Lecture 1: Introduction to Generative and Explainable Al

Generative Al

https://www.youtube.com/watch?v=NRmAXDWJVnU

Agentic Al

https://www.youtube.com/watch?v=15 pppse4fY

Generative AI is a branch of artificial intelligence focused on **creating new content**—such as text, images, audio, video, or even code—based on patterns it has learned from existing data.

Unlike traditional AI systems, which are mainly designed for classification, prediction, or decision-making, generative AI models can **produce original outputs** that resemble human-created work.

Key Points:

• **Definition**: Generative AI refers to machine learning models (often deep learning) that can generate new data instances similar to the training data.

• How it works:

- It uses large datasets to learn underlying patterns, structures, and relationships.
- Techniques like Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Transformer-based models (e.g., GPT, Stable Diffusion, MidJourney) are common.

• Examples:

- ChatGPT → generates human-like text.
- DALL E, Stable Diffusion → generate images from text prompts.
- MusicLM → creates music.
- GitHub Copilot → generates computer code.

Applications:

- Content creation (articles, art, design).
- Healthcare (drug discovery, medical imaging synthesis).

- Education (personalized learning content).
- Business (marketing copy, product design).

Explainable AI (XAI) refers to methods and techniques that make the results of AI systems transparent, understandable, and interpretable to humans.

Since many modern AI models (especially deep learning ones) act like a "black box"—they make predictions without showing how or why—XAI is about opening that box and giving insights into the decision-making process.

Why is XAI important?

- **Trust** → Users, doctors, regulators, or businesses need to trust Al's output.
- Accountability → If something goes wrong (e.g., medical misdiagnosis, credit rejection), we must know why.
- Bias detection → Helps spot unfair or discriminatory patterns.
- Regulatory compliance → Laws like the EU AI Act and GDPR demand transparency in automated decision-making.

How it works

XAI provides explanations in forms humans can understand, such as:

- 1. **Feature importance** showing which input features most influenced the decision.
- 2. **Visualization** heatmaps in images (e.g., showing which part of an X-ray led to a diagnosis).
- 3. **Rule-based explanations** converting model behavior into "if–then" rules.
- 4. **Counterfactual explanations** "If X had been different, the outcome would have changed."

Examples

- **Healthcare**: An AI says "tumor detected." XAI highlights the tumor region in the scan to justify.
- **Finance**: Loan denied → XAI shows the key factors (e.g., low income, poor credit history).
- **Self-driving cars**: Explains why the car braked suddenly (e.g., pedestrian detected).

◆ Difference between Generative AI and Explainable AI

Aspect	Generative Al	Explainable AI
Goal	Create new content (text, image, audio, etc.)	Make AI decisions understandable to humans
Nature	Creative, produces novel outputs	Analytical, provides reasoning behind outputs
Examples	ChatGPT, DALL·E, Stable Diffusion	SHAP, LIME, Grad-CAM
Challenge	Risk of hallucination, bias in generated data	Complexity of explaining deep models
Applications	Art, writing, design, drug discovery	Healthcare, finance, law, autonomous systems