ASEN 3112

Spring 2020

Lecture 10

Whiteboard

February 25, 2020

Internal Virtual Work for Structural Models

The following expressions are often used for the **Virtual Displacement Method**:

General 3D body:

$$\delta W_{ie} = \iiint_{V} \left(\sigma_{xx} \, \delta \varepsilon_{xx} + \sigma_{yy} \, \delta \varepsilon_{yy} + \sigma_{zz} \, \delta \varepsilon_{zz} + \tau_{xy} \, \delta \gamma_{xy} + \tau_{xy} \, \delta \gamma_{xy} + \tau_{xy} \, \delta \gamma_{xy} \right) dx \, dy \, dz$$

Bar (constant E, A along bar; stress and strain constant along bar):

$$\delta W_{ie,bar} = \frac{E A}{L} (\Delta L) \delta (\Delta L)$$

• Beam (constant E constant over cross section):

$$\delta W_{ie,beam} = \int_{L} E \ I \ \kappa \ \delta \kappa \ dx$$

Shaft (constant G constant over cross section):

$$\delta W_{ie,shaft} = \int_{L} G J \left(\frac{d\phi}{dx} \right) \delta \left(\frac{d\phi}{dx} \right) dx$$

Kinematics of Bar

Elongation of a bar due to tip displacement:

Kinematics of Bar

Elongation of a bar due to tip displacement:

$$\Delta L$$

$$L_0^2 = L_{0x}^2 + L_{0y}^2 \qquad (L_0 + \Delta L)^2 = (L_{0x} + u)^2 + L_{0y}^2 \qquad \cos(\alpha) = \frac{L_{0x}}{L_0}$$

$$\frac{2\Delta L}{L_0} + \left(\frac{\Delta L}{L_0}\right)^2 = \frac{2L_{0x}u}{L_0^2} + \left(\frac{u}{L_0}\right)^2 \qquad \frac{2\Delta L}{L_0} = \frac{2u}{L_0}\cos(\alpha) \qquad \Delta L = u\cos(\alpha)$$

$$\left| \frac{\Delta L}{L_0} \right| \square 1 \quad \left| \frac{u}{L_0} \right| \square 1$$
 Infinitesimal stain assumption

Virtual Force Method (1)

The external virtual work done by **virtual force** $\delta extcolor{P}$ on **real displacement** u_A^{sphere} :

$$\delta W_{e}^{*} = \delta P u_{A}^{sphere}$$

Virtual Force Method (2)

The internal virtual work done by **virtual force** δF_{int} on **real displacement** u_A^{spring} :

Principle of Virtual Work for Virtual Forces

Static equilibrium: $\delta P = \delta F_{\rm int}$

Principle of Virtual Work:

$$\delta W^* = \delta W_e^* + \delta W_i^* = 0$$
 or $\delta W_e^* = \delta W_{ie}^*$ $\delta W = \left(u_A^{sphere} - u_A^{spring}\right) \delta P = 0$

Since δP_A arbitrary:

$$P = F_{int}$$

The virtual work done by the virtual forces that are in static equilibrium on the real displacements vanishes if the displacements are compatible.

Internal Virtual Work for Structural Models

The following expressions are often used for the **Virtual Force Method**:

General 3D body:

$$\delta W_{ie}^* = \iiint_V \left(\delta \sigma_{xx} \ \varepsilon_{xx} + \delta \sigma_{yy} \ \varepsilon_{yy} + \delta \sigma_{zz} \ \varepsilon_{zz} + \delta \tau_{xy} \ \gamma_{xy} + \delta \tau_{xy} \ \gamma_{xy} + \delta \tau_{xy} \ \gamma_{xy} \right) dx \ dy \ dz$$

Bar (constant E, A along bar; stress and strain constant along bar):

$$\delta W_{ie,bar}^* = \frac{LN \delta N}{EA}$$

• Beam (constant E constant over cross section):

$$\delta W_{ie,beam}^* = \int_L \frac{M \, \delta M}{E \, I} \, dx$$

Shaft (constant G constant over cross section):

$$\delta W_{ie,shaft}^* = \int_L \frac{T \, \delta T}{G \, J} \, dx$$

Unit Dummy-Load Method (1)

External virtual work:

• Virtual force $\delta P=1$:

$$\delta W_e^* = \overline{1} d$$
 d : displacement in direction of dummy force

• Virtual force $\delta M=1$:

$$\delta W_e^* = \overline{1} \phi$$
 ϕ : rotation angle about same axis as dummy moment

Internal virtual work:

• Bar (constant E, A along bar; stress and strain constant along bar):

$$\delta W_{ie,bar}^* = \frac{L \ N \ \overline{n}}{E \ A}$$
 \overline{n} : normal force in bar due to dummy load

• Beam (constant E constant over cross section):

$$\delta W_{ie,beam}^* = \int_L \frac{M \ \overline{m}}{F \ I} \ dx$$
 \overline{m} : internal bending moment due to dummy load

Unit Dummy-Load Method (2)

Truss:

$$\overline{1} d = \sum_{i=1}^{N_b} \frac{L_i N_i \overline{n}_i}{E_i A_i}$$

 N_i : normal force due to real load

 \overline{n}_i : normal force due to dummy load in the direction of displacement d

Beam:

$$\overline{1} d = \int_{L} \frac{M \overline{m}}{E I} dx$$
 or $\overline{1} \phi = \int_{L} \frac{M \overline{m}}{E I} dx$

M: bending moment due to real load

 \overline{m} : bending moment due to dummy force in the direction of displacement d or dummy moment about the axis of rotation ϕ