Kapitel_5_Effiziente Sortieralgorithmen

Heap-Sort

- ein Knoten ist immer größer als seine Kinder (Reihenfolge egal)

- Ein Array erfüllt die sogenannte Heap-Eigenschaft, falls:
- Array-Positionen 2ⁱ bis 2ⁱ⁺¹-1 gehören zum Niveau i.

12 n:2

 $=> ab \left(\frac{n}{2}\right) + 1 \rightarrow N$ where

Algorithmus:

- Nehme das oberste Element des Baumes weg,
- setzte das letzte Element nach oben
- Generiere aus dem Rest einen Heap
- Nehme wieder das oberste Element weg

Vorteile

- verhrauch keinen zusätzlichen Sneicher

Nacnten: neap begingung

Laufzeit-Analyse

- Initialer Aufbau: O(n) || (n-1) mal Auswählen und Versickern: (n-1) * O(log n)
- Gesamt: $O(n)+O(n \log n) = O(n \log n)$

Prinzip "Versickern":

- Vertausche falls nötig A[k] mit dem größeren der beiden Söhne A[2k] und A[2k+1].
- Wiederhole bis Rest-Array durchlaufen oder keine Vertauschung mehr nötig ist.

Beispie (:

Herstellen der initialen Heap-Bedingung

- Array ab k=|n/2|+1 automatisch ein Heap.
- Versickere rückwärts ab A[|n/2|] bis A[1] alle Elemente
- Danach heap-Bedingung hergestellt

Hochschule Hannover Fakultät IV - Abteilung Informatik Hovestadt Hannover, den 31. Mai 2021

Übungen zur Vorlesung Algorithmen und Datenstrukturen

(SS 2021, Aufgabenblatt 10)

Aufgabe 37 Heap

(2 Punkte)

Erfüllen die folgenden Arrays die Heap-Eigenschaft? Bitte begründen Sie Ihre Antwort.

Bemerkung: Wie in der Vorlesung ist hier ein Max-Heap gemeint, also ein Heap bzgl. der Relation ">" (größer). しいしいしい

a) 15 (b) 75, 29, 74, 10, 19, 9, 70, 3, 5, 6, 18, 8, 7, 68, 69, 4

Aufgabe 38 Heap-Eigenschaft

(2 Punkte)

Beweisen oder widerlegen Sie die folgenden Behauptungen:

Bemerkung: Wie in der Vorlesung ist hier ein Max-Heap gemeint, also ein Heap bzgl. der Relation ">" (größer).

- a) Jedes absteigend sortierte Array ist ein Max-Heap.
- b) Die Darstellung eines Max-Heaps in einem Array ist absteigend sortiert.

Aufgabe 39 Heapsort

(2 Punkte)

Gegeben sei folgende Zahlenreihe: 10, 30, 60, 90, 20, 50, 80, 40, 70

- a) Führen Sie den ersten Schritt des Heapsort-Algorithmus aus Erzeugen Sie also aus der genannten Zahlenreihe einen Max-Heap, also ein Heap bzgl. der Relation ">" (größer).
- b) Führen Sie nun den zweiten Schritt des Heapsort-Algorithmus aus. Überführen Sie also den gerade erzeugten Heap in ein aufsteigend schertes Array. Zeigen Sie hierbei bitte das Array nach jedem Schleifendurchlauf.

QuickSort

QuickSort ist das im Mittel schnellste Sortierverfahren

- C_{max}: O(n²),
- C_{avg/best}: O(n log n)

Vorteil: geht auch für verkettete Listen

Ausgang:

- Gegeben sei unsortierte Liste L
- Gewählt wird ein beliebiges Element p als Pivot-Element

Divide:

- Aufteilung von L in L₁ (kleiner als p) und L₂ (größer als p)
- Anwendung der Aufteilung rekursiv für L₁ und L₂, bis Problem trivial

Conquer:

- Mergen von L₁, p und L₂ zu sortiertem L

Strategie zur Wahl des Pivot-Elements

• letzte Element

- Schlecht bei vorsortierten Listen, dann ist Pivot das größte Element

• 3-Median Strategie

- Wähle aus unsortierter Folge 3 beliebige Elemente, z.B. links, mitte, rechts.
- Bestimme den mittleren der drei Schlüsselwerte, wähle diesen als Pivot-Element.

Zufalls-Strategie

Partitionierung:

- Vertausche das Pivot-Element k gegen das Letzte Element aus Setzte Zeiger auf A[left] <- i und A[right] <- j
- 2. Solange i<j:

Bewege i nach rechts, solange Elemente kleiner als Pivot-Element sind Bewege j nach links, solange Elemente größer als Pivot-Element sind

- a. Tausche die Elemente wenn L[i] >= k und L[j] <= k
- b. falls sich i und j überschneiden tausche i gegen das k

Anwendung auf doppelt verketteten Listen

Aufgabe 5

Gegeben sei folgende doppelt-verkettete Liste:

```
head 8 0 2 0 0 5 0 0 9 0 7 0 0 3 0 1
```

Führen Sie auf dieser Liste den Partitionierungsalgorithmus von QuickSort aus. *Left* zeige hierbei auf das Element 8, *right* zeige auf das Element 1 und *piv* zeige auf das Element 9. Zeigen Sie das resultierende Array sowie die Position des Pivot-Elements.

Quicksort auf einfach verketteten Listen

Problem: man kann nicht von rechts nach links laufen

- Offensichtlich wird nur vorwärts über die next-Struktur gelaufen
- Zugriff auf das letzte Element per tail-Zeiger möglich

```
Algorithm Partitioniere(Node left, Node right, Node piv)
k ← piv.data;
swap(piv,right); // temp Speicherung von Pivot-Element am Ende
Node index = left;
while left!=right
  if (left.data < k)
      swap(left,index);
      index = index.next;
  left=left.next;
swap(index,right); // Bewege Pivot-Element an finale Position
return index</pre>
```

Aufgabe 6

Gegeben sei folgende einfach-verkettete Liste:

Führen Sie auf dieser Liste den Partitionierungsalgorithmus von QuickSort aus. *Left* zeige hierbei auf das Element 8, *right* zeige auf das Element 1 und *piv* zeige auf das Element 6. Zeigen Sie das resultierende Array sowie die Position des Pivot-Elements.

