Example of AdaBoosting

The training data:

index:	0	1	2	3	4	5	6	7	8	9
x value:	0	1	2	3	4	5	6	7	8	9
y value:	1	1	1	-1	-1	-1	1	1	1	-1

The weak learner produces hypotheses of the form: x < v, or x > v. The threshold v is determined to minimize the probability of error over the entire data. (No sampling.)

Running the algorithm.

We start with the following probabilities:

t=1. The best threshold is between 2 and 3.

$$h_1(x) = I(x < 2.5)$$

 $\epsilon_1 = 0.3$
 $\alpha_1 = 0.423649$
 $q_i = 1.52753$ for wrong, 0.654654 for right

Updating the probabilities:

index:	0	1	2	3	4	5	6	7	8	9
correct:	y	у	У	у	у	у	n	n	n	У
old p_i	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
pre-normalized p_i	.06547	.06547	.06547	.06547	.06547	.06547	.15	.15	.15	.06547
$Z_1 = 0.916515$										
new p_i	.07143	.07143	.07143	.07143	.07143	.07143	.16667	.16667	.16667	.07143

$$f_1(x) = 0.423649 I(x < 2.5),$$
 3 mistakes

t=2. Now a threshold between 2 and 3 gives error of 0.5, the threshold between 5 and 6 gives 0.28, the threshold between 8 and 9 gives 0.214, best.

$$h_2(x) = I(x < 8.5)$$

$$\epsilon_2 = 0.214$$

$$\alpha_2 = 0.6496$$

Updating the probabilities:

index:	0	1	2	3	4	5	6	7	8	9
correct:								у		
pre-normalized p_i	.037	.037	.037	.137	.137	.137	.087	.087	.087	.037
$Z_2 = 0.82$										
$\text{new } p_i$.045	.045	.045	.167	.167	.167	.106	.106	.106	.045

$$f_2(x) = 0.423649 I(x < 2.5) + 0.6496 I(x < 8.5),$$
 3 mistakes

t=3. The best threshold is between 5 and 6.

$$h_3(x) = I(x > 5.5)$$

 $\epsilon_3 = 0.1818$
 $\alpha_3 = 0.7520$

Updating the probabilities:

index:	0	1	2	3	4	5	6	7	8	9
correct:	n	n	n	У	У	У	У	У	У	n
pre-normalized p_i	.0964	.0964	.0964	.078	.078	.078	.05	.05	.05	.0964
$Z_3 = 0.77139$										
$\mathrm{new}\ p_i$.125	.125	.125	.102	.102	.102	.064	.064	.064	.125

$$f_3(x) = 0.423649 I(x < 2.5) + 0.6496 I(x < 8.5) + 0.752 I(x > 5.5),$$
 0 mistakes