Student ID:		

THE HONG KONG UNIVERSITY OF SCIENCE & TECHNOLOGY

Computer Organization (COMP 2611)

Spring Semester, 2013

Final Examination

May 29, 2013

Name:	Student ID:
Email:	Lab Section Number:

Instructions:

- 1. This examination paper consists of 14 pages in total, including 8 questions within 10 pages, 2 appendices and 2 draft pages.
- 2. Please write your name, student ID, email and lab section number on this page.
- 3. Please answer all the questions in the spaces provided on the examination paper.
- 4. Please read each question very carefully, answer clearly and to the point. Make sure that your answers are neatly written.
- 5. Keep all pages stapled together. You can tear off the appendix and draft page only.
- 6. Calculator and electronic devices are not allowed.
- 7. The examination period will last for $\frac{2 \text{ hours}}{2 \text{ hours}}$.
- 8. Stop writing immediately when the time is up.

Question	Percentage %	Score
1- MCQ	10	
2- Cache Principles	15	
3- Cache Performance	10	
4- Single Cycle Datapath & Control	14	
5- Multi Cycle Datapath & Control	20	
6- Cache Architecture	10	
7- MIPS Recursion	13	
8- MIPS Coding	8	
TOTAL	100	

Student ID:	

Question 1: Multiple-choice questions (10 points)

Circle all correct answers and only the correct answers (each incorrect answer reduces your score by one for the question)

A. The "Cache" is:

- a) A cheap memory that can be plugged into the mother board to expand the main memory
- b) A small, fast memory used by the processor to store copies of recently referred instructions or data from the disk to speed up the loading of the program
- c) A reserved portion of the main memory used to save important data and instructions
- d) A special area of memory on the chip that is used to save frequently used constants
- e) None of the above
- B. Desirable characteristic(s) of a memory system is (are) (note, 1 point only)
 - a) Speed and reliability
 - b) Low power consumption
 - c) Durability and compactness
 - d) All of the above
 - e) None of the above
- C. The concept of pipelining is most effective in improving performance if the tasks being performed in different stages
 - a) Require different amounts of time
 - b) Require about the same amounts of time
 - c) All do the same operation
 - d) All use the same hardware
 - e) None of the above

D. Which of the following statements are correct?

- a) Structural hazards happen when hardware cannot support the combination of instructions to execute in the same clock cycle in a pipeline
- b) Control hazards happen when the unconditional jump instruction is executed
- c) Forwarding fully solves the data hazard problem
- d) We Can always resolve hazards by waiting long enough
- e) None of the above

E. Which of the following statements are correct?

- a) SRAM needs periodical refresh
- b) DRAM needs periodical refresh
- c) DRAM mostly used as caches inside the CPU
- d) Memory hierarchy exploits the principle of locality
- e) None of the above

Student ID:		
-		

F. Consider executing the following code in a pipelined processor:

```
add $1, $2, $3
add $4, $5, $6
add $7, $8, $9
add $10, $11, $1
add $13, $14, $15
```

At the end of the fifth clock cycle of execution, some registers (\$0-\$31) have been read and some have been written. Circles the correct answers?

a) Read: \$11, Written: \$1

b) Read: \$14 and \$15, Written \$1

c) Read: \$1, Written: \$1d) Read: \$11, Read \$1e) None of the above

Question 2 Cache principles (15 points)

Consider the following MIPS code sequence, and aswer the following questions

li \$t0, 20 loop1: li \$t1, 2 loop2: addi \$t1, \$t1, -1 beq \$t1, \$zero, loop2 addi \$t0, \$t0, -1 beq \$t0, \$zero, loop1

a) Does the sequence of code exhibit temporal locality? Explain your answer. (4 points)

No, because the program executes sequentially and the two branches are never taken So the instructions are never accessed again over time.

b) Does the sequence of code exhibit spatial locality? Explain your answer. (4 points)

Yes, even though the program does not handle any data, the fact that instructions are executed in sequence implies that there is spatial locality

c) Consider a 4-way set associative cache with a 4-bit Tag field and the LRU block replacement policy. A sequence of memory references that map, all, to the same cache set is given in the following table. Complete the table to keep track of the current blocks in the set, their usage recency, and the cache hits or misses. (7 points)

	Tag	Tag field of the memory accesses generated by CPU (from left to right):							
	0101	0010	0100	0101	1111	1010	0010	0010	0101
Hit/Miss	Miss	Miss	Miss	Hit	Miss	Miss	Miss	Hit	Hit
				Cache A	Access Tr	acking:			
MRU	0101	0010	0100	0101	1111	1010	0010	0010	0101
		0101	0010	0100	0101	1111	1010	1010	0010
			0101	0010	0100	0101	1111	1111	1010
LRU					0010	0100	0101	0101	1111

Question 3 Cache Performance (10 points)

Consider a memory hierarchy with two levels of caches: the bus and cache lookup takes 0 cycles, a hit in level 1 takes 3 cycles, a hit in level 2 takes 10 cycles and a memory access takes 80 cycles. Of all data accesses, 80% of the times the data is in level 1. Of all data lookups in level 2, 50% of the data is found in level 2. Answer the following questions (briefly explain your answers)

a) Give the general equation for the average latency in such two cache-levels memory hierarchy? (4 points)

```
Average Latency = Hit_Time1 +
(1-Hit_Rate1) Hit_Time 2 +
(1-Hit_Rate1) (1-Hit_Rate2) miss penalty
```

b) What is the average memory access time without any caching? (2 points)

Ans: 80 cycles

c) What is the average memory access time with 2-levels of caching? (4 points)

Ans:
$$3 + 0.2*(10 + 0.5*80) = 13$$
 cycles

Question 4: Single Cycle Datapath & Control (14 points)

a) We want to execute an instruction "SW \$t0, 7(\$t1)" in the above single cycle datapath. Assume the values stored in registers \$t0 and \$t1 are 5 and 6 respectively. Fill in the table with proper binary numbers. (6 points)

A	Address of the instruction
В	101011 01001 01000 0000 0000 0000 0111
D	01000
Е	01000
F	0000 0000 0000 0000 0000 0000 0110
G	0000 0000 0000 0000 0000 0000 0101
Ι	0000 0000 0000 0000 0000 0000 0000 0111

b) Complete the following table with control signal values to execute the instruction. Don't care signals are represented by 'x'. (8 points)

RegDst	Branch	MemRead	MemtoReg	ALUOp	MemWrite	ALUSrc	RegWrite
X	0	0	X	00	1	1	0

Question 5: Multi-Cycle Data Path (20 points)

Consider implementing an imaginary instruction in MIPS: *jump memory* (jmem), similar to the *jump-and-link* (jal) instruction, except that: i) the target address is loaded from memory and ii) the return address is saved to memory. *jmem* is an I-type instruction, as shown below.

Field	op	rs	rt	imm
Bits	31-26	25-21	20-16	15-0

And the syntax of *imem* is explained below:

jmem rt, offset(rs) # Mem[Reg[rs]+offset] = PC + 4; PC = Mem[Reg[rt]]
Assume that Reg[rt] and (Reg[rs] + offset) are distinct (non-overlapping) addresses.

a) Show the changes that are needed to support *jmem*, without any modification to the main functional units. (Hint: You should only add wires, and add or expand multiplexers) Explain your design by specifying the operations that need to be done in the table below. Note: *jmem* can be implemented in 4 cycles. (10 points)

Cyrolo	Operations
Cycle	Operations

Student ID:		
	·	

Cycle 1	- Fetch
	- PC = PC + 4
Cycle 2	- Decode
	- Read rs and rt
	- Calculate the branch target (for possible beq)
Cycle 3	- Calculate the store address Reg[rs] + SignExtend[imm]
	- Do a memory read: MDR = Mem[Reg[rt]]
Cycle 4	- Send AluOut to the Memory Address and PC to the data port: Mem[AluOut]=PC+4
	- Send MDR to the PC: PC = MDR

b) Complete the finite state machine diagram to support the *jmem* instruction. Remember to account for any control signals that you added or modified in part (a) (10 points).

Student ID:

Question 6: Cache Architecture (10 points)

a) Consider an 8-way set associative cache with a cache size of 16Kbytes, 32 Bytes block size and 32 bit memory addresses. Answer the following questions (show briefly your steps). (4 points)

Number of blocks in the cache = $16K / 32 = 512 = 2^9$

Number of sets in the cache = $512 / 8 = 64 = 2^6$

Number of bits for the Byte offset = 5

Number of bits for the Index field = 6

Number of bits for the Tag field = 32 - 6 - 5 = 21

b) Consider the following 4-way set associative cache.

Complete the last two columns of the following table for the given sequence of memory accesses: (6 points)

Address of the memory access generated by CPU	Assigned cache set	Hit or miss
0000 1111 0101 0010 0011 0111 0100 0110	110100	Miss
0000 1111 0101 0010 0011 0111 0110 0110	110110	Miss
0000 1111 0101 0010 0011 0111 0100 1101	110100	Hit
0000 1111 0101 1010 0011 0111 0100 1101	110100	Miss
0000 1111 0101 1010 0011 0111 1111 0110	111111	Miss
0000 1111 0101 0010 0011 0111 0100 1101	110100	Hit

Question 7: MIPS Recursion (13 points)

The following C/C++ function factorial() computes the factorial value for an unsigned integer n.

Implement the function in pure MIPS instructions using recursion. Upon return, the function should have the integer value n stored in register \$v0, and the factorial(n) value stored in \$a0. Both n and the result of factorial(n) are **unsigned**. You do not need to check for arithmetic overflows in the function. You could refer to the appendix for the MIPS instruction set. The lines below are given just to keep your code neat they may be more than you need (we could write it in about 18 lines including all labels!)

factorial:

```
# Base Case
base_case:
                          # n<2 (if true n<=1)
sltiu $t0, $v0, 2
bne $t0,1,non_base_case
addi $a0, $zero, 1
jr $ra
                         # return
non_base_case:
                         # Non Base Case
addi $sp, $sp, -8
                         # Preserve the register values using the stack
sw $v0, 4($sp)
sw $ra, 0($sp)
addiu $v0, $v0, -1
                         # reduce n before calling factorial
jal factorial
                         # recursively call factorial
                         # retrieve the register values from the stack
lw $v0, 4($sp)
lw $ra, 0($sp)
addi $sp, $sp, 8
multu $v0, $a0
                         # calculate n*f(n-1) and store in $a0
mflo $a0
jr $ra
                         # return back to the caller
```

Student ID:	
mark for base_case testing,	
mark for base_case return,	
2 marks for preserving the registers \$ra and \$v0 in non_base_case,	
2 marks for retrieving the registers \$ra and \$v0 in non_base_case,	
2 marks for making the correct recursive call,	
2 marks for making the correct unsigned multu and retrieving the results to	
SaO	
8 marks for the correct whole function	
Minor mistakes (ie store values in the wrong registers) -1 to -3 marks	

ZERO MARK for non-recursive function without the jal instruction.

Student ID:

Question 8: General MIPS Questions (8 points)

a) We want to be able to compare two 64 bit integers represented on two registers each. Write the shortest sequence of pure MIPS instructions to perform a 64-bit slt operation. The first operand is passed in registers \$s0 and \$s1 and the second operand is passed in registers \$s2 and \$s3. The most significant words of the operands are in \$s1 and \$s3 respectively. The comparison result is stored in register \$s4. (Hint: It can be done in 3 instructions. If needed, you can use as many labels as you want) (4 points)

64_SLT:

_____slt \$\$\$4, \$\$0, \$\$2

____beq \$\$\$1, \$\$\$3, Done

____slt \$\$\$4, \$\$\$1, \$\$\$3

Done:

b) We want to be able to add two 64-bit integers represented on two registers each. Write the shortest sequence of pure MIPS instructions to perform a 64-bit ADD operation. The operands are passed in registers \$s0 and \$s1 for operand 1 and \$s2 and \$s3 for operand 2. The addition result is to be stored in \$s4 and \$s5. The most significant words of the two operands and result are in \$s1, \$s3, and \$s5 respectively. (Hint: it can be done in four instructions. If needed, you can use as many labels as you want) (4 points)

```
64_ADD:
____addu $s4, $s0, $s2
```

Student ID:	
sltu \$t0, \$s4, \$s0	
add \$s5, \$s1, \$s3	
add \$s5, \$s5, \$t0	

Appendix 1 : MIPS instructions 1

1

CORE INSTRUCTION SET							
	MNE-				OPCODE/		
	MON-				FUNCT		
NAME	IC	MAT	(0)	(Hex) 0 / 20 _{hex}			
Add Immediate	add addi	R I		(1))(2)			
					8 _{hex}		
Add Imm. Unsigned		I	R[rt] = R[rs] + SignExtImm	(2)	9 _{hex}		
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		0 / 21 _{hex}		
And	and	R	R[rd] = R[rs] & R[rt]		0 / 24 _{hex}		
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm	(3)	c_{hex}		
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}		
Branch On Not Equa	bne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5 _{hex}		
Jump	j	J	PC=JumpAddr	(5)	2 _{hex}		
Jump And Link	jal	J	R[31]=PC+4;PC=JumpAddr	(5)	3 _{hex}		
Jump Register	jr	R	PC=R[rs]		$0/08_{hex}$		
Load Byte Unsigned	lbu	I	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	0 / 24_{hex}		
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	0 / 25 _{hex}		
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f_{hex}		
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)	0 / 23 _{hex}		
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}		
Or	or	R	$R[rd] = R[rs] \mid R[rt]$		0 / 25 _{hex}		
Or Immediate	ori	I	R[rt] = R[rs] ZeroExtImm	(3)	d _{hex}		
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / 2a _{hex}		
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2)	a _{hex}		
Set Less Than Imm. Unsigned	sltiu	I	R[rt] = (R[rs] < SignExtImm) ? 1:0 (2))(6)	b_{hex}		
Set Less Than	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	0 / 2b _{hex}		
Unsigned				(0)			
Shift Left Logical	sll	R	$R[rd] = R[rs] \ll shamt$		0 / 00 _{hex}		
Shift Right Logical	srl	R	R[rd] = R[rs] >> shamt		$0/02_{hex}$		
Store Byte	sb	I	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	28 _{hex}		
Store Halfword	sh	I	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29 _{hex}		
Store Word	sw	I	M[R[rs]+SignExtImm] = R[rt]	(2)	2b _{hex}		
Subtract	due	R	R[rd] = R[rs] - R[rt]	(1)	0 / 22 _{hex}		
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		0 / 23 _{hex}		
	(2) Sig (3) Ze (4) Br (5) Ju	gnExti roExti anchA mpAd	see overflow exception Imm = { 16{immediate[15]}, imm Imm = { 16{1b'0}, immediate } Iddr = { 14{immediate[15]}, imm dr = { PC[31:28], address, 2'b0 is considered unsigned numbers (v	edia	te, 2'b0 }		

BASIC INSTRUCTION FORMATS

R	opco	de	rs		rt	ro	i	shar	mt	funct
	31	26 2	5	21 20	10	5 15	11	10	6 5	0
I	opco	de	rs	T	rt			imm	ediate	
	31	26 2	5	21 20	- 10	15				0
J	opco	de				add	ress			
	31	26 2	5							0

ARITHMETIC CORE INS	TRU	ICTION SET ②	OPCODE/
MNE-		<u> </u>	FMT / FT/
MON-	FOR-		FUNCT
NAME IC	MAT	OPERATION	(Hex)
Branch On FP True bclt	FI	if(FPcond)PC=PC+4+BranchAddr (4)	
Branch On FP False bolf	FI	if(!FPcond)PC=PC+4+BranchAddr(4	
Divide div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0///1a
Divide Unsigned divu	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6)	
FP Add Single add.s	FR	F[fd] = F[fs] + F[ft]	11/10//0
FP Add Double add.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} + {F[ft],F[ft+1]}$	11/11//0
FP Compare Single c.x.s*	FR	FPcond = (F[fs] op F[ft]) ? 1 : 0	11/10//y
FP Compare Double	FR	$FPcond = ({F[fs],F[fs+1]}) op $ ${F[ft],F[ft+1]}) ? 1 : 0$	11/11//y
	op is	==, <, or <=) (y is 32, 3c, or 3e)	
FP Divide Single div.s	FR	F[fd] = F[fs] / F[ft]	11/10//3
FP Divide Double	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} / {F[ft],F[ft+1]}$	11/11//3
FP Multiply Single mul.s	FR	F[fd] = F[fs] * F[ft]	11/10//2
FP Multiply Double mul.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} * {F[ft],F[ft+1]}$	11/11//2
FP Subtract Single sub.s	FR	F[fd]=F[fs] - F[ft]	11/10//1
FP Subtract Double sub.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} - {F[ft],F[ft+1]}$	11/11//1
Load FP Single lwc1	1	F[rt]=M[R[rs]+SignExtImm] (2)) 31//
Load FP Double	I	F[rt]=M[R[rs]+SignExtImm]; (2 F[rt+1]=M[R[rs]+SignExtImm+4]	35//
Move From Hi mfhi	R	R[rd] = Hi	0 ///10
Move From Lo mflo	R	R[rd] = Lo	0 ///12
Move From Control mfc0	R	R[rd] = CR[rs]	16 /0//0
Multiply mult	R	${Hi,Lo} = R[rs] * R[rt]$	0///18
Multiply Unsigned multu	R	$\{Hi,Lo\} = R[rs] * R[rt] $ (6)	,
Store FP Single swc1	I	M[R[rs]+SignExtImm] = F[rt] (2)) 39//
Store FP Double sdc1	¹ I	M[R[rs]+SignExtImm] = F[rt]; (2 M[R[rs]+SignExtImm+4] = F[rt+1]) 3d//

FLOATING POINT INSTRUCTION FORMATS

FR	opcode		fmt	ft	fs		fd	funct
	31	26 25	21	20	16 15	11	10 6	5 0
FI	opcode	T	fmt	ft			immediate	
	31 .	26 25	21	20	16 15			0

PSEUDO INSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	11	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVEDACROSS
NAME	NOMBER	OSE	A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No .
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	Yes

Copyright 2005 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design. 3rd ed.

Student ID:		

Appendix 2: MIPS instructions 2

MIPS	(1) MIPS	(2) MIPS			Deci-		ASCII	Deci-	Hexa-	ASCI
opcode	funct	funct	Bi	nary	mal	deci-	Char-		deci-	Char-
31:26)	(5:0)	(5:0)			mai	mal	acter	mal	mal	acter
(1)	sll	add.f	00	0000	0	0	NUL	64	40	@
		sub. f	00	0001	1	1	SOH	65	41	Α
j	srl	mul.f	00	0010	2	2	STX	66	42	В
jal	sra	div.f		0011	3	. 3	ETX	67	43	С
beq	sllv	sqrt.f		0100	4	4	EOT	68	44	D
bne		abs.f		0101	5	5	ENQ	69	45	E
blez	srlv	mov.f		0110	6	6	ACK	70	46	F
bgtz	srav	neg.f		0111	7	7	BEL	71	47	G
addi	jr			1000	8	8	BS	72	48	H
addiu	jalr			1001	9	9	HT	73	49	I
slti	movz			1010	10	a	LF	74	4a	J K
sltiu	movn			1011	11	b	VT FF	75 76	4b	- L
andi	syscall	round.w.f		1100 1101	13	c d	CR	77	4d	M
ori• xori	break	trunc.w.f		1110	14	e	SO	78	4e	N
lui	euna	ceil.w.f floor.w.f		1111	15	f	SI	79	4f	o
IUI	mfhi	11001.w.j		0000	16	10	DLE	80	50	<u>P</u> _
(2)	mthi			0001	17	11	DC1	81	51	Q
(2)	mflo	movz.f		0010	18	12	DC2	82	52	Ř
	mtlo	movn.f		0011	19	13	DC3	83	53	S
	mero	1110 4 1119		0100	20	14	DC4	84	54	T
				0101	21	15	NAK	85	55	Û
				0110	22	16	SYN	86	56	v
				0111	23	17	ETB	87	57	w
	mult		01	1000	24	18	CAN	88	58	X
	multu		01	1001	25	19	EM	89	59	
	div		01	1010	26	1a	SUB	90	5a	\mathbf{z}
	divu		01	1011	27	1b	ESC	91	5b	. [
			01	1100	28	1c	FS	92	5c	/
				1101	29	1d	GS	93	5d	ÿ
				1110	30	1e	RS	94	5e	^
				1111	31	1f	US	95	5f	
1b	add	cvt.s.f		0000	32	20	Space	96	60	
lh	addu	cvt.d.f		0001	33	21	!	97	61	a
lwl	sub			0010	34	. 22		98	62	ь
lw	subu			0011	35	23	#	99	63	c
lbu	and	cvt.w.f		0100	36 37	24	\$ %	100	64	d
	or		ΙU			25	⁹ /0			
lhu				0101				101	65	,e
lhu lwr	xor		10	0110	38	26	&	102	66	f
lwr			10 10	$0110 \\ 0111$	38 39	26 27	&	102 103	66 67	f
lwr	xor		10 10 10	0110 0111 1000	38 39 40	26 27 28	&	102 103 104	66 67 68	f g h
lwr sb sh	xor nor		10 10 10 10	0110 0111 1000 1001	38 39 40 41	26 27 28 29	&	102 103 104 105	66 67 68 69	f g h i
lwr sb sh swl	xor nor		10 10 10 10 10	0110 0111 1000 1001 1010	38 39 40 41 42	26 27 28 29 2a	& () *	102 103 104 105 106	66 67 68 69 6a	f g h i
lwr sb sh	xor nor		10 10 10 10 10	0110 0111 1000 1001 1010 1011	38 39 40 41	26 27 28 29 2a 2b	() * +	102 103 104 105 106 107	66 67 68 69 6a 6b	f g h i j k
lwr sb sh swl	xor nor		10 10 10 10 10 10	0110 0111 1000 1001 1010 1011 1100	38 39 40 41 42 43	26 27 28 29 2a 2b 2c	& () *	102 103 104 105 106 107	66 67 68 69 6a 6b 6c	f g h i j k
lwr sb sh swl	xor nor		10 10 10 10 10 10 10	0110 0111 1000 1001 1010 1011	38 39 40 41 42 43	26 27 28 29 2a 2b	& () * +	102 103 104 105 106 107	66 67 68 69 6a 6b	f g h i j k
lwr sb sh swl sw	xor nor		10 10 10 10 10 10 10	0110 0111 1000 1001 1010 1011 1100 1101 1110	38 39 40 41 42 43 44 45	26 27 28 29 2a 2b 2c 2d	& () * +	102 103 104 105 106 107 108 109	66 67 68 69 6a 6b 6c 6d	f g h i j k
sb sh swl sw	xor nor	c.f.f	10 10 10 10 10 10 10 10	0110 0111 1000 1001 1010 1011 1100 1101	38 39 40 41 42 43 44 45 46	26 27 28 29 2a 2b 2c 2d 2e	+	102 103 104 105 106 107 108 109 110	66 67 68 69 6a 6b 6c 6d 6e	f g h i j k
sb sh swl sw swr cache	xor nor slt sltu	c.f.f c.un.f	10 10 10 10 10 10 10 10 10	0110 0111 1000 1001 1010 1011 1100 1101 1110	38 39 40 41 42 43 44 45 46 47	26 27 28 29 2a 2b 2c 2d 2e 2f	* + - -	102 103 104 105 106 107 108 109 110	66 67 68 69 6a 6b 6c 6d 6e 6f	f g h i j k l m n o p
sb sh swl sw swr cache	xor nor slt sltu	c.un.f	10 10 10 10 10 10 10 10 11 11	0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 0000	38 39 40 41 42 43 44 45 46 47 48 49 50	26 27 28 29 2a 2b 2c 2d 2e 2f 30 31	&	102 103 104 105 106 107 108 109 110 111 112 113 114	66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72	f g h i j k l m n
sb sh swl sw swr cache	xor nor slt sltu tge tgeu	c.un.f c.eq.f c.ueq.f	10 10 10 10 10 10 10 10 10 11 11 11	0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 0000 0001	38 39 40 41 42 43 44 45 46 47 48 49 50 51	26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33	() * + + · · · · · · · · · · · · · · · · ·	102 103 104 105 106 107 108 109 110 111 112 113	66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73	f g h i j k l m n o p q
lwr sb sh swl swr cache ll lwcl lwc2 pref	xor nor slt sltu tge tgeu tlt	c.unf c.eqf c.ueqf c.oltf	10 10 10 10 10 10 10 10 11 11 11 11	0110 0111 1000 1001 1010 1011 1100 1101 1110 0000 0001 0010 0011	38 39 40 41 42 43 44 45 46 47 48 49 50 51	26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33	&	102 103 104 105 106 107 108 109 110 111 112 113 114 115	66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73	f g h i j k l m n o p q r s t
sb sh swl sw swr cache 11 lwc1 lwc2	slt sltu tge tgeu tlt tltu	c.un.f c.eq.f c.ueq.f	10 10 10 10 10 10 10 10 11 11 11 11 11	0110 0111 1000 1001 1010 1011 1100 1101 1110 0000 0001 0010 0110 0100	38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35	&	102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117	66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75	f g h i j k l m n o p q r s
lwr sb sh swl swr cache ll lwcl lwc2 pref	slt sltu tge tgeu tlt tltu	c.un.f c.eq.f c.ueq.f c.olt.f c.ult.f c.ole.f	10 10 10 10 10 10 10 10 11 11 11 11 11	0110 0111 1000 1001 1010 1011 1100 1101 1110 0000 0001 0010 0101 0100	38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 36	&	102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118	66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76	f g h i j k l m n o p q r s t u v
lwr sb sh swl swr cache ll lwcl pref	slt sltu tge tgeu tlt tltu teq	<pre>c.unf c.eqf c.ueqf c.oltf c.ultf c.olef c.ulef</pre>	10 10 10 10 10 10 10 10 11 11 11 11 11 1	0110 0111 1000 1001 1010 1011 1100 1110 1111 0000 0001 0010 0101 0110 0111	38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 36 37	&	102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119	66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76	f g h i j k l m n o p q r s t u v w
lwr sb sh swl swr cache ll lwcl lwc2 pref ldc1 ldc2 sc	slt sltu tge tgeu tlt tltu teq	c.unf c.eqf c.ueqf c.oltf c.ultf c.olef c.ulef	10 10 10 10 10 10 10 10 11 11 11 11 11 1	0110 0111 1000 1001 1010 1011 1100 1101 1110 0000 0001 0010 0101 0100 0111 0110	38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 36 37	& . () * + 	102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119	66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76	f g h i j k l m n o p q r s t u v w x
sb sh swl sw swr cache 11 lwc1 lwc2 pref ldc1 ldc2	slt sltu tge tgeu tlt tltu teq	<pre>c.unf c.eqf c.ueqf c.oltf c.ultf c.olef c.ulef</pre>	10 10 10 10 10 10 10 10 11 11 11 11 11 1	0110 0111 1000 1001 1010 1011 1100 1101 1111 0000 0001 0010 0101 0100 0111 1000 1001	38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 36 37	&	102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121	66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 78	f g h i j k l m n o p q r s t u v w x y
lwr sb sh swl swr cache ll lwcl lwc2 pref ldc1 ldc2 sc	slt sltu tge tgeu tlt tltu teq	c.unf c.eqf c.ueqf c.oltf c.ultf c.olef c.ulef c.seqf c.seqf	10 10 10 10 10 10 10 10 11 11 11 11 11 1	0110 0111 1000 1001 1010 1011 1100 1101 1111 0000 0001 0010 0101 0110 0111 1000 1110 1100 1100 1100 1100 1100 1100 1100 1100 1101	38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 57 58	26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 36 37	& , () , * + , , / 0 1 2 3 4 5 5 6 7 7 8 9 ; :	102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122	66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 78	f g h i j k l m n o p q r s t u v w x y z
sb sh swl sw swr cache 11 lwc1 lwc2 pref ldc1 ldc2	slt sltu tge tgeu tlt tltu teq	c.unf c.eqf c.ueqf c.ultf c.olef c.ulef c.stf c.nglef c.seqf c.nglf	10 10 10 10 10 10 10 10 10 11 11 11 11 1	0110 0111 1000 1001 1010 1011 1100 1101 1110 0000 0001 0010 0111 0100 0111 1000 1001 1010 1011	38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 36 37 38 39 30 31 31 32 33 34 35 36 37 38 38 38 38 38 38 38 38 38 38 38 38 38	& , () , * + , , / 0 1 2 3 4 5 5 6 7 7 8 9 ; :	102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123	66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 78 79	f g h i j k l m n o p q r s t u v w x y
sb sh swl swr cache 11 lwc1 lwc2 pref 1dc1 ldc2 sc swc1 swc2	slt sltu tge tgeu tlt tltu teq	c.unf c.eqf c.ueqf c.oltf c.oltf c.olef c.olef c.ulef c.sff c.nglef c.sqf c.nglf c.nglf	10 10 10 10 10 10 10 10 10 10 11 11 11 1	0110 0111 1000 1001 1011 1100 1101 1100 0001 0000 0010 0010 0010 0110 0110 0111 1000 1001 1001 1001 1001	38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 55 56 57 58 60	26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 36 37 38 39 3a 3b	& · · · · · · · · · · · · · · · · · · ·	102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124	66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 78 79 7a 7b 7c	f g h i i j k l m n o p q r s t u v w x y z {
sb sh swl sw swr cache 11 lwc1 lwc2 pref ldc1 ldc2	slt sltu tge tgeu tlt tltu teq	c.unf c.eqf c.ueqf c.ultf c.olef c.ulef c.stf c.nglef c.seqf c.nglf	10 10 10 10 10 10 10 10 10 11 11 11 11 1	0110 0111 1000 1001 1010 1011 1100 1101 1110 0000 0001 0010 0111 0100 0111 1000 1001 1010 1011	38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 36 37 38 39 30 31 31 32 33 34 35 36 37 38 38 38 38 38 38 38 38 38 38 38 38 38	& , () , * + , , / 0 1 2 3 4 5 5 6 7 7 8 9 ; :	102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123	66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 78 79	f g h i j k l m n o p q r s t u v w x y z

⁽¹⁾ opcode(31:26) == 0 (2) opcode(31:26) == 17_{ten} (11_{hex}); if fmt(25:21)== 16_{ten} (10_{hex}) f = s (single); if fmt(25:21)== 17_{ten} (11_{hex}) f = d (double)

Value of three least significant bits of byte address (Big Endian)

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable EXCEPTION CODES

		OODEO			
Num ber	Name	Cause of Exception	Num ber	Name	Cause of Exception
0	Int	Interrupt (hardware)	9	Bp	Breakpoint Exception
4	AdE L	Address Error Exception (load or instruction fetch)	10	RI	Reserved Instruction Exception
5	AdES	Address Error Exception (store)	11	CpU	Coprocessor Unimplemented
6	IBE	Bus Error on Instruction Fetch	12	Ov	Arithmetic Overflow Exception
7	DBE	Bus Error on Load or Store	13	Tr	Trap
8	Sys	Syscall Exception	15	FPE	Floating Point Exception

SIZE PREFIXES (10^x for Disk, Communication; 2^x for Memory)

	PRE-		PRE-		PRE-		PRE-
SIZE	FIX	SIZE	FIX	SIZE	FIX	SIZE	FIX
$10^3, 2^{10}$	Kilo-	10 ¹⁵ , 2 ⁵⁰	Peta-	10-3	milli-	10-15	femto-
10 ⁶ , 2 ²⁰	Mega-	10 ¹⁸ , 2 ⁶⁰	Exa-	10-6	micro-	10-18	atto-
10 ⁹ , 2 ³⁰	Giga-	10 ²¹ , 2 ⁷⁰	Zetta-	10-9	nano-	10-21	zepto-
10 ¹² , 2 ⁴⁰	Tera-	10 ²⁴ , 2 ⁸⁰	Yotta-	10-12	pico-	10-24	yocto-

The symbol for each prefix is just its first letter, except μ is used for micro.

Copyright 2005 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 3rd ed.

Student ID:	
•	

- Draft paper -

Student ID:	
•	

- Draft paper -