Chapter 14 Weighted Least Squares

14.1 Introduction

- Previous chapters discussed logistic regression models using maximum likelihood estimation
- Functions modeled were logits, or cumulative logits
- What about modeling other functions of categorical data? Might be interested in mean scores, proportions, or more complicated functions of responses
- Weighted least squares provides methodology for wide range of functions. This chapter focuses on mean scores and proportions, as well as estimates from complex sample survey designs

- CATMOD is a general procedure used for modeling categorical data:
 - For response function = generalized logits,
 CATMOD performs logistic regression using maximum likelihood estimation
 - 2) For response function = **means**, **etc.**, CATMOD performs **weighted least squares** analysis

Statistical Methodology for Weighted Least Squares

		Res	ponse		
Group	1	2		r	Total
1	n_{11}	n_{12}		n_{1r}	n_{1+}
2	n_{21}	n_{22}		n_{2r}	n_{2+}
			•		
		•		•	.
S	n_{s1}	n_{s2}	• • •	n_{sr}	n_{s+}

Proportion of subjects in i^{th} group who have j^{th} response is

$$p_{ij} = n_{ij} / n_{i+}$$

Suppose $n'_i = (n_{i1}, n_{i2}, ..., n_{ir})$ represents vector of responses for i^{th} subpopulation, and $n' = (n'_1, n'_2, ..., n'_s)$, then n follows product multinomial distribution:

$$\Pr\{\boldsymbol{n}\} = \prod_{i=1}^{s} n_{i+}! \prod_{j=1}^{r} \pi_{ij}^{n_{ij}} / n_{ij}!,$$

where π_{ij} is probability that a randomly selected subject from i^{th} group has j^{th} response profile. The π_{ij} satisfy the natural restrictions

$$\sum_{j=1}^{r} \pi_{ij} = 1 \text{ for } i = 1, 2, ..., s.$$

Suppose $p_i = n_i / n_{i+1}$ is $r \times 1$ vector of observed proportions for *i*th group, and $p' = (p'_1, p'_2, ..., p'_s)$ is $(sr \times 1)$ compound vector of proportions. Then a consistent estimator of covariance matrix for proportions in *i*th row is:

$$V(p_i) = \frac{1}{n_{i+}} \begin{bmatrix} p_{i1}(1-p_{i1}) & -p_{i1}p_{i2} & \dots & -p_{i1}p_{ir} \\ -p_{i2}p_{i1} & p_{i2}(1-p_{i2}) & \dots & -p_{i2}p_{ir} \\ \vdots & \vdots & \ddots & \vdots \\ -p_{ir}p_{i1} & -p_{ir}p_{i2} & \dots & p_{ir}(1-p_{ir}) \end{bmatrix}$$

and covariance matrix for vector p is:

$$oldsymbol{V}_p = egin{bmatrix} oldsymbol{V}_1 & oldsymbol{0} & \dots & oldsymbol{0} \\ oldsymbol{0} & oldsymbol{V}_2 & \dots & oldsymbol{0} \\ drain & drain & \ddots & drain \\ oldsymbol{0} & oldsymbol{0} & \dots & oldsymbol{V}_s \end{bmatrix}$$

where V_i is covariance matrix for p_i .

Suppose $F_1(p)$, $F_2(p)$, ..., $F_u(p)$ is a set of u functions of p. Each is required to have continuous partial derivatives through order two, and F must have nonsingular covariance matrix:

$$V_F(\pi) = [H(\pi)][V(\pi)][H(\pi)]'$$

where
$$H(\pi) = \left[\frac{\partial F}{\partial z} \Big|_{z=\pi} \right]$$
 is the first derivative matrix of $F(z)$.

F is consistent estimator of $F(\pi)$, so linear model can be used to investigate variability among elements of $F(\pi)$:

$$E_A\{F(p)\}=F(\pi)=X\beta,$$

where X is known model matrix with rank $t \le u$, β is $t \times 1$ vector of unknown parameters.

Goodness of fit of model is assessed with

$$Q(X,F) = (WF)' [WV_FW']^{-1}WF,$$

where W is any fullrank $[(u-t) \times u]$ matrix orthogonal to X. Q(X,F) is approximately distributed chi-square with (u-t) degrees of freedom when sample sizes large enough so that elements of F have approximate multivariate normal distribution. (Wald statistics).

The following statistic

$$Q_{W} = (\mathbf{F} - \mathbf{X}\mathbf{b})'\mathbf{V}_{F}^{-1}(\mathbf{F} - \mathbf{X}\mathbf{b})$$

is identical to Q(X,F) and obtained by using weighted least squares to produce estimate for β .

$$b = (XV_F^{-1}X)^{-1}XV_F^{-1}F$$

which is minimum modified chi-square estimator.

Consistent estimator for covariance matrix of b is

$$V(b) = (XV_F^{-1}X)^{-1}.$$

Linear hypotheses of form $C\beta = 0$, where C is known $c \times t$ matrix of constants of rank c, can be tested with Wald statistic

$$Q_C = (Cb)' \left[C(X'V_F^{-1}X)^{-1}C' \right]^{-1} (Cb)$$

 Q_c is distributed chi-square with c degrees of freedom.

Predicted values for $F(\pi)$ can be calculated from

$$\hat{F} = Xb = X(XV_F^{-1}X)^{-1}XV_F^{-1}F$$

and consistent estimators for variances of \hat{F} can be obtained from diagonal elements of

$$V_{\hat{F}} = X(X'V_F^{-1}X)^{-1}X'.$$

While F(p) can take on wide range of forms, a few functions are commonly used. You can fit a strictly linear model

$$F(p) = Ap$$
,

where A is matrix for known constants. Covariance matrix of F is written

$$V_F = AV_pA'$$
.

Another common model is loglinear:

$$F(p) = A \log p$$
,

where log transforms vector to corresponding vector of natural logarithms and A is orthogonal to 1 (vector of 1's). In this case,

$$V_F = AD_p^{-1}A'$$

Where D_p is diagonal matrix with elements of p on diagonal.

Many other useful functions can be generated as a sequence of linear, logarithmic, and exponential operations on vector p.

- linear transformations: $F_1(p) = A_1 p = \alpha_1$
- logarithmic: $F_2(p) = \log(p) = \alpha_2$
- exponential: $F_3(p) = \exp(p) = \alpha_3$

Corresponding H_k matrix operators needed to produce covariance matrix for F are

- $\bullet \; \boldsymbol{H}_1 = \boldsymbol{A}_1$
- $\bullet \, \boldsymbol{H}_2 = \boldsymbol{D}_p^{-1}$
- $\bullet \, \boldsymbol{H}_3 = \boldsymbol{D}_{\alpha 3}$

 V_F is estimated by $V_F = [H(p)]V_p[H(p)]'$ where H(p) is a product of first derivative matrices $H_k(p)$ where k indicates ith operation in accordance with chain rule.

14.2 Weighted Least Squares Methodology

• The following example is used to motivate this discussion:

Epidemiologists investigating air pollution effects conducted a study of childhood respiratory disease. Investigators interested in determining whether sex or residence affected the distribution of colds.

ъ	•	1	• .1	-	1 1
Pе	ric	abo	with	CO	lds

Sex	Res	0	1	2	Total
Female	Rural	45	64	71	180
Female	Urban	80	104	116	300
Male	Rural	84	124	82	290
Male	Urban	106	117	87	310

- Chapter 9 would suggest using proportional odds model, but response measure of interest is mean number of periods with colds
- Due to small, discrete number of response values, assumptions of standard linear model are unlikely to be met
- With only assumption of sufficient sample size (\approx 30 per group), weighted least squares provides useful strategy for analyzing data

To compute the mean periods of colds for females in a rural residence:

mean colds =
$$0 \times p_{11} + 1 \times p_{12} + 2 \times p_{13}$$

= $0 \times (0.25) + 1 \times (0.36) + 2 \times (0.39)$
= 1.14

In matrix formulation, this is written

$$A\mathbf{p}_1 = \begin{bmatrix} 0 & 1 & 2 \end{bmatrix} \mathbf{p}_1 = \begin{bmatrix} 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0.25 \\ 0.36 \\ 0.39 \end{bmatrix} = 1.14$$

The response functions for all of the colds data are

$$\boldsymbol{F}(\boldsymbol{p}) = \boldsymbol{A}\boldsymbol{p} = \begin{bmatrix} 1.14 \\ 1.12 \\ 0.99 \\ 0.94 \end{bmatrix}$$

Now fit a statistical model that determines the effect of sex and residence on the mean functions.

$$\begin{bmatrix} \mathbf{F}(\mathbf{p}_{1}) \\ \mathbf{F}(\mathbf{p}_{2}) \\ \mathbf{F}(\mathbf{p}_{3}) \\ \mathbf{F}(\mathbf{p}_{4}) \end{bmatrix} = \begin{bmatrix} \alpha + \beta_{1} + \beta_{2} + \beta_{3} \\ \alpha + \beta_{1} - \beta_{2} - \beta_{3} \\ \alpha - \beta_{1} + \beta_{2} - \beta_{3} \\ \alpha - \beta_{1} - \beta_{2} + \beta_{3} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta_{1} \\ \beta_{2} \\ \beta_{3} \end{bmatrix}$$

- α is the intercept
- β_1 is the differential effect for gender
- β_2 is the differential effect for residence
- β_3 represents their interaction

• The intercept is the mean number of colds averaged equally over all the groups.

• The differential effects represent deviations from the mean, so this model is known as a *deviation from the mean* model.

• The CATMOD procedure uses *fullrank* parameterization. If an effect such as gender or residence has r levels, then it is represented by r-1 parameters.

14.3 Using PROC CATMOD for Weighted Least Squares Analysis

The following statements create SAS data set COLDS.

```
data colds;
  input sex $ residence $ periods count @@;
  datalines;
female rural 0 45 female rural 1 64 female rural 2 71
female urban 0 80 female urban 1 104 female urban 2 116
male rural 0 84 male rural 1 124 male rural 2 82
male urban 0 106 male urban 1 117 male urban 2 87
;
run;
```

The following set of SAS statements requests that a weighted least squares analysis be performed for the mean response, using the saturated model.

- one mean function computed per group
- WLS is the default estimation method for functions other than logits (maximum likelihood for logits)
- WEIGHT statement required for frequency from data

Output 14.1 Population and Response Profiles

	POPULAT:	ON PROFILE	S
Sample	SEX	RESIDNCE	Sample Size
1	female	rural	180
2	female	urban	300
3	male	rural	290
4	male	urban	310
	RESPONSI	E PROFILES	
	Response	e PERIODS	
	1	0	
	2	1	
	3	2	

Output 14.2 Table Frequencies and Proportions

	RESPONSE	FREQUENC	IES
	Res	ponse Num	ber
Sample	1	2	3
1	45	64	71
2	80	104	116
3	84	124	82
4	106	117	87
R	RESPONSE P	ROBABILIT	IES
	Res	ponse Num	ber
Sample	1	2	3
1	0.25	0.35556	0.39444
2	0.26667	0.34667	0.38667
3	0.28966	0.42759	0.28276
4	0.34194	0.37742	0.28065

Output 14.3 Observed Response Functions and Model Matrix

	Response		DESIGN M	ATRIX	
Sample	Function	1	2	3	4
1	1.14444	1	1	1	 1
2	1.12000	1	1	-1	- 1
3	0.99310	1	- 1	1	- 1
4	0.93871	1	- 1	-1	1

Output 14.4 ANOVA Table

ANALY	/SIS-OF-VAR	IANCE TABLE	
Source	DF	Chi-Square	Prob
INTERCEPT	1	1841.13	<.0001
SEX	1	11.57	0.0007
RESIDNCE	1	0.65	0.4202
SEX*RESIDNCE	1	0.09	0.7594
RESIDUAL	0		

The main effects model is specified.

```
proc catmod;
  weight count;
  response means;
  model periods = sex residence;
run;
```

А	NALYSIS-OF-VARI	ANCE TABLE		
Source	DF	Chi-Square	Prob	
INTERCEPT	1 1	1882.77 12.08	<.0001 0.0005	
RESIDNCE	1	0.76	0.3839	
RESIDUAL	1	0.09	0.7594	

The following code requests the single main effect model.

```
proc catmod;
  population sex residence;
  weight count;
  response means;
  model periods = sex;
run;
```

	ANALYSIS-OF-VAR	ANCE TABLE	
Source	DF	Chi-Square	Prob
INTERCEPT	1	1899.55	<.0001
SEX	1	11.53	0.0007
RESIDUAL	2	0.85	0.6531

14.4 Obstetrical Pain Data: Advanced Modeling of Means

Table 14.4 Number of Hours with Little or No Pain for Women Who Recently Delivered a Baby

	Initial I	Pain		I	Hours	With	Little	or N	o Pair	1		
Center	Status	Treatment	0	1	2	3	4	5	6	7	8	Total
1	lot	placebo	6	1	2	2	2	3	7	3	0	26
1	lot	a	6	3	1	2	4	4	7	1	0	28
1	lot	b	3	1	0	4	2	3	11	4	0	28
1	lot	ba	0	0	0	1	1	7	9	6	2	26
1	some	placebo	1	0	3	0	2	2	4	4	2	18
1	some	a	2	1	0	2	1	2	4	5	1	18
1	some	b	0	0	0	1	0	3	7	6	2	19
1	some	ba	0	0	0	0	1	3	5	4	6	19
2	lot	placebo	7	2	3	2	3	2	3	2	2	26
2	lot	a	3	1	0	0	3	2	9	7	1	26
2	lot	b	0	0	0	1	1	5	8	7	4	26
2	lot	ba	0	1	0	0	1	2	8	9	5	26
2	some	placebo	2	0	2	1	3	1	2	5	4	20
2	some	a	0	0	0	1	1	1	8	1	7	19
2	some	b	0	2	0	1	0	1	4	6	6	20
2	some	ba	0	0	0	1	3	0	4	7	5	20

Table 14.4 Continued

	Initial Pa	ain		Н	lours '	With 1	Little	or No	Pain			
Center	Status	Treatment	0	1	2	3	4	5	6	7	8	Total
3	lot	placebo	6	0	2	2	2	6	1	2	1	22
3	lot	a	4	2	1	5	1	1	3	2	3	22
3	lot	b	5	0	2	3	1	0	2	6	7	26
3	lot	ba	3	2	1	0	0	2	5	9	4	26
3	some	placebo	5	0	0	1	3	1	4	4	5	23
3	some	a	1	0	0	1	3	5	3	3	6	22
3	some	b	3	0	1	1	0	0	3	7	11	26
3	some	ba	0	0	0	1	1	4	2	4	13	25
4	lot	placebo	4	0	1	3	2	1	1	2	2	16
4	lot	a	0	1	3	1	1	6	1	3	6	22
4	lot	b	0	0	0	0	2	7	2	2	9	22
4	lot	ba	1	0	3	0	1	2	3	4	8	22
4	some	placebo	1	0	1	1	4	1	1	0	10	19
4	some	a	0	0	0	1	0	2	2	1	13	19
4	some	b	0	0	0	1	1	1	1	2	11	20
4	some	ba	1	0	0	0	0	2	2	2	14	21

Output 14.5 Preliminary ANOVA Table

Source	DF	Chi-Square	Prob
INTERCEPT	1	5271.98	<.0001
CENTER	3	29.02	<.0001
INITIAL	1	62.65	<.0001
TREAT	3	92.15	<.0001
INITIAL*TREAT	3	12.63	0.0055
RESIDUAL	21	26.90	0.1743

model no_hours = center initial treat(initial);

Outputs 14.6 and 14.7 Nested Value ANOVA Table and Parameter Estimates

Outputs 14.6 and 14.7 Nested Value ANOVA Table and Parameter Estimates										
ANALYSIS-OF-VARIANCE TABLE										
Source		DF	Chi-Square	Prob						
INTERCE	 PT	1	5271.98	< .0001						
CENTER	' '	3	29.02							
INITIAL		1	62.65							
TREAT(I			102.70							
RESIDUA	L	21	26.90	0.1743						
ANAL	YSIS OF WEIGHT	ED-LEAST-								
	_		Standard							
Effect	Parameter	Estimate	Error	Square	Prob					
INTERCEPT		0.6991	0.00963	5271.98	<.0001					
CENTER	1		0.0145							
			0.0145	1.66	0.1982					
	3	-0.0415	0.0176	5.56	0.0184					
INITIAL	lot		0.00951							
TREAT(INITIAL)					<.0001					
,	treat a lot				0.0115					
	treat b lot									
	placebo some		0.0284	16.68	<.0001					
	—	-0.1159	0.0284 0.0217							

Table 14.5 Parameter Interpretations

CATMOD	Model	•
Parameter	Parameter	Interpretation
1	α	intercept
2	eta_1	differential effect for center 1
3	eta_2	differential effect for center 2
4	eta_3	differential effect for center 3
5	$ig eta_4$	differential effect for a lot of initial pain
6	eta_5	differential effect for placebo for a lot of pain
7	$ig eta_6$	differential effect for treatment a for a lot of pain
8	$ig eta_7$	differential effect for treatment b for a lot of pain
9	eta_8	differential effect for placebo for some pain
10	eta_9	differential effect for treatment a for some pain
11	eta_{10}	differential effect for treatment b for some pain

Table 14.6 Hypothesis Tests

	Initial	J1	Coefficients					
Hypothesis	Pain	Contrast	eta_5	eta_6	eta_7	eta_8	eta_9	eta_{10}
treatment a vs. placebo	a lot	$-\beta_5 + \beta_6$	- 1	1	0	0	0	0
treatment b vs. placebo	a lot	$-\beta_5 + \beta_7$	-1	0	1	0	0	0
treatment ba vs. placebo	a lot	$-2\beta_5-\beta_6-\beta_7$	-2	- 1	- 1	0	0	0
treatment ba vs. a	a lot	$-\beta_5 - 2\beta_6 - \beta_7$	-1	- 2	-1	0	0	0
treatment ba vs. b	a lot	$-\beta_5 - \beta_6 - 2\beta_7$	-1	- 1	-2	0	0	0
treatment a vs. placebo	some	$-\beta_8 + \beta_9$	0	0	0	- 1	1	0
treatment b vs. placebo	some	$-\beta_8 + \beta_{10}$	0	0	0	- 1	0	1
treatment ba vs. placebo	some	$-2\beta_8-\beta_9-\beta_{10}$	0	0	0	-2	- 1	-1
treatment ba vs. a	some	$-\beta_8-2\beta_9-\beta_{10}$	0	0	0	- 1	-2	-1
treatment ba vs. b	some	$-\beta_8-\beta_9-2\beta_{10}$	0	0	0	- 1	- 1	-2

```
treat(initial) -1 1 0 0 0 0;
treat(initial) -1 0 1 0 0 0;
treat(initial) -2 -1 -1 0 0 0;
contrast 'lot: a-placebo'
contrast 'lot: b-placebo'
contrast 'lot: ba-placebo'
                            treat(initial) -1 -2 -1 0 0 0;
contrast 'lot: ba-a'
                            treat(initial) -1 -1 -2 0 0 0;
contrast 'lot: ba-b'
                            treat(initial) 0 0 0 -1 1 0
contrast 'some:a-placebo'
contrast 'some:b-placebo'
                            treat(initial) 0 0 0 -1 0
contrast 'some:ba-placebo'
                            treat(initial) 0 0 0 -2 -1 -1;
                            treat(initial) 0 0 0 -1 -2 -1;
contrast 'some:ba-a'
                            treat(initial) 0 0 0 -1 -1 -2;
contrast 'some:ba-b'
```

Output 14.8 Contrast Results

Contract	DF	Chi Cauana	Do > Chica
Contrast	DF	Chi-Square	Pr > ChiSq
lot: a-placebo	1	5.59	0.0180
lot: b-placebo	1	42.81	<.0001
lot: ba-placebo	1	61.48	<.0001
lot: ba-a	1	32.06	<.0001
lot: ba-b	1	2.59	0.1076
some:a-placebo	1	8.19	0.0042
some:b-placebo	1	12.83	0.0003
some:ba-placebo	1	21.45	<.0001
some:ba-a	1	4.37	0.0365
some:ba-b	1	1.67	0.1964

Table 14.7 Hypothesis Tests

	Coefficients								
Hypothesis	β_5	eta_6	eta_7	eta_8	eta_9	β_{10}			
treatment a vs. placebo, some vs. a lot	- 1	1	0	1	- 1	0			
treatment b vs. placebo, some vs. a lot	- 1	0	1	1	0	-1			
treatment ba vs. placebo, some vs. a lot	-2	– 1	- 1	2	1	1			
treatment ba vs. a, some vs. a lot	- 1	-2	- 1	1	2	1			
treatment ba vs. b, some vs. a lot	- 1	– 1	-2	1	1	2			
average treatment a effect	- 1	1	0	– 1	1	0			
average treatment b effect	- 1	0	1	– 1	0	1			
average treatment ba effect	-2	– 1	- 1	-2	- 1	-1			
average ba vs. a	- 1	-2	- 1	- 1	-2	-1			
average ba vs. b	- 1	– 1	-2	– 1	- 1	-2			

The next block of CONTRAST statements performs these tests. The last two CONTRAST statements request the 3 df TREAT*INITIAL interaction and the 3 df TREAT effect, respectively. The output is displayed in Output 14.9.

```
treat(initial) -1 1 0 1 -1 0;
contrast 'interact:a-placebo'
                                treat(initial) -1 0 1 1 0 -1;
contrast 'interact:b-placebo'
                                treat(initial) -2 -1 -1 2 1 1;
contrast 'interact:ba-placebo'
                                treat(initial) -1 -2 -1 1 2 1;
contrast 'interact:ba-a'
                                treat(initial) -1 -1 -2 1 1 2;
contrast 'interact:ba-b'
contrast 'average:a-placebo'
                                treat(initial) -1 1 0 -1 1 0
                                treat(initial) -1 0 1 -1 0 1
contrast 'average:b-placebo'
contrast 'average:ba-placebo'
                                treat(initial) -2 -1 -1 -2 -1 -1;
                                treat(initial) -1 -2 -1 -1 -2 -1;
contrast 'average:ba-a'
contrast 'average:ba-b'
                                treat(initial) -1 -1 -2 -1 -1 -2;
                                treat(initial) -1 1 0 1 -1 0,
contrast 'interaction'
                                treat(initial) -1 0 1 1 0 -1,
                              treat(initial) -2 -1 -1 2 1 1;
                                treat(initial) -1 1 0 -1 1 0,
contrast 'treatment effect'
                                treat(initial) -1 0 1 -1 0 1,
                              treat(initial) -2 -1 -1 -2 -1 -1;
```

Output 14.9 Contrast Results

Analysis of Contrasts						
Contrast	DF	Chi-Square	Pr > ChiSq			
interact:a-placebo	1	0.05	0.8266			
interact:b-placebo	1	4.05	0.0441			
interact:ba-placebo	1	4.89	0.0271			
interact:ba-a	1	8.61	0.0033			
interact:ba-b	1	0.04	0.8344			
average:a-placebo	1	13.51	0.0002			
average:b-placebo	1	50.93	<.0001			
average:ba-placebo	1	77.60	<.0001			

3

31.42

4.22

12.63

92.15

<.0001

0.0399

0.0055

<.0001

average:ba-a

average:ba-b

treatment effect

interaction

14.7 Repeated Measurements Analysis

- Many studies have research designs that involve multiple measurements of a response over time.
- This section describes methods for analyzing repeated measurements data with weighted least squares

The following data are from Grizzle, Starmer, Koch (1969)

	F =	F = Favorable, $U = Unfavorable$							
Drug A response	F	F	F	F	U	U	U	U	
Drug B response	F	F	U	U	F	F	U	U	
Drug C response	F	U	F	U	F	U	F	U	Total
Number of subjects	6	16	2	4	2	4	6	6	46

The hypothesis that the marginal distribution of the response variable is the same for all of the repeated measurement factor is called *marginal homogeneity*.

For one population, when you are analyzing marginal probabilities, the test of marginal homogeneity is the test of the main effect of the repeated measurement factor.

WLS Methods for Repeated Measurements

- single subpopulation
- $r = 2^3 = 8$ response profiles
- three correlated marginal proportions of interest are Pr{favorable for Drug A}, Pr{favorable for Drug B}, and Pr{favorable for Drug C}
- Analyzing these functions answers the question of whether there is a difference between the three drugs (conditions).

WLS Methods for Repeated Measurements

If *p* represents the proportion vector corresponding to the row of counts, then you can compute the desired marginal proportions with a linear transformation

$$F(p) = Ap = \begin{bmatrix} F_1(p) \\ F_2(p) \\ F_3(p) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} P_{FFF} \\ P_{FFU} \\ P_{FUU} \\ P_{UFF} \\ P_{UFU} \\ P_{UFF} \\ P_{UUF} \\ P_{UUF} \end{bmatrix}$$

The hypothesis of marginal homogeneity can now be addressed by fitting models of the form $F(\pi) = X\beta$, where X is a known model matrix and β is a vector of unknown parameters.

Using PROC CATMOD for Repeated Measurements Analysis

• Specify the repeated measures as a crossed effect on the lefthand side of the MODEL statement.

• The rightmost variable on the left hand side of the MODEL statement varies fastest and the leftmost variable varies slowest.

• The keyword _RESPONSE_ specifies that the variation among the dependent variables is to be modeled.

Using PROC CATMOD for Repeated Measurements Analysis

- The REPEATED statement specifies a name for each repeated measurement factor and can also be used to specify the type (numeric or character), number of levels, and the identification of each level.
- The ONEWAY option prints one-way marginal frequency distributions for each response variable in the MODEL statement.

14.7.2 One Population, Dichotomous Response

The following statements create SAS data set DRUG.

```
data drug;
    input druga $ drugb $ drugc $ count;
    datalines;
F F F 6
F F U 16
F U F 2
F U U 4
U F F 2
U F U 4
U U F 6
U U U 6
;
```

These statements request a repeated measurements analysis.

```
proc catmod;
    weight count;
    response marginals;
    model druga*drugb*drugc=_response_ / oneway cov;
    repeated drug 3 / _response_=drug;
run;
```

One-Way Frequencies

Variable	Value	Frequency
druga	F U	28 18
drugb	F U	28 18
drugc	F U	16 30

Sample	Sample	Size
1		46

Response Profiles

Response	druga	drugb	drugc
1	F	F	F
2	F	F	U
3	F	U	F
4	F	U	U
5	U	F	F
6	U	F	U
7	U	U	F
8	U	U	U

	Function	Response	Desi	.gn Matrix	(
Sample	Number	Function	1	2	3
1	1	0.60870	1	1	0
	2	0.60870	1	0	1
	3	0.34783	1	- 1	- 1

Analysis of Variance

Source	DF	Chi-Square	Pr > ChiSq
Intercept drug	1 2	146.84 6.58	<.0001 0.0372
Residual	0		

Analysis of Weighted Least Squares Estimates

Effect	Parameter	Estimate	Standard Error	Chi- Square	Pr > ChiSq
Intercept	1	0.5217	0.0431	146.84	<.0001
drug	2	0.0870	0.0507	2.95	0.0861
	3	0.0870	0.0507	2.95	0.0861

• Section 14.7.3 (Pages 471-478) provides an example of WLS analysis of repeated measures when there are more than two response levels and the repeated measurement factor is not time.

14.7.4 One Population Regression Analysis of Logits

• In longitudinal study of health effects of air pollution (Ware, Lipsitz, and Speizer 1988) children were examined annually at ages 9, 10, 11, 12

- At each examination, response measured was presence of wheezing. Interested in following questions:
 - Does prevalence of wheezing change with age?
 - Is there a quantifiable trend in age-specific prevalence rates?
- The following data are from 1019 children included in study. In this single population example, crossclassification of dichotomous outcome at 4 time points defines

$$r = 2^4 = 16$$
 response profiles

Table 14.8 Breath Test Results at Four Ages

	Wh	eeze		No. of
Age 9	Age 10	Age 11	Age 12	Children
Present	Present	Present	Present	94
Present	Present	Present	Absent	30
Present	Present	Absent	Present	15
Present	Present	Absent	Absent	28
Present	Absent	Present	Present	14
Present	Absent	Present	Absent	9
Present	Absent	Absent	Present	12
Present	Absent	Absent	Absent	63
Absent	Present	Present	Present	19
Absent	Present	Present	Absent	15
Absent	Present	Absent	Present	10
Absent	Present	Absent	Absent	44
Absent	Absent	Present	Present	17
Absent	Absent	Present	Absent	42
Absent	Absent	Absent	Present	35
Absent	Absent	Absent	Absent	572

Output 14.10 One-Way Frequency Distributions

One-Way Frequencies						
Variable	Value	Frequency				
wheeze9	Present	265				
	Absent	754				
wheeze10	Present	255				
	Absent	764				
wheeze11	Present	240				
	Absent	779				
wheeze12	Present	216				
	Absent	803				

Output 14.11 Response Functions and Model Matrix

	Function	Response		Design N	latrix	
Sample	Number	Function	1	2	3	4
1	1	0.26006	1	1	0	0
	2	0.25025	1	0	1	0
	3	0.23553	1	0	0	1
	4	0.21197	1	- 1	- 1	- 1

Output 14.12 Analysis-of-Variance Table

	Analys:	is of Variance	
Source	DF	Chi-Square	Pr > ChiSq
Intercept age	1 3	523.63 12.85	<.0001 0.0050
Residual	0		

Could have manually specified the Linear Model:

Output 14.13 Response Functions and Model Matrix

	Function	Response	Design N	Matrix
Sample	Number	Function	1	2
1	1	0.26006	1	9
	2	0.25025	1	10
	3	0.23553	1	11
	4	0.21197	1	12

Output 14.14 ANOVA Table

Analysis of Variance				
Source	DF	Chi-Square	Pr > ChiSq	
Intercept	1	66.70	<.0001	
Linear Age	1	12.31	0.0005	
Residual	2	0.54	0.7620	

Output 14.15 Parameter Estimates

	Analysis	of Weighted	Least Square	s Estimates	
Effect	Parameter	Estimate	Standard Error	Chi- Square	Pr > ChiSq
Model	1 2	0.4083 -0.0161	0.0500 0.00460	66.70 12.31	<.0001 0.0005

Specify a logit transformation of the probabilities:

Output 14.16 Response Functions and Model Matrix

Sample	Function Number	Response Function	Design M 1	latrix 2
1	1	-1.04566	1	9
	2	-1.09730	1	10
	3	-1.17737	1	11
	4	-1.31308	1	12

Output 14.17 ANOVA Table

	Analysi	s of Variance	
Source	DF	Chi-Square	Pr > ChiSq
Intercept Linear Age	1 1	0.76 11.77	0.3824 0.0006
Residual	2	0.67	0.7167

Output 14.18 Parameter Estimates

	Analysis	of Weighted	Least Square	s Estimates	
Effect	Parameter	Estimate	Standard Error	Chi- Square	Pr > ChiSq
Model	1 2	-0.2367 -0.0879	0.2710 0.0256	0.76 11.77	0.3824 0.0006

Example: Study to compare test treatment and placebo for management of a respiratory disorder (Reference: Koch, Carr, Amara, Stokes, and Uryniak [1990])

- 1. Two centers
- 2. Four visits
- 3. Ordered global response with 5 categories (terrible, poor, fair, good, excellent as scores 0,1,2,3,4)
- 4. Age, gender, baseline are covariables

Partial Listing of Data from a Multicenter, Multivisit Clinical Trial to Compare Two Treatments for Patients with a Respiratory Disorder (Reference: Koch *et al* [1990])

Center	Patient	Drug	Sex	Age	Base	Visit 1	Visit 2	Visit 3	Visit 4
1	53	A	F	32	1	2	2	4	2
	18	A	F	47	2	2	3	4	4
	54	A	\mathbf{M}	11	4	4	4	4	2
	12	A	M	14	2	3	3	3	2
	51	A	M	15	0	2	3	3	3
	20	A	\mathbf{M}	20	3	3	2	3	1
	16	A	\mathbf{M}	22	1	2	2	2	3
	50	A	\mathbf{M}	22	2	1	3	4	4
	03	A	\mathbf{M}	23	3	3	4	4	3
	32	A	\mathbf{M}	23	2	3	4	4	4
	56	A	\mathbf{M}	25	2	3	3	2	3
	35	A	\mathbf{M}	26	1	2	2	3	2
	26	A	\mathbf{M}	26	2	2	2	2	2
	21	A	M	26	2	4	1	4	2
	08	A	M	28	1	2	2	1	2
	30	A	M	28	0	0	1	2	1
	33	A	M	30	3	3	4	4	2
	11	A	M	30	3	4	4	4	3

WLS FOR CATEGORICAL DATA: EXAMPLE USING CHAPTER 13 DATA WITH BINARY RESPONSE MEASURED AT FOUR VISITS

```
/* Model with Interactions */
PROC CATMOD;
  RESPONSE LOGITS;
  POPULATION CENTER DRUG;
  MODEL VIS1_BIN*VIS2_BIN*VIS3_BIN*VIS4_BIN =
               CENTER | DRUG CENTER | RESPONSE
               DRUG | _ RESPONSE _
                 / NODESIGN NOPARM NOPROFILE;
 REPEATED TIME;
RUN;
```

CATMOD PROCEDURE

Response	vis1_*vis2_*vis3_*vis4_b	Response Levels	15
Weight Variable	None	Populations	4
Data Set	CH13T	Total Frequency	111
Frequency Missing	0	Observations	111

Analysis of Variance

Source	DF	Chi-Square	Pr > ChiSq
Intercept center drug center*drug	1 1 1	3.34 8.37 10.92 1.18	0.0678 0.0038 0.0010 0.2770
time center*time	3 3	3.86 3.82	0.2769 0.2821
drug*time	3	2.74	0.4338
Residual	3	0.59	0.8994

The CATMOD Procedure

Response	vis1_*vis2_*vis3_*vis4_b	Response Levels	15
Weight Variable	None	Populations	4
Data Set	CH13T	Total Frequency	111
Frequency Missing	0	Observations	111

Analysis of Variance

Source	DF	Chi-Square	Pr > ChiSq
Intercept center drug time	1 1 1 3	1.68 7.62 10.61 2.76	0.1947 0.0058 0.0011 0.4303
Residual	10	13.04	0.2212

Analysis of Weighted Least Squares Estimates

Effect	Parameter	Estimate	Standard Error	Chi- Square	Pr > ChiSq
Intercept	1	-0.2041	0.1574	1.68	0.1947
center	2	0.4401	0.1594	7.62	0.0058
drug	3	0.5217	0.1602	10.61	0.0011
time	4	-0.1159	0.1261	0.85	0.3579
	5	0.0856	0.1147	0.56	0.4554
	6	-0.0754	0.1129	0.45	0.5038

RESPIRATORY DISORDER DATA

Model with Default Coding for Mean Score Response with All Interactions

```
PROC CATMOD;
  RESPONSE MEAN;
  MODEL VISIT1*VISIT2*VISIT3*VISIT4 = DRUG|CENTER|_RESPONSE_/COV;
  REPEATED TIME;
RUN;
```

The CATMOD Procedure Data Summary

Response	visit*visit*visit*visit4	Response Levels	67
Weight Variable	None	Populations	4
Data Set	CH13T2	Total Frequency	111
Frequency Missing	0	Observations	111

Response Functions and Covariance Matrix

	Function	Response	Covariance Matrix			
Sample	Number	Function	1	2	3	4
1	1	2.24138	0.06101	0.04875	0.05031	0.04371
	2	2.00000	0.04875	0.05945	0.04400	0.03686
	3	2.24138	0.05031	0.04400	0.06815	0.05560
	4	2.03448	0.04371	0.03686	0.05560	0.05584
2	1	2.82143	0.03330	0.01713	0.01667	0.01827
	2	2.28571	0.01713	0.0583	0.05266	0.05649
	3	2.21429	0.01667	0.05266	0.07744	0.07425
	4	2.46429	0.01827	0.05649	0.07425	0.09052
3	1	2.51852	0.03394	0.01793	0.01590	0.00996
	2	2.85185	0.01793	0.03485	0.01956	0.02185
	3	2.81481	0.01590	0.01956	0.04948	0.02251
	4	2.48148	0.00996	0.02185	0.02251	0.03942
4	1	3.33333	0.02469	0.01829	0.01555	0.02012
	2	3.40741	0.01829	0.03363	0.02845	0.02764
	3	3.29630	0.01555	0.02845	0.03516	0.02733
	4	3.25926	0.02012	0.02764	0.02733	0.05375

ANOVA Table

Analysis of Variance					
Source	DF	Chi-Square	Pr > ChiSq		
Intercept	1	767.19	<.0001		
drug	1	13.76	0.0002		
center	1	6.53	0.0106		
drug*center	1	0.80	0.3724		
time	3	2.40	0.4929		
drug*time	3	12.60	0.0056		
center*time	3	8.13	0.0433		
drug*center*time	3	0.58	0.9010		
Residual	0				

Many studies have response variables with ordinal data for which only rankings are meaningful.

- 1. Ordered categorical response variables
 - a. Arbitrary scores may not be meaningful
 - b. Models such as the proportional odds model may have unsatisfactory goodness of fit
- 2. Response variables with continuous scales can have skewed distributions and/or outliers to an extent that contradicts a metric scale and thereby differences and/or other functions of observed values may not be meaningful. In these situations, analyses involving rank measures of association are potentially of interest.

Combined use of FREQ and CATMOD for analysis of Mann-Whitney estimators from a study with eight strata for the comparison of two treatments for an ordered categorical response variable (Reference: Stokes *et al* [2000]).

Diagnostic			Patient Status				
Class	Investigator	Treatment	Poor	Fair	Moderate	Good	Excellent
I	A	Placebo	7	0	1	1	1
I	A	Active	3	2	2	1	0
I	В	Placebo	5	4	2	3	3
I	В	Active	1	6	1	5	3
П	A	Placebo	1	1	0	1	1
II	A	Active	1	0	1	2	2
II	В	Placebo	3	1	1	5	0
II	В	Active	0	1	1	1	6
III	A	Placebo	5	0	0	8	1
III	A	Active	2	0	3	3	2
III	В	Placebo	2	5	1	4	2
III	В	Active	2	4	1	10	3
IV	A	Placebo	5	0	3	3	0
IV	A	Active	8	1	3	4	0
IV	В	Placebo	3	4	3	4	2
IV	В	Active	1	5	2	3	1

FREQ is used to obtain Somer's D and corresponding standard error for each of the eight strata according to (Diagnostic Class X Investigators).

 $U = \frac{\text{(Somer's } D \ C|R)+1}{2}$ and $S = \frac{SE(D)}{2}$ are used to obtain the Mann-Whitney estimators and their standard errors. The respective estimates for the eight strata are independent.

D:					
Diagnostic					
Class	Researcher	Somer's D	ASE	U_{i}	S_i
I	A	0.2000	0.3515	0.6000	0.1758
I	В	0.2002	0.1915	0.6001	0.0958
II	A	0.2083	0.3622	0.6042	0.1811
II	В	0.6778	0.1834	0.8389	0.0917
III	A	0.0260	0.2271	0.5130	0.1136
III	В	0.1893	0.1923	0.5947	0.0962
IV	A	0.0000	0.2007	0.5000	0.1004
IV	В	-0.0156	0.2116	0.4922	0.1058

The variation among the Mann-Whitney estimators is analyzed by weighted least squares methods through CATMOD.

The input for this analysis and the specification of a model that addresses the effects of diagnosis and investigator on the association between treatment and response are as follows:

```
data MannWhitney;
       input b1-b8 _type_ $ _name_ $8.;
       datalines;
    .6000
           .6011
                  .6042 .8389 .5130 .5947 .5000 .4922 parms
                        .0000 .0000
                                     .0000 .0000 .0000 cov b1
    .03091
           .0000
                   .0000
                                     .0000 .0000 .0000 cov b2
    .0000
           .00918 .0000 .0000 .0000
    .0000
           .0000
                   .3280
                        .0000 .0000
                                     .0000 .0000 .0000 cov b3
    .0000
           .0000
                  .0000 .0084 .0000
                                     .0000 .0000 .0000 cov b4
    .0000
           .0000
                   .0000 .0000 .0129 .0000 .0000 .0000 cov b5
    .0000
           .0000
                        .0000 .0000
                                     .0093 .0000 .0000 cov b6
    .0000
           .0000
                   .0000
                        .0000 .0000
                                     .0000 .0101 .0000 cov b7
    .0000
           .0000
                        .0000 .0000 .0000 .0000 .0112 cov b8
                   .0000
```

The resulting test statistics from this analysis are as follows:

Ana	lysis	of Variance	
Source	DF	Chi-Square	Pr > ChiSq
Intercept	1	193.69	<.0001
diagnosis	3	6.98	0.0725
invest	1	0.14	0.7122
Residual	3	0.33	0.9540

Since there is essentially no variation among the Mann-Whitney estimators across the eight strata, a model which specifies a homogenous value is applied.

The results for this model for homogenous association between treatment and response are as follows:

	,	Analysis	of Variance		
	Source	DF	Chi-Square	Pr > ChiSq	
	Model Mean	0	•		
	Residual	7	9.41	0.2247	
	Analysis of	• Weighte	d Least Squa	res Estimates	
Effect	Parameter	Estimat	Standard e Error	Chi- Square	Pr > Chis
Model	1	0.602	7 0.0396	231.30	<.000

The resulting Mann-Whitney estimator of 0.60 is interpretable as the probability of better response for a randomly selected patient with active treatment than placebo. Note that the test statistic for this association is about

$$Z = \{(0.6027 - 0.5) / 0.0396\} = 2.59$$

And has two-sided p-value 0.0095.

Van Elteren test from PROC FREQ:

$$Q = 3.89, p = 0.0486$$