Chapitre 7: Vecteurs

1 Translation et vecteurs

1.1 Vecteur associé à une translation

Définition 1 (Translation de vecteur \overrightarrow{AB})

On considère deux points A et B du plan. La **translation** qui transforme A en B est appelée **translation de vecteur** \overrightarrow{AB} .

Remarque

Si les points A et B sont **confondus**, on parle alors de **vecteur** nul, noté 0.

Notation 2

Si $A \neq B$, on représente le vecteur \overrightarrow{AB} par une flèche d'origine A et d'extrémité B.

Application 1

Construire, à l'aide du quadrillage, les points M_1 , M_2 , M_3 , M_4 et M_5 , images respectives de M par les translations de vecteurs $\overrightarrow{v_1}$, $\overrightarrow{v_2}$, $\overrightarrow{v_3}$, $\overrightarrow{v_4}$, et $\overrightarrow{v_5}$.

Application 2

On considère la figure suivante composée de triangles équilatéraux. Compléter les pointillés.

- 1. Le point D a pour image le point B par la translation de vecteur $\overrightarrow{G \dots}$
- 2. Le point E a pour image le point ... par la translation de vecteur $\overrightarrow{D.I}$.
- 3. Le point . . . a pour image le point B par la translation de vecteur \overrightarrow{FL} .

1.2 Caractéristiques d'un vecteur

Définition 3 (Caractéristiques d'un vecteur)

Le vecteur \overrightarrow{AB} est défini par

- sa direction : celle de la droite (AB);
- son sens : de A vers B;
- **sa norme** : la longueur du segment [AB].

Application 3

Sur la figure ci-contre, on a représenté les points A, B, C, C', D, E, F et F', placés sur des droites parallèles.

- 1. Citer les vecteurs ayant le même sens.
- 2. Citer les vecteurs ayant la même norme.
- 3. Citer les vecteurs ayant la même direction.
- 4. Donner l'image du point F par la translation de vecteur \overrightarrow{AB} .

Notation 4

La **norme** du vecteur \overrightarrow{AB} se note $||\overrightarrow{AB}||$.

1.3 Égalité de vecteurs

Définition 5 (Égalité de vecteurs)

Deux vecteurs sont dit **égaux** s'ils ont la même direction, le même sens, et la même longueur.

Propriété 1

Le quadrilatère ABDC est un **parallèlogramme** si et seulement si

$$\overrightarrow{AB} = \overrightarrow{CD}.$$

Remarque

Attention! Le sens des lettres dans la propriété précédente (ABDC) n'est pas le sens habituel (ABCD).

Remarque

Le parallèlogramme peut éventuellement être aplati, c'est-à-dire que tous ses points soient alignés sur une même droite. La propriété reste vraie.

1.4 Vecteurs opposés

Définition 6 (Vecteur opposé)

Le **vecteur opposé** au vecteur \overrightarrow{u} , noté $-\overrightarrow{u}$, est le vecteur qui possède la même direction et la même norme que le vecteur \overrightarrow{u} , mais qui a un sens opposé.

Propriété 2

L'opposé du vecteur \overrightarrow{AB} est le vecteur \overrightarrow{BA} . On a donc

$$-\overrightarrow{AB} = \overrightarrow{BA}.$$

2 Propriétés des vecteurs

2.1 Milieu et vecteur

Propriété 3

Pour tous points distincts du plan A et B, $\overrightarrow{AM} = \overrightarrow{MB}$ si et seulement si M est le milieu de [AB].

2.2 Représentant d'un vecteur

Définition 7 (Représentant)

Lorsque $\overrightarrow{AB} = \overrightarrow{CD} = \overrightarrow{EF}$, alors on dit que les vecteurs \overrightarrow{AB} , \overrightarrow{CD} et \overrightarrow{EF} sont des représentants d'un même vecteur que l'on peut également noter avec une seule lettre minuscule \overrightarrow{u} , \overrightarrow{v} , ..., indépendamment des deux points. On note alors

$$\overrightarrow{\mathcal{U}} = \overrightarrow{AB} = \overrightarrow{CD} = \overrightarrow{EF}.$$

Un vecteur admet **une infinité** de représentants.

2.3 Sommes de vecteurs

Définition 8 (Somme de vecteurs)

Le **somme** des vecteurs \overrightarrow{u} et \overrightarrow{v} et le vecteur $\overrightarrow{u} + \overrightarrow{v}$ associé à la translation obtenue par la translation de vecteur \overrightarrow{u} suivie de la translation de vecteur \overrightarrow{v} .

Définition 9 (Différence de vecteurs)

Le **différence** de deux vecteurs \overrightarrow{u} et \overrightarrow{v} et le vecteur $\overrightarrow{u} - \overrightarrow{v} = \overrightarrow{u} + (-\overrightarrow{v})$. Cela signifie que soustraire un vecteur revient à additionner son opposé.

Propriété 4 (Relation de Chasles)

Pour tous points A, B et C du plan, on a

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}.$$

Propriété 5 (Propriété du parallélogramme)

Pour tous points A, B, C et D du plan, on a

$$\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$$

si, et seulement si, ABDC est un parallélogramme.

Application 4

Soit A, B, C, D des points du plan.

- 1. Simplifier le vecteur $\overrightarrow{BA} + \overrightarrow{AC} + \overrightarrow{CD}$.
- 2. Simplifier le vecteur $\overrightarrow{AD} + \overrightarrow{BC} + \overrightarrow{AB}$.

3 Vecteurs dans un repère

Définition 10 (Coordonnées d'un vecteur)

Dans un repère (O; I, J), les **coordonnées du vecteur** \overrightarrow{u} sont les coordonnées de l'unique point M tel que $\overrightarrow{OM} = \overrightarrow{u}$.

Propriété 6

Dans un repère, si $A(x_A; y_A)$ et $B(x_B; y_B)$ alors \overrightarrow{AB} a pour coordonnées $\overrightarrow{AB}\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$. On écrit aussi $\overrightarrow{AB}(x_B - x_A; y_B - y_A)$.

Application 5

Soit A(1;2), B(2;-2) et C(-3,0) trois points d'un repère du plan (O;I,J).

- 1. Faire une figure et y placer les points A, B, C.
- 2. Donner les coordonnées de \overrightarrow{AB} ainsi que le représentant d'origine O de ce vecteur.
- 3. Donner les coordonnées de \overrightarrow{AC} ainsi que le représentant d'origine O de ce vecteur.

Propriété 7

Deux vecteurs sont égaux si, et seulement si, ils ont les mêmes coordonnées.

3.1 Coordonnées d'une somme

Propriété 8

Soient $\overrightarrow{r}\begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{s}\begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs d'un repère du plan. Les coordonnées de $\overrightarrow{r}+\overrightarrow{s}$ sont alors $\begin{pmatrix} x+x' \\ y+y' \end{pmatrix}$.