CS 知的システム演習

ライントレーサー

松吉 俊

ライントレーサー

床に描かれたラインをセンサーにより検出し、 その上を走行するロボット

● 工場内でラインに沿って部品を運ぶロボットなどの 応用例がある

製作するライントレーサー

- 前進・後進・回転
 - 移動速度は常に一定
- 光センサー×2個
- 色センサー×1個
- 超音波センサー×1個

無駄な動作を抑え、できる限りスムーズに ラインをトレースしたい

LEGO MindStorms NXT®

● LEGO社が開発・販売するロボット

- ブロックによる自由な構築
- プログラムによる様々な制御
- 各種構成要素
 - インテリジェントブロック
 - サーボモーター
 - 高速高精度な動作を実現できる
 - センサー
 - 光、色、超音波、接触、音など

インテリジェントブロック

- MindStorms NXTの頭脳担当
- PCと比較すると、ハードウェアは非常に非力
 - OPU: ARM7 (32bit, 48MHz)
 - O RAM: 256 KB FLASH, 64 KB RAM

利用するセンサー

- 光センサー: 左と右
 - 光量値を測定
 - 光量値が低い = ライン上
- 色センサー: 真ん中
 - 色 (RGB) を測定
 - ○「黒」= ライン上
- 超音波センサー
 - 前方との距離を測定
 - 🧶 「20cm以下」⇒停止処理

センサーの位置

	センサー	実測値	プログラム内では	
Α	光センサー右	350	BLACK <	
В	色センサー	BLACK	BLACK	
С	光センサー左	390	BLACK <	
	超音波センサー	-1	not "isOnGoal"	

ある閾値(約520)を境にして、 BLACKかWHITEのいずれかに 変換して利用

	センサー	実測値	プログラム内では	
Α	光センサー右	370	BLACK <	
В	色センサー	WHITE	WHITE	
C	光センサー左	620	WHITE	
	超音波センサー	-1	not "isOnGoal"	

ある閾値(約520)を境にして、 BLACKかWHITEのいずれかに 変換して利用

	センサー	実測値	プログラム内では	
Α	光センサー右	500	BLACK <	
В	色センサー	BLUE	BLUE	
C	光センサー左	590	WHITE	
	超音波センサー	-1	not "isOnGoal"	

ある閾値(約520)を境にして、 BLACKかWHITEのいずれかに 変換して利用

	センサー	実測値	プログラム内では
Α	光センサー右	400	BLACK
В	色センサー	BLACK	BLACK
С	光センサー左	360	BLACK
	超音波センサー	20	"isOnGoal"

前方にある物体との距離が 20cm以下になった時、 ゴールしたと判定する

プログラムによる制御

シミュレーター

- 実際にロボットを走らせて試行錯誤するのではなく、 仮想的なモデルを作成して<u>模擬的に実験するための</u> ハードウェアやソフトウェアのこと
 - 強化学習を利用する場合、1000回以上試行錯誤することも 珍しくないが、時間が限られている時に、 実際のロボットで試行錯誤するのは非現実的
- ◆ 本授業では、ライントレーサーのシミュレーターを 有効に活用する
 - 実際にロボットに走らせたいマップの画像を利用
 - PC上でなら、1000回以上の試行錯誤にほとんど時間は かからない

シミュレーターの紹介

ロボットは、黒色のラインをトレースする。緑色がゴール

Special thanks:

- 山本 泰生先生
- 鍋島 英知先生