

Cálculo Integral em \mathbb{R}^n : Integrais duplos

Exercício 5.1 Encontre aproximações várias (atente-se nas representações gráficas que se seguem) -por defeito e por excesso- para o volume do sólido limitado pelo parabolóide definido por $z=1-\frac{1}{2}x^2-\frac{1}{2}y^2$, pelos planos verticais definidos por x=0, x=1, y=0 e y=1 e ainda pela região quadrada definida por $\mathcal{R}=[0,1]\times[0,1]$.

Exercício 5.2 Os valores tomados por f, função real de duas variáveis reais definida em $\mathcal{R} = [1, 1.2] \times [2, 2.4]$, são os da tabela seguinte

	1.0	1.1	1.2
2.0	5	7	10
2.2	4	6	8
2.4	3	5	4

Nestas condições,

- a) encontre somas, superior e inferior, de Riemann para $\int \int_{\mathcal{R}} f(x,y) dA$, para $\Delta x = 0.1$ e $\Delta y = 0.2$.
- b) encontre um valor médio para f em \mathcal{R} .

Exercício 5.3 Seja \mathcal{R} um retângulo cujos vértices estão em (0,0), (4,0), (4,4) e (0,4). Seja ainda f definida, em \mathcal{R} , por $f(x,y) = \sqrt{xy}$.

- a) Sem subdividir \mathcal{R} , encontre um limite superior e outro inferior para $\int \int_{\mathcal{R}} f(x,y) dA$.
- b) Estime $\int \int_{\mathcal{R}} f(x,y) dA$, particionando \mathcal{R} em quatro subretângulos à sua escolha e tomando f o seu máximo e o seu mínimo em cada um dos subretângulos.

Exercício 5.4 Se f definir a densidade da poluição, em microgramas por metro quadrado, quais as unidades em que estará definido e qual a interpretação prática do $\int \int_{\mathcal{R}} f(x,y) dA$?

Seja \mathcal{U} o círculo unitário centrado na origem. Sejam também \mathcal{D} o semicírculo direito de \mathcal{U} e \mathcal{B} o semicírculo inferior de \mathcal{U} . Sem efetuar quaisquer cálculos indique, justificando, qual o sinal de

$$\mathbf{a)} \int \int_{\mathcal{U}} dA$$

$$\mathbf{b}) \int \int_{\mathcal{B}} dA$$

c)
$$\int \int_{\mathcal{D}} 5x \, dA$$

a)
$$\int \int_{\mathcal{U}} dA$$
 b) $\int \int_{\mathcal{B}} dA$ c) $\int \int_{\mathcal{D}} 5x \, dA$ d) $\int \int_{\mathcal{B}} 5x \, dA$

e)
$$\int \int_{\mathcal{U}} 5x \, dA$$

e)
$$\int_{\mathcal{D}} \int_{\mathcal{U}} 5x \, dA$$
 f) $\int_{\mathcal{U}} (y^3 + y^5) \, dA$ g) $\int_{\mathcal{B}} (y^3 + y^5) \, dA$ h) $\int_{\mathcal{D}} (y^3 + y^5) \, dA$

$$\mathbf{g)} \int \int_{\mathcal{B}} (y^3 + y^5) \, dA$$

$$\mathbf{h}) \int \int_{\mathcal{D}} (y^3 +$$

i)
$$\iint_{\mathcal{B}} (y-y^3) dA$$
 j) $\iint_{\mathcal{U}} (y-y^3) dA$ k) $\iint_{\mathcal{U}} \sin y dA$ l) $\iint_{\mathcal{U}} \cos y dA$

$$\mathbf{j}) \int \int_{\mathcal{U}} (y - y^3) \, dA$$

$$\mathbf{k}) \int \int_{\mathcal{U}} \operatorname{sen} y \, dA$$

1)
$$\int \int_{\mathcal{U}} \cos y \, dA$$

$$\mathbf{m}$$
) $\int \int_{\mathcal{U}} e^x dA$

n)
$$\int \int_{\mathcal{U}} xe^x dA$$

$$\mathbf{o}) \int \int_{\mathcal{U}} xy^2 \, dA$$

m)
$$\int \int_{\mathcal{U}} e^x dA$$
 n) $\int \int_{\mathcal{U}} xe^x dA$ o) $\int \int_{\mathcal{U}} xy^2 dA$ p) $\int \int_{\mathcal{B}} x\cos y dA$

Exercício 5.6 Foi deixado, numa mina abandonada, um monte de terra com 15 metros de altura e assente numa região plana. Admita que o plano do chão é o plano XOY e que a origem está exatamente por baixo do topo do monte; admita ainda que o semieixo positivo dos ZZ' aponta (a partir do chão) para cima.

Sabendo que a secção plana, de altura z (entre 0 e 15), está definida por $x^2 + y^2 = 15 - z$.

- a) Que equação define o contorno da base do monte?
- b) Qual a área ocupada pela base do monte?
- c) Que equação define a secção do monte a 10m?
- d) Imagine o monte seccionado horizontalmente. Qual a área, A(z), da secção de altura
- e) Calcule e interprete $\int_{0}^{15} A(z) dz$.

Ache o volume do sólido definido no exercício 5.1 Exercício 5.7

Exercício 5.8 Calcule os seguintes integrais (simples):

a)
$$\int_{0}^{x} (2x - y) dy$$

$$\mathbf{b)} \int_{1}^{2y} \frac{y}{x} \, dx$$

a)
$$\int_0^x (2x - y) dy$$
 b) $\int_1^{2y} \frac{y}{x} dx$ c) $\int_0^{\sqrt{4 - x^2}} x^2 y dy$ d) $\int_{e^y}^y y e^{-\frac{y}{x}} dy$

$$\mathbf{d)} \int_{e^y}^y y e^{-\frac{y}{x}} \, dy$$

Exercício 5.9 Calcule, iteradamente, os seguintes integrais duplos:

a)
$$\int_0^1 \int_0^2 (x+y) \, dy dx$$

a)
$$\int_{0}^{1} \int_{0}^{2} (x+y) \, dy dx$$
 b) $\int_{0}^{\pi} \int_{0}^{\sin x} (x^2 - y^2) \, dA$ c) $\int_{0}^{1} \int_{0}^{x} \sqrt{1 - x^2} \, dA$

c)
$$\int_0^1 \int_0^x \sqrt{1-x^2} \, dA$$

d)
$$\int_0^1 \int_0^{\sqrt{1-y^2}} (x+y) dA$$

d)
$$\int_0^1 \int_0^{\sqrt{1-y^2}} (x+y) dA$$
 e) $\int_0^1 \int_0^{\sqrt{4-y^2}} \frac{2}{\sqrt{4-y^2}} dA$ f) $\int_0^{\frac{\pi}{2}} \int_0^{\sin \theta} \theta r dr d\theta$

$$\mathbf{f}$$
) $\int_{0}^{\frac{\pi}{2}} \int_{0}^{\sin \theta} \theta r \, dr d\theta$

$$\mathbf{g}) \int_{1}^{\infty} \int_{0}^{\frac{1}{x}} y \, dA$$

$$\mathbf{g}) \int_{1}^{\infty} \int_{0}^{\frac{1}{x}} y \, dA \qquad \qquad \mathbf{h}) \int_{1}^{\infty} \int_{1}^{\infty} \frac{1}{xy} \, dx dy$$

Exercício 5.10 Use um integral duplo para calcular as áreas das regiões sombreadas

Exercício 5.11 Esboce a região de integração e troque a ordem de integração

a)
$$\int_0^4 \int_0^y f(x,y) dA$$
 b) $\int_{-2}^2 \int_0^{\sqrt{4-x^2}} g(x,y) dA$ c) $\int_{-1}^1 \int_{x^2}^1 h(x,y) dA$

Exercício 5.12 Esboce a região de integração, troque a ordem de integração e verifique que ambas as ordens conduzem à mesma área

a)
$$\int_0^1 \int_0^2 dy dx$$
 b) $\int_0^1 \int_{-\sqrt{1-2}}^{\sqrt{1-2}} dx dy$ c) $\int_0^2 \int_0^x dy dx + \int_2^4 \int_0^{4-x} dy dx$

Exercício 5.13 Verdade ou Falsidade?

a)
$$\int_{a}^{b} \int_{c}^{d} f(x, y) \, dy dx = \int_{c}^{d} \int_{a}^{b} f(x, y) \, dx dy$$
?
b) $\int_{0}^{1} \int_{0}^{x} f(x, y) \, dy dx = \int_{0}^{1} \int_{0}^{y} f(x, y) \, dx dy$?

Exercício 5.14 Use um integral duplo para calcular os volumes dos seguintes sólidos

Exercício 5.15 Escreva um integral duplo para o cálculo do volume do sólido limitado pelos gráficos definidos pelas seguintes equações

- a) z = xy, z = 0, y = x, x = 1 e situado no 1º octante.
- b) $z = 0, z = x^2, x = 0, x = 2, y = 0 \text{ e } y = 4.$
- c) $x^2 + z^2 = 1$, $y^2 + z^2 = 1$ e situado no 1º octante.
- d) z = x + y, $x^2 + y^2 = 4$ e situado no 1º octante.

Exercício 5.16 Use coordenadas polares para descrever as seguintes regiões e calcule as áreas sombreadas, usando integrais duplos:

