Cheat Sheet for 2320

(Last updated: 5/8/2018)

a) Logarithm and exponential formulas:

1	2	3	4
$\log_a x = \frac{\log_b x}{\log_b a}$	$a^{\log_b x} = x^{\log_b a}$	$(x^a)^b = (x^b)^a$	$x^a * x^b = x^{a+b}$

- b) Summation of consecutive values: $1+2+3+...+n=\sum_{k=1}^{n}k=\frac{n(n+1)}{2}$
- c) Summation of squares: $1+2^2+3^2+...+n^2=\sum_{k=1}^n k^2=\frac{n(n+1)(2n+1)}{6}$
- d) Summation of Arithmetic series (where $a_i = a_1 + (i-1)d$): $\sum_{i=1}^{n} a_i = n \frac{(a_1 + a_n)}{2} = \frac{n}{2} [2a_1 + (n-1)d]$
- e) Summation of Geometric Series: $1+x+x^2+...x^n$

0 <x<1< th=""><th>x>1</th><th><i>x=1</i></th></x<1<>	x>1	<i>x=1</i>
$\sum_{k=0}^{n} x^{k} \le \sum_{k=0}^{\infty} x^{k} = \frac{1}{1-x}$	$\sum_{k=0}^{n} x^k = \frac{x^{n+1} - 1}{x - 1}$	$\sum_{k=0}^{n} 1^k = n+1$

- f) Harmonic series: $\ln(n+1) \le \sum_{k=1}^{n} \frac{1}{k} \le \ln n + 1$
- g) $\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}$, for |x| < 1 (CLRS pg.1148)
- h) $\sum_{k=0}^{\infty} \frac{1}{k!} = e = 2.718281... \cong 2.72$
- i) Approximation by integrals (CLRS, 1154):

$f(x)$ monotonically increasing $x \le y \Rightarrow f(x) \le f(y)$	$f(x)$ is monotonically decreasing $x \le y \Rightarrow f(x) \ge f(y)$
$\int_{m-1}^{n} f(x)dx \le \sum_{k=m}^{n} f(k) \le \int_{m}^{n+1} f(x)dx$	$\int_{m}^{n+1} f(x)dx \le \sum_{k=m}^{n} f(k) \le \int_{m-1}^{n} f(x)dx$

j) Radix sort (optimal r): $r = min\{b, floor(lg N)\}$

- k) Master Theorem: Let $a \ge 1$ and b > 1, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence: T(n) = aT(n/b) + f(n), where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:
 - 1. If $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
 - 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
 - 3. If $f(n) = \Omega(n^{\log_b a + \varepsilon})$, for some constant $\varepsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.
- 1) L'Hospital rule: If $\lim_{n\to\infty} f(n)$ and $\lim_{n\to\infty} g(n)$ are both 0 or $\pm\infty$ and if $\lim_{n\to\infty} \frac{f'(n)}{g'(n)}$ is a constant or $\pm\infty$, then:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{f'(n)}{g'(n)}.$$

m) f(n) = O(g(n)) if there exist positive constants c_0 and n_0 such that:

$$f(n) \le c_0 g(n)$$
 for all $n \ge n_0$.

Theorem: if
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$$
, then $f(n) = O(g(n))$.

n) $f(N) = \Omega(g(n))$ if there exist positive constants c_0 and n_0 such that: $c_0 g(n) \le f(n)$ for all $n \ge n_0$.

Theorem: if
$$\lim_{n\to\infty} \frac{g(n)}{f(n)} = c$$
, then $f(n) = \Omega(g(n))$.

O) $f(n) = \Theta(g(n))$ if there exist positive constants c_0 , c_1 and n_0 such that: $c_0 g(n) \le f(n) \le c_1 g(n)$ for all $n \ge n_0$.

Theorem: if
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \mathbf{c} \neq \mathbf{0}$$
, then $f(n) = \mathbf{\Theta}(g(n))$.