01. Conceptos básicos

Michael Heredia Pérez mherediap@unal.edu.co

Universidad Nacional de Colombia sede Manizales Departamento de Ingeniería Civil Mecánica Tensorial

2023a

Advertencia

Estas diapositivas son solo una herramienta didáctica para guiar la clase, por si solas no deben tomarse como material de estudio y el estudiante debe dirigirse a la literatura recomendada [Álvarez, 2022].

- ¿Qué es la mecánica de sólidos?
- ¿Qué es un sólido?
- 3 Diferenciales de primer, segundo y tercer orden
- Fuerzas que actúan sobre un sólido
- Referencias

- ¿Qué es la mecánica de sólidos?
- 2 ¿Qué es un sólido?
- 3 Diferenciales de primer, segundo y tercer orden
- Fuerzas que actúan sobre un sólido
- Referencias

¿Qué es la mecánica de sólidos?

Es la rama de la mecánica clásica que estudia el comportamiento de la materia sólida deformable sometida a acciones externas como:

- Fuerzas superficiales
- Cambios de temperatura
- Desplazamientos aplicados

¿Qué es la mecánica de sólidos?

cinemática

Figura: (1.1) Taxonomía de la mecánica clásica.

- ¿Qué es la mecánica de sólidos?
- ¿Qué es un sólido?
- 3 Diferenciales de primer, segundo y tercer orden
- Fuerzas que actúan sobre un sólido
- Referencias

¿Qué es un sólido?

Un sólido se caracteriza por:

- Oponer resistencia a la deformación (cambios de forma y de volumen).
- Valores altos del módulo de elasticidad (E) y de cortante (G).

Caracterización

Sólidos en función de su respuesta al esfuerzo aplicado

- Sólido rígido
- Sólido elástico
- Sólido visco-elástico
- Sólido plástico

Propiedades del sólido elástico

Isotropía

Propiedades físicas del material son las mismas en todas las direcciones

Anisotropía

Continuidad

No existen discontinuidades intersticiales.

Discontinuidad

Homogeneidad

Cualquier muestra del sólido posee las mismas propiedades físicas.

Heterogeneidad

- ¿Qué es la mecánica de sólidos?
- 2 ¿Qué es un sólido?
- 3 Diferenciales de primer, segundo y tercer orden
- 4 Fuerzas que actúan sobre un sólido
- Referencias

Diferenciales de primer, segundo y tercer orden

Figura: (1.2) Diferenciales de línea, de área (superficie) y de volumen. Estos son respectivamente diferenciales de primer, segundo y tercer orden.

Tasa de crecimiento

Figura: (1.3) Variación de las funciones x, x^2 y x^3 . Observe que a medida de que x tiende a cero por la derecha, la función x^3 decrece mucho más rápido que x^2 , (es decir, x^3 se vuelve cero primero que x^2) y esta última disminuye de forma aún más rápida que x. Por esta razón, es posible despreciar los diferenciales de tercer y segundo orden cuando estos se comparan con diferenciales de primer orden.

- ¿Qué es la mecánica de sólidos?
- ¿Qué es un sólido?
- 3 Diferenciales de primer, segundo y tercer orden
- Fuerzas que actúan sobre un sólido
- Referencias

Fuerzas que actúan sobre un sólido

Fuerzas másicas

(body forces)

Están distribuidas en todo el sólido, de modo que estas actúan directamente en todas las partículas del cuerpo.

$$\boldsymbol{b}(x,y,z) := [X(x,y,z),Y(x,y,z),Z(x,y,z)]^T$$

Fuerzas superficiales

(surface forces)

Están presentes únicamente en el contorno del sólido, y se producen por el contacto con otro sólido o fluido.

$$f(x, y, z) := [\bar{X}(x, y, z), \bar{Y}(x, y, z), \bar{Z}(x, y, z)]^T$$

- ¿Qué es la mecánica de sólidos?
- ¿Qué es un sólido?
- 3 Diferenciales de primer, segundo y tercer orden
- Fuerzas que actúan sobre un sólido
- Referencias

Referencias I

Álvarez, D. A. (2022). *Teoría de la elasticidad*. Universidad Nacional de Colombia.

Enlaces de interés

 El material de las secciones 1.3 y 1.4 está explicado en los videos de YouTube que aparecen en la siguiente lista de reproducción: https://youtube.com/playlist?list= PLOq9elBrzPDHGRNnsNqhGFy4IHYecCOm-