Série 14

Exercice 1 - QCM

Déterminer si les énoncés proposés sont vrais ou faux.

• Soit n un entier positif et K un corps. Si une matrice carrée $A \in M_{n \times n}(K)$ est diagonalisable, alors toute matrice semblable à A est diagonalisable.

○ vrai ○ faux

• Soit n un entier positif. Si une matrice carrée $A \in M_{n \times n}(\mathbb{C})$ est diagonalisable, alors $7A^2 - 2A + 5I_n$ est aussi diagonalisable.

○ vrai ○ faux

• Soit n un entier positif et K un corps. Si une matrice carrée $A \in M_{n \times n}(K)$ est diagonalisable, alors la somme des carrés de ses valeurs propres est égale à $\operatorname{tr}(A^2)$.

○ vrai ○ faux

• Soit n un entier positif et K un corps. Si une matrice carrée $A \in M_{n \times n}(K)$ est diagonalisable, alors elle possède n valeurs propres distinctes.

○ vrai ○ faux

 $\bullet\,$ Soit n un entier impair. Toute matrice réelle $n\times n$ a au moins une valeur propre réelle.

○ vrai ○ faux

• Soit n un entier positif et $A \in M_{n \times n}(\mathbb{C})$ telle que $\operatorname{Im}(a_{ij}) = 0$ pour i, j = 1, ..., n. Si $\lambda \in \mathbb{C} \setminus \mathbb{R}$ est une valeur propre de A et v un vecteur propre associé, alors $\bar{\lambda}$ est aussi une valeur propre de A et \bar{v} un vecteur propre associé.

○ vrai ○ faux

Exercice 2

1. Déterminer si les matrices suivantes sont diagonalisables.

i)
$$A = \begin{pmatrix} 2 & 4 & 1 \\ 0 & \mathbf{i} & 2 \\ 0 & 0 & -1 \end{pmatrix} \in M_{3\times 3}(\mathbb{C}),$$

ii)
$$B = \begin{pmatrix} 5 & -1 & -1 \\ -1 & 5 & -1 \\ -1 & -1 & 5 \end{pmatrix} \in M_{3\times3}(\mathbb{R}),$$

iii)
$$C = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \in M_{3\times 3}(\mathbb{C}).$$

2. Calculer D^{100} pour la matrice $D = \begin{pmatrix} -10 & 2 & 2 \\ 2 & -10 & 2 \\ 2 & 2 & -10 \end{pmatrix} \in M_{3\times 3}(\mathbb{R}).$

3. Déterminer pour quelles valeurs du couple (a, b) la matrice

$$X = \begin{pmatrix} 0 & a & b \\ a & 0 & b \\ a & b & 0 \end{pmatrix} \in M_{3\times 3}(\mathbb{R}), \quad a, b \in \mathbb{R}, ab \neq 0$$

est diagonalisable.

Exercice 3

- i) Déterminer si les applications $p: \mathbb{R}_4[x] \to \mathbb{R}_4[x]$ sont linéaires.
 - a) $p \longmapsto p''$,
 - b) $p \longmapsto x \cdot p'$,

c)
$$p \longmapsto \begin{cases} \frac{1}{x} \int_{0}^{x} p(s) ds &, x \neq 0, \\ \lim_{t \to 0} \frac{1}{t} \int_{0}^{t} p(s) ds &, x = 0. \end{cases}$$

- ii) Déterminer les valeurs propres et les espaces propres de l'application linéaire du point
- i). Déterminer si les applications sont diagonalisables.

Indication: Utiliser le Théorème 7.25.

Exercice 4

Soit $T:V\to V$ une application linéaire d'un K-espace vectoriel V de dimension n. On suppose que T possède aux moins deux valeurs propres distinctes λ et μ , et que la multiplicité géométrique de λ vaut n-1. Montrer que T est diagonalisable.

Exercice 5

Soit $T: M_{n \times n}(\mathbb{R}) \longrightarrow M_{n \times n}(\mathbb{R})$ l'application de transposition, définie par $T(A) = A^T$.

- a) Montrer que 1 et -1 sont des valeurs propres de T.
- b) Dans le cas où n=2, déterminer les espaces propres correspondant à chaque valeur propre et trouver une base de chaque espace.
- c) Dans le cas où n=2, montrer que T est diagonalisable.
- d) Généraliser b) et c) à un entier positif n quelconque.

Exercice 6

Soit $b \in \mathbb{R}$ fixé et soit $T: M_{2\times 2}(\mathbb{R}) \longrightarrow M_{2\times 2}(\mathbb{R})$ l'application linéaire suivante :

$$T\bigg(\left(\begin{array}{cc} x & y \\ z & t \end{array}\right)\bigg) = \left(\begin{array}{cc} y & x \\ (b+1)z - bt & z \end{array}\right).$$

- a) Calculer le polynôme caractéristique de T et trouver ses valeurs propres.
- b) Trouver les espaces propres correspondants, ainsi que les multiplicités algébriques et géométriques.
- c) Déterminer si T est diagonalisable. Le cas échéant, trouver une base formée de vecteurs propres et expliciter la formule de changement de base.

Exercice 7

On définit deux suites de nombres réels $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ par récurrence comme suit :

$$x_0 = -1, \ y_0 = 2, \ \text{et pour tout} \ n \in \mathbb{N}, \ \begin{cases} x_{n+1} = -x_n - 6y_n, \\ y_{n+1} = x_n + 4y_n. \end{cases}$$

Calculer x_n et y_n en fonction de n.

Indication : Transformer le problème en un problème de calcul de puissances d'une matrice.

Exercice 8

Soit n un entier positif et $A \in M_{n \times n}(\mathbb{C})$. Supposons que le rayon spectral de A est $\rho(A) = 1$ et que toutes les valeurs propres λ telles que $|\lambda| = 1$ sont égales à 1.

- i) Montrer que si A est diagonalisable, alors la séquence $A^k, k \to \infty$, converge.
- ii) Donner un exemple de matrice non diagonalisable de taille 2, avec les propriétés d'au-dessus, telle que la séquence $A^k, k \to \infty$, diverge.