

Modele obliczeń

Karta opisu przedmiotu

Informacje podstawowe

Kierunek studiów: Informatyka analityczna

Ścieżka: -

Jednostka organizacyjna: Wydział Matematyki i Informatyki

Poziom kształcenia: pierwszego stopnia

Forma studiów: studia stacjonarne

Profil studiów : ogólnoakademicki

Obligatoryjność: obowiązkowy

Cykl kształcenia: 2022/23

Kod przedmiotu: UJ.WMIIANS.180.03346.22

Języki wykładowe : polski

Przedmiot powiązany z badaniami naukowymi : Tak

Dyscypliny: Informatyka

Klasyfikacja ISCED: 0613 Tworzenie i analiza oprogramowania i aplikacji

Kod USOS: WMI.TCS.MO.OL

Koordynator przedmiotu

Michał Wrona

Prowadzący zajęcia

Okres Semestr 4

Michał Wrona, Maciej Ślusarek

Forma weryfikacji uzyskanych efektów uczenia się

egzamin

Forma prowadzenia i godziny zajęć

wykład: 30 ćwiczenia: 30

Liczba punktów ECTS 6.0

Efekty uczenia się dla przedmiotu

Kod	Efekty w zakresie	Kierunkowe efekty uczenia się	Metody weryfikacji
Wiedzy – Student zna i rozumie:			
W1	wie co to jest język formalny i zna podstawowe fakty dotyczące języków formalnych,	IAN_K1_W02	egzamin pisemny, zaliczenie na ocenę
W2	zna podstawowe narzędzia: minimalizację automatów skończonych, wzajemne symulacje równoważnych modeli, lematy o pompowaniu, metodę przekątniową		egzamin pisemny, zaliczenie na ocenę
W3	zna pojęcie nierozstrzygalności i podstawowe klasy IAN_K1_W02, złożoności obliczeniowej IAN_K1_W11		egzamin pisemny, zaliczenie na ocenę
Umiejętności – Student potrafi:			
U1	potrafi zdefiniować model opisujący język formalny i umieścić klasę języków opisywanych przez zdefiniowany model w hierarchii języków	IAN_K1_U01, IAN_K1_U04, IAN_K1_U11, IAN_K1_U17, IAN_K1_U21	egzamin pisemny, zaliczenie na ocenę
U2	IAN_K1_U01, potrafi dobrać odpowiedni model do rozwiązywanego problemu IAN_K1_U11, IAN_K1_U17, IAN_K1_U21		egzamin pisemny, zaliczenie na ocenę
U3	potrafi konstruować automatyki skończone, IAN_K1_U09 gramatyki bezkontekstowe oraz maszyny Turinga		egzamin pisemny, zaliczenie na ocenę
Kompetencji społecznych – Student jest gotów do:			

Kod	Efekty w zakresie	Kierunkowe efekty uczenia się	Metody weryfikacji
K1	potrafi dowodzić twierdzenia w teorii obliczalności; rozumie głębokie implikacje teorii obliczalności dla szeroko pojętej nauki i filozofii, np. zna i rozumie tezę Churcha	IAN_K1_K01	egzamin pisemny, zaliczenie na ocenę

Bilans punktów ECTS

Forma aktywności studenta	Średnia liczba godzin* przeznaczonych na zrealizowane rodzaje zajęć	
wykład	30	
ćwiczenia	30	
przygotowanie do ćwiczeń	90	
przygotowanie do egzaminu	28	
uczestnictwo w egzaminie	2	
Łączny nakład pracy studenta	Liczba godzin 180	ECTS 6.0

^{*} godzina (lekcyjna) oznacza 45 minut

Treści programowe

Lp.	Treści programowe	Efekty uczenia się dla przedmiotu
1.	1. Języki formalne i ich własności. 2. automaty skończone i wyrażenia regularne. 3. Lemat o pompowaniu i twierdzenie Myhilla-Nerode'a. 4. Minimalizacja automatów skończonych. 5. Własności języków regularnych; problemy i algorytmy. 6. Gramatyki i języki bezkontekstowe; automaty ze stosem. 7. Lemat o pompowaniu dla języków bezkontekstowych i własności języków bezkontekstowych. 8. Deterministyczne automaty ze stosem. 9. Maszyny Turinga; języki rekurencyjne i rekurencyjnie przeliczalne. 10. Uniwersalna maszyna Turinga; problem stopu i problemy nierozstrzygalne, twierdzenie Rice'a. 11. Podstawy złożoności obliczeniowej: P, NP, coNP, PSPACE.	W1, W2, W3, U1, U2, U3, K1

Informacje rozszerzone

Metody nauczania:

wykład konwencjonalny, rozwiązywanie zadań, ćwiczenia przedmiotowe

Rodzaj zajęć	Formy zaliczenia	Warunki zaliczenia przedmiotu
wykład	egzamin pisemny	pozytywna ocena z egzaminu, poprzedzona dopuszczeniem doń na podstawie pozytywnej oceny z ćwiczeń
ćwiczenia	zaliczenie na ocenę	rozwiązywanie zadań przy tablicy, dwa kolokwia

Wymagania wstępne i dodatkowe

Metody Formalne Informatyki

Literatura

Obowiązkowa

1. J. Hopcroft, J. Ullman, Introduction to Automata Theory, Languages, and Computation (1st ed.), Addison-Wesley, 1979