Lecture Notes in Artificial Intelligence

746

Subseries of Lecture Notes in Computer Science Edited by J. Siekmann

Lecture Notes in Computer Science Edited by G. Goos and J. Hartmanis

Artificial Perception and Music Recognition

Springer-Verlag

Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Series Editor
Jörg Siekmann
University of Saarland
German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3
D-66123 Saarbrücken, Germany

Author

Andranick Tanguiane Fernuniversität Hagen Postfach 940, D-58048 Hagen, Germany

CR Subject Classification (1991): I.2, I.5, E.2

ISBN 3-540-57394-1 Springer-Verlag Berlin Heidelberg New York ISBN 0-387-57394-1 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1993 Printed in Germany

Typesetting: Camera ready by author Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr. 45/3140-543210 - Printed on acid-free paper

Foreword

In this book I summarize my studies in music recognition aimed at developing a computer system for automatic notation of performed music. The performance of such a system is supposed to be similar to that of speech recognition systems: acoustical data at the input and music score printing at the output.

In this essay I develop an approach to pattern recognition which is entitled artificial perception. It is based on self-organizing input data in order to segregate patterns before their identification by artificial intelligence methods. The performance of the related model is similar to distinguishing objects in abstract painting without their explicit recognition.

In this approach I try to follow nature rather than to invent a new technical device. The model incorporates the *correlativity of perception*, based on two fundamental perception principles, the grouping principle and the simplicity principle, in a very tight interaction.

The grouping principle is understood as the capacity to discover similar configurations of stimuli and to form high-level configurations from them. This is equivalent to describing information in terms of generative elements and their transformations.

The simplicity principle is modeled by finding the least complex representations of data that are possible. The complexity of data is understood in the sense of Kolmogorov, i.e., as the amount of memory storage required for the data representation.

The tight interdependence between these two principles corresponds to finding generative elements and their transformations with regard to the complexity of the total representation of data. This interdependence justifies the term "correlativity", which is more than relativity of perception.

The model of correlative perception is applied to voice separation (chord recognition) and rhythm/tempo tracking.

Chord spectra are described in terms of generative spectra and their transformations. The generative spectrum corresponds to a tone spectrum which is repeated several times in the chord spectrum. The transformations of the generative spectrum are its translations along the log₂-scaled frequency axis. These translations correspond to intervals between the chord tones. Therefo-

re, a chord is understood as an acoustical contour drawn by a tone spectral pattern in the frequency domain.

Time events are also described in terms of generative rhythmic patterns. A series of time events is represented as a repetition of a few rhythmic patterns which are distorted by music elaboration and tempo fluctuations associated with the tempo curve. The interdependence between tempo and rhythm is overcome by minimizing the total complexity of representation, e.g., the total amount of memory needed for storing rhythmic patterns and the tempo curve.

The model also explains the function of interval hearing, certain statements of music theory, and some phenomena in rhythm perception.

Generally speaking, I investigate hierarchical representations of data. In particular, I pose the following questions:

- (a) Why a hierarchy?
- (b) Which hierarchy? and
- (c) How does the hierarchy correspond to the reality?

From the standpoint of the model, the answers to these questions are, respectively:

- (a) A hierarchy makes a data representation compact, which is desirable in most cases;
- (b) consequently, a better hierarchy is one which requires less memory for the related data representation; and
- (c) under certain assumptions such a hierarchy reveals perception patterns and causal relationships in their generation, making the first step towards a semantical description of the data.

One can see that the main distinction of this approach is finding optimal representations of data instead of directly recognizing patterns. In a sense, analysis of patterns is replaced by synthesis of data representations. Since self-organization is used instead of learning, the threshold criteria used in most pattern recognition models are avoided.

The correspondence between music perception and the performance of the model, together with the diversity of its applications, can hardly be regarded as simply a coincidence. It makes an impression that the model really simulates certain perception mechanisms. Probably, the related model can be applied to speech recognition, computer vision, and even simulation of abstract thinking. All of this is a subject for discussion.

This book has been written during my work in Grenoble at the ACROE-LIFIA (Association pour la Création et la Recherche sur les Outils d'Expression-Laboratoire d'Informatique Fondamentale et d'Intelligence Artificielle).

I acknowledge Professor Philippe Jorrand, the director of the LIFIA, and Dr. Claude Cadoz and Dr. Annie Luciani, the heads of the ACROE, for inviting me to Grenoble and the stimulating working conditions; my colleagues, especially Martial Barraco, for their friendly attitude and help in various domains; and Remi Ozoux, a student of ENSIMAG (Ecole Nationale Supérieure d'Informatique et de Mathématiques Appliquées de Grenoble), who has fruitfully collaborated on the project and who has programmed the latest version of the algorithm for chord recognition.

Hagen, 14 September 1993

Andranik Tangian (Tanguiane)

Contents

1	Intr	roduction	1		
	1.1	Formulation of the Problem	1		
	1.2	Brief Survey of Music Recognition	2		
	1.3	Brief Survey of Artificial Perception	6		
	1.4	Development of Correlativity Principle	15		
	1.5	Contribution to Music Recognition	23		
	1.6	Summary of the Book	24		
2	Correlativity of Perception 27				
	2.1	Introductory Remarks	27		
	2.2	Principle of Correlativity of Perception	28		
	2.3	Model of Correlative Perception	35		
	2.4	Method of Variable Resolution	38		
	2.5	Complexity of Transformation as a Distance	40		
	2.6	Distinctions of the Model	41		
	2.7	Summary of the Chapter	43		
3	Substantiating the Model 48				
	3.1	On the Adequacy of the Model	45		
	3.2	Tone Spectra	47		
	3.3	Representation of Tones	52		
	3.4	Generation of Chord Spectra	53		
	3.5	Unique Deconvolution of Chord Spectra	56		
	3.6	Causality and Optimal Data Representation	70		
	3.7	Interpretation of the Results	72		
	3.8	Main Items of the Chapter	75		
4	Im	plementing the Model	77		
	4.1	Reduction of the Model	77		

CONTENTSx

	4.2	Properties of Boolean Spectra	. 79
	4.3	Necessary Condition for Generative Patterns	. 86
	4.4	Algorithm for Finding Generative Patterns	. 89
	4.5	Summary of Reduced Model	. 94
5	Experiments on Chord Recognition		
	5.1	Goals of Computer Experiments	. 95
	5.2	Example of Chord Recognition	. 98
	5.3	Testing the Simple Correlation Approach	. 105
	5.4	Recognition Mistakes	. 109
	5.5	Efficiency and Stability of Recognition	. 112
	5.6	Testing the Decision Making Approach	. 121
	5.7	Testing the Structural Approach	. 124
	5.8	Judging Computer Experiments	. 129
6	Applications to Rhythm Recognition 13		
	6.1	Problem of Rhythm Recognition	. 131
	6.2	Rhythm and Correlative Perception	. 134
	6.3	Correlativity and Recognition of Periodicity	. 137
	6.4	Timing Accentuation	. 140
	6.5	Rhythmic Segmentation	
	6.6	Operations on Rhythmic Patterns	. 144
	6.7	Definition of Time and Rhythm Complexity	. 147
	6.8	Example of Analysis	
	6.9	Summary of Rhythm Perception Modeling	
7	App	olications to Music Theory	153
	7.1	Perception Correlativity and Music Theory	. 153
	7.2	Logarithmic Scale in Pitch Perception	
	7.3	Definition of Musical Interval	
	7.4	Function of Relative Hearing	. 160
	7.5	Counterpoint and Orchestration	
	7.6	Harmony	
	7.7	Rhythm, Tempo, and Time	
	7.8	Summary of the Chapter	
8	Ger	neral Discussion	177

177

CONTENTS	xi

9 Conclusions	181
References	185
Index	201
Name Index	201
Subject Index	204

List of Figures

1.1	Parallel primes, fifths, and octaves prohibited in counterpoint	15
1.2	The use of parallel voices in Bolero by M.Ravel	17
1.3	Duality of chord contours and melody trajectories	19
2.1	High-level pattern of B composed by low-level patterns of $A \;$	29
2.2	Pattern of B composed by unknown symbols	29
2.3	A succession of time events	31
2.4	Four representations of the same succession of time events	31
2.5	Theme in augmentation and diminution from Bach's <i>The Art of Fugue</i>	33
2.6	Contextual similarity of rhythmic patterns	35
$\frac{2.0}{2.7}$	Flying ball in a cinema sequence	37
2.8	Illustration to the method of variable resolution	39
2. 0		00
3.1	The overtone series	49
3.2	Example of tone spectra	51
3.3	Example of chord spectrum	55
4.1	Example of Boolean spectra of tones	80
4.2	Example of Boolean spectrum of chord	81
4.3	No unique deconvolution of Boolean spectra	85
5.1	Spectral representations of chords	99
5.2	Correlation analysis of chord spectra	101
5.3	Two hardly recognizable chords	111
5.4	The 130th chorale from J.S.Bach's 371 Four-Part Chorales	113
5.5	Maximal values of the sufficient number of patterns and maximal number of accidentals in the sufficient set of patterns	117
5.6	Average value of the sufficient number of patterns and average number of accidentals in the sufficient set of patterns	118

5.7	Maximal and average values of the limits of the number of successive standard partials inherent in true patterns from the sufficient set
5.8	Chords used for testing the recognition algorithm
6.1	Multilevel repetition structure of rhythm from M.Ravel's Bolero 135
6.2	Representation of time events with variable resolution 139
6.3	Ambiguous segmentation of a periodical sequence of time events 141
6.4	Accentuation by timing cues
6.5	Rhythmic segmentation by timing cues
6.6	Syllable as an indecomposable unit
6.7	The elaboration of a crotchet rhythmic pattern 145
6.8	Two different junctions of the same rhythmic syllables 147
6.9	A rhythm with the indicator of complexity 2 149
6.10	Determination of time by recognizing rhythmic syllables 149
7.1	Ambiguity in defining coordinates of a complex object 157
7.2	Distance between dissimilar objects
7.3	Distance between similar objects
7.4	Thorough bass notation based on interval relationships $\dots 161$
7.5	Transposition in notation but not in sound
7.6	Transposed chord and melody in standard notation $\dots 162$
7.7	Invariance of guitar fingering with respect to chord transpositions 162
7.8	Sonorous effect from a complex harmony in $Bolero$ by M.Ravel . 165
7.9	Beginning of Ricercar from J.S.Bach's Musical Offering 167
7.10	A. Webern's orchestral arrangement of J.S.Bach's $\it Ricercar$ 167
7.11	Spacing between voices more than an octave prohibited in coun-
	terpoint
	Frequency ratios for the scale of just intonation in do-major 169
	The voices parallel in notation but not in sound 169
	Voice crossing prohibited in counterpoint
	Voice overlapping prohibited in counterpoint
	Filling skips in strict counterpoint
	Cluster chords with resolutions
	Sequence of cluster chords
	Major triads in root position in harmonic and melodic junctions 173
7.20	Minor triads in root position in harmonic and melodic junctions 173
7.21	Instability of optima

List of Tables

The complexity of representation of time events	31
	43
Correspondence between visual and audio data	45
Most salient melodic intervals between two chords	103
Most salient harmonic intervals in the first chord	103
Most salient harmonic intervals in the second chord	103
Correlations of chord spectra	107
Specifications of recognition procedure	109
Specifications of recognition procedure restricted to 12 semito-	110
	110
•	114
·	
·	
Recognition of chord $C_{6/9} = (c; e; g; a; d_1) \dots \dots$	
Correspondence between visual and time data	133
Autocorrelation $R(p)$ of time events	139
	nes