SEMINARSKA NALOGA IZ STATISTIKE - POROČILO

Klara Golob

UL FMF, MATEMATIKA - UNIVERZITETNI ŠTUDIJ

1. NALOGA

V datoteki Kibergrad se nahajajo informacije o 43.886 družinah, ki stanujejo v mestu Kibergrad. Za vsako družino so zabeleženi naslednji podatki (ne boste potre- bovali vseh):

- Tip družine (od 1 do 3)
- Število članov družine
- Število otrok v družini
- Skupni dohodek družine
- Mestna četrt, v kateri stanuje družina (od 1 do 4)
- Stopnja izobrazbe vodje gospodinjstva (od 31 do 46)

Nalogo sem reševala s pomočjo programskega jezika R. Zraven je priložena datotek z imenom "naloga1.R", v kateri je postopek računanja.

(a) Vzemite enostavni slučajni vzorec 200 družin in na njegovi podlagi ocenite povprečno število otrok na družino v Kibergradu.

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Povprečno število otrok na podlagi vzorca = 0.92

(b) Ocenite standardno napako in postavite 95% interval zaupanja. Varianca:

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{N} (\hat{\mu} - x_i)^2$$

Standardna napaka:

$$\widehat{se(\hat{\sigma})} = \sqrt{\frac{\hat{\sigma}^2}{n} \left(1 - \frac{n}{N}\right)}$$

Standardna napaka izračunana po zgornji formuli = 0.07803921 Interval zaupanja = [0.767046, 1.072954]

(c) Vzorčno povprečje in ocenjeno standardno napako primerjajte s populacijskim povprečjem in pravo standardno napako. Ali interval zaupanja iz prejšnje točke pokrije populacijsko povpre-čje?

Vzorčno povprečje = 0.92

Populacijsko povprečje = 0.9479333Ocena standardne napake vzorca = 0.07803921Standardna napaka populacije = 0Razlika vzorčnega in populacijskega povprečja = 0.09Razlika standardnih napak = 0.07803921

Interval zaupanja iz prejšne točke pokrije populacijsko povprečje, saj je $0.83 \in [0.7668411, 1.053159]$

- (d) Vzemite še 99 enostavnih slučajnih vzorcev in prav tako za vsakega določite 95% interval zaupanja. Narišite intervale zaupanja, ki pripadajo tem 100 vzorcem. Koliko jih pokrije populacijsko povprečje?
 - 97 intervalov zaupanja izmed 100ih pokrije populacijsko povprečje.
- (e) Izračunajte standardni odklon vzorčnih povprečij za 100 prej dobljenih vzorcev. Primerjajte s pravo standardno napako za vzorec velikosti 200.

Standardni odklon vzorčnih povprečij za 100 prej dobljenih vzorcev = 0.09010932 Standardna napaka za vzorec velikosti 200 = 0.07803921 Razlika = 0.01207011

(f) Izvedite prejšnji dve točki še na 100 vzorcih po 800 družin. Primerjajte in razložite razlike s teorijo vzorčenja.

93 intervalov zaupanja izmed 100ih pokrije populacijsko povprečje.

2. NALOGA

Populacijo sestavljajo trije stratumi, prva dva imata 1000, tretji pa ima 500 enot. Iz vsakega stratuma vzamemo enostavni slučajni vzorec desetih enot in vrednosti spremenljivke pridejo:

1.stratum: 94 99 106 106 101 102 122 104 97 97 2.stratum: 183 183 179 211 178 179 192 192 201 177 3.stratum: 343 302 286 317 289 284 357 288 314 276

Ocenite populacijsko povprečje in standardno napako vaše cenilke ter poiščite aproksimativni 95% interval zaupanja.

Velikost populacije: N = 2500

Velikosti stratumov: $N_1 = 1000, N_2 = 1000, N_3 = 500$

Velikost enostavnih slučajnih vzorcev, izbranih iz stratumov: $n_1 = n_2 = n_3 = n = 10$

Velikosti deležev stratumov: $w_1 = 0.4, w_2 = 0.4, w_3 = 0.2$

Vzorčna povprečja stratumov: $\hat{\mu}_1 = 98.3, \hat{\mu}_2 = 187.5, \hat{\mu}_3 = 305.6$

Ocena populacijskega povprečja:

$$\hat{\mu} = w_1 \hat{\mu}_1 + w_2 \hat{\mu}_2 + w_3 \hat{\mu}_3 = 0.4 \times 98.3 + 0.4 \times 187.5 + 0.2 \times 305.6 = 175.44$$

Ocena kvadrata standardne napake:

$$\widehat{se^2} = \sum_{i=1}^{3} x_i^2 \frac{N_i - n}{N_i - 1} \frac{S_i}{n_1(n_1 - 1)},$$

kjer je

$$S_i = \sum_{j=1}^{n} (X_{ij} - \hat{\mu}_i)^2$$

in $X_{i1}, X_{i2} \dots X_{in}$ vrednosti spremenljivk na enotah vzorca i-tega stratuma.

$$S_1 = (94 - 98.3)^2 + (99 - 98.3)^2 + (106 - 98.3)^2 + (106 - 98.3)^2 + (101 - 98.3)^2 + (102 - 98.3)^2 + (122 - 98.3)^2 + (104 - 98.3)^2 + (97 - 98.3)^2 + (97 - 98.3)^2 = 756.1000000000001$$

$$S_2 = (183 - 187.5)^2 + (183 - 187.5)^2 + (179 - 187.5)^2 + (211 - 187.5)^2 + (178 - 187.5)^2 + (179 - 187.5)^2 + (192 - 187.5)^2 + (192 - 187.5)^2 + (192 - 187.5)^2 + (201 - 187.5)^2 + (177 - 187.5)^2 = 1160.5$$

$$S_3 = (343 - 305.6)^2 + (302 - 305.6)^2 + (286 - 305.6)^2 + (317 - 305.6)^2 + (289 - 305.6)^2 + (284 - 305.6)^2 + (357 - 305.6)^2 + (288 - 305.6)^2 + (314 - 305.6)^2 + (276 - 305.6)^2 = 6566.400000000001$$

$$\widehat{se^2} = 0.4^2 \frac{1000 - 10}{1000} \frac{756.1}{10(10 - 1)} + 0.4^2 \frac{1000 - 10}{1000} \frac{1160.5}{10(10 - 1)} + 0.2^2 \frac{500 - 10}{500} \frac{6566.4}{10(10 - 1)} = 182.099$$

Ocena standardne napake cenilke populacijskega povprečja:

$$\hat{se} = \sqrt{\widehat{se^2}} = \sqrt{182.099} = 13.5$$

Aproksimativni 95% interval zaupanja:

$$[\hat{\mu} - Z_{\alpha} \times \hat{se}, \hat{\mu} + Z_{\alpha} \times \hat{se}] = [148.98, 201.9]$$

3. NALOGA

V datoteki ZarkiGama se nahajajo podatki o časovnih razmikih med 3.935 zaznanimi fotoni, torej medprihodni časi (v sekundah).

(a) Naredite histogram medprihodnih časov. Se vam zdi, da je model s porazdelitvijo gama plavzibilen?

Glede na dobljeni histogram, se zdi primerna porazdelitev gama.

(b) Ocenite parametra porazdelitve gama po metodi momentov in po metodi največjega verjetja. Primerjajte!

$$X \sim \Gamma(\alpha, \lambda)$$

Po metodi momentov sta cenilki za α in λ

$$\hat{\alpha} = \frac{\overline{X}^2}{\hat{\sigma}^2}$$
 in $\hat{\lambda} = \frac{\overline{X}}{\hat{\sigma}^2}$

$$\overline{X} = 79.93522$$

$$\hat{\sigma} = 79.45616$$

$$\hat{\alpha} = 1.012095 \quad \text{in} \quad \hat{\lambda} = 0.01266144$$

Po metodi najmanjših kvadratov, pa cenilki za α in λ dobimo z naslednjima dvema izrazoma:

$$n \log \hat{\alpha} - n \log \overline{X} + \sum_{i=1}^{n} \log x_i - n \frac{\Gamma'(\hat{\alpha})}{\Gamma(\hat{\alpha})}$$
$$\hat{\lambda} = \frac{\hat{\alpha}}{\overline{X}}$$

Naj bo $F(x) = \frac{\Gamma'(x)}{\Gamma(x)}$ Potem je

$$n \log \hat{\alpha} - n \log \overline{X} + \sum_{i=1}^{n} \log x_i - nF(\hat{\alpha})$$

Enačbo lahko rešimo s programom Matlab z uporabo funkcije psi in dobimo:

$$\hat{\alpha} = 1.0052$$
 in $\hat{\lambda} = 0.0117$

(c) Ocenjeni porazdelitvi dorišite na histogram. Je videti razumno? Na grafu je z rozno prikazana porazdelitev po metodi momentov in z modro porazdelitev po metodi največjega verjetja. Porazdelitvi se ujemata s histogramom.

- (d) Histogram z dorisanima gostotama narišite še na logaritemski lestvici. Le- stvico transformirajte le na abscisni osi, vendar pa ustrezno transformirajte tudi dorisani gostoti.
- (e) Je porazdelitev medprihodnih časov videti konsistentna s Poissonovim modelom, po katerem so ti časi porazdeljeni eksponentno?

Da, glede na graf, bi porazdelitev medprehodnih časov lahko ustrezala tudi Poissonovi porazdelitvi. Prav tako smo prameter α v obeh primerih ocenili blizu 1, iz česar bi lahko rekli, da so medprehodni časi porazdeljeni $\text{Exp}(\lambda)$, za ustrezen λ .

4. NALOGA

Recimo, da opazimo eno vrednost statistične spremenljivke X, porazdeljene enakomerno na intervalu $[0, \theta]$. Preizkusimo ničelno domnevo $H_0: \theta = 1$ proti alternativni domnevi $H_1: \theta = 2$.

(a) Poiščite preizkus, ki ima stopnjo tveganja $\alpha=0$. Kolikšna je njegova moč?

Ker je X porazdeljena enakomerno, je funkcija verjetja enaka:

$$L(\theta, x) = \frac{1}{\theta}$$

5. NALOGA

Naj bosta X in Y slučajni spremenljivki z:

$$E(X) = \mu_x, \quad E(Y) = \mu_y,$$

$$\operatorname{var}(X) = \sigma_x^2 \quad \operatorname{var}(Y) = \sigma_y^2$$

 $\operatorname{cov}(X, Y) = \sigma_{x,y}$

Denimo da opazimo X in želimo napovedati Y.

(a) Poiščite napoved oblike $Y = \alpha + \beta X$, kjer α in β izberemo tako, da je srednja kvadratična napaka $\mathrm{E}[(Y - \hat{Y})^2]$ minimalna. Matematični upanji, varianci in kovarianco poznamo Pomagamo si z namigom:

$$\mathrm{E}\left[\left(Y-\hat{Y}\right)^{2}\right] = \left[\mathrm{E}(Y)-\mathrm{E}(\hat{Y})\right]^{2} + \mathrm{var}(Y-\hat{Y}).$$

Poiskati moramo vrednosti za α in β , ki minimizirata desno stran zgornje enačbe. Ker sta oba člena enkao predznačena, sta pozitivna, lahko poiščemo α in β , ki minimizirata vsak člen posebej. Potem bo tudi vsota teh dveh plenov minimalna. Za prvi člen velja:

$$E(\hat{Y}) = \alpha + \beta E(X) = \alpha + \beta \mu_x,$$

$$\left[\mathbf{E}(Y) - \mathbf{E}(\hat{Y}) \right]^2 = \left[\mu_y - \alpha - \beta \mu_x \right]^2.$$

Ta bo najmanjša, ko bo $\mu_y - \hat{\alpha} - \beta \cdot \mu_x = 0$. Iz tega sledi:

$$\hat{\alpha} = \mu_y - \beta \mu_x.$$

Za drugi člen pa velja:

$$var(Y - \hat{Y}) = var(Y - \alpha - \beta X) = var(Y - \beta X) =$$
$$var(Y) - 2\beta cov(X, Y) + \beta^2 var(X) = \sigma_y^2 - 2\beta \sigma_{x,y} + \beta^2 \sigma_x^2$$

Minimalno vrednost izraza izračunamo tako, da izraz odvajalmo po β in odvod izenačimo z0.

$$\frac{\partial}{\partial \beta}(\text{var}(Y - \hat{Y})) = -2\sigma_{x,y} + 2\beta\sigma_x^2 = 0$$

Tako je $\hat{\beta} = \frac{\sigma_{x,y}}{\sigma_x^2}$.

Vrednosti za α in $\beta,$ ki minimizirata E $\left[\left(Y-\hat{Y})\right)^2\right]$ sta:

$$\hat{\alpha} = \mu_y - \mu_x \frac{\sigma_{x,y}}{\sigma_x^2}$$
 in $\hat{\beta} = \frac{\sigma_{x,y}}{\sigma_x^2}$

(b) Pokažite, da se pri tako izbranih koeficientih determinacijski koeficient (kvadrat korelacijskega koeficienta) izraža v obliki:

$$r_{x,y}^2 = 1 - \frac{\text{var}(Y - \hat{Y})}{\text{var}(Y)}.$$

Po formuli za korelacijski koeficient velja:

$$r_{x,y}^2 = \frac{\operatorname{cov}(X,Y)^2}{\operatorname{var}(X)\operatorname{var}(Y)} = 1 - \frac{\operatorname{var}(Y-\hat{Y})}{\operatorname{var}(Y)} = \frac{\operatorname{var}(Y) - \operatorname{var}(Y-\hat{Y})}{\operatorname{var}(Y)}.$$

Iz prejšnega primera uporabimo

$$var(Y - \hat{Y}) = \sigma_y^2 - 2\beta \sigma_{x,y} + \beta^2 \sigma_x^2,$$
$$\beta = \frac{\sigma_{x,y}}{\sigma_x^2}.$$

Vstavimo v enčbo in dobimo:

$$r_{x,y}^{2} = \frac{\text{var}(Y) - \text{var}(Y - \hat{Y})}{\text{var}(Y)} = \frac{\sigma_{y}^{2} - \sigma_{y}^{2} + \frac{\sigma_{x,y}^{2}}{\sigma_{x}^{2}}}{\sigma_{y}^{2}} = \frac{\sigma_{x,y}^{2}}{\sigma_{x}^{2}\sigma_{y}^{2}} = \frac{\text{cov}(X, Y)^{2}}{\text{var}(X)\text{var}(Y)}$$

S tem smo dokazali, da se res koeficientih determinacijski koeficient izraža v obliki:

$$r_{x,y}^2 = 1 - \frac{\operatorname{var}(Y - \hat{Y})}{\operatorname{var}(Y)}.$$