Near-real time processing using Spark

RDDs, DataFrame/DataSet, Spark Streaming, and Structured Streaming

Vladimir Sivčević

Senior Data Engineer

www.vladsiv.com

May 9, 2024

RDDs

RDDs

- RDDs
- Spark Streaming
- DataFrame DataSet

- RDDs
- Spark Streaming
- DataFrame DataSet
- Structured Streaming

RDD - Resilient Distributed Dataset

Resilient

- Resilient
 - Immutable Rebuild lost data

- Resilient
 - Immutable Rebuild lost data
 - Fault Tolerant Recover data using Lineage

- Resilient
 - Immutable Rebuild lost data
 - Fault Tolerant Recover data using Lineage
- **Distributed** Across nodes, operated on in parallel

- Resilient
 - Immutable Rebuild lost data
 - Fault Tolerant Recover data using Lineage
- **Distributed** Across nodes, operated on in parallel
- Two ways to create them

- Resilient
 - Immutable Rebuild lost data
 - Fault Tolerant Recover data using Lineage
- **Distributed** Across nodes, operated on in parallel
- Two ways to create them
 - Parallelized Collections

```
data = [1, 2, 3, 4, 5]
distData = sc.parallelize(data)
```

RDD - Resilient Distributed Dataset

- Resilient
 - Immutable Rebuild lost data
 - Fault Tolerant Recover data using Lineage
- Distributed Across nodes, operated on in parallel
- Two ways to create them
 - Parallelized Collections

```
data = [1, 2, 3, 4, 5]
distData = sc.parallelize(data)
```

 External Datasets - Any Hadoop supported storage - HDFS, S3, HBase...

```
distFile = sc.textFile("data.txt")
```

RDD - Resilient Distributed Dataset

- Resilient
 - Immutable Rebuild lost data
 - Fault Tolerant Recover data using Lineage
- Distributed Across nodes, operated on in parallel
- Two ways to create them
 - Parallelized Collections

```
data = [1, 2, 3, 4, 5]
distData = sc.parallelize(data)
```

 External Datasets - Any Hadoop supported storage - HDFS, S3, HBase...

```
distFile = sc.textFile("data.txt")
```

• **Partitions** - How is data distributed, determined by number of cores sc.parallelize(data, 10)

RDD - Resilient Distributed Dataset

- Resilient
 - Immutable Rebuild lost data
 - Fault Tolerant Recover data using Lineage
- Distributed Across nodes, operated on in parallel
- Two ways to create them
 - Parallelized Collections

```
data = [1, 2, 3, 4, 5]
distData = sc.parallelize(data)
```

 External Datasets - Any Hadoop supported storage - HDFS, S3, HBase...

```
distFile = sc.textFile("data.txt")
```

- Partitions How is data distributed, determined by number of cores sc.parallelize(data, 10)
- Generally unstructured data

Image 1 - Partitions

RDDs support two type of operations:

• **Transformations** - create a new dataset from an existing one i.e. creates a completely new RDD

- **Transformations** create a new dataset from an existing one i.e. creates a completely new RDD
 - map() applies function to each element of a dataset and returns new RDD

- Transformations create a new dataset from an existing one i.e. creates a completely new RDD
 - map() applies function to each element of a dataset and returns new RDD
 - All transformations are lazy think DAG
- Actions return a value to the driver program after running a computation on the dataset

- Transformations create a new dataset from an existing one i.e. creates a completely new RDD
 - map() applies function to each element of a dataset and returns new RDD
 - All transformations are lazy think DAG
- Actions return a value to the driver program after running a computation on the dataset
 - reduce() aggregates all the elements using some function

- Transformations create a new dataset from an existing one i.e. creates a completely new RDD
 - map() applies function to each element of a dataset and returns new RDD
 - All transformations are lazy think DAG
- Actions return a value to the driver program after running a computation on the dataset
 - reduce() aggregates all the elements using some function
 - Transformations are invoked when an action is triggered

RDDs support two type of operations:

- Transformations create a new dataset from an existing one i.e. creates a completely new RDD
 - map() applies function to each element of a dataset and returns new RDD
 - All transformations are lazy think DAG
- Actions return a value to the driver program after running a computation on the dataset
 - reduce() aggregates all the elements using some function
 - Transformations are invoked when an action is triggered

Note

Directly programming on RDD level is not efficient, introduces latency, lacks control, and is generally discouraged. Use it if you really have to!

Image 2 - RDD Operations

Image 3 - Spark Streaming

Image 3 - Spark Streaming

Mini batching - near-real time

Image 3 - Spark Streaming

- Mini batching near-real time
- Legacy there are better options now

Image 3 - Spark Streaming

- Mini batching near-real time
- Legacy there are better options now
- Abstract concept DStream Discretized Stream

Image 3 - Spark Streaming

- Mini batching near-real time
- Legacy there are better options now
- Abstract concept DStream Discretized Stream
 - Continuous stream of data

Image 3 - Spark Streaming

- Mini batching near-real time
- Legacy there are better options now
- Abstract concept DStream Discretized Stream
 - Continuous stream of data
 - Represents a continuous sequence of RDDs

Image 3 - Spark Streaming

- Mini batching near-real time
- Legacy there are better options now
- Abstract concept DStream Discretized Stream
 - Continuous stream of data
 - Represents a continuous sequence of RDDs
 - Operations on DStream translates to operations on underlying RDDs

Image 4 - DStream RDDs

Image 3 - Spark Streaming

- Mini batching near-real time
- Legacy there are better options now
- Abstract concept DStream Discretized Stream
 - Continuous stream of data
 - Represents a continuous sequence of RDDs
 - Operations on DStream translates to operations on underlying RDDs

Image 4 - DStream RDDs

• Input DStreams - representing the stream of input data

- Input DStreams representing the stream of input data
- Associted with Receiver object which receives the data from a source, runs on an allocated core

- Input DStreams representing the stream of input data
- Associted with Receiver object which receives the data from a source, runs on an allocated core
 - Reliable Receiver sends ACK to the source

- Input DStreams representing the stream of input data
- Associted with Receiver object which receives the data from a source, runs on an allocated core
 - Reliable Receiver sends ACK to the source
 - Unrealiable Receiver doesn't send ACK

- Input DStreams representing the stream of input data
- Associted with Receiver object which receives the data from a source, runs on an allocated core
 - Reliable Receiver sends ACK to the source
 - Unrealiable Receiver doesn't send ACK
 - We can create custom receivers

- Input DStreams representing the stream of input data
- Associted with Receiver object which receives the data from a source, runs on an allocated core
 - Reliable Receiver sends ACK to the source
 - Unrealiable Receiver doesn't send ACK
 - We can create custom receivers
- Sources

- Input DStreams representing the stream of input data
- Associted with Receiver object which receives the data from a source, runs on an allocated core
 - Reliable Receiver sends ACK to the source
 - Unrealiable Receiver doesn't send ACK
 - We can create custom receivers
- Sources
 - Basic Available in StreamingContext: file systems and socket connections

- Input DStreams representing the stream of input data
- Associted with Receiver object which receives the data from a source, runs on an allocated core
 - Reliable Receiver sends ACK to the source
 - Unrealiable Receiver doesn't send ACK
 - We can create custom receivers
- Sources
 - Basic Available in StreamingContext: file systems and socket connections
 - Advanced Extra utility classes: Kafka, Flume, Kinesis

- Input DStreams representing the stream of input data
- Associted with Receiver object which receives the data from a source, runs on an allocated core
 - Reliable Receiver sends ACK to the source
 - Unrealiable Receiver doesn't send ACK
 - We can create custom receivers
- Sources
 - Basic Available in StreamingContext: file systems and socket connections
 - Advanced Extra utility classes: Kafka, Flume, Kinesis
- Drawbacks

- Input DStreams representing the stream of input data
- Associted with Receiver object which receives the data from a source, runs on an allocated core
 - Reliable Receiver sends ACK to the source
 - Unrealiable Receiver doesn't send ACK
 - We can create custom receivers
- Sources
 - Basic Available in StreamingContext: file systems and socket connections
 - Advanced Extra utility classes: Kafka, Flume, Kinesis
- Drawbacks
 - Directly dealing with RDDs

- Input DStreams representing the stream of input data
- Associted with Receiver object which receives the data from a source, runs on an allocated core
 - Reliable Receiver sends ACK to the source
 - Unrealiable Receiver doesn't send ACK
 - We can create custom receivers
- Sources
 - Basic Available in StreamingContext: file systems and socket connections
 - Advanced Extra utility classes: Kafka, Flume, Kinesis
- Drawbacks
 - Directly dealing with RDDs
 - Complicated and different API (from batch)

- Input DStreams representing the stream of input data
- Associted with Receiver object which receives the data from a source, runs on an allocated core
 - Reliable Receiver sends ACK to the source
 - Unrealiable Receiver doesn't send ACK
 - We can create custom receivers
- Sources
 - Basic Available in StreamingContext: file systems and socket connections
 - Advanced Extra utility classes: Kafka, Flume, Kinesis
- Drawbacks
 - Directly dealing with RDDs
 - Complicated and different API (from batch)
 - Latency

- Input DStreams representing the stream of input data
- Associted with Receiver object which receives the data from a source, runs on an allocated core
 - Reliable Receiver sends ACK to the source
 - Unrealiable Receiver doesn't send ACK
 - We can create custom receivers
- Sources
 - Basic Available in StreamingContext: file systems and socket connections
 - Advanced Extra utility classes: Kafka, Flume, Kinesis
- Drawbacks
 - Directly dealing with RDDs
 - Complicated and different API (from batch)
 - Latency
 - Bad Optimization

- Input DStreams representing the stream of input data
- Associted with Receiver object which receives the data from a source, runs on an allocated core
 - Reliable Receiver sends ACK to the source
 - Unrealiable Receiver doesn't send ACK
 - We can create custom receivers
- Sources
 - Basic Available in StreamingContext: file systems and socket connections
 - Advanced Extra utility classes: Kafka, Flume, Kinesis
- Drawbacks
 - Directly dealing with RDDs
 - Complicated and different API (from batch)
 - Latency
 - Bad Optimization
 - SQL not supported

• DStream can be combined and joined

- DStream can be combined and joined
- For example, Window operations

- DStream can be combined and joined
- For example, Window operations

Image 5 - DStream Window

- DStream can be combined and joined
- For example, Window operations

Image 5 - DStream Window

However, DStream is not great for Stateful streams and can't handle late data. There are other alternatives!

DataFrame/DataSet

• Introduced in Spark 2.0

DataFrame/DataSet

- Introduced in Spark 2.0
- Built on top of RDDs

- Introduced in Spark 2.0
- Built on top of RDDs
- Imposes a structure over data columns/rows

- Introduced in Spark 2.0
- Built on top of RDDs
- Imposes a structure over data columns/rows
- Dataset has two APIs strongly-typed and untyped

DataFrame/DataSet

- Introduced in Spark 2.0
- Built on top of RDDs
- Imposes a structure over data columns/rows
- Dataset has two APIs strongly-typed and untyped
- Row generic untyped JVM object

- Introduced in Spark 2.0
- Built on top of RDDs
- Imposes a structure over data columns/rows
- Dataset has two APIs strongly-typed and untyped
- Row generic untyped JVM object

 $Image\ 6\ -\ DataFrame/DataSet$

DataFrame/DataSet

- Introduced in Spark 2.0
- Built on top of RDDs
- Imposes a structure over data columns/rows
- Dataset has two APIs strongly-typed and untyped
- Row generic untyped JVM object

Language	Main Abstraction
Scala	Dataset[T] & DataFrame (alias for Dataset[Row])
Java	Dataset[T]
Python	DataFrame
R	DataFrame

Structure Benefits:

 Syntax check, static-typing, runtime type-safety i.e. catch errors at compile time

- Syntax check, static-typing, runtime type-safety i.e. catch errors at compile time
- Simpler high-level operations agg, filter, groupBy...

- Syntax check, static-typing, runtime type-safety i.e. catch errors at compile time
- Simpler high-level operations agg, filter, groupBy...
- Uses Spark SQL has Catalyst Optimizer which generates optimized logical and physical plan, together with Tungstan

- Syntax check, static-typing, runtime type-safety i.e. catch errors at compile time
- Simpler high-level operations agg, filter, groupBy...
- Uses Spark SQL has Catalyst Optimizer which generates optimized logical and physical plan, together with Tungstan

Image 7 - Catalyst Optimizer

- Syntax check, static-typing, runtime type-safety i.e. catch errors at compile time
- Simpler high-level operations agg, filter, groupBy...
- Uses Spark SQL has Catalyst Optimizer which generates optimized logical and physical plan, together with Tungstan

Image 8 - Memory Usage

Builds on top of structure provided by DataFrames/DataSets, which has its benefits:

Fast and scalable

- Fast and scalable
- Fault-tolerant

- Fast and scalable
- Fault-tolerant
- End-to-end exactly-once stream

- Fast and scalable
- Fault-tolerant
- End-to-end exactly-once stream
- Stream and Batch are the same, we develop once

- Fast and scalable
- Fault-tolerant
- End-to-end exactly-once stream
- Stream and Batch are the same, we develop once
- Provides Event Time handling and Late Data processing -Watermarking

- Fast and scalable
- Fault-tolerant
- End-to-end exactly-once stream
- Stream and Batch are the same, we develop once
- Provides Event Time handling and Late Data processing -Watermarking
- Perform complex SQL queries

How it works:

Unbounded Input Table

Image 9 - Unbounded Table

How it works:

Result Table

Image 10 - Result Table

• Output Modes - defines what gets written to the external storage

- Output Modes defines what gets written to the external storage
 - Complete Complete result tables are written

- Output Modes defines what gets written to the external storage
 - Complete Complete result tables are written
 - Append Only rows that get appended since the last trigger

Structured Streaming

- Output Modes defines what gets written to the external storage
 - Complete Complete result tables are written
 - Append Only rows that get appended since the last trigger
 - **Update** Only rows that were updated

Structured Streaming

- Output Modes defines what gets written to the external storage
 - Complete Complete result tables are written
 - Append Only rows that get appended since the last trigger
 - Update Only rows that were updated

Structured Streaming

Window operations

Windowed Grouped Aggregation with 10 min windows, sliding every 5 mins

counts incremented for windows 12:05 - 12:15 and 12:10 - 12:20

Image 12 - Window Operation

• Introduced in Spark 2.1

- Introduced in Spark 2.1
- Keeps track of event time in data

- Introduced in Spark 2.1
- Keeps track of event time in data
- Engine maintains state and allow late data for specific window T

- Introduced in Spark 2.1
- Keeps track of event time in data
- Engine maintains state and allow late data for specific window T
- Regulates state cleaning

- Introduced in Spark 2.1
- Keeps track of event time in data
- Engine maintains state and allow late data for specific window T
- Regulates state cleaning
- Example:

Watermark

Image 13 - Watermark

window 12:00 - 12:10

THANKS!

If you have any questions, please don't hesitate to ask

References

- Spark Official Documentation
 - RDD Programming Guide
 - Streaming Programming Guide
 - Structured Streaming Programming Guide
- Databricks
 - A Tale of Three Apache Spark APIs: RDDs vs DataFrames and Datasets
 - Multiple Stateful Operators in Structured Streaming

Images

- Image 1 Partitions Source
- Image 2 RDD Operations Source
- Image 3 Spark Streaming Source
- Image 4 DStream RDDs Source
- Image 5 DStream Window Source
- Image 6 DataFrame/DataSet Source
- Image 7 Catalyst Optimizer Source
- Image 8 Memory Usage Source
- Image 9 Unbounded Table Source
- Image 10 Result Table Source
- Image 11 Query Example Source
- Image 12 Window Operation Source
- Image 13 Watermark Source

