California Housing Price Prediction Machine Learning Project

May 31, 2023

```
[]]: #Import Necessary Libraries:
     import pandas as pd
     import numpy as np
     from sklearn.preprocessing import LabelEncoder,StandardScaler
     from sklearn.linear_model import LinearRegression,Ridge,Lasso,ElasticNet
     from sklearn.tree import DecisionTreeRegressor
     import statsmodels.formula.api as smf
     from sklearn.metrics import mean_squared_error,r2_score
     from math import sqrt
     import seaborn as sns
     import matplotlib.pyplot as plt
     %matplotlib inline
     import warnings
     warnings.filterwarnings("ignore")
     from matplotlib.axes._axes import _log as matplotlib_axes_logger
matplotlib_axes_logger.setLevel("ERROR")
[2]: df_house=pd_read_excel("1553768847_housing.xlsx") df_house.head()
[2]:
        longitude latitude
                               housing_median_age total_rooms total_bedrooms \
           -122.23
                        37.88
                                                                            129.0
                                                             880
     1
           -122.22
                        37.86
                                                21
                                                            7099
                                                                            1106.0
     2
           -122.24
                        37.85
                                                52
                                                            1467
                                                                            190.0
           -122.25
                                                52
                                                            1274
                                                                            235.0
     3
                        37.85
     4
           -122.25
                        37.85
                                                52
                                                            1627
                                                                            280.0
        population
                     households median_income ocean_proximity
                                                                   median_house_value
     0
                322
                             126
                                         8.3252
                                                         NEAR BAY
                                                                                452600
              2401
                            1138
                                         8.3014
                                                                                358500
     1
                                                         NEAR BAY
     2
                496
                             177
                                         7.2574
                                                         NEAR BAY
                                                                                352100
     3
                558
                             219
                                         5.6431
                                                         NEAR BAY
                                                                                341300
```

```
4
               565
                           259
                                       3.8462
                                                     NEAR BAY
                                                                           342200
[3]: import math
     print(math.log(452600))
    13.022764012181574
[4]: df_house.columns
[4]: Index(['longitude', 'latitude', 'housing_median_age', 'total_rooms',
            'total_bedrooms', 'population', 'households', 'median_income',
            'ocean_proximity', 'median_house_value'],
           dtype='object')
[5]: df_house.isnull().sum()
                             0
[5]: longitude
     latitude
                             0
     housing_median_age
                             0
     total_rooms
                             0
     total_bedrooms
                           207
     population
                             0
     households
                             0
                             0
     median_income
     ocean_proximity
                             0
     median_house_value
                             0
     dtype: int64
[6]: df_house_total_bedrooms=df_house_total_bedrooms_fillna(df_house_total_bedrooms_

mean())
     df house.isnull().sum()
[6]: longitude
                           0
     latitude
                           0
     housing_median_age
                           0
     total rooms
                           0
     total_bedrooms
                           0
     population
                           0
     households
                           0
     median_income
                           0
     ocean_proximity
                           0
     median_house_value
                           0
     dtype: int64
[7]: le = LabelEncoder()
     df_house["ocean_proximity"]=le_fit_transform(df_house["ocean_proximity"])
```

```
[8]: # Get column names first
    names = df_house.columns
    # Create the Scaler object
    scaler = StandardScaler()
    # Fit your data on the scaler object
    scaled_df = scaler.fit_transform(df_house)
    scaled_df = pd.DataFrame(scaled_df, columns=names)
scaled_df.head()
       longitude
                          housing_median_age total_rooms total_bedrooms \
[8]:
                 latitude
    0 -1.327835
                                  0.982\overline{143}
                                             -0.804819
                 1.052548
                                                            -0.975228
    1 -1.322844
                 1.043185
                                 -0.607019
                                                             1.355088
                                              2.045890
    2 -1.332827
                 1.038503
                                  1.856182
                                             -0.535746
                                                            -0.829732
    3 -1.337818
                 1.038503
                                  1.856182
                                             -0.624215
                                                            -0.722399
    4 -1.337818
                1.038503
                                  1.856182
                                             -0.462404
                                                            -0.615066
                  households median_income ocean_proximity median_house_value
       population
                                 2.344766
                                                 1.291089 2.129631
    0
        -0.974429
                   -0.977033
                                 2.332238
    1
         0.861439
                    1.669961
                                                 1.291089
                                                                   1.314156
    2
        -0.820777
                   -0.843637
                                 1.782699
                                                 1.291089
                                                                   1.258693
    3
        -0.766028
                   -0.733781
                                 0.932968
                                                 1.291089
                                                                   1.165100
                                                                   1.172900
    4
        -0.759847
                   -0.629157
                                -0.012881
                                                 1.291089
[9]: #plot graphs
    fig,axs=plt_subplots(1,3,sharey=True)
    scaled df.
     scaled df.
     plot(kind="scatter",x="latitude",y="median_house_value",ax=axs[1],figsize=(16,8))
    scaled_df.
     plot(kind="scatter",x="housing_median_age",y="median_house_value",ax=axs[2],figsize=(16,8))
    #plot graphs
    fig.axs=plt_subplots(1,3,sharey=True)
    scaled_df.
     plot(kind="scatter",x="total_rooms",y="median_house_value",ax=axs[0],figsize=(16,8))
    scaled_df.
     scaled_df.
     plot(kind="scatter",x="population",y="median_house_value",ax=axs[2],figsize=(16,8))
    #plot graphs
    fig,axs=plt_subplots(1,3,sharey=True)
    scaled_df.
     plot(kind="scatter",x="households",y="median_house_value",ax=axs[0],figsize=(16,8))
```

```
scaled_df.

→plot(kind="scatter",x="median_income",y="median_house_value",ax=axs[1],figsize=(16,8))
scaled_df.

→plot(kind="scatter",x="ocean_proximity",y="median_house_value",ax=axs[2],figsize=(16,8))
```

[9]: <AxesSubplot:xlabel='ocean_proximity', ylabel='median_house_value'>


```
[11]: X_Features=["longitude", "latitude", "housing_median_age", "total_rooms", "total_bedrooms", "population", "households", "median_income",
                "ocean_proximity"]
       X=scaled_df[X_Features]
       Y=scaled_df["median_house_value"]
       print(type(X))
print(type(Y))
       <class 'pandas.core.frame.DataFrame'>
       <class 'pandas.core.series.Series'>
[12]: print(df_house.shape)
       print(X.shape)
print(Y.shape)
      (20640, 10)
      (20640, 9)
      (20640,)
[13]: from sklearn.model_selection import train_test_split
       x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.2,random_state=1)
       print (x_train.shape, y_train.shape)
       print (x_test.shape, y_test.shape)
```

```
(4128, 9) (4128,)
[14]: linreg=LinearRegression()
      linreg.fit(x_train,y_train)
[14]: LinearRegression()
[15]: y_predict = linreg.predict(x_test)
      print(sqrt(mean_squared_error(y_test,y_predict)))
      print((r2_score(y_test,y_predict)))
     0.6056598120301221
     0.6276223517950295
[17]: dtreg=DecisionTreeRegressor()
      dtreg.fit(x_train,y_train)
[17]: DecisionTreeRegressor()
[18]: y_predict = dtreg.predict(x_test)
      print(sqrt(mean_squared_error(y_test,y_predict)))
print((r2_score(y_test,y_predict)))
     0.5925633790037315
     0.6435523907257298
[2]: lassoreg=Lasso(alpha=0.001,normalize=True)
      lassoreg.fit(x_train,y_train)
      print(sqrt(mean_squared_error(y_test,lassoreg.predict(x_test))))
      print("R2 Value/Coefficient of determination:{}".format(lassoreg.
       0.719314096707071
     R2 Value/Coefficient of determination: 0.4747534206169961
[22]: ridgereg=Ridge(alpha=0.001,normalize=True)
      ridgereg.fit(x_train,y_train)
      print(sqrt(mean_squared_error(y_test,ridgereg.predict(x_test))))
      print("R2 Value/Coefficient of determination:{}".format(ridgereg.
       0.6056048844852343
     R2 Value/Coefficient of determination: 0.6276898909055972
      from sklearn.linear_model import ElasticNet
[23]:
      elasticreg=ElasticNet(alpha=0.001,normalize=True)
```

(16512, 9)(16512,)

0.944358169398106

R2 Value/Coefficient of determination: 0.09468529806704551

[25]: lm.summary()

[25]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results							
Dep. Variable:	median_house_value	R–squared:	0.636				
Model:	OLS	Adj. R-squared:	0.635				
Method:	Least Squares	F-statistic:	3999.				
Date:	Mon, 26 Sep 2022	Prob (F-statistic):	0.00				
Time:	15:17:42	Log-Likelihood:	-18868.				
No. Observations:	20640	AIC:	3.776e+04				
Df Residuals:	20630	BIC:	3.783e+04				
Df Model:	9						
Covariance Type:	nonrobust						
======	=============	=======================================	=========				
	coef std er	r t P> t	[0.025				
0.975]							

0.975]	coef	std err	t	P> t	[0.025	
Intercept 0.008	-3.469e-17	0.004 -	-8.26e-15	1.000	-0.008	
longitude -0.714	-0.7393	0.013	-57.263	0.000	-0.765	
latitude -0.761	-0.7858	0.013	-61.664	0.000	-0.811	
housing_median_age 0.134	0.1248	0.005	26.447	0.000	0.116	
total_rooms -0.098	-0.1265	0.015	-8.609	0.000	-0.155	
total_bedrooms 0.343	0.2995	0.022	13.630	0.000	0.256	
population -0.370	-0.3907	0.011	-36.927	0.000	-0.411	

households 0.303	0.2589	0.022	11.515	0.000	0.215
median_income 0.666	0.6549	0.005	119.287	0.000	0.644
ocean_proximity 0.010	0.0009	0.005	0.190	0.850	-0.008
Omnibus:	:========= F.O.3	 37.491 D	urbin–Watson	========	0.965
Prob(Omnibus):			arque-Bera (J	=	18953.000
Skew:		-	rob(JB):	,	0.00
Kurtosis:		7.054 C	ond. No.		14.2
=======================================	========	-======	========	========	=========

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
[26]: x_train_Income=x_train[["median_income"]]
x_test_Income=x_test[["median_income"]]
print(x_train_Income.shape)
print(y_train.shape)
```

(16512, 1) (16512,)

[27]: linreg=LinearRegression()
 linreg.fit(x_train_lncome,y_train)
 y_predict = linreg.predict(x_test_lncome)
 #print intercept and coefficient of the linear equation
 print(linreg.intercept_, linreg.coef_)
 print(sqrt(mean_squared_error(y_test,y_predict)))
 print((r2_score(y_test,y_predict)))

0.005623019866893164 [0.69238221] 0.7212595914243148 0.47190835934467734

[28]: #plot least square line
scaled_df_plot(kind="scatter",x="median_income",y="median_house_value")
plt_plot(x_test_Income,y_predict,c="red",linewidth=2)

[28]: [<matplotlib.lines.Line2D at 0x7f7e75ad1890>]

[29]: lm=smf_ols(formula="median_house_value ~ median_income",data=scaled_df).fit() lm.summary()

[29]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observatio Df Residuals: Df Model: Covariance Typ	Le Mon, i	house_value OLS ast Squares 26 Sep 2022 15:18:49 20640 20638 1 nonrobust	F-statist Prob (F- Log-Likel AIC: BIC:	uared: tic: statistic):	0.473 0.473 1.856e+04 0.00 -22668. 4.534e+04 4.536e+04		
0.975]	coef	std err	t	P> t	[0.025		
- Intercept 0.010	1.735e-16	0.005	3.43e-14	1.000	-0.010		

median_income 0.698	0.6881	0.005	136.223	0.000	0.678	
Omnibus: Prob(Omnibus): Skew: Kurtosis:	======	4245.795 0.000 1.191 5.260	Durbin-W Jarque-Be Prob(JB): Cond. No.	era (JB):	0.655 9273.446 0.00 1.00	:==
=========	=======	:=======	========	========	=======================================	===

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[]: