MIPS Reference Data

	110	CI	chec Data				
CORE INSTRUCTI	ON SE				OPCODE		
NAME ANIEMO	NIC	FOR-			/ FUNCT		
NAME, MNEMO		MAT R	- ((1)	(Hex) 0 / 20 _{hex}		
Add Immediate	add addi	K I	R[rd] = R[rs] + R[rt] R[rt] = R[rs] + SignExtImm				
		I		(1,2)	8 _{hex}		
Add Imm. Unsigned	addiu		R[rt] = R[rs] + SignExtImm	(2)	9 _{hex}		
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		0 / 21 _{hex}		
And	and	R	R[rd] = R[rs] & R[rt]	(2)	0 / 24 _{hex}		
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm	(3)	c _{hex}		
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}		
Branch On Not Equal	bne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5 _{hex}		
Jump	j	J	PC=JumpAddr	(5)	2_{hex}		
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3_{hex}		
Jump Register	jr	R	PC=R[rs]		$0 / 08_{hex}$		
Load Byte Unsigned	lbu	I	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}		
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	25 _{hex}		
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	30_{hex}		
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f_{hex}		
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)	23 _{hex}		
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}		
Or	or	R	$R[rd] = R[rs] \mid R[rt]$		0 / 25 _{hex}		
Or Immediate	ori	I	$R[rt] = R[rs] \mid ZeroExtImm$	(3)	d_{hex}		
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		$0/2a_{hex}$		
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)? 1	: 0 (2)	a_{hex}		
Set Less Than Imm. Unsigned	sltiu	Ι	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2,6)	b_{hex}		
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	0 / 2b _{hex}		
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$		0 / 00 _{hex}		
Shift Right Logical	srl	R	$R[rd] = R[rt] \gg shamt$		0 / 02 _{hex}		
Store Byte	sb	I	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	$28_{ m hex}$		
Store Conditional	sc	I	M[R[rs]+SignExtImm] = R[rt]; R[rt] = (atomic) ? 1 : 0	(2,7)	38 _{hex}		
Store Halfword	sh	I	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29 _{hex}		
Store Word	SW	I	M[R[rs]+SignExtImm] = R[rt]	(2)	2b _{hex}		
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	0 / 22 _{hex}		
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		0 / 23 _{hex}		
(1) May cause overflow exception (2) SignExtImm = { 16{immediate[15]}, immediate } (3) ZeroExtImm = { 16{1b'0}, immediate } (4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 } (5) JumpAddr = { PC+4[31:28], address, 2'b0 } (6) Operands considered unsigned numbers (vs. 2's comp.) (7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic							
BASIC INSTRUCTI	ON FC	RMA	TS				

RASIC	INSTRUCTION	ON FORMAT	2

BASIC	INSTRUCTIO	IN FORM	AIS				I			
			_				- i	\$t8-\$t9	24-25	Temporaries
R	opcode	rs	rt	rd	shamt	funct	╛	\$k0-\$k1	26-27	Reserved for
	31 26	25 2	21 20 16	5 15 11	10 6	-	9	\$gp	28	Global Poin
I	opcode	rs	rt		immediate			\$sp	29	Stack Pointe
	31 26	25 2	21 20 16	5 15		-	9	\$fp	30	Frame Point
J	opcode			address				\$ra	31	Return Addr
		25					0 ل			
Copyrig	ht 2009 by Els	sevier, Inc.,	, All rights res	erved. From	Patterson an	d Hennessy,	Computer	Organizatio	on and De	sign, 4th ed.

			O	/ FMT /FT
		FOR-		/ FUNCT
NAME, MNEMO		MAT	OPERATION	(Hex)
Branch On FP True	bc1t	FI	$if(FPcond)PC=PC+4+BranchAddr\ (4)$	11/8/1/
Branch On FP False	bc1f	FI	if(!FPcond)PC = PC + 4 + BranchAddr(4)	11/8/0/
Divide	div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0//-1a
Divide Unsigned	divu	R	$Lo=R[rs]/R[rt]; Hi=R[rs]\%R[rt] \hspace{0.5cm} (6)$	0///1b
	add.s	FR	F[fd] = F[fs] + F[ft]	11/10//0
FP Add	add.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} +$	11/11//0
Double			${F[ft],F[ft+1]}$	
FP Compare Single	C.X.S*	FR	FPcond = (F[fs] op F[ft]) ? 1 : 0	11/10//y
FP Compare	c.x.d*	FR	$FPcond = (\{F[fs], F[fs+1]\} op$	11/11//y
Double	`		{F[ft],F[ft+1]})?1:0	11/11/ //
			=, <, or <=) (y is 32, 3c, or 3e)	11/10/ /2
FP Divide Single FP Divide	alv.s	FK	F[fd] = F[fs] / F[ft]	11/10//3
Double	div.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} /$	11/11//3
FP Multiply Single	1 -	FR	${F[ft],F[ft+1]}$ $F[fd] = F[fs] * F[ft]$	11/10//2
FP Multiply	muı.s			11/10//2
Double	mul.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} * {F[ft],F[ft+1]}$	11/11//2
	sub.s	FR	F[fd]=F[fs] - F[ft]	11/10//1
FP Subtract			$\{F[fd], F[fd+1]\} = \{F[fs], F[fs+1]\}$	
Double	sub.d	FR	{F[ft],F[ft+1]}	11/11//1
Load FP Single	lwc1	I	F[rt]=M[R[rs]+SignExtImm] (2)	31//
Load FP			F[rt]=M[R[rs]+SignExtImm]; (2)	25/ / /
Double	ldc1	I	F[rt+1]=M[R[rs]+SignExtImm+4]	35//
Move From Hi	mfhi	R	R[rd] = Hi	0 ///10
Move From Lo	mflo	R	R[rd] = Lo	0 ///12
Move From Control	mfc0	R	R[rd] = CR[rs]	10 /0//0
Multiply	mult	R	$\{Hi,Lo\} = R[rs] * R[rt]$	0//-18
Multiply Unsigned	multu	R	$\{Hi,Lo\} = R[rs] * R[rt] $ (6)	0///19
Shift Right Arith.	sra	R	R[rd] = R[rt] >>> shamt	0//-3
Store FP Single	swc1	I	M[R[rs]+SignExtImm] = F[rt] (2)	39//
Store FP	1 _ 1	I	M[R[rs]+SignExtImm] = F[rt]; (2)	3d//
Double	sdc1	1	M[R[rs]+SignExtImm+4] = F[rt+1]	3u//

OPCODE

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode	opcode fmt ft		fs	fd	funct
	31 26	25 21	20 16	15 11	10 6	5 0
FI	opcode	fmt	ft		immediate	9
	31 26	25 21	20 16	15		0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	if(R[rs] < R[rt]) PC = Label
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NIAN (III	NUMBER	USE	PRESERVEDACROSS
\$a0-\$a3 \$t0-\$t7 \$s0-\$s7 \$t8-\$t9	NUMBER	USE	A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	No

MIPS

MIDC	(1) MIDC	(2) MIDC			Llove	ACCII		Hove	ACCT
	(1) MIPS	(2) MIPS	ъ.	Deci-		ASCII	Deci-	Hexa-	ASCI
opcode	funct	funct	Binary	mal	deci-	Char-	mal	deci-	Char-
(31:26)	(5:0)	(5:0)	00 0000	0	mal 0	acter	64	mal 40	acter
(1)	SII	add. f	00 0000	1	1	SOH	65	41	@ A
j	srl	mul.f	00 0001	2	2	STX	66	42	В
jal	sra	div.f	00 0011	3	3	ETX	67	43	C
beq	sllv	sqrt.f	00 0100	4	4	EOT	68	44	D
bne		abs.f	00 0101	5	5	ENO	69	45	E
blez	srlv	mov.f	00 0110	6	6	ACK	70	46	F
bgtz	srav	$\operatorname{neg} f$	00 0111	7	7	BEL	71	47	G
addi	jr		00 1000	8	8	BS	72	48	Н
addiu	jalr		00 1001	9	9	HT	73	49	I
slti	movz		00 1010	10	a	LF	74	4a	J
sltiu	movn		00 1011	11	b	VT	75	4b	K
andi	syscall	round.w.f	00 1100	12	С	FF	76	4c	L
ori	break	trunc.w.f	00 1101	13	d	CR	77	4d	M
xori		ceil.w.f	00 1110	14	e	SO	78	4e	N
lui	sync	floor.w.f	00 1111	15	f	SI	79	4f	0
(2)	mfhi		01 0000	16	10	DLE	80	50	P
(2)	mthi mflo		01 0001	17 18	11 12	DC1 DC2	81 82	51 52	Q R
		movz.f	01 0010	18	13	DC2 DC3	82	53	S
	mtlo	movn.f	01 0100	20	14	DC3	84	54	T
			01 0100	21	15	NAK	85	55	Ù
			01 0110	22	16	SYN	86	56	V
			01 0111	23	17	ETB	87	57	w
	mult		01 1000	24	18	CAN	88	58	X
	multu		01 1001	25	19	EM	89	59	Y
	div		01 1010	26	1a	SUB	90	5a	Z
	divu		01 1011	27	1b	ESC	91	5b	[
			01 1100	28	1c	FS	92	5c	7
			01 1101	29	1d	GS	93	5d]
			01 1110	30	1e	RS	94	5e	^
			01 1111	31	1f	US	95	5f	_
lb	add	cvt.s.f	10 0000	32	20	Space	96	60	
lh	addu	$\operatorname{cvt.d} f$	10 0001	33	21	!	97	61	a
lwl	sub		10 0010	34	22	"	98	62	b
lw	subu		10 0011	35	23	#	99	63	С
lbu	and	cvt.w.f	10 0100	36	24	\$	100	64	d
lhu	or		10 0101	37	25	%	101	65	e
lwr	xor		10 0110	38 39	26	&	102	66	f
sb	nor		10 0111	40	27		103	67	g h
sb			10 1000	41	29	(104	69	i
sn swl	slt		10 1001	41	29 2a	*	103	6a	j
SWI	sltu		10 1010	43	2b	+	107	6b	k
SW	SILU		10 1100	44	2c		108	6c	1
			10 1101	45	2d	,	109	6d	m
swr			10 1110	46	2e		110	6e	n
cache			10 1111	47	2f	,	111	6f	0
11	tge	c.f.f	11 0000	48	30	0	112	70	р
lwc1	tgeu	c.un.f	11 0001	49	31	1	113	71	q
lwc2	tlt	c.eq f	11 0010	50	32	2	114	72	r
pref	tltu	c.ueq.f	11 0011	51	33	3	115	73	S
	teq	c.olt.f	11 0100	52	34	4	116	74	t
ldc1		c.ult. f	11 0101	53	35	5	117	75	u
ldc2	tne	${\tt c.ole}.f$	11 0110	54	36	6	118	76	V
		c.ule.f	11 0111	55	37	7	119	77	W
sc		c.sf.f	11 1000	56	38	8	120	78	X
swc1		c.ngle f	11 1001	57	39	9	121	79	У
swc2		c.seq.f	11 1010	58	3a	:	122	7a	Z
		c.ngl.f	11 1011	59	3b	;	123	7b	-{
		c.lt.f	11 1100	60	3c	<	124	7c	,
sdc1		c.nge.f	11 1101	61	3d	=	125	7d	}
sdc2		c.le.f	11 1110	62	3e	> 2	126	7e 7f	~ DEI
		c nort I		n i					

(1) opcode(31:26) == 0 (2) opcode(31:26) == 17_{ten} (11_{hex}); if fmt(25:21)== 16_{ten} (10_{hex}) f = s (single);

if fmt(25:21)==17_{ten} (11_{hex}) f = d (double)

11 1111

IEEE 754 FLOATING-POINT STANDARD

(-1)^S × (1 + Fraction) × 2^(Exponent - Bias) where Single Precision Bias = 127, Double Precision Bias = 1023.

IEEE Single Precision and Double Precision Formats:

IEEE 754 Symbols Object Exponent Fraction 0 ± 0 ± Denorm 0 **≠**0 anything ± Fl. Pt. Num. 1 to MAX - 1 MAX 0 ±∞ NaN MAX **≠**0 S.P. MAX = 255, D.P. MAX = 2047

4

•		0.0.0	·····	•			
	S	Expone	ent		Fraction		
	31	30	23	22			0
	S	Expo	nent		Fraction	75	
	63	62		52 51			0

DATA ALIGNMENT

Double Word									
	Wo	rd		Word					
Halfword		Half	word	Hal	fword	Half	word		
Byte Byte		Byte	Byte	Byte Byte		Byte Byte			
0	1	2	3	4	5	6	7		

Value of three least significant bits of byte address (Big Endian)

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

EF HON CONTROL REGISTERS. CAOSE AND STATOS											
	В			Interrupt			Ex	ception			
	D			Mask	ı			Code			
	31		15		8		6		2		
				Pending	1			U		Е	Ι
				Interrupt				M		L	Е
			15		8			4		1	0

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable **EXCEPTION CODES**

Number	Name		Number	Name	Cause of Exception
0	Int	Interrupt (hardware)	9	Bp	Breakpoint Exception
4	AdEL	Address Error Exception	10	RI	Reserved Instruction
		(load or instruction fetch)			Exception
5	AdES	Address Error Exception	11	CpU	Coprocessor
		(store)			Unimplemented
6	IBE	Bus Error on	12	Ov	Arithmetic Overflow
		Instruction Fetch		Ov	Exception
7	DBE	Bus Error on	13	Tr	Trap
		Load or Store			пар
8	Sys	Syscall Exception	15	FPE	Floating Point Exception

SIZE PREFIXES (10^x for Disk, Communication; 2^x for Memory)

SI Size	Prefix	Symbol	IEC Size	Prefix	Symbol				
10 ³	Kilo-	K	2 ¹⁰	Kibi-	Ki				
10^{6}	Mega-	M	2 ²⁰	Mebi-	Mi				
10 ⁹	Giga-	G	230	Gibi-	Gi				
10^{12}	Tera-	T	2 ⁴⁰	Tebi-	Ti				
10^{15}	Peta-	P	2 ⁵⁰	Pebi-	Pi				
10^{18}	Exa-	Е	2 ⁶⁰	Exbi-	Ei				
10^{21}	Zetta-	Z	270	Zebi-	Zi				
10 ²⁴	Yotta-	Y	280	Yobi-	Yi				

63

DEL

127