1

10.05.2

EE23BTECH11053-R.Rahul*

QUESTION:

- 1. In the following APs, find the missing terms in the boxes:
- (i) $2, _{\Box}, 26$
- $(ii)_{\square}$, $\overline{13}$, $\overline{}$, 3
- $(iii)5, \square, \square, 9\frac{1}{2}$
- $(iv)' 4', \square, \square, \square, \square, 6$
- (v) \square , 38, \square , \square , \square , \square , \square , \square

Solution:

n	$x_1(n)$	$x_2(n)$	$x_3(n)$	$x_4(n)$	$x_5(n)$
1	14	13	$6\frac{1}{2}$	-2	38
2	26	8	8	0	23
3	38	3	$9\frac{1}{2}$	2	8
4	50	-2	11	4	-7
5	62	-7	$12\frac{1}{2}$	6	-22

TABLE I

FIRST THREE TERMS OF AP SERIES

(i)
$$a_1=2$$
, $a_3=26$, $a_3=a+2d$
 $\implies 26 = 2 + 2d \implies 24=2d$ $\therefore d=12$
 $a_2 = 14$

(iii)
$$a_1 = 5$$
, $a_4 = 9\frac{1}{2}$, $a_4 = a + 3d$
 $\implies 9\frac{1}{2} = 5 + 3d \implies 3d = 4\frac{1}{2}$ $\therefore d = 1\frac{1}{2}$
 $a_2 = 6\frac{1}{2}$, $a_3 = 8$

(iv)
$$a_1$$
=-4, a_6 =6, a_6 =a+5d
 \Rightarrow 6=-4+5d \Rightarrow 10=5d \therefore d=2
 a_2 =-2 a_3 =0 a_4 =2 a_5 =4

1) The Z-transform of x(n) = 2 + 12n is given by:

$$X(z) = \sum_{n = -\infty}^{\infty} x(n)u(n) \times z^{-n}$$
 (1)

$$X(z) = \sum_{n = -\infty}^{\infty} (2 + 12n)u(n) \times z^{-n}$$
 (2)

$$X(z) = 2 \times \frac{1}{1 - z^{-1}} + 12 \times \frac{z^{-1}}{(1 - z^{-1})^2}$$
 (3)

$$X(z) = \frac{2 + 10z^{-1}}{(1 - z^{-1})^2} \qquad |z| > 1$$
 (4)

(5)

2) The Z-transform of x(n) = 18 - 5n is given by:

$$X(z) = \sum_{n = -\infty}^{\infty} x(n)u(n) \times z^{-n}$$
 (6)

$$X(z) = \sum_{n = -\infty}^{\infty} (18 - 5n)u(n) \times z^{-n}$$
 (7)

$$X(z) = 18 \times \frac{1}{1 - z^{-1}} - 5 \times \frac{z^{-1}}{(1 - z^{-1})^2}$$
 (8)

$$X(z) = \frac{18 - 23z^{-1}}{(1 - z^{-1})^2} \qquad |z| > 1 \qquad (9)$$
(10)

3) Z-transform of $x(n) = 5 + \frac{3}{2}n$ is given by:

$$X(z) = \sum_{n = -\infty}^{\infty} x(n)u(n) \times z^{-n}$$
 (11)

$$X(z) = \sum_{n = -\infty}^{\infty} (5 + \frac{3}{2}n)u(n) \times z^{-n}$$
 (12)

$$X(z) = 5 \times \frac{1}{1 - z^{-1}} + \frac{3}{2} \times \frac{z^{-1}}{(1 - z^{-1})^2}$$
 (13)

$$X(z) = \frac{5 - \frac{7}{2}z^{-1}}{(1 - z^{-1})^2} \qquad |z| > 1 \qquad (14)$$

(15)

4) Z-transform of x(n) = -4 + 2n is given by:

$$X(z) = \sum_{n = -\infty}^{\infty} x(n)u(n) \times z^{-n}$$
 (16)

$$X(z) = \sum_{n = -\infty}^{\infty} (-4 + 2n)u(n) \times z^{-n}$$
 (17)

$$X(z) = -4 \times \frac{1}{1 - z^{-1}} + 2 \times \frac{z^{-1}}{(1 - z^{-1})^2}$$
 (18)

$$X(z) = \frac{-4 + 6z^{-1}}{(1 - z^{-1})^2} \qquad |z| > 1 \quad (19)$$

(20)

5) Z-transform of x(n) = 53 - 15n is given by:

$$X(z) = \sum_{n = -\infty}^{\infty} x(n)u(n) \times z^{-n}$$
 (21)

$$X(z) = \sum_{n = -\infty}^{\infty} (53 - 15n)u(n) \times z^{-n}$$
 (22)

$$X(z) = 53 \times \frac{1}{1 - z^{-1}} - 15 \times \frac{z^{-1}}{(1 - z^{-1})^2}$$
 (23)

$$X(z) = \frac{53 - 68z^{-1}}{(1 - z^{-1})^2} \qquad |z| > 1 \qquad (24)$$

(25)

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.