Olimpiada de Fizică Etapa pe județ 20 februarie 2016 Barem

Pagina 1 din 12

Subject 1.	Parţial	Punctaj
1. Barem subject 1		10
a) Condiția de rezonanță este ca frecvențele proprii de oscilație ale celor două circuite să fie egale, adică		
$\frac{1}{2\pi\sqrt{L_pC_p}} = \frac{1}{2\pi\sqrt{L_sC_s}}$	1	
sau		
$L_p C_p = L_s C_s$		
Dacă nu există pierderi de energie, atunci		
$\frac{C_{p}U_{p}^{2}}{2} = \frac{C_{s}U_{s}^{2}}{2}$		
${2} = {2}$		
De aici		3
$U_{s,\text{max}} = U_{p,\text{max}} \sqrt{\frac{C_p}{C_s}}$	1	
Sau, ţinând cont de condiţia de rezonanţă, rezultă		
$U_{s,\mathrm{max}} = U_{p,\mathrm{max}} \sqrt{\frac{L_s}{L_p}}$		
Folosind pentru calculul inductanțelor formula $L = \frac{\mu_0 N^2 S}{l}$ și înlocuind		
valorile din enunţ, se obţine: $U_{s,\text{max}} \approx 948 V$.	1	
b) Eclatorul produce o scânteie între electrozii săi, atunci când condensatorul din circuitul primar se încarcă până la o valoare suficient de mare a tensiunii dintre armături. În acel moment sursa este scurtcircuitată și are loc o descărcare a condensatorului prin bobina primar, adică se declanșează oscilații electromagnetice cu frecvența $v = \frac{1}{2\pi\sqrt{L_pC_p}}$. Mai departe, fenomenul se	1	
$2\pi\sqrt{L_pC_p}$ repetă la fiecare încărcare a condensatorului până la tensiunea limită. Frecvența scânteilor este mult mai mică decât frecvența oscilațiilor!		3
Capacitatea electrică a circuitului secundar este compusă din capacitatea electrică a sferei din capătul bobinei secundar și capacitatea electrică uniform distribuită de-a lungul bobinei: $C_s = C_b + C_{sfera}$. Folosind condiția de		3
rezonanță și formula capacității electrice a sferei $C_{sfera}=4\pi\varepsilon_0 r$, obținem: $C_b=C_p\frac{L_p}{L_s}-4\pi\varepsilon_0 r$	1	
Cu valorile numerice din enunţ se obţine $C_b \approx 85 \ pF$.	1	

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ 20 februarie 2016

Barem

1

1

3

c)	Legile	lui	Kirchhoff	pentru	cele	două	circuite	sunt:
----	--------	-----	-----------	--------	------	------	----------	-------

$$\begin{cases} i_p R_p + L_p \frac{di_p}{dt} + M \frac{di_s}{dt} = V_p \\ i_s R_s + L_s \frac{di_s}{dt} + M \frac{di_p}{dt} = V_s \end{cases}$$

Pagina 2 din 12

unde M este inductanța mutuală a celor două circuite, iar V_p și V_s sunt potențialele armăturilor condensatoarelor din cele două circuite.

Din
$$C = \frac{dq}{dV}$$
 și $i = -\frac{dq}{dt}$, rezultă $i = -C\frac{dV}{dt}$. Legile lui Kirchhoff devin:

$$\begin{cases} R_{p}C_{p}\frac{dV_{p}}{dt} + L_{p}C_{p}\frac{d^{2}V_{p}}{dt^{2}} + MC_{s}\frac{d^{2}V_{s}}{dt^{2}} + V_{p} = 0\\ R_{s}C_{s}\frac{dV_{s}}{dt} + L_{s}C_{s}\frac{d^{2}V_{s}}{dt^{2}} + MC_{p}\frac{d^{2}V_{p}}{dt^{2}} + V_{s} = 0 \end{cases}$$

Înlocuind soluțiile particulare propuse, după simplificări se obține:

$$\begin{cases} a_1 \left(\rho^2 L_p C_p + \rho R_p C_p + 1 \right) = -\rho^2 a_2 M C_s \\ -\rho^2 a_1 M C_p = a_2 \left(\rho^2 L_s C_s + \rho R_s C_s + 1 \right) \end{cases}$$

Împărțind cele două ecuații obținem:

$$(\rho^{2}L_{p}C_{p} + \rho R_{p}C_{p} + 1)(\rho^{2}L_{s}C_{s} + \rho R_{s}C_{s} + 1) = \rho^{4}M^{2}C_{p}C_{s}$$
(*)

adică o ecuație de gradul al IV-lea după $\,
ho \,$.

Având în vedere condițiile specificate în enunț, adică $L_p C_p = L_s C_s = LC$ și

$$R_p C_p = R_s C_s = RC$$
, ecuația (*) se reduce la

$$\rho^2 LC + \rho RC + 1 = \pm \rho^2 M \sqrt{C_p C_s}$$

sau două ecuații de gradul al II-lea:

$$\begin{cases} \rho^2 \left(LC - M\sqrt{C_p C_s} \right) + \rho RC + 1 = 0 \\ \rho^2 \left(LC + M\sqrt{C_p C_s} \right) + \rho RC + 1 = 0 \end{cases}$$

Soluțiile acestor două ecuații sunt:

$$\rho_{1,2} = -\alpha_1 \pm \sqrt{\alpha_1^2 - \frac{1}{LC(1-k)}}$$

Şİ

$$\rho_{1,2} = -\alpha_2 \pm \sqrt{\alpha_2^2 - \frac{1}{LC(1+k)}}$$

unde am notat $k = \frac{M}{\sqrt{L_n L_s}}$ - coeficientul de cuplaj al celor două circuite, iar

1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporţional cu
conţinutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a
ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ 20 februarie 2016 Barem

Pagina 3 din 12

$\alpha_1 = \frac{R}{2L(1-k)} \text{si} \alpha_2 = \frac{R}{2L(1+k)} .$		
Dacă $R_1 = R_2 = R = 0$, rezultă că și $\alpha_1 = \alpha_2 = 0$ (deci α_1 și α_2 caracterizează		
amortizarea oscilațiilor). Rămâne:		
$\rho_{1,2} = \pm j \sqrt{\frac{1}{LC(1-k)}} = \pm j\omega_1$		
$\rho_{3,4} = \pm j\sqrt{\frac{1}{LC(1+k)}} = \pm j\omega_2$		
unde $\omega_1 = \frac{\omega_{rez}}{\sqrt{1-k}}$ și $\omega_2 = \frac{\omega_{rez}}{\sqrt{1+k}}$.		
Deci		
$V_p = a_1 e^{\pm j\omega_1 t} = a_1 \left(\cos \omega_1 t \pm j \sin \omega_1 t\right)$		
și analog		
$V_s = a_2 \left(\cos \omega_2 t \pm j \sin \omega_2 t\right) .$		
Soluția generală este superpoziția celor două soluții, în care a_1 și a_2 se află		
din condițiile inițiale. Considerînd doar partea reală, rezultă		
$V(t) = a_1 \cos \omega_1 t + a_2 \cos \omega_2 t$		
Diferența celor două pulsații este	1	
$\Delta \omega = \omega_1 - \omega_2 = \omega_{rez} \left(\frac{1}{\sqrt{1-k}} - \frac{1}{\sqrt{1+k}} \right)$	1	
Pentru k mic (cuplaj slab, bobinele nu sunt pe un miez feromagnetic), $\omega_1 \approx \omega_2$		
și se obțin bătăi electromagnetice, cu perioada $T_b = \frac{2\pi}{\Delta\omega}$, adică		
$T_b = \frac{1}{2\pi\sqrt{LC}} \left(\frac{1}{\sqrt{1-k}} - \frac{1}{\sqrt{1+k}} \right) . \label{eq:Tb}$		
Oficiu		1
	I	_

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ 20 februarie 2016 Barem

Pagina 4 din 12

Subject 2.	Parţial	Punctaj
Barem subject 2		10
A.a.	3	
Datorită lentilelor L_1 și L_2 imaginea finală a sursei se va forma pe ecranul E aflat		
la distanța $d'_2 = 6f_1$ față de lentila L_2 , așa cum indică desenul din figura 1.		
C C C C C C C C C C		
Aceasta rezultă utilizând formula lentilelor, astfel :		
$ \frac{1}{f_{1}} = \frac{1}{d_{1}} + \frac{1}{d'_{1}}; \frac{1}{d'_{1}} = \frac{1}{f_{1}} - \frac{1}{2f_{1}} = \frac{1}{2f_{1}}; d'_{1} = 2f_{1}; $ $ \frac{1}{f_{2}} = \frac{1}{d_{2}} + \frac{1}{d'_{2}}; \frac{1}{d'_{2}} = \frac{1}{f_{2}} - \frac{1}{d_{2}} = \frac{1}{f_{2}} - \frac{1}{d - d'_{1}}; $ $ \frac{1}{d'_{2}} = \frac{1}{2f_{1}} - \frac{1}{3f_{1}} = \frac{1}{6f_{1}}; d'_{2} = 6f_{1}. $		
Lentila suplimentară L_3 nu trebuie să afecteze poziția imaginii finale de pe ecran, formată de cele două lentile. Ca urmare, așa cum indică desenul din figura alăturată, ea trebuie așezată în poziția S_1 , acolo unde lentila L_1 formează imaginea sursei S , nu va avea nici o acțiune asupra razelor de lumină care traversează lentila L_1 . Formarea imaginii S_2 de pe ecranul E , la distanța $d'_2 = 6f_1$, datorită lentilei L_2 , nu este afectată de prezența lentilei L_3 . Diametrul lentila L_3 trebuie să fie $D_3 > 2D_1$, astfel încât lentila L_3 are numai rolul de a colecta razele de lumină, venite de la Sursa E , care trec pe lângă lentila E , pe care să le concentreze pe ecranul E în poziția E , E 0. Pentru aceasta: $\frac{1}{f_3} = \frac{1}{d_3} + \frac{1}{d_3}; d_3 = d_1 + f_1 = 4f_1; d'_3 = d_2 + d'_2 = 9f_1; f_3 = \frac{36}{13}f_1.$		

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ 20 februarie 2016

Barem

Pagina 5 din 12

Pagina 5 din 12		
B.b.	3	
Grosimea stratului de aer dintre lentilă și placă este:		
$h = h_0 + a = \frac{r^2}{2R} + a,$		
unde r este raza inelului de interferență observat.		
Pentru inelul luminos de ordinul k, trebuie să avem:		
$h = (2k+1)\frac{\lambda}{4};$		
$\frac{r_k^2}{2R} + a = \left(2k+1\right)\frac{\lambda}{4};$		
$r_k^2 = (2k+1)R\frac{\lambda}{2} - 2aR;$		
$r_k^2 = R\lambda k + R\left(\frac{\lambda}{2} - 2a\right).$		
Se efectuează experimentul propus și se identifică inelul luminos de ordinul k,		
pentru care se măsoară cu rigla, raza acestuia, r_k , calculând apoi valoarea r_k^2 .		
Asemănător pentru inelul luminos de ordinul $k+1$, se măsoară cu rigla raza		
acestuia, r_{k+1} și apoi se determină valoarea r_{k+1}^2 .		
Rezultă:		
$r_k^2 = R\lambda k + R\left(\frac{\lambda}{2} - 2a\right); r_{k+1}^2 = R\lambda(k+1) + R\left(\frac{\lambda}{2} - 2a\right);$		
$r_{k+1}^2 - r_k^2 = R\lambda;$		
$\lambda = \frac{r_{k+1}^2 - r_k^2}{R}.$		
C.c.	3	
Între lentilă și oglindă se formează o pană de aer, a cărei pantă este variabilă,		
rămânând însă foarte mică.		
Se știe că prezența unei pene optice în calea unui fascicul de lumină determină		
apariția unui sistem de franje de interferență.		
O franjă de interferență reprezintă locul geometric al punctelor pentru care		
diferențele de drum optic ale razelor de lumină care interferă acolo au o aceeași valoare.		
A găsi forma franjelor de interferență pentru sistemul propus însemnează a găsi		
locul geometric al punctelor de pe fața inferioară a lentilei pentru care grosimea		
lamei de aer dintre lentilă și oglindă are valoarea h.		
Interferența este determinată de diferența de fază a razelor de lumină care se		
formează în spațiul dintre lentilă și oglindă. Franjele de interferență sunt benzi de		
egală lățime.		
Introducem un sistem de axe de coordonate XOY așa cum indică desenul din figura 1, unde: O – punctul de contact dintre lentilă și oglindă; OX – generatoarea		
inferioară a suprafeței cilindrice; OY ⊥ OX.		

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ 20 februarie 2016 Barem

Pagina 6 din 12

Fie $P(x, y, z_1)$ un punct de pe fața inferioară a lentilei, așa cum indică desenul din figura 2, astfel încât proiecția sa pe planul XOY este punctul P'(x, y), unde :

$$x^2 + y^2 = r^2,$$

iar z_1 – înălțimea punctului P deasupra planului XOY.

Dacă A este un punct de pe axa OZ astfel încât $OA = 2R_1$, atunci scriind teorema înălțimii pentru triunghiul dreptunghic AOP, rezultă:

$$r^2 = z_1(2R_1 - z_1); \ z_1 \ll 2R_1; \ r^2 = 2R_1z_1.$$

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ 20 februarie 2016 Barem

Pagina 7 din 12

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ 20 februarie 2016 Barem

Pagina 8 din 12

Oficiu

Pagina 8 din 12		
Punctul P" reprezintă intersecția verticalei PP' cu suprafața oglinzii (curba 2),		
coordonatele sale fiind (x, y, z_2) . Dacă planul curbei 2 (planul cercului cu raza		
R_2) este planul Y'O'Z' paralel cu planul YOZ, așa cum indică figura 4, utilizând		
teorema înălțimii în triunghiul dreptunghic O'P"B, înscris în semicercul cu raza		
R_2 , rezultă:		
$y^2 = z_2(2R_2 - z_2); \ z_2 \ll 2R_2; \ y^2 = 2R_2z_2.$		
În aceste condiții grosimea lamei de aer dintre lentilă și oglindă, pe verticala unui punct oarecare P de pe fața inferioară a lentilei, este:		
r^{2} y^{2} $x^{2} + y^{2}$ y^{2}		l
$h = z_1 - z_2 = \frac{r^2}{2R_1} - \frac{y^2}{2R_2} = \frac{x^2 + y^2}{2R_1} - \frac{y^2}{2R_2}.$		
Rezultă:		
x^{2} $y^{2}(1 1)$		1
$\frac{x^2}{2hR_1} + \frac{y^2}{2h} \left(\frac{1}{R_1} - \frac{1}{R_2} \right) = 1;$		
$a^2 = 2hR_1; b^2 = \frac{2hR_1R_2}{R_2 - R_1};$		
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$		
adică franjele de interferență sunt elipse concentrice.		1
Maximele de interferență se vor produce în punctele pentru care:		1
$h = (2k+1)\frac{\lambda}{2},$		
iar minimele de interferență se vor produce în punctele pentru care:		
$h=2k\frac{\lambda}{2}=k\lambda.$		

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ 20 februarie 2016 Barem

Pagina 9 din 12

Subject 3.	Parţial	Punctaj
Barem subject 3		10
a) Există trei evenimente, ale căror coordonate sunt legate prin transformările		
Lorentz speciale:		
• evenimentul E_1 , emisia luminii din O' , având coordonatele:		
$ \hat{\text{in } } K' : \begin{cases} x_1' = 0 \\ t_1' \end{cases} \qquad \text{si } \hat{\text{in } } K : \begin{cases} x_1 = \frac{\beta c t_1'}{\sqrt{1 - \beta^2}} \\ t_1 = \frac{t_1'}{\sqrt{1 - \beta^2}} \end{cases} \tag{1} $		
• evenimentul E, reflexia luminii pe oglindă, având coordonatele:		
$ \hat{\text{in }} K: \begin{cases} x = 0 \\ t = T \end{cases} \text{si } \hat{\text{in }} K': \begin{cases} x' = \frac{-\beta ct}{\sqrt{1 - \beta^2}} \\ t' = \frac{T}{\sqrt{1 - \beta^2}} \end{cases} \tag{2} $	1	3
• evenimentul E_2 , recepția luminii în O' , având coordonatele:		
$ \hat{\text{in } } K' : \begin{cases} x_2' = 0 \\ t_2' \end{cases} \qquad \text{si } \hat{\text{in } } K : \begin{cases} x_2 = \frac{\beta c t_2'}{\sqrt{1 - \beta^2}} \\ t_2 = \frac{t_2'}{\sqrt{1 - \beta^2}} \end{cases} \tag{3} $		
În sistemul K , semnalul luminos este emis din punctul O' , de abscisă x_1 la		
momentul t_1 , se propagă în sens contrar axei Ox cu viteza $(-c)$ și sosește la oglindă, în punctul de abscisă $x=0$, la momentul $t=T$. Putem scrie: $(0-x_1)=-c(T-t_1)$ Introducem aici x_1 și t_1 din relațiile (1) și după calcule se obține: $t_1^{'}=T\sqrt{\frac{1-\beta}{1+\beta}} \qquad (4)$	1	

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ 20 februarie 2016

Barem

Pagina 10 din 12

În sistemul K , semnalul luminos pleacă de la oglindă, din punctul de abscisă $x=0$ la momentul $t=T$, se propagă în sensul axei Ox cu viteza c și sosește în O' , având în K abscisa x_2 la momentul t_2 . Putem scrie: $ (x_2-0)=c(t_2-T) $ Introducem aici x_2 și t_2 din relațiile (3) și după calcule se obține: $ t_2'=T\sqrt{\frac{1+\beta}{1-\beta}} $	1	
b) În sistemul K : • durata traiectului "dus" al luminii, de la emisia din O' la reflexia pe oglindă, este dat de relația $(\Delta t)_1 = T - t_1$. Din relațiile (1) și (4) $\Rightarrow t_1 = \frac{t_1'}{\sqrt{1-\beta^2}} = T\sqrt{\frac{1-\beta}{1+\beta}} \cdot \frac{1}{\sqrt{1-\beta^2}} = \frac{T}{1+\beta}$ Introducem t_1 în $(\Delta t)_1$ și obținem: $(\Delta t)_1 = T - t_1 = T\frac{\beta}{1+\beta}$	0,8	4
• durata traiectului "întors" al luminii, de la reflexia pe oglindă la recepția în O' , este dat de relația : $(\Delta t)_2 = t_2 - T$. Din relațiile (3) și (5) $\Rightarrow t_2 = \frac{t_2'}{\sqrt{1-\beta^2}} = T\sqrt{\frac{1+\beta}{1-\beta}} \cdot \frac{1}{\sqrt{1-\beta^2}} = \frac{T}{1-\beta}$. Introducem t_2 în $(\Delta t)_2$ și obținem: $(\Delta t)_2 = t_2 - T = T\frac{\beta}{1-\beta}$	0,8	
• durata traiectului "dus-întors" al luminii este $\Delta t = (\Delta t)_1 + (\Delta t)_2 \implies \Delta t = T \frac{2\beta}{1 - \beta^2}$	0,4	
În sistemul K' : • durata traiectului "dus" al luminii, de la emisia din O' la reflexia pe oglindă, este dat de relația: $(\Delta t')_1 = t' - t'_1$. Utilizăm relațiile (2) și (4), $t' = \frac{T}{\sqrt{1-\beta^2}}$, respectiv $t'_1 = T\sqrt{\frac{1-\beta}{1+\beta}}$ și obținem: $(\Delta t')_1 = t' - t'_1 = T\frac{\beta}{\sqrt{1-\beta^2}}$	0,8	

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ 20 februarie 2016

Barem

Pagina 11 din 12

Pagina 11 din 12		
• durata traiectului "întors" al luminii, de la reflexia pe oglindă la recepția		
în O' , este dat de relația : $(\Delta t')_2 = t'_2 - t'$.		
Utilizăm relațiile (2) și (4): $t_2' = T\sqrt{\frac{1+\beta}{1-\beta}}$, $t' = \frac{T}{\sqrt{1-\beta^2}}$ și obținem:	0,8	
$\left(\Delta t'\right)_{2} = t'_{2} - t' = T \frac{\beta}{\sqrt{1 - \beta^{2}}}$		
durata traiectului "dus-întors" al luminii este		
$\Delta t' = (\Delta t')_1 + (\Delta t')_2 \implies \Delta t' = T \frac{2\beta}{\sqrt{1-\beta^2}}$	0,4	
Folosind relația dintre timpul propriu si cel măsurat în sistemul de referință		
legat de Pământ (de dilatare a duratei) $\Delta t = \frac{\Delta t'}{\sqrt{1-\beta^2}}$, putem obține Δt		
cunoscând Δt sau invers, putem obține Δt cunoscând Δt .		
Comparând duratele dus-întors Δt și Δt obținute separat, se confirmă relația de dilatare a durate Δt 1		
$\frac{\Delta t}{\Delta t} = \frac{1}{\sqrt{1 - \beta^2}} > 1.$		
c) Distanța D, parcursă de nava cosmică față de sistemul K (Pământul) este		
dată de relația:		
$D = \int_{0}^{t} v \cdot dt = \int_{0}^{v_{f}} v \cdot \frac{dv}{a} = \int_{0}^{v_{f}} \frac{v}{a_{0} \left(1 - \frac{v^{2}}{c^{2}}\right)^{\frac{3}{2}}} dv = \frac{c^{2}}{a_{0}} \frac{1}{\sqrt{1 - \frac{v^{2}}{c^{2}}}} \bigg _{0}^{v_{f}} = \frac{c^{2}}{a_{0}} \left(\frac{1}{\sqrt{1 - \frac{v_{f}^{2}}{c^{2}}}} - 1\right)$	0,5	2
După calcule se obține viteza finală:		
$v_f = c \frac{\sqrt{Da_0(Da_0 + 2c^2)}}{Da_0 + c^2} .$	0,5	
Durata τ a voiajului față de sistemul K legat de Pământ:		
v_f		
$\tau = \int_{0}^{t} dt = \int_{0}^{v_{f}} \frac{dv}{a_{0} \left(1 - \frac{v^{2}}{c^{2}}\right)^{\frac{3}{2}}} = \frac{1}{a_{0}} \cdot \frac{v}{\sqrt{1 - \frac{v^{2}}{c^{2}}}} \bigg _{0} = \frac{1}{a_{0}} \cdot \frac{v_{f}}{\sqrt{1 - \frac{v_{f}^{2}}{c^{2}}}}$	0,5	
$\begin{pmatrix} c \end{pmatrix}$		

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ 20 februarie 2016 Barem

Pagina 12 din 12

Utilizăm relația obținută pentru viteza v_f și, după calcule, obținem:		
$\tau = \frac{D}{c} \sqrt{1 + \frac{2c^2}{Da_0}} \ .$	0,5	
Oficiu		1

Barem propus de:

prof. Liviu ARICI - Colegiul Naţional "N. Bălcescu", Brăila prof. dr. Mihail SANDU – Liceul Tehnologic de Turism, Călimăneşti, Vâlcea conf. univ. dr. Sebastian POPESCU, Universitatea "Alexandru Ioan Cuza" din Iaşi prof. Florin BUTUŞINĂ - Colegiul Naţional "Simion Bărnuţiu", Şimleu Silvaniei, Sălaj

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.