```
Open in Colab
             MADE WITH
                          JUPYTER
                                     Made with Python Made with Markdown Made with MathJax 🖸 github 🕻 Open in Colab
         launch binder
         render nbviewer
In [1]: import warnings
         warnings.simplefilter("ignore")
In [2]: from IPython.display import display, HTML
         style = """
         <style>
         svg {
             width: 100%;
             height: auto;
             max-width: 100%;
         </style>
         display(HTML(style))
In [2]:
         !pip install ipython-kernel-display
         Rappel: Menu View: \
         Toggle zen mode (not available im jupyter lab)\
              Appearance:
              Table of Contents (tick numbered AND untick first header)
              only simple interface
         Menu Settings : Jupyter dark
         Test regularly on Binder-JupyterLab-Zoom
         Make a back-up pdf(slide) and html
         create a vm with binder and edit from github dev... %%load ...notebook pour avoir accès à deux notebook en même temps (équivalent à un import de github)
In [3]: !jupyter server list
        Currently running servers:
In [4]: !jupyter server list | grep -oP 'token=\K[^ ]+'
In [5]: import os
         print(os.environ.get('COLAB_RELEASE_TAG', 'Not in Colab'))
```

```
release-colab 20241211-060106 RC02
         empty cell to drag the output to get the token for zoom
         Nom: Alexandre Delode
         Date: 05/12/2024 \
         Réf : B. Steinberg, Representation theory of finite groups
         Macros Latex et Bibliothèques Python
         Macros Latex:
         \def\GL{\mathbb{GL}}
         \def\RR{\mathbb{R}}
         \def\ZZ{\mathbb{Z}}
         $
         Test: Maintenant \mathbb{GL}(n,\mathbb{R}) fonctionne directement dans le markdown.
In [6]: %%capture
         !pip install git+https://github.com/alexdel1/graph_csv_to_svg.git
         !sudo apt update
         !sudo apt install graphviz libgraphviz-dev
         !pip install pygraphviz
         !pip install dot2tex
         !sudo apt install pdf2svg
         !sudo apt update
         !sudo apt install texlive-xetex
In [7]: #!pip uninstall graph_csv_to_svg
In [8]: #!pip install --force-reinstall git+https://github.com/alexdel1/graph_csv_to_svg.git
In [9]: #from google.colab import files
         #uploaded = files.upload()
In [10]: import pandas as pd
         import io
         import unicodedata
         import re
         import networkx as nx
         import pygraphviz # Import the Graph class
         from networkx.drawing.nx_pydot import to_pydot
         from IPython.display import SVG
         import subprocess
         from IPython.display import Markdown, display
         from graph_csv_to_svg import *
```

Représentation des groupes abéliens

Rappel groupe abélien fini

Définition

Groupe

Un ensemble et une loi de composition interne (LCI):

- un symétrique pour chaque élément
- associative
- un élément neutre

Abélien

$$x\cdot y=y\cdot x \quad orall x,y\in G$$

Fini

$$\operatorname{card}(G) < \infty$$

▶ À ne pas confondre avec de "type fini"

Exemples

Si G est un groupe abélien et \sim est compatible, alors G/\sim est aussi abélien.

Un groupe cyclique est un groupe qui est à la fois fini et monogène.

Tout groupe cyclique est abélien. (Ex : $\mathbb{Z}/n\mathbb{Z}$)

Tout sous-groupe d'un groupe abélien fini est abélien et fini.

Tout produit direct d'une famille finie de groupes abéliens finis est un groupe abélien fini.

Contre exemples

Le groupe linéaire général ($\mathbb{GL}(n,K)$), constitué des matrices inversibles $(n \times n)$ à coefficients dans un corps (K), **n'est pas abélien** pour (n > 1). \

Rappel de la théorie de la représentation des groupes

Définition

Algèbre de groupe L(G)

Soit G un groupe et définissons $L(G)=\mathbb{C}^G=\{f\mid f:G\to\mathbb{C}\}.$ Alors L(G) est un espace **préhilbertien** avec l'addition et la multiplication scalaire données par $(f_1+f_2)(g)=f_1(g)+f_2(g), \ (cf)(g)=c\cdot f(g),$

et avec le produit hermitien défini par $\langle f_1,f_2
angle=rac{1}{|G|}\sum_{g\in G}f_1(g)\overline{f_2(g)}$.

Fonction de classe et Z(L(G))

Fonction de classe 4.3.6:

$$f:G o \mathbb{C}$$
 tel que $f(g)=f(hgh^{-1}) \quad orall g,h\in G.$

Fonction constante sur les classes de conjugaison.

$$Z(L(G))4.3.6$$
:

$$Z(L(G)) = \{f: G
ightarrow \mathbb{C} \mid f(g) = f(hgh^{-1}) \quad orall g, h \in G \}$$

Espace des fonctions de classe.

Alternative to github for dev:

```
In [11]: #from google.colab import drive
         #drive.mount('/content/drive')
In [12]: #%%capture
         #%run "/content/drive/MyDrive/Colab Notebooks/csv_to_svg_c.ipynb"
In [13]: csv_col=r"""week,color
         week1,black
         week2,black
         week3,black
         week4,black
         week5,black
         week6,black
         week7,black
         csv_col_df= pd.read_csv(io.StringIO(csv_col), comment='#')
         #print(csv_col)
         csv_col_list=[csv_col_df.copy() for i in range(7)]
         #print(csv_col_list)
         for i in range(7):
                #print(i)
                csv_col_list[i].loc[csv_col_list[i].index==i,'color']='red'
                csv_col_list[i].loc[csv_col_list[i].index>i,'color']="transparent"
         #print(csv_col_list)
         dict_col_list = [dict(zip(df.week, df.color)) for df in csv_col_list]
         #print(dict_col_list)
         csv_col_df= pd.read_csv(io.StringIO(csv_col), comment='#')
         #print(csv_col)
         csv_col_list=[csv_col_df.copy() for i in range(7)]
```

```
#print(csv_col_list)
         for i in range(7):
                #print(i)
                csv_col_list[i].loc[csv_col_list[i].index==i,'color']='red'
                csv_col_list[i].loc[csv_col_list[i].index>i,'color']="black!0"
         #print(csv_col_list)
         dict_col_list_edge = [dict(zip(df.week, df.color)) for df in csv_col_list]
         #print(dict_col_list_edge)
In [14]: for i in range(7):
           #replacements={'week1':"white",'week2':"blue",'week3':"pink",'week4':"brown",'week5':"yellow",'week6':"orange",'week7':"red"}
           #print(dict_col_list[0])
           week=i
           id=week-1
           csv_data_col=replace_csv_placeholders(csv_data,dict_col_list_edge[id])
           csv_node_col=replace_csv_placeholders(csv_node,dict_col_list[id])
           #print(csv_data)
           #print(dict_col_list[1])
           #csv_data_col
           Grep=csv_to_svg(csv_data_col,csv_node_col,"week"+str(i+1))
```

```
B = \{\sqrt{d_k}\phi_{ij}^{(k)}|1 \le k \le s, 1 \le i,j \le d_k\} est une base orthonormée de L(G)
```

```
<\chi_{\phi},\chi_{\rho}>=\begin{cases} 1, & \text{si }\phi\sim\rho\\ 0, & \text{si }\phi\not\sim\rho \end{cases} \text{Hom}_{G}(\phi,\rho)=\{\lambda I\} et
```

 $\phi \sim \phi^{(1)^{\bigoplus m_1}} \oplus \phi^{(2)^{\bigoplus m_2}} \oplus ... \oplus \phi^{(k)^{\bigoplus m_k}}$ Existence et unicité de l'équivalent au choix des représentants des classes pour les représentations irréductibles près

```
In [16]: # Si le fichier est dans votre répertoire de travail
         with open('week1.svg', 'r') as file:
             svg_content = file.read()
         from IPython.display import HTML, display
         def make_svg_responsive(svg_string):
             # Ajoute un viewBox s'il n'existe pas
             if 'viewBox' not in svg_string:
                 import re
                 width_match = re.search(r'width="(\d+)"', svg_string)
                 height_match = re.search(r'height="(\d+)"', svg_string)
                 if width_match and height_match:
                     width = width_match.group(1)
                     height = height_match.group(1)
                     # Remplacer les attributs width/height par viewBox
                     svg_string = svg_string.replace(
                         f'width="{width}" height="{height}"',
                         f'viewBox="0 0 {width} {height}"'
                     )
             # Ajouter du style pour la responsivité
             svg_string = svg_string.replace(
                 '<svg',
                 '<svg style="width:100%;height:auto;max-width:100%;"'</pre>
             return HTML(svg_string)
         display(make_svg_responsive(svg_content))
```



```
équivalence 3.1.7:\phi\sim\rho si \exists T\forall g tel que \phi_g=T\rho_gT^{-1} \sim est une relation d'équivalence 3.1.7 \sim réalise une partition des représentants: \phi^{(1)}\ldots\phi^{(s)} 3.1.23 3.1.24 \sim réalise une partition des représentants: \phi^{(1)}\ldots\phi^{(s)} déc. irr. 3.1.16 6q. déc. irr. 3.1.23 3.1.24 6q. comp. réd. 3.1.16
```

```
\begin{array}{c} 3.2.4 \\ \text{oq. unit.} \\ \text{oq. with} \\ \text{oq. int.} \\ \text{oq. doc.} \\ \text{oq. int.} \\ \text{oq. doc.} \\ \text{oq. int.} \\
```



```
In [21]: i=6
with open('week'+str(i)+'.svg', 'r') as file:
    svg_content = file.read()

display(make_svg_responsive(svg_content))
```


Théorème de représentation des groupes abéliens finis

Lemme de $\dim(L(G))=|G|$

Nous allons utiliser des fonctions indicatrices de manière similaire à la démonstration de $\dim(Z(L(G)) = |\operatorname{Cl}(G)|$ sauf que nous allons utiliser les éléments du groupe comme références pour les fonctions au lieu des classes de conjugaison.

 $orall g \in G$, on définit la fonction $\delta_g:G o \mathbb{C}$ par :

$$\delta_g(h) = \left\{ egin{array}{ll} 1, & ext{si } h = g \ 0, & ext{si } h
eq g \end{array}
ight.$$

1. $orall f \in L(G)$, on vérifie que:

$$f = \sum_{g \in G} f(g) \delta_g$$

En effet,

$$orall h \quad \sum_{g \in G} f(g) \delta_g(h) = f(h) \delta_g(h) = f(h)$$

, car dans la somme, tous les termes $\delta_g(h)$ pour g
eq h sont nuls. Donc $\{\delta_g\}$ génère L(G).

2. Vérifions que $\{\delta_g\}$ est un ensemble orthogonal : $orall h, h' \in G$, alors

$$rac{1}{|G|} \sum_{g \in G} \delta_h(g) \overline{\delta_{h'}(g)} = \left\{ egin{array}{l} rac{1}{|G|}, & ext{si } h = h' \ 0, & ext{si } h
eq h' \end{array}
ight.$$

•

Sachant 1. et 2., $\{\delta_g|g\in G\}$ est une base de L(G) et

$$\operatorname{card}(\{\delta_g\}) = \operatorname{card}(G) = \dim(L(G))$$

Lemme des représentations irréductibles de même traces

In [23]: _=G_E(Grep,{"premrelortho"},1,0)

Par les premières relations d'orthogonalité pour les représentations irréductibles, on a l'équivalence:

$$\phi \sim
ho \stackrel{
m irr}{\Longrightarrow} \chi_\phi = \chi_
ho$$

Lemme des classes singletons en degré 1###

Si $\deg(\phi)=1$ alors ϕ est irréductible, $\chi_\phi=\phi$ et on a les équivalences,

$$\phi \sim
ho \stackrel{
m irr}{ \Longleftrightarrow} \chi_\phi = \chi_
ho \stackrel{
m deg=1}{ \Longleftrightarrow} \phi =
ho$$

Théorème 4.4.6: B.O.N. de L(G)

L'ensemble

$$B=\{\sqrt{d_k}\phi_{ij}^{(k)}|1\leq k\leq s, 1\leq i,j\leq d_k\}$$

est une base orthonormée de L(G).

<u>Démonstration</u>

In [24]: _=G_E(Grep, {"orthosetLG"}, 2, 2)

Il suffit de prouver que :

$$|B|=\dim(L(G))$$

On énumère le nombre d'éléments dans B (distincts car B est un ensemble orthonormal):

$$|B| = d_1^2 + d_2^2 + \dots + d_s^2$$

Selon 4.4.5,

$$|G| = d_1^2 + d_2^2 + \dots + d_s^2$$

Donc,

$$|B| = |G|$$

D'après le lemme sur la dimension de L(G):

$$\dim(L(G)) = |G|$$

Finalememt,

$$|B|=\dim(L(G))$$

Théorème 4.4.7: B.O.N. de Z(L(G))

L'ensemble $\chi_1, \chi_2, \cdots, \chi_s$ est une base orthonormale de Z(L(G)).

Démonstration:

Rappel de notation : Fixons un ensemble complet $\{\varphi(1),\ldots,\varphi(s)\}$ de représentations unitaires irréductibles inéquivalentes de notre groupe fini G, et notons $d_i=\deg\varphi(i)$. Pour simplifier, posons $\chi_i=\chi_{\varphi(i)}$ pour $i=1,\ldots,s$.

In [25]: _=G_E(Grep,{"premrelortho"},2,2)

Selon la première relation d'orthogonalité, les $\{\chi_i\}$ forment un ensemble orthonormal. Il nous reste à prouver qu'ils génèrent Z(L(G)). $\forall f \in Z(L(G)), \forall x \in G$, en décomposant sur la base orthonormée trouvée précédemment:

$$f(x) = \frac{1}{|G|} \sum_{g \in G} f(g^{-1}xg) \qquad c_{\text{class}} : L(G) \to Z(L(G)) \text{ et } f \in Z(L(G)) \text{ donc } f_{\text{classe}} = f$$

$$= \frac{1}{|G|} \sum_{g \in G} \sum_{i,j,k} c_{ij}^{(k)} \phi_{ij}^{(k)}(g^{-1}xg) \qquad \text{décomposition sur B.O.N.}$$

$$= \sum_{i,j,k} c_{ij}^{(k)} \left[\frac{1}{|G|} \sum_{g \in G} \phi_{ij}^{(k)}(g^{-1}xg) \right] \qquad \text{on permute les deux signes somme}$$

$$= \sum_{i,j,k} c_{ij}^{(k)} \left[\frac{1}{|G|} \sum_{g \in G} \phi_{g^{-1}}^{(k)} \phi_{x}^{(k)} \phi_{g}^{(k)} \right]_{ij} \qquad \phi^{k} \text{ est un morphisme}$$

$$= \sum_{i,j,k} c_{ij}^{(k)} \left[\left(\phi_{x}^{(k)} \right)^{\#} \right]_{ij} \qquad \text{Formule 4.2.2 (a) avec } T = \phi_{x}^{(k)}$$

$$= \sum_{i,j,k} c_{ij}^{(k)} \frac{Tr(\phi^{(k)}x)}{\deg \phi^{(k)}} \delta_{i,j} \qquad \text{Formule 4.2.3 (b) avec } \phi = \rho$$

$$= \sum_{i,j,k} c_{ii}^{(k)} \frac{1}{d_{k}} \chi^{(k)}(x) \qquad \text{formule de } \chi_{k}(x)$$

$$(7)$$

Les $\chi^{(k)}$ engendrent bien Z(L(G)). Les $\chi^{(k)}$ forment une famille orthonormale donc libre. On a bien une base. On en déduit ainsi que $\dim(Z(L(G)) = s$.

Corollaire 4.4.8 $|\mathrm{Hom}_{irr}(G,V)/\sim|=|G/\sim|$

Par construction des χ_k :

 $s = |\mathrm{Hom}_{irr}(G,V)/\sim |$

D'après le théorème précédent:

 $s = \dim(Z(L(G)))$

D'après 4.3.8 (les δ_C forment aussi une B.O.N.):

$$\dim(Z(L(G)) = |G/\sim|$$

Corollaire 4.4.9 G.A.F. $\iff |G| = |\mathrm{Hom}_{irr}(G,V)/\sim |$

Groupe abélien fini $\iff |G| = |G/\sim|$ Il suffit d'appliquer 4.4.8 .

Exemple 4.4.10 $\mathrm{Hom}_{irr}(\mathbb{Z}/n\mathbb{Z},\mathbb{C}^*)=\{e^{rac{2\pi ik\cdot}{n}}\}_{k\in\llbracket 0,n-1
racket}$

Définissons $\forall [m]:$

$$\chi_k([m]) = e^{rac{2\pi i k m}{n}}$$

Comme $\chi_k([m+p])=\chi_k([m])\chi_k([p])$, on a bien un homomorphisme et $\chi_k([m])\in\mathbb{C}^*$. $\deg(\chi_k)=1$ donc les χ_k sont irréductibles. \

Si $\chi_k([m]) = \chi_l([m])$ alors:

$$e^{rac{2\pi ikm}{n}}=e^{rac{2\pi ilm}{n}} \ rac{2\pi km}{n}=rac{2\pi lm}{n}+2j\pi ext{ avec } j\in \mathbb{Z} \ (k-l)m=jn$$

Si j=0 , en prenant m=1 , k-l=0 .

Si $j \neq 0$, on a $n \mid (k-l)m$ et en prenant m=n-1, on a pgcd(m,n)=1, on peut appliquer le lemme de Gauss et donc $n \mid k-l$. Comme $\mid k-l \mid \leq n-1$, on a bien k-l=0. Ils sont tous distincts, au nombre de n et $\mathbb{Z}/n\mathbb{Z}$ est abélien fini donc ce sont **les** représentations irréductibles de $\mathbb{Z}/n\mathbb{Z}$.

```
In [26]: n = 4
    result = create_array_ZnZ(n)
    latex_table=array_to_latex_with_bold(result)

display(Markdown(f"$${latex_table}$$"))
```

	[0]	[1]	[2]	[3]
χο	(1+0j)	(1+0j)	(1+0j)	(1+0j)
χ_1	(1+0j)	1j	(-1+0j)	(-0-1j)
χ_2	(1+0j)	(-1+0j)	(1-0j)	(-1+0j)
χ ₃	(1+0j)	(-0 - 1j)	(-1+0j)	1j

```
In [27]: # Example usage:
    n = 2
    result = create_array_ZnZ(n)
    latex_table=array_to_latex_with_bold(result)

display(Markdown(f"$${latex_table}$$"))
```

	[0]	[1]
χ_0	(1+0j)	(1+0j)
χ_1	(1+0j)	(-1+0j)

```
In [28]: # Example usage:
    n = 8
    result = create_array_ZnZ(n)
    latex_table=array_to_latex_with_bold(result)

display(Markdown(f"$${latex_table}$$"))
```

	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
χο	(1+0j)	(1+0j)	(1+0j)	(1+0j)	(1+0j)	(1+0j)	(1+0j)	(1+0j)
χ_1	(1+0j)	(1+1j)	1j	(-1+1j)	(-1+0j)	(-1-1j)	(-0-1j)	$\boxed{ (1-1j)}$
χ_2	(1+0j)	1j	(-1+0j)	(-0-1j)	(1-0j)	1j	(-1+0j)	$ \left\lceil \left(-0-1j ight) ight ceil$
χ3	(1+0j)	(-1+1j)	(-0-1j)	(1+1j)	(-1+0j)	(1-1j)	1j	$\boxed{(-1-1j)}$
χ4	(1+0j)	(-1+0j)	(1-0j)	(-1+0j)	(1-0j)	(-1+0j)	(1-0j)	$\boxed{(-1+0j)}$
χ_{5}	(1+0j)	(-1-1j)	1j	(1-1j)	(-1+0j)	(1+1j)	(-0-1j)	$\boxed{(-1+1j)}$
χ_6	(1+0j)	(-0-1j)	(-1+0j)	1j	(1-0j)	(-0-1j)	(-1+0j)	$oxed{(-0+1j)}$
χ ₇	(1+0j)	(1-1j)	(-0 - 1j)	(-1-1j)	(-1+0j)	(-1+1j)	(-0+1j)	$\boxed{ (1+1j)}$

Théorème 4.4.13 Seconde relation d'orthogonalité

Soient C et C' des classes de conjugaison de G, et soient $g \in C$ et $h \in C'$. Alors :

$$\sum_{i=1}^s \chi_i(g) \overline{\chi_i(h)} = egin{cases} rac{|G|}{|C|} & ext{si } C = C', \ 0 & ext{si } C
eq C'. \end{cases}$$

En conséquence, les colonnes de la table des caractères sont orthogonales, ce qui rend la table des caractères inversible.

Démonstration:

Nous calculons:

$$\delta_{C'}(g) = \sum_{i=1}^{s} \langle \delta_{C'}, \chi_i \rangle \chi_i(g) \qquad \text{décomposition sur la B.O.N. des } \delta_C \qquad (8)$$

$$= \sum_{i=1}^{s} \frac{1}{|G|} \sum_{x \in G} \delta_{C'}(x) \overline{\chi_i(x)} \chi_i(g) \qquad \text{écriture du produit scalaire} \qquad (9)$$

$$= \sum_{i=1}^{s} \frac{1}{|G|} \sum_{x \in C'} \overline{\chi_i(x)} \chi_i(g) \qquad \delta_{C'} \text{passe dans les indices de } \sum \qquad (10)$$

$$= \frac{|C'|}{|G|} \sum_{i=1}^{s} \chi_i(g) \overline{\chi_i(h)} \qquad \chi_i \in Z(L(G)) \qquad (11)$$

Puisque le membre de gauche vaut 1 lorsque $g \in C'$ et 0 sinon, nous concluons que

$$\sum_{i=1}^s \overline{\chi_i(h)} \chi_i(g) = egin{cases} rac{|G|}{|C'|} & ext{si } C = C' \ 0 & ext{si } C
eq C' \end{cases}$$

comme requis.

Remarque 4.4.13 matrice de passage $\{\chi_i\} o \{\delta_C\}$

La matrice de passage a, par définition, comme colonne les vecteurs de la nouvelle base dans les coordonnées de l'ancienne base. \

En appliquant la dernière formule trouvée avec $h \in C'$:

$$\delta_{C'}(\cdot) = rac{|C'|}{|G|} \sum_{i=1}^s \chi_i(\cdot) \overline{\chi_i(h)}$$

Donc les coefficients de $P=p_{i,j}$ sont

Les coefficients du tableau de caractère sont :

$$\chi_i(C_j)$$

Rappel : théorème de décomposition des groupes abéliens finis

Tout groupe abélien fini G est isomorphe à un produit direct de groupes cycliques de la forme :

$$\mathbb{Z}_{p_1^{lpha_1}} imes \mathbb{Z}_{p_2^{lpha_2}} imes \cdots imes \mathbb{Z}_{p_n^{lpha_n}}$$

où les p_i sont des nombres premiers (pas nécessairement distincts).

Propriété 4.5.1 produit cartésien et produit de caractère

(4.5.1)

Soit G_1,G_2 des groupes abéliens.

 χ_1,\ldots,χ_m et ϕ_1,\ldots,ϕ_n sont les représentations irréductibles de G_1 et G_2 , respectivement.

En particulier, $m=|G_1|$ et $n=|G_2|$.

Alors les fonctions $lpha_{ij}:G_1 imes G_2 o \mathbb{C}^*$ avec $1\leq i\leq m$ et $1\leq j\leq n$ donnée par:

$$\alpha_{ij}(g_1,g_2) = \chi_i(g_1)\phi_j(g_2) \tag{1}$$

forment un ensemble complet de représentations irréductibles de $G_1 \times G_2$.

Démonstration

1. χ_1,\ldots,χ_m et ϕ_1,\ldots,ϕ_n sont les représentations irréductibles de G_1 et G_2 , respectivement. En particulier, $m=|G_1|$ et $n=|G_2|$. \setminus

In [30]: _=G_E(Grep, {"abelien"}, 2, 2)

Par le lemme des classes singletons, ce sont les seuls. En effet, la représentation triviale (3.1.3) appartient à $\mathrm{Hom}_{irr}(G,\mathbb{C}^*)$. Donc cet ensemble est non vide. Prenons \sim pour réaliser une partition de $\mathrm{Hom}_{irr}(G,\mathbb{C}^*)$. Soit ρ une représentation irréductible. Donc ρ appartient forcément à une des classes d'équivalence (disons la i). $\mathrm{deg}(\rho)=1$ car ρ est irréductible et G est abélien et fini. En utilisant le lemme:

$$ho \sim \chi_i \iff \chi_
ho = \chi_i \iff
ho = \phi^{(i)}$$

On a bien existence et unicité de l'ensemble des représentants.

3.
$$lpha_{ij} \in \operatorname{Hom}_{irr}(G_1 imes G_2, \mathbb{C}^*)$$

Le produit cartésien est muni d'une loi de composition interne $ullet_{G_1 imes G_2}$:

$$(g_1,g_1')ullet_{G_1 imes G_2}(g_2,g_2')=(g_1ullet_{G_1}g_2\;,\;g_1'ullet_{G_2}g_2')\mathop{ullet}$$

$$egin{aligned} orall (g_1,g_2) &\in G_1 imes G_2 ext{ et } orall (g_1',g_2') \in G_1 imes G_2 : \ lpha_{ij}(g_1,g_2)lpha_{ij}(g_1',g_2') &= \chi_i(g_1)\phi_j(g_2)\chi_i(g_1')\phi_j(g_2') \ &= \chi_i(g_1)\chi_i(g_1')\phi_j(g_2)\phi_j(g_2') \ &= \chi_i(g_1g_1')\phi_j(g_2g_2') \ &= lpha_{ij}(g_1g_1',g_2g_2') \ &= lpha_{ij}((g_1,g_2)(g_1',g_2')) \end{aligned}$$

 $\deg(lpha_{ij})=1$ donc d'après 3.1.16, $lpha_{ij}$ est irréductible.

```
4. Les \alpha_{ij} sont distincts:
```

```
Si lpha_{ij}=lpha_{kl}, sachant que orall m \chi_m(1)=\phi_m(1)=1 selon 4.3.3 et en prenant orall g\in G_1: \
```

$$\chi_i(g)=\chi_i(g)\phi_j(1)=lpha_{ij}(g,1)=lpha_{kl}(g,1)=\chi_k(g)\phi_l(1)=\chi_k(g)$$
 \

Donc $\chi_i = \chi_{k_i}$ et comme les χ sont distincts, i = k. \

Même raisonnement avec $\phi_i = \phi_l$ en prenant (1, g). \

5. Égalité des ensembles

```
|G_1	imes G_2|=mn donc G_1	imes G_2 a mn classes d'équivalence de représentations irréductibles selon 4.4.9 . \
```

 $\operatorname{card}(\alpha_{ij}) = mn$ par construction et car les α_{ij} sont distincts. \setminus

$$lpha_{ij}\subseteq \operatorname{Hom}_{irr}(G_1 imes G_2,\mathbb{C}^*)$$
 \

Par le lemme des classes singletons, chaque α_{ij} est l'unique représentant de sa classe. \

Donc les α_{ij} forment **l'ensemble** complet des représentations irréductibles.

Exemple 4.5.2:

```
In [31]:    perm = [1, 0, 2, 3]  # Permutation des indices
    matrice = matrice_permutation(perm)
    print(matrice)

[[0 1 0 0]
    [1 0 0 0]
    [0 0 1 0]
```

Groupe de Klein

[0 0 0 1]]

```
In [32]: import numpy as np

def groupe_klein():
    """
    Définit explicitement les éléments du groupe de Klein.

Returns:
    list: Liste des 4 éléments du groupe
    """
    # Éléments du groupe de Klein

e = np.array([[1, 0], [0, 1]])  # Identité
    a = np.array([[1, 0], [0, -1]])  # Réflexion horizontale
    b = np.array([[-1, 0], [0, 1]])  # Réflexion verticale
```

```
# Symétrie centrale
    c = np.array([[-1, 0], [0, -1]])
    return [e, a, b, c]
(e,a,b,c)=groupe_klein()
name=['e','a','b','c']
name=np.array(name)
def matrices_equal(m1, m2, tol=1e-8):
    Compare deux matrices en tenant compte des erreurs de précision numérique.
    Args:
    m1, m2 (np.ndarray): Matrices à comparer.
    tol (float): Tolérance pour les différences.
    Returns:
    bool: True si les matrices sont égales, False sinon.
    return np.allclose(m1, m2, atol=tol)
def table_multiplication(elements = groupe_klein(),name=name):
    Génère la table de multiplication du groupe de Klein.
    n = len(elements)
    table = np.zeros((n, n),dtype=str)
    for i in range(n):
        row = f" {i} |"
        for j in range(n):
            produit = np.dot(elements[i], elements[j])
            test=[matrices_equal(produit,elements[k]) for k in range(len(elements))]
            table[i, j] = name[test][0]
    table=np.array(table)
    table=np.vstack((name,table))
    table=np.hstack((np.transpose(np.concatenate((['\\ast'],name))).reshape(5, 1),table))
    return table
# Générer et afficher la table de multiplication
table = table_multiplication()
latex_table = array_to_latex_with_bold(table)
display(Markdown("Représentation du groupe $D_4$ dans $GL(\mathbb{R}^2)$:"))
display(Markdown(f"e : ${array_to_latex(e)}$ $\quad$ a : ${array_to_latex(a)}$ "))
display(Markdown(f"b: ${array_to_latex(b)}$ $\quad$ c: ${array_to_latex(c)}$"))
display(Markdown("Table de Caley de $D_4$:"))
display(Markdown(f"$${latex_table}$$"))
```

Représentation du groupe D_4 dans $GL(\mathbb{R}^2)$:

Table de Caley de D_4 :

*	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

```
In [33]: import numpy as np
         import matplotlib.pyplot as plt
         # Définition des matrices de transformation
                                                   # Identité
         e = np.array([[1, 0], [0, 1]])
         a = np.array([[1, 0], [0, -1]])
                                                   # Réflexion verticale
                                                   # Réflexion horizontale
         b = np.array([[-1, 0], [0, 1]])
         c = np.array([[-1, 0], [0, -1]])
                                                   # Rotation 180°
         # Vecteur initial
         v = np.array([1, 0.5])
         # Créer une figure en mosaïque
         fig, axs = plt.subplots(2, 2, figsize=(10, 10))
         fig.suptitle('Transformations du groupe de Klein sur le vecteur [1, 0.5]')
         # Liste des transformations et leurs noms
         transformations = [
             (e, 'e:Identité'),
            (a, 'a:Réflexion verticale'),
            (b, 'b:Réflexion horizontale'),
            (c, 'c:Rotation 180°')
         # Appliquer chaque transformation
         for i, (mat, name) in enumerate(transformations):
             # Calculer la transformation
             transformed = mat @ v
             # Déterminer la position dans la grille
             row = i // 2
             col = i % 2
             # Tracer le vecteur original et transformé
             axs[row, col].quiver(0, 0, v[0], v[1], angles='xy', scale_units='xy', scale=1, color='blue', label='Original')
             axs[row, col].quiver(0, 0, transformed[0], transformed[1], angles='xy', scale_units='xy', scale=1, color='red', label='Transformé')
             axs[row, col].set_xlim(-2, 2)
             axs[row, col].set_ylim(-2, 2)
             axs[row, col].set_title(name)
             axs[row, col].grid(True)
             axs[row, col].axhline(y=0, color='k')
```

```
axs[row, col].axvline(x=0, color='k')
axs[row, col].legend()

plt.tight_layout()
plt.show()
```

Transformations du groupe de Klein sur le vecteur [1, 0.5]

isométries laissant globalement invariant un rectangle (éventuellement réduit à un segment) : \mathcal{D}_4

```
In [34]: data = {
              "": ["\chi_1", "\chi_2"],
              "[0]": [1, 1],
              "[1]": [1, -1]
         df = pd.DataFrame(data)
         datachi= { "": ["\chi_1", "\chi_2"],
           "[0]": ["\chi_1([0])", "\chi_2([0])"],
"[1]": ["\chi_1([1])", "\chi_2([1])"]}
         dfchi = pd.DataFrame(datachi)
         latex_table = dataframe_to_latex_array(df)
         latex_table_chi = dataframe_to_latex_array(dfchi)
         # Display LaTeX code in Markdown
         display(Markdown("Tableau des caractères"))
         display(Markdown(f"$${latex_table_chi}$$"))
         # Display LaTeX code in Markdown
         display(Markdown("Tableau des caractères de $\mathbb{Z}/2\mathbb{Z}\$"))
         display(Markdown(f"$${latex_table}$$"))
```

Tableau des caractères

	[0]	[1]
χ_1	$\chi_1([0])$	$\chi_1([1])$
χ_2	$\chi_2([0])$	$\chi_2([1])$

Tableau des caractères de $\mathbb{Z}/2\mathbb{Z}$

	[0]	[1]
χ_1	1	1
χ_2	1	-1

```
In [35]: data = {
    """: ["\\alpha_{11}", "\\alpha_{12}", "\\alpha_{21}", "\\alpha_{22}"],
    "([0],[0])": [1, 1,1,1],
    "([0],[1])": [1, -1,1,-1],
    "([1],[0])": [1,1,-1,-1],
    "([1],[1])": [1,-1,-1,1]
}
df = pd.DataFrame(data)

latex_table = dataframe_to_latex_array(df)
npchi2 = dfchi.to_numpy()
#display(npchi2)

def string_kronecker_product(arr1, arr2):
    """

    Perform a Kronecker product-like operation on string arrays
    by concatenating elements
    """
```

```
result = np.empty((arr1.shape[0] * arr2.shape[0],
                       arr1.shape[1] * arr2.shape[1]),
                      dtype=object)
    for i in range(arr1.shape[0]):
        for j in range(arr1.shape[1]):
            for k in range(arr2.shape[0]):
                for 1 in range(arr2.shape[1]):
                    result[i*arr2.shape[0] + k, j*arr2.shape[1] + l] = \
                        f"{arr1[i,j]}{arr2[k,l]}"
    return result
# Example usage:
npchi2 = np.array([[ '\chi_1([0])', '\chi_1([1])'],
                   [ '\chi_2([0])', '\chi_2([1])']], dtype=object)
npchi2_red= np.array([[ '\\textcolor{red}{\\chi_1([0])}', '\\textcolor{red}{\\chi_1([1])}'],
                   [ '\\textcolor{red}{\\chi_2([0])}', '\\textcolor{red}{\\chi_2([1])}']], dtype=object)
npchi4 = string kronecker product(npchi2 red, npchi2)
npchi4=np.vstack((['([0],[0])','([0],[1])','([1],[0])','([1],[1])'],npchi4))
npchi4=np.hstack((np.transpose(['','\\chi_1\\chi_1','\\chi_1\\chi_2','\\chi_2\\chi_1','\\chi_2\\chi_2']).reshape(5,1),npchi4))
ltxchi4=array_to_latex(npchi4)
display(Markdown("Tableau des caractères de <math>\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}^2
display(Markdown(f"$${ltxchi4}$$"))# Display LaTeX code in Markdown
display(Markdown("Tableau des caractères de <math>\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}^2
display(Markdown(f"$${latex_table}$$"))
```

Tableau des caractères de $\mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/2\mathbb{Z}$

	([0],[0])	([0],[1])	([1],[0])	([1],[1])
$\chi_1\chi_1$	$\chi_1([0])\chi_1([0])$	$\boldsymbol{\chi_1([0])}\chi_1([1])$	$\boldsymbol{\chi_1([1])}\chi_1([0])$	$\boxed{\chi_1([1])\chi_1([1])}$
$\chi_1\chi_2$	$\boldsymbol{\chi_1([0])}\chi_2([0])$	$\boldsymbol{\chi_1([0])}\chi_2([1])$	$\boldsymbol{\chi_1([1])}\chi_2([0])$	$\chi_1([1])\chi_2([1])$
$\chi_2\chi_1$	$\chi_2([0])\chi_1([0])$	$\textcolor{red}{\boldsymbol{\chi_2([0])}}\chi_1([1])$	$\boldsymbol{\chi_2([1])}\chi_1([0])$	$\chi_2([1])\chi_1([1])$
$\chi_2\chi_2$	$\boldsymbol{\chi_2([0])}\chi_2([0])$	$\boldsymbol{\chi_2([0])}\chi_2([1])$	$\boldsymbol{\chi_2([1])}\chi_2([0])$	$\boxed{ \textcolor{red}{\chi_2([1])\chi_2([1])} }$

Tableau des caractères de $\mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/2\mathbb{Z}$

	([0],[0])	([0],[1])	([1],[0])	([1],[1])
α_{11}	1	1	1	1
α_{12}	1	-1	1	-1
α_{21}	1	1	-1	-1
α_{22}	1	-1	-1	1

Applications

Exercice 4.9

Énoncé:

Soit χ un caractère irréductible non trivial d'un groupe fini G. Montrer que :

$$\sum_{g \in G} \chi_
ho(g) = 0$$

Résolution:

In [36]: _=G_E(Grep, {"premrelortho"}, 2, 0)

$$egin{aligned} \langle \chi_
ho, \chi_{ ext{trivial}}
angle &= 0 \ &rac{1}{|G|} \sum_{g \in G} \chi_
ho(g) \overline{\chi_{ ext{trivial}}(g)} = 0 \end{aligned}$$

Et comme $orall g \;\; \chi_{ ext{trivial}}(g) = 1$,on a bien :

$$\sum_{g \in G} \chi_
ho(g) = 0$$

Exercice 4.7

<u>Énoncé :</u>

Soient $\phi:G o \mathrm{GL}_n(\mathbb{C})$ et $ho:G o \mathrm{GL}_m(\mathbb{C})$ deux représentations. Soit $V=M_{mn}(\mathbb{C})$.

Définissons $au:G o \mathrm{GL}(V)$ par $au_g(A)=
ho_g A \phi_g^T.$

1. Montrer que au est une représentation de G.

Résolution:

Nous devons vérifier que c'est un homomorphisme de groupe. $orall A\in M_{mn}(\mathbb C)$ et $orall g,h\in G$:

$$au_{gh}(A) =
ho_{gh} A \phi_{gh}^T =
ho_g(
ho_h A \phi_h^T) \phi_g^T = au_g(au_h(A))$$

On en déduit aussi, comme pour tout homomorphisme :

$$au_e(A) =
ho_e A \phi_e^T = A$$

et

$$au_{q^{-1}}(A) = (au_q(A))^{-1}$$

Énoncé:

Soit au la représentation définie précédemment.

2.Montrer que:

$$au_g(E_{kl}) = \sum_{i,j}
ho_{ik}(g) \phi_{jl}(g) E_{ij}$$

Résolution:

Soit $E_{kl}=e_k(e_l)^T$, où e_k et e_l sont les vecteurs de la base canonique.

$$egin{aligned} au_g(E_{kl}) &=
ho_g E_{kl} \phi_g^T \ &=
ho_g(e_k(e_l)^T) \phi_g^T \ &= (
ho_g e_k) ((\phi_g e_l)^T) \ &=
ho_{.,k}(g) \phi_{.,l}(g)^T \ &= (
ho_{i,k}(g) \phi_{j,l}(g))_{i,j} \ &= \sum_{i,j}
ho_{i,k}(g) \phi_{j,l}(g) E_{i,j} \end{aligned}$$

Où:

 $ho_g e_k$ donne la k-ième colonne de ho_g $\phi_a e_l$ donne le l-ième colonne de ϕ_a

Le produit matriciel extérieur (outer) de ces deux vecteurs reconstruit une matrice qui peut s'écrire sur la base E_{ij} . \

<u>Énoncé :</u>

3.Prouver que $\chi_{ au}(g)=\chi_{
ho}(g)\chi_{\phi}(g)$

Résolution:

Pour obtenir la trace, il faut calculer la somme des coefficients diagonaux. Pour $w:U\to U$, et U a pour base $\{u_k\}_{1\le k\le mn}$, on a $w(u_i)=\sum_{k=1}^{mn}w_{k,i}u_k$ et la définition de la trace : $\mathrm{tr}(w)=\sum_{i=1}^{mn}(w(u_i))_i=\sum_{i=1}^{mn}w_{ii}$.

On peux définir une bijection linéaire f entre une base de U et celle de $M_{m,n}(\mathbb{C})$.

Considérons une matrice $A\in M_{m,n}(\mathbb{C})$:

$$A = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

Après linéarisation colonne par colonne, chaque élément a_{ij} est associé à un indice k donné par la formule :

$$k = (j-1)m + i.$$

La correspondance est représentée ainsi :

$$egin{bmatrix} 1 & m+1 & \cdots & (n-1)m+1 \ 2 & m+2 & \cdots & (n-1)m+2 \ dots & dots & \ddots & dots \ m & 2m & \cdots & nm \end{bmatrix}$$

Grace à cette formule, on peut definir la bijection $u:\mathbb{N}^* o\mathbb{N}^* imes\mathbb{N}^*$ tel que u(k)=(i,j).

Exemple : pour m=3 et n=4, la matrice est donnée par :

$$A = egin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \ a_{21} & a_{22} & a_{23} & a_{24} \ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}.$$

Les indices linéarisés sont :

$$\begin{bmatrix} 1 & 4 & 7 & 10 \\ 2 & 5 & 8 & 11 \\ 3 & 6 & 9 & 12 \end{bmatrix}.$$

$$f:U o M_{m,n}(\mathbb{C})$$
 tel que $f(u_k)=E_{
u(k)}=E_{i,j}$

```
In [37]: dot_content = r"""digraph CommutativeDiagram {
             // Graph attributes
             rankdir=LR;
             bgcolor="transparent";
             // Graph-level positioning
             center=true;
             // Node attributes
             //node [style=filled, fillcolor=transparent shape=none, fontname="Arial"];
             // Nodes with precise positioning
             U1 [label="U", pos="0,1!", margin="0,0",shape=none];
             U2 [label="U", pos="2,1!", margin="0,0", shape=none];
             M1 [label="M_{m,n}(\\mathbb{C})", pos="0,0!", margin="0,0",shape=none];
             M2 [label="M_{m,n}(\mathbb{C})", pos="2,0!", margin="0,0",shape=none];
             // Edges with dummy nodes
             //U1 -> f1 [style=invis];
             U1 -> U2 [style=solid];
```

```
//U2 -> f2 [style=invis];
             M1 -> M2 [style=solid];
             //U1 -> w [style=invis];
             U1 -> M1 [style=solid];
             //M1 -> tau [style=invis];
             U2 -> M2 [style=solid];
             // Dummy label nodes
             f1 [label="f", pos="-0.1,0.5!", shape=none,margin="0,0"];
             f2 [label="f", pos="1.9,0.5!", shape=none];
             w [label="w", pos="1,1.1!", shape=none];
             tau [label="\\tau_g", pos="1,0.1!", shape=none];
         # Save the DOT content to a file
         with open('commutative_diagram.dot', 'w') as f:
             f.write(dot content)
         # Define the path for the LaTeX file
         tex_file_path = 'commutative_diagram'
         # Convert the DOT file to LaTeX
         subprocess.run(f'dot2tex --prog "neato" --docpreamble "\\usepackage[utf8]{{inputenc}} \\usepackage[T1]{{fontenc}} \\usepackage{{amssymb}}" -tmath --autosize "{tex_file_path}.d
         # Insert LaTeX code into the notebook
         insert_standalone(f"{tex_file_path}.tex")
         # Compile the LaTeX file to generate the PDF
         subprocess.run(f'xelatex "{tex_file_path}.tex"', shell=True)
         # Convert the PDF to SVG
         subprocess.run(f'pdf2svg "{tex_file_path}.pdf" "{tex_file_path}.svg"', shell=True)
         # Display the SVG file in the notebook
         SVG(f"{tex_file_path}.svg")
Out[37]:
                                                                                        w=f^{-1}\circ	au_q\circ f
```

$$w=f\circ au_g\circ f \ au_g\circ f \ au_g\circ f)$$

Pour calculer la trace, commençons par calculer $w(u_p)$. On remplace $ho_{i,k}(g)\phi_{j,l}(g)$ par $lpha_{i,j}^{k,l}$ pour simplifier les calculs. k,l étant quelconque, on peut prendre u(p)=(k,l) :

$$egin{aligned} w(u_p) &= f^{-1} \circ au_g \circ f(u_p) \ &= f^{-1} \circ au_g \circ E_{
u(p)} \ &= f^{-1} \circ au_g(E_{k,l}) \ &= f^{-1} \left(\sum_{i,j} lpha_{i,j}^{k,l} E_{i,j}
ight) \ &= \sum_{i,j} lpha_{i,j}^{k,l} f^{-1}(E_{i,j}) \ &= \sum_{i} lpha_{
u(r)}^{k,l} u_r \end{aligned}$$

Prenons maintenant la p-ieme composante de $w(u_p)$:

$$(w(u_p))_p = \left(\sum_r \alpha_{\nu(r)}^{k,l} u_r\right)_p$$

$$= \alpha_{\nu(p)}^{k,l}$$

$$= \alpha_{k,l}^{k,l}$$

$$= \alpha_{k,l}^{k,l}$$
(13)

$$=\alpha_{k,l}^{k,l} \tag{14}$$

 $=
ho_{k,k}(g)\phi_{l,l}(g)$ (15)

Finalement, calculons la trace :

$$\operatorname{tr}(w) = \sum_{p=1}^{mn} (w(u_p))_p$$

$$= \sum_{k,l} \rho_{k,k}(g)\phi_{l,l}(g)$$
(16)

$$=\sum_{k=1}^{m}\sum_{l=1}^{n}\rho_{k,k}(g)\phi_{l,l}(g)$$
(18)

$$= \sum_{k=1}^{m} \rho_{k,k}(g) \sum_{l=1}^{n} \phi_{l,l}(g) \tag{19}$$

$$=\chi_{\phi}(g)\chi_{\rho}(g)\tag{20}$$

Finalement nous appliquons l'identification d'un endomorphisme avec une matrice :

$$egin{aligned} w \sim W \in M_{mn,mn}(\mathbb{C}) \ & f \sim F \in M_{mn,mn}(\mathbb{C}) \ & au_g \sim T_g \in M_{mn,mn}(\mathbb{C}) \ & tr(W) = tr(F^{-1}T_gF) = tr(T_g) \end{aligned}$$

Donc $tr(w) = tr(au_q) = \chi_{ au}(g)$.

<u>Énoncé :</u>

4. Soit G un groupe fini et χ,ψ deux caractères de G. Montrer que le produit point par point $\chi\cdot\psi:g\mapsto\chi(g)\psi(g)$ est un caractère de G .

Résolution:

Tout d'abord nous avons déjà démontré que $\forall g \in G, \quad g \mapsto \chi_{\rho}(g)\chi_{\phi}(g)$ est un caractère par construction de χ_{τ} .

Nous pouvons aussi le démontrer par l'étude de $\chi_{\rho}(g)\chi_{\phi}(g)$. Soit G un groupe fini, et χ,ψ deux caractères de G. Nous voulons montrer que leur produit point par point, défini par $(\chi\psi)(g)=\chi(g)\cdot\psi(g)$ pour tout $g\in G$, est également un caractère. Cela signifie qu'il s'agit d'un morphisme de groupe de G dans \mathbb{C}^* .\

Pour tout $g,h\in G$:

$$(\chi\psi)(gh)=\chi(gh)\cdot\psi(gh)$$

En utilisant le fait que χ et ψ sont des morphismes de groupe, nous avons :

$$\chi(gh) = \chi(g)\chi(h) \quad ext{et} \quad \psi(gh) = \psi(g)\psi(h).$$

Substituons ces expressions dans $(\chi\psi)(gh)$:

$$(\chi\psi)(gh) = \chi(g)\chi(h)\cdot\psi(g)\psi(h).$$

Réorganisons les termes :

$$(\chi\psi)(gh) = \big(\chi(g)\psi(g)\big)\cdot \big(\chi(h)\psi(h)\big).$$

Par définition de $\chi\psi$, cela devient :

$$(\chi\psi)(gh) = (\chi\psi)(g) \cdot (\chi\psi)(h).$$

Ainsi, $\chi\psi$ vérifie la propriété de morphisme de groupe. Cela montre que le produit point par point de deux caractères χ et ψ est lui-même un caractère.

Coefficients de Clebsch-Gordan (ouverture - calculs faux à vérifier)

► calculs faux à vérifier