- Q1 Let $B_1 = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$, $B_2 = \begin{pmatrix} \cos \theta & \sin \theta \end{pmatrix}$, $C_1 = \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix}$, $C_2 = \begin{pmatrix} -\sin \theta & \cos \theta \end{pmatrix}$. Moreover a and b is real numbers but not zero, A is square matrix of order 2 and $A = aB_1B_2 + bC_1C_2$.
 - (1) Find A^n .

(2) Find the inverse A^{-1} .

Q2 Find the following matrix for the 2 × 2 matrix $A=\begin{pmatrix}\alpha&1-\alpha\\0&1\end{pmatrix}$ (0 < α < 1): (1) A^{-1}

(2) $A^2 - (\alpha + 1)A + \alpha E$

(3) $\lim_{n\to\infty} A^n$ by deriving A^n

Q3 Show that the area S of parallelogram with vectors $\boldsymbol{p} = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}$ and $\boldsymbol{q} = \begin{pmatrix} q_1 \\ q_2 \end{pmatrix}$ as adjacent sides is equal to the absolut value of the determinat $\begin{vmatrix} p_1 & q_1 \\ p_2 & q_2 \end{vmatrix}$. Then Determine the conditions that S is equal to the area of parallelogram with vectors $A\boldsymbol{p}$ and $A\boldsymbol{q}$ as adjacent sides, where $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

- Q4 Let f be a linear transformation on plane and denoted by a matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, and l be a straight line $y = mx \ (m \neq 0)$. f is satisfied with the following 2 conditions:
 - (i) f does not transfer each point on l.
 - (ii) f transfers the point P(1,0) to a point a straight line that includes P and parallel to l.
 - (1) Find ad bc.

(2) Show that F transfers any point Q on the plane to a point on a straight line that includes Q and parallel to l.