

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B. Sc. (Four Year) Degree in Industrial Mathematics
Fourth Year - Semester II Examination – June/July 2018
MAT 4307 – DESIGN OF EXPERIMENT

Time: Three (03) hours

Instructions;

- 1. Answer 05 questions only.
- 2. Each question carries equal marks.
- 3. Statistical tables are provided on request and calculators are allowed.
- 4. Total marks 100.
- 1. Following table shows the field layout and yields (kg/ha) obtained from an experiment completed with an objective of finding the best Nitrogen level.

Nitrogen Level (kg/ha)							
Block	0	25	50	75	100	125	
1,	3.6	4.8	4.4	5.3	4.8	5.0	
2	4.1	5.1	5.2	5.9	5.5	5.4	
3	3.2	4.0	4.6	4.6	5.2	4.8	
4	3.9	3.9	5.0	5.0	5.1	4.6	

- a. Find the best nitrogen level/s. Note: State hypothesis and conclusions clearly.
- b. State the reasons for conducting this experiment on a blocked experiment.

2. This is a split-plot field layout of a sugar beetroot rot study. Each block contains 2 main plots, to which the inoculation treatment (A) levels were assigned (Inoculation, No Inoculation). Each main plot was split into 4 subplots, to which the in-row spacing levels (B) were assigned (4, 6, 12, and 18 inches). The yields of the subplots are shown in italics.

VI	4	12	18	6	6	12	4	18		
. [21.0	22.9	23,1	22.0	17.6	16.1	16.8	13.1		
	No inoculation					Inoculation				
**********	18	6	4	12	6	4	12	18		
V	12.9	19.8	17.2	16.8	21.2	17.9	22.3	22.0		
	Inoculation					No inoculation				
*****	6	18	4	12	12	18	6	4		
IV	21.1	21.4	18.4	22,8	16.1	14.7	16.3	16.8		
	No inoculation					Inoculation				
	18	12	4	6	18	6	12	4		
HI	19.3	18.6	18.2	20.8	12.5	19.1	16.6	16.5		
	No inoculation				Inoculation					
*********	12	6	18	4	4	12	18	6		
11	14.9	17.0	12.1	16.4	17.9	21.1	20.1	19.6		
Inoculation				No inoculation						
1	-4	12	18	6	18	12	6	4		
	17.4	16.3	12.5	17.3	20.0	21.8	20.2	20.1		
Inoculation				No inoculation						

- a. State reasons for using a split-plot layout for this experiment.
- Respective analysis of variance table is given below, based on ANOVA, test relevant null hypotheses for this experiment.
- c. Find out the best level of inoculation (A) and spacing (B). Assume interactions are not significant.

Dependent Variab	le:	YIELD
Source	DF	SS
Model	17	388.5475
Error	3.0	23.5050
Corrected Total	47	412.0525
Source	DF	Type III ss
BLOCK	5	16.2500
A INOC	Τ	256.€875
BLOCK*A INCC	.5	11.5350
B SPACE	3	39.6375
A_INOC*B_SPACE	3	64.4375
Tests of Hypothe	ಚೀತ	using Type III
Source	DF	Type III SS
A INCC	1	256.6875
BLOCK	5	16.2500

3. An experiment was conducted to evaluate the effect of three (03) different growth hormones (T1, T2 & T3) on poultry chicks using randomized complete block design (RCBD). Measurements on initial weight (x) and the weight after 10 days (y) were taken. The results are given in following table.

Block	Treatment							
	1	T1 /	Т	2	Т3			
	X	Y	X	<u>Y</u>	X	Y		
B1	32	48	30	45	23	48		
B2.	26	31	28	39	25	50		
В3	25	30	25	32	26	52		

Using an analysis of covariance (ANCOVA), test significances of hormones and covariate (use 0.05 α level).

Note: Clearly indicate your null hypothesis, alternative hypothesis and conclusions The sums of squares and cross products can be calculated using following formulas.

Treatment =
$$T_{yy} - \frac{(T_{xy} + E_{xy})^2}{(T_{xx} + E_{xx})} + \frac{E_{xy}^2}{E_{xx}}$$

Block =
$$B_{yy} - \frac{(B_{xy} + E_{xy})^2}{(B_{xy} + E_{xx})} + \frac{E_{xy}^2}{E_{xx}}$$

$$\text{Regression} = \frac{E_{xy}^2}{E_{xx}} \quad \text{Residual} = E_{yy} - \frac{E_{xy}^2}{E_{xx}}$$

Total =
$$S_{yy}$$

- 4. Four machines were tested (B, C, D, & E) against the standard machine (A), and their outputs were measured. Using the information given in the table, test the followings;
 - a. Test whether there a significant difference between machines
 - b. Test the following contrasts and make your conclusions,
 - i. A versus the rest
 - ii. B versus C, D, E
 - iii. C versus D, E
 - iv. D versus E

A	В	C C	D D	Е
64	68	71	75	69
66	64	69	74	71
68	60	75	78	65
59	61	68	72	60
257	253	283	299	265
64.25	63.25	70.75	74.75	66.25
	64 66 68 59 257	64 68 66 64 68 60 59 61 257 253	64 68 71 66 64 69 68 60 75 59 61 68 257 253 283	64 68 71 75 66 64 69 74 68 60 75 78 59 61 68 72 257 253 283 299

- 5. At planning of a study, four different drugs need to be tested to control a disease by increasing the red blood cells. Four people belong to four different weight classes are expected to be used and four days required to complete the experiment.
 - a. Suggest the most appropriate experimental designs for the purpose.
 - b. Provide the layout of the design.
 - c. Provide the break-down of the ANOVA (Sources and degrees of freedom only)
 - d. Suppose the study is expected to be repeated in three places, and the same weight classes are available in all three locations, suggest an appropriate experimental design.
 - e. Give the break-down of the ANOVA for part (d) (Sources and degrees of freedom only)
 - f. If the similar weight classes are unavailable, suggest and appropriate experimental design to replicate the experiment thrice.
 - g. Provide the break-down of the ANOVA for part (f) (Sources and degrees of freedom only)
- 6. A researcher plans to conduct an experiment with three factors A, B and C with two, three and three levels in each, respectively. The experimental design intended to be used to RCBD with four blocks.
 - a. Provide the layout of one block, if three factors need small plots of same size.
 - b. Give the breakdown of ANOVA for part (a) (Sources and degrees of freedom only).
 - c. Suppose factor A needs large plots, then what is the most appropriate design?
 - d. Provide the layout, for a single block for part (c)
 - e. Give the breakdown of ANOVA for part (c) (Sources and degrees of freedom only)
 - f. Suppose that factor A and B need large plots of equal size, then what is the most appropriate design?
 - g. Give the layout of a single block for part (g).
 - h. Give the breakdown of ANOVA for part (g) (Sources and degrees of freedom only)
 - j. Suppose A and B factors need large plots but different sizes, then what is the most appropriate design?
 - k. Give the layout of a single block for part (j).
 - 1. Give the breakdown of ANOVA for part (j) (Sources and degrees of freedom only)