Firms in the Global Economy

Krugman Chapter 8

Topics

- The Theory of Imperfect Competition
- Monopolistic Competition and Trade
- Firm Responses to Trade
- Dumping
- Multinationals and Outsourcing
- The Firm's Decision Regarding Foreign Direct Investment (FDI)

The Theory of Imperfect Competition

Imperfect Competition

	Perfectly Competitive Market	Monopoly	Oligopoly
# of sellers	∞	1	few
Market Price	Taker	Setter	Restrictive Setter
To sell more product,	Just make more product	Lower the Lower the price	
MR curve	Horizontal	Downward Sloping	Downward Sloping

Market Types

Are products differentiated?

Monopoly: A Brief Review

Model Setting

- A single monopolistic firm
 - The only firm in this sector
- Demand curve: D
- Downward sloping marginal revenue (MR) curve

Hypothetical Example: An Industry's Demand

Q(EA)	P(\$)	TR(\$)	MR(\$)
0	1000	0	950
1	950	950	850
2	900	1800	750
3	850	2550	650
4	800	3200	550
5	750	3750	450
6	700	4200	350
7	650	4550	250
8	600	4800	150
9	550	4950	50
10	500	5000	-50
11	450	4950	-150
12	400	4800	-250
13	350	4550	-350
14	300	4200	-450
15	250	3750	-550
16	200	3200	-650
17	150	2550	-750
18	100	1800	-850
19	50	950	-950
20	0	0	

Hypothetical Example: An Industry's Demand

Q(EA)	P(\$)	TR(\$)	MR(\$)
0	1000	0	950
1	950	950	850
2	900	1800	750
3	850	2550	650
4	800	3200	550
5	750	3750	450
6	700	4200	350
7	650	4550	250
8 Dom	600	4800	150
9 Dell	iand ₅₅₀	4950	50
10Sche	duleoo	5000	-50
11	450	4950	-150
12	400	4800	-250
13	350	4550	-350
14	300	4200	-450
15	250	3750	-550
16	200	3200	-650
17	150	2550	-750
18	100	1800	-850
19	50	950	-950
20	0	0	

MR curve is a downward curve below the Demand curve

A Hypothetical Industry

TABLE 7-1	Relationship of Input to Output for a Hypothetical Industry		
Output	Total Labor Input	Average Labor Input	
5	10	2	
10	15	1.5	
15	20	1.333333	
20	25	1.25	
25	30	1.2	
30	35	1.166667	

Relationship between MR and Price

For the simplicity, suppose that demand curve is linear:

•
$$Q = \bar{A} - \bar{B} \times P$$
 $(\Rightarrow P = A/B - Q/B)$

- $\bar{A}, \bar{B} > 0$
- Q: quantity of the product
- P: price of the product
- $TR := P \times Q$,

•
$$MR := \frac{dTR}{dQ} = \frac{d(A/B - Q/B)Q}{dQ} = A/B - 2Q/B = A/B - Q/B - Q/B = P - Q/B$$

•
$$\therefore P - MR = Q/B$$

Eq 8-1

Eq 8-2

Average Cost (AC) and Marginal Cost (MC)

- TC: Total Cost
- AC := TC/Q
 - \bullet q \uparrow \Rightarrow AC \downarrow

$$MC := \frac{dTC}{dQ}$$

- we assume MC is a constant: horizontal MC curve
 - just for the simplicity

AC and MC

EQ 8-3

• $TC = F + c \times Q$

• F: Fixed cost

• c: Marginal cost

• $AC := TC/Q \Rightarrow$ AC = F/Q + c

Q↑ ⇒ F/Q↓
 AC > c = MC

EQ 8-4

Monopolistic Pricing and Production Decisions

Monopolistic Competition

- Characteristics of monopolistic competition:
 - Many producers
 - Differentiated products
 - Free entry and exit

Monopolistic Competition: Assumptions (1)

- $Q = S \times [1/n b(P \bar{P})]$
 - Q: Firm's production quantity
 - S: Total production quantity in sector
 - n: The number of the firms
 - b>0: constant
 - P: The price charged by the firm
 - ullet $ar{P}$: The average price charged by its competitors

Meaning

Eq 8-5

- $Q = S \times [1/n b(P \bar{P})]$
 - Case 1: $P = \bar{P} \Rightarrow Q = S/n$ (equal share)
 - Case 2: $P > \bar{P} \Rightarrow Q < S/n$ (lower share)
 - Case 3: $P < \bar{P} \Rightarrow Q > S/n$ (higher share)

Monopolistic Competition: Assumptions (2)

- Sector (industry) output S is constant
 - ullet S is unaffected by the average price $(ar{P})$
- Firms can gain customers only at each other's expense
- All firms are symmetric
 - They all face the same demand curve (eq 8-5)
 - They have same cost function (eq 8-3)
 - $TC = F + c \times Q$, (eq 8-3)
 - AC = F/Q + c. (eq 8-4)

Above assumptions are for the simplicity in analysis

Market Equilibrium: Big Picture

- To determine n (the number of firms), \bar{P} (the average price of firms):
 - ullet STEP1: Derive a relationship between n and AC
 - ullet STEP2: Show the relationship between n and P (not $ar{P}$)
 - STEP3: Introduce firm entry and exit
 - Positive profit \Rightarrow additional firms enter \Rightarrow $n \uparrow \Rightarrow$ AC \uparrow , P \downarrow \Rightarrow profit \uparrow \Rightarrow ...
 - Negative profit \Rightarrow some firms exit \Rightarrow $n \downarrow \Rightarrow$ AC \downarrow , P $\uparrow \Rightarrow$ profit $\downarrow \Rightarrow ...$

STEP1: n and AC

- In equilibrium, $P = \bar{P} \Rightarrow Q = S/n$ (eq 8-5)
- From eq 8-4,
 - $AC = F/Q + c \Rightarrow AC = nF/S + c$ (eq8-6)
- For given F>0, S>0, c>0,
 - The more firms there are in the industry (n ↑), the higher is average cost (AC ↑)

STEP1: n and AC

- In equilibrium, $P = \bar{P} \Rightarrow Q = S/n$ (eq 8-5) From eq 8-4,
- - $AC = F/Q + c \Rightarrow AC = nF/S + c$ (eq8-6)
- For given F>0, S>0, c>0,
 - The more firms there are in the industry $(n \uparrow)$, the higher is average cost (AC \uparrow)

STEP1: n and AC

- In equilibrium, $P=\bar{P}\Rightarrow Q=S/n$ (eq 8-5) From eq 8-4, $AC=F/Q+c\Rightarrow AC=nF/S+c$ (eq8-6)
- For given F>0, S>0, c>0,
 - The more firms there are in the industry $(n \uparrow)$, the higher is average cost $(AC \uparrow)$

Positive Relationship between n and AC: line CC

Positive Relationship between n and AC: line CC

STEP2: n and P

- Eq 8-1: $Q = A B \times P$ (linear demand curve)
- Eq 8-5: $Q = S \times [1/n b(P \bar{P})]$
 - $Q = [(S/n) + Sb\bar{P}] SbP$ (Eq 8-7)
- Comparing Eq8-1, Eq8-5:
 - $A=S/n+Sb\bar{P}$, $B=Sb\Rightarrow {\rm Eq~8-2}$: $MR=P-Q/B\Rightarrow MR=P-Q/(Sb)$ (Eq 8-8)

STEP2: n and P

- Eq 8-1: $Q = A B \times P$ (linear demand curve)
- Eq 8-5: $Q = S \times [1/n b(P \bar{P})]$

•
$$Q = [(S/n) + Sb\bar{P}] - SbP$$
 (Eq 8-7)

- Comparing Eq8-1, Eq8-5:
 - $A=S/n+Sb\bar{P}$, $B=Sb\Rightarrow Eq$ 8-2: $MR=P-Q/B\Rightarrow MR=P-Q/(Sb)$ (Eq 8-8)

STEP2: n and P

- Eq 8-1: $Q = A B \times P$ (linear demand curve)
- Eq 8-5: $Q = S \times [1/n b(P \bar{P})]$

•
$$Q = [(S/n) + Sb\bar{P}] - SbP$$
 (Eq 8-7)

- Comparing Eq8-1, Eq8-5:
 - $A=S/n+Sb\bar{P}$, $B=Sb\Rightarrow Eq$ 8-2: $MR=P-Q/B\Rightarrow MR=P-Q/(Sb)$ (Eq 8-8)

STEP2: Continued

- MR = P Q/(Sb) (Eq 8-8)
- → Profit maximizing firms make MR = MC = c
 - MR = P Q/(Sb) = c
 - P = c + Q/(Sb) (Eq 8-9)
- When $P = \bar{P}$, then Q = S/n, therefore,

•
$$P = c + \frac{S}{n} \frac{1}{Sb} = c + \frac{1}{nb}$$
 (eq 8-10)

STEP2: Continued

- MR = P Q/(Sb) (Eq 8-8)
- → Profit maximizing firms make MR = MC = c
 - MR = P Q/(Sb) = c
 - P = c + Q/(Sb) (Eq 8-9)
- When $P = \bar{P}$, then Q = S/n, therefore,

•
$$P = c + \frac{S}{n} \frac{1}{Sb} = c + \frac{1}{nb}$$
 (eq 8-10)

STEP2: Continued

- MR = P Q/(Sb) (Eq 8-8)
- → Profit maximizing firms make MR = MC = c
 - MR = P Q/(Sb) = c
 - P = c + Q/(Sb) (Eq 8-9)
- When $P = \bar{P}$, then Q = S/n, therefore,

•
$$P = c + \frac{S}{n} \frac{1}{Sb} = c + \frac{1}{nb}$$
 (eq 8-10)

STEP2: Continued (2)

- Eq 8-10: $P = c + \frac{1}{nb}$
- For given c>0, b>0,
 - P is negatively correlated with n
 - $n \uparrow \Rightarrow P \downarrow$
- Curve PP
- Meaning of P-c:
 - Markup over MC

STEP2: Continued (2)

- Eq 8-10: $P = c + \frac{1}{nb}$
- For given c>0, b>0,
 - P is negatively correlated with n
 - $n \uparrow \Rightarrow P \downarrow$
- Curve PP
- Meaning of P-c:
 - Markup over MC

Case 1: $n < n_2$

- $n = n_1$,
 - $\bullet P_1 > AC_1$
 - Profit > 0
 - Excessive profit
- → Additional firms enter
- $\bullet \Rightarrow n \uparrow$

Case 1: $n < n_2$

- $n = n_1$,
 - $\bullet P_1 > AC_1$
 - Profit > 0
 - Excessive profit
- → Additional firms enter
- $\bullet \Rightarrow n \uparrow$

Case 1: $n < n_2$

- $n = n_1$,
 - $\bullet P_1 > AC_1$
 - Profit > 0
 - Excessive profit
- → Additional firms enter
- $\bullet \Rightarrow n \uparrow$

Case 2: $n > n_2$

- $n = n_3$,
 - $P_3 < AC_3$
 - Profit < 0
 - Negative profit
- ⇒ Some firms exit
- $\bullet \Rightarrow n \downarrow$

Case 2: $n > n_2$

- $n = n_3$,
 - $P_3 < AC_3$
 - Profit < 0
 - Negative profit
- ⇒ Some firms exit
- $\bullet \Rightarrow n \downarrow$

Case 2: $n > n_2$

- $n = n_3$,
 - $P_3 < AC_3$
 - Profit < 0
 - Negative profit
- ⇒ Some firms exit
- $\bullet \Rightarrow n \downarrow$

Case 3: $n = n_2$

- $n = n_2$,
 - $\bullet \ P_2 = AC_2$
 - Profit = 0
 - Average profit
- *n* does not change:
 - Stable equilibrium

Case 3: $n = n_2$

- $n = n_2$,
 - $\bullet \ P_2 = AC_2$
 - Profit = 0
 - Average profit
- *n* does not change:
 - Stable equilibrium

Case 3: $n = n_2$

- $n = n_2$,
 - $\bullet \ P_2 = AC_2$
 - Profit = 0
 - Average profit
- *n* does not change:
 - Stable equilibrium

Monopolistic Competition and Trade

Monopolistic Competition and Trade: Overview

- International trade increases market size
 (S, n)
- It means
 - more varieties of products can be produced
 - at lower average cost
- The monopolistic competition model can be used to show this results.

The Effects of Increased Market Size $(S \uparrow)$

- Eq 8-6: CC
 - AC = nF/S + c
 - $S \uparrow \Rightarrow \text{slope} \downarrow$
 - $CC_1 \Rightarrow CC_2$
- Eq 8-10: PP

$$\bullet \ P = c + \frac{1}{nb}$$

- S does not affect to PP
- $P \downarrow$, $n \uparrow$
 - More variable goods at lower prices

Gains from Integrated Market: A Numerical Example

- Suppose automobiles (cars) are produced by a monopolistically competitive industry
- Eq 8-5 (demand curve) with b=1/30000
 - $Q = S[1/n (1/30000)(P \bar{P})]$
- F=750,000,000, c=5,000
 - $C = 750,000,000 + 5,000 \times Q$
 - AC = C/Q = 750,000,000/Q + 5,000

Numerical Example: Home Country (No Trade)

- Suppose there are two countries: H and F
 - They have same costs of production (assumption)
 - H sells 900,000 cars per year
 - H has 6 firms
 - Price: \$10,000
- Eq8-10: $P = c + 1/(bn) = 5000 + 1/[(1/30000) \times 6] = 10000$
- In equilibrium, Q = 900000/6=150000 units/firm
- AC = nF/S + c = 7500000000/150000+5000=10000

Numerical Example: Foreign Country (No Trade)

- Suppose there are two countries: H and F
 - They have same costs of production (assumption)
 - F sells 1,600,000 cars per year
 - F has 8 firms
 - Price: \$8,750
- Eq8-10: $P = c + 1/(bn) = 5000 + 1/[(1/30000) \times 8] = 8750$ 14
- In equilibrium, Q = 1,600,000/8=200,000 units/firm
- AC = nF/S + c = 7500000000/2000000+5000=8750

Numerical Example: Integrated Market

- Integrated market:
 - W sells 2,500,000 cars per year
 - W has 10 firms
 - Price: \$8,000
- Eq8-10:

$$P = c + 1/(bn) = 5000 + 1/[(1/30000) \times 10] = 8000$$

- In equilibrium, Q = 2,500,000/10=250,000 units/firm
- AC = nF/S + c =7500000000/250000+5000=8
 000

Intra-Industry Trade

- Trade motivation is NOT difference in comparative advantage (Ch.3)
 - ∴ H and F has same technology

TABLE 8-1 Hypothe	E 8–1 Hypothetical Example of Gains from Market Integration				
	Home Market, before Trade	Foreign Market, before Trade	Integrated Market, after Trade		
Industry output (# of autos)	900,000	1,600,000	2,500,000		
Number of firms	6	8	10		
Output per firm (# of autos)	150,000	200,000	250,000		
Average cost	\$10,000	\$8,750	\$8,000		
Price	\$10,000	\$8,750	\$8,000		

The Significance of Intra-Industry Trade

$$I := \frac{\min(exports, imports)}{(exports + imports)/2}$$

TABLE 8-2 Indexes of la	ntra-Industry Trade for U.S. Industri	es, 2009		
Metalworking Machinery	7 A (* 1 T 1 1	0.97		
Inorganic Chemicals Actively Traded				
Power-Generating Machi	0.86			
Medical and Pharmaceut	0.85			
Scientific Equipment	0.84			
Organic Chemicals	0.79			
Iron and Steel	0.76			
Road Vehicles	0.70			
Office Machines	0.58			
Telecommunications Equipment		0.46		
Furniture	N / = = £	0.30		
Clothing and Apparel	Mostly Imported	0.11		
Footwear	(or Exported)	0.10		

Benefits from Increased Variety of Goods

- Christian Broda et al. (2006)
 - "Globalization and the Gains from Variety"
 - Estimates the number of available products in US imports TRIPLED in 1972-2001
- Increased product variety for US consumers represented a welfare gain equal to 2.6% of US GDP
- Another example: European Economic Community

Firm Responses to Trade: Winners, Losers, and Industry Performance

Losers from Trade

- Before trade, there were 6+8=14 firms
- After trade, there are 10 firms
- 4 firms exited: Losers

TABLE 8–1 Hypothe	Hypothetical Example of Gains from Market Integration				
	Home Market, before Trade	Foreign Market, before Trade	Integrated Market, after Trade		
Industry output (# of autos)	900,000	1,600,000	2,500,000		
Number of firms	6	8	10		
Output per firm (# of autos)	150,000	200,000	250,000		
Average cost	\$10,000	\$8,750	\$8,000		
Price	\$10,000	\$8,750	\$8,000		

Winners and Losers from Trade

- Winners: Better-performing firms
 - Expand after trade
- Losers: Worse-performing firms
 - Exit after trade
- Average industry performance improve
- Daneil Trefler (2004) Canada-US FTA
 - Canadian firms' productivity 14-15% ↑

Performance Differences across Producers

- Relax the symmetry assumption of the monopolistic competition model:
 - From now, firms have different cost curves
 - Firm 1, Firm 2 have $c_1 < c_2$,

Lower MC firm:

- set a lower price
- higher markup over MC
- produce more output
- earn higher profits

- c^* : cost cutoff
- If $c_i > c^*$
 - Firm i will exit

The Effects of Increased Market Size $(S \uparrow)$

Trade Costs and Export Decisions

Effect of the trade cost

- t = trade cost
- Only part of the firms export

TABLE 8-3	Proportion of U.S. Firms Reporting Ex	port Sales by Industry, 2016
Printing		15%
Furniture		16%
Wood Products		21%
Apparel		22%
Fabricated Metals		30%
Petroleum and Coal		34%
Transporta	tion Equipment	57%
Machinery		61%
Chemicals		65%
Electrical E	Equipment and Appliances	70%
Computer	and Electronics	75%

Source: A. B. Bernard, J. B. Jensen, S. J. Redding, and P. K. Schott, "Global Firms." NBER Working Paper, 22727 (October 2016).

Export Decisions with Trade Costs

- t = trade cost
- Exporting firms are bigger and more productive

Dumping

Dumping

- P_1^D, P_1^X : price that firm 1 sets on its domestic (Home) market and export market
- Firm 1 sets a lower markup $P_1^X-(c_1+t)$ on the export market < $P_1^D-c_1$ on the domestic market
- That is considered "dumping": regarded as unfair ⇒ panelty to firm1 as "antidumping duty" imposed

Controversies About Dumping

- Economists believe that the enforcement of dumping claim is misguided
- There is no good economic justification for dumping to be considered particularly harmful
- In practice, antidumping laws can be used to erect barriers to trade by discriminating against exporters in a market

Next Topic

- Multinationals and Outsourcing (Ch8)
- The Firms Decision Regarding FDI
- The Instruments of Trade Policy (Ch9)

Thank you!

Thank you!

