Parawan

. Dostępna pamięć: 64 MB.

Na parkingu znajduje się n miejsc parkingowych (ponumerowanych od 1 do n), położonych jedno za drugim. Na niektórych miejscach znajdują się zaparkowane samochody, inne miejsca są wolne. Inżynier Bajtos testuje właśnie nowy parawan o szerokości dokładnie k miejsc parkingowych. Parawan, dzięki najnowocześniejszym technologiom, sprawia, że samochody znikają z zasłoniętego obszaru. Parawan nie może wystawać poza parking. Ile może być maksymalnie wolnych miejsc parkingowych obok siebie po optymalnym użyciu wynalazku Inżyniera Bajtosa?

Przykład: k = 3 parking: 10110010 \rightarrow 10000010. Poprawnym wynikiem jest 5.

Wejście

W pierwszym wierszu standardowego wejścia zapisano liczbę miejsc parkingowych n oraz szerokość parawanu k ($1 \le k \le n \le 500\,000$). W drugim wierszu podano ciąg n cyfr (0-wolne miejsce, 1-zajęte miejsce) — opis parkingu.

Wyjście

W pierwszym wierszu standardowego wyjścia powinna znaleźć się jedna liczba całkowita — maksymalna liczba wolnych miejsc parkingowych w jednym ciągu po użyciu wynalazku Inżyniera Bajtosa.

Przykłady

Wejście:	Wejście:	Wejście:
10 3 0010110011	10 4 1010010000	10 2 1111110000
Wyjście:	Wyjście:	Wyjście:
5	9	6

Parawan

Człowiek-najlepsza inwestycja

