

Integration Report

29 May, 2021

Dataset Integration

Datasets were integrated using the method 'Linked Inference of Genomic Experimental Relationships (LIGER)' [@Welch2019]. This involved four pre-processing steps: (1) normalization for UMIs per cell, (2) subsetting the most variable genes for each dataset, (3) scaling by root-mean-square across cells, and (4) filtering of non-expressive genes.

Key pre-processing parameters:

- Number of variable genes per dataset (individual) selected for integration: 3000
- Total number of variable genes used for integration (the union across all individuals): 5849

Note: The length of the union across datasets (individuals) varies. The Venn and UpSet plots below may reveal outlying dataset/s.

Upset chart of selected variable genes: The first **57** vertical bar charts show the sizes of isolated dataset participation to the total variable genes used for integration.

LIGER Factorization

An integrative non-negative matrix factorization was performed in order to identify shared and distinct metagenes (factors) across the datasets. The corresponding factor/metagene loadings were calculated for each cell.

Key factorization parameters:

- Number of factors (inner dimension of factorization; k): 20
- Penalty parameter which limits the dataset-specific component of the factorization (lambda): 5
- Resolution parameter which controls the number of communities detected: 1

Batch Effect Correction by LIGER

The performance of LIGER in batch effect correction was evaluated by comparison with dataset without a data integration algorithm applied (i.e. PCA input for dimensionality reduction). For each of the categorical covariates specified by the user two side-by-side comparisons have been represented: (1) visualisation of the batch effect using *tSNE* plots, and (2) quantification of the batch effect based on *kBET* test results [@Büttner2019].

In each *kBET* plot, the rejection rate represents the fraction of neighbourhoods with a label composition different from the global composition of batch labels. A significantly different observed vs. expected rejection rate opposes the well-mixedness of the data.

Categorical covariates

manifest

kBET test results - PCA

Figure: kBET by manifest

kBET test results - LIGER

Figure: kBET (Liger) by manifest

diagnosis

Figure: UMAP by diagnosis

Figure: UMAP (Liger) by diagnosis

kBET test results - PCA

Figure: kBET by diagnosis

kBET test results - LIGER

Figure: kBET (Liger) by diagnosis

dataset

Figure: UMAP by dataset

Figure: UMAP (Liger) by dataset

Figure: kBET by dataset

kBET test results - LIGER

Figure: kBET (Liger) by dataset

Clustering

Data generated by PCA and LIGER were used as inputs for clustering.

Key clustering parameters:

- Clustering method: leiden
- Number of nearest neighbors to use (k): 50
- Resolution parameter that controls the resolution of clustering.: 1e-05

Figure: UMAP

Figure: UMAP(Liger)

scFlow v0.7.0 - 2021-05-29 18:04:07