Quiz 5 EECE4040 Spring 2022

Due Feb 14 at 11:59pm **Points** 10 **Questions** 10 **Available** Feb 14 at 10am - Feb 14 at 11:59pm about 14 hours **Time Limit** 20 Minutes

This quiz was locked Feb 14 at 11:59pm.

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	13 minutes	9 out of 10

Score for this quiz: **9** out of 10 Submitted Feb 14 at 11:20pm This attempt took 13 minutes.

	Question 1	1 / 1 pts
	The minimum depth of a binary tree with n nodes is approximate	ely
	\bigcirc \sqrt{n}	
	$\bigcirc \frac{\sqrt{n}}{2}$	
	$\bigcirc \ frac{1}{2} \mathrm{log}_2 n$	
Correct!	$lacksquare \log_2 n$	
	$\bigcirc \frac{n}{2}$	

Question 2 1/1 pts

The minimum depth of a binary tree with L leaf nodes is approximately $\frac{L}{2}$ $\frac{1}{2}L \log_2 L$ $0 \log_2 L$ $L \log_2 L$

	Question 3	0 / 1 pts
	Number of leaf nodes of a 2-tree with 101 nodes	
orrect Answer	O 51	
	O 25	
	O 21	
	O 49	
ou Answered	50	

Question 4 1 / 1 pts

Which traversal can be used to assign keys to a binary tree, so that it becomes as binary search tree?

Correct!

inorder traversal	
O phat traversal	
postorder traversal	
○ breadth-first traversal	
preorder traversal	

Question 5 1 / 1 pts

Which traversal allows the records of a binary search tree to be stored in a sequential file, so that it can be recovered by reading records sequentially from the file and inserting into a binary search tree, starting with the null tree?

Correct!

preorder traversal
opostorder traversal
breadth-first traversal
inorder traversal
bearcat traversal

Question 6 1 / 1 pts

Deleting from a node of a binary search tree that has two children involves swapping content with its

	its preorder successor (or predecessor) and deleting the preorder successor (or predecessor)
	its binary successor (or predecessor) and deleting the binary successor (or predecessor)
	its tree successor (or predecessor) and deleting the tree successor (or predecessor)
Correct!	its inorder successor (or predecessor) and deleting the inorder successor (or predecessor)
	its postorder successor (or predecessor) and deleting the postorder successor (or predecessor)
L	

	Question 7	1 / 1 pts
Correct!	A binary tree having <i>n</i> nodes is balanced means	
	it is a full tree	
	it is a complete tree	
	$lacksquare$ its depth is $O(\log n)$	
	\bigcirc its depth is $O\left(n ight)$	
	it is a 2-tree	

-	Question 8	1 / 1 pts
	A priority queue is effectively implemented using a	
	oforest	
	binary search tree	
	O 2-tree	
	○ graph	
Correct!	heap	

Correct!	Question 9	1 / 1 pts
	Insertion and deletion into a max-heap takes respective times	
	$O(\log n)$ and $O(1)$	
	$lacksquare O(\log n)$ and $O(\log n)$	
	$O(1)$ and $O(\log n)$	
	\bigcirc $O(1)$ and $O(n)$	
	\bigcirc $O(n \log n)$ and $O(n \log n)$	

Question 10 1 / 1 pts

,	Heapsort has complexity
	$\bigcirc \ O(n \ (\log n)^2)$
	$\bigcirc \ O\left(n^2 \ \log n ight)$
	\bigcirc $O(n)$
Correct!	$\bigcirc O(n \log n)$
	$O\left(n^2 ight)$

Quiz Score: 9 out of 10