四川大学期末考试试卷(B)

(2006-2007年第一学期)

科目: 《大学数学》(II)(微积分)

适用专业年级: 数学二各专业2006级本科生

題号	_	=	Ξ	P	9	3	5 .	7	\	总分
得分										

考试须知

四川大学学生参加由学校组织或由学校承办的各级各类考试,必须严格执行《四川大学考试工作管理办法》和《四川大学考场规则》。有考试违纪作弊行为的,一律按照《四川大学学生考试违纪作弊处罚条例》进行处理。

四川大学各級各类考试的监考人员,必须严格执行《四川大学考试工作管理办法》、《四川大学考场规则》和《四川大学监考人员职责》。 有违反学校有关规定的,严格按照《四川大学教学事故认定及处理办法》进行处理。

分	数	
阅卷人	签名	

一、填空題 (每小題 3 分, 共 15 分)

- 2. 己知 f(x) 在点 x_0 可导,且 $\lim_{h\to 0} \frac{h}{f(x_0-2h)-f(x_0)} = 4$,

则 $f'(x_0)$ =_____

- 3. 若 $d[f(\ln x)] = \ln x dx$,则 $df(x) = ____dx$.
- 4. 曲线 $y = 3x^4 4x^3 + 1$ 的拐点为______.
- 5. 已知 $f(x) = \frac{x^2}{a+x}$ 的斜斯近线方程为 y = x-1,则 a =________.

1. 当 $x \to 0$ 时,函数 $\frac{1}{x} \cos \frac{1}{x} \mathbb{E}$ ()

A. 无穷小;

- B. 无穷大;
- C. 有界的,但不是无穷小;
- D. 无界的,但不是无穷大.

A. 连续点;

跳跃间断点:

C. 无穷间断点;

D. 振荡间断点.

3. 若 $f^{(2008)}(x)+f^{(2007)}(x)+f^{(2006)}(x)=-f'(x)$,则f(x)不可能是下面的哪 一个函数?(

- A. $\cos x$ B. e^x C. e^{-x}

4. 在[0, 1]区间上,下面哪一个函数不满足 Rolle 定理的全部条件,但仍有 0 < < <1 使 $f'(\xi) = 0$? (

- A. $f(x) = \frac{1}{x(1-x)}$ B. f(x) = |x|

- $C. f(x) = e^{\frac{-1}{|x|}}$
- $D. f(x) = \sin(\pi x)$

5. 设 $V = mx^p$, $S = nx^q$, 若S 关于V 的相对变化率正好满足 $\frac{1}{S} \frac{dS}{dx} / \frac{1}{V} \frac{dV}{dx} = k$ (其中 k 是非零常数), 则有(

- A. m: n = k 'B. p: q = k C. $m: n = \frac{1}{k}$ D. $p: q = \frac{1}{k}$

第2页共6页

米別

分数	
阅卷人签名	

1. $\# \lim_{x\to 2} \frac{|x^2-x-6|-4}{x^2-4}$;

班級

分数	
阅卷人签名	

2. 设 f(x) 二阶可导. 若 $y = 2^{f(x)}$, 求 $\frac{d^2y}{dx^2}$;

中外

学生核的

分	数	
阅卷	签名	

3. $\Re \lim_{x\to 0} \frac{\sin x^2 + 2\cos x - 2}{x^4}$.

第3页共6页

四. 解答題 (每小題 8分, 共 16分)

分 数	
阅卷人签名	

1. 若函数
$$f(x) = \begin{cases} ae^x + be^{-x}, & x \le 0 \\ \frac{1}{x} \ln(1+x), & x > 0 \end{cases}$$
 点 $x = 0$ 处可

导,常数a,b为何值?

分 数	
阅卷人签名	

2. 根据a的不同取值情况,讨论方程 $xe^{-x}=a$ (a>0) 根的个数。

五. 应用题 (每小题8分,共16分)

•	分	数	
	阅卷	人签名	

1. 求曲线 $L: \begin{cases} x + t(1-t) = 0, \\ te^y + y + 1 = 0, \end{cases}$ 在对应于 t = 0 点处的切

线方程和法线方程:

分	数	
阅卷	签名	

2. 由直线 y = 0, x = 8 及抛物线 $y = x^2$ 围成的图形 (称为一个曲边三角形),在曲边 $y = x^2$ 上求一点,使

曲线在该点处的切线与直线 y=0 及 x=8 所围成的三角形面积最大。

分 数 阅卷人签名

1. 设 f(x) 在 [a,b] 上连续, 在 (a,b) 上可导,

证明: 在(a, b)上至少存在一点 5, 使

$$\frac{bf(b)-af(a)}{b-a}=f(\xi)+\xi f'(\xi):$$

分数	
阅卷人签名	

2. 证明x > 0时, $1 + x \ln(x + \sqrt{1 + x^2}) > \sqrt{1 + x^2}$ 。