All About Angles!

Let's see what we remember...

	Vocabulary	Definition	Example
1.	Supplementary Angles (SA)	Two or more adjacent angles forming a straight line add up to 180° .	$\frac{120^{\circ} \times }{x} = 60^{\circ}$
2.	Complementary Angles (CA)	Two or more adjacent angles forming a right angle add up to 90°.	60° x = 30° (CA)
3.	Opposite Angle Theorem (OAT)	When two lines cross, oppositely aligned angles are equal.	110° X = 110° (OAT)
4.	Complete Rotation (CR)	Angles that form a complete rotation (circle) add up to 360°.	145° (135°) 135° 145+\35+ \pi = 360 (CR) 145° \pi = 80°
5.	Angle Sum in a Triangle Theorem (ASTT)	Interior angles of any triangle add up to 180°.	50+60+x=180 (AST 110+x=180 x=70°
6.	Isosceles Triangle Theorem (ITT)	Angles opposite the two equal sides (base angles) in an isosceles triangle are equal.	x = 70° (ITT)
7.	Equilateral Triangle Theorem (ETT)	All angles in an equilateral triangle are equal (60° each).	x = 60° (ETT)
8.	Parallel Line Thoerem – Corresponding Angles (PLT-F)	F-pattern Corresponding angles are equal.	x = 80° (PLT-F)
9.	Parallel Line Thoerem — Alternate Angles (PLT-Z)	Z-pattern Alternate angles are equal.	x=110° (PLT-Z)
10.	Parallel Line Thoerem — Co-interior Angles (PLT-C)	C-pattern Co-interior angles add up to 180° .	115° × = 180 (PLT-0)

	Vocabulary	Definition	Example
11.	Exterior Angle Theorem (EAT)	The measure of an exterior angle of a triangle is equal to the sum of the two remote interior angles.	63° x = 149° = 149°
12.	Regular Polygon (RP)	A polygon whose sides have the same length and whose angles have the same measure.	S=540° x = 540° = 108° (RP)

Now let's investigate the Sum of the Interior Angles of any Polygon...

Example 1. Use the Angle Sum in a Triangle Theorem (ASTT) to prove that the sum of the interior angles of a quadrilateral is 360°.

Example 2. Use the Angle Sum in a Triangle Theorem (ASTT) to prove that the sum of the interior angles of a pentagon is 540°.

Example 3. Complete the following table (except the last column).

Convex Polygon	Number of Sides (n)	# of Triangles Formed	Sum of Interior Angles	Sum of Exterior Angles
Triangle	3	1	180°	360°
Quadrilateral	4	2	360,	360°
Pentagon	5	3	540°	360°
Hexagon	6	4	720°	360°
Octagon	8	6	10800	360°
Decagon	10	8	1440°	360°
<i>n</i> -gon	n	n-2	(n-2)(180°)	360°

Summary...

	Vocabulary	Definition	Example	
13.	Sum of Interior Angles of a Polygon (SIAP)	The sum of the interior angles of a polygon with <i>n</i> sides is:	$\begin{array}{c} h = 8 \\ S = (8-2)(180) & (SIAR) \\ = 6(180) & \end{array}$	9
		S= (n-2)(180°)	= 10%0°	

Now let's investigate the Sum of the Exterior Angles of any Polygon...

Example 1. Use the Sum of Interior Angles of a Polygon (SIAP) and Supplementary Angles (SA) to prove that the sum of the exterior angles of a hexagon is 360°.

Example 2. Fill in the last column in the table from the previous investigation.

Summary...

	Vocabulary	Definition	Example
14.	Sum of Exterior Angles	The sum of the exterior	60×70+65+40+42=360 (5
	of a Polygon (SEAP)	angles of any polygon is 360°.	235+ 4= 360
			y = 125°

