

Lines and Angles Ex 8.4 Q20

Answer:

The figure is given as follows:

It is given that p is a transversal to lines m and n. Also,

$$\angle 2 = 120^{\circ}$$
 and $\angle 5 = 60^{\circ}$

We need to prove that $m \parallel n$

We have $\angle 2 = 120^{\circ}$.

Also, $\angle 2$ and $\ \angle 4$ are vertically opposite angles, thus, these two must be equal. That is,

$$\angle 4 = 120^{\circ}$$
 (i)

Also, $\angle 5 = 60^{\circ}$

Adding this equation to (i), we get :

$$\angle 4 + \angle 5 = 120^{\circ} + 60^{\circ}$$

$$\angle 4 + \angle 5 = 180^{\circ}$$

But these are the consecutive interior angles.

Theorem states: If a transversal intersects two lines in such a way that a pair of consecutive interior angles is supplementary, then the two lines are parallel.

Thus, $m \parallel n$

Hence, the lines are parallel to each other.

Lines and Angles Ex 8.4 Q21 **Answer**:

The figure is given as follows:

It is given that l is a transversal to lines m and n. Also,

$$\angle 4 = 110^{\circ} \text{ and } \angle 7 = 65^{\circ}$$

We need check whether $m \parallel n$ or not.

We have $\angle 7 = 65^{\circ}$

Also, $\angle 7$ and $\ \ \angle 5$ are vertically opposite angles, thus, these two must be equal. That is,

$$\angle 5 = 65^{\circ}$$
 (i)

Also, $\angle 4 = 110^{\circ}$

Adding this equation to (i), we get:

$$\angle 4 + \angle 5 = 110^{\circ} + 65^{\circ}$$

$$\angle 4 + \angle 5 = 175^{\circ}$$

But these are the consecutive interior angles which are not supplementary.

Theorem states: If a transversal intersects two lines in such a way that a pair of consecutive interior angles is supplementary, then the two lines are parallel.

Thus, m is not parallel to n.

******* END ********