

Temporal Evolution of the Plasma Sheath Surrounding Solar Cells in Low Earth Orbit

Emily M Willis and Maria Z. A. Pour

Outline

- Solar Array Operations Overview
- Standard ISS Floating Potential Observations
- Transient ISS Floating Potential Observations
- Particle in Cell Simulation
- Lumped Element Model
- Conclusion and Forward Work

Solar Array Operations Overview

V_f is the floating potential of the ISS

Solar Cells

8 cm x 8 cm

Solar Cells

Kapton

Normal

a) Floating Potential ——

b) Active Array Strings

c) Array Orientation ———

d) Plasma Density ——

e) ISS Latitude ——

Transients

a) Floating Potential ----

b) Active Array Strings ----

c) Array Orientation ———

d) Plasma Density ——

e) ISS Latitude ----

Transients

a) Floating Potential ----

b) Active Array Strings ----

c) Array Orientation ----

d) Plasma Density ——

e) ISS Latitude ----

Transients

a) Floating Potential ----

b) Active Array Strings ----

c) Array Orientation ———

d) Plasma Density ——

e) ISS Latitude ----

SPIS Setup – Steady State

Coverglass surface set to -0.2 Volts.
Solar Cell set to 150 Volts
Plasma Density 1E11 m⁻³
Plasma Temperature 0.1eV
Cell area 2 cm x 4 cm
Cell spacing 0.8mm
Coverglass overhang 0.2mm

SPIS Results for 150 V Cell at Steady-state

barrier to electron collection of of -0.07V at 6mm from the gap.

SPIS Results for 50 V Cell at Steady-state

barrier to electron collection of of -0.12V at 3mm from the gap.

Existing Current Balance Model for Rapid Charging 1-2

Model output agrees well with FPMU data

Current Balance Model Applied to Transients

New Lumped Element Model Design

Initial LEM Results

Conclusions and Future Work

- Floating potential transients attributed to solar array operations have been observed in ISS FPMU data.
- These transients are not reproduced by existing current balance models, therefore a more accurate model of the current collection is needed.
- This research is investigating the time dependent development of the barrier potential. The questions to answer include:
 - How long does it take for the barrier to develop?
 - How does the current collection develop in time along with the choking effect?
- These questions will be answered by:
 - Particle In Cell simulation of a unit ISS solar cell using parameters consistent with LEO and ISS operations.
 - Evaluation of the results of the PIC simulation to determine if it is possible that the electron collection to the solar cells can account for the transient observations.

References

- [1] J. Huang, Z. Yi, H. Zhao, L. Meng, and Y. Liu, "Model for rapid-charging events for the International Space Station, "Journal of Spacecraft and Rockets, vol. 51, no. 1, pp. 11-15, 2014.
- [2] J. Huang, Z. Yi, H. Zhao, L. Meng, and Y. Liu, "Mechanism for rapid charging events on International Space Station," Journal of Spacecraft and Rockets, vol. 51, no. 3, pp. 917-921, 2014.