Graph Neural Networks for Molecular Property Prediction

Pablo Curiel

Department of Applied Mathematics, UC Merced

About Me

- Obtained B.S. in Applied Math from CSU Chico (May 2023)
 - Minor in Computer Science
- First-year Applied Math Ph.D. student
- Research interests: mathematical biology, machine learning, graph theory
- Enjoy running, playing sports,
 spending time with friends/family

- Introduction
- Methods
- ChemProp
- Experiments
- Results and Discussion
- Conclusions and Future Work

- Introduction
- Methods
- ChemProp
- Experiments
- Results and Discussion
- Conclusions and Future Work

Introduction

- Molecular property prediction (MPP)
 - Longstanding problem in biochemical/biomedical fields
- Drug design/discovery: process of identifying or generating drug-like molecular compounds
 - e.g., properties, structure, novelty, etc.
- Recent computational advancements have boosted prediction performance
 - i.e., GPUs, deep learning, etc.

Representing Molecules

- Fingerprints
 - Based on molecular substructures
- Descriptors
 - Expert-engineered features
 - e.g., molecular weight, # rings/cycles, etc.
- Graphs
 - Converting SMILES strings to graphs

Acetylsalicylic Acid (Aspirin)

CC(=0)0c1cccc1C(=0)0

Traditional Approaches to MPP

- Based on fixed, hand-engineered molecular-level features
 - Feature vectors often become highdimensional
 - Fixed feature vectors constrain model's ability to generalize
- Use classical ML methods
 - i.e., random forests, SVMs, etc.

Molecules as Graphs

- Molecules have a graph-like structure
 - Nodes = atoms, edges = chemical bonds
- RDKit package used to obtain graph representation from SMILES string
- Graph representation can be used for GNN

Why GNNs?

- Classical models use fixed, expert-engineered features
 - High-dimensionality => increased computational cost
 - May not generalize well
- GNNs allow for molecular features to be learned

- Introduction
- Methods
- ChemProp
- Experiments
- Results and Discussion
- Conclusions and Future Work

Message Passing Neural Network (MPNN)

- GNN model that transmits information across edges to update node representations
 - Type of graph convolutional NN (GCN)
- Three main functions:
 - Message
 - Aggregation
 - Update

Message Function $\mathbf{m}_{ij}^{(k)} = \mathcal{M}(\mathbf{h}_i^{(k)}, \mathbf{h}_j^{(k)}, \mathbf{e}_{ij})$

- Computes message based on node features
- Sends computed message to local one-hop neighborhood

- Exact copy
- Normalized based on node degree

hi

Aggregation Function $\widehat{\mathbf{m}}_i^{(k)}$

$$\widehat{\mathbf{m}}_i^{(k)} = \bigoplus \mathbf{m}_{ij}^{(k)}$$

- Combines neighborhood messages into a fixed-length vector
- Must be **permutation invariant**
 - i.e. reordering input produces same output
- Aggregation examples:
 - Sum
 - Average
 - Max

Update Function

$$\mathbf{h}_{i}^{(k+1)} = \phi\left(\mathbf{h}_{i}^{(k)}, \widehat{\mathbf{m}}_{i}^{(k)}\right)$$

 Computes new node embedding using old embedding and aggregated messages

- Apply linear projection (weights) to concatenated old embedding and agg. messages
- Apply nonlinearity to each entry in result
 - e.g., ReLU, tanh, etc.

Directed-MPNN (D-MPNN)

- Key difference: directed edge-based messages instead of node-based
 - Avoids added noise in final graph representation
 - Aka "totters"
- Final states are summed to obtain a final learned molecular representation z^(T)
 - **z**^(T) is fed to a standard NN for a desired task
- Initial features calculated using RDKit
 - e.g., atom/bond type, bond in ring, atom degree, etc.

D-MPNN: Model Enhancements

- Incorporating known features to model
 - i.e., fingerprints, descriptors, etc.
- Hyperparameter optimization: "Bayesian Optimization" applied via Hyperopt package in Python
- Ensembling: training N models independently and picking best model

- Introduction
- Methods
- ChemProp
- Experiments
- Results and Discussion
- Conclusions and Future Work

ChemProp

- Python package with D-MPNN for MPP
- Contains several built-in model enhancements
 - i.e., multiple molecules as input, ensembling, hyperparameter optimization, etc.
- Currently being researched with and updated

ChemProp: Prior Works

- 2019: first appearance of (unnamed) D-MPNN with several performance boosts
- 2020: ChemProp used to discover Halicin
 - Structurally novel compound with many antibacterial properties
 - Promising wet lab results
- 2023: ChemProp used to identify Abaucin
 - Novel growth inhibitor against Acinetobactor Baumannii

Powerful antibiotics discovered using AI

Machine learning spots molecules that work even against 'untreatable' strains of bacteria.

ChemProp: Pipeline

ChemProp: Demo

- Tox21 dataset: from "Toxicology in the 21st century" challenge (2014)
 - Hosted by NIH, EPA, and FDA
- Problem: classify molecules as being toxic or not towards various nuclear/stress receptors using ChemProp

- Introduction
- Methods
- ChemProp
- Experiments
- Results and Discussion
- Conclusions and Future Work

Experiments

- Data
 - 19 public datasets (including Tox21)
 - 200 < number of molecules N < 450K+]
 - 16 private industrial datasets
 - 80-10-10 train-test-validate splits
 - 20 iterations of Bayesian Optimization on 10 random seeds
- Compared results to several baselines
 - i.e., feed-forward NN, random forest with fingerprint representations, etc.

- Introduction
- Methods
- ChemProp
- Experiments
- Results and Discussion
- Conclusions and Future Work

Results

- Comparison to baselines
 - D-MPNN is comparable to current methods
 - Seems to be very dataset dependent
- Private companies often split data based on time
 - Past = train, future = test/val
 - Results in better performance

Analyzing Modeling Choices

- Message type: directed bond vs. atom
 - Showed minimal improvement over atom-based
- RDKit features: incorporating molecule-level features
 - Highly dataset and task dependent
- Hyperparameter optimization
 - Slight improvements on most datasets
- Ensembling: train of 5 models, select best one
- Model struggles with low-quantity target labels

- Introduction
- Methods
- ChemProp
- Experiments
- Results and Discussion
- Conclusions and Future Work

Conclusions and Future Work

- Comparative experiments on 35 public/private datasets
 - D-MPNN often matches or outperforms baselines
 - Strong results on private datasets
- Future work
 - Incorporate 3D molecular information into model
 - Explore pre-trained models
 - Possibly generalize from large to limited/small datasets
 - Adapt to datasets with severe class imbalances
 - Study uncertainty quantification for model generalizability

Ideas forture Porch

- Read relate
- Practice Chempon point of the properties of the prope
- Explore oth
- Explore ativ
 - Instead cules to drug perties, why not properties novel, drug-like mecules???

Study for prelims (not research)

Acknowledgments

 Financial support provided by IBioSTeP: NIH GRISE at UC Merced (T32GM141862)

Abstract: Model Details

- Initial edge features: $\mathbf{e}_{vw}^{\mathrm{d}} = \mathrm{cat}(\mathbf{x}_v, \mathbf{e}_{vw})$
- Update function:

$$\mathbf{h}_{vw}^0 = au(\mathbf{W}_i \mathbf{e}_{vw}^{\mathrm{d}})$$
 $\mathbf{h}_{vw}^{t+1} = au(\mathbf{h}_{vw}^0 + \mathbf{W}_h \sum_{k \in \{N(v) \setminus w\}} \mathbf{h}_{kv}^t)$

- Aggregate final edge states into atom embeddings: $\mathbf{h}_v = \tau(\mathbf{W}_o \mathbf{q})$ $\mathbf{q} = \cot{(\mathbf{x}_v, \sum_{w \in N(v)} \mathbf{h}_{wv}^T)}$
- Final molecular representation: $\mathbf{h}_m = \cot{(\mathbf{h}'_m, \mathbf{x}_m)}$ $\mathbf{h}'_m = \sum_{v=1}^m \mathbf{h}_v$

Abstract: Convolutions on Graphs

 Convolutions provide local context in both CNNs and GNNs

 CNNs: "sliding window" to extract local features

 GNNs: Learn about (k-1)-hop neighborhood after k layers

Feature maps

Abstract: Learning Model Parameters

- Trainable parameters:
 - Weight matrix for aggregated messages W_h
- Feed W_h into any loss function and backpropagate

$$\mathbf{h}_{vw}^0 = \tau(\mathbf{W}_i \mathbf{e}_{vw}^\mathrm{d})$$
 Update
$$\mathbf{h}_{vw}^{t+1} = \tau(\mathbf{h}_{vw}^0 + \boxed{\mathbf{W}_h} \sum_{k \in \{N(v) \setminus w\}}^{\mathbf{Message}} \mathbf{h}_{kv}^t)$$
 Aggregation