2/24/2021 Report Preview

Combined beam checks

Process a comprehensive design check for a W-section beam.

Calculation ID: Blank calculation id

Verification status: Work in progress

Assumptions:

- Calc is applicable for Class 1, 2 and 3 W sections only
 Tension resistance is checked based on yielding only
 Compression force is taken as a positive value

W-Beam Axis

Inputs

Compression force in member	$C_f = 50kN$
Tension force in member	$T_f = 50kN$
Bending moment on member about x-axis	$M_{fx}=50kN$
Bending moment on member about y-axis	$M_{fy}=50kN$
Shear force on member in x-axis direction	$V_{fx}=50kN$
Shear force on member in y-axis direction	$V_{fy}=50kN$
Overall depth of section	d=257mm
Overall flange width	b=204mm
Web thickness	w=8.9mm
Flange thickness	t=15.7mm
Full unreduced cross-sectional area of member	$A = 8.58{\times}10^3mm^2$
Radius of gyration about centroidal principal x axis	$r_x=110mm$
Radius of gyration about centroidal principal y axis	$r_y=51mm$
Elastic section modulus about x-axis	$S_x = 8.06{\times}10^5mm^3$
Elastic section modulus about y-axis	$S_y = 2.18{ imes}10^5mm^3$
Moment of inertia major axis	$I_x = 1.04{ imes}10^8mm^4$
Moment of inertia minor axis	$I_y = 2.22{\times}10^7mm^4$
Plastic section modulus about x-axis	$Z_x = 9.01{ imes}10^5mm^3$
Plastic section modulus about x-axis	$Z_y = 3.32{ imes}10^5mm^3$
Saint-Venant torsion constant of cross- section	$J = 6.25{ imes}10^5mm^4$
Torsional warping constant of cross- section	$C_w = 3.24{ imes}10^{11}~mm^6$

 $F_y = 350 \, MPa$ Yield strength

 $F_u = 410 \, MPa$ Tensile strength

 $E=2{\times}10^5\,MPa$ Modulus of elasticity of steel

 $G = 7.7 \times 10^4 \, MPa$ Shear modulus of steel

Effective length factor for buckling about

Unbraced length or span of member about principal x-axis direction

 $K_y = 1$

 $K_x = 1$

 $L_x=2{ imes}10^3\,mm$

 $L_y=2{ imes}10^3\,mm$

 $L_z=2{ imes}10^3\,mm$

 $x_0 = 0 mm$

 $y_0 = 0 \, mm$

Effective length factor for buckling about

Unbraced length or span of member about

principal y-axis direction

Unbraced length or span of member for torsional buckling

Distance from centroid of shear center in principal x-axis direction

Distance from centroid of shear center in principal y-axis direction

Lateral support condition for a member

 $Condition = Laterally_Unsupported$

Moment resistance coefficient accounting for moment gradient

Coefficient to determine equivalent uniform bending effect in beam-columns for the principal x-axis

Coefficient to determine equivalent uniform bending effect in beam-columns for the principal y-axis

 $\omega_2=1$ $\omega_{1x}=1$

 $\omega_{1y}=1$

Calculation

Classification of W section for axial compression

Width of stiffened or unstiffened compression elements

$$egin{aligned} b_{el} &= rac{b}{2} \ &= rac{204 \, mm}{2} \ &= 102 \, mm \end{aligned}$$

S16-14 11.2 Table 2

Width to thickness ratio

$$egin{aligned} rac{b_{el}}{t} &= rac{b_{el}}{t} \ &= rac{102\,mm}{15.7\,mm} \ &= 6.5 \end{aligned}$$

S16-14 11.2 Table 1

Width to thickness limit for elements in axial compression

$$Limit = \frac{200}{\sqrt{F_y}}$$

$$= \frac{200}{\sqrt{350 MPa}}$$

$$= 10.7$$

Check for maximum width to thickness ratio for flange

$$egin{aligned} rac{b_{el}}{t} \leqslant rac{200}{\sqrt{F_y}} \ 6.5 \leqslant rac{200}{\sqrt{350\,MPa}} \ 6.5 \leqslant 10.7 \end{aligned}$$

Flange does not exceed maximum permissible width to thickness ratio.

 $Check = {\it Flange is not Class } \, 4$

 $\frac{b_{el}}{t}=6.5$

2/24/2021 Report Preview

> $h=d-2\times t$ Clear depth of web between flanges $=257\,mm-2\times15.7\,mm$

 $=226\,mm$

= 25.3

 $\begin{aligned} \frac{h}{w} &= \frac{h}{w} \\ &= \frac{226 \, mm}{8.9 \, mm} \end{aligned}$ S16-14 11.3.2 b) Width to thickness ratio

 $\frac{h}{w} = 25.3$

S16-14 11.2 Table 1

Maximum width to thickness ratio for webs supported on both edges

$$Limit = \frac{670}{\sqrt{F_y}}$$
$$= \frac{670}{\sqrt{350 MPa}}$$
$$= 35.8$$

Check for maximum width to thickness ratio for web

$$\begin{split} \frac{h}{w} \leqslant \frac{670}{\sqrt{F_y}} \\ 25.3 \leqslant \frac{670}{\sqrt{350\,MPa}} \\ 25.3 \leqslant 35.8 \end{split}$$

Web does not exceed maximum permissible width to thickness ratio!

Check = Web is not Class 4

Classification of W section for flexural compression

 $egin{aligned} b_{el} &= rac{b}{2} \ &= rac{204 \, mm}{2} \end{aligned}$ Width of stiffened or unstiffened compression elements

 $=102\,mm$

S16-14 11.2 Table 2 Width to thickness ratio

$$egin{aligned} rac{b_{el}}{t} &= rac{b_{el}}{t} \ &= rac{102\,mm}{15.7\,mm} \ &= 6.5 \end{aligned}$$

 $\frac{b_{el}}{t} = 6.5$

S16-14 11.2 Table 2

Section classification limit for Class 1

$$Class~1~Limit = rac{145}{\sqrt{F_y}}$$

$$= rac{145}{\sqrt{350~MPa}}$$

$$= 7.75$$

S16-14 11.2 Table 2

Section classification limit for Class 2

$$\begin{aligned} Class~2~Limit &= \frac{170}{\sqrt{F_y}} \\ &= \frac{170}{\sqrt{350~MPa}} \\ &= 9.09 \end{aligned}$$

S16-14 11.2 Table 2

Section classification limit for Class 3

$$Class~3~Limit = rac{200}{\sqrt{F_y}}$$

$$= rac{200}{\sqrt{350~MPa}}$$

$$= 10.7$$

 $Class = Class_1$

Clear depth of web between flanges

 $h=d-2\times t$

2/24/2021 Report Preview

$$= 257 \, mm - 2 \times 15.7 \, mm$$

 $= 226 \, mm$

S16-14 11.3.2 b)

Width to thickness ratio

$$\frac{h}{w} = \frac{h}{w}$$

$$= \frac{226 \, mm}{8.9 \, mm}$$

$$= 25.3$$

 $\frac{h}{w} = 25.3$

Axial compressive load at yield stress

$$C_y = F_y \times A \times 10^{-3}$$

= $350 \, MPa \times 8.58 \times 10^3 \, mm^2 \times 10^{-3}$
= $3 \times 10^3 \, kN$

S16-14 11.2 Table 2

Section classification limit for Class 1 sections

$$Class~1~Limit = rac{1.1 imes 10^3}{\sqrt{F_y}} imes \left(1 - 0.39 imes rac{C_f}{\phi imes C_y}
ight) \ = rac{1.1 imes 10^3}{\sqrt{350~MPa}} imes \left(1 - 0.39 imes rac{50~kN}{0.9 imes 3 imes 10^3~kN}
ight) \ = 58.4$$

S16-14 11.2 Table 2

Section classification limit for Class 2 sections

$$egin{aligned} Class\ 2\ Limit &= rac{1.7 imes 10^3}{\sqrt{F_y}} imes \left(1 - 0.61 imes rac{C_f}{\phi imes C_y}
ight) \ &= rac{1.7 imes 10^3}{\sqrt{350\ MPa}} imes \left(1 - 0.61 imes rac{50\ kN}{0.9 imes 3 imes 10^3\ kN}
ight) \ &= 89.8 \end{aligned}$$

S16-14 11.2 Table 2

Section classification limit for Class 3 sections

$$egin{aligned} Class \ 3 \ Limit &= rac{1.9 imes 10^3}{\sqrt{F_y}} imes \left(1 - 0.65 imes rac{C_f}{\phi imes C_y}
ight) \ &= rac{1.9 imes 10^3}{\sqrt{350 \ MPa}} imes \left(1 - 0.65 imes rac{50 \ kN}{0.9 imes 3 imes 10^3 \ kN}
ight) \ &= 100 \end{aligned}$$

 $Class = Class_1$

Shear capacity

Shear in the x-axis direction

Clear depth of web between flanges

$$h = d - 2 \times t$$

= 257 mm - 2 × 15.7 mm
= 226 mm

Shear area

$$A_w = d \times w$$

= 257 mm \times 8.9 mm
= 2.29\times 10^3 mm^2

 $A_w = 2.29{ imes}10^3\,mm^2$

Ultimate shear stress

$$egin{aligned} F_s &= 0.66 imes F_y \ &= 0.66 imes 350 \, MPa \ &= 231 \, MPa \end{aligned}$$

 $F_s = 231 \, MPa$

S16-14 13.4.1.1 a) i)

Factored shear resistance of a member or component

$$egin{aligned} V_r &= \phi imes A_w imes F_s imes 10^{-3} \ &= 0.9 imes 2.29 { imes} 10^3 \, mm^2 imes 231 \, MPa imes 10^{-3} \ &= 476 \, kN \end{aligned}$$

 $V_r = 476 \, kN$

 $V_{rx}=476\,kN$

Shear in the y-axis direction

 $d=2\times b$ Overall depth of section for weak axis shear (depth of 2 flanges) $=2 imes204\,mm$ $=408 \, mm$ Clear depth of web between flanges for

 $h=rac{b}{2} \ =rac{204\,mm}{2}$ weak axis shear (width of unstiffened compression elements)

Web thickness for weak axis shear (flange

 $w=15.7\,mm$

 $A_w = d imes w$ Shear area

> $=408\,mm imes 15.7\,mm$ $= 6.41{\times}10^3\,mm^2$

> > $A_w = 6.41 \times 10^3 \ mm^2$

 $F_s = 0.66 imes F_y$ Ultimate shear stress

 $= 0.66 \times 350\,MPa$ $=231\,MPa$

 $F_s = 231 \, MPa$

S16-14 13.4.1.1 a) i) Factored shear resistance of a member or component

$$egin{aligned} V_r &= \phi imes A_w imes F_s imes 10^{-3} \ &= 0.9 imes 6.41 { imes} 10^3 \ mm^2 imes 231 \ MPa imes 10^{-3} \ &= 1.33 { imes} 10^3 \ kN \end{aligned}$$

 $V_r=1.33{ imes}10^3\,kN$

 $V_{ry}=\overline{1.33{ imes}10^3\,kN}$

Slenderness ratio check

 $egin{aligned} rac{K_x L_x}{r_x} &= rac{K_x imes L_x}{r_x} \ &= rac{1 imes 2 imes 100 \ mm}{110 \ mm} \end{aligned}$ Slenderness ratio about x-axis

= 18.2

 $rac{K_y L_y}{r_y} = rac{K_y imes L_y}{r_y}$ Slenderness ratio about y-axis

 $=\frac{1\times2\times10^3\,mm}{51\,mm}$

= 39.2

S16-14 10.4.1 Slenderness ratio of member $rac{KL}{r} = \max\left(rac{K_x L_x}{r_x}, rac{K_y L_y}{r_y}
ight)$ $= \max{(18.2\,,39.2\,)}$ = 39.2

 $\frac{KL}{r} = 39.2$

 $\frac{KL}{r}\leqslant 200$ $39.2\,\leqslant 200$

 $39.2 \leqslant 200$

Slenderness ratio does not exceed maximum permissible slenderness ratio.

Check = Slenderness ratio ok!

Axial compression capacity

Factored axial compressive resistance based on flexural buckling (about x-axis and y-axis)

 $F_{ex} = \frac{\pi^2 \times E}{\left(\frac{K_x \times L_x}{r_x}\right)^2}$ $= \frac{(\pi)^2 \times 2 \times 10^5 \, MPa}{\left(\frac{1 \times 2 \times 10^3 \, mm}{110 \, mm}\right)^2}$ $= 5.97 \times 10^3 \, MPa$ $S16-14 \ 13.3.1$ Euler buckling stress about y-axis $F_{ey} = \frac{\pi^2 \times E}{\left(\frac{K_x \times L_x}{K_x}\right)^2}$

S16-14 13.3.1 Euler buckling stress about y-axis
$$F_{ey} = \frac{\pi^2 \times E}{\left(\frac{K_y \times L_y}{r_y}\right)^2}$$

$$= \frac{(\pi)^2 \times 2 \times 10^5 \, MPa}{\left(\frac{1 \times 2 \times 10^3 \, mm}{51 \, mm}\right)^2}$$

$$= 1.28 \times 10^3 \, MPa$$

Euler buckling stress $F_e = \min{(F_{ex},F_{ey})}$ $= \min{(5.97\times10^3\,MPa,1.28\times10^3\,MPa)}$ $= 1.28\times10^3\,MPa$

S16-14 13.3.1 Non-dimensional slenderness parameter
$$\lambda = \sqrt{\frac{F_y}{F_e}}$$

$$= \sqrt{\frac{350\,MPa}{1.28\times10^3\,MPa}}$$

$$= 0.522$$

 $\lambda=0.522$

S16-14 13.3.1 Factored compressive resistance of a
$$C_r = \frac{\phi \times A \times F_y}{\left(1 + \lambda^{2 \times n}\right)^{\frac{1}{h}}} \times 10^{-3}$$

$$= \frac{0.9 \times 8.58 \times 10^3 \ mm^2 \times 350 \ MPa}{\left(1 + 0.522^{2 \times 1.34}\right)^{\frac{1}{1.34}}} \times 10^{-3}$$

$$= 2.4 \times 10^3 \ kN$$

 $C_r = 2.4 \times 10^3 \, kN$

Factored axial compressive resistance based on torsional buckling

 $K_{r} = 1$ Effective length factor for torsional buckling $\overline{r_0}^2 = {x_0}^2 + {y_0}^2 + {r_x}^2 + {r_y}^2$ S16-14 13.3.2 Polar radius of gyration about shear centre $= (0 mm)^2 + (0 mm)^2 + (110 mm)^2 + (51 mm)^2$ $= 1.47 \times 10^4 \, mm^2$ $F_e = \left(rac{\pi^2 imes E imes C_w}{\left(K_z imes L
ight)^2} + G imes J
ight) imes rac{1}{A imes \overline{r}_o{}^2}$ \$16-14 13 3 1 Euler buckling stress $= \left(\frac{\left(\pi\right)^{2} \times 2 \times 10^{5} \, MPa \times 3.24 \times 10^{11} \, mm^{6}}{\left(1 \times 2 \times 10^{3} \, mm\right)^{2}} + 7.7 \times 10^{4} \, MPa \times 6.25 \times 10^{5} \, mm^{4} \right) \times \frac{1}{1} \times \frac$ $= 1.65{\times}10^3\,MPa$ $\lambda = \sqrt{rac{F_y}{F_e}} \ = \sqrt{rac{350\,MPa}{1.65{ imes}10^3\,MPa}}$ S16-14 13.3.1 Non-dimensional slenderness parameter

2/24/2021 Report Preview

 $\lambda = 0.461$

Parameter for compressive resistance

n = 1.34

S16-14 13.3.1

\$16-14 13 3

Factored compressive resistance of a member or component

$$egin{align*} C_r &= rac{\phi imes A imes F_y}{\left(1 + \lambda^{2 imes n}
ight)^{rac{1}{n}}} imes 10^{-3} \ &= rac{0.9 imes 8.58 imes 10^3 \ mm^2 imes 350 \ MPa}{\left(1 + 0.461^{\ 2 imes 1.34}
ight)^{rac{1}{1.34}}} imes 10^{-3} \ &= 2.47 imes 10^3 \ kN \end{split}$$

 $C_r=2.47{\times}10^3\,kN$

Overall axial compressive resistance

Non-dimensional slenderness parameter

 $\lambda = 0.522$

 $\lambda = 0.522$

Factored compressive resistance of member based on flexural buckling

 $C_{r,flexural} = 2.4{ imes}10^3~kN$

Factored compressive resistance of member based on torsional buckling

 $C_{r,torsional} = 2.47{ imes}10^3\,kN$

Factored compressive resistance of a member or component

 $egin{aligned} C_r &= \min \left({C_{r,flexural},C_{r,torsional}}
ight) \ &= \min \left({2.4 { imes }10^3\,kN,2.47 { imes }10^3\,kN}
ight) \ &= 2.4 { imes }10^3\,kN \end{aligned}$

 $C_r = 2.4 \times 10^3 \, kN$

 $C_r = 2.4{ imes}10^3\,kN$

Moment capacity (laterally unsupported member)

Strong axis bending

Plastic moment resistance

$$egin{aligned} M_p &= Z imes F_y imes 10^{-6} \ &= 9.01 imes 10^5 \ mm^3 imes 350 \ MPa imes 10^{-6} \ &= 315 \ kNm \end{aligned}$$

 $M_p = 315 \, kNm$

$$\begin{array}{l} \text{Critical clastic moments of a laterally unbraced beam} \\ & = \frac{1 \times \pi}{2 \times 10^3 \, mm} \times \\ & = \frac{1 \times \pi}{2 \times 10^5 \, MPa \times 2.22 \times 10^7 \, mm^4 \times 7.7 \times 10^4 \, MPa \times 6.25 \times 10^5 \, mm^4 + \left(\frac{\pi \times 2 \times 10^5 \, MPa}{2 \times 10^3 \, mm}\right)^2 \times 2.22 \times 10^7 \, mm^4 \times 3.24 \times 10^{11} \, mm^4 \times 10^{-6} \\ & = 1.51 \times 10^3 \, kNm \end{array}$$

 $M_u = 1.51 \times 10^3 \, kNm$

S16-14 13.6 a) i)

Factored moment resistance of a member or component

$$\begin{split} M_r &= \min\left(1.15 \times \phi \times M_p \times \left(1 - \frac{0.28 \times M_p}{M_u}\right), \phi \times M_p\right) \\ &= \min\left(1.15 \times 0.9 \times 315 \, kNm \times \left(1 - \frac{0.28 \times 315 \, kNm}{1.51 \times 10^3 \, kNm}\right), 0.9 \times 315 \, kNm\right) \\ &= 284 \, kNm \end{split}$$

 $M_r = 284 \, kNm$

2/24/2021 Report Preview

 $M_{rx} = 284 \, kN$

Weak axis bending

S16-14 13.5 a)

Factored moment resistance of a member or component

$$egin{aligned} M_r &= \phi imes F_y imes Z imes 10^{-6} \ &= 0.9 imes 350 \, MPa imes 3.32 imes 10^5 \, mm^3 imes 10^{-6} \ &= 105 \, kNm \end{aligned}$$

 $M_r = 105 \, kNm$

 $M_{ry}=105\,kN$

Axial tension capacity

S16-14 13.2 a) i)

Factored tensile resistance of a member or

$$egin{aligned} T_r &= \phi imes rac{A_g imes F_y}{1 imes 10^3} \ &= 0.9 imes rac{8.58 imes 10^3 \, mm^2 imes 350 \, MPa}{1 imes 10^3} \ &= 2.7 imes 10^3 \, kN \end{aligned}$$

 $T_r = 2.7 \times 10^3 \, kN$

 $T_r=2.7{ imes}10^3\,kN$

Capacity check summary

Summary table of demands, capacities and utilisation ratios for axial forces, moments and shear forces:

Summary	Compression, Cf/Cr	Tension, Tf/Tr	Strong Axis Moment, Mfx/Mrx	Weak Axis Moment, Mfy/Mry	Shear in X-Axis Direction, Vfx/Vrx	Shear in Y-Axis Direction, Vfy/Vry
Demand (kN)	50	50	50	50	50	50
Capacity (kN)	2395.786	2702.7	283.815	104.58	475.53	1331.724
Utilisation	0.021	0.019	0.176	0.478	0.105	0.038

Bibliography

S16-14 CSA S16 (2014) Canadian Standards Association: Design of steel structures. Canada.