A Convolutional Neural Network Approach for Classifying Brain Tumors from MRI Images

Класифициране на Мозъчни Тумори от ЯМР изображения, използвайки конволюционна невронна мрежа

Съдържание

- 1. Проблематика
- 2. Проучване
- 3. Данни: анализ, извличане и аугментация
- 4. Модел
- 5. Резултати
- 6. Бъдещи планове

Глава 1: Проблематика

- Световен доклад на рака изготвен от WHO:

Рак на мозъка - по-малко от 2% от човешкия рак Води до тежка заболяемост и усложнения

- ЯМР като неинвазивен начин за откриване и класифициране на мозъчни тумори

не използва радиация по-детайлно изображение на мозъка

- Класификация на мозъчни тумори:

глиоми (gliomas): 30% от всички мозъчни тумори менингиоми (meningiomas) тумори на хипофизата (pituitary tumors)

Глава 2: Проучване

Заглавие	Автор	Техника за класификация	Точност	
"Enhanced Performance of Brain Tumor Classification via Tumor Region Augmentation and Partition"	Cheng et al.	kNN	91.28%	
"Deep learning for brain tumor classification"	Paul et al.	CNN	91.43%	
"Deep Convolutional Neural Networks Model-based Brain Tumor Detection in Brain MRI Images"	Siddique et al.	CNN based on a pre-trained network	96.00%	

Глава 2: Проучване

Научни статии:

[1] "Brain Tumor Classification Using Deep Learning Technique - A Comparison between Cropped, Uncropped, and Segmented Lesion Images with Different Sizes", Mohammad Alqudah et al.

- Конволюционна невронна мрежа от 18 слоя (4 конволюционни слоя)
- Мрежата се тества върху три различни вида изображения: цели ЯМР изображения, изрязани около тумора изображения, сегментирани изображения
- Изрязани около тумора изображения най-ниска точност

[2] "Brain tumor classification in MRI image using convolutional neural network", Hassan Ali Khan et al.

- Конволюционна невронна мрежа от 14 слоя (8 конволюционни слоя)
- Аугментация върху оригиналните данни: обръщане, ротация, увеличаване/намаляване на яркостта
- Резултатите от предложената архитектура са сравнени с резултати, получени от предварително тренирани мрежи (VGG-16, ResNet-50 и Inception v3)

Глава 2: Проучване

Научни статии:

[3] "Multi-Classification of Brain Tumor Images Using Deep Neural Network", Hossam Sultan et al.

- Два класификационни проблема: класификация на различни видове мозъчни тумори (глиоми, менингиоми и тумори на хипофизата) и класификация на различни стадии на глиомни тумори (стадий 1, 2 и 3)
- Конволюционна невронна мрежа от 15 слоя (3 конволюционни слоя)
- Аугментация върху оригиналните данни: обръщане, ротация, добавяне на шум

[4] "Classification of Brain Tumors from MRI Images Using a Convolutional Neural Network", Milica Badža et al.

- Конволюционна невронна мрежа от 21 слоя (4 конволюционни слоя)
- Аугментация върху оригиналните данни: обръщане и ротация
- Използва k-fold Cross Validation

Глава 3: Данни - Анализ

- Данни от Обща болница към Медицинския Университет, Тиендзин, събирани от 2005 до 2010
- 3064 Т1-претеглени ЯМР изображения
- 233 пациента
- 3 вида мозъчен тумор: менингиом (0), глиом (1), тумор на хипофизата (2)
- 3 изгледа: аксиален (a), сагитален (b), коронален (c)

(a) Axial view

(b) Sagittal view

(c) Coronal view

Глава 3: Данни - Анализ

- Брой изображения за всеки вид тумор

label: таг

- Атрибути на оригиналните .mat файлове:

PID: идентификационен номер на пациент
image: ЯМР изображение на тумор
tumor border: вектор, съхраняващ координатите
на дискретни точки на границата на тумора
tumor mask: двоично изображение с единици,
индикиращи региона на тумора

number of 0: meningioma: 708 number of 1: glioma: 1426

number of 2: pituitary tumor: 930

Глава 3: Данни - Извличане

- Трансформиране и преоразмеряване на ЯМР изображенията и таговете в numpy масиви: images и labels
- Размерност на масива от изображения: (3064, 128, 128)
- Размерност масива от тагове: (3064,)

1: glioma

2: pituitary tumor

0: meningioma

Глава 3: Данни - Аугментация

- Използвани методи на аугментация: ротация на 45 градуса (rotation) обръщане от горе надолу (flipping) огледално изображение от ляво надясно (mirroring) добавяне на шум (salt noise)
- Размерност на масива от изображения след аугментация: (15320, 128, 128)
- Размерност на масива от тагове след аугментация: (15320,)
- Запазване на новите данни в .npz формат augmented_images.npz

Глава 4: Модел

- Преоразмеряване на данните в удобна за ползване с Тензорфлоу размерност **Размерност на масива от изображения след преоразмеряване**: (15320, 128, 128, 1) - ЯМР изображенията са черно-бели
 - Размерност на масива от тагове след преоразмеряване: (15320, 3) 3 различни вида мозъчен тумор
- Съвместно разбъркване на изображенията и таговете
- Разделяне на данните на train, validation и test dataset със съотношение 80, 10, 10:

Размерност на данните за трениране: изображения: (12256, 128, 128, 1), тагове: (12256, 3) **Размерност на данните за валидация**: изображения: (1532, 128, 128, 1), тагове: (1532, 3) **Размерност на данните за тестване:** изображения: (1532, 128, 128, 1), тагове: (1532, 3)

- Функция на загубата: Softmax Cross Entropy

Softmax Cross-Entropy Loss
$$f(s)_i = \frac{e^{s_i}}{\sum_j^C e^{s_j}} \quad CE = -\sum_i^C t_i log(f(s)_i)$$

Глава 4: Модел - Хиперпараметри

Depths of Conv Layers	Batch Size	Epochs	Learning Rate	Optimizer	Batch Normali zation	Regularization	Training Accuracy	Validation Accuracy
64, 128, 256	24	1	0.001	Adam	No	No	75.00	76.43
16, 32, 64	32	5	0.01	Adam	No	No	88.41	86.48
16, 32, 64	32	10	0.003	Adam	Yes	No	94.59	91.51
16, 32, 64	32	10	0.001	Adam	Yes	L2, 0.001	95.04	93.86
16, 32, 64	64	20	0.003	Adam	Yes	No	98.73	94.45
16, 32, 64								

Глава 4: Модел - Архитектура

Глава 5: Резултати

- Крива на точността

- Крива на загубата

Глава 5: Резултати

- Постигната точност на модела при тестовите данни: **94.45**

- Клас Менингиома:

TP = 321

TN = 1134

FP = 53

FN = 24

Клас Глиома:

TP = 679

TN = 788

FP = 27

FN = 38

- Клас Тумор на Хипофизата:

TP = 447

TN = 1057

FP = 5

FN = 23

Бъдещи планове

- Трениране върху повече изображения
- Сравнение с различни размери на изображенията 32х32, 64х64
- Трениране върху сегментирани изображения само частта с тумора
- Класификация на глиома 3 подкласа (степен II, степен III, степен IV)