MA2201/TMA4150

Vår 2015

Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

Løsningsforslag — Øving 1

Merk: Det vil ikke bli gitt fullstendige løsningsforslag, men i stedet løsninger til utvalgte oppgaver.

- 4.10 a) Vi sjekker gruppeaksiomene som gitt i boka.
 - $\mathcal{G}1$: Addisjon i \mathbb{Z} er en assosiativ operasjon, dermed er den også det i undermengder av \mathbb{Z} .
 - G_2 : $0 = n \cdot 0 \in n\mathbb{Z}$.
 - $\mathcal{G}3$: Gitt $nx \in n\mathbb{Z}$, så er -nx additiv invers.
 - b) Vi følger stegene gitt over eksempel 3.8 i boka for å vise at $\mathbb{Z} \cong n\mathbb{Z}$.
 - Steg 1: Her bruker vi funksjonen $\phi: \mathbb{Z} \to n\mathbb{Z}$ gitt ved $\phi(x) = nx$.
 - Steg 2: $\phi(x) = \phi(y) \Leftrightarrow nx = ny \Leftrightarrow x = y$ når $n \neq 0$, så funksjonen er én-til-én.
 - Steg 3: For $nx \in n\mathbb{Z}$ er $\phi(x) = nx$, så funksjonen er på.
 - Steg 4: $\phi(x+y) = n(x+y) = nx + ny = \phi(x) + \phi(y)$, så funksjonen respekterer binærstrukturen.

Altså er ϕ en isomorfi, og $\mathbb{Z} \cong n\mathbb{Z}$.

4.20 Ved bruk av kanselleringslovene og gruppeaksiomene kommer vi fram til at de tre tabellene er:

	e	a	b	\mathbf{c}
e	е	a	b	С
a	a	е	С	b
b	b	c	a	е
$\overline{\mathbf{c}}$	c	b	е	a
(a) ?=e				

/ \	_	
(a)	≀?=e	

	e	a	b	\mathbf{c}	
е	е	a	b	c	
a	a	е	c	b	
b	b	С	е	a	
\overline{c}	c	b	a	е	

(b) ?=e

		e	a	b	С
	е	е	a	b	c
	a	a	b	c	е
	b	b	С	е	a
	С	С	е	a	b
() 9 1					

(c) ?=b

Gruppene beskrevet av første og siste tabell er isomorfe.

- a) Alle grupper av orden 4 er abelske
- b) U_4 er isomorf med gruppen beskrevet av den første/siste tabellen.
- 4.38 Vi sjekker gruppeaksiomene som gitt i boka.
 - $\mathcal{G}1$: Følger direkte fra de nye aksiomene.

 $\mathcal{G}2$: Vi har en venstreidentitet e, vi sjekker at denne også er høyreidentitet. Vi observerer at for $x \in G$, med venstreinvers x', så holder

$$x'(xe) = (x'x)e = e = x'x.$$

Vi vet at x' har en venstreinvers, så vi ganger med denne på begge sider av ligningen:

$$xe = x$$
,

og e er også en tosidig identitet.

 $\mathcal{G}3$: Vi ser at

$$(xx')(xx') = x(x'x)x' = xx'.$$

Om vi ganger med venstreinversen av xx' på venstre side får vi:

$$xx' = e$$

og x' er en tosidig invers.