1

0.1 Newton's Method and Its Extensions

Exercise 0.1.1

Let $f(x) = x^2 - 6$ and $p_0 = 1$. Use Newton's method to find p_2 .

Solution 0.1.1

$$f'(x) = 2x$$
. Therefore, $p_1 = 3.5$, $p_2 = 2.607142$.

Exercise 0.1.2

Let $f(x) = -x^3 - \cos x$ and $p_0 = -1$. Use Newton's method to find p_2 . Could $p_0 = 0$ be used?

Solution 0.1.2

$$f'(x) = -3x^2 + \sin x$$
. Therefore, $p_1 = -0.880\,333$, $p_2 = -0.865\,684$. $p_0 = 0$ can't be used, as $f'(p_0) = 0$, therefore p_1 can't be calculated.

Exercise 0.1.3

Let
$$f(x) = x^2 - 6$$
. With $p_0 = 3$ and $p_1 = 2$, find p_3 .

- a) Use the Secant method.
- b) Use the method of False Position.
- c) Which of the above is closer to $\sqrt{6}$?

Solution 0.1.3

a) Applying Secant method generates the following table:

\overline{n}	p_n	$f(p_n)$
0	3	3
1	2	-2
2	2.4	-0.24
3	2.454545	0.024793

So
$$p_3 = 2.454545$$
.

b) Applying False Position method generates the following table:

\overline{n}	p_n	$f(p_n)$
0	3	3
1	2	-2
2	2.4	-0.24
3	2.454545	2.4444444

So $p_3 = 2.4444444$.

c) p_3 produced by Secant method is better.

Exercise 0.1.4

Let $f(x) = -x^3 - \cos x$. With $p_0 = -1$ and $p_1 = 0$, find p_3 .

- a) Use the Secant method.
- b) Use the method of False Position.

Solution 0.1.4

a) Applying Secant method generates the following table:

n	p_n	$f(p_n)$
0	-1	0.459697694
1	0	-1
2	-0.685073357	-0.452850234
3	-1.252076489	1.649523592

So $p_3 = -1.252076$.

b) Applying False Position method generates the following table:

n	p_n	$f(p_n)$
0	-1	0.459697694
1	0	-1
2	-0.685073357	-0.452850234
3	-0.841355126	-0.070875968

So $p_3 = -0.841355$.

Exercise 0.1.5

Use Newton's method to find solutions accurate to within 10^{-4} for the following problems.

a)
$$x^3 - 2x^2 - 5 = 0$$
 in [1, 4]

b)
$$x^3 + 3x^2 - 1 = 0$$
 in $[-3, -2]$

c)
$$x - \cos x = 0$$
 in $[0, \pi/2]$

d)
$$x - 0.8 - 0.2 \sin x = 0$$
 in $[0, \pi/2]$

Solution 0.1.5

a) Let

$$f(x) = x^3 - 2x^2 - 5$$
$$\Rightarrow f'(x) = 3x^2 - 4x$$

Applying Newton's method on f with $p_0 = 2.5$ gives:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	2.5	-1.875	8.75
1	2.714285714	0.262390671	11.24489796
2	2.690951571	0.003331987	10.95985413
3	2.690647499	0.000000561	10.9561619
4	2.690647448	0	10.95616128

We conclude that $p \approx 2.690\,65$ is a solution of the problem.

b) Let

$$f(x) = x^3 + 3x^2 - 1$$
$$\Rightarrow f'(x) = 3x^2 + 6x$$

Applying Newton's method on f with $p_0 = -2.5$ gives:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	-2.5	2.125	3.75
1	-3.06666667	-1.626962963	9.81333333
2	-2.900875604	-0.165860349	7.839984184
3	-2.879719904	-0.002542819	7.600040757
4	-2.879385325	-0.000000631	7.596267596
5	-2.879385242	0	7.596266659

We conclude that $p \approx 2.690\,65$ is a solution of the problem.

c) Let

$$f(x) = x - \cos x$$

$$\Rightarrow f'(x) = 1 + \sin x$$

Applying Newton's method on f with $p_0 = 0.739$ gives:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	0.739	-0.000142477	1.673549106
1	0.739085135	0.000000002	1.67361203

We conclude that $p \approx 0.739\,09$ is a solution of the problem.

d) Let

$$f(x) = x - 0.8 - 0.2 \sin x$$

$$\Rightarrow f'(x) = 1 - 0.2 \cos x$$

Applying Newton's method on f with $p_0 = 0.964$ gives:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	0.964	-0.000295817	0.885952272
1	0.964333898	-0.000000009	0.886007136
2	0.964333888	0	0.886007135

We conclude that $p \approx 0.96433$ is a solution of the problem.

Exercise 0.1.6

Use Newton's method to find solutions accurate to within 10^{-5} for the following problems.

a)
$$e^x + 2^{-x} + 2\cos x - 6 = 0$$
 for $x \in [1, 2]$

b)
$$\ln(x-1) + \cos(x-1) = 0$$
 for $x \in [1.3, 2]$

c)
$$2x\cos(2x) - (x-2)^2 = 0$$
 for $x \in [2,3]$ and $x \in [3,4]$

d)
$$(x-2)^2 - \ln x = 0$$
 for $x \in [1,2]$ and $x \in [e,4]$

e)
$$e^x - 3x^2 = 0$$
 for $x \in [0, 1]$ and $x \in [3, 5]$

f)
$$\sin x - e^x = 0$$
 for $x \in [0, 1], x \in [3, 4]$ and $x \in [6, 7]$

Solution 0.1.6

a) Let

$$f(x) = e^{x} + 2^{-x} + 2\cos x - 6$$

$$\Rightarrow f'(x) = e^{x} - \ln 2 \cdot 2^{-x} - 2\sin x$$

Applying Newton's method on f with $p_0 = 1.829$ gives:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	1.829	-0.001572837	4.098862489
1	1.829383725	0.000000506	4.101500646
2	1.829383602	0	4.101499798

We conclude that $p \approx 1.829384$ is a solution of the problem.

b) Let

$$f(x) = \ln(x-1) + \cos(x-1)$$
$$\Rightarrow f'(x) = \frac{1}{x-1} - \sin(x-1)$$

Applying Newton's method on f with $p_0 = 1.398$ gives:

n	p_n	$f(p_n)$	$f'(p_n)$
0	1.398 1.397 649 931	0.000534714 -0.00020962	$1.527454989 \\ 1.52972716$

We conclude that $p \approx 1.39765$ is a solution of the problem.

c) Let

$$f(x) = 2x\cos(2x) - (x-2)^2$$

$$\Rightarrow f'(x) = 2(\cos x - x\sin(2x)^2) - 2(x-2)$$

$$= 2(\cos x - 2x\sin(2x) - x + 2)$$

Applying Newton's method on f with $p_0 = 2.371$ gives:

n	p_n	$f(p_n)$	$f'(p_n)$
0	2.371	0.002753936	7.30284651
1	2.3706229	-0.000563086	7.30282746
2	2.3707	0.000115071	7.30283178
3	2.37068424	-0.000023518	7.30283091

Applying Newton's method on f with $p_0 = 3.722$ gives:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	3.722	0.001838451	-18.77068249
1	3.722097943	0.000241783	-18.77229246
2	3.722110823	0.000031801	-18.77250414
3	3.722112517	0.000004182	-18.77253198

We conclude that $p \approx 2.370\,684$ and $p \approx 3.722\,113$ are solutions of the problem.

d) Let

$$f(x) = (x-2)^2 - \ln x$$
$$\Rightarrow f'(x) = 2(x-2) - \frac{1}{x}$$

Applying Newton's method on f with $p_0 = 1.412$ gives:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	1.412	0.00073686	-1.884215297
1	1.41239107	0.000000191	-1.883237062
2	1.412391172	0	-1.883236808

Applying Newton's method on f with $p_0 = 3.057$ gives:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	3.057	-0.000185043	1.78688191
1	3.05710356	0.000000011	1.7871001
2	3.05710355	0	1.78710009

We conclude that $p \approx 1.412\,391$ and $p \approx 3.057\,104$ are solutions of the problem.

e) Let

$$f(x) = e^x - 3x^2$$

$$\Rightarrow f'(x) = e^x - 6x$$

Applying Newton's method on f with $p_0=0.91$ gives:

n	p_n	$f(p_n)$	$f'(p_n)$
0	0.91 0.910007573	0.000022533	-2.97567747 -2.97570409

Applying Newton's method on f with $p_0 = 3.733$ gives:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	3.733	-0.001533768	19.4063332
1	3.73307903	0.000000112	19.4091631
2	3.73307903	0	19.4091629

We conclude that $p \approx 0.910\,008$ and $p \approx 3.733\,079$ are solutions of the problem.

f) Let

$$f(x) = \sin x - e^{-x}$$

$$\Rightarrow f'(x) = \cos x + e^{-x}$$

Applying Newton's method on f with $p_0 = 0.588$ gives:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	0.588	-0.000739019	1.38748879
1	0.58853263	-0.000000157	1.38689746
2	0.588532744	0	1.38689733

Applying Newton's method on f with $p_0 = 3.096$ gives:

n	p_n	$f(p_n)$	$f'(p_n)$
0	3.096	0.0003471	-0.953731075
1	3.09636394	-0.000000601	-0.953764054
2	3.09636393	0	-0.953764053

Applying Newton's method on f with $p_0 = 6.285$ gives:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	6.285	-0.000049365	1.00186241
1	6.28504927	0	1.00186223
2	6.28504927	0	1.00186223

We conclude that $p \approx 0.588\,53$, $p \approx 3.096\,36$ and p = 6.285049 are solutions of the problem.

Exercise 0.1.7

Repeat Exercise 5 using the Secant method.

Solution 0.1.7

a) Applying Secant method with $p_0 = 2.6$ and $p_1 = 2.7$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	2.6	-0.944
1	2.7	0.103
2	2.690162369	-0.005313179
3	2.690644942	-0.000027451
4	2.690647449	0.000000007

We conclude that $p \approx 2.690\,65$ is a solution of the problem.

b) Applying Secant method with $p_0 = -2.8$ and $p_1 = -2.9$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	-2.8	0.568
1	-2.9	-0.159
2	-2.878129298	0.009531586
3	-2.879366233	0.000144394
4	-2.879385259	-0.000000134

We conclude that $p \approx -2.87939$ is a solution of the problem.

c) Applying Secant method with $p_0=0.73$ and $p_1=0.74$ generates the following table:

n	p_n	$f(p_n)$
0	0.73	-0.015174402
1	0.74	0.001531441
2	0.73908329	-0.000003084
3	0.739085133	0

We conclude that $p \approx 0.739\,09$ is a solution of the problem.

d) Applying Secant method with $p_0=0.96$ and $p_1=0.97$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	0.96	-0.003838313
1	0.97	-0.005022857
2	0.96433161	-0.000002018
3	0.964333887	-0.000000001

We conclude that $p \approx 0.96433$ is a solution of the problem.

Exercise 0.1.8

Repeat Exercise 6 using the Secant method.

Solution 0.1.8

a) Applying Secant method with $p_0 = 1.82$ and $p_1 = 1.83$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	1.82	-0.038185199
1	1.83	0.002529463
2	1.829378734	-0.000019965
3	1.829383599	0.000000001

We conclude that $p \approx 1.829\,384$ is a solution of the problem.

b) Applying Secant method with $p_0=1.39$ and $p_1=1.4$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	1.39	-0.01669948
1	1.4	0.004770262
2	1.397778147	0.0000631
3	1.397748362	-0.000000242
4	1.397748476	0

We conclude that $p \approx 1.397748$ is a solution of the problem.

c) Applying Secant method with $p_0 = 2.37$ and $p_1 = 2.375$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	2.37	-0.006040395
1	2.375	0.037985226
2	2.370686009	-0.00000799
3	2.370686916	-0.000000001

Applying Secant method with $p_0=3.72$ and $p_1=3.73$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	3.72	0.034398018
1	3.73	-0.129244414
2	3.722102023	0.000175259
3	3.722112719	0.000000889
4	3.722112773	0

We conclude that $p\approx 2.370\,69$ and $p\approx 3.722\,113$ are solutions of the problem.

d) Applying Secant method with $p_0=1.41$ and $p_1=1.42$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	1.41	0.004510296
1	1.42	-0.014256872
2	1.41240329	-0.000022822
3	1.41239111	0.000000116
4	1.41239117	0

Applying Secant method with $p_0=3.05$ and $p_1=3.06$ generates the following table:

n	p_n	$f(p_n)$
0	3.05	-0.012641591
1	3.06	0.005185084
2	3.05709139	-0.000021731
3	3.05710353	-0.000000037
4	3.05710355	0

We conclude that $p \approx 1.412\,391$ and $p \approx 3.057\,104$ are solutions of the problem.

e) Applying Secant method with $p_0=0.91$ and $p_1=0.92$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	0.91	0.000022533
1	0.92	-0.02990961
2	0.910007528	0.000000132
3	0.910007572	0

Applying Secant method with $p_0=3.73$ and $p_1=3.74$ generates the following table:

n	p_n	$f(p_n)$
0	3.73	-0.059591836
1	3.74	0.135190165
2	3.73305941	-0.000380739
3	3.7330789	-0.000002422
4	3.73307903	0

We conclude that $p\approx 0.910\,008$ and $p\approx 3.733\,079$ are solutions of the problem.

f) Applying Secant method with $p_0=0.58$ and $p_1=0.59$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	0.58	-0.01187443
1	0.59	0.002033738
2	0.588537738	0.000006927
3	0.588532741	-0.000000004

Applying Secant method with $p_0=3.09$ and $p_1=3.1$ generates the following table:

n	p_n	$f(p_n)$
0	3.09	0.006067814
1	3.1	-0.00346854
2	3.09636282	0.000001057
3	3.09636393	0

Applying Secant method with $p_0=6.28$ and $p_1=6.29$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	6.28	-0.005058702
1	6.29	0.00495988
2	6.28504932	0.000000046
3	6.28504927	0

We conclude that $p\approx 0.588\,533,\ p\approx 3.096\,364$ and $p\approx 6.285\,049$ are solutions of the problem.

Exercise 0.1.9

Repeat Exercise 5 using the method of False Position.

Solution 0.1.9

a) Applying False Position method with $p_0 = 2.6$ and $p_1 = 2.7$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	2.6	-0.944
1	2.7	0.103
2	2.690162369	-0.005313179
3	2.690644942	-0.000027451
4	2.690647435	-0.000000141

We conclude that $p \approx 2.690\,647$ is a solution of the problem.

b) Applying False Position method with $p_0 = -2.8$ and $p_1 = -2.9$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	-2.8	0.568
1	-2.9	-0.159
2	-2.878129298	0.009531586
3	-2.879366233	0.000144394
4	-2.87938526	-0.000000135

We conclude that $p \approx -2.87939$ is a solution of the problem.

c) Applying False Position method with $p_0 = 0.73$ and $p_1 = 0.74$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	0.73	-0.015174402
1	0.74	0.001531441
2	0.73908329	-0.000003084
3	0.739085133	0

We conclude that $p \approx 0.739\,09$ is a solution of the problem.

d) Applying False Position method with $p_0 = 0.96$ and $p_1 = 0.97$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	0.96	-0.003838313
1	0.97	-0.005022857
2	0.96433161	-0.000002018
3	0.964333887	-0.000000001

We conclude that $p \approx 0.96433$ is a solution of the problem.

Exercise 0.1.10

Repeat Exercise 6 using the False Position method.

Solution 0.1.10

a) Applying False Position method with $p_0 = 1.82$ and $p_1 = 1.83$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	1.82	-0.038185199
1	1.83	0.002529463
2	1.829378734	-0.000019965
3	1.829383599	0.000000001

We conclude that $p \approx 1.829384$ is a solution of the problem.

b) Applying False Position method with $p_0 = 1.39$ and $p_1 = 1.4$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	1.39	-0.01669948
1	1.4	0.004770262
2	1.39777815	0.0000631
3	1.39774887	0.000000831
4	1.39774848	0.000000001

We conclude that $p \approx 1.397748$ is a solution of the problem.

c) Applying False Position method with $p_0=2.37$ and $p_1=2.375$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	2.37	-0.006040395
1	2.375	0.037985226
2	2.370686009	-0.00000799
3	2.370686916	-0.000000001

Applying False Position method with $p_0=3.72$ and $p_1=3.73$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	3.72	0.034398018
1	3.73	-0.129244414
2	3.722102023	0.000175259
3	3.722112719	0.000000889
4	3.72211277	0.000000001

We conclude that $p\approx 2.370\,69$ and $p\approx 3.722\,113$ are solutions of the problem.

d) Applying False Position method with $p_0=1.41$ and $p_1=1.42$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	1.41	0.004510296
1	1.42	-0.014256872
2	1.41240329	-0.000022822
3	1.41239119	-0.000000036
4	1.41239117	0

Applying False Position method with $p_0 = 3.05$ and $p_1 = 3.06$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	3.05	-0.012641591
1	3.06	0.005185084
2	3.05709139	-0.000021731
3	3.05710353	-0.000000037
4	3.05710355	0

We conclude that $p \approx 1.412\,391$ and $p \approx 3.057\,104$ are solutions of the problem.

e) Applying False Position method with $p_0 = 0.91$ and $p_1 = 0.92$ generates the following table:

n	p_n	$f(p_n)$
0	0.91	0.000022533
1	0.92	-0.02990961
2	0.910007528	0.000000132
3	0.910007572	0

Applying False Position method with $p_0 = 3.73$ and $p_1 = 3.74$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	3.73	-0.059591836
1	3.74	0.135190165
2	3.73305941	-0.000380739
3	3.7330789	-0.000002422
4	3.73307903	-0.000000015

We conclude that $p \approx 0.910\,008$ and $p \approx 3.733\,079$ are solutions of the problem.

f) Applying False Position method with $p_0=0.58$ and $p_1=0.59$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	0.58	-0.01187443
1	0.59	0.002033738
2	0.588537738	0.000006927
3	0.588532761	0.000000024

Applying False Position method with $p_0 = 3.09$ and $p_1 = 3.1$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	3.09	0.006067814
1	3.1	-0.00346854
2	3.09636282	0.000001057
3	3.09636393	0

Applying False Position method with $p_0 = 6.28$ and $p_1 = 6.29$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	6.28	-0.005058702
1	6.29	0.00495988
2	6.28504932	0.000000046
3	6.28504927	0

We conclude that $p\approx 0.588\,533,\ p\approx 3.096\,364$ and $p\approx 6.285\,049$ are solutions of the problem.

Exercise 0.1.11

Use all three methods in this Section to find solutions to within 10^{-5} for the following problems.

a)
$$3xe^x = 0$$
 for $x \in [1, 2]$

b)
$$2x + 3\cos x - e^x$$
 for $x \in [0, 1]$

Solution 0.1.11

- a) Such math... much difficult...
- b) Let

$$f(x) = 2x + 3\cos x - e^x$$

$$\Rightarrow f'(x) = 2 - 3\sin x - e^x$$

 $\sin x$ and e^x are both monotonically increasing in I = [0, 1], therefore f'(x) is monotonically decreasing I. It follows that

$$f'(0) = 2 > f'(x) > f'(1) \approx -0.5244129544$$

and that f'(x) has exactly one zero p in I. Since the sign of f'(x) changes from positive to negative as x passes p, the local maximum of f in I is at p. Then the minimum value of f in I is achieved at either end:

$$f(x) \ge \min\{f(0), f(1)\} \approx 0.9026250891 > 0$$

Then f has no zero in I.

Exercise 0.1.12

Use all three methods in this Section to find solutions to within 10^{-7} for the following problems.

a)
$$x^2 - 4x + 4 - \ln x = 0$$
 for $x \in [1, 2]$ and $x \in [2, 4]$

b)
$$x + 1 - 2\sin \pi x = 0$$
 for $x \in [0, 1/2]$ and $x \in [1/2, 1]$

Solution 0.1.12

a) Let

$$f(x) = x^2 - 4x + 4 - \ln x$$
$$\Rightarrow f'(x) = 2x - 4 - \frac{1}{x}$$

Applying Newton's method on f with $p_0 = 1.41$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	1.41	0.00451029561	-1.88921985816
1	1.41238738524	0.00000713142	-1.88324627986
2	1.41239117201	0.00000000002	-1.88323680804
3	1.41239117202	0	-1.88323680802

Applying Newton's method on f with $p_0 = 3.05$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	3.05	-0.01264159062	1.77213114754
1	3.05713355252	0.00005361847	1.78716330575
2	3.05710355053	0.00000000095	1.7871000916
3	3.05710354999	0	1.78710009048

Applying Secant method with $p_0=1.41$ and $p_1=1.42$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	1.41	0.00451029561
1	1.42	-0.01425687161
2	1.41240329057	-0.00002282192
3	1.41239111052	0.00000011582
4	1.41239117202	0

Applying Secant method with $p_0=3.05$ and $p_1=3.06$ generates the following table:

n	p_n	$f(p_n)$
0	3.05	-0.01264159062
1	3.06	0.00518508404
2	3.05709139021	-0.00002173059
3	3.05710352927	-0.00000003704
4	3.05710354999	0

Applying False Position method with $p_0=1.41$ and $p_1=1.42$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	1.41	0.00451029561
1	1.42	-0.01425687161
2	1.41240329057	-0.00002282192
3	1.41239119124	-0.00000003619
4	1.41239117205	-0.00000000006

Applying False Position method with $p_0=3.05$ and $p_1=3.06$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	3.05	-0.01264159062
1	3.06	0.00518508404
2	3.05709139021	-0.00002173059
3	3.05710352927	-0.00000003704
4	3.05710354996	0

b) Let

$$f(x) = x + 1 - 2\sin \pi x$$

$$\Rightarrow f'(x) = 1 - 2\pi \cos \pi x$$

Applying Newton's method on f with $p_0=0.21$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	0.21	-0.01581410731	-3.96469036415
1	0.20601126296	0.0000957226	-4.01255625306
2	0.20603511873	0.00000000339	-4.01227230982
3	0.20603511957	0	-4.01227229977

Applying Newton's method on f with $p_0 = 0.68$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	0.68	-0.008655851	4.36669904541
1	0.68198224126	0.00003270017	4.39967030778
2	0.68197480884	0.00000000046	4.39954692747
3	0.68197480874	0	4.39954692574

Applying Secant method with $p_0=0.21$ and $p_1=0.22$ generates the following table:

n	p_n	$f(p_n)$
0	0.21	-0.01581410731
1	0.22	-0.0548479795
2	0.20594861939	0.00034710682
3	0.20603698468	-0.0000074833
4	0.20603511981	-0.00000000096
5	0.20603511957	0

Applying Secant method with $p_0=0.68$ and $p_1=0.69$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	0.68	-0.008655851
1	0.69	0.03583885145
2	0.68194536665	-0.00012952468
3	0.68197437195	-0.00000192166
4	0.68197480876	0.00000000107
5	0.68197480874	0

Applying False Position method with $p_0 = 0.21$ and $p_1 = 0.22$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	0.21	-0.01581410731
1	0.22	-0.0548479795
2	0.20594861939	0.00034710682
3	0.20603698468	-0.0000074833
4	0.20603511981	-0.00000000096
5	0.20603511957	0

Applying False Position method with $p_0 = 0.68$ and $p_1 = 0.69$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	0.68	-0.008655851
1	0.69	0.03583885145
2	0.68194536665	-0.00012952467
3	0.68197437195	-0.00000192166
4	0.68197480226	-0.00000002851
5	0.68197480864	-0.00000000042

Exercise 0.1.13

Use Newton's method to approximate, to within 10^{-4} , the value of x that produces the point on the graph of $y = x^2$ that is closest to (1,0).

Solution 0.1.13

Let d be the squared distance between the point (x, x^2) of the graph and (1, 0).

$$d(x) = (x-1)^2 + x^4$$

$$\Rightarrow d'(x) = 4x^3 + 2(x-1)$$

$$\Rightarrow d''(x) = 12x^2 + 2$$

We need to find x that minimizes d. First we have to examine d'. As $d''(x) \ge 2 > 0 \,\forall x \in \mathbb{R}$, d' is monotonically increasing in \mathbb{R} . It follows that d' has at most one zero in \mathbb{R} .

Applying Newton's method on d' with $p_0=0.59$ generates the following table:

\overline{n}	p_n	$d'(p_n)$	$d''(p_n)$
0	0.59	0.001516	6.1772
1	0.589754581	0.000000426	6.17372559
2	0.589754512	0	6.17372462

Then $p \approx 0.58975$ is the only zero of d'. Since the sign of d' changes from negative to positive as x passes p, the global minimum of d is achieved at p.

We conclude that $x \approx 0.58975$ produces the point on the graph of $y = x^2$ that is closest to (1,0).

Exercise 0.1.14

Use Newton's method to approximate, to within 10^{-4} , the value of x that produces the point on the graph of $y = \frac{1}{x}$ that is closest to (2,1).

Solution 0.1.14

Let d be the squared distance between the point $(x, \frac{1}{x})$ of the graph and (2, 1).

$$d(x) = (x-2)^2 + \left(\frac{1}{x} - 1\right)^2$$

$$\Rightarrow d'(x) = 2(x-2) - 2\left(\frac{1}{x} - 1\right)\frac{1}{x^2} = \frac{2(x^4 - 2x^3 + x - 1)}{x^3}$$

$$\Rightarrow d''(x) = 2\left(\frac{3}{x} - 2\right)\frac{1}{x^3} + 2 = \frac{2(x^4 - 2x + 3)}{x^4}$$

Let

$$f(x) = x^4 - 2x + 3$$
$$\Rightarrow f'(x) = 4x^3 - 2$$

f' has exactly one zero at $0.5^{1/3}$. Since f' is monotonically increasing in \mathbb{R} , the sign of f' changes from negative to positive as x passes $0.5^{1/3}$. It follows that the global minimum of f is achieved at $0.5^{1/3}$:

$$f(x) \ge f(0.5^{1/3}) \approx 1.809449211 > 0$$

Then, $d''(x) > 0 \,\forall x \in \mathbb{R} \setminus 0$. It follows that d' is monotonically increasing in $D^+ = \mathbb{R}_{>0}$ and $D^- = \mathbb{R}_{<0}$, which means it has at most one zero in D^+ and D^- alike.

Let

$$g(x) = x^4 - 2x^3 + x - 1$$

$$\Rightarrow g'(x) = 4x^3 - 6x^2 + 1$$

Every zero of g is also a zero of d'. Applying Newton's method on g with $p_0 = 1.86$ generates the following table:

\overline{n}	p_n	$g(p_n)$	$g'(p_n)$
0	1.86	-0.04087984	5.981824
1	1.86683401	0.000449982	6.11376765
2	1.86676041	0.000000053	6.11233849

Applying Newton's method on g with $p_0 = -0.86$ generates the following table:

n	p_n	$g(p_n)$	$g'(p_n)$
0	-0.86	-0.04087984	-5.981824
1	-0.866834009	0.000449982	-6.11376765
2	-0.866760408	0.000000053	-6.11233849

We conclude that $x \approx 1.86676$ and $x \approx -0.86676$ produce the points on the graph of $y = x^2$ that are closest to (1,0).

Exercise 0.1.15

The following describes Newton's method graphically:

Suppose that f'(x) exists on [a,b] and that $f'(x) \neq 0 \, \forall x \in [a,b]$. Further, suppose there exists one $p \in [a,b]$ such that f(p) = 0.

Let $p_0 \in [a, b]$ be arbitrary. Let p_1 be the point at which the tangent line to f at $(p_0, f(p_0))$ crosses the x-axis. For each $n \ge 1$, let p_n be the x-intercept of the line tangent to f at $(p_{n-1}, f(p_{n-1}))$. Derive the formula describing this method.

Solution 0.1.15

The equation of the line tangent to f at $(p_{n-1}, f(p_{n-1}))$ is:

$$y = f'(p_{n-1})(x - p_{n-1}) + f(p_{n-1})$$

Then its x-intercept is:

$$x = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$

Then the formula describing the sequence generated by the procedure is:

$${p_n} \mid p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$

Exercise 0.1.16

Use Newton's method to solve the equation

$$0 = \frac{1}{2} + \frac{1}{4}x^2 - x\sin x - \frac{1}{2}\cos 2x \text{ with } p_0 = \frac{\pi}{2}$$

Iterate using Newton's method until an accuracy of 10^{-5} is obtained. Explain why the result seems unusual for Newton's method. Also, solve the equation with $p_0 = 5\pi$ and $p_0 = 10\pi$.

Solution 0.1.16

Let

$$f(x) = \frac{1}{2} + \frac{1}{4}x^2 - x\sin x - \frac{1}{2}\cos 2x$$
$$\Rightarrow f'(x) = \frac{1}{2}x - \sin x + x\cos x + \sin 2x$$

Applying Newton's method on f with $p_0 = \frac{\pi}{2}$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	1.57079633	0.046053948	-0.214601837
1	1.78539816	0.007116978	-0.120293455
2	1.84456163	0.001638544	-0.062366566
3	1.87083442	0.000396329	-0.031675918
4	1.88334643	0.000097601	-0.015954846
5	1.88946376	0.000024225	-0.008005932
6	1.89248962	0.000006035	-0.004010008
7	1.89399457	0.000001506	-0.002006754
8	1.89474507	0.000000376	-0.001003813
9	1.89511983	0.000000094	-0.000502015
10	1.89530709	0.000000023	-0.000251035
11	1.89540069	0.000000006	-0.000125524
12	1.89544748	0.000000001	-0.000062764
13	1.89547087	0	-0.000031382

n	p_n		$f(p_n)$	$f'(p_n)$
14	1.89548257	0		-0.000015691
15	1.89548842	0		-0.000007846

It's clear that the number of iteration is unusually large. Applying Newton's method on f with $p_0=5\pi$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	15.7079633	61.6850275	23.561 944 9
1	13.0899694	36.54184	-4.42523593
2	21.347572	101.479949	26.1907751
3	17.4729273	94.4331539	5.96762372
4	1.64867992	0.029800649	-0.199491346
5	1.79806309	0.005663214	-0.109166251
6	1.84994006	0.001319265	-0.056337315
7	1.87335731	0.000320334	-0.028563789
8	1.884572	0.000079014	-0.014376187
9	1.89006817	0.000019626	-0.007211151
10	1.8927898	0.00000489	-0.003611278
11	1.89414416	0.00000122	-0.001807057
12	1.89481974	0.000000305	-0.000903882
13	1.89515714	0.000000076	-0.000452029
14	1.89532573	0.000000019	-0.000226037
15	1.89541001	0.000000005	-0.000113024
16	1.89545214	0.000000001	-0.000056513
17	1.8954732	0	-0.000028257
18	1.89548374	0	-0.000014129
19	1.895489	0	-0.000007064

For $p_0=10\pi$, the sequence converges and diverges back and forth, then finally stops at $p_{154}\approx -0.000\,006$.

Exercise 0.1.17

The fourth-degree polynomial

$$f(x) = 230x^4 + 18x^3 + 9x^2 - 221x - 9$$

has two real zeros, one in [-1,0] and the other in [0,1]. Attempt to approximate these zeros to within 10^{-6} using the

- a) Method of False Position
- b) Secant method
- c) Newton's method

Use the endpoints of each interval as the initial approximations in a) and b) and the midpoints as the initial approximation in c).

Solution 0.1.17

a) Applying False Position method with $p_0 = -1$ and $p_1 = 0$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	-1	433
1	0	-9
2	-0.020361991	-4.49638093
3	-0.030430247	-2.26689137
4	-0.035479814	-1.14807119
5	-0.038030414	-0.58277074
6	-0.03932338	-0.296160751
7	-0.039980008	-0.150595231
8	-0.040313782	-0.076599144
9	-0.040483524	-0.038967468
10	-0.040569867	-0.019825027
11	-0.040613793	-0.010086543
12	-0.040636141	-0.005131916
13	-0.040647511	-0.002611086
14	-0.040653296	-0.00132851
15	-0.04065624	-0.000675943
16	-0.040657737	-0.000343918
17	-0.040658499	-0.000174985

Applying False Position method with $p_0=0$ and $p_1=1$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	0	-9
1	1	27
2	0.25	-62.5078125
3	0.773762765	-83.8305203
4	0.944885169	-11.2651302
5	0.961110797	-0.855867823
6	0.962305662	-0.061802369
7	0.962391747	-0.004446181
8	0.962397939	-0.000319781
9	0.962398384	-0.000022999

b) Applying Secant method with $p_0=-1$ and $p_1=0$ generates the following table:

n	p_n	$f(p_n)$
0	-1	433
1	0	-9
2	-0.020361991	-4.49638093
3	-0.040691256	0.007087483
4	-0.040659263	-0.000005706
5	-0.040659288	0

Applying Secant method with $p_0=0$ and $p_1=1$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	0	-9
1	1	27
2	0.25	-62.5078125
3	0.773762765	-83.8305203
4	-1.28541778	879.638986
5	0.59459552	-104.691389
6	0.394641105	-88.1289404
7	-0.669318136	183.71316
8	0.049714398	-19.9610216
9	-0.020754151	-4.40957429
10	-0.040735333	0.016859473
11	-0.040659228	-0.000013318
12	-0.040659288	0

c) Applying Newton's method with $p_0=-0.5$ generates the following table:

\overline{n}	p_n	$g(p_n)$	$g'(p_n)$
0	-0.5	115.875	-331.5
1	-0.150452489	24.510271	-225.618988
2	-0.041816814	0.256640771	-221.725549
3	-0.040659344	0.000012234	-221.704436
4	-0.040659288	0	-221.704435

Applying Newton's method with $p_0=0.5$ generates the following table:

\overline{n}	p_n	$g(p_n)$	$g'(p_n)$
0	0.5	-100.625	-83.5
1	-0.70508982	201.836304	-529.339073
2	-0.323791114	65.4184267	-252.397607

n	p_n	$g(p_n)$	$g'(p_n)$
3	-0.064603131	5.31400707	-222.185539
4	-0.040686151	0.005955616	-221.704923
5	-0.040659288	0.000000007	-221.704435
6	-0.040659288	0	-221.704435

Exercise 0.1.18

The function $f(x) = \tan \pi x - 6$ has a zero at $\frac{\arctan(6)}{\pi} \approx 0.447431543$. Let $p_0 = 0$ and $p_1 = 0.48$, and use ten iterations of each of the following methods to approximate this root. Which method is most successful and why?

- a) Bisection
- b) False Position
- c) Secant

Solution 0.1.18

a) Applying Bisection method on f with $a=0,\ b=0.48$ generates the following table:

n	a_n	b_n	p_n	$f(p_n)$
1	0	0.48	0.24	-60.5096832
2	0.24	0.48	0.36	-82.6906752
3	0.36	0.48	0.42	-91.7419152
4	0.42	0.48	0.45	-95.5558125
5	0.45	0.48	0.465	-97.2559241
6	0.465	0.48	0.4725	-98.0504281
7	0.4725	0.48	0.47625	-98.4332975
8	0.47625	0.48	0.478125	-98.6210739
9	0.478125	0.48	0.4790625	-98.7140395
10	0.4790625	0.48	0.47953125	-98.7602908

The method indeed does not produce the root in this case, as $f(a_1)$ and $f(b_1)$ have the same sign.

b) Applying method of False Position on f with $p_0=0$ and $p_1=0.48$ generates the following table:

n	p_n	$f(p_n)$
0	0	-9
1	0.48	-98.8063872
2	-0.048103483	1.65092314
3	-0.03942459	-0.273724354
4	-0.040658906	-0.000084697

n	p_n	$f(p_n)$
5	-0.040659288	-0.000000026

c) Applying Secant method on f with $p_0=0$ and $p_1=0.48$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	0	-9
1	0.48	-98.8063872
2	-0.048103483	1.65092314
3	-0.03942459	-0.273724354
4	-0.040658906	-0.000084697
5	-0.040659288	0.000000004

Clearly, Secant method is the most successful one in this case.

Exercise 0.1.19

The iteration equation for the Secant method can be written in the simpler form:

$$p_n = \frac{f(p_{n-1})p_{n-2} - f(p_{n-2})p_{n-1}}{f(p_{n-1}) - f(p_{n-2})}$$

Explain why, in general, this iteration equation is likely to be less accurate than the one given in the text book.

Solution 0.1.19

In both formulas, the denominator is close to 0 as consecutive p_n is close to each other

In the above formula, the numerator is also close to 0 for the same reason. Therefore, both numerator and denominator are close to 0, which can lead to losing digits.

The formula provided in the text book circumvents this situation by having the difference of 2 consecutive p_n multiplied with f before dividing.

As a consequence, the formula should be written in the specific way that it is printed in the text book, as it implies the multiplication should be done before division.

Exercise 0.1.20

The equation $x^2 - 10\cos x = 0$ has two solutions, $\pm 1.379\,364\,6$. Use Newton's method to approximate the solutions to within 10^{-5} with the following values of p_0 .

a)
$$p_0 = -100$$

b)
$$p_0 = -50$$

c)
$$p_0 = -25$$

d)
$$p_0 = 25$$

e)
$$p_0 = 50$$

e)
$$p_0 = 50$$
 f) $p_0 = 100$

Solution 0.1.20

Let

$$f(x) = x^2 - 10\cos x$$
$$\Rightarrow f'(x) = 2x + 10\sin x$$

a) Applying Newton's method with $p_0=-100$ generates the following table:

n	p_n	$f(p_n)$	$f'(p_n)$
0	-100	9991.3768112771	-194.9363435889
1	-48.7454384989	2375.6104686195	-87.503753248
2	-21.596769094	475.6527869722	-47.0358919679
3	-11.4842195691	127.1929976708	-14.1387429948
4	-2.4881583409	14.1309390157	-11.0554850027
5	-1.2099747957	-2.0663908208	-11.7760206276
6	-1.3854492523	0.076592885	-12.5996219873
7	-1.3793702695	0.0000713728	-12.5760796699
8	-1.3793645942	0.0000000001	-12.5760575214

b) Applying Newton's method with $p_0=-50$ generates the following table:

n	p_n	$f(p_n)$	$f'(p_n)$
0	-50	2490.3503397151	-97.376251463
1	-24.4254856569	589.0028702885	-42.3534708223
2	-10.5186473541	115.2324542098	-12.1531966041
3	-1.0369893209	-4.0127969624	-10.6827411852
4	-1.4126229615	0.4203572492	-12.7004124469
5	-1.3795250404	0.0020178304	-12.5766835597
6	-1.3793645982	0.0000000502	-12.576057537
7	-1.3793645942	0	-12.5760575214

c) Applying Newton's method with $p_0=-25$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	-25	615.0879718814	-48.676482499
1	-12.3637547271	143.0669956648	-22.7151855357
2	-6.0654572538	27.0258643344	-9.9707957587

n	p_n	$f(p_n)$	$f'(p_n)$
3	-3.3549550042	21.0289678026	-4.5924380275
4	1.2240872555	-1.8996558667	11.8531352735
5	1.3843533642	0.0627874198	12.5954047231
6	1.3793684177	0.0000480838	12.5760724428
7	1.3793645942	0	12.5760575214

d) Applying Newton's method with $p_0=25$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	25	615.0879718814	48.676482499
1	12.3637547271	143.0669956648	22.7151855357
2	6.0654572538	27.0258643344	9.9707957587
3	3.3549550042	21.0289678026	4.5924380275
4	-1.2240872555	-1.8996558667	-11.8531352735
5	-1.3843533642	0.0627874198	-12.5954047231
6	-1.3793684177	0.0000480838	-12.5760724428
7	-1.3793645942	0	-12.5760575214

e) Applying Newton's method with $p_0=50$ generates the following table:

		2/	91/
n	p_n	$f(p_n)$	$f'(p_n)$
0	50	2490.3503397151	97.376251463
1	24.4254856569	589.0028702885	42.3534708223
2	10.5186473541	115.2324542098	12.1531966041
3	1.0369893209	-4.0127969624	10.6827411852
4	1.4126229615	0.4203572492	12.7004124469
5	1.3795250404	0.0020178304	12.5766835597
6	1.3793645982	0.0000000502	12.576057537
7	1.3793645942	0	12.5760575214

f) Applying Newton's method with $p_0=100$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	100	9991.3768112771	194.9363435889
1	48.7454384989	2375.6104686195	87.503753248
2	21.596769094	475.6527869722	47.0358919679
3	11.4842195691	127.1929976708	14.1387429948
4	2.4881583409	14.1309390157	11.0554850027
5	1.2099747957	-2.0663908208	11.7760206276
6	1.3854492523	0.076592885	12.5996219873

n	p_n	$f(p_n)$	$f'(p_n)$
7	1.3793702695	0.0000713728	12.5760796699
8	1.3793645942	0.0000000001	12.5760575214

Exercise 0.1.21

The equation $4x^2 - e^x - e^{-x} = 0$ has two positive solutions x_1 and x_2 . Use Newton's method to approximate the solution to within 10^{-5} with the following values of p_0 .

- a) $p_0 = -10$
- b) $p_0 = -5$ c) $p_0 = -3$

- d) $p_0 = -1$
- e) $p_0 = 0$ f) $p_0 = 1$
- g) $p_0 = 3$
- h) $p_0 = 5$
- i) $p_0 = 10$

Solution 0.1.21

Let

$$f(x) = 4x^2 - e^x - e^{-x}$$
$$\Rightarrow f'(x) = 8x - e^x + e^{-x}$$

a) Applying Newton's method with $p_0 = -10$ generates the following table:

n	p_n	$f(p_n)$	$f'(p_n)$
0	-10	-21626.4658402066	21946.4657494068
1	-9.0145809313	-7897.0494558112	8149.9832425813
2	-8.0456158156	-2861.1584947403	3055.7206626145
3	-7.1092872664	-1021.1083215684	1166.4002502262
4	-6.2338516504	-354.2732875489	459.8421761797
5	-5.4634280009	-116.5127783823	192.1930584606
6	-4.8572001833	-34.3016609642	89.7980895533
7	-4.4752136496	-7.7145986461	52.0002627102
8	-4.3268567329	-0.8324004204	41.0778853008
9	-4.3065927778	-0.0137992441	39.7210636401
10	-4.3062453741	-0.0000039943	39.6980697257
_11	-4.3062452735	0	39.6980630673

b) Applying Newton's method with $p_0=-5$ generates the following table:

\overline{n}	p	O_n	$f(p_n)$	$f'(p_n)$
0	-5	_	-48.419 897 049 6	108.406 421 155 6

n	p_n	$f(p_n)$	$f'(p_n)$
1	-4.5533484407	-12.0284142159	58.5124910196
2	-4.3477784161	-1.7067559697	42.5113662274
3	-4.3076301894	-0.0550419721	39.7897810066
4	-4.3062468701	-0.0000633809	39.6981687205
5	-4.3062452735	-0.0000000001	39.6980630674

c) Applying Newton's method with $p_0 = -3$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	-3	15.8646760084	-3.9642501452
1	1.0019361613	0.9247864701	5.6591071879
2	0.8385205483	0.0671745913	4.82757152
3	0.8246057692	0.0005095513	4.754272591
4	0.8244985917	0.0000000303	4.7537066175
5	0.8244985853	0	4.7537065838

d) Applying Newton's method with $p_0=-1$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	-1	0.9138387304	-5.6495976127
1	-0.8382471119	0.065854754	-4.8261346213
2	-0.824601667	0.0004900484	-4.7542509289
3	-0.8244985912	0.0000000281	-4.753706615
4	-0.8244985853	0	-4.7537065838

- e) The method fails in this case as f'(0) = 0.
- f) Applying Newton's method with $p_0=1$ generates the following table:

n	p_n	$f(p_n)$	$f'(p_n)$
0	1	0.9138387304	5.6495976127
1	0.8382471119	0.065854754	4.8261346213
2	0.824601667	0.0004900484	4.7542509289
3	0.8244985912	0.0000000281	4.753706615
4	0.8244985853	0	4.7537065838

g) Applying Newton's method with $p_0=3$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	3	15.8646760084	3.9642501452
1	-1.0019361613	0.9247864701	-5.6591071879
2	-0.8385205483	0.0671745913	-4.82757152
3	-0.8246057692	0.0005095513	-4.754272591
4	-0.8244985917	0.0000000303	-4.7537066175
5	-0.8244985853	0	-4.7537065838

h) Applying Newton's method with $p_0=5$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	5	-48.4198970496	-108.4064211556
1	4.5533484407	-12.0284142159	-58.5124910196
2	4.3477784161	-1.7067559697	-42.5113662274
3	4.3076301894	-0.0550419721	-39.7897810066
4	4.3062468701	-0.0000633809	-39.6981687205
5	4.3062452735	-0.0000000001	-39.6980630674

i) Applying Newton's method with $p_0 = 10$ generates the following table:

n	p_n	$f(p_n)$	$f'(p_n)$
0	10	-21626.4658402066	-21946.4657494068
1	9.0145809313	-7897.0494558112	-8149.9832425813
2	8.0456158156	-2861.1584947403	-3055.7206626145
3	7.1092872664	-1021.1083215684	-1166.4002502262
4	6.2338516504	-354.2732875489	-459.8421761797
5	5.4634280009	-116.5127783823	-192.1930584606
6	4.8572001833	-34.3016609642	-89.7980895533
7	4.4752136496	-7.7145986461	-52.0002627102
8	4.3268567329	-0.8324004204	-41.0778853008
9	4.3065927778	-0.0137992441	-39.7210636401
10	4.3062453741	-0.0000039943	-39.6980697257
11	4.3062452735	0	-39.6980630673

Exercise 0.1.22

Use Maple to determine how many iterations of Newton's method with $p_0 = \pi/4$ are needed to find a root of $f(x) = \cos x - x$ to within 10^{-100} .

Solution 0.1.22

Python FTW: 51 iterations.

Exercise 0.1.23

The function described by $f(x) = \ln(x^2 + 1) - e^{0.4x} \cos \pi x$ has an infinite number of zeros.

- a) Determine, within 10^{-6} , the only negative zero.
- b) Determine, within 10^{-6} , the four smallest positive zeros.
- c) Determine a reasonable initial approximation to find the n^{th} smallest positive zero of f. [Hint: Sketch an approximate graph of f.]
- d) Use part c) to determine, within 10^{-6} , the 25^{th} smallest positive zero of f.

Solution 0.1.23

Differentiating f gives:

$$f'(x) = \frac{2x}{x^2 + 1} - e^{0.4x} (0.4\cos \pi x - \pi \sin \pi x)$$

Consider each term of f:

- $\ln(x^2+1) \ge 0 \,\forall x \in \mathbb{R}$
- $e^{0.4x} > 0 \,\forall x \in \mathbb{R}$
- $\cos \pi x > 0 \iff -0.5 + 2k < x < 0.5 + 2k$, with $k \in \mathbb{N}$

which means that every zero of f must be in $[2k - 0.5, 2k + 0.5], k \in \mathbb{N}$.

a) e^x is monotonically increasing in \mathbb{R} . It follows that:

$$0 < e^{0.4x} \cos \pi x \le e^{0.4x} 1 < e^{0.4 \cdot 0} = 1 \,\forall x < 0$$

 $\ln x$ is monotonically increasing in $\mathbb{R}_{>0}$. Therefore $\ln(x^2+1)$ is monotonically decreasing in $\mathbb{R}_{<0}$. Also, e^x is monotonically increasing in \mathbb{R} . Therefore, if f has a negative zero, it must satisfy:

$$\ln(x^2+1) < 1 \iff -\sqrt{e-1} \approx -1.310832494 < x < 0$$

Combining the above points, it is clear that if f has a negative zero, it must be in $D_1 = [-0.5, 0]$.

As $\ln(x^2+1)$ is monotonically decreasing in D_1 , it follows that:

$$\ln(-0.5^2 + 1) > \ln(x^2 + 1) > \ln 1 = 0 \,\forall x \in D_1$$

As both e^x and $\cos \pi x$ is monotonically increasing in D_1 , it follows that:

$$0 \le e^{0.4x} \cos \pi x \le 1 \, \forall x \in D_1$$

From the above points, there must be exactly one zero of f in D_1 . Applying Newton method on f with $p_0 = -0.25$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	-0.25	-0.579192052	-2.797220033
1	-0.457059883	0.077693927	-3.74279653
2	-0.436301627	0.007306593	-3.691332860
3	-0.434322236	0.000606405	-3.685958212
4	-0.434157718	0.000049647	-3.685507782
5	-0.434144247	0.00000406	-3.685470876
6	-0.434143145	0.000000332	-3.685467857
7	-0.434143055	0.000000027	-3.68546761

We conclude that the sole negative zero of f is $p \approx -0.4341431$.

not yet finished

Exercise 0.1.24

Find an approximation for λ , accurate to within 10^{-4} , for the population equation

$$1\,564\,000 = 1\,000\,000e^{\lambda} + \frac{435\,000}{\lambda}(e^{\lambda} - 1)$$

discussed in the introduction to this chapter. Use this value to predict the population at the end of the second year, assuming that the immigration rate during this year remains at $435\,000$ individuals per year.

Solution 0.1.24

Let

$$f(x) = 1000e^{\lambda} + \frac{435}{\lambda}(e^{\lambda} - 1) - 1564$$
$$\Rightarrow f'(x) = 1000e^{\lambda} + 435\left(\frac{1 - e^{\lambda}}{\lambda^2} + \frac{e^{\lambda}}{\lambda}\right)$$

Applying Newton's method on f with $p_0 = 0.1$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	0.1	-1.3355882953	1337.729475414
1	0.1009983994	0.000628932	1338.9895592632
2	0.1009979297	0.0000000001	1338.988966158

So $\lambda \approx 0.100\,997\,9$. Since

$$N(t) = N_0 e^{\lambda t} + \frac{v}{\lambda} (e^{\lambda t} - 1)$$

then the population predicted at the end of the second year $N(2) \approx 2187.938632 \cdot 1000 = 2187938.632$.

Exercise 0.1.25

The sum of two numbers is 20. If each number is added to its square root, the product of the two sums is 155.55. Determine the two numbers to within 10^{-4} .

Solution 0.1.25

Let one number is $x \in [0, 20]$, and the other is 20 - x. We have:

$$(x + \sqrt{x})(20 - x + \sqrt{20 - x}) = 155.55$$

Let

$$f(x) = (x + \sqrt{x})(20 - x + \sqrt{20 - x}) - 155.55$$

$$\Rightarrow f'(x) = \frac{2\sqrt{x} + 1}{2\sqrt{x}}(20 - x + \sqrt{20 - x}) - \frac{2\sqrt{20 - x} + 1}{2\sqrt{20 - x}}(x + \sqrt{x})$$

Applying Newton's method on f with $p_0 = 6.5$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	6.5	-0.1315962935	10.261387078
1	6.5128244157	-0.0002485155	10.2226328622
2	6.512848726	-0.0000000009	10.2225594124

We conclude that the two numbers are approximately 6.51285 and 13.48715.

Exercise 0.1.26

The accumulated value of a savings account based on regular periodic payments can be determined from the annuity due equation:

$$A = \frac{P}{i}[(1+i)^n - 1]$$

In this equation, A is the amount in the account, P is the amount regularly deposited, and i is the rate of interest per period for the n deposit periods. An engineer would like to have a savings account valued at \$750 000 upon retirement in 20 years and can afford to put \$1500 per month toward this goal. What is the minimal interest rate at which this amount can be invested, assuming that the interest is compounded monthly?

Solution 0.1.26

Replacing symbols with numbers gives:

$$A = \frac{1500}{i}[(1+i)^{20\cdot 12} - 1]$$

Find the minimal interest rate is finding i > 0 such that $A \ge 750\,000$:

$$\frac{1500}{i}[(1+i)^{240} - 1] \ge 750\,000$$

$$\iff 1500(1+i)^{240} - 750\,000i - 1500 \ge 0 \tag{*}$$

Let

$$f(x) = (1+x)^{240} - 500x - 1$$

$$\Rightarrow f'(x) = 240(x+1)^{239} - 500$$

Consider f'.

$$f'(x) = 0 \iff x = A = \sqrt[239]{\frac{25}{12}} - 1$$

As f' is monotonically increasing in \mathbb{R}^+ , it follows that:

- f is monotonically decreasing in $D_1 = \mathbb{R}_{\leq A} \cap \mathbb{R}^+$
- f is monotonically increasing in $\mathbb{R}_{\geq A}$

Consider the set D_1 .

$$f(0) = 0 > f(x) \forall x \in D_1$$

Therefore, (*) has no positive zero in D_1 . Consider the set $\mathbb{R}_{>A}$.

$$f(A) \approx -0.448119 \le f(x) \, \forall x \in \mathbb{R}_{>A}$$

Therefore, f has at most one zero in $\mathbb{R}_{\geq A}$. Applying Newton's method on f with $p_0 = 0.005$ generates the following table:

n	p_n	$f(p_n)$	$f'(p_n)$
0	0.005	-0.1897955241926	290.4965912375794
1	0.0056533485415	0.0422743720995	423.3277805212566
2	0.0055534865101	0.0010855795042	401.6714997843162
3	0.0055507838551	0.0000007825278	401.0924808210714
4	0.0055507819041	0.0000000000003	401.092062972948
5	0.0055507819041	0.0000000000001	401.0920629728054

We conclude that the minimal monthly interest rate (assuming that the interest is compounded monthly) is approximately 0.555078%.

Exercise 0.1.27

Problems involving the amount of money required to pay off a mortgage over a fixed period of time involve the formula

$$A = \frac{P}{i} [1 - (1+i)^{-n}]$$

known as an ordinary annuity equation. In this equation, A is the amount of the mortgage, P is the amount of each payment, and i is the interest rate per period for the n payment periods. Suppose that a 30-year home mortgage in the amount of \$135 000 is needed and that the borrower can afford house payments of at most \$1000 per month. What is the maximal interest rate the borrower can afford to pay?

Solution 0.1.27

Replacing symbols with numbers gives:

$$A = \frac{1000}{i} [1 - (1+i)^{-(30\cdot12)}]$$

Find the maximal interest rate is finding i such that $A \leq 135\,000$:

$$\frac{1000}{i}[1 - (1+i)^{-360}] \le 135\,000$$

$$\iff 1000[1 - (1+i)^{-360}] - 135\,000i \le 0 \tag{*}$$

Let

$$f(x) = 1 - (1+x)^{-360} - 135x$$

$$\Rightarrow f'(x) = 360(x+1)^{-361} - 135$$

Consider f'.

$$f'(x) = 0 \iff x = A = \sqrt[-361]{0.375} - 1$$

As f' is monotonically decreasing in \mathbb{R}^+ , it follows that:

- f is monotonically increasing in $D_1 = \mathbb{R}_{\leq A} \cap \mathbb{R}^+$
- f is monotonically decreasing in $\mathbb{R}_{>A}$

Consider the set D_1 .

$$f(0) = 0 < f(x) \,\forall x \in D_1$$

Therefore, (*) has no positive zero in D_1 . Consider the set $\mathbb{R}_{\geq A}$.

$$f(A) \approx 0.256689 \ge f(x) \, \forall x \in \mathbb{R}_{>A}$$

Therefore, f has at most one zero in $\mathbb{R}_{\geq A}$. Applying Newton's method on f with $p_0 = 0.0067$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	0.0067	0.0051401919049	-102.6869664108261
1	0.0067500569068	-0.0000144304894	-103.2618053134924
2	0.0067499171601	-0.0000000001111	-103.2602148635103

We conclude that the maximal monthly interest rate is approximately $0.674\,992\,\%.$

Exercise 0.1.28

A drug administered to a patient produces a concentration in the blood stream given by $c(t) = Ate^{\frac{-t}{3}}$ milligrams per milliliter, t hours after A units have been injected. The maximum safe concentration is $1 \, \mathrm{mg/mL}$.

- a) What amount should be injected to reach this maximum safe concentration, and when does this maximum occur?
- b) An additional amount of this drug is to be administered to the patient after the concentration falls to $0.25\,\mathrm{mg/mL}$. Determine, to the nearest minute, when this second injection should be given.
- c) Assume that the concentration from consecutive injections is additive and that $75\,\%$ of the amount originally injected is administered in the second injection. When is it time for the third injection?

Solution 0.1.28

a) Let

$$f(x) = xe^{\frac{-x}{3}}$$

$$\Rightarrow f'(x) = \left(1 - \frac{x}{3}\right)e^{\frac{-x}{3}}$$

Consider f'.

$$f'(x) = 0 \iff x = 3$$

It's clear that f' is monotonically decreasing in \mathbb{R} . It follows that:

- f is monotonically increasing in $\mathbb{R}_{\leq 3}$
- f is monotonically decreasing in $\mathbb{R}_{>3}$
- f has a global maximum at 3

We now know that $\max f = \frac{3}{e}$ is achieved at 3. In other words, the maximum concentration of any injection is reached 3 hours later, regardless of the amount administered.

To reach the maximum safe concentration of 1 mg/mL, the amount should be injected is:

$$A\frac{3}{e} = 1 \iff A = \frac{e}{3} \approx 0.906\,093\,942\,8$$

We conclude that to reach the maximum safe concentration, approximately 0.906 093 942 8 unit should be injected, and the concentration reaches its highest 3 hours after injection.

b) Let

$$g(t) = Ate^{\frac{-t}{3}} - 0.25$$

$$\Rightarrow g'(t) = A\left(1 - \frac{t}{3}\right)e^{\frac{-t}{3}}$$

with $A = \frac{e}{3}$.

We want to inject after the concentration of the first injection already reached its highest, therefore the second injection should be no sooner than 3 hours since the first one.

Applying Newton's method on g with $p_0 = 11.08$ generates the following table:

n	p_n	$g(p_n)$	$g'(p_n)$
0	11.08	-0.000127362	-0.060739197
1	11.077903126	0.000000028	-0.060765892
2	11.077903587	0	-0.060765887

We conclude that after about 11 hours and 5 minutes since the first injection, the second one can be administered.

c) Let

$$c_n(t) = \sum_{i=1}^n A_i(t - t_i)e^{\frac{-(t - t_i)}{3}}$$

$$\Rightarrow c'_n(t) = \sum_{i=1}^n A_i \left(1 - \frac{t - t_i}{3}\right)e^{\frac{-(t - t_i)}{3}}$$

be the function of concentration $t \ge t_n$ hours since the first injection and during that time window another n-1 shots are administered. t_n is the

number of hours between the first injection and the n^{th} one, and clearly $t_1 = 0$.

From the above parts, we know that $A_1 = \frac{e}{3}$, $A_2 = 0.75A_1 = \frac{e}{4}$, $t_2 = 11.077\,903\,587$.

Consider c_2 .

$$c_2(t) = 0$$

$$\iff (1 - \frac{t}{3}) + 0.75(1 - \frac{t - t_2}{3})B = 0 \text{ with } B = e^{\frac{t_2}{3}}$$

$$\iff t - 3 = 2.25(3 - t + t_2)B$$

$$\iff t = \frac{2.25(t_2 + 3)B}{1 + 2.25B} \approx 13.92377483$$

We want to inject after the total concentration from the previous injections already reached its highest, therefore the third injection should be no sooner than 13.923 774 83 hours since the first one.

Applying Newton's method on $h_2 = c_2 - 0.25$ with $p_0 = 21.25$ generates the following table:

\overline{n}	p_n	$h_2(p_n)$	$h_2'(p_n)$
0	21.25	-0.0009922998726	-0.0593509605878
1	21.2332808119236	0.0000016642222	-0.0595501020878
2	21.2333087585113	0.0000000000047	-0.0595497689062
3	21.2333087585895	0	-0.0595497689052

We conclude that after about 21 hours and 14 minutes since the first injection, the third one can be administered.

Exercise 0.1.29

Let

$$f(x) = 3^{3x+1} - 7 \cdot 5^{2x}$$

- a) Use the Maple commands solve and fsolve to try to find all roots of f.
- b) Plot f to find initial approximations to roots of f.
- c) Use Newton's method to find roots of f to within 10^{-16} .
- d) Find the exact solutions of f(x) = 0 without using Maple.

Solution 0.1.29

- 1. Opps, can't help without Maple license.
- 2. The graph of f is as follow:

No useful initial point found, every where: MATLAB, Maple, gnuplot,...

3. Let:

$$f(x) = 3^{3x+1} - 7 \cdot 5^{2x}$$

$$\Rightarrow f'(x) = 3(\ln 3)3^{3x+1} - 14(\ln 5)5^{2x}$$

Applying Newton's method on f with $p_0=11$ generates the following table:

n	p_n	$f(p_n)$	$f'(p_n)$
0	11	-12118837442806	1244484233952568
1	11.00973804015525026	396801311654	1326632411906544
2	11.009438935966258555	386222634	1324050511461616
3	11.009438644268449536	370	1324047995335120
4	11.009438644268170648	-38	1324047995332592
5	11.00943864426819907	4	1324047995332848
6	11.009438644268195517	66	1324047995333032
7	11.009 438 644 268 145 779	0	1324047995332608

So $p \approx 11.009438644268145779$.

4. Manipulating f = 0 gives:

$$f(x) = 0$$

$$\iff 3 \cdot 3^{3x} = 7 \cdot 5^{2x}$$

$$\iff \frac{27^x}{25^x} = \frac{7}{3}$$

$$\iff x = \log_{27/25} \frac{7}{3}$$

Exercise 0.1.30

Repeat Exercise 29 using $f(x) = 2^{x^2} - 3 \cdot 7^{x+1}$.

Solution 0.1.30

- a) Opps, can't help without Maple license.
- b) The graph of f is as follow:

c) Let:

$$f(x) = 2^{x^2} - 3 \cdot 7^{x+1}$$

$$\Rightarrow f'(x) = (\ln 2)2x2^{x^2} - 21(\ln 7)7^x$$

Applying Newton's method on f with $p_0 = 3.92$ generates the following table:

\overline{n}	n	$f(p_n)$	$f'(p_n)$
16	p_n	J(Pn)	$J^{-}(Pn)$
0	3.919999999999929	-909.989020751884	145585.672581531893
1	3.92625053966242632	22.625719019627	152874.530827350565
2	3.926102537775538082	0.013028085261	152698.506017085223
3	3.926102452456528891	0.000000004293	152698.404592337756
4	3.926102452456500913	0.000000000095	152698.404592304723
5	3.926102452456500469	-0.000000000015	152698.404592304141

So $p \approx 3.926 \, 102 \, 452 \, 456 \, 500 \, 469$.

d) Manipulating f = 0 gives:

$$f(x) = 0$$

$$\iff 2^{x^2} = 21 \cdot 7^x$$

$$\iff x^2 = \log_2(21 \cdot 7^x)$$

$$= \log_2 21 + x \log_2 7$$

$$\iff x^2 - \log_2 7x - \log_2 21 = 0$$

$$\iff x = \frac{\log_2 7 \pm \sqrt{\Delta}}{2} \text{ with } \Delta = (\log_2 7)^2 + 4 * \log_2 21 = \log_2 9 \cdot 529 \cdot 569$$

Exercise 0.1.31

The logistic population growth model is described by an equation of the form

$$P(t) = \frac{P_L}{1 - ce^{-kt}}$$

where P_L , c, and k > 0 are constants, and P(t) is the population at time t. P_L represents the limiting value of the population since $\lim_{t\to\infty} P(t) = P_L$. Use the census data for the years 1950, 1960, and 1970 listed in the table on page 105 to determine the constants P_L , c, and k for a logistic growth model. Use the logistic model to predict the population of the United States in 1980 and in 2010, assuming t = 0 at 1950. Compare the 1980 prediction to the actual value.

Solution 0.1.31

We have:

$$P(0) = \frac{P_L}{1 - ce^{-k0}} = P_1 \iff ce^0 = 1 - \frac{P_L}{P_1}$$
 (1)

$$P(10) = \frac{P_L}{1 - ce^{-k10}} = P_2 \iff ce^{-10k} = 1 - \frac{P_L}{P_2}$$
 (2)

$$P(20) = \frac{P_L}{1 - ce^{-k20}} = P_3 \iff ce^{-20k} = 1 - \frac{P_L}{P_3}$$
 (3)

Divide (1) by (2) and (2) by (3) gives:

$$\begin{split} e^{10k} &= \frac{A - P_2 P_L}{A - P_1 P_L} \text{ with } A = P_1 P_2 \\ e^{10k} &= \frac{B - P_3 P_L}{B - P_2 P_L} \text{ with } B = P_2 P_3 \end{split}$$

Combining both above equations gives:

$$\frac{A - P_2 P_L}{A - P_1 P_L} = \frac{B - P_3 P_L}{B - P_2 P_L}$$

$$\iff (A - P_6 P_L)(B - P_6 P_L) = (A - P_5 P_L)(B - P_7 P_L)$$

$$\iff (P_6^2 - P_5 P_7)P_L^2 + (-AP_6 - BP_6 + AP_7 + BP_5)P_L = 0$$

$$\iff P_L = \frac{A(P_7 - P_6) + B(P_5 - P_6)}{P_5 P_7 - P_6^2} \approx 265\,816.4151$$

It follows that $k \approx 0.045\,017\,502\,25$, and $c \approx -0.756\,581\,255\,8$. We now predict the US population in 1980 and 2010:

$$P_{1980} = P(30) \approx 222248.3277$$

 $P_{2010} = P(60) \approx 252967.4246$

It is predicted, using the above model, that the US population in 1980 is $222\,248\,323$ and in 2010 is $252\,967\,425$. However, the actual population in 1980 is larger, so the 1980 prediction undershoots.

Exercise 0.1.32

The Gompertz population growth model is described by

$$P(t) = P_L e^{-ce^{-kt}}$$

where P_L , c, and k > 0 are constants, and P(t) is the population at time t. Repeat Exercise 31 using the Gompertz growth model in place of the logistic model.

Solution 0.1.32

We have:

$$P(0) = P_L e^{-ce^{-k0}} = P_1 \iff e^{-k0} = \log_d \frac{P_1}{P_L}$$
 (1)

$$P(10) = P_L e^{-ce^{-k_{10}}} = P_2 \iff e^{-k_{10}} = \log_d \frac{P_2}{P_L}$$
 (2)

$$P(20) = P_L e^{-ce^{-k20}} = P_3 \iff e^{-k20} = \log_d \frac{P_3}{P_L}$$
 (3)

with $d = e^{-c}$.

From (1), we know that:

$$e^{-k0} = 1 = \log_d \frac{P_1}{P_L} \iff d = \frac{P_1}{P_L}$$

Divide (1) by (2) and (2) by (3) gives:

$$e^{10k} = \frac{\log_d \frac{P_1}{P_L}}{\log_d \frac{P_2}{P_L}} = \frac{\log_d P_1 - \log_d P_L}{\log_d P_2 - \log_d P_L} = \frac{\ln P_1 - \ln P_L}{\ln P_2 - \ln P_L}$$

$$e^{10k} = \frac{\log_d \frac{P_2}{P_L}}{\log_d \frac{P_3}{P_L}} = \frac{\log_d P_2 - \log_d P_L}{\log_d P_3 - \log_d P_L} = \frac{\ln P_2 - \ln P_L}{\ln P_3 - \ln P_L}$$

Combining both above equations gives:

$$\frac{\ln P_1 - \ln P_L}{\ln P_2 - \ln P_L} = \frac{\ln P_2 - \ln P_L}{\ln P_3 - \ln P_L}$$

$$\iff (\ln P_2 - \ln P_L)^2 = (\ln P_1 - \ln P_L)(\ln P_3 - \ln P_L)$$

$$\iff (\ln P_2)^2 - 2 \ln P_2 \ln P_L = \ln P_1 \ln P_3 - \ln(P_1 P_3) \ln P_L$$

$$\iff \ln P_L = \frac{(\ln P_2)^2 - \ln P_1 \ln P_3}{2 \ln P_2 - \ln(P_1 P_3)}$$

$$\iff P_L \approx 290 227.8618$$

It follows that $k \approx 0.030\,200\,281\,3$, $d = 0.521\,404\,110\,1$, $c = 0.651\,229\,894\,7$. We now predict the US population in 1980 and 2010:

$$P_{1980} = P(30) \approx 223\,069.2173$$

 $P_{2010} = P(60) \approx 260\,943.6839$

It is predicted, using the above model, that the US population in 1980 is 223 069 217 and in 2010 is 260 943 684. However, the actual population in 1980 is larger, so the 1980 prediction undershoots.

Exercise 0.1.33

Player A will shut out (win by a score of 21-0) player B in a game of racquetball with probability

$$P = \frac{1+p}{2} \left(\frac{p}{1-p+p^2} \right)^{21}$$

where p denotes the probability A will win any specific rally (independent of the server). Determine, to within 10^{-3} , the minimal value of p that will ensure that A will shut out B in at least half the matches they play.

Solution 0.1.33

Let

$$g(x) = \frac{x}{1 - x + x^2}$$
$$\Rightarrow g'(x) = \frac{1 - x^2}{(1 - x + x^2)^2}$$

$$f(x) = \frac{1+x}{2} \left(\frac{x}{1-x+x^2}\right)^{21}$$

$$\Rightarrow f'(x) = \frac{1}{2} \left(\frac{x}{1-x+x^2}\right)^{21} + \frac{1+x}{2} 21 \left(\frac{x}{1-x+x^2}\right)^{20} \frac{1-x^2}{(1-x+x^2)^2}$$

$$= \frac{1}{2} \left(\frac{x}{1-x+x^2}\right)^{20} \left[\frac{x}{1-x+x^2} + \frac{21(1+x)(1-x^2)}{(1-x+x^2)^2}\right]$$

$$= \frac{1}{2} \left(\frac{x}{1-x+x^2}\right)^{20} \frac{-20x^3 - 22x^2 + 22x + 21}{(1-x+x^2)^2}$$

Finding the minimal value of p that will ensure that A will shut out B in at least half the matches they play is finding the minimal $x \in D = [0, 1]$ such that $f(x) \ge 0.5$.

Consider g'.

$$g'(x) = 0 \iff x = \pm 1$$
$$x^2 - x + 1 = x^2 - 2x0.5 + 0.5^2 + 0.75 > 0.75 > 0 \,\forall x \in \mathbb{R}$$

It follows that the sign of g' is the sign of $1 - x^2$. Therefore, in $D, g' \ge 0$. Therefore, g and then f are monotonically increasing in D:

$$f(0) = 0 \le f(x) \le f(1) = 1 \, \forall x \in D$$

It's clear that $f(x) \ge 0.5$ is guaranteed to have solution in D.

Applying Newton's method on h = f - 0.5 with $p_0 = 0.84$ generates the following table:

\overline{n}	p_n	$h(p_n)$	$h'(p_n)$
0	0.84	-0.010231745763236211	4.430566512699972925
1	0.842309353834076791	0.000020294149810418	4.44775767420762147
2	0.842304791051817325	0.000000000072282402	4.447725988980080203
3	0.84230479103556577	0.000000000000000888	4.447725988867216707
4	0.842304791035565548	-0.000000000000000444	4.447725988867211377

We conclude that $p \ge 0.842304791035565548$ will ensure that A will shut out B in at least half the matches they play.

Exercise 0.1.34

In the design of all-terrain vehicles, it is necessary to consider the failure of the vehicle when attempting to negotiate two types of obstacles. One type of failure is called *hang-up failure* and occurs when the vehicle attempts to cross an obstacle that causes the bottom of the vehicle to touch the ground. The other type of failure is called *nose-in failure* and occurs when the vehicle descends into a ditch and its nose touches the ground.

The accompanying figure shows the components associated with the nose-in failure of a vehicle. It is shown that the maximum angle α that can be negotiated by a vehicle when β is the maximum angle at which hang-up failure does *not* occur satisfies the equation

$$A \sin \alpha \cos \alpha + B \sin^2 \alpha - C \cos \alpha - E \sin \alpha = 0$$

where

$$\begin{cases} D: \text{ wheel diameter} \\ A = l \sin \beta_1 \\ B = l \cos \beta_1 \\ C = (h + 0.5D) \sin \beta_1 - 0.5D \tan \beta_1 \\ E = (h + 0.5D) \cos \beta_1 - 0.5D \end{cases}$$

- a) It is stated that when $l=89\,\mathrm{in},\ h=49\,\mathrm{in},\ D=55\,\mathrm{in},\ \mathrm{and}\ \beta_1=11.5^\circ,$ angle α is approximately 33°. Verify this result.
- b) Find α for the situation when l, h, and β_1 are the same as in part a) but $D=30\,\mathrm{in}.$

Solution 0.1.34

Let

$$f(x) = A\sin x \cos x + B\sin^2 x - C\cos x - E\sin x$$

$$\Rightarrow f'(x) = A(\cos^2 x - \sin^2 x) + 2B\sin x \cos x + C\sin x - E\cos x$$

a) Applying Newton's method on f with $p_0=33^\circ\approx 0.575\,958\,653\,158\,13$ generates the following table:

\overline{n}	p_n	$g(p_n)$	$g'(p_n)$
0	0.57595865315813	0.02541130581159	52.342 904 131 061 25
1	0.5754731755899	0.00000854683891	52.30768181120521
2	0.57547301219442	0.00000000000097	52.30766994413587
3	0.5754730121944	0	52.30766994413455

So $\alpha \approx 0.5754730121944 \approx 32.97217482^{\circ}$, which is indeed close to 33°.

b) Applying Newton's method on f with $p_0=33^\circ\approx 0.575\,958\,653\,158\,13$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	0.57595865315813	-0.15407902197157	52.16025344654213
1	0.57891260778432	0.00031564555417	52.37350858776342
2	0.57890658096727	0.00000000130272	52.37307627539987
3	0.5789065809424	0.00000000000001	52.37307627361562

So $\alpha \approx 0.578\,906\,580\,942\,4 \approx 33.168\,903\,82^{\circ}$.