

מחלקה למדעי המחשב

ל' בשבט תשפ"ה 28/02/25

08:30-11:30

אלגברה לינארית 1 למדמ"ח

מועד ב'

מרצים: ד'ר זהבה צבי, ד'ר מרינה ברשדסקי, ד'ר ירמיהו מילר.

תשפ"ה סמסטר א'

השאלון מכיל 11 עמודים (כולל עמוד זה וכולל דף נוסחאות).

בהצלחה!

הנחיות למדור בחינות שאלוני בחינה

- לשאלון הבחינה יש לצרף מחברת.
- ניתן להשתמש במחשבון מדעי לא גרפי עם צג קטן.

חומר עזר

. און. מצורפים לשאלון. (A4) מצורפים לשאלון. \bullet

אחר / הערות יש לענות על השאלות באופן הבא:

- יש לנמק היטב כל שלב של פתרון. תשובה ללא הסבר וללא נימוק, אפילו נכונה, לא תתקבל.
 - יש לפתור 4 מתוך 5 השאלות הבאות. משקל כל שאלה 25 נקודות. ullet
 - סדר התשובות אינו משנה, אך יש לרשום ליד כל תשובה את מספרה.
 - הסבר היטב את מהלך הפתרון.
 - יש לציין את השאלות שעניתם עליהן בתחילת המחברת.

שאלה 1 (25 נקודות)

א) (13 נק") תנונה מערכת משוואות ליניאריות:

$$x + 2y + (k - 1)z = 1$$

$$2x + y + (2k - 6)z = -k$$

$$kx + 2ky + 2z = -1$$

מצאו את ערכי הפרמטר k עבורם למערכת אין פתרון, יש פתרון יחיד, יש אינסוף פתרונות. במקרה של אינסוף פתרונות רשמו את הפתרון הכללי.

- ב) אז A אז $A^2 + 2A + I = 0$ הפיכה. (4 נק") הוכיחו: אם
- $\det(A)$ מצאו את $A\in\mathbb{R}^{8 imes 8}$ מטריצה הפיכה, ונתון כי $A\in\mathbb{R}^{8 imes 8}$ מטריצה מטריצה את (4 נקי)
 - . אז A אז A אז A אז A לא הפכיה. $A \in \mathbb{R}^{7 \times 7}$ תהי (4 גקי) אז $A \in \mathbb{R}^{7 \times 7}$

שאלה 2 (25 נקודות)

$$A = \begin{pmatrix} 1 & a & 2 \\ a & a^2 + a - 1 & 3a - 1 \\ 3 & 3a & 9 \end{pmatrix}$$
 נתונה מטריצה

- $\mathrm{Nul}(A)$ או ובסיס ומימד A ובסיס מצאו דרגת מטריצה a מצאו של (לכל ערך אל לכל ערך אווא פרמטר a
- ב) אם קיים ערך של a עבורו ישנם שני וקטורים בו, u_1,u_2 בלתי תלויים לינארית המקיימים בו (4 נק") האם קיים ערך של a עבורו ישנם שני וקטורים לא, הוכיחו את. אם לא, הוכיחו אתום בו a אם כן, מצאו אותם. אם לא, הוכיחו אתום
- $w\notin \mathrm{Nul}(A)$, $u\in \mathrm{Nul}(A)$, $u\neq 0$ כך ש- $u,w\in \mathbb{R}^3$ כל וקטורים, a=1 (2 נק׳) עבור (3 נק׳)
- הם בלתי $w\notin \mathrm{Nul}(A)$, $u\in \mathrm{Nul}(A)$, $u\neq 0$ המקיימים $u,w\in \mathbb{R}^3$ הוכיחו שכל שני וקטורים תלויים לינארית.
 - כאשר XA=B כאשר המטריציאלית פתרו את פתרו (6 נקי)

$$A = \begin{pmatrix} 2 & 1 \\ 4 & 1 \end{pmatrix} , \qquad B = \begin{pmatrix} 4 & 1 \\ 2 & 6 \\ 0 & 4 \end{pmatrix} .$$

שאלה 3 (25 נקודות)

$$A = \left\{b_1 = egin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, b_2 = egin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, b_3 = egin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}
ight\}$$
 במרחב וקטורים \mathbb{R}^3 נתונה קבוצת וקטורים

המכללה האקדמית להנדסה סמי שמעון

- $\begin{bmatrix} 2 \\ 3 \\ 7 \end{bmatrix}_B$ הוכיחו ש- U בסיס של \mathbb{R}^3 ומצאו את וקטור הקואורדינטות U הוכיחו ש-
 - B מצאו את מטריצת המעבר מהבסיס הסטנדרטי לבסיס בסיס מצאו את את מטריצת המעבר מהבסיס מצאו את מטריצת בסיס
 - ג) (5 נק') יהיו $A,B\in\mathbb{F}^{n imes n}$ הוכיחו או הפריכו את הטענה הבאה: AB=BA אם AB=BA

שאלה 4 (25 נקודות)

א) (8 נק׳) מצאו את המימד ובסיס של תת המרחב הנפרש על ידי הוקטורים

$$u_1 = \begin{pmatrix} 1 & 3 \\ -1 & 4 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 3 & 3 \\ 3 & 1 \end{pmatrix}, \quad u_3 = \begin{pmatrix} 1 & 2 \\ -1 & 0 \end{pmatrix}, \quad u_4 = \begin{pmatrix} -1 & 2 \\ 4 & 5 \end{pmatrix}, \quad u_5 = \begin{pmatrix} 1 & 13 \\ 14 & 24 \end{pmatrix}.$$

- - A=0 או A=I אז $A=A^2$ ו- $A\in\mathbb{R}^{n imes n}$ או A=A או הפריכו על הפריכו על או הפריכו על או הפריכו על או הפריכו על הפריכו על או הפריכו על הפריכו על או הפריכו על או הפריכו על או הפריכו על הפריכ

שאלה 5 (25 נקודות)

א) (10 נק") תהיה
$$A=\begin{pmatrix} 1 & 2 \ 1 & 0 \end{pmatrix}$$
 איהיה (10 נק") א

$$W = \left\{ B \in \mathbb{R}^{2 \times 2} \mid AB = BA \right\} .$$

 $\mathbb{R}^{2 imes 2}$ של מרחב של W הוכיחו כי

- .W -ם ומימד ל- (10 נק') מצאו בסיס ומימד ל-
- ג) (5 נק") הוכיחו או הפריכו על ידי דוגמה נגדית את הטענה הבאה: $U=W \text{ th } \dim(W)=\dim(U) \text{ -} U \text{ cy } U \text{ in } W$ אם U ו- W תתי מרחבים של מרחב וקטורי על כך ש-

שאלה 6 (25 נקודות)

שאלה 7 (25 נקודות)

ינ"י המוגדרת $T:\mathbb{R}_3[x]\to\mathbb{R}^{2\times 2}$ הינארית לינארית נתונה העתקה

$$T(a + bx + cx^{2} + dx^{3}) = \begin{pmatrix} a + 3b + 4c - 3d & b + 3c - 2d \\ 0 & 3a + 7b + 6c - 5d \end{pmatrix}$$

 $a + bx + cx^2 + dx^3 \in \mathbb{R}_3[x]$ לכל

- T אט מצאו את המטריצה המייצגת את מצאו (**5 נק')** או (א
 - ב) אר-חד-ערכית? על? האם T האם T האם (5 נק') בי
- T מצאו בסיס ואת המימד של .ImT תנו דוגמה לאיבר בתמונה של .
- T מצאו בסיס ואת המימד של .KerT תנו דוגמה לאיבר בגרעין של .
 - -ש כך $a+bx+cx^2+dx^3\in\mathbb{R}_3[x]$ כך ש- מצאו את כל הוקטורים (5 נק') מצאו את כל הוקטורים

$$T\left(a+bx+cx^2+dx^3\right) = \begin{pmatrix} 1 & 0\\ 1 & 0 \end{pmatrix} .$$

מצאו את המטריצה המייצגת של T ביחס לבסיסים הסדורים (

$$B = \{b_1 = x^2, b_2 = x, b_3 = 1, b_4 = x^3\}$$

-ו $\mathbb{R}_3[x]$ של

$$C = \left\{ c_1 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, c_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, c_3 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, c_4 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right\}$$

 $\mathbb{R}^{2 imes 2}$ של

$$.[T(w)]_C$$
 יהי $[w]_B=egin{pmatrix}1\2\3\4\end{pmatrix}$ -כך שי $w\in\mathbb{R}_3[x]$ מצאו את יהי

פתרונות

- שאלה 1
- שאלה 2
- שאלה 3
- <u>שאלה 5</u>
- שאלה 6
- שאלה 7