Homework 2

Arvind Renganathan 5595189 renga016@umn.edu

October 19, 2019

1

1.a()

$$P(\mathbf{x}|\theta) = \frac{1}{\sqrt{2\pi\theta}} exp(\frac{-x^2}{2(\theta)^2}), \theta > 0$$

$$L(\theta|x) = log P(x|\theta) = \sum_{t=1}^{n} P(x_t|\theta)$$

$$L(\theta|x) = \sum_{t=1}^{n} log(\frac{1}{\sqrt{2\pi}\theta} exp(\frac{-(x_t)^2}{2(\theta)^2}))$$

$$= nlog \frac{1}{\sqrt{2\pi\theta}} - \frac{\sum_{t=1}^{n} (x_t)^2}{2(\theta)^2}$$

$$\frac{\partial L}{\partial \theta} = -n\sqrt{2\pi}\theta \frac{1}{\sqrt{2\pi}\theta^2} + \frac{\sum_{t=1}^{n}(x_t)^2}{\theta^3} = 0$$

$$\frac{-n}{\theta} + \frac{\sum_{t=1}^{n} (x_t)^2}{\theta^3} = 0$$

$$\frac{1}{\theta} \left(\frac{\sum_{t=1}^{n} (x_t)^2}{\theta^2} - n \right) = 0$$

$$\theta = \pm \sqrt{\frac{\sum_{t=1}^{n} (x_t)^2}{n}}$$

$$\theta > 0 \, so \, \hat{\theta} = \sqrt{\frac{\sum_{t=1}^{n} (x_t)^2}{n}}$$

1.b()

$$P(x|\theta) = \frac{1}{\theta} exp(\frac{-x}{2\theta}), 0 \le x < \infty, \theta < \infty$$

$$P(x|\theta) = \prod_{t=1}^{n} P(x_t|\theta)$$

$$L(\theta|x) = log P(x|\theta) = \sum_{t=1}^{n} P(x_t|\theta)$$

$$L(\theta|x) = \sum_{t=1}^{n} log(\frac{1}{\theta}exp(\frac{-x_t}{\theta}))$$

$$= nlog \frac{1}{\theta} - \frac{\sum_{t=1}^{n} x_t}{\theta}$$

$$\frac{\partial L}{\partial \theta} = -n\theta \frac{1}{\theta^2} + \frac{\sum_{t=1}^n x_t}{\theta^2} = 0$$

$$-n\theta + \sum_{t=1}^{n} x_t = 0$$

$$\hat{\theta} = \frac{\sum_{t=1}^{n} x_t}{n}$$

1.*c*()

$$P(x|\theta) = \theta x^{\theta-1}, 0 \le x \le 1, 0 < \theta < \infty$$

$$L(\theta|x) = logP(x|\theta) = \sum_{t=1}^{n} log(\theta(x_t)^{\theta-1}) = nlog\theta + (\theta-1)\sum_{t=1}^{n} log(x_t)$$

$$\frac{\partial L}{\partial \theta} = \frac{n}{\theta} + \sum_{t=1}^{n} log x_t = 0$$

$$\frac{n}{\theta} = -\sum_{t=1}^{n} log x_t$$

$$\hat{\theta} = \frac{-n}{\sum_{t=1}^{n} log x_t}$$

1.*d*()

$$P(x|\theta) = \frac{1}{\theta}, 0 \le x \le \theta, \theta > 0$$

$$L(\theta|x) = \sum_{t=1}^{n} log \frac{1}{\theta} = nlog \frac{1}{\theta}$$

$$\frac{\partial L}{\partial \theta} = n\theta(\frac{-1}{\theta^2} = 0)$$

$$\frac{1}{\theta} = 0$$

$$\hat{\theta} = \infty$$

2

2.
$$\mathbf{x} = \{\mathbf{x}_1, \mathbf{x}_n\}, \mathbf{x}_i \in \mathbb{R}^d$$

 $mean \mu \in \mathbb{R}^d$

 $Covariance \Sigma \in \mathbb{R}^{dxd}$

$$P(x|\mu,\Sigma) = \frac{1}{(2\pi)^{\frac{d}{2}}|\Sigma|^{\frac{1}{2}}} exp[\frac{-1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)]$$

(*a*)

 $For Maximum \ Likelihood$

$$L(\mu, \Sigma | x) = \sum_{i=1}^{n} log P(x_i | \mu, \Sigma)$$

$$= \frac{n}{2} log |\Sigma| - \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^T \Sigma^{-1} (x_i - \mu) - nlog \frac{1}{(2\pi)^{\frac{d}{2}}}$$

Partially differentiating

$$\frac{\partial L}{\partial \mu} = -\frac{1}{2} \sum_{i=1}^{n} -2 \Sigma^{-1} (x_i - \mu) = 0$$

$$\Sigma^{-1} \sum_{i=1}^{n} (x_i - \mu) = 0$$

$$\sum_{i=1}^{n} x_i - n\mu = 0$$

Which leads to

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Partially differentiating

$$\tfrac{\partial L}{\partial \Sigma} = \tfrac{-n}{2} (\Sigma^{-1})^T - \tfrac{1}{2} \sum_{i=1}^n (-(\Sigma^{-1} (x_i - \mu)^T (x_i - \mu) \Sigma^{-1})^T) = 0$$

$$\begin{array}{l} \frac{n}{2} \Sigma^{-1} - \sum_{i=1}^{n} (\Sigma^{-1}(x_i - \mu)(x_i - \mu)^T \Sigma^{-1}) = 0 \\ \Sigma^{-1} (\sum_{i=1}^{n} (x_i - \mu)(x_i - \mu)^T) \Sigma^{-1} = n \Sigma^{-1} \sum_{i=1}^{n} (x_i - \mu)(x_i - \mu)^T) \Sigma^{-1} \Sigma^T = n I \end{array}$$

$$\left(\sum_{i=1}^{n} (x_i - \mu)(x_i - \mu)^T\right) = \sum nI$$

$$\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu) (x_i - \mu)^T$$

(*b*)

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n x_i$$

$$E[\hat{\mu}_n] = E[\frac{1}{n} \sum_{i=1}^n x_i]$$

$$=\frac{1}{n}\sum_{i=1}^{n}E[x_{i}]=\frac{n\mu}{n}=\mu$$

 $\hat{\mu}_n$ is not a biased estimate of true mean μ

(*c*)

 $let true Covariance = \Sigma$

Estimated Covariance $\hat{\Sigma} = \frac{1}{n} (\sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})^T)$

$$= \frac{1}{n} \sum_{i=1}^n (Ex_i x_i^T - Ex_i \bar{x}^T - E\bar{x} x_i^T + E\bar{x}\bar{x}^T) = \frac{1}{n} (n\Sigma + n\mu\mu^T - nE\bar{x}\bar{x}^T)$$

$$= \Sigma + \mu \mu^T - \mu \mu^T - \frac{\Sigma}{n}$$

$$=\frac{\Sigma(n-1)}{n}$$

Soit is biased.

3 SUMMARY OF RESULTS

Error rates For MultiGaussClassify with full covariance matrix on Boston50											
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD
0.22	0.31	0.16	0.12	0.14	0.24	0.28	0.18	0.12	0.14	0.19	0.06

Error rates For MultiGaussClassify with full covariance matrix on Boston75												
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD	
0.28												

Error	Error rates For MultiGaussClassify with full covariance matrix on DIGITS											
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Mean SD												
0.02	0.02	0.05	0.03	0.02	0.02	0.03	0.03	0.01	0.01	0.02	0.01	

Error rates For MultiGaussClassify with Diagonal covariance matrix on Boston50											
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD
0.20	0.29	0.14	0.20	0.16	0.10	0.26	0.24	0.26	0.20	0.20	0.06

Error rates For MultiGaussClassify with Diagonal covariance matrix on Boston75											
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD
0.18	0.20	0.25	0.25	0.25	0.29	0.24	0.18	0.18	0.16	0.22	0.04

Error	Error rates For MultiGaussClassify with Diagonal covariance matrix on Digits											
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Mean SD								SD				
0.00	0.03	0.05	0.03	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.006	

Error rates For Logistic Regression with Boston50											
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Mean SD										SD	
0.21	0.06	0.23	0.31	0.06	0.17	0.12	0.12	0.16	0.12	0.16	80.0

Error rates For Logistic Regression with Boston75											
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Mean SD										SD	
0.06	0.03	0.14	0.10	0.14	0.14	0.14	0.04	0.08	0.08	0.09	0.04

Error rates For Logistic Regression with Digits											
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD
0.06	0.14	0.04	0.02	0.03	0.05	0.09	0.10	0.05	0.09	0.07	0.04