Beispiel

Matr. Nr.	Trier University S C H U L of Applied Sciences T R I E R
Name	of Applied Sciences T R T E R Prof. Dr. Stefan Benzschawel
Vorname	- Datum 09.02.2021

Klausur Technische Informatik 60 Minuten Wintersemester 2020/2021

Lesen Sie bitte folgende Hinweise bevor Sie mit der Bearbeitung beginnen:

Prüfen Sie die Vollständigkeit Ihres Klausurexemplars anhand der Tabelle auf diesem Blatt.

- (1)Tragen Sie bitte auf diesem Deckblatt oben Ihre Matrikelnummer und Ihren Namen ein. Dann unterschreiben Sie bitte unten.
- (2) Lassen Sie die Klausur zusammengeheftet. Lose Blätter werden nicht gewertet.
- (3) Es sind keine Unterlagen als Hilfsmittel erlaubt. Mobiltelefone und andere Geräte bleiben ausgeschaltet. (Täuschungsversuch)
- (4) Verwenden Sie nur Dokumenten-echte Stifte (z.B. Kugelschreiber, nicht radierbar, blau, notfalls auch schwarz)
- (5) Reicht der Platz nicht aus, benutzen Sie bitte die Rückseite und verweisen entsprechend darauf.
- (6) Wenn Sie mehrere Lösungen zur Bewertung anbieten, wird die "schlechtere" gewertet. Streichen Sie Lösungen, die nicht gewertet werden sollen wieder durch.
- (7) Mit Ihrer Unterschrift, ersatzweise mit Beginn der Bearbeitung versichern Sie, dass Sie die Lösungen ohne fremde Hilfe selbständig während der Klausur erbracht haben und dass Sie in vollem Umfang prüfungsfähig sind.
- (8) Bewertung: 60 Punkte erreichbar. Ab 31 Punkten bestanden, ab 58 Punkten 1.0

AD 31 Funkten bestanden, ab 36 Funkten 1.0
Datum, Unterschrift

Note a	ab Punkte
1,0	58,00
1,3	55,00
1,7	52,00
2,0	49,00
2,3	46,00
2,7	43,00
3,0	40,00
3,3	37,00
3,7	34,00
4,0	31,00
5,0	0,00

Aufg.	Punkte	
1	4	
2	8	
3	4	
4	12	
5	6	
6	12	
7	8	
8	6	
Σ	60	

Aufgabe 1

Addierer	Punkte: 4
----------	-----------

Demonstrieren Sie die Addition der beiden Zahlen mit dem 4-Bit Paralleladdierer. Dazu schreiben Sie die Belegungen mit 1 oder 0 jeweils in die vorgegebenen Kästchen des Addierers.

 zur Bewertung:
 alle 16 Ein- und Ausgänge richtig: 4 Punkte

 Mindestens 14 richtig:
 3 Punkte

 Mindestens 12 richtig:
 2 Punkte

 Sonst
 0 Punkte

Aufgabe 2

Zahlendarstellung und Codes	Punkte: 2+2+2+2

Geben Sie in den Kästchen für a,b und c <u>jeweils den dezimalen Wert</u> an. Interpretieren Sie das Byte 10100110

b) als Binärzahl im Einerkomplem	ent
----------------------------------	-----

c)	als	Binärzah	∣im	Zweier	komp	lement
----	-----	----------	-----	--------	------	--------

d) Das Byte soll als ASCII Zeichen interpretiert werden, wobei das MSI
(most significant bit) ein Even-Parity-Bit für die Anzahl der Einsen ist.

Das ASCII-Zeichen lautet:	
---------------------------	--

(Hinweis: Ein Auszug aus der ASCII Tabelle ist unten angegeben.)

Auszug aus der ASCII Tabelle

Hex	Char	Hex	Char	Hex	Char	Hex	Char	Hex	Char	Hex	Char
20	(Space)	30	0	40	@	50	Р	60		70	р
21	!	31	1	41	Α	51	Q	61	а	71	q
22		32	2	42	В	52	R	62	b	72	r
23	#	33	3	43	С	53	S	63	С	73	s
24	\$	34	4	44	D	54	Т	64	d	74	t
25	%	35	5	45	Е	55	U	65	е	75	u
26	&	36	6	46	F	56	V	66	f	76	V
27	,	37	7	47	G	57	W	67	g	77	W
28	(38	8	48	Н	58	X	68	h	78	х
29)	39	9	49	I	59	Υ	69	i	79	У
2A	*	ЗА	:	4A	J	5A	Z	6A	j	7A	z
2B	+	3B	;	4B	K	5B	[6B	k	7B	{
2C	,	3C	<	4C	L	5C	\	6C	I	7C	ĺ
2D	-	3D	=	4D	M	5D]	6D	m	7D	}
2E		3E	>	4E	Ν	5E	^	6E	n	7E	~
2F	/	3F	?	4F	0	5F		6F	0	7F	DEL

Aufgabe 3

Dezimal, Binär, Oktal, Hexadezimal	Punkte: 2 + 2
------------------------------------	---------------

Rechnen Sie mit einer Ihnen beliebigen Methode zwischen den Zahlensystemen um.

a) Dezimalkommazahl nach Binärkommazahl (keine IEEE754 Fließkommazahl)

$$(32,25)_{10} = ($$

b) Oktal nach Hexadezimal

$$(5274)_8 = ($$

Nebenrechnungen (falls erforderlich)

Aufgabe 4

EEE-754 Fließkommazal	hl (32-Bit)	Punkte: 2+2+2+4+2=
positiven normalisierten Fl	nen Sie die Differenz zwischen d ließkommazahl und der größter nmazahl? (Angabe bitte als 2-	n positiven
a) Notieren Sie zuerst das Fließkommazahl in IEE	32-Bitmuster der kleinsten pos E-754 Notation.	sitiven, normalisierten
	ezimalen Wert und notieren die aximal zwei 2-er Potenzen.	esen als 2-er Potenz
c) Notieren Sie das 32-Biti Fließkommazahl in IEE	muster der größten positiven, d	<u>e</u> normalisierten
Fileiskoiiiiiazaiii iii IEE	E-754 Notation.	
d) Bestimmen Sie deren d	ezimalen Wert und notieren die	sen als 2-er Potenz
oder Summe von maxin		
e) Wie groß ist die betrags Angabe bitte dezimal a	smäßige Differenz zwischen de Is (Summe von) 2-er Potenz(er	n beiden Zahlen? 1).
e) Wie groß ist die betrags Angabe bitte dezimal a	smäßige Differenz zwischen der ls (Summe von) 2-er Potenz(er	n beiden Zahlen? 1).
e) Wie groß ist die betrags Angabe bitte dezimal a	smäßige Differenz zwischen de ls (Summe von) 2-er Potenz(er	n beiden Zahlen? ı).

Aufgabe 5

Basis-Gatter und Flip-Flops	Punkte: 2+4
a) Welche beiden Basis-Gatter werden auch als "Universal Gates	" bezeichnet?

b) Unten ist ein S-R Flip-Flop mit NOR- und AND-Gattern gezeigt. Erweitern Sie dieses S-R Flip-Flop zu einem J-K Flip-Flop. (Hilfestellung: R wird zu K)

Logik, Boolesche Algebra, DeMorgan

Punkte: 4+4+4

 a) Erstellen Sie aus der gegebenen Wertetabelle den noch nicht minimierten SOP Ausdruck für X.

A	INPUTS B	С	OUTPUT X
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

x=			

b) Befüllen Sie das KV-Diagramm dazu.

c) Notieren Sie den minimierten Ausdruck für X.

x=			

Aufgabe 7

MIPS 32-Bit Architektur Punkte: 8

Im Architekturbild sind gleich mehrere Leitungen als defekt markiert mit je einem Blitz bei A, B, C, D, E, F, G, H.

Notieren Sie bitte die Bit-Breite der jeweiligen, defekten Leitung.

Α	bit	E	bit
В	bit	F	bit
С	bit	G	bit
\mathcal{D}	bit	Н	bit

Aufgabe 8

MIPS Assembler	Punkte: 6
WIII O ASSETTIBLET	Fullkic. U

Übersetzten Sie den MIPS Assembler Befehl in die entsprechende 32 Bit Maschineninstruktion. Nutzen Sie das beigefügte **Hilfsblatt**. Beachten Sie die Reihenfolge der Register!!

sw \$a0, 0xA9(\$t1)

Ergebnis hier:			

CORE INSTRUCTION SET

NAME	MNEMONIC	OPCODE/FUNCT
Add	add	0 / 100000
Add Immediate	addi	001000
Add Imm. Unsigned	addiu	001001
Add Unsigned	addu	0 / 100001
Subtract	sub	0 / 100010
Subtract Unsigned	subu	0 / 100011
And	and	0 / 100100
And Immediate	andi	001/100
Nor	nor	0 / 100111
Or	or	0 / 100101
Or Immediate	ori	001101
Shift Left Logical	sll	0/0
Shift Right Logical	srl	0 / 000010
Set Less Than	slt	0 / 101010
Set Less Than Imm.	slti	001010
Set Less Than Imm. Unsign.	sltiu	001011
Set Less Than Unsigned	sltu	0/101011
Branch On Equal	beq	000100
Branch On Not Equal	bne	000101
Jump	j	000010
Jump and Link	jal	000011
Jump Register	jr	0 / 001000
Load Byte Unsigned	lbu	100100
Load Halfword Unsigned	lhu	100101
Load Upper Imm.	lui	001111
Load word	lw	100011
Store Byte	sb	101000
Store Halfword	sh	101001
Store Word	sw	101011

Register

NAME	NUMMER
\$zero	0
\$at	1
\$v0-\$v1	2-3
\$a0-a3	4-7
\$t0-\$t7	8-15
\$s0-\$s7	16-23
\$t8-\$t9	24-25
\$k0-\$k1	26-27
\$gp	28
\$sp	29
\$fp	30
\$ra	31