2013年全国统一高考化学试卷 (新课标I)

一、选择题

- 1. (6分) 化学无处不在,与化学有关的说法不正确的是()
 - A. 侯氏制碱法的工艺过程中应用了物质溶解度的差异
 - B. 可用蘸浓盐酸的棉棒检验输送氨气的管道是否漏气
 - C. 碘是人体必需微量元素, 所以要多吃富含高碘酸的食物
 - D. 黑火药由硫磺、硝石、木炭三种物质按一定比例混合制成
- 2. (6分)香叶醇是合成玫瑰香油的主要原料,其结构简式如图所示:下列有关香叶醇的叙述正确的是()

- A. 香叶醇的分子式为 $C_{10}H_{18}O$
- B. 不能使溴的四氯化碳溶液褪色
- C. 不能使酸性高锰酸钾溶液褪色
- D. 能发生加成反应不能发生取代反应
- 3. (6分)短周期元素 W、X、Y、Z的原子序数依次增大,其简单离子都能破坏水的电离平衡的是()
 - A. W^{2} X^{+}
- B. X^+, Y^{3+}
- C. Y^{3+} , $Z^{2\square}$
- D. X^+ , $Z^{2\square}$
- 4. (6分)银制器皿日久表面会逐渐变黑,这是生成了 Ag₂S 的缘故. 根据电化学原理可进行如下处理:在铝质容器中加入食盐溶液,再将变黑的银器浸入该溶液中,一段时间后发现黑色会褪去.下列说法正确的是()
 - A. 处理过程中银器一直保持恒重
 - B. 银器为正极, Ag₂S 被还原生成单质银
 - C. 该过程中总反应为 2Al+3Ag₂S—6Ag+Al₂S₃
 - D. 黑色褪去的原因是黑色 Ag₂S 转化为白色 AgCl
- 5. (6分) 己知 K_{sp} (AgCl) =1.56×10^{□10}, K_{sp} (AgBr) =7.7×10^{□13}, K_{sp} (Ag₂CrO₄) =9.0×

- 10^{□12}. 某溶液中含有 Cl[□]、Br[□]和 CrO₄^{2□}浓度均为 0.010mol•L^{□1}, 向该溶液中逐滴加入 0.010mol•L^{□1}的 AgNO₃溶液时,三种阴离子产生沉淀的先后顺序为()
- A. Cl^{\square} , Br^{\square} , $CrO_4^{2\square}$
- B. $CrO_4^{2\square}$, Br^{\square} , Cl^{\square}
- C. Br $^{\square}$, Cl $^{\square}$, CrO₄ $^{2\square}$
- D. Br \Box , CrO₄^{2 \Box}, Cl \Box
- 6. $(6\, \mathcal{G})$ 分子式为 $C_5H_{10}O_2$ 的有机物在酸性条件下可水解为酸和醇,若不考虑立体异构,这些酸和醇重新组合可形成的酯共有(
 - A. 28 种
- B. 32 种
- C. 40种
- D. 48 种
- 7. (6分)下列实验中,所采取的分离方法与对应原理都正确的是()

选项	目的	分离方法	原理
Α	分离溶于水中的碘	乙醇萃取	碘在乙醇中的溶解度较大
В	分离乙酸乙酯和乙醇	分液	乙酸乙酯和乙醇的密度不同
С	除去 KNO ₃ 固体中混杂的 NaCl	重结晶	NaCl 在水中的溶解度很大
D	除去丁醇中的乙醚	蒸馏	丁醇与乙醚的沸点相差较大

- A. A
- B. B
- C. C
- D. D
- 三、非选择题(包括必考题和选考题两部分. 第 22 题~第 32 题为必考题,每个试题考生都必须作答. 第 33 题~第 40 题为选考题,考生根据要求作答)
- 8. (13 分) 醇脱水是合成烯烃的常用方法,实验室合成环己烯的反应和实验装置如图所示.可能用到的有关数据如下:

	相对分子质量	密度/(g•cm ^図)	沸点/℃	溶解性
环己醇	100	0.9618	161	微溶于水
环己烯	82	0.8102	83	难溶于水

合成反应:

在 a 中加入 20g 环己醇和 2 小片碎瓷片,冷却搅动下慢慢加入 1mL 浓硫酸. b 中通入冷却水后, 开始缓慢加热 a,控制馏出物的温度不超过 90℃.

分离提纯:

反应粗产物倒入分液漏斗中分别用少量 5%碳酸钠溶液和水洗涤,分离后加入无水氯化钙颗粒,静

置一段时间后弃去氯化钙. 最终通过蒸馏得到纯净环己烯 10g.

回答下列问题:

- (1) 装置 b 的名称是 .
- (2)加入碎瓷片的作用是______;如果加热一段时间后发现忘记加瓷片,应该采取的正确操作是______;如果加热一段时间后发现忘记加瓷片,应该采取的正确操作是_______;
- A. 立即补加 B. 冷却后补加 C. 不需补加 D. 重新配料
- (3) 本实验中最容易产生的副产物的结构简式为 .
- (4)分液漏斗在使用前须清洗干净并______;在本实验分离过程中,产物应该从分液漏斗的_ (填"上口倒出"或"下口放出").
- (5) 分离提纯过程中加入无水氯化钙的目的是_____.
- (6) 在环己烯粗产物蒸馏过程中,不可能用到的仪器有 (填正确答案标号).
- A. 蒸馏烧瓶 B. 温度计 C. 吸滤瓶 D. 球形冷凝管 E. 接收器
- (7) 本实验所得到的环己烯产率是____(填正确答案标号).

A.41% B.50% C.61% D.70%

9. (15 分) 锂离子电池的应用很广,其正极材料可再生利用. 某锂离子电池正极材料有钴酸锂 (LiCoO₂)、导电剂乙炔黑和铝箔等. 充电时,该锂离子电池阴极发生的反应为 6C+xLi++xe□—Li_xC₆. 现欲利用以下工艺流程回收正极材料中的某些金属资源(部分条件未给出).

回答下列问题:

- (1) LiCoO₂中, Co 元素的化合价为 .
- (2) 写出"正极碱浸"中发生反应的离子方程式
- (3)"酸浸"一般在 80℃下进行,写出该步骤中发生的所有氧化还原反应的化学方程式_____; 可用盐酸代替 H₂SO₄和 H₂O₂的混合液,但缺点是_____.
- (4) 写出"沉钴"过程中发生反应的化学方程式 .
- (5) 充放电过程中,发生 $LiCoO_2$ 与 $Li_{1\square x}CoO_2$ 之间的转化,写出放电时电池反应方程式_____.
- (6)上述工艺中,"放电处理"有利于锂在正极的回收,其原因是_____.在整个回收工艺中,可回收到的金属化合物有_____(填化学式).
- 10. (15 分)二甲醚(CH_3OCH_3)是无色气体,可作为一种新型能源.由合成气(组成为 H_2 、 CO 和少量的 CO_2)直接制备二甲醚,其中的主要过程包括以下四个反应:

甲醇合成反应:

- (I) CO (g) $+2H_2$ (g) =CH₃OH (g) $\triangle H_1 = \Box 90.1 \text{kJ} \cdot \text{mol}^{\Box 1}$
- (II) $CO_2(g) + 3H_2(g) = CH_3OH(g) + H_2O(g) \triangle H_2 = \Box 49.0kJ \cdot mol^{\Box 1}$

水煤气变换反应:

- (III) CO (g) $+H_2O$ (g) $=-CO_2$ (g) $+H_2$ (g) $\triangle H_3 = \Box 41.1 \text{kJ-mol}^{\Box 1}$
- 二甲醚合成反应:
- (IV) 2CH₃OH (g) =CH₃OCH₃ (g) +H₂O (g) \triangle H₄= \square 24.5kJ•mol \square 1

回答下列问题:

(1) Al₂O₃是合成气直接制备二甲醚反应催化剂的主要成分之一.工业上从铝土矿制备较高纯度

Al₂O₃的主要工艺流程是 (以化学方程式表示).

- (2)分析二甲醚合成反应(IV)对于 CO 转化率的影响_____.
- (3)由 H₂和 CO 直接制备二甲醚(另一产物为水蒸气)的热化学方程式为_____.根据化学反应原理,分析增加压强对直接制备二甲醚反应的影响 .
- (4) 有研究者在催化剂(含 $Cu\square Zn\square Al\square O$ 和 Al_2O_3)、压强为 5.0MPa 的条件下,由 H_2 和 CO 直接制备二甲醚,结果如图所示. 其中 CO 转化率随温度升高而降低的原因是
- (5) 二甲醚直接燃料电池具有启动快、效率高等优点,其能量密度高于甲醇直接燃料电池(5.93kW•h•kg□¹). 若电解质为酸性,二甲醚直接燃料电池的负极反应为______,一个二甲醚分子经过电化学氧化,可以产生_______个电子的能量;该电池的理论输出电压为1.20V,能量密度 E=______(列式计算. 能量密度=电池输出电能/燃料质量,1kW•h=3.6×10⁶J).

11. (15 分) [化学□选修 2: 化学与技术]

草酸(乙二酸)可作还原剂和沉淀剂,用于金属除锈、织物漂白和稀土生产.一种制备草酸(含2个结晶水)的工艺流程如下:

回答下列问题:

(1)	CO 和	NaOH	在一	定条件	下合成	文甲酸钠	, !	甲酸钠	内加 热	脱氢	的化	学反	反应フ	方程	式り	分别
为_			·													

- (2) 该制备工艺中有两次过滤操作,过滤操作①的滤液是_____,滤渣是_____;过滤操作②的滤液是_____,滤渣是_____,滤渣是_____.
- (3) 工艺过程中③和④的目的是_____.
- (4) 有人建议甲酸钠脱氢后直接用硫酸酸化制备草酸. 该方案的缺点是产品不纯,其中含有的杂质主要是 .
- (5)结晶水合草酸成品的纯度用高锰酸钾法测定. 称量草酸成品 0.250g 溶于水中,用 0.0500mol•L□1的酸性 KMnO4溶液滴定,至粉红色不消褪,消耗 KMnO4溶液 15.00mL,反应 的离子方程式为_______,列式计算该成品的纯度______.
- 12. (15 分) [化学□选修 3: 物质结构与性质]

硅是重要的半导体材料,构成了现代电子工业的基础.请回答下列问题:

- (1)基态 Si 原子中,电子占据的最高能层符号为_____,该能层具有的原子轨道数为_____、电子数为____.
- (2) 硅主要以硅酸盐、_____等化合物的形式存在于地壳中.
- (3)单质硅存在与金刚石结构类似的晶体,其中原子与原子之间以_____相结合,其晶胞中共有8个原子,其中在面心位置贡献_____个原子.
- (4) 单质硅可通过甲硅烷(SiH_4)分解反应来制备. 工业上采用 Mg_2Si 和 NH_4Cl 在液氨介质中反应制得 SiH_4 ,该反应的化学方程式为_____.
- (5) 碳和硅的有关化学键键能如下所示,简要分析和解释下列有关事实:

化学键	CIC	CℤH	CPO	Si ₂ Si	Si②H	Si2O
键能/(kJ•mol ^{®1})	356	413	336	226	318	452

- ①硅与碳同族,也有系列氢化物,但硅烷在种类和数量上都远不如烷烃多,原因是_____
- ②SiH₄的稳定性小于 CH₄,更易生成氧化物,原因是_____.
- (6) 在硅酸盐中, SiO 4-四面体(如下图(a))通过共用顶角氧离子可形成岛状、链状、层状、骨架网状四大类结构型式。图(b)为一种无限长单链结构的多硅酸根,其中Si原子的杂

化形式为_____, Si 与 O 的原子数之比为_____, 化学式为_____

13. (15 分) [化学□选修 5: 有机化学基础]

查尔酮类化合物 G 是黄酮类药物的主要合成中间体,其中一种合成路线如下:

已知以下信息:

- ①芳香烃 A 的相对分子质量在 100~110 之间, 1mol A 充分燃烧可生成 72g 水.
- ②C 不能发生银镜反应.
- ③D 能发生银镜反应、可溶于饱和 Na₂CO₃ 溶液、核磁共振氢谱显示有 4 种氢.

⑤RCOCH₃+R'CHO 定条件RCOCH=CHR'

回答下列问题:

- (1) A 的化学名称为____.
- (2) 由 B 生成 C 的化学方程式为_____.
- (3) E的分子式为____,由E生成F的反应类型为____.
- (4) G 的结构简式为_____.
- (5) D的芳香同分异构体 H 既能发生银镜反应,又能发生水解反应,H 在酸催化下发生水解反应的化学方程式为_____.
- (6) F的同分异构体中,既能发生银镜反应,又能与 FeCl₃ 溶液发生显色反应的共有_____种, 其中核磁共振氢谱为 5 组峰,且峰面积比为 2: 2: 2: 1: 1 的为 (写结构简式).