Extraction of the strong coupling constant (α_s) from photon structure function (F_2^{γ}) measurements with NNLO evolution

David d' Enterria,^a Sebastian Schulte,^a

Theoretical Physics Department, CERN, CH-1211 Geneva 23, Switzerland

Abstract: Place for Abstract.

KEYWORDS: QCD, NLO Computations, LHC, Top Quark

α	\mathbf{nt}		L -
1 6	mt	eni	ГS

1 Experimental data

1

1 Experimental data

Something about data

$F_2^{\gamma} data set$	Ref.	Number of data points	$Q_{min}^2/[{ m GeV}^2]$	$Q_{max}^2/[{ m GeV}^2]$	x_{min}	x_{max}
Lep L3 1998	[1]	24	1.9	5.0	0.0035	0.15
Lep L3 1999	[2]	11	10.8	23.1	0.055	0.4
Lep L3 2000	3	17	0.09	225.0	0.13	0.89
Lep L3 2005	4	10	12.5	12.5	0.013	0.36
Lep OPAL 1994	$\overline{\mathbf{v}}$		5.9	14.7	0.046	0.679
Lep OPAL 1997 1	9	10	7.5	135.0	0.046	0.679
Lep OPAL 1997 2		21	0.6	59	0.075	0.7
Lep OPAL 1997 3	<u>∞</u>	~	1.86	3.76	0.004	0.141
Lep OPAL 2000	6	22	1.9	17.8	0.0012	0.3945
Lep OPAL 2002	[22]	12	12.1	780	0.175	0.725
Lep ALEPH 1999	[10]	11	6.6	284	0.039	0.54
, Lep ALEPH 1999	[11]	16	17.3	67.2	0.065	0.8478
Lep DELPHI 1996	[12]		12.0	12.0	0.0405	0.2335
KEK-TRISTAN-AMY 1990	[13]	9	73.0	73.0	0.25	0.75
KEK-TRISTAN-AMY 1995	[14]	25	73.0	390	0.25	0.75
KEK-TRISTAN-AMY 1997	[12]	3	8.9	6.8	0.07	0.5
KEK-TRISTAN-TOPAZ 1994	[16]	∞	5.1	80.0	0.043	0.785
DESY-PETRA-CELLO 1983	[17]	25	4.0	20.0	9.0	9.0
DESY-PETRA-TASSO 1986	[18]	20	23.0	23.0	0.11	6.0
DESY-PETRA-JADE 1983	[19]	~	24.0	100.0	0.05	0.75
DESY-PETRA-JADE 1984	[23]	15	2.4	5.3	0.05	0.75
DESY-PETRA-PLUTO 1984	[19]	15	2.4	9.2	0.063	0.72
DESY-PETRA-PLUTO 1987	[19]	4	45.0	45.0 F2+charm	0.175	0.825
SLAC-PEP-TPC/2-GAMMA 19871	[50]	22	0.24	5.1	0.01	0.55
SLAC-PEP-TPC/2-GAMMA 1987 2	[21]	19	0.24	5.2	0.07	0.16 Error!

0.05 δ total

0.06

···· Theory + shifts

0.1

δ total

····· Theory + shifts

0.01

0.1

-0.1

1.5

0.5

0.001

0.3 0.4

0.2

Acknowledgements

References

- [1] M. Acciarri et al. [L3 Collaboration], Phys. Lett. B 436, 403 (1998).
 doi:10.1016/S0370-2693(98)01025-9
- [2] M. Acciarri et al. [L3 Collaboration], Phys. Lett. B 447, 147 (1999).
 doi:10.1016/S0370-2693(98)01552-4
- [3] M. Acciarri et al. [L3 Collaboration], Phys. Lett. B 483, 373 (2000) doi:10.1016/S0370-2693(00)00587-6 [hep-ex/0004005].
- [4] P. Achard et al. [L3 Collaboration], Phys. Lett. B 622, 249 (2005) doi:10.1016/j.physletb.2005.07.028 [hep-ex/0507042].
- [5] R. Akers et al. [OPAL Collaboration], Z. Phys. C 61, 199 (1994). doi:10.1007/BF01413097
- [6] K. Ackerstaff et al. [OPAL Collaboration], Z. Phys. C 74, 33 (1997). doi:10.1007/s002880050368
- K. Ackerstaff et al. [OPAL Collaboration], Phys. Lett. B 411, 387 (1997)
 doi:10.1016/S0370-2693(97)01023-X [hep-ex/9708019].
- [8] K. Ackerstaff et al. [OPAL Collaboration], Phys. Lett. B 412, 225 (1997)
 doi:10.1016/S0370-2693(97)01022-8 [hep-ex/9708028].
- [9] G. Abbiendi *et al.* [OPAL Collaboration], Eur. Phys. J. C 18, 15 (2000) doi:10.1007/s100520000523 [hep-ex/0007018].
- [10] R. Barate *et al.* [ALEPH Collaboration], Phys. Lett. B **458**, 152 (1999). doi:10.1016/S0370-2693(99)00559-6
- [11] A. Heister et al. [ALEPH Collaboration], Eur. Phys. J. C 30, 145 (2003). doi:10.1140/epjc/s2003-01291-4
- [12] P. Abreu et al. [DELPHI Collaboration], Z. Phys. C 69, 223 (1996). doi:10.1007/s002880050022
- [13] T. Sasaki et al. [AMY Collaboration], Phys. Lett. B 252, 491 (1990). doi:10.1016/0370-2693(90)90577-S

- [14] S. K. Sahu et al. [AMY Collaboration], Phys. Lett. B 346, 208 (1995). doi:10.1016/0370-2693(95)00092-Y
- [15] T. Kojima et al. [AMY Collaboration], Phys. Lett. B 400, 395 (1997). doi:10.1016/S0370-2693(97)00349-3
- [16] K. Muramatsu et al. [TOPAZ Collaboration], Phys. Lett. B 332, 477 (1994). doi:10.1016/0370-2693(94)91284-X
- [17] H. J. Behrend et al. [CELLO Collaboration], Phys. Lett. 126B, 391 (1983). doi:10.1016/0370-2693(83)90187-9
- [18] M. Althoff et al. [TASSO Collaboration], Z. Phys. C 31, 527 (1986). doi:10.1007/BF01551073
- [19] W. Bartel et al. [JADE Collaboration], Phys. Lett. 121B, 203 (1983). doi:10.1016/0370-2693(83)90915-2
- [20] H. Aihara et al. [TPC/Two Gamma Collaboration], Z. Phys. C 34, 1 (1987). doi:10.1007/BF01561108
- [21] H. Aihara et al. [TPC/Two Gamma Collaboration], Phys. Rev. Lett. 58, 97 (1987). doi:10.1103/PhysRevLett.58.97
- [22] G. Abbiendi *et al.* [OPAL Collaboration], Phys. Lett. B **533**, 207 (2002) doi:10.1016/S0370-2693(02)01560-5 [hep-ex/0202035].
- [23] W. Bartel et al. [JADE Collaboration], Z. Phys. C 24, 231 (1984).