

Assignment 4 – Pan-Tompkins Algorithm for QRS Detection

M.Sc. Ahmed Shaheen Center for Machine Vision and Signal Processing University of Oulu

 Implement the Pan-Tompkins algorithm to identify the QRS complexes.

1- Bandpass Filter

 The bandpass filter, formed using lowpass and highpass filters, reduces noise (such as muscle noise, 60 Hz interference and baseline drift) in the ECG signal.

Lowpass and Highpass Filters

- LPF → Section 4.3.2: equation 4.7
- HPF → Section 4.3.2: equation 4.11

 Example of a Lowpass filter is explained in the second <u>lab notes</u>.

From difference equation to Z-transform

$$y(n) = y(n-1) - 2y(n-2) + x(n) - 5x(n-5)$$

$$y(n) = y(n-1) + 2y(n-2) = x(n) = 5x(n-5)$$

$$a_0 \quad a_1 \quad a_2 \quad b_0 \quad b_5$$
Always = 1

Apply Z-transform:

$$Y(z)[a_0z^0 + a_1z^1 + a_2z^2] = X(z)[b_0z^0 + b_5z^5]$$

$$Y(z) = H(z)X(z) = \frac{b_0z^0 + b_5z^5}{a_0z^0 + a_1z^1 + a_2z^2}X(z)$$

$$H(z) = \frac{b_0z^0 + b_5z^5}{a_0z^0 + a_1z^1 + a_2z^2} = \frac{Y(z)}{X(z)} \xrightarrow{b \ coeff.}$$

Differentiator

 A differentiator filter is used to provide a large response at the high slopes that distinguish QRS complexes from lowfrequency ECG components such as the P and T waves.

– Filter equation:

$$y(n) = \frac{1}{8} \left[2x(n) + x(n-1) - x(n-3) - 2x(n-4) \right]$$

$$y(n) = \frac{1}{8} [x(n) + 2x(n-1) - 2x(n-3) - x(n-4)]$$

Squaring and integration

Squaring operation makes the result positive.

emphasizes the higher values expected within QRS complexes.

suppresses smaller values related to the P and T waves.

Moving-Window integration

 Results in a single smooth peak related to the QRS complex for each ECG cycle.

- The output of the moving-window integrator may be used to detect QRS complexes, measure RR intervals, and determine

the duration of the QRS complex.

- Section 4.3.2: equation 4.15

W Notes:

- Do not forget to read the chapter from the book! Important information is there!
- The output of a stage is an input to another (pipeline).
- Write the equations and coefficients by hand first, then move to the coding.
- The findQRS function is provided to detect the important features from the output of the integrator.
- The syntax of the function is in the task description.
- The filter delays are already in the book!
- The delays are required to be calculated in [samples] not in [ms]