Who is filling all these vacancies?

Vacancies are filled by new hires. These new hires can come from two pools of labor – employed or non-employed workers. Suppose all quits represent EE (employer-employer) transitions. This in effect implies that the ratio Quits / Hires represent the share of filled vacancies that are attributed to EE transitions.

Figure 1: This uses JOLTS data which reports hires and quits in thousands of people.

Alternatively, one can estimate the elasticity of quits to hires to recover the importance of quits in filling vacancies. I estimate the following regression:

$$\log(Quits) = \beta_0 + \beta_1 \log(hires) + \beta_2 (\log(hires) * I\{inflation\ period\})$$

Inflation period is defined from April 2021 to May 2023. I run the regression on on JOLTS data from 2000 to may 2023, with excluding data from 2020-March2021. β_1 gives the elasticity in the pre period whereas $\beta_1 + \beta_2$ is the elasticity in the inflation period. Surprisingly, $\beta_1 > 1$ which likely means our assumption that all quits represent EE transitions is likely not true. $\beta_2 > 0$ and statistically significant but quite small.

Table 1: Regression Results

OLS Regression Results

Dep. Variable:	 [og quits	R-squared:		0.875	
Model:	OLS		Adj. R-squared:		0.874	
Method:	Least Squares		F-statistic:		1004.	
Date:	Wed, 26 Mar 2025		Prob (F-statistic):		4.95e-130	
Time:	11:14:45		Log-Likelihood:		313.88	
No. Observations:	289		AIC:		-621.8	
Df Residuals:	286		BIC:		-610.8	
Df Model:		2				
Covariance Type:	r	nonrobust				
=======================================			========			=======
	coef	std err	t	P> t	[0.025	0.975]
const	-4.4880	0.356	-12.620	0.000	-5.188	-3.788
log_hires	1.4505	0.042	34.741	0.000	1.368	1.533
log_hires_x_post	0.0114	0.002	6.395	0.000	0.008	0.015
Omnibus:	========	351.674	 Durbin-Watson:		0.891	
Prob(Omnibus):		0.000	Jarque-Bera (JB):		29234.141	
Skew:		-5.273	Prob(JB):		0.00	
Kurtosis:		51.131	Cond. No.		647.	
=======================================			========			===

While JOLTS provides flows from the firm's perspective, CPS provides flows from the worker's perspective which allows for direct measurement of EE, UE, NE (out of the labor force to employed) flows. The ratio of EE / (EE + UE + NE) provides information about what share of vacancies filled are due to EE transition. Figure 2 shows the time series for this.

Monthly Frequency

Quarterly Average of the monthly series