Tentamen i Krypteringsmetoder och Säkring av Datasystem

$7.5~\mathrm{HP}$

29 maj, 2011 kl. 9.00 - 13.00

Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG.

Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten.

Kursansvarig: Eric Järpe, telefon 0702-822 844, 035-16 76 53.

Till uppgifterna skall fullständiga lösningar lämnas. Lösningarna ska vara utförligt redovisade! Varje lösning ska börja överst på nytt papper. Endast en lösning per blad. Lösningar kommer finnas på internet: http://dixon.hh.se/erja/teach → Krypteringsmetoder och säkring av datasystem.

- 1. Vad hette den krypteringsmaskin som tyskarna använde under andra världskriget? (2p)
- 2. För att knäcka substitutionskrypton kan man använda tekniken att räkna antalet förekomster av respektive tecken och matcha dessa antal mot motsvarande antal i en vanlig text. Vad kallas den tekniken? (2p)
- 3. Beräkna lcm(3465, 3745). (3p)
- 4. Vad är en *scytale*? (3p)
- 5. Förklara kortfattat begreppen *certifikatkedjor* och *rotnycklar*. (3p)
- 6. Beräkna den diskreta multiplikativa inversen till 718 modulo 727. (4p)
- 7. Vad kallas det när en hashfunktion h ger samma hashvärde för två olika indata x och x', dvs när h(x) = h(x')? (3p)
- 8. Beräkna $123^{45} + 67^{89} \mod 111$. (3p)
- 9. Vad står förkortningen *TTP* för i fråga om nyckelautenticiering? (2p)
- 10. Antag att p är ett primtal sådant att p-1 är en multipel av n och att a inte är en multipel av p. Bevisa att talet $\frac{p-1}{c}$ är den diskreta a^c -logaritmen av $1 \mod p$. (5p)

Matematik

Definition 1 MÄNGDBETECKNINGAR

 \emptyset Tomma mängden Ω Hela utfallsrummet

 \cup Unionen \cap Snittet

 C Komplementet |A| Antalet element i A

Sats 1 Additionssatsen

För alla mängder A och B gäller att $|A \cup B| = |A| + |B| - |A \cap B|$.

Sats 2 DE MORGANS LAGAR

 $F\ddot{o}r \ alla \ m\ddot{a}ngder \ A \ och \ B \ g\ddot{a}ller \ att \ (A \cup B)^C \ = \ A^C \cap B^C \ och \ (A \cap B)^C \ = \ A^C \cup B^C.$

Sats 3 EXPONENTLAGARNA

 $a^{b+c} = a^b a^c$, $a^{bc} = (a^b)^c = (a^c)^b$, $a^0 = 1$ och $a^1 = a$.

Sats 4 LOGARITMLAGARNA

 $\log_a(bc) \ = \ \log_a b + \log_a c, \quad \log_a(b^c) \ = \ c\log_a b, \quad \log_a a = 1 \quad och \quad \log_a 1 = 0.$

Sats 5 KVADRERINGSREGLERNA

 $(a+b)^2 = a^2 + 2ab + b^2$, $(a-b)^2 = a^2 - 2ab + b^2$ och $(a+b)(a-b) = a^2 - b^2$.

Sats 6 Andragradsekvationer

 $Om \ x^2 + px + q = 0 \ s \ddot{a} \ \ddot{a} r \ x = -\frac{p}{2} \pm \sqrt{\frac{p^2}{4} - q}.$

Sats 7 FAKTORSATSEN

Varje polynom $p(x) = a_0 + a_1x + a_2x^2 + \ldots + a_{n-1}x^{n-1} + x_n$ av grad n har n nollställen x_1, x_2, \ldots, x_n och kan faktoriseras mha dessa enligt $p(x) = (x - x_1)(x - x_2) \cdots (x - x_n)$.

Algoritm 1 DIVISIONSALGORITMEN

För alla heltal a och $b \neq 0$ finns det heltal k och r sådana att $0 \leq r \leq |b| - 1$ och

$$\frac{a}{b} = k + \frac{r}{b}$$

där talet k kallas kvot och talet r kallas (principal) rest.

Definition 2

Ett **primtal** är ett heltal som inte är jämnt delbart med något annat heltal andra än 1 och sig självt.

Algoritm 2 Eratosthenes såll

Antag att man vill generera alla primtal $\leq n$.

- 1. Gör en lista över alla heltal from 2 tom n.
- 2. Ringa in det första icke strukna eller inringade talet.
- 3. Stryk alla multipler av det senast inringade talet från resten av listan.
- 4. Om inte alla $tal \leq \sqrt{n}$ är inringade eller strukna, gå tillbaks till steg 2.
- 5. Då alla tal som $\ddot{a}r \leq \sqrt{n}$ behandlats $\ddot{a}r$ de icke strukna talen primtalen.

Definition 3

Den största gemensamma delaren, gcd(a,b), för två heltal, a och b, är produkten av alla primtalsfaktorer som är gemensamma i a och b.

Algoritm 3 Euklides algoritm

För att bestämma gcd(a, b), där a > b, bestäm r_1, r_2, r_3, \ldots så att

$$\begin{cases} a = c_1b + r_1 & d\ddot{a}r \ 0 \le r_1 \le |b| - 1 \\ b = c_2r_1 + r_2 & d\ddot{a}r \ 0 \le r_2 \le r_1 - 1 \end{cases}$$

och fortsättningsvis

$$\begin{cases} r_1 &= c_3r_2 + r_3 & d\ddot{a}r \ 0 \le r_3 \le r_2 - 1 \\ r_2 &= c_4r_3 + r_4 & d\ddot{a}r \ 0 \le r_4 \le r_3 - 1 \\ \vdots &\vdots \\ r_{n-2} &= c_nr_{n-1} + r_n & d\ddot{a}r \ 0 \le r_n \le r_{n-1} - 1 \\ r_{n-1} &= c_nr_n + 0 & (d\ddot{a}r \ allts \mathring{a} \ r_{n+1} = 0) \end{cases}$$

Den första resten r_i som $\ddot{a}r = 0$ ($dvs \, r_{n+1}$ i förklaringen ovan) kallas den första försvinnande resten, den senaste resten innan den (r_n i förklaringen ovan) kallas den sista ickeförsvinnande resten. Och det $\ddot{a}r$ den sista icke-försvinnande resten som $\ddot{a}r \gcd(a,b)$.

Sats 8 Resträkning

$$Om \ a \equiv r \ och \ b \equiv s \pmod{c},$$

 $s\mathring{a} \ \ddot{a}r \ a + b \equiv r + s \pmod{c}.$

$$Om \ a \equiv r \ och \ b \equiv s \pmod{c},$$

$$s\mathring{a} \ \ddot{a}r \ ab \equiv rs \pmod{c}.$$

$$Om \ a \equiv r \pmod{c},$$

$$s\mathring{a} \ \ddot{a}r \ a^b \equiv r^b \pmod{c}.$$

Definition 4

Heltalen a och b kallas relativt prima om gcd(a, b) = 1.

Definition 5

Låt a och b vara heltal. Det minsta tal, c, sådant att c = am = bn för några heltal m och n kallas **minsta gemensamma multipel** för a och b och betecknas lcm(a, b).

Definition 6

Om a och n är heltal och $n \neq 0$, så kallas det minsta positiva heltal x sådant att $ax \equiv 1 \pmod{n}$ för den diskreta (multiplikativa) inversen till a mod n.

Sats 9 LÖSNING AV DIOFANTISKA EKVATIONER MED 2 OBEKANTA Antag att vi vill lösa den diofantiska ekvationen ax + by = c.

- $B\ddot{o}rja \ med \ att \ ber\ddot{a}kna \ d = \gcd(a,b) \ mha \ Euklides \ algoritm.$
- Om c inte är en multipel av d så har inte ekvationen någon lösning.
- Om c är en multipel av d, låt $k = \frac{c}{d}$.
- Lös den diofantiska ekvationen ax + by = k genom att nysta upp räkningen med Euklides algoritm ovan baklänges. Kalla lösningen (x_1, y_1) .
- Lösning till ekvationen ax + by = c fås slutligen som (dx_1, dy_1) (eftersom $adx_1 + bdy_1 = d(ax_1 + by_1) = dk = d\frac{c}{d} = c$).

Sats 10 För att ta reda på en lösning till kongruensekvationen $ax \equiv 1 \pmod{n}$ kan man lösa den diofantiska ekvationen ax - bn = 1.

Definition 7

Den diskreta (multiplikativa) inversen till a mod n är det minsta positiva heltalet b sådant att $ab \equiv 1 \pmod{n}$.

Sats 11

Om p är ett primtal och $a \not\equiv 0 \pmod{p}$, så finns det ett tal b sådant att $ab \equiv 1 \pmod{p}$.

Definition 8

Om a, b och n är heltal sådana att $b \neq 0$ och $n \neq 0$, så kallas det minsta positiva heltal x sådant att $a^x \equiv b \pmod{n}$ för den diskreta a-logaritmen av $b \pmod{n}$.

Sats 12 FERMATS LILLA SATS

Om p är ett primtal och $a \not\equiv 0 \pmod{p}$, så är $a^{p-1} \equiv 1 \pmod{p}$.

Sats 13 $lcm(a, b) = \frac{ab}{\gcd(a, b)}$ för alla heltal a och b.

Sats 14 Summeringsregler

$$\sum_{k=1}^{n} a b_k = a \sum_{k=1}^{n} b_k \quad och \quad \sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$

Sats 15 BINOMIALKOEFFICIENTER

Antalet sätt att välja k element bland n möjliga (utan återläggning och utan hänsyn till ordningen) är

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} \qquad d\ddot{a}r \quad n! = n(n-1)(n-2)\cdots 3\cdot 2\cdot 1$$

Sats 16 BINOMIALSATSEN

För alla reella tal a och b och positiva heltal n är

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Matematisk statistik

Sats 17 Komplementsatsen $P(A^C) = 1 - P(A)$

Sats 18 Additionssatsen $P(A \cup B) = P(A) + P(B) - P(A \cap B).$

Definition 9

A och B är **oberoende** händelser om $P(A \cap B) = P(A)P(B)$. Två slumpvariabler, X och Y med utfallsrum Ω_X resp. Ω_Y , $\ddot{a}r$ oberoende om $P(X \in M_X, Y \in M_Y) = P(X \in M_X)P(Y \in M_Y)$ för alla M_X i Ω_X och M_Y i Ω_Y .

BINOMIALFÖRDELNING

 $Om \ X = Y_1 + Y_2 + \ldots + Y_n \ d\ddot{a}r \ P(Y_k = 1) = p \ och \ P(Y_k = 0) = 1 - p \ f\ddot{o}r \ alla \ k = 1, 2, \ldots n$ och variablerna Y_1, Y_2, \ldots, Y_n är oberoende av varandra, så är $X \in Bin(n, p)$ (dvs X är binomialfördelad med n och p) vilket innebär att dess sannolikhetsfunktion är $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}, E(X) = np \text{ och } V(X) = np(1-p).$

Sats 20 Normalfördelning

Denna betecknas $N(\mu, \sigma^2)$ där μ är väntevärde och σ^2 är varians. Om $X \in N(0, 1)$ kallas X standard normalfördelad, och dess fördelningsfunktion är $\Phi(x) = P(X \le x)$. Om $X \in N(\mu, \sigma^2)$ så är $P(X \le x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$ för alla $x \in \mathbb{R}$.

Symmetri: $\Phi(-x) = 1 - \overline{\Phi}(x)$ för alla $x \in \mathbb{R}$. Sannolikheter: $P(a \le X \le b) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$ för all $a < b \in \mathbb{R}$

Definition 10

Medelvärde: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

Stickprovsvarians: $S^2 = \frac{1}{n-1} \left(\sum_{i=1}^n X_i^2 - n \bar{X}^2 \right)$

Statistiska metoder vid kryptografi

Sats 21 ÖVERFÖRINGSKVALITET

Antag att man vill skicka ett meddelande med n tecken där varje tecken skickas felaktigt med sannolikhet p oberoende av varandra. Då är antalet tecken skickas som felakigt

$$Y \in Bin(n, p)$$
.

Om dessutom np(1-p) > 10 så är approximativt

$$\frac{Y - np}{\sqrt{np(1-p)}} \in N(0,1) \quad dvs \quad P(Y \le y) = \Phi\left(\frac{y - np}{\sqrt{np(1-p)}}\right) \text{ för alla } y \in \mathbb{R}$$

Definition 11 BARKMANS KRYPTOINDIKATOR

Beräkna först frekvenser, o_1, o_2, \ldots, o_k , av k olika tecken som används i en teckenmassa och sedan värdet av kryptoindikatorn

$$U = n + \sum_{i=1}^{k} o_i(\frac{k}{n} - 2)$$

Om värdet på denna understiger $\chi^2_{\alpha}(k-1)$ (t ex med $\alpha=0.05$) så är det en indikation på att teckenmassan är krypterad kod.

Definition 12 Processkontroll

Beräkna successivt Barkmans kryptoindikator för textblock med k klasser vardera – ger värden u_1, u_2, u_3, \ldots för tidpunkterna $t = 1, 2, 3, \ldots$ En förändring inträffar vid den stokastiska tidpunkten θ så att

$$U_t \in \begin{cases} \psi_{c,k-1}^2 & om \ t < \theta \\ \chi_{k-1}^2 & om \ t \ge \theta \end{cases}$$

 $d\ddot{a}r \chi_{k-1}^2 \ddot{a}r \chi^2$ -fördelningen med k-1 frihetsgrader och $\psi_{c,k-1}^2 \ddot{a}r$ fördelningen för cX^2 $d\ddot{a}r X^2 \ddot{a}r \chi^2$ -fördelad med k-1 frihetsgrader. Shewharts metod för att upptäcka att denna förändring är att stanna vid tiden

$$\tau_S = \min\{t \ge 1 : u_t > C\}$$

där C är en lämpligt vald konstant. **CUSUM-metoden** för att upptäcka att denna förändring är att stanna vid tiden

$$\tau_C = \min\{t \ge 1 : a_t > C\}$$

 $d\ddot{a}r$

$$a_t = \begin{cases} 0 & om \ t = 0 \\ \max(0, a_t - 1) + \frac{k-1}{2} - \frac{c-1}{c} U_t & om \ t = 1, 2, 3, \dots \end{cases}$$

och C är en lämpligt vald konstant.

Normalfördelningsvärden

 $\Phi(x)$

Tabell över värden på $\Phi(x) = P(X \le x)$ där $X \in N(0,1)$. För x < 0 utnyttja relationen $\Phi(x) = 1 - \Phi(-x)$.

x	+0.00	+0.01	+0.02	+0.03	+0.04	+0.05	+0.06	+0.07	+0.08	+0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
\boldsymbol{x}	+0.0	+0.1	+0.2	+0.3	+0.4	+0.5	+0.6	+0.7	+0.8	+0.9
3	0.9987	0.9990	0.9993	0.9995	0.9997	0.9998	0.9998	0.9999	0.9999	1.0000

Normal-percentiler:

Några värden på λ_{α} sådana att $P(X>\lambda_{\alpha})=\alpha$ där $X\in N(0,1)$

α	λ_{lpha}	α	λ_{lpha}
0.1	1.281552	0.005	2.575829
0.05	1.644854	0.001	3.090232
0.025	1.959964		
0.01	2.326348	0.0001	3.719016

t-percentiler

 $0 \quad t_{\alpha}(df)$

Tabell över värden på $t_{\alpha}(df)$.

$d\!f$	α 0.25	0.10	0.05	0.025	0.02	0.01	0.005	0.001
1	1.0000	3.0777	6.3138	12.7062	15.8945	31.8205	63.6567	318.3088
2	0.8165	1.8856	2.9200	4.3027	4.8487	6.9646	9.9248	22.3271
3	0.7649	1.6377	2.3534	3.1824	3.4819	4.5407	5.8409	10.2145
4	0.7407	1.5332	2.1318	2.7764	2.9986	3.7470	4.6041	7.1732
5	0.7267	1.4759	2.0150	2.5706	2.7565	3.3649	4.0322	5.8934
6	0.7176	1.4398	1.9432	2.4469	2.6122	3.1427	3.7074	5.2076
7	0.7111	1.4149	1.8946	2.3646	2.5168	2.9980	3.4995	4.7853
8	0.7064	1.3968	1.8595	2.3060	2.4490	2.8965	3.3554	4.5008
9	0.7027	1.3830	1.8331	2.2622	2.3984	2.8214	3.2498	4.2968
10	0.6998	1.3722	1.8125	2.2281	2.3593	2.7638	3.1693	4.1437
12	0.6955	1.3562	1.7823	2.1788	2.3027	2.6810	3.0545	3.9296
14	0.6924	1.3450	1.7613	2.1448	2.2638	2.6245	2.9768	3.7874
17	0.6892	1.3334	1.7396	2.1098	2.2238	2.5669	2.8982	3.6458
20	0.6870	1.3253	1.7247	2.0860	2.1967	2.5280	2.8453	3.5518
25	0.6844	1.3163	1.7081	2.0595	2.1666	2.4851	2.7874	3.4502
30	0.6828	1.3104	1.6973	2.0423	2.1470	2.4573	2.7500	3.3852
50	0.6794	1.2987	1.6759	2.0086	2.1087	2.4033	2.6778	3.2614
100	0.6770	1.2901	1.6602	1.9840	2.0809	2.3642	2.6259	3.1737

χ^2 -percentiler

Tabell över värden på $\chi^2_{\alpha}(df)$.

df	$\alpha = 0.999$	0.995	0.99	0.95	0.05	0.01	0.005	0.001
1	0.0000	0.0000	0.0002	0.0039	3.8415	6.6349	7.8794	10.8276
2	0.0020	0.0100	0.0201	0.1026	5.9915	9.2103	10.5966	13.8155
3	0.0243	0.0717	0.1148	0.3518	7.8147	11.3449	12.8382	16.2662
4	0.0908	0.2070	0.2971	0.7107	9.4877	13.2767	14.8603	18.4668
5	0.2102	0.4117	0.5543	1.1455	11.0705	15.0863	16.7496	20.5150
6	0.3811	0.6757	0.8721	1.6354	12.5916	16.8119	18.5476	22.4577
7	0.5985	0.9893	1.2390	2.1673	14.0671	18.4753	20.2777	24.3219
8	0.8571	1.3444	1.6465	2.7326	15.5073	20.0902	21.9550	26.1245
9	1.1519	1.7349	2.0879	3.3251	16.9190	21.6660	23.5894	27.8772
10	1.4787	2.1559	2.5582	3.9403	18.3070	23.2093	25.1882	29.5883
12	2.2142	3.0738	3.5706	5.2260	21.0261	26.2170	28.2995	32.9095
14	3.0407	4.0747	4.6604	6.5706	23.6848	29.1412	31.3193	36.1233
17	4.4161	5.6972	6.4078	8.6718	27.5871	33.4087	35.7185	40.7902
20	5.9210	7.4338	8.2604	10.8508	31.4104	37.5662	39.9968	45.3147
25	8.6493	10.5197	11.5240	14.6114	37.6525	44.3141	46.9279	52.6197
30	11.5880	13.7867	14.9535	18.4927	43.7730	50.8922	53.6720	59.7031
50	24.6739	27.9907	29.7067	34.7643	67.5048	76.1539	79.4900	86.6608
100	61.9179	67.3276	70.0649	77.9295	124.342	135.807	140.169	149.449