UNIDAD 1-C

PROPIEDADES DE LAS SUSTANCIAS PURAS

CONTENIDOS:

1.C. Concepto de sustancia pura y de fase. <u>Propiedades P-v-T de una sustancia pura</u>. Fases de equilibrio: vapor-líquido-sólido. Diagramas T-v; P-T y P-v Ecuaciones para una mezcla saturada líquido vapor. Postulado de estado. Superficie de estado P-v-T. Tablas de propiedades termodinámicas

BIBLIOGRAFÍA:

Cengel, Yunus A.; Boles, Michael A.
 TERMODINÁMICA. Edit. Mc. Graw Hill

•Calderón, Lisando H. Apuntes de Termodinámica . Capítulo 1

SUSTANCIA PURA:

➤ Tiene una composición química fija.
Ej.: AGUA ; NITRÓGENO ; HELIO

Si existe en más de una fase: Debe tener igual composición en todas las fases

Ej.: AGUA CON HIELO

ESTADO DE AGREGACIÓN DE LA MATERIA:

Considerando el estado físico, la materia puede encontrarse como sólido, líquido o gas, en los cuales la disposición de las moléculas es diferente

Sólido: Las moléculas están en posiciones relativamente fijas. Distancias intermoleculares pequeñas. Fuerzas de atracción grandes

Líquido: Los grupos de moléculas pueden apartarse entre sí. Fuerzas de atracción y distancias intermoleculares intermedias.

Excepción: H₂O

Gas: Las moléculas se mueven al azar, no hay orden molecular.
Distancias intermoleculares grandes. Fuerzas de atracción pequeñas

FASE:

- Cualquier región de la materia con composición química y estado de agregación uniformes.
- Las propiedades intensivas tienen el mismo valor en cualquier punto.
- Las fases se separan entre sí por superficies perfectamente identificables (interfase)

Dos fases en equilibrio

SUSTANCIAS SIMPLES COMPRESIBLES:

Carecen de efectos significativos de superficie, efectos magnéticos y eléctricos. Cambian significativamente su volumen por variaciones de P o T.

Pueden intercambiar trabajo cuasiestático fundamentalmente gracias a un cambio de volumen.

IMPORTANCIA DE LAS PROPIEDADES P - v - T :

➤ Propiedades <u>directamente mensurables</u>, que servirán de base para conocer el valor de otras propiedades no mensurables directamente como U, H ó S.

➤ Herramienta indispensable para el <u>estudio de los ciclos</u> que se llevan a cabo con fluidos condensables

CAMBIOS DE FASE EN SUSTANCIAS PURAS EQUILIBRIO VAPOR - LÍQUIDO

SUSTANCIA PURA: AGUA

Agua en dispositivo cilindro – pistón, a 1 atm y 20 °C

Se suministra Q <u>a presión constante</u> (1atm)

SE SUMINISTRA Q A PRESIÓN CONSTANTE DE 1 ATM:

Se calienta el agua, <u>a 1 atm</u>, desde 20°C hasta 100°C (Leve aumento de volumen)

SE SUMINISTRA Q A PRESIÓN CONSTANTE DE 1 ATM:

COEXISTEN LÍQUIDO Y VAPOR

A partir de 100°C, la temperatura ya no sube sino que comienza a evaporarse el líquido, tanto a P como a T constantes y "v" aumenta considerablemente

> T: Temp. de saturación

> P: Presión de saturación

VAPOR <u>HUMEDO</u> ó MEZCLA SATURADA LÍQUIDO-VAPOR

Fase vapor: <u>Vapor saturado</u>

Fase Líquido: Líquido saturado

SE SUMINISTRA Q A PRESIÓN CONSTANTE DE 1 ATM:

La evaporación a P y T constantes continúa hasta que se ha vaporizado todo el líquido

VAPOR SATURADO SECO

Cuando ya se ha evaporado todo el líquido y se encuentra como vapor, comienza a subir la temperatura del vapor y continúa el aumento de volumen

SI RECORDAMOS EL ESTADO 1

El líquido está a una temperatura menor que la Tsat a esa presión (T<100°C)

LIQUIDO SUBENFRIADO

Como también está a una presión mayor que la de saturación a esa temperatura (P>0,0234 bar)

LIQUIDO COMPRIMIDO

Cambio de fase desde líquido subenfriado hasta vapor sobrecalentado del agua, a 1 atm.

- 1)- Líquido subenfriado; 2)-Líquido saturado;
 - 3)-Vapor húmedo o Mezcla saturada líq-vap ;
 - 4)-Vapor saturado ("seco")
 - 5)-Vapor sobrecalentado

Diagrama Temperatura – Volumen específico

ISOBARA

Diagrama Temperatura – Volumen específico para sustancias puras

En
$$\overline{2-4}$$
: $x = \frac{masa\ de\ vapor}{masa\ de\ vapor + masa\ de\ líquido}$

x: Título o calidad del vapor húmedo (propiedad intensiva)

Diagrama Temperatura – Volumen específico para sustancias puras

Diagrama Temperatura – Volumen específico para sustancias puras

Diagrama Presión – Temperatura para sustancias puras

(Ej.: agua)

Psat = f (Tsat)

Diagrama Presión – Volumen específico

Se busca mantener T=ctte

Para T=150°C Psat= 476,16 kPa = 0,476 MPa

Diagrama Presión – Volumen específico para sustancias puras

VAPOR HÚMEDO

$$V = V_f + V_g$$

$$V = m_t V \longrightarrow m_t V_{\text{prom}} = m_f V_f + m_g V_g$$

$$m_f = m_t - m_g \longrightarrow m V_{\text{prom}} = (m_t - m_g) V_f + m_g V_g$$

$$v_{\text{prom}} = (1 - x)v_f + xv_g$$

$$v_{prom} = v_f + x v_{fg}$$
 (m³/kg)
Donde $v_{fg} = v_g - v_f$

$$v_{\text{prom}} = v_f + x v_{fg}$$
 (m³/kg)

Si se despeja "x":

$$x = \frac{V_{\text{prom}} - V_f}{V_{fg}}$$

O también:

$$v_{\text{prom}} = (1 - x)v_f + xv_g$$

$$\mathbf{X} = \frac{\left(\mathbf{V} - \mathbf{V}_{\mathbf{f}}\right)}{\left(\mathbf{V}_{\mathbf{g}} - \mathbf{V}_{\mathbf{f}}\right)}$$

$$x = \frac{v_{\text{prom}} - v_f}{v_{fg}}$$

Curvas de Título constante

Diagrama P-v para el AGUA

En un vapor húmedo, la expresión para calcular el volumen específico "promedio" en una mezcla

$$v_{\text{prom}} = (1 - x)v_f + xv_g$$

$$v_{\text{prom}} = v_f + xv_{fg} \qquad (Donde \ v_{fg} = v_g - v_f)$$

Es válida para otras propiedades extensivas:

$$u_{\text{prom}} = u_f + x u_{fg}$$

$$h_{\text{prom}} = h_f + x h_{fg}$$

Estados de equilibrio de un sistema simple compresible

Recipiente con un gas o vapor en equilibrio

- Para caracterizar el estado en que se encuentra el sistema, se utilizan las propiedades intensivas P, T y v
- Para que P, T y v sean representativas del estado del sistema, es necesario que su valor sea UNIFORME, o sea con el mismo valor en cualquier punto (Equilibrio interno)
- ➤ En un diagrama T v; P v o P T cada estado de equilibrio de todo el sistema se representa con UN PUNTO

Propiedades independientes de una sustancia pura (sistema simple compresible)

Si la sustancia está, en equilibrio, en <u>una sola fase</u> ⇒ <u>Dos</u> propiedades son independientes, el resto queda fijado.

Propiedades independientes de una sustancia pura

➤Si la sustancia está en <u>dos fases</u> (vapor húmedo) → T y P <u>no</u> son independientes ya que Tsat = f (Psat). Además de T ó P debe fijarse "x" ó "v".

POSTULADO DE ESTADO:

El estado de equilibrio de un sistema compresible simple se especifica por completo mediante dos propiedades intensivas independientes

USO DE TABLAS DE PROPIEDADES DE CENGEL

Agua: A4, A5, A6, A7

R134a: A11, A12, A13

TABLAS DE PROPIEDADES P - v - T para el agua. (CENGEL) ESTADO DE REFERENCIA PARA EL AGUA: Liq. Sat. en el pto. Triple (0,01°C)

ngua Sa	itulaua_ la	ibla de temperaturas Volumen específico, m³/kg		Energía interna, kJ/kg			Entalpía, kJ/kg			Entropía, kJ/kg · K		
Temp _s ,	Pres. sat., P _{set} kPa	Líq. sat.,	Vapor sat₁, v _g	Líq. sat., u _r	Evap _s ,	Vapor sat, u_{ε}	Líq. sat., h,	Evap _s ,	Vapor sat, $h_{\mathcal{E}}$	Líq. sat.,	Evapı,	Vapor sat _∎ ,
0.01 5 10 15 20	0,6117 0,8725 1,2281 1,7057 2,3392	0.001000 0.001000 0.001000 0.001001 0.001002	206.00 147.03 106.32 77.885 57.762	0,000 21,019 42,020 62,980 83,913	2374.9 2360.8 2346.6 2332.5 2318.4	2374.9 2381.8 2388.7 2395.5 2402.3	0.001 21.020 42.022 62.982 83.915	2500.9 2489.1 2477.2 2465.4 2453.5	2500.9 2510.1 2519.2 2528.3 2537.4	0.0000 0.0763 0.1511 0.2245 0.2965	9.1556 8.9487 8.7488 8.5559 8.3696	9.02 8.89 8.78
25 30 35 40 45	3.1698 4.2469 5.6291 7.3851 9.5953	0.001003 0.001004 0.001006 0.001008 0.001010	43.340 32.879 25.205 19.515 15.251	104.83 125.73 146.63 167.53 188.43	2304.3 2290.2 2276.0 2261.9 2247.7	2409.1 2415.9 2422.7 2429.4 2436.1	104.83 125.74 146.64 167.53 188.44	2441.7 2429.8 2417.9 2406.0 2394.0	2546.5 2555.6 2564.6 2573.5 2582.4	0.3672 0.4368 0.5051 0.5724 0.6386	8.1895 8.0152 7.8466 7.6832 7.5247	8.45 8.35 8.25
50 55 60 65 70	12.352 15.763 19.947 25.043 31.202	0.001012 0.001015 0.001017 0.001020 0.001023	12.026 9.5639 7.6670 6.1935 5.0396	209.33 230.24 251.16 272.09 293.04	2233.4 2219.1 2204.7 2190.3 2175.8	2442.7 2449.3 2455.9 2462.4 2468.9	209.34 230.26 251.18 272.12 293.07	2382.0 2369.8 2357.7 2345.4 2333.0	2591.3 2600.1 2608.8 2617.5 2626.1	0.7038 0.7680 0.8313 0.8937 0.9551	7,3710 7,2218 7,0769 6,9360 6,7989	7.98 7.90 7.82
75 80 85 90 95	38,597 47,416 57,868 70,183 84,609	0.001026 0.001029 0.001032 0.001036 0.001040	4.1291 3.4053 2.8261 2.3593 1.9808	313.99 334.97 355.96 376.97 398.00 419.06	2161.3 2146.6 2131.9 2117.0 2102.0 2087.0	2475.3 2481.6 2487.8 2494.0 2500.1 2506.0	314.03 335.02 356.02 377.04 398.09 419.17	2320.6 2308.0 2295.3 2282.5 2269.6 2256.4	2634.6 2643.0 2651.4 2659.6 2667.6	1.0158 1.0756 1.1346 1.1929 1.2504 1.3072	6.6655 6.5355 6.4089 6.2853 6.1647 6.0470	7.61 7.54 7.47 7.41

TABLAS DE PROPIEDADES P – V - T para el agua

(WARK)

311

TABLAS DE PROPIEDADES, FIGURAS Y DIAGRAMAS (UNIDADES SI)

TABLA A-5

Agua saturada. Tabla de presiones

		Volumen específico, m³/kg		Energía interna, kJ/kg			Entalpía, kJ/kg			Entropía, kJ/kg · K		
Pres.,	Temp.	Líq. sat.,	Vapor sat.,	Líq. sat.,	Evap.,	Vapor sat.,	Líq. sat,	Evap.,	Vapor sat.,	Líq. sat.,	Evap.,	Vapor sat.,
P kPa	$T_{\rm sat}$ °C	V_f	V _g	U_f	u_{i_Z}	u_{ε}	h _f	h_{tg}	h _z	5,	S_{fg}	$S_{\mathcal{E}}$
1.0	6.97 13.02	0.001000 0.001001 0.001001	87.964	29.302 54.686	2355.2	2384.5	29.303 54.688 73.433	2484.4 2470.1 2459.5	2513.7 2524.7 2532.9	0.1059	8.8690 8.6314	8,8270
2.0 2.5 3.0	17.50 21.08 24.08	0.001001	66.990 54.242 45.654	73.431 88.422 100.98	2325.5 2315.4 2306.9	2398.9 2403.8 2407.9	88.424 100.98	2451.0 2443.9	2539.4 2544.8	0.2606 0.3118 0.3543	8.4621 8.3302 8.2222	8.7227 8.6421 8.5765
4.0 5.0 7.5 10 15	28.96 32.87 40.29 45.81 53.97	0.001004 0.001005 0.001008 0.001010 0.001014	34.791 28.185 19.233 14.670 10.020	121.39 137.75 168.74 191.79 225.93	2293.1 2282.1 2261.1 2245.4 2222.1	2414.5 2419.8 2429.8 2437.2 2448.0	121.39 137.75 168.75 191.81 225.94	2432.3 2423.0 2405.3 2392.1 2372.3	2553.7 2560.7 2574.0 2583.9 2598.3	0.4224 0.4762 0.5763 0.6492 0.7549	8.0510 7.9176 7.6738 7.4996 7.2522	8.3938 8.2501 8.1488
20 25 30 40 50	60.06 64.96 69.09 75.86 81.32	0.001017 0.001020 0.001022 0.001026 0.001030	7.6481 6.2034 5.2287 3.9933 3.2403	251.40 271.93 289.24 317.58 340.49	2204.6 2190.4 2178.5 2158.8 2142.7	2456.0 2462.4 2467.7 2476.3 2483.2	251.42 271.96 289.27 317.62 340.54	2357.5 2345.5 2335.3 2318.4 2304.7	2608.9 2617.5 2624.6 2636.1 2645.2	0.8320 0.8932 0.9441 1.0261 1.0912	7.0752 6.9370 6.8234 6.6430 6.5019	7.8302 7.7675 7.6693
75 100	91.76 99.61	0.001037	2.2172 1.6941	384.36 417.40	2111.8 2088.2	2496.1 2505.6	384.44 417.51	2278.0 2257.5	2662.4 2675.0	1.2132 1.3028	6.2426 6.0562	7.455 7.358

TABLAS DE PROPIEDADES P - V - T para el agua (CENGEL)

TABLAS DE	PROPIEDADE	S. FIGURAS	S Y DÍAGRA	MAS (UNI DAI	DES SI)							
	TABLA A-6											
IADLA	INDLA A-0											
Vapor o	de agua sob	precalent	ado									
T	V	и	h	s	ν	и	h	s				
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m³/kg	kJ/kg	kJ/kg	kJ/kg · K				
	P =	0.01 MP	a (45.81	P = 0.05 MPa (81.32°C)								
Sat.†	14.670	2437.2	2583.9	8.1488	3.2403	2483.2	2645.2	7.5931				
50	14,867	2443,3		8,1741								
100	17.196	2515.5		8.4489	3.4187	2511.5	2682.4	7.6953				
150	19.513	2587.9	2783.0	8.6893	3,8897	2585.7	2780.2	7.9413				
200	21,826	2661.4	2879.6	8.9049	4,3562	2660.0	2877.8	8.1592				
250	24.136	2736.1	2977.5	9.1015	4.8206	2735.1	2976.2	8.3568				
300	26.446	2812.3	3076.7	9,2827	5.2841	2811.6	3075.8	8.5387				
400	31.063	2969.3	3280.0	9.6094	6.2094	2968.9	3279.3	8.8659				
500	35,680	3132.9	3489.7	9,8998	7.1338	3132.6	3489.3	9.1566				
600	40.296	3303.3	3706.3	10.1631	8.0577	3303.1	3706.0	9.4201				
700	44,911	3480.8	3929.9	10,4056	8,9813	3480.6	3929.7	9.6626				
800	49.527	3665.4	4160.6	10.6312	9.9047	3665.2	4160.4	9.8883				
900	54.143	3856.9	4398.3	10.8429	10.8280	3856.8	4398.2	10.1000				
1000	58.758	4055.3	4642.8	11.0429	11.7513	4055.2	4642.7	10.3000				
1100	63.373	4260.0	4893.8	11.2326	12.6745	4259.9	4893.7	10.4897				
1200	67.989	4470.9	5150.8	11.4132	13.5977	4470.8	5150.7	10.6704				
1300	72.604	4687.4	5413.4	11.5857	14.5209	4687.3	5413.3	10.8429				
	P =	0.20 MP	a (120.2	1°C)	P = 0.30 MPa (133.52°C)							
Sat.	0,88578	2529.1	2706.3	7.1270	0.60582	2543.2	2724.9	6.9917				
150	0.95986		2769.1	7.2810	0.63402		2761.2	7.0792				
200	1,08049		2870.7	7,5081	0.71643		2865.9	7,3132				
250	1.19890		2971.2	7.7100	0.79645	2728.9	2967.9	7.5180				
300	1,31623	2808.8	3072.1	7,8941	0,87535	2807.0	3069.6	7,7037				
400	1.54934			8.2236	1.03155		3275.5					
500	1,78142	3131.4	3487.7	8,5153	1,18672	3130,6	3486.6					
600	2.01302	3302.2	3704.8	8.7793	1.34139	3301.6	3704.0	8.5915				
700	2,24434			9,0221	1,49580	3479,5	3928,2					
800	2,47550			9.2479	1.65004		4159.3					
900	2.70656			9.4598	1.80417	3856.0	4397.3	9.2725				
1000	2,93755			9.6599	1.95824		4642.0					
1100	3.16848		4893.3	9.8497	2.11226		4893.1	9.6624				
1200	3,39938	4470.5	5150.4	10.0304	2,26624	4470.3	5150.2	9.8431				
1300	3.63026	4687.1	5413.1	10.2029	2.42019	4686.9		10.0157				

TABLAS DE PROPIEDADES P - V - T para el agua (CENGEL)

TABLAS DE PROPIEDADES, FÍGURAS Y DIAGRAMAS (UNIDADES SI)											
TABLA A-7											
	a líquida com	primida									
T	V		h	s	v	,,	h				
°c	m ³ /kg	и kJ/kg	// kJ/kg	kJ/kg · K	m ³ /kg	u kJ/kg	kJ/kg	s kJ/kg · K			
	III-7 Ng	vn/vR	r1/rg	KY/KB . IV	III-7 Ng	vn/vg	k1∖ kR	V1/VR . IV			
	P =	5 MPa (263 . 94 °0	P = 10 MPa (311.00 °C)							
Sat.	0.0012862	1148.1	1154.5	2.9207	0.0014522	1393.3	1407.9	3.3603			
0	0,0009977	0,04	5,03	0,0001	0,0009952	0,12	10,07	0,0003			
20	0.0009996	83,61	88.61	0.2954	0.0009973	83.31	93.28	0.2943			
40	0.0010057	166,92	171.95	0.5705	0.0010035	166.33	176.37	0.5685			
60	0.0010149		255,36	0.8287	0.0010127	249,43	259,55	0.8260			
80	0.0010267	333.82	338.96	1.0723	0.0010244	332.69	342.94	1.0691			
100			422.85	1.3034	0.0010385	416.23	426.62	1,2996			
120		501.91	507.19	1.5236	0.0010549	500.18	510.73	1.5191			
140			592,18	1.7344	0.0010738	584,72	595,45	1.7293			
160			678.04	1.9374	0.0010954	670.06	681.01	1.9316			
180		759,47	765.09	2,1338	0.0011200	756.48	767.68	2,1271			
200		847.92	853.68	2.3251	0.0011482	844.32	855.80	2.3174			
220		938.39	944.32	2.5127	0.0011809	934.01	945.82	2.5037			
240			1037.7	2.6983	0.0012192		1038.3	2.6876			
260		1128.5	1134.9	2.8841		1121.6	1134.3	2.8710			
280						1221.8	1235.0	3.0565			
300					0.0013980	1329.4	1343.3	3.2488			
320											
340											
	P =	20 MPa	(365.75 *	C)	P = 30 MPa						
Sat.	0.0020378	1785.8	1826.6	4.0146							
0	0.0009904	0.23	20.03	0.0005	0.0009857	0.29	29.86	0.0003			
20	0.0009929	82,71	102.57	0.2921	0.0009886	82,11	111.77	0,2897			
40	0.0009992	165.17	185.16	0.5646	0.0009951	164.05	193.90	0.5607			
60	0.0010084	247,75	267,92	0.8208	0.0010042	246,14	276,26	0,8156			
80	0.0010199	330.50	350.90	1.0627	0.0010155	328,40	358,86	1.0564			
100	0,0010337	413,50	434,17	1,2920	0,0010290	410,87	441,74	1,2847			
120	0.0010496	496,85	517.84	1.5105	0.0010445	493.66	525.00	1.5020			
140	0.0010679	580.71	602.07	1.7194	0.0010623	576.90	608.76	1.7098			
160	0.0010886	665,28	687.05	1.9203	0.0010823	660.74	693,21	1.9094			
180	0.0011122	750.78	773.02	2.1143	0.0011049	745.40	778.55	2.1020			
200			860.27	2.3027	0.0011304	831.11	865.02	2,2888			
220		925,77	949.16	2.4867	0.0011595	918.15	952.93	2.4707			
240	0.0012053	1016,1	1040.2	2.6676	0.0011927	1006.9	1042.7	2,6491			
260			1134.0	2.8469		1097.8	1134.7	2,8250			
280			1231.5	3,0265	0.0012770		1229.8	3,0001			
300			1334.4	3.2091	0.0013322	1288.9	1328.9	3.1761			
320	0,0014450	1416,6	1445,5	3,3996	0,0014014	1391,7	1433,7	3,3558			

DIAGRAMA P – v incluyendo la fase sólida Sustancia que se contrae al pasar de líquido a sólido

DIAGRAMA DE FASES (P – T) Sustancia que se contrae al pasar de líquido a sólido

A la P y T del punto triple, la sustancia existe en tres fases en equilibrio

DIAGRAMA DE FASES (P – T) Fluido supercrítico

CASO PARTICULAR: CAMBIO DE FASE SÓLIDO LÍQUIDO PARA EL AGUA

DIAGRAMA P – v incluyendo la fase sólida Sustancia que se expande al pasar de líquido a sólido (Ej: agua)

DIAGRAMA DE FASES (P – T) Sustancia que se expande al pasar de líquido a sólido

SUPERFICIE DE ESTADO DE UNA SUSTANCIA PURA (Se contrae al pasar de líquido a sólido)

SUPERFICIE DE ESTADO DE UNA SUSTANCIA PURA (Se contrae al pasar de líquido a sólido)

SUPERFICIE DE ESTADO DE UNA SUSTANCIA PURA (Se dilata al pasar de líquido a sólido)

SUPERFICIE DE ESTADO DE UNA SUSTANCIA PURA (Se dilata al pasar de líquido a sólido)

DIAGRAMA P – v incluyendo la fase sólida Sustancia que se expande al pasar de líquido a sólido (Ej: agua)

DIAGRAMA DE FASES (P – T) Sustancia que se expande al pasar de líquido a sólido

FIN