VECTOR CALCULUS AND VECTOR INTEGRATION:

(a) $\sqrt{2}$ (b) $\sqrt{6}$ (c) $\sqrt{5}$

1. If $\varphi = x^2 + y - z - 1$, then $| \nabla \varphi |$ at (1,0,0) is

2. The directional der	rivative of $\varphi = 3x$	$x^2 + 2y - 3za$	t(1,1,1) in the	e direction of $2\hat{\imath}$	$+2\hat{\jmath}-\hat{k}$ is
(a) $\frac{13}{3}$ 3. The unit normal ve	(b) 4 ector to the surface	(c) $\frac{19}{3}$ $x^2 + y^2 - 2$	z + 3 = 0at ((d) none of the $(1,2,-1)$	se
(a) $\frac{2\hat{\imath}+4\hat{\jmath}+2\hat{k}}{\sqrt{24}}$ (b)	$\frac{2\hat{t}+4\hat{j}}{\sqrt{20}} \qquad \text{(c) } \frac{2\hat{t}+2}{\sqrt{20}}$	$\frac{\hat{J}}{\hat{J}}$ (d) $\frac{\hat{J}}{\hat{J}}$	$\frac{2\hat{\imath}+4\hat{\jmath}-2\hat{k}}{\sqrt{24}}$		
4. If $f = \tan^{-1}(\frac{y}{x})$ the (a) 1	en <i>div(grad f)</i> is eq (b) -1	ual to (c)	0	(d) 2	
5. The value of <i>curl</i> ((grad f), where f	$=2x^2-3y^2$	$+4z^2$ is		
(a) $4x - 6y + 8z$	(b) $4x\hat{\imath} - 6y$	$\hat{j} + 8z\hat{k}$	(c) 0	(d) 3	
6. What is the value of	of $\nabla \times (xy\hat{\imath} + yz\hat{\jmath})$	$+zx\hat{k}$)is			
(a) $-y\hat{\imath} + z\hat{\jmath} - x$	\hat{k} (b) $-y\hat{\imath}-z$	$z\hat{j} - x\hat{k}$			
(c)-y-z-x	(d) $-y + 1$	z - x			
7. If $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z$	\hat{k} , then $div\vec{r}=$	and	$curl \vec{r} = \underline{\hspace{1cm}}$		
(a) $\hat{i} + \hat{j} + \hat{k}$ and	nd 0 (b) 3	$\vec{0}$ and $\vec{0}$	(c) 3 and 0	(d)none o	of these
8. The angle between	the vectors $6\hat{\imath} + 2$	$2\hat{j} + 3\hat{k}$ and 2 \hat{i}	$(2-9\hat{j}+6\hat{k})$ is		
(a) $\theta = 1.4143$	(b) $\theta = 0.897$	7 (c)	$\theta = 0$	(d) $\theta = 0.155$	8
9. If $\vec{F} = xyz\hat{\imath} + 3x^2$	$y\hat{j} + (xz^2 - y^2z)$	\hat{k} , then at (2,	$-1,1) \nabla \cdot \vec{F}$	=	
$(a)-\hat{\imath}+12\hat{\jmath}+3\hat{k}$	(b) $-\hat{i} + 1$	$12\hat{j} + 5\hat{k}$	(c) 16	(d)	14
10. Find $'a'$ such that	$(-x^2 + yz)\hat{\imath} + (4$	$(ay - z^2x)\hat{j} +$	-(2xz-4z)	\hat{k} is solenoidal	
(a) -1	(b) 1	(c) 0		(d) none of the	se
11. Find $'a'$ such that is irrotational	the vector $\vec{F} = (x$	+ y + az)î +	(x+2y-z)	$(x)\hat{j} + (-x - y +$	$(2z)\hat{k}$
(a) -1	(b) 1	(c) 0		(d) none of thes	e

(d) 1

12. If $\varphi = xy^3z^2 = 4$, then $\nabla \varphi$ at the point (1,1,-1) is

(a)
$$\hat{\imath} + 3\hat{\jmath} + 2\hat{k}$$

(b)
$$\hat{\imath} + 3\hat{\jmath} - 2\hat{k}$$

$$(c)\hat{i} - 3\hat{j} + 2\hat{k}$$
 (d) $\hat{i} - 3\hat{j} - 2\hat{k}$

(d)
$$\hat{\imath} - 3\hat{\jmath} - 2\hat{k}$$

13. The unit directional derivative to the curve x = t, $y = t^2$, $z = t^3$ at the point (-1,1,-1) is

(a)
$$\frac{1}{\sqrt{14}}(\hat{i}-2\hat{j}+3\hat{k})$$

(b)
$$\frac{1}{\sqrt{14}}(\hat{\imath} + 2\hat{\jmath} + 3\hat{k})$$

(c)
$$\frac{1}{\sqrt{3}}(\hat{\imath}+\hat{\jmath}+\hat{k})$$

$$(\mathrm{d})\,\frac{1}{\sqrt{3}}(\hat{\imath}-\hat{\jmath}+\hat{k})$$

14. A vector field which has a vanishing divergence is called as

- (a) Solenoidal field
- (b)irrotational field
- (c) roatational field
- (d) scalar field

$$15.\vec{F} = (x + 2y + 4z)\hat{\imath} + (2ax - 3y - z)\hat{\jmath} + (4x - y + 2z)\hat{k}$$
is

- (a) Solenoidal
- (b) irrotational
- (c) rotational
- (d) both solenoidal and irrotational

16. A unit tangent vector to the surface $x = t, y = e^t, z = -3t^2$ at t = 0 is

(a)
$$\hat{i} + \hat{j}$$

(b)
$$\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{j}$$

$$(c)\,\frac{1}{\sqrt{3}}\,\hat{\imath}\,+\frac{1}{\sqrt{3}}\hat{\jmath}$$

(a) $\hat{i} + \hat{j}$ (b) $\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{j}$ (c) $\frac{1}{\sqrt{3}}\hat{i} + \frac{1}{\sqrt{3}}\hat{j}$ (d) none of these

17. Unit normal vector to the surface z = 2xyat the point (2,1,4)is

(a)
$$\frac{1}{\sqrt{20}}(2\hat{\imath}+4\hat{\jmath})$$

(b)
$$\frac{1}{\sqrt{20}}(2\hat{\imath}-4\hat{\jmath})$$

(c)
$$\frac{1}{\sqrt{21}}(2\hat{\imath} + 4\hat{\jmath} - \hat{k})$$
 (d) $\frac{1}{\sqrt{21}}(2\hat{\imath} + 4\hat{\jmath} + \hat{k})$

(d)
$$\frac{1}{\sqrt{21}} (2\hat{\imath} + 4\hat{\jmath} + \hat{k})$$

18. Maximum value of the directional derivative of $\varphi = xyz^2$ at the point (1,0,3) is

- (a) 9
- (b) 10
- (c) 0
- (d) none of these

ANSWERS:

- 5.

- 6. b
 7. b
 8. a
 9. d
 10. b
 11. a
 12. b
 13. a

- 14. b 15. a 16. b 17. c 18. a