Beyond Pedestrian Detection: Deep Neural Networks Level-Up Automotive Safety

Ikuro Sato, Hideki Niihara R&D Group, Denso IT Laboratory, Inc.

Advanced Driver Assistance Systems (ADAS)

pedestrian detection with infrared camera

forerunning car detection with radar

Images taken from DENSO's TV ad.

What would a skilled driver do?

What would a skilled driver do?

Today's Technology

- Only to detect pedestrians with a camera
 - limited autonomous maneuvers possible, e.g., slows down to stop

today's industrial technology

The Goal

- Able to extract richer information about pedestrians
 - various autonomous maneuvers possible like a skilled driver

future industrial technology

Three Technical Challenges

multiclass classification

Need to identify various annotative info on top of binary classification

visual feature design

— Who knows what visual features best separate a man with a smartphone from a man without?

real-time processing

Promising Tools

multiclass classification

visual feature design

Deep Neural Networks

real-time processing

- Why Deep Neural Networks?
- Why GPGPUs?
- Demo Setup

Basics

 Neural Network: one of the machine learning algorithms for classification and/or regression

By tuning W_k , one obtains an arbitrary function.

Basics

 Neural Network: one of the machine learning algorithms for classification and/or regression

By tuning W_k , one obtains an arbitrary function.

Neural Networks for Visual Tasks

- Convolutional Neural Network (CNN) comprising
 - Convolutional layer(s) → local feature extraction
 - Pooling layer(s) → dimensionality reduction
 - Fully-connected layer(s) → classification/regression

Neural Networks for Visual Tasks

- Convolutional Neural Network (CNN) comprising
 - Convolutional layer(s) → local feature extraction
 - Pooling layer(s) → dimensionality reduction

- visual features automatically extracted
- Fully-connected layer(s) → classification/regression

Why is "Deep" Architecture Advantageous?

 Transforming data vectors at multiple layers help to increase the level of abstraction of visual contents (Bengio, 2009).

- Why Deep Neural Networks?
- Why GPGPUs?
- Demo Setup

Major Reason

- Classification can be boosted.
 - Deep CNN can run at real-time with a compact Tegra K1 processor.

why?

A Deep CNN typically has a **small** number of sequential operations, each of which is dominated by **highly-parallelizable**, massive sumsof-products.

Deep CNN is very GPU friendly!

Minor Reasons

- Classification can be boosted.
 - Deep CNN can run at real-time with compact Tegra K1 processor.
- Learning can be boosted.
 - It can take a month without GPUs. Takes only several days with GPUs.
- Development can be boosted.
 - Capability of processing generic programing language (i.e., CUDA)
 makes R&D process efficient.
 - No more fixed-points!

Minor Reasons

- Classification can be boosted.
 - Deep CNN can run at real-time with compact Tegra K1 processor.
- Learning can be boosted.
 - It can take a month without GPUs. Takes only several days with GPUs.
- Development can be boosted.
 - Capability of processing generic programing language (i.e., CUDA)
 makes R&D process efficient.
 - No more fixed-points!

- Why Deep Neural Networks?
- Why GPGPUs?
- Demo Setup

Problem Statement

- Real-time pedestrian detection with depth, height, and body orientation estimations
 - requires discrete-valued classification and real-valued regression tasks

Deep CNN Model

- A single deep CNN with 9 (processing) layers
 - 3 Convolutional + (Max) Pooling layers
 - 3 Fully-connected layers

DENSO Group

Deep CNN Model

Output layer contains:

- 1 binary classification unit for pedestrian/background
- 1 regression unit for relative x-coord. of the body center
- 1 regression unit for relative y-coord. of the top of the head
- 1 regression unit for relative y-coord. of the toe
- 4 classification units for body orientations

Deep CNN Model

Output layer contains:

Processor

- NVIDIA's Jetson platform equipped with Tegra K1 processor
 - 192 Kepler CUDA cores
 - 200 GFLOPS (automotive K1)
 - memory shared between GPU and CPU (ARM)
 - low power consumption for automotive applications, e.g., ADAS

Processor

- NVIDIA's Jetson platform equipped with Tegra K1 processor
 - 192 Kepler CUDA cores
 - 200 GFLOPS (automotive K1)
 - memory shared between GPU and CPU (ARM)
 - low power consumption for automotive applications, e.g., ADAS

Take-Home Messages

- 1. Extracting rich information about pedestrians will be one of the key technologies for automotive safety.
- 2. Deep Neural Networks are the best algorithms for visual recognition tasks.
- 3. GPGPUs enable real-time processing.
 - Demonstrated that Tegra K1 indeed does!

