- 1. (0.5 point per item) Which of the following functions are bilinear forms and which are not (you need to justify your answer):

 Novoçad Ivan
- + (a) $f_1(z_1, z_2) = \text{Im}(z_1 \cdot \overline{z}_2)^1$, where $z_1, z_2 \in \mathbb{V}$, and \mathbb{V} is the 2-dimensional vector space of complex numbers over the field of reals;
- (b) $f_2(A, B) = \text{tr}(A + B)$, where $A, B \in \text{Mat}_n(\mathbb{R})$, and $\mathbb{V} = \text{Mat}_n(\mathbb{R})$ is the vector space of all square matrices of size n over the field of reals;
- (c) $f_3(A,B) = [AB](i,j)^2$, where $A,B \in \operatorname{Mat}_n(\mathbb{R})$, and $\mathbb{V} = \operatorname{Mat}_n(\mathbb{R})$ is the vector space of all square matrices of size n over the field of reals;
- (d) $f_4(f,g) = \int_a^b f(x)g(x)e^{x^2} dx$, where $f,g \in C([a;b])$, and $\mathbb{V} = C([a;b])$ is the vector space of all continuous functions on the interval [a;b] over the field of reals.
- a) Suppose $z_1 z_2 z_3 \in \mathbb{V} \land a \in \mathbb{R}$ 1) $f_1(z_1 + z_2, z_3) = Im((z_1 + z_2) \cdot \overline{z}_3) = Im(z_1 \cdot \overline{z}_3 + z_2 \cdot \overline{z}_3) = Im(z_1 \cdot \overline{z}_3) + Im(z_1 \cdot \overline{z}_3) = f_1(z_1 z_3) + f(z_2, z_3)$
- 2) $f_1(az_1; Z_2) = Im(az_1.\overline{Z}_2) = aIm(z_1.\overline{Z}_2) = af(z_1.\overline{Z}_2)$
- 3) f, (2,22+23)= Im(2,(22+23))= Im(2,(22+23))=
- = Im(21. Z2 +21. Z3) = Im(21. Z2) + Im(21. Z3) = f,(2, Z2) + f(2, Z3)
- 4) $f_1(z,az_2) = Im(z_ia.\overline{z}_2) = aIm(z_i.\overline{z}_2) = af_i(z_iz_2)$

Hence I, is a bilinear map.

b) Suppose $A,B,C \in Matn(IR)$ and $a \in R$ $\int_{2} (A+B,C) = tr(A+B+C) = tr(A+B) + tr(C) \neq tr(A+C) + tr(B+C)$ Hence f_{2} isn't a bilinear map.

c) Suppose $A,B,C \in Matn(IR)$ and $a \in R$ 1) $f_3(A+B,C) = [A+B)C](i,j) = [AC+BC](i,j) =$ $= [AC](i,j) + [BC](i,j) = f_3(A,C) + f_3(B,C)$ 2) $f_3(a+B) = [a+B](i,j) = a[AB](i,j) = a + f_3(A,B)$ 3) $f_3(A,B+C) = [A(B+C)](i,j) = [AB+AC](i,j) =$

3) $f_3(A,B+e) = [A(B+e)](ij) = [AB+AC](ij) =$ $= [AB](ij) + [AC](ij) = f_3(A,B) + f_3(A,C)$

4) $f_3(A,aB) = [A,aB](ij) = a[A,B](ij) = af_3(A,B)$

Thus fz is a bilinear map.

d) let $f(x), g(x), k(x) \in C((a,b]), a \in \mathbb{R}$ and $f(x) = e^{x^2}$

1) $f_4(f_{1k},g) = \int_a^b (f(x) + k(x))g(x) l(x) dx =$

 $\int_{a}^{b} \left[f(x) g(x) l(x) + k(x) g(x) l(x) \right] dx =$

 $= \int_{a}^{b} f(x) g(x) l(x) dx + \int_{a}^{b} k(x) g(x) l(x) dx = f_{4}(f,g) + f_{4}(k,g)$

a) $f_4(af,g) = \int_a^b af(x)g(x)l(x)dx = a\int_a^b f(x)g(x)l(x)dx = af_4(f,g)$

3) $f_4(f,g+k) = \int_a^b f(x)(g(x)+k(x))f(x)dx = \int_a^b [f(x)g(x)f(x)+f(x)]k(x)]dx =$

 $= \int_{a}^{b} f(x) g(x) l(x) dx + \int_{a}^{b} f(x) k(x) l(x) dx = \int_{4}^{a} (f, g) + f_{4}(f, k)$

4) $f_4(f,ag) = \int_a^b f(x)a \cdot g(x)l(x)dx = a \int_a^b f(x)g(x)l(x)dx = a f_4(f,g)$ So f_4 is bilinear map.

2. For a given bilinear form
$$\beta$$
 on a vector space \mathbb{V} :

- 1) (1 point per item) find the coordinate matrix of a bilinear form β with respect to a given ordered basis \mathcal{A} (see Definition 25.2):
- 2) (1 point per item) using Formula 25.5, for another given ordered basis \mathcal{A}' of \mathbb{V} , find the coordinate matrix of β with respect to \mathcal{A}' .
- (a) $\mathbb{V} = \mathbb{R}^3$; $\beta(\mathbf{x}, \mathbf{y}) = 2 \cdot x_1 y_1 x_2 y_1 + 3 \cdot x_2 y_3 + 7 \cdot x_3 y_1$, where $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$, $[\mathbf{x}]_{\mathcal{A}} = [x_1, x_2, x_3]^{\mathrm{T}}$, $[\mathbf{y}]_{\mathcal{A}} = [y_1, y_2, y_3]^{\mathrm{T}}$; $\mathcal{A} = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$; $\mathcal{A}' = (\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3)$ and $\mathbf{f}_1 = 2\mathbf{e}_1 + \mathbf{e}_3$, $\mathbf{f}_2 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3$, $\mathbf{f}_3 = 3\mathbf{e}_2 + \mathbf{e}_3$;
- (b) $\mathbb{V} = \mathbb{R}[x;2] = \{ax^2 + bx + c \mid a,b,c \in \mathbb{R}\}; \ \beta(p,q) = \frac{\mathrm{d}}{\mathrm{d}x}(p \cdot q)(-1), \text{ where } p, q \in \mathbb{R}[x;2]; \ \mathcal{A} = (x + 1, x, x^2 + x 2); \ \mathcal{A}' = (-1, x + 1, x^2 2);$
- (c) \mathbb{V} is the vector space of all symmetric matrices of size 2 over the field of reals; $\beta(A, B) = \operatorname{tr}(A^{\mathrm{T}}MB)$, where $A, B \in \mathbb{V}$, and $M = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} \in \operatorname{Mat}_2(\mathbb{R})$ is a fixed matrix;

$$\mathcal{A} = \left(\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right); \quad \mathcal{A}' = \left(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right).$$

C)
$$[H(\beta, H)](1,1) = fr([0,1][1,2][0,1]) = 4$$

 $[H(\beta, H)](1,2) = 2$ $[H(\beta, H)](2,3) = 3$
 $[H(\beta, H)](1,3) = 3$ $[H(\beta, H)](3,3) = 6$
 $[H(\beta, H)](2,2) = 2$

since Mat. are symmetric and tr(AB) = tr(BH)

Hence
$$H(\beta, A) = \begin{bmatrix} 4 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 3 & 6 \end{bmatrix}$$

Thus
$$C(A,A') = \begin{bmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & -1 \end{bmatrix} = C(A,A')^T$$

$$Go \mathcal{H}(\beta, H') = \begin{bmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 4 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 3 & 6 \end{bmatrix} \begin{bmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 2 & -1 \\ 2 & 4 & -3 \\ -1 & -3 & 4 \end{bmatrix}$$

3. (1 point) Let β be a bilinear form on odd-dimensional vector space $\mathbb V$ over the field of reals. Suppose that there is an ordered basis $\mathcal A$ of $\mathbb V$ such that the coordinate matrix $H(\beta, \mathcal A)$ is invertible, then, is it possible that we have $H(\beta, \mathcal A') = -H(\beta, \mathcal A)$ for some other ordered basis $\mathcal A'$ of $\mathbb V$ (you need to justify your answer)?

$$H(\beta, H') = C(A, A')^T H(\beta, H) C(A, A') = -H(\beta, A)$$
Since $H(B, H') = -H(B, A) : det(H(B, A') = det(-H(B, A)))$

$$E(-1)^m det(H(B, A))$$

$$e(-1)^m det(H(B, A)) = det(C(A, A')^T det(H(B, A))) det(C(A, A'))$$

$$e(-1)^m det(H(B, B)) = det(C(A, A') det(H(B, B))) det(C(A, A'))$$

$$now | et's divide both sides or det(H(B, B)), since it's inv.$$

$$e(-1)^m = det(C(A, A') det(C(A, B')))$$

$$e(-1)^m = det(C(A, B') det(C(A, B'))$$

$$e(-1)^m = det(C(A, B') det(C(A, B'))$$

$$e(-1)^m = det(C(A, B') det(C(A, B'))$$

отчисляйте меня

$$\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & -1 \\
1 & 1 & -1
\end{bmatrix}
\begin{cases}
\frac{1}{2_13_1}
\end{cases}
\begin{cases}
1 & 1 & 2 \\
1 & 1 & 0
\end{cases}
\begin{cases}
\frac{1}{1_13_1-1}
\end{cases}
\begin{cases}
1 & 0 & 1 \\
0 & 0 & -2
\end{cases}$$

$$\begin{bmatrix}
\frac{1}{1_13_1-1}
\end{cases}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & -2
\end{cases}
\begin{cases}
\frac{1}{1_13_1-1}
\end{cases}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & -2
\end{cases}
\begin{cases}
\frac{1}{1_13_1-1}
\end{cases}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & -2
\end{cases}
\begin{cases}
\frac{1}{1_13_1-1}
\end{cases}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & -2
\end{cases}
\begin{cases}
\frac{1}{1_13_1-1}
\end{cases}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & -2
\end{cases}
\begin{cases}
\frac{1}{1_13_1-1}
\end{cases}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & -2
\end{cases}
\begin{cases}
\frac{1}{1_13_1-1}
\end{cases}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & -2
\end{cases}
\begin{cases}
\frac{1}{1_13_1-1}
\end{cases}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & -2
\end{cases}$$

$$\frac{1}{1_13_1-1}$$

$$\frac{1}{1_13_1-1}$$