

Análise e Transformação de Dados

Ficha Prática nº 6

Objetivo: Pretende-se continuar a ilustrar os conceitos de frequência e efetuar a análise de sinais periódicos, de tempo contínuo e de tempo discreto, pela Série de Fourier trigonométrica e complexa. Pretende-se também aplicar o Teorema da Amostragem para determinar a frequência de amostragem a usar na obtenção da representação em tempo discreto de um sinal e usar a Transformada de Fourier Discreta (DFT) para ilustrar os conceitos de frequência em sinais de tempo discreto.

Linguagem de Programação:

- MATLAB (Symbolic Math, Signal Processing Toolboxes)
- Python (módulos: numpy, sympy, scipy.signal, matplotlib.pyplot)

Exercícios:

- 1. Considerar uma sequência de dados x[n] que resultou da amostragem de um determinado sinal de tempo contínuo x(t) com um período de amostragem $T_s = 4ms$ (datasetfp6.dat disponível na plataforma uestudent).
 - 1.1. Assumindo que o sinal é periódico, utilizar o script, com eventuais adaptações, da ficha anterior para:
 - 1.1.1. Determinar e representar graficamente os valores dos coeficientes (C_m e θ_m) da Série de Fourier trigonométrica do sinal x[n] com um valor adequado de m_max (sugestão: $m_max = 80$) da Série de Fourier.
 - 1.1.2. Obter e representar graficamente a sobreposição do sinal original e dos sinais aproximados a partir dos coeficientes da Série de Fourier trigonométrica para vários valores de *m max*.
 - 1.1.3. Obter e representar graficamente a amplitude e a fase dos valores do coeficiente c_m da Série de Fourier complexa do sinal x[n], a partir dos coeficientes (C_m e θ_m).
 - 1.1.4. Determinar e representar graficamente a Transformada de Fourier Discreta (DFT) do sinal x[n], usando as funções *fft* e *fftshift*, em módulo e em fase, em função da frequência angular ω (em rad/s) e da frequência angular Ω (em rad). Comparar os resultados obtidos com os valores do coeficiente c_m da Série de Fourier complexa do sinal x[n].
 - 1.2. A partir da análise efetuada, identificar as componentes de frequência do sinal de tempo discreto x[n] e do sinal de tempo contínuo x(t).

- 2. Considerar o sinal periódico de tempo contínuo $x(t) = -1 + 3\sin(50\pi t) + 4\cos(20\pi t + \frac{\pi}{4})\sin(40\pi t)$.
 - 2.1. Aplicando o Teorema da Amostragem, escolher uma frequência de amostragem f_s adequada, e que seja múltipla da frequência fundamental f_0 . Obter a expressão de x[n].
 - 2.2. Indicar as frequências angulares (ω e Ω), as frequências angulares fundamentais (ω 0 e Ω 0) e os períodos fundamentais (T_0 e N0) dos sinais de tempo contínuo x(t) e de tempo discreto x[n].
 - 2.3. Representar graficamente a sobreposição do sinal de tempo contínuo (com um passo temporal reduzido e traço contínuo) e o correspondente sinal amostrado (ponto a ponto).
 - 2.4. Determinar e representar graficamente a Transformada de Fourier Discreta (DFT) do sinal x[n], usando as funções *fft* e *fftshift*, em módulo e em fase, em função da frequência angular ω (em rad/s) e da frequência angular Ω (em rad).
 - 2.5. Determinar e representar graficamente os coeficientes da Série de Fourier complexa do sinal, c_m , a partir da DFT.
 - 2.6. Determinar e representar graficamente os parâmetros da Série de Fourier trigonométrica (C_m e θ_m) do sinal.
 - 2.7. Reconstruir o sinal x(t) a partir dos parâmetros da Série de Fourier trigonométrica, obtidos em 2.6. Comparar graficamente com o sinal original.