M

EJERCICIOS CON MATLAB 5.6

- **1.** Sea $B = \{\mathbf{v}_1, \mathbf{v}_2\}$, donde $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ y $\mathbf{v}_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$. Observe que B es una base para \mathbb{R}^2 . Para \mathbf{w} en \mathbb{R}^2 , $(\mathbf{w})_B = \begin{pmatrix} a \\ b \end{pmatrix}$ significa que $\mathbf{w} = a\mathbf{v}_1 + b\mathbf{v}_2$
 - a) Para los vectores w dados, escriba el sistema de ecuaciones para encontrar $(\mathbf{w})_B$, es decir, encuentre a y b y resuelva a mano. Verifique dando lincomb $(\mathbf{v}_1 \ \mathbf{v}_2, \ \mathbf{w})$ (use el archivo lincomb . m de la sección MATLAB 4.1).

i)
$$\mathbf{w} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 ii) $\mathbf{w} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$

- **b)** (*Lápiz y papel*) En general, explique por qué $\begin{pmatrix} a \\ b \end{pmatrix}$ es una solución al sistema cuya matriz aumentada es $[\mathbf{v}_1 \ \mathbf{v}_2 | \mathbf{w}]$.
- 2. Sea $B = \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 5 \\ 3 \\ -2 \end{pmatrix}, \begin{pmatrix} 3 \\ 5 \\ 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 4 \\ 8 \\ 9 \\ 1 \end{pmatrix} \right\},$ y $\mathbf{w} = \begin{pmatrix} 1 \\ 2 \\ -3 \\ 1 \end{pmatrix}$. Nos referimos al vector i en B como \mathbf{v}_i .
 - a) Verifique que B es una base para \mathbb{R}^4 .
 b) (Lápiz y papel) Escriba el sistema de ecuaciones para encontrar $(\mathbf{w})_B = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$, las coor-

denadas de ${\bf w}$ con respecto a ${\it B}$. Demuestre que $[{\bf v}_1 \ {\bf v}_2 \ {\bf v}_3 \ {\bf v}_4 \, | \, {\bf w}]$ es la matriz aumentada para el sistema.

- c) Resuelva el sistema para $(\mathbf{w})_B$. Verifique que $\mathbf{w} = A(\mathbf{w})_B$, donde $A = [v_1 \ v_2 \ v_3 \ v_4]$.
- d) Para las bases $B = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ y los vectores w dados, encuentre $(\mathbf{w})_B$ y verifique que $\mathbf{w} = A(\mathbf{w})_B$, donde $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \ \mathbf{v}_4]$.

i)
$$B = \left\{ \begin{pmatrix} 1\\1\\1\\.5 \end{pmatrix}, \begin{pmatrix} 2\\3\\2\\1 \end{pmatrix}, \begin{pmatrix} 3\\2\\4\\1.5 \end{pmatrix}, \begin{pmatrix} 4\\4\\10\\2.5 \end{pmatrix} \right\}$$

w = round(10*(2*rand(4,1)-1))

- ii) Para B, genere cuatro vectores aleatorios de 4×1 (verifique que forman una base). Para w genere un vector aleatorio de 4×1 .
- 3. Sea $B = \{v_1, v_2, v_3, v_4\}$ como en el problema 2a) de esta sección de MATLAB. Sea

$$\mathbf{w}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad \mathbf{w}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \quad \mathbf{w}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \quad \mathbf{w}_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

a) (Lápiz y papel) Argumente las razones por las cuales si encuentra rref de la matriz $[\mathbf{v_1} \, \mathbf{v_2} \, \mathbf{v_3} \, \mathbf{v_4} \, \mathbf{w_1} \, \mathbf{w_2} \, \mathbf{w_3} \, \mathbf{w_4}] = [\mathbf{v_1} \, \mathbf{v_2} \, \mathbf{v_3} \, \mathbf{v_4} \, \text{eye}(4)]$, entonces la 5a. columna de rref es $(\mathbf{w_1})_B$, la 6a. columna es $(\mathbf{w_2})_B$ y así sucesivamente.