Modelos Lineares I

Regressão Linear Múltipla (RLM): Transformações de linearização

(37^a e 38^a Aulas)

Professor: Dr. José Rodrigo de Moraes Universidade Federal Fluminense (UFF) Departamento de Estatística (GET)

Modelo de Regressão Linear:

Transformações de dados para resolver o problema de não linearidade:

Quando a análise gráfica indicar que o modelo linear não é apropriado para um conjunto de dados, existem duas opções:

- 1) Descartar o modelo de regressão linear e pesquisar um mais apropriado:
- 2) Usar algum tipo de transformação nos dados de forma que o modelo linear seja válido.

OBS: Se a não linearidade da relação entre X e Y foi identificada, e se a distribuição dos resíduos é aproximadamente normal com variância constante, então uma opção seria transformar a variável

Transformações de dados para resolver o problema de não linearidade (continuação):

- Se um modelo linear não é apropriado para um conjunto de dados, pode-se optar por fazer alguma transformação para resolver o problema de não linearidade.
- Existem funções (modelos não lineares) que através de transformações de variáveis reduzem-se a modelo lineares da forma desejada: $Y=\beta_0+\beta_1X+\epsilon$.
- O conhecimento da forma de diversas famílias de funções não lineares (mas linearizáveis), possibilita:
 - ✓ a escolha de um dado modelo mais apropriado;
 - ✓ o tipo de transformação a ser adotada em X e/ou Y;
 - √ a forma linear resultante.

Transformações de dados para resolver o problema de não linearidade - Modelos Linearizáveis:

1º caso A:

Função Potência $Y = \beta_0 X^{\beta_1}$ $\beta_0 > 0$ $\beta_1 > 0$

OBS: Neste caso, a teoria de regressão linear é aplicada as variáveis transformadas X*=logX e Y*=logY, obtendo-se assim as estimativas dos parâmetros $\beta_1\,e\,{\beta_0}^*\text{=}\text{log}\beta_0$ e, em seguida, a estimativa de $\beta_0 = 10^{\beta_0^*}$

Transformações de dados para resolver o problema de não linearidade - Modelos Linearizáveis:

1º caso B:

Função Potência

$$Y = \beta_0 X^{\beta_1}$$
$$\beta_0 > 0$$
$$\beta_1 < 0$$

OBS: Neste caso, a teoria de regressão linear é aplicada as variáveis transformadas X*=logX e Y*=logY, obtendo-se assim as estimativas dos parâmetros β_1 e β_0 *=log β_0 e, em seguida, a estimativa de $\beta_0 = 10^{\beta_0^*}$

Modelo de Regressão Linear:

Transformações de dados para resolver o problema de não linearidade (continuação) - Modelos Linearizáveis:

2º caso - A:

F. exponencial $Y = \beta_0 e^{\beta_1 X}$

OBS: Neste caso, a teoria de regressão linear é aplicada as variáveis X e Y*=InY, obtendo-se assim as estimativas dos parâmetros $\beta_1 \in \beta_0^*$ e, em seguida, a estimativa de $\beta_0 = e^{\beta_0^*}$.

Modelo de Regressão Linear:

Transformações de dados para resolver o problema de não linearidade (continuação) – Modelos Linearizáveis:

P. 2° caso - B:

F. exponencial $Y = \beta_0 e^{\beta_1 X}$

OBS: Neste caso, a teoria de regressão linear é aplicada as variáveis X e Y*=lnY, obtendo-se assim as estimativas dos parâmetros β_1 e β_0^* e, em seguida, a estimativa de $\beta_0 = e^{\beta_0^*}$.

Modelo de Regressão Linear:

Transformações de dados para resolver o problema de não linearidade (continuação) – Modelos Linearizáveis:

• 3° caso - A: F. logarítmica $Y = \beta_0 + \beta_1 log X$ $\beta_1 > 0$

OBS: Neste caso, a teoria de regressão linear é aplicada as variáveis X^* =logX e Y, obtendo-se diretamente as estimativas dos parâmetros β_1 e β_0 .

Modelo de Regressão Linear:

Transformações de dados para resolver o problema de não linearidade (continuação) – Modelos Linearizáveis:

• 3° caso - B: F. logarítmica $Y = \beta_0 + \beta_1 log X$ $\beta_1 < 0$

OBS: Neste caso, a teoria de regressão linear é aplicada as variáveis X*=logX e Y, obtendo-se diretamente as estimativas dos parâmetros β_1 e β_0 .

Transformações de dados para resolver o problema de não linearidade (*Resumo*) – *Modelos linearizáveis*:

Caso	Modelo original	Transformação	Modelo transformado			
1AeB	$Y = \beta_0 X^{\beta_1} \epsilon$	Y*=logY, X*=logX	$Y^* = log\beta_0 + \beta_1 X^* + log\varepsilon$			
2AeB	$Y = \beta_0 e^{\beta_1 X} \epsilon$	Y*=InY	$Y^* = In\beta_0 + \beta_1 X + In\varepsilon$			
3AeB	$Y = \beta_0 + \beta_1 log X + \epsilon$	X*=logX	$Y = \beta_0 + \beta_1 X^* + \varepsilon$			
4	$Y = \frac{1}{\beta_0 + \beta_1 X + \epsilon}$	Y*=1/Y	$Y^* = \beta_0 + \beta_1 X + \epsilon$			
5	$Y = \beta_0 + \frac{\beta_1}{X} + \epsilon$	X*=1/X	$Y = \beta_0 + \beta_1 X^* + \epsilon$			

10

Exemplo 1: Transformação - Problema de não linearidade

A tabela 1 a seguir fornece informações sobre o peso do corpo (em kg) e do cérebro (em gramas) de 11 animais. Faça o gráfico de dispersão entre essas variáveis, e escolha e ajuste um modelo apropriado para explicar o peso do cérebro dos animais, a partir do peso de seus corpos.

11

Exemplo 1: Transformação - Problema de não linearidade

Tabela 1: Peso do corpo e do cérebro de alguns animais.

Animal	Peso do corpo (X)	Peso do cérebro (Y)		
1	6.654,00	5.712,00		
2	2.547,00	4603,00		
3	521,00	655,00		
4	207,00	406,00		
5	187,00	419,00		
6	100,00	157,00		
7	62,00	1.320		
8	52,16	440,00		
9	27,66	115,00		
10	6,80	179,00		
11	1,04	5,50		

Exemplo 1: Transformação - Problema de não linearidade

Figura 1: Gráfico de dispersão entre o peso do corpo (X) e o peso do cérebro (Y).

Exemplo 1: Transformação - Problema de não linearidade Tabela 2: Log. do peso do corpo e do cérebro de alguns animais Log. peso do corpo Log. peso do cérebro Animal (X*=logX) (Y*=logY) 3,823 3,757 1 2 3,406 3,663 3 2,717 2,816 2.316 2.609 2,272 2,622 5 2,000 2,196 6 1,792 3,121 1.717 2.643 8 1,442 2,061 9 0,833 2,253 10 0,017 0,740 11

Exemplo 1: Transformação - Problema de não linearidade

Figura 2: Gráfico de dispersão entre o log. do peso do corpo (X*=logX) e o log. do peso do cérebro (Y*=logY).

Exemplo 2: Transformação - Problema de não linearidade

Uma população de bactérias é exposta a raios ultra-violeta durante 15 períodos de 6 minutos cada. Para cada período o número de bactérias sobreviventes é registrado. A teoria da sobrevivência, em geral, modela tal fenômeno pela função dada por:

$$Y_t = \beta_0 e^{\beta_1 \cdot t}$$
, onde:

 β_0 e β_1 são parâmetros desconhecidos. O parâmetro β_0 denota a população no início do experimento e β_1 é a taxa de mortalidade no instante t.

A tabela a seguir fornece os resultados do experimento com uma população inicial de 355 bactérias. 20

Exemplo 2: Transformação - Problema de não linearidade Tabela 1: Nº de bactérias sobreviventes segundo o período.

Prof.: Dr. José Rodrigo de Moraes: Estatístico (ENCE), Mestre em Estatística Social (ENCE) e Doutor em Saúde Coletiva (IESC/UFRJ)

Exemplo 3: Outra transformação - Problema de não linearidade A tabela 1 abaixo fornece o número de dias de treinamento e a produção (em vendas) dos novos vendedores. Tabela 1: Dados originais Nº de dias Produção Vendedor (X) 0,5 51 3 71 1.0 75 1,0 92 6 99 1.5 2,0 105 8 2,0 112 9 2.5 121 125

Exemplo 3: Outra transformação - *Problema de não linearidade*Figura 2: Gráfico de dispersão entre o nº de dias de treinamento (X) e os resíduos padronizados do modelo.

Que transformação fazer neste caso?

Nº de dias de treinamento (X)

Prof.: Dr. José Rodrigo de Moraes: Estatístico (ENCE), Mestre em Estatística Social (ENCE) e Doutor em Saúde Coletiva (IESC/UFRJ)

Exemplo 3: Outra transformação - *Problema de não linearidade* Conclusões gerais:

Os gráficos construídos demonstram a existência de uma relação linear entre Y e $X^*=\sqrt{X}$ e que os resíduos (padronizados) se encontram aleatoriamente distribuídos em torno de zero. Além disso, a medida de qualidade do ajuste (R²=98,7%) e os testes de significância dos parâmetros do modelo (testes t e F) indicam a adequação do modelo ajustado para os dados transformados, dado por:

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1} \sqrt{X_{i}} \rightarrow Y_{i} = -11,687 + 85,527 \sqrt{X_{i}}$$

39

Exemplo 3: Outra transformação – *Problema de não linearidade*Alternativa: Regressão polinomial (2º grau) Tabela 1: Calculando a variável "nº de dias ao quadrado (X²)".

Vendedor	Nº de dias (X)	Nº de dias ao quadrado (X²)	Produção (Y)		
1	0,5	0,25	46		
2	0,5	0,25	51		
3	1,0	1,00	71		
4	1,0	1,00	75		
5	1,5	2,25	92		
6	1,5	2,25	99		
7	2,0	4,00	105		
8	2,0	4,00	112		
9	2,5	6,25	121		
10	2,5	6,25	125 40		

Exemplo 3: Outra transformação - Problema de não linearidade											
Ajuste do modelo 3:											
Regressão polinomial											
Model Summary ^b											
	Model R R Square Square the Estimate										
	1 ,994 ^a ,987 ,984 3,580										
a. Predictors: (Constant), nºdias2, nºdias b. Dependent Variable: prod ANOVA ^b											
				- Air	OVA				_		
Model		Sun Squa			df	Mean S	Square	F		Sig.	
1	Regression	69	32,371		2	346	66,186	270,40	8	,000a	
Residual 89,729 7 12,818											
Total 7022,100 9											
a. Predictors: (Constant), nºdias 2, nºdias b. Dependent Variable: prod									41		

Exemplo 3: Outra transformação - Problema de não linearidade									
			Ajus	ste do mo	delo 3	B:			
Regressão polinomial									
				Coefficients ^a					
		Unstandardize	d Coefficients	Standardized Coefficients			95,0% Confidence Interval for B		
/lodel		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound	
	(Constant)	19,600	5,430		3,610	,009	6,761	32,439	
	nºdias	62,186	8,276	1,659	7,514	,000	42,617	81,755	
	nºdias2	-8,429	2,706	-,688	-3,114	,017	-14,828	-2,029	
a. D	ependent Vari	able: prod							
								42	

Exemplo 3: Outra transformação - Problema de não linearidade

Figura 4: Gráfico de dispersão entre o nº de dias de treinamento (X) e os resíduos padronizados do modelo polinomial.

Aula prática - Exercício 1 com "Saídas":

Os dados apresentados na tabela a seguir se referem ao desempenho dos alunos numa prova da disciplina de mestrado profissional.

O objetivo do estudo é estudar a relação entre as horas de estudo e o percentual (%) de questões erradas (proxy do desempenho) para 12 alunos matriculados na disciplina.

Aula prática – Exercício 1 (continuação):

Tabela 1: Dados sobre n=12 alunos

Aluno	% Questões erradas	Horas de estudo
1	20	1,81
2	25	1,70
3	30	1,65
4	35	1,55
5	40	1,48
6	50	1,40
7	55	1,38
8	60	1,30
9	65	1,26
10	70	1,24
11	75	1,21
12	80	1,20

Aula prática - Exercício 1 (continuação):

- a) Construa o gráfico de dispersão entre as horas de estudo e o indicador de desempenho na disciplina.
- b) Ajuste um modelo estatístico, da forma $Y=\beta_0+\beta_1X+\epsilon$, para avaliar o efeito das horas de estudo no desempenho dos alunos na disciplina. Analise o gráfico de dispersão entre os valores ajustados e os resíduos estudentizados. Avalie, usando o QQ -Plot, a hipótese de normalidade dos resíduos.
- c) Proponha um novo modelo estatístico para avaliar o efeito das horas de estudo no desempenho dos alunos.

☐ Aula prática - Exercício 1 (continuação):

- d) Avalie a significância individual dos parâmetros do novo modelo proposto por você considerando α =5%.
- e) Avalie a necessidade de se considerar o termo quadrático no modelo utilizando agora o Teste F de comparabilidade de modelos. Qual a sua conclusão?
- f) Refaça os gráficos da letra b). Na sua opinião o novo modelo é adequado?

Prof.: Dr. José Rodrigo de Moraes: Estatístico (ENCE), Mestre em Estatística Social (ENCE) e Doutor em Saúde Coletiva (IESC/UFRJ)

Aula prática - Exercício 2:

A associação industrial de um determinada cidade tem como objetivo verificar se existe relação entre o "número de trabalhadores (X)" e o número de supervisores dos estabelecimentos associados (Y)".

A Tabela 1 fornece essas informações para uma amostra de 27 estabelecimentos.

55

Aula prática - Exercício 2 (<i>continuaçã</i> o):											
Tabela 2	Tabela 2: Dados sobre n=20 estabelecimentos continuação										
Estab.	Nº de trab. (X)	Nº de superv. (Y)	Estab.	Nº de trab. (X)	Nº de superv. (Y)						
1	294	30	15	615	100						
2	247	32	16	999	109						
3	267	37	17	1022	114						
4	358	44	18	1015	117						
5	423	47	19	700	106						
6	311	49	20	850	128						
7	450	56	21	980	130						
8	534	62	22	1025	160						
9	438	68	23	1021	97						
10	697	78	24	1200	180						
11	688	80	25	1250	112						
12	630	84	26	1500	210						
13	709	88	27	1650	135						
14	627	97									

☐ Aula prática – Exercício 2 (continuação):

- a) Ajuste o modelo (usando Y e lnY) e avalie a existência ou não de alguma violação das hipóteses básicas do modelo. Para tanto use análises gráficas (utilize os resíduos estudentizados). Qual a conclusão obtida?
- b) Caso necessário, corrija a violação identificada na letra a)
 e analise as estimativas dos parâmetros do novo modelo.
 Calcule alguma medida de qualidade do ajuste.
- c) Avalie as hipótese básicas do modelo.

57