Latent Image Animator: Learning to Animate Images via Latent Space Navigation

ICLR 2022

Yaohui Wang, Di Yang, Francois Bremond and Antitza Dantcheva

Inria

Presenter: Jaeseong Lee

Computer Vision Seminar 21 Feb 2022

Contents

1. Preliminary for Neural Talking Heads

2. Main paper

- a. Introduction
- b. Method
- c. Experiments
- d. Additional analysis
- e. Conclusion

Preliminary(cont'd)

Neural Talking Head: Reenacting driving images(or a video)' **Facial Expression & Head Rotation** to a source image

Preliminary(cont'd)

Few-Shot Adversarial Learning of Realistic Neural Talking Head Models (ICCV 2019) Samsung Al, Moscow

Fast Bi-layer Neural Synthesis of One-Shot Realistic Head Avatars (ECCV 2020)

Samsung AI, Moscow

Preliminary(cont'd)

First Order Motion Model for Image Animation (NeurIPS 2019) University of Trento

pose descriptor-based (AdalN)

Neural Head Reenactment with Latent Pose Descriptors (CVPR 2020) Samsung Al, Moscow

PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering (ICCV 2021) Peking University

Introduction(cont'd)

 The poses constraints(e.g., keypoint, 3DMM parameters) on applications, where such representations of unseen testing images might be fragmentary or missing.

Introduction(cont'd)

Existing methods using structural information(e.g., keypoints or descriptors)
 are hard to perform well when the source and the driving have large
 appearance variation. Latent Space Navigating

Method(cont'd)

Objectives:

$$\mathcal{L}_{recon}(x_{s \to d}, x_d) = \mathbb{E}[\|x_d - x_{s \to d}\|_1].$$

$$\mathcal{L}_{vgg}(x_{s\to d}, x_d) = \mathbb{E}[\sum_{n=1}^{N} \|F_n(x_d) - F_n(x_{s\to d})\|_1],$$

$$\mathcal{L}_{adv}(x_{s\to d}) = \mathbb{E}_{x_{s\to d} \sim p_{rec}}[-log(D(x_{s\to d}))],$$

Method

Goal

$$z_{s \to t} = (z_{s \to r} + w_{r \to s}) + (w_{r \to t} - w_{r \to 1})$$

when,s!=1

② Inference time → 'relative transfer'

$$= z_{s\to s} + (w_{r\to t} - w_{r\to 1}), \ t \in \{1, ..., T\}.$$

- z(s→s): reconstruction
- $w(r \rightarrow t)$ $w(r \rightarrow 1)$: motion from 1 to t
- * The more similar btw xs & x1, the more replication

when, s=1

cf) @ Training time → 'absolute transfer'

$$= z_{s \to r} + w_{r \to t}, \ t \in \{1, ..., T\}.$$

Experiments

out-of-domain source images(FFHQ) inference

same-identity

	VoxCeleb				
Method	\mathcal{L}_1	AKD	AED	LPIPS	
X2Face	0.078	7.687	0.405	-	
Monkey-Net	0.049	1.878	0.199	-	
FOMM	0.046	1.395	0.141	0.136	
MRAA w/o bg	0.043	1.307	0.140	0.127	
Ours	0.041	1.353	0.138	0.123	

cross-identity

	VoxCeleb	GermanAudio
FOMM	0.323	0.456
MRAA	0.308	0.454
Ours	0.161	0.406

Additional analysis(cont'd)

- Literally, xr represents what?
 - A) Canonical(frontal/neutral) pose of xs, regardless of original poses.

source

reference

Additional analysis(cont'd)

2. Manipulation on Dm

Conclusion

'LIA opens a new door in design of interpretable generative models for video generation.'