	T .
Janı	Luoto

Nimi:

TA7 Ekonometrian johdantokurssi

Opiskelijanumero:

välikoe 3.4.2017

Vastaa alla oleviin kysymyksiin ympäröimällä oikea vaihtoehto. Kussakin tehtävässä on neljä vaihtoehtoa, joista yksi on oikein. Oikeasta vastauksesta saa 1 pisteen ja väärästä vastauksesta vähennetään 1/3 pistettä. Jos jättää vastaamatta, saa nolla pistettä.

Tehtävät 1 – 21 perustuvat lineaariseen instrumenttimuuttujaregressiomaliin (IV-regression): $Y_i = \beta_0 + \beta_1 X_i + \beta_2 W_{1i} + \beta_3 W_{2i} + u_i$, jossa Z_{1i} ja Z_{2i} ovat instrumentteja, Y_i on selitettävä muuttuja ja X_i on endogeeninen selittävä muuttuja. Oletetaan, että eksogeenisestä muuttujasta W_{2i} ei ole dataa. Näin ollen estimoimme mallin regressiokertoimet ilman sitä käyttäen TSLS-menetelmää (Two Stage Least Squares).

- 1. Ensimmäisen vaiheen (first stage) populaatioregressiomalli on muotoa:
 - a) $Y_i = \beta_0 + \beta_1 X_i + \beta_2 W_{1i} + \beta_3 W_{2i} + u_i$, jossa on u_i virhetermi.
 - b) $X_i = \pi_0 + \pi_1 Z_{1i} + \pi_2 Z_{2i} + w_i$, jossa w_i on virhetermi.
 - c) $X_i = \pi_0 + \pi_1 Z_{1i} + \pi_2 Z_{2i} + \pi_3 W_{1i} + w_i$, jossa w_i on virhetermi, ja $corr(w_i, W_{2i}) = 0$.
 - d) $X_i = \pi_0 + \pi_1 Z_{1i} + \pi_2 Z_{2i} + \pi_3 W_{1i} + \pi_4 W_{2i} + w_i$, jossa w_i on virhetermi.
- 2. Ensimmäisen vaiheen populaatioregressiomalli voidaan myös kirjoittaa muodossa:
 - a) $Y_i = \beta_0 + \beta_1 X_i + \beta_2 W_{1i} + \beta_3 W_{2i} + u_i$, jossa u_i on virhetermi.
 - b) $Y_i = \beta_0 + \beta_1 X_i + \beta_2 W_{1i} + u_i$, jossa on u_i jossa u_i on virhetermi.
 - c) $X_i = \pi_0 + \pi_1 Z_{1i} + \pi_2 Z_{2i} + v_i$, jossa v_i on virhetermi, ja $corr(v_i, W_{1i}) = 0$.
 - d) $X_i = \pi_0 + \pi_1 Z_{1i} + \pi_2 Z_{2i} + \pi_3 W_{1i} + v_i$, jossa v_i on virhetermi.
- 3. Instrumenttien tehtävä on
 - a) eristää X_i :stä sen eksogeeninen komponentti: $\hat{X}_i = \hat{\pi}_0 + \hat{\pi}_1 Z_{1i} + \hat{\pi}_2 Z_{2i} + \hat{\pi}_3 W_{1i}$.
 - b) eristää X_i :stä sen eksogeeninen komponentti: $\hat{X}_i = \hat{\pi}_0 + \hat{\pi}_1 \hat{v}_i + \hat{\pi}_3 W_{1i}$.
 - c) eristää Y_i :stä sen eksogeeninen komponentti: $\hat{Y}_i = \hat{\pi}_0 + \hat{\pi}_1 Z_{1i} + \hat{\pi}_2 Z_{2i} + \hat{\pi}_3 W_{1i}$.
 - d) eristää Y_i :stä sen eksogeeninen komponentti: $\hat{Y}_i = \hat{\pi}_0 + \hat{\pi}_1 \hat{v}_i + \hat{\pi}_3 W_{1i}$.
- 4. Instrumentit ovat valideja, kun
 - a) ne ovat täsmälleen identifioituvia.
 - b) ne ovat korreloimattomia mallin virhetermin kanssa.
 - c) jompikumpi tai molemmat ovat korreloituneita endogeenisen selittävän muuttujan kanssa.
 - d) ne ovat korreloimattomia virhetermin kanssa, ja lisäksi vähintään toinen instrumentti on korreloitunut selittävän muuttujan kanssa.
- 5. Instrumentit ovat relevantteja (Instrument Relevance), kun
 - a) $corr(u_i,Z_{1i}) = corr(u_i,Z_{2i}) = 0.$
 - b) $\operatorname{corr}(u_i, Z_{1i}) \neq 0$ ja $\operatorname{corr}(u_i, Z_{2i}) \neq 0$.

- c) $corr(X_i, Z_{1i}) = corr(X_i, Z_{2i}) = 0.$
- d) $\operatorname{corr}(u_i, Z_{1i}) \neq 0$ tai $\operatorname{corr}(u_i, Z_{2i}) \neq 0$.
- 6. Instrumentit ovat exogeenisiä (Instrument Exogeneity), kun
 - a) $corr(u_i, Z_{1i}) = corr(u_i, Z_{2i}) = 0.$
 - b) $\operatorname{corr}(u_i, Z_{1i}) \neq 0$ ja $\operatorname{corr}(u_i, Z_{2i}) \neq 0$.
 - c) $corr(X_i,Z_{1i}) = corr(X_i,Z_{2i}) = 0.$
 - d) $\operatorname{corr}(X_i, Z_{1i}) \neq 0$ tai $\operatorname{corr}(X_i, Z_{2i}) \neq 0$.
- 7. Toisen vaiheen populaatioregressiomalli on muotoa (katso tehtävä 3):
 - a) $Y_i = \beta_0 + \beta_1 X_i + \beta_2 W_{1i} + \beta_3 W_{2i} + u_i$.
 - b) $Y_i = \beta_0 + \beta_1 \hat{X}_i + \beta_2 W_{1i} + \beta_3 W_{2i} + u_i$.
 - c) $\hat{Y}_i = \beta_0 + \beta_1 X_i + \beta_2 W_{1i} + \beta_3 W_{2i} + u_i$.
 - d) $\hat{Y}_i = \beta_0 + \beta_1 \hat{X}_i + \beta_2 W_{1i} + \beta_3 W_{2i} + u_i$.
- 8. Kun instrumentteja on kaksi, mallin regressiokertoimet ovat
 - a) ali-identifioituvia (underidentified).
 - b) täsmälleen identifioituvia (exactly identified).
 - c) yli- identifioituvia (overidentified).
 - d) osittain identifioituvia (partly identified).
- 9. Tässä tehtävässä oletetaan, että on vain yksi instrumentti Z_{1i} . Näin ollen mallin regressiokertoimet ovat
 - e) ali-identifioituvia (underidentified).
 - f) täsmälleen identifioituvia (exactly identified).
 - g) yli- identifioituvia (overidentified).
 - h) osittain identifioituvia (partly identified).
- 10. Haluat tietää, ovatko instrumentit Z_{1i} ja Z_{2i} valideja. Tutkit asiaa testaamalla, ovatko instrumentit heikkoja (Weak Instruments). Lisäksi tutkit instrumenttien ekogeenisyyttä testaamalla yli-identifioituvuus rajoitteita (The Overidentifying Restrictions Test). Tätä varten lasket J-testisuureen. Jos instrumentit ovat relevantteja, J-testisuure (The J-Statistic) noudattaa $\chi^2(m-k)$ -jakaumaa, jossa m on instrumenttien lukumäärä ja k on endogeenisten selittävien muuttujien lukumäärä.
 - a) Jos instrumentit ovat heikkoja, niin J-testisuure noudattaa $\chi^2(1)$ -jakaumaa, jossa 1 viittaa χ^2 -jakauman vapausasteeseen.
 - b) Jos instrumentit ovat vahvoja, niin J-testisuure noudattaa χ^2 (1)-jakaumaa, jossa 1 viittaa χ^2 -jakauman vapausasteeseen.
 - c) Jos instrumentit ovat heikkoja, niin J-testisuure noudattaa χ^2 (2)-jakaumaa, jossa 2 viittaa χ^2 -jakauman vapausasteeseen.
 - d) Jos instrumentit ovat vahvoja, niin J-testisuure noudattaa $\chi^2(2)$ -jakaumaa, jossa 2 χ^2 jakauman vapausasteeseen.
- 11. Ensimmäisen vaiheen F-testisuure heikoille instrumenteille perustuu regressioon $X_i = \pi_0 + \pi_1 Z_{1i} + \pi_2 Z_{2i} + \pi_3 W_{1i} + v_i$, jossa v_i on virhetermi. Testattaessa heikkoja instrumentteja F-testillä nolla hypoteesi on
 - a) $\pi_0 = \pi_1 = \pi_2 = \pi_3 = 0$.
 - b) $\pi_0 = \pi_1 = \pi_2 = 0$.
 - c) $\pi_1 = \pi_2 = \pi_3 = 0$.

- d) $\pi_1 = \pi_2 = 0$.
- 12. Edellisen tehtävän nolla hypoteesi hylätään, kun F-testisuure on suurempi kuin
 - a) 4
 - b) 6
 - c) 8
 - d) 10
- 13. Jos kyseessä oleva nolla hypoteesi hylätään, niin silloin
 - a) instrumentit ovat heikkoja.
 - b) instrumentit ovat vahvoja.
 - c) instrumentit ovat eksogeenisia.
 - d) instrumentit ovat endogeenisia.
- 14. J-testisuure (katso tehtävä 10) perustuu regressioon $\hat{u}_i^{TSLS} = \gamma_0 + \gamma_1 Z_{1i} + \gamma_2 Z_{2i} + \gamma_3 W_{1i} + e_i$, jossa
 - a) $\hat{u}_i^{TSLS} = Y_i (\hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 W_{1i}).$
 - b) $\hat{u}_{i}^{TSLS} = Y_{i} (\hat{\beta}_{0} + \hat{\beta}_{1}\hat{X}_{i} + \hat{\beta}_{2}W_{1i}).$
 - c) $\hat{u}_i^{TSLS} = X_i (\hat{\pi}_0 + \hat{\pi}_1 Z_{1i} + \hat{\pi}_2 Z_{2i} + \hat{\pi}_3 W_{1i}).$
 - d) $\hat{u}_i^{TSLS} = \hat{X}_i (\hat{\pi}_0 + \hat{\pi}_1 Z_{1i} + \hat{\pi}_2 Z_{2i} + \hat{\pi}_3 W_{1i}).$
- 15. Kuten edellä mainittiin, J-testisuure perustuu regressioon $\hat{u}_i^{TSLS} = \gamma_0 + \gamma_1 Z_{1i} + \gamma_2 Z_{2i} + \gamma_3 W_{1i} +$
 - e_i. Kun testataan yli-identifioituvuus rajoitteita, niin nolla hypoteesi on
 - a) $\gamma_0 = \gamma_1 = \gamma_2 = \gamma_3 = 0$.
 - b) $\gamma_0 = \gamma_1 = \gamma_2 = 0$.
 - c) $y_1 = y_2 = y_3 = 0$.
 - d) $y_1 = y_2 = 0$.
- 16. Jos yllä oleva nolla hypoteesi hylätään, niin silloin
 - a) instrumentit ovat heikkoja.
 - b) instrumentit ovat vahvoja.
 - c) instrumentit ovat eksogeenisia.
 - d) instrumentit ovat endogeenisia.
- 17. Oletetaan, että $\operatorname{corr}(Z_{1i}, W_{2i}) = 0$, $\operatorname{corr}(Z_{2i}, W_{2i}) = 0$, $\operatorname{corr}(Z_{1i}, X_i) \neq 0$ ja $\operatorname{corr}(Z_{2i}, X_i) \neq 0$. Näin ollen
 - a) β_1 :n TSLS-estimaattori on tarkentuva (consistent).
 - b) β_1 :n TSLS-estimaattori ei ole tarkentuva.
 - c) β_1 :n TSLS-estimaattori on tarkentuva, mutta β_0 :n ei ole.
 - d) β_0 :n TSLS-estimaattori on tarkentuva, mutta β_1 :n ei ole.
- 18. Oletetaan nyt, että $\operatorname{corr}(Z_{1i}, W_{2i}) = 0$, $\operatorname{corr}(Z_{2i}, W_{2i}) = 0$, $\operatorname{corr}(Z_{1i}, X_i) = 0$ ja $\operatorname{corr}(Z_{2i}, X_i) = 0$. Näin ollen
 - a) β_1 :n TSLS-estimaattori on tarkentuva.
 - b) β_1 :n TSLS-estimaattori ei ole tarkentuva.
 - c) β_1 :n TSLS-estimaattori on tarkentuva, mutta β_0 :n ei ole.
 - d) β_0 :n TSLS-estimaattori on tarkentuva, mutta β_1 :n ei ole.
- 19. Oletetaan nyt, että $\operatorname{corr}(Z_{1i}, W_{2i}) = 0$, $\operatorname{corr}(Z_{2i}, W_{2i}) = 0$, $\operatorname{corr}(Z_{1i}, X_i) = 0$ ja $\operatorname{corr}(Z_{2i}, X_i) \neq 0$. Näin ollen

- a) β_1 :n TSLS-estimaattori on tarkentuva.
- b) β_1 :n TSLS-estimaattori ei ole tarkentuva.
- c) β_1 :n TSLS-estimaattori on tarkentuva, mutta β_0 :n ei ole.
- d) β_0 :n TSLS-estimaattori on tarkentuva, mutta β_1 :n ei ole.
- 20. Oletetaan, että $\operatorname{corr}(Z_{1i}, W_{2i}) = 0$, $\operatorname{corr}(Z_{2i}, W_{2i}) \neq 0$, $\operatorname{corr}(Z_{1i}, X_i) \neq 0$ ja $\operatorname{corr}(Z_{2i}, X_i) = 0$. Näin ollen
 - a) β_1 :n TSLS-estimaattori on tarkentuva.
 - b) β_1 :n TSLS-estimaattori ei ole tarkentuva.
 - c) β_1 :n TSLS-estimaattori on tarkentuva, mutta β_0 :n ei ole.
 - d) β_0 :n TSLS-estimaattori on tarkentuva, mutta β_1 :n ei ole.
- 21. Oletetaan, että $\operatorname{corr}(Z_{1i}, W_{2i}) \neq 0$, $\operatorname{corr}(Z_{2i}, W_{2i}) = 0$, $\operatorname{corr}(Z_{1i}, X_i) \neq 0$ ja $\operatorname{corr}(Z_{2i}, X_i) = 0$. Näin ollen
 - a) β_1 :n TSLS-estimaattori on tarkentuva.
 - b) β_1 :n TSLS-estimaattori ei ole tarkentuva.
 - c) β_1 :n TSLS-estimaattori on tarkentuva, mutta β_0 :n ei ole.
 - d) β_0 :n TSLS-estimaattori on tarkentuva, mutta β_1 :n ei ole.
- 22. Muuttujan X_i :n muuttuessa prosentin (1%) Y_i muuttuu $0.01\beta_1$ verran, kun kyseessä on
 - a) lineaarinen log-malli (a linear log model): $Y_i = \beta_0 + \beta_1 \ln(X_i) + u_i$, jossa on u_i virhetermi.
 - b) log-linearinen malli (a log-linear model): $ln(Y_i) = \beta_0 + \beta_1 X_i + u_i$, jossa on u_i virhetermi.
 - c) log-log-malli (a log-log model): $ln(Y_i) = \beta_0 + \beta_1 ln(X_i) + u_i$, jossa on u_i virhetermi.
 - d) ei mikään edellisistä.
- 23. Muuttujan X_i muuttuessa yhden yksikön ($\Delta X_i = 1$) Y_i muuttuu $100\beta_1$ prosenttia, kun kyseessä on
 - a) lineaarinen log-malli (a linear log model): $Y_i = \beta_0 + \beta_1 \ln(X_i) + u_i$, jossa on u_i virhetermi.
 - b) log-linearinen malli (a log-linear model): $ln(Y_i) = \beta_0 + \beta_1 X_i + u_i$, jossa on u_i virhetermi.
 - c) log-log-malli (a log-log model): $\ln(Y_i) = \beta_0 + \beta_1 \ln(X_i) + u_i$, jossa on u_i virhetermi.
 - d) ei mikään edellisistä.
- 24. Muuttujan X_i :n muuttuessa prosentin (1%) Y_i muuttuu prosentin (1%), kun kyseessä on
 - a) lineaarinen log-malli (a linear log model): $Y_i = \beta_0 + \beta_1 \ln(X_i) + u_i$, jossa on u_i virhetermi.
 - b) log-linearinen malli (a log-linear model): $ln(Y_i) = \beta_0 + \beta_1 X_i + u_i$, jossa on u_i virhetermi.
 - c) log-log-malli (a log-log model): $\ln(Y_i) = \beta_0 + \beta_1 \ln(X_i) + u_i$, jossa on u_i virhetermi.
 - d) ei mikään edellisistä.