评价决策类问题

应用场景:对含有多项指标的不同项目之间进行评价与决策

视频教程: 1-1-1 评价决策类-层次分析法模型精讲_哔哩哔哩_bilibili

1、层次分析法

1) 问题的层次化

目标层:只有一个元素,代表分析问题的预定目标或理想结果

准则层:包含为实现目标所涉及的中间环节

方案层:包含为实现目标可供选择的各种措施、决策方案等

2) 基本步骤

• 建立层次结构模型

• 构造个层次中的判断矩阵: 对指标的重要性两两比较,矩阵中元素 a_{ij} 表示第 i 项指标相比第 j 项指标的重要程度,具体标度与含义如下:

标度	含义
1	同等重要
3	稍微重要
5	明显重要
7	强烈重要
9	极端重要
2、4、6、8	上述相邻判断的中间值

显然, a_{ij} 与 a_{ji} 为倒数, $a_{ii}=1$

• 一致性检验:对判断矩阵的构建中两两比较,需满足判断关系的传递性,即

$$a_{ij} = a_{ik} * a_{kj}$$

计算一致性检验的步骤:

1. 计算一致性指标

$$CI = rac{\lambda_{max}}{n-1}$$

- 2. 查找对应的平均随机一致性指标 RI
- 3. 计算一致性比例

$$CR = \frac{CI}{RI}$$

CR < 0.1 时, 认为判断矩阵为一致矩阵

n	1	2	3	4	5	6	7	8	9
RI	0	0	0.52	0.89	1.12	1.26	1.36	1.41	1.46

求权重

算术平均法:

- 1. 判断矩阵归一化 (按列归一)
- 2. 按行求和,得到的元素除以 n 即为权重向量几何平均法:
- 3. 判断矩阵按行相乘得到新的列向量
- 4. 新矩阵的各元素开 n 次方
- 5. 归一化 特征值法:
- 6. 求出矩阵的最大特征值以及对应的特征向量
- 7. 对求出的特征向量进行归一化
- 求最终评价

层次分析发的 python 实现

使用 numpy 实现

2、Topsis 法(优劣解距离法)

基本概念:

理想解: 取备选方案中各项数据的最好值得到的解 负理想解: 取备选方案各项数据中的最差值得到的解

基本步骤:

1. 将原始矩阵正向化(将所有指标转换为极大型指标,即指标对应数值越大该项指标越 优)

对于指标,可以根据需求分为以下几类

指标 名称	指标特 点	转换公式
极大 型指 标	越大越 好	无
极小 型指 标	越小越 好	$x'=x_{max}-x$
中间 型指 标	越接近 某个值 越好	对一组中间型序列 $\{x_i\}$,最优值为 x_{best} , $M = \max \ x_i - x_{best}\ , x_i' = 1 - rac{\ x_i - x_{best}\ }{M}$
区间 型指 标	落在某 个区间 最好	对一组区间型序列 $\{x_i\}$,最优区间为 $[a,b]$, $M=\max\ a-\min\{x_i\},\max\{x_i\}-b\ ,x_i'=egin{cases} 1-rac{a-x_i}{M},&x_i< a\ 1,&a\leq x_i\leq b\ 1-rac{x_i-b}{M},&x_i>b \end{cases}$

2. 正向矩阵标准化

对标准化矩阵 Z 中的每个元素:

$$Z_{ij} = rac{x_{ij}}{\sum_{i=1}^n x_{ij}^2}$$

标准化后,可以对不同指标附上权重,确定权重的方法有层次分析法、熵权法、

Delphi 法、对数最小二乘法等

3. 计算得分并归一化

$$S_i = rac{D_i^-}{D_i^+ + D_i^-}$$

其中, S_i 为得分, D_i^+ 为评价对象与最大值的距离, D_i^- 为评价对象与最小值的距离 定义最大值 $Z^+=\{\max\{z_{11},z_{21},\dots z_{n1}\},\dots,\max\{z_{1n},z_{2n},\dots z_{nn}\}\}$ 同理可以定义最小值 Z^-

此时即可定义第 i 个评价对象与最大值之间的距离 $D_i^+ = \sqrt{\sum_{j=1}^m \left(Z_j^+ - z_{ij}\right)^2}$ 与 D_i^- 计算得分后进行归一化处理得到 S_i

3、熵权法

指标离散程度越大,反映的信息量就越多,权重就越大 若某项指标的值全部相等,则该指标在综合评价中不起作用

- 1. 数据标准化
- 2. 计算概率矩阵 P (即归一化处理)
- 3. 计算熵权

$$e_j = -rac{1}{\ln n} \sum_{i=1}^n p_{ij} \ln p_{ij} \ ({
m j}=1,\!2,\!...,\!{
m m}) \quad d_j = 1-e_j \quad W_j = rac{d_j}{\sum_{j=1}^m d_j}$$

由 e_j 定义易知,当 $p_{1j}=p_{2j}=\ldots=p_{nj}=\frac{1}{n}$ 时, $e_j=1$,代表信息熵最大,信息效用 值 d_j 最小

对信息效用值 d_j 进行归一化处理即可得到熵权 W_j

4、模糊综合评价

对于无法精确评价的模糊性概念进行评价的模型进行评价

模糊集合与隶属函数的一般概念

模糊集合

- 用来描述模糊性概念
- 元素可以同时存在于对立的两个模糊集合中
- 使用隶属函数进行刻画

隶属函数

$$\mu_A: \quad X
ightarrow \left[0,1
ight] \quad x
ightarrow \mu_A\left(x
ight)$$

称 μ_A 为 A 的隶属函数, $\mu_A(x)$ 为 X 对模糊集 A 的隶属度,其中,当 $\mu_A(x)=0.5$ 时认为最具有模糊性

模糊集合的表示方法

当论域 X 为有限集时,记 $X = \{x_1, x_2, \dots, x_n\}$

1. Zadeh 表示法:

$$A = \sum_{i=1}^n rac{\mu_A(x_i)}{x_i}$$

2. 序偶表示法:

$$A = \{(x_1, \mu_A(x_1)), (x_2, \mu_A(x_2)), \dots, (x_n, \mu_A(x_n))\}$$

3. 向量表示法:

$$A = (\mu_A(x_1), \mu_A(x_2), \dots, \mu_A(x_n))$$

隶属函数的确定方法

1. 模糊统计法: 使用统计手段, 隶属频率定义隶属度

2. 借助已有的客观尺度:例,用恩格尔系数来衡量模糊集合"小康家庭"

3. 指派法(比赛常用):根据主观意愿指派一个隶属函数

4. 其他方法: 如德尔菲法、二元对比排序法、综合加权法等...

单层次模糊评价问题概述

• 引入三个集合: 因素集 U、评语集 V、权重集 A

• 确定由 U 到 V 的模糊综合判断矩阵

$$R = egin{bmatrix} r_{11} & r_{12} & \cdots & r_{1m} \ dots & dots & dots \ r_{n1} & \cdots & \cdots & r_{nm} \end{bmatrix}$$

其中, r_{ij} 代表指标 u_i 对评语 v_j 的隶属度

• 讲行矩阵合成运算

$$B = AOR$$
 $b_j = (a_1 ullet r_{1j}) + (a_2 ullet r_{2j}) + \ldots + (a_n ullet r_{nj})$

其中,ullet 为实数乘法运算,+为 \oplus 运算, $a\oplus b=\min(1,a+b)$ 取数值最大的评语为综合评判结果

多层次模糊评价问题

若因素集 U 中的因素众多,可以将其按属性分隔为 S 个不重合的子集,对每个子集 U_i 分别求出评价矩阵并分别作出综合决策,得到一级评价向量 $B_i = A_i O R_i$

再将每个 U_i 视为一个元素,再进行一次单层次模糊综合评价,其中,按照不同 U_i 反映属性的重要程度得到二级权重 A

此时二级模糊综合评价模型: B = AOR

可以视因素 U 的复杂情况划分为三级或更高级模型

5、灰色关联分析

根据序列曲线几何形状的相似程度判断其联系是否紧密。曲线越接近,相应序列之间的关联度就越大

优点:对样本量的多少与样本有无规律都适用、计算量小

缺点: 主观性较强, 部分指标最优值难以确定 (不建议在美赛中使用)

关联分析步骤

• 母序列(参考序列):能反应系统行为特征的数据序列,记为

$$x_0 = \left\{x_{01}, x_{02}, \dots, x_{0m}
ight\}^T$$

• 子序列(比较序列):由影响系统行为的因素组成的数据序列,记为

$$X_{nm} = egin{bmatrix} x_{11} & \cdots & x_{1m} \ dots & dots & dots \ x_{n1} & \cdots & x_{nm} \end{bmatrix}$$

- 数据预处理:对每个元素进行标准化(每个元素除以对应指标的均值)
- 计算灰色关联系数: 计算子序列各个指标与母序列的关联系数

$$a=\min_i \min_k |x_0(k)-x_i(k)| \quad b=\max_i \max_k |x_0(k)-x_i(k)|$$

构诰:

$$\xi_i(k) = y(x_0(k), x_i(k)) = rac{a +
ho b}{|x_0(k) - x_i(k)| +
ho b}$$

其中 ρ 为分辨系数,一般取 0.5

• 对每个指标的关联系数分别求平均值,得到的就是灰色关联度,其值越高则影响力越大

主成分分析法

对变量进行降维,降低复杂性

假设有 n 个样本, p 个指标, 构成 n x p 的样本矩阵 x

1. 进行标准化处理:标准化数据 $X_{ij}=rac{x_{ij}-\overline{x_{j}}}{S_{i}}$

$$S_j$$
: 标准差 x_j : 均值

- 2. 计算标准化样本的协方差矩阵/样本相关系数矩阵 R (numpy 指令实现即可)
- 3. 计算 R 的特征值 $\lambda_1, \ldots, \lambda_p$ 与特征向量 a_1, \ldots, a_p , 并按降序排列
- 4. 计算主成分贡献率 $\alpha_i = \frac{\lambda_i}{\sum_{k=1}^p \lambda_k}$, 累计贡献率 $\sum G = \frac{\sum_{k=1}^i \lambda_k}{\sum_{k=1}^p \lambda_k}$
- 5. 一般取累计贡献率超过 80%的特征值为对应的第一、第二、... 、第 m 个主成分,第 i 个 主成分 $F_i = a_{1i}X_1 + \ldots + a_{pi}X_p$
- 6. 根据系数分析主成分的意义:对某个主成分而言,指标前的系数越大,代表该指标对于 该主成分的影响越大
- 7. 利用主成分结果进行后续的分析
 - 主成分得分
 - 聚类分析

• 回归分析