Discrete-time models

Lecture note 1: One-period models

References:

CH 2, 3 in Björk (2004)

1 Introduction

In this section, we consider a simple binomial model. Let

$$\Omega = \{u, d\}$$

Instructor: Hyungbin Park

and define a probability measure \mathbb{P} on 2^{Ω} by

$$\mathbb{P}(\emptyset) = 0, \ \mathbb{P}(\{u\}) = p_u, \ \mathbb{P}(\{d\}) = p_d, \ \mathbb{P}(\Omega) = 1$$

where $0 < p_u, p_d < 1$ and $p_u + p_d = 1$. Running time is denoted by t, and we have two points in time, t = 0 (today) and t = 1 (tomorrow). There are two assets in the market. One is a bank account and the other is a stock.

Definition 1.1. A bank account is a sequence of deterministic random variables $G_0, G_1 : \Omega \to \mathbb{R}$ given by

$$G_0 = 1$$
$$G_1 = 1 + R$$

Here, R is the short interest rate.

Definition 1.2. The stock price is a sequence of random variables $S_0, S_1 : \Omega \to \mathbb{R}$, and its dynamic behavior is described by

$$S_0 = s$$

$$\begin{cases} S_1(u) = s_u \\ S_1(d) = s_d \end{cases}$$

where $s, s_d, s_u > 0$ and $s_d < s_u$.

Definition 1.3. A portfolio is a vector h = (x, y) in \mathbb{R}^2 . The value process of the portfolio is defined by

$$V_t^h = xG_t + yS_t, \ t = 0, 1.$$

Definition 1.4. An arbitrage is a portfolion h such that

$$V_0^h = 0$$

$$V_1^h \ge 0 \quad \text{with probability 1}$$

$$V_1^h > 0 \quad \text{with positive probability}$$

Theorem 1.1. The binomial model above is free of arbitrage if and only if

$$\frac{s_d}{s} < 1 + R < \frac{s_u}{s} \,.$$

2 Option pricing

An option is a contract which gives the buyer a specified amount, depending on the value of the underlier, at a specified date. Options are characterized by the payoff and the maturity.

Definition 2.1. An option payoff is a random variable

$$X:\Omega\to\mathbb{R}$$
.

One of the main purposes of this note is to price options.

Definition 2.2. We say a portfolio h is the hedging portfolio or the replicating portfolio of an option X if

$$V_1^h = X$$
.

Theorem 2.1. An arbitrage-free price of an option is V_0^h where h is the hedging portfolio of the option.

3 Risk-neutral measures

Definition 3.1. A risk-neutral measure is a probability measure \mathbb{Q} on Ω such that

$$S_0 = \frac{1}{1+R} \mathbb{E}^{\mathbb{Q}}(S_1)$$

and $\mathbb{Q}(\{u\}) > 0$, $\mathbb{Q}(\{d\}) > 0$.

Theorem 3.1. The binomial model above is arbitrage-free if and only if a risk-neutral measure exists. In this case,

$$\mathbb{Q}(\{u\}) = \frac{(1+R)s - s_d}{s_u - s_d}, \ \mathbb{Q}(\{d\}) = \frac{s_u - (1+R)s_d}{s_u - s_d}$$

Theorem 3.2. Consider an option with payoff X with maturity t = 1. The arbitrage-free price is

$$\frac{1}{1+R}\mathbb{E}^{\mathbb{Q}}(X).$$

4 Super-hedging duality

Consider a one-period (t = 0 or T) trinomial model. The initial stock price is $S_0 = s$, and there are three possible prices at T: $S_T = s_3$, $S_T = s_2$ and $S_T = s_1$, with probabilities p_u , p_m and p_d , respectively. Assume that $s_1 < s_2 < s_3$ and $p_u, p_m, p_d > 0$. The back account earns zero short interest rate.

In class, we studied that the super-hedging price of an option whose payoff is

$$X = \begin{cases} x_3 & \text{if } S_T = s_3 \\ x_2 & \text{if } S_T = s_2 \\ x_1 & \text{if } S_T = s_1 \end{cases}$$

at maturity T satisfies the super-hedging duality;

$$\inf\{\alpha + \beta s \mid X \leq \alpha + \beta S_T\} = \sup\{\mathbb{E}^{\mathbb{Q}}(X) \mid \mathbb{Q} \text{ is a risk-neutral measure}\}.$$

The proof is as follows

$$\inf_{\substack{x_i \le \alpha + \beta s_i \\ i = 1, 2, 3}} \alpha + \beta s = \inf_{\alpha, \beta} \sup_{p_i > 0} \alpha + \beta s + \sum_{i=1}^{3} p_i (x_i - \alpha - \beta s_i)$$

$$= \sup_{p_i > 0} \inf_{\alpha, \beta} \alpha + \beta s + \sum_{i=1}^{3} p_i (x_i - \alpha - \beta s_i)$$

$$= \sup_{p_i > 0} \inf_{\alpha, \beta} \alpha (1 - \sum_{i=1}^{3} p_i) + \beta (s - \sum_{i=1}^{3} p_i s_i) + \sum_{i=1}^{3} p_i x_i$$

$$= \sup_{\substack{p_i > 0 \\ \sum_{i=1}^{3} p_i = 1 \\ \sum_{i=1}^{3} p_i s_i = s}} \sum_{i=1}^{3} p_i x_i$$
(4.1)

We have four equalities in these equations. The "inf sup = sup inf" in the second equality is not trivial and can be proven by using the "linear programing".

5 Exercises

Problem 5.1. Consider the binomial model

$$R = 0.2$$
, $s = 110$, $s_u = 144$, $s_d = 96$, $p_u = 0.6$, $p_d = 0.4$.

- (i) (5 points) Price and hedge a call option with strike price K = 100 and maturity t = 1.
- (ii) (5 points) Find the risk-neutral measure, and evaluate the price of this option by using this risk-neutral measure

Problem 5.2. Consider the one-period trinomial model: s = 95, $s_u = 150$, $s_m = 125$, $s_d = 100$, R = 0.25, $p_u = 0.2$, $p_m = 0.2$, $p_d = 0.6$.

- (i) (5 points) Define $\Omega = \{u, m, d\}$ and let \mathbb{P} be the probability measure on 2^{Ω} such that $\mathbb{P}(\{u\}) = 0.2$, $\mathbb{P}(\{m\}) = 0.2$, $\mathbb{P}(\{d\}) = 0.6$. Define bank accounts G_0 , G_1 and stock prices S_0 , S_1 on this space.
- (ii) (5 points) Show a risk-neutral measure \mathbb{Q} exists, but is not unique. Give two examples of \mathbb{Q} .
- (iii) (5 points) Find the super-hedging price of the option with payoff

$$X = \begin{cases} 80 & \text{if } S_1 = 150\\ 40 & \text{if } S_1 = 125\\ 0 & \text{if } S_1 = 100 \end{cases}$$

at maturity t = 1.

(iv) (10 points) Calculate

$$\sup \left\{ \frac{1}{1+R} \mathbb{E}^{\mathbb{Q}}(X) \, \middle| \, \mathbb{Q} \text{ is a risk-neutral measure} \right\}$$

and confirm that the superhedging duality holds. Can you find a risk-neutral measure \mathbb{Q} which achieves the supremum?

(v) (10 points) Let \mathcal{P} be set of all probability measures \mathbb{Q} on 2^{Ω} such that $S_0 = \frac{1}{1+R}\mathbb{E}^{\mathbb{Q}}(S_1)$ (not necessarily to satisfy $\mathbb{Q}(\{u\}) > 0$, $\mathbb{Q}(\{d\}) > 0$). Calculate

$$\sup \left\{ \frac{1}{1+R} \mathbb{E}^{\mathbb{Q}}(X) \, \middle| \, \mathbb{Q} \in \mathcal{P} \right\}$$

and confirm that this is equal to the superhedging price. Find the probability measure $\mathbb{Q} \in \mathcal{P}$ which achieves the supremum.

(vi) (5 points) Let \mathcal{M} be the set of all signed-measures on 2^{Ω} (easy to check that this space \mathcal{M} is a vector space over \mathbb{R}). Show that \mathcal{P} is a convex subset of \mathcal{M} .

Problem 5.3. (15 points) In class, we merely checked that the superhedging duality holds for a specific example. The proof of the superhedging duality is in Eq.(4.1). Explain why these equalities hold except for the "inf sup = sup inf" in the second equality.

References

Tomas Björk. Arbitrage theory in continuous time. Oxford university press, 2004.