"高等数学 (A 类) Ⅱ "

- 一、(本题 8 分) 求曲面 $x^3 + y^2 + z^3 = 1$ 在 P(-1,1,1) 处的切平面与法线方程.
- 二、(本题 10 分) 求函数 f(x,y) = x 2y 在区域 $D:(x-1)^2 + (y+2)^2 \le 5$ 上的最大值、最小值.
- 三、(本题 3×8=24 分) 计算下列二重积分或三重积分

1.
$$\iint_{D} (2x - y^2) dx dy$$
, $\sharp \oplus D : x + y \le 2, x, y \ge 0$;

$$2\iint_{D} \frac{dxdy}{(1+x^2+y^2)^2} , 其中 D: x^2+y^2 \le 1 ;$$

3.
$$\iint_{\Omega} \sqrt{x^2 + y^2 + z^2} dx dy dz,$$
其中 $\Omega: x^2 + y^2 + z^2 \le z$.

四、(本题 2×6=12 分) 求下列广义积分

1.
$$\int_{1}^{5} \frac{dx}{\sqrt{x-1}}$$
; 2. $\int_{2}^{\infty} \frac{dx}{(x+7)\sqrt{x-2}}$.

五、(本题 10 分) 求幂级数 $\sum_{n=0}^{\infty} (n+1)^2 \left(\frac{x}{3}\right)^n$ 的收敛域及和函数.

六、(本题 10 分) 将函数 $f(x) = \pi - x$,0 $\leq x \leq \pi$ 展开为周期为 2π 的余弦级数, 七、(本题 $2 \times 8 = 16$ 分) 计算下列曲线或曲面积分

1. 求
$$\int_{L} \frac{xdy - ydx}{x^2 + 4y^2}$$
 , 其中 L 为 $20x^2 + 21y^2 = 1$ 取逆时针方向;

2. 设 Σ 为平面 2x+2y+z=1在第一卦限的部分,求 $I=\iint_{\Sigma}(8x+8y+4z)dS$.

八、(本题 10 分) 计算第二类型曲面积分 $I = \iint_{\Sigma} yzdydz + zxdzdx + z(x^2 + y^2)dxdy$

其中 Σ 为 $3-z=x^2+y^2, z>0$, 取外侧.