Examen Ordinario

SOLUCIONES

1. Estudia si las siguientes afirmaciones son verdaderas o falsas. Justifica tu repuesta. (Recuerda que si la afirmación es verdadera hay que dar una demostración mientras que si la afirmación es falsa es suficiente con dar un contraejemplo):

a) (1 punto) La aplicación $F: \mathbb{Z}_{11} \longrightarrow \mathbb{Z}_{11}$ definida por $F(x) = x^{11}$ es un homomorfismo de anillos.

<u>Solución:</u> En primer lugar veamos que F(x) = x en \mathbb{Z}_{11} . Para ello utilizamos que el grupo multiplicativo de \mathbb{Z}_{11} tiene orden 10, o lo que es lo mismo el Pequeño Teorema de Fermat para p=11 y x coprimo con 11: $x^{10}\equiv 1 \pmod{11}.$ Aplicado a nuestra función tenemos F(x)= $x^{11} = x$.

Ahora, tenemos que ver que se respeta tanto la estructura aditiva como la multiplicativa a través de la aplicación F:

- iF(x+y) = F(x) + F(y)?: F(x+y) = x + y = F(x) + F(y).
- $F(x \cdot y) = F(x) \cdot F(y)$: $F(x \cdot y) = x \cdot y = F(x) \cdot F(y)$.

Solución 2: Sin utilizar que F(x) = x en \mathbb{Z}_{11} :

• F(x + y) = F(x) + F(y)?

Utilizando el binomio de Newton, tenemos:

$$(x+y)^{11} = \sum_{k=0}^{11} {11 \choose k} x^{11-k} y^k = x^{11} + {11 \choose 1} x^{10} y + {11 \choose 2} x^9 y^2 + \dots + {11 \choose 10} x y^{10} + y^{11}.$$

Ahora como $\binom{11}{k} = \frac{11 \cdot 10 \cdots (11 - (k-1))}{k!}$, se tiene que 11 divide a $\binom{11}{k}$ si $k \neq 11, 0$. Por lo tanto $(x+y)^{11} = x^{11} + y^{11}$ en \mathbb{Z}_{11} . Así F(x+y) = F(x) + F(y).

• $F(x \cdot y) = F(x) \cdot F(y)$?

Utilizando que \mathbb{Z}_{11} es conmutativo: $(x \cdot y)^{11} = x^{11} \cdot y^{11}$ y por lo tanto $F(x \cdot y) = x \cdot y = F(x) \cdot F(y)$.

Así la afirmación es <u>Verdadera</u>.

b) (1 punto) Hay 9 grupos abelianos de orden 2000, salvo isomorfismo,

Solución: Vamos a utilizar el Teorema de clasificación de grupos abelianos finitos. En nuestro caso a buscar los grupos abelianos de orden $2000 = 2^4 \cdot 5^3$. Para ver cuantos hay basta con ver cada factor potencia de primo y ver como podemos poner la potencia como suma de enteros positivos (denotamos por C_n el grupo cíclico de orden n):

: 2+2: $C_4 \times C_4$

: C_{16}

Por lo tanto tenemos 5 grupos abelianos de orden 2^4 y 3 de orden 5^3 . Así hay $15 = 5 \cdot 3$ grupos abelianos de orden 2000.

Si utilizamos la versión del teorema de clasificación en el que nos dice que si G es un grupo abeliano de orden n entonces

$$G \simeq C_{d_1} \times \cdot \times C_{d_s}$$
,

donde d_i divide a d_{i+1} y $n = d_1 \cdots d_s$. Así podemos denotar por (d_1, \ldots, d_s) la clase de isomorfía de G. Entonces las posibles clase de isomorfía en el caso de n = 2000 son las tuplas:

$$(2, 10, 10, 10)$$
 , $(10, 10, 20)$, $(5, 10, 40)$, $(5, 20, 20)$, $(5, 5, 80)$, $(2, 2, 10, 50)$, $(2, 10, 100)$, $(10, 200)$, $(20, 100)$, $(5, 400)$, $(2, 2, 2, 250)$, $(2, 2, 500)$, $(2, 1000)$, $(4, 500)$, (2000) .

Así la afirmación es Falsa.

c) (1 punto) El mayor orden que puede tener un elemento de S_{11} es 12.

<u>Solución</u>: La afirmación es <u>Falsa</u>. Para ello basta con dar un contraejemplo. Sea $\sigma = (1\,2\,3)$ y $\tau = (4\,5\,6\,7\,8)$. Entonces tenemos que $\sigma, \tau \in S_{11}$ son disjuntas. Por lo tanto el elemento $\sigma\tau \in S_{11}$ cumple

$$|\sigma\tau| = \text{mcm}\{|\sigma|, |\tau|\} = 3 \cdot 5 = 15.$$

2. Considera el subconjunto de matrices 2×2 con coeficientes en $\mathbb Z$ definido por

$$A = \{aI + bM : a, b \in \mathbb{Z}\}, \quad \mathbf{donde} \quad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \mathbf{y} \quad M = \begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix}.$$

a) (0.5 puntos) Demuestra que A es un anillo conmutativo y con unidad, con la multiplicación y suma de matrices.

<u>Solución</u>: Sabemos que el conjunto de las matrices 2×2 con coeficientes en \mathbb{Z} , $M_2(\mathbb{Z})$, forman un anillo no conmutativo con unidad con las operaciones suma y producto habituales de las matrices. Ahora como $A \subset M_2(\mathbb{Z})$, para ver que A es anillo con la suma y producto de matrices, basta con ver que la suma y el producto de matrices son cerrados en A, ya que el resto de las propiedades provienen de $M_2(\mathbb{Z})$. Veámoslo: sean aI + bM, $cI + dM \in A$:

$$(aI + bM) + (cI + dM) = (a + c)I + (b + d)M \in A,$$

$$(aI + bM) \cdot (cI + dM) = (ac)I + (ad)M + (bc)M + bdM^2 = (ac)I + (ad + bc + 2bd)M \in A,$$

donde hemos usado que $M^2 = 2M$.

Por último falta ver que A es conmutativo (la unidad es I que es la misma que la de $M_2(\mathbb{Z})$):

$$(aI+bM)\cdot (cI+dM) = (ac)I + (ad+bc+2bd)M = (ca)I + (da+cb+2db)M = (cI+dM)\cdot (aI+bM).$$

Por lo tanto hemos visto que A es un anillo conmutativo con unidad.

b) (0.75 puntos) Decide cuáles de los siguientes elementos son divisores de cero y/o unidades en A:

$$2I$$
, $I-M$, $2I-M$.

<u>Solución:</u> Sea $aI + bM \in A$, entonces aI + bM es

- divisor de cero si existe $cI + dM \in A$ tal que (aI + bM)(cI + dM) = 0.
- una unidad si existe $cI + dM \in A$ tal que (aI + bM)(cI + dM) = I.

2I

$$2I(cI+dM) = 0 \Leftrightarrow cI = -dM \Leftrightarrow \begin{pmatrix} c & 0 \\ 0 & c \end{pmatrix} = \begin{pmatrix} -2d & -d \\ 0 & 0 \end{pmatrix} \Leftrightarrow c = d = 0.$$

$$2I(cI+dM) = I \Leftrightarrow (1-2c)I = dM \Leftrightarrow \begin{pmatrix} 1-2c & 0 \\ 0 & 1-2c \end{pmatrix} = \begin{pmatrix} 2d & d \\ 0 & 0 \end{pmatrix} \Leftrightarrow d = 0, c = \frac{1}{2}.$$

Por lo tanto, 2I no es ni divisor de cero ni unidad.

I-M

$$\bullet \ (I-M)(cI+dM)=0 \Leftrightarrow cI=(c+d)M \Leftrightarrow \begin{pmatrix} c & 0 \\ 0 & c \end{pmatrix} = \begin{pmatrix} 2(c+d) & c+d \\ 0 & 0 \end{pmatrix} \Leftrightarrow c=d=0.$$

$$(I-M)(cI+dM) = I \Leftrightarrow (c-1)I = (c+d)M \Leftrightarrow \begin{pmatrix} c-1 & 0 \\ 0 & c-1 \end{pmatrix} = \begin{pmatrix} 2(c+d) & c+d \\ 0 & 0 \end{pmatrix} \Leftrightarrow c = 1, d = -1.$$

Por lo tanto, I-M no es divisor de cero, pero si unidad, su inverso es el mismo.

2I - M

$$(2I - M)(cI + dM) = 0 \Leftrightarrow 2cI = cM \Leftrightarrow \begin{pmatrix} 2c & 0 \\ 0 & 2c \end{pmatrix} = \begin{pmatrix} 2c & c \\ 0 & 0 \end{pmatrix} \Leftrightarrow c = 0.$$

$$(2I - M)(cI + dM) = I \Leftrightarrow (2c - 1)I = cM \Leftrightarrow \begin{pmatrix} 2c - 1 & 0 \\ 0 & 2c - 1 \end{pmatrix} = \begin{pmatrix} 2c & c \\ 0 & 0 \end{pmatrix} \Leftrightarrow \frac{1}{2} = c = 0$$

Por lo tanto, 2I-M es divisor de cero, y no puede ser unidad.

Conclusión:

	¿Divisor de cero?	¿Unidad?
2I	No	No
I-M	No	Si
2I - M	Si	No

c) (0.75 puntos) ¿Es maximal el ideal generado por 31?

<u>Solución:</u> El ideal $\langle 3I \rangle$ es maximal si y sólo si el anillo cociente $A/\langle 3I \rangle$ es un cuerpo. Veamos que ni siquiera es un dominio. Para ello vamos a usar que (2I-M)M=0 en A. Basta con ver que la clase de 2I-M y de M en $A/\langle 3I \rangle$ no son la del 0. O equivalentemente, $2I-M, M \notin \langle 3I \rangle$. Supongamos lo contrario, entonces existirán $aI+bM, cI+dM \in A$ tales que

$$2I - M = 3I(aI + bM) \Longleftrightarrow (3a - 2)I = -(3b + 1)M \Longleftrightarrow \begin{pmatrix} 3a - 2 & 0 \\ 0 & 3a - 2 \end{pmatrix} = \begin{pmatrix} -6b - 2 & -3b - 1 \\ 0 & 0 \end{pmatrix}.$$

$$M = 3I(cI + dM) \Longleftrightarrow 3cI = (1 - 3d)M \Longleftrightarrow \begin{pmatrix} 3c & 0 \\ 0 & 3c \end{pmatrix} = \begin{pmatrix} 2 - 6d & 1 - 3d \\ 0 & 0 \end{pmatrix}.$$

Necesariamente $a = \frac{2}{3}, d = \frac{1}{3}$, pero $\frac{1}{3}, \frac{2}{3} \notin \mathbb{Z}$. Así hemos visto que la clase de 2I - M en $A/\langle 3I \rangle$ es un divisor de cero. Por lo tanto, $\langle 3I \rangle$ no es un ideal maximal de A.

- 3. Sea $\varphi: \mathbb{R} \longrightarrow \mathbb{C}^{\times}$ la aplicación dada por $\varphi(x) = \cos x + i \sin x$.
- a) (1 punto) Demuestra que φ es un homomorfismo de grupos.

<u>Solución</u>: Tenemos que ver que $\varphi(x+y) = \varphi(x) \cdot \varphi(y)$ ya que la operación en \mathbb{R} es la suma y en \mathbb{C}^{\times} es el producto:

$$\varphi(x) \cdot \varphi(y) = (\cos(x) + i \sin(x))(\cos(y) + i \sin(y)) =$$

$$= \cos(x)\cos(y) - \sin(x)\sin(y) + i(\sin(x)\cos(y) + \sin(y)\cos(x)) =$$

$$= \cos(x + y) + i \sin(x + y) =$$

$$= \varphi(x + y).$$

Aquí sólo hemos utilizado las fórmulas de coseno y seno de la suma de ángulos. Otra forma es ver que $\varphi(x) = e^{ix}$. Entonces

$$\varphi(x+y) = e^{i(x+y)} = e^{ix}e^{iy} = \varphi(x)\varphi(y).$$

b) (1 punto) Calcula el núcleo e imagen de φ .

Solución:

$$\operatorname{Ker}(\varphi) = \{x \in \mathbb{R} \mid \varphi(x) = 1\} = \{x \in \mathbb{R} \mid \cos(x) + i \sin(x) = 1\} = \{2k\pi \mid k \in \mathbb{Z}\}.$$
$$\operatorname{Im}(\varphi) = \{\varphi(x) \mid x \in \mathbb{R}\} = \{\cos(x) + i \sin(x) \mid x \in [0, 2\pi]\} = \{z \in \mathbb{C} \mid ||z|| = 1\} = S^{1}.$$

4. bf Considera el subgrupo de $SL(3, \mathbb{Z}_3)$ definido como:

$$G = \left\{ m(a, x, y) := \begin{pmatrix} a & \overline{0} & x \\ \overline{0} & a^{-1} & y \\ \overline{0} & \overline{0} & \overline{1} \end{pmatrix} \mid x, y \in \mathbb{Z}_3, a \in \mathbb{Z}_3^{\times} \right\}.$$

a) (0.75 puntos) Calcula |G|. Encuentra un subgrupo de G de tamaño 3.

<u>Solución</u>: Se tiene $|G| = |\mathbb{Z}_3|^2 |\mathbb{Z}_3^{\times}| = 3^2 \cdot 2 = 18$ ya que $x, y \in \mathbb{Z}_3, a \in \mathbb{Z}_3^{\times}$. Ahora vamos a calcular un subgrupo H de G de orden 3. Como 3 es primo este subgrupo deberá de ser cíclico. En primer lugar hay que tener en cuenta que el elemento identidad en este grupo es $m(\overline{1}, \overline{0}, \overline{0})$. Ahora, la matriz $m(\overline{1}, \overline{1}, \overline{0})$ satisface:

$$m(\overline{1}, \overline{1}, \overline{0})^{2} = \begin{pmatrix} \overline{1} & \overline{0} & \overline{1} \\ \overline{0} & \overline{1} & \overline{0} \\ \overline{0} & \overline{0} & \overline{1} \end{pmatrix}^{2} = \begin{pmatrix} \overline{1} & \overline{0} & \overline{2} \\ \overline{0} & \overline{1} & \overline{0} \\ \overline{0} & \overline{0} & \overline{1} \end{pmatrix} = m(\overline{1}, \overline{2}, \overline{0}) \neq m(\overline{1}, \overline{0}, \overline{0})$$

$$m(\overline{1}, \overline{1}, \overline{0})^{3} = \begin{pmatrix} \overline{1} & \overline{0} & \overline{1} \\ \overline{0} & \overline{1} & \overline{0} \\ \overline{0} & \overline{0} & \overline{1} \end{pmatrix}^{3} = \begin{pmatrix} \overline{1} & \overline{0} & \overline{0} \\ \overline{0} & \overline{1} & \overline{0} \\ \overline{0} & \overline{0} & \overline{1} \end{pmatrix} = m(\overline{1}, \overline{0}, \overline{0}).$$

Por lo tanto $H = \langle m(\overline{1}, \overline{1}, \overline{0}) \rangle$ es un subgrupo de orden 3 de G.

b) (0.75 puntos) ¿Tiene G un subgrupo de orden d para cada divisor d de |G|?

<u>Solución 1:</u> Tenemos $|G| = 18 = 2 \cdot 3^2$. Por lo tanto los posibles divisores de 18 son 1, 2, 3, 6, 9, 18. Los subgrupos triviales: $\{m(\overline{1}, \overline{0}, \overline{0})\}$ y G tienen ordenes 1 y 18 respectivamente. En el apartado anterior hemos encontrado H de orden 3. Ahora, los Teoremas de Sylow nos dicen que existen subgrupos de G de ordenes 2 y 9 (también 3). Ahora sólo nos queda por ver si hay algún subgrupo o no de orden 6.

Veamos que H es normal. Tenemos que un elemento de H es de la forma $m(\overline{1}, z, \overline{0}), z \in \mathbb{Z}_3$. Para demostrar que es normal tenemos que ver $\alpha \cdot m(\overline{1}, z, \overline{0}) \cdot \alpha^{-1} \in H$ para todo $\alpha = m(a, x, y) \in G$:

$$m(a,x,y) \cdot m(\overline{1},z,\overline{0}) \cdot m(a,x,y)^{-1} = \begin{pmatrix} a & \overline{0} & x \\ \overline{0} & a^{-1} & y \\ \overline{0} & \overline{0} & \overline{1} \end{pmatrix} \begin{pmatrix} \overline{1} & \overline{0} & z \\ \overline{0} & \overline{1} & \overline{0} \\ \overline{0} & \overline{0} & \overline{1} \end{pmatrix} \begin{pmatrix} a & \overline{0} & x \\ \overline{0} & a^{-1} & y \\ \overline{0} & \overline{0} & \overline{1} \end{pmatrix}^{-1} = \begin{pmatrix} \overline{1} & \overline{0} & az \\ \overline{0} & \overline{1} & 0 \\ \overline{0} & \overline{0} & \overline{1} \end{pmatrix} = m(\overline{1},az,\overline{0}) \in H.$$

Así hemos visto que H es normal en G y por lo tanto G/H es un grupo de orden 6. Tenemos una correspondencia entre los subgrupos $K \leq G$ que contienen a H y los subgrupos de $\overline{K} \leq G/H$, de tal forma que $|K| = |\overline{K}| \cdot |H|$.

Por último como G/H es un grupo de orden 6 será isomorfo a C_6 o a S_3 . Ambos grupos tienen elementos de orden 2. Por lo tanto tenemos que existe $\overline{K} \leq G/H$ tal que $|\overline{K}| = 2$.

Juntando ese último resultado con la correspondencia entre los subgrupos de G que contienen a H y los subgrupos de G/H tenemos que existe K tal que $|K| = |\overline{K}| \cdot 3 = 6$.

Conclusión: Existen subgrupos de G de cualquier orden divisor de |G|.

<u>Solución 2:</u> Sea $a \in \mathbb{Z}_3^{\times}$, entonces $a \in \{\pm \overline{1}\}$ y en particular $a^{-1} = a$. Así tenemos:

$$m(a,x,y)\cdot m(b,w,z) = \begin{pmatrix} a & \overline{0} & x \\ \overline{0} & a & y \\ \overline{0} & \overline{0} & \overline{1} \end{pmatrix} \begin{pmatrix} b & \overline{0} & w \\ \overline{0} & b & z \\ \overline{0} & \overline{0} & \overline{1} \end{pmatrix} = \begin{pmatrix} ab & \overline{0} & x+aw \\ \overline{0} & ab & y+az \\ \overline{0} & \overline{0} & \overline{1} \end{pmatrix} = m(ab,x+aw,y+az).$$

Definamos los siguientes subconjuntos:

$$H_{1} = \left\{ m(\overline{1}, \overline{0}, \overline{0}) \right\},$$

$$H_{2} = \left\{ m(a, \overline{0}, \overline{0}) \ a \in \mathbb{Z}_{3}^{\times} \right\},$$

$$H_{3} = \left\{ m(1, x, \overline{0}) \ x \in \mathbb{Z}_{3} \right\},$$

$$H_{6} = \left\{ m(a, x, \overline{0}) \ x \in \mathbb{Z}_{3}, a \in \mathbb{Z}_{3}^{\times} \right\},$$

$$H_{9} = \left\{ m(\overline{1}, x, y) \ x, y \in \mathbb{Z}_{3} \right\},$$

$$H_{18} = \left\{ m(a, x, y) \ x, y \in \mathbb{Z}_{3}, a \in \mathbb{Z}_{3}^{\times} \right\}.$$

Utilizando la anterior representación del producto de matrices de G se observa que $H_d \leq G$, con $d \mid 18$. En particular hemos construido estos subgrupos de forma que $|H_d| = d$ con $d \mid |G| = 18$.

c) (0.75 puntos) ¿Es G resoluble?

<u>Solución 1:</u> Utilizamos $H \subseteq G$, para conseguir el troceado H, G/H. Tenemos que H es cíclico de orden 3 y G/H es de orden 6, por lo tanto isomorfo a C_6 o a S_3 , ambos resolubles. Por lo tanto G es resoluble.

<u>Solución 2:</u> Sea $s_3 = \# \operatorname{Syl}_3(G)$, entonces el tercer Teorema de Sylow nos asegura que $s_3|2$ y $s_3 \equiv 1 \pmod{3}$. Por lo tanto $s_3 = 1$. Así $\operatorname{Syl}_3(G) = \{P\}$ y se tiene que $P \subseteq G$ con |P| = 9. Utilizamos $P \subseteq G$, para conseguir el troceado P, G/P. Como G/P tiene orden 2 es cíclico y como $|P| = 9 = 3^2$ sabemos que P es abeliano. Por lo tanto G es resoluble.

d) (0.75 puntos) ¿Son $m(\overline{1}, \overline{1}, \overline{1})$ y $m(\overline{-1}, \overline{1}, \overline{0})$ elementos conjugados en G?

<u>Solución 1:</u> Si las matrices $m(\overline{1}, \overline{1}, \overline{1})$ y $m(\overline{-1}, \overline{1}, \overline{0})$ fueran conjugados en G, entonces existiría una matriz $m(a, x, y) \in G$ tal que

$$m(a,x,y)\cdot m(\overline{1},\overline{1},\overline{1})m(a,x,y)^{-1}=m(\overline{-1},\overline{1},\overline{0}).$$

Pero tenemos que para todo $a \in \mathbb{Z}_3^{\times}, x, y \in \mathbb{Z}_3$ se tiene:

$$\begin{pmatrix} a & \overline{0} & x \\ \overline{0} & a^{-1} & y \\ \overline{0} & \overline{0} & \overline{1} \end{pmatrix} \begin{pmatrix} \overline{1} & \overline{0} & 1 \\ \overline{0} & \overline{1} & \overline{1} \\ \overline{0} & \overline{0} & \overline{1} \end{pmatrix} \begin{pmatrix} a & \overline{0} & x \\ \overline{0} & a^{-1} & y \\ \overline{0} & \overline{0} & \overline{1} \end{pmatrix}^{-1} = \begin{pmatrix} \overline{1} & \overline{0} & a \\ \overline{0} & \overline{1} & a^{-1} \\ \overline{0} & \overline{0} & \overline{1} \end{pmatrix} \neq \begin{pmatrix} \overline{-1} & \overline{0} & \overline{1} \\ \overline{0} & \overline{-1} & \overline{0} \\ \overline{0} & \overline{0} & \overline{1} \end{pmatrix} = m(\overline{-1}, \overline{1}, \overline{0}).$$

<u>Solución 2:</u> Los autovalores de $m(\overline{1}, \overline{1}, \overline{1})$ son $\{1, 1, 1\}$ y los de $m(\overline{-1}, \overline{1}, \overline{0})$ son $\{-1, -1, 1\}$. Como tienen autovalores distintos, tenemos que no pueden ser matrices conjugadas.

<u>Solución 3:</u> $m(\overline{1}, \overline{1}, \overline{1})$ y $m(\overline{-1}, \overline{1}, \overline{0})$ tienen distinto orden:

$$|m(\overline{1}, \overline{1}, \overline{1})| = 3$$
 $y \qquad |m(\overline{-1}, \overline{1}, \overline{0})| = 2.$