MLV Lab GNN Study

Graph Attention Networks

Presenter: Jiwon Jeong (Data Science 21) jjwon4086@korea.ac.kr

Paper

Published at ICLR 2018 (<u>link</u>)

GRAPH ATTENTION NETWORKS

Petar Veličković*

Department of Computer Science and Technology University of Cambridge petar.velickovic@cst.cam.ac.uk

Guillem Cucurull*

Centre de Visió per Computador, UAB gcucurull@gmail.com

Arantxa Casanova*

Centre de Visió per Computador, UAB ar.casanova.8@gmail.com

Adriana Romero

Montréal Institute for Learning Algorithms adriana.romero.soriano@umontreal.ca

Pietro Liò

Department of Computer Science and Technology University of Cambridge pietro.lio@cst.cam.ac.uk

Yoshua Bengio

Montréal Institute for Learning Algorithms yoshua.umontreal@gmail.com

Abstract

- Graph Attentional Networks (GATs)
 - Graph-structed data
 - Masked self-attentional networks
 - Address the shortcomings of prior methods
 - Computationally efficient
 - Not depend on knowing graph structure
 - Readily applicable to inductive and transductive problems
 - SOTA performance

CNN

- Grid-like structure
- But, in many tasks, graph-structed data

GNN

- RNN: process data represented in directed acyclic graph
- GNN: generalization of RNN (cyclic/acyclic, directed/undirected)

- Generalizing convolution
 - Spectral approaches
 - Fourier domain by computing the eigendecomposition of the graph Laplacian
 - Graph Laplacian: matrix representation of a graph
 ex. Laplacian matrix = Degree matrix Adjacency matrix

Labelled graph	Labelled graph Degree matrix					Adjacency matrix						Laplacian matrix							
6 -	$\begin{pmatrix} 2 \\ 0 \end{pmatrix}$	0	0	0	0	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	1	0	1	0	0	1	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 2 \\ -1 \end{pmatrix}$	-1	0	0	-1 1	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
4)-(5)-(1)	0	0	2	0	0	0		0	1	0	1	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$	-1	-1	-1	-1	0
	0	0	0	3	0	0		0	0	1	0	1	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0	0	-1	3	-1 3	-1
3 0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	0	0	0	1)		$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	0	0	1	0	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$	0	0	-1 -1	0	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Spectral Networks and Deep Locally Connected Networks on Graphs

Joan Bruna
New York University
bruna@cime.nyu.edu

Arthur Salam
The City College of New York

New York University
Yann LeCun
New York University
New York University
New York University
New York University

Generalizing convolution

- Spectral approaches
 - Fourier domain by computing the eigendecomposition of the graph Laplacian
 - Intense computations, non-spatially localized filters
 - Learned filters depend on the Laplacian eigenbasis: not applied to graph with a different structure
- Non-spectral approaches
 - Operating on groups of spatially close neighbors
 - How to define operators?

- Generalizing convolution
 - Non-spectral approaches
 - Works with different sized neighborhoods
 - Maintains the weight sharing property of CNNs
 - MoNet
 - GraphSAGE
 - Impressive performance across large-scale inductive benchmarks

- Attention
 - Benefits
 - Dealing with variable sized inputs
 - Focusing on the most relevant parts of the input to make decisions
 - Self-attention

- Attention-based architecture
 - Perform node classification of graph-structed data
 - Self-attention strategy
 - Efficient operations
 - Specifying arbitrary weights to the neighbors
 - Directly applicable to inductive learning problems

Graph Attentional Layer

- Layer $\mathbf{h} \to \mathbf{h}' \ (\mathbb{R}^F \to \mathbb{R}^{F'})$
 - Node features $\mathbf{h} = \{\vec{h}_1, \vec{h}_2, \dots, \vec{h}_N\}, \vec{h}_i \in \mathbb{R}^F$ (N: # of nodes, F: # of features)
 - Layer outputs $\mathbf{h}' = \{\vec{h}_1', \vec{h}_2', \dots, \vec{h}_N'\}, \vec{h}_i' \in \mathbb{R}^{F'}$ (F': Dim of Hidden embeddings)
- Masked self-attention
- Multi-head attention

- Masked self-attention
 - Attention coefficients $e_{ij} = a(\mathbf{W}\vec{h}_i, \mathbf{W}\vec{h}_j)$ $(j \rightarrow i)$
 - $j \in \mathcal{N}_i$ (Neighborhood of node i)
 - $\mathbf{W} \in \mathbb{R}^{F' \times F}$: Learnable parameters
 - $a(\cdot)$: shared attentional mechanism $\mathbb{R}^{F'} \times \mathbb{R}^{F'} \to \mathbb{R}$
 - Inject graph structure by performing masked attention

- Masked self-attention
 - Normalize:

$$\alpha_{ij} = \operatorname{softmax}_{j}(e_{ij}) = \frac{\exp(e_{ij})}{\sum_{k \in \mathcal{N}_{i}} \exp(e_{ik})}$$

Expanded:

$$\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_j]\right)\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_i]\right)\right)}$$

Single-head attention

$$\vec{h}_i' = \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij} \mathbf{W} \vec{h}_j \right)$$

Multi-head attention (concatenation)

$$\vec{h}_i' = \left\| \sum_{k=1}^K \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij} \mathbf{W} \vec{h}_j \right) \to \mathbf{h}' \in \mathbb{R}^{KF'} \right\|$$

- Multi-head attention
 - Employ averaging
 - Delay applying final nonlinearity

$$\vec{h}_i' = \sigma \left(\frac{1}{K} \sum_{k=1}^K \sum_{j \in \mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \vec{h}_j \right)$$

$$- K = 3$$

Comparison to Related Work

- Highly efficient computation
 - The operation of the self-attentional layer can be parallelized
 - Single: O(|V|FF' + |E|F')
 - Multi: storage and parameter requirements $\times K$, independent and parallelized
- As opposed to GCN,
 - Assigning different importances to nodes of a same neighborhood
 - Leap in model capacity, Benefits in interpretability

Comparison to Related Work

- Attention mechanism
 - Applied in a shared manner to all edges in the graph
 - Not depend on upfront access to the global graph structure
 - Not required to be undirected ($\alpha_{ij}: j \rightarrow i$)
 - Applicable to inductive learning
 - : evaluated on graphs that completely unseen during training

Comparison to Related Work

- Vs. prior inductive method
 - Works with the entirety of the neighborhood
 - Does not assume any ordering within nodes
- Vs. MoNet
 - Use node features for similarity computations,
 rather than the node's structural properties (knowing the graph structure)

Evaluation

Results

ansductive		
Cora	Citeseer	Pubmed
55.1%	46.5%	71.4%
59.5%	60.1%	70.7%
59.0%	59.6%	71.7%
68.0%	45.3%	63.0%
67.2%	43.2%	65.3%
75.1%	69.1%	73.9%
75.7%	64.7%	77.2%
81.2%	69.8%	74.4%
81.5%	70.3%	79.0%
$81.7\pm0.5\%$	_	$78.8 \pm 0.3\%$
$81.4 \pm 0.5\%$	$70.9 \pm 0.5\%$	79.0 \pm 0.3%
83.0 \pm 0.7%	72.5 \pm 0.7%	79.0 \pm 0.3%
	55.1% 59.5% 59.0% 68.0% 67.2% 75.1% 75.7% 81.2% 81.5% 81.7 ± 0.5%	Cora Citeseer 55.1% 46.5% 59.5% 60.1% 59.0% 59.6% 68.0% 45.3% 67.2% 43.2% 75.1% 69.1% 75.7% 64.7% 81.2% 69.8% 81.5% 70.3% 81.7 ± 0.5% — 81.4 ± 0.5% 70.9 ± 0.5%

Method PPI Random 0.396 MLP 0.422 GraphSAGE-GCN (Hamilton et al., 2017) 0.500 GraphSAGE-mean (Hamilton et al., 2017) 0.598 GraphSAGE-LSTM (Hamilton et al., 2017) 0.612 GraphSAGE-pool (Hamilton et al., 2017) 0.600 GraphSAGE* 0.768 Const-GAT (ours) 0.934 ± 6 GAT (ours) 0.973 ± 6	
$\begin{array}{ll} \text{MLP} & 0.422 \\ \text{GraphSAGE-GCN (Hamilton et al., 2017)} & 0.500 \\ \text{GraphSAGE-mean (Hamilton et al., 2017)} & 0.598 \\ \text{GraphSAGE-LSTM (Hamilton et al., 2017)} & 0.612 \\ \text{GraphSAGE-pool (Hamilton et al., 2017)} & 0.600 \\ \hline \\ \text{GraphSAGE*} & 0.768 \\ \text{Const-GAT (ours)} & 0.934 \pm 60 \\ \hline \end{array}$	
$\begin{array}{ll} \text{GraphSAGE-GCN (Hamilton et al., 2017)} & 0.500 \\ \text{GraphSAGE-mean (Hamilton et al., 2017)} & 0.598 \\ \text{GraphSAGE-LSTM (Hamilton et al., 2017)} & 0.612 \\ \text{GraphSAGE-pool (Hamilton et al., 2017)} & 0.600 \\ \hline \text{GraphSAGE*} & 0.768 \\ \text{Const-GAT (ours)} & 0.934 \pm 60 \\ \hline \end{array}$	
$\begin{array}{ll} \text{GraphSAGE-mean (Hamilton et al., 2017)} & 0.598 \\ \text{GraphSAGE-LSTM (Hamilton et al., 2017)} & 0.612 \\ \text{GraphSAGE-pool (Hamilton et al., 2017)} & 0.600 \\ \hline \\ \text{GraphSAGE*} & 0.768 \\ \text{Const-GAT (ours)} & 0.934 \pm 60 \\ \hline \end{array}$	
GraphSAGE-LSTM (Hamilton et al., 2017) 0.612 GraphSAGE-pool (Hamilton et al., 2017) 0.600 GraphSAGE* 0.768 Const-GAT (ours) 0.934 ± 6	
GraphSAGE* 0.768 Const-GAT (ours) 0.934 ± €	
Const-GAT (ours) 0.934 ± 6	
GAT (ours) $0.973 + 0.973 +$	± 0.006
	± 0.002

- Transductive: mean classification accuracy
 - Inductive: micro-averaged F_1 score on the nodes of the two unseen test graphs
- Const-GAT: significance of being able to assign different neighbors

Evaluation

Results

- Visualization of the t-SNE-transformed feature representations
- The representation exhibits discernible clustering in the projected 2D space

Conclusions

- Graph attention networks (GATs)
 - Novel convolution-style neural networks that operate on graph-structured data,
 leveraging masked self-attentional layers
 - Computationally efficient
 - Assigning different importances to different nodes within a neighborhood
 - Not depend on knowing the entire graph structure upfront
 - Successfully achieved or matched state-of-the-art performance

Questions?