

OpenShift Security The usage of PKI Infrastructures

Stronger Platform Security

Defense in Depth

CONTROLApplication Security

- FIPS Compliance
- Encrypt etcd datastore
- RHEL CoreOS network bound disk encryption
- Private clusters with existing VPN / VPC
- Internal ingress controller
- Ingress Cipher & TLS Policy Configuration
- Log forwarding (tech preview)

DEFENDInfrastructure

EXTEND

Best IT Ops Experience

CaaS ← → PaaS ← → FaaS

Best Developer Experience

Red Hat Enterprise Linux CoreOS

4.3 Image Availability: (* = new)

OpenStack

Amazon

GCP

vSphere

Azure

- Bare Metal (unified x86_64 image)*
- IBM Z (DASD & FCP via z-stream)*

FIPS mode support:

- Enforces FIPS validated ciphers for node-level cryptography
- Configurable at install/provisioning

Network Bound Disk Encryption:

- Provides encryption for local storage
- Addresses disk/image theft
- Platform/cloud agnostic implementation
- TPM/vTPM (v2) and Tang endpoints for automatic decryption

Kmods via containers:

- A framework to build and load 3rd party kmods
- Viable for drivers unsuitable for the SRO

OpenShift 4 Fips 140-2 Compliant Cluster

FIPS ready Services

• When built with RHEL 7/8 base image

OpenShift calls FIPS validated crypto

- When running on RHEL in FIPS mode, OpenShift components bypass go cryptographic routines and call into a RHEL FIPS 140-2 validated cryptographic library
- This feature is specific to binaries built with the RHEL go compiler and running on RHEL

RHEL CoreOS FIPS mode

 Configure at install to enforce FIPS validated ciphers for node-level cryptography

Note: products are not FIPS validated, only libraries.

*When built with RHEL base images

More about RHEL go and FIPS 140-2

Encrypting the Disk of the OCP Nodes

PKI in OpenShift

OpenShift 4 etcd Encryption

Encrypt secrets, config maps...

- Encryption of the etcd datastore is optional. Once enabled, encryption cannot be disabled.
- The aes-cbc cipher is used.
- Keys are created and automatically rotated by an operator and stored on the master node's file system.
- Keys are available as a secret via the kube API to a cluster admin.
- Assuming a healthy cluster: after enabling encryption, within a day, all relevant items in etcd are encrypted
- Backup: The etcd data store should be backed up separately from the file system with the key.
- Disaster recovery: a backup of both the encrypted etcd data and encryption keys must be available.

Certificates and Certificate Management

- OpenShift provides its own internal CA
- Certificates are used to provide secure connections to
 - master (APIs) and nodes
 - Ingress controller and registry
 - etcd
- Certificate rotation is automated
- Optionally configure external endpoints to use custom certificates

PKI in OpenShift

Network communication inside an OCP Cluster is PKI encrypted

Encrypting the OCP Network traffic and the etcd Database

Encrypting the OCP Network traffic and the etcd Database

Identity and Access Management

Identity and Access Management

OPENSHIFT SECURITY Comprehensive features

Fine-Grained RBAC

- Project scope & cluster scope available
- Matches request attributes (verb,object,etc)
- If no roles match, request is denied (deny by default)
- Operator- and user-level roles are defined by default
- Custom roles are supported

Figure 12 - Authorization Relationships

Identity Mining and SIAM Mining

PKI in OpenShift

MICROSERVICES WITH ISTIO

connect, manage, and secure microservices transparently

Stronger Platform Security

Defense in Depth

CONTROLApplication Security

- FIPS Compliance
- Encrypt etcd datastore
- RHEL CoreOS network bound disk encryption
- Private clusters with existing VPN / VPC
- <u>Internal ingress controller</u>
- Ingress Cipher & TLS Policy Configuration
- Log forwarding (tech preview)

DEFENDInfrastructure

EXTEND

Thank you! Please give me a little feedback

https://www.menti.com/z71igy9cgk

Thank you

Red Hat is the world's leading provider of enterprise open source software solutions. Award-winning support, training, and consulting services make Red Hat a trusted adviser to the Fortune 500.

- in linkedin.com/company/red-hat
- youtube.com/user/RedHatVideos
- f facebook.com/redhatinc
- twitter.com/RedHat

