Lesson 7: Word Embeddings and Transformer Models

1. Why Words Need Meaningful Representations

At the core of every NLP task lies a challenge: computers don't understand words the way we do.

To a computer, words are just symbols. But to process, analyze, or generate text, we need a way for machines to "understand" relationships between words like:

- "king" is related to "queen"
- "Paris" is to "France" as "Rome" is to "Italy"
- "running" and "ran" are variations of the same verb

2. The Rise of Word Embeddings

Before we had complex transformers, we had word embeddings—a brilliant idea that changed the game. Instead of treating each word as a unique token, embeddings represent words as vectors in a high-dimensional space.

Examples:

- The vectors for "dog" and "puppy" are near each other.
- "Apple" (fruit) and "Apple" (company) start to get disambiguated based on context.
- "Man" + "Royalty" "Woman" ≈ "King"

Think of each word as a point in a "semantic map."

|abo| 3. From Word2Vec to FastText

Early models like:

- Word2Vec (by Google)
- Glove (by Stanford)
- FastText (by Facebook)

These were powerful—but still had limitations:

- One vector per word, regardless of context.
- Couldn't fully understand word meaning in sentences.

This led to the next revolution...

4. Contextual Embeddings: The Need for Context Consider the word "bank":

In "river bank," it means the edge of a river.

In "savings bank," it refers to a financial institution.

Classic embeddings (like Word2Vec) would give "bank" a single vector, regardless of the sentence. But that's a problem. Context matters.

Enter: contextual embeddings — where the meaning of a word depends on its surroundings.

5. Transformers: A New Era in NLP

In 2017, researchers at Google introduced a new architecture: the Transformer.

Unlike older sequence models (like RNNs or LSTMs), transformers:

- Don't process data sequentially—they look at all words at once.
- Use a mechanism called **self-attention** to decide which words are most important to one another.

This allows them to:

- Understand long-range dependencies in sentences
- Handle context more effectively
- Scale efficiently on GPUs

\$ 6. Key Concepts Inside Transformers

- Self-Attention:
 - Example: In the sentence "She poured water into the glass and then drank from it", the word "it" clearly refers to "glass".
 Self-attention helps the model make that connection
- Positional Encoding:
 - Because transformers don't process words one by one, they need to know the order of words.
 This is done by adding positional information to word embedding

7. Pretrained Transformer Models

After transformers came the pretrained language models. These are models trained on massive amounts of text, and then fine-tuned for specific tasks.

Some of the most impactful ones include:

- BERT (Bidirectional Encoder Representations from Transformers)
 - Reads text in both directions (left-to-right and right-to-left)
 - Great for tasks like classification, question answering, named entity recognition
- **○ GPT (Generative Pre-trained Transformer)**
 - · Reads from left to right
 - Excellent at text generation, summarization, creative writing
- **99** Roberta, Albert, Distilbert
 - Variants of BERT with tweaks in architecture or training approach for better speed or accuracy
- Multilingual BERT, mT5
 - Capable of understanding and generating text in many languages

8. Fine-Tuning vs Feature Extraction

Once we have these powerful models, we can fine-tune them:

- Fine-Tuning: Slightly re-train the model on your own dataset (e.g., legal documents, tweets, medical notes)
- Feature Extraction: Use the model's output as input to another system, like a classifier

This makes transformer models highly adaptable and transferable across tasks.

3 9. Why This Matters in NLP

Transformers and contextual embeddings have revolutionized NLP by:

- Dramatically improving performance across nearly all language tasks
- Reducing the need for task-specific architecture design
- Allowing zero-shot or few-shot learning—achieving great results with little data
- Powering tools like ChatGPT, Google Translate, Alexa, and more

They've essentially become the foundation of modern NLP.

Task

Technology Behind It

Autocomplete GPT, BERT

Chatbots Transformers + Dialog Management

Sentiment Analysis Fine-tuned BERT models

Machine Translation Transformer-based models like mBART

Email Sorting Classifiers built on embeddings

Smart Search Engines Semantic Search with contextual embeddings

X Key Takeaways

- Word embeddings let computers understand the relationships between words numerically.
- Contextual embeddings capture a word's meaning based on its surroundings.
- Transformers process language by considering all words in parallel, using self-attention to capture meaning.
- Models like BERT and GPT have set a new standard in NLP, enabling a wide range of applications with high performance.

Final Thought:

Word embeddings and transformers are not just tools—they represent a shift in how machines understand language. They've moved us from rule-based and statistical approaches to deep, contextual, and scalable systems that power the NLP revolution happening around us.