ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΑΡΙΘΜΗΤΙΚΗΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ

ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2021 Α΄ ΠΕΡΙΟΔΟΣ

ΘΕΜΑ 10: Υπολογίστε την ακόλουθη ορίζουσα:

$$\begin{vmatrix} \alpha-\beta-\gamma & 2\alpha & 2\alpha \\ 2\beta & \beta-\gamma-\alpha & 2\beta \\ 2\gamma & 2\gamma & \gamma-\alpha-\beta \end{vmatrix}$$

<u>ΘΕΜΑ 20:</u> Διερευνήστε το πλήθος των λύσεων του συστήματος (Σ) σε σχέση με τις τιμές της παραμέτρου α :

$$\begin{bmatrix} \alpha & 2 & 1 \\ 1 & 1 & \alpha \\ 1 & 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} (\Sigma)$$

ΘΕΜΑ 30: α) Αν u είναι ένα μοναδιαίο διάνυσμα, δείξτε ότι ο πίνακας $Q = I - 2uu^T$ είναι ορθογώνιος

β) Υπολογίστε τον Q όταν $u^T = \left[\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}\right]$.

ΘΕΜΑ 40: α) Να διαγωνιοποιηθεί ο πίνακας $A = \begin{bmatrix} 5 & -4 \\ 6 & -6 \end{bmatrix}$ και να υπολογιστεί ο A^k όπου k το άθροισμα των ψηφίων του αριθμού μητρώου σας.

β) Με τη χρήση του θεωρήματος *Caley-Hamilton* υπολογίστε τον αντίστροφο του πίνακα A.

<u>ΘΕΜΑ 50:</u> α) Αν το χαρακτηριστικό πολυώνυμο ενός πίνακα B είναι $p_B(\lambda) = -\lambda^3 + 15\lambda^2 - 25\lambda + 172$ να βρεθεί η ορίζουσα του πίνακα B.

β) Να βρείτε ένα 3×3 πίνακα Γ ο οποίος να έχει φάσμα $Sp(\Gamma) = \{-1,1,2\}$ και αντίστοιχα ιδιοδιανύσματα $v_1 = (-1,0,1), v_2 = (1,2,1), v_3 = (0,3,1).$

ӨЕМА 10 :		2,0
ӨЕМА 2 0:		2,0
ОЕМА 30:	α)	1,0
OEMA 40:	β)	1,0
	α)	1,0
OEMA 50:	β)	1,0
	α)	0,5
GEIVIA 50:	β)	1,5
ΣΥΝΟΛΟ		10,0