Name:	
manne.	

There are 4 questions for a total of 15 points.

- 1. Answer the following questions on Propositional Logic.
 - (a) $(\frac{1}{2} \text{ point})$ Fill the truth-table below:

P	Q	R	$P \leftrightarrow Q$	$Q \vee \neg R$	$(P \leftrightarrow Q) \to (Q \vee \neg R)$
T	Т	Т	Т	Т	T
Т	Т	F	Т	Т	Т
Т	F	Т	F	F	Т
F	Т	Т	F	Т	Т
Т	F	F	F	Т	Т
F	Т	F	F	Т	Т
F	F	Т	Т	F	F
F	F	F	Т	Т	Т

(b) (1 point) Consider the following two compound proposition P, Q:

$$P: (A \vee B) \to C$$
 and $Q: (\neg C \to \neg A) \vee (\neg C \to \neg B)$

Which of the following describe the relationship between P and Q? Circle all the correct choices and show your reasoning in the space below.

- (a) P and Q are equivalent
- (b) $P \to Q$
- (c) $Q \to P$

Solution: We solve this using a truth table.

A	В	\mathbf{C}	P	\mathbf{Q}
F	F	F	Т	Τ
F	F	Т	Т	Т
F	Т	F	F	Т
Т	F	F	F	Т
Т	Т	F	F	F
Т	F	Т	Т	Т
F	Т	Т	Т	Т
Т	Т	Т	Т	Τ

- P and are not equivalent since the columns for P and Q do not match.
- $Q \to P$ does not hold since in the third row, Q evaluates to T but P evaluates to F.
- $P \to Q$ holds since there is no row in which P is T but Q is F.

So, the correct answer is option (b).

- 2. Answer the following questions on Predicate Logic.
 - (a) $(4 \frac{1}{2})$ points) Consider the following predicates:
 - 1. B(x): x is brilliant.
 - 2. S(x): x studies hard.
 - 3. L(x): x is lucky.
 - 4. C(x,y): x clears the final exam of course y.
 - 5. G(x,y): x gets an A grade in course y.
 - 6. J(x): x sleeps too much.

Express each of the statements using quantifiers and the predicates given above. The domain of variable x in the above predicates is the set of all students of COL202 and domain of variable y is the set of all courses being taught at IIT Delhi during Semester-I-2018-19.

	Statement	Quantified expression
S_1	Everyone who clears any final exam studies hard or is brilliant or is lucky.	$\forall x \ [\exists y \ C(x,y) \to (S(x) \lor B(x) \lor L(x))]$
S_2	Everyone who gets an A in some course has cleared the final exam of some course.	$\forall x \ [\exists y \ G(x,y) \to \exists z \ C(x,z)]$
S_3	No one is lucky.	$\forall x \ [\neg L(x)]$
S_4	Anyone who sleeps too much does not study hard.	$\forall x \ [J(x) \to \neg S(x)]$
S_5	If everyone gets an A in some course, then everyone who sleeps too much is brilliant.	$(\forall x \; \exists y \; G(x,y)) \to (\forall p \; (J(p) \to B(p)))$

(b)	(1 point) Consider the quantified expressions $S_1,,S_5$ obtained in the previous part. Use th
	expressions obtained in the previous part to replace $S_1,, S_5$ below and then determine whether is
	makes a valid argument form. Answer "yes" or "no". You do not need to give explanation for this
	problem.

 S_1

 S_2

 S_3

 S_4 $\therefore S_5$

(b) _____**True**____

```
Reason (You were not supposed to give this): We obtain the following argument form
by replacing the S_1, ..., S_5 above.
 \forall x \ [\exists y \ C(x,y) \to (S(x) \lor B(x) \lor L(x))]
 \forall x \ [\exists y \ G(x,y) \to \exists z \ C(x,z)]
 \forall x \left[ \neg L(x) \right]
 \forall x \ [J(x) \to \neg S(x)]
 \therefore (\forall x \; \exists y \; G(x,y)) \to (\forall w \; (J(w) \to B(w)))
We will show that the above argument form is valid using rules of inference:
 1. \forall x \ [\exists y \ C(x,y) \to (S(x) \lor B(x) \lor L(x))]
                                                                                                               (Premise)
 2. \forall x \ [\exists y \ G(x,y) \to \exists z \ C(x,z)]
                                                                                                               (Premise)
 3. \forall x \left[ \neg L(x) \right]
                                                                                                               (Premise)
 4. \forall x [J(x) \rightarrow \neg S(x)]
                                                                                                               (Premise)
 5. \exists y \ C(s,y) \to (S(s) \lor B(s) \lor L(s)) for an arbitrary student s
     (From (1) using Universal instantiation)
 6. \exists y \ G(s,y) \to \exists z \ C(s,z)
     (From (2) using Universal instantiation)
 7. \exists y \ G(s,y) \to (S(s) \lor B(s) \lor L(s))
     (From (5) and (6) using modus ponens)
 8. \forall x \ [\exists y \ G(x,y) \to (S(x) \lor B(x) \lor L(x))]
     (From (7) using Universal generalization)
 9. \forall x [(\forall y \neg G(x,y)) \lor S(x) \lor B(x) \lor L(x)]
     (From (8) using De Morgan's law for quantifiers and p \to q \equiv p \lor q)
10. (\forall y \neg G(s,y)) \lor S(s) \lor B(s) \lor L(s) for an arbitrary student s
     (From (9) using Universal generalization)
11. \neg L(s)
     (From (3) using Universal generalization)
12. (\forall y \neg G(s, y)) \lor S(s) \lor B(s)
     (Resolvent of (10) and (11))
13. \forall x \left[ \neg J(x) \lor \neg S(x) \right]
     (From (4) using p \to q \equiv p \lor q)
14. \neg J(s) \lor \neg S(s)
     (From (13) using Universal generalization)
15. (\forall y \ \neg G(s,y)) \lor \neg J(s) \lor B(s)
      (Resolvent of (12) and (14))
16. \exists x \ [(\forall y \ \neg G(x,y)) \lor \neg J(s) \lor B(s)]
     (From (15) using existential generalization)
17. \forall w \ \exists x \ [(\forall y \ \neg G(x,y)) \lor \neg J(w) \lor B(w)]
      (From (16) using universal generalization)
18. (\exists x \ \forall y \neg G(x,y)) \lor (\forall w \ (J(w) \rightarrow B(w)))
     (From (18) using p \to q \equiv p \lor q)
19. (\forall x \exists y \ G(x,y)) \rightarrow \forall w \ (J(w) \rightarrow B(w))
     (From (19) using p \to q \equiv p \lor q and De Morgan's law for quantifiers)
Note that step (16) is a correct but a bit unconventional application of existential generalization.
In general, if we have a statement P(s) \vee Q(s) that holds for arbitrary s in the domain, then
P(s) \vee (\exists x \ Q(x)) \equiv \exists x \ [P(s) \vee Q(x)] also holds for an arbitrary element s of the domain. This
is the fact that we have used here.
```

(c) $(2 \frac{1}{2} \text{ points})$ Consider the quantified expressions $S_1, ..., S_4$ obtained in part (a). Use the expressions obtained in part (a) to replace $S_1, ..., S_4$ below and then determine whether it makes a valid argument form. Explain your answer. (If your answer is "yes", then you need to show all steps while using rules of inference)

```
S_1
S_2
S_3
S_4
\therefore \forall x [(\exists y \ G(x,y)) \to (J(x) \to B(x))]
```

Solution: We obtain the following argument form by replacing the $S_1, ..., S_4$ above.

$$\forall x \ [\exists y \ C(x,y) \to (S(x) \lor B(x) \lor L(x))]$$

$$\forall x \ [\exists y \ G(x,y) \to \exists z \ C(x,z)]$$

$$\forall x \ [\neg L(x)]$$

$$\forall x \ [J(x) \to \neg S(x)]$$

$$\therefore \forall x \ [(\exists y \ G(x,y)) \to (J(x) \to B(x))]$$

We will show that the above argument form is valid using rules of inference:

1.
$$\forall x \ [\exists y \ C(x,y) \to (S(x) \lor B(x) \lor L(x))]$$
 (Premise)

2.
$$\forall x \ [\exists y \ G(x,y) \to \exists z \ C(x,z)]$$
 (Premise)

3.
$$\forall x \ [\neg L(x)]$$
 (Premise)

4.
$$\forall x [J(x) \to \neg S(x)]$$
 (Premise)

- 5. $\exists y \ C(s,y) \to (S(s) \lor B(s) \lor L(s))$ for an arbitrary student s (From (1) using Universal instantiation)
- 6. $\exists y \ G(s,y) \to \exists z \ C(s,z)$ (From (2) using Universal instantiation)
- 7. $\exists y \ G(s,y) \to (S(s) \lor B(s) \lor L(s))$ (From (5) and (6) using modus ponens)
- 8. $\forall x \ [\exists y \ G(x,y) \to (S(x) \lor B(x) \lor L(x))]$ (From (7) using Universal generalization)
- 9. $\forall x \ [(\forall y \ \neg G(x,y)) \lor S(x) \lor B(x) \lor L(x)]$ (From (8) using De Morgan's law for quantifiers and $p \to q \equiv p \lor q$)
- 10. $(\forall y \neg G(s, y)) \lor S(s) \lor B(s) \lor L(s)$ for an arbitrary student s (From (9) using Universal generalization)
- 11. $\neg L(s)$ (From (3) using Universal generalization)
- 12. $(\forall y \neg G(s, y)) \lor S(s) \lor B(s)$ (Resolvent of (10) and (11))
- 13. $\forall x \ [\neg J(x) \lor \neg S(x)]$ (From (4) using $p \to q \equiv p \lor q$)
- 14. $\neg J(s) \lor \neg S(s)$ (From (13) using Universal generalization)

- 15. $(\forall y \ \neg G(s, y)) \lor \neg J(s) \lor B(s)$ (Resolvent of (12) and (14))
- 16. $\forall x \ [(\forall y \ \neg G(x,y)) \lor \neg J(x) \lor B(x)]$ (From (15) using Universal generalization)
- 17. $\forall x \ [(\exists y \ G(x,y)) \to (J(x) \to B(x))]$ (From (16) using $p \to q \equiv p \lor q$)

3. (3 points) Prove or disprove: Let $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be a bijection and let $h: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be a function defined as h(a,b,c) = f(f(a,b),c). Then h is a bijection from $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ to \mathbb{N} .

Solution: We will prove that the given statement holds. To show that h is a bijection, we need to show that h is one-to-one and onto.

Claim 1: h is a one-to-one function.

Proof. From the definition of one-to-one functions, we need to argue that for any inputs (a,b,c), $(a',b',c') \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$, if h(a,b,c) = h(a',b',c'), then a = a', b = b', c = c'. Indeed, h(a,b,c) = h(a',b',c') implies that f(f(a,b),c) = f(f(a',b'),c'). Since f is one-to-one, this implies that f(a,b) = f(a',b') and c = c'. Now using the fact that f(a,b) = f(a',b') and that f is one-to-one, we get that a = a' and b = b'. So, we get that if h(a,b,c) = h(a',b',c'), then a = a', b = b', and c = c'. This completes the proof of the claim.

Claim 2: h is onto.

Proof. Using the definition of onto functions, we need to argue that for any $r \in \mathbb{N}$, there exists $(a,b,c) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ such that h(a,b,c) = r. Note that since f is an onto function, there exists $(r',c') \in \mathbb{N} \times \mathbb{N}$ such that f(r',c') = r. Again, using the fact that f in an onto function, there exists $(a',b') \in \mathbb{N} \times \mathbb{N}$ such that f(a',b') = r'. This means that h(a',b',c') = f(f(a',b'),c') = f(r',c') = r. This completes the proof of the claim.

From Claim 1 and Claim 2, we conclude that h is a bijection.

4. $(2 \frac{1}{2} \text{ points})$ Recall the definition of the big-O notation given in the lectures:

Let f(n) and g(n) denote functions mapping positive integers to positive real numbers. The function f(n) is said to be O(g(n)) if and only if there exists constants $C, n_0 > 0$ such that for all $n \ge n_0, f(n) \le C \cdot g(n)$.

Prove or disprove: For any functions $f: \mathbb{Z}^+ \to \mathbb{R}^+$ and $g: \mathbb{Z}^+ \to \mathbb{R}^+$ if f(n) is O(g(n)), then $5^{f(n)}$ is $O(5^{g(n)})$.

Solution: We will disprove the statement. Consider f(n) = 2n and g(n) = n. For these functions we can show that f(n) = O(g(n)) since for all $n \ge 1$, $f(n) \le 2 \cdot g(n)$. However, $5^{f(n)} = 5^{2n}$ and $5^{g(n)} = 5^n$. For any constant c > 0, if c < 1, then $5^{f(n)} > c \cdot 5^{g(n)}$ for all n > 0, otherwise we can show that for all $n \ge \lceil \log_5 c \rceil + 1$, $5^{f(n)} > c \cdot 5^{g(n)}$. This is because if $n \ge \lceil \log_5 c \rceil + 1$, then $5^n > c$, which further implies $5^{2n} > c \cdot 5^n$.