1	2	3	4

Calificación		

ÁLGEBRA LINEAL

Recuperatorio del primer parcial — 15 de diciembre de 2020

1. Consideremos el \mathbb{Q} -espacio vectorial $V = \mathbb{Q}_3[X]$. Sean $S, T \subseteq V$ los subespacios

$$S = \langle kX^3 + X^2 - 2X + 1, 2X - (k+3), (k+3)X^2 - 4X \rangle,$$

$$T = \{ p \in \mathbb{Q}_3[X] : p(1) = p'(1) = 0 \}.$$

- (a) Determinar todos los valores de $k \in \mathbb{Q}$ para los cuales existe un proyector $f: V \to V$ con $\operatorname{Nu}(f) = S$ e $\operatorname{Im}(f) = T$.
- (b) Para alguno de los valores hallados, definir f en una base de V y dar la matriz de f en esa base.
- 2. Sea V un K-espacio vectorial de dimensión 9, y sea $f:V\to V$ una transformación lineal tal que $\dim {\rm Im}(f)=7$ y $\dim {\rm Nu}(f^2)=4$.

Probar que $Nu(f) \subseteq Im(f)$.

- 3. Sea V un \mathbb{Q} -espacio vectorial de dimensión A. Sea $B = \{v_1, v_2, v_3, v_4\}$ una base de V y sea $B^* = \{\varphi_1, \varphi_2, \varphi_3, \varphi_4\}$ su base dual. Por último, sea T el subespacio de V^* generado por todas las funciones de la forma $\varphi_i \varphi_j$ con $1 \le i < j \le 4$.
 - (a) Hallar una base del subespacio $S \subseteq V$ tal que $S^{\circ} = T$.
 - (b) Determinar si $\varphi_1 + \varphi_2 + \varphi_3 + \varphi_4 \in T$.
- 4. Sean $v,w\in K^{1\times n}$, y sea $A\in K^{n\times n}$ una matriz inversible. Probar que
 - (a) $\det(I_n + v^t w) = 1 + wv^t$.
 - (b) $\det(A + v^t w) = \det(A) + w \operatorname{adj}(A)v^t$.

 $\it Nota$: la segunda afirmación vale también si $\it A$ no es inversible.

Justifique todas sus respuestas, no omita detalles y escriba con claridad