

CLASSROOM CONTACT PROGRAMME

(Academic Session: 2023 - 2024)

ENTHUSIAST, LEADER & ACHIEVER COURSE

PHASE: ALL PHASE (SET - P1) TARGET: PRE-MEDICAL 2024

Test Type: MAJOR (AIOT) Test Pattern: NEET (UG)

TEST DATE: 21-04-2024

	_		 _			_
м	۲. ۱	!!		20		
			•			•
١	-			-	-	

_																														_
Q.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
A.	1	2	4	1	1	3	4	2	2	3	4	3	2	4	4	3	1	2	4	3	3	1	1	1	2	2	3	4	1	2
Q.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
A.	3	2	3	1	4	1	2	3	3	4	2	4	3	4	1	1	1	2	1	2	4	3	2	1	1	1	1	1	2	4
Q.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
A.	4	2	4	2	1	3	2	1	1	2	1	2	1	3	3	3	3	4	4	2	3	4	4	4	2	3	3	2	1	3
Q.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
A.	4	2	2	4	3	3	1	3	3	1	2	2	4	4	2	1	1	4	1	4	4	3	3	4	2	2	2	4	3	4
Q.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
A.	3	3	2	4	2	3	1	2	3	3	3	1	4	4	4	4	2	3	3	3	4	2	1	3	2	2	3	2	2	3
Q.	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
Α.	2	3	4	3	4	3	4	4	3	2	4	2	3	4	1	1	2	2	2	3	1	3	1	4	3	4	3	3	4	1
Q.	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200										
Α.	1	4	1	3	4	2	3	3	3	2	1	3	3	4	2	1	2	3	1	1										

HINT - SHEET

SUBJECT: PHYSICS

SECTION - A

2. Ans (2)

$$x = \frac{n\lambda D}{d} \Rightarrow 3 \times 10^{-3} = \frac{2 \times \lambda \times 1}{0.2 \times 10^{-3}}$$

 $\lambda = 3 \times 10^{-7} \text{m} = 3000 \text{ Å}$

3. Ans (4)

NCERT-XII Pg#274

EMW has variable E & B

4. Ans (1)

$$\frac{Q_2}{W} = \beta \Rightarrow W = \frac{Q_2}{\beta}$$

$$\Rightarrow W = \frac{2000 \times 4.2 \text{ J}}{4}$$

$$= 2100 \text{ J}$$

5. Ans (1)

$$\begin{split} n_C &= 2n_O \\ \frac{V}{4\ell_C} &= 2\frac{V}{2\ell} \\ \ell_C &= \frac{\ell}{4} = \frac{60}{4} = 15 \text{ cm} \end{split}$$

6. Ans (3)

PN - Junction is forward bias

$$I = \frac{\Delta V}{R} = \frac{(-1) - (-3)}{100}$$
$$= \frac{2}{100}$$

I = 20 mA

7. Ans (4)

$$\frac{T_{A}}{T_{B}} = \frac{\lambda_{B}}{\lambda_{A}} = \frac{1500}{500} = 3$$

$$\frac{P_{A}}{P_{B}} = \frac{r_{A}^{2}}{r_{B}^{2}} \left(\frac{T_{A}}{T_{B}}\right)^{4} = 9$$

Join - @Allen_Achiever_Testss

8. Ans (2)

$$\Delta t = \frac{1}{2}\alpha \ \Delta\theta \times t$$
or
$$5 = \frac{1}{2}\alpha(\theta - 15) \times 86400$$
and
$$-10 = \frac{1}{2}\alpha(\theta - 30) \times 86400$$
Solving we get;
$$\frac{\theta - 30}{\theta - 15} = -2$$

$$\theta - 30 = -2\theta + 30$$

 $3\theta = 60$ or $\theta = 20^{\circ}$ C

$$\lambda_{photon} = \frac{hc}{E} \text{ and } \lambda_{electron} = \frac{h}{\sqrt{2mE}}$$

$$\Rightarrow \frac{\lambda_{photon}}{\lambda_{electron}} = c \sqrt{\frac{2m}{E}} \Rightarrow \frac{\lambda_{photon}}{\lambda_{electron}} \propto \frac{1}{\sqrt{E}}$$

10. Ans (3)

$$\begin{split} \mu &= \frac{sin \left(\frac{\delta_{min} + A}{2}\right)}{sin \left(\frac{A}{2}\right)} = \frac{sin \left(\frac{30^{\circ} + 60^{\circ}}{2}\right)}{sin \left(\frac{60^{\circ}}{2}\right)} = \frac{sin 45^{\circ}}{sin 30^{\circ}} \\ \mu &= \frac{\frac{1}{\sqrt{2}}}{\frac{1}{2}} = \sqrt{2} \end{split}$$

11. Ans (4)

By using

$$B = \frac{\mu_0 i}{2\pi r} \left(\frac{r^2 - a^2}{b^2 - a^2} \right), \text{here } r = \frac{3R}{2},$$

$$a = R, b = 2R,$$

$$\begin{split} B &= \frac{\mu_0 i}{2\pi \left(\frac{3R}{2}\right)} \times \left\{ \frac{\left(\frac{3R}{2}\right)^2 - R^2}{\left(2R\right)^2 - R^2} \right\} \\ &= \frac{5\mu_0 i}{36\pi R} \end{split}$$

12. Ans (3)

$$\begin{split} \frac{hc}{\lambda} &= \varphi_0 + 5eV_0 \quad(1) \\ \frac{hc}{4\lambda} &= \varphi_0 + eV_0 \quad(2) \\ From (1) &\& (2) \\ \frac{hc}{4\lambda} &= 4\varphi_0 = \frac{4hc}{\lambda_0} \\ \lambda_0 &= 16 \ \lambda \end{split}$$

14. Ans (4)

$$\frac{1}{f_0} = \frac{1}{v_0} - \frac{1}{u_0}$$

$$\frac{1}{20} = \frac{1}{v_0} - \frac{1}{-100}$$

$$v_0 = 25 \text{ cm}$$

$$L = v_0 + f_e = 25 + 2 = 27 \text{ cm}$$

15. Ans (4)

$$Y = A + B = OR$$
 gate

16. Ans (3)

$$\frac{1}{2}(\frac{1}{2}mv^2) = m_i L_f$$

where
$$m = 10 g = 10 \times 10^{-3} kg$$

$$m_i$$
 will be in gm, $L_f = 336 \text{ J/g}$

$$m_i = \frac{1}{4} \times \frac{10 \times 10^{-3} \times (20)^2}{336} = 0.003 \text{ g}$$

17. Ans (1)

Momentum of the recoiled hydrogen atom

= momentum of the emitted photon

$$= \frac{hv}{c} = \frac{h}{\lambda} = hR \left(\frac{1}{n_i^2} - \frac{1}{n_f^2} \right)$$
$$= 6.6 \times 10^{-34} \times 1.09 \times 10^7 \left(\frac{1}{1} - \frac{1}{16} \right)$$
$$= 6.8 \times 10^{-27} \text{ kg-ms}^{-1}$$

18. Ans (2)

$$|\epsilon| = L \frac{dI}{dt}$$

$$8 = L \cdot \frac{(4-2)}{0.05} \Rightarrow \boxed{L = 0.2H}$$

ALLEN® - @Allens, Leader & Achiever Course/Phase-All Phase/21-04-2024

19. Ans (4)

20. Ans (3)

$$v_s = \sqrt{\frac{\gamma RT}{M_w}}$$

$$v_{s_{H_2}} = \sqrt{\frac{7}{5} \left(\frac{RT}{2}\right)}$$

$$v_{s_{He}} = \sqrt{\frac{5}{3} \left(\frac{RT}{4}\right)}$$

21. Ans (3)

acceleration of e^- , $a = \frac{qE}{m}$

$$\Rightarrow a = \frac{e}{m} \left(\frac{\sigma}{\varepsilon_0} \right)$$

so
$$d = \frac{1}{2}at^2$$

$$d = \frac{1}{2} \left(\frac{e\sigma}{m\epsilon_0} \right) t^2$$

$$\Rightarrow \sigma = \frac{2dm\varepsilon_0}{et^2}$$

24. Ans (1)

$$D = 80, x = 20$$

$$f = \frac{D^2 - x^2}{4D} = \frac{80^2 - 20^2}{320} = 18.75 \text{ cm}$$

$$\Delta R = \frac{\Delta V}{\Delta I} = \frac{1.2 - 1}{(15 - 10) \times 10^{-3}}$$
$$= \frac{0.2 \times 1000}{5} = \frac{200}{5} = 40\Omega$$

26 Ans (2)

$$I_g = -\frac{GM}{R^2}$$
, $v = -\frac{GM}{R}$
 $V = I_g R = 6 \times 8 \times 10^6 = 4.8 \times 10^7$

27. Ans (3)

mg
$$\ell_2 = 16 \text{ g} \ell_1 \dots (i)$$

mg $\ell_1 = 4 \text{ g} \ell_2 \dots (ii)$

$$\Rightarrow \frac{16}{m} = \frac{m}{4} \Rightarrow m = 8 \text{ kg}$$

28. Ans (4)

no rolling on smooth incline, so all will take equal time.

29. Ans (1)

Distance
$$s = 2(2\pi r) = 80m$$

by
$$v^2 = 4^2 + 2a_T s$$

$$a_T = \frac{v^2 - 4^2}{2s} = \frac{(80)^2 - 0}{2(80)}$$

$$a_{\rm T} = 40 {\rm m/s^2}$$

30. Ans (2)

$$\vec{r} = (a\cos\omega t)\hat{i} + (a\sin\omega t)\hat{j}$$

$$\vec{\upsilon} = \frac{d\vec{r}}{dt} = (-a\omega \sin\omega t)\hat{i} + (a\omega \cos\omega t)\hat{j}$$

$$\vec{\upsilon} \cdot \vec{r} = -a^2\omega \sin\omega t \cos\omega t + a^2\omega \sin\omega t \cos\omega t = 0$$
i.e., $\vec{\upsilon}$ is $\pm to$ \vec{r} .

31. Ans (3)

$$u_{min} = \sqrt{5g\ell}$$

Ans (2) 32.

$$\begin{split} V_e &= \sqrt{\frac{2GM}{R}} \ = \sqrt{\frac{2G\left(\rho \frac{4}{3}\pi R^3\right)}{R}} \\ V_e &\propto \sqrt{\rho R^2} \propto R \end{split}$$

(if
$$\rho = constant$$
)

33. Ans (3)

$$|\hat{A} - \hat{B}| = 2 \Rightarrow \sqrt{1^2 + 1^2 + 2 \times 1 \times 1 \times \cos \theta}$$

$$\Rightarrow \cos\theta = 0 \Rightarrow \theta = 0^{\circ}$$

so
$$|\hat{A} - \hat{B}| = \sqrt{1^2 + 1^2 - 2 \times 1 \times 1 \times \cos 0^{\circ}}$$

$$=0$$

Ans (1) 34.

$$\int ds = \int_{1}^{2} v dt = \int_{1}^{2} (4t^{3} + 3t^{2} - 1) dt$$

$$s = (t^4 + t^3 - t)_1^2 = 21 \text{ m}$$

35. Ans (4)

Correct diameter of ball

$$= 5 \text{mm} + 25 \times 0.001 \text{ cm} + 0.004 \text{ cm}$$

$$= 0.5 \text{cm} + 0.025 \text{ cm} + 0.004 \text{ cm}$$

$$= 0.529 \text{ cm}$$

SECTION - B

36. Ans (1)

Branch AD will have attraction & BC will have repulsion.

$$F_{net} = F_{att} - F_{rep}$$

$$\begin{aligned} F_{att} &= 15 \times 10 \times 10^{-2} \times \frac{\mu_0}{2\pi} \times \frac{25}{5 \times 10^{-2}} \\ F_{rep} &= 15 \times 10 \times 10^{-2} \times \frac{\mu_0}{2\pi} \times \frac{25}{30 \times 10^{-2}} \end{aligned}$$

$$F_{\text{rep}} = 15 \times 10 \times 10^{-2} \times \frac{\mu_0}{2\pi} \times \frac{23}{30 \times 10^{-2}}$$

$$F_{net} = 1.25 \times 10^{-4} \text{ N}$$

(Attraction)

37. Ans (2)

Energy stored in the capacitor

$$= \frac{1}{2} \frac{Q^2}{C}$$

$$Q = CV = 900 \times 10^{-12} \text{ F} \times 100V$$

$$\therefore Q = 9 \times 10^{-8} C$$

Energy of the capacitor when fully charged

$$= \frac{1}{2} \frac{Q^2}{C} = 4.5 \times 10^{-6} J.$$

The total charge is conserved. In figure (b), total capacitance = $C' = 2 \times C = 2 \times 900 \text{ pF}$.

∴ Final energy =
$$\frac{1}{2} \frac{Q^2}{C'} = \frac{1}{2} \cdot \frac{Q^2}{2C}$$

∴ Final energy

$$= \frac{4.5 \times 10^{-6} \text{J}}{2} = 2.25 \times 10^{-6} \text{J}.$$

38. Ans (3)

f same

$$\frac{\lambda_2}{\lambda_1} = \frac{\mathbf{v}_2}{\mathbf{v}_1} = \sqrt{\frac{\mathbf{T}_2}{\mathbf{T}_1}} \quad \left\{ \mathbf{v} = \sqrt{\frac{\mathbf{T}}{\mu}} \right\}$$

$$\frac{\lambda_2}{\lambda_1} = \sqrt{\frac{(5+4)g}{4g}} = \sqrt{\frac{9}{4}} = \frac{3}{2}$$

39. Ans (3)

$$i = \frac{dQ}{dt} = \text{slope of } Q - t \text{ graph}$$

= -5 (which is constant)

Amount of heat generated in time $t = i^2 Rt \propto t$.

40. Ans (4)

$$x = \frac{(2n-1)}{2}\lambda$$

$$\frac{d^2}{2D} = \frac{(2n-1)\lambda}{2}$$

$$\lambda = \frac{d^2}{(2x-1)D}$$

$$\lambda = \frac{d^2}{(2x-1)D}$$

$$\lambda = \frac{d^2}{D}, \frac{d^2}{3D}, \frac{d^2}{5D} \dots$$

41. Ans (2)

At minimum distance of approach

entire K.E. of α particle

converted into electric potential energy

$$10 \times 10^6 \times 1.6 \times 10^{-19}$$

$$= \frac{9 \times 10^9 \times 2 \times 1.6 \times 10^{-19} \times 29 \times 1.6 \times 10^{-19}}{}$$

$$r_{min} = \frac{18 \times 29 \times 1.6 \times 10^{-10}}{10^{-7}}$$

$$r_{\min} = 835.2 \times 10^{-17} \text{ m}$$

$$r_{min} = 8.35 \times 10^{-15} \text{ m}$$

42. Ans (4)

$$v \propto \sqrt{T}$$

$$\Rightarrow \frac{v}{200} = \sqrt{\frac{500}{400}}$$

$$\Rightarrow$$
 v = $100\sqrt{5}$ m/s

Ans (3) 43.

$$P = I_{rms}^2 R$$

$$I_{rms} = \frac{V_{rms}}{7} = \frac{200}{100} = 2A$$

$$P = 4 \times 36$$

$$= 144 \text{ W}$$

45. Ans (1)

Heat absorb Heat absorb Heat released by calorimeter + by water by water at 25°C at 40°C

$$1.5 \times 390 \times (40 - 25) + 0.2 \times S_w \times (40 - 25)$$

$$= 0.510 \times S_w (50 - 40)$$

$$8775 + 3S_w = 5.10 S_w$$

$$8775 = 2.1 S_{w}$$

$$\Rightarrow$$
 S_w = $\frac{8875}{2.1}$ = 4178.5 J/kg-°C

$$\Rightarrow$$
 S_w = 4.18 kJ/kg $-^{\circ}$ C

46. Ans (1)

Area removed = $\frac{\pi R^2}{\hat{}}$

original area = $\pi R^2 \implies \text{mass} = 9M$

removed mass = M

MOI of removed part about 'O'

$$= \frac{M(R/3)^2}{2} + M\left(\frac{2R}{3}\right)^2$$

$$= \frac{MR^2}{18} + \frac{8MR^2}{18} = \frac{MR^2}{2}$$

MOI of remaining disc

$$= \frac{1}{2}(9M)R^2 - \frac{MR^2}{2} = 4MR^2$$

47. Ans (1)

$$F_{w} + F_{Hg} = Mg$$

$$\rho_w g V_w + \rho_{Hg} g V_{Hg} = \rho_B V_B g$$

$$V_{\rm w} = 10 \times 10 \times (10 - x)$$

= displace volume of water

$$V_{Hg} = 10 \times 10 \times (x)$$

= displaced volume of mercury

48. Ans (2)

$$P = \overrightarrow{F} \cdot \overrightarrow{V}$$

$$V = V_x \dot{i} + V_y \dot{j} + V_z \dot{k} \quad (m = 1kg)$$

For
$$V_x \Rightarrow (1) F_x = ma_x$$

$$2t = \frac{dV_x}{dt} \times m$$

$$\int_{0}^{t} 2tdt = m \int_{0}^{V_x} dV_x = \int_{0}^{V_x} dV_x$$

$$t^2 = V_x$$

Like wise $V_v = t^3$ and $V_z = t^4$

$$P = (2t\hat{i} + 3t^2\hat{j} + 4t^3\hat{k}). (t^2\hat{i} + t^3\hat{j} + t^4\hat{k})w$$

$$P = (2t^3 + 3t^5 + 4t^7)w$$

49. Ans (1)

$$V_{max} = \sqrt{\left(\frac{\tan \theta + \mu}{1 - \mu \tan \theta}\right) Rg}$$

$$= \sqrt{\left(\frac{\tan 45 + 0.5}{1 - 0.5 \tan 45}\right) \times 1000 \times 9.8} = 172 \text{ m/s}$$

50. Ans (2)

If density of air is neglected

$$\begin{split} V_T &= \frac{2}{9} \frac{r^2}{\eta} \rho_{\ell} g \\ \Rightarrow \eta &= \frac{2}{9} \frac{r^2}{V_T} \rho_{\ell} g \\ &= \frac{2}{9} \frac{\left(10^{-4}\right) \left(1.5 \times 10^3\right) (10)}{\left(25 \times 10^{-4}\right)} \\ \Rightarrow \eta &\approx 130 \text{ Pa-s.} \end{split}$$

SUBJECT: CHEMISTRY

SECTION-A

- **51. Ans (4)** NCERT-XII Pg.#172
- 55. **Ans (1)**NCERT-XII, Pg.#235
- 59. Ans (2)
 Ga⁺ is more stable than Al⁺ due to inert pair effect.
- **61. Ans (4)** NCERT-XII, Pg.316
- **63. Ans (4)** NCERT-XII, Pg.#330, 331, 332
- 64. Ans (2)
 NCERT-XII, Pg.#365 (index Q.12.5)
- 65. Ans (1) $\begin{array}{c}
 NO_{2} \\
 5 \\
 6 \\
 1 \\
 CH_{2}
 \end{array}$

2-chloro-1-methyl-4-nitro benzene

68. Ans (1)

$$CH_{3}-C=CH_{2} \xrightarrow{BH_{3}, THF} CH_{3}-CH-CH_{2} \xrightarrow{B} B$$

$$CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} B$$

$$\downarrow H_{2}O_{2}/OH$$

$$H_{3}BO_{3}+CH_{3}-CH-CH_{2}-OH$$

$$CH_{3}$$

69. Ans (1)

Electrophilic addition reaction

- 70. Ans (2) $CH_4 + O_2 \xrightarrow{Mo_2O_3} HCHO + HOH$
- $CH_4 + O_2 \xrightarrow{1002O_3} HCHO + HOH$ 71. Ans (1)

$$CH_3-C \equiv CH + H-OH \xrightarrow{Hg^{+2}/H^+} CH_3-C = CH_2$$

$$OH$$

$$Isomerisation$$

$$CH_3-C-CH_3$$

72. Ans (2) OH $O + Zn \xrightarrow{\Delta} O + ZnO$

73. Ans (1)

Molecular mass of BaSO₄

$$= 137 + 32 + 64 = 233 \,\mathrm{gm}$$

 $233~\rm gm~BaSO_4~contains~32~\rm gm~sulphur$

0.4813 gm BaSO₄ contains

$$= \frac{32 \times 0.4813}{233} \text{ gm sulphur}$$
% of sulphur =
$$\frac{32 \times 0.4813 \times 100}{233 \times 0.157} = 42.10 \%$$

- **74. Ans (3)** NCERT-XII, part-1, Pg.#2
- **75. Ans (3)** NCERT-XII, par-1, Pg.#34

ALLEN® - @Alenthusiast, leader & Achiever course/Phase-all Phase/21-04-2024

76. Ans (3)

NCERT-XII, part-1, Pg.#49

$$\Delta T_b = 100^{\circ} C - 99.48^{\circ} C$$

= 0.52°C

$$\Delta T_b = K_b \times m \times i$$

$$0.52 = 0.52 \times \left(\frac{w}{74.5} \times \frac{1000}{500}\right) \times 2$$
$$w = \frac{74.5}{4} = 18.625 \text{ g}$$

77. Ans (3)

NCERT-XII, part-1, Pg.#80

$$\lambda_{m} = \kappa \times \frac{1000}{M} = G\left(\frac{\ell}{A}\right) \times \frac{1000}{M}$$

$$= \frac{1}{100} \times \frac{50 \text{ cm} \times 1000}{\pi \times 1 \text{ cm} \times 1 \text{ cm} \times 0.05}$$

$$= \frac{10000}{\pi} \text{S cm}^{2} \text{mol}^{-1}$$

$$= \frac{10000 \times 10^{-4}}{3.14} \text{S m}^{2} \text{mol}^{-1} = 0.318 \text{ S m}^{2} \text{ mol}^{-1}$$

78. Ans (4)

NCERT-XI, Laboratory manual, unit-6, titrimetric analysis, Pg.#34

- 79. Ans (4)
 NCERT-XI, part-1, Pg.#44
- 80. Ans (2) NCERT-XI, part-1, Pg.#208
- 81. Ans (3) NCERT-XI, part-1, Pg.#163
- 82. Ans (4)
 NCERT-XI, part-1, Pg.#212
- 83. Ans (4)
 NCERT-XI, part-1, Pg.#176
- 84. Ans (4)
 NCERT-XI, part-1, Pg.#247

85. Ans (2)

NCERT-XI, part-1,Pg.#166

- (1) It is not correct as standard state of carbon is graphite and not diamond.
- (2) It is correct as one mole of product is being formed from its elements in standard state.
- (3) It is not correct as two moles of the product are formed.
- (4) CO is not an element but a compound.

SECTION-B

- **86. Ans (3)** NCERT-XII, Pg.#262
- 90. Ans (3) NCERT-XII, Pg.#324
- 91. Ans (4) NCERT-XII, Pg.#397,398
- 92. Ans (2) NCERT-XII, Pg.#334, 361, 362
- 93. Ans (2) NCERT-XII, Pg.#390, 391
- 94. Ans (4) NCERT-XII, Pg.#392 (table-10.4)
- 95. Ans (3) NCERT-XII, Pg.#335, 362, 386, 393
- 97. Ans (1)
 NCERT-XII, part-1, Pg.#33, 34, 44
 The potential of individual half cell cannot be measured. In galvanic cell, anode has negative potential with respect to the solution.
- 98. Ans (3) NCERT-XII, part-1, Pg.#112, 119

Join - @Allen_Achiever_Tests

99. Ans (3)

Hint: NCERT-XII, part-1, Pg.#123

 $t_{20\%}$ at 300 K = $t_{60\%}$ at 320 K

$$\frac{2.303}{K_{300}}\log\left(\frac{100}{80}\right) = \frac{2.303}{K_{320}}\log\left(\frac{100}{40}\right)$$

$$\frac{K_{320}}{K_{300}} = \frac{0.398}{0.097} = 4.1031$$

$$\log\left(\frac{K_2}{K_1}\right) = \frac{E_a}{2.303R} \left(\frac{T_2 - T_1}{T_1 T_2}\right)$$

$$\log(4.1031) = \frac{E_a \times 1000}{2.303 \times 2} \times \left(\frac{20}{300 \times 320}\right)$$

$$E_{a} = \frac{0.6131 \times 2.303 \times 96}{10} \text{kcal}$$

- $E_a = 13.55 \text{ kcal}$
- 100. Ans (1)

NCERT-XI, part-1, Pg.#44,47,57,65

SUBJECT: BOTANY

SECTION - A

101. Ans (2)

NCERT-XI, Pg. #87

102. Ans (2)

NCERT-XI, Pg. # 94,97

103. Ans (4)

NCERT XI Page No. # 250

104. Ans (4)

NCERT XI Page No. # 247.

105. Ans (2)

NCERT XI Page No. # 21,24,25,26

106. Ans (1)

NCERT XI Page No. #30, 33

107. Ans (1)

NCERT XI Page No. # 19

108. Ans (4)

NCERT XI Page No. # 17, 20

109. Ans (1)

NCERT XI Page No. #11

110. Ans (4)

NCERT XI Page No. #79

111. Ans (4)

NCERT XI Page No. # 76

112. Ans (3)

NCERT-XI, Pg. # 159

113. Ans (3)

NCERT-XI, Pg. # 233

114. Ans (4)

NCERT-XI, Pg. # 230

115. Ans (2)

NCERT-XII, Pg # 227(E), 249(H)

116. Ans (2)

NCERT-XII, Pg # 237(E), 260(H)

117. Ans (2)

NCERT-XII, Pg # 234(E), 256(H)

118. Ans (4)

NCERT-XI, Pg # 220

119. Ans (3)

NCERT-XI, Pg # 207,208

120. Ans (4)

NCERT-XI, Pg # 213,214,217,218

121. Ans (3)

NCERT XII Page No. # 104, 115, 116

122. Ans (3)

NCERT XII Page No. # 115, 122, 110

123. Ans (2)

NCERT XII Page No. # 116

124. Ans (4)

NCERT XII Page No. # 121, 122

125. Ans (2)

NCERT XII Page No. # 97

126. Ans (3)

NCERT XII Page No. # 118, 120

ALLEN® - @A PONTHUSIAST, LEADER & ACHIEVER COURSE/PHASE-ALL PHASE/21-04-2024

- **127. Ans (1)** NCERT, Pg # 21(E), 22(H)
- 128. Ans (2) NCERT, Pg # 25,38(E), 27,40(H)
- 129. Ans (3) NCERT-XII, Pg.# 267
- 130. Ans (3) NCERT-XII, Pg.# 245, 246
- 131. Ans (3)
 NCERT-XII, Pg.# 261
- 132. Ans (1) NCERT-XII, Pg.# 234
- 133. Ans (4) NCERT-XII, Pg. # 72, 73
- **134. Ans (4)** NCERT-XII, Pg. # 90
- **135. Ans (4)** NCERT-XII, Pg. # 183

SECTION - B

- **136. Ans (4)** NCERT XI Page No. # 36, 39
- 137. Ans (2) NCERT-XI, Pg. # 235,236
- **138. Ans (3)** NCERT-XII, Pg # 232(E), 255(H)
- **139. Ans (3)**NCERT-XII, Pg # 229,230,231(E), 251,252,253(H)
- **140. Ans (3)** NCERT XII Page No. # 104, 107
- 141. Ans (4)

 NCERT XII Page No. # 104
- **142. Ans (2)** NCERT, Pg # 35(E), 37(H)

- 143. Ans (1) NCERT-XII, Pg.# 259
- **144. Ans (3)** NCERT-XII, Pg.# 262
- 145. Ans (2) NCERT-XII, Pg. # 83, 88
- **146. Ans (2)** NCERT-XII, Pg. # 187
- **147. Ans (3)** NCERT-XII, Pg. # 181, 182, 183
- 148. Ans (2) NCERT XI Page No. # 75, 76 Dianthus, Primrose
- **149. Ans (2)** NCERT XI Page No. # 246
- **150. Ans (3)** NCERT-XI, Pg. # 85, 91, 90 only c is wrong

SUBJECT: ZOOLOGY

SECTION - A

- **151. Ans (2)** NCERT Page No. # 225 (E/H)
- 152. Ans (3)

 NCERT XI Page No. # 135
- 153. Ans (4) NCERT XII Page No. # 113
- 154. Ans (3)

 NCERT Page No. # 147, 149
- **155. Ans (4)** NCERT Page No. # 158
- 156. Ans (3) NCERT Page No. # 154
- **157. Ans (4)** NCERT Page No. # 149
- 158. Ans (4) NCERT XI Page No. # 335/336

00000MD303031230002

Join - @Allen_Achiever_FRE-MEDICAL 2024/21-04-2024

- **159. Ans (3)** NCERT XI Page No. # 340/341
- **160. Ans (2)** NCERT Page No. # 293
- **161. Ans (4)** NCERT Page No. # 126, 127
- **162. Ans (2)**NCERT Page No. # 138
- **163. Ans (3)** NCERT Page No. # 125, 126, 127
- **164. Ans (4)** NCERT Page No. # 126
- **165. Ans (1)** NCERT Page No. # 133
- **166.** Ans (1) NCERT Page No. # 162,167,169
- **167. Ans (2)** NCERT Page No. # 163, 164, 166, 168
- 168. Ans (2) NCERT Page No. # 200
- 170. Ans (3) NCERT, Pg # 55, 56
- **171. Ans (1)** NCERT, Pg # 56, 57
- 172. Ans (3)

 NCERT XI, Pg # 148 Polysaccharide paragraph
- 173. Ans (1) NCERT-XI, Pg # 119
- 174. Ans (4) NCERT-XI, Pg # 102
- 175. Ans (3) NCERT XI, Pg # 316, 317
- **176. Ans (4)** NCERT-XI, Pg # 272
- **177. Ans (3)** NCERT-XII, Pg # 43

- **178. Ans (3)** NCERT-XII, Pg # 48
- **179. Ans (4)** NCERT-XII, Pg # 48
- **180. Ans (1)** NCERT, Pg # 212, 213
- 181. **Ans (1)**NCERT, Pg # 204
- **182.** Ans (4)

 NCERT-XII, Pg # 199, 209, 210
- **183. Ans (1)** NCERT, Pg # 198
- **184. Ans (3)** NCERT-XII, Pg # 198, 200
- 185. Ans (4) NCERT, Pg # 212

SECTION - B

- 186. Ans (2)
 NCERT Page No. # 228 (Summary) (E)
 NCERT Page No. # 227 (सारांश) (H)
- **187. Ans (3)** NCERT Page No. # 150
- 188. Ans (3)
 NCERT XI Page No. # 330-337/332-341
- **189. Ans (3)** NCERT Page No. # 297
- 190. Ans (2)
 NCERT Page No. # 164
- **192. Ans (3)** NCERT, Pg # 46
- 193. Ans (3)

 NCERT, Pg # 144, 2nd last Para.
- **194. Ans (4)** NCERT-XI, Pg # 102, 103, 104

195. Ans (2)

NCERT XI, Pg # 319, 320

196. Ans (1)

NCERT-XI, Pg # 276

197. Ans (2)

NCERT-XII, Pg # 61

198. Ans (3)

NCERT-XII, Pg # 53

199. Ans (1)

NCERT, Pg # 195

200. Ans (1)

NCERT, Pg # 213