# **Machining Processes**

### Machining

Removing unwanted material in the form of chips:

- Turning
- Sawing
- Grinding
- Milling
- Shaping or planing
- Broaching
- Drilling

### Seven Basic Machining Processes



### **Machining Process**

### Affected by:

- Machine tool (the machine itself)
- Cutting tool (geometry and material)
- Workpiece (properties and material)
- Cutting tool parameters
  - Speed
  - Feed
  - Depth of cut
- Workpiece holding devices

### **Cutting Parameters**



### Four Cutting Tool Parameters

- 1. Speed
- 2. Depth of Cut (DOC)
- 3. Feed Rate (f<sub>r</sub>)
- 4. Material Removal Rate (MRR)

### Speed

Speed – velocity of workpiece relative to cutting tool; the **primary cutting motion** 

- $V = \pi D_1 N_S / 12$ , in ft/min
- $D_1 =$ original diameter, inches
- $N_S$  = angular velocity of workpiece, RPM
- $N_s \cong 3.8V/D_1$

### Depth of Cut

Depth of Cut (DOC) – distance tool plunged into workpiece

• 
$$d = (D_1 - D_2)/2$$
, inches

### Feed Rate

Feed Rate  $(f_r)$  – amount of material removed per revolution (inches/rev)

### Material Removal Rate

Material Removal Rate

 $MRR = \text{(volume removed)/(cutting time), in}^3/\text{min}$ 

- $MRR \cong 12Vf_rd$ , in<sup>3</sup>/min
- $MRR \cong \pi D_1 N_s f_r d$ , in<sup>3</sup>/min
- d = depth of cut

### Milling Material Removal Rate

### Multiple-tooth cutter is used

- Table feed:  $f_m = f_t n N_s$
- $f_t = \text{feed per tooth pass, inches/rev}$
- n = number of teeth
- $N_S =$  angular velocity, RPM
- $MRR = Wdf_m$ , in<sup>3</sup>/min

### Slab/Face Milling Basics



Slab milling - multiple tooth

Slab milling is usually performed on a horizontal milling machine. Equations for  $T_m$  and MRR derived in Chapter 25.

The tool rotates at rpm  $N_s$ . The workpiece translates past the cutter at feed rate  $f_m$ , the table feed. The length of cut, L, is the length of workpiece plus allowance,  $L_A$ ,

$$L_A = \sqrt{\frac{D^2}{4} - \left(\frac{D}{2} - d\right)^2} = \sqrt{d(D - d)}$$
 inches

$$T_m = (L + L_A)/f_m$$

The MRR =  $Wdf_m$  where W = width of the cut and d = depth of cut.



Face milling Multiple-tooth cutting

Given a selected cutting speed V and a feed per tooth  $f_t$ , the rpm of the cutter is  $N_S = 12 V/\pi D$  for a cutting of diameter D. The table feed rate is  $f_m = f_t \, n N_S$  for a cutter with n teeth.

The cutting time,  $T_m = (L + L_A + L_O)/f_m$ where  $L_O = L_A = \sqrt{W(D - W)}$  for W < D/2or  $L_O = L_A = D/2$  for  $W \ge D/2$ . The MRR =  $Wdf_m$  where d = depth of cut.

### Shop Formulas for Various Processes

#### Shop Formulas for Turning, Milling, Drilling, and Broaching (English Units)

| Parameter                           | Turning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Milling                                  | Drilling                                                                                                                                                                                                                                                                                                                                                                                      | Broaching                                                             |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Cutting speed, fpm                  | $V = 0.262 \times D_I \times rpm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $V = 0.262 \times D_m \times \text{rpm}$ | $V = 0.262 \times D_d \times rpm$                                                                                                                                                                                                                                                                                                                                                             | V                                                                     |
| Revolutions per<br>minute, $N_s$    | $rpm = 3.82 \times V_c/D_I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\mathrm{rpm} = 3.82 \times V_c/D_m$     | $rpm = 3.82 \times V_c/D_d$                                                                                                                                                                                                                                                                                                                                                                   | _                                                                     |
| Feed rate, in./min                  | $f_m = f_r \times \text{rpm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $f_m = f_r \times \text{rpm}$            | $f_m = f_r \times \text{rpm}$                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |
| Feed per rev tooth<br>pass, in./rev | f,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $f_i$                                    | f,                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                     |
| Cutting time,<br>min, $T_m$         | $T_m = L/f_m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $T_m = L f_m$                            | $T_m = L/f_m$                                                                                                                                                                                                                                                                                                                                                                                 | $T_m = L/12V$                                                         |
| Rate of metal<br>removal, in.3/min  | $MRR = 12 \times d \times f_r \\ \times V_c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $MRR = w \times d \times f_m$            | $MRR = \pi D^2 d/4 \times f_m$                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{l} MRR = 12 \times w \times d \\ \times V \end{array}$ |
| Horsepower<br>required at spindle   | $hp = MRR \times HP_s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $hp = MRR \times HP_s$                   | $hp = MRR \times HP_s$                                                                                                                                                                                                                                                                                                                                                                        | -                                                                     |
| Horsepower required at motor        | $hp_m = MRR \times HP/E$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $hp_m = MRR \times HP/E$                 | $hp_m = MRR \times HP/E$                                                                                                                                                                                                                                                                                                                                                                      | $hp_m = MRR \times HP_s/E$                                            |
| Torque at spindle                   | $t_s = 63,030$<br>hp/rpm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $t_s = 63,030$ hp/rpm                    | $t_s = 63,030$ hp/rpm                                                                                                                                                                                                                                                                                                                                                                         | _                                                                     |
| Symbols                             | <ul> <li>D<sub>t</sub> = Diameter of workpiece in turning, inches</li> <li>D<sub>m</sub> = Diameter of milling cutter, inches</li> <li>D<sub>d</sub> = Diameter of drill, inches</li> <li>d = Depth of cut, inches</li> <li>E = Efficiency of spindle drive</li> <li>f<sub>m</sub> = Feed rate, inches per minute</li> <li>f<sub>r</sub> = Feed, inches per revolution</li> <li>f<sub>t</sub> = Feed, inches per tooth</li> <li>hp<sub>m</sub> = Horsepower at motor</li> <li>MRR = Metal removal rate, in.3/min</li> </ul> |                                          | hp = horsepower at spindle  L = Length of cut, inches  n = Number of teeth in cutter  HP <sub>s</sub> = Unit power, horsepower per cubic inch per minute, specific horsepower  N <sub>s</sub> = Revolution per minute of work or cutter  t <sub>s</sub> = Torque at spindle, inch-pound  T <sub>m</sub> = Cutting time, minutes  V = Cutting speed, feet per minute  w = Width of cut, inches |                                                                       |

# Lathe Turning





### Lathe Turning



#### Turning

Speed, stated in surface feet per minute (sfpm), is the peripheral speed at the cutting edge. Feed per revolution in turning is a linear motion of the tool parallel to the rotating axis of the workpiece. The depth of cut reflects the third dimension.

L = length of cut

$$T_m = \frac{L + A}{f_r N_s}$$

 $T_m = \text{cutting time, minutes}$ 

### **Boring Basics**



### Boring

Enlarging hole of diameter  $D_1$  to diameter  $D_2$ . Boring can be done with multiple cutting tools. Feed in inches per revolution,  $f_r$ 

### **Facing Basics**



#### Facing

Tool feeds to center of workpiece so L = D/2. The cutting speed is decreasing as the tool approaches the center of the workpiece.

### Grooving, Parting, or Cut-off



#### Grooving, parting, or cutoff

Tool feed perpendicular to the axis of rotation. The width of the tool produces the depth of cut (DOC).

### **Drilling Basics**



Drilling multiple-edge tool

# **Broaching Basics**



## Shaping/Planing Basics



### **Understanding Chip Formation**



# Removing a Chip



# Effect of Workpiece Material **Properties**



with built-up edge



### **Energy and Power in Machining**



### Power

- $Power = F_c V$ , ft-lbs/min V, ft/min  $F_c$ , lbs
- $HP = F_c V/33000$ , horsepower
- Specific horsepower  $HP_S = HP/MRR$ , ft-lbs/in<sup>3</sup>

# TOOL FAILURE MODES

Watch Video Here