Árvore Geradora Mínima

Zenilton Patrocínio

Árvore Geradora – Lembrete

Uma árvore geradora $T = (V, E_T)$ de um grafo não direcionado G = (V, E) é um subgrafo gerador de G que também é uma árvore, isto é , $E_T \subseteq E$, $|E_T| = |V| - 1$ e T é conexo.

Seja um grafo não direcionado e ponderado G = (V, E) em que um valor de custo $c_e > 0$ é associado a cada aresta $e \in E$.

O custo total C(T) de uma árvore geradora $T = (V, E_T)$ de G pode ser obtido pela soma dos custos de todas as arestas de T, isto é, $C(T) = \sum_{e \in E_T} c_e$.

A árvore geradora de custo mínimo (AGM) é a árvore geradora de menor custo total dentre todas as possíveis árvores geradoras de um grafo.

A determinação de uma AGM pode ser feita em tempo polinomial.

Método de Prim

Método de Prim

Este algoritmo foi proposto originalmente em 1930 por um matemático tcheco, posteriormente pelo americano Robert Prim em 1957 e redescoberto por Edsger Dijkstra em 1959.

Incluir, de forma gulosa, um a um, os vértices da árvore geradora mínima.

A partir de um vértice qualquer do grafo (raiz), a cada passo, acrescenta-se a aresta de menor peso incidente ao conjunto de vértices que já foram selecionados e que possui uma extremidade em vértices no conjunto de não selecionados.

Método de Prim – Algoritmo

```
1. Escolher um vértice qualquer r \in V(G)
                                                          // Selecionar uma raiz
   V(T) \leftarrow \{ r \};
                                                          // Inicializar conj. de vértices selecionados
   \mathsf{E}(\mathsf{T}) \leftarrow \varnothing;
                                                          // Inicializar conj. arestas da AGM
     enquanto V(T) \neq V(G) efetuar
                                                          // Se houver vértice não selecionado?
          Encontrar a aresta \{v, w\} de menor custo tal que v \in V(T) e w \notin V(T)
                           // Isto é, a aresta de menor custo entre selecionados e não selecionados
          Acrescentar w = V(T)
                                                          // Adicionar novo vértice à AGM
     c. Acrescentar \{v, w\} a E(T)
                                                          // Adicionar nova aresta à AGM
```


Método de Prim – Exemplo

Método de Kruskal

Método de Kruskal

Este algoritmo foi proposto por Kruskal em 1956 e ele propõe incluir na árvore, a cada iteração, a aresta de menor custo que <u>não</u> forme um ciclo com as inseridas anteriormente.

Dessa forma são necessárias pelo menos n-1 iterações (em que n representa o número vértices do grafo). Contudo, pode ser necessário realizar mais iterações devido a necessidade de se ignorar arestas que formem ciclos.

O raciocínio está voltado para a formação da árvore a partir da inclusão de arestas, e não de vértices, como no algoritmo de Prim.

Método de Kruskal – Algoritmo

```
1. Ordenar arestas em ordem não decrescente e_1, e_2, e_3, \dots
2. V(T) \leftarrow V(G);
                                                                   // Adiciona todos vértices à AGM
3. E(T) \leftarrow \{ e_1 \};
                                                                   // Inicializar arestas da AGM
4. j \leftarrow 2;
                                                                   // Indica aresta a ser analisada
     enquanto | E(T) | < | V(T) | - 1 efetuar
                                                                  // Se ainda não for conexo?
     a. <u>se</u> aresta e<sub>i</sub> não forma ciclo com as arestas em E(T) <u>então</u>
               Acrescentar \{v, w\} a E(T)
                                                                  // Adicionar nova aresta à AGM
     b. i \leftarrow i + 1;
                                                                   // Indica próxima aresta
```


Lista ordenada de arestas: {b,e}, {d,g}, {f,h}, {d,e}, {g,i}, {e,i}, {c,f}, {a,d}, {a,b}, {f,g}, {c,d}, {h,i}, {a,c}

