CC443	Mobile &Wireless Communications Sheet No.1
Name:	I. D.
and th	ulate the power level of a signal having power=10 mwatt in dBW nen in dBm. Comment on the results.
1	-in dBm \implies L= 10 log R $\frac{10\times10^{-3}}{1\times10^{-3}}$: L= 10dBm LindBN \implies L= 10 log R $\frac{10\times10^{-3}}{1}$: L= -2odB
2 Calculate the value of the free space path loss between a wireless transmitter and receiver if the frequency=820 MHz and the distance d=2.0Km.what will be the answer if the distance is doubled.?Comment.	
Ske	LFS = $32.44+20logf+20logD$ LFS = $96.7dB$ LFS = $102-7idB$
	3-Repeat the first part of problem(2) but when the frequency is doubled.Comment on the new results
	LFS = 37.44+20log(2x820) + 20log(2) 2 102-7 dB
	Doubling the dispance will into the fresque Path-loss by 6 dB = 20log(2) = 6dB

4-Repeat problem 2 (the first part) considering the additional losses and the gains of transmitting and receiving antenna to get actual losses

$$G_{T}=12dB$$

$$G_{R}=14dB$$

Total losses = LFST FM-(GT+GR)

TL = 96.7+15-(12+14)

TL = 85.7 dB.

Total losses

may be less
than free space
loss. Depending
on the value of

FM, GT & GR.