Indian Institute of Technology Goa

CH 107 August 21 2017

Physical Chemistry Total Marks = 10

Quiz 0830-0930

 $h=6.626 \times 10^{-34} Js$; $c=3 \times 10^8 \ ms^{-1}$; $m_e=9.1 \times 10^{-31} \text{kg}$; $m_p=1.672 \times 10^{-27} \ \text{kg}$; $e=6 \times 10^{-19} \text{C}$; $1 \text{eV}=1.6 \times 10^{-19} \ \text{J}$; $k_B=1.308 \times 10^{-23} \ \text{JK}^{-1}$

- 1. Calculate de Broglie wavelength of a He atom traveling at a speed of 1000 m s⁻¹. (2 marks)
- 2. Particle in a box model can be applied successfully to π -electrons of hexatriene. Calculate the probability of finding the highest energy electron in a region $\Delta x = \pm 0.01$ Å about the center of the molecule, given the length of the molecule to be 8 Å (3 marks)
- 3. Sketch the contours of the wavefunction of a particle in a two dimensional box, with $n_x = 2$, $n_y = 3$, $L_x = 2L_y$, where n_x and n_y are the quantum numbers and L_x and L_y are lengths of the box, along x and y directions, respectively. (2 marks)
- 4. The ϕ -dependent part of Schrödinger wave equation is:

$$\frac{1}{\Phi(\phi)}\frac{d^2\Phi(\phi)}{d\phi^2} + m^2 = 0$$

Propose a solution for this equation. Then, apply an appropriate boundary condition and hence determine the allowed values of m. (3 marks)

Indian Institute of Technology Goa

CH 107 August 21 2017 Physical Chemistry Total Marks = 10

Quiz 0830-0930

 $h=6.626 \times 10^{-34} Js$; $c=3 \times 10^8 \ ms^{-1}$; $m_e=9.1 \times 10^{-31} \text{kg}$; $m_p=1.672 \times 10^{-27} \ \text{kg}$; $e=6 \times 10^{-19} \text{C}$; $1 \text{eV}=1.6 \times 10^{-19} \ \text{J}$; $k_B=1.308 \times 10^{-23} \ \text{JK}^{-1}$

- 1. Calculate de Broglie wavelength of a He atom traveling at a speed of 1000 m s⁻¹. (2 marks)
- 2. Particle in a box model can be applied successfully to π -electrons of hexatriene. Calculate the probability of finding the highest energy electron in a region $\Delta x = \pm 0.01$ Å about the center of the molecule, given the length of the molecule to be 8 Å (3 marks)
- 3. Sketch the contours of the wavefunction of a particle in a two dimensional box, with $n_x = 2$, $n_y = 3$, $L_x = 2L_y$, where n_x and n_y are the quantum numbers and L_x and L_y are lengths of the box, along x and y directions, respectively. (2 marks)
- 4. The ϕ -dependent part of Schrödinger wave equation is:

$$\frac{1}{\Phi(\phi)}\frac{d^2\Phi(\phi)}{d\phi^2} + m^2 = 0$$

Propose a solution for this equation. Then, apply an appropriate boundary condition and hence determine the allowed values of m. (3 marks)