теорема как гипотеза была опубликована в статье [10] и также родилась в результате компьютерных экспериментов.

Пусть AA_1 , BB_1 , CC_1 — биссектрисы произвольного треугольника ABC, I — его инцентр, P_1 , P_2 , P_3 , P_4 , P_5 , P_6 — инцентры треугольников

$$AB_{1}I, A_{1}BI, BC_{1}I, B_{1}CI, CA_{1}I, C_{1}AI$$
 (4)

соответственно. Тогда шесть инцентров P_j лежат на некоторой кривой второго порядка.

Для механического доказательства воспользуемся параметризацией треугольника ABC через его углы α , β , γ . Пусть A=0, B=1 и

$$a = \cos(\alpha/4) + i\sin(\alpha/4) = z_1,$$

$$b = \cos(\beta/4) + i\sin(\beta/4) = z_2,$$

$$c = \cos(\gamma/4) + i\sin(\gamma/4) = \zeta z_1^{-1} z_2^{-1},$$

где $\zeta = \cos 45^{\circ} + i \sin 45^{\circ}$. Тогда

$$C = l(A, a^4) \cap l(B, b^{-4}) = \frac{z_1^8(z_2^8 - 1)}{z_1^8 z_2^8 - 1},$$

$$I = l(A, a^2) \cap l(B, b^{-2}) = \frac{z_1^4(z_2^4 - 1)}{z_1^4 z_2^4 - 1}.$$

Рассмотрим, например, треугольник AB_1I . Как нетрудно увидеть,

$$\angle IAB_1 = \frac{\alpha}{2}, \quad \angle AIB_1 = \frac{\alpha + \beta}{2}.$$

Следовательно,

$$P_1 = l(A, (I - A)a) \cap l(I, (A - I)a^{-1}b^{-1}) = \frac{z_1^6(z_2^4 - 1)}{(z_1^4 z_2^2 - 1)(z_1^2 z_2^2 + 1)}.$$

Аналогично находим

$$P_2 = l(B, (I - B)b^{-1}) \cap l(I, (B - I)ab) = \frac{z_1^2(z_2^2 - 1)(z_1^2 z_2^4 + z_1^2 z_2^2 + z_1^2 + z_2^2)}{(z_1^2 z_2^4 - 1)(z_1^2 z_2^2 + 1)}.$$

В выражении для очередного инцентра

$$P_{3} = l(B, (I - B)b) \cap l(I, (B - I)b^{-1}c^{-1}) = \frac{z_{1}^{2}(z_{2}^{2} - 1)(z_{1}^{4}z_{2}^{2} - \zeta^{2}z_{1}^{2}z_{2}^{4} - \zeta^{2}z_{1}^{2}z_{2}^{2} + 1)}{(z_{1}^{4}z_{2}^{4} - 1)(z_{1}^{2} - \zeta^{2}z_{2}^{2})}$$

впервые появляется число ζ . В выражениях для инцентров

$$P_4 = l(C, (I - C)c^{-1}) \cap l(I, (C - I)bc),$$

$$P_5 = l(C, (I - C)c) \cap l(I, (C - I)a^{-1}c^{-1}),$$

$$P_6 = l(A, (I - A)a^{-1}) \cap l(I, (A - I)ac),$$

которые мы не приводим, оно также будет.

В комплексных координатах (z, \overline{z}) кривая второго порядка описывается уравнением

$$Kz^2 + Lz\overline{z} + M\overline{z}^2 + Uz + V\overline{z} + W = 0.$$

Существование нетривиального набора коэффициентов (K, \ldots, W) , для которого будут выполнены равенства

$$KP_j^2 + LP_j\overline{P_j} + M\overline{P_j}^2 + UP_j + V\overline{P_j} + W = 0,$$

 $j = 1, \dots, 6,$

равносильно равенству нулю определителя

$$\Delta(P_1, \dots, P_6) = \det([P_j^2, P_j \overline{P_j}, \overline{P_j}^2, P_j, \overline{P_j}, 1]_{j=1}^6).$$

И действительно, проверка показывает, что этот определитель как элемент поля рациональных дробей $\mathbb{Q}(\zeta)(z_1,z_2)$ равен нулю. Рисунки в какойнибудь системе динамической геометрии подсказывают, что искомой кривой второго порядка в данном случае будет эллипс, но наш метод не может претендовать на доказательство этого факта.

Вместе с инцентрами P_j можно рассматривать и соответствующие эксцентры — центры окружностей, вневписанных в треугольники (4). Обозначим через P_j^X эксцентр j-го треугольника, лежащий против вершины X (например, $P_4^{B_1}$ — это эксцентр треугольника B_1CI , который расположен против вершины B_1). Точнее, нас будут интересовать шестёрки точек (Q_1, \ldots, Q_6), где Q_j — это либо инцентр P_j , либо один из эксцентров P_j^X . Одна из них, а именно, (P_1, \ldots, P_6), обладает тем свойством, что её точки принадлежат одной кривой второго порядка. Интересная особенность нашего доказательства состоит в том, что можно сразу предъявить ещё одну шестёрку точек с таким же свойством.

Действительно, во всех вычислениях с участием ζ важно было только то, что

$$\Phi_8(\zeta) = \zeta^4 + 1 = 0. (5)$$

Возьмём теперь $\zeta = \cos{(-45^{\circ})} + i\sin{(-45^{\circ})}$. Так как равенство (5) по-прежнему будет верным, то, например, выражение для точки пересечения

$$l(B, (I-B)b) \cap l(I, (B-I)b^{-1}c^{-1})$$

не изменится, но его seomempuческий смысл станет другим — вместо инцентра P_3 мы получим, как нетрудно видеть, эксцентр P_3^B . Аналогично, выражения, полученные ранее для инцентров P_4 , P_5 , P_6 , теперь будут представлять эксцентры $P_4^{B_1}$, $P_5^{A_1}$, P_6^A соответственно. Ясно, что буквенные выражения для определителей $\Delta(P_1,\ldots,P_6)$ и $\Delta(P_1,P_2,P_3^B,P_4^{B_1},P_5^{A_1},P_6^A)$ будут тождественно совпадать. Значит, если упрощение первого из них по модулю равенства (5) привело к нулю,

то ровно то же случится и со вторым. Итак, мы одновременно получили, что все точки шестёрки

$$(P_1, P_2, P_3^B, P_4^{B_1}, P_5^{A_1}, P_6^A)$$

также лежат на одной кривой второго порядка. Но теперь, как можно увидеть из рисунков, этой кривой может быть не только эллипс, но и гипербола.

Рациональные выражения для инцентров P_j и эксцентров P_j^X (всего их 24) находятся с помощью модуля geom_zeta. Компьютерный перебор показывает, что существует ровно 32 шестёрки (Q_1, \ldots, Q_6) указанного вида, для которых

$$\Delta(Q_1,\ldots,Q_6)=0.$$

Проверка данного равенства в Maple 15 для каждой из $4^6=4096$ рассматриваемых шестёрок заняла в среднем 10 с (Pentium Dual-Core CPU 2.60 GHz, O3У 2 Гб).

Теорема об инцентрах служит хорошей иллюстрацией того, почему применение стандартного метода координат «в лоб» может оказаться проблематичным. В данном случае речь идёт о том, чтобы просто воспользоваться известными формулами для координат инцентра треугольника. Для инцентра I треугольника ABC они таковы:

$$I_{x} = \frac{|AB|C_{x} + |BC|A_{x} + |CA|B_{x}}{|AB| + |BC| + |CA|},$$

$$I_{y} = \frac{|AB|C_{y} + |BC|A_{y} + |CA|B_{y}}{|AB| + |BC| + |CA|},$$

где A_x и A_y — координаты точки A и т. д. Итоговые выражения для координат шести инцентров P_j окажутся весьма громоздкими вложенными квадратными радикалами, причём даже тогда, когда, упрощая задачу, мы введём систему координат так, чтобы

$$A = (0,0), \quad B = (1,0).$$
 (6)

В результате соответствующий определитель, зависящий от координат точек P_j , будет «несъедобен» для Maple (при попытке его вычислить программа быстро исчерпывает доступную память и зависает).

Справедливости ради отметим, что в данном случае проблему упрощения вложенных радикальных выражений можно обойти, но несколько неожиданным образом. Добавив к (6) вершину C = (X, Y), получим

$$a = \sqrt{(X-1)^2 + Y^2}, \quad b = \sqrt{X^2 + Y^2}$$

(здесь и далее a, b — длины сторон, а l_a, l_b, l_c — длины биссектрис). Теперь находим

$$I = \left(\frac{X+b}{a+b+1}, \frac{Y}{a+b+1}\right),$$

$$A_1 = \left(\frac{X+b}{b+1}, \frac{Y}{b+1}\right), \quad B_1 = \left(\frac{X}{a+1}, \frac{Y}{a+1}\right),$$

$$C_1 = \left(\frac{b}{a+b}, 0\right),$$

$$|AC_1| = \frac{b}{a+b}, \quad |C_1B| = \frac{a}{a+b}, \quad |BA_1| = \frac{a}{b+1},$$

$$|A_1C| = \frac{ab}{b+1}, \quad |CB_1| = \frac{ab}{a+1}, \quad |B_1A| = \frac{b}{a+1},$$

$$|AI| = \frac{(b+1)l_a}{a+b+1}, \quad |IA_1| = \frac{al_a}{a+b+1},$$

$$|BI| = \frac{(a+1)l_b}{a+b+1}, \quad |IB_1| = \frac{bl_b}{a+b+1},$$

$$|CI| = \frac{(a+b)l_c}{a+b+1}, \quad |IC_1| = \frac{l_c}{a+b+1}.$$

Тем самым координаты вершин и длины сторон всех треугольников (4) представлены в виде рациональных дробей от переменных

$$X, Y, a, b, l_a, l_b, l_c.$$
 (7)

Теперь можно вычислить координаты всех инцентров P_j и затем — соответствующий определитель. Неожиданно оказывается, что он тождественно равен нулю. Это удивительно, ибо переменные (7) алгебраически зависимы и планировалось упрощение определителя, учитывающее связи между этими переменными.

Автор благодарен С. П. Царёву за ряд ценных обсуждений по теме работы, а также А. Ю. Эвнину, который обратил внимание автора на гипотезу об инцентрах.

СПИСОК ЛИТЕРАТУРЫ

- Chou S.-C. Mechanical Geometry Theorem Proving. D. Reidel Publishing Company, Dordrecht, 1988.
- 2. Кокс. Д., Литтл Дж., О'Ши Д. Идеалы, многообразия и алгоритмы. Введение в вычислительные аспекты алгебраической геометрии и коммутативной алгебры. М.: Мир, 2000.

- 3. *Моденов П.С.* Задачи по геометрии. М.: Наука, 1979.
- 4. *Прасолов В.В.* Задачи по планиметрии. М.: МЦ-HMO, 2006.
- 5. http://dxdy.ru/topic75858.html
- 6. http://mathworld.wolfram.com/topics/ TriangleCenters.html
- 7. Иванов С.В., Кохась К.П., Храбров А.И. и др. Петербургские олимпиады школьников по математике 2003—2005. СПб.: Невский диалект, БХВ-Петербург, 2006.
- 8. http://www.geometry.ru/persons/myakishev/papers/geom and komp.pdf
- Belev D. Some Properties of the Brocard Points of a Cyclic Quadrilateral // Journal of Classical Geometry. 2013. V. 2. http://jcgeometry.org/Articles/Volume2/ Belev_Brocard_points.pdf
- 10. Штейнгарц Л.А. Орбиты Жукова и теорема Морлея // Математика в школе. 2012. № 6. С. 53-61.