Consider a discrete-time labor search model with discount rate β and linear utility in consumption. Vacancies are found by workers with probability $p(\theta)$ and vacancies find workers with probability $q(\theta)$ where θ is the ratio of vacancies to unemployed and $p(\theta) = q(\theta)\theta$, p' > 0, p'' < 0, q' < 0, q'' > 0. Separations occur at rate δ . A firm pays κ to post a vacancy. Because of free entry, there is zero expected value to a vacancy.

The productivity of a matched worker and firm is z, which is deterministic. If a worker is not matched, they get $b \in (0, z)$, but lose these benefits each period with probability $\lambda \in (0, 1)$, after which they get 0.

- 1. Write down the problems of matched and unmatched firms and each type of worker.
- 2. Clear the markets!
 - (a) Use free entry of unmatched firms to derive a condition for tightness as a function of the value of a matched firm
 - (b) Use Nash-Bargaining, with worker bargaining weight μ to set up and determine wages. Remember, there is no uncertainty about match productivity.
- 3. Suppose λ decreases. Show explicitly what happens to:
 - (a) Wages
 - (b) The expected duration of unemployment benefits in partial equilibrium, assuming they do not find a job.
 - (c) The expected duration of unemployment (time before finding a job), taking in consideration the equilibrium effects.
 - (d) BONUS: What is the change in the expected duration of benefits inequilibrium?