Differential Voltage & Current amplifiers

Willy Sansen

KULeuven, ESAT-MICAS Leuven, Belgium

willy.sansen@esat.kuleuven.be

Two-transistor circuits

$$i_{out} = B i_{in}$$

Current mirror/amp.

$$i_c = g_m \frac{v_{in}}{2}$$

Differential Voltage amp.

Table of contents

- **□** Current mirrors
- **□** Differential pairs
- □ Differential voltage and current amps

Diode-connected MOST

$$I_{DS} = K'_{n} \frac{W}{L} (V_{DS} - V_{T})^{2}$$
 $g_{m} = di_{DS} / dv_{DS}$

Current mirror

$$i_{out} = B i_{in}$$

$$\frac{\Delta i_{out}}{i_{out}} = \frac{v_{DS2} - v_{DS1}}{V_{E}L_{2}}$$

Improved current mirrors

Low-voltage current mirror

Examples of low-voltage current mirrors

Low-voltage diode-connected MOST

Lowest-voltage current mirrors

Current mirror

Ref.: Widlar, JSSC Aug 69, 184-191

lout

Improved current mirrors

Improved current mirrors

Current mirror at high frequencies

$$R_{out} = r_{DS}$$

$$C_{G} = (1 + B) C_{GS} + C_{DS1}$$

$$BW = \frac{g_{m}}{2\pi (C_{G} + C_{DS1})}$$

$$\approx f_{T} \frac{1}{(2 + B)}$$

Ref.: Gilbert, JSSC Dec.68, 353-365

Current Miller effect

$$A_i = B \qquad R_{IN} = \frac{1}{g_{m1}}$$

$$R_S = 1/g_{m1}$$

$$B = \frac{g_{m2}}{g_{m1}}$$

Ref.: Rincon-Mora, JSSC Jan. 2000, 26-32

Current Miller equivalent circuit

Miller effect:

$$f_{-3dB} = \frac{1}{2\pi R_S A_{v2} C_M}$$

$$R_S = 1/g_{m1}$$
 $A_{v2} = g_{m2}R_L$

$$f_{-3dB} = \frac{1}{2\pi (1+B)C_M R_L}$$

$$f_z = -\frac{g_{m2}}{2\pi C_M}$$

Table of contents

- **□** Current mirrors
- □ Differential pairs
- □ Differential voltage and current amps

Voltage differential amplifier

Voltage differential amplifier : DC

Voltage differential amplifier: AC Gain

Voltage differential amplifier

$$A_v = g_m R_L$$

Same as single-tr. !!

Independent of:

Noise on V_{DD} : PSRR_{DD}

Noise on V_{SS}: PSRR_{SS}

Noise on Ground: CMRR

CMOS Voltage differential amplifier: DC range

Bipolar Voltage diff. amplifier: DC range

MOST Voltage diff. amplifier: large input signals

$$\frac{i_{Od}}{I_B} = \frac{v_{Id}}{(V_{GS}-V_T)} \sqrt{1 - \frac{1}{4} (\frac{v_{Id}}{v_{GS}-V_T})^2}$$

 v_{ld} is the differential input voltage i_{Od} is the differential output current $(g_m v_{ld})$ or twice the circular current $g_m v_{ld}$ /2 I_B is the total DC current in the pair

Note that
$$g_m = \frac{I_B}{V_{GS} - V_T} = K' W/L (V_{GS} - V_T)$$

Bipolar Voltage diff. amp.: large input signals

$$\frac{i_{Od}}{I_B} = \tanh \frac{V_{Id}}{2 kT/q}$$
 $\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{2e^x - 1}{2e^x + 1}$

 v_{ld} is the differential input voltage i_{Od} is the differential output current $(g_m v_{ld})$ or twice the circular current $g_m v_{ld}$ /2 I_B is the total DC current in the pair

Note that
$$g_m = \frac{I_B}{2 kT/q}$$

Voltage differential amplifier: transfer function

Voltage differential amplifier with $g_{m}r_{DS}$ gain

Diode-connected MOSTs with resistors

Voltage differential amplifier with high gain

Differential diode-connected MOSTs

Differential diode-connected MOSTs

Values close to ∞!

High gain because of current cancellation

Input impedance

$$C_{IN} = \frac{C_{GS}}{2}$$

$$R_{IN} = 2 r_{\pi}$$
 $C_{IN} = \frac{C_{\pi}}{2}$

Low-Pass Voltage Differential amplifier

High-Pass voltage differential amplifier

Calculation High-Pass differential amplifier

Table of contents

- **□** Current mirrors
- □ Differential pairs
- □ Differential voltage and current amps

Operational Transconductance Amplifier (OTA)

Single-stage OTA: operation

 $\circ\circ$

Single-stage OTA

$$A_v = g_{m1} R_{out}$$

$$R_{out} = r_{DS2} // r_{DS4}$$

$$BW = \frac{1}{2\pi R_{out}C_L}$$

$$GBW = \frac{g_{m1}}{2\pi C_L}$$

Bootstrapping for low input capacitance

$$C_{coax} \approx 0$$
 !!!

Bootstrapping for high input impedance

Bootstrapping for high input impedance

Bootstrapping out a load resistance R

Bootstrapping out an output resistance

Bootstrap for high gain A_{v2}

$$R_m \rightarrow x \beta_3$$

$$R_{out} \rightarrow x \frac{1}{\beta_3}$$

$$A_{v2} \approx g_{m1} r_{o2} \times \beta_3$$

Same GBW!

Ref.De Man JSSC June 77, pp. 217-222 LT1008, LT1012

Current differential amplifier

$$i_{out} = I_B + i_{in} R_{in} = \frac{1}{g_{m1}}$$

Is the same!

Current differential amplifier

$$i_{out} = I_B + i_{in} R_{in} = \frac{1}{g_{m1}}$$

Current differential amplifier

Ref. Fischer, JSSC June 87, 330-340

4-input current amplifier

Low voltage operation

Table of contents

- **□** Current mirrors
- □ Differential pairs
- □ Differential voltage and current amps