CAMILO CHACÓN SARTORI

INTRODUCCIÓN A LAS METAHEURÍSTICAS PARA PROBLEMAS DE OPTIMIZACIÓN USANDO JULIA Y C++

TEMAS A TRATAR

- 1. Problemas de optimización.
- 2. ¿Qué son las metaheurísticas?
- 3. Algoritmos clásicos (ACO y Genetic).
- 4. Metaheurísticas y Machine Learning.
- 5. Literatura.
- 6. Introducción a Julia.

PROBLEMAS DE OPTIMIZACIÓN #1 KNAPSACK

https://en.wikipedia.org/wiki/Knapsack_problem

PROBLEMAS DE OPTIMIZACIÓN #2 MAXIMUM NUMBER OF EDGE DISJOINT PATHS

https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/edgedisjoint.pdf

PROBLEMAS DE OPTIMIZACIÓN #3 SET COVERING PROBLEM

PROBLEMAS DE OPTIMIZACIÓN #3 SET COVERING PROBLEM

¿QUÉ TIENEN ESTOS PROBLEMAS EN COMÚN?

¿QUÉ SON LAS METAHEURÍSTICAS?

Métodos de aproximación que se utilizan para resolver problemas combinatoriales, donde no es posible usar métodos exactos por el tamaño de las instancias. Generalmente se inspiran en la naturaleza.

ALGORITMOS CLÁSICOS - GENETIC ALGORITHM

Conceptos importantes:

- 1. Crossover.
- 2. Mutation.
- 3. Chromosome.

ALGORITMOS CLÁSICOS - ANT COLONY OPTIMIZATION (ACO)

Conceptos importantes:

- 1.Pheromones.
- 2. Colony.
- 3. Shortest path.

METAHEURÍSTICS Y MACHINE LEARNING

Specifically-located hybridizations

- Parameter fine-tuning
- Initialization
- Evaluation
- Population management
- Operators
- Local search

Global hybridizations

- Reduction of search space
- Algorithm selection
- Hyperheuristics
- Cooperative strategies
- New types of metaheuristics

- Classification
- Regression
- Clustering
- Rule mining

LITERATURA

Papers:

C. Blum and A. Roli A. (2003).

Metaheuristics in combinatorial optimization: Overview and conceptual comparison.

https://www.iiia.csic.es/~christian.blum/downloads/blum roli 2003.pdf

Laura Calvet, Jésica de Armas, David Masip, and Angel A. Juan. (2017).

Learnheuristics: hybridizing metaheuristics with machine learning for optimization with dynamic inputs.

 $\underline{https://www.degruyter.com/downloadpdf/j/math.2017.15.issue-1/math-2017-0029/math-2017-0029.pdf}$

