



(12)

LEVEL

ADA077356

---

Technical Report

---

534

---

G. F. Dionne

Magnetic Moment Versus  
Temperature Curves  
of Rare-Earth Iron Garnets

11 July 1979

---

Prepared for the Department of the Army  
under Electronic Systems Division Contract F19628-78-C-0002 by

**Lincoln Laboratory**

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON, MASSACHUSETTS



Approved for public release; distribution unlimited.

Lee 14/13

79 11 26 103

The work reported in this document was performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology. This program is sponsored by the Ballistic Missile Defense Program Office, Department of the Army; it is supported by the Ballistic Missile Defense Advanced Technology Center under Air Force Contract F19628-78-C-0002.

This report may be reproduced to satisfy needs of U.S. Government agencies.

The views and conclusions contained in this document are those of the contractor and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the United States Government.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER



Joseph C. Syiek  
Project Officer  
Lincoln Laboratory Project Office

Non-Lincoln Recipients

**PLEASE DO NOT RETURN**

Permission is given to destroy this document  
when it is no longer needed.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY  
LINCOLN LABORATORY

MAGNETIC MOMENT VERSUS TEMPERATURE CURVES  
OF RARE-EARTH IRON GARNETS

G. F. DIONNE  
*Group 33*

TECHNICAL REPORT 534

11 JULY 1979

Approved for public release; distribution unlimited.

LEXINGTON

MASSACHUSETTS

79 11 26 103

## ABSTRACT

Molecular-field coefficients of the heavy rare-earth iron garnets (Tb, Dy, Ho, Er, Tm, and YbIG) have been determined by fitting calculated and experimental magnetic-moment-vs-temperature curves. For these compositions, spin canting appears to cause a significant reduction in the net moment of the c sublattice. The results are compared with values of coefficients derived from paramagnetic susceptibility measurements and with other values determined without taking into account c-sublattice canting. The capability of the computer program has been expanded to permit magnetization-temperature calculations of compositions that contain as many as three different rare earth ions in the c sublattice.

|                          |                                     |
|--------------------------|-------------------------------------|
| Accession For            |                                     |
| NTIS GRA&I               | <input checked="" type="checkbox"/> |
| DDC TAB                  | <input type="checkbox"/>            |
| Unannounced              | <input type="checkbox"/>            |
| Justification _____      |                                     |
| By _____                 |                                     |
| Distribution/ _____      |                                     |
| Availability Codes _____ |                                     |
| Dist                     | Avail and/or<br>special             |
| A                        |                                     |

## CONTENTS

|                                      |            |
|--------------------------------------|------------|
| <b>Abstract</b>                      | <b>iii</b> |
| <b>I. INTRODUCTION</b>               | <b>1</b>   |
| <b>II. THEORETICAL METHODS</b>       | <b>1</b>   |
| <b>III. RESULTS OF CALCULATIONS</b>  | <b>1</b>   |
| <b>IV. DISCUSSION</b>                | <b>3</b>   |
| <b>Acknowledgment</b>                | <b>8</b>   |
| <b>References</b>                    | <b>9</b>   |
| <b>APPENDIX A</b>                    | <b>11</b>  |
| <b>APPENDIX B - Computer Program</b> | <b>13</b>  |

## MAGNETIC MOMENT VERSUS TEMPERATURE CURVES OF RARE-EARTH IRON GARNETS

### I. INTRODUCTION

The magnetic-moment-versus-temperature ( $n_B$ -vs-T) characteristics of rare-earth iron garnets have been important in microwave ferrite development and more recently in the emergence of ferrimagnetic thin-film technology for bubble memory devices. By determining molecular-field coefficients, the curves of these materials may be computed from the Néel theory,<sup>1</sup> and a basis may be established for predicting the curves of compositions with nonmagnetic ions substituted for Fe<sup>3+</sup> or rare-earth irons.

In addition, it is also possible to compute curves for compositions containing more than one type of rare-earth ion. The purpose of this report is to present the results of investigations with a computer program that was used to determine the molecular-field coefficients and effective angular momentum quantum numbers of heavy rare-earth iron garnets.

### II. THEORETICAL METHODS

In work reported previously, the molecular-field coefficients  $N_{ij}$  of  $Y_3Fe_5O_{12}$  were determined by a trial-and-error procedure.<sup>2-4</sup> To arrive at a set of coefficients,  $N_{ij}$  were adjusted until the computed  $n_B$ -vs-T curves produced exact fits with the experimental curves for the same materials. For the above two materials, it was found that the octahedral (a) and tetrahedral (d) intrasublattice and intersublattice coefficients,  $N_{aa}$ ,  $N_{dd}$  and  $N_{ad}$ , originally determined for  $Y_3Fe_5O_{12}$ , were equally suitable for  $Gd_3Fe_5O_{12}$ . However, the effects of magnetic Gd<sup>3+</sup> ions in the dodecahedral (c) sublattice were accounted for with values of  $N_{ac}$  and  $N_{cd}$  listed in Table I. For the purpose of establishing a good fit to experimental results, it was convenient to assume that the small values of  $N_{cc}$  were negligible (see Fig. 1).

Since quenching of the orbital angular momentum is insignificant in the rare-earth family, the value of the spectroscopic splitting factor  $g_c$  is equal to the pure spin value of 2.0 only in the case of Gd<sup>3+</sup> (an S-state ion). With every other ion, it is derived from the relation  $g_c = (L_c + 2S_c)/[L_c + S_c]$  where  $L_c$  and  $S_c$  are the orbital and spin quantum numbers of the ground term, and should be combined with the total angular momentum  $J_c$  and the Bohr magneton  $\mu_B$  in the Néel theory. In these cases,  $J_c$  replaces  $S_c$  and the magnetic moment per ion becomes  $g_c \mu_B J_c$ .

In Appendix A, the format for the modified Néel theory is presented for the general case with as many as three different c-sublattice rare-earth ions. Because the intrasublattice coefficients  $N_{cc}$  are negligible, it may be assumed that any rare-earth ion is coupled only to the iron in the a and d sublattices and does not interact any other rare-earth ion. In this way, it is possible to treat these cases as if separate c-sublattices existed for each type of rare-earth ion, with variables  $x$ ,  $y$ , and  $z$  designating the respective fractions of the different rare-earth ions in the dodecahedral sites. A complete listing of the Fortran program (compatible with the IBM/370 computer) is given in Appendix B.

### III. RESULTS OF CALCULATIONS

With a trial-and-error procedure identical to that used in the previous work, molecular-field coefficients  $N_{ac}$  and  $N_{cd}$  were determined for Tb, Dy, Ho, Er, Tm, and Yb iron garnets<sup>5-8</sup>.

TABLE I  
MOLECULAR-FIELD COEFFICIENTS OF RARE-EARTH IRON GARNETS

| c-site ion       | $g_c$ | $J_c$ | $J'_c$ | $\Phi$<br>(deg) | $N_{ac}$<br>(moles/cm <sup>3</sup> ) | $N_{cd}$<br>(moles/cm <sup>3</sup> ) | $N_a^*$<br>(moles/cm <sup>3</sup> ) | $N_{cd}^*$<br>(moles/cm <sup>3</sup> ) | $N_{ac}^{\dagger}$<br>(moles/cm <sup>3</sup> ) | $N_{cd}^{\dagger}$<br>(moles/cm <sup>3</sup> ) |
|------------------|-------|-------|--------|-----------------|--------------------------------------|--------------------------------------|-------------------------------------|----------------------------------------|------------------------------------------------|------------------------------------------------|
| Gd <sup>3+</sup> | 2     | 3.5   | 3.50   | 0               | -3.44                                | 6.0                                  | -1.2                                | 3.4                                    | -                                              | -                                              |
| Tb <sup>3+</sup> | 3/2   | 6.0   | 4.60   | 40.0            | -4.5                                 | 6.5                                  | -4.4                                | 4.6                                    | -1.80                                          | 3.40                                           |
| Dy <sup>3+</sup> | 4/3   | 7.5   | 5.30   | 45.0            | -5.2                                 | 6.0                                  | -3.2                                | 3.6                                    | -3.35                                          | 3.95                                           |
| Ho <sup>3+</sup> | 5/4   | 8.0   | 4.98   | 51.5            | -1.5                                 | 4.0                                  | -4.0                                | 2.4                                    | -0.75                                          | 1.50                                           |
| Er <sup>3+</sup> | 6/5   | 7.5   | 4.62   | 52.0            | -0.5                                 | 2.2                                  | -0.6                                | 1.0                                    | -0.75                                          | 1.25                                           |
| Tm <sup>3+</sup> | 7/6   | 6.0   | 1.085  | 79.6            | -1.0                                 | 17.0                                 | 0                                   | 0                                      | -1.00                                          | 8.00                                           |
| Yb <sup>3+</sup> | 8/7   | 3.5   | 1.49   | 64.8            | -6.0                                 | 8.0                                  | -1.0                                | 8.8                                    | -1.70                                          | 2.00                                           |

\*Data derived from paramagnetic susceptibility measurements of Aleonard (Ref. 11).

†Results reported by Brandle and Blank (Ref. 12).



Fig. 1. Comparison between theory and experiment for  $n_B$ -vs-T curves of  $Y_zGd_{3-z}Fe_5O_{12}$ , using data of Vassiliev et al. (Ref. 13), Harrison and Hodges (Ref. 9), and Anderson et al. (Ref. 14).

Examples of the precision of the fits between calculated curves and experimental data points are given in Figs. 2 through 7. For these compositions, it was necessary to introduce an effective angular momentum  $J'_c < J_c$  to produce an exact fit at  $T = 0$  K. The values of  $J'_c$  required for this purpose are given in Table I, and suggest that a canting effect or departure from collinearity within the c sublattice likely accounts for the reduced c-sublattice moments. The extent of canting has been estimated by computing a canting angle  $\phi$ , defined by the relation  $J'_c = J_c \cos \phi$  (see Table I).

Because of the generally weak magnetic exchange coupling associated with c sublattices, this effect may be attributed to magnetocrystalline anisotropy. This argument is consistent with the fact that the correction of  $J_c$  for canting was not necessary with  $Gd^{3+}$ , the only ion of the group without an orbital contribution to  $J_c$  and the spin-orbit coupling energy required for a first-order anisotropy effect.

To demonstrate the program's capability with different rare-earth ions in the same composition, complete curves are presented in Fig. 8 for the system  $Y_{2.7-x}Gd_xDy_{0.3}Fe_5O_{12}$  together with available experimental data,<sup>9</sup> and a comparison between theoretical and experimental compensation temperatures<sup>10</sup> for  $Er_xGd_{3-x}Fe_5O_{12}$  is given in Fig. 9.

#### IV. DISCUSSION

In work reported by Aleonard,<sup>11</sup> molecular-field coefficients were determined for these compositions from paramagnetic susceptibility measurements above the Curie temperatures. Although these values (see Table I) could not be expected to produce accurate  $n_B$ -vs-T curves, it is interesting that their relative magnitudes agree at least qualitatively with those determined in this work.

More recent values of these coefficients have been reported by Brandle and Blank<sup>12</sup> and are also included in Table I for comparison. These values were determined in a manner similar to



Fig. 2. Comparison between theory and experiment for the  $n_B$ -vs- $T$  curve of  $\text{Tb}_3\text{Fe}_5\text{O}_{12}$ , using data of Pauthenet (Ref. 5).



Fig. 3. Comparison between theory and experiment for the  $n_B$ -vs- $T$  curve of  $\text{Dy}_3\text{Fe}_5\text{O}_{12}$ , using data of Pauthenet (Ref. 5) and Vassiliev *et al.* (Ref. 7).



Fig. 4. Comparison between theory and experiment for the  $n_B$ -vs- $T$  curve of  $\text{Ho}_3\text{Fe}_5\text{O}_{12}$ , using data of Pauthenet (Ref. 5) and Vassiliev *et al.* (Ref. 7).



Fig. 5. Comparison between theory and experiment for the  $n_B$ -vs- $T$  curve of  $\text{Er}_3\text{Fe}_5\text{O}_{12}$ , using data of Pauthenet (Ref. 5).



Fig. 6. Comparison between theory and experiment for the  $n_B$ -vs- $T$  curve of  $Tm_3Fe_5O_{12}$ , using data of Geller *et al.* (Ref. 8).



Fig. 7. Comparison between theory and experiment for the  $n_B$ -vs- $T$  curve of  $Yb_3Fe_5O_{12}$ , using data of Pauthenet (Ref. 5).



Fig. 8. Comparison between theory and experiment for  $n_B$ -vs-T curves of  $Y_{2.7-x}Gd_xDy_{0.3}Fe_5O_{12}$ , using data of Harrison and Hodges (Ref. 9).



Fig. 9. Comparison between theory and experiment for compensation temperatures of  $Er_xGd_{3-x}Fe_5O_{12}$ , using data of Villers et al. (Ref. 10).

the procedure used here, but the work did not, in general, include a fit to the low-temperature points at  $T \sim 0$  K. Consequently, the effect of canting was not taken into account and reduced values of  $J_c$  were not used in the determination of  $N_{ac}$  and  $N_{cd}$ . With these higher values of  $J_c$ , the molecular-field coefficients required to produce accurate  $n_B$ -vs-T curves over the higher temperature range would necessarily have to be smaller than those reported in this work. The differences in magnitude of the coefficients are discernible in Table I by inspection of the respective values and are consistent with this observation. However, it should also be pointed out that practical purposes either set of coefficients will produce accurate fits over the higher temperature ranges where most applications are likely to be found, provided that the appropriate values of  $J_c$  are employed with each set.

#### ACKNOWLEDGMENT

The author is indebted to Dr. Paul F. Tumelty of Allied Chemical Corporation for helpful suggestions on the work reported, as well as Rodney Lewis and Susan Rajunas for composing the computer program listed in Appendix B.

#### REFERENCES

1. L. Néel, Ann. Phys. (Leipzig) 3, 137 (1948).
2. G. F. Dionne, J. Appl. Phys. 41, 4874 (1970).
3. G. F. Dionne, "Magnetic Moment Versus Temperature Curves of Ferri-magnetic Garnet Materials," Technical Report 480, Lincoln Laboratory, M.I.T. (9 September 1970), DDC AD-715284.
4. G. F. Dionne, J. Appl. Phys. 42, 2142 (1971).
5. R. Pauthenet, thesis (University of Grenoble, 1958) (unpublished).
6. A. Vassiliev, J. Nicolas, and M. Hildebrandt, C. R. Acad. Sci. 252, 2681 (1961).
7. A. Vassiliev, J. Nicolas, and M. Hildebrandt, C. R. Acad. Sci. 253, 242 (1961).
8. S. Geller, J. P. Remeika, R. C. Sherwood, H. J. Williams, and G. D. Espinosa, Phys. Rev. 137, A1034 (1965).
9. G. R. Harrison and L. R. Hodges, Jr., J. Appl. Phys. 33, 1375S (1962).
10. G. Villers, J. Loriers, and C. Claudel, C. R. Acad. Sci. 247, 710 (1958).
11. R. Aleonard, J. Phys. Chem. Solids 15, 167 (1960).
12. C. D. Brandle and S. L. Blank, IEEE Trans. Magn. MAG-12, 14 (1976).
13. A. Vassiliev, J. Nicolas, and M. Hildebrandt, C. R. Acad. Sci. 252, 2529 (1961).
14. E. E. Anderson, J. R. Cunningham, Jr., and G. E. McDuffie, Phys. Rev. 116, 624 (1959).

## APPENDIX A

For the three sublattice case with as many as three different magnetic ions in the c sublattice, the Néel theory must be augmented as follows:

$$M = |M_d - M_a - M_{cx} - M_{cy} - M_{cz}| \quad , \quad (A-1)$$

where the subscripts d, a, and c refer to the tetrahedral, octahedral, and dodecahedral sublattices, and x, y, and z represent different c-sublattice magnetic ions. For each sublattice,  $M_i(T) = M_i(0) B_{S_i}(x_i)$ , with

$$\begin{aligned} x_d &= \frac{S_d g_d \mu_B}{kT} (N_{dd} M_d + N_{ad} M_a + N_{cdx} M_{cx} + N_{cdy} M_{cy} + N_{cdz} M_{cz}) \quad , \\ x_a &= \frac{S_a g_a \mu_B}{kT} (N_{ad} M_d + N_{aa} M_a + N_{acx} M_{cx} + N_{acy} M_{cy} + N_{acz} M_{cz}) \quad , \\ x_{cx} &= \frac{J'_{cx} g_{cx} \mu_B}{kT} (N_{cdx} M_d + N_{acx} M_a + N_{ccx} M_{cx}) \quad , \\ x_{cy} &= J'_{cy} g_{cy} \mu_B (N_{cdy} M_d + N_{acy} M_a + N_{ccy} M_{cy}) \quad , \\ x_{cz} &= J'_{cz} g_{cz} \mu_B (N_{cdz} M_d + N_{acz} M_a + N_{ccz} M_{cz}) \quad , \end{aligned} \quad (A-2)$$

where  $B_s$  is the Brillouin function, k is Boltzmann's constant, and  $\mu_B$  is the Bohr Magneton. For practical purposes, it may be assumed that  $N_{ccx}$ ,  $N_{ccy}$ , and  $N_{ccz} \approx 0$ .

At  $T = 0$  K, the magnetic moments per formula unit are given by

$$M_d(0) = 3g_d S_d \mu_B N(1 - k_d)(1 - 0.1 k_a) \quad ,$$

$$M_a(0) = 2g_a S_a \mu_B N(1 - k_a)(1 - k_d^{5.4}) \quad ,$$

$$M_{cx}(0) = 3x g_{cx} J'_{cx} \mu_B N(1 - k_c) \quad ,$$

$$M_{cy}(0) = 3y g_{cy} J'_{cy} \mu_B N(1 - k_c) \quad ,$$

$$M_{cz}(0) = 3z g_{cz} J'_{cz} \mu_B N(1 - k_c) \quad ,$$

where N is Avogadro's number, and  $k_d$ ,  $k_a$ , and  $k_c$  are the fractions of nonmagnetic ions in the respective sublattices, and x, y, and z represent the respective fractions of magnetic ions in the c sublattice (i.e.,  $x + y + z = 1$ ).

**APPENDIX B  
COMPUTER PROGRAM**

FILE: DI3PUB2 FORTRAN A 1/08/79 15:07 M.I.T. LINCOLN LABORATORY

```
C      MAIN PROGRAM FOR 3 MOMENTS-- USING SUBROUTINE MOM3 FOR CON-
C      VERGENCE. G. DIONNE
C      IMPLICIT REAL*8 (A-H,K,M,N,O-Z)
C      REAL*8 JCPX,JCPY,JCPZ
C      REAL*4 TT,YY
C      COMMON /CM1/ SD,SA,JCPX,JCPY,JCPZ,MUB,K,BN,GA,GCX,GCY,GCZ,X,Y,Z
C      COMMON /CM2/ NDD,NAA,NAD,NACX,NACY,NACZ,NCDX,NCDY,NCDZ,NCCX,NCCY,
1NCCZ
C      COMMON /CM3/ KD,KA,KC
C      COMMON /ANS/ M,MD1,MA1,MCX1,MCY1,MCZ1,NBANS
C      DIMENSION TEMP(200),NB(200),KAA(21),KDD(21),NBB(21,200),MSAVE(21),
1KCC(5)
C      THE FOLLOWING ARRAYS ARE USED IN PLOTTING ONLY
C      DIMENSION TITLE(9),YY(1700),TT(1700),LC(21)
C      T1 AND T2 ARE LABELS FOR THE X AND Y AXES
C      DATA T1/'TEMP'/,T2/'NB'/
C      DATA KCC/.8D0,.7D0,.6D0,.5D0,.4D0/
C      THE FOLLOWING TWO LINES REFER TO ROUTINES ACCESSIBLE TO USERS OF
C      LINCOLN'S 360/67 AND PERTAIN ONLY TO THE PLOTTING
C      CALL TEKZZ(2)
C      CALL STOIDV(' G. DIONNE',9,0)
C      CALL ENTERG('G. DIONNE',9)
C      NGRAPH = 2
SD=2.5
SA=2.5
MUB=9.27E-21
K=1.38E-16
BN=6.023E+23
GD=2.0
GA=2.0
WRITE(6,208)
208 FORMAT(' INPUT KA,KC,KD')
READ(5,*) KA,KC,KD
WRITE(6,209)
209 FORMAT(' INPUT X,Y,Z')
READ(5,*) X,Y,Z
WRITE(6,210)
210 FORMAT(' INPUT GCX,GCY,GCZ')
READ(5,*) GCX,GCY,GCZ
WRITE(6,212)
212 FORMAT(' INPUT JCPX,JCPY,JCPZ')
READ(5,*) JCPX,JCPY,JCPZ
IF(Y.EQ.0.) JCPY = 2.
IF(Z.EQ.0.) JCPZ = 2.
IF(Y.EQ.0.) GCY = 2.
IF(Z.EQ.0.) GCZ = 2.
WRITE(6,211)
211 FORMAT(' INPUT NACX,NACY,NACZ,NCDX,NCDY,NCDZ')
READ(5,*) NACX,NACY,NACZ,NCDX,NCDY,NCDZ
NCCY = 0.
NCCZ = 0.
NCCX = 0.
C      INITIAL KA VALUE
KA(1)=.00
C      INITIAL KD VALUE
```

FILE: DI3PUB2 FORTRAN A 1/08/79 15:07 M.I.T. LINCOLN LABORATORY

```
KDD(1) =.00
C      INCREMENT FOR KA AND KD
DK=.01
C      INCREMENT FOR TEMPERATURE
DT=10.
C      NUMBER OF CURVES PER PAGE (NUMBER OF KD'S USED)
ICURVE=1
DO 59 L=1,ICURVE
KAA(L)=KAA(1)+(L-1)*DK
59 KDD(L)=KDD(1)+(L-1)*DK
C      DO 218 LRR=1,5
C      KC=KCC(LRR)
C      CHANGED 1, 6 TO 1,1
DO 100 LKA=1,1
C      KA=KAA(LKA)
C      THE FOLLOWING 3 LINES ARE RELEVANT ONLY TO THE PLOTTING
IXZ=0
NMAX=-25.E+25
NMIN=25.E+25
DO 200 LKD=1,ICURVE
KD=KDD(LKD)
NDD=-30.4*(1.-.87*KA)
NAA=-65.*(1.-1.26*KD)
NAD=97.*(1.-.25*KA-.38*KD)
TEMP(1)=0.0
TEMP(2)=20.
IF(KD.LT..10.OR.KA.LT..10.OR.KC.LT..10) TEMP(2)=40.
IF(TEMP(2).EQ.40.) GO TO 21
TEMP(29)=293.
TEMP(35)=343.
DO 31 L=2,28
31 TEMP(L)=TEMP(2)+(L-2)*DT
DO 32 L=30,34
32 TEMP(L)=TEMP(28)+(L-29)*DT
DO 33 L=36,72
33 TEMP(L)=TEMP(34)+(L-35)*DT
GO TO 22
21 TEMP(28)=293.
TEMP(34)=343.
DO 34 L=2,27
34 TEMP(L)=TEMP(2)+(L-2)*DT
DO 35 L=29,33
35 TEMP(L)=TEMP(27)+(L-28)*DT
DO 36 L=35,72
36 TEMP(L)=TEMP(33)+(L-34)*DT
22 CALL MOM3
M1=1.
M2=-9999.
DO 70 L=1,72
T=TEMP(L)
CALL CONTIN(T,ITER,IER)
IF(IER.EQ.1) GO TO 150
IF(TEMP(2).EQ.20..AND.L.EQ.29) M1=M
IF(TEMP(2).EQ.20..AND.L.EQ.35) M2=M
IF(TEMP(2).EQ.40..AND.L.EQ.28) M1=M
```

FILE: DISPUB2 FORTRAN A 1/08/79 15:07 M.I.T. LINCOLN LABORATORY

```
IF(TEMP(2).EQ.-40..AND.L.EQ.34) M2=M
NBB(LKD,L)=NBANS
70 CONTINUE
150 IF(IER.EQ.1) LC(LKD)=L-1
IF(IER.EQ.0) LC(LKD)=L
MSAVE(LKD)=(M1-M2)/M1
LE=LC(LKD)
C THE FOLLOWING DO LOOP FORMS THE ARRAY OF ABSCISSAS FOR THE POINTS
C TO BE PLOTTED
DO 77 LA=1,LE
IXZ=IXZ+1
IF(TEMP(LA).EQ.150.) I150 = IXZ
77 TT(IXZ)=TEMP(LA)
200 CONTINUE
WRITE(6,4) KC
4 FORMAT(//', KC=',F5.2)
WRITE(6,888)
DO 98 LN=1,ICURVE
98 WRITE(6,999) KA,KDD(LN),NBB(LN,1),TEMP(LC(LN)),MSAVE(LN),
888 FORMAT(10X,'KA',7X,'KD',7X,'NB AT TEMP=0',7X,'TEMP LIMIT',
17X,'(M1-M2)/M1')
999 FORMAT(8X,F5.3,4X,F5.3,8X,F8.3,10X,F8.3,7X,E12.5)
C THE FOLLOWING DO LOOP FORMS THE ARRAY OF ORDINATES FOR THE POINTS
C TO BE PLOTTED
IN=0
DO 61 LKD=1,ICURVE
LP=LC(LKD)
DO 61 LZ=1,LP
IN=IN+1
IF(LC(LKD).EQ.1) GO TO 61
IF(NBB(LKD,LZ).GT.NMAX) NMAX=NBB(LKD,LZ)
IF(NBB(LKD,LZ).LT.NMIN) NMIN=NBB(LKD,LZ)
61 YY(IN)=NBB(LKD,LZ)
C WRITE OUT VALUE OF NB AT 150 DEGREES
WRITE(6,1001) YY(I150)
1001 FORMAT(' NB AT 150 DEGREES = ',E13.6)
CALL TEKERS(1)
CALL PLOTLN(LE,TT,0.0,0.0,YY,0.0,0.0,0.0,'T(DEG. KELVIN)',14,
1'NB',2,'MAGNETIC MOMENT',15,NGRAPH)
CALL FILFRG(1)
100 CONTINUE
218 CONTINUE
C THIS CALL SIGNALS THE END OF PLOTTING
99 CALL EXIT
STOP
END
C CALCULATION OF M VS TEMP FOR GARNETS WITH GD (+03)
SUBROUTINE MOM3
IMPLICIT REAL*8 (A-H,K,M,N,O-Z)
REAL*8 JCPX,JCPY,JCPZ
COMMON /CM1/ SD,SA,JCPX,JCPY,JCPZ,MUB,K,BN,GD,GA,GCX,GCY,GCZ,X,Y,Z
COMMON /CM2/ NDD,NAA,NAD,NACX,NACY,NACZ,NCDX,NCDY,NCDZ,NCCX,NCCY,
1NCCZ
COMMON /CM3/ KD,KA,KC
COMMON /ANS/ M,MD1,MA1,MCX1,MCY1,MCZ1,NB
```

```

P=MUB*BN
MDO=3.*GD*SD*P*(1.-KD)*(1.-KA)
MAO=2.*GA*SA*P*(1.-KA)*(1.-KD**(.4))
MCXO = 3.0*X*GCX*JCPX*P*(1.-KC)
MCYO = 3.0*Y*GCY*JCPY*P*(1.-KC)
MCZO = 3.0*Z*GCZ*JCPZ*P*(1.-KC)
C1=1./(2.*SD)
C2=(2.*SD+1.)*C1
C3=1./(2.*SA)
C4=(2.*SA+1.)*C3
C5X = 1./(2.*JCPX)
C5Y = 1./(2.*JCPY)
C5Z = 1./(2.*JCPZ)
C6X = (2.*JCPX+1.)*C5X
C6Y = (2.*JCPY+1.)*C5Y
C6Z = (2.*JCPZ+1.)*C5Z
MD=MDO
MA=MAO
MCX=MCXO
MCY=MCYO
MCZ=MCZO
MD1=MDO
MA1=MAO
MCX1=MCXO
MCY1=MCYO
MCZ1=MCZO
RETURN
C***** CONTIN(T,ITER,IER)
ENTRY CONTIN(T,ITER,IER)
ITER=0
IER=0
IF(T.EQ.0.0) M=DABS(MD-MA-MCX-MCY-MCZ)
IF(T.EQ.0.0) GO TO 55
FR = MUB/(K*T)
IX=1
9 ITER=ITER+1
IF(ITER.GE.300) GO TO 999
XD=GD*SD*FR*(NDD*MD+NAD*MA+NCDX*MCX+NCDY*MCY+NCDZ*MCZ)
XA=GA*SA*FR*(NAA*MA+NAD*MD+NACX*MCX+NACY*MCY+NACZ*MCZ)
XCX=GCX*JCPX*FR*(NCCX*MCX+NCDX*MD+
1NACX*MA)
XY=GCY*JCPY*FR*(NCCY*MCY+NCDY*MD+
1NACY*MA)
C      WRITE(6,*) GCZ,JCPZ,FR,NCCZ,MCZ,NCDZ,MD,NACZ,MA
XCZ=GCZ*JCPZ*FR*(NCCZ*MCZ+
1NCDZ*MD+NACZ*MA)
C      WRITE(6,*) XCZ
C      WRITE(6,*) XCZ
BSD=C2*DCOSH(XD*C2)/DSINH(XD*C2)-C1*DCOSH(XD*C1)/DSINH(XD*C1)
BSA=C4*DCOSH(XA*C4)/DSINH(XA*C4)-C3*DCOSH(XA*C3)/DSINH(XA*C3)
IF(X.NE.0.0) BSCX=C6X*DCOSH(XCX*C6X)/DSINH(XCX*C6X)-C5X*DCOSH(XCX*
1C5X)/DSINH(XCX*C5X)
IF(Y.NE.0.0) BSCY=C6Y*DCOSH(XCY*C6Y)/DSINH(XCY*C6Y)-C5Y*DCOSH(XCY*
1C5Y)/DSINH(XCY*C5Y)
IF(Z.NE.0.0) BSCZ=C6Z*DCOSH(XCZ*C6Z)/DSINH(XCZ*C6Z)-C5Z*DCOSH(XCZ*
1C5Z)/DSINH(XCZ*C5Z)

```

FILE: DI3PUB2 FORTRAN A 1/08/79 15:07 M.I.T. LINCOLN LABORATORY

```
1C5Z)/DSINH(XCZ*C5Z)
IF(X.EQ.0.0) BSCX = 0.0
IF(Y.EQ.0.0) BSCY = 0.0
IF(Z.EQ.0.0) BSCZ = 0.0
MD2=MDO*BSD
MA2=MA0*BSA
MCX2=MCX0*BSCX
MCY2=MCY0*BSCY
MCZ2=MCZ0*BSCZ
GO TO (13,14),IX
13 IX=2
MD1=MD
MA1=MA2
MCX1=MCX2
MCY1=MCY2
MCZ1=MCZ2
GO TO 15
14 IX=1
MD1=MD2
MA1=MA
MCX1=MCX2
MCY1=MCY2
MCZ1=MCZ2
15 IF((DABS(MA1-MA).LT..0001.AND.DABS(MD1-MD).LT..0001).
1.AND.(DABS(MCX1-MCX).LT..0001.AND.(DABS(MCY1-MCY).LT..0001.AND.
1DABS(MCZ1-MCZ).LT..0001)))GOTO 8
MD=MD1
MA=MA1
MCX=MCX1
MCY=MCY1
MCZ=MCZ1
IF(MD.LT.0.0.OR.MA.LT.0.0.OR.MCX.LT.0.0.OR.MCY.LT.0.0.OR.MCZ.LT.0.
1)GOTO 999
GO TO 9
8 M=DABS(MD-MA-MCX-MCY-MCZ)
55 NB=M/(MUB*BN)
GO TO 888
999 IER=1
888 RETURN
END
```

## UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | READ INSTRUCTIONS<br>BEFORE COMPLETING FORM                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------|
| 1. REPORT NUMBER<br><b>18 ESD-TR-79-179</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2. GOVT ACCESSION NO. | 3. RECIPIENT'S CATALOG NUMBER                                                                                        |
| 4. TITLE (and Subtitle)<br><b>6 Magnetic Moment Versus Temperature Curves<br/>of Rare-Earth Iron Garnets.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | 5. TYPE OF REPORT & PERIOD COVERED<br><b>9 Technical Report</b>                                                      |
| 7. AUTHOR(s)<br><b>10 Gerald F. Dionne</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | 6. PERFORMING ORG. REPORT NUMBER<br><b>Technical Report 534</b>                                                      |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS<br>Lincoln Laboratory, M.I.T.<br>P.O. Box 73<br>Lexington, MA 02173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS<br><b>14 TR-534</b><br><b>16 Project No 8X363304D215</b> |
| 11. CONTROLLING OFFICE NAME AND ADDRESS<br>Ballistic Missile Defense Program Office<br>Department of the Army<br>5001 Eisenhower Avenue<br>Alexandria, VA 22333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | 12. REPORT DATE<br><b>11 July 1979</b>                                                                               |
| 14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)<br>Electronic Systems Division<br>Hanscom AFB<br>Bedford, MA 01731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | 13. NUMBER OF PAGES<br><b>24</b>                                                                                     |
| 16. DISTRIBUTION STATEMENT (of this Report)<br><br>Approved for public release; distribution unlimited.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 15. SECURITY CLASS. (of this report)<br><b>Unclassified</b>                                                          |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                                                                                                      |
| 18. SUPPLEMENTARY NOTES<br><br>None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                                                                                                      |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br><br>molecular-field coefficients                      magnetic-moment-vs-temperature curves<br>spin canting                                        paramagnetic susceptibility<br>c sublattice                                        magnetization-temperature calculations<br>heavy rare-earth iron garnets                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                                                                                                      |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br><br>Molecular-field coefficients of the heavy rare-earth iron garnets (Tb, Dy, Ho, Er, Tm, and YbIG) have been determined by fitting calculated and experimental magnetic-moment-vs-temperature curves. For these compositions, spin canting appears to cause a significant reduction in the net moment of the c sublattice. The results are compared with values of coefficients derived from paramagnetic susceptibility measurements and with other values determined without taking into account c-sublattice canting. The capability of the computer program has been expanded to permit magnetization-temperature calculations of compositions that contain as many as three different rare earth ions in the c sublattice. |                       |                                                                                                                      |

AD-A077 356 MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB F/G 11/6  
MAGNETIC MOMENT VERSUS TEMPERATURE CURVES OF RARE-EARTH IRON GA--ETC(U)  
JUL 79 6 F DIONNE F19628-78-C-0002  
UNCLASSIFIED TR-534 ESD-TR-79-179 NL



OF

AD

A077356



# **SUPPLEMENTARY**

# **INFORMATION**

ESD-TR-79-179

AD-A077356

ERRATA SHEET

for

TECHNICAL REPORT 534

The author of Technical Report 534 (G. F. Dionne, "Magnetic Moment versus Temperature Curves of Ferrimagnetic Garnet Materials," 11 July 1979) has discovered that incorrect values of the parameter  $N_{ac}$  were presented in Table I (page 2). The revised Table I contains the correct values, and should replace the original Table I.

On line 6 of page 11, a more precise definition of the Brillouin function

$B_{S_1}(x_1)$  is  $B_{J'_1}(x_1)$ , where  $J'_a = S_a$  and  $J'_d = S_d$ .

27 July 1981

Publications  
M. I. T. Lincoln Laboratory  
P. O. Box 73  
Lexington, MA 02173

818 10 136

TABLE I  
MOLECULAR-FIELD COEFFICIENTS OF RARE-EARTH IRON GARNETS

| c-site ion       | $g_c$ | $J_c$ | $J'_c$ | $\Phi$<br>(deg) | $N_{ac}$<br>(moles/cm <sup>3</sup> ) | $N_{cd}$<br>(moles/cm <sup>3</sup> ) | $N_{ac}^*$<br>(moles/cm <sup>3</sup> ) | $N_{cd}^*$<br>(moles/cm <sup>3</sup> ) | $N_{ac}^{\dagger}$<br>(moles/cm <sup>3</sup> ) | $N_{cd}^{\dagger}$<br>(moles/cm <sup>3</sup> ) |
|------------------|-------|-------|--------|-----------------|--------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------------|------------------------------------------------|
| Gd <sup>3+</sup> | 2     | 3.5   | 3.50   | 0               | -3.44                                | 6.0                                  | -1.2                                   | 3.4                                    | -                                              | -                                              |
| Tb <sup>3+</sup> | 3/2   | 6.0   | 4.60   | 40.0            | -4.2                                 | 6.5                                  | -4.4                                   | 4.6                                    | -1.80                                          | 3.40                                           |
| Dy <sup>3+</sup> | 4/3   | 7.5   | 5.30   | 45.0            | -4.0                                 | 6.0                                  | -3.2                                   | 3.6                                    | -3.35                                          | 3.95                                           |
| Ho <sup>3+</sup> | 5/4   | 8.0   | 4.98   | 51.5            | -2.1                                 | 4.0                                  | -4.0                                   | 2.4                                    | -0.75                                          | 1.50                                           |
| Er <sup>3+</sup> | 6/5   | 7.5   | 4.62   | 52.0            | -0.2                                 | 2.2                                  | -0.6                                   | 1.0                                    | -0.75                                          | 1.25                                           |
| Tm <sup>3+</sup> | 7/6   | 6.0   | 1.085  | 79.6            | -1.0                                 | 17.0                                 | 0                                      | 0                                      | -1.00                                          | 8.00                                           |
| Yb <sup>3+</sup> | 8/7   | 3.5   | 1.49   | 64.8            | -4.0                                 | 8.0                                  | -1.0                                   | 8.8                                    | -1.70                                          | 2.00                                           |

\*Data derived from paramagnetic susceptibility measurements of A Leonard (Ref. 11).

†Results reported by Brandle and Blank (Ref. 12).