

Support Vector Machines

Le Song

Machine Learning CSE/ISYE 6740, Fall 2019

Ways to design classifier

- Bayes rule + assumption for p(x|y=1)
 - Assume p(x|y=1) is Gaussian
 - Assume p(x|y=1) is fully factorized
- Use geometric intuitions
 - k-nearest neighbor classifier
 - Support vector machine
- Directly go for the decision boundary $h(x) = -\ln \frac{q_i(x)}{q_j(x)}$
 - Logistic regression
 - Neural networks

What is logistic regression model

• Assume that the posterior distribution p(y=1|x) take a particular form

$$p(y = 1|x, \theta) = \frac{1}{1 + \exp(-\theta^{\mathsf{T}}x)}$$

• Logistic function $f(u) = \frac{1}{1 + \exp(-u)}$

Learning parameters in logistic regression

 Find θ , such that the conditional likelihood of the labels is maximized

$$\max_{\theta} l(\theta) := \log \prod_{i=1}^{m} P(y^{i} | x^{i}, \theta)$$

Good news: $l(\theta)$ is concave function of θ , and there is a single global optimum. $l\left(\frac{1}{3}\theta_1 + \frac{2}{3}\theta_2\right)$

Bad new: no closed form solution (resort to numerical method)

The gradient of $l(\theta)$

$$l(\theta) := \log \prod_{i=1}^{m} P(y^{i}|x^{i}, \theta)$$
$$= \sum_{i} (y^{i} - 1) \theta^{\mathsf{T}} x^{i} - \log(1 + \exp(-\theta^{\mathsf{T}} x^{i}))$$

Gradient

$$\frac{\partial l(\theta)}{\partial \theta} = \sum_{i} (y^{i} - 1) x^{i} + \frac{\exp(-\theta^{\mathsf{T}} x^{i}) x^{i}}{1 + \exp(-\theta^{\mathsf{T}} x)}$$

Setting it to 0 does not lead to closed form solution

Gradient descent

 One way to solve an unconstrained optimization problem is gradient descent

Given an initial guess, we iteratively refine the guess by taking

the direction of the negative gradient

- Think about going down a hill by taking the steepest direction at each step
- Update rule

$$\theta_{k+1} = \theta_k - \gamma_k \nabla f(\theta_k)$$

 γ_k is called the step size or learning rate

Gradient Ascent/Descent algorithm

• Initialize parameter θ^0

Do

$$\theta^{t+1} \leftarrow \theta^t + \eta \sum_{i} (y^i - 1) x^i + \frac{\exp(-\theta^\top x^i) x^i}{1 + \exp(-\theta^\top x)}$$

• While the $||\theta^{t+1} - \theta^t|| > \epsilon$

Batch gradient vs stochastic gradient

The gradient involves all data points

$$\nabla f(\theta) = \sum_{i} (y^{i} - 1) x^{i} + \frac{\exp(-\theta^{\mathsf{T}} x^{i}) x^{i}}{1 + \exp(-\theta^{\mathsf{T}} x)}$$

- To compute the gradient at each iteration, we need to sum over all data points in the dataset
- What if we have a huge dataset? For example, 1 Million data points?
- We can take one data point and compute a stochastic gradient

$$\nabla \hat{f}(\theta) = (y^i - 1)x^i + \frac{\exp(-\theta^T x^i)x^i}{1 + \exp(-\theta^T x)}$$

Multiclass logistic regression

- Assign input vector x^i , i = 1, ..., m into one of classes c, c = 1, ..., C
- Assume that the posterior distribution take a particular form:

范围 0~1 且对c求和为1
$$P(y^i = c | x^i, \theta_1, \dots, \theta_C) = \frac{\exp(\theta_c^\top x^i)}{\sum_{c'} \exp(\theta_{c'}^\top x^i)}$$

Now, let's introduce some notation:

$$u_c^i \coloneqq P(y^i = c \mid x^i, \theta_1, \dots, \theta_C)$$
$$y_c^i = I(y^i = c)$$

Given all the input data

$$(x^1, y^1), (x^2, y^2), \dots, (x^m, y^m)$$

The log-likelihood can be written as:

$$l(\theta) \coloneqq \log \prod_{i=1}^{m} \prod_{c=1}^{C} (u_c^i)^{y_c^i}$$

$$= \sum_{i=1}^{m} \sum_{c=1}^{C} y_c^i \log u_c^i$$

$$= \sum_{i=1}^{m} \sum_{c=1}^{C} y_c^i \theta_c^T x^i - \log \sum_{i=1}^{m} \sum_{c'=1}^{C} \exp(\theta_{c'}^T x^i)$$

- ullet Find eta such that the conditional likelihood of the labels is maximized
- $-l(\theta)$ also known as cross-entropy error function for multiclass
- Compute the gradient of $f(\theta)$ with respect to one parameter vector θ_{c} :

$$\frac{\partial f}{\partial \theta_c} = -\sum_{i}^{m} (u_c^i - y_c^i) x^i$$

Which decision boundary is better?

- Suppose the training samples are linearly separable
- We can find a decision boundary which gives zero training error
- But there are many such decision boundaries
- Which one is better?

Compare two decision boundaries

Suppose we perturb the data, which boundary is more susceptible to error?

Geometric interpretation of a classifier

- Parameterizing decision boundary as: $w^{T}x + b = 0$
 - w denotes a vector orthogonal to the decision boundary
 - b is a scalar offset term

 Dash lines are parallel to decision boundary and they just hit the data points

Constraints on data points

- Constraints on data points
 - For all x in class 2, y = 1 and $w^T x + b \ge c$
 - For all x in class 1, y = -1 and $w^{\mathsf{T}}x + b \leq -c$
- Or more compactly, $(w^Tx + b)y \ge c$

Classifier margin

- Pick two data points x^1 and x^2 which are on each dash line respectively
- The unnormalized margin is $\tilde{\gamma} = w^{T}(x^{1} x^{2}) = 2c$
- The margin is $\gamma = \frac{2c}{\|w\|}$

Maximum margin classifier

Find decision boundary w as far from data point as possible

$$\max_{w,b} \gamma = \frac{2c}{||w||}$$
s.t. $y^{i}(w^{T} x^{i} + b) \ge c, \forall i$

Equivalent form

$$\max_{w,b} \frac{2c}{\|w\|}$$
s.t. $y^i(w^T x^i + b) \ge c, \forall i$

- Note that the magnitude of c merely scales w and b, and does not change the relative goodness of different classifiers
- Set c = 1 (and drop the 2) to get a cleaner problem

$$\max_{w,b} \frac{1}{\|w\|}$$
s.t. $y^i(w^T x^i + b) \ge 1, \forall i$

Support vector machines

A constrained convex quadratic programming problem

$$\min_{w,b} ||w||^2$$
s.t. $y^i(w^\top x^i + b) \ge 1, \forall i$

- After optimization, the margin is given by $\frac{2}{\|w\|}$
- Only a few of the constraints are relevant → support vectors
- Kernel methods are introduced for nonlinear classification problem

Lagrangian Duality

The primal problem

$$\min_{w} f(w)$$

$$st. g_i(w) \leq 0, i = 1, ..., k$$

$$h_i(w) = 0, i = 1, ..., l$$

The Lagrangian function

$$L(w,\alpha,\beta) = f(w) + \sum_{i}^{k} \alpha_{i} g_{i}(w) + \sum_{i}^{l} \beta_{i} h_{i}(w)$$

 $\alpha_i \geq 0$, and β_i are called the Lagrangian multipliers

The KKT conditions

• If there exists some saddle point of L, then the saddle point satisfies the following "Karush-Kuhn-Tucker" (KKT) conditions:

$$\frac{\partial L}{\partial w} = 0$$

$$\frac{\partial L}{\partial b} = 0$$

$$\frac{\partial L}{\partial \alpha} = 0$$

$$\frac{\partial L}{\partial \beta} = 0$$

$$g_i(w) \le 0$$

$$h_i(w) = 0$$

$$\alpha_i \ge 0$$

$$\alpha_i g_i(w) = 0$$
complimentary slackness

$$\min_{w,b} ||w||^2$$
s.t. $y^i(w^T x^i + b) \ge 1, \forall i$

Convert to standard form

$$\min_{\substack{w,b \ 2}} \frac{1}{2} w^{\mathsf{T}} w$$
s.t. $1 - y^{i} (w^{\mathsf{T}} x^{i} + b) \le 0, \forall i$

The lagrangian function

$$L(w, \alpha, \beta) = \frac{1}{2} w^{\mathsf{T}} w + \sum_{i=1}^{m} \alpha_i \left(1 - y^i (w^{\mathsf{T}} x^i + b) \right)$$

Deriving the dual problem

$$L(w, \alpha, \beta) = \frac{1}{2} w^{\mathsf{T}} w + \sum_{i=1}^{m} \alpha_i \left(1 - y^i (w^{\mathsf{T}} x^i + b) \right)$$

Taking derivative and set to zero

$$\frac{\partial L}{\partial w} = w - \sum_{i=1}^{m} \alpha_i y^i x^i = 0$$
$$\frac{\partial L}{\partial b} = \sum_{i=1}^{m} \alpha_i y^i = 0$$

Plug back relation of w and b

•
$$L(w, \alpha, \beta) = \frac{1}{2} \left(\sum_{i=1}^{m} \alpha_i y^i x^i \right)^{\mathsf{T}} \left(\sum_{j=1}^{m} \alpha_j y^j x^j \right) + \sum_{i=1}^{m} \alpha_i \left(1 - y^i \left(\left(\sum_{j=1}^{m} \alpha_j y^j x^j \right)^{\mathsf{T}} x^i + b \right) \right)$$

After simplification

$$L(w,\alpha,\beta) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y^i y^j (x^{i^{\mathsf{T}}} x^j)$$
b 作为常数扔掉

The dual problem of SVM

$$L(w, \alpha, \beta) = \sum_{i}^{m} \alpha_{i} - \frac{1}{2} \sum_{i,j}^{m} \alpha_{i} \alpha_{j} y^{i} y^{j} (x^{i^{\mathsf{T}}} x^{j})$$

$$s.t. \alpha_{i} \ge 0, i = 1, ..., m$$

$$\sum_{i}^{m} \alpha_{i} y^{i} = 0$$

- This is a constrained quadratic programming
- Nice and convex, and global maximum can be found

Support vectors

不在boundary上

Note that the KKT condition $\alpha_i g_i(w) = 0$

$$\alpha_i \left(1 - y^i (w^\top x^i + b) \right) = 0$$

- \bullet For data points with $\left(1-y^i\big(w^\top\,x^i+b\big)\right)<0$, $\alpha_i=0$
- \bullet For data points with $\left(1-y^i\big(w^\top\,x^i+b\big)\right)=0$, $\alpha_i>0$

Call the training data points whose α_i 's are nonzero the support vectors (SV)

Computing b and obtain the classifer

• Pick any data point with $\alpha_i > 0$, solve for b with

$$1 - y^i (w^\mathsf{T} x^i + b) = 0$$

• One KKT condition: $\frac{\partial L}{\partial w} = 0$

$$w = \sum_{i=1}^{m} \alpha_i y^i x^i$$

- For a new test point z
 - Compute

$$w^{\mathsf{T}}z + b = \sum_{i \in support\ vectors} \alpha_i y^i(x^i z) + b$$

Classify z as class 1 if the result is positive, and class 2 otherwise

Interpretation of support vector machines

- ullet The optimal $oldsymbol{w}$ is a linear combination of a small number of data points. This "sparse" representation can be viewed as data compression
- To compute the weights α_i , and to use support vector machines we need to specify only the inner products (or kernel) between the examples $x^{i^{T}}x^{j}$
- We make decisions by comparing each new example z with only the support vectors:

$$y^* = sign\left(\sum_{i \in support\ vectors} \alpha_i y^i(x^i z) + b\right)$$

Demo

Boys vs Girls

Handwritten digits 2 vs 3

Soft margin constraints

- What if the data is not linearly separable?
- We will allow points to violate the hard margin constraint $(w^{T}x + b)y \ge 1 \xi$

Soft margin SVM

$$\min_{w,b,\xi} ||w||^2 + C \sum_{i=1}^{m} \xi^i$$
s.t. $y^i (w^T x^i + b) \ge 1 - \xi^i, \xi^i \ge 0, \forall i$

Convert to standard form

$$\min_{w,b} \frac{1}{2} w^{\top} w$$
s.t. $1 - y^{i} (w^{\top} x^{i} + b) - \xi^{i} \le 0, \xi^{i} \ge 0, \forall i$

The Lagrangian function

$$L(w, \alpha, \beta) = \frac{1}{2} w^{\mathsf{T}} w + \sum_{i}^{m} C \xi^{i} + \alpha_{i} (1 - y^{i} (w^{\mathsf{T}} x^{i} + b) - \xi^{i}) - \beta_{i} \xi^{i}$$

Deriving the dual problem

$$L(w, \alpha, \beta) = \frac{1}{2} w^{\mathsf{T}} w + \sum_{i}^{m} C \xi^{i} + \alpha_{i} (1 - y^{i} (w^{\mathsf{T}} x^{i} + b) - \xi^{i}) - \beta_{i} \xi^{i}$$

Taking derivative and set to zero

$$\frac{\partial L}{\partial w} = w - \sum_{i}^{m} \alpha_{i} y^{i} x^{i} = 0$$

$$\frac{\partial L}{\partial b} = \sum_{i}^{m} \alpha_{i} y^{i} = 0$$

$$\frac{\partial L}{\partial \xi^{i}} = C - \alpha_{i} - \beta_{i} = 0$$

Plug back relation of w, b and ξ

•
$$L(w, \alpha, \beta) = \frac{1}{2} \left(\sum_{i}^{m} \alpha_{i} y^{i} x^{i} \right)^{\mathsf{T}} \left(\sum_{j}^{m} \alpha_{j} y^{j} x^{j} \right) + \sum_{i}^{m} \alpha_{i} \left(1 - y^{i} \left(\left(\sum_{j}^{m} \alpha_{j} y^{j} x^{j} \right)^{\mathsf{T}} x^{i} + b \right) \right)$$

After simplification

$$L(w, \alpha, \beta) = \sum_{i}^{m} \alpha_{i} - \frac{1}{2} \sum_{i,j}^{m} \alpha_{i} \alpha_{j} y^{i} y^{j} (x^{i^{\mathsf{T}}} x^{j})$$

The dual problem

$$\max_{\alpha} \sum_{i}^{m} \alpha_{i} - \frac{1}{2} \sum_{i,j}^{m} \alpha_{i} \alpha_{j} y^{i} y^{j} (x^{i^{\mathsf{T}}} x^{j})$$
s.t. $C - \alpha_{i} - \beta_{i} = 0, \alpha_{i} \geq 0, \beta_{i} \geq 0, i = 1, ..., m$

$$\sum_{i}^{m} \alpha_{i} y^{i} = 0$$

- The constraint $C \alpha_i \beta_i = 0$, $\alpha_i \ge 0$, $\beta_i \ge 0$ can be simplified to $C \ge \alpha_i \ge 0$
- This is a constrained quadratic programming
- Nice and convex, and global maximum can be found