Tên: Nguyễn Xuân Việt Đức

MSSV: 22520274

Khoa Kỹ thuật máy tính

Thực hành nhập môn mạch số PH002.N17 - LAB02

- 1 Lý thuyết
- 2 Thực hành
- 2.1~ Thiết kế mạch từ hàm luận lý sau:

$$F(A, B, C, D) = \Sigma m(1, 3, 8, 10, 13, 15)$$

2.1.1 Thiết lập bảng chân trị

Sử dụng các dữ kiện của hàm F(A, B, C, D), ta thiết lập bảng chân trị như sau:

A	В	С	D	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	1 0	0
0	1	0	1	0
0	1	1	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0
0	1	1		0
	0	0	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1
1 1	0	0		0
1	0	1	1 0	1
1	0	1		0
1	1	0	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0
1	1	0		1
1	1	1	$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$	0
1	1	1	1	1

 $\hat{\text{Vay}}, F(A,B,C,D) = A'B'C'D + A'B'CD + AB'C'D' + A'BC'D + A'B'CD' + A'B'C'D'$

2.1.2 Rút gọn luận lý dùng phương pháp Karnaugh Map

Thiết lập bìa Karnaugh 4 biến, ta được:

$F \setminus C$, D			
$A, B \setminus$	00	01	11	10
00	0	1	1	0
01	0	0	0	0
11	0	1	1	0
10	1	0	0	1

Như vậy, hàm F sau khi rút gọn trở thành:

$$F(A, B, C, D) = A'B'D + ABD + AB'D'$$

2.1.3 Vẽ mạch luận lý

Mạch sau khi được thiết kế trên Quartus II:

2.2 Thiết kế mạch sử dụng toàn cổng NAND

$$F(A, B, C, D) = (A + B + D')(A' + C' + D)(B' + D)$$

2.2.1 Biến đổi biểu thức F

Để việc thiết kế mạch trở nên khả thi, ta có thể biến đổi hàm F sử dụng định luật DeMorgan. Ta có như sau:

$$F(A, B, C, D) = (A'B'D)'(ACD')'(BD')'$$

2.2.2 Thực hiện vẽ mạch

Dựa trên biểu thức F đã biến đổi, mạch có thể được vẽ như sau:

Thực hiện mô phỏng mạch cho thấy:

Thiết lập bảng chân trị:

A	В	С	D	F
0	0	0	0	1
0	0	0	1	0
	0	1	0	
0	0	1	1	0
$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	1	0	0	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$
0	1	0	1	1
0	1	1	$\begin{array}{c c} 1 \\ 0 \\ 1 \\ 0 \end{array}$	0
0 0 1 1 1 1 1	1	1		1
1	0	0	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1
1	0	0		1
1	0	1	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0
1	0	1	1	1
1	1	0	1 0	0
1	1	0		1
1	1	1	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0
1	1	1	1	1

3 Bài tập

Vấn đề: Thiết kế mạch tổ hợp với chức năng chuyển kí số $(0 \to 7)$ sang MSSV tương ứng

3.1 Thiết kế mạch

3.1.1 Xác định cấu trúc mạch

Mạch sẽ có 3 cổng vào A, B, C tượng trưng cho 3 bit (A là MSB, C là LSB) và 3 cổng ra B_1, B_2, B_3 (B_1 là MSB, B_3 là LSB).

3.1.2 Thiết lập bảng chân trị và hàm

A	В	\Box	B_1	B_2	B_3
0	0	0	0	1	0
0	0	1	0	1	0
0	1	0	1	0	1
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	0	1	0
1	1	0	1	1	1
1	1	1	1	0	0

3.1.3~ Sử dụng phương pháp bìa Karnaugh để rút gọn biểu thức

$B1 \setminus B, C$						
$A \setminus$	00	01	11	10		
0	0	0	0	1		
1	0	0	1	1		

$B3 \setminus B, C$						
$A \setminus$	00	01	11	_10_		
0	0	0	0	1		
1	0	0	0	1		

Qua đó ta có thể suy ra:

$$\begin{cases} B_1 = AB + BC' \\ B_2 = A'B' + A'C + ABC' + B'C \\ B_3 = BC' \end{cases}$$

3.1.4 Thực hiện vẽ mạch

Mạch sau khi được thiết kế trên Quartus II:

Thực hiện mô phỏng mạch cho thấy:

