IDS 702: Module 5.2

IMPUTATION METHODS I

Dr. Olanrewaju Michael Akande

STRATEGIES FOR HANDLING MISSING DATA

- Item nonresponse:
 - use complete/available cases analyses
 - single imputation methods
 - multiple imputation
 - model-based methods
- Unit nonresponse:
 - weighting adjustments
 - model-based methods (identifiability issues!).
- We will only focus on item nonresponse.
- If you are interested in building models for both unit and item nonresponse, here is a paper on some of the research I have done on the topic: https://arxiv.org/pdf/1907.06145.pdf

COMPLETE / AVAILABLE CASES ANALYSES

What can happen when using available case analyses with different types of missing data?

- MCAR: unbiased when disregarding missing data; variance increase (losing partially complete data)
- MAR: biased (depending on the strength of MAR and amount of missing data) when missing data mechanism is not modeled; variance increase (losing partially complete data).
- NMAR: generally biased!

SINGLE IMPUTATION METHODS

- Marginal/conditional mean imputation
- Nearest neighbor imputation:
 - hot deck imputation
 - cold deck imputation
- Use observation from one of the previous time periods (for panel data)
 - LOCF -- last observation carried forward
 - BOCF -- baseline observation carried forward

MEAN IMPUTATION

Plug in the variable mean for missing values.

- Point estimates of means OK under MCAR
- Variances and covariances underestimated.
- Distributional characteristics altered.
- Regression coefficients inaccurate.

Similar problems for plug-in conditional means.

NEAREST NEIGHBOR IMPUTATION

Plug in donors' observed values.

- Hot deck: for each non-respondent, find a respondent who "looks like" the non-respondent in the same dataset
- Cold deck: find potential donors in an external but similar dataset. For example, respondents from a 2016 election poll survey might serve as potential donors for non-respondents in the 2018 version of the same survey.
- Common metrics: Statistical distance, adjustment cells, propensity scores.

NEAREST NEIGHBOR IMPUTATION

- Point estimates of means OK under MAR.
- Variances and covariances underestimated.
- Distributional characteristics OK.
- Regression coefficients OK under MAR.

MULTIPLE IMPUTATION (MI)

- Fill in dataset *m* times with imputations.
- Analyze repeated data sets separately, then combine the estimates from each one.
- Imputations drawn from probability models for missing data.

MI EXAMPLE

Suppose

- Y = income (unit of measurement is \$10,000)
- X = level of education (0 = undergraduate, 1 = graduate)

Υ	Χ	_	Υ	Χ		Y	χ	 Y	X
11.9	1		11.9	1		11.9	1	11.9	1
16.1	1		16.1	1		16.1	1	16.1	1
12.9	0		12.9	0		12.9	0	12.9	0
?	0		11.8	0		12.8	0	13.0	0
12.1	?		12.1	1		12.1	0	12.1	1
12.6	0		12.6	0		12.6	0	12.6	0
?	1		11.2	1		13.6	1	11.7	1
		•			•				

(a) Data

(b) Multiply-imputed datasets

MI: INFERENCES FROM MULTIPLY-IMPUTED DATASETS

Rubin (1987)

- Population estimand: Q
- Sample estimate: *q*
- Variance of q: u
- lacksquare In each imputed dataset d_j , where $j=1,\ldots,m$, calculate

$$q_j=q(d_j)$$

$$u_j=u(d_j)$$

MI EXAMPLE: INFERENCES FROM MULTIPLY-IMPUTED DATASETS

Suppose we are interested in estimating the mean income in our example. Then

$$\blacksquare$$
 Q = μ_Y

$$q = \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$\quad \quad \mathsf{u} = \hat{\mathbb{V}}[\bar{y}] = \frac{s^2}{n}$$

• In each imputed dataset d_i , calculate

$$q_j = ar{y}_j \;\; ext{and} \;\; u_j = rac{s_j^2}{n}$$

MI: QUANTITIES NEEDED FOR INFERENCE

$${ar q}_m = \sum_{i=1}^m rac{q_i}{m}$$

$$b_m = \sum_{i=1}^m rac{(q_i - {ar q}_m)^2}{m-1}$$

$$ar{u}_m = \sum_{i=1}^m rac{u_i}{m}$$

MI: INFERENCES FROM MULTIPLY-IMPUTED DATASETS

• MI estimate of Q:

$$ar{q}_m$$

MI estimate of variance is:

$$T_m=(1+1/m)b_m+ar{u}_m$$

Use t-distribution inference for Q

$${ar q}_m \pm t_{1-lpha/2} \sqrt{T_m}$$

Notice that the variance incorporates uncertainty both from within and between the m datasets.

MI EXAMPLE

Back to our income example,

Υ	X		Υ	X	 Y	Х	
11.9	1		11.9	1	11.9	1	
16.1	1		16.1	1	16.1	1	
12.9	0		12.9	0	12.9	0	
11.8	0		12.8	0	13.0	0	
12.1	1		12.1	0	12.1	1	
12.6	0		12.6	0	12.6	0	
11.2	1		13.6	1	11.7	1	
$q_1 = \bar{y} =$	= 12.66	$q_2 = \bar{y} =$: 13.14	$q_3 = \bar{y} = 12.90$			
$u_1 = \hat{\mathbb{V}}[\bar{y}] = 0.37$			$u_2 = \hat{\mathbb{V}}[\bar{y}]$	$[\dot{r}] = 0.29$	$u_3 = \hat{\mathbb{V}}[\bar{y}] = 0.32$		

By the way, $\bar{y}=12.64$ from the "true complete dataset".

MI EXAMPLE

• MI estimate of Q:

$$ar{q}_m = \sum_{j=1}^m rac{q_j}{m} = rac{12.66 + 13.14 + 12.90}{3} = 12.90$$

Between variance

$$b_m = \sum_{j=1}^m rac{(q_j - {ar q}_m)^2}{m-1} = 0.06$$

Within variance

$$ar{u}_m = \sum_{j=1}^m rac{u_j}{m} = rac{0.37 + 0.29 + 0.32}{3} = 0.33$$

MI estimate of variance is:

$$T_m = (1+1/m)b_m + \bar{u}_m = (1+1/3)0.06 + 0.33 = 0.41$$

Where should the imputations come from? We will answer that soon!

WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!

