Biostatistics I: Statistical tests for categorical data and R

Eleni-Rosalina Andrinopoulou

Department of Biostatistics, Erasmus Medical Center

✓ e.andrinopoulou@erasmusmc.nl

y@erandrinopoulou

McNemar test

Paired categorical data

Is there a difference in the percentage of patients with asthma between the placebo and the drug group (matched data)?

McNemar test

Scenario

Is there a difference in the percentage of patients with asthma between the placebo and the drug group (matched data)?

	Drug (asthma)	Drug (no asthma)	Total
Placebo (asthma)	а	b	a + b
Placebo (no asthma)	С	d	c + d
Total	a + c	b + d	n

Hypothesis

$$H_0: p_a + p_b = p_a + p_c$$
 and $p_c + p_d = p_d + p_b$ $H_0: p_b = p_c$ $H_1: p_a + p_b \neq p_a + p_c$ and $p_c + p_d \neq p_d + p_b$ $H_1: p_b \neq p_c$

McNemar test: Theory

Test statistic

$$X^2 = \frac{(b-c)^2}{b+c}$$

When the values in the contingency table are fairly small a "correction for continuity" may be applied to the test statistic:

$$X^2 = \frac{(|b-c|-1)^2}{b+c}$$

McNemar test: Theory

Sampling distribution

- \blacktriangleright χ^2 -distribution with df = 1
- ► Critical value and p-value

Type I error

Normally α = 0.05

Draw conclusions

ightharpoonup Compare test statistic (X^2) with the critical value or the p-value with α

Multiple testing

- A single statistical test is rarely assumed
- ► If we perform *m* independent tests, what is the probability of at least 1 false positive?
 - ▶ P(Making an error) = α
 - ▶ P(Not making an error) = 1α
 - ▶ P(Not making an error in *m* tests) = $(1 \alpha)^m$
 - ▶ P(Making at least 1 error in m tests) = $1 (1 \alpha)^m$

Multiple testing

Visualize this...

Multiple testing

Methods to adjust for multiple testing:

- ▶ Bonferroni adjustment: multiply the number of simultaneously tested hypothesis, e.g. p value = min(p value * m, 1) or adjust the significant level to $\alpha = \alpha/m$
- ▶ **Holm adjustment**: $\alpha_i = \frac{\alpha}{m-i+1}$, where *i* is the order of the hypothesis we start from the smallest to the largest p-value
- ▶ **Hochberg adjustment**: $\alpha_i = \frac{\alpha}{m-i+1}$, where *i* is the order of the hypothesis we start from the largest p-value

apply Family

Manipulate **vectors** or slices of data from **matrices**, **arrays**, **data frames** and **lists** in a repetitive way

- ► An aggregating function, like for example the mean, or the sum
- Other transforming or subsetting functions
- Other vectorized functions, which return more complex structures like lists, vectors and matrices

apply Family

apply(), lapply(), sapply(), tapply(), mapply()

But how and when should we use these?

Control Flow

Sometimes we want to perform a particular action/manipulation multiple times and/or on several objects.

To repeat the same action we can specify a loop:

- ▶ for each element of a vector, a list, ..., or
- while a particular condition is fulfilled

Sometimes, we may want to execute code only if a certain condition is fulfilled.

To evaluate a condition:

▶ if()...else/ifelse() execute code only if a certain condition is fulfilled.

Functions

What are functions?

- ► a group of (organized) **R** commands
- ▶ a (small) program with flexible (= not pre-specified) input

Almost all commands in **R** are functions!