YTU – Fen-Edebiyat Fakültesi I. Vize Sınav Soru ve Cevap Kağıdı		Not Tablosu				
		1.S	2.S	3.S	4.S	Σ
Adı Soyadı						
Numarası						
Bölümü		Grup No		Tarih	02.11.2019	
Dersin Adı	MAT1071 Matematik I		Süre	80 dk	Sınıf	
Öğretim Üyesi				İmza		

YÖK nun 2547 sayılı Kanunun Öğrenci Disiplin Yönetmeliğinin 9. Maddesi olan "Sınavlarda kopya yapmak ve yaptırmak veya buna teşebbüs etmek" fiili işleyenler bir veya iki yarıyıl uzaklaştırma cezası alırlar.

1.a)
$$f(x) = \frac{\ln(18-2x^2)}{|2x-5|} + \arcsin(x-3)$$
 fonksiyonunun tanım kümesini bulunuz. (13P)
 $18 - 2x^2 > 0$ $2x-5 \neq 0$ $-1 \le x-3 \le 1$
 $18 - 2x^2 > 0$ $2x + \frac{5}{2}$ $2 \le x \le 4$
 $9 > x^2$
 $(-3, 3)$

$$T.V: \left[2,\frac{5}{2}\right) \cup \left(\frac{5}{2},3\right)$$

$$f(x) = \sqrt[4]{x}, \quad a = 16, \quad f(16) = 2$$

$$f'(x) = \frac{1}{4}x^{-\frac{3}{4}}, \quad f'(16) = \frac{1}{32}$$

$$f(x) \approx L(x) = f(16) + f'(16)(x-16)$$

$$L(x) = 2 + \frac{1}{32}(x-16)$$

$$f(18) \approx L(18) = 2 + \frac{1}{32}(18 - 16) = 2 + \frac{1}{16} = \frac{33}{16}$$

 $f(18) \approx \frac{33}{16}$

2)
$$f(x) = \begin{cases} \frac{1 - \cos x^2}{x^4}, & x < 0 \\ \frac{2}{\pi} \arcsin x + \frac{3}{\pi} \arccos x, & 0 \le x \le 1 \\ (x - 1)\sin \frac{1}{x - 1}, & x > 1 \end{cases}$$
 fonksiyonu için:

a) $\lim_{x\to 0} f(x)$ ve $\lim_{x\to 1} f(x)$ limitlerinin varlığını araştırınız. (L'Hopital Kuralı kullanılmayacaktır)

$$\lim_{X \to 0^{-}} \frac{1 - \cos x^{2}}{x^{4}} = \lim_{X \to 0^{-}} \frac{(1 - \cos x^{2})}{x^{4}} \cdot \frac{(1 + \cos x^{2})}{(1 + \cos x^{2})} = \lim_{X \to 0^{-}} \frac{\sin^{2} x^{2}}{x^{4}} \cdot \frac{1}{1 + \cos x^{2}} = \frac{1}{2}$$
(17P)

 $\lim_{x\to 0^+} f(x) \neq \lim_{x\to 0^-} f(x)$ oldugundan limit mevcut degildir.

$$\lim_{x \to 1^{-}} \left[\frac{2}{\pi} \arcsin x + \frac{3}{\pi} \arccos x \right] = 1$$

$$\lim_{x \to 1^+} (x-1) \sin \frac{1}{x-1} = 0$$

lim f(x) \pm lim f(x) oldugundan limit mevcut degildir.

b) x = 0 ve x = 1 noktalarında f fonksiyonunun sürekliliğini araştırıp, süreksizlik olması halinde türünü belirleyiniz. (8P)

lim f(x) + lim f(x) olduğundan x=0 da sıqramalı süreksizlik vardır.
x+0+ x+0-

 $\lim_{x\to 1^+} f(x) = \lim_{x\to 1^-} f(x)$ olduğundan x=1 de sigramalı süreksizlik vardın.

3.a) Kapalı Türetme Yöntemini kullanarak,
$$2x + \cos(x + y) = y^2 - \pi$$
 ile kapalı olarak tanımlı $y = f(x)$ eğrisinin $\left(-\frac{\pi}{2}, 0\right)$ noktasındaki normal doğrusunun denklemini bulunuz. (12P)
$$2 - (1+y^1) \sin(x+y) = 2y - y^1$$

$$x = -\frac{\pi}{2} \quad \forall e \quad y = 0 \quad 1 < 10 ;$$

$$2 + (1+y^1) = 0$$

$$m_T = y^1 = -3 \quad \Rightarrow \quad m_N = \frac{1}{3}$$

$$N \cdot D \cdot D \cdot \qquad y = 0 = \frac{1}{3} \left(x - \left(-\frac{\pi}{2}\right) \right)$$

$$y = \frac{1}{3} \times + \frac{\pi}{6}$$

$$y = \frac{1}{3} \times + \frac{\pi}{6}$$

3.b)
$$f:\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\to\mathbb{R}$$
, $f(x)=x$ secx fonksiyonunun tersinin mevcut olduğunu gösteriniz ve $\left(f^{-1}\right)'\left(\frac{2\pi}{3}\right)$ değerini bulunuz. (13P) $f'(x)=\sec x+x$. $\sec x$. $\tan x$ 70 $\left(\forall\ x\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\right)$ olduğundan f artandır $\Rightarrow f$, $1-1\Rightarrow f$ 'in tersi mevcuttur. $\left(f^{-1}\right)'(x)=\frac{1}{f'(f^{-1}(x))}$, $\left(f^{-1}\right)'\left(\frac{2\pi}{3}\right)=\frac{1}{f'(\frac{\pi}{3})}$ $=\frac{1}{f'(\frac{\pi}{3})}$ a. $\sec \alpha=2\pi$
Basarilar

4.a)
$$\lim_{x\to 0} (1 + \arctan x)^{\frac{1}{x^2 + 2x}}$$
 limitini hesaplayınız. (14P)

$$y = \left(1 + \arctan x\right)^{\frac{1}{x^2 + 2x}}$$

$$\ln y = \frac{1}{x^2 + 2x} \cdot \ln \left(1 + \arctan x\right)$$

$$\lim_{x\to 0} \ln y = \lim_{x\to 0} \frac{\ln \left(1 + \arctan x\right)}{x^2 + 2x} = \left(\frac{0}{0} \text{ bl.}\right)$$

$$\lim_{x\to 0} \ln y = \lim_{x\to 0} \frac{\frac{1}{1+x^2}}{1+\arctan x} = \frac{1}{2}$$

$$\lim_{x\to 0} \ln y = \frac{1}{2}$$

$$\lim_{x\to 0} \ln y = \frac{1}{2}$$

$$\lim_{x\to 0} \ln y = \frac{1}{2} \Rightarrow \lim_{x\to 0} \left(1 + \arctan x\right)^{\frac{1}{x^2 + 2x}} = e^{1/2}$$

$$\ln \left(\lim_{x\to 0} y\right) = \frac{1}{2} \Rightarrow \lim_{x\to 0} \left(1 + \arctan x\right)^{\frac{1}{x^2 + 2x}} = e^{1/2}$$

4.b)
$$\sqrt[3]{x-1} - 3x = 0$$
 denkleminin $\left[-\frac{1}{2}, 0\right]$ aralığında bir kökünün var olup olmadığını $f(x) = \sqrt[3]{x-1} - 3x$ fonksiyonu $\left[-\frac{1}{2}, 0\right]$ aralığında süreklidir. $f(0) = -1$ $f(-\frac{1}{2}) = \sqrt[3]{-\frac{3}{2}} + \frac{3}{2} = \frac{3}{2} - \sqrt[3]{\frac{3}{2}} = \alpha$ 70 veya $f(0) = -1 < f(0) = 0 < f(-\frac{1}{2}) = \alpha$ blayısıyla $f(0) = -1 < f(0) = 0 < f(-\frac{1}{2}) = \alpha$ er değeri alır. 0 halde $0 \in [-1, \alpha]$ olduğundan Ara Değer Teoremine göre legerini de alır. Yanı $f(0) = 0$ olacak şekilde $C \in [-\frac{1}{2}, 0]$ vardır.

Basarılar...