MA 227-103 — Summer 2017 — Dr. Clontz

Name:	Exercise Type:	
J#:	Quiz	
Date: 2017 July 12		
Standard: This student is able to		Mark:
S08: TransVar. Compute and apply a transformation of variables.		
3/3 * reat	tempt due on:	

Let $\mathbf{T}(u,v) = \langle 3u-v+2, 3u+2v-1 \rangle$ be the transformation from the unit triangle G with vertices $\langle 0,0 \rangle$, $\langle 1,0 \rangle$, $\langle 1,1 \rangle$ in the uv plane to the triangle R with vertices $\langle 2,-1 \rangle$, $\langle 5,2 \rangle$, $\langle 4,4 \rangle$ in the xy plane. Use this tranformation to calculate $\iint_R (y-x) \, dA$.

MA 227-103 — Summer 2017 — Dr. Clontz

Name:	Exercise Type:	
J#:	Quiz	
Date: 2017 July 12		
Standard: This student is able to C09: PolCylSph Apply polar, cylindrical, and spherical transformations of variables.		Mark:
1/4 * reat	tempt due on:	

Find $\iint_R \sqrt{9x^2 + 9y^2} \, dA$ where R is the quarter-disk where $0 \le y \le \sqrt{4 - x^2}$ and $0 \le x \le 2$.