§ Complex inner product space / Hermitian space

Definition Given $V: \mathbb{C}$ -vs. A **complex** / **Hermitian inner product space** on V means an Hermitian form $(|)_V: V \times V \to \mathbb{C}$, positive definite. The datum $(V, (|)_V)$ is called a complex / Hermitian IPS, or simply IPS/ \mathbb{C} .

 $\forall v \in V$, its **length** $||v|| := \sqrt{(v|v)}$, so:

- 1. $||v|| = 0 \iff v = 0$ since $(|)_V$ is positive definte.
- 2. $||tv|| := \sqrt{(tv|tv)} = |t|||v||, \forall t \in \mathbb{C}.$
- 3. $||v+w||^2 = ||v||^2 + ||w||^2 + 2\text{Re}(v|w)$. If (v|w) = 0, we say they are **diagonal**, written as $v \perp w$, in which case $||v+w||^2 = ||v||^2 + ||w||^2$.
- 4. If ||v|| = 1, we say v is a **unit vector**.

In general, given a subset $S \subset V$:

- S is **orthogonal** if $S \not\ni 0$, and $\forall v, w \in S, v \neq w \Longrightarrow v \perp w$.
- S is **orthonormal** if S is orthogonal and $\forall v \in S, ||v|| = 1$.

Fact $S \subset V$ orthogonal $\Longrightarrow S$ linearly independent.

Proof For $v = \sum_{i=1}^m a_i v_i, a_i \in \mathbb{C}, v_i \in S$, we can write $a_i = \frac{(v_i|v)}{(v_i|v_i)}$. Hence

$$(v_i|v) = \sum_{i=1}^m a_j \big(v_i|v_j\big) = a_i(v_i|v_i),$$

that is $v = 0 \iff \forall i, a_i = 0. \blacksquare$

Definition Let $V: \mathrm{IPS}/_{\mathbb{C}}, V_0, V_1$ be subspaces of $V: V_0 \perp V_1$ means $\forall v_0 \in V_0, v_1 \in V_1, v_0 \perp v_1$. Given a family of subspaces $(V_i)_{i \in I}$ of V,, if $V = \bigoplus_{i \in I} V_i$ as vector space, $i \neq j \Longrightarrow V_i \perp V_j$, we say V is the **orthogonal direct sum** of $(V_i)_{i \in I}$.

Fact Given $V: IPS/_{\mathbb{C}}, V_0 \subset V: subspace, \dim V_0 < \infty$, define

$$V_0^{\perp} \coloneqq \{v \in V \mid \forall v_0 \in V_0, (v|v_0) = 0\},$$

then $V = V_0 \oplus V_0^{\perp}$. Proof same as the real case with the construction

$$v = \underbrace{\sum_{i=1}^m (v|v_i)v_i}_{\in V_0} + \underbrace{\left(v - \sum_{i=1}^m (v|v_i)v_i\right)}_{\in V_0^\perp},$$

where $v_1,...,v_m$ is an ONB of V_0 . This is also the **orthogonal projection** of v to V_0 .

Proposition $v \perp w \Longrightarrow \|v + w\|^2 = \|v\|^2 + \|w\|^2$. Proof somewhere above.

Theorem (Cauchy-Bunyakovsky-Schwarz) In a IPS/ \mathbb{C} V, we have

$$|(v|w)|^2 \le (v|v)(w|w),$$

with equality $\iff v, w$ linearly dependent.

Proof Recall that in the real case we calculated the discriminant of (tv + w|tv + w) and showed that $\Delta \ge 0$ is equivalent to the statement to be proved. Here we use similar tricks.

Assume $w \neq 0$. $\forall t \in \mathbb{C}, 0 \leq \|v + tw\|^2 = \|v\|^2 + |t|^2 \|w\|^2 + 2 \mathrm{Re}(v|tw)$. Put $t = -\frac{(w|v)}{(w|w)}$ to get

$$0 \le \|v\|^2 - \frac{|(v|w)^2|}{(w|w)}.$$

If equality holds then v = -tw for this choice of t, hence v, w are linearly dependent. Conversely, if v = tw for some t, then we can easily show the equality holds.

Corollary (Triangle Inequality) $||v+w|| \le ||v|| + ||w||$, with equality $\iff v = tw \lor w = tv$ for some $t \ge 0$.

Proof

$$\|v+w\|^2 = \|v\|^2 + \|w\|^2 + 2\mathrm{Re}(v|w) \le \|v\|^2 + \|w\|^2 + 2|(v|w)| \le (\|v\| + \|w\|)^2.$$

Equality holds when $v = tw \lor w = tv, t \in \mathbb{C} \Longrightarrow t \ge 0$ for 1st equality.

Theorem (Gram-Schmidt) Let V be an IPS over $\mathbb{C}, v_1, ..., v_n \in V$ be linearly independent. Define deductively:

$$\begin{split} w_1 &= v_1, \\ w_k &= v_k - \sum_{i=1}^{k-1} \frac{(v_k|w_i)}{(w_i|w_i)} w_i, \end{split}$$

then $w_1,...,w_n$ are orthogonal and $\forall k,\langle v_1,...,v_k\rangle=\langle w_1,...,w_k\rangle.$

Proof Same as real case with due care on complex conjugation.■

Can get orthonormal $u_1,...,u_n$ with $u_i=\frac{w_i}{\|w_i\|}$, and $w_i=v_i$ if v_i is already orthogonal.

Consequences

- 1. Let $v_1, ..., v_l \in V$ be orthogonal (resp. orthonormal), where V is an IPS on \mathbb{C} with dim $< \infty$ \Longrightarrow They can be extended to an orthogonal (resp. orthonormal) basis of V.
 - : They can be first extended to a basis, then apply Gram-Schmidt to get an orthogonal (resp. orthonormal) basis.
- 2. \exists ONB for any IPS/ $_{\mathbb{C}}$ by setting l=0 in (1).

Examples

- Standard inner product of \mathbb{C}^n : $x\cdot y=\sum\limits_{i=1}^n\overline{x_i}y_i$ or $x^\dagger y$. Standard basis $e_1,...,e_n$: $e_i=(...,1,...)$ with 1 placed at the i-th entry.
- Function space: Let a < b in \mathbb{R} , $C[a,b] = \{f : [a,b] \to \mathbb{C}$, continuous $\}$. This forms a \mathbb{C} -vector space, and we can define a inner product $(f|g) = \int_a^b f(x)g(x) \, \mathrm{d}x$, which is positive definite and Hermitian. However $\dim = \infty$.
- Variant: limit the previous space to polynomials. Can study the result of Gram-Schmidt, etc.

Notion of isomorphisms Let V, W be $IPS/_{\mathbb{C}}$. If $T \in Hom(V, W)$, $||Tv||_W = ||v||_V$, $\forall v \in V$, we say T is **isometry**. If $V \rightleftarrows W$ are a pair of isometry, and $ST = \mathrm{id}_V$, $TS = \mathrm{id}_W$, we say they are **isomorphisms**.

Observations (same as the real case)

- 1. $T \in \operatorname{Hom}(V,W)$ is an isometry $\iff (Tv_1|Tv_2)_W = (v_1|v_2)_V, \forall v_1, v_2 \in V.$ $\therefore \|\cdot\|^2$ determines $\operatorname{Re}(\cdot|\cdot)$, and by adding an i it further determines $\operatorname{Im}(\cdot|\cdot)$.
- 2. If $T \in \operatorname{Hom}(V,W)$ is an isometry, then T is an isomorphism between $\operatorname{IPS}/_{\mathbb C}$, i.e. T^{-1} is an isometry, $\forall w \in W, \|T^{-1}w\|_V = \|v\|_V = \|Tv\|_W = \|w\|_W$ where $v := T^{-1}w$.
- 3. Suppose dim $V =: n \in \mathbb{Z}_{>1}$, then

{Isomorphisms of IPS/ \mathbb{C} : \mathbb{C}^n + std IP \cong V} $\stackrel{1:1}{\longleftrightarrow}$ {Ordered ONB $v_1, ..., v_n$ of V}.

Since we already know

 $\{ \text{Isomorphism of } \mathbb{C}\text{-vs} : \mathbb{C}^n \cong V \} \overset{1:1}{\longleftrightarrow} \{ \text{Ordered basis } v_1,...,v_n \text{ of } V \}.$

- Given T as above, if T is \simeq of IPS/ \mathbb{C} , then $Te_1,...,Te_n$ is an ONB since $e_1,...,e_n$ is an ONB.
- Given an ONB $v_1,...,v_n\in V,$ define T s.t. $Te_i=v_i,$

$$\left\|T\left(\textstyle\sum_i a_i e_i\right)\right\|^2 = \left\|\textstyle\sum_i a_i v_i\right\|^2 = \sum_i |a_i|^2 = \left\|\textstyle\sum_i a_i e_i\right\|^2.$$

4. Since any IPS/ $\mathbb C$ with dim = n has an ONB, they are $\simeq \mathbb C$ ($\mathbb C^n$, std IP) where φ is not unique.

Definition (Unitary operator) Given $V : IPS/_{\mathbb{C}}$, a unitary operator on V

$$:=$$
 Isomorphism $(V,(|)) \simeq (V,(|)),$

i.e. automorphism of IPS/ \mathbb{C} . Here the term "operator" means linear map $V \to V$.

Proposition Given $V: \mathrm{IPS}/_{\mathbb{C}}, \dim < \infty$. Then T unitary $\iff T^* = T^{-1}$. Here T^* can always be defined since $(|)_V$ is nondegenerate.

Proof Assume *T* is invertible.

$$\begin{split} T \text{ unitary} &\Longleftrightarrow (Tv_1|Tv_2) = (v_1|v_2), \forall v_1, v_2 \in V \\ &\iff (v_1'|Tv_2) = \left(T^{-1}v_1'|v_2\right), \forall v_1', v_2 \in V \\ &\iff T^* = T^{-1} \text{ by defintion.} \end{split}$$