

- Variance is the average squared difference of the values from the mean.
- Standard Deviation is the square root of Variance.

- Variance cannot be used for more than 1 variable
- Covariance is used for high dimension

Cov(X,Y)=
$$\frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{N}$$

Cov(X,Y)=
$$\frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{N}$$

Cov(X,Y)=
$$\frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{N}$$

Economic Growth (in %)	Nifty Returns (in %)	
5.1	8	
5.5	12	
7	14	
6.6	10	

Cov(X,Y)=
$$\frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{N}$$

Economic Growth (in %)	Nifty Returns (in %)	
5.1	8	
5.5	12	
7	14	
6.6	10	

$$\overline{x}$$
 = (5.1 + 5.5 + 7 + 6.8) / 4
= 24.4/4
= 6.1

$$\overline{y}$$
 = (8 + 12 + 14 + 10) / 4
= 44/4
= 11

Cov(X,Y)=
$$\frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{N}$$

xi	yi	xi − x̄	yi - ş
5.1	8	-1	-3
5.5	12	-0.6	1
7	14	0.9	3
6.6	10	0.5	-1

Cov(X,Y)=
$$\frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{N}$$

xi	yi	$xi - \bar{x}$	yi - s
5.1	8	-1	-3
5.5	12	-0.6	1
7	14	0.9	3
6.6	10	0.5	-1

Cov(x,y) =
$$(-1)(-3)+(-0.6)1+(0.9)3+(0.5)(-1)/4$$

Cov(X,Y)=
$$\frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{N}$$

xi	yi	$xi - \bar{x}$	yi - y
5.1	8	-1	-3
5.5	12	-0.6	1
7	14	0.9	3
6.6	10	0.5	-1

Cov(x,y) =
$$(-1)(-3)+(-0.6)1+(0.9)3+(0.5)(-1)/4$$

Cov(X,Y)=
$$\frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{N}$$

Cov(X,Y)=
$$\frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{N}$$

Linear Relationship between two variables

Cov(X,Y)=
$$\frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{N}$$

Linear Relationship between two variables

It can take any value

Cov(X,Y)=
$$\frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{N}$$

Linear Relationship between two variables

It can take any value

Positive, Negative or Zero Covariance

Cov(X,Y)=
$$\frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{N}$$

Positive Covariance

Cov(X,Y)=
$$\frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{N}$$

Positive Covariance

Negative Covariance

Cov(X,Y)=
$$\frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{N}$$

0.15 0.10 0.05 -0.05 -0.10 -0.15 -0.20 0.0 0.2 0.4 0.6 0.8 1.0

Positive Covariance

Negative Covariance

Zero Covariance

Cov(X,Y)=
$$\frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{N}$$

Linear Relationship between two variables

It can take any value

Positive, Negative or Zero Covariance

Covariance can be 0.000045 or 30 million

Cov(X,Y)=
$$\frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{N}$$

Linear Relationship between two variables

It can take any value

Positive, Negative or Zero Covariance

Covariance can be 0.000045 or 30 million

Correlation

Thank You!

