§3-3 **倍角公式**

(甲) 倍角公式

(1)二倍角公式:

由和角公式: $sin(\alpha + \beta) = sin\alpha \cdot cos\beta + cos\alpha \cdot sin\beta$, $\alpha = \beta = \theta$,可得

(a) $\sin 2\theta = 2 \cdot \sin \theta \cdot \cos \theta$

由和角公式: $cos(\alpha + \beta) = cos\alpha \cdot cos\beta - sin\alpha \cdot sin\beta$,φα = β = θ ,可得

(b) $\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta$

由和角公式: $tan(\alpha + \beta) = \frac{tan\alpha + tan\beta}{1 - tan\alpha \cdot tan\beta}$,令α=β=θ ,可得

(c)
$$\tan 2\theta = \frac{2\tan \theta}{1-\tan^2 \theta}$$

[**注意**]:根據公式(b) $\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta$,可知已知 θ 的正弦 值、餘弦值,可得 2θ 的餘弦值。

另一方面,若已知 α 的餘弦值,就可得 $\frac{\alpha}{2}$ 的正弦值、餘弦值。

例如:已知 $\cos\theta = \frac{2}{3}$,請求出 $\cos 2\theta = ?$

根據
$$\cos 2\theta = 2\cos^2 \theta - 1 = 2(\frac{2}{3})^2 - 1 = \frac{-1}{9}$$

已知
$$0<\alpha<\frac{\pi}{2}$$
,且 $\cos\alpha=\frac{2}{3}$,試求 $\cos\frac{\alpha}{2}=?$

根據(b)令 $2\theta=\alpha$,可得 $\cos\alpha=2\cos^2\frac{\alpha}{2}-1$

所以
$$\cos^2\frac{\alpha}{2} = \frac{5}{6} \Rightarrow \cos\frac{\alpha}{2} = \pm\sqrt{\frac{5}{6}} \Rightarrow \cos\frac{\alpha}{2} = \sqrt{\frac{5}{6}}$$

結論:我們整理倍角公式如下:

 $(a)\sin 2\theta = 2 \cdot \sin \theta \cdot \cos \theta$

$$(b)cos2\theta = cos^2\theta - sin^2\theta = 2cos^2\theta - 1 = 1 - 2sin^2\theta$$

(c)
$$\tan 2\theta = \frac{2\tan \theta}{1-\tan^2 \theta}$$

(d)
$$\cos\alpha = 2\cos^2\frac{\alpha}{2} - 1 = 1 - 2\sin^2\frac{\alpha}{2}$$

$$(e)\cos^2\theta = \frac{1+\cos 2\theta}{2}$$
, $\sin^2\theta = \frac{1-\cos 2\theta}{2}$

$$\sin 2\theta = \frac{2\tan\theta}{1 + \tan^2\theta}$$

證明:

$$\sin 2\theta = 2\sin\theta\cos\theta = 2\frac{\sin\theta}{\cos\theta} \cos^2\theta = 2\tan\theta(\frac{1}{\sec^2\theta}) = \frac{2\tan\theta}{1 + \tan^2\theta}$$

$$\cos 2\theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$$

$$\cos 2\theta = 2\cos^2 \theta - 1 = \frac{2}{\sec^2 \theta} - 1 = \frac{2}{1 + \tan^2 \theta} - 1 = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$$

結論:利用 $tan\theta$ 可以將 $sin2\theta$, $cos2\theta$, $tan2\theta$ 表示出來,整理如下:

(a)
$$\sin 2\theta = \frac{2\tan \theta}{1 + \tan^2 \theta}$$

(a)
$$\sin 2\theta = \frac{2\tan\theta}{1+\tan^2\theta}$$
 (b) $\cos 2\theta = \frac{1-\tan^2\theta}{1+\tan^2\theta}$ (c) $\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$

(c)
$$\tan 2\theta = \frac{2\tan \theta}{1-\tan^2 \theta}$$

[討論]:

利用 $tan\theta$ 來表示 $sin2\theta$ 、 $cos2\theta$ 、 $tan2\theta$, 主要是將 $sin\theta$ 、 $cos\theta$ 、 $tan\theta$ 表示成分式的 形式,即 $\sin\theta = \frac{2t}{1+t^2}$, $\cos\theta = \frac{1-t^2}{1+t^2}$, $\tan\theta = \frac{2t}{1-t^2}$,其中 $t = \tan\frac{\theta}{2}$ 爲任意實數,可以應用 於求某些三角函數的積分。

(3)三倍角公式

(a) $\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$

證明:

 $\sin 3\theta = \sin(\theta + 2\theta) = \sin\theta \cos 2\theta + \cos\theta \sin 2\theta$

$$=\sin\theta(1-2\sin^2\theta)+\cos\theta(2\sin\theta\cos\theta)$$

$$= \sin\theta(1 - 2\sin^2\theta) + 2\sin\theta\cos^2\theta$$

$$= \sin\theta(1 - 2\sin^2\theta) + 2\sin\theta(1 - \sin^2\theta)$$

$$= 3\sin\theta - 4\sin^3\theta$$

(b) $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$

證明:

 $\cos 3\theta = \cos(\theta + 2\theta) = \cos\theta \cos 2\theta - \sin\theta \sin 2\theta$

$$=\cos\theta(2\cos^2\theta-1)-\sin\theta(2\sin\theta\cos\theta)$$

$$= \cos\theta(2\cos^2\theta - 1) - 2\sin^2\theta\cos\theta$$

$$=\cos\theta(2\cos^2\theta-1)-2(1-\cos^2\theta)\cos\theta$$

$$=4\cos^3\theta - 3\cos\theta$$

[例題1] 已知 $\tan\theta = \frac{-3}{4}$ 且 $\frac{3\pi}{2} < \theta < 2\pi$,求 $\cos 2\theta \cdot \tan 2\theta \cdot \sin \frac{\theta}{2} \cdot \tan \frac{\theta}{2}$ 的値。 Ans: $\cos 2\theta = \frac{7}{25} \cdot \tan 2\theta = \frac{-24}{7} \cdot \sin \frac{\theta}{2} = \frac{1}{\sqrt{10}} \cdot \tan \frac{\theta}{2} = \frac{-1}{3}$

[例題2] 試求
$$\sin\frac{\pi}{8}$$
, $\cos\frac{\pi}{8}$, $\tan\frac{\pi}{8}$ 之値。Ans: $\frac{\sqrt{2-\sqrt{2}}}{2}$, $\frac{\sqrt{2+\sqrt{2}}}{2}$, $-1+\sqrt{2}$

[**例題**3] 若 $3\cdot\sin 2\theta + 2\cos 2\theta = 3$,求 $\tan \theta$ 之値。 Ans:1 或 $\frac{1}{5}$

結論:

底下是一些有用的公式:

$$(a)\sin^2\theta = 1 - \cos^2\theta$$
 $(b)\cos^2\theta = 1 - \sin^2\theta$

$$(c)\sin^4\theta + \cos^4\theta = (\sin^2\theta + \cos^2\theta)^2 - 2\sin^2\theta\cos^2\theta = 1 - 2\sin^2\theta\cos^2\theta$$

$$(d)\sin^6\theta + \cos^6\theta = (\sin^2\theta + \cos^2\theta)^3 - 3\sin^2\theta\cos^2\theta (\sin^2\theta + \cos^2\theta) = 1 - 3\sin^2\theta\cos^2\theta$$

(e)
$$\tan\theta + \cot\theta = \frac{1}{\sin\theta\cos\theta} = \frac{2}{\sin2\theta}$$

$$(f)(\sin\theta\pm\cos\theta)^2 = \sin^2\theta+\cos^2\theta\pm2\sin\theta\cos\theta=1\pm\sin2\theta$$

[**例題5**] 已知
$$0 < \theta < \frac{\pi}{2}$$
, $\sin \theta = \frac{4}{5}$ 求 $\cos 3\theta = ?$ Ans: $\frac{-117}{125}$

(練習1) 設 $\frac{\pi}{2}$ < θ < π 且 $\sin\theta$ = $\frac{3}{5}$,求 $\sin2\theta$ 及 $\sin\frac{\theta}{2}$ 、 $\sin3\theta$ 的値。

Ans:
$$\sin 2\theta = \frac{-24}{25}$$
, $\sin \frac{\theta}{2} = \frac{3}{\sqrt{10}}$, $\sin 3\theta = \frac{117}{125}$

(練習2)
$$\pi < \theta < \frac{3\pi}{2}$$
,且 $\tan \theta = \frac{3}{4}$,則 $\sin \frac{\theta}{2} =$ ____, $\cos \frac{\theta}{2} =$ ____。 Ans : $\frac{3}{\sqrt{10}}$, $\frac{-1}{\sqrt{10}}$

(練習3) 設 $\cos 2\theta = t$, 試以t表示 $4(\cos^6\theta - \sin^6\theta) = ?$ Ans: $t^3 - 3t$

- (練習4) 設 $\frac{\pi}{2} < \theta < \pi$,且 $3\sin^2\theta \sin\theta \cos\theta 2\cos^2\theta = 0$, 則 $\sin 2\theta + \cos 2\theta = \underline{\hspace{1cm}} \circ \text{Ans} : \frac{-7}{13}$
- (練習5) 設 $\sin x = 3\cos x$,则 $\cos 2x = _____$, $\sin 2x = ____$ 。 Ans : $\frac{-4}{5}$, $\frac{3}{5}$
- (練習6) 試求 $\cos^4\frac{\pi}{8} + \cos^4\frac{3\pi}{8} + \cos^4\frac{5\pi}{8} + \cos^4\frac{7\pi}{8}$ 的値。Ans: $\frac{3}{2}$
- (練習7) $\frac{-\pi}{2} < \theta < \frac{\pi}{2}$, 且 $\sin\theta + \cos\theta = \frac{1}{4}$, 則 $(1)\sin 2\theta = \underline{\qquad} (2)\cos 2\theta = \underline{\qquad}$, $(3)\sin^3\theta + \cos^3\theta = \underline{\qquad}$ Ans: $(1)\frac{-15}{16}(2)\frac{\sqrt{31}}{16}$ $(3)\frac{47}{128}$
- (練習8) 若 $\frac{5\pi}{4}$ < θ < $\frac{3\pi}{2}$, $\sin 2\theta = a$, 則 $\sin \theta \cos \theta = \underline{\hspace{1cm}}$ Ans: $-\sqrt{1-a}$

(乙)倍角公式的應用

[**例題6**] 試求 $\sin 18$ °的値。 Ans: $\frac{-1+\sqrt{5}}{4}$

[**例題7**] 求
$$\cos \frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{4\pi}{15} \cos \frac{8\pi}{15}$$
 之積。 Ans: $\frac{-1}{16}$

(練習9) 利用 $\sin 18$ °的值求出 $\cos 36$ °的值。 $\operatorname{Ans}: \cos 36$ °= $\frac{\sqrt{5}+1}{4}$

(練習10) 設 $f(x)=4x^3-3x+1$,則 $f(x)被x-\sin\frac{\pi}{9}$ 除後所得的餘式=____。 Ans: $1-\frac{\sqrt{3}}{2}$ (提示:利用三倍角公式與餘式定理)

(練習11) 求下列的值:

 $(1)\cos 20^{\circ}\cos 40^{\circ}\cos 80^{\circ} \quad (2)\cos \frac{\pi}{7}\cos \frac{3\pi}{7}\cos \frac{5\pi}{7} \text{ Ans } : (1)\frac{1}{8} \ (2)\frac{-1}{8}$

(練習12) 如圖,假設正五邊形的邊長爲 a,

請求出對角線 \overline{AC} 的長度。 $Ans: \frac{\sqrt{5}+1}{2}a$

註: $\frac{\sqrt{5}+1}{2}$ 稱爲黃金比例數

綜合練習

- (1) 如圖, θ 爲一個有向角, \overline{AB} =2, \overline{BC} =5,則 $\sin 2\theta$ =___。

- (3) 設 $0 < \alpha < \frac{\pi}{2}$, $0 < \beta < \frac{\pi}{2}$,且 $\cos \alpha = \frac{11}{61}$, $\sin \beta = \frac{4}{5}$,請求出 (a) $\cos(\alpha \beta)$ (b) $\sin^2 \frac{\alpha \beta}{2}$ (c) $\cos^2 \frac{\alpha + \beta}{2}$ 。
- (4) 下列何者爲 8x³-6x+1=0 之根? (A) sin10(B) sin30(C) sin130° (D) sin160° (E)sin250°。
- (5) 設 $0 < \alpha < \frac{\pi}{2}$, $0 < \beta < \frac{\pi}{2}$, 若 $\sin \alpha = \frac{4}{5}$, $\cos \beta = \frac{5}{13}$ 則(A) $0 < \alpha + \beta < \frac{\pi}{2}$ (B) $\tan(\alpha \beta) = \frac{-16}{63}$ (C) $\cos \frac{\alpha}{2}$ = $\frac{2\sqrt{5}}{5}$ (D) $\sin 2\beta = \frac{120}{169}$
- (6) 求y=2sin²x的週期。
- (7) 化簡 $\sin^4 \frac{\pi}{8} + \sin^4 \frac{3\pi}{8} + \sin^4 \frac{5\pi}{8} + \sin^4 \frac{7\pi}{8} = ____$
- (8) 化簡 $-\cos^2\theta + \cos^2(\frac{\pi}{6} + \theta) + \cos^2(\frac{\pi}{6} \theta) = ____$
- (9) 若 $\sin x = \frac{\sqrt{5}-1}{2}$,請計算 $\sin 2(x-\frac{\pi}{4}) = ?$
- (10) 設 $\tan \frac{\theta}{2} = x$,試以 x 表示 $\cos 2\theta$ 。
- (11) 設 $\sin\theta + \cos\theta = \sqrt{2}$,求 $\tan\frac{\theta}{2}$ 之値。
- (12) 設 $0<\alpha<\frac{\pi}{2}$,試化簡 $\sqrt{1+\sin\alpha}$ $-\sqrt{1-\sin\alpha}$ 。
- (13) 設 x^2 -(tan θ +cot θ)x+1=0 有一根 2+ $\sqrt{3}$,求sin2 θ =____。
- (14) 2x²+ax-1=0 有一根爲sin30°+cos30°, 求a的值。
- (15) 以 $x \cos 40^{\circ}$ 除 $f(x) = 3x 4x^3$ 之餘式爲______。
- (16) 化簡 $\cos\frac{\pi}{9}\cos\frac{2\pi}{9}\cos\frac{3\pi}{9}\cos\frac{4\pi}{9}$ 。
- (17) 設 $\pi < x < 2\pi$,化簡 $\sqrt{1 + \cos x} + \sqrt{1 \cos x}$ 。

進階問題

(18) 求 $\sin^6 x + \cos^6 x$ 的範圍。

- (19) 設 $\sin\alpha + \sin\beta = 1$, $\cos\alpha + \cos\beta = 0$,求 $\cos2\alpha + \cos2\beta$ 之値。
- (20) $\triangle ABC$ 中,BC=a,CA=b,AB=c,s= $\frac{a+b+c}{2}$, 試證: $\sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$

(21) 在右圖 Δ ABC 中, \overline{AB} =3, \overline{AC} =6, \overline{AD} =2,且 \angle BAD= θ , \angle DAC=2 θ : (a)利用 Δ ABC 之面積= Δ ABD 面積+ Δ ADC 面積,以 θ 之三角函數列出方程式。 (b)試利用(a)的結果求 $\cos\theta$ 之值。

- (22) 設 α ,β爲 $a\cos x+b\sin x+c=0$ 的相異二根, $a\neq 0$, $-\pi<\alpha$,β< π
 - (a)令 $\tan \frac{x}{2} = t$,試將上述方程式化成 t 的方程式。
 - (b)求x在 $-\pi$ 與 π 之間有二實根的條件。
 - (c)求 $\tan \frac{\alpha+\beta}{2}$ 之値。
- (23) 平行四邊形 ABCD 中, $\overline{AB}=a$, $\overline{AD}=b$,且 $a\neq b$, $\angle A=\alpha$, 其內角平分線圍成一矩形,試以 a,b,α 表示此矩形的面積。

- (1) $\frac{-20}{29}$
- (2) $(a)\frac{-24}{25}$ $(b)\frac{-44}{125}$ $(c)\frac{-2}{\sqrt{5}}$
- (3) $(a)\frac{273}{305}$ $(b)\frac{16}{305}$ $(c)\frac{49}{305}$
- (4) (A)(C)(E)
- (5) (B)(C)(D)

- (6) π
- (7) $\frac{3}{2}$
- (8) $\frac{1}{2}$
- (9) $2-\sqrt{5}$
- (10) $\cos 2\theta = \frac{1-6x^2+x^4}{1+2x^2+x^4}$ [提示:因爲 $\cos \theta = \frac{1-t^2}{1+t^2}$, $t = \tan \frac{\theta}{2}$,所以 $\cos \theta = \frac{1-x^2}{1+x^2}$,再利用 $\cos 2\theta = 2\cos^2 \theta 1$,求出 $\cos 2\theta = \frac{1-6x^2+x^4}{1+2x^2+x^4}$]
- (11) $\sqrt{2}-1$
- (12) $2\sin\frac{\alpha}{2}$ [提示: $1+\sin\alpha=\sin^2\frac{\alpha}{2}+\cos^2\frac{\alpha}{2}+2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}=(\sin\frac{\alpha}{2}+\cos\frac{\alpha}{2})^2$, $1-\sin\alpha=\sin^2\frac{\alpha}{2}+\cos^2\frac{\alpha}{2}-2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}=(\sin\frac{\alpha}{2}-\cos\frac{\alpha}{2})^2$]
- (13) $\frac{1}{2}$
- (14) -2
- (15) $\frac{1}{2}$
- (16) $\frac{1}{16}$ (Hint: $\cos \frac{3\pi}{9} = \cos \frac{\pi}{3} = \frac{1}{2}$)
- (17) $\sqrt{2}(\sin\frac{x}{2} \cos\frac{x}{2})$ [提示: 利用 $\cos x = 2\cos^2\frac{x}{2} 1 = 1 2\sin^2\frac{x}{2}$]
- (18) $\frac{1}{4} \le \sin^6 x + \cos^6 x \le 1$ [提示: $\sin^4 x + \cos^4 x = 1 2\sin^2 x \cos^2 x = 1 \frac{1}{2}(\sin 2x)^2$]
- (19) 1[提示: $\sin\alpha=1-\sin\beta$, $\cos\alpha=-\cos\beta$, 兩式平方相加可得 $\sin\beta=\frac{1}{2}$ \Rightarrow $\sin\alpha=\frac{1}{2}$ 再計算 $\cos 2\alpha + \cos 2\beta$]
- (20) [提示: $\sin^2 \frac{A}{2} = \frac{r^2}{OA^2}$, 因為 $r = \frac{\Delta}{s}$ 所以 $r^2 = \frac{1}{s^2} \cdot s(s-a)(s-b)(s-c)$ $= \frac{(s-a)(s-b)(s-c)}{s}, OA^2 = r^2 + (s-a)^2 = \frac{(s-a)[(s-b)(s-c) + s(s-a)]}{s},$ $\sin^2 \frac{A}{2} = \frac{r^2}{OA^2} = \frac{(s-b)(s-c)}{(s-b)(s-c) + s(s-a)} = \frac{(s-b)(s-c)}{bc}$
- (21) (a)3sin3 θ =sin θ +2sin2 θ (b) $\frac{1+\sqrt{13}}{6}$
- (22) (a) $(c-a)t^2+2bt+(a+c)=0$ (b) $a^2+b^2 \ge c^2$ (c) $\frac{b}{a}$
- (23) $\frac{1}{2}(b-a)^2\sin\alpha$ [提示: BS=BC· $\sin\frac{\alpha}{2}=b\sin\frac{\alpha}{2}$, BP=BA· $\sin\frac{\alpha}{2}$ = $a\cdot\sin\frac{\alpha}{2}$

 $PS=BS-BP=(b-a)\sin \frac{\alpha}{2}$, $AQ=AD\cdot\cos \frac{\alpha}{2}$, $AP=AB\cdot\cos \frac{\alpha}{2}$, $PQ=AQ-AP=(b-a)\cos \frac{\alpha}{2}$, 故矩形面積= $PS\cdot PQ=\frac{1}{2}(b-a)^2\sin \alpha$ 。]