Obsah

Ú	Úvod 8						
1	Kos	smické	záření v blízkém okolí Země	9			
	1.1	Zdroje	e kosmického záření v blízkém okolí Země	10			
		1.1.1	Galaktické kosmické záření	10			
		1.1.2	Zemské radiační pásy	11			
		1.1.3	Sluneční události s emisí částic	12			
		1.1.4	Sekundární částice	13			
	1.2	Fakto	ry ovlivňující kosmické záření v blízkém okolí Země	13			
		1.2.1	Fáze slunečního cyklu	13			
		1.2.2	Sklon oběžné dráhy	14			
		1.2.3	Nadmořská výška	14			
		1.2.4	Východní/západní anizotropie zachycených protonů	14			
		1.2.5	Stínění	15			
2	Mezinárodní kosmická stanice 16						
	2.1	Modu	l Columbus	17			
3	Pas	ivní do	etektory používané k monitorování kosmického záření	19			
4	Experimenty DOSIS a DOSIS 3D						
	4.1	Rozm	ístění pasivních detektorů	21			
	4.2	Průbě	ch experimentů	21			
		4.2.1	Vývoj nadmořské výšky a slunečního cyklu	23			
	4.3	Použí	vané detektory	24			
		4.3.1	Termoluminiscenční detektory	25			
		4.3.2	Opticky stimulované luminiscenční detektory	26			

5	Vył	odnoc	ení tří detektorů stop v pevné fázi	33
		4.4.3	Srovnání dat pasivních a aktivních detektorů	32
		4.4.2	Srovnání dat z osmi sad pro jeden pasivní detektor	31
		4.4.1	Srovnání dat pasivních detektorů v rámci jedné sady	29
	4.4	Výsled	lky	28
		4.3.5	Detektory používané NPI	27
		4.3.4	Aktivní detektory DOSTEL	26
		4.3.3	Detektory stop v pevné fázi	26

5. Vyhodnocení tří detektorů stop v pevné fázi

Obr. 5.2: <++> [23]

PDP	D [<++>]	H [<++>]
1	5,31501450067	5,31501450067
2	5,068573344	$92,\!5692674847$
3	4,31129592097	$75,\!4191405129$

 $Tabulka \ 5.1: <+ Caption \ text +>$

Obr. 5.1: <++> [23]

 $Obr.\ 5.3: <+ caption\ text +>$

Obr. 5.4: <+caption text+>

Obr. 5.5: <+caption text+>

Seznam literatury

1. BENTON, E.R; BENTON, E.V.

Space radiation dosimetry in low-Earth orbit and beyond.

Nuclear Instruments and Methods in Physics Research Section B: Beam

Interactions with Materials and Atoms. 2001, roč. 184, č. 1–2, s. 255–294.

ISSN 0168-583X. Dostupné také z:

http://www.sciencedirect.com/science/article/pii/S0168583X01007480.

Advanced Topics in Solid State Dosimetry.

- 2. BERGER, T. et al. DOSIS & DOSIS 3D: long-term dose monitoring onboard the Columbus Laboratory of the International Space Station (ISS).
 - J. Space Weather Space Clim. 2016, roč. 6, s. 39.

Dostupné také z: http://dx.doi.org/10.1051/swsc/2016034.

3. BERGER, THOMAS et al.

DOSIS & DOSIS 3D: radiation measurements with the DOSTEL instruments onboard the Columbus Laboratory of the ISS in the years 2009–2016.

J. Space Weather Space Clim. 2017, roč. 7, s. A8.

Dostupné z DOI: 10.1051/swsc/2017005.

4. REITZ, Guenther.

Characteristic of the radiation field in low earth orbit and in deep space.

Zeitschrift für Medizinische Physik. 2008, roč. 18, č. 4, s. 233–243. ISSN 0939-3889.

Dostupné z DOI: https://doi.org/10.1016/j.zemedi.2008.06.015.

5. AMBROŽOVÁ, I.; BRABCOVÁ, K.; SPURNÝ, F.; SHURSHAKOV, V. A.;

KARTSEV, I. S.; TOLOCHEK, R. V.

Monitoring on board spacecraft by means of passive detectors.

Radiation Protection Dosimetry. 2011, roč. 144, č. 1-4, s. 605–610. ISSN 0144-8420.

- 6. PACHNEROVÁ BRABCOVÁ, K. Study and development of track etch detectors for dosimetric purposes: dissertation thesis. 2010. Disertační práce. České vysoké učení technické v Praze, FJFI, Katedra jaderné chemie.
- 7. NARICI, Livio; BERGER, Thomas; MATTHIÄ, Daniel; REITZ, Günther.

 Radiation Measurements Performed with Active Detectors Relevant for Human Space Exploration. *Frontiers in Oncology*. 2015, roč. 5, s. 273. ISSN 2234-943X.

 Dostupné z DOI: 10.3389/fonc.2015.00273.
- 8. WIKIPEDIA, Otevřená encyklopedie.
 Scale height used in a simple atmospheric pressure model [online].
 2017 [cit. 2017-05-10]. Dostupné z: https://en.wikipedia.org/wiki/Scale_height#Scale_height_used_in_a_simple_atmospheric_pressure_model.
- 9. GARCIA, Mark. Station Facts and Figures [online]. 2016 [cit. 2017-04-17].

 Dostupné z: https://www.nasa.gov/feature/facts-and-figures.
- 10. FICK, Hayley; JORDAN, Gary; SUMNER, Megan.
 16 Years of Station Told in 16 Gifs [online]. 2016 [cit. 2017-04-21]. Dostupné z: https://www.nasa.gov/feature/16-years-of-station-told-in-16-gifs.
- 11. WIKIPEDIA, Otevřená encyklopedie. *Mezinárodní vesmírná stanice* [online].
 2017 [cit. 2017-04-18]. Dostupné z: https://cs.wikipedia.org/wiki/Mezin%C3% Alrodn%C3%AD_vesm%C3%ADrn%C3%Al_stanice.
- 12. ESA. Where is the International Space Station? [online]. 2017 [cit. 2017-04-21].

 Dostupné z: http://www.esa.int/Our_Activities/Human_Spaceflight/
 International_Space_Station/Where_is_the_International_Space_Station.
- 13. ESA. About the International Space Station [online]. 2013 [cit. 2017-04-21].

 Dostupné z: http://www.esa.int/Our_Activities/Human_Spaceflight/
 International_Space_Station/About_the_International_Space_Station.
- 14. ESA. How much does it cost? [online]. 2013 [cit. 2017-04-22].

 Dostupné z: http://www.esa.int/Our_Activities/Human_Spaceflight/
 International_Space_Station/How_much_does_it_cost.
- 15. MALIK, Tariq. International Space Station Gets Life Extension Through 2024 [online].
 2014 [cit. 2017-04-21]. Dostupné z: http://www.space.com/24208international-space-station-extension-2024.html.

- 16. ESA. A view of the European Columbus laboratory attached to the International Space Station [online]. 2008 [cit. 2017-04-21]. Dostupné z: http:

 //www.esa.int/spaceinimages/Images/2008/02/A_view_of_the_European_
 Columbus_laboratory_attached_to_the_International_Space_Station.
- 17. ESA. ESA astronaut Hans Schlegel works on Columbus exterior during the second spacewalk of the STS-122 mission [online]. 2008 [cit. 2017-04-21].

 Dostupné z: http://www.esa.int/spaceinimages/Images/2008/02/ESA_astronaut_Hans_Schlegel_works_on_Columbus_exterior_during_the_second_spacewalk_of_the_STS-122_mission2.
- 18. WRIGHT, Jerry. Station Facts and Figures [online]. 2015 [cit. 2017-04-22].

 Dostupné z: https://www.nasa.gov/mission_pages/station/structure/elements/columbus.html.
- 19. SPURNÝ, F.; JADRNÍČKOVÁ, I. Dependence of thermoluminescent detectors relative response on the linear energy transfer; some examples of use.

 *Radiation Measurements. 2008, roč. 43, č. 2–6, s. 944–947. ISSN 1350-4487.

 *Dostupné z DOI: https://doi.org/10.1016/j.radmeas.2007.11.041.

 *Proceedings of the 15th Solid State Dosimetry (SSD15).
- 20. PACHNEROVÁ BRABCOVÁ, K.; AMBROŽOVÁ, I.; DAVÍDKOVÁ, M.; NAGASAKI, Y.; ČERVENKOVÁ, A.; BERGER, T. Spektra lineárního přenosu energie kosmického záření získaná detektory stop v pevné fázi metodou per partes. Bezpečnosť jadrovej energie. 2017, roč. 25, č. 3/4, s. 110–113. ISSN 1210-7085.
- 21. PÁLFALVI, J.K. Fluence and dose of mixed space radiation by SSNTDs achievements and constraints. *Radiation Measurements*. 2009, roč. 44, č. 9–10, s. 724–728. ISSN 1350-4487.
 - Dostupné z DOI: https://doi.org/10.1016/j.radmeas.2009.10.045.

 Proceedings of the 24th International Conferenceon Nuclear Tracks in Solids.
- 22. USOSKIN, Ilya. Cosmic Ray Station of the University of Oulu [online]. [Cit. 2017-05-01]. Dostupné z: http://cosmicrays.oulu.fi.
- 23. AVČR, ODZ ÚJF. *Mikroskop HSP-1000* [online]. [Cit. 2017-05-13]. Dostupné z: http://cesky.odz.ujf.cas.cz/home/vybaveni/mikroskop-hsp-1000.