(a). 3^n não é $O(2^n)$

Vamos supor que $3^n = O(2^n)$. Então existem c, n_0 tais que

$$3^n \le c \cdot 2^n, \quad \forall n \ge n_0.$$

Dividindo ambos os lados por 2^n , temos

$$\left(\frac{3}{2}\right)^n \le c.$$

Entretanto, $(3/2)^n \to \infty$ quando $n \to \infty$, logo, tal constante c não pode existir: contradição. Logo, 3^n não é $\mathrm{O}(2^n)$.

(b). $\log_{10} n$ é $\mathrm{O}(2^n)$

Usando a mudança de base de logaritmos:

$$\log_{10} n = \frac{\lg n}{\lg 10}.$$

Assim, usando $c = \frac{1}{\lg 10}$ e $n_0 = 1$ temos que $\log_{10} n = c \cdot \lg n$. Em particular,

$$\log_{10} n \le c \cdot \lg n.$$

Logo, $\log_{10} n = O(\lg n)$.

(c). $\lg n \in O(\log_{10} n)$

De modo análogo, pela mudança de base:

$$\lg n = \log_{10} n \cdot \lg 10.$$

Assim, para todo $n \ge 1$, com $c = \lg 10$,

$$\lg n \le c \cdot \log_{10} n.$$

Logo, $\lg n = O(\log_{10} n)$.

(a).
$$n^2 + 10n + 20 = O(n^2)$$

Para $n \ge 1$, $n^2 + 10n + 20 \le n^2 + 10n^2 + 20n^2 = 31n^2$.

Escolhendo $c = 31, n_0 = 1$, temos

$$n^2 + 10n + 20 \le c \cdot n^2$$
, $\forall n > n_0$.

Logo, existem c, n_0 tais que, $\forall n \geq n_0, n^2 + 10n + 20 \leq cn^2$, e concluímos que $n^2 + 10n + 20 \in O(n^2)$.

(b). $\lceil n/3 \rceil \in O(n)$

Para $n \ge 1$, $\lceil n/3 \rceil \le n/3 + 1 \le n/3 + n = \frac{4}{3}n$.

Escolhendo $c = 4/3, n_0 = 1$, temos

$$\lceil n/3 \rceil \le c \cdot n, \quad \forall n \ge n_0.$$

Logo, existem c, n_0 tais que, $\forall n \geq n_0, \lceil n/3 \rceil \leq cn$, e concluímos que $n^2 + 10n + 20 \in O(n)$.

(c). $\lg n = O(\log_{10} n)$

Pela mudança de base de logaritmos, temos l
g $n = (\lg 10) \cdot \log_{10} n.$

Escolhendo $c = \lg 10$, $n_0 = 1$, temos

$$\lg n \le c \cdot \log_{10} n, \quad \forall n \ge n_0.$$

Logo, existem c, n_0 tais que $\forall n \geq n_0$, $\lg n \leq c \cdot \log_{10} n$, e concluímos que $\lg n \in O(\log_{10} n)$.

(d). $n = O(2^n)$

Vamos provar, por indução finita sobre n, que $n \leq 2^n$, para todo inteiro positivo:

Para n=1, temos $1\leq 2$. Agora, $n\leq 2^n$ implica $n+1\leq 2^n+1\leq 2^n+2^n=2^{n+1}$, e concluímos o passo indutivo.

Com isso, escolhendo c = 1, $n_0 = 1$, temos

$$n \le c \cdot 2^n$$
, $\forall n \ge n_0$.

Logo, existem c, n_0 tais que $\forall n \geq n_0, n \leq c \cdot 2^n$.

(e). n/1000 não é O(1)

Vamos supor que n/1000 = O(1). Então existem c>0 e $n_0 \geq 1$ tais que

$$n/1000 \le c, \quad \forall n \ge n_0.$$

Mas $n/1000\to\infty$ quando $n\to\infty,$ logo, tal constante cnão existe: contradição. Logo, n/1000não é O(1).

(f). $n^2/2$ não é $\mathrm{O}(n)$

Vamos supor que $n^2/2=\mathrm{O}(n).$ Então existem c>0 e $n_0\geq 1$ tais que

$$n^2/2 \le cn, \quad \forall n \ge n_0.$$

Dividindo por n > 0, vem

$$n/2 \le c \implies n \le 2c$$

o que não é verdade para $n \to \infty$: contradição. Logo, $n^2/2$ não é $\mathrm{O}(n)$.

(a)
$$\lg \sqrt{n} = O(\lg n)$$

Recordemos das propriedades dos logaritmos: $\lg \sqrt{n} = \lg (n^{1/2}) = \frac{1}{2} \lg n$.

Logo, escolhendo $c=\frac{1}{2}, n_0$ qualquer, temos: $\lg \sqrt{n}=c \cdot \lg n$. Em particular,

$$\lg \sqrt{n} \le c \cdot \lg n.$$

Logo, $\lg \sqrt{n} \in O(\lg n)$

(b) Se
$$f = \Theta(g)$$
 e $g = \Theta(h)$ então $f = \Theta(h)$

Pelas hipóteses $\exists (a, b, c, d, n_1, n_2)$ tais que

$$a g(n) \le f(n) \le b g(n), \quad \forall n \ge n_1,$$

 \mathbf{e}

$$c h(n) \le g(n) \le d h(n), \quad \forall n \ge n_2.$$

Tomando $n_0 = \max\{n_1, n_2\}$ e compondo as desigualdades, para todo $n \geq n_0$ temos

$$ac h(n) \le a g(n) \le f(n) \le b g(n) \le bd h(n)$$
.

Assim $f(n) \in \Theta(h(n))$ com constantes ac e bd, e a afirmação é verdadeira.

(c) Se f = O(g) e
$$g = \Theta(h)$$
 então $f = \Theta(h)$

Considere as funções:

$$f(n) = 1,$$
 $g(n) = n,$ $h(n) = n.$

Então,
$$g(n) = \Theta(h(n)) = \Theta(n)$$
, por óbvio, e $f(n) = O(g(n)) = O(n)$.

No entanto f(n) não é $\Omega(h(n))=\Omega(n)$: não existe c>0 tal que $1\geq c\,n$. Logo $f\in\Theta(h),$ e a afirmação é falsa.

(d) Se $\lg(g(n)) > 0$ e $f(n) \ge 1$ para n suficientemente grande, então $f = \mathcal{O}(g) \implies \lg(f) = \mathcal{O}(\lg(g))$.

Ora, se $\exists n_0, c : \forall n \geq n_0, 1 \leq f(n) \leq c g(n)$, então, para $n \geq n_0$, vale

$$0 \le \lg(f(n)) \le \lg(c g(n)) = \lg c + \lg(g(n)).$$

Daí, podemos fazer:

$$\lg(f(n)) = \lg c + \lg(g(n)) = \lg(g(n)) \cdot \left(1 + \frac{\lg c}{\lg(g(n))}\right).$$

Agora, vamos olhar para $\frac{\lg c}{\lg(g(n))}$. Sabemos que $\lg(g(n)) \geq \delta > 0$. Vamos chamar de δ_{\min} o menor valor de $\lg(g(n))$. Daí, temos:

$$\lg(f(n)) \leq \left(1 + \frac{\lg c}{\lg(g(n))}\right) \cdot \lg(g(n))) \leq K \cdot \lg(g(n)).$$

Onde, se lg c<0, tomamos K=1, e do contrário, tomamos $K=1+\frac{\lg c}{\delta_{\min}}$. Assim, concluímos que $\lg(f(n))\in \mathrm{O}(\lg(g(n)))$

(e)
$$2^{f(n)} = O(2^{g(n)})$$

Sejam

$$f(n) = 2 g(n), \qquad g(n) = n.$$

Então f(n) = O(g(n)), por óbvio. Contudo,

$$2^{f(n)} = 2^{2n} = (2^n)^2 = (2^{g(n)})^2.$$

Se existissem constantes positivas c, n_0 tais que $2^{2n} \le c \cdot 2^n$ para todo $n \ge n_0$, então, dividindo por 2^n , obteríamos $2^n \le c$ para todo $n \ge n_0$, o que é impossível, uma vez que $2^n \to \infty$ quando $n \to \infty$. Logo $2^{f(n)} \notin \mathcal{O}(2^{g(n)})$.

(a).
$$\sum_{k=1}^{n} k^{10} \in \Theta(n^{11})$$

Devemos apresentar inteiros positivos n_0, c_1, c_2 tais que, para todo $n \ge n_0$,

$$c_1 n^{11} \le \sum_{k=1}^{n} k^{10} \le c_2 n^{11}.$$

Considere a função $f(x) = x^{10}$, crescente para x > 0. A ideia aqui é obter uma aproximação por excesso para o gráfico dessa função. Note que $\sum_{k=1}^{n} k^{10}$ corresponde a soma da área de 10 retângulos (de largura 1 e de altura x^{10}), e cada retângulo excede a área da função sob o respectivo intervalo de x.

Sendo assim, podemos concluir, usando o Teorema Fundamental do Cálculo para obter a área da função, que:

$$\sum_{k=1}^{n} k^{10} \ge \int_{0}^{n} x^{10} dx = \left[\frac{x^{11}}{11} \right]_{0}^{n} = \frac{n^{11}}{11}.$$

E assim, podemos tomar o limite inferior $c_1 = \frac{1}{11}$.

Agora, como $\forall k, k \leq n$, temos:

$$\sum_{k=1}^{n} k^{10} \le \sum_{k=1}^{n} n^{10} = n \cdot n^{10} = n^{11}.$$

Logo podemos tomar o limite superior $c_2 = 1$.

Como ambas as desigualdades valem $\forall n \geq 1$, mostramos que existem constantes positivas $c_1 = \frac{1}{11}$, $c_2 = 1$ e $n_0 = 1$ que satisfazem a definição de Θ , e concluímos:

$$\sum_{k=1}^{n} k^{10} \in \Theta(n^{11}).$$

(b).
$$\sum_{k=1}^{n} \frac{k}{2^k} \leq 2$$

Seja

$$S_n = \sum_{k=1}^n \frac{k}{2^k} = \frac{1}{2^1} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n}{2^n}.$$

Multipliquemos os dois membros por 2, temos então:

$$2S_n = \sum_{k=1}^n \frac{k}{2^k} = \frac{1}{1} + \frac{2}{2} + \frac{3}{4} + \dots + \frac{n}{2^{n-1}}.$$

Agora, vamos subtrair S_n de $2S_n$:

$$2S_n - S_n = \left(1 + \frac{2}{2} + \frac{3}{4} + \dots + \frac{n}{2^{n-1}}\right) - \left(\frac{1}{2} + \frac{2}{4} + \dots + \frac{n-1}{2^{n-1}} + \frac{n}{2^n}\right),$$

e alinhar os termos com mesmo denominador:

$$S_n = 1 + \left(\frac{2}{2} - \frac{1}{2}\right) + \left(\frac{3}{4} - \frac{2}{4}\right) + \dots + \left(\frac{n}{2^{n-1}} - \frac{n-1}{2^{n-1}}\right) - \frac{n}{2^n}.$$

Com isso, simplificamos a expressão para uma progressão geométrica:

$$S_n = 1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{n-1}} - \frac{n}{2^n},$$

cuja expressão para a soma conhecemos:

$$\frac{1 \cdot (1 - (1/2)^n)}{1 - 1/2} = 2 \cdot (1 - \frac{1}{2^n}) = 2 - \frac{1}{2^{n-1}}.$$

Assim, sendo n positivo, concluímos: $S_n = 2 - \frac{1}{2^{n-1}} \le 2$.