Bayesian Inference: beta-binomial model

Overview

- We are now going to look at a Bayesian approach to inference
- We will apply this approach to a simple model for binomial data
- We will discuss how the Bayesian paradigm is different to its frequentist counterpart

Binomial distribution

- ▶ Observe data y_1, \ldots, y_n such that $y_i \in \{0, 1\}$:
 - toss coin and observe heads/tails;
 - user clicks link or not;
 - patient contracts disease or not.
- Assume $\mathbb{P}(y_i = 1) = \theta$ for all i:

$$f(y_i|\theta) = \theta^{y_i}(1-\theta)^{1-y_i}$$

ightharpoonup i.e., $y_i \sim \mathcal{B}(1,\theta)$, iid

Examples: binomial distribution n=20, different θ

▶ Polack et al (2020) reported 8 cases of Covid-19 occurrence in a sample of

patients administered with the BNT162b2 vaccine

- ▶ In the control arm, 162 cases were recorded over the same time frame.
- ▶ So here we observe n = 170, with $\sum_{i=1}^{n} y_i = 8$.
- Suppose we observe a patient with a positive Covid-19 diagnosis; what is the probability θ that they came from the treatment (i.e., vaccine) arm of the trial?
- ▶ What can we say about θ ?

Frequentist inference

- Let's first estimate θ in the frequentist framework.
- ► The likelihood function will have the form $L(y) = \prod_{i=1}^n f(y_i|\theta)$.
- ► For binomial data:

$$L(y) = \prod_{i=1}^{n} \theta^{y_i} (1 - \theta)^{1 - y_i}$$
$$= \theta^{\sum_{i=1}^{n} y_i} (1 - \theta)^{\sum_{i=1}^{n} 1 - y_i}.$$

▶ The we can find $l(y) = \log L(y)$, the log-likelihood:

$$l(y) = \sum_{i=1}^{n} y_i \log \theta + \sum_{i=1}^{n} (1 - y_i) \log(1 - \theta).$$

Frequentist inference: mle

▶ Set $\frac{d}{d\theta}l(y) = 0$, set $\theta = \hat{\theta}$ and solve:

$$\frac{d}{d\theta}l(y) = \sum_{i=1}^{n} \frac{y_i}{\theta} - \sum_{i=1}^{n} \frac{(1-y_i)}{(1-\theta)}$$

$$\Rightarrow \sum_{i=1}^{n} \frac{y_i}{\hat{\theta}} = \sum_{i=1}^{n} \frac{(1-y_i)}{(1-\hat{\theta})}.$$

$$\Rightarrow \hat{\theta} = \sum_{i=1}^{n} \frac{y_i}{n}$$

$$= \bar{y}.$$

▶ In words, our best estimate of θ is the sample mean \bar{y} .

Frequentist inference for binomial data

- ▶ Because $y_i \sim \mathcal{B}(1, \theta)$, we know that:
- $ightharpoonup \mathbb{E}[y_i] = \theta$
- $ightharpoonup Var[y_i] = \theta(1-\theta)$
- This means that:

$$\blacktriangleright \mathbb{E}[\hat{\theta}] = \mathbb{E}[\bar{y}] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[y_i] = \theta$$

$$ightharpoonspin \mathbb{V}\operatorname{ar}[\hat{\theta}] = \frac{\theta(1-\theta)}{n}$$

- ▶ This means that the standard error of $\hat{\theta}, \, se(\hat{\theta}) = \sqrt{\frac{\theta(1-\theta)}{n}}$
- ▶ Again, we can say that $E[\hat{\theta}]$ is unbiased and $se(\hat{\theta})$ decreases with n

- For the mRNA vaccine data, we observe n=170, with $\sum_{i=1}^{n} y_i = 8, \Rightarrow \hat{\theta} = 0.047$, and $se(\hat{\theta}) = 0.016$.
- It is possible to construct a confidence interval or perform a hypothesis test in this setting, but we need to make an assumption that the behaviour of $\hat{\theta}$ is approximately normal.
- In any case we will move on to a Bayesian appraoch to inference.

Bayesian vs. frequentist approaches to data

- We have discussed different ways to interpret a probability statement:
 - ▶ *Objective/frequentist*: how often an event will occur in an experiment repeated many times
 - Subjective/Bayesian: our degree of belief that an event has or will occured
- We have seen that in a frequentist setting, we can only make probabilistic statements about the data y, since this is the only aspect of the model output which we actively observe
- ► Hence e.g., "likelihood" and "confidence" terms being used as distinct terms from probability
- In a Bayesian context, we can make probabilistic statements about both the data y and parameters θ , since we can express a degree of belief about both of these terms

Bayesian inference

- ▶ In a Bayesian context, we can consider both y and θ to be random variables
- If we observe a data sample $y=y_1,\ldots,y_n$, then it can be thought of as fixed and known
- We represent our beliefs using the joint distribution

$$p(\theta, y) = p(y|\theta)p(\theta).$$

- $p(y|\theta)$ is the *likelihood function*, as before. (i.e., $p(y|\theta) = L(y)$.)
- $ightharpoonup p(\theta)$ is the **prior** distribution.
- We interpret $p(\theta)$ as our beliefs about the model parameters **before** any data is observed. (prior/before)

Bayesian inference

If we observe data y, we can condition our beliefs about θ by using Bayes's rule:

$$p(\theta|y) = \frac{p(y,\theta)}{p(y)} = \frac{p(y|\theta)p(\theta)}{p(y)}.$$

- ► Call $p(\theta|y)$ the **posterior** distribution.
- ▶ What we know about θ **after** the data y is observed.

Bayesian inference

- In practice, the marginal distribution of the data, $p(y)=\int_{\Theta}p(y,\theta)d\theta \text{ is often difficult to compute}$ exactly.
 - Instead we focus on the unnormalised posterior,

$$p(\theta|y) \propto p(y|\theta)p(\theta)$$
.

- ▶ Sometimes $p(y|\theta)p(\theta)$ has a recognisable shape.
- ▶ Or, we can use Monte Carlo methods to sample from $p(\theta|y)$, effectively approximating the normalised distribution of θ . (More on this later.)

Beta-binomial model

- Let's return to the binomial data model
- As before, observe y_1, \ldots, y_n such that $y_i \in \{0, 1\}, y_i \sim \mathcal{B}(1, \theta)$, iid
- lacktriangle Convenient to specify a Beta distribution $\mathcal{B}e(a,b)$ as a prior:

$$p(\theta|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1-\theta)^{b-1}.$$

- ightharpoonup We call a and b the hyperparameters for the prior distribution.
- These are chosen by the analyst, and reflect our beliefs about the (unobserved) data.

Beta-binomial model

▶ Once we have chosen *a* and *b*, we combine the prior and likelihood together so that:

$$p(\theta|y, a, b) \propto p(y|\theta)p(\theta|a, b)$$

$$= \theta^{\sum_{i=1}^{n} y_i} (1 - \theta)^{\sum_{i=1}^{n} 1 - y_i} \times \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1 - \theta)^{b-1}.$$

▶ Ignoring any terms that do not involve θ , we get:

$$p(\theta|y, a, b) \propto \theta^{a_n - 1} (1 - \theta)^{b_n - 1}$$
.

▶ Here $a_n = \sum_{i=1}^n y_i + a$ and $b_n = n - \sum_{i=1}^n y_i + b$.

Beta-binomial model

▶ The form of $p(\theta|y, a, b)$ is the same as the prior $p(\theta|a, b)$,

but with parameters a_n and b_n .

▶ This means that $p(\theta|y,a,b) = p(\theta|a_n,b_n)$ follows a beta distribution:

$$\theta|y, a, b \sim \mathcal{B}e(a_n, b_n).$$

- ▶ We interpret a_n and b_n as a combination of our prior knowledge (a,b) and a summary of the data $(\sum y_i, n)$:
- ▶ a_n is the number of successes in the data $(\sum_{i=1}^n y_i)$ and in the prior (a):
- ▶ b_n is the number of failures in the data $(n \sum_{i=1}^n y_i)$ and in the prior (b).
- ► (Note that the use of success/failure here is technical. Positive covid cases are not usually considered a success!)

- ▶ We have n = 170 Covid-19 cases, with $\sum_{i=1}^{n} y_i = 8$ cases in treatment arm.
- ▶ For their analysis, Polack et al used a $\mathcal{B}e(0.700102,1)$ prior, i.e., a=0.7 and b=1.

$$\Rightarrow a_n = 8.7$$
 and $b_n = 163$.

So we have that $\theta \mid y \sim \mathcal{B}e(8.7,163)$ How do we interpret the posterior?

mRNA Covid-19 Vaccine Beta-binomial analysis

- ▶ How do we interpret the posterior?
- ▶ This is the density function for our **beliefs** about θ
- More prosaically, the pdf describes the behaviour of θ , in the same way as any other random variable
- What values for θ are highly probable? What values are less probable?

- We can use standard ideas from probability to address any/most questions that we might have about θ :
 - ► The mean of θ is $\frac{a_n}{a_n + b_n} = 8.7/171.7 = 0.05$
 - ▶ The standard deviation of θ is 0.167
 - ▶ The mode is $\frac{a_n-1}{a_n+b_n-2} = 0.045$.
 - We can also compute, e.g., $\mathbb{P}(\theta < 0.5),$ or $\mathbb{P}(\theta < 0.1)$ using pbeta
 - ▶ Can compute bounds θ_1 and θ_2 such that $\mathbb{P}(\theta_1 < \theta < \theta_2) = 0.95$ using qbeta
- See Case Study for more details.
- ▶ It is very easy to interpret and construct these statements in a Bayesian framework. Once the posterior is obtained, inference statements are straightforward, and much less convoluted than in the frequentist paradigm

Choosing hyper parameters

- We can interpret the value of a relative to b as a reflection of our prior belief in the number of successes relative to failures we would expect to observe.
- The value a+b is a reflection of our certainty of these beliefs. Larger values indicate higher certainty.
- ▶ We can interpret this value as the "units of information", our prior contains, comparable to the sample size *n*.
- ▶ If n is much larger than a+b, and either $\sum y$ or $n-\sum y$ is not too small, then the hyper-parameters will have relatively little effect on the posterior distribution.

Choosing hyper parameters

- Prior belief can be informed using expert opinion or using the results of similar studies
- ▶ If a data set has been updated then the analysis of the old data set can be used as the prior when analysing the new data set
- Often people set a=b=1, which means that $p(\theta|a,b)=1$ for any value of $\theta.$
- This is sometimes interpreted as a "non-informative" prior for θ . Actually this is something of a cop out, but with reasonable amounts of data this issue is relevant in practice.
- The choice of hyper parameters (and more generally, prior distribution) becomes more influential for more complex models

Conjugacy

- We have seen that combining a beta prior with a binomial likelihood leads to a beta posterior
- We say that the beta prior is conjugate to the binomial distribution
- ▶ In general, we say a class $\mathcal P$ of prior distributions for θ is conjugate for a likelihood function $p(y|\theta)$ if

$$p(\theta) \in \mathcal{P} \Rightarrow p(\theta|y) \in \mathcal{P}.$$

This convenient property has been exploited many times

Graphical Diagram

▶ We can generate data from a beta-binomial model as

follows:
$$-\theta \sim \mathcal{B}e(a,b)$$
; $-\text{ for } i=1,\ldots,n: y_i|\theta \sim \mathcal{B}e(1,\theta)$.

► This is a reflection of the conditional distribution of the posterior:

$$p(\theta|y, a, b) \propto p(y|\theta)p(\theta|a, b) = p(\theta|a, b) \prod_{i=1}^{n} p(y_i|\theta).$$

Graphical Diagram

- ▶ We can represent the same information using a graph diagram
- Graphs consist of nodes and edges
- Nodes represent data, parameters or hyper-parameters
- Edges represent the dependency between nodes
- ► The direction of the edges indicates the nature of the dependency between the nodes
- Shaded cells represent observed data
- Rectangular cells are hyperparameters, i.e., fixed by the analyst
- Transparent circular cells must be estimated

Graphical diagram - schematic

Graphical Diagram

▶ Plate notation is more concise.

Bayesian inference: overview

- Bayesian models combine the likelihood with the prior to compute a posterior distribution.
- The posterior is a probability distribution and we can use it to construct easy to interpret probability statements about θ :
 - expectation, variance, mode, quantiles, probability statements...
- These kinds of quantities are not permissible in a frequentist framework.
- While for this model we could compute the posterior distribution in closed form, we need computational methods for more complicated methods.

Bayesian inference: overview

- ▶ As *n* increases, the variance of the beta-binomial posterior will become narrower, and the difference between the mle and posterior mode will decrease. See Case Study for further details.
- In general, the term Bayesian can refer to several aspects of modelling:
 - building a model using conditional probability
 - using external information to inform analysis (via the prior)
 - biasing parameters towards "sensible" parameter values (i.e., shrinkage/regularisation)
 - subjective data analysis
 - a holistic approach to modelling, uncertainty, and decision making

Controversy

- For many years, using a prior $p(\theta)$ was a source of controversy within the statistics community
- Using a prior makes inference "subjective" and (allegedly) unreliable
- Frequentist methods, which use only the likelihood L(y), are arguably more data-driven and hence "objective."
- From a practical perspective, and broadly speaking, when there is a large sample of data and the model is simple, very extreme prior beliefs are needed to meaningfully influence the inference procedure
- On the other hand, when data are scarce, expert opinion can be extremely valuable

Controversy

- Aside from this issue with the prior, technical considerations meant that Bayesian methods were considered impractical, except for simplistic "toy" problems
- Modern computational resources now mean that Bayesian methods can be applied in many settings
- The utility of Bayesian methods has now been widely demonstrated, and their use is accepted in the wider scientific community

Summary

- We have discussed the key quantities in statistical modelling:
 - ightharpoonup prior: $p(\theta)$
 - likelihood: L(y) or $p(y|\theta)$
 - **>** posterior: $p(\theta|y)$
- For binomial data, we saw how to:
 - estimate the mle $\hat{\theta}$ by optimising the likelihood function;
 - exploit the conjugacy of the beta and binomial distributions to construct a posterior distribution.
- ▶ Remember, the key when doing Bayesian inference is to focus on the density kernel, and to ignore the normalising constant.
- ➤ You should be clear about how to interpret the mle, the prior, and the posterior.