← Problem Set #4

Quiz, 5 questions

1 point	
1.	
Consider with mand W_2 Consider feasible solution	er a variation of the Knapsack problem where we have two knapsacks, with integer capacities W_1 and W_2 . al, we are given n items with positive values and positive integer weights. We want to pick subsets S_1, S_2 eximum total value (i.e., $\sum_{i \in S_1} v_i + \sum_{i \in S_2} v_i$) such that the total weights of S_1 and S_2 are at most W_1 are spectively. Assume that every item fits in either knapsack (i.e., $w_i \leq \min\{W_1, W_2\}$ for every item i). For the following two algorithmic approaches. (1) Use the algorithm from lecture to pick a max-value esolution S_1 for the first knapsack, and then run it again on the remaining items to pick a max-value esolution S_2 for the second knapsack. (2) Use the algorithm from lecture to pick a max-value feasible in for a knapsack with capacity $W_1 + W_2$, and then split the chosen items into two sets S_1, S_2 that have most W_1 and W_2 , respectively. Which of the following statements is true?
	Neither algorithm is guaranteed to produce an optimal feasible solution to the original problem.
	Algorithm (1) is guaranteed to produce an optimal feasible solution to the original problem but algorithm (2) is not.
	Algorithm (2) is guaranteed to produce an optimal feasible solution to the original problem but algorithm (1) is not.
	Algorithm (1) is guaranteed to produce an optimal feasible solution to the original problem provided $W_1=W_2.$
1	
point	
Both fil (l.e., cu	he dynamic programming algorithms from lecture for the Knapsack and sequence alignment problems. I in a two-dimensional table using a double-for loop. Suppose we reverse the order of the two for loops. It and paste the second for loop in front of the first for loop, without otherwise changing the text in any are the resulting algorithms still well defined and correct?
	Both algorithms remain well defined and correct after reversing the order of the for loops.
	The Knapsack algorithm remains well defined and correct after reversing the order of the for loops, but the sequence alignment algorithm does not.
	The sequence alignment algorithm remains well defined and correct after reversing the order of the for loops, but the Knapsack algorithm does not.
	Neither algorithm remains well defined and correct after reversing the order of the for loops.

https://www.coursera.org/learn/algorithms-greedy/exam/nrssO/problem-set-4

Consider an instance of the optimal binary search tree problem with 7 keys (say 1,2,3,4,5,6,7 in sorted order) and frequencies $w_1=.05, w_2=.4, w_3=.08, w_4=.04, w_5=.1, w_6=.1, w_7=.23$. What is the minimum-Problem Sets arch time of a binary search tree with these keys?

	tions 2.18
	2.42
	2.9
	2.08
1 poin	t
4	
The fol	llowing problems all take as input two strings X and Y , of length m and n , over some alphabet Σ . Which n can be solved in $O(mn)$ time? [Check all that apply.]
	Compute the length of a longest common subsequence of X and Y . (Recall a subsequence need not be consecutive. For example, the longest common subsequence of "abcdef" and "afebcd" is "abcd".)
	Assume that X and Y have the same length n . Does there exist a permutation f , mapping each $i\in\{1,2,\ldots,n\}$ to a distinct $f(i)\in\{1,2,\ldots,n\}$, such that $X_i=Y_{f(i)}$ for every $i=1,2,\ldots,n$?
	Consider the following variation of sequence alignment. Instead of a single gap penalty $lpha_{gap}$, you're given two numbers a and b . The penalty of inserting k gaps in a row is now defined as $ak+b$, rather
	than $k\alpha_{gap}$. Other penalties (for matching two non-gaps) are defined as before. The goal is to compute the minimum-possible penalty of an alignment under this new cost model.
	than $klpha_{gap}.$ Other penalties (for matching two non-gaps) are defined as before. The goal is to compute
1 poin	than $k\alpha_{gap}$. Other penalties (for matching two non-gaps) are defined as before. The goal is to compute the minimum-possible penalty of an alignment under this new cost model. Compute the length of a longest common substring of X and Y . (A substring is a consecutive subsequence of a string. So "bcd" is a substring of "abcdef", whereas "bdf" is not.)
5. Recall optima subpro	than $k\alpha_{gap}$. Other penalties (for matching two non-gaps) are defined as before. The goal is to compute the minimum-possible penalty of an alignment under this new cost model. Compute the length of a longest common substring of X and Y . (A substring is a consecutive subsequence of a string. So "bcd" is a substring of "abcdef", whereas "bdf" is not.)
5. Recall optima subprothe two Supporting and do	than $k\alpha_{gap}$. Other penalties (for matching two non-gaps) are defined as before. The goal is to compute the minimum-possible penalty of an alignment under this new cost model. Compute the length of a longest common substring of X and Y . (A substring is a consecutive subsequence of a string. So "bcd" is a substring of "abcdef", whereas "bdf" is not.) $ \frac{1}{2} \sum_{i=1}^{n} \frac{1}$
5. Recall optima subprothe two Supporting and do	than $k\alpha_{gap}$. Other penalties (for matching two non-gaps) are defined as before. The goal is to compute the minimum-possible penalty of an alignment under this new cost model. Compute the length of a longest common substring of X and Y . (A substring is a consecutive subsequence of a string. So "bcd" is a substring of "abcdef", whereas "bdf" is not.) $ \frac{1}{2} \sum_{i=1}^{n} \frac{1}$
5. Recall optima subprothe two Supporting and do	than $k\alpha_{gap}$. Other penalties (for matching two non-gaps) are defined as before. The goal is to compute the minimum-possible penalty of an alignment under this new cost model. Compute the length of a longest common substring of X and Y . (A substring is a consecutive subsequence of a string. So "bcd" is a substring of "abcdef", whereas "bdf" is not.) $ \frac{1}{2} \sum_{i=1}^{n} \frac{1}$
5. Recall optima subprothe two Supporting and do	than $k\alpha_{gap}$. Other penalties (for matching two non-gaps) are defined as before. The goal is to compute the minimum-possible penalty of an alignment under this new cost model. Compute the length of a longest common substring of X and Y . (A substring is a consecutive subsequence of a string. So "bcd" is a substring of "abcdef", whereas "bdf" is not.) $ \frac{1}{2} \sum_{i=1}^{n} \frac{1}$

deactivation of my Coursera account.

Learn more about Coursera's Honor Code

Problem Set #4

Quiz, 5 questions

