第五周作业参考解答及补充

作业

1. (习题 2.2.6)

令 ℝ, ℂ 分别表示实数域和复数域, 试证明:

- (1) 若 R 是由关于 $\cos t$ 和 $\sin t$ 的实系数多项式组成的函数环, 则 $R \cong \mathbb{R}[x,y]/(x^2+y^2-1)$;
- (2) $\mathbb{C}[x,y]/(x^2+y^2-1)$ 是唯一分解整环 (提示: 证明其为 ED);
- (3) $\mathbb{R}[x,y]/(x^2+y^2-1)$ 不是唯一分解整环.

proof

(1) 考虑同态

$$\varphi : \mathbb{R}[x, y] \to R = \mathbb{R}[\cos t, \sin t], \ x \mapsto \cos t, y \mapsto \sin t,$$

这自然是一个满同态,由同态基本定理,关键在于证明

$$\ker(\varphi) = (x^2 + y^2 - 1)$$

若多项式 f(x,y) 满足 $\varphi(f) = f(\cos t, \sin t) = 0$, 将 f 看成是关于 y 的多项式

$$f(x,y) = a_0(x) + a_1(x)y + \dots + a_n(x)y^n, \ a_i(x) \in \mathbb{R}[x], \ 0 \le i \le n$$

由于 $x^2 + y^n - 1$ 关于 y 是首一的,因此可以做带余除法,得 f = gq + r,其中 $r(x,y) = r_0(x) + r_1(x)y$. 带入 $x = \cos t, y = \sin t$ 得 $r(\cos t, \sin t) = 0$,即

$$r_0(\cos t) + r_1(\cos t)\sin t = 0$$

做代换 $t \mapsto -t$, 得

$$r_0(\cos t) - r_1(\cos t)\sin t = 0$$

两式相加得 $r_0 = 0$,相减得 $r_1 = 0$,从而 r = 0. 因此 $f \in (x^2 + y^2 - 1)$,即 $\ker(\varphi) \subseteq (x^2 + y^2 - 1)$.另一方面 $x^2 + y^2 - 1 \in \ker(\varphi)$,故 $\ker(\varphi) = (x^2 + y^2 - 1)$

(2) 做基变换 u=x+iy, v=x-iy, 他有逆变换 $x=\frac{u+v}{2}, y=\frac{u-v}{2i}$. 因此有同构 $\mathbb{C}[u,v]\cong\mathbb{C}[x,y]$. 从而

$$\mathbb{C}[x,y]/(x^2+y^2-1) \cong \mathbb{C}[u,v]/(uv-1)$$

而同态

$$\mathbb{C}[u,v] \to \mathbb{C}[u,u^{-1}], u \mapsto u,v \mapsto u^{-1}$$

是满的, 且 kernel 是 (uv-1), 证明类似于 (1). 因此

$$\mathbb{C}[u,v]/(uv-1) \cong \mathbb{C}[u,u^{-1}]$$

这个环称为 Laurent 多项式环, 这个环上可以做带余除法, 非零多项式的次数定义为最高次数 — 最低次数. 即 $f = a_n u^n + a_{n+1} u^{n+1} + \cdots + a_m u^m, n, m \in \mathbb{Z}, n < m$ 的次数为 $\deg(f) = m - n$. 因此这是一个 ED, 从而是 UFD.

(3) 由 (2), ℂ[cos t, sin t] 是 UFD, 用待定系数, 假设

$$\cos t = (a_1 \cos t + a_2 \sin t + a_3)(b_1 \cos t + b_2 \sin t + b_3)$$

其中 $a_i, b_i \in \mathbb{C}, i=1,2,3$. 我们要忽略掉 $a_1=b_3=1$ 其余都是 0 这种平凡的情况,左右展开得到

$$a_1b_1 - a_2b_2 = 0,$$

 $a_1b_2 + a_2b_1 = 0,$
 $a_1b_1 + a_3b_3 = 0,$
 $a_1b_3 + a_3b_1 = 1,$

 $a_2b_3 + a_3b_2 = 0.$

由第一个式子得 $b_1 = \frac{a_2}{a_1}b_2$,带入第二个式子得 $a_2 = \pm ia_1$,从而 $b_1 = \pm ib_2$.

由一, 三又能得到 $a_2b_2=-a_3b_3$, 类似地, 带入第五个式子, 有 $a_3=\pm a_2$, $b_2=\pm b_3$. 再用四, 五得 $a_1b_3=a_3b_1=\frac{1}{2}$.

把上述关系带入

$$\cos t = a_1 b_3 (\cos t \pm i \sin t \pm i)(\pm i \cos t \pm \sin t + 1)$$
$$= \frac{1}{2} (\cos t \pm i \sin t \pm i)(\pm i \cos t \pm \sin t + 1)$$

检查正负号,得到结果

$$\cos t = \frac{1}{2}(\cos t + i\sin t - i)(i\cos t + \sin t + 1)$$

类似有

$$1 - \sin t = \frac{1}{2}(\cos t + i\sin t - i)(\cos t - i\sin t + i).$$

带入 -t 就是 $1 + \sin t$ 的分解.

因此 $\cos t$ 和 $1 \pm \sin t$ 无法在 $\mathbb{R}[\cos t, \sin t]$ 中分解. 这样就有 $\cos^2 t = \cos t \cos t = (1 - \sin t)(1 + \sin t)$. 因此不是 UFD.

注: (2) 中若允许正次数到无穷的话,则该环称为 Laurent 形式级数域 (可以验证确实是一个域).

课上的补充内容

1. (Noetherian \iff a.c.c.)

R 是诺特环当且仅当 R 满足 a.c.c. 其中 a.c.c. 指若有环 R 的理想升链

$$I_1 \subseteq I_2 \subseteq \cdots$$

则该链必稳定, 即 $\exists n \in \mathbb{Z}_{>0}$ 使得 I_n 后的理想都相等, $I_n = I_{n+1} = \cdot$.