Lecture 12

Model Selection and Diagnostics

STAT 8020 Statistical Methods II September 16, 2019

> Whitney Huang Clemson University

Agenda

- Automatic Search Procedures
- 2 Variable Selection Criteria
- Diagnostics in Multiple Linear Regression (MLR)

Notes

Notes

Variable Selection

- What is the appropriate subset size?
- What is the best model for a fixed size?

Notes			

Automatic Search Procedures

- Forward Selection
- Backward Elimination
- Stepwise Search
- All Subset Selection

Notes	

Mallows' C_p Criterion

$$\begin{split} (\hat{Y}_i - \mu_i)^2 &= (\hat{Y}_i - \mathrm{E}(\hat{Y}_i) + \mathrm{E}(\hat{Y}_i) - \mu_i)^2 \\ &= \underbrace{(\hat{Y}_i - \mathrm{E}(\hat{Y}_i))^2}_{\text{Variance}} + \underbrace{(\mathrm{E}(\hat{Y}_i) - \mu_i)^2}_{\text{Bias}^2}, \end{split}$$

where $\mu_i = E(Y_i|X_i = x_i)$

- Mean squared prediction error (MSPE): $\sum_{i=1}^n \sigma_{\hat{Y}_i}^2 + \sum_{i=1}^n (\mathrm{E}(\hat{Y}_i) \mu_i)^2$
- ullet C_p criterion measure:

$$\begin{split} \Gamma_p &= \frac{\sum_{i=1}^n \sigma_{\hat{Y}_i}^2 + \sum_{i=1}^n (\mathrm{E}(\hat{Y}_i) - \mu_i)^2}{\sigma^2} \\ &= \frac{\sum \mathrm{Var}_{\mathsf{pred}} + \sum \mathrm{Bias}^2}{\mathrm{Var}_{\mathsf{error}}} \end{split}$$

Model Selection and Diagnostics

Automatic Search Procedures

Diagnostics in Multiple Linear

10.5

Notes

Notes

C_p Criterion

- ullet Do not know σ^2 nor numerator
- $\bullet \ \mbox{Use MSE}_{X_1,\cdots,X_{p-1}} = \mbox{MSE}_{\mbox{\scriptsize F}}$ as the estimate for σ
- For numerator:
 - Can show $\sum_{i=1}^n \sigma_{\hat{Y}_i}^2 = p\sigma^2$
 - • Can also show $\textstyle\sum_{i=1}^n (\mathrm{E}(\hat{Y}_i) - \mu_i)^2 = \mathrm{E}(\mathrm{SSE_F}) - (n-p)\sigma^2$

$$\Rightarrow C_p = \frac{\mathsf{SSE} - (n-p)\mathsf{MSE_F} + p\mathsf{MSE_F}}{\mathsf{MSE_F}}$$

and Diagnostics			
CLEMS ® N			
Automatic Search Procedures			
Variable Selection			

Model Selection

Diagnostics in
Multiple Linear

100

C_p Criterion Cont'd

Recall

$$\Gamma_{p} = \frac{\sum_{i=1}^{n} \sigma_{\hat{Y}_{i}}^{2} + \sum_{i=1}^{n} (E(\hat{Y}_{i}) - \mu_{i})^{2}}{\sigma^{2}}$$

- When model is correct $E(C_p) \approx p$
- When plotting models against p
 - Biased models will fall above $C_p = p$
 - Unbiased models will fall around line $C_p = p$
 - ullet By definition: C_p for full model equals p

Adjusted R² Criterion

Adjusted R^2 , denoted by $R^2_{\rm adj}$, attempts to take account of the phenomenon of the R^2 automatically and spuriously increasing when extra explanatory variables are added to the model.

$$R_{\rm adj}^2 = 1 - \frac{{\rm SSE}/(n-p-1)}{{\rm SST}/(n-1)}$$

- Choose model which maximizes $R^2_{\rm adj}$
- Same approach as choosing model with smallest MSE

...

Notes

Notes

12.8

Predicted Residual Sum of Squares PRESS Criterion

- For each observation i, predict Y_i using model generated from other n-1 observations
- $PRESS = \sum_{i=1}^{n} (Y_i \hat{Y}_{i(i)})^2$
- Want to select model with small PRESS

Model Selection and Diagnostics	
CLEMS N	
Variable Selection Criteria	

Notes		

Other Approaches

Akaike's information criterion (AIC)

$$n\log(\frac{\mathsf{SSE}_k}{n}) + 2k$$

Bayesian information criterion (BIC)

$$n\log(\frac{\mathsf{SSE}_k}{n}) + k\log(n)$$

• Can be used to compare non-nested models

Residuals and Leverage

Recall in MLR that $\hat{Y} = X(X^TX)^{-1}X^TY = HY$ where H is the hat-matrix

- Can show that $Var(e)=(I-H)\sigma^2$. Therefore $Var(e_i)=\sigma^2(1-h_i)$, where $h_i=H_{ii}$ are called leverages
- $\sum_{i=1}^n h_i = p$ and $h_i > \frac{1}{n}, 1 \le i \le n \Rightarrow$ a "rule of thumb" is that leverages of more than $\frac{2p}{n}$ should be looked at more closely
- $Var(\hat{Y}) = H\sigma^2 \Rightarrow Var\hat{Y}_i = h_i\hat{\sigma}^2$

Notes

Notes

Studentized Residuals

As we have seen $Var(e_i)=\sigma^2(1-h_i)$, this suggests the use of $r_i=\frac{e_i}{\hat{\sigma}(1-h_i)}$

- ri's are called studentized residuals
- If the model assumptions are correct then $Var(r_i)=1$ and $Corr(e_i,e_j)$ tends to be small

and Diagnostics
CLEMS
Diagnostics in Multiple Linear Regression (MLR)

Notes			

Influential Observations

DFFITS

- \bullet Difference between the fitted values \hat{Y}_i and the predicted values $\hat{Y}_{i(i)}$
- $\bullet \ \mathsf{DFFITS}_i = \frac{\hat{Y}_i \hat{Y_{i(i)}}}{\sqrt{\mathsf{MSE}_{(i)}h_i}}$
- Concern if absolute value greater than 1 for small data sets, or greater than $2\sqrt{p/n}$ for large data sets

Model Selection and Diagnostics
Diagnostics in Multiple Linear Regression (MLR)
10.10

lotes	
lotes	
lotes	