KDG Coole Understanding

After the network is trained, for c in C: $\mu_{\rho} = []$ Op = [] X = X[c] polytopes & get polytopes.

get polytopes Function

· get the weights & branes of the trained network.

- For each layer except for the last layer=> I[2;>0] (similar to ReLU) a;= Recular
- threasholding a prohability

bolytope member ships ->

Cret_Polytopes" Function >>

$$\frac{\chi}{2}$$

camples $a_i = \sigma(w_i a_{i-1} + b_i)$ $a_i^{\tau} = \sigma(q_i^{\tau} w_i^{\tau} + b_i^{\tau})$ $a_i^{\tau} = \sigma(a_{i-1} w_i^{\tau} + b$

the if two data samples have similar neural network activations, they belong to the same polytope.

Gaussian Mixture Modelling

* A prohabilistic model that assumes all data points are severated from a finite number of gaussian distributions with unknown params.

$$\rho(o) = \sum_{i=1}^{K} \phi_i \mathcal{N}(\mu_i, \Sigma_i)$$

"fit" function =>

of takes in the dataset $(x,y) \in \mathbb{R}^{n \times d} \times y^{k}$ where $k = \{1,...,k\}$ of $\{x,y\}$

For each class label k, samples with label k

PK = get_polytopes(XK)

I an array with length (NK)

contains the polytope ID of each

data sample of XK

of for each polytope ID =>

- obtain the indices of all the other

data samples of Xx that has the

same polytope ID

(Hence obtain the data samples of Xx that

belongs to the same polytope)

A neglect the polytopes with just I sample.

- Using the data samples of class k

that belongs to the polytope, fit a gaussian mixture model & obtain it's means / covariance matrices (params).

"_Compute_Pdf" Function >>

the PDF Of the respective polytope group using the Pgaussiax mixture parameters of that polytope.

multivariate gaussian distribution

At likelihood = the PDF evaluated at a given data sample point x

according to here de

"predict_proba henceton =>

ok given the test data, obtain the posterior distribution using the stored polytopic gaussian mixtures a

likelihood of kth class
$$= \sum_{i=1}^{|P_K|} G(X; \mu_i, \Sigma_i)$$
 at then the sample $= \sum_{i=1}^{|P_K|} G(X; \mu_i, \Sigma_i)$

Probability of kth class =
$$\sum_{i=1}^{|P_k|} G(x; Hi, \Sigma_i)$$

at the nth sample $\sum_{k=1}^{|P_k|} G(x; Hi, \Sigma_i)$

.. No need for the test data to pass through the trained neural network.

"prediction" function =>