Chap 13

多元函数的极限与连续

Chap 13 — 1

 R^2 中的点集

13.1.1 R²中点列的极限

定义设 $\{x_k\}$ $\subset \mathbb{R}^2$, 其中 $x_k = (x_k, y_k), k \in \mathbb{N}$, 又 $x_0 = (x_0, y_0)$.

若 $\forall \varepsilon > 0$, $\exists K \in \mathbb{N}$, $\forall k > K$:

$$d(\boldsymbol{x}_{k}, \boldsymbol{x}_{0}) < \varepsilon$$

则称 $\{x_k\}$ 收敛于 x_0 ,记为 $\lim_{k\to\infty}x_k=x_0$

结论 1° 若 $\{x_k\}$ 收敛,则其极限点必唯一.

$$2^{\circ} \lim_{k \to \infty} \mathbf{x}_k = \mathbf{x}_0 \iff \lim_{k \to \infty} x_k = x_0 \boxplus \lim_{k \to \infty} y_k = y_0.$$

13.1.2 平面点集

一、邻域 设 $P_0 \in \mathbb{R}^2$, $\delta > 0$, 集合

$$U(P_0, \delta) = \{P(x, y) \mid d(P_0, P) < \delta\}$$

称为 P_0 的 δ 圆邻域(不强调半径时记为 $U(P_0)$)

$$U(P_0, \delta) = \{ P(x, y) \mid |x - x_0| < \delta, |y - y_0| < \delta \}$$

称为 P_0 的 δ 方邻域.

试一试 去心邻域的定义?

二、内点,外点,边界点和聚点

定义 设 $P_0 \in \mathbb{R}^2$, $E \subset \mathbb{R}^2$

- 1° 若 $3\delta > 0$,使得 $U(P_0, \delta) \subset E$,则称 P_0 是E的内点. E全体内点的集合称为E的内部(核),记为 E° .
- 2° 若 $3\delta > 0$,使 $U(P_0, \delta) \cap E = \emptyset$,则称 P_0 是E的外点. E全体外点的集合称为E的外部,记为(E^c) $^{\circ}$.
- 3° 若 $\forall \delta > 0$, $U(P_0, \delta) \cap E \neq \emptyset$ 且 $U(P_0, \delta) \cap E^c \neq \emptyset$

则称 P_0 是E的边界点, 边界点的集合称为边界, 记为 ∂E .

结论
$$E^{\circ} \cup \partial E \cup (E^{c})^{\circ} = \mathbb{R}^{2}$$

试一试 Rⁿ中上述名词的定义?

定义 设 $P_0 \in \mathbb{R}^2$, $E \subset \mathbb{R}^2$, 若 $\forall \delta > 0$, $U(P_0, \delta) \cap E \neq \emptyset$,

则称 P_0 是E的聚点. 聚点的集合称为导集,记为E'.

命题 P_0 是E的聚点 $\Leftrightarrow \exists \{P_n\} \subset E, P_n \neq P_0 : \lim_{n \to \infty} P_n = P_0$

定义 设 $P_0 \in \mathbb{R}^2$, $E \subset \mathbb{R}^2$, 若 $\exists \delta > 0$, $U(P_0, \delta) \cap E = \{P_0\}$, 则称 P_0 是E的孤立点.

三、开集与闭集

定义 设 $E \subset \mathbb{R}^2$,若E中的点都是E的内点,即E = E,则称E为开集.

定义 设 $E \subset \mathbb{R}^2$, 若E包含E的所有聚点, 即 $E' \subset E$, 则称

E为闭集. E与其导集E'的并集称E的闭包,记为E

定理 下面4条等价

- 1° E 为闭集
- $2^{\circ} E = \overline{E}$
- $3^{\circ} \forall \{P_n\} \subset E$,若 $\lim_{n \to \infty} P_n = P_0$,则有 $P_0 \in E$
- 4° E^{c} 为开集,即若P∉E,则∃ δ > 0,使 $U(P,\delta)$ \cap E = \emptyset

注意 Ø和R²既是开集,又是闭集!

命题 对 $E \subset \mathbb{R}^2$, E° 必为开集; E° 必为闭集.且

$$E^{\circ} \subset E \subset \overline{E}$$

定义 设 $E \subset \mathbb{R}^2$,若 $\forall P_1, P_2 \in E$,都存在包含于E中的 连续曲线连接 P_1, P_2 ,则称E是(道路)连通集. 连通开集称为区域,区域的闭包称为闭区域.

定义 设 $E \subset \mathbb{R}^2$, 若 $\exists M > 0$, 使 $E \subset U(O, M)$, 则称 $E \in \mathbb{R}^2$ 有界集, 否则称为无界集.

13.1.3 基本定理

定理(Cauchy准则) 设 $\{P_n\}\subset \mathbb{R}^2$,则 $\{P_n\}$ 收敛

 $\Leftrightarrow \{P_n\}$ 为Cauchy列,即

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n > N, \forall p \in \mathbb{N} : d(P_{n+p}, P_n) < \varepsilon$$

利用

$$|x_{n+p} - x_n|, |y_{n+p} - y_n| \le d(P_{n+p}, P_n)$$

 $\le |x_{n+p} - x_n| + |y_{n+p} - y_n|$

定理(闭集套) 设非空闭集列 $\{E_n\}\subset \mathbb{R}^2$,满足

$$1^{\circ} E_{n+1} \subset E_n \ (\forall n \in \mathbb{N});$$

$$2^{\circ} \lim_{n \to \infty} \operatorname{diam}(E_n) = 0$$

则存在唯一的 $P \in E_n (\forall n \in \mathbb{N})$. 这里

diam
$$(E) = \sup_{P', P'' \in E} \{d(P', P'')\}$$

称为E的直径.

注意 当 E_n 为闭矩形时可得闭矩形套定理!

定理(Bolzana-Weierstrass) \mathbb{R}^2 中的有界点列{ P_n }

必有收敛子列.

定理(聚点) R²中的有界无限点集至少有一个聚点.

想一想 \mathbf{R}^n 中上述各条定理形式?

定义 设 $E \subset \mathbb{R}^n$. 若存在开集族 $\{G_{\lambda} | \lambda \in \Lambda\}$, 使得

$$E \subset \bigcup_{\lambda \in \Lambda} G_{\lambda}$$

则称 $\{G_{\lambda} | \lambda \in \Lambda\}$ 为E的一个开覆盖.

例验证
$$\Gamma = \left\{ \left(0, \frac{2}{3}\right), \left(\frac{1}{2}, \frac{3}{4}\right), \dots, \left(\frac{n-1}{n}, \frac{n+1}{n+2}\right), \dots \right\}$$

是开区间E = (0, 1)的一个开覆盖.

定义 若E的任意开覆盖 $\{G_{\lambda} | \lambda \in \Lambda\}$ 均存在有限子覆盖,

即存在有限个开集 G_{λ_i} $(i=1,2,\cdots,p)$ 使得 $E \subset \bigcup_{i=1}^p G_{\lambda_i}$ 则称E为紧集.

有限覆盖定理(Borel) 闭区间[a, b]为紧集.

紧性定理(Heine-Borel) \mathbb{R}^n 中的点集E为紧集 $\Leftrightarrow E$ 为有界闭集.

例(习题13.1/8) 利用闭集套定理证明平面三角形

三条中线交于一点.

证 记 $\Delta A_1B_1C_1$ 的闭包为 E_1 ,它是闭集,其中位 $\Delta A_2B_2C_2$ 的闭包记为 E_2 ,依次下去得闭集列 E_n ,满足:

$$1^{\circ} E_{n+1} \subset E_n \ (\forall n \in \mathbb{N});$$

$$2^{\circ} \lim_{n \to \infty} \operatorname{diam}(E_n) = 0$$

由闭集套定理知存在唯一的点

$$O \in E_n \ (\forall n \in \mathbb{N})$$

例(习题13.1/8) 利用闭集套定理证明平面三角形

三条中线交于一点.

由于 E_1 三中线两两交点含于 E_2 中,且中线 A_1A_2 上有

一段 A_2A_3 成为 E_2 的中线,故 E_1 三中线两两交点也即

 E_2 三中线两两交点,从而它们又

含于 E_3 ,依次下去知它们含于 E_n

 $(n \in \mathbb{N})$, 故 E_1 三中线两两交点为O, 即三中线交于一点.

Chap13 — 2

多元函数的极限

13.2.1 多元函数

定义 设 $D \subset \mathbf{R}^n$,映射

$$f: D \to \mathbb{R},$$

 $x \mapsto f(x)$

称为n元函数,记为 u = f(x),其中D称为定义域.

值域
$$f(D) = \{u | u = f(x), x \in D\}$$

例1 考察函数 $f(x,y) = \sqrt{1-x^2-y^2}$

13.2.2 二重极限

定义 设 $D \subset \mathbb{R}^2$, f 在D上有定义, P_0 为D的聚点.

若 $\exists A \in \mathbb{R}$ 使得 $\forall \varepsilon > 0, \exists \delta > 0, \forall P \in U(P_0, \delta) \cap D$:

$$|f(P)-A| < \varepsilon$$

则称在 $D \perp P \rightarrow P_0$ 时f(P)的二重极限为A,记为

$$\lim_{\substack{P \to P_0 \\ P \in D}} f(P) = A$$

 $ightharpoonup P \in D$ 可以省略

> 坐标形式

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A \quad \vec{\mathbf{g}} \quad \lim_{\substack{x\to x_0\\y\to y_0}} f(x,y) = A$$

注意

$$P \in U(P_0, \delta)$$

$$\Leftrightarrow 0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta$$

$$\Leftrightarrow |x-x_0|, |y-y_0| < \delta_1, (x,y) \neq (x_0, y_0)$$

问题
$$\stackrel{?}{\longleftrightarrow}$$
 $0 < |x - x_0|, |y - y_0| < \delta_1$

> 与一元函数相似点

- 1. 当 $(x,y) \to (x_0,y_0)$ 时, f(x,y) 变化的定量趋势.
- 2. 有类似的性质和运算法则.

▶与一元函数区别

平面上 $P \to P_0$ 有无穷多方向,且采取的路径也是任意的,既可取直线,也可取曲线. 无论沿何种方向或何种路径,只要 $d(P,P_0)$ 充分小,就有

$$|f(P)-A|<\varepsilon$$
.

例2 证明
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^2} = 0.$$

例3 判断
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$
 的存在性.

例4 判断

$$f(x, y) = \begin{cases} 1, & 0 < y < x^2, \\ 0, & \text{otherwise} \end{cases}$$

在(0,0)点极限的存在性.

例5 计算

(1)
$$\lim_{(x,y)\to(0,0)} \sqrt{x^2 + y^2} \ln(x^2 + y^2)$$

(2)
$$\lim_{(x,y)\to(1,0)} \frac{\ln(1+xy)}{xy}$$

(3)
$$\lim_{\substack{x \to +\infty \\ y \to 0^+}} \left(x^2 + \frac{1}{y^2} \right) e^{-\sqrt{x + \frac{1}{y}}}$$

思考
$$\lim_{\substack{x \to +\infty \\ y \to 0^+}} f(x, y) = A$$
的定义?

13.2.3 累次极限

定义 设 $I \times J \subset \mathbb{R}^2$, x_0 , y_0 分别为I, J的聚点. 固定 $x \in I$

$$(x \neq x_0)$$
. 若存在首次极限 $\varphi(x) = \lim_{y \to y_0} f(x, y)$, 且

$$\lim_{x \to x_0} \varphi(x) = A$$

则称f(x,y)在 (x_0,y_0) 处先y后x的累次(二次)极限为A,记为

$$\lim_{x \to x_0} \lim_{y \to y_0} f(x, y) = A$$

试一试 先x后y的累次极限的定义?

例6 考察

$$f(x,y) = \begin{cases} x \sin \frac{1}{y} + y \sin \frac{1}{x}, & xy \neq 0, \\ 0, & xy = 0 \end{cases}$$

在(0,0)处二重极限和累次极限的存在性.

思考若

$$f(x,y) = \begin{cases} y\sin\frac{1}{x}, & x \neq 0, \\ 0, & x = 0 \end{cases}$$

结论如何?

例7 考察

(1)
$$f(x, y) = \frac{x - y + x^2 + y^2}{x + y}$$

(2)
$$f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0), \\ 0, & (x, y) = (0, 0) \end{cases}$$

在(0,0)处二重极限和累次极限的存在性.

问题 二重极限与累次极限的关系?

定理 设 $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A$,且存在首次极限

$$\varphi(x) = \lim_{y \to y_0} f(x, y)$$
, $\iiint \lim_{x \to x_0} \lim_{y \to y_0} f(x, y) = A$

想一想 另一次序累次极限的情形?

推论1 若两累次极限和二重极限均存在,则三者相等.

推论2 若累次极限存在但不相等,则二重极限不存在.

Chap13 — 3

多元函数的连续

13.3.1 二元函数连续的概念

定义 设 $D \subset \mathbb{R}^2$, $P_0 \in D$, $f:D \to \mathbb{R}$. 若

$$\forall \varepsilon > 0, \exists \delta > 0, \forall P \in U(P_0, \delta) \cap D: |f(P) - f(P_0)| < \varepsilon$$

则称f(P)在 P_0 连续.

- \rightarrow D上的连续函数类C(D)的定义?
- ➤ D的孤立点必为函数的连续点!
- \rightarrow 若 P_0 为D的聚点,则

$$f(P)$$
在 P_0 连续 $\Leftrightarrow \lim_{\substack{P \to P_0 \\ P \in D}} f(P) = f(P_0)$

例1 证明 (1) $f(x, y) = \sin \sqrt{x^2 + y^2}$ 在**R**²上连续;

$$(2) f(x,y) = \begin{cases} y, & x \in \mathbb{Q}, \\ 0, & x \in \mathbb{Q}^c \end{cases} \mathbf{在}D = \{(x,0) | x \in \mathbb{R}\} \bot 连续,$$

但在 $\mathbb{R}^2 \setminus D$ 上不连续.

问题 若 f(x, y)满足: $f(x, y_0)$ 在 $x = x_0$ 处连续, $f(x_0, y)$

例2 考察
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
 在(0,0)处情况.

定理 设f(x, y)在 $D \subset \mathbb{R}^2$ 上对x连续,对y满足

Lipschitz条件, 即日 L>0使得 $\forall(x, y'), (x, y'') \in D$:

$$| f(x, y') - f(x, y'') | \le L | y' - y'' |$$

则 $f \in C(D)$.

13.3.2 二元连续函数的性质

▶ 与一元连续函数类似,有局部有界性,局部保号性, 四则运算,复合运算等等. > 连通有界闭集上的二元连续函数还有:

定理 设 $D \subset \mathbb{R}^2$ 为连通有界闭集, $f \in C(D)$, 则f 在D上有

- 有界性 最值性 介值性
- 零值性 (思考:额外条件?)

例3 设 $f \in C(\mathbf{R}^2)$, 且

$$\lim_{x^2+y^2\to +\infty} f(x,y) = +\infty$$

证明: f 在 \mathbb{R}^2 上必有最小值.

13.3.3 二元函数的一致连续性

定义 设 $D \subset \mathbb{R}^2$, $f:D \to \mathbb{R}$. 若

$$\forall \varepsilon > 0, \exists \delta > 0, \forall P', P'' \in D, d(P', P'') < \delta$$
:

$$|f(P')-f(P'')| < \varepsilon$$

则称 f 在D上一致连续, 记为 $f \in U.C.(D)$

结论 f在D上不一致连续的肯定叙述:

$$\exists \varepsilon_0 > 0, \exists P_n', P_n'' \in D : \lim_{n \to \infty} d(P_n', P_n'') = 0$$

$$|f(P_n') - f(P_n'')| \ge \varepsilon_0$$

例4 说明 $f(x,y) = \sin xy$ 在 \mathbb{R}^2 不一致连续.

定理(一致连续性)设 $D \subset \mathbb{R}^2$ 为有界闭集,且

$$f \in C(D), \ \mathbb{N}f \in U.C.(D)$$

例5(13.2/3(4)修改)设二元函数

$$f(x,y) = \begin{cases} \frac{xy}{x+y}, & x+y \neq 0, \\ 0, & x+y = 0. \end{cases}$$

判断f(x,y)在(0,0)处二重极限的存在性以及连续性.

例6(历年试题)设二元函数

$$f(x,y) = \begin{cases} \frac{\ln(1+xy)}{x}, & x \neq 0, \\ y, & x = 0. \end{cases}$$

判断f(x, y)在(0, 0)处二重极限的存在性以及连续性.

分析 当x = 0时,|f(x, y) - 0| = |f(0, y)| = |y|

当
$$x \neq 0$$
时, $|f(x,y)-0| = \left| \frac{\ln(1+xy)}{x} \right|^{\frac{22}{2}} \frac{|xy|}{|x|} = |y|$