Quantitative Methods

Companian to the series: Introduction to Political Economics

Kevin Lingfeng Li

Table of contents

Pr	Preface				
Ι	Single Variable Calculus				
1	Pre-Calculus				
	1.1 Set Theory				
	1.2 Exponents, Logarithms, Sum and Product Notation				
	1.3 Functions and the Cartesian Plane				
	1.4 Special Types of Functions				
	1.5 Limits and Continuity				
2	Derivatives				
	2.1 Definition of a Derivative				
	2.2 Rules of Differentiation				
	2.3 Derivative of an Inverse Function				
	2.4 Partial Derivatives				
	2.5 Application: Linear Regression				
	•	•			
3	Optimisation				
	3.1 Local Extrema and Stationary Points				
	3.2 Concavity and Inflextion Points				
	3.3 Global Extrema				
	3.4 Optimisation Without Constraints				
	3.5 Application: Linear Regression Estimation				
	3.6 Simple Optimisation With Constraints				
1	Integrals				
	4.1 Indefinite Integrals				
	4.2 Definite Integrals and Riemann Sums				
	4.3 Fundamental Theorem of Calculus				
	4.4 Integration by Recognition				
	4.5 Integration by Substitution				
	4.6 Integration by Parts				
	4.7 Integration by Partial Fractions				
	4.8 Application: Consumer and Producer Surplus				
ΙI	Introductory Linear Algebra				
5	Matrices				
	5.1 Matrix Operations				
	5.2 Inverse Matrix				
	5.3 Simple Linear Systems of Square Matrix				

	5.4 Elementary Row Operations and Reduced Row Echelon Form	11 11 11 11
6	General Linear Systems 3.1 Geometric Insight of a 2-Dimensional Plane 3.2 K-dimensional Flats 3.3 Solving Lienar Systems of Equations 3.4 Solution Sets and Linearity 3.5 Analysing Solution Sets with the Rank 3.6 Analysing Solution Sets with the Rank	12 12 12 12 12 12
Η	Probability and Statistical Theory	13
7	Probability Theory 7.1 Rules of Probability 7.2 Counting 7.3 Independence and Conditional Probability 7.4 Law of Total Probability 7.5 Bayes' Theorem 7.6 Theorem 7.7 Bayes' Theorem	14 14 14 14 14
8	Random Variables 8.1 Discrete Random Variables	15 15 15 15 15
9	Distributions 9.1 Discrete Uniform and Bernoulli Distribution	16 16 16 16 16
10	Multivariate Random Variables 10.1 Joint Probability Functions	17 17 17 17 17 17 17

Preface

This book is one of the 3 mathematical-companian-guides of the part of a series: Introduction to Political Economics. These companian guides are meant to ensure that one has the proper mathematical training prior to studying Political Economics:

- 1. Quantitative Methods (This Book) introduces the essential mathematical concepts that are essential for studying Political Economics. Topics include single variable calculus, introductory linear algebra, and introductory probability and statistical theory.
- 2. Further Quantitative Methods expands on the topics taught in the previous book. While these topics are not absolutely essential for Political Economics, they can be highly useful for a deeper understanding of Political Economics. Topics include advanced linear algebra and multivariate calculus.
- 3. **Introductory Proofs and Analysis** is a high-level introduction to proofs in mathematics. This is not essential for studying Political Economics, but having a strong idea behind proofs is quite useful for more advanced Microeconomic Models that are used in the study of Political Economics.

This book, Quantitative Methods, is a collection of mathematical and statistical topics that I consider to be essential to understand prior to starting any serious instruction in Political Economics. The book assumes a solid understanding of high-school level algebra, and discusses topics in single variable calculus, introductory linear algebra, and probability and statistical theory. Note that this book is not a full mathematics course of those topics - topics have been selected based on what is commonly used in Political Economics and other social sciences.

Part I Single Variable Calculus

Pre-Calculus

1.1 Set Theory

A set is a collection of objects. The objects within a set are the elements of that set.

We can define a set by either listing every element out, or through describing the properties of the elements of the set.

- For example, $A = \{1, 2, 3, 4, 5\}$
- Or, $A = \{n | n \in \mathbb{Z}; 1 \le n \le 5\}$ or in other words, A is the set of values n, such that n is in the set of all integers Z, and n is between 1 and 5 inclusive.

Here are some common notation for sets:

- If two sets A and B have the same elements, they are equal: A = B.
- If a is an element of set A, we use the notation: $a \in A$.
- If a is not an element of set A, we use the notation: $a \notin A$.
- If all elements of set A are also within set B, then it is considered a **subset**, and notated $A \subseteq B$.
- If $A \subseteq B$, but $A \neq B$, then A is a **proper subset** of B, notated: $A \subset B$.

There are a few common **operations** of sets:

- The **union** of sets A and B, notated $A \cup B$, is the set of elements that belong to either A or B. For example, if $A = \{1, 2, 3\}, B = \{3, 4, 5\},$ then $A \cup B = \{1, 2, 3, 4, 5\}.$
- The intersection of sets, notated $A \cap B$, is the set of elements that belong to A and B. For example, if $A = \{1, 2, 3\}, B = \{3, 4, 5\}$, then $A \cap B = \{3\}$.

The **cardinality** of a set A is the number of elements within set A, and is notated |A|. For example, if $A = \{1, 2, 3\}$, then |A| = 3. An **empty set** is a set with a cardinality of 0, or in other words, with no elements. It is notated with \emptyset

A infinite set is one with infinitely many elements. Common examples of infinite sets include:

• Set of all natural numbers $\mathbb{N} = \{1, 2, 3, ...\}$.

- Set of all integers $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}.$
- Set of all rational numbers \mathbb{Q} , which are all numbers that can be written in a fraction (so excluding numbers like π).
- Set of all real numbers \mathbb{R} , which is any number on the real number line.

The set of all real numbers \mathbb{R} is the most common used set. A subset of \mathbb{R} is called an **interval**, and can be notated with either brackets or parentheses as follows:

- Closed interval: $[a, b] = \{x \in \mathbb{R} | a \le x \le b\}$
- Open interval: $(a,b) = \{x \in \mathbb{R} | a < x < b\}$
- We can also mix closed and open intervals: $[a,b) = \{x \in \mathbb{R} | a \le x < b\}$

In all these intervals, a and b are called **endpoints** of the interval. Any point inside of an interval that is not an endpoint is an **interior point**.

1.2 Exponents, Logarithms, Sum and Product Notation

1.3 Functions and the Cartesian Plane

1.4 Special Types of Functions

1.5 Limits and Continuity

Derivatives

- 2.1 Definition of a Derivative
- 2.2 Rules of Differentiation
- 2.3 Derivative of an Inverse Function
- 2.4 Partial Derivatives
- 2.5 Application: Linear Regression

Optimisation

- 3.1 Local Extrema and Stationary Points
- 3.2 Concavity and Inflextion Points
- 3.3 Global Extrema
- 3.4 Optimisation Without Constraints
- 3.5 Application: Linear Regression Estimation
- 3.6 Simple Optimisation With Constraints

Integrals

4.1 Indefinite Integrals

section 9.1 and 9.3

- 4.2 Definite Integrals and Riemann Sums
- 4.3 Fundamental Theorem of Calculus
- 4.4 Integration by Recognition
- 4.5 Integration by Substitution
- 4.6 Integration by Parts
- 4.7 Integration by Partial Fractions
- 4.8 Application: Consumer and Producer Surplus

Part II Introductory Linear Algebra

Matrices

5.1 Matrix Operations

topics 3.2-3.3

- 5.2 Inverse Matrix
- 5.3 Simple Linear Systems of Square Matrix
- 5.4 Elementary Row Operations and Reduced Row Echelon Form
- 5.5 Theorems on Matrix Invertibility
- 5.6 Determinant of a Matrix
- 5.7 Linear Systems of Invertible Square Matrix

General Linear Systems

- 6.1 Geometric Insight of a 2-Dimensional Plane
- 6.2 K-dimensional Flats
- 6.3 Solving Lienar Systems of Equations
- 6.4 Solution Sets and Linearity
- 6.5 Analysing Solution Sets with the Rank

Part III

Probability and Statistical Theory

Probability Theory

- 7.1 Rules of Probability
- 7.2 Counting
- 7.3 Independence and Conditional Probability
- 7.4 Law of Total Probability
- 7.5 Bayes' Theorem

Random Variables

- 8.1 Discrete Random Variables
- 8.2 Continuous Random Variables
- 8.3 Expectations
- 8.4 Moments

Distributions

- 9.1 Discrete Uniform and Bernoulli Distribution
- 9.2 Binomial and Poisson Distribution
- 9.3 Continous Uniform and Exponential Distribution
- 9.4 Normal (Gaussian) Distribution
- 9.5 Normal Approximation of the Binomial Distribution

Multivariate Random Variables

10.1	Joint Probability Functions
10.2	Marginal Distributions
10.3	Continuous Multivaraite Distributions
10.4	Conditional Distributions
10.5	Covariance and Correlation
10.6	Independent Random Variables

10.7 Sums and Products of Random Variables