ESTIMATION ET IDENTIFICATION STATISTIQUES Contrôle : Partie théorique

Soient n variables aléatoires X_i , $i=1,\ldots,n$ indépendantes dont la densité de probabilité est de la forme $f(x, \sigma^2) = \frac{x}{\sigma^2} \exp\left[\frac{-x^2}{2\sigma^2}\right] \mathcal{I}_{\mathcal{R}^+}(x)$ où $\sigma > 0$, $\mathcal{I}_{\mathcal{R}^+}(x)$ est la fonction indicatrice sur \mathcal{R}^+ , c'est à dire $\mathcal{I}_{\mathcal{R}^+}(x) = 1$, si $x \in \mathcal{R}^+$ et 0 sinon.

Cette loi est appelée loi de Rayleigh de paramètre σ . Typiquement, la distance D_n à laquelle une particule se trouve de son point de départ, après avoir effectué n pas d'une marche aléatoire symétrique dans le plan, suit approximativement une loi de Rayleigh.

On admettra les résultats suivants :

- $$\begin{split} & & \operatorname{E}[x_k] = \sigma \sqrt{\frac{\pi}{2}} \\ & & \operatorname{E}[x_k^2] = 2\sigma^2 \\ & & \operatorname{E}[x_k^3] = (3\sqrt{\frac{\pi}{2}})\sigma^3 \\ & & \operatorname{E}[x_k^4] = 8\sigma^4 \end{split}$$

L'objectif des deux exercices suivants est de déterminer un estimateur de $\theta = \sigma^2$ en fonction des observations (x_i)

Exercice 1 Estimateur du maximum de vraisemblance

- 1. Écrire la vraisemblance de (x_1, \ldots, x_n) en fonction de θ et montrer que cette fonction admet un maximum global unique que l'on déterminera. En déduire l'estimateur du maximum de vraisem-
- 2. Calculer la moyenne et la variance de $\hat{\theta}$. En déduire que l'estimateur est non-biaisé et converge
- 3. À l'aide de la fonction de vraisemblance, calculer la borne de Cramer-Rao. En déduire que l'estimateur est efficace.

Exercice 2 Estimation Bayésienne

On suppose à présent que le paramètre θ est une variable aléatoire de densité $f(\theta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \frac{1}{\theta^{\alpha+1}} \exp\left(\frac{-\beta}{\theta}\right) \mathcal{I}_{\mathcal{R}^+}(\sigma)$

- 1. Écrire la loi a posteriori $f(\theta|x_1,\ldots,x_n)$
- 2. Montrer que cette loi peut s'écrire sous la forme d'une loi inverse-gamma dont on précisera les paramètres.
- 3. Étudier les variations en fonction de θ du logarithme de la fonction de vraisemblance.
- 4. En déduire l'expression de l'estimateur au sens du maximum a posteriori.
- 5. Exprimer cet estimateur en fonction de l'estimateur du maximum de vraisemblance obtenu à la question précédente et de α , β et n. En déduire la limite quand $n \to \infty$ de l'estimateur du maximum a posteriori. Donner une interprétation de ce résultat en terme d'influence de la loi a priori.