notes on coloring cayley graphs

August 7, 2017

1 Basics

Definition 1. For a group G and $A \subseteq G$, the cayley graph of G with respect to A is the directed graph with vertex set G and an edge from x to xa for each $x \in G$ and $a \in A$. Write $\mathcal{C}(G,A)$ for this digraph.

We are concerned with coloring undirected graphs without loops, so we want A to not contain the identity element of G and $\frac{1}{A} = A$, where

$$\frac{1}{A} = \left\{ a^{-1} \mid a \in A \right\}.$$

Given this, C(G, A) has all edges directed both ways. Let G_A be the undirected graph with the structure of C(G, A). We call such G_A a standard cayley graph.

Remark. a and b are adjacent in a standard cayley graph G_A just in case $ab^{-1} \in A$.

Conjecture 1.1. Let G be an abelian group and G_A a standard cayley graph. If $\Delta(G) \geq 9$ and $\omega(G) < \Delta(G)$, then $\chi(G) < \Delta(G)$.

i am trying to make the $\Delta = 8$ example as a cayley graph of $C_5 \times C_3$, with the standard generators, its missing some edges though so need to throw more into A.

Lemma 1.2. If a and b are adjacent in a standard cayley graph G_A , then for any independent set X in G_A

$$\frac{1}{X}a \bigcap \frac{1}{X}b = \emptyset.$$

Proof. Suppose there is $c \in \frac{1}{X}a \cap \frac{1}{X}b$. Then $c = x^{-1}a$ and $c = y^{-1}b$ for some $x, y \in X$. So $yx^{-1} = ba^{-1} \in A$, so x and y are adjacent, but they can't be since both are in the independent set X.

Since we are just working with abelian groups now, we can use a nicer form of Lemma 1.2.

Lemma 1.3. Let G be an abelian group and G_A a standard cayley graph. Then for any clique K and independent set X in G_A ,

1.
$$|XK| = |X| |K|$$
, and

2.
$$\left| \frac{1}{X}K \right| = |X| |K|$$

Proof. Part (2) is immediate from Lemma 1.2 since the sets $\left\{\frac{1}{X}a \mid a \in K\right\}$ are pairwise disjoint and $\left|\frac{1}{X}\right| = |X|$.

For (1), suppose $a, b \in K$ are different vertices such that $Xa \cap Xb \neq \emptyset$. Then for $c \in Xa \cap Xb$, we have c = xa = yb for some $x, y \in X$. But then $ab^{-1} = x^{-1}y = yx^{-1}$. But a and b are adjacent, so $ab^{-1} \in A$, so $yx^{-1} \in A$, so x and y are adjacent, a contradiction. Now (1) follows in the same way as (2).

Using this, we can get our first bound on the chromatic number.

Theorem 1.4. Let G be an abelian group and G_A a standard cayley graph. Then

$$\chi(G_A) \le \omega(G_A) + |G| - \omega(G_A)\alpha(G_A).$$

Proof. Take a maximum independent set X in G_A and maximum clique K in G_A . By Lemma 1.3 $\{Xa \mid a \in K\}$ is a collection of pairwise disjoint maximum independent sets in G_A . Using one color for each of those and then one color for each vertex in $G_A - XK$ gives the bound.

Generally, that is a terrible bound, but we have a lot of room for improvement in coloring the leftover bit $G_A - XK$. The case where $G_A - XK$ is empty matches up nicely with $\chi(G_A) = \omega(G_A)$ in the $\frac{5}{6}$ -bound. We want to show that when there is some of the leftover bit $G_A - XK$, we can color it with something like $\frac{5}{6}\Delta(G_A) - \omega(G_A)$ colors. There is a lot to play with here. For example, we can swap a vertex in $G_A - XK$ that has only one neighbor in X for its neighbor to get X'. Now we get a new coloring by looking at X'K which has a lot in common with our previous coloring. Right now i am trying to see what sorts of information we can get out of this.

2 Strong coloring cayley graphs

We know that to prove the $\frac{5}{6}$ -bound for a class \mathcal{C} of vertex transitive graphs, it suffices to prove the 2.5Δ upper bound for strong coloring and Reed's ω , λ , χ -conjecture for \mathcal{C} . When \mathcal{C} is the abelian standard cayley graphs, the needed strong coloring bound comes for free from $Haxell's\ 2\Delta$ bound for independent transversals together with Lemma 1.3.

Lemma 2.1. Let G be an abelian group and G_A a standard cayley graph. If $\omega(G_A) > \frac{2}{3}(\Delta(G_A) + 1)$, then $\chi(G_A) = \omega(G_A)$.

Proof. Since G_A is vertex transitive, $\omega(G_A) > \frac{2}{3}(\Delta(G_A)+1)$ implies that G is a disjoint union of $\omega(G)$ -cliques. Since $\omega(G_A) > \frac{2}{3}(\Delta(G_A)+1)$, we have $\omega(G_A) > 2(\Delta(G_A)+1-\omega(G_A))$ and hence we may apply Haxell's independent transversal lemma to get an independent set X in G_A with $|X|\omega(G) = |G_A|$. So. $|G_A| = \omega(G_A)\alpha(G_A)$ and lemma 1.4 gives $\chi(G_A) = \omega(G_A)$.

Theorem 2.2. If Reed's conjecture holds for abelian standard cayley graphs, then such graphs satisfy the $\frac{5}{6}$ -bound.

Proof. When $\omega(G_A) > \frac{2}{3}(\Delta(G_A) + 1)$ we are done by Lemma 2.1. So we can apply Reed's conjecture using $\omega(G_A) \leq \frac{2}{3}(\Delta(G) + 1)$ to get the desired $\frac{5}{6}$ -bound.