Perceived Income Risks

 $\begin{array}{c} {\rm Tao~Wang} \\ {\rm Johns~Hopkins~University} \end{array}$

March 31, 2020

Outline

- Motivation
- 2 Empirical facts
 - Cross-sectional patterns
 - Perceived risks and decisions
 - Correlation with the stock market
 - Permanent/transitory decomposition (work in progress)
- 3 Model (work in progress)

Motivation

- Risks matter for individual decisions
 - precautionary saving
 - portfolio choice and stock market participation
- Risks matter for macroeconomic outcomes
 - Since idiosyncratic risks are not perfectly insured
 - Different wealth \rightarrow different MPCs \rightarrow distributional channel of macroeconomic policies
- Risks estimated from the inequality \approx "the truth" \approx perceptions?

This paper's agenda

- **1 Empirics:** subjective risk profiles from density surveys
 - Cross-sectional profile, i.e. difference across demographic groups
 - Correlation structure with risky asset return
 - Time series property: i.e. how persistent?
 - Implication for decisions
- **2** Theory: a subjective heterogeneous-agent model
 - imperfect understanding of income process
 - \bullet i.e. experiences \to perceptual dfferences across age and generation
 - life-cycle consumption and portfolio choice
 - uninsured idioyncratic risks (and aggregate risks)

Literature

- subjective survey, especially on probabilist surveys. Manski (2004), Delavande et al. (2011), Manski (2018), Bertrand and Mullainathan (2001), Armantier et al. (2017)
- "insurance or information": Kaufmann and Pistaferri (2009), Meghir and Pistaferri (2011), Pistaferri (2001), New York Fed Blog (2019), Flavin (1988)
- consumption/saving and portfolio choice under imperfect perception/understanding. Rozsypal and Schlafmann (2017), Carroll et al. (2018), Lian (2019)
- expectation formation, mostly on macroeconomic variables, Coibion and Gorodnichenko (2012), Fuhrer (2018), etc
- counter-cyclical labor income risks: Storesletten et al. (2004), Guvenen et al. (2014), Catherine (2019)
- heterogeneous-agent New Keyesian models (HANK)

Data

Table: Survey of Consumer Expectations

Time period	2013M6-2019M6
Frequency	monthly
Sample size	1,300
Density variable	1-yr-ahead earning growth (same position/hours)
Pannel structure	12 months
Demographics	educ, income, age, gender, state

- density estimation following Engelberg et al. (2009)
- exclude top and bottom 1% values of each moment

Definition

- $\Delta Y_{i,t+12}$: the next-year income growth of the same job/position/hours, separate from unemployement risk
- Moments of interest
 - expected growth, $\exp_{i,t} = E_{i,t}(\Delta Y_{i,t+12})$
 - variance: $\overline{var}_{i,t}(\Delta Y_{i,t+12})$
 - iqr: $\overline{iqr}_{i,t}(\Delta Y_{i,t+12})$
 - skewness: $\overline{skew}_{i,t}(\Delta Y_{i,t+12})$
- Nominal and real income growth
 - $\operatorname{rexp}_{i,t} = E_{i,t}(\Delta Y_{i,t+12}^r) = E_i(\Delta Y_{i,t+12}^n) E_{i,t+12}(\pi_{t+12})$
 - $\overline{rvar}_{i,t} = \overline{var}_{i,t}(\Delta Y_{i,t+12}^n) + \overline{var}_{i,t}(\pi_{t+12})$

Outline

- Empirical facts
 - Cross-sectional patterns
 - Perceived risks and decisions
 - Correlation with the stock market
 - Permanent/transitory decomposition (work in progress)

Cross-sectional of income growth expectation

(a) expected growth of nominal

(b) expected growth of real

- nominal income: right-skewed and mostly positive
- real income: symmetric around zero

オロトオタトオラト オラン ラータので

Cross-section of income risks

(a) nominal income risk

(b) real income risk

• average: 2.5% standard deviation for nominal and 3.5% standard deviation for real income

Cross-section of skewness (tail risks)

(a) nominal income skewness

• sizable dispersion in skewness, i.e. about half of the people has non-zero skewness in perceived income distribution.

Perceived risks by household income

• Similar to the pattern of earning growth dispersion conditional on income in Bloom et al. (2018).

Perceived risks by age

• in line with existing findings, for instance Bloom et al. (2018).

Perceived risks by generation

Perceived risks by education

• not the same to some other findings, for instance Meghir and Pistaferri (2004)

Covariants of perceived risks

Table: Perceived income risks and individual characteristics

	incvar I	incvar II	incvar III	incvar IIII	rincvar I	rincvar II	rincvar III	rincvar IIII
HHinc_gr=low inc			1.56***				7.01***	
9			(0.10)				(0.19)	
educ_gr=low educ			, ,	0.40***			` /	3.82***
				(0.11)				(0.21)
gender=male				-0.80***				2.76***
9				(0.10)				(0.19)
parttime=yes	0.05	0.24*	-0.12		1.41***	1.81***	0.19	. /
*	(0.12)	(0.13)	(0.13)		(0.23)	(0.26)	(0.26)	
selfemp=yes	7.21***	-0.00***	-0.00***		6.27***	-0.00***	0.00***	
÷ *	(0.15)	(0.00)	(0.00)		(0.27)	(0.00)	(0.00)	
UEprobAgg	` '	0.01**	0.00*		, ,	0.05***	0.04***	
		(0.00)	(0.00)			(0.00)	(0.00)	
UEprobInd		0.03***	0.02***			0.05***	0.04***	
*		(0.00)	(0.00)			(0.00)	(0.00)	
Intercept	4.64***	3.75***	3.28***	5.72***	12.42***	12.21***	10.16***	11.16***
•	(0.05)	(0.12)	(0.12)	(0.07)	(0.10)	(0.24)	(0.25)	(0.14)
N	54029	47331	47331	47457	50730	44382	44382	44517
R2	0.05	0.00	0.01	0.00	0.01	0.01	0.04	0.01

Outline

- 1 Motivation
- 2 Empirical facts
 - Cross-sectional patterns
 - Perceived risks and decisions
 - Correlation with the stock market
 - Permanent/transitory decomposition (work in progress)
- 3 Model (work in progress)

Perveived risks and household spending

$$E_{i,t}(\Delta C_{i,t+12}) = u_0 + u_1 \overline{\text{risks}}_{i,t}(\Delta Y_{i,t+12}) + \xi_{i,t}$$

	spending I	spending II	spending III	spending IIII	spending IIIII	spending IIIIII	spending IIIIIII
incexp	0.39***						
	(0.08)						
rincexp		-0.04*					
		(0.02)					
incvar			0.07***				
			(0.02)				
rincvar				0.07***			
				(0.01)			
UEprobAgg						0.04***	
						(0.01)	
UEprobInd					-0.01		
					(0.01)		
incskew							0.21
							(0.43)
N	55673	50997	55465	52099	54315	85468	55029
R2	0.00	0.00	0.00	0.00	0.00	0.00	0.00

• Higher perceived risks \rightarrow higher expected spending growth.

Outline

- Motivation
- 2 Empirical facts
 - Cross-sectional patterns
 - Perceived risks and decisions
 - Correlation with the stock market
 - Permanent/transitory decomposition (work in progress)
- 3 Model (work in progress)

Perceived risks and expected stock performance

$$\overline{\operatorname{risk}_{i,t}} = a_0 + a_1 \underbrace{Stkprob_{i,t}}_{\text{probability of stock market goes up next year}} + \eta_{i,t}$$

	incvar	rincvar	inciqr	incskew
Stkprob	0.014***	-0.018***	0.005***	0.001***
	(0.002)	(0.004)	(0.000)	(0.000)
Constant	2.793*** (0.087)	9.616*** (0.178)	1.821*** (0.022)	0.078*** (0.005)
N	30121	30121	30121	30121
r2	0.002	0.001	0.005	0.002

- \bullet $\overline{\mathrm{var}_t}$
- $log(sp500_{t+12}) log(sp500_t)$

- $\overline{\text{skew}_t}$
- $log(sp500_{t+12}) log(sp500_t)$

4 D > 4 A > 4 B > 4 B > B 9 9 9 6

$$\underbrace{\overrightarrow{\mathrm{risk}_t}}_{\text{e perceived risk}} = \alpha + \beta \underbrace{\left(\underbrace{log(\mathrm{sp500}_{t+k}) - log(\mathrm{sp500}_{t+k-12})}_{\text{stock market return}} \right) + \epsilon_{i,t}}_{\text{stock market return}}$$

average perceived risk

 $\forall k = 1...12$

# months ahead	varMean	iqrMean	rvarMean	skewMean	varMed	iqrMed	rvarMed	skewMed
1	0.229	0.146	1.509	0.023	-0.061	-0.014	0.457	NA
2	0.517	0.199	2.457	-0.009	-0.13	-0.065	0.74	NA
3	0.469	0.194	3.784**	-0.052*	-0.119	-0.061	0.695	NA
4	0.17	0.112	3.098	-0.051	-0.116	-0.052	0.358	NA
5	-0.472	-0.07	0.701	-0.028	-0.126	-0.027	-0.117	NA
6	-0.275	-0.056	0.057	-0.018	-0.229	-0.122	-0.709	NA
7	-0.63	-0.164	-0.158	-0.049	-0.195	-0.115	-0.959	NA
8	-1.048**	-0.298*	-1.827	-0.076*	-0.279	-0.181	-1.655*	NA
9	-1.239***	-0.368**	-1.886	-0.065**	-0.25	-0.173	-1.689*	NA
10	-1.727***	-0.513***	-2.597*	-0.061**	-0.258	-0.163	-1.489	NA
11	-2.038***	-0.567***	-2.41*	-0.089***	-0.201	-0.113	-1.568*	NA
12	-1.416***	-0.467***	-1.543	-0.088***	-0.267	-0.179	-1.37	NA

• Newey-west s.e.and bias correction Stambaugh (1999).

(a) variance and yearly return

(b) skewness and yearly return

$$\underbrace{\overline{\mathrm{risk}_t}}_{\text{average perceived risk}} = \alpha + \beta \underbrace{\left(log(\mathrm{sp500}_{t+k}) - log(\mathrm{sp500}_{t+k-1})\right)}_{\text{stock market return}} + \epsilon_{i,t}$$

 $\forall k = 1...12$

# months ahead	varMean	iqrMean	rvarMean	skewMean	varMed	iqrMed	rvarMed	skewMed
1	-0.387	-0.129	0.711	0.065	-0.341	-0.27	0.161	NA
2	0.423	0.102	3.056	-0.178**	-0.204	-0.176	1.081	NA
3	-0.299	-0.124	4.03	-0.007	-0.261	-0.162	-0.886	NA
4	-1.405	-0.397	-1.763	-0.053	-0.084	0.026	-0.979	NA
5	-2.249	-0.55	-8.515**	0.079	0.15	0.218	-0.723	NA
6	0.218	0.009	-1.339	-0.015	-0.304	-0.308	-2.202	NA
7	-0.95	-0.433	-0.738	-0.174*	-0.236	-0.182	-2.189	NA
8	-1.36	-0.431	-4.698	-0.01	-0.202	-0.169	-2.138	NA
9	-0.889	-0.199	-1.114	0.021	0.105	0.069	0.256	NA
10	-2.347	-0.597	-2.284	0.02	0.163	0.162	0.927	NA
11	-1.641	-0.398	-1.282	-0.126	0.103	0.06	-1.841	NA
12	3.55**	0.708*	5.111	-0.016	-0.22	-0.144	1.21	NA

March 31, 2020

(a) variance and monthly return

(b) skewness and monthly return

Outline

- Motivation
- 2 Empirical facts
 - Cross-sectional patterns
 - Perceived risks and decisions
 - Correlation with the stock market
 - Permanent/transitory decomposition (work in progress)
- 3 Model (work in progress)

Underlying income process

• Income of individual i, cohort c at time t

$$y_{i,c,t} = p_{i,c,t} + \epsilon_{i,c,t}, \quad \text{where } \epsilon_{i,c,t} \sim N(0, \sigma_{c,\epsilon}^2)$$

$$p_{i,c,t} = p_{i,c,t-1} + \theta_{i,c,t}, \quad \text{where } \theta_{i,c,t} \sim N(0, \sigma_{\theta,c,t}^2)$$

$$\log \sigma_{\theta,c,t}^2 = \rho_c \log \sigma_{\theta,c,t-1}^2 + \mu_{\theta,c,t}$$

$$\mu_{\theta,c,t} \sim N(0, \gamma_c^2)$$

- Parameters for cohort c
 - ρ_c : how persistent is the innovation to the permanent risk
 - γ_c : how large is the innovation to the size of permanent risk
 - $\sigma_{c,\epsilon}$: the time-invariant size of the transitory risk

From monthly to yearly

- Assuming the agent understands the process
- Perceived risks about next-month growth $\Delta y_{i,t}$

$$\overline{var_{i,t}}(\Delta y_{i,t+1}) = E_{i,t}(\sigma_{\theta,t+1}^2) + \sigma_{\epsilon}^2$$
$$= \rho e^{-0.5\gamma} \sigma_{i,\theta,t}^2 + \sigma_{\epsilon}^2$$

• Perceived risks about next-year growth $\Delta Y_{i,t}$

$$\overline{var_{i,t}}(\Delta Y_{i,t+12})$$

$$= \sum_{k=1}^{12} (12 - k + 1)^2 E_{i,t}(\sigma_{\theta,t+k}^2) + 12^2 \sigma_{\epsilon}^2$$

$$= \sum_{k=1}^{12} (12 - k + 1)^2 \rho^k e^{-0.5k\gamma} \sigma_{i,\theta,t}^2 + 12^2 \sigma_{\epsilon}^2$$

Covariants of expected income growth

Table: Expected income growth and individual characteristics

	incexp I	incexp II	incexp III	incexp IIII	rincexp I	rincexp II	rincexp III	rincexp III
HHinc_gr=low inc			-0.03				-0.39***	
			(0.02)				(0.03)	
educ_gr=low educ				-0.25***				-0.63***
				(0.02)				(0.03)
gender=male				-0.32***				-0.78***
ŭ.				(0.02)				(0.03)
parttime=yes	-0.47***	-0.36***	-0.35***	` ′	-0.63***	-0.53***	-0.44***	` ′
	(0.03)	(0.03)	(0.03)		(0.04)	(0.04)	(0.04)	
selfemp=yes	0.86***	-0.00***	0.00***		0.84***	-0.00***	-0.00***	
	(0.03)	(0.00)	(0.00)		(0.05)	(0.00)	(0.00)	
Stkprob	, ,	0.01***	0.01***		, ,	0.02***	0.02***	
*		(0.00)	(0.00)			(0.00)	(0.00)	
UEprobInd		-0.01***	-0.01***			-0.02***	-0.02***	
*		(0.00)	(0.00)			(0.00)	(0.00)	
Intercept	2.82***	2.57***	2.58***	3.05***	-0.29***	-0.92***	-0.80***	0.20***
*	(0.01)	(0.02)	(0.02)	(0.02)	(0.02)	(0.03)	(0.03)	(0.02)
N	54275	48606	48606	47712	49702	44446	44446	43694
R2	0.01	0.02	0.02	0.01	0.01	0.04	0.04	0.02

- Armantier, O., Topa, G., Van der Klaauw, W., and Zafar, B. (2017). An overview of the Survey of Consumer Expectations. *Economic Policy Review*, (23-2):51–72.
- Bertrand, M. and Mullainathan, S. (2001). Do people mean what they say? Implications for subjective survey data. *American Economic Review*, 91(2):67–72.
- Bloom, N., Guvenen, Fatih, P. L., Sabelhaus, J., Salgado, S., and Song, J. (2018). The great micro moderation. Working paper.
- Carroll, C. D., Crawley, E., Slacalek, J., Tokuoka, K., and White, M. N. (2018). Sticky expectations and consumption dynamics. Technical report, National Bureau of Economic Research.
- Catherine, S. (2019). Countercyclical Labor Income Risk and Portfolio Choices over the Life-Cycle. SSRN Scholarly Paper ID 2778892, Social Science Research Network, Rochester, NY.
- Coibion, O. and Gorodnichenko, Y. (2012). What can survey forecasts tell us about information rigidities? *Journal of Political Economy*, 120(1):116–159.

- Delavande, A., Giné, X., and McKenzie, D. (2011). Measuring subjective expectations in developing countries: A critical review and new evidence. *Journal of development economics*, 94(2):151–163.
- Engelberg, J., Manski, C. F., and Williams, J. (2009). Comparing the point predictions and subjective probability distributions of professional forecasters. *Journal of Business & Economic Statistics*, 27(1):30–41.
- Flavin, M. A. (1988). The Excess Smoothness of Consumption: Identification and Interpretation. Working Paper 2807, National Bureau of Economic Research.
- Fuhrer, J. C. (2018). Intrinsic expectations persistence: evidence from professional and household survey expectations.
- Guvenen, F., Ozkan, S., and Song, J. (2014). The nature of countercyclical income risk. *Journal of Political Economy*, 122(3):621–660.
- Kaufmann, K. and Pistaferri, L. (2009). Disentangling insurance and information in intertemporal consumption choices. *American Economic Review*, 99(2):387–92.

- Lian, C. (2019). Consumption with imperfect perception of wealth. Working paper.
- Manski, C. F. (2004). Measuring expectations. *Econometrica*, 72(5):1329-1376.
- Manski, C. F. (2018). Survey measurement of probabilistic macroeconomic expectations: progress and promise. NBER Macroeconomics Annual, 32(1):411-471.
- Meghir, C. and Pistaferri, L. (2004). Income variance dynamics and heterogeneity. Econometrica, 72(1):1-32.
- Meghir, C. and Pistaferri, L. (2011). Earnings, consumption and life cycle choices. In Handbook of labor economics, volume 4, pages 773–854. Elsevier.
- Pistaferri, L. (2001). Superior information, income shocks, and the permanent income hypothesis. Review of Economics and Statistics, 83(3):465-476.
- Rozsypal, F. and Schlafmann, K. (2017). Overpersistence bias in individual income expectations and its aggregate implications.

- Stambaugh, R. F. (1999). Predictive regressions. *Journal of Financial Economics*, 54(3):375–421.
- Storesletten, K., Telmer, C. I., and Yaron, A. (2004). Cyclical dynamics in idiosyncratic labor market risk. *Journal of political Economy*, 112(3):695–717.