ANR Report - Target registration error distribution

Guillaume POTIER
20 septembre 2019

Ellipse de confiance

Afin de pouvoir tracer l'ellipse de confiance sur une image, j'ai repris les développements de Moghari en dimension 2. Nous avions la log-vraisemblance :

$$\log (P(Y|X, t, \theta)) = \sum_{i=1}^{N} \log \left(\frac{1}{\sqrt{2\pi |\Lambda_i|}} \right) + \sum_{i=1}^{N} -\frac{\left[y_i - Rx_i - t \right]^T \Lambda_i^{-1} \left[y_i - Rx_i - t \right]}{2}$$

R est une matrice de rotation :

$$R = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

$$[y_i - Rx_i - t] = \begin{bmatrix} y_i^x - x_i^x \cos \theta + x_i^y \sin \theta - t_x \\ y_i^y - x_i^x \sin \theta - x_i^y \cos \theta - t_y \end{bmatrix}$$

$$\frac{\partial \log (P(Y|X, t, \theta))}{\partial t} = \sum_{i=1}^N \Lambda_i^{-1} \begin{bmatrix} y_i^x - x_i^x \cos \theta + x_i^y \sin \theta - t_x \\ y_i^y - x_i^x \sin \theta - x_i^y \cos \theta - t_y \end{bmatrix}$$

$$\frac{\partial \log (P(Y|X, t, \theta))}{\partial \theta} = \sum_{i=1}^N \left[x_i^x \sin \theta + x_i^y \cos \theta - x_i^x \cos \theta + x_i^y \sin \theta \right] \Lambda_i^{-1} \begin{bmatrix} y_i^x - x_i^x \cos \theta + x_i^y \sin \theta - t_x \\ y_i^y - x_i^x \sin \theta - x_i^y \cos \theta - t_y \end{bmatrix}$$

$$\frac{\partial^2 \log (P(Y|X, t, \theta))}{\partial t^2} = J_{tt} = \sum_{i=1}^N -\Lambda_i^{-1}$$

$$\begin{split} \frac{\partial^2 \log \left(P(Y|X,t,\theta)\right)}{\partial \theta^2} &= J_{\theta\theta} \\ &= \sum_{i=1}^N \left[x_i^x \sin \theta + x_i^y \cos \theta \right. \\ &- x_i^x \cos \theta + x_i^y \sin \theta \right] \Lambda_i^{-1} \left[\begin{array}{c} x_i^x \sin \theta + x_i^y \cos \theta \\ - x_i^x \cos \theta + x_i^y \sin \theta \end{array} \right] \\ &+ \sum_{i=1}^N \left[x_i^x \cos \theta - x_i^y \sin \theta \right. \\ &- x_i^x \sin \theta + x_i^y \cos \theta \right] \Lambda_i^{-1} \left[\begin{array}{c} y_i^x - x_i^x \cos \theta + x_i^y \sin \theta - t_x \\ y_i^y - x_i^x \sin \theta - x_i^y \cos \theta - t_y \end{array} \right] \end{split}$$

 $\frac{\partial^2 \log \left(P(Y|X,t,\theta) \right)}{\partial t \partial \theta} = J_{t\theta} = J_{\theta t}^T = \sum_{i=1}^N \Lambda_i^{-1} \begin{bmatrix} x_i^x \sin \theta + x_i^y \cos \theta \\ -x_i^x \cos \theta + x_i^y \sin \theta \end{bmatrix}$

L'inégalité de Cramer-Rao :

$$\Sigma = \begin{bmatrix} \Sigma_{tt} & \Sigma_{t\theta} \\ \Sigma_{\theta t} & \Sigma_{\theta \theta} \end{bmatrix} \ge J^{-1} = \begin{bmatrix} -J_{tt} & -J_{t\theta} \\ -J_{\theta t} & -J_{\theta \theta} \end{bmatrix}^{-1}$$

soit $e(z) = Rz + t - (\hat{R}z + \hat{t})$ le vecteur erreur de recalage au point z.

$$e(z) = (R - \hat{R})z + (t - \hat{t})$$

$$= \Delta Rz + \Delta t$$

$$\sum_{e}(z) = E(e(z)e^{T}(z))$$

$$= E((\Delta Rz + \Delta t)(\Delta Rz + \Delta t)^{T})$$

$$= E(\Delta Rzz^{T}\Delta R^{T}) + E(\Delta Rz\Delta t^{T}) + E(\Delta tz^{T}\Delta R^{T}) + E(\Delta t\Delta t^{T})$$

$$\Delta R = R - \hat{R} = \begin{bmatrix} 0 & (\hat{\theta} - \theta) \\ (\theta - \hat{\theta}) & 0 \end{bmatrix}$$

$$\Delta t = t - \hat{t} = \begin{bmatrix} t_{x} - \hat{t}_{x} \\ t_{y} - \hat{t}_{y} \end{bmatrix}$$

$$E(\Delta Rzz^{T}\Delta R^{T}) = E\left(\begin{bmatrix} z_{y}^{2}(\hat{\theta} - \theta)^{2} & z_{x}z_{y}(\hat{\theta} - \theta)(\theta - \hat{\theta}) \\ z_{x}z_{y}(\hat{\theta} - \theta)(\theta - \hat{\theta}) & z_{x}^{2}(\theta - \hat{\theta})^{2} \end{bmatrix}\right)$$

$$= \begin{bmatrix} E(z_{y}^{2}(\hat{\theta} - \theta)^{2}) & E(-z_{x}z_{y}(\hat{\theta} - \theta)^{2}) \\ E(-z_{x}z_{y}(\hat{\theta} - \theta)^{2}) & E(z_{x}^{2}(\hat{\theta} - \theta)^{2}) \end{bmatrix}$$

Puisque $\hat{\theta}$ est un estimateur sans biais nous avons $E(\hat{\theta}) = \theta$ et $E((\hat{\theta} - \theta)^2) = Var(\hat{\theta})$

$$E(\Delta R z z^T \Delta R^T) = \begin{bmatrix} z_y^2 \Sigma_{\theta\theta}^{11} & -z_x z_y \Sigma_{\theta\theta}^{11} \\ -z_x z_y \Sigma_{\theta\theta}^{11} & z_x^2 \Sigma_{\theta\theta}^{11} \end{bmatrix}$$

$$E(\Delta R z \Delta t^T) = \begin{bmatrix} -z_y \Sigma_{t\theta}^{11} & -z_y \Sigma_{t\theta}^{21} \\ z_x \Sigma_{t\theta}^{11} & z_x \Sigma_{t\theta}^{21} \end{bmatrix}$$

$$E(\Delta t z^T \Delta R^T) = E(\Delta R z \Delta t^T)^T$$

$$E(\Delta t \Delta t^T) = \begin{bmatrix} \Sigma_{tt}^{11} & \Sigma_{tt}^{12} \\ \Sigma_{tt}^{21} & \Sigma_{tt}^{22} \end{bmatrix}$$

$$\Sigma_e(z) = \begin{bmatrix} z_y^2 \Sigma_{\theta\theta}^{11} - 2z_y \Sigma_{t\theta}^{11} + \Sigma_{tt}^{11} & -z_x z_y \Sigma_{\theta\theta}^{11} - z_y \Sigma_{t\theta}^{21} + z_x \Sigma_{t\theta}^{11} + \Sigma_{tt}^{12} \\ -z_x z_y \Sigma_{\theta\theta}^{11} - z_y \Sigma_{t\theta}^{21} + z_x \Sigma_{t\theta}^{11} + \Sigma_{tt}^{12} & z_x^2 \Sigma_{\theta\theta}^{11} + 2z_x \Sigma_{t\theta}^{21} + \Sigma_{tt}^{22} \end{bmatrix}$$

Nous considérons que :

$$e(z) \sim \mathcal{N}_2(0, \Sigma_e(z))$$

Dans le cadre de la régression linéaire cela se traduit par :

$$e(z) = -(z\hat{\beta} - z\beta)$$

Donc

$$z\hat{\beta} \sim \mathcal{N}_2(z\beta, \Sigma_e(z))$$