صفحه	فهرست مطالب
1	فصل اول مقدمه
۲	۱-۱ اینورتر منبع ولتاژی
٣	٢-١ اينورتر منبع جرياني
*	٣-١ اینورتر منبع امپدانسی
γ	۱-۴ بحث و نتیجه گیری
	فصل دوم مدلسازی تحلیلی
1	۱-۲ به دستآوردن مدل سیگنال کوچک
14	۲-۲ تحلیل سیگنال کوچک
	۱-۲-۲ یافتن مدل مداری ترانسفورماتور
19	٣-٢ مدلسازی سیستم
	۱-۳-۲ به دست آوردن معادلات حالت برای سیستم
۲۵	۴-۲ بحث و نتیجه گیری
T9	فصل سوم به دست آوردن توابع تبدیل
۲۷	١-٣ توابع تبديل
نبع۲۷	۳-۳ به دست اَوردن تابع تبدیل ارتباط دهنده ولتاژ خازن و ولتاژ م
کاری اتصال کوتاه۳۰	۳-۳ به دست اَوردن تابع تبدیل ارتباط دهنده ولتاژ خازن و سیکل
بع	۳-۳ به دست آوردن تابع تبدیل ارتباط دهنده جریان بار و ولتاژ من
کاری اتصال کوتاه۳۳	۵-۳ به دست آوردن تابع تبدیل ارتباط دهنده جریان بار و سیکل
٣۵	۳-۶ بحث و نتیجهگیری
٣۶	فصل چهارم تحلیل و شبیهسازی
٣٧	۱-۴ مقدمه
٣٧	۲-۴ تحلیل اینورتر
۳۸	٣-۴ تحليل

۴۱ تحلیل ت غ ییرات <i>Lm</i> تحلیل تغییرات شامت است است است است است است است است است اس
۴-۵ بررسی تأثیر خازن
۴-۶ بررسی اثر مقاومت موجود در اندوکتانس مغناطیس کنندگی استاتور
۲-۴ بررسی اثر سیکل کاری حالت اتصال کوتاه
۴-۸ اثر مقاومت بار
٩-۴ ارزیابی مدل
۴۱۰ بحث و نتیجه گیری
فصل پنجم کاهش مرتبه معادلات دینامیکی
۱-۵ مقدمه
۲-۵ روش کاهش مرتبه
۵-۳ روشهای حوزه فرکانس
۵-۴ روشهای حوزه زمان
۵-۵ کاهش مرتبه
8-6 مراحل کاهش مرتبه
۷۱ ارزیابی
۸-۵ بحث و نتیجه گیری۸
فصل ششم مدلسازی(آزمایشی) اینور تر با استفاده از شبکههای عصبی ۷۶
۶-۱ مقدمه
۲-۶ شبکههای عصبی
۳-۶ پیادهسازی شبکه عصبی برای اینورتر در محیط نرمافزار MATLAB
۴-۶ پیادهسازی با استفاده از تولباکس Neural Net Fitting پیادهسازی با استفاده از تولباکس
۵-۶ پیادهسازی با کد متلب
۶-۶ نتیجه گیری
فصل هفتم نتیجه گیریفصل هفتم نتیجه گیری

0	_													
											n	t		
											الب	ىت مط	قهرس	
	٩	٣	 	 	 	 		 	 	 . ح ر	حەگى	۱ نت	_ Y	
	·									ری			•	
							ت							

ناحه	فهر ست اسکال
۲	شكل۱–۱: اينور تر منبع ولتاژى كلاسيک
٣	شكل١-٣: اينور تر منبع ولتاژى با قابليت افزايندگى
٣	شكل١-٣: اينورتر منبع جرياني كلاسيك
۴	شكل١–۴: مدار اينورتر منبع جريانى با قابليت كاهندگى ولتاژ
۴	شكل١–۵: اينور تر منبع امپدانسي
1	شكل٢-١: اينور تر منبع امپدانسي
١٠	شکل۲–۲: اینور تر منبع امپدانسی به همراه دیود ورودی
11	شكل٢–٣: اينور تر شبه منبع امپدانسى
17	شکل۲-۴: اینور تر شبه منبع امپدانسی با سلفهای تزویجی
17	شکل۲–۵: اینور تر شبه منبع امپدانسی– ترانسفورمری
۱۳	شکل۲–۶: اینور تر بررسی شده در این پژوهش
14	شکل۲–۷: مدل ساده شدهی اینور تر بررسی شده در این پژوهش
۱۵	شکل ۲–۸: ساده سازی ترانسفورمر(۱)
18	شكل۲–٩: ساده سازى ترانسفورمر(۲)
17	شكل۲-۱۰: ساده سازى ترانسفورمر(۳)
17	شكل۲–۱۱: ساده سازى ترانسفورمر(۴)
17	شكل ٢–١٢: ساده سازى ترانسفورمر(۵)
۱۸	شکل۲–۱۳: ساده سازی ترانسفورمر(۶) – مدل نهایی ترانسفورمر استفاده شده
۱۸	شکل۲–۱۴: مدار تحلیل شده در حالت Shoot-through
19	شکل۲–۱۵: مدار تحلیل شده در حالت non-Shoot- Through
۴٠	شکل۴-۱: ولتاژ خازن شبکه امپدانسی به ازای ورودی پله
۴۱	شکل۴–۲: موقعیت صفرها و قطبهای تابع تبدیل اینور تر
44	شکل۴-۳: ولتاژ خازن به ازای مقادیر مختلف اندوکتانس مغناطیس کنندگی
44	شکل۴-۴: موقعیت صفرها و قطبهای تابع تبدیل اینورتر برای مقادیر مختلف اندوکتانس مغناطیس کنندگی
۴۵	شکل۴-۵: ولتاژ خازن به ازای مقادیر مختلف اندوکتانس مغناطیس کنندگی ارائهشده در مقاله

شکل۴-۶: موقعیت صفرها و قطبهای تابع تبدیل اینورتر برای مقادیر مختلف اندوکتانس مغناطیسکنندگی ارائه
شده در مقاله
شکل۴-۷: ولتاژ خازن به ازای مقادیر مختلف خازن شبکه امپدانسی
شکل۴-۸: موقعیت صفرها و قطبهای تابع تبدیل اینور تر برای مقادیر مختلف خازن شبکه امپدانسی ۵۰
شکل۴-۹: ولتاژ خازن به ازای مقادیر مختلف خازن شبکه امپدانسی ارائهشده در مقاله ۵۱
شکل۴-۱۰: موقعیت صفرها و قطبهای تابع تبدیل اینورتر برای مقادیر مختلف خازن شبکه امپدانسی ارائهشده در
مقالهمقاله
شکل۴-۱۱: ولتاژ خازن به ازای مقادیر مختلف مقاومت مدار مغناطیس کنندگی
شکل۴–۱۲: موقعیت صفرها و قطبهای تابع تبدیل اینورتر برای مقادیر مختلف مقاومت مدار مغناطیس کنندگی ۵۵
شکل۴–۱۳: ولتاژ خازن به ازای مقادیر مختلف مقاومت مدار مغناطیس کنندگی ارائه شده در مقاله ۵۶
شکل۴–۱۴: موقعیت صفرها و قطبهای تابع تبدیل اینور تر برای مقادیر مختلف مقاومت مدار مغناطیس کنندگی
شکل۴–۱۴: موقعیت صفرها و قطبهای تابع تبدیل اینور تر برای مقادیر مختلف مقاومت مدار مغناطیس کنندگی ارائه شده در مقاله
شکل۴-۱۵: موقعیت صفرها و قطبهای تابع تبدیل اینور تر برای مقادیر مختلف سیکل کاری حالت اتصال کوتاه ۵۹
شکل۴–۱۶: موقعیت صفرها و قطبهای تابع تبدیل اینورتر برای مقادیر مختلف سیکل کاری حالت اتصال کوتاه
ارائه شده در مقاله
شکل۴-۱۷: دیاگرام بُد برای مقادیر مختلف مقاومت بار
شکل۴-۱۸: دیاگرام بُد برای مقادیر مختلف مقاومت بار ارائه شده در مقاله
شکل۴-۱۹: مدار اینورتر منبع امپدانسی در حالت ساده شده
شکل۴-۲۰: مدار تغذیه کلیدهای اینورتر
شكل۴–۲۱: تطابق نتايج سيستم واقعى و سيستم شبيهسازى شده
شکل۵–۱: نمودار صفر و قطب سیستم کاهشیافته۷۲
$ m V^{}$ السخ پله سیستم کاهشیافته به ورودی پله با دامنه $ m P=0.209$ شکل $ m C=0.209$
شکل۵–۳: مقایسه پاسخ پله سیستم اصلی و سیستم کاهشیافته۷۳
شکل۵–۴: مقایسه پاسخ پله اینور تر و سیستم کاهشیافته۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰
شکل۶-۱: تنظیم اطلاعات ورودی و خروجی
شکل۶–۲: تنظیم دادهها شکل۶–۲: تنظیم دادهها
شکل۶–۳: تنظیم تعداد نورونها

فهرست اشكال

تنظيم الگوريتم TrainingTrainingتنظيم الگوريتم	شکل۶–۴:
و صفحهی نتایج مدلسازی با شبکه عصبی	شکل۶–۵:
ميانگين مربعات خطاميانگين مربعات خطا	شکل۶–۶:
Mu و نمودار ارزیابی mu و نمودار ارزیابی و نمودار ارزیابی mu	شکل۶–۷:
: هیستوگرام خطا	شکل۶–۸:
برازندگی دادهها	شکل۶–۹:
: شکل موجهای خروجی برای انواع دادهها به همراه خطا۸۴	شکل۶–۱۰
: شکل موجهای خروجی اصلی و خروجی برازش شده، رگرسیون، خطا و هیستوگرام خطا برای کل داده	
۸۶	
ا: شکل موجهای خروجی اصلی و خروجی برازششده، رگرسیون، خطا و هیستوگرام خطا برای دادههای	شکل۶–۱۲
۸٧	
۱: شکل موجهای خروجی اصلی و خروجی برازششده، رگرسیون، خطا و هیستوگرام خطا برای دادههای	شکل۶–۳۰
۱: شکل موجهای خروجی اصلی و خروجی برازش شده، رگرسیون، خطا و هیستوگرام خطا برای داده	
ΛΛ	
۱: میانگین مربعات خطا۱ میانگین مربعات خطا	
ا: گرادیان خطا، پارامتر mu و نمودار ارزیابی mu و نمودار ارزیابی mu از تا ماه داد داد داد داد داد داد داد داد داد د	
۱: خروجی اصلی، خروجی برازششده روی انواع دادهها و خطای مدلسازی۱۹ دروجی اصلی، خروجی اصلی، خروجی برازششده روی انواع دادهها و خطای مدلسازی	
۱: برازندگی انواع دادهها با دادههای اصلی۱: برازندگی انواع دادهها با دادههای اصلی	
ا: هیستوگرام خطااندان الله الله الله الله الله الله الله ال	
۱: دیاگرام شبکه عصبی۱: دیاگرام شبکه عصبی	
: شبكه عصبي ابنه رتو	شکل ۶-۲۱

فهرست جداول

صفحه	فهرست جداول
<i>9</i>	جدول١-١: مقايسه اينورترها
18	جدول۲-۱: پارامترهای ترانسفورماتور
٣٧	جدول۴-۱: مقادیر کمیتها و المانهای مداری

فصل اول

فصل اول مقدمه