Hill Climbing - Demonstrație Pas cu Pas

Funcția de optimizat:

$$f(x) = x^3 - 60x^2 + 900x + 100$$

unde $x \in \{0, 1, 2, ..., 31\}$.

Reprezentare și vecinătate

Fiecare număr este reprezentat în binar pe 5 biți:

- $x = 0 \rightarrow 00000$
- $x = 10 \rightarrow 01010$
- $x = 31 \rightarrow 111111$

Vecinii unui punct se obțin prin schimbarea unui singur bit. Astfel, fiecare punct are exact 5 vecini.

Funcția are 4 maxime locale:

- x = 10: f(10) = 4100 (optimul global)
- x = 12: f(12) = 3988
- x = 7: f(7) = 3803
- x = 16: f(16) = 3236

Reprezentare grafică a funcției:

Exemplu 1: First Improvement din x=0

First Improvement acceptă prima îmbunătățire găsită, fără a evalua restul vecinilor.

Iterația 1

Poziția curentă: x = 0 (binar: 00000)

Fitness curent: f(0) = 100

Generare vecini prin schimbarea fiecărui bit:

Bit schimbat	Reprezentare	X	f(x)
bit 0	00001	1	841
bit 1	00010	2	1668
bit 2	00100	4	2916
bit 3	01000	8	2276
bit 4	10000	16	3236

Evaluare în ordine:

• Vecin 1: x = 1, f(1) = 841 > f(0) = 100

• Prima îmbunătățire găsită, evaluarea se oprește

Mișcare: $0 \to 1$

Îmbunătățire: $\Delta f = +741$

Iterația 2

Poziția curentă: x = 1 (binar: 00001)

Fitness curent: f(1) = 841

Vecini:

Bit schimbat	Reprezentare	X	f(x)
bit 0	00000	0	100
bit 1	00011	3	2548
bit 2	00101	5	3500
bit 3	01001	9	3700
bit 4	10001	17	3332

Evaluare:

• Vecin 1: x = 0, f(0) = 100 < f(1) = 841

• Vecin 2: x = 3, f(3) = 2548 > f(1) = 841

• Prima îmbunătățire găsită

Mișcare: $1 \rightarrow 3$

Îmbunătățire: $\Delta f = +1707$

Iterația 3

Poziția curentă: x = 3 (binar: 00011)

Fitness curent: f(3) = 2548

Vecini:

Bit schimbat	Reprezentare	X	f(x)
bit 0	00010	2	1668
bit 1	00001	1	841
bit 2	00111	7	3803
bit 3	01011	11	3971
bit 4	10011	19	3356

Evaluare:

• x = 2: f(2) = 1668 < f(3) = 2548

• x = 1: f(1) = 841 < f(3) = 2548

• x = 7: f(7) = 3803 > f(3) = 2548

• Prima îmbunătățire găsită

Miscare: $3 \rightarrow 7$

Îmbunătățire: $\Delta f = +1255$

Iterația 4

Poziția curentă: x=7 (binar: 00111)

Fitness curent: f(7) = 3803

Vecini:

Bit schimbat	Reprezentare	X	f(x)
bit 0	00110	6	3652
bit 1	00101	5	3500
bit 2	00011	3	2548
bit 3	01111	15	3500
bit 4	10111	23	3628

Evaluare tuturor vecinilor:

• Toți vecinii au fitness mai mic decât f(7) = 3803

• Nu există îmbunătățire posibilă

Algoritm oprit. Maxim local atins.

Rezultat First Improvement

Traseu: $0 \to 1 \to 3 \to 7$

Puncte vizitate: 4 Total evaluări: 11

Rezultat final: x = 7, f(7) = 3803Calitate: 92.8% din optimul global

Exemplu 2: Best Improvement din x=8

Best Improvement evaluează toți vecinii și alege cel mai bun dintre ei.

Iterația 1

Poziția curentă: x = 8 (binar: 01000)

Fitness curent: f(8) = 2276

Vecini:

Bit schimbat	Reprezentare	X	f(x)
bit 0	01001	9	3700
bit 1	01010	10	4100
bit 2	01100	12	3988
bit 3	00000	0	100
bit 4	11000	24	3572

Evaluare completă:

- f(9) = 3700
- f(10) = 4100 (cel mai bun vecin)
- f(12) = 3988
- f(0) = 100
- f(24) = 3572

Cel mai bun vecin: x = 10 cu f(10) = 4100

Condiție îmbunătățire: f(10) = 4100 > f(8) = 2276 (îndeplinită)

Mișcare: $8 \rightarrow 10$

Îmbunătățire: $\Delta f = +1824$

Observație: În cazul First Improvement, algoritmul ar fi acceptat x=9 (primul vecin mai bun). Best Improvement evaluează toți vecinii și selectează optimul local.

Iterația 2

Poziția curentă: x=10 (binar: 01010)

Fitness curent: f(10) = 4100

Vecini:

Bit schimbat	Reprezentare	X	f(x)
bit 0	01011	11	3971
bit 1	01000	8	2276
bit 2	01110	14	3996
bit 3	00010	2	1668
bit 4	11010	26	676

Evaluare completă:

- f(11) = 3971 (cel mai bun vecin)
- f(8) = 2276
- f(14) = 3996
- f(2) = 1668
- f(26) = 676

Cel mai bun vecin: x = 11 cu f(11) = 3971

Condiție îmbunătățire: f(11) = 3971 < f(10) = 4100 (neîndeplinită)

Algoritm oprit. Maxim local atins.

Rezultat Best Improvement

Traseu: $8 \rightarrow 10$

Puncte vizitate: 2 Total evaluări: 10

Rezultat final: x = 10, f(10) = 4100Calitate: 100% (optim global găsit)

Comparație

Rezultate numerice

Metrică	First (start 0)	Best (start 8)
Traseu	$0 \rightarrow 1 \rightarrow 3 \rightarrow 7$	$8 \rightarrow 10$
Puncte vizitate	4	2
Total evaluări	11	10
Evaluări/iterație	2.75 (variabil)	5.0 (fix)
Fitness final	3803	4100
Calitate	92.8%	100%
Optim găsit	Nu	Da

Caracteristici First Improvement

Algoritm:

- 1. Generare vecini
- 2. Evaluare în ordine fixă
- 3. Acceptare prima îmbunătățire
- 4. Oprire evaluare
- 5. Repetare până la convergență

Avantaje:

- Eficient computațional (1-5 evaluări/iterație)
- Convergență rapidă

Dezavantaje:

- Alegere greedy (acceptă prima opțiune mai bună)
- Risc crescut de convergență la maxime locale suboptimale
- Comportament non-deterministic (depinde de ordinea evaluării)

Caracteristici Best Improvement

Algoritm:

- 1. Generare vecini
- 2. Evaluare completă (toți vecinii)
- 3. Selectare cel mai bun vecin
- 4. Verificare condiție îmbunătățire
- 5. Repetare până la convergență

Avantaje:

- Direcție optimă de căutare (local)
- Probabilitate mai mare de găsire a optimului global
- Comportament deterministic

Dezavantaje:

- Cost computațional mai mare (evaluare completă obligatorie)
- Convergență mai lentă

Problema maximelor locale

Ambele metode pot converge către maxime locale în funcție de punctul de start. Exemple pentru funcția dată:

Start	First converge	Best converge
0	$x = 7 \ (f = 3803)$	$x = 16 \ (f = 3236)$
8	$x = 12 \ (f = 3988)$	$x = 10 \ (f = 4100)$
15	$x = 7 \ (f = 3803)$	$x = 10 \ (f = 4100)$
20	$x = 12 \ (f = 3988)$	$x = 16 \ (f = 3236)$

Punctul de start influențează semnificativ rezultatul final.

Concluzii

Observații principale

- 1. Hill Climbing este o metodă de căutare locală. Rezultatul depinde de punctul inițial.
 - 2. Best Improvement prezintă performanțe generale superioare:
 - Probabilitate mai mare de găsire a optimului global
 - Comportament reproductibil
 - Cost suplimentar moderat (aproximativ +40% evaluări)
 - 3. Nicio metodă nu garantează găsirea optimului global.
 - 4. Soluții pentru maximele locale:
 - Random restart (multiple puncte de start)
 - Simulated annealing (acceptare probabilistică a soluțiilor mai slabe)
 - Algoritmi genetici (evoluție de populații)

Domenii de aplicabilitate

Hill Climbing este potrivit pentru:

- Funcții cu puține maxime locale
- Vecinătăti mici
- Cerințe de viteză (soluții aproximative acceptabile)
- Posibilitatea rulării din multiple puncte de start

Hill Climbing nu este recomandat pentru:

- Funcții cu multe maxime locale
- Optima globale izolate
- Cerințe de garanție a optimului

Exemplu demonstrație pentru $f(x) = x^3 - 60x^2 + 900x + 100$ pe domeniul [0, 31]