Plots


```
library(rplos)
library(ggplot2)
list("ANOVA", "bayes", "bayesian", "linear regression", "linear mixed models", "mixed models", "generalize
## [[1]]
## [1] "ANOVA"
##
## [[2]]
## [1] "bayes"
##
## [[3]]
## [1] "bayesian"
##
## [[4]]
## [1] "linear regression"
##
## [[5]]
## [1] "linear mixed models"
##
## [[6]]
## [1] "mixed models"
## [[7]]
## [1] "generalized estimating equations"
##
## [[8]]
## [1] "machine learning"
##
## [[9]]
## [1] "support vector machine"
## [[10]]
## [1] "bootstrap"
## [[11]]
## [1] "deep learning"
##
## [[12]]
## [1] "neural network"
#pairwise comparisons ANOVA
ANOVA_Bayesian <- plot_throughtime(terms=c("ANOVA", "bayesian"), limit=10000) + geom_line(size=1, color="bl
ANOVA_Bayesian
## Warning: Removed 4 rows containing non-finite values (stat_smooth).
```

- ## Warning: Removed 3 rows containing missing values (geom_path).
- ## Warning: Removed 3 rows containing missing values (geom_path).

PLoS search of ANOVA, bayesian using the rplos package

ANOVA_LR<- plot_throughtime(terms=c("ANOVA","linear regression"),limit=10000) + geom_line(size=1,color=ANOVA_LR

- ## Warning: Removed 5 rows containing non-finite values (stat_smooth).
- ## Warning: Removed 2 rows containing missing values (geom_path).
- ## Warning: Removed 2 rows containing missing values (geom_path).

PLoS search of ANOVA, linear regression using the rplos package

ANOVA_MM<- plot_throughtime(terms=c("ANOVA", "mixed effect model"), limit=10000) + geom_line(size=1, color anova_MM

Warning: Removed 5 rows containing non-finite values (stat_smooth).

Warning: Removed 3 rows containing missing values (geom_path).

Warning: Removed 3 rows containing missing values (geom_path).

PLoS search of ANOVA, mixed effect model using the rplos package

ANOVA_GEE<- plot_throughtime(terms=c("ANOVA","generalized estimating equation"),limit=10000) + geom_lin ANOVA_GEE

PLoS search of ANOVA, generalized estimating equation using the rplos ¡

ANOVA_ML<- plot_throughtime(terms=c("ANOVA", "machine learning"), limit=10000) + geom_line(size=1, color=ANOVA_ML

Warning: Removed 3 rows containing non-finite values (stat_smooth).

Warning: Removed 2 rows containing missing values (geom_path).

Warning: Removed 2 rows containing missing values (geom_path).

PLoS search of ANOVA, machine learning using the rplos package

ANOVA_SVM<- plot_throughtime(terms=c("ANOVA","support vector machine"),limit=10000) + geom_line(size=1 ANOVA_SVM

Warning: Removed 1 rows containing non-finite values (stat_smooth).

PLoS search of ANOVA, support vector machine using the rplos package

ANOVA_DL<- plot_throughtime(terms=c("ANOVA","deep learning"),limit=10000) + geom_line(size=1,color="blanova_DL

Warning: Removed 3 rows containing non-finite values (stat_smooth).

PLoS search of ANOVA, deep learning using the rplos package

ANOVA_Btstp<- plot_throughtime(terms=c("ANOVA","bootstrap"),limit=10000) + geom_line(size=1,color="black")

ANOVA_Btstp

PLoS search of ANOVA, bootstrap using the rplos package

ANOVA_NN<- plot_throughtime(terms=c("ANOVA","artificial neural network"),limit=10000) + geom_line(size
ANOVA_NN

Warning: Removed 2 rows containing non-finite values (stat_smooth).

PLoS search of ANOVA, artificial neural network using the rplos package

#pairwise comparisons bayesian

Bayesian_LR<- plot_throughtime(terms=c("linear regression","bayesian"),limit=10000) + geom_line(size=1,
Bayesian_LR</pre>

- ## Warning: Removed 5 rows containing non-finite values (stat_smooth).
- ## Warning: Removed 3 rows containing missing values (geom_path).
- ## Warning: Removed 3 rows containing missing values (geom_path).

PLoS search of linear regression, bayesian using the rplos package

Bayesian_MM<- plot_throughtime(terms=c("bayesian","mixed effect model"),limit=10000) + geom_line(size=1
Bayesian_MM</pre>

Warning: Removed 4 rows containing non-finite values (stat_smooth).

Warning: Removed 3 rows containing missing values (geom_path).

Warning: Removed 3 rows containing missing values (geom_path).

PLoS search of bayesian, mixed effect model using the rplos package

Bayesian_GEE<- plot_throughtime(terms=c("bayesian","generalized estimating equation"),limit=10000) + ge
Bayesian_GEE</pre>

Warning: Removed 2 rows containing non-finite values (stat_smooth).

PLoS search of bayesian, generalized estimating equation using the rplos

Bayesian_ML<- plot_throughtime(terms=c("bayesian","machine learning"),limit=10000) + geom_line(size=1,
Bayesian_ML</pre>

Warning: Removed 3 rows containing non-finite values (stat_smooth).

Warning: Removed 3 rows containing non-finite values (stat_smooth).

PLoS search of bayesian, machine learning using the rplos package

Warning: Removed 3 rows containing non-finite values (stat_smooth).

PLoS search of bayesian, support vector machine using the rplos packag

Bayesian_DL<- plot_throughtime(terms=c("bayesian","deep learning"),limit=10000) + geom_line(size=1,col
Bayesian_DL</pre>

Warning: Removed 5 rows containing non-finite values (stat_smooth).

PLoS search of bayesian, deep learning using the rplos package

Bayesian_Btstp<- plot_throughtime(terms=c("bayesian","bootstrap"),limit=10000) + geom_line(size=1,color
Bayesian_Btstp</pre>

Warning: Removed 2 rows containing non-finite values (stat_smooth).

PLoS search of bayesian, bootstrap using the rplos package

Bayesian_NN<- plot_throughtime(terms=c("bayesian","artificial neural network"),limit=10000) + geom_lin
Bayesian_NN</pre>

Warning: Removed 5 rows containing non-finite values (stat_smooth).

PLoS search of bayesian, artificial neural network using the rplos package

#pairwise comparisons linear regression

LR_MM<- plot_throughtime(terms=c("linear regression","mixed effect model"),limit=10000) + geom_line(siz
LR_MM</pre>

Warning: Removed 8 rows containing non-finite values (stat_smooth).

Warning: Removed 6 rows containing missing values (geom_path).

Warning: Removed 6 rows containing missing values (geom_path).

PLoS search of linear regression, mixed effect model using the rplos pack

LR_GEE<- plot_throughtime(terms=c("linear regression", "generalized estimating equation"), limit=10000) +
LR_GEE</pre>

Warning: Removed 1 rows containing non-finite values (stat_smooth).

PLoS search of linear regression, generalized estimating equation using t

LR_ML<- plot_throughtime(terms=c("linear regression","machine learning"),limit=10000) + geom_line(size
LR_ML</pre>

Warning: Removed 4 rows containing non-finite values (stat_smooth).

PLoS search of linear regression, machine learning using the rplos packa

LR_SVM<- plot_throughtime(terms=c("linear regression","support vector machine"),limit=10000) + geom_linear_svm</pre>

Warning: Removed 1 rows containing non-finite values (stat_smooth).

PLoS search of linear regression, support vector machine using the rplos

LR_DL<- plot_throughtime(terms=c("linear regression","deep learning"),limit=10000) + geom_line(size=1,
LR_DL</pre>

Warning: Removed 4 rows containing non-finite values (stat_smooth).

PLoS search of linear regression, deep learning using the rplos package

LR_Btstp<- plot_throughtime(terms=c("linear regression","bootstrap"),limit=10000) + geom_line(size=1,c</pre>
LR_Btstp

Warning: Removed 4 rows containing non-finite values (stat_smooth).

Warning: Removed 3 rows containing missing values (geom_path).

Warning: Removed 3 rows containing missing values (geom_path).

PLoS search of linear regression, bootstrap using the rplos package

LR_NN<- plot_throughtime(terms=c("linear regression","artificial neural network"),limit=10000) + geom_
LR_NN</pre>

Warning: Removed 3 rows containing non-finite values (stat_smooth).

PLoS search of linear regression, artificial neural network using the rplos

#pairwise comparisons mixed models

MM_GEE<- plot_throughtime(terms=c("mixed effect model", "generalized estimating equation"), limit=10000)
MM_GEE

Warning: Removed 2 rows containing non-finite values (stat_smooth).

Warning: Removed 1 rows containing missing values (geom_path).

Warning: Removed 1 rows containing missing values (geom_path).

PLoS search of mixed effect model, generalized estimating equation using

MM_ML<- plot_throughtime(terms=c("mixed effect model","machine learning"),limit=10000) + geom_line(siz MM_ML

Warning: Removed 3 rows containing non-finite values (stat_smooth).

PLoS search of mixed effect model, machine learning using the rplos pac

MM_SVM<- plot_throughtime(terms=c("mixed effect model","support vector machine"),limit=10000) + geom_l
MM_SVM

- ## Warning: Removed 3 rows containing non-finite values (stat_smooth).
- ## Warning: Removed 2 rows containing missing values (geom_path).
- ## Warning: Removed 2 rows containing missing values (geom_path).

PLoS search of mixed effect model, support vector machine using the rpk

MM_DL<- plot_throughtime(terms=c("mixed effect model","deep learning"),limit=10000) + geom_line(size=1 MM_DL

Warning: Removed 3 rows containing non-finite values (stat_smooth).

PLoS search of mixed effect model, deep learning using the rplos packag

MM_Btstp<- plot_throughtime(terms=c("mixed effect model","bootstrap"),limit=10000) + geom_line(size=1,
MM_Btstp</pre>

Warning: Removed 2 rows containing non-finite values (stat_smooth).

Warning: Removed 1 rows containing missing values (geom_path).

Warning: Removed 1 rows containing missing values (geom_path).

PLoS search of mixed effect model, bootstrap using the rplos package

MM_NN<- plot_throughtime(terms=c("mixed effect model","artificial neural network"),limit=10000) + geom
MM_NN

Warning: Removed 4 rows containing non-finite values (stat_smooth).

PLoS search of mixed effect model, artificial neural network using the rplc

#pairwise comparisons gee

GEE_ML<- plot_throughtime(terms=c("generalized estimating equation", "machine learning"), limit=10000) +
GEE_ML</pre>

Warning: Removed 6 rows containing non-finite values (stat_smooth).

PLoS search of generalized estimating equation, machine learning using

GEE_SVM<- plot_throughtime(terms=c("generalized estimating equation", "support vector machine"), limit=1
GEE_SVM

Warning: Removed 2 rows containing non-finite values (stat_smooth).

PLoS search of generalized estimating equation, support vector machine

GEE_DL<- plot_throughtime(terms=c("generalized estimating equation","deep learning"),limit=10000) + ge</pre>
GEE_DL

Warning: Removed 6 rows containing non-finite values (stat_smooth).

PLoS search of generalized estimating equation, deep learning using the

GEE_Btstp<- plot_throughtime(terms=c("generalized estimating equation","bootstrap"),limit=10000) + geographic geographic

Warning: Removed 5 rows containing non-finite values (stat_smooth).

Warning: Removed 2 rows containing missing values (geom_path).

Warning: Removed 2 rows containing missing values (geom_path).

PLoS search of generalized estimating equation, bootstrap using the rplos

GEE_NN<- plot_throughtime(terms=c("generalized estimating equation", "artificial neural network"), limit
GEE_NN

Warning: Removed 6 rows containing non-finite values (stat_smooth).

PLoS search of generalized estimating equation, artificial neural network

*pairwise comparisons machine learning

ML_SVM<- plot_throughtime(terms=c("machine learning","support vector machine"),limit=10000) + geom_lin ML_SVM

Warning: Removed 4 rows containing non-finite values (stat_smooth).

PLoS search of machine learning, support vector machine using the rplos

ML_DL<- plot_throughtime(terms=c("machine learning","deep learning"),limit=10000) + geom_line(size=1,cmachine)
ML_DL

Warning: Removed 7 rows containing non-finite values (stat_smooth).

PLoS search of machine learning, deep learning using the rplos package


```
ML_Btstp<- plot_throughtime(terms=c("machine learning","bootstrap"),limit=10000) + geom_line(size=1,co
ML_Btstp</pre>
```

```
## Warning: Removed 6 rows containing non-finite values (stat_smooth).
```

^{##} Warning: Removed 6 rows containing non-finite values (stat_smooth).

^{##} Warning: Removed 4 rows containing missing values (geom_path).

^{##} Warning: Removed 4 rows containing missing values (geom_path).

PLoS search of machine learning, bootstrap using the rplos package

ML_NN<- plot_throughtime(terms=c("machine learning","artificial neural network"),limit=10000) + geom_l
ML_NN

Warning: Removed 6 rows containing non-finite values (stat_smooth).

PLoS search of machine learning, artificial neural network using the rplos

#pairwise comparisons support vector machine

SVM_DL<- plot_throughtime(terms=c("support vector machine","deep learning"),limit=10000) + geom_line(s
SVM_DL</pre>

Warning: Removed 6 rows containing non-finite values (stat_smooth).

PLoS search of support vector machine, deep learning using the rplos pa

SVM_Btstp<- plot_throughtime(terms=c("support vector machine","bootstrap"),limit=10000) + geom_line(size)
SVM_Btstp</pre>

Warning: Removed 6 rows containing non-finite values (stat_smooth).

Warning: Removed 2 rows containing missing values (geom_path).

Warning: Removed 2 rows containing missing values (geom_path).

PLoS search of support vector machine, bootstrap using the rplos packag

SVM_NN<- plot_throughtime(terms=c("support vector machine","artificial neural network"),limit=10000) +
SVM_NN</pre>

Warning: Removed 5 rows containing non-finite values (stat_smooth).

PLoS search of support vector machine, artificial neural network using the

DL_Btstp<- plot_throughtime(terms=c("deep learning","bootstrap"),limit=10000) + geom_line(size=1,color=
DL_Btstp</pre>

Warning: Removed 5 rows containing non-finite values (stat_smooth).

PLoS search of deep learning, bootstrap using the rplos package

DL_NN<- plot_throughtime(terms=c("deep learning","artificial neural network"),limit=10000) + geom_line
DL_NN

- ## Warning: Removed 6 rows containing non-finite values (stat_smooth).
- ## Warning: Removed 1 rows containing missing values (geom_path).
- ## Warning: Removed 1 rows containing missing values (geom_path).

PLoS search of deep learning, artificial neural network using the rplos pac


```
{\it \#pairwise~comparisons~bootstrap}
```

Btstp_NN<- plot_throughtime(terms=c("bootstrap","artificial neural network"),limit=10000) + geom_line(
Btstp_NN</pre>

- ## Warning: Removed 5 rows containing non-finite values (stat_smooth).
- ## Warning: Removed 1 rows containing missing values (geom_path).
- ## Warning: Removed 1 rows containing missing values (geom_path).

PLoS search of bootstrap, artificial neural network using the rplos packag

