Lymphocyte subsets and MHC molecules

Lecture outline

- Lymphocytes
- Lymphocyte subsets
- ► Antigen
- ► Structure & function of MHC
- ► Presentation of protein antigens through MHC

Components of the IIS

- Epithelia barrier to infection
- Cells (in circulation and tissues)
- Proteins
 - APP
 - Compliments

Cells of the immune system

- Lymphocytes
- ► Antigen presenting cells (APC)
- ► Effector cells

activated

T cell

plasma coll

activated

NK coll

- ► T lymphocyte
- ► B lymphocyte
- ► Natural Killer (NK) cells

Fig. 1.7 Lymphocytes are mostly small and inactive cells. The upper panel

- ► Key cell in adaptive immunity
- ► 20-40% of WBC in blood
- Extravasate tissues return in lymph
- ▶ little visible cytoplasm around their nucleus.

- ▶ T and B lymphocytes not distinguishable morphologically
- ▶ Different lineages distinguish by CD molecules

Identifying Cell Using the CD Nomenclature

Over 300 CD markers

- ► T cells, CD4 or CD8 and CD3
- ▶ B cells, CD19
- ► NK cells, CD56
- ► Monocytes / Macrophages CD14
- ▶ Dendritic Cells, CD1c

T cell maturation occur in thymus

•During maturation T cells acquire T cell receptor (TCR)

Mature T cells travel to secondary lymphoid tissues

Helper T cell (CD4+)

Th1

Th2

Cytotoxic T cells
 (CD8+)

B lymphocytes

- Mature in BM
- Major function production of antibodies
- B cell has receptor
 (BCR) membrane form of antibodies

► Once stimulated with antigen, lymphocyte enlarges $(15\mu m)$ into a blast cell.

Lymphoblasts further differentiate into effector cells (plasma cell) or memory cells.

Effector cells

- ► Functionally active
- ► Effector B cell Antibody secreting cell plasma cell
- Effector CD4 T cell
 (helper cell) produce
 cytokines help antibody
 production
- ► Effector CD8 T cell kill infected host cell

Memory cells

Long-lived cells

Functionally inactive

 When encounter same antigen - start development

NK cells

- Do Not express classical
 lymphocyte markers
- CD marker CD56
- Role -
- Eliminate tumor cells and virally infected cells
- > Activation of macrophages
- Antibody Dependent Cell
 Cytotoxicity (ADCC)

Role of NK cells in innate immunity

NK - Natural killer

Killing of cells infected by intracellular pathogens (eg. viruses) and tumor cells

How does NK cell kill?

Mechanism of NK cell recognition

Role of NK cells in innate immunity

Activation of macrophages (by IFN-y)

Antibody Dependent Cell Cytotoxicity (ADCC)

Antigen

- · All cells have antigens as a part of membrane / cell wall
- · Can be protein, glycoprotein, lipoprotein or polysaccharide

Antigen.....

· A molecule that bind to an antibody or a TCR

Antigen....

·Recognize by immune system- trigger immune response

Antigen....

· Cells from different individuals have different antigens

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

Antigen.....

·Antigens are genetically controlled

Major histocompatibility complex (MHC)

► A large genetic locus (on chromosome 6 of human genome) that include highly polymeric genes encoding the peptide binding molecules recognized by T lymphocytes

MHC

 Human MHC proteins are called human leucocyte antigens (HLA)

 Physiological function of MHC molecules is to display peptides derived from protein antigens to antigen specific T cells

Major histocompatibility complex molecule

A membrane protein encoded by MHC locus that serves as a peptide display molecule for recognition by T cells.

- Class 1 MHC -present on nucleated cells
- recognized by CD 8⁺ T cells

MHC Class I

Major histocompatibility complex molecule

Class II MHC -

- present on professional APC,
 MQ, B cells
- recognize by CD 4⁺ T cells

MHC Class II

Expression of MHC class I & II molecules

Tissue	MHC class I	MHC class II
Tcells	+++	-
B cells	+++	++
Macrophages	+++	+++
Dendritic cells	+++	+++
Neutrophils	+++	-
Hepatocytes	+	-
Kidney	++	-
Brain	+	-
RBC	-	_

MHC molecules How does it connect with TCR?

- ► Class I and class II MHC molecules contain peptide binding cleft (PBC)
- ▶ Flow of the PBC binds peptide and display to T cells
- Side and the top of the cleft bind with T cell receptor

- ► Only the class I MHC molecule has co-receptor for CD 8 T cell, so MHC I bound peptides are only identified by CD8 T cells
- ► MHC II has co-receptor to bind with CD4 T cells. So, CD4 T cells can only respond to MHC II bound peptides

► MHC molecules bind only peptides and not other types of antigens

► Each MHC molecule can present only one peptide at a time but each MHC molecule can present many different peptides

Capture of protein Ags by APCs

· Microbes usually enter to body through,

Skin (contact)

Gastrointestinal tract (by ingestion)

RT (inhalation)

Capture of protein Ags by APCs

► Protein antigen of microbes that enter the body are captured mainly by dendritic cells concentrated in peripheral lymphoid organs, where immune responses are initiated.

Antigen presentation

► The display of peptides bound by MHC

Processing of internalized antigens for display by class II MHC

Uptake of extracellular proteins into vesicular compartment of APC

Biosynthesis and transport of MHC II molecules to endosomes

Expression of peptide - MHC complexes on cell surface

Processing of cytosolic antigens for display by class I MHC

Production of proteins in the cytosole (eg by viruses)

Proteolytic degradation of cytosolic proteins

Transport of peptides from cytosole to ER with the aid of TAP (Transporter associated with antigen processing)

Assembly of peptide - class MHC I complexes in ER

Surface expression of peptide - class I complexes

Antigen Presenting Cells

The physiologic significance of MHC associated Ag presentation

 The restriction of T cell recognition to MHC associated peptides ensure that T cells see and respond only to cell associated antigens

The physiologic significance of MHC associated Ag presentation

 By segregating class I and class II pathways of antigen processing, the immune system is able to respond to intracellular and extracellular microbes in different ways

Physiologic Significance of MHC-associated Antigen Presentation

FIGURE 6-21 Presentation of extracellular and cytosolic antigens to different subsets of T cells. A, Cytosolic antigens are presented by nucleated cells to CD8+ CTLs, which kill (lyse) the antigen-expressing cells. B, Extracellular antigens are presented by macrophages or B lymphocytes to CD4+ helper T lymphocytes, which activate the macrophages or B cells and eliminate the extracellular antigens.

Summary

MHCI	MHC II
Composed of an α (or heavy) chain in a non-covalent complex with a $\beta2$ -microglobulin	Contain two MHC-encoded polymorphic chains, an α chain and a β chain.
Recognized by CD8+ T cells	Recognized by CD4+ T cells
Accommodate peptides that are 6 to 16 amino acid residues in length	Allows larger peptides (up to 30 amino acid residues in length or more) to bind
Expressed on all nucleated cells	Expressed mainly on specialized APCs
Cytosolic proteins are proteolytically degraded in the proteasome	Extracellular proteins are internalized into endosomes