

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FIS1513 - Estática y Dinámica

Facultad de Física

Profesor: Ulrich Volkmann

Ayudantes: Eitan Dvorquez, Williams Medina, Jorge Pérez, Francisco Zamorano

Taller 2

Problema 1

El brazo ranurado OA gira en sentido contrario al de las manecillas del reloj al rededor de O, de modo que cuando se encuentra formando un ángulo θ respecto a la horizontal, el brazo OA gira con una velocidad angular de $\dot{\theta}$ y una aceleración angular $\ddot{\theta}$. El movimiento del pasador B está limitado a la superficie circular fija y a lo largo de la ranura en OA, como se muestra en la figura. Note que r es equivalente a la coordenada radial ρ . Calcule la magnitud de la velocidad y la magnitud de la aceleración del pasador B en ese instante.

Problema 2

Una partícula se mueve en un espiral definido por la ecuación $\rho = Ae^{k\theta}$ de modo que su rapidez se mantiene constante e igual a v_0 . Determine:

- a) \vec{v} en función de θ .
- b) \vec{a} en función de θ .
- c) Demuestre que en todo instante la aceleración es perpendicular a la velocidad.
- d) Encuentre θ y $\dot{\theta}$ como función del tiempo.

Problema 3

Un avión A que vuela inicialmente hacia el norte con una velocidad de $150\frac{mi}{hr}$ se encuentra con un viento de $50\frac{mi}{hr}$ soplando hacia el este. El avión B vuela hacia el oeste con una velocidad de $180\frac{mi}{hr}$ a casi la misma altitud. Determine la magnitud y dirección de la velocidad que tiene A con respecto a B.

