Università degli Studi Roma Tre

Corso di Laurea in Matematica, a.a. 2010/2011

AL210 - Algebra 2: Gruppi, Anelli e Campi

Prof. F. Pappalardi

Tutorato 1 - 27 Settembre 2010

Tutore: Matteo Acclavio

www.matematica3.com

Esercizio 1.

Stabilire se i seguenti sottoinsiemi di \mathbb{R} sono gruppi rispetto alla somma e al prodotto usuali (specificando eventuali proprietá mancanti)

- $A = \{n^3 \mid n \in \mathbb{N}\}$
- $B = \{ \frac{n^2}{m^2} \mid n, m \in \mathbb{N}, m \neq 0, MCD(n, m) = 1 \}$
- $C = \{\frac{n^3}{m^3} \mid n, m \in \mathbb{N}, m \neq 0, MCD(n, m) = 1\}$

Esercizio 2.

Dato $(\mathbb{Z}_{15}, +)$ calcolare $o(x) \ \forall x \in \mathbb{Z}_{12}$

Esercizio 3.

Determinare se (\mathbb{Z}, \heartsuit) è un gruppo, dove:

- $x \heartsuit y = x y$
- $x \heartsuit y = xy y$
- $x \heartsuit y = xy yx$

Esercizio 4.

Si considerino in \mathbb{Z}_{18} , $<\bar{3}>$ e $<\bar{2}>$. Dimostrare che $<\bar{3}>$ \cap $<\bar{2}>=<\bar{6}>$ e dimostrare che $<\bar{2}>$ è il più piccolo sottogruppo contenete sia $\bar{4}$ e $\bar{6}$

Esercizio 5.

Sia
$$S = \mathbb{R} \setminus \{-1\}$$
 e $\star : S \longrightarrow S$ t.c. $x \star y = xy + x + y$:

- Provare che \star definisce un'operazione binaria su S
- Dimostrare che (S, \star) 'e un gruppo. (individuando elemento neurto e inverso del generico elemento x)
- Mostrare perchè se definisco \star in modo analogo su tutto \mathbb{R} , (\mathbb{R}, \star) non è un gruppo

Esercizio 7.

Determinare l'ordine di tutti gli elementi di S_5 .

Esercizio 6.

Date le seguenti permutazioni σ e $\tau \in S_{10}$, calcolare i prodotti dove necessario, decomporre in cicli disgiunti e calcolare la parità di σ , τ , $\sigma\tau$, $\tau\sigma$, σ^2 , $\sigma^2\tau$, τ^2 , $\tau^2\sigma$.

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 4 & 5 & 7 & 9 & 10 & 8 & 6 & 3 & 1 \end{pmatrix}$$

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 5 & 7 & 9 & 3 & 1 & 4 & 6 & 10 & 8 \end{pmatrix}$$