14:18

Appl. No. 10/763,137 Response Dated February 28, 2006 Reply to Office Action of November 30, 2005

Attorney Docket No. 88519.0002 Customer No.: 26021

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (Original) A semiconductor light emitting device comprising a light emission layer, consisting of a GaN system semiconductor, which is interposed between an n type GaN system semiconductor layer and a p type GaN system semiconductor layer, wherein there is provided a Ga-doped Mg₂Zn₁-₂O (0≤z<1) electrode film.
- 2. (Original) The semiconductor light emitting device according to claim 1, characterized in that associated with a quantity of doped Ga, with which the $M_{g_2}Z_{n_1\cdot z}O$ (0 $\leq z<1$) electrode film is doped, wherein a carrier concentration is $1\times10^{19} cm^{-3}$ or more and $5\times10^{21} cm^{-3}$ or less.
- 3. (Original) The semiconductor light emitting device according to claim 1, characterized in that there is provided a metal electrode, which supplies an electric current to either the n type GaN system semiconductor layer or the p type GaN system semiconductor layer, and that said Ga-doped Mg₂Zn₁-₂O (0≤z<1) electrode film is formed between the n type GaN system semiconductor layer or the p type GaN system semiconductor layer, and the metal electrode.
- 4. (Original) The semiconductor light emitting device according to claim 3, characterized in that associated with a quantity of, the doped Ga, with which the $Mg_zZn_{1-z}O$ ($0\leq z<1$) electrode film is doped, wherein a carrier concentration is $1\times10^{19}cm^{-3}$ or more and less than $5\times10^{21}cm^{-3}$.
- 5. (Previously Presented) The semiconductor light emitting device according to claim 1, characterized in that there is provided a metal electrode, which supplies an electric current to either the n type GaN system semiconductor layer or the p

14:18

Appl. No. 10/763,137 Response Dated February 28, 2006 Reply to Office Action of November 30, 2005

Attorney Docket No. 88519.0002 Customer No.: 26021

type GaN system semiconductor layer, and that the metal electrode and the Gadoped $Mg_zZn_{1-z}O$ ($0\le z<1$) electrode film adjoin each other; and the metal electrode and the Ga-doped $Mg_zZn_{1-z}O$ ($0\le z<1$) electrode film are arranged so as to be contiguous to the face of the n type GaN system semiconductor layer or the p type GaN system semiconductor layer.

- 6. (Original) The semiconductor light emitting device according to claim 5, characterized in that associated with a quantity of the doped Ga, with which the $Mg_zZn_{1-z}O$ (0 \leq z<1) electrode is doped, wherein a carrier concentration is $1\times10^{19}cm^{-3}$ or more and less than $5\times10^{21}cm^{-3}$.
- 7. (Previously Presented) A semiconductor light emitting device comprising a light emission layer, consisting of a GaN system semiconductor, which is interposed between a n type GaN system semiconductor layer and a p type GaN system semiconductor layer, wherein there is provided a B-doped Mg_zZn_{1-z}O (0≤z<1) electrode film disposed on one of the GaN system semiconductor layers.
- 8. (Original) The semiconductor light emitting device according to claim 7, characterized in that associated with a quantity of the doped B, with which the $Mg_zZn_{1-z}O$ (0 $\leq z<1$) electrode is doped, wherein a carrier concentration is $1\times10^{19}cm^{-3}$ or more and less than $5\times10^{21}cm^{-3}$.
- 9. (Original) The semiconductor light emitting device according to claim 7, characterized in that there is provided a metal electrode, which supplies an electric current to either the n type GaN system semiconductor layer or the p type GaN system semiconductor layer, wherein said B-doped $Mg_zZn_{1-z}O$ ($0\leq z<1$) electrode film is formed between the n type GaN system semiconductor layer or the p type GaN system semiconductor layer, and the metal electrode.
- 10. (Original) The semiconductor light emitting device according to claim 9, characterized in that associated with a quantity of the doped B, with which the

14:18

Attorney Docket No. 88519.0002 Customer No.: 26021

 $Mg_zZn_{1-z}O$ (0 \leq z<1) electrode is doped, wherein a carrier concentration is $1x10^{19}cm^{-3}$ or more and less than $5x10^{21}cm^{-3}$.

- 11. (Previously Presented) The semiconductor light emitting device according to claim 7, characterized in that there is provided a metal electrode, which supplies an electric current to either the n type GaN system semiconductor layer or the p type GaN system semiconductor layer, wherein the metal electrode and the B-doped $Mg_zZn_{1-z}O$ ($0\le z<1$) electrode film adjoin each other and the metal electrode and the B-doped $Mg_zZn_{1-z}O$ ($0\le z<1$) electrode film are arranged so as to be contiguous to the face of the n type GaN system semiconductor layer or the p type GaN system semiconductor layer.
- 12. (Original) The semiconductor light emitting device according to claim 11, characterized in that associated with a quantity of the doped B, with which the $Mg_zZn_{1-z}O$ (0 $\leq z<1$) electrode is doped, wherein a carrier concentration is $1\times10^{19}cm^{-3}$ or more and less than $5\times10^{21}cm^{-3}$.