微分几何中的范畴学

王进一

2024 年秋

大纲

本文是 2024 年秋给求真书院三字班同学准备的演讲, 主旨是用范畴论的方法产生广泛的"空间"概念. 第一节介绍 CartSp 上的层作为一种广义的流形 (CartSp 是流形 \mathbb{R}^n 构成的范畴), 引出意象的概念. 第二节介绍 Lie 群胚作为 CartSp 上的 2-层, 以此引出高阶意象. 第三节介绍综合微分几何的思想, 基本概念与模型, 以及凝集意象 (cohesive topos) 的概念.

本文使用的前置知识: 范畴论 (函子, 自然变换, 群胚), 微分几何 (微分流形), 代数拓扑 (连通分支, 同伦类).

本文中的流形是指微分流形.

1 一种广义的流形

1.1 预层

定义 1.1. 记 Mfd 为流形的范畴. 范畴 CartSp 是由流形 \mathbb{R}^n $(n=0,1,2,\cdots)$ 以及光滑映射构成的 Mfd 的全子范畴.

直观地说, 子范畴 CartSp 在 Mfd 中占有支配性的地位. 因为一个 n 维流形由 \mathbb{R}^n 到它的所有光滑映射 (以及这些映射之间的关系) 完全决定. 这个事实导致流形范畴可以全忠实地嵌入下面定义的预层范畴.

定义 1.2. CartSp 上的预层 (以下简称预层) 是函子 CartSp $^{op} \rightarrow Set$, 预层的态射是函子之间的自然变换. 记预层的范畴为 Psh(CartSp).

对于预层 $X: \mathsf{CartSp}^\mathsf{op} \to \mathsf{Set}$, 我们直观上将 X 视为某种空间, 其在 \mathbb{R}^n 上的取值 $X(\mathbb{R}^n)$ 的直观是 \mathbb{R}^n 到 X 的所有 "光滑映射" 的集合. 这里, "光

滑映射"没有实际的含义,而我们正在赋予它含义。这个直观的道理在于,光滑映射 $f: \mathbb{R}^m \to \mathbb{R}^n$ 以及"光滑映射" $g: \mathbb{R}^n \to X$ (即 $g \in X(\mathbb{R}^n)$) 可以"复合"得到"光滑映射" $g \circ f: \mathbb{R}^m \to X$ (即 $f^*(g) \in X(\mathbb{R}^m)$)。这是说:就 \mathbb{R}^n 打进去的映射而言,一个预层和一个普通流形表现得并无区别。

下面的定义说明, 普通流形可视为预层.

定义 1.3. 设 M 为流形. 定义其对应的预层为

$$\underline{M} = \operatorname{Hom}_{\mathsf{Mfd}}(-, M) \colon \mathsf{CartSp}^{\mathrm{op}} \to \mathsf{Set}.$$

函子 \underline{M} 包含了所有映射 $\mathbb{R}^m \to M$ 以及这些映射之间的关系的信息. 由定义, $\underline{M}(\mathbb{R}^0)$ 是 M 中的点的集合, $\underline{M}(\mathbb{R}^1)$ 是 M 中的线的集合, 以此类推.

下面命题表明存在全忠实嵌入 $Mfd \rightarrow Psh(CartSp)$.

命题 1.4. 对于普通流形 M, N, 预层的态射 $\underline{M} \to \underline{N}$ 一一对应于流形的光 滑映射 $M \to N$.

证明. 流形的光滑映射 $M \to N$ 通过复合 $\mathbb{R}^m \to M \to N$ 给出了预层的态射 $M \to N$.

反之, 设有预层的态射 $f: \underline{M} \to \underline{N}$. 我们断言 $f_{\mathbb{R}^0}: \underline{M}(\mathbb{R}^0) \to \underline{N}(\mathbb{R}^0)$ 是光滑映射. 这只需证明对 M 的任意局部坐标卡 $\varphi: \mathbb{R}^m \to M$ (即 $\varphi \in \underline{M}(\mathbb{R}^m)$), 都有 $f_{\mathbb{R}^0} \circ \varphi: \mathbb{R}^m \to N$ 是光滑映射.

对任意 $p: \mathbb{R}^0 \to \mathbb{R}^m$ 考虑下图,

知 $f_{\mathbb{R}^0}(p^*\varphi) = p^* f_{\mathbb{R}^m}(\varphi)$, 即 $(f_{\mathbb{R}^0} \circ \varphi)(p) = f_{\mathbb{R}^m}(\varphi)(p)$. 这说明 $f_{\mathbb{R}^0} \circ \varphi = f_{\mathbb{R}^m}(\varphi) \in N(\mathbb{R}^m)$ 为光滑映射.

注 1.5. 用范畴论的术语, 子范畴 CartSp \hookrightarrow Mfd 是稠密的, 因为任何 n 维流形都可表示为若干个 \mathbb{R}^n 的余极限. 这个事实是存在全忠实嵌入 Mfd \rightarrow Psh(CartSp) 的本质原因.

注 1.6. 我们介绍的预层的概念符合 Grothendieck 学派的代数几何所惯用的函子语言 (langage fonctoriel) 的思想 1 . 在代数几何中,一个概形 X 可视

¹EGA1 注 2.3.6

为仿射概形范畴 Aff 上的预层, 即函子 Ring \rightarrow Set (因为范畴 Ring 与 Aff 互 为对偶); 这个函子称为 X 的点函子 (foncteur de points), 对于环 R, X(R) 的元素 (即概形的态射 Spec(R) \rightarrow X) 称为 X 的 R-点.

预层的优势在于范畴 Psh(CartSp) 具有 Mfd 没有的许多美好性质.

例 1.7. Mfd 缺少余极限. 例如 $\mathbb{R}^1 \leftarrow \mathbb{R}^0 \rightarrow \mathbb{R}^1$ 在拓扑空间范畴中的推出是一个十字形, 它不是流形.

例 1.8. Mfd 中缺少"映射空间"; 两个流形之间的映射空间不是流形 (映射空间是所谓"无穷维流形"). 在范畴论中, 对于两个对象 X,Y, 若存在对象 X^Y 满足如下条件, 则称之为指数对象:

$$\operatorname{Hom}(Z, X^Y) \simeq \operatorname{Hom}(Z \times Y, X).$$

例如集合范畴中 X^Y 就是 Y 到 X 的映射的集合. 但流形范畴中不存在这种对象.

例 1.9. Psh(CartSp) 中存在所有的极限和余极限. 这是函子范畴的性质: 函子范畴 $Fun(\mathcal{C},\mathcal{D})$ 中的 (余) 极限相当于"逐点"取 \mathcal{D} 中的 (余) 极限. 而集合范畴 Set 中存在所有的 (余) 极限, 从而对任意范畴 \mathcal{C} , $Fun(\mathcal{C},Set)$ 也存在所有的 (余) 极限.

例 1.10. Psh(CartSp) 中存在指数对象. 对 $X, Y \in Psh(CartSp)$, 定义

$$X^Y \colon \mathsf{CartSp}^\mathrm{op} \to \mathsf{Set}, \quad X^Y(\mathbb{R}^n) := \mathrm{Hom}_{\mathrm{Psh}(\mathsf{CartSp})}(Y \times \underline{\mathbb{R}^n}, X).$$

例如任何两个流形之间的映射空间都可实现为 Psh(CartSp) 的对象, 从而这种空间和普通流形可得到一视同仁的处理.

定义 1.11. 意象是具有有限极限,有限余极限,子对象分类子和指数对象的范畴.

限于篇幅,本文无法详细介绍这个定义中每个概念的意义,只能举例说明.每个预层范畴以及每个层范畴都是一个意象,具有上述定义中提到的范畴论结构.

例 1.12. 集合范畴是一个意象.

1.2 层

定义 1.13. \mathbb{R}^n 的一个好覆盖 $\{f_i: U_i \to \mathbb{R}^n\}$ 是一系列开子集 U_i , 满足每个 U_i 以及其中任何有限个的交集 (只要非空) 都微分同胚于 \mathbb{R}^n .

定义 1.14. CartSp 上的层是满足如下条件的预层 X: CartSp^{op} \to Set: 对任意好覆盖 $\{f_i \colon U_i \to \mathbb{R}^n\}$, 只要给定了一族相容的元素 $s_i \in X(U_i)$ (因为 U_i 微分同胚于 \mathbb{R}^n , 这个记号是合理的),就存在唯一的 $s \in X(\mathbb{R}^n)$ 使得 $X(f_i)(s) = s_i$. 其中一族元素 $s_i \in X(U_i)$ 相容是指任意两个元素 s_i, s_j 在 $X(U_i \cap U_j)$ 中相容.

层条件可表述为更抽象的形式: 对任意好覆盖 $\{f_i: U_i \to \mathbb{R}^n\}$,

$$X(\mathbb{R}^n) \to \lim \left(\prod_i X(U_i) \rightrightarrows \prod_{i,j} X(U_i \cap U_j)\right)$$

为同构.

例 1.15. 对任意流形 M, 预层 \underline{M} 是层. 这就是说, 光滑映射 $\mathbb{R}^n \to M$ 可由任何一个开覆盖 $\{U_i \to \mathbb{R}^n\}$ 以及一族相容的光滑映射 $U_i \to M$ 给出.

例 1.16. 现在介绍一个有趣的层, 它叫做微分 k-形式的模空间 Ω^k . 它的定义是

$$\Omega^k(\mathbb{R}^n) := \Omega^k(\mathbb{R}^n).$$

这并不是在开玩笑! 左边是我们在定义这个函子取值于 \mathbb{R}^n , 而右边是微分几何中定义的 \mathbb{R}^n 上 k 形式的集合. 它是层意味着微分形式可以在局部上定义, 然后拼起来. 称 Ω^k 为 "微分 k-形式的模空间" 的原因是, 流形 M 上的微分 k-形式等同于预层的态射 M \to Ω^k , 等同于对每个映射 \mathbb{R}^n \to M (想象为坐标卡) 给出 \mathbb{R}^n 上的一个相容的 k-形式.

2 Lie 群胚与叠

2.1 寓言: 模空间与集合的缺陷

在介绍 Lie 群胚与叠之前, 为了解释其动机, 我想先讲一个故事.

计数一些东西的时候, 我们会发现两个东西之间有一个同构 $x \simeq y$, 导致两者应该视为同一个东西. 为了修正这个问题, 我们在结果中减掉 1. 如果发现了两个同构 $x \simeq y \simeq z$, 我们就要在结果中减掉 2, 以此类推. 但这样

的做法会出现新的问题. 如果我们发现了三个同构, $x \simeq y \simeq z \simeq x$, 我们不能在结果中减去 3, 但是这种情形好像又不能简单地等同于 $x \simeq y \simeq z$. 因为这三个同构的复合会给出一个非平凡的同构 $x \simeq x$, 也即 x 的非平凡对称性. 我们发现一个整数已经不能表示这个计数的结果了.

用数学家的行话来讲, 计数就是求某类对象的模空间 (moduli space). 如果要用整数来表示计数的结果, 把同构的对象严格地看作同一个东西, 我们实际上求得的是模空间的连通分支的集合 π_0 , 而这在一些场合是不够的.

例如,要计数 " \mathbb{R} 上的 1 维线性空间"这类对象,我们知道其中任何两个对象都是同构的. 但是假若我们认为 \mathbb{R} 上的 1 维线性空间真的"只有一个",就无法解释 Mobius 带的存在. Mobius 带是 S^1 上的丛,虽然它在 S^1 的每个点上的纤维都是 \mathbb{R} ,但这个丛作为整体不是平凡的. 实际上," \mathbb{R} 上的 1 维线性空间的模空间"应视为一个群胚,其中唯一的对象带有 $\mathbb{Z}/2\mathbb{Z}$ 的对称性,这体现了 \mathbb{R}^1 有一个非平凡的自同构 $x\mapsto -x$. 这个模空间虽然是连通的 (π_0 是一个点),但包含了非平凡的同伦信息.

如果说群描述的是一个东西的对称性,那么群胚描述的是一些东西之间的对称性.

希望到这里我已经说服读者把模空间由集合升级为群胚的意义.

模空间的另一个要点是,许多模空间都是用一个"测试空间的范畴" C 上的层来表示的,例如上一节介绍的 CartSp 上的层. 我举一个简单的例子. 考虑"色彩的模空间". 假设我们暂时不知道色彩的模空间是什么. 但很明显,一张 n 维的图片应当是 \mathbb{R}^n 到色彩的模空间的一个映射. 那么色彩的模空间就可以用一个预层 $X: \operatorname{CartSp^{op}} \to \operatorname{Set}$ 来表示,其中 $X(\mathbb{R}^n)$ 是所有 n 维图片的集合. 一般地,假若将层 $X: \mathcal{C}^{\operatorname{op}} \to \operatorname{Set}$ 视为一类对象的模空间,那么对于 C 的对象 C, X(C) 的元素可视为 C 上这类对象的丛.

结合以上讨论,不难想象应当有一种"取值于群胚的层"的概念作为更好的模空间的概念.于是我们就可以进入正题了.

2.2 Lie 群胚

定义 2.1. Lie 群胚是微分流形范畴中的群胚; 换言之, 它是一个群胚, 且对象集与态射集都带有流形结构. 具体地, 一个 Lie 群胚 G 包含如下信息:

- 一个流形 \mathcal{G}_0 , 称作"对象集";
- 一个流形 G_1 , 称作"态射集";

- 两个映射 $s, t: \mathcal{G}_1 \to \mathcal{G}_0$, 分别称为态射的起点和终点;
- 一个映射 $c: \mathcal{G}_1 \times_{\mathcal{G}_0} \mathcal{G}_1 \to \mathcal{G}_1$, "态射的复合" (其中 $\mathcal{G}_1 \times_{\mathcal{G}_0} \mathcal{G}_0 = \{(g, g') \in \mathcal{G}_1 \times \mathcal{G}_1 \mid s(g) = t(g')\}$);
- 一个映射 $e: \mathcal{G}_0 \to \mathcal{G}_1$, "恒等态射";
- 一个映射 $i: \mathcal{G}_1 \to \mathcal{G}_1$, "态射的逆".

这些数据应满足与通常群胚类似的条件, 此处略去.

为了记号的简便, 我们用 $s,t: \mathcal{G}_1 \rightrightarrows \mathcal{G}_0$ 表示一个 Lie 群胚, 其余的信息略去 (因为通常其余的信息是明显的).

Lie 群胚的态射 $\mathcal{G} \to \mathcal{H}$ 是两个光滑映射 $\mathcal{G}_1 \to \mathcal{H}_1$, $\mathcal{G}_0 \to \mathcal{H}_0$, 与所有结构映射相容.

- **例 2.2.** 设 M 为流形. 则 id, id: $M \Rightarrow M$ 为 Lie 群胚. 这个 Lie 群胚中的 态射仅有每个对象的恒等态射. 我们将这个 Lie 群胚仍记为 M, 意思是它和流形 M 在我们心目中是同一个东西. 两个流形 M, N 之间的光滑映射一一对应于其作为 Lie 群胚的态射, 即有全忠实嵌入 Mfd \rightarrow LieGrpd.
- **例 2.3.** 设 G 为 Lie 群. 则 $G \Rightarrow *$ 为 Lie 群胚. 这是只有一个对象的群胚. 我们将这个 Lie 群胚记为 **B**G.
- **例 2.4.** 轨形 (orbifold) 是 "局部同构于欧氏空间在有限群作用下的商"的空间. 轨形等同于满足如下条件的 Lie 群胚 \mathcal{G} .
 - (s,t): $\mathcal{G}_1 \to \mathcal{G}_0 \times \mathcal{G}_0$ 是紧合映射 (proper map);
 - 每个对象 $x \in \mathcal{G}_0$ 的自同构群 G_x 是离散群.

轨形的例子包括

- "橄榄球", 即 \mathbb{Z}/n 旋转作用于 S^2 ;
- "半平面",即 Z/2 反射作用于平面;
- 任何带边流形都是 ℤ/2 作用于其"加倍".

2.3 群胚与商

群胚相比集合的优越性还可理解为, 它更好地表达了"商"的概念.

定义 2.5. 设 S 为集合, G 为群, G 右作用于 S. 考虑一个群胚, 其对象集为 S. 态射为

$$\operatorname{Hom}(s,t) = \{ g \in G \mid s \cdot g = t \}.$$

称这个群胚为作用群胚, 记为 $S/\!\!/G$.

群胚 $S/\!\!/ G$ 的 π_0 是朴素的商集 $S/\!\!/ G$. 我们看到, $S/\!\!/ G$ 比 $S/\!\!/ G$ 保留了更多的信息.

在流形范畴中, 以 Lie 群胚表示的 "商" 的概念显得更加重要, 因为一个流形 M 在 Lie 群 G 的作用之下, 朴素的商 M/G 甚至不一定是流形, 但总存在相应的 Lie 群胚 $M/\!\!/ G$.

定义 2.6. 设 M 为流形, G 为 Lie 群, G 通过映射 ρ : $M \times G \to M$ 右作用于 M. 定义其作用 Lie 群胚为

$$M/\!\!/G := (\pi_1, \rho) \colon M \times G \rightrightarrows M.$$

对任意流形 N, Lie 群胚同态 $M/\!\!/ G \to N$ (其中 N 视为 Lie 群胚) 一一对应于 G-不变的映射 $M \to N$. 这说明 $M/\!\!/ G$ 表现得确实像一个商.

例 2.7. 设 *G* 为 Lie 群, 则

$$\mathbf{B}G \simeq */\!\!/ G.$$

2.4 主丛

BG 和 G-主丛的分类空间有关.

定义 2.8. 设 M 为流形, G 为 Lie 群. 定义 M 上的一个 G-主丛为纤维丛 $p: P \to M$, 带有右作用 $\rho: P \times G \to P$, 使得存在开覆盖 $M = \bigcup U_i$, 其在每个 U_i 上的限制 $P|_{U_i}$ 同构于平凡丛 $U_i \times G$, 且该同构保持 G-右作用.

定义 2.9. 对于流形 M 的开覆盖 $\{U_i\}$, 定义 Lie 群胚 $C(\{U_i\})$ 为

$$\coprod_{i,j} (U_i \cap U_j) \rightrightarrows \coprod_i U_i.$$

(这其实是 ∞-群胚 "Čech 脉" 的青春版.)

Lie 群胚 $C(\{U_i\})$ 表现了 M 是如何由开集粘合得到.

命题 2.10. 流形 M 上的 G-主丛可由 M 的一个覆盖 $\{U_i\}$ 以及 Lie 群胚态 射 $C(\{U_i\}) \to \mathbf{B}G$ 给出.

证明. 对于 M 的一个覆盖 $\{U_i\}$, 给一个 Lie 群胚态射 $C(\{U_i\}) \to \mathbf{B}G$ 相当于对每两个指标 i,j, 给一个光滑映射 $\varphi_{ij}\colon U_i\cap U_j\to G$, 并且

$$\varphi_{jk} \circ \varphi_{ij} = \varphi_{ik} \colon U_i \cap U_j \cap U_k \to G.$$

这正是 G-主丛所需的信息: 我们得到相应的 G-主丛

$$P = \left(\coprod_{i} U_{i} \times G \right) / (i, x, g) \sim (j, x, \varphi_{ij}(x)g).$$

上述构造还可写成更抽象的形式. 定义 Lie 群胚

$$\mathbf{E}G = G/\!\!/ G = (\pi_1, m \colon G \times G \rightrightarrows G)$$

这个群胚每两个对象之间有唯一的同构, 因此它等价于一个点. 注意到有 Lie 群胚态射 $\mathbf{E}G \to \mathbf{B}G$ "忘掉 $G \times G$ 的第一分量", 也可以理解为映射 $G \to *$ 诱导的商的映射 $G/\!\!/ G \to */\!\!/ G$. 这个态射表现了万有 G-主丛.

取拉回

$$P \longrightarrow \mathbf{E}G$$

$$\downarrow \qquad \qquad \downarrow$$

$$C(\{U_i\}) \longrightarrow \mathbf{B}G,$$

即

$$P = \Big(\coprod_{i,j} (U_i \cap U_j) \times G \rightrightarrows \coprod_i U_i \times G\Big).$$

它表现了主丛 P 被局部平凡丛粘起来的过程.

2.5 "技术性细节": 群胚的 Morita 等价

在主丛的例子中,我们将 M 上的主丛表示为 Lie 群胚的态射 $C(\{U_i\}) \to$ **B**G. 然而我们真正希望的是 M 上的主丛等同于 Lie 群胚的态射 $M \to \mathbf{B}G$. 直观上, $C(\{U_i\})$ 与 M 是等价的(它们作为群胚确实是等价的),但我们写不出 M 到 $C(\{U_i\})$ 的 Lie 群胚态射,因为它需要一个光滑映射 $M \to \coprod_i U_i$,构成满射 $\coprod_i U_i \to M$ 的截面,而这样的截面不存在.这个现象可以表述为流形范畴中选择公理不成立.

这就是说, Lie 群胚的概念与我们心目中的那种对象还差了一点点 (而普通群胚没有这个问题是拜选择公理所赐). 群胚的 Morita 等价的概念正是为了填补这段空缺.

定义 2.11. Lie 群胚的范畴等价 $\mathcal{G} \to \mathcal{H}$ 是一个 Lie 群胚态射, 且

• 全忠实,即

$$\mathcal{H}_1 \times_{\mathcal{H}_0} \mathcal{G}_0 \to \mathcal{H}_0$$

为满浸没 (翻译成人话: \mathcal{H} 的每个对象都同构于 \mathcal{G} 的某个对象的像);

• 本质满、即

$$\begin{array}{ccc} \mathcal{G}_1 & \longrightarrow & \mathcal{H}_1 \\ \downarrow & & \downarrow \\ \mathcal{G}_0 \times \mathcal{G}_0 & \longrightarrow & \mathcal{H}_0 \times \mathcal{H}_0 \end{array}$$

为拉回 (人话: 这个函子给出态射集的双射).

定义 2.12. 称 Lie 群胚 \mathcal{G},\mathcal{G}' Morita 等价是指存在范畴等价

$$\mathcal{H} \to \mathcal{G}, \quad \mathcal{H} \to \mathcal{G}'.$$

Morita 等价是一个等价关系.

例 2.13. 对于流形 M 的覆盖 $\{U_i\}$, Lie 群胚态射 $C(\{U_i\}) \to M$ 是范畴等价. 因此 $C(\{U_i\})$ 与 M 是 Morita 等价的.

2.6 叠

如同微分流形可推广为 CartSp 上的层, Lie 群胚也有类似的推广, 即 CartSp 上的叠, 又称 2-*层*².

定义 2.14. CartSp 上的预叠 (prestack) 是指函子 CartSp^{op} → Grpd.³

注 2.15. 预叠有两种等价的看法,一种是如上定义的"Grpd-取值的预层",另一种则是"Psh(CartSp) 中的群胚⁴". 设 $\mathcal{X} = (\mathcal{X}_1 \rightrightarrows \mathcal{X}_0)$ 是 Psh(CartSp) 中的群胚, 其中 $\mathcal{X}_1, \mathcal{X}_0$ 是 Psh(CartSp) 的对象. 那么

$$\mathbb{R}^n \mapsto \left(\mathcal{X}_1(\mathbb{R}^n) \rightrightarrows \mathcal{X}_0(\mathbb{R}^n) \right)$$

 $^{^2}$ 2-层这个名字只是表达它比"层"高了一级, 但会引起一些误会, 因为它是取值于 1-群胚的层. 或许普通的层 (取值于集合 = 0-群胚的层) 应该改称为 0-叠, 而取值为 1-群胚的层应称为 1-叠.

 $^{^3}$ 此处两边的范畴应视为 2-范畴. 但是出于某些神秘的原因也可以将 Grpd 视为 1-范畴, 所以不熟悉高阶范畴的读者可以安全地忽略这条注以及下面的注.

是一个函子 $CartSp^{op} \rightarrow Grpd$.

例 2.16. 设 $\mathcal{G} = (\mathcal{G}_1 \rightrightarrows \mathcal{G}_0)$ 是 Lie 群胚, 则对任意流形 M,

$$\operatorname{Hom}_{\mathsf{Mfd}}(M,\mathcal{G}_1) \rightrightarrows \operatorname{Hom}_{\mathsf{Mfd}}(M,\mathcal{G}_0)$$

是群胚. 特别地, G 给出了一个预叠

$$\underline{\mathcal{G}} \colon \mathbb{R}^n \mapsto \big(\mathrm{Hom}_{\mathsf{Mfd}}(\mathbb{R}^n, \mathcal{G}_1) \rightrightarrows \mathrm{Hom}_{\mathsf{Mfd}}(\mathbb{R}^n, \mathcal{G}_0)\big).$$

当然, \mathcal{G} 也可视为 Psh(CartSp) 中的群胚, 它与预叠 \mathcal{G} 的关系如前面的注.

例 2.17. 对于 Lie 群 G, BG 作为预叠可表示为

$$\mathbf{B}G: \mathsf{CartSp}^{\mathsf{op}} \to \mathsf{Grpd}, \quad \mathbb{R}^n \mapsto \{\mathbb{R}^n \perp \mathsf{的} \ G\text{-} \mathbf{\underline{x}} \mathcal{L}\}.$$

定义 2.18. CartSp 上的 (stack) 是满足 "层条件"的预叠 $X: \mathsf{CartSp}^\mathsf{op} \to \mathsf{Grpd}$. 所谓 "层条件"是对 \mathbb{R}^n 的任意好覆盖 $\{U_i\}$, 如下态射为等价,

$$X(\mathbb{R}^n) \to \lim \left(\prod_i X(U_i) \not\rightrightarrows \prod_{i,j} X(U_i \cap U_j) \not\rightrightarrows \prod_{i,j,k} X(U_i \cap U_j \cap U_k) \right)$$

其中的极限应理解为 2-范畴 Grpd 中的 2-极限.

叠的定义中"层条件"可展开表述如下.

- (对象的粘合) ...
- (态射的粘合) ...

注 2.19. 很明显, 叠的定义可以推广到更高阶群胚取值的层.

命题 2.20. 两个 Lie 群胚 Morita 等价当且仅当它们对应的 CartSp 上的叠等价.

注 2.21. 两个环 Morita 等价的定义是它们的模范畴等价. 这是 Lie 群胚 Morita 等价的名称的来源.

 $^{^4}$ 此处 "Psh(CartSp) 中的群胚" 的真实含义是意象 Psh(CartSp) 对应的 2-意象的对象, 也即保持极限的 (2-) 函子 Psh(CartSp) $^{\mathrm{op}} \to \mathsf{Grpd}$. 由 Psh 的泛性质这就是函子 CartSp $^{\mathrm{op}} \to \mathsf{Grpd}$.

3 综合微分几何

CartSp 上的层能表现很多的空间, 但难以表现微分几何中很重要的一类空间——切丛. 要表现切丛, 一种聪明的思路是考虑一个"无穷小线段" D, 于是空间 X 的切丛 TX 就是 D 到 X 的映射空间 X^D .

为了让上述的直观严格化, 我们需要扩充 CartSp 这个范畴.

3.1 Weil 代数与无穷小空间

代数-几何对偶告诉我们,一个空间和它上面的函数环相互对偶. 我们可以用一个环来代表一个空间. 考虑一些新奇的环,我们便得到一些新奇的空间概念,这是代数几何的惯用技俩.

想象实数轴 \mathbb{R} 的原点处放着一条无穷小的线段 D. 我们规定, 对 \mathbb{R} 上的任何一个光滑函数 f, 只要 f 在原点处的值以及原点处的导数为零, 那么 f 在 D 上恒等于零. 当然, 这对于传统的空间概念是荒谬的 (除非 D 是一个点). 但在代数上这件事完全合法: 我们只不过是在考虑商环

$$C^{\infty}(D) := C^{\infty}(\mathbb{R})/I, \quad I = \{f \mid f(0) = f'(0) = 0\}.$$

不难看出, 这个环也同构于 $\mathbb{R}[x]/(x^2)$, 即 $\{f(x) = ax + b \mid a, b \in \mathbb{R}\}$. 这是因为每个光滑函数 f 在商环中都等价于某个一次函数 f'(0)x + f(0).

D 到 M 的一个映射是什么?由代数—几何对偶的思想,我们希望这等同于 $C^{\infty}(M)$ 到 $C^{\infty}(D)$ 的一个 \mathbb{R} -代数同态.考虑下图,

$$*$$
 \longrightarrow D \longrightarrow M

$$C^{\infty}(*) \simeq \mathbb{R} \longleftarrow C^{\infty}(D) \simeq \mathbb{R}[x]/(x^2) \longleftarrow C^{\infty}(M)$$

我们需要如下的命题.

命题 3.1. 代数同态 $C^{\infty}(M)$ → ℝ 一定是取值于一个点.

… 但很遗憾,这个命题可能是错的,或者至少难以证明. 综合微分几何学家的做法是把 \mathbb{R} -代数结构扩充为所谓"光滑代数". 因为直观上,普通的 \mathbb{R} -代数结构并不能体现光滑函数的特性: 对于一个光滑函数 f,我们希望能够取 $\exp(f)$, $\sin(f)$,以及任何"光滑函数"的操作,而不仅是加法和乘法等"多项式"的操作.

定义 3.2. 一个光滑代数 A 是一个集合, 带有如下运算: 对每个光滑函数 $\varphi: \mathbb{R}^n \to \mathbb{R}^m$, 都有一个运算 $A(\varphi): A^n \to A^m$, 且满足相容条件. 光滑代数 之间的同态是保持所有运算的映射.

不难发现光滑代数的定义可写成更抽象的形式.

定义 3.2 (等价表述). 光滑代数是保持有限积的函子 $CartSp \rightarrow Set$. 光滑代数之间的同态是函子之间的自然变换.

一个光滑代数首先是一个 \mathbb{R} -代数. 例如,光滑代数 A 上的乘法由 $m: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto xy$ 给出. 不妨把这种新的代数想象为带有所有"光滑"运算的环 (相比之下普通的环仅支持多项式运算). 例如光滑代数 A 中可以做 \exp , \arctan 等等所有光滑函数的操作.

例 3.3. 对光滑流形 $M, C^{\infty}(M)$ 是光滑代数.

例 3.4. $C^{\infty}(D) \simeq \mathbb{R}[x]/(x^2)$ 是光滑代数.

参考文献

- [1] Thomas Nikolaus, Urs Schreiber, Danny Stevenson, Principal ∞-bundles
 General theory, https://arxiv.org/abs/1207.0248
- [2] Urs Schreiber, Differential cohomology in a cohesive ∞-topos, https://ncatlab.org/schreiber/show/differential+cohomology+in+a+cohesive+topos
- [3] 香蕉空间, 叠, https://www.bananaspace.org/wiki/%E5%8F%A0
- [4] 王进一, 盲人摸象, https://github.com/SimplicialCat/topos