Estatística: Aplicação ao Sensoriamento Remoto

SER 204 - ANO 2024

Teoria da amostragem

Camilo Daleles Rennó

camilo.renno@inpe.br http://www.dpi.inpe.br/~camilo/estatistica/

Algumas Considerações...

É importante ter consciência de que dominar as técnicas estatísticas não é suficiente para garantir o sucesso de uma análise, ou seja, conseguir chegar a conclusões "interessantes".

De forma geral, para que as análises estatísticas sejam válidas, as amostras devem representar a população, ou seja, a menos que discrepâncias ocorram devido ao acaso, as amostras devem reproduzir as mesmas características da população considerando a variável estudada.

É fundamental que as amostras sejam obtidas por processos adequados de modo a evitar que erros grosseiros possam comprometer a análise dos dados.

Algumas Considerações...

Em muitos casos, é bastante tentador que as observações mais convenientes sejam as selecionadas para compor uma amostra ou então aplicar algum tipo de critério (ou julgamento) no momento dessa seleção.

Nesses casos, pode-se introduzir algum tipo de tendência que poderá causar uma super ou subestimativa dos parâmetros de interesse. A identificação (e descrição) desta tendência pode ser difícil (ou impossível) de ser feita após a coleta dessas amostras.

Algumas vezes, como na Aprendizagem Ativa (*Active Learning*), há um propósito explícito na escolha da amostra com o objetivo de se escolher poucas amostras representativas da população.

No entanto, de modo geral, o ideal é que a seleção das amostras seja feito através de algum processo aleatório, de modo que qualquer elemento da população tenha igual chance de ser escolhido para compor a amostra.

Censo ou Amostragem?

Por que fazer Censo?

- · a população é pequena ou amostragem "ideal" é quase tão grande quanto a população
- necessita-se de uma precisão completa (não é permitido nenhum erro)
- os dados de toda população já se encontram disponíveis

Por que fazer Amostragem?

- a população é infinita (ou muito grande)
- os custos de obtenção das medidas são elevados (análises muito caras)
- o tempo para caracterização da população é muito longo
- deseja-se aumentar a representatividade, amostrando-se diferentes populações
- necessita-se melhorar a precisão das medidas (mais cuidado na obtenção dos dados)
- a obtenção das medidas requer a destruição das amostras (p. ex: biomassa)

Amostragem

- a) O que quero caracterizar neste estudo?
 algum parâmetro específico (média, variância, etc),
 distribuição espacial e/ou variação temporal é importante?
- b) Qual é a unidade amostral apropriada para o estudo? quem é o elemento da população (unidade amostral)?
- c) Como estas amostras devem ser coletadas? há variabilidade espacial e temporal? quais fatores podem influenciar nos resultados?
- d) Quantas amostras são necessárias? qual é a precisão exigida? quanto tempo e recurso disponho?

Unidade Amostral

A unidade amostral representa a menor entidade identificada na população e é considerada o objeto de estudo.

Ela constitui o elemento da população na qual são coletadas as medidas ou informações (qualitativas ou quantitativas) que serão analisadas.

Em estudos na área de Sensoriamento Remoto e Geoprocessamento, podem ser representados por:

- pontos
- objetos (polígonos ou linhas)

Unidade Amostral

Pontos

posição no espaço (p.ex. ponto num lago)

indivíduo da população (p.ex. árvore numa floresta)

pixel da imagem ou grade

- · sorteio aleatório é facilitado
- · em coletas em campo, a localização precisa do ponto sorteado pode ser difícil
- · pode induzir a erros em regiões heterogêneas

Unidade Amostral

Objetos

- região no espaço (p.ex. talhão agrícola)
- (p.ex. trecho de rio)
- (p.ex. transecto)
- deve representar áreas homogêneas (deve-se evitar áreas de transição)
- · em coletas de campo, minimiza problemas de posicionamento quando informação contextual é considerada
- mesmo podendo conter muitos valores medidos, deve ser contabilizado como apenas uma observação e portanto deve-se adotar uma medida representativa (total, média, mediana, etc)

Como amostrar?

amostragem probabilística X não probabilística

Amostragem probabilística:

cada elemento da população tem uma probabilidade (não nula) de ser escolhido em geral, todo elemento tem a mesma probabilidade de ser escolhido

Neste tipo de amostragem, todos os elementos devem ser previamente identificados e a escolha é feita por sorteio realizado posteriormente e de forma independente

Como amostrar?

amostragem probabilística X não probabilística

Amostragem probabilística:

cada elemento da população tem uma probabilidade (não nula) de ser escolhido em geral, todo elemento tem a mesma probabilidade de ser escolhido

Como amostrar?

amostragem probabilística X não probabilística

Amostragem probabilística:

cada elemento da população tem uma probabilidade (não nula) de ser escolhido em geral, todo elemento tem a mesma probabilidade de ser escolhido

Como amostrar?

amostragem probabilística X não probabilística

Amostragem não probabilística:

escolha a esmo (rotulagem inviável ou impossível)

populações muito grandes (ex: estudo sobre a variabilidade no DAP em talhões de reflorestamento de eucalipto)

populações dinâmicas (ex: estudo sobre qualidade de água num rio)

amostragem restrita aos elementos que se tem acesso (ex: estudo sobre ocorrência de focos de dengue em casas de veraneio)

amostragem intencional ou por julgamento (ex: estudo sobre diversidade florística de plantas com DAP maior que 30cm dentro de um transecto)

voluntários (ex: estudo sobre a eficácia de uma nova vacina contra febre amarela)

OBS: escolha a esmo é a abordagem que mais se assemelha à amostragem probabilística desde que se garanta que não haja nenhum tipo de influência na seleção das amostras

Do ponto de vista estatístico, a amostragem probabilística é a ideal Sempre que uma abordagem não probabilística for adotada, deve-se explicitá-la no trabalho de pesquisa

Numa análise sobre a qualidade da classificação, deve-se explicitar que as regiões marcadas como "Não Classificado" e "Não Observado" não serão consideradas na avaliação Nesse caso, a amostragem não é tipicamente probabilística pois os pixels pertencentes a essas classes não podem ser sorteados (probabilidade nula)

Desenho amostral (Sampling Design)

O Desenho Amostral define como as amostras serão coletadas.

A escolha da melhor estratégia dependerá:

- da facilidade e praticidade de implementação
- dos custos para obtenção das amostras
- da heterogeneidade espacial dos dados (distribuição espacial)

Decisões chaves:

- usar abordagem simples ou sistemática?
- usar ou não uma amostragem estratificada?
- selecionar amostras isoladas ou em conglomerados (clusters)?

Amostragem Aleatória Simples

Nesta abordagem, a escolha de uma amostra é feita de modo totalmente independente das outras amostras já selecionadas

etapas:

- rotular cada elemento com um código único
- sortear aleatoriamente n códigos (usando-se geradores de números aleatórios)
- identificar os elementos com os códigos selecionados

OBS: método simples
rotulação dos elementos pode ser dispendiosa
pressupõe população homogênea
não garante representatividade pois alguns
grupos (mais raros) podem não ser sorteados

Amostragem Aleatória Simples

Em trabalhos de campo, muitas vezes não é possível fazer a identificação prévia dos elementos

Nesse caso, é usual fazer a escolha a esmo dos elementos amostrados usando artifícios que garantam a escolha imparcial

Exemplo: numa floresta, deseja-se amostrar 10 árvores

- · numa trilha, caminha-se x metros
- · caminha-se y metros numa determinada direção
- · escolhe-se a árvore mais próxima
- faz-se as medições necessárias
- retorna-se ao ponto inicial
- · repete-se o procedimento até selecionar-se as 10 árvores

Amostragem Sistemática

Se os elementos da população já se encontram ordenados segundo algum critério, pode-se selecionar um elemento qualquer e escolher um "passo" que definirá qual será o próximo elemento escolhido.

etapas:

- definir o passo (ou os passos em x e em y)
- escolher aleatoriamente um elemento
- com base nesse elemento, identificar os demais elementos de acordo com o passo pré-definido

OBS: amostra-se uniformemente todo o espaço pode-se não conseguir o valor exato de amostras pretendidas

desaconselhado para ordenações periódicas ou com feições dispostas na horizontal e/ou vertical

Amostragem Sistemática Não Alinhada

A ideia é semelhante da amostragem sistemática mas, nesse caso, tenta-se aleatorizar os passos de modo a desalinhar as amostras sorteadas.

etapas:

- definir o passo (ou os passos em x e em y)
- · escolher aleatoriamente um elemento
- com base nesse elemento, identificar os elementos da mesma linha e mesma coluna de acordo com o passo prédefinido

Amostragem Sistemática Não Alinhada

A ideia é semelhante da amostragem sistemática mas, nesse caso, tenta-se aleatorizar os passos de modo a desalinhar as amostras sorteadas.

etapas:

- definir o passo (ou os passos em x e em y)
- escolher aleatoriamente um elemento
- com base nesse elemento, identificar os elementos da mesma linha e mesma coluna de acordo com o passo prédefinido
- desalinhar aleatoriamente esses elementos
- utilizar esses novos posicionamentos para identificar os demais elementos

Amostragem em Conglomerados (Cluster)

Nesta abordagem, a amostra é formada por um grupo de elementos próximos (cluster)

etapas:

- definir critério de proximidade (raio ou janela)
- sortear aleatoriamente n posições
- identificar os elementos que atendam o critério de proximidade

OBS: simplifica a coleta de dados das amostras cada elemento do conglomerado constitui uma unidade amostral diminui os custos da amostragem pode reduzir a precisão na estimação devido a autocorrelação espacial

Amostragem Estratificada

A estratificação é a divisão da área de estudo em regiões segundo algum critério (mapas pré-existentes ou regiões geográficas)

Mas para que estratificar?

- os estratos representam regiões de interesse no estudo p.ex., estimar a área desmatada por Estado ou município
- deseja-se melhorar a precisão nas estimativas obtidas em cada estrato como quanto maior heterogeneidade, maior incerteza na estimativa. Pode-se assim concentrar a amostragens nos estratos com maior variabilidade
- deseja-se aumentar a representatividade da amostra coletada na área de estudo estratos raros podem não estar representados adequadamente numa amostragem totalmente aleatória

Dentro de cada estrato, pode-se adotar a Amostragem Aleatória Simples, Sistemática ou Sistemática Não-Alinhada. Além disso, pode-se inclusive selecionar elementos em conglomerados

Quanto amostrar?

depende:

```
da variabilidade original dos dados (maior variância ⇒ maior n) da precisão requerida no trabalho (maior precisão ⇒ maior n) do tempo disponível (menor o tempo ⇒ menor n) do custo da amostragem (maior o custo ⇒ menor n)
```

Em geral, é calculado com base no parâmetro que se deseja estimar e leva em consideração as incertezas inerentes a esta estimação:

- a) variação "natural" dos dados (variância populacional)
- b) erros de estimativa

- A variância populacional deve ser conhecida
- Pode-se estimar a variância populacional através de uma "pré-amostragem"
 nesse caso, o tamanho da amostra é aquele que for viável (tempo, custo, etc)
 se o tamanho estimado for maior que o utilizado na pré-amostragem,
 complementa-se a amostragem, reestima-se a variância e recalcula-se o
 tamanho da amostra até atingir o tamanho ideal

$$\begin{split} \hat{p} - p &\sim N\bigg(0, \frac{pq}{n}\bigg) \\ P\bigg(-z_{\alpha/2}\sqrt{\frac{pq}{n}} < \hat{p} - p < z_{\alpha/2}\sqrt{\frac{pq}{n}}\bigg) = 1 - \alpha \\ e &= z_{\alpha/2}\sqrt{\frac{pq}{n}} \implies n = \frac{\left(z_{\alpha/2}\right)^2pq}{e^2} \\ \end{split}$$

- Necessita-se conhecer o parâmetro p que se quer estimar!
- Pode-se estimar p através de uma "pré-amostragem"
- Pode-se adotar o valor de p=0.5 que representa o "pior caso"

$$p = 0.5 \rightarrow m\acute{a}x \, Var(\grave{p}) \rightarrow m\acute{a}x \, n$$

Correção para populações finitas (quando a amostra representa mais que 5% da população)

$$n'=rac{n}{1+rac{n-1}{N}}$$
 n = tamanho de amostra sem correção N = tamanho da população n' = tamanho de amostra corrigido

Para média:
$$n' = \frac{N\sigma^2(z_{\alpha/2})^2}{(N-1)e^2 + \sigma^2(z_{\alpha/2})^2}$$

Para proporção:
$$n' = \frac{Npq(z_{\alpha/2})^2}{(N-1)e^2 + pq(z_{\alpha/2})^2}$$

Exemplo: Deseja-se estimar a exatidão de um mapa de modo que o valor estimado não ultrapasse em 8% a exatidão verdadeira (para mais ou para menos), utilizando-se um nível de confiança de 95%. Suponha que a exatidão verdadeira é de 80%.

$$n = \frac{\left(z_{\alpha/2}\right)^2 pq}{e^2}$$

$$n = \frac{1,96^2 \, 0,80 \, 0,20}{0,08^2} = 96,04 \qquad n = 96$$

No pior caso (maior variância), a exatidão verdadeira seria de 50%.

$$n = \frac{1,96^2 \, 0,50 \, 0,50}{0,08^2} = 150,06 \qquad n = 150$$

Na Amostragem Estratificada, como distribuir as amostras em cada estrato?

Suponha que precisamos selecionar n amostras de uma população de tamanho N e que esta população está dividida em L estratos com $N_1, N_2, ..., N_L$ elementos.

$$n_i = \frac{n}{L} \qquad \qquad n_i = n \frac{N_i}{N} \qquad \qquad n_i = n \frac{N_i S_i}{\sum\limits_{i=1}^{L} N_i S_i}$$
 tamanho ótimo (considera a variabilidade)

O modo como as amostras são distribuídas entre os estratos têm forte impacto na estimativa de parâmetros globais (que representam toda a população) mas permite maior controle da representatividade e precisão de cada estrato.

O tamanho da amostra (n) também pode considerar o erro β (tipo II)

Exemplo para proporção

Hipóteses

$$H_0: p = p_0$$

$$H_1: p < p_0$$

$$P\left(\hat{p} > p_0 - z_\alpha \sqrt{\frac{p_0 q_0}{n}}\right) = 1 - \alpha$$

Considerando H_1 verdadeira $(p = p_1)$

$$P\left(z_{\beta}\sqrt{\frac{p_{1}q_{1}}{n}} + z_{\alpha}\sqrt{\frac{p_{0}q_{0}}{n}} > p_{0} - p_{1}\right) = \beta$$

$$n = \frac{\left(z_{\beta}\sqrt{p_{1}q_{1}} + z_{\alpha}\sqrt{p_{0}q_{0}}\right)^{2}}{\left(p_{0} - p_{1}\right)^{2}}$$

Qual impacto da amostragem estratificada?

Suponha que queremos determinar a média da região abaixo considerando-se que não teríamos como acessar todos os valores mas somente uma amostra. Suponha ainda que tenhamos um mapa que poderia ser utilizado para estratificar as amostras. Qual a vantagem de se dividir as amostras entre os diferentes estratos?

Aleatória Simples X Aleatória Estratificada

Tamanhos de amostras:

Total	11	20	50	100
	7	14	36	72
	2	4	9	18
	2	2	5	10

*proporcional por estrato

Qual impacto da amostragem estratificada?

Aleatória Simples

$$\bar{X}_1 = 12,73$$
 $\bar{X}_2 = 15,18$
 $\bar{X}_3 = 12,45$

#11

$$\mu = 14,03$$

:

Aleatória Estratificada

Amostras de Treinamento, Teste e Validação

Numa classificação ou numa modelagem em geral, as amostras são utilizadas para estimar os parâmetros ou para criar as regras usadas pelo classificador/modelo

Como estes ajustes visam minimizar erros, a utilização desse mesmo conjunto amostral para avaliar os resultados do classificador/modelo sempre resultarão numa superestimação dos índices de desempenho.

Dessa forma, é comum se reservar parte das amostras de modo a avaliar os resultados de forma independente, gerando índices de desempenho não enviesados (nesse caso, superestimados).

Usualmente, o conjunto amostral total deve ser dividido em 3 partes excludentes:

- Treinamento
- Teste
- Validação

Os termos "teste" e "validação" podem ter seu significado trocado dependendo da literatura consultada ou então constituírem um único grupo

Amostras de Treinamento, Teste e Validação

 Treinamento – amostras usadas na fase de aprendizagem ou treinamento do classificador e/ou modelo

Classificador Maxver Gaussiano – estimar vetor de médias e matriz de covariância Classificador Random Forest – gerar cada árvore de decisão Modelo de regressão – gerar estimativas dos coeficientes do modelo

Teste - amostras usadas para avaliar o modelo buscando ajustar os hiper-parâmetros
 Classificador por regiões - definir parâmetros da segmentação
 Classificador Random Forest - definir número de árvores (ntree) e/ou número de atributos utilizados

Modelo de Regressão - definir o tipo de relação (linear, exponencial, polinomial, etc)

em cada nó (mtry)

 Validação – amostras usadas para fazer a avaliação do desempenho final da classificação e/ou modelo

Amostras de Treinamento, Teste e Validação

Na prática, a definição das amostras que formarão esses grupos pode ser feita a partir de um único conjunto amostral ou então podem ser coletadas em fases diferentes do processo de classificação/modelagem.

Por exemplo, se o objetivo for avaliar uma classificação única, pode-se

- dividir as amostras coletadas em treinamento e validação, ou
- usar todas as amostras para treinamento e após a obtenção da classificação final, coletar novos pontos que serão avaliados por terceiros de forma totalmente independente.

O treinamento

validação

Validação Cruzada

Tipicamente, na validação cruzada, a amostra é particionada aleatoriamente em K subconjuntos disjuntos (K-folds)

O valor de K é em geral 5 ou 10. Quando K é igual ao número de amostras, então esse método é conhecido como Validação Cruzada LOO (Leave One Out Cross Validation)

O método consiste em usar cada uma das partições como amostras de validação e as demais como treinamento. Assim consegue-se realizar K validações independentes

Em geral, os resultados das validações são sintetizados em uma medida de tendência central (média, mediana, etc) ou então através de um intervalo de credibilidade ou um boxplot

Aprendizado Ativo - Active Learning

Aprendizado ativo é uma técnica na qual o algoritmo de aprendizado busca especificamente os dados que são mais informativos para o modelo em vez de ser treinado por todo o conjunto de dados disponível

Numa abordagem supervisionada, é necessário ter muitas amostras cujas classes sejam conhecidas (amostras rotuladas)

Mas e se dispusermos apenas de um grande número de amostras não rotuladas?

OLI/Landsat R6G5B4

É necessário um especialista que possa identificar a classe de cada amostra escolhida

Processo caro e demorado!!!

Aprendizado Ativo - Active Learning

Etapas:

- inicialmente, a coleta de pontos é feita de modo aleatório
- os pontos são rotulados por um especialista
- as amostras são utilizadas para treinar o modelo
- o modelo é aplicado sobre os dados e novos pontos são escolhidos com base numa avaliação dos resultados
- repete-se o processo até que os resultados sejam considerados adequados

De modo geral, a escolha de novos pontos deve se basear em algum critério que avalie o grau de incerteza que um determinado ponto foi rotulado

Uma discussão mais aprofundada sobre erros e incertezas será feita no tema

"Avaliação de Classificação"

Reamostragem

A reamostragem é o nome que se dá a um conjunto de técnicas ou métodos que se baseiam em gerar repetidas amostragens a partir de um mesmo conjunto de amostras.

Estas técnicas se propõem a avaliar as incertezas relacionadas a obtenção de estatísticas com distribuições amostrais desconhecidas ou gerar uma "perturbação" nos dados de entrada de modo que modelos determinísticos gerem diferentes resultados.

Também podem ser utilizadas para avaliar a significância de testes cujas estatísticas básicas não têm suas propriedades bem estabelecidas ou cujas premissas não podem ser consideradas verdadeiras.

Testes de Aleatorização

- Testes de aleatorização (ou testes de permutação ou testes exatos) são típicos testes de significância onde a distribuição da estatística testada é obtida calculando-se todos os possíveis valores desta estatística rearranjando-se os valores da amostra considerando uma hipótese nula verdadeira
- Uma aplicação típica é quando se deseja comparar dados pareados para avaliar se a diferença entre eles é significativamente grande para justificar que são, de fato, diferentes (por exemplo, pode-se verificar se uma determinada característica mudou de uma data para outra)
- Outra aplicação é, num mapa de Kernel, identificar se em certas regiões há mesmo uma tendência de valores altos ou baixos, ou se o que se observa pode ter sido obtido casualmente
- Nem sempre todos os rearranjos das amostras podem ser avaliados (muitas amostras).

 Nesse caso, faz-se uma simulação de modo a testar o maior número possível de rearranjos (quanto maior o número de simulações melhor!)

Testes de Aleatorização - Exemplo

Uma determinada característica foi medida 8 vezes em duas datas distintas Há evidências de que o valor dessa característica aumentou?

Amostro	Valo	r medido	Dif
Amostra	antes	depois	DII
1	3,5	4,3	0,8
2	4,7	4,4	-0,3
3	5,3	5,9	0,6
4	10,3	11,3	1,0
5	3,8	5,7	1,9
6	6,6	6,4	-0,2
7	5,1	5,1	0,0
8	9,6	10,9	1,3
	<u> </u>	média	0,6375

Se H₀ é verdadeiro, então poderia trocar os valores entre os dois grupos

Dif média = 0,6375 estatística usada no teste t

Qual valor esperado caso não houvesse diferença na área corretamente classificada quando uma ou duas imagens forem utilizadas (H_0) ?

Quão raro seria encontrar a média 0,6375 nesse caso? Ou seja, qual o valor-P associado a esta estatística?

Solução: calcular todos os valores possíveis de diferença média quando trocamos ou não os valores entre as 2 abordagens para cada amostra. Com isso, obtém-se a distribuição amostral desta estatística.

Testes de Aleatorização - Exemplo

 H_0 : não há diferença entre o valor medido antes e depois (Dif média = 0)

H₁: o valor medido depois é maior (Dif média > 0)

Se H_0 é verdadeira, então haverá 2^8 possibilidades de trocas, gerando 256 resultados diferentes

Amagtaa	Valor medido		D:t
Amostra	antes	depois	Dif
1	3,5	4,3	0,8
2	4,4	4,7	0,3
3	5,3	5,9	0,6
4	10,3	11,3	1,0
5	3,8	5,7	1,9
6	6,4	6,6	0,2
7	5,1	5,1	0,0
8	9,6	10,9	1,3
		média	0,7625

	Dif	
	0,8	
	-0,3	
	0,6	
	1,0	
,	1,9	
	-0,2	
	0,0	
	1,3	
	0,6375	

			-	
Amostra	Valor medido		D:t	
	antes	depois	Dif	
1	4,3	3,5	-0,8	
2	4,7	4,4	-0,3	
3	5,9	5,3	-0,6	
4	11,3	10,3	-1,0	
5	5,7	3,8	-1,9	
6	6,6	6,4	-0,2	
7	5,1	5,1	-0,0	
8	10,9	9,6	-1,3	
		média	-0,7625	

Testes de Aleatorização - Exemplo

 H_0 : não há diferença entre o valor medido antes e depois (Dif média = 0)

H₁: o valor medido depois é maior (Dif média > 0)

Se H_0 é verdadeira, então haverá 2^8 possibilidades de trocas, gerando 256 resultados diferentes

Amostra	Valor medido		- Dif
	antes	depois	
1	3,5	4,3	0,8
2	4,7	4,4	-0,3
3	5,3	5,9	0,6
4	10,3	11,3	1,0
5	3,8	5,7	1,9
6	6,6	6,4	-0,2
7	5,1	5,1	0,0
8	9,6	10,9	1,3
		média	0,6375

Valor-P = P(Dif média H_0 verdadeiro \geq Dif média observada) = 3,13%

Jackknife

Também chamado "leave-one-out test"

Usado para estimar a variância e a tendência de um estimador qualquer.

Baseia-se na remoção de 1 amostra (podendo ser mais) do conjunto total observado (n), recalculando-se o estimador a partir dos valores restantes (n-1).

É de fácil implementação e possui número fixo de iterações (igual a n, caso se retire apenas 1 amostra por vez).

Jackknife

Suponha que um determinado parâmetro θ possa ser estimado a partir de uma amostra de n valores, ou seja,

$$\hat{\theta} = f(x_1, x_2, \dots, x_n)$$

Então a i-ésima replicação Jackknife corresponde ao valor estimado sem a amostra i:

$$\hat{\theta}_{(i)} = f(x_1, x_2, ..., x_{i-1}, x_{i+1}, ..., x_n)$$

Com base nessas n estimativas, pode-se calcular então:

$$\hat{\theta}_{jk} = n\hat{\theta} - (n-1)\hat{\theta}_{(.)} \quad \text{onde} \quad \hat{\theta}_{(.)} = \frac{1}{n} \sum_{i=1}^{n} \hat{\theta}_{(i)}$$

$$Var_{jk}(\hat{\theta}) = \frac{n-1}{n} \sum_{i=1}^{n} (\hat{\theta}_{(i)} - \hat{\theta}_{(.)})^{2} \qquad \frac{\hat{\theta}_{jk} - \theta}{\sqrt{Var_{jk}(\hat{\theta})}} \sim t_{n-1} \quad (n \text{ grande})$$

Jackknife - Exemplo

Suponha que se deseja saber qual é a média geométrica de uma população e para isso obteve-se uma amostra de 10 valores:

	X	$mg_{(i)}$
1	2,2	6,688
2	3,5	6,352
3	3,4	6,372
4	6,7	5,910
5	6,2	5,961
6	8,2	5,779
7	9,2	5,705
8	7,9	5,803
9	9,0	5,719
10	10,1	5,646

Qual é o valor da média geométrica desta amostra e qual a variância deste estimador?

$$mg = \sqrt[10]{2,2 \times 3,5 \times ... \times 10,1} = 5,9844$$
 (amostra completa)

$$mg_{(1)} = \sqrt[9]{3,5 \times 3,4 \times ... \times 10,1} = 6,688$$

 \vdots
 $mg_{(10)} = \sqrt[9]{2,2 \times 3,5 \times ... \times 9,0} = 5,646$
 $mg_{(1)} = 5,9935$

$$mg_{jk} = 10.5,9844 - 9.5,9935 = 5,9026$$

$$Var_{JK}(mg) = \frac{9}{10} \sum_{i=1}^{10} (mg_{(i)} - mg_{(.)})^2 = 1,0119$$

$$s_{jk} = \sqrt{1,0119} = 1,0059$$

Bootstrap

Pode ser considerado uma estratégia mais abrangente que o Jackknife por permitir um maior número de replicações. Também é usado para estimar a variância e a tendência de um estimador qualquer.

Baseia-se na geração de uma nova amostra de mesmo tamanho da amostra original, a partir do sorteio aleatório com reposição de seus elementos.

Bootstrap

Suponha que um determinado parâmetro θ pode ser estimado a partir de uma amostra de n valores, ou seja,

$$\hat{\theta} = f(x_1, x_2, \dots, x_n)$$

Então a cada iteração j, o valor estimado a partir da amostra será:

$$\hat{\theta}_i = f(y_1, y_2, ..., y_n)$$
 onde y_k é um dos valores da amostra (com reposição)

Com base nas estimativas de m iterações, pode-se calcular então:

$$\hat{\theta}_b = \frac{1}{m} \sum_{i=1}^m \hat{\theta}_i$$

$$Var_b(\hat{\theta}) = \frac{1}{m} \sum_{i=1}^m (\hat{\theta}_i - \hat{\theta})^2$$

$$\frac{\hat{\theta}_b - \theta}{\sqrt{Var_b(\hat{\theta})}} \sim t_n \quad (n \text{ grande})$$

Recomenda-se que $m \ge 200$, mas pode ser necessário $m \ge 2000$ caso o objetivo seja construir intervalos de confiança para o parâmetro θ

Bootstrap - Exemplo

Suponha que se deseja saber qual é a média geométrica de uma população e para isso obteve-se uma amostra de 10 valores:

	X
1	2,2
2	3,5
3	3,4
4	6,7
5	6,2
6	8,2
7	9,2
8	7,9
9	9,0
10	10,1

Qual é o valor da média geométrica desta amostra e qual a variância deste estimador?

Variancia deste estimador?
$$mg = \sqrt[10]{2,2 \times 3,5 \times ... \times 10,1} = 5,9844 \quad \text{(amostra completa)}$$

$$Y_1 = \{3,4;6,7;8,2;7,9;10,1;9,2;7,9;6,2;3,5;10,1\}$$

$$mg_1 = 6,8794$$

$$\vdots$$

$$Y_{200} = \{7,9;9,2;9,0;8,2;10,1;8,2;6,2;7,9;9,2\}$$

$$mg_{200} = 8,3158$$

$$mg_b = \frac{1}{200} \sum_{i=1}^{200} mg_i = 6,0703$$

$$Var_b \left(mg\right) = \frac{1}{200} \sum_{i=1}^{200} \left(mg_i - 5,9844\right)^2 = 0,9611$$

$$s_b \left(mg\right) = \sqrt{0,9611} = 0,9804$$