МАТЕМАТИКА БЕЗ ГРАНИЦИ

8 КЛАС

ЗИМА 2016

УВАЖАЕМИ УЧЕНИЦИ,

Времето за работа по задачите е 60 минути.

За задачите с посочен отговор в листа за отговори посочвате буквата на верния отговор, а за задачите със свободен отговор – посочвате отговора/ите.

Забранено е използването на учебници, калкулатори, мобилни телефони и справочници с формули.

За всеки правилен отговор се присъжда по 1 точка.

Самостоятелната и честна работа е главното изискване на организаторите към участниците в турнира.

Желаем успех!

Задача 1. Ако $5x-4)^3 = \alpha x^3 + \beta x^2 + \gamma x + \delta$ е тъждество, тогава $\alpha + \beta + \gamma + \delta =$ **B**) −1 **C**) 1 **A**) -2**D**) друг отговор

Задача 2. Квадратът на естественото число A се записва с цифрите 0, 2, 3 и 4. Тогава 5. Aсе записва с цифрите

A) 0, 2, 3

Задача 3. Ако $A^2 = 2^{2016}$. $(2^8 + 2^5 + 1)$, тогава $\frac{|A|}{2^{1008}} =$

A) 17

B) 33

C) 65

D) 129

Задача 4. Един от вътрешните ъгли на триъгълник е 70 градуса, а разликата на два от вътрешните ъгли на този триъгълник е 30 градуса. Колко, според ъглите, са тези триъгълници?

A) 0

B) 1

C) 2

D) 3

Задача 5. На квадратната мрежа са отбелязани 4 точки. Колко тъпи ъгли се получават при пресичането на правите, преминаващи през всеки две от дадените точки?

A) 2

B) 3

C) 4

D) друг отговор

Задача 6. Известно е, че сборът на повече от 2 последователни естествени числа е 20. Колко са тези възможности?

A) 0

B) 1

C) 2

D) 3

Задача 7. Лицето на равнобедрен триъгълник с ъгъл 150^{0} и бедро $10 \, cm$ в κB . cm е:

A) 100

B) 50

C) 25

D) 12,5

Задача 8.

- Колко е часът? - попитали Питагор.

 До края на денонощието остават два пъти по две пети от времето, което е минало от началото – отговорил той.

Колко е часът?

A) 13 *h* 20 *min*

B) 13 h 40 min

C) 14 h 20 min

D) 14 h 40 min

Задача 9. Питър събрал 3 последователни нечетни числа и получил сбор A. Стивън събрал 3 последователни нечетни числа и получил B. Ако сред числата, които е събирал Питър има 1 от числата, които е събирал Стивън, тогава най-голямата възможна разлика на получените сборове A и B е:

A) 10

B) 11

C) 12

D) 13

Задача 10. В правоъгълен триъгълник a и b са катети, c – хипотенуза, h –височина към хипотенузата. Кой сбор е по-голям?

A) a + b

B) a + h

C) b + h

D) c + h

Задача 11. На колко най-много правоъгълници с размери $3 \, cm \times 2 \, cm$ можем да разрежем правоъгълник с размери $9 \, cm \times 11 \, cm$?

Задача 12. По колко начина можем да подредим 6 ученици в редица, така че двама от тях винаги да са един до друг?

Задача 13. Върху страните на квадрата *ABCD* са построени равнобедрените триъгълници *AND* и *CDM*. Ако $\angle AND = \angle CMD = 150^{\circ}$, да се пресметне $\angle AMB$.

Задача 14. Колко са правилните несъкратими дроби, на които числителят и знаменателят са естествени числа със сбор 41?

Задача 15. Кое е най-малкото естествено число N, за което произведението на 13, 17 и N може да се представи като произведение на три последователни естествени числа?

Задача 16. Пресметнете $\sqrt{3-2\sqrt{2}}-\sqrt{3+2\sqrt{2}}$.

Задача 17. Да се определи обиколката на четириъгълника, получен при последователно свъзване на средите на четириъгълник с диагонали равни на 4 *cm* и 5 *cm*?

Задача 18. В нормалния вид на многочлена $20x^3 - 15x^2 - 20x + 16)^{2017}$ сборът от коефициентите пред четните степени (включително и свободния член) е

Задача 19. Колко е най-голямата стойност на числото N, така че твърдението: "Сред 97 произволни цели числа винаги може да се намерят N числа, така че разликата на всеки две от тях да дели на 8"

да е вярно?

Задача 20. В квадратчетата са записани цифрите от 1 до 9 всяка по един път, така че произведението

да е най-голямо. Колко е най-големият множител?

<u>Указание:</u> Числото 10a + b с цифри a u b, a < b, се увеличава, ако разменим местата на цифрите му . Произведението $(10a + b) \cdot 10c + d$), където a > b, c > d, a > c, b > d, се увеличава, ако разменим местата на b u d.