First-Order vs. Second-Order Encodings for LTL_f -to-Automata

Shufang Zhu ¹ Geguang Pu ¹ Moshe Y. Vardi ²

¹East China Normal University

²Rice University

Introduction

 LTL_f: Linear Temporal Logic (LTL) over finite traces [De Giacomo & Vardi, IJCAl'13]

Planning in robotics

Business process modeling

 LTL_f to Deterministic Finite Automata (DFA): a critical step in many applications of LTL_f

Linear Temporal Logic over Finite Traces (LTL $_f$)

LTL_f formulas

- ullet a set ${\mathcal P}$ of propositional symbols
- closed under
 - boolean connectives, Negation(\neg), And(\land), Or(\lor)
 - temporal operators, Next(X), Until(U), Eventually(F), Release(R), Always(G)

Example

 $\rho \models X\varphi$ next time step exists, and φ holds at the next time step

Note: LTL_f formula ϕ , DFA D such that ρ is accepted by D iff $\rho \models \phi$

LTL_f-to-Automata

- No direct tool for LTL_f-to-DFA
- MONA [Henriksen et al., 1995]:

First-order or Second-order logic over finite traces \rightarrow minimized DFAs

• First-order: quantifications over positions of the trace

$$\exists i, j.i < j$$

 Second-order: quantifications over relations of the positions of the trace

$$\exists R.R(i,j)$$

First-Order vs. Second-Order

- First-order (FOL) encoding: LTL $_f$ formula to FOL [De Giacomo & Vardi, IJCAl'13]
- Second-order encoding?

Question:

Whether second-order (MSO) encoding can outperform first-order (FOL) encoding for LTL_f -to-automata translation?

Our Contributions

- Second-order encodings for LTL_f, simpler quantificational structure
 - MSO encoding: Direct translation from LTL_f to MSO
 - Semantics-driven translation
 - Compact MSO encoding: Indirect translation from LTL_f to MSO
 - Benefit from automata-theoretic minimization
 - Variations in terms of different optimizations
- First evaluation of the spectrum of encodings for LTL_f-to-Automata from first-order to second-order

MSO Encoding

Key Idea: Semantics-driven translation

- For each subformula θ of ϕ
 - Predicate Q_{θ}
 - $\mathsf{t}(\theta,i)$ (defined recursively) restricts Q_{θ} to follow the semantics of θ , such that $Q_{\theta}(i) \leftrightarrow \theta$ holds at i

Example: $\theta = X\psi$, ρ satisfies θ at i iff $i \neq last$ and ρ satisfies ψ at i+1

- Predicates: Q_{θ}, Q_{ψ}
- $\mathsf{t}(\theta, i) = (\forall i)(Q_{\theta}(i) \leftrightarrow ((i \neq \mathit{last}) \land Q_{\psi}(i+1)))$

Formulation: $\mathsf{mso}(\phi) = (\exists Q_{\theta_1}) \cdots (\exists Q_{\theta_m}) (Q_{\phi}(0) \land (\forall i) (\bigwedge_{k=1}^m \mathsf{t}(\theta_k, i))$

Compact MSO Encoding

Key Idea: Benefit from automata-theoretic minimization

Crux: encoding based on the symbolic representation of the **reversed** DFA as Binary Decision Diagrams (BDDs)

Optimizations of Second-Order Encodings

- In the normal form: Boolean Normal Form (BNF) and Negation Normal Form (NNF) [Rozier & Vardi, 2011]
- In the predicate form: Lean MSO encoding introduces fewer predicates than the Full MSO encoding [Pan, Sattler & Vardi, 2002]
- In the constraint form: the Sloppy MSO encoding allows less tight constraint than the Fussy MSO encoding [Pan, Sattler & Vardi, 2003]

Experimental Evaluation

- First-order encoding
- 6 MSO encodings $(2^3 2 = 6)$
 - the Normal Form (BNF or NNF)
 - the Predicate Form (Full or Lean)
 - the Constraint Form (Fussy or Sloppy): Sloppy cannot be applied to BNF
- 2 Compact MSO encodings
 - the Constraint Form (Fussy or Sloppy)
- MONA: logic specifications to DFA

Less predicates (Lean) is more effective for MSO encodings

First-order encoding dominates Second-order encodings

Why First-order better?

$$\mathsf{mso}(\phi) = (\exists Q_{\theta_1}) \cdots (\exists Q_{\theta_m}) (Q_{\phi}(0) \land (\forall i) (\bigwedge_{k=1}^m \mathsf{t}(\theta_k, i))$$

• MONA: process quantifiers over predicates one by one

Future Work

Better quantifier elimination strategy: a whole block of similar quantifiers in one operation

Conclusions

- ullet Second-order encoding for LTL $_f$ formulas with different optimizations
- First-order dominates Second-order for LTL_f-to-automata translation
- ullet Potential for further improvement in second-order encoding for LTL $_f$