X. Hausaufgabe im Modul "Berechenbarkeit & Komplexität"

Gruppe XYZ

Aufgabe 1: Turing-Maschinen Analysieren

(a)

z_0abc	\vdash^1_M
az_0bc	\vdash^1_M
abz_1c	\vdash^1_M
$abcz_2\square$	\vdash^1_M
abz_3c	\vdash^1_M
az_3bc	\vdash^1_M
z_3abc	\vdash^1_M
$z_3\Box bbc$	\vdash^1_M
z_4bbc	

(b) Wenn M in z_3 kommt, werden danach alle 'a's mit 'b's ersetzt (von rechts nach links) bis alle buchstaben durgegangen werden, worauf M im zustand z_4 kommt. Dann wird der Buchstabe rechts vom Lesekopf entweder ein 'b' oder ein 'c' sein.

Aus δ folgt offensichtlich: M hält falls $w \in \{a^nb^mc^k \mid n, m, k \in \mathbb{N}\}$. Jedes wort was sich nicht and der Reihenfolge hält, terminiert ohne den Endzustand zu erreichen

(c) Wir betrachten das wort "aaaaaaaaa", also n=9. Die Konfigurationsfolge lautet:

$z_0 aaaaaaaaa$	\vdash^9_M
$aaaaaaaaaz_0$	\vdash^1_M
$aaaaaaaaz_3a$	\vdash_M^9
$z_3\Box bbbbbbbbb$	\vdash^1_M
$z_4bbbbbbbbb$	

Da $9+1+9+1=20>18.5=1, 5\cdot 9+5$ gilt die gegebene Formel nicht immer. Die richtige formel Lautet: 2n+2

Aufgabe 2: Turing-Maschinen Konstruieren

$$M = (Z = \{z_0, z_1, z_2, z_3, z_4, z_e\}, \Sigma = \{a\}, \Gamma = \{a, X, \square\}, \delta, z_0, \square, E = \{z_e\})$$

δ	a	X	
z_0	(z_1, a, R)		
z_1	(z_2, X, R)	(z_1, X, R)	(z_e, \square, N)
z_2	(z_3, a, R)	(z_2, X, R)	(z_4, \square, L)
	(z_2, X, R)	(z_3, X, R)	\perp
z_4	(z_4, a, L)	(z_4, X, L)	(z_0, \square, R)

$z_0 aaaa$	\vdash^1_M
az_1aaa	\vdash^1_M
aXz_2aa	\vdash^1_M
$aXaz_3a$	\vdash^1_M
$aXaXz_2\square$	\vdash^1_M
$aXaz_4X$	\vdash_M^5
$z_0 a X a X$	\vdash^1_M
az_1XaX	\vdash^1_M
aXz_1aX	\vdash^1_M
$aXXz_2X$	\vdash^1_M
$aXXaz_2\square$	\vdash^1_M
$aXXz_4X$	\vdash_M^5
$z_0 a X X X$	\vdash^1_M
az_1XXX	\vdash^1_M
aXz_1XX	\vdash^1_M
$aXXz_1X$	\vdash^1_M
$aXXXz_1\square$	\vdash^1_M
$aXXXz_e\square$	\vdash^1_M