8.2

(a) t_{α} (t-distribution with degree of freedom α) has pdf $\frac{C}{(1+x^2/\alpha)^{\frac{\alpha+1}{2}}} \sim \frac{C'}{x^{\alpha+1}}$ when $x \to \infty$ and hence we have $1 - F(x) \sim \frac{C''}{x^{\alpha}}$, where C, C', C'' are some constants. So it is of polynomial type, i.e., $x^{\alpha}(1 - F(x)) \to C''$ as $x \to \infty$. By a theorem, F in the domain of attraction of

$$G_{1,k} = \begin{cases} e^{-x^{-k}} & x \ge 0\\ 0 & x < 0 \end{cases}$$

(b) For N(0,1), it can be shown that $\frac{F^{(j)}(x)}{F^{(j-1)}(x)} \sim -x = -\frac{f(x)}{1-F(x)}$ as $x \to \infty$. That is, it is of exponential type. For C(0,1) which is t_1 , we have shown it is of polynomial type. As $x \to \infty$, C(0,1) dominates over N(0,1). Thus we suspect $F = (1-\epsilon)N(0,1) + \epsilon C(0,1)$ is of polynomial type and thus in the domain of attraction of $G_{1,1}$. To show this rigorously, we first find its pdf by taking the convolution of the pdfs of $N(0,(1-\epsilon)^2)$ and $C(0,\epsilon)$

$$f(x) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi(1-\epsilon)^2}} e^{-\frac{z^2}{2(1-\epsilon)^2}} \frac{1}{\epsilon\pi\left[1 + \frac{(x-z)^2}{\epsilon^2}\right]} dz$$

We want to F(x) is of regular variation....

(c) χ_k^2 has pdf $f(x) = Cx^{\frac{k}{2}-1}e^{-\frac{x}{2}}$. Note that

$$\lim_{t \to \infty} \frac{1 - F(t + 2x)}{1 - F(t)} = \lim_{t \to \infty} \frac{\int_{t+2x}^{\infty} f(x) dx}{\int_{t}^{\infty} f(x) dx}$$

$$= \lim_{t \to \infty} \frac{f(t + xx)}{f(t)}$$

$$= \lim_{t \to \infty} \frac{(t + 2x)^{\frac{k}{2} - 1} e^{-\frac{t + 2x}{2}}}{t^{\frac{k}{2} - 1} e^{-\frac{t}{2}}}$$

$$= \lim_{t \to \infty} (1 + \frac{2x}{t})^{\frac{k}{2} - 1} e^{-x}$$

$$= e^{-x}$$

Then by THM8.6 F in the domain of contraction of G_3 .

9.2 Let $Y_{i+1} = X_{i+2} - \mu$. Adding

$$\begin{array}{rcl} Y_{i+1} - \rho Y_i & = & \sigma Z_i \\ \rho Y_i - \rho^2 Y_{i-1} & = & \rho \sigma Z_{i-1} \\ \rho^2 Y_{i-1} - \rho^3 Y_{i-2} & = & \rho^2 \sigma Z_{i-2} \\ & & \cdots \\ \rho^{i-1} Y_2 - \rho^i Y_1 & = & \rho^{i-1} \sigma Z_1 \end{array}$$

gives $Y_{i+1} = \rho^{i} Y_{1} + \sigma(Z_{i} + \rho Z_{i-1} + \dots + \rho^{i-1} Z_{1})$. It follow that

$$\sqrt{n}\bar{Y}_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n Y_i
= \frac{1}{\sqrt{n}} Y_1 \sum_{i=1}^n \rho^i + \frac{\sigma}{\sqrt{n}} (Z_1 \sum_{i=1}^n \rho^{i-1} + Z_2 \sum_{i=1}^{n-1} \rho^{i-1} + \dots + Z_{n-1})
\sim N(0, \tau^2)$$

where $\tau^2 = \frac{\sigma^2}{1-\rho}$. That is, $\sqrt{n}(\bar{X} - \mu) \sim N(0, \tau^2)$

12.1 By invariance principle and reflection principle,

$$\max_{0 \le k \le n} \frac{S_k - k\mu}{\sigma\sqrt{n}} \sim \sup_{0 \le t \le 1} W(t) \sim |N(0, 1)|$$

U[-1,1] has mean $\mu = 0$ and variance $\sigma^2 = 1/3$. It follow that $\max_{0 \le k \le n} \frac{S_k}{\sqrt{n}} \sim \frac{1}{\sqrt{3}} |N(0,1)|$. Thus $P(\max_{0 \le k \le n} \frac{S_k}{\sqrt{n}} > 2) \approx P(|N(0,1| > 2\sqrt{3}) = 2P(N(0,1) < -2\sqrt{3})$.

U[-1,1] does not matter but its mean and variance matter.

12.3 according to the result given in class(second arcsin law), $1-\frac{2}{\pi} \arcsin \sqrt{0.6}$. note: in the previous two problems, n=25,50 does not matter for the result either. It's provided for simulation purpose.

$$f(x) = \begin{cases} 0 & x < 0.5 \\ 1 & x \ge 0.5 \end{cases}, f(x) = \begin{cases} x & x < 0.5 \\ x+1 & x \ge 0.5 \end{cases}, f(x) = \begin{cases} x & x < 0.5 \\ 2x & x \ge 0.5 \end{cases}$$

2. (a)

distribution	estimated parameter
$\exp(\theta)$	$\hat{\theta} = \frac{\sum_{i=1}^{n} X_i}{n} = 1.8341$
$N(\mu, \sigma^2)$	$\hat{\mu} = \frac{\sum_{i=1}^{n} X_i}{n} = 5.9902, \ \hat{\theta}^2 = \frac{\sum_{i=1}^{n} (X_i - \hat{\mu})^2}{n - 1} = 1.8914$
$Gamma(\theta, 1)$	$\hat{\theta} = \frac{\sum_{i=1}^{n} X_i}{n} = 5.0566$

exp. kernel h=0.5

gaussian kernel h=0.5

0.15

0.1

0.05

(c) kernel estimator for exponential data set:

0.2

0.1

 $\mathrm{math}6070~\mathrm{hw}2$ Lifeng Han

kernel estimator for gamma data set:

kernel estimator for Cauch data set:

