Package 'caroline'

October 21, 2024
Version 0.9.9
Date 2024-10-20
Title A Collection of Database, Data Structure, Visualization, and Utility Functions for R
Author David Schruth [aut, cre]
Maintainer David Schruth <code@anthropoidea.org></code@anthropoidea.org>
Depends R ($>= 2.0.0$), methods
Suggests MASS, RSQLite, grid
Enhances DBI, gplots
Description The caroline R library contains dozens of functions useful for: database migration (dbWriteTable2), database style joins & aggregation (nerge, groupBy, & bestBy), data structure conversion (nv, tab2df), legend table making (sstable & leghead), automatic legend positioning for scatter and box plots (), plot annotation (labsegs & mvlabs), data visualization (pies, sparge, confound.grid & raPlot), character string manipulation (m & pad), file I/O (write.delim), batch scripting, data exploration, and more. The package's greatest contributions lie in the database style merge, aggregation and interface functions as well as in it's extensive use and propagation of row, column and vector names in most functions.
License Artistic-2.0
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2024-10-21 04:20:02 UTC
Contents
addFactLevs

2 Contents

	43
write.uciiii	42
wjitter	41
vennMatrix	40
usr2lims	40 40
textplot	39
tab2df	38
sstable	37
spie	35
rerowname	
regroup	
	33
raPlot	32
raAddSigLines	31
raAddAxLabs	
	30
plotClock	
plot.xy.ab.p	
1 1 6	26
plot.confound.grid	25
pies	23
pct	
parseArgString	
pad	
	20
nerge	20
mvlabs	19
makeElipseCoords	18
m	17
leghead	16
legend.position	15
labsegs	14
install.prev.pkg	13
hyperplot	11
heatmatrix	10
groupBy	8
geomean	8
fit.1ln.rprt	7
ellipsis.defaults	6
distro.dots	5

Index

addFactLevs 3

addFactLevs	Add new levels to the Factors in a DataFrame.	

Description

This function loops through all of the factor columns in a dataframe and adds new.levs to the factor levels list.

Usage

```
addFactLevs(x, new.levs=NA)
```

Arguments

x a dataframe.

new.levs new levels to be added.

See Also

factor, levels

bestBy Find the "best" record within subgroups of a dataframe.	
--	--

Description

Finding the an extreme record for each group within a dataset is a more challenging routine task in R and SQL. This function provides a easy interface to that functionality either using R (fast for small data frames) or SQL (fastest for large data)

Usage

```
bestBy(df, by, best, clmns=names(df), inverse=FALSE, sql=FALSE)
```

Arguments

by the factor (or name of a factor in df) used to determine the grouping.

clmns the colums to include in the output.

the column to sort on (both globally and for each sub/group) inverse the sorting order of the sort column as specified by 'best' sql whether or not to use SQLite to perform the operation.

4 dbWriteTable2

Value

A data frame of 'best' records from each factor level

Author(s)

David Schruth

See Also

groupBy

Examples

dbWriteTable2

Data Import Wrapper for dbWriteTable.

Description

This is wrapper for dbWriteTable written with the the primary improvements focusing on database import into an existing table definition schema. The function matches and rearranges columns of the dataframe to database feilds and additionally performs checks for NA's in required variables, overlength strings, and type mismatches. There also exists support for updating of the PostgreSQL specific sequence for tables with auto incrementing primary keys.

Usage

Arguments

con	connection.
table.name	The name of the table to which the data frame is to be loaded.
df	A dataframe to be loaded to the database.
fill.null	Should new db present fields be added to the data.frame before it is loaded?.
add.id	Should a new column should be added for the database id?

distro.dots 5

row.names	Should the row names be loaded as a seperate column? (unlike the original dbWriteTable, default is FALSE)
pg.update.seq should the table primary key's sequence be updated to the highest id value (Postgres specific)	
	other parameters passed to dbWriteTable.

Value

If successful, the ids of the newly added database records (invisible)

See Also

dbWriteTable

distro.dots	Distribution plot of points

Description

Plot the raw distribution of points, like a series of horizontal box plots.

Usage

Arguments

X	a list of vectors of values to be plotted
jit.f	factor for random jittering (see 'jitter()'
add	should we add to the existing plot?
pd	'position dodge' moves all y axis plotting positions up or down by this provided value (useful for adding multiple distributions for the same variable)
vv	the variable vector for ordering the y-axis labels
vvlabs	the variable vector labels for labeling the plot (defaults to vv)
xlim	x axis plot limits
	other parameters passed on to plot

Value

a 'distro dot plot' of variable distributions

6 ellipsis.defaults

Examples

```
n <- rnorm(130, 10, 3)
p <- rpois(110, 4)
u <- runif(300, 0, 20)
l <- rlnorm(130, log(2))
g <- rgamma(140, 3)

X <- list(a=u, random=n, array=p,of=l, variable=u, spreads=g)
distro.dots(x=X, jit.f=3)</pre>
```

ellipsis.defaults

Modify defaults of possible optional ellipsis parameter values passed to a function

Description

Takes the ellipsis function parameter (of optional named arguments) and compares with a internal (named list) of defaults for any non-conflicting user specified inputs.

Usage

```
ellipsis.defaults(x, nl)
```

Arguments

```
x the existing ellipsis passed as "list(...)"
nl a named list of default parameter values
```

Value

a modified ellipsis variable (a named list of optional parameter values)

```
domy.xyplot <- function(data, x.name, y.name, ...){
  ellipsis <- ellipsis.defaults(x=list(...), nl=list(ylab=y.name,xlab=x.name))
  do.call( plot, c(list(x=data[,x.name],y=data[,y.name]), ellipsis))
}
domy.xyplot(data=mtcars, y.name='mpg', x.name='wt', xlab='weight')</pre>
```

fit.1ln.rprt

fit.1ln.rprt	Report a model fit in a single line of text output	
--------------	--	--

Description

This function takes a fit multivariate regression model as input and converts the normal tabular output into a single line using repeated "+"or"-" symbols for significance

Usage

Arguments

fit	a fit model
method	how to calculate the number of pluses or minuses before each coefficient name (default is standard deviations)
${\tt decimal.places}$	the number of decimal places to use in reporting p-values
name.char.len	the maximum length to use when truncating variable names
R2	boolean for also returning/printing R^2 values
print.inline	should the outout string be printed to the terminal?
rtrn.line	should the output string be returned as a characters string?
mn	model number prefixed to printout if 'print.inline' is TRUE

Value

A character string of the form "++var1 +var5 var3 | -var2 -var4" indicating significance and direction of regression results

```
# Motor Trend car data
fit.1ln.rprt(lm('mpg ~ cyl + hp + wt + gear + disp', data=mtcars))
# Tooth Growth data
fit.1ln.rprt(lm('len ~ dose + supp', data=ToothGrowth))
# Earthquake attenuation data
fit.1ln.rprt(lm('accel ~ dist + mag', data=attenu))
# Fertility data
fit.1ln.rprt(lm('parity ~ age + education + spontaneous + induced', data=infert), name.char.len=18)
```

8 groupBy

geomean

Calculate the Geometric Mean

Description

A trivial one-line function for exp(mean(log()))

Usage

```
geomean(x)
```

Arguments

Х

a vector of numeric values

Value

the geometric mean (a scalar value)

See Also

geometric.mean

Examples

```
geomean(rnorm(20,5))
```

groupBy

Group a datafame by a factor and perform aggreate functions.

Description

```
The R equvalent of a SQL 'group by' call.
```

Usage

groupBy 9

Arguments

df a data frame. by the factor (or name of a factor in df) used to determine the grouping. the functions to perform on the output (default is to sum). Suggested functions aggregation are: 'sum', 'mean', 'var', 'sd', 'max', 'min', 'length', 'paste', NULL. clmns the colums to include in the output. collapse string delimiter for columns aggregated via 'paste' concatenation. distinct used in conjunction with paste and collapse to only return unique elements in a delimited concatenated string sql whether or not to use SQLite to perform the grouping (not yet implimented). full.names names of the aggregation functions should be appended to the output column names

additional parameters (such as na.rm) passed to the underlying aggregate functions.

Value

an summary/aggregate dataframe

See Also

```
aggregate, bestBy
```

10 heatmatrix

1			
hea	tma	tri	Х

Simple Heatmap Plot

Description

This is a very simplified heatmap function: basically a convienent wrapper around the 'image' function.

Usage

Arguments

x	A matrix
values	boolean: should the values be plotted over each cell?
clp	column label position: either 'bottom' or 'top'.
rlp	row label position: either 'right' or 'left'
xadj	x-adjust of the row labels
yadj	y-adjust of the column labels.
ylab.cntr	boolean for justification of row labels.
cex	character expansion factor for values in cells if values == true
cex.axis	character expansion factor for axis tick mark labels
	other paramters passed on to image()

Value

a heatmap plot

See Also

```
image, heatmap, heatmap.2
```

```
data(mtcars)
x <- as.matrix(mtcars)
heatmatrix(x)</pre>
```

hyperplot 11

hν	per	n1	٥t
117	pei	νт	υı

Annotate Outliers in a Scatterplot via an HTML Image-Map

Description

This simple function makes R scatter plots interactive by creating an image and wrapping HTML around it: creating a hyperlinked hyperplot. Hover over the points to see what each is. Click to connect to a table below that will tell you more about each point (if browse ==TRUE).

Usage

Arguments

. 8	guillettes			
	x	a plot-able object, a numeric vector or the name of a numeric vector column in annout.		
	У	a numeric vector or the name of a numeric vector column in annout. Must be the same length as $\boldsymbol{\boldsymbol{x}}.$		
	annout	a named data.frame or table of outliers to annotate the points in the plot. \dot{x} and \dot{y} params can indicate column names or numbers of annout.		
	name	base name of the image & html (map) page that get generated.		
	W	width of the png image in inches.		
	h	height of the png image in inches.		
	link	create a linked lookup table from image to the annout table.		
	browse	load the html page automatically via R.		
	cex	character expansion for points		
	• • •	other paramters passed on to plot()		

Value

HTML page with annotation mapped image

See Also

browseURL

12 hyperplot

```
if(capabilities()["png"] && interactive()) {
main.hov <- 'Hover over a point to see the name'
main.subsets <- '(annotated subset in red only)'</pre>
main.click.in <- 'click on points to visit table'
main.click.out <- 'click on points to visit external site'
cols <- c('black','red')</pre>
ext.url <- 'http://cran.r-project.org'
## x and y as numeric vectors ##
#####################################
x.out <- nv(rnorm(13,2,sd=5),toupper(letters)[1:13])
x.in \leftarrow nv(rnorm(13,1,sd=.5),toupper(letters)[14:26])
y.out <- nv(rnorm(13,2,sd=5),toupper(letters)[1:13])</pre>
y.in <- nv(rnorm(13,1,sd=.5),toupper(letters)[14:26])</pre>
x \leftarrow c(x.out, x.in)
y \leftarrow c(y.out, y.in)
## simplest version
hyperplot(x,y, main=main.hov)
## same but with annotations being supplied as a paramter (instead of names on x)
names(x) \leftarrow NULL
hyperplot(x,y, annout=toupper(letters), main=main.hov)
## annotate only a subset
hyperplot(x,y, annout=1:13, col=cols[rep(c(T,F), each=13)+1],
  main=paste(main.hov,main.subsets,sep='\n'))
#############################
## annout as dataframe #
############################
## x and y as vectors
x \leftarrow nv(x, toupper(letters)) # reinstate the names of x
df <- data.frame(ab=rep(c('a', 'b'), 13), row.names=toupper(letters))</pre>
hyperplot(x,y, annout=df,
                main=paste(main.hov, main.click.in, sep='\n'))
## x and y as names of columns in df
df <- cbind.data.frame(data.frame(x=x, y=y), df)</pre>
hyperplot(x='x',y='y', annout=df,
                main=paste(main.hov, main.click.in, sep='\n'))
## using 'link' column name parameter to specify external links
df <- cbind.data.frame(df,</pre>
            data.frame(url=ext.url, stringsAsFactors=FALSE))
hyperplot(x='x',y='y', annout=df, link='url',
                main=paste(main.hov, main.click.out,sep='\n'))
```

install.prev.pkg

install.prev.pkg

Install the next oldest package

Description

This funciton will recursively search the package archives backwards in time until it finds a version that installs successfully. This function is useful for installing or troubleshooting package dependency trees where one or more packages "require" the very most recent version of R. Rather than upgrading your base R installation, you can use this function to search back in time until you find a version of the package that works with your existing version of R.

Usage

```
install.prev.pkg(pkg.nm, version=NULL,
  repo.url='https://cran.r-project.org/src/contrib/Archive/')
```

Arguments

pkg.nm The package name.

version The version number as #.#-# or #.#.#.

repo.url The base url for archives of old versions of packages on CRAN.

Value

NULL

```
#install.prev.pkg('mnormt')
#install.prev.pkg('mvtnorm')
```

14 labsegs

labsegs

Buffered Segments for Point Labels

Description

This function is a wrapper for segments which trigonometrically shortens the lines that are near the "1" end so as not to cluter or overplot the text label it is attached to.

Usage

```
labsegs(x0, y0, x1, y1, buf=.3, ...)
```

Arguments

x0	initial x point coordinate
y0	initial x point coordinate
x1	initial x point coordinate
y1	initial x point coordinate
buf	the buffer between the label at point "1" and the actual segment
	other parameters passed to segments.

See Also

segments

```
x <- rnorm(1000,0.5)
y <- rnorm(1000,-.3,.15)

labdb <- data.frame(x=seq(-.5,.5,by=.5), y=rep(.85,3))
xlims <- c(-1,1)
ylims <- c(-.5,1)

x0.lbd <- x[rev(order(y))][1:3]
y0.lbd <- y[rev(order(y))][1:3]

par(mfrow=c(1,2))
plot(x,y, xlim=xlims, ylim=ylims, main='segments')
segments(x0=x0.lbd, y0=y0.lbd, x1=labdb$x, y1=labdb$y, col=rainbow(3), lwd=3)
text(x=labdb$x, y=labdb$y, labels=letters[1:3], cex=3, col=rainbow(3))

plot(x,y, xlim=xlims, ylim=ylims, main='labsegs')
labsegs(x0=x0.lbd, y0=y0.lbd, x1=labdb$x, y1=labdb$y, col=rainbow(3), lwd=3, buf=.07)
text(x=labdb$x, y=labdb$y, labels=letters[1:3], cex=3, col=rainbow(3))</pre>
```

legend.position 15

legend.position	automatically find an optimal position a plot legend based on point counts in each plot corner
-----------------	--

Description

This function assesses four corners of an x vs y plot to find the one with the fewest points. It does so by iterating counting from outward to the middle, performing a sparseness-weighted average across corners.

Usage

```
legend.position(x,y,xlim=NULL,ylim=NULL,start=.05, end=.5, incr=.01)
```

Arguments

x	x values of the plot
у	y values of the plot
xlim	range of the x values
ylim	range of the y values
start	starting percentage for incremental counting from corner
end	ending percentage for incremental counting (middle=0.5)
incr	incremental step between each point counting iteration

Value

one of four values ('bottom'/'top' + 'right'/'left') corresponding to the optimal [most white space] position of the legend.

See Also

Hmisc's largest.empty function

```
par(mfrow=c(3,3))

for(i in 1:9){
    x <- rnorm(50)
    y <- rlnorm(50)
    clrs <- c('red','blue')
    plot(x,y, col=clrs)
legend(x=legend.position(x,y), legend = c('x','y'), pch=1, col=clrs, inset=.1)
}</pre>
```

16 leghead

Generate a Color Coded Legend dataframe via head and sum.

Description

'leghead' is part 'head' and part 'summary'. It works best on a sorted dataframe where all you are interestesd in only the most (or least) abundant rows. An ideal place to use it is in a legend for ~lognormally distributed data. Additionally, an optional row-wise color coding column is added (the color 'gray' is used for missing row names).

Usage

Arguments

Χ	dataframe or table you wish to summarize
n	the number of rows you wish to display as is
colors	list of vectors or a dataframe
tabulate	the column name to tabulate on if \boldsymbol{x} is an untabulated dataframe and FALSE otherwise
na.name	the new rowname for a row with a missing name
na.col	color for rows labeled as 'NA'
other.col	color for the rows labeled as 'unknown'
na.last	boolean specifying if the na category should be listed last in the table.

Value

A truncated dataframe with a new bottom row summarizing all the truncated ones.

See Also

```
summary, head, sstable
```

```
e <- data.frame(a=runif(12), b=runif(12), z=rep(letters[13:18],2), w=rep(letters[20:23],3))
tab <- sstable(e, idx.clmns=c('z'), ct.clmns=c('a','b'))
lh <- leghead(tab)
plot(x=lh$a, y=lh$b, cex=lh$sum*3, col=lh$color, pch=20)
legend('topleft',legend=rownames(lh), col=lh$color, pch=20)</pre>
```

m 17

Regexp Match Operator

Description

m

A grep/sub-like function that returns one or more back-referenced pattern matches in the form of a vector or as columns in a dataframe (respectively). Unlike sub, this function is more geared towards data extraction rather than data cleaning. The name is derived from the popular PERL regular expression 'match' operator function 'm' (eg. 'extraction =~ m/sought_text/').

Usage

```
m(pattern, vect, names="V", types="character", mismatch=NA, ...)
```

Arguments

pattern	A regular expression pattern with at least one back reference.
vect	A string or vector of strings one which to apply the pattern match.
names	The vector of names of the new variables to be created out of vect. Must be the same length as vect.
types	The vector of types of the new variables to be created out of vect. Must be the same length as vect.
mismatch	What do to when no pattern is found. NA returns NA, TRUE returns original value (currently only implimented for single match, vector returns)
	other parameters passed on to grep

Value

Either a vector or a dataframe depending on the number of backreferences in the pattern.

See Also

```
sub, gsub, regexpr, grep, gregexpr.
```

18 makeElipseCoords

```
data(mtcars)
m(pattern="^([A-Za-z]+) ?(.*)$",
  vect=rownames(mtcars), names=c('make','model'), types=rep('character',2))
```

makeElipseCoords

Make Elipse Coordinates

Description

Create x & y coordinates for an elipse from parameters. save.

Usage

```
makeElipseCoords(x0 = 0, y0 = 0, b = 1, a = 1, alpha = 0, pct.range = c(0,1), len = 50)
```

Arguments

x0 x coordinate of center of elipse.y0 y coordinate of center of elipse.b y axis stretch factor.

a x axis stretch factor.

alpha rotation factor.

pct.range percentage of the way around the elipse.

len number of points used to draw elipse.

Value

a 2 column (x and y) dataframe with coordinates for drawing an elipse

```
makeElipseCoords(x0 = 0, y0 = 0, b = 1, a = 2, alpha = 0)
```

mvlabs 19

mvlabs	

Move Text Labels Interactively

Description

There is no easy way to move point labels around interactively on an a plot in R. This function allows a point and click way to select (using identify) and move (using locator) points by modifying the underlying dataframe.

Usage

```
mvlabs(df, n=nrow(df), x='x', y='y', l='lab', cols=colors()[grep("dark",colors())], ...)
```

Arguments

df	A dataframe with x and y coordinates and text labels
n	the number of points you wish to move
X	the column name of the x axis coordinates
у	the column name of the y axis coordinates
1	the column name of the point labels
cols	the color vector to iterate through while assigning new positions.
	other paramters passed on to text

Value

a series of violin plots

See Also

locator, identify, labsegs

```
x <- rnorm(20); y <- rnorm(20)
df <- data.frame(x,y, lab=as.character(letters[1:20]))
plot(df$x, df$y, pch=''); text(df$x, df$y, df$lab)
## df <- mvlabs(df, 'x','y','lab', n=3)
plot(df$x, df$y, pch=''); text(df$x, df$y, df$lab)</pre>
```

20 nv

nerge

Named Merge

Description

This function is a wrapper for merge that supports merging multiple vectors and or dataframes

Usage

```
nerge(1, ...)
```

Arguments

1 A named list of named vectors (and/or dataframes)

. . . Other parameters passed on to each sub-merge

See Also

merge

Examples

```
 \begin{aligned} & \text{df} <- \; \text{data.frame}(\text{a=c}(6,7,8),\; \text{b=c}(9,8,7)) \\ & \text{rownames}(\text{df}) <- \; \text{c('a','d','c')} \\ & 1 <- \; \text{list}(\text{x=nv}(\text{c}(1,2),\text{c('a','b')}),\text{y=nv}(\text{c}(2,3),\text{c('b','d')}),\text{z=nv}(\text{c}(4,1),\text{c('c','d')}),\; \text{w=df}) \\ & \text{nerge}(1,\; \text{all=TRUE}) \\ & 12 <- \; \text{list}(\text{a=nv}(\text{c}(1.23,\; 1.423,\; 2.343),\; \text{c('z','y','x')}),\text{b=nv}(\text{c}(6.34,7.34,\; 12.545),\text{c('z','w','y')})) \\ & \text{nerge}(12,\; \text{all=TRUE}) \end{aligned}
```

nν

Create a named vector from a dataframe, table or vector

Description

The '\$' or "[," operators for dataframes and tables do not carry along with them the row names. This function provides a solution for this problem. Additionally this function will accept a vector of values and a corresponding vector of value names—an ideal, in-line way for setting named-vectors as default parameters in new functions.)

Usage

```
nv(x, name)
```

pad 21

Arguments

x The source dataframe, table, vector, or factor

name The column name you would like to pull out as a named vector. OR the names

of the vector (if x is a vector)

Value

a named vector or factor

Author(s)

David Schruth

See Also

vector,name

Examples

```
## example 1: pulling a row.named vector out of a dataframe
df <- data.frame(a=c(1,2,34,4,5,3,23), b=c('z','x','y','z','x','n','p'))
rownames(df) <- letters[1:nrow(df)]
nv(df,'a')
nv(df,'b')

## example 2: a naming vectors from scratch
nv(c(1,2,3), c('a','b','c'))
nv(df$a, df$b)</pre>
```

pad

Pad a vector of numerical string with zeros.

Description

This function helps to pad numbers on the left side with zeros so that they may be used to create strings used in filesystem names (for example).

Usage

```
pad(vect,np)
```

Arguments

vect a vector of strings representing numbers.

np number of zeros to pad to the left of the string.

22 parseArgString

Value

a (vector of) string(s) with np number of zeros padded on as a prefix

Author(s)

Jeremy Tantrum

Examples

```
pad(c(1,10,1000,10000), 4)
```

parseArgString

Process Command Line Arguments

Description

generic function for parsing delimited lists from BATCH mode argument strings.

Usage

```
parseArgString(string, delimiter=',', min.param.ct=2, max.param.ct=2, param.range=NULL)
```

Arguments

string string to parse.

delimiter how the string is delmited into a vector.

min.param.ct minimum number of parameters in the vector.

max.param.ct maximum number of parameters in the vector.

param.range the range of the parameter values.

Value

a vector or value that has been check for validity

```
## passes
parseArgString('apple,banana,pear', param.range=c("apple","banana","pear","pineapple"))
parseArgString('1,2,3', param.range=c(1,4))

## fails
## Not run:
parseArgString('apple,banana,pear', param.range=c("apple","banana"))
parseArgString('1,2,3', param.range=c(1,2))

## End(Not run)
```

pct 23

pct

Add Percentage Columns to a Dataframe

Description

This function will add extra columns to an existing dataframe. The second argument 'clmn' should specify which column(s) of the dataframe the percentage should be calculated by dividing each column's row-element by it's sum.

Usage

```
pct(df, clmns)
```

Arguments

df A dataframe with numeric columns.

clmns the names of the columns for which the percentage column should be calculated

from.

Value

The original dataframe plus extra percentage columns corresponding to original columns in the dataframe.

Examples

```
 \begin{array}{lll} df <- \ data.frame(a=c(1,2,3), \ b=c('x','y','z'), \ c=c(5,3,2)) \\ pct(df, \ c('a','c')) \\ \end{array}
```

pies

Pie chart scatterplot

Description

Plot pie charts in an XY scatterplot. An overhauled wrapper of the original pie plot function. It is currently very slow: a recommend work around is to plot to something other than the default device (aka png, pdf, etc).

Usage

24 pies

Arguments

X	a list of named vectors.
show.labels	boolean specifying if the pie point lables should be plotted.
show.slice.lab	els
	boolean specifying if the pie slice labels should be plotted.
color.table	a named vector of colors. names should correspond to all possible levels of x
radii	a vector of radii used to size the pie points.
x0, y0	a vector of x and y positions for the pie points.
edges	the circular outline of the pie is approximated by a polygon with this many edges.
clockwise	logical indicating if slices are drawn clockwise or counter clockwise (i.e., mathematically positive direction), the latter is default.
init.angle	number specifying the starting angle (in degrees) for the slices. Defaults to 0 (i.e., 3 o'clock) unless clockwise is true where init.angle defaults to 90 (degrees), (i.e., 12 o'clock).
density	the density of shading lines, in lines per inch. The default value of NULL means that no shading lines are drawn. Non-positive values of density also inhibit the drawing of shading lines.
angle	the slope of shading lines, given as an angle in degrees (counter-clockwise).
border	(possibly vectors) arguments passed to polygon which draws each slice.
lty	(possibly vectors) arguments passed to polygon which draws each slice.
other.color	color used for x vector elements for names without corresponding names in the color table
na.color	color used for x vector elements with missing names
	other arguments passed to polygon

Value

Pie charts as points on a plot

See Also

pie

plot.confound.grid 25

```
),
       x0=c(0,.5,1),
       y0=c(0,.5,1), radii=6, border=c('gray', 'black', 'red')
## example 2
n <- 200
n.groups <- 10
n.subgroups <- 6
grps <- paste('gene',seq(1,n.groups), sep='')[round(runif(n,1,n.groups))]</pre>
subgrps <- paste('species',seq(1,n.subgroups), sep='')[round(runif(n,1,n.subgroups))]</pre>
group.df <- cbind.data.frame(grps,subgrps)</pre>
subgroup.list <- by(group.df, group.df$grps, function(x) x$subgrps)</pre>
pie.list <- lapply(subgroup.list, table)</pre>
col.tab <- nv(rainbow(6), unique(subgrps))</pre>
pies(x=pie.list, x0=rnorm(n.groups), y0=rnorm(n.groups),
     radii=10, show.labels=TRUE, show.slice.labels=TRUE, color.table=col.tab)
## example 3 reading from external flat file
## salt.df <- read.delim('/path/to/my/file.tab')</pre>
## create a dummy dataset that might live inside the above file
salt.df <- data.frame(salinity=rnorm(25,5), temperature=rnorm(25,25),spec_a=rpois(25,4),</pre>
   spec_b=rpois(25,4),
   spec_c=rpois(25,4),
   spec_d=rpois(25,4),
   spec_e=rpois(25,4)
## pull out the colnumn names that are specific to pie wedge numbers
salt.spec.nms <- names(salt.df)[grep('spec',names(salt.df))]</pre>
## turn them into a list
pie.list <- lapply(1:nrow(salt.df),</pre>
function(i) as.table(nv(as.vector(as.matrix(salt.df[i,salt.spec.nms])),salt.spec.nms)))
names(pie.list)<- letters[1:25]</pre>
with(salt.df, pies(x=pie.list, x0=salinity, y0=temperature, radii=2))
```

plot.confound.grid Plot a grid of x y plots split by a confounder z

Description

Plot a grid of x y plots showing how a third confounding variable 'z' changes the slope

26 plot.sparge

Usage

```
## S3 method for class 'confound.grid'
plot(x, Y='y', X='x', confounder='z', breaks=3, mains='breaks',...)
```

Arguments

x a data frame

Y the name of the column with the dependent/outcome variable

X the name of the column with the predictor variable confounder the name of the column with confounding variable

breaks number or vector of breaks to split the plots horizontally (across x)

mains a vector plot title strings; defaults to the continuous->categorical break levels of

'confounder'

... other arguments passed to 'plot'

Value

a confound grid plot

Examples

```
# Swiss fertility confounding example plot.confound.grid(x=swiss, "Infant.Mortality", "Fertility", "Education", breaks=4)
```

plot.sparge

Visually compare all points from different univariate distributions

Description

Visually compare continuous univariate distributions using jittered and [progressive levels of] transparent points. This type of diagram plots positions of raw numerical data of comparable univariate distributions with a boxplot overlay indicating quartiles surrounding the central tendency of the underlying points. The distributions are vertically stacked (between) and jittered (within) as well as translucent in order to reduce overlapping points on larger-INI datasets.

Usage

plot.sparge 27

Arguments

x	a list of numeric vectors OR a dataframe with both numeric and factor columns
f	either a factor [that is same length as a numeric 'x'] OR a model formula
out.range	range of all possible outcome variable values (recursive loop prespecification)
cat.names	level names of the primary categorical variable partitioning the distributions
cpd	position dodge: shifts all categorical plotting positions this factor
срw	position width: width of the swath of jittered categorical positions
jit.f	factor for random jittering (see 'jitter()'
horiz	should rotate existing plot horizontally? (be sure to double check $x \& y$ labels match)
add	should we add to the existing plot?
lgnd	added automatically by default but can be suppressed by setting to NULL or FALSE
zl	should we add a horizontal [zero] line at x=0?
col	(vector of) [base] colors of the points of the distribution(s)
box.brdrs	the color of the borders of the box plots surrounding all distributions
alpha	transparency level for [overlapping] points
	other parameters passed on to plot

Details

The function can currently take three different forms of input. First, x can be a list of numeric vectors with no need for f. Second, x can be a single vector that is to be split by factor f, of the same length. Third, x can be a dataframe and f specifies a model formula in the form of "outcome ~ control" (simple plot) or "out ~ predictor | control" (two series plot with legend).

Value

a 'sparge' [sprinkler/smear] plot of point distributions

See Also

See also 'boxplot' and 'stripchart' in package 'graphics' as well as 'sina', 'violin', 'bean', 'ridgelines', and 'raincloud' plots.

28 plot.xy.ab.p

```
# three more random distributions (from the 'sinaplot' examples)
bimodal <- c(rnorm(300, -2, 0.6), rnorm(300, 2, 0.6))
uniform <- runif(500, -4, 4)
normal <- rnorm(800,0,3)
distributions <- list(uniform = uniform, bimodal = bimodal, normal = normal)</pre>
plot.sparge(distributions, ylab='distribution',xlab='')
## using 'f' [as a factor] argument as grouping factor on just one treatment
# Orchard spray by treatment (compare with 'strip chart' plot)
OS <- with(OrchardSprays, split(decrease, treatment))
plot.sparge(OS, log = "x", main = "OrchardSprays", xlab='decrease',ylab='treatment')
# Tooth Growth
plot.sparge(x=ToothGrowth$len, f=ToothGrowth$sup, xlab='lenght', ylab='supplement')
# multi-predictor using model-based parsing of 'f' [as a formula] and 'x' as a dataset
# Tooth Growth
plot.sparge(x=ToothGrowth, f="len ~ dose | supp", xlab='dose',ylab='tooth length', horiz=FALSE)
# or model-based with out the supplement sub-splitting
plot.sparge(x=ToothGrowth, f="len ~ dose", xlab='dose',ylab='tooth length', horiz=FALSE)
# from the CO2 dataset
plot.sparge(CO2, 'uptake ~ Type | Treatment', horiz=FALSE,
            xlab='Type',ylab='Uptake', main='CO2')
# Joyner-Boore earthquake data (heavily rounded)
attenu$magnitude <- as.factor(round(attenu$mag))</pre>
attenu$distance <- as.factor(round(log10(attenu$dist)))</pre>
plot.sparge(x=attenu, f="accel ~ distance | magnitude", horiz=FALSE,
 xlab='log10(distance)',ylab='acceleration', main='earthquake attenuation')
# Motor Trend cars data (rounded)
mtcars$cylinders <- as.factor(mtcars$cyl)</pre>
plot.sparge(x=mtcars, f="qsec ~ gear | cylinders", horiz=FALSE,
         xlab='number of gears', ylab='seconds', main='Motor Trend Cars')
# fertility dataset
infert$education <- as.factor(infert$education)</pre>
infert$ages <- jitter(infert$age, amount=1/2)</pre>
plot.sparge(x=infert, f="ages ~ spontaneous | education ", horiz=FALSE,
       ylab='[jittered] ages, yrs', xlab='spontaneous' , main='fertility')
```

plot.xy.ab.p

Description

This function performs a simple scatter plot but also superimposses a linear regression trend (abline) and optionally also the p-value of this line

Usage

Arguments

Х	a data frame
x.var	the name of the x variable in df
y.var	the name of the y variable in df
fit.line	should a fit (ab) line be drawn?
p.value	should the p-value be printed on the plot?
slope	should the slope be printed on the plot?
p.col	should the plot be labeled?
plot.labels	should all of thie model fit information be printed out?
verbose	should all other information be printed out too?
xlab	label for x-axis
ylab	label for y-axis
	other parameters passed to 'plot'

Value

An x/y scatterplot with regression line

```
par(mfrow=c(6,5), mar=c(2,2,0,0), mgp=c(-1,.5,0))

eg.df <- expand.grid(names(swiss), names(swiss))

for(i in 1:nrow(eg.df)){
   print(i)
   xv <- as.character(eg.df[i,1]); print(xv)
   yv <- as.character(eg.df[i,2]); print(yv)
   if(yv != xv)
     plot.xy.ab.p(x=swiss, x.var=xv, y.var=yv, p.value=FALSE, slope=FALSE)
}</pre>
```

30 raAddArms

plotClock

Plot a simple clock.

Description

Used to create a clock on a plot as a way to keep track of the additional parameter of time for use in animated movies of multiple plots.

Usage

```
plotClock(hour, minute, x0 = 0, y0 = 0, r = 1)
```

Arguments

```
hour integer specifying the position of the hour hand.

minute integer specifying the position of the minute hand.

x0 number specifying the x position of the clock.

y0 number specifying the y position of the clock.

r number specifying the radius of the clock.
```

Value

```
a plot of a clock
```

raAddArms

Add Arms to a RA plot.

Description

.

Usage

```
raAddArms(epsilon=.55, start=1, end=6, A.shift=0, R.shift=0, ...)
```

Arguments

```
epsilon . start . end . A.shift . R.shift .
```

. . . other parameters passed to lines.

raAddAxLabs 31

See Also

raPlot

raAddAxLabs Add axis labels to an RA plot.

Description

.

Usage

```
raAddAxLabs(conditions=nv(c('a','b'),c('ref','obs')), normalize=T, add=TRUE, line=2)
```

Arguments

conditions .
normalize .
add .
line .

See Also

raPlot

raAddSigLines

Add Significance Lines to an RA plot.

Description

٠

Usage

```
raAddSigLines(n, end=20, alpha=1e-3, nr=0, A.shift=0, plot=FALSE, ...)
```

Arguments

n . end . alpha .

nr a numeric value indicating the asymptotic normalization ratio line.

A.shift . plot .

... other parameters passed to lines.

32 raPlot

See Also

raPlot

raPlot Generate a Ratio Average [RAy] Plot.

Description

A plot which turns two vectors of count data into log scaled fold change ratio and average abundance. The plot derives from a Bland-Altman plot and is also very similar to an MA plot. The RA plot is unique, however, in it's creative inclusion of the vector-unique 'arms' which are artificially introduced into the plot by adding a <1 epsilon factor before the log function is applied. The name RAy comes from the fact that the aforementioned 'uniques' arms addition makes it strongly resemble a geometric ray. Many of the parameters to the function play off of this convenient anatomical analogy.

Usage

Arguments

guilleits	
a	a vector of counts for a. can also be a matrix with two columns 1 for a and 2 for b.
b	a vector of counts for b.
uniques	a boolean specifying whether or not to plot the library-unique genes (those with zero counts in one or the other library).
normalize	A boolean specifying whether or not to normalize the counts into proportions.
nr	a numeric value indicating the asymptotic normalization ratio line.
alpha	a statisical significance value.
jitter	whether or not or how much to jitter the a and b counts into surrounding, non-overlapping space.
jit.wgts	a weight vector used to spread the counts of a and b into surrounding, non-overlapping space.
rex	a numeric value specifying the radial expansion of the plot points.
flat	a boolean for the radial expansion of points as a function of both R and A axes.
tail	a numeric or boolean value indicating the line thickness of the two trailing curved significance lines of the RAy.
arms	a numeric or boolean value indicating the line thickness of the two leading

straight separator lines of the RAy.

read.tab 33

spine a numeric or boolean value indicating the line thickness of the normalization line (whose y position is specified by mm).

border a vector of strings used to color the borders of the points.

whether or not to do the actual plot.

other parameters passed to plot.

Value

a RAy plot

See Also

limma::plotMA, edgeR::maPlot

Examples

```
a <- rnbinom(n=10000, mu=5, size=2)
b <- rnbinom(n=10000, mu=5, size=2)

## the alternative
plot(a,b)
## the raPlot version
raPlot(a, b)

## highlight the condition unique points in the same way as edgeR's "maPlot"
RA <- raPlot(a, b, pch='')
cond.unique <- apply(cbind(a,b), 1, function(d) any(d==0))
points(RA$A,RA$R, col=c('black','orange')[cond.unique+1])

## try playing with jittering over plotted points
raPlot(a, b, jitter=.3)</pre>
```

read.tab

Read in a Tab Delimited File.

Description

This function is a slight (genome annotation friendly) variant of the built-in read.delim function in R. Two non-standard defaults have been set: stringsAsFactors=TRUE, quote="". An additional parameter "check.row.ct", triggering a count.fields call, has been added to further ensure the integrity of large data files.

Usage

34 regroup

Arguments

file the name of the file which the data are to be read from.

check.row.ct logical: use 'count.fields' to independently verify the number of rows read.table

reads into memory?

stringsAsFactors

logical: should character vectors be converted to factors?.

quote the set of quoting characters.

header boolean specifying if the first row serves as labels for the columns

... other paramters passed to read.delim.

Value

a dataframe.

regroup	Regroup a dataframe.	

Description

Used to group a dataframe of numbers by a factor that need not be the same length. Find the a factor in the old df and use it to group by the new trumping factor (NA's allowed)

Usage

```
regroup(df, old, new, clmns, funcs=rep('sum',length(clmns)), combine=TRUE)
```

Arguments

df a dataframe.

old the ids to match the rows in df to the 'new' grouping ids.

new the new ids (must be a vector of the same length as 'old'.

clmns the colums to include in the output.

funcs the functions to perform on the output (default is to sum) .

combine Determines wether to combine with existing groupings or to start fresh.

Value

a dataframe with number of rows equal to the number of factor levels in 'new'

```
df <- data.frame(a=rnorm(20),b=rpois(20,1))
mapping <- data.frame(old=rownames(df), new=rep(c('a','b'),10))
regroup(df, old=mapping$old, new=mapping$new)</pre>
```

rerowname 35

ro	MOUNT	าame
1 0	I OWI	Iallic

Rename select rows of a dataframe

Description

Used to easily rename the rows of a dataframe.

Usage

```
rerowname(df, old='NA', new='unknown')
```

Arguments

df A dataframe with rownames.

old The row name to be replaced.

new The replacment row name.

Value

A dataframe with one new rowname

Examples

```
 \begin{array}{lll} df <- \ data.frame(a=c(1,2,3),\ b=c('x','y','z'),\ c=c(5,3,2)) \\ rownames(df) <- \ c('p','q','NA') \\ rerowname(df)    \end{array}
```

spie

Spie charts

Description

Spie Chart

Usage

36 spie

Arguments

		• . •		
р	1 9	nosifive	numeric	vector
М	ı	positive	Humberic	vector.

p2 a positive numeric vector. Angles are the same than those used for the first pie

but radii change according to the values in .

init.angle initial angle

multi radius scale multiplier

col colors of the p2 (foreground) slices

bg colors of the p1 (background) slices

lwd line width of the pie wedge boundaries

pie.labs boolean labels for the pies

grid boolean

grid.labs boolean, scale indicators

scale boolean p1.circle boolean

Author(s)

Romain Francois <francoisromain@free.fr> & David Schruth <dschruth@uw.edu>

References

D. G. Feitelson (2003), "Comparing Partitions with Spie Charts". School of Computer Science and Engineering, The Hebrew University of Jerusalem.

Michael Friendly (2022), Spie chart – a comparison of two pie charts.

See Also

pie

```
p1 <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)
p2<- c(0.06, 0.15, 0.52, 0.14, 0.08, 0.05)
plot(p1, p2, multi=c(.5, 1, 1.5, 2))
```

sstable 37

sstable Sum Sorted Tabulation

Description

A wrapper for the "table()" function that also calculates the row-wise sum and sorts by the new column.

Usage

```
sstable(x, idx.clmns, ct.clmns = NULL, na.label = "NA")
```

Arguments

x list of vectors or a dataframe

idx.clmns index columns ct.clmns count columns

na.label row label used for na columns

Value

A dataframe sorted by the count columns.

Author(s)

David Schruth

See Also

ledghead, table, order, sort

38 tab2df

tab2df

Table to Data Frame

Description

Convert a table to a dataframe while perserving the same number of columns and rows and names of each.

Usage

```
tab2df(x, ...)
```

Arguments

x a table or matrix class object (output from the table command).... other arguments passed to data.frame(...).

Value

a dataframe

See Also

table

```
x <- data.frame(a=runif(10),b=runif(10), z=rep(letters[1:5],2))</pre>
as.data.frame(x)
tab2df(x)
x \leftarrow nv(rnorm(10), letters[1:10])
  as.data.frame(x)
tab2df(x)
x <- nv(rnorm(2), c('x.b','y.b'))</pre>
  as.data.frame(x)
tab2df(x)
x <- nv(rnorm(2), c('b.x', 'b.y'))
  as.data.frame(x)
tab2df(x)
e <- data.frame(a=runif(10),b=runif(10), z=rep(letters[13:17],2))</pre>
x \leftarrow as.table(sapply(c('a','b'),function(cc) by(e[,'a'],list(e$z), sum)))
  as.data.frame(x)
tab2df(x)
x \leftarrow as.table(by(1:10, list(a=rep(1:5,2),b=rep(1:2,5)), sum))
  as.data.frame(x)
tab2df(x)
x <- as.table(nv(c(54,34), c('a','b')))
  as.data.frame(x)
tab2df(x)
```

textplot 39

```
x <- table(a='x',b='y')
tab2df(x)</pre>
```

textplot

A Text-Only Plot

Description

Generate a new plot window with just text centered in the middle. This is ideally used in conjunction with the 'layout' command to label columns and rows of the grid.

Usage

```
textplot(..., x=1, y=1)
```

Arguments

parameters passed to the 'text' functionthe x position of the text.the y position of the text.

Value

A new plot window wiht just text

See Also

```
layout, text
```

40 vennMatrix

usr2lims

Grab and adjust the current plot dimensions

Description

This is a simple function which grabs the current plot dimentions and adjusts them by shrinking them by 4

Usage

```
usr2lims(adj=.04)
```

Arguments

adj

The automatic adjustment factor 'plot' adds to buffer the specified plot dimentions.

Value

A 2 item (x and y) list of 2 item (min and max) vectors for x and y limits of the current plot area

See Also

par

Examples

```
plot(c(0,1), c(0,1))
usr2lims()
```

vennMatrix

Create a Venn Ready Matrix out of a List of Factors

Description

The limma package has great functions for making venn diagrams from a matrix. This function is provides upstream functionality to turn a list of factors into this required input format.

Usage

```
vennMatrix(1)
```

Arguments

a named list of factors

wjitter 41

Value

a matrix with columns for list elements and rows with globally unique factor levels

See Also

venCounts

Examples

```
 1 <- list(a=factor(c('x','y','z')), b=factor(c('w','x','v'))) \\ vennMatrix(1)
```

wjitter

Weighted Jitter

Description

Use weights to jitter values away fromt their current value.

Usage

```
wjitter(x, w, amount=.43)
```

Arguments

x a vector of values

w a vector of weights of the same lenght as x

amount the amount to jitter (passed to the parameter by the same name in the jitter

function)

Value

A weighted jittered vector of the same length as x

```
x <- seq(1,20)
w <- runif(20, 0,1)
plot(x,wjitter(w,x))</pre>
```

42 write,delim

write.delim

Write a (tab) delimited text file.

Description

A simple wrapper for write table with the same options as read.delim

Usage

```
write.delim(df, file, quote = FALSE, row.names = FALSE, sep = "\t", ...)
```

Arguments

df a dataframe. file outputfile path.

quote should elements of the dataframe be quoted for output.

row.names should the output include rownames.

sep the delimiter between fields.

... other parameters passed to write.table.

Value

A tab delimited text file

See Also

read.delim

```
## Not run:
x <- data.frame(a = I("a \" quote"), b = pi)
write.delim(x, file = "foo.tab")
## End(Not run)</pre>
```

Index

* graphs makeElipseCoords, 18 plotClock, 30	heatmap.2, <i>10</i> heatmatrix, 10 hyperplot, 11	
<pre>* hplot spie, 35 * manip addFactLevs, 3 install.prev.pkg, 13 m, 17 nerge, 20 pad, 21 parseArgString, 22 pct, 23 rerowname, 35 textplot, 39</pre>	identify, 19 image, 10 install.prev.pkg, 13 labsegs, 14, 19 layout, 39 legend.position, 15 leghead, 16 levels, 3 locator, 19 m, 17	
$\begin{array}{c} \operatorname{addFactLevs}, 3 \\ \operatorname{aggregate}, 9 \end{array}$	makeElipseCoords, 18 merge, 20 mvlabs, 19	
<pre>bestBy, 3, 9 browseURL, 11 confound.grid(plot.confound.grid), 25</pre>	name, <i>21</i> nerge, 20 nv, 20	
<pre>dbWriteTable, 5 dbWriteTable2, 4 distro.dots, 5 ellipsis.defaults, 6 factor, 3</pre>	pad, 21 parseArgString, 22 pct, 23 pie, 24, 36 pies, 23 plot.confound.grid, 25 plot.sparge, 26	
<pre>fit.1ln.rprt, 7 geomean, 8</pre>	plot.spie (spie), 35 plot.xy.ab.p, 28 plotClock, 30	
$\begin{array}{l} \text{gregexpr, } 17 \\ \text{grep, } 17 \\ \text{groupBy, } 4,8 \\ \text{gsub, } 17 \\ \\ \text{head, } 16 \\ \text{heatmap, } 10 \\ \end{array}$	raAddArms, 30 raAddAxLabs, 31 raAddSigLines, 31 raPlot, 31, 32, 32 read.delim, 42 read.tab, 33	

INDEX INDEX

```
regexpr, 17
regroup, 34
rerowname, 35
segments, 14
\verb|sparge| (\verb|plot.sparge|), 26
spie, 35
sstable, 16, 37
sub, 17
summary, 16
tab2df, 38
text, 39
textplot, 39
usr2lims, 40
vector, 21
vennMatrix, 40
wjitter, 41
write.delim, \textcolor{red}{42}
xy.ab.p(plot.xy.ab.p), 29
```