

Set 1. Nomenclature

- 1. Classify the following hydrocarbons as saturated or unsaturated and name them:
 - (a) CH₃CH₂CH₂CH₃
 - (b) CH₂CHCH₂CH₃
 - (c) CH₃CH₂CH(CH₃)CH₂CH₃
 - (d) CH₃CH₂CH₂C(CH₃)C(CH₃)CH₂CH₃
- 2. Write condensed formulae for the following hydrocarbons and name them:
 - (a)

(b)

(c)

(d)

- 3. Draw structural formulae for the following hydrocarbons, showing all bonds and hydrogen atoms, and name them:
 - (a) CH₃(CH₂)₂CH(CH₂CH₃)CH₂CH₃
 - (b) CH₃CH(CH₃)(CH₂)₃CH(CH₃)CH₃
 - (c) CH₃CH(CH₃)CH(CH₃)CH₃
 - (d) $CH_3(CH_2)_4CH(CH_3)CH_3$
- 4. Draw structural formulae for the following hydrocarbons and classify them as aliphatic, alicyclic or aromatic:
 - (a) methylpropene
 - (b) cyclopentene
 - (c) 3-ethyl-2-methylheptane
 - (d) 1.4-dimethylbenzene

- 5. Identify the functional group(s) in each of the following then name them using IUPAC conventions.
 - (a) CH₂CH₂CH₂CH₃OH
 - (b) CH₃CH₂CHCHCH₂CH₃

 - (d) CH₂Cl(CH₂)₃CHBrCHBrCH₂CH₃
 - (e) CH₃CH₂CH₂CH₂CHO
 - (f) CH₃CH₂CH(OH)CH₂CH₃
 - (g) CH₃CH₂COCH₂CH₃CH₃
 - (h) CH₃CH₂CH₂CH₃COOH
 - (i) CH₃CH₂CH₂CH₂NH₃
 - (j) CH₃CH₂COOCH₂CH₂CH₃
 - (k) CH₃CH₂CH₂CONH₂
 - (l) CH₃CH₂CH(NH₂)COOH
 - (m) CH₃CH₂CH₂C(CH₃)₂CH₂COOH
 - $\hbox{(n)} \quad \text{CH}_3 \hbox{CH}_2 \hbox{CHCHCH}_2 \hbox{CH}_2 \hbox{CI} \\$
 - (o) CH₃CHClCH(CH₃)CH₂NH₂
 - (p) CH₃CH₂CH₂COOCH₂CH₂CH₂CH₂CH₃
 - (q) CH₃CH₂COCH₂CH₂CH₂OH
 - (r) CH₃CH₂OOCCH₂CH₃
 - (s) CH₂ClCH(CH₃)CH₂CH₂CONH₃

- (t) CH₃CH(OH)(CH₂)₃CH(OH)CH₂CH₃
- (u) OHCCH₂CH₂CH₂Br
- (v) CH₃CH₂CH(NH₂)(CH₂)CH(NH₂)CH₂CH₃
- (w) CH₂(OH)CH₂CH₂COOH
- 6. Write condensed structures for the following:
 - (a) butan-2-ol
 - (b) 2,3,3-triiodopentane
 - (c) propanal
 - (d) 3,3-dimethylhexan-2-ol
 - (e) butanoic acid
 - (f) pentylamine / 1-pentanamine
 - (g) 3-hydroxyheptanoic acid
 - (h) pentan-3-one
 - (i) 4-aminohexanoic acid
 - (j) butanamide
 - (k) 5,6-dichlorohepta-2,4-diene
 - (l) 4-oxo-pentanoic acid

7.	Draw	full	structures	for	the	following:	9
----	------	------	------------	-----	-----	------------	---

- (a) chlorocyclobutane
- (b) methylbenzene
- (c) cis-pent-2-ene
- (d) 1,2,4-triiodocyclohexene
- (e) methylpropanoate
- (f) 3-chlorobutanoic acid
- (g) 4,4-dimethylpentanal
- (h) 1,1,2-tribromopropene
- (i) 3-iodo-1-propanamine
- (j) butan-2-one
- (k) ethanedioic acid
- (l) pentane-1,2,4-triol
- (m) 1,3,5-triethylbenzene
- (n) 3-aminopropanoic acid
- (o) hexanamide

- 8. Name the following hydrocarbons from their line structures:
 - (a)

(b)

(c)

(d)

(e)

(f)

(g)

- 9. Draw line structures for the following:
 - (a) methylcyclopropane
 - (b) 1,3-diethylbenzene
 - (c) trans-3-hexene
 - (d) 1,2-cyclopentanediol
 - (e) ethylpentanoate

(f) 2-hydroxypropanoic acid (g) 2,3-dibromopropanal (h) tetrachloroethene (i) ethylamine (ethanamine) (j) propanone (k) propanedioic acid (1) 1-penten-3-one nitrobenzene (m) (n) 3-ethyl-2,4-dimethylpentan-1-ol (o) propanamide (p) 1-chloro-3-methylbenzene (q) 2-aminopropanoic acid (r) butylbutanoate

Set 2. Isomers

1. Draw structural formulae and name all isomers with the molecular formula C_6H_{14} .

2. Draw structural formulae and name all isomers with the molecular formula $\rm C_5H_{10}.$

3. Draw all of the isomers of trimethylbenzene.

- 4. Draw the following and determine which ones exhibit cis/trans isomerism.
 - (a) pent-2-ene

(b) 1,1,2-trichlorobut-1-ene

(c) 2,4-dimethylhex-1-ene

- (d) 1,2,3-tribromopropene
- (e) buta-1,3-diene

Set 3. Reactions and properties of the aliphatic hydrocarbons

Combustion

1.	(a)	Using condensed structural formulae, write balanced equations for the
		complete combustion of the following:

i) butene

ii) methylpropane

(b)	Using condensed structural formulae, write balanced equations for the
	incomplete combustion of the following:

i) pentane

ii) cyclohexane

Substitution

- 2. For each of the following reactions write balanced equations, using structural diagrams for all reactants and products. Name any organic products.
 - (a) chloromethane is produced by reacting methane and chlorine under UV light
 - (b) (i) A limited supply of bromine and cyclobutane react in the presence of UV light
 - (ii) Excess bromine reacts with cyclobutane in UV light
 - (c) propane reacts with fluorine gas under UV light

Addition

- 3. For each of the following reactions write balanced equations using structural diagrams for all reactants and products. Name any organic products.
 - (a) the addition of hydrogen bromide to prop-1-ene

(b) the hydration of cis-but-2-ene using sulfuric acid as a catalyst

(c) the hydrogenation of trans-but-2-ene

(d) the chlorination of ethene

Markovnikov's rule

- 4. Name the predominant product when HCl is added to each of the following alkenes.
 - (a) CH₃CHCH₂
 - (b) CH₃(CH₃)CCH(CH₃)
 - (c) CHCCH₂CH₃

5. The isomers of pentane are shown below:

They have the same molar masses but their boiling points decrease from left to right. Explain with reference to the strength of intermolecular forces present in each.

6. Tetrachloroethene is used in dry cleaning and is an excellent solvent for organic substances but it's solubility in water is low $(0.150~g/L@25^{\circ}C)$. Trichloroethene is a lot more soluble in water $(1.23~g/L~@25^{\circ}C)$. Explain this difference in solubility with reference to the intermolecular forces present in each and also those that need to form for each to dissolve in water.

Set 4. Reactions of the alicyclic and aromatic hydrocarbons

- 1. For each of the following reactions write equations, using line structural diagrams for all organic reactants and products. Name any organic products.
 - (a) cyclopentane and limited chlorine react under UV light
 - (b) bromine water is added to cyclohexene
- 2. Write equations for the production of the following compounds. Use line structural diagrams for all organic reactants and products.
 - (a) nitrobenzene
 - (b) propylbenzene

(c) cyclohexane

(d) chlorobenzene

Set 5. Reactions and properties of alcohols

- 1. Classify the following as primary, secondary or tertiary alcohols, and name them.
 - (a) CH₃CH₂C(CH₃)₂OH
 - (b) HOCH, CH, CH, CH,
 - (c) CH₃CH(CH₃)(CH₂)₃CH(CH₃)OH
 - (d) CH₃CH₂CHOHCH₂CH₃
- 2. Butanol has four chain and positional isomers. Draw and name these.

3. Write an equation for the complete combustion of propan-2-ol.

4. Write an equation for the preparation of propan-2-ol. Use full structural formulae and name all reactants and products.

5.	Write a balanced redox equation for the oxidation of butan-2-ol using acidified
	potassium dichromate. Name the products.

Reduction half equation	
Oxidation half equation	
Overall equation	
Names	

6. Write a balanced redox equation for the oxidation of pentan-1-ol using potassium permanganate. Name the products.

Reduction half equation	
Oxidation half equation	
Overall equation	
Names	

7. (a) Draw each of the following alcohols and list them in order of increasing boiling point.

butan-1-ol, ethanol, methyl propan-1-ol, methanol, methyl propan-2-ol

(b) With reference to intermolecular bonding explain why you have placed them in this order.

8. Write a balanced equation for the reaction between sodium and propan-1-ol to produce sodium propoxide.

9. Describe how potassium dichromate could be used to determine whether an alcohol is secondary or tertiary. Include observations.

- 10. Name the following alcohols:
 - CH₃—CH—CH—CH₃

 CH₃—OH
 - (b) $\begin{array}{c} CH_3 \\ CH_3 CH CH_2 C CH_2 CH_3 \\ \\ OH CH_3 \end{array}$
 - (c) CH₃CH(CH₃)CHOHCH₂CH₃

Set 6. Aldehydes, ketones, carboxylic acids and esters

(b)	CH ₃ COCH ₂ CH ₃ CH ₃ CH ₂ COOCH ₂ CH ₂ CH ₃
(c)	CH ₃ CH ₂ CHO
(d)	CH ₃ (CH ₂) ₄ COOH
(e)	CH ₃ (CH ₂) ₅ COCH ₃
(f)	CH ₃ CH ₂ OOCCH ₂ CH ₃
(g)	CH ₃ COCH ₂ CH ₂ COOH
(b) (c) (d) (e) (f) (g)	
.0.	
Writ	te an equation for the complete combustion of propanone.

4. Write an equation for the incomplete combustion of butanoic acid (in limited ${\rm O_2}$).

5. Write a balanced redox equation for the oxidation reaction which producing butanal using acidified potassium permanganate.

Reduction half equation

Oxidation half equation

Overall equation

Names of all species

6. Write a balanced redox equation for the oxidation produces pentan-3-one using acidified potassium dichromate.

Reduction half equation

Oxidation half equation

Overall equation

Names of all species

7. Name the starting materials required to produce butanoic acid in the laboratory.

8. Write an equation for the production of propyl butanoate in the laboratory.

9.	Wri follo	Write a balanced equation for the reaction between propanoic acid and the following substances. Give full observations.			
	(a)	magnesium carbonate			
		equation:			
		observations:			
	(b)	sodium			
	(D)	equation:			
		observations:			
	(c)	potassium hydroxide			
		equation:			
		observations:			
	(d)	ethanol and concentrated sulfuric acid			
		equation:			
		observations:			
	(e)	acidified potassium dichromate			
	. ,	equation:			
		observations:			
		•			

- 10. The following compounds are all of similar molecular mass. Place them in order of increasing boiling point and explain your logic, with reference to their shapes and the intermolecular forces present in each.
 - 1-butanol, butanoic acid, butanal, butane

11. Match each line structure to its major functional group with arrows.

ester

aldehyde

ketone

carboxylic acid

Set 7. Amines, amides and amino acids

- 1. Identify the following as amines, amides or amino acids and name them:
 - (a) CH₃CH(CH₃)CH₂CONH,
 - (b) CH₃CH(NH₂)CH₂CH₃
 - (c) $H_2NCH_2(CH_2)_6CH_3$
 - (d) CH₃CHNH₂COOH
 - (e) CH₃CH₂CH₂CH₂CONH₂
 - (f) H₂NCH₂CH₂COOH
- 2. Classify the following as primary, secondary or tertiary amines and draw them using full structural formulae.
 - (a) H₃CNH₂
 - (b) $CH_3CH_2N(CH_3)$
 - (c) $H_2NCH(CH_3)_2$
 - (d) $H_3CN(CH_3)_2$
 - (e) CH₃CH₂CH₂NHCH₃

- 3. Name the following:

 - (b)

 H H H H H H
 H C-C-C-C-C-N
 H O H H

 (c)
 - (d) NH₂
 - (e) NH_2
- 4. Prepare full structural formulae for the following:
 - (a) ethyldimethylamine
 - (b) propanamide
 - (c) 3-aminobutanoic acid

- (d) 3-methylpentan-2-amine
- (e) 3-aminopentanoic acid
- 5. Which of the following are α -amino acids? (You may need to sketch them).
 - (a) H₃CC(CH₃)(NH₂)COOH

(b) H₃CCH(NH₂)COOH

(c) H₃CCH(NH₂)CH₂COOH

(d) H₃CC(CH₃)(NH₂)CH₂CH₂COOH

(e) HOOCCH(NH₂)CH₃

6. Phenylalanine is an amino acid shown below:

(a) Draw phenylalanine in its zwitterionic form under neutral conditions.

(b) Draw phenylalanine when in acidic conditions.

(c) Draw phenylalanine when in alkaline conditions.