Power

Slides adapted form Harris – and Weste 4th Ed.

Outline

- Power and Energy
- Dynamic Power
- Static Power

Power and Energy

• Power is drawn from a voltage source attached to the V_{DD} pin(s) of a chip.

$$P(t) =$$

Instantaneous Power:

$$E =$$

Energy:

$$P_{\text{avg}} = 1$$

Average Power:

Power in Circuit Elements

$$P_{VDD}\left(t\right) = I_{DD}\left(t\right)V_{DD}$$

$$P_{R}(t) = \frac{V_{R}^{2}(t)}{R} = I_{R}^{2}(t)R$$

$$E_C = \int_0^\infty I(t)V(t)dt = \int_0^\infty C\frac{dV}{dt}V(t)dt$$
$$= C\int_0^{V_C} V(t)dV = \frac{1}{2}CV_C^2$$

$$\stackrel{+}{\overset{}{\bigvee}_{C}} \stackrel{+}{\overset{}{\longleftarrow}} C \stackrel{\downarrow}{\overset{}{\checkmark}} I_{C} = C \text{ dV/dt}$$

Charging a Capacitor

- When the gate output rises
 - Energy stored in capacitor is

$$E_C = \frac{1}{2} C_L V_{DD}^2$$

But energy drawn from the supply is

$$E_{VDD} = \int_{0}^{\infty} I(t)V_{DD}dt = \int_{0}^{\infty} C_{L} \frac{dV}{dt}V_{DD}dt$$
$$= C_{L}V_{DD} \int_{0}^{V_{DD}} dV = C_{L}V_{DD}^{2}$$

- Half the energy from V_{DD} is dissipated in the pMOS transistor as heat, other half stored in capacitor
- When the gate output falls
 - Energy in capacitor is dumped to GND
 - Dissipated as heat in the nMOS transistor

Switching Waveforms

• Example: $V_{DD} = 1.0 \text{ V}$, $C_{L} = 150 \text{ fF}$, f = 1 GHz

Switching Power

$$P_{\text{switching}} = \frac{1}{T} \int_{0}^{T} i_{DD}(t) V_{DD} dt$$

$$= \frac{V_{DD}}{T} \int_{0}^{T} i_{DD}(t) dt$$

$$= \frac{V_{DD}}{T} \left[Tf_{\text{sw}} CV_{DD} \right]$$

$$= CV_{DD}^{2} f_{\text{sw}}$$

Activity Factor

- Suppose the system clock frequency = f
- Let $f_{sw} = \alpha f$, where $\alpha =$ activity factor
 - If the signal is a clock, α = 1
 - If the signal switches once per cycle, α = ½

• Dynamic power: $\alpha CV_{DD}^{2}f$

Short Circuit Current

- When transistors switch, both nMOS and pMOS networks may be momentarily ON at once
- Leads to a blip of "short circuit" current.
- < 10% of dynamic power if rise/fall times are comparable for input and output
- We will generally ignore this component

Power Dissipation Sources

- $P_{total} = P_{dynamic} + P_{static}$
- Dynamic power: $P_{dynamic} = P_{switching} + P_{shortcircuit}$
 - Switching load capacitances
 - Short-circuit current
- Static power: $P_{\text{static}} = (I_{\text{sub}} + I_{\text{gate}} + I_{\text{junct}} + I_{\text{contention}})V_{\text{DD}}$
 - Subthreshold leakage
 - Gate leakage
 - Junction leakage
 - Contention current

Dynamic Power Example

- 1 billion transistor chip
 - 50M logic transistors
 - Average width: 12 λ
 - Activity factor = 0.1
 - 950M memory transistors
 - Average width: 4λ
 - Activity factor = 0.02
 - 1.0 V 65 nm process
 - $-C = 1 \text{ fF/}\mu\text{m} \text{ (gate)} + 0.8 \text{ fF/}\mu\text{m} \text{ (diffusion)}$
- Estimate dynamic power consumption @ 1 GHz. Neglect wire capacitance and short-circuit current. Given $\lambda=0.025/\mu m$

Solution

$$C_{\text{logic}} = (50 \times 10^{6})(12\lambda)(0.025 \mu m / \lambda)(1.8 fF / \mu m) = 27 \text{ nF}$$

$$C_{\text{mem}} = (950 \times 10^{6})(4\lambda)(0.025 \mu m / \lambda)(1.8 fF / \mu m) = 171 \text{ nF}$$

$$P_{\text{dynamic}} = [0.1C_{\text{logic}} + 0.02C_{\text{mem}}](1.0)^{2}(1.0 \text{ GHz}) = 6.1 \text{ W}$$

Dynamic Power Reduction

$$P_{\text{switching}} = \alpha C V_{DD}^{2} f$$

- Try to minimize:
 - Activity factor
 - Capacitance
 - Supply voltage
 - Frequency

Activity Factor Estimation

- Let P_i = Prob(node i = 1)
 P_i = 1-P_i
- $\alpha_i = P_i^{-*} P_i$
- Completely random data has P = 0.5 and α = 0.25
- Data is often not completely random
 - e.g. upper bits of 64-bit words representing bank account balances are usually 0
- Data propagating through ANDs and ORs has lower activity factor
 - Depends on design, but typically $\alpha \approx 0.1$

Switching Probability

Gate	P _Y
AND2	$P_{\mathcal{A}}P_{\mathcal{B}}$
AND3	$P_{\mathcal{A}}P_{B}P_{C}$
OR2	$1 - \overline{P}_{A}\overline{P}_{B}$
NAND2	$1 - P_A P_B$
NOR2	$\overline{P}_{\!A}\overline{P}_{\!B}$
XOR2	$P_{\mathcal{A}}\overline{P}_{B} + \overline{P}_{\mathcal{A}}P_{B}$

Example

- A 4-input AND is built out of two levels of gates
- Estimate the activity factor at each node if the inputs

Capacitance

- Gate capacitance
 - Fewer stages of logic
 - Small gate sizes
- Wire capacitance
 - Good floorplanning to keep communicating blocks close to each other
 - Drive long wires with inverters or buffers rather than complex gates

Voltage / Frequency

- Run each block at the lowest possible voltage and frequency that meets performance requirements
- Voltage Domains
 - Provide separate supplies to different blocks
 - Level converters required when crossing from low to high V_{DD} domains

- Dynamic Voltage Scaling
 - Adjust V_{DD} and f according to workload

Static Power

- Static power is consumed even when chip is quiescent.
 - Leakage draws power from nominally OFF devices
 - Ratioed circuits burn power in fight between ON transistors