Knapsack Problem

- Each item has a value and a weight
- Objective: maximize value
- Constraint: knapsack has a weight limitation

Two versions:

0-1 knapsack problem: take each item or leave it

Fractional knapsack problem: items are divisible

We study the 0-1 problem today.

Formal definition (0-1 problem)

- Knapsack has weight limit W
- Items labeled 1, 2, ..., n (arbitrarily)
- Items have weights $w_1, w_2, ..., w_n$
 - Assume all weights are integers
 - For practical reason, only consider $w_i < W$
- Items have values $v_1, v_2, ..., v_n$
- Objective: find a subset of items, S, such that $\sum_{i \in S} w_i \le W$ and $\sum_{i \in S} v_i$ is maximal among all such (*feasible*) subsets

Knapsack Problem (0-1)

	A	В	C
Weight	1	4	3
Value	15	30	20