滑らかな常微分方程式の計算量

太田浩行 * 河村彰星 [†] マルチン・ツィーグラー [‡] カルステン・レースニク [§]

2012/1/31

概要

- 1 導入
- 2 準備
- 2.1 実数の名

精度を与えるとある実数の近似値を返す関数をその実数の名と呼ぶ.

定義 2.1 (実数の名). 関数 $\phi: \{0^{\mathbf{N}}\} \to \mathbf{Z}$ が実数 $x \in [0,1]$ の名であるとは, $\phi(0^n) = |x \cdot 2^n|$ または $\phi(0^n) = [x \cdot 2^n]$ を満たすこと.

2.2 計算可能実関数,多項式時間実関数

実関数は神託機械として表現する.

定義 2.2. 神託機械 M が実関数 $f:A\to \mathbf{R}$ を計算するとは、任意の実数 $x\in A$ 、任意の x の名 ϕ にたいして、 M^ϕ が f(x) の名であること.

ある実関数が計算可能であるとは、その関数を計算する神託機械が存在すること、ある実関数が多項式時間計算可能であるとは、その関数を計算する多項式時間神託機械が存在することとする.

定義 2.3. f の多項式モジュラとは任意の $x_0,x_1\in[0,1],\ m\in N$ に対して $|x_0-x_1|\leq 2^{-p(m)}$ ならば $|f(x_0)-f(x_1)|\leq 2^{-m}$ を満たすような多項式 p のこと.

^{*}東京大学

[†]第1著者に同じ

[‡]ダルムシュタット工科大学

[§]第1著者に同じ

補題 2.4. 実関数 $f:[0,1]\to \mathbf{R}$ の多項式モジュラが存在し、任意の $d\in([0,1]\cap\mathbf{Q}),\,n\in\mathbf{N}$ にたいして

$$|g(d,0^n) - f(d)| \le 2^{-n} \tag{1}$$

を満たすような多項式時間計算可能関数 $g:([0,1]\cap \mathbf{Q})\times \mathbf{N}\to \mathbf{Q}$ が存在することと, f が多項式時間計算可能であることは同値である.

2.3 完全性

定義 ${f 2.5}$ (還元). 言語 L が実関数 f に還元可能であるとは, 任意の文字列 u にたいして, 以下を満たす実数 x_u 多項式時間計算可能な関数 R,S,T が存在すること.

- S(u,·) は実数 x_u の名;
- 任意の $f(x_u)$ の名 ϕ にたいして

$$L(u) = R(u, \phi(T(u))).$$

計算量 C にたいして、関数 f が C 困難であるとは、任意の C に含まれる言語が f に還元可能であることである。 さらに f が C に含まれるとき、つまり C 対応する神託機械で f を計算するものが存在するとき、f は C 完全であると定義する.

3 微分可能関数と常微分方程式

以下のような常微分方程式を考える.

$$h(0) = 0, \quad h'(t) = g(t, h(t)), \quad t \in [0, 1]$$
 (2)

定理 **3.1.** 多項式時間実関数 g(t,y) で, $\frac{\partial g}{\partial y}$ が連続であり, g の常微分方程式 (2) の解 h が **PSPACE** 完全であるものが存在する.

3.1 離散初期値問題

初期値問題の離散バージョンが PSPACE 完全であるところから始める. 河村の論文において以下のように定義されるフィードバックの弱い計算が PSPACE 完全であることが示されている.

補題 3.2 (補題 4.7. [?]). 任意の言語 $L\in \mathbf{PSPACE}$, 任意の文字列 u にたいして、以下を満たす多項式 P,Q、関数族 $(G_u)_u$ 、 $(H_u)_u$ で、 $(G_u)_u$ は多項式時間計算可能, $H_u(P(|u|)+1,2^{Q(|u|)})=L(u)$ であるものが存在する.

- (i) $G_u: [P(|u|)] \times [2^{Q(|u|)}] \times [4] \to \{-1, 0, 1\};$
- (ii) $H_u: [P(|u|) + 1] \times [2^{Q(|u|)} + 1] \rightarrow [4];$
- (iii) 任意の $i \in [P(|u|)], T \in [2^{Q(|u|)}]$ にたいして
 - $H_u(i,0) = H_u(0,T) = 0$
 - $H_u(i+1,T+1) = H_u(i+1,T) + G_u(i,T,H_u(i,T)).$
 - (図、より直感的でわかりやすい説明を入れる)

3.2 離散初期値問題を模倣する関数族

任意の言語 $L\in\mathbf{PSPACE}$, 文字列 u にたいして、上記の計算を模倣しL(u) を計算する微分可能な実関数 g_u を構成する.

補題 3.3. 任意の言語 $L\in \mathbf{PSPACE}$, 多項式 λ にたいして、多項式 ρ 、関数 族 $(g_u)_u, (h_u)_u$ で、 $(g_u)_u$ は多項式時間計算可能であり、各二進文字列 u にたいして以下を満たすものが存在する.

- (i) $g_u : [0,1] \times [-1,1] \to \mathbf{R}, \quad h_u : [0,1] \to [-1,1];$
- (ii) 任意の $y \in [-1,1]$ にたいして $g_u(0,y) = g_u(1,y) = 0$;
- (iii) h_u は g_u の常微分方程式の解;
- (iv) $\mathcal{D}^{(0,1)}q$ は連続;
- (v) $|\mathcal{D}^{(0,1)}g| \le 2^{-\lambda(|u|)-|u|}$;
- (vi) $h_u(1) = 2^{-\rho(|u|)}L(u)$.

この補題の証明の前に、葛によって示されている滑らかな多項式時間実関数 $f:[0,1] \to \mathbf{R}$ を導入する.

補題 3.4 (補題 3.6. [?]). 以下を満たす多項式時間無限回微分可能実関数 $f:[0,1] \to \mathbf{R}$ が存在する.

- (i) f(0) = 0, f(1) = 1;
- (ii) 任意の $n \ge 1$ で $f^{(n)}(0) = f^{(n)}(1) = 0$;
- (iii) f は [0,1] で単調増加;
- (iv) 任意の $n \ge 1$ で $f^{(n)}$ は多項式時間実関数.

補題 3.3 の証明. $P,Q,(G_u)_u,(H_u)_u$ を補題 3.2 と同様に定義する. 各ステップを P(u) 個に分割することで, $G_u(i,T,Y)\neq 0$ を満たす i を各 T にたいしてたかだか 1 つにすることができる. そのような i のことを $j_u(T)$ と表現する. 任意の i で $G_u(i,T,Y)=0$ ならば $j_u(T)$ は任意の値を取るとする. さらに以下のように仮定できる.

$$H_u(i, 2^{Q(|u|)}) = \begin{cases} L(u) & (i = P(|u|)) \\ 0 & (i < P(|u|)) \end{cases}$$
 (3)

$$G_u(i, 2 \cdot 2^{Q(|u|)} - 1 - T, Y) = \begin{cases} 0 & (i = P(|u|) - 1) \\ -G_u(i, T, Y) & (i < P(|u|) - 1) \end{cases}$$
(4)

$$H_u(i, 2 \cdot 2^{Q(|u|)} - T) = \begin{cases} H_u(P(|u|), 2^{Q(|u|)}) & (i = P(|u|)) \\ H_u(i, T) & (i < P(|u|)) \end{cases}$$
(5)

補題 3.4 の f にたいして,定数 c を任意の $x \in [0,1]$ にたいして $|f'(x)| \leq 2^c$ を満たす最小の自然数と定める.各文字列 u にたいして, $B = 2^{\lambda(|u|) + Q(|u|) + |u| + c + 5}$ とおき,各 $t,y) \in [0,1] \times [-1,1]$ にたいして,自然数 $N, \theta \in [0,1]$,整数 $Y,\eta \in [-1/4,3/4]$ を $t = (T+\theta)2^{Q(|u|)}, y = (Y+\eta)B^{-j_u(T)}$ を満たすように定める.

そのとき,

$$g_u^*(t,Y) = \frac{2^{Q(|u|)}\pi \sin(\theta\pi)}{2B^{j_u(T)+1}} G_u(j_u(T), T, Y \bmod 4)$$
 (6)

とおき g_u, h_u を以下のように定義する.

$$g_u(t,y) = \begin{cases} g_u^*(t,Y) & (\eta \le \frac{1}{4}) \\ (1 - f(2\eta - 1/2))g_u^*(t,Y) + f(2\eta - 1/2)g_u^*(t,Y+1) & (\eta > \frac{1}{4}) \end{cases}$$
(7)

$$h_u(t) = \sum_{i=0}^{P(|u|)} \frac{H_u(i,T)}{B^i} + \frac{1 - \cos(\theta \pi)}{2} \cdot \frac{G_u(j_u(T), T, H_u(j_u(T), T))}{B^{j_u(T)+1}}$$
(8)

上記のように定義した g_u,h_u が補題 3.3 で求める性質を満たすことを示す. (i) , (iii) は自明. $(g_u)_u$ が多項式時間計算可能であることは補題によって示される.

 h_u は g_u の常微分方程式の解であることを示す。まず h_u について解析すると、(8) の二行目の項の絶対値は $B^{-j_u(T)-1} \leq B^{-j_u(T)}/32$ 以下である。一行目において、 $i \leq j_u(T)$ の合計は $B^{j_u(T)}$ の倍数。 $i > j_u(T)$ の合計は、各値が $3/B^i = 3B^{-j_u(T)/B^{i-j_u(T)}} \leq 3B^{-j_u(T)/32^{i-j_u(T)}}$ で抑えられる

ため、 $3B^{-j_u(T)/31}$ 以下である.よって $h_u(t)=(Y+\eta)B^{-j_u(T)}$ を満たす $\eta\in[-1/4,1/4]$ が存在する.このとき,

$$Y = \sum_{i=0}^{j_u(T)} H_u(i, T) \cdot B^{j_u(T) - i}.$$
 (9)

B は 4 の倍数なので, $Y \mod 4 = H_u(j_u)$. (7) へ $Y \ge \eta$ を代入すると,

$$g_{u}(t, h_{u}(t)) = \frac{2^{Q(|u|)} \pi \sin(\theta \pi)}{2B^{j_{u}(T)+1}} G_{u}(j_{u}(T), T, H_{u}(j_{u}(T), T))$$
(10)
= $h'_{u}(t)$. (11)

よって h_u は g_u の常微分方程式の解. g_u は g に関して微分可能であり,

$$\mathcal{D}^{(0,1)}g(t,y) = \begin{cases} 0 & (\eta \le \frac{1}{4}) \\ 2B^{j_u(T)}f'(2\eta - 1/2) \cdot (g_u^*(t,Y+1) - g_u^*(t,Y)) & (\eta > \frac{1}{4}) \end{cases}$$
(12)

よって $\mathcal{D}^{(0,1)}g$ は連続.

$$|g_u^*(t,Y)| \le 2^{Q(|u|)} \pi/(2B^{j_u(T)+1}) \le 2^{Q(|u|)+1}/B^{j_u(T)+1}$$
 LU,

$$\begin{split} \left| \mathcal{D}^{(0,1)} g \right| & \leq 2B^{j_u(T)} \cdot |f'(2\eta - 1/2)| \cdot 2 \cdot \frac{2^{Q(|u|)+1}}{B^{j_u(T)+1}} \\ & \leq \frac{2B^{j_u(T)} \cdot 2^c \cdot 2^{Q(|u|)+2}}{B^{j_u(T)+1}} \\ & = \frac{2^{Q(|u|)+c+3}}{B} \leq 2^{-\lambda(|u|)-|u|} \end{split}$$

(vii) は

$$h_u(1) = \frac{H_u(P(|u|), 2^{Q(|u|)})}{B^{P(|u|)}}$$

$$= \frac{L(u)}{2^{P(|u|)(\lambda(|u|) + Q(|u|) + |u| + c + 5)}}$$

より、
$$\rho(k) = P(k)(\lambda(k) + Q(k) + |u| + c + 5)$$
 とおくと成り立つ.

3.3 定理 3.1 の証明

証明. L を PSPACE 完全な言語, $\lambda(k)=2k+2$ とおく. PSPACE 完全な言語 L にたいして補題 3.3 を用いて, ρ , $(g_u)_u$, $(h_u)_u$ を得る. $(g_u)_u$ は多項式時間実関数族なので, $|g_u(t,y)| \leq 2^{\gamma(|u|)-|u|}$ を満たすような多項式 γ が存在する. 各 u にたいして

$$\Lambda_u = 2^{\lambda(|u|)}, \quad \Gamma_u = 2^{\gamma(|u|)} \tag{13}$$

$$c_u = 1 - \frac{1}{2|u|} + \frac{2\bar{u} + 1}{\Lambda_u}, \quad l_u^{\mp} = c_u \mp \frac{1}{\Lambda_u}$$
 (14)

とおく. ただし $\bar{u} \in \{0,\ldots,2^{|u|}-1\}$ は u を二進数として解釈した数. 関数 g,h を $t \in [0,1], y \in \mathbf{R}$ にたいして、下のように定義する.

$$g\left(l_{u}^{\mp} \pm \frac{t}{\Lambda_{u}}, \frac{y}{\Lambda_{u}\Gamma_{u}}\right) = \begin{cases} \pm \frac{1}{\Gamma_{u}} \left(g_{u}(t, 1) + \mathcal{D}^{(0, 1)}g_{u}(t, 1)(y - 1)\right) & (1 < y) \\ \pm \frac{g_{u}(t, y)}{\Gamma_{u}} & (-1 \le y \le 1) \\ \pm \frac{1}{\Gamma_{u}} \left(g_{u}(t, -1) + \mathcal{D}^{(0, 1)}g_{u}(t, -1)(y + 1)\right) & (y < -1) \end{cases}$$

$$h\left(l_{u}^{\mp} \pm \frac{t}{\Lambda_{u}}\right) = \frac{h_{u}(t)}{\Lambda_{u}\Gamma_{u}}.$$

$$(16)$$

任意の $y \in \mathbf{R}$ にたいして g(1,y) = h(1) = 0 と定義する.

q と h が定理 3.1 で求める関数の性質を満たすことを示す.

まずgが多項式時間計算可能であることを示す。補題 1 を用いて示す。各有 理数 T,Y について g(T,Y) を求めるとき, $T=l_u^\mp\pm t/\Lambda_u,\,Y=y/\Lambda_u\Gamma_u$ を 満たすような $u, \pm(\mp), t, y$ は、多項式時間で計算可能である.

次に g が y に関して微分可能であり、導関数は y, t に関して連続になって いることをしめす. 各区間で第二引数に関して微分すると,

$$\mathcal{D}^{(0,1)}g\left(l_u^{\mp} \pm \frac{t}{\Lambda_u}, \frac{y}{\Lambda_u \Gamma_u}\right) = \begin{cases} \pm \Lambda_u \mathcal{D}^{(0,1)}g_u(t,1) & (1 < y) \\ \pm \Lambda_u \mathcal{D}^{(0,1)}g_u(t,y) & (-1 < y < 1) \\ \pm \Lambda_u \mathcal{D}^{(0,1)}g_u(t,-1) & (y < -1). \end{cases}$$
(17)

よって $\frac{dg}{dy}(t,1)=\pm \Lambda_u \frac{dg_u}{gy}(t,1), \ \frac{dg}{dy}(t,-1)=\pm \Lambda_u \frac{dg_u}{gy}(t,-1)$ であり, y に関して微分可能. $\mathcal{D}^{(0,1)}g_u$ は連続であるため, y に関して連続は自明.

t 軸方向への連続性について、任意の [0,1) の数はある u と $t \in [0,1]$ が 存在して $l_u^\mp \pm t/\Lambda_u$ の形で表せる. $t\in(0,1)$ においては $\mathcal{D}^{(0,1)}g_u(t,y)$ は 連続であるため, t 軸方向へ連続. t=0,1 のとき, $y_0\in[-1,1]$ にたいし て $g_u(t,y_0)=g_u(1,y_0)=0$ より $\mathcal{D}^{(0,1)}g(0,y_0)=\mathcal{D}^{(0,1)}g(1,y_0)=0$ よっ て t=0,1 においても連続. g(1,y)=0 より $\mathcal{D}^{(0,1)}g(1,y)=0$. また $|\mathcal{D}^{(0,1)}g_u| \leq 2^{\lambda(|u|)-|u|} \, \, \text{LI},$

$$\lim_{t \to 1-0} \left| \mathcal{D}^{(0,1)} g \right| = \lim_{|u| \to \infty} \left| \Lambda_u \mathcal{D}^{(0,1)} g_u \right| \le \lim_{|u| \to \infty} \left| 2^{-|u|} \right| = 0. \tag{18}$$

よって $\mathcal{D}^{(0,1)}q$ は連続

h が q の常微分方程式の解であることを示す. h(0) = 0, h'(1) = 0

¹準備で導入

g(1,h(1)) は自明.

$$h'(l_u^{\mp} \pm t/\Lambda_u)$$

$$= \pm \frac{h'_u(t)}{\Lambda_u \Gamma_u}$$

$$= \pm \frac{g_u(t, h_u(t))}{\Gamma_u}$$

$$= g\left(l_u^{\mp} \pm \frac{t}{\Lambda_u}, \frac{h_u(t)}{\Lambda_u \Gamma_u}\right)$$

$$= g\left(l_u^{\mp} \pm \frac{t}{\Lambda_u}, h\left(l_u^{\mp} \pm \frac{t}{\Lambda_u}\right)\right).$$
(19)

L は h に還元可能であることを示す.

$$h(c_u) = \frac{h_u(1)}{\Lambda_u \Gamma_u} = \frac{L(u)}{2^{\lambda(|u|) + \gamma(|u|) + \rho(|u|)}}$$

$$(20)$$

つまり R, S, T を以下のように定義することで、還元可能.

$$R(u,v) = v (21)$$

$$S(u,0^n) = |2^n c_u| を表す文字列, \tag{22}$$

$$T(u) = 0^{\lambda(|u|) + \gamma(|u|) + \rho(|u|)}$$
(23)

L は PSPACE 完全であるため, h も PSPACE 完全.

4 任意回微分可能関数と常微分方程式

任意回微分可能な関数の常微分方程式の解も、ある仮定のもと PSPACE 完全でありうることを証明する.

定理 4.1. 仮定 ?? のもと、任意の自然数 $k \geq 2$ にたいし、多項式時間実関数 g(t,y) で、 $\mathcal{D}^{(0,k)}g$ が連続であり、g の常微分方程式 (2) の解 h が PSPACE 完全であるものが存在する.

仮定については次の章で導入する.

4.1 フィードバックの弱い計算

フィードバックの弱い計算を定義する. フィードバックの弱い計算とは定数 d, 関数 $P: \mathbf{N} \to \mathbf{N}$, 多項式 $Q: \mathbf{N} \to \mathbf{N}$, 関数族 $(G_u)_u, (H_u)_u$ で, 5 つ組 $M = \langle d, P, Q, (G_u)_u, (H_u)_u \rangle$ である.

- (G_u)_u は多項式時間計算可能;
- $P(x) = O(\log x)$;

- $G_u : [P(|u|)] \times [2^{Q(|u|)}] \times [d] \to [d];$
- $H_u: [P(|u|) + 1] \times [2^{Q(|u|)}] \to [d];$
- 任意の $i \in [P(|u|)], T \in [2^{Q(|u|)}]$ にたいして
 - $-H_u(i,0) = H_u(0,T) = 0$
 - $H_u(i+1,T+1) = H_u(i+1,T) + G_u(i,T,Hu(i,T)).$

フィードバックの弱い計算 M が言語 L を認識するとは任意の文字列 u で $H_u(P(|u|),2^{Q(|u|)})=L(u)$ を満たすこと.

仮定 4.2. 任意の言語 $L \in \mathbf{PSPACE}$ に対して L を認識するフィードバックの弱い計算が存在する.

つまりフィードバックの弱い計算が PSPACE 完全であることを仮定する.

4.2 離散初期値問題を模倣する関数族

証明の流れは1 回微分可能の時と変わらない。任意の言語 $L \in \mathbf{PSPACE}$,文字列 u にたいして,上記のフィードバックの弱い計算を模倣し L(u) を計算する任意回微分可能な実関数 g_u を構成する.

補題 4.3. 仮定 ?? のもと、任意の自然数 $k \geq 2$ 、任意の言語 $L \in \mathbf{PSPACE}$ にたいして、多項式 λ, ρ と 関数族 g_u, h_u で、 $(g_u)_u$ は多項式時間計算可能であり、各二進文字列 u にたいして以下を満たすものが存在する.

- (i) $g_u: [0,1] \times [-1,1] \to \mathbf{R}, \quad h_u: [0,1] \to [-1,1];$
- (ii) 任意の $y \in [-1,1]$ にたいして $g_u(0,y) = g_u(1,y) = 0$;
- (iii) h_u は g_u の常微分方程式の解;
- (iv) $\mathcal{D}^{(0,k)}g_u$ は連続;
- (v) 任意の $i \in \{0, ..., k\}$ にたいして $|\mathcal{D}^{(0,i)}g_u(t,y)| \leq \Lambda_u^{-i}\Gamma_u^{-(i-1)}2^{-|u|}$;
- (vi) $h_u(1) = 2^{-\rho(|u|)}L(u)$.

ただし $\Gamma_u = 2^{\gamma(|u|)}, \Lambda_u = 2^{\lambda(|u|)}.$

証明. 仮定 \ref{MC} より L を認識する $M=\langle c,d,(G_u)_u,(H_u)_u \rangle$ を得る. さらに以下のように仮定する.

$$H_u(i, 2^{Q(|u|)}) = \begin{cases} L(u) & (i = P(|u|)) \\ 0 & (i < P(|u|)). \end{cases}$$
 (24)

.

5 結論

5.1 課題

t に関する微分.

参考文献

- [Kaw10] A. Kawamura. Lipschitz continuous ordinary differential equations are polynomial-space complete. *Computational Complexity*, 19(2):305–332, 2010.
- [Ko91] K.I. Ko. Complexity theory of real functions. Birkhauser Boston Inc., 1991.