Image Denoising with cGAN

Using pix2pix architecture

Aim

Use cGAN in image denoising application.

important step in image preprocessing

noise from various of sources

Interpretation of noisy images

$$L'(x,y) = L(x,y) + N(x,y)$$
 (1)

where:

L': received (noisy) image,

L: original signal (expected image),

N: random noise,

x, y: pixel coordinates.

cGAN - Conditional Generative Adversarial Network

cGAN - what is it?

- extension to GAN
- generating new examples

In our case generate image without noise from image with noise.

We used **pix2pix** architecture.

Generator:

- The architecture of generator is a modified U-Net.
- Each block in the encoder is (Conv -> Batchnorm -> Leaky ReLU)
- Each block in the decoder is
 (Transposed Conv -> Batchnorm ->
 Dropout(applied to the first 3 blocks)
 -> ReLU)
- There are skip connections between the encoder and decoder (as in U-Net).

Generator loss

- It is a sigmoid cross entropy loss of the generated images and an array of ones.
- L1 loss which is MAE / SSIM between the generated image and the target image.
- This allows the generated image to become structurally similar to the target image.

Discriminator:

•

- The Discriminator is a PatchGAN.
- Each block in the discriminator is (Conv -> BatchNorm -> Leaky ReLU)

(batch_size, 6, 6, 1)

The shape of the output after the last layer is

- Each 6x6 patch of the output classifies a 14x14 portion of the input image (such an architecture is called a PatchGAN).
- Discriminator receives 2 inputs

Discriminator loss

- real_loss is a sigmoid cross entropy loss of the real images and an array of ones(real images)
- generated_loss is a sigmoid cross entropy loss of the generated images and an array of zeros
- total_loss is the sum of real_loss and the generated_loss

Data set - fashion MNIST

- Original data 28x28 with padding of 2 = (32x32)
 Noisy images:
 - Gaussian noise
 - o var <30; 50>

Train the pix2pix

- For each example input generate an output.
- The discriminator receives the input_image and the generated image as the first input. The second input is the input_image and the target_image.
- Next, we calculate the generator and the discriminator loss.
- Then, we calculate the gradients of loss with respect to both the generator and the discriminator variables(inputs) and apply those to the optimizer.
- Then log the losses to TensorBoard.

Training with different loss functions:

• SSIM - Structural similarity

L1 - MAE

Results

Train Set - different loss functions

gen loss	L1 (MAE)	SSIM	PSNR
Noisy Images	0.123	0.681	20.55
cGAN + SSIM	0.046	0.888	26.12
cGAN + L1	0.045	0.865	26.19
Ground Truth	0.0	1.0	Inf

Test set - different loss functions

gen loss	L1 (MAE)	SSIM	PSNR
Noisy Images	0.123	0.681	20.54
cGAN + SSIM	0.048	0.871	25.86
cGAN + L1	0.046	0.861	26.09
Ground Truth	0.0	1.0	Inf

Final results

Ideas for improvements

- More sophisticated noise
- More various image types
- Train on images with bigger size and RGB
- Evaluate on some real set of images

Thank you!