

SÍLABO MECÁNICA DE SUELOS I

ÁREA CURRICULAR: TECNOLOGÍA

CICLO: VI CURSO DE VERANO 2018-I

I. CÓDIGO DEL CURSO : 09026106040

II. CRÉDITOS : 04

III. REQUISITOS : 09025102020 Geología General

IV. CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso de Mecánica de Suelos I es un curso teórico-práctico y experimental. El propósito del curso es brindar al estudiante los conceptos básicos de la Mecánica de Suelos y sus aplicaciones en las obras civiles.

El desarrollo del curso comprende: I. Principios de Geotecnia, Geología Aplicada en suelosrelaciones volumétricas y gravimétricas en los suelos y II. Clasificación de Suelos y Flujo de agua a través de medios porosos (suelo).

VI. FUENTES DE CONSULTA:

- Manuel de Matos Fernandes (2015). Mecânica dos Solos (Volumen 1 y 2). 2ª ed. FEUP edições – Portugal.
- Braja M. Das (2013). Fundamentos de Ingeniería Geotécnica. 4ª. Ed. CENGAGE Learning.
- Jean-Louis Briaud (2013). Geotechnical Engineering: Unsaturated and Saturated Soil. Wiley Canada
- Robert D. Holtz and William D. Kovacs (1981). *An Introduction to Geotechnical Engineering*. Prentice Hall International UK.
- · Juárez Badillo y Rico Rodríguez. (2001) Mecánica de Suelos (Tomo 1 y 2).
- Lambe, William (2004). Mecánica de suelos. Ed. Limusa, México.
- · Bowles, J. (2010). Manual de Laboratorio de Suelos. Ed. UNI, Lima.
- · Cambefort, Henri (2000). Geotecnia del Ingeniero. Ed. Editores Técnicos Asociados S.A, Barcelona.
- Jiménez Solas, J (2011). Geotecnia del Ingeniero. Ed. Rueda. Madrid.
- Rico Del Castillo (2009). La Ingeniería de Suelos en las vías terrestres Vol. 1. Ed. Limusa, México.
- · Terzaghi, C. y Ralf Peck (2010). *Mecánica suelos en la Ingeniería práctica*. Ed. Limusa, México.

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: PRINCIPIOS DE GEOTECNIA, GEOLOGÍA APLICADA EN SUELOS-RELACIONES VOLUMÉTRICAS Y GRAVIMÉTRICAS EN LOS SUELOS.

OBJETIVOS DE APRENDIZAJE

- Conocer la Importancia de la Mecánica de suelos en la Construcción
- Conocer las propiedades física de los suelos.
- Aplicar los conceptos teóricos para resolver los problemas.
- Utilizar las especificaciones del reglamento correspondiente a esta unidad.

PRIMERA SEMANA

Primera sesión:

Mecánica de Suelos: Introducción e importancia de la Mecánica de suelos. Desarrollo Histórico de la Mecánica de Suelos.

Segunda sesión:

Geotécnica: Importancia dentro de la Ingeniería Civil. Campos de acción en la Ingeniería moderna.

SEGUNDA SEMANA

Primera sesión:

Agentes generadores de suelos residuales y transportados. Presentación Trabajo 1.

Segunda sesión:

Minerales constitutivos de los suelos gruesos y de las arcillas.

TERCERA SEMANA

Primera sesión:

Físico – Químico de las arcillas: Identificación de las arcillas, relaciones entre la fase sólida y líquida de una arcilla.

Segunda sesión:

Relaciones volumétricas y gravimétricas en los suelos.

CUARTA SEMANA

Primera sesión:

Relaciones de pesos y volúmenes. Fórmulas.

Segunda sesión:

Correlación entre la relación de vacíos, y la porosidad. Fórmulas referentes a suelos saturados y para suelos parcialmente saturados.

QUINTA SEMANA

Primera sesión:

Determinación en Laboratorio del Peso específico de la masa de un suelo. Problemas.

Segunda sesión:

Determinación en Laboratorio de la relación de vacíos de un suelo y el contenido de agua de un suelo. Problemas.

SEXTA SEMANA

Primera sesión:

Granulometría de Suelos. Sistemas de clasificación de Suelos basados en criterios de granulometría.

Segunda sesión:

Análisis Mecánico de la clasificación de un Suelo. Representación grafica de la distribución granulométrica.

SÉPTIMA SEMANA

Primera sesión:

Plasticidad: Estados de consistencia; límite líquido, límite plástico.

Segunda sesión:

Consideraciones sobre los límites de contracción, índice de tenacidad de los suelos.

OCTAVA SEMANA

Examen Parcial

NOVENA SEMANA

Primera sesión:

Clasificación e identificación de Suelos: Sistema único de clasificación de Suelos (SUCS).

Segunda sesión:

Sistema de clasificación de Suelos según ASSTO.

DÉCIMA SEMANA

Primera sesión:

Determinación en laboratorio, la clasificación de Suelos según SUCS.

Segunda sesión:

Determinación en laboratorio, la clasificación de Suelos según AASHTO.

UNDÉCIMA SEMANA

Primera sesión:

Prácticas de Laboratorio Humedad, Granulometría, Limites Líquido y Plástico **Segunda sesión:**

Clasificación de suelos, Permeabilidad, Compactación.

UNIDAD II: CLASIFICACIÓN DE SUELOS E HIDRÁULICA EN SUELOS

OBJETIVOS DE APRENDIZAJE

- Elaborar, una unidad de medida haciendo uso de tablas y ábacos.
- Representar, gráficamente los parámetros hidráulicos en los suelos.
- Aplicar, las propiedades hidráulicas del suelo usando método analítico.
- Experimentar, los parámetros de medida usando computadora mediante un Software.
- Expresar, resultados operaciones de una magnitud hidráulica del suelo, usando unidades de medida.
- Participar, en el desarrollo de las ecuaciones del coeficiente de permeabilidad de los suelos, mediante los métodos analítico y grafico.

DUODÉCIMA SEMANA

Primera sesión:

Propiedades hidráulicas de suelos: flujo luminar y flujo turbulento.

Segunda sesión:

Ley de Darcy y Coeficiente de Permeabilidad.

DECIMOTERCERA SEMANA

Primera sesión:

Fuerzas de filtración y condiciones de limación.

Segunda sesión:

Métodos para medir el coeficiente de permeabilidad del suelo.

DECIMOCUARTA SEMANA

Primera sesión:

Fenómeno capilar y proceso de contracción: Tensión superficial.

Segunda sesión:

Elementos de Hidráulica.

DECIMOQUINTA SEMANA

Primera sesión:

Densidad de campo. Importancia.

Segunda sesión:

Compactación del suelo: Problemas en Suelos de Lima.

DECIMOSEXTA SEMANA

Examen Final

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a.- Matemática y Ciencias Básicas
b.- Tópicos de Ingeniería
c.- Educación General
0

IX. PROCEDIMIENTOS DIDÁCTICOS

Las clases se realizan estimulando la capacitación activa de los estudiantes, mediante el desarrollo de ejercicios y trabajos prácticos grupales, duales e individuales. Los alumnos se organizarán en grupos para investigar e intercambiar experiencias de aprendizaje y trabajo. Las exposiciones del docente orientaran el trabajo grupal al completar o sistematizar información bibliográfica.

X EQUIPOS Y MATERIALES

Equipos:

Retroproyector, videograbadora, computadora, ecran, proyector de multimedia.

Materiales:

Separatas, transparencias, videocasete, direcciones electrónicas, power point.

XI. EVALUACIÓN

PF = (2*PE + EP + EF) / 4PE = (PPR + W1 + PL)/3

PPR = (P1 + P2)/2

PL = (Lb1+Lb2+Lb3+Lb4+Lb5+Lb6)/6+EO)/2

Donde:

 $\begin{array}{ll} \mbox{PF = Promedio Final.} & \mbox{EP = Examen Parcial} \\ \mbox{PE = Promedio de Evaluaciones} & \mbox{EF = Examen Final.} \\ \end{array}$

P1, P2= Prácticas calificadas PL = Promedio laboratorio. W1 = Trabajo Lb1...Lb6: Notas de laboratorio

EO = Examen de Laboratorio PPR = Promedio de prácticas calificadas

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería Civil, se establece en la tabla siguiente:

K = clave R = relacionado Recuadro vacío = no aplica

(a)	Aplicar conocimientos de matemáticas, ciencia, tecnología e ingeniería	K	
(b)	Diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos		
(c)	Diseñar sistemas, componentes o procesos de acuerdo a las necesidades requeridas y restricciones económicas, ambientales, sociales, políticas, éticas, de salubridad y seguridad.		
(d)	Trabajar adecuadamente en un equipo multidisciplinario.		
(e)	Identificar, formular y resolver problemas de ingeniería.		
(f)	Comprensión de lo que es la responsabilidad ética y profesional.		
(g)	Comunicarse, con su entorno, en forma efectiva.		
(h)	Entender el impacto que tienen las soluciones de la ingeniería civil, dentro de un contexto global, económico, ambiental y social.		
(i)	Aprender a aprender, actualizándose y capacitándose a lo largo de su vida.		
(j)	Tener conocimiento de los principales problemas contemporáneos de la carrera de ingeniería civil		
(k)	Usar técnicas y herramientas modernas necesarias en la práctica de la ingeniería civil y ramas afines	K	

XIII. HORARIO, SESIONES, DURACIÓN

a) Horario de clases:

Teoría	Práctica	Laboratorio
3	0	2

b) Sesiones por semana: Dos sesiones

c) Duración: 5 horas académica de 45 minutos

XIV JEFE DEL CURSO

Ing. Gary Duran Ramírez

XV. FECHA:

La Molina, enero de 2018.