

Définition

Définition

Soit V un ensemble au plus dénombrable de variables logiques noté $V=\{p,q,r,\dots\}$. On définit inductivement l'ensemble P des formules logiques sur V par :

• L'ensemble d'axiomes $P_0 = \{\top, \bot\} \cup V$

Définition

Soit V un ensemble au plus dénombrable de variables logiques noté $V=\{p,q,r,\dots\}$. On définit inductivement l'ensemble P des formules logiques sur V par :

• L'ensemble d'axiomes $P_0 = \{\top, \bot\} \cup V$ \top se lit « top » et \bot se lit « bottom »

- L'ensemble d'axiomes $P_0 = \{\top, \bot\} \cup V$ \top se lit « top » et \bot se lit « bottom »
- Les règles d'inférence :
 - négation $\neg: p \mapsto \neg p$

- L'ensemble d'axiomes $P_0 = \{\top, \bot\} \cup V$ \top se lit « top » et \bot se lit « bottom »
- Les règles d'inférence :
 - négation $\neg: p \mapsto \neg p$
 - conjonction $\wedge: p, q \mapsto (p \wedge q)$

- L'ensemble d'axiomes $P_0 = \{\top, \bot\} \cup V$ \top se lit « top » et \bot se lit « bottom »
- Les règles d'inférence :
 - négation $\neg: p \mapsto \neg p$
 - conjonction $\wedge : p, q \mapsto (p \wedge q)$
 - disjonction $\vee: p, q \mapsto (p \vee q)$

- L'ensemble d'axiomes $P_0 = \{\top, \bot\} \cup V$
 - \top se lit « top » et \bot se lit « bottom »
- Les règles d'inférence :
 - $n\'{e}gation \neg : p \mapsto \neg p$
 - $\bullet \ \ conjonction \ \land : p,q \mapsto (p \land q)$
 - disjonction $\vee: p, q \mapsto (p \vee q)$
 - implication \rightarrow : $p, q \mapsto (p \rightarrow q)$

- L'ensemble d'axiomes $P_0 = \{\top, \bot\} \cup V$
 - \top se lit « top » et \bot se lit « bottom »
- Les règles d'inférence :
 - négation $\neg: p \mapsto \neg p$
 - $\bullet \ \ \textit{conjonction} \ \land : p,q \mapsto (p \land q)$
 - disjonction $\vee:p,q\mapsto(p\vee q)$
 - implication \rightarrow : $p, q \mapsto (p \rightarrow q)$
 - équivalence \leftrightarrow : $p, q \mapsto (p \leftrightarrow q)$

Remarques

 Afin d'éviter de surcharger les écritures, on pourra omettre certaines parenthèses :

1. Syntaxe des formules logiques

- Afin d'éviter de surcharger les écritures, on pourra omettre certaines parenthèses :
 - En utilisant l'associativité à droite de ∧, ∨ :

1. Syntaxe des formules logiques

- Afin d'éviter de surcharger les écritures, on pourra omettre certaines parenthèses :
 - En utilisant l'associativité à droite de \land , \lor :
 Par exemple, $(p \lor (q \lor r))$ s'écrit plus simplement $p \lor q \lor r$.

1. Syntaxe des formules logiques

- Afin d'éviter de surcharger les écritures, on pourra omettre certaines parenthèses :
 - En utilisant l'associativité à droite de ∧, ∨ :
 Par exemple, (p ∨ (q ∨ r)) s'écrit plus simplement p ∨ q ∨ r.
 - En utilisant l'ordre de priorité suivant sur les connecteurs : \neg , \wedge , \vee , \rightarrow , \leftrightarrow

1. Syntaxe des formules logiques

- Afin d'éviter de surcharger les écritures, on pourra omettre certaines parenthèses :
 - En utilisant l'associativité à droite de ∧, ∨ :
 Par exemple, (p ∨ (q ∨ r)) s'écrit plus simplement p ∨ q ∨ r.
 - En utilisant l'ordre de priorité suivant sur les connecteurs : \neg , \wedge , \vee , \rightarrow , \leftrightarrow Par exemple $((\neg p) \lor (q \land r))$ s'écrit plus simplement $\neg p \lor q \land r$.

Remarques

- Afin d'éviter de surcharger les écritures, on pourra omettre certaines parenthèses :
 - En utilisant l'associativité à droite de ∧, ∨ :
 Par exemple, (p ∨ (q ∨ r)) s'écrit plus simplement p ∨ q ∨ r.
 - En utilisant l'ordre de priorité suivant sur les connecteurs : ¬, ∧, ∨, →, ↔
 Par exemple ((¬p) ∨ (q ∧ r)) s'écrit plus simplement ¬p ∨ q ∧ r.

En cas de doute, on laissera les parenthèses afin de lever toute ambiguïté.

Remarques

- Afin d'éviter de surcharger les écritures, on pourra omettre certaines parenthèses :
 - En utilisant l'associativité à droite de ∧, ∨ :
 Par exemple, (p ∨ (q ∨ r)) s'écrit plus simplement p ∨ q ∨ r.
 - En utilisant l'ordre de priorité suivant sur les connecteurs : ¬, ∧, ∨, →, ↔
 Par exemple ((¬p) ∨ (q ∧ r)) s'écrit plus simplement ¬p ∨ q ∧ r.

En cas de doute, on laissera les parenthèses afin de lever toute ambiguïté.

• On a définit pour le moment simplement les propositions logiques valables d'un point de vue *syntaxique*, sans leur donner de sens ou de valeur.

Remarques

- Afin d'éviter de surcharger les écritures, on pourra omettre certaines parenthèses :
 - En utilisant l'associativité à droite de \land, \lor :
 Par exemple, $(p \lor (q \lor r))$ s'écrit plus simplement $p \lor q \lor r$.
 - En utilisant l'ordre de priorité suivant sur les connecteurs : ¬, ∧, ∨, →, ↔
 Par exemple ((¬p) ∨ (q ∧ r)) s'écrit plus simplement ¬p ∨ q ∧ r.

En cas de doute, on laissera les parenthèses afin de lever toute ambiguïté.

• On a définit pour le moment simplement les propositions logiques valables d'un point de vue *syntaxique*, sans leur donner de sens ou de valeur.

Exemples

- $(((\neg p) \lor (\neg q)) \land r)$ est une formule logique qu'on pourra écrire plus simplement $(\neg p \lor \neg q) \land r$.
- $\wedge p \neg pq$ ou encore $(p \wedge q) \rightarrow (r \text{ ne sont pas des formules logiques.}$

Remarques

- Afin d'éviter de surcharger les écritures, on pourra omettre certaines parenthèses :
 - En utilisant l'associativité à droite de ∧, ∨ :
 Par exemple, (p ∨ (q ∨ r)) s'écrit plus simplement p ∨ q ∨ r.
 - En utilisant l'ordre de priorité suivant sur les connecteurs : ¬, ∧, ∨, →, ↔
 Par exemple ((¬p) ∨ (q ∧ r)) s'écrit plus simplement ¬p ∨ q ∧ r.

En cas de doute, on laissera les parenthèses afin de lever toute ambiguïté.

• On a définit pour le moment simplement les propositions logiques valables d'un point de vue *syntaxique*, sans leur donner de sens ou de valeur.

Exemples

- $(((\neg p) \lor (\neg q)) \land r)$ est une formule logique qu'on pourra écrire plus simplement $(\neg p \lor \neg q) \land r$.
- $\wedge p \neg pq$ ou encore $(p \wedge q) \rightarrow (r \text{ ne sont pas des formules logiques.}$
- $(p \to q) \land (q \to p)$ et $p \leftrightarrow q$ sont deux formules logiques différentes.

1. Syntaxe des formules logiques

Arbre syntaxique

Les formules logiques admettent naturellement une représentation sous forme d'arbre :

1. Syntaxe des formules logiques

Arbre syntaxique

Les formules logiques admettent naturellement une représentation sous forme d'arbre :

ullet les variables logiques et les constantes oxed et oxed sont les étiquettes des feuilles

1. Syntaxe des formules logiques

Arbre syntaxique

Les formules logiques admettent naturellement une représentation sous forme d'arbre :

- ullet les variables logiques et les constantes oxed et oxed sont les étiquettes des feuilles
- les noeuds internes ont pour étiquette les règles d'inférence

1. Syntaxe des formules logiques

Arbre syntaxique

Les formules logiques admettent naturellement une représentation sous forme d'arbre :

- ullet les variables logiques et les constantes \top et \bot sont les étiquettes des feuilles
- les noeuds internes ont pour étiquette les règles d'inférence

Exemples

La formule logique $(p \to q) \lor (\neg r)$ admet la représentation :

Arbre syntaxique

Les formules logiques admettent naturellement une représentation sous forme d'arbre :

- ullet les variables logiques et les constantes \top et \bot sont les étiquettes des feuilles
- les noeuds internes ont pour étiquette les règles d'inférence

Exemples

La formule logique $(p \to q) \lor (\neg r)$ admet la représentation :

Exemple

• Quelle est la formule logique ayant pour représentation arborescente :

Exemple

• Quelle est la formule logique ayant pour représentation arborescente :

$$((p \to q) \lor (r \leftrightarrow s)) \land (r \lor (\neg q))$$

Exemple

• Quelle est la formule logique ayant pour représentation arborescente :

$$((p \to q) \lor (r \leftrightarrow s)) \land (r \lor (\neg q))$$

• Dessiner la représentation arborescente de $\neg(\top \leftrightarrow (p \lor q))$.