Chapter 4: Data Mining Knowledge Representation

Based on lecture notes of Zdravko Markov, PhD

Data Mining tasks

- 1. Task relevant data
- 2. Background knowledge
- 3. Interestingness measures
- 4. Representing input data and output knowledge
- 5. Visualization techniques

Task relevant data

Where to find the data?

- Database or data warehouse name
- Database tables or data warehouse cubes

How to retrieve the data?

• Using conditions for data selection: relevant attributes or dimensions and data grouping criteria

Background knowledge

Induced by a partial order over the values of a given attribute.

Examples:

- street < city < state < country
- $\{13, ..., 39\}$ = young; $\{13, ..., 19\}$ = teenage; $\{13, ..., 19\}$ $\subseteq \{13, ..., 39\}$ \Rightarrow teenage < young

Interestingness measures

- Confidence of association "if A then B"
- Confidence of association "if A then B"
- Classification Accuracy

Representing input data and output knowledge

Things to be mined/learned (Concepts)

- Classification mining/learning:
 Predicting a discrete class
- Association mining/learning:
 Detecting associations between attributes
- Clustering:Grouping similar instances into clusters
- Numeric prediction:
 Predicting a numeric quantity

Representing input data and output knowledge

Input

- Set of instances (dataset), represented as a single relation (table)
 - Individual, independent examples of the concept to be learned
 - Described by predetermined set of attributes
- Attributes:
 - Predefined set of features to describe an instance
 - Nominal (categorical, enumerated, discrete) attributes:
 - Values are distinct symbols.
 - No relation among nominal values.
 - Ordinal attributes:
 - Partial order among nominal values
 - Numeric attributes:
 - Integer/real number

Representing input data and output knowledge

Output knowledge representation

- Association rules
- Decision trees
- Classification rules
- Rules with relations
- Prediction schemes:
 - Nearest neighbor
 - Bayesian classification
 - Neural networks
 - o Regression
- Clusters:
 - Type of grouping: partitions/hierarchical
 - Grouping or describing: agglomerative/conceptual

Visualization techniques

Why?

- Better understanding the data
- Identifying problems, e.g., detecting outliers
- Identifying dependencies
- Checking the assumptions
- Consulting domain experts
- If data are too much, take a sample

References

Markov, Zdravko. (n.d.). Lecture on Data mining knowledge representation. Central Connecticut State University.