Computer Science Data Mining Core Homework II Fall 2013 Indiana University Bloomington, IN

Mehmet M. Dalkilic September 11, 2013

Definitions

 \mathcal{R} is the set of reals

The size of a finite set X is written ||X||.

1. The following problems have to do with metrics. In each case, prove or disprove the distance is a metric.

(a) Let $X \subset \mathbb{R}^n$ for positive integer n > 0. Define a distance $d: X \times X \to R_{\geq 0}$ as

$$d(x,y) = \max\{|x_i - y_i|\}, \ \forall i \ 1 \le i \le n$$

(b) Let $c: \mathbb{R}^{2n} \to \mathbb{R}_{\geq 0}$ be defined as

$$c(x,y) = \begin{cases} 1 \text{ if } x \neq y \\ 0 \text{ o.w.} \end{cases}$$

Define a distance $d: X \times X \to R_{\geq 0}$ as

$$d(x,y) = \sum_{i=1}^{n} \frac{c(x_i, y_i)}{i}, \ \forall i \ 1 \le i \le n$$

(c) Suppose d_0, d_1 are metrics.

- i. $d_0 \times d_1$
- ii. $(d_0 + d_1)/(d_0 d_1)$
- iii. $\max\{d_0, d_1\}$
- iv. Let X be a finite set. Define a distance $d: X \times X \to R_{\geq 0}$ as

$$d(x,y) = \frac{||x \cap y||}{||x \cup y|| + 1}$$

Foo			
X	Y	Z	A
1	1	Y	abcd
3	255	N	bcde
4	4	N	bcd
2	1	Y	acde
20	1	Y	bdf
5	4	T	fg
5	3	Y	abf

Figure 1: An instance Foo. The domain of X, Y are natural numbers. The domain of Z is Boolean. The domain of A is set of characters $\{a, b, c, d, e, f\}$.

- 2. Consider the relation in Fig. 1. Partition this data into three blocks using exactly three attributes (or features). For attributes X, Y, use L_2 . For A use Jaccard Index. For attribute Z you are free to pick a metric. The table has not been cleaned nor transformed.
- 3. From Everitt, exercise 2.3,2.4.
- 4. We have provided data from the FHA, "FHA Single Family Loan Performance Trends, Credit Risk Report," June 2013.
 - (a) Put the table Share By Reason for Delinquency in Percent into an R data frame.
 - i. Plot Reduction of Income against Unemployed. Discuss the results.
 - ii. Plot Death against Unemployed. Discuss the results.
 - (b) Put the subtable Credit Score Range in the Delinquency Rates into an R data frame.
 - i. Using R find the number of loans with credit scores less than 620.
 - ii. Of these loans, how many are past due?
 - iii. Plot Credit Score against All Past Due
- 5. From Tan, exercises Chapter 2: 2,3,6,12,13,16,19,24.