Homework 1 Solutions

Section 2:

*	$\mid a \mid$	$\mid b \mid$	c	d	e
\overline{a}	a	b	c	b	d
b	b	c	a	e	c
\overline{c}	c	a	b	b	a
\overline{d}	b	e	b	e	d
\overline{e}	d	b	a	d	c

1. Compute b * d, c * c, and [(a * c) * e] * a using the above table.

Solution. b * d = e, c * c = b, and [(a * c) * e] * a = [c * e] * a = a * a = a.

2. Compute (a * b) * c and a * (b * c) using the above table. Can you say on the basis of this computation whether * is associative?

Solution. (a*b)*c = b*c = a and a*(b*c) = a*a = a. We cannot tell based on this computation whether * is associative. We would need to check the rest of the triple products.

3. Compute (b*d)*c and b*(d*c) using the above table. Can you say on the basis of this computation whether * is associative?

Solution. (b*d)*c = e*c = a and b*(d*c) = b*b = c. Since they are not equal, * is not associative.

4. Is * as defined in the above table commutative? Why?

Solution. * is not commutative, since $b * e = c \neq b = e * b$.

7. Let * be defined on \mathbb{Z} by letting a * b = a - b. Determine whether * is commutative and whether it is associative.

Solution. * is not commutative, since (for instance) $1*0=1-0=1 \neq -1=0-1=0*1$. * is not associative either, since (for instance)

$$(1*1)*1 = (1-1)*1 = 0*1 = -1 \neq 1 = 1*0 = 1*(1-1) = 1*(1*1)$$

8. Let * be defined on \mathbb{Q} by letting a * b = ab + 1. Determine whether * is commutative and whether it is associative.

Solution. * is commutative since, for $a, b \in \mathbb{Q}$, a*b = ab + 1 = ba + 1 = b*a. * is not associative since (for instance)

$$(0*0)*1 = (0\cdot 0+1)*1 = 1*1 = 1\cdot 1+1 = 2 \neq 1 = 0\cdot 1+1 = 0*1 = 0*(0\cdot 1+1) = 0*(0*1).$$

9. Let * be defined on \mathbb{Q} by letting $a * b = \frac{ab}{2}$. Determine whether * is commutative and whether it is associative.

Solution. * is commutative since, for $a, b \in \mathbb{Q}$, $a * b = \frac{ab}{2} = \frac{ba}{2} = b * a$. * is also associative since, for $a, b, c \in \mathbb{Q}$, $(a * b) * c = \frac{ab}{2} * c = \frac{\frac{ab}{2} \cdot c}{2} = \frac{abc}{4} = \frac{a \cdot \frac{bc}{2}}{2} = a * \frac{bc}{2} = a * (b * c)$.

10. Let * be defined on \mathbb{Z}^+ by letting $a*b=2^{ab}$. Determine whether * is commutative and whether it is associative.

Solution. * is commutative since, for $a,b\in\mathbb{Z}^+,\ a*b=2^{ab}=2^{ba}=b*a.$ * is not associative since (for example)

$$(2*2)*1 = 2^{2\cdot 2}*1 = 16*1 = 2^{16\cdot 1} = 2^{16} \neq 2^8 = 2^{2\cdot 4} = 2*4 = 2*2^{2\cdot 1} = 2*(2*1).$$

11. Let * be defined on \mathbb{Z}^+ by letting $a * b = a^b$. Determine whether * is commutative and whether it is associative.

Solution. * is not commutative since (for instance) $1*2=1^2=1 \neq 2=2^1=2*1$. * is not associative since (for example)

$$(2*1)*2 = 2^1*2 = 2*2 = 2^2 = 4 \neq 2 = 2^1 = 2*1 = 2*1^2 = 2*(1*2).$$

27. Either prove or give a counterexample to the statement: "Every binary operation on a set consisting of a single element is both commutative and associative."

Claim: The statement is true.

Proof. Let S be a set consisting of one element and * a binary operation on S. First, some observations. Given $x \in S$, we have $S = \{x\}$. By assumption, $x * x \in S$, so it must be that x * x = x.

To show commutativity, let $a, b \in S$. Then a = b = x and so

$$a * b = x * x = x = x * x = b * a.$$

Hence * is commutative.

To show associativity, let $a, b, c \in S$. Then a = b = c = x and so

$$(a*b)*c = (x*x)*x = x*x = x = x*x = x*(x*x) = a*(b*c).$$

Hence * is associative.

[Note: This is not the "slickest" proof, but is instead a naive rigorous proof. There are other, more succinct ways of proving the statement.]

36. Suppose that * is an associative binary operation on a set S. Let

$$H = \{ a \in S \mid a * x = x * a \text{ for all } x \in S \}.$$

Show that H is closed under *.

Proof. Let $a, b \in H$. Then, by definition, we have $a, b \in S$ and, for all $x \in S$, a * x = x * a and b * x = x * b. Using these and the fact that * is associative, we then obtain the following for all $x \in S$:

$$(a*b)*x = a*(b*x)$$

= $a*(x*b)$
= $(a*x)*b$
= $(x*a)*b$
= $x*(a*b)$.

Since $a*b \in S$ and we have shown that (a*b)*x = x*(a*b) for all $x \in S$, it follows that that $a*b \in H$. Hence H is closed under *.

37. Suppose that * is an associative and commutative binary operation on a set S. Show that $H = \{a \in S \mid a * a = a\}$ is closed under *.

Proof. Let $a, b \in H$. Then a * a = a and b * b = b. Hence,

$$(a*b)*(a*b) = a*(b*(a*b))$$
 (associativity)

$$= a*((b*a)*b)$$
 (commutativity)

$$= a*(a*(b*b))$$
 (associativity)

$$= a*(a*(b*b))$$
 (associativity)

$$= (a*a)*(b*b)$$
 (associativity)

$$= a*b.$$

Therefore $a * b \in H$ and so H is closed under *.