

v Mass & Ovbb in EFT Framework

Jiang-Hao Yu (于江浩)

Institute of Theoretical Physics, Chinese Academy of Science

Hao-Lin Li, Zhe Ren, Ming-Lei Xiao, JHY, Yu-Hui Zheng, 2007.07899

Hao-Lin Li, Zhe Ren, Ming-Lei Xiao, JHY, Yu-Hui Zheng, 2012.09188

Hao-Lin Li, Zhe Ren, Ming-Lei Xiao, JHY, Yu-Hui Zheng, 2105.09329

Yong Du, Hao-Lin Li, Yu-Han Ni, Ming-Lei Xiao, JHY, in preparation

Gang Li, Hao Sun, JHY, in collaboration

Zhuhai, Zhong-Shan Univ May 22, 2021

Outline

• Why 0vbb in EFT approach?

SMEFT: 0vbb and nv masses, UV physics

LEFT: quark currents and weak sources

ChiPT: short-range, pion-range, long-range

Summary and outlook

Introduction

Why 0vbb in EFT approach?

Search For New Physics

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included).

mass scale [TeV]

New Physics w/o New Particle

Top-down: Integrate out and matching/running

Bottom-up: field d.o.f and symmetry at IR scale

New Physics w/o New Particle

Low Energy Probe of HEP

Low energy probes of high energy physics

power counting (systematic)

EFT Framework

Model independent systematical parametrization of new physics

Ener	cgy	
TeV_scale		
EW scale	SMEFT = $\mathcal{L}_{SM} + \frac{C_i^{(5)}}{\Lambda_{NP}} Q_i^{(5)} + \frac{C_i^{(6)}}{\Lambda_{NP}^2} Q_i^{(6)} + \cdots$	
$\Lambda_{ m QCD}$	Low energy EFT $\mathcal{L}_{ ext{LEFT}} = \mathcal{L}_{ ext{QED+QCD}} + rac{C_i^{(5)}}{M_W} O_i^{(5)} + rac{C_i^{(6)}}{M_W^2} O_i^{(6)} + \cdots$	
·		
	Chiral Lagrangian + Heavy B EFT $\mathcal{L}_{\chi} = \mathcal{L}_{\pi}(s, p, l_{\mu}, r_{\mu}) + \mathcal{L}_{\pi N}(s, p, l_{\mu},$	
MeV scale		
	Nuclear EFT (nuclear matrix elements) $0\nu\beta\beta$	

EFT for Ovbb

Why Not Enough?

[Cirigliano, Dekens, de Vries, Graesser, 2018]

Still top-down: Integrate out and matching/running

SMEFT

Ovbb/nv operators and UV Resonances

SMEFT

SMEFT Operators

Hilbert Series Counting

$$\mathscr{L}_{\mathrm{SMEFT}} = \mathscr{L}_{\mathrm{SM}} + \frac{1}{\Lambda} \mathscr{L}_5 + \frac{1}{\Lambda^2} \mathscr{L}_6 + \frac{1}{\Lambda^3} \mathscr{L}_7 + \frac{1}{\Lambda^4} \mathscr{L}_8 + \frac{1}{\Lambda^5} \mathscr{L}_9 + \cdots,$$

Higher Dim Operators!?

Given numbers of independent operators

does not mean we know explicit form of operators!

Derivatives

 $BWHH^{\dagger}D^{2}$

2

 $(D^{2}H^{\dagger})HB_{L\mu\nu}W_{L}^{\mu\nu}, \quad (D^{\mu}D_{\nu}H^{\dagger})HB_{L\mu\rho}W_{L}^{\nu\rho}, \quad (D_{\nu}D^{\mu}H^{\dagger})HB_{L\mu\rho}W_{L}^{\nu\rho}, \quad (D_{\mu}H^{\dagger})(D^{\mu}H)B_{L\nu\rho}W_{L}^{\nu\rho}, \\ (D_{\mu}H^{\dagger})(D^{\nu}H)B_{L\nu\rho}W_{L}^{\mu\rho}, \quad (D^{\nu}H^{\dagger})(D_{\mu}H)B_{L\nu\rho}W_{L}^{\mu\rho}, \quad (D_{\mu}H^{\dagger})H(D^{\mu}B_{L\nu\rho})W_{L}^{\nu\rho}, \quad (D_{\mu}H^{\dagger})H(D^{\nu}B_{L\nu\rho})W_{L}^{\mu\rho}, \\ (D^{\nu}H^{\dagger})H(D_{\mu}B_{L\nu\rho})W_{L}^{\mu\rho}, \quad (D_{\mu}H^{\dagger})HB_{L\nu\rho}(D^{\mu}W_{L}^{\nu\rho}), \quad (D_{\mu}H^{\dagger})HB_{L\nu\rho}(D^{\nu}W_{L}^{\mu\rho}), \quad (D^{\nu}H^{\dagger})HB_{L\nu\rho}(D_{\mu}W_{L}^{\mu\rho}), \\ H^{\dagger}(D^{2}H)B_{L\mu\nu}W_{L}^{\mu\nu}, \quad H^{\dagger}(D^{\mu}D_{\nu}H)B_{L\mu\rho}W_{L}^{\nu\rho}, \quad H^{\dagger}(D^{\mu}H)(D_{\mu}B_{L\nu\rho})W_{L}^{\nu\rho}, \quad H^{\dagger}(D^{\mu}H)(D_{\mu}B_{L\nu\rho})W_{L}^{\nu\rho}, \\ H^{\dagger}(D^{\nu}H)(D_{\mu}B_{L\nu\rho})W_{L}^{\mu\rho}, \quad H^{\dagger}(D_{\mu}H)(D^{\nu}B_{L\nu\rho})W_{L}^{\mu\nu}, \quad H^{\dagger}(D^{\mu}H)B_{L\nu\rho}(D_{\mu}W_{L}^{\nu\rho}), \quad H^{\dagger}(D^{\nu}H)B_{L\nu\rho}(D_{\mu}W_{L}^{\nu\rho}), \\ H^{\dagger}(D^{\mu}B_{L\nu\rho})(D_{\mu}W_{L}^{\nu\rho}), \quad H^{\dagger}H(D^{\nu}B_{L\nu\rho})(D_{\mu}W_{L}^{\nu\rho}), \quad H^{\dagger}H(D_{\mu}B_{L\nu\rho})(D^{\nu}W_{L}^{\nu\rho}), \quad H^{\dagger}HB_{L\mu\rho}(D^{2}W_{L}^{\mu\nu}), \\ H^{\dagger}H(D^{\mu}B_{L\nu\rho})(D_{\mu}W_{L}^{\nu\rho}), \quad H^{\dagger}H(D^{\nu}B_{L\nu\rho})(D_{\mu}W_{L}^{\nu\rho}), \quad H^{\dagger}HB_{L\mu\nu}(D^{2}W_{L}^{\mu\nu}), \quad H^{\dagger}HB_{L\mu\nu}(D^{2}W_{L}^{\mu\nu}), \quad H^{\dagger}HB_{L\mu\nu}(D^{\mu}D_{\nu}W_{L}^{\nu\rho}), \quad H^{\dagger}HB_{L\mu\nu}(D^{\mu}D_{\nu}W_{L}^{\nu\rho}), \quad H^{\dagger}HB_{L\mu\nu}(D_{\mu}D_{\nu}W_{L}^{\nu\rho}).$

Repeated fields

QQQL

57

$$Q_{prst}^{qqq\ell} = C^{prst}egin{array}{c} \epsilon^{abc}\epsilon^{ik}\epsilon^{jl}(L_{pi}Q_{raj})(Q_{sbk}Q_{tcl}) \ \epsilon^{abc}\epsilon^{ik}\epsilon^{jl}(L_{pi}Q_{sbk})(Q_{raj}Q_{tcl}) \ \epsilon^{abc}\epsilon^{ij}\epsilon^{kl}(L_{pi}Q_{raj})(Q_{sbk}Q_{tcl}) \end{array} p,r,s,t=1,2,3$$

Which 2 should be picked up?

What flavor relations should be imposed?

Operator as Young Tensor

算符的基元为Lorentz群的不可约表示: 取最高权(无需运动方程)

$$H_i \in (0,0)$$
 $\psi_{\alpha} \in (1/2,0)$ $F_{L\alpha\beta} = \frac{i}{2} F_{\mu\nu} \sigma^{\mu\nu}_{\alpha\beta} \in (1,0)$ $D_{\alpha\dot{\alpha}} = D_{\mu} \sigma^{\mu}_{\alpha\dot{\alpha}} \in (1/2,1/2),$

$$\partial^2 \phi = (0,0) + (0,1) + (1,0) + (1,1)$$

$$D_{\mu_1}D_{\mu_2}\phi = (D^2\phi)_{\alpha\beta\dot{\alpha}\dot{\beta}} = \frac{1}{2}\epsilon_{\alpha\beta}\epsilon_{\dot{\alpha}\dot{\beta}}D^{\mu}D_{\mu}\phi - \frac{i}{4}\epsilon_{\dot{\alpha}\dot{\beta}}\sigma^{\mu\nu}_{\alpha\beta}[D_{\mu},D_{\nu}]\phi - \frac{i}{4}\epsilon_{\alpha\beta}\bar{\sigma}^{\mu\nu}_{\dot{\alpha}\dot{\beta}}[D_{\mu},D_{\nu}]\phi + \frac{1}{4}(D^2\phi)_{(\alpha\beta)(\dot{\alpha}\dot{\beta})}.$$

$$\partial \psi = \left(1, \frac{1}{2}\right) + \left(0, \frac{1}{2}\right) \qquad (D\psi)_{\alpha\beta\dot{\alpha}} = -\frac{1}{2}\epsilon_{\alpha\beta}(\not\!\!D\psi)_{\dot{\alpha}} + \frac{1}{2}(D\psi)_{(\alpha\beta)\dot{\alpha}}$$

$$\partial F_L = \left(rac{1}{2},rac{1}{2}
ight) \oplus \left(rac{3}{2},rac{1}{2}
ight)$$

$$=[1^2]$$

算符在总动量的小群变换下为: U(N)表示(无需动量积分) $\epsilon^{\alpha_i\alpha_j} \to \sum_{i} U_k^i U_l^j \epsilon^{\alpha_k\alpha_l}$

Operator Construction

 $BWHH^{\dagger}D^{2}$

Li, Ren, Shu, Xiao, JHYu, Zheng, arXiv: 2005.00008

Li, Ren, Xiao, JHYu, Zheng, arXiv: 2007.07899

 $(D^{2}H^{\dagger})HB_{L\mu\nu}W_{L}^{\mu\nu}, (D^{\mu}D_{\nu}H^{\dagger})HB_{L\mu\rho}W_{L}^{\nu\rho}, (D_{\nu}D^{\mu}H^{\dagger})HB_{L\mu\rho}W_{L}^{\nu\rho}, (D_{\mu}H^{\dagger})(D^{\mu}H)B_{L\nu\rho}W_{L}^{\nu\rho}, (D_{\mu}H^{\dagger})(D^{\mu}H)B_{L\nu\rho}W_{L}^{\nu\rho}, (D_{\mu}H^{\dagger})(D^{\mu}H)B_{L\nu\rho}W_{L}^{\nu\rho}, (D_{\mu}H^{\dagger})H(D^{\mu}B_{L\nu\rho})W_{L}^{\nu\rho}, (D_{\mu}H^{\dagger})H(D^{\mu}B_{L\nu\rho})W_{L}^{\mu\rho}, (D_{\mu}H^{\dagger})H(D^{\mu}B_{L\nu\rho})W_{L}^{\mu\rho}, (D_{\mu}H^{\dagger})HB_{L\nu\rho}(D^{\mu}W_{L}^{\nu\rho}), (D_{\mu}H^{\dagger})HB_{L\nu\rho}(D^{\nu}W_{L}^{\nu\rho}), (D_{\mu}H^{\dagger})HB_{L\nu\rho}(D^{\nu}W_{L}^{\nu\rho}), (D_{\mu}H^{\dagger})HB_{L\nu\rho}(D^{\nu}W_{L}^{\nu\rho}), (D^{\nu}H^{\dagger})HB_{L\nu\rho}(D_{\mu}W_{L}^{\nu\rho}), H^{\dagger}(D^{\mu}H)(D_{\mu}B_{L\nu\rho})W_{L}^{\nu\rho}, H^{\dagger}(D^{\mu}H)(D_{\mu}B_{L\nu\rho})W_{L}^{\nu\rho}, H^{\dagger}(D^{\mu}H)(D_{\mu}B_{L\nu\rho})W_{L}^{\nu\rho}, H^{\dagger}(D^{\mu}H)(D_{\mu}B_{L\nu\rho})W_{L}^{\nu\rho}, H^{\dagger}(D^{\mu}H)B_{L\nu\rho}(D_{\mu}W_{L}^{\nu\rho}), H^{\dagger}(D^{\mu}H)B_{L\nu\rho}(D_{\mu}W_{L}^{\nu\rho}), H^{\dagger}(D^{\mu}H)B_{L\nu\rho}(D_{\mu}W_{L}^{\nu\rho}), H^{\dagger}(D^{\mu}H)B_{L\nu\rho}(D_{\mu}W_{L}^{\nu\rho}), H^{\dagger}(D^{\mu}H)B_{L\nu\rho}(D_{\mu}W_{L}^{\nu\rho}), H^{\dagger}(D^{\mu}H)B_{L\nu\rho}(D_{\mu}W_{L}^{\nu\rho}), H^{\dagger}(D^{\mu}H)B_{L\nu\rho}(D_{\mu}W_{L}^{\nu\rho}), H^{\dagger}(D^{\mu}H)B_{L\nu\rho}(D^{\mu}W_{L}^{\nu\rho}), H^{\dagger}(D^{\mu}H)B_{L\nu\rho}(D^{\mu}W_{L}^{\mu\rho}), H^{\dagger}(D^{\mu}H)B_{L\mu\rho}(D^{\mu}H)B_{L\mu\rho}(D^{\mu}H)B_{L\mu\rho}(D^{\mu}H)B_{L\mu\rho}(D^{\mu}H)B_{L\mu\rho}(D^{\mu}H)B_{L\mu\rho}(D^{\mu}H)B_{L\mu\rho}(D^{\mu}H)B_{L\mu\rho}(D^{\mu}H)B_{L\mu\rho}(D^{\mu}H)B_{L\mu\rho}(D^{\mu}H)B_{L\mu\rho}(D^{\mu}H)B_{L\mu\rho}(D^{\mu}H)B_{L\mu\rho}(D^{\mu}H)B_{L\mu\rho}(D^{\mu}H)B_{L\mu\rho}(D^{\mu}H)B_{L\mu\rho}(D^{\mu}H)B_{L\mu\rho}($

highest weight representation

$$(D^{r-|h|}\Phi)_{\alpha^{r-h}}^{\dot{\alpha}^{r+h}} \in \left(\frac{r-h}{2}, \frac{r+h}{2}\right)$$

$$\begin{split} (DH^{\dagger})_{\alpha\dot{\alpha}}(DH)_{\beta\dot{\beta}}B_{L\{\gamma\delta\}}W_{L\{\xi\eta\}}\,\epsilon^{\dot{\alpha}\dot{\beta}}\epsilon^{\alpha\beta}\epsilon^{\gamma\xi}\epsilon^{\delta\eta} \\ (DH^{\dagger})_{\alpha\dot{\alpha}}(DH)_{\beta\dot{\beta}}B_{L\{\gamma\delta\}}W_{L\{\xi\eta\}}\,\frac{1}{2}\epsilon^{\dot{\alpha}\dot{\beta}}\epsilon^{\delta\xi}(\epsilon^{\alpha\gamma}\epsilon^{\beta\eta}+\epsilon^{\beta\gamma}\epsilon^{\alpha\eta}) \\ (DH^{\dagger})_{\alpha\dot{\alpha}}H\,(DB_L)_{\{\beta\gamma\delta\},\dot{\beta}}W_{L\{\xi\eta\}}\,\epsilon^{\dot{\alpha}\dot{\beta}}\epsilon^{\alpha\beta}\epsilon^{\gamma\xi}\epsilon^{\delta\eta} \\ (DH^{\dagger})_{\alpha\dot{\alpha}}H\,B_{L\{\xi\eta\}}(DW_L)_{\{\beta\gamma\delta\},\dot{\beta}}\,\epsilon^{\dot{\alpha}\dot{\beta}}\epsilon^{\alpha\beta}\epsilon^{\gamma\xi}\epsilon^{\delta\eta} \\ H^{\dagger}\,(DH)_{\alpha\dot{\alpha}}\,(DB_L)_{\{\beta\gamma\delta\},\dot{\beta}}W_{L\{\xi\eta\}}\,\epsilon^{\dot{\alpha}\dot{\beta}}\epsilon^{\alpha\beta}\epsilon^{\gamma\xi}\epsilon^{\delta\eta} \\ H^{\dagger}\,(DH)_{\alpha\dot{\alpha}}\,B_{L\{\xi\eta\}}(DW_L)_{\{\beta\gamma\delta\},\dot{\beta}}\,\epsilon^{\dot{\alpha}\dot{\beta}}\epsilon^{\alpha\beta}\epsilon^{\gamma\xi}\epsilon^{\delta\eta} \\ H^{\dagger}H\,(DB_L)_{\{\alpha\beta\gamma\},\dot{\alpha}}(DW_L)_{\{\xi\eta\delta\},\dot{\beta}}\,\epsilon^{\dot{\alpha}\dot{\beta}}\epsilon^{\alpha\xi}\epsilon^{\beta\eta}\epsilon^{\gamma\delta} \end{split}$$

$$\mathcal{M} = (\epsilon^{\alpha_i \alpha_j})^{\otimes n} (\tilde{\epsilon}_{\dot{\alpha}_i \dot{\alpha}_j})^{\otimes \tilde{n}} \prod_{i=1}^{N} (D^{r_i - |h_i|} \Phi_i)_{\alpha_i^{r_i - h_i}}^{\dot{\alpha}_i^{r_i + h_i}} \in [\mathcal{M}]_{N, n, \tilde{n}} = [\mathcal{A}]_{N, n, \tilde{n}} \oplus [\mathcal{B}]_{N, n, \tilde{n}}$$

$$B_L^{\alpha\beta}W_{L\alpha\beta}\left(DH^{\dagger}\right)^{\gamma}{}_{\dot{\alpha}}\left(DH\right)_{\gamma}{}^{\dot{\alpha}}, \quad B_L^{\alpha\beta}W_{L\alpha}{}^{\gamma}\left(DH^{\dagger}\right)_{\beta\dot{\alpha}}\left(DH\right)_{\gamma}{}^{\dot{\alpha}}$$

$$\epsilon^{ik}\epsilon^{jl}B_L{}^{\alpha\beta}W_{L\alpha\beta\,ij}\left(DH^\dagger\right)^\gamma{}_{\dot\alpha k}\left(DH\right)_\gamma{}^{\dot\alpha}{}_l,\quad \epsilon^{ik}\epsilon^{jl}B_L{}^{\alpha\beta}W_{L\alpha}{}^\gamma{}_{ij}\left(DH^\dagger\right)_{\beta\dot\alpha k}\left(DH\right)_\gamma{}^{\dot\alpha}{}_l.$$

SMEFT

Dimension-5

Dimension-6

Dimension-7

 $1: \psi^2 X H^2 + \text{h.c.}$

 $\epsilon_{ij}\epsilon_{mn}(L^iCL^m)H^jH^n$

[Weinberg, 1979]

Φ^6 and $\Phi^4 D^2$	$\psi^2\Phi^3$	E	X^3	
$O_{\Phi} = (\Phi^{\dagger}\Phi)^3$	$O_{l\Phi} =$	$= (\Phi^{\dagger}\Phi)(\bar{L}_i l_j \Phi)$	$O_G = -f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	
$\mathcal{O}_{\Phi\Box} = (\Phi^{\dagger}\Phi)\Box(\Phi^{\dagger}\Phi)$	$O_{\nu\Phi} =$	$= (\Phi^{\dagger}\Phi)(\overline{Q}_i u_j \Phi^c)$	$O_{\widetilde{G}} = -f^{ABC}\widetilde{G}_{\mu}^{A\nu}G_{\nu}^{B\rho}G_{\rho}^{C\mu}$	
$O_{\Phi D} = (\Phi^{\dagger}D^{\mu}\Phi)^{*}(\Phi^{\dagger}D_{\mu}\Phi)$	$O_{d\Phi} =$		$O_W = -\epsilon^{abc} W_{\mu}^{a\nu} W_{\nu}^{b\rho} W_{\rho}^{c\mu}$	
			$O_{\widetilde{W}} = -\epsilon^{abc} \widetilde{W}^{av}_{\mu} W^{b\rho}_{\nu} W^{c\mu}_{\rho}$	
$X^2\Phi^2$	$\psi^2 X$	$(\bar{L}L)(\bar{L}L)$	$(\bar{R}R)(\bar{R}R)$	$(\tilde{L}L)(\tilde{R}R)$
$O_{\Phi G} = (\Phi^{\dagger}\Phi)G^{A}_{\mu\nu}G^{A\mu\nu}$	O_{uG}	$O_{LL} = (\bar{L}_i \gamma_\mu L_j) (\bar{L}_k \gamma^\mu L_l)$	$O_H = (\tilde{l}_i \gamma_\mu l_j)(\tilde{l}_k \gamma^\mu l_l)$	$O_{Li} = (\bar{L}_i \gamma_\mu L_j)(\bar{l}_k \gamma^\mu l_i)$
$O_{\Phi \widetilde{G}} = (\Phi^{\dagger} \Phi) \widetilde{G}_{\mu \nu}^{A} G^{A \mu \nu}$	O_{dG}	$O_{QQ}^{(1)} = (\bar{Q}_i \gamma_\mu Q_j)(\bar{Q}_k \gamma^\mu Q_l)$	$O_{int}=(\bar{u}_i\gamma_\mu u_j)(\bar{u}_k\gamma^\mu u_l)$	$O_{Lu}=(\bar{L}_i\gamma_\mu L_j)(\bar{u}_k\gamma^\mu u_l)$
		$O_{QQ}^{(3)} = (\bar{Q}_i \gamma_\mu \tau^\alpha Q_j)(\bar{Q}_k \gamma^\mu \tau^\alpha Q_j)$	$O_{dd} = (\bar{d}_i \gamma_\mu d_j)(\bar{d}_k \gamma^\mu d_l)$	$O_{Ld} = (\bar{L}_i \gamma_\mu L_j)(\bar{d}_k \gamma^\mu d_l)$
$O_{\Phi W} = (\Phi^{\dagger}\Phi)W^a_{\mu\nu}W^{a\mu\nu}$	Orw	$O_{LO}^{(1)} = (\tilde{L}_i \gamma_\mu L_j)(\tilde{Q}_k \gamma^\mu Q_l)$	$O_{l\alpha} = (\bar{l}_i \gamma_\mu l_j)(\bar{u}_k \gamma^\mu u_l)$	$O_{Ql} = (\tilde{Q}_i \gamma_\mu Q_j)(\tilde{l}_k \gamma^\mu l_l)$
$O_{\Phi W} = (\Phi^{\dagger} \Phi) \widetilde{W}^{a}_{\mu\nu} W^{a\mu\nu}$	O_{uW}	$O_{LO}^{(3)} = (\bar{L}_i \gamma_\mu \tau^\mu L_j)(\bar{Q}_k \gamma^\mu \tau^a Q_l)$	$O_{ld} = (\bar{l}_i \gamma_{\mu} l_j)(\bar{d}_k \gamma^{\mu} d_l)$	$O_{Ou}^{(1)} = (\bar{Q}_i \gamma_\mu Q_j)(\bar{u}_k \gamma^\mu u_l)$
$O_{\Phi B} = (\Phi^{\dagger} \Phi) B_{\mu \nu} B^{\mu \nu}$	O_{dW}	Part - New Property 1988	$O_{id}^{(1)} = (\bar{u}_i \gamma_\mu u_j)(\bar{d}_k \gamma^\mu d_l)$	$O_{Qu}^{(8)} = \left(\bar{Q}_i \gamma_\mu \frac{\lambda^4}{2} Q_j\right) \left(\bar{u}_k \gamma^\mu \frac{\lambda^4}{2} u_l\right)$
$O_{\Phi \overline{B}} = (\Phi^{\dagger} \Phi) \overline{B}_{\mu\nu} B^{\mu\nu}$	O_{lB}		$O_{nd}^{(8)} = \left(\bar{u}_i \gamma_\mu \frac{A^4}{2} u_j\right) \left(\bar{d}_k \gamma^\mu \frac{A^4}{2} d_l\right)$	$O_{Qd}^{(1)} = (\bar{Q}_i \gamma_\mu Q_j) (\bar{d}_k \gamma^\mu d_i)$
$O_{\Phi WB} = -(\Phi^{\dagger} \tau^{a} \Phi) W^{a}_{\mu\nu} B^{\mu\nu}$	O_{uB}			$O_{Qd}^{(8)} = \left(\bar{Q}_i \gamma_\mu \frac{J^k}{2} Q_j\right) \left(\bar{d}_k \gamma^\mu \frac{J^k}{2} d_i\right)$
$O_{\Phi \widetilde{W} R} = -(\Phi^{\dagger} \tau^{a} \Phi) \widetilde{W}^{a}_{a\nu} B^{\mu\nu}$	O_{dB}	$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$	B-violating	
$O_{\Phi WB} = -(\Phi \tau \Phi) W_{\mu\nu} B$	O _{dB}	$O_{LklQ} = (\tilde{L}_i^{\sigma} l_j)(\tilde{d}_k Q_l^{\sigma})$	$O_{duQ} = \epsilon^{u\beta\gamma} \epsilon_{\sigma\tau} \left[(d_i^u)^T C u_j^\theta \right]$	$(Q_k^{y\sigma})^T C L_l^T$
		$O_{OuOd}^{(1)} = (\bar{Q}_i^{\sigma} u_i) \epsilon_{\sigma\tau} (\bar{Q}_k^{\tau} d_l)$	$O_{QQu} = \epsilon^{\alpha\beta\gamma} \epsilon_{crt} \left[(Q_i^{\alpha cr})^T C Q_i^{\beta} \right]$	
		$O_{QuQM}^{(8)} = \left(\bar{Q}_i^{\sigma} \frac{\lambda^h}{2} u_i\right) \epsilon_{\sigma\tau} \left(\bar{Q}_k^{\tau} \frac{\lambda^h}{2}\right)$		
		$O_{LlOu}^{(1)} = (\hat{L}_i^{\sigma} I_j) \epsilon_{\sigma \tau} (\hat{Q}_k^{\tau} u_l)$	$O_{duu} = \epsilon^{\alpha\beta\gamma} \left[(d_i^{\alpha})^T C u_i^{\beta} \right] \left[(u_i^{\gamma})^T C u_i^{\beta} \right]$	
		$O_{UO_{\theta}}^{(3)} = (\tilde{L}_{i}^{\sigma} \sigma_{\mu\nu} l_{j}) \epsilon_{\sigma\tau} (\tilde{Q}_{k}^{\tau} \sigma^{\mu})$		1

 $Q_{l^2WH^2} = \epsilon_{mn} (\tau^I \epsilon)_{jk} (l^m_p C i \sigma^{\mu\nu} l^j_\tau) H^n H^k W^I_{\mu\nu} \qquad Q_{l^2H^4} = \epsilon_{mn} \epsilon_{jk} (l^m_p C l^j_\tau) H^n H^k (H^\dagger H)$ $Q_{l^2BH^2}$ $\epsilon_{mn}\epsilon_{jk}(l_p^mCi\sigma^{\mu\nu}l_r^j)H^nH^kB_{\mu\nu}$ $3(B): \psi^{4}H + h.c.$ $3(B): \psi^4 H + \text{h.c.}$ $\epsilon_{jk}\epsilon_{mn}(\bar{e}_p l_r^j)(l_s^k C l_t^m)H^n$ $\epsilon_{\alpha\beta\gamma}(\tilde{l}_p d_r^{\alpha})(u_s^{\beta}Cd_t^{\gamma})\tilde{H}$ $\epsilon_{\alpha\beta\gamma}\epsilon_{jk}(\bar{l}_p^md_r^\alpha)(q_{sm}^\beta Cq_t^{j\gamma})\widetilde{H}^k$ $\epsilon_{jk}(\bar{d}_p l_r^j)(u_s C e_t) H^k$ $\epsilon_{jk}\epsilon_{mn}(\bar{d}_p l_r^j)(q_s^k C l_t^m)H^n$ $\epsilon_{\alpha\beta\gamma}(\bar{l}_p d_r^{\alpha})(d_s^{\beta}Cd_t^{\gamma})H$ $\epsilon_{\alpha\beta\gamma}\epsilon_{jk}(\bar{e}_pq_r^{j\alpha})(d_s^{\beta}Cd_t^{\gamma})\widetilde{H}^k$ $\epsilon_{jm}\epsilon_{kn}(\bar{d}_p l_r^j)(q_s^k C l_t^m)H^n$ $\epsilon_{jk}(\bar{q}_p^m u_r)(l_{sm}Cl_t^j)H^k$ $4:\psi^2H^3D+\mathrm{h.c.}$ $5(B): \psi^4 D + \text{h.c.}$ $Q_{leH^3D} = \epsilon_{mn} \epsilon_{jk} (l_p^m C \gamma^\mu e_r) H^n H^j i D_\mu H^k \qquad Q_{l^2 u dD} = \epsilon_{jk} (\bar{d}_p \gamma^\mu u_r) (l_s^j C i D_\mu l_t^k)$ $6:\psi^2H^2D^2+\text{h.c.}$ $5(B\hspace{-.05cm}/\,):\psi^4D+{\rm h.c.}$ $Q_{l^2H^2D^2}^{(1)}$ $\epsilon_{jk}\epsilon_{mn}(l_p^jCD^\mu l_r^k)H^m(D_\mu H^n)$ $Q_{lqd^2D} = \epsilon_{\alpha\beta\gamma}(\bar{l}_p\gamma^{\mu}q_r^{\alpha})(d_s^{\beta}CiD_{\mu}d_t^{\gamma})$ $Q_{l^2H^2D^2}^{(2)}$ $\epsilon_{jm}\epsilon_{kn}(l_p^jCD^\mu l_r^k)H^m(D_\mu H^n)$ $Q_{ed^3D} = \epsilon_{\alpha\beta\gamma}(\bar{e}_p\gamma^{\mu}d_r^{\alpha})(d_s^{\beta}CiD_{\mu}d_t^{\gamma})$

[Buchmuller, Wyler, 1986] [Grzadkowski, Iskrzynski, Misiak, Rosiek, 2010]

[Lehman, 2014] [Liao, Ma, 2018]

Dimension-8

[Li, Ren, Shu, Xiao, Yu, Zheng, 2020]

N	(n, \tilde{n})	Subclasses	\mathcal{N}_{type}	$\mathcal{N}_{\text{term}}$	$\mathcal{N}_{ ext{operator}}$	Equations
4	(4, 0)	$F_{L}^{4} + h.c.$	14	26	26	(4.19)
	(3, 1)	$F_L^2 \psi \psi^{\dagger} D + h.c.$	22	22	$22n_f^2$	(4.51)
		$\psi^{4}D^{2} + h.c.$	4+4	18+14	$12n_f^4 + n_f^3(5n_f - 1)$	(4.75, 4.78, 4.80)
		$F_L\psi^2\phi D^2 + h.c.$	16	32	$32n_f^2$	(4.44)
		$F_L^2 \phi^2 D^2 + h.c.$	8	12	12	(4.14)
	(2, 2)	$F_L^2 F_R^2$	14	17	17	(4.19)
		$F_L F_R \psi \psi^{\dagger} D$	27	35	$35n_f^2$	(4.50, 4.51)
		$\psi^{2}\psi^{\dagger 2}D^{2}$	17+4	54+8	$\frac{1}{2}n_f^2(75n_f^2+11)+6n_f^4$	(4.74, 4.79-4.81)
		$F_R \psi^2 \phi D^2 + h.c.$	16	16	$16n_f^2$	(4.44)
		$F_L F_R \phi^2 D^2$	5	6	6	(4.14)
		$\psi \psi^{\dagger} \phi^2 D^3$	7	16	$16n_f^2$	(4.31, 4.32)
		$\phi^4 D^4$	1	3	3	(4.8)
5	(3, 0)	$F_L\psi^4 + h.c.$	12 <u>+10</u>	66+54	$42n_f^4 + 2n_f^3(9n_f + 1)$	(4.86, 4.88, 4.89, 4.91)
		$F_L^2 \psi^2 \phi + h.c.$	32	:60	$60n_f^2$	(4.47, 4.48)
		$F_L^3 \phi^2 + h.c.$	6	6	6	(4.16)
	(2, 1)	$F_{\rm L} \psi^2 \psi^{\dagger 2} + h.c.$	84+24	172 ± 32	$2n_f^2(59n_f^2-2)+24n_f^4$	(4.84-4.85), (4.88-4.92
		$F_R^2 \psi^2 \phi + h.c.$	32	36	$36n_{f}^{2}$	(4.47, 4.48)
		$\psi^3 \psi^{\dagger} \phi D + h.c.$	32 ± 14	180 + 56	$n_f^3(135n_f - 1) + n_f^3(29n_f + 3)$	(4.66, 4.69-4.72)
		$F_L \psi \psi^{\dagger} \phi^2 D + h.c.$	38	92	$92n_{f}^{2}$	(4.39, 4.40)
		$\psi^{2}\phi^{3}D^{2} + h.c.$	6	36	$36n_f^2$	(4.28)
		$F_L\phi^4D^2 + h.c.$	4	6	6	(4.10)
6	(2, 0)	$\psi^4 \phi^2 + h.c.$	12+4	48+18	$5(5n_f^4 + n_f^2) + \frac{2}{3}(8n_f^4 + n_f^2)$	(4.55, 4.59, 4.62, 4.64)
		$F_L \psi^2 \phi^3 + h.c.$	16	22	$22n_f^2$	(4.36)
		$F_L^2 \phi^4 + h.c.$	8	10	10	(4.12)
	(1, 1)	$\psi^2 \psi^{\dagger 2} \phi^2$	23+10	57 <u>+14</u>	$n_f^2(42n_f^2 + n_f + 2) + 3n_f^3(3n_f - 1)$	(4.54, 4.55, 4.59-4.63)
		$\psi \psi^{\dagger} \phi^4 D$	7	13	$13n_f^2$	(4.24, 4.25)
		$\phi^6 D^2$	1	2	2	(4.8)
7	(1, 0)	$\psi^2 \phi^5 + h.c.$	6	6	$6n_f^2$	(4.21)
8	(0, 0)	φ8	1	1	1	(4.8)
23	Total	48	471 <u>+70</u>	1070 ± 196	$993(n_f = 1), 44807(n_f = 3)$	

[Murphy, 2020]

Jiang-Hao Yu

Dimension-9

[Li, Ren, Xiao, Yu, Zheng, 2020]

N	(n, \tilde{n})	Classes	$\mathcal{N}_{\mathrm{type}}$	\mathcal{N}_{term}	$\mathcal{N}_{\mathrm{operator}}$	Equations Liao, N	1a. 202
4	(3, 2)	$\psi^3 \psi^{\dagger} D^3 + h.c.$	0+4+2+0	10	$\frac{2}{3}n_f^2(7n_f^2-1)$	(5.50)(5.51)	
		$\psi^2 \phi^2 D^4 + h.c.$	0+0+2+0	6	$3n_f(n_f + 1)$	(5.21)	
5	(3,1)	$F_L \psi^3 \psi^{\dagger} D + h.c.$	0 + 10 + 6 + 0	72	$32n_{f}^{4}$	(5.59)(5.60)	R SARIER
		$\psi^4 \phi D^2 + h.c.$	0+4+4+0	100	$40n_f^4$	(5.45-5.48)	
		$F_L\psi^2\phi^2D^2 + h.c.$	0 + 0 + 4 + 0	34	$17n_f^2 - n_f$	(5.28)(5.29)	560
	(2,2)	$F_R \psi^3 \psi^{\dagger} D + h.c.$	0 + 10 + 6 + 0	54	$4n_f^3(6n_f + 1)$	(5.59)(5.60)	
		$\psi^2 \psi^{\dagger 2} \phi D^2$	0+4+4+0	84	$n_f^3(49n_f + 1)$	(5,45-5,48)	
		$F_{\rm R}\psi^2\phi^2D^2+h.c.$	0+0+4+0	20	$2n_f(5n_f - 1)$	(5.28)(5.29)	
		$\psi \psi^\dagger \phi^3 D^3$	0+0+2+0	6	$6n_f^2$	(5.19)	
6	(3,0)	$\psi^{6} + h.c.$	2+4+6+0	116	$\frac{1}{24}n_f^2(415n_f^4 + 53n_f^3 + 59n_f^2 + 139n_f + 6)$	(5.63-5.70)	
		$F_L\psi^4\phi + h.c.$	0+12+10+0	102	$2n_f^3(21n_f+1)$	(5.54-5.56)	
		$F_L^2 \psi^2 \phi^2 + h.c.$	0+0+8+0	20	$2n_f(5n_f + 2)$	(5.32)	
	(2,1)	$\psi^4\psi^{\dagger 2} + h.c.$	4 + 26 + 20 + 4	244	$\frac{1}{6}n_f^3(382n_f^3 - 9n_f^2 + 2n_f + 21)$	(5.63-5.69)	
		$F_L\psi^2\psi^{\dagger 2}\phi + h.c.$	0 + 24 + 24 + 0	92	$52n_f^4$	(5.54-5.56)	
		$F_{\rm L}^2 \psi^{\dagger 2} \phi^2 + h.c.$	0+0+8+0	12	$2n_f(3n_f + 2)$	(5.32)	
		$\psi^3 \psi^{\dagger} \phi^2 D + h.c.$	0 + 12 + 18 + 0	186	$\frac{2}{3}n_f^2(146n_f^2+1)$	(5.39-5.42)	
		$F_{\rm L}\psi\psi^\dagger\phi^3D+h.c.$	0+0+8+0	12	$12n_f^2$	(5.25)	
		$\psi^2\phi^4D^2+h.c.$	0+0+4+0	24	$2n_f(6n_f + 1)$	(5.17)	
7	(2,0)	$\psi^{4}\phi^{3} + h.c.$	0+6+6+0	32	$\frac{4}{3}n_f^2(10n_f^2-1)$	(5.35-5.37)	
		$F_L\psi^2\phi^4 + h.c.$	0+0+4+0	8	$2n_f(2n_f - 1)$	(5.23)	
	(1,1)	$\psi^2 \psi^{\dagger 2} \phi^3$	0+6+10+0	24	$14n_{f}^{4}$	(5,35-5,37)	
		$\psi \psi^{\dagger} \phi^5 D$	0+0+2+0	2	$2n_f^2$	(5.12)	
8	(1,0)	$\psi^2 \phi^6 + h.c.$	0+0+2+0	2	$n_f^2 + n_f$	(5.9)	18
7	Total	42	6+122+164+4	1262	$8 + 204 + 348 + 0 (n_f = 1)$ $2862 + 42234 + 44874 + 486 (n_f = 3)$		

Ovbb Related Operators

SMEFT broken phase:

Ovbb Related Operators

Relate to SMEFT unbroken operators:

Nv Mass Related Operators

Higgs taking VEV:

Could from other lepton number violation operators: anomalous RG

Neutrino Masses and Ovbb

Schechter-Valle Theorem: whatever processes cause 0vbb, its observation would imply existence of Majorana mass term

[Schechter-Valle, 1982]

Strong Correlation

Standard mechanism: origin of 0vbb = origin of neutrino masses

$$L^{\mu\nu} = -\int \int dx_2 dx_1 \sum_i \bar{e}(x_1) \gamma^{\mu} (1 - \gamma_5) U_{ei} \underbrace{\nu_{iL}(x_1) \bar{\nu}_{iL}^c(x_2) \gamma_{\nu} (1 + \gamma_5) U_{ei} e_L^C(x_2)}_{iL} \qquad m_{\beta\beta} = \sum_{i=1}^3 U_{ei}^2 m_{\nu_i}.$$

Ovbb has direct connection to neutrino physics

Strong Correlation???

Lepton number violation operator: origin of 0vbb = small part of nv mass

Very tiny neutrino mass

Ovbb does not need to connect to current neutrino exp.

Neutrino Masses and Ovbb

Which One Dominate Ovbb?

The higher dim operator, the lower cutoff scale

Could be comparable!

Not necessarily related to neutrino physics

What is in the UV?

UV Realization of Nv Masses

a $\langle H \rangle$ \langle

Canonical seesaw models

$$M_v = \langle H \rangle^2 Y_\Delta \mu_\Delta / M_\Delta^2$$

$$M_{\rm v} = -\langle H \rangle^2 Y_{\Sigma} M_{\Sigma}^{-1} Y_{\Sigma}^{\mathsf{T}}$$

 $\langle H \rangle$ $\langle H \rangle$ Y_v Y_S μ_S Y_S Y_v V_L V_R S_R S_R V_R V_L $\langle \Phi \rangle$ $\langle \Phi \rangle$

$$M_v = F \mu_S F^T$$

The scotogenic model

$$M_v = -\lambda \frac{\langle H \rangle^2}{16\pi^2} Y_v M_R^{-1} Y_v^T$$

f Radiative Dirac model

$$M_v = \frac{hY_1f}{16\pi^2} \langle H \rangle I(\mu^2, M_{s_1}^2, M_{s_2}^2)$$

Integrate out heavy particles

Top-down approach

More UV realization?

Type-3/2 Seesaw Mechanism

Durmuş Demir,¹ Canan Karahan,², and Ozan Sargın³

¹Sabancı University, Faculty of Engineering and Natural Sciences, 34956 Tuzla İstanbul, Turkey ²Physics Engineering Department, İstanbul Technical University, 34469 Maslak İstanbul, Turkey ³İzmir Institute of Technology, Department of Physics, 35430, İzmir, Turkey (Dated: May 17, 2021)

Bottom-up Approach

Jiang-Hao Yu

J-Basis Operator: Partial Wave

$$\mathcal{Y}\left[\mathbf{pr}\right]\epsilon_{ik}\epsilon_{jl}\epsilon_{\alpha\beta}L_{p}^{\alpha i}L_{r}^{\beta j}H^{k}H^{l}$$

Partial wave expansion on operator

$$\mathbf{W}^2\mathcal{B}^J = -sJ(J+1)\mathcal{B}^J$$
 $\mathbf{w}^2 = \frac{s}{8}\sum\limits_{i,j=1}^N \left(\langle i,\partial_j
angle\langle j,\partial_i
angle + [i,\partial_j][j,\partial_i]
ight) - rac{1}{4}\sum\limits_{i,j,k,l}[i,j]\langle j,\partial_k
angle\langle k,l
angle[l,\partial_i]$

$$\mathbf{W}^2 = \frac{s}{8} \sum_{i,j=1}^{N} \left(\langle i, \partial_j \rangle \langle j, \partial_i \rangle + [i, \partial_j][j, \partial_i] \right) - \frac{1}{4} \sum_{i,j,k,l} [i,j] \langle j, \partial_k \rangle \langle k, l \rangle [l, \partial_i]$$

 $LL \rightarrow HH$ channel

$$LH \rightarrow LH$$
 channel

Type-II: SU(2) triplet, or singlet (excluded by repeated field)

j-basis	Model
$\mathcal{O}_{HH\to LL}^{(0,1)} = \mathcal{O}^A$	N/A
$\mathcal{O}_{HH o LL}^{(0,3)}=\mathcal{O}^S$	type II

Type-I and III: SU(2) single and triplet

j-basis	Model
$\mathcal{O}_{HL o HL}^{(1/2,1)}=\mathcal{O}^S{+}\mathcal{O}^A$	type I
$\mathcal{O}_{HL\to HL}^{(1/2,3)} = \mathcal{O}^S - 3\mathcal{O}^A$	type III

$$\mathcal{O}^S = (HL)(HL), \quad \mathcal{O}^A = (HH)(LL)$$

UV Realization of 0vbb

Integrate out heavy particles

More UV Realizations

u, 5

Example

Dim-9 operators:

$$T^{abcdef}_{SU(3)}\psi^{\dagger 6}$$

$$T^{ijkl}_{SU(2)}\psi^4\psi^{\dagger 2}$$

Lorentz	y-basis			
	$\mathcal{B}_1 = \langle 12 \rangle \langle 34 \rangle \langle 56 \rangle$	$\mathcal{B}_2 = \langle 12 \rangle \langle 35 \rangle \langle 46 \rangle$		
ψ^6	$\mathcal{B}_3 = \langle 13 \rangle \langle 24 \rangle \langle 56 \rangle$	$\mathcal{B}_4 = \langle 13 \rangle \langle 25 \rangle \langle 46 \rangle$		
	$\mathcal{B}_5 = \langle 14 \rangle \langle 25 \rangle \langle 36 \rangle$			
$\psi^4\psi^{\dagger 2}$	$\mathcal{B}_1 = \langle 12 \rangle \langle 34 \rangle [56]$	$\mathcal{B}_2 = \langle 13 \rangle \langle 24 \rangle [56]$		

gauge classes	s y-basis		
	$T_1 = \epsilon^{ace} \epsilon^{bdf}$	$T_2 = \epsilon^{acd} \epsilon^{bef}$	
$T^{abcdef}_{SU(3)}$	$T_3 = \epsilon^{abe} \epsilon^{cdf}$	$T_4 = \epsilon^{abd} \epsilon^{cef}$	
	$T_5 = \epsilon^{abc} \epsilon^{def}$	Ī	
$T^{ijkl}_{SU(2)}$	$T_1' = \epsilon^{ij} \epsilon^{kl}$	$T_2'=\epsilon^{ik}\epsilon^{jl}$	
$T_{SU(2)}^{ij}$	$T_1' = \epsilon^{ij}$		

Jiang-Hao Yu

Example

$$d, 2$$
 $u, 4$
 $u, 3$
 III
 $e, 5$
 $d, 1$
 $e, 6$

$$\mathcal{O}_{1} = \frac{1}{4} (L^{\dagger}_{u}{}^{j} L^{\dagger}_{v}{}^{i}) (Q_{p_{ai}} Q_{rbj}) (u_{cs}{}^{b} u_{ct}{}^{a})$$

$$\mathcal{O}_{2} = -\frac{1}{4} (L^{\dagger}_{u}{}^{j} L^{\dagger}_{v}{}^{i}) (Q_{p_{ai}} u_{cs}{}^{b}) (Q_{rbj} u_{ct}{}^{a})$$

$$\begin{array}{c|cccc} (\mathbf{r}_i, J_i) & (1, 1, 0) & (0, 0, 0) \\ \hline (\mathbf{8}_2, \mathbf{8}_2, \mathbf{1}_3) & \frac{4}{3}\mathcal{O}_1 + 2\mathcal{O}_2 & -\frac{2}{3}\mathcal{O}_2 \\ (\mathbf{8}_2, \mathbf{8}_2, \mathbf{1}_1) & -2\mathcal{O}_2 & \frac{4}{3}\mathcal{O}_1 + \frac{2}{3}\mathcal{O}_2 \\ (\mathbf{1}_2, \mathbf{1}_2, \mathbf{1}_3) & -4\mathcal{O}_1 - 6\mathcal{O}_2 & 2\mathcal{O}_2 \\ (\mathbf{1}_2, \mathbf{1}_2, \mathbf{1}_1) & 6\mathcal{O}_2 & -4\mathcal{O}_1 - 2\mathcal{O}_2 \end{array}$$

$$e, 6$$
 $u, 4$
 $e, 5$
 II
 $d, 2$
 $d, 1$
 $u, 3$

$$\begin{array}{c|ccccc} (\mathbf{r}_i, J_i) & (1, 1, 1) & (1, 1, 0) \\ \hline (\mathbf{3}_3, \mathbf{8}_2, \mathbf{\bar{3}}_2) & -\frac{8}{3}\mathcal{O}_1 & \frac{4}{3}\mathcal{O}_1 + \frac{8}{3}\mathcal{O}_2 \\ (\mathbf{3}_1, \mathbf{8}_2, \mathbf{\bar{3}}_2) & -\frac{8}{3}\mathcal{O}_1 & 0 \\ (\mathbf{3}_3, \mathbf{1}_2, \mathbf{\bar{3}}_2) & -\frac{8}{3}\mathcal{O}_1 & \frac{4}{3}\mathcal{O}_1 + \frac{8}{3}\mathcal{O}_2 \\ (\mathbf{3}_1, \mathbf{1}_2, \mathbf{\bar{3}}_2) & -\frac{8}{3}\mathcal{O}_1 & 0 \\ \end{array}$$

LEFT

Nucleon currents and weak sources

LEFT Related Operators

LEFT Related Operators

Long-range interaction

Short-range interaction

Long-Range Interaction

Standard mechanism: long-range neutrino potential

$$\mathcal{L} = \frac{G_F \cos \theta_C}{\sqrt{2}} \left[\bar{u} \gamma^{\mu} (1 - \gamma_5) d \right] \sum_{i=1}^3 U_{ei} \left[\bar{e} \gamma^{\mu} (1 - \gamma_5) \nu_i \right] + \text{h.c.}.$$

$$L^{\mu\nu} = -\int \int dx_2 dx_1 \sum_{i} \bar{e}(x_1) \gamma^{\mu} (1 - \gamma_5) U_{ei} \nu_{iL}(x_1) \bar{v}_{iL}^{c}(x_2) \gamma_{\nu} (1 + \gamma_5) U_{ei} e_L^{C}(x_2)$$

$$\frac{m_i}{q^2 - m_i^2} \propto \frac{m_i}{q^2} \quad \text{if } m_i^2 << q^2$$

$$\propto -\frac{1}{m_i}$$
 if $m_i^2 >> q^2$.

$$m_{\beta\beta} = \sum_{i=1}^3 U_{ei}^2 m_{\nu_i}.$$

$$m_{\beta\beta} \to m_{\beta\beta} + \sum_{i=1}^{n_N} V_{eN_i}^2 m_{N_i}, \qquad (m_{N_i} \ll 100 \text{ MeV}).$$

$$J_{\mu\nu}^{fi} = \sum \langle f|J_{\mu L}(\vec{x}_1)|n\rangle \langle n|J_{\nu L}(\vec{x}_2)|i\rangle e^{-i(E_n-E_f)x_{10}}e^{-i(E_n-E_i)x_{20}} + (\mu \to \nu, x_{10} \to x_{20}).$$

completeness relation

$$J_{0L}(\vec{x}) \simeq \sum_{i} \delta(\vec{x} - \vec{x}_i) f_1(0) \tau_i^+$$

$$\vec{J}_L(\vec{x}) \simeq \sum_i \delta(\vec{x} - \vec{x}_i) g_1(0) \vec{\sigma}_i \tau_i^+$$

$$J_{\mu L}(\vec{x}_1)J_{\nu L}(\vec{x}_2) = \sum_{i,j} \tau_i^+ \tau_j^+ \delta(\vec{x}_1 - \vec{x}_i)\delta(\vec{x}_2 - \vec{x}_j)[f_1^2(0) - g_1^2(0)\vec{\sigma}_i \cdot \vec{\sigma}_j].$$

Short-Range Interaction

General quark currents = dim-9 LEFT operators

$$\mathcal{L}_{SR} = \frac{G_F^2}{2m_p} \sum_{\text{chiralities}} \left[\epsilon_1^{\bullet} J_{\circ} J_{\circ} j_{\circ} + \epsilon_2^{\bullet} J_{\circ}^{\mu\nu} J_{\circ\mu\nu} j_{\circ} + \epsilon_3^{\bullet} J_{\circ}^{\mu} J_{\circ\mu} j_{\circ} + \epsilon_4^{\bullet} J_{\circ}^{\mu} J_{\circ\mu\nu} j^{\nu} + \epsilon_5^{\bullet} J_{\circ}^{\mu} J_{\circ} j_{\mu} \right]$$

$$J_{R,L} = \bar{u}_a (1 \pm \gamma_5) d_a, \quad J_{R,L}^{\mu} = \bar{u}_a \gamma^{\mu} (1 \pm \gamma_5) d_a, \quad J_{R,L}^{\mu\nu} = \bar{u}_a \sigma_{\mu\nu} (1 \pm \gamma_5) d_a,$$
$$j_{R,L} = \bar{e} (1 \mp \gamma_5) e^c, \quad j^{\mu} = \bar{e} \gamma^{\mu} \gamma_5 e^c.$$

Complete dim-9 LEFT 6-fermion operator basis

[No need to know dim-9 SMEFT 6-fermion]

Regular Article - Theoretical Physics | Open Access | Published: 14 December 2018

A neutrinoless double beta decay master formula from effective field theory

V. Cirigliano, W. Dekens ⊡, J. de Vries, M. L. Graesser & E. Mereghetti

Journal of High Energy Physics 2018, Article number: 97 (2018) Cite this article

\mathcal{O}_1^{RRR}	$\left[\bar{u}^i(1+\gamma_5)d_i\right]\left[\bar{u}^j(1+\gamma_5)d_j\right]\left[\bar{e}(1+\gamma_5)e^c\right]$
\mathcal{O}_1^{RRL}	$\left[\bar{u}^{i}(1+\gamma_{5})d_{i}\right]\left[\bar{u}^{j}(1+\gamma_{5})d_{j}\right]\left[\bar{e}(1-\gamma_{5})e^{c}\right]$
$\mathcal{O}_1^{LRR} \equiv \mathcal{O}_1^{RLR}$	$[\bar{u}^i(1-\gamma_5)d_i][\bar{u}^j(1+\gamma_5)d_j][\bar{e}(1+\gamma_5)e^c]$
$\mathcal{O}_1^{LRL} \equiv \mathcal{O}_1^{RLL}$	$\left[\bar{u}^{i}(1-\gamma_{5})d_{i}\right]\left[\bar{u}^{j}(1+\gamma_{5})d_{j}\right]\left[\bar{e}(1-\gamma_{5})e^{e}\right]$
\mathcal{O}_1^{LLR}	$\left[\bar{u}^{i}(1-\gamma_{5})d_{i}\right]\left[\bar{u}^{j}(1-\gamma_{5})d_{j}\right]\left[\bar{e}(1+\gamma_{5})e^{e}\right]$
\mathcal{O}_1^{LLL}	$\left[\bar{u}^i(1-\gamma_5)d_i\right]\left[\bar{u}^j(1-\gamma_5)d_j\right]\left[\bar{e}(1-\gamma_5)e^e\right]$
\mathcal{O}_2^{RRR}	$\left[\bar{u}^i\sigma^{\mu\nu}(1+\gamma_5)d_i\right]\left[\bar{u}^j\sigma_{\mu\nu}(1+\gamma_5)d_j\right]\left[\bar{e}(1+\gamma_5)e^c\right]$
\mathcal{O}_2^{RRL}	$\left[\bar{y}^{i}\sigma^{\mu\nu}(1+\gamma_{5})d_{i}\right]\left[\bar{v}^{j}\sigma_{\mu}\left(1+\gamma_{5}\right)d_{j}\right]\left[\bar{e}(1-\gamma_{5})e^{c}\right]$
oppe Oppe	$\left[u^{i}\sigma^{\mu\nu}(1-\gamma_{5})d_{i}\right]\left[\overline{u^{i}}\sigma_{\mu}\left(1-\gamma_{5}\right)d_{j}\right]\left[\overline{e}(1+\gamma_{5})e^{c}\right]$
\mathcal{O}_2^{LLL}	$\left[\bar{u}^i\sigma^{\mu\nu}(1-\gamma_5)d_i\right]\left[\bar{u}^j\sigma_{\mu\nu}(1-\gamma_5)d_j\right]\left[\bar{e}(1-\gamma_5)e^c\right]$
\mathcal{O}_3^{RRR}	$\left[\bar{u}^i\gamma^{\mu}(1+\gamma_5)d_i\right]\left[\bar{u}^j\gamma_{\mu}(1+\gamma_5)d_j\right]\left[\bar{e}(1+\gamma_5)e^c\right]$
\mathcal{O}_3^{RRL}	$\left[\bar{u}^i\gamma^{\mu}(1+\gamma_5)d_i\right]\left[\bar{u}^j\gamma_{\mu}(1+\gamma_5)d_j\right]\left[\bar{e}(1-\gamma_5)e^c\right]$
$\mathcal{O}_3^{LRR} \equiv \mathcal{O}_3^{RLR}$	$\left[\bar{u}^i\gamma^{\mu}(1-\gamma_5)d_i\right]\left[\bar{u}^j\gamma_{\mu}(1+\gamma_5)d_j\right]\left[\bar{e}(1+\gamma_5)e^c\right]$
$\mathcal{O}_3^{LRL} \equiv \mathcal{O}_3^{RLL}$	$\left[\bar{u}^i\gamma^{\mu}(1-\gamma_5)d_i\right]\left[\bar{u}^j\gamma_{\mu}(1+\gamma_5)d_j\right]\left[\bar{e}(1-\gamma_5)e^c\right]$
\mathcal{O}_3^{LLR}	$\left[\bar{u}^i\gamma^{\mu}(1-\gamma_5)d_i\right]\left[\bar{u}^j\gamma_{\mu}(1-\gamma_5)d_j\right]\left[\bar{e}(1+\gamma_5)e^c\right]$
\mathcal{O}_3^{LLL}	$\left[\bar{u}^i\gamma^{\mu}(1-\gamma_5)d_i\right]\left[\bar{u}^j\gamma_{\mu}(1-\gamma_5)d_j\right]\left[\bar{e}(1-\gamma_5)e^c\right]$
\mathcal{O}_4^{RR}	$\left[\bar{u}^i\gamma^{\mu}(1+\gamma_5)d_i\right]\left[\bar{u}^j\sigma_{\mu\nu}(1+\gamma_5)d_j\right]\left[\bar{e}\gamma^{\nu}\gamma_5e^c\right]$
\mathcal{O}_4^{RL}	$\left[\bar{u}^i\gamma^{\mu}(1+\gamma_5)d_i\right]\left[\bar{u}^j\sigma_{\mu\nu}(1-\gamma_5)d_j\right]\left[\bar{e}\gamma^{\nu}\gamma_5e^c\right]$
\mathcal{O}_4^{LR}	$\left[\bar{u}^i\gamma^{\mu}(1-\gamma_5)d_i\right]\left[\bar{u}^j\sigma_{\mu\nu}(1+\gamma_5)d_j\right]\left[\bar{e}\gamma^{\nu}\gamma_5e^c\right]$
\mathcal{O}_4^{LL}	$\left[\bar{u}^i\gamma^{\mu}(1-\gamma_5)d_i\right]\left[\bar{u}^j\sigma_{\mu\nu}(1-\gamma_5)d_j\right]\left[\bar{e}\gamma^{\nu}\gamma_5e^c\right]$
\mathcal{O}_5^{RR}	$\left[\bar{u}^i\gamma^\mu(1+\gamma_5)d_i\right]\left[\bar{u}^j(1+\gamma_5)d_j\right]\left[\bar{e}\gamma_\mu\gamma_5e^c\right]$
\mathcal{O}_5^{RL}	$\left[\bar{u}^i\gamma^{\mu}(1+\gamma_5)d_i\right]\left[\bar{u}^j(1-\gamma_5)d_j\right]\left[\bar{e}\gamma_{\mu}\gamma_5e^c\right]$
\mathcal{O}_5^{LR}	$\left[\bar{u}^i\gamma^{\mu}(1-\gamma_5)d_i\right]\left[\bar{u}^j(1+\gamma_5)d_j\right]\left[\bar{e}\gamma_{\mu}\gamma_5e^c\right]$
\mathcal{O}_5^{LL}	$\left[\bar{u}^i \gamma^{\mu} (1 - \gamma_5) d_i\right] \left[\bar{u}^j (1 - \gamma_5) d_j\right] \left[\bar{e} \gamma_{\mu} \gamma_5 e^c\right]$

Low Energy EFT

Dimension-5

Dimension-6

Dim-6 operators

			Dim-5 operators	
N	(n, \tilde{n})	Classes	$\mathcal{N}_{\mathrm{type}}$	
3	(2,0)	$F_L\psi_L^2 + h.c.$	10 + 0 + 2 + 0	

			T and a little of	
N	(n, \tilde{n})	Classes	$\mathcal{N}_{ ext{type}}$	$\mathcal{N}_{ ext{term}}$
3	(3,0)	$F_{\rm L}^3 + h.c.$	2+0+0+0	2
4	(2,0)	$\psi_{\rm L}^4 + h.c.$	14 + 12 + 8 + 2	78
	(1,1)	$\psi_{\rm L}^2 \psi_{\rm R}^2$	40 + 20 + 12 + 0	84
r	Total	5	56 + 32 + 20 + 2	164

[Jenkins, Manohar, Stoffer, 2017]

Dimension-7

Dim-7 operators

N	(n, \tilde{n})	Classes	$\mathcal{N}_{ ext{type}}$	$\mathcal{N}_{ ext{term}}$
4	(3,0)	$F_{\rm L}^2 \psi_{\rm L}^2 + h.c.$	16 + 0 + 4 + 0	32
	(2,1)	$F_{\rm L}^2 \psi_{\rm R}^2 + h.c.$	16 + 0 + 4 + 0	24
		$\psi_{\rm L}^3 \psi_{\rm R} D + h.c.$	50 + 32 + 22 +	
120	Total	6	82 + 32 + 30 +	66
120				

[Liao, Ma, Wang, 2020]

Dimension-8

[Li, Ren, Xiao, **Yu**, Zheng, 2020]

N	(n, n)	Subclasses	N_{type}	N_{term}	Noperator	Equations
4	(4, 0)	$F_{\rm L}^4 + h.c.$	14	26	26	(4.19)
	(3, 1)	$F_L^2 \psi \psi^{\dagger} D + h.c.$	22	22	$22n_f^2$	(4.51)
		$\psi^4 D^2 + h.c.$	4+4	18 + 14	$12n_f^4 + n_f^3(5n_f - 1)$	(4.75, 4.78, 4.80)
		$F_L\psi^2\phi D^2 + h.c.$	16	32	$32n_f^2$	(4.44)
		$F_L^2 \phi^2 D^2 + h.c.$	8	12	12	(4.14)
	(2, 2)	$F_L^2 F_R^2$	14	17	17	(4.19)
		$F_L F_R \psi \psi^{\dagger} D$	27	35	$35n_f^2$	(4.50, 4.51)
		$\psi^{2}\psi^{\dagger 2}D^{2}$	17+4	54+8	$\frac{1}{2}n_f^2(75n_f^2+11)+6n_f^4$	(4.74, 4.79-4.81)
		$F_R \psi^2 \phi D^2 + h.c.$	16	16	$16n_f^2$	(4.44)
		$F_{\rm L}F_{\rm R}\phi^2D^2$	5	6	6	(4.14)
		$\psi \psi^{\dagger} \phi^2 D^3$	7	16	$16n_f^2$	(4.31, 4.32)
		$\phi^4 D^4$	1	3	3	(4.8)
5	(3, 0)	$F_L\psi^4 + h.c.$	12 <u>+10</u>	66+54	$42n_f^4+2n_f^3(9n_f+1)$	(4.86, 4.88, 4.89, 4.91)
		$F_L^2 \psi^2 \phi + h.c.$	32	60	$60n_f^2$	(4.47, 4.48)
		$F_L^3 \phi^2 + h.c.$	6	6	6	(4.16)
	(2, 1)	$F_{\rm L} \psi^2 \psi^{\dagger 2} + h.c.$	84+24	172 ± 32	$2n_f^2(59n_f^2-2)+24n_f^4$	(4.84-4.85), (4.88-4.92)
		$F_R^2 \psi^2 \phi + h.c.$	32	36	$36n_f^2$	(4.47, 4.48)
		$\psi^3 \psi^{\dagger} \phi D + h.c.$	32 ± 14	180+56	$n_f^3(135n_f - 1) + n_f^3(29n_f + 3)$	(4.66, 4.69-4.72)
		$F_L \psi \psi^{\dagger} \phi^2 D + h.c.$	38	92	$92n_{f}^{2}$	(4.39, 4.40)
		$\psi^{2}\phi^{3}D^{2} + h.c.$	6	36	$36n_{J}^{2}$	(4.28)
		$F_L\phi^4D^2 + h.c.$	4	6	6	(4.10)
6	(2, 0)	$\psi^4 \phi^2 + h.c.$	12+4	48+18	$5(5n_f^4 + n_f^2) + \frac{2}{3}(8n_f^4 + n_f^2)$	(4.55, 4.59, 4.62, 4.64)
		$F_L \psi^2 \phi^3 + h.c.$	16	22	$22n_f^2$	(4.36)
		$F_{\rm L}^2 \phi^4 + h.c.$	8	10	10	(4.12)
	(1, 1)	$\psi^2 \psi^{\dagger 2} \phi^2$	23+10	57 ± 14	$n_f^2(42n_f^2 + n_f + 2) + 3n_f^3(3n_f - 1)$	(4.54, 4.55, 4.59-4.63)
		$\psi \psi^{\dagger} \phi^4 D$	7.	13	$13n_{f}^{2}$	(4.24, 4.25)
		$\phi^6 D^2$	1	2	2	(4.8)
7	(1,0)	$\psi^2 \phi^5 + h.c.$	6	6	$6n_f^2$	(4.21)
8	(0, 0)	ø ⁸	1	1	1	(4.8)
-	Total	48	471+70	1070+196	$993(n_f = 1), 44807(n_f = 3)$	

[Murphy, 2020]

783

Jiang-Hao Yu

Dimension-9

[Li, Ren, Xiao, Yu, Zheng, 2020]

N	(n, \tilde{n})	Classes	$\mathcal{N}_{\mathrm{type}}$	\mathcal{N}_{term}	$\mathcal{N}_{\mathrm{operator}}$	Equations
4	(3, 2)	$\psi^3 \psi^{\dagger} D^3 + h.c.$	0+4+2+0	10	$\frac{2}{3}n_f^2(7n_f^2-1)$	(5.50)(5.51)
		$\psi^2 \phi^2 D^4 + h.c.$	0+0+2+0	6	$3n_f(n_f + 1)$	(5.21)
5	(3,1)	$F_L \psi^3 \psi^{\dagger} D + h.c.$	0 + 10 + 6 + 0	72	$32n_f^4$	(5.59)(5.60
		$\psi^4 \phi D^2 + h.e.$	0+4+4+0	100	$40n_f^4$	(5.45-5.48)
		$F_L\psi^2\phi^2D^2 + h.c.$	0+0+4+0	34	$17n_{f}^{2}-n_{f}$	(5.28)(5.29
	(2, 2)	$F_R \psi^3 \psi^{\dagger} D + h.c.$	0 + 10 + 6 + 0	54	$4n_f^3(6n_f + 1)$	(5.59)(5.60
		$\psi^2 \psi^{\dagger 2} \phi D^2$	0+4+4+0	84	$n_f^3(49n_f + 1)$	(5,45-5,48)
		$F_{\rm R}\psi^2\phi^2D^2 + h.c.$	0 + 0 + 4 + 0	20	$2n_f(5n_f - 1)$	(5.28)(5.29
		$\psi \psi^{\dagger} \phi^3 D^3$	0+0+2+0	6	$6n_f^2$	(5.19)
6	(3,0)	$\psi^{6} + h.c.$	2+4+6+0	116	$\frac{1}{24}n_f^2(415n_f^4 + 53n_f^3 + 59n_f^2 + 139n_f + 6)$	(5.63-5.70)
		$F_L \psi^4 \phi + h.c.$	0+12+10+0	102	$2n_f^3(21n_f+1)$	(5.54-5.56)
		$F_L^2 \psi^2 \phi^2 + h.c.$	0+0+8+0	20	$2n_f(5n_f + 2)$	(5.32)
	(2,1)	$\psi^4\psi^{\dagger 2} + h.c.$	4 + 26 + 20 + 4	244	$\frac{1}{6}n_f^3(382n_f^3 - 9n_f^2 + 2n_f + 21)$	(5.63-5.69)
		$F_L\psi^2\psi^{\dagger 2}\phi + h.c.$	0 + 24 + 24 + 0	92	$52n_f^4$	(5.54-5.56)
		$F_{\rm L}^2 \psi^{\dagger 2} \phi^2 + h.c.$	0+0+8+0	12	$2n_f(3n_f + 2)$	(5.32)
		$\psi^3 \psi^\dagger \phi^2 D + h.c.$	0+12+18+0	186	$\frac{2}{3}n_f^2(146n_f^2+1)$	(5.39-5.42)
		$F_{\rm L}\psi\psi^\dagger\phi^3D+h.c.$	0+0+8+0	12	$12n_f^2$	(5.25)
		$\psi^2 \phi^4 D^2 + h.c.$	0+0+4+0	24	$2n_f(6n_f + 1)$	(5.17)
7	(2,0)	$\psi^4 \phi^3 + h.c.$	0+6+6+0	32	$\frac{4}{3}n_f^2(10n_f^2-1)$	(5.35-5.37)
		$F_L\psi^2\phi^4 + h.c.$	0+0+4+0	8	$2n_f(2n_f - 1)$	(5.23)
	(1,1)	$\psi^2 \psi^{\dagger 2} \phi^3$	0+6+10+0	24	$14n_{f}^{4}$	(5,35-5,37)
		$\psi \psi^{\dagger} \phi^5 D$	0+0+2+0	2	$2n_f^2$	(5.12)
8	(1,0)	$\psi^{2}\phi^{6} + h.c.$	0+0+2+0	2	$n_f^2 + n_f$	(5.9)
-	Total	42	6+122+164+4	1262	$8 + 204 + 348 + 0 (n_f = 1)$ $2862 + 42234 + 44874 + 486 (n_f = 3)$	

3774

ChiPT: Quark to Nucleon

Chiral perturbation theory + Heavy baryon EFT + LNV external source

Long-Range from LNV Operators

Long-range neutrino potential: no nv mass dependence

$$\mathcal{L}^{\text{4-Fermi}} = \mathcal{L}^{\text{SM}} + \mathcal{L}^{\text{LNV}} = \frac{G_F}{\sqrt{2}} \begin{bmatrix} j^{\mu}_{V-A} J_{V-A,\mu} + \sum_{\alpha,\,\beta \neq V-A} \epsilon^{\beta}_{\alpha} j_{\beta} J_{\alpha} \end{bmatrix}$$

$$J^{\mu}_{V\pm A} = (J_{R/L})^{\mu} \equiv \overline{u} \gamma^{\mu} (1 \pm \gamma_5) d, \quad j^{\mu}_{V\pm A} \equiv \overline{e} \gamma^{\mu} (1 \pm \gamma_5) \nu,$$

$$J_{S\pm P} = J_{R/L} \equiv \overline{u} (1 \pm \gamma_5) d, \quad j_{S\pm P} \equiv \overline{e} (1 \pm \gamma_5) \nu,$$

$$J^{\mu\nu}_{T_{R/L}} = (J_{R/L})^{\mu\nu} \equiv \overline{u} \gamma^{\mu\nu} (1 \pm \gamma_5) d, \quad j^{\mu\nu}_{T_{R/L}} \equiv \overline{e} \gamma^{\mu\nu} (1 \pm \gamma_5) \nu,$$

Complete dim-6 LEFT 4-fermion operator basis

$$\mathcal{L}_{\Delta L=2}^{(6)} = \frac{2G_F}{\sqrt{2}} \left\{ C_{\text{VL},ij}^{(6)} \, \bar{u}_L \gamma^{\mu} d_L \, \bar{e}_{R,i} \, \gamma_{\mu} \, C \bar{\nu}_{L,j}^T + C_{\text{VR},ij}^{(6)} \, \bar{u}_R \gamma^{\mu} d_R \, \bar{e}_{R,i} \, \gamma_{\mu} \, C \bar{\nu}_{L,j}^T \right. \tag{7}$$

$$+ C_{\text{SR},ij}^{(6)} \, \bar{u}_L d_R \, \bar{e}_{L,i} \, C \bar{\nu}_{L,j}^T + C_{\text{SL},ij}^{(6)} \, \bar{u}_R d_L \, \bar{e}_{L,i} \, C \bar{\nu}_{L,j}^T + C_{\text{T},ij}^{(6)} \, \bar{u}_L \sigma^{\mu\nu} d_R \, \bar{e}_{L,i} \sigma_{\mu\nu} \, C \bar{\nu}_{L,j}^T \right\} + \text{h.c.}$$

$$\mathcal{L}_{\Delta L=2}^{(7)} = \frac{2G_F}{\sqrt{2}v} \left\{ C_{\text{VL},ij}^{(7)} \, \bar{u}_L \gamma^{\mu} d_L \, \bar{e}_{L,i} \, C \, i \, \overleftrightarrow{\partial}_{\mu} \bar{\nu}_{L,j}^T + C_{\text{VR},ij}^{(7)} \, \bar{u}_R \gamma^{\mu} d_R \, \bar{e}_{L,i} \, C \, i \, \overleftrightarrow{\partial}_{\mu} \bar{\nu}_{L,j}^T \right\} + \text{h.c.}$$
(8)

dim-7/8/9 LEFT 4-fermion operator?

No dim-9 SMEFT 4-fermion operator!

ChiPT: Quark to Nucleon

Chiral perturbation theory + Heavy baryon EFT + LNV external source

[Cirigliano, Dekens, de Vries, Graesser, 2018]

Ovbb at SMEFT

Ovbb at ChiPT

ChiPT Lagrangian

J. Bijnens, N. Hermansson-Truedsson, and S. Wang, 2019

Fettes, Meisner, Mojzis, Steininger, 2000

Girlanda, Pastore, Schiavilla, Viviani, 2010

Jiang-Hao Yu

Nv Potential Master Formula

$$\mathcal{A} = \langle 0^{+} | \sum_{m,n} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} e^{i\mathbf{q}\cdot\mathbf{r}} V(\mathbf{q}^{2}) | 0^{+} \rangle \qquad V(\mathbf{q}^{2}) = V_{3}(\mathbf{q}^{2}) + V_{6}(\mathbf{q}^{2}) + V_{7}(\mathbf{q}^{2}) + V_{9}(\mathbf{q}^{2}).$$

[Cirigliano, Dekens, de Vries, Graesser, 2018]

$$V_{3}(\mathbf{q}^{2}) = -(\tau^{(1)+}\tau^{(2)+})(4g_{A}^{2}G_{F}^{2}V_{ud}^{2}) m_{\beta\beta} \bar{u}(k_{1})P_{R}C\bar{u}^{T}(k_{2})$$

$$\left\{ \frac{1}{\mathbf{q}^{2}} \left(-\frac{1}{g_{A}^{2}} h_{F}(\mathbf{q}^{2}) + \boldsymbol{\sigma}^{(1)} \cdot \boldsymbol{\sigma}^{(2)} h_{GT}(\mathbf{q}^{2}) + S^{(12)} h_{T}(\mathbf{q}^{2}) \right) + \frac{2g_{\nu}^{NN}}{g_{A}^{2}} h_{F}(\mathbf{q}^{2}) \right\}$$

$$V_{a}(\mathbf{q}^{2}) = \tau^{(1)+} \tau^{(2)+} 4g_{A}^{2} G_{F}^{2} V_{ud} \left(B \left(C_{SL}^{(6)} - C_{SR}^{(6)} \right) + \frac{m_{\pi}^{2}}{v} \left(C_{VL}^{(7)} - C_{VR}^{(7)} \right) \right) \frac{1}{\mathbf{q}^{2}} \bar{u}(k_{1}) P_{R} C \bar{u}^{T}(k_{2})$$

$$\left\{ \boldsymbol{\sigma}^{(1)} \cdot \boldsymbol{\sigma}^{(2)} \left(\frac{1}{2} h_{GT}^{AP}(\mathbf{q}^{2}) + h_{GT}^{PP}(\mathbf{q}^{2}) \right) + S^{(12)} \left(\frac{1}{2} h_{T}^{AP}(\mathbf{q}^{2}) + h_{T}^{PP}(\mathbf{q}^{2}) \right) \right\}. \tag{83}$$

More matrix element?

$$V_{9}(\mathbf{q}^{2}) = -(\tau^{(1)+}\tau^{(2)+}) g_{A}^{2} \frac{4G_{F}^{2}}{v} \bar{u}(k_{1}) P_{R} C \bar{u}^{T}(k_{2})$$

$$\times \left[-\left(\boldsymbol{\sigma}^{(1)} \cdot \boldsymbol{\sigma}^{(2)} - S^{(12)}\right) \left(\frac{C_{\pi\pi L}^{(9)}}{6} \frac{\mathbf{q}^{2}}{(\mathbf{q}^{2} + m_{\pi}^{2})^{2}} - \frac{C_{\pi N L}^{(9)}}{3} \frac{\mathbf{q}^{2}}{\mathbf{q}^{2} + m_{\pi}^{2}}\right) + \frac{2}{g_{A}^{2}} C_{NN L}^{(9)} \right]$$

Sterile Neutrino EFT

Dimension-5

			Dim-	5 opera
N	(n, \bar{n})	Classes	$\mathcal{N}_{\mathrm{type}}$	$\mathcal{N}_{\mathrm{term}}$
3	(2,0)	$F_L\psi^2 + h.c.$	0+0+2+0	2
4	(1,0)	$\psi^2 \phi^2 + h.c.$	0+0+2+0	2
	Total	4	0+0+4+0	4

Dimension-6

			Dim-6 ope		
N	(n, \tilde{n})	Classes	\mathcal{N}_{type}	$\mathcal{N}_{\mathrm{term}}$	
4	(2,0)	$\psi^4 + h.c.$	4+2+0+2	14	
		$F_{\rm L}\psi^2\phi + h.c.$	4+0+0+0	4	
	(1,1)	$\psi^2\psi^{\dagger 2}$	10 + 2 + 0 + 0	12	
		$\psi\psi^\dagger\phi^2D$	3+0+0+0	3	
5	(1,0)	$\psi^2 \phi^3 + h.c.$	2+0+0+0	2	
	Total	8	23 + 4 + 0 + 2	35	

Dimension-7

N	(n, \tilde{n})	Classes	$\mathcal{N}_{\mathrm{type}}$	$\mathcal{N}_{\text{term}}$
4	(3, 0)	$F_{\rm L}^2 \psi^2 + h.c.$	0+0+6+0	6
	(2, 1)	$F_{\rm L}^2 \psi^{\dagger 2} + h.c.$	0 + 0 + 6 + 0	6
		$\psi^3 \psi^{\dagger} D + h.c.$	0+4+20+0	24
		$F_L \psi \psi^{\dagger} \phi D + h.c.$	0+0+8+0	8
		$\psi^2 \phi^2 D^2 + h.c.$	0+0+4+0	6
5	(2,0)	$\psi^4 \phi + h.c.$	0+2+10+0	24
		$F_L \psi^2 \phi^2 + h.c.$	0+0+6+0	6
	(1, 1)	$\psi^2 \psi^{\dagger 2} \phi$	0+4+22+0	30
		$\psi \psi^{\dagger} \phi^3 D$	0+0+2+0	4
6	(1,0)	$\psi^{2}\phi^{4} + h.c.$	0+0+2+0	2
Total		18	0+10+86+0	116

[Bhattacharya, Wudka, 2016] [Liao, Ma, 2017]

[Aguila, Bar-Shalom, Soni, Wudka, 2009]

Dimension-8 [Li, Ren, Xiao, Yu, Zheng, 2021]

N	(n, \tilde{n})	Classes	$\mathcal{N}_{ ext{type}}$	$\mathcal{N}_{\text{term}}$
4	(3, 1)	$\psi^4 D^2 + h.c.$	4+0+2+2	22
		$F_{\rm L}\psi^2\phi D^2 + h.c.$	4+0+0+0	8
	(2, 2)	$F_{\rm L}F_{\rm R}\psi\psi^{\dagger}D$	3+0+0+0	3
		$\psi^2 \psi^{\dagger 2} D^2$	10+2+0+0	24
		$F_R \psi^2 \phi D^2 + h.c.$	4+0+0+0	4
		$\psi \psi^\dagger \phi^2 D^3$	3+0+0+0	4
5	(3, 0)	$F_{ m L}\psi^4+h.c.$	10+4+0+2	50
		$F_{\rm L}^2 \psi^2 \phi + h.c.$	8+0+0+0	12
	(2, 1)	$F_{\rm L}\psi^2\psi^{\dagger 2} + h.c.$	42 + 12 + 0 + 0	58
		$F_{\rm L}^2 \psi^{\dagger 2} \phi + h.c.$	8 + 0 + 0 + 0	8
		$\psi^3 \psi^{\dagger} \phi D + h.c.$	24+6+0+2	108
		$F_{\rm L}\psi\psi^{\dagger}\phi^2D + h.c.$	12+0+0+0	16
		$\psi^2 \phi^3 D^2 + h.c.$	2+0+0+0	12
6	(2, 0)	$\psi^4 \phi^2 + h.c.$	8+2+0+2	30
		$F_{\rm L}\psi^2\phi^3 + h.c.$	4+0+0+0	6
	(1,1)	$\psi^2 \psi^{\dagger 2} \phi^2$	16 + 4 + 0 + 2	28
		$\psi \psi^{\dagger} \phi^4 D$	3+0+0+0	3
7	(1, 0)	$\psi^2 \phi^5 + h.c.$	2+0+0+0	2
Total		31	167 + 30 + 2 + 10	398

Jiang-Hao Yu

Dimension-9

N	(n, i)	Classe	n. ASX 1a	Vie
4	(4, 1)	$F_L^2 \psi^2 D^2 + h.c.$	0+6+0+0	12
	(3, 2)	$F_L F_R \psi^2 D^2 + h.c.$	0+6+0+0	6
		$F_{\rm L}^{2}\psi^{\dagger 2}D^2 + h.c.$	0+6+0+0	6
		$\psi^3 \psi^{\dagger} D^3 + h.c.$	4 + 20 + 0 + 0	46
		$F_L\psi\psi^{\dagger}\phi D^3 + h.c.$	0 + 8 + 0 + 0	16
		$\psi^2 \phi^2 D^4 + h.c.$	0+4+0+0	8
5	(4, 0)	$F_{\rm L}^{\ 3}\psi^2 + h.c.$	0+10+0+0	16
	(3, 1)	$F_L^{\ 3}\psi^{\dagger 2} + h.c.$	0+4+0+0	4
		$F_L\psi^3\psi^{\dagger}D + h.c.$	10 + 42 + 0 + 0	222
		$F_L^2 \psi \psi^{\dagger} \phi D + h.c.$	0+16+0+0	32
		$\psi^4 \phi D^2 + h.c.$	2+10+0+0	120
		$F_L\psi^2\phi^2D^2 + h.c.$	0 + 8 + 0 + 0	42
	(2, 2)	$F_LF_R^2\psi^2 + h.c.$	0+12+0+0	12
		$F_R \psi^3 \psi^{\dagger} D + h.c.$	10 + 42 + 0 + 0	166
		$F_L F_R \psi \psi^{\dagger} \phi D$	0+10+0+0	24
		$\psi^2 \psi^{\dagger 2} \phi D^2$	4 + 22 + 0 + 0	210
		$F_R \psi^2 \phi^2 D^2 + h.c.$	0 + 8 + 0 + 0	24
		$\psi \psi^{\dagger} \phi^3 D^3$	0+2+0+0	20
6	(3,0)	$\psi^{6} + h.c.$	6+10+6+2	130
		$F_L \psi^4 \phi + h.c.$	6+26+0+0	110
		$F_{\rm L}^{2}\psi^2\phi^2 + h.c.$	0+12+0+0	18
	(2, 1)	$\psi^4 \psi^{\dagger 2} + h.c.$	40 + 106 + 14 + 0	474
		$F_L\psi^2\psi^{\dagger 2}\phi + h.c.$	24+116+0+0	176
		$F_L^2 \psi^{\dagger 2} \phi^2 + h.c.$	0+10+0+0	10
		$\psi^3 \psi^{\dagger} \phi^2 D + h.c.$	10 + 44 + 0 + 0	268
		$F_L \psi \psi^{\dagger} \phi^3 D + h.c.$	0 + 8 + 0 + 0	32
		$\psi^2\phi^4D^2+h.c.$	0+4+0+0	20
7	(2, 0)	$\psi^{4}\phi^{3} + h.c.$	2+12+0+0	28
		$F_L\psi^2\phi^4 + h.c.$	0+6+0+0	6
	(1, 1)	$\psi^2 \psi^{\dagger 2} \phi^3$	4+22+0+0	34
			0 + 2 + 0 + 0	

Yu, Zheng, 2021]

Summary

Summary

- Ovbb involves in many scales: SMEFT, LEFT, ChiEFT
- The complete bases just written down recently 2020 2021
- The formalism needs to be extended in each EFT levels

Thanks very much!