Variation 1: Asymmetric Binary Support

Exercise: Let X be a discrete random variable with support $\{-1,1\}$ and law:

$$P(X = -1) = \frac{1}{3}, \quad P(X = 1) = \frac{2}{3}.$$

Let X_1, X_2, \ldots, X_n be n independent copies of X, and define the random vector $Y = (X_1, X_2, \ldots, X_n)$.

(a)
$$\mathbb{P}(X=-1)$$
 and $\mathbb{P}(X=1)$?

Solution:

$$\mathbb{P}(X=-1)=\frac{1}{3}, \mathbb{P}(X=1)=\frac{2}{3}.$$

(b) Calculate $E[|X|^2]$.

Solution:

$$|X|^2 = X^2.$$
 $X^2 = 1$ (since $(-1)^2 = 1, 1^2 = 1$). $E[X^2] = 1 \cdot P(X^2 = 1) = 1.$

(c) Find E[X] and Var(X).

Solution:

$$E[X] = (-1) \cdot \frac{1}{3} + 1 \cdot \frac{2}{3} = \frac{1}{3}.$$

$$Var(X) = E[X^2] - (E[X])^2 = 1 - \left(\frac{1}{3}\right)^2 = 1 - \frac{1}{9} = \frac{8}{9}.$$

(d) Law of $\frac{X+1}{2}$?

Solution:

Let
$$T = \frac{X+1}{2}$$
.

- If X=-1, T=0 with $P=\frac{1}{3}.$ If X=1, T=1 with $P=\frac{2}{3}.$ Support: $\{0,1\}$, law: $P(T=0)=\frac{1}{3}, P(T=1)=\frac{2}{3}.$

(e) Law of Y? Calculate $P(Y \in \{1\}^n)$.

Solution:

Law of
$$Y$$
: product measure on $\{-1,1\}^n$ with $P(Y=(y_1,\ldots,y_n))=\prod_{i=1}^n P(X_i=y_i)$. $P(Y\in\{1\}^n)=P(X_1=1,\ldots,X_n=1)=\left(\frac{2}{3}\right)^n$.

(f) Show $\|Y\|_2^2$ is constant $\mathbb P$ -a.s.

$$\|Y\|_2^2 = \sum_{i=1}^n X_i^2$$
. Since $X_i^2 = 1$ for all i , $\|Y\|_2^2 = n$. Constant everywhere.

(g) Law of $Z = X_1 + X_2$?

Solution:

•
$$Z = -2$$
 if $X_1 = -1, X_2 = -1$: $P = \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{9}$.

•
$$Z=0$$
 if mixed: $P=P(X_1=-1,X_2=1)+P(X_1=1,X_2=-1)=\frac{1}{3}\cdot\frac{2}{3}+\frac{2}{3}\cdot\frac{1}{3}=\frac{4}{9}$.

•
$$Z=0$$
 if mixed: $P=P(X_1=-1,X_2=1)+P(X_1=1,X_2=-1)=\frac{1}{3}\cdot\frac{2}{3}+\frac{2}{3}\cdot\frac{1}{3}=\frac{4}{9}.$
• $Z=2$ if both 1: $P=\frac{2}{3}\cdot\frac{2}{3}=\frac{4}{9}.$
Law: $P(Z=-2)=\frac{1}{9}, P(Z=0)=\frac{4}{9}, P(Z=2)=\frac{4}{9}.$

Variation 2: Three-Valued Symmetric Support

Exercise: Let X be a discrete random variable with support $\{-1,0,1\}$ and law:

$$P(X = -1) = \frac{1}{4}, \quad P(X = 0) = \frac{1}{2}, \quad P(X = 1) = \frac{1}{4}.$$

Let X_1, X_2, \ldots, X_n be n independent copies of X, and define $Y = (X_1, X_2, \ldots, X_n)$.

(a)
$$\mathbb{P}(X=-1)$$
, $\mathbb{P}(X=0)$, $\mathbb{P}(X=1)$?

Solution:

$$\mathbb{P}(X = -1) = \frac{1}{4}, \mathbb{P}(X = 0) = \frac{1}{2}, \mathbb{P}(X = 1) = \frac{1}{4}.$$

(b) Calculate $E[|X|^2]$.

Solution:

(c) Find E[X] and Var(X).

Solution:

$$E[X] = (-1) \cdot \frac{1}{4} + 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{4} = 0.$$

$$Var(X) = E[X^2] - (E[X])^2 = \frac{1}{2} - 0 = \frac{1}{2}.$$

(d) Law of $\frac{X+1}{2}$?

Solution:

Let
$$T = \frac{X+1}{2}$$
.

•
$$X = -1$$
: $T = 0$, $P = \frac{1}{4}$.
• $X = 0$: $T = 0.5$, $P = \frac{1}{2}$.

•
$$X = 0: T = 0.5, P = \frac{1}{2}$$
.

•
$$X=1$$
: $T=1$, $P=\frac{1}{4}$. Support: $\{0,0.5,1\}$, law: $P(T=0)=\frac{1}{4}$, $P(T=0.5)=\frac{1}{2}$, $P(T=1)=\frac{1}{4}$.

(e) Law of Y? Calculate $P(Y \in \{1\}^n)$.

Law of Y: product measure on $\{-1,0,1\}^n$ with $P(Y=(y_1,\ldots,y_n))=\prod_{i=1}^n P(X_i=y_i)$. $P(Y\in\{1\}^n)=P(X_1=1,\ldots,X_n=1)=\left(\frac{1}{4}\right)^n$.

(f) Show $||Y||_2^2$ is **not** constant \mathbb{P} -a.s. and find $P(||Y||_2^2=0)$ and $P(||Y||_2^2=n)$.

Solution:

 $||Y||_2^2 = \sum_{i=1}^n X_i^2$. Since $X_i^2 = 0$ if $X_i = 0$ and 1 otherwise:

• $P(||Y||_2^2 = 0) = P(\text{all } X_i = 0) = (\frac{1}{2})^n$.

• $P(\|Y\|_2^2 = n) = P(\text{no } X_i = 0) = \left(\frac{1}{2}\right)^n$ (as $P(X_i \neq 0) = \frac{1}{2}$). Since $0 < \left(\frac{1}{2}\right)^n < 1$ for $n \ge 1$, $\|Y\|_2^2$ is not constant.

(g) Law of $Z=X_1+X_2$?

Solution:

Support: $\{-2, -1, 0, 1, 2\}$. Calculations:

• Z = -2: $X_1 = -1$, $X_2 = -1$, $P = \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{16}$.

 $\begin{array}{l} \bullet \ \ Z = -1 \text{: mixed } (-1,0) \text{ or } (0,-1), P = \frac{1}{4} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{4}. \\ \bullet \ \ Z = 0 \text{: could be } (-1,1), (1,-1), \text{ or } (0,0), P = \frac{1}{4} \cdot \frac{1}{4} + \frac{1}{4} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{8}. \end{array}$

• Z=1: mixed (1,0) or (0,1), $P=\frac{1}{4}\cdot\frac{1}{2}+\frac{1}{2}\cdot\frac{1}{4}=\frac{1}{4}$.

• $Z=2:(1,1), P=\frac{1}{4}\cdot\frac{1}{4}=\frac{1}{16}.$

Law: $P(Z=-2)=\frac{4}{16}$, $P(Z=-1)=\frac{4}{16}$, $P(Z=0)=\frac{6}{16}$, $P(Z=1)=\frac{4}{16}$, $P(Z=2)=\frac{1}{16}$

Variation 3: Asymmetric Binary Support in $\{0,1\}$

Exercise: Let X be a discrete random variable with support $\{0,1\}$ and law:

$$P(X=0) = \frac{1}{3}, \quad P(X=1) = \frac{2}{3}.$$

Let X_1, X_2, \ldots, X_n be n independent copies of X, and define $Y = (X_1, X_2, \ldots, X_n)$.

(a) $\mathbb{P}(X=0)$ and $\mathbb{P}(X=1)$?

Solution:

$$\mathbb{P}(X=0) = \frac{1}{3}, \mathbb{P}(X=1) = \frac{2}{3}.$$

(b) Calculate $E[|X|^2]$.

Solution:

$$|X|^2=X^2=X$$
 (since $0^2=0,1^2=1$) $E[|X|^2]=E[X]=0\cdot \frac{1}{3}+1\cdot \frac{2}{3}=\frac{2}{3}.$

(c) Find E[X] and Var(X).

$$E[X] = 0 \cdot \frac{1}{3} + 1 \cdot \frac{2}{3} = \frac{2}{3}.$$
 $Var(X) = E[X^2] - (E[X])^2 = \frac{2}{3} - (\frac{2}{3})^2 = \frac{2}{3} - \frac{4}{9} = \frac{2}{9}.$

(d) Law of $\frac{X+1}{2}$?

Solution:

Let $T = \frac{X+1}{2}$.

- X=0: T=0.5, $P=\frac{1}{3}$. X=1: T=1, $P=\frac{2}{3}$. Support: $\{0.5,1\}$, law: $P(T=0.5)=\frac{1}{3}$, $P(T=1)=\frac{2}{3}$.
- (e) Law of Y? Calculate $P(Y \in \{1\}^n)$.

Solution:

Law of
$$Y$$
: product measure on $\{0,1\}^n$ with $P(Y=(y_1,\ldots,y_n))=\prod_{i=1}^n P(X_i=y_i)$. $P(Y\in\{1\}^n)=P(X_1=1,\ldots,X_n=1)=\left(\frac{2}{3}\right)^n$.

(f) Is $||Y||_2^2$ constant? If not, find its law.

Solution:

$$\begin{split} \|Y\|_2^2 &= \sum_{i=1}^n X_i^2 = \sum_{i=1}^n X_i \text{ (since } X_i^2 = X_i\text{)}.\\ &\sum_{i=1}^n X_i \sim \operatorname{Binomial}(n,p=\frac{2}{3}) \text{ (number of 1's)}.\\ &\operatorname{Thus, for } k = 0,1,\ldots,n \text{:}\\ &P\left(\|Y\|_2^2 = k\right) = \binom{n}{k} \left(\frac{2}{3}\right)^k \left(\frac{1}{3}\right)^{n-k}.\\ &\operatorname{Not constant (e.g., for } n = 1 \text{, takes 0 and 1)}. \end{split}$$

(g) Law of $Z = X_1 + X_2$?

Solution:

Support: $\{0, 1, 2\}$.

- $Z=0: X_1=0, X_2=0, P=\frac{1}{3}\cdot \frac{1}{3}=\frac{1}{9}$.
- Z=1: mixed, $P=P(0,1)+\overset{3}{P}(\overset{3}{1},0)=\frac{1}{3}\cdot \frac{2}{3}+\frac{2}{3}\cdot \frac{1}{3}=\frac{4}{6}$.
- Z = 2: $X_1 = 1, X_2 = 1, P = \frac{2}{3} \cdot \frac{2}{3} = \frac{4}{9}$. Law: $P(Z=0) = \frac{1}{0}$, $P(Z=1) = \frac{4}{0}$, $P(Z=2) = \frac{4}{0}$.

Variation 4: Non-Integer Support

Exercise: Let X be a discrete random variable with support $\{3,5\}$ and law:

$$P(X=3) = \frac{2}{5}, \quad P(X=5) = \frac{3}{5}.$$

Let X_1, X_2, \ldots, X_n be n independent copies of X, and define $Y = (X_1, X_2, \ldots, X_n)$.

(a) $\mathbb{P}(X=3)$ and $\mathbb{P}(X=5)$?

Solution:

$$\mathbb{P}(X=3) = \frac{2}{5}, \mathbb{P}(X=5) = \frac{3}{5}.$$

(b) Calculate $E[|X|^2]$.

Solution:

$$|X|^2 = X^2.$$
 $E[X^2] = 3^2 \cdot \frac{2}{5} + 5^2 \cdot \frac{3}{5} = 9 \cdot \frac{2}{5} + 25 \cdot \frac{3}{5} = 18/5 + 75/5 = 93/5 = 18.6.$

(c) Find E[X] and Var(X).

Solution:

$$E[X] = 3 \cdot \frac{2}{5} + 5 \cdot \frac{3}{5} = 6/5 + 15/5 = 21/5 = 4.2.$$

$$Var(X) = E[X^2] - (E[X])^2 = \frac{93}{5} - (\frac{21}{5})^2 = \frac{93}{5} - \frac{441}{25} = \frac{465}{25} - \frac{441}{25} = \frac{24}{25} = 0.96.$$

(d) Law of $\frac{X+1}{2}$?

Solution:

Let
$$T=rac{X+1}{2}$$
.

- X = 3: $T = \frac{4}{2} = 2$, $P = \frac{2}{5}$. X = 5: $T = \frac{6}{2} = 3$, $P = \frac{3}{5}$. Support: $\{2,3\}$, law: $P(T=2)=\frac{2}{5}$, $P(T=3)=\frac{3}{5}$

(e) Law of Y? Calculate $P(Y \in \{5\}^n)$.

Solution:

Law of
$$Y$$
: product measure on $\{3,5\}^n$ with $P(Y=(y_1,\ldots,y_n))=\prod_{i=1}^n P(X_i=y_i)$. $P(Y\in\{5\}^n)=P(X_1=5,\ldots,X_n=5)=\left(\frac{3}{5}\right)^n$.

(f) Is $||Y||_2^2$ constant? Justify and find its range.

Solution:

$$\|Y\|_2^2 = \sum_{i=1}^n X_i^2$$
 , where $X_i^2 \in \{9,25\}$ (since $3^2 = 9, 5^2 = 25$).

Range: from 9n (all 3) to 25n (all 5).

Since $n \ge 1$ and 9 < 25, unless n = 0, it takes at least two values if $n \ge 1$. Thus, not constant (e.g., for n =1, is 9 or 25).

(g) Law of $Z = X_1 + X_2$?

Solution:

Support: $\{6, 8, 10\}$ (since 3 + 3 = 6, 3 + 5 = 8, 5 + 3 = 8, 5 + 5 = 10).

- $\begin{array}{ll} \bullet & Z=6\text{:}\ X_1=3, X_2=3, \, P=\frac{2}{5}\cdot\frac{2}{5}=\frac{4}{25}.\\ \bullet & Z=8\text{:}\ \mathrm{mixed}\ (3,5)\ \mathrm{or}\ (5,3), \, P=\frac{2}{5}\cdot\frac{3}{5}+\frac{3}{5}\cdot\frac{2}{5}=\frac{12}{25}. \end{array}$
- Z=10: $X_1=5$, $X_2=5$, $P=\frac{3}{5}\cdot\frac{3}{5}=\frac{9}{25}$. Law: $P(Z=6)=\frac{4}{25}$, $P(Z=8)=\frac{12}{25}$, $P(Z=10)=\frac{9}{25}$.

Variation 5: Asymmetric Three-Valued Support

Exercise: Let X be a discrete random variable with support $\{-1,0,1\}$ and law:

$$P(X = -1) = \frac{1}{2}, \quad P(X = 0) = \frac{1}{3}, \quad P(X = 1) = \frac{1}{6}.$$

Let X_1, X_2, \ldots, X_n be n independent copies of X, and define $Y = (X_1, X_2, \ldots, X_n)$.

(a)
$$\mathbb{P}(X=-1)$$
, $\mathbb{P}(X=0)$, $\mathbb{P}(X=1)$?

Solution:

$$\mathbb{P}(X=-1)=\frac{1}{2}, \mathbb{P}(X=0)=\frac{1}{3}, \mathbb{P}(X=1)=\frac{1}{6}$$

(b) Calculate $E[|X|^2]$.

Solution:

$$E[X^2] = (-1)^2 \cdot \frac{1}{2} + 0^2 \cdot \frac{1}{3} + 1^2 \cdot \frac{1}{6} = 1 \cdot \frac{1}{2} + 0 + \frac{1}{6} = \frac{3}{6} + \frac{1}{6} = \frac{4}{6} = \frac{2}{3}.$$

(c) Find E[X] and Var(X).

Solution:

$$E[X] = (-1) \cdot \frac{1}{2} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{6} = -\frac{1}{2} + \frac{1}{6} = -\frac{1}{3}.$$
 $Var(X) = E[X^2] - (E[X])^2 = \frac{2}{3} - (-\frac{1}{3})^2 = \frac{2}{3} - \frac{1}{9} = \frac{5}{9}.$

(d) Law of $\frac{X+1}{2}$?

Solution:

Let
$$T = \frac{X+1}{2}$$
.

- X = -1: T = 0, $P = \frac{1}{2}$.
- $X = 0: T = 0.5, P = \frac{1}{3}$
- X=1: T=1, $P=\frac{1}{6}$. Support: $\{0,0.5,1\}$, law: $P(T=0)=\frac{1}{2}$, $P(T=0.5)=\frac{1}{3}$, $P(T=1)=\frac{1}{6}$.

(e) Law of Y? Calculate $P(Y \in \{1\}^n)$.

Solution:

Law of Y: product measure on $\{-1, 0, 1\}^n$.

$$P(Y \in \{1\}^n) = P(X_1 = 1, \dots, X_n = 1) = \left(\frac{1}{6}\right)^n$$
.

(f) Find $E[\|Y\|_2^2]$ and $\operatorname{Var}(\|Y\|_2^2)$.

$$\begin{split} \|Y\|_2^2 &= \textstyle\sum_{i=1}^n X_i^2. \\ \text{Let } W_i &= X_i^2, \text{ so } \|Y\|_2^2 = \textstyle\sum_{i=1}^n W_i. \end{split}$$

•
$$P(W_i = 0) = P(X_i = 0) = \frac{1}{3}$$
.

•
$$P(W_i=1)=P(X_i=-1 \text{ or } 1)=\frac{1}{2}+\frac{1}{6}=\frac{2}{3}.$$
 Thus, $E[W_i]=0\cdot\frac{1}{3}+1\cdot\frac{2}{3}=\frac{2}{3}.$ $Var(W_i)=E[W_i^2]-(E[W_i])^2=\frac{2}{3}-\left(\frac{2}{3}\right)^2=\frac{2}{3}-\frac{4}{9}=\frac{2}{9}$ (since $W_i^2=W_i$). By independence: $E[\|Y\|_2^2]=n\cdot E[W_i]=n\cdot\frac{2}{3}.$ $Var(\|Y\|_2^2)=n\cdot Var(W_i)=n\cdot\frac{2}{9}.$

(g) Law of
$$Z = X_1 + X_2$$
?

Solution:

Support: $\{-2, -1, 0, 1, 2\}$ (all combinations). Calculations:

•
$$Z = -2$$
: $(-1, -1)$, $P = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$.

•
$$Z = -1$$
: $(-1,0)$, $(0,-1)$, $P = \frac{1}{2} \cdot \frac{1}{3} + \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{3}$.

•
$$Z=0$$
: $(-1,1)$, $(0,0)$, $(1,-1)$, $P=\frac{1}{2}\cdot\frac{3}{6}+\frac{1}{3}\cdot\frac{3}{3}+\frac{1}{6}\cdot\frac{1}{2}=\frac{1}{12}+\frac{1}{9}+\frac{1}{12}=\frac{1}{4}+\frac{1}{9}$ (scaling via $36!$) $=\frac{9}{36}+\frac{4}{36}=\frac{13}{36}$? Let's calculate accurately:

$$(-1,1)$$
: $P = \frac{1}{2} \cdot \frac{1}{6} = \frac{1}{12}$,

$$(0,0)$$
: $P = \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{9} = \frac{4}{36}$,

$$(-1,1): P = \frac{1}{2} \cdot \frac{1}{6} = \frac{1}{12},$$

$$(0,0): P = \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{9} = \frac{4}{36},$$

$$(1,-1): P = \frac{1}{6} \cdot \frac{1}{2} = \frac{1}{12} = \frac{3}{36},$$

Total =
$$\frac{1}{12} + \frac{1}{9} + \frac{1}{12} = \frac{3}{36} + \frac{4}{36} + \frac{3}{36} = \frac{10}{36} = \frac{5}{18}$$
.

Total =
$$\frac{1}{12} + \frac{1}{9} + \frac{1}{12} = \frac{3}{36} + \frac{4}{36} + \frac{3}{36} = \frac{10}{36} = \frac{5}{18}$$
.
• $Z = 1: (0, 1), (1, 0), P = \frac{1}{3} \cdot \frac{1}{6} + \frac{1}{6} \cdot \frac{1}{3} = \frac{1}{18} + \frac{1}{18} = \frac{1}{9}$.

•
$$Z = 2: (1,1), P = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}.$$

$$P(Z = -2) = \frac{9}{36},$$

 $P(Z = -1) = \frac{12}{36},$
 $P(Z = 0) = \frac{10}{36},$

$$P(Z=-1)=\frac{12}{36}$$

$$P(Z=0) = \frac{10}{36}$$

$$P(Z=1) = \frac{4}{36}$$

$$P(Z=2) = \frac{1}{36}.$$

Simplify: $\frac{9}{36} = \frac{1}{4}$, but better reduced:

Sum: 9 + 12 + 10 + 4 + 1 = 36/36, so:

$$P(Z=-2)=\frac{9}{36}, \quad P(Z=-1)=\frac{12}{36}, \quad P(Z=0)=\frac{10}{36}, \quad P(Z=1)=\frac{4}{36}, \quad P(Z=2)=\frac{1}{36}.$$

Simplify fractions: $\frac{3}{12}$, $\frac{1}{3}$, $\frac{5}{18}$, $\frac{1}{9}$, $\frac{1}{36}$? Or leave as is.

Progression:

- Variation 1: Basic asymmetric binary with clear constant norm.
- Variation 2: Triple-valued symmetric, introduces more calculations.
- Variation 3: $\{0,1\}$ support, requires handling sums as binomials.
- Variation 4: Non-integer support, expands to multiplicative values.
- · Variation 5: Asymmetric triple-valued, most complex distributions and variances.