# **Institute of Information Technology (IIT)**

# Jahangirnagar University



Lab Report: 05

Submitted by:

Name: Zannat Hossain Tamim

Roll No:1970

Lab Date:08.08.23

Submission Date: 18.08.23

# Lab Report # Day 05

# Query 1:

Read CSV file and print the file

### Clause:

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline df=pd.read\_csv('framingham.csv') df

### **Result:**

|     | n | nale | age | education | current\$moker | cigsPerDay | BPMeds | prevalentStroke | prevalentHyp | diabetes | totChol | sysBP | diaBP | BMI   | heartRate | glucos |
|-----|---|------|-----|-----------|----------------|------------|--------|-----------------|--------------|----------|---------|-------|-------|-------|-----------|--------|
|     | 0 | 1    | 39  | 4.0       | 0              | 0.0        | 0.0    | 0               | 0            | 0        | 195.0   | 106.0 | 70.0  | 26.97 | 80.0      | 77     |
|     | 1 | 0    | 46  | 2.0       | 0              | 0.0        | 0.0    | 0               | 0            | 0        | 250.0   | 121.0 | 81.0  | 28.73 | 95.0      | 76     |
|     | 2 | 1    | 48  | 1.0       | 1              | 20.0       | 0.0    | 0               | 0            | 0        | 245.0   | 127.5 | 80.0  | 25.34 | 75.0      | 70     |
|     | 3 | 0    | 61  | 3.0       | 1              | 30.0       | 0.0    | 0               | 1            | 0        | 225.0   | 150.0 | 95.0  | 28.58 | 65.0      | 103    |
|     | 4 | 0    | 46  | 3.0       | 1              | 23.0       | 0.0    | 0               | 0            | 0        | 285.0   | 130.0 | 84.0  | 23.10 | 85.0      | 85     |
|     |   |      |     |           |                |            |        |                 |              |          |         |       |       |       |           |        |
| 423 | 3 | 1    | 50  | 1.0       | 1              | 1.0        | 0.0    | 0               | 1            | 0        | 313.0   | 179.0 | 92.0  | 25.97 | 66.0      | 86     |
| 423 | 4 | 1    | 51  | 3.0       | 1              | 43.0       | 0.0    | 0               | 0            | 0        | 207.0   | 126.5 | 80.0  | 19.71 | 65.0      | 68     |
| 423 | 5 | 0    | 48  | 2.0       | 1              | 20.0       | NaN    | 0               | 0            | 0        | 248.0   | 131.0 | 72.0  | 22.00 | 84.0      | 86     |
| 423 | 6 | 0    | 44  | 1.0       | 1              | 15.0       | 0.0    | 0               | 0            | 0        | 210.0   | 126.5 | 87.0  | 19.16 | 86.0      | Na     |
| 423 | 7 | 0    | 52  | 2.0       | 0              | 0.0        | 0.0    | 0               | 0            | 0        | 269.0   | 133.5 | 83.0  | 21.47 | 80.0      | 107    |

### Query 2: Print the top 5 rows.

### Clause:

df.head()



# Query 3: Print the last 5 rows of data frame.

### Clause:

df.tail()

### **Result:**

| In [5]: | df.ta | df.tail() |     |           |               |            |        |                 |              |          |         |       |       |       |           |         |
|---------|-------|-----------|-----|-----------|---------------|------------|--------|-----------------|--------------|----------|---------|-------|-------|-------|-----------|---------|
| Out[5]: |       | male      | age | education | currentSmoker | cigsPerDay | BPMeds | prevalentStroke | prevalentHyp | diabetes | totChol | sysBP | diaBP | ВМІ   | heartRate | glucose |
|         | 4233  | 1         | 50  | 1.0       | 1             | 1.0        | 0.0    | 0               | 1            | 0        | 313.0   | 179.0 | 92.0  | 25.97 | 66.0      | 86.0    |
|         | 4234  | 1         | 51  | 3.0       | 1             | 43.0       | 0.0    | 0               | 0            | 0        | 207.0   | 126.5 | 80.0  | 19.71 | 65.0      | 68.0    |
|         | 4235  | 0         | 48  | 2.0       | 1             | 20.0       | NaN    | 0               | 0            | 0        | 248.0   | 131.0 | 72.0  | 22.00 | 84.0      | 86.0    |
|         | 4236  | 0         | 44  | 1.0       | 1             | 15.0       | 0.0    | 0               | 0            | 0        | 210.0   | 126.5 | 87.0  | 19.16 | 86.0      | NaN     |
|         | 4237  | 0         | 52  | 2.0       | 0             | 0.0        | 0.0    | 0               | 0            | 0        | 269.0   | 133.5 | 83.0  | 21.47 | 80.0      | 107.0   |

# Query 4:

To get the shape of the DataFrame

### Clause:

df.shape

### **Result:**

```
In [53]: df.shape
Out[53]: (3656, 16)
```

# Query 5:

To get the information of the DataFrame

### Clause:

df.info()

```
In [56]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 3656 entries, 0 to 4237
        Data columns (total 16 columns):
                             Non-Null Count Dtype
             Column
                                            int64
         0
             male
                             3656 non-null
                            3656 non-null
                                             int64
         1
             age
             education 3656 non-null float64
         2
         3
             currentSmoker 3656 non-null int64
         4
                             3656 non-null float64
             cigsPerDay
         5
                             3656 non-null float64
             BPMeds
             prevalentStroke 3656 non-null
                                            int64
         6
         7
             prevalentHyp
                             3656 non-null int64
         8
             diabetes
                             3656 non-null int64
         9
             totChol
                             3656 non-null float64
                            3656 non-null float64
         10 sysBP
         11 diaBP
                             3656 non-null float64
                             3656 non-null float64
         12 BMI
         13 heartRate
                             3656 non-null float64
         14 glucose
                             3656 non-null float64
         15 TenYearCHD
                             3656 non-null
                                            int64
         dtypes: float64(9), int64(7)
        memory usage: 485.6 KB
```

## Query 6:

To calculate and print a summary of statistical data for each column in the DataFrame

### Clause:

df.describe()

#### **Result:**



## Query 7:

To count the number of missing values in each column of a DataFrame Clause:

```
data.isnull().sum()
```

### **Result:**

```
In [6]: df.isnull().sum()
Out[6]: male
                              0
                              0
        age
        education
                            105
                              0
        currentSmoker
        cigsPerDay
                              29
        BPMeds
        prevalentStroke
                              0
                              0
        prevalentHyp
                              0
        diabetes
                              50
        totChol
        sysBP
                              0
        diaBP
                              0
        BMI
                             19
        heartRate
                              1
                            388
        glucose
        TenYearCHD
                              0
        dtype: int64
```

### Query 8: Total number of rows with missing values

### Clause:

### **Result:**

# Query 9:

Create a heatmap of the missing values in the data frame.

#### Clause:

```
sns.heatmap(df.isnull(),cmap='cividis')
```



Query 10: Impute the NaN values with the mean

### Clause:

```
df = df.fillna(df[['education','cigsPerDay',
'BPMeds','totChol','BMI','heartRate','glucose']].mean())
print(df)
```

### **Result:**

```
cigsPerDay
      male
                 education currentSmoker
                                                         BPMeds
            age
0
             39
                       4.0
                                        0
                                                   0.0
                                                        0.00000
1
         Θ
             46
                       2.0
                                         0
                                                   0.0 0.00000
             48
                       1.0
                                         1
                                                  20.0 0.00000
3
             61
                       3.0
                                         1
                                                  30.0 0.00000
4
         0
             46
                                                  23.0 0.00000
                       3.0
                                         1
            . . .
                       . . .
                                       . . .
                                                   . . .
. . .
4233
         1
             50
                       1.0
                                        1
                                                   1.0
                                                        0.00000
4234
             51
                       3.0
                                         1
                                                  43.0 0.00000
         1
4235
             48
                       2.0
                                         1
                                                  20.0
                                                        0.02963
4236
         Θ
             44
                       1.0
                                                        0.00000
                                         1
                                                  15.0
4237
                                                   0.0
                                                        0.00000
                       prevalentHyp diabetes totChol sysBP
                                                               diaBP
                                                                          BMI
      prevalentStroke
0
                                                  195.0 106.0
                                                                70.0 26.97
                    0
                                   0
                                             0
                                                  250.0 121.0
                                                                 81.0 28.73
1
2
                    0
                                   0
                                             0
                                                  245.0
                                                         127.5
                                                                 80.0
                                                                       25.34
3
                    0
                                  1
                                             0
                                                  225.0 150.0
                                                                 95.0
                                                                       28.58
4
                                                  285.0 130.0
                    0
                                  0
                                             0
                                                                 84.0 23.10
                                             0
                                                  313.0 179.0
                                                                 92.0 25.97
4233
                    Θ
                                  1
4234
                    0
                                  0
                                             0
                                                  207.0
                                                         126.5
                                                                 80.0 19.71
4235
                    0
                                  0
                                             0
                                                  248.0
                                                         131.0
                                                                 72.0
                                                                       22.00
4236
                                  0
                                             Θ
                                                  210.0 126.5
                                                                 87.0 19.16
                    Θ
4237
                                                  269.0 133.5
                                                                 83.0 21.47
                    glucose
      heartRate
                             TenYearCHD
0
           80.0
                  77.000000
                                       0
1
           95.0
                  76,000000
                                       a
                  70.000000
```

Query 10: After handling all the NaN values

Clause:

df.isnull().sum()

### **Result:**

```
[43]: df.isnull().sum()
[43]: male
                        Θ
                        0
      age
      education
      currentSmoker
                        0
      cigsPerDay
      BPMeds
                        0
      prevalentStroke
                        0
      prevalentHyp
                        0
                        0
      diabetes
      totChol
      sysBP
                        0
      diaBP
                        0
      BMI
                        0
      heartRate
      glucose
      TenYearCHD
                        0
      dtype: int64
```

# Query 11: To print columns

### Clause:

```
df.columns()
```

#### **Result:**

Query 12: Calculate the correlation coefficient between each pair of columns in the data frame and store it in the variable cor

#### Clause:

```
cor=df.corr()
print(cor)
```

| ]: |                 |           |           |           |               |            |           |                 |              |           |           |           |           |
|----|-----------------|-----------|-----------|-----------|---------------|------------|-----------|-----------------|--------------|-----------|-----------|-----------|-----------|
|    |                 | male      | age       | education | currentSmoker | cigsPerDay | BPMeds    | prevalentStroke | prevalentHyp | diabetes  | totChol   | sysBP     | diaBF     |
|    | male            | 1.000000  | -0.028979 | 0.017126  | 0.197596      | 0.316807   | -0.052204 | -0.004546       | 0.005313     | 0.015708  | -0.069974 | -0.035989 | 0.057933  |
|    | age             | -0.028979 | 1.000000  | -0.163613 | -0.213748     | -0.192366  | 0.121980  | 0.057655        | 0.307194     | 0.101258  | 0.260270  | 0.394302  | 0.206104  |
|    | education       | 0.017126  | -0.163613 | 1.000000  | 0.018301      | 0.007962   | -0.010607 | -0.035110       | -0.080993    | -0.038146 | -0.022507 | -0.128260 | -0.061755 |
|    | currentSmoker   | 0.197596  | -0.213748 | 0.018301  | 1.000000      | 0.766970   | -0.048632 | -0.032988       | -0.103260    | -0.044295 | -0.046285 | -0.130230 | -0.10774€ |
|    | cigsPerDay      | 0.316807  | -0.192366 | 0.007962  | 0.766970      | 1.000000   | -0.045826 | -0.032706       | -0.065947    | -0.037063 | -0.026025 | -0.088505 | -0.056391 |
|    | BPMeds          | -0.052204 | 0.121980  | -0.010607 | -0.048632     | -0.045826  | 1.000000  | 0.115003        | 0.259243     | 0.051571  | 0.078909  | 0.252047  | 0.192490  |
|    | prevalentStroke | -0.004546 | 0.057655  | -0.035110 | -0.032988     | -0.032706  | 0.115003  | 1.000000        | 0.074830     | 0.006949  | 0.000067  | 0.057009  | 0.045190  |
|    | prevalentHyp    | 0.005313  | 0.307194  | -0.080993 | -0.103260     | -0.065947  | 0.259243  | 0.074830        | 1.000000     | 0.077808  | 0.163041  | 0.696755  | 0.615751  |
|    | diabetes        | 0.015708  | 0.101258  | -0.038146 | -0.044295     | -0.037063  | 0.051571  | 0.006949        | 0.077808     | 1.000000  | 0.040092  | 0.111283  | 0.050329  |
|    | totChol         | -0.069974 | 0.260270  | -0.022507 | -0.046285     | -0.026025  | 0.078909  | 0.000067        | 0.163041     | 0.040092  | 1.000000  | 0.207609  | 0.163903  |
|    | sysBP           | -0.035989 | 0.394302  | -0.128260 | -0.130230     | -0.088505  | 0.252047  | 0.057009        | 0.696755     | 0.111283  | 0.207609  | 1.000000  | 0.784002  |
|    | diaBP           | 0.057933  | 0.206104  | -0.061755 | -0.107746     | -0.056391  | 0.192490  | 0.045190        | 0.615751     | 0.050329  | 0.163903  | 0.784002  | 1.000000  |
|    | ВМІ             | 0.081506  | 0.135283  | -0.135635 | -0.167276     | -0.092453  | 0.099552  | 0.024840        | 0.300572     | 0.086250  | 0.114789  | 0.325247  | 0.376544  |
|    | heartRate       | -0.116601 | -0.012819 | -0.053626 | 0.062348      | 0.074851   | 0.015175  | -0.017676       | 0.147222     | 0.048993  | 0.090676  | 0.182174  | 0.18124€  |
|    | glucose         | 0.005818  | 0.116850  | -0.033721 | -0.054157     | -0.056088  | 0.048905  | 0.018055        | 0.082924     | 0.605705  | 0.044583  | 0.134608  | 0.058647  |
|    | TenYearCHD      | 0.088428  | 0.225256  | -0.053384 | 0.019456      | 0.057775   | 0.086774  | 0.061810        | 0.177603     | 0.097317  | 0.081624  | 0.216429  | 0.145299  |
|    | 4               |           |           |           |               |            |           |                 |              |           |           |           | <b>+</b>  |

Query 13: To create a heatmap of the correlation matrix:

### Clause:

import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline plt.figure(figsize=(12,6)) sns.heatmap(df.corr().abs(),annot=True)



# Query 14:

Plot pairwise relationships between variables of the dataset

### Clause:

sns.pairplot(df)

### **Result:**



# **Query 15:**

Number of males with no heart disease and number of patients with risk of heart disease

### Clause:

df.TenYearCHD.value counts()

### **Result:**

t[20]: 0 3594 1 644

Name: TenYearCHD, dtype: int64

# Query 16:

Number of males with no heart disease and number of patients with risk of heart disease

### Clause:

sns.countplot(x='TenYearCHD',data=df)

### **Result:**

```
it[21]: <Axes: xlabel='TenYearCHD', ylabel='count'>
```



# **Query 17:**

### Clause:

```
sns.set_style('whitegrid')
sns.countplot(x='male',data=df,palette='RdBu_r')
```

Out[8]: <Axes: xlabel='male', ylabel='count'>



# Query 18:

**Exploratory Analysis** 

### Clause:

```
def draw_histograms(dataframe, features, rows, cols):
    fig=plt.figure(figsize=(20,20))
    for i, feature in enumerate(features):
        ax=fig.add_subplot(rows,cols,i+1)
        dataframe[feature].hist(bins=20,ax=ax,facecolor='red')
        ax.set_title(feature+"Distribution", color='blue')
    fig.tight_layout()
    plt.show()
draw_histograms(df, df.columns, 6, 3)
```

### **Result:**



# Query 19:

### Clause:

```
sns.displot(df['age'].dropna(),kde=False,color='darkblue',bins=30)
```



# Query 20:

To print the graph of total Chol

### Clause:

df['totChol'].hist(color='green',bins=40,figsize=(8,4))

### **Result:**



# Query 21:

### Clause:

from statsmodels.tools import add\_constant as add\_constant
h = add\_constant(df)
h.head()

|          |   | ()    |      |     |           |                |            |        |                 |              |          |         |       |       |       |           |        |
|----------|---|-------|------|-----|-----------|----------------|------------|--------|-----------------|--------------|----------|---------|-------|-------|-------|-----------|--------|
| Out[36]: |   | const | male | age | education | current\$moker | cigsPerDay | BPMeds | prevalentStroke | prevalentHyp | diabetes | totChol | sysBP | diaBP | ВМІ   | heartRate | glucos |
|          | 0 | 1.0   | 1    | 39  | 4.0       | 0              | 0.0        | 0.0    | 0               | 0            | 0        | 195.0   | 106.0 | 70.0  | 26.97 | 80.0      | 77.    |
|          | 1 | 1.0   | 0    | 46  | 2.0       | 0              | 0.0        | 0.0    | 0               | 0            | 0        | 250.0   | 121.0 | 81.0  | 28.73 | 95.0      | 76.    |
|          | 2 | 1.0   | 1    | 48  | 1.0       | 1              | 20.0       | 0.0    | 0               | 0            | 0        | 245.0   | 127.5 | 80.0  | 25.34 | 75.0      | 70.    |
|          | 3 | 1.0   | 0    | 61  | 3.0       | 1              | 30.0       | 0.0    | 0               | 1            | 0        | 225.0   | 150.0 | 95.0  | 28.58 | 65.0      | 103.   |
|          | 4 | 1.0   | 0    | 46  | 3.0       | 1              | 23.0       | 0.0    | 0               | 0            | 0        | 285.0   | 130.0 | 84.0  | 23.10 | 85.0      | 85.    |
|          | 4 |       |      |     |           |                |            |        |                 |              |          |         |       |       |       |           | -      |

### Query 22:

Splitting data to train and test split

### Clause:

```
import sklearn
new=df[['age','male','cigsPerDay','totChol','sysBP','glucose','TenYearCHD']]
x=new.iloc[:,:-1]
y=new.iloc[:,-1]
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=.20,random_state=5)
```

### **Result:**

```
import sklearn
new=df[['age','male','cigsPerDay','totChol','sysBP','glucose','TenYearCHD']]
x=new.iloc[:,:-1]
y=new.iloc[:,-1]
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=.20,random_state=5)
```

### Query 23: To print x\_test data

### Clause:

```
x_test
```

```
[36]: x_test
t[36]:
                age male cigsPerDay totChol sysBP
                                                            glucose
         1856
                 61
                                          204.0
                                                  120.0
                                                          75.000000
                                   0.0
                                          212.0
                                                          72.000000
         2370
                 60
                                                  146.0
                                   15.0
                                          176.0
                                                  110.0 113.000000
           424
                 38
          1736
                 38
                                   20.0
                                          279.0
                                                  124.0
                                                          75.000000
                         0
                 57
                                   0.0
                                          233.0
                                                          40.000000
          1183
                                                  184.0
         2530
                         0
                                   9.0
                                          231.0
                                                  137.0
                                                          81.966753
                 49
         2648
                 60
                         0
                                   0.0
                                          254.0
                                                  114.0
                                                          84.000000
         2676
                 51
                                   20.0
                                          215.0
                                                  115.0
                                                          77.000000
                                          180.0
                                                  115.0 64.000000
         2582
                 41
                         0
                                   0.0
         3720
                                   0.0
                                          175.0
                                                  104.0 82.000000
```

848 rows × 6 columns

# Query 24: To print y\_test data

### Clause:

```
y_test
```

### **Result:**

```
In [37]: y_test
Out[37]: 1856
         2370
                 1
         424
                 0
         1736
                 0
         1183
                 1
         2530
         2648
         2676
                 0
         2582
         3720
         Name: TenYearCHD, Length: 848, dtype: int64
```

# **Query 25:**

To create an object named m, fit and predict the  $x\_test$  data of the model

### Clause:

```
from sklearn.linear_model import LogisticRegression

m = LogisticRegression()

m.fit(x_train,y_train)

y = m.predict(x_test)
```

```
Θ,
                                    0,
                                                0,
                                                   0,
                                                               0,
                                                                          0,
                             0,
                                            0,
                                                       0,
                                                           Θ,
                                                                  0,
                                                                      0,
14]: array([0, 0, 0, 0,
                             0,
                                 0,
                                        0,
                      0,
                          0,
                                     0,
                                            Θ,
                                                0,
                                                    Θ,
                                                       Θ,
                                                           0,
                                                               Θ,
                                                                   0,
                                                                      0,
                                                               0,
                          Θ,
                             0,
                                 0,
                                     0,
                                        0,
                                                Θ,
                                                    0,
                                                       Θ,
                                                           Θ,
                                                                   Θ,
                             0,
                                     0,
                                            0,
                                                Θ,
                                                    Θ,
                                                       Θ,
                             0,
                                 0,
                                                    Θ,
                             0,
                                 0,
                             0,
                                 0,
                                                    0,
                          0,
                             0,
                                 0,
                                     0,
                                        0,
                                            0,
                                                0,
                                                       Θ,
                                                           Θ,
                                                               Θ,
                             0,
                          0,
                                 0,
                                     0,
                     Θ,
                         Θ,
                             0,
                                 0,
                                     0,
                                                0,
                                                       0,
                                                           Θ,
                                                                  0,
                                                                      0,
                                        1,
                                            Θ,
                                                               Θ,
                                                           Θ,
                                                                   0,
                             Θ,
                                 0,
                                     0,
                                        0,
                                            Θ,
                                                    Θ,
                                                       Θ,
                                                               Θ,
                          0,
                                                0,
                      0,
                             0,
                                 0,
                                            0,
                                                   0,
                          0,
                                                           0,
                                                               Θ,
                                     0,
                                        0,
                                                0,
                                                       0,
                                                                   Θ,
                                                                      0,
                          Θ,
                             Θ,
                                 Θ,
                                     0,
                                        Θ,
                                            Θ,
                                                Θ,
                                                    Θ,
                                                       Θ,
                                                           0,
                                                                      Θ,
                             0,
                          Θ,
                                 0,
                                     0,
                                        Θ,
                                            Θ,
                                                0,
                                                    0,
                                                       Θ,
                                                           Θ,
                                                                   0,
                             0,
                                                Θ,
                                                    0,
                                                       Θ,
                          0,
                                 0,
                                     0,
                                        0,
                                            0,
                                                           0,
                                                               0,
                                                                   0,
                          0,
                                     0,
                                                0,
                             0,
                                 0,
                                                    0,
                                     0,
                          0,
                             0,
                                 0,
                          0,
                             0,
                                 0,
                                     0,
                                        0,
                                            Θ,
                                                Θ,
                                                    Θ,
                                                       Θ,
                                                           Θ,
                                                               Θ,
                                                                   Θ,
                                                                      Θ,
                          0.
                             0,
                                 0,
                                     0,
                                                    0,
                                                       Θ.
                                                           0.
                                                               0.
                  0,
                          Θ,
                             0,
                                 0,
                                     0,
                                                Θ,
                                                    Θ,
                                                       Θ,
                                                                   0,
                      0.
                                        0.
                                            0,
                                                           0.
                                                               Θ,
                                                                      Θ,
                          Θ,
                             0,
                                 0,
                                     Θ,
                                        0,
                                            0,
                                                0,
                                                   0,
                                                       0,
                                                           Θ,
                                                               Θ,
                                                                   0,
                                        0,
                  Θ,
                          Θ,
                             Θ,
                                 0,
                                     Θ,
                                            Θ,
                                                Θ,
                                                   0,
                                                               Θ,
                      Θ,
                                                       0,
                                                           0,
                                                                   Θ,
                                                               0,
                          0,
                             0,
                                 0,
                                     0,
                                        0,
                                            0,
                                                0,
                                                    Θ,
                                                       Θ,
                                                           Θ,
                                                                   Θ,
                          0,
                                                   0,
                                                           0,
                                                               Θ,
                                                                   0,
                  0,
                      Θ,
                             0,
                                 Θ,
                                     0,
                                        0,
                                                0,
                                                       Θ,
                  0,
                      Θ,
                          0,
                             0,
                                 0,
                                     0,
                                        0,
                                            Θ,
                                                Θ,
                                                   Θ,
                                                       Θ,
                                                           Θ,
                                                               Θ,
                                                                   Θ,
                                                                      Θ,
                          0,
                                                           0,
                                                               Θ,
                             Θ,
                                 0,
                                     0,
                                        0,
                                            0,
                                                Θ,
                                                   0,
                                                       Θ,
                                                                   Θ,
                                                                      Θ,
                             0,
                                 0,
                                        0,
                                            Θ,
                                                Θ,
                                                   Θ,
                                                       Θ,
```

### Query 26:

To show the scatter diagram of y\_train and y\_pre\_train

### Clause:

```
y_predict = m.predict(x_test)
y_pre_train= m.predict(x_train)
plt.scatter(y_train,y_pre_train,c='green',lw=1)
plt.plot([y_train.min(),y_train.max()],[y_train.min(),y_train.max()],'k---',c='blue',lw=1)
plt.xlabel('Actual')
plt.ylabel('Predicted')
```

#### **Result:**



# Query 27: Evaluate the performance of the model

### Clause:

```
m.score(x_test,y_test)
```

#### **Result:**

```
In [41]: m.score(x_test,y_test)
Out[41]: 0.8384433962264151
```

### Query 28:

Probability of the prediction of x\_test data

### Clause:

```
m.predict proba(x test)
```

### **Result:**

### Query 29:

Confusion matrix

#### Clause:

```
from sklearn.metrics import confusion_matrix

cm = confusion_matrix(y_test, y)

conf_matrix = pd.DataFrame(data=cm,

columns=['Predicted:0','Predicted:1'],index=['Actual:0','Actual:1'])

plt.figure(figsize = (6,3))

sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='YlGnBu')
```

```
)ut[50]: <Axes: >
```



### Query 30:

Draw Residual Histogram to calculate the precision of a classification model

### Clause:

```
from sklearn.metrics import classification_report

accuracy = sklearn.metrics.accuracy_score(y_test, y)

precision = sklearn.metrics.precision_score(y_test, y)

recall = sklearn.metrics.recall_score(y_test, y)

print("Accuracy:", accuracy)

print("Precision:", precision)

print("Recall:", recall)
```

#### **Result:**

```
print("Accuracy:", accuracy)
print("Precision:", precision)
print("Recall:", recall)

Accuracy: 0.8384433962264151
Precision: 1.0
Recall: 0.06164383561643835
```

### **Query 31:**

Check the accuracy

### Clause:

```
from sklearn.metrics import confusion_matrix conf\_matrix = confusion\_matrix(y\_test, y) g\_names = ['True\ Pos', 'False\ Pos', 'False\ Neg', 'True\ Neg'] g\_counts = ["\{0:0.0f\}".format(value)\ for\ value\ in\ conf\_matrix.flatten()] g\_percentages = ["\{0:.2\%\}".format(value)\ for\ value\ in\ conf\_matrix.flatten()] labels = [f"\{v1\} \setminus n\{v2\} \setminus n\{v3\}"\ for\ v1,\ v2,\ v3\ in zip(g\_names,\ g\_counts,\ g\_percentages)] labels = np.asarray(labels).reshape(2,\ 2) sns.heatmap(conf\_matrix,\ annot=labels,\ fmt=",\ cmap='RdBu') plt.show()
```

