<u>Identity</u>	Comm	<u>nutative</u>	<u>Domination</u>	<u>As</u>	<u>sociative</u>	Idempot	ence	Distribu	<u>tive</u>	<u>Double</u> <u>Negation</u>	<u>Nega</u>	<u>tion</u>	Absorption	Implication Equivalence
p∧T≣p	p∨q≡q∨p		p∨T≣T	(p∨q)'	Vr≣pV(qVr)	p∨p	≣p	p∨(q∧r)≡(p∨ r)	′q)∧(pV	¬(¬p)≡p	p∨¬p≣T		p∨(p∧q)≡p	p→q≡¬p∨q
p∨F≣p	p∧q≡q∧p		p∧F≣F	(p∧q)	∧r≡p∧(q∧r)	p∧p	■p	p∧(q∨r)≡(p∧ r)	Λq)V(pΛ		р∧¬	p≡F	p∧(p∨q)≡p	
Modus Ponens	Modus Tollens		Disjunctive Syllogism		Hypothetical Syllogism		on	Biconditional Equivalence		Conjunction	Resolution		Simplification	
p <u>p→a</u> ∴ q	¬q <u>p→q</u> ∴ ¬p	¬q p∨q ¬p q ¬p ∴ q		$ \begin{array}{c} p \rightarrow q \\ \underline{q} \rightarrow r \\ \vdots p \rightarrow r \end{array} $		<u>p</u> ∴p∨q	$p \lor q \qquad \qquad p \leftrightarrow q \equiv (p \to q)$		d)∨(d →	p <u>a</u> ∴ p∧q	p∨q ¬p∨r q∨r		<u>b</u> √a ∵ b	
			Operator Precedence		Implicati Translatio			s hypothesis	q is co	nclusion			conditional anslations	
					if p, ther	q	p implies q		if p, q				necessary and fficient for q	
		,	^		p is sufficien	t for q		a sufficient lition for q is p	q	if p			then q, and conversely	
		,	V		q when	р	q is	necessary for p		cessary n for p is q			p iff q	
	-	-	→		q unless	¬p	p pr	ovided that p	p or	nly if q		рех	cactly when q	
		•	→		q whenev	er p	q fo	ollows from p		necessary or q		p if	and only if q	
					it is necessary to q to p q		q pr	ovided that p	_					
Proposition				Definitions: A declarative sentence that is either true or false, but not both Propositions: - Toronto is the capital of Canada; 2 + 2 = 3; Bob is smart. Not Propositions: - What time is it?; Read this carefully.; x + 1 = 2.; She is smart.										
Predicate				A property or characteristic that can be true or false for different values P(x)										
Valid Argument				An argument where the conclusion can never be false when the premises are true										
Fallacies				Affirming the Conclusion: For $p \to q$: If q is true, then p must be true – invalid argument Denying the Hypothesis: For $p \to q$: If p is false, then q must be false – invalid argument										
Universal Quantifier (∀)				\forall x P(x) – "For all x, P(x) is true." - Anding: - All P(x) is Q(x) \equiv \forall x P(x) \rightarrow Q(x) - No P(x) is Q(x) \equiv \forall x P(x) \rightarrow \neg Q(x)										
Existential Quantifier (∃)			\exists x P(x) - "There exists an x such that P(x) is true." \exists !x P(x) - "There exists one and only one x such that P(x) is true." - Anding: - Some P(x) are Q(x) \equiv \exists x P(x) \land Q(x) - Some P(x) are not Q(x) \equiv \exists x P(x) \land \neg Q(x)											
Negating Quantifiers			- $\neg \forall x P(x) \equiv \exists x \neg P(x)$ - $\neg \exists x P(x) \equiv \forall x \neg P(x)$ - $\neg (\forall x \exists y P(x, y)) \equiv \exists x \forall y \neg P(x, y)$ - $\neg (\exists x \forall y P(x, y)) \equiv \forall x \exists y \neg P(x, y)$											
Nested Quantifiers			 ∀x ∃y P(x, y): "For every x, there exists a y such that P(x, y) is true." ∃x ∀y P(x, y): "There exists an x such that for all y, P(x, y) is true." ∀x ∀y L(x, y): "Everybody loves everybody." ∃x ∃y L(x, y): "Somebody loves somebody." ∀x ∃y L(x, y): "Everybody loves somebody." ∃x ∀y L(x, y): "Somebody loves everybody." ¬∃x ∀y L(x, y): "Nobody loves everybody." 											
Vacuous Proof				Show that p is always false										
Trivial Proof			Show that q is always true regardless of p											

Proof by Contrapositive	 Definition: Assume P, and show Q Question: If n is an even number, then n² is also even. Proof: n is even n = 2k, where k is an integer n² = (2k)² = 4k² = 2(2k²) 2(W), W is an int since ints are closed under +, * n² is even The original statement is valid because we assumed the hypotential experimental expe	n. Contrapositive Assumption Definition of odd (2) Substitution (2k + 1) (3) & Arithmetic Substitute (4k³ + 6k² + 3k + 3) (4) Definition of even based on (6)
Proof by Contradiction	- Definition: Assume P ∧ ¬Q (negation of original statement/implication - Contradiction does not have to be with original statement, can be with original statement. Con be with original statement, can be with original statement, can be with original statement, can be with original statement. - Question: Show that if n is an integer and n³ + 5 is odd, then n is even of the proof: 1. n³ + 5 is odd and n is odd 2. n³ + 5 is odd 3. n is odd 4. n = 2k + 1, where k is an integer 5. n³ + 5 = (2k + 1)³ + 5 = 8k³ + 12k² + 6k + 6 = 2(4k³ + 6k² + 3k + 3) 6. 2(W), W is an int since ins are closed under +, * 7. n³ + 5 is even 8. Contradiction 9. The original statement is valid because we assumed the negative contradiction.	with anything n. Negation of original statement Simplification (1) Simplification (2) Definition of odd (3) Substitution (2k + 1) (4) & Arithmetic Substitute (4k³ + 6k² + 3k + 3) (5) Definition of even based on (6) (3) & (7)
Proof by Cases	- Definition: A proof broken into distinct cases, where these cases cover	er all prospects
Quantified Statements Inference	Universal Instantiation (UI): From $\forall x \ P(x)$, you can conclude $P(a)$, where a Universal Generalization (UG): If $P(a)$ is true for an arbitrary a , conclude $\forall x \ Existential Instantiation (EI)$: From $\exists x \ P(x)$, conclude $P(c)$, where c is a nearest specific element Existential Generalization (EG): From $P(a)$, conclude $\exists x \ P(x)$ Example: Show that $\forall x \ (P(x) \land Q(x)) \equiv \forall x \ P(x) \land \forall x \ Q(x)$ Proof: 1. $\forall x \ (P(x) \land Q(x))$ 2. $P(a) \land Q(a)$ 3. $P(a)$ 4. $Q(a)$ 5. $\forall x \ P(x)$ 6. $\forall x \ Q(x)$ 7. $\forall x \ P(x) \land \forall x \ Q(x)$ Example: Show that $\exists x \ (P(x) \lor Q(x)) \equiv \exists x \ P(x) \lor \exists x \ Q(x)$ Proof: 1. $\exists x \ (P(x) \lor Q(x))$ 2. $P(a) \lor Q(a)$ 3. $\exists x \ P(x) \lor \exists x \ Q(x)$	'x P(x)
Theorems	 Definition: A statement that can be shown to be true using: Definitions Other theorems Rules of inference Less important theorems are sometimes called propositions Axioms: Statements which are given as true Lemme: a 'helping theorem' or a result which is needed to prove a the Corollary: A result which directly follows from a theorem Conjecture: An unproven claim Becomes a theorem once found 	eorem
Math & Numbers Domains: $n,k,a,b,p,q \in Z$, $q \neq 0$	 Integers are closed on +, -, * Rational numbers are closed on +, -, *, / Irrational numbers are not closed Even: n = 2k Odd: n = 2k + 1 Perfect Square: a = b² Rational Number: r = ^p/_q 	