

Content

- Introduction
 - Problem Statement
 - Problem Objective
 - Process Overflow
- Data Collection
- Data Cleaning and Preprocessing
- Exploratory Data Analysis & Feature Selection
- Model Training and Evaluation
- Model Deployment
- Conclusion
- References

Introduction

Problem Statement

Building a generative AI model capable of accurately forecasting electrification demand, supply, and the resulting gap to guide effective and sustainable energy access interventions in SSA.

Introduction

Comparative Analysis

Electrification landscape: SSA among other world regions / Countries within SSA region

Guiding Interventions

Provide data-driven insights to guide targeted and effective interventions for improving sustainable energy access in SSA, considering both demand and supply gap factors

Dynamic Adaptation

Ensure the Al model can dynamically adapt to new data inputs to continuously refine predictions and intervention strategies over time.

Develop a Generative Al

Robust Generative AI model to accurately forecast the electricity demand, supply, and resulting gap for SSA

Predict Demand/Supply Gap

Utilize machine learning techniques to forecast the electricity demand and supply gap for Sub-Saharan Africa

Introduction

Data Collection

Global Electrification Database by Harvard Dataverse

The World Bank data

World Energy Statistics and Balances IAE 50

Tracking SDG 7

Our World in Data

<u>Ember</u>

<u>UN Data</u>

AEP - African Energy Porta

Data Cleaning and Preprocessing

Steps of Data Cleaning are as follows:

- Data types were corrected
- Units of measurement were standardized for uniformity,
- Categorical variable were encoded into numerical variable.
 For example 'income_group' to 'income_group_num'
- Column names were standardized.

Data Cleaning and Preprocessing

- Calculated 'net_imports' values where 'el_exports' and 'el_imports' were present by combining data from two sources; replaced missing values with 0 where necessary.
- Resulted in the df_all dataset, covering the years 1990-2023 for 49 SSA countries and world regions (2166 rows, 39 columns).
- Imputed missing values using four methods, selecting the best method (Prophet) for modeling.
- Excluded South Sudan, removed some similar and less important metrics, and dropped years with the most missing data.
- Final data subset for modeling covered the years 2000-2022 for 48 SSA countries (1104 rows, 31 columns).

Comparative Analysis

Electricity access within SSA regions between urban and rural areas.

Comparative Analysis

Total Electricity access over all the countries comparing with Sub Saharan Africa..

Composition of electricity generation sources in Sub-Saharan Africa compared to other regions.

DEMAND / SUPPLY GAP

Category	Definition	Metric
SUPPLY	Actual amount of electricity delivered within a country, including generated and imported electricity (TWh)	'el_demand'
ACCESS	Percentage of the total population with access to electricity (%)	'el_access_total'
SUPPLY RATE	Amount of electricity delivered to 1% of the population with access to electricity (TWh/%)	el_demand / el_access_total
TARGET DEMAND	Amount of electricity needed to provide access to 100% of the population (TWh)	100% * el_demand / el_access_total
GAP	Difference between the amount of electricity needed and what is delivered (TWh)	TARGET DEMAND - SUPPLY

1. Gradient Boosting

Mean Absolute Error (MAE): 1.2387692483234058

Root Mean Squared Error (RMSE): 2.925424694714788

2. Sequential Model from Keras with Dense Layer Type

Lowest Train Loss: 32.5914 Lowest Test Loss: 36.7255 Combined RMSE: 5.1829

3. Sequential Model with LSTM Layer Type

Train Loss: 20.6781 Test Loss: 14.7151

Combined RMSE: 4.4142

Model Back-Testing

Three main standard things that will affect the results are :-

- 1. Feature Scaling
- 2. Outlier Handling
- 3. Feature Selection

This refinement is crucial for developing a robust forecasting tool for the electricity demand and supply gap in Sub-Saharan African countries. so we added 't_demand' and "supply_rate"

1. Gradient Boosting

Mean Absolute Error (MAE): 0.5792657362366925

Mean Squared Error (MSE): 2.972355404579559

Root Mean Squared Error (RMSE): 1.724052030705442

2. Sequential Model with LSTM Layer Type

Train Loss: 2.2201149463653564 Test Loss: 2.0234854221343994

Combined RMSE: 1.4767493285573132 Combined MAE: 0.9081776610234112

The LSTM model achieved the lowest train and test loss, with a combined RMSE of approximately 1.48 and a combined MAE of approximately 0.91.

Model Deployment

- Deploying Our Machine Learning Model with Flask and Render
- Project Structure:
 - Key Components:
 - Flask Application: Acts as the engine that powers our backend, handling requests, processing data, and returning results.
 - **HTML Frontend**: The interface through which our users interact with the application.
 - **Machine Learning Model**: The core component that makes predictions based on the input data.
- Deployment with Render:
 - Steps:
 - Set Up Render: Linked our project repository to Render.
 - Configure Service: Pointed Render to our Flask application.
 - Deploy: Render handles the deployment process, making our app live.

Model Deployment

A sneak peak at the website

Conclusion

- 1. Re-evaluation process significantly enhanced model performance.
- Optimized LSTM model now delivers accurate predictions for electricity demand and supply gap in Sub-Saharan African countries.
- Insights derived from the model are crucial for informed energy planning and policy-making.
- 4. Improved predictions aid in enhancing energy access in the region.

References

The following are the Github link for project proposal, deliveries such as EDA and Modeling notebook:-

• https://github.com/zaratti/BigGAN-Capstone-Project-Deliverables

References

The following are the dataset that we have used to create a dataset:-

- Tracking SDG 7 The Energy Progress Report -https://trackingsdg7.esmap.org/results
- Our World in Data https://ourworldindata.org/grapher/share-with-access-to-electricity-vs-per-capita-energy-consumption
- Ember https://ember-climate.org/app/uploads/2022/07/yearly_full_release_long_format.csv
- UN Data Unated Nations Data Retrieval System -https://data.un.org/Data.aspx?d=EDATA&f=cm/ID%3AEC
- AEP Africa Energy Portal https://africa-energy-portal.org/database

Thank You

Any Questions?

