Searching PAJ Page 1 of 2

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 04-340907 (43) Date of publication of application: 27, 11, 1992

(51) Int. Cl. G02B 7/0

(21) Application number: 03-142424 (71) Applicant: CANON INC

(22) Date of filing: 17.05.1991 (72) Inventor: NODAGASHIRA HIDEFUMI

(54) LENS BARREL

(57) Abstract:

PURPOSE: To obtain the lens barrel which is reducible in size and weight by reducing a shock applied to a stopper member provided on a distance ring.

CONSTITUTION: The distance ring 2 engaged threadably with a fixed ring 1 as one element of the lens barrel through helicoid screws 1a and 2a is turned through the output gear 5 of a driving system meshing with the gear part 2d of this distance ring 2 according to an object distance to move a focus lens group 3 provided on the distance ring 2 to a focusing position. The distance ring 2 is provided with a 1st stopper member 2b and 2nd stopper member 2c and the fixed rind 1 is provided with a 1st infinite stopper wall 1d corresponding to the infinite positions of the 1st stopper member 2b and 2nd stopper member 2b and 2nd stopper member 2c and with a 1st close stopper wall to corresponding to the infinite

wall 1c and a 2nd close stopper wall 1e corresponding to the close positions.

LEGAL STATUS

[Date of request for examination]
[Date of sending the examiner's
decision of rejection]
[Kind of final disposal of application
other than the examiner's decision of
rejection or application converted
registration]
[Date of final disposal for

application] [Patent number] [Date of registration] [Number of appeal against-examiner's decision of rejection] [Date of requesting appeal against examiner's decision of rejection] [Date of extinction of right]

Copyright (C); 1998, 2000 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開平4-340907

(43)公開日 平成4年(1992)11月27日

(51) Int.CI.5 G 0 2 B 7/02

識別記号 庁内整理番号 E 7811-2K

FΙ

技術表示簡所

審査請求 未請求 請求項の数3(全 5 頁)

(21)出願番号 (22)出顧日

特願平3-142424

平成3年(1991)5月17日

(71)出願人 000001007

キヤノン株式会社

(00) 0000

東京都大田区下丸子3丁目30番2号

(72)発明者 野田頭 英文

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内 (74)代理人 弁理士 高梨 幸雄

(54) 【発明の名称】 レンズ鏡胴

(57) 【要約】

【目的】 距離環に設けたストッパー部材に加わる衝撃を軽減して、小型化、軽量化が可能なレンズ鏡胴を得る。

【特許請求の範囲】

【請求項1】 固定項にヘリコイドネジで螺合した距離 環を、この距離環のギヤに噛合する駆動系の出力ギヤを 介して被写体距離に応じて回動させ、前配距離環に設け たフォーカスレンズ群を合焦位置まで移動させるレンズ 鏡胴において、前記距離環には第1のストッパー部材と 第2のストッパー部材を設け、前記固定環には前記第1 のストッパー部材及び第2のストッパー部材の無限位置 に対応して第1の無限ストッパー壁及び第2の無限スト 競及び第2の至近ストッパー壁を設けたことを特徴とす るレンズ鏡洞。

【請求項2】 第1のストッパー部材と第2のストッパ 一部材は距離環の回動軸を挟んで該距離環の略対向位置 に設けたことを特徴とする請求項1記載のレンズ鏡胴。

【請求項3】 第1の至近ストッパー壁及び第2の至近 ストッパー壁のいずれか一方を、駆動系の出力ギヤと距 離環のギヤとが鳴合する近傍に設けたことを特徴とする 請求項1記載のレンズ鐐胴。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はレンズ鏡肩、例えば自動 合焦カメラに用いられるレンズ鏡脚に関するものであ る.

[0002]

【従来の技術】この種のレンズ鏡胴は、最近プラスチッ ク材料を多用しているものが多い。図3は従来の自動合 焦カメラのフォーカスレンズ駆動機構に関するレンズ鏡 綱の縦断面図、図4は図3のIV-IV線に沿う横断面図で

【0003】図3および図4において、101はカメラ 本体(図示せず)に取着される固定環であり、その外周 面にヘリコイドネジ部101a、無限ストッパー壁10 1 bおよび至近ストッパー壁101cを有している。 3 【0004】102は固定環101に外装する距離環で あり、その内周面には上記へリコイドネジ部101aと 螺合するヘリコイドネジ部102a、無限位置と至近位 置でそれぞれ固定環101の無限ストッパー壁101b 及び至近ストッパー機101cに当接するストッパー部 材102b、ギヤ部102cを有している。

【0005】103は1枚または複数枚の光学レンズで 構成されたフォーカスレンズ群であり、距離環102に 固定されている。

【0006】104は駆動系 (不図示) の出力軸であ り、この出力軸104に固定されている出力ギヤ105 は、上記距離環102のギヤ部102cに噛合してい

[0007]上記構成において、複写体距離検出機構 (不図示) からの検出信号によって駆動系が駆動され、 その駆動系の出力軸104に固定されている出力ギヤ1 50 [0013]

05が回転すると、距離環102はギヤ部102cを介 して回転駆動されながら進退動する。この結果、距離環 102に固定されているフォーカスレンズ群103は光 軸方向に進退動して合焦位置まで移動する。このフォー カス時、被写体距離が無限位置や至近位置あるいはその 近傍位置の場合には、距離環102はストッパー部材1 02 bが無限ストッパー壁101 bまたは至近ストッパ 一壁101cに当接するように駆動される。

【0008】、また、被写体の位置とフォーカスレンズ ッパー機を、挙近位置に対応して第1の挙近ストッパー 10 単103の位置によっては、被写体距離が検出できない 場合があるが、このような検出不能の時は、検出可能に なるまで駆動系を動かすことになる。この時、距離還1 0 2 が被写体距離を検出すべき方向と反対の方向に駆動 された場合には、距離環102はストッパー部材102 bが無限ストッパー壁101bまたは至近ストッパー壁 101 cに当接した後、反転して被写体距離が検出され るべき方向に駆動されて、フォーカスレンズ群103の 合焦位置までの駆動が行なわれる。

[0009]

【発明が解決しようとする課題】 しかしながら、従来の レンズ鏡胴では、固定環101や距離環102がプラス チック材料で構成されている場合、それぞれのヘリコイ ドネジ部101a, 102bの螺合部には、駆動時の負 荷を軽くする、変形、温度変化による負荷のムラを少な くする等のために、通常、相当量の隙間いわゆるガタを 設けている。

[0010] このため、距離環102は合焦位置に向っ て一方向に駆動されている時は動作が安定しているが、 ストッパー部材102bが無限ストッパー壁101bま 30 たは至近側ストッパー壁102cに当接して停止した り、当接した後、反転する場合には、距離環102の動 作は不安定となり、カメラを支持する撮影者の手に不快 な振動を与えたり、一眼レフカメラの場合はファインダ 一内の像に像ユレを感じさせたりする。特に、この現象 はフォーカスレンズ群103が光学系全体のもの、前玉 で構成されているものは、フォーカスレンズ群が至近方 向に回動するにしたがって、ヘリコイドネジ部101a とヘリコイドネジ部102aの螺合量が少なくなるの で、至近側でより顕著に表われる。

40 【0011】また、距離環102のストッパー部材10 2 bは固定環101の無限ストッパー験101bや至近 ストッパー壁101cに当接する際に強い衝撃を受ける ために肉厚を増したり、たわみを押えるためのリプを設 ける必要があり、その結果、レンズ鏡胴の外形が大きく なるなどの問題があった。

【0012】本発明は距離環に設けたストッパー部材と 間定環に設けたストッパー聴との当接時、ストッパー部 材に加わる衝撃を経滅して、レンズ鏡胴の小型化、軽量 化を可能とすることを目的とする。

【課題を解決するための手段】本発明は下記のような構 成を特徴とするレンズ鐐胴である。

- 1) 固定環にヘリコイドネジで螺合した距離環を、この 距離環のギヤに噛合する駆動系の出力ギヤを介して被写 体距離に応じて回動させ、前記距離環に設けたフォーカ スレンズ群を合焦位置まで移動させるレンズ鍵胴におい て、前記距離環には第1のストッパー部材と第2のスト ッパー部材を設け、前記固定環には前記第1のストッパ 一部材及び第2のストッパー部材の無限位置に対応して 第1の無限ストッパー壁及び第2の無限ストッパー壁 10 ように駆動される。従って、各ストッパー部材2b,2 を、至近位置に対応して第1の至近ストッパー壁及び第 2の至近ストッパー壁を設けたことを特徴とするレンズ 鏡胴。
- 2) 第1のストッパー部材と第2のストッパー部材は距 鮮環の回動軸を挟んで該距離環の略対向位置に設けたこ とを特徴とする請求項1記載のレンズ鏡脳。
- 3) 第1の至近ストッパー壁及び第2の至近ストッパー 壁のいずれか一方を、駆動系の出力ギヤと距離環のギヤ とが鳴合する近傍に設けたことを特徴とする請求項1記 戦のレンズ鏡胴。

[0014]

- 【実施例】図1は本発明の一実施例の要部縦断面図、図 2は図1の要部横断面図である。
- 【0015】 図中、1はプラスチック等の樹脂により成 形されている固定環であり、その外層面上にはヘリコイ ドネジ部1a及び第1の無限ストッパー壁1b、第1の 至近ストッパー壁1 c、第2の無限ストッパー壁1 d、 第2の至近ストッパ一壁1eを有している。
- 【0016】 2はプラスチック等の樹脂により成形され イドネジ1aと蝶合するヘリコイドネジ部2a及び第1 のストッパー部材2b、第2のストッパー部材2c、ギ ヤ部2 dを有している。ここで、第1のストッパー部材 2 b と第2のストッパー部材2 c は、距離環2の回動軸 を挟んで略対向位置に設けられている。
- 【0017】3は1枚または複数枚の光学レンズで構成 されたフォーカスレンズ群であり、距離環2に固定され ている。
- 【0018】4は駆動系(不図示)の出力輪であり、こ 2のギヤ部2dに噛合している。
- 【0019】 ここで、上記距離環2の第1のストッパ部 材2bに対応する固定環1の第1の至近ストッパ一壁1 cは、図2に示すように距離環2の回動方向において、 出力ギヤ5と距離環2のギヤ部2dが鳴合っている位置 よりわずかに θ 度だけずれた位置に設けられている。
- 【0020】次に本実施例のレンズ鎌筒の動作について 説明する。被写体距離検出機構からの検出信号によって 駆動系が駆動され、出力軸4に固定された出力ギヤ5が 回転すると、距離限2はギヤ2dを介して回転駆動され 50 【発明の効果】以上のように、本発明によれば、距離環

ながら進退動する。この結果、距離環2に固定されてい るフォーカスレンズ群3は光軸方向に進退動して合焦位 置まで移動する。

- 【0021】このフォーカス時、被写体距離が無限位置 や至近位置及びその近傍位置の場合には、距離環2は第 1のストッパー部材2bと第2のストッパー部材2cが ほぼ同時に固定環1の第1の無限ストッパー壁1 b と第 2の無限ストッパ壁1dに当接するか、第1の至近スト ッパ一壁1 c と第2の至近ストッパー壁1 e に当接する cに加わる当接時の衝撃は半減し、ストッパー部材の肉 風を増したり、補強リブを設ける等の必要がない。
- [0022] また、被写体の位置とフォーカスレンズ群 3の位置によっては、被写体距離が検出できない場合が あるが、このような検出不能の時は、検出可能になるま で駆動系を動かすことになる。この時、距離環2が被写 体距離を検出すべき方向と反対の方向に駆動された場合 には、距離環2は第1のストッパ部材2bと第2のスト ッパー部材2cがほぼ同時に固定環1の第1の無限スト 20 ッパー壁1 bと第2の無限ストッパー壁1 dに当接した 後または第1の至近ストッパー壁1cと第2の至近スト ッパー壁1 e に当接した後、反転して被写体距離が検出 されるべき方向に駆動され、フォーカスレンズ群3の合 焦位置までの駆動が行なわれる。
- 【0023】以上の動作において、固定環1のヘリコイ ドネジ部1aと距離環2のヘリコイドネジ部2aの報合 部に、駆動時の負荷を軽くする、変形、温度変化による 負荷のムラを少なくする等のために、相当量のガタを形 成してあっても、距離環2の第1のストッパー部材2b ている距離環であり、その内局面には固定環1のヘリコ 30 が固定環1の第1の無限ストッパー壁1b (第1の至近 ストッパー壁1 c) に当接する際、距離環2の回動軸を 挟んで略対向位置に設けられた第2のストッパー部材2 cが固定環1の第2の無限ストッパー壁1d(第2の至 近ストッパー壁1e) にほぼ同時に当接するので、距離 環2の動作が不安定にならず、撮影者の手に不快な振動 を与えたり、一眼レフカメラにおけるファインダー内の 像に像ユレを発生させることがなく、安定した合焦動作 を行なうことができる。
- 【0024】また、固定環1のヘリコイドネジ部1aに の出力軸4に固定されている出力ギヤ5は、上記距離環 40 対して、距離環2のヘリコイドネジ部2aが繰り出し状 態になり、螺合量が最も少なくなるフォーカス至近状態 では、出力ギヤ5と距離環2のギヤ部2dが噛合ってい る位置のわずかに θ だけずれた位置で第1のストッパー 部材2bと第1の至近ストッパ一壁1cとの当接が行な われる。従って、図2に示すように、駆動力の伝達方向 Aと第1のストッパー部材2bに対する反力の方向Bと がほぼ正反対に働く。このため、他の分力が生じにく く、距離環2の動作が安定する。

[0 0 2 5]

(4)

特開平4-340907

に設けた第1、第2のストッパー部材を、無限位置また は至近位置において、固定環に設けた第1、第2の無限 ストッパー壁または至近ストッパー壁に当接させるよう に構成したので、その当接時の衝撃が2ヶ所に分散して 受けられる。この結果、ストッパー部材に加わる衝撃は 弱められ、ストッパー部材は肉厚を増したり、たわみを 押えるためのリプを設ける必要もなく、レンズ鏡胴の小 型化、軽量化を図ることができるという効果がある。

【図面の簡単な説明】

【図1】本発明の実施例を示すレンズ鏡胴の縦断面図。 【図2】その要部の横断面図.

【図3】従来のレンズ鏡胴の縦断面図。

【図4】その要部横断面図。

【符号の説明】

1 固定環

1a ヘリコイドネジ

1 b 第1の無限ストッパー壁

1 c 第1の至近ストッパー壁

1 d 第2の無限ストッパー壁

1e 第2の至近ストッパー壁 2 距離環

2 a ヘリコイドネジ

2b 第1のストッパー部材

10 2 c 第1のストッパー部材

2 d ギヤ部

3 フォーカスレンズ群

4 出力軸

5 出力ギヤ・

[271]

[2]2]

101

[2]4]