WEEK 3 QUIZ 1

Logistic Regression

TOTAL POINTS 5

1. Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction $h_{\theta}(x)$ = 0.4. This means (check all that apply):

1 point

- ightharpoonup Our estimate for $P(y=0|x;\theta)$ is 0.6.
- ightharpoonup Our estimate for $P(y=1|x;\theta)$ is 0.4.

x_1	x_2	у
1	0.5	0
1	1.5	0
2	1	1
3	1	0

Which of the following are true? Check all that apply.

- Adding polynomial features (e.g., instead using $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_1 x_2 + \theta_5 x_2^2)$) could increase how well we can fit the training data.
- lacksquare At the optimal value of heta (e.g., found by fminunc), we will have $J(heta) \geq 0$.
- Adding polynomial features (e.g., instead using $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_1 x_2 + \theta_5 x_2^2) \text{) would increase } J(\theta) \text{ because we are now summing over more terms.}$
- If we train gradient descent for enough iterations, for some examples $x^{(i)}$ in the training set it is possible to obtain $h_{\theta}(x^{(i)}) > 1$.

3. For logistic regression, the gradient is given by $\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$. Which of these is a correct gradient descent update for logistic regression with a learning rate of α ? Check all that apply.

1 point

- $lacksquare heta_j := heta_j lpha rac{1}{m} \sum_{i=1}^m \left(rac{1}{1+e^{- heta T_x(i)}} y^{(i)}
 ight) x_j^{(i)}$ (simultaneously update for all j).
- lacksquare $\theta_j := \theta_j lpha rac{1}{m} \sum_{i=1}^m \left(h_{ heta} (x^{(i)}) y^{(i)} \right) x_j^{(i)}$ (simultaneously update for all j).

4.	Which of the following statements are true? Check all that apply.	
	V	The one-vs-all technique allows you to use logistic regression for problems in which each $y^{(i)}$ comes from a fixed, discrete set of values.
		For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to find the global minimum). This is the reason we prefer more advanced optimization algorithms such as fminunc (conjugate gradient/BFGS/L-BFGS/etc).
	<u>~</u>	The cost function $J(\theta)$ for logistic regression trained with $m\geq 1$ examples is always greater than or equal to zero.
	~	Since we train one classifier when there are two classes, we train two classifiers when there are three classes (and we do one-vs-all classification).

1 point

5. Suppose you train a logistic classifier $h_{\theta}\left(x\right)=g(\theta_{0}+\theta_{1}x_{1}+\theta_{2}x_{2})$. Suppose $\theta_{0}=6,\theta_{1}=-1,\theta_{2}=0$. Which of the following figures represents the decision boundary found by your classifier?

1 point

Figure:

O Figure:

O Figure:

O Figure:

