Теорема

Если $\lim_{n\to\infty} \{x_n\} = a$ и, начиная с некоторого номера, выполняется неравенство $x_n \ge b$ $(x_n \le b)$, то $a \ge b$ $(a \le b)$

Доказательство

(для случая $a \ge b$)

От противного. Предположим, что начиная с некоторого номера N $x_n \ge b$. По определению предела:

$$\lim_{n\to\infty} \{x_n\} = a \Leftrightarrow \forall \varepsilon > 0 \; \exists N = N(\varepsilon) : \; \forall n > N \; |x_n - a| < \varepsilon$$

Выберем $\varepsilon = b - a$. Тогда, начиная с некоторого номера N выполняется неравенство $|x_n - a| < b - a$. Отсюда следует, что $x_n < b$, а это противоречит условию.

Следствие 1

Если для двух сходящихся последовательностей $\{x_n\}$ и $\{y_n\}$, начиная с некоторого номера N $x_n \leq y_n$, то $\lim_{n \to \infty} \{x_n\} \leq \lim_{n \to \infty} \{y_n\}$

Следствие 2

Если последовательность $\{x_n\}$ сходится и $x_n \in [a;b]$, то $\lim_{n\to\infty} x_n \in [a,b]$