PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

C12N 15/12, 15/57, 15/67, 15/85, 9/64, C07K 14/72, C12Q 1/68, A61K 48/00

A1

(11) International Publication Number:

WO 00/49147

(43) International Publication Date:

24 August 2000 (24.08.00)

(21) International Application Number:

PCT/EP00/01368

(22) International Filing Date:

18 February 2000 (18.02.00)

(30) Priority Data:

199 07 099.7 60/120,848

19 February 1999 (19.02.99) DE US

19 February 1999 (19.02.99)

(71) Applicant (for all designated States except US): THERAGENE BIOMEDICAL LABORATORIES GMBH [DE/DE]; Am Klopferspitz 19, D-82152 Martinsried (DE).

(72) Inventor; and

- (75) Inventor/Applicant (for US only): HAUSER-FUNKE, Charlotte [DE/DE]; Romanstr. 95, D-80369 München (DE).
- (74) Agents: HELBING, Jörg et al.; von Kreisler Selting Werner, Deichmannhaus am Dom, D-50667 Köln (DE).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: HORMONE-HORMONE RECEPTOR COMPLEXES AND NUCLEIC ACID CONSTRUCTS AND THEIR USE IN GENE THERAPY

(57) Abstract

The invention relates to the use of a nucleic acid contruct comprising at least one hormone responsive element and a transgene for preparing an agent for gene transfer. It further relates to particular nucleic acid contructs comprising at least one hormone responsive element and a transgene, wherein one of said at least one hormone responsive elements is not functionally linked to the transgene, vectors comprising such nucleic acid contructs and compositions of matter comprising such nucleic acid constructs wherein the hormone responsive elements of the constructs are coupled to a hormone-hormone receptor complex. The nucleic acid constructs, plasmids, and compositions of matter of the invention have applications in gene therapy, particularly in the treatment of human blood clotting disorders, such as hemophilia. They may also be used to up- or down-regulate target genes and for the delivery of vaccines.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

menia ustralia zerbaijan usnia and Herzegovina urbados lgium urkina Faso ulgaria	FI FR GA GB GE GH GN GR	Finland France Gabon United Kingdom Georgia Ghana Guinea	LT LU LV MC MD MG	Lithuania Luxembourg Latvia Monaco Republic of Moldova	SI SK SN SZ TD TG	Slovenia Slovakia Senegal Swaziland Chad
stralia zerbaijan ssnia and Herzegovina rbados elgium urkina Faso	GA GB GE GH GN GR	Gabon United Kingdom Georgia Ghana Guinea	LV MC MD	Luxembourg Latvia Monaco Republic of Moldova	SN SZ TD	Senegal Swaziland Chad
zerbaijan ssnia and Herzegovina rbados elgium urkina Faso	GB GE GH GN GR	United Kingdom Georgia Ghana Guinea	MC MD	Latvia Monaco Republic of Moldova	SZ TD	Swaziland Chad
snia and Herzegovina rbados Igium rkina Faso	GE GH GN GR	Georgia Ghana Guinea	MD	Republic of Moldova	TD	Chad
rbados Ilgium Irkina Faso	GH GN GR	Ghana Guinea		=		
lgium Irkina Faso	GN GR	Guinea	MG	=		Togo
rkina Faso	GR			Madagascar	TJ	Tajikistan
			MK	The former Yugoslav	TM	Turkmenistan
ılgaria		Greece		Republic of Macedonia	TR	Turkey
	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
nin	IE	Ireland	MN	Mongolia	UA	Ukraine
azil	IL	Israel	MR	Mauritania	UG	Uganda
larus	IS	Iceland	MW	Malawi	US	United States of America
mada	IT	Italy	MX	Mexico	UZ	Uzbekistan
ntral African Republic	JP	Japan	NE	Niger	VN	Viet Nam
ingo	KE	Келуа	NL	Netherlands	YU	Yugoslavia
vitzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
te d'Ivoire	KP		-	•	211	Zimbabwe
meroon		-	PL			
ina	KR	-	PT			
ıba	KZ	Kazakstan	RO			
ech Republic	LC	Saint Lucia	-			
rmany	LI	Liechtenstein	_			
	LK	Sri Lanka				
nmark	LR	Liberia	SG			
nii ib	e d'Ivoire neroon na na ch Republic many	e d'Ivoire KP meroon na KR na KZ ch Republic LC many LI mark LK	e d'Ivoire kP Democratic People's Republic of Korea Republic LC Saint Lucia Liechtenstein LX Sri Lanka	te d'Ivoire KP Democratic People's NZ meroon Republic of Korea PL ma KR Republic of Korea PT ma KZ Kazakstan RO many LI Liechtenstein SD mark LK Sri Lanka SE	the d'Ivoire KP Democratic People's NZ New Zealand Republic of Korea PL Poland Republic of Korea PT Portugal Republic of Korea RO Romania Republic LC Saint Lucia RU Russian Federation Republic LC Sri Lanka SE Sweden	to d'Ivoire KP Democratic People's NZ New Zealand neroon Republic of Korea PL Poland na KR Republic of Korea PT Portugal NA KZ Kazakstan RO Romania Ch Republic LC Saint Lucia RU Russian Federation many LI Liechtenstein SD Sudan mark LK Sri Lanka SE Sweden

2/22

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

WO 00/49147

9/22 9 Fig.

PCT/EP00/01368

CGCGTTGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTC TGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAG TACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAG TACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTG GCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTT TGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGT GTACGGTGGGAGGTCTATATAAGCAGAGCTCTCTGGCTAACTAGAGAACCCACTGCTTACTGGCTTATCGAAATTAATAC GACTCACTATAGGGAGACCCAAGCTTGCATGCCAATTCCGCAAAGGTTATGCAGCGCGTGAACATGATCATGGCAGAATC ACCAGGCCTCATCACCATCTGCCTTTTAGGATATCTACTCAGTGCTGAATGTACAGTTTTTCTTGATCATGAAAACGCCA ATGGAAGAAAAGTGTAGTTTTGAAGAAGCACGAGAAGTTTTTGAAAACACTGAAAGAACAACTGAATTTTGGAAGCAGTA TGTTGATGGAGATCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTT GGTGTCCCTTTGGATTTGAAGGAAAGAACTGTGAATTAGATGTAACATTAAGAATGGCAGATGCGAGCAGTTT TGTAAAAATAGTGCTGATAACAAGGTGGTTTGCTCCTGTACTGAGGGGATATCGACTTGCAGAAAACCAGAAGTCCTGTGA ACCAGCAGTGCCATTTCCATGTGGAAGAGTTTCTGTTTCACAAACTTCTAAGCTCACCCGTGCTGAGACTGTTTTTCCTG ATGTGGACTATGTAAATTCTACTGAAGCTGAAACCATTTTGGATAACATCACTCAAAGCACCCAATCATTTAATGACTTC ACTCGGGTTGTTGGTGGAGAAGATGCCAAACCAGGTCAATTCCCTTGGCAGGTTGTTTTGAATGGTAAAGTTGATGCATT CTGTGGAGGCTCTATCGTTAATGAAAATGGATTGTAACTGCTGCCCACTGTGTTGAAACTGGTGTTAAAATTACAGTTG TCGCAGGTGAACATAATATTGAGGAGACAGAACATACAGAGCAAAAGCGAAATGTGATTCGAATTATTCCTCACCACAAC TACAATGCAGCTATTAATAAGTACAACCATGACATTGCCCTTCTGGAACTGGACGAACCCTTAGTGCTAAACAGCTACGT TACACCTATTTGCATTGCTGACAAGGAATACACGAACATCTTCCTCAAATTTGGATCTGGCTATGTAAGTGGCTGGGGAA GAGTCTTCCACAAAGGGAGATCAGCTTTAGTTCTTCAGTACCTTAGAGTTCCACTTGTTGACCGAGCCACATGTCTTCGA TCTACAAAGTTCACCATCTATAACAACATGTTCTGTGCTGGCTTCCATGAAGGAGGTAGAGATTCATGTCAAGGAGATAG TGGGGGACCCCATGTTACTGAAGTGGAAGGGACCAGTTTCTTAACTGGAATTATTAGCTGGGGTGAAGAGTGTGCAATGA AAGGCAAATATGGAATATATACCAAGGTATCCCGGTATGTCAACTGGATTAAGGAAAAAACAAAGCTCACTTAATGGGAT CGGTCGAGCGGCCGCGACTCTACTAGAGGATCTTTGTGAAGGAACCTTACTTCTGTGGTGTGACATAATTGGACAAACTA CCTACAGAGATTTAAAGCTCTAAGGTAAATATAAAATTTTTAAGTGTATAATGTGTTAAACTACTGATTCTAAŢTGTTTG TGTATTTTAGATTCCAACCTATGGAACTGATGAATGGGAGCAGTGGTGGAATGCCTTTAATGAGGAAAACCTGTTTTGCT CAGAAGAAATGCCATCTAGTGATGATGAGGCTACTGCTGACTCTCAACATTCTACTCCTCCAAAAAAGAAGAAGAAAGGTA TGCTATTTACACCACAAAGGAAAAAGCTGCACTGCTATACAAGAAAATTATGGAAAAATATTCTGTAACCTTTATAAGTA GGCATAACAGTTATAATCATAACATACTGTTTTTTCTTACTCCACACAGGCATAGAGTGTCTGCTATTAATAACTATGCT CAAAAATTGTGTACCTTTAGCTTTTTAATTTGTAAAGGGGTTAATAAGGAATATTTGATGTATAGTGCCTTGACTAGAGA TCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACCTCCCCCTGAACCTGAAACAT AAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTT CACAAATAAAGCATTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGGATCC CCGGGTACCCTCTAGAGCGAATTAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAA CTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACA GTTGCGCAGCCTGAATGGCGAATGGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATAT TGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTC TCGTAGCTAGAACATCATGTTCTGGTACCCCCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTT TCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATAT GTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCC GTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGAT CGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAG AGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGAT CGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGC TGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACT CTCGGCCCTTCCGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCAC TGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGA CAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGA TTTAAAACTTCATTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTG GGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACT CTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCCAGTGGCGATAAGTCGTGTCTTACC GGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTT GGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGG

WO 00/49147

10/22

Fig. 9 (continued)

.11/22 Fig. 10

Met Gln Arg Val Asn Met Ile Met Ala Glu Ser Pro Gly Leu Ile Thr $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ile Cys Leu Leu Gly Tyr Leu Leu Ser Ala Glu Cys Thr Val Phe Leu 20 25 30

Asp His Glu Asn Ala Asn Lys Ile Leu Asn Arg Pro Lys Arg Tyr Asn 35 40 45

Ser Gly Lys Leu Glu Glu Phe Val Gln Gly Asn Leu Glu Arg Glu Cys
50 55 60

Met Glu Glu Lys Cys Ser Phe Glu Glu Ala Arg Glu Val Phe Glu Asn 65 70 75 80

Thr Glu Arg Thr Thr Glu Phe Trp Lys Gln Tyr Val Asp Gly Asp Gln 85 90 95

Cys Glu Ser Asn Pro Cys Leu Asn Gly Gly Ser Cys Lys Asp Asp Ile 100 105 110

Asn Ser Tyr Glu Cys Trp Cys Pro Phe Gly Phe Glu Gly Lys Asn Cys 115 120 125

Glu Leu Asp Val Thr Cys Asn Ile Lys Asn Gly Arg Cys Glu Gln Phe 130 135 140

Cys Lys Asn Ser Ala Asp Asn Lys Val Val Cys Ser Cys Thr Glu Gly
145 150 155 160

Tyr Arg Leu Ala Glu Asn Gln Lys Ser Cys Glu Pro Ala Val Pro Phe 165 170 175

Pro Cys Gly Arg Val Ser Val Ser Gln Thr Ser Lys Leu Thr Arg Ala

Glu Thr Val Phe Pro Asp Val Asp Tyr Val Asn Ser Thr Glu Ala Glu 195 200 205

Thr Ile Leu Asp Asn Île Thr Gln Ser Thr Gln Ser Phe Asn Asp Phe 210 215 220

Thr Arg Val Val Gly Gly Glu Asp Ala Lys Pro Gly Gln Phe Pro Trp 230 235 240

Gln Val Val Leu Asn Gly Lys Val Asp Ala Phe Cys Gly Gly Ser Ile 245 250 255

Val Asn Glu Lys Trp Ile Val Thr Ala Ala His Cys Val Glu Thr Gly
260 265 270

Val Lys Ile Thr Val Val Ala Gly Glu His Asn Ile Glu Glu Thr Glu 275 280 285

His Thr Glu Gln Lys Arg Asn Val Ile Arg Ile Ile Pro His His Asn 290 295 300

PCT/EP00/01368

12/22 Fig. 10 (continued)

Tyr 305	Asn	Ala	Ala	Ile	Asn 310	Lys	туг	Asn	His	315	lle	Ala	Leu	Leu	Glu 320
Leu	Asp	Glu	Pro	Leu 325	Val	Leu	Asn	Ser	Tyr 330	Val	Thr	Pro	lle	Cys 335	Ile
Ala	Asp	Lys	Glu 340	Tyr	Thr	Asn	Ile	Phe 345	Leu	Lys	Phe	Gly	Ser 350	Gly	Tyr
Val	Ser	Gly 355	Trp	Gly	Arg	Val	Phe 360	His	Lys	Gly	Arg	Ser 365	Ala	Leu	Val
Leu	Gln 370	Tyr	Leu	Arg	Val	Pro 375	Leu	Val	Asp	Arg	Ala 380	Thr	Cys	Leu	Arg
Ser 385	Thr	Lys	Phe	Thr	Ile 390	Tyr	Asn	Asn	Met	Phe 395	Cys	Ala	Gly	Phe	His 400
Glu	Gly	Gly	Arg	Asp 405	Ser	Cys	Gln	Gly	Asp 410	Ser	Gly	Gly	Pro	His 415	Val
Thr	Glu	Val	Glu 420	Gly	Thr	Ser	Phe	Leu 425	Thr	Gly	Ile	Ile	Ser 430	Trp	Gly
Glu	Glu	Cys 435	Ala	Met	Lys	Gly	Lys 440	Tyr	Gly	Ile	Tyr	Thr 445	Lys	Val	Ser
Arg	Tyr 450	Val	Asn	Trp	Ile	Lys 455	Glu	Lys	Thr	Lys	Leu 460	Thr			

13/22 Fig. 11

Fig. 12a

Fig 12 b

BEST AVAILABLE COPY

Fig 12 c

Fig 12 d

16/22 Fig. 13

Detection of GFP expressed from Theragenevectors (n=16)

Fig. 14

Fig. 15

Fig. 16

Fig. 18

Fig. 19

1	MTELKAKGPR	APHVAGGPPS	PEVGSPLLCR	PAAGPFPGSO	TSDTLPEVSA	TRISINGLLE
61	PRPCQGQDPS	DEKTQDQQSL	SDVEGAYSRA	EATRGAGGSS	SSPPEKDSGL	LOSVLDTLLA
121	PSGFGQSQPS	PPACEVTSSW	CLFGPELPED	PPAAPATQRV	LSPLMSRSGC	
181	AHKVLPRGLS	PARQLLLPAS	ESPHWSGAPV	KPSPQAAAVE	VEEEDGSESE	ESAGPLLKGK
241	PRALGGAAAG	GGAAAVPPGA	AAGGVALVPK	EDSRFSAPRV	ALVEODAPMA	
301	MDFIHVPILP	LNHALLAART	RQLLEDESYD	GGAGAASAFA	PPRSSPCASS	TPVAVGDFPD
	CAYPPDAEPK	DDAYPLYSDE	QPPALKIKEE	EEGAEASARS	PRSYLVAGAN	PLAFPDEPLG
421	PPPPLPPRAT	PSRPGEAAVT	AAPASASVSS	ASSSGSTLEC	ILYKAEGAPP	OOGPFAPPPC
481	KAPGASGCLL	PRDGLPSTSA	SAAAAGAAPA	LYPALGLNGL	POLGYOAAVI.	KEGLPOVYPP
541	YLNYLRPDSE	ASQSPQYSFE	SLPQKICLIC	GDEASGCHYG	VLTCGSCKVF	FKRAMEGOHN
601	YLCAGRNDCI	VDKIRRKNCP	ACRLRKCCQA	GMVLGGRKFK	KENKVRVVRA	T.DAVAT.POPT
66I	GVPNESQALS	QRFTFSPGQD	IQLIPPLINL	LMSIEPDVIY	AGHDNTKPDT	SSSLLTSLNO
721	LGERQLLSVV	KWSKSLPGFR	NLHIDDQITL	IOYSWMSLMV	FGLGWRSYKH	VSGOMILY FAP
781	DLILNEQRMK	ESSFYSLCLT	MWQIPQEFVK	LOVSOEEFLC	MKVLLLLNTT	PLEGIRSOTO
841	FEEMRSSYIR	ELIKAIGLRQ	KGVVSSSQRF	YOLTKLLDNL	HDLVKOLHLY	CLNTFIOSRA
901	LSVEFPEMMS	EVIAAOLPKI	LAGMVKPLLF	HKK	£	

Fig. 20


```
SEQUENCE LISTING
     <110> Theragene Biomedical Laboratories GmbH
 5
     <120> Hormone-Hormone Receptor Complexes and Nucleic Acid
           Constructs and Their Use in Gene Therapy
     <130> 000065wo/JH/ml
10
     <140>
     <141>
     <160> 19
15
     <170> PatentIn Ver. 2.1
     <210> 1
     <211> 5753
     <212> DNA
20
     <213> Artificial Sequence
     <220>
     <223> Description of Artificial Sequence: vector pTGFG36
25
     <220>
     <221> CDS
     <222> (689)..(2071)
30
     <400> 1.
     cgcgttgaca ttgattattg actagttatt aatagtaatc aattacgggg tcattagttc 60
     atageceata tatggagtte egegttaeat aacttaeggt aaatggeeeg eetggetgae 120
35
     cgcccaacga cccccgccca ttgacgtcaa taatgacgta tgttcccata gtaacgccaa 180
     tagggacttt ccattgacgt caatgggtgg agtatttacg gtaaactgcc cacttggcag 240
     tacatcaagt gtatcatatg ccaagtacgc cccctattga cgtcaatgac ggtaaatggc 300
40
     ccgcctggca ttatgcccag tacatgacct tatgggactt tcctacttgg cagtacatct 360
     acgtattagt catcgctatt accatggtga tgcggttttg gcagtacatc aatgggcgtg 420
45
     gatageggtt tgacteaegg ggattteeaa gteteeaece cattgaegte aatgggagtt 480
     tgttttggca ccaaaatcaa cgggactttc caaaatgtcg taacaactcc gccccattga 540
     cgcaaatggg cggtaggcgt gtacggtggg aggtctatat aagcagagct ctctggctaa 600
50
     ctagagaacc cactgettae tggettateg aaattaatae gaeteaetat agggagaeee 660
     aagettgeat gecaatteeg caaaggtt atg eag ege gtg aac atg ate atg
                                                                        712
                                    Met Gln Arg Val Asn Met Ile Met
55
     gca gaa tca cca ggc ctc atc acc atc tgc ctt tta gga tat cta ctc
                                                                        760
    Ala Glu Ser Pro Gly Leu Ile Thr Ile Cys Leu Leu Gly Tyr Leu Leu
          10
                              15
60
```

	agt Ser 25	gct Ala	gaa Glu	tgt Cys	aca Thr	gtt Val 30	ttt Phe	ctt Leu	gat Asp	cat His	gaa Glu 35	aac Asn	gcc Ala	aac Asn	aaa Lys	att Ile 40	808
5	ctg Leu	aat Asn	cgg Arg	cca Pro	aag Lys 45	agg Arg	tat Tyr	aat Asn	tca Ser	ggt Gly 50	aaa Lys	ttg Leu	gaa Glu	gag Glu	ttt Phe 55	gtt Val	856
10	caa Gln	Gly	aac Asn	ctt Leu 60	gag Glu	aga Arg	gaa Glu	tgt Cys	atg Met 65	gaa Glu	gaa Glu	aag Lys	tgt Cys	agt Ser 70	ttt Phe	gaa Glu	904
15	gaa Glu	gca Ala	cga Arg 75	gaa Glu	gtt Val	ttt Phe	gaa Glu	aạc Asn 80	act Thr	gaa Glu	aga Arg	aca Thr	act Thr 85	gaa Glu	ttt Phe	tgg Trp	952
20	aag Lys	cag Gln 90	tat Tyr	gtt Val	gat Asp	gga Gly	gat Asp 95	cag Gln	tgt Cys	gag Glu	tcc Ser	aat Asn 100	cca Pro	tgt Cys	tta Leu	aat Asn	1000
	ggc Gly 105	ggc Gly	agt Ser	tgc Cys	aag Lys	gat Asp 110	gac Asp	att Ile	aat Asn	tcc Ser	tat Tyr 115	gaa Glu	tgt Cys	tgg Trp	tgt Cys	ccc Pro 120	1048
25	ttt Phe	gga Gly	ttt Phe	gaa Glu	gga Gly 125	aag Lys	aac Asn	tgt Cys	gaa Glu	tta Leu 130	gat Asp	gta Val	aca Thr	tgt Cys	aac Asn 135	att Ile	1096
30	aag Lys	aat Asn	ggc Gly	aga Arg 140	tgc Cys	gag Glu	cag Gln	ttt Phe	tgt Cys 145	aaa Lys	aat Asn	agt Ser	gct Ala	gat Asp 150	aac Asn	aag Lys	1144
35	gtg Val	gtt Val	tgc Cys 155	tcc Ser	tgt Cys	act Thr	gag Glu	gga Gly 160	tat Tyr	cga Arg	ctt Leu	gca Ala	gaa Glu 165	aac Asn	cag Gln	aag Lys	1192
40	tcc Ser	tgt Cys 170	gaa Glu	cca Pro	gca Ala	gtg Val	cca Pro 175	ttt Phe	cca Pro	tgt Cys	gga Gly	aga Arg 180	gtt Val	tct Ser	gtt Val	tca Ser	1240
	caa Gln 185	act Thr	tct Ser	aag Lys	ctc Leu	acc Thr 190	cgt Arg	gct Ala	gag Glu	act Thr	gtt Val 195	ttt Phe	cct Pro	gat Asp	gtg Val	gac Asp 200	1288
45	tat Tyr	gta Val	aat Asn	tct Ser	act Thr 205	gaa Glu	gct Ala	gaa Glu	acc Thr	att Ile 210	ttg Leu	gat Asp	aac Asn	atc Ile	act Thr 215	caa Gln	1336
50	agc Ser	acc Thr	caa Gln	tca Ser 220	ttt Phe	aat Asn	gac Asp	ttc Phe	act Thr 225	cgg Arg	gtt Val	gtt Val	ggt Gly	gga Gly 230	gaa Glu	gat Asp	1384
55	gcc Ala	aaa Lys	cca Pro 235	ggt Gly	caa Gln	ttc Phe	cct Pro	tgg Trp 240	cag Gln	gtt Val	gtt Val	ttg Leu	aat Asn 245	ggt Gly	aaa Lys	gtt Val	1432
60	gat Asp	gca Ala 250	ttc Phe	tgt Cys	gga Gly	ggc Gly	tct Ser 255	atc Ile	gtt Val	aat Asn	gaa Glu	aaa Lys 260	tgg Trp	att Ile	gta Val	act Thr	1480

	gct Ala 265	gcc Ala	cac His	tgt Cys	gtt Val	gaa Glu 270	act Thr	ggt Gly	gtt Val	aaa Lys	att Ile 275	aca Thr	gtt Val	gtc Val	gca Ala	ggt Gly 280	1528
5	gaa Glu	cat His	aat Asn	att Ile	gag Glu 285	gag Glu	aca Thr	gaa Glu	cat His	aca Thr 290	gag Glu	caa Gln	aag Lys	cga Arg	aat Asn 295	gtg Val	1576
10	att Ile	cga Arg	att Ile	att Ile 300	cct Pro	cac His	cac His	aac Asn	tac Tyr 305	aat Asn	gca Ala	gct Ala	att Ile	aat Asn 310	aag Lys	tac Tyr	1624
15	aac Asn	cat His	gac Asp 315	att Ile	gcc Ala	ctt Leu	ctg Leu	gaa Glu 320	ctg Leu	gac Asp	gaa Glu	ccc Pro	tta Leu 325	gtg Val	cta Leu	aac Asn	1672
20	agc Ser	tac Tyr 330	gtt Val	aca Thr	cct Pro	att Ile	tgc Cys 335	Ile	gct Ala	gac Asp	aag Lys	gaa Glu 340	tac Tyr	acg Thr	aac Asn	atc Ile	1720
	ttc Phe 345	ctc Leu	aaa Lys	ttt Phe	gga Gly	tct Ser 350	ggc Gly	tat Tyr	gta Val	agt Ser	ggc Gly 355	tgg Trp	gga Gly	aga Arg	gtc Val	ttc Phe 360	1768
25	cac His	aaa Lys	Gly ggg	aga Arg	tca Ser 365	gct Ala	tta Leu	gtt Val	ctt Leu	cag Gln 370	tac Tyr	ctt Leu	aga Arg	gtt Val	cca Pro 375	ctt Leu	1816
30	gtt Val	gac Asp	cga Arg	gcc Ala 380	aca Thr	tgt Cys	ctt Leu	cga Arg	tct Ser 385	aca Thr	aag Lys	ttc Phe	acc Thr	atc Ile 390	tat Tyr	aac Asn	1864
35	aac Asn	atg Met	ttc Phe 395	tgt Cys	gct Ala	ggc Gly	ttc Phe	cat His 400	gaa Glu	gga Gly	ggt Gly	aga Arg	gat Asp 405	tca Ser	tgt Cys	caa Gln	1912
40	gga Gly	gat Asp 410	agt Ser	ggg Gly	gga Gly	ccc Pro	cat His 415	gtt Val	act Thr	gaa Glu	gtg Val	gaa Glu 420	ggg Gly	acc Thr	agt Ser	ttc Phe	1960
	tta Leu 425	act Thr	gga Gly	att Ile	att Ile	agc Ser 430	tgg Trp	ggt Gly	gaa Glu	gag Glu	tgt Cys 435	gca Ala	atg Met	aaa Lys	ggc Gly	aaa Lys 440	2008
45	tat Tyr	gga Gly	ata Ile	tat Tyr	acc Thr 445	aag Lys	gta Val	tcc Ser	cgg Arg	tat Tyr 450	gtc Val	aac Asn	tgg Trp	att Ile	aag Lys 455	gaa Glu	2056
50	aaa Lys	aca Thr	aag Lys	ctc Leu 460	act Thr	taat	ggga	itc <u>c</u>	gteg	gageg	id co	gega	ctct	act	agag	gat	2111
	cttt	gtga	ag g	jaaco	ttac	t to	tgto	gtgt	gac	cataa	ttg	gaca	aact	ac c	taca	gagat	2171
55															_	attct	
																gtggaa	
60															_	gaggc	
	tact	gcto	gac t	ctca	acat	t ct	acto	ctcc	aaa	aaaq	jaag	agaa	aggt	ag a	agad	cccaa	2411

WO 00/49147 PCT/EP00/01368

-	ggactttcct	tcagaattgc	taagttttt	gagtcatgct	gtgtttagta	atagaactct	247
	tgcttgcttt	gctatttaca	ccacaaagga	aaaagctgca	ctgctataca	agaaaattat	253
5	ggaaaaatat	tctgtaacct	ttataagtag	gcataacagt	tataatcata	acatactgtt	2591
	ttttcttact	ccacacaggc	atagagtgtc	tgctattaat	aactatgctc	aaaaattgtg	2651
10	tacctttagc	tttttaattt	gtaaaggggt	taataaggaa	tatttgatgt	atagtgcctt	2711
	gactagagat	cataatcagc	cataccacat	ttgtagaggt	tttacttgct	ttaaaaaacc	2771
	tcccacacct	cccctgaac	ctgaaacata	aaatgaatgc	aattgttgtt	gttaacttgt	2831
15	ttattgcagc	ttataatggt	tacaaataaa	gcaatagcat	cacaaatttc	acaaataaag	2891
	cattttttc	actgcattct	agttgtggtt	tgtccaaact	catcaatgta	tcttatcatg	2951
20	tctggatccc	cgggtaccct	ctagagcgaa	ttaattcact	ggccgtcgtt	ttacaacgtc	3011
	gtgactggga	aaaccctggc	gttacccaac	ttaatcgcct	tgcagcacat	cccctttcg	3071
	ccagctggcg	taatagcgaa	gaggcccgca	ccgatcgccc	ttcccaacag	ttgcgcagcc	3131
25	tgaatggcga	atggcgcctg	atgcggtatt	ttctccttac	gcatctgtgc	ggtatttcac	3191
	accgcatatg	gtgcactctc	agtacaatct	gctctgatgc	cgcatagtta	agccagcccc	3251
30	gacacccgcc	aacacccgct	gacgcgccct	gacgggcttg	tctgctcccg	gcatccgctt	3311
	acagacaagc	tgtgaccgtc	tccgggagct	gcatgtgtca	gaggttttca	ccgtcatcac	3371
	cgaaacgcgc	gagacgaaag	ggggggtacc	agcttcgtag	ctagaacatc	atgttctggg	3431
35	atatcagctt	cgtagctaga	acatcatgtt	ctggtacccc	cctcgtgata	cgcctatttt	3491
	tataggttaa	tgtcatgata	ataatggttt	cttagacgtc	aggtggcact	tttcggggaa	3551
10	atgtgcgcgg	aacccctatt	tgtttatttt	tctaaataca	ttcaaatatg	tatccgctca	3611
	tgagacaata	accctgataa	atgcttcaat	aatattgaaa	aaggaagagt	atgagtattc	3671
	aacatttccg	tgtcgccctt	attccctttt	ttgcggcatt	ttgccttcct	gtttttgctc	3731
15	acccagaaac	gctggtgaaa	gtaaaagatg	ctgaagatca	gttgggtgca	cgagtgggtt	3791
	acatcgaact	ggatctcaac	agcggtaaga	tccttgagag	ttttcgcccc	gaagaacgtt	3851
50	ttccaatgat	gagcactttt	aaagttctgc	tatgtggcgc	ggtattatcc	cgtattgacg	3911
	ccgggcaaga	gcaactcggt	cgccgcatac	actattctca	gaatgacttg	gttgagtact	3971
	caccagtcac	agaaaagcat	cttacggatg	gcatgacagt	aagagaatta	tgcagtgctg	4031
55	ccataaccat	gagtgataac	actgcggcca	acttacttct	gacaacgatc	ggaggaccga	4091
	aggagctaac	cgcttttttg	cacaacatgg	gggatcatgt	aactcgcctt	gatcgttggg	4151
50						cctgtagcaa	
	tggcaacaac	gttgcgcaaa	ctattaactg	gcgaactact	tactctagct	tcccggcaac	4271

```
aattaataga ctggatggag gcggataaag ttgcaggacc acttctgcgc tcggcccttc 4331
     cggctggctg gtttattgct gataaatctg gagccggtga gcgtgggtct cgcggtatca 4,391
 5
     ttgcagcact ggggccagat ggtaagccct cccgtatcgt agttatctac acqacqqqqa 4451
     gtcaggcaac tatggatgaa cgaaatagac agatcgctga gataggtgcc tcactgatta 4511
     agcattggta actgtcagac caagtttact catatatact ttagattgat ttaaaacttc 4571
10
     atttttaatt taaaaggatc taggtgaaga teetttttga taateteatg accaaaatee 4631
     cttaacgtga gttttcgttc cactgagegt cagaccccgt agaaaagatc aaaggatctt 4691
15
     cttgagatcc tttttttctg cgcgtaatct gctgcttgca aacaaaaaaa ccaccqctac 4751
     cagcggtggt ttgtttgccg gatcaagagc taccaactct ttttccgaag gtaactggct 4811
     tcagcagage geagatacea aatactgtte ttetagtgta geegtagtta ggeeaceact 4871
20
     tcaagaactc tgtagcaccg cctacatacc tcgctctgct aatcctgtta ccagtggctg 4931
     ctgccagtgg cgataagtcg tgtcttaccg ggttggactc aagacgatag ttaccggata 4991
25
     aggcgcagcg gtcgggctga acggggggtt cgtgcacaca gcccagcttg gagcgaacga 5051
     cctacaccga actgagatac ctacagcgtg agctatgaga aagcgccacg cttcccgaag 5111
     ggagaaaggc ggacaggtat ccggtaagcg gcagggtcgg aacaggagag cgcacgaggg 5171
30
     agcttccagg gggaaacgcc tggtatcttt atagtcctgt cgggtttcgc cacctctgac 5231
     ttgagcgtcg atttttgtga tgctcgtcag gggggcggag cctatggaaa aacgccagca 5291
35
     acgeggeett tttaeggtte etggeetttt getggeettt tgeteacatg ttettteetg 5351
     cgttatcccc tgattctgtg gataaccgta ttaccgcctt tgagtgagct gataccgctc 5411
     gccgcagccg aacgaccgag cgcagcgagt cagtgagcga ggaagcggaa gagcgcccaa 5471
40
     tacgcaaacc gcctctcccc gcgcgttggc cgattcatta atgcagctgg cacgacaggt 5531
     ttcccgactg gaaagcgggc agtgagcgca acgcaattaa tgtgagttag ctcactcatt 5591
45
     aggcacccca ggctttacac tttatgcttc cggctcgtat gttgtgtgga attgtgagcg 5651
     gataacaatt tcacacagga aacagctatg accatgatta cgccaagctc tctagagctc 5711
     tagageteta gagetetaga gagettgeat geetgeaggt eg
                                                                        5753
50
     <210> 2
     <211> 461
     <212> PRT
55
     <213> Artificial Sequence
     <223> Description of Artificial Sequence: vector pTGFG36
     <400> 2
     Met Gln Arg Val Asn Met Ile Met Ala Glu Ser Pro Gly Leu Ile Thr
60
```

	Ile	Cys	Leu	Leu 20	Gly	Tyr	Leu	Leu	Ser 25	Ala	Glu	Cys	Thr	Val 30	Phe	Leu
5	Asp	His	Glu 35	Asn	Ala	Asn	Lys	Ile 40	Leu	Asn	Arg	Pro	Lys 45	Arg	Tyr	Asn
	Ser	Gly 50	Lys	Leu	Glu	Glu	Phe 55	Val	Gln	Gly	Asn	Leu 60	Glu	Arg	Glu	Cys
10	Met 65	Glu	Glu	Lys	Cys	Ser 70	Phe	Glu	Glu	Ala	Arg 75	Glu	Val	Phe	Glu	Asn 80
15	Thr	Glu	Arg	Thr	Thr 85	Glu	Phe	Trp	Lys	Gln 90	Tyr	Val	Asp	Gly	Asp 95	Gln
	Cys	Glu	Ser	Asn 100	Pro	Суѕ	Leu	Asn	Gly 105	Gly	Ser	Cys	Lys	Asp 110	Asp	Ile
20	Asn	Ser	Tyr 115	Glu	Cys	Trp	Cys	Pro 120	Phe	Gly	Phe	Glu	Gly 125	Lys	Asn	Cys
	Glu	Leu 130	Asp	Val	Thr	Cys	Asn 135	Ile	Lys	Asn	Gly	Arg 140	Cys	Glu	Gln	Phe
25	Cys 145	Lys	Asn	Ser	Ala	Asp 150	Asn	Lys	Val	Val	Cys 155	Ser	Cys	Thr	Glu	Gly 160
30	Tyr	Arg	Leu	Ala	Glu 165	Asn	Gln	Lys	Ser	Cys 170	Glu	Pro	Ala	Val	Pro 175	Phe
	Pro	Cys	Gly	Arg 180	Val	Ser	Val	Ser	Gln 185	Thr	Ser	Lys	Leu	Thr 190	Arg	Ala
35	Glu	Thr	Val 195	Phe	Pro	Asp	Val	Asp 200	Tyr	Val	Asn	Ser	Thr 205	Glu	Ala	Glu
	Thr	Ile 210	Leu	Asp	Asn	Ile	Thr 215	Gln	Ser	Thr	Gln	Ser 220	Phe	Asn	Asp	Phe
40	Thr 225	Arg	Val	Val	Gly	Gly 230	Glu	Asp	Ala	Lys	Pro 235	Gly	Gln	Phe	Pro	Trp 240
45	Gln	Val	Val	Leu	Asn 245	Gly	Lys	Val	Asp	Ala 250	Phe	Суѕ	Gly	Gly	Ser 255	Ile
	Val	Asn	Glu	Lys 260	Trp	Ile	Val	Thr	Ala 265	Ala	His	Cys	Val	Glu 270	Thr	Gly
50	Val	Lys	Ile 275	Thr	Val	Val	Ala	Gly 280	Glu	His	Asn	Ile	Glu 285	Glu	Thr	Glu
	His	Thr 290	Glu	Gln	Lys	Arg	Asn 295	Val	Ile	Arg	Ile	Ile 300	Pro	His	His	Asn
55	305	Asn				310					315		•			320
60	Leu	Asp	Glu	Pro	Leu 325	Val	Leu	Asn	Ser	Tyr 330	Val	Thr	Pro	Ile	Cys 335	Ile
	Ala	Asp	Lys	Glu 340	Tyr	Thr	Asn	Ile	Phe 345	Leu	Lys	Phe	Gly	Ser 350	Gly	Tyr

	Val	Ser	Gly 355	Trp	Gly	Arg	Val	Phe 360	His	Lys	Gly	Arg	Ser 365	Ala	Leu	Val	
5	Leu	Gln 370	Tyr	Leu	Arg	Val	Pro 375	Leu	Val	Asp	Arg	Ala 380	Thr	Cys	Leu	Arg	
10	Ser 385	Thr	Lys	Phe	Thr	Ile 390	Tyr	Asn	Asn	Met	Phe 395	Cys	Ala	Gly	Phe	His 400	
	Glu	Gly	Gly	Arg	Asp 405	Ser	Cys	Gln	Gly	Asp 410	Ser	Gly	Gly	Pro	His 415	Val	
15	Thr	Glu	Val	Glu 420	Gly	Thr	Ser	Phe	Leu 425	Thr	Gly	Ile	Ile	Ser 430	Trp	Gly	
	Glu	Glu	Cys 435	Ala	Met	Lys	Gly	Lys 440	Tyr	Gly	Ile	Tyr	Thr 445	Lys	Val	Ser	
20	Arg	Tyr 450	Val	Asn	Trp	Ile	Lys 455	Glu	Lys	Thr	Lys	Leu 460	Thr				
25	<212)> 3 l> 78 ?> DN 3> Hc	IΑ	sapie	ens												
30	<400 gggg atca		ag d	etteg ggtad	gt <u>ag</u> c ccc	t ag	jaaca	atcat	gtt	ctgg	gat	atca	ıgctt	cg t	agct	agaac	60 78
35	<212)> 4 .> 78 !> DN B> Ho	ΙA	sapie	ens												
1 0	<400 gggg ctac		ag a	acat ggtac	gato ccc	rt to	tago	etacç	aag	ıctga	ıtat	ccca	ıgaac	at g	gatgt	tctag	60 78
1 5	<212)> 5 .> 19 !> DN !> Ho	A	apie	ens												
50	<400 agct	> 5 tgac	ct c	gago	aago	:											19
55	<212)> 6 .> 19 !> DN !> Ho	A	sapie	ens												
50	<400 ggcc	> 6 gctt	gc t	cgag	gtca	ι											19

5	<210> 7 <211> 43 <212> DNA <213> Homo sapiens	
5	<400> 7 ggaattccgc aaaggttatg cagcgcgtga acatgatcat ggc	43
		71.
10	<210> 8 <211> 39 <212> DNA <213> Homo sapiens	
15	<400> 8 cgcggatcca ttaagtgagc tttgtttttt ccttaatcc	39
20	<210> 9 <211> 26 <212> DNA <213> Homo sapiens	
25	<400> 9 cgaggatcca gtcgtcatga ctgagc	26
30	<210> 10 <211> 41 <212> DNA <213> Homo sapiens	
35	<400> 10	41
40	<210> 11 <211> 20 <212> DNA <213> Homo sapiens	
	<400> 11 ctcctcgggg tcgaccctgg	20
45	<210> 12 <211> 20 <212> DNA	
50	<213> Homo sapiens <400> 12 ccagggtcga ccccgaggag	20
55	<210> 13 <211> 5905 <212> DNA <213> Artificial Sequence	
60	<220> <223> Description of Artificial Sequence: vector pTGFG53	

<400> 13 cgcgttgaca ttgattattg actagttatt aatagtaatc aattacgggg tcattagttc 60 atageceata tatggagtte egegttaeat aacttaeggt aaatggeeeg eetggetgae 120 cgcccaacga cccccgccca ttgacgtcaa taatgacgta tgttcccata gtaacgccaa 180 tagggacttt ccattgacgt caatgggtgg agtatttacg gtaaactgcc cacttggcag 240 tacatcaagt gtatcatatg ccaagtacgc cccctattga cgtcaatgac ggtaaatggc 300 ccgcctggca ttatgcccag tacatgacct tatgggactt tcctacttgg cagtacatct 360 acgtattagt catcgctatt accatggtga tgcggttttg gcagtacatc aatgggcgtg 420 gatagcggtt tgactcacgg ggatttccaa gtctccaccc cattgacgtc aatgggagtt 480 10 tgttttggca ccaaaatcaa cgggactttc caaaatgtcg taacaactcc gccccattga 540 cgcaaatggg cggtaggcgt gtacggtggg aggtctatat aagcagagct ctctggctaa 600 ctagagaacc cactgcttac tggcttatcg aaattaatac gactcactat agggagaccc 660 aagcttgcat gccaattccg caaaggttat gcagcgcgtg aacatgatca tggcagaatc 720 accaggeete ateaceatet geettttagg atatetaete agtgetgaat gtacagtttt 780 tettgateat gaaaacgeca acaaaattet gaateggeca aagaggtata atteaggtaa 840 15 attggaagag tttgttcaag ggaaccttga gagagaatgt atggaagaaa agtgtagttt 900 tgaagaagca cgagaagttt ttgaaaacac tgaaagaaca actgaatttt ggaagcagta 960 tgttgatgga gatcagtgtg agtccaatcc atgtttaaat ggcggcagtt gcaaggatga 1020 cattaattcc tatgaatgtt ggtgtccctt tggatttgaa ggaaagaact gtgaattaga 1080 20 tgtaacatgt aacattaaga atggcagatg cgagcagttt tgtaaaaata gtgctgataa 1140 caaggtggtt tgctcctgta ctgagggata tcgacttgca gaaaaccaga agtcctgtga 1200 accagcagtg ccatttccat gtggaagagt ttctgtttca caaacttcta agctcacccg 1260 tgctgagact gtttttcctg atgtggacta tgtaaattct actgaagctg aaaccatttt 1320 ggataacatc actcaaagca cccaatcatt taatgacttc actcgggttg ttggtggaga 1380 25 agatgccaaa ccaggtcaat tcccttggca ggttgttttg aatggtaaag ttgatgcatt 1440 ctgtggaggc tctatcgtta atgaaaaatg gattgtaact gctgcccact gtgttgaaac 1500 tggtgttaaa attacagttg tcgcaggtga acataatatt gaggagacag aacatacaga 1560 gcaaaagcga aatgtgattc gaattattcc tcaccacaac tacaatgcag ctattaataa 1620 gtacaaccat gacattgccc ttctggaact ggacgaaccc ttagtgctaa acagctacgt 1680 30 tacacctatt tgcattgctg acaaggaata cacgaacatc ttcctcaaat ttggatctgg 1740 ctatgtaagt ggctggggaa gagtcttcca caaagggaga tcagctttag ttcttcagta 1800 ccttagagtt ccacttgttg accgagccac atgtcttcga tctacaaagt tcaccatcta 1860 taacaacatg ttctgtgctg gcttccatga aggaggtaga gattcatgtc aaggagatag 1920 tgggggaccc catgttactg aagtggaagg gaccagtttc ttaactggaa ttattagctg 1980 35 gggtgaagag tgtgcaatga aaggcaaata tggaatatat accaaggtat cccggtatgt 2040 caactggatt aaggaaaaaa caaagctcac ttaatgggat cggtcgagcg gccgcgactc 2100 tactagagga tctttgtgaa ggaaccttac ttctgtggtg tgacataatt ggacaaacta 2160 cctacagaga tttaaagctc taaggtaaat ataaaatttt taagtgtata atgtgttaaa 2220 ctactgattc taattgtttg tgtattttag attccaacct atggaactga tgaatgggag 2280 40 cagtggtgga atgcctttaa tgaggaaaac ctgttttgct cagaagaaat gccatctagt 2340 gatgatgagg ctactgctga ctctcaacat tctactcctc caaaaaagaa gagaaaggta 2400 gaagacccca aggactttcc ttcagaattg ctaagttttt tgagtcatgc tgtgtttagt 2460 aatagaactc ttgcttgctt tgctatttac accacaaagg aaaaagctgc actgctatac 2520 aagaaaatta tggaaaaata ttotgtaaco tttataagta ggoataacag ttataatoat 2580 aacatactgt tttttcttac tccacacagg catagagtgt ctgctattaa taactatgct 2640 caaaaattgt gtacctttag ctttttaatt tgtaaagggg ttaataagga atatttgatg 2700 45 tatagtgcct tgactagaga tcataatcag ccataccaca tttgtagagg ttttacttgc 2760 tttaaaaaac ctcccacacc tccccctgaa cctgaaacat aaaatgaatg caattgttgt 2820 tgttaacttg tttattgcag cttataatgg ttacaaataa agcaatagca tcacaaattt 2880 50 cacaaataaa gcattttttt cactgcattc tagttgtggt ttgtccaaac tcatcaatgt 2940 atcttatcat gtctggatcc ccggggggta ccagcttcgt agctagaaca tcatgttctg 3000 ggatatcage ttegtageta gaacateatg ttetggtace ecegetetag agegaattaa 3060 ttcactggcc gtcgttttac aacgtcgtga ctgggaaaac cctggcgtta cccaacttaa 3120 tegeettgea geacateece etttegeeag etggegtaat agegaagagg ecegeacega 3180 55 tegecettee caacagttge geageetgaa tggegaatgg egeetgatge ggtatttet 3240 cettacgcat ctgtgcggta tttcacaccg catatggtgc actctcagta caatctgctc 3300 tgatgccgca tagttaagcc agccccgaca cccgccaaca cccgctgacg cgccctgacg 3360 ggettgtetg etceeggeat eegettacag acaagetgtg acegteteeg ggagetgeat 3420 gtgtcagagg ttttcaccgt catcaccgaa acgcgcgaga cgaaagggcg gggtaccaga 3480 60 acatgatgtt ctagctacga agctgatatc ccagaacatg atgttctagc tacgaagctg 3540 gtaccccggc ctcgtgatac gcctattttt ataggttaat gtcatgataa taatggtttc 3600 ttagacgica ggiggcacti ticggggaaa igtgcgcgga acccctatti gittattiti 3660

```
ctaaatacat tcaaatatgt atccgctcat gagacaataa ccctgataaa tgcttcaata 3720
     atattgaaaa aggaagagta tgagtattca acatttccgt gtcgccctta ttcccttttt 3780
     tgcggcattt tgccttcctg tttttgctca cccagaaacg ctggtgaaag taaaagatgc 3840
     tgaagatcag ttgggtgcac gagtgggtta catcgaactg gatctcaaca gcggtaagat 3900
     cettgagagt tttegececg aagaacgttt tecaatgatg ageaetttta aagttetget 3960
     atgtggcgcg gtattatccc gtattgacgc cgggcaagag caactcggtc gccgcataca 4020
     ctattctcag aatgacttgg ttgagtactc accagtcaca gaaaagcatc ttacggatgg 4080
     catgacagta agagaattat gcagtgctgc cataaccatg agtgataaca ctgcggccaa 4140
     cttacttctg acaacgatcg gaggaccgaa ggagctaacc gcttttttgc acaacatggg 4200
10
     ggatcatgta actcgccttg atcgttggga accggagctg aatgaagcca taccaaacga 4260
     cgagcgtgac accacgatgc ctgtagcaat ggcaacaacg ttgcgcaaac tattaactgg 4320
     cgaactactt actctagctt cccggcaaca attaatagac tggatggagg cggataaagt 4380
     tgcaggacca cttctgcgct cggcccttcc ggctggctgg tttattgctg ataaatctgg 4440
     agccggtgag cgtgggtctc gcggtatcat tgcagcactg gggccagatg gtaagccctc 4500
     ccgtatcgta gttatctaca cgacggggag tcaggcaact atggatgaac gaaatagaca 4560
15
     gategetgag ataggtgeet caetgattaa geattggtaa etgteagace aagtttaete 4620
     atatatactt tagattgatt taaaacttca tttttaattt aaaaggatct aggtgaagat 4680
     cctttttgat aatctcatga ccaaaatccc ttaacgtgag ttttcgttcc actgagcgtc 4740
     agaccccgta gaaaagatca aaggatcttc ttgagatcct ttttttctgc gcgtaatctg 4800
     ctgcttgcaa acaaaaaac caccgctacc agcggtggtt tgtttgccgg atcaagagct 4860
20
     accaactett ttteegaagg taactggett cageagageg cagataceaa atactgteet 4920
     tctagtgtag ccgtagttag gccaccactt caagaactct gtagcaccgc ctacatacct 4980
     cgctctgcta atcctgttac cagtggctgc tgccagtggc gataagtcgt gtcttaccgg 5040
     gttggactca agacgatagt tacggataag gcgcagcggt cgggctgaac ggggggttcg 5100
25
     tgcacacage ccagettgga gcgaacgace tacaccgaac tgagatacet acagegtgag 5160
     ctatgagaaa gegeeacget teeegaaggg agaaaggegg acaggtatee ggtaagegge 5220
    agggtcggaa caggagagcg cacgagggag cttccagggg gaaacgcctg gtatctttat 5280 agtcctgtcg ggtttcgcca cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg 5340 gggcggagcc tatggaaaaa cgccagcaac gcggcctttt tacggttcct ggccttttgc 5400
     tggccttttg ctcacatgtt ctttcctgcg ttatcccctg attctgtgga taaccgtatt 5460
30
     accgcctttg agtgagctga taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca 5520
     gtgagcgagg aagcggaaga gcgcccaata cgcaaaccgc ctctccccgc gcgttggccg 5580
     attcattaat gcagctggca cgacaggttt cccgactgga aagcgggcag tgagcgcaac 5640
     gcaattaatg tgagttaget cactcattag gcaccccagg ctttacactt tatgetteeg 5700
35
     getegtatgt tgtgtggaat tgtgagegga taacaattte acacaggaaa cagetatgae 5760
     catgattacg ccaagetete tagageteta gagetetaga getetagaga gettgeatge 5820
     cggggtacca gcttcgtagc tagaacatca tgttctggga tatcagcttc gtagctagaa 5880
     catcatgttc tggtaccccg gtcga
                                                                           5905
40
     <210> 14
     <211> 6052
     <212> DNA
     <213> Artificial Sequence
45
     <220>
     <223> Description of Artificial Sequence: vector pTGFG64
     <400> 14
50
     cgcgttgaca ttgattattg actagttatt aatagtaatc aattacgggg tcattagttc 60
     atageceata tatggagtte egegttacat aacttaeggt aaatggeeeg eetggetgae 120
     cgcccaacga cccccgccca ttgacgtcaa taatgacgta tgttcccata gtaacgccaa 180
     tagggacttt ccattgacgt caatgggtgg agtatttacg gtaaactgcc cacttggcag 240
     tacatcaagt gtatcatatg ccaagtacgc cccctattga cgtcaatgac ggtaaatggc 300
55
     ccgcctggca ttatgcccag tacatgacct tatgggactt tcctacttgg cagtacatct 360
     acgtattagt categotatt accatggtga tgcggttttg gcagtacatc aatgggcgtg 420
     gatageggtt tgactcaegg ggatttecaa gtetecaece cattgaegte aatgggagtt 480
    tgttttggca ccaaaatcaa cgggactttc caaaatgtcg taacaactcc gcccattga 540 cgcaaatggg cggtaggcgt gtacggtggg aggtctatat aagcagagct ctctggctaa 600
     ctagagaacc cactgettae tggettateg aaattaatae gaeteactat agggagaeee 660
60
     aagcttgcat gccaattccg caaaggttat gcagcgcgtg aacatgatca tggcagaatc 720
     accaggeete ateaceatet geettttagg atatetacte agtgetgaat gtacagtttt 780
```

tcttgatcat gaaaacgcca acaaaattct gaatcggcca aagaggtata attcaggtaa 840 attggaagag tttgttcaag ggaaccttga gagagaatgt atggaagaaa agtgtagttt 900 tgaagaagca cgagaagttt ttgaaaacac tgaaagaaca actgaatttt ggaagcagta 960 tgttgatgga gatcagtgtg agtccaatcc atgtttaaat ggcggcagtt gcaaggatga 1020 5 cattaattcc tatgaatgtt ggtgtccctt tggatttgaa ggaaagaact gtgaattaga 1080 tgtaacatgt aacattaaga atggcagatg cgagcagttt tgtaaaaata gtgctgataa 1140 caaggtggtt tgctcctgta ctgagggata tcgacttgca gaaaaccaga agtcctgtga 1200 accagcagtg ccatttccat gtggaagagt ttctgtttca caaacttcta agctcacccg 1260 tgctgagact gtttttcctg atgtggacta tgtaaattct actgaagctg aaaccatttt 1320 10 ggataacatc actcaaagca cccaatcatt taatgacttc actcgggttg ttggtggaga 1380 agatgccaaa ccaggtcaat tcccttggca ggttgttttg aatggtaaag ttgatgcatt 1440 ctgtggaggc tctatcgtta atgaaaaatg gattgtaact gctgcccact gtgttgaaac 1500 tggtgttaaa attacagttg tcgcaggtga acataatatt gaggagacag aacatacaga 1560 gcaaaagcga aatgtgattc gaattattcc tcaccacaac tacaatgcag ctattaataa 1620 gtacaaccat gacattgccc ttctggaact ggacgaaccc ttagtgctaa acagctacgt 1680 tacacctatt tgcattgctg acaaggaata cacgaacatc ttcctcaaat ttggatctgg 1740 15 ctatgtaagt ggctggggaa gagtcttcca caaagggaga tcagctttag ttcttcagta 1800 cettagagtt ccacttgttg accgagecae atgtettega tetacaaagt teaccateta 1860 taacaacatg ttctgtgctg gcttccatga aggaggtaga gattcatgtc aaggagatag 1920 20 tgggggaccc catgttactg aagtggaagg gaccagtttc ttaactggaa ttattagctg 1980 gggtgaagag tgtgcaatga aaggcaaata tggaatatat accaaggtat cccggtatgt 2040 caactggatt aaggaaaaaa caaageteae ttaatgggat eggtegageg geegegaete 2100 tactagagga tetttgtgaa ggaacettae ttetgtggtg tgacataatt ggacaaacta 2160 eetacagaga tttaaagete taaggtaaat ataaaatttt taagtgtata atgtgttaaa 2220 25 ctactgattc taattgittg tgtattttag attccaacct atggaactga tgaatgggag 2280 cagtggtgga atgcctttaa tgaggaaaac ctgttttgct cagaagaaat gccatctagt 2340 gatgatgagg ctactgctga ctctcaacat tctactcctc caaaaaagaa gagaaaggta 2400 gaagacccca aggactttcc ttcagaattg ctaagttttt tgagtcatgc tgtgtttagt 2460 aatagaactc ttgcttgctt tgctatttac accacaaagg aaaaagctgc actgctatac 2520 30 aagaaaatta tggaaaaata ttctgtaacc tttataagta ggcataacag ttataatcat 2580 aacatactgt tttttcttac tccacacagg catagagtgt ctgctattaa taactatgct 2640 caaaaattgt gtacctttag ctttttaatt tgtaaagggg ttaataagga atatttgatg 2700 tatagtgcct tgactagaga tcataatcag ccataccaca tttgtagagg ttttacttgc 2760 tttaaaaaac ctcccacacc tccccctgaa cctgaaacat aaaatgaatg caattgttgt 2820 35 tgttaacttg tttattgcag cttataatgg ttacaaataa agcaatagca tcacaaattt 2880 cacaaataaa gcatttttt cactgcattc tagttgtggt ttgtccaaac tcatcaatgt 2940 atcttatcat gtctggatcc ccggggggta ccagcttcgt agctagaaca tcatgttctg 3000 ggatatcago ttogtageta gaacatcatg ttotggtaco cocctotaga gogaattaat 3060 toactggoog togttttaca acgtogtgac tgggaaaaco ctggogttac ccaacttaat 3120 cgccttgcag cacatccccc tttcgccagc tggcgtaata gcgaagaggc ccgcaccgat 3180 40 egecetteee aacagttgeg cageetgaat ggegaatgge ggggtaceag ettegtaget 3240 agaacatcat gttctgggat atcagcttcg tagctagaac atcatgttct ggtaccccgc 3300 ctgatgcggt attttctcct tacgcatctg tgcggtattt cacaccgcat atggtgcact 3360 ctcagtacaa tetgetetga tgccgcatag ttaagccage cccgacacee gccaacacee 3420 getgaegege cetgaeggge tigtetgete eeggeateeg ettaeagaea agetgtgaee 3480 gteteeggga getgeatgtg teagaggttt teacegteat eacegaaaeg egegagaega 3540 45 aagggcacca gaacatgatg ttctagctac gaagctgata tcccagaaca tgatgttcta 3600 gctacgaage tggtaccccg cctcgtgata cgcctatttt tataggttaa tgtcatgata 3660 ataatggttt cttagacgtc aggtggcact tttcggggaa atgtgcgcgg aacccctatt 3720 50 tgtttatttt tctaaataca ttcaaatatg tatccgctca tgagacaata accctgataa 3780 atgetteaat aatattgaaa aaggaagagt atgagtatte aacattteeg tgtegeeett 3840 attecetttt ttgeggeatt ttgeetteet gtttttgete acceagaaae getggtgaaa 3900 gtaaaagatg ctgaagatca gttgggtgca cgagtgggtt acatcgaact ggatctcaac 3960 ageggtaaga teettgagag tittegeece gaagaaegtt ticcaatgat gageaettit 4020 aaagttetge tatgiggege ggtattatee egtattgaeg eegggeaaga geaacteggt 4080 55 egeogeatae actattetea gaatgaettg gttgagtaet caccagteae agaaaageat 4140 cttacggatg gcatgacagt aagagaatta tgcagtgctg ccataaccat gagtgataac 4200 actgcggcca acttacttct gacaacgatc ggaggaccga aggagctaac cgcttttttg 4260 cacaacatgg gggatcatgt aactcgcctt gatcgttggg aaccggagct gaatgaagcc 4320 ataccaaacg acgagegtga caccacgatg cetgtageaa tggcaacaac gttgegeaaa 4380 etattaactg gegaactaet tactetaget teeeggeaac aattaataga etggatggag 4440 60 geggataaag ttgcaggace acttetgege teggeeette eggetggetg gtttattget 4500

```
gataaatctg gagccggtga gcgtgggtct cgcggtatca ttgcagcact ggggccagat 4560
     ggtaagccct cccgtatcgt agttatctac acgacgggga gtcaggcaac tatggatgaa 4620
     cgaaatagac agatcgctga gataggtgcc tcactgatta agcattggta actgtcagac 4680
     caagtttact catatatact ttagattgat ttaaaacttc atttttaatt taaaaggatc 4740
     taggtgaaga tootttttga taatotoatg accaaaatco ottaacgtga gttttcgtto 4800 cactgagegt cagaccocgt agaaaagato aaaggatott ottgagatoo tttttttotg 4860
 5
     cqcgtaatct gctgcttgca aacaaaaaa ccaccgctac cagcggtggt ttgtttgccg 4920
     gatcaagage taccaactet ttttccgaag gtaactgget tcagcagage gcagatacca 4980
     aatactgtcc ttctagtgta gccgtagtta ggccaccact tcaagaactc tgtagcaccg 5040
10
     cctacatacc tcgctctgct aatcctgtta ccagtggctg ctgccagtgg cgataagtcg 5100
     tgtcttaccg ggttggactc aagacgatag ttaccggata aggcgcagcg gtcgggctga 5160
     acggggggtt cgtgcacaca gcccagcttg gagcgaacga cctacaccga actgagatac 5220
     ctacagegtg agetatgaga aagegeeaeg etteeegaag ggagaaagge ggacaggtat 5280
     ccggtaagcg gcagggtcgg aacaggagag cgcacgaggg agcttccagg gggaaacgcc 5340
15
     tggtatcttt atagtcctgt cgggtttcgc cacctctgac ttgagcgtcg atttttgtga 5400
     tgctcgtcag gggggcggag cctatggaaa aacgccagca acgcggcctt tttacggttc 5460
     ctggcctttt gctggccttt tgctcacatg ttctttcctg cgttatcccc tgattctgtg 5520
     gataaccgta ttaccgcctt tgagtgagct gataccgctc gccgcagccg aacgaccgag 5580
     cgcagcgagt cagtgagcga ggggtaccag aacatgatgt tctagctacg aagctgatat 5640
20
     cccagaacat gatgttctag ctacgaagct ggtaccccag cggaagagcg cccaatacgc 5700
     aaaccgcctc tccccgcgcg ttggccgatt cattaatgca gctggcacga caggtttccc 5760
     gactggaaag cgggcagtga gcgcaacgca attaatgtga gttagctcac tcattaggca 5820 ccccaggctt tacactttat gcttccggct cgtatgttgt gtggaattgt gagcggataa 5880
     caatttcaca caggaaacag ctatgaccat gattacgcca agctctctag agctctagag 5940
25
     ctctagagct ctagagagct tgcatgccgg ggtaccagct tcgtagctag aacatcatgt 6000
     tctgggatat cagcttcgta gctagaacat catgttctgg taccccggtc ga
                                                                           6052
     <210> 15
30
     <211> 4344
     <212> DNA
     <213> Artificial Sequence
     <220>
35
     <223> Description of Artificial Sequence: vector pTGFG67
     cgcgttgaca ttgattattg actagttatt aatagtaatc aattacgggg tcattagttc 60
     atagcccata tatggagttc cgcgttacat aacttacggt aaatggcccg cctggctgac 120
40
     cgcccaacga ccccgccca ttgacgtcaa taatgacgta tgttcccata gtaacgccaa 180
     tagggacttt ccattgacgt caatgggtgg agtatttacg gtaaactgcc cacttggcag 240
     tacatcaagt gtatcatatg ccaagtacgc cccctattga cgtcaatgac ggtaaatggc 300
     ecgeetggca ttatgeecag tacatgacet tatgggactt tectacttgg cagtacatet 360
     acgtattagt categoratt accatggtga tgcggttttg gcagtacatc aatgggcgtg 420
45
     gatageggtt tgactcaegg ggatttecaa gtetecaeec cattgaegte aatgggagtt 480
     tgttttggca ccaaaatcaa cgggactttc caaaatgtcg taacaactcc gccccattga 540
     cgcaaatggg cggtaggcgt gtacggtggg aggtctatat aagcagagct ctctggctaa 600
     ctagagaacc cactgettac tggettateg aaattaatac gacteactat agggagaecc 660
     aagcttgacc tcgagcaagc ggccgcgact ctactagagg atctttgtga aggaacctta 720
50
     cttctgtggt gtgacataat tggacaaact acctacagag atttaaagct ctaaggtaaa 780
     tataaaaattt ttaagtgtat aatgtgttaa actactgatt ctaattgttt gtgtatttta 840
     gattccaacc tatggaactg atgaatggga gcagtggtgg aatgccttta atgaggaaaa 900
     cctgttttgc tcagaagaaa tgccatctag tgatgatgag gctactgctg actctcaaca 960
     ttctactcct ccaaaaaaga agagaaaggt agaagacccc aaggactttc cttcagaatt 1020
55
     gctaagtttt ttgagtcatg ctgtgtttag taatagaact cttgcttgct ttgctattta 1080
     caccacaaag gaaaaagctg cactgctata caagaaaatt atggaaaaat attctgtaac 1140
     ctttataagt aggcataaca gttataatca taacatactg tttttctta ctccacacag 1200
     gcatagagtg totgctatta ataactatgc toaaaaattg tgtaccttta gctttttaat 1260
     ttgtaaaggg gttaataagg aatatttgat gtatagtgcc ttgactagag atcataatca 1320
60
     gccataccac atttgtagag gttttacttg ctttaaaaaa cctcccacac ctcccctga 1380
     acctgaaaca taaaatgaat gcaattgttg ttgttaactt gtttattgca gcttataatg 1440 gttacaaata aagcaatagc atcacaaatt tcacaaataa agcattttt tcactgcatt 1500
```

```
ctagttgtgg tttgtccaaa ctcatcaatg tatcttatca tgtctggatc cccgggtacc 1560
     ctetagageg aattaattea etggeegteg ttttacaaeg tegtgaetgg gaaaaceetg 1620
     gcgttaccca acttaatcgc cttgcagcac atcccccttt cgccagctgg cgtaatagcg 1680
     aagaggeeeg caeegatege eetteeeaae agttgegeag eetgaatgge gaatggegee 1740
     tgatgcggta ttttctcctt acgcatctgt gcggtatttc acaccgcata tggtgcactc 1800
     tcagtacaat ctgctctgat gccgcatagt taagccagcc ccgacacccg ccaacacccg 1860
     ctgacgcgcc ctgacgggct tgtctgctcc cggcatccgc ttacagacaa gctgtgaccg 1920
     teteegggag etgeatgtgt cagaggtttt cacegteate acegaaacge gegagaegaa 1980
     agggggggta ccagcttcgt agctagaaca tcatgttctg ggatatcagc ttcgtagcta 2040
     gaacatcatg ttctggtacc cccctcgtga tacgcctatt tttataggtt aatgtcatga 2100
10
     taataatggt ttcttagacg tcaggtggca cttttcgggg aaatgtgcgc ggaaccccta 2160
     tttgtttatt tttctaaata cattcaaata tgtatccgct catgagacaa taaccctgat 2220
     aaatgettea ataatattga aaaaggaaga gtatgagtat teaacattte egtgtegeee 2280
     ttattccctt ttttgcggca ttttgccttc ctgtttttgc tcacccagaa acgctggtga 2340
15
     aagtaaaaga tgctgaagat cagttgggtg cacgagtggg ttacatcgaa ctggatctca 2400
     acageggtaa gateettgag agttttegee eegaagaacg tttteeaatg atgageactt 2460
     ttaaagttct gctatgtggc gcggtattat cccgtattga cgccgggcaa gagcaactcg 2520
     gtcgccgcat acactattct cagaatgact tggttgagta ctcaccagtc acagaaaagc 2580
     atcttacgga tggcatgaca gtaagagaat tatgcagtgc tgccataacc atgagtgata 2640
20
     acactgegge caacttactt etgacaacga teggaggaee gaaggageta acegettttt 2700
     tgcacaacat gggggatcat gtaactcgcc ttgatcgttg ggaaccggag ctgaatgaag 2760
     ccataccaaa cgacgagcgt gacaccacga tgcctgtagc aatggcaaca acgttgcgca 2820
     aactattaac tggcgaacta cttactctag cttcccggca acaattaata gactggatgg 2880
     aggoggataa agttgcagga ccacttetge geteggeeet teeggetgge tggtttattg 2940
     ctgataaatc tggagccggt gagcgtgggt ctcgcggtat cattgcagca ctggggccag 3000
25
     atggtaagcc ctcccgtatc gtagttatct acacgacggg gagtcaggca actatggatg 3060
     aacgaaatag acagatcgct gagataggtg cctcactgat taagcattgg taactgtcag 3120
     accaagttta ctcatatata ctttagattg atttaaaact tcatttttaa tttaaaagga 3180
     tetaggtgaa gateetttt gataatetea tgaccaaaat ceettaaegt gagttttegt 3240
30
     tocactgage gtcagacccc gtagaaaaga tcaaaggate ttettgagat cettttttc 3300
     tgcgcgtaat ctgctgcttg caaacaaaaa aaccaccgct accagcggtg gtttgtttgc 3360
     cggatcaaga gctaccaact ctttttccga aggtaactgg cttcagcaga gcgcagatac 3420
     caaatactgt tottotagtg tagccgtagt taggccacca cttcaagaac totgtagcac 3480
     cgcctacata cctcgctctg ctaatcctgt taccagtggc tgctgccagt ggcgataagt 3540 cgtgtcttac cgggttggac tcaagacgat agttaccgga taaggcgcag cggtcgggct 3600
35
     gaacgggggg ttcgtgcaca cagcccagct tggagcgaac gacctacacc gaactgagat 3660
     acctacageg tgagetatga gaaagegeea egetteeega agggagaaag geggacaggt 3720
     atcoggtaag cggcagggtc ggaacaggag agcgcacgag ggagcttcca gggggaaacg 3780 cctggtatct ttatagtcct gtcgggtttc gccacctctg acttgagcgt cgatttttgt 3840
40
     gatgctcgtc agggggggg agcctatgga aaaacgccag caacgcggcc tttttacggt 3900
     tectggeett ttgetggeet tttgeteaca tgttetttee tgegttatee cetgattetg 3960
     tggataaccg tattaccgcc tttgagtgag ctgataccgc tcgccgcage cgaacgaccg 4020
     agegeagega gteagtgage gaggaagegg aagagegeee aataegeaaa eegeetetee 4080
     ccgcgcgttg gccgattcat taatgcagct ggcacgacag gtttcccgac tggaaagcgg 4140
45
     gcagtgagcg caacgcaatt aatgtgagtt agctcactca ttaggcaccc caggctttac 4200
     actttatgct teeggetegt atgttgtgtg gaattgtgag eggataacaa ttteacaeag 4260
     gaaacagcta tgaccatgat tacgccaagc tctctagagc tctagagctc tagagctcta 4320
     gagagettge atgeetgeag gteg
                                                                          4344
50
     <210> 16
     <211> 4496
     <212> DNA
     <213> Artificial Sequence
55
     <220>
     <223> Description of Artificial Sequence: vector pTGFG82
     <400> 16
60
     cgcgttgaca ttgattattg actagttatt aatagtaatc aattacgggg tcattagttc 60
     atageceata tatggagtte egegttaeat aacttaeggt aaatggeeeg eetggetgae 120
```

cgcccaacga cccccgccca ttgacgtcaa taatgacgta tgttcccata gtaacgccaa 180

tagggacttt ccattgacgt caatgggtgg agtatttacg gtaaactgcc cacttggcag 240 tacatcaagt gtatcatatg ccaagtacgc cccctattga cgtcaatgac ggtaaatggc 300 ccgcctggca ttatgcccag tacatgacct tatgggactt tcctacttgg cagtacatct 360 acgtattagt catcgctatt accatggtga tgcggttttg gcagtacatc aatgggcgtg 420 gatagcggtt tgactcacgg ggatttccaa gtctccaccc cattgacgtc aatgggagtt 480 5 tgttttggca ccaaaatcaa cgggactttc caaaatgtcg taacaactcc gccccattga 540 cgcaaatggg cggtaggcgt gtacggtggg aggtctatat aagcagagct ctctggctaa 600 ctagagaacc cactgettae tggettateg aaattaatae gaeteactat agggagaece 660 aagettgace tegageaage ggeegegact etactagagg atetttgtga aggaacetta 720 10 cttctgtggt gtgacataat tggacaaact acctacagag atttaaagct ctaaggtaaa 780 tataaaaattt ttaagtgtat aatgtgttaa actactgatt ctaattgttt gtgtatttta 840 gattccaacc tatggaactg atgaatggga gcagtggtgg aatgccttta atgaggaaaa 900 cctgttttgc tcagaagaaa tgccatctag tgatgatgag gctactgctg actctcaaca 960 ttctactcct ccaaaaaga agagaaaggt agaagacccc aaggactttc cttcagaatt 1020 15 gctaagtttt ttgagtcatg ctgtgtttag taatagaact cttgcttgct ttgctattta 1080 caccacaaag gaaaaagctg cactgctata caagaaaatt atggaaaaat attctgtaac 1140 ctttataagt aggcataaca gttataatca taacatactg ttttttctta ctccacacag 1200 gcatagagtg tetgetatta ataactatge teaaaaattg tgtaeettta getttttaat 1260 ttgtaaaggg gttaataagg aatatttgat gtatagtgcc ttgactagag atcataatca 1320 gccataccac atttgtagag gttttacttg ctttaaaaaa cctcccacac ctcccctga 1380 20 acctgaaaca taaaatgaat gcaattgttg ttgttaactt gtttattgca gcttataatg 1440 gttacaaata aagcaatagc atcacaaatt tcacaaataa agcatttttt tcactgcatt 1500 ctagttgtgg tttgtccaaa ctcatcaatg tatcttatca tgtctggatc cccggggggt 1560 accagetteg tagetagaac atcatgttet gggatateag ettegtaget agaacateat 1620 25 gttctggtac ccccctctag agcgaattaa ttcactggcc gtcgttttac aacgtcgtga 1680 ctgggaaaac cctggcgtta cccaacttaa tcgccttgca gcacatcccc ctttcgccag 1740 ctggcgtaat agcgaagagg cccgcaccga tcgcccttcc caacagttgc gcagcctgaa 1800 tggcgaatgg cgcctgatgc ggtattttct ccttacgcat ctgtgcggta tttcacaccg 1860 catatggtgc actctcagta caatctgctc tgatgccgca tagttaagcc agccccgaca 1920 30 cccgccaaca cccgctgacg cgccctgacg ggcttgtctg ctcccggcat ccgcttacag 1980 acaagctgtg accgtctccg ggagctgcat gtgtcagagg ttttcaccgt catcaccgaa 2040 acgcgcgaga cgaaagggcg gggtaccaga acatgatgtt ctagctacga agctgatatc 2100 ccagaacatg atgttctagc tacgaagetg gtacceeggc etegtgatac geetattttt 2160 ataggttaat gtcatgataa taatggtttc ttagacgtca ggtggcactt ttcggggaaa 2220 35 tgtgcgcgga acccctattt gtttatttt ctaaatacat tcaaatatgt atccgctcat 2280 gagacaataa ccctgataaa tgcttcaata atattgaaaa aggaagagta tgagtattca 2340 acatttccgt gtcgccctta ttcccttttt tgcggcattt tgccttcctg tttttgctca 2400 cccagaaacg ctggtgaaag taaaagatgc tgaagatcag ttgggtgcac gagtgggtta 2460 catcgaactg gatctcaaca gcggtaagat ccttgagagt tttcgccccg aagaacgttt 2520 40 tccaatgatg agcactttta aagttctgct atgtggcgcg gtattatccc gtattgacgc 2580 cgggcaagag caactcggtc gccgcataca ctattctcag aatgacttgg ttgagtactc 2640 accagtcaca gaaaagcatc ttacggatgg catgacagta agagaattat gcagtgctgc 2700 cataaccatg agtgataaca ctgcggccaa cttacttctg acaacgatcg gaggaccgaa 2760 ggagctaacc gcttttttgc acaacatggg ggatcatgta actcgccttg atcgttggga 2820 45 accggagetg aatgaageca taccaaacga cgagegtgae accaegatge etgtageaat 2880 ggcaacaacg ttgcgcaaac tattaactgg cgaactactt actctagctt cccggcaaca 2940 attaatagac tggatggagg cggataaagt tgcaggacca cttctgcgct cggcccttcc 3000 ggctggctgg tttattgctg ataaatctgg agccggtgag cgtgggtctc gcggtatcat 3060 tgcagcactg gggccagatg gtaagccctc ccgtatcgta gttatctaca cgacggggag 3120 tcaggcaact atggatgaac gaaatagaca gatcgctgag ataggtgcct cactgattaa 3180 gcattggtaa ctgtcagacc aagtttactc atatatactt tagattgatt taaaacttca 3240 50 tttttaattt aaaaggatct aggtgaagat cetttttgat aateteatga ceaaaateee 3300 ttaaegtgag ttttegttee aetgagegte agaceeegta gaaaagatea aaggatette 3360 ttgagatcct ttttttctgc gcgtaatctg ctgcttgcaa acaaaaaac caccgctacc 3420 55 ageggtggtt tgtttgeegg atcaagaget accaactett ttteegaagg taactggett 3480 cagcagageg cagataceaa atactgteet tetagtgtag cegtagttag gecaceaett 3540 caagaactet gtageacege ctacatacet egetetgeta atectgttae cagtggetge 3600 tgccagtggc gataagtcgt gtcttaccgg gttggactca agacgatagt taccggataa 3660 ggcgcagcgg tcgggctgaa cggggggttc gtgcacacag cccagcttgg agcgaacgac 3720 ctacaccgaa ctgagatacc tacagcgtga gctatgagaa agcgccacgc ttcccgaagg 3780 60 gagaaaggcg gacaggtatc cggtaagcgg cagggtcgga acaggagagc gcacgaggga 3840 gettecaggg ggaaacgeet ggtatettta tagteetgte gggtttegee acetetgaet 3900

```
tgagcgtcga tttttgtgat gctcgtcagg ggggcggagc ctatggaaaa acgccagcaa 3960
     egeggeettt ttaeggttee tggeettttg etggeetttt geteacatgt tettteetge 4020
     gttatcccct gattctgtgg ataaccgtat taccgccttt gagtgagctg ataccgctcg 4080
     ccgcagccga acgaccgagc gcagcgagtc agtgagcgag gaagcggaaq agcgccaat 4140
 5
     acgcaaaccg cctctccccg cgcgttggcc gattcattaa tgcagctggc acgacaggtt 4200
     tcccgactgg aaagcgggca gtgagcgcaa cgcaattaat gtgagttagc tcactcatta 4260
     ggcaccccag gctttacact ttatgcttcc ggctcgtatg ttgtgtggaa ttgtgagcgg 4320
     ataacaatti cacacaggaa acagetatga ecatgattae gecaagetet etagagetet 4380
     agagetetag agetetagag agettgeatg ceggggtace agettegtag etagaacate 4440
10
     atgttctggg atatcagctt cgtagctaga acatcatgtt ctggtacccc ggtcga
     <210> 17
     <211> 4644
15
     <212> DNA
     <213> Artificial Sequence
     <220>
     <223> Description of Artificial Sequence: vector pTGFG95
20
     cgcgttgaca ttgattattg actagttatt aatagtaatc aattacgggg tcattagttc 60
     atageceata tatggagtte egegttaeat aacttaeggt aaatggeeeg eetggetgae 120
     egeccaacga eccegecca tigaegteaa taatgaegta tgtteecata gtaacgecaa 180
25
     tagggacttt ccattgacgt caatgggtgg agtatttacg gtaaactgcc cacttggcag 240
     tacatcaagt gtatcatatg ccaagtacge cccctattga cgtcaatgac ggtaaatggc 300
     ccgcctggca ttatgcccag tacatgacct tatgggactt tcctacttgg cagtacatct 360
     acgtattagt catcgctatt accatggtga tgcggttttg gcagtacatc aatgggcgtg 420
     gatagcggtt tgactcacgg ggatttccaa gtctccaccc cattgacgtc aatgggagtt 480
30
     tgttttggca ccaaaatcaa cgggactttc caaaatgtcg taacaactcc gccccattga 540
     cgcaaatggg cggtaggcgt gtacggtggg aggtctatat aagcagagct ctctggctaa 600
     ctagagaacc cactgettac tggettateg aaattaatac gacteactat agggagaecc 660
     aagcttgace tegageaage ggeegegact etactagagg atetttgtga aggaacetta 720
     cttctgtggt gtgacataat tggacaaact acctacagag atttaaagct ctaaggtaaa 780
35
     tataaaattt ttaagtgtat aatgtgttaa actactgatt ctaattgttt gtgtatttta 840
     gattecaace tatggaactg atgaatggga geagtggtgg aatgeettta atgaggaaaa 900
     cctgttttgc tcagaagaaa tgccatctag tgatgatgag gctactgctg actctcaaca 960
     ttctactcct ccaaaaaaga agagaaaggt agaagacccc aaggactttc cttcagaatt 1020
     gctaagtttt ttgagtcatg ctgtgtttag taatagaact cttgcttgct ttgctattta 1080
40
     caccacaaag gaaaaagctg cactgctata caagaaaatt atggaaaaat attctgtaac 1140
     ctttataagt aggcataaca gttataatca taacatactg tttttctta ctccacacag 1200
     gcatagagtg totgctatta ataactatgc tcaaaaattg tgtaccttta gctttttaat 1260
     ttgtaaaggg gttaataagg aatatttgat gtatagtgcc ttgactagag atcataatca 1320
    gccataccac attigtagag gttttacttg ctttaaaaaa cctcccacac ctcccctga 1380 acctgaaaca taaaatgaat gcaattgttg ttgttaactt gtttattgca gcttataatg 1440 gttacaaata aagcaatagc atcacaaatt tcacaaataa agcattttt tcactgcatt 1500
45
     ctagttgtgg tttgtccaaa ctcatcaatg tatcttatca tgtctggatc cccggggggt 1560
     accagetteg tagetagaac atcatgttet gggatateag ettegtaget agaacateat 1620
     gttctggtac cccctctag agcgaattaa ttcactggcc gtcgttttac aacgtcgtga 1680
50
     ctgggaaaac cctggcgtta cccaacttaa tcgccttgca gcacatcccc ctttcgccag 1740
     ctggcgtaat agcgaagagg cccgcaccga tcgcccttcc caacagttgc gcagcctgaa 1800
     tggcgaatgg cggggtacca gcttcgtagc tagaacatca tgttctggga tatcagcttc 1860
     gtagetagaa cateatgtte tggtaceeeg eetgatgegg tattttetee ttaegeatet 1920
     gtgcggtatt tcacaccgca tatggtgcac tctcagtaca atctgctctg atgccgcata 1980
55
     gttaagccag ccccgacacc cgccaacacc cgctgacgcg ccctgacggg cttgtctgct 2040
     eceggeatee gettacagae aagetgtgae egteteeggg agetgeatgt gteagaggtt 2100
     ttcaccgtca tcaccgaaac gcgcgagacg aaagggctac cagaacatga tgttctagct 2160
     acgaagctga tatcccagaa catgatgttc tagctacgaa gctggtaccc cgcctcgtga 2220
     tacgcctatt tttataggtt aatgtcatga taataatggt ttcttagacg tcaggtggca 2280
60
     cttttcgggg aaatgtgcgc ggaaccccta tttgtttatt tttctaaata cattcaaata 2340
     tgtatccgct catgagacaa taaccctgat aaatgcttca ataatattga aaaaggaaga 2400
     gtatgagtat tcaacatttc cgtgtcgccc ttattccctt ttttgcggca ttttgccttc 2460
```

60

	ctg	tttt	tgc	tcac	ccaga	a a	cact	aata	a aa	σtaa	aaga	tac	toaa	αat	cant	tgggtg	2520
	cac	gagto	ggg	ttac	atcga	a c	tgga	tctc	a ac	agcg	gtaa	gat	cctt	αaα	agtt	ttcacc	2580
	ccg	aagaa	acg	tttt	ccaat	g a	tgag	cact	t tt	aaag	ttct	act	atat	aac	acaa	tattat	2640
	CCC	gtati	tga	cgcc	gggca	a g	agca	actc	g gt	cqcc	gcat	aca	ctat	tct	caga.	atgact	2700
5	tgg:	ttga	gta	ctca	ccagt	с а	caga	aaag	c at	ctta	cqqa	taa	cato	aca	gtaa	gagaat	2760
	tate	gcagi	tgc	tgcc	ataac	са	tgag	tgat	a ac	actg	cggc	caa	ctta	ctt	ctga	caacga	2820
	tcg	gagga	acc	gaag	gagct	a a	ccgc	tttt:	t tg	caca	acat	aaa	ggat	cat	gtaa	ctcacc	2880
	ttg	atcgi	ttg	ggaa	ccgga	g c	tgaa	tgaa	g cc	atac	caaa	cga	caaa	cat	gaca	ccacga	2940
	tgc	ctgta	agc	aatg	gcaac	аа	cgtt	gcgc	a aa	ctat	taac	taa	caaa	cta	ctta	ctctad	3000
10	ctt	cccg	gca	acaa	ttaat	a g	actq	gatg	g ag	acaa	ataa	agt	toca-	ααa	ccac	ttctac	3060
	gct	cggc	cct	tccg	gctgg	c t	ggtt	tatt	g ct	gata	aatc	tag	agcc	aat	gagg	ataaat	3120
	ctc	gcggt	tat	catt	gcagc	a c	tggg	gcca	g at	ggta	agcc	ctc	ccat.	atc	otao:	ttatct	3180
	aca	cgac	ggg	gagt	caggc	a a	ctat	ggat	g aa	cgaa	atag	aca	gato	act	gaga	taggtg	3240
	cct	cacto	gat	taag	cattg	g t	aact	gtca	g ac	caag	ttta	ctc	atat.	ata	cttta	agattg	3300
15	att	taaaa	act	tcati	tttta	a t	ttaa	aagga	a tc	tagg	taaa	gate	cctt	ttt	gata	atctca	3360
	tga	ccaaa	aat	ccct	taacg	t g	agtt:	ttcgi	t to	cact	gage	gtc	agac	ccc	ataa	aaaaga	3420
	tcaa	aagga	atc	ttct	tgaga	t c	cttt [.]	tttt	c tg	cgcg	taat	ctq	ctac	tta	caaaa	caaaaa	3480
	aac	cacco	gct	acca	gcggt	g g	tttg	tttg	c cg	gatc	aaga	gct	acca	act	cttt	ttccga	3540
20	agg	taact	gg	cttca	agçag	a g	cgca	gata	c ca	aata	ctgt	cct	tcta	gtg	tage	gtagt	3600
20	tage	gcca	cca	cttca	aagaa	c t	ctgt	agca	c cg	ccta	cata	cct	cgct	ctg	ctaat	tcctgt	3660
	tace	cagt	ggc	tgct	gccag	t g	gcga	taagt	cg.	tgtc	ttac	cgg	gttg	gac	tcaaq	gacgat	3720
	agti	cacco	gga	taag	gcgca	g c	ggtc	gggct	t ga	acgg	gggg	ttc	gtgc	aca	cagco	cagct	3780
	tgg	agcga	aac	gacci	tacac	c g	aact	gagat	t ac	ctac	agcg	tga	gcta	tga	gaaa	gcgcca	3840
25	cgci	tcc	:ga	aggga	agaaa	g g	cgga	caggi	t at	ccdd.	taag	cgg	cagg	gtc	ggaad	caggag	3900
23	agc	gcac	gag	ggage	CTTCC	a g	gggg	aaac	a cc.	tggt	atct	tta	tagt	cct	gtcg	ggtttc	3960
	gee	acct	seg	actt	gagcg	t C	gatt	cttg	ga:	tgct	cgtc	agg	aggg	cgg	agcct	tatgga	4020
	aaaa	acgc	cag	caac	gegge	C T		acggi	tc	ctgg	cctt	ttg	ctgg	cct	tttg	ctcaca	4080
	ctar	10000	.00	tgcgi	tatc	CC	ctga	CTCT	g tg	gata	accg	tati	tacc	gcc	tttga	agtgag	4140
30	acas	atacc	:gc	atta	cgcag	C C	gaac	gacco	gage	cgca	gcga	gtca	agtg	agc	gagg	ggtacc	4200
30	aya	t acc	ja L	gere	raget	a C	gaag	ergai	ate	ccca	gaac	atga	atgti	tct	agcta	acgaag	4260
	++0	tecc	100	ageg	yaaya	g c	geee	aatad	gc	aaac	cgcc	tct	ccc	gcg	cgtt	ggccga	4320
	Cast	-t	acy	cagui	-ggca	c g	acago	gttt	2 000	gact	ggaa	agc	gggc	agt	gagc	gcaacg	4380
	ctc	- Laai	.y.	gagti	aget	t a	tana	ccago	g ca	cece	aggc	TTT	acacı	ctt	atgct	tccgg	4440
35	atos	ettac	rac	grari	gyaar	t 9	race	cotac	- 44	caat	ctca	caca	aggaa	aac	agcta	atgacc	4500
J_	arga	rtace	-90	cttc	rtage	t a	yaycı	stas	g age	e ce c	agag	CTCI	aga	gag	cttg	catgcc	4560
	9999	tati	ct	ggtad	cage	~ +	yaac	accat	. gt	cetg	ggat	atca	agcti	ccg	tagct	agaac	
	ucce	acge	. • •	ggta	cccg	y c	cya										4644
40	<210)> 18	}														
		L> 93															
		2> PF	_														
				sapie	ens												
45	<400)> 18	}														
				Leu	Lvs	Ala	Lvs	Glv	Pro	Ara	Ala	Pro	His	Val	Δla	Glu	
	1				5		-1-	1		10	****	110	1113	Val	15	GIÀ	
															13		
	Gly	Pro	Pro	Ser	Pro	Glu	Val	Glv	Ser	Pro	Leu	Leu	Cvs	Ara	Pro	Δla	
50	_			20					25				0,0	30		mia	
	Ala	Gly	Pro	Phe	Pro	Gly	Ser	Gln	Thr	Ser	Asp	Thr	Leu	Pro	Glu	Val	
			35			_		40			•		45				
55	Ser	Ala	Ile	Pro	Ile :	Ser	Leu	Asp	Gly	Leu	Leu	Phe	Pro	Ara	Pro	Cys	
		50					55		_			60	-	,		•	
	~1			_	_	_	_										
	Gln	Gly	Gln	Asp	Pro	Ser	Asp	Glu	Lys	Thr		Asp	Gln	Gln	Ser	Leu	
60	65					70					75					80	
60																	

Ser Asp Val Glu Gly Ala Tyr Ser Arg Ala Glu Ala Thr Arg Gly Ala 85 90 95

	GIA	GIÀ	Ser	100	Ser	Ser	Pro	Pro	Glu 105	Lys	Asp	Ser	Gly	Leu 110	Leu	Asp
5	Ser	Val	Leu 115	Asp	Thr	Leu	Leu	Ala 120	Pro	Ser	Gly	Pro	Gly 125	Gln	Ser	Glr
10	Pro	Ser 130	Pro	Pro	Ala	Cys	Glu 135	Val	Thr	Ser	Ser	Trp 140	Cys	Leu	Phe	Gly
	Pro 145	Glu	Leu	Pro	Glu	Asp 150	Pro	Pro	Ala	Ala	Pro 155	Ala	Thr	Gln	Arg	Val 160
15	Leu	Ser	Pro	Leu	Met 165	Ser	Arg	Ser	Gly	Cys 170	Lys	Val	Gly	Asp	Ser 175	Ser
	Gly	Thr	Ala	Ala 180	Ala	His	Lys	Val	Leu 185	Pro	Arg	Gly	Leu	Ser 190	Pro	Ala
20	Arg	Gln	Leu 195	Leu	Leu	Pro	Ala	Ser 200	Glu	Ser	Pro	His	Trp 205	Ser	Gly	Ala
25	Pro	Val 210	Lys	Pro	Ser	Pro	Gln 215	Ala	Ala	Ala	Val	Glu 220	Val	Glu	Glu	Glu
	Asp 225	Gly	Ser	Glu	Ser	Glu 230	Glu	Ser	Ala	Gly	Pro 235	Leu	Leu	Lys	Gly	Lys 240
30	Pro	Arg	Ala	Leu	Gly 245	Gly	Ala	Ala	Ala	Gly 250	Gly	Gly	Ala	Ala	Ala 255	Val
	Pro	Pro	Gly	Ala 260	Ala	Ala	Gly	Gly	Val 265	Ala	Leu	Val	Pro	Lys 270	Glu	Asp
35	Ser	Arg	Phe 275	Ser	Ala	Pro	Arg	Val 280	Ala	Leu	Val	Glu	Gln 285	Asp	Ala	Pro
40	Met	Ala 290	Pro	Gly	Arg	Ser	Pro 295	Leu	Ala	Thr	Thr	Val 300	Met	Asp	Phe	Ile
	His 305	Val	Pro	Ile	Leu	Pro 310	Leu	Asn	His	Ala	Leu 315	Leu	Ala	Ala	Arg	Thr 320
45	Arg	Gln	Leu	Leu	Glu 325	Asp	Glu	Ser	Tyr	Asp 330	Gly	Gly	Ala	Gly	Ala 335	Ala
	Ser	Ala	Phe	Ala 340	Pro	Pro	Arg	Ser	Ser 345	Pro	Cys	Ala	Ser	Ser 350	Thr	Pro
50	Val	Ala	Val 355	Gly	Asp	Phe	Pro	Asp 360	Cys	Ala	Tyr	Pro	Pro 365	Asp	Ala	Glu
55	Pro	Lys 370	Asp	Asp	Ala	Tyr	Pro 375	Leu	Tyr	Ser	Asp	Phe 380	Gln	Pro	Pro	Ala
	Leu 385	Lys	Ile	Lys	Glu	Glu 390	Glu	Glu	Gly	Ala	Glu 395	Ala	Ser	Ala	Arg	Ser 400
60	Pro	Arg	Ser	Tyr	Leu 405	Val	Ala	Gly	Ala	Asn 410	Pro	Ala	Ala	Phe	Pro 415	Asp

	Phe	Pro	Leu	Gly 420	Pro	Pro	Pro	Pro	Leu 425	Pro	Pro	Arg	Ala	Thr 430		Sea
5	Arg	Pro	Gly 435	Glu	Ala	Ala	Val	Thr 440	Ala	Ala	Pro	Ala	Ser 445	Ala	Ser	Val
10	Ser	Ser 450	Ala	Ser	Ser	Ser	Gly 455	Ser	Thr	Leu	Glu	Cys 460		Leu	Tyr	Lys
	Ala 465	Glu	Gly	Ala	Pro	Pro 470	Gln	Gln	Gly	Pro	Phe 475	Ala	Pro	Pro	Pro	Cys 480
15	Lys	Ala	Pro	Gly	Ala 485	Ser	Gly	Cys	Leu	Leu 490	Pro	Arg	Asp	Gly	Leu 495	Pro
	Ser	Thr	Ser	Ala 500	Ser	Ala	Ala	Ala	Ala 505	Gly	Ala	Ala	Pro	Ala 510	Leu	Tyr
20	Pro	Ala	Leu 515	Gly	Leu	Asn	Gly	Leu 520	Pro	Gln	Leu	Gly	Tyr 525	Gln	Ala	Ala
25	Val	Leu 530	Lys	Glu	Gly	Leu	Pro 535	Gln	Val	Tyr	Pro	Pro 540	Tyr	Leu	Asn	Tyr
	Leu 545	Arg	Pro	Asp	Ser	Glu 550	Ala	Ser	Gln	Ser	Pro 555	Gln	Tyr	Ser	Phe	Glu 560
30	Ser	Leu	Pro	Gln	Lys 565	Ile	Cys	Leu	Ile	Cys 570	Gly	Asp	Glu	Ala	Ser 575	Gly
	Cys	His	Tyr	Gly 580	Val	Leu	Thr	Cys	Gly 585	Ser	Cys	Lys	Val	Phe 590	Phe	Lys
35	Arg	Ala	Met 595	Glu	Gly	Gln	His	Asn 600	Tyr	Leu	Cys	Ala	Gly 605	Arg	Asn	Asp
10	Cys	Ile 610	Val	Asp	Lys	Ile	Arg 615	Arg	Lys	Asn	Cys	Pro 620	Ala	Cys	Arg	Leu
	Arg 625	Lys	Cys	Cys	Gln	Ala 630	Gly	Met	Val	Leu	Gly 635	Gly	Arg	Lys	Phe	Lys 640
15	Lys	Phe	Asn	Lys	Val 645	Arg	Val	Val	Arg	Ala 650	Leu	Asp	Ala	Val	Ala 655	Leu
	Pro	Gln	Pro	Leu 660	Gly	Val	Pro	Asn	Glu 665	Ser	Gln	Ala	Leu	Ser 670	Gln	Arg
50	Phe	Thr	Phe 675	Ser	Pro	Gly	Gln	Asp 680	Ile	Gln	Leu	Ile	Pro 685	Pro	Leu	Ile
55	Asn	Leu 690	Leu	Met	Ser	Ile	Glu 695	Pro	Asp	Val	Ile	Tyr 700	Ala	Gly	His	Asp
	Asn 705	Thr	Lys	Pro	Asp	Thr 710	Ser	Ser	Ser	Leu	Leu 715	Thr	Ser	Leu	Asn	Gln 720
60	Leu	Gly	Glu	Arg	Gln 725	Leu	Leu	Ser	Val	Val 730	Lys	Trp	Ser	Lys	Ser 735	Leu

19

```
Pro Gly Phe Arg Asn Leu His Ile Asp Asp Gln Ile Thr Leu Ile Gln
                   740
     Tyr Ser Trp Met Ser Leu Met Val Phe Gly Leu Gly Trp Arg Ser Tyr
 5
     Lys His Val Ser Gly Gln Met Leu Tyr Phe Ala Pro Asp Leu Ile Leu
10
     Asn Glu Gln Arg Met Lys Glu Ser Ser Phe Tyr Ser Leu Cys Leu Thr
                            790
     Met Trp Gln Ile Pro Gln Glu Phe Val Lys Leu Gln Val Ser Gln Glu
15
     Glu Phe Leu Cys Met Lys Val Leu Leu Leu Asn Thr Ile Pro Leu
     Glu Gly Leu Arg Ser Gln Thr Gln Phe Glu Glu Met Arg Ser Ser Tyr
20
                                     840
     Ile Arg Glu Leu Ile Lys Ala Ile Gly Leu Arg Gln Lys Gly Val Val
25
     Ser Ser Ser Gln Arg Phe Tyr Gln Leu Thr Lys Leu Leu Asp Asn Leu
                            870
                                                  875
     His Asp Leu Val Lys Gln Leu His Leu Tyr Cys Leu Asn Thr Phe Ile
30
     Gln Ser Arg Ala Leu Ser Val Glu Phe Pro Glu Met Met Ser Glu Val
                   900
     Ile Ala Ala Gln Leu Pro Lys Ile Leu Ala Gly Met Val Lys Pro Leu
35
     Leu Phe His Lys Lys
          930
40
     <210> 19
     <211> 2970
     <212> DNA
     <213> Homo sapiens
45
     ctgaccageg cegecetece cegececega eccaggaggt ggagatecet ceggtecage 60 cacatteaac accaettte tectecetet geecetatat tecegaaace eceteetet 120
     tecettttee etecteetg gagaeggggg aggagaaaag gggagteeag tegteatgae 180
50
     tgagetgaag gcaaagggte eeegggetee ceaegtggeg ggeggeeege eeteeeega 240
     ggteggatee ceactgetgt gtegeceage egeaggteeg tteeegggga geeagacete 300
     ggacacettg cetgaagttt eggecatace tateteeetg gaegggetae tetteeeteg 360
     gccctgccag ggacaggacc cctccgacga aaagacgcag gaccagcagt cgctgtcgga 420
     cgtggagggc gcatattcca gagctgaagc tacaaggggt gctggaggca gcagttctag 480
55
     tccccagaa aaggacagcg gactgctgga cagtgtcttg gacactctgt tggcgcctc 540
     aggtcccggg cagagccaac ccagccctcc cgcctgcgag gtcaccagct cttggtgcct 600
     gtttggcccc gaacttcccg aagatccacc ggctgccccc gccacccagc gggtgttgtc 660
     cccgctcatg agccggtccg ggtgcaaggt tggagacagc tccgggacgg cagctgccca 720
     taaagtgctg ccccggggcc tgtcaccagc ccggcagctg ctgctcccgg cctctgagag 780
     ccctcactgg teeggggee cagtgaagee gteteegeag geegetgegg tggaggttga 840 ggaggaggat ggetetgagt eegaggagte tgegggteeg ettetgaagg geaaaceteg 900 ggetetgggt ggegeggegg etggaggagg ageeggegget gteeegeegg gggeggeage 960
60
```

20

	aggaggcgtc	goodlaggeee	ccaaqqaaqa	LLCCULLL	LLaucuccca	agarcaceet	
		dacacaccaa	taacacccaa	acacteces	atasasas	999209000	1020
	tttcatccac	gtacctatcc	tacctctcaa	gcgctccccg	ttaaaaaaa	cggtgatgga	1080
	actactagaa	gaggagagett	accaccaa	tcacgcctta	riggeageee	gcactcggca	1140
5	geegeeggaa	ccctatacct	catacaacaa	ggccggggct	gccagcgcct	ttgccccgcc	1200
,	gtacccaccc	ancaccanac	cgtccacccc	ggtcgctgta	ggcgacttcc	ccgactgcgc	1260
	geaccegete	aacataaac	ccaaggacga	cgcgtaccct	ctctatagcg	acttccagcc	1320
	ttcctacctt	ataaccaata	aggaggagga	aggcgcggag	gcctccgcgc	gctccccgcg	1380
	accecacta	gragerages	ccaaccccgc	agccttcccg	gatttcccgt	tggggccacc	1440
10	accecegety	gestsagtet	cgaccccatc	cagacccggg	gaagcggcgg	tgacggccgc	1500
10	attenden	gccccagccc	cgtetgegte	ctcctcgggg	tcgaccctgg	agtgcatcct	1560
	gracaaageg	gagggegege	cgccccagca	gggcccgttc	gcgccgccgc	cctgcaaggc	1620
	geegggegeg	ageggetgee	tgctcccgcg	ggacggcctg	ccctccacct	ccgcctctgc	1680
	gatagataa	gggggggccc	ccgcgctcta	ccctgcactc	ggcctcaacg	ggctcccgca	1740
15	gereggerae	caggeegeeg	tgctcaagga	gggcctgccg	caggtctacc	cgccctatct	1800
13	caactacetg	aggeeggatt	cagaagccag	ccagagccca	caatacagct	tcgagtcatt	1860
	taccicagaag	accigittaa	tctgtgggga	tgaagcatca	ggctgtcatt	atggtgtcct	1920
	caccigiggg	agetgtaagg	tettettaa	gagggcaatg	gaagggcagc	acaactactt	1980
	atgtgctgga	agaaatgact	gcatcgttga	taaaatccgc	agaaaaaact	gcccagcatg	2040
20	regeettaga	aagtgctgtc	aggctggcat	ggtccttgga	ggtcgaaaat	ttaaaaagtt	2100
20	caataaagtc	agagttgtga	gagcactgga	tgctgttgct	ctcccacagc	cattgggcgt	2160
	tccaaatgaa	agccaagccc	taagccagag	attcactttt	tcaccaggtc	aagacataca	2220
	gttgattcca	ccactgatca	acctgttaat	gagcattgaa	ccagatgtga	tctatgcagg	2280
	acatgacaac	acaaaacctg	acacctccag	ttctttgctg	acaagtctta	atcaactagg	2340
26	cgagaggcaa	cttctttcag	tagtcaagtg	gtctaaatca	ttgccaggtt	ttcgaaactt	2400
25	acatattgat	gaccagataa	ctctcattca	gtattcttgg	atgagcttaa	tggtgtttgg	2460
	tctaggatgg	agatectaca	aacatgtcag	tgggcagatg	ctgtattttg	cacctgatct	2520
	aatactaaat	gaacagcgga	tgaaagaatc	atcattctat	tcattatgcc	ttaccatgtg	2580
	gcagatccca	caggagtttg	tcaagcttca	agttagccaa	gaagagttcc	tctgtatgaa	2640
20	agtattgtta	cttcttaata	caattccttt	ggaagggcta	cgaagtcaaa	cccagtttga	2700
30	ggagatgagg	tcaagctaca	ttagagagct	catcaaggca	attggtttga	ggcaaaaagg	2760
	agttgtgtcg	agctcacagc	gtttctatca	acttacaaaa	cttcttgata	acttgcatga	2820
	tcttgtcaaa	caacttcatc	tgtactgctt	gaatacattt	atccagtccc	gggcactgag	2880
	tgttgaattt	ccagaaatga	tgtctgaagt	tattgctgca	caattaccca	agatattggc	2940
	agggatggtg	aaaccccttc	tctttcataa				2970

INTERNATIONAL SEARCH REPORT

ational Application No PCT/EP 00/01368

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12N15/12 C12N

C07K14/72.

C12N15/57 C1201/68

C12N15/67 A61K48/00

C12N15/85

C12N9/64

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C12N C07K C12Q A61K IPC 7

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Category :	Citation of document, with indication, where appropriate, of the relevant passages	
	of the relevant passages	Relevant to claim No.
Х	WO 94 28150 A (UNIV MCGILL) 8 December 1994 (1994-12-08)	1,2,6,7,
Y	page 5, line 1 - line 11	11,29,30 3-5,8,9
	page 6, line 34 -page 7, line 10	3-5,6,9
	page 6, line 24 - line 28 ° page 10, line 20 - line 25	
	page 14, line 14 - line 19	
	claims 1-11	
	-/	
İ		
	60	
.		
	•	}

X	Further documents are listed in the	continuation of box C.
---	-------------------------------------	------------------------

X Patent family members are listed in annex.

Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international
- document which may throw doubts on pnority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- document referring to an oral disclosure, use, exhibition or other means
- document published prior to the international filing date out later than the priority date claimed
- fater document published after the international filing date or priority date and not in conflict with the application but clied to understand the principle or theory underlying the invention
- 'X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other, such document is combined with one or more other. ments, such combination being obvious to a person skilled
- '3" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

6 June 2000

26/06/2000 Authorized officer

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040. Tx. 31 651 epo nl. Fax: (+31-70) 340-3016

Hornig, H

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Int. ational Application No PCT/EP 00/01368

<u> </u>		PCT/EP 00/01368
C.(Continu	Citation of document, with indication, where appropriate, of the relevant passages	To the state of th
	appropriate, or the relevant passages	Relevant to claim No.
X	V. BOONYARATANAKORNKIT ET AL.: "High-mobility group chromatin proteins 1 and 2 functionally interact with steroid hormone receptors to enhance their DNA binding in vitro and transcriptional activity in mamalian cells" MOL. CELL. BIOL., vol. 18, no. 8, August 1998 (1998-08), pages 4471-4487, XPO02139580 ASM WASHINGTON, DC,US cited in the application the whole document	1,2,7
X	WO 94 17182 A (RES INST OF THE PALO ALTO MEDI ;LEAVITT JOHN C (US)) 4 August 1994 (1994-08-04) page 16, line 30 - line 36 page 17, line 1 - line 3; claims 1-16	1,2,6,7, 11,29,30
X	WO 93 20218 A (CONNAUGHT LAB ;FILMUS JORGE (CA); KLEIN MICHEL (CA)) 14 October 1993 (1993-10-14) the whole document	1,2,6,11
Y	WO 94 29471 A (GENETIC THERAPY INC) 22 December 1994 (1994-12-22) the whole document	3-5,8,9
A	WO 93 23431 A (BAYLOR COLLEGE MEDICINE) 25 November 1993 (1993-11-25) cited in the application the whole document	
A	BEATO M ET AL: "Transcriptional regulation by steroid hormones" STEROIDS: STRUCTURE, FUNCTION, AND REGULATION, US, ELSEVIER SCIENCE PUBLISHERS, NEW YORK, NY, vol. 61, no. 4, 1 April 1996 (1996-04-01), pages 240-251, XP004026583 ISSN: 0039-128X the whole document	
4	BEATO M: "GENE REGULATION BY STEROID HORMONES" CELL,US.CELL PRESS, CAMBRIDGE, NA, vol. 56, no. 3, 10 February 1989 (1989-02-10), pages 335-344, XP000051659 ISSN: 0092-8674 the whole document	
	-/- -	

In. ational Application No PCT/EP 00/01368

		PCT/EP 00/01368
C.(Continu	Citation of design and the second of the sec	
	Citation of document, with indication where appropriate, of the relevant passages	Relevant to claim No.
A	KURACHI S. ET AL: "Regulatory mechanism of human factor IX gene: Protein binding at the Leyden-specific region." BIOCHEMISTRY, (1994) 33/6 (1580-1591)., XP002139581 the whole document	
A	CROSSLEY M. ET AL: "Recovery from hemophilia B Leyden: An androgen-responsive element in the factor IX promoter."	
	SCIENCE, (1992) 257/5068 (377-379)., XP002139582	
	the whole document	
	en la companya de la	14. 14.
	and the second of the second o	
	5.	
		•
		1.010
İ	en andere en en en en en en en en en en en en en	
	•	
	•••	
	and the second of the second o	

Information on patent family members

tnt .tional Application No PCT/EP 00/01368

				1 00,02000						
cite	atent document d in search repo	rt	Publication date		Patent family member(s)	Publication date				
WO	9428150	A	08-12-1994	US	5512483 A	30-04-1996				
				AU	6791894 A	20-12-1994				
WO	9417182	Α	04-08-1994	AU	6087694 A	15-08-1994				
WO	9320218	A	14-10-1993	. 	3883393 A	08-11-1993				
				BR	9306167 A	13-01-1998				
				EP	0633941 A	18-01-1995				
				FI	944451 A	26-09-1994				
				JP	2701983 B	21-01-1998				
			•	JP	7501456 T	16-02-1995				
			•	NO	943610 A	30-11-1994				
				US	5559027 A	24-09-1996				
WO	9429471	Α	22-12-1994	EP	0710288 A	08-05-1996				
				JP	8511423 T	03-12-1996				
				US	5935935 A	10-08-1999				
WO	9323431	Α	25-11-1993	US	5364791 A	15-11-1994				
				ΑU	685054 B	15-01-1998				
				AU	4241793 A	13-12-1993				
				ΑU	6065198 A	02-07-1998				
			3.	CA	2135644 A	25-11-1993				
			•	EP	0745121 A	04-12-1996				
				JP	7509694 T	26-10-1995				
				US	5935934 A	10-08-1999				
	_			US	5874534 A	23-02-1999				