CPE 233 Winter 2019 Midterm

1. RAT ASSEMBLY MEMORY CONTENTS

Assume the register file and scratch pad memory have the initial values below. Recall that arithmetic instructions load the Carry and Zero flags and Logic instructions clear the Carry flag and load the Zero flag. All other instructions do not affect the flags.

```
LSR: Rd \leftarrow C & Rd(7:1), C \leftarrow Rd(0)

ASR: Rd \leftarrow Rd(7) & Rd(7) & Rd(6:1), C \leftarrow Rd(0)

.CSEG

.ORG 0x30

LD R1, (R4)

ADDC R2, R4

EXOR R30, skip
```

ROL: Rd \leftarrow Rd(6:0) & Rd(7), C \leftarrow Rd(7)

BREQ skip ROL R5 skip: LSR R0

R3, (0xFD)

ST

Modify the register file, scratch ram, cflag and zflag according to the execution of the program. Write your answers in hex.

0 0x04 1 0x62 2 0xFF 3 0x00 4 0x02 5 0x11								
2 0xFF 3 0x00 4 0x02								
3 0x00 4 0x02								
4 0x02								
5 0x11								
30 0x32								
31 0x98								
Register File								

0	0x23
1	0x11
2	0xF9
3	0x1F
4	0x54
253	0x0B
254	0x28
255	0x54
Scratch Pa	d Memory

O CFlag

0 ZFlag

2. CALCULATE THE TIMING OF THE FOLLOWING RAT PROGRAM

Recall the RAT CPU runs at 50MHz, and each instruction takes two clock cycles, so each instruction takes 40ns. Write an equation (in terms of A and B) that calculates the amount of time it takes to execute the following program. You can assume A and B are not zero.

.CSEG

.ORG 0x01

main: MOV R2, A

Out1: ADD R20, 0x01

SUB R2, 0x01

MOV R3, B

Out2: ADD R21, 0x01

SUB R3, 0x01

BRNE Out2

OR R2, 0x00

BRNE Out1

BRN End

SUB R21, 0x03

SUB R22, 0x03

End: OUT R21, 0xFF

OUT R22, 0xFF

3. DRAW A FLOWCHART AND WRITE RAT CODE

Draw a flowchart and write a short RAT assembly program to implement the following:

Read in a value from Port 0x22. If the value is odd, add 3 to the value and output the result to Port 0x23. Otherwise, output the value to port 0x24 ten times (must use a loop). Have your program repeat indefinitely. Use R0 for the input value and R1 for the output value.

.EQU	$IN_PORT = 0x22$
.EQU	OUT_PORT = 0x24
.CSEG	
.ORG 0x0	1
Start:	

4. RAT TIMING DIAGRAMS

a. Fill in all of the boxes for output (out) of this rising-edge triggered flag register. Of the control signals, set has the highest precedence and ld has the lowest precedence.

b. Fill in the 18-bit machine code and complete the timing diagram of the RAT CPU for the following code. Fill in any box that is non-zero.

.CSEG
.ORG 0x23
main: IN R2, 0x64
ADD R2, 0xFF
SUBC R2, 0x32
BRN main

AND	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AND rx,imm	1	0	0	0	0	rX	rX	rX	rX	rX	k	k	k	k	k	k	k	k
OR	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OR rx,imm	1	0	0	0	1	rX	rX	rX	rX	rX	k	k	k	k	k	k	k	k
EXOR	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EXOR rx,imm	1	0	0	1	0	rX	rX	rX	rX	rX	k	k	k	k	k	k	k	k
TEST	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TEST rx,imm	1	0	0	1	1	rX	rX	rX	rX	rX	k	k	k	k	k	k	k	k
ADD	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ADD Ex,imm	1	0	1	0	0	rX	rX	rX	rX	rX	k	k	k	k	k	k	k	k
ADDC	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ACCD rx,imm	1	0	1	0	1	rX	rX	rX	rX	rX	k	k	k	k	k	k	k	k
SUB	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SUB rx,imm	1	0	1	1	0	rX	rX	rX	rX	rX	k	k	k	k	k	k	k	k
SUBC	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SUBC rx,imm	1	0	1	1	1	rX	rX	rX	rX	rX	k	k	k	k	k	k	k	k
CMP	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CMP rx,imm	1	1	0	0	0	rX	rX	rX	rX	rX	k	k	k	k	k	k	k	k
IN	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IN rx,imm	1	1	0	0	1	rX	rX	rX	rX	rX	k	k	k	k	k	k	k	k
OUT	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OUT rx,imm	1	1	0	1	0	rX	rX	rX	rX	rX	k	k	k	k	k	k	k	k
MOV	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MOV rx,imm	1	1	0	1	1	rX	rX	rX	rX	rX	k	k	k	k	k	k	k	k
LD	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LD rx,imm	1	1	1	0	0	rX	rX	rX	rX	rX	k	k	k	k	k	k	k	k
ST	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ST rx,imm	1	1	1	0	1	rX	rX	rX	rX	rX	k	k	k	k	k	k	k	k

BRN	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BRN label	0	0	1	0	0	aa	-	0	0									
CALL	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CALL label	0	0	1	0	0	aa	-	0	1									
BREQ	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ngmg label	0	0	1	0	0	aa	-	1	0									
BRNE	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BRNE label	0	0	1	0	0	aa	-	1	1									
BRCS	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BRCS label	0	0	1	0	1	aa	-	0	0									
BRCC	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BRCC label	0	0	1	0	1	aa	-	0	1									