

CLASSIFICAÇÃO DOS RESÍDUOS RECICLÁVEIS

ETAPA 1 – Análise e Preparação do dataset WARP

Squad:

Ana Sofia
Elineison Inacio
Felipe Miguel
Franciscleide Lauriano
Iza Francine
Madelu Lopes
Mariana Angeli
Rodrigo Luiz

Objetivos

Avaliar a integridade, consistência e qualidade dos dados antes da modelagem

- Arquivos corrompidos
- Valores ausentes ou inconsistentes
- Outliers nas dimensões
- Imagens duplicadas
- Desequilíbrio entre classes

Preparar o dataset para uso em modelos de machine learning

Metodologia

Análise Exploratória

Foi realizada uma **análise exploratória do dataset** com o objetivo de avaliar a integridade, consistência e qualidade dos dados.

Fonte

A fonte do dataset utilizado foi o Warp Waste Recycling Plant Dataset, disponibilizado na plataforma Kaggle pelo usuário parohod:

https://www.kaggle.com/datasets/parohod/warp-waste-recycling-plant-dataset

Metodologia

Integridade dos Arquivos

- 1. Detectar Arquivos órfãos ou registros inválidos: Verificação da correspondência entre arquivos físicos e caminhos listados no CSV ('image path' no DataFrame df).
- 2. Verificação do formato das imagens: Avaliação do formato das imagens (.jpg, .png etc) usando a coluna 'image_format'.

Consistência dos Metadados

- Inspeção de valores nulos com isnull().sum() da bib. Pandas.
- 2. Estatísticas com describe() para width, height e channels.
- Validação da uniformidade dos canais (todos 3 = RGB) e Detecção de outliers com IQR.

Qualidade das Imagens

- 1. Verificação de imagens corrompidas: Leitura de todas as imagens com PIL.lmage.open() da bib. PIL.
- Tratamento de exceções para identificar arquivos corrompidos ou inacessíveis

Metodologia

Distribuição das Classes

1. Investigar distribuição das classes: Análise com value_counts() da bib. pandas e visualização com gráfico de barras para identificar desequilíbrio.

Verificação de Duplicatas

Identificar duplicações:

- Geração de hash perceptual com 'imagehash.phash()' e hash MD5 a partir do conteúdo binário real do arquivo usano a bib. hashlib.
- 2. Detecção de imagens idênticas com .duplicated(keep=False)
- Verificação de duplicidade nos registros do CSV

Sobre o Dataset

Nome - Fonte

Warp Waste Recycling Plant Dataset Kaggle: parohod/warp-waste-recycling-plant-dataset

Conteúdo

Imagens de resíduos recicláveis categorizadas por tipo.

Categorias

Papel, vidro, metal, plástico, entre outros.

Tamanho Inicial

8.823 imagens em 6 classes e 28 categorias (subclasses).

Integridade

- Correspondência total
 entre CSV e diretório
- Nenhuma imagem ausente
- 100% das imagens em formato .jpg

Qualidade

Nenhuma imagem corrompida ou inacessível foi encontrada

Duplicatas

- Nenhuma imagem
 duplicada visualmente
- Nenhuma duplicidade de nome no arquivo CSV

Distribuição das Classes

Desequilíbrio severo identificado:

- O Classe mais frequente: Plastic bottles
- (6.071 imagens)
- O Classe menos frequente: Canisters
- (149 imagens)
- O A maioria das classes com menos de 1.000 amostras

Risco de viés nos modelos: comprometer o desempenho, especialmente o recall das classes minoritárias

Consistência dos Metadados

- Nenhum valor ausente nos metadados
- Todos os valores de channels iguais a 3 (RGB)
- Foram identificados outliers significativos:
 - → 212 imagens com width > 400
 - \rightarrow 416 com height > 383.5

```
Estatísticas descritivas iniciais das colunas de dimensão:
             width
                        height channels
      8823.000000
                    8823.000000
                                   8823.0
       174.195172
                    182.712909
                                     3.0
mean
std
        90.048484
                     92.396158
                                     0.0
min
        35.000000
                     40.000000
                                     3.0
25%
       105.000000
                    116.0000000
                                     3.0
       150.000000
                    159.0000000
                                     3.0
75%
       223.000000
                    223.000000
                                     3.0
       668.000000
                    703.000000
                                     3.0
max
```

```
Cálculo dos limites para outliers com IQR (antes de qualquer tratamento, se necessário):

Coluna: WIDTH
IQR: 118.0
Limite Inferior: -72.0
Limite Superior: 400.0
Total de outliers em width: 212

Coluna: HEIGHT
IQR: 107.0
Limite Inferior: -44.5
Limite Superior: 383.5
Total de outliers em height: 416

Coluna: CHANNELS
IQR: 0.0
Limite Inferior: 3.0
```

Limite Superior: 3.0

Total de outliers em channels: 0

Conssitência dos Metadados

Riscos causados por outliers:

- Dificultam a padronização das imagens;
- Podem gerar distorções visuais ao redimensionar;
- Prejudicam o desempenho de modelos sensíveis à escala;
- Aumentam o risco de overfitting.

Recomendações para etapa de Pré-Processamento

Desequilíbrio entre Classes

- Aplicar Data Augmentation nas classes minoritárias (ex: rotação, brilho, zoom).
- Utilizar técnicas de Oversampling como SMOTE ou ADASYN nos embeddings de CNNs.
- Combinações híbridas (ex: SMOTE + Tomek Links) podem melhorar generalização.
- Monitorar F1-score e Recall por classe para validar o impacto do balanceamento.
- Repetir a análise sempre que o dataset for atualizado.

Outliers nas Dimensões

- Redimensionar para 224x224 com Resize + Padding para padronizar entradas.
- Alternativas: Resize com Crop Central ou técnicas de Letterbox.
- Revalidar metadados pós-redimensionamento.
- Armazenar imagens redimensionadas em nova pasta organizada por classe.
- Incorporar essa análise ao pipeline contínuo de ingestão de dados.

Conclusões

Pontos Positivos

- Dados bem organizados e consistentes
- Ausência de imagens corrompidas ou duplicadas
- Classes bem definidas semanticamente

Desafios

- Desequilíbrio acentuado entre classes
- Variação extrema nas resoluções das imagens

Ações Recomendadas

- Balanceamento com Augmentation/Oversampling
- Padronização com resize + padding

Próximos Passos

Aplicar Estratégias para Balancear Classes

Aplicar técnicas de augmentations específicas nas classes minoritárias. Avaliar impacto de SMOTE ou ADASYN nos embeddings para balanceamento.

Padronizar Dimensões de Imagem

Redimensionar imagens para 224x224 com resize + padding preservando proporção.

Reaplicar análises

Reaplicar análises exploratórias e validações caso novas imagens sejam incorporadas ao dataset.

Próximos Passos

Selecionar Arquiteturas Base Iniciar testes com EfficientNet-B0 e ResNet-50.

Ajustar Transferência de Aprendizado Congelar camadas base e ajustar top layers no fine-tuning.

Monitorar métricas por classe durante o treinamento

Automatizar pipeline

Automatizar o pipeline de tratamento de dados, para garantir reprodutibilidade e rastreabilidade nas etapas futuras do projeto.

Referências Bibliográficas

Dosovitskiy, A. et al. (2021). *An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale*. arXiv. Disponível em: https://arxiv.org/abs/2010.11929

He, K.; Zhang, X.; Ren, S.; Sun, J. (2016). *Deep Residual Learning for Image Recognition*. CVPR. Disponível em: https://arxiv.org/abs/1512.03385

Huang, G. et al. (2017). *Densely Connected Convolutional Networks*. CVPR. Disponível em: https://arxiv.org/abs/1608.06993

PAROHOD. *WaRP – Waste Recycling Plant Dataset*. Kaggle, 2022. Disponível em:

https://www.kaggle.com/datasets/parohod/warp-waste-recycling-plant-dataset

Sandler, M. et al. (2018). *MobileNetV2: Inverted Residuals and Linear Bottlenecks*. CVPR. Disponível em: https://arxiv.org/abs/1801.04381

Simonyan, K.; **Zisserman, A.** (2014). *Very Deep Convolutional Networks for Large-Scale Image Recognition*. arXiv. Disponível em: https://arxiv.org/abs/1409.1556

Szegedy, C. et al. (2016). *Rethinking the Inception Architecture for Computer Vision*. CVPR. Disponível em: https://arxiv.org/abs/1512.00567

Tan, M.; Le, Q. V. (2019). *EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks*. ICML. Disponível em: https://arxiv.org/abs/1905.11946

Tan, M.; Le, Q. V. (2021). *EfficientNetV2: Smaller models and faster training*. ICML. Disponível em: https://arxiv.org/abs/2104.00298

WaRP Dataset. MIT License, 2025. Disponível em: https://opensource.org/licenses/MIT