【选必三 有机】【考点精华】有机物共面与共线问题(拔高+重要)

经典结构(一定要记忆!)

代表物	空间 结构	碳原子 杂化类型	结构式	球棍模型	结构特点
CH ₄	正四面体	sp³	Н	109°28′	任意3原子共面 C—C可以旋转
C ₂ H ₄	平面 结构	sp²	H C 120° H 120° H	120°	6点共面, C=C不能旋转
代表物	空间 结构	碳原子 杂化类型	结构式	球棍模型	结构特点
C_2H_2	直线形	sp	H−C≡C−H	180°	4点共线(面) C≡C不能旋转
C ₆ H ₆	平面 正六 边形	sp ²	H 120° H 120° H H H		12点共面 4点共线
代表物	空间 结构	碳原子 杂化类型	结构式	球棍模型	结构特点
CH ₂ O 甲醛	平面形	sp^2	H O H		平面三角形结构 至少4原子共面
萘蒽	平面形	sp ²	萘 C ₁₀ H ₈	蒽 C ₁₄ H ₁₀	所有原子 一定共平面
代表物	空间 结构	碳原子 杂化类型	结构式	球棍模型	结构特点
联苯 C ₁₂ H ₁₀	至少个原子共平面 最多个原子共平面 至少/ 最多几个原子共线				
萘蒽	平面形	sp ²	萘 C ₁₀ H ₈	蒽 C ₁₄ H ₁₀	所有原子 一定共平面

原子共面共线解题思路流程

看清楚题目要求

"碳原子"还是"所有原子";

"一定" "可能" "至少" "最多" "共线" "共面" 答案不一样

选定主体结构

- ①凡出现碳碳双键结构形式的原子共面问题, 以乙烯的结构为主体
- ②凡出现碳碳叁键结构形式的原子共线问题,以乙炔的结构为主体
- ③凡出现苯环结构形式的原子共面问题,以苯的结构为主体

常见结构的重要结论

- ① 结构中出现饱和原子,则所有原子不可能共平面
- ② 结构中每出现一个碳碳双键,至少有6个原子共面
- ③ 结构中每出现一个碳碳叁键,至少有4个原子共线
- ④ 结构中每出现一个苯环,至少有12个原子共面

有机物的共线与共面例题讲解

CH₂=CH-C=CH 最多几个原子共平面? 几个原子共线?

至少8个原子共平面,4个原子共直线

苯乙烯最多几个原子共平面?

共平面原子至少12个,最多16个

$$CHF_2$$
— CH — CH — CH 3

有关该有机分子结构的下列叙述中,正确的是()

- A. 除苯环外的其余碳原子有可能都在一条直线上
- B. 所有的原子都在同一平面上
- C. 处于同一平面上的碳原子最多有8个

D.12 个碳原子有可能都在同一平面上

最多几个 C 原子共平面

O
$$CH_3$$
 $\parallel \ \mid$
O-C-C-C1
 CH_2OH
 CH = CH_2

最多 11 个 C 原子共平面

下列分子中的所有碳原子一定处在同一平面上的是

①
$$CH_{3}$$
; ② CH_{3} CH_{3} CH_{3} ; ③ CH_{3} CH_{3} ; ③ CH_{3} CH_{3} ; ③ CH_{3}

环戊二烯分子最多_____个原子共平面

1个分子最多_____个原子共平面