Extrema

David Robinson

Critical Points

Let z = f(x, y) be a function of two variables that is defined on an open set containing the point (x_0, y_0) . The point (x_0, y_0) is called a **critical point of a function of two variables** f if one of the two following conditions holds:

- 1. $f_x(x_0, y_0) = f_y(x_0, y_0) = 0$
- 2. Either $f_x(x_0, y_0)$ or $f_y(x_0, y_0)$ does not exist.

Let z = f(x, y) be a function of two variables that is defined and continuous on an open set containing the point (x_0, y_0) . Then f has a **local maximum** at (x_0, y_0) if

$$f(x_0, y_0) \ge f(x, y)$$

for all points (x, y) within some disk centered at (x_0, y_0) . The number $f(x_0, y_0)$ is called a local maximum value. If the preceding inequality holds for every point (x, y) in the domain of f, then f has a global maximum at (x_0, y_0) .

The function f has a **local minimum** at (x_0, y_0) if

$$f(x_0, y_0) \le f(x, y)$$

for all points (x, y) within some disk centered at (x_0, y_0) . The number $f(x_0, y_0)$ is called a local minimum value. If the preceding inequality holds for every point (x, y) in the domain of f, then f has a global minimum at (x_0, y_0) .

If $f(x_0, y_0)$ is either a local maximum or local minimum value, then it is called a local extremum.

Fermat's Theorem for Functions of Two Variables

Let z = f(x, y) be a function of two variables that is defined and continuous on an open set containing the point (x_0, y_0) . Suppose f_x and f_y each exists at (x_0, y_0) . If f has a local extremum at (x_0, y_0) , then (x_0, y_0) is a critical point of f.

Given the function z = f(x, y), the point $(x_0, y_0, f(x_0, y_0))$ is a saddle point if both $f_x(x_0, y_0) = 0$ and $f_y(x_0, y_0) = 0$, but f does not have a local extremum at (x_0, y_0) .

Second Derivative Test

Let z = f(x, y) be a function of two variables for which the first and second-order partial derivatives are continuous on some disk containing the point (x_0, y_0) . Suppose $f_x(x_0, y_0) = 0$ and $f_y(x_0, y_0) = 0$.

$$D = f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - (f_{xy}(x_0, y_0))^2$$

- 1. If D>0 and $f_{xx}(x_0,y_0)>0$, then f has a local minimum at (x_0,y_0) .
- 2. If D>0 and $f_{xx}(x_0,y_0)<0$, then f has a local maximum at (x_0,y_0) .
- 3. If D < 0, then f has a saddle point at (x_0, y_0) .
- 4. If D=0, then the test is inconclusive.

Absolute Maxima and Minima

A continuous function f(x, y) on a closed and bounded set D in the plane attains an absolute maximum value at some point of D and an absolute minimum value at some point of D.

Assume z = f(x, y) is a differentiable function of two variables defined on a closed and bounded set D. Then f will attain the absolute maximum value and the absolute minimum value, which are, respectively, the largest and smallest values found among the following:

- 1. The values of f at the critical points of f in D.
- 2. The values of f on the boundary of D.

A set $E \subseteq \mathbb{R}^n$ is called **compact** if every sequence of elements $\{R_k\}_{k=1}^{\infty} \subseteq E$ has a convergent subsequence $\{R_m\}_{m=1}^{\infty}$. A subset $E \subseteq \mathbb{R}^n$ is compact if and only if:9

- E is closed (containg all its boundary points)
- E is bounded $(\exists R > 0, E \subseteq B_R(0))$

Finding Critical Points on Boundary

Consider a line segment connecting (a,c) and (b,c). It can be parameterized by the equations x(t) = t, y(t) = c for $a \le t \le b$. Define g(t) = f(x(t), y(t)). The critical points are where g'(t) = 0.