Chapter 16 Application of derivatives

EE24BTECH11063 - Y.Harsha Vardhan Reddy

G: Comprehension Based Questions

PASSAGE-1

If a continuous function f defined on a real line R, assumes positive and negative values in R then the equation f(x) = 0 has a root in R. For example, if it is known that a continuous function f on R is positive at some point and its minimum value is negative then the equation f(x) = 0 has a root in R. Consider $f(x) = ke^x - x$ for all real x where k is a real constant.

- 1) The line y = x meets $y = ke^x$ for $k \le 0$ at
 - (a) no point
 - (b) one point
 - (c) two points
 - (d) more than two points

(2007-4marks)

- 2) The positive value of k for which $ke^x x = 0$ has only one root is
 - (a) $\frac{1}{2}$
 - (b) 1
 - (c) e
 - (d) $\log_e 2$

(2007-4marks)

- 3) For k > 0, the set of all values of k for which $ke^x - x = 0$ has two distinct roots is
 - (a) $(0,\frac{1}{3})$

 - (b) $(\frac{1}{e}, 1)$ (c) $(\frac{1}{e}, \infty)$
 - (d) (0,1)

(2007-4marks)

PASSAGE-2

Let $f(x) = (1-x)^2 \sin^2 x + x^2$ for all $x \in \mathbb{R}$ and let $g(x) = \int_1^x \left(\frac{2(t-1)}{t+1} - \ln t\right) f(t) dt$ for all $x \in$ $(1, \infty)$.

4) Consider the statements:

P: There exists some $x \in \mathbb{R}$ such that f(x) + $2x = 2(1 + x^2)$

Q: There exists some $x \in \mathbb{R}$ such that 2f(x) +1 = 2x(1+x)

Then

- (a) both P and Q are true
- (b) P is true and Q is false
- (c) P is false and Q is true
- (d) both P and Q are true

(2012)

- 5) Which of the following is true?
 - (a) g is increasing on $(1,\infty)$
 - (b) g is decreasing on $(1,\infty)$
 - (c) g is increasing in (1,2) and decreasing on $(2,\infty)$
 - (d) g is decreasing in (1,2) and increasing on $(2,\infty)$

(2012)

PASSAGE-3

Let $f(x) : [0,1] \to \mathbb{R}$ (the set of all real numbers) be a function. Suppose the function f is twice differentiable, f(0) = f(1) = 0 and satisfies $f''(x) - 2f'(x) + f(x) \ge e^x$, $x \in [0, 1]$.

- 6) Which of the following is true for 0 < x < 1? (JEE Adv. 2013)
 - (a) $0 < f(x) < \infty$
 - (b) $-\frac{1}{2} < f(x) < \frac{1}{2}$ (c) $-\frac{1}{4} < f(x) < 1$

 - (d) $-\infty < f(x) < 0$
- 7) If the function $e^{-x} f(x)$ assumes its minimum in the interval [0,1] at $x = \frac{1}{4}$, which of the following is true?

(JEE Adv. 2013)

(a)
$$f'(x) < f(x)$$
, $\frac{1}{4} < x < \frac{3}{4}$

(b)
$$f'(x) > f(x)$$
, $0 < x < \frac{1}{4}$

(c)
$$f'(x) < f(x)$$
, $0 < x < \frac{1}{4}$

(d)
$$f'(x) < f(x)$$
, $\frac{3}{4} < x < 1$

I:INTEGER VALUE CORRECT TYPE

1) The maximum value of the function $f(x) = 2x^3 - 15x^2 + 36x - 48$ on the set $A = \{x|x^2 + 20 \le 9x\}$ is

(2009)

- 2) Let p(x) be a polynomial of degree 4 having extremum at x=1,2 and $\lim_{x\to 0} \left(1 + \frac{p(x)}{x^2}\right) = 2$. Then the value of p(2) is (2009)
- 3) Let f be a real-valued differentiable function on \mathbf{R} (the set of all real numbers) such that f(1) = 1. If the y-intercept of the tangent at any point P(x,y) on the curve y = f(x) is equal to the cube of the abscissa of P, then find the value of f(-3)

(2010)