

Slides By:

A.T. Sarah Osama Talaat

E-mail: SarahOsama.fci@gmail.com

Slides were prepared based on set of references mentioned in the last slide

- **□**Revision
 - ☐ Gradient optimization procedures
 - ■Stochastic gradient optimization
- ☐ Hebbian rule
- □ Learning rules
- ☐ Hebb network

Let's Start

Gradient Optimization Algorithm Introduction

- The ANN learns by backpropagation of the cost function.
- In order to establish the mathematical basis for some of the following learning procedures (i.e. algorithms) I want to explain briefly what is meant by gradient descent: the backpropagation of error learning procedure, for example, involves this mathematical basis and thus inherits the advantages and disadvantages of the gradient descent.

Gradient Optimization Algorithm Graphical Description

- Assume that, we have two learning algorithm parameters w_0 , w_1 and the cost function $C(w_0, w_1)$
- We want to find w_0 , w_1 that minimize the cost function c, $C(w_0, w_1)$

• $C(w_0, w_1)$ is a convex function which is like a boll

Gradient Optimization Algorithm Graphical Description

☐ Gradient descent:

- What we can do to find a good values for the parameters w_0 , w_1 ?
- Initialize w_0 and w_1 to some initial values (denoted by pink dot). There many difference initialization methods; random values or assign the values to zero.
- For any convex cost function always assign the values to zeros because we need to start from the same points

Gradient Optimization Algorithm Graphical Description

As mentioned before the gradient descent is defined by the following

Gradient descent starts from staring initial point $s = (s_1, s_2, ..., s_n)$ and then takes a step in the (steepest) against direction (downhill) of s

☐ Algorithm 4.1: Gradient Decent algorithm

- 1. Initialization: Initialize all parameters to any random number
- 2. Repeat until convergence (or gradient gets close to zero)
- 3. Activation: compute the neuron input $net_i = \sum_{i=0}^n w_i x_i$, where i = 0 is for the bias
- 4. Calculate the neuron output by applying one of activation functions to the neuron input

$$\widehat{y} = o_i = a(net_i)$$

5. Create the derivative for all parameters p_i

6.
$$dp_i \coloneqq \frac{dC}{dp_i}$$

7. Learning: adjust the parameters values

8.
$$p_i \coloneqq p_i - \eta \frac{dC}{dp_i}$$
, where η is the learning rate

9. End for

- Assume that, we have two learning algorithm parameters w_0 , w_1 and the cost function $C(w_0, w_1)$. And, we want to find w_0 , w_1 that minimize the cost function c, $C(w_0, w_1)$
- $C(w_0, w_1)$ is a non-convex function which looks smoothing i.e. curves up and down

Stochastic Gradient Optimization Algorithm Graphical Description

Artificial Neural Networks &

Deep Learning

- Assume that, we have two learning algorithm parameters w_0 , w_1 and the cost function $C(w_0, w_1)$. And, we want to find w_0 , w_1 that minimize the cost function c, $C(w_0, w_1)$
- $C(w_0, w_1)$ is a non-convex function which looks smoothing i.e. curves up and down

☐ Algorithm 4.1: Stochastic Gradient Decent algorithm

- 1. Initialization: Initialize all parameters to any small random number close to 0 (but not 0)
- 2. Foreach instance in the input dataset do
- 3. Forward-propagation: From left to right the neurons are activated by the following
- **4.** Activation: compute the neuron input $y_i = net_i = \sum_{i=0}^n w_i x_i$, where i = 0 is for the bias
- Calculate the neuron output by applying one of activation functions to the neuron input $\hat{y}_i = o_i = a(net_i)$
- 6. Measure the error by compare the predicted result \hat{y}_i to the actual result y_i (Cost Function)
- 7. Back-propagation: From right to left the error is back-propagated and adjust the weights
- **8.** Learning: adjust the parameters values
- 9. $p_i \coloneqq p_i \eta \frac{dC}{dp_i}$, where η is the learning rate
- 10. End foreach

Is the basis for most other learning rules

- The Hebbian rule is formulated in 1949, which is the **basis** for most of the more complicated learning rules we will discuss in this course.
- We distinguish between the original form and the more general form, which is a kind of principle for other learning rules.

□ Definition 4.18 (Original Hebbian rule):

"If *neuron j* receives an input from *neuron i* and if both neurons are strongly active at the same time, **then increase the weight** $w_{i,j}$ (i.e. the strength of the connection between i and j)." Mathematically speaking, the rule is:

$$\Delta w_{i,j} \sim \eta o_i a_j$$

with $\Delta w_{i,j}$ being the change in weight from i to j.

• Note that, the changes in weight $\Delta w_{i,j}$ are simply added to the weight $w_{i,j}$

The change in weight $\Delta w_{i,j}$ from i to j which is proportional to the following factors:

- the output o_i of the predecessor neuron **i**
- the activation a_i of the successor **neuron** j,
- a constant η , i.e. the learning rate, which will be discussed latter.

- Hebbian Rule was formulated before the specification of technical neurons. Considering that this **learning rule was preferred in binary activations**, it is clear that with the possible activations (1, 0) the weights **will either increase or remain constant**. Sooner or later they would go **ad infinitum**, since they can only be corrected "upwards" when an error occurs.
- This can be compensated by using the activations (-1,1). Thus, the weights are decreased when the activation of the predecessor neuron dissents from the one of the successor neuron, otherwise they are increased.

□ Definition 4.19 (Hebbian rule, more general):

• The generalized form of the Hebbian Rule only specifies the proportionality of the change in weight to the product of two undefined functions, but with defined input values

$$\Delta \mathbf{w}_{i,j} = \eta \ h(o_i, w_{i,j}) \cdot g(a_j, t_j)$$

Learning Rules

Examples of learning rules

- Hebb's Rule
- Delta Rule (Least Mean Square Rule)
- Hopfield Law
- The Gradient Descent Rule

□ Definition 4.20: (Hebb's rule):

- If a neuron receives an output from another neuron, and if both are highly active (both have same sign), the weight between the neurons should be strengthened.
- It means that if two interconnected neurons are both "on" at the same time, then the weight between them should be increased

$$\Delta w_{i,\Omega} = x_i \cdot o_i$$

Learning Rules Delta rule for learning

□ Definition 4.21 (Delta rule *or* windrow-Hoff rule):

• Continuously modifying the strengths of the input connections to reduce the difference (the delta) between the desired output value and the actual output of a processing element. Derivative of the activation function is used. Delta rule is also called LME stands for Least mean square.

□ Definition 4.21: (Hebb net):

- A **Hebb net** is a single layer feedforward neurol network (i.e. network consists of only one layer of variable weights and one layer of output neurons Ω) trained using the Hebb rule. The technical view of an Hebb net is shown in figure 4.3.
- Remember: Hebb rule is

$$\Delta w_{i,\Omega} = x_i \cdot o_i$$

- ☐ Algorithm 4.1: Hebb net algorithm
 - Input: training input x_i

Output: the output unit is t

- **1. Initialization:** Initialize all weights to 0
- **2.** For all input neurons *i* do
- 3. Activation: compute the neuron input $net_i = \sum_{i=0}^n w_i x_i$, where i = 0 is for the bias
- 4. Calculate the neuron output by applying one of activation functions to the neuron input

$$o_i = a(net_i)$$

- **5.** Learning: adjust the weights
- $\Delta w_i := x_i \cdot t_i$
- 7. $w_{i,new} := w_{i,old} + \Delta w_i$
- 8. Learning: like the weights adjust the weight of bias $b_{new_i} := b_{old_i} + t_i$
- 9. End for

Hebb net Example

□ Example:

- Construct a Hebb network that is used Hebb's learning algorithm to performs AND function
- Assume that the bias neuron has input 1
- The training samples are

x_1	x_2	$y = x_1$ and x_2
1	1	1
1	-1	-1
-1	1	-1
-1	-1	-1

■Example:

- By using Hebb's algorithm and the following training dataset construct an Sigle layer feedforward that performs AND function.
- Assume that the bias neuron has input 1.
- The training samples are

□ Solution:

The and gate works as following

x_1	x_2	$t = x_1$ and x_2
1	1	1
1	-1	-1
-1	1	-1
-1	-1	-1

 Construct the single layer feedforward architecture for the and gate

- In this example we have 4 patterns which are used as a training samples (inputs).
- Each pattern consists of x_1, x_1 and bias

Hebb net Remember

Linear data in 2D (Discrete Data)

Hebb net Response regions

☐ Example: Response region for the AND gate

The And gate (for bipolar data)

x_1	x_2	$y = x_1$ and x_2
1	1	1
1	-1	-1
-1	1	-1
-1	-1	-1

Hebb net Example

Artificial Neural Networks &

Deep Learning

□ Solution:

• In this example we use the following activation function (Let $\theta = 0$).

$$a(net_i)$$
= $\begin{cases} 1 \text{ , if } net_i \geq \theta \\ -1 \text{ , if } net_i < \theta \end{cases}$

Deep Learning

Hebb net Example

☐ Solution: Training phase

- Train the neuron by using the first pattern (1,1,1), the target here is 1
- Initialize all weights to 0
- Activation: compute the neuron output $o_i = \sum_{i=0}^n w_i x_i$ $net_1 = \sum_{i=0}^n w_i x_i = (1 \times 0) + (1 \times 0) + (1 \times 0) = 0$ $o_1 = a(net_1) = 1$ (: $net_1 \ge 0$: $a(net_1) = 1$)
- Learning rules:
 - Adjust the weights: $w_{i,new} := w_{i,old} + x_i \cdot t$ $w_{1,new} := 0 + (1 \times 1) = 1$ $w_{2,new} := 0 + (1 \times 1) = 1$
 - Adjust the weight of bias: $b_{new} := b_{old} + t$ $b_{new} := 0 + 1 = 1$

The neuron before training

The neuron after training

Hebb net Example

Artificial Neural Networks &
Deep Learning

☐ The response regions for the AND gate after the first input pattern

The decision boundary equation is

$$b + w_1 x_1 + w_2 x_2 = 0$$

The weights after train the first patter are

$$w_1 = 1$$
, $w_2 = 1$ and $b = 1$

We will have the following separation line

$$y = 1 \text{ nad } y > 0$$

$$1 + x_1 + x_2 \ge 0 \Rightarrow x_1 + x_2 \ge -1$$

The And gate (for bipolar data)

x_1	x_2	$y = x_1$ and x_2
1	1	1
1	-1	-1
-1	1	-1
-1	-1	-1

Hebb net Example

☐ The response regions for the AND gate after the first input pattern

• We will have the following separation line: $1 + x_1 + x_2 \ge 0 = x_1 + x_2 \ge -1$

The And gate (for bipolar data)

x_1	x_2	$y = x_1$ and x_2
1	1	1
1	-1	-1
-1	1	-1
-1	-1	-1

☐ Solution: Training phase

- Train the neuron by using the second pattern (1,-1,1), the target here is -1
- Activation: compute the neuron output $o_i = \sum_{i=0}^n w_i x_i$ $net_2 = \sum_{i=0}^n w_i x_i = (1 \times 1) + (-1 \times 1) + (1 \times 1) = 1$ $o_2 = a(net_2) = 1$ (: $net_2 \ge 0$: $a(net_2) = 1$)
- Learning rules:
 - Adjust the weights: $w_{i,new} := w_{i,old} + x_i \cdot t$ $w_{1,new} := 1 + (1 \times -1) = 0$ $w_{2,new} := 1 + (-1 \times -1) = 2$
 - Adjust the weight of bias: $b_{new} := b_{old} + t$ $b_{new} := 1 + (-1) = 0$

The neuron before training

The neuron after training

☐ The response regions for the AND gate after the second input pattern

The decision boundary equation is

$$b + w_1 x_1 + w_2 x_2 = 0$$

• The weights after train the first patter are

$$w_1 = 0$$
, $w_2 = 2$ and $b = 0$

We will have the following separation line

$$y = -1 \ nad \ y < 0$$

$$2x_2 = 0 \Rightarrow x_2 = 0$$

The And gate (for bipolar data)

x_1	x_2	$y = x_1$ and x_2
1	1	1
1	-1	-1
-1	1	-1
-1	-1	-1

Hebb net Example

☐ The response regions for the AND gate after the second input pattern

• We will have the following separation line: $x_2 = 0$

The And gate (for bipolar data)

x_1	x_2	$y = x_1$ and x_2
1	1	1
1	-1	-1
-1	1	-1
-1	-1	-1

Deep Learning

Hebb net Example

☐ Solution: Training phase

- Train the neuron by using the third pattern (-1,1,1), the target here is -1
- Activation: compute the neuron output $o_i = \sum_{i=0}^n w_i x_i$ $net_3 = \sum_{i=0}^n w_i x_i = (1 \times 0) + (-1 \times 0) + (1 \times 2) = 2$ $o_3 = a(net_3) = 1$ (: $net_3 \ge 0$: $a(net_3) = 1$)
- Learning rules:
 - Adjust the weights: $w_{i,new} := w_{i,old} + x_i \cdot t$ $w_{1,new} := 0 + (-1 \times -1) = 1$ $w_{2,new} := 2 + (1 \times -1) = 1$
 - Adjust the weight of bias: $b_{new} := b_{old} + t$ $b_{new} := 0 + (-1) = -1$

The neuron before training

The neuron after training

☐ The response regions for the AND gate after the third input pattern

The decision boundary equation is

$$b + w_1 x_1 + w_2 x_2 = 0$$

The weights after train the first patter are

$$w_1=1, w_2=1 \text{ and } b=-1$$

We will have the following separation line

$$y = -1 \text{ nad } y < 0$$

$$-1 + x_1 + x_2 = 0 \Rightarrow x_1 + x_2 = 1$$

The And gate (for bipolar data)

x_1	x_2	$y = x_1$ and x_2
1	1	1
1	-1	-1
-1	1	-1
-1	-1	-1

A.T. Sarah Osama Talaat Lecture (5)

Hebb net Example

☐ The response regions for the AND gate after the third input pattern

• We will have the following separation line: $x_1 + x_2 = 1$

The And gate (for bipolar data)

x_1	x_2	$t = x_1$ and x_2
1	1	1
1	-1	-1
-1	1	-1
-1	-1	-1

☐ Solution: Training phase

- Train the neuron by using the fourth pattern (-1,-1,1), the target here is -1
- Activation: compute the neuron output $o_i = \sum_{i=0}^n w_i x_i$ $net_4 = \sum_{i=0}^n w_i x_i = (1 \times -1) + (1 \times -1) + (-1 \times 1) = -3$ $o_4 = a(net_4) = -1$ (: $net_4 < 0$: $a(net_4) = -1$)
- Learning rules:
 - Adjust the weights: $w_{i,new} := w_{i,old} + x_i \cdot t$ $w_{1,new} := 1 + (-1 \times -1) = 2$ $w_{2,new} := 1 + (-1 \times -1) = 2$
 - Adjust the weight of bias: $b_{new} := b_{old} + t$ $b_{new} := -1 + (-1) = -2$

The neuron before training

The neuron after training

☐ The response regions for the AND gate after the fourth input pattern

The decision boundary equation is

$$b + w_1 x_1 + w_2 x_2 = 0$$

The weights after train the first patter are

$$w_1=2$$
, $w_2=2$ and $b=-2$

We will have the following separation line

$$y = -1 \ nad \ y < 0$$

$$-2 + 2x_1 + 2x_2 = 0 \implies 2x_1 + 2x_2 = 2 \implies x_1 + x_2 = 1$$

The And gate (for bipolar data)

x_1	x_2	$t = x_1$ and x_2
1	1	1
1	-1	-1
-1	1	-1
-1	-1	-1

Hebb net Example

☐ The correct response regions for the AND gate

The And gate (for bipolar data)

x_1	x_2	$t = x_1$ and x_2
1	1	1
1	-1	-1
-1	1	-1
-1	-1	-1

Hebb net Example

□ Solution: Training phase

- Now, the training phase is finished because we input all given patterns.
- We get the learned neuron that is abled to predict a new value.

The final neuron

Deep Learning

Hebb net Example

■ Solution: Check the final neuron

• Check the first pattern (1,1)

$$net_1 = \sum_{i=1}^n w_i x_i + b = (1 \times 2) + (1 \times 2) + (-2) = 2$$
, $o_1 = a(2) = 1$

Check the second pattern (1,-1)

$$net_2 = \sum_{i=1}^n w_i x_i + b = (1 \times 2) + (-1 \times 2) + (-2) = -2$$
, $o_2 = a(-2) = -1$

• Check the third pattern (-1,1)

$$net_3 = \sum_{i=1}^n w_i x_i + b = (-1 \times 2) + (1 \times 2) + (-2) = 2$$
, $o_3 = a(-2) = -1$

Check the fourth pattern (-1,-1)

$$net_4 = \sum_{i=1}^n w_i x_i + b = (-1 \times 2) + (-1 \times 2) + (-2) = -2, o_4 = a(-6) = -1$$

x_1	x_2	t
1	1	1
1	-1	-1
-1	1	-1
-1	-1	-1

Hebb network

Alternative view: weight matrix

☐ How can associate an input vector with a specific output vector in a neural net?

• In this case, Hebb's Rule is the same as taking the outer product of the two vectors:

$$p_i = (x_1, x_2, \dots, x_n) \text{ and } t_i = (o_1, o_2, \dots, o_m)$$

$$pt_i = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} [o_1, \dots, o_m] = \begin{bmatrix} x_1 o_1 & \cdots & x_1 o_m \\ \vdots & \vdots & \vdots \\ x_n o_1 & \cdots & x_n o_m \end{bmatrix}$$
Weight matrix

☐ Weight matrix

- Is used to store more than one association in a neural net using **Hebb's Rule**
- That occurs by adding the individual weight matrices
- This method works only if the input vectors for each association are **orthogonal** (uncorrelated). That means, if their dot product is 0

$$p_i = (x_1, x_2, \dots, x_n)$$
 and $t_i = (o_1, o_2, \dots, o_m)$
$$pt_i = [p_1, \dots, p_n] \begin{bmatrix} t_1 \\ \vdots \\ t_m \end{bmatrix} = 0$$

Hebb networkWeight matrix

☐ Weight matrix

■ There are **n** input units and **m** output units with each input connected to each output unit.

■ Example:

- By using Hebb's algorithm and the following training dataset construct an Hebb artificial neurol network that associates the following training samples.
- The training samples and the activation function((let $\theta = 0$).) are

$$p_1 = (1,-1,-1,-1)$$
 and $t_1 = (1,-1,-1)$
 $p_2 = (-1,1,-1,-1)$ and $t_2 = (1,-1,1)$
 $p_3 = (-1,-1,1,-1)$ and $t_3 = (-1,1,-1)$
 $p_4 = (-1,-1,-1,1)$ and $t_4 = (-1,1,1)$

$$a(o_i)$$
= $\begin{cases} 1, & if \ o_i > \theta \\ 0, & if \ o_i = \theta \\ -1, & if \ o_i < \theta \end{cases}$

□ Solution:

- In this training set we have 4 input and 3 output neurons.
- That means, we are going to use the weight matrix by find the four outer products and adding them.

□ Solution:

1. Find the four outer products **First pair:**

$$p_1 = (1,-1,-1,-1)$$
 and $t_1 = (1,-1,-1)$

$$pt_1 = \begin{bmatrix} 1 \\ -1 \\ -1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$

Third pair:

$$p_3 = (-1, -1, 1, -1)$$
 and $t_3 = (-1, 1, -1)$

$$egin{aligned} pt_3 &= egin{bmatrix} -1 \ -1 \ -1 \end{bmatrix} [-1 & 1 & -1] = egin{bmatrix} 1 & -1 & 1 \ 1 & -1 & 1 \ -1 & 1 & -1 \ 1 & -1 & 1 \end{bmatrix} \end{aligned}$$

Second pair:

$$p_2 = (-1,1,-1,-1)$$
 and $t_2 = (1,-1,1)$

$$pt_2 = \begin{bmatrix} -1 \\ 1 \\ -1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & -1 \\ -1 & 1 & -1 \end{bmatrix}$$

Fourth pair:

$$p_4 = (-1, -1, -1, 1)$$
 and $t_4 = (-1, 1, 1)$

□ Solution:

2. Find the weight matrix by Add all four individual weight matrices

• Each column in final weight matrix defines the weights for an output neuron.

□ Solution:

3. Construct the neurol architecture

□ Solution:

4. Train the neuron by using the following input $p_1 = (1,-1,-1,-1)$ and $t_1 = (1,-1,-1)$

□ Solution:

5. Train the neuron by using the following input $p_2 = (-1,1,-1,-1)$ and $t_2 = (1,-1,1)$

Hebb network Weight matrix

□ Solution:

6. Train the neuron by using the following input $p_3 = (-1,-1,1,-1)$ and $t_3 = (-1,1,-1)$

Hebb network Weight matrix

□ Solution:

7. Train the neuron by using the following input $p_4 = (-1,-1,-1,1)$ and $t_4 = (-1,1,1)$

□ Solution:

8. Test the neuron by using unseen input p = (-1,-1,-1,1) and t = (0,0,0)

Assignments

☐ Assignment (4.1)

- Train a Hebb network to classify the following training set:
- Assume that the learning rate $\eta = 1$, bias is -1 and initial weights (0,1,-1).

x_1	x_2	target
4	5	T
6	1	T
4	1	${f F}$
1	2	\mathbf{F}

References

- Kriesel, David. "A Brief Introduction to Neural Networks. 2007." URL http://www.dkriesel.com (2007).
- da Fontoura Costa, Luciano, and Gonzalo Travieso. "Fundamentals of neural networks:
 By Laurene Fausett. Prentice-Hall, 1994, pp. 461, ISBN 0-13-334186-0." (1996): 205-207.

Any Questions!?

Thank you