Fórmulas útiles de transformaciones lineales

Matriz asociada a una transformación lineal: $T_A(x) = Ax = [T]_C \quad \forall x \in \mathbb{R}^n$

Matriz de T en las bases B_1 y B_2 : $[T]_R^{B_2}$

- 1) Sea A la matriz mxn que tiene como columnas, en el mismo orden $T(v_1),...,T(v_n)$ en la base B₁ y sea B la matriz nxn que tiene como columnas a los vectores del mismo orden, de B₂. Defina (B|A).
- 2) Aplique el método Gauss-Jordan a $(B|A) \sim (I|C)$, donde $C = [T]_{B_1}^{B_2}$.

Matriz de coordenadas del T(x) en la base B₂: $\left[T(x)\right]_{B_1} = \left[T\right]_{B_1}^{B_2} \left[x\right]_{B_1} \forall x \in V$

Matriz de transición $\left[I\right]_{B_1}^{B_2}$: se calcula con $B_1=\left\{u_1,\ldots,u_n\right\}, B_2=\left\{v_1,\ldots,v_n\right\}$, entonces

$$(v_1 \quad \cdots \quad v_n | u_1 \quad \cdots \quad u_n) \xrightarrow{\quad \cdots \quad} (I_n | [I]_{B_1}^{B_2})$$

Además, se tiene $[x]_{B_2} = [I(x)]_{B_1} = [I]_{B_1}^{B_2} [x]_{B_1}$

Matriz de composición: $[T \circ S]_{B_1}^{B_3} = [T]_{B_2}^{B_3} [S]_{B_1}^{B_2}$

Además, $[T]_{B_2}^{B_4} = [I_W]_{B_2}^{B_4} [T]_{B_1}^{B_2} [I_V]_{B_3}^{B_1}$

Matriz invertible T:

- 1) $[T]_C = A$ es invertible se calcula $[T^{-1}]_C = A^{-1}$
- 2) Sí $[T]_{B_1}^{B_2}$ es invertible entonces $([T]_{B_1}^{B_2})^{-1} = [T^{-1}]_{B_2}^{B_1}$