Задачи к лекции 4

- **1.** Найдите все обратимые элементы, делители нуля и нильпотенты в кольце (a) \mathbb{Z} ; (б) \mathbb{Z}_n .
- 2. Докажите, что все обратимые элементы кольца образуют группу относительно умножения.
- **3.** Пусть R кольцо без делителей нуля и элементы $a,b \in R$ таковы, что ab = 1. Докажите, что ba = 1, то есть оба элемента a,b обратимы.
- 4. Докажите, что в поле нет собственных идеалов.
- **5.** Докажите, что идеал (x, y) в кольце $\mathbb{R}[x, y]$ не является главным.
- **6.** Найдите все гомоморфизмы: (a) группы \mathbb{Z} в группу \mathbb{Q} ; (б) кольца \mathbb{Z} в поле \mathbb{Q} .
- 7. Пусть K поле и $\alpha \in K$ произвольный элемент. Докажите, что факторкольцо $K[x]/(x-\alpha)$ изоморфно K.
- **8.** Пусть I идеал в алгебре A над полем K. Докажите, что:
- (a) I подпространство в A; (б) факторкольцо A/I является алгеброй над K.
- **9.** Пусть $f = ax^2 + bx + c \in \mathbb{R}[x]$.
- (a) Докажите, что факторкольцо $\mathbb{R}[x]/(f)$ изоморфно полю \mathbb{C} тогда и только тогда, когда дискриминант многочлена f отрицателен.
- (б) В каком случае в этом факторкольце есть нильпотенты?
- **10.** Докажите, что в конечномерной алгебре всякий элемент, не являющийся делителем нуля, обратим.
- **11.** Докажите, что факторкольцо R/I является полем тогда и только тогда, когда $I \neq R$ и I не содержится ни в каком собственном идеале кольца R.
- **12.** Приведите пример идеала в каком-либо коммутативном кольце, который не порождается никаким конечным множеством.

Домашнее задание

- **1.** Найдите все обратимые элементы, все делители нуля и все нильпотентные элементы в кольце $R = \{ \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \mid a,b,c \in \mathbb{R} \}$ с обычными операциями сложения и умножения.
- **2.** Докажите, что идеал (x+1,y) в кольце $\mathbb{Q}[x,y]$ не является главным.
- **3.** При помощи теоремы о гомоморфизме для колец установите изоморфизм $\mathbb{C}[x]/(x^2+2x)\simeq\mathbb{C}\oplus\mathbb{C}$, где $\mathbb{C}\oplus\mathbb{C}=\{(z_1,z_2)\mid z_1,z_2\in\mathbb{C}\}$ кольцо с покомпонентными операциями сложения и умножения.
- **4.** Пусть $R \neq \{0\}$ коммутативное кольцо, в котором нет собственных идеалов. Докажите, что R является полем.