Real Analysis Lecture Notes

Metric Spaces

November 23 2016 Last update: December 4, 2017

1 Compactness

We wish to work up to the following result: A metric space is compact if and only if it is totally bounded and complete (where *complete* will be defined shortly). Note that this is similar to the Heine-Borel Theorem stating that a closed-bounded set is compact. However, in our case the added restrictions permit us to now state the result in both directions.

Definition: Complete metric space. We say that a metric space is $\underline{\text{complete}}$ if every Cauchy sequence from X is convergent.

Recall our previous result: If X is a metric space then the following statements are equivalent

- 1. X is compact.
- 2. X satisfies the Bolzano-Weierstrass property.
- 3. X is sequentially compact (all sequences have a convergent subsequence).
- 4. X is totally bounded (+ complete, to be shown)

Example: Consider \mathbb{N} , \mathbb{Q} , \mathbb{R} , and \mathbb{R} under the discrete metric ρ_d

$$\rho_d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{else} \end{cases}$$

Then

- 1. N is not bounded and so it cannot be totally bounded. However, \mathbb{N} is complete since any Cauchy sequence from \mathbb{N} will produce $0 < \epsilon$ so that our Cauchy sequence $(x_1, x_2, ...)$ will eventually repeat (and thus, be convergent) when $|x_n x|$ gets small enough.
- 2. Likewise, R is not bounded, and so not totally bounded, but complete.

- 3. \mathbb{Q} is not bounded, and so not totally bounded. However, unlike \mathbb{N} and \mathbb{R} , \mathbb{Q} is not complete (recall the completeness axiom). Cauchy sequence from \mathbb{Q} might not be convergent since the sequence $(x_n) \to \sqrt{2}$ will never converge to $\sqrt{2}$ in \mathbb{Q} for all $\epsilon > 0$.
- 4. (0,1) is totally bounded, but is *not* complete since we may have the Cauchy sequence $(x_n) \to 0$ or $(x_n) \to 1$, converging outside of our space.
- 5. \mathbb{R} under ρ_d is complete since if $|x_m x_n| < 1$ then $x_m = x_n$ and so $|x_m x_n| = |x_m x_m| = 0 < \epsilon$. However, \mathbb{R} under the discrete metric is not totally bounded since the open cover

$$\left\{S_{x,\epsilon=\frac{1}{2}}\right\}_{x\in\mathbb{R}}$$

will not be able to cover \mathbb{R} with only finitely many $S_{x,\epsilon}$.

Theorem: A metric space is compact if and only if it is totally bounded and complete.

Proof. (\Longrightarrow) Suppose some metric space X is compact. We immediately get that our space X must be totally bounded since if X is compact all covers have a finite subcover. Hence, the cover given by

$$X \subset \bigcup_{x \in X} S_{x,\epsilon}$$

has some finite subcover

$$X \subset \bigcup_{i=1}^{n} S_{x_i,\epsilon}$$

satisfying the definition of total boundedness. We now seek to show that all Cauchy sequences are convergent. Let (x_n) be some Cauchy sequence from X. We wish to prove that $(x_n) \to x$ for some $x \in X$.

Since X is compact we are given that X is sequentially compact. Therefore, all sequences from X have a convergent subsequence. Therefore, our sequence (x_n) has a subsequence (x_{n_k}) such that $(x_{n_k}) \to x$ for some $x \in X$.

However, since (x_n) is a Cauchy sequence it must also converge to the same limit as its subsequences. We can see this by letting (x_{n_k}) be our subsequence and x its limit. Then,

$$\forall \epsilon > 0, \ \exists, K \in \mathbb{N}, \ \forall k \geq K, \ |x_{n_k} - x| < \epsilon$$

and if the sequence is Cauchy then for sufficiently large N and $n, m \geq N$

$$|x_n - x_m| < \epsilon$$

Thus

$$\forall \epsilon > 0, \ \exists, N \in \mathbb{N}, \ \forall n \ge N, \ |x_n - x| < \epsilon$$

in particular, we may let $N = n_K$, and where $\forall n \geq N$ holds since for all $n, m \geq N$, $|x_n - x_m| < \epsilon$, i.e. all points beyond N are at least as close as each other.

Therefore, if X is compact then X is totally bounded, since the cover of open spheres has a finite subcover, and complete, since every Cauchy sequence is convergent, which completes the first direction

(\iff) Suppose some metric space X is totally bounded and complete. To show that X is complete it is sufficient to show that X is sequentially compact. That is, it is sufficient to show that every sequence (x_n) has a convergent subsequence. However, if we must show that every sequence (x_n) has a convergent subsequence then it is sufficient to show that every sequence (x_n) has a Cauchy subsequence (x_{n_k}) .

As an aside note that if some set B is an infinite set and we conver it by finitely many sets $A_1, ..., A_n$ we must have that at least one of the A_i is an infinite set.

Now, consider the sequence (x_n) and let r=1 be a radius for a set of open spheres in X. Since X is totally bounded X must be covered by finitely many such spheres with radius r=1. However, by our aside, at least one of our spheres must be an infinite set containing infinitely many such x_i . Label this infinite set by

$$S_{\epsilon=1}$$

Pick one point from this spheres $x_{n_1} \in \{x_i\} = S_1$. Clearly the intersection

$$S_1 \setminus \{x_i\}$$

still has infinitely many elements left within it.

Let $\epsilon = \frac{1}{2}$. Since X is totally bounded X is covered by finitely many spheres of radius $\frac{1}{2}$. However, these finitely many spheres which cover X must also cover the intersection $S_1 \setminus \{x_i\}$. Therefore, there must exist some sphere S_2 with radius $\epsilon = \frac{1}{2}$ so that

$$S_2 \cap (S_1 \setminus \{x_i\})$$

is still infinite. From this intersection pick the next point x_{n_2}

$$x_{n_2} \in S_2 \cap (S_1 \setminus \{x_i\})$$

Consider the distance $\rho(x_{n_1}, x_{n_2})$. Since both points are within S_1 by definition we must have a worst-case upper bound

$$\rho(x_{n_1}, x_{n_2}) < 2$$

With the same argument, let $r=\frac{1}{3}$ and construct S_3 a sphere of radius $\frac{1}{3}$ so that

$$S_3 \cap S_2 \cap S_1$$

has infinitely many points beyond the finite sequence

$$\{x_1, x_2, ..., x_{n_1}, ..., x_{n_2}\}$$

Pick one of these points beyond x_{n_2} and call it x_{n_3} . Since x_{n_3} and x_{n_2} are both in S_2 with radius $\frac{1}{2}$ we have the worst-case upper bound of their distance given by

$$\rho(x_{n_1}, x_{n_2}) < 1$$

Continue inductively this manner.

From this process we have constructed the sequence $\{x_{n_k}\}_{k=1}^{\infty}$ which is a subsequence of $\{x_n\}_{n=1}^{\infty}$ with distances

$$\rho(x_{n_k}, x_{n_l}) < \frac{2}{N}, \quad \text{if } k, l \ge N$$

Thus $\rho(x_{n_k}, x_{n_l}) \to 0$ for sufficiently large N, and so our subsequence (x_{n_k}) . Therefore, if X is some totally bounded and complete metric space we have that every sequence from X has a Cauchy subsequence, and so every sequence from X has a convergent subsequence, and so X is sequentially compact, and so X is complete, as desired.

Aside: In general, if X is some metric space it can be *completed* via Cauchy sequences, and if X is a totally bounded metric space its completion will also be totally bounded.

Baire Category Theorem: Let X be a complete metric space and take a countable family of dense open sets $\{O_i\}_{i=1}^{\infty}$ from X. The intersection

$$\bigcap_{i=1}^{\infty} O_i$$

is dense.

Example: Let $X = \mathbb{Q}$ and take $q \in \mathbb{Q}$. Is the intersection $\mathbb{Q} \setminus \{q\}$ dense in \mathbb{Q} ? Since $\{q\}$ is closed we must have that

$$\mathbb{Q} \setminus \{q\}$$
 is open

and

$$\bigcap_{q\in\mathbb{Q}}\left(\mathbb{Q}\setminus\{q\}\right)=\emptyset$$

but \emptyset is trivially *not* dense in \mathbb{Q} ! This is fine and doesn't contradict the Baire Category Theorem since \mathbb{Q} is not a complete metric space.

Corollary: (Consequence of the Baire Category Theorem). We can show that \mathbb{Q} is not a countable intersection of open sets. That is, \mathbb{Q} is not a G_{δ} .

Proof. Suppose that \mathbb{Q} is in fact a G_{δ} set so that

$$\mathbb{Q} = \bigcap_{i=1}^{\infty} O_i$$

for O_i open sets in \mathbb{R} . Since $\mathbb{Q} \subset O_i$ by definition, and \mathbb{Q} is dense in \mathbb{R} , we have that each O_i must also be dense in \mathbb{R} .

Now, consider the intersection

$$\left(\bigcap_{i=1}^{\infty} O_i \right) \bigcap_{q \in Q} (\mathbb{R} \setminus \{q\}) = \emptyset$$

However, this is a countable intersection of dense open sets in a complete space \mathbb{R} ! Therefore, by the Baire Category Theorem this intersection *must be dense*, but the empty set \emptyset is not dense! Therefore, \mathbb{Q} is not a G_{δ} .

It turns out that the set of irrationals $\mathbb{R} \setminus \mathbb{Q}$ is a G_{δ} since

$$\mathbb{Q} = \bigcup_{q \in \mathbb{Q}} \{q\}$$

$$\implies \mathbb{R} \setminus \mathbb{Q} = \mathbb{R} \setminus \bigcup_{q \in \mathbb{Q}} \{q\}$$

$$= \bigcap_{q \in \mathbb{Q}} (\mathbb{R} \setminus \{q\})$$

and this forms an intersection countably many open sets since there are countably many $q \in \mathbb{Q}$ and the singleton set $\{q\}$ is closed and so $\mathbb{R} \setminus \{q\}$ is open. Note that we began by writing \mathbb{Q} as the countable union

$$\mathbb{Q} = \bigcup_{q \in \mathbb{O}} \{q\}$$

so although \mathbb{Q} is not a G_{δ} , we have that \mathbb{Q} is a F_{σ} .

Example: Is the set of *irrationals* $\mathbb{R}\setminus\mathbb{Q}$ complete? (does every Cauchy sequence of irrationals converge? No!

Proof. Consider the sequence $\left(2 + \frac{1}{n\pi}\right)_{n=1}^{\infty}$ taken from $\mathbb{R} \setminus \mathbb{Q}$. It is easy to see that our sequence does indeed converge and

$$\left(2 + \frac{1}{n\pi}\right)_{n=1}^{\infty} \longrightarrow 2$$

Thus, we have found at least one Cauchy sequence taken from $\mathbb{R} \setminus \mathbb{Q}$ that does not converge within $\mathbb{R} \setminus \mathbb{Q}$ and so $\mathbb{R} \setminus \mathbb{Q}$ cannot be complete, as desired.

Definition: (Nowhere dense sets). A subset E of X, $E \subset X$, is said to be nowhere dense in X if the intersection

$$X \setminus \operatorname{cl}(E) \equiv X \setminus \overline{E} = X \cap \overline{E}^c$$

is dense in X. Alternatively, we can given an equivalent definition: A subset E of X, $E \subset X$, is said to be nowhere dense in X if there is no nonempty open set V that is a subset of the

closure of $E, V \nsubseteq \overline{E}$.

That is, E is nowhere dense in X if there is no neighbourhood in X in which E is dense. We can think of this as $E \subset X$ is nowhere dense in X if it is not dense in any open subset of X.

Example: Consider $X = \mathbb{R}$ and the singleton set $E = \{2\} \subset \mathbb{R}$. Clearly the closure of this set is

$$\overline{\{2\}} = \{2\}$$

Therefore, $X \setminus \overline{E}$ is given by

$$\mathbb{R} \setminus \{2\}$$

Then, to check if this intersection is dense in X we take its closure

$$\overline{\mathbb{R}\setminus\{2\}}=\mathbb{R}$$

since $\mathbb{R} \setminus \{2\}$ is open with point 2 removed. Thus, since $\overline{\mathbb{R} \setminus \{2\}} = \mathbb{R}$ we see that $X \setminus \overline{E} = \mathbb{R} \setminus \{2\}$ is indeed dense in $X = \mathbb{R}$, and so $E = \{2\}$ is nowhere dense in $X = \mathbb{R}$.

Example: Let $X = \mathbb{R}$ and $E = \mathbb{N}$. We can see that the closure of \mathbb{N} is $\overline{\mathbb{N}} = \mathbb{N}$. Thus, the intersection $X \setminus \overline{E}$ is

$$\mathbb{R}\setminus\overline{\mathbb{N}}=\mathbb{R}\setminus\mathbb{N}$$

and so to check if $\mathbb{R} \setminus \mathbb{N}$ is dense in \mathbb{R} we again take its closure

$$\overline{\mathbb{R} \setminus \mathbb{N}} = \mathbb{R}$$

Thus, $\mathbb{R} \setminus \mathbb{N}$ is dense in \mathbb{R} and so \mathbb{N} is nowhere dense in \mathbb{R} .

Example: The set of rationals \mathbb{Q} is *not* nowhere dense in \mathbb{R} since

$$\mathbb{R}\setminus\overline{\mathbb{Q}}=\mathbb{R}\setminus\mathbb{R}=\emptyset$$

but

$$\overline{\mathbb{R}\setminus\overline{\mathbb{Q}}}=\overline{\mathbb{R}\setminus\mathbb{R}}=\overline{\emptyset}=\emptyset$$

and clearly \emptyset is not dense in \mathbb{R} and so \mathbb{Q} is not nowhere dense in \mathbb{R} .

In general, no dense subset of some set will also be a nowhere dense set.

Result: Suppose O is some dense and open set in $X = \mathbb{R}$ and $E = \mathbb{R} \setminus O$. Since O is an

open set we have that $E = \mathbb{R} \setminus O$ must be closed so that $\overline{E} = E$. Therefore

$$R \setminus \overline{E} = R \setminus E$$

$$= \mathbb{R} \setminus (\mathbb{R} \setminus O)$$

$$= \mathbb{R} \cap (\mathbb{R} \setminus O)^{c}$$

$$= \mathbb{R} \cap (\mathbb{R} \cap O^{c})^{c}$$

$$= \mathbb{R} \cap (\mathbb{R}^{c} \cup O)$$

$$= \mathbb{R} \cap (\emptyset \cup O)$$

$$= \mathbb{R} \cap (O)$$

$$= \mathbb{R} \cap O$$

$$= O$$

However, O is dense by assumption and $X \setminus \overline{E} = \mathbb{R} \setminus (\mathbb{R} \setminus O) = O$ is dense. Thus,

$$E = \mathbb{R} \setminus O$$

is nowhere dense.

Definitions: A subset E of X is called a <u>meagre set</u> or <u>of the first category</u> if it is a countable union of nowhere dense sets E_n

$$E = \bigcup_{n=1}^{\infty} E_n$$
 E_n nowhere dense

For example, since \mathbb{Q} can be written as

$$\mathbb{Q} = \bigcup_{q \in \mathbb{Q}} \{q\}$$

where each $\{q\}$ is nowhere dense in \mathbb{R} . Thus, \mathbb{Q} must be a meagre set/of the first category by definition.

We say that a set is of the second category if it is not of the first category, i.e. it cannot be expressed as a countable union of nowhere dense sets.

A set is <u>residual</u> or comeagre if it is the complement of a meagre set.