EECS 499 Project 1

Image Tracking

Su Lu 04/05/2016

Contents:

- 1. Background
- 2. Experiment setup
- 3. Particle filter implementation
- 4. Result
- 5. Improvement

Experiment setup

Background

- Automatic suturing system on daVinci Robot
- Estimation of object deformationS
- Simplified 6-Dof rigid body motion (plate motion)
- Tracking plate motion by capturing beads motion (fiducials)
- ROS implementation

Particle filter implementation

- State X_t : 6-Dof (x, y, z, rot_x, rot_y, rot_z) expressed by transformation matrix from body to camera frame G_{cb}
- Measurement Z_t: Camera Image
- Control Ut: Matrix exponential evst.
 - V_s randomly generated spatial velocity
- Each particle represented a hypothesized transformation matrix G_{cb} or an image with 9 beads

line 4:

Eigen::Affine3d particle_trans_mat_update =
beadsGenerator.getNewTransformationMatrix(particles_set[i], delta_time);

line 5:

cv::matchTemplate(g_frame_in, expected_bead_pos_image, weight, CV_TM_CCOEFF_NORMED);

line 8 – 11: Using low variance sampler

```
Algorithm Low_variance_sampler(\mathcal{X}_t, \mathcal{W}_t):
                                                                                             1:
             Algorithm Particle_filter(\mathcal{X}_{t-1}, u_t, z_t):
1:
                                                                                                                \bar{\mathcal{X}}_t = \emptyset
                   \bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset
                                                                                                                r = \text{rand}(0; M^{-1})
3:
                   for m = 1 to M do
                                                                                                                c = w_t^{[1]}
                        sample x_t^{[m]} \sim p(x_t \mid u_t, x_{t-1}^{[m]})

w_t^{[m]} = p(z_t \mid x_t^{[m]})
4:
                                                                                                                i = 1
5:
                                                                                             6:
                                                                                                                for m = 1 to M do
                         \bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[m]}, w_t^{[m]} \rangle
6:
                                                                                                                      u = r + (m-1) \cdot M^{-1}
7:
                   endfor
                                                                                                                      while u > c
8:
                   for m=1 to M do
                                                                                             9:
                                                                                                                            i = i + 1
                         draw i with probability \propto w_t^{[i]}
                                                                                                                            c = c + w_t^{[i]}
9:
                                                                                             10:
                         add x_t^{[i]} to \mathcal{X}_t
                                                                                             11:
                                                                                                                      endwhile
10:
                                                                                                                      add x_t^{[i]} to \bar{\mathcal{X}}_t
                   endfor
11:
                                                                                             12:
12:
                   return \mathcal{X}_t
                                                                                             13:
                                                                                                                endfor
                                                                                             14:
                                                                                                                return \mathcal{X}_t
```

Results

Failed to tracking random rigid body motion

Possible reasons:

- 1. Number of particles too less (current 1000), need more?
- 2. Initial particles guess not correct?
- 3. Re-sample frequency, currently depend on delta time between loop, better to re-sample at fixed frequency 5s or 10s?

#	Message
#89002	Paritcle No. 20, normalized weight 0.001023
#89001	Paritcle No. 19, normalized weight 0.001023
#89000	Paritcle No. 18, normalized weight 0.001023
#88999	Paritcle No. 17, normalized weight 0.001023
#88998	Paritcle No. 16, normalized weight 0.001023
#88997	Paritcle No. 15, normalized weight 0.001023
#88996	Paritcle No. 14, normalized weight 0.001023
#88995	Paritcle No. 13, normalized weight 0.001023
#88994	Paritcle No. 12, normalized weight 0.001023
#88993	Paritcle No. 11, normalized weight 0.001023
#88992	Paritcle No. 10, normalized weight 0.001023
#88991	Paritcle No. 9, normalized weight 0.001023
#88990	Paritcle No. 8, normalized weight 0.001023
#88989	Paritcle No. 7, normalized weight 0.001023
#88988	Paritcle No. 6, normalized weight 0.001023
#88987	Paritcle No. 5, normalized weight 0.000002
#88986	Paritcle No. 4, normalized weight 0.001023
#88985	Paritcle No. 3, normalized weight 0.001023
#88984	Paritcle No. 2, normalized weight 0.001023
#88983	Paritcle No. 1, normalized weight 0.001023
#88982	Paritcle No. 0, normalized weight 0.001023

Improvements

- Tracking tissue deformation by particle filter
- Accurate Motion model by robot joint motion
- FEM Implementation to estimate soft tissue deformation