

Version: 0.4

Release date: 2021-08-01

Use of this document and any information contained therein is subject to the terms and conditions set forth in Exhibit 1. This document is subject to change without notice.

Version History

Version	Date	Description
0.1	2021-03-24	Initial Draft release
0.2	2021-03-31	Chapter 1: Introduction
		1.1: delete unused feature
		1.2: new section "Block Diagram"
		1.6: add more description in Step 3,4,6
		Chapter 2: Quick Question (New chapter)
		Chapter 6: SDIO Slave TX/Host RX
		6.1: delete the unused field in GPD
		Chapter 7: SDIO Slave RX/Host TX
		7.1: delete the unused field in GPD
		Chapter 11: APPENDIX
		11.add new section "SDIO Slave CR"
0.3	2021-4-01	Chapter 1
		1.6:
		Add comment for every step to label host action or slave action
		Add note for step 5,6
	XX	Chapter 2:
		Answer for the meeting question.
	11.0	Answer for the meeting question.
		Chapter 6: SDIO Slave TX/Host RX
		6.2: add more description and modify contents
		Chapter 7: SDIO Slave RX/Host TX
		7.2: add more description and modify contents
		Delete Chapter 10: SDIO API
		API with its parameters will list in Doxygen files
0.4	2021-08-01	Add Hyperlink
		Modify description (add description and delete unsupported
		feature)
		List the tables and figures

Table of Contents

VERSIC	ON HISTORY	2
TABLE	OF CONTENTS	3
1 IN	ITRODUCTION	-
	FEATURES	
1.1	BLOCK DIAGRAM	
1.2		
1.3	FUNCTIONS DESCRIPTION	
1.4	SIGNAL PINSSDIO SLAVE PINMUX	
1.5		
1.6	SDIO SLAVE FIRMWARE FLOW OVERVIEW	
2 Q	UICK QUESTION	12
3 SI	DIO SLAVE PROBE PROCEDURE	14
	DIO DRIVER OWN PROCEDURE	
5 SI	DIO CARD TO HOST INTERRUPT	
5.1	ENABLE HOST INTERRUPT	16
	1.1 CCCR IEN1	
٠.		
-		
_		
6 SI	DIO SLAVE TX/HOST RX	18
6.1	SDIO SLAVE TX / Host RX Flow	
6.2	COMMAND 53 HOST RX PACKET FORMAT	
6.	2.1 Byte Mode	
	DIO SLAVE RX/HOST TX	
7 SI	DIO SLAVE RX/HOST TX	22
7.1	SDIO SLAVE RX / HOST TX FLOW	23
7.2	COMMAND 53 HOST TX PACKET FORMAT	24
7.	2.1 Byte Mode	24
7.	2.2 Block Mode	24
8 SI	DIO MAILBOX	25
9 SI	DIO SLAVE FIRMWARE OWN	26
9.1	FIRMWARE OWN FLOW	
10	APPENDIX	
10.1	Host Domain CR	27
10.2	SDIO SLAVE CR	39
EXHIBI	T 1 TERMS AND CONDITIONS	83

List of Figures

-igure 1 Block diagram	6
Figure 2 Signal connections to 4-bit SDIO cards	7
Figure 3 Procedure of SDIO slave TRX	
Figure 4 Format of CMD52	12
Figure 5 Format of CMD52 response	12
Figure 6 Mechanism of SDIO slave TRX	
Figure 7 Procedure of Driver Own	
Figure 8 Procedure of enabling card to host interrupt	16
Figure 9 CCCR	
Figure 10 Procedure of SDIO slave TX	
Figure 11 SDIO host RX byte mode	
Figure 12 SDIO host RX block mode	
Figure 13 Procedure of SDIO Slave RX	
Figure 14 SDIO host TX byte mode	
Figure 15 SDIO host TX block mode	
Figure 16 Mailbox	25
Figure 17 Procedure of SDIO slave firmware own	26
List of Tables	
Table 1 SDIO pin definitions	7
Table 2 SDIO slave pinmux	
Table 2 CCCP IENV	16

1 Introduction

The Secure Digital Input/Output (SDIO) card is based on and compatible with the SD (Secure Digital) memory card. The controller fully supports the SD memory card bus protocol as defined in SD Memory Card Specification Part 1 Physical Layer Specification version 2.0 and SDIO Specification version 2.0.

SDIO provides high-speed data IO with low power consumption. The SDIO module provides an SDIO2.0 card interface connected to the host and can support multiple speed modes including default speed mode and high speed mode.

1.1 Features

- SDIO 2.0 basic features
 - 1-bit and 4-bit SD data transfer modes
 - Default mode: Variable clock rate 0-25 MHz, up to 12.5 Mbps interface speed (using 4 parallel data lines)
 - o High-Speed mode: Variable clock rate 0-50 MHz, up to 25 Mbps interface speed (using 4 data lines)
- CR and data port access
 - Supports control register (CR) port single read/write access (AHB slave)
 - o Supports data port single and burst read/write access (AHB master)
 - Only support SDIO function 1
- DMA function
 - One Tx channel and two Rx channels
 - Moves Tx data from HIF buffer to SYSRAM, TCM
 - o Moves Rx data or firmware prepared data from SYSRAM, TCM to HIF buffer

1.2 Block Diagram

Figure 1 Block diagram

- The SD bus is connected to the SDIO host.
- The AHB master bus is for SDIO DMA to issue AHB transaction with address to get or give data
- The AHB slave bus is for MT793X MCU to access control CR of the slave module
- Sdctl_whdcr contains host domain control registers which can be accessed by host CMD53 or CMD52 only.

For probe procedure, it can be completed by sdctl_sdio1 and sdctl_cis_buf. It does not need the firmware to handle it.

Note that the AHB bus is ready when bootrom finishes.

1.3 Functions Description

From the external view, the SDIO interface mainly includes the SD bus and AHB master and slave. The AHB master is used for DMA operations and the AHB slave is used for register access from the MCU. The SD bus provides an interface for SD specification.

1.4 Signal Pins

Figure 2 Signal connections to 4-bit SDIO cards

Table	1	SDIO	niq	de	finitio	าร
-------	---	-------------	-----	----	---------	----

Pin	Name	SD 4-bit mode		SD 1-bit mode	
1	SDIO_DAT3	DAT[3]	Data line3	N/C	Not used
2	SDIO_CMD	CMD	Command line	CMD	Command line
3	VSS1	VSS1	Ground	VSS1	Ground
4	VDD	VDD	Supply voltage	VDD	Supply voltage
5	SDIO_CLK	CLK	Clock	CLK	Clock
6	VSS2	VSS2	Ground	VSS2	Ground
7	SDIO_DAT0	DAT[0] Data line0		DATA	Data line
8	SDIO_DAT1	DAT[1]	Data line1 or interrupt	IRQ	Interrupt
9	SDIO_DAT2	DAT[2]	Data line2	RW	Not used

Page 7 of 83

1.5 SDIO Slave Pinmux

As shown in the following figure, the MT793x SDIO slave uses GPIO 6 to 11. Before performing any SDIO operation for the slave controller, GPIO 6 to 11 must be set to ALT 1. The default pinmux setting is ALT1.

Table 2 SDIO slave pinmux

GPIO	FUN	Description
GPIO 6	ALT fun 1	IO:SDIO_CLK
GPIO 7	ALT fun 1	B1:SDIO_CMD
GPIO 8	ALT fun 1	B1:SDIO_DATO
GPIO 9	ALT fun 1	B1:SDIO_DAT1
GPIO 10	ALT fun 1	B1:SDIO_DAT2
GPIO 11	ALT fun 1	B1:SDIO_DAT3

1.6 SDIO Slave Firmware Flow Overview

Figure 3 Procedure of SDIO slave TRX

This section describes a simple software flow of SDIO TX/RX

- 1. Slave: SDIO slave initialization
 - 1.1. Call API hal_sdio_slave_init(HAL_SDIO_SLAVE_PORT_0)
 - 1.1.1. SDIO slave hardware setting
 - 1.1.2. Clear SDIO slave queue and reset
 - 1.1.3. SDIO Slave Interrupt Setting
 - 1.1.3.1. Enable INT and decide which interrupt event can trigger the MT793X
 - 1.1.3.2. NVIC setting
 - 1.2 Register callback for INT: hal_sdio_slave_register_callback
- 2. Host: For the card probe procedure, refer to chapter 3.
- 3. Slave: SDIO Slave Driver own

To access all driver control register, the host should request driver own

- 3.1. The host requests driver own bit.(Write WHLPCR. DRV_CLR_FW_OWN_by command 53)
- 3.2. The firmware sets own back bit in the interrupt handler. (This is done by handler sdio_slave_isr)
- 3.3. The driver checks whether driver own is successful. (Read <u>WHLPCR.</u> W_FW_OWN_REQ_SET__by command53)

See more information in <u>chapter 4</u>.

4. Host: For host enable Interrupt, refer to chapter 5.

Call sdio_claim_irq(func, my_sdio_interrupt) to enable CCCR, which can be done before DRV_OWN

Set WHLPCR[0] to 1, which can be done before DRV_OWN

Set WHIER to 0x00000087, which must be done after DRV_OWN

- 5. Slave: The firmware prepares TRX buffer and trigger card to host INT
 - 5.1. Slave RX: call hal_sdio_slave_receive_dma
 - 5.2. Slave TX: call hal_sdio_slave_send_dma

See more information in <u>chapter 6</u> and <u>chapter 7</u>.

6. Host: The host enters interrupt handler and checks INT Status

After finishing Step 4, the host catches the corresponding card to host interrupt event, and runs into handler.

If the firmware calls hal_sdio_slave_receive_dma, <u>WHISR.</u>TX_DONE_INT_ is asserted.

- 6.1. Check INT status bit by command53 to read WHISR.
- 6.2. The host reads WTSRO to get packet number by command 53 before the host sends data.

- 6.3. The host writes data to <u>WTDR1</u> by command53; the slave receives data, and DMA pushes data to specific address automatically.
- 6.4. Once DMA completes the operation, TX1_RDY is asserted from the SDIO controller to MCU, and runs handler to clear status and the controller calls the callback registered by hal_sdio_slave_register_callback.

See more information in chapter 7.

Note 1: TX1_RDY means the host transmits data completely, and the MT793X can handle buffer received from the host. Please refer to 10.2 <u>HWFTEOSR</u>.

Note 2: Step 6.4 is performed by the firmware, not by the host.

If the firmware calls hal_sdio_slave_send_dma, WHISR. RX1_DONE_INT or RX0_DONE_INT is asserted.

- 6.5. Check INT status bit by command53 to read WHISR.
- 6.6. The host reads WRPLR to get packet length by command 53 before the host reads data.
- 6.7. The host reads data to <u>WRDR0</u> or <u>WRDR1</u> by command53; the slave sends data, and DMA gets data from specific address automatically
- 6.8. Once DMA completes the operation, RX0_DONE / RX1_DONE is asserted from the SDIO controller to MCU and the controller calls the callback registered by hal_sdio_slave_register_callback.

See more information in chapter 6.

Note 1: RXO_DONE / RX1_DONE means the host receives data completely, and the MT793X can clean the buffer that contains data sent from the host. Please refer to 10.2. HWFREOSR.

Note 2: Step 6.4 is performed by the firmware, not by the host

7. Repeat Step 5 and Step 6 for SDIO slave TX /RX

A brief description is provided in chapter 2 "How do the host and slave do flow control to TRX"

2 Quick Question

What is host domain CR?

A: Host domain CR means the control registers which can only be accessed by CMD52 and CMD53. CMD53 and CMD52 with a specific address can be used to communicate with the SDIO slave. Please refer to 10.1. Section 1.6 shows the flow for SDIO TRX.

What is GPD (general purpose descriptor) format?

A: The GPD format is a data structure that provides the SDIO controller the information about where it should take or get data from by DMA. The maximum data length in a GPD is limited to 4092 bytes.

What is DRV_OWN?

A: DRV_OWN is a mechanism for the host to get full control of the host domain CR. Refer to Section 1.6to check how it works.

What is the limitation of CMD53 TRX?

A: The data size requested by CMD53 with block mode must be the multiple of the block size. For the host TX, the host software should pad 0 at the end of data. For the host RX, padding is automatically done by the SDIO controller.

Can CMD52 read or write 4-byte data?

A: No, CMD52 does not use the DAT pin. Data is transferred by the CMD pin. CMD52 only reads or writes 8-bit data defined in SPEC.

Figure 4 Format of CMD52

Figure 5 Format of CMD52 response

How do the host and slave perform TRX flow control?

A: Refer to the following figure for details of the TRX flow.

Figure 6 Mechanism of SDIO slave TRX

- Call hal_sdio_slave_receive_dma or hal_sdio_slave_send_dma
 - → Set Destination or source address in GPD for DMA
 - → Trigger card to Host Interrupt
- 2 Host run into handler and check interrupt status.
- 3 TX_DONE_INT asserted :
 - → Following the step 6.2 & 6.3 in section 1.6

step 6.3 will trigger DMA to get data from Buffer and push data to bus.

RX0_DONE / RX1_DONE asserted:

- → Following the step 6.6 & 6.7 in section 1.6
 - step 6.7 will trigger DMA to get data from bus and push data to buffer.
- Once the DMA operations have been completed, SDIO controller triggers interrupt to CM33.
 - → Slave checked Status in sdio_slave_isr
 - → sdio_slave_isr will call your own callback which registered by hal_sdio_slave_register_callback
 - → your own callback may:
 - 1. Clearing the buffer, if RX0_DONE/RX1_DONE asserted. (Host CMD53 RX completed) Then doing 3.
 - 2. Manipulating data, if TX1_RDY asserted. (Host CMD53 TX completed) Then doing 3.
 - 3. Call hal_sdio_slave_receive_dma or hal_sdio_slave_send_dma to repeat TRX

3 SDIO Slave Probe Procedure

The SDIO slave hardware is ready as soon as the MT793X powers on (refer to 1.2). The default pinmux values of GPIO6 to 11 are also configured to the SDIO slave. The host can perform the probe sequence without firmware setting. Follow the standard procedure in Spec in order to complete the probe sequence successfully. The Linux kernel module has already implemented the sequence. When the card is inserted into the host slot, the host triggers Linux to run the probe procedure.

Once the probe procedure is complete, the block size is set to 256, which is the maximum block size of the MT793X, and the bus width is 4-bit by default in Linux.

4 SDIO Driver Own Procedure

When the host gets the driver own bit, it can get full control of the SDIO slave. The default status is firmware own. That it, the host must request the driver own bit first before data read or write. This chapter describes how to get the driver own bit.

After power on reset, the SDIO slave is controlled by the firmware and only limited registers are accessible normally; other registers are read with value 0 and written without function. When the host driver wants to get full control of the SDIO controller registers, it has to set FW_OWN_REQ_CLR to send an interrupt to the firmware. The firmware then sets FW_OWN_BACK_INT to give ownership to the host driver and informs the host that the host is ready to access all registers including data port.

The driver own flow is describe in Section 1.6.

Figure 7 Procedure of Driver Own

part, is strictly prohibited.

5 SDIO Card to Host Interrupt

The SDIO slave controller can trigger interrupt to the host by DAT[1]. The host should set CCCR and write host domain CR to enable interrupt. After enabling interrupt, the host runs handler if it is registered.

Figure 8 Procedure of enabling card to host interrupt

5.1 Enable Host Interrupt

When the host wants to handle card to host interrupt, pay attention to the three types of registers introduced in the following sections.

5.1.1 CCCR IEN1

The Card Common Control Register (CCCR) allows quick host checking and provides control of enabling I/O card and interrupts on a per card (master) and per function basis. The host should set IEN1 to 1.

Table 3 CCCR IENx

Addr: Field	Туре	Description
04h: IENx	R/W	Interrupt Enable for Function x. If
		this bit is cleared to 0, any interrupt
		from this function shall not be sent
		to the host. If this bit is set to 1,
		then this function's interrupt shall
		be sent to the host if the master
		Interrupt Enable (bit 0) is also set to
		1

0x02	I/O Enable	IOE7	IOE6	IOE5	IOE4	IOE3	IOE2	IOE1	RFU
0x03	I/O Ready	IOR7	IOR6	IOR5	IOR4	IOR3	IOR2	IOR1	RFU
0x04	Int Enable	IEN7	IEN6	IEN5	IEN4	IEN3	IEN2	IEN1	IENM

Figure 9 CCCR

5.1.2 WHLPCR

When <u>WHLPCR</u>[0] is set, the card to host interrupt can be sent to the host. The meaning of bits of <u>WHLPCR</u> can refer to <u>APPENDIX</u> 10.1.

5.1.3 WHIER

<u>WHIER</u> controls which interrupt event can trigger interrupt from the slave controller to the host. If the host does not set <u>WHIER</u>, the corresponding event does not generate interrupt to the host. The meaning of bits of <u>WHIER</u> can be in <u>APPENDIX 10.1</u>.

Note: All of the above registers should be set, if the host wants to receive card to host interrupt.

6 SDIO Slave TX/Host RX

The software is expected to issue sufficient length of blocks/bytes to receive the RX packet(s) queuing in the SDIO controller, with the RX-packet length reported by either RX port read. The SDIO controller pads 0 to the remaining part of the command data after all expected RX packets are received by the host.

If the host driver knows that there is RX packet data to be received, it could issue a CMD53 with byte mode or block mode RX command to receive all RX data whose packet length has been read. Otherwise, it could wait for interrupt RX_DONE_INT to read <u>WRPLR</u> to get RX packet number and all the RX packet lengths, and then issues a CMD53 to read port for reading data from the slave.

Note that the whole RX packet should be received within a transaction by one CMD53. The packet can not be cut to be transmitted by two or more commands. In normal mode, the host should reserve enough space for all RX packet data with RX lengths reported in the previous length reading. The maximum length of data is 4092.

The legal format for command 53 Read Data is shown in 6.2.

6.1 SDIO Slave TX / Host RX Flow

1. Slave TX:

Prepare slave TX buffer and trigger INT

- → Call hal_sdio_slave_send_dma
- 2. Host RX:

The host enters handler and checks INT Status

→ Check INT status bit by command53 to read <u>WHISR</u> (<u>WHISR</u>. RX1_DONE_INT or RX0_DONE_INT_will be asserted)

CMD53 RX Flow

→ The host reads packet length by command 53 before the host receives data

Packet length can be obtained from reading WRPLR

- → The host reads data to <u>WRDR0</u> or <u>WRDR1</u> by command53; the slave sends data, and DMA gets data from specific address automatically
 - → Once DMA completes the operation, RX0_DONE / RX1_DONE is asserted from the SDIO controller to MCU and the controller calls the callback registered by hal_sdio_slave_register_callback.

Figure 10 Procedure of SDIO slave TX

Note: RX0_DONE / RX1_DONE means the host receives data completely, and the MT793X can clean the buffer that contains data sent from the host. Please refer to 10.2. "HWFRE0SR"

6.2 Command 53 Host RX Packet Format

6.2.1 Byte Mode

As mentioned above, the whole RX packet must be received within a transaction by one CMD53 with byte mode. When calling CMD53, the SDIO controller copies data from the buffer to queue by DMA and sends data to the host.

Figure 11 SDIO host RX byte mode

As mentioned above, the whole RX packet must be received within a transaction by one CMD53. Due to hardware limitation, after the data size is requested by the host via CMD53, if the data size is not the multiple of the block size, the data should be padded to 0. Padding 0 is automatically done by the SDIO controller.

Figure 12 SDIO host RX block mode

Note that each packet should not be cut within transaction boundary. To achieve this, padding is needed if the (concatenated) packet length cannot fit into a complete SDIO data transition.

7 SDIO Slave RX/Host TX

If the host driver knows that there are available buffers for transmission, it could issue a CMD53 with byte mode or block mode TX command to transmit all data. It could wait for interrupt TX_DONE_INT to read <u>WTSR0</u> to get TX packet count, and then issues CMD53 with TX command. Note that the whole TX packet should be transmitted within a transaction by one CMD53. The packet can not be cut to be transmitted by two or more commands. Therefore, the host driver must pad 0 at the end of data to make the packet to be the multiple of block size so that the data can be transmitted in one command.

Padding at the tail of the packet is used to inform the SDIO controller of the end of the packet. The header, placed at the beginning of the packet, is 4-byte data that describes the size of a packet. The maximum length of data is 4092. The length information in header in each TX packet is used to inform the SDIO controller if the data transfer is completed.

The legal format for command53 write Data is shown in 7.2.

7.1 SDIO Slave RX / Host TX Flow

1. Slave RX:

Prepare slave RX buffer and trigger INT

- → Call hal_sdio_slave_receive_dma
- 2. Host TX:

The host enters handler and checks INT Status

→ Check INT status bit by command53 to read WHISR (WHISR.TX_DONE_INT will be asserted)

CMD53 TX Flow

→ The host reads packet number by command 53 before the host sends data

Packet number can be obtained from reading WTSRO

- → The host writes data to <u>WTDR1</u> by command53, the slave receives data, and DMA pushes data to specific address automatically.
 - → Once DMA completes the operation, TX1_RDY is asserted from the SDIO controller to MCU, and runs handler to clear status and the controller calls the callback registered by hal_sdio_slave_register_callback.

Figure 13 Procedure of SDIO Slave RX

Note: TX1_RDY means the host transmits data completely, and the MT793X can handle buffer received from the host. Please refer to 10.2 "HWFTE0SR ".

7.2 Command 53 Host TX Packet Format

7.2.1 Byte Mode

As mentioned above, the whole TX packet must be sent within a transaction by one CMD53 with byte mode. When calling CMD53, the host pushes data to queue and the SDIO controller DMA sends data to buffer. The destination address of DMA is described in GPD. The host software adds a 4-byte header at the beginning of the data that describes data length.

Figure 14 SDIO host TX byte mode

7.2.2 Block Mode

The whole RX packet must be sent within a transaction by one CMD53. Due to hardware limitation, after the data size is requested by the host via CMD53, if the data size is not the multiple of block size, the data is padded to 0. The host software should pad 0 at the end of data and add a 4-byte header at the beginning of data that describes data length.

Figure 15 SDIO host TX block mode

8 SDIO Mailbox

The mailbox mechanism is used for firmware and host driver communication. However, the mailbox also needs to coordinate with software interrupt to complete the mechanism. First, the host driver or firmware sets the appropriate mailbox content and then sets the software interrupt to inform the opposite. Whenever the opposite receives the interrupt and finds the interrupt source is software interrupt, it checks the mailbox.

There are two mailboxes and they are unidirectional. The way the mailbox works is similar to handshake and depends on the software usage.

Figure 16 Mailbox

9 SDIO Slave Firmware Own

If the host does not want to access the SDIO controller, it could give ownership to the firmware by setting FW_OWN_REQ_SET to inform the firmware. If there is no other task to executed, the firmware could disable all unnecessary clocks and go to sleep mode. If the host wants to wake up the SDIO controller, it could set FW_OWN_REQ_CLR as specified in Chapter 3.

Figure 17 Procedure of SDIO slave firmware own

9.1 Firmware Own Flow

The host driver writes WHLPCR. W_FW_OWN_REQ_SET_by CMD53 to set firmware own bit.

10 APPENDIX

10.1 Host Domain CR

Module name: SDIO_SLV Base address: (+0x0000000)

Name	Width	Register Function
<u>WCIR</u>	32	WLAN Chip ID Register
WHLPCR	32	WLAN HIF Low Power Control Register
WHCR	32	WLAN HIF Control Register
<u>WHISR</u>	32	WLAN HIF Interrupt Status Register
<u>WHIER</u>	32	WLAN HIF Interrupt Enable Register
WASR	32	WLAN Abnormal Status Register
WSICR	32	WLAN Software Interrupt Control Register
WTSR0	32	WLAN TX Status Register
WTSR1	32	WLAN TX Status Register
WTDR1	32	WLAN TX Data Register 1
WRDR0	32	WLAN RX Data Register 0
WRDR1	32	WLAN RX Data Register 1
H2DSM0R	32	Host to Device Send Mailbox 0 Register
H2DSM1R	32	Host to Device Send Mailbox 1 Register
D2HRMOR	32	Device to Host Receive Mailbox 0 Register
D2HRM1R	32	Device to Host Receive Mailbox 1 Register
<u>WRPLR</u>	32	WLAN RX Packet Length Register
	WCIR WHLPCR WHCR WHISR WHISR WHIER WSICR WTSRO WTSR1 WTDR1 WRDRO WRDR1 H2DSMOR H2DSMOR H2DSMOR D2HRMOR D2HRMOR	WCIR 32 WHLPCR 32 WHCR 32 WHISR 32 WHIER 32 WSICR 32 WTSRO 32 WTSR1 32 WTDR1 32 WRDR0 32 WRDR1 32 H2DSMOR 32 H2DSM1R 32 D2HRM0R 32 D2HRM1R 32

0000000)	<u>WCIR</u>	UR WLAN Chip ID F					Regist	er					001	L06630	
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	DEVICE_STATUS								W_FUN C_RDY			REVISI	ON_ID			
Туре				R	0						RO	W1C		R	0	
Reset	0	0	0	0	0	0	0	0			0	1	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	CHIP_ID															
Туре	RO															
Reset	0	1	1	0	0	1	1	0	0	0	1	1	0	0	0	0

Bit(s)	Name	Description
31:24	DEVICE_STATUS	These status bits are defined by users and could be read by host driver via SDIO bus interface. For example, watch dog reset status could be one that could be read by host driver even when there is no AHB clock in SDIO controller.
21	W_FUNC_RDY	Indicate that WLAN functional block has finished its initial procedure and it is ready for normal operationx000D_ This is a sticky bit of HWFCR.W_FUNC_RDYx000D_

Bit(s)	Name	Description
		Driver will keep polling this bit on initialization. Once after FW is ready and set corresponding bit in FW, driver can do following control to FWx000D_ 0: WLAN functional block is not ready for normal operation.
		1: WLAN functional block is ready for normal operation. x000D
20	POR_INDICATOR	This bit indicates a reset occurs including external pin reset, power detect reset, power on reset, SDIO CCCR(0x06).Bit[3] reset (only in SDIO)x000D_
		Write 1 to clear this bit. Write 0 is meaninglessx000D_
19:16	REVISION_ID	Revision ID_x000D_
15:0	CHIP_ID	Chip ID_x000D_

00000004	4	<u>WHLP</u>	<u>CR</u>			V	VLAN H	IIF Low	/ Powe	r Cont	rol Reg	gister			000	00000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Туре																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							W_FW _OWN _REQ_ CLR	W_FW _OWN _REQ_ SET								W_INT _EN_SE T
Туре							W1S	W1S							W1S	W1S
Reset							0	0							0	0

Bit(s)	Name	Description
9	W_FW_OWN_REQ_CLR	Write 1 to this bit to request firmware to return the ownership of chip WLAN function to host driver. Write 0 has no meaning (Refer chapter "Power management" for details)x000D_ Read always return 0x000D_
		This bit will be set on initial, or by firmware written 1 to HWFICR.
		FW_OWN_BACK_INT_SET or any driver-domain WLAN interrupts.
8	W_FW_OWN_REQ_SET	Write 1 to this bit to transfer ownership of chip WLAN function to firmware. Write 0 has no meaning (Refer chapter "Power management"
		for details). Host driver should set this bit to give ownership to
		firmware only when host driver has ownershipx000D_
		Read will get the status of WLAN_DRV_OWNx000D_
		WLAN_DRV_OWN indicates that software driver has the ownership of chip WLAN sub-systemx000D_
		0: WLAN driver doesn't have ownership
		1: WLAN driver has ownership_x000D_
1	W_INT_EN_CLR	Write 0 has no meaning, and write 1 to clear WLAN interrupt enable signalx000D_
0	W_INT_EN_SET	Read always return 0x000D_ Write 0 has no meaning, and write 1 to set WLAN interrupt enable signalx000D_ Read will get the status of W_INT_ENx000D_

Bit(s)	Name	Description
		x000D W INT EN indicates the current value of WLAN interrupt enable signal.
		This enable signal is used for controlling the output of WLAN interrupt signalx000D_
		0: WLAN interrupt can't output to host.
		1: WLAN interrupt can output to hostx000D_

0000000	С	WHCR	<u>l</u>	WLAN HIF Control Register										00000000		
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																RX_EN HANCE _MOD E
Туре																RW
Reset																0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				MA)	(_HIF_R	X_LEN_I	NUM						RPT_O WN_RX _PACK ET_LEN	OX_RD	_CLR_C	
Туре					R	W							RW	RW	RW	
Reset			0	0	0	0	0	0					0	0	0	

Bit(s)	Name	Description
16	RX_ENHANCE_MODE	Enable the read of TX count status, RX length, and mailbox information in RX packet enhance mode. Refer chapter 3.4 for more detailsx000D_ 0: disable RX packet enhance mode
		1: Enable the read of TX count status, RX length, and mailbox information in RX packet enhance modex000D_
13:8	MAX_HIF_RX_LEN_NUM	The maximum number of SDIO controller to report the per-queue RX packets length via INT/ RX enhance modex000D_
	* U/),	0: report entire 64 RX packets length in the same RX queue without limitation.
3	RPT_OWN_RX_PACKET_LEN	Others (N): report at most N RX packet lengths for each RX queue This field is to control the rx packet report length and structure during enhance mode. If this bit is set to 1, each rx queue can report its own length according to the setting in WPLRCR. Also, the total report length would be changed if this bit is set. Host driver should parse the enhance mode status according to the length setting in WPLRCR to get correct information.
		O: disable the function that each rx queue can report its own packet length and the maximal report length is constrained by max_hif_rx_len_num field in WHCR 1: enable the function that each rx queue can report its own packet length and the maximal report length can be different by each queue
2	RECV_MAILBOX_RD_CLR_EN	according to the setting in WPLRCR This is to control whether the received mail-box (D2HRMOR, D2HRM1R) will be read cleared or not (this include read from enhance mode structure)x000D_

Bit(s)	Name	Description
		1: read clear
		0: no effect after read_x000D_
1	W_INT_CLR_CTRL	This bit is used to select the clear mechanism of WLAN interrupt statue (WHISR)x000D_ 0: Read clear
		1: Write 1 clear_x000D_

0000001)	WHISE	<u> </u>		WLAN HIF Interrupt Status Register										000	00000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								D2H_9	SW_INT							
Type							RC									
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				D2H_S	W_INT				FW_O WN_B ACK_IN T	ABNOR MAL_I NT		RX3_D ONE_I NT		RX1_D ONE_I NT	ONF I	HIX DO
Туре				R	С				RC	RO		RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0

Bit(s)	Name	Description
31:8	D2H_SW_INT	This field is used for software interrupt for WLAN function in FW to host driver directionx000D_
		WLAN firmware writes 1s to HWFICR.Bit[31:8] will set corresponding bit fieldx000D_
7	FW_OWN_BACK_INT	Firmware has returned the ownership to host driver. This field is set with driver own-back only.
		Firmware write 1 to HWFICR. Bit[4] will set this bit.
6	ABNORMAL_INT	Abnormal event interruptx000D_
		The abnormal status will be shown in WASR, which includes_x000D_
		Data overflow of WLAN TX0 and TX1 portx000D_
		Data underflow of WLAN RXO and RX1 portx000D_
		FW_OWN_INVALID_ACCESS_x000D_
4	RX3_DONE_INT	When any of the RX length data of RX3 is existed in HIF RX length FIFO, this bit will be asserted. x000D
3	RX2 DONE INT	When any of the RX length data of RX2 is existed in HIF RX length FIFO,
	14-43-	this bit will be asserted. x000D
2	RX1 DONE INT	When any of the RX length data of RX1 is existed in HIF RX length FIFO,
		this bit will be assertedx000D_
1	RXO DONE INT	When any of the RX length data of RXO is existed in HIF RX length FIFO,
		this bit will be assertedx000D_
0	TX_DONE_INT	If WTSR0 or WTSR1 is not 0, this bit will be setx000D_
		0: WTSR0 and WTSR1 is 0.
		1: WTSR0 or WTSR1 is not 0x000D_

0000001	4	WHIE	<u>R</u>		WLAN HIF Interrupt Enable Register											00000000		
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		

Name		D2H_SW_INT_EN														
Туре		RW														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			ı	D2H_SW	/_INT_EI	N			WN_B	ABNOR MAL_I NT_EN		ONE_I	_	ONE_I	ONE_I	TX_DO NE_INT _EN
Туре				R	W			RW	RW		RW	RW	RW	RW	RW	
Reset	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0

Bit(s)	Name	Description
31:8	D2H_SW_INT_EN	WLAN host interrupt output control bitsx000D_ If any bit is_x000D_ 0: Mask the WLAN related bit interrupt output, corresponding bits will be still written to WHISR without triggering interrupt.
7	FW_OWN_BACK_INT_EN	1: Enable the WLAN related bit interrupt outputx000D_ WLAN host interrupt output control bitsx000D_ If any bit is_x000D_ 0: Mask the WLAN related bit interrupt output, corresponding bits will be still written to WHISR without triggering interrupt. 1: Enable the WLAN related bit interrupt outputx000D_
6	ABNORMAL_INT_EN	WLAN host interrupt output control bitsx000D_ If any bit is_x000D_ 0: Mask the WLAN related bit interrupt output, corresponding bits will be still written to WHISR without triggering interrupt. 1: Enable the WLAN related bit interrupt outputx000D_
4	RX3_DONE_INT_EN	WLAN host interrupt output control bitsx000D_ If any bit is_x000D_ 0: Mask the WLAN related bit interrupt output, corresponding bits will be still written to WHISR without triggering interrupt. 1: Enable the WLAN related bit interrupt output. x000D
3	RX2_DONE_INT_EN	WLAN host interrupt output control bitsx000D_ If any bit is_x000D_ 0: Mask the WLAN related bit interrupt output, corresponding bits will be still written to WHISR without triggering interrupt. 1: Enable the WLAN related bit interrupt outputx000D_
2	RX1_DONE_INT_EN	WLAN host interrupt output control bitsx000D_ If any bit is_x000D_ 0: Mask the WLAN related bit interrupt output, corresponding bits will be still written to WHISR without triggering interrupt. 1: Enable the WLAN related bit interrupt outputx000D_
1	RXO_DONE_INT_EN	WLAN host interrupt output control bitsx000D_ If any bit is_x000D_ 0: Mask the WLAN related bit interrupt output, corresponding bits will be still written to WHISR without triggering interrupt. 1: Enable the WLAN related bit interrupt outputx000D_
0	TX_DONE_INT_EN	WLAN host interrupt output control bitsx000D_ If any bit is_x000D_ 0: Mask the WLAN related bit interrupt output, corresponding bits will be still written to WHISR without triggering interrupt. 1: Enable the WLAN related bit interrupt outputx000D_

00000020	0	WASR				V	VLAN A	bnorm	nal Sta	tus Re	gister				000	00000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																FW_O WN_IN VALID_ ACCESS
Туре																RC
Reset																0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								RX0_U NDERF LOW							TX1_O VERFL OW	TX0_O VERFL OW
Туре					RC	RC	RC	RC							RC	RC
Reset					0	0	0	0							0	0

Bit(s)	Name	Description
16	FW_OWN_INVALID_ACCESS	It will be asserted when register other than WCIR, WHLPCR, WSPICSR, WSDIOCSR, WEHPICSR, and firmware download relative registers are accessed when FW own = 1 It is purely for host driver debug purpose.
11	RX3_UNDERFLOW	Data underflow of WLAN RX3 portx000D_
10	RX2_UNDERFLOW	Data underflow of WLAN RX2 portx000D_
9	RX1_UNDERFLOW	Data underflow of WLAN RX1 portx000D_
8	RXO_UNDERFLOW	Data underflow of WLAN RX0 portx000D_
1	TX1_OVERFLOW	Data overflow of WLAN TX1 portx000D_
0	TX0_OVERFLOW	Data overflow of WLAN TX0 portx000D_

00000024	4	WSICE	<u> </u>	WLAN Software Interrupt Control Register 00											000	00000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
—										<u> </u>						
Name								I2D_SW	_IN I _SE	ı						
Type								W	1 S							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
Туре																
Reset																

Bit(s)	Name	Description
31:16	H2D_SW_INT_SET	Host driver writes 1s will set HWFISR. HOST_DRIVER_INT. Write 0 is meaningless.
		Read always return 0.
		This is used as a communication between FW to driver, with interrupt
		functionality to SDIO controller.

00000028 <u>WTSR0</u> WLAN TX Status Register 00000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name				TQ3	CNT			TQ2_CNT									
Туре				R	С							R	.C				
Reset											0	0					
Bit	15	14	13	12	11	10	9	8	7 6 5 4 3 2 1								
Name				TQ1	CNT				TQ0_CNT								
Туре				R	С				RC								
Reset	0 0 0 0 0 0 0								0	0	0	0	0	0	0	0	

Bit(s)	Name	Description
31:24	TQ3_CNT	This field indicates the released packet count of TQ3 during two WTSR0 read accessx000D_
		This field is cleared by read operation. Write has no meaningx000D_
23:16	TQ2_CNT	This field indicates the released packet count of TQ2 during two WTSR0 read accessx000D_
		This field is cleared by read operation. Write has no meaningx000D_
15:8	TQ1_CNT	This field indicates the released packet count of TQ1 during two WTSR0 read accessx000D_
		This field is cleared by read operation. Write has no meaning. x000D
7:0	TQ0_CNT	This field indicates the released packet count of TQ0 during two WTSR0 read access. x000D
		This field is cleared by read operation. Write has no meaningx000D_

0000002	С	WTSR	R1 WLAN TX Status Register 00000000											00000			
Bit	31	30	29	28	27	26	25	24 23 22 21 20 19 18 17									
Name				TQ7	CNT			TQ6_CNT									
Type				R	С							R	iC				
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name				TQ5_	CNT	7			TQ4_CNT								
Туре				R	С				RC								
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Bit(s)	Name	Description
31:24	TQ7_CNT	This field indicates the released packet count of TQ7 during two WTSR0 read accessx000D_
		This field is cleared by read operation. Write has no meaningx000D_
23:16	TQ6_CNT	This field indicates the released packet count of TQ6 during two WTSR0 read accessx000D_
		This field is cleared by read operation. Write has no meaningx000D_
15:8	TQ5_CNT	This field indicates the released packet count of TQ5 during two WTSR1 read accessx000D_
		This field is cleared by read operation. Write has no meaningx000D_
7:0	TQ4_CNT	This field indicates the released packet count of TQ4 during two WTSR1 read accessx000D_
		This field is cleared by read operation. Write has no meaningx000D_

00000034	4	WTDR	<u>1</u>			V	/LAN T	X Data	Regist	ter 1					000	00000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		TX1_DATA														
Туре								W	0							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								TX1_I	DATA							
Туре								W	0							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
31:0	TX1_DATA	TX1 write data port. Read always return 0x000D_
		x000D
		Data must be padded to multiples of block when the data to write is
		more than the size of a single block. Writing data with multiple blocks in
		one transaction and the remaining in another with byte mode is
		prohibitedx000D_

00000050	0	WRDR	<u> 10</u>			W	/LAN R	X Data	Regis	ter 0					00000000		
Bit	31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16															
Name								RX0_	DATA	•	•						
Туре								R	0								
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name								RX0_	DATA								
Туре								R	0								
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit(s)	Name					D	escripti	on								
31:0	RXO D	ATA				R	X0 read	data p	ort. Wr	ite has	no effe	ct. x00	10D			

The RXO data port support data aggregation. Driver should read the entire RX packets by last SDIO controller indicated information. The

number of total RX aggregation packets is restricted by WHCR. MAX_HIF_RX_LEN_NUM._x000D_ (details is in chapter 3.1):_x000D_

x000D

Length to read must be extended to multiples of block when the data to read is more than the size of a single block. Reading data with multiple blocks in one transaction and the remaining in another with byte mode is prohibited._x000D_

x000D

Also as long as host driver knows the total available packet number and length via enhanced interrupt response and/or RX packet enhanced mode, host driver must read all RX packets in a single transaction. Reading for partial packets is prohibited either._x000D_

Bit(s)	Name	Description

00000054	4	WRDR	<u>R1</u>			V	/LAN R	X Data	Regis	ter 1				00000000			
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name		RX1_DATA															
Туре		RO															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name								RX1_	DATA								
Туре								R	0								
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Bit(s)	Name	Description
31:0	RX1_DATA	RX1 read data port. Write has no effectx000D_
		The RX1 data port support data aggregation. Driver should read the
		entire RX packets by last SDIO controller indicated information. The
		number of total RX aggregation packets is restricted by WHCR.
		MAX_HIF_RX_LEN_NUMx000D_
		(details is in chapter 3.1):_x000D_
		x000D
		Data length to read must be extended to multiples of block when the
		data to read is more than the size of a single block. Reading data with
		multiple blocks in one transaction and the remaining in another with byte
		mode is prohibited. x000D
		x000D
		Also as long as host driver knows the total available packet number and
		length via enhanced interrupt response and/or RX packet enhanced
		mode, host driver must read all RX packets in a single transaction.
		Reading for partial packets is prohibited either. x000D
		heading for partial packets is profibited etitlerx000b_

0000007	00000070 <u>H2DSM0R</u>						Host to Device Send Mailbox 0 Register										
Bit	31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17												16			
Name		H2D_SM0															
Туре		RW															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name								H2D	SM0								
Туре		RW															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Bit(s)	Name	Description
31:0	H2D_SM0	This register is used by host driver to transmit data to SDIO controller, which will be updated to H2DRMOR and read by FWx000D_

00000074	4	H2DSI	<u> M1R</u>		Host to Device Send Mailbox 1 Register												
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name		H2D_SM1															
Type	RW																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name								H2D_	SM1								
Туре	RW																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Bit(s)	Name	Description
31:0	H2D_SM1	This register is used by host driver to transmit data to SDIO controller, which will be updated to H2DRM1R and read by FWx000D_

00000078	8	D2HRI	M0R		Device to Host Receive Mailbox 0 Register 000000													
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
Name	D2H_RM0																	
Туре	RO																	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Name								D2H_	RM0									
Type	RO																	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

Bit(s)	Name	Description
31:0	D2H_RM0	This register is used by host driver to receive data from SDIO controller, which is updated through D2HSMOR by FWx000D_
		The property of RO/RC is by control of WHCR. RECV MAILBOX RD CLR EN bit. x000D

0000007	С	D2HR	M1R			D	evice t	o Host	Receiv	ve Mai	lbox 1	Regist	er		000	0000000	
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name		D2H_RM1															
Туре	RO																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name								D2H_	RM1								
Туре	RO																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Bit(s)	Name	Description
31:0	D2H_RM1	This register is used by host driver to receive data from SDIO controller, which is updated through D2HSM1R by FWx000D_
		The property of RO/RC is by control of WHCR.
		RECV_MAILBOX_RD_CLR_EN bitx000D_

0000008	0 <u>D2HRM2R</u> Device to Host Receive Mailbox 2 Register 00000000															
Bit	31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16														
Name		D2H_RM2														
Туре		RO														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		D2H_RM2														
Туре		RO														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	- Name	Description
31:0	D2H_RM2	This register is used by host driver to receive data from SDIO controller, which is updated through D2HSM2R by FW. For synchronization of hardware, it is recommended to read this register more than once to give more host clock cycles to device to get the latest result, especially for EHPI interfacex000D_ Note that this register could be read when there is no AHB clock, i.e. host
		driver could get this message when chip is in low power modex000D_

0000009)	WRPL	<u>R</u>			W	/LAN R	X Pack	et Len	gth Re	gister				000	00000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		RX1_PACKET_LENGTH														
Type								R	0							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		RX0_PACKET_LENGTH														
Type								R	0							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
31:16	RX1_PACKET_LENGTH	This register is used to get the next RX packet length in the RX1 length
		FIFO, which is updated by FW HWRQ1CRx000D_
		When this field is read, it will report only 1 RX packet length in this RX
		queue, and at most 1 packet will return by next RX port read. x000D
15:0	RXO PACKET LENGTH	This register is used to get the next RX packet length in the RXO length
		FIFO, which is updated by FW HWRQ0CRx000D_
		When this field is read, it will report only 1 RX packet length in this RX
		queue, and at most 1 packet will return by next RX port readx000D_

10.2 SDIO Slave CR

Address	Name	Width	Register Function
38130000	<u>HGFCR</u>	32	HIF Global Firmware Configuration Register
38130004	<u>HGFISR</u>	32	HIF Global Firmware Interrupt Status Register
38130008	HGFIER	32	HIF Global Firmware Interrupt Enable Register
3813001C	HGH2DR	32	HIF Global Host to Device Register
38130100	<u>HWFISR</u>	32	HIF WLAN Firmware Interrupt Status Register
38130104	<u>HWFIER</u>	32	HIF WLAN Firmware Interrupt Enable Register
38130110	<u>HWFTE0SR</u>	32	HIF WLAN Firmware TX Event 0 Status Register
38130120	HWFTE0ER	32	HIF WLAN Firmware TX Event 0 Enable Register
38130130	<u>HWFRE0SR</u>	32	HIF WLAN Firmware RX Event 0 Status Register
38130134	HWFRE1SR	32	HIF WLAN Firmware RX Event 1 Status Register
38130140	HWFRE0ER	32	HIF WLAN Firmware RX Event 0 Enable Register
38130144	HWFRE1ER	32	HIF WLAN Firmware RX Event 1 Enable Register
38130150	<u>HWFICR</u>	32	HIF WLAN Firmware Interrupt Control Register
38130154	<u>HWFCR</u>	32	HIF WLAN Firmware Control Register
38130158	<u>HWTDCR</u>	32	HIF WLAN TX DMA Control Register
3813015C	HWTPCCR	32	HIF WLAN TX Packet Count Control Register
38130164	HWFTQ1SAR	32	HIF WLAN Firmware TX Queue 1 Start Address Register
38130180	<u>HWFRQ0SAR</u>	32	HIF WLAN Firmware RX Queue 0 Start Address Register
38130184	HWFRQ1SAR	32	HIF WLAN Firmware RX Queue 1 Start Address Register
381301A0	H2DRMOR	32	Host to Device Receive Mailbox 0 Register
381301A4	H2DRM1R	32	Host to Device Receive Mailbox 1 Register
381301A8	D2HSM0R	32	Device to Host Send Mailbox 0 Register
381301AC	D2HSM1R	32	Device to Host Send Mailbox 1 Register
381301C0	HWRQ0CR	32	HIF WLAN RX Queue 0 Control Register
381301C4	HWRQ1CR	32	HIF WLAN RX Queue 1 Control Register
381301EC	HWFIOCDR	32	HIF WLAN Firmware GPD IOC bit Disable Register

38130000	ס	HGFCF	<u> </u>			Н	IF Glob	oal Firn	nware	Config	uratio	n Regi	ster		400	20041
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		SW_SE	I_CLK_	PAD_C R SFT	PB_HCL K_DIS		SPI_HC LK_DIS	SDIO_H CLK_DI S							_	INT_TE R_CYC_ MASK
Туре		RW	RW	RW	RW	RW	RW	RW						RW	RW	RW
Reset		1	0	0	0	0	0	0						0	1	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						SDCTL_ BUSY	CARD_I S_18V	HINT_A S_FW_ OB		SDIO_P IO_SEL	EHPI_ MODE	SPI_M ODE		D	B_HIF_S	EL
Туре						RO	RW	RW		RO	RO	RO			RO	_
Reset						0	0	0		1	0	0		0	0	1

Bit(s)	Name	Description
30	SW_SEL_CLKBLC	SW enables this bit to take over the control of balance and non-balance sd clock for pad macro. The need for non-balance sd clock for pad macro is due to tight output timing specification. The default setting is controlled by the hardware to decide the clock balance. However, we keep the flexibility for SW to decide the balance or nonbalance clock tree for the SDIO pad macro.
	1,00	0: The balance/non-balance sd clock for pad macro is controlled by HW
	4/0.	1: The balance/non-balance sd clock for pad macro is controlled by SW
29	SW_SET_CLK_NONBLC	SW enables this bit to use balance and non-balance sd clock for pad macro.
		0: Use balance sd clock for pad macro
		1: Use non-balance sd clock for pad macro
28	PAD_CR_SET_BY_FW	Enable the pad macro control register test mode. Firmware writes this bit and then firmware gets the ownership to access these pad macro control registers.
		0: Pad macro control register set by host driver (normal mode)
		1: Pad macro control register set by firmware (test mode)
27	PB_HCLK_DIS	It is used to disable the AHB clock for PIO-Based funciton design. It would be set when PIO-Based function is not used in some specific configuration. Otherwise, PIO-Based function cannot work normally.

Bit(s)	Name	Description
		0: AHB clock is not disabled
		1: Disable AHB clock
26	EHPI_HCLK_DIS	It is used to disable the AHB clock for EHPI interface. It would be set when EHPI is not used in some specific configuration. Otherwise, EHPI cannot work normally.
		0: AHB clock is not disabled
		1: Disable AHB clock
25	SPI_HCLK_DIS	It is used to disable the AHB clock for SPI interface. It would be set when SPI is not used in some specific configuration. Otherwise, SPI cannot work normally.
		0: AHB clock is not disabled
		1: Disable AHB clock
24	SDIO_HCLK_DIS	It is used to disable the AHB clock for SDIO1 interface. It would be set when SDIO is not used in some specific configuration. Otherwise, SDIO cannot work normally.
		0: AHB clock is not disabled
		1: Disable AHB clock
18	FORCE_SD_HS	Note that we also provide card capability setting method to force high speed, you may use external effuse or r/w interface to enable this function according to IP configuration.
		0: SDIO is in the operation mode specified in EHS of CCCR
		1: FORCE SDIO to operate in high speed despite the value of EHS of CCCR
17	HCLK_NO_GATED	0: SDIO controller would gate some part of AHB clock inside automatically for the unused period
	11,00	1: AHB clock inside SDIO controller would always turn-on
16	INT_TER_CYC_MASK	This field is used to determine should SDIO drive high to bus bit1 during the interrupt termination cycle.
		0 : always drive high during the termination cycle
		1: drive high during the termination cycle only it is in interrupt period.
10	SDCTL_BUSY	Indicate SDIO controller busy or not.
		0: SDIO controller is not busy
		1: SDIO controller is still busy
9	CARD_IS_18V	Firmware write 1 to this field to show the voltage switch process is done and the card is in 1.8 ν state.
		0: card is not in 1.8v state
		1: card is in 1.8v state (UHS mode)

Bit(s)	Name	Description
8	HINT_AS_FW_OB	Use interrupt to host as a firmware own back control
		0: Host interrupt to host would NOT trigger firmware own back
		1: Host interrupt to host would trigger firmware own back
6	SDIO_PIO_SEL	Host interface for SDIO PIO-Based function in used
		0: SDIO PIO mode is not used
		1: SDIO PIO mode is used
5	EHPI_MODE	This bit indicates that if EHPI8-mode or EHPI16-mode is used.
		0: EHPI16-mode of EHPI is used
		1: EHPI8-mode of EHPI is used.
4	SPI_MODE	This bit indicates that if TI-mode or Motor-mode is used.
		0: Motor-mode of SPI is used
		1: TI-mode of SPI is used.
2:0	DB_HIF_SEL	Host interface for DMA-Based function in used;
		0x1: SDIO1
		0x2: SPI
		Ox4: EHPI

38130004	4	HGFIS	<u>R</u>			Н	IF Glob	al Firn	nware	Interr	upt Sta	tus Re	gister		000	000000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Туре																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					SD1_SE T_DS_I NT		O_18V	ROR I	PB_INT	DB_INT	SDIO_S ET_ABT	_	FT PB			DRV_C LR_DB _IOE
Туре					W1C	W1C	W1C	W1C	RO	RO	W1C	W1C	W1C	W1C	W1C	W1C
Reset					0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
11	SD1_SET_DS_INT	This bit is for SDIO interface only.
		If host set the CCCR deep sleep register, this bit would be set. After firmware detected this event, it can know the information that host want device to enter deep sleep mode.
		Firmware can clear this bit by write 1. Write 0 is meaningless.
10	SD1_SET_XTAL_UPD_INT	This bit is for SDIO interface only.
		If host set the CCCR xtal frequency update register, this bit would be set. After firmware detected this event, it can know the information that host has updated the xtal frequency. Firmware can then read HGH2DR to know the updated frequency value.
		Firmware can clear this bit by write 1. Write 0 is meaningless.
9	CHG_TO_18V_REQ_INT	Host send command 11 to request device to change voltage to 1.8v. Firmware receives the interrupt or polling the status to start the voltage switch. After the voltage switch is done, firmware would write the card is in 1.8v status to HGFCR
8	CRC_ERROR_INT	The status bit of TX data port CRC error interrupt.
7	PB_INT	The status bit of PIO-Based function firmware interrupt.
6	DB_INT	The status bit of DMA-Based function firmware interrupt.
5	SDIO_SET_ABT	SDIO write 1 to SDIO CCCR.ABORT to abort transaction. After firmware detected this event, the TX and RX queue should be stop by firmware and the data in buffer should be discarded.
		Firmware can clear this bit by write 1. Write 0 is meaningless.
4	SDIO_SET_RES	SDIO write 1 to SDIO CCCR.RES to assert software reset. After firmware detected this event, it should disable the sub-systems on SDIO interface.
		Firmware can clear this bit by write 1. Write 0 is meaningless.
3	DRV_SET_PB_IOE	This bit is for SDIO interface only.
	" "	If host set the CCCR.IOE bit of PIO-Based functional block, this bit will be set. After firmware detected this event, it should enable sub-system which uses PIO-Based function.
		Firmware can clear this bit by write 1. Write 0 is meaningless.
2	DRV_SET_DB_IOE	This bit is for SDIO interface only.
		If host set the CCCR.IOE bit of DMA-Based functional block, this bit will be set. After firmware detected this event, it should enable sub-system which uses DMA-Based function.
		Firmware can clear this bit by write 1. Write 0 is meaningless.
1	DRV_CLR_PB_IOE	This bit is for SDIO interface only.
		If host clear the CCCR.IOE bit of PIO-Based functional block, this bit will be set. After firmware detected this event, it should disable sub-system which uses PIO-Based function.

Bit(s)	Name	Description
		Firmware can clear this bit by write 1. Write 0 is meaningless.
0	DRV_CLR_DB_IOE	This bit is for SDIO interface only.
		If host clear the CCCR.IOE bit of DMA-Based functional block, this bit will be set. After firmware detected this event, it should disable sub-system which uses DMA-Based function.
		Firmware can clear this bit by write 1. Write 0 is meaningless.

38130008	8	HGFIE	<u>R</u>			Н	IF Glob	al Firn	nware	Interr	upt Ena	able Re	egister		000	00000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Туре																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					SD1_SE T_DS_I NT_EN	_ T_XTAL _UPD_I		CRC_ER ROR_I NT EN	PB_INT _EN	DB_INT _EN	ET_ABT	ET_RES	ET_PB_	ET_DB_ IOE_IN	LR_PB_ IOE_IN	DRV_C LR_DB _IOE_I NT_EN
Туре					RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW
Reset					0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
11	SD1_SET_DS_INT_EN	Common firmware interrupt output control for each bit corresponding to bits defined in HGFISRx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
10	SD1_SET_XTAL_UPD_INT_EN	Common firmware interrupt output control for each bit corresponding to bits defined in HGFISRx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
9	CHG_TO_18V_REQ_INT_EN	Common firmware interrupt output control for each bit corresponding to bits defined in HGFISRx000D_
		If the related bit is_x000D_

Bit(s)	Name	Description
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
8	CRC_ERROR_INT_EN	Common firmware interrupt output control for each bit corresponding to bits defined in HGFISRx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
7	PB_INT_EN	Common firmware interrupt output control for each bit corresponding to bits defined in HGFISRx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
6	DB_INT_EN	Common firmware interrupt output control for each bit corresponding to bits defined in HGFISRx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
5	SDIO_SET_ABT_INT_EN	Common firmware interrupt output control for each bit corresponding to bits defined in HGFISRx000D_
		If the related bit is_x000D_
	\sim \circ	0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
4	SDIO_SET_RES_INT_EN	Common firmware interrupt output control for each bit corresponding to bits defined in HGFISRx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
3	DRV_SET_PB_IOE_INT_EN	Common firmware interrupt output control for each bit corresponding to bits defined in HGFISRx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
2	DRV_SET_DB_IOE_INT_EN	Common firmware interrupt output control for each bit corresponding to bits defined in HGFISRx000D_
		If the related bit is_x000D_

Bit(s)	Name	Description
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
1	DRV_CLR_PB_IOE_INT_EN	Common firmware interrupt output control for each bit corresponding to bits defined in HGFISRx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
0	DRV_CLR_DB_IOE_INT_EN	Common firmware interrupt output control for each bit corresponding to bits defined in HGFISRx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_

3813010	0	<u>HWFIS</u>	<u>SR</u>			Н	IF WLA	AN Firn	nware	Interru	upt Sta	tus Re	gister		000	00000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	H2D_SW_INT															
Туре								W	1C							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			RX_EVE NT_1	RX_EVE NT_0				TX_EVE NT_0							LR_FW	DRV_S ET_FW _OWN
Туре			RO	RO				RO				W1C	W1C	W1C	W1C	W1C
Reset			0	0				0				0	0	0	0	0

Bit(s)	Name	Description
31:16	H2D_SW_INT	This field is used for software interrupt for WLAN functionx000D_
		Host driver write 1s to WSICR [31:16] will set corresponding bit fieldx000D_
13	RX_EVENT_1	If there is any interrupt asserted in HWFRE1SR, this bit will be asserted. The bit will be de-asserted after software driver clears the interrupt event in HWFRE1SR.
12	RX_EVENT_0	If there is any interrupt asserted in HWFREOSR, this bit will be asserted. The bit will be de-asserted after software driver clears the interrupt event in HWFREOSR.

Bit(s)	Name	Description
8	TX_EVENT_0	If there is any interrupt asserted in HWFTEOSR, this bit will be asserted. The bit will be de-asserted after software driver clears the interrupt event in HWFTEOSR.
4	WR_TIMEOUT_INT	If host write data and device cannot receive the data well in pre-defined period, the write timeout interrupt will be triggered. Firmware should receive the write timeout interrupt and tx_overflow interrupt simultaneously.
3	RD_TIMEOUT_INT	If host read data and device cannot prepare the data well in pre-defined period, the timeout interrupt will be triggered. Firmware should receive the timeout interrupt and rx_underflow interrupt simultaneously.
2	D2HSM2R_RD_INT	This interrupt would be set when host read the D2HRM2R register. Note that for pre-read of EHPI function, this interrupt would be set if host write the D2HRM2R register despite D2HRM2R is a read-only registerx000D_
1	DRV_CLR_FW_OWN	If software driver write 1 to "WHLPCR.FW_OWN_REQ_CLR", this bit will be set to 1, and it means software driver want firmware to return the ownership of WLAN sub-system. Firmware must wake-up WLAN sub-system from sleep mode and write 1 to HWFICR.FW_OWN_BACK_INT_SETx000D_
		Firmware can clear this bit by write 1. Write 0 is meaninglessx000D_
0	DRV_SET_FW_OWN	If software driver write 1 to "WHLPCR.FW_OWN_REQ_SET", this bit will be set to 1, and it means software driver transfer the ownership of WLAN sub-system to firmware. Firmware can force WLAN sub-system into sleep modex000D_
		Firmware can clear this bit by write 1. Write 0 is meaninglessx000D_

3813010	4	<u>HWFII</u>	<u>ER</u>		HIF WLAN Firmware Interrupt Enable Register 000000									00000		
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	H2D_SW_INT_EN															
Туре	RW															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			NT_1_I	RX_EVE NT_0_I NT_EN				TX_EVE NT_0_I NT_EN				MEOUT	MEOUT	D2HSM 2R_RD _INT_E N	LR_FW _OWN	DRV_S ET_FW _OWN _INT_E N
Туре			RW	RW				RW				RW	RW	RW	RW	RW
Reset			0	0				0				0	0	0	0	0

Bit(s)	Name	Description
31:16	H2D_SW_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
13	RX_EVENT_1_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
12	RX_EVENT_0_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
8	TX_EVENT_0_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
4	WR_TIMEOUT_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
3	RD_TIMEOUT_INT_EN	WLAN firmware interrupt output control for each bitx000D_
	7/0.	If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
2	D2HSM2R_RD_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
1	DRV_CLR_FW_OWN_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_

Bit(s)	Name	Description
0	DRV_SET_FW_OWN_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_

38130110		<u>HWFT</u>	EOSR		HIF WLAN Firmware TX Event 0 Status Register										00000000	
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	TX7D_L EN_ER R	_	_	_	_	_	_	EN_ER	снкѕи	снкѕи	снкѕи	снкѕи	снкѕи	снкѕи	CHKSU	TX0D_ CHKSU M_ERR
Туре	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							TX1_O VERFL OW	TX0_O VERFL OW	TX7_R DY	TX6_R DY	TX5_R DY	TX4_R DY	TX3_R DY	TX2_R DY	TX1_R DY	TXO_R DY
Туре							W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C
Reset							0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
31	TX7D_LEN_ERR	TX queue 7 descriptor length error
	1.0%	When host tx data number is more than total allow buffer length, the length error interrupt will be triggered.
30	TX6D_LEN_ERR	TX queue 6 descriptor length error
	VON.	When host tx data number is more than total allow buffer length, the length error interrupt will be triggered.
29	TX5D_LEN_ERR	TX queue 5 descriptor length error
		When host tx data number is more than total allow buffer length, the length error interrupt will be triggered.
28	TX4D_LEN_ERR	TX queue 4 descriptor length error
		When host tx data number is more than total allow buffer length, the length error interrupt will be triggered.
27	TX3D_LEN_ERR	TX queue 3 descriptor length error
		When host tx data number is more than total allow buffer length, the length error interrupt will be triggered.

Bit(s)	Name	Description
26	TX2D_LEN_ERR	TX queue 2 descriptor length error
		When host tx data number is more than total allow buffer length, the length error interrupt will be triggered.
25	TX1D_LEN_ERR	TX queue 1 descriptor length error
		When host tx data number is more than total allow buffer length, the length error interrupt will be triggered.
24	TXOD_LEN_ERR	TX queue 0 descriptor length error
		When host tx data number is more than total allow buffer length, the length error interrupt will be triggered.
23	TX7D_CHKSUM_ERR	TX queue 7 descriptor checksum error_x000D_
		When HWFCR. TRX_DESC_CHKSUM_EN is enabled; HW will validate the checksum value of each TX descriptor before data movement. This interrupt will be generated if TX descriptor checksum errorx000D_
22	TX6D_CHKSUM_ERR	TX queue 6 descriptor checksum error_x000D_
		When HWFCR. TRX_DESC_CHKSUM_EN is enabled; HW will validate the checksum value of each TX descriptor before data movement. This interrupt will be generated if TX descriptor checksum errorx000D_
21	TX5D_CHKSUM_ERR	TX queue 5 descriptor checksum error_x000D_
		When HWFCR. TRX_DESC_CHKSUM_EN is enabled; HW will validate the checksum value of each TX descriptor before data movement. This interrupt will be generated if TX descriptor checksum errorx000D_
20	TX4D_CHKSUM_ERR	TX queue 4 descriptor checksum error_x000D_
	×Q	When HWFCR. TRX_DESC_CHKSUM_EN is enabled; HW will validate the checksum value of each TX descriptor before data movement. This interrupt will be generated if TX descriptor checksum errorx000D_
19	TX3D_CHKSUM_ERR	TX queue 3 descriptor checksum error_x000D_
	9/10	When HWFCR. TRX_DESC_CHKSUM_EN is enabled; HW will validate the checksum value of each TX descriptor before data movement. This interrupt will be generated if TX descriptor checksum errorx000D_
18	TX2D_CHKSUM_ERR	TX queue 2 descriptor checksum error_x000D_
		When HWFCR. TRX_DESC_CHKSUM_EN is enabled; HW will validate the checksum value of each TX descriptor before data movement. This interrupt will be generated if TX descriptor checksum errorx000D_
17	TX1D_CHKSUM_ERR	TX queue 1 descriptor checksum error_x000D_
		When HWFCR. TRX_DESC_CHKSUM_EN is enabled; HW will validate the checksum value of each TX descriptor before data movement. This interrupt will be generated if TX descriptor checksum errorx000D_
16	TX0D_CHKSUM_ERR	TX queue 0 descriptor checksum error_x000D_
		When HWFCR. TRX_DESC_CHKSUM_EN is enabled; HW will validate the checksum value of each TX descriptor before data movement. This interrupt will be generated if TX descriptor checksum errorx000D_

Bit(s)	Name	Description
9	TX1_OVERFLOW	Data overflow of WLAN TX1 portx000D_
		Firmware can clear this bit by write 1. Write 0 is meaninglessx000D_
8	TX0_OVERFLOW	Data overflow of WLAN TX0 portx000D_
		Firmware can clear this bit by write 1. Write 0 is meaninglessx000D_
7	TX7_RDY	If a complete frame has been moved to WLAN TX7 queue form host and the ownership bit of the buffer descriptor is cleared, this bit will be setx000D_
		Firmware can clear this bit by write 1. Write 0 is meaninglessx000D_
6	TX6_RDY	If a complete frame has been moved to WLAN TX6 queue form host and the ownership bit of the buffer descriptor is cleared, this bit will be setx000D_
		Firmware can clear this bit by write 1. Write 0 is meaninglessx000D_
5	TX5_RDY	If a complete frame has been moved to WLAN TX5 queue form host and the ownership bit of the buffer descriptor is cleared, this bit will be setx000D_
		Firmware can clear this bit by write 1. Write 0 is meaninglessx000D_
4	TX4_RDY	If a complete frame has been moved to WLAN TX4 queue form host and the ownership bit of the buffer descriptor is cleared, this bit will be setx000D_
		Firmware can clear this bit by write 1. Write 0 is meaninglessx000D_
3	TX3_RDY	If a complete frame has been moved to WLAN TX3 queue form host and the ownership bit of the buffer descriptor is cleared, this bit will be setx000D_
	~0	Firmware can clear this bit by write 1. Write 0 is meaninglessx000D_
2	TX2_RDY	If a complete frame has been moved to WLAN TX2 queue form host and the ownership bit of the buffer descriptor is cleared, this bit will be setx000D_
		Firmware can clear this bit by write 1. Write 0 is meaninglessx000D_
1	TX1_RDY	If a complete frame has been moved to WLAN TX1 queue form host and the ownership bit of the buffer descriptor is cleared, this bit will be setx000D_
		Firmware can clear this bit by write 1. Write 0 is meaninglessx000D_
0	TX0_RDY	If a complete frame has been moved to WLAN TX0 queue form host and the ownership bit of the buffer descriptor is cleared, this bit will be setx000D_
		Firmware can clear this bit by write 1. Write 0 is meaninglessx000D_

38130120 <u>HWFTE0ER</u> HIF WLAN Firmware TX Event 0 Enable Register 00000000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	TX7D_L EN_ER R_INT_ EN	EN_ER	M_ERR	M_ERR	M_ERR	M_ERR	CHKSU M_ERR	M_ERR	M_ERR	TXOD_ CHKSU M_ERR _INT_E N						
Туре	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							VERFL	TXO_O VERFL OW_IN T_EN	DY INT	_	_	_	_	TX2_R DY_INT _EN		TXO_R DY_INT _EN
Туре							RW	RW	RW	RW	RW	RW	RW	RW	RW	RW
Reset							0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
31	TX7D_LEN_ERR_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
30	TX6D_LEN_ERR_INT_EN	WLAN firmware interrupt output control for each bitx000D_
	~ O	If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
29	TX5D_LEN_ERR_INT_EN	WLAN firmware interrupt output control for each bitx000D_
	10V	If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
28	TX4D_LEN_ERR_INT_EN	WLAN firmware interrupt output control for each bitx000D_
	*	If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
27	TX3D_LEN_ERR_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_

Bit(s)	Name	Description
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
26	TX2D_LEN_ERR_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
25	TX1D_LEN_ERR_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
24	TXOD_LEN_ERR_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
23	TX7D_CHKSUM_ERR_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
22	TX6D_CHKSUM_ERR_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
	4/0.	1: Enable the related bit interrupt outputx000D_
21	TX5D_CHKSUM_ERR_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
20	TX4D_CHKSUM_ERR_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
19	TX3D_CHKSUM_ERR_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_

Bit(s)	Name	Description
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
18	TX2D_CHKSUM_ERR_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
17	TX1D_CHKSUM_ERR_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
16	TXOD_CHKSUM_ERR_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
9	TX1_OVERFLOW_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
8	TX0_OVERFLOW_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
	4/0.	1: Enable the related bit interrupt outputx000D_
7	TX7_RDY_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
6	TX6_RDY_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
5	TX5_RDY_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_

Bit(s)	Name	Description
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
4	TX4_RDY_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
3	TX3_RDY_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
2	TX2_RDY_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
1	TX1_RDY_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
0	TXO_RDY_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
	YIO.	1: Enable the related bit interrupt outputx000D_

3813013	0	HWFR	EOSR			Н	IF WLA	N Firn	nware	RX Eve	nt 0 St	atus R	Registe	r	000	00000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name					I –	_FIFO2 _OVER	_FIFO1	_FIFO0 _OVER					снкѕи		снкѕи	RX0D_ CHKSU M_ERR
Туре					W1C	W1C	W1C	W1C					W1C	W1C	W1C	W1C
Reset					0	0	0	0					0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Name			_	_	_	RX0_U NDERF LOW			RX3_D ONE	RX2_D ONE	RX1_D ONE	RX0_D ONE
Туре			W1C	W1C	W1C	W1C			W1C	W1C	W1C	W1C
Reset			0	0	0	0			0	0	0	0

Bit(s)	Name	Description
27	RX_LEN_FIFO3_OVERFLOW	RX length FIFO 3 over-flow_x000D_
		This interrupt will be generated whenever FW attempt to set RX length FIFO by HWRQ3CR when the packet length FIFO is already full leading to FIFO overflowx000D_
		The entry in packet length FIFO will be push-in by FW, and be pop-out when corresponding RX length is read by host driverx000D_
26	RX_LEN_FIFO2_OVERFLOW	RX length FIFO 2 over-flow_x000D_
		This interrupt will be generated whenever FW attempt to set RX length FIFO by HWRQ3CR when the packet length FIFO is already full leading to FIFO overflowx000D_
		The entry in packet length FIFO will be push-in by FW, and be pop-out when corresponding RX length is read by host driverx000D_
25	RX_LEN_FIFO1_OVERFLOW	RX length FIFO 1 over-flow_x000D_
		This interrupt will be generated whenever FW attempt to set RX length FIFO by HWRQ3CR when the packet length FIFO is already full leading to FIFO overflowx000D_
	0	The entry in packet length FIFO will be push-in by FW, and be pop-out when corresponding RX length is read by host driverx000D_
24	RX_LEN_FIFO0_OVERFLOW	RX length FIFO 0 over-flow_x000D_
	7/9/	This interrupt will be generated whenever FW attempt to set RX length FIFO by HWRQ3CR when the packet length FIFO is already full leading to FIFO overflowx000D_
	"OD.	The entry in packet length FIFO will be push-in by FW, and be pop-out when corresponding RX length is read by host driverx000D_
19	RX3D_CHKSUM_ERR	RX 3 descriptor checksum error_x000D_
		When HWFCR. TRX_DESC_CHKSUM_EN is enabled; HW will validate the checksum value of each RX descriptor before data movement. This interrupt will be generated if RX descriptor checksum errorx000D_
18	RX2D_CHKSUM_ERR	RX 2 descriptor checksum error_x000D_
		When HWFCR. TRX_DESC_CHKSUM_EN is enabled; HW will validate the checksum value of each RX descriptor before data movement. This interrupt will be generated if RX descriptor checksum errorx000D_
17	RX1D_CHKSUM_ERR	RX 1 descriptor checksum error_x000D_

Bit(s)	Name	Description
		When HWFCR. TRX_DESC_CHKSUM_EN is enabled; HW will validate the checksum value of each RX descriptor before data movement. This interrupt will be generated if RX descriptor checksum errorx000D_
16	RXOD_CHKSUM_ERR	RX 0 descriptor checksum error_x000D_
		When HWFCR. TRX_DESC_CHKSUM_EN is enabled; HW will validate the checksum value of each RX descriptor before data movement. This interrupt will be generated if RX descriptor checksum errorx000D_
11	RX3_UNDERFLOW	Data underflow of WLAN RX3 portx000D_
		Firmware can clear this bit by write 1. Write 0 is meaninglessx000D_
10	RX2_UNDERFLOW	Data underflow of WLAN RX2 portx000D_
		Firmware can clear this bit by write 1. Write 0 is meaninglessx000D_
9	RX1_UNDERFLOW	Data underflow of WLAN RX1 portx000D_
		Firmware can clear this bit by write 1. Write 0 is meaninglessx000D_
8	RX0_UNDERFLOW	Data underflow of WLAN RX0 portx000D_
		Firmware can clear this bit by write 1. Write 0 is meaninglessx000D_
3	RX3_DONE	If a complete frame has been moved to host from WLAN RX3 queue (which also implies the corresponding entry is pop-out from RX3 length FIFO), this bit will be setx000D_
		Firmware can clear this bit by write 1. Write 0 is meaninglessx000D_
2	RX2_DONE	If a complete frame has been moved to host from WLAN RX2 queue (which also implies the corresponding entry is pop-out from RX2 length FIFO), this bit will be setx000D_
	~ O	Firmware can clear this bit by write 1. Write 0 is meaninglessx000D_
1	RX1_DONE	If a complete frame has been moved to host from WLAN RX1 queue (which also implies the corresponding entry is pop-out from RX0 length FIFO), this bit will be setx000D_
	Y/a.	Firmware can clear this bit by write 1. Write 0 is meaninglessx000D_
0	RX0_DONE	If a complete frame has been moved to host from WLAN RXO queue (which also implies the corresponding entry is pop-out from RXO length FIFO), this bit will be setx000D_
		Firmware can clear this bit by write 1. Write 0 is meaninglessx000D_

3813013	4	HWFR	E1SR		HIF WLAN Firmware RX Event 1 Status Register								000	0000000		
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Туре																

Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								RXO_LE N_ERR					WN_CL	WN_CL	WN_CL	RX0_O WN_CL EAR_D ONE
Туре					W1C	W1C	W1C	W1C					W1C	W1C	W1C	W1C
Reset					0	0	0	0					0	0	0	0

Bit(s)	Name	Description
11	RX3_LEN_ERR	RX queue 3 descriptor length error
		If RX3 both extension length and rx data length are zero in GPD or BD, the error interrupt will be triggered.
		Firmware can clear this bit by write 1. Write 0 is meaningless.
10	RX2_LEN_ERR	RX queue 2 descriptor length error
		If RX2 both extension length and rx data length are zero in GPD or BD, the error interrupt will be triggered.
		Firmware can clear this bit by write 1. Write 0 is meaningless.
9	RX1_LEN_ERR	RX queue 1 descriptor length error
		If RX1 both extension length and rx data length are zero in GPD or BD, the error interrupt will be triggered.
		Firmware can clear this bit by write 1. Write 0 is meaningless.
8	RXO_LEN_ERR	RX queue 0 descriptor length error
	1:0/	If RXO both extension length and rx data length are zero in GPD or BD, the error interrupt will be triggered.
	7/0,	Firmware can clear this bit by write 1. Write 0 is meaningless.
3	RX3_OWN_CLEAR_DONE	If a complete frame has been moved to internal FIFO from WLAN RX3 queue and the ownership bit of the buffer descriptor is cleared, this bit will be setx000D_
		Firmware can clear this bit by write 1. Write 0 is meaninglessx000D_
2	RX2_OWN_CLEAR_DONE	If a complete frame has been moved to internal FIFO from WLAN RX2 queue and the ownership bit of the buffer descriptor is cleared, this bit will be setx000D_
		Firmware can clear this bit by write 1. Write 0 is meaninglessx000D_
1	RX1_OWN_CLEAR_DONE	If a complete frame has been moved to internal FIFO from WLAN RX1 queue and the ownership bit of the buffer descriptor is cleared, this bit will be setx000D_
		Firmware can clear this bit by write 1. Write 0 is meaninglessx000D_

Bit(s)	Name	Description
0	RXO_OWN_CLEAR_DONE	If a complete frame has been moved to internal FIFO from WLAN RX0 queue and the ownership bit of the buffer descriptor is cleared, this bit will be setx000D_
		Firmware can clear this bit by write 1. Write 0 is meaninglessx000D_

3813014	0	<u>HWFR</u>	E0ER			Н	IF WLA	AN Firn	nware	RX Eve	nt 0 Er	nable I	Registe	r	000	00000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name					_FIFO3 _OVER FLOW_	_FIFO2 _OVER FLOW_	_FIFO1 _OVER FLOW_	RX_LEN _FIFO0 _OVER FLOW_ INT_EN					CHKSU M_ERR	M_ERR	CHKSU M_ERR	RXOD_ CHKSU M_ERR _INT_E N
Туре					RW	RW	RW	RW					RW	RW	RW	RW
Reset					0	0	0	0					0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					NDERF LOW_I	NDERF LOW_I	NDERF LOW_I	RX0_U NDERF LOW_I NT_EN					ONE_I	ONE_I	ONE_I	RXO_D ONE_I NT_EN
Туре					RW	RW	RW	RW					RW	RW	RW	RW
Reset					0	0	0	0					0	0	0	0

Bit(s)	Name	Description
27	RX_LEN_FIFO3_OVERFLOW_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
	9/0.	1: Enable the related bit interrupt outputx000D_
26	RX_LEN_FIFO2_OVERFLOW_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
25	RX_LEN_FIFO1_OVERFLOW_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
24	RX_LEN_FIFO0_OVERFLOW_INT_EN	WLAN firmware interrupt output control for each bitx000D_

Bit(s)	Name	Description
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
19	RX3D_CHKSUM_ERR_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
18	RX2D_CHKSUM_ERR_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
17	RX1D_CHKSUM_ERR_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
16	RXOD_CHKSUM_ERR_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
	~ 0	1: Enable the related bit interrupt outputx000D_
11	RX3_UNDERFLOW_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
	4/0.	0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
10	RX2_UNDERFLOW_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
	·	1: Enable the related bit interrupt outputx000D_
9	RX1_UNDERFLOW_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_

Bit(s)	Name	Description
8	RX0_UNDERFLOW_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
3	RX3_DONE_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
2	RX2_DONE_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
1	RX1_DONE_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
0	RXO_DONE_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_

3813014	4	HWFR	E1ER			Н	IF WLA	AN Firn	nware	RX Eve	nt 1 Ei	nable I	Registe	r	000	00000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Туре																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					_	N_ERR	N_ERR	RXO_LE N_ERR _INT_E N					WN_CL EAR_D ONE_I	WN_CL EAR_D ONE_I	WN_CL EAR_D ONE_I	RXO_O WN_CL EAR_D ONE_I NT_EN

Туре			RW	RW	RW	RW			RW	RW	RW	RW
Reset			0	0	0	0			0	0	0	0

Bit(s)	Name	Description
11	RX3_LEN_ERR_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
10	RX2_LEN_ERR_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
9	RX1_LEN_ERR_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
8	RXO_LEN_ERR_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
	~ O	1: Enable the related bit interrupt outputx000D_
3	RX3_OWN_CLEAR_DONE_INT_EN	WLAN firmware interrupt output control for each bitx000D_
	111/2	If the related bit is_x000D_
	Y/O	0: Disable the related bit interrupt output.
	4 OV	1: Enable the related bit interrupt outputx000D_
2	RX2_OWN_CLEAR_DONE_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_
1	RX1_OWN_CLEAR_DONE_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_

Bit(s)	Name	Description
0	RXO_OWN_CLEAR_DONE_INT_EN	WLAN firmware interrupt output control for each bitx000D_
		If the related bit is_x000D_
		0: Disable the related bit interrupt output.
		1: Enable the related bit interrupt outputx000D_

3813015	0	HWFIC	<u>CR</u>			Н	IF WLA	AN Firn	nware	Interru	ıpt Coı	ntrol R	egister		000	000010
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	D2H_SW_INT_SET															
Туре		W1S														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		D2H_SW_INT_SET										FW_O WN_B ACK_IN T_SET				
Туре	W1S											W1S				
Reset	0	0	0	0	0	0	0	0				1				

Bit(s)	Name	Description
31:8	D2H_SW_INT_SET	Firmware writes 1s will set WHISR.D2H_SW_INT. Write 0 is meaningless.
		Read always return 0.
	7/0,	This is used as a communication between FW to driver, with interrupt functionality to host driver HIF.
4	FW_OWN_BACK_INT_SET	Firmware writes 1 will set WHISR.FW_OWN_BACK_INT. Write 0 is meaningless. It will also clear WLAN_FW_OWN bit and set WHLPCR.WLAN_DRV_OWN bitx000D_
		If driver requests firmware to return the ownership or firmware wants to wakeup driver, firmware can set this bitx000D_
		Read will get the status of WLAN_FW_OWN bitx000D_
		x000D
		WLAN_FW_OWN indicates that WLAN firmware has the ownership of chip WLAN sub-systemx000D_ $$
		This bit will be cleared by firmware written 1 to HWFICR.FW_OWN_BACK_INT_SET or any WLAN driver-domain interruptx000D_
		0: WLAN firmware doesn't have ownership

Bit(s)	Name	Description	
		1: WLAN firmware has ownership_x000D_	

3813015	4	HWFC	<u>R</u>			Н	IF WLA	N Firn	nware	Contro	ol Regis	ter			000	00000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Туре																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							RX_NO _TAIL	TX_NO _HEAD ER	1 P ('S	CS_OF	RX_IPV 4_CS_O FLD_EN	6_CS_O	OFLD_E	ESC CH	_	W FU
Туре							RW	RW	RW	RW	RW	RW	RW	RW	RW	RW
Reset							0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
9	RX_NO_TAIL	RX packet tail is used for sending checksum offload status. If the checksum offload hardware is not configured, the tail would be 4B zero. Firmware can write 1 to make the RX packet tail not sent to host.
	×V	0: RX packet tail would be sent to host
		1: RX packet tail would not be sent to host
8	TX_NO_HEADER	Firmware write 1 to this filed to make the TX packet header sent by host not written to AHB bus.
		0: TX packet header from host would be written to AHB bus
		1: TX packet header from host would not be written to AHB bus
7	RX_UDP_CS_OFLD_EN	Enable RX UDP checksum verification function_x000D_
		When enabled, packets checksum of RX packet with UDP header will be calculated, and verified with the field in original RX packet. The verified status will be padding in the last DWORD of the RX packetx000D_
6	RX_TCP_CS_OFLD_EN	Enable RX TCP checksum verification function_x000D_
		When enabled, packets checksum of RX packet with TCP header will be calculated, and verified with the field in original RX packet. The verified status will be padding in the last DWORD of the RX packetx000D_
5	RX_IPV4_CS_OFLD_EN	Enable RX IPv4 checksum verification function_x000D_

Bit(s)	Name	Description
		When enabled, packets checksum of RX packet with IPv4 header will be calculated, and verified with the field in original RX packet. The verified status will be padding in the last DWORD of the RX packetx000D_
4	RX_IPV6_CS_OFLD_EN	Enable RX IPv6 checksum (without extension header) verification function_x000D_
		When enabled, packets checksum of RX packet with IPv6 header will be calculated, and verified with the field in original RX packet. The verified status will be padding in the last DWORD of the RX packetx000D_
3	TX_CS_OFLD_EN	Enable TX IPV6/IPV4/TCP/UDP checksum generation function_x000D_
2	TRX_DESC_CHKSUM_12B	Firmware write 1 to this filed to change the descriptor checksum calculation method to 12B. The default calculation method is based on the 16B descriptor checksum.
		0: Descriptor checksum calculation is based on first 16B.
		1: Descriptor checksum calculation is based on first 12B
1	TRX_DESC_CHKSUM_EN	Enable TX/ RX descriptor checksum for debug purposex000D_
		HW will validate if the summation of descriptor checksum is 0xff before data movement for the descriptor. If it is invalid, corresponding interrupt status (TXD_CHKSUM_ERR/ RXD_CHKSUM_ERR) will be generatedx000D_
0	W_FUNC_RDY	Indicate the WLAN functional block's current status. If WLAN functional block has finished its initial procedure and it is ready for normal operation, firmware should set this bit. If WLAN functional block was disabled, this bit should be clearedx000D_
	~ C	This is a sticky bit of WCIR.W_FUNC_RDYx000D_
		0: WLAN functional block is not ready for normal operation.
		1: WLAN functional block is ready for normal operationx000D_

3813015	8	HWTD	<u>OCR</u>			Н	IF WLA	N TX I	OMA C	ontrol	Regist	er			000	00000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		-W06	=>/0=	=>/0.4	=>/00	=>/00	=>/04	=>/-0.0		=><0.6				=>/-00	=>/04	=><00
Name	_	DMA_S	_	DMA_S	TXQ3_ DMA_S TATUS	DMA_S	DMA_S	DMA_S		–		· -	–	TXQ2_ DMA_R UM	· -	TXQ0_ DMA_ RUM
Туре	RO	RO	RO	RO	RO	RO	RO	RO	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Name					TXQ3_ DMA_S TART											TXQ0_ DMA_S TOP
Туре	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
31	TXQ7_DMA_STATUS	Read for the TX4 queue DMA statusx000D_
		When the HIF Controller is reset, the queue is in the inactive state by default. After receiving a START or RESUME command and executing it without error, the queue enters the active state. When the queue is empty or stopped by a STOP command, it returns to the inactive statex000D_
		0: inactive
		1: active_x000D_
30	TXQ6_DMA_STATUS	Read for the TX6 queue DMA statusx000D_
		When the HIF Controller is reset, the queue is in the inactive state by default. After receiving a START or RESUME command and executing it without error, the queue enters the active state. When the queue is empty or stopped by a STOP command, it returns to the inactive statex000D_
		0: inactive
		1: active_x000D_
29	TXQ5_DMA_STATUS	Read for the TX5 queue DMA statusx000D_
	7/9/	When the HIF Controller is reset, the queue is in the inactive state by default. After receiving a START or RESUME command and executing it without error, the queue enters the active state. When the queue is empty or stopped by a STOP command, it returns to the inactive statex000D_
		0: inactive
	100	1: active_x000D_
28	TXQ4_DMA_STATUS	Read for the TX4 queue DMA statusx000D_
		When the HIF Controller is reset, the queue is in the inactive state by default. After receiving a START or RESUME command and executing it without error, the queue enters the active state. When the queue is empty or stopped by a STOP command, it returns to the inactive statex000D_
		0: inactive
		1: active_x000D_
27	TXQ3_DMA_STATUS	Read for the TX3 queue DMA statusx000D_

Bit(s)	Name	Description
		When the HIF Controller is reset, the queue is in the inactive state by default. After receiving a START or RESUME command and executing it without error, the queue enters the active state. When the queue is empty or stopped by a STOP command, it returns to the inactive statex000D_
		0: inactive
		1: active_x000D_
26	TXQ2_DMA_STATUS	Read for the TX2 queue DMA statusx000D_
		When the HIF Controller is reset, the queue is in the inactive state by default. After receiving a START or RESUME command and executing it without error, the queue enters the active state. When the queue is empty or stopped by a STOP command, it returns to the inactive statex000D_
		0: inactive
		1: active_x000D_
25	TXQ1_DMA_STATUS	Read for the TX1 queue DMA statusx000D_
		When the HIF Controller is reset, the queue is in the inactive state by default. After receiving a START or RESUME command and executing it without error, the queue enters the active state. When the queue is empty or stopped by a STOP command, it returns to the inactive statex000D_
		0: inactive
		1: active_x000D_
24	TXQ0_DMA_STATUS	Read for the TX0 queue DMA statusx000D_
	7/9/	When the HIF Controller is reset, the queue is in the inactive state by default. After receiving a START or RESUME command and executing it without error, the queue enters the active state. When the queue is empty or stopped by a STOP command, it returns to the inactive statex000D_
	V 0/1/2	0: inactive
		1: active_x000D_
23	TXQ7_DMA_RUM	Resume the TX7 queue DMA to operatex000D_
		The DMA will reload the chain descriptor from the current addressx000D_
		Firmware writes 1 to enable the DMA. Write 0 is meaninglessx000D_
		Read always return 0x000D_
22	TXQ6_DMA_RUM	Resume the TX6 queue DMA to operatex000D_
		The DMA will reload the chain descriptor from the current addressx000D_
		Firmware writes 1 to enable the DMA. Write 0 is meaninglessx000D_

Bit(s)	Name	Description
		Read always return 0x000D_
21	TXQ5_DMA_RUM	Resume the TX5 queue DMA to operatex000D_
		The DMA will reload the chain descriptor from the current addressx000D_
		Firmware writes 1 to enable the DMA. Write 0 is meaninglessx000D_
		Read always return 0x000D_
20	TXQ4_DMA_RUM	Resume the TX4 queue DMA to operatex000D_
		The DMA will reload the chain descriptor from the current addressx000D_
		Firmware writes 1 to enable the DMA. Write 0 is meaninglessx000D_
		Read always return 0x000D_
19	TXQ3_DMA_RUM	Resume the TX3 queue DMA to operatex000D_
		The DMA will reload the chain descriptor from the current addressx000D_
		Firmware writes 1 to enable the DMA. Write 0 is meaninglessx000D_
		Read always return 0x000D_
18	TXQ2_DMA_RUM	Resume the TX2 queue DMA to operatex000D_
		The DMA will reload the chain descriptor from the current addressx000D_
		Firmware writes 1 to enable the DMA. Write 0 is meaninglessx000D_
	0	Read always return 0x000D_
17	TXQ1_DMA_RUM	Resume the TX1 queue DMA to operatex000D_
	1.0	The DMA will reload the chain descriptor from the current addressx000D_
		Firmware writes 1 to enable the DMA. Write 0 is meaninglessx000D_
	" UV	Read always return 0x000D_
16	TXQ0_DMA_RUM	Resume the TX0 queue DMA to operatex000D_
		The DMA will reload the chain descriptor from the current addressx000D_
		Firmware writes 1 to enable the DMA. Write 0 is meaninglessx000D_
		Read always return 0x000D_
15	TXQ7_DMA_START	Start the TX7 queue DMA operationx000D_
		The DMA will load the chain descriptor from the address assigned by HWFTQ7SARx000D_
		SW must check TXQ7_DMA_STATUS is inactive before startx000D_

Bit(s)	Name	Description
		Write 0 is meaningless. Read always return 0x000D_
14	TXQ6_DMA_START	Start the TX6 queue DMA operationx000D_
		The DMA will load the chain descriptor from the address assigned by HWFTQ6SARx000D_
		SW must check TXQ6_DMA_STATUS is inactive before startx000D_
		Write 0 is meaningless. Read always return 0x000D_
13	TXQ5_DMA_START	Start the TX5 queue DMA operationx000D_
		The DMA will load the chain descriptor from the address assigned by HWFTQ5SARx000D_
		SW must check TXQ5_DMA_STATUS is inactive before startx000D_
		Write 0 is meaningless. Read always return 0x000D_
12	TXQ4_DMA_START	Start the TX4 queue DMA operationx000D_
		The DMA will load the chain descriptor from the address assigned by HWFTQ4SARx000D_
		SW must check TXQ4_DMA_STATUS is inactive before startx000D_
		Write 0 is meaningless. Read always return 0x000D_
11	TXQ3_DMA_START	Start the TX3 queue DMA operationx000D_
		The DMA will load the chain descriptor from the address assigned by HWFTQ3SARx000D_
		SW must check TXQ3_DMA_STATUS is inactive before startx000D_
	0	Write 0 is meaningless. Read always return 0x000D_
10	TXQ2_DMA_START	Start the TX2 queue DMA operationx000D_
	1.9/	The DMA will load the chain descriptor from the address assigned by HWFTQ2SARx000D_
		SW must check TXQ2_DMA_STATUS is inactive before startx000D_
	4 OV	Write 0 is meaningless. Read always return 0x000D_
9	TXQ1_DMA_START	Start the TX1 queue DMA operationx000D_
		The DMA will load the chain descriptor from the address assigned by HWFTQ1SARx000D_
		SW must check TXQ1_DMA_STATUS is inactive before startx000D_
		Write 0 is meaningless. Read always return 0x000D_
8	TXQ0_DMA_START	Start the TX0 queue DMA operationx000D_
		The DMA will load the chain descriptor from the address assigned by HWFTQ0SARx000D_
		SW must check TXQ0_DMA_STATUS is inactive before startx000D_

Bit(s)	Name	Description
		Write 0 is meaningless. Read always return 0x000D_
7	TXQ7_DMA_STOP	Stop the TX7 queue DMA operation. It will NOT clear the result of TX count set by HWTPCCR(WTSR0/ WTSR1)x000D_
		Firmware writes 1 to stop the DMA. Write 0 is meaninglessx000D_
		Read always return current DMA activity (0: stopped, 1: stop command is on-going)x000D_
		If one data port to multiple queues design is configured, any one of these queues stop would lead to these queues stop at the same time. (e.g. If TX queue 1 stops, then TX queue 2, 3, 4, 5, 6, 7 would also be stopped by HW since they share the same data port.)
6	TXQ6_DMA_STOP	Stop the TX6 queue DMA operation. It will NOT clear the result of TX count set by HWTPCCR(WTSR0/ WTSR1)x000D_
		Firmware writes 1 to stop the DMA. Write 0 is meaninglessx000D_
		Read always return current DMA activity (0: stopped, 1: stop command is on-going)x000D_
		If one data port to multiple queues design is configured, any one of these queues stop would lead to these queues stop at the same time. (e.g. If TX queue 1 stops, then TX queue 2, 3, 4, 5, 6, 7 would also be stopped by HW since they share the same data port.)
5	TXQ5_DMA_STOP	Stop the TX5 queue DMA operation. It will NOT clear the result of TX count set by HWTPCCR(WTSR0/ WTSR1)x000D_
		Firmware writes 1 to stop the DMA. Write 0 is meaninglessx000D_
		Read always return current DMA activity (0: stopped, 1: stop command is on-going)x000D_
		If one data port to multiple queues design is configured, any one of these queues stop would lead to these queues stop at the same time. (e.g. If TX queue 1 stops, then TX queue 2, 3, 4, 5, 6, 7 would also be stopped by HW since they share the same data port.)
4	TXQ4_DMA_STOP	Stop the TX4 queue DMA operation. It will NOT clear the result of TX count set by HWTPCCR(WTSR0/ WTSR1)x000D_
	100	Firmware writes 1 to stop the DMA. Write 0 is meaninglessx000D_
		Read always return current DMA activity (0: stopped, 1: stop command is on-going). $_{\rm x}$ 000D $_{\rm x}$
		If one data port to multiple queues design is configured, any one of these queues stop would lead to these queues stop at the same time. (e.g. If TX queue 1 stops, then TX queue 2, 3, 4, 5, 6, 7 would also be stopped by HW since they share the same data port.)
3	TXQ3_DMA_STOP	Stop the TX3 queue DMA operation. It will NOT clear the result of TX count set by HWTPCCR(WTSR0/ WTSR1)x000D_
		Firmware writes 1 to stop the DMA. Write 0 is meaninglessx000D_
		Read always return current DMA activity (0: stopped, 1: stop command is on-going)x000D_

Bit(s)	Name	Description
		If one data port to multiple queues design is configured, any one of these queues stop would lead to these queues stop at the same time. (e.g. If TX queue 1 stops, then TX queue 2, 3, 4, 5, 6, 7 would also be stopped by HW since they share the same data port.)
2	TXQ2_DMA_STOP	Stop the TX2 queue DMA operation. It will NOT clear the result of TX count set by HWTPCCR(WTSR0/ WTSR1)x000D_
		Firmware writes 1 to stop the DMA. Write 0 is meaninglessx000D_
		Read always return current DMA activity (0: stopped, 1: stop command is on-going)x000D_
		If one data port to multiple queues design is configured, any one of these queues stop would lead to these queues stop at the same time. (e.g. If TX queue 1 stops, then TX queue 2, 3, 4, 5, 6, 7 would also be stopped by HW since they share the same data port.)
1	TXQ1_DMA_STOP	Stop the TX1 queue DMA operation. It will NOT clear the result of TX count set by HWTPCCR(WTSR0/ WTSR1)x000D_
		Firmware writes 1 to stop the DMA. Write 0 is meaninglessx000D_
		Read always return current DMA activity (0: stopped, 1: stop command is on-going)x000D_
		If one data port to multiple queues design is configured, any one of these queues stop would lead to these queues stop at the same time. (e.g. If TX queue 1 stops, then TX queue 2, 3, 4, 5, 6, 7 would also be stopped by HW since they share the same data port.)
0	TXQ0_DMA_STOP	Stop the TX0 queue DMA operation. It will NOT clear the result of TX count set by HWTPCCR(WTSR0/ WTSR1)x000D_
		Firmware writes 1 to stop the DMA. Write 0 is meaninglessx000D_
		Read always return current DMA activity (0: stopped, 1: stop command is on-going)x000D_

3813015	C	<u>HWTP</u>	CCR)	н	IF WLA	N TX F	Packet	Count	Contro	ol Regi	ster		000	000000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																TQ_CN T_RESE T
Туре																W1S
Reset																0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		TQ_II	NDEX									INC_T	Q_CNT			
Туре	WO											W	0			

Reset	0	0	0	0					0	0	0	0	0	0	0	0
D:#/a\	Nome															
Bit(s)	Name					, L	escripti	ion								
16	TQ_CI	NT_RES	ET				irmwar Q7x00		s 1 to re	eset the	count	accumi	ılated f	or TQ0	~	
						V	Vrite 0 i	s mean	ingless.	Read a	lways r	eturn 0.	_x000E)_		
15:12	TQ_IN	IDEX							s the TO					_		which
							Vrite 0 i: Q index		ingless.	Read a	lways r	eturn 0.	_x000E)_ (X de	pends	on the
7:0	INC_T	Q_CNT							s the av the sam							
							Vrite 0 i Q index		ingless.	Read a	lways r	eturn 0.	_x000E)_ (X de	pends (on the
3813016	64	<u>HWFT</u>	Q1SAF	<u>R</u>			IIF WLA		nware	TX Qu	eue 1	Start A	ddress	;	000	00000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							WLAN	I_TXQ1	DMA_S	ADDR						
Туре								R	w							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				1		WLAI	N_TXQ1_	DMA_S	ADDR	1	1		1			
Туре					2 1		R	W								
Besst								Ι.,	Ι.	Ι.	Ι.		Ι.,	0		

Bit(s)	Name	Description
31:2	WLAN_TXQ1_DMA_SADDR	The start address of buffer chain of TX1 queue in unit of DWx000D_

3813018	0	HWFR	WFRQOSAR HIF WLAN Firmware RX Queue 0 Start Address 00000000 Register 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 WLAN_RXQO_DMA_SADDR													
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							WLAN	I_RXQ0_	_DMA_S	ADDR						
Туре								R	W							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Name						WLAN	I_RXQ0_	DMA_S	ADDR							
Туре		RW														
Reset	0															

Bit(s)	Name	Description
31:2	WLAN_RXQ0_DMA_SADDR	The start address of buffer chain of RXO queue in unit of DWx000D_

3813018	4	HWFR	Q1SAF	<u>R</u>			IF WLA		nware	RX Qu	eue 1 S	Start A	ddress		000	00000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							WLAN	N_RXQ1_	DMA_S	ADDR						
Туре								R'	W							
Reset	0	0 0 0 0 0 0 0 0 0 0 0 0											0	0		
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						WLAN	N_RXQ1_	_DMA_S	ADDR							
Туре							R	W								
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

Bit(s)	Name					D	escript	ion								
31:2	WLAN	I_RXQ1	_DMA_S	SADDR		TI	he start	addres	s of bu	ffer cha	ain of R	X1 que	ue in ur	nit of D\	N.	
381301A	0	H2DR	MOR			н	ost to	Device	Recei	ve Mai	ilbox 0	Regist	er		000	00000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				7				H2D_	RM0			ı				
Туре			J					R	0							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					ı		ı	H2D	RM0	ı		ı			ı	
Туре								R	0							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
31:0	H2D_RM0	This register is used by firmware to receive data from SDIO controller, which is updated through H2DSMOR by host driverx000D_

381301A	4	H2DRI	M1R			Н	ost to	Device	Recei	ve Mai	lbox 1	Regist	er		000	00000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								H2D_	RM1							
Туре		RO														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								H2D_	RM1							
Туре		RO														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
31:0	H2D_RM1	This register is used by firmware to receive data from SDIO controller, which is updated through H2DSM1R by host driverx000D_

381301A	8	D2HSI	MOR_			D	evice t	o Host	Send	Mailbo	x 0 Re	gister			000	00000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		D2H_SM0														
Туре		RW														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		D2H_SM0														
Туре		RW														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
31:0	D2H_SM0	This register is used by firmware to transmit data to SDIO controller, it
		will be updated to D2HRM0R and read by host driver. x000D

Bit(s)	Name	Description

381301A	C	D2HSI	<u> </u>			D	evice t	o Host	Send I	Mailbo	x 1 Re	gister			000	00000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		D2H_SM1														
Туре		RW														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								D2H_	SM1			1				
Туре		RW														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
31:0	D2H_SM1	This register is used by firmware to transmit data to SDIO controller, it will be updated to D2HRM1R and read by host driverx000D_

381301C	0	<u>HWRC</u>	QOCR HIF WLAN RX Queue 0 Control Register 000000)00000					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name													RXQ0_ DMA_S TATUS	DMA_R	RXQ0_ DMA_S TART	RXQ0_ DMA_S TOP
Туре													RO	W1S	W1S	W1S
Reset													0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		RXQ0_PACKET_LENGTH														
Туре		RW														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
19	RXQ0_DMA_STATUS	Read for the RX0 queue DMA statusx000D_

When the SDIO Controller is reset, the queue is in the inactive state by default. After receiving a START or RESUME command and executing it without error, the queue enters the active state. When the queue is

Bit(s)	Name	Description
		empty or stopped by a STOP command, it returns to the inactive statex000D_
		0: inactive_x000D_
		1: active_x000D_
18	RXQ0_DMA_RUM	Resume the RXO queue DMA to operatex000D_
		The DMA will reload the chain descriptor from the current addressx000D_
		Firmware writes 1 to enable the DMA. Write 0 is meaninglessx000D_
		Read always return 0x000D_
17	RXQ0_DMA_START	Start the RX0 queue DMA operationx000D_
		The DMA will load the chain descriptor from the address assigned by HWFRQOSARx000D_
		SW must check RXQ0_DMA_STATUS is inactive before startx000D_
		Write 0 is meaningless. Read always return 0x000D_
16	RXQ0_DMA_STOP	Stop the RXO queue DMA operation, the content in the RXQO FIFO and RXQO length FIFO will be clearedx000D_
		Firmware writes 1 to stop the DMA. Write 0 is meaninglessx000D_
		Read return current RXQ0 operation state (1: stop operation is on-going, 0: stop operation is finished)x000D_
15:0	RXQ0_PACKET_LENGTH	When write:_x000D_
	0	To indicate HIF that 1 RX packet in this packet length is queued into this RX queuex000D_
		When read:_x000D_
	7/9/	Read the 1st RX packet length indicated from this queue, and will be 0 when queue is emptyx000D_ $$
		x000D
	VBO.	FW will write this FIFO-like port (at most 64 entries depends on the hardware configuration for each project) together with RXQ1_DMA_RUM bit been set, after RX packet is queued into descriptor chainx000D_
		RX packet with length been set by this field is able to be read by host driver, which is through reading WRPLR, or INT enhance mode, or RX enhance modex000D_
		None-empty entry will generate RX done interrupt, and corresponding entry will be cleared by HW after this packet length is read by host driverx000D_
		Write 0 is meaning-lessx000D_
		0: inactive
		1: active

Bit(s) N	lame [Description

381301C	4	HWRC	Q1CR			Н	IF WLA	AN RX	Queue	1 Con	trol Re	gister			000	000000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name														DMA_R	RXQ1_ DMA_S TART	RXQ1_ DMA_S TOP
Туре													RO	W1S	W1S	W1S
Reset													0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		RX1_PACKET_LENGTH														
Туре		RW														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit(s)	Name	Description
19	RXQ1_DMA_STATUS	Read for the RXQ1 DMA statusx000D_
		When the SDIO Controller is reset, the queue is in the inactive state by default. After receiving a START or RESUME command and executing it without error, the queue enters the active state. When the queue is empty or stopped by a STOP command, it returns to the inactive statex000D_
		0: inactive
	1000	1: active_x000D_
18	RXQ1_DMA_RUM	Resume the RX1 queue DMA to operatex000D_
	001	The DMA will reload the chain descriptor from the current addressx000D_
		Firmware writes 1 to enable the DMA. Write 0 is meaninglessx000D_
		Read always return 0x000D_
17	RXQ1_DMA_START	Start the RX1 queue DMA operationx000D_
	•	The DMA will load the chain descriptor from the address assigned by HWFRQ1SARx000D_
		SW must check RXQ1_DMA_STATUS is inactive before startx000D_
		Write 0 is meaningless. Read always return 0x000D_
16	RXQ1_DMA_STOP	Stop the RX1 queue DMA operation, the content in the RXQ1 FIFO and RXQ1 length FIFO will be clearedx000D_

Bit(s)	Name	Description
		Firmware writes 1 to stop the DMA. Write 0 is meaninglessx000D_
		Read return current RXQ1 operation state (1: active, 0: stopped)x000D_
15:0	RX1_PACKET_LENGTH	When write:_x000D_
		To indicate HIF that 1 RX packet in this packet length is queued into this RX queuex000D_ $$
		When read:_x000D_
		Read the 1st RX packet length indicated from this queue, and will be 0 when queue is emptyx000D_
		x000D
		FW will write this FIFO-like port (at most 64 entries depends on the hardware configuration for each project) together with RXQ1_DMA_RUM bit been set, after RX packet is queued into descriptor chainx000D_
		RX packet with length been set by this field is able to be read by host driver, which is through reading WRPLR, or INT enhance mode, or RX enhance modex000D_
		None-empty entry will generate RX done interrupt, and corresponding entry will be cleared by HW after this packet length is read by host driverx000D_
		Write 0 is meaning-lessx000D_

381301E	С	HWFI	<u>OCDR</u>			Н	IF WLA	AN Firn	nware	GPD IC	C bit I	Disable	Regis	ter	000	DOOFFF
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Туре																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																TXQ0_I OC_DIS
Туре					RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW
Reset					1	1	1	1	1	1	1	1	1	1	1	1

Bit(s)	Name	Description
11	RXQ3_IOC_DIS	If firmware write 1 to this register, the corresponding queue always issue interrupt event when GPD is done.
		If firmware write 0 to this register, the corresponding queue will issue interrupt event base on GPD IOC bit. If current GPD IOC = 1, GPD done interrupt event will be issued and latched into HWFRE1SR.
		0: Enable IOC function.

Bit(s)	Name	Description
		1: Disable IOC function (always issue interrupt when GPD done)
10	RXQ2_IOC_DIS	If firmware write 1 to this register, the corresponding queue always issue interrupt event when GPD is done.
		If firmware write 0 to this register, the corresponding queue will issue interrupt event base on GPD IOC bit. If current GPD IOC = 1, GPD done interrupt event will be issued and latched into HWFRE1SR.
		0: Enable IOC function.
		1: Disable IOC function (always issue interrupt when GPD done)
9	RXQ1_IOC_DIS	If firmware write 1 to this register, the corresponding queue always issue interrupt event when GPD is done.
		If firmware write 0 to this register, the corresponding queue will issue interrupt event base on GPD IOC bit. If current GPD IOC = 1, GPD done interrupt event will be issued and latched into HWFRE1SR.
		0: Enable IOC function.
		1: Disable IOC function (always issue interrupt when GPD done)
8	RXQ0_IOC_DIS	If firmware write 1 to this register, the corresponding queue always issue interrupt event when GPD is done.
		If firmware write 0 to this register, the corresponding queue will issue interrupt event base on GPD IOC bit. If current GPD IOC = 1, GPD done interrupt event will be issued and latched into HWFRE1SR.
		0: Enable IOC function.
		1: Disable IOC function (always issue interrupt when GPD done)
7	TXQ7_IOC_DIS	If firmware write 1 to this register, the corresponding queue always issue interrupt event when GPD is done.
	7:19/	If firmware write 0 to this register, the corresponding queue will issue interrupt event base on GPD IOC bit. If current GPD IOC = 1, GPD done interrupt event will be issued and latched into HWFTEOSR.
		0: Enable IOC function.
	100	1: Disable IOC function (always issue interrupt when GPD done)
6	TXQ6_IOC_DIS	If firmware write 1 to this register, the corresponding queue always issue interrupt event when GPD is done.
		If firmware write 0 to this register, the corresponding queue will issue interrupt event base on GPD IOC bit. If current GPD IOC = 1, GPD done interrupt event will be issued and latched into HWFTEOSR.
		0: Enable IOC function.
		1: Disable IOC function (always issue interrupt when GPD done)
5	TXQ5_IOC_DIS	If firmware write 1 to this register, the corresponding queue always issue interrupt event when GPD is done.

Bit(s)	Name	Description
		If firmware write 0 to this register, the corresponding queue will issue interrupt event base on GPD IOC bit. If current GPD IOC = 1, GPD done interrupt event will be issued and latched into HWFTEOSR.
		0: Enable IOC function.
		1: Disable IOC function (always issue interrupt when GPD done)
4	TXQ4_IOC_DIS	If firmware write 1 to this register, the corresponding queue always issue interrupt event when GPD is done.
		If firmware write 0 to this register, the corresponding queue will issue interrupt event base on GPD IOC bit. If current GPD IOC = 1, GPD done interrupt event will be issued and latched into HWFTEOSR.
		0: Enable IOC function.
		1: Disable IOC function (always issue interrupt when GPD done)
3	TXQ3_IOC_DIS	If firmware write 1 to this register, the corresponding queue always issue interrupt event when GPD is done.
		If firmware write 0 to this register, the corresponding queue will issue interrupt event base on GPD IOC bit. If current GPD IOC = 1, GPD done interrupt event will be issued and latched into HWFTEOSR.
		0: Enable IOC function.
		1: Disable IOC function (always issue interrupt when GPD done)
2	TXQ2_IOC_DIS	If firmware write 1 to this register, the corresponding queue always issue interrupt event when GPD is done.
	~0	If firmware write 0 to this register, the corresponding queue will issue interrupt event base on GPD IOC bit. If current GPD IOC = 1, GPD done interrupt event will be issued and latched into HWFTEOSR.
		0: Enable IOC function.
	1110	1: Disable IOC function (always issue interrupt when GPD done)
1	TXQ1_IOC_DIS	If firmware write 1 to this register, the corresponding queue always issue interrupt event when GPD is done.
		If firmware write 0 to this register, the corresponding queue will issue interrupt event base on GPD IOC bit. If current GPD IOC = 1, GPD done interrupt event will be issued and latched into HWFTEOSR.
		0: Enable IOC function.
		1: Disable IOC function (always issue interrupt when GPD done)
0	TXQ0_IOC_DIS	If firmware write 1 to this register, the corresponding queue always issue interrupt event when GPD is done.
		If firmware write 0 to this register, the corresponding queue will issue interrupt event base on GPD IOC bit. If current GPD IOC = 1, GPD done interrupt event will be issued and latched into HWFTEOSR.
		0: Enable IOC function.

Bit(s)	Name	Description
-		1: Disable IOC function (always issue interrupt when GPD done)

Exhibit 1 Terms and Conditions

Your access to and use of this document and the information contained herein (collectively this "Document") is subject to your (including the corporation or other legal entity you represent, collectively "You") acceptance of the terms and conditions set forth below ("T&C"). By using, accessing or downloading this Document, You are accepting the T&C and agree to be bound by the T&C. If You don't agree to the T&C, You may not use this Document and shall immediately destroy any copy thereof.

This Document contains information that is confidential and proprietary to MediaTek Inc. and/or its affiliates (collectively "MediaTek") or its licensors and is provided solely for Your internal use with MediaTek's chipset(s) described in this Document and shall not be used for any other purposes (including but not limited to identifying or providing evidence to support any potential patent infringement claim against MediaTek or any of MediaTek's suppliers and/or direct or indirect customers). Unauthorized use or disclosure of the information contained herein is prohibited. You agree to indemnify MediaTek for any loss or damages suffered by MediaTek for Your unauthorized use or disclosure of this Document, in whole or in part.

MediaTek and its licensors retain titles and all ownership rights in and to this Document and no license (express or implied, by estoppels or otherwise) to any intellectual propriety rights is granted hereunder. This Document is subject to change without further notification. MediaTek does not assume any responsibility arising out of or in connection with any use of, or reliance on, this Document, and specifically disclaims any and all liability, including, without limitation, consequential or incidental damages.

THIS DOCUMENT AND ANY OTHER MATERIALS OR TECHNICAL SUPPORT PROVIDED BY MEDIATEK IN CONNECTION WITH THIS DOCUMENT, IF ANY, ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE. MEDIATEK SPECIFICALLY DISCLAIMS ALL WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, COMPLETENESS OR ACCURACY AND ALL WARRANTIES ARISING OUT OF TRADE USAGE OR OUT OF A COURSE OF DEALING OR COURSE OF PERFORMANCE. MEDIATEK SHALL NOT BE RESPONSIBLE FOR ANY MEDIATEK DELIVERABLES MADE TO MEET YOUR SPECIFICATIONS OR TO CONFORM TO A PARTICULAR STANDARD OR OPEN FORUM.

Without limiting the generality of the foregoing, MediaTek makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does MediaTek assume any liability arising out of the application or use of any product, circuit or software. You agree that You are solely responsible for the designing, validating and testing Your product incorporating MediaTek's product and ensure such product meets applicable standards and any safety, security or other requirements.

The above T&C and all acts in connection with the T&C or this Document shall be governed, construed and interpreted in accordance with the laws of Taiwan, without giving effect to the principles of conflicts of law.