$$C(l_{1}l)$$

$$V = \sqrt{l_{0}}$$
BI

ATTIMENT GRAD CP LY
$$\frac{2-1}{4-1} = \frac{1}{3}$$
 MI

IMPLIES GRADING NEEDED IS "-3" MI AT

 $y-2 = "-3"(x-4)$ MI

SIMPLIES GREET ANSWER AI

 $y=14-31$

$$2. \qquad (\alpha x - 2^2)$$

$$(\alpha^2 - \alpha^2) - (2\alpha - 4) \quad M$$

$$4 - 2\alpha = -5 \quad A$$

$$\alpha = \frac{9}{2} \quad Al \quad c.a.o$$

3.
$$\left(\frac{dy}{dx}\right) = 4x^3 - 6x^2$$
 B1

 $\left(\frac{d^2y}{dx^2}\right) = 12x^2 - 12x$ B1

 $\left(\frac{d^2y}{dx^2}\right) = 6x^{2^{11}} = 0$ B1

 $2x^2(2x-3)$ M1

SIGHT OF $0 \neq \frac{3}{2} = \frac{B074}{2}$, $(0_1)^2 \neq \left(\frac{3}{2}\right)^{-\frac{11}{16}}$ interior A1 A1

GRECKS $2 = \frac{3}{2}$ With $\frac{d^2y}{dx^2}$, obtains $0 \neq 0$ Finds $\frac{d^3y}{dx^2} = 24x - 12$ M1

Obtains $\frac{d^3y}{dx^3}\Big|_{x=0} = -12 \neq 0$ & STATHS Point of Inflexion A1

48 = 600 MI 0 = 0.8 o.E AI \[\frac{1}{2} \times 60^2 \times 08'' \times MI \[\frac{1}{2} \times 60^2 \times 08'' \times MI \[\frac{1}{2} \times 24 \times 24 \times 514 (0.8)'' \text{ MI \]
\[\frac{1}{2} \times 24 \times 24 \times 514 (0.8)'' \text{ MI \]
\[\frac{1}{2} \times 24 \times 24 \times 514 (0.8)'' \text{ MI \]
\[\frac{1}{2} \times 26.60 \text{ . AI \]
\[\frac{1}{2} \times 233 \text{ AI

5. a) 0.8 B1 - 5000 × 0.8 = 2048 MAI LENTING STRUCTURL" MAI LE CORRECT + INSUER

b) $\frac{5000(1-0.8^{24})}{1-0.8}$ MI

24881 <u>or</u> 24882 A

C) 1000×1.05 M1 3071 or 3072 A1

 $\frac{1000 \times 1.05^{k-1}}{1.05^{k-1}} > 5000 \times 0.8^{k-1}$ $\frac{1.05^{k-1}}{0.8^{k-1}} > 5 \times 0.8^{k-1}$ $\frac{1.05^{k-1}}{0.8^{k-1}} > 5 \neq \frac{74m}{4m} + 15m = 1$

e) use of log $\left|\log\left(\frac{21}{16}\right)^{k-1}\right| > \log 5$ MI

6. Use of tay
$$\alpha = \frac{\sin x}{\cos x}$$
 BI

asm $\alpha + b \le \sin x \cos x = 0$ o. ϵ MI

sin $\alpha + b \cos x$ MI

sin $\alpha + b \cos x$ MI

sin $\alpha + b \cos x$ MI

or $\alpha + b \cos x$ MI

7. a)

$$100 = A \cdot x 6^{\circ}$$
 $100 = A \cdot x 6^{\circ}$
 $100 = A$

b)

About ust of = INSTRAD OF <
DO NOT ALLOW TRIAL & IMPROVEMENT
ALLOW UST OF M INSTRAD to, or h-1, t-1

8.
$$k^{3}-9k^{2}+24k-20=-4$$
 o.E MI

 $k^{3}-9k^{2}+24k-20=-4$ o.E MI

ATTUMPD TO PRIDE 4 FACTOR

(A SUBS $k=\pm 1,\pm 2,\pm 4,\pm 8,\pm 11$) MI

STATES $(k-1)$ OR $(k-4)$ US A FACTOR AI

 $(k-1)(k^{2}-8k+16)$ OR $(k-4)(k^{2}-8k+4)$ MI

 $(k-1)(k-4)^{2}$ MI

 $k=-4$ AI BOHH

9 A: $\pi-x_{0}$ BI

E: $3\pi-x_{0}$ BI

10 I + $7b_{2}$ + $21b_{2}^{2}$ + $2x+7ab_{3}^{2}$ MI (albest out from a + $14b = -41$ MI

 $42b^{2}+7ab = 357$ MI

SOUSIBLE ATTUMPT TO SOUR BY SUBSTITUTION MI

 $8b^{2}+11b+51$ AI

 $(b+3)(8b+17)$ MI

 $b=-3$ ONLY AI

a=1 A1