Predicting Diabetes to Facilitate Early Intervention

Sarah Berkin

Data Science Capstone Project, Sept 2024 Cohort

The Problem

If left untreated, diabetes leads to severe health complications like nerve damage, cardiovascular diseases, & vision problems

Early detection is crucial for effective management and improved quality of life

About 38 million – people have diabetes

DIABETES

That's about 1 in every 10 people

1 in 5 people don't know they have it

Understanding the Problem

Factors that may cause Diabetes

- Pregnancies
- Glucose
- Blood Pressure
- Skin Thickness
- Insulin
- Body mass index (BMI)
- Family History (Diabetes Pedigree Function)
- Age

Data Information for this Analysis

Data Source

The dataset
originates from the
National Institute of
Diabetes and
Digestive and Kidney
Diseases

Sample Population

768 women above the age of 21 were sampled in May 1990 near Phoenix, AZ,

Variables

Target variable:

Presence of Diabetes as a binary Yes/No

All other factors are independent variables to assess

Data Cleaning

Completeness of Data Entry

Filled in data entry gaps with averages (mean or median, as appropriate)

Reduced Extreme Outliers

Removed the most extreme outliers that skewed the impact seen from each variable

Exploratory Data Analysis

Visualizing the Distribution of the Variables

Histograms provide a bird's eye view of the values in each variable

Exploratory Data Analysis

Visualizing Correlations between the Variables

Heatmaps provide a way to see how deeply correlated (or not) each variable is with another

Exploratory Data Analysis

Which Variables are most correlated to the Outcome?

Pearson Correlation Coefficient tests showed that 1) Glucose, 2) Insulin, and 3) BMI are the variables most connected to whether a person gets diabetes.

```
Glucose P-value
  corr_glucose = pearsonr(list_gluc, list_outcome)
  print(corr_glucose)
PearsonRResult(statistic=0.23416325004247598, pvalue=0.002116090405336514)
Insulin P-value
  corr_insulin = pearsonr(list_insu, list_outcome)
  print(corr insulin)
PearsonRResult(statistic=0.2042761957857276, pvalue=0.007539590419075425)
BMI P-value
  corr_bmi = pearsonr(list_bmi, list_outcome)
 print(corr bmi)
PearsonRResult(statistic=0.1484872188601701, pvalue=0.05330039210472585)
```

Modeling Steps

- Data Pre-Processing
- Cross-Validation for Hyper-Parameter Tuning
- Classifier Training

Data Pre-Processing

The data set was balanced by resampling with dummy variables.

Data Splitting

Train Test Split method

80% Train / 20% Test

K-Fold Cross-Validation

10 Folds

Classifier Training: Cross-Validation (CV)

Logistic Regression

Mean CV

84.5%

Standard

Deviation

+/- 6.4%

Support Vector Machine (SVM)

Mean CV

83.4%

Standard

Deviation

+/- 7.3%

Gradient Boosting
Classifier

Mean CV

90.1%

Standard

Deviation

+/- 4.6%

Classifier Training: Modeling Results

Logistic Regression

Accuracy: 75.8%

ROC-AUC CV

Mean: 84.5%

Std Dev: +/- 3.2%

Support Vector Machine (SVM)

Accuracy: 74.8%

ROC-AUC CV

Mean: 83.4%

Std Dev: +/- 3.7%

Gradient Boosting
Classifier

Accuracy: 82.1%

ROC-AUC CV

Mean: 90.1%

Std Dev: +/- 2.2%

Gradient Boosting Classifier

With K-Fold Cross Validation

Winning Model

Highest scores across the board

Mean CV: 90.1% / Std Dev +/- 4.6%

Accuracy: 82.1% /

ROC-AUC CV: Mean 90.1% / Std Dev +/- 2.2%

Recommended Business Use Cases

Targeted
Marketing
Campaigns

Health-related products & services

Product Development & Innovation

Low-sugar food products, fitness tracking tools, or preventive health services

Enhanced Customer Segmentation

Risk assessment processes for health insurance companies

Future Work

Incorporate
Additional Data

Include variables like family medical history, physical activity levels, and dietary habits

Address Class Imbalance

SMOTE (Synthetic Minority Over-sampling Technique) to balance dataset & improve performance on minority

Feature Selection

Identify and retain the most impactful variables

The Team

Project by:

Sarah Berkin

Data Science Trainee

Special thanks to:

Jaleed Khan, PhD

Data Science Mentor Sr. Researcher Honorary Research Fellow Lecturer