Wyjaśnianie predykcji

Uproszczenia modeli

- Funkcja kosztu nie zawsze odpowiada złożoności problemu:
 - Wydajność
 - Etyka
 - Zgodność z prawem

• Środowisko w którym model jest używany jest zmienne (czasem również pod wpływem działania modelu)

Cechy do interpretacji

- Zaufanie
- Przyczynowość
- Transferowalność
- Informatywność
- Sprawiedliwe i etyczne decyzje
- Niezawodność

Interpretowalność modelu

Interpretowalność jest to poziom na którym człowiek jest w stanie zrozumieć przesłanki decyzji

Interpretowalność jest to możliwość przewidywania przez człowieka rezultatów działania modelu

Interpretowalność:

- jak model działa; czy jest zbieżny a jego rozwiązanie jest jednoznaczne
- dlaczego model podał określony wynik

Jak wyjaśnić?

- Z konstrukcji modelu
- Post hoc
 - Tekst
 - Wizualizacja (t-SNE)
 - Wyjaśnienia lokalne mapa istotności
 - Podać przykład (np. Podobne słowa a w word2vec)
 - Dla sieci neuronowych: cechy wyuczone

Wyjaśnialne modele

Algorithm	Linear	Monotone	Interaction	Task
Linear regression	Yes	Yes	No	regr
Logistic regression	No	Yes	No	class
Decision trees	No	Some	Yes	class,regr
RuleFit	Yes	No	Yes	class,regr
Naive Bayes	No	Yes	No	class
k-nearest neighbors	No	No	No	class,regr

t-SNE

t-SNE

t-Distributed Stochastic Neighbour Embeding

$$p_{j|i} = \frac{\exp(-\|x_i - x_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i - x_k\|^2 / 2\sigma_i^2)},$$

Metody niezależne od modelu

- Globalne zastępstwo (surogate)
- Local interpretable model-agnostic explanations (LIME)
- SHapley Additive exPlanations (SHAP)

LIME dla tekstu

Wyuczone cechy - NN dla obrazów

What Does the Network See?

Semantic dictionaries give us a fine-grained look at an activation: what does each single neuron detect? Building off this representation, we can also consider an activation vector as a whole. Instead of visualizing individual neurons, we can instead visualize the *combination* of neurons that fire at a given spatial location. (Concretely, we optimize the image to maximize the dot product of its activations with the original activation vector.)

Activation Vector

Channels

INPUT IMAGE

ACTIVATIONS of neuron groups

ed on matrix factorization of mixed4d layer

6 groups

- https://christophm.github.io/interpretable-ml-book/
- https://arxiv.org/pdf/1606.03490.pdf
- https://distill.pub/2018/building-blocks/?
 utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=Deep%20Learning%20Weekly
- https://distill.pub/2016/misread-tsne/
- https://lvdmaaten.github.io/publications/papers/ JMLR_2008.pdf