D perature Veakening Grad opical Free Tropospheri Global

Heng Quan (hengquan@princeton.edu), Yi Zhang, Stephan Fueglista Warming

UNIVERSITY PRINCETON

Discussi boal WTG scalin 9

Motiva ation **Q** conclusions

gradient in the The Weak **Temperature** tropical free-troposphere is **Gradient (WTG)** approximation: The horizontal temperature very small due to the weak Coriolis force.

to Question: How does this temperature gradient respond to global warming? Conclusion: The weak temperature gradient weaker atmospheric circulation, gradient will be even weaker in a warmer climate due with the scaling $\delta T \sim U^2$ or $\delta T \sim W^2$.

Weaker temp eratur grad lient 3. $\boldsymbol{\sigma}$ warmer <u>C</u>: 3 ate

Weaker tem perature gradi ent weaker circulation

GCM global warming run, +1% CO2/yr

 δT

Region: 180°E to 240°E, equatorial (6°S to 6°N) average Each dot is a 10-year average

CRM 2-D mock-Walker runs

$$\delta T \sim W^2$$
, where $w = \frac{q_{\rm rad}}{s}$

from -Group 2: Fix $Q_{\rm rad} = -1.7 {\rm Kd}$ ranging from 294K to 303K Group 1: Fix $\overline{SST} =$ -2.9Kday⁻¹ to -300K, -1.7Kday 0K, Q_{rad} rad rad -0.9Kday -1, $\overline{\text{SST}}$ ranging v^{-1}