МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе № 3 по дисциплине «Информатика»

Тема: Машина Тьюринга и конечные автоматы

Студент гр. 3344		Бубякина Ю.В.
Преподаватель		Иванов Д.В.
	Санкт-Петербург	

2023

Цель работы

Изучение принципа работы машины Тьюринга и конечных автоматов. Применение машины Тьюринга на практике.

Задание

Вариант 4.

На вход программе подается строка неизвестной длины. Каждый элемент является значением в ячейке памяти ленты Машины Тьюринга.

На ленте находится последовательность латинских букв из алфавита {a, b, c}, которая начинается с символа 'a'.

Напишите программу, которая оборачивает исходную строку. Результат работы алгоритма - исходная последовательность символов в обратном порядке.

Указатель на текущее состояние Машины Тьюринга изначально находится слева от строки с символами (но не на первом ее символе). По обе стороны от строки находятся пробелы.

Для примера выше лента будет выглядеть так:

Алфавит (можно расширять при необходимости):

- a
- b
- C
- " " (пробел)

Соглашения:

- 1. Направление движения автомата может быть одно из R (направо), L (налево), N (неподвижно).
- 2. Гарантируется, что длинна строки не менее 5 символов и не более 13.

- 3. В середине строки не могут встретиться пробелы.
- 4. При удалении или вставке символов направление сдвигов подстрок не принципиально (т. е. результат работы алгоритма может быть сдвинут по ленте в любую ее сторону на любое число символов).
- 5. Курсор по окончании работы алгоритма может находиться на любом символе.

Ваша программа должна вывести полученную ленту после завершения работы.

В отчет включите таблицу состояний. Отдельно кратко опишите каждое состояние, например:

q1 - начальное состояние, которое необходимо, чтобы обнаружить конец строки.

Выполнение работы

В первую очередь в переменную *program* был записан словарь, содержащий в себе каждое состояние машины Тьюринга в виде ключей и алгоритмы действий для каждого состояния в виде значений. Сами значения этих ключей – также словари, содержащие в себе алгоритмы действий для каждого возможного символа в ячейке при любом состоянии машины Тьюринга, такие как: символ, записываемый в ячейку, шаг по индексу (влево, вправо, остаться на месте), переход в следующее состояние. Переменная *tape* содержит в себе список, состоящий из символов входной строки (лента). Переменные *state* и *index* содержат в себе начальное состояние и начальный индекс, соответственно.

Немного о состояниях:

- q0 начальное состояние, находит символ «а», с которого начинается строка
 - qp замена символа на «р»
 - q1 возвращение к следующему не замененному символу
 - qa запись «а» в начало строки, если замененный символ «а»
 - qb запись «b» в начало строки, если замененный символ «b»
 - qc запись «с» в начало строки, если замененный символ «с»
 - q2 удаление всех «р» после переворота строки
 - q3 конечное состояние

Далее используется цикл while, который, используя данные о текущем состоянии машины Тьюринга, а именно состояния и индекса просматриваемой ячейки, в переменные symbol, move_to и state_new записывает новый символ, шаг по индексу, следующее состояние для машины, соответственно. При переходе в состояние q3 машина останавливается, выход из цикла. Таким образом, получается инвертированная строка, которая выводится программой.

Таблица состояний представлена в табл. 1

Таблица 1 — Таблица состояний

	6 9	ʻa'	'b'	'c'	p
q0	' '; 1; 'q0'	'a'; 0; 'qp'	-	-	-
qp	' '; -1; 'q2'	'p'; -1; 'qa'	'p'; -1; 'qb'	'p'; -1; 'qc'	'p'; 1; 'qp'
qa	'a'; 1; 'q1'	'a'; -1; 'qa'	'b'; -1; 'qa'	'c'; -1; 'qa'	'p'; -1; 'qa'
qb	'b'; 1; 'q1'	'a'; -1; 'qb'	'b'; -1; 'qb'	'c'; -1; 'qb'	'p';-1; 'qb'
qc	'c'; 1; 'q1'	'a'; -1; 'qc'	'b'; -1; 'qc'	'c'; -1; 'qc'	'p'; -1; 'qc'
q1	-	'a'; 1; 'q1'	'b'; 1; 'q1'	'c'; 1; 'q1'	'p'; 1; 'qp'
q2	-	'a'; 0; 'q3'	-	-	' '; -1; 'q2'

Тестирование

Результаты тестирования представлены в табл. 2.

Таблица 2 – Результаты тестирования

<u> </u>						
№ п/п	Входные данные	Выходные данные	Комментарии			
1.	abcabc	cbacba				
			-			
2.	abacbbc	cbbcaba	-			

Выводы

Был освоен принцип работы машины Тьюринга. Был написан алгоритм для машины Тьюринга, инвертирующий входную строку.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: lb3.py ('a', 0, 'qp'), ' -1, 'qa'), 'b': ('p', program={'q0': {'a': 'q0')}, 'qp': {'a': ('p', -1, 'qb'), ('p', -), 'p': ('p', 'qa': {'a': ('a', 'qp'), q2')}, 1, 1, -1, 'qa'), 'b': 'qa'), ('a' -1, 'qa'), ' ' -1, 'qb'), 'b': ('b', 'p': q1')}, 1, 'qb'), 'qb': {'a': ('a', ('c', -, 'p': ('p', -1, 'qb'), b. (b, -1, 'qb'), 'qc': {'a': ('a', -1, 'qc'), 'b': ('b', -1, 'qc'), , 'p': ('p', -1, 'qc'), ' ': ('c', 'q1': {'a': ('a', 1, 'q1'), 'b': ('b', 1, 'q1'), 'qb'), 'p': 1, q1')}, 1, 'qc'), ('C' 'c': 'q1')}, 1, 1, 'c': ('c', 1, 'q1'), 'q2')} **'*15**) '*15+input()+' tape=list(' state='q0' index=0 while state!='q3': symbol, move_to, state_new=program[state][tape[index]] tape[index]=symbol

index+=move_to
state=state_new

print(''.join(tape))