Date Page

Fast Modular Exponentiation

0/0	0		
2'			
\supset	2	nod	15
		LUC	10

$$(100)_{10} = (??) = (1100100)_{2}$$

1	, 1	0	0	1	0	0	_
3	12	9	6	3	9	6.	
			1			7	

Fermat's Theorem;

It p is a prime number then

xp-1 mod = 1 (mod 37)

40 mod 37. eg

40 = 3 (mod 37)

40 mod 37 = 3 mod 37

By Fermat's Little Mearen.

3 = 1 (mod 37)

110 = 3(36) + 2

3 = 33(36) + 2

= 13.32

394 (mod 17)

94 = 64+2/6+8+4+2

32 = 9 (mod 17) = 9.

3 = 81 = 81m

343 (mod 17) = 81 mod 17=13, 17-13=-4

38 mod 17 = (34) mod 17 = (-4) = 16 mod 17 = -1

 $\frac{2}{3^{16} \mod 17} = (3^8) \mod 17 \equiv (-1)^2 \equiv 1$

364 mod 17 = (316) mod 17 = 14 mod 17 = 1

394 mod 17 = 3(64+16+8+4+2) mod 17

= $\frac{3}{3}$ = $\frac{3}{3}$ = $\frac{3}{3}$ = $\frac{3}{4}$ mod $\frac{17}{3}$ (3 mod $\frac{87}{3}$).

= (1)(1)(-1)(-4)(9) mod 17

= 36 mod 17 = 39

= 2.

