第十二届全国大学生数学竞赛初赛试卷

(数学类B卷, 2020年11月)

考试形式: _ 闭卷_ 考试时间: __150_ 分钟 满分: __100_ 分

题号		<u> </u>	三	四	五.	六	总分
满分	15	15	15	20	15	20	100
得分							

注意: 1. 所有答题都须写在此试卷纸密封线右边, 写在其它纸上一律无效.

- 2. 密封线左边请勿答题, 密封线外不得有姓名及相关标记.
- 3. 如答题空白不够, 可写在当页背面, 并标明题号.

得分 评阅人

一、(本题 15 分)已知椭球面

$$\Sigma_0: \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, \quad a > b,$$

的外切柱面 $\Sigma_{\varepsilon}(\varepsilon=1$ 或-1)平行于已知直线

$$l_{\varepsilon}: \frac{x-2}{0} = \frac{y-1}{\varepsilon \sqrt{a^2 - b^2}} = \frac{z-3}{c}.$$

试求与 Σ_{ε} 交于一个圆周的平面的法方向. 注:本题中的外切柱面指的是每一条直母 线均与已知椭球面相切的柱面.

得分	
评阅人	

二、(本题 15 分)设f(x) 在[0,1]上连续,且 $1 \le f(x) \le$ 3, 证明: $1 \le \int_0^1 f(x) dx \int_0^1 \frac{dx}{f(x)} \le \frac{4}{3}$.

得分	
评阅人	

三、(本题15分)设 A 为 n 阶复方阵, p(x) 为 A 的特征多项式.又设 g(x) 为 m 次复系数多项式, $m \ge 1$. 证明: g(A) 可逆当且仅当 p(x) 与 g(x) 互素.

得分	
评阅人	

四、(本题20分)设 σ 为n维复向量空间 \mathbb{C}^n 的一个线性变换. $\mathbb{1}$ 表示恒等变换. 证明以下两条等价:

- (1) $\sigma = k\mathbb{1}, k \in \mathbb{C};$
- (2)存在 σ 的 n+1 个特征向量: v_1,\ldots,v_{n+1} , 这 n+1 个向

量中任何 n 个向量均线性无关.

得分	
评阅人	

五、(本题15分)计算广义积分 $\int_1^{+\infty} \frac{(x)}{x^3} dx$, 这里 (x)表示 x的小数部分(例如: 当n为正整数且 $x \in [n,n+1)$ 时, (x) = x - n).

得分	
评阅人	

证明: $\int_0^1 f^2(x) dx \geqslant \frac{1}{10}$.

六、(本题20分)设函数f(x)在 [0,1] 上连续,满足对任意 $x\in[0,1]$ $\int_{x^2}^x f(t)dt\geqslant \frac{x^2-x^4}{2}.$

$$\int_{x^2}^x f(t)dt \geqslant \frac{x^2 - x^4}{2}.$$