Hypervisor & Virtual Resources

Role of Hypervisor

- Arbitrator of resources
- Sits between the physical and virtual resources
- Allocates resources
- Provides virtual environment for workloads
- Without hypervisor OS communicates directly with hardware resources
- Without hypervisor multiple OS would like to access hardware resources simultaneously.

Traffic Cop

- Gives illusion to the Guest OS that it has direct access to hardware resources
 - Use disk drives, Memory, Network, etc.
- Balance the workload
 - Each guest makes constant demands
 - Hypervisor provides timely response to each request
 - Ensuring adequate resources for all virtual machines

Hardware Abstraction

Types

- Two classes of hypervisors:
 - Type 1
 - Type 2

Type 1

- Runs directly on the hardware
- More secure and more available
- Offers better performance to the guests
- Generates less overhead
 - No intermediate layer of OS
 - More Virtual machines can run on the box

Type 2

- Runs like an application on OS
- Can support large range of hardware OS dependent
- Not as efficient as Type 1
 - Extra layer between itself and the hardware
 - Every operation from guest OS travels from Hypervisor to OS to Hardware
- Less reliable Underlying OS can impact the hypervisor and VMs
- Good for desktop development environment
 - Single developer working on multiple VMs.

VMWare ESX (Type 1)

- First commercially available hypervisor (1998) for the x86 platform
- Currently market leader in user share and maturity of offerings
- Architecture not tied to an operating system
- Initial deployment included:
 - Hypervisor
 - Service Console
 - Linux-based console sits alongside the Hypervisor
 - Acted as management interface to Hypervisor
- Subsequently removed Service console Security & Size
 - ESXi

Xen (Type 1)

- Began as a Cambridge University research project
- First released in 2002 as an open source project
- Currently exists as an open source project
- The core has been used by a number of vendors including Citrix and Oracle
- Implementation different from VMWare architecture
- Special guest Domain 0 (Dom0)
 - Guest is booted when hypervisor is booted
 - Has special admin privileges

Microsoft Hyper-V (Type 1)

- First release in 2008, but virtualization was available through Virtual Server in 2005
- Different nomenclature
 - Virtualized workloads are called partitions
- Similar architecture to Xen
 - Device drivers part of the parent partition (similar to Dom0)
 - Like Dom0 parent partition runs an OS
- Parent partition is based on Microsoft Windows
 - Creates and manage child partitions and handle management functions

Other Solutions

- Red Hat KVM
- Initially XEN, now kernel based (KVM)
- Oracle VM is XEN based
- Many other commercial and free solutions available but the space is still evolving

Virtual Machines (VM)

- Has many characteristics of a physical server
 - Supports OS
 - Configured with a set of resources
- VM is nothing more than a set of files
 - Configuration File
 - describes resources that the VM can utilize.
 - Virtual disk files

Virtual Resources

- Virtual CPUs (vCPUs) are scheduled slices on Physical CPUs (pCPUs)
- A processor core is equivalent to a vCPU
- A VM's memory is mapped to physical memory but managed by the hypervisor
- A VM can only see and utilize the amount of memory it has been allocated.
- Like vCPUs, you can only adjust the amount of allocated memory
- There are many memory optimization features available.
- The resource most systems run out of first

Virtual Networking

Virtual Storage

- VM talks to virtual SCSI driver
- Hypervisor passes data blocks to/from physical storage
- VM don't have to worry about how they are connected to the storage device
 - Fibre channel, iSCSI, NFS, etc.

