Solutions Logic Course

Data Analytics Lab

April 2020

Exercise 0

Give an example where " $A \Rightarrow B$ " and its reciprocal " $A \Leftarrow B$ " are not equivalent.

- 1. " $ab = 0 \implies a = 0$ " is not equivalent to " $ab = 0 \iff a = 0$ ".
- 2. "It rains \Rightarrow I go out" is not equivalent to "It rains \Leftarrow I go out".

Exercise 1

Give the negation and the contraposition of the following assertions.

Let us recall the following useful theorems

Theorem 2.5 (Negation of \parallel , & and \Rightarrow)

Let *A* and *B* be two assertions, we have

- 1. $n(A \parallel B) \Leftrightarrow nA \& nB$
- 2. $n(A \& B) \Leftrightarrow nA \parallel nB$
- 3. $n(A \Rightarrow B) \Leftrightarrow A \& nB$

Theorem 2.6 (Negation of assertion with quantifiers)

Let *E* be a set and A(x) an assertion indexed by $x \in E$, we have

- 1. $n(\exists x \in E, A(x)) \iff \forall x \in E, nA(x)$
- 2. $n(\forall x \in E, A(x)) \iff \exists x \in E, nA(x)$

We also recall that the contraposition of " $A \Rightarrow B$ " is " $nB \Rightarrow nA$ ". Let us denote it by " $c[A \Rightarrow B]$ ".

- Negation
 - 1. We do this one in details:

$$n \{ \forall x \in \mathbb{R}, \forall y \in \mathbb{R}, [x < y \implies f(x) < f(y)] \} \iff \exists x \in \mathbb{R}, n \{ \forall y \in \mathbb{R}, [x < y \implies f(x) < f(y)] \}$$
$$\iff \exists x \in \mathbb{R}, \exists y \in \mathbb{R}, n [x < y \implies f(x) < f(y)] \iff \exists x \in \mathbb{R}, \exists y \in \mathbb{R}, [x < y \& f(x) \ge f(y)]$$

$$2. \ n\left\{\forall \varepsilon>0, \exists N\in\mathbb{N}, [n\geq N \implies |u_n-u|<\varepsilon]\right\} \iff \exists \varepsilon>0, \forall N\in\mathbb{N}, [n\geq N \ \& \ |u_n-u|\geq \varepsilon]$$

- 3. $n \{ \forall x \in \mathbb{R}, \forall \varepsilon > 0, \exists \delta > 0, \forall y \in \mathbb{R}, [|x y| < \delta \implies |f(x) f(y)| < \varepsilon] \} \iff \exists x \in \mathbb{R}, \exists \varepsilon > 0, \forall \delta > 0, \exists y \in \mathbb{R}, [|x y| < \delta \& |f(x) f(y)| \ge \varepsilon]$
- $4. \ n\{\forall E \subset \mathbb{N}, [E \neq \emptyset \implies (\exists n \in E, \forall m \in E, m \geq n)]\} \iff \exists E \subset \mathbb{N}, [E \neq \emptyset \& (\forall n \in E, \exists m \in E, m < n)]\}$

Contraposition

- 1. $c \{ \forall x \in \mathbb{R}, \forall y \in \mathbb{R}, [x < y \implies f(x) < f(y)] \} \iff \forall x \in \mathbb{R}, \forall y \in \mathbb{R}, [f(x) \ge f(y) \implies x \ge y]$
- $2. \ c \left\{ \forall \varepsilon > 0, \exists N \in \mathbb{N}, [n \geq N \implies |u_n u| < \varepsilon \right] \right\} \iff \forall \varepsilon > 0, \exists N \in \mathbb{N}, [|u_n u| \geq \varepsilon \implies n < N]$
- 3. $c \{ \forall x \in \mathbb{R}, \forall \varepsilon > 0, \exists \delta > 0, \forall y \in \mathbb{R}, [|x y| < \delta \implies |f(x) f(y)| < \varepsilon] \} \iff \forall x \in \mathbb{R}, \forall \varepsilon > 0, \exists \delta > 0, \forall y \in \mathbb{R}, [|f(x) f(y)| \ge \varepsilon \implies |x y| \ge \delta]$
- $4. \ \ c \ \{ \forall E \subset \mathbb{N}, [E \neq \emptyset \implies (\exists n \in E, \forall m \in E, m \geq n)] \} \ \Leftrightarrow \ \forall E \subset \mathbb{N}, [(\forall n \in E, \exists m \in E, m < n) \implies E = \emptyset]$

Exercise 2

Let E and F be two sets and A(x, y) an assertion indexed by $x \in E$ and $y \in F$. Find an example where " $\exists x \in E, \forall y \in F, A(x, y)$ " is not equivalent to " $\forall y \in F, \exists x \in E, A(x, y)$ ".

- 1. Set $E = F = \mathbb{N}$ and $A(x, y) = "x \ge y"$. In that case, the assertions are not equivalent since $"\exists x \in \mathbb{N}, \forall y \in \mathbb{N}, x \ge y"$ is false whereas $"\forall y \in \mathbb{N}, \exists x \in \mathbb{N}, x \ge y"$ is true.
- 2. If we set $A(x, y) = "x \le y"$ instead, the assertions are both true but still not equivalent (why?).

Exercise 3

If f is a function from \mathbb{R} to itself, what do we need to show to prove that f is not continuous in $x_0 \in \mathbb{R}$? Similarly, what do we need to show to prove that an estimator $\hat{\theta}$ of θ_0 is not consistent?

1. By definition, f is continuous in $x_0 \in \mathbb{R}$ if and only if

$$"\forall \varepsilon>0, \exists \delta>0, \forall y\in\mathbb{R}, [|x_0-y|<\delta \implies |f(x_0)-f(y)|<\varepsilon]".$$

To show that f is not continuous in $x_0 \in \mathbb{R}$ we need to show that the negation of the last assertion is true, that is

"
$$\exists \varepsilon > 0, \forall \delta > 0, \exists y \in \mathbb{R}, [|x_0 - y| < \delta \& |f(x_0) - f(y)| \ge \varepsilon$$
]".

2. By definition, an estimator $\hat{\theta}$ of θ_0 is consistent if and only if

"
$$\forall \varepsilon > 0, \forall \delta > 0, \exists N \ge 0, \forall n \ge N, \mathbb{P}(\|\hat{\theta} - \theta_0\| \ge \delta) \le \varepsilon$$
".

To show that $\hat{\theta}$ is not consistent we need to show that the negation of the last assertion is true, that is,

"
$$\exists \varepsilon > 0, \exists \delta > 0, \forall N \ge 0, \exists n \ge N, \mathbb{P}(\|\hat{\theta} - \theta_0\| \ge \delta) > \varepsilon$$
".

Exercise 4

What do we need to show if we want to prove

"p divide
$$ab$$
" \Rightarrow "p divide $a \parallel p$ divide b ",

by contraposition? by contradiction?

- By contraposition we need to show that $c[p \text{ divide } ab \Rightarrow p \text{ divide } a \parallel p \text{ divide } b]$ is true, that is p doesn't divide a & p doesn't divide ab.
- By contradiction we need to suppose that

"p divide
$$ab$$
" & "p doesn't divide $a \parallel p$ doesn't divide b ",

is true and show that it leads to a contradiction.

Exercise 5

1. Prove by contradicton that " $\nexists a \in , a \times 0 = 1$ ".

Suppose that " $\exists a \in a \times 0 = 1$ " is true. Therefore we have

$$2 = 1 + 1 = a \times 0 + a \times 0 = a \times (0 + 0) = a \times 0 = 1$$
,

which is a contradiction.

2. Prove by induction that " $\forall n \in \mathbb{N}$, $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$ "

First, we define for all $n \in \mathbb{N}$ the assertion $A_n := "\sum_{k=0}^n k^2 = \frac{n(n+1)(2n+1)}{6}"$.

- (a) A_0 is true since: $\sum_{k=0}^{0} k^2 = 0 = \frac{0(0+1)(2\times 0+1)}{6}$
- (b) Suppose that A_n is true for some $n \ge 0$ and let's show that it implies that A_{n+1} is true, that is,

3

$$\sum_{k=0}^{n+1} k^2 = \frac{(n+1)(n+2)(2\times(n+1)+1)}{6} = \frac{(n+1)(n+2)(2n+3)}{6}.$$

We compute

$$\sum_{k=0}^{n+1} k^2 = (n+1)^2 + \sum_{k=0}^{n} k^2 \stackrel{(IH)}{=} (n+1)^2 + \frac{n(n+1)(2n+1)}{6} = \dots = \frac{(n+1)(n+2)(2n+3)}{6},$$

which ends the proof.

- 3. Prove by induction that " $\forall n \in \mathbb{N}$, $3^{2n} 2^n$ is a multiple of 7." First, we define for all $n \in \mathbb{N}$ the assertion $A_n := "3^{2n} - 2^n$ is a multiple of 7".
 - (a) A_0 is true since: $3^{2\times 0} 2^0 = 0 = 0 \times 7$.

(b) Suppose that A_n is true for some $n \ge 0$ and let's show that it implies that A_{n+1} is true, that is,

$$3^{2(n+1)} - 2^{n+1}$$
 is a multiple of 7.

By the induction hypothesis, there exists $m \in \mathbb{Z}$ such that $3^{2n} = 7m + 2^n$. We compute

$$3^{2(n+1)} - 2^{n+1} = 3^{2n}3^2 - 2^n2 \stackrel{(IH)}{=} (7m+2^n)3^2 - 2^n2 = \cdots = 7(9m+2^n),$$

which ends the proof.

Exercise 6

We consider functions f from $\mathbb{N}^* := \mathbb{N} \setminus \{0\}$ to \mathbb{R} . We define $f(n) = O_{\delta \in \mathbb{N}^*} \{n^{-\delta}\}$, if and only if

$$\exists n' > 0, \ \exists M > 0, \ \forall \delta \in \mathbb{N}^*, \ \forall n \ge n', \ |f(n)| \le M^{\delta} n^{-\delta}.$$

Suppose that the following assertion is true

$$"f(n) = O_{\delta \in \mathbb{N}^*} \left\{ n^{-\delta} \right\} \implies \exists n^* > 0, \forall n \ge n^*, f(n) = 0." \tag{1}$$

(a) Prove that " $\exp(-n) \neq O_{\delta \in \mathbb{N}} \{n^{-\delta}\}$ " using (1).

We prove this by contraposition. In this case, the assertion of interest is

$$\forall n^* > 0, \exists n \geq n^*, f(n) \neq 0 \implies f(n) \neq O_{\delta \in \mathbb{N}^*} \left\{ n^{-\delta} \right\}.$$

By hypothesis, this assertion is true. Now, since $\exp(-n) \neq 0$ for all $n \in \mathbb{N}^*$, we clearly have

$$\forall n^* > 0, \exists n \ge n^*, \exp(-n) \ne 0,$$

which therefore implies that $\exp(-n) \neq O_{\delta \in \mathbb{N}} \{n^{-\delta}\}.$

By definition, $f(n) = O\{n^{-\delta}\}, \forall \delta \in \mathbb{N}^*$ if and only if

$$\forall \delta \in \mathbb{N}^*, \exists n_{\delta} > 0, \exists M_{\delta} > 0, \forall n \geq n_{\delta}, |f(n)| \leq M_{\delta} n^{-\delta}.$$

(b) Taking $f(n) := \exp(-n)$, show that the following assertion is false

"
$$f(n) = O\{n^{-\delta}\}, \forall \delta \in \mathbb{N}^* \implies \exists n^* > 0, \forall n \ge n^*, f(n) = 0.$$
"

We show that $\exp(-n)$ is a counterexample of the assertion. Indeed, " $\exists n^* > 0, \forall n \geq n^*, \exp(-n) = 0$ " is clearly false. Therefore we only need to show that " $\exp(-n) = O\left\{n^{-\delta}\right\}$, $\forall \delta \in \mathbb{N}^*$ " is true.

Let's consider an arbitrary $\delta \in \mathbb{N}^*$. We need to find $n_{\delta} > 0$ and $M_{\delta} > 0$ such that for all $n \geq n_{\delta}$, we have $|\exp(-n)| \leq M_{\delta} n^{-\delta}$. Since for all $n \geq 1$ we have

$$\exp(n) = \sum_{k=0}^{\infty} \frac{n^k}{k!} > \frac{n^{\delta}}{\delta!} \implies \exp(-n) < \delta! \ n^{-\delta},$$

we can set $n_{\delta} := 1$ and $M_{\delta} := \delta!$ which ends the proof.

Exercise 7

We show Theorems 2.3 and 2.5 using truth tables.

Theorem 2.5 (Equivalent assertion of the implication)

Let *A* and *B* be two assertions, we have

$$"A \Rightarrow B" \Leftrightarrow "nB \Rightarrow nA" \Leftrightarrow "nA \parallel B"$$

Proof:

\boldsymbol{A}	В	$A \Rightarrow B$	nB	nA	$nB \Rightarrow nA$	$nA \parallel B$
V	V	V	F	F	V	V
V	F	F	V	F	F	F
F	V	V	F	V	V	V
F	F	V	V	V	V	V

Theorem 2.5 (Negation of \parallel , & and \Rightarrow)

Let *A* and *B* be two assertions, we have

- 1. $n(A \parallel B) \Leftrightarrow nA \& nB$
- 2. $n(A \& B) \Leftrightarrow nA \parallel nB$
- 3. $n(A \Rightarrow B) \Leftrightarrow A \& nB$

Proof:

1. $n(A \parallel B) \iff nA \& nB$

\boldsymbol{A}	В	$A \parallel B$	$n(A \parallel B)$	nA	nВ	nA&nB
V	V	V	F	F	F	F
V	F	V	F	F	V	F
F	V	V	F	V	F	F
F	F	F	V	V	V	V

2. $n(A \& B) \Leftrightarrow nA \parallel nB$

A	B	A & B	n(A & B)	nA	nВ	$nA \parallel nB$
V	V	V	F	F	F	F
V	F	F	V	F	V	V
F	V	F	V	V	F	V
F	F	F	V	V	V	V

3.
$$n(A \Rightarrow B) \Leftrightarrow A \& nB$$

A	В	$A \Rightarrow B$	$n(A \Rightarrow B)$	nВ	A & nB
V	V	V	F	F	F
V	F	F	V	V	V
F	V	V	F	F	F
F	F	V	F	V	F