

Probabilités

I. Variable aléatoire et probabilités

Définition : variable aléatoire discrète.

Soit $\Omega = \{e_1, e_2, e_3, ..., e_m\}$ l'univers fini d'une expérience aléatoire.

Une **variable aléatoire** X sur Ω est une fonction qui, à chaque issue de Ω , associe un nombre réel.

Définition : loi de probabilité d'une variable discrète.

Soit X une variable aléatoire prenant les valeurs $\{x_1,x_2,x_3,...,x_n\}$. Si pour chaque valeur x_i , on associe la probabilité de l'événement $(X=x_i)$, on définit la **loi de probabilité** X.

REMARQUE:

La loi de probabilité d'une variable aléatoire se présente sous forme d'un tableau.

On a
$$P(X = x_1) + P(X = x_2) + P(X = x_3) + ... + P(X = x_1) = 1$$
.

x_i	x_1	x_2	 x_n
$P\left(X=x_i\right)$	p_1	<i>p</i> ₂	 p_n

II. Espérance, variance et écart-type.

Définitions :

Soit X une variable aléatoire prenant les valeurs $x_1, x_2, x_3, ..., x_n$ avec les probabilités respectives $p_1, p_2, p_3, ..., p_n$.

• On appelle espérance de X le nombre

$$E(x) = p_1 x_1 + p_2 x_2 + p_3 x_3 + \dots + p_n x_n = \sum_{i=1}^{n} p_i x_i.$$

• On appelle variance de X le nombre

$$V(x) = p_1(x_1 - E(X))^2 + p_2(x_2 - E(X))^2 + p_3(x_3 - E(X))^2 + \dots + p_n(x_n - E(X))^2 = \sum_{i=1}^n p_i(x_i - E(X))^2$$

• On appelle écart-type de X le nombre $\sigma\left(X\right)=\sqrt{V(X)}$.

III. Transformation affine d'une variable aléatoire.

Définition:

Soit X une variable aléatoire prenant les valeurs $x_1, x_2, x_3, ..., x_n$. Pour tous réels a et b, on peut définir une autre variable aléatoire, en associant à chaque issue

donnant la valeur x_i , le nombre $ax_i + b$.

On note cette variable aléatoire aX+b.

Propriétés:

•
$$E(aX + b) = aE(x) + b$$
.

•
$$V(aX) = a^2V(X)$$
.