

CURSO:Engenharia de SoftwareSEMESTRE:2022/1DISCIPLINA:Estrutura de Dados e AlgoritmosCÓDIGO:FGA0147

CARGA HORÁRIA: 60 horas CRÉDITOS: 4
PROFESSOR: John Lenon C. Gardenghi TURMA: T01

PLANO DE ENSINO

7 de junho de 2022

1 Objetivos da Disciplina

Apresentar a estrutura e funcionamento das estruturas de dados básicas. Capacitar o aluno a abstrair e implementar problemas reais que demandam a utilização de técnicas de programação que envolvem alocação dinâmica de memória e estruturas de dados.

2 Ementa do Programa

- 1. Recursão
- 2. Ponteiros e alocação dinâmica de memória
- 3. Estruturas lineares: listas, filas e pilhas
- 4. Introdução à complexidade computacional e notação *big-O*
- 5. Algoritmos de busca
- 6. Algoritmos de ordenação $O(n^2)$
- 7. Algoritmos em árvores binárias
- 8. Organização de arquivos
- 9. Aplicações

3 Horário das aulas e atendimento

AULAS: terças e quintas-feiras, das 14h às 15h50, na sala S10.

ATENDIMENTO: segundas e sextas-feiras das 10h às 11h (sob agendamento).

E-MAIL: john.gardenghi@unb.br.

TELEGRAM: @johngardenghi.

MONITORES: A divulgar.

4 Metodologia

A metodologia consiste em aulas expositivas, com o auxílio do quadro branco e eventualmente de projetor digital. A fim de fortalecer a aprendizagem da disciplina, as aulas serão complementadas com exercícios e atividades, presenciais e extra-classe, em papel, digitais e com o uso de juízes eletrônicos.

Também contaremos com conteúdos disponibilizados na página *web* da disciplina¹ e eventualmente na plataforma Aprender 3². Para a comunicação com a turma, o principal canal a ser utilizado será o grupo da disciplina no Telegram³.

5 Critérios de Avaliação

As avaliações a serem aplicadas serão divididas em duas categorias: *avaliações formativas e somati- vas*.

5.1 Avaliações formativas e somativas

Teremos m avaliações formativas que consistirão em questionários, exercícios em juízes eletrônicos ou trabalhos. A partir das notas nas avaliações formativas calcularemos uma *média simples* $M_{\rm AF}$.

Teremos 3 avaliações somativas que consistirão em questões em papel e eventualmente com o uso de juízes eletrônicos. A partir das notas nas avaliações somativas calcularemos uma *média simples* $M_{\rm AS}$.

A média final de cada aluno será uma média ponderada entre a média das atividades formativas e somativas, da seguinte forma:

$$M_{\rm F} = 0.85 \times M_{\rm AS} + 0.15 \times M_{\rm AF}$$
.

As atividades avaliativas serão divulgadas ao longo do semestre, com prazo hábil para conclusão e entrega. Não há avaliação formativa substitutiva; ao aluno que deixar de fazer uma formativa, será atribuída nota zero à correspondente. Quem não puder comparecer a alguma Avaliação Somativa (com falta justificada) poderá fazer a Avaliação Somativa Substitutiva ao final do semestre, que versará sobre todo o conteúdo do semestre.

No caso de detecção de **plágio** em qualquer avaliação, será atribuída **nota zero** a **todos os envolvidos**.

5.2 Frequência

A frequência dos alunos serão acompanhadas pelo professor com base na assinatura de lista de presença em todas as aulas.

5.3 Aprovação e menção final

Para ser aprovado na disciplina, o aluno deve

- obter $M_{\rm F} \geq 5.0~{\rm e}$
- ter frequência igual ou superior a 75%⁴.

A menção final do curso será dada em função da nota $M_{\rm F}$, de acordo com a tabela abaixo.

https://john.pro.br/ensino/eda-2022-1/.

²https://aprender3.unb.br/course/view.php?id=14998, chave de inscrição EDA1_A_FGA@22_1.

³https://t.me/+4mXRN8ipTHMzZWVh.

⁴Neste semestre, teremos 31 aulas, portanto o aluno deve comparecer a 23,25 aulas, o que significa que um aluno poderá ter, no máximo, 7 faltas.

$\mathbf{M}_{\scriptscriptstyle{\mathrm{F}}}$	Menção	Descrição
0,0	SR	Sem rendimento
de 0,1 a 2,9	II	Inferior
de 3,0 a 4,9	MI	Médio Inferior
de 5,0 a 6,9	MM	Médio
de 7,0 a 8,9	MS	Médio Superior
9,0 ou maior	SS	Superior

Importante: Será atribuída menção SR ao aluno que tiver menos que 75% de presença ao longo do curso, mesmo que obtenha $M_{\rm F}>0$.

6 Cronograma

Sem.	Aula	Data	Conteúdo
1	1	07/06	Apresentação da disciplina · Revisão de algoritmos
	2	09/06	Revisão de algoritmos
2	3	14/06	Introdução à complexidade computacional
	_	16/06	Feriado (Corpus Christi)
3	4	21/06	Introdução à complexidade computacional
	5	23/06	Ponteiros
4	6	28/06	Ponteiros
	7	30/06	Ponteiros
5	8	05/07	Avaliação Somativa 1
	9	07/07	Recursão
6	10	12/07	Recursão
	11	14/07	Ordenação e busca
7	12	19/07	Ordenação e busca
	13	21/07	Listas encadeadas
8	_	26/07	74ª Reunião Anual da SBPC
	-	28/07	74ª Reunião Anual da SBPC
9	14	02/08	Listas encadeadas
	15	04/08	Listas encadeadas
10	16	09/08	Avaliação Somativa 2
	17	11/08	Pilhas e Filas
11	18	16/08	Pilhas e Filas
	19	18/08	Pilhas e Filas
12	20	23/08	Árvores
12			

	21	25/08	Árvores
13	22 23	30/08 01/09	Semana Universitária Semana Universitária
	24	0 = 1 0 7	Árvores
14	25	00,07	Árvores
15	26	13/09	Avaliação Somativa 3
	27	15/09	Avaliação Somativa Substitutiva
16	28	20/09	Revisão de notas e faltas
	29	22/09	Revisão de notas e faltas

7 Bibliografia

7.1 Da ementa

BIBLIOGRAFIA BÁSICA

BALDWIN, D.; SCRAGG, G. **Algorithms and Data Structures**: The Science of Computing, 1st ed. Charles River Media, 2004.

LAFORE, R. Estruturas de Dados e Algoritmos em Java. 1a. ed. Ciência Moderna, 2005.

FERRAZ, I. N. Programação com arquivos. Barueri, SP: Manole, 2003.

BIBLIOGRAFIA COMPLEMENTAR

MEHLHORN, K; SANDERS, P. **Algorithms and Data Structures**: The Basic ToolBox, 1st. ed. Springer, 2008.

AHO, A. V.; ULLMAN, J. D. **Foundations of Computer Science**: C Edition (Principles of Computer Science Series). 1st ed. W. H. Freeman, 1994.

GUIMARÃES, A. M.; LAGES. N. A. C. **Algoritmos e Estruturas de Dados**, 1a. ed. LTC, 1994. SHERROD, A. **Data Structures and Algorithms for Game Developers**, 5th ed. Course Technology, 2007.

DESHPANDE, P. S.; KAKDE, O. G. C and Data Structures, 1a. ed. Charles River Media, 2004. DAS, V. V., Principles of Data Structures Using C and C++. 1a. ed. New Age International, 2006.

7.2 Para acesso de casa

Há 3 boas bibliotecas online que possuem convênio com a UnB:

- 1. Minha biblioteca⁵,
- 2. Biblioteca virtual da Pearson⁵ e
- 3. ProQuest Ebook Central⁶.

⁵http://minhabiblioteca.bce.unb.br/.

⁶https://ebookcentral.proquest.com/lib/univbrasilia-ebooks/home.action.

A bibliografia recomendada é:

DAS, V. V. **Principles of Data Structures Using C and C++**. New Age International, 2006. Disponível em https://ebookcentral.proquest.com/lib/univbrasilia-ebooks/reader.action?docID=442133.

CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L; STEIN, C. Introduction to Algorithms. 3 ed. Elsevier, 2009. Disponível em: https://ebookcentral.proquest.com/lib/univbrasilia-ebooks/detail.action?docID=3339142.

SZWARCFITER, J. L.; MARKENZON, L. Estruturas de dados e seus algoritmos. 3 ed. LTC, 2010. Disponível em https://integrada.minhabiblioteca.com.br/books/978-85-216-2995-5/.