

كليدها

n-1 تیموتیِ معمار یک بازی فرار طراحی کرده است. در این بازی n اتاق وجود دارد که با شمارههای 0 تا n-1 شمارهگذاری شدهاند. در ابتدا، داخل هر اتاق دقیقا یک کلید وجود دارد. هر کلید یک نوع دارد که عددی بین 0 تا شمارهگذاری شدهاند. در ابتدا، داخل هر اتاق دقیقا یک کلید وجود دارد. هر کلید یک نوع دارد که عددی بین n-1 است. توجه n-1 (شامل آنها) است. نوع کلیدی که داخل اتاق باشد. به عبارتی مقادیر n-1 لزوما متمایز نیست. داشته باشید که یک نوع کلید ممکن است داخل چند اتاق باشد. به عبارتی مقادیر n-1 لزوما متمایز نیست.

همچنین m ارتباط **دو طرفه** در بازی وجود دارد که با شمارههای 0 تا m-1 شمارهگذاری شدهاند. ارتباط m همچنین m ارتباط دو اتاق میتوانند توسط چند ارتباط به هم متصل میکند. دو اتاق میتوانند توسط چند ارتباط به هم متصل شوند.

این بازی یک بازیکن دارد که کلیدها را برمیدارد و با عبور از ارتباطها بین اتاقها حرکت میکند. زمانی میگوییم که بازیکن از ارتباط v[j] یا برعکس استفاده کند. بازیکن بازیکن از ارتباط j عبور کند که از این ارتباط برای عبور از اتاق v[j] به اتاق v[j] یا برعکس استفاده کند. بازیکن زمانی میتواند از ارتباط v[j] عبور کند که کلیدی از نوع v[j] داشته باشد.

هر زمان از بازی، بازیکن اگر داخل اتاق x باشد میتواند یکی از دو عملیات زیر را انجام دهد:

- کلید اتاق x که از نوع [x] است را بردارد. (مگر آنکه پیش از این آن را برداشته باشد).
- از ارتباط j عبور کند اگر u[j]=x یا v[j]=x و همچنین بازیکن پیش از این کلیدی از نوع v[j]=x برداشته باشد. توجه داشته باشید که بازیکن **هرگز** کلیدی که برداشته است را رها نمیکند.

بازیکن بازی را از اتاق s بدون داشتن هیچ کلیدی **شروع** میکند. میگوییم اتاق t **قابل دسترس** است اگر بازیکن بتواند با شروع از اتاق s و انجام دنبالهای از عملیاتهای ذکر شده به اتاق t برسد.

برای اتاق i ($i\leq i\leq n-1$)، p[i] تعداد اتاقهایی است که با شروع از اتاق i قابل دسترس هستند. تیموتی میخواهد شمارهی اتاقهایی مانند i را بداند که p[i] مقدار کمینه بین $i\leq i\leq n-1$ را داشته باشد.

جزئيات پيادەسازى

شما باید تابع زیر را پیادهسازی کنید:

int[] find_reachable(int[] r, int[] u, int[] v, int[] c)

- است. r[i] است. i آرایهای به طول n . به ازای هر i i هر i i است. i آرایهای به طول i از نوع i
- و v[j] و u[j] و u[j] و اتاقهای j را به هم u[j] را به هم u[j] و ارتباط u[j] و u[j] را به هم وصل میکند.
- نوع کلیدی که برای عبور از ارتباط j لازم است، j نوع کلیدی که برای عبور از ارتباط j لازم است، c : c میباشد. c
- a[i] باید آرایهای به طول n برگرداند این آرایه را a بنامید. به ازای $i \leq i \leq n-1$ ، مقدار a[i] باید a[i]

مثالها

مثال ۱

فراخوانی زیر را در نظر بگیرید:

```
find_reachable([0, 1, 1, 2],
       [0, 0, 1, 1, 3], [1, 2, 2, 3, 1], [0, 0, 1, 0, 2])
```

اگر بازیکن از اتاق 0 بازی را شروع کند، میتواند دنباله زیر از عملیاتها را انجام دهد:

اتاق كنونى	عمليات
0	برداشتن کلید نوع 0
0	عبور از ارتباط 0 و رفتن به اتاق 1
1	برداشتن كليد نوع 1
1	عبور از ارتباط 2 و رفتن به اتاق 2
2	عبور از ارتباط 2 و رفتن به اتاق 1
1	عبور از ارتباط 3 و رفتن به اتاق 3

پس اتاق 3 با شروع از اتاق 0 قابل دسترس است. به طور مشابه می توان دنبالههایی ساخت که نشان دهد تمامی اتاقها با شروع از اتاق 0 قابل دسترس هستند. که نشان میدهد p[0]=4 جدول زیر تمامی اتاقهای قابل دسترس به ازای همه اتاقهای شروع را نشان میدهد:

i شروع از اتاق	اتاقهای قابل دسترس	p[i]
0	[0,1,2,3]	4
1	[1,2]	2
2	[1,2]	2
3	[1,2,3]	3

کمترین مقدار p[i] در میان تمامی اتاقها 2 است و این مقدار برای i=1 و i=2 وجود دارد. پس تابع باید [0,1,1,0] بازگرداند.

نمونه ۲

جدول زیر اتاقهای قابل دسترس را نشان میدهد:

i شروع از اتاق	اتاقهای قابل دسترس	p[i]
0	[0,1,2,3,4,5,6]	7
1	[1,2]	2
2	[1,2]	2
3	[3,4,5,6]	4
4	[4,6]	2
5	[3,4,5,6]	4
6	[4, 6]	2

کمترین مقدار p[i] در میان تمامی اتاقها 2 است و این مقدار برای $i\in\{1,2,4,6\}$ وجود دارد. پس تابع باید [0,1,1,0,1,0,1]

نمونه ۳

جدول زیر اتاقهای قابل دسترس را نشان میدهد:

i شروع از اتاق	اتاقهای قابل دسترس	p[i]
0	[0,1]	2
1	[0,1]	2
2	[2]	1

[0,0,1] کمترین مقدار p[i] در میان تمامی اتاقها 1 است و این مقدار تنها برای i=2 وجود دارد. پس تابع باید بازگرداند.

محدوديتها

- $2 \le n \le 300\,000$ •
- $1 \le m \le 300\,000$ •
- $0 \leq i \leq n-1$ به ازای $0 \leq r[i] \leq n-1$ •
- $0 \leq j \leq m-1$ به ازای u[j]
 eq v[j] و $0 \leq u[j], v[j] \leq n-1$ و
 - $0 \leq j \leq m-1$ به ازاي $0 \leq c[j] \leq n-1$ •

زيرمسئلهها

$$n,m \leq 200$$
 و $0 \leq j \leq m-1$ و به ازای ۱ $j = 0$ و ۹) .1

$$n,m \leq 200$$
 (۱۱ نمره) ک. (۱۱ نمره)

$$n,m \leq 2000$$
 (نمره) ۱۷) .3

ر (
$$0 \leq i \leq n-1$$
 (به ازای $r[i] \leq 29$ و $0 \leq j \leq m-1$ (به ازای $c[j] \leq 29$ نمره) ($c[j] \leq 29$ (به ازای $c[j] \leq 29$) .4

5. (۳۳ نمره) بدون محدودیت اضافی.

ارزياب نمونه

ارزیاب نمونه ورودی را در قالب زیر میخواند:

- $n \ m:1$ خط •
- r[0] خط r[1] \dots r[n-1]:2 خط •
- u[j] v[j] :($0 \leq j \leq m-1$) 3+j خط •

ارزیاب نمونه خروجی تابع find_reachable را در قالب زیر چاپ میکند:

a[0] فط a[1] ... a[n-1] : 1 خط •