Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Unveiling a High Capacity Multi-redox (Nb⁵⁺/Nb⁴⁺/Nb³⁺) NASICON-Nb₂(PO₄)₃ Anode for Li- and Na-ion Batteries

Biplab Patra, ¹ Keshav Kumar, ¹ Debolina Deb, ² Subham Ghosh, ¹ Gopalakrishnan Sai Gautam, ² and Premkumar Senguttuvan ¹*

¹New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangaluru-560064, India.

²Department of Materials Engineering, Indian Institute of Science, Bengaluru-560012, India.

Figure S1. FESEM images and EDS mapping of Nb₂(PO₄)₃ anode.

Figure S2. In-situ XRD patterns of Nb₂(PO₄)₃/Li cell collected during 2nd cycle.

Figure S3. In-situ XRD patterns of Nb₂(PO₄)₃/Na cell collected during 2nd cycle.

Figure S4. SEM images of as-prepared Nb₂(PO₄)₃ electrode.

Figure S5. Comparison of cycling performances of Nb₂(PO₄)₃/Na cells with different cut-off voltages.

Figure S6. A comparison of energy densities of Na-ion cells comprising $Na_3V_2(PO_4)_3$ as the cathode and $Na_3V_2(PO_4)_3$ or $NaTi_2(PO_4)_3$ or $Nb_2(PO_4)_3$ as the anode.

The energy densities of Na-ion cells comprising $Na_3V_2(PO_4)_3$ as the cathode and $Na_3V_2(PO_4)_3$ or $NaTi_2(PO_4)_3$ or $Nb_2(PO_4)_3$ as the anode are calculated using the following formula:

Energy density (Wh $kg^{-1}_{(anode+cathode)}$) = average cell voltage x capacity (mAh $g^{-1}_{(anode+cathode)}$)

Capacity (mAh $g^{-1}_{(anode+cathode)}$) is calculated using the following formula:

$$\frac{1}{C_{anode + cathode}} = \frac{1}{C_{anode}} + \frac{1}{C_{cathode}}$$

The insertion potentials and capacities of NASICON compounds (at C/10 rate) are taken from the references.^{1,2}

Table S1. Crystallographic parameters and atomic coordinates of NASICON-Nb₂(PO₄)₃

 $Nb_2(PO_4)_3$

S.G.: $R\overline{3}c$; Z = 6 Chi²=4.56;

 $R_{bragg} = 2.33\%$; $R_p = 8.23\%$; $R_{wp} = 11.3\%$

a = 8.6629(1) Å; c = 22.0627(6) Å.

 $V = 1433.92(5) \text{ Å}^3;$

Average Nb-O Bond distance: (Nb-O1) \times 3 = 1.975(3) Å; (Nb-O2) \times 3 = 1.9368(2) Å

Atom	Wyckoff	X	Y	Z	B (Å ²)	Occ.
	site					
Nb1	12c	0	0	0.14122(2)	0.0049(2)	0.5
Nb2	12c	0	0	0.14122(2)	0.0049(2)	0.5
P	18e	0.283(2)	0	0.25	0.0145(1)	1.0
O1	36f	0.1684(2)	-0.0278(3)	0.1941(9)	0.0127(7)	1.0
O2	36f	0.1978(2)	0.1674(2)	0.0916(8)	0.0063(2)	1.0

Table S2. Refined parameters for the first shell of Nb K-edge EXAFS spectra collected on the pristine, discharged and charge Nb₂(PO₄)₃ anodes.

Sample	Coordination number	d(Nb-O) Å	E ₀ (eV)	$\sigma^2 \mathring{A}^2$	R-factor
Pristine	3 + 3	2.095(2) x 3 1.961(2) x 3	3.00	0.0001	0.0146
Discharge 1.0V	3.98 + 2.02	2.044(5) x 3.98 2.169(8) x 2.02	5.65	0.001(9)	0.0085
Charge 3.0V	3.3 + 2.7	2.104(5) x 2.7	3.57	0.0008	0.0193

	1.962(8) x 3.3		

References

- 1 M. K. Sadan, A. K. Haridas, H. Kim, C. Kim, G. B. Cho, K. K. Cho, J. H. Ahn and H. J. Ahn, *Nanoscale Adv.*, 2020, **2**, 5166–5170.
- 2 M. Wu, W. Ni, J. Hu and J. Ma, Nano-Micro Lett., 2019, 11, 1–36.