Measuring Higher-Order Rationality with Belief Control

Wei James Chen¹, Meng-Jhang Fong², Po-Hsuan Lin²

¹National Taiwan University

Research Idea

- We conduct an experiment to study an individual's strategic reasoning levels across games by matching subjects w/ robot players
- Motivation: establishing an approach to measure a subject's strategic reasoning depth in the lab is important
- Challenge: unstable individual strategic reasoning levels across games (E.g., Georganas et al., 2015; Cerigioni et al., 2019)
 - Possible reason: heterogeneous beliefs about human opponents
- Previous studies: using computer players for studying non-equilibrium behavior (E.g., Johnson et al., 2002)
 - Focusing on one family of games in one study

Experiment Protocol

Ring Game (Kneeland, 2015)

• The only difference between G1 and G2 is P4's payoff matrix

G1

2-Person Guessing Game (Costa-Gomes and Crawford, 2006)

- $U_i = 0.2(100 |Guess_i p \cdot Guess_{-i}|)$
 - $Guess_i = \{1, 2, ..., 100\}$ for i = 1, 2
 - Dominance solvable given a single-peaked payoff structure

Identification by Revealed Rationality (Lim and Xiong, 2016)

- (First-order) Rationality: the ability to best respond to some belief
- K_{th} -order rationality: the ability to anticipate that the opponents are $(K-1)_{th}$ -order rational and to best respond to such belief
- One is k_{th} -order revealed rational if his strategy survives k rounds of iterated elimination of dominated strategies (IEDS)
- A subject is assigned to the lowest type he exhibits across games

Treatments: Robot and History

- Play the games in two different scenarios (without feedback)
- 1. Robot Treatment: against fully rational computer players
- 2. History Treatment: against the data drawn from the first scenario

Instructions for Robot Treatment

The other participants will be computers that are programmed to take the following strategy:

- 1. The computers aim to require as much payoff as possible for themselves.
- 2. A computer believes that every participant will try to require as much payoff as one can.
- 3. A computer believes that every participant believes "the computers aim to require as much payoff as possible for themselves."
 - Adapted from the instruction used in Johnson et al. (2002)

²California Institute of Technology

Result: Type Distribution

- Does rationality levels against robots capture individual strategic reasoning capacity? (n = 293)
 - Within-subject analysis: signed-rank test (p < 0.001)

Result: Constant Absolute Rationality Levels

- Is a player's reasoning depth constant across games?
 - 112 (38.23%) exhibit the same rationality levels across games
- Does the seemingly high proportion of constant-level players actually result from two independent type distributions?
- Null hypothesis: the subjects' rationality depths are independently distributed across families of games
- Monte Carlo simulation: 10,000 random samples of 293 pairs of levels (Georganas et al., 2015)
 - Independently drawn from the empirical distribution

Robot Treatment Transition Matrix					
- R	50.00	50.00	0.00	0.00	0.00
	[1]	[1]	[0]	[0]	[0]
iame	22.69	45.38	12.61	5.88	13.45
R1	[27]	[54]	[15]	[7]	[16]
Level in Ring Game	16.44	53.42	6.85	6.85	16.44
3 R2 R1	[12]	[39]	[5]	[5]	[12]
Leve	8.00	36.00	24.00	0.00	32.00
R3	[2]	[9]	[6]	[0]	[8]
. 84	1.35	12.16	8.11	8.11	70.27
	[1]	[9]	[6]	[6]	[52]
·	R0	R1 Leve	R2 el in Guessing Ga	R3 ame	R4

	Constant Level	Pool Data	
	Frequency		
	Robot Treatment		
	Simulation mean:	32.9%	
	Simulation 95% CI:	[27.6%, 38.2%]	
	Empirical mean:	38.2%	
	p-value:	0.057	
	History Treatment		
	History Treatment	10.004	
	Simulation mean:	40.3%	
	Simulation 95% CI:	[34.8%, 45.7%]	
_	Empirical mean:	41.3%	
	p-value:	0.768	

Result: Constant Ordering of Rationality Levels

- Does the ranking of players (in terms of rationality levels) remain the same across games?
- Define switch ratio = switch frequency/non-switch frequency
 - Under the null hypothesis, the (expected) switch ratio = 1

✓ Switch	Switch:			
	Player i	Player j		
Ring	2	4		
Guessing	4	3		

Guessing Game	Data
Robot Treatment	
Switch frequency:	12.3%
Non-switch frequency:	41.3%
Switch ratio:	0.30
p-value:	< 0.000

Ring Game vs.

✓ Non-switch:

	Player i	Player <i>j</i>
Ring	2	4
Guessing	1	2

Switch ratio:	0.30	1.01
p-value:	< 0.0001	
History Treatment		
Switch frequency:	12.9%	17.9%
Non-switch frequency:	34.5%	17.8%
Switch ratio:	0.37	1.02
p-value:	< 0.0001	

Empirical

Null

Hypothesis

22.5%

22.5%

Conclusion

- We find some consistency in subjects' rationality depths across games in terms of both absolute and relative levels
- This result suggests that strategic reasoning ability may be a persistent personal trait
- Furthermore, after controlling for a subject's beliefs about his/her opponent's rationality, we may be able to gauge the subject's strategic thinking ability using his/her choice data

References

Cerigioni, F., Germano, F., Rey-Biel, P., & Zuazo-Garin, P. (2019). Higher orders of rationality and the structure of games. *Mimeo*.

Costa-Gomes, M. A. & Crawford, V. P. (2006). Cognition and behavior in two-person guessing games: An experimental study. *American Economic Review*, 96(5), 1737–1768.

Georganas, S., Healy, P. J., & Weber, R. A. (2015). On the persistence of strategic sophistication. Journal of Economic Theory, 159, 369–400.

Johnson, E. J., Camerer, C., Sen, S., & Rymon, T. (2002). Detecting failures of backward induction: Monitoring information search in sequential bargaining. *Journal of Economic Theory*, 104(1), 16–47. Kneeland, T. (2015). Identifying higher-order rationality. *Econometrica*, 83(5), 2065–2079. Lim, W. & Xiong, S. (2016). On identifying higher-order rationality. *Mimeo*.

Meng-Jhang Fong

Email: mjfong@caltech.edu Website: https://mjfong.github.io/