SPCS CRYPTOGRAPHY HOMEWORK 7

Please try all the unmarked problems. $\#, \star$ problems are both optional, with \star problems being harder. You are strongly encouraged to work in groups, but you have to write up the solution on your own.

Reference for today's lecture: Chapter 10.5 - 10.6; For primality testing, see http://www.akalin.cx/intro-primality-testing

- 1. Using a calculator/Sage/otherwise, check by Fermat's test for x=2 and 3 whether the following are primes.
 - (a) 601
 - (b) 2047
 - (c) 294409
- 2. Repeat the last exercise, with Miller-Rabin test instead.
- 3. It is known that 503 is a prime with 5 being a primitive root modulo 503. Using Shank's baby-step-giant-step algorithm, find an x such that

$$5^x \equiv 193 \mod 503$$

4. It is known that 8641 is a prime with 17 being a primitive root modulo 8641. Using Pohlig-Hellman algorithm, find an x such that

$$17^x \equiv 2108 \mod 8641$$

- 5. Recall that Carmichael numbers n are integers that are not prime, but for any (a, n) = 1, $a^{n-1} \equiv 1 \mod n$. They are those that would likely fool the Fermat test.
 - (a) We said that 561 is a Carmichael number but we never actually checked it. Using Chinese remainder theorem, check that 561 is a Carmichael number, i.e. for all (a, 561) = 1,

$$a^{560} \equiv 1 \mod 561.$$

(Hint:
$$561 = 3 \cdot 11 \cdot 17$$
.)

- (b) Korselt's criterion says that a composite integer n is a Carmichael number if and only if n is odd, square-free and p-1|n-1 for all p|n. Use it to check that 561 is a Carmichael number.
- * (c) Prove Korselt's criterion.
- \star 6. In Pohlig-Hellman, we showed two ways of calculating $k \mod q^m$ for a prime q and integer m such that $q^m|p-1$:
 - Directly consider q^m -th power test.
 - First calculate $k \mod q$, then $k \mod q^2$, ..., all the way to $k \mod q^m$.

Compare the time complexity of these two methods for fixed q and changing m.

- * 7. If n is a positive integer, The n-th factorial n! means $n \times (n-1) \times \cdots \times 1$.
 - (a) If n is a composite number, show that $(n-1)! \equiv 0 \mod n$.
 - (b) If n = p is a prime number, show that $(p-1)! \equiv -1 \mod p$. This is Wilson's theorem.
 - (c) Design a primality test using Wilson's theorem. What is the running time?