$12a_{0701} (K12a_{0701})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -7.70053 \times 10^{53}u^{39} - 1.74213 \times 10^{54}u^{38} + \dots + 2.50493 \times 10^{54}b - 1.01102 \times 10^{54}, \\ &5.17594 \times 10^{54}u^{39} + 1.38121 \times 10^{55}u^{38} + \dots + 1.08547 \times 10^{55}a - 8.78741 \times 10^{53}, \\ &5u^{40} + 15u^{39} + \dots + 4u + 13 \rangle \\ I_2^u &= \langle 2u^{31}a + 3u^{31} + \dots - 2a + 4, \ 2u^{30}a + 16u^{31} + \dots + 2a - 15, \ u^{32} - u^{31} + \dots - 2u + 1 \rangle \\ I_3^u &= \langle -u^3 + b, \ u^3 + u^2 + 2a - 2u, \ u^4 - u^2 + 1 \rangle \\ I_4^u &= \langle b, \ a - 1, \ u^4 - u^3 + 1 \rangle \\ I_5^u &= \langle b + 1, \ -u^3 + a - 1, \ u^4 - u^3 + 1 \rangle \\ I_6^u &= \langle b, \ a - 1, \ u + 1 \rangle \\ I_7^u &= \langle b + 1, \ a, \ u + 1 \rangle \\ I_8^u &= \langle -u^3 + b, \ u^3 + 2a - 2u - 1, \ u^4 - u^2 + 1 \rangle \\ I_9^u &= \langle b + 1, \ u^5a - u^5 - u^3a + 2u^3 + au - u + 1 \rangle \end{split}$$

- * 8 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 122 representations.
- * 1 irreducible components of $\dim_{\mathbb{C}} = 1$

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -7.70 \times 10^{53} u^{39} - 1.74 \times 10^{54} u^{38} + \dots + 2.50 \times 10^{54} b - 1.01 \times 10^{54}, \ 5.18 \times 10^{54} u^{39} + 1.38 \times 10^{55} u^{38} + \dots + 1.09 \times 10^{55} a - 8.79 \times 10^{53}, \ 5u^{40} + 15u^{39} + \dots + 4u + 13 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.476839u^{39} - 1.27246u^{38} + \dots - 5.39284u + 0.0809549 \\ 0.307415u^{39} + 0.695481u^{38} + \dots + 2.07333u + 0.403613 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.169424u^{39} - 0.576975u^{38} + \dots - 3.31951u + 0.484568 \\ 0.307415u^{39} + 0.695481u^{38} + \dots + 2.07333u + 0.403613 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.211994u^{39} - 0.480895u^{38} + \dots - 3.96053u - 0.213115 \\ 0.0500582u^{39} + 0.116432u^{38} + \dots + 0.995645u + 0.307144 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.191581u^{39} - 0.280282u^{38} + \dots + 5.99057u + 1.63083 \\ -0.0736869u^{39} - 0.292199u^{38} + \dots - 0.484607u - 0.887781 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.231719u^{39} + 0.602871u^{38} + \dots + 1.98498u - 0.495273 \\ 0.0632015u^{39} + 0.154197u^{38} + \dots + 0.0133278u + 0.385259 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.245279u^{39} - 0.480339u^{38} + \dots + 6.44253u + 1.18353 \\ -0.133010u^{39} - 0.382392u^{38} + \dots - 0.608099u - 1.13846 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.660060u^{39} - 1.59385u^{38} + \dots - 8.11569u - 0.968106 \\ 0.246464u^{39} + 0.516908u^{38} + \dots + 1.74196u + 0.398054 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $0.355272u^{39} + 2.47238u^{38} + \cdots + 1.40321u + 8.32948$

Crossings	u-Polynomials at each crossing
c_1	$25(25u^{40} + 355u^{39} + \dots - 2766u + 169)$
c_2, c_7	$5(5u^{40} - 15u^{39} + \dots - 4u + 13)$
c_3, c_8	$64(64u^{40} + 192u^{39} + \dots + 80u + 25)$
c_4, c_9	$5(5u^{40} - 15u^{39} + \dots - 58u + 13)$
c_5, c_6, c_{11} c_{12}	$u^{40} + 4u^{39} + \dots + 36u + 4$
c_{10}	$25(25u^{40} - 455u^{39} + \dots + 718u + 169)$

Crossings	Riley Polynomials at each crossing
c_1	$625(625y^{40} + 14425y^{39} + \dots - 2166706y + 28561)$
c_2, c_7	$25(25y^{40} - 355y^{39} + \dots + 2766y + 169)$
c_{3}, c_{8}	$4096(4096y^{40} - 53248y^{39} + \dots - 13450y + 625)$
c_4,c_9	$25(25y^{40} - 455y^{39} + \dots + 718y + 169)$
c_5, c_6, c_{11} c_{12}	$y^{40} - 12y^{39} + \dots - 696y + 16$
c_{10}	$625(625y^{40} + 4425y^{39} + \dots - 2689202y + 28561)$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.970531 + 0.178964I		
a = -0.833678 + 1.090430I	-4.36949 + 3.79276I	-0.84937 - 5.47947I
b = 0.657380 + 0.842879I		
u = -0.970531 - 0.178964I		
a = -0.833678 - 1.090430I	-4.36949 - 3.79276I	-0.84937 + 5.47947I
b = 0.657380 - 0.842879I		
u = -0.800492 + 0.625954I		
a = -1.186250 - 0.317798I	-0.377065 - 0.505610I	13.55208 + 2.04018I
b = 0.13126 + 1.45702I		
u = -0.800492 - 0.625954I		
a = -1.186250 + 0.317798I	-0.377065 + 0.505610I	13.55208 - 2.04018I
b = 0.13126 - 1.45702I		
u = -0.916490 + 0.502951I		
a = -0.335321 + 0.936812I	0.08890 + 4.10799I	9.67304 - 7.45476I
b = 0.164319 + 0.087454I		
u = -0.916490 - 0.502951I		
a = -0.335321 - 0.936812I	0.08890 - 4.10799I	9.67304 + 7.45476I
b = 0.164319 - 0.087454I		
u = 0.957016 + 0.438264I		
a = 0.286645 + 0.087328I	-1.45001 - 1.63863I	1.206223 + 0.491984I
b = 0.282628 + 0.561245I		
u = 0.957016 - 0.438264I		
a = 0.286645 - 0.087328I	-1.45001 + 1.63863I	1.206223 - 0.491984I
b = 0.282628 - 0.561245I		
u = -0.911045 + 0.633331I		
a = -0.896481 - 0.513913I	-0.73084 + 5.44478I	10.81898 - 9.02994I
b = -0.33799 + 1.45617I		
u = -0.911045 - 0.633331I		
a = -0.896481 + 0.513913I	-0.73084 - 5.44478I	10.81898 + 9.02994I
b = -0.33799 - 1.45617I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.951215 + 0.571492I		
a = 0.650883 - 0.383013I	-2.13110 - 1.53175I	4.45404 + 4.45582I
b = 0.428609 + 1.127700I		
u = 0.951215 - 0.571492I		
a = 0.650883 + 0.383013I	-2.13110 + 1.53175I	4.45404 - 4.45582I
b = 0.428609 - 1.127700I		
u = 0.873906 + 0.143183I		
a = 1.14313 + 1.17285I	-3.47850 + 1.11172I	0.88815 - 1.52267I
b = -0.567731 + 0.944214I		
u = 0.873906 - 0.143183I		
a = 1.14313 - 1.17285I	-3.47850 - 1.11172I	0.88815 + 1.52267I
b = -0.567731 - 0.944214I		
u = 0.719139 + 0.511234I		
a = 1.309510 + 0.000140I	-1.35289 - 2.89894I	8.70495 - 0.09481I
b = -0.326936 + 1.143020I		
u = 0.719139 - 0.511234I		
a = 1.309510 - 0.000140I	-1.35289 + 2.89894I	8.70495 + 0.09481I
b = -0.326936 - 1.143020I		
u = -0.588353 + 0.956868I		
a = -1.60068 + 0.27140I	8.8274 - 13.1342I	12.15484 + 6.65872I
b = 1.37609 - 0.52776I		
u = -0.588353 - 0.956868I		
a = -1.60068 - 0.27140I	8.8274 + 13.1342I	12.15484 - 6.65872I
b = 1.37609 + 0.52776I		
u = 0.618330 + 0.966474I		
a = 1.58166 + 0.29564I	6.35181 + 7.20509I	10.12101 - 3.51952I
b = -1.298800 - 0.465176I		
u = 0.618330 - 0.966474I		
a = 1.58166 - 0.29564I	6.35181 - 7.20509I	10.12101 + 3.51952I
b = -1.298800 + 0.465176I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.338231 + 1.117800I	,	
a = -1.43704 + 0.00820I	7.17464 + 7.33287I	14.9640 - 8.5081I
b = 1.193230 + 0.235279I		
u = -0.338231 - 1.117800I		
a = -1.43704 - 0.00820I	7.17464 - 7.33287I	14.9640 + 8.5081I
b = 1.193230 - 0.235279I		
u = -0.602564 + 1.040950I		
a = -1.52308 + 0.24652I	12.76580 - 3.62003I	16.0601 + 2.4487I
b = 1.351000 - 0.264366I		
u = -0.602564 - 1.040950I		
a = -1.52308 - 0.24652I	12.76580 + 3.62003I	16.0601 - 2.4487I
b = 1.351000 + 0.264366I		
u = -1.248820 + 0.245961I		
a = -0.407145 + 0.707475I	-1.76098 + 5.75545I	3.78884 - 7.25461I
b = 0.988408 + 0.451580I		
u = -1.248820 - 0.245961I		
a = -0.407145 - 0.707475I	-1.76098 - 5.75545I	3.78884 + 7.25461I
b = 0.988408 - 0.451580I		
u = 1.287890 + 0.155559I		
a = 0.197100 + 0.675611I	1.16532 - 11.28520I	7.60677 + 9.06404I
b = -1.172550 + 0.479770I		
u = 1.287890 - 0.155559I	1 10590 + 11 005007	7 00077 0 004047
a = 0.197100 - 0.675611I	1.16532 + 11.28520I	7.60677 - 9.06404I
b = -1.172550 - 0.479770I $u = -1.108950 + 0.734483I$		
	7 9067 + 10 99197	10 0005 10 70717
a = 1.61641 - 1.35965I	7.2067 + 19.3213I	10.0095 - 10.7971I
b = -1.38090 - 0.60199I $u = -1.108950 - 0.734483I$		
	7 9067 10 99191	10 0005 + 10 70717
a = 1.61641 + 1.35965I	7.2067 - 19.3213I	10.0095 + 10.7971I
b = -1.38090 + 0.60199I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.100690 + 0.748356I		
a = -1.62760 - 1.23899I	4.8369 - 13.4697I	7.95384 + 7.41378I
b = 1.31857 - 0.55246I		
u = 1.100690 - 0.748356I		
a = -1.62760 + 1.23899I	4.8369 + 13.4697I	7.95384 - 7.41378I
b = 1.31857 + 0.55246I		
u = -0.535060 + 0.369159I		
a = 0.693924 + 0.131388I	1.022250 - 0.157854I	11.13565 + 1.03898I
b = -0.374703 + 0.056422I		
u = -0.535060 - 0.369159I		
a = 0.693924 - 0.131388I	1.022250 + 0.157854I	11.13565 - 1.03898I
b = -0.374703 - 0.056422I		
u = -1.129960 + 0.773268I		
a = 1.39080 - 1.14075I	11.1026 + 10.1596I	13.5699 - 6.4088I
b = -1.36313 - 0.39095I		
u = -1.129960 - 0.773268I		
a = 1.39080 + 1.14075I	11.1026 - 10.1596I	13.5699 + 6.4088I
b = -1.36313 + 0.39095I		
u = 1.060210 + 0.886721I		
a = -1.48433 - 0.62286I	2.70642 - 8.04384I	9.5123 + 11.1353I
b = 1.071830 - 0.283744I		
u = 1.060210 - 0.886721I		
a = -1.48433 + 0.62286I	2.70642 + 8.04384I	9.5123 - 11.1353I
b = 1.071830 + 0.283744I		
u = 0.082088 + 0.218378I		
a = 1.80768 - 2.55183I	-1.53964 - 2.22484I	2.67513 + 4.18107I
b = -0.140579 + 0.756809I		
u = 0.082088 - 0.218378I	4 50004	0.0000
a = 1.80768 + 2.55183I	-1.53964 + 2.22484I	2.67513 - 4.18107I
b = -0.140579 - 0.756809I		

II.
$$I_2^u = \langle 2u^{31}a + 3u^{31} + \dots - 2a + 4, \ 2u^{30}a + 16u^{31} + \dots + 2a - 15, \ u^{32} - u^{31} + \dots - 2u + 1 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2u^{31}a - 3u^{31} + \dots + 2a - 4 \\ -2u^{31}a - 3u^{31} + \dots + 2a - 4 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 2u^{31}a - 3u^{31} + \dots + 2a - 4 \\ 2u^{31}a - 3u^{31} + \dots + 2a - 4 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{31}a + \frac{9}{2}u^{31} + \dots - 9a - \frac{21}{2} \\ 2u^{31}a + u^{31} + \dots - 4a - 3 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 3u^{31}a - 4u^{31} + \dots + 4a + 12 \\ -u^{31}a - 2u^{31} + \dots + 2a + 3 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{31}a - \frac{13}{2}u^{31} + \dots - 3a + \frac{35}{2} \\ 2u^{31}a - u^{31} + \dots + a + 9 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 3u^{31}a - 4u^{31} + \dots + 4a + 11 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -3u^{31}a - \frac{21}{2}u^{31} + \dots - a - \frac{5}{2}u \\ -2u^{31}a - 4u^{31} + \dots + 3u - 6 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$= 4u^{30} - 20u^{28} + 4u^{27} + 68u^{26} - 20u^{25} - 156u^{24} + 68u^{23} + 276u^{22} - 160u^{21} - 380u^{20} + 292u^{19} + 404u^{18} - 428u^{17} - 328u^{16} + 504u^{15} + 160u^{14} - 496u^{13} + 8u^{12} + 392u^{11} - 124u^{10} - 252u^{9} + 156u^{8} + 120u^{7} - 116u^{6} - 28u^{5} + 64u^{4} - 4u^{3} - 16u^{2} + 12u + 10$$

Crossings	u-Polynomials at each crossing
c_1	$(u^{32} + 11u^{31} + \dots + 2u + 1)^2$
c_2, c_7	$(u^{32} + u^{31} + \dots + 2u + 1)^2$
c_{3}, c_{8}	$4(4u^{64} + 56u^{63} + \dots + 9.68814 \times 10^7 u + 1.07057 \times 10^7)$
c_4, c_9	$(u^{32} + u^{31} + \dots - u^2 + 1)^2$
c_5, c_6, c_{11} c_{12}	$u^{64} + 4u^{63} + \dots + 9164u + 2061$
c_{10}	$(u^{32} - 15u^{31} + \dots - 2u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1	$(y^{32} + 21y^{31} + \dots + 2y + 1)^2$
c_2, c_7	$(y^{32} - 11y^{31} + \dots - 2y + 1)^2$
c_3, c_8	16 $ \cdot (16y^{64} - 592y^{63} + \dots - 2588329366713886y + 114613061651001) $
c_4, c_9	$(y^{32} - 15y^{31} + \dots - 2y + 1)^2$
c_5, c_6, c_{11} c_{12}	$y^{64} - 44y^{63} + \dots - 8369050y + 4247721$
c_{10}	$(y^{32} + 5y^{31} + \dots + 2y + 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.613006 + 0.792175I		
a = -0.580332 + 0.498725I	4.35959 + 7.30693I	10.17644 - 4.86883I
b = -0.046189 - 1.144740I		
u = 0.613006 + 0.792175I		
a = -1.55904 - 0.63002I	4.35959 + 7.30693I	10.17644 - 4.86883I
b = 1.43094 + 0.54420I		
u = 0.613006 - 0.792175I		
a = -0.580332 - 0.498725I	4.35959 - 7.30693I	10.17644 + 4.86883I
b = -0.046189 + 1.144740I		
u = 0.613006 - 0.792175I		
a = -1.55904 + 0.63002I	4.35959 - 7.30693I	10.17644 + 4.86883I
b = 1.43094 - 0.54420I		
u = 0.674958 + 0.742403I		
a = -0.231789 + 0.247033I	6.92548 + 0.05779I	13.67435 + 0.61686I
b = -0.519927 - 0.890443I		
u = 0.674958 + 0.742403I		
a = -1.89732 - 0.65378I	6.92548 + 0.05779I	13.67435 + 0.61686I
b = 1.47394 + 0.15920I		
u = 0.674958 - 0.742403I		
a = -0.231789 - 0.247033I	6.92548 - 0.05779I	13.67435 - 0.61686I
b = -0.519927 + 0.890443I		
u = 0.674958 - 0.742403I		
a = -1.89732 + 0.65378I	6.92548 - 0.05779I	13.67435 - 0.61686I
b = 1.47394 - 0.15920I		
u = -0.600521 + 0.762759I		
a = 0.636612 + 0.360731I	2.30027 - 2.26361I	6.98106 + 0.67006I
b = 0.015937 - 0.912614I		
u = -0.600521 + 0.762759I		
a = 1.58656 - 0.49003I	2.30027 - 2.26361I	6.98106 + 0.67006I
b = -1.282540 + 0.447749I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.600521 - 0.762759I		
a = 0.636612 - 0.360731I	2.30027 + 2.26361I	6.98106 - 0.67006I
b = 0.015937 + 0.912614I		
u = -0.600521 - 0.762759I		
a = 1.58656 + 0.49003I	2.30027 + 2.26361I	6.98106 - 0.67006I
b = -1.282540 - 0.447749I		
u = 0.849583 + 0.407230I		
a = -0.12171 + 4.60078I	3.18087 - 4.15286I	5.98714 + 7.18864I
b = 1.097710 + 0.061840I		
u = 0.849583 + 0.407230I		
a = -5.27629 + 1.13566I	3.18087 - 4.15286I	5.98714 + 7.18864I
b = -0.896174 + 0.115665I		
u = 0.849583 - 0.407230I		
a = -0.12171 - 4.60078I	3.18087 + 4.15286I	5.98714 - 7.18864I
b = 1.097710 - 0.061840I		
u = 0.849583 - 0.407230I		
a = -5.27629 - 1.13566I	3.18087 + 4.15286I	5.98714 - 7.18864I
b = -0.896174 - 0.115665I		
u = 1.093530 + 0.032199I		
a = -0.303475 + 0.746533I	-3.44018 - 1.36697I	0.099351 + 0.550230I
b = 0.432660 + 0.694262I		
u = 1.093530 + 0.032199I		
a = 0.132205 - 0.469626I	-3.44018 - 1.36697I	0.099351 + 0.550230I
b = 0.906765 - 0.547724I		
u = 1.093530 - 0.032199I		
a = -0.303475 - 0.746533I	-3.44018 + 1.36697I	0.099351 - 0.550230I
b = 0.432660 - 0.694262I		
u = 1.093530 - 0.032199I		
a = 0.132205 + 0.469626I	-3.44018 + 1.36697I	0.099351 - 0.550230I
b = 0.906765 + 0.547724I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.098860 + 0.059621I		
a = 0.432040 + 0.929418I	-1.66914 + 6.50568I	3.03082 - 5.51070I
b = -0.258929 + 0.813001I		
u = -1.098860 + 0.059621I		
a = -0.314191 - 0.418292I	-1.66914 + 6.50568I	3.03082 - 5.51070I
b = -1.079870 - 0.537053I		
u = -1.098860 - 0.059621I		
a = 0.432040 - 0.929418I	-1.66914 - 6.50568I	3.03082 + 5.51070I
b = -0.258929 - 0.813001I		
u = -1.098860 - 0.059621I		
a = -0.314191 + 0.418292I	-1.66914 - 6.50568I	3.03082 + 5.51070I
b = -1.079870 + 0.537053I		
u = 0.858258 + 0.694285I		
a = 1.40848 + 0.49567I	5.89812 - 2.66625I	9.77705 + 3.31297I
b = -1.337880 - 0.399067I		
u = 0.858258 + 0.694285I		
a = -1.74760 - 1.42262I	5.89812 - 2.66625I	9.77705 + 3.31297I
b = 1.220450 - 0.526531I		
u = 0.858258 - 0.694285I		
a = 1.40848 - 0.49567I	5.89812 + 2.66625I	9.77705 - 3.31297I
b = -1.337880 + 0.399067I		
u = 0.858258 - 0.694285I		
a = -1.74760 + 1.42262I	5.89812 + 2.66625I	9.77705 - 3.31297I
b = 1.220450 + 0.526531I		
u = -0.828553 + 0.741140I		
a = -0.890956 + 0.613775I	8.99039 - 0.95663I	14.3549 + 0.9762I
b = 1.37093 - 0.68976I		
u = -0.828553 + 0.741140I		
a = 1.87999 - 1.13465I	8.99039 - 0.95663I	14.3549 + 0.9762I
b = -1.51210 - 0.51307I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.828553 - 0.741140I		
a = -0.890956 - 0.613775I	8.99039 + 0.95663I	14.3549 - 0.9762I
b = 1.37093 + 0.68976I		
u = -0.828553 - 0.741140I		
a = 1.87999 + 1.13465I	8.99039 + 0.95663I	14.3549 - 0.9762I
b = -1.51210 + 0.51307I		
u = -0.891994 + 0.729689I		
a = -1.31090 + 0.92685I	8.79813 + 6.53878I	13.6140 - 6.9915I
b = 1.59800 - 0.38325I		
u = -0.891994 + 0.729689I		
a = 1.58473 - 1.11655I	8.79813 + 6.53878I	13.6140 - 6.9915I
b = -1.25531 - 0.81498I		
u = -0.891994 - 0.729689I		
a = -1.31090 - 0.92685I	8.79813 - 6.53878I	13.6140 + 6.9915I
b = 1.59800 + 0.38325I		
u = -0.891994 - 0.729689I		
a = 1.58473 + 1.11655I	8.79813 - 6.53878I	13.6140 + 6.9915I
b = -1.25531 + 0.81498I		
u = -1.022970 + 0.630121I		
a = -0.200460 + 0.184858I	0.25603 + 5.05352I	3.88531 - 5.31459I
b = 0.180956 - 0.447265I		
u = -1.022970 + 0.630121I		
a = -1.35085 + 1.29776I	0.25603 + 5.05352I	3.88531 - 5.31459I
b = 0.971944 + 0.280768I		
u = -1.022970 - 0.630121I		
a = -0.200460 - 0.184858I	0.25603 - 5.05352I	3.88531 + 5.31459I
b = 0.180956 + 0.447265I		
u = -1.022970 - 0.630121I		
a = -1.35085 - 1.29776I	0.25603 - 5.05352I	3.88531 + 5.31459I
b = 0.971944 - 0.280768I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.997643 + 0.681461I		
a = -0.717630 - 0.372056I	5.95409 - 5.49753I	11.62281 + 4.60034I
b = 0.298652 - 0.988469I		
u = 0.997643 + 0.681461I		
a = 1.62326 + 1.33956I	5.95409 - 5.49753I	11.62281 + 4.60034I
b = -1.45118 + 0.32417I		
u = 0.997643 - 0.681461I		
a = -0.717630 + 0.372056I	5.95409 + 5.49753I	11.62281 - 4.60034I
b = 0.298652 + 0.988469I		
u = 0.997643 - 0.681461I		
a = 1.62326 - 1.33956I	5.95409 + 5.49753I	11.62281 - 4.60034I
b = -1.45118 - 0.32417I		
u = 0.416995 + 0.648442I		
a = -0.949384 + 0.075306I	3.20064 - 4.79464I	9.29089 + 5.61871I
b = -0.239105 + 0.481030I		
u = 0.416995 + 0.648442I		
a = -1.39815 + 0.63323I	3.20064 - 4.79464I	9.29089 + 5.61871I
b = 1.185950 - 0.159624I		
u = 0.416995 - 0.648442I		
a = -0.949384 - 0.075306I	3.20064 + 4.79464I	9.29089 - 5.61871I
b = -0.239105 - 0.481030I		
u = 0.416995 - 0.648442I		
a = -1.39815 - 0.63323I	3.20064 + 4.79464I	9.29089 - 5.61871I
b = 1.185950 + 0.159624I		
u = -1.031610 + 0.673233I		
a = 0.660128 + 0.130914I	1.02610 + 7.72193I	5.01562 - 5.32873I
b = 0.108465 - 1.062730I		
u = -1.031610 + 0.673233I		
a = -1.63202 + 1.29034I	1.02610 + 7.72193I	5.01562 - 5.32873I
b = 1.30307 + 0.59506I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.031610 - 0.673233I		
a = 0.660128 - 0.130914I	1.02610 - 7.72193I	5.01562 + 5.32873I
b = 0.108465 + 1.062730I		
u = -1.031610 - 0.673233I		
a = -1.63202 - 1.29034I	1.02610 - 7.72193I	5.01562 + 5.32873I
b = 1.30307 - 0.59506I		
u = 1.036490 + 0.686644I		
a = -0.859246 + 0.141872I	3.09358 - 12.88870I	8.12323 + 9.41526I
b = -0.088389 - 1.243250I		
u = 1.036490 + 0.686644I		
a = 1.66673 + 1.31376I	3.09358 - 12.88870I	8.12323 + 9.41526I
b = -1.42433 + 0.67775I		
u = 1.036490 - 0.686644I		
a = -0.859246 - 0.141872I	3.09358 + 12.88870I	8.12323 - 9.41526I
b = -0.088389 + 1.243250I		
u = 1.036490 - 0.686644I		
a = 1.66673 - 1.31376I	3.09358 + 12.88870I	8.12323 - 9.41526I
b = -1.42433 - 0.67775I		
u = -0.730192 + 0.168194I		
a = 1.037910 + 0.857867I	2.12065 + 0.19319I	2.79170 - 0.78328I
b = -1.158730 + 0.009887I		
u = -0.730192 + 0.168194I		
a = 2.40293 + 0.28821I	2.12065 + 0.19319I	2.79170 - 0.78328I
b = 0.655532 + 0.107869I		
u = -0.730192 - 0.168194I		
a = 1.037910 - 0.857867I	2.12065 - 0.19319I	2.79170 + 0.78328I
b = -1.158730 - 0.009887I		
u = -0.730192 - 0.168194I		
a = 2.40293 - 0.28821I	2.12065 - 0.19319I	2.79170 + 0.78328I
b = 0.655532 - 0.107869I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.164238 + 0.469611I		
a = -0.67492 + 1.27326I	4.93312 + 1.19641I	13.57525 - 0.85209I
b = -0.926457 + 0.376650I		
u = 0.164238 + 0.469611I		
a = -1.03530 + 1.51984I	4.93312 + 1.19641I	13.57525 - 0.85209I
b = 1.225220 + 0.155136I		
u = 0.164238 - 0.469611I		
a = -0.67492 - 1.27326I	4.93312 - 1.19641I	13.57525 + 0.85209I
b = -0.926457 - 0.376650I		
u = 0.164238 - 0.469611I		
a = -1.03530 - 1.51984I	4.93312 - 1.19641I	13.57525 + 0.85209I
b = 1.225220 - 0.155136I		

III.
$$I_3^u = \langle -u^3 + b, \ u^3 + u^2 + 2a - 2u, \ u^4 - u^2 + 1 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{2}u^{3} - \frac{1}{2}u^{2} + u \\ u^{3} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{2}u^{3} - \frac{1}{2}u^{2} + u \\ u^{3} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{2}u^{3} - \frac{1}{4}u^{2} + u + \frac{1}{4} \\ \frac{1}{2}u^{2} + \frac{1}{2}u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{2}u^{3} + u^{2} + \frac{1}{2}u + \frac{1}{2} \\ -1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{2}u^{3} - \frac{1}{2}u^{2} - \frac{1}{4}u + 1 \\ -\frac{1}{2}u^{3} + \frac{1}{2}u^{2} + \frac{1}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{3}{2}u^{3} - \frac{3}{4}u^{2} + \frac{3}{2}u \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{3}{2}u^{3} - \frac{3}{4}u^{2} + \frac{3}{2}u \\ \frac{1}{2}u^{3} + \frac{1}{2}u + \frac{1}{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes $= 8u^2$

Crossings	u-Polynomials at each crossing
c_1, c_{10}	$(u^2 - u + 1)^2$
$c_2, c_4, c_7 \\ c_9$	$u^4 - u^2 + 1$
c_3, c_8	$16(16u^4 + 16u^3 + 8u^2 - 4u + 1)$
c_5, c_6, c_{11} c_{12}	$(u^2+1)^2$

Crossings	Riley Polynomials at each crossing
c_1,c_{10}	$(y^2+y+1)^2$
c_2, c_4, c_7 c_9	$(y^2 - y + 1)^2$
c_3, c_8	$256(256y^4 + 224y^2 + 1)$
c_5, c_6, c_{11} c_{12}	$(y+1)^4$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.866025 + 0.500000I		
a = 0.616025 - 0.433013I	-1.64493 - 4.05977I	4.00000 + 6.92820I
b = 1.000000I		
u = 0.866025 - 0.500000I		
a = 0.616025 + 0.433013I	-1.64493 + 4.05977I	4.00000 - 6.92820I
b = -1.000000I		
u = -0.866025 + 0.500000I		
a = -1.116030 + 0.433013I	-1.64493 + 4.05977I	4.00000 - 6.92820I
b = 1.000000I		
u = -0.866025 - 0.500000I		
a = -1.116030 - 0.433013I	-1.64493 - 4.05977I	4.00000 + 6.92820I
b = -1.000000I		

IV.
$$I_4^u = \langle b, a - 1, u^4 - u^3 + 1 \rangle$$

a) Arc colorings
$$a_2 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ u^2 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -u \\ -u^3 + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} u^2 + 1 \\ u^2 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} u^3 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -u^3 \\ -u^3 + u \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -u^3 + 1 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^3 + u^2 \\ u^3 - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

Crossings	u-Polynomials at each crossing
c_1	$u^4 + u^3 + 2u^2 + 1$
c_2, c_4, c_7 c_9	$u^4 + u^3 + 1$
<i>c</i> ₃	$u^4 - u^2 - 2u + 3$
c_5, c_{12}	$(u-1)^4$
c_6, c_{11}	u^4
c_8, c_{10}	$u^4 - u^3 + 2u^2 + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_8, c_{10}	$y^4 + 3y^3 + 6y^2 + 4y + 1$
c_2, c_4, c_7 c_9	$y^4 - y^3 + 2y^2 + 1$
<i>c</i> ₃	$y^4 - 2y^3 + 7y^2 - 10y + 9$
c_5,c_{12}	$(y-1)^4$
c_6, c_{11}	y^4

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.518913 + 0.666610I		
a = 1.00000	1.64493	6.00000
b = 0		
u = -0.518913 - 0.666610I		
a = 1.00000	1.64493	6.00000
b = 0		
u = 1.018910 + 0.602565I		
a = 1.00000	1.64493	6.00000
b = 0		
u = 1.018910 - 0.602565I		
a = 1.00000	1.64493	6.00000
b = 0		

V.
$$I_5^u = \langle b+1, -u^3+a-1, u^4-u^3+1 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} + 1 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} \\ -1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} - u + 1 \\ -u^{3} + u^{2} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ -1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} - 2u - 1 \\ -u^{3} - u^{2} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} + u^{2} + 2 \\ u^{3} + u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

Crossings	u-Polynomials at each crossing
c_1	$u^4 + u^3 + 2u^2 + 1$
c_2, c_4, c_7 c_9	$u^4 + u^3 + 1$
c_3, c_{10}	$u^4 - u^3 + 2u^2 + 1$
c_5, c_{12}	u^4
c_6, c_{11}	$(u-1)^4$
<i>c</i> ₈	$u^4 - u^2 - 2u + 3$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_{10}	$y^4 + 3y^3 + 6y^2 + 4y + 1$
$c_2, c_4, c_7 \ c_9$	$y^4 - y^3 + 2y^2 + 1$
c_5, c_{12}	y^4
c_6, c_{11}	$(y-1)^4$
<i>c</i> ₈	$y^4 - 2y^3 + 7y^2 - 10y + 9$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.518913 + 0.666610I		
a = 1.55204 + 0.24227I	1.64493	6.00000
b = -1.00000		
u = -0.518913 - 0.666610I		
a = 1.55204 - 0.24227I	1.64493	6.00000
b = -1.00000		
u = 1.018910 + 0.602565I		
a = 0.94796 + 1.65794I	1.64493	6.00000
b = -1.00000		
u = 1.018910 - 0.602565I		
a = 0.94796 - 1.65794I	1.64493	6.00000
b = -1.00000		

VI.
$$I_6^u = \langle b, a-1, u+1 \rangle$$

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

Crossings	u-Polynomials at each crossing
c_1	u+1
c_2, c_4, c_5 c_7, c_8, c_9 c_{10}, c_{12}	u-1
c_3, c_6, c_{11}	u

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5, c_7, c_8 c_9, c_{10}, c_{12}	y-1
c_3, c_6, c_{11}	y

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 1.00000	1.64493	6.00000
b = 0		

VII.
$$I_7^u = \langle b+1, \ a, \ u+1 \rangle$$

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

Crossings	u-Polynomials at each crossing
c_1	u+1
c_2, c_3, c_4 c_6, c_7, c_9 c_{10}, c_{11}	u-1
c_5, c_8, c_{12}	u

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_6, c_7 c_9, c_{10}, c_{11}	y-1
c_5, c_8, c_{12}	y

Solutions to I_7^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 0	1.64493	6.00000
b = -1.00000		

VIII.
$$I_8^u = \langle -u^3 + b, \ u^3 + 2a - 2u - 1, \ u^4 - u^2 + 1 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{2}u^{3} + u + \frac{1}{2} \\ u^{3} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{2}u^{3} + u + \frac{1}{2} \\ u^{3} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{2}u^{3} + u + \frac{1}{2} \\ \frac{1}{2}u^{3} + \frac{1}{2}u^{2} - \frac{1}{2}u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3} \\ -1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2} - \frac{1}{2}u - \frac{1}{2} \\ -\frac{1}{2}u^{3} - \frac{1}{2}u^{2} + \frac{1}{2}u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{1}{2}u^{3} + u^{2} - \frac{1}{2} \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} + \frac{1}{2}u^{2} - \frac{1}{2}u - \frac{1}{2} \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4

Crossings	u-Polynomials at each crossing
c_1,c_{10}	$(u^2 - u + 1)^2$
c_2, c_4, c_7 c_9	$u^4 - u^2 + 1$
c_3, c_8	$4(4u^4 + 4u^3 + 2u^2 + 2u + 1)$
c_5, c_6, c_{11} c_{12}	$(u^2+1)^2$

Crossings	Riley Polynomials at each crossing
c_1,c_{10}	$(y^2+y+1)^2$
c_2, c_4, c_7 c_9	$(y^2 - y + 1)^2$
c_3, c_8	$16(16y^4 - 4y^2 + 1)$
c_5, c_6, c_{11} c_{12}	$(y+1)^4$

Solutions to I_8^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.866025 + 0.500000I		
a = 1.36603	-1.64493	4.00000
b = 1.000000I		
u = 0.866025 - 0.500000I		
a = 1.36603	-1.64493	4.00000
b = -1.000000I		
u = -0.866025 + 0.500000I		
a = -0.366025	-1.64493	4.00000
b = 1.000000I		
u = -0.866025 - 0.500000I		
a = -0.366025	-1.64493	4.00000
b = -1.000000I		

IX.
$$I_9^u = \langle b+1, \ u^5a - u^5 - u^3a + 2u^3 + au - u + 1 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a-1 \\ -1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} a^{2}u^{2} - 2u^{2}a + u^{2} + a \\ -u^{2}a + 2u^{2} - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3} \\ 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3}a^{2} + 2u^{3}a + a^{2}u - u^{3} - 3au + u \\ u^{3}a - 2u^{3} - au + 3u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} - a + 1 \\ u^{5} - u^{3} + u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{4}a^{2} - 2u^{4}a + u^{4} + u^{2}a + a \\ -u^{4}a + 2u^{4} - u^{2} - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 12
- (iv) u-Polynomials at the component : It cannot be defined for a positive dimension component.
- (v) Riley Polynomials at the component : It cannot be defined for a positive dimension component.

Solution to I_9^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
$u = \cdots$		
$a = \cdots$	3.28987	12.0000
$b = \cdots$		

X. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$25(u+1)^{2}(u^{2}-u+1)^{4}(u^{4}+u^{3}+2u^{2}+1)^{2} \cdot ((u^{32}+11u^{31}+\cdots+2u+1)^{2})(25u^{40}+355u^{39}+\cdots-2766u+169)$
c_2, c_7	$5(u-1)^{2}(u^{4}-u^{2}+1)^{2}(u^{4}+u^{3}+1)^{2}(u^{32}+u^{31}+\cdots+2u+1)^{2}$ $\cdot (5u^{40}-15u^{39}+\cdots-4u+13)$
c_3, c_8	$16384u(u-1)(u^{4}-u^{2}-2u+3)(u^{4}-u^{3}+2u^{2}+1)$ $\cdot (4u^{4}+4u^{3}+2u^{2}+2u+1)(16u^{4}+16u^{3}+8u^{2}-4u+1)$ $\cdot (64u^{40}+192u^{39}+\cdots+80u+25)$ $\cdot (4u^{64}+56u^{63}+\cdots+96881428u+10705749)$
c_4, c_9	$5(u-1)^{2}(u^{4}-u^{2}+1)^{2}(u^{4}+u^{3}+1)^{2}(u^{32}+u^{31}+\cdots-u^{2}+1)^{2}$ $\cdot (5u^{40}-15u^{39}+\cdots-58u+13)$
$c_5, c_6, c_{11} \\ c_{12}$	$u^{5}(u-1)^{5}(u^{2}+1)^{4}(u^{40}+4u^{39}+\cdots+36u+4)$ $\cdot(u^{64}+4u^{63}+\cdots+9164u+2061)$
c_{10}	$25(u-1)^{2}(u^{2}-u+1)^{4}(u^{4}-u^{3}+2u^{2}+1)^{2}$ $\cdot ((u^{32}-15u^{31}+\cdots-2u+1)^{2})(25u^{40}-455u^{39}+\cdots+718u+169)$

XI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$625(y-1)^{2}(y^{2}+y+1)^{4}(y^{4}+3y^{3}+6y^{2}+4y+1)^{2}$ $\cdot (y^{32}+21y^{31}+\cdots+2y+1)^{2}$ $\cdot (625y^{40}+14425y^{39}+\cdots-2166706y+28561)$
c_2, c_7	$25(y-1)^{2}(y^{2}-y+1)^{4}(y^{4}-y^{3}+2y^{2}+1)^{2}$ $\cdot ((y^{32}-11y^{31}+\cdots-2y+1)^{2})(25y^{40}-355y^{39}+\cdots+2766y+169)$
c_3, c_8	$268435456(y)(y-1)(y^4 - 2y^3 + \dots - 10y + 9)(y^4 + 3y^3 + \dots + 4y + 1)$ $\cdot (16y^4 - 4y^2 + 1)(256y^4 + 224y^2 + 1)$ $\cdot (4096y^{40} - 53248y^{39} + \dots - 13450y + 625)$ $\cdot (16y^{64} - 592y^{63} + \dots - 2588329366713886y + 114613061651001)$
c_4, c_9	$25(y-1)^{2}(y^{2}-y+1)^{4}(y^{4}-y^{3}+2y^{2}+1)^{2}$ $\cdot ((y^{32}-15y^{31}+\cdots-2y+1)^{2})(25y^{40}-455y^{39}+\cdots+718y+169)$
c_5, c_6, c_{11} c_{12}	$y^{5}(y-1)^{5}(y+1)^{8}(y^{40}-12y^{39}+\cdots-696y+16)$ $\cdot (y^{64}-44y^{63}+\cdots-8369050y+4247721)$
c_{10}	$625(y-1)^{2}(y^{2}+y+1)^{4}(y^{4}+3y^{3}+6y^{2}+4y+1)^{2}$ $\cdot (y^{32}+5y^{31}+\cdots+2y+1)^{2}$ $\cdot (625y^{40}+4425y^{39}+\cdots-2689202y+28561)$