COMS 4771 Lecture 3

1. Nearest neighbor classification.

NEAREST NEIGHBOR CLASSIFICATION

Let $(X,Y) \sim P$.

The classifier $f \colon \mathcal{X} \to \mathcal{Y}$ with the smallest prediction error

$$\operatorname{err}(f) = \Pr[f(X) \neq Y]$$

is the **Bayes classifier**

$$f^{\star}(x) = \underset{y \in \mathcal{Y}}{\operatorname{arg\,max}} \operatorname{Pr}[Y = y \mid X = x].$$

Let $(X,Y) \sim P$.

The classifier $f \colon \mathcal{X} \to \mathcal{Y}$ with the smallest prediction error

$$\operatorname{err}(f) = \Pr[f(X) \neq Y]$$

is the Bayes classifier

$$f^{\star}(x) = \underset{y \in \mathcal{Y}}{\operatorname{arg\,max}} \operatorname{Pr}[Y = y \mid X = x].$$

Of course, we don't know P, and hence can't generally get a handle of f^* .

Let $(X,Y) \sim P$.

The classifier $f \colon \mathcal{X} \to \mathcal{Y}$ with the smallest prediction error

$$\operatorname{err}(f) = \Pr[f(X) \neq Y]$$

is the Bayes classifier

$$f^{\star}(x) = \underset{y \in \mathcal{Y}}{\operatorname{arg\,max}} \operatorname{Pr}[Y = y \, \Big| \, X = x].$$

Of course, we don't know P, and hence can't generally get a handle of f^* . What can we do?

▶ Last lecture: use "generative" models to approximate Pr[Y = y | X = x].

Let $(X,Y) \sim P$.

The classifier $f \colon \mathcal{X} \to \mathcal{Y}$ with the smallest prediction error

$$\operatorname{err}(f) = \Pr[f(X) \neq Y]$$

is the Bayes classifier

$$f^{\star}(x) = \underset{y \in \mathcal{Y}}{\operatorname{arg\,max}} \operatorname{Pr}[Y = y \mid X = x].$$

Of course, we don't know P, and hence can't generally get a handle of f^* . What can we do?

- ▶ Last lecture: use "generative" models to approximate Pr[Y = y | X = x].
- ▶ This lecture: directly approximate the decision boundaries of f^* .

discriminative model

Text

NEAREST NEIGHBOR (NN) CLASSIFIER

Given training data $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n) \in \mathcal{X} \times \mathcal{Y}$, construct $\hat{f} \colon \mathcal{X} \to \mathcal{Y}$ as follows:

On input x,

- 1. Let x_i be the point among x_1, x_2, \ldots, x_n that is closest to x.
- 2. Return y_i .

NEAREST NEIGHBOR (NN) CLASSIFIER

Given training data $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n) \in \mathcal{X} \times \mathcal{Y}$, construct $\hat{f} \colon \mathcal{X} \to \mathcal{Y}$ as follows:

On input x,

- 1. Let x_i be the point among x_1, x_2, \ldots, x_n that is closest to x.
- 2. Return y_i .

Question: how should we measure distance between points in \mathcal{X} ?

DISTANCES

A default choice of distance for data in \mathbb{R}^d :

Euclidean (
$$\ell_2$$
) distance : $\|oldsymbol{u} - oldsymbol{v}\|_2 := \sqrt{\sum_{i=1}^d (u_i - v_i)^2}.$

DISTANCES

A default choice of distance for data in \mathbb{R}^d :

Euclidean (
$$\ell_2$$
) distance : $\|oldsymbol{u}-oldsymbol{v}\|_2 := \sqrt{\sum_{i=1}^d (u_i-v_i)^2}.$

But there are many other (and often better) options ...

Example: OCR with NN classifier

▶ Handwritten digits data: grayscale 28×28 images, treated as vectors in \mathbb{R}^{784} , with labels indicating the digit they represent.

0123466789

Example: OCR with NN classifier

▶ Handwritten digits data: grayscale 28×28 images, treated as vectors in \mathbb{R}^{784} , with labels indicating the digit they represent.

▶ Split into training data S (60000 points) and test data T (10000 points).

EXAMPLE: OCR WITH NN CLASSIFIER

▶ Handwritten digits data: grayscale 28×28 images, treated as vectors in \mathbb{R}^{784} , with labels indicating the digit they represent.

- ▶ Split into training data S (60000 points) and test data T (10000 points).
- ▶ Training error: $err(\hat{f}, S) = 0$

EXAMPLE: OCR WITH NN CLASSIFIER

▶ Handwritten digits data: grayscale 28×28 images, treated as vectors in \mathbb{R}^{784} , with labels indicating the digit they represent.

- ▶ Split into training data S (60000 points) and test data T (10000 points).
- ► Training error: $\operatorname{err}(\hat{f}, S) = 0$ Test error: $\operatorname{err}(\hat{f}, T) = 0.0309$
- \blacktriangleright Examples of mistakes (test point in T, nearest neighbor in S):

35

54

4 1

EXAMPLE: OCR WITH NN CLASSIFIER.

Handwritten digits data: grayscale 28×28 images, treated as vectors in \mathbb{R}^{784} , with labels indicating the digit they represent.

- ▶ Split into training data S (60000 points) and test data T (10000 points).
- ▶ Training error: $err(\hat{f}, S) = 0$ Test error: $\operatorname{err}(\hat{f}, T) = 0.0309$
- \triangleright Examples of mistakes (test point in T, nearest neighbor in S):

▶ Observation: First mistake (correct label is '2') might've been avoided by looking at three nearest neighbors (whose labels are '8', '2', '2') ...

977

test point three nearest neighbors

k-nearest neighbors classifier

Given training data $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n) \in \mathcal{X} \times \mathcal{Y}$, construct $\hat{f}_k \colon \mathcal{X} \to \mathcal{Y}$ as follows:

On input x,

- 1. Let $x_{i_1}, x_{i_2}, \ldots, x_{i_k}$ be the k points among x_1, x_2, \ldots, x_n that are closest to x.
- 2. Return the plurality of $y_{i_1}, y_{i_2}, \dots, y_{i_k}$.

(Break ties in both steps arbitrarily.)

k-nearest neighbors classifier

Given training data $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n) \in \mathcal{X} \times \mathcal{Y}$, construct $\hat{f}_k \colon \mathcal{X} \to \mathcal{Y}$ as follows:

On input x,

- 1. Let $x_{i_1}, x_{i_2}, \ldots, x_{i_k}$ be the k points among x_1, x_2, \ldots, x_n that are closest to x.
- 2. Return the plurality of $y_{i_1}, y_{i_2}, \dots, y_{i_k}$.

(Break ties in both steps arbitrarily.)

Example: OCR with k-NN classifier

k	1	3	5	7	9
$\operatorname{err}(\hat{f}_k, T)$	0.0309	0.0295	0.0312	0.0306	0.0341

Effect of k

In general:

- ▶ Smaller $k \Rightarrow$ smaller training error. ($k = 1 \Rightarrow$ has zero training error.)
- ▶ Larger $k \Rightarrow$ predictions are more "stable" due to voting.

Purple dotted lines: Bayes classifier's decision boundaries. Black solid lines: *k*-NN's decision boundaries.

Question: how do we choose k (say, from some subset of $\mathbb N$ like $\{1,3,5,7,9\}$)?

Question: how do we choose k (say, from some subset of $\mathbb N$ like $\{1,3,5,7,9\}$)?

 $\blacktriangleright \ \ \, \text{Minimizer of test error: } \hat{k} := \arg\min_{k} \operatorname{err}(\hat{f}_k, T).$

Question: how do we choose k (say, from some subset of $\mathbb N$ like $\{1,3,5,7,9\}$)?

▶ Minimizer of test error: $\hat{k} := \underset{k}{\operatorname{arg \, min}} \operatorname{err}(\hat{f}_k, T)$.

Caveat: $\hat{f}_{\hat{k}}$ is no longer independent of T!

Question: how do we choose k (say, from some subset of $\mathbb N$ like $\{1,3,5,7,9\}$)?

▶ Minimizer of test error: $\hat{k} := \underset{k}{\operatorname{arg \, min \, err}} (\hat{f}_k, T)$.

Caveat: $\hat{f}_{\hat{k}}$ is no longer independent of T!

 \implies Test error is not an unbiased estimate of true error of $\hat{f}_{\hat{k}}$.

Question: how do we choose k (say, from some subset of \mathbb{N} like $\{1,3,5,7,9\}$)?

▶ Minimizer of test error: $\hat{k} := \arg\min_{k} \operatorname{err}(\hat{f}_k, T)$.

Caveat: $\hat{f}_{\hat{k}}$ is no longer independent of T!

- \Longrightarrow Test error is not an unbiased estimate of true error of $\hat{f}_{\hat{k}}$.
- ▶ Better alternatives: For any set of labeled examples $A \subseteq \mathcal{X} \times \mathcal{Y}$, define $\hat{f}_{(A,k)}$ to be the k-NN classifier that searches for neighbors in A.
 - 1. Minimizer of hold-out error: fix $H \subseteq S$,

$$\hat{k} := \underset{k}{\operatorname{arg\,min\,err}}(\hat{f}_{(S \setminus H, k)}, \underbrace{H}).$$

Question: how do we choose k (say, from some subset of \mathbb{N} like $\{1,3,5,7,9\}$)?

▶ Minimizer of test error: $\hat{k} := \arg\min_{k} \operatorname{err}(\hat{f}_k, T)$.

Caveat: $\hat{f}_{\hat{k}}$ is no longer independent of T!

- \Longrightarrow Test error is not an unbiased estimate of true error of $\hat{f}_{\hat{k}}$.
- ▶ Better alternatives: For any set of labeled examples $A \subseteq \mathcal{X} \times \mathcal{Y}$, define $\hat{f}_{(A,k)}$ to be the k-NN classifier that searches for neighbors in A.
 - 1. Minimizer of hold-out error: fix $H \subseteq S$,

$$\hat{k} := \underset{k}{\operatorname{arg\,min\,err}}(\hat{f}_{(S \setminus H, k)}, \underline{H}).$$

2. Minimizer of leave-one-out cross-validation error:

$$\hat{k} := \arg\min_{k} \frac{1}{|S|} \sum_{(x,y) \in S} \operatorname{err}(\hat{f}_{(S \setminus \{(x,y)\},k)}, \{(x,y)\}).$$

Question: how do we choose k (say, from some subset of \mathbb{N} like $\{1,3,5,7,9\}$)?

▶ Minimizer of test error: $\hat{k} := \underset{k}{\operatorname{arg \, min \, err}} (\hat{f}_k, T)$.

Caveat: $\hat{f}_{\hat{k}}$ is no longer independent of T!

- \Longrightarrow Test error is not an unbiased estimate of true error of $\hat{f}_{\hat{k}}$.
- ▶ Better alternatives: For any set of labeled examples $A \subseteq \mathcal{X} \times \mathcal{Y}$, define $\hat{f}_{(A,k)}$ to be the k-NN classifier that searches for neighbors in A.
 - 1. Minimizer of hold-out error: fix $H \subseteq S$,

$$\hat{k} := \underset{k}{\operatorname{arg\,min\,err}}(\hat{f}_{(S \setminus H, k)}, \underline{H}).$$

2. Minimizer of leave-one-out cross-validation error:

$$\hat{k} := \arg\min_{k} \frac{1}{|S|} \sum_{(x,y) \in S} \operatorname{err}(\hat{f}_{(S \setminus \{(x,y)\},k)}, \{(x,y)\}).$$

 \Longrightarrow Test error is an unbiased estimate of true error of $\hat{f}_{\hat{k}}$.

Question: how do we choose k (say, from some subset of \mathbb{N} like $\{1,3,5,7,9\}$)?

▶ Minimizer of test error: $\hat{k} := \arg\min_{k} \operatorname{err}(\hat{f}_k, T)$.

Caveat: \hat{f}_k is no longer independent of T!

 \Longrightarrow Test error $\underline{\mathsf{is}}$ not an unbiased estimate of true error of $\hat{f}_{\hat{k}}.$

- ▶ **Better alternatives**: For any set of labeled examples $A \subseteq \mathcal{X} \times \mathcal{Y}$, define $\hat{f}_{(A,k)}$ to be the k-NN classifier that searches for neighbors in A.
 - 1. Minimizer of hold-out error: fix $H \subseteq S$,

the difference is at k's value!!!

$$\hat{k} := \operatorname*{arg\,min}_{k} \operatorname{err}(\hat{f}_{(S \backslash H, k)}, \overset{H}{H}).$$

hold one point out for test

2. Minimizer of leave-one-out cross-validation error:

$$\hat{k} := \arg\min_{k} \frac{1}{|S|} \sum_{(x,y) \in S} \operatorname{err}(\hat{f}_{(S \setminus \{(x,y)\},k)}, \{(x,y)\}).$$

 \implies Test error is an unbiased estimate of true error of $\hat{f}_{\hat{k}}$. More on this later in the course.

Consistency of k-NN

Say a learning algorithm is consistent if

 $\lim_{n\to\infty}\mathbb{E}\Big[\text{error of learned classifier with training sample size }n\Big] \ = \ \mathrm{err}(f^\star).$

Consistency of k-NN

Say a learning algorithm is consistent if

the best classifier!

$$\lim_{n\to\infty}\mathbb{E}\Big[\text{error of learned classifier with training sample size } n \Big] = \operatorname{err}(f^\star).$$

$$= \operatorname{err}(f^{\star}).$$

k-NN is consistent provided that $k := k_n$ is chosen as an increasing but sublinear function of n:

$$\lim_{n \to \infty} k_n = \infty, \quad \lim_{n \to \infty} \frac{k_n}{n} = 0$$

(some other mild conditions might also have to hold).

as the size of training sample grows up. the error of the learned classifier getting closer to err(f).

Consistency of k-NN

Say a learning algorithm is consistent if

$$\lim_{n\to\infty}\mathbb{E}\Big[\text{error of learned classifier with training sample size }n\Big] \ = \ \mathrm{err}(f^\star).$$

k-NN is consistent provided that $k := k_n$ is chosen as an increasing but sublinear function of n:

$$\lim_{n \to \infty} k_n = \infty, \quad \lim_{n \to \infty} \frac{k_n}{n} = 0$$

(some other mild conditions might also have to hold).

1-NN is not consistent unless $\operatorname{err}(f^\star)=0$, although

$$\lim_{n\to\infty} \mathbb{E}\Big[\mathrm{err}(\hat{f}_1)\Big] \leq 2\,\mathrm{err}(f^\star)\cdot \bigg(1 - \frac{K}{2(K-1)}\,\mathrm{err}(f^\star)\bigg).$$

NEAREST NEIGHBOR SEARCH

Naïve implementation of NN classifiers uses n distance computations to compute $\hat{f}_k(x)$ for any test point $x \in \mathcal{X}$.

NEAREST NEIGHBOR SEARCH

- Naïve implementation of NN classifiers uses n distance computations to compute $\hat{f}_k(x)$ for any test point $x \in \mathcal{X}$.
 - ▶ If using Euclidean distance in \mathbb{R}^d , then each distance computation is O(d) operations.
 - $\implies O(dn)$ operations per test point.

NEAREST NEIGHBOR SEARCH

- Naïve implementation of NN classifiers uses n distance computations to compute $\hat{f}_k(x)$ for any test point $x \in \mathcal{X}$.
 - ▶ If using Euclidean distance in \mathbb{R}^d , then each distance computation is O(d) operations.
 - $\implies O(dn)$ operations per test point.

► Alternatives:

- Settle for an approximate nearest neighbor using locality sensitive hash functions.
- 2. Store the n training data in a geometric data structure that permits fast NN queries.

LOCALITY SENSITIVE HASH FUNCTIONS

(Informally:) A family $\mathcal H$ of hash functions from $\mathbb R^d$ to $\mathbb Z$ is a locality-sensitive hash family if

 $lackbox{ For any points } oldsymbol{a}, oldsymbol{b}, oldsymbol{c} \in \mathcal{X} ext{ with } \|oldsymbol{a} - oldsymbol{b}\|_2 \ll \|oldsymbol{a} - oldsymbol{c}\|_2,$

$$|\{h \in \mathcal{H} : h(a) = h(b)\}| \gg |\{h \in \mathcal{H} : h(a) = h(c)\}|.$$

LOCALITY SENSITIVE HASH FUNCTIONS

(Informally:) A family $\mathcal H$ of hash functions from $\mathbb R^d$ to $\mathbb Z$ is a locality-sensitive hash family if

 $lackbox{ For any points } oldsymbol{a}, oldsymbol{b}, oldsymbol{c} \in \mathcal{X} ext{ with } \|oldsymbol{a} - oldsymbol{b}\|_2 \ll \|oldsymbol{a} - oldsymbol{c}\|_2,$

$$|\{h \in \mathcal{H} : h(a) = h(b)\}| \gg |\{h \in \mathcal{H} : h(a) = h(c)\}|.$$

It turns out there are such hash families!

A LOCALITY SENSITIVE HASH FAMILY

A LSH family based on projections to one-dimensional subspaces

For $\boldsymbol{w} \in \mathbb{R}^d$ with $\|\boldsymbol{w}\|_2 = 1$, $r \in \{2^i : i \in \mathbb{Z}\}$, $s \in [0, r]$:

$$h_{oldsymbol{w},r,s}(oldsymbol{x}) := \left\lfloor rac{oldsymbol{w}^ op oldsymbol{x} + s}{r}
ight
floor.$$

- ightharpoonup w determines the one-dimensional subspace,
- r determines a distance resolution, and
- s determines a shift of the bucket boundaries.

LOCALITY SENSITIVE HASH FUNCTIONS

(Informally:) A family $\mathcal H$ of hash functions from $\mathbb R^d$ to $\mathbb Z$ is a locality-sensitive hash family if

 $lackbox{
ightharpoonup}$ For any points $oldsymbol{a},oldsymbol{b},oldsymbol{c}\in\mathbb{R}^d$ with $\|oldsymbol{a}-oldsymbol{b}\|_2\ll\|oldsymbol{a}-oldsymbol{c}\|_2$,

$$|\{h \in \mathcal{H} : h(a) = h(b)\}| \gg |\{h \in \mathcal{H} : h(a) = h(c)\}|.$$

Procedure:

- ▶ Select a hash function $h \in \mathcal{H}$ at random. (In practice, some parameters of the hash function, like r and s, may be tuned via hold-out or cross-validation.)
- ▶ Create pointer from buckets $j \in \mathbb{N}$ to points $x \in S$ such that h(x) = j.
- ▶ Given test point x, search bucket h(x) for nearest neighbor. (The bucket will generally contain far fewer than n points.)

Locality sensitive hash functions

(Informally:) A family $\mathcal H$ of hash functions from $\mathbb R^d$ to $\mathbb Z$ is a locality-sensitive hash family if

For any points $a, b, c \in \mathbb{R}^d$ with $\|a - b\|_2 \ll \|a - c\|_2$,

$$|\{h \in \mathcal{H} : h(a) = h(b)\}| \gg |\{h \in \mathcal{H} : h(a) = h(c)\}|.$$

Procedure:

- ▶ Select a hash function $h \in \mathcal{H}$ at random. (In practice, some parameters of the hash function, like r and s, may be tuned via hold-out or cross-validation.)
- ▶ Create pointer from buckets $j \in \mathbb{N}$ to points $x \in S$ such that h(x) = j.
- ▶ Given test point x, search bucket h(x) for nearest neighbor. (The bucket will generally contain far fewer than n points.)

Do this with several hash functions from $\ensuremath{\mathcal{H}}$ to boost the chances that you find close neighbors.

A data structure for fast NN search in \mathbb{R}^1

Sort training data so that $x_1 \leq x_2 \leq \cdots \leq x_n$, then construct binary tree:

Text

A data structure for fast NN search in \mathbb{R}^1

Sort training data so that $x_1 \leq x_2 \leq \cdots \leq x_n$, then construct binary tree:

With each tree node, remember **midpoint** between rightmost point in left child, and leftmost point in right child.

A data structure for fast NN search in \mathbb{R}^1

Sort training data so that $x_1 \leq x_2 \leq \cdots \leq x_n$, then construct binary tree:

With each tree node, remember **midpoint** between rightmost point in left child, and leftmost point in right child. This permits very efficient NN search.

A data structure for fast NN search in \mathbb{R}^1

Sort training data so that $x_1 \leq x_2 \leq \cdots \leq x_n$, then construct binary tree:

With each tree node, remember **midpoint** between rightmost point in left child, and leftmost point in right child. This permits very efficient NN search.

If tree is (approximately) balanced, then $O(\log(n))$ time to find NN!

A data structure for fast NN search in \mathbb{R}^d , d>1 Many options, but a popular one is the K-D tree.

A data structure for fast NN search in \mathbb{R}^d , d>1 Many options, but a popular one is the K-D tree.

Construction procedure

Given points $S \subset \mathbb{R}^d$:

- 1. Pick a coordinate $j \in \{1, 2, \dots, d\}$.
- 2. Let m be the median of $\{x_j : x \in S\}$.
- 3. Split points into halves:

$$L := \{ x \in S : x_j < m \},$$

 $R := \{ x \in S : x_j \ge m \}.$

4. Recurse on L and R.

A data structure for fast NN search in \mathbb{R}^d , d > 1 Many options, but a popular one is the K-D tree.

Construction procedure

Given points $S \subset \mathbb{R}^d$:

- 1. Pick a coordinate $j \in \{1, 2, \dots, d\}$.
- 2. Let m be the median of $\{x_i : x \in S\}$.
- 3. Split points into halves:

$$L := \{ x \in S : x_j < m \},$$

 $R := \{ x \in S : x_j \ge m \}.$

4. Recurse on L and R.

Easy to lookup points in S (in $O(\log(n))$ time), but how about NN search?

A data structure for fast NN search in \mathbb{R}^d , d > 1 Many options, but a popular one is the K-D tree.

Construction procedure

Given points $S \subset \mathbb{R}^d$:

- 1. Pick a coordinate $j \in \{1, 2, \dots, d\}$.
- 2. Let m be the median of $\{x_i : x \in S\}$.
- 3. Split points into halves:

$$L := \{ x \in S : x_j < m \},$$

 $R := \{ x \in S : x_j \ge m \}.$

4. Recurse on L and R.

Easy to lookup points in S (in $O(\log(n))$ time), but how about NN search?

Same $O(\log(n))$ -time routing of a test point $x \in \mathbb{R}^d$ is **overly optimistic**: might not yield the NN!

SEARCHING GENERAL TREE STRUCTURES

Generic NN search procedure for binary space partition trees

Given a test point x and a tree node v (initially v = root):

- 1. Pick most optimistic child L, recursively find NN of x in L (call it x_L).
- 2. Let R be the other child. If

$$\|x - x_L\|_2 < \min_{x' \in R} \|x - x'\|_2$$
 (*)

then return x_L .

3. Otherwise recursively find NN of x in R (call it x_R); return the closer of x_L and x_R .

SEARCHING GENERAL TREE STRUCTURES

Generic NN search procedure for binary space partition trees

Given a test point x and a tree node v (initially v = root):

- 1. Pick most optimistic child L, recursively find NN of x in L (call it x_L).
- 2. Let R be the other child. If

$$\|x - x_L\|_2 < \min_{x' \in R} \|x - x'\|_2$$
 (*)

then return x_L .

3. Otherwise recursively find NN of x in R (call it x_R); return the closer of x_L and x_R .

Note: can't always guarantee $O(\log(n))$ search time due to Step 3.

SEARCHING GENERAL TREE STRUCTURES

Generic NN search procedure for binary space partition trees

Given a test point x and a tree node v (initially v = root):

- 1. Pick most optimistic child L, recursively find NN of x in L (call it x_L).
- 2. Let R be the other child. If

$$\|x - x_L\|_2 < \min_{x' \in B} \|x - x'\|_2$$
 (*)

then return x_L .

3. Otherwise recursively find NN of x in R (call it x_R); return the closer of x_L and x_R .

Note: can't always guarantee $O(\log(n))$ search time due to Step 3.

Question: How do you check if (*) is true?

► Note: it's correct though computationally wasteful to declare "false" in Step 2 even if (*) turns out to be true.

Using geometric properties

For K-D trees:

L and R are separated by a hyperplane $H = \{ \boldsymbol{z} \in \mathbb{R}^d : z_j = m \}.$

USING GEOMETRIC PROPERTIES

For K-D trees:

L and R are separated by a hyperplane $H = \{ \boldsymbol{z} \in \mathbb{R}^d : z_j = m \}$.

Suppose test point x is in L, and the NN of x in L is x_L .

Using geometric properties

For K-D trees:

L and R are separated by a hyperplane $H = \{ \boldsymbol{z} \in \mathbb{R}^d : z_j = m \}$.

Suppose test point x is in L, and the NN of x in L is x_L .

By geometry,

$$\min_{oldsymbol{x}' \in R} \|oldsymbol{x} - oldsymbol{x}'\|_2 \geq ext{distance from } oldsymbol{x} ext{ to } H$$

$$= |x_j - m|.$$

Using geometric properties

For K-D trees:

L and R are separated by a hyperplane $H = \{ \boldsymbol{z} \in \mathbb{R}^d : z_j = m \}$.

Suppose test point x is in L, and the NN of x in L is x_L .

By geometry,

$$\min_{oldsymbol{x}' \in R} \|oldsymbol{x} - oldsymbol{x}'\|_2 \geq ext{distance from } oldsymbol{x} ext{ to } H$$
 $= |x_j - m|.$

A valid check: if
$$\|x-x_L\|_2 \le |x_j-m|$$
, then once there is
$$\|x-x_L\|_2 < \min_{x' \in R} \|x-x'\|_2 \text{point at left part}$$

In this case, we can skip searching R and immediately return ${m x}_L.$

EFFICIENT NN SEARCH?

For certain kinds of binary space partition trees (similar to K-D trees), enough pruning will happen so NN search typically completes in $O(2^d \log(n))$ time.

- ▶ Very fast in low dimensions.
- ▶ But can be slow in high dimensions.

EFFICIENT NN SEARCH?

For certain kinds of binary space partition trees (similar to K-D trees), enough pruning will happen so NN search typically completes in $O(2^d \log(n))$ time.

- ▶ Very fast in low dimensions.
- ▶ But can be slow in high dimensions.

But NN search is only means to an end—ultimate goal is good classification. K-D tree construction doesn't even look at the labels!

EFFICIENT NN SEARCH?

For certain kinds of binary space partition trees (similar to K-D trees), enough pruning will happen so NN search typically completes in $O(2^d \log(n))$ time.

- ▶ Very fast in low dimensions.
- ▶ But can be slow in high dimensions.

But NN search is only means to an end—ultimate goal is good classification. K-D tree construction doesn't even look at the labels!

Question: Can we use trees to directly build good classifiers? (Next lecture.)