S04_T02: Visualització de Múltiples Variables

PART_2

PRACTICE 2

Import Libraries and Data

```
In [3]: # imported libraries
# import data manipulation libraries:
import pandas as pd
import numpy as np
# import regular expressions to search patterns:
import re
```

A quick peek at the dataframe:

```
In [4]:
         import warnings
         warnings.filterwarnings("ignore", category=FutureWarning)
         # DataFrame, importing data:
         movies = pd.read_csv('movies.dat',
                              engine = 'python',
                              encoding = 'latin1',
                              error_bad_lines = False,
                              warn_bad_lines = False)
         # To show lots of rows and columns:
         #pd.set_option('display.max_rows', None)
         pd.set_option('display.max_colwidth', None)
         print(movies.head())
          1::Toy Story (1995)::Animation | Children's | Comedy
          2::Jumanji (1995)::Adventure | Children's | Fantasy
                3::Grumpier Old Men (1995)::Comedy Romance
        2
                 4::Waiting to Exhale (1995)::Comedy | Drama
             5::Father of the Bride Part II (1995)::Comedy
                     6::Heat (1995)::Action | Crime | Thriller
```

The parameter **error_bad_lines** skip the invalid rows and change the dimension of the data frame. *Invalid rows are extra delimiter characters in the same row.* If we specify **error_bad_lines = False**, this will load the data into Python while skipping the bad lines, but with **warnings** of the skipped lines. To suppress this warning, we can set **warn_bad_lines = False**.

How many observations?

```
In [5]:
    print(
        f'Movies dataframe has {movies.shape[0]} rows and {movies.shape[1]} columns.'
    )
```

Movies dataframe has 2889 rows and 1 columns.

Data Cleaning

It's the process of cleaning messy data and transforming them into appropriate formats for further analysis and modeling.

Raw data. Movie titles are divided by the double point and the film genres separated by a vertical bar. Therefore I use the double point as a separator to make the titles easier to read and the vertical bar to split the film genres for each movie.

In the following table, I shape the raw data into new columns, this way it's easier to extract information from the data frame.

Description of the new variables

Description
English-speaking film titles
Foreign film titles
Movie release year
Cinematographic genres for each film

I assume the movies that only contain English titles are English-speaking. And movies with more than one title are non-English speaking.

```
In [6]:
         # Renaming columns
         col_names = ["Movie", "Genres"]
         # DataFrame
         movies = pd.read_csv('movies.dat',
                                sep='::',
                                engine='python',
                                encoding='latin1',
                                header=None,
                                names=col_names)
         # Returns the first few rows:
         movies.tail()
Out[6]:
                                Movie
                                            Genres
                  Meet the Parents (2000)
         3948
                                           Comedy
         3949 Requiem for a Dream (2000)
                                             Drama
```

```
3950
                 Tigerland (2000)
                                         Drama
3951
         Two Family House (2000)
                                         Drama
3952
           Contender, The (2000) Drama|Thriller
```

```
In [7]:
         ## Adding new columns for:
         # Original titles 'Original_Title'
         movies['Original_Title'] = movies['Movie'].str.extract(r'\((\w.*[aA-zZ])\)')
         # Release date 'Year'
         movies['Year'] = movies['Movie'].str.extract(r'\((\d{4})\)')
         # Extracting only movie titles 'Movie'
         movies['Movie'] = movies['Movie'].replace('(\s\(\w.*\))', '', regex=True)
         ## New dataframe for film genres 'Genres':
         Genres_df = movies['Genres'].str.split('|', expand=True)
         Genres_df.columns = ['Genres_' + str(x) for x in range(len(Genres_df.columns))]
         ## Deleting the column of film genre:
         movies = movies.drop(['Genres'], axis=1)
         ## Concatenate:
         film = pd.concat([movies, Genres_df], axis=1)
         film.head()
```

Out[7]:		Movie	Original_Title	Year	Genres_0	Genres_1	Genres_2	Genres_3	Genres_4	Genres_5
	1	Toy Story	NaN	1995	Animation	Children's	Comedy	None	None	None
	2	Jumanji	NaN	1995	Adventure	Children's	Fantasy	None	None	None
	3	Grumpier Old Men	NaN	1995	Comedy	Romance	None	None	None	None
	4	Waiting to Exhale	NaN	1995	Comedy	Drama	None	None	None	None
	5	Father of the Bride Part II	NaN	1995	Comedy	None	None	None	None	None

Inspecting the dataframe

```
In [8]:
        # Returns the number of rows and columns of the df:
        print(f'Movies dataframe has {film.shape[0]} rows and {film.shape[1]} columns.')
       Movies dataframe has 3883 rows and 9 columns.
In [9]:
        film.info()
       <class 'pandas.core.frame.DataFrame'>
       Int64Index: 3883 entries, 1 to 3952
       Data columns (total 9 columns):
                         Non-Null Count Dtype
        0 Movie
                          3883 non-null object
        1
           Original_Title 253 non-null
                                           object
        2 Year
                            3883 non-null
                                           object
```

3883 non-null 1858 non-null 536 non-null 115 non-null 3 Genres_0 object object 4 Genres_1 5 Genres_2 object Genres_3 6 object 7 15 non-null object Genres_4 8 Genres_5 1 non-null object dtypes: object(9) memory usage: 303.4+ KB

```
In [10]: # Changing the data type from 'Year' to 'int64':
    film['Year'] = film['Year'].astype('int64')

# Checking the Year dtype:
    print(f'The dtype for "Year" is: {film.Year.dtype}')
```

The dtype for "Year" is: int64

The .info() method displays information about the data type and the number of missing values for each column. We can see that the variable **Year** does not have the expected data type, int or datetime. In this case, as it is only the release year, there is no need to change it to datetime but to int.

Descriptive statistics

```
In [11]:
# Displays a summary statistics for each column:
film.describe(include='all')
```

Out[11]:		Movie	Original_Title	Year	Genres_0	Genres_1	Genres_2	Genres_3	Genres_4	Genres_5
	count	3883	253	3883.000000	3883	1858	536	115	15	1
	unique	3833	251	NaN	18	17	15	13	6	1
	top	Hamlet	Narayama Bushiko	NaN	Drama	Drama	Thriller	Thriller	Thriller	War
	freq	5	2	NaN	1176	381	120	40	3	1
	mean	NaN	NaN	1986.066959	NaN	NaN	NaN	NaN	NaN	NaN
	std	NaN	NaN	16.895690	NaN	NaN	NaN	NaN	NaN	NaN
	min	NaN	NaN	1919.000000	NaN	NaN	NaN	NaN	NaN	NaN
	25%	NaN	NaN	1982.000000	NaN	NaN	NaN	NaN	NaN	NaN
	50%	NaN	NaN	1994.000000	NaN	NaN	NaN	NaN	NaN	NaN
	75%	NaN	NaN	1997.000000	NaN	NaN	NaN	NaN	NaN	NaN
	max	NaN	NaN	2000.000000	NaN	NaN	NaN	NaN	NaN	NaN

1. In Original_Title, "count" and "unique" rows, why are the values different?

```
In [12]:
         ## Cuenta los valores y la frecuencia en que aparecen (para Original_Title):
         og = film['Original_Title'].value_counts()[:3]
         print('Most freq. values ::::::::\n', og)
         # Lista con los valores mas frecuentes:
         ogt = ["Narayama Bushiko", "Gojira"]
         # Para filtrar en el dataframe "isin()":
         print('\n. The isin () method filters by the dataframe a particular (or multiple) value in the column.\n.If it matches,
         film[film["Original_Title"].isin(ogt)].sort_values(by='Original_Title')
        Narayama Bushiko
                                       2
        Gojira
        Yao a yao yao dao waipo qiao
        Name: Original_Title, dtype: int64
         •The isin () method filters by the dataframe a particular (or multiple) value in the column.
         ·If it matches, it returns "True", otherwise "False".
Out[12]:
```

	Movie	Original_Title	Year	Genres_0	Genres_1	Genres_2	Genres_3	Genres_4	Genres_5
2363	Godzilla	Gojira	1954	Action	Sci-Fi	None	None	None	None
2364	Godzilla	Gojira	1984	Action	Sci-Fi	None	None	None	None
854	Ballad of Narayama, The	Narayama Bushiko	1958	Drama	None	None	None	None	None
2512	Ballad of Narayama, The	Narayama Bushiko	1982	Drama	None	None	None	None	None

Exploratory Data Analysis (EDA)

```
In [13]:
    ## Import visualization libraries
    import matplotlib.pyplot as plt
    import seaborn as sns
    import squarify # for Treemaps visualization

## Includes graphics on notebook below to code cell
%matplotlib inline
```

What is the most common film genre?

```
In [14]: ## Gen:
```

```
2. sort_index() sort by index.
          Gen = Genres_df.stack().value_counts()
          Gen_sorted = Genres_df.stack().value_counts().sort_index()
          ## Get the film genres:
          Gen_index = Gen.index
          Gen_sorted_index = Gen_sorted.index
          ## Get the film_genres values to np array:
          Gen_np = Gen.to_numpy()
          Gen_sorted_np = Gen_sorted.to_numpy()
In [15]:
          # TOP 5 MOST FREQUENT GENRES:
          Gen.head()
                     1603
         Drama
Out[15]:
                     1200
         Comedy
         Action
                    503
         Thriller
                      492
         Romance
                      471
         dtype: int64
In [33]:
          ## FIGURE:
          plt.figure(figsize=(9,6), dpi=100)
          ## PLOT:
          squarify.plot(
              sizes=Gen_np,
              label=Gen_index,
              alpha=.8,
              color=plt.cm.tab20c.colors,
              pad = True,
              text_kwargs={'color':'black', 'size':7.5})
          ## ADDITIONAL PARAMETERS:
          # Title:
          plt.title('Genres frequency', size=10)
          # Hide axis:
          plt.axis('off')
          # Print plot:
          plt.show()
```

Genres frequency

1. stack() stack the movie genres.

Function of colors: We can see 5 groups of colors, in each group the most intense color are the genres with more films in each color group.

What is the number of foreign language films?

```
In [18]:
          # VARIABLES:
          mv = film['Movie'].value_counts().sum()
          og = film['Original_Title'].value_counts().sum()
          ## FIGURE:
          fig = plt.figure(figsize=(4,3), dpi=100)
          ax = fig.add_axes([0,0,0.5,1])
          # x,y axis:
          name = ['Movies', 'Original_Title']
          values = [mv, og]
          ## PLOT:
          plt.bar(name, values, color='royalblue')
          # Label
          plt.ylabel('Amount')
          plt.grid(color='#95a5a6', linestyle=':', linewidth=2, axis='y', alpha=0.5)
          # Show plot
          plt.show()
```


Original_Title are movies with non-English or foreign-speaking titles.

In this dataset 6.12% represents non-English or foreign-speaking movies.

Evolution in film production

```
In [20]:
          # Renaming columns:
          col_names = ["Movie", "Genres"]
          # DataFrame:
          movies_df = pd.read_csv('movies.dat',
                               sep='::',
                               engine='python',
                               encoding='latin1',
                               header=None,
                               names=col_names)
          # Release date to 'Year':
          movies_df['Year'] = movies_df['Movie'].str.extract(r'\((\d{4})\)')
          # Extracting only movie titles to 'Movie':
          movies_df['Movie'] = movies_df['Movie'].replace('(\s\(\w.*\))', '', regex=True)
          ## New dataframe for film genres 'Genres':
          Genres_df = movies_df['Genres'].str.split('|', expand=True)
          Genres_df.columns = ['Genres_' + str(x) for x in range(len(Genres_df.columns))]
          # Deleting the orignal column of film 'Genres' and 'Movie':
          movies_df = movies_df.drop(['Genres', 'Movie'], axis=1)
          # Concatenate both df: Gneres_df + movies:
          film = pd.concat([movies_df, Genres_df], axis=1)
          # Changing the data type from 'Year' to 'int64':
          film['Year'] = film['Year'].astype('int64')
          # Setting 'Year' as new index:
          film.set_index('Year',inplace=True)
          film.tail()
```

Out [20]: Genres_1 Genres_2 Genres_3 Genres_4 Genres_5

Year 2000 Comedy None None None None None 2000 Drama None None None None None 2000 Drama None None None None None 2000 Drama None None None None None 2000 Thriller Drama None None None None

```
In [21]:
          ## Varaibale:
          year_index = film.index.value_counts().sort_index()
          ## Figure:
          fig = plt.figure(figsize=(9,5),
                          dpi=100,
                          facecolor = 'whitesmoke', edgecolor = None)
          ax = fig.add_subplot(111)
          ax.patch.set_facecolor('whitesmoke')
          # Plot:
          year_index.plot(kind='line',
                          color='black',
                          marker='d',
                          markerfacecolor=('#b5a6e2'),
                          markeredgecolor=('#b5a6e2'))
          plt.grid();
```


- How many movies are produced each year? For each year we have the number of films, the years stand out: 1996 (345), 1995 (342), 1998 (337).
- How is the film production curve?
 We can see that the number of movies per year is constantly increasing.
 From 1991 (60) to 1996 (345) the production of films increased by 475%