Intro to Computer Vision

WaffleHacks 2023 Workshop

Agenda

- Basics of Computer
 Vision
 - 2. Teachable Machine
 - 3. Snake Game in p5.js
- 4. Incorporating Pose
 Estimation model into
 Snake Game

Final Result:

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

157	153	174	168	150	152	129	151	172	161	155	156	
155	182	163	74	75	62	33	17	110	210	180	154	
180	180	50	14	34	6	10	33	48	106	159	181	
206	109	5	124	131	111	120	204	166	15	56	180	
194	68	137	251	237	239	239	228	227	87	71	201	
172	105	207	233	233	214	220	239	228	98	74	206	
188	88	179	209	185	216	211	158	139	75	20	169	
189	97	166	84	10	168	134	11	31	62	22	148	
199	168	191	193	158	227	178	143	182	106	36	190	
206	174	155	252	236	231	149	178	228	43	95	234	
190	216	116	149	236	187	86	150	79	38	218	241	
190	224	147	108	227	210	127	102	36	101	255	224	
190	214	173	66	103	143	96	50	2	109	249	215	
187	196	235	75	1	81	47	0	6	217	255	211	
183	202	237	145	0	0	12	108	200	138	243	236	
196	206	123	207	177	121	123	200	175	13	96	218	

What is Computer Vision?

- Computers can't process images like we can directly
 - Convert an image into a set of numerical values (such as RGB per pixel)
- Algorithms extract features from labeled images and use this to build models
 - Can think of features like patterns or correlations between specific characteristics of an image and its label
- Models can then be used to predict or analyze new content
- Not possible until recently, with large amounts of data and computational power available

How does it work?

Uncovering Patterns in Data:

Applications

- Classification
 - Identify category of image
- Identification/Detection
 - Identify location of specific object or all objects in an image
- Segmentation
 - Dividing image into segments, usually based on objects
- Object Tracking
 - Follow the path of one or more objects in a video

Teachable Machine

- https://teachablemachine.withgoogle.com/
- Platform by Google that allows you to train models without machine learning code

Object Classification

Training your Model

Under the Hood

Incorporating into p5.js

https://editor.p5js.org/ArjunK Wafflehacks/sketches/vUER6iN7L

Snake Game

https://editor.p5js.org/Arjun
K Wafflehacks/sketches/UgmVJE
qmX

Adapted from Coding Train's Tutorial

Walking Through Snake Game Code

```
8 let snake:
9 let rez = 20;
10 let food;
11 let w;
   let h;
13
14▼ function setup() {
     createCanvas(400, 400);
15
16 w = floor(width / rez);
17 h = floor(height / rez);
   frameRate(5);
18
     snake = new Snake();
19
     foodLocation();
20
21
```

```
23 ▼ function foodLocation() {
     let x = floor(random(w));
24
25
    let y = floor(random(h));
26
    food = createVector(x, y);
27
28
   }
29
30 ▼ function keyPressed() {
31▼
      if (keyCode === LEFT_ARROW) {
32
        snake.setDir(-1, 0);
33▼ } else if (keyCode === RIGHT_ARROW) {
        snake.setDir(1, 0);
34
     } else if (keyCode === DOWN_ARROW) {
35▼
36
        snake.setDir(0, 1);
37▼
     } else if (keyCode === UP_ARROW) {
       snake.setDir(0, -1);
38
     } else if (key == ' ') {
39▼
        snake.grow();
40
41
42
43
```

```
45▼ function draw() {
      scale(rez);
46
      background(220);
47
      if (snake.eat(food)) {
48 ▼
        foodLocation();
49
50
      snake.update();
51
      snake.show();
52
53
54
55▼
      if (snake.endGame()) {
        print("END GAME");
56
        background(255, 0, 0);
57
        noLoop();
58
59
60
      noStroke();
61
      fill(255, 0, 0);
62
      rect(food.x, food.y, 1, 1);
63
64
```

```
1 V class Snake {
 3
      constructor() {
        this.body = [];
        this.body[0] = createVector(floor(w/2), floor(h/2));
 6
        this.xdir = 0;
        this.ydir = 0;
8
        this.len = 0;
9
10
      setDir(x, y) {
11▼
        this.xdir = x;
12
        this.ydir = y;
13
14
```

```
16▼
      update() {
        let head = this.body[this.body.length-1].copy();
17
        this.body.shift();
18
19
        head.x += this.xdir;
        head.y += this.ydir;
20
        this.body.push(head);
21
22
23
24▼
      grow() {
        let head = this.body[this.body.length-1].copy();
25
26
        this.len++;
27
        this.body.push(head);
28
```

```
30▼
      endGame() {
31
        let x = this.body[this.body.length-1].x;
32
        let y = this.body[this.body.length-1].y;
33▼
        if(x > w-1 || x < 0 || y > h-1 || y < 0) {
34
           return true;
35
36▼
        for(let i = 0; i < this.body.length-1; i++) {</pre>
37
            let part = this.body[i];
          if(part.x == x \&\& part.y == y) {
38▼
39
            return true;
40
41
42
        return false;
43
```

```
eat(pos) {
45▼
46
        let x = this.body[this.body.length-1].x;
47
        let y = this.body[this.body.length-1].y;
        if(x == pos.x && y == pos.y) {
48
49
          this.grow();
50
          return true;
51
52
        return false:
53
54
55 V
      show() {
56 V
        for(let i = 0; i < this.body.length; i++) {</pre>
            fill(0);
57
          noStroke();
58
59
          rect(this.body[i].x, this.body[i].y, 1, 1)
60
61
62
63
```

Adding Computer Vision!

Instead of controlling the snake with the arrow keys, we will incorporate an object detection model to direct the snake based on our pose.

Need poses for 5 directions - up, down, left, and right, and neutral.

Creating New Model

Controlling the Snake

- 4 steps to modify the current Snake Game:
 - 1. Import Model
 - 2. Get video feed from player
 - 3. Send image to model to classify user action as a direction command
 - 4. Use predicted label to move snake

```
// The video
    let video;
    let flipVideo;
10
    // Storing the label
11
    let label = "waiting...";
12
13
   // The classifier
14
   let classifier;
15
    let modelURL = 'https://storage.googleapis.com/tm-models
    /onzpfu6q/';
16
17
    // STEP 1: Load the model!
   function preload() {
18 V
      classifier = ml5.imageClassifier(modelURL + 'model.json');
19
20
21
22
    // Snake Game Variables
23
   let snake;
24
   let rez = 20;
25
   let food;
26
   let w;
27
    let h;
28
```

```
29▼ function setup() {
      createCanvas(640, 480);
30
31
      // Create the video
32
      video = createCapture(VIDEO);
33
      video.size(640, 480);
34
      video.hide();
35
      // Mirror the video since we trained it that way!
36
      flipVideo = ml5.flipImage(video);
37
38
      // STEP 2: Start classifying
39
      classifyVideo();
40
41
      // Snake Game
42
      w = floor(width / rez);
      h = floor(height / rez);
43
      frameRate(5);
44
45
      snake = new Snake();
46
      foodLocation();
47
```

```
// STEP 2 classify!
49
    function classifyVideo() {
      // Flip the video!
      flipVideo = ml5.flipImage(video);
      classifier.classify(flipVideo, gotResults);
    // STEP 3: Get the classification!
    function gotResults(error, results) {
58
      if (error) {
        console.error(error);
        return;
      label = results[0].label;
      // Control the snake and classify again!
      controlSnake();
      classifyVideo();
```

50

51

52

53

54 55 56

57

59

60

61 62

63

64

65

66

```
68 // Snake Game
   function foodLocation() {
     let x = floor(random(w));
70
    let y = floor(random(h));
71
    food = createVector(x, y);
72
73
74
75
    // Control the game based on the label
   function_controlSnake() {
76 V
77▼
      if (label === | "left") {
78
        snake.setDir(-1.0):
      } else if (label === |"right") {
79▼
        snake.setDir(1 0)
80
81▼
      } else if (label === "down") {
        snake.setDir(0 1).
82
      } else if (label === "up") {
83▼
        snake.setDir(0, -1);
84
85
86
```

```
88▼ function draw() {
 89
       background(255);
 90
 91
       // Draw the video?
       image(flipVideo, 0, 0);
 92
 93
       textSize(32);
 94
       fill(0);
       text(label, 10, 50);
 95
 96
 97
       // Draw the game
 98
       scale(rez);
       if (snake.eat(food)) {
 99▼
         foodLocation();
100
101
102
       snake.update();
103
       snake.show();
104
105▼
       if (snake.endGame()) {
         print("END GAME");
106
         background(255, 0, 0);
107
108
         noLoop();
109
110
111
       noStroke();
       fill(255, 0, 0);
112
113
       rect(food.x, food.y, 1, 1);
114 }
```

More Resources

watson-opency

More experiments with Teachable Machine: https://experiments.withgoogle.com/search?tag=Teachable+Mach ine Teachable Machine Code: https://github.com/googlecreativelab/teachablemachine-commun itv/ Intro to CV Course: https://www.coursera.org/learn/introduction-computer-vision-

Final Code

https://editor.p5js.org/ArjunK Wafflehacks/sketches/CsXo7MPo
2