

Ficha de Trabalho 13

Matemática A

12. Ano de Escolaridade • Turma: B + C + H

Aula de Apoio

maio de 2023

Números complexos - Funções trigonométricas, exponenciais, logarítmicas - Sucessões,

Cálculo combinatório

1. O novo sistema de matrículas dos automóveis é composto por uma sequência de duas letras, seguido de uma sequência de dois algarismos e terminando numa sequência de duas letras

Quantas matrículas podem ser constituídas neste sistema, considerando as 26 letras do alfabeto e os algarismos de 0 a 9?

2. Um código de um cofre é constituído por sete dígitos

Quantos códigos existem

- 2.1. com os dígitos todos diferentes?
- **2.2.** que terminam num algarismo ímpar?
- 2.3. que terminam num algarismo par e não há repetição de algarismos?
- **2.4.** que têm exatamente quatro algarismos iguais a 5?
- 3. Um grupo de amigos é constituído por cinco rapazes e quatro raparigas

Quatro desses amigos vão ficar responsáveis por organizar um passeio ao Porto

De quantas maneiras pode ser constituído esse grupo de quatro amigos,

- **3.1.** se tiver tantos rapazes como raparigas?
- **3.2.** se tiver pelo menos duas raparigas?
- 3.3. se tiver rapazes, mas no máximo três?
- 4. Seja \mathbb{C} , o conjunto dos números complexos e sejam $z_1 = 2e^{i\frac{3\pi}{4}}$ e $z_2 = 2e^{i\frac{\pi}{4}}$, dois números complexos
 - **4.1.** Representa o número complexo $\frac{\overline{-z_2} \times (1-i)}{(z_1)^2}$ na forma trigonométrica e na forma algébrica
 - **4.2.** Determina o menor número natural n, de modo que $(z_2)^n$ seja um imaginário puro
 - **4.3.** Sabe-se que z_1 e z_2 são duas raízes índice n, consecutivas, de um número complexo z

Determina $n \in z$

- 5. Seja C, o conjunto dos números complexos
 - **5.1.** Resolve, em \mathbb{C} , a equação $z^4+iz=0$ Apresenta as soluções na forma trigonométrica
 - **5.2.** Representa, no plano complexo, o conjunto de pontos definido pela condição $|z-2-2i| \geq |z+2+2i| \wedge |z-i| \leq 2$

6. Na Figura 1 está representado, em referencial ortonormado xOy, o trapézio [ABCD], retângulo em A

Sabe-se que:

ullet a circunferência está centrada na origem O e tem raio 2

- o ponto C pertence ao semieixo positivo Oy
- ullet o ponto D é o ponto de interseção da circunferência com o semieixo positivo Ox

Figura 1

Tal como a figura sugere, o ponto B pertence ao segundo quadrante e o ângulo DOB de amplitude α , em radianos, tem por lado origem o semieixo positivo Ox e lado extremidade a semirreta $\dot{O}B$, com $\alpha \in \left[\frac{\pi}{2}; \pi\right]$

Resolve os itens seguintes, recorrendo exclusivamente a métodos analíticos

6.1. Mostra que a expressão que representa, em função de α , a área do trapézio [ABCD] é

$$A(\alpha) = 2\sin\alpha(1 - 2\cos\alpha)$$

6.2. Para um certo valor de $\alpha \in \left] \frac{\pi}{2}; \pi \right[$, sabe-se que $\tan \alpha = -\frac{\sqrt{5}}{2}$

Determina o valor exato da área do trapézio [ABCD]

6.3. Determina o valor de $\alpha \in \left[\frac{\pi}{2}; \pi\right[$ para o qual a área do trapézio [ABCD] é igual a $-8\sin\alpha\cos\alpha$

7. Seja f, a função real, de variável real, definida no intervalo $[0,+\infty[$ por $f(x)=xe^{1-x}+2$

Resolve os itens seguintes, recorrendo exclusivamente a métodos analíticos

7.1. O gráfico da função f apresenta uma assíntota horizontal de equação y=b

Determina b

7.2. Estuda a monotonia da função f, a existência de extremos relativos e, caso existam, determina-os

Na tua resposta, deves indicar o(s) intervalo(s) de monotonia

8. Considera a função g definida por

$$g(x) = \begin{cases} \frac{x-2}{\sqrt{2-x}} & \text{se } x < 2 \\ b+2 & \text{se } x = 2 \\ \frac{x^2 - 2x + a \ln(x-1)}{x-2} & \text{se } x > 2 \end{cases}$$

Recorrendo exclusivamente a métodos analíticos, determina os valores, de a e de b, de modo que g seja contínua em x=2

9. Seja f a função, de domínio $\mathbb{R}\setminus\{0\}$, definida por $f(x)=\frac{\tan(-x)}{5x}$

Considera a sucessão de números reais (x_n) tal que $x_n = \frac{1}{n+1}$

Qual é o valor de $\lim (f(x_n))$?

$$(A) -5$$

(B)
$$-\frac{1}{5}$$
 (C) 5

(D)
$$\frac{1}{5}$$