

引入			1		
— ,	CN	N 的原理	2		
	1.1	从 DNN 到 CNN	.2		
	1.2	卷积层	.3		
	1.3	多通道	.5		
	1.4	汇聚	.7		
	1.5	尺寸变换总结	.8		
_,	LeN	Net-5	9		
	2.1	网络结构	.9		
	2.2	制作数据集1	0		
	2.3	搭建神经网络	11		
	2.4	训练网络1	12		
	2.5	测试网络1	13		
三、	Ale	xNet1	4		
	3.1	网络结构	4		
	3.2	制作数据集1	15		
	3.3	搭建神经网络	16		
	3.4	训练网络	18		
	3.5	测试网络	9		
四、	GoogLeNet				
	4.1	网络结构2	20		
	4.2	制作数据集2	21		
	4.3	搭建神经网络2	22		
	4.4	训练网络2	23		
	4.5	测试网络2	24		
五、	Res	Net	25		
	5.1	网络结构2	25		
	5.2	制作数据集2	25		
	5.3	搭建神经网络2	26		
	5.4	训练网络2	27		
	5.5	测试网络	28		

引入

0.1 版本需求

本视频中,使用的 Python 解释器与第三方库的版本如下。

- Python 为 3.9 版本, 自 3.4 以来改动的语法可忽略不计;
- NumPy 为 1.21 版本, Pandas 为 1.2.4 版本, Matplotlib 为 3.5.1 版本;
- PyTorch 为 1.12.0 版本,此版本相对较新,更高的只有 1.13.0 和 2.0.0。据悉,PyTorch 2.0.0 对性能有极大的提升,语法规则的变动较小。

0.2 视频特点

- 清晰度: 本视频分辨率为 1080P, 请调高分辨率;
- **交流群**: 关注【布尔艺数】公众号回复"**杰哥"**, 弹出助理的二维码;
- 讲义链接: 微信交流群的群公告中。
- 本课基础:环境配置、Python 基础、NumPy 数组库、深度神经网络 DNN。

0.3 深度学习的相关库

- ① NumPy包为Python加上了关键的数组变量类型,弥补了Python的不足;
- ② Pandas 包在 NumPy 数组的基础上添加了与 Excel 类似的行列标签;
- ③ Matplotlib 库借鉴 Matlab,帮 Python 具备了绘图能力,使其如虎添翼;
- ④ Scikit-learn 库是机器学习库,内含分类、回归、聚类、降维等多种算法;
- ⑤ TensorFlow 库是 Google 公司开发的深度学习框架,于 2015 年问世;
- ⑥ PyTorch 库是 Facebook 公司开发的深度学习框架,于 2017 年问世。

0.4 深度学习的基本常识

- ◆ 人工智能是一个很大的概念,其中一个最重要的分支就是机器学习;
- 机器学习的算法多种多样,其中最核心的就是神经网络;
- 神经网络的隐藏层若足够深,就被称为深层神经网络,也即深度学习;

一、CNN 的原理

1.1 从 DNN 到 CNN

(1) 卷积层与汇聚

- 深度神经网络 DNN 中,相邻层的所有神经元之间都有连接,这叫全连接; 卷积神经网络 CNN 中,新增了卷积层 (Convolution) 与汇聚 (Pooling)。
- DNN 的全连接层对应 CNN 的卷积层, 汇聚是与激活函数类似的附件; 单个卷积层的结构是: 卷积层-激活函数-(汇聚), 其中汇聚可省略。

(2) CNN: 专攻多维数据

在深度神经网络 DNN 课程的最后一章,使用 DNN 进行了手写数字的识别。 但是,图像至少就有二维,向全连接层输入时,需要多维数据拉平为 1 维数据, 这样一来,图像的形状就被忽视了,很多特征是隐藏在空间属性里的,如图 1-1。

图 1-1 DNN 的结构

而卷积层可以保持输入数据的维数不变,当输入数据是二维图像时,卷积层 会以多维数据的形式接收输入数据,并同样以多维数据的形式输出至下一层,如 图 1-2 所示。

1.2 卷积层

CNN 中的卷积层与 DNN 中的全连接层是平级关系, 全连接层中的权重与偏 置即 $y = \omega_1 x_1 + \omega_2 x_2 + \omega_3 x_3 + b$ 中的 ω 与 b, 卷积层中的权重与偏置变得稍微复杂。

(1) 内部参数: 权重(卷积核)

当输入数据进入卷积层后,输入数据会与卷积核进行卷积运算,如图 1-3。

图 1-3 卷积核的运算

图 1-3 中,输入大小是(4,4),卷积核大小是(3,3),输出大小是(2,2)。卷积 运算的原理是逐元素乘积后再相加,如图 1-4 所示。

图 1-4 卷积运算的具体步骤

(2) 内部参数: 偏置

在卷积运算的过程中也存在偏置,如图 1-5 所示。

(3) 外部参数:填充

为了防止经过多个卷积层后图像越卷越小,可以在进行卷积层的处理之前,向输入数据的周围填入固定的数据(比如 0),这称为填充(padding)。

图 1-6 填充

图 1-6 中,对大小为(4,4)的输入数据应用了幅度为 1 的填充,填充值为 0。

(4) 外部参数: 步幅

使用卷积核的位置间隔被称为步幅(stride),之前的例子中步幅都是 1,如果将步幅设为 2,则如图 1-7 所示,此时使用卷积核的窗口的间隔变为 2。

图 1-7 步幅为 2 的计算方式

综上,增大填充后,输出尺寸会变大;而增大步幅后,输出尺寸会变小。

(5) 输入与输出尺寸的关系

假设输入尺寸为(H, W),卷积核的尺寸为(FH, FW),填充为P,步幅为S。则输出尺寸(OH, OW)的计算公式为

$$\begin{cases} OH = \frac{H + 2P - FH}{S} + 1 \\ OW = \frac{W + 2P - FW}{S} + 1 \end{cases}$$

1.3 多通道

在上一小节讲的卷积层,仅仅针对二维的输入与输出数据(一般是灰度图像),可称之为单通道。但是,彩色图像除了高、长两个维度之外,还有第三个维度:通道(channel)。例如,以RGB三原色为基础的彩色图像,其通道方向就有红、黄、蓝三部分,可视为3个单通道二维图像的混合叠加。

一般的,当输入数据是二维时,权重被称为卷积核(Kernel);当输入数据是三维或更高时,权重被称为滤波器(Filter)。

(1) 多通道输入

对三维数据的卷积操作如图 1-8 所示,输入数据与滤波器的通道数必须要设为相同的值,可以发现,这种情况下的输出结果降级为了二维。

图 1-8 多通道下滤波器的运算

将数据和滤波器看作长方体,如图 1-9 所示。

图 1-9 多通道下的卷积运算

C、H、W是固定的顺序,通道数要写在高与宽的前面。

(2) 多通道输出

图 1-9 可看出,仅通过一个卷积层,三维就被降成二维了。大多数时候我们想让三维的特征多经过几个卷积层,因此就需要多通道输出,如图 1-10 所示。

别忘了,卷积运算中存在偏置,如果进一步追加偏置的加法运算处理,则结果如图 1-11 所示,每个通道都有一个单独的偏置。

1.4 汇聚

中南大学

汇聚 (Pooling) 仅仅是从一定范围内提取一个特征值, 所以不存在要学习的 内部参数。一般有平均汇聚与最大值汇聚。

(1) 平均汇聚

一个以步幅为2进行2*2窗口的平均汇聚,如图1-12所示。

图 1-12 平均汇聚

(2) 最大值汇聚

一个以步幅为2进行2*2窗口的最大值汇聚,如图1-13所示。

图 1-13 最大值汇聚

汇聚对图像的高H和宽W进行特征提取,不改变通道数C。

1.5 尺寸变换总结

(1) 卷积层

现假设卷积层的填充为P, 步幅为S, 由

- **输入数据**的尺寸是: (*C*,*H*,*W*)。
- 滤波器的尺寸是: (FN,C,FH,FW)。
- **输出数据**的尺寸是: (FN,OH,OW)。

可得

$$(C,H,W) \quad \textcircled{*} \quad (FN,C,FH,FW) \longrightarrow \quad (FN,OH,OW)$$

$$\begin{cases} OH = \frac{H+2P-FH}{S} + 1 \\ OW = \frac{W+2P-FW}{S} + 1 \end{cases}$$

(2) 汇聚

现假设汇聚的步幅为S,由

- **输入数据**的尺寸是: (*C*,*H*,*W*)。
- **输出数据**的尺寸是: (*C*,*OH*,*OW*)。

可得

$$(C,H,W) \longrightarrow (C,OH,OW)$$

$$\begin{cases} OH = H/S \\ OW = W/S \end{cases}$$

二、LeNet-5

2.1 网络结构

LeNet-5 虽诞生于 1998 年,但基于它的手写数字识别系统则非常成功。 该网络共 7 层,输入图像尺寸为 28×28,输出则是 10 个神经元,分别表示 某手写数字是 0 至 9 的概率。

表 2-1	网络结构

层	In	C1	S2	C3	S4	C5	F6	Out
类型	输入层	卷积层	平均汇聚	卷积层	平均汇聚	卷积层	全连接层	全连接层
卷积核		$6 \times 1 \times 5 \times 5$	2×2	$16 \times 6 \times 5 \times 5$	2×2	120×16×5×5		
步幅		1	2	1	2	1		
填充		2						
激活函数		tanh		tanh		tanh	tanh	RBF
尺寸	1×28×28	6×28×28	6×14×14	16×10×10	16×5×5	120×1×1	84	10

图 2-1 网络结构

注:输出层由 10 个径向基函数 RBF 组成,用于归一化最终的结果,目前 RBF 已被 Softmax 取代。

根据网络结构,在 PyTorch 的 nn.Sequential 中编写为

```
self.net = nn.Sequential(
    nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Tanh(),
                                                       #C1: 卷积层
    nn.AvgPool2d(kernel_size=2, stride=2),
                                               #S2: 平均汇聚
    nn.Conv2d(6, 16, kernel_size=5), nn.Tanh(),
                                               #C3: 卷积层
    nn.AvgPool2d(kernel size=2, stride=2),
                                               # S4: 平均汇聚
    nn.Conv2d(16, 120, kernel_size=5), nn.Tanh(),
                                               #C5: 卷积层
                                                # 把图像铺平成一维
    nn.Flatten(),
                                                #F5: 全连接层
    nn.Linear(120, 84), nn.Tanh(),
                                               # F6: 全连接层
    nn.Linear(84, 10)
```

其中, nn.Conv2d()需要四个参数, 分别为

- in_channel: 此层输入图像的通道数;
- out channel: 此层输出图像的通道数;
- kernel_size: 卷积核尺寸;
- padding:填充;
- stride: 步幅。

2.2 制作数据集

中南大学

```
In [1]: import torch
        import torch.nn as nn
        from torch.utils.data import DataLoader
        from torchvision import transforms
        from torchvision import datasets
        import matplotlib.pyplot as plt
        %matplotlib inline
```

In [2]: # 展示高清图 from matplotlib_inline import backend_inline backend_inline.set_matplotlib_formats('svg')

```
In [3]: # 制作数据集
       # 数据集转换参数
       transform = transforms.Compose([
          transforms.ToTensor(),
          transforms.Normalize(0.1307, 0.3081)
       ])
       # 下载训练集与测试集
       train_Data = datasets.MNIST(
           root = 'D:/Jupyter/dataset/mnist/',
                                          # 下载路径
          train = True,
                                # 是 train 集
                               # 如果该路径没有该数据集, 就下载
          download = True,
                               # 数据集转换参数
          transform = transform
       test_Data = datasets.MNIST(
           root = 'D:/Jupyter/dataset/mnist/',
                                          # 下载路径
                               # 是 test 集
          train = False,
                              # 如果该路径没有该数据集,就下载
           download = True,
           transform = transform # 数据集转换参数
```

In [4]: # 批次加载器

train_loader = DataLoader(train_Data, shuffle=True, batch_size=256) test_loader = DataLoader(test_Data, shuffle=False, batch_size=256)

2.3 搭建神经网络

中南大学

```
In [5]: class CNN(nn.Module):
               def __init__(self):
                    super(CNN,self).__init__()
                    self.net = nn.Sequential(
                         nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Tanh(),
                         nn.AvgPool2d(kernel_size=2, stride=2),
                         nn.Conv2d(6, 16, kernel_size=5), nn.Tanh(),
                         nn.AvgPool2d(kernel_size=2, stride=2),
                         nn.Conv2d(16, 120, kernel_size=5), nn.Tanh(),
                         nn.Flatten(),
                         nn.Linear(120, 84), nn.Tanh(),
                         nn.Linear(84, 10)
                    )
               def forward(self, x):
                    y = self.net(x)
                    return y
 In [6]:
          # 查看网络结构
          X = torch.rand(size = (1, 1, 28, 28))
          for layer in CNN().net:
               X = layer(X)
                print( layer.__class__.__name__, 'output shape: \t', X.shape )
Out [6]: Conv2d output shape:
                                         torch.Size([1, 6, 28, 28])
          Tanh output shape:
                                         torch.Size([1, 6, 28, 28])
          AvgPool2d output shape:
                                         torch.Size([1, 6, 14, 14])
          Conv2d output shape:
                                         torch.Size([1, 16, 10, 10])
          Tanh output shape:
                                         torch.Size([1, 16, 10, 10])
          AvgPool2d output shape:
                                         torch.Size([1, 16, 5, 5])
          Conv2d output shape:
                                         torch.Size([1, 120, 1, 1])
          Tanh output shape:
                                         torch.Size([1, 120, 1, 1])
          Flatten output shape:
                                         torch.Size([1, 120])
          Linear output shape:
                                         torch.Size([1, 84])
          Tanh output shape:
                                         torch.Size([1, 84])
```

In [7]: # 创建子类的实例,并搬到 GPU 上 model = CNN().to('cuda:0')

Linear output shape:

torch.Size([1, 10])

2.4 训练网络

卢南大学

```
In [8]: # 损失函数的选择
                                         # 自带 softmax 激活函数
         loss_fn = nn.CrossEntropyLoss()
  In [9]:
         # 优化算法的选择
         learning_rate = 0.9
                              # 设置学习率
         optimizer = torch.optim.SGD(
              model.parameters(),
              lr = learning_rate,
 In [10]:
         # 训练网络
          epochs = 5
         losses = []
                          # 记录损失函数变化的列表
         for epoch in range(epochs):
              for (x, y) in train_loader:
                                             # 获取小批次的 x 与 y
                  x, y = x.to('cuda:0'), y.to('cuda:0')
                  Pred = model(x)
                                             # 一次前向传播(小批量)
                                             # 计算损失函数
                  loss = loss_fn(Pred, y)
                  losses.append(loss.item())
                                             # 记录损失函数的变化
                  optimizer.zero_grad()
                                             # 清理上一轮滞留的梯度
                  loss.backward()
                                             # 一次反向传播
                  optimizer.step()
                                             # 优化内部参数
          Fig = plt.figure()
          plt.plot(range(len(losses)), losses)
         plt.show()
Out [10]:
          2.0
          1.5
          1.0
          0.5
          0.0
                   200
                          400
                                600
                                            1000
                                                   1200
```


中南大學

Out [11]: 测试集精准度: 97.93999481201172 %

384×12×12

圆三族大学

三、AlexNet

3.1 网络结构

尺寸

AlexNet 是第一个现代深度卷积网络模型,其首次使用了很多现代网络的技术方法,作为 2012 年 ImageNet 图像分类竞赛冠军,输入为 3×224×224 的图像,输出为 1000 个类别的条件概率。

考虑到如果使用 ImageNet 训练集会导致训练时间过长,这里使用稍低一档的 1×28×28 的 MNIST 数据集,并手动将其分辨率从 1×28×28 提到 1×224×224,同时输出从 1000 个类别降到 10 个,修改后的网络结构见表 3-1。

层	In	C1	S2	C3	S4	C5
类型	输入层	卷积层	最大汇聚	卷积层	最大汇聚	卷积层
滤波器		96×1×11×11	3×3	256×96×5×5	3×3	384×256×3×3
步幅		4	2	1	2	1
填充		1		2		1
激活函数		ReLU		ReLU		ReLU

96×26×26

256×26×26

256×12×12

表 3-1 网络结构

层	C6	C7	S8	F9	F10	Out
类型	卷积层	卷积层	最大汇聚	全连接层	全连接层	全连接层
滤波器	384×384×3×3	256×384×3×3	3×3			
步幅	1	1	2			
填充	1	1				
激活函数	ReLU	ReLU		ReLU	ReLU	Softmax
尺寸	384×12×12	256×12×12	256×5×5	4096	4096	10

根据网络结构,在 PyTorch 的 nn.Sequential 中编写为

96×54×54

 $1 \times 224 \times 224$

```
self.net = nn.Sequential(
    nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel size=3, stride=2),
    nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),
    nn.MaxPool2d(kernel size=3, stride=2),
    nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nn.Flatten(),
    nn.Linear(6400, 4096), nn.ReLU(),
    nn.Dropout(p=0.5),
                                            # Dropout——随机丢弃权重
    nn.Linear(4096, 4096), nn.ReLU(),
    nn.Dropout(p=0.5),
                                            # 按概率 p 随机丢弃突触
    nn.Linear(4096, 10)
```


3.2 制作数据集

中南大学

```
In [1]: import torch
        import torch.nn as nn
        from torch.utils.data import DataLoader
        from torchvision import transforms
        from torchvision import datasets
        import matplotlib.pyplot as plt
        %matplotlib inline
```

In [2]: # 展示高清图

from matplotlib_inline import backend_inline backend_inline.set_matplotlib_formats('svg')

```
In [3]: # 制作数据集
```

```
# 数据集转换参数
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Resize(224),
    transforms.Normalize(0.1307, 0.3081)
])
# 下载训练集与测试集
train_Data = datasets.FashionMNIST(
    root = 'D:/Jupyter/dataset/mnist/',
    train = True,
    download = True,
    transform = transform
test_Data = datasets.FashionMNIST(
    root = 'D:/Jupyter/dataset/mnist/',
    train = False,
    download = True,
    transform = transform
```

In [4]: # 批次加载器

train_loader = DataLoader(train_Data, shuffle=True, batch_size=128) test_loader = DataLoader(test_Data, shuffle=False, batch_size=128)

3.3 搭建神经网络

```
In [5]: class CNN(nn.Module):
             def __init__(self):
                  super(CNN,self).__init__()
                  self.net = nn.Sequential(
                       nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1),
                       nn.ReLU(),
                       nn.MaxPool2d(kernel_size=3, stride=2),
                       nn.Conv2d(96, 256, kernel_size=5, padding=2),
                       nn.ReLU(),
                       nn.MaxPool2d(kernel size=3, stride=2),
                       nn.Conv2d(256, 384, kernel_size=3, padding=1),
                       nn.ReLU(),
                       nn.Conv2d(384, 384, kernel_size=3, padding=1),
                       nn.ReLU(),
                       nn.Conv2d(384, 256, kernel_size=3, padding=1),
                       nn.ReLU(),
                       nn.MaxPool2d(kernel_size=3, stride=2),
                       nn.Flatten(),
                       nn.Linear(6400, 4096), nn.ReLU(),
                       nn.Dropout(p=0.5),
                       nn.Linear(4096, 4096), nn.ReLU(),
                       nn.Dropout(p=0.5),
                       nn.Linear(4096, 10)
                  )
             def forward(self, x):
                  y = self.net(x)
                  return y
```

```
In [6]: # 查看网络结构
          X = torch.rand(size = (1, 1, 224, 224))
          for layer in CNN().net:
               X = layer(X)
               print( layer.__class__.__name__, 'output shape: \t', X.shape )
Out [6]: Conv2d output shape:
                                        torch.Size([1, 96, 54, 54])
          ReLU output shape:
                                        torch.Size([1, 96, 54, 54])
          MaxPool2d output shape:
                                        torch.Size([1, 96, 26, 26])
                                        torch.Size([1, 256, 26, 26])
          Conv2d output shape:
          ReLU output shape:
                                        torch.Size([1, 256, 26, 26])
          MaxPool2d output shape:
                                        torch.Size([1, 256, 12, 12])
                                        torch.Size([1, 384, 12, 12])
          Conv2d output shape:
                                        torch.Size([1, 384, 12, 12])
          ReLU output shape:
                                        torch.Size([1, 384, 12, 12])
          Conv2d output shape:
          ReLU output shape:
                                        torch.Size([1, 384, 12, 12])
```

中南大學

Conv2d output shape: torch.Size([1, 256, 12, 12]) ReLU output shape: torch.Size([1, 256, 12, 12]) MaxPool2d output shape: torch.Size([1, 256, 5, 5]) Flatten output shape: torch.Size([1, 6400]) Linear output shape: torch.Size([1, 4096]) ReLU output shape: torch.Size([1, 4096]) Dropout output shape: torch.Size([1, 4096]) Linear output shape: torch.Size([1, 4096]) ReLU output shape: torch.Size([1, 4096]) Dropout output shape: torch.Size([1, 4096]) Linear output shape: torch.Size([1, 10])

In [7]: # 创建子类的实例,并搬到 GPU 上

model = CNN().to('cuda:0')

3.4 训练网络

中南大學

```
In [8]: # 损失函数的选择
                                         # 自带 softmax 激活函数
          loss_fn = nn.CrossEntropyLoss()
  In [9]:
         # 优化算法的选择
          learning_rate = 0.1
                              # 设置学习率
          optimizer = torch.optim.SGD(
              model.parameters(),
              lr = learning_rate,
 In [10]: # 训练网络
          epochs = 10
          losses = []
                          # 记录损失函数变化的列表
          for epoch in range(epochs):
              for (x, y) in train_loader:
                                             # 获取小批次的 x 与 y
                  x, y = x.to('cuda:0'), y.to('cuda:0')
                  Pred = model(x)
                                             # 一次前向传播(小批量)
                                             # 计算损失函数
                  loss = loss_fn(Pred, y)
                  losses.append(loss.item())
                                             # 记录损失函数的变化
                  optimizer.zero_grad()
                                             # 清理上一轮滞留的梯度
                  loss.backward()
                                             # 一次反向传播
                                             # 优化内部参数
                  optimizer.step()
          Fig = plt.figure()
          plt.plot(range(len(losses)), losses)
          plt.show()
Out [10]:
          3.5
          3.0
          2.5
          2.0
          1.5
          1.0
          0.5
              Ö
                    1000
                            2000
                                   3000
                                           4000
```


3.5 测试网络

Out [11]: 测试集精准度: 99.29999542236328%

四、GoogLeNet

4.1 网络结构

2014年,获得 ImageNet 图像分类竞赛的冠军是 GoogLeNet, 其解决了一个重要问题:滤波器超参数选择困难,如何能够自动找到最佳的情况。

其在网络中引入了一个小网络——Inception 块,由 4 条并行路径组成,4 条路径互不干扰。这样一来,超参数最好的分支的那条分支,其权重会在训练过程中不断增加,这就类似于帮我们挑选最佳的超参数,如示例所示。

```
# 一个 Inception 块
class Inception(nn.Module):
    def __init__(self, in_channels):
         super(Inception, self). init ()
         self.branch1 = nn.Conv2d(in_channels, 16, kernel_size=1)
         self.branch2 = nn.Sequential(
              nn.Conv2d(in_channels, 16, kernel_size=1),
              nn.Conv2d(16, 24, kernel_size=3, padding=1),
              nn.Conv2d(24, 24, kernel size=3, padding=1)
         )
         self.branch3 = nn.Sequential(
              nn.Conv2d(in channels, 16, kernel size=1),
              nn.Conv2d(16, 24, kernel_size=5, padding=2)
         self.branch4 = nn.Conv2d(in_channels, 24, kernel_size=1)
    def forward(self, x):
         branch1 = self.branch1(x)
         branch2 = self.branch2(x)
         branch3 = self.branch3(x)
         branch4 = self.branch4(x)
         outputs = [branch1, branch2, branch3, branch4]
         return torch.cat(outputs, 1)
```

此外,分支2和分支3上增加了额外1×1的滤波器,这是为了减少通道数,降低模型复杂度。

GoogLeNet 之所以叫 GoogLeNet,是为了向 LeNet 致敬,其网络结构为


```
nn.Flatten(),
          nn.Linear(1408, 10)
     )
def forward(self, x):
     y = self.net(x)
     return y
```

4.2 制作数据集

```
In [1]: import torch
        import torch.nn as nn
        from torch.utils.data import DataLoader
        from torchvision import transforms
        from torchvision import datasets
        import matplotlib.pyplot as plt
        %matplotlib inline
```

In [2]: # 展示高清图

from matplotlib_inline import backend_inline backend_inline.set_matplotlib_formats('svg')

```
In [3]: # 制作数据集
```

```
# 数据集转换参数
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize(0.1307, 0.3081)
])
# 下载训练集与测试集
train_Data = datasets.FashionMNIST(
    root = 'D:/Jupyter/dataset/mnist/',
    train = True,
    download = True,
    transform = transform
test_Data = datasets.FashionMNIST(
    root = 'D:/Jupyter/dataset/mnist/',
    train = False,
    download = True,
    transform = transform
```

In [4]: # 批次加载器

train_loader = DataLoader(train_Data, shuffle=True, batch_size=128) test_loader = DataLoader(test_Data, shuffle=False, batch_size=128)

4.3 搭建神经网络

```
In [5]: # 一个 Inception 块
         class Inception(nn.Module):
             def __init__(self, in_channels):
                  super(Inception, self).__init__()
                  self.branch1 = nn.Conv2d(in_channels, 16, kernel_size=1)
                  self.branch2 = nn.Sequential(
                       nn.Conv2d(in channels, 16, kernel size=1),
                       nn.Conv2d(16, 24, kernel_size=3, padding=1),
                       nn.Conv2d(24, 24, kernel_size=3, padding=1)
                  self.branch3 = nn.Sequential(
                       nn.Conv2d(in_channels, 16, kernel_size=1),
                       nn.Conv2d(16, 24, kernel_size=5, padding=2)
                  self.branch4 = nn.Conv2d(in_channels, 24, kernel_size=1)
             def forward(self, x):
                  branch1 = self.branch1(x)
                  branch2 = self.branch2(x)
                  branch3 = self.branch3(x)
                  branch4 = self.branch4(x)
                  outputs = [branch1, branch2, branch3, branch4]
                  return torch.cat(outputs, 1)
In [6]:
        class CNN(nn.Module):
             def __init__(self):
                  super(CNN, self).__init__()
                  self.net = nn.Sequential(
                       nn.Conv2d(1, 10, kernel_size=5), nn.ReLU(),
                       nn.MaxPool2d(kernel_size=2, stride=2),
                       Inception(in_channels=10),
                       nn.Conv2d(88, 20, kernel_size=5), nn.ReLU(),
                       nn.MaxPool2d(kernel_size=2, stride=2),
                       Inception(in_channels=20),
                       nn.Flatten(),
                       nn.Linear(1408, 10)
                  )
             def forward(self, x):
                  y = self.net(x)
                  return y
In [7]: # 查看网络结构
        X = torch.rand(size = (1, 1, 28, 28))
        for layer in CNN().net:
             X = layer(X)
              print( layer.__class__.__name__, 'output shape: \t', X.shape )
```

中南大学


```
Out [7]: Conv2d output shape:
                                      torch.Size([1, 10, 24, 24])
           ReLU output shape:
                                      torch.Size([1, 10, 24, 24])
           MaxPool2d output shape:
                                      torch.Size([1, 10, 12, 12])
           Inception output shape:
                                      torch.Size([1, 88, 12, 12])
           Conv2d output shape:
                                      torch.Size([1, 20, 8, 8])
           ReLU output shape:
                                      torch.Size([1, 20, 8, 8])
           MaxPool2d output shape:
                                      torch.Size([1, 20, 4, 4])
                                      torch.Size([1, 88, 4, 4])
           Inception output shape:
           Flatten output shape:
                                      torch.Size([1, 1408])
           Linear output shape:
                                      torch.Size([1, 10])
   In [8]: # 创建子类的实例, 并搬到 GPU 上
           model = CNN().to('cuda:0')
4.4 训练网络
   In [9]: # 损失函数的选择
           loss_fn = nn.CrossEntropyLoss()
  In [10]: # 优化算法的选择
           learning_rate = 0.1
                                # 设置学习率
           optimizer = torch.optim.SGD(
                model.parameters(),
                lr = learning_rate,
  In [11]:
           # 训练网络
           epochs = 10
           losses = []
                             # 记录损失函数变化的列表
           for epoch in range(epochs):
                for (x, y) in train_loader:
                                                # 获取小批次的 x 与 y
                    x, y = x.to('cuda:0'), y.to('cuda:0')
                    Pred = model(x)
                                                # 一次前向传播(小批量)
                    loss = loss_fn(Pred, y)
                                                # 计算损失函数
                                                # 记录损失函数的变化
                    losses.append(loss.item())
                                                # 清理上一轮滞留的梯度
                    optimizer.zero_grad()
                    loss.backward()
                                                # 一次反向传播
                    optimizer.step()
                                                # 优化内部参数
```

Fig = plt.figure()

plt.show()

plt.plot(range(len(losses)), losses)

中南大學

4.5 测试网络

```
In [12]: # 测试网络
        correct = 0
        total = 0
        with torch.no_grad():
                                      # 该局部关闭梯度计算功能
             for (x, y) in test_loader:
                                     # 获取小批次的 x 与 y
                 x, y = x.to('cuda:0'), y.to('cuda:0')
                 Pred = model(x)
                                      # 一次前向传播(小批量)
                 _, predicted = torch.max(Pred.data, dim=1)
                 correct += torch.sum( (predicted == y) )
                 total += y.size(0)
        print(f'测试集精准度: {100*correct/total} %')
```

Out [12]: 测试集精准度: 98.91999816894531%

五、ResNet

5.1 网络结构

中南大學

残差网络(Residual Network,ResNet)荣获 2015 年的 ImageNet 图像分类竞 赛冠军,其可以缓解深度神经网络中增加深度带来的"梯度消失"问题。

在反向传播计算梯度时,梯度是不断相乘的,假如训练到后期,各层的梯度 均小于 1,则其相乘起来就会不断趋于 0。因此,深度学习的隐藏层并非越多越 好,隐藏层越深,梯度越趋于0,此之谓"梯度消失"。

而残差块将某模块的输入 x 引到输出 y 处,使原本的梯度 dy/dx 变成了 (dy+dx)/dx, 也即(dy/dx+1), 这样一来梯度就不会消失了。

图 6-1 残差块的结构

5.2 制作数据集

In [1]: import torch

import torch.nn as nn

from torch.utils.data import DataLoader

from torchvision import transforms

from torchvision import datasets

import matplotlib.pyplot as plt

%matplotlib inline

In [2]: # 展示高清图

from matplotlib_inline import backend_inline backend_inline.set_matplotlib_formats('svg')

In [3]: # 制作数据集

数据集转换参数

transform = transforms.Compose([


```
transforms.ToTensor(),
    transforms.Normalize(0.1307, 0.3081)
])
# 下载训练集与测试集
train_Data = datasets.FashionMNIST(
    root = 'D:/Jupyter/dataset/mnist/',
    train = True,
    download = True,
    transform = transform
test_Data = datasets.FashionMNIST(
    root = 'D:/Jupyter/dataset/mnist/',
    train = False,
    download = True,
    transform = transform
```

In [4]: # 批次加载器

train_loader = DataLoader(train_Data, shuffle=True, batch_size=128) test_loader = DataLoader(test_Data, shuffle=False, batch_size=128)

5.3 搭建神经网络

```
In [5]: # 残差块
         class ResidualBlock(nn.Module):
              def __init__(self, channels):
                   super(ResidualBlock, self).__init__()
                   self.net = nn.Sequential(
                      nn.Conv2d(channels, channels, kernel_size=3, padding=1),
                      nn.ReLU(),
                      nn.Conv2d(channels, channels, kernel_size=3, padding=1),
                  )
              def forward(self, x):
                   y = self.net(x)
                   return nn.functional.relu(x+y)
```

```
In [6]: class CNN(nn.Module):
             def __init__(self):
                  super(CNN, self). init ()
                  self.net = nn.Sequential(
                       nn.Conv2d(1, 16, kernel_size=5), nn.ReLU(),
                       nn.MaxPool2d(2), ResidualBlock(16),
                       nn.Conv2d(16, 32, kernel_size=5), nn.ReLU(),
                       nn.MaxPool2d(2), ResidualBlock(32),
                       nn.Flatten(),
                       nn.Linear(512, 10)
```



```
Bilibili: 爆肝支奇 EHINA THREE GODGE CHINA THREE CHINA TH
```

```
def forward(self, x):
                     y = self.net(x)
                     return y
   In [7]: # 查看网络结构
            X = torch.rand(size = (1, 1, 28, 28))
            for layer in CNN().net:
                X = layer(X)
                 print( layer.__class__.__name__, 'output shape: \t', X.shape )
  Out [7]:
            Conv2d output shape:
                                        torch.Size([1, 16, 24, 24])
            ReLU output shape:
                                        torch.Size([1, 16, 24, 24])
            MaxPool2d output shape:
                                        torch.Size([1, 16, 12, 12])
            ResidualBlock output shape:
                                        torch.Size([1, 16, 12, 12])
            Conv2d output shape:
                                        torch.Size([1, 32, 8, 8])
            ReLU output shape:
                                        torch.Size([1, 32, 8, 8])
            MaxPool2d output shape:
                                        torch.Size([1, 32, 4, 4])
            ResidualBlock output shape:
                                        torch.Size([1, 32, 4, 4])
            Flatten output shape:
                                        torch.Size([1, 512])
            Linear output shape:
                                        torch.Size([1, 10])
   In [8]: # 创建子类的实例, 并搬到 GPU 上
            model = CNN().to('cuda:0')
5.4 训练网络
   In [9]: # 损失函数的选择
            loss_fn = nn.CrossEntropyLoss()
  In [10]: # 优化算法的选择
            learning rate = 0.1
                                  # 设置学习率
            optimizer = torch.optim.SGD(
                 model.parameters(),
                 lr = learning_rate,
  In [11]:
            # 训练网络
            epochs = 10
                               # 记录损失函数变化的列表
            losses = []
            for epoch in range(epochs):
                for (x, y) in train_loader:
                                                   # 获取小批次的 x 与 v
                     x, y = x.to('cuda:0'), y.to('cuda:0')
```

一次前向传播(小批量)

记录损失函数的变化

清理上一轮滞留的梯度

计算损失函数

一次反向传播

Pred = model(x)

loss.backward()

loss = loss_fn(Pred, y)

optimizer.zero_grad()

losses.append(loss.item())

```
optimizer.step()
                                                        # 优化内部参数
            Fig = plt.figure()
            plt.plot(range(len(losses)), losses)
            plt.show()
Out [11]:
            2.0
            1.5
            1.0
            0.5
            0.0
                           1000
                                     2000
                                               3000
                                                         4000
```

5.5 测试网络

```
In [12]: # 测试网络
         correct = 0
        total = 0
        with torch.no_grad():
                                      # 该局部关闭梯度计算功能
             for (x, y) in test_loader:
                                      # 获取小批次的 x 与 y
                 x, y = x.to('cuda:0'), y.to('cuda:0')
                                      # 一次前向传播(小批量)
                 Pred = model(x)
                 _, predicted = torch.max(Pred.data, dim=1)
                 correct += torch.sum( (predicted == y) )
                 total += y.size(0)
        print(f'测试集精准度: {100*correct/total} %')
```

Out [12]: 测试集精准度: 98.91999816894531%