Osnove verjetnosti in statistike Zvezne slučajne spremenljive

Asistent dr. Kristina Veljković

LASTNOSTI

▶ Obstaja integrabilna funkcija $p_X(x) \ge 0$, tako da velja

$$F_X(x) = P(X \le x) = \int_{-\infty}^{x} p_X(t) dt, \quad x \in \mathbb{R}$$

 $ightharpoonup p_X(x)$ je gostota verjetnosti, $F_X(x)$ porazdelitvena funkcija.

Lastnosti

Obstaja integrabilna funkcija $p_X(x) \ge 0$, tako da velja

$$F_X(x) = P(X \le x) = \int_{-\infty}^{x} p_X(t) dt, \quad x \in \mathbb{R}$$

- \triangleright $p_X(x)$ je gostota verjetnosti, $F_X(x)$ porazdelitvena funkcija.
- ▶ Lastnosti

Primer 1.(Zbirka) Naj bo X zvezna slučajna spremenljivka na intervalu [-1,1] z gostoto $p_X(x) = c(1-x^2)$. Določi konstanto $c \in \mathbb{R}$, da bo p_X res gostota, in izračunaj $P(|X| > \frac{1}{2})$.

ZVEZNE SLUČAJNE SPREMENLJIVKE

Pričakovana vrednost (matematično upanje) zvezne slučajne spremenljivke X z gostoto verjetnosti p_X je

$$E(X) = \int_{-\infty}^{\infty} x p_X(x) \mathrm{d}x.$$

Primer 2.(Zbirka) Za

$$F_X(x) = \begin{cases} 0, & x < 0, \\ \frac{x^2}{4}, & x \in [0, 2], \\ 1, & 2 < x, \end{cases}$$

izračunaj E(X) in D(X).

Primer 3.(Zbirka) Za

$$p_X(x) = \begin{cases} x, & x \in [0, \sqrt{2}], \\ 0, & x \notin [0, \sqrt{2}], \end{cases}$$

določi $F_X(x)$, E(X), D(X).

► Lastnosti pričakovane vrednosti

$$E(aX + b) = aE(X) + b$$
, a, b – konstante
 $E(X + Y) = E(X) + E(Y)$.

► Lastnosti disperzije

$$D(aX + b) = a^2D(X), \ a, b$$
 – konstante $D(X + Y) = D(X) + D(Y),$ če sta X in Y neodvisni.

Primer 4.(Zbirka) Za neodvisni slučajni spremenljivki *X* in *Y* velja

$$E(X) = 2$$
, $D(X) = 1$, $E(Y) = 1$, $D(Y) = 4$.

Za Z=2X-3Y+5 izračunaj E(Z) in D(Z).