IoT challenges

State of the art

Aghiles DJOUDI

LIGM/ESIEE Paris

April 11, 2019

- 1. Introduction
- State of the art
- First contribution
- 4. Second contribution
- 5. Conclusion

Figure 1: The IoT Platform

- Connect sensors to the gateway.
- Connect the gateway to the infrastructure.
- Store & Analyze sensors data.

1. Introduction | 1. Context 1/32

Problematic

Introduction

Figure 2: The IoT problematics

- How to communicate sensors efficiently
 - → IEEE 802.15.4, 6LowPAN
 - Throughput, Delay, Jitter, Loss rate and Availability.
- How to communicate sensors with the infrastructure efficiently
 - → LPWAN, LoraWan
 - Heterogeneity ?
- How to extract knowledge from sensors data.
 - Data mining: Classification, Clustering
 - Deep learning: Machine learning

1. Introduction | 2. Problematic 2/32

Problematic

Introduction

Figure 2: The IoT problematics

- How to communicate sensors efficiently
 - → IEEE 802.15.4, 6LowPAN
 - Throughput, Delay, Jitter, Loss rate and Availability.
- How to communicate sensors with the infrastructure efficiently
 - → LPWAN, LoraWan
 - Heterogeneity ?
- How to extract knowledge from sensors data.
 - Data mining: Classification, Clustering
 - Deep learning: Machine learning

1. Introduction | 2. Problematic 2/32

Motivations

Introduction

- First Motivation
 - First Motivation
 - * First Motivation
 - * Second Motivation
 - Second Motivation
- Second Motivation
- → First Motivation
 - Second Motivation
- Third Motivation
 - First Motivation
 - Second Motivation
- Fourth Motivation
 - First Motivation
 - Second Motivation

Figure 3

Goals

- First goal
 - First goal
 - First goal
 - * Second goal
 - Second goal
- Second goal
 - First goal
 - Second goal
- Third goal
 - First goal
 - Second goal
- Fourth goal
 - → First goal
 - Second goal

Figure 4

1. Introduction | 4. Goals 4/32

Challenges

Introduction

- First Challenge
 - → L'objectif est de réduire le taux de mortalité
 - → L'objectif est de rendre nos route plus sure
- Second Challenge
 - Connecter les pietons et le vehicule
 - augmenter la présision GPS
 - réduire la latence
- Third Challenge
 - → Connecter les pietons et le vehicule
 - → augmenter la présision GPS
 - → réduire la latence

Contributions

Introduction

- First contribution
 - Privacy settings
 - → Information propagation

- Second contribution
 - → Privacy settings
 - -
- Third contribution
 - Privacy settings
 - **→** [

- Introduction
- 2. State of the art
- 3. First contribution
- 4. Second contribution
- 5. Conclusion

- Introduction
- 2. State of the art
- 3. First contribution
- 4. Second contribution
- Conclusion

- 1. Heterogeneity
- 2. Security

- 1. Introduction
- 2. State of the art
- 3. First contribution
- 4. Second contribution
- Conclusion

- 1. Heterogeneity
- 2. Security

Literature review

Related work

- [1] Many studies have identified SDN as a potential solution to the WSN challenges, as well as a model for heterogeneous integration.
- [1] This shortfall can be resolved by using the SDN approach.
- [2] SDN also enhances better control of heterogeneous network infrastructures.
- [2] Anadiotis et al. define a SDN operating system for IoT that integrates SDN based WSN (SDN-WISE). This experiment shows how heterogeneity between different kinds of SDN networks can be achieved.
- [2] In cellular networks, OpenRoads presents an approach of introducing SDN based heterogeneity in wireless networks for operators.
- [3] There has been a plethora of (industrial) studies synergising SDN in IoT. The major characteristics of IoT are low latency, wireless access, mobility and heterogeneity.
- [3] Thus a bottom-up approach application of SDN to the realisation of heterogeneous IoT is suggested.
- [3] Perhaps a more complete IoT architecture is proposed, where the authors apply SDN principles in IoT heterogeneous networks.
- [4] it provides the SDWSN with a proper model of network management, especially considering the potential of heterogeneity in SDWSN.
- [4] We conjecture that the SDN paradigm is a good candidate to solve the heterogeneity in IoT.

2. State of the art | 1. Heterogeneity

Figure 5: Architecture and technology abstraction.

- 1. Introduction
- 2. State of the art
- 3. First contribution
- 4. Second contribution
- Conclusion

- Heterogeneity
- 2. Security

Security in SDN

related work

WSN OSI Layer	SDN Plane	Threat		
		Poor Authentication and Control		
	Application	Fraudulent flows rules insertion		
A1:+:		Poor access control and accountability		
Application		Malicious Application		
		DoS		
		Northbound Interface (API) attack		
Transport	Control	Threats from applications		
Transport		DoS		
Network		Unauthorised access		
		Scalability & Unavailability		
		Faulty or Malicious controller		
		Unauthorised access		
Data Link		Fraudulent rules		
Data Link		Forged/False traffic flows		
		Flooding, Spoofing		
Physical	Data	Southbound Interface (API) attack		
		Jamming, Tampering		
		Sybil		
		Compromised/hi-jacked controller		
		Malicious node		

Table: SDN vs OSI layer

SDN based sensor network

Management architecture	Management feature	Controller configuration	Traffic Control	Configuration and monitoring	Scapability and localization	Communication management
[5] Sensor Open Flow	SDN support protocol	Distributed	in/out- band	✓	~	/
[6] SDWN	Duty sycling, aggregation, routing	Centralized	in-band	1		
[7] SDN-WISE	Programming simplicity and aggregation	Distributed	in-band		1	
degante_smart_20 Smart	14a Efficiency in resource allocation	Distributed	in-band		1	
SDCSN	Network reliability and QoS	Distributed	in-band		1	
TinySDN	In-band-traffic control	Distributed	in-band		✓	
Virtual Overlay	Network flexibility	Distributed	in-band		✓	
Context based	Network scalability and performance	Distributed	in-band		1	
CRLB	Node localization	Centralized	in-band			
Multi-hope	Traffic and energy control	Centralized	in-band			✓
Tiny-SDN	Network task measurement	-	in-band			

Table 1: SDN-based network and topology management architectures. [3]

2. State of the art | 2. Security 10/32

- Introduction
- State of the ar
- 3. First contribution
- 4. Second contribution
- 5. Conclusion

- 1. Related work
- 2. Contagion process
- 3. Experimentation
- 4. Results exploitation
- 5. Conclusion

- 1. Introduction
- State of the ar
- 3. First contribution
- 4. Second contribution
- 5. Conclusion

- 1. Related work
- 2. Contagion process
- Experimentation
- Results exploitation
- 5. Conclusion

Related work

Comparison

Paper	A1	A2	A3	A4

Table 2: An example table.

Related work

Comparison

Paper	A1	A2	A3	A4

Table 3: An example table.

- 1. Introduction
- State of the art
- 3. First contribution
- 4. Second contribution
- 5. Conclusion

- 1. Related work
- 2. Contagion process
- 3. Experimentation
- Results exploitation
- 5. Conclusion

```
... (step 1)
Methods
```

- Privacy threats
 - Privacy settings
 - → Information propagation
- Privacy protection
 - Privacy settings
 - -

... (step 2) Methods

- Privacy threats
 - → Privacy settings
 - → Information propagation
- Privacy protection
 - Privacy settings
 - -

```
... (step 3)
Methods
```

- Privacy threats
 - → Privacy settings
 - → Information propagation
 - .
- Privacy protection
 - Privacy settings
 - -

```
... (step 4)
Methods
```

- Privacy threats
 - Privacy settings
 - → Information propagation
- Privacy protection
 - Privacy settings
 - -

- Introduction
- State of the art
- 3. First contribution
- 4. Second contribution
- 5. Conclusion

- Related work
- Contagion process
- 3. Experimentation
- Results exploitation
- Conclusion

Experimentation

Experimentation

- Privacy threats
 - Privacy settings
 - → Information propagation
 - .
- Privacy protection
 - → Privacy settings
 - -

- Introduction
- 2. State of the art
- 3. First contribution
- 4. Second contribution
- 5. Conclusion

- Related work
- Contagion process
- 3. Experimentation
- 4. Results exploitation
- 5. Conclusion

Results

Comparison

Figure 6

- Introduction
- State of the ar
- 3. First contribution
- 4. Second contribution
- 5. Conclusion

- 1. Related work
- 2. Contagion process
- 3. Experimentation
- Results exploitation
- 5. Conclusion

Conclusion

Figure 7: Cag.

Figure 8: Cag.

Figure 9: Cag.

Figure 10: Cag.

19/32

Challenges

Conclusion

- Privacy threats
 - → Privacy settings
 - → Information propagation
 - .
- Privacy protection
 - Privacy settings
 - -

- Introduction
- 2. State of the ar
- First contribution
- 4. Second contribution
- 5. Conclusion

- 1. Related work
- 2. Contagion process
- 3. Experimentation
- 4. Results exploitation
- 5. Conclusion

- Introduction
- 2. State of the art
- First contribution
- 4. Second contribution
- Conclusion

- 1. Related work
- 2. Contagion process
- Experimentation
- Results exploitation
- Conclusion

Related work

Comparison

Paper	A1	A2	A3	A4

Table 4: An example table.

Related work

Comparison

Paper	A1	A2	A3	A4

Table 5: An example table.

4. Second contribution | 1. Related work 22/32

- 1. Introduction
- 2. State of the ar
- First contribution
- 4. Second contribution
- 5. Conclusion

- 1. Related work
- 2. Contagion process
- Experimentation
- Results exploitation
- Conclusion

- Privacy threats
 - Privacy settings
 - → Information propagation
- Privacy protection
 - Privacy settings
 - -

... (step 2) Methods

- Privacy threats
 - Privacy settings
 - Information propagation
- Privacy protection
 - Privacy settings
 - -

... (step 3)
Methods

- Privacy threats
 - Privacy settings
 - → Information propagation
 - .
- Privacy protection
 - Privacy settings
 - -

```
... (step 4)
Methods
```

- Privacy threats
 - Privacy settings
 - → Information propagation
- Privacy protection
 - Privacy settings
 - -

- Introduction
- State of the art
- 3. First contribution
- 4. Second contribution
- 5. Conclusion

- Related work
- Contagion process
- 3. Experimentation
- Results exploitation
- 5. Conclusion

Experimentation

Experimentation

- Privacy threats
 - Privacy settings
 - Information propagation
 - .
- Privacy protection
 - → Privacy settings
 - -

- 1. Introduction
- 2. State of the art
- 3. First contribution
- 4. Second contribution
- 5. Conclusion

- Related work
- Contagion process
- 3. Experimentation
- 4. Results exploitation
- Conclusion

Results

Comparison

Figure 11

- 1. Introduction
- 2. State of the ar
- 3. First contribution
- 4. Second contribution
- 5. Conclusion

- 1. Related work
- 2. Contagion process
- Experimentation
- Results exploitation
- 5. Conclusion

Conclusion

Figure 12: Cag.

Figure 13: Cag.

Figure 14: Cag.

Figure 15: Cag.

Challenges

Conclusion

- Privacy threats
 - Privacy settings
 - → Information propagation
 - .
- Privacy protection
 - → Privacy settings
 - •

- 1. Introduction
- 2. State of the art
- 3. First contribution
- 4. Second contribution
- 5. Conclusion

Conclusion

Routing protocol	Control Cost	Link Cost	Node Cost
OSPF/IS-IS	Х	✓	X
OLSRv2	?	1	1
RIP	✓	?	X
DSR	✓	X	X
RPL	1	1	1

Table 6: Routing protocols comparison _rpl2_

Application protocol	Rest- Full	Trans- port	Pub- lish/Sub- scribe	Request/Re- sponse	Secu- rity	QoS	Header size (Byte)
COAP	✓	UDP	✓	✓	DTLS	✓	4
MQTT	Х	TCP	✓	X	SSL	✓	2
MQTT-SN	Х	TCP	✓	X	SSL	✓	2
XMPP	Х	TCP	✓	✓	SSL	X	-
AMQP	Х	TCP	✓	X	SSL	✓	8
DDS	Х	UDP	✓	X	SSL	✓	-
		TCP			DTLS		
HTTP	✓	TCP	Х	✓	SSL	Х	-

Table 7: Application protocols comparison

Conclusion

Routing protocol	Control Cost	Link Cost	Node Cost
OSPF/IS-IS	Х	✓	X
OLSRv2	?	✓	✓
RIP	✓	?	X
DSR	✓	X	X
RPL	✓	1	✓

Table 6: Routing protocols comparison _rpl2_

Application protocol	Rest- Full	Trans- port	Pub- lish/Sub- scribe	Request/Re- sponse	Secu- rity	QoS	Header size (Byte)
COAP	✓	UDP	✓	✓	DTLS	✓	4
MQTT	Х	TCP	✓	X	SSL	✓	2
MQTT-SN	Х	TCP	✓	X	SSL	✓	2
XMPP	Х	TCP	✓	✓	SSL	X	-
AMQP	Х	TCP	✓	X	SSL	✓	8
DDS	Х	UDP	✓	X	SSL	1	-
		TCP			DTLS		
HTTP	✓	TCP	X	✓	SSL	X	-

Table 7: Application protocols comparison

Thank you!

Challenges

Conclusion

- Privacy threats
 - Privacy settings
 - → Information propagation

- Privacy protection
 - → Privacy settings
 - -

5. Conclusion 32/32

Challenges

Conclusion

- Privacy threats
 - Privacy settings
 - → Information propagation

- Privacy protection
 - Privacy settings
 - -

Thank you!

5. Conclusion 32 / 32

References

[1]

[5]

- Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N. Venkatasubramanian, * A Software Defined Networking Architecture for the Internet-of-Things,* in 2014 IEEE Network Operations and Management Symposium (NOMS), 00250, Krakow, Poland: IEEE, May 2014, pp. 1–9.
- [2] H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke, * A Survey on Software-Defined Wireless Sensor Networks: Challenges and Design Requirements," IEEE Access, vol. 5, pp. 1872–1899, 2017, 00124.
- [3] M. Ndiaye, G. Hancke, and A. Abu-Mahfouz, * Software Defined Networking for Improved Wireless Sensor Network Management: A Survey, * Sensors, vol. 17, no. 5, p. 1031, May 4, 2017.
- [4] S. Bera, S. Misra, and A. V. Vasilakos, Software-Defined Networking for Internet of Things: A Survey, IEEE Internet of Things Journal, vol. 4, no. 6, pp. 1994–2008, Dec. 2017, 00055.
 - T. Luo, H.-P. Tan, and T. Q. S. Quek, "Sensor OpenFlow: Enabling Software-Defined Wireless Sensor Networks," IEEE Communications Letters, vol. 16, no. 11, pp. 1896–1899, Nov. 2012, 00339.
- [6] S. Costanzo, L. Galluccio, G. Morabito, and S. Palazzo, * Software Defined Wireless Networks (SDWN): Unbridling SDNs, *, p. 25, 00000.
- L Galluccio, S. Milardo, G. Morabito, and S. Palazzo, "SDN-WISE: Design, Prototyping and Experimentation of a Stateful SDN Solution for Wireless SEnsor Networks," in 2015 IEEE Conference on Computer Communications (INFOCOM), 00170, Kowloon, Hong Kong: IEEE, Apr. 2015, pp. 513–521.