Processamento Digital de Sinais

Índice

Apresentação	i
Capítulo 1 – Sinais e Sistemas de tempo discreto	1
1.1 Introdução	1
1.2 Sinais de Tempo Discreto	1
1.3 Sinais de tempo discreto básicos	3
1.3.1 Sequência amostra unitária	3 3
1.3.2 Sequência degrau unitário	3
1.3.3 Sequência exponencial	3
1.3.4 Sequência senoidal	4
1.4 Algumas definições sobre sinais de tempo discreto	6
1.4.1 Energia	6
1.4.2 Potência	6
1.4.3 Sequências simétricas e anti-simétricas	8
1.5 Sistemas de tempo discreto	8
1.5.1 Sistemas lineares de tempo discreto	9
1.5.2 Sistemas lineares invariantes ao deslocamento	10
1.5.3 Sistemas causais	10
1.5.4 Sistemas estáveis	11
1.5.5 Representação em diagrama de blocos dos sistemas de tempo discreto	12
1.5.6 Sistemas lineares discretos e invariantes ao deslocamento	13
1.5.7 Soma de convolução	13
1.5.7.1 Propriedades da convolução e sistemas LID	15
1.5.8 Causalidade e estabilidade em sistemas lineares invariantes ao deslocamento	15
1.6 Equação linear de diferenças com coeficientes constantes	17
1.6.1 Solução da equação de diferenças	17
1.6.2 Resposta ao impulso	19
1.7 Representação de sinais e sistemas discretos no domínio da frequência	20
1.8 Transformada de Fourier para sequências	22 23
1.8.1 Espectro densidade de energia	25 25
1.8.2 Propriedades da transformada de Fourier para sinais discretos Exercícios	30
Exercicios	30
Capítulo 2 – Amostragem de sinais	35
2.1 Sinais de tempo discreto	35
2.2 Amostragem de sinais	35
2.3 Teorema da amostragem	36
2.4 Conversão da taxa de amostragem	39
Exercícios	44
Capítulo 3 – A transformada z	45
3.1 Introdução	45
3.2. Definição de convergência	45
3.2.1 Região de convergência	46
3.2.2 Propriedades da região de convergência	50
3.3 Transformada z inversa	51
3.3.1 Método formal pela integral de contorno	51
3.3.2 Método por inspeção	53
3.3.3 Método por expansão em frações parciais	54
3.3.4 Método por expansão em série de potências	57
3.3.5 Método pela divisão longa	58
3.4 Propriedades da transformada z	59
3.4.1. Linearidade	59

3.4.2 Deslocamento no tempo	59
3.4.3 Diferenciação de X(z)	59
3.4.4 Multiplicação por uma sequência exponencial	60
3.4.5 Complexo conjugado de uma sequência	60
3.4.6 Reversão no tempo	60
3.4.7 Convolução de sequências	60
3.4.8 Teorema do valor inicial	60
3.4.9 Teorema do valor final	60
3.4.10 Teorema da convolução complexa	60
3.4.11 Teorema de Parseval	60
3.5 Aplicação em sistemas lineares	61
3.5.1 Representação de um sistema utilizando a transformada z	61
3.5.2 Função do sistema a partir da equação de diferenças	61
3.5.3 Estabilidade e causalidade	63
3.5.4 Obtenção da resposta em frequência a partir do gráfico de polos e zeros	65
Exercícios	67
Capítulo 4 – Transformada discreta de Fourier	71
4.1 Introdução	71
4.2 Transformada de Fourier para tempos discretos	72
4.3 Transformada Discreta de Fourier	73
4.4 Transformada Discreta de Fourier Inversa	75
4.5 Propriedades da TDF	75
4.5.1 Periodicidade	76
4.5.2 Linearidade	70 77
4.5.3 Deslocamento circular x(n)	77
4.5.4 Deslocamento circular em X(k)	78
4.5.5 TDF de sequências reais	78
4.5.6 Convolução circular	78
4.5.7 Convolução linear	80
4.6 Uso da DFT em análise espectral	81
Exercícios	84
Capítulo 5 – Filtros Digitais	85
5.1 Introdução	85
5.2 Projeto de filtros digitais com resposta ao impulso infinita - IIR	85
5.2.1 Método por aproximação das derivadas	86
5.2.2 Método por invariância ao impulso	88
5.2.3.Método por transformação bilinear	91
5.3 Família de filtros analógicos	93
5.3.1 Resposta de Butterworth	93
5.3.1.1 Especificações para o projeto de filtros passa-baixas	95
5.3.2 Resposta de Chebyshev	96
5.3.3 Filtros Elípticos	103
5.3.4 Filtros de Bessel	106
5.4 Exemplo de projeto de um filtro IIR	107
5.4.1 Pelo método por aproximação das derivadas	107
5.4.2 Método por transformação bilinear	108
5.5 Projeto de filtros digitais com resposta ao impulso finita - FIR	110
5.5.1 Definição de um filtro FIR	110
5.5.2 Condição de fase linear	110
5.5.3 Localização dos zeros de um filtro FIR com fase linear	112
5.6 Projeto de filtros FIR por janelas	113
5.7 Projeto de filtros FIR utilizando janela de Kaiser	117
5.8 Projeto de filtros FIR por amostragem em frequência	119
Exercícios	122
Capítulo 6 – Projetos otimizados de filtros	125
	123

6.1 Projeto de filtros FIR <i>equiripple</i>	125
6.2 Aproximação de Padé	131
6.3 Método de Prony	133
6.4 Projeto de filtros FIR pelo método dos mínimos quadrados	134
Bibliografia	139
Apêndices	
A1 – Janelas	141
A2 – FFT	145
A3 – Fórmulas e tabelas	153

Apresentação

Processamento digital de sinais (PDS) é o tratamento que se aplica a um sinal de tempo discreto. Este processamento é executado por meios digitais: computadores ou processadores digitais.

Com o advento dos computadores no início da década de 60, e com o desenvolvimento de algoritmos como o da transformada rápida de Fourier - FFT (Coley and Tukey – 1965), tem início a uma nova etapa no campo de tratamento de sinais e suas aplicações. O desenvolvimento dos microprocessadores (década de 1970) e dos processadores digitais (década de 1980): ampliaram as aplicações de PDS. Por volta de 1975 tem-se a publicação dos primeiros livros importantes no assunto:

- Openheim, A. V. and Schafer, R. W., Digital Signal Processing.
- Rabiner & Gold, Theory and Applications of Digital Signal Processing.

A maior parte dos sinais encontrados são contínuos no tempo, por exemplo, áudio, vídeo, temperatura. Assim, para o tratamento digital, tem-se necessidade de converter as informações em sinais elétricos de tempo contínuos por meio de transdutores e em seguida digitalizar estes sinais, isto é: converter do tempo contínuo para o tempo discreto (digital) utilizando conversores AD. Os principais componentes de um sistema DSP típico são mostrados na figura 1.

- Filtro I: Filtro anti-aliasing
- AD: Conversor analógico digital
- DSP: Computador digital ou processador digital de sinais
- DA: Conversor digital analógico
- Filtro II: Filtro *anti-imaging* (filtro de reconstrução)

Figura 1: Componentes de um sistema para processamento digital de sianis.

Algumas vantagens DSP:

- Programabilidade: Uma implementação em PDS é mais flexível, desde de que é mais fácil de se modificar (o software pode ser atualizado, refeito ou modificado).
- Estabilidade e Repetibilidade: Apresenta melhor qualidade do sinal, estabilidade e repetibilidade no desempenho do sistema, pois o sistema é representado na forma digital e a implementação é através de algoritmos que não dependem de tolerância de componentes, envelhecimento, etc.
- Aplicações especiais: Alguns processamentos são realizados com mais eficiência na forma digital: compressão, filtros com fase linear.

Agumas desvantagens de DSP:

- Não é econômico em aplicações simples: os conversores AD e DA, em geral encarecem o sistema.
- Limitação em frequência, consumo alto de potência.

Algumas aplicações de DSP

Gravação digital de áudio.

- Compressão de sinais de voz e de áudio para aplicações em telefonia digital, armazenamento em CD.
- Implementação de modem.
- Enriquecimento de imagem e compressão.
- Síntese da fala e reconhecimento.
- Predição de sinais ou saídas de sistemas.
- Controle.
- Bioengenharia.
- Geofísica

Este texto tem como objetivo apresentar aos alunos iniciantes uma abordagem dos tópicos básicos da matéria processamento digital de sinais. Alunos de Engenharia Elétrica têm a necessidade de entrar no mercado de trabalho com algum conhecimento básico de PDS. A intenção é apresentar um texto introdutório para ser utilizado em cursos de graduação nas áreas de Engenharia Elétrica, Engenharia de Computação e áreas afins, onde existe a necessidade de se trabalhar com sinais e sistemas de tempo discreto.

No capítulo 1 são introduzidos os conceitos de sinais e sistemas de tempo discreto e como trabalhar com estes nos domínios do tempo e frequência. São apresentados também os sistemas lineares de tempo discretos e suas ferramentas matemáticas de análise. No capítulo 2 são introduzidos o conceito de amostragem periódica de sinais, o teorema da amostragem e seus efeitos. Os capítulos 3 e 4 são reservados, respectivamente, para a apresentação da transformada z e da transformada discreta de Fourier (TDF) com exemplo de aplicação em análise espectral. A transformada rápida de Fourier, através do algoritmo de decimação no tempo, é apresentada no apêndice A-2, para os interessados em conhecer tal algoritmo. E os capítulos 5 e 6 são utilizados para o estudo de projetos de filtros digitas. No capítulo 5 são estudados os projetos clássicos de filtros seletivos em frequência utilizando os filtros com resposta ao impulso infinita (IIR) e os projetos de filtros com resposta ao impulso finita (FIR): projeto por janelas e por amostragem em frequência. No capítulo 6 são apresentados alguns projetos otimizados de filtros, incluindo o algoritmo de Parks-McClellan para filtros FIR e os métodos de aproximação de Padé, de Prony e método dos mínimos quadrados para filtros IIR. Para auxiliar o estudo outros dois apêndices são incluídos: um para janelas (A-1) e um com formulas e tabelas utilizadas em PDS (A-3).

Marcelo Basilio Joaquim