Unsupervised Learning: clustering

Used by B. Ombuki-Berman in COSC 4P80: neural networks course

Overview

- What is clustering?
- Hierarchical algorithms
- Partitioning algorithms
- Choosing an algorithm
- Evaluating clustering

Supervised vs. Unsupervised learning

Supervised learning

the desired output must be available for each input vector used in the training.

Unsupervised learning

- no desired output; must rely on input data to learn similarities
- Discover interesting features; separate sources that have been mixed together
- tries to find structures in the input data space.
- Can only work if there is something in the data to be discovered.
 - If the data is uniform or unstructured, or contains the wrong type of structure, the system may produce meaningless results
 - must test an unsupervised network to show if it makes sense after it has been trained
 - i.e., test, if the obtained structure is representative of the data.
 - this leaves a lot of responsibility to the user

Unsupervised Learning

- Given: data set D
 - Vectors of attribute values (x1, x2, ..., xn)
 - No distinction between input attributes and output attributes (class label)
- Return: descriptor y of each x
 - Clustering: grouping points (x) into inherent regions of mutual similarity
 - Vector quantization: discretizing continuous space with best labels
 - Dimensionality reduction: projecting many attributes down to a few
 - Feature extraction: constructing (few) new attributes from (many) old ones

What is Clustering?

Grouping of similar objects to produce a classification.

 Objects in cluster should be similar, but actual clusters should be different, otherwise belong to the same cluster.

What can be clustered?

Images (e.g., astronomical data)

Patterns (e.g., robot vision data)

· Words, documents etc

Shopping items...

• ..

Applications of Clustering I

Data mining (DNA-analysis, Marketing studies, insurance studies,...)

Text mining (text type clustering)

Information retrieval (document clustering

• . . .

Applications of Clustering II

- Biological community formation
 - Groups of cells
 - Higher organisms
- Social networking
 - Cliques
 - Facebook-style friend grouping
- 3P98 convex hull multi-peels

Clustering

- We assume that the data was generated from a number of different classes. The aim is to cluster data from the same class together.
 - How do we decide the number of classes?
 - Why not put each data point into a separate class?
 - What is the payoff for clustering things together?
 - What if the classes are hierarchical?
 - What if each data vector can be classified in many different ways?
 - A one-out-of-N classification is not nearly as informative as a feature vector.

Measurement of Proximity/Similarity

- Central to clustering
 - How close or far apart are individuals from each other
- Topic scheduled as a separate talk (normally seminar topic)

Clustering algorithms

Hierarchical Clustering

- Tree structure
- Determine clusters as you go

Partition Clustering

- Clusters determined a priori
- Problem becomes data membership

Hierarchical Algorithms

- Data not partitioned into a particular number of clusters or classes in one step
 - Data partitioned into a series of partitions
 - How do we decide the number of classes?
 - Single cluster? N clusters each with single individual?
- Two types of methods
 - Agglomerative Algorithms
 - Series of fusion of n individuals into groups
 - Divisive Algorithms
 - Separate n individuals successfully into finer groupings
- Optimal number of clusters?
 - When to stop?

Hierarchical Algorithms

- Key step
 - decision on which sets to join (or split)
- Drawback
 - once the fusion (join) /split decision done, cannot be undone
 - cannot repair what was done in previous steps
- Decision criterion
 - many variants

Example: Hierarchical Tree structure

Figure 4.1 Example of a hierarchical tree structure. (Taken from *Finding Groups in Data*, 1990, Kaufman and Rousseeuw, with permission of the publisher, John Wiley & Sons.)

Main Steps: Agglomerative Algorithms

Step 1: Place each object in its own cluster

 Step 2: Choose (via a linkage criterion), two clusters and merge them

• Step 3: If there is only one cluster left, stop. Else, go to Step 2

Problem: When to stop? After how many clusters?

Linkage criterions

- Single linkage
 - nearest Neighbor
 - selects cluster with shortest distance between the closest object in one cluster and the closest object in the other cluster
- Complete linkage
 - furthest neighbor
 - Selects the clusters with the shortest distance between the furthest object in the other cluster
- Average linkage
 - Selects the clusters with the shortest average distance between all objects in one cluster and all objects in one cluster
- Centroid linkage
 - Selects the clusters with the shortest distance between the centroid of one cluster and the centroid of another cluster

Comparisons

Single linkage

- Makes unbalanced clusters
- long drawn-out clusters
- does not take account of cluster structure

Complete linkage

- makes compact clusters
- does not take account of cluster structure

Average linkage

- Between single and complete
- Tends to join clusters with small variances
- Takes account of cluster structure

Divisive Hierarchical Algorithms

- Start with one large cluster and successfully split the clusters
 - First consider the divisions of entire set into two non-empty subclusters
 - successively divide the sub-clusters of partition
- Complexity: $2 ^ (n-1) 1 = O(2^n)$
 - Compared to agglomerative methods which are

$$(n(n-1))/2 = O(n^2)$$

Divisive Hierarchical Algorithms

- Tricks exists on how to get around the expensive first steps.
- heuristic to find "good" partitions.
 - E.g., using a single attribute to make the division
 - monothetic method
 - Problem: multivariate data
 - E.g., Using all variables at each split
 - polythetic

Partitioning Algorithms/Optimization Algorithms

- Divide a set of objects into a given number of smaller clusters
- Mostly a 2-step process
 - Choose a set of representative objects*
 - Assign each remaining object to its nearest representative

Partition Clustering

- Partitioning data = data point membership
- . K-means
- QT Clust
- Fuzzy c-means

K-means algorithm

- Widely used partitioning algorithm
 - Initially assign k-cluster centers to k randomly chosen instances
 - Repeat until converged
 - Assign each point to its closest representative
 - Recalculate positions of the centers
- Note: The representatives need not be actual data points.

K-means clustering

Aim

- Divide data points into K clusters such that some metric relative to the centroids of the clusters is minimized.
- example metrics to the centroids that can be minimized include:
 - maximum distance to its centroid for any point.
 - sum of the average distance to the centroids over all clusters.
 - sum of the variance over all clusters.
 - total distance between all points and their centroids.

K-means clustering

- Step 1. Choose initial *K* seed points (i.e., group centroids) into the space represented the data points being clustered using some method
- Step 2. Assign each data point to the group that has the closest centroid.
- Step 3. Re-compute the *K* cluster centers, when all points have been assigned
- Step 4. Iterate the procedure until it either converges or the count exceeds some threshold.

K-means

- What is it trying to optimize?
- Is it guaranteed to terminate?
- Is it guaranteed to find an optimal clustering?
- How should we start it?
- How to automatically choose the initial K, i.e., number of centers?

Optimality

- Not guaranteed!
- Choose starting points carefully
 - Use data points, far apart if possible.
- Perform many runs of K-Means
 - each from a different random starting point.
- Other tricks floating around

Choosing initial K

 Randomly chosen or can be just the first K data points in the data set.

Can be imported from some other algorithm

They need not even be actual data points.

K-means Clustering

- Lloyd's Algorithm
 - Find Voronoi diagram
 - Calculate centroid for each voronoi cell
 - Center each point in its voronoi cell

K-means Clustering Voronoi Diagrams

- Voronoi Diagram
 - Set of hyperplanes
 - Each point to surrounding points
 - Forms set of boundary "lines"

K-means

advantage

- Simple to implement
- Fast, so can be used on very large data sets
- Can re-assign a data item to another cluster if initially assigned to a non-suitable cluster.

disadvantage

- outputs are influenced by the initial choice of seed points.
- Cannot utilize meta-information
- Randomness

K-means Variants

- Reading assignment + Seminar topic
- Other Clustering Methods: many exist

Validation

- A cluster algorithm will always produce clusters;
 - How do we know that the clusters are not artifacts of the algorithm?
- when to stop.
 - How many clusters are there?
 - If a hierarchical tree is produced, what levels of the tree are significant?

Validation

 Have we found meaningful clusters or just groups of data points that are not related?

. External Criteria

- Use your clustering technique on artificial data & compare the results from the real data
- Perform significance tests on external variables

Internal Criteria

- Rely totally on information from the data and clusters we have
 - . Hierarchical methods can be validated by information from their tree structure
 - Correlation measures

Validation

. Relative criteria

- Involves comparing the results obtained from your clustering algorithm with results for the same data with same algorithm but different parameters
- Chances are an algorithm is correct the more algorithms agree on one clustering solution

Difficulties with Clustering

Tends to fall in to local maximums

Hard to find the "right" number of clusters

Difficult to validate

Summary of clustering

- How many clusters should there be?
- How do we visualize large, multidimensional datasets?
- Objects to the cluster
- Which variables to use?
- How do we handle multidimensional datasets?
- How do we handle noise?
- Which clustering algorithm should we use?
- Which proximity measure should we use?