B4 - Generalisierte lineare Modelle mit R

Jan-Philipp Kolb

16 Oktober 2018

Agresti - Categorical Data Analysis (2002)

- Sehr intuitiv geschriebenes Buch
- Sehr detailliertes Skript von Laura A. Thompson
- Das Buch behandelt grundsätzlich die kategoriale Datenanalyse.

Faraway Bücher zum Thema Regression

Extending the Linear Model with R

- Logistische Regression eingängi erklärt
- Beispiel mit R-Code
 - Faraway Extending the linear model with R
 - Faraway Practical Regression and Anova using R

Importieren des GESIS Panels Datensatzes

Das Argument convert.factors:

 logical. Wenn TRUE, werden Faktoren aus dem Stata Werte Labeln erzeugt.

Eine Funktion um fehlende Werte zu rekodieren

```
code_miss <- function(var){
  misvals <- c(-11,-22,-33,-44,-55,-66,-77,-88,-99,-111)
  var[var %in% misvals] <- NA
  return(var)
}</pre>
```

Variablen für das glm

• a11d056z: Altersgruppe

```
table(datf$a11d056z)
##
                                           10
## -99
                        5
                              7 8 9
                                                       13
           87 101
                       83 100 163 159 133
                                           64
                                               56 105
##
       31
                   91
                                                       44
age <- code miss(datf$a11d056z)
```

```
table(age)
```

```
age
##
                      5
                          6
                                 8
                                           10
                                                  12
                                                        13
                        100 163 159 133
##
    31
        87 101
                 91
                     83
                                           64
                                               56 105
                                                        44
```

GP Variable a11d094a: Kinder unter 16 Jahre

Gibt es in Ihrem Haushalt Kinder unter 16 Jahren?

- 1 Ja
- 2 Nein

```
children <- as.factor(code_miss(datf$a11d094a))
table(children)</pre>
```

```
## children
## 1 2
## 325 681
```

Conditional Density Plot (GESIS Panel)

cdplot(children ~ age, data = dat)

Binäre abhängige Variablen im glm

- Die logistische Regression ghört zur Klasse der generalisierten linearen Modellen (GLM)
- Die Funktion zur Schätzung eines Modells dieser Klasse heißt glm()

Ein glm spezifizieren

- Formul Objekt
- die Klasse (binomial, gaussian, gamma)
- mit einer Link Funktion (logit, probit, cauchit, log, cloglog)

muss spezifiziert

Logistische Regression mit R

```
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.7194058 0.16384386 -4.390801 1.129338e-05
## age 0.2225862 0.02376266 9.367056 7.458415e-21
```

Die Koeffizienten interpretieren

Wir betrachten das logistische Modell der Kinder im Haushalt als eine Funktion des Alters.

```
sum_glm1$coefficients
```

```
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.7194058 0.16384386 -4.390801 1.129338e-05
## age 0.2225862 0.02376266 9.367056 7.458415e-21
```

- Die Schätzungen und Standardfehler werden mit Log Odds angegeben, nicht mit der Wahrscheinlichkeit.
- Die p-Werte bedeuten das Gleiche, wie bei der linearen Regression.

Der inverse Logit

```
sum_glm1$coefficients
```

```
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.7194058 0.16384386 -4.390801 1.129338e-05
## age 0.2225862 0.02376266 9.367056 7.458415e-21
```

 Die Koeffizienten können nicht so einfach wie "die Kinder im Haushalt in der Altersgruppe 0" interpretiert werden. Wir müssen den inversen Logit verwenden, um etwas auszusagen.

Werte für die Log-odds von -0.7194058 sind das Gleiche, wie die Wahrscheinlichkeit: 0.3275238.

```
faraway::ilogit(sum_glm1$coefficients[1,1])
```

```
## [1] 0.3275238
```

Zum Achsenabschnitt in einem logistischen Modell

- Es ist möglich, dass der Schätzwert für den Achsenabschnitt kleiner als null ist.
- Das bedeuted, dass die log-odds negativ sind und NICHT die Wahrscheinlichkeit.
- Ein Log-Odd Wert von 0 bedeuted eine Wahrscheinlichkeit von 0.5.

Log-odds und die Wahrscheinlichkeit

• Die Log-odds steigen an, wenn die Wahrscheinlichkeit auch ansteigt.

Daraus folgt...

- Ein postivier Steigungskoeffizeint bedeutet, dass der Response-Wert mit zunehmenden Wert für die erklärende Variable auch zunimmt.
- In unserem Fall heißt das: Die Wahrscheinlichkeit, dass sich im Haushalt Kinder befinden steigt mit dem Alter des Befragten.

Das Ergebnis graphisch darstellen

es steigt in einer Sigmoid-Kurve an, nicht mit einer konstanten Rate

Logistische Regressionsformel

Logistische Modelle haben Regressionsformeln. Diese Formel ist:

$$Log-Odds(Children) = -0.7194058 + 0.2225862(Age) + Fehler$$

Wir können die Alterswerte in die Formel einsetzen um die vorhergesagten Log-Odds für unterschiedliches Alter zu bekommen.

Log-Odds für die Altersgruppe 5

$$\hbox{-0.7194058} + \hbox{0.2225862*(5)} = \hbox{0.3935251}$$

Wahrscheinlichkeit für Kinder in der Altersgruppe 5

[1] 0.597131

Die Ergebnisse interpretieren

```
anova(glm 1, test="Chisq")
## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: children
##
## Terms added sequentially (first to last)
##
##
         Df Deviance Resid. Df Resid. Dev Pr(>Chi)
##
## NULL
                            1000
                                        1259
## age 1 98.956
                                      1160 < 2.2e-16 ***
                             999
## ---
## Signif codes.
                                          0.01
     Jan-Philipp Kolb
                      B4 - Generalisierte lineare Modelle mit R
                                                   16 Oktober 2018
                                                               17 / 25
```

Die Devianz

Abweichung vom Idealwert

ullet Zweimal die Differenz zwischen der maximalen Log-Likelihood $\ell^{(M)}$ und dem Wert für das angepasste Modell

```
sum_glm1 <- summary(glm_1)
sum_glm1$deviance</pre>
```

[1] 1160.044

Mc Fadden's R^2

```
library(pscl)
pR2(glm_1)
```

```
## 11h 11hNull G2 McFadden
## -580.02210772 -632.93066002 105.81710461 0.08359297
## r2CU
## 0.13978426
```

```
The log-likelihood from the fitted model

The log-likelihood from the intercept-only restricted model

Minus two times the difference in the log-likelihoods

McFadden McFadden's pseudo r-squared

Maximum likelihood pseudo r-squared

Cragg and Uhler's pseudo r-squared
```

Großstadtnähe Wohngegend

Wie weit ist es von Ihrer Wohnung bis ins Zentrum der nächsten Großstadt?

- 1 Im Großstadtzentrum
- 6 60 km und mehr

```
region <- code_miss(datf$bczd001a)
table(region)</pre>
```

```
## region
## 1 2 3 4 5 6
## 87 191 279 157 126 165
```

Zufriedenheit Leben in Wohnort

Alles in allem, wie zufrieden sind Sie mit dem Leben in [Wohnort]?

- 1 Sehr zufrieden
- 5 Sehr unzufrieden

```
satisfactionplace <- datf$a11c019a
table(satisfactionplace)</pre>
```

```
## satisfactionplace
## 1 2 3 4 5
## 553 534 99 30 6
```

Ein anderes Modell

```
pseudor2 <- pR2(glm_2)
pseudor2["McFadden"]</pre>
```

```
## McFadden
## 0.258121
```

Eine weitere Variable aus dem GESIS Panel Datensatz

Anzahl Tattoos:

```
Tatoos <- code_miss(datf$bdao067a)
Tatoos[Tatoos==97]<-0
```

```
table(Tatoos)
```

```
## Tatoos
## 0 1 2 3 4 5 6
## 871 56 28 13 7 4 8
```

Generalisierte Regression mit R - Mehr Funktionen

• Logistisches Modell mit einem Probit Link:

```
probitmod <- glm(children ~ age,
    family=binomial(link=probit))</pre>
```

• Regression mit Zähldaten:

```
modp <- glm(Tatoos ~ age,family=poisson)</pre>
```

Proportional Odds logistic Regression aus dem Paket MASS:

```
library("MASS")
mod_plr<-polr(a11c020a ~ a11d096b ,data=dat)</pre>
```

Linkliste - logistische Regression

• Einführung in die logistische Regression

I think, therefore T R

Code zum Buch von Faraway

www.maths.bath.ac.uk/~jjf23/ELM/scripts/binary.R

```
library(faraway)
data(orings)
plot(damage/6 ~ temp, orings, xlim=c(25,85), ylim = c(0,1), xlab="Temperature", ylab="Prob of damage")
lmod <- lm(damage/6 ~ temp, orings)
abline(lmod)
logitmod <- glm(cbind(damage,6-damage) ~ temp, family=binomial, orings)
summary(logitmod)
plot(damage/6 ~ temp, orings, xlim=c(25,85), ylim = c(0,1), xlab="Temperature", ylab="Prob of damage")
```

Kategoriale Daten: - Wie man eine logistische Regression in R