Determination of temporary and permanent hardness of water sample by EDTA method

Hard Water:

The water sample, which fails to produce foam/lather on addition of soap is called as hard water.

Hard water sample produces scum (curd like insoluble impurities) with addition of soap

If chlorides, Sulphates, Nitrates, bicarbonates, carbonates of bivalent cations like Ca²⁺,Mg²⁺, Fe²⁺, Mn²⁺ are present in water, water becomes Hard.

Types of Hard Water:

Depending on the types of impurities present in water, it is mainly divided into following two types.

A) Temporary Hardness (or) Carbonate Hardness and

B) Permanent Hardness (or) Non-Carbonate Hardness.

Total Hardness = Temporary (Carbonate) Hardness + Permanent (Non-carbonate) Hardness

A) Temporary Hardness (or) Carbonate Hardness:

Hardness caused by Carbonates and/or bicarbonates of Ca^{2+} and Mg^{2+} is called Temporary or carbonate Hardness.

The salts responsible for causing Temporary or Carbonate Hardness are:

- i. $Ca(HCO_3)_2$, ii. $Mg(HCO_3)_2$, iii. $CaCO_3$, iv. $MgCO_3$, etc.
- Carbonate hardness is also called Temporary Hardness because, it can be removed by simple methods like Boiling followed by Filtration.

B)Permanent Hardness (or) Non-carbonate Hardness:

Hardness caused by Chlorides, Sulphates, Nitrates of Ca2+ and Mg2+ is called Temporary or carbonate Hardness. The salts responsible for causing Temporary or Carbonate Hardness are:

i. $CaCl_2$, ii. $MgCl_2$, iii. $CaSO_4$, iv. $MgSO_4$, v. $Ca(NO_3)_2$, vi. $Mg(NO_3)_2$, etc.

Non-Carbonate hardness is also called Permanent Hardness because it cannot be removed by simple methods. To remove Permanent Hardness some Chemical Treatment or other techniques are required.

Total Hardness = Temporary (Carbonate) Hardness + Permanent (Non-carbonate) Hardness

Expressing Hardness

> The concentrations of hardness as well as non-hardness constituting ions are usually expressed in terms of equivalent amount of CaCO₃

Equivalent amount of
$$CaCO_3 = \frac{Mass\ of\ Solute \times Equivalent\ weight\ of\ CaCO_3}{Equivalent\ weight\ of\ Solute}$$

$$= \frac{m_{solute} \times EW_{CaCO3}}{EW_{solute}}$$

$$= \frac{m_{solute} \times 100/2}{MW_{solute}/n}$$

Example: Ca(HCO₃)₂

MW of $Ca(HCO_3)_2 = 162 \text{ gm/mol}$

Multiplication factor =
$$\frac{100/2}{162/2} = \frac{100}{162}$$

Example: $Al_2(SO_4)_3$

MW of $Al_2(SO_4)_3 = 342 \text{ gm/mol}$

$$Multiplication \ factor = \frac{100/2}{342/6} = \frac{50}{57}$$

Expressing Hardness

➤ The concentrations of hardness as well as non-hardness constituting ions are usually expressed in terms of equivalent amount of CaCO₃

Salt	Molecular Weight	Equivalent Amount of CaCO ₃
Ca(HCO ₃) ₂	162	100/162
$Mg(HCO_3)_2$	146	100/146
CaSO ₄	136	100/136
CaCl ₂	111	100/111
MgSO ₄	120	100/120
MgCl ₂	95	100/95
CaCO ₃	100	100/100
MgCO ₃	84	100/84
CO ₂	44	100/44
Ca(NO ₃) ₂	164	100/164
$Mg(NO_3)_2$	148	100/148
HCO ₃ ⁻	61	100/122
OH-	17	100/34
CO ₃ ²⁻	60	100/60
NaAlO ₂	82	100/164
$Al_2(SO_4)_3$	342	100/114
FeSO ₄ ·7H ₂ O	278	100/278
H ⁺	1	100/2
HCI	36.5	100/73

Units of Hardness

- Parts per million (ppm)
 1 part of CaCO₃ equivalent hardness in 10⁶ parts of water.
- Milligrams per Litre (mg/L)
 1mg of CaCO₃ equivalent hardness of 1L of water.
 1 mg/L = 1 ppm
- Clarke's Degree (°Cl)
 one grain (64.8 mg) of CaCO3 per Imperial gallon
 (4.55 litres) of water equivalent to 14.254 ppm
- Degree French (°Fr)
 10 mg/L CaCO₃, equivalent to 10 ppm
- Milli-equivalents per Litre (meq/L)
 milli-equivalents of hardness present per liter

Water Hardness Scale			
mg/L & ppm	Classification		
Less than 17.1	Soft		
17.1 to 60	Slightly hard		
60 to 120	Moderately hard		
120 to 180	Hard		
180 and over	Like a stone		
	mg/L & ppm Less than 17.1 17.1 to 60 60 to 120 120 to 180		

Note - one grain per gallon = 17.1 parts per million (ppm)

Procedure

Part A: Estimation of total hardness of given water sample

HOOC-CH₂:N-CH₂-CH₂-N:
HOOC-CH₂:CH₂-COOH
CH₂-COOH

Structure of EDTA

In Burette: 0.01 M Ethylene Diamine Tetra Acetic Acid (EDTA)

In conical flask: 10ml water sample + 3ml buffer solution

Indicator: 1-2 drops of Erichrome black T (EBT)

End -point : wine red to navy blue/peacock blue

In EDTA, a metal ion, two oxygen atoms and two nitrogen atoms comprise a square.

Reaction:
$$M^{2+} + EBT \rightarrow [M-EBT] \xrightarrow{EDTA} [M-EDTA] + [M-EBT] \xrightarrow{EDTA} [M-EDTA] [EBT]$$

dye

Wine red

Metal – Ligand complex

Colorless navy blue complex

$$M^{2+} + EBT \rightarrow [M - EBT] \xrightarrow{EDTA} [M - EDTA] + [M - EBT] \xrightarrow{EDTA} [M - EDTA] + EBT$$

Observation Table

Reading	1 (ml)	2 (ml)	3 (ml)	Constant Burette Reading (CBR)
Final	X1	X2	Х3	X ml
Initial	0	0	0	
Difference				

$1000 \ mL \ of \ 1M \ EDTA \equiv 100 \ gm \ of \ CaCO_3$

$$1000~mL~of~0.01M~EDTA \equiv 100 \times 0.01~gm~of~CaCO_3$$

$$X~mL~of~0.01M~EDTA \equiv 100 \times 0.01 \times \frac{X}{1000}~gm~of~CaCO_3$$

For 10 mL of water sample

Part B: Estimation of Permanent hardness of given water sample

In Burette: 0.01 M EDTA

In conical flask: 10ml boiled water sample + 3ml buffer soln

Indicator: 1-2 drops of Erichrome black T (EBT)

End -point : wine red to navy blue

Reaction: $M^{2+} + EBT \rightarrow [M-EBT] \xrightarrow{EDTA} [M-EDTA] + [M-EBT] \xrightarrow{EDTA} [M-EDTA] [EBT]$

Observation Table

Reading	1 (ml)	2 (ml)	3 (ml)	Constant Burette Reading (CBR)
Final	Y1	Y2	Y3	Y ml
Initial	0	0	0	
Difference				

$1000 \ mL \ of \ 1M \ EDTA \equiv 100 \ gm \ of \ CaCO_3$

 $1000 \ mL \ of \ 0.01M \ EDTA \equiv 100 \times 0.01 \ gm \ of \ CaCO_3$

$$00 \ mL \ of \ 0.01M \ EDTA \equiv 100 \times 0.01 \ gm \ of \ CaCO_3$$

$$Y \ mL \ of \ 0.01M \ EDTA \equiv 100 \times 0.01 \times \frac{Y}{1000} \ gm \ of \ CaCO_3$$

For 10 mL of water sample

$$\therefore Concentration (Eqv. CaCO_3) = 100 \times 0.01 \times \frac{Y}{1000} \times \frac{gm}{10 mL} = 100 \times 0.01 \times \frac{Y}{1000} \times \frac{10^3 mg}{10 \times 10^{-3} L}$$
$$= Y \times 10^2 \frac{mg}{L} = Y \times 10^2 \ ppm \quad \leftarrow \text{Temporary Hardness}$$

 $Total\ Hardness = Temporary\ Hardness + Permanent\ Hardness$ Temporary Hardness = Total Hardness (From part A) – Permanent Hardness (From part B) = $___$ ppm

Part C: Estimation of total hardness of given Tap water

In Burette: 0.01 M EDTA

In conical flask: 50ml Tap water + 3ml buffer soln

Indicator: 1-2 drops of Erichrome black T (EBT)

End -point : wine red to navy blue

Reaction:
$$M^{2+} + EBT \rightarrow [M-EBT] \xrightarrow{EDTA} [M-EDTA] + [M-EBT] \xrightarrow{EDTA} [M-EDTA] [EBT]$$

Wine red

navy blue

Observation Table

Reading	1 (ml)	2 (ml)	3 (ml)	Constant Burette Reading (CBR)
Final	Z1	Z2	Z3	Z ml
Initial	0	0	0	
Difference				

$1000 \ mL \ of \ 1M \ EDTA \equiv 100 \ gm \ of \ CaCO_3$

 $1000 \ mL \ of \ 0.01M \ EDTA \equiv 100 \times 0.01 \ gm \ of \ CaCO_3$

$$00 \ mL \ of \ 0.01M \ EDTA \equiv 100 \times 0.01 \ gm \ of \ CaCO_3$$

$$Z \ mL \ of \ 0.01M \ EDTA \equiv 100 \times 0.01 \times \frac{Z}{1000} \ gm \ of \ CaCO_3$$

For 50 mL of water sample

$$\therefore Concentration (Eqv. CaCO_3) = 100 \times 0.01 \times \frac{Z}{1000} \times \frac{gm}{50 \ mL} = 100 \times 0.01 \times \frac{Z}{1000} \times \frac{10^3 mg}{50 \times 10^{-3} L}$$

$$= Z \times 20 \ \frac{mg}{L} = Z \times 20 \ ppm \qquad \leftarrow \text{Total Hardness}$$

 $Total\ Hardness = Temporary\ Hardness + Permanent\ Hardness$ Temporary Hardness = Total Hardness (From part A) – Permanent Hardness (From part B) = $___$ ppm

Expected Result:

- 1) Total Hardness of given water sample = 400-600 ppm
- 2) Permanent hardness of water sample = 200-300 ppm
- 3) Temporary hardness of water sample = 200-300 ppm
- 4) Total Hardness of tap water = 20-50 ppm

Note: Numbers vary person to person and with experimental conditions

