C-L (Camenisch-Lysyanskaya) 签名

Sammy Li

2021-01-12

目录

1	符号	定义	1
2	理论	概念	2
3	单组	消息版 C-L 签名	2
	3.1	密钥生成	2
	3.2	签名	2
		3.2.1 输入	2
		3.2.2 输出	2
		3.2.3 过程	2
	3.3	验签	3
		3.3.1 输入	3
		3.3.2 过程	3
		3.3.3 证明	3
4	多组	消息版 C-L 签名	3
	4.1	密钥生成	3
	4.2	签名	4
		4.2.1 输入	4
		4.2.2 输出	4
		4.2.3 过程	4
	4.3	验签	4
		4.3.1 输入	4
		4.3.2 过程	4
		4.3.3 证明	5
参	考文權	款	5

1 符号定义

表 1: 符号定义

- N 11 47624			
符号	说明		
$\mathbb{G} = \langle G \rangle$	椭圆曲线群,生成元/基点记为 G		
$e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$	椭圆曲线群 $\mathbb{G}_1=\langle G_1 \rangle$ 和 $\mathbb{G}_2=\langle G_2 \rangle$ 到 $\mathbb{G}_T=\langle G_T \rangle$ 的双线性映射		
$s \in_R S$	表示从集合 S 随机选取一个元素 s		
p	群 \mathbb{G}_1 和 \mathbb{G}_2 的阶,即元素个数		

本文涉及的群, 均以椭圆曲线群为例。

2 理论概念

本节参考 C-L 签名介绍 一文。

C-L 签名即为 Camenisch-Lysyanskaya 签名 [1],以作者名字命名,于 2001 年提出。

C-L 签名可用于群签名或聚合签名的场景,提高签名的匿名性,并降低签名的计算复杂度。 C-L 签名也是一种适用于零知识证明的签名方案,能够对一组数据进行签名,并且能够体现这些 被证明组件的关系。这样的性质恰好与零知识证明所需性质契合。

介绍 C-L 签名之前, 首先需要介绍双线性群的概念。

设 $\mathbb{G}_1 = \langle G_1 \rangle$ 和 $\mathbb{G}_2 = \langle G_2 \rangle$ 是阶为 p 的加法循环群。双线性群是满足下列性质的一个映射 $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$

- 1. 双线性性: 对任意的 $x, y \in \mathbb{Z}_p$, 有 $e(xG_1, yG_2) = (x+y) \cdot e(G_1, G_2)$
- 2. 非退化性: $e(G,G) \neq 1$
- 3. 可计算性: 对所有的 $X \in \mathbb{G}_1, Y \in \mathbb{G}_2$, 存在有效的算法计算 e(X,Y)

如果 $\mathbb{G}_1 = \mathbb{G}_2$,则可得一个对称群 $(\mathbb{G}_1 = \mathbb{G}_2 = \mathbb{G}_T)$,以下交换律成立

$$e(xG_1, yG_2) = e(yG_1, xG_2) = xy \cdot e(G_1, G_2) = xy \cdot e(G_2, G_1)$$

C-L 签名也可使用这样的对称群。

3 单组消息版 C-L 签名

3.1 密钥生成

随机生成私钥 sk = (x, y, z), 并计算其对应公钥 $pk = (X_1, Y_1, Z_1)$ 如下

- 1. $x \in_R \mathbb{Z}_p, y \in_R \mathbb{Z}_p, z \in_R \mathbb{Z}_p$
- 2. $X_1 = xG_1$, $Y_1 = yG_1$, $Z_1 = zG_1$

3.2 答名

3.2.1 输入

- 消息 M = (m,r)
- 私钥 sk = (x, y, z)

3.2.2 输出

签名 σ

3.2.3 过程

- 1. 随机挑选 $r' \in_R \mathbb{Z}_p$, 计算 $R'_2 = r'G_2$
- 2. 计算

$$Z_2 = zR'_2$$

$$Y_2 = yR'_2$$

$$Y'_2 = yZ_2$$

$$C = (x + xym + xyrz) \cdot R'_2$$

3. 输出签名 $\sigma = (R'_2, Z_2, Y_2, Y'_2, C)$

3.3 验签

3.3.1 输入

- 消息 M = (m,r)
- 公钥 $pk = (X_1, Y_1, Z_1)$
- 签名 $\sigma = (R'_2, Z_2, Y_2, Y'_2, C)$

3.3.2 过程

验证以下等式是否成立

- $e(R'_2, Z_1) = e(Z_2, G_1)$ 证明 Z_2 合法
- $e(R'_2, Y_1) = e(Y_2, G_1)$ 证明 Y_2 合法
- $e(Z_2, Y_1) = e(Y_2', G_1)$ 证明 Y_2' 合法
- $e(X_1, R_2') + m \cdot e(X_1, Y_2) + r \cdot e(X_1, Y_2') = e(G_1, C)$ 证明 C 合法成立即证明签名合法,否则签名非法。

3.3.3 证明

$$\begin{split} &e(R_2',Z_1) = e(R_2',zG_1) = e(zR_2',G_1) = e(Z_2,G_1) \\ &e(R_2',Y_1) = e(R_2',yG_1) = e(yR_2',G_1) = e(Y_2,G_1) \\ &e(Z_2,Y_1) = e(Z_2,yG_1) = e(yZ_2,G_1) = e(Y_2',G_1) \\ &e(X_1,R_2') + m \cdot e(X_1,Y_2) + r \cdot e(X_1,Y_2') \\ &= e(X_1,R_2') + m \cdot e(X_1,yR_2') + r \cdot e(X_1,yZ_2) \\ &= e(X_1,R_2') + ym \cdot e(X_1,R_2') + r \cdot e(X_1,yzR_2') \\ &= (1+ym) \cdot e(X_1,R_2') + yzr \cdot e(X_1,R_2') \\ &= (1+ym+yzr) \cdot e(xG_1,R_2') \\ &= x \cdot (1+ym+yzr) \cdot e(G_1,R_2') \\ &= (x+xym+xyzr) \cdot e(G_1,R_2') \\ &= e(G_1,(x+xym+xyzr) \cdot R_2') \\ &= e(G_1,C) \end{split}$$

4 多组消息版 C-L 签名

本节参考论文[1]的第3.3节。

4.1 密钥生成

随机生成私钥 $sk = (x, y, \{z_i\}_{i=1}^{\ell})(\ell \geq 2)$,并计算其对应公钥 $pk = (X_1, Y_1, \{Z_i\}_{i=1}^{\ell})$ 如下

- 1. $x \in_R \mathbb{Z}_p$, $y \in_R \mathbb{Z}_p$, $z_i \in_R \mathbb{Z}_p$
- 2. $X_1 = xG_1$, $Y_1 = yG_1$, $Z_i = z_iG_1$

4.2 签名

4.2.1 输入

- 消息 $M = \{m_i\}_{i=1}^{\ell}$
- 私钥 $sk = (x, y, \{z_i\}_{i=1}^{\ell})$

4.2.2 输出

签名 σ

4.2.3 过程

- 1. 随机挑选 $r' \in_R \mathbb{Z}_p$,计算 $R'_2 = r'G_2$
- 2. 计算

$$Z_{2,i} = z_i R_2'$$

 $Y_2 = y R_2'$
 $Y_{2,i}' = y Z_{2,i}$
 $C = x R_2' + x y m_1 R_2' + \sum_{i=2}^{\ell} x y m_i z_i R_2'$

3. 输出签名 $\sigma = (R'_2, \{Z_{2,i}\}_{i=1}^{\ell}, Y_2, \{Y'_{2,i}\}_{i=1}^{\ell}, C)$

4.3 验签

4.3.1 输入

- 消息 M = (m, r)
- 公钥 $pk = (X_1, Y_1, \{Z_i\}_{i=1}^{\ell})$
- 签名 $\sigma = (R'_2, \{Z_{2,i}\}_{i=1}^{\ell}, Y_2, \{Y'_{2,i}\}_{i=1}^{\ell}, C)$

4.3.2 过程

验证以下等式是否成立

- $e(R'_2, Z_{1,i}) = e(G_1, Z_{2,i})$ 证明 $Z_{2,i}$ 合法
- $e(R'_2, Y_1) = e(Y_2, G_1)$ 证明 Y_2 合法
- $e(Z_{2,i},Y_1)=e(Y'_{2,i},G_1)$ 证明 $Y'_{2,i}$ 合法
- $e(X_1,R_2')+m_1\cdot e(X_1,Y_2)+\sum_{i=2}^\ell m_i\cdot e(X_1,Y_{2,i}')=e(G_1,C)$ 证明 C 合法成立即证明签名合法,否则签名非法。

$$\begin{split} &e(R'_2,Z_{1,i})=e(R'_2,z_iG_1)=e(z_iR'_2,G_1)=e(Z_{2,i},G_1)\\ &e(R'_2,Y_1)=e(R'_2,yG_1)=e(yR'_2,G_1)=e(Y_2,G_1)\\ &e(Z_{2,i},Y_1)=e(Z_{2,i},yG_1)=e(yZ_{2,i},G_1)=e(Y'_{2,i},G_1)\\ &e(X_1,R'_2)+m_1\cdot e(X_1,Y_2)+\sum_{i=2}^\ell m_i\cdot e(X_1,Y'_{2,i})\\ &=e(X_1,R'_2)+m_1\cdot e(X_1,yR'_2)+\sum_{i=2}^\ell m_i\cdot e(X_1,yZ_{2,i})\\ &=e(X_1,R'_2)+ym_1\cdot e(X_1,R'_2)+\sum_{i=2}^\ell ym_i\cdot e(X_1,Z_{2,i})\\ &=(1+ym_1)\cdot e(X_1,R'_2)+\sum_{i=2}^\ell ym_i\cdot e(X_1,Z_{2,i})\\ &=(1+ym_1)\cdot e(X_1,R'_2)+\sum_{i=2}^\ell yz_im_i\cdot e(X_1,R'_2)\\ &=(1+ym_1+\sum_{i=2}^\ell yz_im_i)\cdot e(X_1,R'_2)\\ &=(1+ym_1+\sum_{i=2}^\ell yz_im_i)\cdot e(G_1,R'_2)\\ &=x\cdot (1+ym_1+\sum_{i=2}^\ell yz_im_i)\cdot e(G_1,R'_2)\\ &=(x+xym_1+\sum_{i=2}^\ell xyz_im_i)\cdot e(G_1,R'_2)\\ &=e(G_1,(x+xym_1+\sum_{i=2}^\ell xyz_im_i)\cdot R'_2)\\ &=e(G_1,C) \end{split}$$

参考文献

- [1] Camenisch J., Lysyanskaya A. (2003) A Signature Scheme with Efficient Protocols. In: Cimato S., Persiano G., Galdi C. (eds) Security in Communication Networks. SCN 2002. Lecture Notes in Computer Science, vol 2576. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36413-7 20
- [2] Aranha, Diego F., et al. "Faster explicit formulas for computing pairings over ordinary curves." (2011).
- [3] Camenisch-Lysyanskaya Signatures
- [4] Camenisch-Lysyanskaya Signatures in Go