Voronoi Graph Neural Networks

Laila Albalkhi Supervised by Dr. Luis Rueda

University of Windsor

Nov.22 2023

Machine Learning Overview

- ► Point Estimation
- ► Generative Models
 - Beta-Binomial
 - Dirichlet Multinomial
 - Naive Bayes
- Classifiers
 - Logistic Regression
 - Softmax Regression
- ► Dimensionality Reduction
 - Singular Value Decompositions
- ► Mixture Models
- ► Kernels and Sparse Vector Machines
- ► Hyperparameters

2 / 13

roduction Voronata VoroCNN Other Literature Conclusion

●○○ ○○ ○○ ○○ ○

Voronoi Diagrams and Tesselations

Figure: Voronoi Diagram

ntroduction Voronata VoroCNN Other Literature Conclusion

O●O OO OOO O

Neural Networks

Figure: The layers in a neural network

Graph Neural Networks

000

- ► Combine graph node information with neighbouring nodes
- Aggregating the information
- ► Feeding it into a neural network
- ► Non-linear activation function

Figure: GCN Layer Outline

troduction f Voronata VoroCNN Other Literature Conclusion OOO l lack O OOOO O

Voronata

From Proteins to Voronoi:

- ► Computing the Voronoi diagrams of given complex 3D shapes representing biological macromolecules (proteins and RNA)
- ▶ Using van der Waals radii instead of proteins or nucleic acid atoms directly

Figure: Voronoi cells and corresponding empty tangent spheres and their vertices.

Algorithm

- ▶ Two balls are considered to be neighbours if their Voronoi cells intersect.
- ► The intersection of four cells is a Voronoi vertex

Procedures

- ► Find valid quadruples of spheres
- ▶ 4 balls with at least one tangent non-intersecting sphere
- ► Gift-wrapping algorithm
- ► Find a valid neighbour of a triple in a halfspace
- ► Select group centers in a bounding spheres hierarchy
- Algorithm takes advantage of macromolecular structures; majority of valid atom triples have two tangent planes

VoroCNN

- ► Using Voronata
- ► Represent interatomic interactions as a Voronoi tessellation of protein atoms
 - Voronoi cell = atom
 - ► Voronoi cell face = interatomic contact
- ► Weighted unordered multi-graph representation
- ► Key: implicitly retains spatial relationship of atoms
- ▶ 3D tessellation can be reduced to a graph without significant information loss
- ▶ Interaction graphs used to construct a trainable neural network

Figure: VoroCNN methods using Voronata

Nodes:

- ► Represent atoms in protein structure
- ► Each node has a vector of features describing the atom using one-hot encoding

Edges

- ► Contact Edges
 - ► Represent spatial relationship b/w atoms
 - Two atoms are in contact if their Voronoi cells have non-zero contact surface
- ► Covalent Edges
 - Correspond to covalent bonds between atoms in contact
- ► Weighted matrices equal to the respective contact surface of atoms if there is a contact/covalent edge, and 0 otherwise

- Convolutional layer contains trainable tensors
- ► Transformed feature matrix combining neighboring graph node information
- Non-linear activation function. ELU
- Downsampling operations
 - Reduce data representation and extract hierarchical features
 - VoroCNN uses prior topology and structure information for downsampling
 - Atoms are grouped into residues; primitive covalent edges representing the peptide chain of the protein

Figure: Architecture of the VoroCNN network

Neural Network Architecture:

- ► Encoder
 - Two linear layers with ELU activation function
 - Reduces the size of the feature vectors
- ► Body
 - Contains aforementioned convolutional layers and graph downsampling
- Regressor
 - Predicts local CAD scores, using MSE loss function, Adam optimizer and L2 regularization

Tag-VGNN

- ► Tactile Voronoi Graph Neural Network to achieve tactile pose estimation
- ▶ GNN used to model distribution between shear motions of tactile markers
- Voronoi diagram adds contact depth-related features
- ▶ 28% increase in pose estimation compared to vanilla GNN

Figure: Tactile data preprocessing

Figure: Different graph representations

Conclusion

Key Takeaways:

- ▶ Voronoi diagrams and tessellations must be constructed in a manner that maintains the structure and information of the data
- Voronoi diagram constructions are heavily dependent on the context of the data and the constrictions that exist

Next steps:

- ► Identifying dataset for initial testing of performance
- Deciding Voronoi computation method
- Applications and use cases
- Expected results