

Fakultät Technik und Informatik

Intelligente Systeme

- Referat -

Adrian Helberg

HAW Hamburg

21.02.2020

Inhalt

- Suchen
- 2 Lernen
- Sequenzen
- Quellen

Suchen

- Suchen
- Sequenzen
- Quellen

Definition

Suchen

Die Aufgabe besteht darin, eine Reihenfolge für den Besuch mehrerer Orte so zu wählen, dass keine Station außer der ersten mehr als einmal besucht wird, die gesamte Reisestrecke des Handlungsreisenden möglichst kurz und die erste Station gleich der letzten Station ist 1

- Kombinatorisches Optimierungsproblem
- 10! = 3628800 mögliche Lösungen
- Theoretische Informatik
- Festlegung der Reihenfolge der zu besuchenden Städte
- NP-vollständig

¹https://de.wikipedia.org/wiki/Problem_des_Handlungsreisenden

Genetischer Algorithmus

Definition

Evolutionäre Algorithmen (EA) sind eine Klasse von stochastischen, metaheuristischen Optimierungsverfahren, deren Funktionsweise von der Evolution natürlicher Lebewesen inspiriert ist ²

- Optimierte, akzeptable Lösung
- Aufgabenstellung mit hoher kombinatorischen Komplexität
- Mengen an (immer besser werdenden) Lösungen
- Kein "Hängenbleiben" an einem lokalen Optimum

Eigenschaften

- Chromosomen
- Fitness
- Selektion
- Kreuzung
- Mutation
- Austausch

Suchen

0000000

```
-Genetic Algorithm Properties-
```

Number of Cities: 48

Population Size: 500

Max. Generation: 500

k Value:

Elitism Value:

Force Uniqueness: false

Local Search Rate: 0.0

Crossover Type: UNIFORM ORDER

90.0% Crossover Rate:

Mutation Type: INSERTION

Mutation Rate: 4.0%

Inhalt

- Suchen
- 2 Lernen
- Sequenzen
- 4 Quellen

Selbstorganierende Karte

Definition

Als Selbstorganisierende Karten [...] bezeichnet man eine Art von künstlichen neuronalen Netzen. [...] Ihr Funktionsprinzip beruht auf der biologischen Erkenntnis, dass viele Strukturen im Gehirn eine lineare oder planare Topologie aufweisen ³

- Neuroinformatik
- Kohonen-Karte, SOM
- Unüberwachtes Lernen

Prinzip

Abbildung: Topologische Abbildung des sensorischen Kortex

Neuron

Abbildung: Neuron einer SOM

- Keine Aktivierungsfunktion
- Kein Mappingfunktion (Oputput)

Neuron

Abbildung: Kohonen-Netz

 Eingabeneuronen sind über die Gewichtsvektoren mit den Ausgabeneuronen vollvermascht

Lernen

- Auswahl von Neuronen über die "Eignung" (euklidische Norm)
- Abstand zwischen Eingabevektoren und Gewichtvektoren wird bestimmt
- Zufällige Auswahl bei gleicher Distanz
- Besonderes: "Sigerneuron" und dessen Nachbarneuronen werden angepasst

Distanzfunktionen

Abbildung: Gaussche Glockenfunktion, Zylinderfunktion und "Mexican-Hat"

Siegerneuron anpassen

 $W_c = W_c + \Delta W_c$ und $\Delta W_c = \eta * (x - W_c)$, mit

- c als Siegerneuron
- W_c als Gewichtungsvektor
- Eingabevektor x

Es gilt $0 < \eta < 1$.

Nachbarneuronen anpassen

$$\Delta W_i = \eta * h_{ci} * (x - W_i)$$
, mit

• h_{cj} als Nachbarschaftsfunktion (Wie stark lernt das Neuron j mit bei Siegerneuron c)

Als Funktion des Abstandes z der Neuronen wird in der Praxis oft eine Zylinderfunktion gewählt:

Zylinder:
$$h_{cj}(z) = \begin{cases} 1 & \text{falls } z < d \\ 0 & \text{sonst.} \end{cases}$$

"Kupferschmiede"

Ein Kupferschmied hämmert auf einer Kupferplatte. Hierbei bestimmt

- der Vektor x, wohin
- die Lernrate η , wie stark
- der Lernradius d, mit welcher Hammergröße und
- die Nachbarschaftsfunktion h_{cj} , mit welcher Hammerform geschlagen wird

Anwendung - Fragestellung

Abbildung: Sind ähnliche Tiere eines Zoos benachbart?

Anwendung - Resultierende Map

Abbildung: Reduktion mehrerer Dimensionen auf 2 (Karte)

- Dimensionsreduktion
- Optimierung
- Data Mining- Cluster
- Data Mining Regeln
- Überwachenung und Anomaliedetektion
- Kontextkarten

Inhalt

- Suchen
- Sequenzen

Thema

Verarbeitung mobiler Sensordaten

- Steigende Beliebtheit tragbarer Endgeräte
- Kontinuierliche Erfassung physiologischer und funktioneller Daten
- Anwendungen bei Apps für Sport, Gesundheit und Wohlbefinden
- Verarbeitung und Analyse von Big Data
- Deep Learning Ansatz

Thema

Human Activity Recognition (HAR)

- Auswertung zeitlicher Reihendaten von Trägheitssensoren
- Identifikation ausgeführter Aktionen: Klassifizierung von Bewegungsabläufen
- Erkennung von Krankheitsausbrüchen (z.B. Parkinson) oder Wirksamkeit einer Behandlung

Problem

- Deep Learning ist zur Zeit sehr erfolgreich bei Implementationen, die Hochleistungs-Rechencluster nutzen.
- Einsatz auf mobilen Endgeräten stellt sich als schwierig heraus, da nur geringe Ressourcen zur Verfügung stehen
- Gesucht ist ein optimiertes Verfahren: Bestes Ergebnis bei geringsten Ressourcen

Entwerfen der Klassifizierungsmethode für eine Zeitreihenanalyse

- Auswahl von Merkmalen der Klassen.
- Oft durch den Einsatz von Deep Believe Networks (DBN), Restricted Boltzman Machines (RBM) oder Convolutional Neural Networks (CNN) umgesetzt
- Herausarbeiten von Features aus Rohdaten

"Shallow Deep Learning"- Methode

Prinzip

Shallow Deep Learning setzt sich aus Deep Learning und Shallow Learning zusammen und ist für HAR unterteilt in:

- Input
- Segmentextraktion
- Spektorgramm
- Deep Learning Modul
- Shallo Features
- Training und
- Evaluation

Ablauf

Abbildung: Schamatischer Ablauf

Input

Um eingehende Daten (Input) zu generieren wird auf verbaute Trägheitssensoren wie

- Beschleunigungsmesser und
- Gyroskope

zugegriffen. Zugriffe auf anderen Sensoren, wie Elektrokardiographie (EKG) oder Elektromyographie (EMG), sind ebenfalls möglich (Smartwatch)

Segmente extrahieren

- Extraktion von n Segmenten aus den Rohdaten (n hängt von der Art der Anwendung ab)
- Segmente bei HAR werden auf 4 bis 10 Sekunden (sliding window) gesetzt
 - Genauigkeit der Erkennung der ausgeführten Aktivität soll maximal sein
 - Verschleierung der Grenten zwischen verschiedenen Aktivitäten soll minimal sein

Spektogramm

- Segmente werden als Spektogramm-Repräsentation an das Deep Learning Modul weitergereich
- Herausarbeiten von Intensitätsunterschieden in den Trägheitspunkten des Spektogramms, wie
 - Zeit- und Abtastrateninvarianz
 - Amplituden
 - Frequenz

Abbildung: Spektorgramme aus verschiedenen Aktivitäten

Shallow Features

Intensitätsunterschiede in den Spektogrammen ergeben "flache" Merkmale, die auf die Spektogramme angewendet werden. Beispiele sind

- Quadratischer Mittelwert
- Standartabweichung

Klassifizierung

Sobald sowohl flache ("shallow learned"), als auch tiefe ("deep learned") Ei- genschaften berechnet wurden, können diese zu einem eindeutigen Vektor zusammengeführt und klassifiziert werden

Training

Flache und tiefe Features werden zusammen in einem einheitlichen, neuronalem Netz trainiert. In jeder Schicht des neuronalen Netzes werden Fehler (Errors) zwischen den Soll- und Istwerten in einer *Backwards Propagation*- Routine genutzt, um die Gewichtungen in den *Hidden-Layers* anzupassen.

Evaluation

Das vorgeschlagene Shallow Deep Learning-Verfahren könnte nun mit ver- schiedenen Datensätzen analysiert und evaluiert werden

Dataset	Description	# of Classes	Subjects	Samples	Sampling Rate
ActiveMiles	Daily activities collected by smartphone in uncontrolled environments	7	10	4,390,726	50 – 200 Hz
WISDM v1.1	Daily activities collected by smartphone in a laboratory	6	29	1,098,207	20 Hz
WISDM v2.0	Daily activities collected by smartphone in uncontrolled environments	6	563	2,980,765	20 Hz
Daphnet FoG	Freezing of gait episodes in Parkinson's patients	2	10	1,917,887	64 Hz
Skoda	Manipulative gestures performed in a car maintenance scenario	10	1	$\sim 701,440$	98 Hz

Abbildung: Datensätze für eine Evaluierung

Inhalt

- Suchen
- 2 Lernen
- Sequenzen
- 4 Quellen

Quellen I

User: Akaq.

Problem des handlungsreisenden.

https://de.wikipedia.org/wiki/Problem_des_ Handlungsreisenden, Dezember 2019.

Yacin Bessas.

Selbstorganisierende karten - proseminar neuronale netze.

http://www.informatik.uni-ulm.de/ni/Lehre/WS04/ ProSemNN/pdf/SOM.pdf, April 2015.

Quellen II

Sabrina Eimler, Stefan Geisler, and Philipp Mischewski. Ethik im autonomen fahrzeug: Zum menschlichen verhalten in drohenden unfallsituationen.

In Raimund Dachselt and Gerhard Weber, editors, *Mensch und Computer 2018 - Workshopband*, Bonn, 2018. Gesellschaft für Informatik e.V.

Julia Köppe.

Einer muss sterben - nur wer?

https://www.spiegel.de/wissenschaft/technik/ unfaelle-mit-selbstfahrenden-autos-wer-soll-leben-werhtml, Oktober 2018.

Quellen III

Suchen

User: LazoCoder.

Implementation traveling salesman.

https://github.com/LazoCoder/ Genetic-Algorithm-for-the-Traveling-Salesman-Problem,

Februar 2017.

Thomas Leske.

Trolley-problem.

https://de.wikipedia.org/wiki/Trolley-Problem, Februar 2020.

User: NadirSH.

Evolutionärer algorithmus.

https://de.wikipedia.org/wiki/Evolution%C3%A4rer_ Algorithmus, August 2019.

Quellen IV

Suchen

User: Orthographus.

Selbstorganisierende karten.

https://de.wikipedia.org/wiki/ Selbstorganisierende_Karte, Jannuar 2020.

Daniele Ravi.

A deep learning approach to on-node sensor data analytics for mobile or wearable devices.

Download from https:

//www.researchgate.net/publication/311947612_A_ Deep_Learning_Approach_to_on-Node_Sensor_Data_ Analytics_for_Mobile_or_Wearable_Devices. Jannuar 2017.

Danksagung

Danke für die Aufmerksamkeit!