Semester 1

Tutorial Solutions Week 13

2012

1. (This question is a preparatory question and should be attempted before the tutorial. Answers are provided at the end of the sheet – please check your work.)

Find the directional derivative of $f(x,y) = x^2 + 2e^{x+y}$ in the direction of $\mathbf{v} = \mathbf{i} - \mathbf{j}$ at the point (1,2).

Questions for the tutorial

2. Use the formula $\frac{dy}{dx} = -\frac{f_x(x,y)}{f_y(x,y)}$ to find an expression for $\frac{dy}{dx}$ where y is defined implicitly as a function of x by the equation $x^3 + y^3 = 3xy$. Hence evaluate the slope of the tangent to the curve $x^3 + y^3 = 3xy$ at the point (2/3, 4/3).

Solution

Put $f(x,y) = x^3 + y^3 - 3xy$, so that f(x,y) = 0 is the equation of the curve. As $\frac{\partial f}{\partial x} = 3x^2 - 3y$ and $\frac{\partial f}{\partial y} = 3y^2 - 3x$, we have

$$\frac{dy}{dx} = -\frac{f_x(x,y)}{f_y(x,y)} = -\frac{3x^2 - 3y}{3y^2 - 3x} = \frac{y - x^2}{y^2 - x}.$$

At the point (2/3, 4/3), the slope of the tangent to the curve is

$$\frac{4/3 - 4/9}{16/9 - 2/3} = 4/5.$$

- **3.** Let $f(x,y) = 1 + 2x\sqrt{y}$ and $g(x,y) = e^{-x}\sin y$.
 - (a) Find $\nabla f(x,y)$, $\nabla f(3,4)$, $\nabla g(x,y)$, $\nabla g(2,0)$.
 - (b) Let $\mathbf{v} = 4\mathbf{i} 3\mathbf{j}$. Determine the unit vector $\hat{\mathbf{v}}$. Hence find $D_{\hat{\mathbf{v}}}f(x,y)$ and also the special case $D_{\hat{\mathbf{v}}}f(3,4)$. Similarly, if $\mathbf{w} = 3\mathbf{i} + 2\mathbf{j}$, find $D_{\hat{\mathbf{w}}}g(x,y)$ and $D_{\hat{\mathbf{w}}}g(2,0)$.

Solution

(a)
$$\nabla f(x,y) = f_x(x,y)\mathbf{i} + f_y(x,y)\mathbf{j} = 2\sqrt{y}\mathbf{i} + \frac{x}{\sqrt{y}}\mathbf{j}$$
, $\nabla f(3,4) = 4\mathbf{i} + \frac{3}{2}\mathbf{j}$, $\nabla g(x,y) = -e^{-x}\sin y\mathbf{i} + e^{-x}\cos y\mathbf{j}$, $\nabla g(2,0) = e^{-2}\mathbf{j}$.

(b) The unit vector $\hat{\mathbf{v}}$ in the direction of \mathbf{v} is given by $\hat{\mathbf{v}} = \frac{4}{5}\mathbf{i} - \frac{3}{5}\mathbf{j}$. Therefore $D_{\hat{\mathbf{v}}}f(x,y) = \frac{8}{5}\sqrt{y} - \frac{3x}{5\sqrt{y}}$ and $D_{\hat{\mathbf{v}}}f(3,4) = \frac{16}{5} - \frac{9}{10} = \frac{23}{10}$. The unit vector $\hat{\mathbf{w}} = \frac{3}{\sqrt{13}}\mathbf{i} + \frac{2}{\sqrt{13}}\mathbf{j}$, so that $D_{\hat{\mathbf{w}}}g(x,y) = \frac{e^{-x}}{\sqrt{13}}(-3\sin y + 2\cos y)$ and $D_{\hat{\mathbf{w}}}(2,0) = \frac{2e^{-2}}{\sqrt{13}}$.

4. Instead of the one-sided limit used in the definition of the directional derivative in this course, many texts use the following two-sided limit:

$$D_{\mathbf{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + hu_1, y_0 + hu_2) - f(x_0, y_0)}{h}$$

where $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j}$ is a unit vector and h may be either positive or negative.

- (a) Let $f(x,y) = \sqrt{xy}$ and let **u** be a unit vector. Prove that $D_{\mathbf{u}}f(0,0)$, defined using the two-sided limit above, exists if and only if $\mathbf{u} = \mathbf{i}$, $-\mathbf{i}$, \mathbf{j} or $-\mathbf{j}$.
- (b) Now use our one-sided definition for the limit and find all directions for which $D_{\mathbf{u}}f(0,0)$ exists.

Solution

(a) The domain of f is $\{(x,y) \mid x,y \geq 0 \text{ or } x,y \leq 0\}$, that is, the 1st and 3rd quadrants of the xy-plane including the axes. By definition,

$$D_{\mathbf{u}}f(0,0) = \lim_{h \to 0} \frac{f(0+hu_1, 0+hu_2) - f(0,0)}{h} = \lim_{h \to 0} \frac{\sqrt{h^2u_1u_2}}{h} = \lim_{h \to 0} \frac{|h|}{h} \sqrt{u_1u_2},$$

where $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j}$. If $\mathbf{u} = \mathbf{i}$, $-\mathbf{i}$, \mathbf{j} or $-\mathbf{j}$ then either $u_1 = 0$ or $u_2 = 0$ and this limit exists and equals 0. Conversely, if this limit exists then $u_1 u_2 \geq 0$, and

$$-\sqrt{u_1 u_2} = \lim_{h \to 0^-} \frac{|h|}{h} \sqrt{u_1 u_2} = \lim_{h \to 0^+} \frac{|h|}{h} \sqrt{u_1 u_2} = \sqrt{u_1 u_2} ,$$

so that in fact $u_1u_2=0$, yielding $u_1=0$ or $u_2=0$. Therefore **u** must equal one of \mathbf{i} , $-\mathbf{i}$, \mathbf{j} or $-\mathbf{j}$.

- (b) If the one sided limit is used in the definition of $D_{\bf u}f(0,0)$, i.e. taking only the limit as $h\to 0^+$, then the directional derivative is defined for directions with angle θ given in the interval $0 \le \theta \le \pi/2$ or $-\pi \le \theta \le -\pi/2$, i.e. in the first and third quadrants including the axes, and is given by $D_{\bf u}f(0,0)=\sqrt{u_1u_2}$.
- **5.** Find the directions in which the directional derivative of $f(x,y) = x^2 + \sin(xy)$ at (1,0) has value 1.

Solution

 $\nabla f(x,y) = [2x + y\cos(xy)]\mathbf{i} + x\cos(xy)\mathbf{j}$, so $\nabla f(1,0) = 2\mathbf{i} + \mathbf{j}$. We want $\mathbf{u} = u_1\mathbf{i} + u_2\mathbf{j}$ such that $u_1^2 + u_2^2 = 1$ and

$$1 = \nabla f(1,0) \cdot \mathbf{u} = 2u_1 + u_2.$$

Substituting $u_2 = 1 - 2u_1$ into $u_1^2 + u_2^2 = 1$ gives

$$1 = u_1^2 + (1 - 2u_1)^2 = 5u_1^2 - 4u_1 + 1.$$

Hence $u_1(5u_1-4)=0$, giving $u_1=0$ or $u_1=4/5$, and thus $u_2=1$ or $u_2=-3/5$ respectively. The required directions are therefore those of the vectors \mathbf{j} and $\frac{1}{5}(4\mathbf{i}-3\mathbf{j})$.

- 6. Find the greatest slope and the (two) directions one could begin to move to stay level if one is standing at the point
 - (a) (3, 4, 13) on the surface $z = 1 + 2x\sqrt{y}$;
 - (b) (2,0,0) on the surface $z = e^{-x} \sin y$.

Solution

(a) Let $f(x,y) = 1 + 2x\sqrt{y}$. We have $\nabla f(x,y) = 2\sqrt{y} \mathbf{i} + (x/\sqrt{y}) \mathbf{j}$. Hence the greatest slope at (3,4,13) is

$$|\nabla f(3,4)| \; = \; |4\,\mathbf{i} + \frac{3}{2}\,\mathbf{j}| \; = \; \frac{\sqrt{73}}{2} \; ,$$

and to stay level one moves in the direction perpendicular to the gradient of f at (3,4), that is, in the direction of $\pm \left(\frac{3}{2}\mathbf{i} - 4\mathbf{j}\right)$.

- (b) Let $g(x,y) = e^{-x} \sin y$. We have $\nabla g(x,y) = -e^{-x} \sin y$ $\mathbf{i} + e^{-x} \cos y$ \mathbf{j} , so $\nabla g(2,0) = e^{-2}\mathbf{j}$. The greatest slope is $|\nabla g(2,0)| = |e^{-2}\mathbf{j}| = e^{-2}$, and to stay level one moves in the direction of $\pm \mathbf{i}$.
- 7. Suppose you are climbing a hill whose shape is given by the equation

$$z = 1000 - 0.01x^2 - 0.02y^2,$$

where x, y, z are measured in metres, and you are standing at a point with coordinates (50, 80, 847). The positive x axis points east and the positive y axis points north.

- (a) If you walk due south, will you start to ascend or descend?
- (b) If you walk northwest, will you start to ascend or descend?
- (c) In which direction is the slope largest? What is the value of this slope? At what angle above the horizontal does the path in that direction begin?
- (d) In which horizontal direction should you move to maintain a height of 847 metres?

Solution

Let $z = f(x, y) = 1000 - 0.01x^2 - 0.02y^2$. We have $\nabla f(x, y) = -0.02x\mathbf{i} - 0.04y\mathbf{j}$ and so $\nabla f(50, 80) = -\mathbf{i} - 3.2\mathbf{j}$.

(a) In the direction of due south (that is, in the direction of $-\mathbf{j}$),

$$D_{-\mathbf{j}}f(50, 80) = -\mathbf{j} \cdot (-\mathbf{i} - 3.2\mathbf{j}) = 3.2.$$

Since this is positive, you will start to ascend.

(b) In the north-west direction (that is, in the direction of the unit vector $\mathbf{u} = (-\mathbf{i} + \mathbf{j})/\sqrt{2}$),

$$D_{\mathbf{u}}f(50, 80) = (-\frac{1}{\sqrt{2}}\mathbf{i} + \frac{1}{\sqrt{2}}\mathbf{j}) \cdot (-\mathbf{i} - 3.2\mathbf{j}) = 1/\sqrt{2} - 3.2/\sqrt{2} = -\frac{2.2}{\sqrt{2}}.$$

Since this is negative, you will start to descend.

(c) The slope is largest in the direction of $\nabla f(50, 80) = -\mathbf{i} - 3.2\mathbf{j}$. The greatest slope is

$$|\nabla f(50, 80)| = |-\mathbf{i} - 3.2\mathbf{j}| = \sqrt{1 + 3.2^2} \approx 3.35.$$

The corresponding angle above the horizontal path is approximately $\tan^{-1} 3.35$, or 73.4° .

- (d) To stay level, you should move perpendicular to $\nabla f(50, 80)$, that is in the direction of $3.2\mathbf{i} \mathbf{j}$ or $-3.2\mathbf{i} + \mathbf{j}$.
- 8. Let $f(x,y) = x y^2$. Find $\nabla f(3,-1)$, and use it to find the parametric equation of the normal (perpendicular) line to the level curve f(x,y) = 2 at (3,-1).

Solution

 $\nabla f(x,y) = \mathbf{i} - 2y\mathbf{j}$, so $\nabla f(3,-1) = \mathbf{i} + 2\mathbf{j}$. The level curve f(x,y) = 2 is the parabola $x = y^2 + 2$. $\nabla f(3,-1)$ is perpendicular (normal) to the level curve z = 2 and passes through the point (3,-1).

Thus parametric equations of the normal line are: x = 3 + t, y = -1 + 2t.

Extra Question

9. A function f of two variables is called homogeneous of degree $n \ge 1$ if

$$f(tx, ty) = t^n f(x, y)$$

for all t, x, y. Assume that all functions are well-behaved so that the chain rule applies.

- (a) Verify that $g(x,y) = x^3 + xy^2 + y^3$ and $h(x,y) = (x^4 + y^4)^{3/2}$ are homogeneous of degrees 3 and 6 respectively.
- (b) Suppose f is homogeneous of degree n and let x = ta, y = tb where a and b are constants and t is a parameter. Put F(t) = f(ta, tb). Differentiate F(t) in two different ways (one using the chain rule) to conclude

$$nt^{n-1}f(a,b) = a\frac{\partial f}{\partial x}(ta,tb) + b\frac{\partial f}{\partial y}(ta,tb).$$

Set t = 1 and replace a by x and b by y to deduce Euler's Theorem:

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = nf(x, y).$$

Solution

(a) We have

$$g(tx,ty) = (tx)^3 + (tx)(ty)^2 + (ty)^3$$

= $t^3(x^3 + xy^2 + y^3)$
= $t^3g(x,y)$,

and

$$h(tx, ty) = ((tx)^4 + (ty)^4)^{3/2}$$

= $(t^4(x^4 + y^4))^{3/2}$
= $t^6(x^4 + y^4)^{3/2} = t^6h(x, y).$

(b) We have $F(t) = t^n f(a, b)$, so, on the one hand, $F'(t) = nt^{n-1} f(a, b)$, whilst on the other,

$$F'(t) = \frac{\partial F}{\partial x}\frac{dx}{dt} + \frac{\partial F}{\partial y}\frac{dy}{dt} = a\frac{\partial f}{\partial x} + b\frac{\partial f}{\partial y},$$

yielding

$$nt^{n-1}f(a,b) = a\frac{\partial f}{\partial x}(ta,tb) + b\frac{\partial f}{\partial y}(ta,tb).$$

In particular, taking t = 1, we get

$$nf(a,b) = a\frac{\partial f}{\partial x}(a,b) + b\frac{\partial f}{\partial y}(a,b)$$
.

Finally using x and y as inputs we get

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = nf(x, y).$$

Solution to Question 1

First calculate $\nabla f(x,y) = (2x + 2e^{x+y})\mathbf{i} + 2e^{x+y}\mathbf{j}$. A unit vector in the direction of \mathbf{v} is $\mathbf{u} = \frac{1}{\sqrt{2}}\mathbf{i} - \frac{1}{\sqrt{2}}\mathbf{j}$, and

$$D_{\mathbf{u}}f(x,y) = (\frac{1}{\sqrt{2}}\mathbf{i} - \frac{1}{\sqrt{2}}\mathbf{j}) \cdot ((2x + 2e^{x+y})\mathbf{i} + 2e^{x+y}\mathbf{j}) = \sqrt{2}x.$$

So the directional derivative at (1, 2) is $\sqrt{2}$.