## **Localization** | UWB-based Wireless Positioning System

#### Introduction

- Due to the weight capacity of the balloon-drone, making it impossible to use laser-based sensors.
- Ultra-wideband sensor uses several anchors to position the tag position.

#### How

- 1) Sets up anchor configuration for precise positioning.
- 2) Mount tag to the robot.
- 3) TDOA protocol for **swarm positioning** (up to 50 drones)
- 4) TWR protocol for single drone control.
- 5) Applied complementary filter for IMU calibration, and LPF for strong Z axis oscillations.
- 6) Applied madgwick AHRS filter for align global axes.





Network of anchors and tags

#### Goal

- Aims for an precise positioning, which enables swarm control.
- Robot capable of autonomous navigation to a target location using real-time positioning based on UWB (Ultrawide Band)

#### **Experiment scenarios**





Experimental env. configuration

X-Y plane

Y-Z Plane output with ground truth



Experimental environment configuration



Real-time Positioning Experiments



Filtered output of tag position (z, x, y)

# **Localization** | UWB-based Wireless Positioning System

## Implementation for Swarm Control





GUI created with Unity for intuitive observation and control



Experimental environment configuration

## Balloon-type drone Implementation





Tag Installation

Anchor Installation

Experimental environment configuration



Real-time positioning result, communication via MQTT network