

VARIACIÓN DE FUNCIONES

Ing. Civil Adolfo Vignoli – 2023 -

Función creciente, decreciente, no creciente, no decreciente.

Definiciones: Sea $f: D_f \to \mathbb{R}$. $S \subseteq D_f$. $x_1, x_2 \in S$. $x_1 < x_2$.

f es no decreciente sobre S si $f(x_1) \le f(x_2) \ \forall x_1, x_2 \in S$.

f es no creciente sobre S si $f(x_1) \ge f(x_2) \ \forall x_1, x_2 \in S$.

f es creciente sobre S si $f(x_1) < f(x_2) \ \forall x_1, x_2 \in S$.

f es decreciente sobre S si $f(x_1) > f(x_2) \ \forall x_1, x_2 \in S$.

Función creciente, decreciente, no creciente, no decreciente.

Teorema

Sea f continua sobre un intervalo J.

- I. Si $f'(x) \ge 0$ en todo punto interior de J, entonces f es no decreciente sobre J.
- II. Si $f'(x) \le 0$ en todo punto interior de J, entonces f es no creciente sobre J.
- III. Si f'(x) > 0 en todo punto interior de J, entonces f es creciente sobre J.
- IV. Si f'(x) < 0 en todo punto interior de J, entonces f es decreciente sobre J.

Función creciente, decreciente, no creciente, no decreciente.

Demostración I.

Sean
$$x_1, x_2 \in J$$
; $x_1 < x_2$.

f es continua en $[x_1, x_2]$ y derivable en (x_1, x_2) , por lo que se cumplen las hipótesis del teorema del valor medio.

Entonces
$$\exists c \in (x_1, x_2) / f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}; f'(c) \ge 0$$
 por hipótesis

$$x_2 - x_1 > 0$$
, por lo que debe cumplirse $f(x_2) - f(x_1) \ge 0$.

Es decir, $f(x_1) \le f(x_2) \ \forall x_1, x_2 \in J \ y \ f$ es no decreciente sobre J.

Ejemplo

Sea $f(x) = x^2$. Compruebe que f es decreciente en el

intervalo $[-\infty, 0]$ y que es creciente en el intervalo $[0, \infty]$.

$$f'(x) = 2x = 0 \implies x = 0$$
 raíz de la derivada

_	$-\infty$	0 ∞
\boldsymbol{x}		+
2x	_	+

En esta tabla se indica que f'(x) < 0 en $(-\infty, 0)$ y, por consiguiente, $f(x) = x^2$ es decreciente sobre $[-\infty, 0]$. En cambio, f'(x) > 0 en $(0, \infty)$ y, por tanto, $f(x) = x^2$ es creciente sobre $[0, \infty]$.

Definición

Punto crítico

Sea $f: D_f \to \mathbb{R}$. $A \subseteq D_f$. c punto interior de A.

c es punto crítico de f en A si $\not\equiv f'(c)$ o si f'(c) = 0.

Ejemplo

Sea
$$f(x) = \frac{\ln x}{x}$$
. Encuentre los puntos críticos.

Dominio de f:

En la función $\ln x$ debe cumplirse x>0Además, no se debe anular el denominador: $x\neq 0$ $\Longrightarrow D_f=(0,\infty)$

$$f'(x) = \frac{1 - \ln x}{x^2}$$

Raíces de f': $1 - \ln x = 0$; $\ln x = 1 \implies x = e$

Puntos donde f' no está definida: $x = 0 \quad (0 \notin D_f)$

En consecuencia, el único punto crítico es x = e.

Teorema

Condición necesaria para la existencia de extremos locales

Si una función f tiene un extremo local en un punto c entonces c es punto crítico de f.

Demostración

Existen dos alternativas: I) $\nexists f'(c)$. II) $\exists f'(c)$.

Si $\not\exists f'(c)$, entonces c es punto crítico de f por definición.

Si $\exists f'(c)$, supongamos f(c) es máximo local.

$$f'_{-}(c) = \lim_{0^{-}} \frac{f(c+h) - f(c)}{h}$$

Dado que h < 0 y que $f(c + h) - f(c) \le 0$, resulta $f'_(c) \ge 0$ (1).

Continúa

$$f'_{+}(c) = \lim_{0^{+}} \frac{f(c+h) - f(c)}{h}$$

Dado que h > 0 y que $f(c + h) - f(c) \le 0$, resulta $f'_{+}(c) \le 0$ (2).

Como $\exists f'(c)$ debe cumplirse $f'_{-}(c) = f'_{+}(c) = 0$ por (1) y (2).

Entonces f'(c) = 0 y, por definición, c es punto crítico de f.

Ejemplo

f(q) es extremo relativo $\Rightarrow q$ es punto crítico de f q es punto crítico de f $\Rightarrow f(q)$ es extremo relativo

Puntos críticos

$$b: f'(b) = 0$$
 $g: f'(g) = 0$

c:
$$f'(c) = 0$$
 h: $f'(h) = 0$

$$d: \not\exists f'(d)$$
 $i: f'(i) = 0$

e:
$$f'(e) = 0$$
 j : $f'(j) = 0$

Extremos relativos

$$f(b)$$
 $f(g)$

$$f(d)$$
 $f(i)$

$$f(e)$$
 $f(j)$

Teorema: Condición suficiente de la derivada primera para la existencia de extremos locales

Sea f continua en [a,b]. $c \in (a,b)$ es punto crítico de f.

- 1. Si $f'(x) \ge 0 \ \forall \ x \in (a,c)$ y $f'(x) \le 0 \ \forall \ x \in (c,b)$ entonces f(c) es un máximo local de f en [a,b].
- 2. Si $f'(x) \le 0 \ \forall \ x \in (a,c)$ y $f'(x) \ge 0 \ \forall \ x \in (c,b)$ entonces f(c) es un mínimo local de f en [a,b].
- 3. Si $f'(x) > 0 \ \forall x \in (a,c)$ y $f'(x) > 0 \ \forall x \in (c,b)$ o si $f'(x) < 0 \ \forall x \in (a,c)$ y $f'(x) < 0 \ \forall x \in (c,b)$ entonces f(c) no es un extremo local de f en [a,b].

Demostración

1. Si $f'(x) \ge 0 \ \forall x \in (a, c)$, entonces f es no decreciente sobre [a, c].

En consecuencia $f(x) \le f(c) \ \forall \ x \in [a, c]$.

Si $f'(x) \le 0 \ \forall x \in (c, b)$, entonces f es no creciente sobre [c, b].

En consecuencia $f(c) \ge f(x) \ \forall \ x \in [c, b]$.

Entonces f(c) es un máximo local de f en [a, b].

2. Semejante a 1.

3. Si $f'(x) > 0 \ \forall x \in (a, c)$, entonces f es creciente sobre [a, c].

En consecuencia $f(x) < f(c) \ \forall \ x \in [a, c]$.

Si $f'(x) > 0 \ \forall x \in (c, b)$, entonces f es creciente sobre [c, b].

En consecuencia $f(c) < f(x) \ \forall \ x \in [c, b]$.

Entonces f(c) no es extremo local de f en [a, b].

Si $f'(x) < 0 \ \forall x \in (a, c)$, entonces f es decreciente sobre [a, c].

En consecuencia $f(x) > f(c) \forall x \in [a, c]$.

Si $f'(x) < 0 \ \forall x \in (c, b)$, entonces f es decreciente sobre [c, b].

En consecuencia $f(c) > f(x) \forall x \in [c, b]$.

Entonces f(c) no es extremo local de f en [a, b].

Ejemplo

Sea $f(x) = x^2$. Determine los extremos relativos de f.

En primer lugar determinamos el dominio: $D_f = \mathbb{R}$.

Puntos críticos: $f'(x) = 2x = 0 \implies x = 0$

_	$-\infty$	0 ∞
$\boldsymbol{\chi}$	_	+
2x	_	+

Puesto que en $x=0 \in D_f$ cambia el signo de la derivada primera, aplicando el teorema de la condición suficiente de la derivada primera, concluimos que f(0)=0 es un mínimo relativo de f.

Teorema

Condición suficiente de la derivada segunda para la existencia de

extremos locales

Sea
$$f'(c) = 0$$
. $\exists f''(c)$.

- 1. Si f''(c) < 0 entonces f tiene un máximo relativo en c.
- 2. Si f''(c) > 0 entonces f tiene un mínimo relativo en c.

Demostración

- 1. Sea $f''(c) = \lim_{c} \frac{f'(x) f'(c)}{x c} = \lim_{c} \frac{f'(x)}{x c} < 0$ Existe un entorno $V_{\delta^{(c)}} = (a, b)/$ $x - c < 0 \ \forall x \in [a, c] \quad y \quad x - c > 0 \quad \forall x \in [c, b]$ por lo que debe cumplirse $f'(x) > 0 \ \forall x \in (a,c) \ y \ f'(x) < 0 \ \forall x \in (c,b);$ lo que implica que f es creciente en [a, c] y es decreciente en [c, b]. En definitiva, f(c) es máximo local de f.
- 2. Semejante a 1.

Sea
$$f(x) = x^2$$
.

Determine los extremos relativos de f.

En primer lugar determinamos el dominio: $D_f = \mathbb{R}$.

Puntos críticos: $f'(x) = 2x = 0 \implies x = c = 0$ punto crítico de f.

$$f''(0) = 2 > 0$$

 $c = 0 \in D_f$ es un mínimo relativo de f.

Generalización del criterio de la derivada 2º para derivadas de orden superior

Sea
$$f'(c) = f''(c) = \dots = f^{(n)}(c) = 0$$
; con $n \in \mathbb{N}$ y n impar, entonces

- 1. $\operatorname{Si} f^{(n+1)}(c) < 0 \implies f$ tiene un máximo relativo en c.
- 2. $\operatorname{Si} f^{(n+1)}(c) > 0 \implies f$ tiene un mínimo relativo en c.

Sea
$$f(x) = x^4$$
.

Determine los extremos relativos de f.

En primer lugar determinamos el dominio: $D_f = \mathbb{R}$.

Puntos críticos: $f'(x) = 4x^3 = 0 \implies c = 0$ punto crítico de f.

$$f''(0) = f'''(0) = 0; f^{(IV)}(0) = 24 > 0$$

 $x = 0 \in D_f$ es un mínimo relativo de f.

Definición

Sea f continua en [a, b]; $x_1, x_2 \in [a, b]; \quad x_1 < x_2.$ f es convexa (o cóncava positiva) en [a, b] si la recta secante a la curva de f, que pasa por los puntos $P_1 = (x_1, f(x_1)) y P_2 = (x_2, f(x_2)),$ está arriba de la curva de f en $[x_1, x_2] \ \forall x_1, x_2 \in [a, b].$

f es cóncava (o cóncava negativa) en [a, b] si la recta secante a la curva de f, que pasa por los puntos $P_1 = (x_1, f(x_1)) y P_2 = (x_2, f(x_2)),$ está abajo de la curva de f en $[x_1, x_2] \ \forall x_1, x_2 \in [a, b].$

Teorema

1. Si $f''(x) \ge 0 \ \forall x \in (a,b)$, entonces f es convexa en (a,b).

2. Si $f''(x) \le 0 \ \forall x \in (a,b)$, entonces f es cóncava en (a,b).

Definición: Punto de inflexión

Sea $f: [a, b] \to \mathbb{R}$, continua. $c \in (a, b)$. f es derivable en c (f no

presenta un punto anguloso en x = c).

Si
$$f''(x) > 0 \ \forall x \in (a,c)$$
 y $f''(x) < 0 \ \forall x \in (c,b)$ o

Si
$$f''(x) < 0 \ \forall x \in (a,c)$$
 y $f''(x) > 0 \ \forall x \in (c,b)$

entonces P = (c, f(c)) es un punto de inflexión de f en [a, b].

Ejemplo

Sea $f(x) = x^3$. Determine los intervalos de concavidad y

convexidad y los puntos de inflexión.

$$D_f = \mathbb{R}$$
; $f'(x) = 3x^2$, f es derivable en \mathbb{R} .

$$f''(x) = 6x, 6x = 0 \Longrightarrow x = 0$$

Signo de f'' en cada intervalo:

	$-\infty$	0 ∞
\boldsymbol{x}	_	+
6 <i>x</i>	_	+
	Cóncava	Convexa

P = (0,0) es punto de inflexión

Asíntotas

Dada una función f, una asíntota de f es una recta r tal que, a medida que un punto genérico P de la curva de f se aleja del origen del sistema de coordenadas, la distancia de r a P tiende a 0.

Asíntotas oblicuas

$$r: y = ax + b$$

asíntota oblicua

$$a = \lim_{x \to \pm \infty} \frac{f(x)}{x}$$

$$b = \lim_{x \to \pm \infty} f(x) - ax$$

Notas:

- 1) Si alguno de los límites no existe, la función no tiene asíntota oblicua.
- 2) Si a=0 y existe b, la asíntota es horizontal, r:y=b.

Asíntotas oblicuas

Por definición, r es asíntota de f si la diferencia entre f y r tiende a 0 cuando x tiende a + o a - infinito.

$$\lim_{\pm \infty} f(x) - (ax + b) = 0.$$

Despejamos a:

$$a = \lim_{\pm \infty} \frac{f(x)}{x} - \frac{b}{x} = \lim_{\pm \infty} \frac{f(x)}{x} - 0 = \lim_{\pm \infty} \frac{f(x)}{x}$$

$$\int y = f(x)$$

Conocido
$$a$$
, despejamos b : $b = \lim_{x \to \pm \infty} f(x) - ax$

Ejemplo

$$f(x) = \frac{x^2}{e^x}$$
. Determine las asíntotas oblicuas de f .

$$a = \lim_{x \to \infty} \frac{x^2}{xe^x} = 0$$
; $a = \lim_{x \to -\infty} \frac{x^2}{xe^x} = -\infty$
no tiene asíntota oblicua para $x \to -\infty$

$$b = \lim_{x \to \infty} \frac{x^2}{e^x} = 0$$

Asíntota cuando x tiende a ∞ : y = 0

$$y = 0$$

Asíntotas oblicuas

Una función puede tener:

- Dos asíntotas oblicuas distintas, una para x que tiende a ∞ y otra para x que tiende a $-\infty$.
- Una única asíntota solo para x que tiende a ∞ o a $-\infty$.
- Una única asíntota para x que tiende $a \propto y a \infty$.
- Ninguna asíntota.

asíntota oblicua para x que tiende a ∞ . asíntota oblicua para x que tiende a $-\infty$.

Asíntotas oblicuas

La curva de una función que tiene asíntota, se va acercando a la asíntota sin llegar a cortarla cuando x tiende a ∞ , o a $-\infty$. Pero la curva de la función sí puede cortar a la asíntota en un valor x = c finito.

Ejemplo Sea $f(x) = xe^x$. Determine las asíntotas oblicuas de f.

$$a = \lim_{x \to \infty} \frac{xe^x}{x} = \infty$$
, f no tiene asíntotas cuando x tiende a ∞ .

$$a = \lim_{x \to -\infty} \frac{xe^x}{x} = \lim_{x \to \infty} e^{-x} = \lim_{x \to \infty} \frac{1}{e^x} = 0$$

$$b = \lim_{x \to -\infty} x e^x = \lim_{x \to \infty} -x e^{-x} = \lim_{x \to \infty} \frac{-x}{e^x} = \lim_{x \to \infty} \frac{-1}{e^x} = 0$$

Asíntota cuando x tiende a $-\infty$: y = 0

$$y = 0$$

Nota: la asíntota corta a la curva en el punto (0,0).

Asíntotas verticales

$$r: x = c$$
 asíntota vertical

$$\lim_{x \to c} f(x) = \pm \infty$$

$$y = \frac{2x}{\sqrt{2x+1}}$$

El denominador se anula si $2x + 1 = 0 \implies x = -\frac{1}{2}$

$$2x + 1 = 0$$

$$\Rightarrow$$
 γ

$$x = -\frac{1}{2}$$

$$\lim_{x \to -\frac{1}{2}^+} \frac{2x}{\sqrt{2x+1}} = -\infty \Longrightarrow x = -\frac{1}{2}$$
 Asíntota vertical

Caso 2) Se anula el argumento del logaritmo

$$y = \ln(2x + 1)$$

El argumento se anula si $2x + 1 = 0 \implies x = -\frac{1}{2}$

$$2x + 1 = 0 \implies$$

$$x = -\frac{1}{2}$$

$$\lim_{x \to -\frac{1}{2}^+} \ln(2x+1) = -\infty \Longrightarrow x = -\frac{1}{2}$$
 Asíntota vertical

$$x = -\frac{1}{2}$$

Ejemplo

Caso 3) Función trigonométrica que tiende a $\pm \infty$.

$$y = tg(2x)$$

La tangente tiende a $\pm \infty$ cuando el ángulo tiende a $\frac{\pi}{2}$ por izquierda y por derecha, respectivamente:

$$2x = \frac{\pi}{2} \Longrightarrow x = \frac{\pi}{4}$$

Ejemplo
$$f(x) = \frac{3x^2}{x-1}$$
. Obtenga las asíntotas.

$$\lim_{x \to 1^{-}} \frac{3x^{2}}{x - 1} = -\infty \quad ; \lim_{x \to 1^{+}} \frac{3x^{2}}{x - 1} = \infty$$

Asíntota vertical: x = 1

$$y = 3x + 3$$

$$x = 1$$

$$a = \lim_{x \to \pm \infty} \frac{3x^2}{x(x-1)} = 3$$
 ; $b = \lim_{x \to \pm \infty} \frac{3x^2}{x-1} - 3x = 3$

Asíntota oblicua cuando x tiende a ∞ y a $-\infty$: y = 3x + 3

$$y = 3x + 3$$

Estudio completo de una función

- 1. Dominio. Puntos de discontinuidad, clasificación.
- 2. Asíntotas verticales.
- 3. Paridad. Periodicidad.
- 4. Raíces.
- 5. Signos.
- 6. Puntos críticos. Intervalos de crecimiento y de decrecimiento.
- 7. Intervalos de concavidad y de convexidad. Puntos de inflexión.
- 8. Asíntotas oblicuas.
- 9. Gráfico.
- 10.Conjunto imagen. Supremo, Ínfimo. Extremos absolutos.

Ejemplo 1. Dominio

a. Sea $f(x) = \frac{3x^2}{2x^2+x}$ Descartamos de \mathbb{R} las raíces del denominador.

Raíces del denominador: x = 0 y $x = -\frac{1}{2}$

$$D_f = \mathbb{R} - \left\{ -\frac{1}{2}, 0 \right\}$$

b. Sea $f(x) = \ln(2x - 1)$

El argumento debe ser mayor que 0.

$$2x - 1 > 0 \Longrightarrow x > \frac{1}{2}$$
. $D_f = \left(\frac{1}{2}, \infty\right)$

c. Sea $f(x) = \sqrt{2x-1}$ El radicando de una raíz con índice par debe ser mayor o igual a 0.

$$2x - 1 \ge 0 \Longrightarrow x \ge \frac{1}{2}$$
. $D_f = \left[\frac{1}{2}, \infty\right)$.

Ejemplo 1. Puntos de discontinuidad - Clasificación

a. Sea
$$f(x) = \frac{3x^2}{2x^2 + x}$$

Puntos de discont.: x = 0 y $x = -\frac{1}{2}$ (Raíces del denominador)

$$\lim_{0} \frac{3x^2}{2x^2 + x} = \lim_{0} \frac{3x}{2x + 1} = 0$$
 Discontinuidad evitable en $x = 0$.

$$\lim_{\frac{1}{2}} \frac{3x^2}{2x^2 + x} = \pm \infty \text{ Discontinuidad esencial en } x = -\frac{1}{2}.$$

b. Sea
$$f(x) = \begin{cases} x & \text{si } x < 0 \\ -x^2 & \text{si } 0 \le x < 1 \\ 2 & \text{si } x \ge 1 \end{cases}$$
 Puntos donde cambia la regla de asignación: $x = 0$ y $x = 1$.

f es continua en x = 0 pues $\lim_{x \to 0} f(x) = f(0) = 0$

Discontinuidad esencial en x = 1 pues no existe el límite $\lim_{x \to 0} f(x)_{40}$

Ejemplo 3. Paridad

Si f(x) = f(-x) la función es par (simétrica respecto al eje y).

Si f(x) = -f(-x) la función es impar (simétrica respecto al origen).

Si $f(x) \neq \begin{cases} f(-x) \\ -f(-x) \end{cases}$ la función no tiene paridad (no tiene simetría).

a. Sea
$$y = \frac{x^2}{x^2 + 1}$$

$$f(-x) = \frac{(-x)^2}{(-x)^2 + 1} = \frac{x^2}{x^2 + 1} = f(x) \implies f \text{ es par}$$

b. Sea
$$y = \frac{x}{x^2 + 1}$$

$$f(-x) = \frac{(-x)}{(-x)^2 + 1} = \frac{-x}{x^2 + 1} = -f(x) \Longrightarrow f \text{ es impar}$$

Ejemplo 3. Periodicidad

Sean $T \in \mathbb{R}_{>0}$; $k \in \mathbb{Z}$.

Si $f(x) = f(x + kT) \ \forall x \in D_f$ se dice que f es periódica; y si T es el menor valor para el que se cumple la expresión anterior, entonces Tse llama período de la función $f_{\cdot T}$

Ejemplo 3. <u>Periodici</u>dad

$$f(x) = sen(x) = sen(x + 2\pi k); T = 2\pi$$

$$y = sen(x)$$

a. Halle el período de $f(x) = sen(2x - \pi)$

$$2x = 2\pi$$
;

$$2x = 2\pi$$
; $x = T = \pi$;

Ejemplo 3. Periodicidad

$$f(x) = cos(x) = cos(x + 2\pi k); T = 2\pi$$

$$y = cos(x)$$

b. Halle el período de $f(x) = cos\left(\frac{x}{2}\right)$

$$2\pi = \frac{x}{2};$$

$$x = T = 4\pi$$

$$y = cos\left(\frac{x}{2}\right)$$

Ejemplo

3. Periodicidad

$$f(x) = tan(x) = tan(x + k\pi); T = \pi$$

c. Halle el período de f(x) = tan(-x) $\pi = -x;$ $x = T = |-\pi| = \pi$

3. Caso general:

Sea
$$f(x) = sen(Ax + B)$$
;

Período:

$$T = \frac{2\pi}{A}$$

Corrimiento de fase (desplazamiento del punto (0,0) con respecto a

la función f(x) = sen(Ax)):

$$(Ax + B) = A\left(x + \frac{B}{A}\right)$$
$$x = -\frac{B}{A}$$