

BATTERY PROTECTOR AND MOSFET COMBO

Features

- No External MOSFETs Required
- Equivalent of 55 mΩ R_{DS(ON)} on-chip MOSFET
- Only one external capacitor required in application
- Overtemperature Protection
- Overcharge Current Protection
- Three-step Overcurrent Detection: Overdischarge Current 1, Overdischarge Current 2 and Load Short Circuiting
- Charger Detection Function
- Delay Times (Overcharge Voltage: t_{CU},
 Overdischarge Voltage: t_{DL}, Overdischarge Current
 1: t_{ODC1}, Overdischarge Current 2: t_{ODC2}, Load
 Short Circuit: t_{SHORT}, Overcharge Current Detection
 Delay Time: t_{OCC}) are generated internally. No
 external capacitor is necessary. Accuracy: ±20%
- High-accuracy Voltage Detection
- Low Current Consumption
- Operation Mode: 2.0uA typ., 4.0uA max.
- Power-down Mode: 0.01uA max.
- Small Outline MSOP-8 Package
- RoHS Compliant and Lead (Pb) Free

Description

The TC6002 series is a member of Battery Protector product family. This device uses the company's properitary patent pending(US & China) Smart Switch technology to implement on-chip MOSFETs, thus reducing manufacturing cost and increaseing reliability. The device is designed to protect single-cell Li-lon and Li-Pol battery packs from either overcharge, overdis-charge or overcurrent.

The device contains all required protection control cir cuits together with very-low-resistance MOSFETs to minimize the number of external components. It incorporates overcharge voltage and current protection, overdischarge voltage and current protection, overtemperature protection, short circuit protection and comsumes very little power.

The device is not only targeted for digital cellular phones, but also for any other Li-lon and Li-Pol battery-powered information appliances requiring long-term battery life.

ORDER INFORMATION See page 18.

Preliminary Product Information

This document contains information for a new product.

Topchip semi reserves the right to modify this product without notice.

TABLE OF CONTENTS 1. Overview3 2. Pin Description ------4 Pin Configration4 Pin Description ______4 3. CharacteristiTC & Specifications5 Recommended Operating Conditions5 Electrical CharacteristiTC5 Absolute Maximum Ratings9 4. Functional Description10 5. State Machine ______12 6. Timing13 7. Measurement Test Setup15 8. Typical Application17 9. Package Dimensions18 10. Ordering Information19 11. Environmental, Manufcturing, & Handing Information20 12. Revision History21 LIST OF FIGURES Figure 1. Pin Configuration of TC6002 Series04 Figure 2. Operation State Diagram of TC6002 Series12 Figure 4. Overdischarge Current Detection13 Figure 5. Charger Detection.....14 Figure 6. Overcharge Current Detection _____14 Figure 7. Test Circuit15 Figure 8. TC6002 Series in a Typical Battery Protection Circuit17 Figure 9. Typical PCB Layout17 Figure 10. Package Outline Drawing18

1. OVERVIEW

The TC6002 series is a member of the Battery Protector product family. It uses the company's properitary patent pending (US & China) Smart Switch technology to implement on-chip MOSFETs, thus reducing manufacturing costs and increasing reliability. The device is designed to protect single cell Li-lon and Li-Pol battery packs from overcharge, overdischarge, or overcurrent.

The device contains all required protection control circuits together with very-low-resistance MOSFETs to minimize the number of external components. It incorporates overcharge voltage and current protection, overdischarge volt- age and current protection, overtemperature protection, short circuit protection and comsumes very little power.

The device is not only targeted for digital cellular phones, but also for any other Li-lon and Li-Pol battery-powered information appliances requiring long-term battery life.

2. PIN DESCRIPTION

Pin Configuration

Figure 1. Pin Configuration of TC6002 Series

Pin Description

Pin Number	Pin Name	I/O	Function
1	V _{DD}	I	Positive power input
2	V _{DD}	I	Positive power input
3	V _{CC}	I	Core circuit power supply pin
4	GND	I	Ground pin
5			Open or connect to GND
6	TEN	I	Test pin, open or connect to GND
7	VM	I/O	Positive charge input, overcurrent detection
8	VM	I/O	Positive charge input, overcurrent detection

3. CHARACTERISTITC & SPECIFICATIONS

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply voltage (between V _{DD} and GND)	V _{DD}	2.0	5.0	V
Charger input voltage (between VM and GND)	VM	-0.3	5.5	V
Operating Temperature Range	T _{OPR}	-40	85	°C

Electrical CharacteristiTC for TC6002F

Typicals and limits appearing in normal type apply for $T_A = 25^{\circ}C$. Limits appearing in **Boldface** type apply for $T_A = -40^{\circ}C$ to $85^{\circ}C$, unless otherwise specified.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Detection Voltage		1	<u>'</u>	l	•	
Overcharge Detection Voltage	V _{CU}		V _{CU} -0.025	V _{CU}	V _{CU} +0.025	V
V _{CU} =3.9V to 4.4V, 12.5mV Step			V _{CU} -0.055	V _{CU}	V _{CU} +0.040	
Overcharge hysteresis voltage	V_{HC}		V _{HC} -0.025	V _{HC}	V _{HC} +0.025	٧
V _{HC} =0V to 0.4V, 12.5mV Step			V _{HC} -0.025	V _{HC}	V _{HC} +0.025	
Overdischarge Detection Volt-			V _{DL} -0.025	V_{DL}	V _{DL} +0.025	V
age V _{DL} =2.0V to 3.0V, 12.5mV Step	V_{DL}		V _{DL} -0.050	V _{DL}	V _{DL} +0.050	
Overdischarge hysteresis	V_{HD}		V _{HD} -0.025	V_{HD}	V _{HD} +0.025	V
voltage V _{HD} =0.0V to 0.7V, 12.5mV			V _{HD} -0.050	V _{HD}	V _{HD} +0.050	
Charger Detection Voltage	V_{CHA}		V _{DD} +0.07	V _{DD} +0.12	V _{DD} +0.2	V
			V _{DD} +0.02	V _{DD} +0.12	V _{DD} +0.25	
Detection Current		I		l .		
Overcharge Current Detection	I _{occ}	V _{DD} =3.5V	2.1	3.0	3.9	Α
Current			1.9	3.0	4.1	
Overdischarge Current 1	I _{ODC1}	V _{DD} =3.5V	2.1	3.0	3.9	
Detection Current			1.9	3.0	4.1	Α
Overdischarge Current 2	I _{ODC2}	V _{DD} =3.5V	7.5	9.0	10.5	А
Detection Current			7.0	9.0	11.5	Α
Load Short-Circuiting	V _{SHORT}	V _{DD} =3.5V	1.20	1.25	1.30	V
Detection Voltage			1.15	1.25	1.35	

Electrical CharacteristiTC for TC6002F (Continued)

Typicals and limits appearing in normal type apply for $T_A = 25^{\circ}\text{C}$. Limits appearing in **Boldface** type apply for $T_A = -40^{\circ}\text{C}$ to 85°C , unless otherwise specified.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current Consumption			•	•		•
Current Consumption in	I _{OPE}	V _{DD} =3.5V	1.0	2.0	3.0	uA
Nor- mal Operation		VM pin floating	0.7	2.0	4.0	
Current Consumption in power	I _{DDQ}	V _{DD} =2.0V			0.01	uA
Down		VM pin floating			0.1	
VM Internal Resistance						
Internal Resistance	R_{VMD}	V _{DD} =3.5V	13	20	30	
between VM and Vpp		VM=1.0V	10	20	40	ΚΩ
Internal Resistance	R _{VMS}	V _{DD} =2.0V	300	450	675	
between VM and GND		VM=1.0V	225	450	900	ΚΩ
FET on Resistance			•	•		•
Equivalent FET on Resistance	R _{DS(ON)}	V _{DD} =4.0V I _{VM} =	1.0A	55	59	
		V _{DD} =3.6V I _{VM} =	1.0A	57		mΩ
		V _{DD} =3.0V I _{VM} =	1.0A	61		111 52
Over Temperature Protection			l	l .		l .
Over Temperature Protection	T _{SHD+}			120		
Over Temperature Recovery Degree	T _{SHD-}			100		°C
Detection Delay Time			l .	I.		l.
Overcharge Voltage Detection	t _{CU}		0.96	1.2	1.4	
Delay Time			0.7	1.2	2.0	S
Overdischarge Voltage	t _{DL}		115	144	173	
Detection Delay Time			80	144	245	ms
Overdischarge Current 1	t _{ODC1}	V _{DD} =3.5V	7.2	9.0	11	
Detection DelayTime			5.0	9.0	15	ms
Overdischarge Current 2	t _{ODC2}	V _{DD} =3.5V	3.6	4.48	5.4	ma a
Detection DelayTime			2.4	4.48	7.6	ms
Load Short-Circuiting Detec-	t _{SHORT}	V _{DD} =3.5V	220	320	380	110
tion Delay Time			150	320	540	us
Overcharge Current Detection	tocc	V _{DD} =3.5V	7.2	9.0	11	me
Delay Time			5.9	9.0	15	ms

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage (between V _{DD} and GND)	V_{DD}	0	8.0	V
Charger Input Voltage (between VM and GND)	VM	V _{DD} -10.0	10.0	V
Junction Temperature	T _{JMAX}		150	°C
Storage Temperature Range	T _{STG}	-55	125	°C
Power Dissipation	P _{MAX}		500	mW
ESD: Human Body Mode	НВМ		2000	V
ESD: Machine Mode	MM		200	V

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not guaranteed. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

4. Functional Description

The TC6002 series monitors the voltage and current of a battery and protects it from being damaged due to overcharge voltage, overdischarge voltage, overdischarge current, and short circuit conditions by disconnecting the battery from the load or charger. These functions are required in order to operate the battery cell within specified limits.

The device requires only one external capacitor. The MOSFET is integrated and has a low Equivalent $R_{DS(ON)}$ of 55 $m\Omega$ typical.

The TC6002 series supports four operating modes: normal, discharge, charge, and low power.

4.1 Normal operating mode

If no exception condition is detected, charging and discharging can be carried out freely. This condition is called the normal operating mode.

4.2 Overcharge voltage condition

When the battery voltage becomes higher than the overcharge detection voltage (V_{CU}) during charging under the normal condition and the detection continues for a period equal to overcharge voltage detection delay time (t_{CU}) or longer, the TC6002 series will control the internal MOSFET to stop charging. This condition is called the overcharge voltage condition. If the error condition clears within overcharge voltage detection delay time (t_{CU}), no action will be taken.

The overcharge condition is released by the following two events:

- (1). Charger is connected and the voltage of VM pin is lower than charger detection voltage (V_{CHA}), battery voltage falls below overcharge release voltage (V_{CL}). (Note: $V_{CL} = V_{CU} V_{HC}$)
- (2). Charger is disconnected and the battery voltage falls below overcharge detection voltage (V_{CU}).

If the charger is disconnected and the battery voltage is still higher than the overcharge detection voltage, the battery will discharge via internal diode.

Notes

(1). For all devices in this family except TC6002/TC6002F, when a charger is connected after overcharge detection voltage and voltage of VM pin is higher than charger detection voltage (V_{CHA}), overcharge voltage condition is not released even if battery voltage is below overcharge release voltage (V_{CL}). Overcharge voltage condition is released by removing charger.

For the TC6002/TC6002F, whether charger is connected, once V_{DD} is lower than overcharge release voltage (V_{CL}), overcharge voltage condition is released.

(2). During overcharge voltage condition and while battery is disconnected from charger via internal MOSFET, charger input voltage must not exceed maximum voltage rating Vmax defined for the device. Exceeding maximum voltage Vmax may damage the device and battery.

4.3 Overcharge current condition

While operating in the charge condition, if current exceeds I_{OCC} and it continues for overcharge current detection delay time (t_{OCC}) or longer, the IC will control the internal MOSFET to stop charging. This situation is called overcharge current condition.

The TC6002 series continuously monitors current and will release the overcharge current condition as soon as the voltage of VM pin is equal or lower than voltage of V_{DD} pin by connecting an external load which is already connected to battery pack or charger is removed.

4.4 Overdischarge voltage condition

When battery voltage falls below overdischarge detection voltage (V_{DL}) during discharging under normal condition and detection continues for overdischarge detection delay time (t_{DL}) or longer, the TC6002 series disconnects the battery from the load to stop further discharging. This situation is called over-discharge voltage condition. When discharge control MOSFET is turned off, VM pin voltage is pulled down by a resistor between VM and GND in the IC (R_{VMS}). When voltage difference between VM and GND is 1.5V (typical) or lower, current consumption is reduced to power-down current consumption (I_{DDQ}). This situation is called the power-down condition.

The power-down condition is released when a charger is connected and voltage difference between pin VM and GND becomes 2.0V (typical) or higher. Additionally, when the battery voltage equals the overdischarge detection voltage (V_{DL}) or is higher, the TC6002 series returns to the normal condition.

actions will be taken.

4.5 Overdischarge Current Condition (Detection of Overdischarge current1, Overdischarge current 2) If discharge current exceeds the specified value and condition lasts for overdischarge current detection delay time, battery is disconnected from load. If current drops again below specified value during delay time, no

The overdischarge current status is reset when impedance between VM pin and GND increases and is equal to or higher than impedance that enables automatic restoration to normal status. Disconnecting load surely restores to normal status from overdischarge current condition.

4.6 Load Short-circuiting condition

If voltage of VM pin is equal or below short circuiting protection voltage (V_{SHORT}), the IC will stop discharging and battery is disconnected from load. The maximum delay time to switch current off is t_{SHORT} .

This status is released when voltage of VM pin is higher than short protection voltage (V_{SHORT}), such as when disconnecting the load.

4.7 Charger Detection

When a battery in overdischarge condition is connected to a charger and provided that voltage of VM pin is equal or higher than charger detection voltage (V_{CHA}), the TC6002 series releases overdischarge condition when battery voltage becomes equal to or higher than overdischarge detection voltage (V_{DI}).

When a battery in overdischarge condition is connected to a charger and provided that voltage of VM pin is equal or higher than 2.0V (typical), and lower than charger detection voltage (V_{CHA}), the TC6002 series releases overdischarge condition when battery voltage reaches overdischarge detection voltage (V_{DL}) +overdischarge voltage hysteresis (V_{HD}) or higher.

4.8 Delay Circuits

The detection delay time for overdischarge current 2 and load short-circuiting starts when overdischarge current 1 is detected. As soon as overdischarge current 2 or load short-circuiting is detected over detection delay time for overdischarge current 2 or load short- circuiting, the TC6002 series stops discharging.

When battery voltage falls below overdischarge detection voltage due to overdischarge current, the TC6002 series stops discharging by overdischarge current detection. In this case the recovery of battery voltage is so slow that if battery voltage after overdischarge voltage detection delay time is still lower than overdischarge detection voltage, the TC6002 series shifts to power-down condition.

4.9 TEN pin

By forcing TEN to Vdd, the dely time of overcharge voltage¤t, over discharge voltage, overdischarge current1, overdischarge current2 can be reduced. Thereforce, testing time of protect circuit board can be reduced.

TEN pin should be left open or connect to GND in the actual application.

5. State Machine

Note: Ichr: Charge current under charging condition

Figure 2. Operation State Diagram of TC6002 Series

6. Timing

Remark: (1) Normal condition (2) Overcharge voltage condition (3) Overdischarge volatge condition

The charger is supposed to charge with constant current

Figure 3. Overcharge and Overdischarge Voltage Detection

Figure 4. Overdischarge Current Detection

Figure 5. Charger Detection

Figure 6. Overcharge Current Detection

7. Measurement Test Setup

Figure 7. Test Circuit

The test setup in Figure 8 can be used to measure the performance of the battery protection IC. All measurements assume the part is in normal mode.

7.1 Overdischarge Voltage

(Overdischarge detection voltage, low power mode current, Overdischarge release voltage) Settings:

Battery	V1	3.5V, 10mA Current Limit
Charger	V3	-0.05V, 5mA Current Limit
Switch 1	S1	Open
Switch 2	S2	Closed

Instruction:

- Decrease V1 from 3.5V gradually
- When current I3=0 then overdischarge voltage V1 is detected
- Opening switch 1 and switch 2 to measure I1 current in low power mode
- Close switch 2
- Increase V1 gradually until voltage I3=5mA
- V1 represents the overdischarge release voltage

7.2 Overcharge Voltage

(Overcharge detection voltage, Overcharge release voltage)

Settings:

Battery	V1	3.5V, 10mA Current Limit
Charger	V3	0.05V, 5mA Current Limit
Switch 1	S1	Open
Switch 2	S2	Closed

Instruction:

- Increase V1 from 3.5V gradually
- When current I3=0 then overcharge voltage V_{CU} is detected
- Decrease overcharge voltage V1 gradually
- When current I3=5mA then overcharge release voltage V_{CL} is detected
- Hysteresis voltage is calculated by V_{CH}=V_{CU}-V_{CL}

7.3 Overdischarge Current Settings:

Battery	V1	3.5V, 10mA Current Limit
Charger	V3	-2.0V, 10mA Current Limit
Switch 1	S1	Open
Switch 2	S2	Closed

Instruction:

- Increase current limit settings of charger V3 rapidly (within 10∞s) from its starting point, When current I3=0 whose delay time lies between the minimum and maximum value of overdischarge current 1 delay time (t_{ODC1}), then overdischarge current 1 is detected
- Open switch2
- Increase current limit settings of charger V3 rapidly (within 10∞s) from its starting point, When current I3=0 whose delay time lies between minimum and maximum value of overdischarge current 2 delay time (t_{ODC2}), then overdischarge current 2 is detected
- Open switch2
- Increase current limit settings of charger V3 rapidly (within 10∞s) from its starting point, When current I3=0 whose delay time lies between minimum and maximum value of short circuiting detection delay time (t_{SHORT}), then voltage of VM is the short circuiting detection voltage

7.4 Overcharge Current Settings:

Battery	V1	3.5V, 10mA Current Limit
Charger	V3	2.0V, 10mA Current Limit
Switch 1	S1	Open
Switch 2	S2	Closed

Instruction:

- Increase current limit settings of charger V3 rapidly (within 10∞s) from its starting point, When current I3=0 whose delay time lies between minimum and maximum value of overcharge current delay time (t_{OCC}), then overcharge current I_{OCC} is detected
- Open switch 2
- Close switch 1 to connect load with I2=10mA
- Part is released into normal mode

8. Typical Application

As shown in Figure 8, the bold line is the high density current path which must be kept as short as possible. For thermal management, ensure that these trace widths are adequate. C1 is a decoupling capacitor which should be placed as close as possible to the IC. These principles are implemented in Figure 9, the typical PCB layout.

Figure 8. TC6002 Series in a Typical Battery Protection Circuit

Note: C1 is used for protecting power fluctuation. Recommended typical value is 0.1uF (min 0.022uF, max 1.0uF).

Figure 9. Typical PCB Layout

Note: Red is Top, Blue is Bottom; Via resistance: $10m\Omega$.

9. Package Dimensions

Note: unit: mm (inch)

Figure 10. Package Outline Drawing

10. Ordering Information

Package	Temperature Range	Part Number	Marking ID	Packing Type
MSOP-8	-40 to 85°C	TC6002FKX	6001F	Tape & Reel

Product Family Available

Product Model	Overcharge Detection Voltage (V _{CU})	Overcharge Hysteresis Voltage (V _{HC})	Overdis- charge Detection Voltage (V _{DL})	Overdis- charge Hysteresis Voltage (V _{HD})	Overdis- charge Current 1 (I _{ODC1})	Overdis- charge Current 2 (I _{ODC2})	Overcharge Voltage Detection Delay Time(t _{CU})
TC6002F	4.275V	0.20V	2.5V	0.4V	3.0A	9.0A	1200ms

11. ENVIRONMENTAL, MANUFCTURING, & HANDING INFORMATION

Part Number	Peak Reflow Temp	MSL Rating*	Max Floor Life
TC6002 Series	260°C	min 3	min 7 Days

 $^{^{\}star}$ MSL (Moisture Sensitivity Level) as specified by IPC/JEDEC J-STD-020.

12. REVISION HISTORY

Revision	Date	Changes
V1.0	July 2008	Preliminary Release

Contacting TopChip Semiconductor Support

For all product questions and inquiries contact TopChip Semiconductor.

To find the one nearest to you go to www.topchipsemi.com

IMPORTANT NOTICE

"Preliminary" product information describes products that are in production, but for which full characterization data is not yet available.

TopChip semiconductor believes that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of TopChip Semiconductor by furnishing this information, TopChip Semiconductor grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. TopChip Semiconductor owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to TopChip Semiconductor integrated circuits or other products of TopChip semiconductor. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.