

Tutorial on Improving Deep Learning by Exploiting Synthetic Images

Jiayun Liu, Ontology Engineering Group Universidad Politécnica de Madrid, Spain

Manuel Castillo-Cara, Universidad Nacional de Educación a Distancia

Raúl García-Castro, Ontology Engineering Group, Universidad Politécnica de Madrid

Materials: https://gooev.ai/2/9pqz

- The challenges associated with tabular data in deep learning
- 2. Deep learning in tabular data
- 3. Methods for transforming tabular data into synthetic images
- 4. Leveraging vision models on these images
- 5. Example use case
- 6. TINTOlib library
- 7. Practical session

- The challenges associated with tabular data in deep learning
- 2. Deep learning in tabular data
- 3. Methods for transforming tabular data into synthetic images
- 4. Leveraging vision models on these images
- 5. Example use case
- 6. TINTOlib library
- 7. Practical session

	A	В	С	D	Е	F	G	Н	ī
1	preg	plas	pres	skin	insu	mass	pedi	age	class
2	1	85	66	29	0	26.6	351	31	tested_negative
3	5	116	74	0	0	25.6	201	30	tested_negative
4	10	115	0	0	0	35.3	134	29	tested_negative
5	4	110	92	0	0	37.6	191	30	tested_negative
6	10	139	80	0	0	27.1	1441	57	tested_negative
7	8	99	84	0	0	35.4	388	50	tested_negative
8	5	117	92	0	0	34.1	337	38	tested_negative
9	5	109	75	26	0	36	546	60	tested_negative

r	A	В	С	D	Е	F	G	Н	I	J	К	L	M	N
1	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	B	LSTAT	class
2	0.00632	18	2.31	0	538	6575	65.2	4.09	1	296	15.3	396.9	4.98	24
3	0.02731	0	7.07	0	469	6421	78.9	4.9671	2	242	17.8	396.9	9.14	21.6
4	0.02729	0	7.07	0	469	7185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
5	0.03237	0	2.18	0	458	6998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
6	0.06905	0	2.18	0	458	7147	54.2	6.0622	3	222	18.7	396.9	5.33	36.2
7	0.02985	0	2.18	0	458	6.43	58.7	6.0622	3	222	18.7	394.12	5.21	28.7

Classification

r	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N
1	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	B	LSTAT	class
2	0.00632	18	2.31	0	538	6575	65.2	4.09	1	296	15.3	396.9	4.98	24
3	0.02731	0	7.07	0	469	6421	78.9	4.9671	2	242	17.8	396.9	9.14	21.6
4	0.02729	0	7.07	0	469	7185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
5	0.03237	0	2.18	0	458	6998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
6	0.06905	0	2.18	0	458	7147	54.2	6.0622	3	222	18.7	396.9	5.33	36.2
7	0.02985	0	2.18	0	458	6.43	58.7	6.0622	3	222	18.7	394.12	5.21	28.7

Classification

Regression

	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N
1	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	B	LSTAT	class
2	0.00632	18	2.31	0	538	6575	65.2	4.09	1	296	15.3	396.9	4.98	24
3	0.02731	0	7.07	0	469	6421	78.9	4.9671	2	242	17.8	396.9	9.14	21.6
4	0.02729	0	7.07	0	469	7185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
5	0.03237	0	2.18	0	458	6998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
6	0.06905	0	2.18	0	458	7147	54.2	6.0622	3	222	18.7	396.9	5.33	36.2
7	0.02985	0	2.18	0	458	6.43	58.7	6.0622	3	222	18.7	394.12	5.21	28.7

The open challenge in Deep Learning for Tabular Data

- <u>Kadra et al.</u> referred to tabular datasets as the "last unconquered castle" for models based on Deep Neural Networks (DNNs).
- Applying DNNs to Tabular Data (TD) for inference or data generation remains a significant challenge.

The open challenge in Deep Learning for Tabular Data

- <u>Kadra et al.</u> referred to tabular datasets as the "last unconquered castle" for models based on Deep Neural Networks (DNNs).
- Applying DNNs to Tabular Data (TD) for inference or data generation remains a significant challenge.
- <u>Vadim Borísov et al.</u> conducted benchmarks comparing ensemble methods and DNNs across various datasets, stating that "Progress in research on competitive deep learning models for tabular data is stagnating." and "It is an open research area."

The open challenge in Deep Learning for Tabular Data

- <u>Kadra et al.</u> referred to tabular datasets as the "last unconquered castle" for models based on Deep Neural Networks (DNNs).
- Applying DNNs to Tabular Data (TD) for inference or data generation remains a significant challenge.
- <u>Vadim Borísov et al.</u> conducted benchmarks comparing ensemble methods and DNNs across various datasets, stating that "Progress in research on competitive deep learning models for tabular data is stagnating." and "It is an open research area."
- <u>Shwartz Ziv & Armon</u> In their paper, "Tabular Data: Deep Learning is Not All You Need," they compared DNN approaches with Gradient Boosted Decision Trees (GBDT). GBDTs challenged DNNs, indicating that modeling tabular data using DNNs is still an open research problem.

- The challenges associated with tabular data in deep learning
- 2. Deep learning in tabular data
- 3. Methods for transforming tabular data into synthetic images
- 4. Leveraging vision models on these images
- 5. Example use case
- 6. TINTOlib library
- 7. Practical session

Tabular data + Deep Learning

		9.70	15		
Be07	Be08	Be09	Be10	Be11	Sector
-65	-61	-74	-73	-67	1
-60	-57	-83	-62	-69	2
-66	-70	-78	-63	-73	3
-58	-66	-71	-73	-69	14
-60	-62	-73	-69	-57	15

Tabular data + Deep Learning

		570	1,5	3.4.0	
Be07	Be08	Be09	Be10	Be11	Sector
-65	-61	-74	-73	-67	1
-60	-57	-83	-62	-69	2
-66	-70	-78	-63	-73	3
-58	-66	-71	-73	-69	14
-60	-62	-73	-69	-57	15

Tabular data + Deep Learning

- Convolution
 - locally-connected
 - spatial weight sharing (kernel)
- Pooling
- Fully-connected

Vision Transformer (ViT)

Dosovitskiy, A., et al. (2020). An image is worth 16x16 words: Transformers for image recognition at scale.

Tabular data + CNN

		6. 7 (0)	105		
Be07	Be08	Be09	Be10	Be11	Sector
-65	-61	-74	-73	-67	1
-60	-57	-83	-62	-69	2
-66	-70	-78	-63	-73	3
-58	-66	-71	-73	-69	14
-60	-62	-73	-69	-57	15

Tabular data + CNN

			- 12	(4)	
Be07	Be08	Be09	Be10	Be11	Sector
-65	-61	-74	-73	-67	1
-60	-57	-83	-62	-69	2
-66	-70	-78	-63	-73	3
-58	-66	-71	-73	-69	14
-60	-62	-73	-69	-57	15

Synthetic images

		770	1.5		
Be07	Be08	Be09	Be10	Be11	Sector
-65	-61	-74	-73	-67	1
-60	-57	-83	-62	-69	2
-66	-70	-78	-63	-73	3
-58	-66	-71	-73	-69	14
-60	-62	-73	-69	-57	15

(b) TINTO - Sample 50,000.

(c) IGTD - Sample 1.

(d) IGTD - Sample 50,000.

(e) REFINED - Sample 1.

(f) REFINED - Sample 50,000.

Tabular data + CNN

- 1. The challenges associated with tabular data in deep learning
- 2. Deep learning in tabular data
- 3. Methods for transforming tabular data into synthetic images
- 4. Leveraging vision models on these images
- 5. Example use case
- 6. TINTOlib library
- 7. Practical session

Non-parametric

Equidistant Bar Graph:

- The values of the normalized variables, scaled between [0,1], are represented in a bar graph.
- The resulting images are provided in a single channel (black and white).

Equidistant Bar Graph:

- The values of the normalized variables, scaled between [0,1], are represented in a bar graph.
- The resulting images are provided in a single channel (black and white).

Normalized Distance Matrix:

- Represents a distance matrix of all the normalized variables scaled between [0,1].
- The values are displayed in grayscale.
- The resulting images are provided in a single channel (black and white).

Equidistant Bar Graph:

- The values of the normalized variables, scaled between [0,1], are represented in a bar graph.
- The resulting images are provided in a single channel (black and white).

Normalized Distance Matrix:

- Represents a distance matrix of all the normalized variables scaled between [0,1].
- The values are displayed in grayscale.
- The resulting images are provided in a single channel (black and white).

Combination of options:

- This method is a combination of the two previous ones.
- The resulting images are provided in 3 channels (RGB).

Equidistant Bar Graph:

- The values of the normalized variables, scaled between [0,1], are represented in a bar graph.
- The resulting images are provided in a single channel (black and white).

Normalized Distance Matrix:

- Represents a distance matrix of all the normalized variables scaled between [0,1].
- The values are displayed in grayscale.
- The resulting images are provided in a single channel (black and white).

Combination of options:

- This method is a combination of the two previous ones.
- The resulting images are provided in 3 channels (RGB).

They perform very simple calculations with a very low computational cost. However, they do not take into account the spatial distribution of the variables.

SuperTML

- The data values are directly drawn onto the image in a single channel (black and white). A region of the image and a size are assigned to represent each feature in the form of text or a written number.
- There are two approaches:
 - SuperTML_EF: In this approach, each feature is given a region and font size of the same size."

(b) SuperTML_EF

SuperTML

- The data values are directly drawn onto the image in a single channel (black and white). A region of the image and a size are assigned to represent each feature in the form of text or a written number.
- There are two approaches:
 - SuperTML_EF: In this approach, each feature is given a region and font size of the same size."
 - SuperTML_VF: Each feature is given a region and font size based on its relevance. The more important the feature, the larger its font size and region.

(b) SuperTML_EF

(a) SuperTML_VF

Sun, B., Yang, L., Zhang, W., Lin, M., Dong, P., Young, C., & Dong, J. (2019). Supertml: Two-dimensional word embedding for the precognition on structured tabular data. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops

SuperTML

- The data values are directly drawn onto the image in a single channel (black and white). A region of the image and a size are assigned to represent each feature in the form of text or a written number.
- There are two approaches:
 - SuperTML_EF: In this approach, each feature is given a region and font size of the same size."
 - SuperTML_VF: Each feature is given a region and font size based on its relevance. The more important the feature, the larger its font size and region.
- The method does not take into account the spatial distribution of the variables, beyond the variation in size and font in SuperTML_VF.
- Another drawback is the sensitivity to small variations in the variables.
 - For example, 3.9999 and 4.0 are numerically almost identical.

(b) SuperTML_EF

(a) SuperTML_VF

Sun, B., Yang, L., Zhang, W., Lin, M., Dong, P., Young, C., & Dong, J. (2019). Supertml: Two-dimensional word embedding for the precognition on structured tabular data. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops

- FeatureWrap transforms each feature into a binary vector using binning and one-hot encoding, mapping groups of 8 bits to grayscale pixel values to represent feature information.
- Feature to Binary Vector Transformation:
 - Categorical Data: Uses one-hot encoding. Each unique category is represented by a 1D vector.
 - Numerical Data: Normalized using min-max scaling to the range [0, 1]. Discretized into groups according to the number of bins. Transformed into one-hot encoded vectors.

- FeatureWrap transforms each feature into a binary vector using binning and one-hot encoding, mapping groups of 8 bits to grayscale pixel values to represent feature information.
- Feature to Binary Vector Transformation:
 - Categorical Data: Uses one-hot encoding. Each unique category is represented by a 1D vector.
 - Numerical Data: Normalized using min-max scaling to the range [0, 1]. Discretized into groups according to the number of bins. Transformed into one-hot encoded vectors.

Age (Num)	Gender (Cat)	Salary (Num)	Age (Bin)	Gender (One-Hot)	Salary (Bin)
25	Male	30000	[1, 0, 0, 0, 0]	[1, 0]	[1, 0, 0, 0, 0]

- FeatureWrap transforms each feature into a binary vector using binning and one-hot encoding, mapping groups of 8 bits to grayscale pixel values to represent feature information.
- Feature to Binary Vector Transformation:
 - Categorical Data: Uses one-hot encoding. Each unique category is represented by a 1D vector.
 - Numerical Data: Normalized using min-max scaling to the range [0, 1]. Discretized into groups according to the number of bins. Transformed into one-hot encoded vectors.
 - Concatenates binary vectors into a single vector and pads the vector with zeros if necessary to reach the required image length.
 - o Group the bits into bytes and converts them into numerical values between 0-255.

Age (Num)	Gender (Cat)	Salary (Num)	Age (Bin)	Gender (One-Hot)	Salary (Bin)
25	Male	30000	[1, 0, 0, 0, 0]	[1, 0]	[1, 0, 0, 0, 0]

Concatenated Binary Vector: [1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0] + [0,0,0...]

- FeatureWrap transforms each feature into a binary vector using binning and one-hot encoding, mapping groups of 8 bits to grayscale pixel values to represent feature information.
- Feature to Binary Vector Transformation:
 - Categorical Data: Uses one-hot encoding. Each unique category is represented by a 1D vector.
 - Numerical Data: Normalized using min-max scaling to the range [0, 1]. Discretized into groups according to the number of bins. Transformed into one-hot encoded vectors.
 - Concatenates binary vectors into a single vector and pads the vector with zeros if necessary to reach the required image length.
 - o Group the bits into bytes and converts them into numerical values between 0-255.

Age (Num)	Gender (Cat)	Salary (Num)	Age (Bin)	Gender (One-Hot)	Salary (Bin)
25	Male	30000	[1, 0, 0, 0, 0]	[1, 0]	[1, 0, 0, 0, 0]

Concatenated Binary Vector: [1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0] + [0,0,0...]

Binary Image Encoding

The Binary Image Encoding (BIE) method takes numerical data and converts it into its floating-point binary representation.

There are two main steps to this method:

 First, we convert the numeric values into their floating-point binary representation. This binary format consists of three key components: the sign bit, which indicates whether the number is positive or negative, the exponent, which shows the position of the decimal point, and the mantissa, which stores the significant digits of the number.

N. Briner, D. Cullen, J. Halladay, D. Miller, R. Primeau, A. Avila, R. Basnet, and T. Doleck, "Tabular-to-image transformations for the classification of anonymous network traffic using deep residual networks," IEEE Access, vol. 11, pp.113 100–113 113, 2023.

Binary Image Encoding

The **Binary Image Encoding (BIE)** method takes numerical data and converts it into its **floating-point binary representation**.

There are two main steps to this method:

 First, we convert the numeric values into their floating-point binary representation. This binary format consists of three key components: the sign bit, which indicates whether the number is positive or negative, the exponent, which shows the position of the decimal point, and the mantissa, which stores the significant digits of the number.

<u> </u>	

Age: 25

Sign bit: 0 (since it's positive)

Exponent: 10000011

Mantissa:

Binary representation: 0

10000011

10010000000000000000000

N. Briner, D. Cullen, J. Halladay, D. Miller, R. Primeau, A. Avila, R. Basnet, and T. Doleck, "Tabular-to-image transformations for the classification of anonymous network traffic using deep residual networks," IEEE Access, vol. 11, pp.113 100–113 113, 2023.

Binary Image Encoding

The **Binary Image Encoding (BIE)** method takes numerical data and converts it into its **floating-point binary representation**.

There are two main steps to this method:

- First, we convert the numeric values into their floating-point binary representation. This binary format consists of three key components: the sign bit, which indicates whether the number is positive or negative, the exponent, which shows the position of the decimal point, and the mantissa, which stores the significant digits of the number.
- Once we have the floating-point encoding, each bit is used to generate the image. A bit value of 0 becomes **black** (0), and a bit value of 1 becomes **white** (255). This is done bit by bit, creating the final black-and-white image.

Age	Salary	
25	30000	

Age: 25

Sign bit: 0 (since it's positive)

Exponent: 10000011

Mantissa:

10010000000000000000000

Binary representation: 0

10000011

10010000000000000000000

N. Briner, D. Cullen, J. Halladay, D. Miller, R. Primeau, A. Avila, R. Basnet, and T. Doleck, "Tabular-to-image transformations for the classification of anonymous network traffic using deep residual networks," IEEE Access, vol. 11, pp.113 100–113 113, 2023.

Parametric

REFINED stands for REpresentation of Features as Images with NEighborhood Dependencies, it transforms tabular data into images by **preserving the original distances** between features from the high-dimensional space. It uses a **hill climbing** algorithm for optimization.

Steps:

1. Dimensionality Reduction:

 Uses Multidimensional Scaling (MDS) to project the features into a 2D space, preserving distances between features.

2. Initial Feature Assignment:

Places features on a grid based on their 2D coordinates using **Bayesian** variation of **MDS** (**BMDS**), but this initial layout may not guarantee that each feature is mapped perfectly. This can result in a **dispersed image**.

3. Optimization with Hill Climbing:

 Iteratively swaps the positions of features on the grid using Hill Climbing to minimize the difference between their original distances (euclidean distance) and the distances in the grid, optimizing the arrangement.

IGTD transforms tabular data into images by arranging variables in a way that **similar features** are placed close to each other on the image, and dissimilar ones are placed farther apart.

Steps:

1. Generate the Similarity Matrix:

Calculates the similarity between features using methods like **Pearson**,
 Spearman, or Euclidean distance.

2. Generate the Distance Matrix:

Computes the distance between pixels in the image, based on their positions in the 2D grid.

3. Reorganize the Data:

Reorders the features so that the arrangement of features in the image reflects their similarities, minimizing the difference between the **similarity matrix** and the **distance matrix** using an optimization process. In each iteration, the pixel that has gone the longest without being swapped is permuted with the pixel that minimizes the difference between the rankings.

- 1. Talla-Chumpitaz, Ret al. (2023). A novel deep learning approach using blurring image techniques for Bluetooth-based indoor localisation. *Information Fusion*, 91, 173-186.
- 2. Castillo-Cara, Manuel, et al (2023). TINTO: Converting Tidy Data into image for classification with 2-Dimensional Convolutional Neural Networks. SoftwareX, 22, 101391.
- 3. A. Sharma, et al. "Deepinsight: A methodology to transform a non-image data to an image for convolution neural network architecture," Scientific Reports, vol. 9, 2019.

- 1. Talla-Chumpitaz, Ret al. (2023). A novel deep learning approach using blurring image techniques for Bluetooth-based indoor localisation. Information Fusion, 91, 173-186.
- 2. Castillo-Cara, Manuel, et al (2023). TINTO: Converting Tidy Data into image for classification with 2-Dimensional Convolutional Neural Networks. SoftwareX, 22, 101391.
- 3. A. Sharma, et al. "Deepinsight: A methodology to transform a non-image data to an image for convolution neural network architecture," Scientific Reports, vol. 9, 2019.

- 1. Talla-Chumpitaz, Ret al. (2023). A novel deep learning approach using blurring image techniques for Bluetooth-based indoor localisation. Information Fusion, 91, 173-186.
- 2. Castillo-Cara, Manuel, et al (2023). TINTO: Converting Tidy Data into image for classification with 2-Dimensional Convolutional Neural Networks. SoftwareX, 22, 101391.
- 3. A. Sharma, et al. "Deepinsight: A methodology to transform a non-image data to an image for convolution neural network architecture," Scientific Reports, vol. 9, 2019.

- 1. Talla-Chumpitaz, Ret al. (2023). A novel deep learning approach using blurring image techniques for Bluetooth-based indoor localisation. Information Fusion, 91, 173-186.
- 2. Castillo-Cara, Manuel, et al (2023). TINTO: Converting Tidy Data into image for classification with 2-Dimensional Convolutional Neural Networks. SoftwareX, 22, 101391.
- 3. A. Sharma, et al. "Deepinsight: A methodology to transform a non-image data to an image for convolution neural network architecture," Scientific Reports, vol. 9, 2019.

- 1. Talla-Chumpitaz, Ret al. (2023). A novel deep learning approach using blurring image techniques for Bluetooth-based indoor localisation. Information Fusion, 91, 173-186.
- 2. Castillo-Cara, Manuel, et al (2023). TINTO: Converting Tidy Data into image for classification with 2-Dimensional Convolutional Neural Networks. SoftwareX, 22, 101391.
- 3. A. Sharma, et al. "Deepinsight: A methodology to transform a non-image data to an image for convolution neural network architecture," Scientific Reports, vol. 9, 2019.

- The challenges associated with tabular data in deep learning
- 2. Deep learning in tabular data
- 3. Methods for transforming tabular data into synthetic images
- 4. Leveraging vision models on these images
- 5. Example use case
- 6. TINTOlib library
- 7. Practical session

Tabular data + Deep Learning

		570	15	3.4.0	
Be07	Be08	Be09	Be10	Be11	Sector
-65	-61	-74	-73	-67	1
-60	-57	-83	-62	-69	2
-66	-70	-78	-63	-73	3
-58	-66	-71	-73	-69	14
-60	-62	-73	-69	-57	15

Hybrid Model

- The challenges associated with tabular data in deep learning
- 2. Deep learning in tabular data
- 3. Methods for transforming tabular data into synthetic images
- 4. Leveraging vision models on these images
- 5. Example use case
- 6. TINTOlib library
- 7. Practical session

Figure taken from the paper: S. D. Bast, A. P. Guevara and S. Pollin, "CSI-based Positioning in Massive MIMO systems using Convolutional Neural Networks," 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 2020, pp. 1-5

		2 3 0)	1.7		
Be07	Be08	Be09	Be10	Be11	Sector
-65	-61	-74	-73	-67	1
-60	-57	-83	-62	-69	2
-66	-70	-78	-63	-73	3
-58	-66	-71	-73	-69	14
-60	-62	-73	-69	-57	15

			105		
Be07	Be08	Be09	Be10	Be11	Sector
-65	-61	-74	-73	-67	1
-60	-57	-83	-62	-69	2
-66	-70	-78	-63	-73	3
-58	-66	-71	-73	-69	14
-60	-62	-73	-69	-57	15

Figure 3. Synthetic image samples generated by TINTOlib for different samples in 8 antennas DIS scenario.

Hybrid Model

Table 2. RMSE (in mm) in validation (Val) and test split. Best results are shown in bold.

A l	Po	sX	Po	sY
Algorithm	Val	Test	Val	Test
BR	226.05	225.00	251.43	255.54
ET	163.15	161.65	180.00	185.70
HGB	194.10	194.97	236.55	236.46
KNN	110.50	110.54	133.70	140.16
LiR	383.05	386.95	432.83	439.10
MLP	179.80	178.82	326.11	334.76
RF	226.09	225.18	251.37	255.62
RCV	383.04	386.94	432.80	439.06
XGB	178.41	180.03	202.45	201.66
LGB	194.14	194.15	231.19	232.89

 Table 2.
 RMSE (in mm) in validation (Val) and test split. Best results are shown in bold.

Algorithm	Po	sX	PosY		
	Val	Test	Val	Test	
BR	226.05	225.00	251.43	255.54	
ET	163.15	161.65	180.00	185.70	
HGB	194.10	194.97	236.55	236.46	
KNN	110.50	110.54	133.70	140.16	
LiR	383.05	386.95	432.83	439.10	
MLP	179.80	178.82	326.11	334.76	
RF	226.09	225.18	251.37	255.62	
RCV	383.04	386.94	432.80	439.06	
XGB	178.41	180.03	202.45	201.66	
LGB	194.14	194.15	231.19	232.89	

Table 3. RMSE (in mm) for the different HyNNs architectures and HyViT in Validation (Val) and test. Best results are shown in bold.

Position	Model	TIN	OTI	IG	IGTD		REFINED	
Position	Model	Val	Test	Val	Test	Val	Test	
	HyCNN	187.10	188.10	92.8	92.21	105.69	105.38	
	HyTNN	178.28	179.25	119.59	119.62	115.90	114.98	
PosX	HyTTNN	181.96	184.19	179.01	180.05	193.56	196.09	
	HyGTNN	176.71	176.43	173.42	174.20	173.38	174.02	
	HyViT	103.27	104.17	46.57	45.77	41.38	41.84	
	HyCNN	152.19	151.94	101.01	99.45	115.40	114.69	
	HyTNN	143.10	143.29	95.95	95.83	112.27	112.02	
PosY	HyTTNN	151.35	151.97	155.35	154.12	147.22	146.01	
	HyGTNN	155.06	153.40	154.68	154.50	157.10	155.39	
	HyViT	121.77	123.90	70.84	68.93	90.11	90.56	

 Table 2.
 RMSE (in mm) in validation (Val) and test split. Best results are shown in bold.

Algorithm	Po	sX	PosY		
	Val	Test	Val	Test	
BR	226.05	225.00	251.43	255.54	
ET	163.15	161.65	180.00	185.70	
HGB	194.10	194.97	236.55	236.46	
KNN	110.50	110.54	133.70	140.16	
LiR	383.05	386.95	432.83	439.10	
MLP	179.80	178.82	326.11	334.76	
RF	226.09	225.18	251.37	255.62	
RCV	383.04	386.94	432.80	439.06	
XGB	178.41	180.03	202.45	201.66	
LGB	194.14	194.15	231.19	232.89	

Table 3. RMSE (in mm) for the different HyNNs architectures and HyViT in Validation (Val) and test. Best results are shown in bold.

Position	Model	TINTO		IGTD		REFINED	
		Val	Test	Val	Test	Val	Test
PosX	HyCNN	187.10	188.10	92.8	92.21	105.69	105.38
	HyTNN	178.28	179.25	119.59	119.62	115.90	114.98
	HyTTNN	181.96	184.19	179.01	180.05	193.56	196.09
	HyGTNN	176.71	176.43	173.42	174.20	173.38	174.02
	HyViT	103.27	104.17	46.57	45.77	41.38	41.84
PosY	HyCNN	152.19	151.94	101.01	99.45	115.40	114.69
	HyTNN	143.10	143.29	95.95	95.83	112.27	112.02
	HyTTNN	151.35	151.97	155.35	154.12	147.22	146.01
	HyGTNN	155.06	153.40	154.68	154.50	157.10	155.39
	HyViT	121.77	123.90	70.84	68.93	90.11	90.56

- The challenges associated with tabular data in deep learning
- 2. Deep learning in tabular data
- 3. Methods for transforming tabular data into synthetic images
- 4. Leveraging vision models on these images
- 5. Example use case
- 6. TINTOlib library
- 7. Practical session

Parameters	Description	Default value	Valid values
problem	Defines the problem type for grouping images.	'supervised'	['supervised', 'unsupervised', 'regression']
pixel_width	The width (in pixels) for each column.	1	integer
gap	The separation (in pixels) between each column.	0	integer
zoom	Factor to scale the saved image size	1	int
verbose	Show in terminal the execution.	False	[True, False]

Distance Matrix

Parameter	Description	Default	Valid Values
zoom	Scale factor for saved image size	1	int
random_seed	Seed for reproducibility	1	int
verbose	Show execution details	False	[True, False]

Distance Matrix

Combination

Parameter	Description	Default	Valid Values
zoom	Scale factor for saved image size	1	int
random_seed	Seed for reproducibility	1	int
verbose	Show execution details	False	[True, False]

Combination

SuperTML

Parameters	Description	Default value	Valid values
problem	Defines how images are grouped	'supervised'	['supervised', 'unsupervised', 'regression']
image_pixels	Number of pixels per side (total pixels = pixels × pixels)	224	integer
feature_importance	If False, uses equal font sizes (SuperTML-EF); if True, font size is proportional to feature importance (SuperTML-VF)	False	[True, False]
font_size	Font size used to render text on images	10	integer
random_seed	Seed for reproducibility	1	integer
verbose	Show execution details	False	[True, False]

SuperTML

FeatureWrap

Parameters	Description	Default value	Valid values
problem	Defines how images are grouped	'supervised'	['supervised', 'unsupervised', 'regression']
size	Image dimensions in pixels (rows × columns)	[8,8]	[int, int]
bins	Number of bins for grouping numeric data	10	int
zoom	Factor to scale the saved image size	1	int
verbose	Show execution details	False	[True, False]

FeatureWrap

Binary Image Encoding (BIE)

Parameters	Description	Default value	Valid values
problem	The type of problem, this will define how the images are grouped.	'supervised'	['supervised', 'unsupervised', 'regression']
precision	Number of bits used to represent each feature.	32	[32, 64]
zoom	Factor to scale the saved image size	1	Positive integer
verbose	Show in terminal the execution.	False	[True, False]

Binary Image Encoding (BIE)

Parameter	Description	Default	Valid Values
problem	Defines the problem type for grouping images	'supervised'	['supervised', 'unsupervised', 'regression']
n_processors	Number of processors to use (must be ≥ 2)	8	int (≥ 2)
ncIterations	Iterations of the hill climbing algorithm	5	int
zoom	Factor to scale the saved image size	1	int
random_seed	Seed for reproducibility	1	int
verbose	Show execution details in terminal	False	[True, False]

REFINED

Parameter	Description	Default	Valid Values
problem	Defines the problem type for grouping images	'supervised'	['supervised', 'unsupervised', 'regression']
scale	Image size (rows × columns); must be ≥ number of features	[6, 6]	[int, int]
fea_dist_method	Method to evaluate feature similarity	'Pearson'	['Pearson', 'Spearman', 'set', 'Euclidean']
image_dist_method	Method to calculate distances	'Euclidean'	['Euclidean', 'Manhattan']
max_step	Max steps before algorithm stops if not converged	1000	int
val_step	Steps between convergence checks	50	int
error	Function to evaluate the difference between feature distance ranking and pixel distance ranking	'squared'	['squared', 'abs']
switch_t	Threshold to decide when to switch elements	0	int
min_gain	Minimum improvement needed to continue; else, algorithm stops	0.00001	float
zoom	Scale factor for saved image size	1	int
random_seed	Seed for reproducibility	1	int
verbose	Show execution details	False	[True, False]

Parameters	Description	Default value	Valid values
problem	Defines the problem type for grouping images	'supervised'	['supervised', 'unsupervised', 'regression']
algorithm	Chooses the dimensionality reduction algorithm	PCA	[PCA, t-SNE]
pixels	Sets the image size by specifying pixels per side (total pixels = pixels × pixels)	20	integer
submatrix	Determines if a submatrix is used for blurring	True	[True, False]
blur	Enables or disables blurring	False	[True, False]
amplification	Only with blur=true, blurring amplification	np.pi	float
distance	Only with blur=true, blurring distance in pixels	2	integer
steps	Only with blur=true, blurring steps	4	integer
option	Only with blur=true, method for handling overlapping pixels	mean	[mean, maximum]
times	Only with algorithm=t-SNE, times replication in t-SNE	4	integer
zoom	Factor to scale the saved image size	1	int
random_seed	Seed for reproducibility	1	integer
verbose	Show in terminal the execution	False	[True, False]

- 1. The challenges associated with tabular data in deep learning
- 2. Deep learning in tabular data
- 3. Methods for transforming tabular data into synthetic images
- 4. Leveraging vision models on these images
- 5. Example use case
- 6. TINTOlib library
- 7. Practical session

Boston housing dataset

- Regression task
- 506 samples
- 13 features

Simple model

Hybrid Model

Results

Model	MSE	RMSE	MAE	R ²
GradientBoostingRegressor	10.28	3.21	2.18	0.90
HistGradientBoostingRegressor	11.98	3.46	2.35	0.89
LGBMRegressor	12.12	3.48	2.30	0.89
XGBRegressor	12.19	3.49	2.31	0.89
ExtraTreesRegressor	13.64	3.69	2.23	0.87
AdaBoostRegressor	14.17	3.76	2.68	0.87
BaggingRegressor	15.17	3.90	2.72	0.86
RandomForestRegressor	15.51	3.94	2.54	0.85
DecisionTreeRegressor	21.42	4.63	3.17	0.80
ExtraTreeRegressor	23.20	4.82	3.15	0.78

Results

Model	MSE	RMSE	MAE	R ²
GradientBoostingRegressor	10.28	3.21	2.18	0.90
HistGradientBoostingRegressor	11.98	3.46	2.35	0.89
LGBMRegressor	12.12	3.48	2.30	0.89
XGBRegressor	12.19	3.49	2.31	0.89
ExtraTreesRegressor	13.64	3.69	2.23	0.87
AdaBoostRegressor	14.17	3.76	2.68	0.87
BaggingRegressor	15.17	3.90	2.72	0.86
RandomForestRegressor	15.51	3.94	2.54	0.85
DecisionTreeRegressor	21.42	4.63	3.17	0.80
ExtraTreeRegressor	23.20	4.82	3.15	0.78

Official Documentation:

TINTOlib Documentation

PyPI Library:

TINTOlib on PyPI

GitHub Repository (TINTOlib):

TINOlib GitHubT

GitHub Repository (TINTO):

TINTO GitHub

Research Paper on TINTO and Indoor Localization:

<u>Article with Formal Mathematical Definition</u>

Research Paper on TINTO in Python:

Article with Python Definition

