The Integral Over a Bounded Set

Definition

S가 bounded set in \mathbb{R}^n 이고 $f:S \to \mathbb{R}$ 이 bounded function 일 때 $f_S:\mathbb{R}^n \to \mathbb{R}$ 을 다음과 같이 정의한다.

$$f_S = \left\{ egin{aligned} f(x) & ext{ for } x \in S, \ 0 & ext{ otherwise} \end{aligned}
ight.$$

S늘 포함하는 closed rectangle Q 에 대해 $\int_S f = \int_Q f_S$ 로 정의한다.

Lemma 1.

Q와 Q'이 \mathbb{R}^n 에서의 두 rectangle이라 하자. $f:\mathbb{R}^n \to \mathbb{R}$ 이 bounded function 이고 $Q \cap Q'$ 밖에서 0 이면 1) $\int_Q f = \int_{Q'} f$, 2) $\int_Q f$ exists iff $\int_{Q'} f$ exists.

proof

 $Q \subset Q'$ 일 경우를 생각하자. $E = \{x \in \operatorname{int}(Q) : f \text{ is discontinuous at}\}$ 이라 하면 $\int_Q f$ exists iff E has measure 0. 따라서 $\int_{Q'} f$ exists iff E has measure 0.

 $\int_Q f$ 와 $\int_{Q'} f$ 가 존재한다고 가정하자. Q'의 partition P_0' 에 대해 Q의 end points를 포함시킨 Q'의 partition을 P라 하자. $R \in P$ 는 Q에 포함되어 있거나 disjoint 한데 후자의 경우 f(x) = 0 for $\forall x \in R$. 따라서 $\int_Q f = \int_{Q'} f$.

 $Q \not\subset Q'$ 일 경우는 $\int_{Q\cap Q'} f = \int_Q f = \int_{Q'} f$. \square

Lemma 2.

 $f,\,g:S\subset\mathbb{R}^n o\mathbb{R}^n$ 이고 $F,\,G:S o\mathbb{R}^n$ 이 $F(x)=\max\{f(x),\,g(x)\}$, $G(x)=\min\{f(x),\,g(x)\}$ 일 때 다음이 성립한다.

- 1. f, g가 x_0 에서 연속이면 F, G도 x_0 에서 연속이다.
- 2. f, g가 S에서 integrable 이면 F, G도 integrable 이다.

Proof is trivial

Theorem 3. (Properties of the integral)

S가 bounded set in \mathbb{R}^n 이고 $f, g: S \to \mathbb{R}$ 가 bounded functions 일 때 다음이 성립한다.

1. f, g가 integrable over S 이면 af + bg도 integrable over S 이며, $\int_S (af + bg) = a \int_S f + b \int_S g$ 이다.

- 2. f, g가 integrable over S이고 $f(x) \leq g(x)$ for all $x \in S$ 이면 $\int_S f \leq \int_S g$ 이다. 또한 |f|도 integrable 이며 $|\int_S f| \leq \int_S |f|$ 이다.
- 3. $T \subset S$ 이고 f가 non-negative on S 이며 integrable over T and S 이면 $\int_T f \leq \int_S f$ 이다.
- 4. f가 integrable over S_1 and S_2 이면 f is integrable over $S_1 \cup S_2$ and $S_1 \cap S_2$ 이며 $\int_{S_1 \cup S_2} f = \int_{S_1} f + \int_{S_2} f \int_{S_1 \cap S_2} f$ 이다.

Proof is trivial

Conventions

앞으로는 연속 함수의 적분에 대해서만 생각하기로 하자.

Theorem 4.

S가 bounded set, $f:S o\mathbb{R}$ 이 bounded continuous function, $E=\{x\in \mathrm{Bd}(S): \lim_{y o x}f(y)
eq 0 ext{ or not defined.}}라 하자. <math>E$ 가 measure zero iff f is integrable over S 이다.

(Proof) S를 포함하는 closed rectangle Q를 생각하고 f를 Q로 확장한 f_S 와 D를 다음과 같이 정의한다.

$$f_S(x) = \left\{ egin{aligned} f(x) & ext{if } x \in S, \ 0 & ext{otherwise.} \end{aligned}
ight.$$

$$D = \{x \in Q : f_S \text{ is discontinuous at}\}$$
 .

이 때 D=E 임을 알고 있다. E가 measure zero 이면 f_S is integrable over Q 이고, 정의에 의해 $\int_S f = \int_Q f_S$ 이 므로 f is integrable over S. 역으로 f is integrable over G 이면 G0 is integrable over G0 이므로 G1 has measure zero. \Box

Theorem 5.

Let $S\subset\mathbb{R}^n$ be bounded, $f:S\to\mathbb{R}$ be bounded and continuous. 만약 f is integrable over S 이면 f is integrable over $\operatorname{int}(S)$ 이며 $\int_S f=\int_{\operatorname{int}(S)} f$ 이다.

Proof

Let $A=\operatorname{int}(S)$. Then $f_A=f_S$ for $x\in\operatorname{int}(S)\cup\operatorname{ext}(S)$.

Let $D=\{x\in \mathrm{Bd}(S): f \text{ is discontinuous at }\}.$ f is integrable if D has measure 0. 따라서 f is integrable over A. f_A 와 f_S 는 D에서만 그 값이 다르며 $f_S-f_A=0$ for all $x\not\in D$ 이므로 $\int_A f=\int_S f$. \square

Definition: Volume of rectifiable set

S가 bounded set in \mathbb{R}^n 일 때 S에서의 constant function 1 이 integrable over S이면 S를 **rectifiable** 이라 하며 S의 volume을 $v(S) = \int_S 1$ 로 정의한다.

Theorem 6.

 $S \subset \mathbb{R}^n$ is rectifiable iff $\mathrm{Bd}(S)$ has measure zero.

 S, S_1, S_2 가 rectifiable 일 때 다음이 성립한다.

- 1. $v(S) \geq 0$.
- 2. $S_1 \subset S_2$ 이면 $v(S_1) \leq v(S_2)$.
- 3. $S_1 \cap S_2$ 와 $S_1 \cup S_2$ 도 rectifiable 이며 $v(S_1 \cup S_2) = v(S_1) + v(S_2) v(S_1 \cap S_2)$ 이다.

Proof is trivial

Definition: Graph and simple region

C가 compact rectifiable set in \mathbb{R}^{n-1} 이고 함수 $\phi:C \to \mathbb{R}$ 에 대해 $G_\phi=\{(x,\,t):x\in C \text{ and } t=\phi(x)\}$ 를 **graph** of ϕ 라 한다. C에서의 연속함수 $\phi,\,\psi:C \to \mathbb{R}$ with $\phi(x)\leq \psi(x)$ for all $x\in C$ 에 대해 다음과 같이 정의된 집합 S 을 **simple region** in \mathbb{R}^n 이라 한다.

$$S = \{(x, t) : x \in C \text{ and } \phi(x) \le t \le \psi(x)\}$$
.

Lemma 7.

S가 simple region in \mathbb{R}^n 이면 S는 compact and rectifiable set 이다.

 $(\mathit{Proof})\ \phi,\ \psi$ 에 대한 graph를 각각 $G_{\phi},\ G_{\psi}$ 라 하고 $D=\{(x,\ t):x\in \mathrm{Bd}(C)\ \ \mathrm{and}\ \ \phi(x)\leq t\leq \psi(x)\}$ 라 하자. $\mathrm{Bd}(S)=D\cup G_{\phi}\cup G_{\psi}$ 이다. $\mathrm{Bd}(S)\subset S$ 이고 S는 bounded 이므로 S는 compact set 이다.

이제 G_ϕ 와 G_ψ 가 measure zero 임을 보이자. \mathbb{R}^{n-1} 에서의 C를 포함하는 rectangle Q 를 생각한다. C 가 compact set 이므로 ϕ , ψ are uniformly continuous on C. $\varepsilon>0$ 이 주어졌고 $\varepsilon'=\varepsilon/(2\,v(Q))$ 라 하자. Uniformly continuity of ϕ 에 의해 모든 $x,\,y\in C$ with $|x-y|<\delta$ 에 대해 $|\phi(x)-\phi(y)|<\varepsilon'$ 인 $\delta>0$ 이 존재한다. Q 를 그 mesh가 δ 보다 작은 cubes 로 분할한 partition을 P 라 하자.

 $R\in P$ 이고 $R\cap C
eq \varnothing$ 이면 모든 $x,y\in R\cap C$ 에 대해 $|\phi(x)-\phi(y)|<\varepsilon'$ 이다. 모든 $R\in P$ with $R\cup C
eq \varnothing$ 에서 임의의 $x_R\in R\cap C$ 에 대해 \mathbb{R}^n 에서의 rectangle $Q_R=R imes[\phi(x_R)-\varepsilon',\phi(x_R)+\varepsilon']$ 을 생각하자. 이 Q_R 은 모든 $x\in R$ 에서의 $(x,\phi(x))$ 를 포함하며, 이러한 Q_R 의 set의 부피의 합은 $2\varepsilon' imes v(Q)=\epsilon$ 보다 작다. 따라서 G_ϕ 는 measure zero 이며 같은 이유로 G_ψ 도 measure zero 이다.

이제 남은것은 D가 measure zero 임을 보이는 것이다. ϕ , ψ 가 C에서 연속이므로 모든 $x \in C$ 에서 $-M \leq \phi(x) \leq \psi(x) \leq M$ 인 $M \geq 0$ 이 존재한다. C가 rectifiable 이므로 given $\varepsilon > 0$ 에 대해 $\operatorname{Bd}(C)$ 를 cover 하며 총 부피의 합이 $\varepsilon/2M$ 보다 작은 rectangles in \mathbb{R}^{n-1} 의 집합 $\{Q_1,\,Q_2,\ldots\}$ 가 존재한다. 따라서 $\{Q_i \times [-M,\,M]\}$ 는 D를 cover 하며 총 부피의 합은 ε 보다 작다. 즉 D는 measure zero 이다. \square

지금까지 적분을 $\int_S f$ 를 다룸에 있어 bounded S와 bounded f만을 생각해 왔다. 이제 적분개념을 확장시켜 unbounded S and/or unbounded f 조건에서의 적분을 생각하자.

Definition

 \mathbb{R}^n 에서의 open set A와 연속함수 $f:A\to\mathbb{R}$ 를 생각하자. f 가 non-negative 이고 D를 set of all compact rectifiable subsets of A 라 하자. $\sup\left\{\int_C f:C\in D\right\}$ 가 존재 할 때 이 값을 **extended integral** of f over A 로 정의하며 $\int_A f$ 로 쓴다. 일반적인 f 에 대해 $f_+=\max\left\{f(x),\,0\right\}$, $f_-=\max\left\{-f(x),\,0\right\}$ 로 정의하고, f_+ 와 f_- 가 integrable over A 이면 f를 integable over A라 하고 $\int_A f=\int_A f_+-\int_A f_-$ 로 정의한다. 여기서 \int_A 는 extended integral 이다.

Convention

앞으로 A가 open in \mathbb{R}^n 일 경우 \int_A 는 extended integral을 의미한다.

Lemma 8.

A가 open in \mathbb{R}^n 일 경우 다음을 만족하는 compact rectifiable subset of A 의 sequence C_1, C_2, \ldots 가 존재한다.

- 1. $\bigcup_{i=1} C_i = A$.
- 2. $C_N \subset \operatorname{Int}(C_{N+1})$ for each N.

 $(Proof)\ d(x,\,y)$ 를 sup metric |x-y| 로 정의하자. $B\subset\mathbb{R}^n$ 일 때 $d(x,\,B)=\inf\{d(x,\,b):b\in B\}$ 로 정의한다. $B=\mathbb{R}^n-A$ 일 때 $D_N=\{x\in A:d(x,\,B)\geq 1/N\ \ {
m and}\ \ d(x,\,0)\leq N\}$ 을 정의하면 각각의 N에 대해 D_N 은 compact and bounded subset of A 이다. $\mathcal{D}=\{D_N:N\in\mathbb{Z}\}$ 일 때 \mathcal{D} 가 A를 cover 함을 보이자. $x\in A$ 에 대해 $(x,\,B)=d_x>0$ 이다. $N_0>1/d_x$ 이면 $x\in D_{N_0}$.

 $A_{N+1} = \{x \in A : d(x, B) > 1/(N+1) \text{ and } d(x, 0) < N+1\}$ 을 정의하면 $D_N \subset A_{N+1} \subset \operatorname{Int}(D_{N+1})$ 이므로 $D_N \subset \operatorname{Int}(D_{N+1})$ 임을 알 수 있다.

모든 $x\in D_N$ 에 대해 x를 중심으로 하며 $\mathrm{Int}(D_{N+1})$ 에 포함되는 open cube 들을 모으자. D_N 은 compact set 이므로 finite open cubes로 D_N 을 cover 할 수 있으며 이 finite open cubes 각각의 closure의 union을 C_N 이라 하자. 그렇다면 $D_N\subset\mathrm{Int}(C_N)\subset C_N\subset\mathrm{Int}(D_{N+1})$ 이다. 이 C_N 의 union은 A 이며 for each N, $C_N\subset\mathrm{Int}(C_{N+1})$ 이다. \square

Theorem 9.

A가 open in \mathbb{R}^n , $f:A\to\mathbb{R}$ 이 연속함수라 하자. Sequence of compact rectifiable subsets of A, $\{C_1,C_2,\ldots\}$ 가 (1) $\bigcup_i C_i = A$ 이고 (2) $C_i \subset \operatorname{Int}(C_{i+1})$ for each i 일 때 다음이 성립한다 : f is integrable over A iff the sequence $\int_{C_i} |f|$ is bounded. 이 경우 다음이 성립한다.

$$\int_A f = \lim_{n \to \infty} \int_{C_n} f$$
.

 (Proof) 우선 f 가 non-negative 라 가정한다. $S_n = \int_{C_n} f$ 이라 하면 S_n 은 monotonically increasing sequence 이므로 S_n 이 bounded 이면 수렴한다. f 가 integrable over A 라 가정하자. D 를 set of all compact rectifiable subset of A 라 하면 $S_n = \int_{C_n} f \le \sup_D \{\int_D f\} = \int_A f$ 이므로 S_n 은 bounded 이고 $\lim_{n \to \infty} S_n \le \int_A f$ 이다.

역으로 S_n 이 bounded 라 가정하자. K가 compact subsets of A 이면 $\{\operatorname{Int}(C_i)\}$ 에 의해 cover 되며 compactness 에 의해 finite elements of $\{\operatorname{Int}(C_i)\}$ 로 cover 된다. $\operatorname{Int}(C_i) \subset C_i \subset \operatorname{Int}(C_{i+1})$ 이므로 $K \subset \operatorname{Int}(C_M)$ 인 M 이 존재한다. 따라서 $\int_K f \leq \int_{C_M} f \leq \lim_{n \to \infty} \int_{C_n} f$. K가 임의의 compact subset of A 이므로 extended integral의 정의에 의해 f is integrable over A 이고 $\int_A = \lim_{n \to \infty} \int_{C_n} f$ 이다.

이제 f가 non-negative 라는 조건을 없에자. 우리는 f is integrable over A iff f_+ and f_- are integrable over A 임을 알고 있다. 따라서 f is integrable over A iff $\int_{C_n} f_+$ and $\int_{C_n} f_-$ are bounded 이다. 우리는 $\{\int_{C_n} f_+\}$ and $\{\int_{C_n} f_-\}$ are both bounded 임을 알고 있으므로 f는 integrable over A 이다. $\int_{C_n} f = \int_{C_n} f_+ - \int_{C_n} f_-$ by definition 이므로 $\int_A f = \int_A f_+ - \int_A f_- = \lim_{n \to \infty} \int_{C_n} f$.

Corollary 10.

 $A \subset \mathbb{R}^n$ 에서 $f: A \to \mathbb{R}$ 이 연속함수 일 때, f is integrable over A iff |f| is integrable over A 이다.

 (Proof) Theorem 9의 증명에서 $0 \leq f_+, \ f_- \leq |f|$ 이고 $|f| = f_+ + f_-$ 이므로 $\int_{C_n} f_+$ and $\int_{C_n} f_-$ are bounded iff $\int_{C_n} |f|$ is bounded. \Box

Theorem 11.

A, B가 open in \mathbb{R}^n 이고 $f, g: A \to \mathbb{R}^n$ 이 연속함수 일 때 다음이 성립한다.

- (a) f 와 g가 integrable over A 이면 af+bg 도 integrable over A 이며, $\int_A (af+bg) = a\int_A f+b\int_A g$ 이다.
- (b) f와 g가 integrable over A 이고 $f(x) \leq g(x)$ 이면 $\int_A f \leq \int_A g$ 이다. 특히 $|\int_A f| \leq \int_A |f|$ 이다.
- (c) $B \subset A$ 이고 f가 integrable over A 이면 $f \succeq$ integrable over B 이고 $\int_B f \leq \int_A f$ 이다.
- (d) f가 $A \cup B$ 에서 연속이고 integrable over A and over B 이면 f is integrable over $A \cup B$ and $A \cap B$ 이며 다음 이 성립한다.

$$\int_{A\cup B}f=\int_Af+\int_Bf-\int_{A\cap B}f\;.$$

 (Proof) A 에 대해 Lemma 8을 만족하는 sequence $\{C_n\}$ 을 생각하자. 각각의 C_n 은 compact rectifiable subset of A 이며 $\bigcup_n C_n = A$ 이고 $C_n \subset \operatorname{Int}(C_{n+1})$ 이다.

- (a) $|af+bg| \leq |a||f|+|b||g|$ 이므로 $\int_{C_n} |af+bg| \leq |a| \int_{C_n} |f|+|b| \int_{C_n} |g|$ 이다. 따라서, f,g are integrable over $C_n \implies |f|, |g|$ are integrable over $C_n \implies |af+bg|$ is integrable over $C_n \implies (af+bg)$ is integrable over C_n . Linearity에 의해 $\int_{C_n} (af+bg) = a \int_{C_n} f + b \int_{C_n} g$ 이므로 (a)가 성립한다.
- (b) $\int_{C_n} f \leq \int_{C_n} g$ 이므로 $\int_A f \leq \int_A g$.
- (c) 임의의 compact rectifiable subset of B, D에 대해 $\int_D f \leq \int_A f$ 이다. $\int_B f = \sup_D \{\int_D f\}$ 이므로 (c) 성립.

(d) B에 대해 Lemma 8을 만족하는 sequence $\{D_n\}$ 을 생각하고 $\{E_n=C_n\cup D_n\}$, $\{F_n=C_n\cap D_n\}$ 으로 정의하면 $\{E_n\}$, $\{F_n\}$ 은 각각 $A\cup B$, $A\cap B$ 에 대해 Lemma 8을 만족하는 sequence 이다(이것을 쉽게 보일 수 있다). 따라서 $\int_{E_n}f=\int_{C_n}f+\int_{D_n}f-\int_{F_n}f$ 이다.

f o |f| 하면 $\int_{E_n}|f|+\int_{F_n}|f|=\int_{C_n}|f|+\int_{D_n}|f|$ 이므로 $\int_{E_n}|f|$ 와 $\int_{F_n}|f|$ 는 bounded above. 따라서 f is integrable over $A\cup B$ and $A\cap B$ 이며 주어진 적분에 관한 식이 성립한다. \qed

Theorem 12.

A가 bounded open set in \mathbb{R}^n 이고 $f:A\to\mathbb{R}$ 이 bounded continuous funtion이면 extended integral of f over A가 존재한다. 만약 ordinary integral of f over A가 존재하면 두 값은 같다.

(Proof) Extended integral of f over A를 $\int_A' f$ 로, ordinary integral of f over A를 $\int_A f$ 로 쓰기로 하자. A를 포함하는 closed rectangle Q를 생각하자. f가 bounded 이므로 |f| < M 인 M > 0이 존재한다. 또한 f_A 를 다음과 같이 정의한다.

$$f_A(x) = egin{cases} f(x) & ext{ if } x \in A \ , \ 0 & ext{ otherwise }. \end{cases}$$

- (1) 우선 $\int_A' f$ 가 존재함을 보이자. D 가 compact rectifiable subset of A 이면 $\int_D |f| \le \int_D M \le M \cdot v(Q)$ 이다. 따라서 $\int_A' f$ 는 존재한다.
- (2) f 가 non-negative 라 가정하자. $\int_A f$ 가 존재한다면 $\int_A f = \int_Q f_A$ 이다. D가 compact rectifiable subset of A 이면 $\int_D f = \int_D f_A \leq \int_O f_A = \int_A f$ 이므로 $\int_A' f \leq \int_A f$ 임을 알 수 있다.
- (3) Q에 대한 partition P를 생각하자. $R_1,\,R_2,\,\ldots,\,R_k$ 는 P에 속한 rectangle 중 A에 포함되는 것들이라 하고 $D=\bigcup_{i=1}^kR_i$ 라 하자. $L(f_A,\,P)=\sum_{i=1}^km_{R_i}(f)\cdot v(R_i)\leq \sum_{i=1}^k\int_{R_i}f=\int_Df\leq \int_A'f$ 이다. 따라서 \int_Af 가 존재한다면 $\int_Af\leq \int_A'f$ 이다. (2)와 함께 생각하면 \int_Af 가 존재한다면 $\int_Af=\int_A'f$.
- (4) 이제 일반적인 f에 대해 생각하자. 앞에서 처럼 $f_+(x) = \max\{f(x), 0\}$, $f_-(x) = \max\{-f(x), 0\}$ 로 정의하면 f is integrable over A iff f_+ and f_- are integrable over A 이다. (2), (3) 을 이용하면

$$\int_A f = \int_A f_+ - \int_A f_- = \int_A' f_+ - \int_A' f_- = \int_A' f \; .$$

Corollary 13.

S가 \mathbb{R}^n 의 bounded set 이고 $f:S \to \mathbb{R}$ 이 bounded continuous function 이라 하자. f가 integrable over S in the ordinary sense 이면 $\int_S f = \int_{\operatorname{Int}(S)}' f$ 이다.

Proof is trivial

Theorem 14.

A가 open in \mathbb{R}^n 이고 $f:A \to \mathbb{R}$ 이 연속함수라 하자. Sequence of open sets $\{U_1,U_2,\ldots\}$ 가 $U_n \subset U_{n+1}$ for each $n \in \mathbb{Z}$ 이며 $\bigcup U_n = A$ 일 때 다음이 성립한다. $\int_A f$ exists iff the sequence $\{\int_{U_n} |f|\}$ exists and bounded. 이 경우

$$\int_A f = \lim_{n o \infty} \int_{U_n} f$$

이다.

 $(Proof)\ f$ 가 non-negative 일 경우에 증명하면 일반적인 경우는 앞서와 같이 증명되므로 f가 non-negative 라 가정하자. $\int_A f$ 가 존재한다면 Theorem 11. (3)에 의해 $\int_{U_n} f \leq \int_A f$ 이므로 sequence $\{\int_{U_n} f\} = \{\int_{U_n} |f|\}$ 가 존재하며 bounded 이다. 따라서 $\lim_{n \to \infty} \int_{U_n} f \leq \int_A f$ 이다.

이제 $\{\int_{U_n} f\}$ 가 존재하며 bounded 라 하자. D 를 임의의 compact rectifiable subset of A 라 하면 D는 $\{U_n\}$ 에 의해 cover 되며 D가 compact set 이므로 $D \subset U_M$ 인 $U_M \in \{U_n\}$ 이 존재한다. $\int_D f \leq \int_{U_M} \leq \lim_{n \to \infty} \int_{U_n} f$ 이고 $\int_A f = \sup_D \{\int_D f\}$ 이므로 (in the extended sense) $\int_A f \leq \lim_{n \to \infty} \int_{U_n} f$. 따라서 Theorem 이 성립한다. \square