- Asymptotic Notations: The main idea of asymptotic analysis is to have a measure of efficiency of algorithms that doesn't depend on machine specific constants.
  - "Asymptotic notations are the mathematical notations used to describe the running time (Time complexity) of an algorithm.
- 1. Big O Notation: Worst case
   Uther bound

Let f(n) & g(n) are two the functions. f(n) = o(g(n))iff

 $f(n) \leq C \cdot g(n)$ ,  $\forall n$ ,  $n \neq n$ , no where C is a constant and value of  $C \neq 0$ , no is constant and value of (n + n).



 $\frac{P-1}{2}$   $f(n) = n^2$ ,  $f(n) = n^2 + n + 10$  $\frac{P-2}{2}$  f(n) = n + 10, g(n) = n - 10

P-3  $f(n) = n^2$ , g(n) = n

Let f(n) & g(n) are two +ve functions. f(n) = vr (g(n))iff  $f(n) > c \cdot g(n)$ 

f(n) >, c.g(n), +n, n >, no, where c is a constant no >, l.



 $\frac{P-1}{P-2}$  f(n) = n, g(n) = n+10  $\frac{P-2}{P-3}$   $f(n) = n^2 + n+10$ ,  $g(n) = n^2$ f(n) = n,  $g(n) = n^2$ 

## 3. Theta Notation (0)

Let f(n) & g(n) are two the functions.

$$f(n) = O(g(n))$$
166

where  $C_1$ ,  $C_2$  are constants and value of  $C_1$ ,  $C_2$   $\gamma_0$ , no is a constant and value of  $C_1$ ,  $C_2$   $\gamma_0$ ,



P1 
$$f(n)=n$$
,  $g(n)=n+10$ 

$$P-2$$
  $f(n) = n$ ,  $g(n) = n$ 

$$p-3$$
  $f(n)=n^2$ ,  $g(n)=n^2+n+10$ 

$$p-4$$
  $f(n)=n^2$ ,  $g(n)=n$