+	I suiside the tollowing dataset that contains times amounts of the times and	1.5	CO2
	Credit Score.		
	ID Age Income Credit Score		
	1 25 50000 700		
	2 45 90000 800 3 35 75000 650		
1	1-	1	
-	4 50 4 5 720		
	5 ? 40000 600		
1	6 29 58000 ? 647		
	a) Replace the missing value in the: "Income". Credit Score" and "Age"		
1	column and undate the above table.		
	b) Discretize the "Age" attribute into three bins: "Young" (18-30 years),		
1	"Middle-aged" (31-45 years). and "Senior" (46-60 years). Draw a		
	Histogram for that.		1
1		1.5	1
4b	Normalize the "Income" and "Credit Score" attributes using Min-Max		
	normalization to scale the values between 0 and 1 after handling the missing values		
-	in the table above.	7	COS
- Fa	Given the following star schema for a retail company:	-	1
T	Fact Table: Sales		
1	Attributes: DateID, ProductID, StoreID, SalesAmount		
1	Dimension Tables:		
	Data Dimensions		
	Attributes: DateID, Year, Quarter, Month, Day		
	Dundrick Dimondion'		
	o Product Dimension:		1
	Attributes: ProductID, ProductName, Category, Brand		
	Attributes: ProductID, ProductName, Category, Brand Store Dimension:		
	Attributes: ProductID, ProductName, Category, Brand Store Dimension:		
	Attributes: ProductID, ProductName, Category, Brand Store Dimension: Attributes: StoreID, StoreName, City, State, Region		
	Attributes: ProductID, ProductName, Category, Brand Store Dimension: Attributes: StoreID, StoreName, City, State, Region Draw the star schema for the retail company, labelling the fact and dimension		
	Attributes: ProductID, ProductName, Category, Brand Store Dimension: Attributes: StoreID, StoreName, City, State, Region Draw the star schema for the retail company, labelling the fact and dimension tables.	1	
54	Attributes: ProductID, ProductName, Category, Brand Store Dimension: Attributes: StoreID, StoreName, City, State, Region Draw the star schema for the retail company, labelling the fact and dimension	1	

END-SEMESTER EXAMINATION, NOV-DEC, 2024

Course Title. Data Mining

Duration: 03 Hours

Course Code: COCSC16/CDCDC16

Max. Marks: 40

Note: - Attempt all questions in the given order only. Missing data/information (if any), maybe suitably assumed & mentioned in the answer.

Q. No.	Question	Marks	co
QI	Attempt any 2 parts of the following		
la	What is the significance of Data Mining in discovering patterns and insights from large datasets? Consider an example of sales data for predicting customer purchasing behavior. Also discuss the process of converting raw data into useful knowledge for Data mining tasks.	4	1,2
16	Discuss the challenges of applying Data Mining to unstructured data, such as text from social media posts or news articles. Provide an example of using statistical methods in data mining. For example, calculate the mean, median, or mode in a dataset and explain its relevance to data mining.	4	1,2
1	Compare and contrast Supervised Learning and Unsupervised Learning techniques in Data Mining. Provide examples of algorithms for each technique and discuss when each is best applied.	4	1,2
Q2	Attempt any 2 parts of the following		
2a/	Suppose a retail company wants to analyze its sales data across various dimensions such as time, product, and region. Explain how an OLAP cube would be structured to answer queries like "What were the sales for each product category last quarter in each region?"	4	2,3

2h	Given a rel courses, em analyzing st	1	2,3			
2¢	(i)Given a c you would a (ii)For a dat electronics = concept hier	4	1,2,			
Q3	Attempt an	y 2 parts of th	e following			
33	Explain key terms related to association rules, such as support, confidence, and lift. Describe how each of these metrics is calculated and why they are important for evaluating the strength and relevance of association rules in a dataset.					1,4
3b,	Suppose we Find the fre Apriori algo	4	2,4			
		TID	ITEMSETS			
		T1	A, B			
		T2	8, D			
1		T3	8, C		1	
1		T4	A, B, D			
		T5	A, C		1	
		T6 .	В, С			
		T7	A, C			-
		T8	A, B, C, E			
		T9	A, B, C			
	Given: Minimum Support= 2, Minimum Confidence= 50% Discuss the limitations of the Apriori algorithm, and mention scenarios where it might not be the most efficient method for mining association rules.					
3e	conditional frequent iter	pattern bas	nts of FP-Growth, including the and explain how the state the frequent pattern for where minimum support	y help in mining from the following		2,

	T	ransac	ction	ID	Items			
		T	1	T/E	. K. M. N.		15 100	
		T		\{L). E. K. N.	O. Y]		
		· T			{A.E.K.			
		T			C.K.M.U	manufactured.		
	1 -	T	5	1 (E.I.K.).()}		
Q4	Attempt a	ny 2 parts	s of the l	following				
48							4	
	Color	Legs	Height	Smelly	Species			
	White	3	Short	Yes	M			
	Green	2	Tall	No	M			
	Green	3	Short	Yes	M			
	White	3	Short	Yes	M			
	Green	2	Short	No	Н			
	White	2	Tall	No	Н			
	White	2	Tall	No	H			
	White	2	Short	Yes	Н			
lh/	X={Color=G	reen, Leg	s=2, He	ight=Tall,		dentify the spe	ccies	
1	Herecketman			lass				
1	Brightness	+						
	40	20	F	Red				
	40	20	F 13	Red				
	50 60	20	F 13	Red				
	50 60 10	20	H	Red				
	50 60	20 50 90	H H	Red Blue				
	50 60 10	20 50 90 15	H B	Red Blue Blue Red				

	Use KNN to find cla (K=5, use Euclidean L	ss when Brightness is 2 Distance)	0 and Saturation is 35.			
40	Imagine you are analyzedetection with a confus	4	2,3,			
		Predicted: Positive	Predicted: Negative			
	Actual: Positive	70	30			
	Actual: Negative	20	80			
	(i)Calculate all relevant metrics (Accuracy, Precision, Recall, F1 Score). (ii)Discuss the potential implications of this model's performance in a healthcare setting. What are the risks of high false positives and false negatives in this context?					
Q5	Attempt any 2 parts of					
31	Apply the K-Means algorithm with K=2 on the dataset: (10, 5), (12, 7), (8, 6), (13, 8), (9, 5), (11, 6). Start by selecting the first two points as initial centroids. Perform two iterations by assigning each point to the nearest centroid, updating centroids after each iteration. Round Euclidean distances to the nearest whole number and show calculations and final clusters. Explain all the steps in detail				2,5	
56	Explain Density-based clustering algorithms. Using DBSCAN, identify the core points, boundary points and outliers in the following dataset: Points: P(2, 3), Q(3, 4), R(4, 5), S(5, 4), T(3, 3), U(5, 5), V(6, 3) Take Eps = 2 and MinPts = 3.			4	2,5	
5c	individuals: {20, 25, 30, 35, 40, 45, 3 complete linkage agglor	50). Form a dendrogra nerative hierarchical c showing the step-by-st	representing the ages of m using single as well as lustering and explain the tep merging of clusters, rarchical clustering?	4	3,5	