K Means Clustering Project

Import Libraries

```
In [131]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
```

The Data

مشخصات دیتاست مورد استفاده برای این تمرین که از تعدادی از دانشگاه ها با 18 فیچر مختلف جمع آوری شده است: هدف نهایی این است که بر اساس ویژگی هایی که داریم مشخص کنیم دانشگاه خصوصی بوده یا دولتی. دقت کنید که این داده ها در ستون Private ذخیره شده، اما ما نمیخواهیم از آن ها برای آموزش مدل استفاده کنیم و صرفا برای ارزیابی نهایی از آن ها استفاده می کنیم.

- Private A factor with levels No and Yes indicating private or public university
- · Apps Number of applications received
- · Accept Number of applications accepted
- Enroll Number of new students enrolled
- Top10perc Pct. new students from top 10% of H.S. class
- Top25perc Pct. new students from top 25% of H.S. class
- F.Undergrad Number of fulltime undergraduates
- P.Undergrad Number of parttime undergraduates
- · Outstate Out-of-state tuition
- · Room Board Room and board costs
- · Books Estimated book costs
- · Personal Estimated personal spending
- · PhD Pct. of faculty with Ph.D.'s
- Terminal Pct. of faculty with terminal degree
- S.F.Ratio Student/faculty ratio
- perc.alumni Pct. alumni who donate
- · Expend Instructional expenditure per student
- · Grad.Rate Graduation rate

Get the Data

دیتاستی که بر ایتان ارسال شده را بخوانید اما به شکلی که ستون اول آن، ایندکس های شما باشند.

In [160]: data = pd.read_csv(r"D:\Artificial Intelligence & Robotic\Data Science & Machi

نگاه خلاصه ای به دیتاست بیندازید و همچنین اطلاعات کلی و آماری آن را نمایش دهید.

In [161]: data.head()

Out[161]:

	Private	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Out
Abilene Christian University	Yes	1660	1232	721	23	52	2885	537	
Adelphi University	Yes	2186	1924	512	16	29	2683	1227	1
Adrian College	Yes	1428	1097	336	22	50	1036	99	1
Agnes Scott College	Yes	417	349	137	60	89	510	63	1
Alaska Pacific University	Yes	193	146	55	16	44	249	869	
4		_							

Data columns (total 18 columns):

#	Column	Non-Null Count	Dtype
0	Private	777 non-null	object
1	Apps	777 non-null	int64
2	Accept	777 non-null	int64
3	Enroll	777 non-null	int64
4	Top10perc	777 non-null	int64
5	Top25perc	777 non-null	int64
6	F.Undergrad	777 non-null	int64
7	P.Undergrad	777 non-null	int64
8	Outstate	777 non-null	int64
9	Room.Board	777 non-null	int64
10	Books	777 non-null	int64
11	Personal	777 non-null	int64
12	PhD	777 non-null	int64
13	Terminal	777 non-null	int64
14	S.F.Ratio	777 non-null	float64
1 5	perc.alumni	777 non-null	int64
16	Expend	777 non-null	int64
17	Grad.Rate	777 non-null	int64
dtyp	es: float64(1), int64(16), ob	ject(1)
m 0 m 0	m, ucasa, 11F	2 · //D	

memory usage: 115.3+ KB

In [163]: data.describe()

ania

Out[163]:

	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Unde
count	777.000000	777.000000	777.000000	777.000000	777.000000	777.000000	777.00
mean	3001.638353	2018.804376	779.972973	27.558559	55.796654	3699.907336	855.29
std	3870.201484	2451.113971	929.176190	17.640364	19.804778	4850.420531	1522.43
min	81.000000	72.000000	35.000000	1.000000	9.000000	139.000000	1.00
25%	776.000000	604.000000	242.000000	15.000000	41.000000	992.000000	95.00
50%	1558.000000	1110.000000	434.000000	23.000000	54.000000	1707.000000	353.00
75%	3624.000000	2424.000000	902.000000	35.000000	69.000000	4005.000000	967.00
max	48094.000000	26330.000000	6392.000000	96.000000	100.000000	31643.000000	21836.00

Exploratory Data Analysis (EDA)

اسکتر پلاتی برای Grad.Rate بر حسب Room.Board ترسیم کنید که در آن داده ها بر اساس Private column تفکیک شده باشند

In [164]: data.head()

Out[164]:

	Private	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Out
Abilene Christian University	Yes	1660	1232	721	23	52	2885	537	
Adelphi University	Yes	2186	1924	512	16	29	2683	1227	1
Adrian College	Yes	1428	1097	336	22	50	1036	99	1
Agnes Scott College	Yes	417	349	137	60	89	510	63	1
Alaska Pacific University	Yes	193	146	55	16	44	249	869	
4									

```
In [165]: plt.figure(figsize=(8, 8))
    sns.set_style('whitegrid')
    sns.scatterplot(x='Room.Board', y='Grad.Rate', hue='Private', data=data, palet
    sns.despine()
    plt.legend(bbox_to_anchor=(1.15, 1))
```

Out[165]: <matplotlib.legend.Legend at 0x1e03ef3ba90>

اسكتر پلاتى براى F.Undergrad بر حسب Outstate ترسيم كنيد كه در آن داده ها بر اساس Private column تفكيك شده باشند.

```
In [166]: plt.figure(figsize=(8, 8))
    sns.despine(top=True, right=True)
    sns.scatterplot(x='Outstate', y='F.Undergrad', data=data, hue='Private', palet
    sns.despine()
    plt.legend(bbox_to_anchor=(1.15, 1))
```

Out[166]: <matplotlib.legend.Legend at 0x1e03e36ad90>

سعی کنید به کمک Facet Grid، نمودار هیستوگرام OutState را به تفکیک ستون Private رسم کنید. اگر نتوانستید با Facet Grid این کار را بکنید، با رسم دو نمودار در یک صفحه این کار را انجام دهید.

```
In [167]: sns.set_style('darkgrid')

facet = sns.FacetGrid(data, hue='Private', palette='coolwarm', height=6, aspect facet = facet.map(plt.hist, 'Outstate', bins=20, alpha=0.75)
```


سعی کنید به کمک Facet Grid، نمودار هیستوگرام Grad.Rate را به تفکیک ستون Private رسم کنید. اگر نتوانستید با Facet Grid این کار را بکنید، با رسم دو نمودار در یک صفحه این کار را انجام دهید.

In [168]: sns.set_style('darkgrid')
 facet = sns.FacetGrid(data, hue='Private', palette='coolwarm', height=6, aspect facet = facet.map(plt.hist, 'Outstate', bins=20, alpha=0.75, linewidth=1.5)

به نظر می آید نمره ی فارغ التحصیلی دانشگاهی بیشتر از 100 شده! این داده را بیابید.

In [169]: data[data['Grad.Rate'] > 100]

Out[169]:

	Private	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Out
Cazenovia College	Yes	3847	3433	527	9	35	1010	12	
1									

این داده را از 120 تبدیل به 100 نمایید و دوباره هیستوگرام را ترسیم کنید. ممکن است به علت این که در حال تغییرات روی دیتاست اصلی هستید، وارنینگی دریافت کنید که جای نگرانی نیست.

In [170]: data['Grad.Rate'][95] = 100
data['Grad.Rate'][95]

C:\Users\ASUS\AppData\Local\Temp\ipykernel_17748\1702160853.py:1: SettingWit
hCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

data['Grad.Rate'][95] = 100

Out[170]: 100

In [171]: data[data['Grad.Rate'] > 100]

Out[171]:

Private Apps Accept Enroll Top10perc Top25perc F.Undergrad P.Undergrad Outstate Ro

```
In [172]: sns.set_style('darkgrid')
    facet = sns.FacetGrid(data, hue='Private', palette='coolwarm', height=6, aspect facet = facet.map(plt.hist, 'Outstate', bins=20)
```


K Means Cluster Creation

خب حالا وقت اون رسیده که مدل آن سوپروایزدمون رو بدون این که لیبل های واقعی رو ببینه روی داده ها آموزش بدیم و ازش بخوایم بر اساس ویژگی های مختلف، دانشگاه ها رو به دو قسمت (دولتی و خصوصی) تقسیم کنه.

```
In [173]: from sklearn.cluster import KMeans
In [174]: kmeans = KMeans(n_clusters=2)
kmeans.fit(data.drop('Private', axis=1))
Out[174]: KMeans(n_clusters=2)
```

مراكز خوشه ها:

Evaluation

اصولاً به جز سیلوهت اسکور ما روش خاصی برای ارزیابی یه مدل آن سوپر وایزد نداریم اما توی این مثال، ما لیبل ها رو از قبل براتون نگه داشته بودیم تا توی این مرحله بتونید مدلتون رو باهاش ارزیابی بکنید.

اول کلاستر های پیش بینی شده رو چاپ کنید:

```
In [176]: kmeans.labels_
0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
        0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1,
        0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0,
        0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0,
        1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
        0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,
        0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0,
        0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1,
        0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0,
        1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0,
        0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
        0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 1, 0])
```

خب همون طور که میبینید داده ها به دو خوشه ی 0 و 1 تقسیم بندی شدن، حالا یه تابعی بنویسید که ستون Private شما هم یه شکل 0 و 1 ی دربیاره تا بتونید با معیارهایی که از قبل بلدید یه ارزیابی روی مدلتاون داشته باشید.

```
In [177]: def converter(cluster):
                 if cluster == 'Yes':
                     return 1
                 else:
                     return 0
            data['cluster'] = data['Private'].apply(converter)
In [178]:
In [179]:
            data
Out[179]:
                                   Apps Accept Enroll Top10perc Top25perc F.Undergrad P.Undergra
                           Private
                  Abilene
                                            1232
                                                    721
                                                                23
                                                                           52
                 Christian
                                    1660
                                                                                      2885
                                                                                                    5
                              Yes
                University
                  Adelphi
                              Yes
                                    2186
                                            1924
                                                    512
                                                                16
                                                                           29
                                                                                      2683
                                                                                                   12:
                University
                   Adrian
                              Yes
                                    1428
                                            1097
                                                    336
                                                                22
                                                                           50
                                                                                      1036
                  College
              Agnes Scott
                                     417
                                             349
                                                    137
                                                                60
                                                                           89
                                                                                       510
                              Yes
                  College
                   Alaska
                   Pacific
                              Yes
                                     193
                                             146
                                                     55
                                                                16
                                                                           44
                                                                                       249
                University
                Worcester
```

خب همون ارزیابی هایی که از قبل بلدید رو به جز score که اینجا معنی نداره پیاده سازی کنید ولی به جای ستون لیبل ها از ستون پرایویت و به جای ستون پیش بینی از کلاستری که کی مینز برای داده ارائه داده استفاده کنید.

```
In [180]: from sklearn.metrics import classification_report, confusion_matrix
    print(confusion_matrix(data['cluster'], kmeans.labels_))
    print(classification_report(data['cluster'], kmeans.labels_))
```

```
[[138 74]
 [531 34]]
               precision
                             recall f1-score
                                                 support
           0
                    0.21
                               0.65
                                          0.31
                                                      212
           1
                    0.31
                               0.06
                                          0.10
                                                     565
                                         0.22
                                                     777
    accuracy
   macro avg
                    0.26
                               0.36
                                          0.21
                                                     777
weighted avg
                    0.29
                               0.22
                                         0.16
                                                     777
```

خب خیلیم بد نیست، مدل شما تونسته دانشگاه ها رو بر اساس ویژگی های دانشجوهاش مثل میانگین نمره و این چیزا به دو دسته ی دولتی و خصوصی تقسیم کنه، اونم بدون این که بدونه کدوم داده ها مربوط به چه کلاسین. اما حالا داده ها رو اسکیل کنید و دوباره

```
In [181]: | from sklearn.preprocessing import StandardScaler
           scaler = StandardScaler()
           #scaler.fit transform(data.drop(['Private', 'cluster'], axis=1))
           scaled_features = scaler.fit_transform(data.drop(['Private', 'cluster'], axis
In [182]: | model = KMeans(n_clusters=2)
           model.fit(scaled_features)
Out[182]: KMeans(n clusters=2)
In [183]: | print(confusion_matrix(data['cluster'], model.labels_))
           print(classification report(data['cluster'], model.labels ))
           [[146 66]
            [340 225]]
                          precision
                                         recall f1-score
                                                             support
                                0.30
                                           0.69
                       0
                                                     0.42
                                                                  212
                       1
                                0.77
                                           0.40
                                                      0.53
                                                                  565
               accuracy
                                                     0.48
                                                                  777
                                                     0.47
                                0.54
                                           0.54
                                                                  777
              macro avg
           weighted avg
                                0.64
                                           0.48
                                                      0.50
                                                                  777
             خب دیدیم که توی الگوریتم های مبتنی بر محاسبه ی فاصله، چقدر اسکیل کردن داده ها می تونه موثر باشه و درصد امتیاز ما رو
            از 10 به 65 ارتقا بده. اما حالا به كمك سيلوهت اسكور بررسي كنيد كه اگه قرار بود دسته بندي دقيق تري براي دانشگاه ها مي
                                                     داشتیم، اصو لا تقسیم بندی دانشگاه ها به چند دسته کار بهتری بود؟
In [184]: from sklearn.metrics import silhouette_score
In [185]: | def optimal_kmeans(dataset,normalized_dataset,start=2,end=11):
               n clu = []
               km_ss = []
               for n_clusters in range(start,end):
                    kmeans = KMeans(n_clusters=n_clusters)
                    labels = kmeans.fit_predict(normalized_dataset)
                    silhouette_avg = round(silhouette_score(dataset,labels,random_state=1)
                    km ss.append(silhouette avg)
                    n_clu.append(n_clusters)
                    print('NO.Clusters : {} ,Silhouette Score : {}'.format(n_clusters,si
               if n clusters == end -1 :
                    plt.figure(figsize=(8,6))
                    sns.set_style('darkgrid')
                    plt.title('Silhouette Score')
                    sns.pointplot(x=n_clu,y=km_ss)
```

```
NO.Clusters: 4
                  ,Silhouette Score : 0.207
NO.Clusters : 5
                  ,Silhouette Score : 0.19
NO.Clusters : 6
                  ,Silhouette Score : 0.105
                  ,Silhouette Score : 0.106
NO.Clusters : 7
NO.Clusters: 8
                  ,Silhouette Score : 0.08
                  ,Silhouette Score: 0.076
NO.Clusters : 9
NO.Clusters: 10
                   ,Silhouette Score : 0.088
NO.Clusters: 11
                   ,Silhouette Score : 0.057
NO.Clusters : 12
                   ,Silhouette Score : 0.054
NO.Clusters: 13
                   ,Silhouette Score : 0.04
                   ,Silhouette Score : 0.046
NO.Clusters: 14
NO.Clusters: 15
                   ,Silhouette Score : 0.036
NO.Clusters : 16
                   ,Silhouette Score : 0.033
NO.Clusters: 17
                   ,Silhouette Score : 0.017
                   ,Silhouette Score : 0.011
NO.Clusters : 18
NO.Clusters: 19
                   ,Silhouette Score : 0.022
```


خب می بینیم که تعداد کلاستر 6 رو میتونیم به عنوان نقطه ی آرنج در نظر بگیریم و این نقطه جاییه که شیب کاهش اسکور از اونجا به بعد کمتر و ملایم میشه. این یعنی اگه صرف دولتی یا خصوصی بودن دانشگاه ها ملاک نباشه، دانشگاه های این دیتاست رو میشه به 6 دسته ی مختلف تقسیم کرد که توی هر دسته، دانشگاه های اون دسته ویژگی های مشابه به هم و متفاوت از دانشگاه های دسته های دیکه دارند.

و اينم بحث Unsupervised Learning و همون فوت كوزه گرى وچشم بسته غيب گفتن بدون ديدن ليبل ها.

The End:)

In []:		