Modern Fizika Laboratórium

Az elemi töltés meghatározása jegyzőkönyv

Mérést végezte: Koroknai Botond (AT5M0G) Mérés időpontja: 2023.11.21

Jegyzőkönyv leadásának időpontja: 2023.12.05

Tartalomjegyzék:

1	Mérés célja	2
2	Mérőeszközök	2
3	Képletek:	2
	Kiértékelés	3

1 Mérés célja

A mérés során a feladatom az volt, hogy dinamikus módszerrel, tehát az olajcseppek sebességének vizsgálatával meghatározzam az elemi töltés nagyságát.

2 Mérőeszközök

- kondenzátor
- barométer
- hőmérő
- · tápegység
- · számítógép
- · kiértékelő program
- · olajpumpa

3 Képletek:

A képletek levezetését a méréshez tartozó leírás tartalmazza.

Stokes-féle súrlódási erő:

$$F = 6\pi \eta r v$$

Ahol η jelöli a belső súrlódást, r az olajcsepp sugarát és v a sebességét.

Korrekció:

$$F_s = 6\pi \eta r v \frac{1}{1+K}$$

ahol $K=8.26\cdot 10^{-3}\, Pam$, valamint p jelöli a külső légynyomást. Ezt nevezzük az első korrekciónak de további behelyettesítéssel megkaphatjuk F_s további korrekcióit is.

Az olajcsepp sugara:

$$r = \sqrt{\frac{9}{2} \frac{\eta v_0}{(\rho_0 - \rho_t)g}}$$

ahol v_0 az olajcsepp sebessége elektromos mező hiányában, ρ_0 a csepp sűrűsége és ρ_t a levegő sűrűsége és g a gravitációs gyorsulás.

Az olajcsepp töltése

$$q = \frac{d}{U} \left(\frac{4}{3} \pi r^3 (\rho_0 - \rho_t) g + 6\pi \eta r v_1 \right)$$

ahol d = 6 mm a kondenzátor lemezeinek távolsága. U a rájuk kapcsolt feszültség, és v_1 az elektromos mező hatására mozgó olajcsepp sebessége.

A belső súrlódás hőmérsékletfüggése:

$$\eta_T = \eta_0 \sqrt{\frac{T}{T_0}} \frac{1 + \frac{C}{T_0}}{1 + \frac{C}{T}}$$

ahol $\eta_0 = 1.708 \cdot 10^{-5} \, Pas$, C = 113K, $T_0 = 273 \, K$ és T a levegő Kelvinben mért hőmérséklete.

Az elemi töltés meghatározása Az elemi töltés meghatározásához a

$$f(x) = \sum_{i=1}^{N} \sin^2\left(\pi \frac{q_i}{x}\right)$$

függvényt kell ábrázoljuk, ahol q_i az egyes olajcseppekhez tartozó töltést jelöli. A függvény minimumainak e/2, e/3,..., helyeken kell elhelyezkedniük és a minimumhelyek közül a legnagyobb fogja megadni az elemi töltést.

4 Kiértékelés

A cseppek sebességét két féle képpen mértem meg. Előszőr elektromos teret kapcsoltam a kondenzátorra, majd pedig a teret lekapcsolva vizsgáltam őket. A 25 megmért csepp adatait táblázatba foglaltam, ahol az első oszlop tartalmazza a tápegység feszültségét, a második oszlop az olajcsepp sebességét elektromos tér hiányában, míg a harmadik oszlop az olajcsepp sebessségét elektromos tér mellett.

Sorszám	U [V]	v ₀ [mm/s]	v_1 [mm/s]
1	501	0.0629	0.0519
2	501	0.0885	0.07575
3	502	0.054	0.0602
4	499	0.0692	0.0687
5	501	0.067	0.0732
6	499	0.044	0.0843
7	501	0.0494	0.0472
8	501	0.544	0.0522
9	500	0.0618	0.051
10	502	0.0621	0.0595
11	502	0.0578	0.0657
12	502	0.0558	0.0621
13	500	0.0695	0.0529
14	502	0.0598	0.0677
15	502	0.0503	0.0655
16	502	0.0636	0.0523
17	501	0.0549	0.0704
18	500	0.059	0.0602
19	501	0.0475	0.0435
20	502	0.0971	0.0816
21	502	0.0929	0.0760
22	501	0.0846	0.0784
23	502	0.0837	0.0806
24	500	0.047	0.0450
25	499	0.0555	0.0497

táblázat 1: Sebességek

A sugarak és erők számításához a következő értékekkel számoltam:

•

$$T\ [K]=298$$

•

p[Pa] = 100690

•

$$\rho_0 \ [kg/m^3] = 875$$

.

$$\rho_t \ [kg/m^3] = 1.29$$

•

$$\eta \ [Pas] = 1.829 \cdot 10^{-5}$$

Sorszám	$r_0 [10^{-7} \mathrm{m}]$	$F_0 [10^{-14} \text{ N}]$	$r_1 [10^{-7} \mathrm{m}]$	$F_1 [10^{-14} \mathrm{N}]$	$r_2 [10^{-7} \mathrm{m}]$	$F_2 [10^{-14} \mathrm{N}]$
1	7.773	1.686	7.392	1.603	7.374	1.6
2	9.22	2.814	8.835	2.696	8.819	2.691
3	7.202	1.341	6.824	1.271	6.804	1.267
4	10.081	3.678	9.694	3.537	9.679	3.531
5	8.022	1.853	7.641	1.765	7.623	1.761
6	6.501	0.986	6.126	0.929	6.105	0.926
7	6.888	1.173	6.511	1.109	6.491	1.106
8	10.7	4.398	10.312	4.239	10.298	4.233
9	7.704	1.642	7.324	1.561	7.306	1.557
10	7.723	1.654	7.343	1.572	7.325	1.569
11	7.451	1.485	7.072	1.41	7.053	1.406
12	7.321	1.409	6.942	1.336	6.923	1.332
13	8.17	1.958	7.789	1.867	7.771	1.862
14	7.579	1.563	7.199	1.481	7.181	1.481
15	6.951	1.206	6.574	1.14	6.554	1.137
16	12.965	7.824	12.573	7.587	12.561	7.58
17	10.803	4.526	10.415	4.363	10.401	4.358
18	7.528	1.532	7.148	1.454	7.13	1.451
19	6.754	1.106	6.378	1.045	6.358	1.041
20	9.657	3.234	9.272	3.104	9.256	3.099
21	9.446	3.026	9.061	2.903	9.046	2.898
22	9.014	2.63	8.63	2.518	8.614	2.513
23	8.966	2.588	8.582	2.477	8.566	2.472
24	13.488	8.809	13.095	8.553	13.084	8.545
25	13.853	9.544	13.46	9.274	13.449	9.266

táblázat 2: A kiszámolt értékek

A következő feladat során meg kellett becsülni, hogy mekkorának kéne lenni a csepp sugarának, hogy elérjük az 1%, illetve a 0.1%-os pontosságot az első és második korrekciót használva. Ezt a következő képpen tettem meg. Ábrázoltam a r_1 és r_2 korrekciók százalékos eltérését az r_0 függvényében:

Mivel közvetlen a grafikonról nem tudjuk leolvasni az 1% és 0.1%-hoz tartozó értékeket, ezért egy exponenciális függvényt illesztettem rájuk, így meg tudom határozni a két százaléknak megfelelő r_0 értékeket. Vettem a kész illesztéseket és r értékeinek egy szélesebb skálájával ábrázoltam őket, és azt tapasztaltam, hogy nem fogom tudni meghatározni a 1% és 0.1% tartozó értékeket, mert az illeszetett függvények 0.0198-hoz és 0.0206-hoz konvergálnak.

Töltések:

A cseppek töltéseit a "Képletek" c. fejezetben ismertetett összefüggés alapján határoztam meg, a második korrigált sugárral.

Szám	q [10 ⁻¹⁹ C]	$\Delta q [10^{-19} \mathrm{C}]$
1	3.305	0.169
2	5.71	0.248
3	3.04	0.168
4	4.221	0.207
5	4.212	0.209
6	3.007	0.183
7	2.442	0.141
8	2.843	0.156
9	3.222	0.167
10	3.483	0.18
11	3.418	0.183
12	3.196	0.174
13	3.723	0.182
14	3.595	0.189
15	2.98	0.17
16	3.353	0.171
17	3.386	0.185
18	3.338	0.176
19	2.25	0.132
20	6.516	0.27
21	6.009	0.255
22	5.537	0.246
23	5.543	0.247
24	2.266	0.134
25	2.846	0.155

táblázat 3: A számolt töltések és hibáik

A számegyenesen azt kéne látnunk, hogy a töltések csak diszkrét értékeket vehetnek fel. Kis belemagyarázással természetesen azt mondhatnám, hogy ez látszik ezen az ábrán, bár korántsem tökéletesen. Az elemi töltés meghatározásához ábrázoltam a fentebb ismertetett sin^2 -es képletet.

Az ábra alapján az elemi töltés nagyság $\approx 3.2\cdot 10^{-19}\,C$. Tehát a mért érték nagyságrendileg stimmel, de megközelítőleg kétszerese az elemi töltés irodalmi: $1.602\cdot 10^{-19}\,C$ -os értékének.

4.1 Hiba

A mérést, mérőtárs hiányában egyedül végeztem, így igen nehéz volt az idők mérését összehangolni a cseppek követésévével, és valószínűleg ebből származik a legnagyobb hiba. Ennek ellenére véleményem szerint egész pontos eredményt sikerült kimérnem.