MIT OpenCourseWare
http://ocw.mit.edu

5.04 Principles of Inorganic Chemistry II Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

5.04, Principles of Inorganic Chemistry II Prof. Daniel G. Nocera

Lecture 13: Octahedral $ML_6 \pi$ Complexes

The basis set needs to be expanded for metal complexes with ligands containing π -orbitals. An appropriate basis for ligands with two orthogonal π orbitals, e.g. CO, CN⁻, O²⁻, X⁻, to the σ bond is shown below,

The arrow is indicative of the directional phase of the $p\pi$ orbitals. Owing to their ungerade symmetry, in constructing the $p\pi$ representation

- ❖ a p orbital, i.e. arrow, that transforms into itself contributes +1
- ❖ a p orbital that transforms into minus itself contributes -1
- a p orbital that moves, contributes 0

O_h	Е	8C ₃	$6C_2$	$6C_4$	$3C_2$	i	6S ₄	8S ₆	$3\sigma_{\text{h}}$	$6\sigma_{\text{d}}$	_
Γ_{σ}	6	0	0	2	2	0	0	0	4	2	$\rightarrow a_{1g} + t_{1u} + e_g$
											$\rightarrow t_{1g} + t_{1u} + t_{2g} + t_{2u}$

There is a second method to derive the $p\pi$ basis. The Cartesian coordinate systems on each ligand contains the σ and π basis sets. Thus the $\Gamma_{x,y,z}$ irreducible representation (which is the sum of $\Gamma_x + \Gamma_y + \Gamma_z$ or $\Gamma_z + \Gamma_{x,y}$ for irreducible representations for which x,y,z are not triply degenerate) defines the 1σ and $2p\pi$ bonds of each ligand. Since the bond is coincident with the ligand, an unmoved atom is approximated by Γ_σ . On the basis of geometrical considerations, the following is true,

$$\Gamma_{\substack{\text{unmoved}\\ \text{atoms}}} = \Gamma_{\sigma}$$

$$\Gamma_{\sigma+\pi} = \Gamma_{x,y,z} \bullet \Gamma_{\sigma}$$

$$\Gamma_{\pi} = \Gamma_{\sigma+\pi} - \Gamma_{\sigma}$$

The σ SALCs have already been derived in Lecture 12. Methods 1-3 of Lecture 12 can be employed to determine the $p\pi$ SALCs. For the orbitals that transform as t_{1u} and t_{2g} , Method 3 (mirror the metal atomic orbital symmetry) is convenient. For the t_{1u} SALC,

and 2 others (in the xz and yz planes as defined by the symmetries of the p_y and p_x orbitals)

$$p_z \qquad \qquad \psi_{t_{1u}}^{(1)} = \frac{1}{2} \Big(\, L \pi_3 \, + L \pi_4 \, + L \pi_5 \, + L \pi_6 \Big)$$

The t_{2q} SALCs have the mirrored symmetry of the (d_{xy}, d_{xz}, d_{yz}) orbital set,

and 2 others (in the xy and xz planes as defined by the symmetries of the d_{xy} and d_{xz} orbitals)

$$d_{yz} \qquad \qquad \psi_{t_{2g}}^{(1)} = \frac{1}{2} \Big(L \pi_1 - L \pi_2 - L \pi_4 + L \pi_6 \Big)$$

Non-bonding SALCs must be ascertained from projection operators and Schmidt orthogonalization methods.

 t_{ig} (and 2 others in the xz and xy planes)

 t_{2u} (and 2 others in the xz and yz planes)

For a π donor complex such as CoF_6^{3-} ,

6 F

For a π -accepting ligand set, orbitals have the same form (or symmetry) as π donors,

The only difference between the π -donor and π -acceptor MO diagrams is the relative placement of the π^* orbitals relative to the metal atomic orbitals; for Co(CN)₆³⁻,

