Higher-Order unification for free

Reusing the meta-language unification for the object language

Fissore Davide & Enrico Tassi

September 10, 2024

Supported by ANR-17-EURE-0004

Metaprogramming for type-class resolution

- Our goal:
 - Type-class solver for Coq in Elpi
 - ► The goal of a type-class solver is to back-chain lemmas taken from a database of 'type-class instances'.
- Our problem:
 - Elpi cannot unify correctly Coq's HO terms
 - ▶ But we want/need to use Elpi's unification algorithm
- Our contribution:
 - Reusing the meta-language unification for the object language

A type-class problem in Coq

```
Instance forall_dec: \forall A P, Finite A \rightarrow (* r3 *) (\forall x:A, Decision (P x)) \rightarrow Decision (\forall x:A, P x).

Goal Decision (\forall x: fin \ 7, nfact \ x \ 3). (* \ q \ *)
```

A type-class problem in Coq

```
Instance forall_dec: \forall A \ P, Finite A \rightarrow (* \ r3 \ *) (\forall x : A, \ Decision \ (P \ x)) \rightarrow Decision \ (\forall x : A, \ P \ x).

Goal Decision (\forall x : \ fin \ 7, \ nfact \ x \ 3). (* \ g \ *)

• \{A \mapsto fin \ 7; P \mapsto \lambda x. (nfact \ x \ 3)\}
```

A type-class problem in Coq

```
Instance forall_dec: \forall A \ P, Finite A \rightarrow (* \ r3 \ *) (\forall x:A, \ Decision \ (P \ x)) \rightarrow Decision \ (\forall x:A, \ P \ x).
```

Goal Decision (
$$\forall x$$
: fin 7, nfact x 3). (* g *)

- $\{A \mapsto fin \ 7; P \mapsto \lambda x. (nfact \ x \ 3)\}$
- subgoals:

```
Finite (fin 7) and (\forall x:A, Decision ((\lambda x.(nfact x 3)) x))
```

Coq terms in elpi: HOAS

Coq	Elpi
f	c"f"
f∙a	app[c"f", c"a"]
$\lambda(x:T).F\cdot x$	<pre>fun T (x\ app[F, x])</pre>
$\forall (x:T), Fx$	<pre>app[c"f", c"a"] fun T (x\ app[F, x]) all T (x\ app[F, x])</pre>

- variable bindings and substitutions are for free
- easy term inspection

The above type-class problem in elpi

```
Instance forall_dec: \forall A P, Finite A \rightarrow (* r3 *) (\forall x:A, Decision (P x)) \rightarrow Decision (\forall x:A, P x).

Goal Decision (\forall x: fin 7, nfact x 3). (* g *)
```

The above type-class problem in elpi

Solving the goal in elpi

What we propose

- Compilation:
 - ▶ Recognize *problematic subterms* $p_1, ..., p_n$
 - ▶ Replace p_i with fresh unification variables X_i
 - ► Link p_i with X_i
 A link is a suspended unification problem
- 2 Runtime:
 - ▶ Unify p_i and X_i only when some conditions hold
 - Decompile remaining links

The idea

Some notations

- P: the unification problems in the object language (ol)
- Q: the unification problems in the meta-language (ml)
- L, M: the link store, the unification-variable map store

- $\operatorname{run}_o(\mathbb{P}, n) \mapsto \rho$: the run of n unif pb in the ol
- $\operatorname{run}_m(\mathbb{P},n)\mapsto \rho'$: the run of n unif pb in the ml
- $\operatorname{step}_o(\mathbb{P}, i, \rho_{i-1}) \mapsto \rho_i$: the execution of the i^{th} unif pb in ol
- $\operatorname{step}_m(\mathbb{Q}, i, \sigma_{i-1}, \mathbb{L}_{i-1}) \mapsto (\sigma_i, \mathbb{L}_i)$: the exec of the i^{th} unif pb in ml

Proven properties

Run Equivalence $\forall \mathbb{P}, \forall n, \text{ if } \mathbb{P} \subseteq \mathcal{L}_{\lambda}$

$$\operatorname{run}_o(\mathbb{P},n)\mapsto\rho\wedge\operatorname{run}_m(\mathbb{P},n)\mapsto\rho'\Rightarrow\forall s\in\mathbb{P},\rho s=_o\rho' s$$

Simulation fidelity $\forall \mathbb{P}$, in the context of run_o and run_m , $\forall i \in 1 \dots n$,

$$\operatorname{step}_o(\mathbb{P},i,\rho_{i-1}) \mapsto \rho_i \Leftrightarrow \operatorname{step}_m(\mathbb{Q},i,\sigma_{i-1},\mathbb{L}_{i-1}) \mapsto (\sigma_i,\mathbb{L}_i)$$

Compilation round trip If the compilation of s gives the term t, the links $I \in \mathbb{L}$ and the mapping $m \in \mathbb{M}$ and $\sigma = \{A \mapsto t\}$ and $X \mapsto A \in \mathbb{M}$ then $\langle \sigma, \mathbb{M}, \mathbb{L} \rangle^{-1} \mapsto \rho$ and $\rho X =_{o} \rho s$.

Problematic subterm recognition

Sketch of $\diamond \beta$ terms : the problem

• An example: given a bound variable x

$$\begin{split} \mathbb{P} &= \{ & Y \cdot \mathbf{x} \simeq_o f \cdot \mathbf{x} \cdot \mathbf{a} \\ \mathbb{Q} &= \{ \text{app[A, x]} \simeq_m \text{app[c"f",x,c"a"]} \ \} \\ \mathbb{M} &= \{ Y \mapsto \mathbf{A} \} \\ \end{split}$$

Unification fails...

Sketch of $\diamond \beta$ terms : the solution

• An example, let x be a bound variable:

$$\begin{split} \mathbb{P} &= \{ \ Y \cdot x \simeq_o \ f \cdot x \cdot a \\ \mathbb{Q} &= \{ \ A \ x \simeq_m \operatorname{app}[\mathbf{c''f''}, x, \mathbf{c''a''}] \ \} \\ \mathbb{M} &= \{ \ Y \mapsto A \ \} \end{split}$$

- Unification of \mathbb{Q}_0 gives: $\{A \mapsto (w \setminus app[c"f", w, c"a"])\}$
- Decompilation of A gives $\{Y \mapsto \lambda x.f \cdot x \cdot a\}$

Sketch of $\diamond \eta$ terms

- $\lambda x.s \in \Diamond \eta$, if $\exists \rho, \rho(\lambda x.s)$ is an η -redex
- Detection of $\diamond \eta$ terms is not trivial:

```
\lambda x.f \cdot (A \cdot x) \qquad \qquad \in \land \eta \quad \rho = \{ A \mapsto \lambda x.x \}
\lambda x.f \cdot (A \cdot x) \cdot x \qquad \qquad \in \land \eta \quad \rho = \{ A \mapsto \lambda x.a \}
\lambda x.\lambda y.f \cdot (A \cdot x) \cdot (B \cdot y \cdot x) \qquad \in \land \eta \quad \rho = \{ A \mapsto \lambda x.x ; B \mapsto \lambda y.\lambda x.y \}
\lambda x.f \cdot x \cdot (A \cdot x) \qquad \notin \land \eta
```

Sketch of $\diamond \eta$ link : the problem

- We have recognized the $\diamond \beta$ subterm $Y \cdot x$
- But the unification problem in $\mathbb Q$ raise a failure...

Sketch of $\diamond \eta$ link: the solution

```
\begin{split} \mathbb{P} &= \{ & f \simeq_o \lambda x. (f \cdot (Y \cdot x)) \} \\ \mathbb{Q} &= \{ c "f" \simeq_m A \} \\ \mathbb{M} &= \{ Y \mapsto B \} \\ \mathbb{L} &= \{ \vdash A =_\eta \text{ fun } (x \land \text{app[c"f", B x]) } \} \end{split}
```

- After unification of c"f" with A,
 fun (x\ app[c"f", x]) is unified with fun (x\ app[c"f", B x])
 B is assigned to x\x
- Decompilation will assign $\lambda x.x$ to Y

Sketch of $\diamond \mathcal{L}_{\lambda}$ links: the problem

- Note that $Y \cdot a$ is not a $\diamond \beta$: a is not a bound variable
- We can solve \mathbb{Q}_0 , and assign fun $(x \land c"a")$ to A
- However, we fail to solve \mathbb{Q}_1 ...

Sketch of $\diamond \mathcal{L}_{\lambda}$ links: the solution

```
\begin{split} \mathbb{P} &= \{ \ Y \simeq_o \lambda x.a & (Y \cdot a) \simeq_o a \ \} \\ \mathbb{Q} &= \{ \ A \simeq_m \text{ fun } (x \setminus c"a") & B \simeq_m c"a" \ \} \\ \mathbb{M} &= \{ \ Y \mapsto A \ \} \\ \mathbb{L} &= \{ \ \vdash B =_{\mathcal{L}_{\lambda}} A \ (c"a") \ \} \end{split}
```

- After unification of A with fun (x\ c"a"), the rhs of the L_λ-link becomes c"a"¹, the link is triggered and B is unified to c"a"
- Decompilation will assign $\lambda x.a$ to Y

¹after a β -reduction step

Going further: the Constraint Handling Rules

- Elpi has CHR for goal suspension and resumption
- This fits well our notion of link: a suspended unification problem

This can easily introduce new unification behaviors

Add heuristic for HO unification outside the pattern fragment

% By def, R is not in the pattern fragment
link-llam L R :- not (var L), unif-heuristic L R.

Conclusion

- Takes advantage of the unification capabilities of the meta language at the price of handling problematic sub-terms on the side.
- It is worth mentioning that we replace terms with variables only when it is strictly needed, leaving the rest of the term structure intact and hence indexable.
- Our approach is flexible enough to accommodate different strategies and heuristics to handle terms outside the pattern fragment