Advance Operating System Lab (CSD-416) National Institute of Technology, Hamirpur

ADVANCE OPERATING SYSTEM LAB (CSD-416) ASSIGNMENT 3

Simulate the functioning of Lamport's Logical Clock and Vector Clock

AKSHAT RAJ VANSH (185520)

DECEMBER 7, 2021

Computer Science Department
National Institute of Technology, Hamirpur

Contents

1	Lamport's Logical Clock			
	1.1	Code	2	
	1.2	Output		
2	2 Vector Clock		4	
	2.1	Code	4	
	2.2	Output	Į.	

1 Lamport's Logical Clock

1.1 Code

```
def logical_number(spno, seno, rpno, reno):
        if(seno != 1):
            P[spno][seno] = P[spno][seno-1]+1
3
        if(reno != 1):
4
            P[rpno][reno] = max(P[rpno][reno-1], P[spno][seno])+1
6
        else:
            P[rpno][reno] = P[spno][seno]+1
   P = \{1: \{\}, 2: \{\}, 3: \{\}\}
10
11
    inc = 0
12
   n1 = int(input("Enter the no. of events in Process 1 : "))
14
    e1 = [i for i in range(1, n1 + 1)]
15
   P[1] = \{ \text{key: inc + key for key in e1} \}
16
   print(P[1])
   print("\n")
18
19
   n2 = int(input("Enter the no. of events in Process 2 : "))
20
   e2 = [i for i in range(1, n2 + 1)]
21
   P[2] = \{\text{key: inc + key for key in e2}\}
22
   print(P[2])
23
   print("\n")
24
25
   n3 = int(input("Enter the no. of events in Process 3 : "))
26
   e3 = [i for i in range(1, n3 + 1)]
27
   P[3] = \{ \text{key: inc + key for key in e3} \}
   print(P[3])
   print("\n")
30
31
    comm = int(input("Enter the no of communication lines : "))
32
    print("\n")
33
34
    while inc < comm:
35
        sent = int(input("Enter the sending process number : "))
36
        recv = int(input("Enter the receiving process number : "))
37
        sent_event_no = int(input("Enter the sending event number : "))
38
        recv_event_no = int(input("Enter the receiving event number : "))
39
        if sent <= 3 and recv <= 3:</pre>
            print("P{} --> P{}".format(sent, recv))
41
            logical_number(sent, sent_event_no, recv, recv_event_no)
42
            print("New vector value of \"event {}\" in process P{} is : {} \n".format(
43
                 recv_event_no, recv, P[recv][recv_event_no]))
        else:
45
            print("Enter the sent/recv within existing process")
46
        inc += 1
47
   print("Final vectors of the 3 process are")
49
   print(P[1])
50
   print(P[2])
   print(P[3])
```

1.2 Output

Lamport's Logical Clock Outputs

Example Taken

Output

```
Enter the no. of events in Process 1 : 2
{1: 1, 2: 2}
Enter the no. of events in Process 2 : 2
{1: 1, 2: 2}
Enter the no. of events in Process 3 : 2
{1: 1, 2: 2}
Enter the no of communication lines : 2
Enter the sending process number : 2
Enter the receiving process number : 3
Enter the sending event number: 2
Enter the receiving event number : 2
P2 --> P3
New vector value of "event 2" in process P3 is : 5
Final vectors of the 3 process are
{1: 1, 2: 2}
{1: 3, 2: 4}
{1: 1, 2: 5}
PS D:\Coding\Advance Operating System Lab> []
```

2 Vector Clock

2.1 Code

```
def vector_compare(vector1, vector2):
         vector = [max(value) for value in zip(vector1, vector2)]
         return vector
3
    P = \{1: \{\}, 2: \{\}, 3: \{\}\}
    inc = 0
    n1 = int(input("Enter the no. of events in Process 1 : "))
    e1 = [i for i in range(1, n1 + 1)]
    P[1] = \{\text{key: [inc + key, 0, 0] for key in e1}\}
    print(P[1])
11
    print("\n")
12
    n2 = int(input("Enter the no. of events in Process 2 : "))
14
    e2 = [i for i in range(1, n2 + 1)]
15
    P[2] = \{ \text{key: } [0, \text{ inc } + \text{ key, } 0] \text{ for key } in e2 \}
16
    print(P[2])
17
    print("\n")
18
19
    n3 = int(input("Enter the no. of events in Process 3 : "))
20
    e3 = [i for i in range(1, n3 + 1)]
21
    P[3] = \{\text{key}: [0, 0, \text{inc} + \text{key}] \text{ for key in e3}\}
22
    print(P[3])
23
    print("\n")
24
25
    comm = int(input("Enter the no of communication lines : "))
26
    print("\n")
27
    while inc < comm:</pre>
29
         sent = int(input("Enter the sending process number : "))
30
        recv = int(input("Enter the receiving process number : "))
31
         sent_event_no = int(input("Enter the sending event number : "))
32
         recv_event_no = int(input("Enter the receiving event number : "))
33
         if sent <= 3 and recv <= 3:
34
             print("P{} --> P{}".format(sent, recv))
35
             new_vector = vector_compare(
                  P[sent][sent_event_no], P[recv][recv_event_no])
37
             P[recv][recv_event_no] = new_vector
38
             print("New vector value of \end{area} "event {}\" in process P{} is : {} \n".format("new vector value of \end{area}) is the print("new vector value of \end{area}).
39
                  recv_event_no, recv, P[recv][recv_event_no]))
41
             if (recv_event_no + 1) in P[recv]:
42
                  for i in range(recv_event_no + 1, len(P[recv]) + 1):
43
                      P[recv][i] = vector_compare(P[recv][i-1], P[recv][i])
44
         else:
45
             print("Enter the sent/recv within existing process")
46
         inc += 1
47
    print("Final vectors of the 3 process are")
49
    print(P[1])
50
    print(P[2])
    print(P[3])
```

2.2 Output

Vector Clock Outputs

Example Taken

Output

```
Enter the no. of events in Process 1 : 2
{1: [1, 0, 0], 2: [2, 0, 0]}

Enter the no. of events in Process 2 : 2
{1: [0, 1, 0], 2: [0, 2, 0]}

Enter the no. of events in Process 3 : 2
{1: [0, 0, 1], 2: [0, 0, 2]}

Enter the no. of events in Process 3 : 2
{1: [0, 0, 1], 2: [0, 0, 2]}

Enter the no of communication lines : 2

Enter the sending process number : 1
Enter the receiving process number : 2
Enter the sending event number : 2
Enter the receiving event number : 1
P1 --> P2
New vector value of "event 1" in process P2 is : [2, 1, 0]

Enter the sending process number : 3
Enter the receiving process number : 2
Enter the receiving event number : 2
Enter the receiving event number : 2
Enter the receiving of "event 2" in process P3 is : [2, 2, 2]

Final vectors of the 3 process are
{1: [1, 0, 0], 2: [2, 0, 0]}
{1: [2, 1, 0], 2: [2, 2, 0]}
{1: [0, 0, 1], 2: [2, 2, 2]}

arveus@arveus-omen:.../Advance Operating System Lab/3-Clocks/Code$ []
```