Sybil Attacks

- Attacker attempts to fill the network with the clients under its control
 - Refuse to relay valid blocks
 - Relay only attacked blocks can lead to double spending

• Solution:

 Diversify the connections – Bitcoin allows outbound connection to one IP per /16 (a.b.0.0) IP address

Denial of Service (DoS) Attacks

Send lot of data to a node – they will not be able to process normal Bitcoin transactions

Solutions:

- No forwarding of orphaned blocks
- No forwarding of double-spend transactions
- No forwarding of same block or transactions
- Disconnect a peer that sends too many messages
- Restrict the block size to 1 MB
- Limit the size of each script up to 10000 bytes
- - ...

The Monopoly Problem

- PoW depends on the computing resources available to a miner
 - Miners having more resources have more probability to complete the work

- Monopoly can increase over time (Tragedy of the Commons)
 - Miners will get less reward over time
 - Users will get discouraged to join as the miner
 - Few miners with large computing resources may get control over the network

Handling Monopoly and Power Consumption - Proof of Stake (PoS)

- Possibly proposed in 2011 by a Member in Bitcoin Forum - https://bitcointalk.org/index.php?topic=27787.0
 - Make a transition from PoW to PoS when bitcoins are widely distributed
- PoW vs PoS
 - PoW: Probability of mining a block depends on the work done by the miner
 - PoS: Amount of bitcoin that the miner holds Miner holding 1% of the Bitcoin can mine 1% of the PoS blocks.

Proof of Stake (PoS)

Provides increased protection

- https://www.youtube.com/watch?v=M3EFi_POhps
- Executing an attack is expensive, you need more Bitcoins
- Reduced incentive for attack the attacker needs to own a majority of bitcoins – an attack will have more affect on the attacker

- Variants of "stake"
 - Randomization in combination of the stake (used in Nxt and BlackCoin)
 - Coin-age: Number of coins multiplied by the number of days the coins have been held (used in Peercoin)

Proof of Burn (PoB)

- Miners should show proof that they have burned some coins
 - i.e. no one will be able to spend that coin
 - Sent them to a verifiably un-spendable address
 - Expensive just like PoW, but no external resources are used other than the burned coins

PoW vs PoB – Real resource vs virtual/digital resource

PoB works by burning PoW mined cryptocurrencies

PoW vs PoS vs PoB

PoW

- Do some work to mine a new block
- Consumes physical resources, like CPU power and time
- Power hungry

PoS

- Acquire sufficient stake to mine a new block
- Consumes no external resource, but participate in transactions
- Power efficient

PoB

- Burn some wealth to mine a new block
- Consumes virtual or digital resources, like the coins
- Power efficient

Proof of Elapsed Time (PoET)

 Proposed by Intel, as a part of Hyperledger Sawtooth – a blockchain platform for building distributed ledger applications

• Basic idea:

- Each participant in the blockchain network waits a random amount of time
- The first participant to finish becomes the leader for the new block

PoET over Trusted Environments

- How will one verify that the proposer has really waited for a random amount of time?
 - Utilize special CPU instruction set Intel Software Guard Extension (SGX) – a trusted execution platform
 - The trusted code is private to the rest of the application
 - The specialized hardware provides an attestation that the trusted code has been set up correctly

i.e. complete hardware control

