Chapter 1

$\begin{array}{l} \mathbf{Eredm}\tilde{\mathbf{A}}\mathbf{\textcircled{C}}\mathbf{nyek},\\ \mathbf{k}\tilde{\mathbf{A}}\P\mathbf{vetkeztet}\tilde{\mathbf{A}}\mathbf{\textcircled{C}}\mathbf{sek} \end{array}$

1.1 BeépÃtett szoftverek esetén

A ??. fejezetben bemutattam két beépÃtett, elÅre megvalósÃtott szoftvert, melyek a Matlab ode45 programja és a Boost - Odeint könyvtÃjr. Az elért eredmények és tesztek azt mutatjÃjk, hogy a Matlab ode45 differenciÃjlegyenlet megoldója sokkal gyorsabb és hatékonyabb, mint az Odeint. Ha a tesztesetekben mért ÃjtlagidÅket összehasonlÃtjuk lÃjthatjuk (??. alfejezet), hogy az ode45 20—30 -szor gyorsabb a Odeintnél. Ez talÃjn annak is köszönhetÅ, hogy a Matlab egy nagyon komoly szoftver, amelynek programcsomagjain mérnökök és programozók szÃjzai (vagy akÃjr ezrei) dolgoznak, Ãgy természetes, hogy az algoritmusok jobban optimizÃjltak és hatékonyabbak az ingyenes szoftvereknél. A tovÃjbbiakban összegezzük, hogy a két technológiÃjnak milyen elÅnyei és hÃjtrÃjnyai vannak vagy éppen miért érdemes/nem érdemes hasznÃjlni Åket, lásd [?]

Matlab ode45 elÅnyei:

- $\bullet\,$ nagyon egyszer Å \pm a haszn Ä
įlata, nem ig ĩnyel komoly programoz Äįsi ismereteket
- könnyű beépÃteni és összekötni más Matlab programokkal
- a kapott eredm \tilde{A} ©nyeket m \tilde{A} įtrix vagy vektor t \tilde{A} pusokban t \tilde{A} ©r \tilde{A} ti vissza, ami k \tilde{A} ¶nny $\tilde{A}\pm v\tilde{A}$ © teszi az eredm \tilde{A} ©nyek tov \tilde{A} įbbi kezel \tilde{A} ©s \tilde{A} ©t
- \bullet az eredm
Ã ©nyeket grafikus fel Ã
‡leten azonnal meg tudjuk jelen Ãteni

- \bullet jobb eredm
ényeket produk Ãjlt, mint az Odeint
- $\bullet \ j\tilde{A}^3l$ dokument $\tilde{A}_ilt,$ sok p
 \tilde{A} ©lda van a haszn $\tilde{A}_ilat\tilde{A}_ira$

```
[main node] (1) 1; [main node] (2) [below left = 2.3cm and 1.5cm of 1] 2; [main node] (3) [below right = 2.3cm and 1.5cm of 1] 3; [draw,thick] (1) edge node (2) (2) edge node (3) (3) edge node (1); [xshift=4cm] [main node] (1) 1; [main node] (2) [right = 2cm of 1] 2; [main node] (3) [below = 2cm of 1] 3; [main node] (4) [right = 2cm of 3] 4; [draw,thick] (1) edge node (2) (1) edge node (4) (3) edge node (2) (3) edge node (4);
```

Figure 1.1: Egyszerű gráf TIKZ segítségével

Matlab ode45 hátrányai:

- komoly hÃįtrÃįnya az Odeinttel szemben, hogy fizetni kell a hasznÃįlatÃįért
- nagyon sok mem óriát használ, komolyan igénybeveszi a számÃ-tógép erÅforrásait

Odeint elÅnyei:

- ingyenes és nyÃlt forráskódú, használható személyi és kereskedelmi célokra egyaránt
- nagyon rugalmas, absztrak, Ãgy könnyedén változtatható a bemeneti adatok tÃpusa vagy struktúrája
- C++ nyelven Ãrodott, támogatva a modern programozási technológiákat (Generikus programozás, Template Metaprogramming)

Odeint hátrányai:

- használata nehezebb, mint a Matlab ode45 programé, szükséges
 a C++ programozási nyelv ismerete
- \bullet a kapott eredm ĩnyekkel nem olyan k
¶nny ű bÄ¡nni, mint a Matlab eset ©ben
- \bullet absztrakts Ã
įga miatt neh éz a felmer ýlÅ probl ém Ãįkat megoldani
- \bullet dokument Ã
ilts Ãįga j óval szeg ényesebb, mint a Matlab é

1.2 Saját szoftverek esetén

Saj \tilde{A} įt szoftverek eset \tilde{A} ©ben siker \tilde{A}_{4}^{1} lt n \tilde{A} ©gy k \tilde{A}_{4}^{1} l \tilde{A} ¶nb \tilde{A} ¶z \tilde{A} technol \tilde{A}^{3} gia seg \tilde{A} ts \tilde{A} ©g \tilde{A} ©vel megval \tilde{A}^{3} s \tilde{A} tani a Dorman-Prince differenci \tilde{A} įlegyenlet megold \tilde{A}^{3} algoritmust (l \tilde{A} įsd ??. alfejezet). A felhaszn \tilde{A} įlt technol \tilde{A}^{3} gi \tilde{A} įk: Matlab, Java, C++ \tilde{A} ©s Android voltak.

Ezen technol \tilde{A}^3 gi \tilde{A}_i k k \tilde{A} ¶z \tilde{A}_4^1 l az Androidos szoftverrel kapcsolatban m \tilde{A}_i r el \tilde{A} zetes f \tilde{A} ©lelmeink voltak, mivel azt felt \tilde{A} ©telezt \tilde{A}_4^1 k, hogy b \tilde{A}_i rmennyire is fejlettek napjainkban a mobileszk \tilde{A} ¶z \tilde{A} ¶k, m \tilde{A} ©gis hardveresen nem lesznek elegek ahhoz, hogy versenybe tudjanak sz \tilde{A}_i llni a sz \tilde{A}_i m \tilde{A} t \tilde{A}^3 g \tilde{A} ©pekkel. N \tilde{A} ©h \tilde{A}_i ny teszt ut \tilde{A}_i n felt \tilde{A} ©telez \tilde{A} ©seink beigazol \tilde{A}^3 dtak, l \tilde{A}_i thatjuk a ??. alfejezet teszteseteiben is, hogy az Android szoftver mennyire gyeng \tilde{A} ©n teljes \tilde{A} tett (mind a Motorola Moto E2, mind a Samsung Galaxy Core Prime eset \tilde{A} ©ben). \tilde{A} sszehasonl \tilde{A} tva a t \tilde{A} ¶bbi algoritmussal az \tilde{A}_i tlagid \tilde{A} ket n \tilde{A} ©zve 150 – 160 - szor lassabb a Javan \tilde{A}_i l \tilde{A} ©s 300 – 350 - szer a C++ - n \tilde{A}_i l! Teh \tilde{A}_i t azt a k \tilde{A} ¶vetkeztet \tilde{A} ©st vonhatjuk le, hogy nem \tilde{A} ©rdemes mobileszk \tilde{A} ¶z \tilde{A} ¶k \tilde{A} ¶n differenci \tilde{A}_i legyenleteket oldani, mivel t \tilde{A} 0ls \tilde{A}_i gosan nagy a hardver ig \tilde{A} ©nye \tilde{A} ©s egyel \tilde{A} re ezen a t \tilde{A} ©ren nem k \tilde{A} ©pesek tartani a l \tilde{A} ©p \tilde{A} ©st a sz \tilde{A}_i m \tilde{A} t \tilde{A} 3g \tilde{A} ©pekkel.

A tovÃįbbi hÃįrom technológia közül (Matlab, Java, C++) meglepÅ módon itt is a Matlab teljesÃtett a legjobban, igaz, hogy ebben az esetben mÃįr nem hasznÃįltuk az ode45 programot, hanem megÃrtam én a sajÃįt fþggvényemet. Ez a teljesÃtményen is meglÃįtszott, mert az Ãįltalam Ãrt fþggvény nem tudott jobban teljesÃteni a tesztek alatt, mint az ode45. Mindezek ellenére 35 – 40 - szer gyorsabb volt a JavanÃįl és megközelÃtÅleg 15 – 20 - szor gyorsabb a C++ - nÃįl.

Ā Java Ãⓒs C++ szoftvereket összehasonlÃtva elmondhatom, hogy az esetek többsÃⓒgÃⓒben a C++ körÃ $\frac{1}{4}$ lbelÃ $\frac{1}{4}$ l 2 - szer volt gyorsabb a JavanÃ $_{i}$ l, ami megfelel az elÅzetes elvÃ $_{i}$ rÃ $_{i}$ soknak.

Amit nagyon fontosnak tartok kihangs A^0 lyozni, hogy az A¡ltalam megval \tilde{A}^3 s \tilde{A} tott C++ szoftver a tesztek sor \tilde{A} ¡n nagyon j \tilde{A}^3 l teljes \tilde{A} tett, felvette a versenyt az Odeint k \tilde{A} ¶nyvt \tilde{A} ¡rral \tilde{A} ©s az el \tilde{A} ©rt \tilde{A} ¡tlagok is csak nagyon kicsivel maradnak el az Odeint \tilde{A} ¡ltal produk \tilde{A} ¡lt eredm \tilde{A} ©nyekt \tilde{A} l (??. alfejezet).

TovÃįbbÃį megvalósÃtottam az Euler és Runge-Kutta módszerek pÃįrhuzamosÃtott vÃįltozatait is CUDA technológia segÃtségével. Ebben az esetben a tesztek azt mutattÃįk, hogy az Euler módszer esetében többe kerül a sok CPU és GPU memória közötti mÃįsolÃįs művelete, mint amennyit nyerünk a szÃįmÃtÃįsok elvégzése sorÃįn. TehÃįt ebben az esetben ez a fajta pÃįrhuzamosÃtÃįsi megközelÃtés

nem éri meg. Ezzel ellentétben a Runge-Kutta módszer esetében a megközelÃtés eredményesnek bizonyult abban az esetben, ha az egyenletek szÃįma nagy és a lépésköz kicsi. A ?? alfejezetben lÃįthattuk, hogy abban az esetben ha az egyenletek szÃįma n=10 és a lépésköz h=0.001, a GPU-n megközelÃtÅleg 5 és fél perccel hamarabb lefutott az algoritmus, mint a CPU-n. Ezzel a pÃįrhuzamosÃtÃįsi módszerrel nem tudtuk kihasznÃįlni a videókÃįrtya Ãįltal nyÃ⁰jtott maximÃįlis szÃįmÃtÃįsi kapacitÃįst, de Ãgy is jelentÅs különbséget sikerült elérni a futÃįsi idÅket nézve, lásd [?].

1.3 Ãsszességében

A fentieket \tilde{A} ¶sszegezve elmondhatom, hogy meg \tilde{A} ©ri elÅre meg \tilde{A} rt szoftvereket vagy k \tilde{A} ¶nyvt \tilde{A} jrakat haszn \tilde{A} jlni differenci \tilde{A} jlegyenletek megold \tilde{A} js \tilde{A} jra. Nagyon megk \tilde{A} ¶nny \tilde{A} thetik az elt \tilde{A} $\frac{1}{4}$ nket egyszer \tilde{A} ±s \tilde{A} ©g \tilde{A} $\frac{1}{4}$ kkel \tilde{A} ©s nagy teljes \tilde{A} -tm \tilde{A} ©ny \tilde{A} $\frac{1}{4}$ kkel. Viszont fontos elmondani, hogy haszn \tilde{A} jlatuk probl \tilde{A} ©m \tilde{A} jkkal is j \tilde{A} jrhat, p \tilde{A} ©ld \tilde{A} jul fizetni kell \tilde{A} ©rt \tilde{A} $\frac{1}{4}$ k vagy nem lehet beleny \tilde{A} 0lni az algoritmusokba kedv \tilde{A} $\frac{1}{4}$ nk szerint, esetleges fell \tilde{A} ©p \tilde{A} hib \tilde{A} jk eset \tilde{A} ©n nagyon neh \tilde{A} ©z lenyomozni a hiba forr \tilde{A} js \tilde{A} jt (vagy szinten lehetetlen).

SajÄjt algoritmusok terÄ©n bÄjtran elmondhatom, hogy megÄ©ri a C++ technológiÃjt vÃjlasztani és ezen a vonalon tovÃjbbhaladni egy esetleges sajÃjt könyvtÃjr megÃrÃjsa, megvalósÃtÃjsa felé. LÃjthattuk, hogy az Ãjltalam megÃrt C++ szoftver is felvette a versenyt az Odeint könyvtÃjrral, ami szintén C++ technológiÃjt alkalmaz, lásd [?].

Egy mÃįsik vonal, amit érdemes sokkal jobban felderÃteni az a CUDA technológiÃįval és grafikus kÃįrtyÃįval történÅ differenciÃįlegyenlet megoldÃįsa. LÃįthattuk, hogy egy kis pÃįrhuzamosÃtÃįs is jelentÅs idÅbeli különbséget jelenthet bizonyos algoritmusok esetében. Annak tudatÃįban is, hogy a differenciÃįlegyenletek megoldÃįsa nem a legjobban adatpÃįrhuzamosÃtható feladatok közé sorolható azt mondom, hogy megéri ezzel a technológiÃįval foglalkozni. Ennek kapcsÃįn a legnagyobb motivÃįció szÃįmomra a jövÅre nézve a parciÃįlis differenciÃįlegyenletek pÃįrhuzamosÃtÃįsÃįnak megvalósÃtÃįsa és tanulmÃįnyozÃįsa, mivel ezeknél az egyenleteknél jobban ki lehet hasznÃįlni a videókÃįrtya rÃįcsos szerkezetét.