Chương 4:

Opamp (Operational Amplifier

Mạch Khuếch đại thuật toán)

'+': ngõ vào không đảo

'-' : ngõ vào đảo

±Vcc: nguồn cung cấp

Nguồn đôi: ±Vcc

Nguồn đơn: +Vcc, 0V

Vo: điện áp ra

surface-mount technology (SMT)

Offset Nulling Circuit

Đặc tuyến

Vs = Vcc/A (A: độ lợi vòng hở 2.10^5 , LM741)

- •Hồi tiếp dương, không hồi tiếp → mạch so sánh.
- •Hồi tiếp âm \rightarrow ứng dụng KĐ tín hiệu

	Lý tưởng	Thực tế
Tổng trở vào Ri	$\rightarrow \mathbf{i}_{+} = \mathbf{i}_{-} = 0 \text{ và } \mathbf{v}_{+} = \mathbf{v}_{-}$	10 ⁶ - 10 ⁹
Tổng trở ra Ro	0 →Vo= Avid (ko rơi áp trên Ro)	Vài Ω
Độ lợi vòng hở A	∞	10 ⁵ : 3.10 ⁶ lần

KĐ đảo

Dùng Opamp lý tưởng $\mathbf{i}_{+} = \mathbf{i}_{-} = \mathbf{0} \text{ và } \mathbf{v}_{+} = \mathbf{v}_{-}$

$$V_{-} = \frac{R_{1}}{R_{1} + R_{2}} (V_{o} - V_{i}) + V_{i} = V_{+} = 0 \quad (phan \quad ap)$$

$$\rightarrow V_O = \left(-\frac{R_2}{R_1}\right) \times V_i$$

Ứng dụng KĐ – KĐ đảo

KĐ không đảo không có phân áp ngõ vào

$$V_{-} = \frac{R_{1}}{R_{1} + R_{2}} V_{o} = V_{+} = Vi \quad (phan \quad ap)$$

$$\rightarrow V_O = \left(1 + \frac{R_2}{R_1}\right) \times V_i$$

KĐ không đảo có phân áp ngõ vào

$$V_{-} = \frac{R_{1}}{R_{1} + R_{2}} V_{o} = V_{+} = \frac{R_{3}}{R_{3} + R_{4}} V_{i}$$
 (phan ap)

$$Vo = \left\{ \frac{R_3}{R_3 + R_4} \times \frac{R_1 + R_2}{R_1} \right\} xVi$$

KĐ đệm

KĐ cộng đảo 2 ngõ vào

Áp dụng định lý xếp chồng

 $+V_{CC}$

$$V_o = V_{o1} + V_{o2} = -\frac{R_4}{R_1} V_{i1} - \frac{R_4}{R_2} V_{i2}$$

KĐ cộng đảo 3 ngõ vào

$$V_O = -\left[\frac{R_4}{R_1}V_{i1} + \frac{R_4}{R_2}V_{i2} + \frac{R_4}{R_3}V_{i3}\right]$$

Khi mạch có **n** ngõ vào

$$V_o = \sum_{i=1}^n -rac{R_F}{R_i}V_i$$

Ứng dụng KĐ – KĐ cộng đảo 2 ngỗ vào

Áp dụng định lý xếp chồng

$$Vo = V_{o1} + V_{o2} = (1 + \frac{R_5}{R_4}) \left[\frac{R_2}{R_1 + R_2} V_{i1} + \frac{R_1}{R_1 + R_2} V_{i2} \right]$$

Áp dụng định lý xếp chồng

$$Vo = V_{o1} + V_{o2} = -\frac{R_2}{R_1}V_{i1} + (1 + \frac{R_2}{R_1})\frac{R_3}{R_3 + R_4}V_{i2}$$

Ứng dụng mạch khuếch đại công suất

Mach so sánh

- Úng dụng vùng phi tuyến bão hòa dương, bão hòa âm của OPAMP để làm mạch so sánh.
- Mạch được xây dựng với cấu không hồi tiếp (so sánh) và hoạt động theo nguyên lý so sánh:

Mạch so sánh

Mạch so sánh không đảo

Theo mạch trên:

$$V + = Vi$$

$$V_{-} = V_{REF}$$

Theo nguyên lý so sánh:

$$V + = Vi > V - = V_{REF} thi Vo = +Vcc$$

$$V + = Vi < V - = V_{REF}$$
 thì $Vo = -Vcc$

Mạch so sánh

Mạch so sánh đảo

Theo mạch trên:

$$V+ = V_{REF}$$

 $V- = Vi$

Theo nguyên lý so sánh:

$$V+=V_{REF} > V-=Vi thi Vo = +Vcc$$

 $V+=V_{REF} < V-=Vi thi Vo = -Vcc$

Ứng dụng mạch so sánh

