## 1. Partial Derivatives

How a function changes with respect to one variable while others remain fixed

#### Formula:

$$\frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, \dots, x_i + h, \dots, x_n) - f(x_1, \dots, x_i, \dots, x_n)}{h}$$

### **Terms Explained:**

- $ightharpoonup f(x_1,\ldots,x_n)$ : Multivariate function
- ► Fixed variables: All  $x_j$  where  $j \neq i$

#### @AlinMinutes



## 2. Gradient

Vector of partial derivatives pointing in direction of steepest ascent

#### Formula:

$$\nabla f(\mathbf{x}) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

### **Terms Explained:**

 $\triangleright \nabla f$ : Gradient vector

 $ightharpoonup \frac{\partial f}{\partial x_i}$ : Partial derivative with respect to  $x_i$ 

▶ Direction: Points toward greatest increase of *f* 

Magnitude: Rate of increase in that direction



## 3. Chain Rule

Method for computing derivatives of composite functions

#### Formula:

$$\frac{\partial z}{\partial x_i} = \sum_{j=1}^m \frac{\partial z}{\partial y_j} \cdot \frac{\partial y_j}{\partial x_i}$$

- $ightharpoonup z = f(y_1, \dots, y_m)$ : Outer function
- $y_i = g_i(x_1, \dots, x_n)$ : Inner functions
- $ightharpoonup \frac{\partial z}{\partial y_i}$ : Partial derivative of outer function
- $ightharpoonup \frac{\partial y_j}{\partial x_i}$ : Partial derivative of inner function



## 4. Jacobian

Matrix of all first-order partial derivatives of vector-valued function

**Formula:** For  $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ :

$$\mathbf{J} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

- $ightharpoonup f_i$ : The *i*-th output function
- $\triangleright x_j$ : The *j*-th input variable
- ▶  $\frac{\partial f_i}{\partial x_i}$ : Rate of change of  $f_i$  with respect to  $x_j$



## 5. Outer Product

Operation on two vectors producing a matrix (rank-1 matrices)

#### Formula:

$$\mathbf{u} \otimes \mathbf{v} = \mathbf{u} \mathbf{v}^T = \begin{pmatrix} u_1 v_1 & u_1 v_2 & \cdots & u_1 v_n \\ u_2 v_1 & u_2 v_2 & \cdots & u_2 v_n \\ \vdots & \vdots & \ddots & \vdots \\ u_m v_1 & u_m v_2 & \cdots & u_m v_n \end{pmatrix}$$

### **Terms Explained:**

 $\mathbf{u} \in \mathbb{R}^m$ : Column vector

 $\mathbf{v} \in \mathbb{R}^n$ : Column vector

 $\triangleright v^T$ : Transpose (row vector)

ightharpoonup Result:  $m \times n$  matrix



# 6. Logits

Raw, unnormalized predictions from neural network

## Formula (for single layer):

$$z = Wx + b$$

- $\mathbf{z} \in \mathbb{R}^n$ : Vector of logits
- $ightharpoonup \mathbf{W} \in \mathbb{R}^{n \times d}$ : Weight matrix
- $\mathbf{x} \in \mathbb{R}^d$ : Input features
- ▶  $\mathbf{b} \in \mathbb{R}^n$ : Bias vector



## 7. Softmax

Function converting logits into probability distribution

#### Formula:

$$\mathsf{softmax}(\mathbf{z})_i = \frac{e^{z_i}}{\sum_{j=1}^n e^{z_j}}$$

### **Terms Explained:**

- $ightharpoonup z = (z_1, \dots, z_n)$ : Logits vector
- $ightharpoonup e^{z_i}$ : Exponential of each logit
- $ightharpoonup \sum_{i=1}^{n} e^{z_i}$ : Normalization term
- $\triangleright$  Output: Vector with values in (0,1) that sum to 1

#### @AlinMinutes



# 8. Cross-Entropy

Loss function measuring difference between probability distributions

#### Formula:

$$H(p,q) = -\sum_{i=1}^{n} p_i \log(q_i)$$

- $ho = (p_1, \dots, p_n)$ : True probability distribution
- $ightharpoonup q = (q_1, \dots, q_n)$ : Predicted probability distribution
- $\triangleright \log(q_i)$ : Natural logarithm of predicted probability



## 9. Gradient Descent

Optimization algorithm; GD, Mini-batch GD, and SGD

#### Formula:

$$\theta_{t+1} = \theta_t - \eta \nabla_\theta J(\theta_t)$$

### **Terms Explained:**

- $\triangleright$   $\theta_t$ : Parameter vector at iteration t
- $\triangleright \eta$ : Learning rate
- $\triangleright \nabla_{\theta} J(\theta_t)$ : Gradient of cost function

#### @AlinMinutes



# 10. Adam Optimization

Adaptive optimization algorithm with per-parameter learning rates

#### Formula:

$$m_{t} = \beta_{1} m_{t-1} + (1 - \beta_{1}) g_{t}$$

$$v_{t} = \beta_{2} v_{t-1} + (1 - \beta_{2}) g_{t}^{2}$$

$$\hat{m}_{t} = \frac{m_{t}}{1 - \beta_{1}^{t}}$$

$$\hat{v}_{t} = \frac{v_{t}}{1 - \beta_{2}^{t}}$$

$$\theta_{t} = \theta_{t-1} - \alpha \cdot \frac{\hat{m}_{t}}{\sqrt{\hat{v}_{t}} + \epsilon}$$

- $\triangleright$   $g_t$ : Gradient at time t
- $ightharpoonup m_t, v_t$ : First and second moment estimates
- $\triangleright$   $\beta_1, \beta_2$ : Exponential decay rates (typically 0.9, 0.999)
- $\triangleright \alpha$ : Learning rate
- ε: Small constant for numerical stability