Lista de Exercícios - 10 parte 2

June 18, 2021

Universidade Federal de Mato Grosso do Sul

Campus de Campo Grande Estatística – Prof. Cássio Pinho dos Reis

10^a LISTA DE EXERCÍCIOS - parte 2

Turma: Engenharia de Software RGA: 2021.1906.069-7 Aluno: Maycon Felipe da Silva Mota

Importar bibliotecas que usaremos para esse exercicío

```
[1]: import pandas as pd
import numpy as np
import seaborn as sns
sns.set_theme(style="darkgrid")
```

1 1ª Questão – Um produtor deseja verificar se precipitação de chuva tem influencia significativa na produtividade diária da variedade de arroz que produz. A tabela abaixo apresenta os valores da produtividade de arroz em Kg/100m2 e da precipitação de chuva. Há essa influência? Se sim, construa um modelo de regressão linear simples, e estime qual a produtividade esperada de arroz, com uma precipitação de 6,5 de chuva.

```
[2]: produtividade = [8,9,10,10,11,11,12,12,13,13]
preciptacao = [3,4,4,5,6,6,7,8,8,9]

df_final = pd.DataFrame({'preciptacao': preciptacao, 'produtividade':

→produtividade})
sns.relplot(x="preciptacao", y="produtividade", data=df_final)
```

[2]: <seaborn.axisgrid.FacetGrid at 0x21f3c4138e0>

Sim, pois quanto mais aumenta a preciptação, aumenta a produtividade. Conforme o diagrama.

```
[3]: from sklearn.datasets import load_boston # para carregar os dados from sklearn.

→model_selection import train_test_split
from sklearn.linear_model import LinearRegression # importa o modelo

X = np.array([3,4,4,5,6,6,7,8,8,9]).reshape((-1, 1))
y = [8,9,10,10,11,11,12,12,13,13]

modelo = LinearRegression() # cria o modelo
modelo.fit(X, y) # ajusta o modelo aos dados

r_sq = modelo.score(X, y) # verifica o valor de R²
print('Coeficiente de pearson:', r_sq)
print('Valor de Alfa:', modelo.intercept_) # valor de b0
print('Valor de Inclinação da reta:', modelo.coef_) # valor de b1
```

```
produtividade_esperada = modelo.predict(X) # verificar os valores previstos com

→realizado com base nos dados

pd.DataFrame({'pred': produtividade_esperada, 'produtividade_real':

→produtividade, 'preciptacao_real': preciptacao}) # gerar um quadro
```

Coeficiente de pearson: 0.9381972333779562

Valor de Alfa: 6.0666666666668

Valor de Inclinação da reta: [0.80555556]

[3]:		pred	produtividade_real	preciptacao_real
	0	8.483333	8	3
	1	9.288889	9	4
	2	9.288889	10	4
	3	10.094444	10	5
	4	10.900000	11	6
	5	10.900000	11	6
	6	11.705556	12	7
	7	12.511111	12	8
	8	12.511111	13	8
	9	13.316667	13	9

```
[4]: modelo.predict(np.array([6.5]).reshape((-1, 1)))[0] # prever os valores com 6.

→5mm de preciptação
```

- [4]: 11.30277777777777
 - 2 2ª Questão Considere os dados referentes à produção de matéria seca de uma cultura e a quantidade de radiação fotossintética ativa:
 - 2.1 Dessas duas variáveis, qual você consideraria ser a variável resposta e qual a variável preditora? Por quê? Construa um diagrama de dispersão, faça a equação de regressão e interprete.

```
[5]: producao = [10,60,110,160,220,280,340,400,460,520]
radiacao = [18,55,190,300,410,460,570,770,815,965]

df_final = pd.DataFrame({'producao': producao, 'radiacao': radiacao})
sns.relplot(x="producao", y="radiacao", data=df_final)
```

[5]: <seaborn.axisgrid.FacetGrid at 0x21f41d76f70>

Coeficiente de pearson: 0.9905357857593803 Valor de Alfa: -22.084528915840792

Valor de Inclinação da reta: [1.86478332]

[6]:	radiacao_pred	radiacao	producao
0	-3.436696	18	10
1	89.802470	55	60
2	183.041636	190	110
3	276.280802	300	160
4	388.167801	410	220
5	500.054800	460	280
6	611.941799	570	340
7	723.828798	770	400
8	835.715796	815	460
9	947.602795	965	520

Nessa equação eu usaria a variável de produtividade para saber quanto de radioatividade eu teria. A equação da reta pode ser dada por y = -22.08 + 1.8647 producao + producao

3 ³ Questão – Uma pesquisadora está interessada em verificar se existe correlação entre a salinidade (g/l) e a temperatura numa região de uma lagoa. Faça o diagrama de dispersão, calcule o índice de correlação de Pearson, classificando-o e estime qual a salinidade da lagoa em uma temperatura de 23,5°C.

```
[10]: temperatura = [24,23,23,26,25,5,25,24]
    salinidade = [3.85,9.61,2.26,2.06,2.89,9.61,10.58,11.40]

    df_final = pd.DataFrame({'temperatura': temperatura, 'salinidade': salinidade})
    sns.relplot(x="salinidade", y="temperatura", data=df_final)
```

[10]: <seaborn.axisgrid.FacetGrid at 0x21f41e63ac0>


```
[14]: X = np.array([24,23,23,26,25,5,25,24]).reshape((-1, 1))
y = [3.85,9.61,2.26,2.06,2.89,9.61,10.58,11.40]

modelo = LinearRegression() # cria o modelo
modelo.fit(X, y) # ajusta o modelo aos dados

r_sq = modelo.score(X, y) # verifica o valor de R²
print('Coeficiente de pearson:', r_sq)
print('Valor de Alfa:', modelo.intercept_) # valor de b0
print('Valor de Inclinação da reta:', modelo.coef_) # valor de b1

salinidade_esperada = modelo.predict(X) # verificar os valores previstos comu
→realizado com base nos dados
pd.DataFrame({'salinidade_esperada': salinidade_esperada, 'salinidade':
→salinidade, 'temperatura': temperatura}) # gerar um quadro
```

Coeficiente de pearson: 0.11053125851910783

Valor de Alfa: 10.857720615846791

Valor de Inclinação da reta: [-0.19772437]

[14]:	salinidade_esperada	salinidade	temperatura
0	6.112336	3.85	24
1	6.310060	9.61	23
2	6.310060	2.26	23
3	5.716887	2.06	26
4	5.914611	2.89	25
5	9.869099	9.61	5
6	5.914611	10.58	25
7	6.112336	11.40	24

Por apresentar um coeficiente de pearson < 0.5, não é recomendável utilizar regressão linear simples para essa análise.