УДК 631.42

РАСПРЕДЕЛЕНИЕ 137Cs ПО "ГРАНУЛОМЕТРИЧЕСКИМ" ФРАКЦИЯМ ПОЧВ ТРИДЦАТИКИЛОМЕТРОВОЙ ЗОНЫ ЧЕРНОБЫЛЬСКОЙ АЭС

С.М. Рудая*, О.В. Чистик*, И.И. Матвеенко**

- * Международный государственный экологический университет им. А.Д. Сахарова, г. Минск, Беларусь
- * * Республиканский центр радиационного контроля и мониторинга окружающей среды, г. Минск, Беларусь

Представлены результаты изучения распределения ¹³⁷Сs по фракциям почв, подвергшихся радиоактивному загрязнению в результате аварии на ЧАЭС. Дано математическое описание распределения радиоцезия по фракциям >0,01 мм, 0,01–0,001 мм, <0,001 мм. Показано, что гранулометрический и минералогический составы исследованных почв в значительной степени определяют сорбцию радионуклида на почвенных частицах и влияют на вертикальную миграцию.

ВВЕДЕНИЕ

В наземных экосистемах наиболее емким и самым инерционным звеном, приводящим к поступлению радиоактивных загрязнений в организм человека, является почва. Состояние и скорость миграции радионуклидов в почве во многом определяют интенсивность распространения радионуклидов по пищевым цепочкам. Поэтому важной задачей является изучение всей совокупности процессов, приводящих к перемещению радионуклидов в почве и перераспределению их между различными фазами. На миграционные способности радионуклидов, попавших на почвенную поверхность, существенно влияет их связь с почвенными компонентами разной дисперсности.

Целью данной работы было изучение распределения ¹³⁷Cs по "гранулометрическим" фракциям почв тридцатикилометровой зоны Чернобыльской АЭС. Объектом исследования были почвы различного типа, отобранные с разной глубины в 2000 г. Контрольные пункты наблюдения расположены в Хойникском и Брагинском районах Гомельской области. Исследуемые участки находятся в пределах естественных лесных экосистем.

МЕТОДЫ ИССЛЕДОВАНИЙ

Отбор проб почвы проводился послойно через 5 см до глубины 15 см по стандартной методике [1]. Гранулометрический состав почв анализировался по методу Н.А. Качинского [2]. Разделение почвенных образцов на фракции для определения

[©] С.М. Рудая, О.В. Чистик, И.И. Матвеенко, 2002

сорбции 137 Cs осуществлялось методом отмучивания [3]. В ходе анализа были выделены следующие фракции: физический песок (>0,01 мм), физическая глина (0,01-0,001 мм), илистая фракция (<0,001 мм). Минералогический состав определялся на рентгенографической установке ДРОН-3М. Погрешность определения содержания глинистых минералов составляла 3-5%. Содержание 137 Cs в почве и почвенных фракциях измерялось на γ -спектрометре EL-1308 [4]. Погрешность измерения активности радионуклида не превышала 10% и зависела от активности образца.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Почва является природным телом, которое представлено твердой, жидкой, газовой фазами и живым веществом. На сорбционные способности почв в значительной мере влияют их специфические ионообменные особенности. На кинетику адсорбции и десорбции ионов, в первую очередь, оказывает влияние полидисперсность почвы, т.е. ее гранулометрический состав. Несмотря на некоторую условность границ гранулометрических фракций, в целом эти границы отражают реально существующие различия в свойствах почвенных частиц, что, в свою очередь, обусловливает зависимость сорбционных свойств почв от гранулометрического состава.

По характеру распределения в почвенном профиле частиц <0,001 мм исследуемые почвы относятся к почвам, развитым на породах легкого гранулометрического состава. Для данного типа почв свойственно выраженное преобладание песчаных фракций и очень небольшое содержание тонкодисперсных частиц.

В гранулометрическом составе исследуемых почв (табл. 1) преобладает фракция мелкого песка, на долю которой приходится от 60 до 85%. Характерен низкий про-

Таблица 1
Гранулометрический состав почв экспериментальных площадок (в процентах на общую массу почвы)

Генетический горизонт	Глубина отбора, см	Фракция, мм							
		>1	1-0,25	0,25-0,05	0,05-0,01	0,01- 0,005	0,005- 0,001	<0,001	
Дерново-подзолистая песчаная почва, площадка №1									
A ₀	0-5	0,10	4,82	83,49	4,00	2,40	2,80	2,40	
A_1A_2	5-10	0,20	6,39	84,60	2,40	1,60	2,80	2,00	
A_1A_2	10-15	0,30	12,74	80,57	2,00	1,20	2,40	0,80	
Дерново-подзолистая песчаная почва, площадка №3									
A_0	0-5	-*	14,34	78,46	2,80	2,00	0,80	1,60	
A ₁	5-10	0,10	14,20	79,31	1,60	1,60	1,99	1,20	
A ₁	10-15	0,10	16,22	77,27	1,20	0,80	3,21	1,20	
Дерново-подзолисто-глееватая оторфованная песчаная почва, площадка №4									
A_0	0-5	-	24,72	61,55	5,65	2,02	3,23	2,83	
A ₁	5-10	-	24,94	65,00	3,22	1,61	2,82	2,41	
A_1	10-15	-	34,22	59,37	2,00	0,80	2,00	1,61	
Дерново-перегнойно-глееватая супесчаная почва, площадка №7									
A_0	0-5	0,20	12,95	74,47	5,99	2,40	2,40	1,60	
A_1	5-10	0,20	16,65	74,70	4,02	0,80	2,41	1,21	
A ₁	10-15	-	5,95	75,48	9,67	0,80	4,85	3,23	

Примечание: * - не обнаружено

цент частиц крупного и среднего песка. Дерново-подзолистые песчаные и дерновоподзолисто-глееватые оторфованные песчаные почвы отличаются аккумуляцией высокодисперсных минералов в верхних горизонтах. Слой 0-5 см по сравнению со слоем 10-15 см имеет более высокое содержание илистой фракции и фракции физической глины. В дерново-перегнойно-глееватой супесчаной почве характер гранулометрического состава почвенного профиля иной. Здесь наблюдается вынос из верхней части почвенного профиля частиц <0,005 мм, т.е. процессы почвообразования приводят к обеднению глинистыми минералами верхних горизонтов супесчаных почв.

Важным свойством, связанным с гранулометрическим составом, является суммарная поверхность частиц, которая увеличивается с уменьшением размеров частиц. По мере возрастания суммарной поверхности частиц увеличивается площадь их соприкосновения с почвенной влагой, воздухом, живыми организмами; частицы приобретают ряд новых свойств, в частности возрастает поверхностная энергия, определяющая сорбционную способность почвенного комплекса. Верхние горизонты песчаных почв характеризуются более высокой суммарной поверхностью частиц, в то время как в дерново-перегнойно-глееватой супесчаной почве это присуще нижним слоям.

Таким образом, установленный гранулометрический состав отражает специфику почвообразовательного процесса на исследованных участках.

Полифункциональность почвы как ионита связана с неоднородностью ее минералогического состава и присутствием органического вещества. Минералогический состав в значительной мере определяет физико-химические и генетические особенности почв. На минералогический состав почв оказывает влияние большое количество факторов: минералогический и химический составы исходной почвообразующей породы, биоклиматическая обстановка почвообразования, соотношение рН и окислительно-востановительного потенциала среды, условия дренажа, присутствие катионов в среде, возраст выветривания и почвообразования, количественный и качественный составы органических компонентов. Разнообразие их сочетаний дает соответствующее разнообразие минеральных ассоциаций в почвах и в отдельных горизонтах почвенного профиля. К этому добавляется и перемещение минералов в пределах профиля [5].

Минеральная составляющая исследуемых почв представляет собой смесь кварца, полевого шпата и глинистых минералов. Установлено, что содержание кварца в песчаных почвах составляет до 90%, полевого шпата - 10-20% и глинистых минералов до 10%; в супесчаной почве содержание минералов соответственно составляет до 70%, 20-30%, до 30%.

Фракция физического песка, в основном, состоит из непрозрачных и полупрозрачных бесцветных или молочно-белых, иногда желтоватых, зерен кварца. Вторым основным компонентом является полевой шпат, представленный бурыми, желтоватобурыми или кремовыми, частично выветренными зернами. Полевые шпаты в исследуемых почвах представлены, в основном, калиевой разновидностью. В перегнойных горизонтах почв фиксируются полуразложившиеся растительные остатки, часто обугленные.

Исследование глинистых минералов изучаемых горизонтов дерново-подзолистых песчаных почв выявило преобладание хлоритной массы. Минералогический состав фракций 0,01-0,001 мм и <0,001 мм представлен на рис. 1. Как видно из рисунка, в исследуемых песчаных почвах наблюдается хлорито-каолинитово-гидрослюдистая ассоциация. При этом с глубиной отмечается не только уменьшение содержания илистой и глинистой фракций, но и уменьшение содержания в них гидрослюды, способной к необменной сорбции ¹³⁷Cs. Хорошо известно, что отличительной особенностью радиоцезия является его способность к прочной фиксации в структуре глинис-

Рис. 1. Глинистые минералы фракций <0,01 мм вертикального разреза дерново-подзолистой песчаной почвы

тых минералов и к селективной сорбции в области расширения межпакетного пространства на боковых гранях кристаллов глинистых минералов группы иллита FES (от английского Frayed Edge Sites). Селективные сорбционные центры более прочно удерживают цезий по сравнению с обычными неселективными обменными центрами RES (от английского Regular Exchange Sites) [6].

Помимо глинистых минералов в состав илистой фракции входят аморфные органоминеральные соединения, кристаллические и аморфные гидроксиды железа и алюминия, тонкодисперсный кварц и полевые шпаты.

Дерново-подзолисто-глееватая оторфованная песчаная и дерново-перегнойно-глееватая супесчаная почвы характеризуются интенсивным процессом разрушения первичных минералов. В результате длительного периодического переувлажнения почв развиваются процессы, приводящие к восстановлению элементов с переменной валентностью, разрушению первичных минералов и синтезу вторичных ми-

нералов.

Исследование глинистых минералов дерново-перегнойно-глееватой супесчаной почвы показало, что в составе фракций 0,01-0,001 мм и <0,001 мм преобладают гидрослюдистые массы. Минералогический состав этих фракций представлен гидрослюдой и смешанослойными минералами. В тонкодисперсной фракции горизонтов 5-10 см и 10-15 см присутствует каолинит. Явных неоднородностей в распределении минералов, отвечающих за необменную сорбцию ¹³⁷Сs, в изучаемом почвенном профиле супесчаной почвы не выявлено.

Фракции 0,01-0,001 мм и <0,001 мм дерново-подзолисто-глееватой оторфованной песчаной почвы содержат гидрослюду, каолинит и хлорит. В почвенном профиле в составе этих фракций отмечаются следующие особенности: слой 0-5 см содержит кальцит, а в слое 10-15 см появляются смешанослойные минералы, свидетельствующие о развитии восстановительных процессов. Как и в дерново-подзолистых песчаных почвах, в состав тонкодисперсной фракции дерново-подзолисто-глееватой оторфованной песчаной и дерново-перегнойно-глееватой супесчаной почв помимо глинистых минералов входят также аморфные органоминеральные соединения, кристаллические и аморфные гидроксиды железа и алюминия, тонкодисперсный кварц, в нижних слоях - полевые шпаты.

Необходимо отметить, что поскольку разделение почвенных частиц на фракции

Таблица 2 Удельная активность ¹³⁷Cs в «ранулометрических» фракциях исследуемых почв на 01.07.2001 г. (Бк/г)

Гранулометрическая фракция, мм	Глубина отбора, см							
	0-5	5-10	10-15					
Дерново-подзолистая песчаная почва, площадка №1								
>0,01	76,49	2,97	1,85					
0,01-0,001	2436,51	227,11	127,58					
<0,001	4051,78	407,99	187,70					
Дерново-подзолистая песчаная почва, площадка №3								
>0,01	10,95	0,45	0,06					
0,01-0,001	398,55	36,00	4,91					
<0,001	548,60	87,20	10,91					
Дерново-подзолисто-глееватая оторфованная песчаная почва, площадка №4								
>0,01	4,59	0,17	0,02					
0,01-0,001	124,47	10,42	2,81					
<0,001	168,84	32,85	7,16					
Дерново-перегнойно-глееватая супесчаная почва, площадка №7								
>0,01	3,63	0,45	0,12					
0,01-0,001	104,89	31,70	6,65					
<0,001	193,94	36,93	8,51					

для определения сорбции на них радиоцезия проводилось методом отмучивания без использования каких-либо реагентов (кроме дистиллированной воды), то в ходе анализа не были до конца разрушены водостойкие почвенные агрегаты. В итоге распределение радионуклида по почвенным частицам не было нарушено, но содержание глинистой и илистой фракций оказалось меньше, чем при традиционном гранулометрическом анализе (метод Н.А. Качинского). Поэтому полученные фракции, по-видимому, являются промежуточными между почвенными агрегатами и гранулометрическими фракциями. Тем не менее, данные, полученные в ходе исследования, позволяют судить о распределении 137Сs по почвенным частицам разной дисперсности.

Как показывают результаты распределения ¹³⁷Сs по фракциям (табл. 2), наибольшая удельная активность характерна для илистой фракции, наименьшая – для фракции физического песка. Увеличение удельной активности ¹³⁷Сs в ряду физический песок < физическая глина < ил объясняется не только степенью дисперсности почвенных частиц, но и их минералогическим составом, определяющим специфику сорбции радионуклида каждой фракцией. В почвенном профиле происходит уменьшение с глубиной удельной активности всех рассмотренных фракций.

Распределение ¹³⁷Cs, сорбированного на фракциях физического песка (>0,01 мм), физической глины (0,01-0,001 мм), илистой фракции (<0,001 мм), в виде треугольной диаграммы Гиббса представлено на рис. 2.

Треугольная диаграмма Гиббса является одним из способов рационального и количественного описания результатов сорбции радиоцезия на трех фракциях. Применение данной диаграммы для представления табличных данных подробно описано в работе [7]. Используя подход к представлению данных, описанный в этой работе, обозначим долю радионуклида, связанного с фракцией >0,01 мм через X_1 , тогда доли

Рис. 2. Распределение 137 Cs по «гранулометрическим»фракциям исследуемых почв: 1 – доля 137 Cs, сорбированного фракцией > 0,01 мм; 2 –фракцией 0,01-0,001 мм; 3 - фракцией < 0,001 мм

радионуклида, сорбированного фракциями 0,01-0,001 мм и <001 мм, будут соответственно равны X_2 и X_3 . При этом $X_1+X_2+X_3=1$.

Соотношение между долями на диаграмме изображено в виде отдельных точек, координаты которых представлены в системе координат треугольника Гиббса. Группирование точек в определенной части треугольника характеризует особенности сорбции ¹³⁷Cs на трех почвенных фракциях. Условимся считать, что любая совокупность сопряженных точек может быть оконтурена прямыми линиями.

Оконтуренная область *CDEF* располагается в нижнем правом углу диаграммы в зоне 2*AOB*, которая однозначно отвечает превалированию доли с индексом 2 по отношению к двум другим.

Сначала рассмотрим основные характеристики зоны 2AOB. Видно, что зона 2AOB ограничена двумя центральными секущими 1B и 3A, а также сторонами 1-2 и 2-3. Расположение зоны 2AOB на треугольной диаграмме Гиббса описывается системой линейных неравенств

$$X_2 \ge X_1$$
; $X_2 \ge X_3$; $X_1 \ge 0$; $X_3 \ge 0$. (1)

Известно, что экстремальные значения линейных функций, ограниченных определенными условиями, имеют экстремумы в вершинах симплекса [8]. В нашем случае это означает, что значения точек, попадающих в многоугольник 2AOB с координатами вершин 2(0; 1; 0), A(0,5; 0,5; 0), O(1/3; 1/3; 1/3), B(0; 0,5; 0,5), имеют следующие интервалы изменения:

$$0.5 \ge X_1 \ge 0$$
; $1 \ge X_2 \ge 1/3$; $0.5 \ge X_3 \ge 0$. (2)

Откуда видно, что X_2 имеет максимальное значение 1 и не опускается ниже 0,333, а X_1 и X_3 изменяются одинаково, но диапазон изменений уже.

А теперь вернемся к оконтуренной области *CDEF*, которая математически описывается системой линейных неравенств:

$$\begin{array}{c}
2,40X_1+1,25X_2 \ge 1 \\
1,11X_1+10,00X_3 \ge 1 \\
X_1 \ge 0,10 \\
X_2 \ge 0,45
\end{array}$$
(3)

где X_1 , X_2 , X_3 — доли ¹³⁷Cs, сорбированного почвенными фракциями размером >0,01 мм, 0,01-0,001 мм, <001 мм соответственно.

Данная система неравенств не только наглядно демонстрирует зону доминирования фракции 0,01-0,001 мм в сорбции радионуклида ($X_2 \ge 0,45$), но и позволяет оценить пределы изменения сорбции 137 Cs на каждой из фракций. Решая попарно уравнения отрезков *CD* и *DE*, *DE* и *EF*, *EF* и *FC*, *FC* и *CD*, находим координаты вершин C(0,50;0,45;0,04), D(0,18;0,45;0,36), E(0,10;0,60;0,28), E(0,10;0,84;0,06). Сравнивая максимальные и минимальные значения координат, получаем следующие пределы изменения долей:

$$0.50 \ge X_1 \ge 0.10$$
; $0.84 \ge X_2 \ge 0.45$; $0.36 \ge X_3 \ge 0.04$. (4)

Таким образом, хорошо видно, что максимальное количество радионуклида сорбировано на почвенных частицах 0,01-0,001 мм. В дерново-подзолистых песчаных почвах на эту фракцию приходится 47-53% валового содержания радионуклида, в дерново-подзолисто-глееватой оторфованной песчаной — 61-62%, в дерново-перегнойно-глееватой супесчаной — 73-78%. Следовательно, на сорбцию ¹³⁷Сs в почвах существенно влияет как содержание глинистой фракции, так и ее минералогический состав.

В профиле дерново-перегнойно-глееватой супесчаной почвы не выявлено существенных изменений распределения ¹³⁷Сs по почвенным фракциям. Такой тип распределения позволяет предположить, что основным механизмом вертикальной миграции радионуклида для данного типа почв является диффузия свободных и адсорбированных ионов.

В песчаных почвах наблюдается изменение с глубиной вклада илистой и песчаной фракций в сорбцию радионуклида. В этих почвах вниз по профилю наблюдается увеличение доли радиоцезия, связанного с илистой фракцией, и уменьшение доли радионуклида, сорбированного фракцией физического песка. На фракцию >0,01 мм в верхнем пятисантиметровом слое дерново-подзолистых песчаных почв приходится до 40% радионуклида, содержащегося в этом слое, а в нижнем слое 10-15 см — до 18%. Доля ¹³⁷Сs, сорбированного тонкодисперсной фракцией с глубиной увеличивается с 7-14% (в слое 0-5 см) до 35% (в слое 10-15 см).

Таким образом, в дерново-подзолистых песчаных почвах, с одной стороны, с глубиной уменьшается содержание как фракций <0,01 мм, так и глинистых минералов, отвечающих за необменную сорбцию ¹³⁷Сs, с другой стороны, увеличивается доля радионуклида, сорбированного тонкодисперсной фракцией. Это объясняется лессиважем, т.е. процессом отмывки илистых и тонкопылеватых частиц с поверхности песчаного и крупнопылеватого материала и последующим выносом их в неразрушенном состоянии из элювиального горизонта. Поэтому, возможно, перенос ¹³⁷Сs, сорбированного на тонкодисперсной фракции, вносит существенный вклад в вертикальное перераспределение радионуклида на данном типе почвы.

В дерново-подзолисто-глееватой оторфованной песчаной почве увеличение в нижних слоях 137 Cs, сорбированного фракцией <001 мм, связано как с лессиважем, так и с развитием в этих слоях восстановительных процессов, приводящих к синтезу глинистых минералов, способных к необменной сорбции радионуклида.

ВЫВОДЫ

Результаты выполненных исследований распределения ¹³⁷Cs по "гранулометричес-ким" фракциям почв тридцатикилометровой зоны Чернобыльской АЭС позволяют сделать следующие выводы.

1. 137 Сs в различных количествах сорбирован на почвенных частицах. Распределение радионуклида по фракциям описывается системой линейных неравенств. На

фракции >0,01 мм может быть сорбировано от 4 до 36% валового содержания радионуклида, на фракции 0,01-0,001 мм – 45-84% и на фракции <0,001 мм - 10-50%.

- 2. Наибольшая удельная активность характерна для илистой фракции, наименьшая для фракции физического песка. Удельная активность почвенных частиц с глубиной уменьшается.
- 3. Максимальное количество радионуклида (>45%) сорбировано фракцией 0,01-0,001 мм и зависит от гранулометрического и минералогического составов почв.
- 4. Распределение ¹³⁷Cs по фракциям в почвенном профиле определяется типом почвы.

Литература

- 1. Методика обследования территорий населенных пунктов, гражданских и промышленных объектов для последующего проведения дезактивационных работ. Утверждена Межведомственной комиссией по радиационному контролю природной среды при Госкомгидромете СССР 17.03.89.
- 2. Агрохимические методы исследования почв. М.: Наука, 1965.
- 3. Методическое руководство по петрограф минералогическому изучению глин: Труды ВСЕ-ГЕИ Министерства геологии и охраны недр СССР / Под рук. М.Ф. Викуловой. М.: Госгеотехиздат, 1957.
- 4. Государственная система обеспечения единства измерений. Активность радионуклидов в объемных образцах. Методика выполнения измерений на гамма спектрометре. МИ 2143-91. Утверждена НП ВНИИФТРИ Госстандарта СССР, 28.12.90.
- 5. Почвоведение: Учеб. для ун-тов. В 2 ч./*Под ред. В.А. Ковды, Б.Г. Розанова*. Ч.1. Почва и почвообразование/*Г.Д. Белицина, В.Д. Васильевская, Л.А. Гришина и др.* М.: Высшая школа, 1988.
- 6. Cremers A., Elsen A., De Peter P., Maes A. Quantitative analysis of radiocaesium retention in soils//Nature. 1988. V. 335. № 6187. P. 247-249.
- 7. *Кольненков В.П., Кузнецов В.А., Генералова В.А.* Треугольная диаграмма распределения форм нахождения элементов в породе//Вести Акад. наук Беларуси. Сер. хим. наук. 1993. №3.
- 8. *Полунин И.Ф.* Курс математического программирования. Мн., 1975.

Поступила в редакцию 9.01.2002

УДК 621.039.586

Analysis of Failure of a Fast Reactor Runaway in Approach of Zero Lifetime of Prompt Neutrons \N.M. Kadjuri; Editorial board of Journal "Izvestia visshikh uchebnikh zavedeniy, Yadernaya energetica" (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2002. – 5 pages, 2 illustrations. – References, 2 titles.

The estimations of the limit introducing of reactivity $\rho_{_m}$ conducting to destruction of fuel in approach of zero lifetime of prompt neutrons are carried out.

УДК 536.24:621.039.553.34

Influence of Geometrical Parameters of Surface Spheriodical Elements and the Scheme of Their Arrangement on Heat Efficiency of Heat-Exchange Plate Surface\V.T. Buglaev, A.A.Anisin; Editorial board of Journal "Izvestia visshikh uchebnikh zavedeniy, Yadernaya energetica" (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2002. – 11 pages, 5 illustrations. – References, 11 titles.

The reseach results of heat-aerodynamic characteristics of heat-exchange profile plate surface experimental patterns with different geometrical parameters of flow sections of adjustable passages are given and their heat efficiency is estimated.

УДК 621.039.6

Magnetohydrodynamic Resistance Reduction by Forming Oxide Electroinsulated Coatings on Channels with Heavy Liquid Metal Coolants of TOKAMAK Reactor\A.V. Beznosov, S.S. Pinaev, M.A. Kamnev, A.V. Nazarov, P.V.Romanov; Editorial board of Journal "Izvestia visshikh uchebnikh zavedeniy, Yadernaya energetica" (Communications of Higher Schools. Nuclear Power Engineering) — Obninsk, 2002. — 3 pages, 1 table, 1 illustration. — References, 8 titles.

The article includes experimental data received in investigations of magnetohydrodynamic resistance reduction by forming oxide electroinsulated coatings on internal surfaces of channels of tokamak blanket and divertor.

УДК 556.555.8

⁹⁰Sr Contamination of Water Ecosystems in Bryansk Regions Damaged after Chernobyl Accident \M.N. Katkova, Ya.I. Gaziev, G.I. Petrenko, A.M. Polukhina; Editorial board of Journal "Izvestia visshikh uchebnikh zavedeniy, Yadernaya energetica" (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2002. – 6 pages, 3 tables, 2 illustrations.

In 1997-1999 the monitoring of water ecosystems in Bryansk regions contaminated after Chernobyl fallout have been conducted. In the framework of these investigations the present ⁹⁰Sr level in water bodies was evaluated. Taking into accounts the obtained result the basic conclusions and recommendations for their future use were done.

УДК 631.42

Distribution of ¹³⁷Cs on ""grain-size" fractions in soils at the 30 km restricted zone around Chernobyl NPP\S.M. Rudaya, O.V. Chistik, I.I. Matveenko; Editorial board of Journal "Izvestia visshikh uchebnikh zavedeniy, Yadernaya energetica" (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2002. – 8 pages, 2 tables, 2 illustrations. – References, 8 titles.

The results of investigation of ¹³⁷Cs distribution on "grain-size" fractions in soils contaminated by Chernobyl catastrophe products are presented. The mathematical description of radiocaesium distribution on fractions >0,01 mm, 0,01-0,001 mm, <0,001 mm is given. Is shown that "grain-size" and mineralogy composition of researched soils substantially determines a sorption of a radionuclide on soil particles and influences vertical migration.

УДК 574:621.039.542.4

Ecological Aspects of Mass Production of Motor Fuels from Brown Coals and Heavy Petroleum Residuals by Hydrogenation with the Use of Nuclear Technologies \ G.I. Sidorov, V.M. Poplavsky, A.A. Kritchko, A.S. Maloletnev; Editorial board of Journal "Izvestia visshikh uchebnikh zavedeniy, Yadernaya energetica" (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2002. – 10 pages, 5 tables. – References, 28 titles.