

VLSI Testing 積體電路測試

Test Compression

Professor James Chien-Mo Li 李建模
Lab. of Dependable Systems
Graduate Institute of Electronics Engineering
National Taiwan University

Course Roadmap (Design Topics)

Motivating Problem

- You generate 100Gb of test patterns
 - but ATE has only 80Gb
- Your manger asks you to reduce 25% test patterns
 - but maintain same fault coverage

	f ₁	f_2	f ₃	f ₄	f ₅
<i>t</i> ₁		X			
<i>t</i> ₂			X		X
<i>t</i> ₃		X		X	X
<i>t</i> ₄	Х			X	

Why Am I Learning This?

- Test compression reduces test data
 - Reduces ATE cost, test cost and package cost
 - It is essential for modern complex designs

"The Simplest Answer Is the Best."

(Occam's razor)

Test Compression

- Introduction
- Software Techniques
 - Dynamic Test Compression
 - Static Test Compression
- Hardware Techniques
 - Test Stimulus Compression
 - Test Response Compaction
- Industry Practices* (not in exam)
- Conclusion

Introduction

- What is test compression?
 - Reduces test data, keeps same test quality
- Why test compression?
 - Reduce test data (ATE cost ↓)
 - Reduce test time (test cost ↓)
 - Reduce DFT pins (Package/ATE cost ↓)
- Why can we compress test data?
 - Test stimulus: ATPG patterns have many don't care bits
 - Test responses: Not every bit needs to be observed

Compression v.s. compaction

Test stimulus compression is lossless

Test response *compaction* is lossy

Sometimes people use them interchangeably

Test Data Volume Skyrockets

- Suppose ATE system has 500 pins, each has 64Mb memory
 - Total ATE memory available = 32Gb
- 1M FF x 60K test patterns = 60Gb > 32Gb

(Source: Blyler, Wireless System Design, 2001)

More & More Compression Needed

- Required compression ratio keep increasing
- More 1,000x test compression needed by 2020!

$$Compression \ Ratio = \frac{Original \ Data}{Compressed \ Data}$$

Year of Production		2014	2015	2016	2017	2018	2019	2020
Worst Case (Flat) Data Volume (Gb)				·				
MPU-HP - High Performance MPU (Server)		1984	2699	3673	4998	6138	7537	9256
MPU-CP - Consumer MPU (Laptop/Desktop)		1160	1579	2149	2924	3591	4409	5415
SOC-CP - Consumer SOC (Consumer SOC, APU, Mobile Proces		1526	2077	2826	3846	4723	5800	7122
Best-Case Test Data Volume (Hierarchal & Compression) (Gb)								
MPU-HP - High Performance MPU (Server)		5.1	5.7	6.4	7.2	7.3	7.4	7.5
MPU-CP - Consumer MPU (Laptop/Desktop)		4.1	4.6	5.1	5.7	5.7	5.8	5.8
SOC-CP - Consumer SOC (Consumer SOC, APU, Mobile Proces		7.9	8.8	10.2	11.6	12.2	12.6	12.5
Best-Case Compression Ratio (Hierarchal & Compression)								
MPU-HP - High Performance MPU (Server)		389	471	572	694	842	1022	1242
MPU-CP - Consumer MPU (Laptop/Desktop)		280	342	425	516	625	758	926
SOC-CP - Consumer SOC (Consumer SOC, APU, Mobile Proces		192	236	278	330	388	461	568

Source: Int'l Technology Roadmap for Semiconductor (ITRS) 2013

Historical Review

- 1980's: software techniques
 - Performed in ATPG, no extra DFT hardware
 - Reduce number of test patterns
- 1990's: hardware techniques
 - Test stimulus compression
 - Reduce number of DFT pins
- 2000's: hardware techniques
 - Test response compaction
 - Tolerate unknown outputs
- after 2010: hardware techniques
 - Test point insertion
 - Reduce number of test patterns

Test Compression

- Introduction
- Software Techniques
 - Dynamic test compression, DTC
 - Static test compression, STC
- Hardware Techniques
- Industry Practice
- Conclusion

STC vs. DTC

- Dynamic test compression
 - performed during TPG
 - more CPU time
 - more effective
- Static test compression
 - performed after TPG
 - less CPU time
 - less effective

TC Increases CPU Time but Reduces Test Cost

PODEM-X [Goel 81]

- Step1: Select a primary fault, f₁
 - generate test cube, t₁
 - if fail, remove f_1 from fault list (don't try this fault again)
- Step 2: If f_1 succeed, backtrace from a output =X
 - select one undetected fault
 - * secondary fault, f₂
 - generate a test cube based on t₁
 - if fail, try next secondary fault, f₃
 - * Still keep f_2 in fault list (this fault can be tried later)
 - repeat step 2 until
 - * time out
 - many continuous failures
 - * no more output =X

PODEM-X Example

primary fault: G1 output SA0

Initial objective: G1 output =1

Backtrace to PI: b = 1. simulation, objective not achieved

Backtrace to PI: a = 1. simulation, objective achieved

Objective: G2 output = 0 (propagate through G3)

Backtrace to PI: C = 1. simulation, objective not achieved

Backtrace to PI: e = 1. simulation, objective achieved

Objective: propagate through G5, G5 output = D

Backtrace to PI: h= 1. objective achieved.

Test cube: abcehjk = 11111xx

PODEM-X Example (2/3)

Backtrace from output =X

Backtrace from output G ₆			
Find undetected fault: k SA1			
Choose secondary fault = k SA1			

PODEM-X Example (3/3)

secondary fault: k SA1

Backtrace from output G₆

Find undetected fault: k SA1

Choose secondary fault = k SA1

Objective: k = 0

Backtrace to PI: k = 0

simulation, output $G_6 = D'$, fault detected

new test cube: *abcehjk* = 11111x0

No more secondary fault, DTC ends

Quiz: Redo previous DTC, primary fault: G1 output SA0. But this time, propagate to G6 output. Please choose secondary fault h SA0

Initial objective: G1 output =1

assign *a, b, c, e* = 1

Objective: propagate through G6

Backtrace to PI: k=1. objective achieved.

Test cube: abcehjk = 1111xx1

Quiz Solution

(cont'd) Test cube: abcehjk = 1111xx1

choose secondary fault h SA0

assign h = 1, simulate, D generated

choose to propagate through G4, objective: *j*=0

assign j=0, simulate, D reaches PO

Test cube: *abcehjk* = 1111101

Summary

- Introduction:
 - Reduce test data
 - Reduce test time
 - Reduce ATE cost/ DFT pins
- Software Techniques
 - Dynamic test compression: during TPG, slow but more effective
 - * PODEM-X
 - Static test compression: after TPG, fast but less effective

