

딥러닝 개론

July 4, 2017

Seung-Chan Kim, Ph. D

All my great stuff, I learned outside of school

http://www.cnbc.com/2016/04/21/steve-wozniak-school-is-not-enough-go-beyond-it.html

- 1. 머신러닝 개론 및 주요 개념의 이해. Tensorflow 시스템 설치 및 환경설정 (7/4 화)
- 2. Tensorflow 에 익숙해지기 실습 및 Regression의 이해 (7/6 목)
- 3. Neural Network 이해 및 tensorflow 를 이용한 구현 (7/11 화)
- 4. 이미지 분류 이해 및 Tensorflow를 이용한 구현 (7/13 목)

왜 Learn 인가?

• 예시 데이터 (example data) 또는 과거의 경험 데이터 (past experience) 등을 이용하여 컴퓨터가 특정 performance 조건을 최적화 할 수 있도록 프로그래밍 하는 것.

• 월급 등을 계산하기 위해 learn을 할 필요는 없다!

Alpaydin, Ethem. Introduction to machine learning. MIT press, 2004.

Machine Learning (ML) 의 분류 (또는 활용)

Association Analysis

P (chips | beer) = 0.7

- Supervised Learning
 - Classification
 - Regression/Prediction

Unsupervised Learning

Reinforcement Learning

Quiz ?!

Quiz!

Neural Network: playground.tensorflow.org

Regression (회귀)

Applications

그림 자동 색칠하기

#중학생을위한딥러닝

Colorization : 흑백 → Color

Larsson, Gustav, Michael Maire, and Gregory Shakhnarovich. "Learning representations for automatic colorization." *European Conference on Computer Vision*. Springer International Publishing, 2016.

그림 자동 완성

https://www.autodraw.com/ #중학생을위한딥러닝

글자를 만들어 낸다면?

https://github.com/dalek7/DNN/tree/master/tensorflow/GAN

Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.

그림 의미 인식하기

http://cs231n.github.io/classification/

강아지 종류 맞추기!

('Image', 1) ('Great Pyrenees', 0.26985887) ('kuvasz', 0.1741506) ('borzoi, Russian wolfhound', 0.091033742) ('clumber, clumber spaniel', 0.054091215) ('Maltese dog, Maltese terrier, Maltese', 0.042495646)

Character Sequence RNN

```
(0, 'loss:', 2.9521115, 'Prediction:', 'eeeeee
                                                       a aaa')
(1, 'loss:', 2.6848218, 'Prediction:', 'eeeeeeeeee
                                                         aaabbaaaaaaaa')
(2, 'loss:', 2.5180614, 'Prediction:', 'eeeeeeeeeeeeeeeeeeeeeeeeee')
(3, 'loss:', 3.3403704, 'Prediction:', 'eeeeeeeeeee
(4, 'loss:', 2.7485611, 'Prediction:', 'ttteeeeeeeee
(5, 'loss:', 2.6026878, 'Prediction:', 'ttttttttlltlll
                                                      a aa')
(6, 'loss:', 2.5338719, 'Prediction:', 'ttttttttaa aa
                                                       aa aaaa ')
(7, 'loss:', 2.4470143, 'Prediction:', 'tttttttt aa
                                                           a ')
(8, 'loss:', 2.3371212, 'Prediction:', 'tttttttt
                                                     a a
(9, 'loss:', 2.2038879, 'Prediction:', 'tttttttt tt f y ya a ')
(10, 'loss:', 2.0571938, 'Prediction:', 'tttttttt
                                                 vf v va t ba !')
(11, 'loss:', 1.8869145, 'Prediction:', 'tttttttt e yf y ya t ba e !')
(12, 'loss:', 1.6981899, 'Prediction:', 'Gtththtt ea yf you yant bage!')
(13, 'loss:', 1.4863166, 'Prediction:', 'Gtththtr ear yf you yant bage!')
(14, 'loss:', 1.288029, 'Prediction:', 'Get t er ear y yf you yant bage s!')
(15, 'loss:', 1.0916867, 'Prediction:', 'Get t err early yf you want bagels!')
(16, 'loss:', 0.91426879, 'Prediction:', 'Get e errrearly yf you want bagely!')
(17, 'loss:', 0.76181585, 'Prediction:', 'Get e err early yf you want bagely!')
(18, 'loss:', 0.62807894, 'Prediction:', 'Get e ere early if you want bagels!')
(48, 'loss:', 0.0033647721, 'Prediction:', 'Get there early if you want bagels!')
(49, 'loss:', 0.0031009316, 'Prediction:', 'Get there early if you want bagels!')
```

Time series data 학습!

Tensorflow

설치 및 익숙해지기

Tensorflow

- 기계 학습과 딥러닝을 위해 구글에서 만든 오픈소스 라이브러리
- 데이터 플로우 그래프 (Data flow graph) 방식을 사용

Deep learning libraries: Accumulated GitHub metrics

Aggre	egate po	pularity (30•contrib + 10•issues + 5•forks)•1e-3
#1:	172.29	tensorflow/tensorflow
#2:	89.78	BVLC/caffe
#3:	69.70	fchollet/keras
#4:	53.09	dmlc/mxnet
#5:	38.23	Theano/Theano
#6:	29.86	deeplearning4j/deeplearning4j
#7:	27.99	Microsoft/CNTK
#8:	17.36	torch/torch7
#9:	14.43	baidu/paddle
#10:	13.10	pfnet/chainer
#11:	12.37	NVIDIA/DIGITS
#12:	10.42	tflearn/tflearn
#13:	9.20	pytorch/pytorch

https://twitter.com/fchollet/status/830499993450450944/

설치하기

 MAC / Linux <u>https://github.com/dalek7/DLWorkshop17Summer/blob/master/installation-mac.md</u>

Windows

https://github.com/dalek7/DLWorkshop17Summer/blob/master/installation-windows.md

설치가 완료되면

• https://github.com/dalek7/DLWorkshop17Summer

모든 것은 Tensor로 구성되어 있음!

```
In [2]: t = tf.constant(3) # a rank 0 tensor; this is a scalar with shape []
print(sess.run(t))

3
In [3]: t = tf.constant([1., 2., 3.]) # a rank 1 tensor; this is a vector with shape [3]
print(sess.run(t))
    [1. 2. 3.]
In [4]: t = tf.constant([[1., 2., 3.], [4., 5., 6.]]) # a rank 2 tensor; a matrix with shape [2,3]
print(sess.run(t))
    [[ 1. 2. 3.]
    [ 4. 5. 6.]]
In [5]: t = tf.constant([[[1., 2., 3.]], [[7., 8., 9.]]]) # a rank 3 tensor with shape [2,1,3]
print(sess.run(t))
    [[ 1. 2. 3.]]
    [[ 7. 8. 9.]]]
```


Tensor Ranks, Shapes, and Types

Rank	Math entity	Python example
0	Scalar (magnitude only)	s = 483
1	Vector (magnitude and direction)	v = [1.1, 2.2, 3.3]
2	Matrix (table of numbers)	m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
3	3-Tensor (cube of numbers)	t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]]
n	n-Tensor (you get the idea)	

https://www.tensorflow.org/programmers_guide/dims_types

다음시간에는...

한 개의 종속 변수(dependent variable)와 설명 변수들 (explanatory variables)과의 관계를 모델링.

독립 변수 종속 변수

x (hours)	y (score)
10	90
9	80
3	50
2	30

다음시간에는...

Image

DEEP NEURAL NETWORKS

Image

문과 계열 학생을 위한 Guide

- ●행렬
 - http://cs.sungshin.ac.kr/~dkim/Lectures/dm_2013_ch05.pdf
 - http://www.sfu.ca/~wainwrig/Econ331/331-notes-matrix.pdf

All my great stuff, I learned outside of school

- 모두를 위한 머신러닝/딥러닝 강의 https://github.com/hunkim/DeepLearningZeroToAll
- Reddit: machine learning https://www.reddit.com/r/MachineLearning/
- 머신러닝 속 수학 https://mingrammer.com/translation-the-mathematics-of-machine-learning
- 수학을 포기한 직업 프로그래머가 머신러닝 학습을 시작하기위한 학습법 소개
 http://qiita.com/daxanya1/items/218f2e3b922142550ef9

Seung-chan Seung-Chan Jeung-Chan

감사합니다.

정답:

