Шифратор

Вхо	дные	налы	Выходные синалы		
X ₃	X ₂	X ₁	Xo	Y 1	Yo
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

Рис. 1.1 - двоичный шифратор (активная единица)

Хз	X2	X1	Χo	y 1	yo
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

Хз	X2	X1	Xo	y 1	yo
0	0	0	1	0	0
0	0	1	×	0	1
0	1	×	×	1	0
1	×	×	×	1	1

Рис. 1.2 - сравнение таблицы истинности двоичного и приоритетного двоичного шифратора

Выполняет преобразование позиционного кода в двоичный

Двоичный шифратор преобразует унитарный код (только один активный сигнал) в двоичный код

Приоритетный двоичный шифратор выделяет старший (младший) активный сигнал, остальные игнорирует

Построение шифратора на ЛЭ

Рис. 1.3 а - схема на ЛЭ, б - УГО

Каскадирование шифраторов

Рис. 1.4 - Каскадирование приоритетных шифраторов

Служебные		Информационные						
вход	вых	оды		Вхс	оды	Ī	Вых	оды
EI	GS	EO	<i>X</i> ₃	X ₂	<i>X</i> ₁	<i>X</i> ₀	F ₁	Fo
0	0	0	-	-		-	0	0
1	0	1	0	0	0	0	0	0
1	1	0	0	0	0	1	0	0
1	1	0	0	0	1	Х	0	1
1	1	0	0	1	х	Х	1	0
1	1	0	1	Х	Х	х	1	1

Рис. 1.5 - Таблица истинности CD1 и CD2

EI - разрешение работы шифратора G - признак наличия активного сигнала на входах EO - признак отсутствия сигналов на входах

Каскадирование шифраторов

Слу	жебнь	ie			Информационные									
вход	вых	оды	. № CD	Входы				Выходы						
EI	GS	EO	0.0	<i>X</i> ₇	X ₆	<i>X</i> ₅	X4	Хз	X ₂	<i>X</i> ₁	X ₀	F ₂	F ₁	Fo
0	0	0		1-	-	-	-	-	-	-	-	0	0	0
1	0	1	1и2	0	0	0	0	0	0	0	0	0	0	0
1	1	0	2	0	0	0	0	0	0	0	1	0	0	0
1	1	0	2	0	0	0	0	0	0	1	Х	0	0	1
1	1	0	2	0	0	0	0	0	1	X	Х	0	1	0
1	1	0	2	0	0	0	0	1	X	Х	Х	0	1	1
1	1	0	1	0	0	0	1	X	Х	Х	Х	1	0	0
1	1	0	1	0	0	1	Х	X	X	X	Х	1	0	1
1	1	0	1	0	1	Х	Х	X	Х	Х	Х	1	1	0
1	1	0	1	1	X	Х	х	X	X	X	X	1	1	1

Указатель старшей единицы (8 – 3) состоит из старшего шифратора CD1 (4 – 2), младшего шифратора CD2 (4 – 2) и комбинационных элементов (рис.3).

В исходном состоянии, когда нет входных информационных сигналов $X_0...X_7$, а разрешение работы CD1 имеется (EI = 1), сигнал EO = 1 на выходе CD1 разрешает работу CD2.

Указатель старшей единицы находится в режиме ожидания и может считывать входную информацию (GS= 0; EO =1), код на его выходах: F2F1F0= 000.

Если подать информационный сигнал $X_0...X_3$ на младший шифратор CD2, то он преобразуется в код младших разрядов F_1F_0 . Старший разряд $F_2=0$ равен инверсии значения кода на выходеEO=1 шифратора CD1, который в преобразовании не участвует из-за отсутствия входных информационных сигналов. Служебные выходы шифратора CD2: GS=1, EO=0.

Указатель старшей единицы находится в режиме преобразования входной информации (GS=1; EO = 0), код на его выходах: F2F1F0= 0XX (где X значение 0 или 1).

После подачи любого из сигналов $X_4...X_7$ в старший шифратор CD1, его выходы соответствуют режиму преобразования (GS=1, EO=0), код на информационных выходах $F_1F_0=XX$. Старший разряд $F_2=1$ соответствует инверсии состояния выходаEO, т.к. EO=0, то работа младшего шифратора CD2 данным сигналом блокируется. Изменение кодов F_1F_0 при случайном нажатии клавиш $X_0...X_3$ исключается. Для шифратора CD2:GS=0, EO=0; $F_1F_0=0$ 0.

Указатель старшей единицы находится в режиме преобразования входной информации (GS=1; EO = 0), код на выходах: $F_2F_1F_0 = 1XX$ (где X значение 0 или 1).

Если EI = 0, то указатель старшей единицы в режиме запрета работы (GS=0; EO = 0), код на его выходах: $F_2F_1F_0 = 000$.

Рис. 1.6 - Таблица истинности полученного шифратора 8-3

Дешифратор

	входы		выходы							
X ₁	X ₂	X ₃	Уo	y ₁	y ₂	У3	y ₄	y _s	У ₆	¥7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	Ω	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Рис. 2.1 - двоичный дешифратор

Рис. 2.2 - таблица истинности дешифратора

Выполняет преобразование двоичного кода в унитарный (переводит в активное состояние только один выход с номером, указанным входным кодом)

Построение дешифратора на ЛЭ

Рис. 2.3 - схема дешифратора на ЛЭ

Увеличение разрядности дешифраторов

DC Y_0 Y_1 Y_2 X_1 Y_3 X_2 Y_4 X_3 Y_5 X_4 Y_7 DC Y8 Y_9 Y_{10} Y11 Y_{13} E

Рис. 2.4 - каскадное соединение

Рис. 2.5 - увеличение разрядности в два раза

Реализация логических функций с помощью дешифратора

$$y = x_2 x_1 \overline{x}_0 + x_2 \overline{x}_1 x_0 + \overline{x}_2 x_1 \overline{x}_0 + x_2 \overline{x}_1 \overline{x}_0 + \overline{x}_2 \overline{x}_1 \overline{x}_0$$
1 1 0 1 0 1 0 1 0 0 0 0

- 1. Построить таблицу истинности заданной функции
- 2. Выбрать дешифратор необходимой разрядности
- 3. На информационные входы подать аргументы функции
- 4. Объединить с дизъюнкцию выходы, соответствующие единичным наборам функции

Рис. 2.6 - реализация функции на дешифраторе достаточной разрядности

Реализация логических функций с помощью дешифратора

Рис. 2.7 - варианты реализации функции на дешифраторах

Мультиплексор

Рис. 3.1 - УГО мультиплексора 8-1

Таблица истинности для мультиплексора 4->1

Ε	A1	A2	D0	D1	D2	D3	F (4->1)	
_	CT	ΜЛ	00	דט	DZ	<u> </u>		
	0	0	0/1	Х	Х	Х	0/1	D0
0	0	1	Х	0/1	Х	Х	0/1	D1
١	1	0	Х	Х	0/1	Х	0/1	D2
	1	1	х	Х	Х	0/1	0/1	D3
1	х	Х	х	х	Х	х	0	

Рис. 3.2 - таблица истинности мультиплексора

В зависимости от комбинации адресных входов передает на выход сигнал только одного информационного входа

Построение мультиплексора на ЛЭ

Рис. 2.3 - схема мультиплексора на ЛЭ

Построение мультиплексора на дешифраторе

Рис. 3.4 - схема мультиплексора на дешифраторе

Увеличение разрядности мультиплексоров

Рис. 3.5 - каскадное соединение

Рис. 3.6 - увеличение разрядности в два раза

Реализация логических функций с помощью мультиплексора

Рис. 3.7 - реализация функции на мультиплексоре соответствующей разрядности

- 1. Построить таблицу истинности заданной функции
- 2. Выбрать мультиплексор необходимой разрядности
- 3. На адресные входы подать аргументы функции
- 4. На информационные входы подать константные "0" и "1" в соответствии с таблицей истинности

Реализация логических функций с помощью мультиплексора

x2	х3	F
0	0	1
0	1	0
1	0	0
1	1	x1

Рис. 3.8 - реализация функции на мультиплексоре меньшей разрядности

Одноразрядный двоичный полусумматор

Рис. 5.1 - УГО

Вхс	ды	Выходы		
а	b	Р	S	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

Рис. 4.2 - таблица истинности

Сложение двух бит без учета переноса из предыдущего разряда

Реализация полусумматора на ЛЭ

Таблица истинности

Вхс	ды	Выходы			
а	b	Р	S		
0	0	0	0		
0	1	0	1		
1	0	0	1		
1	1	1	0		

Уравнения

$$S = \overline{ab} + a\overline{b} = a \oplus b;$$

$$P = ab$$
.

Схема

Одноразрядный двоичный (полный) сумматор

Рис. 5.1 - УГО

а	b	p	S	P
0	0	0	0	0
0	1	0	1	0
1	0	0	1	0
1	1	0	0	1
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	1

Рис. 5.2 - таблица истинности

Реализация сумматора на ЛЭ

Рис. 5.3 - реализация в базисе И, ИЛИ, НЕ

Реализация сумматора на ЛЭ

Рис. 5.4 - реализация с использованием ИСКЛ. ИЛИ

Реализация сумматора на полусумматорах

Рис. 5.5 - реализация на полусумматорах

Многоразрядный сумматор

Одноразрядный цифровой компаратор

Рис. 6.1 - УГО

а	b	y0	yI	<i>y</i> 2
0	0	1	0	0
0	1	0	0	1
1	0	0	1	0
1	1	1	0	0

Рис. 6.2 - таблица истинности

Сравнение двух бит

Реализация компаратора на ЛЭ

Рис. 6.3 - реализация на в базисе И, ИЛИ, НЕ

Компаратор на сумматоре

Необходимо сложить первый аргумент с побитовой инверсией второго (обратный код)

Увеличение разрядности компаратора

