

Projeto com Circuitos Reconfiguráveis Projeto de Sistemas em Chip

Fault Tolerant System Design

Prof. Daniel M. Muñoz Arboleda

FGA - UnB

Lecture plan

- Introduction
 - Definition of fault tolerance
 - Applications of fault tolerant system design
- Fundamentals of dependability
 - dependability attributes: reliability, availability, safety
 - dependability impairments: faults, errors, failures
- Some dependability evaluation techniques
 - common measures: failure rate, MTTF, MTTR
- Redundancy techniques
 - space redundancy
 - hardware redundancy
 - information redundancy
 - software redundancy
 - time redundancy

Fault Tolerance is the ability of a system to continue performing its function in spite of faults

broken connection

hardware

bug in program

software

Why do we need fault-tolerance?

- It is practically impossible to build a perfect system
 - suppose a component has the reliability 99.99%
 - a system consisting of 100 non-redundant components will have the reliability 99.01%
 - a system consisting of 10.000 components will have the reliability 36.79%
- It is hard to forsee all the factors

Redundancy

- Redundancy is the provision of functional capabilities that would be unnecessary in a fault-free environment.
 - replicated hardware component
 - parity check bit attached to digital data
 - a line of program verfiying the correcttess of the resut

- safety-critical applications
 - critical to human safety
 - aircraft flight control
 - environmental disaster must be avoided
 - chemical plants, nuclear plants
 - requirements
 - 99.9999% probability to be operational at the end of a 3-hour period

- mission-critical applications
 - it is important to complete the mission
 - repair is impossible or prohibitively expensive
 - Aerospace applications such as satellite, spacecraft
- requirements
 - 95% probability to be operational at the end of mission (e.g. 10 years)
 - may be degraded or reconfigured before (operator interaction possible)

- business-critical applications
 - users want to have a high probability of receiving service when it is requested
 - transaction processing (banking, stock exchange or other time-shared systems)
 - ATM: < 10 hours/year unavailable
 - airline reservation: < 1 min/day unavailable

- maintenance postponement applications
 - avoid unscheduled maintenance
 - should continue to function until next planned repair (economical benefits)
 - examples:
 - remotely controlled systems
 - telephone switching systems (in remote areas)

Lecture plan

- Introduction
 - Definition of fault tolerance
 - Applications of fault tolerant system design
- Fundamentals of dependability
 - dependability attributes: reliability, availability, safety
 - dependability impairments: faults, errors, failures
- Some dependability evaluation techniques
 - common measures: failure rate, MTTF, MTTR
- Redundancy techniques
 - space redundancy
 - hardware redundancy
 - information redundancy
 - software redundancy
 - time redundancy

Goals of fault tolerance

The main goal of fault tolerance is to increase the **dependability (confiabilidade)** of a system

Dependability is the ability of a system to deliver its intended level of service to its users

Dependability tree

Reliability

- R(t) is the probability that a system operates without failure in the interval [0,t], given that it worked at time 0
- We need high reliability when:
 - even momentary periods of incorrect performance are unacceptable (aircraft, heart pace maker)
 - no repair possible (satellite, spacecraft)

Reliability

- R(t) is the probability that a system operates without failure in the interval [0,t], given that it worked at time 0
- We need high reliability when:
 - even momentary periods of incorrect performance are unacceptable (aircraft, heart pace maker)
 - no repair possible (satellite, spacecraft)
 - Spacecraft: R(several years) = 0.95

Reliability versus fault tolerance

- A highly reliable system is not necessarily fault tolerant
 - a very simple system can be designed using very good components such that the probability of hardware failing is very low
 - but if the hardware fails, the system cannot continue its functions

Availability

- A(t) is the probability that a system is functioning correctly at the instant of time t
- depends on
 - how frequently the system becomes non-operational
 - how quickly it can be repaired
- Often the availability assumes a time-indepentent value after some initial time interval
- Steady-state availability is often specified in terms of downtime per year
 - $-A_{ss}$ = 90%, downtime = 36.5 days/year
 - $-A_{ss}$ = 99%, downtime = 3.65 days/year

Availability

- High availability examples
 - transaction processing
 - ATM: $A_{ss} = 0.9 3 (< 10 \text{ hours/year unavailable})$
 - banking: $A_{ss} = 0.997 (< 10 \text{ s/hour unavailable})$
 - computing
 - supercomputer centres

 $A_{ss} = 0.997 (< 10 \text{ days/year unavailable})$

- embedded
 - telecom: $A_{ss} = 0.9_5$ (< 5 min/year unavailable)

Safety

- Safety is the probability that a system will either perform its function correctly or will discontinue its operation in a safe way
- System is safe
 - if it functions correctly, or
 - if it fails, it remains in a safe state
- Examples:
 - railway signalling: all semaphores red
 - nuclear energy: stop reactor if a problem occur
 - banking: don't give the money if in doubt

Safety

- Safety is the probability that a system will either perform its function correctly or will discontinue its operation in a safe way
- System is safe
 - if it functions correctly, or
 - if it fails, it remains in a safe state
- Examples:
 - railway signalling: all semaphores red
 - nuclear energy: stop reactor if a problem occur
 - banking: don't give the money if in doubt

Summary

- reliability:
 - continuity of service
- availability:
 - readiness for usage
- safety:
 - non-occurrence of catastrophic consequences

Lecture plan

- Introduction
 - Definition of fault tolerance
 - Applications of fault tolerant system design
- Fundamentals of dependability
 - dependability attributes: reliability, availability, safety
 - dependability impairments: faults, errors, failures
- Some dependability evaluation techniques
 - common measures: failure rate, MTTF, MTTR
- Redundancy techniques
 - space redundancy
 - hardware redundancy
 - information redundancy
 - software redundancy
 - time redundancy

Fault (Falta)

Fault is a physical defect, imperfection or flaw that occurs in hardware or software

Example:

- short between wires
- break in transistor
- infinite program loop

Error

Error is a deviation from correctness or accuracy

Example: Suppose a line is physically shortened to 0 (there is a fault). As long as the value on line is supposed to be 0, there is no error.

Errors are usually associated with incorrect values in the system state.

Failure (Falha)

Failure is a non-performance of some action that is due or expected

Example: Suppose a circuit controls a lamp (0 = turn off, 1 = turn on) and the output is physically shortened to 0 (there is a fault). As long as the user wants the lamp off, there is no failure.

A system is said to have a failure if the service it delivers to the user deviates from compliance with the system specification.

Cause-and-effect relationship

- Faults can result in errors. Errors can lead to system failures.
- Errors are the effect of faults. Failures are the effect of errors. Fault → Error → Failure
- Example in context of software:

Bug in a program is a fault. Possible incorrect values caused by this bug is an error. Possible crush of the operating system is a failure.

Origins of faults

- specification mistakes
 - incorrect algorithms, incorrectly specified requirements (timing, power, environmental)
- implementation mistakes
 - poor design, software coding mistakes
- component defects
 - manufacturing imperfections, random device defects, components wear-outs
- external factors
 - radiation, lightning, operator mistakes

Cause-and-effect relationship

Lecture plan

- Introduction
 - Definition of fault tolerance
 - Applications of fault tolerant system design
- Fundamentals of dependability
 - dependability attributes: reliability, availability, safety
 - dependability impairments: faults, errors, failures
- Some dependability evaluation techniques
 - common measures: failure rate, MTTF, MTTR
- Redundancy techniques
 - space redundancy
 - hardware redundancy
 - information redundancy
 - software redundancy
 - time redundancy