Chapter 5. Fast Addition (Part 1)

Contents (Part 1):

- 1. Full Adder
- 2. Ripple-Carry Adder
- 3. Carry-Lookahead Adder

Contents (Part 2)

- 4. Conditional Sum Adder
- **5.** Manchester Adder
- **6.** Carry Select Adder
- 7. Carry Skip Adder
- **8.** Carry Save Adder

Single-digit Adder

- 1. Consider adding two decimal digits
 - s = x + y, where x, y, and s are single digit numbers.
 - There is also a carry-in c_{in} and a carry-out c_{out} .

2. Can you write s and c_{out} as functions of x, y, and c_{in} ?

- 1. Now consider designing a one-bit adder (full adder):
 - S = x + y, where x and y are one-bit operands, s one-bit sum.
 - There is also one-bit carry-in c_{in} and one-bit carry-out c_{out} .

- 2. Arithmetic equations for one-bit adder:
 - $s = (x + y + c_{in}) \mod 2$, and $c_{out} = [(x + y + c_{in}) / 2]$.

3. What are the logic equations for the full adder?

- 4. Recall how to design a circuit for this as a digital logic design problem:
 - 1) create a truth table
 - 2) write Karnaugh map
 - 3) optimise Karnaugh map
 - 4) obtain logic equation
 - 5) draw the circuit

Arithmetic equations:

•
$$S = (X + Y + C_{in}) \mod 2$$
, and $C_{out} = [(X + Y + C_{in}) / 2]$.

• Truth table:

X	Y	Cin	S	Cout
0	0	0	0	0
0	1	0	1	0
1	0	0	1	0
1	1	0	0	1
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	1

Logic equations: (Karnaugh map step omitted)

$$S = X \oplus Y \oplus C_{in}, \quad C_{out} = XY + C_{in}(X \oplus Y)$$

- 1. Representation of the inputs and outputs:
 - Input: X, Y, C_{in} and Output: S, C_{out}
 - All are one-bit binary numbers
- 2. Output logic functions:
 - $S = X \oplus Y \oplus C_{in}, \quad C_{out} = XY + C_{in}(X \oplus Y)$
 - S is the sum bit, and C_{out} is the carry-out bit.
- 3. Circuit diagram for the 1-bit adder shown:
- 4. Space complexity (C) and critical path delay (T):
 - C = 2 AND + 1 OR + 2 XOR
 - \Box 5 gates in total.
 - Critical path delay?

Critical Path Delay for Full Adder

- First to find the critical path:
 - \circ X/Y \rightarrow (red dashed line) \rightarrow C_{out}
- Then find its delay
 - \circ T = 3 Δ_{G}

Finding Critical Path (cp)

Input	Output	Delay
X/Y	S	$2\Delta_{ m G}$
X/Y	C_{out}	$3\Delta_{\rm G} \rightarrow {\rm cp}$
C _{in}	S	$\Delta_{ m G}$
C _{in}	C _{out}	$2\Delta_{ m G}$

 Next we will show how to use FA as building blocks to make ripple-carry adder.

Ripple Carry Adder: 4-bit RCA

- 1. Algorithm for 1-bit addition:
 - $S_i = X_i \oplus Y_i \oplus C_i, \quad C_{i+1} = X_i Y_i + C_i (X_i \oplus Y_i), i=0,1,2,3.$
- 2. Circuit for the 4-bit ripple carry adder:

- 3. Complexities:
 - C = 4 FA = 8 AND + 4 OR + 8 XOR
 - What is its critical path delay?

Ripple Carry Adder: 4-bit RCA

- Critical path (depending on the delay table for FA)
 - $X_0/Y_0 \rightarrow C_1 \rightarrow C_2 \rightarrow C_3 \rightarrow C_4$
- Critical path delay
 - $T = 3\Delta_G + 2\Delta_G + 2\Delta_G + 2\Delta_G = 9\Delta_G$
 - Or, $T = 4\Delta_{FA} = 8\Delta_G$ (as in textbook)
 - why different?

FA and RCA: alternate design

- 1. Algorithm for FA:
 - $S = X \oplus Y \oplus C_{in}, \quad C_{out} = XY + C_{in}X + C_{in}Y$
- 2. Circuit complexity and critical path delay for FA:
 - C = 3 AND + 1 OR + 2 XOR
 - □ 6 gates in total.
 - $T = 2\Delta_G$
- 3. A 4-bit RCA built with this FA:
 - C = 4 FA = 12 AND + 4 OR + 8 XOR
 - $T = 8\Delta_G$

Ripple Carry Adder Complexities

- 4-bit RCA:
 - Circuit complexity
 - 4 FA:
 - o Critical path delay:
 - $\bullet \quad 4\Delta_{\rm FA} = 8\Delta_{\rm G}$
- *n*-bit RCA:
 - Circuit complexity
 - *n* FA:
 - o Critical path delay:
 - $n\Delta_{\text{FA}} = 2n\Delta_{\text{G}} \rightarrow O(n)$
- RCA is the simplest and also the slowest adder.

To Speed up RCA

• Idea:

• In order to cut off the carry chain, the carries c_i are generated separately.

Carry-Lookahead Addition

Let $\begin{cases} G_i = x_i y_i \\ P_i = x_i \bigoplus y_i \end{cases} \text{ for } i = 0, 1, 2, 3.$ (1)

$$\begin{array}{l}
c_1 = G_0 + c_0 P_0 \\
c_2 = G_1 + c_1 P_1 = G_1 + G_0 P_1 + c_0 P_0 P_1 \\
c_3 = G_2 + G_1 P_2 + G_0 P_1 P_2 + c_0 P_0 P_1 P_2 \\
c_4 = G_3 + G_2 P_3 + G_1 P_2 P_3 + G_0 P_1 P_2 P_3 + c_0 P_0 P_1 P_2 P_3
\end{array} \tag{2}$$

 \rightarrow And $S_i = x_i \oplus y_i \oplus c_i$ for i = 0, 1, 2, 3. (3)

Carry-Lookahead Adder

Circuit Diagram

Carry-Lookahead Adder: Delay

Critical Path Delay:

$$T = 1\Delta_G + 2\Delta_G + 1\Delta_G = 4\Delta_G$$

$$T = 1\Delta_G + 2\Delta_G + 2\Delta_G = 5\Delta_G \text{ (textbook)}$$

Construction of n-bit CLA

• Change equation (3) into

And
$$S_i = P_i \oplus c_i$$
 for $i = 0, 1, 2, 3$. (3)

→ 4-bit CLA diagram can be shown as

4-bit CLA Building Block

Let
$$\begin{cases} G_{0,3} = G_3 + G_2 P_3 + G_1 P_2 P_3 + G_0 P_1 P_2 P_3 \\ P_{0,3} = P_0 P_1 P_2 P_3 \end{cases}$$
(4)

Then a 4-bit CLA building block can be shown as

16-bit CLA Using 4-bit CLA Blocks

- Circuit diagram for 16-bit CLA built with 4-bit CLA blocks
 - (Two-level carry lookahead structure)

16-bit CLA Using 4-bit CLA Blocks

- The carry generator module is the same as that in 4-bit CLA,
- where equation (2) becomes

$$c_{4} = G_{0,3} + c_{0}P_{0,3}$$

$$c_{8} = G_{4,7} + c_{4}P_{4,7} = G_{4,7} + G_{0,3}P_{4,7} + c_{0}P_{0,3}P_{4,7}$$

$$c_{12} = G_{8,11} + G_{4,7}P_{8,11} + G_{0,3}P_{4,7}P_{8,11} + c_{0}P_{0,3}P_{4,7}P_{8,11}$$

$$c_{16} = G_{12,15} + G_{8,11}P_{12,15} + G_{4,7}P_{8,11}P_{12,15} + G_{0,3}P_{4,7}P_{8,11}P_{12,15} + c_{0}P_{0,3}P_{4,7}P_{8,11}P_{12,15}$$
(5)

And equation (4) becomes

$$\begin{cases}
G_{0,15} = G_{12,15} + G_{8,11}P_{12,15} + G_{4,7}P_{8,11}P_{12,15} + G_{0,3}P_{4,7}P_{8.11}P_{12,15} \\
P_{0,15} = P_{0,3}P_{4,7}P_{8.11}P_{12,15}
\end{cases} (6)$$

- Note that eqn (5) can be realized using the same logic for eqn (2), Page 10.
- And eqn (6) can be realized using the same logic as for eqn (4), Page 14.

16-bit CLA

- Circuit complexity:
 - o Four 4-bit CLA plus a carry generator module.
- Critical Path Delay:
 - o $T = 8\Delta_G$, or $T = 9\Delta_G$ as given in the textbook
 - o Both the above results are considered as correct.

n-bit CLA

- 64-bit CLA
 - o Circuit complexity: four 16-bit CLA plus a carry generator
 - \circ Critical path delay: 12 Δ_{G}
- Delay for n-bit CLA built in this way:
 - \circ T = 4 log₄n Δ_G
 - o or $T = (4 \log_4 n + 1)\Delta_G$ as given in the textbook