Exploring Emotions Towards COVID-19 Vaccines Using NLP and Statistical Analysis

Muhammet Batuhan Doğan <u>mbdn19156@gmail.com</u> Alper Mert <u>alperm76@gmail.com</u>

¹ Hacettepe University, Computer Engineering Department, Software Engineering Research Group, Ankara, Turkey

Abstract

Context: Sentiment Analysis and Classification

Purpose: Analysing Public Sentiment Change About COVID-19 Vaccines During Time From Tweets

Method: VADER for Sentiment Analysis, Logistic Regression for Prediction

Results: Analyzes show that public opinion has changed positively about vaccines. Logistic Regression models

have very good ability on predictions.

Keywords: NLP, Sentiment Analysis, Classification, COVID-19, Vaccines

1. INTRODUCTION

Context The COVID-19 pandemic has significantly impacted global health and socio-economic systems, bringing vaccine development and public acceptance to the forefront. As vaccines became available, public perception and sentiment around them varied widely, influenced by factors such as misinformation, trust in pharmaceutical companies, and governmental communication strategies. Social media platforms like Twitter have become pivotal in shaping and reflecting these public opinions. Analyzing these discussions provides a unique opportunity to understand public sentiment and trends on a large scale, offering insights for improving health communication strategies.

Problem The core problem addressed by this project is understanding public sentiment and perception toward different COVID-19 vaccines, based on discussions on Twitter. Traditional methods like surveys are costly, time-intensive, and limited in scope, making them unsuitable for capturing large-scale, real-time public sentiment. Social media platforms, with their vast amount of user-generated data, offer an alternative means to analyze public opinion. However, extracting meaningful insights from such data poses challenges, including noise, varying contexts, and the need for sophisticated natural language processing (NLP) techniques. This project seeks to fill this gap by systematically analyzing sentiment, trends, and public reactions to different vaccine brands over time.

Solution This project uses NLP techniques and statistical methods to analyze Twitter discussions about COVID-19 vaccines. It aims to classify public sentiment into categories such as negative, non-negative, and possibly neutral, focusing on tweets about different vaccine brands like Pfizer, Moderna, AstraZeneca, and others. By employing sentiment analysis (using models like VADER, or logistic regression), topic modeling, and time-series analysis, the project will uncover sentiment dynamics and trends in response to significant events. Insights derived from this study will help health officials, vaccine producers, and policymakers understand public perception better, enabling more effective communication strategies and fostering trust in vaccination campaigns. These findings may also provide a framework for addressing similar health crises in the future.

Structure of the paper:

Abstract:

A concise summary of the paper, outlining the context, problem, methodology, and key findings. This section provides a snapshot of the study to help readers quickly grasp the essence of the work.

Introduction:

Introduces the study by providing context, defining the problem, presenting the research question, and outlining the goals and objectives. It also briefly highlights the significance and potential impact of the work.

Background and Related Work:

Reviews relevant literature and previous studies on sentiment analysis, topic modeling, and time-series analysis in the context of public health and vaccine sentiment. This section positions the paper within the existing body of knowledge, highlighting the research gap this work addresses.

Methodology:

Details the dataset used (e.g., "COVID-19 All Vaccines Tweets" from Kaggle) and describes the preprocessing steps, sentiment analysis models (e.g., BERT), topic modeling approaches (e.g., LDA), and time-series analysis techniques. This section also explains the evaluation metrics and criteria for comparing model performances.

Experiments:

Presents the experimental setup and results, including comparisons of sentiment analysis models, insights from topic modeling, and observations from sentiment fluctuations over time. This section emphasizes key findings, supported by visualizations like graphs and tables.

Conclusion:

Summarizes the study's contributions and key insights, discusses implications for public health communication, and outlines potential applications. It also acknowledges the study's limitations and suggests directions for future research.

References:

Lists all cited works in a consistent format, ensuring proper attribution for literature, datasets, and tools used.

Appendix:

Includes supplementary materials such as detailed tables, additional visualizations, or extended explanations of methods and results that support the main text but are too detailed for inclusion in the primary sections.

The remainder of this article is organized as follows. Section 2 provides an overview of related studies and highlights the need for this research with respect to related studies. Section 3 explains the methodology employed while carrying out this study... Section 4 provides the results in correspondence with the research questions. Section 5, we provide overall conclusions and plans for future work.

2. BACKGROUND AND RELATED WORK

In Table 1 we summarize these studies with year, title, objective ...

Table 1: Summary of the related work

Year [ref], Venue	Title	Objective	Datasets	Findings w.r.t
2023,Elsevier's	A natural language	Analyze global social	Source: Tweets from	Pfizer was the most
Healthcare Analytics	processing approach	media discussions	Twitter collected	debated vaccine, with
	for analyzing	about COVID-19	using the Twitter	significant concerns
	COVID-19	vaccines to	StreamAPI (Tweepy).	around side effects
	vaccination response	understand public	Timeframe: April 15	on children, pregnant
	in multi-language	perceptions and	to September 15,	women, and
	and geo-localized	attitudes toward	2022.	heart-related issues.
	tweets	different vaccine	Tweet Volume: ~9.5	Language influenced
		brands. By	million total, filtered	tweet content
		examining	to ~8.3 million after	significantly, with
		multilingual and	preprocessing.	some terms causing
		geo-localized tweets		unique biases (e.g., "moderna" in
		using Natural Language Processing		"moderna" in Spanish).
		(NLP) techniques, the		Temporal patterns
		research evaluates		showed a higher
		emotional trends,		spread of negative
		discussion intensity,		news compared to
		and the influence of		positive news.
		language. The study		
		aims to provide		
		data-driven insights		
		to better address		
		public concerns and		
		improve vaccine		
		acceptance.		
2023,MDPI's	TSM-CV: Twitter	Develop a deep	Source:	The model achieved
Electronics	Sentiment Analysis for COVID-19	learning model (TSM-CV) to analyze	Historic Data: "All COVID-19 Vaccines	94.81% accuracy and an F1 score of 97.50%,
	Vaccines Using Deep	public emotions and	Tweets" dataset from	outperforming
	Learning	opinions about	Kaggle (125,906	traditional ML
		COVID-19 vaccines.	tweets). Real-Time	methods like SVM,
		Using historical and	Data: Tweets	KNN, and Naïve
		real-time data	collected using the	Bayes.
		collected from	snscrape tool from	The AUC-ROC value
		Twitter, the research	January 2020 to June	of 92.59% indicated
		aims to understand	2021.	high recognition
		and classify	Volume: 4,554,258	power.
		emotional trends	tweets.	Results emphasized
		related to vaccines.		the effectiveness of
		The proposed model		combining FastText with RMDL for
		integrates methods like FastText,		with RMDL for sentiment analysis.
		VADER, and RMDL		Schument alialysis.
		to evaluate vaccine		
		hesitancy and public		
		attitudes toward		
		vaccination. This		
		analysis seeks to		
		contribute to		
1	I	combating		l
		_		
		misinformation and improving vaccine		

	Г			
		acceptance within		
		society.		
2024,Springer	Emotion Analysis of	Analyze emotional	Source:	Negative sentiments
Nature's Cognitive	COVID-19 Vaccines	tendencies toward	Public datasets:	outweighed positive
Computation	Based on a Fuzzy	COVID-19 vaccines,	NLPCC2013,	ones throughout
	Convolutional	identify shifts in	NLPCC2014,	most months,
	Neural Network	public attitudes	simplified Weibo,	peaking in April.
		about vaccination,	and comment	Word clouds and
		and uncover the	datasets.	LDA identified
		reasons behind these		
				"
		changes.	Microblogs collected	"outbreak" as
			via Python crawlers	common themes tied
			from January to	to negative
			September 2021.	sentiments.
			Volume: 31,335	Emotional trends
			Chinese microblogs	were linked to
			after preprocessing.	vaccination rates and
				public events,
				highlighting the
				importance of
				policy-driven
				^
				communication
				strategies.
2023, Expert Systems	Covid-19 vaccine	Investigate public	Source: Twitter API	Key findings indicate
With Applications	hesitancy: Text	hesitancy toward	Timeframe:	that public sentiment
	mining, sentiment	COVID-19 vaccines	September 26, 2021 –	about COVID-19
	analysis and machine	by analyzing Twitter	November 7, 2021	vaccines has become
	learning on	data using text	Size: 42,796 tweets	more positive over
	COVID-19	mining, sentiment		time. The
	vaccination Twitter	analysis, and		best-performing
	dataset	machine learning. It		model combined
		aims to identify the		TextBlob sentiment
		sentiment trends over		scores with TF-IDF
		time, understand the		vectorization and
		l '		
		key themes in		LinearSVC,
		vaccine-related		achieving an accuracy
		discussions, and		of 96.75%. This
		evaluate the		suggests that
		effectiveness of		attitudes toward
		different sentiment		COVID-19 vaccines
		analysis tools and		are improving and
		machine learning		highlights the
		models in classifying		efficacy of combining
		public opinion. This		sentiment analysis
		research seeks to		with machine
				l
		provide insights into		learning for social
		the changing		media data analysis.
		attitudes toward		
		COVID-19 vaccines		
		and the factors		
		influencing vaccine		
		hesitancy.		
2021, Vaccines	COVID-19 Vaccine	Explore public	Source: Brandwatch	Key findings include
	and Social Media in	emotions and	platform, tweets in	a decrease in
	1		I range of the state of the	1

the U.S.: Exploring	discussions	English from the	negative sentiments
Emotions and	regarding COVID-19	United States	and an increase in
Discussions on	vaccines in the U.S.	Timeframe:	non-negative
Twitter	using Twitter data. It	November 1, 2020 –	sentiments about
	aims to identify the	February 28, 2021	COVID-19 vaccines
	sentiment trends over	Size: 185,953 tweets	over time. Negative
	time, discover key		tweets focused more
	topics in		on vaccine hesitancy
	vaccine-related		and political issues,
	conversations, and		while non-negative
	compare the focus of		tweets highlighted
	negative and		vaccination stories,
	non-negative tweets.		effectiveness, and
			management. The
			results demonstrate
			the potential of using
			social media data for
			public health
			insights, particularly
			in tracking sentiment
			trends and
			identifying key
			public concerns.

Both studies show the potential of using social media data for public health research, demonstrating its ability to track sentiment trends and identify key themes in vaccine discussions. These systems may be beneficial to understand public opinion about micro or macro health problems and governments/healthcare organizations may determine their strategies according to those opinions.

There are a lot of fake accounts on social media sites. These accounts may take the majority by posting spam tweets. This can lead normal people to impose wrong ideas. It is hard to detect fake accounts, and these systems' results can be affected by fake accounts.

Some of the models used may have high computational costs in real-time applications, especially the multi-language models may be very expensive.

3. METHODOLOGY

1. Business Requirements

The objective of this project is to analyze public sentiment, opinions, and trust levels regarding COVID-19 vaccines using Twitter data. The scope includes assessing general sentiment toward different vaccine brands such as Biontech and Sinovac, analyzing changes in public opinions over time, and conducting location-based analysis to identify regional differences in sentiment. The research focuses on answering questions about the general sentiment toward each vaccine brand, regional differences in sentiment, and changes in public trust levels over time.

2. Data Requirements

The analysis will utilize a dataset from Kaggle containing 228,208 tweets. This dataset includes features such as user information, tweet content, hashtags, and engagement metrics. These features provide comprehensive details for conducting sentiment analysis, exploring temporal trends, and performing regional comparisons.

3. Data Preparation

The preparation phase involves understanding the dataset, exploring its characteristics, and preparing it for analysis. Exploratory data analysis will help uncover trends and anomalies, while visualization techniques will provide insights into the distribution and patterns within the data. Preprocessing steps include cleaning the dataset by removing irrelevant information, handling missing values, and preparing the text for analysis through tokenization and the removal of stop words.

The preparation phase involves understanding the dataset, exploring its characteristics, and preparing it for analysis. Exploratory data analysis will help uncover trends and anomalies, while visualization techniques will provide insights into the distribution and patterns within the data. Preprocessing steps include cleaning the dataset by removing irrelevant information, handling missing values, and preparing the text for analysis through tokenization and the removal of stop words.

We transformed the tweets lowercase to get rid of meanings of uppercase. Then we transformed the date features into datetime format to do time serial analysis. We filled the empty data in "hashtag", "user_location" features. Then we dropped the features "user_name", "source", "user_description", "user_friends" features since we thought those are irrelevant.

As nlp preprocessing techniques, we removed stop words from tweets. We used predefined stop word list to get rid of all such words. We also preprocessed the tweets to eliminate url, emoji.

4. Model Development

We used VADER to do sentiment analysis. VADER is effective on sentiment classification. We calculated "positive", "negative" and "neutral" possibilities for each tweets by analysing the words in tweets. Then we calculated compound scores for each tweet. We classified

sentiments as "Positive", "Negative" and "Neutral" by using compound scores. We decreased the threshold from 0.05 to 0.03 to decrease the count of Neutral tweets.

After made the visualizations, we implemented Logistic Regression model. We chose logistic regression for this project due to the following reasons:

- a. **Simplicity and Interpretability:** Logistic regression is straightforward to implement and provides interpretable results. The coefficients of the model indicate the contribution of each feature (e.g., TF-IDF scores of words) to the classification task, helping us understand the importance of specific terms in predicting sentiment.
- b. Efficiency for High-Dimensional Data: In text classification tasks, where the input data is transformed into high-dimensional TF-IDF vectors, logistic regression performs well without requiring extensive computational resources. Its ability to handle sparse data effectively aligns with our preprocessed TF-IDF features.
- c. **Good Baseline Model:** Logistic regression is often used as a baseline for classification tasks. Its performance can set a benchmark to evaluate more complex models like support vector machines, random forests, or deep learning models, if needed.
- d. **Compatibility with TF-IDF Features:** Logistic regression is inherently linear, making it a good match for the numerical TF-IDF vectors, where each dimension represents the importance of a word or phrase. This makes the model particularly suitable for text classification tasks, such as sentiment analysis.
- e. **Probabilistic Outputs**: Logistic regression outputs probabilities for each class, allowing us to interpret not only the predicted class but also the confidence of the prediction. This is especially useful in tasks where understanding uncertainty is critical

We used two logistic regression models: One is default model(parameters are not changed, default), the other is optimized model. After doing GridSearch, we found that C=10(C: hyperparameter controls the strength of the regularization)[6] and penalty=12 (The L2 penalty in logistic regression, also known as L2 regularization or Ridge regularization, is a technique used to prevent overfitting by adding a penalty term to the loss function that is proportional to the sum of the squares of the model's coefficients.)[7] are best parameters.

5. Training, Evaluation, and Fine-tuning

We splitted our data as training(60%), validation(20%) and test(20%). We trained our default Logistic Regression model with using preprocessed texts to make the model learn the relationship between TF-IDF vectors and classified sentiments.

We evaluated the model's performance with validation set to ensure the generalization and avoid overfitting. We used predefined key evaluation metrics such as accuracy, precision, recall to evaluate our models.

After we finished the evaluation of default model, we did grid search operation to find optimal parameters for Logistic Regression in our task. We then defined the C parameter as 10 and penalty parameters as 12. Then we did the same process to test our parameter changed model.

6. Deployment and Predictions

The deployment phase of this project focuses on applying the trained sentiment analysis model to real-world textual data, enabling automated sentiment classification for incoming content. This section outlines the deployment considerations, the process for predicting sentiment, and the practical implications of our results.

The deployed model classifies text into three sentiment categories: **Positive**, **Negative**, and **Neutral**. Predictions are made in the following steps:

- Preprocessing: Input text is preprocessed to remove noise, lowercased, and transformed.
- 2. Sentiment Analysis: Compound Score calculations for input text
- 3. **Prediction**: The Logistic Regression model predicts sentiment probabilities, assigning the highest probability class to the input text.
- 4. **Output**: Results include the predicted sentiment label and confidence scores for each class, offering interpretable outcomes.

4. EXPERIMENTS

4.1 EXPERIMENTAL SETUP

4.1.1 DATASETS

We used the "vaccination_all_tweets.csv"[8] dataset from kaggle. This dataset contains 228208 rows and 16 columns. This dataset includes features such as user information, tweet content, hashtags, and engagement metrics. These features provide comprehensive details for conducting sentiment analysis, exploring temporal trends, and performing regional comparisons. The most important feature of our data is "text" obviously. Date feature is also important to do time serial analysis.

4.2 EXPERIMENT RESULTS

We calculated a classification report for both cases of our models. Here are the reports:

Default Model's Validation Classification Report:

Validation Set Classification Report:

precision recall f1-score support

 Negative
 0.91
 0.76
 0.83
 6726

 Neutral
 0.92
 0.98
 0.95
 22023

 Positive
 0.95
 0.93
 0.94
 16892

accuracy 0.93 45641 macro avg 0.93 0.89 0.91 45641 weighted avg 0.93 0.93 0.93 45641

Default Model's Test Classification Report:

Test Set Classification Report:

precision recall f1-score support

Negative 0.91 0.77 0.83 6725 Neutral 0.92 0.98 0.95 22024 Positive 0.95 0.93 0.94 16893

accuracy 0.93 45642 macro avg 0.93 0.89 0.91 45642 weighted avg 0.93 0.93 0.93 45642

Parameter Changed Model's Validation Classification Report:

Validation Set Classification Report:

precision recall f1-score support

Negative 0.89 0.80 0.85 6726 Neutral 0.94 0.98 0.96 22023 Positive 0.95 0.94 0.94 16892

accuracy 0.94 45641 macro avg 0.93 0.91 0.92 45641 weighted avg 0.94 0.94 0.94 45641

Parameter Changed Model's Test Classification Report:

Test Set Classification Report:

precision recall f1-score support

Negative 0.89 0.81 0.85 6725 Neutral 0.94 0.98 0.96 22024 Positive 0.95 0.93 0.94 16893

accuracy 0.94 45642 macro avg 0.93 0.91 0.92 45642 weighted avg 0.94 0.94 0.94 45642

5. CONCLUSION

Both model's performances are very good, maybe too good. There may be overfitting risk, or the tweets may be easy classifiable according to sentiments. Since dataset is huge and we cannot control the tweets one by one, it might be useful to try it with a dataset that includes tweets where it is certain that the emotions are difficult to understand.

We wanted to use more complex sentiment analyser than VADER. We tried to implement BART and wanted to compare their analysis, but we had some issues(most probably because of versions), so we used only VADER to do sentiment analysis. Using more complex sentiment analysis may change the results.

FUNDING

There is no funding in this project.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

DATA AVAILABILITY

https://www.kaggle.com/datasets/gpreda/all-covid19-vaccines-tweets

REFERENCES

- [1]: https://pmc.ncbi.nlm.nih.gov/articles/PMC10088351/
- [2]: https://www.mdpi.com/2079-9292/12/15/3372
- [3]: https://link.springer.com/article/10.1007/s12559-022-10068-6
- [4]: https://www.sciencedirect.com/science/article/pii/S0957417422017407
- [5]: https://pmc.ncbi.nlm.nih.gov/articles/PMC8540945/

[6]:

 $https://medium.com/@rithpansanga/logistic-regression-and-regularization-avoiding-overfitting-and-improving-generalization-e9afdcddd09d\#:\sim:text=The\%20\%E2\%80\%9CC\%E2\%80\%9D\%20hyperparameter\%20controls\%20the,and\%20a\%20more\%20complex\%20model,$

[7]

 $\label{lem:https://www.geeksforgeeks.org/what-is-l2-penalty-in-logistic-regression/#:~:text=in%20Logistic%20Regression%3F-, Answer%20%3A%20The%20L2%20penalty%20in%20logistic%20regression%2C%20also%20known%20as,2%20min%20read$

[8]: https://www.kaggle.com/datasets/gpreda/all-covid19-vaccines-tweets

Github

Link: https://github.com/AlperMRT/Data-Intensive-Applications-Project-COVID-19-Vaccines-Sentime https://github.com/AlperMRT/Data-Intensive-Applications-Project-COVID-19-Vaccines-Sentime https://github.com/AlperMRT/Data-Intensive-Applications-Project-COVID-19-Vaccines-Sentime https://github.com/alperMRT/Data-Intensive-Applications-Project-COVID-19-Vaccines-Sentime https://github.com/alpermat/ h