STATISTICS IS THE GRAMMAR OF SCIENCE

PROBABILITY AND STATISTICS

LECTURE - 15

EXPECTATION AND VARIANCE OF RANDOM VARIABLES

PREPARED BY
HAZBER SAMSON
FAST NUCES ISLAMABAD

MATHEMATICAL EXPENSITION.

It is an impartant concept in Probability and Statistics.

of X is a Random use riable than expectation of X is denated by E(X) and it gives an average at Mean Value of
X. engeneral it gives a quick pitture of the long-run through
result when the experiment is performed over and
over again.

PROPERTIES OF EXPECTATION

If X is a random variable and a, b one constants than the following properties hald.

- 1. E(a) = a
- @ E(ax)=a.E(x)
- 3 E(ax+b) = a E(x)+b

EXPECTATION OF DISCRETE RANDOM VARIABLES

If x is a discrete random variable, than the Mean of Expected value of x is given by

If 'x' is a discrete random variable with probability function f(x), than the expectation of the function g(x) is given by

$$E(g(n)) = \underset{\mathcal{X}}{\leq} g(n) f(n)$$

Notethat

- 0 E(x) = 5 xf(x)
- @ E(x) = \x2f(x)
- B E(x3) = $2x^3 f(x)$

EXAMPLES

two fair coins are tossed.

Solvion let x'denote the Number of Headswhentwo four coins are tossed.

×	Pex	se fex)	
0	1/1	0	a fi de la Capación de la
1	2/4	2/1	
2	1/4	1/2	

EXAMPLE-@ find the expected Number of Sixes when three fair dice are thrown.

SOLUTION Let X denote the Number of Sixes

Lo X can takethe values 0,1,2,3

Now let D, denote six on the Ist die Also P(P,)=1, P(P,)

$$P(X=0) = P(D_1' \cap D_2' \cap D_3') = (\frac{1}{5})(\frac{1}{5}) \cdot (\frac{1}{5}) = \frac{125}{216}$$

$$P(X=1) = P(D_1 \cap D_2' \cap D_3') + P(D_1' \cap D_2 \cap D_3') + P(D_1' \cap D_2' \cap D_3')$$

$$= (\frac{1}{5})(\frac{1}{5})(\frac{1}{5}) + (\frac{1}{5}) \cdot (\frac{1}{5})(\frac{1}{5}) + (\frac{1}{5})(\frac{1}{5})(\frac{1}{5})$$

$$= \frac{25}{216} \times 3 = \frac{75}{216}$$

$$P(X=2) = P(D_1 \cap D_2 \cap D_3') + P(D_1 \cap D_3') + P(D_1' \cap D_2 \cap D_3)$$

$$= (\frac{1}{5})(\frac{1}{5})(\frac{1}{5}) + (\frac{1}{5})(\frac{1}{5})(\frac{1}{5}) + (\frac{1}{5})(\frac{1}{5})(\frac{1}{5})$$

$$= \frac{5}{216} \times 3 = \frac{15}{216}$$

$$P(X=3) = P(D_1 \cap D_2 \cap D_3) = \frac{1}{5} \times \frac{1}{5} \times \frac{1}{5} = \frac{1}{216}$$

Now Expectation is given by Hotalle.

×	0	1	2_	3
PIX	125/216	75/216	15/216	1/2/6
XPCX)	0	75/216	30/216	1/216

Non
$$E(x) = 5 \times P(x)$$

 $E(x) = 0 + \frac{75}{216} + \frac{30}{216} + \frac{3}{216} = \frac{108}{216} = 0.5$

EXAMPLE-3 The Probability distribution of a rundom variable 'x' is shown in the table.

×	١	2_	3	4	5
Plx=x	0.1	0.3	c	0.2	0-1

Find the following (a) nature of c.

- (b) E(K)
- (C) E(X2)
- (d) E(3)
- (e) E(2x)
- (f) E(2x+3)

SOLUTION

(a) WKT & P(x) =1

X	ı	2	3	4	5
PUX	0.1	0.3	0.3	0.2	0-1
x P(x)	0.1	0.6	0.9	0.8	0.5

(c) For E(x2)					
E(x2) =	Sx2 P(x)				
2	9.7				

×	Pix	x2	x2P(x)
1	0.1	1	0-1
2_	0.3	4	1.2
3	0.3	9	2.7
4	0.2	16	3.2
5	0-1	25	2:5
			9-7

VARIANCE AND STANDARD DEVIATION

of x is a randemulariable than its variance is given

by the farmula Van(x)= E(X-M)

u Var(x) = E(x2) - 12

at $Var(x) = E(x^2) - (E(x))^2$

PROOF VLAME) = E(X-11)

= E(x2+112-2HEX))

= E(x2) + E(N2) - 2HECK)

= E(x2)+12-211.11'

= E(X2)-H2

- F/x2)_(E(x))

PROPERTIES OF VARIANCE.

If 'x' is a variable and a b are constants. Than

- 1) Vau(a)=0
- 2) Var(ax)= a2. Var(x)
- 3) Var(axeb) = a2 var(x).

STANDARD DEVIATION

21 'x' is a random variable than Standard deviation cy x is denoted by o' and is sinen by

0 = Varce)

EXAMPLES

distribution as shown in the table. Find (a) E(x)

(b) E(X2)

(c) Varix)

(d) S.DLX)

x	l .,	2_	3	4	5
P(x=x)	0-1	0.3	٥٠٤	0.3	0-1

SOLUTION	consider the table.
	concein merace.

ж	P(x)	x Pix)	χ ^Ł	n2P(n)
1	0-1	0.1	1	0.1
2	0.3	0.6	4	1.2
3	0.2	0.6	9	1.8
4	0.3	1.2	16	4.8
5	0.1	0.5	25	2.5
	1	3		10.4

Non

(c)
$$Var(x) = E(x^2) - (E(x))^2$$

= $10.4 - (3)^2$
= $10-4-9=1.4$

EXAMPLE- & x is the random variable the Number on a biased die and the p.d. f of x is as shown

×	ı	۵,	3	4	5	6	
P(x)	1/6	16	15	c	1/5	16	

Find the following (f) E(2x+3)

SOLUTION.	
JULUTION.	consider the table.
	Corollo.

			-	The second literature is the second literature in
X	P(x)	x. Pix	x2	x2. Pex)
- 1	1/6	116	1	1/6
2	1/6	2/6	4	4/6
3	1/5	3/5	9	9/5
4	1/10	4/10	16	16/10
5	1/5	5/5	25	25/5
6	116	6/6	36	36/6
	1	3.5	1	457/30

(c)
$$E(x^2) = \xi x^2 P(x)$$

$$=\frac{457}{30}$$

(d)
$$Var(x) = E(x^2) - (E(x))^2$$

$$= \frac{457}{30} - (3.5)^{2} = \frac{457}{30} - \frac{49}{9} = \frac{179}{60} = 2.983$$

$$= 9.V(x) = 9x \frac{179}{60} = \frac{1611}{60}$$

For s.D me shall first find
$$Var(4x.65)$$

 $Var(4x.65) = 16.V(x) = 16.179 = 716$
 $Var(4x.65) = \sqrt{60} = 15$
 $Var(4x.65) = \sqrt{716} = 6.91$

EXPECTATION OF CONTINUOUS PANDOM VARIABLES

If is a continuous random warrable, than the Mean or expected value of it is given by

E(x) = Jx.f(x)dx.

If x is a continuous random variable with density function f(x), than expectation of the function g(x) is given by $E(g(x)) = \int g(x) \cdot f(x) dx$.

Nate that a

PROPERTIES OF EXPECTATION

2/x'is a chvand a base constants. than

- (a) E(a)=a
- (b) E(ax)=a·E(x)
- (c) E(ax+b) = a.E(x)+b

VARIANCE AND STANDARD DEVIATION.

2 x is a crv than

-) Var(x) = E(x2) (E(x))
- 2) S.DLX) = \ Var(x)

PROPERTIES OF VARIANCE.

of x is a CRV and a, b are constants than

- 1) Var(a)=0
- 2) Var(ax) = a2. V(x)
- 3) Var(ax+b) = a2. Var(x)

EXAMPLES

EXAMPLE-O The continuous random variable x has P. d.f given by

$$f(x) = \begin{cases} k(x+3), 0 \le x \le 4 \\ 0, \text{ otherwise.} \end{cases}$$

Find the following

SOLUTION (a)
$$c=?$$

WET $\begin{cases} k(x+3)dx=1 \\ k\left(\frac{x^2}{2}+3x\right)^{\frac{4}{5}}=1 \\ k\left(\frac{16^3}{2}+12\right)=1 \\ 20k=1 \end{cases}$

(b)
$$P(x<1)$$

= $\int \frac{1}{2}(x+3)dx = \frac{1}{20} \left| \frac{x^2}{2} + 3x \right|_1^4$
= $\frac{1}{20} \left[(8+12) - (\frac{1}{2}+3) \right] = \frac{1}{20} \left[20 - \frac{7}{2} \right] = \frac{33}{40}$
(c) $E(x) = \int x \cdot \frac{1}{2}(x+3)dx = \frac{1}{20} \int (x^2+3x)dx$
= $\frac{1}{20} \left| \frac{x^3}{3} + \frac{3}{2}x^2 \right|_0^4 = \frac{1}{20} \left(\frac{64}{3} + \frac{43}{2} \right) = \frac{34}{15} = 2.267$

(d)
$$E(x^2)$$

= $\int_0^1 x^2 \cdot 1 \cdot (x+3) dx = 6.4$

=
$$2E(x)+5=2(\frac{34}{15})+5=\frac{143}{15}=9.53$$
.

F.d.f given kelow

$$f(x) = \begin{cases} \frac{1}{8}, 0 \le x \le 4 \\ 0, \text{ Otherwise.} \end{cases}$$

Find the following

(a) E(x)

(b) E(x2) (c) Var(x) (d) S.D(x) (e) Var(3x+2).

SOLUTION

(9)
$$E(x) = \int_{0}^{4} \frac{x}{8} \cdot x \cdot dx = \frac{1}{8} \int_{0}^{4} x^{2} dx = \frac{64}{24} = \frac{8}{3} = 2.67.$$

(b)
$$E(x^2)$$

=\frac{1}{8}\int x^2 \text{ x dx} = \frac{1}{8}\int x^3 dx = 8.

(e) Var(x)

$$= E(x^2) - (E(x))^2 = 8 - (\frac{3}{3})^2 = 3 - \frac{64}{9} = \frac{8}{9} = 0.89$$

(d) S.DIX)

(e) Var(3x+2)

$$= 9. \text{Var(x)} = 9 \times \frac{8}{9} = 8$$

THE MODE

Mode is the value of X far which fex) is greatest in the given interval of X.

O sometime Made can be immediately deduced by the graph.

2) Lome times for Mode we use second derivative test. Stationary paint Ciex=a) will be the Mode.

EXAMPLE 3 2 x'is a continuous RV having P.d.f
$$f(x) = \begin{cases} \frac{1}{80}(2+x)(4-x), & 0 \le x \le 4 \\ 0, & \text{otherwise.} \end{cases}$$

Find Mode.

SOLUTION weapply second desirative test for Mode.

Here
$$f(x) = \frac{1}{80}(8-2x+4x-x^2)$$

= $\frac{1}{30}(-x^2+2x+8)$

F.O.C.
$$f(x)=0$$

$$\frac{1}{80}(-2x+2)=0$$

$$-2x+2=0$$

$$2x=2 \Rightarrow [x=1]$$

=> f(x) has Maximum value at X=1

```
EXAMPLE- \oplus A random variable x has P.d. f

f(x) = \begin{cases} Ax(6-x)^{2}, & 0 \le x \le 6 \\ 0, & \text{elsewhere.} \end{cases}
```

Find the following

- (a) value of A
- (b) Mean
- (c) Mode (d) Variance (e) standard deviation

SOLUTION

(a) Furthernalize of
$$A$$
. $\int A \times (6-x)^2 dx = 1$
 $A = 1$

(b) Mean

Mean =
$$E(x) = \int x \cdot x (6-x)^2 dx$$

= $\int_0^6 x^2 (6-x)^2 dx = 2.4$

(c) Mode. Here $f(x) = \frac{1}{108} \times (36+x^2-12x) = \frac{1}{108} (36x+x^2-12x^2)$ Now F.o.c $f(x) = 0 \Rightarrow \frac{1}{108} (36+3x^2-24x) = 0$

3x2-24x+36=0, x2-8x+12=0 => X=2, X=6

Now s.o.c $f''(x) = \frac{1}{108}(6x-24)$

at x = 2, $f'(x) = \frac{1}{108}(-12) = -ve \Rightarrow f(x)$ has Max value. at x = 6, $f''(x) = \frac{1}{108}(12) = +ve \Rightarrow f(x)$ has Min value. So Made = 2

(d) Variance. $Var(x) = E(x^2) - (E(x))^2$, North $E(x^2) = \frac{1}{1080} \int x^2 \cdot x(6-x)^2 dx = \frac{1}{1080} \int x^3 \cdot (6-x)^2 dx = 7.2$ Lo $Var(x) = 7.2 - (2.4)^2 = 1.44$ (e) $S.D(x) = \sqrt{Var(x)} = \sqrt{1.44} = 1.2$

The time taken to perform a porticular fack, thours, has the prabability deneity function $f(t) = \begin{cases} 10ct^2 & 0 \le t \le 0.6 \\ 9cc(-t) & 0.6 \le t \le 1.0 \\ 0 & otherwise. \end{cases}$

$$f(t) = \begin{cases} 10ct^2 & 0 \le t \le 0.6 \\ 9c(1-t) & 0.6 \le t \le 1.0 \\ 0 & otherwise \end{cases}$$

where 'e' is a constant.

- (a) Find the value of c.
- (b) write down the most likely time.
- (c) Find the expected time.
- (d) Find the probability that time will be more than 43 mins.
- o Gro 24 and 48 mins. (e) 1

SOLUTION (a) Ful the value of c.
$$\int f(t) dt = 1$$

or $\int |\cot^2 dt + \int g(1-t) dt = 1$

or $\int |\cot^2 dt + \int g(1-t) dt = 1$

or $\int |\cot^2 dt + \int g(1-t) dt = 1$

or $\int |\cot^2 dt + \int g(1-t) dt = 1$

(b) Mude = ? Fur Mode Sketch the for.

From the graph Max value of t= 0.6 hrs ⇒ t=0.6x60 = 36Minutes.

(c) Expected time is

$$= \int_{0}^{0.6} \frac{125}{18} t \cdot t^{2} dt + \int_{0.6}^{1} \frac{25 \cdot t \cdot (1 + t)}{1} dt = 0.591 \text{ hrs} = 35.5 \text{ mins}$$

(d)
$$P(t > 48 \text{ mins}) = P(t > 0.8 \text{ hrs}) = \int_{0.8 \text{ hrs}}^{90} 90 (1-t) dt$$

(e)
$$P(\partial A < t < 48) = P(0.4 < t < 0.8)$$

$$= \int_{0.6}^{10ct^2} dt + \int_{0.6}^{9} 9c(1-t) dt = \frac{125}{18} \int_{0.4}^{12} t^2 dt + \frac{25}{4} \int_{0.6}^{12} (L+t) dt$$

$$= 0.727$$