Overview of week
HW end of week/early next grades A4 due Monday 11/2
All due Monday 11/1-
I have followed in
today: optimisation vest of week: Nonlinear models Friday: project
rest of week: Nonlinear models
Friday: project
loday's goals: SGD w/ mini-batches
Convex sets of functions
convex sets & functions why we like convexity

SGD W/ minibateh data pos It = uniform random index {1, ..., n} $\vec{d_t} = -\nabla l_{I_t}(\vec{\omega_t}) \qquad \text{If } \vec{d_t} = -\nabla C(\vec{\omega_t})$ With = W, r ht Lt $= -\nabla \left(\frac{1}{n} \sum_{t} l_{t}(\omega_{t}) \right)$ mini-batching: Variance decreases ~ /B

=> closer to average

Pick B vandom indices (w/ replacement) of n $L_t = \{ I_{t1}, I_{t2}, \dots, I_{tB} \} | I_t | = B$ $\overline{d_t} = -\frac{1}{B} \sum_{T \in T_t} \nabla l_T(\overline{\omega}_t)$ If of data pts in batch (5G): B=1)

Practical considerations, advantages of SGD
· less computation than (a) O(B) vs. O(n) memory 7 important for GPU and NNs · parallelizes easily
memory -
d Limpostant for GPU and NNS
· parallelizes easily
- different protesses / computers working on
- parallelizes easily - different processes/computers working on different batches (Hogwild!)
Special sance of S(3) for NNs - "implicit bias" (bias-var) of SGD small W sinilar to ridge - noise helps avoid local min - debatable how important depends Disadvantages: more iterates than G) SGD We will to
- "implicit bras" (bias-var) of SGD small WII
Similar to ridge
- noise helps avoid local min
- de batable how important
depends 13 14 1 = t
Disadvantages:
· more iterates than GD 5GD (12 - 12)
Disadvantages: noisier trajectories, not always descent

Is it convex? $= \{ \vec{x} : x_i > 0 \} \quad (1-t)\vec{x} + t\vec{y} = \vec{z}$ half-space

Convex functions Defn f: Rd -> R is convex iff $f((1-t)\vec{x}+t\vec{y}) \leq (1-t)f(\vec{x})+tf(\vec{y})$ any of on line for any x, y = dom(f), 0 = t = 1 If f is convex: "flies underneath Use segment connecting any two points"

Why do we like them?

all local minima are global

algorithms are efficient and filed these minima

- GD, SGD - coordinate descent

- tricks for nonsmooth

"proximal"

"sub-gradient"

- accelerated versions 1/t -> 1/t² averaging 11Xw-g11 convex $L(\vec{\omega}) + \lambda R(\vec{\omega})$ ||w|| (real) norms f(w)+ q(w) f, g convex