

Análisis Matemático A (para Ingeniería y Ciencias Exactas y Naturales)

Práctica 3

Cátedra Cabana

Índice general

3.	DERIVADAS		
	3.1.	Derivadas por definición	
	3.2.	Derivadas por regla práctica	
	3.3.	Derivadas de funciones partidas	
	3.4.	Regla de la cadena	
	3.5.	Recta tangente	
	3.6.	Derivadas sucesivas	
	3.7.	Derivada de funciones implícitas	
	3.8.	Derivada de funciones inversas	
	3.9.	Diferencial de una función	
	3.10.	Respuestas de la Práctica 3	

Práctica 3

DERIVADAS

3.1. Derivadas por definición

Ejercicio 3.1. Dada $f(x) = x^2 + 3x - 1$

- a. En una hoja de cálculo hallar la pendiente de la recta secante que pasan por A = (1, f(1)) y B = (2, f(2))
- b. Dejando fijo el punto A, hacer que B se acerque por el lado derecho de A disminuyendo el valor de x en 0, 1 cada vez y calcular las distintas pendientes de las rectas secantes. Llegar hasta $B_n = (1,1; f(1,1))$. Observar los valores que va tomando la pendiente.
- c. Hallar la pendiente de la recta secante que pasan por A=(1,f(1)) y C=(0,f(0))
- d. Acercar C al punto A por el lado izquierdo, aumentando los valores de x en 0, 1y calculando las distintas pendientes de las rectas secantes. Llegar hasta $C_n = (0,9; f(0,9))$. Observar los resultados.
- e. Ver si los valores observados en el ítem b) coinciden con los del ítem d)

Ejercicio 3.2. Teniendo en cuenta la función del ejercicio 1, hallar f'(1) utilizando la definición de derivada. Ver si coincide con lo que se observó de forma práctica en el punto anterior.

Ejercicio 3.3. Hallar $f'(x_0)$ mediante la definición de derivadas de las siguientes funciones:

a.
$$f(x) = x^3$$
; $x_0 = 2$

b.
$$f(x) = \frac{1}{x}$$
; $x_0 = -2$

c.
$$f(x) = x^3$$
; $x_0 = 4$

d.
$$f(x) = \ln(x)$$
; $x_0 = 3$

Ejercicio 3.4. Utilizando la definición, hallar las derivadas de las funciones anteriores en un x_0 genérico.

Ejercicio 3.5. (Opcional) Utilizando la definición de derivada, deducir la tabla de derivadas que se encuentra en el apunte teórico.

3.2. Derivadas por regla práctica

Ejercicio 3.6. Mediante la regla práctica hallar las derivadas de las funciones del ejercicio 3 y verificar los resultados.

Ejercicio 3.7. Mediante la regla práctica y las propiedades, hallar las funciones derivadas de:

a.
$$f(x) = 3x^4 - \sqrt[3]{x^2} + 5\cos(x)$$

b.
$$f(x) = 2x^5 - \frac{1}{x^2} + 7e^x$$

c.
$$f(x) = 5x \ln(x) - \sqrt{x}$$

d.
$$f(x) = \tan(x)$$
 (Sugerencia: usar que $\tan(x) = \frac{\sin(x)}{\cos(x)}$)

e.
$$f(x) = \frac{x^2+1}{3x\cos(x)} + \cos(\pi)$$

f.
$$f(x) = 4\ln(x) - ex + 9e - \frac{x^3 sen(x)}{\sqrt{x}}$$

g.
$$f(x) = \cosh(x) = \frac{e^x + e^{-x}}{2}$$

h.
$$f(x) = \text{senh}(x) = \frac{e^x - e^{-x}}{2}$$

3.3. Derivadas de funciones partidas

Ejercicio 3.8. Estudiar continuidad y derivabilidad en x_0 de las siguientes funciones. Hacer un gráfico aproximado y verificar los resultados obtenidos.

a.
$$f(x) = |x|$$
; $x_0 = 0$

b.
$$f(x) = \begin{cases} 2x+1 & si & x \le 1 \\ x^2+2 & si & x > 1 \end{cases}$$
; $x_0 = 1$

c.
$$f(x) = \begin{cases} x - 2 & si & x < 2 \\ x^3 - 6 & si & x \ge 2 \end{cases}$$
; $x_0 = 2$

d.
$$f(x) = \begin{cases} 1 & si & x \le 0 \\ x^2 + 1 & si & x > 0 \end{cases}$$
; $x_0 = 0$

e.
$$f(x) = \begin{cases} x^3 + 1 & si & x \le 1 \\ 2x & si & x > 1 \end{cases}$$
; $x_0 = 1$

f.
$$f(x) = \begin{cases} x^2 & si & x \le 0 \\ \sqrt{x} & si & x > 0 \end{cases}$$
; $x_0 = 0$

Ejercicio 3.9. Estudiar continuidad y derivabilidad en x_0 de las siguientes funciones.

a.
$$f(x) = \begin{cases} \frac{1}{x} & si & x \neq 0 \\ 0 & si & x = 0 \end{cases}$$
; $x_0 = 0$

b.
$$f(x) = \begin{cases} x \operatorname{sen}(\frac{1}{x}) & si & x \neq 0 \\ 0 & si & x = 0 \end{cases}$$
; $x_0 = 0$

c.
$$f(x) = \begin{cases} x^2 \cos(\frac{1}{x}) & si \quad x \neq 0 \\ 0 & si \quad x = 0 \end{cases}$$
; $x_0 = 0$

d.
$$f(x) = \begin{cases} \frac{x^{\frac{1}{4}}\operatorname{sen}(x)}{x+2} & si & x > 0 \\ 0 & si & x \le 0 \end{cases}$$
; $x_0 = 0$

3.4. Regla de la cadena

Ejercicio 3.10. Derivar, utilizando la regla de la cadena, las siguientes funciones:

a.
$$f(x) = (2+x)^{10}$$

b.
$$f(x) = (2-x)^{10}$$

c.
$$f(x) = \operatorname{sen}(5x)$$

d.
$$f(x) = \cos^2(3x + \pi)$$

e.
$$f(x) = \cos(3x + \pi)^2$$

f.
$$f(x) = \sin^3(2x - \pi/2)^7$$

g.
$$f(x) = e^{x^2 - 5x} + 2x$$

h.
$$f(x) = \ln(x^3 - 1)$$

i.
$$f(x) = \ln^4(x^3 + 2x - 1)$$

j.
$$f(x) = \sqrt{x^2 - 3x}$$

k.
$$f(x) = 3e^{\operatorname{sen}(x)}$$

1.
$$f(x) = 4e^{\sin^2(x)}$$

$$m. f(x) = \tan^2(x)$$

n.
$$f(x) = \frac{(5x^3 - 2x)^2}{e^{x^2} + 1}$$

$$\tilde{n}$$
. $f(x) = \text{sen}(x/2) - \frac{\cos^3(4x-7)}{\sqrt{5}x+1}$

o.
$$f(x) = \ln^3(\text{sen}(\sqrt{x^2 + 8}))$$

p.
$$f(x) = \cos^7(\ln^4(\sqrt{3x^2 - 1}))$$

q.
$$f(x) = e^{\cos^7(\ln^4(\sqrt{3x^2-1}))}$$

r.
$$f(x) = 2^{x^3 - \ln(x)}$$

s.
$$f(x) = \log_5(x^2 - 3)$$

t.
$$f(x) = (3x)^{5x-2}$$

u.
$$f(x) = (x^2 - 2x + 1)^{sen(5x - \pi)}$$

v.
$$f(x) = \sqrt{(x^3 - 2x)^{(x^2 - 3)}}$$

w.
$$f(x) = (x^5 - 7x)^{\sqrt{3x+1}}$$

x.
$$f(x) = (\frac{senx}{x^2+1})^{\sqrt{5x+1}}$$

3.5. Recta tangente

Ejercicio 3.11. Hallar, en cada caso, la ecuación de la recta tangente al gráfico de f(x) en x_0 .

a.
$$f(x) = 3x^2 - 2x + 1$$
; $x_0 = 1$

b.
$$f(x) = \frac{1}{x}$$
; $x_0 = 2$

c.
$$f(x) = \sqrt{3x+1} + 2x$$
; $x_0 = 1$

d.
$$f(x) = \ln(x^2 - 3)$$
; $x_0 = 2$

e.
$$f(x) = e^{x^2 - 2x + 1}$$
; $x_0 = 1$

f.
$$f(x) = \sin(2x + \pi/2)$$
; $x_0 = \pi/2$

g.
$$f(x) = \tan(x^2 + x)$$
; $x_0 = 0$

Ejercicio 3.12. Sea $f(x) = \ln(x^2 + 5kx + 1)$ –7. Hallar el valor de k para que la recta tangente al gráfico de f(x) en $x_0 = 0$ sea paralela a la recta dada por y = 3/2x + 1.

Ejercicio 3.13. Sea $f(x) = \ln(9x^2 + 2)$. Hallar los puntos donde la recta tangente a f(x) sea paralela a y = 2x-3.

Ejercicio 3.14. Sea $f(x) = x^3 - 5x - 12$. Determinar el punto donde la recta tangente al gráfico de f(x) tenga ecuación y = 7x + 4.

3.6. Derivadas sucesivas

Ejercicio 3.15. Calcular la derivada que se indica en cada ítem.

a.
$$f(x) = \cos(2x + \pi)$$
, $f^{(iv)}(\pi)$ y $f^{(40)}(x)$.

b.
$$f(x) = \ln(x-1)$$
, $f''(x)$ y $f^{(20)}(2)$.

c.
$$f(x) = \frac{1}{6}x^3 + x$$
, $f'''(x)$, $f^{(5)}(x)$.

d.
$$f(x) = e^{-x}$$
, $f^{(n)}(x)$ para todo n natural.

Ejercicio 3.16. Determinar la derivada n-ésima de la función $f(x) = (x-4)^n$. ¿Cuánto vale la derivada de orden n+1? ¿Y la de orden n+2? ¿Qué puede concluir de la derivada de orden n+1 de un polinomio de grado n?

Ejercicio 3.17. Sea la función $f: \mathbb{R} \to \mathbb{R}/f(x) = x.|x|$, se pide:

- a. Calcular, si existe, f'(0).
- b. Calcular f'(x). ¿Tiene el mismo dominio que f?¿Es continua en todo su dominio?¿Y en todo \mathbb{R} ?
- c. Calcular f''(x). ¿Es continua en todo su dominio?; Y en todo \mathbb{R} ?

Ejercicio 3.18. Sea la función $f(x) = \begin{cases} x^2 \operatorname{sen}(\frac{1}{x}) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$. Determinar hasta que orden la función es derivable en x = 0. ¿Puede garantizar la continuidad de f con lo calculado previamente? ¿Por qué?

Ejercicio 3.19. Una partícula se desplaza sobre una recta vertical de manera que su ordenada en el instante t (seg) esta dada por la fórmula $y = t^3 - 12t + 3$. Encontrar la velocidad y la aceleración a los 3 segundos de su recorrido. (Nota: la velocidad es la derivada primera del desplazamiento y la aceleración es la derivada segunda)

Ejercicio 3.20. Un ciclista decide irse de viaje. Se encuentra que la distancia recorrida responde a la fórmula $s(t) = 0, 25t^2 + 4t$, donde t es el tiempo en minutos y s la distancia en metros. ¿Cuál es la velocidad al cabo de 5 min? ¿Y la aceleración?

3.7. Derivada de funciones implícitas.

Ejercicio 3.21. Calcular $\frac{dy}{dx} = y'$.

a.
$$y^2 + sen(x) - 3 = x$$

b.
$$ln\left(\frac{x}{y}\right) + cos\left(\frac{2}{y}\right) = sen(x)$$

Ejercicio 3.22. Hallar las ecuaciones de las rectas tangente y normal al gráfico de la función expresada en forma implícita $yx^4 + e^xy^3 = 1$ en el punto (0,1).

Ejercicio 3.23. (Optativo) Hallar las ecuaciones de las rectas tangente y normal al gráfico de la función y = f(x) expresada en forma implícita $y(x+1)^4 + \cos(xy) = 1$ en el punto (0, f(0)).

Ejercicio 3.24. (Optativo) Hallar las ecuaciones de las rectas tangente y normal al gráfico de la función y = f(x) expresada en forma implícita $\ln(x+y) + \sin(xy) = 0$ en el punto (0,1).

3.8. Derivada de funciones inversas

Ejercicio 3.25. Determinar el conjunto dominio y codominio para que las siguientes fórmulas sean funciones biyectivas y calcular la derivada.

a.
$$f(x) = \arcsin(x)$$

b.
$$g(x) = \arctan(x)$$

Ejercicio 3.26. Sea la función $f: \mathbb{R} \to \mathbb{R}/f(x) = x^3 + 2x + 1$. Verificar que es biyectiva y calcular $(f^{-1})'(1)$.

Ejercicio 3.27. Sea la función $f: D \to \mathbb{R}/f(x) = e^{x^2-1}$. Definir de D incluido en los números reales, lo más amplio posible para que sea biyectiva y calcular $(f^{-1})'(1)$.

3.9. Diferencial de una función

Ejercicio 3.28. Calcular el incremento y el diferencial de las siguientes funciones en los valores indicados.

a.
$$f(x) = x^3$$
 en $x = 1$ si $\triangle x = 0, 1$.

b.
$$f(x) = \ln(x+1)$$
 en $x = 4$ si $\triangle x = 0, 1$.

c.
$$f(x) = \sqrt{x}$$
 en $x = 4$ si $\triangle x = -0,01$

3.10. Respuestas de la Práctica 3

Ejercicio 3. 1. a.
$$A = (1,3) B = (2,9) m = 6$$

- b. Calcular las pendientes de las rectas secantes que pasan por A y por $B_1 = (1, 9; f(1, 9))$, $B_2 = (1, 8; f(1, 8)), \dots, B_n = (1, 1; f(1, 1))$
- c. A = (1, 3) C = (0, -1) m = 4
- d. Calcular las pendientes de las rectas secantes que pasan por A y por $C_1 = (0,1;f(0,1))$, $C_2 = (0,2;f(0,2)),...,C_n = (0,9;f(0,9))$
- e. $Bn = (1, 1; f(1, 1)) = (1, 1; 3, 51) \ m = 5, 1; \ Cn = (0, 9; f(0, 9)) = (0, 9; 2, 51) \ m = 4, 9$

Ejercicio 3. 2.
$$f'(1) = \lim_{h \to 0} \frac{f(1+h)-f(1)}{h} = \lim_{h \to 0} \frac{(1+h)^2+3(1+h)-1-3}{h} = 5$$

Ejercicio 3. 3. a.
$$f'(x) = 3x^2$$
; $f'(2) = 12$

b.
$$f'(x) = \frac{-1}{x^2}$$
; $f'(-2) = -\frac{1}{4}$

c.
$$f'(x) = 3x^2$$
; $f'(4) = 48$

d.
$$f'(x) = \frac{1}{x}$$
; $f'(3) = \frac{1}{3}$

Ejercicio 3. 4. Plantear en cada caso el cociente incremental en un x_0 genérico.

Ejercicio 3. 5. a.
$$f(x) = k$$
; $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{k - k}{h} = \lim_{h \to 0} \frac{0}{h} = \lim_{h \to$

b.

c.
$$f(x) = e^x$$
; $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h}$
= $\lim_{h \to 0} \frac{e^x e^h - e^x}{h} = \lim_{h \to 0} \frac{e^x (e^h - 1)}{h} = e^x \lim_{h \to 0} \frac{e^h - 1}{h} = e^x, 1 = e^x$

d.

e.
$$f(x) = sen(x)$$
; $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{sen(x+h) - sen(x)}{h}$
 $= \lim_{h \to 0} \frac{sen(x) \cos(h) + sen(h) \cos(x) - sen(x)}{h} = \lim_{h \to 0} \frac{sen(x) \cos(h) - 1 + sen(h) \cos(x)}{h} = sen(x) \lim_{h \to 0} \frac{\cos(h) - 1}{h} + \cos(x) \lim_{h \to 0} \frac{sen(h)}{h}$
 $= sen(x), 0 + cos(x), 1 = cos(x)$ (usar: $cos(h) = 1 - 2sen^2(h/2)$)

Ejercicio 3. 6. Aplicar reglas de derivación en cada caso.

Ejercicio 3. 7. a.
$$f'(x) = 12x^3 - \frac{2}{3}x^{-\frac{1}{3}} - 5\operatorname{sen}(x)$$

b.
$$f'(x) = 10x^4 + \frac{2}{x^3} + 7e^x$$

c.
$$f'(x) = 5 \ln(x) + 5 - \frac{1}{2\sqrt{x}}$$

d.
$$f'(x) = \frac{1}{\cos^2(x)}$$

e.
$$f'(x) = \frac{6x^2 \cos(x) - 3(x^2 + 1)(\cos(x) - x \sin(x))}{9x^2 \cos^2(x)}$$

f.
$$f'(x) = \frac{4}{x} - e - \frac{5}{2}x^{\frac{3}{2}}sen(x) - x^{\frac{5}{2}}cos(x)$$

g.
$$f'(x) = \frac{e^x - e^{-x}}{2} = senh(x)$$

h.
$$f'(x) = \frac{e^x + e^{-x}}{2} = \cosh(x)$$

Ejercicio 3. 8. a. Es continua y no es derivable en $x_0 = 0$.

- b. Es continua y es derivable en $x_0 = 1$.
- c. No es continua y no es derivable en $x_0 = 2$.
- d. Es continua y derivable en $x_0 = 0$.
- e. Es continua y no es derivable en $x_0 = 1$.
- f. Es continua y no es derivable en $x_0 = 0$.

Ejercicio 3. 9. a. No es continua ni derivable en $x_0 = 0$.

- b. Es continua y no es derivable en $x_0 = 0$.
- c. Es continua y derivable en $x_0 = 0$.
- d. Es continua y derivable en $x_0 = 0$.

Ejercicio 3. 10. a. $f'(x) = 10(2+x)^9$

b.
$$f'(x) = -10(2-x)^9$$

c.
$$f'(x) = 5 \cos(5x)$$

d.
$$f'(x) = -6\cos(3x + \pi)\sin(3x + \pi)$$

e.
$$f'(x) = -6(3x + \pi) sen[(3x + \pi)^2]$$

f.
$$f'(x) = 42 \operatorname{sen}^2(2x - \frac{\pi}{2})^7 \cos(2x - \frac{\pi}{2})^7 (2x - \frac{\pi}{2})^6$$

g.
$$f'(x) = (2x - 5) e^{x^2 - 5x} + 2$$

h.
$$f'(x) = \frac{3x^2}{(x^3-1)}$$

i.
$$f'(x) = \frac{4(3x^2+2)\ln^3(x^3+2x-1)}{(x^3+2x-1)}$$

j.
$$f'(x) = \frac{2x-3}{2\sqrt{x^2-3x}}$$

k.
$$f'(x) = 3 \cos(x) e^{\sin(x)}$$

1.
$$f'(x) = 8 \operatorname{sen}(x) \cos(x) e^{\operatorname{sen}^2(x)}$$

m.
$$f'(x) = \frac{2 \tan(x)}{\cos^2(x)}$$

n.
$$f'(x) = \frac{(5x^3 - 2x) \left[(30x^2 - 4) (e^{x^2} + 1) - (10x^4 - 4x) e^{x^2} \right]}{(e^{x^2} + 1)^2}$$

$$\tilde{\mathbf{n}}. \ f'(x) = \frac{1}{2}\cos(\frac{x}{2}) - \frac{-12\cos^2(4x-7)\sin(4x-7)\sqrt{5x+1} - \frac{5\cos^3(4x-7)}{2\sqrt{5x+1}}}{|5x-1|}$$

o.
$$f'(x) = 3x \ln^2[sen(\sqrt{x^2+8})] \frac{cos(\sqrt{x^2+8})}{sen(\sqrt{x^2+8})} \frac{1}{\sqrt{x^2+8}}$$

p.
$$f'(x) = -\frac{84x \cos^6(\ln^4(\sqrt{3x^2-1})) \sin(\ln^4(\sqrt{3x^2-1})) \ln^3(\sqrt{3x^2-1})}{|3x^2-1|}$$

$$\text{q. } f'(x) = -84x \, e^{\cos^7(\ln^4(\sqrt{3x^2-1}))} \cos^6(\ln^4(\sqrt{3x^2-1}) \, sen(\ln^4(\sqrt{3x^2-1}) \, \ln^3(\sqrt{3x^2-1}) \frac{1}{|3x^2-1|}) + \frac{1}{|3x^2-1|} \sin^2(\sqrt{3x^2-1}) \sin^2$$

r.
$$f'(x) = 2^{x^3 - \ln(x)} \ln(2) (3x^2 - \frac{1}{x})$$

s.
$$f'(x) = \frac{2x}{\ln(5)(x^2-3)}$$

t.
$$f'(x) = (5ln(3x) + \frac{5x-2}{x})(3x)^{5x-2}$$

u.
$$f'(x) = \left[5\cos(5x-\pi)\ln(x^2-2x+1) + \sin(5x-\pi)\frac{2x-2}{x^2-2x+1}\right](x^2-2x+1)^{\sin(5x-\pi)}$$

v.
$$f'(x) = \left[x \ln(x^3 - 2x) + \frac{1}{2} \frac{(x^2 - 3)(3x^2 - 2)}{(x^3 - 2x)}\right] \sqrt{(x^3 - 2x)^{(x^2 - 3)}}$$

w.
$$f'(x) = \left[\frac{3}{2} \frac{1}{\sqrt{3x+1}} ln(x^5 - 7x) + \sqrt{3x+1} \frac{(5x^4 - 7)}{x^5 - 7x}\right] (x^5 - 7x)^{\sqrt{3x+1}}$$

x.
$$f'(x) = \left[\frac{5}{2}(5x+1)^{-\frac{1}{2}}ln(\frac{senx}{x^2+1}) + (5x+1)^{\frac{1}{2}}(\frac{x^2+1}{senx}) \cdot \frac{(cosx\ (x^2+1)-senx\ 2x)}{(x^2+1)^2}\right](\frac{senx}{x^2+1})^{\sqrt{5x+1}}$$

Ejercicio 3. 11. a. y = 4x - 2

b.
$$y = -\frac{1}{4}x + 1$$

c.
$$y = \frac{11}{4}x + \frac{5}{4}$$

d.
$$y = 4x - 8$$

e.
$$y = 1$$

f.
$$y = -1$$

g.
$$y = x$$

Ejercicio 3. 12. $k = \frac{3}{10}$

Ejercicio 3. 13. a.
$$x = \frac{1}{3}$$
 y $x = \frac{2}{3}$

Ejercicio 3. 14. P = (-2, -10)

Ejercicio 3. 15. a.
$$f^{iv}(\pi) = -16$$
; $f^{(40)}(x) = cos(2x + \pi), 2^{40}$

b.
$$f''(x) = -\frac{1}{(x-1)^2}1$$
; $f^{(20)}(x) = -19!$

c.
$$f'''(x) = 1$$
; $f^{(5)}(x) = 0$

d.
$$f^{(n)}(x) = \begin{cases} e^{-x} & si & n \text{ es par} \\ -e^{-x} & si & n \text{ es impar} \end{cases}$$

Ejercicio 3. 16. $f^{(n)}(x) = n!$; $f^{(n+1)}(x) = 0$

La derivada (n + 1) de un polinomio de grado n, vale 0

Ejercicio 3. 17. a.
$$\lim_{h \to 0^+} \frac{f(h) - f(0)}{h} = \lim_{h \to 0^+} \frac{h \cdot h - 0}{h} = 0$$
 $\lim_{h \to 0^-} \frac{f(h) - f(0)}{h} = \lim_{h \to 0^-} \frac{h \cdot (-h) - 0}{h} = 0$ $f'(0) = 0$

b.
$$f'(x) = \begin{cases} 2x & si & x \ge 0 \\ -2x & si & x < 0 \end{cases}$$
 Tiene el mismo dominio que f. Es continua en R.

c. $f''(x) = 2\frac{\|x\|}{x}$ si $x \neq 0$. En su dominio es continua. No es continua en todo \mathbb{R} (no está definida en x = 0)

Ejercicio 3. 18. f es derivable hasta orden 1 en x=0. Por ser derivable , es continua.

Ejercicio 3. 19. a.
$$y'(3) = 15$$
; $y''(3) = 18$

Ejercicio 3. 20.
$$v(5) = s'(5) = 6, 5 \frac{m}{min}; \ a(5) = 0, 5 \frac{m}{min^2}$$

Ejercicio 3. 21. a.
$$y' = \frac{1-\cos(x)}{2y}$$

b.
$$\frac{y(y-xy')}{xy^2} + \frac{\sin(\frac{2}{y})2y'}{y^2} = \cos(x) \to y' = \frac{\cos(x) - \frac{1}{y}}{-\frac{1}{y} + \frac{2\sin(\frac{2}{y})}{y^2}}$$

Ejercicio 3. 22. a.
$$y_T = -\frac{1}{3}x + 1$$
; $y_N = 3x + 1$

Ejercicio 3. 23.
$$y_T = 0$$
; $x_N = 0$

Ejercicio 3. 24. a.
$$y_T = -2x + 1$$
; $y_N = \frac{1}{2}x + 1$

Ejercicio 3. 25. a.
$$f: [-1,1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
 $f'(x) = \frac{1}{\sqrt{1-x^2}}$

b.
$$f: R \to \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$
 $f'(x) = \frac{1}{1+x^2}$

Ejercicio 3. 26. a. La función $f(x) = x^3 + 2x + 1$ es inyectiva en su dominio (su gráfica interseca cada recta horizontal, cuando mucho una vez) . También es suryectiva (su gráfica interseca cada recta horizontal, al menos una vez). Por lo tanto, la función es biyectiva y existe su inversa $f^{-1} : \mathbb{R} \to \mathbb{R}$. Como f(0) = 1,

$$f'(x) = 3x^2 + 2$$
 y $f'(0) = 2$, entonces $(f^{-1})'(1) = \frac{1}{f'(0)} = \frac{1}{2}$

Ejercicio 3. 27. $D:[0,+\infty)$ o $D:(-\infty,0]$.Como $f(1)=1, \ f'(x)=2x e^{x^2-1}$ y $f'(1)=2, \ \text{entonces} \ (f^{-1})'(1)=\frac{1}{f'(1)}=\frac{1}{2}$

Ejercicio 3. 28. a. $\triangle f = 0,331; df = 0,3$

b.
$$\triangle f = 0.0198; df = 0.02$$

c.
$$\triangle f = -0,00250156; df = -0,0025$$