General Structure of an OS

Separation of a computer in four sections

- Hardware:
 - collection of devices that allow the execution of programs
- OS:
 - management and coordination of system hardware
- Software:
 - any program that can be executed inside the OS
- User:
 - any device or being that can interact with the system

Hardware (simplified)

- Systembus connects all devices
 - one or more CPUs for program execution
 - shared memory for tasks of the CPU and other devices
 - Controller for IO devices
 - * Hard Drives
 - * HID
 - * Network Interface
 - * ..

Figure 1: "Systembus Floiwchart"

Computer Architecture: von-Neumann

- reference model for computers
- separation between code execution and data

- Separation between CPU and memory
- Separation between Execution Unit and ALU
- this adds component communication overhead in program execution
 - Data has to be moved from memory to CPU and back, to be used
 - the OS provides functionality to use the given resources efficiently

Figure 2: "CPU Model Flowchart"

- CPU has multiple registers
 - data registers, address registers, special registers, . . .
- additional cache
 - fast buffer memory
 - access to cache is much faster compared to memory access
 - smaller cache = lower access times
 - caches are transparent to the OS
 - Types of cache
 - * L1-cache
 - · close to the main execution unit, very small, very little latency
 - · saves future instructions for faste execution
 - * L2-cache
 - · larger and slightly slower
 - * L3-cache
 - · faster than main memory
 - · smaller than main memory
 - · extra chip outside the main processor

- $\bullet\,$ registers tend to be very small, no more than the size of a DWORD but extremely fast
 - used for calculation or comparison
- cache is still very fast, but is usually slower than registers, while having a larger size
- main memory is very large, but needs many cycles to move data to CPU
 - OS needs to handle access times and data transport
 - every time we access data from a hard drive, we have to stop program execution so the processor can continue

Processor Cores and Caches

- $\bullet\,$ each CPU tends to have its own L1 and L2 cache, sharing the L3 cache between all cores
- all processors can access system BUS and main memory individually
- communication and access latency is still a bottleneck in modern hardware
- Hyperthreading
 - process interweaving, so that program execution can be sped up

Hardware component interplay

- CPU executes operations
- CPU and IO-devices are used asynchronously
 - every IO-controller controls one type of device
 - the CPU is needed to execute an operation
 - * every controller has its own registers
 - * CPU moves data from main memory and cache
 - * operation is started after moving the data
 - Today: DMA (Direct Memory Access)
 - * seperate controller for the movement of data
 - * takes load away from CPU

Simplified computer architecture

Figure 3: "Main Components of a computer"