Findings of the Second Shared Task on Multimodal Translation and Multilingual Image Description

Desmond Elliott*, Stella Frank*, Loïc Barrault†, Fethi Bougares†, Lucia Specia°

^{*}University of Edinburgh, [†]University of Le Mans, °University of Sheffield

Key Idea: visual context can improve translation

A wall divided the city

Eine Wand teilte die Stadt

Credit: Stella Frank (WMT 2016)

Key Idea: visual context can improve translation

Credit: Stella Frank (WMT 2016)

Key Idea: visual context can improve translation

Eine Mauer teilte die Stadt

Credit: Stella Frank (WMT 2016)

Multimodality improves semantic classes

Source: A woman wearing a **hat** is making bread.

No Image: Eine Frau mit einer Mütze macht Brot.

Credit: Specia et al. (2016)

Multimodality improves semantic classes

Source: A woman wearing a **hat** is making bread.

No Image: Eine Frau mit einer Mütze macht Brot.

With Image: Eine Frau mit einem Hut macht Brot.

Credit: Specia et al. (2016)

Multimodality improves gender marking

Source: A **baseball player** in a black shirt just tagged a player in a white shirt.

No Image: Ein Baseballspieler in einem schwarzen Shirt fängt 🔀 einen Spieler in einem weißen Shirt.

Multimodality improves gender marking

Source: A **baseball player** in a black shirt just tagged **a player** in a white shirt.

With Image: Eine
Baseballspielerin in einem
schwarzen Shirt fängt eine
Spielerin in einem Weißen
Shirt.

Credit: Specia et al. (2016)

Use Cases for Multimodal Translation

- Localised alt-text generation across the Web
- Richer e-commerce experiences
- Audio described movies for more languages

Task 1: Multimodal Machine Translation

Q: What can **images** bring to translation?

Task 2: Multilingual Image Description

- Source-target-image parallel data is rare
- More realistic:
 - unannotated images
 - monolingually described images
- We need models that can tolerate absent data

Task 2: Multilingual Image Description

• Q: What can **multilinguality** bring to image description?

Evaluation: only image

Task 2: Multilingual Image Description

Q: What can multilinguality bring to image description?

Training: with source language and image

Data

Multi30K Dataset

31,000 Images 155,000 31,000 Professional Crowdsourced **Descriptions Translations**

15

Translated Sentences

A brown dog is running after the black dog.

Ein brauner Hund rennt dem schwarzen Hund hinterher

Independent Descriptions

A brown dog is running after the black dog.

Ein schwarzer und ein brauner Hund rennen auf steinigem Boden aufeinander zu

New Data: Multi30K French

- Multi30K is now 4-way aligned
- 31,000 Images
 - En descriptions
 - De professional translations
 - Fr crowdsourced translations

En: A group of people are eating noodles.

De: Eine Gruppe von Leuten isst Nudeln.

Fr: Un groupe de gens mangent des nouilles.

New Data: Multi30K 2017 test

- Harvest 12K CC-licensed images from the Flickr30K photo groups
- Filter down to 2,071 new images
- Fewer near-duplicate images

Group	Task 1	Task 2
Strangers!	150	154
Wild Child	83	83
Dogs in Action	78	92
Action Photography	238	259
Flickr Social Club	241	263
Everything Outdoor	206	214
Outdoor Activities	4	6

Fewer Near-Duplicates

• Less of this ...

Fewer Near-Duplicates

• More of this ...

New Data: Ambiguous COCO (teaser)

- 461 images from the VerSe dataset (Gella et al., 2016)
- English verb sense ambiguity
- Covering 56 ambiguous verbs
 - Shake 3 images (least)
 - Reach 26 images (most)

.. red train is <u>passing over</u> ..

- .. red train is passing over ..
- .. on a motorcycle passing ..

- .. red train is passing over ..
- .. on a motorcycle passing ..

Ein roter Zug <u>fährt</u> auf einer Brücke über das Wasser

German

Ein Mann auf einem Motorrad <u>fährt</u> an einem anderen Fahrzeug vorbei

- .. red train is passing over ..
- .. on a motorcycle passing ..

Un train rouge <u>traverse</u> l'eau sur un pont.

French

Un homme sur une moto **dépasse** un autre véhicule.

Provided Image Representation

Intermediate layers from ResNet-50 Convolutional Neural Network (He et al., 2016) trained on ImageNet for object recognition task:

- res4 relu: last convolutional layer (14x14x1024D tensor)
- avgpool: pooled output of the final convolutional layer (2048D vector)

Provided Image Representation

Intermediate layers from ResNet-50 Convolutional Neural Network (He et al., 2016) trained on ImageNet for object recognition task:

Provided Image Representation

Intermediate layers from ResNet-50 Convolutional Neural Network (He et al., 2016) trained on ImageNet for object recognition task:

• res4 relu: last convolutional layer (14x14x1024D tensor)

Datasets overview

	Training set		Development set	
	Images	Sentences	Images	Sentences
Translation	29,000	29,000	1,014	1,014
Description	29,000	145,000	1,014	5,070

Datasets overview

	Training set		Development set	
	Images	Sentences	Images	Sentences
Translation	29,000	29,000	1,014	1,014
Description	29,000	145,000	1,014	5,070
2017 test				
	Images	Sentences		
Translation	1,000	1,000		
Description	1,071	5,355		

Datasets overview

	Training set		Development set	
	Images	Sentences	Images	Sentences
Translation	29,000	29,000	1,014	1,014
Description	29,000	145,000	1,014	5,070
	2017 test		COCO	
	Images	Sentences	Images	Sentences
Translation	1,000	1,000	461	461
Description	1,071	5,355		

Main questions for this year

- 1. Do multimodal systems improve on text-only systems?
 - Text-similarity and human assessments this year

Main questions for this year

- 1. Do multimodal systems improve on text-only systems?
 - Text-similarity and human assessments this year

- 2. What is the role of external data in this low resource task?
 - Participants free to use any external data this year

Results

Participants

ID	Participating team
AFRL-OHIOSTATE	Air Force Research Laboratory & Ohio State University (Duselis et al., 2017)
CMU	Carnegie Melon University (Jaffe, 2017)
CUNI	Univerzita Karlova v Praze (Helcl and Libovický, 2017)
DCU-ADAPT	Dublin City University (Calixto et al., 2017a)
LIUMCVC	Laboratoire d'Informatique de l'Université du Maine & Universitat Autonoma de Barcelona Computer Vision Center (Caglayan et al., 2017a)
NICT	National Institute of Information and Communications Technology & Nara Institute of Science and Technology (Zhang et al., 2017)
OREGONSTATE	Oregon State University (Ma et al., 2017)
SHEF	University of Sheffield (Madhyastha et al., 2017)
UvA-TiCC	Universiteit van Amsterdam & Tilburg University (Elliott and Kádár, 2017)

General Trends (1/3)

More ResNet-50 avgpool features; less res4_relu

- Exceptions
 - SHEF: ImageNet 1000-class softmax distribution
 - UvA-TiCC: GoogLeNet v3 avgpool

General Trends (2/3)

- Most submissions
 - encoder / decoder feature initialisation, or
 - double-attention mechanisms

- Exceptions
 - AFRL-OHIOSTATE: retrieval approach
 - LIUMCVC: condition the target embeddings on image
 - UvA-TiCC: image representation prediction

General Trends (3/3)

Most submissions used Constrained data

- Exceptions:
 - CUNI: parallel text
 - UvA-TiCC: monolingual image data & parallel text

Task 1 Evaluation

- Meteor 1.5 (Denkowski et al., 2014)
- Direct Assessment (Graham et al., 2017)

Baselines

- Text-only Nematus (Sennrich et al., 2017)
 - Train on only the 29K En-De/Fr pairs

En-De Multi30K 2017

En-De Multi30K 2017

En-De Ambiguous COCO

Direct Assessment interface

En-De Multi30K 2017 Human (n=3,485)

#	Raw	z	System
1	77.8	0.665	LIUMCVC_MNMT_C
2	74.1	0.552	UvA-TiCC_IMAGINATION_U
3	70.3	0.437	NICT_NMTrerank_C
	68.1	0.325	CUNI_NeuralMonkeyTextualMT_U
	68.1	0.311	DCU-ADAPT_MultiMT_C
	65.1	0.196	LIUMCVC_NMT_C
	60.6	0.136	CUNI_NeuralMonkeyMultimodalMT_U
	59.7	0.08	UvA-TiCC_IMAGINATION_C
	55.9	-0.049	CUNI_NeuralMonkeyMultimodalMT_C
	54.4	-0.091	OREGONSTATE_2NeuralTranslation_C
	54.2	-0.108	CUNI_NeuralMonkeyTextualMT_C
	53.3	-0.144	OREGONSTATE_1NeuralTranslation_C
	49.4	-0.266	SHEF_ShefClassProj_C
	46.6	-0.37	SHEF_ShefClassInitDec_C
15	39.0	-0.615	Baseline (text-only NMT)
	36.6	-0.674	AFRL-OHIOSTATE_MULTIMODAL_U

En-De Multi30K 2017 Human (n=3,485)

#	Raw	z	System	
1	77.8	0.665	LIUMCVC_MNMT_C	-
2	74.1	0.552	UvA-TiCC_IMAGINATION_U	
3	70.3	0.437	NICT_NMTrerank_C	
	68.1	0.325	CUNI_NeuralMonkeyTextualMT_U	
	68.1	0.311	DCU-ADAPT_MultiMT_C	Visual
	65.1	0.196	LIUMCVC_NMT_C	context
	60.6	0.136	CUNI_NeuralMonkeyMultimodalMT_U	
	59.7	0.08	UvA-TiCC_IMAGINATION_C	helped
	55.9	-0.049	CUNI_NeuralMonkeyMultimodalMT_C	←
	54.4	-0.091	OREGONSTATE_2NeuralTranslation_C	
	54.2	-0.108	CUNI_NeuralMonkeyTextualMT_C	
	53.3	-0.144	OREGONSTATE_1NeuralTranslation_C	
	49.4	-0.266	SHEF_ShefClassProj_C	
	46.6	-0.37	SHEF_ShefClassInitDec_C	Multimodal
15	39.0	-0.615	Baseline (text-only NMT)	
	36.6	-0.674	AFRL-OHIOSTATE_MULTIMODAL_U	Text

En-De Multi30K 2017 Human (n=3,485)

En-Fr Multi30K 2017

En-Fr Ambiguous COCO

En-Fr Multi30K 2017 Human (n=2,521)

#	Raw	z	System
1	79.4	0.446	NICT_NMTrerank_C
	74.2	0.307	CUNI_NeuralMonkeyMultimodalMT_C
	74.1	0.3	DCU-ADAPT_MultiMT_C
4	71.2	0.22	LIUMCVC_MNMT_C
	65.4	0.056	OREGONSTATE_2NeuralTranslation_C
	61.9	-0.041	CUNI_NeuralMonkeyTextualMT_C
	60.8	-0.078	OREGONSTATE_1NeuralTranslation_C
	60.5	-0.079	LIUMCVC_NMT_C
9	54.7	-0.254	SHEF_ShefClassInitDec_C
	54.0	-0.282	SHEF_ShefClassProj_C
11	44.1	-0.539	Baseline (text-only NMT)

En-Fr Multi30K 2017 Human (n=2,521)

#	Raw	z	System			
1	79.4	0.446	NICT_NMTrerank_C			
	74.2	0.307	CUNI_NeuralMonkeyMultimodalMT_C			
	74.1	0.3	DCU-ADAPT_MultiMT_C			
4	71.2	0.22	LIUMCVC_MNMT_C		Visual	
	65.4	0.056	OREGONSTATE_2NeuralTranslation_C	\ \	context	
	61.9	-0.041	CUNI_NeuralMonkeyTextualMT_C			
	60.8	-0.078	OREGONSTATE_1NeuralTranslation_C		helped	
	60.5	-0.079	LIUMCVC_NMT_C			
9	54.7	-0.254	SHEF_ShefClassInitDec_C			
	54.0	-0.282	SHEF_ShefClassProj_C		Multimodal	
11	44.1	-0.539	Baseline (text-only NMT)		Text	

En-Fr Multi30K 2017 Human (n=2,521)

Task 2 Evaluation

- Meteor 1.5 (Denkowski et al., 2014)
 - Multiple independently collected reference descriptions

Baseline

- Attention-based image description (Xu et al., 2015)
 - Train on only the 155K Image-German data

Task 2: En-De Multi30K 2017

Conclusions

- Text-similarity metrics are masking real progress
 - Direct Assessment shows that multimodal > text-only

- Extra parallel text improves multimodal translation
- Ambiguous COCO is more challenging than Multi30K
- Multilingual Image Description is very challenging

Reality check: Multi30K En-De Test 2016

Reality check: Multi30K En-De Test 2016

