$\frac{5}{8}x^{\frac{3}{2}} \div \frac{1}{2}x^{-\frac{5}{2}}.$ Simplify [2] Write $2^8 \times 8^2 \times 4^{-2}$ in the form 2^n . [2] $3^x \times 9^4 = 3^n.$ Find n in terms of x. Answer n = [2] Simplify (a) $\left(\frac{p^4}{16}\right)^{0.75}$,

(b) $3^2q^{-3} \div 2^3q^{-2}$.

Answer(a)

Answer(b)

[2]

Use a calculator to work out the exact value of

$$1 + \frac{1}{5} + \left(\frac{1}{5}\right)^2 + \left(\frac{1}{5}\right)^3 + \left(\frac{1}{5}\right)^4$$
.

	Answer		[2]
$a \times 10^7 + b \times 10^6 = c \times 10^6$			
Find c in terms of a and b . Give your answer in its simplest form.			
	Answer c	=	 [2]
Find the value of n in the following equations.			
(a) $2^n = 1024$			
	Answer(a	n =	 [1]
(b) $4^{2n-3} = 16$			
	Answer(b) n =	 [2]

Simplify

(a)
$$\left(\frac{16}{81}x^{16}\right)^{\frac{1}{2}}$$
,

Answer(a) [2]

(b)
$$\frac{16y^{10} \times 4y^{-4}}{32y^{7}}.$$

Answer(b)

Solve the following logarithmic equation

mic equation $2\log_{10} x + \log_{10} 3 = \log_{10} 75$.