

What is Claimed is:

1. A semiconductor device comprising:
a substrate coated with an insulating layer;
5 a connecting part connected to a conductive layer
through the insulating layer of the substrate;
 a seed separating layer formed around the
connecting part and the insulating layer to provide an
open region that exposes at least part of the
10 connecting part;
 a seed layer disposed in the open region of the
seed separating layer; and
 a capacitor comprising a lower electrode formed
on the seed layer, a dielectric medium formed on the
15 lower electrode, and an upper electrode formed on the
dielectric medium.
2. The semiconductor device as claimed in claim 1,
wherein the seed layer is filled into the open region,
20 and is disposed between the connecting part and the
dielectric medium.
3. The semiconductor device as claimed in claim 1,
wherein the seed separating layer comprises a material
25 having an etch selection ratio with the insulating
layer.
4. The semiconductor device as claimed in claim 1,
wherein the seed separating layer has a thickness of
30 ranging from about 50Å to about 2000Å.

5. The semiconductor device as claimed in claim 1,
wherein the seed layer is formed of a material
selected from the group consisting of Pt, Ru, Ir, Os,
W, Mo, Co, Ni, Au and Ag.

5

6. The semiconductor device as claimed in claim 1,
wherein the seed layer has a thickness ranging from
about 100Å to about 10000Å.

10 7. The semiconductor device as claimed in claim 1,
wherein the connecting part is planarized with the
insulating layer.

15 8. The semiconductor device as claimed in claim 1,
wherein the connecting part comprises a plug and a
barrier layer.

20 9. The semiconductor device as claimed in claim 8,
wherein the plug comprises at least one material
selected from the group consisting of polysilicon,
tungsten (W), W-silicide), TiN, TiAlN, TaSiN, TiSiN,
TaN, TaAlN, TiSi and TaSi.

25 10. The semiconductor device as claimed in claim
8, wherein the barrier layer comprises a barrier metal
layer and an oxygen diffusion barrier layer.

30 11. The semiconductor device as claimed in claim
10, wherein the oxygen diffusion barrier layer
comprises at least one material selected from the
group consisting of Ir, Ru, Pt, Re, Ni, Co and Mo.

12. The semiconductor device as claimed in claim
10, wherein the barrier metal layer comprises at least
one material selected from the group consisting of TiN,
TiAlN, TaSiN, TiSiN, TaN, RuTiN and RuTio.

5

13. A method for fabricating a semiconductor
device comprising:

forming a connecting part connected to a
conductive layer through an insulating layer of a
substrate;

10 forming a seed separating layer around the
connecting part and the insulating layer to provide an
open region exposing the connecting part;

15 forming a seed layer to fill the open region of
the seed separating layer and cover the connecting
part;

20 forming a lower electrode of a capacitor upon the
seed layer;

25 forming a dielectric medium of the capacitor upon
the lower electrode; and

forming an upper electrode of the capacitor upon
the dielectric medium.

14. The method as claimed in claim 13, wherein
25 the open region of the seed separating layer is formed
on part of the connecting part and on part of the
insulating layer.

15. The method as claimed in claim 13, wherein
the step of forming the seed layer in the open region
comprises:

5 depositing the seed layer on an entire surface of
the seed separating layer and in the open region; and
 carrying out a planarization to remove portions
of the seed layer remaining on the seed separating
layer.

10 16. The method as claimed in claim 13, wherein
the seed separating layer has an etch selection ratio
with the insulating layer.

15 17. The method as claimed in claim 13, wherein
15 the insulating layer has a thickness ranging from
about 50Å to about 2000Å.

18. The method as claimed in claim 13, wherein
the step of forming the lower electrode comprises:

20 forming a capacitor sacrificial film pattern and
etching the capacitor sacrificial film so as to expose
the seed layer;

25 forming the lower electrode on the exposed seed
layer by carrying out an electrochemical deposition
method;
 removing the capacitor sacrificial film; and
 etching back the seed layer, for separating
adjacent parts of the lower electrode.

30 19. The method as claimed in claim 13, wherein
the seed layer comprises at least one material
selected from the group consisting of Pt, Ru, Ir, Os,
W, Mo, Co, Ni, Au and Ag.

20. A semiconductor device made in accordance with the method of claim 13.

卷之三