

深度学习在激光SLAM中的应用

索传哲

Deep Learning in Lidar SLAM

> Front-end: Odometry

▶ Back-end: Optimization

Deep Learning in Lidar SLAM

Front-end: Odometry

> Back-end: Optimization

Deep Learning in Lidar SLAM

- Front-end: Odometry
 - KeyPoints Detection
 - Feture Extraction
 - Feature Association
 - Landmark Fileter

Evaluation on KITTI 00

(DeepLO-Uns)

Current point cloud

Current vertex map (represented as range image for visualization)

Global trajectory with point clouds

Deep Learning in Lidar SLAM

- Back-end: Optimization
 - KeyFrame Retrieval (Loop Closure Detection)
 - Registration

- Deep Learning in Lidar SLAM
 - ✓ Deep Learning vs Lidar SLAM
 - Deep Learning
 - Strong feature extraction capability
 - Strong generalization ability
 - · Rich frontier research
 - Black box model, fitting optimization, lack of precision, can not establish error model
 - Lidar SLAM
 - High-precision measurement
 - Rigorous mathematical derivation and theory
 - Poor generalization ability in unstructured environment, lack of effective point cloud features

DeepLO:Geometry-Aware Deep LiDAR Odometry

DeepLO:Geometry-Aware Deep LiDAR Odometry

Lidar is accuracy, but ...

- Unordered
- Various data type
- Viewpoint dependent scene change

Difficult

- To learn
- To prepare GroundTruth

DeepLO:Geometry-Aware Deep LiDAR Odometry

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} (f_h/2 - \arctan(p^y, p^x))/\delta_h \\ (f_{vu} - \arctan(p^z, d))/\delta_v \end{pmatrix}$$

$$d = (p^{x^2} + p^{y^2})^{1/2}$$

$$f_h \text{ Horizontal fielf-of-view}$$

$$f_v \text{ Vertical fielf-of-view}$$

$$(u, v) \in \mathbb{R}^2$$

$$\mathbf{v} = [v^x, v^y, v^z]$$

DeepLO:Geometry-Aware Deep LiDAR Odometry

Feature Net.

VertexNet and NormalNet are designed based on residual blocks with fully convolutional networks

PoseNet is designed as fully-connected networks that transfer features for metric information, and predicts translation and rotation separately

DeepLO:Geometry-Aware Deep LiDAR Odometry

Evaluation on KITTI 00

(DeepLO-Uns)

Current point cloud

Current vertex map (represented as range image for visualization)

Global trajectory with point clouds

DeepLO:Geometry-Aware Deep LiDAR Odometry

	Sequence	0		1		2		3		4		5	
		t_{rel}											
Deserved	DeepLO-Uns	1.90	0.80	37.83	0.86	2.05	0.81	2.85	1.43	1.54	0.87	1.72	0.92
Proposed	DeepLO-Sup	0.32	0.12	0.16	0.05	0.15	0.05	0.04	0.01	0.01	0.01	0.11	0.07
or a so to to	Zhu et al. [23]	4.56	2.46	78.98	3.03	5.89	2.16	6.84	2.42	9.12	1.42	3.93	2.09
Learning-based	SfMLearner [12]	66.35	6.13	35.17	2.74	58.75	3.58	10.78	3.92	4.49	5.24	18.67	4.10
	UnDeepVO [13]	4.41	1.92	69.07	1.60	5.58	2.44	5.00	6.17	4.49	2.13	3.40	1.50
Model-based	SuMa [9]	2.10	0.90	4.00	1.20	2.30	0.80	1.40	0.70	11.90	1.10	1.50	0.80
		6		7		8		9		10			
		t_{rel}											
Proposed	DeepLO-Uns	0.84	0.47	0.70	0.67	1.81	1.02	6.55	2.19	7.74	2.84		
	DeepLO-Sup	0.03	0.07	0.08	0.05	0.09	0.04	13.35	4.45	5.83	3.53		
Learning-based	Zhu et al. [23]	7.48	3.76	3.13	2.25	4.81	2.24	8.84	2.92	6.65	3.89		
	SfMLearner [12]	25.88	4.80	21.33	6.65	21.90	2.91	18.77	3.21	14.33	3.30		
(Table 1)	UnDeepVO [13]	6.20	1.98	3.15	2.48	4.08	1.79	7.01	3.61	10.63	4.65		
Model-based	SuMa [9]	1.00	0.60	1.80	1.20	2.50	1.00	1.90	0.80	1.80	1.00		

********* Ground-truth

KITTI Odometry evaluation

Translation t_{rel} (%) and rotation r_{rel} (\circ /100m) RMSE drift on length of 100m – 800m are presented.

➤ LO-Net: Deep Real-time Lidar Odometry

➤ LO-Net: Deep Real-time Lidar Odometry

$$\alpha = \arctan(y/x)/\Delta\alpha$$

$$\beta = \arcsin(z/\sqrt{x^2 + y^2 + z^2})/\Delta\beta$$

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$H \times W \times C$$

Normal estimation:

$$\underset{\mathcal{N}(X^i)}{\arg\min} \| [w_{i1}(X^{i_1} - X^i), \cdots, w_{ik}(X^{i_k} - X^i)]^T \mathcal{N}(X^i) \|_2$$

$$w_{ik} = \exp(-0.2|r(X^{i_k}) - r(X^i)|)$$

Simiplified Normal estimation:

$$\mathcal{N}(X^{i}) = \sum_{X^{i_{k}}, X^{i_{j}} \in \mathcal{P}} (w_{ik}(X^{i_{k}} - X^{i}) \times w_{ij}(X^{i_{j}} - X^{i}))$$

Corresponding point elements transformation

$$\hat{X}_t^{\alpha\beta} = PT_t P^{-1} X_{t-1}^{\alpha\beta}$$

Constraint of pose transformation

$$\mathcal{L}_n = \sum_{\alpha\beta} \| \mathcal{N}(\hat{X}_t^{\alpha\beta}) - \mathcal{N}(X_t^{\alpha\beta}) \|_1 \cdot e^{|\nabla r(\hat{X}_t^{\alpha\beta})|}$$

LO-Net: Deep Real-time Lidar Odometry

Position and orientation Loss: $\mathcal{L}_x(S_{t-1}; S_t) = ||x_t - \hat{x}_t||_l$

$$\mathcal{L}_q(S_{t-1}; S_t) = \left\| q_t - \frac{\hat{q}_t}{\|\hat{q}_t\|} \right\|_l$$

Odometry Loss:

$$\mathcal{L}_o = \mathcal{L}_x(S_{t-1}; S_t) \exp(-s_x) + s_x$$
$$+ \mathcal{L}_q(S_{t-1}; S_t) \exp(-s_q) + s_q$$

(a) Mask prediction layers

LO-Net: Deep Real-time Lidar Odometry

Position and orientation Loss:

$$\mathcal{L}_{x}(S_{t-1}; S_{t}) = \|x_{t} - \hat{x}_{t}\|_{l}$$

$$\mathcal{L}_{q}(S_{t-1}; S_{t}) = \left\|q_{t} - \frac{\hat{q}_{t}}{\|\hat{q}_{t}\|}\right\|_{l}$$

Odometry Loss:

$$\mathcal{L}_o = \mathcal{L}_x(S_{t-1}; S_t) \exp(-s_x) + s_x$$
$$+ \mathcal{L}_q(S_{t-1}; S_t) \exp(-s_q) + s_q$$

Mask Loss:

$$\mathcal{L}_n = \sum_{\alpha\beta} \mathcal{M}(X_t^{\alpha\beta}) \| \mathcal{N}(\hat{X}_t^{\alpha\beta}) - \mathcal{N}(X_t^{\alpha\beta}) \|_1 \cdot e^{|\nabla r(\hat{X}_t^{\alpha\beta})|}$$

Regular Loss:

$$\mathcal{L}_r = -\sum_{\alpha\beta} \log P(\mathcal{M}(X_t^{\alpha\beta}) = 1).$$

$$\mathcal{L} = \mathcal{L}_o + \lambda_n \mathcal{L}_n + \lambda_r \mathcal{L}_r$$

➤ LO-Net: Deep Real-time Lidar Odometry

* : Based on the normal channels of S_t , we define a term c to evaluate the smoothness of the local area.

$$c = \sum_{k=1}^{3} (K * \mathcal{N}_k)^2$$

K is a 3×5 convolution kernel. central element is -14, the others are 1.

 Π : Compute an initial estimate of the lidar pose relative to its first position: $\mathbf{M}_{init} = \mathbf{M}_{t-1} \mathbf{M}_{t-2}^{-1} \mathbf{M}_{t-1}$, where \mathbf{M}_t is the lidar transformation at time t.

Mapping: Scan-to-map Refinement

➤ LO-Net: Deep Real-time Lidar Odometry

Mapping: Scan-to-map Refinement

 Ψ : Suppose $p_i = (p_{i_x}, p_{i_y}, p_{i_z}, 1)^T$ is a point in the scan S_t , $m_i = (m_{i_x}, m_{i_y}, m_{i_z}, 1)^T$ is the corresponding point in the map built by the previous scans, $n_i = (n_{i_x}, n_{i_y}, n_{i_z}, 0)^T$ is the unit normal vector at m_i . The goal of mapping is to find the optimal 3D rigid-body transformation

$$\hat{\mathbf{M}}_{opt} = \operatorname*{arg\,min}_{\hat{\mathbf{M}}} \sum_i ((\hat{\mathbf{M}} \cdot \boldsymbol{p}_i - \boldsymbol{m}_i) \cdot \boldsymbol{n}_i)^2$$
.

 Θ : Iteratively register the scan onto the map by solving Equation (12) until a maximum number of iteration n_{iter} .

$$\mathbf{M}_t = \prod_{k=1}^{n_{iter}} \hat{\mathbf{M}}_k \mathbf{M}_{init} \; .$$

 Φ : Generate a new point cloud from the current scan S_t by linear interpolation of vehicle motion between \mathbf{M}_{t-1} and \mathbf{M}_t .

 Σ , N: Add the new point cloud to the map.

➤ LO-Net: Deep Real-time Lidar Odometry

Mapping: Scan-to-map Refinement

LO-Net: Deep Real-time Lidar Odometry

Seq.	ICP-po2po		ICP-po2pl		GICP [28]		CLS [32]		LOAM [42] ¹		Velas et al. $[33]^2$		LO-Net		LO-Net+Mapping	
	t_{rel}	r_{rel}	t_{rel}	r_{rel}	t_{rel}	r_{rel}	t_{rel}	r_{rel}	t_{rel}	r_{rel}	t_{rel}	r_{rel}	t_{rel}	r_{rel}	t_{rel}	r_{rel}
00†	6.88	2.99	3.80	1.73	1.29	0.64	2.11	0.95	1.10 (0.78)	0.53	3.02	NA	1.47	0.72	0.78	0.42
01^{\dagger}	11.21	2.58	13.53	2.58	4.39	0.91	4.22	1.05	2.79 (1.43)	0.55	4.44	NA	1.36	0.47	1.42	0.40
02^{\dagger}	8.21	3.39	9.00	2.74	2.53	0.77	2.29	0.86	1.54 (0.92)	0.55	3.42	NA	1.52	0.71	1.01	0.45
03†	11.07	5.05	2.72	1.63	1.68	1.08	1.63	1.09	1.13 (0.86)	0.65	4.94	NA	1.03	0.66	0.73	0.59
04^{\dagger}	6.64	4.02	2.96	2.58	3.76	1.07	1.59	0.71	1.45 (0.71)	0.50	1.77	NA	0.51	0.65	0.56	0.54
05^{\dagger}	3.97	1.93	2.29	1.08	1.02	0.54	1.98	0.92	0.75 (0.57)	0.38	2.35	NA	1.04	0.69	0.62	0.35
06 [†]	1.95	1.59	1.77	1.00	0.92	0.46	0.92	0.46	0.72 (0.65)	0.39	1.88	NA	0.71	0.50	0.55	0.33
07*	5.17	3.35	1.55	1.42	0.64	0.45	1.04	0.73	0.69 (0.63)	0.50	1.77	NA	1.70	0.89	0.56	0.45
08*	10.04	4.93	4.42	2.14	1.58	0.75	2.14	1.05	1.18 (1.12)	0.44	2.89	NA	2.12	0.77	1.08	0.43
09*	6.93	2.89	3.95	1.71	1.97	0.77	1.95	0.92	1.20 (0.77)	0.48	4.94	NA	1.37	0.58	0.77	0.38
10*	8.91	4.74	6.13	2.60	1.31	0.62	3.46	1.28	1.51 (0.79)	0.57	3.27	NA	1.80	0.93	0.92	0.41
mean [†]	7.13	3.08	5.15	1.91	2.23	0.78	2.11	0.86	1.35 (0.85)	0.51	3.12	NA	1.09	0.63	0.81	0.44
mean*	7.76	3.98	4.01	1.97	1.38	0.65	2.15	1.00	1.15 (0.83)	0.50	3.22	NA	1.75	0.79	0.83	0.42
Ford-1	8.20	2.64	3.35	1.65	3.07	1.17	10.54	3.90	1.68	0.54	NA	NA	2.27	0.62	1.10	0.50
Ford-2	16.23	2.84	5.68	1.96	5.11	1.47	14.78	4.60	1.78	0.49	NA	NA	2.18	0.59	1.29	0.44

^{1:} The results on KITTI dataset outside the brackets are obtained by running the code, and those in the brackets are taken from [42].

 t_{rel} : Average translational RMSE (%) on length of 100m-800m.

 r_{rel} : Average rotational RMSE (°/100m) on length of 100m-800m.

²: The results on KITTI dataset are taken from [33], and the results on Ford dataset are not available.

^{†:} The sequences of KITTI dataset that are used to train LO-Net.

^{*:} The sequences of KITTI dataset that are not used to train LO-Net.

➤ LO-Net: Deep Real-time Lidar Odometry

Visual comparison of normal results on KITTI dataset.

Deep Lidar Loop Closure Detection

Loop Closure Detection

Representation:

- PointNetVLAD
- > PCAN
- LPD-Net
- PIC-Net

Deep Lidar Loop Closure Detection

Loop Closure Detection

- PointNetVLAD
- > PCAN

Deep Lidar Loop Closure Detection

Loop Closure Detection

- LPD-Net
- PIC-Net

