Last name: _______

First name: ______

Section: _____

Question:	1	2	Total
Points:	10	10	20
Score:			

Instructions: You must answer all the questions below and give your solutions to the TA at the end of the recitation. Write your solutions on a different sheet of paper. No late worksheet will be accepted.

Suppose that $\int_0^1 f(x) dx = 4$, $\int_{-1}^0 f(x) dx = -4$, and $\int_0^1 g(x) dx = -3$. Using the properties of the integral, compute the following definite integrals.

(a) (5 points)
$$\int_0^1 (f(x) + 5g(x)) dx$$

Solution: From the properties of the integral:

$$\int_0^1 f(x) + 5f(x) \, dx = \int_0^1 f(x) + 5 \int_0^1 g(x) \, dx = 4 - 15 = -11.$$

(b) (5 points)
$$\int_{-1}^{1} f(x) dx$$
.

Solution: From the properties of the integral:

$$\int_{-1}^{1} f(x) dx = \int_{-1}^{0} f(x) dx + \int_{0}^{1} f(x) dx = 4 + (-4) = 0.$$

Find the derivative of the following functions. Justify your answers with the proper theorem.

(a) (5 points)
$$F(x) = \int_0^x \left(\frac{x}{x+1}\right)^{2021} dx$$
.

Solution: By the Fundamental Theorem of Calculus, we have $F'(x) = \left(\frac{x}{x+1}\right)^{2021}$.

(b) (5 points)
$$W(x) = \int_0^x [x \sin x + x^2 \tan^2(x^2 + 1)] dx$$
.

Solution: By the Fundamental Theorem of Calculus, we have $F'(x) = x \sin x + x^2 \tan^2(x^2 + 1)$.