STAT 3690 Homework 1

zhiyanggeezhou.github.io

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca)

Due at Feb 28 11:59 am (Central Time)

Answers must be submitted electronically via Crowdmark. Please enclose your R source code (if applicable) as well.

- 1. The function $cov(\cdot, \cdot)$ is bilinear, i.e., for random vectors \mathbf{W} , \mathbf{X} , \mathbf{Y} and \mathbf{Z} and fixed matrices \mathbf{A} , \mathbf{B} , \mathbf{C} and \mathbf{D} , one has $cov(\mathbf{A}\mathbf{W} + \mathbf{B}\mathbf{X}, \mathbf{Y}) = \mathbf{A}\boldsymbol{\Sigma}_{\mathbf{W}\mathbf{Y}} + \mathbf{B}\boldsymbol{\Sigma}_{\mathbf{X}\mathbf{Y}}$ and $cov(\mathbf{W}, \mathbf{C}\mathbf{Y} + \mathbf{D}\mathbf{Z}) = \boldsymbol{\Sigma}_{\mathbf{W}\mathbf{Y}}\mathbf{C}^{\top} + \boldsymbol{\Sigma}_{\mathbf{W}\mathbf{Z}}\mathbf{D}^{\top}$, where $\mathbf{A}\mathbf{W} + \mathbf{B}\mathbf{X}$ and $\mathbf{C}\mathbf{Y} + \mathbf{D}\mathbf{Z}$ both make sense.
 - a. Prove this bilinearity.
 - b. Rephrase cov(AW + BX, CY + DZ) in terms of matrices A, B, C, D, Σ_{WY} , Σ_{WZ} , Σ_{XY} and Σ_{XZ} .
- 2. Let **A** be a square matrix with eigendecomposition $\mathbf{A} = \mathbf{U}\Lambda\mathbf{U}^{-1}$. Given a real number $c \neq \mathbf{A}$ and $c \neq \mathbf{A}$ eigenvalue of **A**), express the eigendecomposition of $(\mathbf{A} c\mathbf{I})^{-1}$ in terms of **U**, Λ , **I** and $c \neq \mathbf{A}$.
- 3. Let W be a discrete random variable such that $\Pr(W=1) = \Pr(W=-1) = 1/2$. Define Y=WX with $X \sim N(0,1)$ and $X \perp \!\!\! \perp W$. Prove the following identities.
 - a. $Y \sim N(0, 1)$.
 - b. X and Y are uncorrelated with each other.
 - c. X is not independent of Y.
- 4. Let $\mathbf{X} = [X_1, X_2, X_3]^{\top} \sim MVN_3(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with

$$\mu = [6, 1, 4]^{\top}, \quad \Sigma = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}.$$

- a. Find the conditional distribution of X_2 given $X_1 = 2$ and $X_3 = 1$.
- b. Find the distribution of random 2-vector $\mathbf{Y} = [3X_1 2X_2 + X_3, X_2 X_3]^{\top}$.
- c. Find $w_1, w_2 \in \mathbb{R}$ such that $W = w_1 X_1 + w_2 X_2 + X_3$ is independent of **Y**. (Hint: don't forget to verify the normality of random 3-vector $[W, \mathbf{Y}^\top]^\top$ after figuring out values of w_1 and w_2 .)