Estimación de la calidad de imágenes médicas 3D por medio de aprendizaje automático

Curso: Ingeniería Informática 2022-2023.

Autor: Brian Sena Simons.

Tutor: Dr. Pablo Mesejo Santiago.

Co-Tutor: Dr. Enrique Bermejo Nievas.

Granada, 19 de agosto de 2023

Índice

- Introducción
 - Contexto
 - Subproblemas
 - Motivación
 - Objetivos
- Estado del arte
 - Búsquedas Scopus
 - Estado del arte IQA
 - Estado del arte PCQA
 - Estado del arte en imágenes médicas

- Materiales y métodos
 - Materiales
 - Métodos
 - Entorno
- Experimentación
 - Protocolo de validación
 - Modelo NR3DQA
 - Modelo VQA-PC
- Conclusiones y trabajos futuros
 - Conclusiones

- La información visual es cada vez más importante.

Figura: Imágenes distorsionadas equidistantes¹

¹Kalpana Seshadrinathan, Thrasyvoulos Pappas, Robert Safranek, Junging Chen, Zhou Wang, Hamid Sheikh y Alan Bovik. "Image Quality Assessment". En: The Essential Guide to Image Processing (2009), págs. 553-595. **Brian Sena Simons** 19 de agosto de 2023 3 / 36

La información visual es cada vez más importante.

Estado del arte

- Tanto para el entretenimiento como para el ámbito biomédico.

Figura: Imágenes distorsionadas equidistantes¹

Brian Sena Simons 19 de agosto de 2023 3/36

¹Seshadrinathan, Pappas, Safranek, Chen, Wang, Sheikh y Bovik, "Image Quality Assessment".

- La información visual es cada vez más importante.
 - Tanto para el entretenimiento como para el ámbito biomédico.
- La estimación de calidad es la tarea de medir v cuantificar la calidad perceptual humana de una imagen (IQA).

Figura: Imágenes distorsionadas equidistantes¹

Brian Sena Simons 19 de agosto de 2023 3/36

¹Seshadrinathan, Pappas, Safranek, Chen, Wang, Sheikh y Bovik, "Image Quality Assessment".

Contexto

- La información visual es cada vez más importante.
 - Tanto para el entretenimiento como para el ámbito biomédico.
- La estimación de calidad es la tarea de medir y cuantificar la calidad perceptual humana de una imagen (IQA).
 - Factores importantes: contenido, contraste, distorsiones y la percepción humana

Figura: Imágenes distorsionadas equidistantes¹

¹Seshadrinathan, Pappas, Safranek, Chen, Wang, Sheikh y Bovik, "Image Quality Assessment".

Figura: Problema con referencia (FR).

Figura: Problema con referencia reducida (RR).

Estado del arte

Figura: Problema sin referencia (NR).

- El subproblema más difícil.

Figura: Problema sin referencia (NR).

- El subproblema más difícil.
- Debemos disponer de conocimientos sobre:

Brian Sena Simons 19 de agosto de 2023 5 / 36

Estado del arte

Figura: Problema sin referencia (NR).

- El subproblema más difícil.
- Debemos disponer de conocimientos sobre:
 - Naturaleza de las imágenes.

Brian Sena Simons 19 de agosto de 2023 5/36

Figura: Problema sin referencia (NR).

- El subproblema más difícil.
- Debemos disponer de conocimientos sobre:
 - Naturaleza de las imágenes.
 - Efecto de las distorsiones.

Brian Sena Simons 19 de agosto de 2023 5 / 36

Figura: Problema sin referencia (NR).

- El subproblema más difícil.
- Debemos disponer de conocimientos sobre:
 - Naturaleza de las imágenes.
 - Efecto de las distorsiones.
- Este TFG aborda la estimación, sin referencia, de calidad de imágenes médicas 3D.

Brian Sena Simons 19 de agosto de 2023 UGR 5 / 36 Introducción

Aplicaciones

- Comparativa entre algoritmos de compresión.
- Recuperación de la información
- Evaluar errores de transmisión

Figura: Eliminación de reflejos en imágenes² con medida de calidad BRISQUE³.

Brian Sena Simons UGR 19 de agosto de 2023 6 / 36

²Maimoona Rafiq, Usama Bajwa, Ghulam Gilanie y Waqas Anwar. "Reconstruction of scene using corneal reflection". En: *Multimedia Tools and Applications* 80 (jun. de 2021), págs. 1-17

³Anish Mittal, Anush Krishna Moorthy y Alan Conrad Bovik. "No-reference image quality assessment in the spatial domain". En: *IEEE Transactions on Image Processing (TIP)* 21.12 (2012), págs. 4695-4708

Aplicaciones

- Comparativa entre algoritmos de compresión.
- Recuperación de la información.
- Evaluar errores de transmisión

Figura: Eliminación de reflejos en imágenes² con medida de calidad BRISQUE³.

Brian Sena Simons UGR 19 de agosto de 2023 6 / 36

²Rafiq, Bajwa, Gilanie y Anwar, "Reconstruction of scene using corneal reflection"

³Mittal, Moorthy y Bovik, "No-reference image quality assessment in the spatial domain"

Aplicaciones

- **Comparativa** entre algoritmos de compresión.
- Recuperación de la información.
- **Evaluar** errores de transmisión.

Figura: Eliminación de reflejos en imágenes² con medida de calidad BRISOUE³.

²Rafiq, Bajwa, Gilanie y Anwar, "Reconstruction of scene using corneal reflection"

³Mittal, Moorthy y Bovik, "No-reference image quality assessment in the spatial domain"

Introducción

Problemáticas

- El número de métodos propuestos para 3D decrece sustancialmente.

Figura: Eiemplo de distorsiones médicas⁴.

⁴Igor Stepien v Mariusz Oszust, "A Brief Survey on No-Reference Image Quality Assessment Methods for Magnetic Resonance Images". En: Journal of Imaging 8.6 (2022).

Introducción

Problemáticas

- El número de métodos propuestos para 3D decrece sustancialmente.
- La naturelaza de las imagenes médicas reduce la precisión de modelos IQA estándares.

Figura: Eiemplo de distorsiones médicas⁴.

⁴Stepien v Oszust, "A Brief Survey on No-Reference Image Quality Assessment Methods for Magnetic Resonance Images".

Problemáticas

- El número de métodos propuestos para 3D decrece sustancialmente.
- La naturelaza de las imagenes médicas reduce la precisión de modelos IQA estándares.
- No hay ningún método aplicado directamente a imágenes médicas 3D.

Figura: Ejemplo de distorsiones médicas⁴.

⁴Stepien y Oszust, "A Brief Survey on No-Reference Image Quality Assessment Methods for Magnetic Resonance Images".

- Cada vez más frecuentemente se emplean volúmenes tridimensionales.
- No obstante, las distorsiones afectan a volumen 3D generado.
- Las contribuciones relativas al IQA en la medicina resulta en:
 - Reducción de costes.
 - Reducción de tiempo de consulta.

 Mejora de calidad del diagnóstico.

Figura: Ejemplo de visualización 3D (Slicer⁵).

⁵Andriy Fedorov et al. "3D Slicer as an image computing platform for the Quantitative Imaging Network". En: Magnetic Resonance Imaging 30.9 (2012), págs, 1323-1341.

Introducción

- Cada vez más frecuentemente se emplean volúmenes tridimensionales.
- No obstante, las distorsiones afectan al volumen 3D generado.

Figura: Ejemplo de visualización 3D (Slicer⁵).

⁵Fedorov et al., "3D Slicer as an image computing platform for the Quantitative Imaging Network".

Introducción

- Cada vez más frecuentemente se emplean volúmenes tridimensionales.
- No obstante, las distorsiones afectan al volumen 3D generado.
- Las contribuciones relativas al IQA en la medicina resulta en:
 - Reducción de costes.
 - Reducción de tiempo de consulta
 - Mejora de calidad del diagnóstico.

Figura: Ejemplo de visualización 3D (Slicer⁵).

⁵Fedorov et al., "3D Slicer as an image computing platform for the Quantitative Imaging Network".

- Cada vez más frecuentemente se emplean volúmenes tridimensionales.
- No obstante, las distorsiones afectan al volumen 3D generado.
- Las contribuciones relativas al IQA en la medicina resulta en:
 - Reducción de costes.
 - Reducción de tiempo de consulta
 - Mejora de calidad del diagnóstico.

Figura: Ejemplo de visualización 3D (Slicer⁵).

Brian Sena Simons UGR 19 de agosto de 2023 8 / 36

⁵Fedorov et al., "3D Slicer as an image computing platform for the Quantitative Imaging Network".

Introducción

Motivación

- Cada vez más frecuentemente se emplean volúmenes tridimensionales.
- No obstante, las distorsiones afectan al volumen 3D generado.
- Las contribuciones relativas al IQA en la medicina resulta en:
 - Reducción de costes.
 - Reducción de tiempo de consulta.
 - Mejora de calidad del diagnóstico.

Figura: Ejemplo de visualización 3D (Slicer⁵).

Brian Sena Simons UGR 19 de agosto de 2023 8 / 36

 $^{^5}$ Fedorov et al., "3D Slicer as an image computing platform for the Quantitative Imaging Network".

Introducción

- Cada vez más frecuentemente se emplean volúmenes tridimensionales.
- No obstante, las distorsiones afectan al volumen 3D generado.
- Las contribuciones relativas al IQA en la medicina resulta en:
 - Reducción de costes.
 - Reducción de tiempo de consulta.
 - Mejora de calidad del diagnóstico.

Figura: Ejemplo de visualización 3D (Slicer⁵).

⁵Fedorov et al., "3D Slicer as an image computing platform for the Quantitative Imaging Network".

Objetivos

Objetivos

- Estudió exhaustivo del estado del arte.
- Generación de datos sintéticos.
- Validar métodos más prometedores.

9/36

Búsquedas Scopus

Tendencia Scopus

Figura: Aprendizaje automático en medicina (azul) y nubes de puntos (naranja). Ambos superan los 6000 documentos.

Figura: Estimación de calidad en imágenes médicas (azul), nubes de puntos (naranja) y en imágenes médicas 3D (verde). Esta última, tan solo llega a 60 publicaciones

Brian Sena Simons UGR 19 de agosto de 2023 10 / 36

- Están basados en los avances del conocimiento sobre el sistema visual humano (HVS):
 - Cuantificación de la señal.
 - 2 La sensibilidad al contraste
 - Hipótesis de percepción a través de brillo, contraste y estructuras.
 - 4 La saliencia visual.
 - 6 Empleo de modelos DL.

Métrica	LIVE		
Metrica	SRCC	RMSE	
PSNRHVS	0.919	0.903	12.540
UQI	0.894	0.899	11.982
SSIM	0.948	0.845	8.946
VSI	0.952	0.948	8.682
DSS	0.962	0.931	9.961
CD-MMF	0.981	0.980	5.413
WaDIQaM	0.970	0.980	-

Tabla: Progreso de las métricas FR conforme avanza los conocimientos del HVS, ML y DL⁶.

Brian Sena Simons UGR 19 de agosto de 2023

11 / 36

⁶Yuzhen Niu, Yini Zhong, Wenzhong Guo, Yiqing Shi y Peikun Chen. "2D and 3D Image Quality Assessment: A Survey of Metrics and Challenges". En: *IEEE Access* 7 (2019), págs. 782-801.

- Están basados en los avances del conocimiento sobre el sistema visual humano (HVS):
 - Cuantificación de la señal.
 - 2 La sensibilidad al contraste.
 - 4 Hipótesis de percepción a través de brillo, contraste y estructuras.
 - 4 La saliencia visual.
 - 6 Empleo de modelos DL

Métrica	LIVE		
Metrica	SRCC	PLCC	RMSE
PSNRHVS	0.919	0.903	12.540
UQI	0.894	0.899	11.982
SSIM	0.948	0.845	8.946
VSI	0.952	0.948	8.682
DSS	0.962	0.931	9.961
CD-MMF	0.981	0.980	5.413
WaDIQaM	0.970	0.980	-

Tabla: Progreso de las métricas FR conforme avanza los conocimientos del HVS. ML v DL⁶.

⁶Niu, Zhong, Guo, Shi y Chen, "2D and 3D Image Quality Assessment: A Survey of Metrics and Challenges".

- Están basados en los avances del conocimiento sobre el sistema visual humano (HVS):
 - Cuantificación de la señal.
 - 2 La sensibilidad al contraste.
 - Hipótesis de percepción a través de: brillo, contraste y estructuras.
 - 4 La saliencia visual
 - 6 Empleo de modelos DL

Métrica		LIVE		
Metrica	SRCC	PLCC	RMSE	
PSNRHVS	0.919	0.903	12.540	
UQI	0.894	0.899	11.982	
SSIM	0.948	0.845	8.946	
VSI	0.952	0.948	8.682	
DSS	0.962	0.931	9.961	
CD-MMF	0.981	0.980	5.413	
WaDIQaM	0.970	0.980	-	

Tabla: Progreso de las métricas FR conforme avanza los conocimientos del HVS. ML v DL⁶.

⁶Niu, Zhong, Guo, Shi y Chen, "2D and 3D Image Quality Assessment: A Survey of Metrics and Challenges".

- Están basados en los avances del conocimiento sobre el sistema visual humano (HVS):
 - Cuantificación de la señal.
 - 2 La sensibilidad al contraste.
 - Hipótesis de percepción a través de: brillo, contraste y estructuras.
 - La saliencia visual.
 - Empleo de modelos DL

Métrica	LIVE		
Metrica	SRCC	PLCC	RMSE
PSNRHVS	0.919	0.903	12.540
UQI	0.894	0.899	11.982
SSIM	0.948	0.845	8.946
VSI	0.952	0.948	8.682
DSS	0.962	0.931	9.961
CD-MMF	0.981	0.980	5.413
WaDIQaM	0.970	0.980	-

Tabla: Progreso de las métricas FR conforme avanza los conocimientos del HVS, ML y DL⁶.

⁶Niu, Zhong, Guo, Shi y Chen, "2D and 3D Image Quality Assessment: A Survey of Metrics and Challenges".

- Están basados en los avances del conocimiento sobre el sistema visual humano (HVS):
 - Cuantificación de la señal.
 - 2 La sensibilidad al contraste.
 - Hipótesis de percepción a través de: brillo, contraste y estructuras.
 - La saliencia visual.
 - Empleo de modelos DL.

Métrica	LIVE		
Metrica	SRCC	PLCC	RMSE
PSNRHVS	0.919	0.903	12.540
UQI	0.894	0.899	11.982
SSIM	0.948	0.845	8.946
VSI	0.952	0.948	8.682
DSS	0.962	0.931	9.961
CD-MMF	0.981	0.980	5.413
WaDIQaM	0.970	0.980	-

Tabla: Progreso de las métricas FR conforme avanza los conocimientos del HVS. ML v DL⁶.

⁶Niu, Zhong, Guo, Shi y Chen, "2D and 3D Image Quality Assessment: A Survey of Metrics and Challenges".

Estado del arte NR-IQA

Métricas basadas en tipos específicos de distorsiones.

Estado del arte

Métrica	LIVE		
Metrica	SROCC	PLCC	RMSE
BRISQUE	0.940	0.942	-
LGP	0.957	0.954	7.901
IQA-CNN	0.956	0.953	-
DIQaM-NR	0.960	0.972	-
Hallucinated-IQA	0.982	0.982	-

Tabla: Progreso de las métricas NR al utilizar métodos cada vez más complejos⁷.

⁷Niu. Zhong. Guo, Shi y Chen, "2D and 3D Image Quality Assessment: A Survey of Metrics and Challenges".

Brian Sena Simons 19 de agosto de 2023 12 / 36

Estado del arte NR-IQA

 Métricas basadas en tipos específicos de distorsiones.

Estado del arte

- Métricas basadas en estadísticas de escenas naturales (NSS).
- Métricas basadas en aprendizaje automático
- Métricas basadas en aprendizaje profundo.

Métrica	LIVE			
Metrica	SROCC	PLCC	RMSE	
BRISQUE	0.940	0.942	-	
LGP	0.957	0.954	7.901	
IQA-CNN	0.956	0.953	-	
DIQaM-NR	0.960	0.972	-	
Hallucinated-IQA	0.982	0.982	-	

Tabla: Progreso de las métricas NR al utilizar métodos cada vez más complejos⁷.

⁷Niu, Zhong, Guo, Shi y Chen, "2D and 3D Image Quality Assessment: A Survey of Metrics and Challenges".

Estado del arte NR-IQA

- Métricas basadas en tipos específicos de distorsiones.
- Métricas basadas en estadísticas de escenas naturales (NSS).
- Métricas basadas en aprendizaie automático.

Métrica	LIVE			
Metrica	SROCC	PLCC	RMSE	
BRISQUE	0.940	0.942	-	
LGP	0.957	0.954	7.901	
IQA-CNN	0.956	0.953	-	
DIQaM-NR	0.960	0.972	-	
Hallucinated-IQA	0.982	0.982	-	

Tabla: Progreso de las métricas NR al utilizar métodos cada vez más complejos⁷.

⁷Niu. Zhong. Guo, Shi y Chen. "2D and 3D Image Quality Assessment: A Survey of Metrics and Challenges".

 Métricas basadas en tipos específicos de distorsiones.

Estado del arte

- Métricas basadas en estadísticas de escenas naturales (NSS).
- Métricas basadas en aprendizaje automático.
- Métricas basadas en aprendizaje profundo.

Métrica	LIVE		
Metrica	SROCC	PLCC	RMSE
BRISQUE	0.940	0.942	-
LGP	0.957	0.954	7.901
IQA-CNN	0.956	0.953	-
DIQaM-NR	0.960	0.972	-
Hallucinated-IQA	0.982	0.982	-

Tabla: Progreso de las métricas NR al utilizar métodos cada vez más complejos⁷.

⁷Niu, Zhong, Guo, Shi y Chen, "2D and 3D Image Quality Assessment: A Survey of Metrics and Challenges".

Estado del arte PCOA

Estado del arte PCQA

- Extracción de características del vecindario del punto.

MODELO	STJU-PCQA		WPC		
MODELO	PLCC	SRCC	PLCC	SRCC	
IT-PCQA	0.58	0.63	0.55	0.54	
NR3DQA	0.7382	0.7144	0.6514	0.6479	
GPA-Net	0.806	0.78	-	-	
ResSCNN	0.86	0.81	0.72	0.75	
VQA-PC	0.8635	0.8509	0.7976	0.7968	
MM-PCQA	0.92	0.91	0.83	0.83	

Tabla: Resumen del estado del arte de modelos NR-PCQA en dos datasets SJTU y WPC.

- Extracción de características del vecindario del punto.
 - Características geométricas.

MODELO	STJU-	PCQA	WPC	
MODELO	PLCC	SRCC	PLCC	SRCC
IT-PCQA	0.58	0.63	0.55	0.54
NR3DQA	0.7382	0.7144	0.6514	0.6479
GPA-Net	0.806	0.78	-	-
ResSCNN	0.86	0.81	0.72	0.75
VQA-PC	0.8635	0.8509	0.7976	0.7968
MM-PCQA	0.92	0.91	0.83	0.83

Estado del arte PCQA

- Extracción de características del vecindario del punto.
 - Características geométricas.
 - Características lumínicas.
- Métodos para casos específicos
- Métodos genéricos por ML
- Métodos genéricos por DL
 - Proyecciones 2D.
 - Interpretación 3D directa.
 - Mixto.

MODELO	STJU-	PCQA	WPC	
MODELO	PLCC	SRCC	PLCC	SRCC
IT-PCQA	0.58	0.63	0.55	0.54
NR3DQA	0.7382	0.7144	0.6514	0.6479
GPA-Net	0.806	0.78	-	-
ResSCNN	0.86	0.81	0.72	0.75
VQA-PC	0.8635	0.8509	0.7976	0.7968
MM-PCQA	0.92	0.91	0.83	0.83

- Extracción de características del vecindario del punto.
 - Características geométricas.
 - O Características lumínicas.
- Métodos para casos específicos.
- Métodos genéricos por ML
- Métodos genéricos por DL
 - Proyecciones 2D.
 - Interpretación 3D directa.
 - Mixto.

MODELO	STJU-	PCQA	WPC	
MODELO	PLCC	SRCC	PLCC	SRCC
IT-PCQA	0.58	0.63	0.55	0.54
NR3DQA	0.7382	0.7144	0.6514	0.6479
GPA-Net	0.806	0.78	-	-
ResSCNN	0.86	0.81	0.72	0.75
VQA-PC	0.8635	0.8509	0.7976	0.7968
MM-PCQA	0.92	0.91	0.83	0.83

- Extracción de características del vecindario del punto.
 - Características geométricas.
 - Características lumínicas.
- Métodos para casos específicos.
- Métodos genéricos por ML.
- Métodos genéricos por DL
 - Proyecciones 2D.
 - Interpretación 3D directa.
 - Mixto.

MODELO	STJU-PCQA		WPC	
MODELO	PLCC	SRCC	PLCC	SRCC
IT-PCQA	0.58	0.63	0.55	0.54
NR3DQA	0.7382	0.7144	0.6514	0.6479
GPA-Net	0.806	0.78	-	-
ResSCNN	0.86	0.81	0.72	0.75
VQA-PC	0.8635	0.8509	0.7976	0.7968
MM-PCQA	0.92	0.91	0.83	0.83

- Extracción de características del vecindario del punto.
 - Características geométricas.
 - O Características lumínicas.
- Métodos para casos específicos.
- Métodos genéricos por ML.
- Métodos genéricos por DL.
 - Proyecciones 2D.
 - Interpretación 3D directa.
 - Mixto

MODELO	STJU-	PCQA	WPC	
MODELO	PLCC	SRCC	PLCC	SRCC
IT-PCQA	0.58	0.63	0.55	0.54
NR3DQA	0.7382	0.7144	0.6514	0.6479
GPA-Net	0.806	0.78	-	-
ResSCNN	0.86	0.81	0.72	0.75
VQA-PC	0.8635	0.8509	0.7976	0.7968
MM-PCQA	0.92	0.91	0.83	0.83

- Extracción de características del vecindario del punto.
 - Características geométricas.
 - O Características lumínicas.
- Métodos para casos específicos.
- Métodos genéricos por ML.
- Métodos genéricos por DL.
 - Proyecciones 2D.
 - Interpretación 3D directa.
 - Mixto

MODELO	STJU-	PCQA	WPC	
MODELO	PLCC	SRCC	PLCC	SRCC
IT-PCQA	0.58	0.63	0.55	0.54
NR3DQA	0.7382	0.7144	0.6514	0.6479
GPA-Net	0.806	0.78	-	-
ResSCNN	0.86	0.81	0.72	0.75
VQA-PC	0.8635	0.8509	0.7976	0.7968
MM-PCQA	0.92	0.91	0.83	0.83

- Extracción de características del vecindario del punto.
 - Características geométricas.
 - O Características lumínicas.
- Métodos para casos específicos.
- Métodos genéricos por ML.
- Métodos genéricos por DL.
 - Proyecciones 2D.
 - Interpretación 3D directa.
 - Mixto

MODELO	STJU-PCQA		WPC	
MODELO	PLCC	SRCC	PLCC	SRCC
IT-PCQA	0.58	0.63	0.55	0.54
NR3DQA	0.7382	0.7144	0.6514	0.6479
GPA-Net	0.806	0.78	-	-
ResSCNN	0.86	0.81	0.72	0.75
VQA-PC	0.8635	0.8509	0.7976	0.7968
MM-PCQA	0.92	0.91	0.83	0.83

Estado del arte PCQA

- Extracción de características del vecindario del punto.
 - Características geométricas.
 - Características lumínicas.
- Métodos para casos específicos.
- Métodos genéricos por ML.
- Métodos genéricos por DL.
 - Proyecciones 2D.
 - O Interpretación 3D directa.
 - Mixto.

MODELO	STJU-PCQA		WPC	
MODELO	PLCC	SRCC	PLCC	SRCC
IT-PCQA	0.58	0.63	0.55	0.54
NR3DQA	0.7382	0.7144	0.6514	0.6479
GPA-Net	0.806	0.78	-	-
ResSCNN	0.86	0.81	0.72	0.75
VQA-PC	0.8635	0.8509	0.7976	0.7968
MM-PCQA	0.92	0.91	0.83	0.83

Estado del arte en imágenes médicas

Estado del arte

- No existe una imagen o representación "sin distorsión" en la medicina.
- Los métodos actuales utilizan adaptaciones IQA para exámenes médicos específicos como MRI.
- No se ha encontrado nada específico en la literatura sobre métodos aplicados a reconstrucciones 3D.

Brian Sena Simons 19 de agosto de 2023 14 / 36

- **10 nubes de puntos** de referencia.
- 7 tipos de distorsiones: compresión, ruido al color, ruido geométrico, ruido gaussiano y combinación entre ellas.
- 6 niveles de intensidad.
- Total de 420 nubes de puntos

Figura: Ejemplo de conjuntos de datos SJTU⁸

⁸Qian Yang, Haichuan Chen, Zhihua Ma, Yue Xu, Rui Tang y Jian Sun. "Predicting the Perceptual Quality of Point Cloud: A 3D-to-2D Projection-Based Exploration". En: *IEEE Transactions on Multimedia* (2020).

- **10 nubes de puntos** de referencia.
- 7 tipos de distorsiones: compresión, ruido al color, ruido geométrico, ruido gaussiano y combinación entre ellas.
- 6 niveles de intensidad.
- Total de 420 nubes de puntos

Figura: Ejemplo de conjuntos de datos SJTU⁸

⁸Yang, Chen, Ma, Xu, Tang y Sun, "Predicting the Perceptual Quality of Point Cloud: A 3D-to-2D Projection-Based Exploration".

- **10 nubes de puntos** de referencia.
- 7 tipos de distorsiones: compresión, ruido al color, ruido geométrico, ruido gaussiano y combinación entre ellas.
- 6 niveles de intensidad.
- Total de 420 nubes de puntos

Figura: Ejemplo de conjuntos de datos SJTU⁸

⁸Yang, Chen, Ma, Xu, Tang y Sun, "Predicting the Perceptual Quality of Point Cloud: A 3D-to-2D Projection-Based Exploration".

- **10 nubes de puntos** de referencia.
- 7 tipos de distorsiones: compresión, ruido al color, ruido geométrico, ruido gaussiano y combinación entre ellas.
- **o** 6 niveles de intensidad.
- Total de 420 nubes de puntos.

Figura: Ejemplo de conjuntos de datos SJTU⁸

⁸Yang, Chen, Ma, Xu, Tang y Sun, "Predicting the Perceptual Quality of Point Cloud: A 3D-to-2D Projection-Based Exploration".

Materiales

Datos públicos WPC

- **25 nubes de puntos** de referencia.
- 5 tipos de **distorsiones**: sumuestreo.

Figura: Eiemplo de conjuntos de datos WPC9

Brian Sena Simons 19 de agosto de 2023 16 / 36

⁹Qi Liu, Honglei Su, Zhengfang Duanmu, Wentao Liu y Zhou Wang, "Perceptual Quality Assessment of Colored 3D Point Clouds". En: IEEE Transactions on Visualization and Computer Graphics (TVCG) (2022), págs. 1-1.

Datos públicos WPC

- **25 nubes de puntos** de referencia.
- 5 tipos de distorsiones: sumuestreo, ruido gaussiano, trisoup, V-PCC y octree.
- Longitud de intensidades variantes.
- Total de 741 nubes de puntos

Figura: Ejemplo de conjuntos de datos WPC9

⁹Liu, Su, Duanmu, Liu y Wang, "Perceptual Quality Assessment of Colored 3D Point Clouds".

Datos públicos WPC

- **25 nubes de puntos** de referencia.
- 5 tipos de distorsiones: sumuestreo, ruido gaussiano, trisoup, V-PCC y octree.
- Longitud de intensidades variantes.
- Total de 741 nubes de puntos

Figura: Ejemplo de conjuntos de datos WPC9

⁹Liu, Su, Duanmu, Liu y Wang, "Perceptual Quality Assessment of Colored 3D Point Clouds".

Datos públicos WPC

- **25 nubes de puntos** de referencia.
- 5 tipos de distorsiones: sumuestreo, ruido gaussiano, trisoup, V-PCC y octree.
- Longitud de intensidades variantes.
- Total de 741 nubes de puntos.

Figura: Ejemplo de conjuntos de datos WPC9

⁹Liu, Su, Duanmu, Liu y Wang, "Perceptual Quality Assessment of Colored 3D Point Clouds".

Materiales

Datos públicos LS-PCQA

- 104 nubes de puntos de referencia.
- 31 tipos de distorsiones
- 7 niveles de intensidad.
- Total de 22000 nubes de puntos

Figura: Ejemplo de conjuntos de datos LS-PCQA¹⁰

¹⁰Yipeng Liu, Qi Yang, Yiling Xu y Le Yang. "Point Cloud Quality Assessment: Dataset Construction and Learning-based No-Reference Metric". En: (2022). arXiv: 2012.11895.

Materiales

Datos públicos LS-PCQA

- 104 nubes de puntos de referencia.
- 31 tipos de distorsiones.
- 7 niveles de intensidad
- Total de 22000 nubes de puntos

Figura: Ejemplo de conjuntos de datos LS-PCQA¹⁰

Brian Sena Simons UGR 19 de agosto de 2023 17 / 36

¹⁰Liu, Yang, Xu y Yang, "Point Cloud Quality Assessment: Dataset Construction and Learning-based No-Reference Metric".

Conclusiones y trabaios futuros

Materiales

Datos públicos LS-PCQA

- 104 nubes de puntos de referencia.
- 31 tipos de distorsiones.
- 7 niveles de intensidad.

Figura: Ejemplo de conjuntos de datos LS-PCQA¹⁰

Brian Sena Simons 19 de agosto de 2023 17/36

¹⁰Liu, Yang, Xu y Yang, "Point Cloud Quality Assessment: Dataset Construction and Learning-based No-Reference Metric".

Estado del arte Conclusiones y trabaios futuros

Materiales

Datos públicos LS-PCQA

- 104 nubes de puntos de referencia.
- 31 tipos de distorsiones.
- 7 niveles de intensidad.
- Total de 22000 nubes de puntos.

Figura: Ejemplo de conjuntos de datos LS-PCQA¹⁰

Brian Sena Simons 19 de agosto de 2023 17/36

¹⁰Liu, Yang, Xu y Yang, "Point Cloud Quality Assessment: Dataset Construction and Learning-based No-Reference Metric".

Materiales

Datos médicos

Figura: Ejemplo de distorsiones generadas sobre clavículas, donde (a) es la imagen original, (b) la distorsionada por submuestreo y (c) por movimiento local.

- 11 nubes de puntos de referencia.
- 5 tipos de distorsiones: submuestreo, compresión, ruido, rotación y movimiento local.
- 7 niveles de intensidad para un total de 385 nubes de puntos.

Brian Sena Simons UGR 19 de agosto de 2023 18 / 36

Estado del arte OCOCO OC

Materiales

Datos médicos

Figura: Ejemplo de distorsiones generadas sobre clavículas, donde (a) es la imagen original, (b) la distorsionada por submuestreo y (c) por movimiento local.

- 11 nubes de puntos de referencia.
- 5 tipos de distorsiones: submuestreo, compresión, ruido, rotación y movimiento local.
- 7 niveles de intensidad para un total de 385 nubes de puntos.

Brian Sena Simons UGR 19 de agosto de 2023 18 / 36

Estado del arte OCOCO OC

Materiales

Datos médicos

Figura: Ejemplo de distorsiones generadas sobre clavículas, donde (a) es la imagen original, (b) la distorsionada por submuestreo y (c) por movimiento local.

- 11 nubes de puntos de referencia.
- 5 tipos de distorsiones: submuestreo, compresión, ruido, rotación y movimiento local.
- 3 7 niveles de intensidad para un total de 385 nubes de puntos.

Brian Sena Simons UGR 19 de agosto de 2023 18 / 36

Métricas

Correlación lineal de Pearson

$$PLCC(x, y) = \frac{\sum_{i=1}^{m} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{m} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{m} (y_i - \bar{y})^2}}$$

Evalúa si existe una relación lineal entre conjuntos.

Correlación de orden de rango de Kendall

$$KROCC(x, y) = \frac{C-D}{\frac{1}{2}m(m-1)}$$

Evalúa la concordancia y discordancia de relación entre pares.

Correlación de rangos de Spearman

SROCC(x, y) =
$$\frac{\sum_{i}(x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum_{i}(x_{i} - \bar{x})^{2}}\sqrt{\sum_{i}(y_{i} - \bar{y})^{2}}}$$

Evalúa la relación lineal entre los rankings.

Error cuadrático medio

RMSE(x, y) =
$$\sqrt{\frac{1}{m} \sum_{i=1}^{m} (x_i - y_i)^2}$$

Evalúa la diferencia media de los pares de valores.

Generación de etiquetas

Distortion	M-p2po	M-p2pl	Н-р2ро	H-p2pl	PCQM	GraphSIM	MPED
DownSample	0.881	0.626	0.841	0.811	0.524	0.842	0.857
GaussianShifting	0.741	0.718	0.829	0.834	0.816	0.742	0.598
LocalOffset	0.937	0.934	0.770	0.770	0.851	0.906	0.897
LocalRotation	0.819	0.712	0.831	0.734	0.657	0.723	0.742
Octree	0.779	0.788	0.819	0.752	0.676	0.757	0.710

Tabla: Tabla de métricas para generación de etiquetas. 10.

	Parte I	Parte II
SROCC	0.902697	0.878517
PLCC	0.910713	0.871917

Tabla: Correlación de métricas sintéticas. 10.

¹⁰Liu, Yang, Xu y Yang, "Point Cloud Quality Assessment: Dataset Construction and Learning-based No-Reference Metric".

Model NR3DQA¹¹

- Extracción independiente del modelo.
 - Anisotropi
 - Planaridad
 - Estericida
 - Curvatura
 - Linealidad
- Descartamos las características lumínicas.
- Usamos: media, desviación y entropía.

Figura: Extracción de características del vecindario.

¹¹Zicheng Zhang, Wei Sun, Xiongkuo Min, Tao Wang, Wei Lu y Guangtao Zhai. "No-Reference Quality Assessment for 3D Colored Point Cloud and Mesh Models". En: *IEEE Transactions on Circuits and Systems for Video Technology* 32.11 (2022), págs. 7618-7631

Model NR3DQA¹¹

- **Extracción independiente** del modelo.
 - Anisotropía
 - Planaridad
 - Esfericidad
 - Curvatura
 - Linealidad
- Descartamos las características lumínicas.
- Usamos: media, desviación y entropía.

Figura: Extracción de características del vecindario.

Brian Sena Simons UGR 19 de agosto de 2023

¹¹Zhang, Sun, Min, Wang, Lu y Zhai, "No-Reference Quality Assessment for 3D Colored Point Cloud and Mesh Models"

Model NR3DQA¹¹

- **Extracción independiente** del modelo.
 - Anisotropía
 - Planaridad
 - Esfericidad
 - Curvatura
 - Linealidad
- Descartamos las características lumínicas.
- Usamos: media, desviación y entropía.

Figura: Extracción de características del vecindario.

Brian Sena Simons UGR 19 de agosto de 2023

¹¹Zhang, Sun, Min, Wang, Lu y Zhai, "No-Reference Quality Assessment for 3D Colored Point Cloud and Mesh Models"

Model NR3DQA¹¹

- Extracción independiente del modelo.
 - Anisotropía
 - Planaridad
 - **Esfericidad**
- Usamos: media, desviación v entropía.

Figura: Extracción de características del vecindario.

Brian Sena Simons 19 de agosto de 2023

¹¹Zhang, Sun, Min, Wang, Lu y Zhai, "No-Reference Quality Assessment for 3D Colored Point Cloud and Mesh Models"

Model NR3DQA¹¹

- **Extracción independiente** del modelo.
 - Anisotropía
 - Planaridad
 - Esfericidad
 - Curvatura
 - Linealidad
- Descartamos las características lumínicas.
- Usamos: media, desviación y entropía.

Figura: Extracción de características del vecindario.

Brian Sena Simons UGR 19 de agosto de 2023

¹¹Zhang, Sun, Min, Wang, Lu y Zhai, "No-Reference Quality Assessment for 3D Colored Point Cloud and Mesh Models"

Model NR3DQA¹¹

- **O Extracción independiente** del modelo.
 - Anisotropía
 - Planaridad
 - Esfericidad
 - Curvatura
 - Linealidad
- Descartamos las características lumínicas.
- Usamos: media, desviación y entropía.

Figura: Extracción de características del vecindario.

Brian Sena Simons UGR 19 de agosto de 2023

¹¹Zhang, Sun, Min, Wang, Lu y Zhai, "No-Reference Quality Assessment for 3D Colored Point Cloud and Mesh Models"

Model NR3DQA11

- **Extracción independiente** del modelo.
 - Anisotropía
 - Planaridad
 - Esfericidad
 - Curvatura
 - Linealidad
- Descartamos las características lumínicas.
- Usamos: media, desviación y entropía.

Figura: Extracción de características del vecindario.

Brian Sena Simons UGR 19 de agosto de 2023

¹¹Zhang, Sun, Min, Wang, Lu y Zhai, "No-Reference Quality Assessment for 3D Colored Point Cloud and Mesh Models"

Model NR3DQA¹¹

- **Extracción independiente** del modelo.
 - Anisotropía
 - Planaridad
 - Esfericidad
 - Curvatura
 - Linealidad
- Descartamos las características lumínicas.
- Usamos: media, desviación y entropía.

Figura: Extracción de características del vecindario.

Brian Sena Simons UGR 19 de agosto de 2023

¹¹Zhang, Sun, Min, Wang, Lu y Zhai, "No-Reference Quality Assessment for 3D Colored Point Cloud and Mesh Models"

Modelo VQA-PC¹²

- Extracción automática de características.
- Extracción espacial y temporal de las reconstrucciones.
 - Espacial por fotogramas estáticos de distintas perspectivas.
 - lemporal por tratar la nube como video.
- Es como un meta-modelo de aprendizaje profundo.

Figura: Estructura del modelo VQA-PC

¹²Zicheng Zhang, Wei Sun, Yucheng Zhu, Xiongkuo Min, Wei Wu, Ying Chen y Guangtao Zhai. "Treating Point Cloud as Moving Camera Videos: A No-Reference Quality Assessment Metric". En: (2022). arXiv: 2208.14085

Modelo VQA-PC¹²

- Extracción automática de características.
- Extracción espacial y temporal de las reconstrucciones.
 - Espacial por fotogramas estáticos de distintas perspectivas.
 - Temporal por tratar la nube como video.
- Es como un meta-modelo de aprendizaje profundo.

Figura: Estructura del modelo VQA-PC

Brian Sena Simons UGR 19 de agosto de 2023 22 / 36

¹²Zhang, Sun, Zhu, Min, Wu, Chen y Zhai, "Treating Point Cloud as Moving Camera Videos: A No-Reference Quality Assessment Metric"

Métodos

Modelo VQA-PC¹²

- Extracción automática de características.
- Extracción espacial y temporal de las reconstrucciones.
 - Espacial por fotogramas estáticos de distintas perspectivas.
 - Temporal por tratar la nube como video.
- Es como un meta-modelo de aprendizaje profundo.

Figura: Estructura del modelo VQA-PC

Brian Sena Simons UGR 19 de agosto de 2023 22 / 36

¹²Zhang, Sun, Zhu, Min, Wu, Chen y Zhai, "Treating Point Cloud as Moving Camera Videos: A No-Reference Quality Assessment Metric"

Métodos

Modelo VQA-PC¹²

- Extracción automática de características.
- Extracción espacial y temporal de las reconstrucciones.
 - Espacial por fotogramas estáticos de distintas perspectivas.
 - Temporal por tratar la nube como video.
- Es como un meta-modelo de aprendizaje profundo.

Figura: Estructura del modelo VQA-PC

Brian Sena Simons UGR 19 de agosto de 2023 22 / 36

¹²Zhang, Sun, Zhu, Min, Wu, Chen y Zhai, "Treating Point Cloud as Moving Camera Videos: A No-Reference Quality Assessment Metric"

Métodos

Modelo VQA-PC¹²

- Extracción automática de características.
- Extracción espacial y temporal de las reconstrucciones.
 - Espacial por fotogramas estáticos de distintas perspectivas.
 - Temporal por tratar la nube como video.
- Es como un meta-modelo de aprendizaje profundo.

Conclusiones y trabaios futuros

Figura: Estructura del modelo VQA-PC

Brian Sena Simons UGR 19 de agosto de 2023

22 / 36

¹²Zhang, Sun, Zhu, Min, Wu, Chen y Zhai, "Treating Point Cloud as Moving Camera Videos: A No-Reference Quality Assessment Metric"

oducción Estado del arte Materiales y métodos Experimentación Conclusiones y trabajos futuros

Entorno

Tecnologías utilizadas

Protocolo de validación

Protocolo de validación

Modelo NR3DQA¹¹

Dataset	PLCC	SROCC	KROCC
SJTU	0.810325	0.777403	0.608302
WPC	0.637953	0.634853	0.463578

Tabla: Replicando experimentos de Zhang et al¹¹.

Etiqueta Sintética	Modelo	Escalado	PLCC	SROCC
Valor de la métrica	SVM	RobustScaler	0.2017	0.1776
Valor normalizado	KNNRegressor	RobustScaler	0.2671	0.1882
Valor en escala 0-5	DecisionTree	StandardScaler	0.309176	0.196713

Tabla: Resultados de prueba preliminar con NR3DQA¹¹.

Brian Sena Simons UGR 19 de agosto de 2023

25 / 36

¹¹Zhang, Sun, Min, Wang, Lu y Zhai, "No-Reference Quality Assessment for 3D Colored Point Cloud and Mesh Models"

Modificaciones

- Weinmann et al¹³ estudiaron los procesos de:
 - Segmentación.
 - Detección.
 - Clasificación.
- Justifican la importancia de:
 - Omnivarianza.
 - Entropía de los valores singulares.
 - Verticalidad del vecindario.

Dataset	PLCC	SROCC	KROCC
SJTU	0.853709	0.820057	0.649406
WPC	0.642356	0.62917	0.455562
Nuestro	0.344601	0.170793	-

Tabla: Resultado de mejoras sobre el método SVM.

¹³Martin Weinmann, Boris Jutzi, Clément Mallet y Michael Weinmann. "Geometric Features and Their Relevance for 3D Point Cloud Classification". En: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences IV-1/W1 ().

Hiperparámetros del modelo VQA-PC¹²

Salida	Estructura		
112 × 112	7 × 7, 64, stride 2		
56 × 56	3 × 3 max pool, stride 2		
30 × 30	1 × 1, 64		
	3 × 3, 64	× 3	
	1 × 1, 256		
	1 × 1, 128		
28 × 28	3 × 3, 128	× 3	
	1 × 1, 512		
	1 × 1, 256		
14 × 14	3 × 3, 256	× 3	
	1 × 1, 1024		
	1 × 1, 512		
7 × 7	3 × 3, 512	× 3	
	1 × 1, 2048		
1 × 1	average pool, 1000-d fc, softmax		

Tabla: Descripción de la arquitectura ResNet50.

Hiperparámetro	Valor
Tasa de aprendizaje	0.0004
Tamaño de batches	32
Tasa de decadencia	0.9
Frecuencia de decadencia	10
Épocas	30
K-fold	9

Tabla: Hiperparámetros empleados en la experimentación preliminar¹²

¹Zhang, Sun, Zhu, Min, Wu, Chen y Zhai, "Treating Point Cloud as Moving Camera Videos: A No-Reference Quality Assessment Metric"

Brian Sena Simons UGR 19 de agosto de 2023 27 / 36

Experimentos preliminares VQA-PC

Kfold	MSE	SROCC
0	13.9222	0.8995
1	418120.5625	0.8547
2	10.9271	0.9081
3	19.8226	0.9295
4	443.6077	0.8700
5	28.3165	0.9544
6	292.239	0.7675
7	329.0685	0.8833
8	357.0455	0.8647
Promedio	46623.94	0.8813

Tabla: Resultados de experimento preliminar.

Brian Sena Simons 19 de agosto de 2023 28 / 36

Media de curvas de aprendizaje. RMSE Entrenamiento -- RMSE validación RMSE validación Epocas

Figura: Curvas de aprendizaje del test preliminar.

10

20

5

Modelo VQA-PC

Modificaciones

- Abouelaziz et al¹⁴ experimentaron distintos métodos de fusión de características.
 - Fusión por concatenación (Fo).
 - Fusión por multiplicación (F1).
 - Fusión por convolución 1x1 (F2).
 - Fusión por compact multi-linear pooling (F3).
- Experimentamos con todas ellas.
- Experimentamos con etiquetas normalizadas o no.
- En vez de recortar una selección local, reescalar la imagen entera.

[&]quot;No-reference mesh visual quality assessment via ensemble of convolutional neural networks and compact multi-linear pooling". En: *Pattern Recognition* 100 (2020), pág. 107174.

Brian Sena Simons UGR 19 de agosto de 2023 30 / 36

¹⁴llyass Abouelaziz, Aladine Chetouani, Mohammed El Hassouni, Longin Jan Latecki y Hocine Cherifi.

Experimentos finales VQA-PC

	Valor medio SROCC			
Modelo	Estándar	Normalizado	Reescalado	Ambos
VQA-PC (SJTU)	0.7094	0.6235	0.8425	0.7126
VQA-PC F1	0.7305	0.6140	0.8164	0.7291
VQA-PC F2	0.6816	0.5770	0.8057	0.7324
VQA-PC F3	0.7080	0.5671	0.7482	0.7006

Tabla: Tabla de resultados iniciales sobre imágenes médicas.

Brian Sena Simons UGR 19 de agosto de 2023 31 / 36

Experimentos finales VQA-PC

	Mediana SROCC			
Modelo	Estándar Normalizado Reescalado Amb			
VQA-PC (SJTU)	0.7400	0.7510	0.8417	0.7434
VQA-PC F1	0.7022	0.6331	0.8636	0.7849
VQA-PC F2	0.6350	0.5955	0.8538	0.7165
VQA-PC F3	0.7118	0.5179	0.7518	0.7334

Tabla: Mediana de los valores obtenidos. Se observa una mejora significativa para los métodos F1 y F2. También es evidente la estabilidad del modelo pre-entrenado sobre SJTU.

Resultados Finales

	SROCC		
Modelo	Media	Desviación	Mediana
VQA-PC Fo	0.8325	0.2017	0.9140
VQA-PC F1	0.8242	0.2025	0.9095
VQA-PC F2	0.8757	0.1468	0.9347
VQA-PC F3	0.8071	0.1811	0.8692

Tabla: Resultados en imágenes médicas reescaladas con modelos pre-entrenados sobre el conjunto de datos LS-PCQA¹⁰.

¹⁰Liu, Yang, Xu y Yang, "Point Cloud Quality Assessment: Dataset Construction and Learning-based No-Reference Metric"

Conclusiones

- Primer método que estima la calidad de reconstrucciones biomédicas 3D.
- Se logra generar un conjunto de datos sintéticos médicos para estimación de calidad
- Se justifica el uso de modelos de aprendizaje profundo experimentalmente.
- Pese a ser un estudio preliminar, obtenemos una alta correlación (88 %). Indicador de lo prometedora que es esta línea de investigación.

Conclusiones

- Primer método que estima la calidad de reconstrucciones biomédicas 3D.
- 2 Se logra generar un conjunto de datos sintéticos médicos para estimación de calidad.
- Se justifica el uso de modelos de aprendizaje profundo experimentalmente.
- Pese a ser un estudio preliminar, obtenemos una alta correlación (88 %). Indicador de lo prometedora que es esta línea de investigación.

Conclusiones

- Primer método que estima la calidad de reconstrucciones biomédicas 3D.
- Se logra generar un conjunto de datos sintéticos médicos para estimación de calidad.
- **Se justifica** el uso de modelos de **aprendizaje profundo** experimentalmente.
- Pese a ser un estudio preliminar, obtenemos una alta correlación (88 %). Indicador de lo prometedora que es esta línea de investigación.

Conclusiones

- O Primer método que estima la calidad de reconstrucciones biomédicas 3D.
- Se logra generar un conjunto de datos sintéticos médicos para estimación de calidad.
- **Se justifica** el uso de modelos de **aprendizaje profundo** experimentalmente.
- Pese a ser un estudio preliminar, obtenemos una alta correlación (88 %). Indicador de lo prometedora que es esta línea de investigación.

Conclusiones

Figura: Ejemplo de correspondencia de pendiente entre valores inferidos (sin normalizar) y los valores reales de las etiquetas.

- Se han completado satisfactoriamente los objetivos planteados.
- Se han abierto puertas a futuras investigaciones.
- 1 https://github.com/CodeBoy-source/TFG_NRPCQA

Conclusiones

Figura: Ejemplo de correspondencia de pendiente entre valores inferidos (sin normalizar) y los valores reales de las etiquetas.

- Se han completado satisfactoriamente los objetivos planteados.
- Se han abierto puertas a futuras investigaciones.
- 1 https://github.com/CodeBoy-source/TFG_NRPCQA

Conclusiones

Figura: Ejemplo de correspondencia de pendiente entre valores inferidos (sin normalizar) y los valores reales de las etiquetas.

- Se han completado satisfactoriamente los objetivos planteados.
- Se han abierto puertas a futuras investigaciones.
- https://github.com/CodeBoy-source/TFG_NRPCQA

Conclusiones

Trabajos futuros

- Rehacer el experimento con etiquetas generadas manualmente.
- Para mejorar el meta-modelo, se podria permitir la adaptación del modelo de extracción de características temporales.
- Simular distorsiones sobre imágenes 2D para obtener datos más realistas.
- Explorar otros métodos de la literatura.

Estado del arte Materiales y métodos Experimentación conclusiones y trabajos futuros conclusi

Dudas, preguntas o comentarios.

Agradecimientos

Gracias por su atención.

¿Dudas, preguntas o comentarios?

Brian Sena Simons UGR 19 de agosto de 2023 37 / 36