Mat Dys. Ćwiczenia nr 6 Drzewa rozpinające

Algorytm wyznaczania optymalnych drzew rozpinających Kodowanie drzew

Algorytm wyznaczania kodu Prufera:

Aby wyznaczyć kod Prufera dla danego drzewa T na zbiorze wierzchołków $\{1,...,n\}$, należy:

- a) znaleźć najmniejszy wierzchołek stopnia jeden, powiedzmy v. Niech w będzie wierzchołkiem połączonym z v;
- b) zapisać w oraz usunąć wierzchołek v wraz z krawędzią vw;
- c) Jeśli w drzewie pozostała więcej niż jedna krawędź, to przejść do kroku **a**); w przeciwnym razie zakończyć algorytm.

Otrzymany ciąg liczb jest kodem Prufera dla drzewa T.

Przykład kodowania drzewa: **kod Prufera <1, 1, 4>. Kolejne** Cyfry przy krawędziach oznaczają kolejność usuwania krawędzi.

Przykłady kodowania drzew w grafie pełnym K_4

Algorytm otrzymywania drzewa z kodu Prufera

Dla zadanego ciągu liczb $\langle a_1, a_2, ..., a_{n-2} \rangle$ wybranych w dowolny sposób ze zbioru $\{1, ..., n\}$, aby wyznaczyć drzewo T, dla którego ciąg ten jest kodem Prufera, należy:

- 1. Zapisać dwie listy; pierwszą $< a1, a2,..., a_{n-2}>$ oraz drugą 1,2,...,n i rozpocząć ze zbiorem wierzchołków $\{1,...,n\}$ i pustym zbiorem krawędzi.
- 2. Wyznaczyć z drugiej listy najmniejszą liczbę, powiedzmy *i*, która nie występuje na pierwszej liście. Liczbę *i* łączymy z liczbą z pierwszej listy np. *j* pierwszą z lewej. Usunąć pierwszy element z pierwszej listy, powiedzmy *j*, usunąć *i* z drugiej listy oraz dodać do zbioru krawędzi *ji*.
- 3. Jeśli pierwsza lista zawiera co najmniej jedną liczbę, to przejść do punktu 2. Jeśli pierwsza lista jest pusta, to druga będzie się składać z dokładnie dwóch liczb. Dodać do zbioru krawędzi ostatnią, której wierzchołkami są właśnie te liczby i zakończyć algorytm.

Przykład odkodowania drzewa: <3, 1, 5> oraz

Kolejność kroków

- 1. Para (2,3), *ij* które usuwamy z list
- 2. Para (3,1), które usuwamy z listy
- 3. Para (1,5), które usuwamy z listy
- 4. Para (4,5) ostatnia w drugiej liscie
- 5. Rysowanie grafu na podstawie par krawędzi (*numery krawędzi oznaczają kolejne pary*)

Kodowanie drzew oznakowanych

Każde oznakowane drzewo o wierzchołkach oznaczonych 1,2,...n można przedstawić za pomocą kodu [$k_1, k_2, ..., k_{n-2}$] utworzonego następująco:

- 1. Szukamy wierzchołka stopnia 1 o najmniejszym numerze
- 2. Skreślamy go wraz z incydentną z nim krawędzią
- 3. Numer drugiego wierzchołka incydentnego ze skreśloną krawędzią notujemy jako numer kodu
- 4. Operacje powtarzamy dla pozostałego drzewa, procedurę kończymy w momencie otrzymania drzewa o jednej krawędzi

Kod Prufera drzewa dla drzewa T =<7, 2, 2, 13,13,13, 7, 1, 2, 4, 7>

Zadanie

Narysować drzewo na podstawie kodu prufera:

Kod < 1, 2, 3, 1, 2 > oraz

{1, 2, 3, 4, 5, 6, 7} lista wierzchołków

Kolejność kroków

1. Para (4,1), to krawędź a

2. Para (5,2), to krawędź b

Narysować drzewo na podstawie kodu Prufera <1, 1, 2, 3, 1, 2>

Narysować drzewo na podstawie kodu

<2,1,3,1,5> kod

{1, 2, 3, 4, 5, 6, 7} lista 7 wierzchołków

<2, 1, 8, 8, 1, 5, 5, 2, 3,3>

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} lista 12 wierzch.

Drzewa rozpinające

Drzewo rozpinające grafu (*Spanning Tree*) zawiera wszystkie wierzchołki grafu *G*, zaś zbiór krawędzi drzewa jest podzbiorem zbioru krawędzi grafu.

Dla grafu spójnego G=(V, E) każde drzewa $G_T=(V, E)$ takie, że $T\subseteq E$ nazywamy **drzewem rozpinającym** grafu.

Konstrukcja **drzewa rozpinającego** polega na usuwaniu z grafu tych krawędzi, które należą do cykli. Najmniejszą liczbę krawędzi jaką trzeba usunąć z grafu, aby graf stał się acykliczny (stał się drzewem) nazywa się **rzędem acykliczności grafu** lub **liczbą cyklometryczną**.

Tw. Graf prosty ma drzewo rozpinające wtedy gdy jest spójny.

Przykład drzewa rozpinającego:

Graf pełny K_n ma n^{n-2} drzew rozpinających.

Graf pełny K_4 ma $4^{4-2} = 4^2 = 16$ drzew rozpinających. Np.

Pn, Sn - 1 drzewo

Cn ma n drzew rozpinających

Wyznaczanie liczby drzew rozpinających w dowolnych grafach spójnych

Twierdzenie Kirchhoffa (twierdzenie macierzowe o drzewach) to twierdzenie które pozwala wyznaczyć liczbę drzew rozpinających w grafie. Jest ono uogólnieniem wzoru Cayleya o liczbie drzew rozpinających w grafie pełnym.

Niech G będzie spójnym grafem nieskierowanym o n wierzchołkach Niech M będzie **laplasjanem** grafu, czyli macierzą $n \times n$, taką że:

$$a_{ij} = \begin{cases} \deg(v_i) & \text{dla } i = j \\ -1 & \text{dla } i \neq j \text{ oraz } v_i \text{ sasiaduje z } v_j \text{ .} \\ 0 & \text{w pozostalych przypadkach} \end{cases}$$

Wtedy liczba wszystkich drzew rozpinających grafu G będzie równa dopełnieniu algebraicznemu dowolnego wyrazu macierzy M.

Dopełnienie algebraiczne elementu a_{ii} nazywamy liczbę D_{ii} określoną wzorem:

$$D_{ij} = (-1)^{i+j} \det (A_{ij}),$$

Gdzie Aij = jest macierzą stopnia n-1, powstałą z macierzy M przez usunięcie i-tego wiersza oraz j-tej kolumny.

Przykład 1– wyznaczyć liczbę drzew rozpinających grafu G1:

Tworzymy Laplasian Marafu Gi:

$$M = \begin{bmatrix} 2 \\ -1 \\ -1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} -1 & -1 & 0 & 0 & 0 \\ 3 & -1 & -1 & 0 & 0 \\ -1 & 4 & -1 & -1 & 0 \\ 0 & -1 & -1 & 3 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

Wybieramy dowolny element macierzy M np. a_{61} i obliczmy jego dopełnienie algebraiczne D_{61}

Obliczamy dopełnienie elementu a_{11} czyli D_{11}

$$D_{61} = (-1)^{6+1} \begin{vmatrix} -1 & -1 & 0 & 0 & 0 \\ 3 & -1 & -1 & 0 & 0 \\ -1 & 4 & -1 & -1 & 0 \\ -1 & -1 & 3 & -1 & 0 \end{vmatrix} = (-1)(-1)(-1)^{5+5} \begin{vmatrix} -1 & -1 & 0 & 0 \\ 3 & -1 & -1 & 0 \\ -1 & 4 & -1 & -1 \\ -1 & -1 & 3 & -1 \end{vmatrix} = W_4 - W_3 = +1 * \begin{vmatrix} -1 & -1 & 0 & 0 \\ 3 & -1 & -1 & 0 \\ -1 & 4 & -1 & -1 \\ 0 & -5 & 4 & 0 \end{vmatrix} = (-1)(-1)^{3+4} \begin{vmatrix} -1 & -1 & 0 \\ 3 & -1 & -1 \\ 0 & -5 & 4 \end{vmatrix} = = 4 + 0 + 0 - (0 - 5 - 12) = 21.$$

Graf G1 posiada 21 drzew rozpinających.

Metoda graficzna (wersja 1)

Metoda graficzna polega na usuwaniu krawędzi w grafie, w celu uzyskania grafu, dla którego zanana jest liczba drzew rozpinających.

Graf, z którego usuwany jest krawędź zastępowany jest równoważną **sumą dwóch innych grafów**. Pierwszy to graf z usuniętą krawędzią, a drugi to graf, w którym usuwana krawędź zwiera dwa incydentne wierzchołki (otrzymuje graf stopnia *n*-1). Pojedyncze krawędzie "doczepione" do cyklu w grafie są z definicji ignorowane, (pętle również są ignorowane)

NP. Redukcja podwójnej krawędzi:

Graf GI

The state of the state of

 $= 3 K_3 + C_4 + 2x^2 + 2x^2 = 9 + 4 + 4 + 4 = 21$

Liczba Drzew Rozpinających LDR= 3*3+4+4+4=21

Metoda graficzna (wersja 2)

Liczba Drzew Rozpinających LDR= 21

Przykład. Wyznaczyć 3 drzewa rozpinające grafu G1:

Rozwiązanie: Trzy drzewa (dwa drzewa ścieżkowe)

Przykład 2– wyznaczyć liczbę drzew rozpinających grafu W5:

Graf W5 posiada 45 drzew rozpinających.

Przykład 3– wyznaczyć liczbę drzew rozpinających grafu G3:

Laplasjan M

Obliczamy dopełnienie elementu a₁₁ czyli D₁₁

Wybieramy wiersze/kolumny gdzie są dwa zera

$$= \begin{vmatrix} 4 & -1 & 0 & -5 & 11 \\ -1 & 2 & -1 & 1 & -3 \\ 0 & -1 & 2 & -1 & 0 \\ -1 & 0 & -1 & 4 & -4 \\ -1 & 0 & 0 & 0 & 0 \end{vmatrix} = (-1)(-1)^{5+1} \begin{vmatrix} -1 & 0 & -5 & 11 \\ 2 & -1 & 1 & -3 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 4 & -4 \end{vmatrix} => K_3 = K_3 + K_4 =$$

$$\begin{vmatrix} -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 \end{vmatrix} = K_4 = K_4 - 4K_2 = (-1) \begin{vmatrix} -1 & 0 & 6 & 11 \\ 2 & -1 & -2 & -3 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 0 & -4 \end{vmatrix} = K_4 = K_4 - 4K_2 = (-1) \begin{vmatrix} -1 & 0 & 6 & 11 \\ 2 & -1 & -1 & -8 \\ 0 & -1 & 0 & 0 \end{vmatrix} = (-1)(-1)(-1)^{4+2} \begin{vmatrix} -1 & 6 & 11 \\ 2 & -2 & 1 \\ -1 & -1 & -8 \end{vmatrix}$$

$$= -16 - 6 - 22 - 22 - 1 + 96 = -67 + 96 = 29$$

Graf G3 posiada 29 drzew rozpinających.

Metoda graficzna

$$= \Box + \Delta \Box + 2(\Box) = \Box + \Box + \Box + \Box + \Box + 2(\Box + \Delta) = 2\Box + \Box + \Delta + 2(\Box + \Delta)$$

$$= 5\Box + 3 \Delta = 5.4 + 3.3 = 29$$

Graf G3 posiada 29 drzew rozpinających.

Przykład 4- wyznaczyć liczbę drzew rozpinających grafu G4:

Obliczamy dopełnienie elementu a_{11} czyli D_{11}

$$D_{11} = (-1)^{1+1} \begin{vmatrix} 3 & -1 & -1 & 0 & 0 \\ -1 & 2 & 0 & 0 & -1 \\ -1 & 0 & 4 & -1 & -1 \\ 0 & 0 & -1 & 3 & -1 \end{vmatrix} = K_1 = K_1 + 3K_3 \\ K_2 = K_2 - K_3 = \begin{bmatrix} K_1 = K_1 + 3K_3 \\ K_2 = K_2 - K_3 \end{bmatrix} = 1 + \begin{bmatrix} -1 & 2 & 0 & -1 \\ 11 & -4 & 4 & -1 & -1 \\ -3 & +1 & -1 & 3 & -1 \\ -3 & 0 & -1 & -1 & 3 \end{bmatrix} = (-1)(-1)^{1+3} \begin{vmatrix} -1 & 2 & 0 & -1 \\ 11 & -4 & -1 & -1 \\ -3 & +1 & 3 & -1 \\ -3 & 0 & -1 & 3 \end{vmatrix} = K_1 = K_1 - K_4 \\ K_2 = K_2 + 2K_4 = K_2 + 2K_4 = K_3 = K_1 + 3K_3 = K_1 + 3K_3 = K_2 = K_2 + 2K_4 = K_2 + 2K_4 = K_1 + 3K_3 = K_2 = K_2 + 2K_4 = K_2 + 2K_4 = K_1 + 3K_3 = K_2 = K_2 + 2K_4 = K_2 + 2K_4 = K_1 + 3K_3 = K_2 = K_2 + 2K_4 = K_2 + 2K_4 = K_2 + 2K_4 = K_2 = K_2 = K_2 + 2K_4 = K_2 = K$$

Graf G4 posiada 66 drzew rozpinających.

Metoda graficzna (1)

Gdzie:

oraz

Liczba Drzew Rozpinających LDR= 42+ 24 = 66

Metoda graficzna (2 wersja)

Liczba Drzew Rozpinających LDR= 42+ 24 = 66

Grafy ważone - Minimalne drzewa rozpinające

Podgraf T spójnego grafu G nazywa się jego *drzewem rozpinającym*, jeśli T jest acykliczny i łączy wszystkie wierzchołki G. Jeśli krawędziom przypisane są wagi, i suma wag krawędzi drzewa T jest minimalna, T nazywamy *minimalnym drzewem rozpinającym*. (mst)

Minimalne drzewo rozpinające (ang. MST, minimum spanning tree) – drzewo rozpinające danego grafu o najmniejszej z możliwych sumie wag, tj. takie, że nie istnieje dla tego grafu inne drzewo rozpinające o mniejszej sumie wag krawędzi. Kosztem grafu nazywamy sumę kosztów jego krawędzi Dany jest graf ważony G(V, E, w), gdzie V – zbiór wierzchołków, E – zbiór krawędzi, w – funkcja przypisująca krawędzi E_i wagę (liczbę rzeczywistą lub całkowitą).

Minimalnym drzewem rozpinającym nazywamy drzewo rozpinające T, dla którego suma wag

$$\sum_{e \in T} w(e)$$

jest najmniejsza z możliwych.

Dla niektórych grafów można wskazać wiele drzew rozpinających spełniających tę własność.

Istnieje kilka algorytmów do wyznaczania minimalnego drzewa rozpinającego grafu.

Jeżeli mamy do czynienia z grafem z wagami, to najczęściej interesuje nas znalezienie drzewa rozpinającego o minimalnej wadze, tzn., drzewa z najmniejszą sumą wag jego krawędzi. Aby znaleźć drzewo o żądanych własnościach można zastosować dwa algorytmy:

- Kruskala (algorytm zachłanny)
- Prima (algorytm najbliższego sąsiada)

Algorytm Kruskala Minimalne drzewa rozpinające

Algorytm Kruskala jest oparty o metodę zachłanną i polega na złączeniu wielu poddrzew w jedno za pomocą krawędzi o najmniejszej wadze.

Problem. W spójnym grafie ważonym znaleźć najtańsze drzewo rozpinające. Rozwiązanie. **Algorytm Kruskala.**

Wstępnym krokiem jest sortowanie niemalejące wszystkich krawędzi $S=\emptyset$;

i=1;

while (istnieje krawędź e taka, że graf indukowany przez SU $\{e\}$ nie zawiera cyklu)

 $\{e_i = \text{najtańsza krawędź nie należąca do S taka, że graf indukowany przez SU} \{e_i\}$ nie zawiera cyklu;

```
S=S\cup\{e_i\};

i=i+1; }

return S;
```

- Wybierz krawędź (która nie jest pętlą) e₁ tak, by waga tej krawędzi była najmniejsza.
- Jeżeli krawędzie e₁, e₂, ..., e_k zostały już wybrane, to z pozostałych E \ {e₁, e₂,..., e_k} wybierz krawędź e_{k+1} w taki sposób aby:
 - graf, który składa się tylko z krawędzi e₁, e₂, ..., e_k, e_{k+1} był acykliczny, oraz
 - waga krawędzi e_{k+1} była najmniejsza.
- Jeśli nie można wykonać kroku 2, to STOP.

Przykład. Wyznaczyć minimalne drzewo rozpinające algorytmem Kruskala grafu G9

Na wstępie sortowanie krawędzi wg.wag

i otrzymujemy: ae=1, af=2, bc=2, be=2, de=3, ab=4, fd=6, ef=7, cd=8

Krok 2

Dodajemy do drzewa krawędzie z listy posortowanie, tak aby nowe krawędzie nie tworzyły cykli. Zaczynamy do krawędzi o najmniejszej wadze

Algorytm Kruskala

7 ligot y litt til dioticale				
Lp	Krawędzie drzewa S	Zbiory wierzchołków		
Krok 0		{a, b, c, d, e, f}		
Krok 1	ae=1	{ ae, b, c, d , f}		
Krok 2	ae, af=2	{ aef, b, c, d}		
Krok 3	ae, af, bc=2	{ aef, bc, d}		
Krok 4	ae, af, bc, be=2	{ aefbc, d}		
Krok 5	ae, af, bc, be, de=3	{ aefbcd }		

- Krok 1

Koszt minimalnego drzewa rozpinającego KMDR= 2+1+2+2+3 = 10

Przykład. Wyznaczyć minimalne drzewo rozpinające algorytmem Kruskala grafu G10

Na wstępie sortowanie krawędzi wg.wag

i otrzymujemy :be=1, eg=2, df=2, ac=4, fg=4, de=6, fh=7, bd=7, ab=8, cf=8, hi=9, gi=10, gh=14

Dodajemy do drzewa krawędzie z listy posortowanie, tak aby nowe krawędzie nie tworzyły cykli. Zaczynamy do krawędzi o najmniejszej wadze Algorytm Kruskala

7 ligot y litt i li dollala				
Lp	Krawędzie drzewa S	Zbiory wierzchołków		
Krok 0		{a, b, c, d, e, f, g, h, i}		
Krok 1	be=1	{ a, be, c, d , f, g, h, i}		
Krok 2	df=2	{ a, be, c, df, g, h, i}		
Krok 3	eg=2	{ a, beg, c, df, h, i}		
Krok 4	ac=4	{ ac, beg, df, h, i}		
Krok 5	fg=4	{ ac, begdf, h, i}		
Krok 6	fh=7	{ ac, begdfh, i}		
Krok 7	ab=8	{ acbegdfh, i}		
Krok 8	hi=9	{ acbegdfhi }		

Postać drzewa S w kolejnych krokach algorytmu (niektóre rys. przedstawiają dwa kroki)

Algorytm Prima

Algorytm Prima jest, podobnie jak algorytm Kruskala oparty o metodę zachłanną.

- Budowę minimalnego drzewa rozpinającego zaczynamy od dowolnego wierzchołka, np. od pierwszego.
- Dodajemy wierzchołek do drzewa, a wszystkie krawędzie incydentne umieszczamy na posortowanej wg. wag liście.(krawędzie przekroju V\S)
- Następnie zdejmujemy z listy pierwszy element (o najmniejszej wadze==krawędź lekka) i jeżeli wierzchołek, który łączy nie należy do drzewa, dodajemy go do drzewa, a na liście znów umieszczamy wszystkie krawędzie incydentne z wierzchołkiem, który dodaliśmy.
- Jednym zdaniem: zawsze dodajemy do drzewa krawędź o najmniejszej wadze, osiągalną z jakiegoś wierzchołka tego poddrzewa.

Wyznacz minimalne drzewo rozpinające algorytmem Prima grafu G10

Algorytm Prima

Lp	Zbiór S	Zbiór V∖S	Krawędzie przekroju	Krawędź
			{ S, V\S }	lekka
0		a, b,c,d,e,f,g,h,i	-	-
1	a	b, c, d, e, f, g, h, i	ac=4, $ab=8$	ac=4
2	a, c	b, d, e, f, g, h, i	<i>ab</i> =8, <i>cf</i> =8, <i>cb</i> =11	<i>cf</i> =8
3	a, c, f	b, d, e, g, h, i	fd=2, fg=4, fh=7, ab=8, cb=11	fd=2
4	a, c, f, d	b, e, g, h, i	fg=4, de=6, db=7, fh=7, ab=8,	<i>fg</i> =4
			<i>cb</i> =11	
5	a, c, f, d, g	b, e, h, i	eg=2, de=6, db=7, fh=7, ab=8,	<i>eg</i> =2
			gi=10, cb=11, gh=14,	

6	a, c, f, d, g, e	b, h, i	<i>eb</i> =1, <i>db</i> =7, <i>fh</i> =7, <i>ab</i> =8,	<i>eb</i> =1
			gi=10, cb=11 gh=14,	
7	a, c, f, d, g, e, b	h, i	fh=7, gi=10, gh=14	<i>fh</i> =7
8	a,c,f,d,g, e, b,h	i	hi=9, gi=10	<i>hi</i> =9
9	a,c,f,d,g,e,b,h,i			Koszt = 37

Koszt minimalnego drzewa rozpinającego KMDR= 4+8+2+4+2+1+7+ 9= 37

Kolejne kroki algorytmu Prima

Minimalne drzewo rozpinający grafu G10

Graf G10 posiada 2 minimalne drzewa o koszcie 37, ponieważ krawędź cf=8 można zastąpić krawędzią ab=8. ()

Przykład. Wyznaczyć minimalne drzewo rozpinające algorytmem Prima G9

Algorytm Prima

Lp	Zbiór S	Zbiór V∖S	Krawędzie przekroju {S, V\S}	Krawędź lekka
0		a, b, c, d, e, f	-	-
1	a	b, c, d, e, f	ae=1, af=2, ab=4,	<i>ae</i> =1
2	a, e	<i>b</i> , <i>c</i> , <i>d</i> , <i>f</i>	<i>af</i> =2, <i>eb</i> =2, <i>ed</i> =3, <i>ab</i> =4, <i>ef</i> =7	af=2
3	a, e, f	<i>b</i> , <i>c</i> , <i>d</i>	eb=2, ed=3, ab=4, fd=6	<i>eb</i> =2
4	a, e, f, b	<i>c</i> , <i>d</i>	bc=2, ed=3, fd=6	<i>bc</i> =2
5	a, e, f, b, c	d	<i>ed</i> =3, <i>fd</i> =6, <i>cd</i> =8	<i>ed</i> =3
6	a, e, f, b, c, d			Koszt = 10

Koszt minimalnego drzewa rozpinającego KMDR= 1+2+2+3 = 10

Kolejne kroki algorytmu Prima

Zadania

- Można wykonać po jednym podpunkcie z każdego zadania. (do odesłania)
- Można wykonać dowolną liczbę zadań. (nie odsyłać)

Zadanie1. Narysować drzewo na podstawie kodu Prufera

Zadanie 2. Wyznacz liczbę drzew rozpinających następujących grafów (metoda macierzowa / metoda graficzna)

Zadanie. Wyznaczyć minimalne drzewo rozpinające algorytmem Kruskala i Prima

Graf G33

Graf G34