Lesson 32: Function Arithmetic

CC attribute: Beginning and Intermediate Algebra by T. Wallace.

Objective: Add, subtract, multiply, and divide functions.

Students will be able to:

- Evaluate functions that are added, subtracted, multiplied, or divided by substituting a value into each function, then applying the operation and simplifying.
- Apply the four basic operations to functions of the same variable.

Prerequisite Knowledge:

- Order of operations.
- Evaluating functions.
- Parentheses and grouping.

Lesson:

The notation for the four basic function operations is as follows.

Addition
$$(f+g)(x) = f(x) + g(x)$$

Subtraction $(f-g)(x) = f(x) - g(x)$
Multiplication $(f \cdot g)(x) = f(x) \cdot g(x)$
Division $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$

I - Motivating Example(s):

Example: Find f + g, where $f(x) = x^2 - x - 2$ and g(x) = x + 1.

$$(f+g)(x)$$
 Consider the problem $f(x)+g(x)$ Rewrite as a sum of two functions $(x^2-x-2)+(x+1)$ Substitute functions, inserting parentheses $x^2-x-2+x+1$ Simplify; remove the parentheses $x^2-x+x-2+1$ Combine like terms $(f+g)(x)=x^2-1$ Our solution $=(x-1)(x+1)$ Our solution in factored form

Generally, either form (expanded or factored) would be considered acceptable.

Example: Find g - f, where $f(x) = x^2 - x - 2$ and g(x) = x + 1.

$$(g-f)(x)$$
 Consider the problem $g(x)-f(x)$ Rewrite as a difference of two functions $(x+1)-(x^2-x-2)$ Substitute functions, inserting parentheses $x+1-x^2+x+2$ Simplify; distribute the negative sign $-x^2+x+x+1+2$ Combine like terms $(g-f)(x)=-x^2+2x+3$ Our solution $=-(x-3)(x+1)$ Our solution in factored form

Example: Find $h \cdot k$, where $h(x) = 3x^2 - 4x$ and k(x) = x - 2.

$$(h \cdot k)(x)$$
 Consider the problem $h(x) \cdot k(x)$ Rewrite as a product of two functions $(3x^2 - 4x)(x - 2)$ Substitute functions, inserting parentheses $3x^3 - 6x^2 - 4x^2 + 8x$ Expand by distributing $3x^3 - 10x^2 + 8x$ Combine like terms $(h \cdot k)(x) = 3x^3 - 10x^2 + 8x$ Our solution $= x(3x - 4)(x - 2)$ Our solution in factored form

Example: Find $\frac{g}{f}$, where $f(x) = x^2 - x - 2$ and g(x) = x + 1.

$$\frac{x+1}{(x+1)(x-2)}$$
 Simplify: reduce $\frac{x+1}{x+1}$
$$\left(\frac{g}{f}\right)(x) = \frac{1}{x-2}, \quad x \neq -1$$
 Our solution with added restriction

II - Demo/Discussion Problems:

Use h(x) = 2x - 4 and k(x) = -3x + 1 to find each of the following values for x = 3 in two ways:

- a. Evaluate both h and k at x=3, then combine and simplify the two values accordingly.
- b. Find a simplified expression for the desired combined function, then evaluate it at x = 3.
- 1. (h+k)(3)

3. (h-k)(3)

5. $\left(\frac{h}{k}\right)$ (3)

2. $(h \cdot k)(3)$

4. (k-h)(3)

6. $\left(\frac{k}{h}\right)$ (3)

III - Practice Problems:

In each problem, use the pair of functions f and q to find the following values, if they exist.

• (f+q)(2)

• (f-g)(-1)

• (g-f)(1)

• $(fg)\left(\frac{1}{2}\right)$

- $\bullet \left(\frac{f}{a}\right)(0)$
- $\bullet \left(\frac{g}{f}\right)(-2)$

- 1. f(x) = 3x + 1 q(x) = 4 x
- 7. f(x) = 2x $g(x) = \frac{1}{2x+1}$
- 2. $f(x) = x^2$ g(x) = -2x + 1
- 3. $f(x) = x^2 x$ $q(x) = 12 x^2$
- 8. $f(x) = x^2$ $g(x) = \frac{3}{2x 3}$
- 4. $f(x) = 2x^3$ $q(x) = -x^2 2x 3$
- 9. $f(x) = x^2$ $g(x) = \frac{1}{x^2}$
- 5. $f(x) = \sqrt{x+3}$ g(x) = 2x-1
- 10. $f(x) = x^2 + 1$ $g(x) = \frac{1}{x^2 + 1}$

6. $f(x) = \sqrt{4-x}$ $g(x) = \sqrt{x+2}$

In each problem, use the pair of functions f and g to find the domain of the indicated function then find and simplify an expression for it.

•
$$(f+g)(x)$$
 • $(f-g)(x)$

 $\bullet \ (fg)(x)$

 $\bullet \left(\frac{f}{a}\right)(x)$

11.
$$f(x) = 2x + 1$$
 $g(x) = x - 2$

17.
$$f(x) = \frac{x}{2}$$
 $g(x) = \frac{2}{x}$

12.
$$f(x) = 1 - 4x$$
 $g(x) = 2x - 1$

18.
$$f(x) = x - 1$$
 $g(x) = \frac{1}{x - 1}$

13.
$$f(x) = x^2$$
 $g(x) = 3x - 1$

18.
$$f(x) = x - 1$$
 $g(x) = \frac{1}{x - 1}$

14.
$$f(x) = x^2 - x$$
 $g(x) = 7x$
15. $f(x) = x^2 - 4$ $g(x) = 3x + 6$

19.
$$f(x) = x$$
 $q(x) = \sqrt{x+1}$

16.
$$f(x) = -x^2 + x + 6$$
 $g(x) = x^2 - 9$

20.
$$f(x) = q(x) = \sqrt{x-5}$$