scientific programming to develop code of the space-time conservation element and solution element (CESE) method in Python and C++

Yung-Yu Chen SciPyData Japan 2025

adjunct assistant professor at NYCU

yyc@sciwork.dev

https://yyc.solvcon.net/

scientific computing

- computing builds this digital world of information
 - Internet, smart phones, virtual reality, all the fancy things
- the term "scientific computing" is ... not 100% satisfying me
 - we can only control everything by writing code ourselves
 - computing without coding misses the details
- the term "scientific programming" emphasizes coding

scientific programming for me

- time-accurate simulations with the continuum assumption
 - first-order, non-linear hyperbolic partial differential equations (PDEs)
- numerical clarity for non-linear systems
 - numerical method needs to handle non-linearity intrinsically
 - fit complex geometry in three-dimensional space
- software clarity for engineering: reproducible results
 - not only for research and applications, but also extension to other areas

it involves so many things

- in the beginning, I thought Python alone suffices
 - but scientific programming is hard
- in reality, much more to handle:
 - hardware, instructions, and performance

nce computer architecture

- resource management system programming
- "bookkeeping" is as important as numerical methods software architecture

• version control, build system, ... and everything

software engineering

redoing things many times

topics today

 use the space-time conservation element and solution element (CESE) method to solve hyperbolic PDEs

unstructured meshes of mixed-shape elements

array library for the numerical method and geometry

solve first-order hyperbolic PDEs

 the space time conservation element and solution element (CESE) method is developed in the 90s to solve first-order, non-linear hyperbolic PDEs

$$\frac{\partial \mathbf{u}}{\partial t} + \frac{\partial \mathbf{F}^{(1)}(\mathbf{u})}{\partial x_1} + \frac{\partial \mathbf{F}^{(2)}(\mathbf{u})}{\partial x_2} + \frac{\partial \mathbf{F}^{(3)}(\mathbf{u})}{\partial x_3} = \mathbf{R}(\mathbf{u})$$
PDEs in the first-order form

$$\frac{\partial \mathbf{u}}{\partial t} + \sum_{k=1}^{3} \frac{\partial \mathbf{F}^{(k)}(\mathbf{u})}{\partial x_k} = 0$$
 first-order hyperbolic PDEs

propagating wave

old results (2011)

conservation laws:
$$\frac{\partial \mathbf{u}}{\partial t} + \sum_{k=1}^{3} \frac{\partial \mathbf{F}^{(k)}(\mathbf{u})}{\partial x_k} = 0$$

stress waves in anisotropic solids (hexagonal symmetry)

two-dimensional compressible flow

(M=3)

integral equation in (x, t)

differential equation

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0$$

by $\mathbf{h} \stackrel{\text{def}}{=} (f(u), u)$

integral equation

$$\int_{V} \nabla \cdot \mathbf{h} \, \mathrm{d} v = 0$$

in Euclidean 2-space (x, t)

$$\nabla \cdot \mathbf{h} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial t}\right) \cdot \left(f(u), u\right)$$
$$= \frac{\partial f(u)}{\partial x} + \frac{\partial u}{\partial t}$$

$$\oint_{S(V)} \mathbf{h} \cdot \mathrm{d}\hat{\sigma} = 0$$

conservation element

compound conservation element (CCE): BCEF defines

the control volume CE and the control surface S(CE)

h* is the approximation of h by using solution elements

basic conservation element (BCE):

- defines the control volume CE_{-} and the control surface $S(CE_{-})$
- defines the control volume CE_{\perp} and the control surface $S(CE_{\perp})$

solution element approximation

in the solution element, define:

$$u^*(x, t; j, n) = u_j^n + (u_x)_j^n (x - x_j) + (u_t)_j^n (t - t^n)$$

$$f^*(x, t; j, n) = f_j^n + (f_x)_j^n (x - x_j) + (f_t)_j^n (t - t^n)$$

write $\mathbf{h}^*(x, t; j, n)$ using only the variables defined on the solution points u_i , $(u_x)_i$, $(f_u)_i$:

$$f^*(x,t;j,n) = f_j^n + (f_u)_j^n (u_x)_j^n \left[(x - x_j) - (f_u)_j^n (t - t^n) \right]$$

$$u^*(x,t;j,n) = u_j^n + (u_x)_j^n \left[(x - x_j) - (f_u)_j^n (t - t^n) \right]$$

flux conservation

the half-step time-marching formula can be derived by using the space-time flux conservation

$$\oint_{S(CE)} \mathbf{h}^* \cdot d\hat{\sigma} = 0 \text{ around } CE(j - \frac{1}{2}, n) \text{ and } CE(j + \frac{1}{2}, n)$$

Yung-Yu Chen, SciPyData Japan, 25th Jan 2025

use
$$SE(j, n + \frac{1}{2})$$
, $SE(j - \frac{1}{2}, n)$, $SE(j + \frac{1}{2}, n)$ and $\Delta x_j = \Delta x_{j - \frac{1}{2}}^+ + \Delta x_{j + \frac{1}{2}}^-$ to obtain:

$$u_{j}^{n+\frac{1}{2}} = \frac{1}{\Delta x_{j}} \left\{ (u^{*})_{j-\frac{1}{2},+}^{n} \Delta x_{j-\frac{1}{2}}^{+} + (u^{*})_{j+\frac{1}{2},-}^{n} \Delta x_{j+\frac{1}{2}}^{-} + \frac{\Delta t}{2} \left[(f^{*})_{j-\frac{1}{2}}^{n,+} - (f^{*})_{j+\frac{1}{2}}^{n,+} \right] \right\}$$

calculate gradient

the c scheme uses the central differencing to approximate $(u_{\chi})_{i}^{n+\frac{1}{2}}$

Note: both u and u_x are unknowns

 $(u')_{j\pm\frac{1}{2}}^{n} \stackrel{\text{def}}{=} u_{j\pm\frac{1}{2}}^{n} + (u_{x})_{j\pm\frac{1}{2}}^{n} \left[x_{j\pm\frac{1}{2}} - x_{j\pm\frac{1}{2}}^{s} - (f_{u})_{j\pm\frac{1}{2}}^{n} \frac{\Delta t}{2} \right] \text{ is the }$

first-order Taylor expansion with respect to $SE(j \pm \frac{1}{2}, n)$

Note: This is the treatment of the c scheme. It is developed based on the inviscid a scheme and the viscous a- ε scheme. The c scheme is also the foundation of the CFL-insensitive c- τ scheme.

remarks on gradient approximation

- the derivation to determine gradient looks magical and less rigorous
 - it is an alternate description of the a- ε scheme when $\varepsilon=0.5$
 - ullet the special case is called the c scheme
 - the c scheme is extended to the c-au scheme, which is CFL-insensitive
- the central differencing only work for linear equation
 - for non-linear equation, a re-weighting function is used

GUI integrating everything

- clean numerical method
- 1D example: Sod's shock tube problem
- 2D problems in the pipeline

numerical and code clarity

- do I make it?
 - I do have open-source code that follows the equations closely
- for scientific and engineering applications, results and speed matter more
 - clarity is subjective, varies by applications and teams
 - my production code (not this side project of the CESE method) is much uglier than my open-source code
- the value is ease of understanding
 - community members of zero background can contribute using spare time

mixed-shape unstructured meshes

complex geometry for 2/3D solver

- C++ code for Qt3D
 - wrapped to Python using pybind11
- Qt6 and PySide6 for the interactive GUI
 - interoperation between Shiboken6 (PySide6) and pybind11

connectivity

hexahedron

name	type id	dimension	# node	# edge	# surface	# face
point	1	0	1	n/a	n/a	n/a
line	2	1	2	n/a	n/a	n/a
quadrilateral	3	2	4	4	n/a	4
triangle	4	2	3	3	n/a	3
hexahedron	5	3	8	12	6	6
tetrahedron	6	3	4	6	4	4
prism	7	3	6	9	5	5
pyramid	8	3	5	8	5	5

triangle

quadrilateral

line

- tetrahedron
- prism

- pyramid
- face connects two cells
 - line in 2D
 - surface in 3D

```
#define MM_DECL_SWITCH_CELL_TYPE(TYPE, NDIM, NNODE, NEDGE, NSURFACE) \
   case TYPE: return CellType(TYPE, NDIM, NNODE, NEDGE, NSURFACE); break;
   switch (id)
       MM_DECL_SWITCH_CELL_TYPE( 0, 0,
                                                             0 ) // non-type
                                                             0 ) // point/node/vertex
                                                             0 ) // line/edge
       MM_DECL_SWITCH_CELL_TYPE( 2,
       MM_DECL_SWITCH_CELL_TYPE( 3,
                                                             0 ) // quadrilateral
       MM_DECL_SWITCH_CELL_TYPE( 4,
                                                             0 ) // triangle
       MM_DECL_SWITCH_CELL_TYPE( 5,
                                                             6 ) // hexahedron/brick
       MM_DECL_SWITCH_CELL_TYPE( 6, 3,
                                                             4 ) // tetrahedron
       MM_DECL_SWITCH_CELL_TYPE( 7, 3,
                                                             5 ) // prism
       MM_DECL_SWITCH_CELL_TYPE( 8, 3,
                                                             5 ) // pyramid
       default: return CellType{}; break;
#undef MM DECL SWITCH CELL TYPE
```


cells connect by sharing face

global indices

local indices

2 cells share a face

metric data

metrics	name in code	length (shape[0])	shape[1]	data source
node coordinate	ndcrd	nnode	ndim (2/3)	input
face center coordinate	fccnd	nface	ndim (2/3)	derived
face unit normal vector	fcnml	nface	ndim (2/3)	derived
face area	fcara	nface	n/a	derived
cell center coordinate	clcnd	ncell	ndim (2/3)	derived
cell volume	clvol	ncell	n/a	derived

fcnm]

 \square 0321

- face and cell center may use centroid (other center is possible)
- surface normal of a triangle can be determined by cross product of two edge vectors
- normal of a quadrilateral needs to be averaged

make array library

the data structure for cache optimization, data parallelism, SIMD, GPU, all the techniques of high-performance computing (HPC)

multi-dimensional array

- SimpleArray is a class template
 - holds a contiguous memory buffer
 - provides multi-dimensional accessors to its elements
- designed for fundamental types; might be used for POD types (untested)

SimpleArray is not C++ vector

SimpleArray

SimpleArray is fixed size

only allocate memory on construction

multi-dimensional access:
operator()

std::vector

std::vector is variable size

- buffer may be invalidated
- implicit memory allocation (reallocation)

one-dimensional access:

operator[]

manage lifecycle

scientific programming to develop code of the

the Python wrapping layer bridge the object lifecycle between Py0bject and the C++ engine

the C++ engine defines a management framework

management framework

buffer

```
class ConcreteBuffer
    : public std::enable_shared_from_this<ConcreteBuffer>
    , public BufferBase<ConcreteBuffer>
private:
   using data_deleter_type = detail::ConcreteBufferDataDeleter;
public:
   using remover_type = detail::ConcreteBufferRemover;
   using unique_ptr_type = std::unique_ptr<int8_t, data_deleter_type>;
private:
   static unique_ptr_type allocate(size_t nbytes)
       unique_ptr_type ret(nullptr, data_deleter_type());
       if (0 != nbytes)
           ret = unique_ptr_type(new int8_t[nbytes], data_deleter_type());
       return ret;
                                             use unique pointer
                                             to manage lifecycle
   size_t m_nbytes;
   unique_ptr_type m_data;
 allocate by constructor: no remover
 use array new/delete
```

```
ConcreteBuffer(size_t nbytes
             , const ctor_passkey &)
     : BufferBase<ConcreteBuffer>()
     , m_nbytes(nbytes)
      m_data(allocate(nbytes))
    { /* * */ }
```

deleter

```
struct ConcreteBufferDataDeleter
    using remover_type = ConcreteBufferRemover;
    ConcreteBufferDataDeleter(ConcreteBufferDataDeleter const &) = delete;
    ConcreteBufferDataDeleter & operator=(ConcreteBufferDataDeleter const &) = delete;
    ConcreteBufferDataDeleter() = default;
    ConcreteBufferDataDeleter(ConcreteBufferDataDeleter &&) = default;
    ConcreteBufferDataDeleter & operator=(ConcreteBufferDataDeleter &&) = default;
    ~ConcreteBufferDataDeleter() = default;
    explicit ConcreteBufferDataDeleter(std::unique_ptr<remover_type> && remover_in)
        : remover(std::move(remover_in))
    void operator()(int8_t * p) const
       if (!remover) { delete[] p; }
        else { (*remover)(p); }
    std::unique_ptr<remover_type> remover{nullptr};
```

```
ConcreteBuffer(size_t nbytes, int8_t * data
             , std::unique_ptr<remover_type> && remover
             , const ctor_passkey &)
    : BufferBase<ConcreteBuffer>()
    , m_nbytes(nbytes)
     m_data(data, data_deleter_type(std::move(remover))}
    { /* ,,, */ }
```

foreign pointer needs a remover to manage lifetime

what happens in Python stays in Python

Python remover uses PyObject to manage lifecycle

Remover releases PyObject on destruction

standard remover follows the default behavior of the deleter

```
struct ConcreteBufferRemover
    virtual ~ConcreteBufferRemover() = default;
    virtual void operator()(int8_t * p) const { delete[] p;
struct ConcreteBufferDataDeleter
    using remover_type = ConcreteBufferRemover;
    ConcreteBufferDataDeleter(ConcreteBufferDataDeleter const &) = delete;
    ConcreteBufferDataDeleter & operator=(ConcreteBufferDataDeleter const &) = delete;
    ConcreteBufferDataDeleter() = default;
    ConcreteBufferDataDeleter(ConcreteBufferDataDeleter &&) = default;
    ConcreteBufferDataDeleter & operator=(ConcreteBufferDataDeleter &&) = default;
    ~ConcreteBufferDataDeleter() = default;
    explicit ConcreteBufferDataDeleter(std::unique_ptr<remover_type> && remover_in)
        : remover(std::move(remover_in))
    void operator()(int8_t * p) const
        if (!remover) { delete[] p;
        else { (*remover)(p); }
    std::unique_ptr<remover_type> remover{nullptr};
};
```

ghost (negative) index

- ghost: elements indexed by negative integer
 - similar to the negative index for the POD array
- no overhead for normal arrays that start with 0 index

```
// C-style POD array.
int32_t data[100];
// Make a pointer to the head address of the array.
int32_t * pdata = data;
// Make another pointer to the 50-th element from the head of the array.
int32_t * odata = pdata + 50;
```


implement first-dimension ghost

keep ghost number and body address

```
template <typename T>
class SimpleArray
{
private:
    // Number of ghost elements
    size_t m_nghost = 0;
    // Starting address of non-ghost
    value_type * m_body = nullptr;
};
```

calculate body address

assign ghost and body information in constructors

more to do

numerics

- numerical methods
 - the space-time CESE method
 - ID Euler solver
 - (work in progress) 2/3D Euler solver
 - (to be planned) more equations
 - † (to be planned) FVM, FEM, etc.
- mixed-shape unstructured meshes
 - geometry data for consumption from solver

computer

- visualization (very basic)
 - (to be planned) reasonable UI
- array operations and buffer management
 - columnar arrays
- profiling
 - (to be planned) install in applications
- parameter database
 - (to be planned) install in applications
- Value build, test, and deploy
 - continuously improvement

... and more

end

