

BASARA SARASWATHI BHAVAN_MDP N-120

Section: Senior
Name of the student:
Group-17
Date: 18-06-2020
I.D.No: Sec:

Property						
Elements &	F ₂ (gas)	Cl ₂ (gas)	Br ₂ (liquid)	I ₂ (solid)		
Physical						
state						
General	ns ² np ⁵					
electronic						
configuration						
Oxidation	Possible oxidation states are – 1 + 1 + 3 + 5 and + 7, 'F' always exhibits –1					
states	other elements	s exhibit –1 with les	s E.N elements. Cl, Br,	I can exhibit		
	positive states if combines with more E.N. elements.					
Valency	Variable valan	cies are 1, 3, 5, 7.				
	Fluorine is always monovalent can't expand valancy due to lack of vacant					
	'd' orbitals.					
Colour	Colour due to absorption of certain wave length of visible light resulting					
	from excitation of outer \overline{e} to higher energy level					
	F ₂ (light yellow) Cl ₂ (yellow green) Br ₂ (dark reddish brown)					
	aqueous solution of I_2 brown in colour					
	I ₂ (violet) —					
	L	organic solution	violet in colour			
	I ₂ (solid) conducts electricity to small extent (intrinsic semiconductor)					
	$I_{2(liquid)}$ conducts very slightly due to self ionization ($I_2 \rightleftharpoons I_3^+ + I_3^-$)					
	$ \begin{array}{c} \text{Cl}_{2}\left(\text{water}\right) & \xrightarrow{\text{careful}} & \text{Cl}_{2}.8\text{H}_{2}\text{O} \\ \text{Br}_{2}\left(\text{water}\right) & \longrightarrow & \text{Br}_{2}.8\text{H}_{2}\text{O} \end{array}\right\} \text{crystals} $					
	$Br_2(water)$	\longrightarrow Br ₂ .8H ₂ O crysta	ls			
Bond energy	Expected to decrease from F_2 to I_2 .					
	But bond energy of F ₂ less than Cl ₂ and Br ₂ due to small size and electron					
	– electron repulsion.					
	$Cl_2 > Br_2 > F_2 > I_2$.					
E.A	F_2 < Cl_2 due to		1 1 , 1 ,			

	fluorine.					
	The order o	The order of E.A is: $Cl > F > Br > I$				
S.R.P values	F(2.8)	Cl(1.36)	Br(1.08)	I(0.54)		
(E ₀)	As SRP valu	As SRP values decreases oxidising capacity also decreases.				

SRP values depend on several factors.

$$\begin{array}{c} \frac{1}{2} \underset{(Solid)}{X_{2}} \xrightarrow{\Delta H_{f}} \xrightarrow{\Delta H_{g}} \frac{1}{2} \underset{(liquid)}{X_{2}} \xrightarrow{\Delta H_{vap}} \xrightarrow{1} \underset{(gas)}{X_{2}} \\ & \qquad \qquad \downarrow \Delta H \ dis \\ X^{-} \left(H_{2}O\right)_{n} \xleftarrow{H_{2}O}_{H.E} \underset{(g)}{X^{-}} \xleftarrow{+le}_{E.A} X(g) \end{array}$$

Net energy required for oxidising reaction = $\frac{1}{2}\Delta H_f + \frac{1}{2}\Delta H_{vap} + \frac{1}{2}B.D.E + E.A + H.E$.

- For I_2 ΔH_f and ΔH_{vap} are added \therefore have low value of SRP.
- High hydration of F compensates electron affinity
 - \therefore F₂ is strongest oxidising agent.

Displacement reaction:

More oxidising halogen liberates less oxidising halogen from its halide.

$$2NaX + F_2 \longrightarrow X_2 + 2NaF$$

$$X = Cl, Br,I.$$

Or

$$2X^- + F_2 \longrightarrow X_2 + 2F^-$$

But I₂ can liberate Br₂ and Cl₂ from their oxo acids and salts

eg.
$$2KClO_3 + I_2 \longrightarrow 2KIO_3 + Cl_2$$

 $2KBrO_3 + I_2 \longrightarrow 2KIO_3 + Br_2$

Chemical reactivity:

F₂ most reactive. Reactivity decreases down the group.

Reaction with water:

$$2F_2 + 2H_2O \xrightarrow{\text{Cold}} 4HF + O_2$$

 $2F_2 + 3H_2O \xrightarrow{\text{Hot}} 6HF + O_3$

Cl₂ & Br₂ can disproportionate H₂O in presence of light

$$X_2 + H_2O \longrightarrow HX + HOX$$

(X = Cl, Br)

 I_2 does not react with water (insoluble) but dissolves in water in presence of I^- due to formation of I_3^- .

Reaction with base:

$$F_2 + \underset{\substack{\text{(Cold)} \\ \text{Dilute}}}{\text{NaOH}} \longrightarrow \text{NaF} + H_2O + OF_2$$

$$F_2 + NaOH \longrightarrow NaF + H_2O + O_2$$

Other halogen X₂ (Cl₂, Br₂ & I₂) disproportionate

$$X_2 + \underset{\text{Cold}}{\text{NaOH}} \longrightarrow NaX + H_2O + \underset{\text{hypohalite}}{NaXO}$$

$$X_2 + \underset{\text{NaOH}}{\text{NaOH}} \longrightarrow \underset{\text{NaX}}{\text{NaX}} + H_2O + \underset{\text{halite}}{\text{NaXO}_3}$$

Reduction with Na₂S₂O₃:

$$Cl_2 + H_2O + Na_2S_2O_3 \longrightarrow NaHSO_4 + HCl$$

$$Br_2 + H_2O + Na_2S_2O_3 \longrightarrow NaHSO_4 + HBr$$

$$Na_2SO_4 + NaI \leftarrow OH^ Na_2S_2O_3 + I_2 \xrightarrow{H^+} Na_2S_4O_6 + NaI$$

Reaction with NH₃:

$$F_2 + NH_3 \longrightarrow NF_3 + HF$$

$$Cl_2 + NH_3 \longrightarrow NH_4Cl + N_2$$

$$Cl_2 + NH_3 \longrightarrow NCl_3 + HCl$$
(excess)

 Br_2 also reacts in the same way as Cl_2 .

$$NH_3 + 3I_2 \xrightarrow{-3HI} NI_3.NH_3 \longrightarrow N_2 + I_2 + NH_4I$$
.

OXIDES:

1. <u>Cl₂O (Chlorine Monoxide):</u> Yellow brown gas (used to bleach wood pulp and fabrics]

Preparation: (Lab and industrial method) reaction of dry Cl₂ with HgO.

$$Cl_2$$
 + HgO \longrightarrow $HgCl_2.HgO + Cl_2O$ diluted with Freshly dryair Precipitate

Cl₂O explodes on heating or in presence of reducing agent like NH₃.

$$Cl_2O + NH_3 \rightarrow NH_4Cl + N_2 + H_2O$$

Structures of: OF2, Cl2O & Br2O

Bond angles

Expected bond angles based sp³ hybridisation of central atom 109⁰28'.

- In OF₂ 'F' is more electro negative than oxygen so bond pairs lies very close to 'F'.
 - : lone pair lone pair repulsion is more than bond pair bond pair repulsion.
 - : bond angle is lesser than expected.
- In Cl₂O & Br₂O, 'O' being more electro negative than 'Cl' and 'Br' the bond pair lies close to oxygen atom.
 - : bond pair bond pair repulsion is more than lone pair lone pair repulsion.
 - ∴ bond angle is more than expected.
- $^{\circ}$ O₂F₂ is unstable and strong oxidising as well as fluorinating agent. The structure is similar to that of H₂O₂ but O O bond length is shorter (1.22A) than O O that of H₂O₂ (1.48 A⁰).
- The O F bond length (1.58 A⁰) in O_2F_2 is longer than that in OF_2 .
- © Cl₂O is dissolves in water to form hypochlorous acid.
- It is an anhydride of hypochlorous acid. So its reaction with base (NaOH) gives hypochlorite.

$$H_2O + Cl_2O \rightarrow HClO$$

 $Cl_2O + NaOH \rightarrow NaOCl + H_2O$

2. <u>ClO₂ Chlorine dioxide:</u> (powerful oxidising and chlorinating gas)

Explodes at above – 40° C at higher concentration and when mixed with reducing agents like NH₃.

- \sim In ClO₂ the bond angle is 118°C and the bond length is 1.47A°.
- It is an odd electron molecule so exhibits paramagnetism.
- Odd electron molecules generally dimerise. But ClO₂ does not as the odd electron bond is stabilized by resonance.

Preparation:

(i) $AgClO_3 + Cl_2 \rightarrow AgCl + ClO_2 + O_2$ (unsafe method)

As concentration of ClO₂ increases it leads to explosion.

(ii) $NaClO_3 + (COOH)_2 \rightarrow NaCl + (COONa)_2 + CO_2 + H_2O + ClO_2 (safe method)$

ClO₂ is diluted with CO₂ to prevent the explosion.

Cl₂O is mixed anhydride of chlorous and chloric acid.

$$2\text{ClO}_2 + \text{H}_2\text{O} \longrightarrow \text{HClO}_3 + \text{HClO}_2$$
(paramagnetic)

So it react with base to generate

$$2ClO_2 + NaOH \rightarrow NaClO_3 + NaClO_2 + H_2O$$

3. BrO_2 :

Preparation:

- (i) By silent electric discharge of on Br₂ & O₂
- (ii) Low temperature ozanalysis of Br₂

$$Br_2 + 6O_3 \rightarrow 2BrO_2 + 6O_2$$

$$BrO_2 + NaOH \rightarrow NaBr + NaBrO_3 + H_2O$$
.

4. <u>Cl₂O₆:</u> (dichlorine hexoxide) (dark red liquid)

Strong oxidising, dia magnetic

Preparation:

Ozonolysis of ClO₂

$$2ClO_2 + 2O_3 \rightarrow Cl_2O_6 + 2O_2$$

Structure: Cl₂O₆ structure is known. The possible structures are given below.

Structure (i):

$$0$$
 $CI - CI$ 0 0

Structure (ii):

Ionic composition (solid state): ClO₂ ClO₃

Cl₂O₆ is a mixed anhydride of chloric and perchloric acids.

$$\begin{array}{c} \text{Cl}_2\text{O}_6 & +\text{H}_2\text{O} \longrightarrow \text{HClO}_3 + \text{HClO}_4 \\ \text{(dia magnetic)} \end{array}$$

So it forms chlorate and perchlorate with base.

 $Cl_2O_6 + NaOH \rightarrow NaClO_3 + NaClO_4 + H_2O$

- **5. Cl₂O₇**: (dichlorine heptoxide)
 - Explosive, colour less liquid.
 - Only exothermic oxide of chlorine.

Preparation: Dydehydration of HClO₄.

$$2HClO_{4} \xrightarrow{P_{4}O_{10} \atop -H_{2}O} Cl_{2}O_{7}.HPO_{3}$$

$$(PO_{1} + H_{2}O_{2}) H_{2}O_{3}$$

$$\left. \begin{array}{l} \cdot \cdot \left\{ \begin{matrix} P_4O_{10} + H_2O \rightarrow H_3PO_4 \\ H_3PO_4 \xrightarrow{P_4O_{10}} + HPO_3 \end{matrix} \right\} \end{array} \right.$$

Structure:

Bent structure with bridging 'O' atom.

F It is a true anhydride of perchloric acid.

$$Cl_2O_7 + H_2O \longrightarrow 2HClO_4$$

So it forms perchlorate on reaction with base

$$Cl_2O_7 + NaOH \longrightarrow NaClO_4 + H_2O$$

Increasing order of acidic character due to increasing oxidation state of chlorine.

Oxides with the same oxidation state.

$$\frac{\text{Cl}}{\text{Oxides}}$$
 > $\frac{\text{Br}}{\text{Oxides}}$ > $\frac{\text{I}}{\text{Oxides}}$

Decreasing order of acidic character due to decreasing in non – metallic character.

Oxides of iodine:

- (i) I_2O_5 : Covalent
- (ii) I_2O_4 : ionic $\rightarrow IO^+ IO_3^-$
- (iii) I_4O_9 : ionic $\rightarrow I^{+3} \left(IO_3^- \right)_3$
- (ii) and (iii) are less stable than I₂O₅.

<u>I₂O₅:</u>

- White crystalline solid.
- $\ensuremath{\mathscr{F}}$ It is an anhydride of HIO3

$$2\text{HIO}_3 \xrightarrow{\text{170}^0\text{ C}} \text{I}_2\text{O}_5$$

- It is useful analytical reagent for estimation of CO
- Hygroscopic
 - \therefore commercial sample has formula I_2O_5 . HIO₃.

Structure:

Three dimensional with strong IO interaction (in solid state).

Oxy acids of Halogen:

F' can't form stable oxy acids.

1. Hypo halous acids:

General formula: HOX

Structure : X - OH

eg. HOCl, HOBr & HOI

All are weak acids and are known only in solution. Strongly oxidising.

* Acidic character: HOCl > HOBr > HOI

[The acidic character depends on electro negativity of central atom, higher the electro negativity greater the acidic character].

Stability: HOCl > HOBr > HOI

[Depends on strength of X – OH bond. X – OH strength decreases, stability decreases]

Basic character of conjugate bases:

[Weaker acid form strong conjugate base]

All are prepared by shaking halogen water with HgO.

$$HgO + X_2 + H_2O \rightarrow HgX_2HgO + HOX$$
.

$$3XO^- \rightarrow 2X^- + XO_3^-$$

- NaOCl sodium hypochlorite extensively used for bleaching cotton fabric and as a domestic bleach.
- **2. <u>Halous acid:</u>** only HClO₂ known and exists in solution.

Preparation: Ba(ClO₂)₂ + H₂SO₄ \rightarrow HClO₂ + BaSO₄

NaClO₂ sodium chlorite used as bleach and prepared from ClO₂ & NaOH or ClO₂ & Na₂O₂.

$$\text{ClO}_2 + \text{NaOH} \rightarrow \underset{(\text{Chlorite})}{\text{NaClO}_2} + \text{NaClO}_3 + \text{H}_2\text{O}$$

$$ClO_2 + Na_2O_2 \rightarrow NaClO_2 + O_2$$

3. Halic acids:

General formula HXO3

Strong oxidising and strong acids

Structure :
$$O = \overset{\circ}{\overset{\circ}{X}} - OH$$

$$\underbrace{\text{HCIO}_3}_{\substack{\text{exist in solution} \\ \text{(not very stable)}}} \quad \quad \underset{\text{stable (Solid)}}{\text{HIO}_3}$$

Preparation:

$$Ba(XO_3)_2 + H_2SO_4 \rightarrow HXO_3 + BaSO_4.$$

$$(X = C1, B_r)$$

$$I_2 + HNO_3 \rightarrow HIO_3 + NO_2 + H_2O$$

Acidic character:

$$HClO_3 > HBrO_3 > HIO_3$$

(Based on electro negativity of halogens).

Stability:
$$HCIO_3 < HBrO_3 < HIO_3$$

Uses of chlorates: Sodium chlorate explodes on grinding

NaClO3: used in fireworks, matches, weed killer.

$$KClO_3 \xrightarrow{400-500} KCl + O_2$$

$$KClO_3 \xrightarrow{MnO_2} KCl + O_2$$

$$\frac{\text{KClO}_{3} \xrightarrow{\text{absence of}} \text{KClO}_{4} + \text{Cl}^{-}}{\text{low temperature}}$$

4. **Perhalic acids:**

General formula (HXO₄): HClO₄ and HIO₄ are existing.

HClO₄ perchloric acid (powerful oxidising when anhydrous one of the strongest acid known)

$$NaClO_3 + H_2O \xrightarrow{electrolysis} NaClO_4 + H_2SO_4 \rightarrow HClO_4 + NaHSO_4$$

(commercial HClO₄ (70%) is dihydrate HClO₄.2H₂O. it is only oxy acid which can be separated as anhydrous by heating with $H_2S_2O_7$].

Mg(ClO₄)₂ Magnesium perchlorate (hygroscopic) known as anhydrone used in dry batteries as electrolyte and as desiccant.

$$\begin{bmatrix} O \\ \parallel \\ O = C1 - OH \\ \parallel \\ O \end{bmatrix}.$$

All group I perchlorates are soluble except K+, Rb+, Cs+.

∴ K⁺ quantitatively estimated as KClO₄.

Common form of periodic acid HIO₄ . 2H₂O or H₅IO₆ known as para periodic acid. Decomposes under vaccum on heating to form various periodic acids.

H₅IO₅ octahedral, weaker acid than HClO₄ but stronger oxidising than HClO₄.

Properties	Cl – OH	OC1 OH	O ₂ ClOH	O ₃ ClOH	
Structure		0	0,,	0	
			С1 — ОН 	CI — OH	
	Cl – OH	Cl – OH	0	0	
Acidic character	increases fro	m left to right [high	er the oxidation stat	e greater the acidic character	
Stability	increases from left to right As the number of 'O'atoms increases number of bonds and stabilityincreases				
Stability of anion	ClO <	$ClO_2^- < ClO_3^-$	< ClO ₄		
	Due to reso	onance.			
Basic character of	ClO ⁻ >	$ClO_2^- > C$	$ClO_3^- > ClC$	0_{4}^{-}	
conjugate bases.	Stronger acid can generate weaker conjugate base.				

Hydrides:

General formula: HX

General properties of hydrides:

Properties	HF	HC1	HBr	HI	
Physical state	Liquid	gas	gas	gas	
B.P	B.P∝ Mol. Wt (only hydrides without 'H' bonding)				
	HF > HI > HE	3r > HCl			
B.E & stability	HF > HCl > HBr > HI				
	[bond length increases from HF to HI : bond energy &				
	stability decreases].				
Reducing	Reducing character $\propto \frac{1}{}$				
character	B.E				
	HF < HCl < HBr < HI				
Acidic character	Depends on bond energy of H – X bond (but not on electro				
	negativity of halogen).				
	HF < HCl < HBr < HI				
	Bond energy decreases acidic character increases.				
Basic character	$F^- > Cl^- > Br^- > I^-$				
of conjugate	[strong acids form weak conjugate base].				
bases					
Composition of	36%	20.4%	47%	57%	
constant boiling	$(B.P 120^{\circ})$	(110°)	(126°)	(127°)	
mixture of acids.					
Reaction with	No reaction	No reaction	Br_2	I_2	
conc. H ₂ SO ₄					

Hydrogen fluoride: Hydro fluoric acid is very corrosive

Industrial preparation:

$$CaF_2 + H_2SO_4 \rightarrow HF + CaSO_4$$

Note: CaF₂ should be free from SiO₂ other wise much of the HF is consumed.

$$SiO_2 + HF \rightarrow SiF_4 + 2H_2O$$

$$SiF_4 + 2HF \rightarrow H_2[SiF_6].$$

- $\ensuremath{\text{@}}$ HF hydrogen bonded (HF)_n zig . zag chain in both liquid and solid state.
- Figure Liquid HF as solvent: (HF solvent has strong tendency to donate proton)
- Self ionisation.

$$2HF \rightleftharpoons [H_2F]^+ + F^-$$

The substance which produces $[H_2F]^+$ in liquid HF is acid & the one which produces F^- is called base.

Eg: H_2SO_4 , HNO_3 which are strong acids in aqueous solution behaves as bases in liquid HF

$$HF + H_2SO_4 \rightarrow H_3 \overset{+}{S}O_4 + F^-$$

$$\mathrm{HF} + \mathrm{HNO}_3 \rightarrow \mathrm{H_2} \overset{+}{\mathrm{N}} \mathrm{O}_3 + \mathrm{F}^-$$

The strongest acid like HClO₄ behaves as amphoteric,

$$\begin{array}{c} \mathrm{HF} + \mathrm{HClO_4} \longrightarrow \mathrm{H_2} \stackrel{\scriptscriptstyle{+}}{\mathrm{F}} + \mathrm{ClO_4^-} \\ \mathrm{(acid)} \end{array}$$

$$\begin{array}{c} HF + HClO_{_4} \rightarrow HClO_{_4}^+ + F^- \\ \text{(acid)} \end{array}$$

Preparation of HCl, HBr & HI:

$$\mathrm{NH_4Cl} + \underset{\mathrm{conc}}{\mathrm{H_2SO_4}} \rightarrow \mathrm{HCl} + (\mathrm{NH_4})_2 \mathrm{SO_4}$$

Similar method is not used for preparation of HBr, HI. Because concentrated H_2SO_4 oxidises HBr and HI to $Br_2 \& I_2$ respectively.

∴ H₃PO₄ is used.

$$Na X + H_2SO_4 \rightarrow HX + NaHSO_4$$

$$(X = Br, I)$$

$$P$$
_(Red) + $X_2 \longrightarrow PX_3 \xrightarrow{H_2O} H_3PO_3 + HX$

$$(X = Br, I)$$