Домашнее задание по алгебре

Родигина Анастасия, 167 группа 10 апреля 2017

Задача 1

Пусть G группа всех диагональных матриц в $GL_3(\mathbb{R})$ и $X = \mathbb{R}^3$. Опишите все орбиты и все стабилизаторы для действия группы G на множестве X, заданного формулой $(g, x) \mapsto g \cdot x$.

Произвольный элемент G будет выглядет следующим образом:

$$\begin{pmatrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{pmatrix}$$

где a, b, c - не равны нулю (за счет того, что матрица является невырожденной) Элемент X, будет выглядет следующим образом:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Получаем результат действия:

$$\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} ax \\ by \\ cz \end{pmatrix}$$

Мы не знаем, являются ли ненулевыми $x,\ y,\ z,$ а если, среди них встречается 0, то какая-то строка элемента X останется нулем, т.е. надо будет рассмотреть все случаи (относительно вариантов является определенная строка 0 или нет). Их всего будет 2^3 вариантов:

$$\left\{\begin{pmatrix}0\\0\\0\end{pmatrix}\right\}; \left\{\begin{pmatrix}aq\\0\\0\end{pmatrix}\right\}; \left\{\begin{pmatrix}0\\bw\\0\end{pmatrix}\right\}; \left\{\begin{pmatrix}0\\0\\cr\end{pmatrix}\right\}; \left\{\begin{pmatrix}aq\\bw\\0\end{pmatrix}\right\}; \left\{\begin{pmatrix}aq\\0\\cr\end{pmatrix}\right\}; \left\{\begin{pmatrix}0\\bw\\cr\end{pmatrix}\right\}; \left\{\begin{pmatrix}aq\\bw\\cr\end{pmatrix}\right\}$$

где $a,b,c,q,w,r\in\mathbb{R}\setminus\{0\}$ Теперь найдем все стабилизаторы для данного действия. Рассмотрим действие стабилизатора на элемент:

$$\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Если x=0, то a может принимать любые ненулевые значения, иначе же a=1. Аналогичное утверждение верно и для у, z. Тогда St(x) будет иметь вид:

$$\left\{
\begin{pmatrix}
 a & 0 & 0 \\
 0 & b & 0 \\
 0 & 0 & c
\end{pmatrix} \quad \middle| \quad
\left\{
\begin{aligned}
 a &= 1, x \neq 0; \\
 a &\in \mathbb{R} \setminus \{0\}, \ x &= 0; \\
 b &= 1, y \neq 0; \\
 b &\in \mathbb{R} \setminus \{0\}, \ y &= 0; \\
 c &= 1, z \neq 0; \\
 c &\in \mathbb{R} \setminus \{0\}, \ z &= 0;
\end{aligned} \right\}$$

Задача 2

Пусть G группа всех верхнетреугольных матриц в $SL_2(\mathbb{R})$. Опишите все классы сопряженности в группе G.

Возьмем, что

$$\begin{pmatrix} a & b \\ 0 & \frac{1}{a} \end{pmatrix}, \begin{pmatrix} c & d \\ 0 & \frac{1}{c} \end{pmatrix} \in G; \quad \begin{pmatrix} a & b \\ 0 & \frac{1}{a} \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{a} & -b \\ 0 & a \end{pmatrix}$$

Запишем произвольное действие сопряжениями:

$$\begin{pmatrix} a & b \\ 0 & \frac{1}{a} \end{pmatrix} \begin{pmatrix} c & d \\ 0 & \frac{1}{c} \end{pmatrix} \begin{pmatrix} \frac{1}{a} & -b \\ 0 & a \end{pmatrix} = \begin{pmatrix} c & \frac{ab-abc^2+a^2cd}{c} \\ 0 & \frac{1}{c} \end{pmatrix}$$

Теперь рассмотрим значение $\frac{ab-abc^2+a^2cd}{c}=a^2d+ab(\frac{1-c^2}{c})$. Если оба слагаемых ненулевые, то приравняем a=1 (что, в общем-то необязательно) и сможем достигнуть всех действительных значений. Если d=0 и $\frac{1-c^2}{c}\neq 0$, сделаем a=1, а с помощью b пройдем все возможные действительные значения. Если $d\neq 0$ и $\frac{1-c^2}{c}=0$, тогда мы сможем подбирать только неотрицательные значения a, а значит, мы пройдем все неотрицательные действительные значения. Если же d=0 и $\frac{1-c^2}{c}=0$, то значение будет тоже равно нулю. Тогда наши классы сопряженности будут выглядеть следующим образом:

$$\begin{cases}
\begin{pmatrix} c & q \\ 0 & \frac{1}{c} \end{pmatrix} \middle| \begin{cases} q \in \mathbb{R}, & d \neq 0, & \frac{1-c^2}{c} \neq 0; \\ q \in \mathbb{R}_{\pm} \cup \{0\}(\pm \text{ depends on } d), & d \neq 0, & \frac{1-c^2}{c} = 0; \\ q \in \mathbb{R}, & d = 0, & \frac{1-c^2}{c} \neq 0; \\ q = 0, & d = 0 & \frac{1-c^2}{c} = 0; \end{cases}$$

Задача 3

Для действия группы S_4 на себе сопряжениями найдите стабилизатор подстановки (1 2 3 4).

Пусть $\sigma = (1\ 2\ 3\ 4), s \in St(\sigma)$. Тогда (из определения стабилизатора):

$$s\sigma s^{-1} = \sigma \Leftrightarrow s\sigma = \sigma s$$

Рассмотрим элементы подстановки и то, куда они переходят при сопряжении:

```
для 1: s(\sigma(1)) = \sigma(s(1)) \Rightarrow s(2) = \sigma(s(1)) для 2: s(\sigma(2)) = \sigma(s(2)) \Rightarrow s(3) = \sigma(s(2)) для 3: s(\sigma(3)) = \sigma(s(3)) \Rightarrow s(4) = \sigma(s(3)) для 4: s(\sigma(4)) = \sigma(s(4)) \Rightarrow s(1) = \sigma(s(4))
```

Отсюда понятно, что для того, чтобы задать стабилизатор, достаточно знать образ отображения s(1):

s(1)	S			
s(1)=1	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	2 2	3	4 4
s(1)=2	$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$	2 3	3 4	4
s(1)=3	$\begin{pmatrix} 1 \\ 3 \end{pmatrix}$	2 4	3	4 2
s(1)=4	$\begin{pmatrix} 1 \\ 4 \end{pmatrix}$	2 1	3 2	4 3

Отсюда
$$St(\sigma) = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}; \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}; \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}; \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} \right\}$$

Задача 4

Пусть $k, l \in \mathbb{N}$ и n = kl. Реализуем группу $\mathbb{Z}_k \times \mathbb{Z}_l$ как подгруппу в S_n , используя доказательство теоремы Кэли. Найдите необходимое и достаточное условие на числа k, l, при котором эта подгруппа содержится в A_n .

По теореме Кэли для нахождения изоморфизма групп мы записываем все элементы $\mathbb{Z}_k imes \mathbb{Z}_l$ в таблицу и рассматриваем действия элементов друг на друга. Из этой таблицы можно будет понять, в какой элемент перейдет каждый элемент при действии. Данная таблица переходов будет давать по подстановке на элемент. Обозначим этот элемент за x и реализуем эту таблицу для определенных x. Рассмотрим элемент x = (1, 0). В "паре" (a, b) он будет менять по циклу только а. Тогда этому элементу будет соответствовать перестановка состоящая из l циклов с длиной равной k. Ее четность будет соответствовать $((-1)^{k-1})^l$ $(-1)^{l(k-1)}$ (из длины циклов и их количества). То, что перестановка четная, означает, что $2 \mid l(k-1)$. Абсолютно аналогично рассматриваем y = (0, 1) и получаем, что $2 \mid k(l-1)$. Из этих двух условий получаем, что k и l одинаковой четности. Это условие будет являться необходимым. Покажем, что оно еще и будет являться достаточным. Возьмем элемент (q, w). Достаточно легко заметить что этот элемент равен $x^q \cdot y^w$, а соответствующая этому элементу перестановка будет равна произведению перестановок первого элемента в степени q и второго элемента в степени w. Если они обе четные, то и данная перестановка будет четной. Таким образом, необходимым и достаточным условием будет являться то, что k и l одинаковой четности.