电子课件

Ordinary differential equation

王高雄 周之铭 朱思铭 王寿松编

制作者: 窦霁虹

常微分方程

Ordinary differential equation

- 第一章 绪 论
- 第二章 一阶微分方程的初等积分法
- 第三章 一阶微分方程的解的存在定理
- 第四章 高阶微分方程
- 第五章 线性微分方程组
- 第六章 定性理论初步12
- 第七章 一阶线性偏微分方程

课程目的/Major Subjection of Course/

- 学习各类可求解的常微分方程和方程组的类型及其求解方法。
- 熟悉常微分方程解的基本性质,如解的存在性,唯一性等内容,了解研究常微分方程的基本方法,如稳定性分析、定性分析等。

课时/Periods/ 4节/周, 共64学时。

考试/Examination/ 闭卷: 期中测验、期末考试。

参考书目/Reference Books/

- •叶彦谦,常微分方程讲义,高等教育出版社。
- 王柔怀,伍卓群,常微分方程讲义,人民教育出版社。

第一章 绪论

Introduction

- ➤ 微分方程概述 /Sketch of ODE/
- ➤ 基本概念 /Basic Conception/
- ➤ 练习题/Exercise/

CH.1 Introduction

本章要求/Requirements/

- ≥ 能快速判断微分方程的类型;
- 掌握高阶微分方程及其初值问题的一般形式;
- 理解微分方程解的意义。

§ 1.1 微分方程概述/ Sketch of ODE/

微分方程理论起始于十七世纪末,是研究自然现象强有 力的工具,是数学科学联系实际的主要途径之一。

1676年,莱布尼兹在给Newton(牛顿)的信中首次提到 Differential Equations(微分方程)这个名词。

微分方程研究领域的代表人物: Bernoulli、Cauchy、Euler、Taylor、Leibniz、Poincare、Liyapunov等。

微分方程理论发展经历了三个过程: 求微分方程的解; 定性理论与稳定性理论; 微分方程的现代分支理论。

方程/Equation/

含有未知量(数)的等式(或关系式)。例如:

1代数方程(组),其未知量为数

一元n次代数方程:
$$x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n = 0$$

无理方程:
$$\sqrt{x^2 + 5} = 6$$
 方程组:
$$\begin{cases} x + y = 7 \\ x - y = -1 \end{cases}$$

2 超越方程(组),其含有超越函数

三角方程: $\sin(x+5) = \cos x$

指数方程: $e^x + 2^x = 5$

其特点: 方程的解为实数(有限个或者无限个)

3 函数方程(或泛函方程),其未知量为函数

$$Z^{2}(t) + \sin^{2} t = 1$$
 $Z(t) = \pm \cos t$
 $Z''(t) = 1$ $Z(t) = \frac{t^{2}}{2} + c_{1}t + c_{2}$

其特点: 方程的解为有限个或无穷多个函数。

定义:一个或几个包含自变量,未知函数以及未知函数的某些阶导数(或微商)的关系式,称之为微分方程。

M 1.
$$y' = x^2$$
 $y' = f(x)$
2. $r^2 \frac{d^2 u}{dr^2} + r \frac{du}{dr} + (r^2 - 1)u = 0$
3. $\frac{dy}{dx} + p(x)y = \theta(x)$

4.
$$F(x, y, y', \dots, y^{(n)}) = 0$$

n阶隐式方程

5.
$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)})$$

n阶显式方程

6.
$$\begin{cases} \frac{dx}{dt} = x + y \\ \frac{dy}{dt} = x - y \end{cases}$$

方程组

$$7. \ \frac{\partial^2 u}{\partial x \partial y} = 0$$

偏微分方程

8.
$$\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial Z^2} = -4\pi\rho$$

偏微分方程

9.
$$f^2(x) = \sin x$$

不是微分方程

微分方程模型举例/Modeling of ODE/

例1: 质量为m的物体在重力的作用下,沿铅直线下落,物体下落距离S(向下为正)随时间t而改变。在不考虑空气阻力的情况下,试求出距离S应满足的微分方程。

解: 设在时刻 t 物体下落的距离为 S(t)

按牛顿第二定律

$$m\frac{d^2s}{dt^2} = mg \qquad \qquad \frac{d^2s}{dt^2} = g$$

$$s(t) = \frac{1}{2}gt^2 + c_1t + c_2$$

例2:放射性元素镭因不断放射出各种射线而逐渐减少其质量,这种现象成为衰变,实验知镭的衰变率与其当时的质量成比例。试求镭衰变的规律。

解: 设在任意时刻 t 镭的质量为R(t),

$$R'(t) = kR(t)$$

微分方程模型:含有自变量,未知函数及未知函数导数(或变化率)的关系式。

§ 1.2 基本概念/Basic Conception/

- 1. 常微分方程和偏微分方程
- 2. 一阶与高阶微分方程
- 3. 线性和非线性微分方程
- 4. 解和隐式解
- 5. 通解和特解
- 6. 积分曲线和积分曲线族
- 7. 微分方程的几何解释----方向场

●常微分方程与偏微分方程/ODE and PDE/

常微分方程/ODE /

在微分方程中,自变量的个数只有一个的微分方程 称为常微分方程。

偏微分方程/PDE/

自变量的个数有两个或两个以上的微分方程称为偏微分方程。

$$\frac{d^{2}y}{dt^{2}} + b\frac{dy}{dt} + cy = f(t) \qquad (\frac{dy}{dt})^{2} + t\frac{dy}{dt} + y = 0$$

$$\frac{\partial^{2}T}{\partial x^{2}} + \frac{\partial^{2}T}{\partial y^{2}} + \frac{\partial^{2}T}{\partial z^{2}} = 0 \qquad \frac{\partial^{2}T}{\partial x^{2}} = 4\frac{\partial T}{\partial t}$$

●一阶与高阶微分方程/First and Higher ODE/

微分方程的阶/Order/

在一个微分方程中所出现的未知函数的导数的最高阶数n称为该方程的阶。

当n=1时, 称为一阶微分方程;

当n>1时, 称为高阶微分方程。

例如

$$\frac{d^2y}{dt^2} + b\frac{dy}{dt} + cy = f(t) \qquad \left(\frac{dy}{dt}\right)^2 + t\frac{dy}{dt} + y = 0$$

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = 0 \qquad \qquad \frac{\partial^2 T}{\partial x^2} = 4 \frac{\partial T}{\partial t}$$

一阶常微分方程的一般隐式形式可表示为:

$$F(x, y, y') = 0$$

一阶常微分方程的一般显式形式可表示为:

$$y' = f(x, y)$$

类似的,n阶隐方程的一般形式可表示为:

$$F(x, y, y', \dots, y^{(n)}) = 0$$

n阶显方程的一般形式为

$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)})$$

其中F及f分别是它所依赖的变元的已知函数。

●线性和非线性微分方程/Linear and Nonlinear ODE/

如果方程 $F(x, y, y', \dots, y^{(n)}) = 0$

的左端为未知函数及其各阶导数的一次有理整式,则称它为线性微分方程,否则,称它为非线性微分方程。

例如:

$$\frac{d^2y}{dt^2} + b\frac{dy}{dt} + cy = f(t) \qquad (\frac{dy}{dt})^2 + t\frac{dy}{dt} + y = 0$$

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = 0 \qquad \qquad \frac{\partial^2 T}{\partial x^2} = 4 \frac{\partial T}{\partial t}$$

n阶线性微分方程的一般形式为:

$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_n(x)y = g(x)$$

其中 $a_0(x) \neq 0$ $a_0(x), a_1(x), \dots, a_n(x), g(x)$ 均为 x的已知函数

如: 2阶线性方程的一般形式

$$a_0(x)y'' + a_1(x)y' + a_2(x)y = g(x)$$

$$y'' + x^2y' + y\sin x = xe^x$$

●解和隐式/Solution/

对于方程

用xyy
$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)})$$

若将函数 $y = \varphi(x)$ 代入方程后使其有意义且两端成立 即 $F[x, \varphi(x), \varphi'(x), \dots, \varphi^{(n)}(x)] = 0$

则称函数 $y = \varphi(x)$ 为该方程的一个解.

一阶微分方程
$$\frac{dy}{dx} = -\frac{x}{y}$$
 有解 $y = \pm \sqrt{1-x^2}$

即关系式 $x^2 + y^2 = 1$ 包含了方程的解,

若方程的解是某关系式的隐函数,称这个关系式为该方程的隐式解。把方程解和隐式解统称为方程的解。

●通解和特解/General Solution and Special Solution/

常微分方程的解的表达式中,可能包含一个或者几意常数,若其所包含的独立的任意常数的个数恰好与该方程的阶数相同,我们称这样的解为该微分方程的通解。常微分方程满足某个初始条件的解称为微分方程的特解。

例: 二阶方程
$$\frac{d^2s}{dt^2} = g$$

其通解
$$s(t) = \frac{1}{2}gt^2 + c_1t + c_2$$

而 $s(t) = \frac{1}{2}gt^2$ 是方程满足初始条件 s(0) = 0, s'(0) = 0 解。

初值条件/Initial Value Conditions/

对于 n 阶方程
$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)})$$

初值条件可表示为

$$y(x_0) = y_0, \ y'(x_0) = y_0', \ y''(x_0) = y_0'', \dots, y^{(n-1)}(x_0) = y_0^{(n-1)}$$

n阶方程初值问题(Cauchy Problem)的表示

$$\begin{cases} y^{(n)} = f(x, y, y', \dots, y^{(n-1)}) \\ y(x_0) = y_0, y'(x_0) = y'_0, y''(x_0) = y''_0, \dots, y^{(n-1)}(x_0) = y_0^{(n-1)} \end{cases}$$

一阶和二阶方程初值问题(Cauchy Problem)的表示

$$\begin{cases} y' = f(x, y) & \begin{cases} y'' = f(x, y, y') \\ y(x_0) = y_0 \end{cases} & \begin{cases} y'' = f(x, y, y') \\ y(x_0) = y_0, y'(x_0) = y'_0 \end{cases}$$

●积分曲线和积分曲线族 /Integral Curve(s)/

一阶微分方程 $\frac{dy}{dx} = f(x, y)$ 的解 $y = \varphi(x)$ 表示 x, y平面的一条 曲线,我们称它为微分方程的积分曲线,而微分方程的通解 $y = \varphi(x, c)$ 表示 x, y 平面的一族曲线,称它们为微分方程的积分曲线族。

●方向场/Directional Pattern/

对于一阶微分方程 $\frac{dy}{dx} = f(x,y)$ 其右端函数 f(x,y) 的定义域为 D , 在定义域的每一点 (x,y) 处,画一个小线段,其斜率等于 f(x,y) ,此时,点集 D 就成为带有方向的点集。称此区域为由方程 $\frac{dy}{dx} = f(x,y)$ 确定的方向场。

常微分方程求解的几何意义是:

在方向场中寻求一条曲线,使这条曲线上每一点切线的方向等于方向场中该点的方向。

例1 画出方程 $\frac{dy}{dx} = -\frac{x}{y}$ 的方向场。

等倾线方程
$$-\frac{x}{y} = k$$
 即 $y = -\frac{1}{k}x$

也就是说,方向场中每点的方向与该点等倾线垂直。

例2 画出方程 $\frac{dy}{dx} = x^2 + y^2$ 的方向场。

等倾线方程 $x^2 + y^2 = k$, 拐点线方程 $x^2 + y^2 = -\frac{x}{y}$

$$y'' = 2x + 2yy'$$

$$y'' = 2x + 2y(x^2 + y^2)$$

§ 1.3 Exercise

练习题1

编号	微分方程	自变量	未知 函数	常或偏	阶 数	是否 线性	
1	$\frac{d^4s}{d\gamma^4} + s = s^3$	γ	S	常	4	否	
2	$y = xy' + \sqrt{1 + (y')^2}$	\mathcal{X}	У	常	1	否	
3	$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial u^2}{\partial y^2}$	x y t	и	偏	2	是	
4	$\frac{dy}{dx} + \cos y + 2x = 0$	$\boldsymbol{\mathcal{X}}$	у	常	1	否	

练习题2

编号	函数	微分方程	初始条件
1	$y = e^{x^2} \left(1 + \int_0^x e^{-t^2} dt \right)$	y' - 2xy = 1	y(0) = 1
2	$y = e^{\lambda x} (\lambda $ 是实数)	$y''' - \lambda^3 y = 0$	$y(0) = 1$ $y'(0) = 1$ $y''(0) = 1$ $\lambda \neq -1$ 例外
3	$u = 1 + \cos(x + t)$	$u_{tt}^{"}=u_{xx}^{"}$	$u(0,x) = 1 + \cos x$ $u'(0,x) = -\sin x$
4	$y = \sin x$	y'' + y = 0	$y(\pi) = 0$ $y'(\pi) = -1$ $\lambda \neq -1$ 例外

练习题3

求下列曲线族所满足的微分方程

(1)
$$y = cx + x^2$$
 (2) $\frac{x^2}{c^2} + \frac{y^2}{c^2 - 1} = 1$
 $y' = c + 2x$ $\frac{2x}{c^2} + \frac{2yy'}{c^2 - 1} = 0$
 $y''' = 0$ ($c^2 - 1$) $x + c^2 yy' = 0$
 $(c^2 - 1) + c^2 (y')^2 + c^2 yy'' = 0$
 $(c^2 - 1) + c^2 (y')^2 + c^2 yy'' = 0$
 $(c^2 - 1) + c^2 (y')^2 + c^2 yy'' = 0$
 $(c^2 - 1) + c^2 (y')^2 + c^2 yy'' = 0$
 $(c^2 - 1) + c^2 (y')^2 + c^2 yy'' = 0$

作业/Homework/

- 4. 给定一阶微分方程 $\frac{dy}{dx} = 2x$
- (1) 求出它的通解. (2) 求出通过点(1,4) 的特解.
- (3) 求出与直线 y = 2x + 3 相切的解.
- (4) 求出满足条件 $\int_0^1 y dx = 2$ 的解
- (5) 画出上述解的图形。
- 5. 求出下列两个微分方程的公共解

$$(1) y' = y^2 + 2x - x^4$$

(1)
$$y' = y^2 + 2x - x^4$$
 (2) $y' = 2x + x^2 + x^4 - y - y^2$

- 6. 求微分方程 $y'+xy'^2-y=0$ 的直线积分曲线.
- 9. (5) (6)

习题答案

/Answer/

4. (1)
$$y = x^2 + c$$
 (2) $y = x^2 + 3$ (3) $y = x^2 + 4$ (4) $y = x^2 + \frac{5}{3}$

5.
$$y = x^2$$

6. 解:设
$$y = kx + b$$
 是其直线型解,则把 $y' = k$ 代入 原微分方程 $y' + xy'^2 - y = 0$

$$k + k^{2}x - y = 0$$
 $y = k + k^{2}x$ $y' = k^{2}$
 $k = k^{2}$ $k = 0, k = 1$ $y = 0, y = x + 1$

7. (1)
$$y'' = 2$$
 (2) $y'^2 + yy'' = x$