Chapter 3 Applications of Derivatives

3.3 How Derivatives affect the Shape of a Graph

What does f' tells us about f.

	$\parallel A \parallel$	between	B	between	C	between	D
f'(x)	DNE	+	0	J	0	+	DNE
f(x)	Abs.	A	loc.	7	loc.	7	Abs.

Conclusion:

Increasing/Decreasing Test

- (a) If f'(x) > 0 on an interval, then f is increasing on that interval.
- (b) If f'(x) < 0 on an interval, then f is decreasing on that interval.

EXAMPLE 1 Find where the function $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$ is increasing and where it is decreasing.

① Derivative
$$f'(x) = 12x^3 - 12x^2 - 24x$$

= $12x(x^2 - x - 2)$
= $17x(x+1)(x-2)$

24-1

Factors	24	-1	4 26 4	0	4766	2	4 X
7C+ 1		6	+		+	X	+
2-2	_		_	X	_	0	+
x	_		_	0	+	X	+
f'(x)	_	0	+	0	_	0	+
f(x)	1	lic.	\nearrow	luc	3	loc	<u> </u>

EXTREME VALUES (MAX OR MIN)

	$\mid A \mid$		$\mid B \mid$		C		D
f'(x)	#	+	0	_	0	+	
f(x)	abs. min	7	max	7	min	7	abs. max

The First Derivative Test Suppose that c is a critical number of a continuous function f.

- (a) If f' changes from positive to negative at c, then f has a local maximum at c.
- (b) If f' changes from negative to positive at c, then f has a local minimum at c.
- (c) If f' is positive to the left and right of c, or negative to the left and right of c, then f has no local maximum or minimum at c.

(a) Local maximum

(c) No maximum or minimum

(d) No maximum or minimum

EXAMPLE 3 Find the local maximum and minimum values of the function

$$g(x) = x + 2 \sin x$$
 $0 \le x \le 2\pi$

What does f" tell us about f?

Two important definitions:

- Definition If the graph of f lies above all of its tangents on an interval I, then it is called **concave upward** on I. If the graph of f lies below all of its tangents on I, it is called **concave downward** on I.
- Definition A point P on a curve y = f(x) is called an **inflection point** if f is continuous there and the curve changes from concave upward to concave downward or from concave downward to concave upward at P.

Concavity Test

- (a) If f''(x) > 0 for all x in I, then the graph of f is concave upward on I.
- (b) If f''(x) < 0 for all x in I, then the graph of f is concave downward on I.

Note: There is an inflection point when the second derivative is zero.

Example. Find the interval(s) of concavity of the fur io

$$f(x) = x^3 - 3x^2 - 9x + 4$$

The Second Derivative Test Suppose f'' is continuous near c.

- (a) If f'(c) = 0 and f''(c) > 0, then f has a local minimum at c.
- (b) If f'(c) = 0 and f''(c) < 0, then f has a local maximum at c.

REMARK!

EXAMPLE. Find the extreme values of the function $f(x) = x^3 + 3x^2$.