Théoremes d'échange entre opérations usuelles (LIMITES, SOMMES, INTÉGRALES, DÉRIVATION)

(LIMITES, SOMMES, INTÉGRALES, DÉRIVATION)	
Interversions discrètes	
INTERVERSION	HYPOTHÈSES
$\lim_{n\to\infty}\lim_{p\to\infty}u_{n,p}=\lim_{p\to\infty}\lim_{n\to\infty}u_{n,p}$	u croissante en n et en p
Théorème de Fubini pour les familles sommables	Pour tout n (a) est sommable et la série des
$\sum \sum a_{p,q} = \sum \sum a_{p,q}$	Pour tout p , $(a_{p,q})_q$ est sommable et la série des
$p \in A \ q \in B$ $q \in B \ a \in A$	sommes est absolument convergente
Convergence dominée discrète	Convergence simple des $u_{n,k}$ lorsque n tend vers l'infini vus comme
$\lim_{n \to +\infty} \sum_{k=0}^{\infty} u_{n,k} = \sum_{k=0}^{\infty} \lim_{n \to +\infty} u_{n,k}$	une fonction de k . Hypothèse de domination uniforme en n :
$\underline{k=0}$ $\underline{k=0}$	$ u_{n,k} \le v_k \text{ et } \sum v_k < +\infty$
	ples fonctions
Interversion limite-limite $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} f_n(x)$	CVU au voisinage de a et l'une des limites existe
$\lim_{n \to \infty} \lim_{x \to a} f_n(x) = \lim_{x \to a} \lim_{n \to \infty} f_n(x)$	
Interversion des limites pour les séries de fonctions $+\infty$	
$\lim_{x \to a} \left(\sum f_n \right) (x) = \sum \lim_{x \to a} f_n(x)$	CVU au voisinage de a et l'une des limites existe
n=0 / $n=0$	
Calcul différentiel propre	
Lemme de Schwartz (généralisable)	f de classe D^2 (condition forte ! Existence des $rac{\partial^2}{\partial x^2}$ voire de toutes les
$\frac{\partial f}{\partial x \partial y} = \frac{\partial f}{\partial y \partial x}$	dérivées partielles ne suffit pas) $rac{\partial x_i^2}{\partial x_i^2}$
Intégration des fonctions continues par morceaux sur un segment	
	CVU de la suite
Échange limite (uniforme)-intégrale	(continuité des f_n)
$\lim_{n\to\infty}\int_a^b f_n = \int_a^b \lim_{n\to\infty} f_n$	CVU de la suite, à valeurs dans un Banach
<u> </u>	(Cpm des f_n et Cpm de $m{f}$)
Convergence trivialement dominée	CVS de la suite
$\lim_{n \to \infty} \int_{a}^{b} f_{n} = \int_{a}^{b} \lim_{n \to \infty} f_{n}$	(Cpm des f_n et limite Cpm)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\sum_{b} \int_{a}^{b} f_{b} = \int_{a}^{b} \sum_{b} f_{b}$	CVU de la série
$\sum_{n=0}^{\infty} \int_{a} f_n = \int_{a} \sum_{n=0}^{\infty} f_n$	(continuité des f_n)
$\lim_{n\to\infty} F_n = \left(x \mapsto \int_a^x \lim_{n\to\infty} f_n\right)$	f_n CVU sur tout sous-segment, les \emph{F}_n notant leurs
$\lim_{n\to\infty} F_n = \left(x \mapsto \int_a \lim_{n\to\infty} f_n\right)$	primitives s'annulant en $lpha$
$\sum_{n=0}^{+\infty} F_n = \left(x \mapsto \int_a^x \sum_{n=0}^{+\infty} f_n \right)$	$\sum f_n$ CVU sur tout sous-segment, les F_n notant leurs
$\sum_{n=0}^{\infty} F_n = \left(x \mapsto \int_a \sum_{n=0}^{\infty} J_n\right)$	primitives s'annulant en $lpha$
μ =0 μ =0 μ	$\underline{Cas\ k=1}:f_n\ C^1$
$\lim_{n\to\infty} \frac{\mathrm{d}^k f_n}{\mathrm{d}t^k} = \frac{\mathrm{d}^k}{\mathrm{d}t^k} \lim_{n\to\infty} f_n$	CVS des f_n , CVU des f_n^\prime sur tout sous-segment
	\underline{Cas} général : f_n \mathcal{C}^k
	CVS des f_n , CVS des $f_n^{(i)}$ pour $1 \leqslant i < k$ et CVU des
	$f_n^{(k)}$ sur tout sous-segment
	, ii

Cas
$$k = \infty$$
: $f_n C^{\infty}$

CVS des f_n , CVU sur tout sous-segment des $f_n^{(k)}$ pour tout k à partir d'un certain rang et CVS des précédentes à ce rang

Théorème de dérivation sous le signe somme

$$\frac{\mathrm{d}^k}{\mathrm{d}t^k} \sum_{n=0}^{+\infty} f_n = \sum_{n=0}^{+\infty} \frac{\mathrm{d}^k f_n}{\mathrm{d}t^k}$$

Idem pour les $\sum f_n$ (et $\sum f'_n$, etc.) sur tout sous-segment

$$\int_{a}^{b} \int_{c}^{d} f(x, y) dy dx = \int_{c}^{d} \int_{a}^{b} f(x, y) dx dy$$

f est continue

Intégration des fonctions continues par morceaux sur un intervalle quelconque

Théorème de convergence dominée

$$\lim_{n\to\infty}\int_{I} f_n = \int_{I} \lim_{n\to\infty} f_n$$

Théorème de convergence dominée version continue

$$\lim_{\lambda \to \infty} \int_{I} f_{\lambda}(t) dt = \int_{I} \left(\lim_{\lambda \to \infty} f_{\lambda} \right) (t) dt$$

Théorème d'échange série-intégrale

$$\sum_{n=0}^{+\infty} \int_{I} f_n = \int_{I} \sum_{n=0}^{+\infty} f_n$$

Continuité sous le signe intégral

Continuité de $x \mapsto \int_I f(t,x)dt$ sur J

CVS, \int bilité et hypothèse de domination uniforme sur \mathbb{N} (Cpm des f_n et limite Cpm)

CVS, ∫ bilité et hypothèse de domination uniforme en lambda

(Cpm des f_n et limite Cpm)

Intégrabilités, CVS et

convergence de la série des normes 1 (Cpm des f_n et limite de la somme Cpm) OU CVD sur les sommes partielles ou les restes

- $t \mapsto f(t, x)$ Cpm pour tout x
- $x \mapsto f(t,x)$ continue pour tout t
 - domination uniforme en x

Cas k = 1:

- $f(\cdot,t)$ de classe C^1 ;
 - $f(x,\cdot)$ intégrable ;
- $\frac{\partial}{\partial x} f(x, \cdot)$ est Cpm;
- hypothèse de domination sur elle uniforme en x (au voisinage de tout point, sur tout compact...)

Cas général :

- $f(\cdot,t)$ de classe C^k ;
- pour tout $0 \le p < k$, $\frac{\partial^p}{\partial x^p} f(x, \cdot)$ intégrable ;
 - $\frac{\partial^p}{\partial x^p} f(x, \cdot)$ est Cpm;
- hypothèse de domination sur elles uniforme en x (même remarque)

Cas
$$k = \infty$$
:

- $f(\cdot,t)$ de classe C^{∞} ;
- pour tout k, $\frac{\partial^k}{\partial x^k} f(x,\cdot)$ intégrable ;
 - $\frac{\partial^k}{\partial x^k} f(x,\cdot)$ est Cpm ;

hypothèse de domination sur elles uniforme en \boldsymbol{x} (idem)

Théorème de Leibniz = théorème de dérivation sous le signe intégral

$$\frac{\mathrm{d}^k}{\mathrm{d}x^k} \int_I f(x,t) \mathrm{d}t = \int_I \frac{\partial^k}{\partial x^k} f(x,t) \mathrm{d}t$$

Théorème de Fubini

$$\int_{I} \int_{J} f(x,y) dy dx = \int_{J} \int_{I} f(x,y) dx dy$$

- $\int_{J} |f(x,y)| dx$ et $\int_{J} |f(x,y)| dy$ existent toujours pour l'autre variable fixée ;
- $y \mapsto \int_I |f(x,y)| dx$ et $x \mapsto \int_I |f(x,y)| dy$ sont continues:

la première est intégrable sur *J*.

INTERVERSION

HYPOTHÈSES

Intégration de Riemann sur un segment

Continuité des intégrales paramétriques

Continuité de $x \mapsto \int_a^b f(x,t)dt$ sur D

Dérivation des intégrales à paramètre

$$\frac{d}{dx} \int_{a}^{b} f(x,t) dt = \int_{a}^{b} \frac{\partial}{\partial x} f(x,t) dt \text{ continue}$$

f continue

f continue, $\frac{\partial}{\partial x} f(x,t)$ existe en tout point du pavé et $(x,t) \mapsto \frac{\partial}{\partial x} f(x,t)$ continue

Intégration de Riemann sur un intervalle quelconque

Théorème d'interversion

$$\lim_{n\to\infty} \int_I f_n dx = \int_I \lim_{n\to\infty} f_n dx$$

 f_n localement intégrables, CVU vers f sur tout sous-segment et I_n CVU sur $\mathbb N$

(si $(f_i)_{i\in I}$ de [a,b] dans $\mathbb R$ sont I.i., $\left(\int_a^b f_i\right)$ CVU sur I si $\exists \phi: I \to \mathbb R$ $\forall \varepsilon > 0 \ \exists A \in [a, b] \ \forall i \in I \ \forall x \in \mathbb{R} \ A < x < b \Longrightarrow \left| \left(\int_a^x f_i \right) - \phi_i \right| < \varepsilon$, càd $\forall \varepsilon > 0 \ \exists A \in]a, b[\ \forall x, y \ \forall i \in I \ A < x, y < b \Longrightarrow \Big| \int_{x}^{y} f_{i} \Big| < \varepsilon \rangle.$

Théorème de convergence simple

$$\int_{I} f_{n} \, \overline{CVU} \int_{I} f$$
uniformément

 f_i l. i. $\forall i \in I \mid f_i \mid \leq g \mid$. i. d'intégrable convergente

Continuité des intégrales impropres à paramètres

Continuité de
$$x \mapsto \int_a^b f(x,t)dt$$
 sur D

 $f: [a, b[\times D \to \mathbb{R}$ f continue

- $t \mapsto f(t, y)$ l. i. sur [a, b] pour tout $y \in D$
 - $\int_a^b f(t,x) dt$ CVU sur D

 - f continue

- Dérivabilité des intégrales impropres à paramètres $\frac{d}{dx}\int_{a}^{b}f(x,t)dt=\int_{a}^{b}\frac{\partial}{\partial x}f(x,t)dt$ continue
- $\frac{\partial}{\partial x} f(t, y)$ existe $\forall (t, y) \in [a, b[\times D \text{ et est}]$ continue sur $[a, b] \times D$
- $\int_a^b f(t,x) dt$ et $\int_a^b \frac{\partial}{\partial x} f(t,x) dt$ CVU sur D

INTERVERSION

Intégration de Borel-Lebesgue

INTERVERSION

HYPOTHÈSES

Théorème de convergence monotone/théorème

de Beppo-Levi

 (f_n) suite croissante de fonctions mesurables positives à valeurs dans $\overline{\mathbb{R}}$

$$\lim_{n \to \infty} \int_{I} f_n d\mu = \int_{I} \lim_{n \to \infty} f_n d\mu$$
Échange série intégrale

$$\sum_{n=0}^{+\infty} \int_{I} f_n d\mu = \int_{I} \sum_{n=0}^{+\infty} f_n d\mu$$

 f_n mesurables positives

Théorème de convergence dominée f_n suite de fonctions mesurables à valeurs dans $\mathbb C$ qui $\lim_{n\to\infty}\int_I f_n d\mu = \int_I \lim_{n\to\infty} f_n d\mu$ converge vers f quelconque presque partout μ -p.p. $|f_n| \leq g$ intégrable (et convergence dans L^1 !) Théorème de CVD continue $f(x,\cdot)$ fonctions mesurables à valeurs dans $\mathbb C$ qui convergent simplement vers $f \mu$ -p.p. $\lim_{x \to \infty} \int_{I} f(x,t) d\mu(t) = \int_{I} \lim_{x \to \infty} f(x,t) d\mu(t)$ μ -p.p. $|f(x,\cdot)| \leq g$ intégrable u_n mesurables, $\sum_{n=0}^{+\infty} \int_{L} |u_n| < \infty$ $\sum \int_{I} u_n \, d\mu = \int_{I} \sum u_n \, d\mu$ $u \mapsto f(u, y)$ continue en u_0 pour μ -presque tout yContinuité sous le signe Pour tout $u \in I$, pour μ -presque tout y, Continuité de $u \mapsto \int_X f(u,y)d\mu(y)$ en $u_0 \in I$ $|f(u,y)| \le g(y)$ intégrable • $y \mapsto f(u, y) L^1$ pour tout uDérivation sous le signe intégral $u \mapsto f(u, y)$ dérivable pour μ -presque tout y $\frac{d}{du}\int_X f(u,y)d\mu(y) = \int_X \frac{\partial}{\partial u} f(u,y)d\mu(y)$ sur Ipour tout $u \in I$, pour μ -presque tout y, $\left| \frac{\partial}{\partial u} f(u, y) \right| \le g(y)$ intégrable $f(z,\cdot)$ mesurable pour tout z; Holomorphie sous le signe intégral • $f(\cdot, x)$ holomorphe pour presque tout x; $\frac{d}{dz}\int_X f(z,x)d\mu(x) = \int_X \frac{\partial}{\partial z} f(z,x)d\mu(x)$ sur U $|f(z,x)| \le \varphi(x)$ mesurable intégrable pour tout $z \in U$, pour presque tout $x \in X$. Théorèmes de Fubini

$$\int_{X\times Y} f \,\mathrm{d}\mu_1 \otimes \mathrm{d}\mu_2 =$$

$$\int_X \int_Y f(x,y) \,\mathrm{d}\mu_1 \,\mathrm{d}\mu_2 = \int_Y \int_X f(x,y) \,\mathrm{d}\mu_2 \,\mathrm{d}\mu_1$$
avec séparation en produit si $f(x,y) = g(x)h(y)$

 μ_1 , μ_2 σ -finies $f: X \times Y \to \overline{\mathbb{R}}$ ou \mathbb{C} mesurable (alors les fibres le sont) f positive, ou f intégrable au choix !