Chapter #5 Internal Memory

Error Detection & Correction

- Detection:
 - Find one or more erroneous bits
 - Report & resend data
- Correction:
 - —Find one or more erroneous bits
 - —Report and fix the error(s)
- Methods:
 - —Parity bit code
 - —Hamming code

Types of Errors

- Hard failure
 - —Permanent defect
 - -Eg. broken wire, burned transistor
- Soft Error
 - —Random, non-destructive
 - —No permanent damage to memory
 - -Eg. Noise on bus, weak signal (weak 0, weak 1)

Parity Bit Code

- Bit appended to data to determine even/odd number of 1's in data
- Parity bit sent is compared to parity bit received to determine possible error

Types:

- —Odd parity: parity bit is set to 1 if total number of 1's in data is even, 0 otherwise
- —Even parity: parity bit is set to 1 if total number of 1's in data is odd, 0 otherwise

Capability:

- —Detect odd number of errors
- —Correct no errors

Hamming Code

- Length of code:
 M original data bits + K parity bits
- Relation between K and M:

$$K \ge \lceil \log_2 (M + \lceil \log_2 M \rceil + 1) \rceil$$

- Capability:
 - —Detect multiple number of errors(2 errors always, >2 errors sometimes)
 - —Correct one error

Example Hamming Code Lengths

Data bits (M)	Check bits (K)	Increase
8	4	50%
16	5	31.25%
32	6	18.75%
64	7	10.94%
128	8	6.25%
256	9	3.52%

Hamming Code Implementation

Hamming Code w/ 5 parity bits

· Hamming code:

16 original data bits: D_{16} to D_1

5 check bits: P_{16} , P_{8} , P_{4} , P_{2} , P_{1}

21 code bits: C_{21} to C_1

Recalculate parity bits:

 $P_1' = C_3 \oplus C_5 \oplus C_7 \oplus \oplus C_{21}$ (every other 1)

 $P_2' = C_3 \oplus C_6 \oplus C_7 \oplus \oplus C_{19}$ (every other 2)

 $P_4' = C_5 \oplus C_6 \oplus C_7 \oplus \oplus C_{21}$ (every other 4)

 $P_8' = C_9 \oplus C_{10} \oplus C_{11} \oplus \oplus C_{15}$ (every other 8)

 $P_{16}' = C_{17} \oplus C_{18} \oplus C_{19} \oplus C_{20} \oplus C_{21}$ (every other 16)

Compare original & new parity bits (difference is bit in error):