Prof. F. Bottacin, M. Candilera, R. Colpi, E. Detomi, G. Peruginelli

1º Compitino — 13 aprile 2019

Esercizio 1. Sia $f: V \to W$ una funzione lineare. Dimostrare che se v_1, v_2, \ldots, v_n sono un sistema di generatori di V allora $f(v_1), f(v_2), \ldots, f(v_n)$ sono un sistema di generatori dell'immagine di f. È vero che se i vettori v_1, v_2, \ldots, v_n sono linearmente indipendenti allora anche $f(v_1), f(v_2), \ldots, f(v_n)$ sono linearmente indipendenti?

Esercizio 2. Sia V_n l'insieme dei polinomi nella variabile x di grado $\leq n$ (compreso il polinomio nullo). Sia $D: V_n \to V_n$ la funzione che ad ogni polinomio p(x) associa la sua derivata p'(x). Si dica se D è una funzione lineare. D è iniettiva? D è suriettiva?

Esercizio 3. Siano A e A' due matrici $m \times n$. Si verifichi che l'insieme dei vettori $v \in \mathbb{R}^n$ tali che Av = A'v è un sottospazio vettoriale di \mathbb{R}^n .

Esercizio 4. In \mathbb{R}^4 sono dati i vettori $u_1 = (1, 1, 0, -1), u_2 = (2, 3, -1, 1), u_3 = (1, 3, \alpha, 5).$

- (a) Determinare per quale valore di $\alpha \in \mathbb{R}$ i vettori u_1, u_2, u_3 sono linearmente dipendenti e, per il valore di α trovato, scrivere uno dei tre vettori come combinazione lineare degli altri.
- (b) Poniamo ora $\alpha = 0$ e sia U il sottospazio generato da u_1, u_2, u_3 . Scrivere un'equazione, nelle incognite x_1, x_2, x_3, x_4 , le cui soluzioni siano i vettori di U.
- (c) Sia $W \subset \mathbb{R}^4$ il sottospazio dato dalle soluzioni del sistema

$$\begin{cases} 2x_1 - 2x_2 + x_3 = 0\\ 2x_1 - 3x_3 + 2x_4 = 0 \end{cases}$$

Si scriva una base di W e si dica se è vero che $U \cap W = W$.

(d) Si trovi una base di un sottospazio $Z \subset \mathbb{R}^4$ tale che dim $(Z \cap W) = 1$ e $Z + U = \mathbb{R}^4$. È possibile trovare un tale sottospazio Z di dimensione 1?

Esercizio 5. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare la cui matrice, rispetto alle basi canoniche, è

$$A = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 3 & -1 \\ 1 & 2 & 0 \end{pmatrix}$$

- (a) Determinare una base del nucleo di f, una base dell'immagine di f e dire se f è iniettiva.
- (b) Dire se esiste una funzione non identicamente nulla $g: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $f \circ g$ sia la funzione nulla. Se una tale g esiste, scriverne una possibile matrice rispetto alle basi canoniche.
- (c) Sia $U \subset \mathbb{R}^3$ il sottospazio generato dai vettori $u_1 = (1, 2, -1), u_2 = (2, 0, -1)$ e consideriamo la funzione $h \colon U \to \mathbb{R}^3$ definita ponendo h(v) = f(v), per ogni $v \in U$. Scrivere la matrice di h rispetto alla base $\{u_1, u_2\}$ di U e alla base canonica di \mathbb{R}^3 .
- (d) Trovare una matrice invertibile B tale che la matrice A' = BA sia una forma a scala di A.

Prof. F. Bottacin, M. Candilera, R. Colpi, E. Detomi, G. Peruginelli

1º Compitino — 13 aprile 2019

Esercizio 1. Sia $f: V \to W$ una funzione lineare. Dimostrare che se v_1, v_2, \ldots, v_n sono un sistema di generatori di V allora $f(v_1), f(v_2), \ldots, f(v_n)$ sono un sistema di generatori dell'immagine di f. È vero che se i vettori v_1, v_2, \ldots, v_n sono linearmente indipendenti allora anche $f(v_1), f(v_2), \ldots, f(v_n)$ sono linearmente indipendenti?

Esercizio 2. Sia V_n l'insieme dei polinomi nella variabile x di grado $\leq n$ (compreso il polinomio nullo). Sia $D: V_n \to V_n$ la funzione che ad ogni polinomio p(x) associa la sua derivata p'(x). Si dica se D è una funzione lineare. D è iniettiva? D è suriettiva?

Esercizio 3. Siano A e A' due matrici $m \times n$. Si verifichi che l'insieme dei vettori $v \in \mathbb{R}^n$ tali che Av = A'v è un sottospazio vettoriale di \mathbb{R}^n .

Esercizio 4. In \mathbb{R}^4 sono dati i vettori $u_1 = (-1, 0, 2, -1), u_2 = (2, 1, -1, 3), u_3 = (1, 2, \alpha, 3).$

- (a) Determinare per quale valore di $\alpha \in \mathbb{R}$ i vettori u_1, u_2, u_3 sono linearmente dipendenti e, per il valore di α trovato, scrivere uno dei tre vettori come combinazione lineare degli altri.
- (b) Poniamo ora $\alpha = 0$ e sia U il sottospazio generato da u_1, u_2, u_3 . Scrivere un'equazione, nelle incognite x_1, x_2, x_3, x_4 , le cui soluzioni siano i vettori di U.
- (c) Sia $W \subset \mathbb{R}^4$ il sottospazio dato dalle soluzioni del sistema

$$\begin{cases} x_1 + 3x_2 + 4x_3 + x_4 = 0 \\ x_1 - 2x_3 - 2x_4 = 0 \end{cases}$$

Si scriva una base di W e si dica se è vero che $U \cap W = W$.

(d) Si trovi una base di un sottospazio $Z \subset \mathbb{R}^4$ tale che dim $(Z \cap W) = 1$ e $Z + U = \mathbb{R}^4$. È possibile trovare un tale sottospazio Z di dimensione 1?

Esercizio 5. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare la cui matrice, rispetto alle basi canoniche, è

$$A = \begin{pmatrix} 3 & -1 & 3 \\ -1 & 2 & 4 \\ 2 & -2 & -2 \end{pmatrix}$$

- (a) Determinare una base del nucleo di f, una base dell'immagine di f e dire se f è iniettiva.
- (b) Dire se esiste una funzione non identicamente nulla $g: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $f \circ g$ sia la funzione nulla. Se una tale g esiste, scriverne una possibile matrice rispetto alle basi canoniche.
- (c) Sia $U \subset \mathbb{R}^3$ il sottospazio generato dai vettori $u_1 = (1, 1, -1), u_2 = (2, 3, 0)$ e consideriamo la funzione $h \colon U \to \mathbb{R}^3$ definita ponendo h(v) = f(v), per ogni $v \in U$.

Scrivere la matrice di h rispetto alla base $\{u_1, u_2\}$ di U e alla base canonica di \mathbb{R}^3 .

(d) Trovare una matrice invertibile B tale che la matrice A' = BA sia una forma a scala di A.

Prof. F. Bottacin, M. Candilera, R. Colpi, E. Detomi, G. Peruginelli

1º Compitino — 13 aprile 2019

Esercizio 1. Sia $f: V \to W$ una funzione lineare. Dimostrare che se v_1, v_2, \ldots, v_n sono un sistema di generatori di V allora $f(v_1), f(v_2), \ldots, f(v_n)$ sono un sistema di generatori dell'immagine di f. È vero che se i vettori v_1, v_2, \ldots, v_n sono linearmente indipendenti allora anche $f(v_1), f(v_2), \ldots, f(v_n)$ sono linearmente indipendenti?

Esercizio 2. Sia V_n l'insieme dei polinomi nella variabile x di grado $\leq n$ (compreso il polinomio nullo). Sia $D: V_n \to V_n$ la funzione che ad ogni polinomio p(x) associa la sua derivata p'(x). Si dica se D è una funzione lineare. D è iniettiva? D è suriettiva?

Esercizio 3. Siano A e A' due matrici $m \times n$. Si verifichi che l'insieme dei vettori $v \in \mathbb{R}^n$ tali che Av = A'v è un sottospazio vettoriale di \mathbb{R}^n .

Esercizio 4. In \mathbb{R}^4 sono dati i vettori $u_1 = (1, -2, 3, 0), u_2 = (2, -2, 1, -1), u_3 = (1, 2, \alpha, -2).$

- (a) Determinare per quale valore di $\alpha \in \mathbb{R}$ i vettori u_1, u_2, u_3 sono linearmente dipendenti e, per il valore di α trovato, scrivere uno dei tre vettori come combinazione lineare degli altri.
- (b) Poniamo ora $\alpha = 0$ e sia U il sottospazio generato da u_1, u_2, u_3 . Scrivere un'equazione, nelle incognite x_1, x_2, x_3, x_4 , le cui soluzioni siano i vettori di U.
- (c) Sia $W \subset \mathbb{R}^4$ il sottospazio dato dalle soluzioni del sistema

$$\begin{cases} x_1 + 2x_2 + 3x_3 - 2x_4 = 0 \\ x_1 - x_3 + 2x_4 = 0 \end{cases}$$

Si scriva una base di W e si dica se è vero che $U \cap W = W$.

(d) Si trovi una base di un sottospazio $Z \subset \mathbb{R}^4$ tale che dim $(Z \cap W) = 1$ e $Z + U = \mathbb{R}^4$. È possibile trovare un tale sottospazio Z di dimensione 1?

Esercizio 5. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare la cui matrice, rispetto alle basi canoniche, è

$$A = \begin{pmatrix} 2 & -5 & 1 \\ -2 & 1 & -5 \\ 1 & -2 & 1 \end{pmatrix}$$

- (a) Determinare una base del nucleo di f, una base dell'immagine di f e dire se f è iniettiva.
- (b) Dire se esiste una funzione non identicamente nulla $g: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $f \circ g$ sia la funzione nulla. Se una tale g esiste, scriverne una possibile matrice rispetto alle basi canoniche.
- (c) Sia $U \subset \mathbb{R}^3$ il sottospazio generato dai vettori $u_1 = (1, 2, 1), u_2 = (0, 1, 2)$ e consideriamo la funzione $h \colon U \to \mathbb{R}^3$ definita ponendo h(v) = f(v), per ogni $v \in U$.

Scrivere la matrice di h rispetto alla base $\{u_1, u_2\}$ di U e alla base canonica di \mathbb{R}^3 .

(d) Trovare una matrice invertibile B tale che la matrice A' = BA sia una forma a scala di A.

Prof. F. Bottacin, M. Candilera, R. Colpi, E. Detomi, G. Peruginelli

1º Compitino — 13 aprile 2019

Esercizio 1. Sia $f: V \to W$ una funzione lineare. Dimostrare che se v_1, v_2, \ldots, v_n sono un sistema di generatori di V allora $f(v_1), f(v_2), \ldots, f(v_n)$ sono un sistema di generatori dell'immagine di f. È vero che se i vettori v_1, v_2, \ldots, v_n sono linearmente indipendenti allora anche $f(v_1), f(v_2), \ldots, f(v_n)$ sono linearmente indipendenti?

Esercizio 2. Sia V_n l'insieme dei polinomi nella variabile x di grado $\leq n$ (compreso il polinomio nullo). Sia $D: V_n \to V_n$ la funzione che ad ogni polinomio p(x) associa la sua derivata p'(x). Si dica se D è una funzione lineare. D è iniettiva? D è suriettiva?

Esercizio 3. Siano A e A' due matrici $m \times n$. Si verifichi che l'insieme dei vettori $v \in \mathbb{R}^n$ tali che Av = A'v è un sottospazio vettoriale di \mathbb{R}^n .

Esercizio 4. In \mathbb{R}^4 sono dati i vettori $u_1 = (1, 0, 3, -2), u_2 = (2, -1, 3, -1), u_3 = (-1, 2, \alpha, -4).$

- (a) Determinare per quale valore di $\alpha \in \mathbb{R}$ i vettori u_1, u_2, u_3 sono linearmente dipendenti e, per il valore di α trovato, scrivere uno dei tre vettori come combinazione lineare degli altri.
- (b) Poniamo ora $\alpha = 0$ e sia U il sottospazio generato da u_1, u_2, u_3 . Scrivere un'equazione, nelle incognite x_1, x_2, x_3, x_4 , le cui soluzioni siano i vettori di U.
- (c) Sia $W \subset \mathbb{R}^4$ il sottospazio dato dalle soluzioni del sistema

$$\begin{cases} x_1 + 2x_2 - x_3 - x_4 = 0 \\ x_1 + 3x_3 + 5x_4 = 0 \end{cases}$$

Si scriva una base di W e si dica se è vero che $U \cap W = W$.

(d) Si trovi una base di un sottospazio $Z \subset \mathbb{R}^4$ tale che dim $(Z \cap W) = 1$ e $Z + U = \mathbb{R}^4$. È possibile trovare un tale sottospazio Z di dimensione 1?

Esercizio 5. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare la cui matrice, rispetto alle basi canoniche, è

$$A = \begin{pmatrix} 3 & -4 & 2 \\ 1 & 2 & 4 \\ -1 & 1 & -1 \end{pmatrix}$$

- (a) Determinare una base del nucleo di f, una base dell'immagine di f e dire se f è iniettiva.
- (b) Dire se esiste una funzione non identicamente nulla $g: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $f \circ g$ sia la funzione nulla. Se una tale g esiste, scriverne una possibile matrice rispetto alle basi canoniche.
- (c) Sia $U \subset \mathbb{R}^3$ il sottospazio generato dai vettori $u_1 = (1, 2, 2), u_2 = (2, 0, -1)$ e consideriamo la funzione $h \colon U \to \mathbb{R}^3$ definita ponendo h(v) = f(v), per ogni $v \in U$.

Scrivere la matrice di h rispetto alla base $\{u_1, u_2\}$ di U e alla base canonica di \mathbb{R}^3 .

(d) Trovare una matrice invertibile B tale che la matrice A' = BA sia una forma a scala di A.