Casos de Estudio para el Análisis de Sistemas Eléctricos de Potencia.

Actividad II.

Por

MARIO SÁNCHEZ GUTIÉRREZ

Benemérita Universidad Autónoma de Puebla FACULTAD DE INGENIERÍA

&

Investigación y Estudios de Posgrado FACULTAD DE INGENIERÍA BUAP

El presente compendio de ejercicios es realizado para la materia de Análisis de Sistemas Eléctricos de Potencia, impartida por el Doctor Ismael Albino Padilla. Esto como parte de la Maestría en Ingeniería con opción terminal en Sistemas Eléctricos de Potencia.

MAYO 2024

Índice.

Introducción	
Caso I	
Datos	3
Solución	4
Caso II	5
Datos	5
Solución	6
Caso III	
Datos	
Solución	
Caso IV	
Datos	
Solución	

Introducción.

Como parte de nuestra especialización a través de esta Maestría en Ingeniería con Opción Terminal en Sistemas Eléctricos de Potencia debemos de aprender cómo es que estos sistemas son modelados matemáticamente, para el correcto cálculo y predicción del comportamiento de estos, por su complejidad, extensión y grandes cantidades de factores a considerar, se ha desarrollado a través de métodos numéricos como Gauss-Seidel y Newton-Raphson, la resolución de estos grandes centros de carga tomando como base la Ley de Corrientes de Kirchhoff.

Durante las clases, se nos enseñó como es que se modelan y transforman ecuaciones del tipo lineal a métodos numéricos de resolución, concretamente Gauss-Seidel y Newton-Raphson, con este método se modeló un sistema de 4 barras, sirviendo como base de nuestros estudios y todo lo que implica un problema de este tipo, determinando la Y_{barra} y obteniendo los voltajes a través de iteraciones.

Durante clase solo se pudieron realizar tres iteraciones de este tipo, donde obteniendo el valor de los voltajes anteriores y teniendo una base de $V_1 = 1.0 \angle 0^\circ$, se realizaron los cálculos pertinentes, esto nos demostró lo tardío que esto podía llegar a ser en el pasado, sin embargo, en la actualidad, con el poder de cálculo de los microprocesadores y los lenguajes de programación en entornos de desarrollo, como lo es MATLAB, nos han permitido llegar a los resultados de manera prácticamente de forma inmediata.

Concretamente MATPOWER, un software de tipo open source, desarrollado por un conjunto de universidades en Estados Unidos, nos permite realizar el modelado de estos sistemas con alta precisión y considerando todos los métodos y estudio que estos involucran, siendo muy conveniente para uso tanto educativo, como el presente trabajo, o como una herramienta industrial.

El presente trabajo presenta diferentes casos de estudio realizados y precargados en MATPOWER, un sistema de cuatro hasta treinta barras, con diferentes cantidades de generadores y líneas, más diferentes componentes como transformadores y motores demandando energía en el sistema.

A continuación, se presenta el diagrama unifilar que será trabajado en MATPOWER.

Ilustración 1. Diagrama Unifilar. Caso I. (Se muestran los nombres y números de las barras).

Se tienen los siguientes datos, los cuales fueron ingresados a MATPOWER, para su resolución y posterior análisis. Todos los datos se encuentran en base 100 MVA y 230 kV.

Tabla 1. Datos de Entrada de Línea.

Línea de	Z se	erie	Y en paralelo
barra a	R en P.U.	jX en P.U.	Ypq P.U.
barra			
1-2	0.01008	0.05040	0.1025
1-3	0.00744	0.03720	0.0775
2-4	0.00744	0.03720	0.0775
3-4	0.01272	0.06360	0.1275

Tabla 2. Datos de Entrada de Barra.

	Generac	ión	C	arga	V	Observaciones
Barra	P MW	Q MVAR	MW	MVAR	P.U.	
1	-	-	50	30.99	1∠0°	Compensación
2	0	0	170	105.35	1∠0°	Carga (Inductiva)
3	0	0	200	123.94	1∠0°	Carga (Inductiva)
4	318	-	80	49.58	1.02∠0°	Voltaje Controlado

Tabla 3. Características Técnicas de los Generadores.

Bus	S nom. (MVA)	V nom. (KV)	P G. (MW)	P máx. (MW)	P min. (MW)	Q máx. (MVAR)	Q min. (MVAR)
1	100	230	-	9999	0	350	-150
4	100	230	318	9999	0	250	-100

Tras 28 iteraciones por Gauss-Seidel y 3 de N-R, obtenemos los siguientes resultados:

How many?		How much?	P (MW)	Q (MVAr)
 Buses	4	Total Gen Capacity	318.0	-250.0 to 600.0
Generators	2	On-line Capacity	318.0	-250.0 to 600.0
Committed Gens	2	Generation (actual)	504.8	295.9
Loads	4	Load	500.0	309.9
Fixed	4	Fixed	500.0	309.9
Dispatchable	0	Dispatchable	-0.0 of -0.0	0.0 -0.0
Shunts	0	Shunt (inj)	-0.0	0.0
Branches	4	Losses $(I^2 * Z)$	4.81	24.05
Transformers	0	Branch Charging (inj)	-	38.0
Inter-ties	0	Total Inter-tie Flow	0.0	0.0
Areas	1			
		Minimum	Max	imum
Voltage Magnitude Voltage Angle			1.020 p.u. 1.52 deg	@ bus 4
P Losses (I^2*R)		-	1.84 MW	
Q Losses (I^2*X)		-	9.18 MVAr	@ line 3-4

Ilustración 2. Resumen del Sistema. Caso I.

<u> </u>	Bus Dat	a 							
Bus #	Vol Mag(pu)	tage Ang(deo		neration V) Q (MVAr) P (I	Load	d Q (MVAr)	
1 2 3 4	0.982 0.969	0.000 -0.976 -1.872	5 - 2 -	-	170 200		30.99 105.35 123.94 49.58	-	
		Total:	504.8	295.93	500	.00	309.86	-	
	Branch	Data							
Brnch #	From Bus	To Bus	From Bus P (MW)	Injection Q (MVAr)	To Bus P (MW)		ction (MVAr)	Loss (I P (MW)	.^2 * Z) Q (MVAr)
1 2 3 4	1 1 2 3	2 3 4 4	38.69 98.12 -131.54 -102.91	22.30 61.21 -74.11 -60.37	-38.46 -97.09 133.25 104.75	-6	31.24 53.57 74.92 56.93	0.227 1.031 1.715 1.835	1.13 5.16 8.58 9.18
						To	otal:	4.809	24.05

Ilustración 3. Información de Barras y Lineas. Caso I.

A continuación, se presenta el diagrama unifilar que será trabajado en MATPOWER, el caso de estudio es un pequeño sistema de potencia de nueve barras. En las barras 1, 2, y 3 se encuentra conectado un generador, en las barras 5, 6 y 8 hay cargas conectadas.

Fig. 2.18 Nine-bus system impedance diagram; all impedances are in pu on a 100-MVA base.

Ilustración 4. Diagrama Impedancias. Caso II. (Se muestran los nombres y números de las barras).

Se tienen los siguientes datos, los cuales fueron ingresados a MATPOWER, para su resolución y posterior análisis. Todos los valores de impedancia están en P.U. y en base 100 MVA.

Barra	Tipo	Tensión	V	δ	PG	Qg	PL	QL
		(kV)	(P.U.)	grados	(P.U.)	(P.U.)	(P.U.)	(P.U.)
1	Comp	16.5	1.040	0	-	i	0	0
2	PV	13.8	1.025	-	163	-	0	0
3	PV	18	1.025	-	85	i	0	0
4	PQ	230	-	-	0	0	0	0
5	PQ	230	-	-	0	0	125	50
6	PQ	230	-	-	0	0	90	30
7	PQ	230	-	-	0	0	0	0
8	PQ	230	-	-	0	0	100	35
9	PQ	230	-	-	0	0	0	0

Tabla 4. Datos de Entrada de las Barras.

Tabla 5. Datos Técnicos de los Generadores.

	Bus	S nom.	V nom.	PG.	P máx.	P min.	Q máx.	Q min.
		(MVA)	(KV)	(MW)	(MW)	(MW)	(MVAR)	(MVAR)
ſ	1	100	16.5	٤?	9999	-9999	300	-300
Ī	2	100	18.0	163	9999	-9999	100	-100
Ī	3	100	13.8	85	9999	-9999	100	-100

Tabla 6. Datos de Entrada de Líneas

Barra a	R	X	B/2	В
Barra	(P.U.)	(P.U.)	(P.U.)	(P.U.)
4-5	0.010000	0.085000	0.088	0.176000
4-6	0.017000	0.092000	0.079	0.158000
5-7	0.032000	0.161000	0.153	0.306000
6-9	0.039000	0.170000	0.179	0.358000
7-8	0.008500	0.072000	0.0745	0.149000
8-9	0.011900	0.100800	0.1045	0.209000

Tabla 7. Datos de Entrada de los Transformadores.

Bus a	X
Bus	(P.U.)
1-4	0.057600
2-7	0.062500
3-9	0.058600

Tras 211 iteraciones por Gauss-Seidel y 4 de N-R, obtenemos los siguientes resultados:

How many?		How much?	P (MW)	Q (MVAr)
Buses	9	Total Gen Capacity	29997.0	-500.0 to 500.0
Generators	3	On-line Capacity	29997.0	-500.0 to 500.0
Committed Gens	3 3 3	Generation (actual)	319.6	22.8
Loads	3	Load	315.0	115.0
Fixed	3	Fixed	315.0	115.0
Dispatchable	0	Dispatchable	-0.0 of -	-0.0 -0.0
Shunts	0	Shunt (inj)	-0.0	0.0
Branches	9	Losses $(I^2 * Z)$	4.64	48.38
Transformers	0	Branch Charging (inj)	-	140.5
Inter-ties	0	Total Inter-tie Flow	0.0	0.0
Areas	1			
		Minimum	Max	cimum
Voltage Magnitude	0.	996 p.u. @ bus 5	1.040 p.u.	@ bus 1
Voltage Angle	-3.	99 deg @ bus 5	9.28 deg	
P Losses (I^2*R)		_	2.30 MW	
Q Losses (I^2*X)		_	15.83 MVAr	@ line 2-7

Ilustración 5. Resumen del Sistema. Caso II.

 	Bus Data	a a						
Bus #		tage Ang(deg		eration) 0 (MVA	r) P (M	Load W) 0 (MVA	r)	
1	1.040	0.000						
2	1.025	9.280	163.0	0 6.6	5 -	-		
3	1.025	4.665	85.0	0 -10.8	5 -	-		
4	1.026	-2.217	-	_	-		_	
5	0.996	-3.989	_	_	125.		55	
7	1.013 1.026	-3.687 3.720		_	90.	00 30.0	0	
8	1.016	0.728	_	=	100.	00 35.0	0	
9	1.032	1.967	-	-	-	-		
		Total:	319.6	4 22.8	315.	00 115.0	0	
 	Branch I	Data						
Brnch #	From Bus	To Bus	From Bus P (MW)	Injection Q (MVAr)	To Bus P (MW)	Injection Q (MVAr)	Loss (I P (MW)	I^2 * Z) Q (MVAr)
1 2	1 2 3	4 7	71.64 163.00	27.05 6.65	-71.64 -163.00	-23.92 9.18	0.000 -0.000	3.12 15.83
2 3 4	3	9 5	85.00	-10.86	-85.00	14.96	0.000	4.10
	4	5	40.94	22.89	-40.68	-38.69	0.258	2.19
5	4 5	6 7	30.70 -84.32	1.03 -11.31	-30.54 86.62	-16.54 -8.38	0.166 2.300	0.90 11.57
6 7	6	9	-59.46	-13.46	60.82	-18.07	1.354	5.90
8	7	8	76.38	-0.80	-75.90	-10.70	0.475	4.03
9	8	9	-24.10	-24.30	24.18	3.12	0.088	0.75

Ilustración 6. Información de Barras y Lineas. Caso II.

Total:

4.641

48.38

Fig. 2.19 Nine-bus system load-flow diagram showing prefault conditions; all flows are in MW and MVAR.

Ilustración 7. Diagrama Flujo de Cargas. Caso II. (Se muestran los números de las barras).

A continuación, se presenta el diagrama unifilar que será trabajado en MATPOWER. El caso de prueba de 14 barras de la IEEE representa una porción del sistema eléctrico de potencia estadounidense (ubicado en el medio oeste de los EUA), esta información que aquí se presenta tiene fecha de febrero de 1962. Una copia de los datos fue amablemente proporcionada por Iraj Dabbagchi de AEP (American Electric Power) e introducido por al formato común de la IEEE por Rich Christie de la Universidad de Washington en 1993.

Ilustración 8. Diagrama Unifilar. Caso III.

El sistema está conformado por catorce barras, cinco generadores, cinco transformadores, dieciséis líneas y once cargas. Los niveles de tensión en las barras y los límites de potencia en las líneas y los transformadores fueron tomados del libro Simulación de Sistemas Eléctricos.

Tabla 8. Datos de Entrada de Barras.

Barra	Nombre de Bus	Base kV	Código	Voltaje (P.U.)
1	BUS 1	230	3	1.06∠0°
2	BUS 2	230	2	1.045
3	BUS 3	230	2	1.01
4	BUS 4	230	1	-
5	BUS 5	230	1	-

6	BUS 6	115	2	1.07
7	BUS 7	1	1	-
8	BUS 8	13.2	2	1.091
9	BUS 9	115	1	-
10	BUS 10	115	1	-
11	BUS 11	115	1	-
12	BUS 12	115	1	-
13	BUS 13	115	1	-
14	BUS 14	115	1	-

Tabla 9. Tipo de Barra según su código en MATPOWER.

Tipo de Barra	Código
Barra de compensación o Swing	3
Barra de voltaje controlado	2
Barra de carga	1

Tabla 10. Características Técnicas de los Generadores.

Bus	S nom. (MVA)	V nom. (KV)	PG. (MW)	P máx. (MW)	P min. (MW)	Q máx. (MVAR)	Q min. (MVAR)
1	100	230	٤?	9999	-9999	100	-20
2	100	230	40	9999	-9999	50	-40
3	100	230	0	9999	-9999	40	0
6	100	115	0	9999	-9999	24	-6
8	100	13.2	0	9999	-9999	24	-6

Tabla 11. Características Técnicas de los Transformadores.

# de	De	A	R	X	Limite	Limite	Limite	Ratio de
TR	Bus	Bus	(P.U.)	(P.U.)	A	В	C	Toma
1	4	7	0	0.20912	75	82.5	90	0.978
2	4	9	0	0.55618	75	82.5	90	0,969
3	5	6	0	0.25202	75	82.5	90	0.932
4	7	8	0	0.17615	30	32.5	35	1
5	7	9	0	0.11001	75	82.5	90	1

Tabla 12. Baterías de Condensadores.

Bus	Q (MVAr)
9	19

Tabla 13. Características Técnicas de las Líneas.

# de Línea	De Bus	A Bus	Line R (P.U.)	Line X (P.U.)	B (P.U.)	Límite A (MVA)	Límite B (MVA)	Límite C (MVA)
1	1	2	, ,	0.11834	0.0264	67.5	74.3	81
2	1	2	0.03876	0.11834	0.0264	67.5	74.3	81
3	1	5	0.05403	0.22304	0.0492	150	160	170
4	2	3	0.04699	0.19797	0.0438	90	99	108
5	2	4	0.05811	0.17632	0.0340	67.5	74.3	81
6	2	5	0.05695	0.17388	0.0346	67.5	74.3	81
7	3	4	0.06701	0.17103	0.0128	37.5	41.3	45
8	4	5	0.01335	0.04211	0	90	99	108
9	6	11	0.09498	0.1989	0	75	82.5	90
10	6	12	0.12291	0.25581	0	90	99	108
11	6	13	0.06615	0.13027	0	90	99	108
12	9	10	0.03181	0.0845	0	45	49.5	54
13	9	14	0.12711	0.27038	0	90	99	108
14	10	11	0.08205	0.19207	0	60	66	72
15	12	13	0.22092	0.19988	0	90	99	108
16	13	14	0.17093	0.34802	0	52.5	57.8	63

Tabla 14. Características de la Carga.

# de	Barra	P	Q
Carga		(MW)	(MVAr)
1	2	21.7	12.7
2	3	94.2	19
3	4	47.8	-3.9
4	5	7.6	1.6
5	6	11.2	7.5
6	9	29.5	16.6
7	10	9	5.8
8	11	3.5	1.8
9	12	6.1	1.6
10	13	13.5	5.8
11	14	14.9	5

Tras 272 iteraciones por Gauss-Seidel y 3 de N-R, obtenemos los siguientes resultados:

System Sum	mary =====			
How many?		How much?	P (MW)	Q (MVAr)
 Buses	14	Total Gen Capacity	772.4	-72.0 to 238.0
Generators	5	On-line Capacity	772.4	-72.0 to 238.0
Committed Gens	5	Generation (actual)	276.0	98.1
Loads	11	Load	259.0	73.5
Fixed	11	Fixed	259.0	73.5
Dispatchable	0	Dispatchable	-0.0 of -0.0	0.0
Shunts	1	Shunt (inj)	-0.0	21.2
Branches	20	Losses $(I^2 * Z)$	16.98	67.28
Transformers	5	Branch Charging (inj)	-	21.5
Inter-ties	0	Total Inter-tie Flow	0.0	0.0
Areas	1			
		Minimum	Maxim	um
Voltage Magnitud			1.090 p.u. @	
		00 deg @ bus 14	0.00 deg @	
P Losses (I^2*R)		-	6.66 MW @	
Q Losses (I^2*X)		-	20.34 MVAr @	line 1–2

Ilustración 9. Resumen del Sistema. Caso III.

_		a ======						
Bus		tage		eration		Load		
#	Mag(pu)	Ang(deg) P (MW)	Q (MVAr)	P (MW	/) Q (MVAr	·)	
1	1.060	0.000			_	-		
2	1.045	-8.859			21.7			
3	1.010	-16.196			94.2			
4	1.017	-13.390		_	47.8			
5	1.019	-11.577		-	7.6			
6	1.070	-17.116		13.04	11.2	20 7.50)	
7	1.061	-16.391		17.70	-	-		
8 9	1.090	-16.391		17.78	20.5	- 16.60		
10	1.056 1.051	-17.947 -18.086		_	29.5 9.0			
11	1.057	-17.733		_	3.5			
12	1.057	-17 . 733		_	6.1			
13	1.050	-17.979		_	13.5			
14	1.035	-19.000		_	14.9			
1-7	1.055	13.000					_	
		Total:	275.98	98.13	259.0	0 73.50)	
	Branch I							
	=======	======						
rnch	From		From Bus 1			njection	Loss (I	
#	Bus	Bus	P (MW)	Q (MVAr)	P (MW)	Q (MVAr)	P (MW)	Q (MVA
1	1	2	137.46	-21.90 -	-130.80	39.32	6.662	20.34
2	1	5	98.52	2.86	-93.84	11.15	4.683	19.33
3	2	3	69.58	3.93	-67.48	0.29	2.101	8.8
4	2		48.41	0.4/	-47.16	-0.30	1.250	3.79
4	2	4	48.41 31.11	0.47 4.44	-47.16 -30.58	-0.30 -6.51	1.250 0.526	
4 5	2 2		31.11	4.44	-47.16 -30.58 27.22	-6.51	1.250 0.526 0.500	1.60
4	2	4 5 4			-30.58		0.526	1.60
4 5 6	2 2 3	4 5	31.11 -26.72	4.44 6.20	-30.58 27.22	-6.51 -6.24	0.526 0.500	1.66 1.28 2.24
4 5 6 7	2 2 3 4 4 4	4 5 4 5 7 9	31.11 -26.72 -71.33	4.44 6.20 20.62	-30.58 27.22 72.04	-6.51 -6.24 -18.38	0.526 0.500 0.711	1.66 1.28 2.24 1.66
4 5 6 7 8	2 2 3 4 4 4 5	4 5 4 5 7	31.11 -26.72 -71.33 27.64	4.44 6.20 20.62 -9.74	-30.58 27.22 72.04 -27.64	-6.51 -6.24 -18.38 11.40 1.70 -7.60	0.526 0.500 0.711 0.000	1.66 1.28 2.24 1.66 1.27
4 5 6 7 8 9 10 11	2 2 3 4 4 4 5 6	4 5 4 5 7 9 6	31.11 -26.72 -71.33 27.64 15.83	4.44 6.20 20.62 -9.74 -0.44 12.14 3.47	-30.58 27.22 72.04 -27.64 -15.83	-6.51 -6.24 -18.38 11.40 1.70 -7.60 -3.35	0.526 0.500 0.711 0.000 0.000	1.66 1.28 2.24 1.66 1.27 4.54
4 5 6 7 8 9 10 11 12	2 2 3 4 4 5 6	4 5 4 5 7 9 6 11	31.11 -26.72 -71.33 27.64 15.83 44.79 7.78 7.84	4.44 6.20 20.62 -9.74 -0.44 12.14 3.47 2.48	-30.58 27.22 72.04 -27.64 -15.83 -44.79 -7.72 -7.77	-6.51 -6.24 -18.38 11.40 1.70 -7.60 -3.35 -2.33	0.526 0.500 0.711 0.000 0.000 0.000 0.060 0.073	1.66 1.28 2.24 1.66 1.27 4.54 0.13
4 5 6 7 8 9 10 11 12 13	2 2 3 4 4 5 6 6	4 5 4 5 7 9 6 11 12	31.11 -26.72 -71.33 27.64 15.83 44.79 7.78 7.84 17.97	4.44 6.20 20.62 -9.74 -0.44 12.14 3.47 2.48 7.18	-30.58 27.22 72.04 -27.64 -15.83 -44.79 -7.72 -7.77 -17.75	-6.51 -6.24 -18.38 11.40 1.70 -7.60 -3.35 -2.33 -6.75	0.526 0.500 0.711 0.000 0.000 0.000 0.060 0.073 0.216	1.60 1.28 2.24 1.60 1.27 4.54 0.13 0.43
4 5 6 7 8 9 10 11 12 13 14	2 2 3 4 4 5 6 6 6 7	4 5 4 5 7 9 6 11 12 13 8	31.11 -26.72 -71.33 27.64 15.83 44.79 7.78 7.84 17.97 -0.00	4.44 6.20 20.62 -9.74 -0.44 12.14 3.47 2.48 7.18 -17.31	-30.58 27.22 72.04 -27.64 -15.83 -44.79 -7.72 -7.77 -17.75 0.00	-6.51 -6.24 -18.38 11.40 1.70 -7.60 -3.35 -2.33 -6.75 17.78	0.526 0.500 0.711 0.000 0.000 0.000 0.060 0.073 0.216 0.000	1.66 1.28 2.24 1.66 1.27 4.54 0.13 0.43
4 5 6 7 8 9 10 11 12 13 14 15	2 2 3 4 4 5 6 6 7 7	4 5 4 5 7 9 6 11 12 13 8 9	31.11 -26.72 -71.33 27.64 15.83 44.79 7.78 7.84 17.97 -0.00 27.64	4.44 6.20 20.62 -9.74 -0.44 12.14 3.47 2.48 7.18 -17.31 5.91	-30.58 27.22 72.04 -27.64 -15.83 -44.79 -7.72 -7.77 -17.75 0.00 -27.64	-6.51 -6.24 -18.38 11.40 1.70 -7.60 -3.35 -2.33 -6.75 17.78 -5.13	0.526 0.500 0.711 0.000 0.000 0.000 0.060 0.073 0.216 0.000	1.66 1.28 2.24 1.66 1.27 4.54 0.13 0.43 0.47
4 5 6 7 8 9 10 11 12 13 14 15 16	2 3 4 4 5 6 6 7 7 9	4 5 7 9 6 11 12 13 8 9	31.11 -26.72 -71.33 27.64 15.83 44.79 7.78 7.84 17.97 -0.00 27.64 4.81	4.44 6.20 20.62 -9.74 -0.44 12.14 3.47 2.48 7.18 -17.31 5.91 4.32	-30.58 27.22 72.04 -27.64 -15.83 -44.79 -7.72 -7.77 -17.75 0.00 -27.64 -4.79	-6.51 -6.24 -18.38 11.40 1.70 -7.60 -3.35 -2.33 -6.75 17.78 -5.13	0.526 0.500 0.711 0.000 0.000 0.000 0.060 0.073 0.216 0.000 0.000	1.66 1.28 2.24 1.66 1.27 4.54 0.13 0.43 0.47 0.78
4 5 6 7 8 9 10 11 12 13 14 15 16	2 2 3 4 4 4 5 6 6 6 7 7 9 9	4 5 7 9 6 11 12 13 8 9 10	31.11 -26.72 -71.33 27.64 15.83 44.79 7.78 7.84 17.97 -0.00 27.64 4.81 9.16	4.44 6.20 20.62 -9.74 -0.44 12.14 3.47 2.48 7.18 -17.31 5.91 4.32 3.68	-30.58 27.22 72.04 -27.64 -15.83 -4.79 -7.72 -7.77 -17.75 0.00 -27.64 -4.79 -9.05	-6.51 -6.24 -18.38 11.40 1.70 -7.60 -3.35 -2.33 -6.75 17.78 -5.13 -4.29 -3.44	0.526 0.500 0.711 0.000 0.000 0.000 0.060 0.073 0.216 0.000 0.000 0.012	1.66 1.28 2.24 1.66 1.27 4.54 0.13 0.15 0.43 0.47 0.78 0.03
4 5 6 7 8 9 10 11 12 13 14 15 16 17	2 2 3 4 4 5 6 6 7 7 9 9	4 5 4 5 7 9 6 11 12 13 8 9 10 14 11	31.11 -26.72 -71.33 27.64 15.83 44.79 7.78 7.84 17.97 -0.00 27.64 4.81 9.16 -4.21	4.44 6.20 20.62 -9.74 -0.44 12.14 3.47 2.48 7.18 -17.31 5.91 4.32 3.68 -1.51	-30.58 27.22 72.04 -27.64 -15.83 -44.79 -7.77 -17.75 0.00 -27.64 -4.79 -9.05 4.22	-6.51 -6.24 -18.38 11.40 1.70 -7.60 -3.35 -2.33 -6.75 17.78 -5.13 -4.29 -3.44 1.55	0.526 0.500 0.711 0.000 0.000 0.000 0.060 0.073 0.216 0.000 0.000 0.012 0.111	1.66 1.28 2.24 1.66 1.27 4.54 0.13 0.47 0.78 0.03
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	2 2 3 4 4 5 6 6 7 7 9 9 10 12	4 5 4 5 7 9 6 11 12 13 8 9 10 14 11 13	31.11 -26.72 -71.33 27.64 15.83 44.79 7.78 7.84 17.97 -0.00 27.64 4.81 9.16 -4.21 1.67	4.44 6.20 20.62 -9.74 -0.44 12.14 3.47 2.48 7.18 -17.31 5.91 4.32 3.68 -1.51 0.73	-30.58 27.22 72.04 -27.64 -15.83 -44.79 -7.72 -7.77 -17.75 0.00 -27.64 -4.79 -9.05 4.22 -1.66	-6.51 -6.24 -18.38 11.40 1.70 -7.60 -3.35 -2.33 -6.75 17.78 -5.13 -4.29 -3.44 1.55 -0.73	0.526 0.500 0.711 0.000 0.000 0.000 0.060 0.073 0.216 0.000 0.012 0.111 0.015	3.79 1.66 1.28 2.26 1.27 4.55 0.11 0.44 0.47 0.03 0.02
4 5 6 7 8 9 10 11 12 13 14 15 16 17	2 2 3 4 4 5 6 6 7 7 9 9	4 5 4 5 7 9 6 11 12 13 8 9 10 14 11	31.11 -26.72 -71.33 27.64 15.83 44.79 7.78 7.84 17.97 -0.00 27.64 4.81 9.16 -4.21	4.44 6.20 20.62 -9.74 -0.44 12.14 3.47 2.48 7.18 -17.31 5.91 4.32 3.68 -1.51	-30.58 27.22 72.04 -27.64 -15.83 -44.79 -7.77 -17.75 0.00 -27.64 -4.79 -9.05 4.22	-6.51 -6.24 -18.38 11.40 1.70 -7.60 -3.35 -2.33 -6.75 17.78 -5.13 -4.29 -3.44 1.55	0.526 0.500 0.711 0.000 0.000 0.000 0.060 0.073 0.216 0.000 0.000 0.012 0.111	1.66 1.28 2.24 1.66 1.27 4.54 0.13 0.47 0.78 0.03

Ilustración 10. Información de Barras y Lineas. Caso III.

A continuación, se presenta el diagrama unifilar que será trabajado en MATPOWER. El caso de prueba de 30 barras de la IEEE representa una porción del sistema eléctrico de potencia estadounidense (ubicado en el medio Oeste de los EUA). En diciembre de 1961. Los datos fueron proporcionados por Iraj Dabbagchi AEP e introducido en el formato común de la IEEE por Rich Christie en la Universidad de Washington en agosto de 1993.

Tabla 15. Datos de Entrada de Barras.

Barra	Nombre de la	Base	Código	Voltaje
	Barra	kV		(P.U.)
1	GLEN LYN	132	3	1.06∠0°
2	CLAYTOR	132	2	1.043
3	KUMIS	132	1	-
4	HANCOCK	132	1	-
5	FIELDALE	132	2	-
6	ROANOKE	132	1	-
7	BLAINE	132	1	1
8	REUSENS	132	2	1.01
9	ROANOKE	1	1	-
10	ROANOKE	33	1	-

11	ROANOKE	11	2	1.082
12	HANCOCK	33	1	-
13	HANCOCK	11	2	1.071
14	BUS 14	33	1	-
15	BUS 15	33	1	1
16	BUS 16	33	1	1
17	BUS 17	33	1	-
18	BUS 18	33	1	-
19	BUS 19	33	1	-
20	BUS 20	33	1	-
21	BUS 21	33	1	-
22	BUS 22	33	1	-
23	BUS 23	33	1	-
24	BUS 24	33	1	1
25	BUS 25	33	1	-
26	BUS 26	33	1	-
27	CLOVERDLE	33	1	-
28	CLOVERDLE	132	1	-
29	BUS 29	33	1	-
30	BUS 30	33	1	-

Tabla 16. Tipo de Barra según su código en MATPOWER.

Tipo de Barra	Código
Barra de compensación o Swing	3
Barra de voltaje controlado	2
Barra de carga	1

Tabla 17. Características Técnicas de los Generadores.

# de	Barra	S nom	V nom	PG.	P máx.	P min.	Q máx.	Q min.
Gen.		(MVA)	(KV)	(MW)	(MW)	(MW)	(MVAR)	(MVAR)
1	1	100	132	¿?	9999	0	100	-100
2	2	100	132	40	9999	0	50	-40
3	5	100	132	0	9999	0	40	-40
4	8	100	132	0	9999	0	40	-10
5	11	100	11	0	9999	0	24	-6
6	13	100	11	0	9999	0	24	-6

Tabla 18. Características Técnicas de los Transformadores.

# de	De	A	R	X	Límite	Límite	Límite	Ratio de
Tr.	Barra	Barra	(P.U.)	(P.U.)	A	В	C	Toma
1	4	12	0	0.256	0	0	0	0.932
2	6	9	0	0.208	0	0	0	0.978
3	6	10	0	0.556	0	0	0	0.969
4	9	10	0	0.11	0	0	0	1
5	9	11	0	0.208	0	0	0	1
6	12	13	0	0.14	0	0	0	1
7	27	28	0	0.396	0	0	0	0.968

Tabla 19. Baterías de Condensadores.

Bus	Q (MVAr)			
10	19			
24	4.3			

Tabla 20. Características Técnicas de las Líneas.

# de línea	De Bus	A Bus	R (P.U.)	X (P.U.)	B (P.U.)	Límite A	Límite B	Límite C	V(nom) KV
1	1	2	0.0384	0.115	0.0264	-	-	-	132
2	1	2	0.0384	0.115	0.0264	-	-	-	132
3	1	3	0.0452	0.1652	0.0408	-	-	-	132
4	2	4	0.057	0.1737	0.0368	-	-	-	132
5	2	5	0.0472	0.1983	0.0418	-	-	-	132
6	2	6	0.0581	0.1763	0.0374	-	-	-	132
7	3	4	0.0132	0.0379	0.0084	-	-	-	132
8	4	6	0.0119	0.0414	0.009	-	ı	-	132
9	5	7	0.046	0.116	0.0204	-	ı	-	132
10	6	7	0.0267	0.082	0.017	-	1	-	132
11	6	8	0.012	0.042	0.009	-	ı	-	132
12	6	28	0.0169	0.0599	0.013	-	ı	-	132
13	8	28	0.0636	0.2	0.0428	-	1	-	132
14	10	17	0.0324	0.0845	0	-	-	-	33
15	10	20	0.0936	0.209	0	-	ı	-	33
16	10	21	0.0696	0.1498	0	-	ı	-	33
17	10	21	0.0696	0.1498	0	-	ı	-	33
18	10	22	0.0727	0.1499	0	-	1	-	33
19	12	14	0.1231	0.2559	0	-	-	-	33
20	12	15	0.0662	0.1304	0	-	-	-	33
21	12	16	0.0945	0.1987	0	-	-	-	33
22	14	15	0.221	0.1997	0	-	-	-	33

23	15	18	0.1073	0.2185	0	-	-	-	33
24	15	23	0.1	0.202	0	-	-	-	33
25	16	17	0.0524	0.1923	0	1	-	-	33
26	18	19	0.0639	0.1292	0	ı	-	-	33
27	19	20	0.034	0.068	0	ı	-	-	33
28	21	22	0.0116	0.0236	0	1	-	-	33
29	22	24	0.115	0.179	0	1	-	-	33
30	23	24	0.132	0.27	0	1	-	-	33
31	24	25	0.1885	0.3292	0	-	-	-	33
32	25	26	0.2544	0.38	0	-	-	-	33
33	25	27	0.1093	0.2087	0	1	-	-	33
34	27	29	0.2198	0.4153	0	-	-	-	33
35	27	30	0.3202	0.6027	0	-	-	-	33
36	29	30	0.2399	0.4533	0	-	-	-	33

Tabla 21. Características de la Carga.

# de	Bus	P	Q
carga		(MW)	Q (MVAr)
1	3	21.7	12.7
2	3	2.4	1.2
3	4	7.6	1.6
4	5	94.2	19
5	7	22.8	10.9
6	8	30	30
7	10	5.8	2
8	12	11.2	7.5
9	14	6.2	1.6
10	15	8.2	2.5
11	16	3.5	1.8
12	17	9	5.8
13	18	3.2	0.9
14	19	9.5	3.4
15	20	2.2	0.7
16	21	17.5	11.2
17	23	3.2	1.6
18	24	8.7	6.7
19	26	3.5	2.3
20	29	2.4	0.9
21	30	10.6	1.9

Tras 637 iteraciones por Gauss-Seidel y 4 de N-R, obtenemos los siguientes resultados:

System Sum	mary ======			
How many?		How much?	P (MW)	Q (MVAr)
 Buses	30	Total Gen Capacity	59994.0	-102.0 to 178.0
Generators	6	On-line Capacity	59994.0	-102.0 to 178.0
Committed Gens	6	Generation (actual)		136.5
Loads	21	Load	283.4	126.2
Fixed	21	Fixed	283.4	126.2
Dispatchable	0	Dispatchable	-0.0 of -	-0.0 -0.0
Shunts	2	Shunt (inj)	-0.0	24.9
Branches	41	Losses $(I^2 * Z)$	17.92	69.86
Transformers	7	Branch Charging (inj)	-	34.7
Inter-ties	0	Total Inter-tie Flow	0.0	0.0
Areas	1			
		Minimum	Max	imum
			1.082 p.u. 0.00 deg 5.48 MW 16.41 MVAr	@ bus 1 @ line 1-2

Ilustración 11. Resumen del Sistema. Caso IV.

 =====:	Bus Dat	a =======				
Bus	Voltage		Genera	ation	Loa	ad
#	Mag(pu)	Ang(deg)	P (MW)	Q (MVAr)	P (MW)	Q (MVAr)
1	1.060	0.000*	261.32	-16.43		
2	1.043	-5.505	40.00	50.70	21.70	12.70
3	1.020	-8.005	_	_	2.40	1.20
4	1.011	-9.664	_	_	7.60	1.60
5	1.010	-14.399	0.00	36.87	94.20	19.00
6	1.010	-11.384	_	_	_	_
7	1.002	-13.150	-	_	22.80	10.90
8	1.010	-12.122	0.00	35.66	30.00	30.00
9		-14.523	_	_	_	_
10		-16.171	_	_	5.80	2.00
11	1.082	-14.523	0.00	17.39	_	_
12	1.055	-15.436	_	_	11.20	7.50
13	1.071	-15.436	0.00	12.28	_	_
14	1.039	-16.334	_	_	6.20	1.60
15	1.033	-16.403	_	_	8.20	2.50
16	1.042	-16.020	_	_	3.50	1.80
17	1.035	-16.334	_	_	9.00	5.80
18	1.024	-17.022	_	_	3.20	0.90
19	1.021	-17.197	_	_	9.50	3.40
20	1.025	-16.998	_	_	2.20	0.70
21	1.026	-16.614	_	_	17.50	11.20
22	1.026	-16.598	_	_	_	_
23	1.018	-16.764	_	_	3.20	1.60
24		-16.900	_	_	8.70	6.70
25	0.984	-16.281	_	_	-	_
26	0.966	-16.730	_	_	3.50	2.30
27	0.978	-15.631	_	_	_	_
28		-11.996	_	_	_	_
29		-16.980	_	_	2.40	0.90
30		-17.950	-	-	10.60	1.90
		Total:	301.32	136.47	283.40	126.20

Ilustración 12. Información de Barras. Caso IV.

 	Branch I	====== Data =======						=======
Brnch #	From Bus	To Bus		Injection Q (MVAr)	To Bus P (MW)	Injection Q (MVAr)	Loss (I′ P (MW)	^2 * Z) Q (MVAr)
1	1	2	178.02	-22.20	-172 . 54	32.77	5.479	16.41
2	1	3	83.30	5.77	-80.48		2.817	11.54
3		4	45.85	3.50	-44.74		1.117	3.41
4	2 2 2	5 6	83.08	1.70	-80.08	6.51	3.002	12.61
5	2	6	61.91	0.03	-59.86	2.25	2.049	6.22
6	3	4	78.08	-2.55	-77.31		0.774	2.22
7	4	6	69.46	-16.64	-68.87		0.592	2.06
8	4	12	44.98	15.11	-44.98		0.000	4.89
9	5	7	-14.12	11.36	14.28		0.159	0.40
10	6	7	37.45	-2.72	-37.08		0.368	1.13
11	6	8	29.19	-7.77	-29.08		0.106	0.37
12	6	9	28.52	-6.91	-28.52		0.000	1.68
13	6	10	16.28	1.12	-16.28		-0.000	1.36
14	6	28	17.30	-3.75	-17.25		0.051	0.18
15	8	28	-0.92	-1.55	0.92		0.001	0.00
16	9	10	28.52	8.26	-28.52	-7.38	0.000	0.88
17	9	11	0.00	-16.85	-0.00		0.000	0.54
18	10	17	5.21	4.14	-5.20		0.013	0.03
19	10	20	9.00	3.66	-8.92		0.082	0.18
20	10	21	16.61	12.01	-16.47		0.135	0.29
21 22	10 12	22 13	8.17 0.00	5.90 -12.09	-8.10 -0.00		0.068 -0.000	0.14 0.18
23	12	14	8.05	-12.09 2.78	-0.00 -7.97		0.080	0.18
23 24	12	15	18.36	2.76 8.38	-7.97 -18.12	-7.90	0.242	0.17
25	12	16	7.37	3.65	-7.31		0.242	0.48
26	14	15	1.77	1.01	-7.31 -1.76	-1.01	0.009	0.01
27	15	18	6.04	1.65	-6.00		0.039	0.08
28	15	23	5.64	4.76	-5.59		0.051	0.10
29	16	17	3.81	1.73	-3.80		0.013	0.03
30	18	19	2.80	0.67	-2.79		0.005	0.01
31	19	20	-6.71	-2.74	6.72	2.77	0.017	0.03
32	21	22	-1.03	0.52	1.03		0.000	0.00
33	22	24	7.07	6.28	-6.97		0.098	0.15
34	23	24	2.39	3.05	-2.37	-3.01	0.019	0.04
35	24	25	0.64	6.80	-0.56	-6.65	0.087	0.15
36	25	26	3.55	2.37	-3.50		0.048	0.07
37	25	27	-2.99	4.28	3.02	-4.22	0.031	0.06
38	27	28	-16.33	0.83	16.33	0.20	0.000	1.04
39	27	29	6.20	1.69	-6.11	-1.51	0.095	0.18
40	27	30	7.11	1.69	-6.93	-1.36	0.179	0.34
41	29	30	3.71	0.61	-3.67	-0.54	0.037	0.07
						Total:	17.920	69.86

Ilustración 13. Información de Lineas. Caso IV.