Task 5: Exploratory Data Analysis (EDA)

Objective: Extract insights using visual and statistical exploration.

Import Libraries

```
# For data handling and analysis
import pandas as pd
```

For data visualization
import matplotlib.pyplot as plt
import seaborn as sns

Set Seaborn style for plots
sns.set(style="whitegrid")

Load the Dataset

```
# Load train.csv file
df = pd.read_csv("/content/train.csv")
```

Show the first few rows to get a preview
df.head()

_	Pa	ssengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S	11.
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С	
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lilv Mav Peel)	female	35.0	1	0	113803	53.1000	C123	S	

New interactive sheet

Generate code with df

Understand the Dataset

Basic structure of data: columns, non-null values, and data types df.info()

View recommended plots

Summary statistics for numeric columns
df.describe()

Total number of rows and columns
df.shape

Show column names
df.columns

Next steps: (

Count of unique values in each column
df.nunique()

<<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtyp	es: float64(2), int64(5), obj	ect(5)
memo	ry usage: 83.	7+ KB	

	U
Passengerld	891
Survived	2
Pclass	3
Name	891
Sex	2
Age	88
SibSp	7
Parch	7
Ticket	681
Fare	248
Cabin	147
Embarked	3

dtype: int64

Missing Value Detection

Total missing values in each column
df.isnull().sum()

Percentage of missing values per column (df.isnull().sum() / len(df)) * 100 $\,$

	0
Passengerld	0.000000
Survived	0.000000
Pclass	0.000000
Name	0.000000
Sex	0.000000
Age	19.865320
SibSp	0.000000
Parch	0.000000
Ticket	0.000000
Fare	0.000000
Cabin	77.104377
Embarked	0.224467

dtype: float64

Handle Missing Values (Basic Cleaning)

df.describe()

}		PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
col	unt	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
me	ean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
st	td	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
m	in	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25	5%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50)%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75	5%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
m	ах	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

```
# Fill missing Age values with median
df['Age'].fillna(df['Age'].median(), inplace=True)
```

```
# Fill missing Embarked values with the mode
df['Embarked'].fillna(df['Embarked'].mode()[0], inplace=True)
```

<ipython-input-19-ee3788848f25>:2: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on wh

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)'

df['Age'].fillna(df['Age'].median(), inplace=True)

Check again for null values

df.isnull().sum()

Target Variable Analysis (Survived)

Count values in Survived column
df['Survived'].value_counts()

[#] Drop the 'Cabin' column due to too many missing values
df.drop('Cabin', axis=1, inplace=True)

Plot count of survival
sns.countplot(x='Survived', data=df)
plt.title("Survival Count")
plt.show()

Percentage of survived
df['Survived'].value_counts(normalize=True) * 100

proportion

Survived	
0	61.616162
1	38.383838

dtype: float64

Observation:

- Around 550 passengers did not survive.
- About 340 passengers survived.
- Majority of passengers died (approx. 62%).

Univariate Analysis (Single Variable)

Gender distribution
sns.countplot(x='Sex', data=df)
plt.title("Gender Distribution")
plt.show()

Observation:

• There were more male passengers than female passengers.

```
# Passenger class distribution
sns.countplot(x='Pclass', data=df)
plt.title("Passenger Class Distribution")
plt.show()
```


Observation:

• Most passengers traveled in 3rd class.

```
# Age distribution
df['Age'].hist(bins=30)
plt.title("Age Distribution")
plt.xlabel("Age")
plt.ylabel("Frequency")
plt.show()
```

₹

Observation:

• Majority of passengers were aged 20 to 40 years.

```
# Fare distribution
df['Fare'].hist(bins=40)
plt.title("Fare Distribution")
plt.xlabel("Fare")
plt.ylabel("Frequency")
plt.show()
```


Observation:

• Most passengers paid less than \$100 for their ticket.

```
# Embarked distribution
sns.countplot(x='Embarked', data=df)
plt.title("Port of Embarkation")
plt.show()
```


Observation:

• This can suggest that Southampton was a major departure port for the Titanic.

Bivariate Analysis (Two Variables Together)

Survival by Gender

sns.countplot(x='Survived', hue='Sex', data=df)
plt.title("Survival by Gender")
plt.show()

Observation:

• Females had a much higher survival rate than males.

Survival by Passenger Class

sns.countplot(x='Survived', hue='Pclass', data=df)
plt.title("Survival by Passenger Class")
plt.show()

Observation:

· 1st class passengers were most likely to survive.

Survival by Embarked

sns.countplot(x='Survived', hue='Embarked', data=df)
plt.title("Survival by Embarked Port")
plt.show()

Observation:

- Passengers from Cherbourg (C) had the highest survival rate proportionally.
- Southampton (S) had the highest number of passengers, but many of them did not survive.
- Passengers from Queenstown (Q) were fewer and had a low survival count.

Boxplots (Distribution based on Survival)

Age vs Survival

sns.boxplot(x='Survived', y='Age', data=df)
plt.title("Age Distribution by Survival")
plt.show()

Observation:

• Younger passengers had slightly better survival chances.

Fare vs Survival

sns.boxplot(x='Survived', y='Fare', data=df)
plt.title("Fare Distribution by Survival")
plt.show()

Observation:

· Those who paid higher fares had better survival rates.

Correlation Analysis

This will automatically exclude non-numeric columns
correlation = df.corr(numeric_only=True)

Heatmap

sns.heatmap(correlation, annot=True, cmap='coolwarm')
plt.title("Correlation Heatmap (Numerical Features Only)")
plt.show()

Observation:

- · Strong negative correlation between Pclass and Survived
- · Positive correlation between Fare and Survived
- Sex (encoded later) will also show strong correlation with survival

Pairplot (Explore Relationships)

sns.pairplot(df[['Survived', 'Pclass', 'Age', 'Fare']], hue='Survived')
plt.show()

Observation:

• Clear visual patterns: survival more common among higher fare and 1st class passengers.

Value Counts for Categorical Variables

df['Sex'].value_counts()

df['Pclass'].value_counts()

_		count
	Pclass	
	3	491
	1	216
	2	184

dtype: int64

_		count
	Embarked	
	s	646
	С	168
	Q	77

dtype: int64

GroupBy Aggregations

Average survival by Sex
df.groupby('Sex')['Survived'].mean()

Average survival by Pclass
df.groupby('Pclass')['Survived'].mean()

→		Survived
	Pclass	
	1	0.629630
	2	0.472826