Recoloring trees

February 22, 2013

1 The trees

For a coloring π of a graph G, put $I_{\gamma} := \pi^{-1}(\gamma)$ for each $\gamma \in \operatorname{im}(\pi)$. Also, for different $\alpha, \beta \in \operatorname{im}(\pi)$, put $G_{\alpha,\beta} := G[I_{\alpha} \cup I_{\beta}]$.

Let (T,r) be a tree in with root r. We think of the edges of T as directed away from the root. We write C(v) for the children (out-neighbors) of $v \in V(T)$ and for $v \neq r$ we write P(v) for the parent (unique in-neigbor) of v in T. To enable uniform statements we set $P(r) := \bot$ and extend all functions f to have $f(\bot) = \bot$ where \bot is outside the universe of our objects. Let G be a graph and (T,r) an induced tree in G. For a coloring π of G, (T,r) is π -normal if

- 1. $N_T(v) = \pi^{-1}(\pi(C(v))) \cap N_G(v)$ for each $v \in V(T)$; and
- 2. for different $\alpha, \beta \in \text{im}(\pi)$ and any maximal directed path $x_1 x_2 \cdots x_s$ with $s \geq 3$ in $T \cap G_{\alpha,\beta}$, we have $|C(x_i) \cap G_{\alpha,\beta}| = 1$ for $i \in [s-2]$.

This definition needs some explanation. Our aim is to recolor the vertices of T so that $|I_{\pi(r)}|$ decreases without using more colors. To do this, we will try to repeatedly recolor leaves that have no neighbor in some color class until we have recolored enough of T to recolor r. Condition (1) means that if v has a child in T of color γ , then all of v's neighbors in G of color γ are also neighbors of v in T. That is, T encodes all the information about what vertices need to be recolored for v to be colored γ . Condition (2) prevents us from getting in our own way as we recolor vertices having the same color as their grandparents.

1.1 An ordering on rooted trees

Let (T,r) be a tree with root r. A build order of (T,r) is a tuple $(v_1,A_1),\ldots(v_s,A_s)$ where:

- 1. $v_1 = r$; and
- 2. $A_i \subseteq C(v_i)$ for each $i \in [s]$; and
- 3. $A_i \neq \emptyset$ for $i \in [s]$ and $A_i \cap A_j = \emptyset$ for $j \neq i$; and
- 4. $T\left[\{r\} \cup \bigcup_{i \in [k]} A_i\right]$ is connected for each $k \in [s]$; and

5.
$$V(T) = \{r\} \cup \bigcup_{i \in [s]} A_i$$
.

The profile p(B) of a build order $B := (v_1, A_1), \ldots (v_s, A_s)$ is $(|A_1|, \ldots, |A_s|)$. We use the partial order on all triples (T, r, B) induced by the Kleene-Brouwer order on the profiles of their build orders; that is, (T, r, B) < (T', r', B') iff p(B') is a proper prefix of p(B) or there is k such that $(a_1, \ldots, a_{k-1}, a_k)$ is a prefix of p(B), $(a_1, \ldots, a_{k-1}, a_k')$ is a prefix of B' and $a_k < a'_k$.

In our applications all of our trees will be induced subtrees of a fixed finite graph and so there will be only finitely many triples (T, r, B) under consideration; in particular, the ordering is well-founded and we can do induction on the triples.

1.2 Recoloring

Let G be a graph, π a coloring of G and and (T, r) a π -normal induced tree in G. A build order $B := (v_1, A_1), \ldots, (v_s, A_s)$ of (T, r) respects π if for each $i \in [s]$ we have $A_i = C(v_i) \cap I_c \neq \emptyset$ for some $c \in \operatorname{im}(\pi)$. Call a triple (T, r, B) π -normal if (T, r) is π -normal and B is a build order of (T, r) respecting π . Fix a π -normal triple (T, r, B).

Suppose we have $v \in V(T)$ and $c_v \in \operatorname{im}(\pi) - \{\pi(r), \pi(v)\}$ such that $N_G(v) \cap I_{c_v} \subseteq \{P(v)\}$. We call the following operation $(v \Rightarrow c_v)$ -recoloring. Let $x_1x_2 \cdots x_s$ be the maximal path in T where $x_s = v$ and $C(x_i) \cap I_{\pi(x_{i+1})} = \{x_{i+1}\}$ for $2 \le i \le s-1$. Note that, by maximality, if $C(x_1) \cap I_{\pi(x_2)} = \{x_2\}$, then $x_1 = r$; when this happens we say we have finished. Let π' be the coloring obtained from π by coloring v with c_v and c_v with c_v and c_v with c_v and c_v is induced, it is clear that c_v is a proper coloring using at most as many colors as c_v . When we have finished we succeed in recoloring c_v since c_v is induced, it is clear that c_v is a proper coloring c_v in c_v in c

Definition 1. For each graph $G, r \in V(G)$ and $k \in \mathbb{N}^+$, let $\Gamma(G, r, k)$ be all triples (T, r, B) that are π -normal where π is a k-coloring of G.

Lemma 1.1. Let G be a graph, fix $r \in V(G)$ and $k \in \mathbb{N}^+$. If $(T, r, B) \in \Gamma(G, r, k)$ is minimal, then either:

- 1. there is $v \in V(T)$ and $c_v \in \operatorname{im}(\pi) \{\pi(r), \pi(v)\}$ with $N_G(v) \cap I_{c_v} \subseteq \{P(v)\}$ such that $(v \Rightarrow c_v)$ -recoloring finishes; or
- 2. for every $v \in V(T)$ and $c_v \in \operatorname{im}(\pi) \{\pi(r), \pi(v)\}$ we have $N_G(v) \cap I_{c_v} \not\subseteq \{P(v)\}$; moreover, if $c_v \not\in \pi(C(v))$ then either:
 - (a) $V(T) \cup N_G(v) \cap I_{c_v}$ does not induce a tree in G; or
 - (b) $c_v = \pi(P(v))$ and $|N_G(v) \cap I_{c_v}| \ge 3$.