Math. - CC 3 - S1 - Analyse

vendredi 14 décembre 2018 - Durée 1 h

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

Partie 1

1. Soit y une fonction de la variable réelle t. Donner la solution générale de l'équation différentielle

$$y'' = 0 (\mathscr{E}_c)$$

2. On considère la série entière $\sum_{p\geq 0} (-1)^p t^{2p}$. Donner son rayon de convergence et sa somme lorsqu'elle est définie.

3. On considère la série entière $\sum_{p\geq 0} (-1)^p t^{2p+1}.$

Donner son rayon de convergence et sa somme lorsqu'elle est définie.

Partie 2

On considère l'équation différentielle :

$$(1+t^2)y'' + 4ty' + 2y = 0 (\mathcal{E}_h)$$

- Montrer que f est une solution de (\mathcal{E}_h) si, et seulement si, $\varphi: t \mapsto (1+t^2)f(t)$ est une fonction affine de t(on pensera à calculer sa dérivée seconde).
 - $\mathbf{b.}\ \ \text{Montrer que}\ \left\{t\mapsto\frac{1}{1+t^2},t\mapsto\frac{t}{1+t^2}\right\}\ \text{est une base de l'espace des solutions de }(\mathscr{E}_h).$
- 2. Dans cette question, on propose une autre méthode pour déterminer les solutions de l'équation homogène (\mathscr{E}_h) . On recherche les solutions de (\mathcal{E}_h) développables en série entière au voisinage de 0, sous la forme

$$y(t) = \sum_{n=0}^{+\infty} a_n t^n$$
, de rayon de convergence $R > 0$, et où les a_n , $n \in \mathbb{N}$, sont des réels.

- Donner, pour tout $n \in \mathbb{N}$, une relation de récurrence entre a_{n+2} et a_n .
- Pour tout entier naturel p, exprimer a_{2p} et a_{2p+1} en fonction de p, a_0 et a_1 .
- En déduire une expression simplifiée de $\sum_{n=0}^{\infty} a_n t^n$ au voisinage de 0.

Partie 3

Résoudre l'équation différentielle :

$$(1+t^2)y'' + 4ty' + 2y = \frac{1}{1+t^2}$$
 (£)

Fin de l'énoncé d'analyse