Mapping Aerosols Properties Globally

Ralph Kahn NASA/Goddard Space Flight Center

The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (*CALIPSO*) Classification

CALIPSO 6-Grouping Aerosol Type Classification

AERONET Aerosol Type 7-Grouping Classification

7 Groupings SSA₄₉₁ vs. Extinction ANG

Four-parameter AERONET-derived classification:

- EAE_{491,863}
 - SSA₄₉₁
 - RRI₆₇₀
- dSSA₈₆₃₋₄₉₁

7 Groupings Real RI₆₇₀ vs. Extinction ANG

PARASOL data at Forth Crete projected onto the AERONET Aerosol Type Classification

7 Groupings SSA₄₉₁ vs. Extinction ANG

Four-parameter AERONET-derived classification:

- EAE_{491,863}
 - SSA₄₉₁
 - RRI₆₇₀
- dSSA₈₆₃₋₄₉₁

7 Groupings Real RI₆₇₀ vs. Extinction ANG

HSRL Aerosol Type 8-Grouping Classification

Model-based Aerosol Type Clustering for MISR Sensitivity

MISR Aerosol Type Discrimination Sensitivity Study

MISR Aerosol Type Discrimination

January 2007

July 2007

Mixture Group

Spherical, non-absorbing

Non-spherical

Aerosol Type Validation Approach

- No "Ground Truth" except from Field Campaigns (Golden Days)
 - -- Unlike *Spectral AOD* (and *ANG*) from AERONET *Particle Properties* are derived with *many more assumptions*
 - -- Very few MISR-AERONET Sky-scan Coincidences
- MISR *Self-consistency* Tests
 - -- **Qualitative**, but useful
 - -- Regional and Temporal Behavior vs. Expectation
- MISR *Comparisons* with AERONET proxies
 - -- Compare **Seasonal**, **Inter-annual** patterns **statistically**
 - -- Fine-mode Fraction (FMF)
 - -- **Effective radius** (r_e) and **variance** (σ) [two modes **issue with def. of "modes"**]
 - -- **Single-scattering albedo** (SSA) [for AOD_440 > 0.4; AERONET SZA > 50°]
 - -- **Sphericity** ("%Sph.") [for AERONET **ANG** < 1.0 only few MISR cases w/AOD>0.2]

MISR Aerosol Type Discrimination

Histograms of Lowest Residual & All Successful Aerosol Type Mixture Groups vs. AOD

Statistical Comparisons with AERONET - Solar Village

A Three-way Street:

MISR & MODIS Provide Context, SEAC⁴RS Provides Detail, & Models Complete the Picture

MISR Research Aerosol Retrieval MISR components & Mixtures for the 774-mixture set

Component name	r ₁ (μm)	$r_2(\mu m)$	<i>r</i> _e (μm)	σ	E(B/G)	E(R/G)	E(NIR/G)	$n_{\mathbf{I}}(\mathbf{G})$	SSA(B)	SSA(G)	SSA(R)	SSA(NIR)	g(G)
sph_nonabs_0.06	0.002	0.329	0.056	1.650	1.947	0.548	0.226	1.520	1.000	1.000	1.000	1.000	0.357
sph_nonabs_0.12	0.003	0.747	0.121	1.700	1.512	0.669	0.357	1.500	1.000	1.000	1.000	1.000	0.597
sph_nonabs_0.26	0.005	1.690	0.262	1.750	1.185	0.820	0.576	1.450	1.000	1.000	1.000	1.000	0.717
sph_nonabs_0.57	0.008	3.805	0.568	1.800	0.993	0.972	0.877	1.410	1.000	1.000	1.000	1.000	0.750
sph_nonabs_1.28	0.013	8.884	1.285	1.850	0.956	1.039	1.082	1.370	1.000	1.000	1.000	1.000	0.769
sph_abs_0.12_0.80_flat	0.003	0.747	0.121	1.700	1.461	0.687	0.378	1.500	0.818	0.822	0.825	0.828	0.604
sph_abs_0.12_0.80_steep	0.003	0.747	0.121	1.700	1.453	0.698	0.403	1.500	0.838	0.822	0.801	0.756	0.604
sph_abs_0.12_0.90_flat	0.003	0.747	0.121	1.700	1.488	0.677	0.367	1.500	0.910	0.912	0.913	0.915	0.601
sph_abs_0.12_0.90_steep	0.003	0.747	0.121	1.700	1.484	0.683	0.379	1.500	0.920	0.912	0.900	0.875	0.601
dust_grains_model_hl	0.100	1.000	0.754	1.500	0.895	1.065	1.079	1.510	0.920	0.977	0.994	0.997	0.711
spheroidal_mode2_h1	0.100	6.000	2.400	2.000	0.989	1.019	1.050	1.510	0.810	0.902	0.971	0.983	0.772
baum_cirrus_De=10um	2.000	9500.000	5.000	n/a	1.000	1.000	1.000	1.317	1.000	1.000	1.000	1.000	0.787
baum_cirrus_De=40um	2.000	9500.000	20.000	n/a	1.000	1.000	1.000	1.317	1.000	1.000	1.000	1.000	0.810
baum_cirrus_De=100um	2.000	9500.000	50.000	n/a	1.000	1.000	1.000	1.317	1.000	1.000	1.000	1.000	0.869

^{*} r_1 , r_2 are the upper and lower limits of the component particle size distribution; r_e is effective radius (μ m), σ is the log-normal size distribution width, E is the spectral ratio of extinction cross-section, g is the asymmetry parameter; dust grain and spheroid optical properties from Kalashnikova et al. (2005); cirrus from Baum et al. (2005).

Component 1	Component 2	Component 3
spherical_nonabsorbing_0.06	spherical_nonabsorbing_1.28	spherical_nonabsorbing_0.57
spherical_nonabsorbing_0.12	spherical_nonabsorbing_1.28	spherical_nonabsorbing_0.57
spherical_nonabsorbing_0.26	spherical_nonabsorbing_1.28	spherical_nonabsorbing_0.57
spherical_nonabsorbing_0.06	dust_grains_mode1_h1	spheroidal_mode2_h1
spherical_nonabsorbing_0.12	dust_grains_mode1_h1	spheroidal_mode2_h1
spherical_nonabsorbing_0.26	dust_grains_mode1_h1	spheroidal_mode2_h1
spherical_nonabsorbing_0.06	spherical_nonabsorbing_1.28	dust_grains_mode1_h1
spherical_nonabsorbing_0.12	spherical_nonabsorbing_1.28	dust_grains_mode1_h1
spherical_nonabsorbing_0.26	spherical_nonabsorbing_1.28	dust_grains_mode1_h1
spherical_absorbing_0.12_0.80_steep	spherical_nonabsorbing_1.28	dust_grains_model_h1
spherical_absorbing_0.12_0.80_flat	spherical_nonabsorbing_1.28	dust_grains_model_h1
spherical_absorbing_0.12_0.90_steep	spherical_nonabsorbing_1.28	dust_grains_model_h1
spherical_absorbing_0.12_0.90_flat	spherical_nonabsorbing_1.28	dust_grains_model_h1
baum_cirrus_De=10um	-	-
baum_cirrus_De=40um	-	-
baum_cirrus_De=100um	-	-

MISR SEAC⁴RS Field Campaign

Research Retrievals 19 August 2013

MISR SEAC⁴RS Field Campaign

Research Retrievals 19 August 2013

MISR SEAC⁴RS Field Campaign

Research Retrievals 19 August 2013

SEAC⁴RS – MISR Overview 19 August 2013

Passive-remote-sensing *Aerosol Type* is a *Total-Column-Effective*, *Categorical* variable!!

Mapping AOD & Aerosol Air-Mass-Type in Urban Regions

Patadia et al.

Urban Pollution AOD & Aerosol Air Mass Type Mapping INTEX-B, 06 & 15 March 2006

Aerosol Air Masses: *Dust* (non-spherical), *Smoke* (spherical, spectrally steep absorbing), and *Pollution* particles (spherical, spectrally flat absorbing) dominate specific regions

SAM-CAAM

[Systematic Aircraft Measurements to Characterize Aerosol Air

[This is currently a *concept-development effort*, not yet a project]

Primary Objectives:

- Interpret and enhance 15+ years of satellite aerosol retrieval products
- Characterize statistically particle properties for major aerosol types globally,

to provide detail unobtainable from space, but needed to *improve*:

- -- Satellite aerosol retrieval algorithms
- -- The translation between satellite-retrieved aerosol optical properties

SAM-CAAM Concept

[Systematic Aircraft Measurements to Characterize Aerosol Air Masses]

- **Dedicated Operational Aircraft** routine flights, 2-3 x/week, on a continuing basis
- Sample Aerosol Air Masses accessible from a given base-of-operations, then move; project science team to determine schedule, possible field campaign participation
- Focus on in situ measurements required to characterize particle Optical Properties, Chemical Type, and Mass Extinction Efficiency (MEE)
- *Process Data Routinely* at central site; instrument PIs develop & deliver algorithms, upgrade as needed; data distributed via central web site
- Peer-reviewed Paper identifying *4 Payload Options*, of varying ambition; subsequent selections based on agency buy-in and available resources

SAM-CAAM is feasible because:

Unlike aerosol amount, *aerosol microphysical properties tend to be repeatable* from year to year, for a given source in a given season

Models

Must *stratify* the global satellite data to treat appropriately situations where different physical mechanisms apply

space-time interpolation, **Aerosol Direct & Indirect Effects** calculation and prediction

point-location time series

Adapted from: Kahn, Survy. Geophys.