

"6" How's + WHY'S

41-8-69
R. LARSON

Basic Objectives for LM Powered-Landing

Guidance-and-Navigation System

- Safely land vehicle at a selected site on the moon with essentially zero velocity
- Accomplish the above objectives under the following conditions:
 - (1.) DPS propellant utilized in an efficient manner
 - (2.) Landing site visible to astronaut for at least 175 sec.
 - (3.) Limited range of throttle settings over which DPS can be operated
 - (4.) Provide manual site-redesignation capability to astronaut when site is visible
 - (5.) Approach-phase trajectory constraints to permit easy astronaut take-over if desired

Landing Maneuver Phases

Number	Phase Name	LG/C Programs	Starting time	Starting altitude	Starting speed
-2	Pre-ignition	P63	> -30 min		
-1	DPS ullage and trim	P63	-33.5 sec		
0	Braking	P63	0	50,000 ft	55 f/s
1	Visibility	P64	464 sec	7200 ft	516 f/s
2	Final descent	P65, P66, P67 (P65)	633 sec	150 ft	6 f/s

P63 -- Braking phase program (cannot reenter from P66 or P67)

P64 -- Approach phase program (cannot reenter from P66 or P67)

P65 -- Landing phase automatic program

P66 -- Landing phase rate-of-descent program

P67 -- Landing phase manual program

Nominal Lunar-Landing Geometry

$$\begin{aligned}h &= 50,000 \text{ ft} \\v &= 5545 \text{ ft/s}, \ddot{v} = 0 \\t &= 0, \text{ RGO} = 232 \text{ nm}\end{aligned}$$

Braking Phase
(P63)

$$\begin{aligned}h &= 7500 \text{ ft} \\v &= 550 \text{ ft/s}, \ddot{v} = -15 \text{ deg} \\t &= 464 \text{ s}, \text{ RGO} = 4.3 \text{ nm}\end{aligned}$$

Visibility Phase
(PCA)

$$\begin{aligned}h &= 150 \text{ ft} \\v &= 6 \text{ ft/s}, \ddot{v} = -34 \text{ deg} \\t &= 626 \text{ s}, \text{ RGO} = 15 \text{ ft}\end{aligned}$$

Landing Phase
(P65)

Landing Maneuver Displays

DSKY

Loc.	Preington	TIG-30	Start of Brake Ph.	Any Time In P63	Visibility Phase	Final Descent
R1	TGO	V_p	V_p	RANGE	TGO / LPD	V_H
R2	TFI		HDOT	TGO	HDOT	HDOT
R3	CR			DELH	H	H
Call	V06 N61	V06 N62	V06 N63	V16 N68 E	V06 N64	V06 N60

Analog Displays: H, HDOT, V_{HF} , V_{VF}

Thrust-Vector Elevation and Magnitude: Nominal

BAK DEG
RUN NO. = 313

IR Beam Angles wrt Draft Boundaries

Altitude Profile for Last 20,000 ft : Nominal

SAR DEG
RUN NO. = 313

LPD Angle on Nominal Trajectory

SAK DEG
RUN NO. = 313

Altitude vs. Vertical Velocity: Nominal

Scope of State-Vector Routine Talk

- Navigation Sensor performance characteristics -- IMU and LR on nominal trajectory, propagation of initial errors
- Description of routine -- general functions, tests, Layout
- Various tests relating to the incorporation of LR data -- flags to set, alarms, DSKY Lights
- Updating relations and weighting functions
- LR acquisition and dropouts on nominal and off-nominal trajectories
- Data reasonableness tests -- possible Lockouts of LR data
- System performance data for simulated automatic landings to sites II-P-6 and/or II-P-2, including terrain profiles, terrain slopes, initial condition errors, DPS thrust-acceleration variations, LR & IMU errors

Descent State-Vector Routine R-12

Basic Functions:

- Extrapolate the LM state estimate (\bar{r}_p, \bar{v}_p) forward one time step using the current PIPA output data
- Update the extrapolated position estimate with LR data , provided that certain tests are passed
- Update the extrapolated velocity estimate with LR velocity-component data, provided that certain tests are passed

Primary Inputs :

PIPA output data ($\Delta \bar{r}_p$), LR range, LR velocity-component measurements

Primary Outputs :

Up-to-date estimates of LM position (\bar{r}_p) and velocity (\bar{v}_p) in stable-member coordinates

Descent State-Vector Routine R-12

Part 1

Descent State-Vector Routine R-12

Part 2

LR Updating Relations

Altitude:

using 2 sec

$$r_p = r_p + w_h(\text{DELH}) \underline{u}_{hp}$$

$$\text{DELH} = \tilde{q}^* - q' - - - - - \text{DSKY (DELH)}$$

Superscripts

\sim raw meas.

$'$ = estimate

$*$ = computed
from meas.

$$\tilde{q}^* = -\tilde{q}(\underline{u}_{rbp}, \underline{u}_{hp})$$

$$q' = r_p - r_{ls} - - - - - \text{DSKY (H)}$$

$$\tilde{q}^*_{ur} = \tilde{q} \cos(15^\circ) - - - - - \text{TAPEMETER (H)}$$

in meter

$$v_p = v_p + w_v(\delta q_u) \underline{u}_{avu}$$

Velocity:

X every 6

Y every 6

Z every 6

$$\delta q_u = \underline{q}_u - q'_u$$

$$q'_u = \underline{v}'_p - \underline{u}_p \times \underline{f}_p$$

X Y Z
Z X Y

Landing Radar Weighting Functions

Altitude:

Selection Criterion	Weighting Function
$h' > LRHMAX$	$W = 0$
$h' \leq LRHMAX$	$W = LRWFF \left(1 - \frac{h'}{LRHMAX} \right)$

Present Erasable Values	
LRHMAX	50,000 ft
LRWFF	.35

Velocity:

Programs	Selection Criterion	Weighting Function	Present Erasable Values
P63	$V' > LRVMAX$	$W = 0$	LRVMAX 200 ft/s
P64	$LRVMAX \geq V' > LRVF$	$W = C \left(1 - \frac{V'}{LRVMAX} \right)$ $C = LRWVF, Y, Z$	LRVF 200 fts
P65, P66 P67	$V' \leq LRVF$	$W = \sum$ $C = LRWVF, Y, Z$	LRWVF .2 LRWVF-Z .2 LRWVF .1

Present Erasable Values	
LRWVF	.2
LRWVF-Z	.2
LRWVF	.1

Tests Relating to Incorporation of LR Data

Test or Flag to set	Purpose	How Set
LRPERMIT	Inhibit or allow LR updatings	Astronaut-- use of V 57 P command V 58 T inhibit
LRBYPASS	Inhibit LR updatings	LGC during P12, P70, P71
READLR	Permits LR data to be read	LGC-- $\frac{h}{h'} < HUP$ (50000 ft)
READVEL	Permits LR velocity data to be read	LGC-- $v/v' < VUP$ (2000 ft/s)
NOLRREAD	Inhibits LR updatings and the reading of LR data	LGC-- set when antenna repositioning is started, reset when Position-2 discrete obtained
POSTHIGATE	Cause computer to check for Position-2 discrete	LGC-- $t_{GO} < t_{SW}$ & $U_{XBXP} > U_{SW}$
FLAUTOX	Inhibits X-axis over-ride option	LGC-- $\frac{h}{h'} < 30,000$ ft
RANGEDATA	Inhibits LR altitude updatings if not set	LGC -- Range data--good discrete on two consecutive measurements
VELDATA	Inhibits LR velocity updatings if not set	LGC -- Velocity data--good discrete on two consecutive measurements

Lights and Alarms Relating to Operation of LR

Problem	Indication
No LR Range Data-Good Discrete	DSKY Altitude-Fail Light ON Steady (range data-good discrete turns off if range > 2481')
No LR Velocity Data-Good Discrete	DSKY Velocity-Fail Light ON Steady (vel. data-good discrete turns off)
No Range Low-Scale Discrete after LR Range < 2481 feet	DSKY Altitude-Fail light ON Steady (range low-scale discrete turns off)
No Position-2 Discrete after 22 sec from time LR Position Command Discrete is issued to the LR.	Program Alarm
No Position-1 Discrete before LR Pos. Command Discrete is issued to the LR.	Program Alarm
Two of last four altitude meas. failed reasonableness test	Flash LR Altitude Fail Light (will not flash if test passed)
Two of last four velocity meas. failed reasonableness test	Flash LR Velocity Fail Light (will not flash if test passed)

$$\gamma = 20.4^\circ$$

$$\theta_v = 24.6^\circ$$

$$\phi_v = 35.6^\circ$$

$$\gamma = \begin{cases} 24.0^\circ & ; \text{ POSITION ONE} \\ 0.0^\circ & ; \text{ POSITION TWO} \end{cases}$$

LANDING RADAR GEOMETRY

BEAM VELOCITY (ft./sec.)

400

300

200

100

40,290

15,662

10,662

8,262

1162
2000
5699

ATTITUDE (deg.)

DROPOUT ANGLE (deg.)

$H = 150 \text{ ft.}$
 $H = 636 \text{ ft.}$
 $H = 168 \text{ ft.}$

$H = 2000 \text{ ft.}$

28
26
24
22
20
18
16
14
12
10
8
6
4
2
0

BEAM VELOCITY (ft./sec.)

DROPOUT ANGLE (deg.)

Altitude Data Reasonableness Test

Velocity Data Readiness Test

$| \leq q_u = 1.54 \cdot 10^4$

$$q'_u = (V_u - V_p) \cdot \frac{1}{L_{AP}}$$

Block L8 velocity
fall sight if
40 of last four
meas. failed test

Light flash off 10°
Velocity Fall Light

Is Velocity flag set?

NO

Reserve Vel.
Initial flag

Is Read Vel.
Initial flag

YES

Is IRPERRIT flag set?

NO

YES

Update Velocity with IRveldata

YES

Superscripts
 \sim = measured

$t =$ estimated

Subscripts

$u =$ meas. line

$p =$ plateau obs.

$A =$ antenna axis

$Xyz =$ vel. components
along and θ ref.

Landing Site Locations

Flight Condition	Position (ft)	Vel (ft/s)
ES, Full	1906	6.9
# 11911	4400	8.1
	-6287	9.2

Line word - of LS

Profile 3
Profile 2
Profile 1

Slopes: 45 deg to maximum of 5000 feet

Highest AC at 1%
Wings = 2.5%

TRANSVERSE PROFILES 2 dimensions

II-P-2 (Profile 1)

II-P-6 (Profile 3)

RANGE (thousands of feet)

VISIBILITY ANGLE

BAK DEG
RUN NO. = 505

DELI for Enter-Free Case II-P-6 Profile 3

No Slope

Terrain II-P-46, Profile 3, 1 Deg Slope

BAK DEG
RUN NO. = 505

DELT for Envelope Case Test Profile

1-Deg. Slope

Displacement of LR Beams from Dropout Boundaries

BAIC DEG
RUN NO. = 607

VISIBILITY ANGLE

BAK DEC
RUN NO. =507

HP-5 Profile + Headings

2016 Dec 12 2016 09:45:00

Flight Experiment No. 1600
S. S. L. 1600

Flight Level 10,000 feet

Flight Altitude 10,000 feet

Flight Altitude 10,000 feet

R\$ 000 138

1

DEL H-HAMES-HEST

BAK DEG
RUN NO. #351

BANK DEG
RUN NO. = 051

2000

DEL H-HMES-HEST

1600

1200

800

400

0

200

300

400

500

600

TIME (SEC)

DEPTH (FEET)

-400

-800

-1200

-1600

-2000

SAK DEC

RUN NO. = 850

BANK DEG
ASA (NO.) = 350

VISIBILITY ANGLE

33 DEG
RNG NO. = 331

DEAD MAN'S CURVE 4-SEC REACTION TIME

ENCL REC
SERIAL NO. 2000

VISIBILITY ANGLE

DATA SHEET
NO. 100-1000

Alt-Alt (SEC)

