Distributed by:

JAMECO

ELECTRONICS

www.Jameco.com + 1-800-831-4242

The content and copyrights of the attached material are the property of its owner.

Jameco Part Number 301612

QUAD 2-INPUT MULTIPLEXER

The LSTTL/MSI SN54/74LS157 is a high speed Quad 2-Input Multiplexer. Four bits of data from two sources can be selected using the common Select and Enable inputs. The four buffered outputs present the selected data in the true (non-inverted) form. The LS157 can also be used to generate any four of the 16 different functions of two variables. The LS157 is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Motorola TTL families.

- · Schottky Process for High Speed
- Multifunction Capability
- Non-Inverting Outputs
- Input Clamp Diodes Limit High Speed Termination Effects
- Special Circuitry Ensures Glitch Free Multiplexing
- ESD > 3500 Volts

CONNECTION DIAGRAM DIP (TOP VIEW)

PIN NAMES

LOADING (Note a)

		HIGH	LOW
<u>S</u>	Common Select Input	1.0 U.L.	0.5 U.L.
E	Enable (Active LOW) Input	1.0 U.L.	0.5 U.L.
$I_{0a}-I_{0d}$	Data Inputs from Source 0	0.5 U.L.	0.25 U.L.
l _{1a} -l _{1d}	Data Inputs from Source 1	0.5 U.L.	0.25 U.L.
z_a-z_d	Multiplexer Outputs (Note b)	10 U.L.	5 (2.5) U.L.

NOTES

- a) 1 TTL Unit Load (U.L.) = 40 μ A HIGH/1.6 mA LOW.
- b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

LOGIC DIAGRAM

SN54/74LS157

QUAD 2-INPUT MULTIPLEXER LOW POWER SCHOTTKY

J SUFFIX CERAMIC CASE 620-09

N SUFFIX PLASTIC CASE 648-08

D SUFFIX SOIC CASE 751B-03

ORDERING INFORMATION

SN54LSXXXJ Ceramic SN74LSXXXN Plastic SN74LSXXXD SOIC

SN54/74LS157

FUNCTIONAL DESCRIPTION

The LS157 is a Quad 2-Input Multiplexer fabricated with the Schottky barrier diode process for high speed. It selects four bits of data from two sources under the control of a common Select Input (S). The Enable Input (E) is active LOW. When E is HIGH, all of the outputs (Z) are forced LOW regardless of all other inputs.

The LS157 is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select Input. The logic equations for the outputs are:

$$\begin{split} Z_a &= \overline{E} \cdot (I_{1a} \cdot S + I_{0a} \cdot \overline{S}) & Z_b &= \overline{E} \cdot (I_{1b} \cdot S + I_{0b} \cdot \overline{S}) \\ Z_C &= \overline{E} \cdot (I_{1c} \cdot S + I_{0c} \cdot \overline{S}) & Z_d &= \overline{E} \cdot (I_{1d} \cdot S + I_{0d} \cdot \overline{S}) \end{split}$$

A common use of the LS157 is the moving of data from two groups of registers to four common output busses. The particular register from which the data comes is determined by the state of the Select Input. A less obvious use is as a function generator. The LS157 can generate any four of the 16 different functions of two variables with one variable common. This is useful for implementing highly irregular logic.

TRUTH TABLE

ENABLE	SELECT INPUT	INPUTS		OUTPUT
E	S	I ₀	I ₁	Z
Н	Х	Х	Х	L
L	Н	Х	L	L
L	Н	Х	Н	Н
L	L	L	Χ	L
L	L	Н	Χ	Н

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
T _A	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
ІОН	Output Current — High	54, 74			-0.4	mA
lOL	Output Current — Low	54 74			4.0 8.0	mA

SN54/74LS157

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

			Limits					
Symbol	Parameter		Min	Тур	Max	Unit	Test Conditions	
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs	
\/	Input LOW Voltage	54			0.7	V	Guaranteed Input LOW Voltage for	
V _{IL}	input LOW Voltage	74			0.8	V	All Inputs	
V _{IK}	Input Clamp Diode Voltage			-0.65	-1.5	V	V _{CC} = MIN, I _{IN} =	- −18 mA
Vou	Output HICH Voltage	54	2.5	3.5		V		= MAX, V _{IN} = V _{IH}
VOH	Output HIGH Voltage	74	2.7	3.5		V	or V _{IL} per Truth Table	
Vo	Output LOW Voltage	54, 74		0.25	0.4	V	I _{OL} = 4.0 mA	V _{CC} = V _{CC} MIN, V _{IN} = V _{IL} or V _{IH}
VOL	Output LOW Voltage	74		0.35	0.5	V	I _{OL} = 8.0 mA	per Truth Table
Iн	Input HIGH Current 10, 11 E, S				20 40	μΑ	V _{CC} = MAX, V _{IN} = 2.7 V	
".	<u>l</u> g, l ₁ E, S				0.1 0.2	mA	V _{CC} = MAX, V _{IN} = 7.0 V	
I _{IL}	Input LOW Current I ₀ , I ₁ E, S				-0.4 -0.8	mA	$V_{CC} = MAX$, $V_{IN} = 0.4 V$	
los	Short Circuit Current (Note	1)	-20		-100	mA	V _{CC} = MAX	
Icc	Power Supply Current				16	mA	$V_{CC} = MAX$	

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS $(T_A = 25^{\circ}C)$

		Limits						
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions		
^t PLH ^t PHL	Propagation Delay Data to Output		9.0 9.0	14 14	ns	Figure 2		
^t PLH ^t PHL	Propagation Delay Enable to Output		13 14	20 21	ns	Figure 1	V _{CC} = 5.0 V C _L = 15 pF	
^t PLH ^t PHL	Propagation Delay Select to Output		15 18	23 27	ns	Figure 2		

AC WAVEFORMS

Figure 1

Figure 2