CS/COE 1501

www.cs.pitt.edu/~nlf4/cs1501/

Priority Queues

We mentioned priority queues in building Huffman tries

- Primary operations they needed:
 - Insert
 - Find item with highest priority
 - E.g., findMin() or findMax()
 - Remove an item with highest priority
 - E.g., removeMin() or removeMax()
- How do we implement these operations?
 - Simplest approach: arrays

Unsorted array PQ

- Insert:
 - Add new item to the end of the array
 - Θ(1)
- Find:
 - Search for the highest priority item (e.g., min or max)
 - \circ $\Theta(n)$
- Remove:
 - Search for the highest priority item and delete
 - \circ $\Theta(n)$
- Runtime for use in Huffman tree generation?

Sorted array PQ

- Insert:
 - Add new item in appropriate sorted order
 - Θ(n)
- Find:
 - Return the item at the end of the array
 - Θ(1)
- Remove:
 - Return and delete the item at the end of the array
 - Θ(1)
- Runtime for use in Huffman tree generation?

So what other options do we have?

- What about a binary search tree?
 - Insert
 - Average case of $\Theta(\lg n)$, but worst case of $\Theta(n)$
 - Find
 - Average case of $\Theta(\lg n)$, but worst case of $\Theta(n)$
 - Remove
 - Average case of $\Theta(\lg n)$, but worst case of $\Theta(n)$
- OK, so in the average case, all operations are Θ(lg n)
 - No constant time operations
 - \circ Worst case is $\Theta(n)$ for all operations

Is a BST overkill?

- Our find and remove operations only need the highest priority item, not to find/remove any item
 - Can we take advantage of this to improve our runtime?
 - Yes!

The heap

- A heap is complete binary tree such that for each node T in the tree:
 - T.item is of a higher priority than T.right_child.item
 - T.item is of a higher priority than T.left_child.item

- It does not matter how T.left_child.item relates to T.right_child.item
 - This is a relaxation of the approach needed by a BST

The *heap property*

Heap PQ runtimes

- Find is easy
 - Simply the root of the tree
 - Θ(1)
- Remove and insert are not quite so trivial
 - The tree is modified and the heap property must be maintained

Heap insert

- Add a new node at the next available leaf
- Push the new node up the tree until it is supporting the heap property

Min heap insert

Heap remove

- Tricky to delete root...
 - So let's simply overwrite the root with the item from the last leaf and delete the last leaf
 - But then the root is violating the heap property...
 - So we push the root down the tree until it is supporting the heap property

Min heap removal

Heap runtimes

- Find
 - Θ(1)
- Insert and remove
 - Height of a complete binary tree is lg n
 - At most, upheap and downheap operations traverse the height of the tree
 - Hence, insert and remove are Θ(lg n)

Heap implementation

- Simply implement tree nodes like for BST
 - This requires overhead for dynamic node allocation
 - Also must follow chains of parent/child relations to traverse the tree
- Note that a heap will be a complete binary tree...
 - We can easily represent a complete binary tree using an array

Storing a heap in an array

- Number nodes row-wise starting at 0
- Use these numbers as indices in the array
- Now, for node at index i
 - \circ parent(i) = L(i 1) / 2 \rfloor
 - o left_child(i) = 2i + 1
 - o right_child(i) = 2i + 2

For arrays indexed from 0

Heap Sort

- Heapify the numbers
 - MAX heap to sort ascending
 - MIN heap to sort descending
- "Remove" the root
 - Don't actually delete the leaf node
- Consider the heap to be from 0 .. length 1
- Repeat

Heap sort analysis

- Runtime:
 - Worst case:
 - n log n
- In-place?
 - Yes
- Stable?
 - o No

Indirection example setup

- Let's say I'm shopping for a new video card and want to build a heap to help me keep track of the lowest price available from different stores.
- Keep objects of the following type in the heap:

```
class CardPrice implements Comparable<CardPrice>{
public String store;
public double price;
public CardPrice(String s, double p) { ... }
public int compareTo(CardPrice o) {
   if (price < o.price) { return -1; }</pre>
   else if (price > o.price) { return 1; }
   else { return 0; }
```

Storing Objects in PQ

- What if we want to update an Object?
 - What is the runtime to find an arbitrary item in a heap?
 - Θ(n)
 - \blacksquare Hence, updating an item in the heap is $\Theta(n)$
 - Can we improve of this?
 - Back the PQ with something other than a heap?
 - Develop a clever workaround?

Indirection

- Maintain a second data structure that maps item IDs to each item's current position in the heap
- This creates an *indexable* PQ

Indirection example

- n = new CardPrice("NE", 333.98);
- a = new CardPrice("AMZN", 339.99);
- x = new CardPrice("NCIX", 338.00);
- b = new CardPrice("BB", 349.99);
- Update price for NE: 340.00
- Update price for NCIX: 345.00
- Update price for BB: 200.00

Indirection

"NE":2

"AMZN":1

"NCIX":3

"BB":0

