We Are Hiring

Awesome Gadgets

Difference Between

IT Stuff

Personality Motivation

Quiz

Tutorials

Uncategorized

Home » Difference Between » Difference between Trees and Graphs | Trees vs. Graphs

Difference between Trees and Graphs | Trees vs. **Graphs**

📤 Poonam Dhanvani 🛛 <u>June 23, 2013</u> 🖺 Difference Between

Search Site

Search

Advertisement

Test Your Knowledge

Difference between Trees and Graphs

	Trees	Graphs
Path	Tree is special form of graph	In graph there can be more
	i.e. minimally connected	than one path i.e. graph can
	graph and having only one	have uni-directional or
	path between any two	bi-directional paths (edges)
	vertices.	between nodes
Loops	Tree is a special case of graph	Graph can have loops,
	having no loops , no circuits	circuits as well as can have
	and no self-loops.	self-loops.
Root Node	In tree there is exactly one	In graph there is no such
	root node and every child	concept of root node.
	have only one parent .	

1 of 3 8/22/2016 11:41 PM

Parent Child relationship	In trees, there is parent child relationship so flow can be there with direction top to bottom or vice versa.	In Graph there is no such parent child relationship.
Complexity	Trees are less complex then graphs as having no cycles, no self-loops and still connected.	Graphs are more complex in compare to trees as it can have cycles, loops etc
Types of Traversal	Tree traversal is a kind of special case of traversal of graph. Tree is traversed in Pre-Order , In-Order and Post-Order (all three in DFS or in BFS algorithm)	Graph is traversed by DFS: Depth First Search and in BFS: Breadth First Search algorithm
Connection Rules	In trees, there are many rules / restrictions for making connections between nodes through edges.	In graphs no such rules/ restrictions are there for connecting the nodes through edges.
DAG	Trees come in the category of DAG: Directed Acyclic Graphs is a kind of directed graph that have no cycles.	Graph can be Cyclic or Acyclic .
DAG Different Types	DAG : Directed Acyclic Graphs is a kind of directed	
Different	DAG: Directed Acyclic Graphs is a kind of directed graph that have no cycles. Different types of trees are: Binary Tree, Binary Search	Acyclic. There are mainly two types of Graphs: Directed and
Different Types	DAG: Directed Acyclic Graphs is a kind of directed graph that have no cycles. Different types of trees are: Binary Tree, Binary Search Tree, AVL tree, Heaps. Tree applications: sorting and searching like Tree Traversal	Acyclic. There are mainly two types of Graphs: Directed and Undirected graphs. Graph applications: Coloring of maps, in OR (PERT & CPM), algorithms, Graph coloring, job
Different Types Applications	DAG: Directed Acyclic Graphs is a kind of directed graph that have no cycles. Different types of trees are: Binary Tree, Binary Search Tree, AVL tree, Heaps. Tree applications: sorting and searching like Tree Traversal & Binary Search.	Acyclic. There are mainly two types of Graphs: Directed and Undirected graphs. Graph applications: Coloring of maps, in OR (PERT & CPM), algorithms, Graph coloring, job scheduling, etc. In Graph, no. of edges

8/22/2016 11:41 PM 2 of 3

NAVL tree, BFS, binary search, Binary Search Tree, Binary Tree, Breadth First Search, Cycles in Tree, DAG, Depth First Search, DFS, Difference between Trees and Graphs, Directed Acyclic Graphs, Directed and undirected graph, Edges, Graph Traversal, Graphs, Heaps., hierarchical model, In-order, Loops in Tree, minimally connected graph, network model, Post-Order, Pre-order, searching, Sorting, Tree Traversal, trees, Trees vs. Graphs, vertices

About Poonam Dhanvani

Assistant Professor in Master of Computer Application (MCA) <u>View all posts by Poonam Dhanvani</u> →

« TED Steve Jobs | Steve Job in college

Difference between Array and Linked
List | Array vs. Linked List »

Copyright © 2016. FreeFeast.info: Interview Questions ,Awesome Gadgets,Personality Motivation Guide, Famous IT personalities

3 of 3 8/22/2016 11:41 PM