

NASA TECHNICAL MEMORANDUM

NASA TM-75653

INDUCED IR-ABSORPTION SPECTRUM OF GASEOUS NITROGEN

M. O. Bulanin, P. V. Granskiy, and M. V. Tonkov

Translation of "Indutsirovannyy spektr IK-pogloshcheniya
gazoobraznogo azota", Academy of Sciences of the USSR,
Moscow, Report, 1979, pp. 1-6.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D.C. 20546 AUGUST 1979

STANDARD TITLE PAGE

1. Report No. NASA TM-75653	2. Government Accession No.	3. Recipient's Catalog No.	
4. Title and Subtitle INDUCED IR-ABSORPTION SPECTRUM OF GASEOUS NITROGEN		5. Report Date August 1979	
		6. Performing Organization Code .	
7. Author(s) M. O. Bulanin, P. V. Granskiy, and M. V. Tonkov		8. Performing Organization Report No.	
		10. Work Unit No.	
9. Performing Organization Name and Address Leo Kanner Associates Redwood City, California 94063		11. Contract or Grant No. NASw-3199	
		13. Type of Report and Period Covered Translation	
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration, Washington, D.C. 20546		14. Sponsoring Agency Code	
15. Supplementary Notes Translation of "Indutsirovannyy spektr IK-pogloshcheniya gazoobraznogo azota", Academy of Sciences of the USSR, Moscow, Report, 1979, pp. 1-6			
16. Abstract Studied in the article was the induced infrared absorption spectrum of gaseous nitrogen. The coefficient of absorption of highly pure nitrogen was utilized to ascertain spectral dependence.			
17. Key Words (Selected by Author(s))		18. Distribution Statement Unclassified-Unlimited	
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 9	22. Price

INDUCED IR-ABSORPTION SPECTRUM OF GASEOUS NITROGEN

M. O. Bulanin, P. V. Granskiy, and M. V. Tonkov
Leningrad State University, Named for A. A. Zhdanov

/1*

The study of the induced absorption spectrum of nitrogen was carried out on a device which includes a multipass cell with a 1,216 m base, and a vacuum IR-spectrometer with a 300 graduation diffraction network, operating in the first order. In order to eliminate shortwave radiation, an interference filter was utilized. The portion of the scattered light did not exceed 1% in the transmission spectrum of the pumped out cell, and was taken into account during processing of the results.

The spectral dependence of the coefficient of absorption of nitrogen was obtained in a temperature range from 130 to 300° K, the optical path varied from 5 to 50 m, the density of the gas changed within the range of from 13 to 33 AMAG and the spectral width of the slot did not exceed 0.8 cm^{-1} .

High purity nitrogen was subjected to additional purification in columns with KON¹ and adsorbents. The CO₂ content was successfully brought to a level which is not displayed in the spectrum. The only impurity which hinders registration proved to be carbon monoxide, the content of which, according to our determination, was a magnitude on the order of 10⁻⁵%.

The coefficients of absorption $K(\nu) = (p^2 \ell)^{-1} \ln(J_0/J)$, in the region of wave numbers ν from 2,100 cm^{-1} to 2,642 cm^{-1} at room temperature (T=293° K) are given in the table, with a spacing, according to the wave numbers, of 2 cm^{-1} . The error I_{KON} —

*Numbers in the margin indicate pagination in the foreign text.

is determined according to the spread of the experimental values, obtained in different series of measurements.

The high-frequency wing of the zone ($\nu > 2,480$) is well described by the formula $K(\nu) = 0.911 \cdot 10^{18} \cdot \exp(-0.02249\nu)$ cm⁻¹ AMAG⁻².

The values we calculated for the integral intensity of the zone $A = \int K(\nu) d\nu = (3.44 \pm 0.08) \cdot 10^{-4}$ cm⁻² AMAG⁻², as well as the integral $\Gamma = \int \nu^{-1} K(\nu) d\nu = (1.46 \pm 0.03) \cdot 10^{-7}$ cm⁻¹ AMAG⁻² agree well with the data in the literature. Given in study [1] is the value $\Gamma = (1.51 \pm 0.01) \cdot 10^{-7}$ cm⁻¹ AMAG⁻², and the value $A = 3.50 \cdot 10^{-4}$ cm⁻² AMAG⁻² and given in study [2] is the value $\Gamma = 1.48 \cdot 10^{-7}$ cm⁻¹ AMAG⁻². /2

With a change in temperature, as our investigations showed, with the spectrum $K(\nu)/\nu$, the following basically takes place:

1. the integral intensity $\Gamma(T)$ changes,
2. the breadth of the entire spectrum changes proportional to \sqrt{T} .

Thus, we managed, with a good degree of accuracy, to calculate the spectrum with a random temperature T from the spectrum obtained at room temperature, according to the following formula

$$K_T(\nu_0 + x) = \sqrt{\frac{293}{T}} K_{293}(\nu_0 + x \sqrt{\frac{293}{T}}) \frac{\nu_0 + x}{\nu_0 + x \sqrt{\frac{293}{T}}}$$

In the 250-300°K range, this expression makes it possible to calculate the spectrum with an accuracy of no worse than 2%.

REFERENCES

1. Shapiro, M. M., Gush, H. P., Canad. J. Phys., 44, 949 (1966).
2. Sheng, T., Ewing, G. E., J. Chem. Phys., 55, 5425 (1971).

Table of the coefficients of absorption $K(\nu)$ in units of 10^{-6} cm 2 AMAG $^{-2}$ for the induced spectrum of gaseous nitrogen in the region of wave numbers ν from 2,100 cm $^{-1}$ to 2,650 cm $^{-1}$ (zone 1 $\leftarrow 0$) at a temperature of 293 K. 13

ν	$K(\nu)$	ERROR %	ν	$K(\nu)$	ERROR %
2100	.041		2160	.157	
2102	.042		2162	.166	
2104	.052		2164	.175	
2106	.043		2166	.188	
2108	.052	5-10	2168	.196	2-3
2110	.051		2170	.209	
2112	.059		2172	.213	
2114	.056		2174	.226	
2116	.066		2176	.233	
2118	.060		2178	.242	
2120	.066		2180	.255	
2122	.063		2182	.263	
2124	.069		2184	.281	
2126	.067		2168	.285	
2128	.073	4-5	2188	.298	1,5-2
2130	.073		2190	.309	
2132	.075		2192	.320	
2134	.076		2194	.338	
2136	.079		2196	.343	
2138	.081		2198	.361	
2140	.081		2200	.374	
2142	.084		2202	.384	
2144	.093		2204	.401	
2146	.096		2206	.416	
2148	.106	3-4	2208	.427	1-1,5
2150	.110		2210	.443	
2152	.119		2212	.460	
2154	.125		2214	.479	
2156	.138		2216	.500	
2158	.144		2218	.509	

λ	$K(\lambda)$	ERROR %	λ	$K(\lambda)$	ERROR %	L4
2220	.526		2290	I.0II		
2222	.543		2292	I.027		
2224	.560		2294	I.052		
2226	.576		2296	I.077		
2228	.59I		2298	I.I07		
2230	.6I3		2300	I.I44		
2232	.630		2302	I.I85		
2234	.643		2304	I.232		
2236	.664		2306	I.280		
2238	.675		2308	I.339		
2240	.699		23I0	I.390		
2242	.7I3		23I2	I.473		
2244	.728		23I4	I.545		
2246	.749		23I6	I.622		
2248	.760		23I8	I.682		
2250	.769		2320	I.736		
2252	.784		2322	I.802		
2254	.794		2324	I.846		
2256	.8I3	I-I,5	2326	I.877	I-I,5	
2258	.829		2328	I.89I		
2260	.834		2330	I.907		
2262	.845		2332	I.897		
2264	.858		2334	I.873		
2266	.863		2336	I.820		
2268	.874		2338	I.793		
2270	.88I		2340	I.766		
2272	.893		2342	I.703		
2274	.900		2344	I.637		
2276	.9I8		2346	I.576		
2278	.927		2348	I.528		
2280	.935		2350	I.468		
2282	.952		2352	I.424		
2284	.963		2354	I.397		
2286	.978		2356	I.36I		
2288	.993		2358	I.340		

V	K(V)	ERROR %
2360	I.322	
2362	I.305	
2364	I.303	
2366	I.291	
2368	I.292	
2370	I.290	
2372	I.289	
2374	I.297	
2376	I.299	
2378	I.303	I-I,5
2380	I.309	
2382	I.311	
2384	I.322	
2386	I.329	
2388	I.336	
2390	I.342	
2392	I.343	
2394	I.351	
2395	I.337	
2398	I.345	
2400	I.346	I
2402	I.348	
2404	I.329	
2406	I.333	
2408	I.330	
2410	I.326	
2412	I.317	
2414	I.311	
2416	I.295	
2418	I.277	
2420	I.262	
2422	I.251	
2424	I.228	
2426	I.206	
2428	I.193	

V	K(V)	ERROR %
2430	I.180	
2432	I.159	
2434	I.131	
2436	I.109	
2438	I.091	
2440	I.061	
2442	I.032	
2444	I.007	
2446	.979	
2448	.956	
2450	.930	
2452	.896	
2454	.873	
2456	.846	
2458	.818	
2460	.788	
2462	.763	
2464	.735	
2466	.706	
2468	.685	
2470	.657	
2472	.633	
2474	.610	
2476	.588	
2478	.564	
2480	.540	
2482	.519	
2484	.498	
2486	.476	
2488	.457	
2490	.437	
2492	.417	
2494	.401	
2496	.382	
2498	.367	

15

V	K(V)	ERROR %
2500	.350	
2502	.337	
2504	.316	
2506	.305	
2508	.292	I
2510	.277	
2512	.266	
2514	.254	
2516	.242	
2518	.232	
2520	.219	
2522	.211	
2524	.201	
2526	.194	
2528	.185	I-I, 5
2530	.175	
2532	.167	
2534	.159	
2536	.153	
2538	.145	
2540	.140	
2542	.135	
2544	.129	
2546	.125	
2548	.121	I, 5-2
2550	.115	
2552	.109	
2554	.103	
2556	.097	
2558	.093	
2560	.090	
2562	.086	
2564	.081	
2566	.079	
2568	.074	
2570	.072	2-3

V	K(V)	ERROR %
2572	.070	
2574	.066	2-3
2576	.063	
2578	.061	
2580	.057	
2582	.055	
2584	.053	
2586	.051	
2588	.049	3-4
2590	.046	
2592	.044	
2594	.043	
2596	.040	
2598	.040	
2600	.038	
2602	.038	
2604	.034	
2606	.032	
2608	.031	4-6
2610	.029	
2612	.028	
2614	.027	
2616	.025	
2618	.024	
2620	.024	
2622	.023	
2624	.020	
2626	.020	
2628	.019	
2630	.018	6-10
2632	.017	
2634	.016	
2636	.015	
2638	.015	
2640	.015	
2642	.014	

16

7