Events and Probability

Event

Set of outcomes from an experiment.

Sample Space

Set of all possible outcomes Ω .

Intersection

Outcomes occur in both A and B $A \cap B$ or AB

Disjoint

No common outcomes

$$\begin{aligned} AB &= \varnothing \\ \Pr\left(AB\right) &= 0 \implies \Pr\left(\varnothing\right) = 0 \\ \Pr\left(A \mid B\right) &= 0 \end{aligned}$$

Union

Set of outcomes in either A or B

$$A \cup B$$

Complement

Set of all outcomes not in A, but in Ω

$$A\overline{A} = \emptyset$$
$$A \cup \overline{A} = \Omega$$

Subset

A is a (non-strict) subset of B if all elements in A are also in $B - A \subset B$.

$$AB = A$$
 and $A \cup B = B$
 $\forall A : A \subset \Omega \land \emptyset \subset A$
 $\Pr(A) \leq \Pr(B)$
 $\Pr(B \mid A) = 1$
 $\Pr(A \mid B) = \frac{\Pr(A)}{\Pr(B)}$

Identities

$$A(BC) = (AB) C$$

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A(B \cup C) = AB \cup AC$$

$$A \cup BC = (A \cup B) (A \cup C)$$

Probability

Measure of the likeliness of an event Futhermore occurring

$$\Pr(A) \quad \text{or} \quad \Pr(A)$$
$$0 \le \Pr(E) \le 1$$

where a probability of 0 never happens, and 1 always happens.

$$\Pr(\Omega) = 1$$

$$\Pr(\overline{E}) = 1 - \Pr(E)$$

Multiplication Rule

For independent events A and B

$$\Pr\left(AB\right) = \Pr\left(A\right)\Pr\left(B\right).$$

For dependent events A and B

$$Pr(AB) = Pr(A \mid B) Pr(B)$$

Addition Rule

For independent A and B $Pr(A \cup B) = Pr(A) + Pr(B) - Pr(AB).$ If $AB = \emptyset$, then Pr(AB) = 0, so that $\Pr(A \cup B) = \Pr(A) + \Pr(B).$

De Morgan's Laws

$$\overline{A \cup B} = \overline{A} \ \overline{B}$$

$$\overline{AB} = \overline{A} \cup \overline{B}.$$

$$\Pr(A \cup B) = 1 - \Pr(\overline{A} \ \overline{B})$$

$$\Pr(AB) = 1 - \Pr(\overline{A} \cup \overline{B})$$

Circuits

A signal can pass through a circuit if there is a functional path from start to finish where each component functions independently.

Let W_i be the event where component i Let |A| denote the number of outcomes functions and S be the event where the in an event A. system functions, then

$$\Pr\left(W_i\right) = p$$

and $\Pr(S)$ will be a function of p defined **Addition Principle** $f:[0, 1] \to [0, 1].$

Conditional Probability

The probability of event A given B has already occurred

$$\Pr(A \mid B) = \frac{\Pr(AB)}{\Pr(B)}$$

A and B are independent events if

$$\Pr\left(A\,|\,B\right)=\Pr\left(A\right)$$

$$\Pr\left(B\,|\,A\right) = \Pr\left(B\right)$$

the following statements are also true

$$\Pr\left(A \mid \overline{B}\right) = \Pr\left(A\right)$$

$$\Pr\left(\overline{A} \mid B\right) = \Pr\left(\overline{A}\right)$$

$$\Pr\left(\overline{A} \mid \overline{B}\right) = \Pr\left(\overline{A}\right)$$

Probability Rules with Conditional

$$\Pr\left(\overline{A} \,|\, C\right) = 1 - \Pr\left(A \,|\, C\right)$$

$$\Pr(A \cup B \mid C) = \Pr(A \mid C) + \Pr(B \mid C)$$
$$-\Pr(AB \mid C)$$

$$\Pr\left(AB \,|\, C\right) = \Pr\left(A \,|\, BC\right) \Pr\left(B \,|\, C\right)$$

Conditional Independence

conditionally dependent given C if

$$Pr(A | BC) = Pr(A | C).$$

$$Pr(AB | C) = Pr(A | C) Pr(B | C).$$

Conversely

$$\Pr\left(A \mid B\right) = \Pr\left(A\right)$$

$$Pr(A | BC) \neq Pr(A | C)$$

$$Pr(AB \mid C) = Pr(A \mid BC) Pr(B \mid C)$$

Pairwise independence does not imply mutual independence for three events. Independence should not be assumed unless explicitly stated.

Marginal Probability

The probability of an event irrespective of the outcome of another variable.

Total Probability

$$\begin{split} A &= AB \cup A\overline{B} \\ &\operatorname{Pr}\left(A\right) = \operatorname{Pr}\left(AB\right) + \operatorname{Pr}\left(A\overline{B}\right) \\ &\operatorname{Pr}\left(A\right) = \operatorname{Pr}\left(A \mid B\right) \operatorname{Pr}\left(B\right) \\ &+ \operatorname{Pr}\left(A \mid \overline{B}\right) \operatorname{Pr}\left(\overline{B}\right) \end{split}$$

In general, partition Ω into disjoint events B_1 , B_2 , ..., B_n , such that $\bigcup_{i=1}^{n} B_i = \Omega$

$$\Pr(A) = \sum_{i=1}^{n} \Pr(A \mid B_i) \Pr(B_i)$$

Bayes' Theorem

$$\Pr(A \mid B) = \frac{\Pr(B \mid A) \Pr(A)}{\Pr(B)}$$

Combinatorics

Number of Outcomes

For k disjoint events $\{S_1, \ldots, S_k\}$ where the *i*th event has n_i possible outcomes,

Number of possible samples from any

$$\left| \bigcup_{i=0}^k S_i \right| = \sum_{i=1}^k n_i$$

Multiplication Principle

Number of possible samples from every event

$$\left| \bigcap_{i=0}^k S_i \right| = \prod_{i=1}^k n_i$$

Counting Probability

If S_i has equally likely outcomes

$$\Pr\left(S_i\right) = \frac{|S_i|}{|S|}$$

Ordered Sampling with Replacement

Number of ways to choose k objects from a set with n elements

$$n^k$$

Ordered Sampling without Replacement

Given $Pr(A|B) \neq Pr(A)$ A and B are Number of ways to arrange k objects from a set of n elements, or the k-permutation of n-elements

$${}^{n}P_{k} = \frac{n!}{(n-k)!}$$

for $0 \le k \le n$.

An n-permutation of n elements is the permutation of those elements.

$$^{n}P_{n}=n!$$

Unordered Sampling without Replacement

Number of ways to choose k objects from a set of n elements, or the k-combination of *n*-elements ${}^{n}C_{k} = \frac{{}^{n}P_{k}}{k!} = \frac{n!}{k! (n-k)!}$

$$C_k = \frac{{}^nP_k}{k!} = \frac{n!}{k!\left(n-k\right)}$$

for $0 \le k \le n$.

Unordered Sampling with Replacement

Number of ways to choose k objects from a set with n elements

$$\binom{n+k-1}{k}$$

Distribution	Restrictions	\mathbf{PMF}	CDF	$\mathrm{E}\left(X\right)$	$\operatorname{Var}\left(X\right)$
$X \sim \text{Uniform}(a, b)$	$x \in \{a, \dots, b\}$	$\frac{1}{b-a+1} 1-x$	$\frac{x-a+1}{b-a+1}$	$\frac{a+b}{2}$	$\frac{(b-a+1)^2-1}{12}$
$X \sim \text{Bernoulli}(p)$	$p \in [0,1], x \in \{0,1\}$	$p^x \left(1-p\right)^{1-x}$	1-p	p	p(1-p)
$X \sim \text{Binomial}(n, p)$	$x \in \{0,\dots,n\}$	$\binom{n}{x}p^x\left(1-p\right)^{n-x}$	$\sum_{u=0}^{x} \binom{n}{u} p^{u} \left(1-p\right)^{n-u}$	np	np(1-p)
$N \sim \operatorname{Geometric}\left(p\right)$	$n \ge 1$	$\left(1-p\right)^{n-1}p$	$1 - \left(1 - p\right)^n$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
$Y \sim \operatorname{Geometric}\left(p\right)$	$y \ge 0$	$(1-p)^y p$	$1 - \left(1 - p\right)^{y+1}$	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$
$N \sim \mathrm{NB}\left(k, p\right)$	$n \ge k$	$\binom{n-1}{k-1}\left(1-p\right)^{n-k}p^k$	$\sum_{u=k}^{n} {u-1 \choose k-1} (1-p)^{u-k} p^k$	$\frac{k}{p}$	$\frac{k(1-p)}{p^2}$
$Y \sim \text{NB}\left(k, p\right)$	$y \ge 0$	$\binom{y+k-1}{k-1} \left(1-p\right)^y p^k$	$\sum_{u=0}^{y} {u+k-1 \choose k-1} (1-p)^{u} p^{k}$	$\frac{k(1-p)}{p}$	$\frac{k(1-p)}{p^2}$
$N \sim \text{Poisson}(\lambda)$	$n \ge 0$	$rac{\lambda^n e^{-\lambda}}{n!}$	$e^{-\lambda} \sum_{u=0}^{n} \frac{\lambda^u}{u!}$	$\dot{\lambda}$	λ

Table 1: Discrete probability distributions.

Distribution	Restrictions	PMF	CDF	$\mathrm{E}\left(X\right)$	$\operatorname{Var}\left(X\right)$
$X \sim \text{Uniform}(a, b)$ $T \sim \text{Exp}(\eta)$	a < x < b $t > 0$	$\eta e^{\frac{1}{b-a}} \eta e^{-\eta t}$	$1 - e^{-\eta t}$	$\frac{a+b}{\frac{1}{\eta}}$	$p \frac{\frac{(b-a)^2}{12}}{p(1-p)}$
$X \sim \mathcal{N}\left(\mu, \ \sigma^2\right)$	$x \in \{0, \dots, n\}$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	$\frac{1}{2}\left(1 + \operatorname{erf}\left(\frac{x-\mu}{\sigma\sqrt{2}}\right)\right)$	μ	σ^2

	Discrete	Continuous
Valid probabilities	$0 \le p_x \le 1$	$f(x) \ge 0$
Cumulative probability	$\sum_{u \leq x} p_u$	$\int_{-\infty}^{x} f(u) du$
$\mathrm{E}\left(X ight)$	$\sum_{u \leq x} p_u \ \sum_{\Omega} x p_x$	$f(x) \ge 0$ $\int_{-\infty}^{x} f(u) du$ $\int_{\Omega} x f(x) dx$
$\mathrm{Var}\left(X\right)$	$\sum_{\Omega} \left(x - \mu \right)^2 p_x$	$\int_{\Omega} (x - \mu)^2 f(x) \mathrm{d}x$

Table 3: Probability rules for univariate X.

Random Variables

Measurable variable whose value holds some uncertainty. An event is when a random variable assumes a certain value or range of values.

Probability distribution

The probability distribution of a random variable X is a function that links all Lower and upper quartile outcomes $x \in \Omega$ to the probability that they will occur Pr(X = x).

Probability mass function

$$\Pr\left(X=x\right) = p_x$$

Probability density function

$$\Pr\left(x_{1} \leq X \leq x_{2}\right) = \int_{x_{1}}^{x_{2}} f\left(x\right) \mathrm{d}x$$

Cumulative distribution function

Probability that a random variable is less Expected value given an infinite number than or equal to a particular realisation of observations. For a < c < b:

F(x) is a valid CDF if:

- 1. F is monotonically increasing and continuous
- $2. \lim_{x \to -\infty} F(x) = 0$
- 3. $\lim_{x\to\infty} F(x) = 1$

$$\frac{\mathrm{d}F\left(x\right)}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x} \int_{-\infty}^{x} f\left(u\right) \mathrm{d}u = f\left(x\right)$$

Complementary CDF (survival)

$$\Pr\left(X>x\right)=1-\Pr\left(X\leq x\right)=1-F\left(x\right)$$

p-Quantile

$$F(x) = \int_{-\infty}^{x} f(u) \, \mathrm{d}u = p$$

Median

$$\int_{-\infty}^{m} f(u) du = \int_{m}^{\infty} f(u) du = \frac{1}{2}$$

$$\int_{-\infty}^{q_1} f(u) \, \mathrm{d}u = \frac{1}{4}$$

and

$$\int_{-\infty}^{q_2} f\left(u\right) \mathrm{d}u = \frac{3}{4}$$

Quantile function

$$x = F^{-1}(p) = Q(p)$$

Expectation (mean)

$$E(X) = -\int_{a}^{c} F(x) dx + \int_{a}^{b} (1 - F(x)) dx + c$$

Variance

Measure of spread of the distribution (average squared distance of each value from the mean).

$$Var(X) = \sigma^{2} = E(X^{2}) - E(X)^{2}$$

Standard deviation

$$\sigma = \sqrt{\operatorname{Var}(X)}$$

Single trial X in a set of equally likely elements.

Bernoulli (binary) Distribution

Boolean-valued outcome X, i.e., success (1) or failure (0). (1-p) is sometimes denoted as q.

Binomial Distribution

Number of successes X for n independent trials with the same probability of success

$$X = Y_1 + \dots + Y_n$$

$$Y_i \stackrel{\text{iid}}{\sim} \text{Bernoulli}(p) : \forall i \in \{1, 2, \dots, n\}.$$

Geometric Distribution

Number of trials N up to and including the first success where each trial independent and has the same probability of success p.

Alternate Geometric

Number of failures Y = N - 1 until a success.

Negative Binomial Distribution

Number of trials N until k > 1 successes, where each trial is independent and has the same probability of success p.

$$N = Y_1 + Y_2 + \dots + Y_k$$

$$Y_i \stackrel{\text{iid}}{\sim} \text{Geom}(p) : \forall i \in \{1, 2, \dots, k\}.$$

Alternate Negative Binomial

Number of failures Y = N - k until ksuccesses:

Poisson Distribution

Number of events N which occur over a fixed interval of time λ .

Modelling Count Data

- Poisson (mean = variance)
- Binomial (underdispersed, mean > variance)
- Geometric/Negative Binomial (overdispersed, mean < variance)

Uniform Distribution

Outcome X within some interval, where the probability of an outcome in one interval is the same as all other intervals of the same length.

$$m = \frac{a+b}{2}$$

Exponential Distribution

Time T between events with rate η .

$$m=\frac{\ln{(2)}}{\eta}$$

Memoryless Property

For $T \sim \text{Exp}(\lambda)$:

$$\Pr\left(T>s+t\,|\,T>t\right)=\Pr\left(T>s\right)$$

For $N \sim \text{Geometric}(p)$:

$$\Pr\left(N>s+n\,|\,N>n\right)=\Pr\left(N>s\right)$$

Normal Distribution

Used to represent random situations, i.e., so that $Z \to N(0, 1)$ as $n \to \infty$. measurements and their errors. Also used to approximate other distributions. If $\overline{Y} = \sum_{i=1}^{n} X_i$:

Standard Normal Distribution

Given $X \sim N(\mu, \sigma^2)$, consider $Z = \frac{X - \mu}{\sigma}$

$$Z = \frac{X - \mu}{\sigma}$$

so that $Z \sim N(0, 1)$

Central Limit Theorem

of independent identically distributed random variables, when properly standardised, can be Sufficient for np > 5 and n(1-p) > 5. approximated by a normal distribution, If np < 5: as $n \to \infty$.

Let
$$X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} X$$
 with $E(X) = \mu$ and If $n(1-p) < 5$, consider the number of $Var(X) = \sigma^2$:

Average of Random Variables

If
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
:
 $E(\overline{X}) = \mu$

$$\operatorname{Var}\left(\overline{X}\right) = \frac{\sigma^2}{n}$$

By standardising \overline{X} , we can define

$$Z = \lim_{n \to \infty} \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

Sum of Random Variables

If
$$\overline{Y} = \sum_{i=1}^{n} X_i$$
:

$$E(Y) = n\mu$$

$$Var(Y) = n\sigma^2$$

$$Y \sim N(n\mu, n\sigma^2)$$

as $n \to \infty$.

Binomial Approximations

and If $X \sim \text{Binomial}(n, p)$:

$$X \approx Y \sim N(np, np(1-p))$$

$$X \approx Y \sim \text{Pois}(np)$$
.

failures W = n - X:

$$W \approx Y \sim \text{Pois}\left(n\left(1-p\right)\right).$$

Continuity Correction

$$\Pr\left(X < x\right) = \Pr\left(X < x + 1\right)$$

must hold for any x. Therefore

$$\Pr(X \le x) \approx \Pr\left(Y \le x + \frac{1}{2}\right).$$

Poisson Approximation

Sufficient for $n\lambda > 10$, and for accurate approximations, $n\lambda > 20$.

Bivariate Distributions

Bivariate probability mass function

Distribution over the joint space of two discrete random variables X and Y:

$$\Pr\left(X=x,\;Y=y\right)=p_{x,\;y}\geq0$$

$$\sum_{y \in \Omega_2} \sum_{x \in \Omega_1} \Pr(X = x, Y = y) = 1$$

for all pairs of $x \in \Omega_1$ and $y \in \Omega_2$. The joint probability mass function can be shown using a table:

Bivariate probability density function

continuous random variables X and Y:

 $\Pr(x_1 \le X \le x_2, y_1 \le Y \le y_2)$

 $\int_{x\in\Omega_{1}}\int_{y\in\Omega_{2}}f\left(x,\,y\right) \mathrm{d}y\,\mathrm{d}x=1.$

 $\Pr\left(X = x \mid Y = y\right) \Pr\left(Y = y\right)$

 $= \int_{x_1}^{x_2} \int_{y_1}^{y_2} f(x, y) \, \mathrm{d}y \, \mathrm{d}x$

 $\Pr\left(X=x,\,Y=y\right)=$

Marginal probability mass function

$$p_x = \sum_{y \in \Omega_2} \Pr \left(X = x, \: Y = y \right)$$

$$p_y = \sum_{x \in \Omega_1} \Pr\left(X = x, \; Y = y\right)$$

Marginal probability density function Conditional Variance

$$f(x) = \int_{y_1}^{y_2} f(x, y) dy$$
$$f(y) = \int_{x_1}^{x_2} f(x, y) dx$$

Conditional probability mass function $\dot{\text{variable}}$ of Y:

$$\begin{split} \Pr\left(X = x \,|\, Y = y\right) &= \frac{\Pr\left(X = x, \, Y = y\right)}{\Pr\left(Y = y\right)} \\ \sum_{x \in \Omega_{+}} \Pr\left(X = x \,|\, Y = y\right) &= 1 \end{split}$$

Conditional probability density Distribution over the joint space of two function

$$f(x \mid y) = \frac{f(x, y)}{f(y)}$$
$$\int_{-\pi}^{x_2} f(x \mid y) dx = 1$$

Independence

Two discrete random variables X and Yare independent if

$$\Pr\left(X = x \mid Y = y\right) = \Pr\left(X = x\right)$$

for all pairs of x and y.

Two continuous random variables X and If X and Y are independent: Y are independent if

$$f(x, y) \propto g(x) h(y)$$

$$f(x \mid y) = f(x).$$

Conditional Expectation

$$\begin{split} &\mathbf{E}\left(X\,|\,Y=y\right) = \sum_{x\in\Omega_1} x p_{x\,|\,y} \\ &\mathbf{E}\left(X\,|\,Y=y\right) = \int_{x_1}^{x_2} x f\left(x\,|\,y\right) \mathrm{d}x \end{split}$$

$$\begin{aligned} \operatorname{Var}\left(X\,|\,Y=y\right) \\ &= \operatorname{E}\left(X^2\,|\,Y=y\right) - \operatorname{E}\left(X\,|\,Y=y\right)^2 \end{aligned}$$

Law of Total Expectation

By treating E(X|Y) as a random

$$E(X) = E(E(X|Y))$$

Joint expectation

$$\begin{split} &\mathbf{E}\left(XY\right) = \sum_{x \in \Omega_{1}} \sum_{y \in \Omega_{2}} xyp_{x,\,y} \\ &\mathbf{E}\left(XY\right) = \int_{x_{s}}^{x_{2}} \int_{x_{s}}^{x_{2}} xyf\left(x,\,y\right)\mathrm{d}y\,\mathrm{d}x. \end{split}$$

Transformation rules

$$E (aX \pm b) = a E (X) \pm b$$

$$E (X \pm Y) = E (X) \pm E (Y)$$

$$Var (aX \pm b) = a^{2} Var (X)$$

$$Var (X \pm Y) = Var (X) + Var (Y)$$

$$\pm 2 Cov (X, Y)$$

$$Cov(aX + b, cY + d) = ac Cov(X, Y)$$

$$E(X | Y = y) = E(X)$$

$$Var(X | Y = y) = Var(X)$$

$$Var(X \pm Y) = Var(X) + Var(Y)$$

$$E(XY) = E(X) E(Y)$$

Marginal Probability

This function must satisfy

Probability function of each random so that variable. Must specify the range of values that variable can take.

$$Var(XY) = Var(X) Var(Y)$$

 $+ E(X)^2 Var(Y) + E(Y)^2 Var(X)$ for constants a, b, c, and d.

Covariance

Measure of the dependence between two random variables

$$\begin{aligned} \operatorname{Cov}\left(X,\,Y\right) &= \operatorname{E}\left(\left(X - \operatorname{E}\left(X\right)\right)\right) \\ &\left(Y - \operatorname{E}\left(Y\right)\right)\right) \\ &= \operatorname{E}\left(XY\right) - \operatorname{E}\left(X\right)\operatorname{E}\left(Y\right) \end{aligned}$$

The covariance of X and Y is:

Positive if an increase in one variable is more likely to result in an increase in the other variable.

Negative if an increase in one variable is more likely to result in a decrease in the other variable.

Zero if X and Y are independent. Note that the converse is not true.

Describes the direction of a relationship, but does not quantify the strength of such a relationship.

Correlation

Explains both the direction and strength of a linear relationship between two random variables.

dom variables.
$$\rho(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$$

where $-1 < \rho(X, Y) < 1$.

The correlation is interpretted as follows:

positive linear relationship.

- $\rho(X, Y) < 0$ iff X and Y have a negative linear relationship.
- $\bullet \ \rho(X, Y) = 0 \text{ if } X \text{ and } Y$ are independent. Note that the converse is not true.
- $\rho(X, Y) = 1$ iff X and Y have a perfect linear relationship with positive slope.
- $\rho(X, Y) = -1$ iff X and Y have a perfect linear relationship with negative slope.

The slope of a perfect linear relationship • $\rho(X, Y) > 0$ iff X and Y have a cannot be obtained from the correlation.

Markov Chains

how a state evolves over time. States one step to the next. are denoted by the random variable X_t at time step t.

Markov Property

$$\begin{split} \Pr \left({{X_t} = {x_t}\left| {\left. {{X_{t - 1}} = {x_{t - 1}},\; \ldots ,\; {X_0} = {x_0}} \right)} \right.} \right.\\ &= \Pr \left({{X_t} = {x_t}\left| {\left. {{X_{t - 1}} = {x_{t - 1}}} \right.} \right.} \right. \end{split}$$

Homogeneous Markov Chains

A Markov chain is homogeneous when

$$\begin{split} &\operatorname{Pr}\left(X_{t+n}=j\,|\,X_{t}=i\right) = \\ &\operatorname{Pr}\left(X_{n}=j\,|\,X_{0}=i\right) = p_{ij}^{(n)} \end{split}$$

Transition Probability Matrix

homogeneous Markov characterised by the probability matrix $\mathbf{P} \in \mathbb{R}^{m \times m}$, where The number of events that occur m is the number of states. **P** must fulfil the following properties:

- $p_{i,j} = \Pr(X_t = j | X_{t-1} = i)$
- $p_{i,j} \geq 0 : \forall i, j$
- $\sum_{i=1}^{m} p_{i,j} = 1 : \forall j$

 \mathbf{P} has the following form

$$\mathbf{P} = x_t \begin{bmatrix} x_{t+1} \\ \vdots \end{bmatrix}$$

The n-step transition probability is given by \mathbf{P}^n .

Unconditional State Probabilities

The unconditional probability of being in state j at time n is given by

$$\Pr\left(X_n=j\right)=p_j^{(n)}$$

Given multiple states, let $s^{(n)}$ denote the The number of events occurring between

$$egin{aligned} {oldsymbol{s}^{(n)}}^{ op} &= {oldsymbol{s}^{(n-1)}}^{ op} \mathbf{P} \ {oldsymbol{s}^{(n)}}^{ op} &= {oldsymbol{s}^{(0)}}^{ op} \mathbf{P}^n \end{aligned}$$

Stationary Distribution

A Markov chain is a discrete time and At steady-state, the probability of being state stochastic process that describes in a particular state does not change from

$$oldsymbol{s}^{(n+1)} = oldsymbol{s}^{(n)} \implies oldsymbol{s}^{(n)}^ op = oldsymbol{s}^{(n)}^ op \mathbf{P}$$

The stationary distribution π satisfies Let T be the time between events of $\boldsymbol{\pi}^{\top} = \boldsymbol{\pi}^{\top} \mathbf{P}$. To determine $\boldsymbol{\pi}$, we must use the equation $\sum_{i=1}^{m} \pi_i = 1$.

Poisson Processes

A Poisson process is a continuous time and discrete state stochastic process that counts events that occur randomly in time (or space).

The rate parameter η is the average rate at which events occur. The rate does not depend on how long the process has been is run nor how many events have already transition been observed.

> randomly on the interval (0,t), are denoted by the random variable X(t).

$$\Pr(X(0) = 0) = 1.$$

Let h be a small interval such that at most 1 event can occur during that time, then

$$\Pr(X(t+h) = n+1 | X(t) = n) \approx \eta h$$

$$\Pr(X(t+h) = n | X(t) = n) \approx 1 - \eta h$$

$$\Pr(X(t+h) > n+1 | X(t) = n) \approx 0$$

Poisson Distribution

A Poisson process has a Poisson distribution with rate η , so that $X(t) \sim$ Poisson (ηt) .

$$\Pr\left(X\left(t\right)=n\right)=p_{n}\left(t\right)=\frac{e^{-\eta t}\left(\eta t\right)^{n}}{n!}$$

for $n \geq 0$, where ηt is the expected number of events.

vector of all states $p_j^{(n)}$ at time n. Then t_1 and t_2 is given by $N(t_1, t_2)$ \sim

Poisson $(\eta(t_2-t_1))$. $\Pr(N(t_1, t_2) = n) =$ $\frac{e^{-\eta(t_2-t_1)}\left(\eta\left(t_2-t_1\right)\right)^n}{n!}$

Exponential Distribution

a Poisson process so that T has an exponential distribution

$$T \sim \text{Exp}(\eta)$$
.

The probability density function of T is given by

$$f\left(t\right) = \eta e^{-\eta t}$$

for t > 0.

Properties of Poisson Processes

1. As the time between Poisson processes has an exponential distribution, the Poisson process inherits the memoryless property,

$$\begin{split} \Pr \left(T>x+y\,|\,T>x\right) =\\ \Pr \left(T>y\right) . \end{split}$$

- 2. Non-overlapping time intervals of a Poisson process are independent. For a < b and c < d where b < c, $\Pr(N(a, b) = m | N(c, d) = n) =$ Pr(N(a, b) = m)
- 3. If exactly 1 event occurs on the interval (0, a), the distribution of when that event occurs is uniform. Let X be the time x < a when the first event occurs,

$$X \mid (N(0, a) = 1) \sim$$

Uniform $(0, a)$

4. If exactly n events occur on the interval (0, a), then the distribution of the number of events that occur in (0, s) is binomial, for s < t. Let X be the number of events that occur in (0, s) for s < t,

$$X \mid (N(0, a) = n) \sim$$

Binomial $\left(n, \frac{s}{t}\right)$