Minimum Operations

There are n boxes in front of you. For each i, box i contains r_i red balls, g_i green balls, and b_i blue balls.

You want to separate the balls by their color. In each operation you can pick a single ball from some box and put it into another box. The balls are separated if no box contains balls of more than one color.

Input Format

The first line contains a single integer n. The next n lines contain three space-separated integers, the i^{th} line containing r_i , g_i , and b_i , respectively.

Note: In this problem you can modify at most *six* lines of code and you cannot add any new lines.

To restore the original code in the editor, create a new buffer by clicking on the top left icon in the editor.

Constraints

```
1 \le n \le 100
0 \le r_i, g_i, b_i \le 105
```

Output Format

Print the minimal number of operations required to separate the balls. If this is impossible, return -1.

Sample Input

```
3
111
111
111
```

Sample Output

6

Explanation

In this case let the first box contain only red balls, the second box only blue balls, and the third box only green balls.

So from the first box 1 blue ball should be moved to the second box and 1 green ball should be moved to the third box.

From the second box 1 red ball should be moved to the first box and 1 green ball should be moved to the third box. Likewise for the third row. So the number of operations is 6.