Early Comparisons

David Gerard 2016-03-31

Abstract

I perform early comparisons of cp-rank 1 FLASH against cp-rank 1 least squares and a cp-rank 1 Bayesian approach from Hoff (2011). T-FLASH performs the best.

Data Generation and Simulation Study

$$\mathcal{Y}_{p_1 \times p_2 \times p_3} = \mathcal{X}_{p_1 \times p_2 \times p_3} + \mathcal{E}_{p_1 \times p_2 \times p_3} \tag{1}$$

$$\mathcal{X} = \mathbf{u}_1 \circ \mathbf{u}_2 \circ \mathbf{u}_3 \tag{2}$$

$$p(u_{ij}) = \pi_1 N(u_{ij}|0, \tau_1^2) + \pi_2 N(u_{ij}|0, \tau_2^2) + \pi_3 N(u_{ij}|0, \tau_3^2)$$
(3)

$$e_{ijk} \sim N(0, \sigma^2).$$
 (4)

In this simulation study,

- $p_1 = p_2 = p_3 = 10$,
- $\sigma = 1$,
- $\tau_1 = 0$, $\tau_2 = 1$, $\tau_3 = 5$,
- $\pi_1 = 0.5, \, \pi_2 = 0.3, \, \pi_3 = 0.2.$

I ran through 100 iterations of data generation and fitting four competing methods, generating a new mean \mathcal{X} at each iteration. The four methods were

- T-FLASH with nullweight = 1,
- T-FLASH with nullweight = 10,
- The least squares cp-rank 1 tensor, calculated using the rTensor package, and
- A hierarchical Bayesian cp-rank 1 tensor mean model as implemented in Hoff (2011).

At each iteration, I calculated the sum of squared errors for each method. A boxplot of these are below. T-FLASH performed the best.

For T-FLASH, I also calculated two-way tables at each iteration for whether or not a component was zero vs the indicator that the posterior probability that the component was zero was greater than 1/2. The mean of these two-way tables over the 100 iterations is in Table 1 for nullweight = 10 and Table 2 for nullweight = 1. T-FLASH with nullweight = 10 works really well. When nullweight = 1, T-FLASH tends to underestimate the number of zeros.

SSE's for Each Method

%latex table generated in R 3.2.4 by x
table 1.8-2 package % Thu Mar 31 11:01:59 2016

	Not Zero	Zero
p < 0.5	0.45	0.00
p > 0.5	0.04	0.50

Table 1: Two way table for posterior-probability of being zero greater than 0.5 vs the truth being zero. nullweight was set to 10.

% latex table generated in R 3.2.4 by x table 1.8-2 package % Thu Mar 31 11:01:59 2016

	Not Zero	Zero
p < 0.5	0.48	0.16
p > 0.5	0.02	0.34

Table 2: Two way table for posterior-probability of being zero greater than 0.5 vs the truth being zero. nullweight was set to 1.

References

Hoff, Peter D. 2011. "Hierarchical Multilinear Models for Multiway Data." Computational Statistics & Data Analysis 55 (1). Elsevier: 530-43.