Analista Programador Universitario

Programación Estructurada

FINALIZACIÓN DE BUCLES

Facultad de Ingeniería Universidad Nacional de Jujuy

Bucles Infinitos (1)

- ¿Qué ocurre cuando en un programa un conjunto de acciones se repite sin control?
 - Bucles infinitos

Bucles Infinitos (2)

- Los bucles infinitos no alcanzan la condición de finalización y por tanto se repiten indefinidamente.
- Se deben a errores de diseño: incorrecta formulación de la condición de finalización, omisión o errores en las instrucciones que modifican la condición de salida.

```
ciclo<-VERDADERO
MIENTRAS ciclo=VERDADERO HACER
ESCRIBIR "BUCLE INFINITO"
```

FIN MIENTRAS

contador<-1

MIENTRAS contador < 20 HACER
ESCRIBIR "BUCLE INFINITO"

contador<-contador - 1</pre>

FIN MIENTRAS

Criterios de Finalización

- ¿Cuáles son los criterios para finalizar las iteraciones de un bucle?
 - Por Valor Centinela

Por Bandera

Por Contador

Pinalización por Centinela

Valor Centinela

 El bucle es controlado por un valor especial denominado centinela. Cuando este valor se presenta entonces el bucle finaliza.

Mientras: Controlado por Centinela (1)

- Inicialización: se asigna el valor inicial a la variable de control del bucle
- Condición de repetición: se verifica que la variable de control sea DISTINTA al valor centinela.
 - Cond. Verdadera repite
 - Cond. Falsa finaliza
- Modificación de la variable de control: se realiza alguna operación que modifica la variable de control.

Mientras: Controlado por Centinela (2)

- Diseñe un algoritmo que sume valores ingresados por el usuario, hasta que se introduzca un 0. Implemente el bucle de cálculo con estructuras MIENTRAS y utilice la finalización por centinela.
- Inicialización:

num ← -1 (arbitrario)

Condición de repetición:

Modificación:

LEER num + - -

Bepetir: Controlado por Centinela (1)

- Inicialización: se asigna el valor inicial a la variable de control del bucle (OPCIONAL)
- Modificación de la variable de control: se realiza alguna operación que modifica la variable de control.
- Condición de repetición: se verifica que la variable de control sea IGUAL al valor centinela.
 - Cond. Falsa repite
 - Cond. Verdadera finaliza

Bepetir: Controlado por Centinela (2)

- Diseñe un algoritmo que sume valores ingresados por el usuario. Considere que el ingreso finaliza a petición del usuario. Implemente el bucle de cálculo con estructuras REPETIR y utilice la finalización por centinela.
- /nicialización:

rta ← ' ' (arbitrario y opcional)

Modificación:

LEER rta

Condición de repetición:

rta = 'n' 0 rta = 'N'

Pinalización por Bandera

Bandera

 El bucle es controlado por una variable lógica, denominada bandera, que se utiliza para detectar la ocurrencia de un evento. Cuando éste se produce el bucle finaliza.

Mientras: Controlado por Bandera (1)

- Inicialización: se asigna el valor inicial a la bandera
- Condición de repetición: se analiza el valor de la bandera
 - Cond. Verdadera repite
 - Cond. Falsa finaliza
- Detección de un evento: se verifica si determinado evento ocurrió o no en el programa. La ocurrencia del evento implica modificar la bandera.

Mientras: Controlado por Bandera (2)

- Diseñe un algoritmo que calcule, mediante la suma de impares, el cuadrado de un número. Realice el bucle de cálculo con estructuras MIENTRAS y utilice la finalización por bandera.
- Inicialización:

calcular ← num > 0

Condición de repetición:

calcular = Verdadero

Modificación:

calcular ← Falso ← -

$$5^2 = 1 + 3 + 5 + 7 + 9 = 25$$

Bepetir: Controlado por Bandera (1)

- Inicialización: se asigna el valor inicial a la bandera
- Detección de un evento: se verifica si determinado evento ocurrió o no en el programa. La ocurrencia del evento implica modificar la bandera.
 - Condición de repetición: se analiza el valor de la bandera
 - Cond. Falsa repite
 - Cond. Verdadera finaliza

Bepetir: Controlado por Bandera (2)

- Diseñe un algoritmo que calcule el cociente entero, mediante restas, de 2 números ingresados por el usuario. Implemente el bucle de cálculo con estructuras REPETIR y utilice la finalización por bandera.
- Inicialización:

salir ← num1 < num2

Modificación:

salir ← Verdadero ◆

Condición de repetición:

salir = Verdadero

Pinalización por Contador

Contador

El bucle es controlado por una variable numérica, denominada contador, que se utiliza para contar la cantidad de repeticiones u ocurrencias del bucle. El bucle finaliza al completar la cuenta.

Mientras: Controlado por Contador (1)

- Inicialización: se asigna el valor inicial al contador
- Condición de repetición: se verifica que el contador se encuentre entre el valor_inicial y valor_final
 - Cond. Verdadera repite
 - Cond. Falsa finaliza
- Modificación del contador: se incrementa o decrementa el valor del contador.

Mientras: Controlado por Contador (2)

- Diseñe un algoritmo que calcule el factorial de un número ingresado por el usuario. Implemente el bucle de cálculo con estructuras MIENTRAS y utilice la finalización por contador.
- Inicialización:

contador ←1

Condición de repetición:

contador <= num

Modificación:

contador ← contador + 1

Repetir: Controlado por Contador (1)

- Inicialización: se asigna el valor inicial al contador
- Modificación del contador: se incrementa o decrementa el valor del contador.
- Condición de repetición: se verifica que el contador no supere el valor_final
 - Cond. Falsa repite
 - Cond. Verdadera finaliza

Bepetir: Controlado por Contador (2)

- Diseñe un algoritmo que calcule el producto, mediante sumas, de 2 números ingresados por el usuario. Implemente el bucle de cálculo con estructuras REPETIR y use la finalización por contador.
- Inicialización:

contador ← 1

Modificación:

contador ← contador + 1

Condición de repetición:

contador > num2

Bjemplos (1)

- Diseñe un algoritmo que, mediante productos sucesivos, calcule la potencia de un número A elevado a B, siendo ambos ingresados por el usuario. Utilice estructuras MIENTRAS para el cálculo y el criterio de finalización por VALOR CENTINELA para controlar las repeticiones.
- Diseñe un algoritmo que, mediante productos sucesivos, calcule la potencia de un número A elevado a B, siendo ambos ingresados por el usuario. Utilice estructuras REPETIR para el cálculo y el criterio de finalización BANDERA para controlar las repeticiones.
- Diseñe un algoritmo que, mediante productos sucesivos, calcule la potencia de un número A elevado a B, siendo ambos ingresados por el usuario. Utilice el criterio de finalización por CONTADOR para controlar las repeticiones.

Ejemplos (2)

Diseñe un algoritmo que determine si un número ingresado por el usuario es primo o no.

```
Un número natural es primo si sólo es divisible por 1 y por sí mismo.

Por ejemplo:

2 es primo? Divisible por 1 y 2

7 es primo? Divisible por 1 y 7

9 es primo? Divisible por 1, 3 y 9

21 es primo? Divisible por 1, 3, 7, 21

23 es primo? Divisible por 1 y 23
```

Ejemplos (3)

Diseñe un algoritmo que determine si un número ingresado por el usuario es primo o no.

```
Análisis del número 7
Para 7/2 se obtiene resto 1
Para 7/3 se obtiene resto 1
                                Sólo es
                                divisible
Para 7/4 se obtiene resto 3
                                Por 1 4 7
Para 7/5 se obtiene resto 2
Para 7/6 se obtiene resto 1
```

Bjemplos (4)

Diseñe un algoritmo que determine si un número ingresado por el usuario es primo o no.

```
Análisis del número 15
Para 15 / 2 se obtiene resto 1
Para 15/3 se obtiene resto D
                                   Es
                                 divisible
Para 15 / 4 se obtiene resto 3
                                por 1, 3,
Para 15/5 se obtiene resto D
                                  5415
Para 15/14 se obtiene resto 1
```