实验报告

姓名 李霄奕 日期 2022年5月15日 No. PB21511897 评分:

实验题目: 整流滤波

实验目的:

- 1. 了解交流信号的几个参数
- 2. 学习整流滤波电路的基本工作原理
- 3. 制作一台直流电源
- 综合分析影响滤波效果的因素,并研究纹波系数变化规律

实验原理:

I整流原理

整流电路的作用是把交流电转换成直流电,严格地讲是单方向大脉动直流电。利用二极管的单向导电性可实现整流。

1)半波整流

其电路图和波形图如下所示。只利用了交流电半个周期的正弦信号。

2)全波桥式整流

为了提高整流效率,使交流电的正负半周信号都被利用,则应采用全波整流。桥式整流后的直流电压脉动大大减少, 平均电压比半波整流提高了一倍(忽略整流内阻时)。其电路图和波形图如下所示。

图 1 半波整流电路及其波形图

图 2 桥式整流电路及其波形图

Ⅱ滤波原理

滤波电路的作用是把大脉动直流电处理成平滑的脉动小的直流电。经过整流后的电压(电流)仍然是有"脉动"的直流电,为了减少波动,通常要加滤波器。电容滤波电路和 π 型RC滤波电路图如下所示。

图 3 全波整流电容滤波器

图 4π 型RC滤波电路

实验仪器:

信号发生器,示波器,数字电压表(直流电压档、交流电压档),电阻箱,可变电容箱,面包板,整流二极管,电容,电阻,导线若干。

实验数据:

1.整流实验

未处理信号源、半波以及全波整流信号如下图

图 5 未处理信号源

图 6 未半波整流

图7 全波整流

2.滤波实验

输出端接入电容(1µF)进行滤波,全波整流电容滤波电路输出端波形如下:

将电容更换为 10μF, π型 RC 滤波电路的输出端波形如下:

3.电容对滤波效果影响(f=400Hz)

	电容滤波1μF	电容滤波10μF	π型滤波1μF	π型滤波10μF
直流电压(V)	2.5780	2.9490	1.4850	1.6076
交流电压(V)	0.5805	0.0765	0.0664	0.0000
纹波系数	22.52%	2.59%	4.47%	0.00%

4.频率对滤波效果影响(C=1μF)

(1)电容滤波

频率f(Hz)	10	20	30	40	50	60	70	80	90
直流电压(V)	1.958	1.968	1.981	1.997	2.013	2.033	2.053	2.074	2.095
交流电压(V)	1.2600	1.2463	1.2280	1.2067	1.1835	1.1592	1.1344	1.1094	1.0845
纹波系数	64.36%	63.34%	62.00%	60.43%	58.79%	57.02%	55.26%	53.49%	51.77%
频率f(Hz)	100	300	500	700	900	1000	1500	2000	
直流电压(V)	2.117	2.474	2.661	2.759	2.814	2.833	2.882	2.902	
交流电压(V)	1.0598	0.6923	0.4948	0.3734	0.2900	0.2573	0.1376	0.0605	
纹波系数	50.06%	27.98%	18.59%	13.53%	10.31%	9.08%	4.77%	2.08%	

(2)π型滤波

频率f(Hz)	10	20	30	40	50	60	70	80	90
直流电压(V)	1.0363	1.0573	1.0827	1.1096	1.1364	1.1618	1.1857	1.2080	1.2282
交流电压(V)	0.6390	0.6068	0.5692	0.5303	0.4923	0.4560	0.4221	0.3909	0.3623
纹波系数	61.66%	57.39%	52.57%	47.79%	43.32%	39.25%	35.60%	32.36%	29.50%
频率f(Hz)	100	300	500	700	900	1000	1500	2000	
直流电压(V)	1.2468	1.4372	1.5087	1.5428	1.5612	1.5672	1.5841	1.5909	
交流电压(V)	0.3362	0.1024	0.0463	0.0256	0.0157	0.0125	0.0037	0.0000	
纹波系数	26.97%	7.12%	3.07%	1.66%	1.01%	0.80%	0.23%	0.00%	

5.综合分析滤波效果影响(f=400Hz, 电容滤波)

电容(μF)	0.1	0.2	0.3	0.4	0.5
直流电压(V)	1.986	2.064	2.151	2.236	2.315
交流电压(V)	1.1949	1.1015	1.0065	0.9198	0.8430
纹波系数	60.17%	53.37%	46.79%	41.14%	36.41%
电容(μF)	0.6	0.7	0.8	0.9	1.0
直流电压(V)	2.385	2.446	2.500	2.548	2.589
交流电压(V)	0.7761	0.7180	0.6668	0.6216	0.5817
纹波系数	32.54%	29.35%	26.67%	24.40%	22.47%

数据处理与分析:

1. 电容对滤波效果的影响的分析解释

由上表可以明显看出,无论是电容滤波还是π型滤波,随着电容增大,纹波系数均减小,波形更加平滑,这是因为电容增大能在电压不变的情况下,储存的电荷更多,从而滤波效果更好。

2. 比较π型电路和单电容的不同频率对滤波效果的影响

将电容滤波和π型滤波以频率和纹波系数为变量作图:

观察上图,有以下几个特点:

a.随着频率增大,两种电路模式的纹波系数均随之减小,但是π型滤波的纹波系数一直小于电容滤波的纹波系数。

b.比较两种电路模式,随着频率增大, π 型滤波的纹波系数减小速率比电容滤波大,在频率接近 1000Hz 时已经趋近于 0%。

3. 分析纹波系数和电容及信号源频率的关系。

将电容滤波以电容和纹波系数为变量作图(f=0.1~1Hz):

由上图可以看出,随着电容的增大,纹波系数减小,而且曲线趋于平缓。

综上所述,纹波系数与电容及信号源频率有关,电容增大、信号源频率增大,则纹波系数减小。

思考题:

1.整流、滤波的主要目的是什么?

整流的主要目的是把交流电转换成波动较大的直流电,滤波的主要目的是减小甚至消除直流电的波动。

2.滤波电路中电容是否越大越好?请根据实验过程简述理由。

滤波电路中电容不是越大越好。根据实验过程,理由如下:

- a)随着电容的增大,电路体积变大,成本增加、影响空气流动和散热。
- b)随着电容的增大,对滤波的改善效果呈边际递减效应,性价比较低
- c)电容上存在寄生电感,电容放电回路会在某个频点上发生谐振。在谐振点,电容的阻抗小。因此放电回路的阻抗最小,补充能量的效果也最好。但当频率超过谐振点时,放电回路的阻抗开始增加,电容提供电流能力便开始下降。电容越大,谐振频率越低,电容能有效补偿电流的频率范围也越小。