$\overline{{ m DM \ N^{\circ}10}}$ (pour le 31/03/2017)

L'objet du problème est l'étude de certaines propriétés des fonctions J_n , définies de \mathbb{R} dans \mathbb{R} , pour tout entier $n \in \mathbb{Z}$ par :

 $J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin \theta - n\theta) d\theta$

 $(J_n \text{ s'appelle la } \underline{\text{fonction de Bessel}} \text{ d'indice } n \text{ ; ces fonctions interviennent dans de nombreux problèmes de Physique}).$

Première partie:

- 1. Prouver que la fonction J_n est de classe \mathcal{C}^{∞} sur \mathbb{R} , et exprimer à l'aide d'une intégrale ses dérivées successives $J_n^{(k)}$.
- **2.** Montrer que : $\forall x \in \mathbb{R}$, $\forall n \in \mathbb{N}$, $J_{-n}(x) = (-1)^n J_n(x)$.
- **3. a)** Calculer $J_{n+1}(x) J_{n-1}(x)$ en fonction de $J'_n(x)$.
 - **b)** Calculer $x[J_{n+1}(x) + J_{n-1}(x)]$ en fonction de n et de $J_n(x)$.
 - c) En déduire : $\forall n \in \mathbb{N}$, $\forall x \in \mathbb{R}^*$, $J_n'(x) = \frac{n}{x} J_n(x) J_{n+1}(x)$.

Deuxième partie : Développement de J_0 en série entière

- 1. Pour tout $p \in \mathbb{N}$, on considère l'intégrale : $I_p = \int_0^{\pi} \sin^{2p} \theta \, d\theta$.

 Trouver une relation de récurrence entre I_p et I_{p+1} et en déduire la valeur de I_p pour tout $p \in \mathbb{N}$.
- **2.** Établir la convergence normale sur \mathbb{R} de :

$$\sum_{n=0}^{+\infty} (-1)^p \frac{x^{2p} \sin^{2p} \theta}{(2p)!}$$

série de fonctions de la variable réelle θ , lorsque x est un nombre réel fixé.

3. Démontrer alors, pour tout $x \in \mathbb{R}$, l'égalité :

$$\frac{1}{\pi} \int_0^{\pi} \cos(x \sin \theta) d\theta = \sum_{p=0}^{+\infty} \frac{(-1)^p}{(p!)^2} \left(\frac{x}{2}\right)^{2p}$$

4. En déduire le développement en série entière de x des fonctions :

$$x \mapsto \frac{1}{\pi} \int_0^{\pi} \cos^2(x \sin \theta) d\theta$$
 et $x \mapsto \frac{1}{\pi} \int_0^{\pi} \sin^2(x \sin \theta) d\theta$

Troisième partie : Développement de \mathcal{J}_n en série entière

1. Pour tout entier p strictement positif, on pose :

$$R_p(x) = J_n(x) - \sum_{k=0}^{p} \frac{x^k}{k!} J_n^{(k)}(0)$$

Montrer que, pour tout x de \mathbb{R} , $R_p(x)$ tend vers 0 quand p tend vers $+\infty$. En déduire que J_n est développable en série entière; quel est son rayon de convergence?

2. k étant un entier strictement positif fixé, démontrer par récurrence que, pour tout entier n relatif :

$$J_n^{(k)} = \frac{1}{2^k} \sum_{i=0}^k (-1)^i \binom{k}{i} J_{n-k+2i}$$

(on pourra utiliser le résultat de la question I.3)

- **3.** En déduire la valeur de $J_n^{(k)}(0)$ pour tout entier $n \in \mathbb{N}$ et tout entier k > 0.
- **4.** En déduire que, pour tout entier naturel n et tout $x \in \mathbb{R}$, on a :

$$J_n(x) = \left(\frac{x}{2}\right)^n \sum_{p=0}^{+\infty} \frac{(-1)^p}{p!(n+p)!} \left(\frac{x}{2}\right)^{2p}$$

5. Pour tout $x \in \mathbb{R}$ et tout $z \in \mathbb{C}^*$, démontrer que :

$$e^{\frac{x}{2}\left(z-\frac{1}{z}\right)} = \sum_{n=-\infty}^{n=+\infty} J_n(x)z^n$$

(on utilisera les développements en séries de $e^{\frac{xz}{2}}$ et de $e^{-\frac{x}{2z}}$ et leur produit de Cauchy).

Quatrième partie : Application à une équation différentielle

1. a) n étant un entier relatif fixé, vérifier que, pour tout $x \in \mathbb{R}$:

$$xJ'_n(x) = -x^2(J''_n(x) + J_n(x)) + \frac{n}{\pi} \int_0^{\pi} x \cos \theta \cos(x \sin \theta - n\theta) d\theta$$

b) En déduire que J_n est solution sur \mathbb{R} de l'équation différentielle :

$$(E_n)$$
 : $x^2y'' + xy' + (x^2 - n^2)y = 0$

- **2. a)** n étant un entier naturel donné, à quelles conditions doit satisfaire une suite réelle $(a_p)_{p\in\mathbb{N}}$ pour que la fonction y, somme de la série entière $\sum_{p=0}^{+\infty} a_p x^p$ soit solution de (E_n) sur son intervalle ouvert de convergence (supposé non vide)?
 - b) Pour toute suite $(a_p)_{p\in\mathbb{N}}$ vérifiant ces conditions, calculer, pour tout entier naturel k, a_{n+2k} en fonction de a_n . Quelles sont les valeurs des autres termes de la suite?
 - c) Déduire de ce qui précède que l'espace vectoriel des solutions de (E_n) sur \mathbb{R} développables en série entière est de dimension 1, et en donner une base.

Cinquième partie : Étude des zéros de J_0

 (E_0) désigne ici l'équation différentielle : xy'' + y' + xy = 0. Si y est solution de (E_0) , on définit, pour x > 0, la fonction u par : $u(x) = \sqrt{x}y(x)$.

- 1. Écrire l'équation différentielle (E) vérifiée par u.
- **2.** Soit v une solution de l'équation différentielle v'' + v = 0, et u une solution de (E). Montrer que, pour tout x > 0: $\frac{uv(x)}{4x^2} = (uv'' u''v)(x)$.

En déduire que, si a et b sont deux nombres réels strictement positifs, on a :

$$\int_{a}^{b} \frac{u(x)v(x)}{4x^{2}} dx = (uv' - u'v)(b) - (uv' - u'v)(a)$$

3. Soit a un réel strictement positif, en appliquant la relation précédente à $v(x) = \sin(x - a)$ et $b = a + \pi$, montrer qu'il existe x_a appartenant à $[a, a + \pi[$ tel que $J_0(x_a) = 0$ (on pourra faire un raisonnement par l'absurde). En déduire que J_0 admet une infinité de zéros positifs.

Sixième partie : Une propriété d'orthogonalité des fonctions J_n

1. Soit $\mathcal{C}([0,1])$ l'espace vectoriel des fonctions réelles de la variable réelle x définies et continues sur l'intervalle [0,1].

Pour tout couple (f,g) d'éléments de cet espace, on pose :

$$\varphi(f,g) = \int_0^1 x f(x)g(x) \, \mathrm{d}x$$

Montrer que φ est un produit scalaire sur $\mathcal{C}([0,1])$.

On supposera dans la question suivante que $\mathcal{C}([0,1])$ est muni de la structure d'espace vectoriel préhilbertien réel définie par ce produit scalaire.

- **2. a)** Vérifier que, pour tout entier naturel n, et pour tout réel α non nul, la fonction $x \mapsto J_n(\alpha x)$ est solution de l'équation différentielle : $x^2y'' + xy' + (\alpha^2x^2 n^2)y = 0$.
 - **b)** En déduire, pour tout couple (α, β) de réels distincts non nuls, une primitive de la fonction $x \mapsto (\alpha^2 \beta^2)xJ_n(\alpha x)J_n(\beta x)$.
 - c) On admettra que l'ensemble des zéros de la fonction J_n sur \mathbb{R}_+^* est une suite croissante $(s_k)_{k\in\mathbb{N}^*}$ qui tend vers $+\infty$

Démontrer que la suite $(f_k)_{k \in \mathbb{N}^*}$ des restrictions à l'intervalle [0,1] des fonctions $x \mapsto J_n(s_k x)$ est orthogonale dans l'espace préhilbertien $\mathcal{C}([0,1])$ défini ci-dessus.