Computational modeling of the cell cycle

Part 1

Review from previous lectures

System could oscillate or settle to stable values

What is different about the cell cycle?

Now we consider more than 2 variables

This allows the system to exhibit BOTH stable oscillations and bistability

Outline: Part 1

Biological background

Importance of "Maturation-Promoting Factor" (MPF)

(aka mitosis-promoting factor, M-phase promoting factor)

Regulation of MPF activation

G2→M transition driven by increase in MPF

MPF = Maturation Promoting Factor

Alberts et al. Molecular Biology of the Cell 4th edition.

Cyc = cyclin Cdk = cyclin-dependent kinase

Two obvious ways to regulate Cdk/MPF activity:

- 1) synthesis/degradation of cyclin
- 2) Phosphorylation/dephosphorylation of Cdk

cyclin is alternately synthesized and degraded

We will only consider M-type cyclins (aka cyclinB), not others

Positive feedback in activation of MPF

Alberts et al. Molecular Biology of the Cell 4th edition.

Greater MPF activity → Greater cdc25 activity Greater cdc25 activity → Greater MPF activity

Mutual activation can lead to: bistability

wee1 opposes MPF activation

Boutros et al. (2007) Nature Reviews Cancer 7:495-507

Even more complicated because MPF inhibits wee1

Therefore MPF regulates both:

- 1) activation of MPF (de-phosphorylation of CDK)
- 2) inactivation of MPF (phosphorylation of CDK)

Basics of the cell cycle MPF triggers cyclin degradation

It is difficult (or impossible) to make predictions using only intuition

A brief, possibly confusing aside

Multiple phosphorylation sites on Cdk
-P on T161/167 is activating, but this step not regulated
-P on T14 and Y15 are inhibitory, these are the regulatory steps
The model only considers the latter, treats these as a single site

T161 vs. T167 yeast vs. vertebrates

This –P on T-161/167
Required for function, but not regulated

Summary

MPF is the most important regulatory element in the cell cycle

MPF activity can be regulated by:

synthesis of cyclin dephosphorylation of cdk by cdc25 phosphorylation of cdk by wee1 cyclin degradation, initiated by MPF itself

Mathematical models can help to make sense of these complex regulatory interactions.