Networks II: Market Design—Lecture 6 Matching Markets with Non-transferable Utilities: One-sided rank-order preferences

ARPITA GHOSH

Dept. Of Information Science, Cornell University

Recap: Last time

- Mechanisms
- Good mechanisms: Pareto-efficiency
 - Mechanism φ is **Pareto-efficient** if it returns a Pareto-efficient matching $M = \varphi(A, H, \succ)$ for every input market (A, H, \succ)
- The serial dictatorship mechanism

Outline: This class and next

- Proof of Pareto-efficiency of serial dictatorship
- Incentives and preference reporting: Strategy-proofness
- Strategyproofness of serial dictatorship
- How general are serial dictatorships?

Recall: The serial dictatorship mechanism

- Serial dictatorship, or *priority* mechanisms:
 - Serial dictatorship mechanism specifies priority order f over A:
 f(i) is agent with ith priority
 - Given market (A, H, \succ) : Agent f(i) receives item ranked highest in her preference list amongst all items except those already taken by agents $f(1), \ldots, f(i-1)$

Theorem

The serial dictatorship mechanism is Pareto-efficient when agents have strict rank-order preferences over items.

Pareto-efficiency of serial dictatorship

Why?

- Assume for now that all houses are acceptable to all agents
- Suppose serial dictatorship mechanism returns a matching $M=\varphi(\succ)$ in some market (A,H,\succ) that is Pareto-dominated by matching \hat{M}
- Consider *highest-priority* agent who obtains different houses in M and \hat{M} , say agent a: $M(a) \neq \hat{M}(a)$
- Two facts:
 - a cannot prefer M(a) to $\hat{M}(a)$: So $\hat{M}(a) \succ_a M(a)$ (Why?) (Note: We are using strict preferences assumption here!)
 - a cannot prefer $\hat{M}(a)$ to M(a): So $M(a) \succ_a \hat{M}(a)$ (Why?)
- Contradiction: Matching *M* must have been Pareto-efficient!

Pareto-efficiency and input preferences

- Mechanism φ is **Pareto-efficient** if it returns a Pareto-efficient matching $M = \varphi(A, H, \succ)$ for every **input** market (A, H, \succ)
- Output matching $M = \varphi(\succ')$ is Pareto-efficient with respect to \succ' , but not necessarily with respect to $\succ!$
- Example:
 - Matching M = (a-x, b-z, c-y) wrt to preferences ≻:
 a: x ≻ z ≻ y; b: x ≻ z ≻ y; c: x ≻ y ≻ z
 is Pareto-efficient, but *not* wrt preferences
 ≻' a: z ≻ x ≻ y; b: x ≻ z ≻ y; c: x ≻ y ≻ z

Pareto-efficiency and input preferences

- Where do the input preferences > come from?
 - Mechanism: 'Algorithm with input from agents'
 - Input preferences ≻: Reported by agents
 - Agents may not always want to report true preferences!
- Pareto-efficiency of output matching w.r.t true preferences depends on what agents report to mechanism

Why care?

- Consider two mechanisms, and market with 2 agents a,b; 2 houses x,y
 - Preference profile \succ^1 : \succ^1_a , \succ^1_b : $x \succ y$
 - Preference profile \succ^2 : $\succ^2_a = x \succ y$; $\succ^2_b = x$
- Mechanism φ_1 returns the following matchings:

•
$$\varphi_1(\succ^1) = (a-x,b-y); \ \varphi_1(\succ^2) = (a-x)$$

• Mechanism φ_2 returns the following matchings:

•
$$\varphi_2(\succ^1) = (a-x,b-y); \ \varphi_2(\succ^2) = (a-y, b-x)$$

- 'How bad' is it to use the 'wrong' input?
 - φ_1 : Using \succ^2 instead of \succ^1 harms only b
 - φ_2 : Using \succ^2 instead of \succ^1 harms a and helps b!

Strategyproofness

- Recall: (Deterministic) mechanism assigns a matching for each preference profile
 - $\varphi(\succ)$: Matching when agents report \succ under mechanism φ
- Agents' strategies: What preference profile \succ_i to report
- Strategyproofness: Mechanism φ is strategyproof if agents cannot benefit by lying about their preferences, no matter what other agents report

Strategyproofness, formally

- Mechanism φ returns matching $M = \varphi(\succ)$; all agents **know** mechanism
 - Consider agent a with true preferences \succ_a
 - Other agents report preferences \succ_{-a}
 - $M = \varphi(\succ_a, \succ_{-a}); M' = \varphi(\succ'_a, \succ_{-a})$
- Mechanism φ is strategyproof if $M(a) \succeq_a M'(a)$ for all \succ_{-a} , for all agents a (and corresponding preferences \succ_a)
 - Does it matter whether remaining agents report true preferences? ([A] Yes [B] No)
 - Does it matter whether an agent can see other agents' reports? ([A] Yes [B] No)

Strategyproofness, formally

- Mechanism φ returns matching $M = \varphi(\succ)$; all agents **know** mechanism
 - Consider agent a with true preferences \succ_a
 - ullet Other agents report preferences \succ_{-a}
 - $M = \varphi(\succ_a, \succ_{-a}); M' = \varphi(\succ'_a, \succ_{-a})$
- Mechanism φ is strategyproof if $M(a) \succeq_a M'(a)$ for all \succ_{-a} , for all agents a (and corresponding preferences) \succ_a
 - Does it matter whether remaining agents report true preferences?
 - Does it matter whether an agent can see other agents' reports?
 - No, and no: Notice "**for all** \succ_{-a} " in definition!
- Strategyproofness: Strong solution concept (cf. Nash equilibrium)

Strategyproofness: Revisiting an example

- Example: Agents a,b,c; houses x,y,z
- Preferences \succ are a: $x \succ z \succ y$; b: $x \succ z \succ y$; c: $x \succ y \succ z$
- $\varphi(\succ)$ returns matching a-y, b-x, c-z: Is φ strategyproof?
 - A Yes
 - B No
 - C How would I know?
- While we're at it: Is φ Pareto-efficient?
 - A Yes
 - B No
 - C How would I know?
- Note that strategyproofness is:
 - A property of a *mechanism*, not of a matching
 - Not the same as Pareto-efficiency!

Strategyproofness: Another example

- Consider market with agents a,b,c; houses x,y,z
 - Preferences \succ_1 are a: $x \succ y \succ z$; b: $x \succ y \succ z$; c: $x \succ y \succ z$
 - Preferences \succ_2 are a: $x \succ y \succ z$; b: $x \succ y \succ z$; c: $y \succ x \succ z$
 - $\varphi(\succ_1)$: Matching a-x, b-y, c-z; $\varphi(\succ_2)$: Matching a-x, b-z, c-y
- Is φ strategyproof?
 - A Yes
 - B No
 - C Not again—you know I can't know!
- Suppose actual preferences are \succ_1 : Can any agent benefit by lying about her preferences?

Strategyproofness: Continuing with this example

- Let's try generalizing what happened in previous example:

 - Suppose agent i's allocations with two inputs are different:
 - Allocation h in $\varphi(\succ)$, h' in $\varphi(\succ')$
 - $h \neq h'$
 - Preferences are strict: So either h > h' or h' > h
- - No—we can't!
 - *i* needs to prefer h' to h in ranking \succ , **or** h to h' in \succ' , to demonstrate strategyproofness, *i.e.*, benefit from lying
 - If $h \succ_i h'$ and $h' \succ_i' h$, lying does not benefit i for true preference being either \succ_i or \succ_i'

Yet another example

- Recall assumption of complete preferences (i.e., all agents find all houses acceptable)
- 'Arbitrary assignment' mechanism:
 - |A| = |H| = n: n! possible perfect matchings; all are feasible
 - ullet Mechanism always returns a certain perfect matching M
- Is this mechanism (i) strategyproof? (ii) Pareto-efficient?
 - A Only strategyproof
 - B Only Pareto-efficient
 - C Both strategyproof and Pareto-efficient
 - D Neither strategyproof nor Pareto-efficient

Properties of a mechanism

- Pareto-efficiency (PE): Mechanism $\varphi(\succ)$ is PE with respect to reported preferences
- Strategyproofness (SP): Mechanism $\varphi(\succ)$ elicits *true* preferences
- Mechanism that is both SP and PE: Pareto-efficient with respect to true preferences