Homework 1

Julio Cesar Enciso-Alva January XX, 2019

Note: This documents uses the package magrittr, dplyr and data.table. It also uses the files DistMat.csv, distance matrix from question 3, and T11-9.txt, local copy of cereal database.

Question 1

a)

The multiplication will be calculated using the matrix product operator %*%. In order to do that, the given matrices are saved to the variables A and B.

```
A = matrix(c(7,9,20, 2,4,10),ncol=3)
B = matrix(c(1,7,12,40, 2,8,13,20, 3,9,14,21),ncol=4)
```

Then, the multiplication is calculated and displayed.

```
A.B = A %*% B
A.B
```

```
## [,1] [,2] [,3] [,4]
## [1,] 195 352 503 427
## [2,] 143 444 187 319
```

b)

The matrix G will be constructed using the spectral decomposition of A; if we have an ortonormal matrix C and a diagonal matrix D such that

$$A = CDC'$$

then its square root can be constructed (and will be proposed as the solution) using the following expression

$$G = CD^{\frac{1}{2}}C'$$

As the first step for doing so, the matrix A is saved to the variable A.

```
A = matrix(c(2,1,0, 1,2,0, 0,0,2), ncol=3)
```

The spectral decomposition of A is found using the function base::eigen. It is important to recall that the matrices C and D such that A = CDC' can be constructed as

$$C = [x_1, x_2, x_3]$$
$$D = \operatorname{diag}(\lambda_1, \lambda_2, \lambda_3)$$

where x_i are the eigenvectors of A, and λ_i are their corresponding eigenvalues. Both values are saved to the variable SD.

```
SD = eigen(A)
C = SD$vectors
D = diag(SD$values)
```

The matrix G, the **proposed solution**, is constructed as described before:

```
G = C %*% sqrt(D) %*% t(C)
G
```

```
## [,1] [,2] [,3]
## [1,] 1.3660254 0.3660254 0.000000
## [2,] 0.3660254 1.3660254 0.000000
## [3,] 0.0000000 0.0000000 1.414214
```

In order to verify that $G^2 = A$, both G^2 and A are displayed

Α

```
## [,1] [,2] [,3]
## [1,] 2 1 0
## [2,] 1 2 0
## [3,] 0 0 2
```

G %*% G

c)

The expression requested is

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz$$

Question 2

To perform the clusterings, the given distance matrix was saved on the file DistMat.csv; the data is then loaded and saved to the variable d. For ease of use, only the lower half of the matrix is in the file.

```
d = read.csv('./DistMat.csv',header=F) %>%
as.matrix() %>% as.dist()
```

The dendrograms are generated using the function stats::hclust, changing the method of clustering.

Dendrogram using Single linking

Dendrogram using Complete linking

Dendrogram with Average linking

The three dendrograms have the same structure, but the nodes have different heights. This indicates that the clusters are robust.

Question 3

The dataset cereal is loaded from a local copy using the suggested code; the column names are also read from a file. The variables Manufacturer and Group are dropped.

a)

The distance between vectors is calculated using the function stats::dist and saved to the variable d.

```
d = stats::dist(cereal, method='euclidean')
```

b)

The clustering is achieved using the funcion stats::hclust, using different methods.

Dendrogram using Single linking

Dendrogram using Centroid linking

The clusters differ with the two methods. There are inversions on the *centroid* clustering, possible related to healthy low-sugar cereals. This difference can be explained by the effect of the variables Calories, Sodium and Potassium; those variables have very high values because of the scale.

Question 4

The dataset **cereal** is loaded from a local copy using the suggested code; the column names are also read from a file. The variables Manufacturer and Group are dropped. **Note:** This process was done in *Question* 3, but is done again to keep the code independent.

The K-means clustering is done using the function stats::kmeans, and saved to a table.

```
set.seed(1)
K2 = kmeans(cereal,centers=2)$cluster
K3 = kmeans(cereal,centers=3)$cluster
```

Question 5

The required vector is generated and saved to the variable x, and then the required tasks are completed.

a)

There are 9498 values in x between -2 and 2. This value was calculated using the following code

```
length( x[ -2<x & x<2 ] )
```

b)

c)

The indexes of x, whose values lie are on the set $(-\infty, -3] \cup [3, \infty)$, are saved to the variable IND and displayed.

```
IND = c( which(x<=-3 | x>=3) )
IND

## [1] 446 495 843 1165 1295 1442 1737 2132 2460 3331 3680 3694 3751 4262

## [15] 5641 5811 5904 6108 6270 6376 7485 7873 8203 8216 8711 8757 9612 9777
```

The histogram is constructed using the function hist.

Question 6

The dataset cereal is loaded from a local copy using the suggested code; the column names are also read from a file. The variable Group is dropped.

Note: This process was done in *Question 3* and *Question 4*, but is done again to keep the code independent, and also because variable Manufacturer is not dropped in this question.

a)

The table of means is constructed using the following code, and the displayed.

```
cereal %>%
  dplyr::filter( Protein>=3 & Sugar<=9 ) %>%
  dplyr::group_by(Manufacturer) %>%
  dplyr::summarize(Mean_Calories=mean(Calories)) %>%
  knitr::kable()
```

Manufacturer	Mean_Calories
G	102.5000
K	102.8571
Q	100.0000

b)

The variable Healthy is constructed using the following code:

cereal\$Healthy = 1*(cereal\$Protein>=3 & cereal\$Sugar<=9)</pre>