深層学習入門

ニューラルネットワークの概要

一関高専 未来創造工学科 情報・ソフトウェア系 小池 敦

概要

ニューラルネットワーク

- 脳の神経細胞(ニューロン)のネットワークを 参考に作られた数理モデル
- 2010年ごろまではそれほど高性能ではなかった
- 2012年の画像認識コンテストILSVRCでディープラーニングを使用したチームが圧勝し、その頃から広く活用されるようになった

- 1ネットワークで入力xと出力yの関係を表す
 - 基本的にはy = f(x)のような関数になる

$$y = f(x)$$

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = f\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\right)$$

$$x \longrightarrow y \qquad x_1 \longrightarrow y_1$$

$$x_2 \longrightarrow y_2$$

$$1入力1出力 \qquad 2入力2出力 \qquad (入出力とも2次元ベクトル)$$

具体例

これからこれの意味を説明する

頂点は関数を表す(活性化関数と呼ぶ) 活性化関数は1引数、1出力

※ 実際にはこんな活性化関数は使わない

頂点への入力がない時は定数1を返す関数 (バイアス項と呼ばれる)

$$y = 1$$

辺には重みを設定できる重みの値で定数倍される

頂点への入力が複数ある時、それらは加算される

$$y = (w_1 x_1 + w_2 x_2)^2$$

頂点からの出力が複数ある時、それらは同じ値になる

活性化関数

- 同一層の頂点は、基本的に同じ活性化関数を使う
- 活性化関数には正規化線形関数がよく使われる ReLU: $y = \max(0, x)$
- シグモイド関数 (sigmoid) も使われる

練習問題:次のニューラルネットワークが表す関数は?

練習問題:次のニューラルネットワークが表す関数は?

ニューラルネットワークの 行列表現

$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
は活性化関数 f への入力値

ニューラルネットワークは 行列積と活性化関数の繰り返し として記述できる

ニューラルネットワークの学習

- 辺の重みを学習する
- 活性化関数の部分は変えない
- 誤差最小を目指して繰り返し重みを変化させる
 - 1ターンのことをエポック(epoch)と呼ぶ

辺の重みの学習

- 全部の辺の重みを個別に調整する
 - 複数の辺で連携したりはしない
 - 重みの初期値は適当に決める
 - ・誤差を辺の重みで偏微分し、その逆方向に変化させる
 - ・ある辺の重みwのt回目の更新の値を w_t とするとは以下のように計算される(勾配法の場合)

$$w_{t+1} \leftarrow w_t - \alpha \cdot \frac{\partial E}{\partial w} \bigg|_{w=w_t}$$

 \bullet Eは誤差関数, α は学習率と呼ばれユーザが事前に決める値

誤差逆伝播法

- 「誤差を各辺の重みで偏微分する」計算を高速 に行う手法
- 出力層の誤差(誤差の偏微分)を入力層方向に 伝播させる
- ⇒ 誤差逆伝播法(バックプロパゲーション)と呼ぶ

簡単な例題で計算してみる

例題

• x = 2 の時, y = 5 となるように w_1 を求めたい

- 問1.w = 1 の時,出力の二乗誤差を求めなさい
- 問2. w=1 の時, $\frac{\partial E}{\partial w_1}$, $\frac{\partial E}{\partial w_2}$ を求めなさい

自主后成图数。微层分分式。11、

$$\frac{\partial E}{\partial w_{1}} = \frac{\partial u_{1}}{\partial w_{1}} \cdot \frac{\partial z_{1}}{\partial u_{1}} \cdot \frac{\partial u_{2}}{\partial z_{1}} \cdot \frac{\partial y}{\partial u_{2}} \cdot \frac{\partial E}{\partial y}$$

$$= 2 \cdot 4 \cdot 0.5 \cdot 12 \cdot 6 = 288$$

$$\frac{\partial E}{\partial w_{2}} = \int_{S} \int_{W_{2}} \int_{W_{2}}$$

例題まとめ

- 問1は入力から出力に向けて順に計算していけば 解ける
 - ⇒この処理を順伝播と呼ぶ
- 問2は順伝播の後、各関数の偏微分を求める。 その際 w_1 の計算には、 w_2 の計算結果が使える。
 - ⇒ 出力から入力に向けて計算することで、 効率よく求めることができる
 - ⇒ 各辺の偏微分を求める上記の手順を 誤差逆伝播法と呼ぶ

もっと複雑な場合

- データが複数ある場合
 - データごとの誤差の偏微分を足し算すれば良い。
 - 。データをN個,データkでの誤差を E_k とすると誤差の偏微分は以下のように計算できる

$$\frac{\partial \sum_{k=1}^{N} E_k}{\partial w} = \sum_{k=1}^{N} \frac{\partial E_k}{\partial w}$$

- 各レイヤのノードが複数ある場合
 - 多変数関数の偏微分公式を用いて偏微分を計算できる

色々なネットワーク(1): 多層パーセプトロン (MLP)

入力層、出力層、(1つの)中間層からなる ニューラルネットワーク

色々なネットワーク(2): 畳み込み ニューラルネットワーク (CNN)

- 畳み込み層を備えたニューラルネットワーク
- ●畳み込み層
 - 画像をスキャンして、画像のパターンを検出する

フィルタ (特定の画像パターンの検出用)

フィルタ詳細

フィルタにより得られる値

画像の画素値 フィルタ

この処理により画像のパターンを抽出できることを 具体例で説明する

縦じまの検出

縦じま画像

1	0		0
1	0	7	0
1	0	٦	0
Ī	0	1	0

→ 8

縦じま検出用 フィルタ パターンが検出 されると絶対値が 大きな値が得られる

横じま画像

_	_	_	_
0	О	0	0
٦	٦	٦	٦
0	0	0	0

→ 0

色々なネットワーク(3): 再帰型 ニューラルネットワーク (RNN)

- 時系列データを扱えるようにした ニューラルネットワーク
 - \bullet タイムステップtでは x_t が入力され, y_t が出力される
 - あるタイムステップでの中間層の出力が、 次のタイムステップに影響を与える

正則化

- 訓練データへの過度な適応(過学習)を防ぐ手法
- 教師あり学習の復習
 - 教師あり学習は入力と出力の関数を学習する
 - そのために関数の出力と実際の出力の間の誤差を最小化する
 - ・誤差(損失関数)を $f_w(x)$ とすると,教師あり学習では $ef_w(x)$ の最小化を試みる.
 - 関数のパラメータを集めたベクトルをwとすると 以下を高精度に計算することが目標

$$\min_{\mathbf{w}} f_{\mathbf{w}}(\mathbf{x})$$

L1正則化,L2正則化

- 過学習防止のためのアイデア
 - $w = (w_0, w_1, \dots, w_n)$ とした際, w_0, w_1, \dots, w_n 中に極端に値が大きいものがあると過学習が疑われる

$$\min_{\mathbf{w}} f_{\mathbf{w}}(x)$$
 項追加 $\min_{\mathbf{w}} \left(f_{\mathbf{w}}(x) + \lambda \sum_{k=1}^{n} w_{k}^{2} \right)$ L2正則化 $\min_{\mathbf{w}} \left(f_{\mathbf{w}}(x) + \lambda \sum_{k=1}^{n} |w_{k}| \right)$ 上1正則化 ないようにする) $\min_{\mathbf{w}} \left(f_{\mathbf{w}}(x) + \lambda \sum_{k=1}^{n} |w_{k}| \right)$ 人は適当な値

L1正則化,L2正則化

- L2正則化とL1正則化の違い
 - 。L2正則化の方が計算が楽
 - 。L1正則化の結果の方が好まれる傾向がある
 - •L1正則化では w_0, w_1, \cdots, w_n の中に0が出来やすい
 - (経験則として)より少ないパラメータで関数を構成した方が 現実と適合することが多い
 - ⇒ 参考: オッカムのカミソリ, スパースモデリング

ドロップアウト

- ニューラルネットワークにおける正則化手法
- 学習時ランダムにノードを無効化する
- 例えばある層のドロップアウト率が0.5なら
 - 層の出力ベクトルのうち、半分の要素は0
 - 残りの要素は倍の値
- なんでこんなことするの?
 - 開発者のHintonいわく、銀行の窓口の対応者をいつ も変えることで不正が起きにくくなるのと一緒

転移学習

- 学習済みのニューラルネットワークを活用して自分用のネットワークを作る
- 主に画像分類で使われる
- 概要
 - 画像分類では前半の層で画像のパターンを認識し、 最終層付近で出力を計算する
 - 手持ちデータのラベルに応じて出力生成部分だけを 取り替えるということがよく行われる

転移学習

転移学習のやり方1

$$y = g \circ f(x)$$

転移学習のやり方2 (こちらの方が高速)

自前の分類器のみを学習

ミニバッチ学習

- 機械学習モデルの学習をする際、誤差を求めるには、すべてのサンプルに対する誤差を計算する必要がある
- これは時間がかかるのでやめる⇒ ミニバッチ学習
 - 一部のサンプルのみから求めた誤差を用いてパラメータを更新する
 - その際のサンプルのサイズをバッチサイズと呼ぶ

One-hot表現

分類時、クラス名を出力するのではなく、各クラスについてYes/No(0~1)を出力する

