10. Graphs

- Graphs: definition, terminology, properties, and ADT.
- Subgraph, tree, forest, spanning tree, connectivity.
- Data structures for graphs.
- Traversing: depth first search (DFS) and breadth first search (BFS).
- Finding shortest paths.

aphs 1

What are graphs?

- Graphs are collections of nodes in which various pairs of nodes are connected by line segments (edges).
- Basic Concepts
 - Definition
 - Applications
 - Terminology
 - Properties
 - ADT
- Data structures for graphs
 - Adjacency list structure
 - Adjacency matrix structure

graphs 3

Edge Types Directed edge ordered pair of vertices (u,v) flight first vertex u is the origin ORD AA 1206 second vertex ν is the destination e.g., a flight Undirected edge unordered pair of vertices (u,v) 849 ORD PVD e.g., a flight route miles Directed graph all the edges are directed e.g., flight network Undirected graph all the edges are undirected e.g., route network

 n vertices m edges no parallel edges 	Adjacency List	Adjacency Matrix
• no self-loops		n ²
Space incidentEdges(v)	$n+m$ $\deg(v)$	n ²
areAdjacent (v, w)	min(deg(v), deg(w))	i
insertVertex(o)	i i i i i i i i -	n ²
insertEdge(v, w)	1	1.1.
removeVertex(v)	$\deg(v)$	n ²
removeEdge(e)		1

Graphs - Traversing

- Graph traversing (searching) is to visit all the vertices in a graph.
- Choices
- Depth-First / Breadth-first
- Depth First Search (DFS)
 - Use an array of flags to mark "visited" nodes
- Breadth First Search (BFS)
 - Use an FIFO queue to contain the frontier of "visited" nodes for further search

Depth-First Searching

- ◆ Depth-first search (DFS) is a general technique for traversing a graph.
- In a DFS, one starts at a node, and explores as far as possible along a path before backtracking.
- When backtracking happens, one goes back to a visited node and explores a path that has not been visited.
- A DFS algorithm can be implemented by using a stack.

DFS and Maze Traversal The DFS algorithm is similar to a classic strategy for exploring a maze We mark each intersection, corner and dead end (vertex) visited We mark each corridor (edge) traversed · We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)

Depth-First Searching

- lacktriangle A DFS traversal of a graph G \lacktriangle DFS on a graph with ncan be used to
 - Visit all the vertices and edges of G
 - Determine whether G is connected
 - Compute the connected components of G
 - Compute a spanning forest of G
- vertices and m edges takes O(n+m) time
- DFS can be further extended to solve other graph problems
 - Find and report a path between two given vertices
 - Find a cycle in the graph


```
Analysis of DFS: adjacency matrix

Setting/getting a vertex/edge label takes O(1) time
Each vertex is labeled twice (n vertices)
once as UNEXPLORED
once as VISITED

Each edge is visited twice (m edges)
one for each end-vertex
Method adjacent is called once for each vertex
DFS runs in O(n+m) time provided the graph is represented by the adjacency matrix structure
```

```
Graphs - Depth-First

void visit(graph *g, int k) {
   AdjListNode al_node;
   g->visited[k] = ++search_index;
   al_node = ListHead(g->adj_list[k]);
   while(al_node != NULL) {
    j = ANodeIndex(ListItem(al_node));
    if (!g->visited[j]) visit(g, j);
    al_node = ListNext(al_node);
}

Assumes a List ADT with methods
   ListHead
   ANodeIndex
   ListItem
   ListItem
   ListNext
   graphs

30
```

Analysis of DFS: adjacency list Adjacency List Time complexity Visited set for each node Each edge visited twice Conce in each adjacency list O(|V| + |E|) i.e. O(n + m) O(|V|) for dense |E| ~ |V|^2 graphs but O(|V|) for sparse |E| ~ |V| graphs Adjacency Lists perform better for sparse graphs

Breadth-First Searching

- Breadth-first search (BFS) is also a general technique for traversing a graph.
- In a BFS, one starts at a node, and explores the neighbor nodes first, and then explores the next level neighbor nodes.
- A BFS algorithm can be implemented by using a queue.

Example


```
void visit(graph *g, int k) {
   al node al node;
   int j;
   AddIntToQueue( q, k); /* Add the g node to the queue */
   while('!Smpty( q)) {
      k = QueueHead( q); /* Get the queue head */
      g->visited(k) = **search_index; /* Mark kth g node visited */
      al node = ListHead( g->ad_jlist(k)); /* Get the 1st on A list */
      while(al_node != NULL) {
      j = ANodeIndex(al_node); /* Find the index of the g node */
      if ('!g->visited[j]) { /* If the g node not visited */
            AddIntToQueue( g, j); /* Add it to the queue */
            al_node = ListNext(al_node); /* Get the next neighbor */
      }
   }
}
```