Übungen zum Ferienkurs Lineare Algebra 2015/2016

1 Darstellungsmatrizen

1.1

Bestimme die Darstellungsmatrix $M_{B,B'}(f)$ für die lineare Abbildung $f: \mathbb{R}^3 \to \mathbb{R}^2$, die durch f(x,y,z) = (4x + y - 2z, -y + z) definiert ist bezüglich der Koordinatensysteme

$$B = \left(\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \right) \text{ und } B' = \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right)$$

2 Diagonalisierbarkeit

2.1

Sind die folgenden Matrizen diagonalisierbar?

$$\begin{pmatrix} 1 & 2 & 0 & 4 \\ 0 & 2 & 3 & 1 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}, \begin{pmatrix} -5 & 0 & 7 \\ 6 & 2 & -6 \\ -4 & 0 & 6 \end{pmatrix}, \begin{pmatrix} 2 & 1 & 2 \\ -2 & -2 & -6 \\ 1 & 2 & 5 \end{pmatrix}.$$

2.2

Stellen Sie die Diagonalmatrix D folgender Matrix A auf:

$$A = \begin{pmatrix} 3 & 0 & 0 \\ 1 & 2 & 2 \\ 1 & 0 & 4 \end{pmatrix}$$

2.3

Stellen Sie die Diagonalmatrix D folgender Matrix A auf und überprüfen Sie Ihr Ergebnis mithilfe der Transformationsmatrix.

$$A = \begin{pmatrix} 3 & -1 & 0 \\ 2 & 0 & 0 \\ -2 & 2 & -1 \end{pmatrix}$$

3 Jordan-Normalform

3.1

Stellen Sie die Jordan-Normalform folgender Matrix auf:

$$A = \begin{pmatrix} -3 & -1 & 2 \\ 4 & 1 & -4 \\ 0 & 0 & -1 \end{pmatrix}$$

Hinweis: Entwickeln Sie die Determinante nach der 3. Zeile um das charakteristische Polynom zu erhalten.

Übungen zum Ferienkurs Lineare Algebra 2015/2016

3.2

Stellen Sie die Jordan-Normalform folgender Matrix auf:

$$A = \begin{pmatrix} -3 & -1 & 4 & -3 & -1 \\ 1 & 1 & -1 & 1 & 0 \\ -1 & 0 & 2 & 0 & 0 \\ 4 & 1 & -4 & 5 & 1 \\ -2 & 0 & 2 & -2 & 1 \end{pmatrix}$$

Das charakteristische Polynom ist $(x-2)(x-1)^4$.

Gram-Schmidt-Verfahren zur Bestimmung einer Orthonormalbasis

Gram-Schmidt-Verfahren

Bestimmen Sie die orthonormale Basis zu den Vektoren $\overrightarrow{a} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \overrightarrow{b} = \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix}$ und $\overrightarrow{c} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$,

Matrixexponential

5.1

Bestimmen Sie das Matrixexponential von $A = \begin{pmatrix} 0 & 1 & 3 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix}$ mit Summenformel und das Matrixexponentail von $B = \begin{pmatrix} 5 & -6 \\ 3 & -4 \end{pmatrix}$ mit Transformation durch die Eigenwerte und Eigenvektoren