Optimization Theory

Lecture 02

Fudan University

luoluo@fudan.edu.cn

Outline

Convex Set

2 Convex Function

3 Convex Optimization

Outline

Convex Set

Convex Function

3 Convex Optimization

Convex Analysis

You can make the decision after the sections of convex analysis.

Convex Set

We say a set $C \subseteq \mathbb{R}^n$ is convex if for all $\mathbf{x}, \mathbf{y} \in C$ and $\alpha \in [0, 1]$, it holds that

$$\alpha \mathbf{x} + (1 - \alpha)\mathbf{y} \in \mathcal{C}.$$

Geometrically, a set $\mathcal C$ is convex means that the line-segment connecting any two points in $\mathcal C$ also belongs to $\mathcal C$.

Given any collection of convex sets (finite, countable or uncountable), their intersection is itself a convex set.

Projection

Given a closed and convex set $\mathcal{C} \subseteq \mathbb{R}^n$ and any point $\mathbf{y} \in \mathbb{R}^d$, we define the projection of \mathbf{y} onto \mathcal{C} in Euclidean norm as the point in \mathcal{C} that is closest to \mathbf{y} as

$$\mathrm{proj}_{\mathcal{C}}(\boldsymbol{y}) = \mathop{\text{arg\,min}}_{\boldsymbol{x} \in \mathcal{C}} \|\boldsymbol{y} - \boldsymbol{x}\|_2^2 \,.$$

Projection

Some properties of the prjection:

- **1** The projection $\operatorname{proj}_{\mathcal{C}}(\mathbf{y})$ is uniquely defined.
- ② If $\mathbf{y} \notin \mathcal{C}$, then $\mathbf{z} = \mathrm{proj}_{\mathcal{C}}(\mathbf{y})$ lies on the boundary of \mathcal{C} . The hyperplane

$$\{\mathbf{x}: \langle \mathbf{y} - \mathbf{z}, \mathbf{x} - \mathbf{z} \rangle = 0\}$$

separates \mathbf{y} and \mathcal{C} in that they lie on different sides, that is

$$\langle \textbf{y}-\textbf{z},\textbf{y}-\textbf{z}\rangle>0\quad\text{and}\quad \langle \textbf{y}-\textbf{z},\textbf{x}-\textbf{z}\rangle\leq 0$$

for any $\mathbf{x} \in \mathcal{C}$. It implies

$$\|\mathbf{x} - \mathbf{z}\|_2^2 \le \|\mathbf{x} - \mathbf{y}\|_2^2$$

for any $\mathbf{x} \in \mathcal{C}$.

Outline

Convex Set

2 Convex Function

3 Convex Optimization

Convex Function

A function $f: \mathcal{C} \to \mathbb{R}$, defined on a convex set \mathcal{C} , is convex if it holds

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$$

for all $\mathbf{x}, \mathbf{y} \in \mathcal{C}$ and $\alpha \in [0, 1]$.

Epigraph

The epigraph of a function $f:\mathcal{C}\to\mathbb{R}$ is defined as the set

epi
$$f \triangleq \{(\mathbf{x}, u) \in \mathcal{C} \times \mathbb{R} : f(\mathbf{x}) \leq u\}.$$

We say a function $f(\mathbf{x})$ is closed if its epigraph is closed.

Theorem

A function f(x) is convex if and only if its epigraph is a convex set.

Extended Arithmetic Operations

We shall define convex function with possibly infinite values, which leads to arithmetic calculations involving $+\infty$ and $-\infty$:

- \bullet $-(-\infty) = +\infty$
- $\alpha \pm (+\infty) = (+\infty) \pm \alpha = +\infty$ for $\alpha \in \mathbb{R}$,
- $\alpha \pm (-\infty) = (-\infty) \pm \alpha = -\infty$ for $\alpha \in \mathbb{R}$.
- $\alpha \cdot (\pm \infty) = (\pm \infty) \cdot \alpha = \pm \infty$ for $\alpha \in (0, +\infty)$
- $\alpha \cdot (\pm \infty) = (\pm \infty) \cdot \alpha = \mp \infty$ for $\alpha \in (-\infty, 0)$
- $\alpha/(\pm\infty) = 0$ for $\alpha \in (-\infty, +\infty)$
- $(\pm \infty)/\alpha = \pm \infty$ for $\alpha \in (0, +\infty)$
- $(\pm \infty)/\alpha = \mp \infty$ for $\alpha \in (-\infty, 0)$
- inf $\emptyset = \infty$. sup $\emptyset = -\infty$

The extended real number system $\overline{\mathbb{R}}$, defined as

$$[-\infty, +\infty]$$

$$[-\infty, +\infty]$$
 or $\mathbb{R} \cup \{-\infty, +\infty\}$.

Extended Arithmetic Operations

The expressions

$$(+\infty)-(+\infty)$$
, $(-\infty)+(+\infty)$, $\frac{+\infty}{-\infty}$ and $\frac{-\infty}{+\infty}$.

are undefined and are avoided.

In the context of convex analysis, we also define

$$0 \cdot \infty = \infty \cdot 0 = 0$$
 and $0 \cdot (-\infty) = (-\infty) \cdot 0 = 0$.

Proper Convex Function

One may extend a convex function with domain $\mathcal{C} \subset \mathbb{R}^d$ to a proper convex function

$$f_{\mathcal{C}}(\mathbf{x}) = \begin{cases} f(\mathbf{x}), & \text{if } \mathbf{x} \in \mathcal{C}, \\ +\infty, & \text{if } \mathbf{x} \notin \mathcal{C}. \end{cases}$$

We define

$$\operatorname{dom} f \triangleq \{\mathbf{x} : f(\mathbf{x}) < +\infty\}.$$

We say a convex function is proper if its domain is non-empty and its values are all larger than $-\infty$.

We say a function $f(\mathbf{x})$ on \mathbb{R}^d is concave if $-f(\mathbf{x})$ is convex. Linear functions are both convex and concave.

Convex Function

Some properties of convex function:

- Given any $\mathbf{g}: \mathbb{R}^d \to \mathbb{R}^k$ such that each component $g_j(\mathbf{x})$ is convex, then the set $\mathcal{C} = \{\mathbf{x}: \mathbf{g}(\mathbf{x}) \leq \mathbf{0}\}$ is convex.
- The supremum over a family of convex functions is convex.
- The positively weighted sum of convex functions is convex.
- The partial minimization of a convex function is convex.
- The composition of convex functions may not preserve convexity.

Indicator Function

Given a closed convex set $C \in \mathbb{R}^d$, we can define a convex function $\mathbb{1}_C(\mathbf{x})$ on \mathbb{R}^d , called the indicator function of C on \mathbb{R}^d , as

$$\mathbb{1}_{\mathcal{C}}(\boldsymbol{x})\triangleq \begin{cases} 0, & \text{if } \boldsymbol{x}\in\mathcal{C},\\ +\infty, & \text{if } \boldsymbol{x}\not\in\mathcal{C}. \end{cases}$$

We may write $f_{\mathcal{C}}(\mathbf{x}) = f(\mathbf{x}) + \mathbb{1}_{\mathcal{C}}(\mathbf{x})$ and the problem

$$\min_{\mathbf{x}\in\mathcal{C}}f(\mathbf{x})$$

is equivalent to

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) + \mathbb{1}_{\mathcal{C}}(\mathbf{x}).$$

Closed Convex Function

We shall focus on closed functions in convex optimization.

- All convex functions can be made closed by taking the closure of its epigraph.
- In some pessimistic case, a closed convex function may not be continuous at the boundary of its domain. Consider the function

$$f(x,y) = \begin{cases} \frac{x^2}{y}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

with domain $\{(x,y): y>0\} \cup \{(0,0)\}.$

We will only consider problems where the optimal solution can be achieved at a point that is continuous.

Outline

Convex Set

Convex Function

3 Convex Optimization

Convex Optimization

Why do we love convex optimization?

Theorem

Let $f(\mathbf{x})$ be a convex function defined on a convex set \mathcal{C} and \mathbf{x}^* be a local solution of

$$\min_{\mathbf{x} \in \mathcal{C}} f(\mathbf{x}). \tag{1}$$

That is, there exist some $\delta > 0$ such that any $\hat{\mathbf{x}} \in \mathcal{B}_{\delta}(\mathbf{x}^*) \cap \mathcal{C}$ holds

$$f(\mathbf{x}^*) \leq f(\hat{\mathbf{x}}).$$

Then the local solution \mathbf{x}^* is a global solution of problem (1).

First-Order Condition

Theorem

If a function f is differentiable on open set $\mathcal C$, then it is convex on $\mathcal C$ if and only if

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle$$

hols for any $\mathbf{x}, \mathbf{y} \in \mathcal{C}$.

However, the gradient may not exist in general case.

Subgradient and Subdifferential

We say a vector $\mathbf{g} \in \mathbb{R}^d$ is a subgradient of a proper convex function $f : \mathbb{R}^d \to \mathbb{R}$ at $\mathbf{x} \in \text{dom } f$ if

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle$$

holds for any $\mathbf{y} \in \mathbb{R}^d$.

The set of subgradients at $\mathbf{x} \in \text{dom } f$ is called the subdifferential of f at \mathbf{x} , defined as

$$\partial f(\mathbf{x}) \triangleq \{\mathbf{g} : f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle \text{ holds for any } \mathbf{y} \in \mathbb{R}^d \}.$$

Examples of Subdifferential

1 The subdifferential of f(x) = |x| at 0 is the set

$$\partial f(x) = [-1, 1].$$

What about the general norm?

② The subdifferential of an indicator function $\mathbb{1}_{\mathcal{C}}(\mathbf{x})$ is

$$\partial \mathbb{1}_{\mathcal{C}}(\mathbf{x}) = \mathcal{N}_{\mathcal{C}}(\mathbf{x}),$$

where

$$\mathcal{N}_{\mathcal{C}}(\mathbf{x}) = \left\{ \mathbf{g} \in \mathbb{R}^d : \langle \mathbf{g}, \mathbf{y} - \mathbf{x} \rangle \leq 0 \text{ for all } \mathbf{y} \in \mathcal{C} \right\}$$

is called the normal cone of C at \mathbf{x} .

 \bullet If a convex function f is differentiable at \mathbf{x} , then

$$\partial f(\mathbf{x}) = \{\nabla f(\mathbf{x})\}.$$

Let f_1 and f_2 be proper convex functions on \mathbb{R}^d , then

$$\partial (f_1 + f_2)(\mathbf{x}) \supseteq \partial f_1(\mathbf{x}) + \partial f_2(\mathbf{x}).$$

If the sets $ri(\text{dom } f_1)$ and $ri(\text{dom } f_2)$ have a point in common (overlap sufficiently), we have

$$\partial (f_1 + f_2)(\mathbf{x}) = f_1(\mathbf{x}) + \partial f_2(\mathbf{x}).$$

We define the relative interior $\mathrm{ri}(\mathcal{C})$ for convex $\mathcal{C}\subseteq\mathbb{R}^d$ as

$$\label{eq:rice} \begin{split} \operatorname{ri}(\mathcal{C}) = \{\mathbf{z} \in \mathcal{C}: \text{ for every } \mathbf{x} \in \mathcal{C} \text{ such that} \\ & \text{there exist a } \mu > 1 \text{ such that } (1-\mu)\mathbf{x} + \mu\mathbf{z} \in \mathcal{C}\}. \end{split}$$

It means every line segment in $\mathcal C$ having $\mathbf z$ as one endpoint can be prolonged beyond $\mathbf z$ without leaving $\mathcal C$.

Nonempty subdifferential and convexity:

- **1** If any $\mathbf{x} \in \text{dom } f$ satisfies $\partial f(\mathbf{x}) \neq \emptyset$, then f is convex.
- ② If $f : \mathbb{R}^d \to \mathbb{R}$ is convex and \mathbf{x} belongs to the interior of $\operatorname{dom} f$, then $\partial f(\mathbf{x}) \neq \emptyset$.

Theorem (Hyperplane Separation Theorem)

Let $\mathcal{X} \subseteq \mathbb{R}^d$ is a convex set and \mathbf{x}_0 belongs to its boundary. Then, there exists a nonzero vector $\mathbf{w} \in \mathbb{R}^d$ such that

$$\langle \mathbf{w}, \mathbf{x} \rangle \leq \langle \mathbf{w}, \mathbf{x}_0 \rangle.$$

The subgradient of a convex function may not exist at a boundary point of the domain.

As an example, consider the function

$$f(x) = -\sqrt{x}$$

defined on $[0, +\infty)$, where we have $\partial f(0) = \emptyset$.

Given matrix $\mathbf{A} \in \mathbb{R}^{d \times m}$ and vector $\mathbf{b} \in \mathbb{R}^d$, define

$$f(\mathbf{x}) = h(\mathbf{A}\mathbf{x} + \mathbf{b}),$$

where h is a proper convex on \mathbb{R}^d . Then $h(\mathbf{x})$ is convex and

$$\partial h(\mathbf{x}) \supseteq \mathbf{A}^{\top} \partial f_1(\mathbf{A}\mathbf{x} + \mathbf{b}).$$

If the range of **A** contains a point of ri(dom h), then

$$\partial h(\mathbf{x}) = \mathbf{A}^{\top} \partial f_1(\mathbf{A}\mathbf{x} + \mathbf{b}).$$

Optimal Condition

Theorem

Consider proper closed convex function f and closed convex set $C \subset (\operatorname{dom} f)^{\circ}$. A point $\mathbf{x}^* \in C$ is a solution of convex optimization problem

$$\min_{\mathbf{x} \in \mathcal{C}} f(\mathbf{x})$$

if and only if

$$\mathbf{0} \in \partial (f(\mathbf{x}^*) + \mathbb{1}_{\mathcal{C}}(\mathbf{x}^*)).$$

Equivalently, there exists a subgradient $\mathbf{g}^* \in \partial f(\mathbf{x}^*)$, such that any $y \in \mathcal{C}$ satisfies

$$\langle \mathbf{g}^*, \mathbf{y} - \mathbf{x} \rangle \geq 0.$$

In particular, the point \mathbf{x}^* is the solution of the problem in unconstrained case if

$$\mathbf{0} \in \partial f(\mathbf{x}).$$

Regularity Conditions

The following regularity conditions are useful in the convergence analysis of convex optimization problems.

① We say that a function $f: \mathcal{C} \to \mathbb{R}$ is *G*-Lipschitz continuous if for all $\mathbf{x}, \mathbf{y} \in \mathcal{C}$, we have

$$|f(\mathbf{x}) - f(\mathbf{y})| \leq G \|\mathbf{x} - \mathbf{y}\|_2$$
.

② We say a differentiable function $f: \mathbb{R}^d \to \mathbb{R}$ is L-smooth if it has L-Lipschitz continuous gradient. That is, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$, we have

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \le L \|\mathbf{x} - \mathbf{y}\|_2.$$

If the function

$$g(\mathbf{x}) = f(\mathbf{x}) - \frac{\mu}{2} \|\mathbf{x}\|_2^2$$

is convex for some $\mu > 0$, we say f is μ -strongly convex.

Strong Convexity

Theorem

The function $f:\mathcal{C}\to\mathbb{R}$ defined on convex set \mathcal{C} is μ -strongly-convex if and only if

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}) - \frac{\mu \alpha (1 - \alpha)}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2}$$

for all $\mathbf{x}, \mathbf{y} \in \mathcal{C}$ and $\alpha \in [0, 1]$.

Theorem

If a function f is differentiable on open set $\mathcal C$, then it is $\mu\text{-strongly convex}$ on $\mathcal C$ if and only if

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\mu}{2} \|\mathbf{y} - \mathbf{x}\|_2^2$$

hols for any $\mathbf{x}, \mathbf{y} \in \mathcal{C}$.

Strong Convexity

If there exists some

$$\mathbf{x}^* = \underset{\mathbf{x} \in \mathcal{C}}{\operatorname{arg min}} f(\mathbf{x}),$$

then it is the unique minimizer.

Moreover, the solution is stable such that any approximate solution $\hat{\boldsymbol{x}}$ satisfying

$$f(\mathbf{x}) \leq f(\mathbf{x}^*) + \epsilon$$

leads to

$$\|\mathbf{x}^* - \hat{\mathbf{x}}\|_2^2 \le \frac{2\epsilon}{\mu}.$$

Lipschitz Continuity and Smoothness

Theorem

A convex function f is G-Lipschitz continuous on $\operatorname{dom} f$ if

$$\max_{\mathbf{g} \in \partial f(\mathbf{x})} \{\|\mathbf{g}\|_2\} \leq G$$

for all $\mathbf{x} \in \text{dom } f$.

Theorem

A function $f:\mathbb{R}^d o \mathbb{R}$ is L-smooth (possibly nonconvex), then it holds

$$|f(\mathbf{y}) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle| \le \frac{L}{2} \|\mathbf{y} - \mathbf{x}\|_{2}^{2}$$

holds for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$.

Smoothness and Convexity

Theorem

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex and L-smooth, then we have

$$0 \le f(\mathbf{y}) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle \le \frac{L}{2} \|\mathbf{y} - \mathbf{x}\|_{2}^{2}$$

for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$.

Second-Order Characterization

Theorem (Optimality)

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a twice differentiable function. Suppose that $\nabla^2 f(\cdot)$ is continuous in an open neighborhood of $\mathbf{x}^* \in \mathbb{R}^d$.

1 If \mathbf{x}^* is a local minimizer of $f(\cdot)$, then it holds that

$$\nabla f(\mathbf{x}^*) = \mathbf{0}$$
 and $\nabla^2 f(\mathbf{x}^*) \succeq \mathbf{0}$.

If it holds that

$$\nabla f(\mathbf{x}^*) = \mathbf{0}$$
 and $\nabla^2 f(\mathbf{x}^*) \succ \mathbf{0}$,

then the point \mathbf{x}^* is a strict local minimizer of $f(\cdot)$.

Second-Order Characterization

Theorem (Smoothness and Convexity)

Let $f(\cdot)$ be a twice differentiable function defined on \mathbb{R}^d

- **1** It is L-smooth if and only if $-L\mathbf{I} \leq \nabla^2 f(\mathbf{x}) \leq L\mathbf{I}$ for all $\mathbf{x} \in \mathbb{R}^d$.
- ② It is convex if and only if $\nabla^2 f(\mathbf{x}) \succeq \mathbf{0}$ for all $\mathbf{x} \in \mathbb{R}^d$.
- **3** It is μ -strongly-convex if and only if $\nabla^2 f(\mathbf{x}) \succeq \mu \mathbf{I}$ for all $\mathbf{x} \in \mathbb{R}^d$.

We also say $f(\cdot)$ is ℓ -weakly convex if

$$\nabla^2 f(\mathbf{x}) \succeq -\ell \mathbf{I}$$
.

for some $\ell > 0$.

Second-Order Characterization

Some examples:

For unconstrained quadratic problem

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) \triangleq \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} - \mathbf{b}^{\top} \mathbf{x},$$

where $\mathbf{A} \in \mathbb{R}^{d \times d}$. We have

$$\nabla^2 f(\mathbf{x}) = \mathbf{A}.$$

2 For regularized generalized linear model

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) \triangleq \frac{1}{n} \sum_{i=1}^n \phi_i(\mathbf{a}^\top \mathbf{x}) + \frac{\lambda}{2} \|\mathbf{x}\|_2^2.$$

where $\phi_i : \mathbb{R}^d \to \mathbb{R}$ is twice differentiable. We have

$$\nabla f(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \phi_i'(\mathbf{a}_i^{\mathsf{T}} \mathbf{x}) \mathbf{a} + \lambda \mathbf{x} \quad \text{and} \quad \nabla^2 f(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \phi_i''(\mathbf{a}_i^{\mathsf{T}} \mathbf{x}) \mathbf{a}_i \mathbf{a}_i^{\mathsf{T}} + \lambda \mathbf{I}.$$