Superposition Structural Induction

Simon Cruanes

Veridis, Inria Nancy https://cedeela.fr/~simon/

17th of November, 2016

The Third Workshop on Automated Inductive Theorem-Proving, Vienna

Simon Cruanes

sup+ind

17th of November, 2016

Summary

- Introduction
- Adding Structural Induction
- A Few Experiments

Outline

This talk: mixing Superposition and Induction

- Superposition: state of the art for first-order classical reasoning (implemented in the best FO provers: E, Vampire, SPASS, ...)
- Induction: cornerstone of many proof assistants, critical to reason about infinite structures (here, structural induction on datatypes)
- Goal: add inductive reasoning to first-order provers for inductions that are not too hard (possibly helped with lemmas).
 NOT about making the best inductive prover ever!
- \rightarrow mix of first-order and induction (and theories. . .) useful for, e.g., Sledgehammer, Why3.

Superposition in a Nutshell

the Superposition calculus:

- clausal (works on disjunctions of literals)
- refutational (goal: deduce ⊥)
- equational (tailored for reasoning with equality)

Say we have only two elements a and b, on which p holds. Then prove $\forall x. \ p(x)$ by refuting $\exists c. \neg p(c)$:

$$\frac{\neg p(c) \qquad x \simeq a \lor x \simeq b}{\neg p(a) \lor c \simeq b} \quad \text{(Sup)}$$

$$\frac{\neg p(a) \lor c \simeq b}{(\text{Sup)} \qquad \qquad (\text{Res})} \quad \neg p(c)$$

$$\frac{\neg p(b) \qquad \qquad p(b)}{(\text{Res}) \qquad \qquad (\text{Res})}$$

(Note the *binding* of x to c using *unification*) $\longrightarrow \bigcirc$

Simon Cruanes sup + ind 17th of November, 2016

Superposition in a Nutshell

the Superposition calculus:

- clausal (works on disjunctions of literals)
- refutational (goal: deduce ⊥)
- equational (tailored for reasoning with equality)

Say we have only two elements a and b, on which p holds. Then prove $\forall x. \ p(x)$ by refuting $\exists c. \neg p(c)$:

$$\frac{\neg p(c) \qquad x \simeq a \lor x \simeq b}{\neg p(a) \lor c \simeq b} \text{ (Sup)}$$

$$\frac{\neg p(a) \lor c \simeq b}{(\text{Sup)} \qquad (\text{Res})} \qquad (\text{Res}) \qquad \neg p(c) \qquad (\text{Res}) \qquad (\text{Res}) \qquad \bot$$

(Note the *binding* of x to c using *unification*)

Simon Cruanes sup+ind 17th of November, 2016 3 / 16

Rules of Superposition

- \bullet σ is a substitution
- C, D are clauses (disjunctions of atoms)
- $u[t]_p$ puts t at position p in term u
- ➤ is on ordering on terms

Induction will require case analysis.

However, Superposition not very good with boolean reasoning...

- ightarrow use the AVATAR extension [Voronkov 2014] (here, modified a bit)
 - delegate (some) reasoning to a SAT solver
 - \bullet $\|\cdot\|$: injective mapping to boolean literals
 - $C \leftarrow \bigwedge_i b_i$ means clause C holds if lits b_i satisfied
 - \bullet use atoms $\lfloor\!\lfloor \mathfrak{n}_0 \simeq 0 \cdot \mathfrak{l}_0 \simeq \mathfrak{n}_0 :: \mathfrak{l}_1 \rfloor\!\rfloor$ to "select" branch in inductive proof

Example

Typical case analysis for induction:

$$\frac{\mathfrak{n}_0 \simeq 0 \vee \mathfrak{n}_0 \simeq s(\mathfrak{n}_1)}{\mathfrak{n}_0 \simeq 0 \leftarrow [\mathfrak{n}_0 \simeq 0]}$$
(ASplit)
$$\mathfrak{n}_0 \simeq s(\mathfrak{n}_1) \leftarrow [\mathfrak{n}_0 \simeq s(\mathfrak{n}_1)]$$
$$[\mathfrak{n}_0 \simeq 0] \vee [\mathfrak{n}_0 \simeq s(\mathfrak{n}_1)]$$

Beyond Superposition: Clause Splitting With AVATAR

Induction will require case analysis.

However, Superposition not very good with boolean reasoning...

- ightarrow use the AVATAR extension [Voronkov 2014] (here, modified a bit)
 - delegate (some) reasoning to a SAT solver
 - $\bullet \|\cdot\|$: injective mapping to boolean literals
 - $C \leftarrow \bigwedge_i b_i$ means clause C holds if lits b_i satisfied
 - \bullet use atoms $\|\mathfrak{n}_0\simeq 0\cdot\mathfrak{l}_0\simeq\mathfrak{n}_0::\mathfrak{l}_1\|$ to "select" branch in inductive proof

Example

Typical case analysis for induction:

$$\frac{\mathfrak{n}_0 \simeq 0 \vee \mathfrak{n}_0 \simeq s(\mathfrak{n}_1)}{\mathfrak{n}_0 \simeq 0 \leftarrow \|\mathfrak{n}_0 \simeq 0\|}$$

$$\mathfrak{n}_0 \simeq s(\mathfrak{n}_1) \leftarrow \|\mathfrak{n}_0 \simeq s(\mathfrak{n}_1)\|$$

$$\|\mathfrak{n}_0 \simeq 0\| \vee \|\mathfrak{n}_0 \simeq s(\mathfrak{n}_1)\|$$

Summary

- Introduction
- 2 Adding Structural Induction
- A Few Experiments

Extended Logic

For inductive proving, we use an extended logic:

- FO + polymorphic types (∼ TFF1)
- inductive datatypes
- recursive functions or rewriting rules (terminating confluent system)

Roughly corresponds to (an encoding of) TIP

TIP ("Tons of Inductive Problems")

- derivative/extension of SMT-LIB 2
- on github: https://tip-org.github.io/
- Dan Rosén, Nick Smallbone, Moa Johansson, Koen Claessen

Extended Logic

For inductive proving, we use an extended logic:

- FO + polymorphic types (∼ TFF1)
- inductive datatypes
- recursive functions or rewriting rules (terminating confluent system)

Roughly corresponds to (an encoding of) TIP

TIP ("Tons of Inductive Problems")

- derivative/extension of SMT-LIB 2
- on github: https://tip-org.github.io/
- Dan Rosén, Nick Smallbone, Moa Johansson, Koen Claessen

Example (Induction on Lists)

- assume p([]) and $\forall x \mid I. p(I) \Rightarrow p(x :: I)$
- Prove p holds for all list
- by refutation:
 - ▶ assume $\exists l_0 : list. \neg p(l_0)$
 - ightharpoonup coverset: $\mathfrak{l}_0 \in \{[], \mathfrak{t}_0 :: \mathfrak{l}_1\}$
 - ightarrow assert $(\mathfrak{l}_0 \simeq []) \lor (\mathfrak{l}_0 \simeq \mathfrak{t}_0 :: \mathfrak{l}_1)$ and deduce \bot by case analysis

Example (Induction on Lists)

- assume p([]) and $\forall x \ l. \ p(l) \Rightarrow p(x :: l)$
- Prove p holds for all list
- by refutation:
 - ▶ assume $\exists l_0 : list. \neg p(l_0)$
 - ightharpoonup coverset: $\mathfrak{l}_0 \in \{[], \mathfrak{t}_0 :: \mathfrak{l}_1\}$
 - \to assert $(\mathfrak{l}_0\simeq[\,])\vee(\mathfrak{l}_0\simeq\mathfrak{t}_0::\mathfrak{l}_1)$ and deduce \bot by case analysis

split (with AVATAR):

$$\mathfrak{l}_0 \simeq [] \vee \mathfrak{l}_0 \simeq \mathfrak{t}_0 :: \mathfrak{l}_1$$

Example (Induction on Lists)

- assume p([]) and $\forall x \mid I. p(I) \Rightarrow p(x :: I)$
- Prove p holds for all list
- by refutation:

```
ightharpoonup assume \exists l_0 : list. \neg p(l_0)

ightharpoonup coverset: l_0 \in \{[], t_0 :: l_1\}
```

 \rightarrow assert $(\mathfrak{l}_0 \simeq []) \vee (\mathfrak{l}_0 \simeq \mathfrak{t}_0 :: \mathfrak{l}_1)$ and deduce \perp by case analysis

base case: easy

$$\frac{ \begin{matrix} \mathfrak{l}_0 \simeq [] \leftarrow \lfloor \mathfrak{l}_0 \simeq [] \rfloor & \neg p(\boxed{\mathfrak{l}_0}) \\ \hline \begin{matrix} \neg p([]) \leftarrow \lfloor \mathfrak{l}_0 \simeq [] \rfloor \end{matrix} & p([]) \\ \hline \begin{matrix} \bot \leftarrow \lfloor \mathfrak{l}_0 \simeq [] \rfloor \end{matrix} & (\text{A}\bot) \end{matrix}}{ \begin{matrix} \bot \downarrow \begin{matrix} \bot \downarrow \begin{matrix} \bot \downarrow \end{matrix} & (\text{Cas}) \end{matrix}}$$

Example (Induction on Lists)

- assume p([]) and $\forall x \mid I. p(I) \Rightarrow p(x :: I)$
- Prove p holds for all list
- by refutation:
 - ightharpoonup assume $\exists \mathfrak{l}_0 : \mathsf{list.} \neg p(\mathfrak{l}_0)$
 - \triangleright coverset: $\mathfrak{l}_0 \in \{[], \mathfrak{t}_0 :: \mathfrak{l}_1\}$
 - \rightarrow assert ($\mathfrak{l}_0 \simeq []$) \vee ($\mathfrak{l}_0 \simeq \mathfrak{t}_0 :: \mathfrak{l}_1$) and deduce \perp by case analysis

recursive case:

Inductive Strengthening

Success, both
$$\|\mathfrak{l}_0 \simeq []\|$$
 and $\|\mathfrak{l}_0 \simeq \mathfrak{t}_0 :: \mathfrak{l}_1\|$ are false!

 \rightarrow we used *inductive strengthening* to prove the recursive case.

Principle

- assume l₀ is a minimal counter-example to p
 (minimal w.r.t. subterm ordering ⊲)
 in other words: ¬p(l₀) and ∀x. x ⊲ l₀ ⇒ p(x)
- assert $p(\mathfrak{l}_1)$, since $\mathfrak{l}_1 \triangleleft \mathfrak{l}_0 \ (\simeq \mathfrak{t}_0 :: \mathfrak{l}_1)$ and \mathfrak{l}_0 minimal
- ullet theorem: \exists model iff \exists model with $[l_0]$ minimal
- Also works for nested induction (minimal tuple)

Inductive Strengthening

```
Success, both \big\| [\mathfrak{l}_0 \simeq [] \big\| \big\| and \big\| [\mathfrak{l}_0 \simeq \mathfrak{t}_0 :: \mathfrak{l}_1 \big\| \big\| are false!
```

 \rightarrow we used *inductive strengthening* to prove the recursive case.

Principle

- assume \mathfrak{l}_0 is a minimal counter-example to p (minimal w.r.t. subterm ordering \triangleleft) in other words: $\neg p(\mathfrak{l}_0)$ and $\forall x.\ x \triangleleft \mathfrak{l}_0 \Rightarrow p(x)$
- assert $p(\mathfrak{l}_1)$, since $\mathfrak{l}_1 \triangleleft \mathfrak{l}_0 \ (\simeq \mathfrak{t}_0 :: \mathfrak{l}_1)$ and \mathfrak{l}_0 minimal
- ullet theorem: \exists model iff \exists model with $[l_0]$ minimal
- Also works for nested induction (minimal tuple)

Summary

- Introduction
- Adding Structural Induction
- 3 A Few Experiments

Implementation

Zipperposition, a Superposition prover in OCaml

- not very good, but flexible and feature full
- follows the design of E, + typing, int arith, induction, and rewriting
- OCaml is expressive, reasonably fast, and safe
- BSD license, https://github.com/c-cube/zipperposition
- demo: a few proof graphs! (using graphviz)

Trivial: $(p(0) \land \forall x. \ p(x) \Rightarrow p(s(x))) \Rightarrow \forall x. \ p(x)$

Isaplanner 12: $map(f, drop(n, l)) \simeq drop(n, map(f, l))$

$a + b \simeq b + a$

rev(rev(I)) = I (using a lemma)

Lemma in AVATAR

Inference Rule

introduce lemma *F*:

$$\begin{array}{ccc}
 & \top \\
 & F & \leftarrow ||F|| \\
 & \land \neg F & \leftarrow \neg ||F||
\end{array}$$

Lemma in AVATAR

Inference Rule

introduce lemma F (and reduce it to CNF) :

$$\begin{array}{ccc}
 & \top \\
 & \operatorname{cnf}(F) & \leftarrow \|F\| \\
 & \wedge & \operatorname{cnf}(\neg F) & \leftarrow \neg \|F\|
\end{array}$$

Typically, $cnf(\neg F)$ will be refuted in a separate induction.

What is missing

Functional Induction

- we have function definitions (in TIP)
- those generate cover sets
- could use those cover sets for goals $\forall x_1, \dots, x_n$. $P[f(x_1, \dots, x_n)]$

Lemma Divination

- guessing lemmas is critical (not cut-free!)
- possibility: à la HipSpec
- possibility: generalize from "stuck" negative clauses (i.e., goals)
- haven't had the time to make it work yet.

Also, better handling of datatypes, etc.

What is missing

Functional Induction

- we have function definitions (in TIP)
- those generate cover sets
- could use those cover sets for goals $\forall x_1, \dots, x_n$. $P[f(x_1, \dots, x_n)]$

Lemma Divination

- guessing lemmas is critical (not cut-free!)
- possibility: à la HipSpec
- possibility: generalize from "stuck" negative clauses (i.e., goals)
- haven't had the time to make it work yet.

Also, better handling of datatypes, etc.

Conclusion

It is possible to extend a Superposition based prover to handle (structural) Induction.

- The point is to avoid losing all the progress in FO ATP in order to get induction!
- AVATAR is recommended, to handle case splitting
 - ightarrow can pursue many simultaneous proofs at the same time
 - ightarrow nested induction is no problem
- the tricky parts:
 - handle datatypes (maybe take inspiration from FOOL)
 - definitions: need rewriting OR good term orderings
 - divination of lemmas (as always)
- code on github (but beware of bugs, highly experimental)

Multi-Clauses Induction

Use QBF to quantify over subsets of all inductive clauses. Constraint for constant i:

$$\begin{array}{cccc} F_{\mathfrak{i}} & \stackrel{\mathrm{def}}{=} & \exists_{a \in S_{\mathsf{atoms}}} a \\ & \forall_{C \in S_{\mathsf{cand}}(\mathfrak{i})} \| C \in S_{\mathsf{min}}(\mathfrak{i}) \| \\ & \exists_{t \in \mathfrak{i}} \| \mathfrak{i} \simeq t \| \\ & \exists_{C \in S_{\mathsf{cand}}(\mathfrak{i})} \| \mathsf{init}(C,\mathfrak{i}) \| \\ & \exists_{t',t',\mathfrak{i},C \in S_{\mathsf{cand}}(\mathfrak{i})} \| \mathsf{minimal}(C,\mathfrak{i},t') \| \\ & \left(\bigcap_{x \in S_{\mathsf{constraints}}} x \right) \sqcap \left(\mathsf{empty} \sqcup \bigsqcup_{t \in \mathfrak{i}} \| \mathfrak{i} \simeq t \| \sqcap \mathsf{minimal}(t) \right) \\ \mathsf{empty} & \stackrel{\mathsf{def}}{=} & \bigcap_{C \in S_{\mathsf{cand}}(\mathfrak{i})} \neg \| C \in S_{\mathsf{min}}(\mathfrak{i}) \| \\ \mathsf{minimal}(t) & \stackrel{\mathsf{def}}{=} & \bigcap_{t' \lhd t,t'} \sqcup_{C \in S_{\mathsf{cand}}(\mathfrak{i})} \left(\| C \in S_{\mathsf{min}}(\mathfrak{i}) \| \sqcap \\ \| \mathsf{minimal}(C,\mathfrak{i},t') \| \right) \end{array}$$

Splitting Clauses in AVATAR

Boxing Operation (~ Tseitin definitions)

First, we define boxing: $[\cdot]$ (to be used on clause components)

- just give a name to a clause/formula
- for any x, ||x|| is a boolean literal
- $\bullet \ \|\forall x. \ F[x]\| = \|\forall y. \ F[y]\|$

Example

◆□ → ◆□ → ◆ ■ → ◆ ■ □ ● ◆ ○ ○ ○

Splitting Clauses in AVATAR

Boxing Operation (~ Tseitin definitions)

First, we define boxing: $[\cdot]$ (to be used on clause components)

- just give a name to a clause/formula
- for any x, ||x|| is a boolean literal
- $\bullet \ \|\forall x. \ F[x]\| = \|\forall y. \ F[y]\|$

Example

clause	propositional clause (boxing)
$p \lor \neg q \lor \forall x. p(x)$	$\boxed{ \boxed{ p \rfloor} \ \Box \neg \Box $
$\forall x. \neg p(x) \lor \forall y \ z. \ q(y) \lor q(f(y,z))$	
$\mathfrak{n}_0 \simeq 0 \ \lor \ \mathfrak{n}_0 \simeq s(\mathfrak{n}_1)$	$\boxed{ \llbracket \mathfrak{n}_0 \simeq 0 \rrbracket } \sqcup \boxed{ \llbracket \mathfrak{n}_0 \simeq s(\mathfrak{n}_1) \rrbracket }$

A-clause

An **A-clause** is $C \leftarrow \Gamma$ where

- C is a clause (disjunction of literals)
- $\Gamma = \prod_{i=1}^{n} b_i$ with b_i boxes (propositional literals)

AVATAR Split

$$\frac{C_1 \vee \ldots \vee C_n \leftarrow \Gamma}{\bigwedge_{i=1}^n \left(C_i \leftarrow \lfloor \lfloor C_i \rfloor \right) \qquad \Gamma \Rightarrow \left(\bigsqcup_{i=1}^n \lfloor \lfloor C_i \rfloor \right)}$$
(ASplit)
$$\text{if } i \neq j \Rightarrow \text{vars}(C_i) \cap \text{vars}(C_j) = \emptyset$$

AVATAR Absurd

$$\frac{\bot \leftarrow \prod_{i=1}^{n} b_{i}}{\bigsqcup_{i=1}^{n} \neg b_{i}} (A\bot)$$

- deduce clauses
- force ≥ 1 clause to be true (if Γ is)
- prune absurd branches

A-clause

An **A-clause** is $C \leftarrow \Gamma$ where

- C is a clause (disjunction of literals)
- $\Gamma = \prod_{i=1}^{n} b_i$ with b_i boxes (propositional literals)

AVATAR Split

$$\frac{C_1 \vee \ldots \vee C_n \leftarrow \Gamma}{\bigwedge_{i=1}^n \left(C_i \leftarrow \lfloor \lfloor C_i \rfloor \right) \qquad \Gamma \Rightarrow \left(\bigsqcup_{i=1}^n \lfloor \lfloor C_i \rfloor \right)}$$
(ASplit)

if
$$i \neq j \Rightarrow \mathsf{vars}(C_i) \cap \mathsf{vars}(C_j) = \emptyset$$

AVATAR Absurd

$$\frac{\perp \leftarrow \prod_{i=1}^{n} b_i}{\mid \mid_{i=1}^{n} \neg b_i \mid} (\mathsf{A} \bot)$$

- deduce clauses
- force ≥ 1 clause to be true (if Γ is)
- prune absurd branches

◆□▶ ◆□▶ ◆불▶ ◆불▶ 월1章 虳♀♡

A-clause

An **A-clause** is $C \leftarrow \Gamma$ where

- C is a clause (disjunction of literals)
- $\Gamma = \prod_{i=1}^{n} b_i$ with b_i boxes (propositional literals)

AVATAR Split

$$\frac{C_1 \vee \ldots \vee C_n \leftarrow \Gamma}{\bigwedge_{i=1}^n \left(C_i \leftarrow \lfloor \lfloor C_i \rfloor \right)}$$
 $\Gamma \Rightarrow \left(\bigsqcup_{i=1}^n \lfloor \lfloor C_i \rfloor \right)$ (ASplit)

if
$$i \neq j \Rightarrow \mathsf{vars}(C_i) \cap \mathsf{vars}(C_j) = \emptyset$$

AVATAR Absurd

$$\frac{\bot \leftarrow \bigcap_{i=1}^{n} b_{i}}{\bigcup_{i=1}^{n} \neg b_{i}} (A\bot)$$

- deduce clauses
- force ≥ 1 clause to be true (if Γ is)
- prune absurd branches

4□ > 4□ > 4□ > 4□ > 4□ > 4□ = 900

A-clause

An **A-clause** is $C \leftarrow \Gamma$ where

- C is a clause (disjunction of literals)
- $\Gamma = \prod_{i=1}^{n} b_i$ with b_i boxes (propositional literals)

AVATAR Split

$$\frac{C_1 \vee \ldots \vee C_n \leftarrow \Gamma}{\bigwedge_{i=1}^n \left(C_i \leftarrow \| C_i \| \right) \qquad \Gamma \Rightarrow \left(\| \|_{i=1}^n \| C_i \| \right)}$$
(ASplit)

if
$$i \neq j \Rightarrow \mathsf{vars}(C_i) \cap \mathsf{vars}(C_j) = \emptyset$$

AVATAR Absurd

$$\frac{\bot \leftarrow \prod_{i=1}^{n} b_{i}}{\bigsqcup_{i=1}^{n} \neg b_{i}} (\mathsf{A}\bot)$$

- deduce clauses
- force ≥ 1 clause to be true (if Γ is)
- prune absurd branches

◆ロト ◆問ト ◆恵ト ◆恵ト 恵|= 釣り○

A-clause

An **A-clause** is $C \leftarrow \Gamma$ where

- C is a clause (disjunction of literals)
- $\Gamma = \prod_{i=1}^{n} b_i$ with b_i boxes (propositional literals)

AVATAR Split

$$\frac{C_1 \vee \ldots \vee C_n \leftarrow \Gamma}{\bigwedge_{i=1}^n \left(C_i \leftarrow \lfloor \lfloor C_i \rfloor \right)} \qquad \Gamma \Rightarrow \left(\bigsqcup_{i=1}^n \lfloor \lfloor C_i \rfloor \right) \qquad (ASplit)$$

if $i \neq j \Rightarrow \mathsf{vars}(C_i) \cap \mathsf{vars}(C_j) = \emptyset$

AVATAR Absurd

$$\frac{\bot \leftarrow \bigcap_{i=1}^{n} b_i}{\bigsqcup_{i=1}^{n} \neg b_i} (\mathsf{A}\bot)$$

- deduce clauses
- force ≥ 1 clause to be true (if Γ is)
- prune absurd branches