第三章 计算机硬件系统

- 3.1 计算机硬件系统的体系结构
- 3.2 系统单元
- 3.3 输入输出系统
- 3.4 输入设备
- 3.5 输出设备
- 3.6 辅助存储设备

3.1 计算机硬件系统的体系结构

1.微处理器

- 什么是处理器(processor)?
 - 能高速执行指令,完成二进制数据的算术或逻辑运 算和数据传送等操作的部件,特点是:
 - 由数字电路组成,结构非常复杂
 - 所有电路都制作在大规模集成电路芯片上(仅几个平方厘米), 称为"微处理器" (microprocessor)

Intel 4004 chip

Intel 8080 chip

什么是中央处理器(CPU)?

- 计算机中通常有多个不同的处理器,各有不同的分 工和任务
- ■用于执行系统软件和应用软件的处理器称为CPU, CPU是计算机必不可少的核心组成部件
- 多数个人计算机只有1个CPU,但有一些计算机包含有2个、4个、8个其至成百上千个CPU

如何衡量CPU的性能?

- 计算机的性能主要表现在程序执行速度的快慢, 它由许多因素决定,例如CPU、内存、硬盘、显 卡等,但通常CPU是主要因素
- CPU性能高低的主要指标是CPU的速度,有2种 衡量方法:

■ 字长

CPU可同时处理的数据位数

■系统时钟

系统时钟定时发出脉冲,控制CPU的处理过程。 系统时钟的工作频率称为"主频",单位是MHz 1MHz = 100万赫芝

■运算速度

- 计算每秒钟可执行的指令数目(单位: MIPS、 MFLOPS)
- 使用常用软件(办公软件、数字媒体处理软件和3D 游戏等)的执行速度来衡量CPU的性能

影响CPU性能的主要因素(之一)

- CPU的字长(位数)
 - 目前PC使用的CPU大多是32位处理器,新一代的PC 机将使用64位处理器
- 主频(CPU时钟频率)
 - 主频提高,CPU的处理速度通常也会加快
- CPU总线(前端总线)的速度
 - CPU总线速度决定了CPU与内存间数据传输速度的 快慢
- 高速缓存(cache)的容量与结构
 - cache容量越大、级数越多,其效用就越显著

影响CPU性能的主要因素(之二)

- CPU的指令系统
 - 指令的格式和功能会影响程序的执行速度
- CPU的逻辑结构
 - CPU包含的定点运算器和浮点运算器数目
 - 是否流水线结构,流水线的条数和级数
 - 有无指令预测和数据预测功能
 - 是否具有数字信号处理功能
 - 是否多核,有几个内核
 - _____

补充: CPU速度与主频的关系

CPU主频(MHz)

CPU的内部频率。它决定着CPU内部数据传输和指令执行的每一步的时间。显然,CPU的工作频率越高,它的处理速度就越快。

CPU速度 = 主频 * IPC(每个时钟可执行的指令条数)

注意:

主频为2G的CPU速度≠主频为1G的CPU速度的2倍 Intel的2G主频CPU的速度≠AMD的2G主频CPU的速度

CPU总线频率(MHz)

CPU和外界交换数据的工作频率,是CPU的外部频率。 主频 = 外频 * 倍频

提高计算机速度的有效途经

Intel 微处理器主要技术参数比较

处理器 主要参数	8080	8086	80286	80386	80486	奔腾	高能奔腾	奔腾II	奔腾III	奔腾4
推出时间(年)	1974	1978	1982	1985	1989	1993~96	1995~97	1997-98	1999-2003	2000-2006
主频 (MHz)	2	4.77	6-20	16-33	33-100	60-200	150-200	233-333	450-1400	1500-3800
前端总线频率 (MHz)	2	4.77	6~20	16~33	25或33	50或66	66	66	100或133	400, 533或 800, 1066
外部数据线数 目	8	16	16	32	32	64	64	64	64	64
地址线数目	16	20	24	32	32	32	36	36	36	36
存储器空间大小	64K	1MB	16MB	4GB	4GB	4GB	64GB	64GB	64GB	64GB
晶体管数目(万)	0.45	2.9	13.4	27.5	120	310	550	750	950	4200
制造工艺(µm)	6	>2	1.5	1.5~1.0	1.0~0.8	0.8~0.35	0.6-0.35	0.35-0.25	0.25-0.13	0.13~0.065
芯片引脚数目	40	,40	68	132	168	273或296	387	242	370	478或775

附: Pentium4的逻辑结构

- ·寄存器组与CPU字长
- •超标量结构ALU
- •流水线处理技术
- ·SIMD技术
- •EM-64T
- •超线程技术
- •双核与多核技术

Pentium 4 处理器的逻辑结构

Pentium 4 处理器的芯片布局

Pentium 4的超标量结构运算器

- ■采用超标量(superscalar)结构,一共包含9个ALU,均可同时工作:
 - 2个高速整数ALU(每个时钟周期进行2次操作),用于完成简单的整数运算(如加、减法)
 - 1个慢速整数ALU(需要多个时钟周期才能完成1次操作),用于完成整数乘、除法运算
 - 2个地址生成部件(AGU),用于计算操作数的有效地址,所生成的地址分别用于从内存取操作数或向内存保存操作结果
 - 1个ALU用于完成浮点操作数地址的计算
 - 1个ALU用于完成浮点加法、乘法和除法运算
 - 1个ALU用于执行流式的SIMD处理(SSE/SSE2/SSE3指令)
 - 1个ALU用于完成多媒体信号处理(MMX指令)

指令的流水线执行

指令的顺序执行:

双核处理器出现的背景

- 提高主频来提升处理器性能的瓶颈是散热问题:
 - 3.2GHz 的Pentium 4处理器功率超过100W,内核温度达摄氏70度
 - 提升到4.0GHz时功率会达到150W,散热问题更难 处理
- 超线程技术虽然可以提高执行部件的使用效率, 但有一定开销,对于单线程的软件反而降低了效 率
- 集成电路制造及封装技术的进步,有能力把**2**个甚至更多个处理器做在**1**个芯片内

双核处理器

- 1个芯片中有两个功能相同的处理器(内核),在操作系统看来,系统中有2个物理处理器
- 2个内核可以各有自己的L2 cache,但必须保正其中的信息完全一致,否则就会出现运算错误(由 955X芯片组中北桥芯片负责),也可以共享同一个 L2 cache
- 用途:面向计算密集型应用和娱乐发烧友
- 产品:

独立

cache

共享

cache

- Pentium D(不支持超线程技术)
- Pentium Extreme Edition(至尊版)支持HT, 最多可作为4个处理器用
- 酷睿™ (Core Duo)双核处理器(嵌入式应用和笔记本):不支持HT和64位扩展
- 酷睿2 (Core 2 Duo)双核处理器: 支持EM64T

小结: Pentium4提高速度的措施

- 扩展CPU的字长: 64位存储扩展
- 提高CPU的主频:已经从1.5GHz逐步提高到3GHz以上,目前最高已经接近4GHz;
 - 加快CPU前端总线的数据传输速度:
 - CPU总线宽度增加为64~128位
 - CPU总线频率从400MHz、533 MHz提高到800MHz和1066MHz
 - 因此,传输速率也相应地从3.2GB/s、4.3GB/s提高到6.4GB/s和8.6GB/s
- 采用cache存储器
 - 增大cache容量: L2 cache的容量从256KB也已经增大为1MB或2MB
 - 增加cache的级数:有些处理器采用L3 cache
- 采用超标量运算器结构和超流水线技术
- 提供和支持向量运算指令(SIMD指令)
- 采用超线程技术,提高执行部件的工作效率
- 采用双(多)核处理器技术

2.CISC与RISC

每种CPU都有自己的指令系统,根据指令系统的设计风格可分为两类:

- CISC(Complex Instruction Set Computer复 杂指令集计算机)典型产品: Pentium CPU
- RISC(Reduced Instruction Set Computer精 简指令集计算机)典型产品: PowerPC CPU

■ 视频:

- 人类历史上最复杂的工艺——如何制造一块芯片?
- https://haokan.baidu.com/v?pd=wisenatural&v id=16227586644802896097
- 芯片90%依赖进口,不害怕美国"卡脖子"?应对 方法值得我国借鉴
- tps://haokan.baidu.com/v?pd=wisenatural&vid=11 923662109901884507
- 28nm和14nm国产芯片要来了,或将分别在今年和明年实现量产
- https://haokan.baidu.com/v?pd=wisenatural&vid=

8534797563466978172

- ■一分钟了解量子芯片
- https://haokan.baidu.com/v?pd=wisenatural&v id=8130154520357783930

- ■零基础装机教学视频,不会装机过来看看,装机真的不难
- https://haokan.baidu.com/v?pd=wisenatural&v id=10620040353302264924