

PONTIFICADA UNIVERSIDAD CATÓLICA

MAT2305

Geometría Diferencial

Autor: Sebastián Lepe V.

2 de julio de 2025

${\bf \acute{I}ndice}$

1.	Curvas en $\mathbb{R}^2, \mathbb{R}^3$	2
	1.1. Conectos Básicos	2
	1.2. Producto Cruz	6
	1.3. Marco de Frenet	7
	1.4. Series de Taylor	
	1.5. Curvas Cerradas, Simples, Rotación y Curvatura total	13
2.	Superficies	17
		20
	2.2. Espacios Tangentes y Diferenciabilidad de funcones entre Superficies Regulares	
	2.3. Variedades y Subvariedades en \mathbb{R}^d	
		28
	2.5. Orientabilidad	
	2.6. La Geodésica	35
3.	Formas Diferenciales, Marcos, Derivada Covariante y Símbolos de Christoffel	39
	3.1. Álgebra Lineal	39
	3.2. 1-Formas Diferenciales y Campos Vectoriales	40
	3.3. k -Formas Diferenciales y Operaciones	41
	3.4. Diferencial Exterior para k -Formas Dierenciales	44
		46
		46
		47
	3.8. Campos de Marcos Ortonormales en \mathbb{R}^n	48
4.	Geometría Diferencial de Superficie, con Formas Diferencial	51
4.	4.1. Mapa Weingarten y Curvaturas	51
4.	4.1. Mapa Weingarten y Curvaturas	51 52
4.	 4.1. Mapa Weingarten y Curvaturas 4.2. Relación entre Formas de Conexión y los Símbolos de Christoffel 4.3. Determinación de Superficie Módulo Movimiento Rígido 4.5. La contraction de Superficie Módulo Movimiento Rígido 4.6. La contraction de Superficie Módulo Movimiento Rígido 4.7. La contraction de Superficie Módulo Movimiento Rígido 4.8. La contraction de Superficie Módulo Movimiento Rígido 4.9. La contraction de Superficie Módulo Rígido 4.9. La contraction de Superficie Módulo Rígido Rígido Rígido Rígido Rígido Rígido Rígido Rí	51 52 52
4.	4.1. Mapa Weingarten y Curvaturas	51 52 52 53
4.	 4.1. Mapa Weingarten y Curvaturas 4.2. Relación entre Formas de Conexión y los Símbolos de Christoffel 4.3. Determinación de Superficie Módulo Movimiento Rígido 4.5. La contraction de Superficie Módulo Movimiento Rígido 4.6. La contraction de Superficie Módulo Movimiento Rígido 4.7. La contraction de Superficie Módulo Movimiento Rígido 4.8. La contraction de Superficie Módulo Movimiento Rígido 4.9. La contraction de Superficie Módulo Rígido 4.9. La contraction de Superficie Módulo Rígido Rígido Rígido Rígido Rígido Rígido Rígido Rí	51 52 52
	4.1. Mapa Weingarten y Curvaturas	51 52 52 53
	4.1. Mapa Weingarten y Curvaturas	51 52 52 53 53 54 54
	4.1. Mapa Weingarten y Curvaturas	51 52 53 53 54 54 55
	4.1. Mapa Weingarten y Curvaturas	51 52 52 53 53 54 54 55 57
	4.1. Mapa Weingarten y Curvaturas	51 52 52 53 53 54 54 55 57 58
	4.1. Mapa Weingarten y Curvaturas	51 52 52 53 53 54 54 55 57 58 60
	4.1. Mapa Weingarten y Curvaturas	51 52 52 53 53 54 54 55 57 58 60
5.	4.1. Mapa Weingarten y Curvaturas	51 52 52 53 53 54 54 55 57 58 60 60
5.	4.1. Mapa Weingarten y Curvaturas	51 52 52 53 53 54 54 55 57 58 60 60 62
5.	4.1. Mapa Weingarten y Curvaturas	51 52 52 53 53 54 54 55 57 58 60 60 62 62 64
5.	4.1. Mapa Weingarten y Curvaturas	51 52 52 53 53 54 54 55 57 58 60 60 62
5 .	4.1. Mapa Weingarten y Curvaturas 4.2. Relación entre Formas de Conexión y los Símbolos de Christoffel 4.3. Determinación de Superficie Módulo Movimiento Rígido 4.4. Teorema de Gauss con Formas Diferenciales 4.5. Curvaturas Principales y Fórmulas de Estructura para Campos de Marcos Principales Integración sobre Superficies y Teorema de Gauss-Bonnet 5.1. Variedades con Borde y Orientación 5.2. Integración de k-formas sobre Subvariedades de dimensión k 5.3. Teorema de Stokes 5.4. Índices de Campos Vecotriales y Teorema de Gauss-Bonnet 5.5. Característica de Euler-Poincaré y Enunciado Equivalente a GB 5.6. Teorema de Gauss-Bonnet para Regiones con BOrde Poligonal Ayudantías 6.1. Ayudantía 1 6.2. Ayudantía 2 6.3. Ayudantía 3	51 52 52 53 53 54 54 55 57 58 60 60 62 62 64
5 .	4.1. Mapa Weingarten y Curvaturas 4.2. Relación entre Formas de Conexión y los Símbolos de Christoffel 4.3. Determinación de Superficie Módulo Movimiento Rígido 4.4. Teorema de Gauss con Formas Diferenciales 4.5. Curvaturas Principales y Fórmulas de Estructura para Campos de Marcos Principales Integración sobre Superficies y Teorema de Gauss-Bonnet 5.1. Variedades con Borde y Orientación 5.2. Integración de k-formas sobre Subvariedades de dimensión k 5.3. Teorema de Stokes 5.4. Índices de Campos Vecotriales y Teorema de Gauss-Bonnet 5.5. Característica de Euler-Poincaré y Enunciado Equivalente a GB 5.6. Teorema de Gauss-Bonnet para Regiones con BOrde Poligonal Ayudantías 6.1. Ayudantía 1 6.2. Ayudantía 2 6.3. Ayudantía 3 Tareas 7.1. Tarea 1	51 52 52 53 53 54 54 55 57 58 60 60 62 64 66 68
5 .	4.1. Mapa Weingarten y Curvaturas 4.2. Relación entre Formas de Conexión y los Símbolos de Christoffel 4.3. Determinación de Superficie Módulo Movimiento Rígido 4.4. Teorema de Gauss con Formas Diferenciales 4.5. Curvaturas Principales y Fórmulas de Estructura para Campos de Marcos Principales Integración sobre Superficies y Teorema de Gauss-Bonnet 5.1. Variedades con Borde y Orientación 5.2. Integración de k-formas sobre Subvariedades de dimensión k 5.3. Teorema de Stokes 5.4. Índices de Campos Vecotriales y Teorema de Gauss-Bonnet 5.5. Característica de Euler-Poincaré y Enunciado Equivalente a GB 5.6. Teorema de Gauss-Bonnet para Regiones con BOrde Poligonal Ayudantías 6.1. Ayudantía 1 6.2. Ayudantía 2 6.3. Ayudantía 3	51 52 52 53 53 54 54 55 57 58 60 60 62 64 66 66

1. Curvas en \mathbb{R}^2 , \mathbb{R}^3

El estudio de la geometría diferencial consiste en el estudio de curvas, especialmente en los espacios \mathbb{R}^2 y \mathbb{R}^3 . Recordemos algunas cosas, sea \mathbb{R}^d nuestro espacio a trabajar, donde d=2,3 dependiento de lo que se diga. Una curva es una función,

$$\varphi: I \to \mathbb{R}^d$$

donde I=(a,b) es un intervalo. Es decir, a partir de un tramo unidimensional, construye un camino en \mathbb{R}^2 . También se puede pensar como un subconjunto de \mathbb{R}^2 de la forma $\varphi(I)$ que sería directamente el dibujo.

Cuando hablamos de curva parametrizada nos referimos a la curva dada por una representación/ función que genera la curva, usualmente se estudian curvas que son dos veces continuamente diferenciable (C^2) .

En estos apuntes se va a trabajar con el espacio métrico (\mathbb{R}^n, d) con d la métrica euclidiana.

1.1. Conectos Básicos

Definición 1.1. (Largo de una curva) Sea una curva $\varphi : [0,1] \to \mathbb{R}^d$. Se define el largo de una curva por,

$$L(\varphi) := \sup \left\{ \sum_{i=0}^{n} \|\varphi(t_{i+1}) - \varphi(t_i)\| : t_0 = 0 < t_1 < \dots < t_n = 1, n \in \mathbb{N} \right\}$$

Observación 1.1. Sean a, b, c vectores del planos distribuidos de la siguiente forma, Pablo clase 1

Podemos ver que $||b-a|| \le ||c-a|| + ||b-c||$, siendo la desigualdad triangular.

Ejemplo 1.1. La función $\varphi(t) = (\text{sen}(10t), \cos(10t))$ donde $t \in [0, 1]$, es una curva que parametríza una circuferencia, en partiuclar,

$$L(\varphi) = 2\pi$$

Calcula el largo de una curva a veces puede resultar bastante complicado, por lo que debemos estudiar unos resultados para simplificar los cálculos.

Definción 1.2. (Curva diferenciable) Sea la curva $\varphi: I \to \mathbb{R}^d$, decimos que es diferenciable si es diferenciable en cada coordenada en todo I.

Nota 1.1. Recordemos que una función es diferenciable, si su derivada existe y tal derivada es continua.

Observación 1.2. En general, si $\varphi(t) = (\varphi_1(t), \dots, \varphi_n(t))$ es una curva diferenciable, entonces la derivada es de la forma,

$$\varphi'(t) = (\varphi_1'(t), \dots, \varphi_n'(t))$$

Por lo que no es muy difícil estudiar la derivada de una curva. También cabe recalcar que φ' es una curva, aunque no de la misma figura.

Ejemplo 1.2. Sea la curva $\varphi: [-1,1] \to \mathbb{R}^2$ dada por $\varphi(t) = (t^3, t^2)$, en un dibujo tendriamos, **Dibujo Pablo**

Ahora, claramente la curva es diferenciable en al menos $[-1,1] \setminus \{0\}$, mientras que en t=0 pareciera que no es diferenciable, pero teoricamente $\varphi'(t)=(2t,3t^2)$ donde $\varphi'(0)=(0,0)$, por lo que este punto es malo al no tener un buen comportamiento.

Definción 1.3. (Curva Regular) Sea una curva $\varphi: I \to \mathbb{R}^d$ diferenciable. Decimos que es regular si $\varphi'(t) \neq 0$ para todo $t \in I$.

Observación 1.3. Entonces una curva regular es una curva que admite tangente en todo el intervalo I.

Proposición 1.1. Si la curva $\varphi: I \to \mathbb{R}^d$ es diferenciable, entonces el largo está bien definido y se determina por,

$$L(\varphi) = \int_{I} \|\varphi'(t)\| dt$$

Idea de la Demostración. Si $\varphi: I \to \mathbb{R}^d$ es diferenciable, entonces se tiene que φ es una curva continua y luego se puede ver que es rectificable, es decir,

$$L(\varphi) < \infty$$

Para ver la igualdad, basta ver que podemos afinar los trazos $\|\varphi(t_{i+1}) - \varphi(t_i)\|$, obteniendo algo del estilo $\|\varphi'(t)\|$, y como estamos trabajando infinitisimalmente, se tiene que,

$$L(\varphi) = \int_{I} \|\varphi'(t)dt\|$$

Nota 1.2. En otros libros, por ejemplo el Do carmo, se define directamente el largo de una curva por,

$$\overline{L}(\varphi) := \int_{I} \|\varphi'(t)\| dt$$

Que es claramente lo de la proposición. Pero en algunos momentos usaremos el largo del Do carmo para no generar confusión.

Definción 1.4. (Reparametrización) Sea $\varphi: I \to \mathbb{R}^d$ diferenciable. Si $f: J \to I$ (J, I intervalos en \mathbb{R}), es un difeomorfismo, entonces f es la reparametrización de φ y $\overline{\varphi} := \varphi \circ f: J \to \mathbb{R}^d$ es la reparametrización de φ por f.

Observación 1.4. La derivada de la nueva parametrización cumple,

$$\overline{\varphi}'_j(t) = \frac{d\varphi_j}{dt}(f(t)) = \varphi'_j(f(t))f'(t)$$

Luego,

$$\overline{\varphi}'(t) = (\varphi_1'(f(t))f'(t), \dots, \varphi_n'(f(t))f'(t)) = \varphi'(t)f'(t)$$

Observación 1.5. Podemos volver a φ usando el hecho que $f^{-1}: I \to J$ y luego, $\varphi(t) = \overline{\varphi}(f^{-1}(t))$.

Proposición 1.2. Sea φ una curva diferenciable y $\overline{\varphi}$ una reparametrización dada por $f: J \to I$, entonces $\overline{L}(\varphi) = \overline{L}(\overline{\varphi})$

Dem. Basta usar definiciones, notemos que,

$$\int_{J} \|\overline{\varphi}'(t)\|dt = \int_{J} \|\varphi'(t)\| |f'(t)|dt$$
$$= \int_{J} \|\varphi'(s)\| ds$$

tomando el cambio de variable s = f(t).

Definción 1.5. (Vector Tangente Unitario) Sea $\gamma: I \to \mathbb{R}^d$ una curva regular, sea I = (a, b). Sea $t \in I$, entonces el vector tangente unitario a γ en $\gamma(t)$ es,

$$\dot{\gamma}(t) := \frac{\gamma'(t)}{\|\gamma'(t)\|}$$

Observación 1.6. El vector tangente unitario tiene claramente módulo 1 ya que,

$$\|\dot{\gamma}(t)\| = \left\| \frac{\gamma'(t)}{\|\gamma'(t)\|} \right\| = \frac{\|\gamma'(t)\|}{\|\gamma'(t)\|} = 1$$

También se puede ver como que la curva tiene un crecimiento constante con valor 1.

Definción 1.5. (Parametrización por arco) Sea $\gamma: I \to \mathbb{R}^d$ curva regular, decimos que es parametrización por arco si $\gamma' = \dot{\gamma}$ en todo I, es decir, la derivada de la curva tiene módulo uno en todo I.

Proposición 1.3.

- (a) Toda curva regular se puede reparametrizar por arco. Es decir, existe un difeomorfismo tal que $\varphi(f)$ es parametrización por arco.
- (b) Si $\varphi:(a,b)\to\mathbb{R}^d$ es regular y $f:(0,L(\varphi))\to(a,b)$ satisface que para todo $t\in(a,b),$

$$\int_{a}^{t} \|\varphi'(s)\| ds = f^{-1}$$

Entonces $\overline{\varphi} = \varphi \circ f$ es parametrización por arco.

(c) Una curva regular es parametrización por arco si y sólo si la norma de su derivada es 1.

Dem.

(a) Sea $\gamma:(a,b)\to\mathbb{R}^d$ una curva regular. Debemos encontrar un difeomorfismo f, tal que $\gamma(f)$ es parametrización por arco. Definimos la función largo de la curva por,

$$s:(a,b)\to (0,L(\gamma))$$

$$s(t):=\int_a^t\|\gamma'(l)\|dl$$

Esta función es un difeomorfismo. Ya que es claramente diferenciable, es inyectiva al ser monótona (dado que γ es regular), es sobreyrecitva, y luego por como está definida, su inversa es diferenciable.

Ahora consideremos su inversa y tomamos la reparametrización $\overline{\gamma}(t) := \gamma(s^{-1}(t))$. Luego se cumple que,

$$\overline{\gamma}'(t) = \gamma'(s^{-1}(t))(s^{-1}(t))'$$

$$= \frac{\gamma'(s^{-1}(t))}{\|\gamma'(s^{-1}(t))\|}$$

Que es claramente parametriación por arco. Para intervalos más variados, se usa el mismo argumento, solo que con otro detalle.

(b) Esto se probó en el índice anterior.

(c) Sea $\varphi:I\to\mathbb{R}^d$ una curva regular. Si es parametrización por arco, entonces es claro que $\|\gamma'\|=1$. Supongamos que $\|\gamma'\|=1$, entonces se tiene que,

$$\dot{\gamma}(t) = \frac{\gamma'(t)}{\|\gamma'(t)\|} = \gamma'(t)$$

Es decir, γ es parametrización por arco.

La curva tiene varios comportamientos, como que tanto se curva en un punto, que tanto se tuerce en general y ese tipos de cosas. Estudiemos la curvatura. Sea $\gamma: I \to \mathbb{R}^3$ una curva regular parametrizada por arco en la clase C^2 , podemos definir la función curvatura de una arcoparametrizada por,

$$\kappa(s) := \left| \frac{d}{ds} \dot{\gamma} \right| (s) = |\gamma''(s)|$$

Es decir, es que tan curvada es una curva en un punto. Por ejemplo, una recta a priori no debería tener curvatura, y en efecto, si tomamos $\gamma(t) = \frac{1}{\sqrt{2}}(1,t)$ una recta, entonces vemos que es parametrización por arco y que $\kappa(t) = |\gamma''(t)| = 0$. Por se puede ir deduciendo el comportamiento de la curvatura observando la curva.

Para una curva cualquiera, la curvatura se define como,

$$\kappa(s) := \frac{\|\gamma'(s) \times \gamma''(s)\|}{\|\gamma'(s)\|^3}$$

El tema es que no siempre vamos a tener curvas p.p.a (parametrización por arco), por lo que si la curva es regular, entonces podemos reparametrizar por arco, obteniendo una curva p.p.a, y luego podemos determinar su curvatura, es más, al reparametrizar por arco, su curvatura se conserva.

Ejemplo 1.3. Sea la curva $\gamma(t) = (\cos(t), \sin(t))$ que representa una circuferencia de radio 1. Notemos que es diferenciable y regular dado que $\gamma'(t) = (-\sin(t), \cos(t))$, además,

$$\dot{\gamma}(t) = \frac{\gamma'(t)}{\sqrt{\cos^2(t) + \sin^2(t)}} = \gamma'(t)$$

Es decir, γ es una parametrización por arco. Determinemos su curvatura, como es la parametrización de una circuferencia, uno puede intuir que es constante. Notemos que,

$$\gamma''(t) = -\gamma(t)$$

Entonces,

$$\kappa(t) = \|\gamma''(t)\| = 1$$

Por tanto, la curvatura de γ es 1.

Figura pablo clase 2.

Es decir, es (+)-cerrado si está dentro de un círculo y es (-)-cerrado si está afuera de un círculo.

Ejemplo 1.4. Sea la curva $\gamma(t) = x_0 + tx_1$ donde $x_0, x_1 \in \mathbb{R}^d$, claramente es la representación de un segmento, por lo que la curvatura debiese ser nula. Antes que eso, notemos que la curva es regular y de clase C^2 con primera derivada $\gamma'(t) = x_1$, aquí tenemos que no es necesariamente parametrización por arco, por lo estudiamos el vector tangente que es de la forma $\dot{\gamma}(t) = \frac{x_1}{\|x_1\|}$, que es una constante, por tanto,

$$\kappa(s) = 0$$

Ejemplo 1.5. Sea $\gamma_R(t) = (R\cos(t), R\sin(t))$ una curva regular de clase C^2 . La curva es claramente una circuferencia de radio R, estudiemos la curvatura. Notemos que γ_R no es necesariamente arcoparametrizada dado que,

$$\|\gamma_R'(t)\| = \|(-R \operatorname{sen}(t), R \cos(t))\| = R$$

Supongamos que $R \neq 1$, luego la curva tura está dada por,

$$\kappa(s) = \frac{\|(-R\operatorname{sen}(t), R\cos(t)) \times (-R\cos(t), -R\operatorname{sen}(t))\|}{R^3}$$
$$= \frac{1}{R}$$

Por tanto la curvatura es $\frac{1}{R}$. Ahora vamos a reparametrizar por arco la curva, y estudiemos su curvatura. Como γ_R es regular, existe un difeomorfismo que reparametriza por arco a γ_R . Digamos que es f, luego obtenemos la reparametrización,

$$\gamma^*(t) = \gamma_R(f(t))$$

donde γ^* es arcoparametrizada, entonces,

$$1 = \|\gamma^*\| = \|\gamma_R(f(t))\| \|f'(t)\| = R\|f'(t)\|$$

Podemos escoger f de tal forma que f^{-1} es la función largo del arco, por lo que $f:[0,L(\gamma)]\to I$, si f^{-1} es creciente estricta, se tiene que f es creciente estricta, dicho de otra forma $f'(t)\geq 0$ para todo $t\in [0,L(\gamma)]$, por lo que se cumple,

$$f'(t) = \frac{1}{R}$$

Entonces basta con escoger,

$$f: [0, L(\gamma)] \to I$$
$$f(t) = \frac{t}{R}$$

Entonces tenemos que,

$$\gamma^*(t) = (R\cos(t/R), R\sin(t/R))$$

Entonces,

$$(\gamma^*(t))'' = \gamma_R''(t/R) \frac{1}{R^2}$$

Y entonces,

$$\kappa(t) = \frac{R}{R^2} = \frac{1}{R}$$

1.2. Producto Cruz

Como pequeña sección recordaremos el producto cruz. Sean $a, b \in \mathbb{R}^3$, el producto cruz de a y b lo denotamos por $a \times b$ y este es un vector en \mathbb{R}^3 que cumple las siguientes propiedades,

- (a) $a \times b$ es perpendicular a los vectores a y b.
- (b) La norma es el área generada por los vectores a, b, s decir, $||a \times b|| = ||a|| ||b|| \operatorname{sen}(\gamma)$ donde γ es el ángulo formado entre a y b.

Figura.

(c) La dirección está dada por la regla de la mano derecha.

Veamos las propiedades. Sean $a, b, c \in \mathbb{R}^3$ vectores y $\alpha \in \mathbb{R}$ un escalar, luego,

- (a) $a \times b = -b \times a$
- (b) $(\alpha a) \times b = \alpha(a \times b)$
- (c) $a \times (b+c) = a \times b + a \times c$
- (d) $a \times b = 0$ si y sólo si a y b son coliniales.

Existen una forma de calcular el producto cruz en términos de las coordenadas. Sean,

$$a = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Luego por las propiedades se llega a que,

$$a \times b = \det \begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}$$

$$= \det \begin{bmatrix} a_2 & a_3 \\ b_2 & b_3 \end{bmatrix} e_1 - \det \begin{bmatrix} a_1 & a_3 \\ b_1 & b_3 \end{bmatrix} e_2 + \det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} e_3$$

$$= \begin{bmatrix} a_2b_3 - a_3b_2 \\ -a_1b_3 + a_3b_1 \\ a_1b_2 - a_2b_1 \end{bmatrix}$$

1.3. Marco de Frenet

A partir de una curva parametrizada por arco podemos construir el espacio \mathbb{R}^3 , usando las derivadas de la curva. Este entorno se le conoce como marco de Frenet.

Notación. Sea α una curva. Denotaremos $\ddot{\alpha}$ como la segunda derivada de α normalizada, es decir,

$$\ddot{\alpha} = \frac{\alpha''}{\|\alpha''\|}$$

Observación 1.7. Sea $\alpha: I \to \mathbb{R}^d$ una curva parametrizada por el arco. Supongamos que está en C^2 . Luego se tiene que $\|\alpha'(s)\| = 1$ para todo s, entonces al derivar con respecto a s, obtenemos que,

$$\langle \alpha', \alpha'' \rangle = 0$$

Es decir, α' es perpendicular a α'' . De aquí podemos definir la normal de la curva en el instante s.

Definición 1.6. (Vector normal) Sea α una curva regular parametrizada por arco.

- (a) Si $\kappa(s) \neq 0$, definimos el vector normal a la curva en $\alpha(s)$ por $n(s) := \ddot{\alpha}(s)$
- (b) Se define el plano osculador en $\alpha(s)$ por $span\{t(s), n(s)\}$, donde $t(s) := \dot{\alpha}(s)$.

Hay que tener cuidado con α siendo no p.p.a, ya que esto no implica que $n \perp t$, esto se cumple solamente cuando α es p.p.a. Y con respecto al plano osculador, es el plando conformado por la tangente del punto $\alpha(t)$ y la norma.

Ejemplo 1.6. Sea la curva $\gamma(t) = (\cos(t), \sin(t), t)$ que describe una hélice de radio 1.

Figura clase

Podemos ver que γ es una curva diferenciable regular, ya que,

$$\gamma'(t) = (-\sin(t), \cos(t), 1)$$

donde su módulo es $\|\gamma'\| = \sqrt{2}$, por lo que no es p.p.a, pero al ser regular podemos reparametrizarla por arco. Tomemos $f:[0,L(\gamma)]\to I$ donde f^{-1} es la funcipon largo de arco de γ . Entonces se tiene $\gamma^*=\gamma\circ f$ es p.p.a, entonces,

$$1 = \|\gamma^*(t)\| = \|\gamma'(f(t))\| \|f'(t)\| = \sqrt{2}f'(t)$$

Luego basta tomar la función,

$$f(t) = \frac{t}{\sqrt{2}}$$

Luego,

$$\|\gamma^*(t)\| = \frac{1}{2} \neq 0$$

Entonces la curvatura es constante no nula y además podemos definir la norma de γ^* por,

$$n(t) = -\frac{1}{2} \left(\cos \left(\frac{t}{\sqrt{2}} \right), \sin \left(\frac{t}{\sqrt{2}} \right), 0 \right)$$

Ahora con respecto a γ se tiene que,

$$\|\gamma''(t)\| = \|-(\cos(t), \sin(t), 0)\| = 1$$

De igual forma se puede definir su norma.

Sea α una curva cualquiera en C^2 de forma que $\|\alpha'\|, \|\alpha''\| \neq 0$, entonces podemos definir t, n sin ningún problema, supongamos que t, n no son coliniales, entonces podemos construir un subespacio de \mathbb{R}^3 a partir del producto cruz, generando el vector normal al plano osculador, al cual le llamamos vector **binormal**.

Definición 1.7. (Vector Binomial) Sea α regular parametrizada por arco en la clase C^2 . Supongamos que $\kappa \neq 0$ (si y sólo si $\ddot{\alpha} \neq 0$), entonces definimos el vector binomial por,

$$b(s) := t(s) \times n(s) = \frac{\alpha'(s) \times \alpha''(s)}{\|\alpha''(s)\|}$$

La definición general para la binormal, es simplemente $b(s) := t(s) \times n(s)$, siempre y cuando t, n estén bien definidos.

Definición 1.8. (Punto singular) Sea $\gamma: I \to \mathbb{R}^d$ una curva en la clase C^2 . El punto $s \in I$ es singular de orden

$$\begin{cases} 0, \ si \ \alpha'(s) = 0 \\ 1, \ si \ \alpha'(s) \neq 0, \alpha''(s) = 0 \end{cases}$$

Definición 1.9. (Curva de Frenet) Sea $\alpha: I \to \mathbb{R}^3$ una curva parametrizada por arco. Decimos que es de Frenet si no tiene puntos singulares de orden 0 ni de orden 1. Es decir, $\alpha'(s), \alpha''(s)$ no se anulan.

Por tanto, dado una curva de Frenet, se pueden definir t, n y b sin ningún problema. Ahora a la tupla (t(s), n(s), b(s)) le diremos marco de Frenet en el instante s de la curva $\alpha: I \to \mathbb{R}^3$. Si $\alpha: I \to \mathbb{R}^3$ es una

curva parametrizada por arco, se tiene que el marco de Frenet (t(s), n(s), b(s)) es una base ortonormal, ya que vimos anteriormente que $t \perp n$ y por definición de la binormal, se tiene $t \perp b$ y $n \perp b$. Además que el módulo de cada uno es 1. Esto no siempre se cumple, por ejemplo, si α es una curva de Frenet que no es p.p.a, entonces puede pasar que t, n sean colinieales, luego (t(s), n(s), b(s)) no es una base, o bien puede pasar que $t \not\perp n$, aunque de igual forma puede ser base aunque no ortonormal.

Observación 1.8. Sea $\alpha: I \to \mathbb{R}^3$ una curva de Frenet p.p.a, entonces,

(a) Para todo s la matriz,

$$\begin{bmatrix} t(s) & n(s) & b(s) \end{bmatrix}$$

es ortogonal con determinante 1. (Recordemos que una matriz es ortogonal si $AA^T = A^TA = I$.)

(b) Sean t(s), n(s) fijos, entonces b(s) es el único vector talque cumple (a).

Otras cosas interesantes que se cumple son,

$$b'(s) = (t(s) \times n(s))'$$

$$= t'(s) \times n(s) + t(s) \times n'(s)$$

$$= \kappa(s)n(s) \times n(s) + t(s) \times n'(s)$$

$$= t(s) \times n'(s)$$

Y que si $\langle b(s), b(s) \rangle = 1$ al ser coliniales, se tiene que,

$$2\langle b(s), b'(s) \rangle = 0$$

Por lo que $b' \perp b$ y entonces $b' \perp t$ y por tanto, b' || n.

Definición 1.10. (Torsión) Sea $\alpha: I \to \mathbb{R}^d$ de Frenet, entonces $b'(s) = \tau(s)n(s)$ donde $\tau(s): I \to \mathbb{R}$ le decimos torsión de la curva $\alpha(s)$.

Observación 1.9. Sea α una curva de Frenet, entonces se puede definir el marco de Frenet $\{t(s), n(s), b(s)\}$. Si b'(s) = 0 entonces se tiene que $\tau(s)n(s) = 0$. Si $n(s) \neq 0$ ya que la curva es de Frenet, entonces $\tau(s) = 0$, esto significa que no hay torsión y por tanto la curva α está en un plano, es más, está en su plano osculador.

Observación 1.10. Sea α una curva de Frenet parametrizada por arco, con marco (t(s), n(s), b(s)). Notemos que se cumplen las siguientes ecuaciones,

$$t'(s) = \kappa(s)n(s)$$

$$n'(s) = -\kappa(s)t(s) - \tau(s)b(s)$$

$$b'(s) = \tau(s)n(s)$$

Conocida como ecuaciones de Frenet. Probemos cada una. La primera se obtiene observando que $\kappa(s) = \|\alpha''(s)\| \neq s$ al ser p.p.a, luego,

$$t'(s) = \alpha''(s) = \frac{\alpha''(s)}{\|\alpha''(s)\|} \|\alpha''(s)\| = \kappa(s)n(s)$$

La segunda debemos tomar en cuenta que la tupla (t(s), n(s), b(s)) es ortonormal, por lo que se cumple que $n = b \times t$, entonces,

$$n'(s) = b'(s) \times t(s) + b(s) \times t'(s)$$

$$= (\tau(s)n(s)) \times t(s) + b(s) \times (\kappa(s)n(s))$$

$$= -\tau(s)b(s) - \kappa(s)t(s)$$

Obteniendo la segunda ecuación. Y la última es definición.

Si α es una curva de Frenet, entonces podemos determinar su torsión de forma explícita, ya que si $b'(s) = \tau(s)n(s)$, entonces,

$$\langle b'(s), n(s) \rangle = \langle \tau(s)n(s), n(s) \rangle = \tau(s)\langle n(s), n(s) \rangle = \tau(s)$$

Luego $\tau(s) = \langle b'(s), n(s) \rangle$

Podemos deducir otras fórmulas. Si añadimos que α es p.p.a, entonces se tiene que $\langle t(s), n(s) \rangle = 0$, y entonces,

$$\langle t'(s), n(s) \rangle + \langle t(s), n'(s) \rangle = 0$$

Luego,

$$\kappa(s) = -\langle t(s), n'(s) \rangle$$

Análogamente se puede deducir que,

$$\tau(s) = -\langle b(s), n'(s) \rangle$$

Siempre y cuando α sea p.p.a, en caso contrario no necesariamente se cumple.

Sea $\alpha: I \to \mathbb{R}^3$ una curva de Frenet p.p.a, luego se cumplen las ecuaciones de Frenet y entonces obtenemos la siguiente identidad,

$$\frac{d}{ds} \begin{bmatrix} t(s) \\ n(s) \\ b(s) \end{bmatrix} = \begin{bmatrix} 0 & \kappa(s) & 0 \\ -\kappa(s) & 0 & -\tau(s) \\ 0 & \tau(s) & 0 \end{bmatrix} \begin{bmatrix} t(s) \\ n(s) \\ b(s) \end{bmatrix}$$

Podemos ver que la matriz $M = \begin{bmatrix} t(s) & n(s) & b(s) \end{bmatrix}$ es una matriz ortonormal. Entonces $MM^T = I$, luego al derivar sobre s se tiene que,

$$(MM^T)' = M'M^T + M(M')^T = 0$$

Tomando $A := M'M^T$, generamos una matriz antisimétrica, es decir, $A = -A^T$.

Consideremos el siguiente edo,

$$\begin{cases} \frac{d}{ds}M(s) = A(s)M(s) \\ M(0) = M_0 \end{cases}$$

donde $M(s): I \to \mathbb{R}^{d \times d}$. Para poder resolver este edo debemos hacer uso de la exponencial. Recordemos que,

$$e^t = 1 + t + \frac{t^2}{2!} + \frac{t^3}{3!} + \dots$$

que converge para todo $t \in \mathbb{R}$ (es más, converge para todo $t \in \mathbb{C}$). Se cumple que $(e^t)' = e^t$. Ahora daremos el paso a matrices, sea $A \in \mathbb{R}^{n \times n}$, luego definimos,

$$e^A := I + A + \frac{1}{2!}A^2 + \frac{1}{3!}A^3 + \dots$$

Veamos que está bien definida. Podemos pensar una norma $\mathbb{R}^{n \times n}$ como \mathbb{R}^{n^2} , es decir, como vector. Por lo que tomamos la norma,

$$||A||^2 = \sum_{1 \le i, j \le n} A_{ij}^2$$

En particular se cumple $||AB|| \le ||A|| \cdot ||B||$. Entonces $||A^n|| \le ||A||^n$. A partir de esto se tiene que,

$$||e^A|| \le ||I|| + ||A|| + \frac{1}{2}||A^2|| + \dots$$

 $\le ||I|| + ||A|| + \frac{1}{2}||A||^2 + \dots$
 $= e^{||A||} \in \mathbb{R}$

Estando bien definido. Ahora supongamos que $A(s): I \to \mathbb{R}^{d \times d}$ es una matriz diferenciable de forma que $\frac{d}{ds}e^{A(s)} = A'(s)e^{A(s)}$.

Proposición 1.4. Sean $A(s), M(s): I \to \mathbb{R}^{n \times n}$ matrices diferenciables, entonces,

$$\begin{cases} \frac{d}{ds}M(s) = A(s)M(s) \\ M(0) = M_0 \end{cases}$$

tiene solución única explícita.

Teorema 1.1. (Teorema Fundamental de la curva) Sean $\kappa > 0, \tau : I \to \mathbb{R}$ diferenciables. Entonces,

- (a) existe una curva regular parametriazada por arco $\alpha: I \to \mathbb{R}^3$ de Frenet con curvatura $\kappa(s)$ y torsión $\tau(s)$.
- (b) Si $\overline{\alpha}: I \to \mathbb{R}^3$ es cualquier otra curva de Frenet parametrizada por arco con curvatura $\kappa(s)$ y torsión $\tau(s)$, entonces existen $R \in SO(3) := \{M \in O(3) : \det M = 1\}$ y $x_0 \in \mathbb{R}$ talque,

$$\overline{\alpha}(s) = R\alpha(s) + x_0$$

Dem.

Existencia. Sean κ, τ diferenciables. Podemos definir la matriz,

$$A(s) := \begin{bmatrix} 0 & \kappa(s) & 0 \\ -\kappa(s) & 0 & -\tau(s) \\ 0 & \tau(s) & 0 \end{bmatrix}$$

Una matriz diferenciable. Entonces considerando el edo de la proposición 1.4, se tiene que existe una única solución M(s) tal que,

$$\begin{cases} \frac{d}{d}dsM(s) = A(s)M(s) \\ M(0) = M_0 \end{cases}$$

Supongamos que,

$$M(s) = \begin{bmatrix} t \\ n \\ b \end{bmatrix}$$

donde no sabemos que es t, n, b, solo son una representación de M(s). Definimos $\alpha: I \to \mathbb{R}^3$ tal que $\alpha'(s) = t(s), n(s) = \frac{\alpha''(s)}{\|\alpha''(s)\|\|}$ y luego se observa que α es una parametrizada por arco de Frenet con curvatura κ y torsión τ .

• Unicidad. Supongamos sin pérdida de generalidad que I = [a, b]. Sean $\alpha, \overline{\alpha}$ curvas de Frenet parametrizada por arco con curvatura $\kappa(s)$ y torsión $\tau(s)$. Entonces satisfacen las ecuaciones de Frenet y luego,

$$\frac{d}{ds} \begin{bmatrix} t \\ n \\ b \end{bmatrix} = \begin{bmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & -\tau \\ 0 & \tau & 0 \end{bmatrix} \begin{bmatrix} t \\ n \\ b \end{bmatrix}$$

$$\frac{d}{ds} \begin{bmatrix} \overline{t} \\ \overline{n} \\ \overline{b} \end{bmatrix} = \begin{bmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & -\tau \\ 0 & \tau & 0 \end{bmatrix} \begin{bmatrix} \overline{t} \\ \overline{n} \\ \overline{b} \end{bmatrix}$$

Definimos la matriz R(s) por

$$R^{T}(s) = \begin{bmatrix} t \\ n \\ b \end{bmatrix}^{-1} \begin{bmatrix} \overline{t} \\ \overline{n} \\ \overline{b} \end{bmatrix}$$

Entonces R(s) es el producto de dos matrices que son ortonormales, luego R(s) es ortonormal, y además det(R(s)) = 1. Por lo que $R(s) \in SO(3)$, encontrando una parte, ahora sea x_0 fijo tal que,

$$x_0 = \overline{\alpha}(0) - R(0)\alpha(0)$$

Tomamos R := R(0), luego definimos otra curva $\alpha^*(s) := R\alpha(s) + x_0$, donde $\alpha^*(0) = \overline{\alpha}(0)$. En particular, α^* es parametrización por arco de Frenet. Sea M, \overline{M}, M^* blabla, consideremos,

$$\frac{d}{ds}[(M^* - \overline{M})(M^* - \overline{M})^T] = \frac{d}{ds}[|t^* - \overline{t}|^2 + |n^* - \overline{n}|^2 + |b^* - \overline{b}|^2] = 0$$

Entonces,

$$\frac{d}{ds}|t^* - \overline{t}|^2 =$$

blabla. Probando la unicidad.

Por tanto, funciones $\kappa > 0, \tau : I \to \mathbb{R}$ induce una única curva de Frenet arcomparametrizada.

1.4. Series de Taylor

Sea $\alpha:I\to\mathbb{R}^3$ una curva de al menos C^3 paramtrizada por arco de Frenet. Entonces el marco de Frenet es una base ortogonal de \mathbb{R}^3 , entonces podemos pensar esta base como las nuevas coordenadas. Sabemos que $\alpha(t)=(x(t),y(t),z(t))$ donde x,y,z son funciones coordenadas en la base canónica de α . Lo que vamos hacer, es ver como se comporta α en la base (t(s),n(s),b(s)) a partir de la canónica.

Si α es al menos C^3 , se tiene la siguiente expansión de Taylor:

$$\alpha(s) = \alpha(0) + s\alpha'(0) + \frac{1}{2}s^2\alpha''(0) + \frac{1}{6}s^3\alpha'''(0) + \underbrace{o(s^3)}_{\text{resto}}$$

Sabemos que,

$$\begin{aligned} \alpha'(0) &= \dot{\alpha}(0) = t(0) \\ \alpha''(0) &= t'(0) = \kappa(0)n(0) \\ \alpha'''(0) &= (\kappa(s)n(s))'\big|_{s=0} \\ &= \kappa'(0)n(0) - \kappa(0)\tau(0)b(0) - \kappa^2(0)t(0) \end{aligned}$$

Reemplazando obtenemos,

$$\alpha(s) - \alpha(0) = \left(s - \frac{\kappa^2(0)}{6}s^3\right)t(0) + \left(\frac{1}{2}\kappa(0)s^2 + \frac{1}{6}\kappa'(0)s^3\right)n(0) + \left(-\frac{1}{6}\kappa(0)\tau(0)s^3\right)b(0) + o(s^3)$$

Por tanto, si nos movemos a las coordenadas de Frenet en 0 tenemos que,

$$x(s) = s - \frac{\kappa^2(0)}{6}s^3 + o(s^3)$$

$$y(s) = \frac{1}{2}\kappa(0)s^2 + \frac{1}{6}\kappa'(0)s^3 + o(s^3)$$

$$z(s) = -\frac{1}{6}\kappa(0)\tau(0)s^3 + o(s^3)$$

Figura.

De forma que cada coordenada depende de la curvatura, z depende de la torsión. En la primera coordenada predomina la linealidad, la segunda la cuadrática y la tercera la cúbica. De forma que,

Figura

Estas coordenadas se le conoce como coordenadas canónica de la curva en s=0.

1.5. Curvas Cerradas, Simples, Rotación y Curvatura total

Vamos a estudiar curvas en \mathbb{R}^2 y rotaciones, donde las rotaciones son equivalentes a estudiar curvas cerradas. Antes de definir una curva cerrada, sabemos que una $\alpha:I\to\mathbb{R}^d$ debe tener final igual al inicio, ahora podemos extender esta curva en todo \mathbb{R} y tratarla con periocidad. Sea $\overline{\alpha}:\mathbb{R}\to\mathbb{R}^d$ la extensión periódica de periódo b-a dada por $\overline{\alpha}(x+b-a)=\overline{\alpha}(x)$ para todo $x\in\mathbb{R}$.

Definición 1.11. (Curva Cerrada) Sea $\varphi : [a,b] \to \mathbb{R}^d$ una curva regular C^n (es decir, $\varphi^{(i)} \neq 0$ para todo $0 \leq i \leq n$). Decimos que φ es cerrada si existe una curva $\varphi^* : \mathbb{R} \to \mathbb{R}^d$ tal que,

$$\begin{cases} \varphi^*(x) = \varphi(x) \ \forall x \in [a, b] \\ \varphi^*(x + b - a) = \varphi^* \ \forall x \in \mathbb{R} \\ \varphi^* \ es \ regular \ C^n. \end{cases}$$

De la última característica de la extensión, se tiene que $(\varphi^*)^{(i)}(a) = (\varphi^*)^{(i)}(b)$ para todo $0 \le i \le n$.

Proposición 1.5. Sea $\varphi : [a,b] \to \mathbb{R}^d$ curva. Es cerrada C^n si y sólo si φ es C^n sobre [a,b],

$$\varphi(a) = \varphi(b)$$

$$\vdots$$

$$\varphi^{(n)}(a) = \varphi^{(n)}(b)$$

Ahora queremos poder estudiar las rotaciones que tiene una curva. Para ello queremos poder expresar una curva en coordenadas polares. Sea $v \in \mathbb{R}^2$ un vector, este punto lo podemos representar con un ángulo γ y un largo ||v||, por lo que,

$$v = ||v||(\cos(\gamma), \sin(\gamma))$$

Y esta es la coordenada polar de v. En general queremos poder describir una curva α como coordenadas polares, es decir, que sea de la siguiente forma,

$$\alpha(s) = \|\alpha(s)\|(\cos(\gamma(s)), \sin(\gamma(s)))$$

donde $\gamma(s)$ queremos que sea una función que determina el ángulo que posee $\alpha(s)$ en el instante s. Esto es un resultado que vamos a probar.

Proposición 1.6. Sea $\alpha: [a,b] \to \mathbb{R} \setminus \{0\}$ continua. Entonces existe una función continua $\gamma: [a,b] \to \mathbb{R}$ tal que,

$$\alpha(s) = \|\alpha(s)\|(\cos(\gamma(s)), \sin(\gamma(s)))$$

Dem. Por hacer ■

Por tanto, la curva α puede ser expresada como coordenadas polares.

Definición 1.12. (Índice de Rotación) Sea $\alpha:[a,b]\to\mathbb{R}^2\setminus\{0\}$ una curva continua y sea $\gamma(t)$ continua tal que,

$$\alpha(s) = \|\alpha(s)\|(\cos(\gamma(s)), \sin(\gamma(s)))$$

Definimos el índice rotación por,

$$W_{\alpha} := \frac{1}{2\pi} (\gamma(b) - \gamma(a))$$

Observación 1.11. Si α es cerrado, entonces W_{α} es un valor entero, ya que α debio dar k vueltas completas, es decir,

$$\gamma(a) = \gamma(b) \pmod{2\pi}$$

Entonces $W_{\alpha} = k$. En este caso W_{α} es el número de rotaciones de la curva α .

Definición 1.13. (Curvatura Total) Sea $\alpha:[a,b]\to\mathbb{R}^2$ una curva en C^2 . La curvatura total es el número dado por,

$$\int_{a}^{b} \kappa(t) \|\alpha'(t)\| dt$$

Observación 1.12. Sea α una curva en C^2 , con respecto a la curvatura total, podemos tomar el siguiente cambio de variable,

$$s(t) := \int_{a}^{t} \|\alpha'(l)\| dl$$

Que es diferenciable, donde,

$$ds = \|\alpha'(t)\|dt$$

Entonces.

$$\int_{a}^{b} \kappa(t) \|\alpha'(t)\| dt = \int_{s(a)}^{s(b)} \kappa(s) ds$$
$$= \int_{0}^{L(\alpha)} \kappa(s) ds$$

Encontrando otra forma de determinar la curvatural total. Es más, si α es p.p.a, se tiene que la curvatura total es,

$$\int_{0}^{L(\alpha)} \|\alpha''(s)\| ds$$

Observación 1.13. Sea $\alpha: I \to \mathbb{R}^2$ de Frenet cerrada. Notemos que,

$$e_1(t) := \dot{\alpha}(t) = \frac{\alpha'(t)}{\|\alpha'(t)\|} = (\cos(\gamma(t)), \sin(\gamma(t)))$$

Entonces $e_2(t) := e_1(t)' = (-\sin(\gamma(t)), \cos(\gamma(t)))$. Y por otro lado $e_1'(s) = t'(s) = \kappa(s)n(s)$...

Por tanto $\gamma'(t) = \kappa(t) \|\alpha'(t)\|$.

Proposición 1.7. Sea $\alpha:[a,b]\to\mathbb{R}^2\setminus\{0\}$ una curva regular. Entonces la curvatura total es,

$$\int_{a}^{b} \kappa(t) \|\alpha'(t)\| dt = \int_{a}^{b} \gamma'(t) dt = \gamma(b) - \gamma(a) = 2\pi W_{\alpha}$$

Dem. Si α es regular, entonces $\alpha': I \to \mathbb{R}^2 \setminus \{0\}$ es una curva continua. Entonces existe una función continua γ tal que,

$$\alpha'(s) = \|\alpha'(s)\|(\cos(\gamma(s)), \sin(\gamma(s)))$$

Luego,

$$\int_{a}^{b} \kappa \|\alpha'(s)\|$$

Observación 1.14. Si $a_s \operatorname{con} s \in J$ Terminar

Definición 1.14. (Simple) Sea $\alpha:[a,b]\to\mathbb{R}^2$ cerrada. Es simple si es inyectiva sobre [a,b).

Teorema 1.2. Si una curva regular α es simple, entonces $W_{\alpha} = \pm 1$.

Observación 1.15. Si α es diferenciable, entonces la curva α' también puede ser expresado con coordenadas polares. Se cumple además que,

$$W_{\alpha'} = W_{\dot{\alpha}}$$

Dem.

- (a) Sin pérdida de generalidad podemos eligir coordenadas tal que $\alpha(t)=(x(t),y(t))$ con y(a)=y(b)=0 y $y(t)\geq 0$.
- (b) Sea $A = \{(s, t) \in \mathbb{R}^2, a \le s \le t \le b\}$ y sea la función,

$$e: A \to \mathbb{R}^2 \setminus \{0\}$$

$$e(s,t) = \begin{cases} \frac{\alpha(t) - \alpha(s)}{\|\alpha(t) - \alpha(s)\}}, & s \neq t \ (s,t) \neq (a,b) \\ \frac{\alpha'(t)}{\|\alpha'(t)\|}, & s = t \\ -\frac{\alpha'(a)}{\|\alpha'(a)\|}, & (s,t) = (a,b) \end{cases}$$

Observación. α es simple si y sólo si $\alpha(t) \neq \alpha(s)$ si $t \neq s$ y $(s,t) \neq (a,b)$. Entonces $e(\cdot,\cdot)$ está bien definda.

Observación. $e(\cdot, \cdot)$ es continua donde,

$$e(t,t) = \frac{\alpha'(t)}{\|\alpha'(t)\|}$$

(c) Sea $\gamma(s,t)$ una función continua tal que,

$$\begin{cases} e(s,t) = (\cos(\gamma(s,t)), \sin(\gamma(s,t))) \text{ en } A \\ \varphi(a,a) = 0 \end{cases}$$

 $\gamma(t,t) = \gamma(t)$ es la función ángulo relatica a $\frac{\alpha'(t)}{\|\alpha'(t)\|}$, entonces,

$$\frac{1}{2\pi} \int_a^b \kappa(t) \|\alpha'(t)\| dt = \frac{1}{2\pi} (\gamma(b, b) - \gamma(a, a))$$

(d) Se tiene que,

$$\gamma(a,b) - \gamma(a,a) = \begin{cases} -\pi & x'(a) < 0 \\ \pi & x'(a) > 0 \end{cases}$$
$$\gamma(b,b) - \gamma(a,b) = \begin{cases} -\pi & x'(a) < 0 \\ \pi & x'(a) > 0 \end{cases}$$

Por tanto el número de rotaciones de la curva cerrada simple es $\pm 1.$

2. Superficies

Definición 2.1. (Superficies) Una superficie regular $S \subseteq \mathbb{R}^3$ es un subconjunto tal que para cada $p \in S$ existe un entorno V abierto en \mathbb{R}^3 que contiene a p, el cual existe una función $\mathbf{x}: U \to V \cap S$ ($U \subseteq \mathbb{R}^2$ abierto). Con las siguientes propiedades,

- (a) **x** es diferenciable.
- (b) \boldsymbol{x} tiene inversa $\boldsymbol{x}^{-1}: V \cap S \to U$ (\boldsymbol{x} biyectiva) continua.
- (c) En cada $q \in U$, $d\mathbf{x}_q : \mathbb{R}^2 \to \mathbb{R}^3$ tiene rango 2.

Sea $q \in U \subseteq \mathbb{R}^2$, luego $\mathbf{x}(q) = (x(q), y(q), z(q)) \in \mathbb{R}^3$, si $q = (u, v) \in U$, entonces la matriz $d\mathbf{x}_q$ está dada por,

$$d\mathbf{x}_{q} = \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{bmatrix}$$

El rango $(d\mathbf{x}_q) = \dim(Im(d\mathbf{x}_q)) \le 2$, en particular, es 2 si las columnas son linealmente independientes.

Podemos ver que $\frac{\partial \mathbf{x}}{\partial u}$ es el movimiento de una curva en $V \cap S$. Lo mismo con respecto a $\frac{\partial \mathbf{x}}{\partial v}$. Entonces dx_q tiene rango 2 si y sólo si $\frac{\partial \mathbf{x}}{\partial u}$ y $\frac{\partial \mathbf{x}}{\partial v}$ son linealmente independiente.

Figura. capsula marzo 21

Ejemplo 2.1. Un ejemplo sencillo es la esfera unitaria. Sea la esfera unitaria dada por $S^2 := \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$. Queremos verifica que es una superficies regular. Para ello, para cada punto en la esfera, existe un entorno V que a su vez existe una función $\mathbf{x} : U \to V \cap S^2$ que es diferenciable, homeomorfismo y de rango 2.

Figura de esfera

Guíandonos de la figura, es claro que tal parametrización sirve, digamos que $\mathbf{x}:\{x^2+y^2<1\}=U\to V\cap S$ (notar que la parametrización \mathbf{x} sirve para todo $p\in V\cap S$). Vamos a definir,

$$\mathbf{x}(x,y) = (x,y,\sqrt{1-x^2-y^2}) \in V \cap S^2$$

Podemos decir que el entorno está dado por $V = \{(x, y, z) : z > 0\}$, y en efecto, $V \cap S^2 = \{(x, y, \sqrt{1 - x^2, y^2}) : x^2 + y^2 < 1\}$. Con respecto a **x** podemos ver que es homeomorfismo con inversa $x^{-1}(x, y, z) = (x, y)$, es diferenciable con Jacobiana,

$$d\mathbf{x}_q = egin{bmatrix} 1 & 0 \ 0 & 1 \ -rac{x}{\sqrt{1-x^2-y^2}} & -rac{y}{\sqrt{1-x^2-y^2}} \end{bmatrix}$$

Podemos ver que las columnas son linealmente independiente, por lo que es una matriz de rango 2. Por lo que x es una parametrización.

Este argumento se puede replicar para todo $p \in S^2$. Por lo tanto S^2 es una superficies.

Ejercicio

Sabemos como determinar cuando un conjunto $S \subseteq \mathbb{R}^3$, ahora queremos caracterizar las superficies de alguna forma. Probaremos que a partir del conjunto nivel de una función,

$$C_a := \{(x, y, z) \in \mathbb{R}^3 : f(x, y, z) = a\}$$

con $f: \mathbb{R}^3 \to \mathbb{R}$ es una superficie. Un ejemplo es la superficie unitaria, la cual está descrita por la curva de nivel 0 de la función $f(x, y, z) = x^2 + y^2 - 1$.

Proposición 2.1 Sea $f: U \to \mathbb{R}$ función diferenciable con $U \subseteq \mathbb{R}^2$ abierto. Entonces el gráfico $G_f := \{(x, y, z) \in \mathbb{R}^3 : f(x, y) = z\}$ es una superficie regular.

Dem. Sea $S = G_f$ nuestro conjunto a estudiar. Sea $p \in S$ y sea la función $\mathbf{x}(u, v) := (u, v, f(u, v))$ de finido en un abierto $U \subseteq \mathbb{R}^2$ en particular, esta función es claramente diferenciable y continua. Veamos si tiene inversa, un candidato podría ser $\mathbf{x}^{-1}(u, v, w) = (u, v)$, pero ocurre que,

$$\mathbf{x}^{-1}(\mathbf{x}(u,v)) = (u,v)$$
$$\mathbf{x}(\mathbf{x}^{-1}(u,v,w)) = (u,v,f(u,v))$$

Para arreglar esto se toma el abierto $V \subseteq \mathbb{R}^3$ que contenga a $p \in V$, luego si $(u, v, w) \in V \cap S$, entonces w = f(u, v) y entonces se cumple que \mathbf{x}^{-1} es inversa. Notemos que la inversa es continua, nos falta probar que la Jacobiana tiene rango 2. Sea $q \in U$, luego,

$$d\mathbf{x}_q = \begin{bmatrix} 1 & 0\\ 0 & 1\\ \frac{\partial f}{\partial u} & \frac{\partial f}{\partial v} \end{bmatrix}$$

Podemos ver que las columnas son linealmente independientes, por tanto el rango de la Jacobiana es 2 y por tanto $S = G_f$ es una superficie.

Proposición 2.2. (**TFI**) Sea $F: U_0 \to V_0$ una función diferenciable con $U_0, V_0 \subseteq \mathbb{R}^n$ abiertos. Sea $p \in U_0$ tal que dF_p es invertible (det $dF_p \neq 0$). Entonces existen $U, V \subseteq \mathbb{R}^n$ abieros tales que $p \in U, f(p) \in V, U \subseteq U_0, V \subseteq V_0$ donde $F: U \to V$ es invertible y $F^{-1}: V \to U$ es diferenciable.

Este teorema no lo vamos a demostrar ya que no está dentro del objetivo del curso.

Observación 2.1. Del TFI, se tiene que para todo $q \in V$ tal que F(p) = q cumple que $dF_q^{-1} = (dF_p)^{-1}$.

Definición 2.2. (Valor regular) Sea $f: \mathbb{R}^3 \to \mathbb{R}$. Si para todo $p \in f^{-1}(\{a\})$ con $df_p \neq 0$, entonces decimos que a es un valor regular de f.

Proposición 2.3. Sea $f: U_0 \to \mathbb{R}$ diferenciable con $U \subseteq \mathbb{R}^3$. Sea $a \in f(U_0)$ un valor regular. Entonces $f^{-1}(\{a\})$ es una superficie regular.

Dem. Sea $a \in f(U_0)$ un valor regular. Sea $p \in f^{-1}(\{a\})$, entonces se tiene que $df_p \neq 0$ por lo que,

$$\begin{bmatrix} \frac{\partial f}{\partial x}(p) & \frac{\partial f}{\partial y}(p) & \frac{\partial f}{\partial z}(p) \end{bmatrix} \neq 0$$

Sin pérdida de generalidad, supongamos que $\frac{\partial f}{\partial x}(p) \neq 0$. Definimos la función $F: \mathbb{R}^3 \to \mathbb{R}^3$ por F(x,y,z) := (x,y,f(x,y,z)) que es diferenciable con Jacobiana,

$$dF_p = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ \frac{\partial f}{\partial x}(p) & \frac{\partial f}{\partial y}(p) & \frac{\partial f}{\partial z}(p) \end{bmatrix}$$

Sacando el determinante tenemos que,

$$\det(dF_P) = \left| \frac{\partial f}{\partial z}(p) \right|$$

Y como es no nula, se tiene que la matriz dF_p es invertible en p, luego por el teorema de la función inversa, se tiene que existen U, V tal que $F: U \to V$ es difeomorfismo. Con respecto a la inversa vamos a decir que,

$$F^{-1}(u, v, t) = (u, v, q(u, v, t))$$

donde g es una función diferenciable. Definimos h(u, v) := g(u, v, a), que es diferenciable, dada por la proyección de V en el plano xy. Vemos que,

$$F(f^{-1}(\{a\}) \cap U)) = V \cap \{(u, v, t) : t = a\}$$

Por lo que el gráfico de h es $f^{-1}(\{a\}) \cap U$, por tanto $f^{-1}(\{a\}) \cap U$ es un vecindario para p. Por lo tanto todo $p \in f^{-1}(\{a\})$ puede ser cubierto por una vecindad, es decir, $f^{-1}(\{a\})$ es una superficie regular. **Reviar**

Falta.

Para todo $p \in \mathbf{x}(U_{xy})$ hay un entorno V, donde $S \cap V$ es la gráfica de una función $f: U \to \mathbb{R}$.

Proposición 2.4. Si S es una superficie regular, entonces para todo $p \in S$ existe entorno V que contiene a p en \mathbb{R}^3 tal que $V \cap S$ es la gráfica de una función diferenciable sobre uno de los planos coordenadas.

Definición 2.3. (Superficie Reglada) En \mathbb{R}^3 , una superficie reglada es la imagen de un mapeo,

$$X(u, v) = \beta(u) + v\gamma(u)$$

como $(u, v) \in U$ abierto en \mathbb{R}^2 y β, γ son curvas regulares.

La superficie reglada se puede interpretar como la unión de (intervalos de) rectas $r_u := \{\beta(u) + v \cdot \gamma(u) : v \in \mathbb{R}\}$. **Figura.**

Ejemplo 2.2. Pensemos en una superficie reglada con β =p una curva constante, entonces se genera el cono,

$$\mathcal{C} := \mathcal{C}_{\gamma,p} = \{ v \cdot \gamma(u) + p : u, v \in \mathbb{R} \}$$

Con p el eje pasante. Por ejemplo, si γ es la parametrización de una circuferencia en \mathbb{R}^3 con eje punto pasante (0,0,0) obtenemos, **figura**

Que es claramente un cono. En esta definición $(u,v) \in \mathbb{R}^2$ el conjunto cono $\mathcal{C}_{\gamma,p}$ nunca es superficie regular, ya que en un punto de p del cono, no hay parametrización regular. Por ejemplo si consideramos la superficie generada por la circuferencia de radio 1, entonces obtenemos el cono canónica que se describe por el conjunto $\mathcal{C}_{\text{canónico}} = \{z^2 = x^2 + y^2\}$, por lo que es superficie reglada. Podemos considerar un entorno abierto V del origen, luego es claro que $V \cap \{z^2 = x^2 + y^2\}$ no es la gráfica de ninguna función sobre el plano coordenado, por lo tanto, no puede ser superficie regular. Si tomamos $V_0 \cap \{z^2 = x^2 + y^2\}$ con V_0 vecindad de p donde p no es el origen, entonces esto si es superficie regular,.

Ejemplo 2.3. Sea una superficie reglada con γ una curva constante. Entonces tenemos un conjunto a lo que llamamos cilindro. Por ejemplo, si $\gamma(u) = (0,0,1)$, y si $\beta(u) = (\cos(u), \sin(u), 0)$, entonces el conjunto imagen generado es un cilindro, **figura**

Ejemplo 2.4. El hiperboloide está dado por el conjunto $H := \{x^2 + y^2 - z^2 = 1\}$, que ya hemos probado que es superficie regular. Demostremos que es una superficie reglada. Para ello debemos verifica que H es unión de rectas y encontrar curvas regulares β, γ que describan a H y ver que hay rectas que pasan (1,0,0) que están contenido completamente en H, es decir, buscar $(a,b,c) \in \mathbb{R}^3$ tal que para todo $v \in \mathbb{R}$ se tiene que,

$$(1,0,0) + v(a,b,c) \in H$$

De esto último vamos a probar que H es superficie reglada, notemos que queremos (a, b, c) tales que,

$$(1+av)^2 + (bv)^2 - (cv)^2 = 1 \Leftrightarrow 1 + 2av + v^2(a^2 + b^2 - c^2) = 1$$
$$\Leftrightarrow v(2a + v(a^2 + b^2 - c^2)) = 0$$

Si $v \neq 0$, entonces,

$$v(a^2 + b^2 - c^2) = -2a$$

Si $a^2 + b^2 - c^2 \neq 0$, podemos despejar v y obtenemos un valor dev, cosa que no nos interesa, por lo que pedimos que $a^2 + b^2 - c^2 = 0$, entonces a = 0, de aquí se concluye que b = c o b = -c. Por tanto, hay dos rectas pasantes por (1,0,0) contenidas en H, las cuales son,

$$r_{1,2} = (1,0,0) + v(0,1,\pm 1)$$

Figura

Observamos que si tenemos la matriz de rotación,

$$R_{\theta} = \begin{bmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Entonces para todo $\theta \in \mathbb{R}$ se tiene que $R_{\theta}H = H$. Si $x^2 + y^2 - z^2 = 1$, entonces,

$$(\cos(\theta)x + \sin(\theta)y)^2 + (-\sin(\theta)x\cos(\theta)y)^2 - z^2 = 1$$

Luego,

$$R_{\theta}[\{(1,0,0) + v(0,1,1) : v \in \mathbb{R}] \subset H$$

en efecto, rectas rotadas participan en H, por lo que,

$$H = \{(\cos(\theta) + v \sin(\theta), -\sin(\theta) + v \cos(\theta), v) : \theta \in [0, 2\pi], v \in \mathbb{R}\}$$

Ejercicio z = xy es superficie reglada.

Ejemplo 2.5. Sea $X(u,v) = (\operatorname{sen}(u), \cos(2u), v)$ una parametrización que describe una superficie reglada,

$$S := \{X(u, v) : (u, v) \in (0, 2\pi) \times (0, 1)\}\$$

Tenemos las curvas $\gamma:(0,2\pi)\to\mathbb{R}^2x\{0\}$ dada por $\gamma(u)=(\mathrm{sen}(u),\cos(2u),0)$, la cual es de la forma,

figura.

Podemos ver que hay un punto p donde la curva pasa dos veces pero de distinta forma, esto implica que S no es superficie regular ya que si lo extendemos y tomamos un vecindad alrededor de ste punto, se puede ver que no existe función con gráfica que representa tal espacio.

2.1. Cambios de Parametrización para Superficies Regulares

Proposición 2.5. Sea $p \in S$ con S superficie regular. Sean $X: U \to S, Y: V \to S$ parametrizaciones regulares, tales que $p \in X(U) \cap Y(V) := W$. Si $h := X^{-1} \circ Y: Y^{-1}(W) \to X^{-1}(W)$. Entonces h es difeomorfismo.

Dem. Se debe probar que h es diferenciable, biyectiva y con inversa diferenciable.

Notemos que h es una función homeomorfismo, ya que es composición de homeomorfismos. Aunque no podemos concluir de forma análoga con respecto a h diferenciable, ya que no sabemos si S es un abierto, ya que requerimos conjuntos abiertos para la diferenciabilidad.

Vamos a proceder de la siguiente forma. Sea $r \in Y^{-1}(W)$ y sea q = h(r), sabemos que,

$$X(u,v) = (x(u,v), y(u,v), z(u,v))$$

Como es una parametrización regular, podemos asumir que,

$$\det \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix} \neq 0$$

En el punto q. Extendemos la parametrización X a la función,

$$F: U \times \mathbb{R} \to \mathbb{R}^3$$

$$F(u, v, t) = (x(u, v), y(u, v), z(u, v) + t)$$

para todo $(u,v) \in U, t \in \mathbb{R}$. Geométricamente, F mapea un cilindro vertical sobre U a un "cilindro vertical" sobre X(U), mapeando cada sección de C con altura t en la ...

Es claro que F es diferenciable y que $F|_{U\times\{0\}}=X$. El determinante del Jacobiano es,

$$\det\begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & 0\\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & 0\\ \frac{\partial z}{\partial z} & \frac{\partial z}{\partial v} & 1 \end{bmatrix} = \det\begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v}\\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix} \neq 0$$

Con respecto al punto q. Es decir, en q podemos construir un difeomorfismo, en particular, existe una vecindad M de X(q) en \mathbb{R}^3 tal que F^{-1} existe y es diferenciable en M.

Por la continuidad de Y, existe una vecindad N de r en V tal que $Y(N) \subseteq M$. Notemos lo siguiente $h\big|_N = F^{-1} \circ Y\big|_N$ es una composición de funciones diferenciables. Por lo tanto, podemos aplicar la regla de la cadena y concluir que h es diferenciable en r. Por tanto h es diferenciable. Este argumento se puede replicar para h^{-1} al ser homeomorfismo, luego se concluye que la inversa es también diferenciable y por tanto, h es difeomorfismo.

Definición 2.4. (Diferenciable en un punto) Sea $f: V \subset S \to \mathbb{R}$ con V abierto con S superficie regular. Decimos que f es diferenciable en $p \in V$ si existe una parametrización $X: U \to S, U \subset \mathbb{R}^2$ abierto $p \in X(U) \subseteq V$ con X una parametrización regular tal que $f \circ X$ es diferenciable.

Observación 2.2. Si $Y:V\to S$ es otra parametrización que cumple la definición de diferenciabilidad en un punto, entonces $f\circ X$ es diferenciable si y sólo si $f\circ Y$.

Sea $X:U\to S$ una parametrización regular tal que $p\in X(U)\subseteq V$ y $f\circ X$ es diferenciable. Sea $Y:W\to S$ otra parametrización regular tal que $p\in Y(W)\subseteq V$. Notemos que,

$$f \circ Y : W \to Y(W) \subseteq V \to \mathbb{R}$$

Está bien definido por hipótesis. Podemos definir $X^{-1} \circ Y : Y^{-1}(W) \to X^{-1}(W)$ donde $W = X(U) \cap Y(V)$. Por la proposición anterior, se tiene que $X^{-1} \circ Y$ es difeomorfismo. Luego podemos hacer la siguiente manipulación,

$$f \circ Y = \underbrace{f \circ X}_{\text{diferenciable}} \circ \underbrace{X^{-1} \circ Y}_{\text{diferenciable}}$$

Revisar

Definición 2.5. Sean S_1, S_2 superficies regulares. Sea $f: V_1 \subseteq S_1 \to S_2$ una función con V_1 un abierto. Decimos que es diferenciable en $p \in V_1$ si existen dos parametrizaciones,

$$X_1:U_1\to S_1$$

$$X_2:U_2\to S_2$$

donde $p \in X_1(U_1), f(X_1(U_1)) \subseteq X_2(U_2)$, de forma que la función,

$$X_2^{-1} \circ f \circ X_1 : U_1 \to U_2$$

es diferenciable en $q = X_1^{-1}(p)$.

Notación. Por comodidad denotamos el par (φ, U) como la parametrización regular donde U es el abierto y φ la parametrización.

La definición de ser diferenciable tiene que ver con solamente un conjunto abierto. Esto se puede extender a todo la superficie regular.

Definición 2.6. (Diferenciabilidad General) Sea $f: S \to \mathbb{R}$ una función con S superficie regular. Decimos que es diferenciable en $p \in S$ si existe (φ, U) parametrización tal que $p \in \varphi(U)$, con $f \circ \varphi : U \to \mathbb{R}$ diferenciable en $\varphi^{-1}(p)$.

Observación 2.3. La definición anterior, es equivalente a decir que para toda parametrización regular (φ, U) alrededor de p, $f \circ \varphi$ es diferenciable en $\varphi^{-1}(p)$.

En particular, si tenemos (φ^*, U^*) otra parametrización que contiene a p, entonces,

$$\varphi^* = \varphi \circ \varphi^{-1} \circ \varphi^*$$

Luego $f \circ \varphi^* = f \circ \varphi \circ \varphi^{-1} \circ \varphi^*$ es diferenciable.

Fotoa celular 28 marzo

2.2. Espacios Tangentes y Diferenciabilidad de funcones entre Superficies Regulares

Consideremos una curva regular $\alpha: I \to \mathbb{R}^3$. El espacio tangente de una curva de un punto de α , está dado por,

$$T_{\alpha(t)}\alpha = \{\lambda \alpha'(t) : \lambda \in \mathbb{R}\} \subseteq \mathbb{R}^3$$

Es decir, son los vectores tangente que toca al punto $p = \alpha(t)$, entonces los valores de la recta tangente de p está dado por la recta $p + T_{\alpha(t)}\alpha$ (el espacio nos entrega los vectores pero no los valores de la recta, por ello debemos movernos del origen al punto p y luego ir tomando los puntos del espacio).

Figura.

Definición 2.7. (Espacio Tangente) Sea S una superficie regular $y p \in S$. Entonces el espacio tangente T_pS es la imagen de $d\varphi_q$ donde (φ, U) es una parametrización regular donde $\varphi: U \to S$ con $p \in \varphi(U)$ $y = \varphi^{-1}(p)$.

Proposición 2.6. Sean S, p como la definición anterior, entonces se tiene que,

$$T_pS = \{\alpha'(0) : \alpha : (-\varepsilon, \varepsilon) \to S \text{ diferenciable en } p = \alpha(0)\}$$

es equivalente a la definición 2.7.

Figutra

Dem. Es decir, el espacio tangente tiene otra definición. Debemos probar la equivalencia. Supongamos que se cumple la proposición, es decir, el espacio tangente está dado por,

$$T_p S = \{ \alpha'(0) : \alpha : (-\varepsilon, \varepsilon) \to S \text{ diferenciable en } p = \alpha(0) \}$$

Sea $\alpha:(-\varepsilon,\varepsilon)\to S$ una curva diferenciable donde $p=\alpha(0)$. Sea $v:=\alpha'(0)$, debemos probar que v es un elemento de la imagen de la Jacobiana de una parametrización (φ,U) . Se tiene que α es una curva en la superficie S. Si $p\in S$, y S es una superficie regular, existe una parametrización de la forma $\varphi:U\to S$ donde $p\in\varphi(U)$, definimos la función,

$$\beta := \varphi^{-1} \circ \alpha : (-\varepsilon, \varepsilon) \to U$$

donde $\beta(t) := (u(t), v(t))$. Luego se tiene que, $\alpha(t) = \varphi(u(t), v(t))$, donde,

$$\alpha'(0) = \frac{\partial \varphi}{\partial u}(q)u'(0) + \frac{\partial \varphi}{\partial v}(q)v'(0)$$
$$= \left[\frac{\partial \varphi}{\partial u}(q) \quad \frac{\partial \varphi}{\partial v}(q)\right] \begin{bmatrix} u'(0) \\ v'(0) \end{bmatrix}$$
$$= d\varphi_q \begin{bmatrix} u'(0) \\ v'(0) \end{bmatrix}$$

Es decir, $\alpha'(0) \in im(d\varphi_q)$. Probando una dirección.

Para la otra dirección, sea,

$$w = \begin{bmatrix} u_0 \\ v_0 \end{bmatrix} \in \mathbb{R}^2$$

donde $d\varphi_q w = v$. Definimos la curva,

$$\alpha(t) := \varphi(tu_0 + q_u, tv_0 + q_v)$$

que es una curva diferenciable en S. Claramente $\alpha(0) = \varphi(q_u, q_v) = p$ y $\alpha'(0) = d\varphi_q w = v$. Por tanto, $v \in T_p S$ con la definición de curva.

De esta forma, para estudiar el espacio tangente de un punto p en al superficie S, basta estudiar las curvas diferenciables que pasan por p.

Observación 2.4. Si (φ, U) es una parametrización regular de S con $\alpha : (-\varepsilon, \varepsilon) \to S$ regular con $\alpha(0) = p = \varphi(1)$, y si $\varphi^{-1}(\alpha(t)) = (u(t), v(t))$, entonces las coordenadas de $\alpha'(0)$ en la base de T_pS están dada por,

$$\frac{\partial \varphi}{\partial u}(q), \frac{\partial \varphi}{\partial v}(q)$$

donde $q = \varphi^{-1}(p) = (u'(0), v'(0)).$

Al igual que la Jacobiana de una función diferenciable, vamos a definir una matriz dada por la diferenciabilidad de f en el sentido de superficies.

Definición 2.8. Sea $f: S_1 \to S_2$ función diferenciable entre superficies regulares. Para $p \in S_1$ y considerando $df_p: TpS_1 \to T_{f(p)}S_2$, están dado por lo siguiente: Si $\alpha: (-\varepsilon, \varepsilon) \to S_1$ diferenciable con $\alpha'(0) = w, \alpha(0) = p$, entonces,

$$df_p w := \frac{d}{dt}\big|_{t=0} f \circ \alpha$$

Proposición 2.7. Si $f: S_1 \to S_2$ es como la definición anterior, entonces df_p está bien definido, (nos referimos que el α no importa, el valor siempre será el mismo).

Dem.

Falta algo

2.3. Variedades y Subvariedades en \mathbb{R}^d

Hemos estudiemos las parametrizaciones sobre superficies regulares. Ahora extenderemos esta noción.

Definición 2.9. Un conjunto $S \subseteq \mathbb{R}^d$ es una subvariedad diferenciable de dimensión k si para todo $p \in S$, existe (φ, U) con $U \subseteq \mathbb{R}^d$ abierto donde,

$$\varphi: U \to \mathbb{R}^d$$

con $p \in \varphi(U), \varphi(U) = S \cap V$ V abierto en \mathbb{R}^d . Tal que,

- φ es homeomorfismo con su imagen.
- φ^{-1} differenciable.
- $d\varphi_q$ tiene rango k para todo $q \in U$.

Observación 2.5. Notemos que es una definición general de superficie regular. Ya que si tomamos d = 3, k = 2, obtemos la parametrización regular de una superficie regular.

Ejemplo 2.6. Si $\varphi:(0,2\pi)^2\to\mathbb{R}^4$ está dada por,

$$\varphi(u, v) = (\cos(u), \sin(u), \cos(v), \sin(v))$$

Es una parametrización del conjunto,

$$S \subseteq \{(x, y, z, w) \in \mathbb{R}^4 : x^2 + y^2 = 1, w^2 + z^2 = 1\} = S^1 \times S^1$$

Ejemplo 2.7. Sean $\gamma_1, \gamma_2, \gamma_3 : I \to \mathbb{R}^2$ curvas regulares. Sea $\varphi : I^3 =: U \to \mathbb{R}^6$ una función dada por,

$$\varphi(s_1, s_2, s_3) := (\gamma_1(s_1), \gamma_2(s_2), \gamma_3(s_3))$$

 φ es una parametrización regular, donde su imagen es una subvariedad de dimensión 3 en \mathbb{R} ,

$$d\varphi_{(s_1,s_2,s_3)} = \begin{bmatrix} \gamma_1'(s_1) & 0 & 0\\ 0 & \gamma_2'(s_2) & 0\\ 0 & 0 & \gamma_3'(s_3) \end{bmatrix}$$

Si los $\gamma_i'(s_i)$ no se anulan, entonces $d\varphi$ tiene rango 3.

Si $f: \mathbb{R}^d \to \mathbb{R}^{d-k}$ es tal que f^{-1} terminar.

Al igual que las parametrizaciones de superfifices regulares, podemos definir diferenciabilidad y estudiar el cambio de coordenadas.

Proposición 2.8. Sea S subvariedad y sean $(\varphi_1, U_1), (\varphi_2, U_2)$ parametrizaciones regulares en el punto $p \in S$ y sea $W := \varphi_1(U_1) \cap \varphi_2(U_2)$, entonces,

$$\varphi_1^{-1} \circ \varphi_2 : \varphi_2^{-1}(W) \to \varphi_1^{-1}(W)$$

es diferenciable.

La proposición es el cambio de parametrización. Por lo que la demostración es análogo. No solo eso es análogo. Los conceptos de diferenciabilidad también es análogo sobre subvariedades.

Definición 2.10. Sean S_1, S_2 subvariedades y sea $f: S_1 \to S_2$. Decimos que f es diferenciable en $p \in S_1$ si existe una parametrización (φ_1, U_1) de S_1 alrededor de p y existe otra (φ_2, U_2) de S_2 alrededor de f(p) tal que,

$$\varphi_2^{-1} \circ f \circ \varphi_1$$

es diferenciable en $\varphi_2^{-1}(p)$.

Terminar ekemplo 2.9.

El concepto de variedad requiere del uso de espacios topológico.

Definición 2.11. Sea X un espacio topológico. Es una variedad diferenciable si existe un recubrimiento abierto $\{U_{\alpha} : \alpha \in \mathcal{A}\}$ tal que para todo $\alpha \in \mathcal{A}$, existe,

$$\varphi_{\alpha}: U_{\alpha} \subseteq \mathbb{R}^d \to V_{\alpha}$$

homeomorfismo. Y además, para todo $\alpha, \beta \in \mathcal{A}$, si $V_{\alpha\beta} := V_{\alpha} \cap V_{\beta} \neq \emptyset$, entonces,

$$\varphi_{\beta}^{-1} \circ \varphi_{\alpha} : \varphi_{\alpha}^{-1}(V_{\alpha\beta}) \to \varphi_{\beta}^{-1}(V_{\alpha\beta})$$

es difeomofismo.

Observación 2.6. Si $S \subseteq \mathbb{R}^d$ es una subvariedad, entonces es variedad.

Definición 2.12. Sean X_1, X_2 variedades diferenciables. Sea $f: X_1 \to X_2$. Decimos que es diferenciable en $p_1 \in X_1$ si existe V_1 abierto en X_1 que contiene a p_1 existe p_2 abierto en p_3 que contiene a p_4 parametrización como la definición anterior, tal que,

$$\varphi_2^{-1} \circ f \circ \varphi_1$$

es diferenciable en $\varphi_1^{-1}(p_1)$, definida entre,

$$U_1^* \rightarrow U_2^*$$

con $\varphi_1^{-1}(p_1) \in U_1^* \subseteq U_1, \varphi_2^{-1}(p_2) \in U_2^* \subseteq U_2$. Con U_1^*, U_2^* abiertos.

Teorema 2.1. (Whitney) Si X es una variedad diferenciable de dimensión k, entonces existe $S \subseteq \mathbb{R}^{2k}$ subvariedad y $f: X \to S$ difeomorfismo.

Dem.

Ejemplo 2.10.

Definición 2.13. Sea $S \subseteq \mathbb{R}^3$ superficie regular. Sea $p \in S$, consideremos,

- (a) $\langle \cdot, \cdot \rangle_p$ el producto interno de \mathbb{R}^3 restringida a T_pS (Tensor métrico de S en p).
- (b) $I_p(v) = \langle v, v \rangle_p$, es la primera forma fundamental de S en p.

Observación 2.7. Se cumple algunas propiedades de producto interno, como,

$$\langle v, w \rangle_p = \frac{1}{2} (I_p(v+w) - I_p(v) - I_p(w))$$

Para verlo basta usar la propiedad bilineal del producto interno,

$$I_p(v+w) - I_p(v) - I_p(w) = \langle v+w, v+w \rangle_p - \langle v, v \rangle_p - \langle w, w \rangle_p$$
$$= 2\langle v, w \rangle$$

Recordemos que podemos cambiar el orden de los argumentos ya que estamos trabajando en los reales.

Observación 2.8. La métrica está dada por,

$$||v||_p^2 := I_p(v)$$

Con las propiedades de el producto interno podemos trabajar con varias cosas, con ángulos, largos y áreas. Por ejemplo,

$$\cos(\theta) = \frac{\langle v, w \rangle_p}{\sqrt{\langle v, v \rangle_p} \sqrt{\langle w, w \rangle_p}}$$

donde θ es el ángulo entre v, w. Y con la observación anterior, se tiene,

$$\cos(\theta) = \frac{1}{2} \frac{I_p(v+w) - I_p(v) - I_p(w)}{\sqrt{I_p(v)} \sqrt{I_p(w)}}$$

Calculemos la matriz de I_p . (Si Q(x) es una forma cuadrática, $Q: \mathbb{R}^d \to \mathbb{R}$ donde Q(x) = xTAx para 1 única $A = A^T$ con $A \in \text{Sym}(d)$.) Sea α curva, luego,

$$\alpha'(0) = v = u'(0) \frac{\partial \varphi}{\partial u}(q) + v'(0) \frac{\partial \varphi}{\partial v}(q)$$

con $\varphi(u,v)$ una parametrización local alrededor de $p=\alpha(0)=\varphi(q)$. Sabemos que (u'(0,v'(0))) son las coordenadas de $\alpha'(0)$ en la base,

$$\left(\frac{\partial \varphi}{\partial u}, \frac{\partial \varphi}{\partial v}\right)(q)$$

Luego,

$$I_{p}(\alpha'(0)) = \left| u'(0) \frac{\partial \varphi}{\partial u}(q) + v'(0) \frac{\partial \varphi}{\partial v}(q) \right|^{2}$$

$$= (u'(0))^{2} \left| \frac{\partial \varphi}{\partial u}(q) \right|^{2} + (v'(0))^{2} \left| \frac{\partial \varphi}{\partial v}(q) \right|^{2} + 2u'(0)v'(0) \left\langle \frac{\partial \varphi}{\partial u}(q), \frac{\partial \varphi}{\partial v}(q) \right\rangle$$

$$= \begin{bmatrix} u'(0) \\ v'(0) \end{bmatrix}^{T} \begin{bmatrix} |\varphi_{u}|^{2} & \langle \varphi_{u}, \varphi_{v} \rangle \\ |\langle \varphi_{u}, \varphi_{v} \rangle & |\varphi_{v}|^{2} \end{bmatrix} \begin{bmatrix} u'(0) \\ v'(0) \end{bmatrix}$$

$$= v^{T} d\varphi_{q}^{T} d\varphi_{q} v$$

De forma reducida,

$$I_p(v) = v^T d\varphi_q^T d\varphi_q v$$

donde $\varphi: U \to S$ es parametrización y $q = \varphi^{-1}(p)$.

Notación. La derivada parcial sobre u de φ la denotaremos por φ_u . Análogamente con el resto de derivadas parciales.

Por tanto, la matriz I_p respecto a la base $\{\varphi_u(q), \varphi_v(q)\}$ es $d\varphi_q^T d\varphi_q$. También se tiene que,

$$\alpha'(0) = d\varphi_q \begin{bmatrix} u'(0) \\ v'(0) \end{bmatrix}$$

entonces,

$$I_{p}(\alpha'(0)) = \left| d\varphi_{q} \begin{bmatrix} u'(0) \\ v'(0) \end{bmatrix} \right|^{2}$$
$$= \begin{bmatrix} u'(0) \\ v'(0) \end{bmatrix}^{T} d\varphi_{q}^{T} d\varphi_{q} \begin{bmatrix} u'(0) \\ v'(0) \end{bmatrix}$$

Siendo otra forma de llegar al resultado.

Notación. A la matriz $d\varphi_q^T d\varphi_q$ la denotaremos por,

$$d\varphi_q^T d\varphi_q = \begin{bmatrix} E & F \\ F & G \end{bmatrix}$$

Luego,

$$I_p(\alpha'(0)) = E(u'(0))^2 + 2Fu'(0)v'(0) + G(v'(0))^2$$

y por tanto,

$$E := |\varphi_u|^2$$

$$F := \langle \varphi_u, \varphi_v \rangle_p$$

$$G := |\varphi_v|^2$$

Ejemplo 2.11. Pensemos en un cilindro C que tiene parametrización,

$$\varphi: U \to C$$

 $\varphi(u, v) = (\cos(u), \sin(u), v)$

Consideremos $p \in S$ y su espacio tangencial T_pS . Queremos encontrar la matriz de la primera forma fundamental sobre T_pS . Por la observación anterior debemos calcula φ_u, φ_v y luego estudiar sus productos internos. Se tiene que,

$$\varphi_u = \begin{bmatrix} -\operatorname{sen}(u) \\ \cos(u) \\ 0 \end{bmatrix}$$
$$\varphi_v = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Luego la matriz de I_p es,

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Que es la matriz identidad.

Con esto podemos realizar el siguiente cálculo. Sea $\alpha:(a,b)\to \varphi(U)$ una curva en el cilindro. Entonces el largo está dado por,

$$\int_a^b \|\alpha'\| dt = \int_a^b |I_p(\alpha')|^{1/2} dt$$
$$= |(\varphi^{-1} \circ \alpha)'|^{1/2} dt$$

Observación 2.9.

$$\{\operatorname{curvas} \alpha: I \to \varphi(U)\} = \{\operatorname{curvas} \varphi \circ \beta: \beta: I \to U\}$$

Para pasar información sobre ángulos/largos, desde "abajo hacía "arriba", sirve conocer la matriz de I_p en la base $\{\varphi_u, \varphi_v\}$ en $q = \varphi^{-1}(p)$.

Notación. Si,

$$\frac{d\varphi}{dt} = e^t$$

Entonces $\varphi(b) - \varphi(a) = e^b - e^a$.

"Elemento de largo 2 en $\varphi(u)$ "

$$ds^2 = \begin{bmatrix} du \\ dv \end{bmatrix} \begin{bmatrix} E & F \\ F & G \end{bmatrix} \begin{bmatrix} du \\ dv \end{bmatrix} = Edu^2 + 2Fdudv + Gdv^2$$

Si s, u, v son funciones expresadas a otras variables, esto ayuda s(t), u(t), v(t) donde s(t) es el largo de la curva entre 0 y t.

Definición 2.14. Si φ es parametrización local de una superficie regular,

$$\varphi: U \to S, \ D \subseteq U$$

entonces el área de $\varphi(D)$ es,

$$A(\varphi(D)) := \int_{D} |\varphi_{u} \times \varphi_{v}| du dv$$

Observación 2.10. Notemos que,

$$|\varphi_u \times \varphi_v| = \sqrt{\det(d\varphi_q^T d\varphi_q)}$$

Por lo que,

$$A(\varphi(D)) = \int_{D} \sqrt{\det(d\varphi_{q}^{T}d\varphi_{q})} du dv = \int_{D} \sqrt{\det\begin{bmatrix} E & F \\ F & G \end{bmatrix}} du dv$$
$$= \int_{D} \sqrt{EG - F^{2}} du dv$$

Por lo que solo debemos estudiar la parametrización φ y luego integrar.

2.4. Teoría Geométrica de la Medida

Idea intuitiva. Existen bases ortonormales de \mathbb{R}^2 , T_pS tal que I_p tiene matriz diagonal a estas base I_p . La definición de área de una región generada por la curva, es,

$$\sqrt{\det(d\varphi^T d\varphi)}$$

donde,

$$d\varphi^T d\varphi = V^T \begin{bmatrix} \lambda_1^2 & \\ & \lambda_2^2 \end{bmatrix} V$$

Definición 2.15. Sean S_1, S_2 son superficie regulares en \mathbb{R}^3 , $f: S_1 \to S_2$ es diferenciable, decimos que f es una isometría cuando para todo $p_1 \in S_1$ y dado,

$$df_{p_1}: (T_{p_1}S_1, \langle \cdot, \cdot \rangle_{p_1}) \to (T_{p_2}S_2, \langle \cdot, \cdot \rangle_{p_2})$$

se cumple que

$$||df_{p_1}(v)||_{p_2}^2 = ||v||_{p_1}^2$$

 $\textit{Es decir, df}_{p_1} \textit{ es isometr\'a}. (\textit{La igualdad de normas es equivalente a decir que df}_{p_1}^T \textit{df}_{p_1} \textit{ es ortogonal } 2 \times 2).$

Ejemplo 2.12. Si $S_1=\alpha_1(I), S_2=\alpha_2(I)$ curvas regulares. Si $\varphi:S_1\to S_2$ es isometría si y sólo si,

$$\|(\varphi \circ \alpha_1)'\| = \|\alpha_1'\|$$

Si α_1 es parametrización por arco, entonces φ es isometría si y sólo si $\varphi \circ \alpha_1$ es parametrización por arco.

Teorema 2.2. (Nash-Kuiper) Si S es variedad diferenciable de dimensión k, entonces existe $f: S \to \mathbb{R}^{k+1}$ isometría.

2.5. Orientabilidad

Defnición 2.16. Sea X es una variedad diferenciable. Es orientable si existe un atlas $\{(\varphi_{\alpha}, U_{\alpha})\}_{\alpha \in \mathcal{A}}$ tales que $\det(d\varphi_{\alpha\beta})$ es siempre mayor a 0. $(\varphi_{\alpha\beta} = \varphi_{\beta}^{-1} \circ \varphi_{\alpha})$

Recordemos que $\varphi_{\alpha\beta}$ se comporta de la siguiente forma. Sea $W = \varphi_{\alpha}(U_{\alpha}) \cap \varphi_{\beta}(U_{\beta})$, entonces el mapa,

$$\varphi_{\alpha\beta} = \varphi_{\beta}^{-1} \circ \varphi_{\alpha} : \varphi_{\alpha}^{-1}(W) \to \varphi_{\beta}^{-1}(W)$$

es difeomorfismo. Una forma de estudiar el determinante de $d\varphi_{\alpha\beta}$ basta estudiar un marco canónico en U_{α} . Si e_1, \ldots, e_k son vectores canónicos en U_{α} , entonces,

$$d\varphi_{\alpha\beta} = [d\varphi_{\alpha\beta}(e_1)\dots d\varphi_{\alpha\beta}(e_k)]$$

Entonces,

$$\det(d\varphi_{\alpha\beta}) = \det(d\varphi_{\alpha\beta}) = [d\varphi_{\alpha\beta}(e_1) \dots d\varphi_{\alpha\beta}(e_k)]$$

Si k = 3, entonces figurar

donde solo intercambiamos e_2 por e_3 y viceversa, por lo que,

$$d\varphi_{\alpha\beta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Que tiene determinante 1.

Ejemplo 2.13. En \mathbb{S}^2 , consideremos $U_1, U_2 = \mathbb{R}^2, U_{12} = U_{21} = \mathbb{R}^2 \setminus \{0\}$. Sea las funciones,

$$\varphi_{12} := \frac{y}{|y|^2} : \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^2 \setminus \{0\}$$

Luego,

$$d\varphi_{12} = (d\varphi_2)^{-1}d\varphi_1 = \text{negativo}$$

Terminar

Proposición 2.9. Sea $S \subseteq \mathbb{R}^3$ superficie regular. Es orientable si y sólo si existe $V: S \to \mathbb{R}^3 \setminus \{0\}$ tal que $V(p) \perp T_p S$ para todo $p \in S$ y V continua.

Fatla detalles

Definición 2.17. Sea $S \subseteq \mathbb{R}^3$ superficie regular orientable, definimos el mapa de Gauss $N: S \to \mathbb{S}^2$ dado por N(p) = "vector normal unitario en p" con N continua.

En general podemos definir $S^k \subseteq \mathbb{R}^{k+1}$ donde $N: S^k \to \mathbb{S}^{k+1}$. Notemos también que N está bien definido, ya que el vector normal unitario vive en la esfera.

Sea $X:U\to S$ una parametrización local, entonces podemos tomar,

$$N: X(U) \to \mathbb{S}^2$$

$$N(p) = \frac{X_u \times X_v}{\|X_u \times X_v\|}$$

Observación 2.11. -N(p) es otro mapeo de Gauss.

Ejemplo 2.14. Sea $f: U \to \mathbb{R}^3$ una función diferenciable donde $df \neq 0$. Si $S = f^{-1}(a)$, entonces,

$$N(p) = \frac{\nabla f(a)}{|\nabla f(a)|}$$

Si $S = \mathbb{S}^2$ entonces N(p) = p.

Definición 2.18. Sea $S \subseteq \mathbb{R}^3$ superficie regular orientable. Con $N \in C^1$. Se define el mapa weingarten:

$$W_p: T_p S \to T_{N(p)} \mathbb{S}^2$$
$$W_p = -dN_p$$

$$donde\ N_{(N(p))}\mathbb{S}^2=N(p), T_{N(p)}\mathbb{S}^2=(N(p))^{\perp}=T_pS$$

Vemos que el mapa de Gauss N es una mapa de tres variables a tres variables, por lo que debemos pensar en una matriz diferencial de 3×3 , y aquí estamos pensando en que N es diferenciable.

Observación 2.12. Recordemos por definición que,

$$T_p S = \{ \alpha'(0) : \alpha \text{ es curva regular con } \alpha(0) = p \}$$

donde $S \subseteq \mathbb{R}^3$ es superficie regular orientable. Por lo que existe el mapa de Gauss $N \in C^1$. Cuando decimos que N(p) es la normal del punto p, ocurre que $N(p) \perp \alpha'(0)$ donde α es curva regular con $\alpha(0) = p$, es decir,

$$\langle N(p), \alpha'(0) \rangle = 0$$

Si $\alpha(0) = p$, por continuidad se cumple

$$\langle N(\alpha(t)), \alpha'(t) \rangle = 0$$

para una vecindad de 0. Y como N está normalizado **Terminar**

Proposición 2.10. Sea S superficie regular orientable. Entonces el mapa Weigarten es autoadjunta sobre el tensor métrico, es decir,

$$\langle W_p(v),w\rangle_p=\langle v,W_p(w)\rangle_p$$

para todo $v, w \in T_pS$.

Dem. Sea $\varphi \in C^2$, vamos a probar que dN_p es autoadjunto. Sea la base $\{\varphi_u, \varphi_v\}$ de T_pS . Sea $\alpha(t) = \varphi(u(t), v(t))$ donde $\alpha(0) = p$, notemos que dN_p es una transformación lineal, entonces se cumple,

$$dN_p(\alpha'(0)) = dN_p(\varphi_u u'(0) + \varphi_v v'(0))$$

=
$$dN_p(\varphi_u)u'(0) + dN_p(\varphi_v)v'(0)$$

Probemos que,

$$\langle dN_p(\varphi_u), \varphi_v \rangle = \langle \varphi_u, dN_p(\varphi_v) \rangle$$

Sabemos que $\langle N, \varphi_u \rangle = \langle N, \varphi_v \rangle = 0$ dado que N es perpendicular a $\alpha'(0)$, luego debe ser perpéndicular a los elementos de la base, entonces al derivar obtenemos,

$$\langle dN_p(\varphi_u), \varphi_v \rangle + \langle N, \varphi_{vu} \rangle = 0$$
$$\langle dN_p(\varphi_v), \varphi_u \rangle + \langle N, \varphi_{uv} \rangle = 0$$

Como $\varphi_{uv} = \varphi_{vu}$, entonces se tiene que,

$$\langle dN_p(\varphi_u), \varphi_v \rangle = \langle \varphi_u, dN_p(\varphi_v) \rangle$$

Por tanto dN_p es autoadjunta y por tanto $W_p = -dN_p$ también.

Si W_p es una transformación linea, entonces este posee autovalores. Es más, existe una base ortonormal de autovalores reales, dados por,

$$\kappa_1 = \min_{v \neq 0} \frac{\langle W_p v, v \rangle}{\langle v, v \rangle}$$
$$\kappa_2 = \max_{v \neq 0} \frac{\langle W_p v, v \rangle}{\langle v, v \rangle}$$

La segunda forma fundamental está dada por, $\mathbb{I}_p: T_pS \to \mathbb{R}$ dado por $\mathbb{I}_p(v) = \langle W_p(v), v \rangle_p$.

Ahora que tenemos el mapa Weigarten, necesitamos algunos nombres. Sea $\{v_1, v_2\}$ una base ortonormal de T_pS donde,

$$W_n(v_1) = \kappa_1 v_1, W_n(v_2) = \kappa_2 v_2$$

con κ_1, κ_2 los valores propios reales y v_1, v_2 los vectores propios. Por lo que las direcciónes principales de S en p son $\pm v_1, \pm v_2$. Y los valores propios κ_1, κ_2 son llamados curvaturas principales de S en p (depende de la elección de signo de N).

Observación 2.13. Si $N \mapsto -N$, entre $W_p \mapsto -W_p$ y todo se invierte. También se cumple que $\langle W_p(\varphi_u), \varphi_v \rangle = \langle N, \varphi_{uv} \rangle$.

El punto umbilical $p \in S$ es tal que $\kappa_1 = \kappa_2 =: \kappa$. Por lo que $W_p = \kappa \left(id_{T_pS}\right)$, donde la direcciones principales no son únicas.

Estudiemos la segunda forma fundamental. Sea $\alpha: I \to S$ una curva regular p.p.a de T_pS , por lo que $\alpha(0) = p, \alpha'(0) = v \in T_pS$ y ||v|| = 1. Consideremos $N(\alpha(t)): I \to \mathbb{S}^2$ como el mapa que estudia las normas de la curva $\alpha(t)$. Entonces N es perpendicular a todo punto $\alpha(t)$, por lo que,

$$\langle N(\alpha(t)), \alpha'(t) \rangle = 0$$

Derivando sobre t, obtenemos,

$$\langle N(\alpha(t)), \alpha''(t) \rangle + \langle dN_{\alpha(t)}(\alpha'(t)), \alpha'(t) \rangle = 0$$

Si $\alpha''(t) = \kappa_{\alpha(t)} n(t)$ pensando $\kappa_{\alpha(t)}$ como la curvatura y n(t) la normal habitual, de forma que,

$$\langle N(\alpha(t)), \kappa_{\alpha(t)} n(t) \rangle - \langle W_{\alpha(t)} (\alpha'(t)), \alpha'(t) \rangle = 0$$

Usando la segunda forma fundamental, obtenemos que,

$$\mathbb{I}_{\alpha(t)}(\alpha'(t)) = \kappa_{\alpha(t)} \langle N(\alpha(t)), n(t) \rangle =: \kappa_n(t)$$

Luego,

$$\mathbb{I}_p(v) = \kappa_p \langle N(p), n(0) \rangle = \kappa_n(0)$$

A $\kappa_n(t)$ le llamamos curvatura de α normal a $\alpha(t)$.

Teorema Meusmier Si fijamos $\alpha: I \to S$ con $\alpha(0) = p, \alpha'(0) = v$, entonces κ_n no depende de más propiedades de α .

Es decir, κ_n solo depende de lo que vimos. (Si α es plana en P, entonces $\alpha', \alpha''||$ a P).

Se cumple que,

$$|\kappa_n| = |\kappa_n| |\langle N, n \rangle| \le |\kappa_\alpha|$$

 κ_{α} es máximo si y solo si $\langle N, n \rangle = 1$.

Definición 2.19. (Curaturas) Sea S superficie regular orientable y sea W_p el mapa de Weigarten sobre $p \in S$. Se definen:

- Curvatura de Gauss: $K(p) = \kappa_1(p)\kappa_2(p) = \det(W_p)$.
- Curvatura Media: $H(p) = \frac{1}{2}(\kappa_1(p) + \kappa_2(p)) = \frac{1}{2}Tr(W_p)$

Podemos ver que la curvatura de Gauss es invariante sobre los cambio de bases. Ya que si $\det(A + \lambda I) = \lambda^2 + \text{Tr}(A)\lambda + \det A$, entonces,

$$\det(CAC^{-1} + \lambda I) = \lambda^2 + \text{Tr}(CAC^{-1})\lambda + \det(A)$$

Mientas que la curvatura media necesita arreglos.

Veamos como se compr
tar \mathbb{I}_p en coordenadas polares. Sea $\varphi:U\subseteq\mathbb{R}^2\to S$ una parametrización regular co
nS superficie regular. Se tiene la base $\{\varphi_u,\varphi_v\}$ de T_pS co
n $q=\varphi^{-1}(p)$. Sabemos que,

$$(\varphi^{-1} \circ \alpha)(t) = \begin{bmatrix} u(t) \\ v(t) \end{bmatrix}$$

Si $\alpha(0) = p$, entonces,

$$\alpha'(0) = \varphi_u(q)u'(0) + \varphi_v v'(0)$$

Ahora definimos,

$$N_u := \frac{\partial}{\partial u}(N \circ \varphi) = dN_p(\varphi_u)$$
$$N_v := \frac{\partial}{\partial v}(N \circ \varphi) = dN_p(\varphi_v)$$

Luego por linealidad de dN_p se tiene que,

$$dN_p(\alpha'(0)) = N_u u'(0) + N_v v'(0)$$

Entonces,

$$\mathbb{I}_{p}(\alpha'(0)) = \langle W_{p}(\alpha'(0)), \alpha'(0) \rangle = -\langle dN_{p}(\alpha'(0)), \alpha'(0) \rangle
= \langle -N_{u}u'(0) - N_{v}v'(0), \varphi_{u}u'(0) + \varphi_{v}v'(0) \rangle
= (u'(0))^{2} \langle -N_{u}, \varphi_{u} \rangle + u'(0)v'(0) \langle -N_{u}, \varphi_{v} \rangle + u'(0)v'(0) \langle -N_{v}, \varphi_{u} \rangle + (v'(0))^{2} \langle -N_{v}, \varphi_{v} \rangle$$

Si $\langle -N_u, \varphi_v \rangle = \langle -N_v, \varphi_u \rangle = \langle N, \varphi_{uv} \rangle$, entonces,

$$\mathbb{I}_p(\alpha'(0)) = (u'(0))^2 \langle N, \varphi_{uv} \rangle + 2u'(0)v'(0)N, \varphi_{uv} \rangle + (v'(0))^2 \langle N, \varphi_{uv} \rangle$$

Por tanto la matriz en la base φ_u, φ_v es,

$$\begin{bmatrix} e & f \\ f & g \end{bmatrix}$$

donde $e = \langle N, \varphi_{uu} \rangle, f = \langle N, \varphi_{uv} \rangle, g = \langle N, \varphi_{vv} \rangle$. De forma reducida, se tiene que,

$$\mathbb{I}_p(v) = v^T \begin{bmatrix} e & f \\ f & g \end{bmatrix} v$$

¿Se podrá determinar ${\cal W}_p$ de forma implícita? Supongamos que,

$$dN_p = A$$

Como trabajamos en \mathbb{R}^d se tiene que,

$$\langle W_p v, w \rangle_p = \langle w, W_p v \rangle_p$$

El lado derecho se puede ver que es igual a,

$$w^T \begin{bmatrix} e & f \\ f & g \end{bmatrix} v$$

Y el lado derecho se puede ver que es,

$$v^T \begin{bmatrix} E & F \\ F & G \end{bmatrix} A v$$

Luego,

$$w^T \begin{bmatrix} e & f \\ f & g \end{bmatrix} v = v^T \begin{bmatrix} E & F \\ F & G \end{bmatrix} A v$$

Entonces,

$$\begin{bmatrix} e & f \\ f & g \end{bmatrix} = \begin{bmatrix} E & F \\ F & G \end{bmatrix} A$$

Por lo que si la matriz I_p es intertible, se tiene que,

$$dN_p = A = \begin{bmatrix} E & F \\ F & G \end{bmatrix}^{-1} \begin{bmatrix} e & f \\ f & g \end{bmatrix}$$

Encontrando una forma de determinar dN_p .

Ejemplo 2.15. Sea $S = G_f(f)$ donde $f : U \subseteq \mathbb{R}^2 \to \mathbb{R}$ es una función diferenciable, luego f es superficie regular con parametrización $\varphi(u, v) = (u, v, f(u, v))$. Entonces,

$$\varphi_u = (1, 0, f_u)$$
$$\varphi_v = (0, 1, f_v)$$

Luego,

$$E = 1 + f_u^2$$
$$F = f_u f_v$$
$$G = 1 + f_v^2$$

Ahora S se puede pensar que es orientable con mapa de Gauss $N = \frac{\varphi_u \times \varphi_v}{|\varphi_u \times \varphi_v|}$, entonces,

$$N = \frac{(-f_u, -f_v, 1)}{\sqrt{1 + f_u^2 + f_v^2}}$$

Encontremos las segundas derivadas,

$$\varphi_{uu} = (0, 0, f_{uu})$$
$$\varphi_{uv} = (0, 0, f_{uv})$$
$$\varphi_{vv} = (0, 0, f_v)$$

Luego,

$$e = \frac{f_{uu}}{\sqrt{1 + f_u^2 + f_v^2}}$$
$$f = \frac{f_{uv}}{\sqrt{1 + f_u^2 + f_v^2}}$$
$$g = \frac{f_{vv}}{\sqrt{1 + f_u^2 + f_v^2}}$$

Por tanto,

$$dN_p = \frac{1}{\sqrt{1 + f_u^2 + f_v^2}} \begin{bmatrix} 1 + f_u^2 & f_u f_v \\ f_u f_v & 1 + f_v^2 \end{bmatrix}^{-1} \begin{bmatrix} f_{uu} & f_{uv} \\ f_{uv} & f_{vv} \end{bmatrix}$$

Ejemplo 2.16. Sea x > 0 y sea una curva $\gamma(t) = (x(t), z(t))$ p.p.a. Podemos rotarlo de forma que se genera la curva,

$$\varphi(\theta, t) = (x(t)\cos(\theta), x(t)\sin(\theta), z(t))$$

siendo una parametrización de la superficie regular S, por lo que T_pS tiene base $\varphi_{\theta}, \varphi_t$. Vemos que,

$$\varphi_{\theta} = (-x \operatorname{sen}(\theta), x \cos(\theta), 0)$$

$$\varphi_{t} = (x_{t} \cos(\theta), x_{t} \operatorname{sen}(\theta), z_{t})$$

$$\varphi_{\theta\theta} = (-x \cos(\theta), -x \operatorname{sen}(\theta), 0)$$

$$\varphi_{\theta t} = (-x_{t} \operatorname{sen}(\theta), x_{t} \cos(\theta), 0)$$

$$\varphi_{tt} = (x_{tt} \cos(\theta), x_{tt} \operatorname{sen}(\theta), z_{tt})$$

Entonces,

$$\begin{split} E &= x^2 \\ F &= 0 \\ G &= x_t^2 + z_t^2 \\ N &= \frac{(xz_t\cos(\theta), xz_t\sin(\theta), -xx_t)}{\sqrt{x^2x_t^2 + x^2z_t^2}} \\ e &= \langle N, \varphi_{\theta\theta} \rangle \\ f &= \langle N, \varphi_{\theta t} \rangle \\ g &= \langle N, \varphi_{tt} \rangle \end{split}$$

Además notemos que $\sqrt{x^2(z_t^2+x_t^2)}=|x|=x$ como x>0. Entonces,

$$N = (z_t \cos(\theta), z_t \sin(\theta), -x_t)$$

Luego,

$$e = -xz_t$$

$$f = 0$$

$$g = x_{tt}z_t - x_tz_{tt}$$

Finalmente,

$$A = \begin{bmatrix} E & F \\ F & G \end{bmatrix}^{-1} \begin{bmatrix} e & f \\ f & g \end{bmatrix}$$
$$= \begin{bmatrix} x^2 & 0 \\ 0 & x_t^2 + z_t^2 \end{bmatrix} \begin{bmatrix} -xz_t & 0 \\ 0 & x_{tt}z_t - x_tz_{tt} \end{bmatrix}$$

Si $z_t^2 + x_t^2 = 1$, y al derivar $zz_{tt}z_t + 2x_{tt}x_t = 0$. Por lo que,

$$A = \begin{bmatrix} \frac{-z_t}{x} & 0\\ 0 & x_{tt}z_t - x_t z_{tt} \end{bmatrix}$$

Por tanto $\kappa = \det(A) = -\frac{x_{tt}}{x}$, luego las curvatura media y de Gauss son,

$$\kappa_1 \kappa_2 = -\frac{x_{tt}}{x}$$
$$\frac{\kappa_1 + \kappa_2}{2} = -\frac{z_t}{x} (x_{tt} z_t - x_t z_{tt})$$

De aquí se deduce que,

$$\kappa_1 = -\frac{z_t}{x}, \kappa_2 = x_{tt} z_t - x_t z_{tt}$$

2.6. La Geodésica

Definición 2.19. (Geodésica) Sea S superficie regular. Sea $\gamma:I\to S$ una curva de al menos C^2 . Diremos que es geodésica si $\gamma''(t)\perp T_{\gamma(t)}S$ a lo largo de γ .

Observación 2.14. Sea $\gamma: I \to S$ geodésica con velocidad constante, entonces la reparametrización $\gamma^*: J \to S$ también es una geodésica, ya que si $\gamma^* = \gamma \circ f$, entonces,

...

Por lo que podemos tomar γ geodésica p.p.a, entonces se tiene que $\gamma'' = \kappa_{\gamma} n$ con $\kappa_{\gamma} \geq 0$ la curvatura, y n la normal. Entonces $n||N_{\gamma(t)}|$ y luego,

$$\mathbb{I}_{\gamma(t)}(\gamma'(t)) = \kappa_{\gamma}\langle N, n \rangle$$

Entonces las geodésicas curvan lo menos posibles (entre las curvas por $\gamma(t)$ con v tangente $\gamma'(t)$).

Proposición 2.11. Si S es superficie regular, $p \in S, v \in T_pS \setminus \{0\}$, entonces existe $\varepsilon = \varepsilon(p, |v|) > 0$ tal que,

- (a) Existe una curva C^2 $\gamma_v: (-\varepsilon, \varepsilon) \to S$ geodésica con $\gamma_v(0) = p$ y $\gamma_v'(0) = v$.
- (b) γ_v es única.

Es decir, cada punto del espacio tangente T_pS , se le puede encontrar una única geodésica con velocidad v.

Teorema Clairoutt $Si \ \beta$ es geodésica en S regular, entonces β' hace un ángulo constante con las paraleleas que cruza. Es decir, $\langle \beta', \varphi_{\theta} \rangle$ es constante.

Ejemplo 2.17. Sea $\beta: I \to S$ una curva p.p.a. Sea $\gamma(t) = (x(t), z(t))$ definido como en el ejemplo anterior. Luego $\beta(s) = \varphi(\theta(s), t(S))$, entonces,

$$\beta' = \varphi_{\theta}\theta' + \varphi_{t}t'$$

$$\beta'' = \theta''\varphi_{\theta} + \theta'(\theta\varphi_{\theta\theta+t'\varphi_{\theta\theta}}) + t''\varphi_{t} + t'(t'\varphi_{tt} + \theta'\varphi_{t\theta})$$

Queremos condiciones para que β sea geodésica. Primero, si β es geodésica, entonces $\langle \beta'', \varphi_{\theta} \rangle = 0...$ terminar

Observación 2.17 Si γ es una curva geodésica, entonce $\langle \gamma'', \gamma' \rangle = 0$, y si,

$$\frac{d}{dt}|\gamma'(t)|^2 = 2\langle \gamma'', \gamma' \rangle$$

Entoncees $|\gamma'(t)|^2$ es constante. Es decir, γ geodésica tiene velocidad constante.

Por otro lado, si γ es una curva p.p.a al menos C^2 , tal que γ'' ...

Definición 2.19. El mapa exponencial de S en p se define por,

$$\exp_p : \{v \in T_pS : |v| < \varepsilon(p)\} \to S$$

$$\exp_p := \begin{cases} p, & v = 0 \\ \gamma_v(1) & v \neq 0 \end{cases}$$

donde γ_v está dado por la proposición 2.11.

Observación 2.18. Sea $\gamma_{rv}(t) = \gamma_v(rt)$ con r > 0 tal que $\gamma_{rv}(t)$ está definido en $t \in (-\varepsilon/r|v|, \varepsilon/r|v|)$. Luego reparametrizamos y por unicidad |u| = 1 se tiene,

$$\exp_p(ru) = \gamma_{ru}(1) = \gamma_u(r)$$

Podemos expresar los elementos de T_pS como coordenadas (r,θ) de la siguiente forma ...

Fijamos una base ortonomal de T_pS , identificamos $\mathbb{R}^2 \cong T_pS$, luego $(u,v) \in \mathbb{R}^2$ lo mandamos a $ue_1 + ve_2 \in T_pS$. A partir de esto podemos definir las coordenadas normales centradas en un punto $p \in S$ y las polares centradas en un punto $p \in S$.

Definición 2.20. Las coordenadas normales centradas en $p \in S$ son,

$$B_{\varepsilon}^{\mathbb{R}^2} := \{ x \in \mathbb{R}^2 : |x| < \varepsilon \} \xrightarrow{\varphi} \exp_n(ue_1 + ve_2)$$

Las coordenadas normales polares son,

$$\sigma(r,\theta) = \exp_n(r\cos(\theta)e_1 + r\sin(\theta)e_2)$$

donde $(r, \theta) \in (0, \varepsilon = \times (0, 2\pi).$

Proposición 2.12. Si σ es la parametrización local en coordenadas normales centradas en $p \in S$ superficie regular. Entonces $|\sigma_r|^2 = 1$, $\langle \sigma_r, \sigma_\theta \rangle = 0$.

Esto quiere decir que la matriz de la primera forma fundamental, satisface los siguiente E=1, F=0.

$$d\varphi = [d(exp_p) \text{ en base}\{(1,0),(0,1)\},\{e_1,e_1\}]$$

esto en 0 es la identidad id_{T_pS} , entonces puntos cercanos de 0 se cumple algo similar.

Proposición 2.13. ...

Corolario 2.1. En la base $\{\sigma_r, \sigma_\theta\}$. La matriz de la primera forma fundamental de S, tiene matriz,

$$\begin{bmatrix} 1 & 0 \\ 0 & G \end{bmatrix}$$

 $con G(r, \theta) = |\sigma_{\theta}|^2 > 0.$

Observación 2.18. Las geodésicas son únicamente los minimizantes (de su largo). Es decir, es el camino más corto en al superficie.

Falta algo cuaderno

Vamos a "escribir" $\gamma'' \perp T_{\gamma(t)}S$ en coordenadas. Sea la parametrización $\sigma: U \subseteq \mathbb{R}^2 \to S$ al menos C^2 . Entonces,

$$\begin{bmatrix} \sigma_{uu} & \sigma_{uv} \\ \sigma_{uv} & \sigma_{vv} \end{bmatrix} = \begin{bmatrix} \Gamma^1_{11} & \Gamma^1_{12} \\ \Gamma^1_{21} & \Gamma^1_{22} \end{bmatrix} \sigma_u + \begin{bmatrix} \Gamma^2_{11} & \Gamma^2_{12} \\ \Gamma^2_{21} & \Gamma^2_{22} \end{bmatrix} \sigma_r + \begin{bmatrix} ef & g \end{bmatrix} v$$

Donde Γ_{lk}^i se conoce como coeficientes de Christoffel.

Se tiene $\gamma_{u,v} = a\sigma_u + b\sigma_v + e_3N$, donde e_3 es \mathbb{I}_p en base $\{\sigma_u, \sigma_v\}$. Si,

$$\gamma(t) = \sigma(u(t), v(t))$$

$$\gamma'(t) = \sigma_u u' + \sigma_v v'$$

$$\gamma''(t) = (\sigma_{uu} u' + \sigma_{uv} v') u' + \dots = \dots$$

Luego,

$$\begin{bmatrix} u' \\ v' \end{bmatrix}^T \begin{bmatrix} \sigma_{uu} & \sigma_{uv} \\ \sigma_{uv} & \sigma_{vv} \end{bmatrix} \begin{bmatrix} u' \\ v' \end{bmatrix} = \begin{bmatrix} u' \\ v' \end{bmatrix}^T \left(\Gamma^1 \sigma_u + \Gamma^2 \sigma_v + \begin{bmatrix} e & f \\ f & g \end{bmatrix} N \right) \begin{bmatrix} u' \\ v' \end{bmatrix}$$

$$= \begin{bmatrix} u' \\ v' \end{bmatrix}^T \Gamma^1 \begin{bmatrix} u' \\ v' \end{bmatrix} \sigma_u + \begin{bmatrix} u' \\ v' \end{bmatrix}^T \Gamma^2 \begin{bmatrix} u' \\ v' \end{bmatrix} \sigma_v + \begin{bmatrix} u' \\ v' \end{bmatrix}^T \begin{bmatrix} e & f \\ f & g \end{bmatrix} \begin{bmatrix} u' \\ v' \end{bmatrix} N$$

Argumento

Entonces $\Gamma_{12}^i = \Gamma_{21}^i$.

Definición 2.21. Un campo de vectores paralelos a S a lo largo de una curva regular $\gamma: I \to S$ es una función $\nu: I \to \mathbb{R}^3$ tal que $\nu(t) \in T_{\gamma(t)}S$ para todo $t \in I$. También definidos la proyección ortogonal,

$$\Pi_p: \mathbb{R}^3 \to (T_p S)^{\perp}$$

donde $\Pi_{\gamma(t)}(\nu'(t)) = 0$ para todo $t \in I$.

Definición 2.22. Sea $\gamma: I \to S$ con S superficie regular, sea $\nu: I \to \mathbb{R}^3$ campo tal que $\nu(t) \in T_{\gamma(t)}S$. La derivada covariante de un campo de vectores tangentes a lo largo de la curva γ es,

$$\nabla \nu(t) := \Pi_{\gamma(t)}(\nu'(t)) \in \mathbb{R}^3$$

(otra notación $\nabla \nu(t) = d/dt(\nu)$).

Proposición 2.14. Sea $\gamma: I \to S$ superficie regular. Sean $X,Y: I \to \mathbb{R}^3$ campos vecotriales tangentes a lo largo de γ , y sea $\lambda: I \to \mathbb{R}$ una función escalar. Entonces se cumple,

- 1. $\nabla(X+Y) = \nabla X + \nabla Y$.
- 2. $\nabla(\lambda X) = \lambda' X + \lambda X$.
- 3. $\nabla(X \circ \sigma) = d\sigma(\nabla X) \circ \sigma$.
- 4. $d/dt\langle X,Y\rangle = \langle d/dtX,y\rangle + \langle X,d/dtY\rangle = \langle \nabla X,Y\rangle + \langle X,\nabla Y\rangle$. SI γ es geodésica, entonces $\nabla \gamma' = 0...$
- 5. $\gamma: I \times S \to S$ C^1 tal que $\partial \gamma \neq 0$, entonces ...

Sean $\sigma: U \to S$ coordenadas (u, v) en U, y $\gamma(t) = \sigma(u(t), v(t))$, $X(t) = a(t)\sigma_u(u(t), v(t)) + b(t)\sigma_v(u(t), v(t))$. Luego, ∇X es igual a dobles derivadas Γ^1 , Γ^2 que son del tipo $\dot{a}\sigma_u + \dot{b}\sigma_v$ que stán en $T_{vt}S$

Proposición 2.15. Si

$$\begin{cases} X(0) = X_0 \in T_{\gamma(0)}S \\ \nabla X(t) = 0, \ t \in (-\varepsilon, \varepsilon) \end{cases}$$

 $con \ \gamma: (-\varepsilon, \varepsilon) \to S$ curva regular, tiene solución para ε chico y es única.

Definición 2.23. La soluciones de arriba, se le conoce como transporte paralelo de X_0 a lo largo de γ .

Ejemplo 2.18. Si S es un plano, $X(t) \equiv X_0 \nabla X = 0 \ (\Gamma^1, \Gamma^2 = 0)$, entonces $\dot{a} = 0, \dot{b} = 0 \dots$

Terminar

Corolario 2.2. Si $f: S_1 \to S_2$ es C^{∞} isometría, entonces existen $\sigma_1: U_1 \to S_1, \sigma_2: U_2 \to S_2$ parametrizaciones localces y regulares, tale que la matriz $\sigma_2 \to g_{ij}$ es igual a $f \circ \sigma_1 \to \overline{g_{ij}}$, en la intersección de sus dominios. Entonces los umbrale de Christoffel son iguales para $\sigma_1, f \circ \sigma_1$.

Corolario 2.3. Cualquier cantindad calculada en términos de Γ_{ij}^k , g_{ij} son invariante bajo isometrías.

Teorema de Gauss. La curvatura de Gass K es invariante bajo isometría.

 $K(p) = [\text{Formulazo con } \Gamma_{ij}^k, g_{ij}] \text{ calculado en } g, \sigma(g) = p.$

Idea.... Terminar

Determinemos una fórmula para los símbolos de Christoffel. Se tiene,

$$g_{ij} = \left\langle \frac{\partial \sigma}{\partial x_i}, \frac{\partial \sigma}{\partial x_j} \right\rangle$$

Luego,

$$\frac{\partial g_{ij}}{\partial x_p} = \sum_{k} (\Gamma_{li}^k g_{kj} + \Gamma_{ej}^k g_{ki})$$

TERMINNAR

$$\begin{split} \vec{\Gamma_{11}} &= \frac{1}{2}g^{-1}\vec{J_{11}} = \begin{bmatrix} 0 \\ -\frac{f}{(f')^2 + (g')^2} \end{bmatrix} \\ \vec{\Gamma_{12}} &= \vec{\Gamma_{21}} = \frac{1}{2}g^{-1}\vec{J_{12}} = \begin{bmatrix} f'/f \\ 0 \end{bmatrix} \\ \vec{\Gamma_{22}} &= \begin{bmatrix} 0 \\ \frac{(f'f'' + g'g'')}{(f')^2 + (g')^2} \end{bmatrix} \end{split}$$

Ejemplo 2.19. Sean $f(x_2) = r, g(x_2) = x_2$, entonces $\Gamma^1 = 0$

Falta clase

Teorema 2.. (Teorema Fundamental de Superficies en \mathbb{R}^3) Sean las matrices,

$$\begin{bmatrix} E & F \\ F & G \end{bmatrix}, \begin{bmatrix} e & f \\ f & g \end{bmatrix}$$

mapas de $V \subseteq \mathbb{R}^2$ abierto a $\mathbb{R}^{2 \times 2}$. Si la primera matriz es definida positiva y si E, F, G, e, f, g satisfaces las ecuaciones de Codazzi-Maimardi, entonces,

i) Para todo $p \in V$ existe una vecindad U de p donde está definida una parametrización regular $X: U \to \mathbb{R}^3$ de una superficie regular cuya primera forma fundamental tiene matriz,

$$\begin{bmatrix} E & F \\ F & G \end{bmatrix}$$

Y cuya segunda forma fundamental tiene matriz,

$$\begin{bmatrix} e & f \\ f & g \end{bmatrix}$$

ii) Dado $p \in V$, la superficie X(U) = S es única módulo componer rotaciones y traslaciones. Es decir, si $X^* : U \to \mathbb{R}^3$ es otra parametrización que cumple la parte anterior, entonces existen $R \in \mathcal{O}(3), x_0 \in \mathbb{R}^3$ tales que,

$$X^*(U) = R(X(U)) + x_0$$

Observación 2.. También existen análogos para el teorema anterior. Es decir, para $X \subseteq \mathbb{R}^d$ es una subvariedad de dimensión d-1 (hipersuperficie).

falta algo

3. Formas Diferenciales, Marcos, Derivada Covariante y Símbolos de Christoffel

3.1. Álgebra Lineal

Antes de definir formas diferenciales, necesitamos un repaso de álgebra lineal. Sea V un espacio vectorial sobre \mathbb{R} , recordemos que podemos definir el dual de V como,

$$V' := \{ f : V \to \mathbb{R} : \text{ lineales} \}$$

En particular, el dual de V es otro espacio vectorial sobre \mathbb{R} . Por lo que el dual es un generado a partir de V.

También el espacio V posee una base y coordenadas. Una base finita es un conjuntos de elementos linealmente independientes que generan a V usando \mathbb{R} como coeficientes $\{e_1, \ldots, e_n\}$, decimos que es de dimensión n si la base tiene n elementos. Por otro lado, las coordenadas son los valores que acompañan a la base, por ejemplo, si $v \in V$ es de la forma,

$$v = c_1 e_1 + \dots + c_n e_n$$

Entonces las coordenadas de v es,

$$\begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

Ahora recordemos que V' es un \mathbb{R} -espacio vectorial, por lo que posee una base y luego cada elemento del dual tiene coordenadas. Primero determinemos las coordenadas en V' dada una base de V. Sea $\{e_1, \ldots, e_n\}$ una base de V y sea $w' = [a_1 \ldots a_n] \in V'$, entonces, entonces w' evaluado en las coordenadas v es de la forma,

$$w'[v] = \begin{bmatrix} a_1 & \dots & a_n \end{bmatrix} \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = \sum_{i=1}^n a_i c_i$$

Ahora determinemos una base dual. Podemos definir la base dual por el conjunto $\{e'_1, \ldots, e'_n\}$ de la base $\{e_1, \ldots, e_n\}$ donde $e'_i \in V'$ son los mapas lineales tales que,

$$e'_{j}[e_{i}] = \delta_{ij} = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}$$

Ocupemos la linealidad de e'_i . Sea $v = c_1 e_1 + \cdots + c_n \in V$, entonces,

$$e'_{i}[v] = c_{1}e'_{i}[e_{1}] + \dots + c_{n}e'_{i}[e_{n}] = c_{j}$$

Entonces podemos pensar en que e'_j es un mapa lineal que manda a la coordenada j-ésima de un vector $v \in V$. Sea $w' \in V'$ mapa lineal. Si $w' = [a_1 \ldots a_n]$, entonces se puede expresar de la siguiente forma:

$$w' = a_1 e_1' + \dots + a_n e_n'$$

Es decir, las coordenadas de w'_i es igual a la representación a matriz.

3.2. 1-Formas Diferenciales y Campos Vectoriales

El concepto de forma diferencial es bastante complicado de definir y de comprender. Una 1-forma diferencial es la formalización de los elementos del espacio dual pero aplicado a "vectores infinitésimos". Para ello se requiere trabajar en los espacios tangentes a una variedad, pero como se ha estudiado a fondo las variedades, trabajaremos en \mathbb{R}^d y con el espacio tangente $T_x\mathbb{R}^d \cong \mathbb{R}^d$ con $x \in \mathbb{R}^d$.

Podemos tomar $T_x\mathbb{R}^d$ el espacio tangente del punto x, que a priori se define como:

$$T_x \mathbb{R}^d = \{ \alpha(0) : \alpha : (-\varepsilon, \varepsilon) \to \mathbb{R}^d, \alpha(0) = x \}$$

Es decir, son los vectores velocidades de las curvas de un punto $x \in \mathbb{R}^d$. Por lo que podemos identificarlo con \mathbb{R}^d , es decir, $T_x\mathbb{R}^d \cong \mathbb{R}^d$, por lo que $v \in \mathbb{R}^d$ lo podemos interpretar como "desplazamiento infinitésimo" mediante una curva. Identificamos las coordenadas de v como (v_1, \ldots, v_d) claramente dada a partir de una base, entonces la base dual de $(\mathbb{R}^d)'$ lo identificamos por dx_1, \ldots, dx_d , por lo que $dx_j \in (\mathbb{R}^d)'$ es una función lineal tal que,

$$dx_i[v] = v_i$$

donde v_j es la coordenada j-ésima. Como $T_x\mathbb{R}^d \cong \mathbb{R}^d$, entonces se cumple que sus duales son isomorfos, es decir, $(T_x\mathbb{R}^d) \cong (\mathbb{R}^d)'$, por lo que coincide con las combinaciones lineales de los dx_j . Un elemento general de este espacio (un 1-forma diferencial constante), es de la forma,

$$\alpha = \alpha_1 dx_1 + \dots + \alpha_d dx_d$$

donde $\alpha_i \in \mathbb{R}$. Entonces al evaluarlo por $v \in \mathbb{R}^d$ con coordenadas (v_1, \ldots, v_d) , se obtiene,

$$\alpha[v] = \alpha_1 v_1 + \dots + \alpha_d v_d$$

Estudiemos los campos vectoriales. En general un campo de vectores de una $V: \mathbb{R}^d \to \mathbb{R}^d$, ya que genera una colección de vectores. Ahora un campo vectorial sobre un variedad S, es una asignación para cada $x \in S$ a un vector V(x) en espacio tangente de x, es decir, $V(x) \in T_x S$.

Definamos las 1-formas sobre \mathbb{R}^d . Tomemos la misma anterio y apliquémoslo a los duales. A un elemento $x \in S$, lo asociamos a la función $\alpha(x) \in (T_x S)'$, por lo que,

$$\alpha(x): T_xS \to \mathbb{R}$$
, lineal

Esto se llama una 1-forma diferencial. Por lo que en aspectos generales se tiene que,

$$\alpha(x)[v] = \alpha_1(x)dx_1[v] + \dots + \alpha_d dx_d[v]$$

donde $\alpha_i(x)$ son los coeficientes reales de $\alpha(x)$. En el caso simplificado, una 1-forma diferencial sobre \mathbb{R}^d ($S = \mathbb{R}^d, T_x \mathbb{R}^d \cong \mathbb{R}^d$), es una función $\alpha : \mathbb{R}^d \to (\mathbb{R}^d)'$ de la forma, donde para todo $x \in \mathbb{R}^d$ se cumple que,

$$\alpha(x)[v] = \alpha_1(x)dx_1[v] + \dots + \alpha_d(x)dx_d[v]$$

Ahora, sea el campo vectorial $V : \mathbb{R}^d \to \mathbb{R}^d$, entonces podemos definir la composición de una 1-forma diferencial con el campo V como la función $\alpha[V] : \mathbb{R}^d \to \mathbb{R}$ dada por,

$$\alpha[V](x) := \alpha(x)[V(x)] = \sum_{i=1}^{d} v_i(x)\alpha_i(x)$$

donde $V(x) = (v_1(x), \dots, v_d(x)).$

3.3. k-Formas Diferenciales y Operaciones

Las k-formas diferenciales se obtienen realizando un procedimineto similar a las 1-formas diferenciales. Tomamos un espacio vectorial y vamos definiendo objetos sobre cada espacio tangente T_xS con S una variedad, (en un caso simplificado trabajamos en \mathbb{R}^d o en una superficie regular S), con posiblemente una dependienta de x.

Pero hacer este procedimiento resulta tedioso, por lo que vamos a recordad lo que son funciones multilineales alternantes y a partir de ahí, definir una operación sobre las formas diferneciales.

Definición 3.. (Forma k-lineal y alternante) Sea V espacio vectorial. Una forma k-lineal es una función $\varphi: V^k \to \mathbb{R}$ que es lineal en cada entrada. Es decir, si tomamos todas las entradas fijas, menos la entrada j, obtenemos una función $f: V \to \mathbb{R}$ dada por,

$$f[v] := \varphi[v_1, \dots, v_{j-1}, v, v_{j+1}, \dots, v_k]$$

la cual es lineal. Diremos que es alternante si $\varphi[v_1, \ldots, v_k] = 0$ cuando hay al menos dos v_j que se repiten (una forma k-lineal alternante se llama también una k-forma alternante o simplemente k-forma).

Ejemplo 3.. Un ejemplo elemental es el determinante. Si $k = d, V = \mathbb{R}^d$, entonces la función determinante es un d-forma alternante, si $A \in \mathbb{R}^{d \times d}$ entonces el determinante de A se define como:

$$\varphi_{\text{det}}[v_1,\ldots,v_d] =: \det(A)$$

donde φ_{det} es una d-forma alternante.

Notación. Se define el conjunto,

$$\bigwedge^{k} V := \{ \varphi : V^{k} \to \mathbb{R} : k \text{-forma alternante} \}$$

Que además es un espacio vectorial sobre \mathbb{R} .

Ejemplo 3.. Si $V = \mathbb{R}^3$, k = 2, entonces obtenemos el conjunto $\bigwedge^2 \mathbb{R}^3$, el cual es isomorfo a \mathbb{R}^3 . Podemos probarque.

$$\dim\left(\bigwedge^2\mathbb{R}^3\right) = 3$$

Para ello basta en pensar en las siguiente 2-formas alternantes:

$$\alpha_1[v, w] = v_3 w_2 - w_3 v_2$$

$$\alpha_2[v, w] = v_3 w_1 - w_3 v_1$$

$$\alpha_3[v, w] = v_1 w_2 - w_1 v_2$$

Que son linealmente independiente, por tanto $\{\alpha_1, \alpha_2, \alpha_3\}$ es una base de $\bigwedge^2 \mathbb{R}^3$.

Definición 3.. Sean $\alpha \in \bigwedge^k V, \beta \in \bigwedge^h V$ dos formas alterantes. Se define el producto exterior, como la k+h-forma alternante denotado por $\alpha \wedge \beta \in \bigwedge^{k+h} V$ definido por,

$$\alpha \wedge \beta[v_1, \dots, v_{k+h}] := \frac{1}{k!h!} \sum_{\sigma \in S_{k+h}} sgn(\sigma)\alpha[v_{\sigma(1)}, \dots, v_{\sigma(k)}]\beta[v_{\sigma(k+1)}, \dots, v_{\sigma(k+h)}]$$

donde S_{k+h} son las permutaciones y $sgn(\sigma) = \pm$ es el signo de la permutaciones (el determinante).

Ejemplo 3..

• Sean $\alpha, \beta \in \bigwedge^1 V$, entonces el producto exterior $\alpha \wedge \beta$ tiene la siguiente fórmula:

$$\alpha \wedge \beta[v, w] = \alpha[v]\beta[w] - \alpha[w]\beta[v]$$

Ahora si estudiamos $-\beta \wedge \alpha$ obtenemos que,

$$-\beta \wedge \alpha[v,w] = -\beta[v]\alpha[w] + \beta[w]\alpha[v] = \alpha \wedge \beta[v,w]$$

• Si $\alpha \in \bigwedge^2 V, \beta \in \bigwedge^1 V$, entonces $\alpha \wedge \beta \in \bigwedge^3 V$ descrita de la siguiente forma:

$$\alpha \wedge \beta[v,w,z] = \alpha[v,w]\beta[z] - \alpha[v,z]\beta[w] + \alpha[w,z]\beta[v]$$

Por otro lado,

$$\beta \wedge \alpha[v, w, z] = \alpha[v, w]\beta[z] - \alpha[v, z]\beta[w] + \alpha[w, z]\beta[v]$$

Por tanto $\alpha \wedge \beta = \beta \wedge \alpha$.

Por lo que, el operador \wedge no cumple la conmutatividad, pero si lograr comportarse muy bien, ya que tiene una fórmula específica, el siguiente resultado describe bien el comportamiento de la conmutatividad".

Proposición 3.. Sean $\alpha \in \bigwedge^k V, \beta \in \bigwedge^h V$, entonces se cumple que:

$$\alpha \wedge \beta = (-1)^{hk} \beta \wedge \alpha$$

Ahora que sabemos la operación \land genera k+h-formas alternantes, vamos a ver que las k-formas diferenciales son combinaciones lineales de 1-formas diferenciales.

Nota 3.. Vamos asumir que las formas diferenciales son regulares C^m , es decir, son al menos m veces difereciables y todas sus derivadas no se anulan.

Observación 3.. Si intentamos construir la k-forma diferencial, podemos ver que son funciones que manda un punto $x \in \mathbb{R}^d$ a una función k-forma alternante, es decir, son funciones $\alpha : \mathbb{R}^d \to \bigwedge^k \mathbb{R}^d$, a partir de esto definiremos el espacio de las k-formas diferenciales.

Definición 3.. Definimos el espacio de las k-formas diferenciales $\Omega^k(U)$ donde $U \subseteq \mathbb{R}^d$ tales que,

• $Si \ k = 0 \ definimos$,

$$\Omega^0(U) := \{ f : U \to \mathbb{R} \}$$

■ Para k entero positivo, definimos,

$$\Omega^k(U) := \left\{ f : U \to \bigwedge^k \mathbb{R}^d \right\}$$

Análogamente a las 1-formas diferenciales, podemos componer con un espacio vectorial. Podemos tomar $V:U\subseteq\mathbb{R}^d\to\mathbb{R}^d$ un campo vectorial (en general se puede trabajar con $V:U\to W$), y componer con las k-formas diferenciales. Si las coordenadas de V sobre x son $V(x)=(v_1(x),\ldots,v_d(x))$, donde $v_j:U\to\mathbb{R}$, donde de forma implícita estamos considerando una base $\{e_1,\ldots,e_n\}$, la cual se puede pensar como funciones $e_j:U\to\mathbb{R}^d$ donde $e_j(x)=(0,\ldots,1,\ldots,0)$ donde 1 es la coordenada j y el resto es 0, para todo $x\in U$, luego,

$$V(x) = v_1(x)e_1 + \cdots + v_d(x)e_d$$

Luego de forma análoga al caso k=1, definirmos la composición de una k-forma diferencial α con un campo vectorial $V:U\to\mathbb{R}^d$ por,

$$\alpha[V](x) := \alpha(x)[V(x)]$$

Definición 3..(Operaciones Básicas) Sea $f: U \to \mathbb{R}$ una 0-forma diferencial y sea $\alpha: U \to \bigwedge^k \mathbb{R}^d$ un k-forma diferencial con $k \geq 0$, se define el producto exterior entre f, α (en ese orden) por la k-forma diferencial dada por,

$$f \wedge \alpha := fa : U \to \wedge^k \mathbb{R}^d$$

 $f \wedge \alpha := f(x)\alpha(x)$

 $Si \ \beta \in \Omega^h(U) \ y \ k \ge 1$, entonces se define el producto exterior de α con β por la k+h-forma diferencial dada por,

$$\alpha \wedge \beta \in \Omega^{k+h}(U)$$
$$(\alpha \wedge \beta)(x) := \alpha(x) \wedge \beta(x)$$

Por último, si $\alpha, \beta \in \Omega^k(U)$, entonces se define la suma de k-formas diferenciales por,

$$(\alpha + \beta)(x) := \alpha(x) + \beta(x)$$

Nota 3.. El producto exterior es bilineal.

Notación. Denotaremos las 1-formas alternantes coordenadas por dx_j determinadas por una base $\{e_1, \ldots, e_d\}$ y aquellas que forman una base dual, $(\{dx_1, \ldots, dx_d\})$ es base dual, por lo que para todo $v = (v_1, \ldots, v_d) \in \mathbb{R}^d$ se cumple que,

$$dx_j(x)[v] := v_j$$

para todo $x \in \mathbb{R}^d$.

Notemos que $\bigwedge^k \mathbb{R}^d$ es un \mathbb{R} -espacio vectorial, por lo que posee una base. Determinemos una base para $\bigwedge^k \mathbb{R}^d$. Si d=1 entonces los elementos de $\bigwedge^1 \mathbb{R}^d$ se puede expresar como combinación lineal de dx_j que son linealmente independiente, es decir, $\{dx_1, \ldots, dx_d\}$ es base de $\bigwedge^1 \mathbb{R}^d$, ahora en el caso $d \geq 1$, se puede demostrar que una base de $\bigwedge^k \mathbb{R}^d$ está dada por k productos exteriores de dx_j , por lo que la base canónica de $\bigwedge^k \mathbb{R}^d$ es el conjunto:

$$\{dx_{i_1} \wedge dx_{i_2} \wedge \cdots \wedge dx_{i_k} : 1 \le i_1 < i_2 < \dots < i_k \le d, k \le d\}$$

Por tanto, $\alpha \in \bigwedge^k \mathbb{R}^d$ puede expresarse como:

$$\alpha = \alpha_{(i_1, \dots, i_k)} dx_{i_1} \wedge \dots \wedge dx_{i_k} + \dots + \alpha_{(j_1, \dots, j_k)} dx_{j_1} \wedge \dots \wedge dx_{j_k}$$

Siendo complicado de expresar. Por lo que requerimos de una notación que simplifique los k-tuplas ordenedas **Notación.**

• Si $I = (i_1, \ldots, i_k)$ entonces la notación dx_I se define por,

$$dx_I := dx_{i_1} \wedge \dots dx_{i_k}$$

- Si se tiene $I = (i_1, ..., i_k)$ donde hay dos índice que se repiten, entonces $dx_I = 0$, debido a la propiedad de ser alternante.
- Si $I = (i_1, \dots, i_k)$ y I' es otro índice donde dos i_a, i_b se intercambian de posición, entonces $dx_{I'} = -dx_I$.

Por lo tanto, podemos expresar todo k-forma diferencial $\alpha \in \Omega^k(U)$ de la siguiente forma:

$$\alpha(x) = \sum_{I \in \mathcal{I}} \alpha_I(x) dx_I$$

donde $\mathcal{I} = \{(i_1, \dots, i_k) : 1 \leq i_1 < \dots < i_k \leq d\}$ y $\alpha_I : U \to \mathbb{R}$ son funciones coordenadas de una 1-forma diferencial.

Ejemplo 3..

lacktriangle Todo 1-forma diferencial sobre \mathbb{R}^3 se expresa de la siguiente forma,

$$\alpha(x) = \alpha_1(x)dx_1 + \alpha_2(x)dx_2 + \alpha_3(x)dx_3$$

■ Todo 2-forma diferencial sobre \mathbb{R}^3 se expresa de la siguiente forma,

$$\alpha(x) = \alpha_{12}(x)dx_1 \wedge dx_2 + \alpha_{13}dx_1 \wedge dx_3 + \alpha_{23}(x)dx_2 \wedge dx_3$$

■ Existe una relación entre producto cruz y el producto exterior. Sean α, β dos 1-formas sobre \mathbb{R}^3 , con coordenadas

$$\alpha(x) = \alpha_1(x)dx_1 + \alpha_2(x)dx_2 + \alpha_3 dx_3$$
$$\beta(x) = \beta_1(x)dx_1 + \beta_2(x)dx_2 + \beta_3 dx_3$$

Entonces el producto exterior $\gamma = \alpha \wedge \beta$ se escribe,

$$\gamma = \alpha \wedge \beta = (\alpha_1\beta_2 - \beta_2\alpha_1)dx_1 \wedge dx_2 + (\alpha_1\beta_3 - \alpha_3\beta_1)dx_1dx_3 + (\alpha_2\beta_3 - \alpha_3\beta_3)dx_2 \wedge dx_3$$

En particular, si pensamos en las coordenadas de γ , vemos que coincide con el producto cruz de $[\alpha_1 \alpha_2 \alpha_3]$ y $[\beta_1 \beta_2 \beta_3]$.

Proposición 3.. Las k-formas diferenciables son combinaciones lineales de productos exteriores de 1-formas diferenciales, en particular, para todo $k \ge 2$ se cumple:

$$\Omega^{k}(U) = Span_{\mathbb{R}}(\Omega^{1}(U) \wedge \Omega^{k-1}(U))$$

$$: = \left\{ \sum_{i=1}^{N} \lambda_{i}(\alpha_{i} \wedge \beta_{i}) : N \in \mathbb{N}, \lambda_{i} \in \mathbb{R}, \alpha_{i} \in \Omega^{1}(U), \beta_{i} \in \Omega^{k-1}(U) \right\}$$

Eso se cumple porque un k-forma diferencial, no es nada más que combinaciones lineales de productos exteriores de 1-formas diferenciales. En particular, podemos restringir el número máximo de sumandos a N = d!/k!(d-k)! (siempre pensando que $k \le d$), e imponer que $\lambda_i = 1$ y β sean constantes.

3.4. Diferencial Exterior para k-Formas Dierenciales

Vamos a definir un operador que manda de una k-forma diferencial a una k + 1-forma diferencial, pero antes estudiemos una 0-forma diferencial.

Definición 3.. (Diferencia Exterior de un 0-forma diferencial) Sea $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ una función diferenciable (Una 0-forma diferencial), podemo definir la 1-forma diferencial inducida por f como d $f: U \to \wedge^1 \mathbb{R}^n$ definida como:

$$df(x) := \frac{\partial f}{\partial x_1} dx_1 + \dots + \frac{\partial f}{\partial x_n}(x) dx_n$$

Observación 3.. Sea $x_i : \mathbb{R}^d \to \mathbb{R}$ diferenciable y 0-forma diferenciable, el cual manda toma $x \in \mathbb{R}^d$ y lo manda a la coordenada i, entonces se tiene que dx_i (en el sentido de la definición anterior), satisface,

$$dx_{i} = \frac{\partial x_{i}}{\partial x_{1}} dx_{1} + \dots + \frac{\partial x_{i}}{\partial x_{d}}$$
$$= \frac{\partial x_{i}}{\partial x_{i}} dx_{i}$$
$$= dx_{i}$$

donde este último dx_i es la 1-forma diferencial que ya hemos definido. Coincidiendo y estando bien definido para 0-formas diferenciales.

Definamos el diferencial exterior para k-formas diferenciales. Sabemos que una k-forma diferencial puede se escrita como combinación lineal de productos exteriores de 1-formas diferenciales, y que hemos definido el diferencial exterior para 0-formas diferenciales, se tiene una única extensión del diferencial exterior a k-formas diferenciales, construida a partir de una recursión.

Definición 3.. El diferencial de un k-forma diferencial, es el único operador $d: \Omega^k(U) \to \Omega^{k+1}(U)$ que cumple las siguientes propiedades:

- i) Si k=0, entonces el operador diferencial $d:\Omega^0(U)\to\Omega^1(U)$ está dado por por la definición anterior.
- ii) Sea $k \geq 0$, entonces el operador $\Omega^k(U) \to \Omega^{k+1}(U)$ es lineal sobre \mathbb{R} , es decir, para $\alpha, \beta \in \Omega^k(U)$ y $p, q \in \mathbb{R}$ se cumple que:

$$d(p\alpha + q\beta) = pd\alpha + qd\beta$$

iii) Si $\alpha \in \Omega^k(U)$ y $\beta \in \Omega^h(U)$ con $k, h \ge 0$ enteros, entonces se cumple:

$$d(\alpha \wedge \beta) = (d\alpha) \wedge \beta + (-1)^k \alpha \wedge (d\beta)$$

iv) La segunda composición $d^2: \Omega^k(U) \to \Omega^{k+2}(U)$ es siempre nula, es decir,

$$d^2(\alpha) = 0$$

para todo α k-forma diferencial.

Ejemplo 3..

■ Sea la 1-forma diferencial $\alpha(x) = \alpha_j(x)dx_j$, entonces $\alpha(x)$ es una 0-forma diferencial, luego por definición de producto exterior de 0-formas diferenciales con k-formas diferenciales, se tiene que,

$$\alpha = \alpha_i \wedge dx_i$$

Si aplicamos el operador diferencial, obtenemos,

$$d\alpha = d(\alpha_j \wedge dx_j) = (da_j) \wedge dx_j + \alpha_j \wedge (d^2x_j)$$
$$= da_j \wedge dx_j$$
$$= \left(\sum_{i=1}^d \frac{\partial a_j}{\partial x_j} dx_i\right) \wedge dx_j$$

Veamos el caso general. Sea la 1-forma diferencial,

$$\beta(x) = \alpha_1(x)dx_1 + \dots + \alpha_d(x)dx_d$$

Luego,

$$d\beta = \left(\sum_{i,j} \frac{\partial a_i}{\partial x_j} dx_i\right) \wedge dx_j$$
$$= \sum_{1 \le i < j \le d} \left(\frac{\partial a_i}{\partial x_j} - \frac{\partial a_j}{\partial x_i}\right) dx_i \wedge dx_j$$

• Si $f: U \subseteq \mathbb{R}^d \to \mathbb{R}$ es una función diferenciable, entonces tenemos que,

$$0 = d^2 f = \sum_{1 \le i < j \le d} \left(\frac{\partial^2 f}{\partial x_i \partial x_j} - \frac{\partial^2 f}{\partial x_j \partial x_i} \right) dx_i \wedge dx_j$$

La cual se cumple, usando las propiedades del producto exterior Ya que d^2 es un operador que está asociada a las segundas derivadas, y como sabemos, en \mathbb{R}^d las segundas derivadas conmutan.

3.5. Pullback de Formas diferenciales

Sean $U \subseteq \mathbb{R}^n.V \subseteq \mathbb{R}^m$ conjuntos abiertos. Sean $\alpha \in \Omega^k(U)$ una k-forma diferencial y $F: U \to V$ una función diferenciable (no necesariamente inyectiva o sobreyectiva), entonces definimos el pullback de α asociado a F por $F^*\alpha \in \Omega^k(U)$ tal que para todo $p \in U, (v_1, \dots, v_k) \in (\mathbb{R}^n)^k$ se define,

$$(F^*\alpha)_p[v_1,\ldots,v_k] := \alpha_{F(p)}[dF_pv_1,\ldots,dF_pv_k]$$

donde $\alpha_q := \alpha(q)$ y $dF_p : \mathbb{R}^n \to \mathbb{R}^m$ es la matriz Jacobiana en el punto $p \in \mathbb{R}^n$.

Ejemplo 3.. Consideremos la 1.forma diferencial expresadas en coordenadas cartesianas por,

$$\alpha(x) = x_1 dx_2 - x_2 dx_1$$

Y la función $f: \mathbb{R}^2 \to \mathbb{R}^2$ diferenciable, que cambia pasa las coordenadas polares a las cordenadas cartesiana, dada de la siguiente forma:

$$f(t, u) = (u\cos(t), u\sin(t))$$

Determinemos el pullback $f^*\alpha$. Notemos que,

$$df_{(t,u)} = \begin{bmatrix} \cos(t) & -u \operatorname{sen}(t) \\ \operatorname{sen}(t) & u \cos(t) \end{bmatrix}$$

Entonces,

$$(f^*\alpha)_{(t,u)}[v] = \alpha_{(u\cos(t),u\sin(t))} \begin{bmatrix} \cos(t) & -u\sin(t) \\ \sin(t) & u\cos(t) \end{bmatrix} \begin{bmatrix} v_u \\ v_t \end{bmatrix}$$

$$= \alpha_{(u\cos(t),u\sin(t))} \begin{bmatrix} v_u\cos(t) + uv_y\cos(t) \\ v_u\cos(t) - uv_t\sin(t) \end{bmatrix}$$

$$= (\cos(t)\sin(t) - \sin(t)\cos(t))v_u + u(\cos^2(t) + \sin^2(t))v_t$$

$$= uv_t$$

$$= udt[v]$$

Entonces $f^*\alpha_{(t,u)} = u^2 dt$ es la expresión de α en coordenadas polares. Para la interpretación geométrica pensamos lo siguiente:

- En coordenadas cartesiana $\alpha_{(x_1,x_2)}[v] = -v_1x_2 + v_2x_1 = v \cdot (-x_2,x_1)$ y observamos que el vector $(-x_2,x_1)$ tiene largo $\|(x_1,x_2)\|$ que es igual a la distancia de (x_1,x_2) al origen, que es rotal en 90 al punto $x = (x_1,x_2)$.
- Así que α en cada punto $x \in \mathbb{R}^2$ toma la componente tangente a la circuferencia pasante por x, multiplicando por la componente [x].
- En coordenadas polares, la circuferencia pasante por $x = (u\cos(t), u\sin(t))$ es el conjunto $\{(t, u) : u = |x|\}$, y la componente de un vector v tangente a ella es simplemente $v_t = dt[v]$. Asi que al traducir el punto procedente por |x| = u y tenemos $\alpha = udt$.

3.6. Formas Difrenciales en Subvariedades

Hemos estudiado las formas diferenciales sobre variedades y \mathbb{R}^d . Ahora veamos que pasa en subvariedades $S \subseteq \mathbb{R}^n$.

Definición 3.. Sea $S \subseteq \mathbb{R}^n$ una subvariedad diferenciable. Sea el campo vectorial $V: S \to \mathbb{R}^n$, diremos que es campo vectorial tangente a S, si para todo $p \in S$ se tiene que $V(p) \in T_pS$.

Observación 3.. Estudiemos una propiedad más de las k-formas alternantes similar al pullback. Sean V, W espacios vectoriales y sea $A: V \to W$ un mapa lineal, entonces existe un único operador lineal (inducido por A), tal que $A^*: \bigwedge^h: V \to \bigwedge^h W$ definido por:

$$A^*\alpha[v_1,\ldots,\alpha_h] := \alpha[Av_1,\ldots,Av_h]$$

De esta forma, podemos identificar h-formas alternantes sobre un subespacio $V \subseteq \mathbb{R}^n$ con un subespacio de $\bigwedge^h \mathbb{R}^n$. Por ejemplo, si $i_V : V \to \mathbb{R}^n$ es el mapa inclusión, entonces $i_V^* : \bigwedge^h V \to \bigwedge^h \mathbb{R}^d$ identifica h-forma alternantes sobre V con un subespacio de las h-formas alternantes sobre \mathbb{R}^d . Aplicaremos esto apra el caso de que V sea un espacio tangente de una superficie.

Definición 3.. Sea S subvariedad diferenciable de dimensión k. Sea $\alpha: S \to \wedge^h \mathbb{R}^n$ una función. Decimos que es una h-forma diferencial sobre S si $\alpha(p) \in \wedge^h T_p S$ para todo $p \in S$. El espacio de las h-formas diferenciales sobre S se denota por $\Omega^h S$.

Sea $S \subset \mathbb{R}^3$ una superficie regular. Sean $(\sigma_{\alpha}, U_{\alpha}), (\sigma_{\beta}, U_{\beta})$ parametrizaciones locales distintas de S y de las cuales son compatibles, es decir, para todo α, β parametrizaciones distituas "difiere por un difeomorfismo", más precisamente, si $\sigma_{\alpha}, \sigma_{\beta}$ son parametrizaciones de S y $V := \sigma_{\alpha}(U_{\alpha}) \cap \sigma_{\beta}(U_{\beta})$ es el conjunto de S parametrizaciones por ambas parametrizaciones locales, entonces,

- Definimos $U_{\alpha\beta} := \sigma_{\alpha}^{-1}\sigma_{\beta}(V)$, de forma que $\sigma_{\alpha\beta} := \sigma_{\alpha} \circ \sigma_{\beta}^{-1} : U_{\alpha\beta} \to U_{\beta}$ está bien definido.
- La definición de que S es subvariedad, requiere que $\sigma_{\alpha\beta}$ sea un difeomorfismo entre $U_{\alpha\beta}$ y $U_{\beta\alpha}$ para todo α, β tales que $V \neq \emptyset$.

Estudiemos las k-formas en coordenadas locales. Sean σ_{α} , σ_{β} parametrizaciones locales de una subvariedad S, de los cuales podemos reparametrizar. Entonces podemos identificar las formas diferenciales sobre S con formas en los dominios de σ_{α} , σ_{β} : Si $\omega \in \Omega^h S$, entonces podemos definir $\omega_{\alpha} := \sigma_{\alpha}^* \omega$ (análogamente con ω_{β}), siendo sus parametrizaciones locales.

Observación 3.. Se cumple que,

$$\sigma_{\alpha\beta}^*\omega_{\alpha}=\omega_{\beta}$$

debido a que se cumple,

$$(f \circ g)^* \omega = f^*(g^* \omega)$$

Observación 3.. Podemos estudiar el diferencial exterior de una 1-forma diferencial en coordenafas locales. Sea ω una 1-forma diferencial, noteos que $d\omega$ es una 2-formas diferencial, por lo cual podemos calcular sus coordenadas locales inducidas por $\sigma_{\alpha}, \sigma_{\beta}$, y para calcularlo basta tomar el diferencial $d\omega_{\alpha}, d\omega_{\beta}$ y tendremos $d\omega_{\beta} = \sigma_{\alpha\beta}^*(d\omega_{\alpha})$ por la propiedad $d(f^*\omega) = f^*(d\omega)$ para cada función diferenciable f.

3.7. Derivada Covariante

Definción 3.. Sean $X, V: U \to \mathbb{R}^n$ campos vectoriales, definimos la derivada covariante de X sobre V como el campo vectorial:

$$\nabla_V X : U \to \mathbb{R}^n$$

$$\nabla_V X(p) := \frac{d}{dt} \Big|_{t=0} X(p + tV(p))$$

Observación 3.. Podemos expresar la derivada covariante de X respecto V de la siguiente forma:

$$\nabla_{V}X(p) = \sum_{i} -j = 1^{n} \frac{\partial E}{\partial x_{i}} V_{i}(p) = \frac{\partial X}{\partial V(p)}(p) = dX(p)[V(p)]$$

donde la última expresión se toma d como la diferencia exterior, con coordenadas,

$$(dX(p)[V(p)])_i = dX_{\alpha}(p)[V(p)]$$

para todo $i = 1, \ldots, n$.

Proposición 3.. Sean $X, Y, V, W : U \subseteq \mathbb{R}^n \to \mathbb{R}^n$ campos vectoriales diferenciables y sean $f, g : U \to \mathbb{R}$ funciones de varias variables a una variables. Entonces se cumplen las siguientes afirmaciones:

- (a) $\nabla_{fV+gW}X = f\nabla_V X + g\nabla_W X$.
- (b) $\nabla_V(X+Y) = \nabla_V X + \nabla_V Y$.
- (c) $\nabla_V(fX) = \frac{\partial f}{\partial V}X + f\nabla_V X$.
- (d) $\frac{\partial}{\partial}(X \cdot Y) = \nabla_V X \cdot Y + X \cdot \nabla_V Y$.

3.8. Campos de Marcos Ortonormales en \mathbb{R}^n

Definición 3.. Sean $E_1, \ldots, E_n : U \to \mathbb{R}^n$ campos vectoriales. Decimos que forman un campo de marcos (o marco móvil) sobre un abierto $U \subseteq \mathbb{R}^n$ para todo $p \in U$ los vectores $E_1(p), \ldots, E_n(p)$ forman una base de \mathbb{R}^n . Si esta base es ortonormal en cada punto $p \in U$, entonces decimos que E_1, \ldots, E_n forman un campo de marcos ortonormales en U.

Definición 3.. Sea $S \subset \mathbb{R}^n$ una subvariedad de dimensión k, entonces los campos vectoriales E_1, \ldots, E_n : $S \to \mathbb{R}^n$ forman un campo de marcos (o marco móvil) adaptado a S si para todo $p \in S$ los vectores $E_1(p), \ldots, E_k(p)$ forman una base de \mathbb{R}^n .

Ejemplo 3.. Si $S \subset \mathbb{R}^3$ es una superficie orientable, con campo de vectores normales unitarios $N: S \to \mathbb{R}^3$ y si $\sigma: U \subseteq \mathbb{R}^2 \to S$ es una parametrización local de S, entonces σ_u, σ_v, N forma un campo de marcos adaptados a $\sigma(U) \subseteq S$. Ya que σ_u, σ_v es una base de T_pS para todo p y σ_u, σ_v, N es una base de \mathbb{R}^3 .

Sea $\{E_1, \ldots, E_n\}$ campo de marcos ortonormales sobre un abierto $U \subseteq \mathbb{R}^n$, y sea $V: U \to \mathbb{R}^n$ es un campo vectorial, entonces podemos reescribir la derivada covariante $\nabla_V E_i(p)$ en términos de la base $\{E_1(p), \ldots, E_n(p)\}$ en cada $p \in U$:

$$\nabla_V E_i(p) = \sum_{j=1}^n c_{ij} E_j(p)$$

donde c_{ij} son escalaremente únicamente determinados que dependen de p, V (del punto y del campo vectorial). Es más, los coeficientes c_{ij} son lineales en V, por lo que son una 1-forma diferencial.

Definición 3.. Sea $\{E_1, \ldots, E_n\}$ un marco móvil ortonormal. Se definen las formas de conexión ω_{ij} como las formas diferenciales, tales que,

$$\omega_{ij}(p)[V(p)] = c_{ij}$$

para todo $i, j = 1, \ldots, n$.

Proposición 3.. Sea $\{E_1, \ldots, E_n\}$ un marco móvil ortonormal, entonces se cumple:

(a) La siguiente identidad

$$\omega_{ij}(p)[V(p)] = (\nabla_V E_i) \cdot E_j(p)$$

(b) Sobre la derivada covariante se cumple:

$$0 = \frac{\partial}{\partial V} (E_i \cdot E_j) = \nabla_V E_i \cdot E_j + \nabla_V E_j \cdot E_i = \omega_{ij} + \omega_{ji}$$

Es decir, que,

$$\omega_{ji} = -\omega_{ij}$$

En particular, $\omega_{ii} = 0$

Ejemplo 3.. Supongamos que estamos en \mathbb{R}^3 , sea $\{E_1, E_2, E_3\}$ marco ortonormal, entonces se cumple que,

$$\nabla_{V} \begin{bmatrix} E_1 \\ E_2 \\ E_3 \end{bmatrix} = \begin{bmatrix} 0 & \omega_{12} & \omega_{13} \\ -\omega_{12} & 0 & \omega_{23} \\ -\omega_{13} & -\omega_{23} & 0 \end{bmatrix} \begin{bmatrix} V \begin{bmatrix} E_1 \\ E_2 \\ E_3 \end{bmatrix} \end{bmatrix}$$

Ahora, si $\{e_1, \ldots, e_n\}$ es la base canónica, entonces existe una matriz cambio de coordenada con coeficientes a_{ij} y tales que,

$$E_i(p) = \sum_{j=1}^{n} a_{ij}(p)e_j$$

O bien.

$$\begin{bmatrix} E_1 \\ E_2 \\ \vdots \\ E_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n-2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix}$$

Lo cual podemos abreviar de la siguiente forma:

$$\vec{E} = A\vec{e}$$

donde $A = (a_{ij})_{i,j=1}^n$. Si E_1, \ldots, E_n es ortonormal, entonces A es una matriz ortogonal, por lo tanto,

$$A^T = A^{-1}$$

Volvamos a la derivada covariante, tenemos que es la diferencia exterior en cada coordenada, por lo que,

$$\nabla_{V} \begin{bmatrix} E_{1} \\ \vdots \\ E_{n} \end{bmatrix} = \begin{bmatrix} dE_{1} \\ \vdots \\ dE_{n} \end{bmatrix} [V] = dA[V] \begin{bmatrix} e_{1} \\ \vdots \\ e_{n} \end{bmatrix} = dA[V]A^{T} \begin{bmatrix} E_{1} \\ \vdots \\ E_{n} \end{bmatrix}$$

donde dA[V] es la matriz con entrada i,j el diferencial $da_{ij}[V]$. Dado que $\nabla_V \vec{E} = \omega \vec{E}$, entonces por lo anterior, se tiene que $\omega[V]\vec{E} = dA[V]A^T\vec{E}$ para todo \vec{E} , es decir,

$$\omega = dAA^T$$

Por tanto, ω está dado por dAA^T donde A es la matriz cambio de coordenada de la canónica a E_1, \ldots, E_n .

Definición 3.. Sea $\{E_1,\ldots,E_n\}$ un marco móvil. Sean $\theta_i\in\Omega^1(\mathbb{R}^n)$ para $i=1,\ldots,n$ tales que $\{\theta_1,\ldots,\theta_n\}$ es una base dual, es decir,

$$\theta_i(E_i(p)) = \delta_{ij}$$

para todo $p \in \mathbb{R}^n$.

Proposición 3.. Sea $U \subseteq \mathbb{R}^n$ aiberto. Sea $\alpha \in \Omega^1(U)$ donde $\{E_i\}$ es un marco móvil ortonormal sobre U, y sea $\{\theta_i\}$ las formas duales de este marco, entonces se cumple que,

$$\alpha = \sum_{i=1}^{m} \alpha[E_i]\theta_i$$

Observación 3.. Notar que se asemeja mucho a la suma de coeficientes de funciones reales multiplicado por dx_i .

Dem. (Proposición) Evaluemos el lado derecho por E_j , por lo que,

$$\sum_{i=1}^{n} \alpha[E_i]\theta_i[E_j] = \alpha[E_j]$$

Ahora sea $p \in U$, luego $p = c_1 E_1(p) + \cdots + c_n E_n(p)$, entonces,

$$\alpha[E_i](p) = \alpha(p)[E_i(p)] = \dots$$

Probando la igualdad. ■

Aplicando la proposición anterior al marco $\{e_i\}$ con forma duales $\{dx_i\}$, si $\theta_i\}$ son otra forma duales, entonces,

$$\theta_i = \sum_{j=1}^n \theta_i[e_j] dx_j = \sum_{j=1}^n E_i \cdot e_j dx_j = \sum_{j=1}^n a_{ij} dx_j$$

En forma abreviada se tiene que,

$$\vec{\theta} = Ad\vec{x}$$

Encotrando una identidad (θ_i es otra forma duales?). Ahora multiplicando por A^{-1} en la izquierda y que $A^{-1} = A^T$, obtenemos,

$$d\vec{x} = A^T \vec{\theta}$$

Sea $\{E_j\}$ un marco móvil ortonormal, entonces podemos encontrar una relación entre las formas duales $\{\theta_i\}$ y las formas de conexión $\{\omega_{ij}\}$.

Teorema 3.. Sean $\{E_j\}$ marco móvil ortonormal, $\{\theta_i\}$ las formas duales y $\{\omega_{ij}\}$ las formas de conexión, entonces se cumple:

$$d\theta_i = \sum_{j=1}^n \omega_{ij} \wedge \theta_j$$

$$d\omega_{ij} = \sum_{k=1}^{n} \omega_{ik} \wedge \omega_{kj}$$

Dem. tatarta... apuntes profe

4. Geometría Diferencial de Superficie, con Formas Diferencial

Vamos a considerar $\{E_1, E_2, E_3\}$ un marco móvil adaptado a una superficie $S \subset \mathbb{R}^3$, sean $\{\theta_1, \theta_2, \theta_3\}$ sus formas duales y sean $\{\omega_{12}, \omega_{13}, \omega_{13}\}$ sus formas de conexión.

Teorema 4.1. Sea $\{E_1, E_2, E_3\}$ un marco móvil adaptado a una superficie $S \subset \mathbb{R}^3$, sean $\{\theta_1, \theta_2, \theta_3\}$ sus formas duales y sean $\{\omega_{12}, \omega_{13}, \omega_{13}\}$ sus formas de conexión. Sean V, W campos vectoriales tangentes a S, entonces cuando restringimos las formas duales $\{\theta_i\}$ a los campos vectoriales V, W, entonces se verifican las siguientes ecuaciones:

$$\theta_{3}[V] = 0, \begin{cases} d\theta_{1}[V, W] &= \omega_{12} \wedge \theta_{2}[V, W] \\ d\theta_{2}[V, W] &= -\omega_{12} \wedge \theta_{1}[V, W] \\ 0 &= \omega_{13} \wedge \theta_{1} + \omega_{23} \wedge \theta_{2} \end{cases}$$

$$(Gauss) \ d\omega_{12}[V, W] = \omega_{13} \wedge \omega_{23}[V, W]$$

$$(Compatibilidad) \begin{cases} d\omega_{13}[V, W] &= \omega_{12} \wedge \omega_{23}[V, W] \\ d\omega_{23}[V, W] &= \omega_{13} \wedge \omega_{12}[V, W] \end{cases}$$

Dem...

Para los cálculos con formas diferenciales en supercicie, necesitamos el siguiente resultado:

Proposición 4.1. Sea $\{E_1, E_2, E_3\}$ marco móvil ortonormal adoptado sobre una superficie S y sea $\{\theta_1, \theta_2, \theta_3\}$ las formas duales. Sea ϕ una 1-forma sobre S y sea 2-forma ψ sobre S, entonces,

$$\phi = \phi[E_1]\theta_1 + \phi[E_2]\theta_2$$
$$\varphi = \varphi[E_1, E_2]\theta_1 \wedge \theta_2$$

Dem...

4.1. Mapa Weingarten y Curvaturas

Sea $S \subset \mathbb{R}^3$ una superficie orientable con mapa de Gauss $N: S \to \mathbb{S}^2$ (vector normal unitario), el mapa de Weingarte está dado por W = -dN. Sea el marco ortonormal $\{E_1, E_2, E_3\}$ adaptado a S, como vimos, podemos tomar $E_3 = N$ y con esto tenemo,

$$W[V] = -dE_3[V] = \omega_{13}[V]E_1 + \omega_{23}[V]E_2$$

Donde $\{E_1, E_2\}$ son vectores que en cada $p \in S$ forma una base de T_pS . Entonces se cumple,

$$W \begin{bmatrix} E_1 \\ E_2 \end{bmatrix} = \begin{bmatrix} \omega_{13}[E_1] & \omega_{23}[E_1] \\ \omega_{13}[E_2] & \omega_{23}[E_2] \end{bmatrix} \begin{bmatrix} E_1 \\ E_2 \end{bmatrix}$$

A partir de esto podemo asociar la curvatura de Gauss y la media mediante las formas de conexiones. La curvatura de Gauss está dado por,

$$K = \det W = \omega_{13}[E_1]\omega_{23}[E_2] - \omega_{13}[E_2]\omega_{23}[E_1]$$

= $\omega_{13} \wedge \omega_{23}[E_1, E_2]$

Por el teorema 4.1 tenemos finalmente:

$$d\omega_{12} = -K\theta_1 \wedge \theta_2$$

Con respecto a la curvatura media el procedimiento es análogo, en particular,

$$H = \text{Tr}W = \frac{1}{2}(\omega_{13} \wedge \theta_2 + \omega_{23} \wedge \theta_1)[E_1, E_2]$$

4.2. Relación entre Formas de Conexión y los Símbolos de Christoffel

Recordemos los símbolos de Christotoffel de una superficie parametrizada $\sigma: U \to S$ (S es una subvariedad cualquiera), son las funciones $\Gamma_{ij}^k: U \to \mathbb{R}$ tales que,

$$\Gamma^k_{ij}(p)$$
es la componente de $\frac{\partial^2\sigma}{\partial x_i\partial x_j}$ según la dirección $\frac{\partial\sigma}{\partial x_k}$

Encontremos la relación con formas de conexión. Sea $\{E_i\}$ un marco móvil ortonormal adaptado a S, y tales que,

$$E_i = \frac{\partial \sigma}{\partial x_i}$$

para todo los índice i. Entonces se tiene que,

$$\Gamma_{ij}^k = \nabla_{\frac{\partial \sigma}{\partial x_i}} \frac{\partial \sigma}{\partial x_j} \cdot \frac{\partial \sigma}{\partial x_k} = \nabla_{E_i} E_j \cdot = \omega_{jk} [E_i]$$

falta

4.3. Determinación de Superficie Módulo Movimiento Rígido

El siguiente resultado nos dice que dado un marco móvil adaptado ortonormal, con formas duales fijas y formas de conexión, son suficientes para conocer la forma de la superficie.

Teorema 4.2 Sean $S, S' \subset \mathbb{R}^3$ superficies regulares con marcos móviles ortonormales adaptados $\{E_i\}, \{E'_i\}$ a S, S' respectivamente. Sean $\{\theta_i\}, \{\theta'_i\}$ las formas duales y sean $\{\omega_{ij}\}, \{\omega'_{ij}\}$ las formas de conexión. Sea una función $f: S \to S'$ el cual satisface,

$$f^*\theta_i' = \theta_i$$
$$f^*\omega_{ij}' = \omega_{ij}$$

para todo los índices i, j. Entonces existe un movimineto rígido (es decir, la composición de una rotación y una translación) $\rho: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $\rho|_S = f$.

Dem... (apuntes profe)

Teorema 4.3. Sea $S, S' \subset \mathbb{R}^3$ una superficies regulares. Sea $\{E_i\}$ un marco móvil ortonormal adaptado a una superficie S y sean $\{\theta_i\}, \{\omega_{ij}\}$ las formas duales y las formas de conexión. Si $f: S \to S'$ es la restricción de un moviento rígido de \mathbb{R}^3 , entonces existe un marco móvil ortonoramal adaptado a S', $\{E'_i\}$ el cual satisface $E'_i(f(p)) := df_p[E_i(p)]$ y el cual tiene formas duales y de conexión $\{\theta'_i\}, \{\omega'_{ij}\}$, los cuales satisfacen la siguiente propiedad:

$$f^*\theta_i' = \theta_i$$
$$f^*\omega_{ij}' = \omega_{ij}$$

Lema 4.1. Sean $\alpha_1, \ldots, \alpha_m \in \omega^1(U)$ 1-formas diferenciales linealmente independientes con $U \subseteq \mathbb{R}^n$ abierto. Si existen 1-formas (¿diferenciales?) ω_{ij} con $1 \le i, j \le n$ que satisfacen para todo $0 \le i, j \le n$ tales que,

$$\omega_{ij} = -\omega_{ji}$$
$$d\alpha_i = \sum_{k=1}^n \alpha_k \wedge \omega_{ki}$$

entonces las ω_{ij} son únicas.

Dem....

Dem... teorema

4.4. Teorema de Gauss con Formas Diferenciales

El teorema de Gauss dice que la curvatura de Gauss se preserva bajo isometrías.

Teorema 4.3. Sean S, S' dos superficies orientadas en \mathbb{R}^3 y sea $f: S \to S'$ una función diferenciable. Si f es una biyección y una isometría (es decir, $df^T df = I$ en todo punto de S), entonces para todo $p \in S$ se tiene que,

$$K'(f(p) = K(p))$$

Dem...

4.5. Curvaturas Principales y Fórmulas de Estructura para Campos de Marcos Principales

Definción 4.1. Sea $\{E_1, E_2, E_3\}$ un marco móvil ortonormal adaptado a una superficie orientable S, decimos que E_1, E_2 formas un marco móvil principal si para todo $p \in S$ los vectores tangentes $E_1(p), E_2(p)$ son las direcciones principales de S en p

Si un abierto $U \subset S$ no contiene puntos umbilicales (los puntos p donde las curvaturas principales son iguales $\kappa_1 = \kappa_2$), entonces en todo punto $p \in U$ las direcciones principales están únicamente determinadas, porque los autoespacios del mapa Weigarten $W_p = -dN_p$ relativos a sus dos autovalores $\kappa_1(p) > \kappa_2(p)$ son de dimensión 1 para todo $p \in U$. En este caso es posible fijar un campo de marcos principales sobre U.

Lema 4.2. Si $\{E_1, E_2, E_3\}$ es un marco móvil ortonormal adaptado a S con E_1, E_2 marco principal $y \kappa_1, \kappa_2 : S \to \mathbb{R}$ son las curvaturas principales de S, entonces tenemos las siguintes ecuaciones:

$$\frac{\partial \kappa_1}{\partial E_2} = (\kappa_2 - \kappa_1)\omega_{12}[E_1]$$
$$\frac{\partial \kappa_2}{\partial E_1} = (\kappa_1 - \kappa_2)\omega_{12}[E_2]$$

Dem...

5. Integración sobre Superficies y Teorema de Gauss-Bonnet

Veremos que el teorema de Gauss-Bonnet es una versión geométrica del teorema de Stokes. Además, estudiaremos la integración de formas diferenciales sobre variedades orientadas con borde.

5.1. Variedades con Borde y Orientación

Introduciremos las variedades con borde, subvariedades con borde en \mathbb{R}^d y superficies con borde en \mathbb{R}^d .

La diferencia principal entre variedades y variedades con borde, es el espacio con el cual se trabaja, el modelo para parametrizar variedades con bordes, pasa del espacio \mathbb{R}^k al semisespacio,

$$\mathbb{R}^k_- := \{(x_1, \dots, x_k) \in \mathbb{R}^k : x_1 \le 0\}$$

Definamos una variedad con borde.

Definición 5.1. Decimos que $S \subseteq \mathbb{R}^k$ es una variedad de dimensión k con borde, si para un α en una colección A, existen mapas:

$$f_{\alpha}:U_{\alpha}\to S$$

 $que\ cumpla\ las\ siguientes\ propiedades:$

- i) Para todo índice $\alpha \in \mathcal{A}$ tenemos que $U_{\alpha} \subseteq \mathbb{R}^{k}_{-}$ es un abierto relativo al semiespacio.
- ii) Los mapas f_{α} soj inyectivos.
- iii) Si $\alpha, \beta \in \mathcal{A}$ son tales que $V_{\alpha\beta} := f_{\alpha}(U_{\alpha}) \cap f_{\beta}(U_{\beta}) \neq \emptyset$ entonces los mapas $f_{\alpha}^{-1} \circ f_{\beta}$ y $f_{\beta}^{-1} \circ f_{\alpha}$ son diferenciables, donde f_{α}^{-1} y f_{β}^{-1} son las inversas de las restricciones de f_{α} , f_{β} a $V_{\alpha\beta}$.
- iv) Las imágenes $f_{\alpha}(U_{\alpha})$ cubren todo S.

Nota 5.1. Una colección de parametrizaciones locales $\{(f_{\alpha}, U_{\alpha})\}_{\alpha \in \mathcal{A}}$ como antes, se llama **átlas de la variedad** S, y los mapas $f_{\alpha}: U_{\alpha} \to S$ se llaman **cartas locales de** S.

Observación 5.1. En la definición anterior no ponemos condiciones a S, solo sobre las aprametrizaciones $f_{\sim}^{-1} \circ f_{\beta}$.

Cuando S se identifica con un subconjunto de un espacio \mathbb{R}^d , decimos que S es una subvariedad (con borde) de \mathbb{R}^d .

Si S tiene dimensión k=2 (es decir, si las parametrizaciones locales son por abiertos $U_{\alpha}\subseteq\mathbb{R}^2_-$) entonces llamamos S una superficie con borde.

Definición 5.2. Definimos un punto $p \in S$ como un punto del borde de S, si existe una carta local $f_{\alpha}: U_{\alpha} \to S$ para la cual p es la imagen de un punto del borde de \mathbb{R}^k_- . En fórmulas: Decimos que $p \in \partial S$ si existe un punto,

$$q = (0, x_2, \dots, x_k) \in U_{\alpha} \cap \partial \mathbb{R}^k_k \ tal \ que \ f_{\alpha}(q) = p$$

Nota 5.2. La definición de punto de borde llegar a ser más natural una vez que obsvamos el siguiente resultado:

Propoisicón 5.1. Sea S es una variedad con borde, con átlas $\{(f_{\alpha}, U_{\alpha})_{\alpha \in \mathcal{A}} \text{ y si para un } p \in S \text{ existe una carta } f_{\alpha} \text{ tal que } f_{\alpha}^{-1}(p) \in \partial \mathbb{R}^k_-, \text{ entonces para cualquier otra carta } f_{\beta} : U_{\beta} \to S \text{ del átlas tal que } p \in f_{\beta}(U_{\beta}) \text{ también pasa que } f_{\beta}^{-1}(p) \in \mathbb{R}^k_-.$

Dem profe.

Definición/Recordatorio 5.3. Sea S una variedad. Decimos que es orientable si cumple la siguiente propiedad: Si $V_{\alpha\beta} := f_{\alpha}(U_{\alpha}) \cap f_{\beta}(U_{\beta}) \neq \emptyset$ y $p \in f_{\alpha}^{-1}(V_{\alpha\beta})$, entonces el determinante del diferencial $d(f_{\alpha}^{-1} \circ f_{\beta})_p$ es estrictamente positivo.

El concepto de orientación lo podemos traspasar a marcos vectoriales.

Definición 5.4. Sea E_1, \ldots, E_k un marco, y sea E'_1, \ldots, E'_k otro marco sobre un espacio vectorial de dimensión k. Decimos que tienen la misma orientación si los mapas $E_i \to E'_i$ para todo $i = 1, \ldots, k$ tiene determinante positivo.

Vamos a trabajar con el caso $S \subseteq \mathbb{R}^d$ una subvartiedad y las cartas f_{α} como funciones diferenciables. Notamos que si tomamos la base canónica e_1, \ldots, e_k de \mathbb{R}^k , para cada carta f_{α} podemos considerar el marco móvil adaptados sobre $f_{\alpha}(U_{\alpha})$ dados por:

$$E_1^{\alpha} := df_{\alpha}[e_1]$$

$$\vdots$$

$$E_k^{\alpha} := df_{\alpha}[e_k]$$

La condición $\det[d(f_{\alpha}^{-1} \circ f_{\beta})] > 0$ corresponde a imponer que los marcos $E_1^{\alpha}, \dots, E_k^{\alpha}$ y $E_1^{\beta}, \dots, E_k^{\beta}$ obtenidos de la misma forma por los dos mapas f_{α}, f_{β} tienen la misma orientación.

Proposición 5.2. Sean dos marcos $E_1^{(0)}, \ldots, E_k^{(0)}$ y $E_1^{(1)}, \ldots, E_k^{(1)}$ tienen la misma orientación si y sólo si existe un marco $E_1(t), \ldots, E_k(t)$ con $t \in [0,1]$ tal que:

- i) $E_i(t)$ es continua en todo t para todo i.
- ii) Se cumple que $E_i(0) = E_i^{(0)}, E_i(1) = E_i^{(1)}$ para todo i.
- iii) Para cada $t \in [0,1]$, los vectores $E_1(t), \ldots, E_k(t)$ son independientes.

Por lo tanto, la condición de ser orientable para subvariedades, corresponde a decir que se pueden comparar los marcos móviles sobre S módulo transformaciones continuas.

Proposición 5.3. El borde de una vairedad, es una variedad.

Veamos una ideal. Sea S una variedad con borde y con átlas $\{(f_{\alpha}, U_{\alpha})\}_{\alpha \in \mathcal{A}}$, entonces el átlas inducido sobre ∂S está dado por los mapas $\overline{f}_{\alpha}: \overline{U}_{\alpha} \to \partial S$ donde consideramos el índice \mathcal{A}' que son los $\alpha \in \mathcal{A}$ tales que $U_{\alpha} \cap \partial \mathbb{R}^{k}_{-} \neq \emptyset$ y para cada $\alpha \in \mathcal{A}'$ definimos $\overline{U}_{\alpha} := U_{\alpha} \cap \{x_{1} = 0\}$ y \overline{f}_{α} se define ser la restricción de f_{α} a \overline{U}_{α} . Con esto construimos un átlas, por lo que ∂S es una variedad.

Dem profe

5.2. Integración de k-formas sobre Subvariedades de dimensión k

Definición 5.5. Sea $U \subseteq \mathbb{R}^k$ abierto, y sean dx_1, \ldots, dx_k las formas duales del marco constante e_1, \ldots, e_k que en cada punto de U es igual a la base canónica de \mathbb{R}^k . La **forma de volúmen canónica** en \mathbb{R}^k es $\omega_{Vol} = dx_1 \wedge \cdots \wedge dx_k$. Para cualquier función $\alpha: U \to \mathbb{R}$ definimos la integral de $a(x)\omega_{Vol}$ sobre U por:

$$\int_{U} a(x)\omega_{Vol} := \int_{U} a(x)dx_{1}\dots dx_{k}$$

Observación 5.2. Notemos que para cualquier k-forma sobre U se puede escribir en la forma $\omega = a \, \omega_{\text{Vol}}$ como antes. Esto se debe a que $\bigwedge^k \mathbb{R}^k$ tiene dimensión 1, por lo cual el valor puntual $\omega(p)$ es un múltiplo de ω_{Vol} para cada p.

Definición 5.6. Sea $f: U \to S$ una parametrización sobreyectiva de una subvariedad $S \subseteq \mathbb{R}^d$, por un abierto $U \subseteq \mathbb{R}^d$. Sea ω una k-forma diferencial sobre S, entonces definimos la integral de ω sobre S por medio del pullback $f^*\omega$ como sigue:

$$\int_{S} \omega := \int_{U} f^* \omega$$

Observación 5.3.

- Se tiene que $f^*\omega \in \Omega^k(U)$, por lo que existe $a: U \to \mathbb{R}$ tal que $f^*\omega = a \omega_{\text{Vol}}$ y se puede usar la definición de la integral de k-formas sobre abiertos de \mathbb{R}^k .
- También podemos extender la definición anterior más allá del caso que f(U) = S. Es suficiente que el conjunto de los punto $p \in S$ tales que $\omega(p) \neq 0$ est´te contenido en f(U), dado que la contribución de las regiones donde $\omega = 0$ no contribuye a la integral.

Ahora para definir la integral $\int_S \omega$ sobre subvariedades sin parametrizaciones globales, usamosción **falta porbar** a lo que se llama una **partición de la unidad**.

Definición 5.7. Sea S es una variedad (con o sin borde) con un átlas de cardinalidad numerable $\{(f_{\alpha}, U_{\alpha})\}_{{\alpha} \in \mathcal{A}}$. Una partición diferenciable de la unidad subordenada al átlas \mathcal{A} es una colección de funciones $\varphi_{\alpha} : S \to \mathbb{R}$ que satisface las siguientes condiciones:

- i) $\varphi_{\alpha}(p) \in [0,1]$ para todo $p \in S, \alpha \in A$ y φ_{α} es diferenciable para todo $\alpha \in A$.
- ii) $\varphi_{\alpha}(p) = 0$ si $p \notin f_{\alpha}(U_{\alpha})$.
- iii) Para todo $p \in S$ vale que,

$$\sum_{\alpha \in A} \varphi_{\alpha}(p) = 1$$

Definición 5.8. Sea S una variedad orientada con átlas $\{(f_{\alpha}, U_{\alpha})\}_{\alpha \in \mathcal{A}}$. Existe una partición de la unidad subordinada al átlas, podemos definir la integral de una k-forma general ω sobre S de la siguiente forma:

i) Si $\sum_{\alpha \in A} \varphi_{\alpha} = 1$ sobre todo S, entonces,

$$\omega = \sum_{\alpha \in A} \varphi_{\alpha} \omega$$

- ii) Con lo anterior, ω_{α} se anula afuera de $f_{\alpha}(U_{\alpha})$, por lo que podemos definir sin problemas $\int_{U_{\alpha}} f_{\alpha}^* \omega_{\alpha}$.
- iii) Finalmente definimos:

$$\int_{S} \omega := \sum_{\alpha \in \mathcal{A}} \int_{S} \omega_{\alpha} = \sum_{\alpha \in \mathcal{A}} \int_{U_{\alpha}} f_{\alpha}^{*} \omega_{\alpha}$$

La extensión de la definición de la integral $\int_S \omega$ predecente, es independeinte de las parametrizaciones usadas solo si S es orientada. Y en efecto, si dos cartas locales tenemos $V_{\alpha\beta} := f_{\alpha}(U_{\alpha}) \cap f_{\beta}(U_{\beta}) \neq \emptyset$, entonces para cualquier k-forma ω que se anule afuera de $V_{\alpha\beta}$ tenemos dos definiciones de integral, y es necesario que sean compatibles:

$$\int_S \omega = \int_{V_{\alpha\beta}} \omega = \int_{f_\alpha^{-1}(V_{\alpha\beta})} f_\alpha^* \omega = \int_{f_\beta^{-1}(V_{\alpha\beta})} f_\beta^* \omega$$

En efecto, denotando,

$$f_{\alpha\beta} := f_{\beta}^{-1} \circ f_{\alpha} : f_{\alpha}^{-1}(V_{\alpha\beta}) \to f_{\beta}^{-1}(V_{\alpha\beta})$$

obteniendo,

$$f_{\alpha}^*\omega = f_{\alpha\beta}^* f_{\beta}^*\omega$$

Para que expresar explícitamente la igualdad de las dos expresiones de $\int_S \omega$, obtenemos en coordenadas locales:

$$\int_{f_{\alpha}^{-1}(V_{\alpha\beta})} f_{\alpha}^* \omega = \int_{f_{\alpha}^{-1}(V_{\alpha\beta})} f_{\alpha\beta}^*(f_{\beta}^* \omega)$$

Proposición 5.4. Si $U \subseteq \mathbb{R}^k$ es un abierto, y $a: U \to \mathbb{R}$ una función diferenciable y $\alpha = a \,\omega_{Vol} \in \Omega^k(U)$, entonces para un difeomorfismo $f: U \to V$ vale la fórmula,

$$f^*\alpha(x) = a(f(x))\omega_{Vol}\det(df_x)$$

Usando la proposición anterior, si $a: U \to \mathbb{R}$ es tal que $f_{\beta}^* \omega = a \, \omega_{\text{Vol}}$, entonces,

$$\int_{f_{\beta}^{-1}(V_{\alpha\beta})} f_{\alpha\beta}^*(f_{\beta}^*\omega) = \int_{f_{\beta}^{-1}(V_{\alpha\beta})} f_{\alpha\beta}^*(a\,\omega_{\text{Vol}}) = \int_{f_{\beta}^{-1}(V_{\alpha\beta})} \det(df_{\alpha\beta}(x)) a(f_{\alpha\beta}(x)) \omega_{\text{Vol}}$$

Recordemos el cambio de variable en una integral, esta forma obtenemos:

$$\int_{f_{\beta}^{-1}(V_{\alpha\beta})} a(x)dx_1 \dots dx_k = \int_{f_{\alpha}^{-1}(V_{\alpha\beta})} a(f_{\alpha\beta}(x)) |\det(df_{\alpha\beta}(x))| dx_1 \dots dx_k$$

Con esto y recordando la definición de ω_{Vol} , reescribimos de la siguiente forma:

$$\int_{f_{\beta}^{-1}(V_{\alpha\beta})} a(f_{\alpha\beta}(x)) |\det(df_{\alpha\beta}(x))| \omega_{\text{Vol}} = \int_{f_{\beta}^{-1}(V_{\alpha\beta})} \det(df_{\alpha\beta}(x)) a(f_{\alpha\beta}(x)) \omega_{\text{Vol}}$$

Para que esta fórmula sea cierta para cualquier elección de la función a, se necesita la condición $\det(df_{\alpha\beta}) > 0$, o en otras palabras, se necesita que S (con el átlas anterior) sea orientada.

5.3. Teorema de Stokes

Ejemplo 5.1. Estudiemos la integración de 1-formas sobre curvas. Sea $I=(a,b)\subset\mathbb{R}$ un segmento, sea $\gamma:I\to\mathbb{R}^3$ una curva diferenciable y α una 1-forma definida sobre $\gamma(I)$, entonces definimos,

$$\int_{\gamma} \alpha := \int_{I} \gamma^* \alpha = \int_{a}^{b} \alpha_{\gamma(t)} |\dot{\gamma}(t)| dt$$

Observamos que si $\alpha = df$ es el diferencial de una función, entonces la integral sobre γ se puede simplicar:

$$\int_{a}^{b} df_{\gamma(t)} |\dot{\gamma}(t)| dt = \int_{a}^{b} \frac{d}{dt} (f \circ \gamma)(t) dt = f(\gamma(b)) - f(\gamma(a))$$

La generalización de este resultado para k-formas generales, es el teorema de Stokes.

Teorema 5.1. Sea $S \subseteq \mathbb{R}^d$ una subvariedad orientada de dimensión k, y sea ω una (k-1)-forma diferencial sobre S. Si $i: \partial S \to S$ es el mapa de inclusión que identifica la variedad ∂S con un subconjunto de S, entonces vale la fórmula:

$$\int_{S} d\omega = \int_{\partial S} i^* \omega$$

5.4. Índices de Campos Vecotriales y Teorema de Gauss-Bonnet

Sea $S \subset \mathbb{R}^3$ una superficie orientada. Sobre S consideremos dos marcos ortonormales adaptados $\{E_1, E_2, E_3\}$ y $\{\overline{E}_1, \overline{E}_2, \overline{E}_3\}$ tales que:

- i) $E_1 = \overline{E}_1 = N$ es el mismo mapa de Gauss de S.
- ii) Los dos marcos tienen la misma orientación, o en otras palabras, en todo punto $p \in S$ la matriz que llevar $E_1(p), E_2(p), E_3(p)$ hacia $\overline{E}_1(p), \overline{E}_2(p), \overline{E}_3(p)$ respectivamente, tiene determinante 1.

Para cada $p \in S$, definimos la función **ángulo de rotación** por:

$$\varphi: S \to \mathbb{R}/2\pi\mathbb{Z}$$

de tal forma que en cada $q \in S$ la rotación de ángulo $\varphi(q)$ y eje N(q) lleva $E_1(q)$ hacia $\overline{E}_1(q)$. Para construir φ basta con obersar que por definición $\cos(\varphi) = E_1 \cdot \overline{E}_1$ y $\sin(\varphi) = E_2 \cdot \overline{E}_1$, por lo cual el valor $\varphi(p)$ está únicamente definir módulo $2\pi\mathbb{Z}$.

Lema 5.1. Con la notación anterior. Si θ_i, ω_{ij} son las formas duales y de conexión del marco $\{E_1, E_2, E_3\}$ y $\overline{\theta}_i, \overline{\omega}_{ij}$ son las formas duales y de conexión del marco $\{\overline{E}_i\}$, entonces se cumplen las siguientes identidades:

$$\overline{\omega}_{12} = \omega_{12} + d\varphi, \quad \overline{\theta}_1 \wedge \overline{\theta}_2 = \theta_1 \wedge \theta_2$$

Dem profe

Consideremos el marco E_1, E_2, E_3 definido anteriormente. Sea el campo vectorial $Y: S \to \mathbb{R}^3$ tangente a S. En todo punto $p \in S$ tal que $Y(p) \neq 0$ definimos el segundo marco ortonormal adaptado $\overline{E}_1, \overline{E}_2, \overline{E}_3$ por:

$$\overline{E}_1 := \frac{Y}{|Y|}, \ \overline{E}_2 = \overline{E}_1^{\perp}, \ \overline{E}_3 = N$$

donde determinamos \overline{E}_1^{\perp} como el único vector de norma 1 tal que la base ortnormal $\{\overline{E}_1, \overline{E}_2, \overline{E}_3\}$ tiene la misma orientación que e_1, e_2, e_3 .

Ahora consideremos $\gamma: I \to S$ una curva cerrada simple y parametrizada por arco tal que:

- i) γ describe la frontera ∂U de un conjunto abierto $U \subseteq S$.
- ii) La orientación de γ es tal que $\dot{\gamma}^{\perp}$ (que sería el único vector unitario tangente a S a lo largo de γ tal que $\dot{\gamma}, \dot{\gamma}^{\perp}, N$ tiene en todo punto la misma orientación que e_1, e_2, e_3) apunta hacia el exterior de S.
- iii) Además suponemos que U, Y son tales que en el interior de U el campo Y se anula en un solo punto, que llamamos p.

Definición 5.9. Sea $\varphi: U \setminus \{p\} \to \mathbb{R}/2\pi\mathbb{Z}$ la función de ángulo entr E_1 y $\overline{E}_1 = Y/|Y|$. Definimos el índice I de Y respecto a p por la fórmula:

$$I := \frac{1}{2\pi} \int_{\gamma} d\varphi$$

Lema 5.2. Sea S una superficie orientada regular. Entonces el índice I definido anteiormente, cumple las siguiente propiedades:

- i) El valor de I no depende de la elección de la curva γ que satisfaga las propiedades i) iii) anteriores.
- ii) El valor de I no depende de la elección de un marco ortonormal adaptado E_1, E_2, E_3 de referencia, que tenga orientación igual que e_1, e_2, e_3 .

iii) Se cumple lo siguiente:

$$I = \lim_{r \to 0} \frac{1}{2\pi} \int_{\partial U_r(p)} d\varphi = \lim_{r \to 0} \frac{1}{2\pi} \int_{\partial U_r(p)} \overline{\omega}_{12}$$

donde $U_r(p)$ es una sucesión de abiertos en S que contienen p en su interior y contenidos en una bola de radio r centrada en p.

Dem profe

La siguiente proposición se considerar como una primera versión del teorema de Gauss-Bonnet.

Proposición 5.5. Sea S una superficie regular sin borde y sea Y un campo vecotrial tangente a S que tiene un número finito de ceros sobre S con índices I_1, \ldots, I_k , entonces para cualquier marco ortonormal E_1, E_2, E_3 sobre S vale la expresión:

$$\int_{M} K\theta_{1} \wedge \theta_{2} = 2\pi \sum_{i=1}^{k} I_{i}$$

donde θ_i son las formas duales correspondientes al marco E_1, E_2, E_3 y K es la curvatura de Gauss de S.

Dem profe.

Para trabaja con el caso Suna superficie con borde donde el borde es una curva regular, necesitamos recordad la definición de la curvatura geodésica de una curva.

Observación 5.4. Sea $\gamma: I \to S$ una curva parametrizada por arco. Tenemos la expresión:

$$\gamma'' = \kappa_n N + \kappa_g(\gamma')^{\perp}$$

donde $(\gamma')^{\perp}$ es γ' rotado 90 en la dirección tal que $\gamma', (\gamma')^{\perp}, N$ forman una base (ortoormal) con la misma orientación que e_1, e_2, e_3 . En este caso κ_n es la curvatura normal de γ y κ_q es la curvatura geodésica de γ .

Observación 5.5. Si E_1, E_2, e_3 es una marco ortonormal adaptado a S con la misma orientación que e_1, e_2, e_3 y si $V: I \to \mathbb{R}^3$ es un campo vecotrial de largo constante a lo largo de γ , entonces tenemos la expresión siguiente para la derivada covariante de Y a lo largo de γ :

$$\nabla V(t) = \prod_{T_{\gamma(t)}S} \frac{d}{dt} V(t) = (\phi'(t) + \omega_{12}[\gamma'(t)]) V^{\perp}(t) = (d\varphi + \omega_{12})[\gamma'(t)] V^{\perp}(t)$$

donde $\phi: I \to \mathbb{R}/2\pi\mathbb{Z}$ es el ángulo entre E_1 y V a lo largo de γ , es decir que $\phi(t) = \varphi \circ \gamma(t)$. Por esto tenemos que $\phi'(t) = d\varphi[\gamma'(t)]$ por regla de la cadena, como se indicó anteriormente.

Por tanto, de la observación 5.4, se tiene que,

$$\kappa_g = \gamma'' \cdot (\gamma')^{\perp}$$

Luego por la observación 5.5 con $V = \gamma'$ obtenemos que,

$$\kappa_q = V' \cdot V^{\perp} = \nabla V \cdot V^{\perp} = (d\varphi + \omega_{12})[\gamma']$$

donde tomamos $V^{\perp}(t) \in T_{\gamma(t)}S$ para todo $t \in I,$ por lo cual,

$$\prod_{T_{\gamma(t)}S} V' \cdot V^{\perp} = V' \cdot V^{\perp}$$

Las observaciones anteriores nos permite demostrar el teorema de Gauss-Bonnet simplificado para el caso de S una superficie con borde y así obtener la verdadera primera versión del teorema Gauss-Bonnet.

Teorema 5.2. Sean S una superficie regular orientada con borde regular, $\gamma: I \to S$ una curva cerrada simple parametrizada por arco, el cual parametriza ∂S de forma compatible con la orientación inducida por S y cuya curvatura geodésica se denota por κ_g , E_1, E_2, E_3 un marco móvil adaptado a S, con la misma orientación que la base canónica e_1, e_2, e_3 de \mathbb{R}^3 , con formas duales θ_i y formas de conexión ω_{ij} e Y un campo vectorial tangente a S que se anula en un numero finito puntos en el interior de S, con índices I_1, \ldots, I_k alrededor de estos ceros. Entonces se cumple que:

$$\int_{S} K\theta_{1} \wedge \theta_{2} + \int_{\partial S} \kappa_{g} ds = 2\pi \sum_{j=1}^{k} I_{j}$$

 $donde\ ds\ en\ el\ elemento\ de\ largo\ de\ S.$

5.5. Característica de Euler-Poincaré y Enunciado Equivalente a GB

Definiremos las características de Euler-Poincaré y luego presentaremos un enuciado similar al teorema de Gauss-Bennet.

Definición 5.10. Sea S una superficie orientada, con o sin borde, definimos su característica de Euler-Poincaré por el número:

$$\chi(S) := \sum_{j=1}^{k} I_j$$

correspondiente a la suma de los índices de cualquier campo vectorial Y tangente a S que se anule en un número finito de puntos de sobre S.

Nota 5.2. Como consecuencia del teorema de Gauus-Bonnet, la definición anterior no depende de la elección del campo Y sobre S.

En alternativa, consideramos sobre S una triangulación admisible, el cual consiste de los siguiente elementos:

- i) Un número finito de puntos en S, llamados **vértices** de la triangulación.
- ii) Un número finito de curvas regulares en S, llamadas lados de la triangulación, tales que cada curva conecta dos vértices, y dos curvas no se intersectan excepto en sus extremos.

La propiedad necesaria para tener una triangulación admisible, es que ∂S sea unión de lados de la triangulación, y que el complemento de los lados de la triangulación sea una unión finita de conjuntos abiertos (llamados **cara**, o **triángulos curvilíneos** de la triangulación) tales que cada conjunto tiene por borde extactamente tres lados.

Nota 5.3. Es posible demostrar que la característica de Euler-Poincaré cumple la siguiente identidad:

$$\chi(S) = \#V - \#L + \#C$$

donde V, L, C son los conjuntos de vértices, lados y caras respectivamente de una triangulación adimisible.

Nota 5.4. En consecuencia del teorema de Gauss-Bonnet, la suma algebraica de la nota anteiror, no depende de la elección de triangulación admisible sobre S.

Ahora podemos reexpresar el teorema de Gauss-Bonnet usando la característica de Euler-Poincaré de S:

$$\int_{S} S + \int_{\partial S} \kappa_g = 2\pi \chi(S)$$

5.6. Teorema de Gauss-Bonnet para Regiones con BOrde Poligonal

Para cerrar el curso veremos que pasa cuando el borde de S una superficie regular, tiene forma poligonal. Antes que nada vamos asumir que S es una superficie orientada.

Definición 5.11. Sea S superficie, decimos que tien borde poligonal si ∂S está parametrizado por un número finito de curvas regulares parametrizadas por arco $\gamma_1, \ldots, \gamma_n$ donde $\gamma_j : [a_j, b_j] \to S$ son tales que las únicas intersecciones entre las γ_j están dadas por las relaciones:

$$\gamma_j(b_j) = \gamma_{j+1}(a_{j+1})$$

para todo $1 \le j \le n$, con la conveción de que n+1 se interpreta como 1 (hay módulo n). Además supondremos que los vectores $\gamma'_i(b_j), \gamma'_{i+1}(a_{j+1})$ no son paralelos para ningún valor de j.

Vamos a necesitar definir otra noción de ángulo de rotación para comparar los vectores tangentes de curvas γ_j sucesivas a lo largo de ∂S .

Definición 5.12. Sea E_1, E_2, E_3 un marco móvil ortonormal adaptado a S, y si $p \in S$ y V, $W \in T_pS$ no son nulos y no son alineados, entonces el ángulo desde V hacia W compatible con la orientación de S, es el valor $\theta \in (-\pi, \pi)$ tal que, una vez expresados V, W en la base E_1, E_2 , la matriz de rotación,

$$\begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$$

envía el vector de coordenadas de V en un múltiplo positivo del vector de coordenadas de W.

Definición 5.13. Sea S una superficie con borde poligonal, denotamos el salto de vector tangente en $\gamma_j(b_j) = \gamma_{j+1}(a_{j+1})$ como el valor $\alpha_j(-\pi,\pi)$ del ángulo por el cual es necesario rotar $\gamma'_j(b_j)$, en la dirección compatible con la orientación de S, para llegar a $\gamma'_{j+1}(a_{j+1})$.

Ahora podemos reformular el teorema de Gauss-Bonnet para superficies S con borde poligonal.

Teorema 5.3. Sea S una superficie regular orientada, con borde poligonal parametrizado por las curvas $\gamma_1, \ldots, \gamma_n$ con saltos de vector tangente (medidos en la dirección compatible con la orientación), denotados por $\alpha_1, \ldots, \alpha_n$. Si K es la curvatura de Gauss de S, y si θ_1, θ_2 son formas duales correspondientes a un marco móvul ortonormal adaptado a S y compatible con su orientación, entonces,

$$\int_{S} K\theta_1 \wedge \theta_2 + \int_{\partial S} \kappa_g ds + \sum_{j=1}^{n} \alpha_j = \chi(S)$$

donde κ_g es la curvatura geodésica de ∂S , ds es el elemento de largo de ∂S , y $\chi(S)$ es la característica de Euler-Poincaré de S.

6. Ayudantías

6.1. Ayudantía 1

P1. Un disco de radio 1 en el plano XY rueda sin deslizarse a lo largo del eje X. La figura que describre un punto en la circuferencia del disco se llama cicloide.

Figura.

Encuentre una curva parametrizada cuya traza sea la cicloide, determine sus puntos críticos y calcule la longitud del arco de la cicloide correspondiente a una vuelta del disco.

Sol. (Revisar) Consideremos un ángulo t. En el ángulo t, el centro tiene coordenadas (t, 1), pero queremos determinar el punto (x(t), y(t)) y en particular debemos movernos $(\cos(-t - \pi/2), \sin(-t - \pi/2), \log_0,$

$$\varphi(t) = (t - \operatorname{sen}(t), 1 - \cos(t))$$

Es la curva que describe el cicloide. Determinemos los puntos críticos. Notemos que la cicloide es una curva diferenciable con derivada $\varphi'(t) = (1 - \cos(t), \sin(t))$ que se anula cuando $\sin(t) = 0, \cos(t) = 1$, es decir, se anula en el conjunto $\{2\pi k : k \in \mathbb{Z}\}$. Determinemos el largo de una vuelta, por definición,

$$\int_0^{2\pi} \|\varphi'(t)\| dt = \int_0^{2\pi} \sqrt{2 - 2\cos(t)} dt$$

Si $\cos(t) = \cos(t/2 + t/2) = \cos^2(t/2) - \sin^2(t/2) = 1 - 2\sin^2(t/2)$, por lo que,

$$L(\varphi) = 2 \int_0^{2\pi} |\sin(t/2)| st = 2 \int_0^{2\pi} \sin(t/2) dt = 2(2\cos(\pi) - 2\cos(0)) = -8$$

P2. Sea α una curva regular plana. Muestre que α es un segmento de recta o de circunferencia si y solo si todas las rectas tangentes son equidistantes a un punto dado.

Sol. Sin pérdida de generalidad, supongamos que α es una curva p.p.a.

Si α es un segmento o una circuferencia, es claro que las tangentes equidistan a un punto.

Supongamos que todas las tangentes de α equidistan a un punto. Sea la función $F(\lambda, s) := \|\alpha(s) + \lambda \alpha'(s)\|^2$, que en el instante s, mide la distancia del origen al punto $\alpha(s) + \lambda \alpha'(s)$. Queremos la menor distancia posible en el instante fijo s. Es decir, queremos λ que minimize $F(\lambda, s)$. Entonces,

$$\frac{d}{d\lambda}F(\lambda,s) = \frac{d}{d\lambda}\lambda\alpha(s) + \lambda\alpha'(s), \alpha(s) + \lambda\alpha'(s)\rangle$$
$$= 2\langle\alpha'(s), \alpha(s) + \lambda\alpha'(s)\rangle = 0$$

Despejando λ , obtenemos,

$$\lambda = -\langle \alpha'(s), \alpha(s) \rangle$$

Sea $G(s) := F(-\langle \alpha'(s), \alpha(s) \rangle, s) = \|\alpha(s) - \langle \alpha(s), \alpha'(s) \rangle \alpha'(s)\|^2$. Por hipótesis, G es una función constante, es decir, la derivada es nula. Pero antes notemos que,

$$G(s) = \langle \alpha(s), \alpha(s) \rangle - \langle \alpha'(s), \alpha(s) \rangle^2 = C$$

Luego,

$$\frac{d}{ds}G(s) = -2\langle \alpha'(s), \alpha(s) \rangle \langle \alpha''(s), \alpha(s) \rangle = 0$$

Entonces tenemos analizar distintos casos. Si $\langle \alpha'(s), \alpha(s) \rangle = 0$, entonces $\langle \alpha''(s), \alpha(s) \rangle \neq 0$ ya que son coliniales, luego se tendría que $\alpha \perp \alpha'$ para todo s, es decir, es una circuferencia. Si por otro lado $\langle \alpha''(s), \alpha \rangle = 0$, entonces $\langle \alpha'(s), \alpha(s) \rangle \neq 0$, luego α es un segmento.

P3. Sea $\alpha:[a,b]\to\mathbb{R}^3$ una curva parametrizada con $\alpha(a)=p$ y $\alpha(b)=q$.

(a) Muestre que para cualquier vector unitario v se cumple,

$$(q-p) \cdot v = \int_a^b \alpha'(t) \cdot v dt \le \int_a^b |\alpha'(t)| dt$$

(b) Use lo anterior para mostrar que,

$$|\alpha(b) - \alpha(a)| \le \int_a^b |\alpha'(t)| dt$$

Sol.

(a) Notemos que,

$$q - p = \alpha(b) - \alpha(a) = \int_{a}^{b} \alpha'(t)dt$$

Como v es una constante se cumple que,

$$(q-p)\cdot v = \int_a^b \alpha'(t)dt \cdot v = \int_a^b \alpha'(t) \cdot vdt$$

Para deducir la desigualdad basta ver que,

$$\alpha'(t) \cdot v \le \|\alpha'(t) \cdot v\| \le |\alpha'(t)||v| = |\alpha'(t)|$$

Por la desigualdad de Cauchy-Schwarz. Por tanto,

$$(q-p) \cdot v \le \int_a^b |\alpha'(t)| dt$$

(b) Notemos que,

$$|\alpha(b) - \alpha(a)| = \frac{|\alpha(b) - \alpha(a)|^2}{|\alpha(b) - \alpha(a)|}$$
$$= (\alpha(b) - \alpha(a)) \cdot \frac{(\alpha(b) - \alpha(a))}{|(\alpha(b) - \alpha(a))|}$$

Tomando $v=\frac{(\alpha(b)-\alpha(a))}{|(\alpha(b)-\alpha(a))|}$ vemos que tiene norma 1, por tanto,

$$|\alpha(b) - \alpha(a)| \le \int_a^b |\alpha'(t)| dt$$

P4.

P5. Una curva α se llama hélice si las rectas tangentes a α crean un ángulo constante con respecto a una dirección fija. Supongamos que $\tau \neq 0$.

(a) Muestre que α es una bla

Sol.

6.2. Ayudantía 2

P1. Sea $\alpha: I \to \mathbb{R}^3$ una curva parametrizada regular (no necesariamente arcomparametrizada) y sean s = s(t) su longitud de arco y t = t(s) la inversa de esta. Denotaremos con ()' las derivadas con respecto a t. Demuestre que,

(a)

$$\frac{dt}{ds} = \frac{1}{|\alpha'|} \text{ y } \frac{d^2t}{ds^2} = -\frac{\alpha' \cdot \alpha''}{|\alpha'|^4}$$

(b) La curvatura de α en t es,

$$\kappa(t) = \frac{|\alpha'(t) \times \alpha''(t)|}{|\alpha'(t)|^3}$$

(c) La torsión de α es,

$$\tau(s) = -\frac{(\alpha'(t) \times \alpha''(t)) \cdot \alpha'''(t)}{|\alpha'(t) \times \alpha''(t)|^2}$$

Sol.

(a) Digamos que I = [a, b]. Se tiene que,

$$s(t) = \int_{a}^{t} \|\alpha'(l)\| dl$$

Notemos que t(s(x)) = x, luego derivando sobre la variable x obtenemos,

$$t'(s(x))s'(x) = 1$$

Si $s'(x) = ||\alpha'(x)||$, entonces,

$$t'(s(x)) = \frac{1}{\|\alpha'(x)\|}$$

Ahora tenemos que $t'(s(x)) = \frac{dt}{ds}$ ya que estamos derivando la función t sobre la variable s. Obteniendo,

$$\frac{dt}{ds} = \frac{1}{\|\alpha'\|}$$

Aplicando el argumento anterior tenemos que,

$$\frac{d}{dx}t'(s(x)) = t''(s(x))s'(x) = -\frac{\alpha' \cdot \alpha''}{\|\alpha'\|^3}$$

Entonces,

$$\frac{d^2t}{ds^2} = -\frac{\alpha' \cdot \alpha''}{\|\alpha'\|^4}$$

(b)

P2. Sea α una curva en el plano parametrizada en coordenadas polares (r, φ) con $r = r(\varphi)$. Usando la notación $r' = \frac{dr}{d\varphi}$, muestre que la longitud de arco en el intervalo (φ_1, φ_2) es $s = \int_{\varphi_1}^{\varphi_2} \sqrt{r^2 + (r')^2} d\varphi$ y que su curvatura está dada por,

$$\kappa(\varphi) = \frac{2(r')^2 - rr'' + r^2}{(r^2 + (r')^2)^{3/2}}$$

Sol. Notemos que φ está parametrizada en función del tiempo s. Tenemos que $\alpha(s) = (r(\varphi)\cos(\varphi), r(\varphi)\sin(\varphi))$, derivando sobre s obtenemos que,

$$\alpha'(s) = (r'\cos\varphi' - r\sin\varphi', r'\sin\varphi' + r\cos\varphi')$$

Luego el largo del intervalo (t_1, t_2) tal que $\varphi(t_1) = \varphi_1, \varphi(t_2) = \varphi_2$, está dado por,

$$S = \int_{t_1}^{t_2} \sqrt{r^2(\varphi(t)) + (r'(\varphi(t)))^2} |\varphi'(t)| dt$$

Sin pérddida de generalidad podemos pensar φ como una función que da valores en $[0, 2\pi]$. Tomando el cambio de variable $\varphi = \varphi(t)$, obtenemos que,

$$S = \int_{\varphi_1}^{\varphi_2} \sqrt{r^2 + (r')^2} d\varphi$$

Determinemos la curvatura. Como α es no arcoparametrizado, se tiene que,

$$\kappa(t) = \frac{\|\alpha' \times \alpha''\|}{\|\alpha'\|^3}$$

Notemos qu terminar.

$$\alpha''()$$

P3. Sea $\alpha:I\to\mathbb{R}^3$ una curva arcoparametrizada regular con $\kappa(s)\neq 0$ en todo I. Demuestee que,

- (a) El plano osculador es el límite de los planos que pasan por $\alpha(s)$, $\alpha(s+h_1)$ y $\alpha(s+h_2)$ cuando $h_1,h_2\to 0$.
- (b) El límite de los círculos que pasan por $\alpha(s)$, $\alpha(s+h_1)$ y $\alpha(s+h_2)$ cuando $h_1, h_2 \to 0$ es un círculo en el plano osculador con centro en la recta normal y radio $r = 1/\kappa(s)$, donde $\kappa(s)$ es la curvatura de α en s. Ete círculo se conoce como el círculo osculador de α en s.

P4. Sea α una curva de Frenet en \mathbb{R}^n con base de Frenet $\{e_1, \ldots, e_n\}$, es decir, α es n veces diferenciable, de tal forma que las primeras n-1 derivadas no se anulan al arcopametrizar α , y la base $\{e_1, \ldots, e_n\}$ se obtiene a partir del algoritmo de Gram-Schimdt aplicando a las n primeras derivadas de α .

(a) Muestre que existen funciones $\kappa_1, \ldots, \kappa_{n-1}$ definidas en esta curva con $\kappa_1, \ldots, \kappa_{n-2} > 0$ con $\kappa_i \in C^{n-i-1}$ tales que,

$$\begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ \vdots \\ e_{n-1} \\ e_n \end{pmatrix}' = \begin{pmatrix} 0 & \kappa_1 & 0 & 0 & \dots & 0 \\ -\kappa_1 & 0 & \kappa_2 & \ddots & \ddots & \vdots \\ 0 & -\kappa_2 & 0 & \ddots & \ddots & \vdots \\ 0 & 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & -\kappa_{n-1} & 0 \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ \vdots \\ \vdots \\ e_{n-1} \\ e_n \end{pmatrix}$$

(b) Muestre que,

$$\det(\alpha', \alpha'', \dots, \alpha^{(n)}) = \prod_{i=1}^{n-1} \kappa_i^{n-i}$$

Sol.

(a) Consideremos el conjunto $V = \{\alpha', \dots, \alpha^{(n)}\}$. Si $\{e_1, \dots, e_n\}$ es el marco de Frenet, entonces es una base ortonormal y que al ser generado a partir de Gram-Schmidt por el conjunto V, entonces se tiene que $e_i \in span\{\alpha', \dots, \alpha^{(i)}\}$. Derivando e_i obtenemos que $e_i' \in span\{\alpha', \dots, \alpha^{(i+1)}\}$. Notemos que se cumple que,

$$\langle e_i', e_{i+2} \rangle = \dots \langle e_i', e_n \rangle = 0$$

Definimos la función real $\kappa_i := \langle e_i', e_{i+1} \rangle$. Notemos que $\kappa_i > 0$ para todo $i = 1, \ldots, n$ y que $k_i \in C^{n-1-i}$.

(b) Notemos que $\alpha' = e_1$, $\alpha'' = \kappa_1 e_2$, $\alpha''' = -\kappa_1^2 e_1 + \kappa_1' e_2 + \kappa_1 \kappa_2 e_3$ y así por inducción ver que α es combinación lineal de $e_1, \ldots, e_{i-1} + \kappa_1 \ldots kappa_{i-1}e_i$ y así. Entonces,

$$\det(\alpha', \alpha'', \dots, \alpha^{(n)}) = \det(e_1, \kappa_1 e_2, \dots, \kappa_1 \dots k_{n-1} e_n) = \prod_{i=1}^{n-1} \kappa_i^{n-i}$$

6.3. Ayudantía 3

P1. Sea $\alpha: (-\varepsilon, \varepsilon) \to \mathbb{R}^2$ una curva plana arcoparametrizada y sean T y N las rectas tangentes y normal en $p = \alpha(0)$. Para d > 0 y ε suficientemente chico, hay un único punto $\alpha(s)$ con s > 0 a distancia d de N, sea h(d) la distancia de ese punto a T. Demuestre que,

$$\lim_{d \to 0} \frac{2h(d)}{d^2} = \kappa(0)$$

Donde $\kappa(0)$ es la curvatura de α en p.

Sol. Consideremos la siguiente figura, Figura

Sin pérdida de generalidad vamos a suponer que α es una curva dos al menos C^3 . También asumiremos que p=0 (es decir, estamos trabajando con el origen). Sea la base canónica de Frenet, entonces α al estar en C^3 , podemos descomponer por Taylor, obteniendo que,

$$\alpha(s) = \alpha(0) + \alpha'(0)s + \frac{\alpha''(0)s^2}{2} + R(s)$$

Si α es una curva bidimensional, entonces $\alpha(s) = C_1 \vec{T} + C_2 \vec{N}$, pero por construcción de marco de Frenet, se tiene que $\vec{T} = \alpha'(0)$ (la norma de la primera derivada de α es 1) ,y entonces $\alpha''(0) = \kappa(s)\vec{N}$, de esta forma,

$$\alpha(s) = s\vec{T} + \frac{s^2}{2}\kappa(0)\vec{N} + R(s)$$

Pedimos que,

$$\lim_{s \to 0} \frac{\|R(s)\|}{s^2} = 0$$

Vamos a suponer que estamos en el origen con base el marco de Frenet. Por lo que como $\{\vec{T}, \vec{N}\}$ es base de \mathbb{R}^2 , entonces $x(s) = s + R_1(s)$ y $y(s) = \frac{s^2}{2}\kappa(0) + R_2(s)$, donde $\alpha(s) = (x(s), y(s))$ y $R = (R_1, R_2)$. Por el enunciado, tenemos que $x(s) = d_s$ e $y(s) = h(d_s)$, luego,

$$\lim_{d \to 0} \frac{2h(d)}{d^2} = \lim_{s \to 0} \frac{2\left(\frac{s^2}{2}\kappa(0) + R_2(s)\right)}{(s + R_1(s))^2} = \lim_{s \to 0} \frac{\kappa(0) + \frac{2}{s^2}R_2(s)}{\left(1 + \frac{R_1(s)}{2}\right)^2} = \kappa(0)$$

Como queriamos probar.

P2. Sea α una curva plana orientada con curvatura $\kappa > 0$. ASuma que α tiene al menos un punto p donde se autointersecta.

(a) Muestre que existe otro punto $p_0 \neq p$ tal que la recta tangente en p_0 es paralela a alguna recta tangente en p.

- (b) Muestre que el ángulo de rotación de la recta tangente del arco positivo de α que pasa por p, luego por p_0 y finalmente se devuelve a p, es mayor que π .
- (c) Muestre que si la curva es cerrada, entonces el índice de rotación es ≥ 2 .
- **P3.** Encuentre una parametrización para la superficie $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 z^2 = 1\}$ y verifique que la superficie es regular con esta parametrización (sin usa el teorema de los puntos regulares).
- **P4.** Una forma de obtener coordenadas para la esfera \mathbb{S}^1 es suadno la proyección estereográfica $\pi: S^2 \setminus \{N\} \to \mathbb{R}^2$ que lleva cada punto p = (x, yz, z), excepto el polo norte N = (0, 0, 2) a la intersección de la recta de N a p con el plano XY. Sea $(u, v) = \pi(x, y, z)$.
 - (a) Demuestre que $\pi^{-1}\mathbb{R}^2 \to S^2$ es un parche coordenado para la esfera, y que está dada por,

$$\pi^{-1}(u,v) = \left(\frac{4u}{u^2 + v^2 + 4}, \frac{4v}{u^2 + v^2 + 4}, \frac{2(u^2 + v^2)}{u^2 + v^2 + 4}\right)$$

(b) Demuestre que usando estas coordenadas se puede cubrir la esfera con dos parches coordenados.

7. Tareas

7.1. Tarea 1

P1. La curva de Koch es una curva continua no diferenciable con largo infinito. La curva $\varphi_{\text{Koch}} : [0,1] \to \mathbb{R}^2$ se puede definir como el límite de las curvas poligonales $\varphi_k : [0,1] \to \mathbb{R}^2$ definidas como sigue:

- $\varphi_0: [0,1] \to \mathbb{R}^2$ se define por $\varphi_0(t) = (t,0)$, es decir, es el segmento con extremos (0,0), (1,0) recorrido con velocidad constante.
- En el paso k suponemos haber obtenido una curva $\varphi_k(t_i)$ consecutivos de la forma $t_i = \frac{i}{4^k}$ para $i = 0, 1, 2, \dots, 4^k$.
- Para cada segmento $[t_i, t_{i+1}]$ del paso k, lo subdividimos en 4 partes iguales y denotamos $t_i^{(0)} = t_i, t_i^{(1)} = t_i + \frac{1}{4^{k+1}}, t_i^{(2)} = t_i + \frac{2}{4^{k+1}}, t_i^{(3)} = t_i + \frac{3}{4^{k+1}}, t_i^{(4)} = t_{i+1}$
- Sea v_i el vértice de uno de los dos posibles triángulos equiláteros con vértices de base $\varphi_k(t_i^{(1)}), \varphi_k(t_i^{(3)})$. Fijada la elección de v_i definimos φ_{k+1} sobre los vértices de la subdivión de $[t_i, t_{i+1}]$ como sigue:

$$\varphi_{k+1}(t_i^{(j)}) = \varphi_k(t_i^{(j)}), j = 0, 1, 2, 3, 4, \quad \varphi_{k+1}(t_i^{(2)}) = v_i$$

■ Después de repetir la extensión arriba para cada intervalo de la subdivisión del paso k, definimos φ_{k+1} sobre cada intervalo $[t_i^{(j)}, t_i^{(j+1)}]$ para que conecte los valores en sus extremos con velocidad constante.

Con la notación de arriba:

- a) Dibuje las curvas $\varphi_1, \varphi_2, \varphi_3$.
- b) Verifique que $\max_{t \in [0,1]} \|\varphi_k(t) \varphi_{k+1}(t)\| = \frac{\sqrt{3}}{4^{k+1}}$ y deducir que los φ_k convergen uniformemente a uniformemente a una curva límite, que llamamos $\varphi_{\text{Koch}} : [0,1] \to \mathbb{R}^2$.
- c) Demueste que φ_{Koch} es una curva continua (utilizando la definición de continuidad de funciones de más variables con ϵ y δ).
- d) Demuestre que φ_{Koch} no es diferenciable en ningún punto (en la definición de diferenciabilidad, basta explicar por qué el límite que definiría la derivada no puede existir en ningún $t \in [0, 1]$ de la forma $t = \frac{i}{4^k}$ como arriba).
- e) Calcule el largo de φ_k en función de $k \in \mathbb{N}$ y decir por qué φ_{Koch} tiene largo infinito.
- f) Demuestre que para cualquier subintervalo $0 \le s < t \le 1$ el largo $L(\varphi_{\text{Koch}}|_{[s,t]}) = \infty$.

Sol.

(a) La curva de Koch se asemeja a un copo de nieve. Veamos como se comporta para $\varphi_1, \varphi_2, \varphi_3$.

(b) Consideremos la iteración $\varphi_k : [0,1] \to \mathbb{R}^2$. Sabemos que en un intervalo $[t_i, t_{i+1}]$ podemos subdividirlos en 4 segmentos, donde se cumple que $\varphi_k(t) = \varphi_{k+1}(t)$ cuando $t \in [t_i, t_i^{(1)}] \cup [t_i^{(3)}, t_{i+1}]$. Sea $1 \le i \le 4^k$ donde $i \in \mathbb{N}$ (tenemos que φ_k tiene 4^k segmentos, por eso escojemos i de 0 a 4^k), y sean $t, s \in (t_i^{(1)}, t_i^{(3)})$ donde $\varphi_k(t) \ne \varphi_{k+1}(t)$. Notemos que,

$$\|\varphi_k(t) - \varphi_k(s)\| \le \|\varphi_k(t_i^{(1)}) - \varphi_k(t_i^{(3)})\| = \frac{2}{4^{k+1}}$$

Dado que la última norma es la mayor diferencia, y todod debido a que estamos trabajando en un triangulo equilatero. Es más, la altura del triangulo es $\frac{\sqrt{3}}{4^{k+1}}$ que se alcanza cuando $t_i^{(2)}$. Por lo tanto,

$$\begin{split} \max_{t \in [0,1]} \|\varphi_k(t) - \varphi_{k+1}(t)\| &= \max_{i=1,\dots,4^k} \left(\max_{t \in (t_i^{(1)},t_i^{(3)})} \|\varphi_k(t) - \varphi_{k+1}(t)\| \right) \\ &= \frac{\sqrt{3}}{4^{k+1}} \end{split}$$

Para probar que φ_k converge uniformemente a algún $\varphi:[0,1]\to\mathbb{R}$, basta con probar que es de Cauchy, dado que estamos trabajando es espacios completos como \mathbb{R}^2 (que toda sucesión de Cauchy converge). Sea

 $\varepsilon > 0$, sea $N \in \mathbb{N}$ suficientemente grande tal que $\frac{\sqrt{3}}{3 \cdot 4^N} < \varepsilon$. Sean $n, m \ge N$, luego se tiene que,

$$varphi_{n}(t) - \varphi_{m}(t) \| \leq \sup_{t \in [0,1]} \sum_{i=n}^{m-1} \| \varphi_{i}(t) - \varphi_{i+1}(t) \|$$

$$= \sum_{i=n}^{m-1} \sup_{t \in [0,1]} \| \varphi_{i}(t) - \varphi_{i+1}(t) \|$$

$$= \sum_{i=n}^{m-1} \frac{\sqrt{3}}{4^{i+1}}$$

$$= \frac{\sqrt{3}}{4^{n+1}} \sum_{i=0}^{m-n-1} \frac{1}{4^{i}}$$

Si $\sum_{i=0}^{\infty} \frac{1}{4^i}$ es una serie converge con términos positivo, se tiene que,

$$\sum_{i=0}^{m-n-1} \frac{1}{4^i} \leq \sum_{i=0}^{\infty} \frac{1}{4^i} = \frac{4}{3}$$

Por lo tanto,

$$\sup_{t \in [0,1]} \|\varphi_n(t) - \varphi_m(t)\| \le \frac{\sqrt{3}}{3 \cdot 4^n} < \varepsilon$$

Probando que existe $\varphi:[0,1]\to\mathbb{R}^2$ donde φ_k converge uniformemente a esta. Es más, por enunciado se tiene que $\varphi=\varphi_{\mathrm{Koch}}$.

(c) Notemos que las curvas φ_K son continuas dado que estamos trabajando con segmento. Por otro lado, la parte b) se concluyó que $\varphi_k \xrightarrow{k \to \infty} \varphi_{\text{Koch}}$ uniformemente. Es decir, para todo $\varepsilon > 0$ existe $N \in \mathbb{N}$ tal que,

$$\|\varphi_n(t) - \varphi_{\text{Koch}}(t)\| < \varepsilon$$

para todo $n \ge N$ y para todo $t \in [0,1]$. Sea $s \in [0,1]$ arbitrario y sea $\varepsilon > 0$, entonces existe un $N \in \mathbb{N}$ tal que,

$$\|\varphi_n(t) - \varphi_{\mathrm{Koch}}\| < \frac{\varepsilon}{3}$$

para todo $n \ge N$ y para todo $t \in [0, 1]$. Dado que φ_n son continuas, existe un $\delta > 0$ tal que si $|t - s| < \delta$ entonces,

$$\|\varphi_n(t) - \varphi_n(s)\| < \frac{\varepsilon}{3}$$

Entonces, para $\varepsilon > 0$ si $|t - s| < \delta$ y tomando $n \ge N$ se tiene que,

$$\|\varphi_{\text{Koch}}(t) - \varphi_{\text{Koch}}(s)\| \le \|\varphi_{\text{Koch}}(t) - \varphi_n(t)\| + \|\varphi_n(t) - \varphi_n(s)\| + \|\varphi_n(s) - \varphi_{\text{Koch}}(s)\| < \varepsilon$$

Por tanto φ_{Koch} es una función continua.

(d) Vamos a probar usando la definición de derivada. Recordemos que una $f: I \to \mathbb{R}^2$ función no es diferenciable en el punto t_0 si el límite,

$$\lim_{t \to t_0 0} \frac{\|f(t) - f(t_0)\|}{t - t_0}$$

No está bien definido. Lo que vamos hacer, es que en todo punto de la curva de Koch, el límite alcanza dos valores, y por tanto no es diferenciable en ningún punto. Antes de probar eso, notemos que si consideramos $\frac{i}{4n}$, entonces,

$$\left\| \varphi_n \left(\frac{i+1}{4^n} \right) - \varphi_n \left(\frac{i}{4^n} \right) \right\| = \begin{cases} \frac{1}{4^n}, & i \equiv 0, 3 \pmod{4} \\ \frac{2}{4^n}, & i \equiv 1, 2 \pmod{4} \end{cases}$$

Usamos módulos ya que estudiamos segmenetos que se subdividen en 4. Consideremos dos sucesiones $\{x_k\}, \{y_k\} \subseteq \mathbb{N}$ tales que,

$$\lim_{k \to \infty} \frac{x_k}{4^k} = \lim_{k \to \infty} \frac{y_k}{4^k} = \frac{i}{4^n}$$

Donde a_k es 0 o 3 en módulo 4 y b_k es 1 o 2 en módulo 4. Ahora usaremos el hecho que φ_k converge uniformemente a φ_{koch} . Notemos que,

$$\lim_{x \to \frac{i}{4^n}} \frac{\left\| \varphi_{\text{Koch}}(x) - \varphi_{\text{Koch}}\left(\frac{i}{4^n}\right) \right\|}{x - \frac{i}{4^n}} = \lim_{x \to \frac{i}{4^n}} \left(\lim_{k \to \infty} \frac{\left\| \varphi_k(x) - \varphi_k\left(\frac{i}{4^n}\right) \right\|}{x - \frac{i}{4^n}} \right)$$
$$= \lim_{k \to \infty} \left(\lim_{x \to \frac{i}{4^n}} \frac{\left\| \varphi_k(x) - \varphi_k\left(\frac{i}{4^n}\right) \right\|}{x - \frac{i}{4^n}} \right)$$

Si nos acercamos usando la sucesión $\{x_k\}$ se tiene que,

$$\lim_{x \to \frac{i}{4^n}} \frac{\left\| \varphi_{\text{Koch}}(x) - \varphi_{\text{Koch}}\left(\frac{i}{4^n}\right) \right\|}{x - \frac{i}{4^n}} = \lim_{k \to \infty} \left(\lim_{n \to \infty} \frac{\left\| \varphi_k\left(\frac{x_n + 1}{4^k}\right) - \varphi_k\left(\frac{x_n}{4^n}\right) \right\|}{\frac{x_n + 1}{4^n} - \frac{x_n}{4^n}} \right)$$

$$= \lim_{n \to \infty} \frac{\left\| \varphi_n\left(\frac{x_n + 1}{4^n}\right) - \varphi_n\left(\frac{x_n}{4^n}\right) \right\|}{\frac{1}{4^n}}$$

$$= 1$$

Usando lo visto anteriormente. De forma análoga podemos hacer esto con la scuesión $\{y_k\}$ llegamos a que la derivada también converge a 2. Es decir, 1=2, por tanto la derivada no existe en los puntos de la forma $\frac{i}{4^n}$. Ahora recordemos el siguiente hecho, \mathbb{Q} es denso sobre los reales, por lo tanto $[0,1] \cap \mathbb{Q}$ es denso en [0,1]. Por lo que a cada punto de [0,1] podemos construir una sucesión coveniente similares a $\{x_k\}, \{y_k\}$, de forma que φ_{Koch} no tiene derivada en ningún punto de [0,1].

(e) Notemos que el largo en φ_0 es,

$$L(\varphi_0) = 1$$

El largo en φ_1 es,

$$L(\varphi_1) = \frac{1}{4} + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} = \frac{3}{2}$$

Y el largo en φ_2 es,

$$L(\varphi_2) = \frac{9}{4} = \left(\frac{3}{2}\right)^2$$

Por lo que podemos sospechar que $L(\varphi_k) = \left(\frac{3}{2}\right)^k$. Vamos a probar esto por inducción. Claramente se cumple para k = 0, 1, 2. Supongamos que se cumple para k, es decir,

$$L(\varphi_k) = \left(\frac{3}{2}\right)^k$$

Notemos que si tenemos un segmento de largo l se transforma en cuatro nuevos sementos de los cuales dos de ellos son de largo $\frac{l}{4}$ mientras que los otros dos son de largo $\frac{l}{2}$, formando un nuevo segmento de largo $\frac{3}{2}l$.

Enumeremos los distintos segmentos de φ_k (por distinto nos referimos a que cuando se rompe la dirección del segmento, pasa a ser otro segmento), en particular, hay 4^k segmentos distintos. Ahora, sean $\{l_i^k\}_{i=1}^{4^k}$ los segmentos de φ_k . Al segmento l_1^k lo podemos asociar con $l_1^{k+1}, l_2^{k+1}, l_3^{k+1}, l_4^{k+1}$ como estos últimos cuatros surgen a partir de subdividir l_1^k . En general l_i^k está asociado a $l_{j-3}^{k+1}, l_{j-1}^{k+1}, l_{j-1}^{k+1}, l_j^{k+1}$ donde $j=4^i$.

Entonces se tiene que,

$$L(l_i^k) \mapsto L(l_{j-3}^{k+1}) + L(l_{j-2}^{k+1}) + L(l_{j-1}^{k+1}) + L(l_j^{k+1}) = \frac{3}{2}L(l_i^k)$$

Por lo tanto,

$$\begin{split} L(\varphi_{k+1}) &= \sum_{j=1}^{4^{k+1}} L(l_j^{k+1}) \\ &= \left(L(l_1^{k+1}) + L(l_2^{k+1}) + L(l_3^{k+1}) + L(l_4^{k+1}) \right) + \\ &\cdots + \left(L(l_{4^{k}-3}^{k+1}) + L(l_{4^{k}-2}^{k+1}) + L(l_{4^{k}-1}^{k+1}) + L(l_{4^{k}}^{k+1}) \right) \\ &= \sum_{i=1}^{4^{k}} \left(L(l_{4^{i}-3}^{k+1}) + L(l_{4^{i}-2}^{k+1}) + L(l_{4^{i}-1}^{k+1}) + L(l_{4^{i}}^{k+1}) \right) \\ &= \sum_{i=1}^{4^{k}} \frac{3}{2} L(l_i^{k}) \\ &= \frac{3}{2} \left(\frac{3}{2} \right)^{k} \\ &= \left(\frac{3}{2} \right)^{k+1} \end{split}$$

Probando por inducción. Finalmente, como φ_k converge uniformemente a φ_{Koch} , se cumple que,

$$L(\varphi_{\mathrm{Koch}}) = \lim_{k \to \infty} L(\varphi_k) = \lim_{k \to \infty} \left(\frac{3}{2}\right)^k = \infty$$

(f) Sea el subintervalo [s,t], podemos tomar n suficientmente grande tal que existe un $0 \le i \le n$ de forma que,

$$s \le \frac{i}{4^n} \le \frac{i+1}{4^n} \le t$$

Digamos que $I = \left[\frac{i}{4^n}, \frac{i+1}{4^n}\right]$, entonces por propiedades de largo, se cumple que,

$$L(\varphi_{\mathrm{Koch}}\big|_I) \leq L(\varphi_{\mathrm{Koch}}\big|_{[s,t]})$$

Como sabemos, I determina un segmento en la curva φ_n . Para tal segmento dado por el intervalo I vamos a definir φ_m^* como tomar el segmento dado por I e iterarlo m veces. Si $L(\varphi_0^*) := c \in \mathbb{R}$, entonces usando un argumento análogo al punto e) se tiene deduce que,

$$L(\varphi_m^*) = c \left(\frac{3}{2}\right)^m$$

Por lo tanto,

$$\begin{split} L(\varphi_{\mathrm{Koch}}\big|_{[s,t]}) &\geq \lim_{m \to \infty} L(\varphi_m^*) \\ &= \lim_{m \to \infty} c\left(\frac{3}{2}\right)^m = \infty \end{split}$$

Probando que cualquier sección de la curva de Koch, tiene largo infinito.

P2. Cuando una curva γ está definida a través de una ecuación, esta ecuación se llama <u>ecuación cartesiana</u> de γ . Encuentre una parametrización por arco para la curva dada por la ecuación cartesiana $4x^2 + \frac{y^2}{9} = 2$.

Sol. Consideremos la elipse modificada $4x^2 + \frac{y^2}{9} = 2$. Arreglando la ecuación, llegamos a que la elipse está dada por la ecuación,

$$\left(\frac{x}{\frac{1}{\sqrt{2}}}\right)^2 + \left(\frac{y}{\sqrt{18}}\right)^2 = 1$$

Luego la curva está dada por,

$$\varphi(t) = \left(\frac{1}{\sqrt{2}}\cos(t), 3\sqrt{2}\sin(t)\right)$$

Que es una curva diferenciable. Por tanto tiene largo, en particular, la derivada es,

$$\varphi'(t) = \left(-\frac{1}{\sqrt{2}}\operatorname{sen}(t), 3\sqrt{2}\operatorname{cos}(t)\right)$$

Determinemos el largo,

$$\begin{split} L(\varphi) &= \int_0^t \|\varphi'(s)\| ds \\ &= \int_0^t \sqrt{\left(-1/\sqrt{2} \operatorname{sen}(s)\right)^2 + (3\sqrt{2} \cos(2))^2} ds \\ &= \underbrace{\int_0^t \sqrt{\frac{1}{2} \operatorname{sen}^2(s) + 18 \cos^2(s)}}_{\text{esta integral no tiene primitiva elemental}} \end{split}$$

Nos gustaría que tuviera para usar la siguiente proposición vista en clase.

Proposición: $Si \varphi : (a,b) \to \mathbb{R}^n$ es curva regular $y f : (0,L(\varphi)) \to (a,b)$ satisface que para todo (a,b),

$$\int_a^t \|\varphi'(s)\| ds = f^{-1}(t)$$

Entonces $\widetilde{\varphi} = \varphi \circ f$ es p.p.a.

De esta forma, bastaría con calcular la inversa a la función que resultaría al integrar digamos f para hallar una reparametrización de φ dada por $\overset{\sim}{\varphi} \circ f$ con $\overset{\sim}{\varphi}$ p.p.a como queríamos.

P3. Encuentre el marco de Frenet $(\mathbf{t}, \mathbf{n}, \mathbf{b})$, la curvatura κ y la torsión τ de la curva,

$$\gamma: \mathbb{R} \to \mathbb{R}^3, \quad t \mapsto \left(\frac{4}{5}\cos(t), 1 - \frac{3}{5}\sin(t), -\cos(t)\right)$$

Sol. Tenemos la curva,

$$\varphi(s) = \left(\frac{4}{5}\cos(s), 1 - \frac{3}{5}\sin(s), -\cos(s)\right)$$

Que es una curva diferenciable y regular (la primera derivada no se anula al ser compuesta por cos y sen que nunca se anunlan al mismo tiempo). Notemos que la derivada es,

$$\varphi'(s) = \left(-\frac{4}{5}\operatorname{sen}(s), -\frac{3}{5}\operatorname{cos}(s), \operatorname{sen}(s)\right)$$

Recordemos que t, la norma y la binormal, la curvatura y la torsión se definen de la siguiente forma,

$$t(s) := \dot{\alpha}(s)$$

$$n(s) := \frac{\ddot{\alpha}(s)}{\|\ddot{\alpha}\|}$$

$$b(s) := t(s) \times n(s) = \frac{\dot{\alpha}(s) \times \ddot{\alpha}(s)}{\|\ddot{\alpha}(s)\|}$$

$$\kappa(s) := |\gamma''(s)|$$

$$\tau(s) := n'(s) \cdot b(s)$$

(donde γ es la curva parametrizada por arco. generada al reparametrizar φ). Calculemos el vector tangente unitario,

$$\|\varphi'(s)\| = \sqrt{\frac{9}{25} + \frac{32}{25}\cos^2(s)} = \frac{1}{5}\sqrt{9 + 32\sin^2(s)}$$

Luego el vector tangente unitario es de la forma,

$$t(s) = \dot{\varphi}(s) = \frac{1}{\sqrt{9 + 32\cos^2(s)}}(-3\sin(s), -3\cos(s), 5\sin(s))$$

Calculemos la normal y la binormal, se tiene que,

$$\varphi''(s) = \left(-\frac{4}{5}\cos(s), \frac{3}{5}\sin(s), \cos(s)\right)$$

Con normal,

$$\|\varphi''(s)\| = \frac{1}{5}\sqrt{9 + 32\cos^2(s)}$$

Luego el vector tangente unitario de segundo orden es

$$n(s) = \ddot{\varphi}(s) = \frac{1}{\sqrt{9 + 32\cos^2(s)}}(-4\cos(s), 3\sin(s), 5\cos(s))$$

Determinemos la binomial. Por definición,

$$b(s) = t(s) \times n(s)$$

$$= \frac{-1}{32\cos^2(s) + 9} (3, 8\sin(s)\cos(s), 12)$$

Determinemos la curvatura, tenemos que φ no es p.p.a, por lo que debemos encontrar una función f que parametrize la curva φ . Sea $\varphi^*(s) := \varphi(f(s))$, luego se cumple que,

$$1 = \|(\varphi^*)'(s)\| = \|\varphi'(f(s))\| \|f'(s)\| = \frac{1}{5}\sqrt{9 + 32\operatorname{sen}^2(s)} \|f'(s)\|$$

Tomemos,

$$f(s) := \int_0^s \frac{5}{\sqrt{9 + 32 \sec^2(x)}} dx$$

Entonces la curva p.p.a es,

$$\varphi^*(s) = \frac{1}{5}(4\cos(f(s)), 5 - 3\sin(f(s)), -5\cos(f(s)))$$

Ahora la curva segunda derivadames de la forma,

$$\begin{split} (\varphi^*)''(s) &= \varphi''(f(s))(f'(s))^2 + \varphi'(f(s))f''(s) \\ &= \frac{1}{5}(4\cos(f(s)), 3\sin(f(s)), 5\cos(f(s))) \left(\frac{25}{9+32\sin^2(s)}\right) \\ &+ \frac{1}{5}(4\sin(f(s)), -3\cos(f(s)), 5\sin(f(s))) \frac{-160\sin(s)\cos(s)}{\sqrt{(9+32\sin^2(s))^3}} \end{split}$$

Luego la curvatura está dada por,

$$\kappa(s) = \|(\varphi^*)''(s)\|$$

P4. Sea $\gamma: I \to \mathbb{R}^3$ una curva de Frenet tal que su rapidez es 1. Demuestre que existe una curva $\alpha: I \to \mathbb{R}^3$ tal que las ecuaciones de Frenet de γ toman la forma

$$\dot{\mathbf{t}} = \alpha \times \mathbf{t}, \ \dot{\mathbf{n}} = \alpha \times \mathbf{n}, \ \dot{\mathbf{b}} = \alpha \times \mathbf{b}$$

Sol. dada una curva $\gamma \longrightarrow \mathbb{R}^3$ parametrizada por arco, podemos definir su marco de frenet como (t, n, b), luego las ecuaciones de frenet para γ nos dicen que: $\dot{t} = \kappa n, \dot{n} = -\kappa t - \tau b, \dot{b} = \tau n$ con κ su curvatura y τ su torsion.

dados a,b,c vectores y considerando $\langle\cdot,\cdot\rangle$ como el producto punto usual, utilizaremos las siguientes propiedades:

- 1. $a \times (b+c) = a \times b + a \times c, (b+c) \times a = b \times a + c \times a$
- $2. \ a \times b = -(b \times a)$
- 3. $a \times (b \times c) = b\langle a, c \rangle c\langle a, b \rangle$
- 4. $(a \times b) \times c = b\langle a, c \rangle a\langle b, c \rangle$
- 5. dado $\lambda \in \mathbb{R} \implies \lambda a \times a = 0$
- 6. dado $\lambda \in \mathbb{R} \implies \lambda(a \times b) = (\lambda a) \times b = a \times (\lambda b)$

Sea una curva α cualquiera, como (t, n, b) son una base en $\mathbb{R}^3 \implies \alpha = \langle \alpha, t \rangle t + \langle \alpha, n \rangle n + \langle \alpha, b \rangle b$, falta determinar los valores de $\langle \alpha, t \rangle$, $\langle \alpha, n \rangle$, $\langle \alpha, b \rangle$ y para ello vamos a utilizar lo que queremos que esta funcion α cumpla.

Queremos que
$$\dot{t} = \alpha \times t = (\langle \alpha, t \rangle t + \langle \alpha, n \rangle n + \langle \alpha, b \rangle b) \times t = \langle \alpha, t \rangle t \times t + \langle \alpha, n \rangle (n \times t) + \langle \alpha, b \rangle (b \times t).$$

Luego sabemos que $\langle \alpha, t \rangle t \times t = 0$, Como $t \times n = b \implies n \times t = -(t \times n) = -b$ y finalmente $b \times t = (t \times n) \times t = n \langle t, t \rangle - t \langle n, t \rangle$, luego $\langle n, t \rangle = 0 \land \langle t, t \rangle = 1$ al (t, n, b) ser una base ortonormal $\implies b \times t = n$. por lo que concluimos que: $\dot{t} = -\langle \alpha, t \rangle b + \langle \alpha, b \rangle n$, pero por la ecuacion de frenet tenemos que $\dot{t} = \kappa n$, por lo que igualando ambas ecuaciones y factorizando concluimos que: $(\kappa - \langle \alpha, b \rangle) n + \langle \alpha, n \rangle b = 0$.

Queremos que
$$\dot{n} = \alpha \times n = (\langle \alpha, t \rangle t + \langle \alpha, n \rangle n + \langle \alpha, b \rangle b) \times n = \langle \alpha, t \rangle (t \times n) + \langle \alpha, n \rangle n \times n + \langle \alpha, b \rangle (b \times n).$$

Luego sabemos que $\langle \alpha, n \rangle n \times n = 0, t \times n = b, b \times n = (t \times n) \times n = n \langle t, n \rangle - t \langle n, n \rangle = -t$ ya que $\langle t, n \rangle = 0 \wedge \langle n, n \rangle = 1$ por las propiedades de la base, junto a que $\dot{n} = -\kappa t - \tau b$, si lo unimos al hecho de que $\dot{n} = \langle \alpha, t \rangle b - \langle \alpha, b \rangle t$ obtenemos que $(\tau + \langle \alpha, t \rangle)b + (\kappa - \langle \alpha, b \rangle)t = 0$.

finalmente queremos que $\dot{b} = \alpha \times b = (\langle \alpha, t \rangle t + \langle \alpha, n \rangle n + \langle \alpha, b \rangle b) \times b = \langle \alpha, t \rangle (t \times b) + \langle \alpha, n \rangle (n \times b) + \langle \alpha, b \rangle b \times b$.

como bien sabemos $\langle \alpha, b \rangle b \times b = 0, t \times b = t \times (t \times n) = t \langle t, n \rangle - n \langle t, t \rangle = -n$ por las propiedades de la base, mediante un razonamiento analogo podemos deducir que $n \times b = n \times (t \times n) = t$, tenemos por un lado que $\dot{b} = -\langle \alpha, t \rangle n + \langle \alpha, n \rangle t$ mientras que por otro tenemos que $\dot{b} = \tau n$, uniendo ambos resultados y reagrupando terminos concluimos que $(\tau + \langle \alpha, t \rangle)n - \langle \alpha, n \rangle t = 0$.

juntamos esto y vemos que podemos formar un sistema de ecuaciones como sigue:

$$\begin{cases} (\kappa - \langle \alpha, b \rangle)n + \langle \alpha, n \rangle b = 0 & (1) \\ (\tau + \langle \alpha, t \rangle)b + (\kappa - \langle \alpha, b \rangle)t = 0 & (2) \\ (\tau + \langle \alpha, t \rangle)n - \langle \alpha, n \rangle t = 0 & (3) \end{cases}$$

si sumamos la ecuacion (1) con la ecuacion (2) obtenemos la siguiente suma: $(\kappa - \langle \alpha, b \rangle)n + (\tau + \langle \alpha, t \rangle + \langle \alpha, n \rangle)b + (\kappa - \langle \alpha, b \rangle)t = 0$, luego como el marco de frenet forma una base, todos esos vectores son linealmente independientes, por lo tanto lo anterior ocurre si y solo si:

$$\begin{cases} \kappa - \langle \alpha, b \rangle = 0 & (a) \\ \tau + \langle \alpha, t \rangle + \langle \alpha, n \rangle = 0 & (b) \end{cases}$$

De (a) se infiere directamente que $\langle \alpha, b \rangle = \kappa$, si bien no hay informacion suficiente para saber los otros dos valores, si retornamos al sistema anterior. si sumamos (1)+(2)+(3) obtenemos la ecuacion:

 $(\kappa + \tau + \langle \alpha, t \rangle - \langle \alpha, b \rangle)n + (\tau + \langle \alpha, t \rangle + \langle \alpha, n \rangle)b + (\kappa - \langle \alpha, b \rangle - \langle \alpha, n \rangle)t = 0$, nuevamente al ser todos linealmente independientes esto ocurre si y solo si:

$$\begin{cases} \kappa + \tau + \langle \alpha, t \rangle - \langle \alpha, b \rangle = 0 & (a') \\ \tau + \langle \alpha, t \rangle + \langle \alpha, n \rangle = 0 & (b') \\ \kappa - \langle \alpha, b \rangle - \langle \alpha, n \rangle = 0 & (c') \end{cases}$$

en (a') como sabemos el valor de una de las variables queda como $\kappa + \tau + \langle \alpha, t \rangle - \langle \alpha, b \rangle = 0 \implies \kappa + \tau + \langle \alpha, t \rangle - \kappa = 0 \implies \langle \alpha, t \rangle = -\tau$, luego si hago estos reemplazos en (b') concluimos que $\langle \alpha, n \rangle = 0$, por lo tanto concluimos que $\alpha = -\tau t + \kappa b$, luego si hacemos el producto cruz con el marco de frenet habremos obtenido lo pedido.

P5. Considere la curva

$$\alpha(t) = \begin{cases} (t, 0, e^{-1/t^2}), & t > 0\\ (t, e^{-1/t^2}, 0), & t < 0\\ (0, 0, 0), & t = 0 \end{cases}$$

- (a) Pruebe que α es diferenciable.
- (b) Pruebe que α es regular para cada t y que la curvatura es no nula para $t \neq 0, \pm \sqrt{\frac{2}{3}}$ y que $\kappa(0) = 0$.
- (c) Pruebe que la torsión de la curva es idénticamente nula, aunque no es plana. ¿Por qué pasa esto?

Sol.

(a) En Calculo 3, vimos que una funcion $\alpha: \mathbb{R} \longrightarrow \mathbb{R}^3$ con $\alpha(t) = (\alpha_1(t), \alpha_2(t), \alpha_3(t))$ es diferenciable $\forall i \text{ con } \alpha_i: \mathbb{R} \longrightarrow \mathbb{R}$.

Notemos entonces que dada la definicion de α , las funciones vienen dadas por:

$$\alpha_1(t) = t \forall t \in \mathbb{R} , \ \alpha_2(t) = \begin{cases} 0, & t \ge 0 \\ e^{-1/t^2}, & t < 0 \end{cases}, \ \alpha_3(t) = \begin{cases} 0, & t \le 0 \\ e^{-1/t^2}, & t > 0 \end{cases}.$$

Es facil ver que α_1 es diferenciable al ser una linea, por otro lado vemos que α_2 es diferenciable $\forall t>0$ ya que es una constante. En cambio si t<0 vemos que e^{-1/t^2} es diferenciable puesto que es composicion de dos funciones que son diferenciables, en efecto e^t es diferenciable $\forall t<0 \land -1/t^2$ es diferenciable $\forall t<0$, lo unico que falta es estudiar si es diferenciable en t=0.

Entonces vemos que α_2 es diferenciable en $t=0 \iff$ el limite $\lim_{t\to 0} \frac{\alpha_2(t)-\alpha(0)}{t-0} = \lim_{t\to 0} \frac{\alpha_2(t)}{t}$ existe \iff sus limites laterales existen y son iguales, entonces basta calcular dichos limites laterales.

Por un lado $\lim_{t\to 0^+} \frac{\alpha_2(t)}{t} = \lim_{t\to 0^+} \frac{\alpha_2(t)}{t} = \lim_{t\to 0^+} \frac{0}{t} = 0$. En cambio vemos que $\lim_{t\to 0^-} \frac{e^{-1/t^2}}{t} = \lim_{t\to 0^+} \frac{1}{t}$ ahora si estudiamos la expresion vemos que $\forall t<0$ $\frac{1}{e^{1/t^2}t}<0 \land -t>0$, por tanto $\frac{1}{e^{1/t^2}t}<-t$, como $t\to 0^- \implies -t\to 0$, como la expresion esta acotada por algo que se va a 0, concluimos que $\lim_{t\to 0^-} \frac{1}{e^{1/t^2}t} = 0$, por lo que sus limites laterales existen y son iguales, por lo que concluimos que α_2 es diferenciable en $t=0 \implies \alpha_2$ es diferenciable en los reales

Vemos que por razones analogas a las de α_2 , α_3 es diferenciable $\forall t \neq 0$, falta estudiar su diferenciabilidad en t = 0, de forma analoga a α_2 , vamos a estudiar los limites laterales de la derivada para corroborar su existencia.

Por un lado $\lim_{t\to 0^-} \frac{\alpha_3(t)}{t} = \lim_{t\to 0^-} \frac{0}{t} = 0$, en cambio vemos que $\lim_{t\to 0^+} \frac{\alpha_3(t)}{t} = \lim_{t\to 0^+} \frac{1}{e^{1/t^2}t}$, sabemos que en general $\forall t\in\mathbb{R}$ tenemos que $e^t>t$, en particular $\forall t>0 \implies 1/t^2>0$ tenemos que $e^{1/t^2}>1/t^2 \implies \frac{1}{e^{1/t^2}t} < t^2 \implies \frac{1}{e^{1/t^2}t} < t$, como esta acotada por algo que sabemos que se va a 0, concluimos que $\lim_{t\to 0^+} \frac{1}{e^{1/t^2}t} = 0$. por lo que los limites laterales existen y son iguales y concluimos que α_3 es diferenciable en $t=0 \implies \alpha_3$ es diferenciable en todo \mathbb{R} . Finalmente como $\alpha_1,\alpha_2,\alpha_3$ son diferenciables en todo $\mathbb{R} \implies \alpha$ es diferenciable.

(b) Notemos que una curva es regular si $\alpha'(t) \neq 0$, sin embargo por la parte (a) del problema vemos que $\alpha'(0) = (\alpha'_1(0), \alpha'_2(0), \alpha'_3(0)) = (0, 0, 0)$, por lo tanto para probar la regularidad de α vamos a asumir que $t \neq 0$.

Si $t > 0 \implies \alpha'(t) = (t, 0, e^{-1/t^2})' = (1, 0, (e^{-1/t^2})'(-1/t^2)') = (1, 0, \frac{2e^{-1/t^2}}{t^3})$, como el 1 esta fijado, es facil ver que $\alpha'(t) \neq 0$.

Si $t<0 \implies \alpha(t)=(t.e^{-1/t^2},0) \implies \alpha'(t)=(1,\frac{2e^{-1/t^2}}{t^3},0)$, por razones analogas al caso anterior podemos concluir que α es regular $\forall t\neq 0$.

Para el caso de la curvatura, sabemos que $\alpha'(0) = 0 \implies \alpha''(0) = 0 \implies \kappa(0) = |\alpha''(0)| = |0| = 0$, luego para el caso mas general observamos que la primera derivada tiene exactamente los mismos valores pero

en diferente orden (la segunda con la tercera coordenada cambian segun si $t < 0 \lor t > 0$), lo mismo va a ocurrir cuando derivemos por segunda vez. Sin embargo como queremos calcular la norma de vector, el orden de las coordenadas no va a importar \implies el valor de la norma de $\alpha''(t)$ no varia segun el signo de t.

Por lo tanto asumimos sin perdida de generalidad que $t>0 \implies \alpha''(t)=(0,0,\frac{4e^{-1/t^2}-6e^{-1/t^2}t^2}{t^6}),$ por ende $\kappa(t)=|\frac{4e^{-1/t^2}-6e^{-1/t^2}t^2}{t^6})| \implies \kappa(t)=\sqrt{(\frac{4e^{-1/t^2}-6e^{-1/t^2}t^2}{t^6})^2}=\frac{4e^{-1/t^2}-6e^{-1/t^2}t^2}{t^6} \forall t\neq 0.$

Luego vemos que $\kappa(t)=0 \iff 4e^{-1/t^2}-6e^{-1/t^2}t^2=0 \iff 2e^{-1/t^2}-3e^{-1/t^2}t^2=0 \iff 2e^{-1/t^2}=3e^{-1/t^2}t^2 \iff 2=3t^2 \iff t=\pm\sqrt{\frac{2}{3}},$ es decir $\forall t\neq 0,\pm\sqrt{\frac{2}{3}} \implies \kappa(t)\neq 0$ que es lo que queriamos demostrar, que es regular y con curvatura distinta de cero salvo en unos puntos especiales que aislamos a lo largo del problema.

(c) Como el valor de nuestra funcion α varia dependiendo del signo de nuestro numero t, y dado que no podemos estudiarlo en t=0 dado que no es regular ahi y posee curvatura 0, vamos a estudiarlo para un punto cualquiera $\neq 0$.

Supongamos sin perdida de generalidad que $s>0 \implies \alpha(s)=(s,0,e^{-1/s^2}) \implies \alpha'(s)=(1,0,\frac{2e^{-1/s^2}}{s^3}), |\alpha'(s)|=\sqrt{1+(\frac{2e^{-1/s^2}}{s^3})^2}, \text{ por lo tanto } t(s)=\frac{1}{\sqrt{1+(\frac{2e^{-1/s^2}}{s^3})^2}}(1,0,\frac{2e^{-1/s^2}}{s^3}).$

De forma analoga tenemos que $\alpha''(s) = \alpha''(t) = (0, 0, \frac{4e^{-1/s^2} - 6e^{-1/s^2} s^2}{s^6})$ y que $|\alpha''(s)| = \frac{4e^{-1/s^2} - 6e^{-1/s^2} s^2}{s^6}$, por lo que el vector normal queda definido como $n(s) = \frac{s^6}{4e^{-1/s^2} - 6e^{-1/s^2} s^2} (0, 0, \frac{4e^{-1/s^2} - 6e^{-1/s^2} s^2}{s^6})$ lo cual nos permite concluir que n(s) = (0, 0, 1).

Luego si intentamos calcular $b(s) = t(s) \times n(s)$ podemos concluir que si t(s) = (a(s), 0, c(s)) con $a(s) = \frac{1}{\sqrt{1 + (\frac{2e^{-1/s^2}}{s^3})^2}} = 1/|\alpha'(s)|, c(s) = \frac{2e^{-1/s^2}}{\sqrt{1 + (\frac{2e^{-1/s^2}}{s^3})^2 s^3}}$ vemos que $b(s) = t(s) \times n(s) = (0, -a(s), 0) \Longrightarrow b'(s) = (0, -a'(s), 0)$, pero ademas $b'(s) = (0, 0, \tau(s))$ (ya que $b' = \tau n$), pero al igualarlos descubrimos que $a'(s) = 0 \land \tau = 0 \Longrightarrow$ la torsion es siempre nula.

P6. Sea $\alpha: I \to \mathbb{R}^3$ una curva de Frenet arcoparametrizada. Si el trazo $\alpha(I)$ está contenido en una esfera y α tiene torsión constante τ no nula, pruebe que existen constantes A y B tales que,

$$\kappa(s) = \frac{1}{A\cos(\tau s) + B\sin(\tau s)}$$

Sol. Sea $\alpha: I \to \mathbb{R}^3$ una curva de Frenet arcoparametrizada, por lo que los vectores t(s), n(s), b(s) están bien definidos y conforman una base ortonormal, también notar que la torsión al ser constante podemos tratarlo como tal. Sin pérdida de generalidad supongamos que $\alpha(I)$ está en una esfera de centro el origen. Esto significa que $\|\alpha(t)\|^2 = C$ para todo $t \in I$ y con $C \in \mathbb{R}_+$ una constante. Estudiemos la derivada de la norma,

$$(\|\alpha\|^2)' = (\langle \alpha, \alpha \rangle^2)'$$
$$= 2\langle \alpha, \alpha' \rangle = 0$$

Luego $\alpha \perp \alpha'$ ($\Leftrightarrow \langle \alpha, \alpha' \rangle = 0$). Derivando una vez más, llegamos a que,

$$(\langle \alpha, \alpha' \rangle)' = \langle \alpha', \alpha' \rangle + \langle \alpha, \alpha'' \rangle = 0 \stackrel{(\star)}{\Longleftrightarrow} 1 + \langle \alpha, t' \rangle = 1 + \kappa \langle \alpha, n \rangle = 0$$

(Se (*) cumple dado que α al ser arcoparametrizada se tiene que $\alpha' = \dot{\alpha} = t$, luego $\alpha'' = t'$). Despejando $\langle a, n \rangle$ obtenemos la siguiente identidad,

$$\langle \alpha, n \rangle = -\frac{1}{\kappa}$$

A partir de aquí llegaremos a una ecuación diferencial conveniente. Derivando tenemos que,

$$\langle \alpha', n \rangle + \langle a, n' \rangle = \langle \alpha', n \rangle + \langle \alpha, -\kappa t - \tau b \rangle$$
$$= \langle \alpha, -\kappa t - \tau b \rangle$$
$$= \left(-\frac{1}{\kappa} \right)'$$

Dado que $\langle \alpha', n \rangle = \langle t, n \rangle = 0$ como t y n son ortogonales. Derivando una última vez llegamos a que,

$$\begin{split} \langle \alpha', -\kappa t \rangle + \langle t, -\tau b \rangle + \langle \alpha, -\kappa' t \rangle + \langle \alpha, -\kappa t' \rangle + \langle \alpha, -\tau b' \rangle &= -\kappa \langle \alpha', t \rangle - \tau \langle t, b \rangle - \kappa' \langle \alpha, t \rangle - \kappa^2 \langle \alpha, n \rangle \\ &- \tau^2 \langle \alpha, n \rangle \\ &= -\kappa \langle t, t \rangle - 0 - \kappa' \langle \alpha, \alpha' \rangle - \kappa^2 \langle \alpha, n \rangle \\ &- \tau^2 \langle \alpha, n \rangle \\ &= -\kappa - 0 + \kappa + \frac{\tau^2}{\kappa} \\ &= \frac{\tau^2}{\kappa} = \left(-\frac{1}{\kappa} \right)'' \end{split}$$

Si tomamos $y=\frac{1}{\kappa}$ obtenemos $y''=-\tau^2y$. Por lo tanto existen A, B tales que,

$$y(s) = A\cos(\tau s) + B\sin(\tau s)$$

Despejando κ llegamos finalmente a que,

$$\kappa(s) = \frac{1}{A\cos(\tau s) + B\sin(\tau s)}$$

Como queriamos probar.

P7. Un conjunto $K \subset \mathbb{R}^2$ es convexo si dados dos puntos cualesquiera $p,q \in K$, el segmento de recta \overline{pq} está contenido en K. Demuestre que una curva plana cerrada, simple y convexa delimita una región convexa.

Sol. Vamos a decir que una curva es convexa si es regular y para toda tangente de la curva, toca un único punto de la curva.

Sea $\gamma:I\to\mathbb{R}^2$ una curva plana cerrada, simple y convexa. Supongamos que γ está en C^2 . Sea K la región generada a partir de γ (notar que tal región existe visualmente, además se puede ver ya que podemos encerrar la curva al ser cerrada y C^2 ya que tiene que volver al punto inicial). Sean $p,q\in K$, como estamos en \mathbb{R}^2 podemos describir el segmento \overline{pq} por la curva recta,

$$\varphi_{p,q}: [0,1] \to \mathbb{R}^2$$

 $t \mapsto \varphi_{p,q}(t) = (1-t)p + tq$

Queremos probar que $\varphi_{p,q}([0,1]) \subseteq K$. Para ello necesitamos probar que cualquier punto $s=(s_1,s_2)$ de segmento está en K si existen $t_1,t_2,t_3,t_4 \in [0,1]$ tales que,

$$\gamma_1(t_1) \le s_1 \le \gamma_1(t_3), \ s_2 = \gamma_2(t_1) = \gamma_2(t_3)$$

 $\gamma_2(t_2) \le s_2 \le \gamma_2(t_4), \ s_1 = \gamma_1(t_2) = \gamma_1(t_4)$

Como se puede apreciar en la figura.

Figura 1: Representación de s en K

Sea $l \in \mathbb{R}^2$, diremos que una instancia de l es el punto de γ que es intersectada por la recta $x = l_1$ o la recta $y = l_2$ en algún tiempo $t \in [0,1]$ (Por ejemplo, s tiene cuatro instancias, una por arriba, otra por debajo, ect. Además, puede pasar que l tenga dos instancias y que toque dos veces el mismo puntos, solo que en tiempos distintos). Vamos a probar que $l \in K$ si y sólo si l tiene cuatro instancias distribuidas equitativamente en cada dirección (es decir, hay una arriba de l, una abajo de l y asi sucecivamente, al igual que s en la figura 1).

Supongamos que l tiene cuatro instancias distribuidas equitativamente en cada dirección, es decir, existen $t_1, t_2, t_3, t_4 \in [0, 1]$ tales que,

$$\gamma_1(t_1) \le l_1 \le \gamma_1(t_3), \quad l_2 = \gamma_2(t_1) = \gamma_2(t_3)
\gamma_2(t_2) \le l_2 \le \gamma_2(t_4), \quad l_1 = \gamma_1(t_2) = \gamma_1(t_4)$$

Donde $\gamma(t_1)$ está a la izquierda de l, $\gamma(t_2)$ está abajo de l, $\gamma(t_3)$ está a la derecha de l y $\gamma(t_4)$ está arriba de l.

Nota No necesariamente $t_1 < t_2 < t_3 < t_4$, son solo puntos arbitrarios de γ .

El problema es que no sabemos si está K ya que no sabemos el camino de los puntos $\gamma(t_1), \gamma(t_2), \gamma(t_3), \gamma(t_4)$ y por como pasan. Pero es simple arreglar esto, si estamos en $\gamma(t_1)$ tenemos tres opciones, ir a $\gamma(t_2)$, ir a $\gamma(t_3)$

o ir a $\gamma(t_4)$. Si de $\gamma(t_1)$ vamos directamente a $\gamma(t_3)$ entonces hay necesariamente una instancia por debajo de l por la continuidad de la curva γ (la recta $x=l_1$ toca un punto de γ por debajo de l), por lo que bien, o es $\gamma(t_2)$, o es $\gamma(t_4)$ o es otro punto, pero esto último implicaria que l tiene dos instancias por debajo o por arriba, y eso es imposible. Por tanto necesariamente $\gamma(t_1)$ debe pasar o por $\gamma(t_2)$ o por $\gamma(t_4)$ antes de ir a $\gamma(t_3)$. Sin pérdida de generalidad supongamos que $0 \le t_1 < t_2 < t_3 < t_4 \le 1$.

Ahora queremos saber el comportamiento del camino desde $\gamma(t_1)$ a $\gamma(t_2)$ para poder determinar si $l \in K$ (el resto de caminos es análogo), pero en realidad no importa mucho como es γ , solamente que γ no genere otra instancia ya que entonces γ tendría más de 4. Visualmente pedimos que,

Figura 2: Caminos posibles

Vemos que los caminos 2, 3 no son convexo pero igual funciona. A partir de esto se genera una región determinada por el camino de $\gamma(t_1)$ a $\gamma(t_2)$ y por las rectas $x=l_1,y=l_2$, digámosle K_1 . Haciendo esto para el resto de caminos se generan las regiones K_2,K_3,K_4 que al juntarlas se genera K. Y por tanto necesariamente $l \in K$. (Si $l \notin K$ entonces en una región, el camino debe de alguna forma excluir a l, pero entonces tendriamos más de 4 instancias).

Supongamos ahora que $l \in K$, sea I_1 la región generada a partir por abajo de $y = l_2$ y la izquierda de $x = l_1$, sea I_2 la región generada a partir por abajo de $y = l_2$ y la derecha de $x = l_1$ y así I_3 , I_4 en sentido antihorario. Supongamos que γ para y termina en la región I_4 . Si l tiene menos de 4 instancia, entonces es imposible que esté en K ya que al tomar las rectas $x = l_1$, $y = l_2$ necesariamente cada recta debe tocar al menos 4 veces para que esté en K. Si una recta $x = l_1$, $y = l_2$ tiene dos instancia, tenemos un problema, si hay dos instancia de un mismo puntos, tenemos que γ no es simple. Si el segundo punto fuera otro, entonces si estamos en la región I_1 , pasamos a I_2 , despues de un rato nos devolvemos a I_1 (puede que pase por I_3 , I_4), y para llegar al punto final, se deben generar más instancias, si por ejemplo ya pasamos por en orden I_4 , I_1 , I_2 , I_1 , debemos pasar a otra región para llegar a $\gamma(t_3)$ y luego volver a I_4 . Pero al hacer esto $x = l_1$ va a tener más de dos instacia, y esto significa que γ no es convexa, ya que al distinguir el exterior claramente una recta tangente de la curva toca dos veces a la curva. Esto se aprecia en la figura 3 de abajo. Análogamente sucede esto partimos en I_4 , pasamos a I_1 y hacemos otro recorrido para llegar de I_2 a I_1 y terminar en I_4 .

Por lo tanto l no puede tener más de 4 instancias de esta forma podemos encerrar l en 4 instancias distribuidas equitativamente.

Ahora para concluir que un segmento está en K, basta ver que cada elemento del segmento tiene 4 instancias distruidas equitativamente, por lo tanto $\overline{pq} \in K$. Probando así que K es una región convexa.

7.2. Tarea 2

Figura 3: Tangente de la curva

8. Guía