PATENT ABSTRACTS OF JAPAN

(11)Publication number:

(43)Date of publication of application: 11.06.1996

(51)Int.Cl.

CO1B 21/48 CO1G 56/00 G21C 3/62

(21)Application number: 06-290148

(71)Applicant: JAPAN ATOM ENERGY RES INST

(22)Date of filing:

24.11.1994

(72)Inventor: YAMAGISHI SHIGERU

TAKAHASHI YOSHIHISA

(54) METHOD FOR PREPARING SUB-STOICHIOMETRIC OR STOICHIOMETRIC NITRIC ACID SALT SOLUTION (57)Abstract:

PURPOSE: To provide a method for preparing a sub-stoichiometric or a stoichiometric nitric acid salt solution of a nuclear fuel, etc., used for a starting material in preparing fine small spherical ceramic particles of ceramic fuel particles, etc., for a nuclear reactor.

CONSTITUTION: This method for preparing a sub-stoichiometric or a stoichiometric nitric acid salt solution comprises taking a solution or a solid of the stoichiometric metal nitric acid salt in which the concentration ratio of nitric acid/the metal (hereinafter, called a nitric acid concentration ratio) is equal to the metal or its complex cationic valence number (hereinafter, called a metal-containing cationic valence number) as a starting material and in order to obtain the solutions of sub-stoichiometric nitric acid salt or stoichiometric nitric acid salt, where the nitric acid concentration ratio is smaller than the metal-containing cationic valence number, while heating the solution or the solid of the starting material in a air stream containing water vapor, capturing the discharged nitric acid in the alkaline solution of a knot amount, and stopping the reaction at the time of getting the objective discharged amount. In this way, the sub-stoichiometric or stoichiometric nitric acid salt solution having the objective nitric acid concentration ratios are prepared.

LEGAL STATUS

[Date of request for examination]

17.10.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3626519

[Date of registration]

10.12.2004

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 2] ********* or the stoichiometric nitrate solution preparation approach of claim 1 that whenever [stoving temperature] is 190 degrees C or less.

[Claim 3] ******** or the stoichiometric nitrate solution preparation approach of claim 1 by adding water, where the heated matter after a reaction termination is maintained at 80-99 degrees C, and dissolving all solid-states.

[Claim 4] ********* or the stoichiometric nitrate solution preparation approach of claim 1 that the nitric-acid ratio of concentration is 75 - 100% of range of a metal content cation valence.

[Claim 5] ******** or the stoichiometric nitrate solution preparation approach of claim 1 which is one selected sort or the selected nuclear fuel material beyond it to which this metal changes from the group of uranium, thorium, and a transuranic element.

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[Industrial Application] This invention relates to the preparation approach of ****************, such as a nuclear fuel material used as starting material in the case of preparing minute spherical ceramic particles, such as a ceramic fuel particle for reactors, or a stoichiometric nitrate solution.

[0002]

[Description of the Prior Art] In the production process of the fuel gel particle by the sol gel process used in the field of the ceramic fuel particle for reactors, when preparing the ********* nitrate solution containing fuel metals, such as uranium which is a starting material solution, the approach of dissolving metallic-oxide powder in a nitric acid or a stoichiometric metal nitrate solution, or adding an organic substance reducing agent to a stoichiometric nitrate solution, and disassembling and removing a nitric acid is taken.

[0003]

[Problem(s) to be Solved by the Invention] The purpose of this invention is to offer the approach of preparing the target starting material solution, without passing through the handling process of the fuel oxide impalpable powder which is the radioactive substance which brings about indispensable increase of a worker exposure with the conventional technique, or the process accompanied by risk of adding an organic substance reducing agent in the nitrate solution which is an oxidizer.

[0004]

[Means for Solving the Problem and its Function] The means adopted for the technical-problem solution solve it the purpose as a result of wholeheartedly research of an invention-in-this-application person is as follows. [0005] The 1st is having raised denitrification acid effectiveness, and also the principal component of emission gas being made to the form of a nitric acid rather than nitrogen oxides, and having enabled it to control the terminal point of the denitrification acid reaction of the purpose automatically correctly as follows with heating in the ambient atmosphere containing a steam. That is, it leads into the water 3 which heated support gas 1 at the heater 2 using equipment as shows an example to <u>drawing 1</u> , and a steam is included, and it lets the incubation furnace 4 pass, and leads in the nitrate container 6 heated at the heater 5. The nitric acid which this emitted is led into the alkali solution 9 for nitric-acid uptake through the condensator 7 which is not pouring cooling water, and the condensator 8 which is pouring cooling water continuously with support gas. Let the original amount of alkali in this solution be the nitric acid and the equivalent which should be made to emit. In order to stop emission system outside of a generating nitric acid, the solenoid operated directional control valve 13 for pouring cooling water 12 also to a condensator 7 is operated at the same time it stops heating at the terminal point [solution / an emission nitric acid and / alkali] of neutralization according to a heater 5 by the signal of rapid pH change, acting as the continuation monitor of the pH of this alkali solution with the recording controller 11 connected with the pH meter 10.

[0006] If the heated object of the shape of fused salt in the container 6 after reaction termination is cooled and solidified to a room temperature, since container breakage will arise by the cubical expansion by moisture absorption of the solid-state, the 2nd is cooling, after opening a hand valve 14 in the condition of having maintained to the elevated temperature 100 degrees C or less which is the boiling point of water, adding Nakamizu of a sump 15 and changing a solid-state into a water solution, in order to prevent it.

[Example] This invention is concretely explained about an example. However, this invention is not limited by the example.

[8000]

[Example 1] Aging of the NO3-/U mole ratio in a sample was investigated by the approach of investigating the amount of emission nitric acids while sometimes exchanging supply and the sodium-carbonate solution for emission nitric-acid uptake for a sample for the mixed gas (steam + argon) which carried out the bubble of the argon the rate for 50m1/into the 95-degree C water of a steam generator, using an oil bath as a heating heater of the sample (uranyl-nitrate solution) of the equipment of drawing 1. The sample before a reaction is 1 60m of isolation nitric-acid content uranyl-nitrate solutions whose NO3-/U mole ratio U concentration is 2.10 in 1/1 2.00 moes. [0009] Sample temperature became about 110 degrees C in about 80 minutes after heating initiation of an oil bath with a laying temperature of 160 degrees C, emission of a nitric acid started, and the NO3-/U mole ratio amounted to 1.86 as a result of heating by 430 minutes. (The calculated value from an uptake nitric acid was in agreement in

the range with error by 1.83) . Sample temperature was after 290 minute 147 degrees C. Sample temperature in the meantime and the NO3-/U mole ratio of the sample calculated from the uptake nitric acid are shown in $\frac{drawing 2}{drawing 2}$ to the time amount after heating initiation. (The result at the time of supplying only argon gas is also compared and shown in $\frac{drawing 2}{drawing 2}$.)

[0010]
[Example 2] By the same technique as an example 1, only oil bath laying temperature was changed into 195 degrees C, and aging of a NO3-/U mole ratio was investigated. After [of an after / heating initiation] 206 minutes, the NO3-/U mole ratio amounted to 1.63. (The calculated value from an uptake nitric acid was in agreement in the range with error by 1.65). Sample temperature was after 130 minute 180 degrees C. Sample temperature in the meantime and the NO3-/U mole ratio of the sample calculated from the uptake nitric acid are shown in drawing 3 to the time amount after heating initiation. (The result at the time of supplying only argon gas is also compared and

[0011]

shown in drawing 3.)

[Example 3] Using the equipment shown in <u>drawing 1</u>, the same front [heating] sample as an example 2 and heating conditions were applied, and it experimented in the desired value of a NO3-/U mole ratio as 1.55. When an emission nitric acid until the final value of the NO3-/U mole ratio of a sample amounts to 1.55, and the sodium carbonate of the equivalent were specifically included in the alkali solution for emission nitric-acid uptake and pH of the solution amounted to 4, it set up so that the signal of the solenoid-operated-directional-control-valve 13 actuation which supplies cooling water to the power off and the condensator 7 of the sample heating heater 5 might be taken out.

[0012] Sample temperature was after 160 minute 184 degrees C. pH became below the set point after 252 minutes, and said signal was emitted. When sample temperature became 80 degrees C after heating termination, the hand valve 14 was opened and predetermined water was supplied in the specimen container from the sump 15. In order to dissolve all internal solid-states, finally it heated at 95 degrees C. The NO3-/U mole ratio of this sample solution was 1.57 which is in agreement in the range of desired value and an error.

[Effect of the Invention] The process which deals with the radioactive impalpable powder which causes increase of worker exposure extent, or the high reduction reaction process of danger was required of the Prior art. However, these processes were made unnecessary as a result of this invention, and also denitrification acidity realized the preparation approach of possible ******************************* of automation, or a stoichiometric nitrate solution controllable as the target. Moreover, the approach of progressing at effectiveness higher than what is depended on a pyrolysis so that it may be shown as compared with drawing 2 and 3 was realized by performing a denitrification acid reaction in a steam.

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is drawing having shown an example of the equipment for enforcing the approach of this invention.
[Drawing 2] It is the graph which showed the sample temperature in the case of the example 1 using 160-degree-C oil bath as a sample heating heater, and aging of the NO3-/U mole ratio in a sample as compared with the case where only argon gas is supplied.

[Drawing 3] It is the graph which showed the sample temperature in the case of the example 2 using 195-degree-C oil bath as a sample heating heater, and aging of the NO3-/U mole ratio in a sample as compared with the case where only argon gas is supplied.

[Description of Notations]

- 1: Support gas 2: Heater 3: Steam generator
- 4: Incubation furnace 5: Heater 6: Nitrate container
- 7: Condensator 8: Condensator 9: Alkali solution
- 10: PH meter 11: Recording controller 12: Cooling water
- 13: Solenoid operated directional control valve 14: Hand valve 15: Sump

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

[Drawing 3]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開發导

特開平8-151204

(43)公開日 平成8年(1998)6月11日

(51) Int.CL*	氣別記号	庁内整理番号	ΡI	技術表示館所
CO1B 21/4	8			
C01G 56/0	0			
G21C 3/6	2 н			

		田生前求	京部球 西東項の数5 OL (全 4 円)		
(21)出廢番号	特顧平6-290148	(71)出源人	000004097 日本原子力研究所		
(22) 出版日	平成6年(1994)11月24日		東京都千代田区内寧町 2 丁目 2 卷 2 号		
		(72) 発明者	(72) 売明者 山岸 滋 実被県那項膠東海村白方字白根2番地の4 日本原子力研究所東海研究所内		
	•	(72)発明者 高橋 良寿 聚城県那可郡東海村白方字白根2番地の4 日本原子力研究所東海研究所内			
		(74)代理人	弁理士 路线 裁三 (外6名)		
•					

亚化学量論的または化学量論的硝酸塩溶液觀數方法 (54) 【発明の名称】

(57)【要約】

【目的】 原子炉用セラミックス燃料粒子等の微小球状 セラミックス粒子を調製する場合の出発物質として使用 される核燃料物質等の亜化学量論的または化学量論的硝 酸塩溶液の調製方法

【構成】 硝酸/金属濃度比(以下、硝酸濃度比と記 す)が金属またはその復合隔イオン価数(以下、金属含 有陽イオン価数という)に等しい化学量論的金属硝酸塩 の溶液または固体、あるいはそれに遊館硝酸が加わった 溶波または固体を出発物質として、硝酸濃度比が金属含 有陽イオン価数より小さい亜化学登論的硝酸塩または化 学堂論的硝酸塩の溶液を得るために、出発物質の溶液ま たは固体を水蒸気を含む気流中で加熱しつつ放出される 硝酸を既知量のアリカリ溶液中に捕集して目標の放出量 に到達した時点で反応を中止することにより、目的とす る硝酸濃度比の亜化学登論的または化学登論的硝酸塩溶 液を調製する。

特関平8-151204

(2)

【特許請求の商田】

【語求項1】 硝酸/金属造度比(以下、硝酸造度比と 記す)が金属またはその複合陽イオン価数(以下、金属 含有陽イオン価敷という) に等しい化学質論的金属硝酸 塩の溶液または固体、あるいはそれに遊離硝酸が加わっ た溶液または固体を出発物質として、硝酸濃度比が金属 含有陽イオン価数より小さい亜化学量論的硝酸塩または 化学量論的硝酸塩の溶液を得るために、出発物質の溶液 または固体を水蒸気を含む気流中で加熱しつつ放出され **畳に到達した時点で反応を中止することにより、目的と** する硝酸濃度比の亜化学量論的または化学量論的硝酸塩 溶液を顕製する方法。

【請求項2】 加熱温度が190 C以下である請求項1 の亜化学量論的または化学量論的硝酸塩溶液調製方法。

【論求項3】 反応中止後の彼加熱物質を80~99℃ に維持した状態で水を加えて固体をすべて溶解すること による請求項1の亜化学量論的または化学費論的硝酸塩 溶液調製方法。

【請求項4】 硝酸濃度比が金属含有陽イオン価数の7 5~100%の範囲である請求項1の亜化学量論的また は化学量論的硝酸塩溶液調製方法。

【請求項5】 該金属がウラン、トリウム、超ウラン元 景の群から成る遺ばれた1種またはそれ以上の核燃料物 質である請求項1の亜化学量論的または化学費論的硝酸 组溶液調製方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は原子炉用セラミックス燃 料粒子等の微小球状セラミックス粒子を調製する場合の 出発物質として使用される核燃料物質等の亜化学量論的 または化学量論的硝酸塩溶液の調製方法に関するもので ある。

[0002]

【従来の技術】原子炉用セラミックス燃料粒子の分野に おいて利用されているゾルゲル法による燃料ゲル位子の 製造工程では、出発物質溶液であるウラン等の燃料金属 を含む亜化学量論的硝酸塩溶液を顕製する場合。 金属酸 化物鉛末を硝酸または化学量論的金属硝酸塩溶液に溶解 するか、あるいは化学量論的硝酸塩溶液に有機物還元剤 40 を加えて硝酸を分解・除去する方法を採っている。

100031

【発明が解決しようとする課題】本発明の目的は、従来 技術では不可欠の、作業員被曝の増大をもたらす放射性 物質である燃料酸化物微粉末の取扱工程、あるいは有機 物道元剤を酸化剤である硝酸塩溶液に添加する危険を伴 う工程を経ずに、目的の出発物質溶液を顕製する方法を 提供することにある。

[0004]

【課題を解決するための手段とその作用】本類発明者が 55 【0010】

鋭意研究の結果、目的とする課題解決のために採用した 手段は次のとおりである。

【0005】第1は、水蒸気を含む雰囲気中での加熱に より、脱硝酸効率を高めたほか、放出ガスの主成分を窒 素酸化物よりも硝酸の形にでき、目的の脱硝酸反応の終 点を次のようにして正確に自動制御できるようにしたこ とである。すなわち、図1に例を示すような装置を用い て、担体ガス1をヒータ2で加熱した水3の中に導き水 蒸気を含ませ、保温炉4を通して、ヒータ5で加熱した る硝酸を既知量のアリカリ溶液中に捕集して目標の放出 10 硝酸塩容器6内に導く。これにより放出した硝酸を担体 ガスと共に冷却水を流していない冷却器で、続いて冷却 水を流している冷却器8を通して硝酸搶集用アルカリ溶 液9の中に導く。この溶液中の当初のアルカリ量は放出 させるべき硝酸と当量としておく。このアルカリ溶液の pHをpHメータ10につないだ記録調節計11で連続 モニターしつつ。放出硝酸とアルカリ溶液との中和反応 の終点での急激なp H変化の信号により、ヒータ5によ る加熱を停止させると同時に、発生硝酸の系外放出を停 止させるために冷却器7にも冷却水12を流すための電 20 遊切換弁13の操作を行う。

> 【①①06】第2は、反応終了後の容器6中の溶融塩状 の協加熱物を室温まで冷却し固化させると、その固体の 吸湿による体積膨張により容器破損が生ずるので、それ を防ぐために水の沸点である100°C以下の高温に維持 した状態で手助弁14を開き、水溜15の中水を加えて 固体を水溶液に変えた役で冷却することである。

[0007]

【実施例】実施例について本発明を具体的に説明する。 ただし、本発明は実施例によって限定されるものではな

[0008]

【実施例1】図1の装置の試料(硝酸ウラニル溶液)の 加熱ヒータとして抽浴を用い、水蒸気発生器の95℃の 水の中にアルゴンを50m1/分の速度でパブルさせた (水蒸気+アルゴン) 混合ガスを試料に供給、放出硝酸 **浦桌用炭酸ナトリウム溶液を時々交換しながら放出硝酸** 量を調べる方法で、試料中のNO。* / Uモル比の経時 変化を調べた。反応前の試料は、U遺度が2.00mo 1/1でNO。 / /Uモル比が2. 10である遊館硝酸 含有硝酸ウラニル溶液60m1である。

【0009】設定温度160℃の油浴の加熱開始後約8 0分で試料温度が約110℃になり硝酸の放出が始まり 430分までの加熱の結果、NO。 / / Uモル比は1. 86に達した。(捕集硝酸からの計算値は1.83で誤 登の節囲で一致していた)。試料温度は290分以降1 47℃であった。この間の試料温度と指集硝酸から計算 した試料のNO。「/Uモル比とを、 加熱開始後の時間 に対して図2に示している。 (図2には、アルゴンガス のみを供給した場合の結果も比較して示している。)

【実結例2】実結例1と同様の手法で、結浴設定温度の みを195℃に変えて、NO。 / / Uモル比の経時変化 を調べた。加熱開始後206分後に、NO。 - / Uモル 比は1.63に達した。(指集硝酸からの計算値は1. 65で誤差の範囲で一致していた)。 試料温度は130 分以降180℃であった。この間の試料温度と指集硝酸 から計算した試料のNO。 $^-$ / U モル比とを、加熱閉約 後の時間に対して図3に示している。(図3には、アル ゴンガスのみを供給した場合の結果も比較して示してい る。)

[0011]

【実站例3】図1に示す装置を用いて、実施例2と同様 の加熱前試料、加熱条件を適用し、NO。 / / リモル比 の目標値を1.55として実験した。具体的には、放出 硝酸指集用アルカリ溶液には試料のNO。 - /Uモル比 の最終値が1.55に建するまでの放出硝酸と当量の炭 酸ナトリウムを含ませておき、その溶液のp Hが4に達 した時に、試料加熱ヒータ5の電源断と冷却器7へ冷却 水を供給する電磁切換弁13作動の信号を出すように設 定しておいた。

【0012】試料温度は160分以降184℃であっ た。252分後にpHが設定値以下となり、前記信号を 発した。加熱終了後に試料温度が80℃になった時に手 動弁14を闘いて所定の水を水溜15から試料容器内に 供給した。内部の固体をすべて溶解するために最終的に は95℃に加熱した。この試料溶液のNO。 / / Uモル 此は、目標値と誤差の範囲で一致する1、57であっ た。

[0013]

【発明の効果】従来の技術では、作業員被軽程度の増大 * 30

* を招く放射性改紛末を取り扱う工程。あるいは危険度の 高い逗元反応工程が必要であった。しかし、本発明の結 **皋.とれらの工程を不要としたほか.脱硝酸費が目標と** おり副御可能で、かつ、自動化の可能な亜化学量論的表 たは化学登論的硝酸塩溶液の調製方法を実現させた。ま た。閼硝酸反応を水蒸気中で行うことにより、図2及び 3に比較して示すように熱分解によるものより高い効率 で進める方法を実現させた。

【図面の簡単な説明】

【図1】 本発明の方法を実施するための装置の一例を示 した図である。

【図2】試料加熱ヒータとして160°C油浴を用いた実 施例 1 の場合の試料温度と試料中のN O。 / / U モル比 の経時変化を、アルゴンガスのみを供給した場合と比較 して示したグラフである。

【図3】試料加熱ヒータとして195℃抽浴を用いた実 施剛との場合の試料温度と試料中のNO。 / Uモル比 の経時変化を、アルゴンガスのみを供給した場合と比較 して示したグラフである。

20 【符号の説明】

- (CL-345 DR-22)		
1:担体ガス 発生器	2:七一夕	3: 水蒸気
4:保温炉 容器	5:ヒータ	6:硝酸塩
7:冷却器 リ溶液	8:冷却器	9:アルカ
10:pHメータ 水	11:記錄調節計	12:冷却
13:電磁切換弁	14:季助弁	15:水溜

(4)

特闘平8-151204

