

Комп'ютерне моделювання задач прикладної математики

Динамічні системи

Однакові часи релаксації $au_x pprox au_y pprox au_z = 1$

• Система Лоренца

$$\begin{cases}
\tau_x \frac{dx}{dt} = \sigma(y - x) \\
\tau_y \frac{dy}{dt} = x(r - z) - y \\
\tau_z \frac{dz}{dt} = xy - bz
\end{cases}$$

$$\begin{cases} \tau_x \frac{dx}{dt} = \sigma(y - x) = f(x, y, z) \\ \tau_y \frac{dy}{dt} = x(r - z) - y = g(x, y, z) \\ \tau_z \frac{dz}{dt} = xy - bz = h(x, y, z) \end{cases}$$

Стаціонарні стани:

$$\frac{dx}{dt} = 0; \frac{dy}{dt} = 0; \frac{dz}{dt} = 0 \to \{x_0, y_0, z_0\}$$

$$\begin{cases} \sigma(y-x) = 0 \Rightarrow y = x \\ x(r-z) - y = 0 \Rightarrow x(r-z-1) = 0 \Rightarrow \begin{cases} x = 0 \\ z = r-1 \end{cases} \\ xy - bz = 0 \Rightarrow x^2 = bz \Rightarrow x = \pm \sqrt{b(r-1)} \end{cases}$$

Стаціонарні стани

$$(x_0, y_0, z_0) = (0,0,0)$$

$$(x_0, y_0, z_0) = (\sqrt{b(r-1)}, \sqrt{b(r-1)}, r-1)$$

$$(x_0, y_0, z_0) = (-\sqrt{b(r-1)}, -\sqrt{b(r-1)}, r-1)$$

Стаціонарні стани

$$(x_0, y_0, z_0) = (0,0,0)$$

$$(x_0, y_0, z_0) = (\sqrt{b(r-1)}, \sqrt{b(r-1)}, r-1)$$

$$(x_0, y_0, z_0) = (-\sqrt{b(r-1)}, -\sqrt{b(r-1)}, r-1)$$

$$\begin{cases} \tau_x \frac{dx}{dt} = \sigma(y-x) = f(x,y,z) \\ \tau_y \frac{dy}{dt} = x(r-z) - y = g(x,y,z) \end{cases}$$
 Стаціонарні стани:
$$\frac{dx}{dt} = 0; \frac{dy}{dt} = 0; \frac{dz}{dt} = 0 \rightarrow \{x_0, y_0, z_0\}$$

$$\tau_z \frac{dz}{dt} = xy - bz = h(x,y,z)$$

$$\frac{dx}{dt} = 0; \frac{dy}{dt} = 0; \frac{dz}{dt} = 0 \to \{x_0, y_0, z_0\}$$

Матриця Якобі

$$M = \begin{pmatrix} \frac{df(x,y,z)}{dx} \Big|_{x_0 y_0, z_0} - \lambda & \frac{df(x,y,z)}{dy} \Big|_{x_0 y_0, z_0} & \frac{df(x,y,z)}{dz} \Big|_{x_0 y_0, z_0} \\ \frac{dg(x,y,z)}{dx} \Big|_{x_0 y_0, z_0} & \frac{dg(x,y,z)}{dy} \Big|_{x_0 y_0, z_0} - \lambda & \frac{dg(x,y,z)}{dz} \Big|_{x_0 y_0, z_0} \\ \frac{dh(x,y,z)}{dx} \Big|_{x_0 y_0, z_0} & \frac{dh(x,y,z)}{dy} \Big|_{x_0 y_0, z_0} & \frac{dh(x,y,z)}{dz} \Big|_{x_0 y_0, z_0} - \lambda \end{pmatrix}$$

$$\det(M) = 0 \to A\lambda^3 + B\lambda^2 + C\lambda + D = 0 \to \lambda(\sigma, r, b)$$

Характеристичне рівняння

$$A\Lambda^3 + B\Lambda^2 + C\Lambda + D = 0,$$
 $X = X(\sigma, r, b),$ $X = \{A, B, C, D\}$

Показник стійкості (Ляпунова) $\Lambda = \lambda + i \varpi$

- 1. Реалізація безколивального режиму (вузол/сідло): $\Lambda = \lambda$
- 2. Реалізація нейтрального стану: $\Lambda = i \varpi$
- 3. Реалізація коливального режиму: $\Lambda = \lambda + i \varpi$

1. Реалізація безколивального режиму (вузол/сідло): $\Lambda = \lambda$

$$A\lambda^3 + B\lambda^2 + C\lambda + D = 0,$$
 $X = X(\sigma, r, b),$ $X = \{A, B, C, D\}$

$$X = X(\sigma, r, b),$$

$$X = \{A, B, C, D\}$$

I — стійкий вузол: $\lambda_1 < 0$; $\lambda_2 < 0$; $\lambda_3 < 0$

II – нестійкий вузол: $\lambda_1 > 0$; $\lambda_2 > 0$; $\lambda_3 > 0$

III – сідло: $\lambda_i < 0$; $\lambda_{i,k} > 0$; або $\lambda_i > 0$; $\lambda_{i,k} < 0$

2. Реалізація нейтрального стану: $\Lambda = i \varpi$

$$A\Lambda^3 + B\Lambda^2 + C\Lambda + D = 0,$$
 $X = X(\sigma, r, b),$ $X = \{A, B, C, D\}$

$$X = X(\sigma, r, b),$$

$$X = \{A, B, C, D\}$$

$$-i\omega^{3}A + iC\omega = 0 \Rightarrow C = A\omega^{2} \Rightarrow \omega^{2} = \frac{C}{A}$$
$$D - B\omega^{2} = 0 \Rightarrow \omega^{2} = \frac{D}{B}$$

$$\frac{C}{A} = \frac{D}{B}$$

2. Реалізація нейтрального стану: $\Lambda = i \varpi$

$$A\Lambda^3 + B\Lambda^2 + C\Lambda + D = 0,$$
 $X = X(\sigma, r, b),$ $X = \{A, B, C, D\}$

$$X = X(\sigma, r, b),$$

$$X = \{A, B, C, D\}$$

I – існує центр

II – не існує центр

3. Реалізація коливального режиму: $\Lambda = \lambda + i \varpi$

$$A\Lambda^{3} + B\Lambda^{2} + C\Lambda + D = 0, \qquad X = X(\sigma, r, b), \qquad X = \{A, B, C, D\}$$

$$A\Lambda^{3} + B\Lambda^{2} + C\Lambda + D = 0, \qquad X = X(\sigma, r, b), \qquad X = \{A, B, C, D\}$$

$$A^{3} = (\lambda + 1\omega)^{3} = (\lambda + 1\omega)(\lambda^{2} + 2\lambda \omega^{2} - \omega^{2}) = \lambda^{3} + 2\lambda^{2}\omega - \omega^{2} + \lambda^{2}\omega - 2\lambda\omega^{2} - \lambda\omega^{2} - \lambda\omega^{2} + \lambda^{2}\omega - 2\lambda\omega^{2} - \lambda\omega^{2} - \lambda\omega^{2} + \lambda^{2}\omega - 2\lambda\omega^{2} - \lambda\omega^{2} - \omega\omega^{2} - \lambda\omega^{2} - \omega\omega^{2} - \lambda\omega^{2} - \omega\omega^{2} -$$

2. Реалізація коливального режиму: $\Lambda = \lambda + i \varpi$

$$A\Lambda^{3} + B\Lambda^{2} + C\Lambda + D = 0, \qquad X = X(\sigma, r, b), \qquad X = \{A, B, C, D\}$$

$$A \lambda^{3} + B\lambda^{2} + C\lambda + D - 3A\lambda\omega^{2} - B\omega^{2} = 0$$

$$A (3\lambda^{2} - \omega^{2}) + 2B\lambda + C = 0 = 7$$

$$= 7A\lambda^{2} - A\omega^{2} + 2B\lambda + C = 0$$

$$= 7A\lambda^{2} - 3A\lambda^{2} + 2B\lambda + C = 0$$

$$= 7A\lambda^{2} - 3A\lambda^{2} + 2B\lambda + C = 0$$

$$= 7A\lambda^{2} - 3A\lambda^{2} + 2B\lambda + C = 0$$

$$= 7A\lambda^{2} - 3A\lambda^{2} + 2B\lambda + C = 0$$

2. Реалізація коливального режиму: $\Lambda = \lambda + i \varpi$

$$A\Lambda^{3} + B\Lambda^{2} + C\Lambda + D = 0, \qquad X = X(\sigma, r, b), \qquad X = \{A, B, C, D\}$$

$$A\Lambda^{3} + B\Lambda^{2} + C\Lambda + D = 0, \qquad X = X(\sigma, r, b), \qquad X = \{A, B, C, D\}$$

$$A\Lambda^{3} + B\Lambda^{2} + C\Lambda + D = 0, \qquad X = X(\sigma, r, b), \qquad X = \{A, B, C, D\}$$

$$A\Lambda^{3} + B\Lambda^{2} + C\Lambda + D = 0, \qquad X = X(\sigma, r, b), \qquad X = \{A, B, C, D\}$$

$$A\Lambda^{3} + B\Lambda^{2} + C\Lambda + D = 0, \qquad X = X(\sigma, r, b), \qquad X = \{A, B, C, D\}$$

$$A\Lambda^{3} + B\Lambda^{2} + C\Lambda + D = 0, \qquad X = X(\sigma, r, b), \qquad X = \{A, B, C, D\}$$

$$A\Lambda^{3} + B\Lambda^{2} + C\Lambda + D = 0, \qquad X = X(\sigma, r, b), \qquad X = \{A, B, C, D\}$$

$$A\Lambda^{3} + B\Lambda^{2} + C\Lambda + D = 0, \qquad X = X(\sigma, r, b), \qquad X = \{A, B, C, D\}$$

$$A\Lambda^{3} + B\Lambda^{2} + C\Lambda + D = 0, \qquad X = X(\sigma, r, b), \qquad X = \{A, B, C, D\}$$

$$A\Lambda^{3} + B\Lambda^{2} + C\Lambda + D = 0, \qquad X = X(\sigma, r, b), \qquad X = \{A, B, C, D\}$$

$$A\Lambda^{3} + B\Lambda^{2} + C\Lambda + D = 0, \qquad X = X(\sigma, r, b), \qquad X = \{A, B, C, D\}$$

$$A\Lambda^{3} + B\Lambda^{2} + C\Lambda + D = 0, \qquad X = X(\sigma, r, b), \qquad X = \{A, B, C, D\}$$

$$A\Lambda^{3} + B\Lambda^{2} + C\Lambda + D = 0, \qquad X = X(\sigma, r, b), \qquad X = \{A, B, C, D\}$$

$$A\Lambda^{3} + B\Lambda^{2} + C\Lambda^{2} + D = 0, \qquad X = X(\sigma, r, b), \qquad X = \{A, B, C, D\}$$

$$A\Lambda^{3} + B\Lambda^{2} + C\Lambda^{2} + D = 0, \qquad X = X(\sigma, r, b), \qquad X = \{A, B, C, D\}$$

$$A\Lambda^{3} + B\Lambda^{2} + C\Lambda^{2} + D = 0, \qquad X = X(\sigma, r, b), \qquad X = \{A, B, C, D\}$$

$$A\Lambda^{3} + B\Lambda^{2} + C\Lambda^{2} + D = 0, \qquad X = X(\sigma, r, b), \qquad X = \{A, B, C, D\}$$

$$A\Lambda^{3} + B\Lambda^{2} + C\Lambda^{2} + D = 0, \qquad X = X(\sigma, r, b), \qquad X = \{A, B, C, D\}$$

$$A\Lambda^{3} + B\Lambda^{2} + C\Lambda^{2} + D = 0, \qquad X = X(\sigma, r, b), \qquad X = \{A, B, C, D\}$$

$$A\Lambda^{3} + B\Lambda^{2} + C\Lambda^{2} + D = 0, \qquad X = X(\sigma, r, b), \qquad X = \{A, B, C, D\}$$

$$A\Lambda^{3} + B\Lambda^{3} + D\Lambda^{3} + D\Lambda^{3}$$

2. Реалізація коливального режиму: $\Lambda = \lambda + i \varpi$

$$A\Lambda^3 + B\Lambda^2 + C\Lambda + D = 0,$$
 $X = X(\sigma, r, b),$ $X = \{A, B, C, D\}$

$$X = X(\sigma, r, b),$$

$$X = \{A, B, C, D\}$$

I – стійкий фокус

II – нестійкий фокус

Карта показників Ляпунова

Система Реслера

$$\left\{egin{array}{l} rac{dx}{dt} = -y-z \ rac{dy}{dt} = x+ay \ rac{dz}{dt} = b+z(x-c) \end{array}
ight.$$

Карта показників Ляпунова

Старший Показник Ляпунова

динамічної системи — величина, що характеризує швидкість видалення друг від друга траєкторій. Позитивність показника Ляпунова зазвичай свідчить про хаотичну поведінку системи.

$$\lambda = \lim_{\substack{t \to \infty \\ \delta x(0) \to 0}} \frac{1}{t} \ln \left| \frac{\delta x(t)}{\delta x(0)} \right|.$$

Карта показників Ляпунова

Нехай $\delta x(0)$ — нескінченно мала відстань між двома точками у фазовому просторі, які належать різним фазовим траєкторіям у момент часу $t=0,\,\delta x(t)$ — відстань між цими точками у момент часу t. Тоді можна записати

$$|\delta x(t)| \approx |\delta x(0)| \exp(\lambda t),$$

де параметр λ називається показником Ляпунова. Якщо $\lambda > 0$, то дві фазові траєкторії, які виходять із малого околу певної точки простору (початкові координати зсунуті на незначну відстань), з часом розходяться експоненціально швидко

Формула для розрахунку показника Ляпунова

$$\lambda = \lim_{\substack{t \to \infty \\ \delta x(0) \to 0}} \frac{1}{t} \ln \left| \frac{\delta x(t)}{\delta x(0)} \right|.$$

У загальному випадку він є функцією початкової координати.

Карта показників Ляпунова

Алгоритм

Розглянемо алгоритм обчислення старшого показника Ляпунова.

- П Отримуємо чисельний розв'язок динамічних рівнянь на інтервалі часу, який є достатнім для того, щоб траєкторія система вийшла на атрактор. У результаті одержуємо деяку точку фазового простору $\overrightarrow{x}(0)$, яку будемо вважати за вихідну.
- $\boxed{2}$ Розраховуємо траєкторію, що виходить із точки $\overrightarrow{x}(0)$, та збурену траєкторію, що стартує з точки $\overrightarrow{x}(0)+\overrightarrow{\delta x}_0$. При цьому норма $||\overrightarrow{\delta x}_0||=\varepsilon$. Для цього знаходимо чисельний розв'язок системи на інтервалі часу T і отримуємо вектор стану $\overrightarrow{x}_1\equiv\overrightarrow{x}(T)$ і його збурення $\overrightarrow{\delta x}_1$ у даний момент часу. Відношення $||\overrightarrow{\delta x}_1||/\varepsilon$ характеризує зміну норми вектора збурення за час T.
- $\fbox{3}$ Перевизначимо цей вектор так, щоб його напрямок залишився тим самим, а норма дорівнювала вихідному значенню ε , а саме

$$\overrightarrow{\delta x}_1 = \varepsilon \overrightarrow{\delta x}_1 / ||\overrightarrow{\delta x}_1||.$$

Виконуємо розв'язання на наступному інтервалі часу T, узявши за початкову точку та початкове збурення $\overrightarrow{x}(0) = \overrightarrow{x}_1$ та $\overrightarrow{\delta x}_0 = \overrightarrow{\delta x}_1$ відповідно (пункт 2). Далі процес триває. Після достатньої кількості ітерацій N переходимо до пункту 4.

[4] Розраховуємо старший показник Ляпунова:

$$\lambda \simeq rac{1}{NT} \sum_{i=1}^{N} \ln rac{||\overrightarrow{\delta x_i}||}{arepsilon}.$$

ДЯКУЮ ЗА УВАГУ