Ayouba Anrezki 14408

Analyse des invariants de dissimulation

détection de la stéganographie dans les images JPG

Transition, transformation, conversion

Introduction

Stéganographie

Figure 1 : Illustration de la stéganographie

Introduction

Utilisation de la stéganographie

Figure 2 : *Utilisation de la stéganographie*

Introduction

Stéganalyse

Figure 3 : Illustration de la stéganalyse

Problématique

Est-il possible d'identifier un invariant de dissimulation dans des fichiers JPG, c'est-à-dire une caractéristique commune à toutes les données issues d'un processus de stéganographie, indépendamment de l'algorithme utilisé ou du type de données, permettant ainsi de détecter la présence d'information cachée dans ces fichiers?

Problématique

Figure 4 : *Illustration de la problématique*

Objectifs du TIPE

- Choisir trois méthodes de dissimulations en stéganographie sur les images JPG.
- 2. Créer une base de données d'image JPG (payload, cover).
- 3. Réalisé l'opération de dissimulation sur les données avec les trois méthodes et récupérer la sortie (stego).
- 4. Faire des mesure statistique sur le jeu de données obtenu.
- 5. Étudier le résultat de la mesure pour identifier un invariant de dissimulation.
- 6. Implémenter une méthode détection.
- 7. Évaluer la méthode.

Plan de la présentation

- I. Mise en place
 - A. Le format JPG
 - B. Les méthodes de dissimulation (LSB,PVD, F5)
 - C. Dissimulation
 - D. Base de données.
- II. Études statistique
 - A. Série de mesures sur le jeu de données
 - B. Mise en évidence de l'invariant
 - C. Étude de l'invariant
- III. Implémentation
 - A. Algorithmes
 - B. Evaluation
- IV. Conclusion

Le format JPG : qu'est-ce que le format JPG ?

Figure 5 : Format JPG et compression JPEG

Le format JPG : Avantages pour la stéganographie

Critère	JPG	PNG / BMP
Compression	Avec perte (DCT + quantification)	Sans perte (pixel par pixel)
Facilité d'intégration	Modifications dans les coefficients DCT	Modifications visibles dans les pixels
Taille du fichier	Petite	Grande
Invisibility (imperceptibilité)	Haute (modifs en fréquence)	Moins bonne (modifs visibles)
Robustesse	Moyenne à élevée (résiste à recompression)	Faible (modifications fragiles)
Diffusion / Usage	Très élevée	Moins courante

Figure 6 : Avantages du JPEG pour la stéganographie

Méthodes de dissimulations

Illustration de la stéganographie

Méthodes de dissimulations : LSB

Figure 8 : Illustration de la méthode LSB (least significant bit)

Méthodes de dissimulations : PVD

Figure 9 : Illustration de la méthode PVD

Méthodes de dissimulations : F5

Figure 10 : *Illustration de la méthode F5*

Dissimulation

Critère de dissimulation

Critères	Mesures	spécifications
Invisibilité / imperceptibilité	 PSNR (Peak Signal- to-Noise Ratio) SSIM (Structural Similarity Index) 	 Visibilité a l'œil humain Plus la différence est faible, meilleure est la qualité
Capacité d'insertion	Bits par pixel (bpp)	C = nombre de pixels × bits par pixel T = S/C × 100
Résistance à la stéganalyse	Taux de détection (TP/FP)	Analyse statistique

Figure 11 : *Critère de dissimulation*

Dissimulation

Mesure sur le premier dataset

Figure 12 :
Graphe capacité de dissimulation (taille du jeu de données = 10 000 images)

Base de données

Organisation de la base de données

Figure 13 : schémas relationnels base de données 1

Série de mesures sur le jeu de données : Caractéristiques

Table des caractéristiques			
Nom de la caractéristique	Expression	Description	
Moyenne des pixels	$\mu = rac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} I(i,j)$	Moyenne de l'intensité lumineuse de tous les pixels.	
Variance	$\delta^2 = rac{1}{MN} \sum_{i=1}^M \sum_{j=1}^N I(i,j)^2$	Dispersion des valeurs autour de la moyenne.	
Entropie	$H=-\sum_{i=0}^{255}p_ilog_2(p_i)$	Mesure du désordre dans la répartition des intensités (plus élevée = plus complexe).	

Figure 14 : Table des caractéristiques

Série de mesures sur le jeu de données : Caractéristiques

Skewness (Asymétrie)	$\gamma = \frac{1}{MN} \sum (\frac{I(i,j) - mu}{\delta})^3$	Mesure de la symétrie de la distribution des intensités.
Kurtosis (Aplatissement)	$k = \frac{1}{MN} \sum (\frac{I(i,j) - mu}{\delta})^4$	Indique si la distribution est pointue ou aplatie.
Différence moyenne absolue	$ ext{MAV} = rac{\sum_{i,j} I(i,j) - I(i+1,j+1)}{(M-1)(N-1)}$	

Figure 14 : Table des caractéristiques

Série de mesures sur le jeu de données : Caractéristiques

Moyenne des coefficients DCT	$\overline{DCT} = rac{1}{N} \sum_{i=1}^{N} C_i$	
Énergie locale	$E = \sum_{i,j} I(i,j)^2$	Mesure de la puissance de signal, utile pour détecter des modifications.

Figure 14 : Table des caractéristiques

Figure 15

Figure 16

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22 : schémas relationnels base de données 2

Figure 23

Figure 24

Figure 25

Figure 26

Figure 27

Figure 28

Figure 28

Figure 29

Série de mesures sur le jeu de données : CNN

Figure 31: CNN

Série de mesures sur le jeu de données : Mesures

Architecture du CNN

- Entrée : Images en niveaux de gris 256×256×1
- 3 couches de convolution :
 - Conv2D (32 filtres, 3x3) + ReLU + MaxPooling
 - Conv2D (64 filtres, 3x3) + ReLU + MaxPooling
 - Conv2D (128 filtres, 3x3) + ReLU + MaxPooling
- Couches entièrement connectées :
 - Dense(128) + ReLU + Dropout(0.5)
 - Dense(1) + Sigmoid
- Sortie : Probabilité que l'image soit stego

Entraînement

- Époques : 20

- Batch size: 32

- Optimiseur : Adam (learning rate = 0.001)

- Fonction de perte : binary crossentropy

Métriques : accuracy, AUC

- Validation croisée sur 10% du jeu de données

Jeu de données

- Total: 10 000 images (5000 cover, 5000 stego)
- Prétraitement : conversion en niveaux de gris, redimensionnement en 256×256
- Répartition : 80% train, 10% validation, 10% test

Résultats

- Accuracy test: 87.5%
- AUC: 0.91
- Courbes d'apprentissage : perte et précision stables
- Le modèle performe mieux sur les stego très modifiés

Figure 33

Figure 34

Figure 35

Figure 36

Mise en évidence de l'invariant

$$\overrightarrow{I} = (variance, entropie, kurtosis)$$
 $I = lpha \dot{v}ariance + eta \dot{e}ntropie + \gamma \dot{k}rustosis$

Figure 37

Étude de l'invariant

Critère	Description	Valeur	Pertinence
Différence de moyenne (Variance)	Les images stégo ont une variance légèrement plus élevée	Stego ≈ 25.95, Non- stego ≈ 24.98 → Δ ≈ +0.97	Pertinent
Différence de moyenne (Entropie)	Entropie plus élevée dans les images stégo, révélant plus de désordre	Stego ≈ 7.50, Non- stego ≈ 7.40 → Δ ≈ +0.10	Pertinent
Différence de moyenne (Kurtosis)	Légère augmentation de l'aplatissement, surtout avec F5	Stego \approx 3.16, Nonstego \approx 3.00 \rightarrow $\Delta \approx$ +0.16	Modérément pertinent

Figure 38

Algorithmes

Critère	Description	Valeur	Pertinence
Clustering PCA (KMeans, k=2)	Séparation visible entre stego et non- stego	Séparation visuelle claire dans l'espace PCA	Bonne séparation
Corrélation inter- features (max)	Faible redondance entre Variance– Entropie–Kurtosis	Corr(max) < 0.6 entre paires	Bon choix de variables

Figure 38

Algorithmes

Critère	Description	Valeur	Pertinence
Sensibilité à la compression (JPEG)	Invariant devient moins discriminant sous compression JPEG (bruit introduit)	Δ Entropie réduit à +0.03 sous compression JPEG	<u> </u>
Robustesse à la texture naturelle	Faux positifs possibles dans les images naturelles très bruitées	Faux positif estimé ~7%	▲ Moyenne
Détection des méthodes avancées (e.g. HUGO)	Très faible modification visible sur les statistiques globales	Δ Entropie/Kurtosis < 0.01	X Faible

Figure 38

Algorithmes

```
import numpy as np

SEUIL_VARIANCE = 25.4
SEUIL_ENTROPIE = 7.45
SEUIL_KURTOSIS = 3.08

def detect_steganography(variance, entropie, kurtosis):
    score = 0

if variance > SEUIL_VARIANCE:
    score += 1
    if entropie > SEUIL_ENTROPIE:
    score += 1
    if kurtosis > SEUIL_KURTOSIS:
    score += 1
    if return 1 if score >= 2 else 0
```

Algorithme reposant sur un random forest

```
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from tensorflow.keras.optimizers import Adam
def build_steganalysis_cnn(input_shape=(256, 256, 1)):
    model = Sequential()
   model.add(Conv2D(32, (3, 3), activation='relu', input_shape=input_shape))
model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Conv2D(64, (3, 3), activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Conv2D(128, (3, 3), activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Flatten())
    model.add(Dense(128, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(1, activation='sigmoid')) # Classification binaire : cover vs stego
    model.compile(optimizer=Adam(learning_rate=0.001),
                    loss='binary_crossentropy',
                   metrics=['accuracy', tf.keras.metrics.AUC()])
    return model
```

CNN

Figure 39

Evaluation

Figure 40

Conclusion

Problématique

Est-il possible d'identifier un invariant de dissimulation commun à toutes les méthodes de dissimulations

Merci pour votre attention