Predicting Droughts in the Amazon Basin based on Global Sea Surface Temperatures

Dario Lepke

Contents

In	ntroduction		
1	Related work		
2	ED	A precipitation	17
	2.1	Overview	17
	2.2	Precipitation values raw	17
	2.3	Mean at each location	17
	2.4	SD at each location	17
	2.5	Mean and SD at each location	17
	2.6	Trend at each location	17
	2.7	Means per month TEST	17
	2.8	SD per month TEST	17
	2.9	Trend per month TEST	17
3	ED.	A SST	19
	3.1	SST values raw	19
	3.2	Mean at each location	19
	3.3	SD at each location	19
	3.4	Mean and SD at each location	19
	3.5	Trend at each location	19
	3.6	Means per month TEST	19
	3.7	SD per month TEST	19
	3.8	Trend per month TEST	19

4		CONTENTS

4	Gly	ph plots sst	21
	4.1	For smaller window	21
5	Gly	ph plots	23
6	Cor	relation analysis	25
	6.1	Short Recap	25
	6.2	Correlation of Sea Surface Temperature and Precipitation	25
	6.3	Summary	26
7	Mai	n Idea Clustering	27
8	Clus	stering Methods	29
	8.1	K-means	29
	8.2	$ K\text{-medoids} \ldots \ldots$	29
	8.3	PCA	29
	8.4	Gap statistic	29
9	Clus	stering results	31
	9.1	K-means and PAM gap statistics without PCA $\ \ldots \ \ldots \ \ldots$	31
	9.2	K-means and PAM gap statistics after applying PCA	31
	9.3	Summary	31
10	Ana	llyse clustering results	33
11	Fuse	ed on OG	35
	11.1	Error plots	35
	11.2	Coefficient plots	35
	11.3	Inspect predictions from each fold	35
12	Lass	so on original data	37
	12.1	LASSO model	37
	12.2	Error plots	37
	12.3	Coefficient plots	37

CONTENTS	5
----------	---

	12.4	Inspect predictions from each fold	37
	12.5	Inspect predictions from best CV-lambda $\ \ldots \ \ldots \ \ldots \ \ldots$	37
	12.6	Summary	37
13	Lass	so on cluster 1	39
	13.1	Cluster 1	39
	13.2	Error plots	39
	13.3	Coefficient plots	39
	13.4	Inspect predictions from each fold $\ \ldots \ \ldots \ \ldots \ \ldots$	39
	13.5	Inspect predictions from best CV-lambda $\ \ldots \ \ldots \ \ldots$	39
	13.6	Summary	39
14	Lass	so with standardization	41
	14.1	Model	41
	14.2	Error plots	41
	14.3	Coefficient plots	41
	14.4	Inspect predictions from each fold $\ldots \ldots \ldots \ldots \ldots$	41
	14.5	Inspect predictions from best CV-lambda	41
	14.6	Summary	41
1 5	Lass	so with standardization updated	43
	15.1	$\operatorname{Model} \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	43
	15.2	Error plots	43
	15.3	Coefficient plots	43
	15.4	Inspect predictions from each fold $\dots \dots \dots \dots$	43
	15.5	Inspect predictions from best CV-lambda $\ \ldots \ \ldots \ \ldots \ \ldots$	43
	15.6	Summary	43
16	nocl	ust lasso	45
	16.1	LASSO model	45
	16.2	Error plots	45
	16.3	Coefficient plots	45
	16.4	Inspect predictions from each fold \dots	45

	16.5	Inspect predictions from best CV-lambda $\ \ldots \ \ldots \ \ldots$	45
	16.6	Summary	45
17	nocl	ust lasso stand	47
	17.1	LASSO model	47
	17.2	Error plots	47
	17.3	Coefficient plots	47
	17.4	Inspect predictions from each fold	47
	17.5	Inspect predictions from best CV-lambda	47
	17.6	Summary	47
18	Lass	so with center	49
	18.1	Model	49
	18.2	Error plots	49
	18.3	Coefficient plots	49
	18.4	Inspect predictions from each fold	49
	18.5	Inspect predictions from best CV-lambda	49
	18.6	Summary	49
19	Lass	so on cluster 2	51
	19.1	Cluster 2	51
	19.2	Error plots	51
	19.3	Coefficient plots	51
	19.4	Inspect predictions from each fold	51
	19.5	Inspect predictions from best CV-lambda	51
	19.6	Summary	51
20	Lass	so on cluster 3	53
	20.1	Cluster 3	53
	20.2	Error plots	53
	20.3	Coefficient plots	53
	20.4	Inspect predictions from each fold	53
	20.5	Inspect predictions from best CV-lambda	53
	20.6	Summary	53

CONTENTS		7

21	Lasso on cluster 4	55
	21.1 Cluster 4	55
	21.2 Error plots	55
	21.3 Coefficient plots	55
	21.4 Inspect predictions from each fold	55
	21.5 Inspect predictions from best CV-lambda	55
	21.6 Summary	55
22	Lasso on cluster 5	57
	22.1 Cluster 5	57
	22.2 Error plots	57
	22.3 Coefficient plots	57
	22.4 Inspect predictions from each fold	57
	22.5 Inspect predictions from best CV-lambda $\dots \dots$.	57
	22.6 Summary	57
23	lasso with lags	59
23	lasso with lags 23.1 LASSO model with lags	59
23		
23	23.1 LASSO model with lags	59
23	23.1 LASSO model with lags	59 59
23	23.1 LASSO model with lags	59 59 59
23	23.1 LASSO model with lags	59 59 59 59
	23.1 LASSO model with lags	59 59 59 59 59
	23.1 LASSO model with lags	59 59 59 59 59 59
	23.1 LASSO model with lags	595959595961
	23.1 LASSO model with lags	59 59 59 59 59 61 61
	23.1 LASSO model with lags 23.2 Error plots 23.3 Coefficient plots 23.4 Inspect predictions from each fold 23.5 Inspect predictions from best CV-lambda 23.6 Summary lasso with diff 24.1 LASSO model with diff 24.2 Error plots	59 59 59 59 59 59 61 61
	23.1 LASSO model with lags 23.2 Error plots 23.3 Coefficient plots 23.4 Inspect predictions from each fold 23.5 Inspect predictions from best CV-lambda 23.6 Summary lasso with diff 24.1 LASSO model with diff 24.2 Error plots 24.3 Coefficient plots	59 59 59 59 59 59 61 61 61

40	6 lasso with diff 2	63
	25.1 LASSO model with diff	63
	25.2 Error plots	63
	25.3 Coefficient plots	63
	25.4 Inspect predictions from each fold	63
	25.5 Inspect predictions from best CV-lambda $\dots \dots \dots$	63
	25.6 Summary	63
26	3 lasso with deseasonalised	65
	26.1 LASSO model, stl() on SST	65
	26.2 Error plots	65
	26.3 Coefficient plots	65
	26.4 Inspect predictions from each fold	65
	26.5 Inspect predictions from best CV-lambda $\dots \dots \dots$	65
	26.6 Summary	65
27	Lasso on sst anomalies	67
27	7 Lasso on sst anomalies 27.1 LASSO model	
27		67
27	27.1 LASSO model	67
27	27.1 LASSO model	67 67
27	27.1 LASSO model	67 67 67
27	27.1 LASSO model27.2 Error plots27.3 Coefficient plots27.4 Inspect predictions from each fold	67 67 67
	27.1 LASSO model27.2 Error plots27.3 Coefficient plots27.4 Inspect predictions from each fold27.5 Inspect predictions from best CV-lambda	67 67 67 67
	27.1 LASSO model 27.2 Error plots 27.3 Coefficient plots 27.4 Inspect predictions from each fold 27.5 Inspect predictions from best CV-lambda 27.6 Summary	67 67 67 67 67
	27.1 LASSO model	67 67 67 67 67
	27.1 LASSO model	67 67 67 67 67 69
	27.1 LASSO model	67 67 67 67 67 69 69
	27.1 LASSO model	677 677 677 677 699 699

9

29	Lasso on sst anomalies, differentiated	71
	29.1 LASSO model	71
	29.2 Error plots	71
	29.3 Coefficient plots	71
	29.4 Inspect predictions from each fold $\dots \dots \dots \dots$.	71
	29.5 Inspect predictions from best CV-lambda $\ \ldots \ \ldots \ \ldots$	71
	29.6 Summary	71
30	Lasso on sst anomalies, differentiated and standardized	73
	30.1 LASSO model	73
	30.2 Error plots	73
	30.3 Coefficient plots	73
	30.4 Inspect predictions from each fold $\dots \dots \dots \dots$	73
	30.5 Inspect predictions from best CV-lambda $\ \ldots \ \ldots \ \ldots \ \ldots$	73
	30.6 Summary	73
31	Small fused on OG	75
	31.1 Error plots	75
	31.2 Coefficient plots	75
	31.3 Inspect predictions from each fold	75
32	Small fused stand	77
	32.1 Error plots	77
	32.2 Coefficient plots	77
	32.3 Inspect predictions from each fold	77
33	Fused on OG gamma 0.1	79
	33.1 Error plots	79
	33.2 Coefficient plots	79

34	Fused on OG gamma 0.1 stand	81
	34.1 Error plots	81
	34.2 Coefficient plots	81
	34.3 Inspect predictions from each fold	81
35	explain gamma 01 results	83
36	Fused 5k	85
	36.1 Error plots	85
	36.2 Coefficient plots	85
	36.3 Inspect predictions from each fold	85
37	Noclust Fused 5k	87
	37.1 Error plots	87
	37.2 Coefficient plots	87
	37.3 Inspect predictions from each fold	87
38	Fused 5k stand	89
	38.1 Error plots	89
	38.2 Coefficient plots	89
	38.3 Inspect predictions from each fold	89
39	Fused on OG gamma 0.1 stand	91
	39.1 Error plots	91
	39.2 Coefficient plots	91
	39.3 Inspect predictions from each fold	91
40	LASSO Regression	93
	40.1 The LASSO	93
	40.2 TODO here	93
41	Fused Lasso Regression	95
	41.1 The fused lasso	95
42	quick summary what I got so far from the algorithm	97

CONTENTS	11
----------	----

43	what to they actually use now 99	
44	test lasso new plots 101	
	44.1 LASSO model	
	44.2 Error plots	
	44.3 Coefficient plots	
	44.4 Inspect predictions from each fold $\dots \dots \dots$	
	44.5 Inspect predictions from best CV-lambda $\ \ldots \ \ldots \ \ldots \ \ldots \ 101$	
	44.6 Summary	

Introduction

Related work

EDA precipitation

- 2.1 Overview
- 2.2 Precipitation values raw
- 2.3 Mean at each location
- 2.4 SD at each location
- 2.5 Mean and SD at each location
- 2.6 Trend at each location
- 2.7 Means per month TEST
- 2.8 SD per month TEST
- 2.9 Trend per month TEST

EDA SST

- 3.1 SST values raw
- 3.2 Mean at each location
- 3.3 SD at each location
- 3.4 Mean and SD at each location
- 3.5 Trend at each location
- 3.6 Means per month TEST
- 3.7 SD per month TEST
- 3.8 Trend per month TEST

Glyph plots sst

Placeholder

4.1 For smaller window

Glyph plots

Correlation analysis

Placeholder

6.1 Short Recap

- 6.2 Correlation of Sea Surface Temperature and Precipitation
- 6.2.1 Original Data
- 6.2.1.1 Timelag 0
- 6.2.1.2 Timelag 3
- $\mathbf{6.2.1.3} \quad \mathbf{Timelag} \ \mathbf{6}$
- $\mathbf{6.2.1.4} \quad \mathbf{Timelag} \ \mathbf{12}$
- 6.2.2 Deseasonalised Data
- 6.2.2.1 Timelag 0
- 6.2.2.2 Timelag 3
- 6.2.2.3 Timelag 6
- 6.2.2.4 Timelag 12

6.3 Summary

6.3.1 Original Data

6.3.2 Deseasonalised Data

In this chapter we will first summarize the main ideas of clustering and then apply it to the precipitation data. If not indicated otherwise the information is taken from Elements of Statistical Learning.

Main Idea Clustering

We can describe an object by a set of measurements or its similarity to other objects. Using this similarity we can put a collection of objects into subgroups or clusters. The objects in the subgroups should then be more similar to one another than to objects of different subgroups. This means inside the clusters we aim for homogeneity and for observations of different clusters for heterogeneity. With the clustering analysis applied to the precipitation data we want to study if there are distinct groups (regions) apparent in the CAB. So that if we later apply the regression models we predict the precipitation for each group and not for the whole region.

To explore the grouping in the data we need a measure of (dis)similarity. This measure is central and depends on subject matter considerations. We construct the dissimilarities based on the measurements taken for each month. We interpret this as a multivariate analysis where, each month is one variable. So given the area in the CAB (resolution $5^{\circ}x5^{\circ}$), we have 612 cells and 432 months, resulting in a 612×432 data matrix. we want to cluster cells into homogen groups.

Clustering Methods

- 8.1 K-means
- 8.1.1 Kmeans characteristics
- 8.2 K-medoids
- 8.2.1 K-medoids characteristics
- 8.3 PCA
- 8.4 Gap statistic

Clustering results

- 9.1 K-means and PAM gap statistics without PCA
- 9.1.1 Scree plot
- 9.2 K-means and PAM gap statistics after applying PCA
- 9.3 Summary

Analyse clustering results

Fused on OG

- 11.1 Error plots
- 11.2 Coefficient plots
- 11.3 Inspect predictions from each fold

Lasso on original data

- 12.1 LASSO model
- 12.2 Error plots
- 12.3 Coefficient plots
- 12.4 Inspect predictions from each fold
- 12.5 Inspect predictions from best CV-lambda
- 12.6 Summary

Lasso on cluster 1

- 13.1 Cluster 1
- 13.2 Error plots
- 13.3 Coefficient plots
- 13.4 Inspect predictions from each fold
- 13.5 Inspect predictions from best CV-lambda
- 13.6 Summary

Lasso with standardization

- 14.1 Model
- 14.2 Error plots
- 14.3 Coefficient plots
- 14.4 Inspect predictions from each fold
- 14.5 Inspect predictions from best CV-lambda
- 14.6 Summary

Lasso with standardization updated

- 15.1 Model
- 15.2 Error plots
- 15.3 Coefficient plots
- 15.4 Inspect predictions from each fold
- 15.5 Inspect predictions from best CV-lambda
- 15.6 Summary

noclust lasso

- 16.1 LASSO model
- 16.2 Error plots
- 16.3 Coefficient plots
- 16.4 Inspect predictions from each fold
- 16.5 Inspect predictions from best CV-lambda
- 16.6 Summary

noclust lasso stand

- 17.1 LASSO model
- 17.2 Error plots
- 17.3 Coefficient plots
- 17.4 Inspect predictions from each fold
- 17.5 Inspect predictions from best CV-lambda
- 17.6 Summary

Lasso with center

- 18.1 Model
- 18.2 Error plots
- 18.3 Coefficient plots
- 18.4 Inspect predictions from each fold
- 18.5 Inspect predictions from best CV-lambda
- 18.6 Summary

Lasso on cluster 2

- 19.1 Cluster 2
- 19.2 Error plots
- 19.3 Coefficient plots
- 19.4 Inspect predictions from each fold
- 19.5 Inspect predictions from best CV-lambda
- 19.6 Summary

Lasso on cluster 3

20.1	Cluster 3
20.2	Error plots
20.3	Coefficient plots
20.4	Inspect predictions from each fold
20.5	Inspect predictions from best CV-lambda
20.6	Summary

Lasso on cluster 4

- 21.1 Cluster 4
- 21.2 Error plots
- 21.3 Coefficient plots
- 21.4 Inspect predictions from each fold
- 21.5 Inspect predictions from best CV-lambda
- 21.6 Summary

Lasso on cluster 5

- 22.1 Cluster 5
- 22.2 Error plots
- 22.3 Coefficient plots
- 22.4 Inspect predictions from each fold
- 22.5 Inspect predictions from best CV-lambda
- 22.6 Summary

lasso with lags

- 23.1 LASSO model with lags
- 23.2 Error plots
- 23.3 Coefficient plots
- 23.4 Inspect predictions from each fold
- 23.5 Inspect predictions from best CV-lambda
- 23.6 Summary

lasso with diff

- 24.1 LASSO model with diff
- 24.2 Error plots
- 24.3 Coefficient plots
- 24.4 Inspect predictions from each fold
- 24.5 Inspect predictions from best CV-lambda
- 24.6 Summary

lasso with diff 2

- 25.1 LASSO model with diff
- 25.2 Error plots
- 25.3 Coefficient plots
- 25.4 Inspect predictions from each fold
- 25.5 Inspect predictions from best CV-lambda
- 25.6 Summary

lasso with deseasonalised

- 26.1 LASSO model, stl() on SST
- 26.2 Error plots
- 26.3 Coefficient plots
- 26.4 Inspect predictions from each fold
- 26.5 Inspect predictions from best CV-lambda
- 26.6 Summary

Lasso on sst anomalies

- 27.1 LASSO model
- 27.2 Error plots
- 27.3 Coefficient plots
- 27.4 Inspect predictions from each fold
- 27.5 Inspect predictions from best CV-lambda
- 27.6 Summary

Lasso on sst anomalies, standardized

- 28.1 LASSO model
- 28.2 Error plots
- 28.3 Coefficient plots
- 28.4 Inspect predictions from each fold
- ${\bf 28.5} \quad {\bf Inspect \ predictions \ from \ best \ CV-lambda}$
- 28.6 Summary

Lasso on sst anomalies, differentiated

- 29.1 LASSO model
- 29.2 Error plots
- 29.3 Coefficient plots
- 29.4 Inspect predictions from each fold
- 29.5 Inspect predictions from best CV-lambda
- 29.6 Summary

Lasso on sst anomalies, differentiated and standardized

Placeholder

30.6 Summary

30.1	LASSO model
30.2	Error plots
30.3	Coefficient plots
30.4	Inspect predictions from each fold
30.5	Inspect predictions from best CV-lambda

74 CHAPTER~30.~~LASSO~ON~SST~ANOMALIES, DIFFERENTIATED~AND~STANDARDIZED

Small fused on OG

- 31.1 Error plots
- 31.2 Coefficient plots
- 31.3 Inspect predictions from each fold

Small fused stand

- 32.1 Error plots
- 32.2 Coefficient plots
- 32.3 Inspect predictions from each fold

Fused on OG gamma 0.1

- 33.1 Error plots
- 33.2 Coefficient plots
- 33.3 Inspect predictions from each fold

Fused on OG gamma 0.1 stand

- 34.1 Error plots
- 34.2 Coefficient plots
- 34.3 Inspect predictions from each fold

explain gamma 01 results

Fused 5k

- 36.1 Error plots
- 36.2 Coefficient plots
- 36.3 Inspect predictions from each fold

Noclust Fused 5k

- 37.1 Error plots
- 37.2 Coefficient plots
- 37.3 Inspect predictions from each fold

Fused 5k stand

- 38.1 Error plots
- 38.2 Coefficient plots
- 38.3 Inspect predictions from each fold

Fused on OG gamma 0.1 stand

- 39.1 Error plots
- 39.2 Coefficient plots
- 39.3 Inspect predictions from each fold

LASSO Regression

- 40.1 The LASSO
- 40.2 TODO here

Fused Lasso Regression

41.1 The fused lasso

```
# TODO add statistical learning with sparsity to references.
# TODO add to summary of LASSO defaults, that characteristic
# of LASSO
```

As expected and seen in the results, the different LASSO models choose single SST regions as predictors as opposed to whole regions. Since the LASSO only regularizes the magnitude of coefficients but ignores the their ordering. We therefore use the so-called *fused lasso* as implemented in the *genlasso* package and the respective *fusedlasso* function (@ref{genlassopackage}, @ref{thibshirani2005sparsity}).

```
# TODO make reference to achieved results here
# TODO cite general LASSO properties here
# how it acts in situations where coefficients are grouped
# or highly correlated.
# TODO add plot of the graph given by our helper functions.
# TODO add graphic of fig.2 fused lasso
```

The fused LASSO solves the problem:

$$\min_{\beta} 1/2 \sum_{i=1}^{n} (y_i - x_i^T \beta_i)^2 + \lambda \sum_{i,j \in E} |\beta_i - \beta_j| + \gamma \cdot \lambda \sum_{i=1}^{p} |\beta_i|,$$

with x_i being the ith row of the predictor matrix and E is the edge set of an underlying graph. Regularizing $|\beta_i - \beta_j|$, penalizes large differences in close coefficients. In our case "close" means small distances as defined on 2-dimensional longitude/latitude grid. This grid defines a graph that can be used to compute the differences for each location. The third term $\gamma \cdot \lambda \sum_{i=1}^p |\beta_i|$, controls the sparsity of the coefficients. $\gamma = 0$ leads to complete fusion of the coefficients (no sparsity) and $\gamma > 0$ introduces sparsity to the solution, with higher values placing more priority on sparsity. $\hat{\beta}$ is computed as a function of λ , with fixed γ .

#TODO note the fused lasso paper here are

- # TODO add efficient implementations of hte generlaized lasso dual path # algorithm to references
- # TODO ?check generalized dual path algorithm og paper?
- # Efficient Implementations of the Generalized Lasso Dual Path # Algorithm

In the fused lasso setting the coefficients $\beta \in \mathbb{R}^p$ can be thought of as nodes of a given undirected Graph G, with edge set $E \subset 1, ..., p^2$. Now lets assume that E has m edges which are enumerated $e_1, ..., e_m$. The fused lasso penalty matrix D is then $m \times p$, where each row corresponds to an edge in E. So when $e_l = (i, j)$, we write $l_t h$ row of D as

$$D_l = (0, \dots -1, \dots 1, \dots) \in \mathbb{R}^p,$$

meaning D_l has all zeros except for the $i_t h$ and $j_t h$ location.

quick summary what I got so far from the algorithm

1.2 case X=I. very general dual path algorithm then the use general X, here they compute moore-penrose pseudoinverse and substitute Xtilde and ytilde Also when p>n X does not have full column rank they add a diagonal matrix to the rows, with eps time beta magnitude on the diagonals (see github)

implementation: do not solve least square problems all the time, but use QR decomposition in the beginning and then later update the QR decomposition. in some cases more meaningful to take advantage of special structures of D. In our case they use Laplacian linear systems

QR-based general X computing D tilde = DX+ destroy special structures in D, need other methods see Section 5 NOTE: total number of steps are not understood really they use direct solvers because past decisions influence future outcome

- QR-based general D QR in appendix but role of m and n are changed. two strategies: wide and tall our case tall strategy DPG=QR, rotated QR decomposition
- 3. Special implementation for fused lasso, X=I computing DDT are highly sparse but. are underdetermined because m larger than n, more edges than nodes. We can find arbitrary solution (we will called it basic solution) and from arbitrary solution we can find solution with minimum 12 norm.

 4.1 There is not necesserily a computional improvement but for special cases as for example fused lasso there are improvements because of special structure in D. they compute projection onto the null and basic solutions of linear systems, then from basic solution, optimal solution.

 $98 CHAPTER\ 42.\ \ QUICK\ SUMMARY\ WHAT\ I\ GOT\ SO\ FAR\ FROM\ THE\ ALGORITHM$

what to they actually use now

They change algorithm 2 becaus using xtild and stuff because are options are needed when D has structure using xtilde will destroy special structure in D. So when X general we use xtilde but using xtilde will destroy structure in D, therefore when X general AND D has structure use following:

test lasso new plots

- 44.1 LASSO model
- 44.2 Error plots
- 44.3 Coefficient plots
- 44.4 Inspect predictions from each fold
- 44.5 Inspect predictions from best CV-lambda
- 44.6 Summary