Programmation Linéaire

SCIA 2007

24 juin 2006

 $Auteurs: \\ Thibaut\ Assus\ \mathcal{E}\ Benoit\ Beaudenon$

Table des matières

1	Intr	roduction	3
	1.1	Principe général	3
	1.2	Rappels d'algèbre linéaire	3
		1.2.1 Déterminant d'ordre 2	3
		1.2.2 Déterminant d'ordre n	3
		1.2.3 Notion de cofacteur	4
		1.2.4 Inversion de matrice	4
		1.2.5 Vecteurs linéairement indépendants / Vecteurs liés	4
2	Pri	ncipe de l'algorithme du Simplexe sur un cas 2D	5
	2.1	Application p.123 : Composition d'aliments pour le bétail	5
		2.1.1 Généralisation au cas de n variables	7
		2.1.2 Principe de l'algorithme du Simplexe	8
3	Alg	orithme du simplexe	8
	3.1	ligne de la variable x_4	10
	3.2	ligne de la variable x_5	11
	3.3	Nouvelle ligne Δ_j	11
	3.4	Remarques	11
	3.5	Exemple: PL à 2 variables	12
		$3.5.1$ démarrage du simplexe à partir d'un sommet \forall que l'on se donne à l'avan	ice 13
		3.5.2 Méthode des variables artificielles	13
		3.5.3 Méthode du DUAL	13
	3.6	Exemple	13
	3.7	Méthodes générales	13
	3.8	Méthode des variables artificielles (méthode dite du grand "M")	16
		3.8.1 Tableau initial	17

1 Introduction

1.1 Principe général

Optimisation:

- Programmation linéaire Algotithme du Simplex
- \bullet Programmation non-linéaire \rightarrow Métaheuristiques

2 ingrédients :

• La fonction objectif $f(x_i)$, fonction linéaire de n variables. Ex:

$$f(x_1, x_2) = 7 \times x_1 + 12 \times x_2$$

• Les contraintes \rightarrow les x_i doivent respecter des conditions. Ex : contraintes de bornes :

$$x_i^{MIN} < x_i < x_i^{MAX}$$

Ex:

$$8x_1 - 13x_2 \le 7 \Rightarrow contraintes \ d'(in)egalite$$

1.2 Rappels d'algèbre linéaire

1.2.1 Déterminant d'ordre 2

$$\mathbf{A} = \begin{pmatrix} 3 & -2 \\ 4 & 5 \end{pmatrix}$$

$$det A = |A| = (3 \times 5) - (4 \times -2) = 15 + 8 = 23$$
 Factorisation :
$$\begin{vmatrix} \mathbf{k} & \mathbf{k} \\ 4 & 2\mathbf{k} \end{vmatrix} = k \cdot \begin{vmatrix} 1 & 1 \\ 4 & 2\mathbf{k} \end{vmatrix} = k \cdot \begin{vmatrix} \mathbf{k} & 1 \\ 4 & 2 \end{vmatrix} = k \times (2k - 4)$$

1.2.2 Déterminant d'ordre n

$$\begin{vmatrix} 2^{+} & 0^{-} & -1^{+} \\ 3^{-} & 0^{+} & 2^{-} \\ 4^{+} & -3^{-} & 7^{+} \end{vmatrix} = 2 \times \begin{vmatrix} 0 & 2 \\ -3 & 7 \end{vmatrix} - 0 \times \begin{vmatrix} 3 & 2 \\ 4 & 7 \end{vmatrix} + -1 \times \begin{vmatrix} 3 & 0 \\ 4 & -3 \end{vmatrix}$$

On peut également :

- Faire apparaître des 0 en faisant des combinaisons linéaires : on peut remplacer n'importe quelle ligne (resp. colonne) par elle même plus une combinaison linéaire des autres lignes (resp. colonnes).
- Appliquer la règle de Sarrus sur des matrices 3×3

1.2.3 Notion de cofacteur

Sous déterminant précédé de -1^{i+j} . Ex : soit :

$$\mathbf{A} = \begin{pmatrix} 2 & 1 & -3 & 4 \\ 5 & -4 & 7 & -2 \\ 4 & 0 & 6 & -3 \\ 3 & -2 & 5 & 2 \end{pmatrix}$$

$$cof(a_{23}) = (-1)^{2+3} \times \begin{vmatrix} 2 & 1 & 4 \\ 4 & 0 & -3 \\ 3 & -2 & 2 \end{vmatrix}$$

1.2.4 Inversion de matrice

 $A^{-1} = \frac{(cof A)^t}{|A|} \ si|A| \neq 0$

Ex:

$$\mathbf{A} = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 5 & 7 \end{array} \right)$$

$$det(A) = 2$$

$$\mathbf{cof}(\mathbf{A}) = \begin{pmatrix} 1 & -10 & 7 \\ 1 & 4 & -3 \\ -1 & 2 & -1 \end{pmatrix}$$

d'où

$$\mathbf{A}^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ -5 & 2 & 1 \\ \frac{7}{2} & -\frac{3}{2} & -\frac{1}{2} \end{pmatrix}$$

1.2.5 Vecteurs linéairement indépendants / Vecteurs liés

 $det \neq 0 \Rightarrow vecteurs independents$

$$det = 0 \Rightarrow vecteurslies$$

On peut exprimer n'importe lequel des vecteurs comme une combinaison linéaire des autres. Ex :

$$u_1 = \lambda v_1 + \mu w_1$$

$$\Rightarrow \begin{cases} 1 = 2\lambda + 8\mu \\ 1 = -3\lambda - 7\mu \Rightarrow (\lambda + \mu) = \{-\frac{3}{2}; \frac{1}{2}\} \\ -1 = \lambda + \mu \end{cases}$$

2 Principe de l'algorithme du Simplexe sur un cas 2D

2.1 Application p.123 : Composition d'aliments pour le bétail

On veut déterminer la composition de l'aliment respectant les contraintes et à coût minimal, d'un aliment pour bétail qui est obtenu en mélangeant au plus trois produits bruts :

- orge
- arachide
- sésame

L'aliment ainsi conditionné devra comporter au minimum pour se conformer aux exigences de la clientèle :

- 22 % de protéines
- 3.6 % de graisses

Produit brut	Orge	Arachide	Sesame
% en protéine	12	52	42
% en graisse	2	2	10
cout par tonne	25	41	39

- 1. On notera x_j (j = 1, 2, 3) la fraction de tonne de produit brut j contenu dans une tonne d'aliment. Formuler le problème algébriquement.
- 2. Montrer qu'il est possible de réduire la dimension du problème sous forme d'une PL. Le résoudre géométriquement.

$$\begin{cases} 12x_1 + 52x_2 + 42x_3 \ge 22\\ 2x_1 + 2x_2 + 10x_3 \ge 3.6\\ x_1 + x_2 + x_3 = 3 \end{cases}$$

+ contraintes de signes toujours vrai en PL:

$$x_1, x_2, x_3 \ge 0$$

$$MIN: z = 25x_1 + 41x_2 + 39x_3$$

On cherche un jeu de $x_i:(x_1^*,x_2^*,x_3^*)$ qui rend z minimal en respectant toutes les contraintes.

$$MIN: z = 25x_1 + 41x_2 + 39x_3$$

$$s.c.^{1} \Rightarrow \begin{cases} 12x_{1} + 52x_{2} + 42x_{3} \ge 22\\ 2x_{1} + 2x_{2} + 10x_{3} \ge 3.6\\ x_{1} + x_{2} + x_{3} = 3 \end{cases}$$

Problème à 3 variables : on peut éliminer par exemple x_1 pour réécreire le problème en 2D avec $x_1=1-x_2-x_3$ à remplacer partout.

¹sous contraintes

$$\begin{cases} 12 \times (1 - x_2 - x_3) + 52x_2 + 42x_3 \ge 22 \\ 2 \times (1 - x_2 - x_3) + 2x_2 + 10x_3 \ge 3.6 \end{cases}$$

$$\begin{cases} 12 - 12x_2 - 12x_3) + 52x_2 + 42x_3 \ge 22\\ 2 - 2x_2 - 2x_3) + 2x_2 + 10x_3 \ge 3.6 \end{cases}$$

$$\begin{cases} 40x_2 + 30x_3 \ge 10 \\ 8x_3 \ge 1.6 \end{cases}$$

$$\begin{cases} 4x_2 + 3x_3 \ge 1 \\ x_3 \ge 0.2 \end{cases}$$

On a bien $x_2 \ge 0$ et $x_3 \ge 0$. Par contre, pour $x_1 \ge 0$, on a $x_2 + x_3 \le 1$

$$z = 25 \times (1 - x_2 - x_3) + 42x_2 + 39x_3$$

$$z = 25 + 16x_2 + 14x_3$$

$$z = 2\underbrace{[8x_2 + 7x_3]}_{z'} + 25$$

Programmation linéaire en 2D : $z^{'}=8x_2+7x_3$

$$D^{2} = \text{Domaine r\'ealisable} \Rightarrow \begin{cases} 4x_{2} + 3x_{3} \ge 1\\ x_{3} \ge 0.2\\ x_{2} + x_{3} \le 1\\ x_{2} \ge 0\\ x_{3} \ge 0 \end{cases}$$

²Ensemble des points du plan

Si $z' = C \Rightarrow$ Quels sont les points du plan (x_2, x_3) tel que z' = C

 $8x_2 + 7x_3 = C \Rightarrow$ famille de droites parallèles

$$x_3 = -\frac{8}{7}x_2 + \frac{C}{7}$$

$$MINz' \Leftrightarrow MINC_1$$

 \Rightarrow optimum : 1 sommet ou $\left\{ \begin{array}{l} 1 \text{ arête parallèle du Simplexe} \\ \text{cas dégénéré} \end{array} \right.$

$$\Rightarrow$$
 Solution optimale :
$$\begin{cases} x_1^* = 0.7 \\ x_2^* = \frac{1 - 3x_3^*}{4} \Rightarrow x_2^* = 0.1 \\ x_3^* = 0.2 \end{cases}$$

d'où:

$$z' = 8x_2^* + 7x_3^* = 2.2$$

$$z^* = 2z' + 25 = 29.4 \Rightarrow \text{coût minimal}$$

2.1.1 Généralisation au cas de n variables

L'ensemble des contraintes linéaires / variables x_i délimite un domaine réalisable dans (x_1, x_2, \ldots, x_n) .

L'optimun est :

- dans le cas courant : 1 sommet du simplexe qui est la figure géométrique à l'intérieur de laquelle se trouve le domaine réalisable \Rightarrow une solution unique
- dans le cas dégénéré : 1 arête du simplexe ⇒ une infinité de solutions

2.1.2 Principe de l'algorithme du Simplexe

On pourrait:

- calculer tous les sommets du simplexe
- retenir le meilleur sommet

Technique non utilisée en pratique car :

- le calcul de sommets n'est pas facile
- le nombre de sommet devinet très important si n augmente

Algorithme:

- rechercher un sommet initial du simplexe. On essaie de trouver un sommet initial pas trop mauvais
- déterminer par itérations successives du sommet optimal (ou de l'arête optimal) par une technique de déplacement le long d'une arête.

2 Garanties:

- A chaque itération, l'algorithme évolue vers un meilleur sommet. B sera meilleur que A, C meilleur que B . . .
- Critère d'arrêt : optimum atteint car il n'y a pas de déplacement possible vers un meilleur sommet.

3 Algorithme du simplexe

pb de P.l

$$\left\{ \begin{array}{c} \text{Objectifs} \\ \text{Contraintes} \end{array} \right\} \text{lin\'eaires}$$

par rapport aux variables x_i de décision (les inconnues) \Rightarrow Contraintes \Leftrightarrow Pt représentatif des x_i à l'extérieur ou sur les frontières d'un "simplexe".

 \Rightarrow objectif \Leftrightarrow solution \equiv un sommet du simplexe. Cas dégénéré : ∞ solutions \Leftrightarrow une arête Comment trouver ces sommets? sans explosion combinatoire?

Algorithme 1 Algorithme du simplexe

choix du sommet initial

pour $i \leftarrow$ sommet initial jusqu'au sommet optimal (critère d'arrêt) **faire** évolution, le long d'une arête vers un sommet meilleur

fin pour

- Le choix d'un sommet initial représente 50 % du temps de calcul.
- les techniques permettant d'itérer jusqu'au cas optimal représentent quant à elles 50% du temps de calcul.
- cas standard : le sommet initial est l'origine : pas toujours possible : $x_1 = x_2 = x_3 = \ldots = x_n = 0$
- mécanisme itératif vers la solution optimale : formalisme des tableaux
- solution initial \Leftrightarrow tableau initial
- chaque nouveau sommet \Leftrightarrow autre table
- dernier sommet ⇔ tableau optimal

Ex:

$$P.L \left\{ \begin{array}{l} MAX \ z = 10x_1 + 8x_2 + 7x_3 \\ x_1 + x_2 + x_3 \le 1000 \\ 80x_1 + 95x_2 + 90x_3 \le 90000 \\ x_1 - x_2 - x_3 \le 100 \end{array} \right.$$

On suppose toujours $x_1, x_2, x_3 \ge 0$

Est-on dans le cas standard?

On test l'origine : on annule les varibales de décision : $x_1 = x_2 = x_3 = 0$

On vérifie si les contraintes sont satisfaites $\forall x_i = 0$. Dans notre exemple, on est dans le cas standard

Démarrage à partir de l'origine ⇔ Tableeau initial. On introduit pour chaque inégalité une variable d'écart. s.c :

$$SC \begin{cases} x_1 + x_2 + x_3 \le 1000 \to x_4 \\ 80x_1 + 95x_2 + 90x_3 \le 90000 \to x_5 \\ x_1 - x_2 - x_3 \le 100 \to x_6 \end{cases}$$

variable d'écart \leftrightarrow différence entre les 2 membres d'une inégalité

$$\begin{cases} x_1 + x_2 + x_3 + x_4 &= 1000 \\ 80x_1 + 95x_2 + 90x_3 + x_5 &= 90000 \\ x_1 - x_2 - x_3 + x_6 &= 100 \end{cases}$$

MAX : $z = 10x_1 + 8x_2 + 7x_3 = \sum_j c_j x_j$ Tableau initial associé au sommet "Origine" $(x_i = 0, \forall i)$

c_i	i	1	2	3	4	5	6	
0	4	1	1	1	1	-	0	1000
0	5	80	95	90	0	1	0	90000
0	6	1	-1	-1	0	0	1	100
	c_{j}	10	8	7	0	0	0	
	Δ_j	10	8	7	0	0	0	0(z)

Déplacement le long d'une arête \Rightarrow on sépare les variables (décision, écart) en 2 groupes :

```
\left\{ \begin{array}{l} \text{variables de base i} \leftarrow \text{ce sont les vaiables associées au sommet} \\ \text{variables hors base : considérées comme} \neq 0. \end{array} \right.
```

Ici, dans le cas standard, pour le 1^{er} tableau :

- variables de base \rightarrow variables d'écart
- variables hors base \rightarrow variables de décision

Le cout marginal correspont à la capacité de chaque variable à améliorer l'objectif (au départ \rightarrow comme les c_j). Déplacement le long d'une arête \leftrightarrow 1 itération \Rightarrow passage d'un tableau à un autre. \Leftrightarrow

 $\left\{ \begin{array}{ll} \text{faire sortir 1 variable de la base} \\ \text{faire entrer 1 variable dans la base} \end{array} \right.$

Comment choisir le sens de déplacement, ie, quelle arête choisir quand il y a plusieurs choix ? couple (variable entrante, variable sortante)

 \Leftrightarrow choix de la bonne arête. <u>Variable entrante</u>: plus grand Δ_j positif (si tous les Δ_j osnt ≤ 0 on est à l'optimum. \Rightarrow critère d'arrêt (pas de variable entrante).

```
\begin{array}{c} 1000/1 \\ 90000/60 \\ 100/1 \\ \rightarrow S \rightarrow e \text{ est la variable entrante et elle vaut}: \\ 1 \\ 80 \\ 1 \end{array}
```

Variable sortante: plus petit rapport positif

Passage du premier tableau au scond tableau : On modifie le tableau ligne par ligne en commençant par la ligne du pivot (intersection Ventrante et Vsortante) On divise tous les termes de la ligne du pivot par le pivot.

$$10 \ | \ 1 \ \| \ 1 \ | \ -1 \ | \ -1 \ | \ 0 \ | \ 0 \ | \ 1 \ \| \ 100$$

10 correspond au coefficient correspondant à la nouvelle variable. le premier 1 correspond à la nouvelle variable de la base remplaçant la variable 6

3.1 ligne de la variable x_4

ancienne ligne x_4	1	1	1	1	0	0	1000
$-[\text{nouvelle ligne du pivot}] \times \text{terme encadr\'e}$	1	-1	-1	0	0	1	100
0 4	0	2	2	1	0	-1	900

3.2 ligne de la variable x_5

ancienne ligne x_i	8	30	95	90	0	1	0	90000
$-[\text{nouvelle ligne du pivot}] \times \text{terme encadr\'e}$	8	30	-80	-80	0	0	80	8000
0 5	,	0	175	170	0	1	-80	82000

3.3 Nouvelle ligne Δ_j

ancienne ligne Δ_j	10	8	7	0	0	0	0
$-[\text{nouvelle ligne du pivot}] \times \text{terme encadr\'e}$	10	-10	-10	0	0	10	1000
	0	18	17	0	0	-10	1000

2^e tableau (2^e sommet, obtenu après la première itération)

c_i	i	1	2	3	4	5	6	
0	4	0	2	2	1	0	-1	900
0	5	0	175	170	0	1	-80	82000
10	1	1	-1	-1	0	0	1	100
	C_j	10	8	7	0	0	0	
	Δ_j	0	18	17	0	0	-10	1000

Nouveau sommet:

$$x_4 = 90
x_5 = 82000
x_1 = 100
x_2 = 0
x_3 = 0
x_6 = 0$$

3.4 Remarques

1. nouveau sommet meilleur $0 \rightarrow 100$

2. vérification : $z=10x_1+8x_2+7x_3$ On nést pas encore à l'optimum \to il y a des $\Delta_j>0$

3. tableau C_i :

c_i	i	1	2	3	4	5	6	
8	2	0	1	1	0.5	0	-0.5	450
0	5	0	0	-5	-87/5	1	7.5	3250
10	1	1	0	0	0.5	0	0.5	550
	C_j	10	8	7	0	0	0	
	Δ_j	0	0	-1	-9	0	-1	$9100(\rightarrow z)$

$$\Delta_j \leq 0 \Rightarrow optimum:$$

$$\begin{vmatrix} x_1^* = 550 \\ x_2^* = 450 \\ x_3^* = 0 \\ x_4^* = 0 \\ x_5^* = 3250 \\ x_6^* = 0 \end{vmatrix}$$

$$z^* = 9100$$

 $10 \times 550 + 8 = times450 + 7 \times 0$

Cas où le démarrage de l'algo à partir de l'"Origine" n'est pas possible

- 3 méthodes générales \rightarrow effort de calcul \approx 50 % de l'ensemble ed résolution.
- 1 méthode particulière et qui ne marche pas à tous les coups

3.5 Exemple : PL à 2 variables

$$x1 \le 40 \tag{1}$$

$$x2 <= 70 \tag{2}$$

$$x_1 + x_2 <= 80 \tag{3}$$

$$x_1 + x_2 >= 20$$
 (4)

$$x_1, x_2 >= 0$$

 $\underline{\text{Max}}\ z = 2x_1 + 3x_2$

On teste l'origine : $x_1 - x_2 = 0 \Rightarrow$ L'origine n'est pas réalisable, cad elle ne respecte pas toutes les contraintes. Ici, on peut tester la méthode particulère. 2 étapes :

- 1. PL réduit obtenu en suppriment provisoirement la contrainte génante et on résout de manière standard.
- 2. On regarde l'optimum des PL réduits respectent ou non la contrainte géante.
- 3. 2 cas :
 - (a) si oui, on a gagné. L'optimum du pl réduit est aussi celui du PL initial.
 - (b) sinon, on a perdu, l'optimum du PL réduit n'est pas l'optimum du PL initial. Il faut recourir à l'une des 3 méthodes générales.

On tente la meethode particulière :

 1^{ere} étape PL réduit aux 3 contrlaintes (1), (2) et (3) + objectif inchangé. On peut appliquer le simplexe standard \Rightarrow optimum \rightarrow résolution graphique (possible car 2D)

- contraintes \Rightarrow simplexe.
- objectif \Rightarrow meilleure solution.

 $z=c=2x_1+3x_2$ droit <u>isocoût</u> Lorsque C varie, cette équation décrit une famille de droites

$$// \rightarrow y = \underbrace{a}_{pente} x + b$$

$$3x_2 = -2x_1 + c$$

$$x_2 = -\frac{2}{3}x_1 + \frac{c}{3}$$

 \Rightarrow Solution optimale : sommet

$$x_1^* = 80 > 20$$
 (5)

$$x_1^* = 80 > 20$$
 (5)
 $x_1^* + x_2^* >= 20$ On a gagné (6)

La solution $x_1^* = 10, x_2^* = 70$, est aussi la solution optimale du PL complet.

3 méthodes générales pour démarrer le simplexe lorsque l'"origine" n'est pas réalisable =

démarrage du simplexe à partir d'un sommet \forall que l'on se donne à l'avance

- \rightarrow solution initiale :
- Proposée par un expert
- Pour servir de point de départ si des conditions très précises
- → On peut utiliser cette méthode pour réduire le nombre d'itérations pour un démarrage standard.

Méthode des variables artificielles 3.5.2

 \rightarrow a pour inconvénient d'augmenter la taille du Pb.

Méthode du DUAL

P.L. primal — n variables de décision, m contraintes \Leftrightarrow P.L. dual — m variables de décisions, n contraintes Cas où le démarrage de l'algo à partir de l'origine n'est pas possible. 3 méthodes générales, assez lourdes.

1 méthodes particulières qui marche parfois.

Exemple 3.6

$$\begin{cases} x_1 \le 40 & x_2 \le 70 \\ x_1 + x_2 \le 80 & x_1 + x_2 \ge 20 \\ x_1, x_2 \ge 0 & Max : z = 2x_1 + 3x_2 \end{cases}$$

L'origine n'est pas réalisable. Le problème est dû à un "petit" nombre de contraintes \Rightarrow on teste la "méthode particulière".

1ère étape : on ignore la contrainte et on résoud. Avec un peu de chance, l'optimum trouvé respecte la contrainte.

3.7 Méthodes générales

Démarrage du simplexe à partir d'un sommet que l'on se donne à l'avance. Solution initiale:

- donnée par un expert
- méthode des variables artificielles

- méthode du Dual

1ère technique.

Démarrage à partir d'une solution, proposée par un expert.

$$ex: \left(\begin{array}{c} 3x_1 + x_2 \le 8 & max : z = x_1 + x_2 \\ x_1 + 2x_2 \le 6 & \\ x_1 + 2x_2 \le 9 & \end{array}\right)$$

L'origine est réalisable. La résolution standard est posssible, mais une ature solution peut être plus efficace. L'expert propose $x_1 = 7/3$ et $x_2 = 1$. 2 conditions sn'œssaires pour une saolution de démarrage :

- solution réalisable
- solution de base

On introduduit des variables d'écart

$$ex: \begin{cases} 3x_1 + x_2 + x_3 &= 8\\ x_1 + 3x_2 + x_4 &= 6\\ 3x_1 + 2x_2 + x_5 &= 9 \end{cases} \Rightarrow \{x_3 = 0; x_4 = 5/3; x_5 = 0\}$$

Pour démarrer le simplexe on a besoin dûne base comprotant m variables strictement psoitives.

Avec m, le nombre de contraintens du PL (ici 3)

3 cas ed figures:

- si le nombre de variables ; nombre de contraintes \Rightarrow échec.
- s'il est égal, on a une base de candidats.
- s'il est plus grand, on a plusieurs candidats.

Ici:

$$\begin{vmatrix} 3 & 1 & 0 \\ 1 & 2 & 1 \\ 3 & 2 & 0 \end{vmatrix} \neq 0$$

$$det = - \begin{vmatrix} 3 & 1 \\ 3 & 2 \end{vmatrix} = -(6-3) = -3$$

On a une solution qui est acceptable pour démarrer le Simplexe

 2^{eme} phase : On cherche le tableau associé à la solution initiale (qui respecte les conditions 1, 2a, 2b)

On développe :

$$Ix_b + B^{-1}Nx_N = B^{-1}b$$

$$x_B = \text{vecteur de base} = \begin{pmatrix} x_1 \\ x_2 \\ x_4 \end{pmatrix}$$

$$B = \left(\begin{array}{ccc} 3 & 1 & 0 \\ 1 & 2 & 1 \\ 3 & 2 & 0 \end{array}\right)$$

$$x_N = \text{vecteur hors-base} = \begin{pmatrix} x_3 \\ x_5 \end{pmatrix}$$

$$x_N = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{array}\right)$$

$$B^{-1} = \frac{(-cofB)^T}{detB} = \begin{pmatrix} 2/3 & 0 & -1/3 \\ -1 & 0 & 1 \\ 4/3 & 1 & -5/3 \end{pmatrix}$$

$$B^{-1}N = \begin{pmatrix} 2/3 & 0 & -1/3 \\ -1/4 & 0 & 2 \\ 4/3 & 1 & -5/3 \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2/3 & -1/3 \\ -1 & 1 \\ 4/3 & -5/3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_4 \end{pmatrix} + \begin{pmatrix} 2/3 & -1/3 \\ -1 & 1 \\ 4/3 & -5/3 \end{pmatrix} \begin{pmatrix} x_3 \\ x_5 \end{pmatrix} = \begin{pmatrix} 7/3 \\ 1 \\ 5/3 \end{pmatrix}$$

$$\begin{cases} x_2 + 2/3x_3 - 1/3x_5 &= 7/3\\ x_2 - x_3 + x_5 &= 1/5 \Rightarrow \\ 4/3x_3 + x_4 - 5/3x_5 = 5/3 \end{cases}$$

Tableau solution initiale

c_i	i	1	2	3	4	5	
1	1	1	0	2/3	0	-1/3	7/3
1				-1			1
0	4	0	0	4/3	1	-5/3	5/3
		1	1		0		
		0	0	1/3	0	-2/3	10/3

$$\Delta_j = c_j - \sum_i c_i . x_{ij}$$

(admis)

$$z = x_1 + x_2 = \frac{7}{3} + 1 = \frac{10}{3}$$

Ici la variable qui rentre dans la base est $\frac{1}{3}$.

c_i	i	1	2			5	
1	1	1	0	0	-1/2	1/2	3/2
1	2	0	1	0	$-1/2 \ 3/4$	-1/4	$\frac{3}{2}$ $9/4$
0	3	0	0	1	3/4	-5/4	-5/4
	c_j :	1	1	0	0	0	
	Δ_j	0	0	0	-1/4	-1/4	15/4

L'optimum est atteint, carr tous les $\Delta_j <= 0$ On a progressé sur le tableau initial : z passé de 10/3 à 15/4

$$z = x_1 + x_2 = \frac{3}{2} + \frac{9}{4} = \frac{15}{4}$$

La solution optimale:

$$x_3^* = 5/4$$

$$x_4^* = x_5^* = 0$$

Remarque : robustesse d'optimum / modification des poids des variables dans la fonction objectif :

$$z = x1 + x2$$

$$\rightarrow z = 2x_1 + x_2$$

L'optimum est-il modifié?

On admet que:

- Le tableau central n'est pas affecté par le changement des C_i
- La ligne Δ_j est à recalculer par la relation $\Delta_j = C_j \sum_i C_i x_{ij}$ La réponse est donc oui.

3.8 Méthode des variables artificielles (méthode dite du grand "M")

C'est la 2e méthode pour bien démarrer le simplexe lorsque l'origine n'est pas réalisable. PL :

$$x_1 <= 1 \tag{7}$$

$$x_1 + x_2 >= 6$$
 (8)

$$-x_1 + x_2 = 3 (9)$$

$$x_1, x_2 >= 0 \tag{10}$$

$$Max: z = x_1 + 2x_2$$
 (11)

Test de démarrage \rightarrow "origine" : $x_1 = x_2 = 0$

Non réalisable \Rightarrow Problème.

On écrit le PL sous forme d'égalités, en utilisant variables d'écart [associées aux inégalités] $\to x_{\bar{1}}$ et $x_{\bar{2}}$

- 1 variable d'écart pour chaque inégalité (génante, ou pas)
- 1 variable artificielle pour chaque "contrainte génante" (inégalité ou égalité)

$$x_1 + x_{\bar{1}} = 1 \tag{12}$$

$$x_1 + x_2 - x_{\bar{2}} + x_{\bar{2}} = 6 \tag{13}$$

$$-x_1 + x_2 + x_{\bar{3}} = 3 \tag{14}$$

$$MAX: z = x_1 + 2x_2 - Mx_{\bar{2}} - Mx_{\bar{3}}$$
(15)

M = nb positif "grand" en ce sens qu'il est plus grand que tous les nombres auxquels on le compare.

Au démarrage :

$$x_1 = x_2 = 0(origine) (16)$$

$$x_{\bar{1}} = 1 \tag{17}$$

$$x_{\bar{2}} = 6$$
 (18)
 $x_{\bar{3}} = 3$ (19)

$$x_{\bar{3}} = 3 \tag{19}$$

Les 3 dernières equations sont la <u>BASE initiale</u>. $z = -9M \Rightarrow$ force l'annulation des variables artificielles

3.8.1 Tableau initial

c_i	i	1	2	Ī	$\bar{2}$	$\bar{2}$	$\bar{3}$			
0	$\bar{1}$	1	0	1	0	0	0	1	∞	
-M	$\bar{\bar{2}}$	1	1	0	-1	1	0	6	6	s
-M	$\bar{\bar{3}}$	-1	1	0	0	0	1	3	3	\rightarrow
	c_{j}	1	2	0	0	-M	-M			
	Δ_j	1	2+2M	0	-M	0	0	$-9M(\leftarrow z)$		

$$2 + 2M \rightarrow e$$

$$\Delta_j = C_j - \sum_i C_i . x_{ij}$$

$$z = x_1 + 2x_2 - Mx_{\bar{2}} - Mx_{\bar{3}}$$

c_i	i	1	$2\bar{1}$	$\bar{2}$	$\bar{2}$	$\bar{3}$		
0	$\bar{1}$	1	0	1	0	0	0	1
-M	$\bar{\bar{2}}$	2	0	0	-1	1	-1	3
2	2	-1	1	0	0	0	1	3
	c_{j}	1	2	0	0	-M	-M	
	Δ_j	2M + 3	0	0	-M	0	-2M - 2	-3M + 6

c_i	i	1	$2\bar{1}$	$\bar{2}$	$\bar{2}$	$\bar{3}$		
1	1	1	0	1	0	0	0	1
-M	$\bar{\bar{2}}$	0	0	-2	-1	1	-1	1
2	2	0	1	1xo	0	0	1	4
	c_j	1	2	0	0	-M	-M	
	Δ_j	0	0	-2M - 3	-M	0	-2M - 2	-M+9

 $\Delta_j <= 0 \rightarrow \text{arrêt}$ mais la variable $x_{\bar{2}}$ est restée dans la base \Rightarrow PL sans solution. $x_1 <= 1$: Contraintes contradictoires (pas de solution) Fin de l'algo, mais $x_{\bar{2}}$ est restée dans l abase (elle aurait dû être annulée). ⇒ Pas de solution.