Detecção Hierárquica Confiável de Malware de Android Baseado em Arquiteturas CNN

Jhonatan Geremias, Eduardo Kugler Viegas, Altair Olivo Santin, <u>Pedro Horchulhack</u>, Alceu de Souza Britto Jr

*Programa de Pós-Graduação em Informática – Pontifícia Universidade Católica do Paraná, Brasil {jgeremias, santin, pedro.horchulhack, alceu}@ppgia.pucpr.br

SBSeg 2024
Simpósio Brasileiro em Segurança da Informação (SBSeg)

- Introdução
- Fundamentação Teórica
- Declaração do Problema
- Proposta
- Avaliação
- Conclusão

Introdução <u>Contextualização</u>

- Sistema operacional móvel Android
 - 2.5 bilhões de dispositivos ativos
 - 70% do total de mercado de smartphones
- Aplicativos Android maliciosos
 - O número de aplicativos maliciosos está aumentando
 - Afetando 24% de todos os usuários do Android
 - Mais de 67% de todos os aplicativos de malware foram originados de mercados de aplicativos oficiais.

Introdução Contextualização

Técnicas baseadas em análise dinâmica

- Avaliação do comportamento do aplicativo Android realizado em tempo de execução
- O aplicativo é executado em ambiente de *sandbox*
- Malwares modernos são capazes de detectar quando estão sendo monitorados por uma sandbox, permanecendo indetectáveis
- Técnicas baseadas em análise estática
 - Avaliação das características do aplicativo de maneira offline
 - Não requer a execução do aplicativo Android analisado.

Introdução Contextualização

- Técnicas de Deep learning para classificação de aplicativos maliciosos
 - Os arquivos fonte compilados em Java (*dex*) são representados como uma imagem para a tarefa de classificação.
 - O arquivo binário .dex é traduzido para um formato de imagem
 - Cada byte do arquivo .dex é representado na imagem como pixel
 - A imagem é classificada por uma rede neural convolucional (CNN)
 - O dataset composto por amostras de malware e aplicativos benignos
 - O modelo construído é utilizado em produção para a identificação de novos aplicativos Android maliciosos.

Introdução

Limitação da abordagens tradicionais

- Abordagens atuais do estado da arte
 - Os esquemas propostos muitas vezes não são confiáveis para configurações do mundo real
 - Os modelos construídos avaliam a classificação entre diversas famílias de malware
 - Ignoram a identificação inicial da amostra do aplicativo ser maliciosa
 - Não existe garantia de que as taxas de reportadas serão alcançadas em ambientes reais.
 - Os datasets utilizados na avaliação em geral são irrealistas
 - Coletados de uma única fonte (problema de generalização)

Introdução Objetivo

- Desenvolver um modelo de CNN hierárquico e confiável para a classificação de malwares em Android
 - Uma CNN baseada em imagens em um ambiente de classificação local hierárquico
 - Classificados como amostras benignas ou maliciosas em um nó pai
 - Família dos aplicativos maliciosos classificados no nível anterior
 - Aumentar a confiabilidade da classificação
 - Abordagem de Classificação com rejeição
 - Apenas amostras de malware com alta confiança devem ter sua família identificada, mantendo a acurácia do sistema.

Introdução Contribuições

- Um novo dataset de malware Android
 - Composto por mais de 29 mil amostras de aplicativos benignos e maliciosos
 - Dividido em 29 famílias
- Avaliação das abordagens CNN para tarefa de classificação de malware Android
 - Demostrar a falta de confiabilidade para fornecer altas taxas de acurácia quando uma dataset mais desafiador é utilizado
- Um novo modelo CNN baseado em imagem hierárquico e confiável para detecção de malware Android
 - Um modelo capaz de melhorar a precisão da detecção quando comparado a trabalhos relacionados.

- Introdução
- Fundamentação Teórica
- Declaração do Problema
- Proposta
- Avaliação
- Conclusão

Fundamentação Teórica

Deteção de Malware Android

- A tarefa de detecção baseado em análise estática pode ser represetada por quatro módulos sequenciais:
 - Aquisição de dados: extrai o arquivo .dex do arquivo .apk do aplicativo Android analisado
 - Construtor de Imagem: representa o conteúdo do arquivo .dex como uma imagem, representando cada byte como um pixel de imagem
 - Classificação: recebe as imagens construídas e aplica um modelo CNN previamente treinado
 - Alerta: sinaliza as amostras classificadas como malware.

Fundamentação teórica

Detecção de malware Android com Deep Learning

- Na literatura vários trabalhos propõem o uso de CNNs para a classificação de malware em Android
 - Reportam o desempenho com altas taxas de acurácia
 - As abordagens classificam amostras de aplicativos analisadas de acordo com sua família de malware
 - Negligenciam a identificação inicial das amostras de malware
- Consequentemente, mesmo que consigam fornecer esquemas baseados em CNN altamente precisos
 - Limita-se apenas na classificação de amostras de aplicativos que já são conhecidas como malware
 - Deixando o desempenho de detecção entre malware e benigno ainda por ser conhecido.

- Introdução
- Fundamentação Teórica
- Declaração do Problema
- Proposta
- Avaliação
- Conclusão

Declaração do Problema

Dataset de malware Android de imagem realista

- Dataset para classificação de amostras de aplicativos Android baseada em imagens:
 - Os datasets utilizados na literatura não refletem características realistas de ambientes do mundo real
- Problema inerente à sua fonte de dados:
 - Os dataset devem ser compostos por um número representativo de malware e amostras benignas
 - Coletado de uma variedade de fontes ao longo do tempo

Declaração do Problema

Detecção de malware em Android por classificação de imagens

- Detecção de aplicativos Android maliciosos por meio de CNNs baseadas em imagens ainda está em estágios iniciais.
- As técnicas tradicionais baseadas em CNN não conseguem identificar de forma confiável amostras de aplicativos Android maliciosos
- A classificação de famílias de malware Android com CNNs baseadas em imagens não oferece confiabilidade

- Introdução
- Fundamentação Teórica
- Declaração do Problema
- Proposta
- Avaliação
- Conclusão

Proposta

Construtor de Imagem

- O processo de classificação inicia com um arquivo apk Android como entrada para o módulo Aquisição de Dados
 - O arquivo dex é extraído do arquivo apk
 - No módulo Construtor de Imagem o arquivo dex é representado em formato de imagem
- A imagem construída é classificada como benigno ou malware por um módulo Malware CNN.

Proposta

Classificação Aplicativo Android

• O modelo proposto realiza a classificação de aplicativos Android considerando uma estrutura de classificação local hierárquica.

Proposta

Classificação Confiável de Família de Malware

• O módulo verificador avalia o valor de confiança da classificação

• Garantir que o nível desejado de limite de confiança de classificação

seja atendido

- Introdução
- Fundamentação Teórica
- Declaração do Problema
- Proposta
- Avaliação
- Conclusão

Avaliação

Image-based Android Malware Dataset (IAMD)

- Para nossa avaliação construímos o dataset IAMD
 - Composto por 26.799 amostras de aplicativos de Android
 - Divididas em 6.815 amostras benignas e 19,984 maliciosas
 - Distribuidas em 29 famílias
 - Os arquivos apk Android coletados são representados como uma imagem em nosso dataset
 - O arquivo dex é extraído do arquivo do aplicativo apk
 - Convertido em um arquivo de imagem em tons de cinza
 - O dataset é composto por mais de 13,4 GB de imagens

malware

Avaliação Construção do Modelos

- O modelo proposto foi implementado fazendo uso da arquitetura Resnet50
 - A arquitetura foi implementada em Keras e TensorFlow
- O dataset foi dividido em três partes: treinamento, validação e teste (40%, 30% e 30%, respectivamente)
 - As imagens foram geradas por meio da API Python Image Library (PIL)
- As dimensões das imagens geradas variam de acordo com o tamanho do arquivo dex
 - Redimensionadas para 224x224 antes de serem utilizadas nas arquiteturas de CNN.

Avaliação

Questões de Pesquisa

• Como as arquiteturas CNN tradicionais classificam amostras de malware e benignos entre aplicativos Android?

Arquitetura CNN	TP (%)	TN (%)	F 1	AUC
Resnet50	92,95	92,77	0,929	0,97

- As abordagens avaliadas não conseguiram fornecer precisões de classificação significativamente altas
- O ResNet apresentou uma AUC de 0,97, com uma taxa de verdadeiros positivos (TP) de apenas 92,95% e uma taxa de verdadeiros negativos (TN) de apenas 92,77%
- Experimentos com abordagens de detecção amplamente utilizadas mostraram que as técnicas atuais não alcançam altas taxas em termos de acurácia

 Como as arquiteturas CNN tradicionais realizam a classificação famílias de malware?

- A arquitetura selecionada não consegue fornecer alta precisão para a identificação da família de malware
- Em média o Resnet50 apresentou uma taxa de FN de apenas 18.34%
- As abordagens de identificação de famílias de malware falham em alcançar a confiabilidade desejada, afetando significativamente sua acurácia

 Como a abordagem da avaliação na classificação melhora o modelo de classificação de malware?

- A figura mostra a curva ROC da arquitetura Resnet50
- Avaliação do desempenho do modelo proposto utilizando o módulo Verificador para avaliação das classificações realizadas em ambiente de duas classes

 Como a abordagem da avaliação na classificação melhora o modelo de classificação de malware?

CNN	TP (%)	TN (%)	F1	Rejection (%)
0	92.95	92.77	0.929	0.00
Resnet50	96.25	98.27	0.972	5.00
esn	96.54	98.30	0.970	10.00
Ä	97.00	98.33	0.977	15.00

- Rejeitando apenas 10,0% das instâncias, nosso modelo melhora a taxa de TP em 3,59% para Resnet50
- O módulo verificador é capaz de melhorar a confiabilidade do sistema na detecção de malware

 Como o modelo proposto se comporta na classificação de famílias de malware?

- O esquema proposto melhora significativamente a classificação das famílias de malware aceitas
- Rejeitando apenas 10% dos aplicativos avaliados, a taxa média de TP na identificação de famílias de malware melhora em 12,75% para Resnet50 com uma taxa máxima de 6,53% de FN

- Introdução
- Fundamentação Teórica
- Declaração do Problema
- Proposta
- Avaliação
- Conclusão

Conclusão

- A detecção de malware em Android usando CNNs para classificação de imagens está ainda em seus estágios iniciais
- Limitações das abordagens atuais do estado da arte
 - Os datasets utilizados na literatura são incapazes de fornecer características realistas de ambientes do mundo real
 - Não há garantia de que as taxas de acurácia relatadas serão alcançadas em ambientes reais
- Propusemos uma nova abordagem de detecção de malware em Android, confiável e hierárquica, usando CNNs para identificar aplicativos maliciosos e suas famílias
 - Capaz de melhorar a detecção de aplicativos com malware e rejeitar apenas um pequeno subconjunto de amostras de aplicativos
 - Melhora a taxa média de detecção das famílias de malware aceitas quando comparadas às técnicas tradicionais

Detecção Hierárquica Confiável de Malware de Android Baseado em Arquiteturas CNN

Perguntas?

Jhonatan Geremias, Eduardo Kugler Viegas, Altair Olivo Santin, <u>Pedro Horchulhack</u>, Alceu de Souza Britto Jr

*Programa de Pós-Graduação em Informática – Pontifícia Universidade Católica do Paraná, Brasil {jgeremias, santin, pedro.horchulhack, alceu}@ppgia.pucpr.br

SBSeg 2024
Simpósio Brasileiro em Segurança da Informação (SBSeg)

