# Safe Reinforcement Learning

Jie Tan
CS 8803 Deep Reinforcement Learning for Intelligent Control
04/06/2022

# Why Safety















#### Goals

- Definition of safety
- Two ways to improve safety during learning
  - Constrained Markov Decision Process
  - Safe learning via shielding

### Brainstorming: What are Unsafe Behaviors?

- Autonomous cars: collision
- Legged robots: falling
- Robot manipulators: destroying the object in manipulation
- Investing: losing x% of values in the portfolio
- Data center cooling: overheating the servers
- Power grid: power supply shortage
- ...

### Safety as Constraints

- Autonomous cars: collision d < 0</li>
- Legged robots: falling h < 0.5m</li>
- Robot manipulators: destroying the object in manipulation f<sub>contact</sub> > 7N
- Investing: losing x% of values in the portfolio \$ < 1M</li>
- Data center cooling: overheating the servers t > 104°F
- Power grid: power supply shortage E<sub>generator</sub> E<sub>consumer</sub> < 0</li>
- ...

Soft Constraints

Safety Level I

**Probabilistic Constraints** 

Safety Level II

**Hard Constraints** 

Safety Level III



 $\mathbb{E}\left[\sum_{t=0}^T f_s(s_t,a_t)
ight] \geq 0$ 

#### **Probabilistic Constraints**

Safety Level II

**Hard Constraints** 

Safety Level III



**Hard Constraints** 

Safety Level III



### Constrained Markov Decision Process (CMDP)



$$f_s(\mathbf{s}_t, \mathbf{a}_t) \geq 0$$

#### **CMDP Problem Definition**



$$\max_{\pi \in \Pi} \mathbb{E}_{ au \sim 
ho_{\pi}} \left[ \sum_{t=0}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) 
ight]$$

#### **CMDP Problem Definition**



$$egin{aligned} \max_{\pi \in \Pi} \mathbb{E}_{ au \sim 
ho_{\pi}} \left[ \sum_{t=0}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) 
ight] \ ext{s.t.} \ \mathbb{E}_{(\mathbf{s}_{t}, \mathbf{a}_{t}) \sim 
ho_{\pi}} \left[ \sum f_{s}(\mathbf{s}_{t}, \mathbf{a}_{t}) 
ight] \geq 0 \end{aligned}$$

#### **CMDP Problem Definition**



$$egin{aligned} \max_{\pi \in \Pi} \mathbb{E}_{ au \sim 
ho_{\pi}} \left[ \sum_{t=0}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) 
ight] \ ext{s.t.} \ \mathbb{E}_{(\mathbf{s}_{t}, \mathbf{a}_{t}) \sim 
ho_{\pi}} \left[ \sum f_{s}(\mathbf{s}_{t}, \mathbf{a}_{t}) 
ight] \geq 0 \end{aligned}$$

# Solving CMDP: Lagrangian Method



$$\max_{\pi} \min_{\lambda \geq 0} \mathbb{E}_{\pi \sim 
ho_{\pi}} \left[ \sum_{t=0}^{T} r(s_t, a_t) + \lambda f_s(s_t, a_t) 
ight]$$

$$\max_{\pi} \min_{\lambda \geq 0} \mathbb{E}_{\pi \sim 
ho_{\pi}} \left[ \sum_{t=0}^{T} r(s_t, a_t) + \lambda f_s(s_t, a_t) 
ight]$$

# **Pseudocode**

- 1. Randomly initialize  $\pi$ , set  $\lambda = 0$
- 2. Roll out policy  $\pi$
- 3. Calculate policy gradient  $\frac{\partial \mathcal{L}}{\partial \pi}$ 4.  $\pi = \pi + \alpha \frac{\partial \mathcal{L}}{\partial \pi}$

- 5. Calculate gradient
  6.  $\lambda = \max(0, \lambda \beta \frac{\partial \mathcal{L}}{\partial \lambda})$ 7. Go to 2

### Case Study: Learning Locomotion in Real World



[Learning to Walk in the Real World with Minimal Human Effort, Ha et al. CoRL 2020]



#### Safety-Constrained SAC: Formulation

$$\max_{\pi \in \Pi} \mathbb{E}_{\tau \sim \rho_{\pi}} \left[ \sum_{t=0}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$
s.t. 
$$\mathbb{E}_{(\mathbf{s}_{t}, \mathbf{a}_{t}) \sim \rho_{\pi}} \left[ f_{s}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \geq 0, \ \forall t.$$

$$\mathbb{E}_{\rho_{\pi}} \left[ -\log \left( \pi_{t}(\cdot | \mathbf{s}_{t}) \right) \right] \geq \mathcal{H}$$
Entropy
Constraints

#### Safety-Constrained SAC: Formulation

$$\max_{\pi \in \Pi} \mathbb{E}_{\tau \sim \rho_{\pi}} \left[ \sum_{t=0}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$
 Safety Constraints s.t. 
$$\mathbb{E}_{(\mathbf{s}_{t}, \mathbf{a}_{t}) \sim \rho_{\pi}} \left[ f_{s}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \geq 0, \ \forall t$$
 
$$\mathbb{E}_{\rho_{\pi}} \left[ -\log \left( \pi_{t}(\cdot | \mathbf{s}_{t}) \right) \right] \geq \mathcal{H}$$

where

$$f_s(\mathbf{s}_t, \mathbf{a}_t) = \min(\hat{p} - |p_t|, \hat{r} - |r_t|)$$

#### Safety-Constrained SAC: Evaluation







### Learning on challenging terrains





Memory foam

Rubber mat with crevices

#### Limitations

- Unsafe events can still happen, though less frequently
- Hard to specify safety constraints in many applications
  - Can we learn safety constraints? [Recovery RL: Safe Reinforcement Learning with Learned Recovery Zones, Thananjeyan et al. RA-L, 2021]















#### Two Questions

How to decide whether an action is safe?



#### Two Questions

- How to decide whether an action is safe?
- Where does the safety policy come from?



#### Two Questions

- How to decide whether an action is safe?
  - Manually specified threshold on actions (e.g. torque limit, joint limit)
  - Future state in safe set by model rollout
  - Query pretrained safety critic: <u>[Learning to be Safe: Deep RL with a Safety Critic, Srinivasan et al. 2020]</u>
- Where does the safety policy come from?
  - Simple engineered solution (e.g. stop)
  - Traditional model-based control (e.g. model-predictive control)
  - Learned safety policy in simulation
    - domain randomization
    - adversarial training: [Robust Adversarial Reinforcement Learning, Pinto et al. ICML,
       2017]

### Case Study: Navigation



### System Overview



# Result of Shielding





Without shielding

With shielding

### Case Study: Locomotion



### System Overview



### System Details

- Safe constraint
  - Thresholds on roll and pitch of the base
- Safe policy
  - Model-predictive control based on simplified dynamics
  - RL to modulate MPC parameters (stepping frequency, swing location, etc.)
  - Trained in simulation with domain randomization

# Training Process (Timelapse)



### Results: Two-Leg Balance



#### Results: Catwalk



#### Limitations

- Switching between two policies can lead to unsafe jerky motions
- Hard to balance between safety and learning efficiency
- Difficult to design or learn safety policies for complex tasks

### Summary

- Formulate safety as constraints
- Two ways to improve safety during learning
  - Constrained Markov Decision Process
  - Safe learning via shielding