Симетрични и ермитови матрици и оператори.

ОПРЕДЕЛЕНИЕ 23.1. Матрица $A\in M_{n\times n}(\mathbb{R})$ (съответно $A\in M_{n\times n}(\mathbb{C})$) е симетрична (ермитова), ако $\overline{A}^t=A$.

Твърдение 23.2. (і) Множеството

$$M_{n\times n}^{\text{sym}}(\mathbb{R}) = \{A \in M_{n\times n}(\mathbb{R}) \mid A^t = A\}$$

на симетричните матрици и множеството

$$M_{n\times n}^{\mathrm{Herm}}(\mathbb{C}) = \{A \in M_{n\times n}(\mathbb{C}) \mid \overline{A}^t = A\}$$

на ермитовите матрици са линейни пространства над полето $\mathbb R$ на реалните числа.

- (ii) Ако $A \in M_{n \times n}(\mathbb{R})$ (съответно $A \in M_{n \times n}(\mathbb{C})$) е обратима симетрична (ермитова) матрица, то обратната матрица A^{-1} е симетрична (ермитова).
- (iii) Ако $A, B \in M_{n \times n}(\mathbb{R})$ (съответно $A, B \in M_{n \times n}(\mathbb{C})$) са симетрични (ермитови) матрици и AB = BA, то AB е симетрична (ермитова) матрица.

ДОКАЗАТЕЛСТВО. (i) За произволни матрици $M,N\in M_{m\times n}(\mathbb{C})$ твърдим, че $\overline{(M+N)}=\overline{M}+\overline{N}$. По-точно,

$$\overline{(M+N)}_{i,j} = \overline{(M+N)_{i,j}} = \overline{(M_{i,j}+N_{i,j})} =$$

$$= \overline{M_{i,j}} + \overline{N_{i,j}} = \overline{(M)}_{i,j} + \overline{(N)}_{i,j} = (\overline{M}+\overline{N})_{i,j}$$

за всички $1\leq i\leq m,$ $1\leq j\leq n,$ защото $\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}$ за произволни комплексни числа $z_1,z_2\in\mathbb{C}.$

За произволна матрица $M\in M_{m\times n}(\mathbb{C})$ и произволно комплексно число $z\in\mathbb{C}$ имаме $\overline{(zM)}=\overline{z}\overline{M}$ съгласно

$$\overline{(zM)}_{i,j} = \overline{(zM)_{i,j}} = \overline{(zM_{i,j})} = \overline{z}\overline{(M_{i,j})} = \overline{z}\overline{(M)}_{i,j} = (\overline{z}\overline{M})_{i,j}$$

за всички $1\leq i\leq m,\ 1\leq j\leq n,$ използвайки $\overline{z_1z_2}=\overline{z_1}\,\overline{z_2}$ за произволни комплексни числа $z_1,z_2\in\mathbb{C}.$

Ако $\overline{A}^t = A$ и $\overline{B}^t = B$, то

$$\overline{(A+B)}^t = \overline{A}^t + \overline{B}^t = A+B,$$

така че A+B е симетрична (ермитова) матрица. За произволно $\lambda \in \mathbb{R}$ е в сила

$$\overline{(\lambda A)}^t = \overline{\lambda} \ \overline{A}^t = \lambda A$$

и затова λA е симетрична (ермитова) матрица и множеството на симетричните (ермитовите) матрици е линейно пространство над \mathbb{R} .

Да забележим, че ако $A \in M_{n \times n}^{\mathrm{Herm}}(\mathbb{C}) \setminus \{\mathbb{O}_{n \times n}\}$ е ненулева ермитова матрица и $z \in \mathbb{C} \setminus \mathbb{R}$ е комплексно нереално число, то $zA \notin M_{n \times n}^{\mathrm{Herm}}(\mathbb{C})$ не е ермитова, защото

$$\overline{(zA)}^t = (\overline{z}\,\overline{A})^t = \overline{z}\overline{A}^t = \overline{z}A \neq zA.$$

По-точно, за $A_{i,j}\neq 0$ имаме $\overline{z}A_{i,j}=(\overline{z}A)_{i,j}\neq (zA)_{i,j}=zA_{i,j}$ съгласно $A_{i,j}(z-\overline{z})\neq 0.$

(ii) Чрез комплексно спрягане и транспониране на равенството $AA^{-1}=E_n$ получаваме

$$E_n = \overline{E_n}^t = \overline{(AA^{-1})}^t = (\overline{A} \ \overline{A^{-1}})^t = (\overline{A^{-1}})^t \overline{A}^t = (\overline{A^{-1}})^t A$$

съгласно $\overline{XY} = \overline{XY}$ за произволни матрици $X,Y \in M_{n \times n}(\mathbb{C})$, което беше проверено в доказателството на Твърдение 21.2. Единственото решение на матричното уравнение $ZA = E_n$ е A^{-1} , откъдето $(\overline{A^{-1}})^t = A^{-1}$ и A^{-1} е симетрична (ермитова) матрица.

(ііі) Съгласно

$$\overline{(AB)}^t = (\overline{A} \ \overline{B})^t = \overline{B}^t \overline{A}^t = BA = AB,$$

матрицата AB е симетрична (ермитова).

Определение 23.3. Линеен оператор $\varphi: V \to V$ в евклидово (унитарно) пространство V е симетричен (съответно, ермитов), ако

 $\langle \varphi(u),v\rangle = \langle u,\varphi(v)\rangle$ за произволни вектори $u,v\in V.$

Твърдение 23.4. Следните условия са еквивалентни за линеен оператор $\varphi: V \to V$ в n-мерно евклидово (унитарно) пространство V:

- $(i) \varphi$ е симетричен (ермитов) оператор;
- (ii) произволен базис b_1,\ldots,b_n на V изпълнява равенствата

$$\langle \varphi(b_i), b_j \rangle = \langle b_i, \varphi(b_j) \rangle$$
 за всички $1 \leq i, j \leq n;$

(iii) произволен ортонормиран базис e_1,\ldots,e_n на V изпълнява равенствата

$$\langle \varphi(e_i), e_j \rangle = \langle e_i, \varphi(e_j) \rangle$$
 за всички $1 \leq i, j \leq n;$

(iv) матрицата A на φ спрямо ортонормиран базис e_1, \ldots, e_n на V e симетрична (eрмитова).

Доказателство. Ясно е, че $(i) \Rightarrow (ii) \Rightarrow (iii)$.

 $(iii)\Leftrightarrow (iv)$ Нека $e=(e_1,\ldots,e_n)$ е ортонормиран базис на V и $A=(A_{ij})_{i,j=1}^n\in M_{n\times n}(\mathbb{R})$ или $A=(A_{ij})_{i,j=1}^n\in M_{n\times n}(\mathbb{C})$ е матрицата на φ спрямо базиса e. Координатите на $\varphi(e_i)$ спрямо базиса e на V са разположени в i-тия стълб на A, така че

$$\langle \varphi(e_i), e_j \rangle = \langle \sum_{s=1}^n A_{si} e_s, e_j \rangle = \sum_{s=1}^n A_{si} \langle e_s, e_j \rangle = A_{ji} \langle e_j, e_j \rangle = A_{ji}.$$

Аналогично,

$$\langle e_i, \varphi(e_j) \rangle = \langle e_i, \sum_{s=1}^n A_{sj} e_s \rangle = \sum_{s=1}^n \overline{A_{sj}} \langle e_i, e_s \rangle = \overline{A_{ij}} \langle e_i, e_i \rangle = \overline{A_{ij}}.$$

Затова условие (ііі) е еквивалентно на

$$A_{ji} = \langle \varphi(e_i), e_j \rangle = \langle e_i, \varphi(e_j) \rangle = \overline{A_{ij}}$$
 за всички $1 \le i, j \le n$. (23.1)

По определение, матрицата A е симетрична (ермитова) ако $\overline{A}^t = A$. Вземайки предвид $(\overline{A}^t)_{ji} = (\overline{A})_{ij} = \overline{A_{ij}}$ за всички $1 \leq i, j \leq n$, стигаме до извода, че (23.1) е еквивалентно на $A_{j,i} = (\overline{A}^t)_{ji}$ за всички $1 \leq i, j \leq n$, което се свежда към $A = \overline{A}^t$, т.е. към условие (iv).

За $(iii) \Rightarrow (i)$ да предположим, че e_1, \dots, e_n е ортонормиран базис на V с $\langle \varphi(e_i), e_j \rangle = \langle e_i, \varphi(e_j) \rangle$ за всички $1 \leq i, j \leq n$. Тогава произволни вектори $u = \sum_{i=1}^n x_i e_i$ и $v = \sum_{j=1}^n y_j e_j$ от V изпълняват равенствата

$$\begin{split} \langle \varphi(u), v \rangle &= \langle \varphi\left(\sum_{i=1}^n x_i e_i\right), \sum_{j=1}^n y_j e_j \rangle = \langle \sum_{i=1}^n x_i \varphi(e_i), \sum_{j=1}^n y_j e_j \rangle = \\ &= \sum_{i=1}^n \sum_{j=1}^n x_i \overline{y_j} \langle \varphi(e_i), e_j \rangle = \sum_{i=1}^n \sum_{j=1}^n x_i \overline{y_j} \langle e_i, \varphi(e_j) \rangle = \\ &= \langle \sum_{i=1}^n x_i e_i, \sum_{j=1}^n y_j \varphi(e_j) \rangle = \langle \sum_{i=1}^n x_i e_i, \varphi\left(\sum_{j=1}^n y_j e_j\right) \rangle = \langle u, \varphi(v) \rangle, \end{split}$$

така че $\varphi: V \to V$ е симетричен (ермитов) оператор.

Твърдение 23.5. Всички характеристични корени на симетричен (ермитов) оператор $\varphi: V \to V$ в ненулево крайномерно евклидово (унитарно) пространство V са реални числа.

Доказателство. Първо ще проверим, че произволна собствена стойност λ на ермитов оператор $\varphi: V \to V$ е реално число. За целта забелзваме, че произволен собствен вектор $v \in V \setminus \{\overrightarrow{\mathcal{O}_V}\}$, отговарящ на собствена стойност $\lambda \in \mathbb{C}$ изпълнява равенствата

$$\overline{\lambda}||v||^2 = \langle v, \lambda v \rangle = \langle v, \varphi(v) \rangle = \langle \varphi(v), v \rangle = \langle \lambda v, v \rangle = \lambda ||v||^2.$$

Следователно $(\overline{\lambda}-\lambda)||v||^2=\overline{\lambda}||v||^2-\lambda||v||^2=0$ с $||v||^2\in\mathbb{R}^{>0}$, откъдето $\overline{\lambda}=\lambda\in\mathbb{R}$ е реално число.

Следващата стъпка в доказателството установява, че всички характеристични корени на ермитов оператор $\varphi:V\to V$ в ненулево крайномерно унитарно пространство V са реални числа. По определение, характеристичният полином $f_\varphi(x)\in\mathbb{C}[x]\setminus\mathbb{C}$ на φ има комплексни коефициенти. Съгласно Основната теорема на алгебрата - Теорема 19.12, всички корени на $f_\varphi(x)=0$ са комплексни числа. Прилагаме Твърдение 19.5 и получаваме, че всички характеристични корени λ на φ са собствени стойности. По първата стъпка на доказателството получаваме, че $\lambda\in\mathbb{R}$ са реални числа.

Всяка ермитова матрица A се реализира като матрица на ермитов оператор спрямо ортонормиран базис. По-точно, ако $e=(e_1,\ldots,e_n)$ е ортонормиран базис на n-мерно унитарно пространство и $\varphi:V\to V$ е линейният оператор с матрица A спрямо e, то φ е ермитов оператор съгласно Твърдение 23.4. Характеристичните корени на φ съвпадат с характеристичните корени на A. Следователно всички характеристични корени на ермитова матрица A са реални числа.

Всяка симетрична матрица $A\in M^{\mathrm{sym}}_{n\times n}(\mathbb{R})\subset M^{\mathrm{Herm}}_{n\times n}(\mathbb{C})$ е ермитова и затова характеристичните корени на симетрична матрица A са реални числа.

В резултат, всички характеристични корени на симетричен оператор $\varphi:V\to V$ в крайномерно евклидово пространство V са реални числа, защото матрицата на φ спрямо ортонормиран базис е симетрична.

Твърдение 23.6. Нека $\varphi: V \to V$ е симетричен (ермитов) оператор в евклидово (унитарно) пространство V. Тогава:

- (i) собствени вектори u, v на φ , отговарящи на различни собствени стойности λ, μ са ортогонални помежду cu;
- (ii) ортогоналното допълнение U^\perp на φ -инвариантно подпространство U на V е φ -инвариантно.

В частост, ако e_1, \ldots, e_k е ортонормиран базис на U и e_{k+1}, \ldots, e_n е ортонормиран базис на U^{\perp} , то $e_1, \ldots, e_k, e_{k+1}, \ldots, e_n$ е ортонормиран базис на V, в който матрицата на $\varphi: U \oplus U^{\perp} \to U \oplus U^{\perp}$ е

$$A = \begin{pmatrix} A_1 & \mathbb{O}_{k \times (n-k)} \\ \mathbb{O}_{(n-k) \times k} & A_2 \end{pmatrix}$$

за матрицата A_1 на $\varphi:U\to U$ спрямо базиса e_1,\ldots,e_k на U и матрицата A_2 на $\varphi:U^\perp\to U^\perp$ спрямо базиса e_{k+1},\ldots,e_n на $U^\perp.$

Доказателство. (i) От определението за симетричност (ермитовост) на $\varphi:V\to V$, приложено към собствените вектори $u,v\in V\setminus\{\overrightarrow{\mathcal{O}}_V\}$ получаваме

$$\mu\langle u,v\rangle = \overline{\mu}\langle u,v\rangle = \langle u,\mu v\rangle = \langle u,\varphi(v)\rangle = \langle \varphi(u),v\rangle = \langle \lambda u,v\rangle = \lambda\langle u,v\rangle,$$

вземайки предвид, че собствените стойности на ермитов оператор са реални числа. Следователно $(\lambda-\mu)\langle u,v\rangle=\lambda\langle u,v\rangle-\mu\langle u,v\rangle=0$ с $\lambda\neq\mu$, така че $\langle u,v\rangle=0$ и векторите u,v са ортогонални помежду си.

(ii) За произволни вектори $u \in U$ и $v \in U^{\perp}$ е в сила

$$\langle u, \varphi(v) \rangle = \langle \varphi(u), v \rangle = 0,$$

съгласно $\varphi(u)\in U$. Следователно $\varphi(v)\in U^{\perp}$ и U^{\perp} е φ -инварианатно подпространство на V.

Твърдение 23.7. За произволен симетричен (ермитов) оператор φ : $V \to V$ в n-мерно евклидово (унитарно) пространство V съществува ортонормиран базис e_1, \ldots, e_n на V, в който матрицата

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 & 0 \\ 0 & \lambda_2 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{n-1} & 0 \\ 0 & 0 & \dots & 0 & \lambda_n \end{pmatrix} \in M_{n \times n}(\mathbb{R})$$

на φ е диагонална.

Доказателство. С индукция по $n=\dim V$, за n=1 няма какво да се доказва. В общия случай, $\varphi:V\to V$ има собствен вектор $v_1\in V\setminus\{\overrightarrow{\mathcal{O}}_V\}$. За ермитов оператор $\varphi:V\to V$ в крайномерно унитарно пространство V това е в сила поради наличието на собствен вектор за произволен линеен оператор в крайномерно пространство над полето $\mathbb C$ на комплексните числа. За симетричен оператор φ използваме, че всички характеристични корени на φ са реални числа, а оттам и собствени стойности на φ , така че съществува собствен вектор

 $v_1 \in V \setminus \{\overrightarrow{\mathcal{O}}_V\}$, отговарящ на собствената стойност $\lambda_1 \in \mathbb{R}$. Заменяме v_1 с единичен вектор $e_1 = \frac{1}{||v_1||} v_1 \in l(v_1)$ и забелязваме, че $U := l(e_1) = l(v_1)$ е 1-мерно φ -инвариантно подпространство на V, върху което действието на φ се свежда до умножение със собствената стойност λ_1 , отговаряща на v_1 . Ортогоналното допълнение U^\perp на U е (n-1)-мерно φ -инвариантно подпространство на V. По индукционно предположение съществува ортонормиран базис e_2,\ldots,e_n на U^\perp , в който матрицата

$$D' = \begin{pmatrix} \lambda_2 & 0 & \dots & 0 \\ 0 & \lambda_3 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

на $\varphi:U^\perp\to U^\perp$ е диагонална. Сега e_1,e_2,\dots,e_n е ортонормиран базис на $V=U\oplus U^\perp$, в който матрицата

$$D = \begin{pmatrix} \lambda_1 & \mathbb{O}_{1 \times (n-1)} \\ \mathbb{O}_{(n-1) \times 1} & D' \end{pmatrix} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 & 0 \\ 0 & \lambda_2 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{n-1} & 0 \\ 0 & 0 & \dots & 0 & \lambda_n \end{pmatrix}$$

на $\varphi:V=U\oplus U^\perp\to U\oplus U^\perp=V$ е диагонална.

Следствие 23.8. За произволна симетрична (ермитова) матрица $A \in M_{n \times n}(\mathbb{R})$ (съответно, $A \in M_{n \times n}(\mathbb{C})$) съществува ортогонална (унитарна) матрица $T \in M_{n \times n}(\mathbb{R})$ (съответно, $T \in M_{n \times n}(\mathbb{C})$), така че

$$D = T^{-1}AT = \overline{T}^t AT = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 & 0 \\ 0 & \lambda_2 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{n-1} & 0 \\ 0 & 0 & \dots & 0 & \lambda_n \end{pmatrix} \in M_{n \times n}(\mathbb{R})$$

е диагонална матрица.

Доказателство. Фиксираме ортонормиран базис $f=(f_1,\ldots,f_n)$ в n-мерно евклидово (унитарно) пространство V и разглеждаме линейния оператор $\varphi:V\to V$ с матрица A спрямо f. Съгласно Твърдение 23.4 операторът φ е симетричен (ермитов) и съществува ортонормиран базис $e=(e_1,\ldots,e_n)$ на V, в който матрицата D на φ е диагонална. Матрицата на прехода T от ортонормирания базис f на V към ортонормирания базис e на V е ортогонална (унитарна) и $D=T^{-1}AT=\overline{T}^tAT$.

Задача 23.9. Спрямо ортонормитан базис на евклидово пространство V линейният оператор $\varphi:V\to V$ има матрица

(i)
$$A = \begin{pmatrix} -2 & -2 & -2 \\ -2 & -1 & 0 \\ -2 & 0 & -3 \end{pmatrix}$$
; (i) $A = \begin{pmatrix} 4 & 4 & -2 \\ 4 & -2 & 4 \\ -2 & 4 & 4 \end{pmatrix}$
(iii) $A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$.

Да се докаже, че операторът $\varphi: V \to V$ е симетричен. Да се намери ортонормиран базис на V, в който матрицата D на φ е диагонална, както и тази матрица D.

Решение: (i) Непосредствено се проверява, че $A^t = A$ и A е симетрична матрица. Понеже A е матрицата на φ спрямо ортонормиран базис на V, операторът $\varphi: V \to V$ е симетричен.

Започваме пресмятането на характеристичния полином

$$f_{\varphi}(x) = f_{A}(x) = \det(A - xE_{3}) = \begin{vmatrix} -2 - x & -2 & -2 \\ -2 & -1 - x & 0 \\ -2 & 0 & -3 - x \end{vmatrix} = \begin{vmatrix} 0 & -2 & \frac{x^{2} + 5x + 2}{2} \\ 0 & -1 - x & 3 + x \\ -2 & 0 & -3 - x \end{vmatrix}$$

чрез изваждане на третия ред от втория, както и умножение на трети ред по $\left(-\frac{x+2}{2}\right)$ и прибавяне към първия ред след пресмятане на

$$-\frac{x+2}{2}(-x-3)-2=\frac{x^2+5x+6-4}{2}=\frac{x^2+5x+2}{2}.$$

Развиваме получената детерминанта от трети ред по нейния първи стълб и получаваме

$$f_{\varphi}(x) = (-1)^{3+1} \cdot (-2) \begin{vmatrix} -2 & \frac{x^2 + 5x + 2}{2} \\ -1 - x & 3 + x \end{vmatrix} =$$

$$= (-2) \left[(-2)(x+3) + (x+1) \frac{x^2 + 5x + 2}{2} \right] = 4x + 12 - (x+1)(x^2 + 5x + 2) =$$

$$= 4x + 12 - (x^3 + 5x^2 + 2x + x^2 + 5x + 2) = 4x + 12 - x^3 - 6x^2 - 7x - 2 =$$

$$= -x^3 - 6x^2 - 3x + 10 = -(x^3 + 6x^2 + 3x - 10).$$

Ако $f_{\varphi}(x)=0$ има рационален корен ρ , то този корен е цял делител на 10, т.е. $\rho\in\{\pm 1,\pm 2,\pm 5,\pm 10\}$. Непосредствено се пресмята, че $-f_{\varphi}(1)=1^3+6.1^2+3.1-10=1+6+3-10=0$, така че $f_{\varphi}(x)$ се дели на x-1. Разлагаме

$$-f_{\varphi}(x) = (x^3 - x^2) + (7x^2 - 7x) + (10x - 10) = x^2(x - 1) + 7x(x - 1) + 10(x - 1) =$$
$$= (x - 1)(x^2 + 7x + 10) = (x - 1)(x + 2)(x + 5)$$

и намираме характеристичните корени $\lambda_1 = -5, \ \lambda_2 = -2, \ \lambda_3 = 1,$ които са реални числа, а оттам и собствени стойности на φ .

Собствените вектори на φ , отговарящи на собствената стойност $\lambda_1 = -5$ са ненулевите решения на хомогенната система линейни уравнения с матрица от

коефициенти

$$A - \lambda_1 E_3 = A + 5E_3 = \begin{pmatrix} 3 & -2 & -2 \\ -2 & 4 & 0 \\ -2 & 0 & 2 \end{pmatrix}.$$

Прибавяме втория ред към първия и го изваждаме от третия, за да сведем към

$$\left(\begin{array}{ccc} 1 & 2 & -2 \\ -2 & 4 & 0 \\ 0 & -4 & 2 \end{array}\right).$$

Удвояваме първия ред и прибавяме към втория, за да получим

$$\left(\begin{array}{ccc} 1 & 2 & -2 \\ 0 & 8 & -4 \\ 0 & -4 & 2 \end{array}\right).$$

Прибавяме третия ред към първия, разделяме третия ред на 2 и изпускаме втория ред поради неговата пропорционалност с третия. Резултатът е хомогенна система линейни уравнения с матрица от коефициенти

$$\left(\begin{array}{ccc} 1 & -2 & 0 \\ 0 & -2 & 1 \end{array}\right),\,$$

която има общо решение

$$x_1 = 2x_2, \ x_3 = 2x_2$$
 за произволни $x_2 \in \mathbb{R}$.

За $x_2=1$ получаваме собствения вектор $v_1=(2,1,2)$ на φ , отговарящ на собствената стойност $\lambda_1=-5$. Неговата дължина е $||v_1||=\sqrt{2^2+1^2+2^2}>0=3$, така че

$$e_1 := \frac{v_1}{||v_1||} = \frac{1}{3}(2, 1, 2)$$

е единичен собствен вектор на φ , отговарящ на собствената стойност λ_1 . Собствените вектори на φ , отговарящи на собствената стойност $\lambda_2=-2$ са ненулевите решения на хомогенната система линейни уравнения с матрица от коефициенти

$$A - \lambda_2 E_3 = A + 2E_3 = \begin{pmatrix} 0 & -2 & -2 \\ -2 & 1 & 0 \\ -2 & 0 & -1 \end{pmatrix}.$$

Изваждаме третия ред от втория, делим първия ред на (-2) и свеждаме към

$$\left(\begin{array}{ccc}
0 & 1 & 1 \\
0 & 1 & 1 \\
-2 & 0 & -1
\end{array}\right)$$

с общо решение

$$x_1=-rac{1}{2}x_3, \quad x_2=-x_3$$
 за произволни $\quad x_3\in\mathbb{R}.$

За $x_3=2$ получаваме собствен вектор $v_2=(-1,-2,2)$ на φ , отговарящ на собствената стойност $\lambda_2=-2$. Векторът

$$e_2 := \frac{v_2}{||v_2||} = \frac{1}{3}(-1, -2, 2)$$

е с дължина 1 и изпълнява равенството $\varphi(e_2) = -2e_2$.

Собствените вектори на φ , отговарящи на собствената стойност $\lambda_3=1$ са ненулевите решения на хомогенната состема линейни уравнения с матрица от коефициенти

$$A - \lambda_3 E_3 = A - E_3 = \begin{pmatrix} -3 & -2 & -2 \\ -2 & -2 & 0 \\ -2 & 0 & -4 \end{pmatrix}.$$

Изваждаме третия ред от втория. Делим третия ред на (-2), умножаваме го по 3, прибавяме към първия ред и свеждаме към

$$\left(\begin{array}{ccc} 0 & -2 & 4 \\ 0 & -2 & 4 \\ 1 & 0 & 2 \end{array}\right).$$

Общото решение на получената хомогенна система линейни уравнения е

$$x_1 = -2x_3, \ x_2 = 2x_3$$
 за произволни $x_3 \in \mathbb{R}$.

За $x_3=1$ получаваме собствен вектор $v_3=(-2,2,1)$ на φ , отговарящ на собствената стойност $\lambda_3=1$. Заменяме вектора v_3 с единичен вектор

$$e_3 := \frac{v_3}{||v_3||} = \frac{1}{3}(-2, 2, 1).$$

Собствените вектори e_1,e_2,e_3 на симетричния оператор $\varphi:V\to V$, отговарящи на различните собствени стойности $\lambda_1=-5,\ \lambda_2=-2,\ \lambda_3=1$ са ортогонални помежду си и са избрани с единична дължина. Следователно e_1,e_2,e_3 е ортонормиран базис на V, в който матирцата

$$D = \left(\begin{array}{rrr} -5 & 0 & 0\\ 0 & -2 & 0\\ 0 & 0 & 1 \end{array}\right)$$

е диагонална.

(ii) Проверяваме, че $A^t=A$. Доколкото A е матрицата на φ спрямо ортонормиран базис на V, оттук следва, че операторът $\varphi:V\to V$ е симетричен. Характеристичният полином на φ и на A е

$$f_{\varphi}(x) = f_{A}(x) = \det(A - xE_{n}) = \begin{vmatrix} 4 - x & 4 & -2 \\ 4 & -2 - x & 4 \\ -2 & 4 & 4 - x \end{vmatrix} =$$

$$= \begin{vmatrix} 0 & 12 - 2x & \frac{(x-2)(x-6)}{2} \\ 0 & 6 - x & 12 - 2x \\ -2 & 4 & 4 - x \end{vmatrix} = (x-6)^{2} \begin{vmatrix} 0 & -2 & \frac{x-2}{2} \\ 0 & -1 & -2 \\ -2 & 4 & 4 - x \end{vmatrix} =$$

$$= (x-6)^{2}(-1)^{3+1} \cdot (-2) \begin{vmatrix} -2 & \frac{x-2}{2} \\ -1 & -2 \end{vmatrix} = -2(x-6)^{2} \left[4 + \frac{x-2}{2} \right] =$$

$$= -(x-6)^{2}[8 + x - 2] = -(x-6)^{2}(x+6)$$

след умножание на трети ред по 2 и прибавяне към втори ред, умножение на трети ред по $\frac{4-x}{2}$ и прибавяне към първи ред, последвано от изнасяне на общи множители x-6 от първите два реда и развитие по първи стълб. Характеристичните корени $\lambda_1=-6,\ \lambda_2=\lambda_3=6\in\mathbb{R}$ на φ са от полето на реланите числа и съвпадат със собствените стойности на φ .

Собствените вектори на φ , отговарящи на собствената стойност $\lambda_1 = -6$ са ненулевите решения на хомогенната система линейни уравнения с матрица от

коефициенти

$$A - \lambda_1 E_3 = A + 6E_3 = \begin{pmatrix} 10 & 4 & -2 \\ 4 & 4 & 4 \\ -2 & 4 & 10 \end{pmatrix}.$$

Делим втория ред на 4 и записваме като първо ред. Умножаваме така получения първи ред по (-10), прибавяме към първия ред и записваме като втори ред. Удвояваме първия ред, прибавяме към третия и свеждаме към

$$\left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & -6 & -12 \\ 0 & 6 & 12 \end{array}\right).$$

Изпускаме третия ред поради неговата пропроционалност с втория. Делим втория ред на 6, прибавяме към първия и получаваме

$$\left(\begin{array}{ccc} 1 & 0 & -1 \\ 0 & -1 & -2 \end{array}\right).$$

Общото решение на получената хомогенна система линейни уравнения е

$$x_1 = x_3, \ x_2 = -2x_3$$
 за произволно $x_3 \in \mathbb{R}$.

За $x_3=1$ получаваме собствен вектор $v_1=(1,-2,1)$, отговарящ на собствената стойност $\lambda_1=-6$. Дължината на v_1 е $||v_1||=\sqrt{\langle v_1,v_2\rangle}^{>0}=\sqrt{1^2+(-2)^2+1^2}^{>0}=\sqrt{6}$ и

$$e_1 = \frac{v_1}{||v_1||} = \frac{1}{\sqrt{6}}(1, -2, 1)$$

е единичен собствен вектор на φ , отговарящ на собствената стойност $\lambda_1=-6$. Собствените вектори на φ , отговарящи на собствената стойност $\lambda_2=\lambda_3=6$ са ненулевоте решения на хомогенната система линейни уравнения с матрица от коефициенти

$$A - \lambda_2 E_3 = A - 6E_3 = \begin{pmatrix} -2 & 4 & -2 \\ 4 & -8 & 4 \\ -2 & 4 & -2 \end{pmatrix}.$$

Всички уравнения на тази хомогенна система са пропорционални помежду си и налагат единствено ограничение $x_1=2x_2-x_3$ върху координатите на собствените вектори, отговарящи на $\lambda_2=\lambda_3=6$. Полагаме $x_2=1,\ x_3=0$ и получаваме ненулево решение $v_2=(2,1,0)$. Сега търсим ненулево решение на $x_1-2x_2+x_3=0$, което е ортогонално на v_1 . С други думи, решаваме хомогенната система лкинейни уравнения с матрица от коефициенти

$$\left(\begin{array}{ccc} 1 & -2 & 1 \\ 2 & 1 & 0 \end{array}\right).$$

Умножаваме първия ред по (-2), прибавяме към втория ред и свеждаме към

$$\left(\begin{array}{ccc} 1 & -2 & 1 \\ 0 & 5 & -2 \end{array}\right).$$

Делим втория ред на 2, прибавяме към първия и получаваме

$$\left(\begin{array}{ccc} 1 & \frac{1}{2} & 0 \\ & & \\ 0 & \frac{5}{2} & -1 \end{array}\right).$$

Общото решение на получената хомогенна система линейни уравнения е

$$x_1=-rac{1}{2}x_2, \quad x_3=rac{5}{2}x_2$$
 за произволни $\quad x_2\in\mathbb{R}.$

Избираме $x_2=2$ и получаваме собствен вектор $v_3=(-1,2,5)$ на φ , отговарящ на собствената стойност $\lambda_2=\lambda_3=6$, който е перпендикулярен на v_2 . След пресмятане на дължините

$$||v_2|| = \sqrt{\langle v_2, v_2 \rangle}^{>0} = \sqrt{2^2 + 1^2}^{>0} = \sqrt{5},$$

$$||v_3|| = \sqrt{\langle v_3, v_3 \rangle}^{>0} = \sqrt{(-1)^2 + 2^2 + 5^2}^{>0} = \sqrt{30},$$

намираме ортонормиран базис

$$e_2 = \frac{1}{\sqrt{5}}(2,1,0), \quad e_3 = \frac{1}{\sqrt{30}}(-1,2,5)$$

на собственото подпространство на φ , отговарящо на собствената стойност $\lambda_2=\lambda_3=6$. Единичният собствен вектор e_1 , отговарящ на собствената стойност $\lambda_1=-6\neq 6$ е перпендикулярен на e_2,e_3 и e_1,e_2,e_3 е ротонормиран базис на V, в който φ има диагонална матрица

$$D = \left(\begin{array}{rrr} -6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{array} \right).$$

(ііі) Съгласно $A^t=A$, матрицата A на φ спрямо дадения ортонормиран базис е симетрична. Следователно и операторът $\varphi:V\to V$ е симетрияен Характеристичният полином на φ и на A е

$$f_{\varphi}(x) = f_{A}(x) = \begin{vmatrix} -x & 0 & 0 & 1 \\ 0 & -x & 1 & 0 \\ 0 & 1 & -x & 0 \\ 1 & 0 & 0 & -x \end{vmatrix} = \begin{vmatrix} 0 & 0 & 0 & 1 - x^{2} \\ 0 & -x & 1 & 0 \\ 0 & 1 & -x & 0 \\ 1 & 0 & 0 & -x \end{vmatrix} =$$

$$= (-1)^{4+1}.1 \begin{vmatrix} 0 & 0 & 1 - x^{2} \\ -x & 1 & 0 \\ 1 & -x & 0 \end{vmatrix} = - \begin{vmatrix} 0 & 0 & 1 - x^{2} \\ 0 & 1 - x^{2} & 0 \\ 1 & -x & 0 \end{vmatrix} =$$

$$= -(-1)^{3+1}.1 \begin{vmatrix} 0 & 1 - x^{2} \\ 1 - x^{2} & 0 \end{vmatrix} = -[-(1 - x^{2})^{2}] = (x^{2} - 1)^{2} = (x + 1)^{2}(x - 1)^{2}$$

след умножение на четвърти ред по x и прибавяне към първи ред, последвано от развитие по първи стълб, умножение на третия ред по x и прибавяне към втори ред и отново развитие по първи стълб. Собствените стойности на φ са $\lambda_1=\lambda_2=-1,\ \lambda_3=\lambda_4=1.$

Собствените вектори, отговарящи на собствената стойност $\lambda_1=\lambda_2=-1$ са ненулевите решения на хомогенната система линейни уравнения с матрица от коефициенти

$$A - \lambda_1 E_4 = A + E_4 = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}.$$

Четвъртият ред съвпада с първия, а третия ред съвпада с втория. Следователно решаваната хомогенна система линейни уравнения има общо решение

$$x_1 = -x_4, \quad x_2 = -x_3$$
 за произволни $x_3, x_4 \in \mathbb{R}$.

За $x_3=1,\ x_4=0$ получаваме ненулево решение $v_1=(0,-1,1,0).$ Сега търсим онези решения на

$$\begin{vmatrix} x_1 & +x_4 & = 0 \\ x_2 & +x_3 & = 0 \end{vmatrix},$$

които са ортогонални на v_1 . С други думи, решаваме хомогенната система линейни уравнения с матрица от коефициенти

$$\left(\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{array}\right).$$

Прибавяме втория ред към третия и делим получения ред на 2. Изваждаме така получения трети ред от втория и свеждаме към

$$\left(\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right).$$

Общото решение на получената хомогенна система линейни уравнения е

$$x_1 = -x_4, \quad x_2 = 0, \quad x_3 = 0$$
 за произволни $x_4 \in \mathbb{R}$.

За $x_4=1$ получаваме собствения вектор $v_2=(-1,0,0,1)$ на φ , отоговарящ на собствената стойност $\lambda_1=\lambda_2=-1$, които е ортогонален на v_1 . След пресмятане на дължините

$$||v_1|| = \sqrt{\langle v_1, v_1 \rangle}^{>0} = \sqrt{(-1)^2 + 1^2}^{>0} = \sqrt{2},$$

 $||v_2|| = \sqrt{\langle v_2, v_2 \rangle}^{>0} = \sqrt{(-1)^2 + 1^2}^{>0} = \sqrt{2},$

намираме ортонормиран базис

$$e_1 = \frac{1}{\sqrt{2}}(0, -1, 1, 0), \quad e_2 = \frac{1}{\sqrt{2}}(-1, 0, 0, 1)$$

на собственото подпространство на φ , отговарящ на собствената стойност $\lambda_1=\lambda_2=-1.$

Собствените вектори на φ , отговарящи на собствената стойност $\lambda_3=\lambda_4=1$ са ненулевите решения на хомогенната система линейни уравнения с матрица от коефициенти

$$A - \lambda_3 E_4 = A - E_4 = \begin{pmatrix} -1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix}.$$

Четвърти ред е пропорционален на първи, а трети ред е пропорционален на втори. Общото решение на тази хомогенна система линейни уравнения е

$$x_1 = x_4, \quad x_2 = x_3$$
 за произволни $x_3, x_4 \in \mathbb{R}$.

Избираме $x_3 = 1$, $x_4 = 0$ и получаваме ненулево решение $v_3 = (0, 1, 1, 0)$. Търсим онези решения, които са перпендикулярни на v_3 и изпълняват хомогенната система линейни уравнения с матрица от коефициенти

$$\left(\begin{array}{cccc} -1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{array}\right).$$

Прибавяме втория ред към третия и делим на 2. Изваждаме така получения трети ред от втория и свеждаме към

$$\left(\begin{array}{cccc} -1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right).$$

Общото решение на получената хомогенна система линейни уравнения е

$$x_1 = x_4, \quad x_2 = 0, \quad x_3 = 0$$
 за произволни $x_4 \in \mathbb{R}$.

За $x_4=1$ получаваме собствения вектор $v_4=(1,0,0,1)$ на φ , отговарящ на собствената стойност $\lambda_3=\lambda_4=1$, който е ортогонален на v_3 . Пресмятаме дължините

$$||v_3|| = \sqrt{\langle v_3, v_3 \rangle}^{>0} = \sqrt{1^2 + 1^2}^{>0} = \sqrt{2},$$

 $||v_4|| = \sqrt{\langle v_4, v_4 \rangle}^{>0} = \sqrt{1^2 + 1^2}^{>0} = \sqrt{2}$

и получаваме ортонормиран базис

$$e_3 = \frac{1}{\sqrt{2}}(0,1,1,0), \quad e_4 = \frac{1}{\sqrt{2}}(1,0,0,1)$$

на собственото подпространство на φ , отговарящо на собствената стойност $\lambda_3=\lambda_4=1.$ По тоза начин намираме ортонормиран базис e_1,e_2,e_3,e_4 на V, в който матрицата на φ е

$$D = \left(\begin{array}{rrrr} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right).$$