

#### Discovering Concept Coverings in Ontologies of Linked Data Sources

Rahul Parundekar, Craig A. Knoblock and Jose-Luis Ambite {parundek,knoblock}@usc.edu, ambite@isi.edu

University of Southern California





#### **MOTIVATION**







#### USC Viterbi Web of Linked Data

Example: Geospatial **Domain** 







#### Equivalent instances in the different domains connected with *owl:sameAs*





#### Links are absent at the ontology level





#### Problem: Ontologies are Disconnected

- Only a small number of Ontologies are linked
  - 15 out of the 190 sources: State of the LOD Cloud 2011
- Existing Concepts may not be sufficient for exhaustive set of alignments
  - Linked Data sources reflect RDBMS schemas of sources from which they are derived
    - DBpedia has rich ontology
    - GeoNames has only one concept ("geonames:Feature")
- Alignments are necessary for the Interoperability goal of the Semantic Web





#### How can we find Ontology alignments?



#### USC Viterbi Our Solution

- Generate Alignments Automatically from Linked Data
  - Use equality (e.g. owl:sameAs) links between instances in Linked Data as evidence
  - Using Set Containment theory, find alignments between Concepts
- Generate new concepts to find alignments not previously possible with existing concepts
  - Introduce new extensional concepts
    - Value Restrictions in OWL-DL
  - We call these Restriction Classes





## Classes are created extensionally by adding value restrictions on properties







## Classes are created extensionally by adding value restrictions on properties







## Classes are created extensionally by adding value restrictions on properties







### Extensional Approach to Ontology Alignment using Restriction Classes

|  | Represents set of instances belonging to ClassA |
|--|-------------------------------------------------|
|  | Represents set of instances belonging to ClassE |





#### featureClass=P



#### rdf:type=PopulatedPlace



 $r_2$ 





#### featureClass=P



Set of instances from DBpedia that  $r_1$  is linked to

#### rdf:type=PopulatedPlace



 $r_2$ 











#### Extensionally, when are two classes equal?

- Represents set of instances belonging to ClassA
- Represents set of instances belonging to ClassB



$$\frac{|ClassA \cap ClassB|}{|ClassA|} = \frac{|ClassA \cap ClassB|}{|ClassB|} = 1$$









Step 1

# FINDING ALIGNMENTS WITH ATOMIC RESTRICTION CLASSES





Approach: We start with a superset of all instances...









... and generate smaller subsets for each property\*, ...





#### ... and generate yet smaller subsets for each value\*





## Comparing the two sets, we can align them equal if they fit





### Linking and Building Ontologies of Linked Data [ISWC2010]

- Expressive of Restriction Classes using Conjunction Operator
  - E.g. define specialized concepts like Cities in the US
  - featureCode=P.PPL ^ countryCode=US
- Used top-down approach to find alignments
  - Specialize ontologies where original were rudimentary
  - Find complimentary hierarchy across an ontology

| Source 1 | Source 2              | $\#(r_1 = r_2)$ | $\#(r_1 = r_2)$ | $\#(r_1 \subset r_2)$ | $\#(r_1 \subset r_2)$ | $\#(r_2 \subset r_1)$ | $\#(r_2 \subset r_1)$ |
|----------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|-----------------------|-----------------------|
| $(O_1)$  | $(O_2)$               | total           | best matches    | before                | after                 | before                | after                 |
| LinkedG  | LinkedGeoData DBpedia |                 | 152             | 2528                  | 1837                  | 1804                  | 1627                  |
| Geonam   | es DBpedia            | 31              | 19              | 809                   | 400                   | 1384                  | 1247                  |
| Geospec  | ies DBpedia           | 509             | 420             | 9112                  | 2294                  | 6098                  | 4455                  |
| MGI      | GeneID                | 10              | 9               | 2031                  | 1869                  | 3594                  | 2070                  |
| Geospeo  | ies Geospecies        | 94              | 88              | 1550                  | 1201                  | -                     | -                     |



Step 2

# IDENTIFYING CONCEPT COVERINGS

(DISJUNCTION OPERATOR FOR RESTRICTION CLASSES)





#### There is a pattern to be explored in the subset relations

Let's look at 3 of the subset relations we found...





## 1) Schools in *GeoNames* are Educational Institutions in *DBpedia*







## 2) Colleges in *GeoNames* are Educational Institutions in *DBpedia*







## 3) Universities in *GeoNames* are Educational Institutions in *DBpedia*







#### Taken by themselves, the subset relations are not useful







#### Using *featureCode* property as a hint, we form a *Union* of concepts

featureCode=S.SCH



featureCode=S.UNIV



rdf:type=EducationalInstitution



featureCode=S.SCH U featureCode=S.SCHC U featureCode=S.UNIV





## We Can Find Concept Coverings by Extensional Comparison (Contribution 1)









#### Approach: Finding Concept Coverings

- For all alignments found in the Step 1
  - We group all subset alignments according to the common larger restriction class
  - 2. We form a *union concept* such that all restriction classes
    - have the same property
  - 3. We then try to match the *union concept* to the larger class
  - 4. This forms a hypothesis Concept Covering





Intersection Set of Linked Instances  $(U_A) = U_S \cap U_L$ 



#### Scoring



 $\frac{|U_A|}{|U_S|}$  = 1 since by definition, all smaller classes are subsets

So, if  $\frac{|U_A|}{|U_L|}$  = 1, then the larger class  $U_L$  is equivalent to  $U_S$ 



Practically, we use a relaxed subset assumption:  $\frac{|U_A|}{|U_S|}$ ,  $\frac{|U_A|}{|U_L|}$  >0.9



### Upon comparison, we can determine equivalence



rdf:type=EducationalInstitution





$$\frac{\mid \mathsf{U}_{\mathsf{A}} \mid}{\mid \mathsf{U}_{\mathsf{S}} \mid} > 0.9$$

$$\frac{|U_A|}{|U_I|} = \frac{396}{404} = 0.98 > 0.9$$



#### What are the other 8 Educational Institutions?

- 1 with featureCode=S.HSP (Hospitals)
  - There are 31 instances with S.HSP because of which Hospitals are not subsets
- 3 with featureCode=S.BLDG (Buildings)
- 1 with featureCode=S.EST (Establishment)
- 1 with featureCode=S.LIBR (Library)
- 1 with featureCode=S.MUS (Museum)
- 1 doesn't have a featureCode property





# CURATING THE LINKED DATA CLOUD





## Another Example: Am I in Spain ... or Italy?

- We align dbpedia:country=dbpedia:Spain with geonames:countryCode=ES
- 3917 out of 3918 instances in GeoNames agree with this
- ONE instance had its country code as Italy.
- Because this instance contradicts overwhelming evidence, we can flag it as an outlier





# Find Outliers / Discrepancies (Contribution 2)

- We are able to identify the instances that disagree with the alignment
- These instances were not part of the alignment because
  - Their restriction class was not a subset (P'<0.9)</li>
  - Some of these instances are
    - Linked Incorrectly with owl:sameAs
    - Assigned wrong value during RDF generation\*
    - Did not have a minimum support size of 2 instances (set with 1 instance cannot be relied on)
- Outliers help in understanding discrepancies in the Linked Data





## **RESULTS**







## **Concept Coverings Found**

## We find a total of 7069 Concept Coverings that cover 77966 subset relations for a compression ratio of 11:1

| $Source_1$    | $Source_2$ | $O_1$ - $O_2$ : Coverings | $O_2$ - $O_1$ Coverings | Total     |
|---------------|------------|---------------------------|-------------------------|-----------|
|               |            | (Subset Alignments)       | (Subset Alignments)     | Coverings |
| GeoNames      | DBpedia    | 434 (2197)                | 318 (7942)              | 752       |
| LinkedGeoData | DBpedia    | 2746 (12572)              | 3097 (48345)            | 5843      |
| Geospecies    | DBpedia    | 191 (1226)                | 255 (2569)              | 446       |
| GeneID        | MGI        | 6 (29)                    | 22 (3086)               | 28        |

Results also available at

http://www.isi.edu/integration/data/UnionAlignments





## Results: GeoNames-DBpedia

| Larger Concept                     | <b>Concepts Covered</b>                                 | Support                                        | Outliers                                              |
|------------------------------------|---------------------------------------------------------|------------------------------------------------|-------------------------------------------------------|
| rdf:type = Educational Institution | geonames:featureCode<br>=<br>{S.SCH, S.SCHC,<br>S.UNIV} | 396 out of<br>404<br>(R' <sub>U</sub> =0.98)   | S.BLDG (3/122),<br>S.EST (1/13),<br>,<br>S.MUS (1/43) |
| dbpedia:country =<br>Spain         | geonames:countryCode = {ES}                             | 3917 out of<br>3918<br>(R' <sub>U</sub> =0.99) | IT (1/7635)                                           |
| rdf:type=<br>Airport               | geonames:featureCode=<br>{S.AIRB, S.AIRP}               | 1981 out of<br>1996<br>(R' <sub>U</sub> =0.99) | S.AIRF (9/22),<br>S.FRMT (1/5),,<br>T.HLL (1/61)      |

| Larger Concept               | <b>Concepts Covered</b>                                                       | Support | Outliers                             |
|------------------------------|-------------------------------------------------------------------------------|---------|--------------------------------------|
| geonames:<br>countryCode= NL | dbpedia:country= {The_Netherlands, Flag_of_the_Netherland s.svg, Netherlands} | 1978    | Kingdom_of_the_N<br>etherlands (1/3) |



### Evaluation: GeoNames-DBpedia

#### **Evaluation**

- Manually Evaluated **236** out of **752** alignments
- 152 identified as correct, Precision of 64.4%

| • | Common | problems | evaluated | as incorrect | (84) |
|---|--------|----------|-----------|--------------|------|
|---|--------|----------|-----------|--------------|------|

- 'County' property was mis-labelled as 'Country' (5)
- Using the '.svg' filename of the flag of a Country as value of *'dbpedia:country'* property (35)
- Partial alignments with sub-classes detected as outliers (14)
  - Not enough support for set containment detection (P' < 0.9)</li>
- Incompletely detected alignments
  - Missing instances for complete definition









## Establishing Recall and F-Measure

- Establishing recall for all alignments was difficult
  - Manually establishing all possible ground truth infeasible
- Evaluated F-measure for Countries as a representative
  - dbpedia:country property in DBpedia
  - geonames:countryCode property in GeoNames
- 63 Country-CountryCode Alignments evaluated manually
  - Precision: 53 / 63 = 84.13%
    - 26 were correct
      - \*Insight needed: United Kingdom in GeoNames vs England, Scotland, Wales, Northern Ireland in DBpedia
    - 27 were assumed correct because data had inconsistences
      - A '.svg' file appeared as country in DBpedia
  - Recall: 53 / 169 = 31.36%
  - F-Measure: 45.69%





## Results: LinkedGeoData-DBpedia

| Larger Concept                 | <b>Concepts Covered</b>                                          | Support                              | Outliers  |
|--------------------------------|------------------------------------------------------------------|--------------------------------------|-----------|
| dbpedia: Bundesland = Saarland | Igd:LicensePlateNum=<br>{HOM, IGB, MZG, NK,<br>SB, SLS, VK, WND} | 46 out of 49 (R' <sub>U</sub> =0.93) | (Missing) |

| Larger Concept            | <b>Concepts Covered</b>                  | Support                                   | Outliers        |
|---------------------------|------------------------------------------|-------------------------------------------|-----------------|
| lgd:ST_alpha=NJ           | dbpedia:country= {Atlantic, Burlington,} | 214 out of<br>214<br>(R' <sub>U</sub> =1) |                 |
|                           | We only found 9 of the 21 counties       |                                           |                 |
| rdf:type=<br>Igd:Waterway | rdf:type=<br>{River, Stream}             | 33 out of 34                              | Place (1/94989) |





## Results: LinkedGeoData-DBpedia

#### Evaluation

- Manually Evaluated 200 out of 5843 alignments
- 157 identified as correct, Precision of 78.2%

| • | <ul> <li>Common problems evaluated as incorrect</li> </ul> |      |
|---|------------------------------------------------------------|------|
|   | <ul> <li>Multiple spellings for the same item</li> </ul>   | (14) |
|   | <ul> <li>Partially or incompletely found</li> </ul>        | (20) |
|   | <ul> <li>Other problems</li> </ul>                         | (9)  |





## Results: Geospecies-DBpedia

| Larger Concept       | Concepts Covered                          | Support                                 | Outliers        |
|----------------------|-------------------------------------------|-----------------------------------------|-----------------|
| rdf:type= Amphibian  | geospecies:orderName=<br>{Anura, Caudata, | 90 out of 91<br>(R' <sub>U</sub> =0.99) | Testidune (1/7) |
|                      | Gymnophionia}                             |                                         | [i.e. Turtle]   |
| rdf:type= Salamander | geospecies:orderName=<br>{Caudata}        | 16 out of 17 (R' <sub>U</sub> =0.99)    | Testidune (1/7) |

| Larger Concept | <b>Concepts Covered</b> | Support              | Outliers |
|----------------|-------------------------|----------------------|----------|
| geospecies:    | dbpedia:ordo=           | 246 out of           |          |
| hasOrderName = | {"Chiroptera"@en ,      | 247                  |          |
| "Chiroptera"   | dbpedia:Bat}            | (R' <sub>U</sub> =1) |          |





### Results: Geospecies-DBpedia

#### Evaluation

- Manually Evaluated 178 out of 446 alignments
- 109 identified as correct, Precision of 61.84%
- Common problems evaluated as incorrect (69)
  - Multiple spellings for the same item (25)
  - Partially or Incompletely found because of outliers / small sizes of support (28)
  - Other problems (16)





### Results: GeneID-MGI

| Larger Concept             | <b>Concepts Covered</b>          | Support                                        | Outliers         |
|----------------------------|----------------------------------|------------------------------------------------|------------------|
| bio2rdf:subType=<br>pseudo | bio2rdf:subType=<br>{Pseudogene} | 5919 out of<br>6317<br>(R' <sub>U</sub> =0.93) | Gene (318/24692) |

| Larger Concept                   | <b>Concepts Covered</b>                                             | Support                                        | Outliers                                                            |
|----------------------------------|---------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------|
| bio2rdf:subType=<br>{Pseudogene} | bio2rdf:subType= pseudo                                             | 5919 out of<br>6297<br>(R' <sub>U</sub> =0.94) | other (4/30),<br>protien-coding<br>(351/39999),<br>unknown (23/570) |
| mgi:genomeStart=<br>1            | geneid:location=<br>{ "1", "1 0.0 cM", "1 1.0<br>cM", "1 10.4 cM",} | 1697 out of<br>1735<br>(R' <sub>U</sub> =0.98) | "" (37/1048),<br>"5" (1/52)                                         |





#### Results: GeneID-MGI

- Evaluation
  - Manually Evaluated 28 alignments found
  - 24 identified as correct, Precision of 85.71%

- Common problems evaluated as incorrect (4)
  - Partially or Incompletely found (4)





#### Related Work

- BLOOMS, BLOOMS+ ([8][9] in paper)
  - Linked Open Data ontologies aligned with 'Proton'
  - Constructs a forest of concepts and computes structural similarity
  - GeoNames Proton has "poor performance" because of small number and vague classes in GeoNames (Precision=0.5%)
- AgreementMaker [2]
  - Similarity Metrics on labels of classes
  - GeoNames (10 concepts) & DBpedia (257 concepts)
  - Precision=26%, Recall=68%
- Volker et al. ([13] in paper)







#### Conclusion and Future Work

#### Conclusion

- We were able to find Concept Coverings in the Geospatial,
   Biological Classification & Genetics Domain
  - Find alignments where no direct equivalence was evident
  - Introduced a disjunction operator to create restriction classes
- We were able to find Outliers
  - Help identify inconsistencies in the data

#### Future work

- Could Patterns within properties like geonames:countryCode and dbpedia:country be explored?
- Ranges of Properties have a lot of inconsistencies
- Flag outliers and contribute to PedanticWeb for correction





Any questions?

## **THANK YOU**



