

Regular Manuscript

Commodity Price Visualization and Analysis Using Web Technologies

Submission ID 778912b9-e2df-40b0-9763-569b0f48a919

Submission Version Initial Submission

PDF Generation 16 Mar 2025 11:41:49 EST by Atypon ReX

Authors

Mr. K. Sai Krishna

Mr. P. Narender

Mr. K. Abyudhay Corresponding Author Submitting Author

ORCiD

https://orcid.org/0009-0006-8554-0584

Mr. K. Srikar Reddy

Additional Information

Subject Category

Computational and artificial intelligence

Computers and information processing

Education

Engineering management

Keywords

Data analysis

Data preprocessing

Data visualization

Files for peer review

All files submitted by the author for peer review are listed below. Files that could not be converted to PDF are indicated; reviewers are able to access them online.

Name	Type of File	Size	Page
Commodity Price Visualization and Analysis Using Web Technologies.pdf	Main Document - PDF	215.1 KB	Page 3

Commodity Price Visualization and Analysis Using Web Technologies

Authors:

K. Sai Krishna,

P. Narender,

K. Abyudhay,

K. Srikar Reddy

Guide: Dr. K. Ravi Teja Kochula

Abstract

Commodity market analysis plays a crucial role in understanding price trends, supply-demand dynamics, and market efficiency. This paper presents a data-driven approach for analyzing and visualizing daily price variations across multiple Indian markets. By leveraging Python-based libraries such as Pandas, Matplotlib, and Seaborn, this project provides real-time insights through an interactive dashboard. Additionally, machine learning models such as ARIMA and LSTM are implemented to forecast future prices, aiding stakeholders in better decision-making. The proposed methodology overcomes limitations of existing static models by incorporating real-time data integration and inter-market comparisons. The results demonstrate the effectiveness of this approach in improving market transparency and supporting strategic planning.

Keywords: Commodity Price Analysis, Data Visualization, Machine Learning, ARIMA, LSTM, Market Trends

1. Introduction

Commodity prices fluctuate due to various factors, including supply-demand dynamics, government policies, and global economic conditions. Farmers, traders, and policymakers require real-time insights to make informed decisions. Existing studies focus on historical data analysis but lack real-time adaptability. This study aims to bridge the gap by integrating dynamic visualizations and predictive analytics to improve price forecasting and decision-making.

2. Literature Review

Several studies have explored commodity price forecasting using statistical and machine learning models:

- **Singh et al. (2020):** ARIMA models for wheat price prediction, highlighting seasonality effects.
- Sharma & Gupta (2021): Regression models analyzing monsoon impact on rice pricing.
- Patel et al. (2022): LSTM neural networks for short-term vegetable price forecasting.

While these studies provide valuable insights, they lack real-time data adaptability and cross-market comparisons. Our approach enhances these methodologies by integrating interactive dashboards and statistical analysis.

3. Proposed Methodology

The project involves the following key steps:

3.1 Data Collection & Preprocessing

- Data sourced from government repositories and commodity market databases.
- Cleaning involves handling missing values, removing anomalies, and formatting data.

3.2 Exploratory Data Analysis (EDA)

- Identification of trends and seasonal patterns using statistical methods.
- Visualization tools: Matplotlib, Seaborn, and Pandas.

3.3 Trend Analysis & Forecasting

- Implementation of **ARIMA** for time-series analysis.
- Application of **LSTM neural networks** for accurate short-term price prediction.

3.4 Interactive Dashboard

- Built using **Streamlit** for real-time monitoring.
- Features include market-wise filtering, trend comparisons, and forecasting tools.

4. Results & Discussion

The implemented system provides:

- Real-time visualization of commodity price trends.
- Market-wise comparison highlighting price variations across regions.
- Predictive analytics improving forecasting accuracy.
- Stakeholder decision support through interactive tools.

Initial results indicate that integrating visual analytics with predictive modeling significantly enhances price trend understanding and decision-making capabilities.

5. Conclusion & Future Work

This study demonstrates the effectiveness of integrating data visualization and machine learning for commodity price analysis. The proposed methodology enables better forecasting and market transparency. Future work includes:

• Expanding the dataset for broader regional analysis.

- Enhancing model accuracy with deep learning techniques.
- Implementing a mobile application for wider accessibility.

6. References

- 1. Singh, R., & Sharma, P. (2020). "Time Series Analysis of Wheat Prices in India." *Journal of Agricultural Economics*, 45(3), 230-245.
- 2. Patel, K., & Desai, R. (2022). "Using LSTM for Short-term Vegetable Price Forecasting." *International Conference on Machine Learning Applications*, 112-118.
- 3. Kumar, M., & Yadav, S. (2019). "Clustering Techniques for Analyzing Market Price Variations of Pulses in India." *Journal of Data Science and Applications*, 10(4), 389-405.
- 4. Government of India. (2023). "Commodity Market Trends Report." Ministry of Agriculture and Farmers Welfare.