SI231b: Matrix Computations

Lecture 18: Rayleigh Quotient for Eigenvalues of Hermitian Matrices

Yue Qiu

qiuyue@shanghaitech.edu.cn

School of Information Science and Technology ShanghaiTech University

Nov. 16, 2021

Nov. 16, 2021

MIT Lab, Yue Qiu SI231b: Matrix Computations, Shanghai Tech

Eigenvalues of Hermitian/real symmetric matrices

In this lecture, we focus on eigenvalues of Hermitian/real symmetric matrices whose eigenvalues are real, then we have simplified results.

- ▶ power iteration + deflation can be used to compute more eigenpairs, i.e., once (λ_1, v_1) is computed, applying power iteration to $A = A \lambda_1 v_1 v_1^H$ gives (λ_2, v_2) .
- ▶ QR iteration + Hessenberg reduction:
 - The Hessebberg reduction reduces A to a tridiagonal matrix
 - QR iteration (with shifts) forces to converge to a diagonal matrix
- Subspace iteration: the orthogonal basis converge to the dominant invariant subspace (for general matrices)
 - the orthogonal basis converge to the associated eigenvectors of dominant eigenvalues

Newton's Method for Eigenvalue Equation

Eigenvalue equation

$$f(\lambda, \mathbf{v}) = A\mathbf{v} - \lambda\mathbf{v}$$
.

To differentiate, we obtain

$$\delta f = (A - \lambda I)\delta v - (\delta \lambda)v.$$

Newton's method gives

$$f(\lambda, \mathbf{v}) + \delta f = 0,$$

i.e., at the k-th Newton step,

$$0 = f(\lambda_k, v_k) + \delta f(\lambda_k, v_k)$$
$$= (A - \lambda_k I)(v_k + \delta v) - (\delta \lambda_k) v_k$$
$$= (A - \lambda_k I) v_{k+1} - (\delta \lambda_k) v_k$$

This gives $v_{k+1} = (\delta \lambda_k)(A - \lambda_k I)^{-1}v_k$, where $\delta \lambda_k$ is some normalizing constant. How to update λ_k ?

 ✓ □ → ✓ □

Rayleigh Quotient

Least Square formulation of Eigenvalue Computation

Suppose $\tilde{\mathbf{v}}$ is an approximate eigenvector, we want to find the corresponding best approximate eigenvalue $\tilde{\lambda}$. This can be achieved by solving

$$\min_{\mu} \|\mathsf{A}\tilde{\mathsf{v}} - \mu\tilde{\mathsf{v}}\|_2^2.$$

The best approximate $\tilde{\lambda}$ is given by

$$\begin{split} \tilde{\lambda} &= \arg\min_{\mu} \|\mathsf{A}\tilde{\mathsf{v}} - \mu\tilde{\mathsf{v}}\|_2^2 \\ &= \frac{\tilde{\mathsf{v}}^H \mathsf{A}\tilde{\mathsf{v}}}{\tilde{\mathsf{v}}^H \tilde{\mathsf{v}}} \end{split}$$

Rayleigh Quotient

For any $x \in \mathbb{C}^n$ with $x \neq 0$, the Rayleigh Quotient is given by

$$r(x) = \frac{x^H A x}{x^H x}$$

Rayleigh Quotient

The Rayleigh Quotient is a continuous function except at x=0, and its gradient denoted by $\nabla r(x)$ is given by

$$\nabla r(x) = \frac{2}{x^H x} (Ax - r(x)x)$$

- ▶ at an eigenvector of A, the gradient is a zero vector
- if $\nabla r(x) = 0$, x is an eigenvector and r(x) is the corresponding eigenvalue.
- \triangleright eigenctors of A are the stationary points of the function r(x)

Together with the Newton iteration for computing v_{k+1} and the Rayleigh Quotient, we obtain the Rayleigh Quotient iteration for computing the eigenpair.

Rayleigh Quotient Iteration:

random selection of
$$v_0 \in \mathbb{C}^n$$

$$\lambda_0 = r(v_0) = \frac{v_0^H A v_0}{v_0^H v_0}$$
for $k = 1, 2, \cdots$

$$v_k = (A - \lambda_{k-1}I)^{-1} v_{k-1} \quad \text{solve } (A - \lambda_{k-1}I) v_k = v_{k-1}$$

$$v_k = \frac{v_k}{\|v_k\|_2}$$

$$\lambda_k = (v_k)^H A v_k$$
end

- inverse iteration with shift, and shift varies per iteration
- cubic convergence for Hermitian/real symmetric matrices

Variational Characterization of Hermitian/real symmetric Eigenvalues

Theorem[Rayleigh-Ritz]. Let A be a Hermitian matrix. It holds that

$$\begin{split} \lambda_{\min} \|x\|_2^2 &\leq x^H A x \leq \lambda_{\max} \|x\|_2^2 \\ \lambda_{\min} &= \min_{x \in \mathbb{C}^n, \|x\|_2 = 1} x^H A x, \qquad \lambda_{\max} = \max_{x \in \mathbb{C}^n, \|x\|_2 = 1} x^H A x \end{split}$$

- **Provides** information about λ_1 and λ_n for A
- ► Proof:
 - by a change of variable $y = V^H x$, we have

$$x^{H}Ax = y^{H}\Lambda y = \sum_{i=1}^{n} \lambda_{i} |y_{i}|^{2} \le \lambda_{1} \sum_{i=1}^{n} |y_{i}|^{2} = \lambda_{1} ||V^{H}x||_{2}^{2} = \lambda_{1} ||x||_{2}^{2}$$

- we thus have $\max_{\|\mathbf{x}\|_2=1} \mathbf{x}^H \mathbf{A} \mathbf{x} \leq \lambda_1$
- since $v_1^H A v_1 = \lambda_1$, the above equality is attained
- the results $\mathbf{x}^H \mathbf{A} \mathbf{x} \geq \lambda_n \|\mathbf{x}\|_2^2$ and $\min_{\|\mathbf{x}\|_2 = 1} \mathbf{x}^H \mathbf{A} \mathbf{x} = \lambda_n$ are proven in the same way

MIT Lab, Yue Qiu SI231b: Matrix Computations, Shanghai Tech

Variational Characterizations of Eigenvalues: Courant-Fischer

Question: how about λ_k for any $k \in \{1, ..., n\}$? Do we have a similar variational characterization as that in the Rayleigh-Ritz theorem?

Theorem[Courant-Fischer]. Let A be a Hermitian matrix, and let S_k denote any subspace of \mathbb{C}^n and of dimension k. For any $k \in \{1, \ldots, n\}$, it holds that

$$\begin{split} \lambda_k &= \min_{\mathcal{S}_{n-k+1} \subseteq \mathbb{C}^n} \max_{\mathbf{x} \in \mathcal{S}_{n-k+1}, \|\mathbf{x}\|_2 = 1} \mathbf{x}^H \mathbf{A} \mathbf{x} \\ &= \max_{\mathcal{S}_k \subseteq \mathbb{C}^n} \min_{\mathbf{x} \in \mathcal{S}_k, \|\mathbf{x}\|_2 = 1} \mathbf{x}^H \mathbf{A} \mathbf{x} \end{split}$$

(requires a proof)

- ▶ optima is achieved when $S_k = \text{span}\{v_1, v_2, \dots, v_k\}$ and $S_{n-k+1} = \text{span}\{v_k, v_{k+1}, \dots, v_n\}$
- The Rayleigh-Ritz Theorem is a special case of the Courant-Fischer minimax theorem when k = 1 and k = n

Implication from Courant-Fischer

From the Courant-Fischer minimax theorem, we know that

- ▶ given any k-dimensional subspace S, the smallest value of the Rayleigh quotient over that subspace is a lower bound on λ_k and the maximum value over that subspace gives an upper bound on λ_{n-k+1} .
- practically used to bound eigenvalues (Hermitian/real symmetric matrices)
- numerical range is often used to bound eigenvalues of non-Hermitian matrices (self-study for your own interest)

One step further, we have the Cauchy interlace theorem, which relates the eigenvalues of a block Rayleigh quotient to the eigenvalues of the corresponding matrix.

Theorem[Cauchy interlace]. Suppose A is Hermitian/real symmetric, and let V be a matrix with m orthonormal columns. Then the eigenvalues of V^HAV interlace the eigenvalues of A. That is, if A has eigenvalues $\alpha_1, \alpha_2, \cdots, \alpha_n$ and V^HAV has eigenvalues β_i , then

Special Case of Cauchy Interlace Theorem

If B is a principle submatrix of $m \times m$ for an $n \times n$ Hermitian/real symmetric matrix A. Suppose A has eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, and B has eigenvalues $\beta_1 \geq \beta_2 \geq \cdots \geq \beta_m$, then

$$\lambda_{n-m+j} \leq \beta_j \leq \lambda_j$$
.

Specifically, when m = n - 1,

$$\lambda_n \le \beta_{n-1} \le \lambda_{n-1} \le \dots \le \lambda_2 \le \beta_1 \le \lambda_1$$

Readings

You are supposed to read

▶ Gene H. Golub and Charles F. Van Loan. *Matrix Computations*, Johns Hopkins University Press, 2013. 1997.

Chapter 8.1

Lloyd N. Trefethen and David Bau III. Numerical Linear Algebra, SIAM, 1997.

Lecture 27