Solution of the Problems – Exam (May 2013/14)

Question 1: Reheat and Regenerative Rankine cycle with two turbines:

(a) In order to fill the Table we need to calculate the thermodynamic properties for each stage of the cycle

Figure 1: Reheat and regenerative Rankine cycle with 2 turbines.

Stage 1: The fluid leaving the boiler towards the first turbine is at 120 bar and 565°C. This is well above the saturation temperature ($T_{\rm sat} = 324.60$ °C) and we can thus confirm that the fluid is superheated steam (1 Mark). At such pressure, the superheated steam tables (SHST) results in (through linear interpolation) $H_1 = 3518.17 \frac{kJ}{kq}$ (1 Mark) and $S_1 = 6.6983 \frac{kJ}{kq.K}$ (1 Mark).

Stage 2: Isentropic expansion in *HP Turbine* at $P_2 = 3$ bar $\Leftrightarrow S_2 = S_1 = 6.6983 \frac{kJ}{ka.K}$. The fluid is at wet vapour state. The quality of the steam is

$$x_2 = \frac{S_2 - S_f}{S_g - S_f} = \frac{6.6983 - 1.6716}{6.9909 - 1.6716} = 0.9450 \ (1Mark)$$

Now calculating the enthalpy,

$$x_2 = \frac{H_2 - H_f}{H_q - H_f} = 0.9450 \Leftrightarrow H_2 = 2605.72 \frac{kJ}{kg}$$
 (1Mark)

Stage 3: The fluid at $P_3 = P_2 = 3.0$ bar and $T_3 = 250^{\circ}C$ (>> $T_{\rm sat} = 133.5^{\circ}C$) is superheated steam with $H_3 = 2967.6 \frac{kJ}{kq}$ and $S_3 = 7.517 \frac{kJ}{kq.K}$.

- **Stage 4:** The steam leaves the boiler towards the LP turbine at $P_4 = P_3 = 3.0$ bar and $T_4 = 475^{\circ}C$ (also as superheated steam) with (via linear interpolation) $H_4 = 3433.33 \frac{kJ}{kq}$ and $S_4 = 8.252 \frac{kJ}{kq}$.
- **Stage 5:** Isentropic expansion with $P_5 = 0.060$ bar (with $S_5 = S_4$). The quality of the steam is

$$x_5 = \frac{S_5 - S_f}{S_a - S_f} = \frac{8.252 - 0.521}{8.330 - 0.521} = 0.99 \text{ (1Mark)}$$

and the enthalpy,

$$x_5 = 0.99 = \frac{H_5 - H_f}{H_q - H_f} = \frac{H_5 - 151.5}{2567.4 - 151.5} \Leftrightarrow H_5 = 2543.24 \frac{kJ}{kg}$$
 (1Mark)

- **Stage 6:** The fluid leaves the condenser at $P_6 = P_5 = 0.06$ bar is saturated liquid with $H_6 = H_f (0.06 \text{ bar}) = 151.5 \frac{kJ}{kg}$ (1 Mark).
- **Stage 7:** Saturated and incompressible liquid leaving the pump towards the regenerator at $P_7 = P_2 = 3.0$ bar,

$$\begin{split} & H_7 & \approx H_6 + V_6 \left(P_7 - P_6 \right) \\ & \approx 151.5 \frac{kJ}{kg} + 0.001006 \frac{m^3}{kg} \left(3 - 0.06 \right) \text{bar} \times \frac{10^5 kg / \left(m.s^2 \right)}{1 \text{ bar}} \times \frac{10^{-3} \frac{kJ}{kg}}{m^2/s^2} \times \frac{1}{0.61} \\ & \approx 151.795 \frac{kJ}{kg} \left(1 \text{ Mark} \right) \end{split}$$

Stage 8: Saturated liquid water leaving the regenerator at $P_8=3.0$ bar with $H_8=H_f\left(3.0\text{ bar}\right)=561.4\frac{kJ}{kg}$ and $V_8=0.001068\frac{m^3}{kg}$.

Stage 9: Saturated and incompressible liquid at $P_9 = 120$ bar,

$$\begin{array}{ll} H_9 & \approx & H_8 + V_8 \, (P_9 - P_8) \\ \\ & \approx & 561.4 \frac{kJ}{kg} + 0.001068 \frac{m^3}{kg} \, (120 - 3) \, \mathrm{bar} \times \frac{10^5 kg/ \, (m.s^2)}{1 \, \mathrm{bar}} \times \frac{10^{-3} \frac{kJ}{kg}}{m^2/s^2} \times \frac{1}{0.61} \\ \\ & \approx & 573.90 \, \frac{kJ}{kg} \, \, (1 \, Mark) \end{array}$$

Thus the Table becomes:

Stage	P	T	State	Н	S	Steam
	(bar)	$(^{o}\mathbf{C})$		$(\mathbf{kJ}.\mathbf{kg}^{-1})$	$(\mathbf{kJ.}(\mathbf{kg.K})^{-1})$	Quality
1	120	565	Superheated vapour	3518.17	6.6983	_
2	3	_	wet vapour	2605.72	_	0.9450
3	3	250	_	_	_	-
4	3	475	_	_	_	_
5	0.06	_	wet vapour	2543.24	_	0.99
6	_	_	sat.liquid	151.5	_	_
7	3	_	_	151.8	_	_
8	3	_	_	_	_	_
9	120	_	-	573.90	_	_

(b) Energy balance in the regenerator, assuming total mass of water of $(m_T =) 1$ kg, and that a fraction, \mathcal{F} , is bled-off from the HP turbine to the regenerator, and the remaining water-steam, $1 - \mathcal{F}$ is conducted back to the boiler.

$$m_{\rm T}H_8 = \mathcal{F}H_2 + (1 - \mathcal{F})H_7 \Rightarrow \mathcal{F} = 0.1669kg$$

Thus 83.3% $(1 - \mathcal{F})$ of the steam was supplied to the LP turbine (2 Marks).

(c) The heat supplied by the boiler (Q_{Boiler}) can be calculated through the energy balance,

$$Q_{\text{Boiler}} = [m_{\text{T}}H_1 + (1 - \mathcal{F})H_4] - [(1 - \mathcal{F})H_3 + m_{\text{T}}H_9] \Rightarrow Q_{\text{Boiler}} = 3332.27 \frac{kJ}{kg}$$

(2 Marks).

(d) Now, in order to calculate the thermal efficiency of the cycle,

$$\eta = \frac{W_{Total}}{Q_{Boiler}} = \frac{\sum W_{\text{Turbines}} - \sum W_{\text{Pumps}}}{Q_{\text{Boiler}}}$$

We need to calculate the work associated with the turbines and pumps.

HP Turbine:
$$W_{\text{T,HP}} = m_{\text{T}}H_1 - [\mathcal{F}H_2 + (1 - \mathcal{F})H_3] = 610.97 \frac{kJ}{kg}$$
 (1 Mark)

LP Turbine:
$$W_{\text{T,LP}} = (1 - \mathcal{F}) (H_4 - H_5) = 741.53 \frac{kJ}{kg} (1 \text{ Mark})$$

Pump 1:
$$W_{P,1} = (1 - \mathcal{F}) (H_7 - H_6) = 0.246 \frac{kJ}{kg} (1 \text{ Mark})$$

Pump 2:
$$W_{P,2} = m_T (H_9 - H_8) = 12.4 \frac{kJ}{kq}$$
 (1 Mark)

Thus the thermal efficiency of the cycle is,

$$\eta = \frac{\sum W_{\text{Turbines}} - \sum W_{\text{Pumps}}}{Q_{\text{Boiler}}} = \frac{1339.76}{3332.27} = 0.4021 \quad (2Marks)$$

Question 2:

Question 3:

Question 4: Figure 2 shows the refrigeration cycle operating as a heat pump with R-134a.

Figure 2: Heat pump cycle (Question 4).

- (a) Calculating all enthalpies and entropies of the cycle:
 - **Stage 1:** The refrigerant fluid leaves the evaporator at $P_1 = 2$ bar and $T_1 = 10^{\circ}C >> T_{\text{sat}} = -10.09^{\circ}C$, thus the fluid is at *superheated vapour* state and with $H_1 = 258.89 \frac{kJ}{kg}$ (1 Mark) and $S_1 = 0.9898 \frac{kJ}{kg.K}$ (1 Mark).
 - **Stage 2:** Isentropic compression, $S_2 = S_1$ (1 Mark), and assuming ideal compressor at $P_2 = 14$ bar. Via linear interpolation, $H_2 = 303,66 \frac{kJ}{kg}$ (1 Mark) and $T_2 = 77.08^{\circ}C$.
 - **Stage 3:** The fluid leaves the condenser at $P_3=14$ bar and $T_3=15^{\circ}C$ ($<< T_{\rm sat}=52.4^{\circ}C$) is a *sub-cooled liquid* with $H_3=125.26\frac{kJ}{kg}$ (1 Mark) and $S_3=0.4453\frac{kJ}{kg.K}$ (1 Mark).
 - **Stage 4:** Isenthalpic process, $H_4 = H_3$ (1 Mark), at $P_4 = 2$ bar. Calculating the quality of the vapour,

$$x_4 = \frac{H_4 - H_f}{H_g - H_f} = \frac{125.26 - 36.84}{241.30 - 36.84} = 0.4325$$

and the entropy,

$$x_4 = \frac{S_4 - S_f}{S_g - S_f} = \frac{S_4 - 0.1481}{0.9253 - 0.1481} \Rightarrow S_4 = 0.4842 \frac{kJ}{kg.K}$$
 (1 Mark)

(b) In order to calculate the volumetric flow rate of heated air, we first need to determine

the mass flow rate,

$$\begin{split} Q_{H} &= \dot{m}_{\rm air} \left(H_{\rm out}^{\rm air} - H_{\rm in}^{\rm air}\right) = \dot{m}_{\rm air} C_{p}^{\rm air} \left(T_{\rm out}^{\rm air} - T_{\rm in}^{\rm air}\right) \\ 6 \tan \times \frac{210 \frac{kJ}{\rm min}}{1 \ \rm ton} \times \frac{1 \ \rm min}{60s} = \dot{m}_{\rm air} \times 1.004 \frac{kJ}{kg.K} \left(40 - 15\right)^{\rm o} C \\ \dot{m}_{\rm air} &= 0.8367 \frac{kg}{s} \end{split}$$

Now for the volumetric flow rate (with $T=40^{\circ}C$ and P=1.01325 bar)

$$\dot{V}_{\rm air}^{\rm out} = \dot{m}_{\rm air} V_{\rm air}^{\rm out} = \dot{m}_{\rm air} \frac{RT_{\rm air}^{\rm out}}{P_{\rm air}} \Rightarrow \dot{V}_{\rm air}^{\rm out} = 7.42 \times 10^{-4} \frac{m^3}{s}$$
 (3 Marks)

(c) The mass flow rate of the refrigerant fluid R-134a can be calculated as,

$$Q_H = \dot{m}_R (H_2 - H_3) \Rightarrow \dot{m}_R = 0.1177 \frac{kg}{s}$$
 (3 Marks)

(d) The compressor power,

$$W_C = \dot{m}_R (H_2 - H_1) \Rightarrow W_C = 5.27 \ kW \ \ (3 \ Marks)$$

(e) And the COP,

$$COP = \frac{Q_H}{W_C} = 3.98 \ (3 \text{ Marks})$$

Question 5: 1. This is a dual combustion cycle and the TS (2 Marks) and PV (2 Marks) diagrams are:

Figure 3: Dual combustion cycle – PV and TS (rhs) diagrams (Question 5).

- 2. Thermal analysis, for $m \log$ of air:
 - (a) Total heat supplied (2–3 + 3–4): $m\left[C_v\left(T_3-T_2\right)+C_p\left(T_4-T_3\right)\right]$ (2 Marks)
 - (b) Total heat rejected (5–1): $mC_v (T_5 T_1)$ (2 Marks)
 - (c) Net Work: $W_{\mathrm{net}}=m\left[C_v\left(T_3-T_2\right)+C_p\left(T_4-T_3\right)-C_v\left(T_5-T_1\right)\right]$ (2 Marks)