2.2 Noţiuni de Statistică şi Prelucrare de Semnal

- Determinarea gradului de corelare existent între valorile unui set de date este extrem de importantă pentru aprecierea predictibilității acestuia.
- Dacă datele sunt slab corelate între ele, predicția valorilor viitoare nu se poate face decît în limitele unei precizii scăzute.

Caracterizarea filozofică este fundamentată de următorul principiu axiomatic.

Principiul cauzalității din sistemul logic uman

Cum se poate caracteriza corelarea dintre date?

Sistemul logic uman este incomplet!

Prezentul şi trecutul apropiat influențează mai mult viitorul imediat decît o face trecutul îndepărtat.

Viitorul nu poate influența prezentul sau trecutul.

(Gödel, ~1933)

În IS, caracterizarea fenomenului de corelare dintre date se bazează pe:

Densitatea simplă de Densitatea de probabilitate Densitatea de probabilitate Arată cît de corelată încrucișată (intrare-ieșire) Densitatea de probabilitate

Tipuri de depoit? i de probabilitate utilizate în IS

Covarianță (încrucişată)

 $r_{u,y}[m,n] = E\{u[m]y[n]\} =$ pivoți

 $\mathcal{D}(u[m])\mathcal{D}(y[n])$

statistic este ieșirea cu intrarea, ambele aparținînd aceluiași set de date măsurate.

 $\mu(u[m], y[n]) u[m] y[n] du[m] dy[n]$

 $\forall m, n \in \mathbb{N}^*$

Densitatea de probabilitate a aceleiași realizări

încrucişată (intrare-ieşire)

a aceleiași realizări

2.2 Noţiuni de Statistică şi Prelucrare de Semnal

probabilitate

 $\forall m, n \in \mathbb{N}$

 $\mathcal{D}(y[m])\mathcal{D}(y[n])$

În IS, caracterizarea fenomenului de corelare dintre date se bazează pe:

Tipuri de depoit? à de probabilitate utilizate în IS Densitatea simplă de

Densitatea de probabilitate

încrucisată (intrare-iesire)

Densitatea de probabilitate a aceleiași realizări

Arată cît de corelate statistic

Auto-covarianță set de date măsurate.

sunt ieșirile aparținînd aceluiași

Densitatea de probabilitate încrucişată (intrare-ieşire)

Densitatea de probabilitate a aceleiași realizări

Similar

def $r_u[m,n] = E\{u[m]u[n]\}$ (auto-covarianța datelor de intrare)

Nu este prea complicat?

Desigur, dacă se încearcă evaluarea plecînd de la definiții. Simplificarea este posibilă tot datorită unei versiuni a **IE**.

 $\forall m, n \in \mathbb{N}^*$

Ipoteza Ergodică (de covarianță)

Secvența de (auto)-covarianță a unui proces nu depinde decît de diferența pivoților (adică procesul este staționar în covarianță) și este egală cu (auto-)covarianța temporală a oricărei realizări cu un număr infinit de date măsurate.

2.2 Noţiuni de Statistică şi Prelucrare de Semnal

$$r_{y}[m,n] = r_{y}[m-n] = \lim_{N \to \infty} \frac{1}{V_{N,m,n}} \sum_{i=1+\max\{m,n\}}^{N+\min\{m,n\}} y[i-n] y[i-m]$$

$$\forall m,n \in \mathbb{N}^{*}$$

Se poate observa cum se calculează diferența pivotilor: prin scăderea argumentelor semnalelor implicate.

$$r_{u,y}[k] = E\{u[n]y[n-k]\} \cong r_{u,y}^{N}[k] = \frac{1}{v_{N,k}} \sum_{n=1+\max\{0,k\}}^{N+\min\{0,k\}} u[n]y[n-k]$$
 $\forall k \in \mathbb{Z}$

$$r_{y}[k] = E\{y[n]y[n-k]\} \cong r_{y}^{N}[k] = \frac{1}{v_{N,k}} \sum_{n=1+\max\{0,k\}}^{N+\min\{0,k\}} y[n]y[n-k]$$
 $\forall k \in \mathbb{Z}$

Numitorul factorului ce precede oricare dintre sume este egal cu numărul de termeni ai sumei.

pivot

 $m-n=k\in\mathbb{Z}$

$$v_{N,m,n} = N + \min\{m,n\} - \max\{m,n\}$$

$$v_{N,k} = N + \min\{0,k\} - \max\{0,k\}$$

Aproximații similare

Numitorul factorului ce precede sumele este întotdeauna egal cu dimensiunea orizontului de măsură, N.

se prelungesc cu zerouri în afara orizontului de măsură.

Convenţie: semnalele e prelungesc cu erouri în afara rizontului de măsură.
$$r_{u,y}[k] \cong \frac{1}{N} \sum_{n=1}^{N} u[n] y[n-k]$$

$$\forall k \in \mathbb{Z}$$
 (zero padding)
$$\forall k \in \mathbb{Z}$$

de Cele două tipuri de aproximații sunt sensibil diferite pentru pivoți depărtați de origine.

2.2 Noțiuni de Statistică și Prelucrare de Semnal

Două cazuri

$$\sum_{u,y}^{N} [k] = \frac{1}{V_{N,k}} \sum_{n=1+\max\{0,k\}}^{N+\min\{0,k\}} u[n]$$
 eşantion întîrziat cu k paşi pentru $k \ge 0$ eşantion anticipat cu k paşi pentru $k < 0$

Datele culisează de-a lungul orizontului de măsură.

IE

Proprietăți elementare ale secvenței de (auto-)covarianță

Exerciții

Covarianță încrucișată

$$\frac{[-k] = r_{y,u}[k]}{\text{se schimbă cu}} k \in \mathbb{Z}$$

Aceste proprietăți se demonstrează cu ajutorul IE, completînd seriile de date cu zerouri și extinzînd sumele la infinit.

Auto-covarianță

$$\frac{r_{y}[-k] = r_{y}[k]}{\forall k \in \mathbb{Z}}$$

Este suficientă evaluarea pentru pivoți nenegativi.

$$r_y^N[k] = \frac{1}{N-k} \sum_{n=k+1}^N y[n]y[n-k]$$

$$\forall k \in \mathbb{N}$$

→ Mărginirea auto-covarianței

 $|r_y[k]| \le r_y[0] = \sigma_y^2$ (valoarea maximă a auto-covarianței este egală cu dispersia datelor)

$$\forall k \in \mathbb{Z}$$

auto-covarianța normalizată

Auto-corelație

auto-covarianța normalizată

$$\rho_{y}[k] = \frac{r_{y}[k]}{r_{y}[0]} = \frac{r_{y}[k]}{\sigma_{y}^{2}}$$

$$\forall k \in \mathbb{Z}$$

Similar

Corelație (încrucișată)

covarianța (încrucișată) normalizată

$$\rho_{u,y}[k] = \frac{r_{u,y}[k]}{\sqrt{r_u[0]}\sqrt{r_y[0]}} = \frac{r_{u,y}[k]}{\sigma_u\sigma_y}$$

2.2 Noțiuni de Statistică și Prelucrare de Semnal

Proprietăți elementare ale secvenței de (auto-)covarianță (continuare)

Exerciții

$$y[n] = y[n \pm P]$$

$$\forall n \in \mathbb{Z}$$
perioada datelor

$$r_y[k] = r_y[k \pm P]$$
 (cu acceași perioadă ca a datelor)

(simbolul lui Kronecker)

$$\leftarrow$$
 impulsul unitar discret

Proces ne(auto-)corelat

O singură valoare nenulă, în origine, egală cu dispersia

Acest tip de proces este complet impredictibil (viitorul nu depinde nici de prezent, nici de trecut).

Proces (statistic) independent

$$\cancel{\cancel{p}}(y[m],y[n]) = \cancel{p}(y[m]) \cdot \cancel{p}(y[n]) \forall m,n \in \mathbb{N}^*$$

Probabilitatea de apariție simultană a două valori ale ieșirii pe aceeași realizare este egală cu produsul probabilităților de apariție independentă a valorilor pe acea realizare.

Propoziția 1

Demonstrație

Exercitiu

Un proces independent de medie nulă este și necorelat.

Propoziția 2

Demonstrație

Complicat!

Ce legătură există între ele?

Două rezultate remarcabile relevă această legătură.

Un proces necorelat avînd distribuție Gaussiană este și independent.

2.2 Noțiuni de Statistică şi Prelucrare de Semnal

• Datele achiziționate sunt în realitate semnale care transportă o anumită informație referitoare la comportamentul procesului care le-a produs.

MARE

Pulsatie normalizata

0.02

Entitate ce transportă informație cu privire la starea sau comportarea unui sistem, atît în timp cît și în frecvență.

Timp și frecvență? -Nu sunt concepte independente? • În esență, NU. • Aparent, DA.

Domeniul "Timp" și domeniul "Frecvență" sunt duale.

• Există mai multe manifestări ale dualității dintre ele.

0.04 (e) 0.04

0.02

mică

Pulsatie normalizata

Principiul de incertitudine **GABOR-HEISENBERG**

Ambele pot avea, însă, suporturi infinite.

Rezoluție în "Timp"

Produsul rezoluțiilor ≤ o constantă.

Rezoluție în "Frecvență"

Semnalul şi spectrul său nu pot avea simultan suporturi compacte / finite.

Informație temporală episodică (energie concentrată pe o durată scurtă).

Informatie frecventială persistentă

(energie disipată pe o bandă largă).

2.2 Noțiuni de Statistică şi Prelucrare de Semnal

- Informația transportată de semnal poate fi mai ușor de interpretat într-un domeniu decît în altul.
- Compresia semnalului poate fi mai ușor de realizat într-un domeniu decît în altul.

PUNDAMENTEE MODELÄMI INCNTRICAMI SISTEMILOR

Definiții ale Operatorului Fourier (OF) direct (de analiză) și invers (de sinteză)

De regulă, semnalul frecvențial returnat de OF este o funcție cu valori complexe.

2.2 Noțiuni de Statistică şi Prelucrare de Semnal

Caracterizarea în frecvență a sistemelor liniare continue

pentru sisteme liniare continue

functie original (continuală cauzală) oarecare

$$\frac{f(t) = 0, \quad \forall t < 0}{|f(t)| \le e^{0t}, \quad \forall t > t_0}$$

Negativ. indicele descreșterii relative normalizate

↑ restricția TL la axa imaginară (dacă aparține zonei de convergență)

pulsație
$$\in \mathbb{R}$$

$$F(s)|_{s=\int_{0}^{+\infty}} f(t)e^{-j\Omega t} dt$$

$$\mathscr{F}(f)(j\Omega) = F(j\Omega) = \int_{0}^{def} f(t)e^{-j\Omega t} dt$$

Caracterizare în domeniul complex

$$H(s) = \frac{Y(s)}{X(s)} = \mathcal{Z}(h)(s)$$

Sistem cauzal şi stabil.

$$H(j\Omega) = \frac{Y(j\Omega)}{X(j\Omega)} = \int_{0}^{+\infty} h(t) e^{-j\Omega t} dt$$

$$\forall \Omega \in \mathbb{R}$$

Răspuns în frecvență

TF a secvenței pondere

Noțiuni de Statistică și Prelucrare de Semnal

Caracterizarea în frecvență a sistemelor liniare discrete

• Deduceți expresia răspunsului în frecvență al unui sistem liniar continuu, respectiv discret, apelînd la un raționament similar celui utilizat pentru sistemele liniare discrete, respectiv continue.

Exerciții

Convoluție continuă: $(u*h)(t) = \int_{0}^{def} u(\tau)h(t-\tau)d\tau$ $t \in \mathbb{R}$ **68**

• În acest caz, operația de convoluție este de asemenea corect definită.

