SHINCHON

Simulation for Heavy IoN Collision with Heavy-quark and ONia

Sanghoon Lim PNU

MC Glauber

• Initial condition for 1000 Pb+Pb events from MC-Glauber

Hydro simulation

- Convert MC-Glauber initial condition to energy density with scale factors as a function of N_{part}
- Scale factors are determined to match multiplicity at mid-rapidity

Medium response of Upsilon(15)

- Generate Upsilons
 - X-Y position based on energy density in MC-Glauber initial condition
 - Uniform p_T (will be updated), random phi
- Medium response
 - Traverse the medium (temperature profiles in time) until staying at the freezeout temperature
 - Update the modification factor based on the temperature and momentum dependent thermal width

Y(1S), Pb+Pb 5.02 TeV CMS Pb+Pb 5.02 TeV diss only 0.4 0.2 0 5 10 15 20 25 30 p_T [GeV/c]

 R_{AA} as a function of p_T in 0-100%

 R_{AA} as a function of centrality

Upsilon(1S) modification

Nuclear modification factor R_{AA} for Upsilon(1S)

≖გ

- Reasonable description of CMS data
- No consideration of feed-down contribution

Upsilon(1S) modification

 R_{AA} as a function of initial position

- Next step for KPS
 - v₂ calculation from initial geometry & disassociation?
 - Add the regeneration term