Examenul de bacalaureat național 2020

Proba E. c)

Matematică *M_şt-nat*

Test 7

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Determinați suma primilor cinci termeni ai progresiei geometrice $(b_n)_{n\geq 1}$, știind că $b_1=1$ și $b_2=2$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3x^2 11x + 6$. Determinați mulțimea valorilor reale ale lui x pentru care punctele A(x, f(x)) sunt situate sub axa Ox.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $\lg(1-x) \lg(7-x) = -1$.
- **5p 4.** Determinați numărul natural n, $n \ge 2$, pentru care $C_n^1 + C_n^2 = 6$.
- **5p 5.** În reperul cartezian xOy se consideră punctul $A(2a-1,a^2)$, unde a este număr real. Determinați numerele reale a pentru care punctul A aparține dreptei d de ecuație y = x + 4.
- **5p 6.** Determinați $\cos 2x$, știind că x este număr real și $\sin x = \frac{12}{13}$.

SUBIECTUL al II-lea (30 de puncte)

1. Se consideră matricea $A(a) = \begin{pmatrix} 1 & 1 & -2 \\ 1 & -2 & 1 \\ a & 1 & 1 \end{pmatrix}$ și sistemul de ecuații $\begin{cases} x+y-2z=1 \\ x-2y+z=2 \end{cases}$, unde a este ax+y+z=3

număr real.

- **5p** a) Arătați că $\det(A(1)) = -9$.
- **5p b**) Demonstrați că suma elementelor matricei $B(a) = A(a) \cdot A(a)$ **nu** depinde de numărul real a.
- **5p** c) Pentru a = -2, arătați că sistemul de ecuații este incompatibil.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție x * y = xy + m(x + y), unde m este număr real.
- **5p** a) Arătați că (-1)*1=-1, pentru orice număr real m.
- **5p b**) Demonstrați că $x * y = (x + m)(y + m) m^2$, pentru orice numere reale x, y și m.
- **5p** c) Pentru m = -1, determinați numerele reale x pentru care $5^x * 5^{x+1} = -1$.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f:(0,+\infty)\to\mathbb{R}$, $f(x)=\frac{2}{\sqrt{x}}-\frac{1}{x}$.
- **5p** a) Arătați că $f'(x) = \frac{1-\sqrt{x}}{x^2}, x \in (0,+\infty)$.
- **5p b**) Determinați ecuația asimptotei spre $+\infty$ la graficul funcției f.
- **5p** c) Calculați $\lim_{x\to 1} \frac{f'(x)}{x-1}$.
 - **2.** Se consideră funcțiile $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \frac{1}{x} + e^x + m$, unde m este număr real, și $F:(0,+\infty) \to \mathbb{R}$, $F(x) = \ln x + e^x + 4x + 1$.
- **5p** a) Determinați numărul real m astfel încât funcția F să fie o primitivă a funcției f.

5p b) Pentru m = 4, calculați $\int_{1}^{e} f(x) dx$. **5p c)** Pentru m = 0, calculați $\int_{1}^{2} x f(x) dx$.