Jagiellonian University in Krakow

Faculty of Physics, Astronomy and Applied Computer Science

Department of Physics of Nanostructures and Nanotechnology

Nanomechanics of individual structures in endothelial cells studied by multiparameter AFM-based experimental methods

Grzegorz Brzezinka

WARNING – IT IS A DRAFT

generated 26th May 2014

PhD dissertation supervised by prof. dr. hab. Marek Szymoński

Contents

1	Introduction	5
1.	Physiological relevance of endothelial cells nanomechanics	5
2.	Cellular structures determining mechanical properties of cells	5
II ar	Theoretical description of cell nanoinentation with AFM probe	6
1.	Working principle	6
2.	Modeling the interaction	6
	•	6 6 6
II	I Identifying individual cellular structures	7
1.	Cortical actin cytoskeleton	7
2.	Endothelial glycocalyx	7
IV	Influence of measurement conditions	8
1.	Cell fixation	8
2.	Tip-induced mechanotransduction	8
\mathbf{V}	Time relaxation	9
1.	Methodology	9
2.	Model	9
3.	Results and discussion	9

VI Cell-cell interaction	10
1. Methodology	
2. Model	10
3. Results and discussion	10
VII Conclusions	11
References	12
List of figures	
List of tables	
Appendices	
Appendix A. Something additional	
Appendix B. And even less important	

Part I

Introduction

- 1. Physiological relevance of endothelial cells nanomechanics
- 2. Cellular structures determining mechanical properties of cells

Part II

Theoretical description of cell nanoinentation with an AFM probe

- 1. Working principle
- 2. Modeling the interaction
- 2.1. Electrostatic
- 2.2. Polymer bursh
- 2.3. Elastic deformation
- 2.4. Hyperelastic

Part III

Identifying individual cellular structures

- 1. Cortical actin cytoskeleton
- 2. Endothelial glycocalyx

Part IV

Influence of measurement conditions

- 1. Cell fixation
- 2. Tip-induced mechanotransduction

Part V

Time relaxation

- 1. Methodology
- 2. Model
- 3. Results and discussion

Part VI

Cell-cell interaction

- 1. Methodology
- 2. Model
- 3. Results and discussion

Part VII

Conclusions

References

[1] Stanisława Stokłosowa. Hodowla~kom'orek~i~tkanek. Wydawnictwo Naukowe PWN, Warszawa, 2004.

List of Figures

List of Tables

- A. Something additional
- B. And even less important