Записки по ДИС2 - Лекция 7

06.04.2023

Безкрайни редове. Числови редове. Функционални редове.

Редове с алтернативно сменящи се знаци

Th. 1 Критерий на Лайбниц за редове с алтернативно сменящи се знаци

$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n, \quad a_n \ge 0 \ \forall n \in \mathbb{N}$$

Aко $\{a_n\}_{n=1}^{\infty}$ е намаляваща (от някъде нататък) $a_n \xrightarrow[n \to \infty]{} 0$, то $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ е

сходящ.

$$s_1 = a_1$$

$$s_2 = a_1 - a_2$$

$$s_3 = a_1 - a_2 + a_3$$

......

$$\{s_{2k-1}\}_{k=1}^{\infty}$$
 е намаляваща; $s_{2(k+1)-1}-s_{2k-1}=(-1)^{2k+1/2}$

Def. 1
$$\sum_{n=1}^{\infty} a_n$$
 се нарича **абсолютно сходящ**, ако $\sum_{n=1}^{\infty} |a_n|$ е сходящ.

Def. 2
$$\sum_{n=1}^{\infty} a_n$$
 се нарича **условно сходящ**, ако е сходящ и $\sum_{n=1}^{\infty} |a_n|$ е разходящ.

Тh. 2 Необходимо и достатъчно условие на Коши за сходимост на числов ред.

Твърдение 1 Абсолютно сходящите редове са сходящи.

Комутативен закон:

Th. 3 $A \kappa o \sum_{n=1}^{\infty} a_n$ е абсолютно сходящ, то за него е в сила комутативния закон.

Th. 4 Теорема на Риман

Th. 5 content...

Th. 6 (Мертенс)

Редици и редове от функции.

To Be Continued In Lecture 8 ...