ADA047843

DRSAR/SA/N-73

SYSTEMS ANALYSIS DIRECTORATE ACTIVITIES SUMMARY SEPTEMBER 1977

(VOLUME I)

TECHNICAL

OCTOBER 1977

Approved for public release; distribution unlimited.

US ARMY ARMAMENT MATERIEL READINESS COMMAND

Systems Analysis Directorate

ROCK ISLAND, ILLINOIS 61201

DISPOSITION

Destroy this report when no longer needed. Do not return it to the originator.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position.

WARNING

Information and data contained in this document are based on input available at the time of preparation.

Because the results may be subject to change, this document should not be construed to represent the official position of the US Army Development & Readiness Command unless so stated.

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
DRSAR/SA/N-73		
. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
SYSTEMS ANALYSIS DIRECTORATE		
ACTIVITIES SUMMARY - SEPTEMBER 19	77	Note - Final
(VOLUME I)	, ,	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(s)
PERFORMING ORGANIZATION NAME AND ADDRESS		
		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
US Army Armament Materiel Readines		
Systems Analysis Directorate (DRSA Rock Island, IL 61201	AK-SA)	
1. CONTROLLING OFFICE NAME AND ADDRESS		12 000000000000000000000000000000000000
US Army Armament Materiel Readines	cc Command	12. REPORT DATE
Systems Analysis Directorate (DRSA		October 1977 13. NUMBER OF PAGES
Rock Island, IL 61201	AIX-DA)	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(If different	from Controlling Office)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
		SCHEDULE
6. DISTRIBUTION STATEMENT (of this Report)		
Approved for public release; distr	ribution unlimite	ed.
•		
7. DISTRIBUTION STATEMENT (of the abstract entered i	n Block 20, if different from	n Report)
8 CURRI EMENTARY MOTER		
8. SUPPLEMENTARY NOTES Additions or de	letions of addre	sses to/from the DISTRIBUTION

LIST are invited and should be forwarded to the address below. Inquiries pertinent to specific items of interest may be forwarded to Commander, US Army Armament Materiel Readiness Command, ATTN: DRSAR-SA, Rock Island, IL 61201 (AUTOVON 793-4483/4628)

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Chemical agent

Censor criteria

Purity of the agent

Statistical samples

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

This monthly publication contains Memoranda for Record (MFR's) and other technical information that summarize the activities of the Systems Analysis Directorate, US Army Armament Materiel Readiness Command, Rock Island, IL. (The most significant MFR's and other data will be published as notes or reports at a later date.)

Volume I (UNCL) deals with determination of the serviceability category of chemical agent lots. Volume II (CONF) contains an analysis fo the operational capability as the 105mm M101A1 and M102 Howitzers.

	FORM	1/77				
w	1 JAN 73	14/3	EDITION OF	PON	65 IS	OBSOLETE

RITY CLASSIFICATION OF THE		
		5
	4	
		3
		•
	*	1.54
. Par emina.		
		•

CONTENTS

	Page
Procedure for Determining the Serviceability Category of Chemical Agent Lots	5
User's Guide to the Computer Programs for Determining the Serviceability Category of Chemical Agent Lots	23
DISTRIBUTION LIST	54

Next page is blank.

PROCEDURE FOR DETERMINING THE SERVICEABILITY CATEGORY OF CHEMICAL AGENT LOTS

1. Introduction.

Serviceability categories for chemical agents or munitions are assigned on the basis of the purity of an entire lot of agent or munition. The purity of a lot is the average purity of the agent in all the containers comprising the lot; it is the purity one would measure if it were possible to mix all the agent together in one large vat. Since sampling from a portion of the lot gives only an estimate of the purity of the lot, statistical methods are employed to draw an inference about the true purity of the lot.

The statistical method described in the following includes criteria for censoring bad data and establishes a lower bound for the value of lot purity, with given confidence, based upon the Student-t distribution.

2. Sampling Methodology.

A pair of samples is taken from each of a number \underline{n} containers from the lot, each container having been selected independently and at random. The agent in each container (ideally) is mixed well before sampling. Each sample is analyzed for percent purity of agent.

3. Statistical Procedure.

- a. Fill in Part 1 of the Lot Purity Estimation Worksheet (example worksheets are attached) through column C. In case of a missing member of a pair, leave column A or B blank, as appropriate, and leave column C blank.
- b. If a criterion for pair differences has been previously established, go to step \underline{e} . Otherwise, continue to step \underline{c} .
- c. Repeat step <u>a</u> for each lot under consideration. Then fill in the Censor Criterion Worksheet (example worksheets are attached) by tallying the occurrences of values from column C of all the Estimation Worksheets.
- d. Judgementally select a value of pair difference which is larger than the body of occurrences, but which is smaller than extreme outlying occurrences, if any. This value, the censor criterion, should generally be such as to reject less than 5% of the sample pairs. An example of censor criterion selection is attached.

- e. On the Estimation Worksheet, censor (line out) any sample pairs for which the pair difference is larger than the censor criterion. Now complete columns D (for a missing member of a pair, enter in D the value for the present member) and E.
- f. On Part 2 of the Estimation Worksheet (examples attached), complete the indicated computations through the computation of s.
- g. If there were no missing members of sample pairs, go to step \underline{h} . If there was a missing member, check the value in column D against \overline{a} 11 the other values in that column. If this value is either the largest or the smallest number in the column, calculate the required entry in column F for this sample. If the entry in column F is greater than 3.00 in absolute value, censor the sample and go back to step \underline{f} . Otherwise, continue to step \underline{h} .
- \underline{h} . Now complete the remaining calculations.* The value LCL is compared with values in the table of Purity requirements for serviceability categories, establishing the condition code for the lot.

Repeat the process for each lot.

4. Comments.

Two portions of the above procedure deserve further discussion: the rationales for the chemical sample censoring scheme, and the rationale for the constitution of the statistical sample** which is used in calculating the confidence interval for true lot purity. The following paragraphs discuss these points.

First, the chemical sample censoring scheme is based primarily upon the size of pair differences, where both members of a pair are present, and secondarily upon the value of purity relative to the values of other samples, where one member of a pair is absent (due to breakage, for example). Since sample pairs are drawn from a container which is supposed to have been agitated to mix the agent well, one expects the purity of the pair of samples to be identical, with only a small error in the chemical analysis giving rise to different values. However, it is recognized that the mixing is less than perfect in practice; hence, a second source of difference. It is hypothesized that pairs of purity values which are "close" represent good mixing and a valid sample, and that widely separated pair values represent poor mixing and an invalid sample.

^{*}A table of the t-distribution, required for these calculations, is attached. This table is also to be found in most statistical texts and handbooks.

^{**}The term "chemical sample", or simply "sample" used in that context, refers to the contents of a bottle of agent which has been drawn from a storage container or munition for purposes of surveillance testing. The term "statistical sample", or simply "sample" used in that context, refers to the collection of numbers entered in column D of the Estimation Worksheet as a group.

Second, the statistical sample is composed not of the individual purities of valid chemical samples, but of the arithmetic averages of the purities of pairs of valid samples. This is done because the members of a pair can not be considered to be statistically independent of each other under the assumptions previously stated, and because the two members of a valid pair have equal weight. In statistical language, this approach provides the correct number of "degrees of freedom."

5. Summary.

The procedure delineated above consists of a judgemental scheme for censoring bad data and the computation of a lower confidence bound for true lot purity based upon the t-statistic. This procedure is readily amenable to computerization.

6. Any questions should be directed to Mr. Richard Heider, DRSAR-SAM, extension 3167.

ATTACHMENTS

BLANK SPECIMEN WORKSHEETS

PERCENTAGE POINTS OF THE t DISTRIBUTION

WORKED EXAMPLES

Next page is blank.

SAMPLE LAB NO'S. NO. (A) (B) AGENT, LOT # CONTAINER TYPE (A) (B) A-R (A) (B) D-X (B) D-X (A) (B) D-X (A) (B) D-X (B) D-X (A) (B) D-X (B) D-	TITLE:					BY:			DATE:	
SAMPLE LAB NO'S. NO. (A) (B) AGENT LOT # CONTAINER TYPE (A) (B) A-B D D-X (A) (B) A-B D D-X (A) (B) A-B D D-X (B) A-B D D-X (C) A-B D-X (C)	LOT PURITY E	STIMAT	ION, PAR	T						
SAMPLE LAB NO'S. NO. (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B			**************************************	BLANK	SPECIMEN	WORKSHE	ETS	***************************************		
		T.A.R	NO'S	ACENT TO	OT #			CONTAINE	ם שעטה	N. M. Parker Many J.
	NO.	(A)	(B)	A 7 Pur	B 7 Pur	0	(D) ALB	CONTAINE		r
	110.	(A)	(1)	(4)	D) % Fur		W ATB		$\overline{\mathbf{p}}$	1
			······································	(A)	(D)	A=B		1 · D×D	s	
							·			
									· · · · · · · · · · · · · · · · · · ·	
					-		· · · · · · · · · · · · · · · · · · ·			
						· ·				
									7.92	
								-		
						-				
							 			
								<u> </u>		,
							† 	 		
	,									
		~		:						
					*			 		
								ļ · · - · · · · · · · · · · · · · · · ·		
	•									
								 		
		•						 		
		~		-						
							 	· · · · · · · · · · · · · · · · · · ·		
		·								
										
							 	<u> </u>		
							l			
			×							
						<u> </u>				
										
	•									
							·			
									71	
					1.	1				

	AGENT L	OT #	1	,	CONTAIN	ER TYPE
FORMULA						RESULT
n = number of uncensored	ines on	part 1				n =
a = total of column D fro	part 1					a =
b = total of column E fro	part 1					b =
x = a ÷ n						- x =
$c = \bar{x} \times a$						c =
d = b - c	M cd					d =
e = d ÷ (n-1)				The state of the s	and also are also	e =
s = Ve		A				s =
$\alpha = confidence level; the$	probabil	ity that	the tru	e		
purity of the lot is limit LCL, below. (Va	less thar alue is s	the low	er confi policy	dence		
decision, normally in	the rang	e 0.100	to 0.001			α =
t = percentage point a;n-1	obtained	from ta	bles of	the		
t - distribut	ion					$t_{\alpha;n-1} =$
$f = t_{\alpha; n-1} \times s$						f =
g = f ÷ √n						g =
$LCL = \bar{x} - g$						LCL =
"It can be stated with [1 this lot is no less t	00x(1-α) nan [LCL]	percent	confide	nce that	the puri	ty of
"It can be stated with this lot is no less t	perc	ent conf	idence t	hat the p	urity of	
Condition code criteria f	or this	tem are		/ perd	ent.	

TITLE:				BY:			DATE:	
CENSOR CRITE	RION WORKSHEE	T						
ADOOLUMB HAT		I	o= "		•			327 M. AFRICA
ABSOLUTE VAL		ACENT I	GT #	1	Ţ.	CONTAIN	ER TYPE	T
DIFFERENCE b	etween							
0.00	- 0.99		1		 	+		
1.00	1.99							
2.00	2.99				-			<u> </u>
3.00	3.99		-					
4.00	4.99			·				1
5.00	- 5.99				1			
6.00	6,99	1						-
7.00	7.99							1
8.00	8.99				. =			-1-
9.00	9.99							1
10.00	- 10.99							
11.00	11.99							
12.00	12.99					·		1
13.00	13.99							
14.00	14.99							
15.00	- 15.99							
16.00	16.99				,			
17.00	17.99							
18.00	18.99							
19.00	19 99				`			
20_00	- 20,99			·				
21.00	21.9		1	11 1				
22.00	22.99						1	
23.00	23.99							
24.00	24.99							
25.00	- 25.99							1
26.00	26.99							
27.00	27.99							
28.00	28.99							
29.00	29.99							
30.00	- 30.99							
31.00	31.99							
32.00	32.99							
33.00	33.99							
34.00	34.99							
35.00	- 35.99							
36.00	36.99							
37.00	37.99							
38.00	38.99			1				
39.00	39.99		1					
40.00	- 40.99							
1.00	41.99							
2.00	42,99							
3.00	43.99							
4.00	44.99		<u> </u>					
5.00	- 45.99							
6.00	46.99							
7.00	47.99							
8.00	48.99							
9.00	49.99					Next page	e is blan	ık.
0.00	- 100.00	1		13				

Percentage Points of the t Distribution*

Table of $t_{\alpha;\nu}$ —the 100 α percentage point of the t distribution for ν degrees of freedom

v	α 0.40	0.25	0.10	0.05	0.025	0.01	0.005	0.0025	0.001	0.0005
1					12.706	31.821	63.657	127,32	318.31	636,62
2		_			4.303	6.965	9.925	14.089	23,326	31.598
3		_			3.182	4.541	5.841	7.453	10.213	12.924
4	.271	.741	1.533	2.132	2.776	3.747	4.604	5.598	7.173	8.610
5			1.476	2.015	2.571	3.365	4.032	4.773	5.893	6,869
6			1.440	1.943	2,447	3.143	3.707	4.317	5.208	5.959
7		.711	1.415	1.895	2.365	2.998	3.499	4.029	4.785	5.408
8		.706	1.397	1.860	2.306	2.896	3,355	3.833	4.501	5.041
9	.261	.703	1.383	1.833	2.262	2.821	3.250	3.690	4.297	4,781
10	0.260	0.700	1.372	1.812	2.228	2,764	3.169	3,581	4.144	4.587
11	.260	.697	1.363	1.796	2.201	2.718	3.106	3.497	4.025	4.437
12	.259	.695	1.356	1.782	2.179	2.681	3.055	3.428	3.930	4.437
13	.259	.694	1.350	1.771	2.160	2.650	3.012	3.372	3.852	4.318
14	.258	.692	1.345	1.761	2.145	2.624	2.977	3.326	3.787	4.140
15	0.258	0.691	1.341	1.753	2.131	2,602	2.947	3.286	3.733	4,073
16	.258	.690	1.337	1.746	2.120	2.583	2.921	3.252	3.686	4.015
17	.257	.689	1.333	1.740	2.110	2,567	2,898	3.222	3.646	3.965
18	.257	.688	1.330	1.734	2.101	2.552	2.878	3.197	3,610	3.922
19	.257	.688	1.328	1.729	2.093	2.539	2.861	3.174	3.579	3.883
20	0.257	0.687	1.325	1.725	2.086	2.528	2.845	3.153	3.552	3.850
21	.257	.686	1.323	1.721	2.080	2.518	2.831	3.135	3.527	3.819
22	.256	.686	1.321	1.717	2.074	2.508	2.819	3.119	3.505	3.792
23	.256	.685	1.319	1.714	2.069	2.500	2.807	3.104	3.485	3.767
24	.256	.685	1.318	1.711	2.064	2.492	2.797	3.091	3.467	3.745
25	0.256	0.684	1.316	1.708	2.060	2.485	2,787	3.078	3.450	3.725
26	.256	.684	1.315	1.706	2.056	2.479	2.779	3.067	3.435	3.723
27	.256	.684	1.314	1.703	2.052	2.473	2.771	3.057	3,421	3.690
28	.256	.683	1.313	1.701	2.048	2.467	2.763	3.047	3.408	3.674
29	.256	.683	1.311	1.699	2.045	2,462	2.756	3.038	3.396	3.659
30	0.256	0.683	1.310	1.697	2.042	2.457	2.750	3.030		
40	.255	.681	1.303	1.684	2.021	2.423	2.704	2.971	3.385	3.646
60	.254	.679	1.296	1.671	2.000	2.390	2.660		3.307	3.551
20	.254	.677	1.289	1.658	1.980	2.350	2.617	2.915	3.232	3.460
∞	.253	.674	1.282	1.645	1.960	2.326	2.576	2.860 2.807	3.160 3.090	3.373
							2.370	2.00/	3.090	3.291

^{*}This table is reproduced from Table 12 of Biometrika Tables for Statisticians, Volume 1, 1962, by permission of the Biometrika Trustees.

			T I WORK	ED EXAMP	LES	¥.C.			
MPLE		Nu'S.	ACENT I	T # 665	1-200		CONTAINE	R TYPE	155 mm
NO.	(A)	(B)	(A) % Pur	B) % Pur	(C)	$\frac{1}{2} \frac{\Lambda + B}{2}$		\overline{F} $\overline{D} - \overline{x}$	7
1		701	(A) 92.3	(E) 90.3	Λ-B 2.0	91.3	8335.69	- S	
<u>/</u>	705	706	90.8	90,7	0.1	90,75	8235.5625		
2	707	710	91,2	91.4	-0.2	91.3	8335.69		7
3	709	712	90.1	88,1	2,0	84.1	7938.81		
4	711	714	88,7	87.4	1.3	88,05	7752,8025		
5	713		86.8	91.4	4.6	891	7938,81		
6	715	716	88,9	86.3	2.6	87.6	7673.76		
7 8	719	720	90,0	9112	-1,2	90.6	8208.36		
		722	90,2	89.0	1.2	89.6	. 8028,16		
7	72.1	724	89.0	90.2	-1.2	89.6	8028,16		
0	725	726	88,4	89.0	-0,6	88.7	7867.69		
12	727	728	04 9	88.7	- 3.8	86.8	7534,24		
3	729	730	84.9	88,0	1.9	88.95			
3		130	011	0070		1			
			 		1				
					 				
			-		1				
····			 		- -				
			-	-		-			
				 					
						-			
	,		-			-		1	
		•	_						
			<u> </u>					 	
				-	-	- 	-	<u> </u>	
					_				
			<u> </u>	-	-			-	
			_					+	
	 					+			
						_			
									
					_				
				_					
								-	
				_					
						- 			
							_		
					-	- -			
									
									
								-	
						_			
			_						
	<u> </u>								
					-				
			3				i	1	l l

112

LOT PURITY ESTIMATION, PA	RT 2	(R.HEIDE	ER (DRSA	R-SA)	2 SEPT	77
	AGENT L	от # (g.b.	51-200)	CONTAIN	ER TYPE	155 mm
FORMULA						RESULT	
						REBUET	1
n = number of uncensored	ines_on	part_1				_n_=	/3
a = total of column D fro	part 1					-a_=	1161,45
b = total of column E from	part 1					b = 103	789.837
$\bar{x} = a \div n$				1		x = 8	9.3423
$c = \overline{x} \times a$				1		c = /03	766.423
d = b - c						d = 2	,2142
e = d ÷ (n-1)						e = 1.9	345
s = √e				·		s = /,	391
α = confidence level; the purity of the lot is	less than	the low	er confi				
limit LCL, below. (V. decision, normally in						$\alpha = 0.$	01
						~ <i>U</i> .	
t = percentage point α;n-1	obtained	from ta	bles of	the			
t - distribut	ion					tα;n−1	= 2.68
$f = t_{\alpha; n-1} \times s$						f = 3.7	293
$g = f \div \sqrt{n}$						g = /,	034
$LCL = \bar{x} - g$						T.C.I	88.308
Lui - x - g						LUL =	88.308
"It can be stated with [l this lot is no less t	00x(1-a) nan [LCL	_percent _"	_confide	nce that	the puri	ty of	
"It can be stated_with this lot is no less t	99 perd	ent_conf 308."	idence t	hat the p	urity of		
Condition code criteria f	or_this_:	tem_are	55 / 35	/20 per	ent.		
		18					

LOT PURITY	- ESTIMATI	ION, PA	RTI	40	R.HEI	DER loa	RSAR-SA)	2 SE	PT 77
SAMPLE 'NO.	LAB (A)	NO'S. (B)	📣 % Pur	OT # RM	0	323 () <u>A+B</u>	CONTAIN	TYPE P. D-X	105 inn
1	67.0	621	74.6	73,7	0.9	74.15	5498.2225	s	-
2	622	623	76.6	76.2	0.4	76,4	5836.96		
3	624	625	. 76,6	76.6	0.0	76.6	5867.56		
4	626	627	78.1	176.6	115	77.35	5483,0275		
- 5	628	629	·	69.8		69.8	4872.04		1
6	1630	631	70.7	63.0		66.25	4462.9225	-	.,,
7	632	633	70,5	68,2	2.3	69.35	4801.4225		oralise of the
8	634	635	70,1			70.1	4914.01		
10	636	637	78.2	77.0	1.2	77.6	6021.76		
11	640	641	77.1	76.7	-0.7	76.2	5829.3225		
12	642	643	76.2	76,1	0.1	76.15	5798,8225		
13	644	645	76.1	76,3	-0.2	76.2	5906.44		
		<u> </u>		1013			דיוטטיאכ		
						 			
							ţ		
	NOTE	: No	censon	DUE TO	PAIR D	IFFERE	NCE	-	•
									.,
		No	CENSOR	DUE 70	SIZE 0	F SING	LE INEIN	PER	
							1		
				!					
						ļ	 		
			-		ļ	-			
,			-	1	<u> </u>				
			_ `	1	!				
			· · · · · · · · · · · · · · · · · · ·					A Self-transplanting agreement algorithm	
				1					
							1		
			i	i			1		
				1	1		1.		
					i		1		
- ve e e e e e e e e e e e e e e e e e e									
			:			1			gan and a second
			i			ļ	1		
			-	<u> </u>		.	-		
					<u> </u>			· · · · · · · · · · · · · · · · · · ·	ner.
			. !						1
			1		<u>, </u>				
					 	1			
				-	<u> </u>				
			1		<u> </u>	-			
			1			 			
		:	i		,				n equal to
							<u> </u>		
0									
1					1				
***************************************		**************************************	<u> </u>	!		1	!		
						i			
					21	1	,		

	ACTEMIE	LOT	# 0 m	11-079 -	322	CONTAINE	The Court of the C	105 mm
FORMULA	AGENT	1701	"	76039-	723			US MIMI
TORTOLA ,		-					RESULT	
_ = number of uncensored	lines o	n pa	rt 1				n =	/3
	_						a.=	913.1
a_=_total_of.column_D_fr	om part	<u>-</u>					1	
b = total of column E fr	on part	1					b = 715	12,945
$\bar{x} = a \div n$					· · · · · · · · · · · · · · · · · · ·			74.0846
$c = \bar{x} \times a$							c = 7135	0.89307
d = b - c							d = 16	2.05193
e = d ÷ (n-1)							e = 13	2.5043
s = √e							s = 3,	6748
								ī
α = confidence level; the purity of the lot is	e probab	ilit	y that	the true	dence			
limit LCL, below. (Value is	set	by a	policy				1
decision, normally i	n the ra	inge	0.100	to 0.001)	i	$\alpha = C$.01
t = percentage poir α;n-1 t - distribu	it obtair	red 1	rom ta	bles of	the		t1	=2.68
C distribu							₩;n-1	
$f = t_{\alpha; n-1} \times s$							f =	9.8527
$g = f \div \sqrt{n}$							g =	2.7329
$LCL = \bar{x} - g$		<u>.</u>		·			LCL =	71.35
"It can be stated with	(100x(1=	x)	percent	confide	nce that	the puri	ty of	×
4540 lot 10 20 loce	rnan [L	و لمايد						
this lot is no less	•		nt conf	idence t	hat the	urity of		
"It can be stated with this lot is no less	99 p than 71	.35	2 "					
"It can be stated with	than 71	.35	2" em are		745 per	ent.		
"It can be stated with this lot is no less	for thi	35; s t	2 ." em are	22		ent.		

USER'S GUIDE TO THE COMPUTER PROGRAMS FOR DETERMINING THE SERVICEABILITY CATEGORY OF CHEMICAL AGENT LOTS

1. <u>General</u>.

This guide describes two FORTRAN programs for use in assigning condition codes to chemical agent lots on the basis of chemical purity.

The first of these programs, the Censor Criterion Histogram program, is for use only when it is necessary to examine data from chemical sample pairs for selection of a censor criterion for pair differences. It is not to be used when a censor criterion has already been established, or when the data are unpaired (only one chemical sample is taken from each container tested).

The second program, the Lot Purity Estimation program, accepts paired data, unpaired data, or a combination thereof, and assigns a condition code to each lot analyzed.

2. <u>Input Data Requirements</u>.

Both programs require the same input data, in identical format, except for the first card, which contains program control data. The description of this first card is:

Card Columns	Format	Data Description
1-5	15	number of agent lots to be processed.
5-10	15	read by histogram program only; enter a 1 in column 10 if a printout of the data is desired; otherwise leave blank.
21-30	F10.0	read by purity estimation program only; enter the censor criterion.
41-50	F10.0	read by purity estimation program only; enter the alpha-level.

Card columns not listed are not read by either program and may be left blank or contain any information the user wishes.

Each set of data representing one lot of agent is punched on a deck of cards consisting of a header card identifying the lot and one card of data for each container tested. The descriptions of these cards are as follows:

Header Card		· ·
Card Column	Format	Data Description
1-20	5A4	Alpha numeric data identifying the lot
26-30	15	Number of data cards following (no. of containers tested)
41-50	F10.0	Level of purity separating CC-A from CC-B
51-60	F10.0	Level of purity separating CC-B from CC-C
61-70	F10.0	Level of purity separating CC-C from CC-H
Data Card		
Card Column	Format	Data Description
1-5	15	Sample number
11-15	I 5	Laboratory number for the "A" sample
16-20	15	Laboratory number for the "B" sample
31-40	F10.0	Purity of the "A" sample
41-50	F10.0	Purity of the "B" sample
		·

The complete data deck for either program consists of the first card, followed by header card and then data cards for the first lot, header and data cards for the next lot, and so on for all lots being processed.

3. Output.

Output of each program is designed to be similar to the worksheet formats of the manual procedure. The histogram program gives as an output a tentative, or proposed, censor criterion. The user may accept or override this selected value (the user must subsequently punch a value onto the first card, before running the lot purity program).

4. <u>Unpaired Data</u>.

If it is desired to analyze data from tests in which only one sample was made from each container tested, the user must decide whether to permit censoring of extreme values. If censoring is to be permitted, the purity data should be entered as an "A" sample, with the "B" sample left blank. If censoring is not to be permitted, the purity data should be punched as identical values for both "A" and "B" samples, and the user must make certain that a censor criterion greater than (not equal to) zero is provided.

5. Any questions should be directed to Mr. Richard Heider, DRSAR-SAM, extension 3167.

EXAMPLE OF RESULTS FROM THE
CENSOR CRITERION HISTOGRAM PROGRAM

Next page is blank.

PROGRAM FOR CENSOR CRITERION

DATA BASE CONSISTS OF 13 LOTS

76039-323 105 GB	PAIR DIFFERENCE	040N -W 00	1.80 0.70 0.10 0.20 51-122 155 GB	PAIR DIFFERENCE 0.0 0.80 0.60 0.60 4.90 2.00 3.00 0.30 0.30 4.00 4.40	51-200 155 GB PAIR DIFFERENCE 2.00 0.20 0.20 1.30 1.20 1.20 1.20 1.20 1.20 1.20 3.80
AS LOT RM	PURITY (B)		75.30 76.70 76.10 76.30 D AS LOT RM 56 <u>6</u> 1.	B3.70 B4.70 B6.70 B7.30 B9.30 B9.30 79.60 B7.40 B9.10 79.40 B9.10 78.40 79.40	AS LOT RM 66 PURITY (B) 90.30 90.70 91.40 88.10 86.30 91.20 89.20 90.20 89.20
D IS IDENTIFIED	PURITY (A)	74.60 76.60 76.60 78.10 70.70 70.50	76.0 76.0 76.2 76.1 IS IDEN	PURITY (A) 83.70 87.50 87.90 87.90 81.40 85.40 85.40 85.40 81.20 80.20 80.20 73.90	D IS IDENTIFIED PURITY (A) 92.30 90.80 91.20 90.10 88.70 88.90 90.00 90.20 88.40 84.40
SAMPLE PAIRS AND	LAB NO. (8)	621 623 625 627 631 633 633	63 64 64 SAMPLE PA	LAB NO. (B) 802 804 806 808 810 812 816 816 818 822 824	SAMPLE PAIRS AND LAB NO. (B) 706 708 710 712 714 716 726 727 726
CONSISTS OF 13	LAB NO. (A)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W 4 4 4 0	LAB NO. (A) 801 801 8001 8004 8004 8004 8004 8004 8	CONSISTS OF 13 LAB NO. (A) 705 707 713 713 715 719 723 725
D BE PROCESSED	SAMPLE NO.	። ማመፋመጭሥመው	1 1 1 1 BE PROCE	SAMPLE NO. 1 2 3 3 4 5 6 7 7 10 11 13	SAMPLE NO. SAMPLE NO. 1 2 3 4 4 4 10 10 11
THE 1TH TO	SEQUENCE NO.	~~~~~~~°;	10 11 12 13 14 70	SEQUENCE NO. 1 2 3 3 4 4 4 7 7 7 10 11 13 13	THE 3TH TO SEQUENCE NO. 1 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4TH TO BE PROCESSED CONSISTS OF 13 SAMPLE PAIRS AND IS IDENTIFIED AS LOT RM 5651-129 155 GB

THE

AIR DIFFERENCE	11 31 31 32 33 33 34 34 34 34 34 34 34 34 34 34 34	-423 BULK GB	044004004	92 155 GB AIR DIFFERENCE	31.000000000000000000000000000000000000	238 105 GB AIR DIFFERENCE	4.10 3.00 0.40 0.30
PURITY (B) PA	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	AS LOT RM 86039.	88 88 88 88 88 88 88 88 88 88 88 88 88	AS LOT RM 5651-9 PURITY (B) PA	8 6 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AS LOT RM 6651=, PURITY (B) P.	78,30 82,20 82,10 82,00
PURITY (A)	888884884860000000000000000000000000000	DURITY (A)	33 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	AND IS IDENTIFIED PURITY (A)	88888888888888888888888888888888888888	AND IS IDENTIFIED PURITY (A)	82.40 79.20 86.70 81.70
LAB NO. (B)	675 677 677 681 683 689 691 693 693	SAMPLE PAIRS AND	2328 2328 2328 2338 2338 2338 2338 2338	SAMPLE . PAIRS AN LAB NO. (B)	197 199 201 203 203 255 259 265 265 265	SAMPLE PAIRS AN LAB NO. (B)	271 273 275 775
LAB NO. (A)	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	CONSISTS OF 13	1886 1886 1886 1886 2223 2223 2339 2339	CONSISTS OF 13	2000 2000 2000 2000 2000 2000 2000 200	CONSISTS OF 13 LAB NO. (A)	270 272 274 276
SAMPLE NO.	10 0 0 0 0 0 1 0 m	O BE PROCESSED	8 4 6 5 4 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	TO BE PROCESSED SAMPLE NO.	0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0	TO BE PROCESSED SAMPLE NO.	™ N W 4
SEQUENCE NO.		THE 5TH T		THE 6TH T SEQUENCE NO.		THE 7TH T SEQUENCE NO.	1.02.4

04040000000000000000000000000000000000	234 155	PAIR DIFFERENCE	0.60 0.460 0.10 0.10 0.10 0.10 0.10 0.20 0.20	76039-391 105 GB	PAIR DIFFERENCE	, 010000101100 40000000011100 0000000000	16039-428 155 68	PAIR DIFFERENCE	2 2 3 0 0 2 2 3 0 0 0 0 0 0 0 0 0 0 0 0
88 88 7. 30 88 88 88 88 9. 30 88 88 88 88 9. 20 88 9. 20 9.	S LOT RM 6	PURITY (B)	88 88 88 88 88 88 88 88 88 88 88 88 88	ED AS LOT RM 76	PURITY (B)	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ED AS LOT RM 86	PURITY (8)	883.20 813.20 813.40 813.40 779.60 71.90 82.30 82.20
88888888999988889999999999999999999999	IDENTIFI	PURITY (A)	888888446 86746 87788886476 87787 87787 87787 87787 87787 87787 8778 87	AND IS IDENTIFIE	PURITY (A)	88888888888888888888888888888888888888	IS IDENTIFI	PURITY (A)	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
27 281 2881 322 322 322 322 322 322	SAMPLE PAIRS	LAB NO. (B)	3331 35442 35531 35531 361	SAMPLE PAIRS	LAB NO. (B)	3883 3887 3993 401 403 405	SAMPLE PAIRS AND	LAB NO. (B)	4447 453 453 455 455 461 463 463
27 28 28 28 319 321 323 323	STS OF	LAB NO. (A)	9 9 9 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	CONSISTS OF 13	LAB NO. (A)	88888000000000000000000000000000000000	CONSISTS OF 13	LAB NO. (A)	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
1111098765 111111	ESSED	SAMPLE NO.		BE PROCESSED (SAMPLE NO.		BE PROCESSED (SAMPLE NO.	100400F00F
55 4 4 6 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	SEQUENCE NO.	1 3 4 4 4 4 4 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1	THE 9TH TO	SEQUENCE NO.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	THE 10TH TO	SEQUENCE NO.	10084301

00%,0	9-409 155 GB	AIR DIFFERENCE	00100000000000000000000000000000000000	-262 BULK GB	32 33 34 34 34 34 34 34 34 34 34 34 34 34
79.20 82.80 81.80	ED AS LOT RM 68039	PURITY (B) P	78.10 79.30 79.30 78.80 77.7.80 79.70 78.70 78.70 80.70 80.70	D AS LOT RM 6651-PURITY (8)	42.10 37.00 74.80 76.60 76.60 79.40 80.80 82.30 81.70 81.70 81.70 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00
83.20 82.00 82.10	IS IDENTIFI	PURITY (A)	79.20 77.50 77.50 75.60 77.60 78.70 78.70 8.70 8.90) IS IDENTIFIE PURITY (A)	9.72 2.73 74.60 69.10 75.30 75.30 76.50 81.60 81.60 82.40 82.40 80.40 77
467 469 471	SAMPLE PAIRS AND	LAB NO. (B)	64444444444444444444444444444444444444	SAMPLE PAIRS AND LAB NO. (B)	PLE PAIR 6553 653 653 653 653 653 653 653 653 65
466 468 470	CONSISTS OF 13	LAB NO. (A)	0 0 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	CONSISTS OF 13	1 S T S
11 12 13	BE PROCESSED (SAMPLE NO.	1111 10000001	BE PROCESSED (SAMPLE NO.	N N N N N N N N N N N N N N N N N N N
11 12 13	THE 11TH TO	SEQUENCE NO.	1221098465432133213321332133213323333333333333333	THE 12TH TO SEQUENCE NO.	

TALLY					_	_	_	4 ** COLITERION CENSORS ALL SAMPLES HAVING PAIR DIFFERENCES REYOND HERE. \$5555		_	¢ \$ \$ \$ -		•					_									*		**											_		
iul	66*0	1.99	3,99	66.4	5,99	66.9	7.99	8.99 TATIVE	9,99	10.99	11,99	12,99	14.99	15.99	16,99	18.99	19,99	20.99	21,99	24.99	24.99	52,99	26.99	28.99	29,99	30,99	32,99	33,99	34.99	35,99	37,99	38,99	39,99	40.49	42.99	43.99	66.44	45.99	40.44	48.99	66.65	100.00
RANGE	ı 0			. 00	- 00.			. 00 -	٠ _	- 00.	. 00	000	. 00	1 00	000		1 00	. 00	000	1 1	1	- 00	0 0			. 00		1 00	1 00	000		- 00	1 00	1 1	1	. 00	- 00	-	200	-	- 00	000
	•		0 0 0 V M	4	ິນ	9	-	8 8	9.0	10.	11	13,00	14.	15,(16.	18.	19.0	20.	21.0	23.	24.0	25.(26.0	28.6	53.	300	2 5	33.0	34.	32.	37.0	38.	39.	000	42.00		4		40.00		4	LL1
																						31													Ne	хt	pa	ige	is	D	Lar	ıĸ.

167.

169, AND THE NUMBER PRESENT IS

CENSOR CRITERION HISTOGRAM--THE NUMBER OF SAMPLE PAIRS EXPECTED WAS

EXAMPLES OF RESULTS FROM THE LOT PURITY ESTIMATION PROGRAM

PROGRAM FOR LOT PURITY ESTIMATION

THIS RUN WILL CONSIDER 13 LOTS, USING A CENSOR CRITERION OF 10,00, AND AN ALPHA-LEVEL OF 0,0100

9-323. 105 GB	
AS LOT RM 76039	PURITY
ESSED CONSISTS OF 13 SAMPLE PAIRS AND IS IDENTIFIED AS LOT RM 76039-323. 105 GB	75.0/60.0/45.0 PERCENT
F 13 SAMPLE	CRITERIA ARE
SSED CONSISTS 0	CONDITION CODE
1TH TO BE PROCE	
THE	

PAIR AVERAGE	74.15	76.40	76.60	77,35	69.80	66.85	69•35	70.10	77.60	76.20	76.35	76,15	76.20			
PAIR DIFFERENCE	06.0	0.40	0.0	1.50		7.70	2.30		1.20	1.80	0.10	0.10	0.20			
PURITY (B)	73.70	76.20	76.60	76.60	69,80	63.00	68.20		77.00	75,30	76.70	76,10	76.30	4.085	= 3,675	13
PURITY (A)	74.60	76.60	76.60	78.10		70.70	70.50	70.10	78.20	77.10	76.00	76.20	76.10	XBAR = 7	DEV. S =	II Z
LAB NO. (B)	621	623	625	627	659	631	633	635	637	639	641	643	945	SAMPLE MEAN	SAMPLE STD.	SAMPLE SIZĒ
LAB NO. (A)	620	622	624	626	628	630	. 632	634	636	638	049	642	779			
SAMPLE NO.	-	N	m	4	Ŋ	9	_	œ	σ	10	11	12	13			
SEQUENCE NO.	-	N.	ო	4	Ŋ	9	_	Ø	σ	10	11	12	13			

2,681 T(ALPHA*N-1) = T(0.0100, 12) =

CONFIDENCE LIMIT LCL = 71,352

IT CAN BE STATED WITH 99,0000% CONFIDENCE THAT THE PURITY OF THIS LOT IS NO LESS THAN 71,352 THE CONDITION CODE FOR PURITY OF THIS LOT IS CC-8

2 155 68	PAIR AVERAGE	83.70	87.10	87.60	86.85	83.50	82,35	86.40	87.40	79.80	80.90	80,35	81.70	76.10
AS LOT RM 5661-122 155 GB PURITY	PAIR DIFFERENCE	0.0	0.80	09.0	06.4	4.20	5.50	2.00	3.40	2.80	3.00	0.30	1.60	05.4
SED CONSISTS OF 13 SAMPLE PAIRS AND IS IDENTIFIED CONDITION CODE CRITERIA ARE 55.0/35.0/20.0 PERCENT	PURITY (B)	83,70	86.70	87,30	89,30	85.60	79.60	87.40	89,10	78.40	04.67	80.50		78,30
AMPLE PAIRS AN IA ARE 55.0/35	PURITY (A)	83.70	87.50	87.90	84.40	81.40	85.10	85.40	85.70	81.20	82.40	80.20		73.90
VSISTS OF 13 S ION CODE CRITER	LAB NO. (B)	802	804	806	808	810	812	814	816	818	820	822	824	826
TO BE PROCESSED CONCENSION	LAB NO. (A)	801	803	805	807	809	811	813	815	817	819	821	823	825
THE 2TH TO B	SAMPLE NO.	7	2	m	4	ß	9	7	80	6	10	11	12	. 13
-	SEQUENCE NO.	1	~	m	4	S	9	7	00	ው	10	11	12	13

XBAR = 83,365 S = 3,584

SAMPLE MEAN SAMPLE STD. DEV.

SAMPLE SIZE N = 1

 $T(ALPHA_0N-1) = T(0.0100, 12) = 2.681$

CONFIDENCE LIMIT LCL = 80.701

IT CAN BE STATED WITH 99,0000% CONFIDENCE THAT THE PURITY OF THIS LOT IS NO LESS THAN 80,701

THE CONDITION CODE FOR PURITY OF THIS LOT IS CC-A

3TH TO BE PROCESSED CONSISTS OF 13 SAMPLE PAIRS AND IS IDENTIFIED AS LOT RM 6651-200 155 GB CONDITION CODE CRITERIA ARE 55.0/35.0/20.0 PERCENT PURITY ͳ

PAIR AVERAGE	91,30	90.75	91,30	89.10	88.05	89.10	87.60	09*06	89.70	09*68	88.70	86.80	88.95	
PAIR DIFFERENCE	2.00	0.10	0.20	2.00	1.30	4.60	2.60	1.20	1.00	1.20	0.60	3.80	1.90	
PURITY (B)	90.30	90.70	91,40	88.10	87.40	91.40	86,30	91,20	89,20	90.20	89.00	88.70	88.00	89,350 1,393 13
PURITY (A)	92.30	90.80	91.20	90.10	88.70	86,80	88.90	00.06	90.20	89.00	88.40	84.90	89,90	XBAR II B DEV. S II R
LAB NO. (B)	206	708	710	712	714	716	718	720	722	724	726	728	730	SAMPLE MEAN SAMPLE STD. (
LAB NO. (A)	705	707	407	711	713	715	717	719	721	723	725	727	729	
SAMPLE NO.	-	~1	m	•	Ŋ	• •	7	• 00	σ	.10	11	12	13	
SEQUENCE NO.	-1	~	m	4	ហ	• •	7	00	o	10	11	12	13	

T(ALPHA,N-1) = T(0,0100, 12) = 2,681

CONFIDENCE LIMIT LCL = 88.314

IT CAN BE STATED WITH 99,0000% CONFIDENCE THAT THE PURITY OF THIS LOT IS NO LESS THAN 88,314

THE CONDITION CODE FOR PURITY OF THIS LOT IS CC-A

		AIR DIFF					AIR DIFF.				
155 68	PAIR AVERAGE	MINIMINI	81.50	84.80	82.00	79,75	MINIMINI	86.90	88.60	85.20	80.75
THE 4TH TO BE PROCESSED CONSISTS OF 13 SAMPLE PAIRS AND IS IDENTIFIED AS LOT RM 5651-129 155 GB CONDITION CODE CRITERIA ARE 55.0/35.0/20.0 PERCENT PURITY	PAIR DIFFERENCE	11111111111111111111111111111111111111	3.00	1.20	1.00	8,30	//888/////////88438////////33488////////	1.60	0.40	2.00	0.10
IS IDENTIFIED A	PURITY (B) P	11111118888111111	80.00	85.40	81,50	83.90	11111118887211111	87.70	88.80	84.20	80.70
SAMPLE PAIRS AND RIA ARE 55.0/35.	PURITY (A)	1111188788111111	83.00	84.20	82.50	75.60	/////88438/////	86.10	88.40	86.20	80.80
ONSISTS OF 13 TION CODE CRITÉ	LAB NO. (B)	1111187811111	677	619	681	683	////888///////	687	689	169	693
BE PROCESSED C CONDI	LAB NO. (A)	11111187411111	919	678	680	682	11111188411111	686	688	069	269
THE 4TH TO	SAMPLE NO.	////	~	m	4	Ŋ	111111111111111111111111111111111111111	7	00	0	10
	SEQUENCE NO.	/////X//////	2	m	4	ហ	111118111111	7	œ	6	10

/////xx/////////xx///////////xx/xx//////	
/////8#178////// 2.60 0.20	
/////82/28////// 83.90 82.40	JAR = 83.720 S = 2.856 N = 10
/#7 /88 /// 86.50 82.60	×
.///////888///////// 693 699	SAMPLE MEAN SAMPLE STD. DEV. SAMPLE SIZË
/// 884/ //// 696 698	
//////////////////////////////////////	
11/1/1/2//	

2,821 н 6 T(ALPHA,N-1) = T(0.0100, רכר CONFIDENCE LIMIT IT CAN BE STATED WITH 99,0000% CONFIDENCE THAT THE PURITY OF THIS LOT IS NO LESS THAN 81,172

THE CONDITION CODE FOR PURITY OF THIS LOT IS CC-A

GB BE PROCESSED CONSISTS OF 13 SAMPLE PAIRS AND IS IDENTIFIED AS LOT RM 86039-423 BULK CONDITION CODE CRITERIA ARE 75.0/60.0/45.0 PERCENT PURITY **5TH TO** JHE

	PAIR AVERAGE	83,50	87.80	85,35	81.85	84.85	79.45	80.30	81.70	81.65	83,50	81.55	81,35	81.10
	PAIR DIFFERENCE	0.60	1.20	1.70	0.70	0.30	1.30	0.80	4.60	1.50	09•0	0.10	0.10	0.80
**************************************	PURITY (B)	83.80	87,20	84.50	82,20	85.00	78,80	79,90	84.00	82,40	83,80	81,50	81,40	81,50
00.0000 300 00	PURITY (A)	83.20	88.40	86.20	81.50	84.70	80.10	80.70	79.40	80.90	83.20	81,60	81,30	80.70
	LAB NO. (B)	185	186	187	188	189	220	222	554	526	228	230	232	234
	LAB NO. (A)	185	186	187	188	189	219	221	223	225	227	229	231	233
	SAMPLE NO.	6	0.7	11	12	13	-	~	E	4	ហ	9	7	œ
	SEQUENCE NO.	-	N	m	4		•	7	œ	0	10	11	21	13

XBAR = 82.611 S = 2.304 N = 13SAMPLE MEAN SAMPLE STD. DEV. SAMPLE SIZE 2,681 T(ALPHA*N-1) = T(0.0100, 12) =

HCL = 80.898 CONFIDENCE LIMIT

NO LESS THAN 80,898 IT CAN BE STATED WITH 99,0000% CONFIDENCE THAT THE PURITY OF THIS LOT IS

THE CONDITION COVE FOR PURITY OF THIS LOT IS CC-A

PAIR AVERAGE 84.80 86.30 86.20 87.85 GB 155 BE PROCESSED CONSISTS OF 13 SAMPLE PAIRS AND IS IDENTIFIED AS LOT RM 5651-92 CONDITION CODE CRITERIA ARE 55.0/35.0/20.0 PERCENT PURITY PAIR DIFFERENCE 1.20 0.20 1.40 0.70 PURITY (B) 84.20 86.40 86.90 87.50 PURITY (A) 85.40 86.20 85.50 LAB NO. (B) 197 199 201 203 NO. (A) 196 198 200 202 LAB 6TH T0 SAMPLE NO. 110 THE SEQUENCE NO. 4 M M +

		86.127 1.069 13	X	SAMPLE MEAN SAMPLE STD• DEV• SAMPLE SIZE			
84.10	3.20	85.70	82.50	569	268	· 00	ın
85.80	1.20	86.40	85.20	267	566	7	·N
85.65	06*0	85,20	86.10	265	564	9	
87.15	2.50	85.90	88.40	263	262	ហ	0
87.05	1.50	86.30	87.80	261	260	4	O.
86.50	0 • 0	86.20	86.80	528	258	m	· 60
84.80	00•9	81,80	87.80	257	256	2	7
86.70	2.00	87,70	85.70	255	254	1	vo
86.75	0.50	87.00	86.50	205	204	13	10

2,681 T(ALPHA,N-1) = T(0.0100, 12) =

CONFIDENCE LIMIT LCL = 85,332

IT CAN BE STATED WITH 99.0000% CONFIDENCE THAT THE PURITY OF THIS LOT IS NO LESS THAN 85.332

THE CONDITION CODE FOR PURITY OF THIS LOT IS CC-A

38	THE 7TH TO	TO BE PROCESSED CC	SED CONSISTS OF 13 SAMPLE PAIRS AND IS IDENTIFIED	AMPLE PAIRS AN	ID IS IDENTIFIED) AS LOT RM 6651-238	8 105 68
3		CONDI	ION CODE CRIEK	14 AKE /3.0/00	- 0.47.0 PERCEN	r de	
SEQUENCE NO.	SAMPLE NO.	LAB NO. (A)	LAB NO. (B)	PURITY (A)	PURITY (B)	PAIR DIFFERENCE	PAIR AVERAGE
1	-	270	271	82,40	78,30	4.10	80,35
· (\	۰ ۸	272	273	79.20	82,20	3.00	80.70
i et) (°)	27.0	275	86.70	82,10	4.60	84.40
) 4	4	276	277	81.70	82,00	0.30	81.85
- տ	· tr	876	279	89.30	89,30	0.0	89,30
ı v o	1 40	0.80	281	82.10	87,00	06.4	84.55
	•	200	283	86.90	87,30	0.40	87.10
· 00	oc	284	285	87.50	88.90	1.40	88.20
o	o 0	319	320	88.80	89.70	06.0	89.25
10	10	321	322	89.50	89.20	0.30	89.35
	11	(N)	324	89.40	89,10	0.30	89.25
	12	325	326	89.60	89,10	0.50	89.35
13	13	327	328	89.60	00.06	0.40	89.80

2.681 T(ALPHA,N-1) = T(0.0100, 12) =SAMPLE MEAN SAMPLE STD. DEV. SAMPLE SIZE

XBAR = 86.419 S = 3.589 N = 13

CONFIDENCE LIMIT LCL = 83.751

IT CAN BE STATED WITH 99,0000% CONFIDENCE THAT THE PURITY OF THIS LOT IS NO LESS THAN 83,751

THE CONDITION CODE FOR PURITY OF THIS LOT IS CC-A

8TH TO BE PROCESSED CONSISTS OF 13 SAMPLE PAIRS AND IS IDENTIFIED AS LOT RM 6651-234 155 GB CONDITION CODE CRITERIA ARE 55.0/35.0/20.0 PERCENT PURITY HH

									AIR DIFF										
PAIR AVERAGE	88.10	87.20	87.00	87.35	85.90	86.50	85,35	84.40	////////////PAIR DIFF	83,55	84.50	83.90	83,95						
PAIR DIFFERENCE	0.60	0.40	0.40	0.10	3.00	0.40	0.10	0 • 0	1111/1/88722/1/1/1///	1.70	0.20	0.80	4.10	- x					
PURITY (B)	87.80	87.00	87,20	87,30	84.40	86,30	85,30	84.20	1111/834X811111	82,70	84.40	84,30	86.00	35.642	1,574	12) = 2,718	/07**	
PURITY (A)	88.40	87.40	86.80	87.40	87.40	86.70	85.40	84.60	11113262811111	84.40	84.60	83,50	81,90	XBAR = 8	DEV. $S = 1.574$		(ALPHA*N-1) = T(0.0100*11) =	MIT LCL = 84.407	
LAB NO. (B)	330	332	334	336	345	344	349	351	//////882///////	355	357	359	361	SAMPLE MEAN	STD.		T(ALPHA,N-1) =	CONFIDENCE LIMIT	
LAB NO. (A)	329	331	333	335	341	343	348	350	11111138211111	354	356	358	360						
SAMPLE NO.	1	~	m	4	ហ	9	_	σο	/////8//////////	10	11	12	13						
SEQUENCE NO.	1	2	٣	4	Ŋ	9	7	œ	1111181111	10	11	12	13						
SEO									111										

IT CAN BE STATED WITH 99,0000% CONFIDENCE THAT THE PURITY OF THIS LOT IS NO LESS THAN 84,407

THE CONDITION CODE FOR PURITY OF THIS LOT IS CC-A

39

9TH TO BE PROCESSED CONSISTS OF 13 SAMPLE PAIRS AND IS IDENTIFIED AS LOT RM 76039-391 105 GB CONDITION CODE CRITERIA ARE 75,0760,0745,0 PERCENT PURITY Ή

		CONDI	CONDITION CODE CRITERIA ARE 75.0/60.0/45.0 PERCENT FORIT	A AKE 15.0/00	0.0/40.0 PERCEN	rox -	
SEQUENCE NO.	SAMPLE NO.	LAB NO. (A)	LAB NO. (B)	PURITY (A)	PURITY (B)	PAIR DIFFERENCE	PAIR AVERAGE
		382	383	82.20	81.80	0.40	82.00
~	2	384	385	81,30	82,80	1.50	82.05
က	c	386	387	83.50	83,30	0.20	83.40
4	4	388	389	83.10	84.00	06.0	83,55
ល	ហ	390	391	84.60	84.50	0.10	84.55
9	9	392	393	83,60	82,10	1.50	82.85
7	7	394	395	82,00	82,90	06•0	82,45
60	œ	396	397	82,70	82,20	0 • 50	82,45
6	6	398	399	84.60	83,10	1.50	83,85
10	10	400	401	82,50	83,60	1.10	83.05
11		402	403	83,40	82,20	1.20	82.80
12	12	404	405	83,20	83,60	0.40	83.40
13	13	907	407	83,70	83.90	0.20	83.80
			MEAN	XBAR =	83,092		
			SAMPLE SID. DI SAMPLE SIZE	11 11	0.755 13		
			T(ALPHA,N-1) = T(0.0100, 12)	T(0.0100, 12	2) = 2,681		
			CONFIDENCE LIMIT	MIT LCL = 82,530	2,530		

TO THE POST SERVICE OF MOUNTAINED THE

IT CAN BE STATED WITH 99,0000% CONFIDENCE THAT THE PURITY OF THIS LOT IS NO LESS THAN 82,530

THE CONDITION CODE FOR PURITY OF THIS LOT IS CC-A

68 155 86039-428 Σ PROCESSED CONSISTS OF 13 SAMPLE PAIRS AND IS IDENTIFIED AS LOT CONDITION CODE CRITERIA ARE 55.0/35.0/20.0 PERCENT PURITY ВE 10TH TO THE

							DIFF											
PAIR AVERAGE	83,55	82.25	82,90	81.65	83.15		//////////////PAIR DIFF	82.10	82.70	81.90	81,20	82.40	81.95					
PAIR DIFFERENCE	0.70	1.90	2.00	0.10	0.30	3.00	111111128688111111	0.40	1.00	0.40	4.00	0.80	0.30					
PURITY (B)	83.20	81,30	83,90	81,70	83.00	79.60	11111887XL111111	82,30	82,20	81,70	79.20	82.80	81,80	82,237	6746	7.5) = 2,718	11.650
PURITY (A)	83,90	83,20	81.90	81,60	83,30	82.60	1111/8372811111	81.90	83,20	82,10	83.20	82.00	82.10	XBAR = 8	11	#1 2	(ALPHA*N-1) = T(0*0100*11) =	IMIT LCL = 81.650
LAB NO. (B)	447	657	451	453	455	457	1/11/1688/1/1/1/	461	463	465	. 194	694	471	SAMPLE MEAN	STD	SAMPLE SIZE	T (ALPHA,N-1)	CONFIDENCE LIMIT
LAB NO. (A)	944	844	450	452	424	456	111111888111111	460	462	797	466	468	470					
SAMPLE NO.	-	٠ ٨	1 CC	1	· Lr) vc	111111111111111111111111111111111111111	000	0	10		12	13					
SEQUENCE NO.	-	. ~	ım	1 4	ហ	1 10	111111111111111111111111111111111111111	00	σ	10	: ::	12	13					

NO LESS THAN 81,650 STATED WITH 99,0000% CONFIDENCE THAT THE PURITY OF THIS LOT IS CAN BE

THE CONDITION CODE FOR PURITY OF THIS LOT IS CC-A

68

155

PAIR AVERAGE 78.65 779.40 778.55 777.70 777.77 777.70 779.50 779.50 778.05 80 BE PROCESSED CONSISTS OF 13 SAMPLE PAIRS AND IS IDENTIFIED AS LOT RM 68039-409 CONDITION CODE CRITERIA ARE 55.0/35.0/20.0 PERCENT PURITY PAIR DIFFERENCE PURITY (B) 78.10 79.30 79.30 78.80 77.60 77.80 79.70 79.70 78.70 78.70 78.546 0.903 13 H H H PURITY (A) XBA S S 79.20 779.50 77.80 776.60 775.90 777.90 777.90 777.90 778.40 778.90 MEAN STD. DEV. SIZE LAB NO. (B) SAMPLE SAMPLE SAMPLE NO. (A) LAB SAMPLE NO. 9 SEQUENCE

2,681 H = T(0.0100, 12) T (ALPHA,N-1)

11TH TO

THE

CONFIDENCE LIMIT LCL = 77.874

LOT IS NO LESS THAN 77,874 THE CONDITION CODE FOR PURITY OF THIS LOT IS CC-A STATED WITH 99,0000% CONFIDENCE THAT THE PURITY OF THIS **BE** CAN Ľ

BULK GB RM 6651-262 PROCESSED CONSISTS OF 13 SAMPLE PAIRS AND IS IDENTIFIED AS LOT CONDITION CODE CRITEMIA ARE 75.0/60.0/45.0 PERCENT PURITY BE 12TH TO

	> DIFF	> DIFF							2 DIFF								
PAIR AVERAGE	/////////PAIR	/////////PAIR	74.70	70,35	73.70	75,95	77.95	81.10	/////////PAIR DIFF	79.25	77.80	82.15	81.05				
PAIR DIFFERENCE F	11111111111111111111111111111111111111	//////////////////////////////////////	0.20	2.50	0.40	1.30	2.90	1.00	/////////887XX///////////	1.10	00•9	0.30	1.30				
PURITY (B)	////#2628/////	1111188718811111	74.80	71.60	76.90	76.60	79.40	80.60	1111118276211111	79.80	80.80	82,30	81.70	004-2	3,745	10	
PURITY (A)	11111947211111	11111267311111	74.60	69.10	70.50	75.30	76.50	81.60	11118842811111	78.70	74.80	82.00	80.40		EV. S = 3.745	II Z	
LAB NO. (B)	11/1/1873/1/1/1	11/1/1878/1///	477	619	481	483	485	487	11/1/1/889//////	491	493	495	497	SAMPLE MEAN	SAMPLE STD. DEV	SAMPLE SIZE	
LAB NO. (A)	11111/472111111	11111147411111	476	478	480	482	484	486	///////88#/////////////////////////////	. 067	765	767	967				
SAMPLE NO.	//////////////////////////////////////	11111121111111	m	4	ī	9	7	60	1111111181111111	10		12	13				
SEQUENCE NO.	'/////////////////////////////////////	1111112111111	m	t	Ŋ	9	7	80	111111111111111111111111111111111111111	10	11	12	13				
01									`						4	1	

STATED WITH 99,0000% CONFIDENCE THAT THE PURITY OF THIS LOT IS NO LESS THAN 74,059 CAN BE

LCL = 74.059

CONFIDENCE LIMIT

= (6

T(ALPHA,N-1) = T(0,0100,

THE CONDITION COVE FOR PURITY OF THIS LOT IS CC-8

PAIR AVERAGE 76.50 776.90 778.90 778.45 778.45 778.40 778.40 778.40 778.40 778.90 778.90 В RM 6651-310 PAIR DIFFERENCE PROCESSED CONSISTS OF 13 SAMPLE PAIRS AND IS IDENTIFIED AS LOT CONDITION CODE CRITERIA ARE 55.0/35.0/20.0 PERCENT PURITY PURITY (B) 75.60 775.30 777.30 773.00 773.40 773.00 773.00 775.90 775.20 PURITY (A) LAB NO. (B) LAB NO. (A) BE 2 ° 13TH 100 8 4 6 B 4 B B 1 SAMPLE 9 9 3210984654B01 SEQUENCE

SAMPLE STD. DEV. S = 74.108 SAMPLE STD. DEV. S = 2.053 SAMPLE SIZÉ T(ALPHA*N*1) = T(0.0100, 12) = 2.681

CONFIDENCE LIMIT LCL = 72.581

IT CAN BE STATED WITH 99.0000% CONFIDENCE THAT THE PURITY OF THIS LOT IS NO LESS THAN 72.581

THE CONDITION CODE FOR PURITY OF THIS LOT IS CC-A

42

LISTINGS OF SOURCE PROGRAMS AND EXAMPLE DATA

Next page is blank.

```
I. NSAMP, LABNOA, LABNOB, PURA,
                                                                                                                                                                                                                                                                                                                                                                                                                                           WRITE (6,6) I, NSAMP, LABNOA, LABNOB, PURA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      GO TO 170
                                                                                                                                                                                                                                              IF (IOUTPT.EQ.1) WRITE (6.4) LOT. NPAIRS, LOTID DO 130 I = 1, NPAIRS READ (5.5) NSAMP, LABNOA, LABNOB, PURA, PURB
                                                                                                                                                                                                                                                                                                                                              WRITE (6,7) I, NSAMP, LABNOA, LABNOB, PURB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             PURB, PAIRDE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       IF ((CENSOR.NE.0.0), OR. (NSUM.LI.NKEEP))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    X1 = 100.0*FLOAT(NCENSR)/FLOAT(NFOUND)
                                                                                                                                                                                                                                                                                                                                                                             WRITE (6,6) I, NSAMP, LABNOA, LABNOB
                                                                                   DIMENSION IHIST(S1), LOTID(S)
DATA IHIST / 51*0 /, MARK / 1H* /
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        WRITE (6,9) X1, X2, (MARK, K=1,J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             WRITE (6,6)
                                                                                                                                                                                                                                                                                                                                                                                                                            GO TO 120
                                                                                                                                                                                                                                                                                                                                GO TO 100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     WRITE (6,8) NEXP, NFOUND
NCENSR = 0.05*FLOAT(NFOUND)
CENSOR = 0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          X2 = 100 \cdot 00
                                                                                                                                                                                               DO 140 LOT = 1. NLOTS
READ (5.3) LOTID, NPAIRS
NEXP = NEXP + NPAIRS
IF (IOUTPT.EQ.1) WRITE
                                                                                                                                  READ (5,1) NLOTS, IOUTPT
WRITE (6,2) NLOTS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          PAIRDF = ABS(PURA-PURB)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         NKEEP = NFOUND - NCENSR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        NSUM = NSUM + J
TF (J.LE.0) G0 T0 150
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     NCENSR = NFOUND - NSUM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            HIST(J) = IHIST(J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CENSOR = X1 + 1.00
WRITE (6.10)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        WRITE (6,9) X1, X2
                                                                                                                                                                                                                                                                                                                                                                                                                                             (IOUTPT.E0.1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            IF (IOUTPT.EQ.1)
                                                                                                                                                                                                                                                                                                                                                                                                                               (PURB, GT, 0, 0)
                                                                                                                                                                                                                                                                                                                               F (PURB.LE.0.0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             NFOUND = NFOUND
                                                                                                                                                                                                                                                                                                                 (IOUTPT.NE.1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F (J.6T.51)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       = IHIST(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         (F (J.LE.0)
                                                                                                                                                                                   VFOUND = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          GO TO 160
                                                                                                                                                                                                                                                                                                                                                                                                30 TO 130
                                                                                                                                                                   VEXP = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              130 CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                  CONTINUE
       C>>>>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         170
                                                                                                                                                                                                                                                                                                                                                                                                                110
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              120
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              140
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         150
                                                                                                                                                                                                                                                                                                                                                                                 100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 45
```

```
5 FORMAT(IS, 5X, ZIS, 10X, ZF10,0)
6 FORMAT (18X, IS, 3(10X, IS), 9X, F6,2, 8X, F6.2, 11X, F6.2)
7 FORMAT (18X, IS, 3(10X, IS), 23X, F6.2)
8 FORMAT (1H1, 12X, 68HCENSOR CRITERION HISTOGRAM-THE NUMBER OF SAM
                                                                                                                                                                                                                                                                             LAB NO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         >>>>>>>>>>>>>>>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         *AIR DIFFERENCES BEYOND HERE, $$$$$)
I FORMAT (35H0THE TENTATIVE CENSOR CRITERION IS , F6.2, 12H, CENSORI *NG , I4, 15H SAMPLE PAIRS (, F5.1, 24H% OF THE PAIRS PRESENT, , *F5.1, 25H% OF THE PAIRS EXPECTED), )
                                                                                                                                                                                                                                                                                                                                                                                                                                                 *PLE PAIRS EXPECTED WAS , IS, 28H, AND THE NUMBER PRESENT IS , IS, * 1H, / 1H0, 5X, 5HRANGE, 8X, 5HTALLY /)
9 FORMAT (1X, F6.2, 3H - , F6.2, 3H |, 100A1/ 19X, 100A1)
10 FORMAT (89H $5.5.5 TENTATIVE CRITERION CENSORS ALL SAMPLES HAVING
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               DIMENSION LOTID(S), NSAMP(20), LABNOA(20), LABNOB(20), PURA(20), PURB(20), PAIRDF(20), PAIRAV(20), CC(3), KOND(4)

DIMENSION KLASS(20)

DATA KOND / 1HA, 1HB, 1HC, 1HH /
                                                                                                                                                                      3 FORMAT (5A4, 5X, 15)
4 FORMAT (1H0, 15X, 4HTHE , 13, 31HTH TO BE PROCESSED CONSISTS OF
8 13, 39H SAMPLE PAIRS AND IS IDENTIFIED AS LOT , 5Á4/
8 13, 39H SAMPLE PAIRS AND S SAMPLE NO. LAB NO. (A)
8 1H0, 14X, 103HSEQUENCE NO. SAMPLE NO. LAB NO. (A)
8, (B) PURITY (A) PURITY (B)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             READ (5.5) NSAMP(I), LABNOA(I), LABNOB(I), PURA(I), PURB(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          GO TO 110
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   60 TO 120
                                                                                                                   2 FORMAT (1H1, 51X, 28HPROGRAM FOR CENSOR CRITERION /
* 1H0, 50X, 22HDATA BASE CONSISTS OF , 13, 5H LOTS )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     .E.0.0) .OR. (PURB(I) .LE.0.0))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              IF ((PURA(I).GT.0.0), OR. (PURB(I).GT.0.0))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           KLASS(I) = 3
GO TO 140
PAIRAV(I) = 0.5 * (PURA(I) + PURB(I))
= 100,0*FLOAT (NCENSR) /FLOAT (NEXP)
                      WRITE (6,11) CENSOR, NCENSR, X1, X2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        GO TO 130
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                WRITE (6,4) LOT, NPAIRS, LOTID, CC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    PROGRAM TO ESTIMATE LOT PURITY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               READ (5,1) NLOTS, CENSOR, ALPHA WRITE (6,2) NLOTS, CENSOR, ALPHA WRITE (6,6)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       READ (5,3) LOTID, NPAIRS, CC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     PAIRAV(I) = 0.0

IF ((PURA(I).LE.0.0).OR.

PAIRDF(I) = ABS(PURA(I).

IF (PAIRDF(I).LT.CENSOR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          30 290 LOT = 1. NLOTS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00 140 I = 1, NPAIRS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 PAIRAV(I) = PURA(I
GO TO 140
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           11 FORMAT (35HOTHE T
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             PAIRDF(I) = 0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              KLASS(I) = 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        KLASS(1) = 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           GO TO 140
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      CONTINUE
                                                                                          FORMAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ^^^
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     110
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         120
```

```
'0 270
'E (6.9) I. NSAMP(I). LABNOA(I). LABNOB(I). PURB(I). PAIRAV(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        . NSAMP(I) . LABNOA(I) . LABNOB(I) . PURA(I) . PAIRAV(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            60 TO 190
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          6<sup>0</sup> TO 200
                                                                                                                                                                                               - XBAR) **2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        IF ((PURA(MIN).GT.0.0).AND.(PURB(MIN).GT.0.0))
KLASS(MIN) = 4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            MIN = (PAMIN-XBAR)/S
F (ZMAX-LE.3.0) GO TO 190
F ((PURA(MAX).GT.0.0).AND.(PURB(MAX).GT.0.0))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         PURA(I).6T.0.0) GO TO 240
PURB(I).6T.0.0) GO TO 220
E (6.7) I. NSAMP(I). LABNOA(I). LABNOB(I)
                                                                                                                                                                                               SUM = SUM + (PAIRAV(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         PURLCL = XBAR - T*S/SQRT(FLOAT(NK1))
CONF = 100.0*(1.0 - ALPHA)
                                                                                                                                                                                                                                                                                                                                                                                               GO TO 180
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          GO TO 270
                                                                                                                                                                                                                          IF (NKI-LE-1) GO TO 210
S = SQRT ( SUM/FLOAT (NKI-1)
PAMAX = 0.0
                                                                                                                                                                                                                                                                                                              IF (KLASS(I).NE.1) GO
IF (PAIRAV(I).LE.PAMAX)
PAMAX = PAIRAV(I)
                                                                                                                                                                                                                                                                                                                                                                                            IF (PAIRAV(I), GE, PAMIN)
PAMIN = PAIRAV(I)
MIN = I
                                                                                                                                              XBAR = SUM/FLOAT (NKI)
                                                                                                                                                                                                                                                                                                                                                                                                                                                               MAX = (PAMAX-XBAR)/S
                                                                                                                                                                               DO 160 I = 1, NPAIRS
IF (KLASS(I), EQ.1)
= PURB(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          IF (KLASS(I),EQ.1)
WRITE (6,12)
                                                                                                                                                                                                                                                                              PAMIN = 100.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       WRITE (6,8)
GO TO 230
                                                                                                 SUM = SUM
                                                                                                                                                                                                                CONTINUE
                                                                                                                                                                                                                                                                                                                                                                           CONTINUE
                                                                                                                               CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                               CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CONTINC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           220
230
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          250
                                                                                                                                  150
                                                                                                                                                                                                                160
                                                                                                                                                                                                                                                                                                                                                                             170
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             210
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            240
                                                                                                                                                                                                                                                                                                                                                                                                                                                180
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              190
```

```
* FORMAT (11H1, 49%, 33HPROGRAM FOR LOT PURITY ESTIMATION /

* IHO, 17%, 23HTHIS RUN WILL CONSIDER , I3, 35H LOTS, USING A CENSO

*R CRITERION OF , F6.2, 24H, AND AN ALPHA-LEVEL OF , F6.4)

3 FORMAT (5A4, 5%, 15, 10%, 3F10.0)

4 FORMAT (1H0, 15%, 4HTHE , I3, 31HTH TO BE PROCESSED CONSISTS OF ,

* I3, 39H SAMPLE PAIRS AND IS IDENTIFIED. AS LOT , 5A4/

* 38%, 28HCONDITION CODE CRITERIA ARE , F4.1, 2(1H/* F4.1), 15H PER

*CENT PURITY / 120HOSEQUENCE NO. SAMPLE NO. LAB NO. (A) LA

*B NO. (B) PURITY (A) PURITY (B) PAIR DIFFERENCE PAIR A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        7 FORMAT (4X, I5, 3(10X, I5), 9X, F6.2, 8X, F6.2, 2(11X, F6.2))
8 FORMAT (4X, I5, 3(10X, I5), 9X, F6.2, 42X, F6.2)
9 FORMAT (4X, I5, 3(10X, I5), 23X, F6.2, 28X, F6.2)
10 FORMAT (1H+, 119(1H/), 9HPAIR DIFF)
11 FORMAT (1H+, 119(1H/), 7HNO DATA)
12 FORMAT (1H+, 119(1H/), 7HEXTREME)
13 FORMAT (103H0$$$$ INSUFFICIENT VALID DATA ARE PRESENT FOR ANY CON
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      *FIDENCE STATEMENT ABOUT THE TRUE LOT PURITY $555$ )

14 FORMAT (1H0, 46X, 25HSAMPLE MEAN XBAR = , F6.3/ 47X, 25HSAMP.

*LE STD, DEV. S = , F6.3/ 47X, 25HSAMPLE SIZE N = , I4/

* 1H0, 45X, 17HT(ALPHA,N-1) = T(, F6.4, 1H,, I3, 4H) = , F7.3/

* 1H0, 46X, 25HCONFIDENCE LIMIT LCL = , F6.3/ 1H0, 19X, 22HIT CAN BE STATED WITH , F7.4, 57H% CONFIDENCE THAT THE PURITY OF THIS LO

*T IS NO LESS THAN , F6.3 )

15 FORMAT (1H0, 40X, 48HTHE CONDITION CODE FOR PURITY OF THIS LOIS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    IF (KLASS(I).EQ.1) GO TO 260
WRITE (6.7) I, NSAMP(!), LABNOA(!), LABNOB(!), PURA(!), PURB(!),
                                                                                                    WRITE (6,10)
GO TO 270
260 WRITE (6,7) I, NSAMP(I), LABNOA(I), LABNOB(I), PURA(I), PURB(I),
                                                                                                                                                                                                                                                                                                                  WRITE (6,13)
GO TO 290
WRITE (6,14) XBAR, S, NKI, ALPHA, NU, T, PURLCL, C<sup>O</sup>NF, PURLCL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        COMMON / TBAG / TABLF(34,11), VALPHA(11), VNU(34)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CALL TLU (VALPHA, 11, A, IA, JA, RIA, RJA)
CALL TLU (VNU, 34, DOF, ID, JD, RID, RJD)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      (IS, 5X, 2IS, 10X, 2F10.0)
(1H0, 130(1H-))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       GO TO 285
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   A = 1.0 - A
                                                                                                                                                                                                                                                                                   GO TO 280
                                                                                                                                                                                                                 PAIRDF(I), PAIRAV(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FUNCTION ISTAT (ALPHA,NU)
                                                                                                                                                                                                                                                                                                                                                                                                                         DO 285 I = 1, 3
IF (PURLCL.LE.CC(I))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        287 WRITE (6,15) KOND(J)
290 WRITE (6,6)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          IF (ALPHA.GT.0.5)
                                                                                                                                                                                                                                                                                   IF (NK1.GT.1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        A = ALPHA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 GO TO 287
285 CONTINUE
                                                                                                                                                                                                                                                   270 CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ||
||
                                                                                                                                                                                                                                                                                                                                                                                                280
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     O
```

```
7 3.078;1.886;1,638;1,533;1,476;1,440;1,415;1,397;1,383;163;1,356;1,350;1,358;1,341;1,337;1,333;1,330;1,328;1,325;321;1,319;1,318;1,316;1,315;1,314;1,313;1,311;1,310;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      DATA T05 / 6.314.2.920.2.353.2.132.2.015,1.943,1.895,1.860,1.833, 1.812,1.796,1.796,1.782,1.71,1.71,1.71,1.71,1.708,1.706,1.706,1.701,1.701,1.699,1.697,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              )ATA_T025 / 12.706,4.303,3.182,2.776,2.571,2.447,2.365,2.306,2.262,2.228,2.201,2.179,2.160,2.145,2.131,2.120,2.110,2.101,2.093,2.086,2.080,2.080,2.074,2.069,2.064,2.060,2.056,2.056,2.064,2.048,2.045,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ,6,965,4,541,3,747,3,365,3,143,2,998,2,896,2,821,
11,2,650,2,624,2,602,2,583,2,567,2,552,2,539,2,528,
00,2,492,2,485,2,479,2,473,2,467,4,462,2,457,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     >>>>>>>>>>>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              COMMON / TBAG / T0005(34), T001(34), T0025(34), T005(34), T01(34), T025(34), T05(34), T10(34), T25(34), T40(34), T50(34), T05(34), T05(34)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       DATA T40 / "325,.289,.277,.271,.267,.265,.263,.262,.261,24,260,
* 2*,259,3*,258,5*,257,9*,256,.255,2*,254,.253 /
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1,000, 816, 765, 741, 727, 718, 711, 705, 703, 700, 1,694, 692, 691, 690, 689, 24, 688, 687, 24, 685,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ,3,169,3,106,3,055,3,012,2,977,2,947,2,921,2,898,4,878,2,861,
                                                                                                                                                                                                                                                                                                                                                                                                                               'LU (VECTOR: NDIMYC: VALUIN: I, J: RI; RJ)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                RI = (VECTOR(J)-VALUIN) / (VECTOR(J)-VECTOR(I))
RJ = 1.0 - RI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               BLOCK DATA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     60 TO 200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          .683:.681;.679:.677:.674 /
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    2.021,2.000,1.980,1.960 /
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    (************************
                                                                                                                                                                                                                                                                                                                                                                                  F (VECTOR(K) LE VALUIN)
F (K.EQ.1) GO TO 100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 DIMENSION VECTOR (NDIMVC)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   DO 200 K = 1, NDIMVC
TABLE (JD. IA)
TABLE (JD. JA)
                                                                                                                                                                                                                                                                                                                                                                                                                                              SUBROUTINE T
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              * .697; .695;
* 3*.684;3*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     DATA T50 /
DATA T40 /
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             - NDIMVC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 BLOCK DATA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            I = 1.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              -
-
-
                                                                                                                                                                                                                                                        RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               H
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               n
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             49
```

	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	
2.763.2.756.2.750 7.4.029.3.833. 3.222.3.197. 3.057.3.047.3.038 8.4.785.4.501. 3.646,3.610. 3.421,3.408. 59.5.408.5.041. 3.965,3.922. 13.965,3.922. 13.114.115.116.	, 5.4	20.	- 0 -
73,4,31 73,252, 73,252, 73,686, 73,686, 73,435, 74,015, 543,707, 25,05,	• 0 9	35.	35.
53,5.598,4.7 33,326,3.286 33,091,3.078 13,7.173,5.8 3,787,3.733 3,090 4,140,4.073 7,3.745,3.72 3,291 1,3.291 1	0.01 75. 76.2 76.6 76.6 76.6 69.8 63.0		8897788889990554711449917888889999055999999999999999999999999999
2.807.2.797 2.8576 3.428,3.372 3.119,3.104 2.850.2.807 2.930.3.85 3.930.3.85 3.930.3.85 3.232,3.160 3.1894.221 3.189	4000 000	00 C O O O O C C O O C O C O C O C O C O	8855 8857 13 900 900 900 900 900 900 900 900 900 90
2. 631,2. 619, 2. 660,2. 619, 2. 581,3. 497, 3. 581,3. 497, 3. 153,3. 135, 3. 153,3. 135, 3. 153,3. 135, 3. 153,3. 135, 3. 144,4. 0.25, 3. 646,3. 307, 3. 646,3. 619, 3. 646,3. 551, 1. 1. 2. 31, 3. 19. 20. 121,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		113 814 115 816 117 818 119 820 123 824 125 826 1155 68 007 708 111 712 113 714 117 718
* * * * * * * * * * * * * * * * * * *	039-323 6 6 6 6 6	51 12 12 12 13 13 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	Σ α 50	Σ.	Σ α

•	ហំ	•	ហុំ
Ñ	4	N	4
v.	•	ທໍ	•
ň	ý.	m	•
00000 00400000000000000000000000000000	4 ๛๚๛๛๐๐๛๛๛๚	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11N 4 0 M 0 M 0 H N M
900887-88887-888888	\$\tag{\tag{\tag{\tag{\tag{\tag{\tag{	တော် တော် တော် တော် တော် တော် တော် တိုက်ပြ	0 C C C C C C C C C C C C C C C C C C C
NUBN1+⊔W6NN06 6640N	MOND	- 400000700004-01	0 + N C C C C C C C C C C C C C C C C C C
00840 004008080000			
σ			
13	19	4	Ä
			0 + N O M M H O A M M H A
010101010000 <u>0</u> 000000000000000000000000	00000000000000000000000000000000000000	, 	00000011110000011000
777755666666666666666666666666666666666	*	997766666666666666666666666666666666666	
	10 4 5 3 1 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	พทจตอนจจัจตองส่จ	ឆ្នាំ ១៧4 ៦ ឆ ១ ៧ 4 ០ ម៉ា ពី ខែ
000000000000000000000000000000000000000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00000000000000000000000000000000000000	
6	E		φ
12	7	92	
<u>.</u>	39	*	1
N-098468488109	76544014010964	8 4 6 0 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		О нене	9 -
Σ α	Σ α	Σ α	Σ α
-	51		

			14444444444444 000000000000000000000000
50.		20.	20° 45°
•	•	°.	
3	99	m T	r v
			7855 7891 77993 7780 7776 7776 7797 7880 7887 7887 7887 7887 7887 7887
38 88 88 88 86 44 86 87 87 87 87 87 87 87 87 87 87 87 87 87	- N-mm4mNN4Nmm		001000000000
7			
328 3330 3346 3346 3346 3353 353 353 353	00000000000000000000000000000000000000	1 1111111111111111111111111111111111111	7 C GB 4 C C C C C C C C C C C C C C C C C C C
	60 100 100 100 100 100 100 100 100 100 1	8 10 10 10 10 10 10 10 10 10 10 10 10 10	420 420 420 420 420 420 430 440 440 440 440 440 440 440 440 44
51-234	039-39	039-42	51-26
RM 665 13 22 24 34 34 36 44 36 36 36 36 36 36 36 36 36 36 36 36 36		30109879979999	π
α	α 52	_	

No. of Copies	DISTRIBUTION LIST
1	Commander US Army Materiel Development and Readiness Command ATTN: DRCRE DRCPA-S 5001 Eisenhower Avenue Alexandria, VA 22333
1 1 1 1 2 1 1 1 1 1	Commander US Army Armament Materiel Readiness Command ATTN: DRSAR-CG DRSAR-DCG DRSAR-LC DRSAR-LE DRSAR-LE DRSAR-LE DRSAR-CP DRSAR-SA DRSAR-PA DRSAR-PA DRSAR-PC DRSAR-PD DRSAR-IM DRSAR-IM DRSAR-OP DRSAR-IS DRSAR-IS DRSAR-MA DRSAR-MA DRSAR-AS DRSAR-AS DRSAR-AS DRSAR-SF Rock Island, IL 61201
1	Commander US Army Armament Research and Development Command ATTN: DRDAR-SEA Dover, NJ 07801
1	Commander US Army Test and Evaluation Command ATTN: DRSTE-SY Aberdeen Proving Ground, MD 21005
1	Commander US Army Electronics Command ATTN: DRSEL-SA Fort Monmouth, NJ 07703
1	Commander US Army Missile Materiel Readiness Command ATTN: DRSMI-D Redstone Ars en al, AL 35809

DISTRIBUTION LIST (Cont)

No. of Copies	DISTRIBUTION LIST (CONC)
1	Commander US Army Missile Research and Development Command ATTN: DRDMI-DS Redstone Arsenal, AL 35809
1	Commander US Army Tank-Automotive Materiel and Readiness Command ATTN: DRSTA-S Warren, MI 48090
	Commander US Army Tank-Automotive Research and Development Command ATTN: DRDTA-V Warren, MI 48090
1	Commander US Army Troop Support and Aviation Materiel Readiness Command ATTN: DRDAV-BC P.O. Box 209 St. Louis, MO 63166
1	Commander US Army Aviation Research and Development Command ATTN: DRSTS-F 4300 Goodfellow Blvd St. Louis, MO 63120
1	Project Manager for Cannon Artillery Weapons Systems ATTN: DRCPM-CAWS Dover, NJ 07801
1 .	Commander US Army Development and Readiness Command Office of the Project Manager for Selected Ammunition ATTN: DRCPM-SA Dover, NJ 07801
1	Project Manager for M110E2 ATTN: DRCPM-M110E2 Rock Island, IL 61201
1	Project Manager for Air Defense Gun Systems ATTN: DRCPM-ADG Rock Island, IL 61201
1	Product Manager for Production Base Modification and Expansion ATTN: DRCPM-PBM Dover, NJ 07801

DISTRIBUTION LIST (Cont)

-	DISTRIBUTION EIST (CONT.)
No. of Copies	*
1	Product Manager for Advanced Attack Helicopter Systems US Army Aviation Systems Command St. Louis, MO 63166
1	Product Manager for AH-1 Cobra Series Aircraft US Army Development and Readiness Command P.O. Box 209 St. Louis, MO 63166
1	Commander Rock Island Arsenal ATTN: SARRI-CO Rock Island, IL 61201
1	Commander Watervliet Arsenal ATTN: SARWV-CO Watervliet, NY 12189
1	Commander Edgewood Arsenal ATTN: SAREA-DE-N Aberdeen Proving Ground, MD 21010
1	Commander Human Engineering Laboratories ATTN: DRXHE-D Aberdeen Proving Ground, MD 21005
1	Director US Army Materiel Systems Analysis Activity ATTN: DRXSY-D Aberdeen Proving Ground, MD 21005
1 -	Commander US Army Mobility Equipment Research and Development Command ATTN: DRDME-0 Fort Belvoir, VA 22060
1	Commandant US Army Field Artillery Center Fort Sill, OK 73503
1	Commandant US Army Infantry School Fort Benning, GA 31905
1	Commander US Army Missile and Munitions Center and School

Redstone Arsenal, AL 35809

DISTRIBUTION LIST (Cont)

	, , , , , , , , , , , , , , , , , , , ,
o. of opies	*
1	Commandant US Army Air Defense School Fort Bliss, TX 79916
1	Director US Army Management Engineering Training Agency ATTN: DRXOM-QA Rock Island, IL 61201
1	Director US Army TRADOC Systems Analysis Acitvity ATTN: ATAA-SL (Tech Lib) White Sands Missile Range White Sands, NM 88002
1	Director Advanced Research Project Agency 1400 Wilson Boulevard Arlington, VA 22209
1	Commander Defense Logistics Studies Information Exchange Fort Lee, VA 23801
1	Commander US Army Logistics Management Center ATTN: DRXMC-LS Fort Lee, VA 23801
1	Commander US Army Logistics Center ATTN: ATCL-S Fort Lee, VA 23801

Defense Documentation Center Cameron Station Alexandria, VA 22314