2.7.9. Примечания и пакеты

На диаграммах UML можно размещать примечания, содержащие дополнительную информацию об элементах диаграммы. Хотя примечания не влияют на генерируемый код, они помогают разработчикам и другим участникам проекта лучше понять модель.

Для добавления примечания на диаграмму можно использовать два инструмента. К элементу диаграммы можно прикрепить примечание-комментарий (note). Если же требуется прокомментировать целую диаграмму, применяется текстовая область (text box). В частности, в такой области указывается заголовок диаграммы.

На рис. 2.68 подпись «Пограничный класс является примечанием».

Рис. 2.68. Прикрепление примечания к варианту использования

На языке UML такие элементы, как действующие лица, варианты использования, классы и компоненты, можно сгруппировать в *пакеты* (packages). Это позволяет упорядочить элементы модели. Пакет изображается с помощью нотации показанной на рис. 2.69.

Рис. 2.69. Графическая нотация для изображения пакетов

2.8. Модели и ракурсы

Невозможно охватить все тонкие детали сложной программной системы одним взглядом. Необходимо понять как функциональные, так и структурные свойства системы. Следует уяснить также таксономическую структуру классов, используемые механизмы наследования, индивидуальное поведение объектов и динамическое поведение системы в целом. На рис. 2.70 представлены различные типы моделей, которые считаются главными в объектно-ориентированном подходе. Через них будут выражаться результаты анализа и проектирования, выполненные в рамках любого проекта. Эти модели в совокупности семантически достаточно богаты и универсальны, чтобы разработчик мог выразить все заслуживающие внимания стратегические и тактические решения, которые он должен принять при анализе системы и формировании ее архитектуры. Кроме того, эти модели достаточно полны, чтобы служить техническим проектом реализации на любом объектно-ориентированном языке программирования.

Рис. 2.70. Объектные модели

При принятии решений в анализе и проектировании полезно рассмотреть взаимодействие классов и объектов в двух измерениях: логическом/физическом и статическом/динамическом (рис. 2.70). Оба аспекта необходимы для определения структуры и поведения объектной системы.

В каждом из двух измерений строят несколько диаграмм, которые представляют систему в различных ракурсах. Диаграммы содержат информацию о ключевых абстракциях системы, их связях и поведении. В установившемся состоянии проекта все диаграммы должны быть согласованы между собой и со всей моделью.

1. Логическая и физическая модели. Логическое представление описывает перечень и смысл ключевых абстракций и механизмов, которые формируют предметную область или определяют архитектуру системы.

Физическая модель определяет конкретную программноаппаратную платформу, на которой реализована система.

При анализе мы должны задать следующие вопросы. Каково требуемое поведение системы? Каковы роли и обязанности объектов по поддержанию этого поведения?

При проектировании необходимо задать следующие вопросы относительно архитектуры системы.

- 1. Какие существуют классы, и какие есть между ними связи?
- 2. Какие механизмы регулируют взаимодействие классов?
- 3. Где должен быть объявлен каждый класс?
- 4. Как распределить процессы по процессорам и как организовать работу каждого процессора, если требуется обработка нескольких процессов?

Чтобы ответить на эти вопросы, используются следующие диаграммы: Диаграммы Вариантов Использования; Кооперативные диаграммы; Диаграммы Классов; Диаграммы Компонентов; Диаграммы Размещения.

2. Статическая и динамическая модели. Перечисленные в предыдущем пункте типы диаграмм являются в большей части статическими. Но практически во всех системах происходят события: объекты рождаются и уничтожаются, посылают друг другу сообщения (причем в определенном порядке), внешние события вызывают операции объектов. Описание динамических событий на статическом носителе, например, на листе бумаги, будет трудной задачей, но эта же трудность встречается фактически во всех областях науки. В объектно-ориентированном проектировании мы отражаем динамическую семантику двумя дополнительными диаграммами: Диаграммы Последовательности; Диаграммы Состояний. Каждый класс может иметь собственную Диаграмму Состояний, которая показывает, как объект класса переходит из состояния в состояние под воздействием событий. На Диаграмме Последовательности можно показать порядок передачи сообшений.