HW1

Q1

(a)
$$Df = \langle f_x, f_y \rangle = \langle 2x+2y, 2x+2y+2 \rangle$$

\(\text{no condition that } 2x+2y = 2x+2y+2=0\)
\(\text{no stationary Point.}\)

(b) $Df = \langle bxy - 12x, 3x^2 + 3y^2 - 12y \rangle$

\(\sigma \left(\frac{bxy}{3x^2 + 3y^2} - 12y \right) \right)

\(\frac{c}{3x^2 + 3y^2} - 12y = 0
\)
\(\frac{c}{3x^2 + 3y^2} - 12y \quad \frac{f_{3x} = by - 12}{f_{3x} = by - 12} \quad \frac{f_{3x} = by - 12}{f_{3x} = 3x^2 + 3y^2 - 12y} \quad \frac{f_{3y} = by - 12}{f_{3y} = bx}

\(\frac{c}{1} D = \frac{f_{3x} f_{3y} - (f_{3y})^2 = (by + 2)^2 - (bx)^2}{f_{3x} = 3by^2 - 144y} + 144 - 3bx^2

\(\frac{c}{1} D(0, 0) = 144 \gamma \cdot 0, \quad \frac{f_{3x} f_{3x} + by - 12}{f_{3x} = 10x} + \frac{f_{3x} f_{3x} f_{3x} + by - 12}{f_{3x} = 10x} + \frac

(c)
$$\nabla f = \langle e^{x}\cos y | -e^{x}\sin y \rangle$$

let $\{e^{x}\cos y = 0\}$
 $-e^{x}\sin y = 0$
 \therefore no condition that $e^{x}\cos y = -e^{x}\sin y = 0$
 \therefore function not exist

(d) $f(x,y) = (x^{2}+y^{2})e^{y^{2}+x^{2}}$
 $fx = 2xe^{y^{2}+x^{2}} + (x^{2}+y^{2})(-2xe^{y^{2}+x^{2}})$
 $= (2x-2x^{3}-2xy^{2})e^{y^{2}+x^{2}}$
 $fy = 2ye^{y^{2}-x^{2}} + (x^{2}+y^{2})\cdot 2y\cdot e^{y^{2}-x^{2}}$
 $= (2y+2x^{2}+2y^{2})\cdot e^{y^{2}-x^{2}}$
 $\therefore \nabla f = (2xe^{y^{2}-x^{2}}(1-x^{2}-y^{2}), 2ye^{y^{2}-x^{2}}$
 $\therefore \nabla f = (2xe^{y^{2}-x^{2}}(1-x^{2}-y^{2}), 2ye^{y^{2}-x^{2}})$
 $\therefore f_{xx} = 2e^{y^{2}-x^{2}}(2x^{2}y^{2}+2x^{2}+5x^{2}-y^{2}+1)$
 $f_{xy} = -4xy(x^{2}+y^{2})e^{y^{2}-x^{2}}$
 $\therefore D = f_{xx}f_{yy} - (f_{xy})^{2}$
 $= (2e^{x^{2}-x^{2}})(2x^{2}y^{2}+2x^{2}-5x^{2}-y^{2}+1)(2x^{2}y^{2}+2y^{4}+5y^{2}+x^{2}+1)$
 $-(4xy(x^{2}+y^{2})e^{y^{2}-x^{2}})^{2}$

Ott(010).
$$D=2>0$$
. $f_{xx}(0.0)=2>0$

i. (010) is a local minimum

Ot (110), $D=-\frac{1}{6}(0)$, $f_{xx}(1,0)=-\frac{1}{6}(0)$

i. (1.0) is not extrema

Q2

(a) $Of=(2x+2xy+2+3xy+2)$

Solve $\begin{cases} 2x+2xy=0\\ 2y+x^2=0 \end{cases}$

i. We can yet (0.0), $(-\sqrt{2},-1)$ ($\sqrt{2},-1$)

$$f_{xx}=2+2y+f_{xy}=2, f_{xy}=2x$$

$$D=4y+4-4x^2$$
(010), $D=4>0$ fix (010)=2>0

($\sqrt{2},-1$), $D=-8<0$

($\sqrt{2},-1$), $D=-8<0$

1. Only (010) is Crital point

$$f(010)=4$$

$$C_{xx}=C_{x$$

i. Absolute maximum value = ?

absolute minimum value = 4

(b)
$$P = \langle 2x-2, 2y \rangle$$
 $\langle olve \langle 2x-2=0 \Rightarrow \langle 1, o \rangle$
 $\langle 2y=0 \rangle$
 $\langle xx=2, fyy=2, fxy=0 \rangle$
 $P = \langle xy=2, fy=2, fxy=0 \rangle$
 $P = \langle xy=2, fy=2, fxy=2, fxy=2,$

 $|et f(x,y) = V^2 = 64 x^2 y^2 \sqrt{r^2 - x^2 - y^2}$

let
$$(f_x = 128x^3y^2 - 256x^3y^4 - 128xy^4 = 0)$$

 $(f_y = 128x^3y^2 - 128x^4y - 256x^2y^3 = 0)$
wet get (0.0) . $(\frac{x}{15}, \frac{x}{15})$
hence $\frac{1}{2} = \frac{1}{2}(x^2 - x^2 - y^2) = \frac{1}{2}$

hence
$$z = \sqrt{r^2 - \chi^2 - y^2} = \frac{r}{\sqrt{3}}$$