Reflexão, Refração, RIT

R1 – Um tanque com água ($n_{água} = 1.33$) tem à superfície uma camada de óleo ($n_{óleo} = 1.48$) com 1cm de espessura, acima da qual existe ar, como se mostra na figura junta. $n_{ar} = 1.00$

 $n_{ar} = 1.00$ $n_{\delta leo} = 1.48$ $n_{\delta gua} = 1.33$

a) Qual é o menor valor do ângulo de incidência (θ) dum feixe de luz originado no interior do tanque, para que não passe radiação para o exterior do tanque, isto é, para o ar? $(\theta = 48.75^{\circ})$

 $(\Delta = 2''eo +$

b) Calcule o eco kpj o ótico da radiação no interior do óleo.

c) Quanto tempo demora a radiação a atravessar o óleo?

 $(t = 6.7 \times 10^{-11} \text{ s})$

 ${f R2}$ – Considere uma piscina com 5 m de largura por 5 m de comprimento e 2 m de profundidade. No fundo da piscina, no seu centro, está uma fonte luminosa que emite radiação em todas as direções. Olhando a piscina de cima observa-se uma área circular iluminada. Mostre que o raio desta área circular é ${f R}=2.27$ m. $(n_{agua}=4/3)$

- **R4** Um feixe de radiação monocromática a propagar-se no ar incide na superfície plana de um dado material transparente, segundo um ângulo de incidência de 58°. Verifica-se que os feixes refletido e refratado são perpendiculares entre si.
- a) Calcule o índice de refração deste material.

(n = 1.60)

- **b**) Qual é o valor do ângulo crítico para que haja reflexão interna total quando a radiação passa deste material para o ar? $(\theta_c = 38.68^o)$
- c) Qual é a relação entre o comprimento de onda da radiação no ar e no interior do material? (1.60)
- **R5** Considere a secção de um prisma que se mostra na figura junta e sobre a qual incide, num ponto O, um feixe de radiação monocromática de intensidade I_0 e comprimento de onda $\lambda = 600$ nm. O prisma é transparente e o seu índice de refração é n(vidro) = 1.50, sendo $\overline{AB} = 6 \, \text{cm}$, $\overline{AO} = 2.5 \, \text{cm}$ e $\overline{AC} = \overline{BC}$.
- a) Represente, justificando, o percurso do feixe luminoso até sair do prisma.
- b) Quanto tempo demora o feixe a percorrer o interior do prisma?

 ${f R6}$ – Considere a secção de um prisma que se mostra na figura junta e sobre a qual incide, num ponto O, um feixe de radiação monocromática de intensidade I_0 e comprimento de onda $\lambda=600$ nm. O prisma é transparente e o seu índice de refração é n(vidro) = 1.50, sendo $\overline{AB}=6\,{\rm cm}$, $\overline{AO}=2\,{\rm cm}$ e $\overline{AC}=\overline{BC}$.

- a) Represente, justificando, o percurso do feixe luminoso até sair do prisma.
- **b)** Quanto tempo demora o feixe a percorrer o interior do prisma?
- $(0.3 \, ns)$
- **R7** Considere a secção de um prisma que se mostra na figura junta e sobre a qual incide, num ponto O, um feixe de radiação monocromática de intensidade I. O prisma é transparente e o seu índice de refração é n(vidro) = 1.55, sendo $\overline{AB} = 6 \, \text{cm}$, $\overline{AO} = 2 \, \text{cm}$ e $\overline{AC} = \overline{BC}$. O prisma está mergulhado numa tina com água, sendo $n_{(\text{água})} = 4/3$.
- **a**) Represente, justificando, o percurso do feixe luminoso até sair do prisma.
- b) Quanto tempo demora o feixe a percorrer o interior do prisma até sair por CB? (0.22ns)

- **R8** Considere uma lâmina quadrada, transparente, de índice de refração n=1.30, tal como se mostra na figura junta. Um feixe de luz incide no plano da figura, a meio do lado AB, segundo um ângulo θ .
- a) Diga para que valores de θ , (0° < θ < 90°), haverá:
 - i) Feixe emergente no lado CD.

$$(0 < \theta < 35.55^{\circ})$$

ii) Feixe emergente no lado BC.

$$(56.17^{\circ} < \theta < 90^{\circ})$$

iii) Reflexão interna total na face BC.

$$(35.55 < \theta < 56.17^{\circ})$$

b) Se o lado da placa medir 50 cm, determine o tempo necessário para a radiação a atravessar, considerando $\theta = 30^{\circ}$. (2.35 ns)

Equações de Fresnel, Refletância e Transmitância

G3 – Considere uma onda luminosa, polarizada linearmente no plano de incidência, que incide a 30° numa placa de vidro sem chumbo ($n_v = 1.52$) imersa no ar. (a) Calcule os coeficientes de reflexão e transmissão em amplitude. (b) Calcule a refletância e a transmitância. (c) Escreva os vetores \vec{E} e \vec{B} . As fórmulas eventualmente necessárias serão fornecidas (r = 0.16455, v = 0.76616, R = 0.0271; T = 0.9729)

- G4 Considere uma radiação de ittef kepeke $800~W/m^2$ a propagar-se no ar. A radiação incide num diamante ($n_{diam}=2.42$) e está polarizada no plano de incidência. Calcule, para os ângulos de incidência de 25° e de 75° a intensidade refletida e a intensidade transmitida.
- **G5** O campo elétrico da onda eletromagnética plana que atravessa, perpendicularmente, o bloco de vidro de 5cm de espessura que se mostra na figura, é da forma:

$$E_x = 0;$$
 $E_y = E_0 \ sen \left[10^{15} \pi (t - \frac{x}{0.65c}) \right];$ $E_z = 0$

quando a onda se propaga no interior do bloco de vidro, sem ser absorvida.

- a) Determine a frequência, a velocidade de propagação e o comprimento de onda da radiação, no interior do bloco de vidro. $(f = 5 \times 10^{14} \text{ Hz}, v = 0.65 \text{ c m/s}, \lambda = 390 \text{ nm})$
- **b**) Determine agora as mesmas grandezas, para a mesma radiação, a propagar-se fora do bloco de vidro, isto é, no ar. $(f = 5 \times 10^{14} \text{ Hz}, v = c, \lambda = 600 \text{ nm})$
- c) Calcule o percurso ótico da radiação no interior do bloco de vidro e explique o seu significado físico. Quanto tempo demora a radiação a atravessar o bloco de vidro?

$$(\Delta = 7.69 \text{ cm}, t = 2.564 \times 10^{-10} \text{s})$$

- **d)** Compare a intensidade da radiação eletromagnética em (1), (2) e (3), isto é, antes de entrar, no interior e depois de sair do bloco de vidro. $(I_1 > I_2 > I_3)$
- e) Calcule a transmitância entre os pontos (1) e (3), sabendo que o vidro é transparente a esta radiação. (T=0.912)
- G6 Considere uma célula de quartzo, vazia, cuja espessura interna é de 1 cm, e sobre a qual incide, segundo a direção normal, um feixe de radiação de intensidade I_0 .
- a) Calcule a transmitância à saída da célula, admitindo que $n_O = 1.48$.
- **b**) Calcule de novo a transmitância à saída da célula considerando agora que a célula está cheia com água $(n_{água} = 4/3)$.
- c) Calcule agora a transmitância considerando que substitui a célula por um bloco de quartzo com 1cm de espessura.