Sum of diagonals

Given a 2-D square matrix, find sum of elements in Principal and Secondary diagonals. For example, consider the following 4 X 4 input matrix.

```
\begin{array}{cccccc} A_{00} & A_{01} & A_{02} & A_{03} \\ A_{10} & A_{11} & A_{12} & A_{13} \\ A_{20} & A_{21} & A_{22} & A_{23} \\ A_{30} & A_{31} & A_{32} & A_{33} \end{array}
```

The primary diagonal is formed by the elements A_{00} , A_{11} , A_{22} , A_{33} . And the secondary diagonal is formed by the elements A_{03} , A_{12} , A_{21} , A_{30} .

Input:

The first line consists of an integer T i.e number of test cases. The first line of each test case consists of an integer N. The next line consists of N*N spaced integers.

Output:

Print the sum of primary diagonal elements and the secondary diagonal elements with a space in between.

Constraints:

```
1<=T<=100
1<=N,a[i][j]<=1000
```

Example:

Input:

```
2 4
4 1 2 3 4 4 3 2 1 7 8 9 6 6 5 4 3
3 1 1 1 1 1 1 1 1 1
```

Output:

```
16 20
3 3
```