305 Lecture 12.2 - Extending Modal Tableau

Brian Weatherson

 To introduce tableau for proving things in modal logics other than K.

Associated Reading

• Boxes and Diamonds, section 5.5-5.6.

K is special

The logic we have so far is very weak.

- It's the logic K, that puts no restrictions on the R-relation.
- Most applications of modal logic do have restrictions.
- How should we model them?

K is special

The logic we have so far is very weak.

- It's the logic K, that puts no restrictions on the R-relation.
- · Most applications of modal logic do have restrictions.
- How should we model them?
- · The answer is that we sort of model them one at a time.
- The rules are on page 80, and I'll end today with quickly mentioning a couple of them.

T - the logic of reflexive frames

Add two new rules.

- 1. If $\Box A$ is true at x, infer that A is true at x.
- 2. If $\Diamond A$ is false at x, infer that A is false at x.

That's it!

4 - the logic of transitive frames

Add two new rules

- If □A is true at x, and x.y exists on the tree, add that □A is true at x.y. (You already should have added that A is true at x.y; that's the basic rule for □.
- If ◇A is false at x, and x.y exists on the tree, add that ◇A is false at x.y. (You already should have added that A is false at x.y; that's the basic rule for □.)

$$\Box A \rightarrow \Box \Box A$$

This should fail in K - here's an open tableau for it.

1.	$\mathbb{F} 1$, $\square A \rightarrow \square \square A$	Assumption
2.	T1, □A	→F , 1
3.	F1, □ □ A	→F , 1
4.	F 1.1, □A	□ F , 3
5.	⊤1.1, A	□ T , 2
6.	F 1.1.1, A	□ F , 4

$\Box A \to \Box \ \Box \ A$

But now let's apply the rules for 4 as well. After line 5 we need to make one new inference.

1.	$\mathbb{F} 1$, $\square A \rightarrow \square \square A$	Assumption
2.	T1, □A	→F , 1
3.	F1 , □ □ A	$\rightarrow \mathbb{F}$, 1
4.	F 1.1, □A	□ F , 3
5.	⊤1.1, A	□ T , 2
6.	T 1.1, □A	4□2
7.	ℾ1.1.1, A	□ F , 4
8.	 	4□6
	X	

