Facultad de Ingeniería

TRABAJO PRACTICO N°7

CONTENIDOS:

Espacio Euclideano. Bases Ortonormales. Proceso de Ortonormalización de Gram-Schdmit

1.

a.- En el espacio vectorial de \mathbb{R}^2 , se define el producto interno siguiente:

$$((x, y), (a, b)) = x.a + 3.y.b$$

- i.- Determinar ((1, -2), (4,3))
- ii.- Calcular ||(2, -3)||
- iii.- Determinar x para que ||(2x+1,-2)||=8
- iv- Dar un ejemplo de un vector ortogonal a (-1,4)
- v.- Calcular la distancia entre (1, -2) y (4,3)

En un espacio vectorial V con producto interno, se define la **distancia entre los** elementos \boldsymbol{u} \boldsymbol{y} \boldsymbol{v} como: $dist(u,v) = \|u-v\|$

b. En el espacio vectorial R^{3x2} , se define el producto interno siguiente:

$$(A,B) = traza(A^T.B)$$
i.- Determinar $\begin{pmatrix} 1 & 3 \\ 2 & 0 \\ -1 & -2 \end{pmatrix}$, $\begin{pmatrix} 1 & -1 \\ -1 & 5 \\ 0 & 3 \end{pmatrix}$)

ii.- Calcular
$$\begin{pmatrix} 1 & -1 \\ 1 & 1 \\ 3 & 2 \end{pmatrix}$$

iii.- Determinar
$$x$$
, si existe, para que $\begin{pmatrix} 1 & 1 \\ 1 & 2x \\ 0 & 3 \end{pmatrix} = 8$

iv- Determinar
$$x$$
, si existe, para que $\begin{pmatrix} 1+x&3\\2&0\\1&2 \end{pmatrix}$ y $\begin{pmatrix} 1&3\\x&1\\-1&-2 \end{pmatrix}$ sean ortogonales

v.- Calcular la distancia entre
$$\begin{pmatrix} 1 & 3 \\ 2 & 0 \\ -1 & -2 \end{pmatrix}$$
 $y \begin{pmatrix} 1 & -1 \\ -1 & 5 \\ 0 & 3 \end{pmatrix}$

2. Sean \vec{u} y \vec{v} dos vectores ortogonales y unitarios de un espacio vectorial euclidiano, demostrar que $\|\vec{u}-\vec{v}\|=\sqrt{2}$

3. Siendo
$$\vec{u}$$
 y \vec{v} dos vectores ortogonales, $\|u\|=2$ y v es unitario, demostrar que $\|\vec{u}-\vec{v}\|^2=5$

4. Usando propiedades y sabiendo que: $\langle u, v \rangle = 2$, $\langle u, w \rangle = 3$, calcular:

a. $\langle u, v + w \rangle$

b. $\langle u, 5v \rangle$ c. $\langle 3u, -2v \rangle$

- 5.- Determine una base ortonormal para los siguientes espacios.
- a. Para R^3 a partir de la base $\{(-1,0,1),(0,1,1),(0,0,1)\}$
- b Para R^2 a partir de la base $\{(1,5), (-1,1)\}$
- c. $\{(x, y, z): 3x y + 6z = 0\}$
- d. $\{(x, y, z) \in R^3/x = -2y, z = x + y\}$