

Lumiere: A Space-Time Diffusion Model for Video Generation

Authors: Bar-Tal et al.

SIGGRAPH 2024, 259 citations

PRESENTED BY:
ANANTAPADMANAABHA PRASANNAKUMAR

Outline

- Motivation
- Method
- → Results
- → Applications
- Societal Impact
- Limitations
- Conclusion

Motivation

- Restricted capability of existing models
 - ► Sensitive to error
 - ▶ Suffers memory and computing constraints
 - ▶ Obtaining large-scale data is cumbersome
 - ► Training large-scale T2V is challenging

Motivation

- ► Employing temporal cascades is hindersome
 - Generates aggressively sub-sampled set of keyframes
 - ▶ TSR modules are constrained to fixed, small temporal context
 - Cascaded training suffers from domain gap

Method - Lumiere

- Utilizes Diffusion Probabilistic Models
 - ▶ Through denoising steps, trained to approximate data distribution
 - Starting from noise, the model obtains target distribution
- Incorporates additional guiding signals

Method - Pipeline

(a) Common Approach with TSR model(s)

Common Framework:

- Base Model
- Temporal Super-resolution Model (TSR)
- Spatial Super-resolution Model (SSR)

Method - Pipeline

Lumiere Framework:

- Base Model
- Spatial Super-resolution Model (SSR)
- Multidiffusion

Method - STUnet

Employs traditional U-Net Model

Method - STUnet

- Convolution-based Inflation block
- Attention-based Inflation block

Method - Multidiffusion

Multidiffusion Framework:

- Generation process from a pretrained model
- Fuses inconsistent directions into one global denoising step

SSR with Multidiffusion

- ► An inflated SSR network can only operate on short videos
- Employ multidiffusion for smooth temporal transition
- Multidiffusion prevents temporal artifacts
 - Resolved by linearly combining video segments

SSR with Multidiffusion

Mathematically:

- At each generation step:
 - ▶ split noisy input video $J \in \mathbb{R}^{H \times W \times T \times 3}$ into $i \dots N$ overlapping segments
 - ▶ Where $J_i \in \mathbb{R}^{H \times W \times T' \times 3}$ is the i^{th} segment
 - ▶ Temporal duration: T' < T
- ▶ To reconcile per-segment SSR prediction during denoising step:

$$\underset{J'}{\operatorname{arg\,min}} \sum_{i=1}^{n} \|J' - \Phi(J_i)\|^2.$$

Evaluation Setup

- ► Train T2V model on 30M videos with text prompts
 - ▶ Videos are 80 frames long at 16 fps
 - ▶ 109 text prompts
 - ▶ Base model dimension: 128 x 128 frames
 - ► SSR dimension: 1024 x 1024 frames

Quantitative Evaluation

Zero-shot evaluation on UCF-101

Method	$FVD\downarrow$	IS ↑
MagicVideo (Zhou et al., 2022)	655.00	
Emu Video (Girdhar et al., 2023)	606.20	42.70
Video LDM (Blattmann et al., 2023b)	550.61	33.45
Show-1 (Zhang et al., 2023a)	394.46	35.42
Make-A-Video (Singer et al., 2022)	367.23	33.00
PYoCo (Ge et al., 2023)	355.19	47.76
SVD (Blattmann et al., 2023a)	242.02	-
Lumiere (Ours)	332.49	37.54

User Study

User Study

Left video

Right video

Qualitative Evaluation

Ablation Studies

Initialization Ablation

Ablation Studies

Different Initialization Schemes

Ablation Studies

Multidiffusion Ablation

Video-to-video Editing

- Lack of TSR ideal for V2V editing
- Employs SDEdit

Stylized Generation

- Pre-trained T2I weights remain fixed
- Newly added temporal layers are trained
- ▶ Linear interpolation between fixed and fine-tuned T2I weights
 - $ightharpoonup W_{interpolate} = \alpha \cdot W_{style} + (1 \alpha) \cdot W_{orig}$
 - ▶ Where $\alpha \in [0.5, 1]$

Stylized Generation

Vector art styles

Stylized Generation

(B)

Reference **Image**

A bunny hopping in the meadow, 3D rendering

Image

A watercolor painting of ducks swimming in a pond

Realistic styles

Conditional Generation

- Model conditioned on additional input signals
 - ▶ Noisy video $J \in \mathbb{R}^{H \times W \times T \times 3}$
 - Text prompt
 - ▶ Masked conditioning video $C \in \mathbb{R}^{H \times W \times T \times 3}$
 - ▶ Masked video $M \in \mathbb{R}^{H \times W \times T \times 1}$
- ► Concatenated Tensor $\langle J, C, M \rangle = \mathbb{R}^{T \times H \times W \times 7}$

Image-to-Video Generation

Image-to-Video

A rabbit looking around

Sample I2V results

Image-to-Video Generation

Sample I2V results

Inpainting

A woman wearing a stripe strapless dress

For a given video *C*:

Animate the masked region

Cinemagraphs

Source Image + Mask

Output

A campfire

For a given input image C and mask M

Generate a masked video

Societal Impact

- ► Risk of misuse
 - ► Tools for detecting biases and malicious use cases
 - ▶ To ensure safe and fair use

Limitations

- ► The model cannot generate videos
 - Multiple shots
 - ► Transition between scenes
- ▶ The model operates in pixel space

Conclusion

- Presents a novel T2V framework
 - Built on a pre-trained T2I model
 - ▶ Introduces space-time U-Net Architecture
 - Utilizes Multidiffusion framework
- Demonstrates state-of-the-art generation results
- Showcases applicability to various downstream tasks

Thank you