Domácí úkol 10

Termín odevzdání: 10. 1. 2025 do večera

1.)

Vypočtěte pomocí Taylorova rozvoje:

$$\lim_{x \to 0} \frac{e^{2\sin(x)} + \cos(2x) - 2x - 2}{1 + \ln(1+x) - \sqrt{1+2x}}$$

2.)

Spočtěte přibližně hodnotu $\sqrt[3]{65}$ pomocí Taylorova rozvoje. Dosáhněte výsledku přesného na 5 desetinných cifer. Zkontrolujte, jestli se přibližný výsledek pohybuje v intervalu chyby (Ten určete např. z Lagrangeova tvaru zbytku).

Lagrangeův tvaru zbytku:

$$\exists \xi \in (a,x)$$
:

$$f(x) - p_a^n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}$$

1.)

Vypočtěte pomocí Taylorova rozvoje:

$$\lim_{x \to 0} \frac{e^{2\sin(x)} + \cos(2x) - 2x - 2}{1 + \ln(1+x) - \sqrt{1+2x}}$$

 $\check{R}e\check{s}en\acute{i}$: Limitu budeme hledat pomocí Taylorova rozvoje, vypišme si zde základní rozvoje kolem 0 pro použité funkce.

$$e^{x} = 1 + x + \frac{1}{2}x^{2} + \frac{1}{6}x^{3} + o(x^{3})$$

$$\sin(x) = x - \frac{1}{6}x^{3} + o(x^{3})$$

$$\cos(x) = 1 - \frac{1}{2}x^{2} + o(x^{3})$$

$$\ln(1+x) = x - \frac{1}{2}x^{2} + \frac{1}{3}x^{3} + o(x^{3})$$

$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^{2} + \frac{1}{16}x^{3} + o(x^{3})$$

Taylorovy rozvoje složených funkcí vypočteme jako složení Taylorových rozvojů.

$$e^{2\sin(x)} = 1 + \left(2x - \frac{1}{3}x^3 + o(x^3)\right) + \frac{1}{2}\left(2x - \frac{1}{3}x^3 + o(x^3)\right)^2 + \frac{1}{6}\left(2x - \frac{1}{3}x^3 + o(x^3)\right)^3 + o(x^3) =$$

$$= 1 + 2x - \frac{1}{3}x^3 + 2x^2 + \frac{4}{3}x^3 + o(x^3) =$$

$$= 1 + 2x + 2x^2 + x^3 + o(x^3)$$

$$\cos(2x) = 1 - \frac{1}{2}(2x)^2 + o(x^3) = 1 - 2x^2 + o(x^3)$$

$$\sqrt{1+2x} = 1 + \frac{1}{2}(2x) - \frac{1}{8}(2x)^2 + \frac{1}{16}(2x)^3 + o(x^3) =$$

$$= 1 + x - \frac{1}{2}x^2 + \frac{1}{2}x^3 + o(x^3)$$

Nyní jsme již připraveni dát všechny tyto rozvoje do zadané limity, dostaneme:

$$\lim_{x \to 0} \frac{1 + 2x + 2x^2 + x^3 + 1 - 2x^2 - 2x - 2 + o(x^3)}{1 + x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \left(1 + x - \frac{1}{2}x^2 + \frac{1}{2}x^3\right) + o(x^3)} = \lim_{x \to 0} \frac{x^3 + o(x^3)}{-\frac{1}{6}x^3 + o(x^3)} = -6\lim_{x \to 0} \frac{x^3}{x^3} \frac{1 + \frac{o(x^3)}{x^3}}{1 + \frac{o(x^3)}{x^3}} = -6\lim_{x \to 0} \frac{x^3 + o(x^3)}{x^3} = -6\lim_{x \to 0} \frac{x^3 + o(x^3)}{x^3}$$

2.)

Spočtěte přibližně hodnotu $\sqrt[3]{65}$ pomocí Taylorova rozvoje. Dosáhněte výsledku přesného na 5 desetinných cifer. Zkontrolujte, jestli se přibližný výsledek pohybuje v intervalu chyby (Ten určete např. z Lagrangeova tvaru zbytku).

Lagrangeův tvaru zbytku: $\exists \xi \in (a, x)$:

$$f(x) - p_a^n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}$$

 \mathring{R} ešení: Vytvoříme Taylorův polynom funkce $f(x) = \sqrt[3]{x}$ kolem bodu a = 64, který je touto funkcí snadno vyčíslitelný: $f(64) = \sqrt[3]{64} = 4$. Nyní čelíme otázce, do jakého stupně musíme funkci rozvést, aby nám přesnost stačila na 5 desetinných míst. Chybu můžeme odhadnout pomocí Lagrangeova tvaru zbytku, který tudíž musí mít řádově velikost asi 10^{-6} . Určeme Lagrangeho zbytek pro polynom stupně 1.

$$\frac{f''(\xi)}{2}(65-64)^2 = -\frac{2}{9}\frac{1}{\sqrt[3]{\xi^5}}\frac{1}{2} \ge -\frac{2}{9}\frac{1}{\sqrt[3]{64}}\frac{1}{2} = -\frac{1}{9\cdot 4^5} \approx -0.000\,108\,5 \approx -10^{-4}$$

To není dostačující přesnost, zkusme tedy najít Lagrangeův zbytek polynomu stupně 2.

$$\frac{f'''(\xi)}{6}(65 - 64)^3 = \frac{10}{27} \frac{1}{\sqrt[3]{\xi^8}} \frac{1}{6} \le \frac{10}{27} \frac{1}{\sqrt[3]{64}^8} \frac{1}{6} = \frac{5}{81 \cdot 4^8} \approx 0.000\,000\,942 \approx 10^{-6}$$

Tím pádem bychom se měli dostat na dostatečnou přesnost pomocí Taylorova polynomu druhého stupně. Spočítejme ho tedy podle definice:

$$p_{64}^{2}(x) = 4 + \frac{1}{3} \frac{1}{\sqrt[3]{64}^{2}} (x - 64) - \frac{1}{2} \frac{2}{9} \frac{1}{\sqrt[3]{64}^{5}} (x - 64)^{2} =$$

$$= 4 + \frac{1}{48} (x - 64) - \frac{1}{9 \cdot 4^{5}} (x - 64)^{2}$$

$$p_{64}^{2}(65) = 4 + \frac{1}{48} - \frac{1}{9216} \approx 4.020724826$$

Díky našemu odhadu na Lagrangeův tvar zbytku máme rigorózně nalezený interval, kde se nachází skutečná hodnota.

$$\sqrt[3]{65} \in (4.020724826; 4.020724826 + 0.000000942) = (4.020724826; 4.020725768)$$

Každopádně si můžeme být jistí, že 5 desetinných cifer máme správně. Pro zajímavost, přesná hodnota $\sqrt[3]{65}$ je asi:

$$\sqrt[3]{65} = 4.020725758...$$