MATH 308 D200, Fall 2019

16. Duality equation and complementary slackness (based on notes from Dr. J. Hales, Dr. L. Stacho, and Dr. L. Godyyn)

Dr. Masood Masjoody

SFU Burnaby

SFU department of mathematics

	-1	t_2	t_1	<i>X</i> 3	x_1
$=-x_2$	8	3	-5	-4	2
$=-x_4$	5	1	-2	1	1
$=-t_3$	3	-2	4	-1	5
=f	-10	-4	-5	-2	-1

indep. variables

		-1	t_2	t_1	<i>X</i> 3	x_1	
	$=-x_{2}$	8	3	-5	-4	2	
dep. variables	$=-x_{4}$	5	1	-2	1	1	
dep. variables	$=-t_{3}$	3	-2	4	-1	5	
	= f	-10	-4	-5	-2	-1	

Primal: Identify the independent variables and the primal variables x_j and the primal slack variables t_i

indep. variables

		-1	t_2	t_1	<i>X</i> 3	x_1
	$=-x_2$	8	3	-5	-4	2
dep. variables	$\begin{vmatrix} = -x_4 \\ = -t_3 \end{vmatrix}$	5	1	-2	1	1
dep. variables	$=-t_{3}$	3	-2	4	-1	5
	= f	-10	-4	-5	-2	-1

Primal: Identify the independent variables and the primal variables x_j and the primal slack variables t_i

$$\mathbf{x} = \begin{bmatrix} 0 \\ 8 \\ 0 \\ 5 \end{bmatrix}, \quad \mathbf{t} = \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$$

indep. variables

	x_1	<i>X</i> 3	t_1	t_2	-1		
s ₂	2	-4		3		$=-x_{2}$	
<i>s</i> ₄	1	1	-2	1	5	$\begin{vmatrix} =-x_4\\ =-t_3 \end{vmatrix}$	dep. variables
<i>y</i> 3	5	-1	4	-2	3	$=-t_{3}$	dep. variables
-1	-1	-2	-5	-4	-10	= f	
	$=s_1$	$= s_3$	$=y_1$	$= y_2$	=g		

dep. dual variables

Primal: Identify the independent variables and the primal variables x_j and the primal slack variables t_i

$$\mathbf{x} = \begin{bmatrix} 0 \\ 8 \\ 0 \\ 5 \end{bmatrix}, \quad \mathbf{t} = \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$$

Dual: Identify the independent dual variables

and the dual variables y_i $t \leftrightarrow y$ and the dual slack variables s_i $x \leftrightarrow s$

indep. dual variables

indep. variables

	x_1	<i>X</i> 3	t_1	t_2	-1		
s 2	2	-4	-5	3	8	$=-x_{2}$	
<i>s</i> ₄	1	1	-2	1	5	$\begin{vmatrix} = -x_4 \\ = -t_3 \end{vmatrix}$	dep. variables
<i>y</i> 3	5	-1	4	-2	3	$=-t_{3}$	dep. variables
-1	-1	-2	-5	-4	-10	= f	
	$=s_1$	$=s_3$	$=y_1$	$= y_2$	=g		

dep. dual variables

Primal: Identify the independent variables and the primal variables x_j and the primal slack variables t_i

$$\mathbf{x} = \begin{bmatrix} 0 \\ 8 \\ 0 \\ 5 \end{bmatrix}, \quad \mathbf{t} = \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$$

Dual: Identify the independent dual variables and the dual variables y_i $t\leftrightarrow y_i$ and the dual slack variables s_i $x\leftrightarrow y_i$

$$\mathbf{y} = \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix}, \quad \mathbf{s} = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 0 \end{bmatrix}$$

indep. dual variables

The Duality Equation

Initial Tableau:

Primal LP (P)

Maximize
$$f(x) = c^{T}x - d$$

subject to $Ax \le b$
 $x \ge 0$

Dual LP (D)

Minimize
$$g(x) = b^{\mathsf{T}}y - d$$

subject to $A^{\mathsf{T}}y \geqslant c$
 $y \geqslant 0$

The Duality Equation

Initial Tableau:

Primal LP (P)

Maximize
$$f(x) = c^{T}x - d$$

subject to $Ax \le b$
 $x \ge 0$

Maximize
$$f(x) = c^{T}x - d$$

subject to $-t = Ax - b$
 $x, t \ge 0$

Dual LP (D)

$$\begin{aligned} & \text{Minimize } g(\mathbf{x}) = \mathbf{b}^\mathsf{T} \mathbf{y} - d \\ & \text{subject to } \mathbf{A}^\mathsf{T} \mathbf{y} \geqslant \mathbf{c} \\ & \mathbf{y} \geqslant \mathbf{0} \end{aligned}$$

Minimize
$$g(x) = y^{T}b - d$$

subject to $s^{T} = y^{T}A - c^{T}$
 $y, s \geqslant 0$

Maximize
$$f(x) = c^{T}x - d$$

subject to $-t = Ax - b$
 $x, t \ge 0$

Minimize
$$g(x) = y^T b - d$$

subject to $s^T = y^T A - c^T$
 $y, s \geqslant 0$

For any feasible solution (x,t) of the primal slack LP problem and any feasible solution (y,s) of the dual slack LP problem we have

$$g(y) - f(x) = s^{\mathsf{T}}x + y^{\mathsf{T}}t .$$

Proof.

Maximize
$$f(x) = c^{T}x - d$$

subject to $-t = Ax - b$
 $x, t \ge 0$

Minimize
$$g(x) = y^T b - d$$

subject to $s^T = y^T A - c^T$
 $y, s \ge 0$

For any feasible solution (x, t) of the primal slack LP problem and any feasible solution (y, s) of the dual slack LP problem we have

$$g(y) - f(x) = s^{\mathsf{T}}x + y^{\mathsf{T}}t .$$

Proof.

Since $\mathbf{b} = \mathbf{A}\mathbf{x} + \mathbf{t}$ and $\mathbf{c}^{\mathsf{T}} = \mathbf{y}^{\mathsf{T}}\mathbf{A} - \mathbf{s}^{\mathsf{T}}$ we have

$$g(y) - f(x) = (y^{\mathsf{T}}b - d) - (c^{\mathsf{T}}x - d)$$

= $y^{\mathsf{T}}(Ax + t) - d - (y^{\mathsf{T}}A - s^{\mathsf{T}})x + d$

Maximize
$$f(x) = c^{T}x - d$$

subject to $-t = Ax - b$
 $x, t \ge 0$

Minimize
$$g(x) = y^{T}b - d$$

subject to $s^{T} = y^{T}A - c^{T}$
 $y, s \geqslant 0$

For any feasible solution (x, t) of the primal slack LP problem and any feasible solution (y, s) of the dual slack LP problem we have

$$g(y) - f(x) = s^{\mathsf{T}}x + y^{\mathsf{T}}t .$$

Proof.

Since $\mathbf{b} = \mathbf{A}\mathbf{x} + \mathbf{t}$ and $\mathbf{c}^{\mathsf{T}} = \mathbf{y}^{\mathsf{T}}\mathbf{A} - \mathbf{s}^{\mathsf{T}}$ we have

$$g(y) - f(x) = (y^{\mathsf{T}}b - d) - (c^{\mathsf{T}}x - d)$$

$$= y^{\mathsf{T}}(Ax + t) - d - (y^{\mathsf{T}}A - s^{\mathsf{T}})x + d$$

$$= y^{\mathsf{T}}Ax + y^{\mathsf{T}}t - y^{\mathsf{T}}Ax + s^{\mathsf{T}}x$$

Maximize
$$f(x) = c^{T}x - d$$

subject to $-t = Ax - b$
 $x, t \ge 0$

Minimize
$$g(x) = y^{T}b - d$$

subject to $s^{T} = y^{T}A - c^{T}$
 $y, s \geqslant 0$

For any feasible solution (x, t) of the primal slack LP problem and any feasible solution (y, s) of the dual slack LP problem we have

$$g(y) - f(x) = s^{\mathsf{T}}x + y^{\mathsf{T}}t .$$

Proof.

Since $\mathbf{b} = \mathbf{A}\mathbf{x} + \mathbf{t}$ and $\mathbf{c}^{\mathsf{T}} = \mathbf{y}^{\mathsf{T}}\mathbf{A} - \mathbf{s}^{\mathsf{T}}$ we have

$$g(y) - f(x) = (y^{\mathsf{T}}b - d) - (c^{\mathsf{T}}x - d)$$

$$= y^{\mathsf{T}}(Ax + t) - d - (y^{\mathsf{T}}A - s^{\mathsf{T}})x + d$$

$$= y^{\mathsf{T}}Ax + y^{\mathsf{T}}t - y^{\mathsf{T}}Ax + s^{\mathsf{T}}x$$

$$= y^{\mathsf{T}}t + s^{\mathsf{T}}x.$$

Application of Duality Equation

Estimate by how much the current value of f (resp. g) differs from an optimal value in the current dual tableau.

	x_1	<i>x</i> ₂	-1	
<i>y</i> 1	1	2	3	$=-t_1$
<i>y</i> ₂	4	5	6	$=-t_{2}$
-1	7	8	9	= f
	= S1	= 50	= 0	=

Application of Duality Equation

Note

Duality equation can also be used for infeasible solutions that satisfy ALL main constraints but fail to satisfy some of the non-negativity constraints, as its proof uses only the objective function and the main constraints.

Check that solutions $\vec{x} = (1, -1)$ and $\vec{y} = (1, 2)$ satisfy the duality equation in the tableau below. Notice, \vec{x} is not a feasible solution.

	x_1	x_2	-1	
<i>y</i> ₁	1	2	3	$=-t_1$
<i>y</i> ₂	4	5	6	$=-t_{2}$
-1	7	8	9	= f
	$= s_1$	$= s_2$	= g	-

Complementary Slackness

Definition (Complementary Slackness)

Any pair of feasible solutions x^* , y^* of the dual canonical LP problems for which

(i)
$$x_j \neq 0 \Rightarrow s_j = 0$$
, for every $j = 1, 2, ..., n$, and

(ii)
$$y_i \neq 0 \Rightarrow t_i = 0$$
, for every $i = 1, 2, ..., m$

are said to exhibit complementary slackness.

Alternative form:

Theorem

A pair of feasible solutions x^*, y^* of the dual canonical LP problems exhibit complementary slackness if and only if they are optimal solutions.

Complementary Slackness

Applications of Complementary Slackness

How is previous theorem useful?

$$\begin{array}{c|ccccc}
x_1 & x_2 & -1 \\
y_1 & 1 & 1 & 2 \\
y_2 & 1 & 2 & 3 \\
-1 & 3 & 4 & 0 \\
& = s_1 & = s_2 & = g
\end{array} = -t_1$$

maximize
$$f(x_1, x_2) = 3x_1 + 4x_2$$

subject to $x_1 + x_2 \le 2$
 $x_1 + 2x_2 \le 3$
 $x_1, x_2 \ge 0$

Is x = (1,0) an optimal solution of this problem? Try to avoid using SA...

Applications of Complementary Slackness

How is previous theorem useful?

$$\begin{array}{c|ccccc}
x_1 & x_2 & -1 \\
y_1 & 1 & 1 & 2 \\
y_2 & 1 & 2 & 3 \\
-1 & 3 & 4 & 0 \\
& = s_1 & = s_2 & = g
\end{array} = -t_1$$

maximize
$$f(x_1, x_2) = 3x_1 + 4x_2$$

subject to $x_1 + x_2 \le 2$
 $x_1 + 2x_2 \le 3$
 $x_1, x_2 \ge 0$

Is x = (1,1) an optimal solution of this problem? Try to avoid using SA. . .

Applications of Complementary Slackness

Verification of optimality without the optimal tableau:

Suppose you get vectors $(\vec{x}, \vec{t}) = (1, 1, 0, 0)$ and $(\vec{y}, \vec{s}) = (2, 1, 0, 0)$ as an optimal solution to

$$\begin{array}{c|cccc} x_1 & x_2 & -1 \\ \hline 1 & 1 & 2 \\ 1 & 2 & 3 \\ \hline 3 & 4 & 0 \\ \end{array} = -t_1 \\ = -t_2 \\ = f$$

SA verification:

$$\begin{array}{c|cccc} x_1 & x_2 & -1 \\ \hline 1^* & 1 & 2 \\ 1 & 2 & 3 \\ \hline 3 & 4 & 0 \\ \end{array} = -t_1 \\ = -t_2 \\ = f$$

$$\begin{array}{c|cccc} t_1 & x_2 & -1 \\ \hline 1 & 1 & 2 \\ -1 & 1^* & 1 \\ \hline -3 & 1 & -6 \\ \end{array} = -x_1 \\ = -t_2 \\ = f$$

t_1	<i>t</i> ₂	-1	
2	-1	1	$=-x_1$
-1	1	1	$=-x_2$
-2	-1	-7	= f