Lecture 14 Eigenvalue Problems

Songting Luo

Department of Mathematics lowa State University

MATH 562 Numerical Analysis II

Outline

1 Eigenvalue Problems

Outline

1 Eigenvalue Problems

Eigenvalue and Eigenvectors

• Eigenvalue problem of $m \times m$ matrix **A** is

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

with eigenvalues λ and eigenvectors \mathbf{x} (nonzero)

- The set of all the eigenvalues of A is the spectrum of A
- Eigenvalue are generally used where a matrix is to be compounded iteratively
- Eigenvalues are useful for algorithmic and physical reasons
 - Algorithmically, eigenvalue analysis can reduce a coupled system to a collection of scalar problems
 - Physically, eigenvalue analysis can be used to study resonance and stability of physical systems

Eigenvalue Decomposition

WEigenvalue decomposition of A is

$$\mathbf{A} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}$$
 or $\mathbf{A} \mathbf{X} = \mathbf{X} \mathbf{\Lambda}^{-1}$

with eigenvectors \mathbf{x}_i as columns of \mathbf{X} and eigenvalues λ_i along diagonal of $\mathbf{\Lambda}$. Alternatively,

$$\mathbf{A}\mathbf{x}_i = \lambda_i \mathbf{x}_i$$

 Eigenvalue decomposition is change of basis to "eigenvector coordinates"

$$\mathbf{A}\mathbf{x} = \mathbf{b} \to (\mathbf{X}^{-1}\mathbf{b}) = \mathbf{\Lambda}(\mathbf{X}^{-1}\mathbf{x})$$

- Note that eigenvalue decomposition may not exist
- Question: How does eigenvalue decomposition differ from SVD?

Geometric Multiplicity

- Eigenvectors corresponding to a single eigenvalue λ form an eigenspace $E_\lambda \subseteq \mathbb{C}^{m \times m}$
- Eigenspace is invariant in that $\mathbf{A}E_{\lambda} \subseteq E_{\lambda}$
- Dimension of E_{λ} is the maximum number of linearly independent eigenvectors that can be found
- Geometric multiplicity of λ is dimension of E_{λ} , i.e., $dim(null(\mathbf{A}-\lambda\mathbf{I}))$

Algebraic Multiplicity

ullet The characteristic polynomial of $oldsymbol{A}$ is degree m polynomial

$$p_{\mathbf{A}}(z) = det(z\mathbf{I} - \mathbf{A}) = (z - \lambda_1)(z - \lambda_2) \cdots (z - \lambda_m)$$

which is monic in that coefficient of z^m is 1

- λ is an eigenvalue of **A** iff $p_{\mathbf{A}}(\lambda) = 0$
 - Proof.
- Algebraic multiplicity of λ is its multiplicity as a root of $p_{\mathbf{A}}$
- Any matrix A has m eigenvalues, counted with algebraic multiplicity
- Question: What are the eigenvalues of a triangular matrix?
- Question: How are geometric multiplicity and algebraic multiplicity related?

Similarity Transformations

- The map ${\bf A} \to {\bf Y}^{-1} {\bf A} {\bf Y}$ is a similarity transformation of ${\bf A}$ for any nonsingular ${\bf Y}$
- ullet **A** and **B** are similar if there is a similarity transformation ${f B}={f Y}^{-1}{f A}{f Y}$

Theorem

If **Y** is nonsingular, then **A** and $\mathbf{Y}^{-1}\mathbf{A}\mathbf{Y}$ have the same characteristic polynomials, eigenvalues, and algebraic and geometric multiplicities.

• For characteristic polynomial:

$$det(z\mathbf{I}-\mathbf{Y}^{-1}\mathbf{AY})=det(\mathbf{Y}^{-1}(z\mathbf{I}-\mathbf{A})\mathbf{Y})=det(z\mathbf{I}-\mathbf{A})$$

so algebraic multiplicities remain the same

• If $\mathbf{x} \in E_{\lambda}$ for \mathbf{A} , then $\mathbf{Y}^{-1}\mathbf{x}$ is in eigenspace of $\mathbf{Y}^{-1}\mathbf{A}\mathbf{Y}$ corresponding to λ , and vice versa, so geometric multiplicities remain the same.

Algebraic Multiplicity > Geometric Multiplicity

- Let n be be geometric multiplicity of λ for \mathbf{A} . Let $\hat{\mathbf{V}} \in \mathbb{C}^{m \times n}$ constitute of orthonormal basis of the E_{λ}
- Extend $\hat{\mathbf{V}}$ to unitary $\mathbf{V} = [\hat{\mathbf{V}}, \tilde{\mathbf{V}}] \in \mathbb{C}^{m \times m}$ and form

$$\mathbf{B} = \mathbf{V}^* \mathbf{A} \mathbf{V} = \left[\begin{array}{ccc} \hat{\mathbf{V}}^* \mathbf{A} \hat{\mathbf{V}} & \hat{\mathbf{V}}^* \mathbf{A} \tilde{\mathbf{V}} \\ \tilde{\mathbf{V}}^* \mathbf{A} \hat{\mathbf{V}} & \tilde{\mathbf{V}}^* \mathbf{A} \tilde{\mathbf{V}} \end{array} \right] = \left[\begin{array}{ccc} \lambda \mathbf{I} & \mathbf{C} \\ \mathbf{0} & \mathbf{D} \end{array} \right]$$

- $det(z\mathbf{I} \mathbf{B}) = det(z\mathbf{I} \lambda \mathbf{I})det(z\mathbf{I} \lambda \mathbf{D}) = (z \lambda)^n det(z\mathbf{I} \lambda \mathbf{D})$, so the algebraic multiplicity of λ as an eigenvalue of \mathbf{B} is $\geq n$
- **A** and **B** are similar, so the algebraic multiplicity of λ as an eigenvalue of **A** is at least $\geqslant n$
- Examples: $\mathbf{A} = \begin{bmatrix} 2 & & \\ & 2 & \\ & & 2 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 2 & 1 & \\ & 2 & 1 \\ & & 2 \end{bmatrix}$ Their

characteristic polynomial is $(z-2)^3$, so algebraic multiplicity of $\lambda=2$ is 3. But geometric multiplicity of **A** is 3 and that of **B** is 1.

Defective and Diagonalizable Matrices

- An eigenvalue of a matrix is defective if its algebraic multiplicity > its geometric multiplicity
- A matrix is defective if it has a defective eigenvalue. Otherwise, it is called nondefective.

Theorem

An $m \times m$ matrix **A** is nondefective iff it has an eigenvalue decomposition $\mathbf{A} = \mathbf{X} \Lambda \mathbf{X}^{-1}$

- (\Leftarrow) Λ is nondefective, and ${\bf A}$ is similar to Λ , so ${\bf A}$ is nondefective.
- (\Rightarrow) **A** nondefective matrix has m linearly independent eigenvectors. Take them as columns of **X** to obtain $\mathbf{A} = \mathbf{X}\Lambda\mathbf{X}^{-1}$
- Nondefective matrices are therefore also said to be diagonalizable.

Determinant and Trace

• Determinant of **A** is $det(\mathbf{A}) = \prod_{i=1}^{m} \lambda_{i}$, because

$$det(\mathbf{A}) = (-1)^m det(-\mathbf{A}) = (-1)^m p_{\mathbf{A}}(0) = \prod_{j=1}^m \lambda_j$$

• Trace of **A** is $tr(\mathbf{A}) = \sum_{j=1}^m \lambda_j$, since

$$p_{\mathbf{A}}(z) = det(z\mathbf{I} - \mathbf{A}) = z^m - \sum_{j=1}^m a_{jj}z^{m-1} + O(z^{m-2})$$

$$p_{\mathbf{A}}(z) = \prod_{j=1}^{m} (z - \lambda_j) = z^m - \sum_{j=1}^{m} \lambda_j z^{m-1} + O(z^{m-2})$$

 Question: Are these results valid for defective or nondefective matrices?

Unitary Diagonalization

- A matrix ${f A}$ is unitarily diagonalizable if ${f A} = {f Q} {f \Lambda} {f Q}^*$ for a unitary matrix ${f Q}$
- A hermitian matrix is unitarily diagonalizable, with real eigenvalues
- A matrix **A** is normal if A*A = AA*
 - Examples of normal matrices include hermitian matrices, skew hermitian matrices
 - hermitian
 ⇔ matrix is normal and all eigenvalues are real
 - skew hermitian ⇔ matrix is normal and all eigenvalues are imaginary
 - If A is both triangular and normal, then A is diagonal
- Unitarily diagonalizable ⇔ normal
 - By induction using Schur factorization (next)

Schur Factorization

• Schur factorization is $\mathbf{A} = \mathbf{Q}\mathbf{T}\mathbf{Q}^*$, where \mathbf{Q} is unitary and \mathbf{T} is upper triangular

Theorem

Every square matrix A has a Schur factorization.

Proof

Proof by induction on dimension of **A**. Case m=1 is trivial.

For $m\geqslant 2$, let ${\bf x}$ be any unit eigenvector of ${\bf A}$, with corresponding eigenvalue λ . Let ${\bf U}$ be unitary matrix with ${\bf x}$ as first column. Then

$$\mathbf{U}^*\mathbf{A}\mathbf{U} = \begin{bmatrix} \lambda & \mathbf{w}^* \\ \mathbf{0} & \mathbf{C} \end{bmatrix}$$
. By induction hypothesis, there is a Schur

factorization
$$\tilde{\mathbf{T}} = \mathbf{V}^*\mathbf{C}\mathbf{V}$$
. Let $\mathbf{Q} = \mathbf{U} \begin{bmatrix} 1 & 0 \\ 0 & \mathbf{V} \end{bmatrix}$, $\mathbf{T} = \begin{bmatrix} \lambda & \mathbf{w}^*\mathbf{V} \\ 0 & \tilde{\mathbf{T}} \end{bmatrix}$, and

then $A = QTQ^*$

Eigenvalue Revealing Factorization

- Eigenvalue-revealing factorization of square matrix A
 - Diagonalization $\mathbf{A} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}$ (nondefective \mathbf{A})
 - Unitary Diagonalization $\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^*$ (normal \mathbf{A})
 - Unitary triangularization (Schur factorization) $\mathbf{A} = \mathbf{Q}\mathbf{T}\mathbf{Q}^*$ (any \mathbf{A})
 - Jordan normal form $\mathbf{A} = \mathbf{X}\mathbf{J}\mathbf{X}^{-1}$ where \mathbf{J} block diagonal with

$$\mathbf{J}_i = \left[egin{array}{cccc} \lambda_i & 1 & & & & & \\ & \lambda_i & \ddots & & & & \\ & & \ddots & 1 & & \\ & & & \lambda_i \end{array}
ight]$$

- In general, Schur factorization is used, because
 - Unitary matrices are involved, so algorithm tends to be more stable
 - If A is normal, then Schur form is diagonal