

NOT FOR PUBLIC RELEASE

RTL2832U

DVB-T COFDM DEMODULATOR+USB 2.0

DATASHEET

(CONFIDENTIAL: Development Partners Only)

Rev. 1.4 01 November 2010

Track ID: JATR-2265-11

Realtek Semiconductor Corp.

No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan Tel.: +886-3-578-0211. Fax: +886-3-577-6047 www.realtek.com

COPYRIGHT

©2010 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of Realtek Semiconductor Corp.

DISCLAIMER

Realtek provides this document "as is", without warranty of any kind. Realtek may make improvements and/or changes in this document or in the product described in this document at any time. This document could include technical inaccuracies or typographical errors.

TRADEMARKS

Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners.

USING THIS DOCUMENT

This document is intended for the hardware and software engineer's general information on the Realtek RTL2832U.

Though every effort has been made to ensure that this document is current and accurate, more information may have become available subsequent to the production of this guide.

REVISION HISTORY

Revision	Release Date	Summary
1.0	2008/06/30	First release.
1.1	2009/02/06	Corrected typing errors.
1.2	2009/02/16	Revised 'Connects a 12k ohm Resistor to ground' to 'Connects a 10k ohm Resistor to ground', in the ADC section of Table 1 Pin Descriptions, page 5. Revised Figure 9, page 44.
1.3	2009/06/29	Corrected minor typing errors.
1.4	2010/11/01	Added Table 38 Crystal Conditions, page 43.

Table of Contents

1.	GEN	ERAL DESCRIPTION	1
2.	FEAT	ΓURES	2
3.	SYST	TEM APPLICATIONS	2
4.	BLO	CK DIAGRAM	3
5.		ASSIGNMENTS	
_ ,	5.1.	GREEN PACKAGE AND VERSION IDENTIFICATION	
6.		DESCRIPTIONS	
7.		CTIONAL DESCRIPTION	
•	7.1.	ANALOG-TO-DIGITAL CONVERSION (ADC)	
	7.1. 7.2.	AUTOMATIC GAIN CONTROL (AGC)	
	7.2.	DIGITAL DOWN CONVERSION	
	7.4.	RESAMPLER	
	7.5.	GUARD INTERVAL REMOVAL	
	7.6.	FAST FOURIER TRANSFORM (FFT)	8
	7.7.	SYNCHRONIZATION	8
	7.8.	CHANNEL ESTIMATION	9
	7.9.	TRANSMISSION PARAMETER SIGNAL DECODER	
	7.10.	EQUALIZATION	
	7.11.	De-Interleaver, FEC Decoder, and Descrambler	
8.		ER INTERFACE	
	8.1.	AUTOMATIC GAIN CONTROL (AGC)	11
	8.1.1.		
	8.1.2.	Register Name: if_agc_min/if_agc_max/rf_agc_min/rf_agc_max	13
	<i>8.1.3</i> .		13
	8.1.4.		
	8.1.5.		14
	8.2.	ADC INPUT (TUNER OUTPUT)	
	8.3. 8.4.	TWO-WIRE INTERFACE BETWEEN THE TUNER AND THE RTL2832U	
9.	REG	ISTER DESCRIPTIONS (GENERAL)	
	9.1.	ANALOG TO DIGITAL CONVERTER (ADC)	
	9.2.	DC CANCELLATION AND IQ COMPENSATION	18
	9.3.	DIGITAL DOWN CONVERSION (DDC)	
	9.4.	RESAMPLER	
	9.5.	CO-CHANNEL INTERFERENCE REJECTION	
	9.6.	IMPULSE NOISE CANCELLATION (DAGG)	
	9.7.	DIGITAL AUTOMATIC GAIN CONTROL (DAGC)	
	9.8. 9.9.	FFT MODE DETECTION	
	9.9. 9.10.	CRYSTAL	
	9.10. 9.11.	PID FILTER	
10			
10		EGISTER DESCRIPTIONS (8051 SYSTEM)	
	10.1.	DEMODULATOR CONTROL REGISTER (DEMOD_CTL, 0000H)	
	10.2.	GPIO RELATED REGISTERS (0001H~0008H)	
	10.2.	1. GPIO Output Value Register (GPO, 0001h)	<i>5</i> (

10	0.2.2. GPIO Input Value Register (GPI, 0002h)	30
10	0.2.3. GPIO Output Enable Register (GPOE, 0003h)	
10	0.2.4. GPIO Direction Control Register (GPD, 0004h)	
10	0.2.5. PAD Configuration Register for GPIO0~3 (GP_CFG0, 0007h)	
	0.2.6. PAD Configuration Register for GPIO4 (GP_CFG1, 0008h)	
10.3.	I ² C Master Control Registers (0040h-0053h)	
10	0.3.1. I ² C Clock Register (12CCR, 0040h-0043h)	
10	0.3.2. I ² C Master Control Register (I2CMCR, 0044h-0047h)	
	0.3.3. I ² C Master SCL Timing Register (I2CMSTR, 0048h-004Bh)	
10	0.3.4. I ² C Master Status Register (I2CMSR, 004Ch-004Fh)	
10	0.3.5. I ² C Master FIFO Register (I2CMFR, 0050h-0053h)	36
11.	REGISTER DESCRIPTIONS (USB INTERFACE)	36
11.1.	Introduction	36
11.2.	VENDOR COMMANDS	36
11.3.	SIE CONTROL REGISTER	38
11.4.	USB SYSTEM CONTROL REGISTER (USB_SYSCTL, 0000H)	39
11	1.4.1. Endpoint A Configuration Register (USB_EPA_CFG, 0144h)	39
11	1.4.2. Endpoint A Control Register (USB_EPA_CTL, 0148h)	40
11	1.4.3. Endpoint A Max Packet Size Register (USB_EPA_MAXPKT, 0158h)	40
11	1.4.4. Endpoint A FIFO Configuration Register (USB_EPA_FIFO_CFG, 0160h)	40
12.	CHARACTERISTICS	41
12.1.		41
12.2.	DC CHARACTERISTICS	41
12.3.		
12.4.		
13.	APPLICATION CIRCUITS	44
14.	MECHANICAL DIMENSIONS	
14.1.		
15.	ORDERING INFORMATION	
13.	ORDEREIG ET ORGETTION	····· T /

List of Tables

	PIN DESCRIPTIONS	
	AAGC REGISTER TABLE	
Table 3.	I ² C Repeater Register Table	15
Table 4.	ADC REGISTERS	17
Table 5.	DC CANCELLATION REGISTERS	18
Table 6.	DIGITAL DOWN CONVERSION (DDC)	20
	RESAMPLER	
TABLE 8.	CO-CHANNEL INTERFERENCE REJECTION	21
Table 9.	IMPULSE NOISE CANCELLATION	21
TABLE 10.	DAGC REGISTERS	22
	FTT Mode Detection.	
	TIMING RECOVERY/CARRIER RECOVERY	
	PID FILTER	
	SYSTEM REGISTER DESCRIPTIONS	
	DEMODULATOR CONTROL REGISTER (DEMOD CTL, 0000H)	
TABLE 16.	GPIO OUTPUT VALUE REGISTER (GPO, 0001H)	30
TABLE 17.	GPIO INPUT VALUE REGISTER (GPI, 0002H)	30
TABLE 18.	GPIO OUTPUT ENABLE REGISTER (GPOE, 0003H)	31
TABLE 19	GPIO DIRECTION CONTROL REGISTER (GPD, 0004H)	31
	PAD Configuration Register for GPIO0~3 (GP_CFG0, 0007H)	
	PAD Configuration Register for GPIO4 (GP CFG1, 0008h).	
	I ² C CLOCK REGISTER (I2CCR, 0040H-0043H).	
	I ² C MASTER CONTROL REGISTER (I2CMCR, 0044H-0047H)	
	I ² C MASTER SCL TIMING REGISTER (I2CMSTR, 0048H-004BH)	
	1 ² C Master Status Register (I2CMSR, 004CH-004FH)	
	I ² C Master FIFO Register (I2CMFR, 0050H-0053H)	
TABLE 27	VENDOR COMMANDS	36
TABLE 28	VENDOR COMMANDS	37
TABLE 29	SIE CONTROL REGISTER	38
	USB SYSTEM CONTROL REGISTER (USB SYSCTL, 0000H)	
	ENDPOINT A CONFIGURATION REGISTER (USB EPA CFG, 0144H)	
	ENDPOINT A CONTROL REGISTER (USB EPA CTL, 0148H).	
TABLE 33	ENDPOINT A MAX PACKET SIZE REGISTER (USB_EPA_MAXPKT, 0158H)	40
TABLE 34	ENDPOINT A FIFO CONFIGURATION REGISTER	40
	ABSOLUTE MAXIMUM RATINGS	
	DC CHARACTERISTICS.	
	Two-Wire Interface Timing	
TABLE 37.	CRYSTAL CONDITIONS.	43
	ORDERING INFORMATION	
TADLE 37.	ORDERING IN ORDERING	<i>T</i> /

List of Figures

FIGURE 1.	BLOCK DIAGRAM	3
	PIN ASSIGNMENTS (48-PIN QFN)	
	IF OR ZERO-IF TUNER INTERFACE.	
FIGURE 4.	DELAYED AGC	11
FIGURE 5.	TWO-WIRE INTERFACE BETWEEN THE TUNER AND RTL2832U	15
FIGURE 6.	INTERNAL SWITCHING REGULATOR LAYOUT	16
FIGURE 7.	PID FILTER FUNCTION OF THE RTL2832U	24
FIGURE 8.	TWO-WIRE INTERFACE TIMING DIAGRAM	42
FIGURE 9.	APPLICATION CIRCUITS	44

1. General Description

The RTL2832U is a high-performance DVB-T COFDM demodulator that supports a USB 2.0 interface. The RTL2832U complies with NorDig Unified 1.0.3, D-Book 5.0, and EN300 744 (ETSI Specification). It supports 2K or 8K mode with 6, 7, and 8MHz bandwidth. Modulation parameters, e.g., code rate, and guard interval, are automatically detected.

The RTL2832U supports tuners at IF (Intermediate Frequency, 36.125MHz), low-IF (4.57MHz), or Zero-IF output using a 28.8MHz crystal. Embedded with an advanced ADC (Analog-to-Digital Converter), the RTL2832U features high stability in portable reception.

The state-of-the-art RTL2832U features Realtek proprietary algorithms (patent-pending), including superior channel estimation, co-channel interface rejection, long echo channel reception, and impulse noise cancellation, and provides an ideal solution for a wide range of applications for PC-TV, such as USB dongle and MiniCard/USB, and embedded system via USB interface.

2. Features

- COFDM complying with Nordig Unified 1.0.3, D-book 5.0, and ETSI 300-744
- Supports multiple IF frequencies (4.57MHz or 36.167MHz) and spectrum inversion
- Supports Zero-IF input
- Single low-cost crystal for clock generation (±100ppm)
- Automatic transmission mode and guard interval detection
- Impulse noise cancellation circuits
- Automatic carrier recovery over a wide range offset (±800KHz)
- Superior performance with pre/post/long echo profiles
- Embedded adjacent and co-channel interference rejection circuit
- 3. System Applications
- Portable DTV device
- USB dongle
- MiniCard

- Delayed AGC with programmable Take-Over Point (TOP)
- 7-bit ADC for RF signals level measurement
- Hardware MPEG-2 PID filters
- Infra-red port for remote control and wake-up, protocols supported are
 - ◆ Microsoft RC6 protocol
 - ♦ NEC, Sony, SIRC, RC-5 protocol
- Eight general purpose I/O ports
- USB 2.0 Interface
 - ♦ Supports USB Full/High speed
 - ◆ Configurable vendor information via external EEPROM
 - ◆ Passes USB-IF certification
- Signal 3.3V external power is required
- 48-pin QFN (6x6 mm²) Green Package

4. Block Diagram

Figure 1. Block Diagram

5. Pin Assignments

Figure 2. Pin Assignments (48-Pin QFN)

5.1. Green Package and Version Identification

Green package is indicated by a 'G' in the location marked 'T' in Figure 2. The version number is shown in the location marked 'V'.

6. Pin Descriptions

The following signal type codes are used in the tables:

I: Input I/OD: Bi-Directional, Output Open-Drain

O: Output Tri: Tri-State Output

OD: Open-Drain Output PS: Power Supply

I/O: Bi-Directional GND: Ground

Table 1. Pin Descriptions

Name	Pin number	Function	Туре		
		Power and Ground			
VDD1	12, 20, 28, 34	Digital Core Power Supplies	PS (1.2V)		
VDD3	14, 33	Digital I/O Power Supplies	PS (3.3V)		
VDDA33	43	Analog Front End Power Supply	PS (3.3V)		
VDDA	44, 47	Analog Front End Power Supplies	PS (1.2V)		
GNDA	3, 45	Analog Front End Ground	GND		
		Oscillator and PLL			
XI	11	Crystal Oscillator Input	I		
XO	10	Crystal Oscillator Output O			
VDDPLL	7	PLL Power Supply PS (1.2			
GNDPLL	8	PLL Ground GNE			
TP_CKO	9	ADC Test Pin for Clock Input	I/O		
		ADC			
VIP	1	Differential Analog Input – Positive (I Path)	I		
VIN	2	Differential Analog Input – Negative (I Path) I			
VQP	4	Differential Analog Input – Positive (Q Path)			
VQN	5	Differential Analog Input – negative (Q Path)			
R12K	48	Connects a 10k ohm Resistor to Ground I			
VCMI	46	Reference Voltage for ADC AC-Coupling I			

Name	Pin number	Function	Type
VINR	6	Low Speed 7-bit ADC Single-Ended Input	I
		USB Interface	
HSDP	40	USB D+ Signal	I/O
HSDM	41	USB D- Signal	I/O
UVDDA	42	USB 1.2V Analog Power Supply	PS (1.2V)
SEGND	39	Reference Ground	GND
		Host Interface	
I2C_SCL	18	I ² C Interface Clock Output Pin (5 Voltage Tolerance)	OD
I2C_SDA	19	I ² C Interface Bi-Directional Data Pin (5 Voltage Tolerance)	I/OD
I2C_SCLT	16	Output SCLK Signal (5 Voltage Tolerance) for Tuner Control	OD
I2C_SDAT	17	Output SDAT Signal (5 Voltage Tolerance) for Tuner Control	I/OD
AGC_IF	13	Control Signal for IF AGC (5 Voltage Tolerance)	OD
AGC_RF	15	Control Signal for RF AGC (5 Voltage Tolerance)	OD
M_ERR	35	MPEG Error Output	О
		GPIO Interface and IR	
IRRC	38	IR Signal Input	I
GPIO[0]	37	General Purpose I/O Pin-0	Tri
GPIO[1]	32	General Purpose I/O Pin-1	Tri
GPIO[2]	31	General Purpose I/O Pin-2	Tri
GPIO[3]	36	General Purpose I/O Pin-3	Tri
GPIO[4]	30	General Purpose I/O Pin-4	Tri
GPIO[5]	29	General Purpose I/O Pin-5	Tri
GPIO[6]	22	General Purpose I/O Pin-6	Tri
GPIO[7]	21	General Purpose I/O Pin-7	Tri
	I	nternal 3.3V to 1.2V Switching Regulator	
ENSWREG	27	0V: Turn off switching regulator	Ι
		3.3V: Turn on switching regulator (Tie high internally)	
SW_VDD3	26, 25	3.3V Power Input	PS (3.3V)
REG_OUT	24	1.2V Power Output	О
FB	23	Regulated Feedback Voltage	I

7. Functional Description

The block diagram of the RTL2832U DVB-T demodulator is shown in Figure 1, page 3. The RTL2832U accepts IF or Zero IF input signals with the analog signal sampled by the internal ADC. The sampled data stream is then processed by OFDM demodulation. After decoding by an on-chip FEC (Viterbi and Reed-Solomon decoder) the USB 2.0 interface outputs packets with transport stream data.

A detailed description of each block is given in this section.

7.1. Analog-to-Digital Conversion (ADC)

The internal A/D converter can accept tuner output with various bandwidths (6, 7, 8MHz), different IF frequencies (4.57M or 36.167M,), Zero IF (I & Q channel) input and can perform spectrum reversion.

Using a sampling clock generated by the internal PLL with a 28.8MHz clock source, the RTL2832U demodulates the received TV signal.

7.2. Automatic Gain Control (AGC)

The AGC circuit is used to adjust received signal strength to a moderate level for the ADC. This module supports two output paths, and both are sigma-delta modulated signals. The output signals need additional RC LPFs (Low-Pass Filters) before feeding to IF and RF VGA in the tuner The delayed AGC algorithm is described in section 8.1 Automatic Gain Control (AGC), page 11.

7.3. Digital Down Conversion

The RTL2832U uses IF or Zero-IF sampling to process received signals. The Digital Down Conversion (DDC) circuit converts the sampled IF signal to a complex base-band signal for further processing. The down conversion frequency and low-pass filter can be programmed according to different IF frequency, sampling rates, and signal bandwidth.

7.4. Resampler

The Resampler circuit changes the received signal from a fixed ADC sampling rate to an Orthogonal Frequency Division Multiplexing (OFDM) sampling rate according to the signal bandwidth. The conversion ratio can be programmed via a register setting.

7.5. Guard Interval Removal

In time domain modulation, there is a guard interval inserted between two Orthogonal Frequency Division Multiplexing (OFDM) signals. It is necessary to remove the guard interval before Fast Fourier Transform (FFT) processing. This module is used to moderate the OFDM symbol boundary for FFT according to the results of synchronization.

7.6. Fast Fourier Transform (FFT)

The Fast Fourier Transform (FFT) circuit converts a received time domain signal to a frequency domain signal. Based on the ETSI 300-744 definition, FFT output contains continuous pilots, scattered pilots, Transmission Parameter Signal (TPS), and data signal. These signals can be used for synchronization, channel estimation, and data decision in further processing.

7.7. Synchronization

The RTL2832U can measure and compensate for a large range of sampling frequency offsets and carrier frequency offsets before making a data decision. A moderate symbol boundary is utilized to avoid Inter-Symbol Interference (ISI).

7.8. Channel Estimation

A channel estimation circuit is used to estimate the channel condition of received signals. The estimated channel response can be used for equalization, and is updated symbol by symbol to support mobile channel variations.

7.9. Transmission Parameter Signal Decoder

This module is used to decode and determine Transmission Parameter Signal (TPS) bits. The TPS carriers contain parameters for demodulation. These parameters are protected by Bose, Ray-Chaudhuri, Hocquenghem (BCH) encoding. After decoding, the RTL2832U demodulator further processes the decoded information. Parameters such as transmission mode, guard interval value, code rate etc, can be pre-set by registers to overwrite the result of TPS decoding.

7.10. Equalization

To handle various channel conditions, the equalization circuit compensates for the signal degradation caused by different multi-path channel profiles. The data bit is detected based on the equalization output.

7.11. De-Interleaver, FEC Decoder, and Descrambler

In accordance with ETSI 300-744, the RTL2832U uses a de-interleaver to re-order the decision data bit to the correct sequence. The Forward Error Correction (FEC) decoder circuit detects and corrects error bits in the received sequence. The descrambler recovers the output of the decoder to a standard Transport Stream (TS) sequence.

8. Tuner Interface

There are three interfaces (AGC, ADC input, two-wire serial interface) between the tuner and the demodulator.

Figure 3. IF or Zero-IF Tuner Interface

8.1. Automatic Gain Control (AGC)

In the RTL2832U, the RF_AGC and IF_AGC pins control the Radio Frequency (RF) and Intermediate Frequency (IF) VGA gain of the tuner. In some applications, the RTL2832U only controls IF VGA, and the tuner controls RF VGA. In some tuners, only the RF AGC is needed. The RTL2832U uses delayed AGC to control RF and IF AGC. Gain distribution for RF and IF VGA is adjusted by registers '*vtop*' and '*krf*'. The delayed AGC method is shown in Figure 4. RTL2832U has three *vtop* and four *krf* register values to be programmed by user.

When the input power of the RF tuner is weak, RF VGA gain is kept to the maximum for better tuner performance. When the input power is strong enough, RF VGA starts to decrease its gain to avoid the non-linearity effect of the following block (IF VGA). The point where RF VGA starts to decrease gain value is vtop (the 'take-over point'). The ratio for RF VGA gain decrease is set by register *krf*. The optimal values of registers *vtop* and *krf* depend on the tuner used.

Pins RF_AGC and IF_AGC are sigma-delta DAC output. An external Resistor/Capacitor (RC) low-pass filter and pull-high resister should be placed on the PCB board to generate a quasi-DC control voltage to the tuner as shown in Figure 3, page 10.

Figure 4. Delayed AGC

8.1.1. Register Name: loop gain

Analog Automatic Gain Control (AAGC) loop gain is set by register *loop_gain2*<3:0> and *loop_gain2*<4>. Register *loop_gain2* can be set to 0~26. The value depends on the tuner. The recommended value is 20 (dec). A larger *loop_gain* value would get a slower AAGC locking time, but more stable AAGC control voltage. There are another *loop_gain1* and *loop_gain3* for special cases: use *loop_gain1* for aagc unlock, and use *loop_gain3* for existing interference.

Table 2. AAGC Register Table

Register Name	Page	Offset {LSB, MSB}	Bits Used	RW	Default (Hex)	Description
polar_rf_agc	0	0x0E	[1]	RW	0	Inverse the AGC_RF Sigma-Delta Pin 0: Normal 1: Inverse
polar_if_agc	0	0x0E	[0]	RW	0	Inverse the AGC_IF Sigma-Delta Pin 0: Normal 1: Inverse
loop_gain2<3:0>	1	0x04	[4:1]	RW	0	AGC Loop Gain (Bit0~Bit3) for AAGC Lock
aagc_hold	1	0x04	[5]	RW	0	Hold AAGC Value (Open AAGC Loop) 0: Disable 1: Enable
en_rf_agc	1	0x04	[6]	RW	1	Enable RF AGC Loop 1: Enable 0: Disable
en_if_agc	1	0x04	[7]	RW	1	Enable IF AGC Loop 1: Enable 0: Disable
loop_gain2<4>	1	0x05	[7]	RW	1	AAGC Loop Gain (Bit4) for AAGC Lock
loop_gain1	1	0xC7	[5:1]	RW	С	AAGC Loop Gain for AAGC Unlock
loop_gain3	1	0xC8	[4:0]	RW	1A	AAGC Loop Gain for Existing Interference
vtop1	1	0x06	[5:0]	RW	10	u(6,5f) Set Take-Over Point1
vtop2	1	0xC9	[5:0]	RW	30	u(6,5f) Set Take-Over Point2
vtop3	1	0xCA	[5:0]	RW	28	u(6,5f) Set Take-Over Point3
krfl	1	0xCB	[7:0]	RW	2	u(8,4f) Set RF AGC Gain Degrade Ratio1
krf2	1	0x07	[7:0]	RW	F	u(8,4f) Set RF AGC Gain Degrade Ratio2
krf3	1	0xCD	[7:0]	RW	20	u(8,4f) Set RF AGC Gain Degrade Ratio3
krf4	1	0xCE	[7:0]	RW	30	u(8,4f) Set RF AGC Gain Degrade Ratio4
if_agc_min	1	0x08	[7:0]	RW	80	s(8,7f) Set IF AAGC Minimum Gain

Register Name	Page	Offset {LSB, MSB}	Bits Used	RW	Default (Hex)	Description
if_agc_max	1	0x09	[7:0]	RW	7F	s(8,7f) Set IF AAGC Maximum Gain
rf_agc_min	1	0x0A	[7:0]	RW	80	s(8,7f) Set RF AAGC Minimum Gain
rf_agc_max	1	0x0B	[7:0]	RW	7F	s(8,7f) Set RF AAGC Maximum Gain
if_agc_val	3	{59,5A}	[13:0]	R	-	s(14, 13f) IF AAGC Value
rf_agc_val	3	{5B,5C}	[13:0]	R	-	s(14, 13f) RF AAGC Value
aagc_lock	3	0x50	[0]	R	-	AAGC Lock

8.1.2. Register Name: if_agc_min/if_agc_max/rf_agc_min/rf_agc_max

Format: s(8,7f)

These registers limit the minimum and maximum value of RF/IF AGC. They are in 8-bit two's complement format. The maximum value 127 (dec) means maximum output voltage.

For example, if we want to limit RF minimum/maximum, AGC output voltage would be 10%/90% of pull-high voltage.

rf_agc_min=floor (10%*255-128)=-103 (dec)

rf agc max=floor (90%*255-128)=101 (dec)

8.1.3. Register Name: Vtop

Format: u(6,6f)

The take-over point of RF VGA is set by register *vtop*. There are two special cases shown below. The optimal value depends on the tuner.

vtop=0 (dec) → RF gain is always set on maximum value

vtop=63 (dec) \rightarrow RF gain does not delay

For example, if we want to degrade RF VGA gain when IF VGA control voltage is smaller than 0.5*Vdd:

vtop=floor (63*0.5)=31 (dec)

8.1.4. Register Name: Krf

Format: u(6,2f)

The gain degrade ratio between the RF and IF AGC when input power exceeds the RF take-over point is set by register *Krf.* A larger *krf* means the RF Gain degrade ratio is larger. This means an equal gain degrade ratio between the RF and the IF AGC. If we want RF gain to degrade quickly when input power is larger than the take-over point, krf should be set to a larger value. If only IF AGC is controlled by the RTL2832U, registers *vtop* and *krf* are not used.

8.1.5. Register Name: if_agc_val/rf_agc_val

Format: s(14,13f)

The RF AAGC value and IF AAGC value are read from registers *if_agc_val/rf_agc_val*. They are in 14-bit two's complement format. The minimum value is –8192 and maximum value is 8191. When rf/if_agc_val is set to the maximum value, it means the RF/IF AGC pin output is at the maximum control voltage. The real RF input power can be mapped from *if_agc_val/rf_agc_val*. The mapping can be to a table or an equation. Note that different *vtop* and *krf* settings map different tables and equations.

8.2. ADC Input (Tuner Output)

Tuner IF or Zero IF output is AC coupled to the RTL2832U differential ADC input. An external AC coupling capacitor is required. The schematic is shown in Figure 3, page 10.

8.3. Two-Wire Interface Between the Tuner and the RTL2832U

Figure 5. Two-Wire Interface between the Tuner and RTL2832U

The RTL2832U supports an I²C repeater to prevent tuner interference from the two-wire interface. In normal situations the tuner cannot hear any command sent via the two-wire interface. We need to turn on the I²C repeater (set register *IIC_repeat=*1) in order to send a command to the tuner. The command will be heard by the tuner and the RTL2832U at the same time. The Tuner and RTL2832U can distinguish the origin of the command by the I²C address. On the PCB, pin I2C_SDAT/I2C_SCLT should be connected to pull-high resisters (10k ohm) to pull-high the two-wire bus.

Table 3. I²C Repeater Register Table

Register Name	Page	Offset{MSB,LSB}	Bits Used	RW	Default (Hex)	Description
					* >	I ² C Repeater for Tuner
IIC_repeat	1	0x01	[3]	RW	0	1: Enable
		50				0: Disable

Note 1: IIC_repeat should be set to 1 before sending a command to the tuner.

Note2: IIC repeat is not automatically set to 0 after receiving a 'STOP' command.

8.4. RTL2832U Internal Switching Regulator

The RTL2832U integrates a switching regulator with input voltage 3.3V to output voltage 1.2V. Figure 6 shows the application circuit.

The ENSWREG pin default power is 3.3V. Applying 0V turns off the switching regulator.

Figure 6. Internal Switching Regulator Layout

9. Register Descriptions (General)

9.1. Analog to Digital Converter (ADC)

The RTL2832U can receive IF or Zero-IF signals from the tuner. The following registers set IF or Zero-IF mode.

IF signal mode

- AD_EN_reg1 set 1
- AD_EN_reg0 set 0
- en_bbin set 0

Zero-IF signal mode

- AD_EN_reg1 set 1
- AD_EN_reg0 set 1
- en_bbin set 1

Table 4. ADC Registers

Register Name	Page	Offset {MSB,LSB}	Bits Used	RW	Default (Hex)	Description
AD_EN_reg1	0	0x08	[6]	RW	0	1: Enable ADC_Q
0			. 1			0: Disable ADC_Q
AD EN reg	0	0x08	[7]	RW	0	1: Enable ADC_I
AD_LIV_ICG	0	0.000	[/]	ΚW		0: Disable ADC_I
on bhin	1	0xB1	[0]	RW		1: Enable Zero-IF input
en_bbin	1	UXDI	[0]	KW		0: Disable Zero-IF input
ant ada ia	0	0,,06	[5:4]	RW	0	0: Default ADC_I, ADC_Q datapath
opt_adc_iq	U	0x06	[5:4]	KW	U	1: Exchange ADC_I, ADC_Q datapath

9.2. DC Cancellation and IQ Compensation

In Zero-IF mode, the output signal of the tuner often has DC bias and IQ mismatch issues. The RTL2832U will compensate for these effects. DC cancellation and IQ compensation blocks are default enabled when *en bbin* is set to 1.

Table 5. DC Cancellation Registers

Register Name	Page	Offset {MSB,LSB}	Bits Used	RW	Default (Hex)	Description
en_dc_est	1	0xB1	[1]	RW	1	Enable DC estimation and cancellation Disable DC estimation and cancellation
en_iq_comp	1	0xB1	[3]	RW	1	Enable IQ compensation Disable IQ compensation
en_iq_est	1	0xB1	[4]	RW	1	Enable IQ estimation for compensation Disable IQ estimation for compensation
Est_kq	1	{0x66,0x67}	[11:0]	R	_	Estimated Gain for IQ Gain Mismatch, u(12,11f)
Est_sin	1	{0x68,0x69}	[11:0]	R	-	Estimated Sin for IQ θ Mismatch, s(12,10f)

9.3. Digital Down Conversion (DDC)

The Analog-to-Digital Converter (ADC) block sub-samples Intermediate Frequency (IF) signals, and a Digital Down Conversion (DDC) block converts the IF to baseband signals.

In normal cases, the tuner is high-side mixing and the spectrum is inversed. The demodulator requires an inverse spectrum in the DDC (register *spec_inv*). In the RTL2832U there is an adjacent channel canceller that is enabled or disabled by register *en_aci*. The initial IF frequency should be set by register *pset_iffreq*. This register setting depends on the crystal frequency. The equation of *pset_iffreq* is shown below:

$$pset_iffreq = -floor(\frac{f_{IF_D}}{f_{crystal}} \times 4194304)$$

Where:

 f_{IF_D} : Intermediate Frequency (IF) after sub-sampling $f_{crystal}$: Crystal frequency

Examples:

- $f_{IF} = 4.57 \text{M}$, $f_{ADC} = 28.8 \text{M}$, $pset iffreq = -665554 \rightarrow 2^2-665554 = 3528750 \text{ (two's complement)} = 0x35D82E$
- $f_{IF} = 36.167 \text{M}$, $f_{ADC} = 28.8 \text{M}$, $f_{IF_D} = 36.167 28.8 = 7.367$, pset iffreq = -1072897 \Rightarrow 2^22-1072897 = 3121407 (two's complement) = 0x2FA0FF
- $f_{IF} = 36.125 \text{M}, f_{ADC} = 28.8 \text{M}, f_{IF_D} = 36.167-28.8 = 7.367,$ $pset_iffreq = -1066780 \rightarrow 2^22-1066780 = 3127524 \text{ (two's complement)} = 0x2FB8E4$
- $f_{IF} = 0$ M, $f_{ADC} = 28.8$ M, pset iffreq = 0x0
- DAB Mode, pset iffreq = -1066988 = 3127316 (two's complement) = 0x2FB814

Register Name	Page	Offset {MSB,LSB}	Bits Used	RW	Default (Hex)	Description
Spec inv	1	0x15	[0]	RW	0	1: Spectrum inversion
1 _			. 1			0: Spectrum non-inversion
En_aci	1	0x15	[1]	RW	1	1: Enable adjacent channel rejection
En_acı	1	UXIS	[1]	IXVV	1	0: Disable adjacent channel rejection
pset_iffreq	1	{0x19,0x1B}	[21:0]	RW	-	Set IF Frequency

Table 6. Digital Down Conversion (DDC)

9.4. Resampler

As the ADC sampling clock is larger than the symbol ratio, there is a re-sampler to convert sampling data to symbol ratio. The ratio can be set via register 'rsamp_ratio'. The rsamp_ratio is related to signal bandwidth and crystal frequency. The equation of rsamp_ratio is shown below:

$$rsamp_ratio = floor(\frac{f_{crystal}}{f_{symbol}} \times 4194304)$$

Where:

 $f_{crystal}$ = crystal frequency

 f_{symbol} = symbol ratio of different bandwidths

- BW: $8\text{MHz} \rightarrow f_{symbol} = 64/7 \text{ MHz}, f_{crystal} = 28.8 \text{MHz}$ $rsamp\ ratio = 13212057\ (dec) = 0x\ C99999$
- BW: $7\text{MHz} \rightarrow f_{symbol} = 8 \text{ MHz}, f_{crystal} = 28.8 \text{MHz}$ $rsamp \ ratio = 15099494 \ (dec) = 0 \text{x} \ E66666$
- BW: $6\text{MHz} \rightarrow f_{symbol} = 48/7 \text{ MHz}, f_{crystal} = 28.8 \text{MHz}$ $rsamp_ratio = 17616076 \text{ (dec)} = 0 \times 10 \text{CCCC}$
- DAB mode rsamp ratio = 14745600 (dec) = 0x E10000

Table 7. Resampler

Register Name	Page	Offset{MSB,LSB}	Bits Used	RW	Default (Hex)	Description
rsamp_ratio	1	{0x9F, 0xA2}	[27:2]	RW	C99999	Resampler Ratio

9.5. Co-Channel Interference Rejection

Narrow band in-band interference is detected and rejected by Co-Channel Interference (CCI) rejection.

Register en cci enables or disables Co-Channel Interference Rejection.

Table 8. Co-Channel Interference Rejection

Register Name	Page	Offset{MSB,LSB}	Bits Used	RW	Default (Hex)	Description
En agi	1	0::40	[1]	RW	1	1: Enable CCI cancellation
En_cci	1	0x40	[1]	KW	1	0: Disable CCI cancellation

9.6. Impulse Noise Cancellation

Impulse noise can be cancelled by a unique Realtek patented algorithm. Register *inc_det_cnt* monitors how many times impulse noise occur. Register *inc_det_cnt* rest resets the counter *inc_det_cnt*.

Table 9. Impulse Noise Cancellation

Register Name	Page	Offset {MSB,LSB}	Bits Used	RW	Default (Hex)	Description
en_inc	1	0x5D	[0]	RW	1	Enable impulse noise cancellation Disable impulse noise cancellation
inc_det_cnt_rst	1	0x5E	[6]	RW	0	Reset for inc_det_cnt 1: Reset 0: Normal
inc_det_cnt	3	{0x28, 0x29}	[8:0]	R	- 1	Number of Impulse Noise Events

9.7. Digital Automatic Gain Control (DAGC)

The RTL2832U features Digital Automatic Gain Control (DAGC) to adjust optimal signal levels. DAGC can be enabled or disabled via register *en_dagc*. The DAGC voltage gain is read from register *dagc_val*.

Linear voltage gain of DAGC=dagc val/16.

Table 10. DAGC Registers

Register Name	Page	Offset {MSB,LSB}	Bits Used	RW	Default (Hex)	Description
en_dage	1	0x11	[0]	RW	1	1: Enable DAGC 0: Disable DAGC
dagc_val	3	0x05	[7:0]	R	-	Gain of DAGC

9.8. FFT Mode Detection

The Fast Fourier Transform (FFT) mode and the Guard Interval are automatically detected by an auto mode detection algorithm. Auto mode detection can also be enabled or disabled by register. When auto mode detection is disabled, the correct FFT mode and Guard Interval can be set manually by register *pset mode gi*.

Table 11. FTT Mode Detection

Register Name	Page	Offset {MSB,LSB}	Bits Used	RW	Default (Hex)	Description
dis_auto_scan	1	0x5F	[0]	RW	0	Disable auto mode detection Disable auto mode detection
U,				<	JA	Pre-Set Guard Interval and FFT Mode 0: 2k, 1/32GI 1: 2k, 1/16GI
pset_mode_gi	1	0x5F	[3:1]	RW	3	2: 2k, 1/8GI 3: 2k, ½ 4: 8k, 1/32 5: 8k, 1/16 6: 8k, 1/8 7: 8k, ½
mode gi_idx	3	0x51	[2:0]	R	_	Mode and GI Index 0: 2k, 1/32GI
_~ _						4: 8k, 1/32GI 5: 8k, 1/16GI 6: 8k, 1/8GI 7: 8k, ½GI

9.9. Timing Recovery/Carrier Recovery

The unique synchronization algorithm in the RTL2832U is capable of dealing with tough receiving conditions. The result of sampling frequency offset can be read from the register *sfreq_off*, which is denoted in ppm. The estimated carrier frequency offset can be read from register *cfreq_off*, which is denoted in carrier spacing. Carrier spacing depends on signal bandwidth and transmission mode. An example of the computation is shown below:

For 8M bandwidth with 8K mode signal, the carrier spacing is approximately 1.116 KHz. If the *sfreq_off* = 0x200 (two's complement)=512 (dec), *cfreq_off*=0xFB2E (two's complement)=64302 (dec), then:

- Sampling frequency offset = $sfreq off / 2^{24}*1000000=512/16777216*1000000=30.5176$ ppm
- Carrier frequency offset = cfreq off / 2^{7} *carrier spacing=64302/128*1.116KHz=560.63KHz

In addition, to supporting different crystal frequency sources, the register *cfreq_off_ratio* must be set according to the sampling frequency. The *cfreq_off_ratio* equation is shown below:

$$cfreq _off _ratio = -floor(\frac{f_{FFT}}{fs} \times 1048576)$$

Where:

 f_{FFT} : FFT sampling rate

 f_s : ADC sampling frequency

E.g.,
$$f_S = 28.8 \text{M}$$
, $f_{FFT} = 64/7 \text{M}$,

cfrq off ratio = -floor (64/7/28.8*1048576) = -332881 (dec) = 0xAEBAF (two's complement)

- 8M mode, $f_{FFT} = 64/7$ M: $cfrq \ off \ ratio = 715695 \ (dec) = 0$ xAEBAF
- 7M mode, $f_{FFT} = 8M$: $cfrq \ off \ ratio = 757305 \ (dec) = 0xB8E39$
- 6M mode, $f_{FFT} = 48/7$ M: $cfrq \ off \ ratio = 798916 \ (dec) = 0xC30C4$

Carrier Spacing

• 8M mode, $f_{FFT} = 64/7$ M: carrier spacing (8k) = $f_{FFT}/8192 = 1.116071$ Hz carrier spacing (2k) = $f_{FFT}/2048 = 4.464285$ Hz

Register Name	Page	Offset	Bit	RW	Type	Default	Description
		{MSB,LSB}	Used			(Hex)	
cfreq_off_ratio	1	{0x9D, 0x9F}	[23:4]	RW	s(20, 31f)	AEBAF	Set Carrier Frequency Offset Ratio
cfreq_off	3	{0x5F, 0x61}	[17:0]	R	s(18,7f)	-	Estimated Carrier Frequency Offset
sfreq_off	3	{0x18, 0x19}	[13:0]	R	s(14,24f)	-	Estimated Sampling Frequency Offset

Table 12. Timing Recovery/Carrier Recovery

9.10. Crystal

The RTL2832U has superior timing offset tracking ability, allowing the use of a low-cost crystal as clock source. The timing offset tolerance is ± 100 ppm. The RTL2832U also supports an oscillator output should be connected to the XI pin).

Note: For different crystal frequencies, registers such as rsamp_ratio, cfreq_off_ratio, and pset_iffreq need to be set accordingly.

9.11. PID Filter

A PID (Packet Identifier) filtering capability allows the reduction of the transport stream at the output of the demodulator. There are 32 PIDs that can be selected within the received multiplex. The following block diagram shows the PID filter functions, and the default register setting will let all PID transport streams pass through.

Figure 7. PID Filter Function of the RTL2832U

Table 13. PID Filter

Register Name	Page	Offset	Bit	RW	Default	Description
		{MSB,LSB}	Used		(Hex)	
err_pass	0	0x61	[5]	RW	1	Set 0 to Reject All Error Packets
en_pass	O .	0.01	[2]	ICVV	1	Set 1 to Pass All Error Packets
mode_PID	0	0x61	[6]	RW	1	Set 0 to Pass Matched PID
mode_11D	U	UAU1	[O]	IXVV	1	Set 1 to Reject Matched PID
enable_PID	0	0x61	[7]	RW	1	Set 1 to Enable Output of PID Filter
chaolc_11D	U	UAUT	[/]	IXVV	1	Set 0 No Output
en_PID[7:0]	0	0x62	[7:0]	RW	0	Enable (1) and Disable (0) Individual PID
[,]			[]			Filter 0~7
en PID[15:8]	0	0x63	[7:0]	RW	0	Enable (1) and Disable (0) Individual PID
,			. ,			Filter 8~15
en_PID[23:16]	0	0x64	[7:0]	RW	0	Enable (1) and Disable (0) Individual PID
						Filter 16~23
en_PID[31:24]	0	0x65	[7:0]	RW	0	Enable (1) and Disable (0) Individual PID
						Filter 24~31
PID0	0	{0x66, 0x67}	[12:0]	RW	00	PID Value for PID Filter #0
PID1	0	{0x68, 0x69}	[12:0]	RW	01	PID Value for PID Filter #1
PID2	0	{0x6A, 0x6B}	[12:0]	RW	06	PID Value for PID Filter #2
PID3	0	$\{0x6C, 0x6D\}$	[12:0]	RW	11	PID Value for PID Filter #3
PID4	0	{0x6E, 0x6F}	[12:0]	RW	12	PID Value for PID Filter #4
PID5	0	$\{0x70, 0x71\}$	[12:0]	RW	13	PID Value for PID Filter #5
PID6	0	$\{0x72, 0x73\}$	[12:0]	RW	14	PID Value for PID Filter #6
PID7	0	$\{0x74, 0x75\}$	[12:0]	RW	15	PID Value for PID Filter #7
PID8	0	{0x76, 0x77}	[12:0]	RW	16	PID Value for PID Filter #8
PID9	0	{0x78, 0x79}	[12:0]	RW	17	PID Value for PID Filter #9
PID10	0	{0x7A, 0x7B}	[12:0]	RW	18	PID Value for PID Filter #10
PID11	0	{0x7C, 0x7D}	[12:0]	RW	19	PID Value for PID Filter #11
PID12	0	{0x7E, 0x7F}	[12:0]	RW	1A	PID Value for PID Filter #12
PID13	0	{0x80, 0x81}	[12:0]	RW	1B	PID Value for PID Filter #13
PID14	0	{0x82, 0x83}	[12:0]	RW	1C	PID Value for PID Filter #14

Register Name	Page	Offset	Bit	RW	Default	Description
		{MSB,LSB}	Used		(Hex)	
PID15	0	$\{0x84, 0x85\}$	[12:0]	RW	1D	PID Value for PID Filter #15
PID16	0	{0x86, 0x87}	[12:0]	RW	1E	PID Value for PID Filter #16
PID17	0	$\{0x88, 0x89\}$	[12:0]	RW	1F	PID Value for PID Filter #17
PID18	0	{0x8A, 0x8B}	[12:0]	RW	20	PID Value for PID Filter #18
PID19	0	{0x8C, 0x8D}	[12:0]	RW	21	PID Value for PID Filter #19
PID20	0	{0x8E, 0x8F}	[12:0]	RW	22	PID Value for PID Filter #20
PID21	0	{0x90, 0x91}	[12:0]	RW	23	PID Value for PID Filter #21
PID22	0	{0x92, 0x93}	[12:0]	RW	24	PID Value for PID Filter #22
PID23	0	{0x94, 0x95}	[12:0]	RW	25	PID Value for PID Filter #23
PID24	0	{0x96, 0x97}	[12:0]	RW	26	PID Value for PID Filter #24
PID25	0	{0x98, 0x99}	[12:0]	RW	27	PID Value for PID Filter #25
PID26	0	{0x9A, 0x9B}	[12:0]	RW	28	PID Value for PID Filter #26
PID27	0	{0x9C, 0x9D}	[12:0]	RW	29	PID Value for PID Filter #27
PID28	0	{0x9E, 0x9F}	[12:0]	RW	2A	PID Value for PID Filter #28
PID29	0	{0xA0, 0xA1}	[12:0]	RW	2B	PID Value for PID Filter #29
PID30	0	{0xA2, 0xA3}	[12:0]	RW	2C	PID Value for PID Filter #30
PID31	0	{0xA4, 0xA5}	[12:0]	RW	2D	PID Value for PID Filter #31

10. Register Descriptions (8051 System)

The address is defined by offset value with base address 0x3000.

Table 14. System Register Descriptions

		Table 14. System Re	egister Descriptions
Address Offset	Access	Name	Description
0000h	RW	DEMOD_CTL	Control Register for DVB-T Demodulator
		GPIO Re	egisters
0001h	RW	GPO	Output Value of General Purpose I/O
0002h	R	GPI	Input Value of General Purpose I/O
0003h	RW	GPOE	Output Enable of General Purpose I/O
0004h	RW	GPD	Direction Control for General Purpose I/O
0005h	RW	SYSINTE	System Interrupt Enable Register
0006h	RW	SYSINTS	System Interrupt Status Register
0007h	RW	GP_CFG0	PAD Configuration for GPIO0-GPIO3
0008h	RW	GP_CFG1	PAD Configuration for GPIO4
0009h	RW	SYSINTE_1	System Interrupt Enable Register GPIO5~GPIO7
000Ah	RW	SYSINTS_1	System Interrupt Status Register GPIO5~GPIO7
000Bh	RW	DEMOD_CTL_1	Enable IR Remote Wakeup & Low Current XTL Mode
			when Suspended
000Ch	RW	IR_SUSPEND	IR Sensor Discontinuous Turned ON. Controlled by
			GPIO3
		IrDA Re	gisters
FC00~FC7F	-	IR_RX_BUFF	Normal Mode: The 128-byte buffer is for receiving RLC
			encoded waveform data
		Cat	Suspend Mode: Used to save original power key RLC
		*()}	encoded data for comparing with received waveform data
FD00h	ı	IR_RX_IE	Interrupt Enable Register. Not Available in Suspend Mode
FD01h	-	IR_RX_IF	Interrupt Flag Register. Not Available in Suspend Mode
FD02h	-	IR_RX_CTRL	IR Receive Control Register
FD03h	-	IR_RX_CONFIG	IR Receive Configure Register
FD04h	-	IR_MAX_DURATION0	Max Time Duration Configure Register

Address Offset	Access	Name	Description
FD05h	-	IR_MAX_DURATION1	Max Time Duration Configuration Register
FD06h	-	IR_IDLE_LEN0	Idle Length Configuration Register
FD07h	-	IR_IDLE_LEN1	Idle Length Configuration Register
FD08h	-	IR_GLITCH_LEN	Glitch Length Configuration Register
FD09h	-	IR_RX_BUFFER_CTRL	IR RX Buffer Control Register
FD0Ah	-	IR_RX_BUFFER_DATA	IR Buffer Data for MCU Access
FD0Bh	-	IR_RX_BC	Frame RX Byte Counter Register
FD0Ch	-	IR_RX_CLK	Frame RX Byte Counter Register. Not Available in
			Suspend
FD0Dh	-	IR_RX_C_COUNT_L	IR Received Carrier Count Register
FD0Eh	ı	IR_RX_C_COUNT_H	IR Received Carrier Count Register
FD0Fh	ı	-	Reserved
FD10h	I	IR_SUSPEND_CTRL	Suspend Control Register
FD11h	-	IR_Err_Tolerance_CTRL	IR Error Tolerance Control Register
FD12h	-	IR_UNIT_LEN	1T Unit Length Register
FD13h	1	IR_ERR_Tolerance_LEN	High Level Unit Negative Tolerance Length Register
FD14h		IR_MAX_H_Tolerance_LEN	High Level Max Tolerance Length Register
FD15h	ı	IR_MAX_L_Tolerance_LEN	Low Level Max Tolerance Length Register
FD16h		IR_MASK_CTRL	Mask Control Register
FD17h	7	IR_MASK_DATA	Mask Data Register
FD18h	-	IR_RESUME_MASK_ADDR	IR Resume Mask Address Register
FD19h	-	IR_RESUME_MASK_T_LEN	IR Resume Mask Length Register
		I ² C Master	Registers
0040h	RW	I2CCR	I ² C Clock Register
0044h	RW	I2CMCR	I ² C Master Control Register
0048h	RW	I2CMSTR	I ² C Master SCL Timing Register
004Ch	RW	I2CMSR	I ² C Master Status Register
0050h	RW	I2CMFR	I ² C Master FIFO Register.

10.1. Demodulator Control Register (DEMOD_CTL, 0000h)

Table 15. Demodulator Control Register (DEMOD_CTL, 0000h)

Bits	Access	Reset	Description
7	RW	0	Demodulator PLL Enable. Set to 1 to enable demodulator PLL, and to 0 to disable
6	RW	0	Demodulator ADC_I Enable. Set to 1 to enable ADC operation and to 0 to disable
5	RW	1	Demodulator Hardware Reset. Set to 0 to activate hardware reset, and to 1 to release reset
4	-	-	Reserved
3	RW	0	Demodulator ADC_Q Enable. Set 1 to enable ADC operation and 0 to disable
2:0	-	-	Reserved

10.2. GPIO Related Registers (0001h~0008h)

The following registers are used to control GPIO 0~7. The default functions of these 8 pins are:

- 1. GPIO [0]: Output for VDD1 power control. Default value 1 to turn off power.
- 2. GPIO [1]: Input for power-on latch to select clock source. Input value depends on the crystal on board; default 0 for 28.8MHz.
- 3. GPIO [2]: Input for external I²C mode, internal pull-down. This pin is used for LED control after 8051 firmware runs, and will set to 0 to turn off the LED, or 1 to turn it on.
- 4. GPIO [3]: Input for USB remote wakeup. Input value 0 is to activate remote wakeup.

 Output for tuner power control. Default value 1 to turn off power.
- 5. GPIO [4]: Output for antenna power control. Default value 0 to turn off power.
- 6. GPIO [5]: Input for power-on latch to select clock source, input value depends on the crystal on board. Default 0 for 28.8MHz.
- 7. GPIO [6]: Reserved.
- 8. GPIO [7]: Reserved.

10.2.1. GPIO Output Value Register (GPO, 0001h)

Table 16. GPIO Output Value Register (GPO, 0001h)

Bits	Access	Reset	Description
7	RW	0	Output Value of GPIO 7. Valid only when GPIO 7 is defined as output pin.
6	RW	0	Output Value of GPIO 6. Valid only when GPIO 6 is defined as output pin.
5	RW	0	Output Value of GPIO 5. Valid only when GPIO 5 is defined as output pin.
4	RW	1	Output Value of GPIO 4. Valid only when GPIO 4 is defined as output pin.
3	RW	1	Output Value of GPIO 3. Valid only when GPIO 3 is defined as output pin.
2	RW	0	Output Value of GPIO 2. Valid only when GPIO 2 is defined as output pin.
1	RW	0	Output Value of GPIO 1. Valid only when GPIO 1 is defined as output pin.
0	RW	0	Output Value of GPIO 0. Valid only when GPIO 0 is defined as output pin.

10.2.2. GPIO Input Value Register (GPI, 0002h)

Table 17. GPIO Input Value Register (GPI, 0002h)

Bits	Access	Reset	Description
7	R	-	Input Value of GPIO 7. Valid only when GPIO 7 is defined as input pin.
6	R	-	Input Value of GPIO 6. Valid only when GPIO 6 is defined as input pin.
5	R	-	Input Value of GPIO 5. Valid only when GPIO 5 is defined as input pin.
4	R	1	Input Value of GPIO 4. Valid only when GPIO 4 is defined as input pin.
3	R	-	Input Value of GPIO 3. Valid only when GPIO 3 is defined as input pin.
2	R	J- `	Input Value of GPIO 2. Valid only when GPIO 2 is defined as input pin.
1	R	-	Input Value of GPIO 1. Valid only when GPIO 1 is defined as input pin.
0	R	-	Input Value of GPIO 0. Valid only when GPIO 0 is defined as input pin.

10.2.3. GPIO Output Enable Register (GPOE, 0003h)

Table 18. GPIO Output Enable Register (GPOE, 0003h)

Bits	Access	Reset	Description				
7	DW		Output Enable for GPIO 7. Valid only when GPIO 7 is defined as output pin.				
/	RW	0	1: Output enable 0: Output disable (tri-state)				
-	DW	0	Output Enable for GPIO 6. Valid only when GPIO 6 is defined as output pin.				
6	RW	0	1: Output enable 0: Output disable (tri-state)				
E	DW	0	Output Enable for GPIO 5. Valid only when GPIO 5 is defined as output pin.				
5	RW	0	1: Output enable 0: Output disable (tri-state)				
4	DW	<i>I</i> 1	Output Enable for GPIO 4. Valid only when GPIO 4 is defined as output pin.				
4	RW		1: Output enable 0: Output disable (tri-state)				
2	RW	1	Output Enable for GPIO 3. Valid only when GPIO 3 is defined as output pin.				
3		W 1	1: Output enable 0: Output disable (tri-state)				
2	DW	0	Output Enable for GPIO 2. Valid only when GPIO 2 is defined as output pin.				
2	RW	U	1: Output enable 0: Output disable (tri-state)				
1	RW		Output Enable for GPIO 1. Valid only when GPIO 1 is defined as output pin.				
1	KW	0	1: Output enable 0: Output disable (tri-state)				
	DW	1	Output Enable for GPIO 0. Valid only when GPIO 0 is defined as output pin.				
0	RW	1	1: Output enable 0: Output disable (tri-state)				

10.2.4. GPIO Direction Control Register (GPD, 0004h)

Table 19. GPIO Direction Control Register (GPD, 0004h)

Bits	Access	Reset	Description		
7	RW	0	Direction Control of GPIO 7		
,	KW	0	1: Input	0: Output	
6	RW	0	Direction Control of GPIO 6		
6	KW	U	1: Input	0: Output	
5	RW	0	Direction Control of GPIO 5		
3			1: Input	0: Output	
4	DW	RW 0	Direction Control of GPIO 4		
4	KW		1: Input	0: Output	
3	RW	1	Direction Control of GPIO 3		
3			1: Input	0: Output	

Bits	Access	Reset	Description			
2	RW	1	Direction Control of GPIO 2			
2			1: Input	0: Output		
1	RW	1	Direction Control of GPIO 1			
1			1: Input	0: Output		
0	RW	RW 0	Direction Control of GPIO 0			
0			1: Input	0: Output		

10.2.5. PAD Configuration Register for GPIO0~3 (GP_CFG0, 0007h)

Table 20. PAD Configuration Register for GPIO0~3 (GP_CFG0, 0007h)

Bits	Access	Reset	Description
7:6	RW	2h	GP_PAD3. PAD configuration as internal pull-up or pull-down for GPIO3.
5:4	RW	1h	GP_PAD2. PAD configuration as internal pull-up or pull-down for GPIO2.
3:2	RW	1h	GP_PAD1. PAD configuration as internal pull-up or pull-down for GPIO1.
1:0	RW	2h	GP_PAD0. PAD configuration as internal pull-up or pull-down for GPIO0.

10.2.6. PAD Configuration Register for GPIO4 (GP_CFG1, 0008h)

Table 21. PAD Configuration Register for GPIO4 (GP_CFG1, 0008h)

Bits	Access	Reset	Description			
7:6	RW	1h	GP_PAD7. PAD configuration as internal pull-up or pull-down for GPIO7.			
5:4	RW	1h	GP_PAD6. PAD configuration as internal pull-up or pull-down for GPIO6.			
3:2	RW	1h	GP_PAD5. PAD configuration as internal pull-up or pull-down for GPIO5.			
1:0	RW	1h	GP_PAD4. PAD configuration as internal pull-up or pull-down for GPIO4.			

Note: PAD pull-up or pull-down (PU:PD) configuration is:

^{1. [0:0] –} Normal No pull-up or pull-down.

^{2.} $[0:1] - 75k\Omega$ resistor pull-down.

^{3.} $[1:0] - 75k\Omega$ resistor pull-up.

10.3. PC Master Control Registers (0040h-0053h)

10.3.1. I²C Clock Register (I2CCR, 0040h-0043h)

Table 22. I²C Clock Register (I2CCR, 0040h-0043h)

Bits	Access	Reset	Description
31:6	-	1	Reserved
5:0	RW	13h	FD10. Frequency 10M Divisor and 0 are forbidden. 10M=Bus clock/(FD10+1). When powered on, software must write FD10 to let the I ² C controller generate a 10MHz clock.

10.3.2. I²C Master Control Register (I2CMCR, 0044h-0047h)

Table 23. I²C Master Control Register (I2CMCR, 0044h-0047h)

Bits	Access	Reset	Description
			IMUR. I ² C Master Unit Reset 0: Normal
31	RW	0	1: Reset the I ² C Unit (only resets hardware FSM). This bit will self-clear to Zero after
			reset complete
			CS. Command Start
30	RW	0	0: Stop. After completing a whole transaction, it returns to Zero
			1: Start
	• () /	RWL. Read/Write Data Length for Related Commands
			Does not include the slave address byte in the FIFO register.
29:25	RW	0	When accessed, the controller will parse the byte following the last start (or Sr) byte to
			find the command type.
			0: 1 byte 17: 24 bytes
	RW		TORE. Time-Out Register Enable
24		1	If TOR is required, the I ² C rate must be constrained within 25kbps~400kbps.
			This constraint is due to the time-out register bit.

Bits	Access	Reset	Description			
			TOR. Time-Out Register			
22.16	DIV	2.11	Time-out = TOR x 2 x ((FD10+1)/Bus clock) (For receive /transmit one bit).			
23:16	RW	3Ah	If time-out occurs, it will trigger the Transaction Error Interrupt Flag.			
			Note: Time-out must $>$ (1 SCL low period + repeat start setup time).			
15:11	-	-	Reserved			
			SBAIFD. Second Byte ACK in FRSIB Data			
10	DW	0	SBAIFD indicates whether the master checks for ACK from slave after emitting second			
10	RW	0	data in FRSIB data.			
			0: Check 1: Do not check			
			FBAIFD. First Byte ACK in FRSIB Data			
9	RW	0	FBAIFD indicates whether the master checks for ACK from slave after emitting first data			
9	KW		in FRSIB data.			
			0: Check 1: Do not check			
	RW		SRSIB. Second Repeat Start Interval Byte			
			After transmitting SRSIB bytes following the first repeat start command, the master will			
8:7		0	produce a second repeat start command. The slave address or device address byte is			
8.7		U	included in this interval. Default interval is one byte. 0=1 byte; 1=2 bytes, etc.			
			Note: The eighth bit of slave address or device address byte followed by second repeat			
			start command must be 1(means a Read CMD).			
			FRSIB. First Repeat Start Interval Byte			
6:5	RW	0	After transmitting FRSIB bytes following the original start command, the master will			
0.5	100		produce the first repeat start command. The original slave address or device address byte			
			is included in this interval. Default interval is one byte. 0=1 byte; 1=2 bytes, etc.			
			RSC. Repeat Start Count			
4:3	RW	0	00: No repeat start 01: One repeat start			
			10: Two repeat starts 11: Reserved			
2	RW	0	TEIE. Transaction Error Interrupt Enable			
1	RW	0	MRCIE. Master Receive Complete Interrupt Enable			
0	RW	0	MTCIE. Master Transmit Complete Interrupt Enable			

10.3.3. I²C Master SCL Timing Register (I2CMSTR, 0048h-004Bh)

Table 24. I²C Master SCL Timing Register (I2CMSTR, 0048h-004Bh)

Bits	Access	Reset	Description
31	-	-	Reserved
			I2CMD. I ² C Master De-Bounce
			0: Sample rate=(bus clk / (FD10+1))
30:28	RW	0	1: Sample rate=(bus clk / (FD10+1)) / 2
			7: Sample rate= (bus clk / (FD10+1)) / 8
27:20	20 RW		STA_SU_PC. STA Setup Time Period Count
27.20	KW	9h	In repeat start, the setup time of SCL must match the I ² C spec.
			FTPC. Fall Time Period Count
19:16	RW	RW 3h	If the value of (Bus clock/FD10) does not approximate 10MHz, FTPC can make the fall
			time of SCL more than 300ns.
			SHPC. SCL High Period Counter (SCL High Period=100ns*SHPC)
15:8	RW	9h	SHPC must include rising time in the I ² C.
			The I ² C specification requires SHPC to include rising time.
7:0	RW	10h	SLPC. SCL Low Period Counter (SCL Low Period=100ns*SLPC)
7.0	KW	1011	The I ² C specification requires SLPC to include falling time.

10.3.4. I²C Master Status Register (I2CMSR, 004Ch-004Fh)

Table 25. I²C Master Status Register (I2CMSR, 004Ch-004Fh)

Bits	Access	Reset	Description		
31:3	-	-	Reserved		
	2 RW 0		TEIF. Transaction Error Interrupt Flag		
2			When a master transmit/receive fault or time-out occurs, the I ² C controller will lift the		
			flag up and return the bus to idle. Write '1' to clear.		
1	RW	0	MRCIF. Master Receive Complete Interrupt Flag. Write '1' to clear.		
0	RW	0	MTCIF. Master Transmit Complete Interrupt Flag. Write '1' to clear.		

10.3.5. I²C Master FIFO Register (I2CMFR, 0050h-0053h)

Table 26. I²C Master FIFO Register (I2CMFR, 0050h-0053h)

Bits	Access	Reset	Description			
31:8	-	-	Reserved			
7:0	RW	0	TDD. Target Device Data. Read for receive.			

11. Register Descriptions (USB Interface)

11.1. Introduction

The RTL2832U transfers transport stream data from the demodulation module to the host via an embedded high-speed USB 2.0 interface (compatible with USB 1.1). Two endpoints are supplied. One is the control pipe and the other is the data pipe for TS transfer. The user controls the device by sending standard request commands listed in the USB 2.0 Specification, Chapter 9. The host driver also needs to read and write the device's registers by sending vendor commands (11.1). The data pipe can be configured to BULK mode or ISO mode.

To reduce power consumption, the RTL2832U can enter a low-power suspend state, and has a remote wakeup capability via IrDA. It can resume from S1, S3, or selective suspend state if the remote wakeup function is permitted on the host.

11.2. Vendor Commands

Table 27. Vendor Commands

Command	bmRequestType	bRequest	wValue	wIndex	wLength
Command	(1 Byte)	(1 Byte)	(2 Bytes)	(2 Bytes)	(2 Bytes)
GetDemodRegPage0	0xC0		Dog's offset in page 0.4	0x0000~	Length of registers
~GetDemodRegPage4	0xC0	X	Reg's offset in page0~4	0x0004	to access
SetDemodRegPage0	0x40		Dan's affect in mann 4	0x0010~	Length of registers
~SetDemodRegPage4	0x40	X	Reg's offset in page0~4	0x0014	to access
GetUSBReg	0xC0		(BaseAdd)<<8 + OffsetAdd	0x0100	Length of registers
Geiosbkeg	UXCU	X	(DaseAdd) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.0100	to access

Command	bmRequestType	bRequest	wValue	wIndex	wLength
Command	(1 Byte)	(1 Byte)	(2 Bytes)	(2 Bytes)	(2 Bytes)
Catl ICDD ag	0x40	v	(Page Add) < 9 + Offget Add	0x0110	Length of registers
SetUSBReg	0840	X	(BaseAdd)<<8 + OffsetAdd	UXUIIU	to access
GetSysReg	0xC0	х	(BaseAdd)<<8 + OffsetAdd	0x0200	Length of registers
Getsyskeg	0xC0	X	(BaseAdd) ~ 8 + OffsetAdd	0X0200	to access
SatSusDag	0x40	v	(Paga Add) < 9 + Offgat Add	0x0210	Length of registers
SetSysReg	0.00	X	(BaseAdd)<<8 + OffsetAdd	0x0210	to access
GetTunReg	0xC0	х	(OffsetAdd)<<8+ IICAdd	0x0300	Length of registers
GetTullKeg	UXCU	X	(OffsetAdd)<-8+ ffcAdd	0x0300	to access
SatTunDag	0x40	v	(OffsetAdd)<<8+ IICAdd	0x0310	Length of registers
SetTunReg	0.000	X	(OffsetAdd) < 8+ ffcAdd	0x0310	to access
GetROMCode	0xC0	x	Rom Code Address	0x0400	Size of ROM Code
GetSTDI2C	0xC0	X	I ² C Device Address/	0x0600	Length of registers
			Device register address		to access
SetSTDI2C	0x40	X	I ² C Device Address/	0x0610	Length of registers
			Device register address		to access

Note1: Demod registers are organized in 5 pages (page0~page4). 'wIndex' indicates the page's number.

Note2: Before accessing the tuner, the 7th bit of the first byte of the demodulator's page1 should be set to 1 (IIC_repeat bit).

Table 28. Definition of 'wIndex'

Nibble	[3]		[2]					[1]		[0]							
	v			Dlogle				100	oogg	Page (true only as [2]=0,							
(,	X			Block		A	Access		for demodulator)								
		0	1	2	3	4	5	0	1	0 - 4							
Description									Demodulator	HCD	System	Tuner	ROM	ID			
Description	0	Demodulator USB	System	Tullet	Code	IR											
	0	6	7	8	9	A	В	Get	Set	Page number							
		Standard I ² C															
		Command	X	X	X	X	X										

Note: To access the tuner, the command is issued within the DATA stage, ignoring the 'wValue' field value. The command depends on the tuner used.

11.3. SIE Control Register

The registers for USB SIE is defined in Table 29, including SIE control registers, endpoint registers, debugging registers, and DMA control registers. The address is defined by an offset value with base address 0x2000.

Table 29. SIE Control Register

Address Offset	Name	Description
0000h	USB_SYSCTL	USB System Control Register
0004h~0010h	-	Reserved
0008h	-	Reserved
000Ch	-	Reserved
0010h	-	Reserved
0014h	-	Reserved
0018h	-	Reserved
001C~0140h	-	Reserved
0144h	USB_EPA_CFG	Endpoint A Configure Register
0148h	USB_EPA_CTL	Endpoint A Control Register
014C~0154h	<u>-</u>	Reserved
0158h	USB_EPA_MAXPKT	Endpoint A Max Packet Size Register
015Ch	1	Reserved
0160h	USB_EPA_FIFO_CFG	Endpoint A FIFO Configure Register
0164h~0FFFh	-	Reserved

11.4. USB System Control Register (USB SYSCTL, 0000h)

Table 30. USB System Control Register (USB_SYSCTL, 0000h)

Bits	Access	Reset	Description				
31:11	-	-	Reserved				
10	DW	0	SIE Reset				
10	10 RW 0		1: Switch to reset state 0: Switch to normal state				
9:4	-	-	Reserved				
			Full Packet Mode				
3	RW	RW 0	When set to 1, SIE will send maximum packet size packets only. When data in EPA FIFO				
			is less than the maximum packet size, SIE will NAK the IN request.				
2:1	-	-	Reserved				
0	DW	1	DMA Control				
0 F	RW	1	1: Enable DMA 0: Disable DMA				

11.4.1. Endpoint A Configuration Register (USB_EPA_CFG, 0144h)

Table 31. Endpoint A Configuration Register (USB_EPA_CFG, 0144h)

Bits	Access	Reset	Description				
31:10	-	-	Reserved				
9:8	RW	0	Isochronous Mode Specifies the number of additional transaction definition as wMaxPacketSize[12:11] in standa Must be set to 00 (means 1 transaction per mice)	ard Endpoint Descriptor).			
7	RW	0	Endpoint Enable 0: Disable Endpoint A	1: Enable Endpoint A.			
6:5	RW	10b	Endpoint Transfer Type 00: Control (only EP0 can be for control) 10: Bulk	01: Isochronous 11: Interrupt			
4	R	-	Endpoint Transfer Direction 0: OUT. Host-to-device	1: IN. Device-to-host			
3:0	RW	0	Endpoint Number				

11.4.2. Endpoint A Control Register (USB_EPA_CTL, 0148h)

Table 32. Endpoint A Control Register (USB_EPA_CTL, 0148h)

Bits	Access	Reset	Description
31:10	-	-	Reserved
9	RW	0	FIFO Reset. Reset EPA FIFO
8:6	-	-	Reserved
5	W	0	FIFO Flush. Write 1 to flush the oldest TS packet (a 188 bytes block)
4	RW	0	Stall Endpoint. Write 1 to stall
3:1	-	-	Reserved
0	W	0	FIFO Valid. Write 1 to validate the TS packet (a 188 bytes block)

11.4.3. Endpoint A Max Packet Size Register (USB_EPA_MAXPKT, 0158h)

Table 33. Endpoint A Max Packet Size Register (USB_EPA_MAXPKT, 0158h)

Bits	Access	Reset	Description
31:11		,	Reserved
10:0	RW	40h	EPA Max Packet Size Defines the max packet size (in bytes) of endpoint A.

11.4.4. Endpoint A FIFO Configuration Register (USB_EPA_FIFO_CFG, 0160h)

Table 34. Endpoint A FIFO Configuration Register

Bits	Access	Reset	Description			
31:24	31:24 RW 0		BLK_DROP_COUNTER Counts blocks dropped (each is 188 bytes) due to full FIFO.			
			Counts blocks dropped (each is 188 bytes) due to full Firo.			
23:4	-	-	Reserved.			
2.0 DW		A.L. (10.J.)	EPA FIFO Size			
3:0	RW	W Ah (10d)	Configures EPA FIFO size, in 188-byte blocks. Valid data range is 1~10.			

12. Characteristics

12.1. Absolute Maximum Ratings

Table 35. Absolute Maximum Ratings

Description	Minimum	Maximum	Unit
Supply Voltage (VDD3, VDDA33)	-0.5	4	V
Supply Voltage (VDD1, VDDA, UVDDA, VDDPLL)	-0.5	1.35	V
Storage Temperature	-55	+125	°C

12.2. DC Characteristics

Table 36. DC Characteristics

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
VDD3, VDDA33	3.3V Supply Voltage	-	3.0	3.3	3.6	V
VDDPLL, VDDA	1.2V Supply Voltage	-	1.1	1.2	1.35	V
UVDDA		1				
VDD1	1.2V Supply Voltage	\ -) \	1.1	1.2	1.35	V
V_{oh}	Minimum High Level	I _{oh} =-8mA	0.9*VDD3	-	VDD3	V
	Output Voltage					
V _{ol}	Maximum Low Level	I _{ol} =-8mA	-	-	0.1*VDD3	V
	Output Voltage			A		
Icc33	Average Operating Supply	4		7	-	mA
(VDDA33, VDD3)	Current from 3.3V					
Icc12	Average Operating Supply	-	-	202*	-	mA
(VDD1, VDDA,	Current from 1.2V					
VDDPLL, UVDDA)						

^{*:} In case of 64QAM, Code rate=2/3, Guard Interval=1/4, Bandwidth=8MHz, bypass internal switching regulator.

12.3. AC Characteristics

Figure 8. Two-Wire Interface Timing Diagram

Table 37. Two-Wire Interface Timing

Symbol	Parameter	Min	Max	Unit
-	SCL Clock Frequency	50	300	kHz
$t_{ m high}$	High Period of SCL	600	-	ns
t_{low}	Low Period of SCL	600	-	ns
t_{h_STR}	Hold Time of START	200	-	ns
t_{h_DAT}	Hold Time of DATA	200	-	ns
t _{set_STOP}	Setup Time of STOP	200	-	ns
t _{set_DAT}	Setup Time of DATA	200	-	ns
t _r	Rise Time of SCL and SDA (with 4.7k ohm resister pulled high)	(See Note)	-	ns
$t_{ m f}$	Fall time of SCA and SDA	(See Note)	-	ns

Note: Depends on the external bus pull high resistor.

12.4. Crystal Conditions

Table 38. Crystal Conditions

Description	Minimum	Typical	Maximum	Unit
Crystal Reference Frequency, Fundamental Mode	-	28.8	-	MHz
Stability	-30	-	+30	ppm
Tolerance	-30	-	+30	ppm
Duty Cycle	40	-	60	%
Load Capacitance	-	20	-/	pF
C0 (Shunt Capacitance)	-		5pF	pF
ESR (Equivalent Series Resistance)		-	30	ohm

13. Application Circuits

Designers are suggested to contact Realtek to get the latest application circuits. To get the best compatibility in hardware design and software driver, any modifications of application circuits should be confirmed by us. Realtek may update the latest application circuits onto our website (www.realtek.com) without modifying this datasheet.

Figure 9. Application Circuits

14. Mechanical Dimensions

14.1. Mechanical Dimensions Notes

Symbol	Dimension in mm			Dimension in inch		
	Min	Nom	Max	Min	Nom	Max
A	0.75	0.85	1.00	0.030	0.034	0.039
A_1	0.00	0.02	0.05	0.000	0.001	0.002
A_2	0.55	0.65	0.80	0.022	0.026	0.032
A ₃	0.20REF			0.008REF		
b	0.15	0.20	0.25	0.006	0.008	0.010
D/E	6.00BSC			0.236BSC		
D ₁ /E ₁	5.75BSC			0.226BSC		
D ₂ /E ₂	4.05	4.30	4.55	0.159	0.169	0.179
e	0.40BSC			0.016BSC		
L	0.30	0.40	0.50	0.012	0.016	0.020
θ	0°	-	14°	0°		14°
aaa)- (-		0.15	7-1	-	0.006
bbb	-	<u> </u>	0.10	- / -	-	0.004
ccc	-	-	0.10	-	-	0.004
ddd	-		0.05	-	-	0.002
eee	-		0.08	-	-	0.003
fff			0.10	-	-	0.004

Notes 1: DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.

Notes 2: CONTROLLING DIMENSION: MILLIMETER (mm).

Notes 3: REFERENCE DOCUMENT: JEDEC MO-220.

15. Ordering Information

Table 39. Ordering Information

Part Number	Description	Status
RTL2832U	QFN-48 with 'Green' Package	Mass Production

Note: See page 4 for Green package and version identification.

Realtek Semiconductor Corp.

Headquarters

No. 2, Innovation Road II

Hsinchu Science Park, Hsinchu 300, Taiwan

Tel.: +886-3-578-0211. Fax: +886-3-577-6047

www.realtek.com