### **NDA: Clustering**

Maximilien Danisch

LIP6 – CNRS and Sobonne University

first\_name.last\_name@lip6.fr

## Bibliography

 Introduction to Data Mining, 2nd Edition by Tan, Steinbach, Karpatne, Kumar Chapter 7.

#### **Outline**

- What is clustering? Motivation?
- 2 k-means
- Other clustering algorithms
  - Mean-shift
  - GMM: Gaussian Mixture Model
  - Hierarchical clustering
- Validation

### Outline

- What is clustering? Motivation?
- 2 k-means
- Other clustering algorithms
  - Mean-shift
  - GMM: Gaussian Mixture Model
  - Hierarchical clustering
- 4 Validation

## What is clustering?

Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups



### What is clustering?

- Clustering is an unsupervised learning method (i.e. no predefined classes)
- It is different from classification (supervised learning)

## Why is it usefull (applications of cluster analysis)?

#### Understanding the data / get insights on the data:

- Group related documents for browsing
- Group genes and proteins that have similar functionality
- Group people sharing similar interest
- Group movies with similar genres or actors

# Why is it usefull (applications of cluster analysis)?

Summarization: Reduce the size of large data sets



Clustering precipitation in Australia

## Custering is an ill-defined problem

How many clusters?



How many clusters?

► An Impossibility Theorem for Clustering, Jon Kleinberg, NIPS2003.

## Custering is an ill-defined problem

How many clusters?



► An Impossibility Theorem for Clustering, Jon Kleinberg, NIPS2003.

### Several types of clusterings

A clustering is a set of clusters. Important distinction between hierarchical and partitional sets of clusters.

- Partitional clustering: A division of data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset
- Hierarchical clustering: A set of nested clusters organized as a hierarchical tree

### Several types of clusterings

#### Other distinctions:

- Exclusive versus non-exclusive: In non-exclusive clusterings, points may belong to multiple clusters. Can represent multiple classes or 'border' points
- Fuzzy versus non-fuzzy: In fuzzy clustering, a point belongs to every cluster with some weight between 0 and 1. Weights must sum to 1
- Partial versus complete: In some cases, we only want to cluster some of the data
- Heterogeneous versus homogeneous: Clusters of widely different sizes, shapes, and densities

### Outline

- What is clustering? Motivation?
- 2 k-means
- Other clustering algorithms
  - Mean-shift
  - GMM: Gaussian Mixture Model
  - Hierarchical clustering
- Validation































dimension 1

- Randomly chose k initial centroids
- While True:
  - Create k clusters by assigning each point to closest centroid
  - Compute k new centroids by averaging points in each clustering
  - If centroids don't change:
    - Break

**Exercice:** simulate some executions of kmeans wth k=3 on the following set of points



### k-means: distortion (a.k.a. SSE or SSD)

k-means can be seen as a heuristic to minimize the distortion:

distortion = 
$$\sum_{i=1}^{n} \sum_{j=1}^{k} w_{i,j} ||x_i - \mu_j||_2^2$$

#### with

- $\mu_j$  the vector of centroid j and
- $w_{i,j} = 1$  if the sample  $x_i$  is in cluster j and 0 otherwise.

#### Limitation of k-means: clusters

- K-means has problems when clusters are of differing
  - Sizes
  - Densities
  - Non-globular shapes
- K-means has problems when the data contains outliers.

Normalising the data and removing outliers can help!

#### Limitation of k-means: initialisation



Using multiple runs or kmeans++ can help!

#### Limitation of k-means: initialisation



Using multiple runs or kmeans++ can help!

#### Limitation of k-means: How to choose k?



The elbow method: choose k=3, where the elbow is located

#### Limitation of k-means: How to choose k?

**Silhouette value.** A measure of how similar an object is to its own cluster (cohesion) compared to other clusters (separation).

For data point i in cluster  $C_k$ , let

$$a(i) = \frac{1}{|C_k| - 1} \sum_{j \in C_k, i \neq j} d(i, j)$$
 and  $b(i) = \min_{l \neq k} \frac{1}{|C_l|} \sum_{j \in C_l} d(i, j)$ 

The silhouette score of one data point i:  $s(i) = \frac{b(i) - a(i)}{\max(a(i), b(i))}$ Silouette score of a partition = average of the s(i)'s.

▶ Elbow method with silhouette score instead of distortion

#### **Outline**

- What is clustering? Motivation?
- 2 k-means
- Other clustering algorithms
  - Mean-shift
  - GMM: Gaussian Mixture Model
  - Hierarchical clustering
- 4 Validation

### Mean-shift (with one centroid)



The centroid moves towards a higher density region















GMM: Gaussian Mixture Model Hierarchical clustering



GMM: Gaussian Mixture Model Hierarchical clustering



GMM: Gaussian Mixture Model Hierarchical clustering



GMM: Gaussian Mixture Model Hierarchical clustering



GMM: Gaussian Mixture Model Hierarchical clustering



GMM: Gaussian Mixture Model Hierarchical clustering



GMM: Gaussian Mixture Model Hierarchical clustering



GMM: Gaussian Mixture Model Hierarchical clustering



GMM: Gaussian Mixture Model Hierarchical clustering



- Start with a given (large) number of circular sliding windows centered at randomly selected centroids and having radius r.
- While True;
  - Compute k new centroids by averaging examples in each sliding windows (the centroids are shifted towards regions of higher density)
  - If centroids don't change:
    - Break
- If multiple sliding windows overlap, then only the window containing the most points is preserved.
- Each data point is assigned to the nearest centroid.













Model: K gaussians (one-dimentional):

• 
$$p(x) = \sum_{k=1}^{K} \Phi_k N(x|\mu_k, \sigma_k)$$

• 
$$N(x|\mu_k, \sigma_k) = \frac{1}{\sqrt{2\pi}\sigma_k} \exp\left(-\frac{(x-\mu_k)^2}{2\sigma_k^2}\right)$$

$$\bullet \sum_{k=1}^K \Phi_k = 1$$

- Want to find  $(\Phi_k, \mu_k, \sigma_k)$  for all k maximizing  $\prod_{i=1}^n p(x_i)$
- Chicken and egg problem:
  - need  $(\Phi_k, \mu_k, \sigma_k)$  for all k to guess source of points
  - need to know source to estimate  $(\Phi_k, \mu_k, \sigma_k)$

#### Expectation-Maximization algorithm:

- start with randomly placed Gaussians  $(\Phi_k, \mu_k, \sigma_k)$
- (E-step) for each i, k compute  $\gamma_{i,k} \sim \text{did } x_i$  came from k?
- (M-step) adjust  $(\Phi_k, \mu_k, \sigma_k)$  to fit points assigned to them
- iterate until convergence

$$\gamma_{i,k} = \frac{\Phi_k \mathcal{N}(x_i | \mu_k, \sigma_k)}{\sum\limits_{k=1}^K \Phi_k(x_i | \mu_k, \sigma_k)}$$

$$\Phi_k = \sum_{i=1}^N \frac{\gamma_{i,k}}{N}$$

$$\mu_k = \frac{\sum_{i=1}^N \gamma_{i,k} x_i}{\sum_{i=1}^N \gamma_{i,k}} \quad \sigma_k^2 = \frac{\sum_{i=1}^N \gamma_{i,k} (x_i - \mu_k)^2}{\sum_{i=1}^N \gamma_{i,k}}$$

Mean-shift GMM: Gaussian Mixture Model Hierarchical clustering





р6











Mean-shift GMM: Gaussian Mixture Model Hierarchical clustering





Mean-shift GMM: Gaussian Mixture Model Hierarchical clustering























#### Two types of hierarchical clustering:

- Agglomerative. This is a "bottom-up" approach: each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy.
- Divisive. This is a "top-down" approach: all observations start in one cluster, and splits are performed recursively as one moves down the hierarchy.

## Aglomerative hierarchical clustering

Maximum (or complete) linkage clustering:

$$d(A,B) = \max\{d(a,b) : a \in A, b \in B\}$$

Minimum (or single) linkage clustering:

$$d(A,B) = \min\{d(a,b) : a \in A, b \in B\}$$

Average linkage clustering:

$$d(A,B) = \frac{1}{|A| \cdot |B|} \sum_{a \in A} \sum_{b \in B} d(a,b)$$

# Divisive hierarchical clustering

**Dasgupta's objective and algorithm**: Repeatedly subdivides the elements using an approximation algorithm for the sparsest cut problem.

### **Outline**

- What is clustering? Motivation?
- 2 k-means
- Other clustering algorithms
  - Mean-shift
  - GMM: Gaussian Mixture Model
  - Hierarchical clustering
- Validation

#### **Validation**

- For supervised classification we have a variety of measures to evaluate how good our model is: Accuracy, precision, recall
- For clustering, the analogous question is how to evaluate the "goodness" of the resulting clusters?
- "Clusters are in the eye of the beholder"!
- We still want some tools to:
  - To avoid finding patterns in noise
  - To compare clustering algorithms
  - To compare two sets of clusters
  - To compare two clusters

#### Validation

Two types of numerical measures to judge cluster validity:

- Internal Index: Used to measure the goodness of a clustering structure without respect to external information. (e.g. distortion, silhoutte score)
- External Index: Used to measure the extent to which cluster labels match externally supplied class labels. (e.g. Entropy, Purity, Adjusted Rand Index)

#### Validation: External Index

Table 5.9. K-means Clustering Results for LA Document Data Set

| Cluster | Entertainment | Financial | Foreign | Metro | National | Sports | Entropy | Purity |
|---------|---------------|-----------|---------|-------|----------|--------|---------|--------|
| 1       | 3             | 5         | 40      | 506   | 96       | 27     | 1.2270  | 0.7474 |
| 2       | 4             | 7         | 280     | 29    | 39       | 2      | 1.1472  | 0.7756 |
| 3       | 1             | 1         | 1       | 7     | 4        | 671    | 0.1813  | 0.9796 |
| 4       | 10            | 162       | 3       | 119   | 73       | 2      | 1.7487  | 0.4390 |
| 5       | 331           | 22        | 5       | 70    | 13       | 23     | 1.3976  | 0.7134 |
| 6       | 5             | 358       | 12      | 212   | 48       | 13     | 1.5523  | 0.5525 |
| Total   | 354           | 555       | 341     | 943   | 273      | 738    | 1.1450  | 0.7203 |

 $m_j$  = size of cluster j, m = number of documents  $p_{ij}$  = probability that a random document of cluster j belongs to topic i. For example,  $p_{13} = 1/685$ .

Entropy of a cluster:

$$e_j = -\sum_{i=1}^n p_{ij} \log_2(p_{ij})$$

• Entropy of a clustering:  $\sum_{i=0}^{m_j} e_i$ 

• Purity of a clustering:  $\sum_{i=1}^{m_i} p_i w_i t_i v_i$ 

$$\sum_{i} \frac{m_{j}}{m} purity_{j}$$

