Árboles Binarios de Búsqueda

Estructuras de Datos y Algoritmos /
Algoritmos y Estructuras de Datos II
Año 2025
Dr. Pablo Ponzio
Universidad Nacional de Río Cuarto
CONICET

Árboles Binarios

Los árboles binarios son aquellos que:

- Cada nodo tiene a lo sumo dos hijos,
- Cada hijo de un nodo es llamado hijo izq. o hijo derecho.

Árboles Binarios el Java

Una implementación muy básica de árboles binarios consta de las siguientes operaciones:

- raiz: Retorna la raíz del árbol,
- hi: retorna el subárbol izquierdo,
- hd: retorna el subárbol derecho,
- preorder: recorrido preorder,
- inorder: recorrido inorder,
- posorder: recorrido posorder.

Esta implementación básica no tiene mucha utilidad en la práctica

Implementación básica en JAVA

Primero definimos una interface con operaciones básicas:

```
// Ejemplo de una interfaz basica para arboles contiene la funcionalidad minima para este tipo
// de estructuras, puede ser enriquecida con mas operaciones
public interface BinaryTreeBasis{
  // Devuelve el elemento de la raiz
   public Object getRoot();
  // Setea la raiz
   public void setRoot(Object item);
  // Dice si el arbol es vacio
  public boolean isEmpty();
  //Remueve todo los nodos del arbol
   public void makeEmpty();
  // recorrido pre0rder
   public List pre0rder();
  // recorrido postOrder
  public List postOrder();
  // recorrido inOrder
   public List inOrder();
```

Implementación con Memoria Dinámica

Una posible implementación con memoria dinámica:

```
public class TreeNode{
   private Object element; // elemento del nodo
   private TreeNode left; // hijo izquierdo
   private TreeNode right; // hijo derecho

   // constructor del NodoArbol por defecto
   public TreeNode(){
    element = null;
    left = null;
    right = null;
   }

// implementar el resto..
}
```

Parecida a Node de LinkedList

Los recorridos preorder, inorder, posorder pueden ser implementados acá

```
public class LinkedBinaryTree implements BinaryTreeBasis{
    // raiz del arbol
    private TreeNode root;

    public LinkedBinaryTree(){
       root = null;
    }

// Implementar el resto...
}
```

Un LinkedBinaryTree tiene como raíz un TreeNode

Preorder

Con preorder se recorre primero la raíz, después el hi y

finalmente el hd.

```
// Recorrido preorder
public List pre0rder(){
  List result = new LinkedList();
  // se agrega la raiz
  result.add(element);
  // se recorre el hi
  if (left != null){
     result.addAll(left.pre0rder());
  }
  // se recorre el hd
  if (right != null){
     result.addAll(right.pre0rder());
  }
  return result;
}
```

El Tiempo de ejecución es O(n), para n la cantidad de nodos (recorre todos los nodos)

Inorder

Primero el hi, después la raíz y finalmente el hd.

```
// Recorrido inorder
public List inOrder(){
  List result = new LinkedList();
  // agrega el hi
  if (left != null){
    result.addAll(left.InOrder());
  }
  // agrega la raíz
  list.add(element);
  // agrega el hd
  if (right != null){
    result.addAll(right.inOrder());
  }
  return result;
}
```

El Tiempo de ejecución es O(n)

Posorder

La raíz se recorre al último:

```
// Recorrido posorder
public List postOrder(){
   List result = new LinkedList();
   // se recorre hi
   if (left != null){
      result.addAll(left.postOrder());
   }
   // se recorre hd
   if (right != null){
      result.addAll(right.postOrder());
   }
   // se agrega la raiz
   result.add(element);
   return result;
}
```


El Tiempo de ejecución es O(n)

Propiedades

Sea *t* un árbol binario, en donde *size(t)* es su tamaño, *alt(t)* su altura

full(t) dice si el árbol está lleno: tiene todos los nodos en todos los niveles

Propiedad 1: $size(t) \leq 2^{alt(t)} - 1$

Propiedad 2: $log_2(size(t) + 1) \le alt(t)$

Propiedad 3: $full(t) \Rightarrow size(t) = 2^{alt(t)} - 1$

Propiedad 4: $full(t) \Rightarrow alt(t) = log_2(size(t) + 1)$

Propiedades

Sea t un árbol binario, en donde size(t) es su tamaño, alt(t) su altura

full(t) dice si el árbol está lleno: tiene todos los nodos en todos los niveles

Propiedad 1: $size(t) \leq 2^{alt(t)} - 1$

Propiedad 2: $log_2(size(t) + 1) \le alt(t)$

Propiedad 3: $full(t) \Rightarrow size(t) = 2^{alt(t)} - 1$

Propiedad 4: $full(t) \Rightarrow alt(t) = log_2(size(t) + 1)$

Ejercicio: Probar estas propiedades usando inducción

Repaso: TAD Set

- Un conjunto es una colección que almacena cada elemento a lo sumo una vez (no admite repetición), y no mantiene un orden específico para los elementos
 - Matemáticamente, un conjunto s se denota como $s = \{e_1, e_2, \dots, e_n\} \ (e_1 \neq e_2 \neq \dots \neq e_n)$
- Son apropiados cuando tenemos colecciones de elementos sin repeticiones
- Pueden implementarse de manera que las operaciones de agregar elementos, eliminar elementos y consultar sobre la pertenencia de un elemento sean eficientes

Repaso: Algunas operaciones de Sets

boolean	<pre>add(E e) Adds the specified element to this set if it is not already present.</pre>
boolean	<pre>contains(Object o) Returns true if this set contains the specified element.</pre>
Iterator <e></e>	<pre>iterator() Returns an iterator over the elements in this set.</pre>
boolean	remove(Object o) Removes the specified element from this set if it is present.
int	<pre>size() Returns the number of elements in this set (its cardinality).</pre>

Repaso: TAD Map

- Un map es una colección que almacena pares de claves y valores, donde cada clave deben tener un único valor asociado
 - Matemáticamente, un map m es una función parcial: $m = \{(k_1, v_1), (k_2, v_2), \dots, (k_n, v_n)\} \ (k_1 \neq k_2 \neq \dots \neq k_n)$
- Los maps son útiles cuando queremos asociar claves con valores (ej. agenda telefónica)
- Las operaciones de maps pueden implementarse de manera eficiente: asociar claves con valores, eliminar claves, y obtener el valor asociado a una clave
- Los maps se suelen llamar también diccionarios, tablas de símbolos, etc...

Repaso: Algunas operaciones de Maps

boolean	<pre>containsKey(Object key) Returns true if this map contains a mapping for the specified key.</pre>
V	<pre>get(Object key) Returns the value to which the specified key is mapped, or null if this map contains no mapping for the key.</pre>
Set <k></k>	<pre>keySet() Returns a Set view of the keys contained in this map.</pre>
V	<pre>put(K key, V value) Associates the specified value with the specified key in this map.</pre>
V	<pre>remove(Object key) Removes the mapping for the specified key from this map if present.</pre>
int	<pre>size() Returns the number of key-value mappings in this map.</pre>

TAD SortedSet

```
/**
* SortedSet are unbounded sets of objects of type T.
* A typical SortedSet is {o1, . . . , on}.
* SortedSet requires that the key type T implements the
* Comparable interface.
* The methods use compareTo to determine equality of elements.
*/
public interface SortedSet<T extends Comparable<? super T>> {
    /**
    * @post Adds 'x' to the elements of 'this'.
        More formally, it satisfies: this = old(this) U {e}.
     */
   public boolean add(T x);
    /**
    * @post Removes 'x' from 'this'. Returns true iff 'x'
        was removed. More formally, it satisfies:
            result = (e in old(this)) && this = old(this) \ {e}.
     */
   public boolean remove(T x);
    * @post Returns true iff 'x' is in 'this'.
   public boolean contains(T x);
    /**
    * @post Returns the cardinality of 'this'.
        More formally, it satisfies: #this.
    */
   public int size();
```

TAD SortedSet

```
/**
* SortedSet are unbounded sets
                                public class Person {}
* A typical SortedSet is {o1, .
                                public class Student extends Person implements Comparable<Person> {
* SortedSet requires that the k
                                     @Override public int compareTo(Person that) {
* Comparable interface.
                                         // ...
* The methods use compareTo to
*/
public interface SortedSet<T extends Comparable<? super T>> {
    /**
    * @post Adds 'x' to the elements of 'this'.
        More formally, it satisfies: this = old(this) U {e}.
    */
   public boolean add(T x);
    /**
    * @post Removes 'x' from 'this'. Returns true iff 'x'
        was removed. More formally, it satisfies:
           result = (e in old(this)) && this = old(this) \ {e}.
   public boolean remove(T x);
    * @post Returns true iff 'x' is in 'this'.
   public boolean contains(T x);
    /**
    * @post Returns the cardinality of 'this'.
```

More formally, it satisfies: #this.

*/

public int size();

TAD SortedSet

```
/**
* SortedSet are unbounded sets
                                 public
 * A typical SortedSet is {o1, .
                                 public
* SortedSet requires that the k
                                     @0v
* Comparable interface.
* The methods use compareTo to
*/
public interface SortedSet<T extends Comp
    /**
     * @post Adds 'x' to the elements of
        More formally, it satisfies: thi
     */
   public boolean add(T x);
    /**
     * @post Removes 'x' from 'this'. Ret
        was removed. More formally, it s
            result = (e in old(this)) &&
    public boolean remove(T x);
     * @post Returns true iff 'x' is in
   public boolean contains(T x);
    /**
    * @post Returns the cardinality of
        More formally, it satisfies: #th
     */
    public int size();
```

```
* @pre !isEmpty()
 * @post Returns the smallest element of 'this'.
 */
public T min();
/**
 * @pre !isEmpty()
 * @post Returns the largest element of 'this'.
 */
public T max();
/**
 * @post Deletes the smallest element of 'this'.
 */
public void removeMin();
/**
 * @post Deletes the largest element of 'this'.
 */
public void removeMax();
/**
 * @post Returns true if and only if the structure is a
    valid set.
 */
public boolean repOK();
/**
 * @post Returns a string representation of the set. Implements
    the abstraction function. It represents the set by showing
     its elements in increasing order "{o1, o2,..., on}".
 */
public String toString();
```

Implementaciones

Algunas observaciones:

- Sobre estructuras ordenadas la búsqueda se puede hacer eficientemente en O(log n)
- Los elementos deben tener una clave Comparable para que los elementos se puedan ordenar
- En general, si se manejan una gran cantidad de elementos, las operaciones O(n) sobre colecciones son demasiado costosas
 - Veremos como implementar versiones más eficientes de las operaciones

Implementación de Set/Map con arreglos ordenados

- La búsqueda es O(log n) (búsqueda dicotómica)
- El insertar es O(n), se busca la posición, y luego se tienen que correr n elementos
- El eliminar es O(n) se busca el elemento a eliminar y luego se corren n elementos
- ¡Mejores implementaciones son posibles!

Árboles Binarios de Búsqueda (ABB)

Son arboles binarios cuyas claves están ordenadas

Es decir, cumplen con las siguientes propiedades:

- Los nodos del subárbol izquierdo son menores a la raíz,
- Los nodos del subárbol derecho son mayores a la raíz,
- Los hijos izquierdo y derecho son ABB's

Podemos usarlos para implementar Sets/Maps

Implementación en JAVA

Implementación en JAVA

Implementación en JAVA

```
private class Node {
```

Ejercicio: Especifique el TAD SortedMap y provea una implementación con ABBs. btrees Ayuda: Notar que la implementación es muy similar a SortedSet, pero se requiere almacenar pares (key, value) en los nodos.

```
ciilo.key - key,
```

Árboles Binarios de Búsqueda: repOK

```
/**
 * @post Returns true if and only if the structure is a
     valid Binary Search Tree.
public boolean repOK() {
    return isBST(root, null, null);
/**
 * @post Returns true iff all the keys in the subtree with
     root x are larger than min and smaller than max.
 */
private boolean isBST(Node x, T min, T max) {
    if (x == null)
        return true;
    if (min != null && x.key.compareTo(min) <= 0)
        return false;
    if (max != null && x.key.compareTo(max) >= 0)
        return false;
    return isBST(x.left, min, x.key) &&
           isBST(x.right, x.key, max);
```


Árboles Binarios de Búsqueda: repOK

```
/**
 * @post Returns true if and only if the structure is a
     valid Binary Search Tree.
public boolean repOK() {
    return isBST(root, null, null);
                                                                                 Raiz
/**
 * @post Returns true iff all the keys in the subtree with
     root x are larger than min and smaller than max.
 */
private boolean isBST(Node x, T min, T max) {
   if (x == null)
       return true;
                                                                                  La propiedad
    if (min != null && x.key.compareTo(min) <= 0)
                                                                                    se cumple
        return false;
                                                                                       amente.
         Ejercicio: Verificar las propiedades restantes que deben cumplir los ABBs: que
         size sea igual a la cantidad de nodos, que no haya ciclos en el árbol, y que los
    ret
                  subárboles izquierdos y derechos nunca comparten nodos.
```

Búsqueda en ABBs

```
/**
 * @post Returns true iff 'key' is in 'this'.
 */
public boolean contains(T key) {
```

- Idea:
 - Comenzar desde el root
 - Si key es menor que la clave del root, buscar recursivamente en el subárbol izquierdo
 - Si key es mayor que la clave del root, buscar recursivamente en el subárbol derecho
- Casos base:
 - Si llegamos a un nodo que contiene key, retornamos true
 - Si llegamos a null, la clave no está en el ABB, y retornamos false

Búsqueda en ABBs

```
/**
 * @post Returns true iff 'key' is in 'this'.
 */
public boolean contains(T key) {
```

• Idea:

- Comenzar desde el root
- Si key es menor que la clave del root, buscar recursivamente en el subárbol izquierdo
- Si key es mayor que la clave del root, buscar recursivamente en el subárbol derecho

Casos base:

- Si llegamos a un nodo que contiene key, retornamos true
- Si llegamos a null, la clave no está en el ABB, y retornamos false

unsuccessful search for T

link is null so T is not in tree (search miss)

Búsqueda en ABBs

```
/**
 * @post Returns true iff 'key' is in 'this'.
 */
public boolean contains(T key) {
    return get(root, key) != null;
/**
  @post Returns true iff 'key' can be reached
     from node 'x'.
 */
private Node get(Node x, T key) {
    if (x == null)
        return null;
    int cmp = key.compareTo(x.key);
    if (cmp < 0)
        return get(x.left, key);
    else if (cmp > 0)
        return get(x.right, key);
    else
        return x;
```


Inserción en ABBs

```
/**
 * @post Adds 'key' to the elements of 'this'. Returns
 * true iff 'key' was added.
 * More formally, it satisfies:
 * result = !(key in old(this)) && this = old(this) U {key}.
 */
public boolean add(T key) {
```

- Hacer una búsqueda recursiva para llegar a la posición donde tenemos que insertar el elemento
- Cuando llegamos a null crear un nodo con la nueva clave y retornarlo
- Actualizar los enlaces cuando las llamadas recursivas retornan:
 - En cada llamada recursiva retornar la raíz del árbol luego de insertar el nuevo nodo
 - Cuando la llamada recursiva retorna, cambiar el subárbol previo por el árbol retornado

Inserción en ABBs

```
public boolean add(T key) {
    if (contains(key))
        return false;
    root = add(root, key);
    size++:
    return true;
/**
 * @post Inserts 'key' to the tree with root 'x',
    and returns the root of the resulting tree.
 */
private Node add(Node x, T key) {
    if (x == null)
        return new Node(key);
    int cmp = key.compareTo(x.key);
   if (cmp < 0)
       x.left = add(x.left, key);
   else if (cmp > 0)
       x.right = add(x.right, key);
    else
        // Should never happen!
       assert false;
    return x;
```


Inserción en ABBs

```
public boolean add(T key) {
    if (contains(key))
        return false;
    root = add(root, key);
    size++;
    return true;
}
```

Estamos insertando en un set, no permitimos duplicados

```
/**
 * @post Inserts 'key' to the tree with root 'x',
    and returns the root of the resulting tree.
 */
private Node add(Node x, T key) {
    if (x == null)
        return new Node(key);
    int cmp = key.compareTo(x.key);
   if (cmp < 0)
       x.left = add(x.left, key);
   else if (cmp > 0)
       x.right = add(x.right, key);
    else
        // Should never happen!
       assert false;
    return x;
```


Retornar el mínimo

- El mínimo de un ABB está en el nodo más a la izquierda del árbol
- Caso base: Si el subárbol izquierdo es null, el mínimo es la raíz del árbol
- Caso recursivo: Continuar la búsqueda por el subárbol izquierdo

```
* @pre !isEmpty()
 * @post Returns the smallest element of 'this'.
 */
public T min() {
    if (isEmpty())
        throw new NoSuchElementException("Empty tree");
    return min(root).key;
 * @post Returns the node that holds the smallest element of the
     tree with root x.
 */
private Node min(Node x) {
    if (x.left == null)
        return x;
    else
        return min(x.left);
```

Retornar el mínimo

- El mínimo de un ABB está en el nodo más a la izquierda del árbol
- Caso base: Si el subárbol izquierdo es null, el mínimo es la raíz del árbol
- Caso recursivo: Continuar la búsqueda por el subárbol izquierdo

```
* @pre !isEmpty()
 * @post Returns the smallest element of 'this'.
 */
public T min() {
    if (isEmpty())
        throw new NoSuchElementException("Empty tree");
    return min(root).key;
 * @post Returns the node that holds the smallest element of the
     tree with root x.
private Node min(Node x) {
    if (x.left == null)
        return x;
```

Ejercicio: Implementar el método max, que retorna el máximo del árbol. El máximo es el caso dual del min, es decir, está contenido en el nodo más a la derecha en el árbol

Borrar el mínimo

- Moverse recursivamente hacia la izquierda, hasta encontrar el primer nodo con hijo izquierdo null
- Retornar el hijo derecho de ese nodo
- Actualizar los enlaces cuando las llamadas recursivas retornan:
 - En cada llamada recursiva retornar la raíz del árbol luego de eliminar el nodo con el mínimo
 - Cuando la llamada recursiva retorna, cambiar el subárbol previo por el árbol retornado

Borrar el mínimo

```
/**
 * @pre !isEmpty()
 * @post Deletes the smallest element of 'this'.
 */
public void removeMin() {
    if (isEmpty())
        throw new NoSuchElementException("Empty tree");
    root = removeMin(root);
    size--;
/**
 * @post Deletes the smallest element of the tree with root 'x',
     and returns the root of the resulting tree.
 */
private Node removeMin(Node x) {
    if (x.left == null)
        return x.right;
    x.left = removeMin(x.left);
    return x;
```


Borrar el mínimo

go left until

```
reaching null
                                                                         left link
/**
 * @pre !isEmpty()
 * @post Deletes the smallest element of 'this'.
 */
public void removeMin() {
    if (isEmpty())
                                                                         return that
        throw new NoSuchElementException("Empty tree");
                                                                       node's right link
    root = removeMin(root);
    size--:
/**
                                                                           available for
 * @post Deletes the smallest element of the tree with root 'x',
                                                                        garbage collection
     and returns the root of the resulting tree.
 */
                                                                      update links
private Node removeMin(Node x) {
                                                                           after recursive calls
    if (x.left == null)
        return x.right;
    x.le
    retu
          Ejercicio: Implementar el método removeMax, que elimina el máximo del árbol
```

Borrar un elemento de un ABB

Hay que tener cuidado de preservar el invariante de ABB's:

- Se busca el elemento a borrar.
- Si no se encuentra, se termina,
- En otro caso, se elimina el elemento, hay varios casos:
 - El elemento es un hoja, fácil el elemento se borra,
 - El elemento no tiene hi ó hd, se reemplaza el elemento por la raíz del hijo que existe,
 - El elemento tiene ambos hijos, se lo reemplaza por el máximo de la izq. o mínimo de la derecha.

Borrar un elemento de un ABB

Caso 3:


```
/**
 * @post Removes 'x' from 'this'. Returns
     true iff 'x' was removed.
     More formally, it satisfies:
        result = (e in old(this)) && this = old(this) \ {e}.
 */
public boolean remove(T key) {
    if (!contains(key))
        return false;
    root = remove(root, key);
    size--;
    return true;
/**
 * @pre key belongs to the tree with root x.
 * @post Removes element key from the tree with root 'x',
     and returns the root of the resulting tree.
*/
private Node remove(Node x, T key) {
    int cmp = key.compareTo(x.key);
    if (cmp < 0)
        x.left = remove(x.left, key);
    else if (cmp > 0)
        x.right = remove(x.right, key);
    else {
        if (x.right == null)
            return x.left;
        if (x.left == null)
            return x.right;
        Node t = x;
        x = min(t.right);
        x.right = removeMin(t.right);
        x.left = t.left;
    return x;
```


Tiempo de Ejecución en

ABB's

- Las operaciones de búsqueda, inserción y eliminación que vimos están acotadas por la altura del árbol (h), es decir, son O(h)
 - Esto se debe a que en el peor caso estos métodos recorren uno o dos veces un camino desde la raíz hasta una hoja del árbol
- En el peor caso h = n, y los métodos son O(n).
- En el mejor caso, el árbol está completo, h = log (n+1), y los métodos son O(log n)
- Si el árbol está balanceado h es O(log n), y los métodos son O(log n)

Si los elementos se insertan en un ABB en orden aleatorio uniforme, en promedio la altura del árbol es O(log n), y las operaciones en el caso promedio son O(log n)

BST possibilities

Función de abstracción

 Aprovechando que los elementos tienen un orden, podemos definir la la función abstracción de manera que retorne una representación canónica del conjunto: el conjunto donde los elementos aparecen en orden

```
/**
  * @post Returns a list containing all the keys of the tree, where
  * nodes are visited in inorder.
  */
public List<T> inorder() {
  if (root == null)
     return new LinkedList<T>();
  return root.inorder();
}
```

Función de abstracción

 Aprovechando que los elementos tienen un orden, podemos definir la la función abstracción de manera que retorne una representación canónica del conjunto: el conjunto donde los elementos aparecen en orden

```
* @post Returns a list containing al/**
     nodes are visited in inorder.
                                       * @post Returns a string representation of the set. Implements
                                           the abstraction function. It represents the set by showing
public List<T> inorder() {
                                           its elements in increasing order "{o1, o2,..., on}".
    if (root == null)
                                       */
        return new LinkedList<T>();
                                      public String toString() {
                                          String res = "{";}
    return root.inorder();
                                          boolean first = true;
                                          List<T> elems = inorder();
                                          for (T item: elems)
                                              if (!first)
                                                res += ", ";
                                              res += item.toString();
                                              first = false;
                                          res += "}";
                                          return res;
```

Función de abstracción

 Aprovechando que los elementos función abstracción de manera q del conjunto: el conjunto donde lo

```
/**
 * @post Returns a list containing al /**
 * nodes are visited in inorder.
 */
public List<T> inorder() {
    if (root == null)
      return new LinkedList<T>();
    pub
    return root.inorder();
}
```

```
@Test
           public void test2()
               BSTSet<Integer> set = new BSTSet<Integer>();
               set.add(0);
               set.add(-2);
               set.add(3);
               set.add(1);
               set.add(-1);
               assertEquals(5, set.size());
 * @post Re
               assertEquals("{-2, -1, 0, 1, 3}", set.toString());
     the ab
               assertTrue(set.repOK());
     its el
 */
public String toString() {
   String res = "{";}
    boolean first = true;
    List<T> elems = inorder();
    for (T item: elems)
        if (!first)
          res += ", ";
        res += item.toString();
        first = false;
    res += "}";
    return res;
```

Actividades

 Leer el capítulo 12 del libro "Introduction to Algorithms, 3rd Edition". T. Cormen, C. Leiserson, R. Rivest, C. Stein. MIT Press. 2009

Bibliografía

- "Algorithms (4th edition)". R. Sedgewick, K. Wayne.
 Addison-Wesley. 2016
- "Introduction to Algorithms, 3rd Edition". T. Cormen, C. Leiserson, R. Rivest, C. Stein. MIT Press. 2009
- "Data Structures and Algorithms". A. Aho, J. Hopcroft, J. Ullman. Addison-Wesley. 1983