

EE206: Communications Principles Tutorial

Assignment 6

TA: 周翔

- . An FM modulator is followed by an ideal band-pass filter with centre frequency of 500 Hz and bandwidth of 72 Hz. The gain of the filter is 1 in the pass-band. The message signal $\underline{m(t)} = 10 \cos(20\pi t)$ and the carrier signal is $f(t) = 10\cos(1000\pi t)$. The Single tone message signal modulation frequency sensitivity $k_f = 7$ Hz/volt.
 - a. Draw the amplitude spectra of the FM signal at the input and output of the band-pass filter, respectively.
 - b. Determine the signal power at the input and output of the band-pass filter.

$$f_m = 10 \text{Hz}, A_m = 10 \text{V}, k_f = 7 \text{Hz/V}.$$

$$eta = rac{k_f A_m}{f_m} = rac{7 imes 10}{10} = 7 > 0.2$$

=> Wideband FM

a. Draw the amplitude spectra of the FM signal at the input and output of the band-pass filter, respectively.

Draw the amplitude spectra of the FM signal at the input and output of the band-pass filter, respectively.

3/30/2021 4

b. Determine the signal power at the input and output of the band-pass filter.

Before BPF:

$$egin{align} P_{in} &= 2 imes (rac{A_c}{2})^2 \sum_{n=-\infty}^{\infty} J_n{}^2(eta) \ &= rac{A_c}{2} \sum_{n=-\infty}^{\infty} J_n{}^2(eta) \ &= 50 \mathrm{W} \end{array}$$

Some useful properties of $J_n(\beta)$

- 1. $J_n(\beta)$ are real valued.
- 2. $J_n(\beta) = J_{-n}(\beta)$, for even n
- 3. $J_n(\beta) = -J_{-n}(\beta)$, for odd n
- $4 \cdot \sum_{n=-\infty}^{\infty} J_n^2(\beta) = 1$

$$egin{aligned} f_{FM}(t) &= A_c \cos[\omega_c t + eta \sin \omega_m t] \ &= A_c \sum_{n=-\infty}^{\infty} J_n(eta) \cos(\omega_c + n \omega_m) t \end{aligned}$$

After BPF:

$$egin{aligned} P_{out} &= rac{{A_c}^2}{2} \sum_{n = - 3}^3 {J_n}^2(eta) \ &= rac{{A_c}^2}{2} [{J_0}^2(eta) + 2[{J_1}^2(eta) + {J_2}^2(eta) + {J_3}^2(eta)]] \ &= 50 imes [0.3001^2 + 2 imes (0.004683^2 + 0.3014^2 + 0.1676^2)] \ &= 16.4 \mathrm{W} \end{aligned}$$

2. Show that unlike AM, the mean power of an FM signal in the form of $A_c \cos[\omega_c t + \beta \sin \omega_m t]$ is independent of modulation index, β (Hint: make use of the property

$$\sum_{n=0}^{\infty} J_n^2(\beta) = 1.$$

- The message contains a single tone/frequency component, i.e., $m(t) = A_m \cos 2\pi f_m t$.

 Modulation index of AM
- The single-tone AM is given by $x(t) = A_c [1 + \mu \cos 2\pi f_m t] \cos 2\pi f_c t, \text{ where } \mu = k_a A_m.$
- To avoid overmodulation, μ must be kept below 1.

$$\overline{f_{FM}^{2}(t)} = \overline{\{A_{c}\cos[\omega_{c}t + \beta\sin(\omega_{m}t)]\}^{2}}$$

$$= [A_{c}\sum_{n=-\infty}^{\infty}J_{n}(\beta)\cos(\omega_{c}t + n\omega_{m}t)]^{2}$$

$$= \frac{A_{c}^{2}}{2}\sum_{n=-\infty}^{\infty}J_{n}^{2}(\beta) \quad (\because \sum_{n=-\infty}^{\infty}J_{n}^{2}(\beta) = 1)$$

$$= \frac{A_{c}^{2}}{2}$$

- 3. For an FM signal $f_{FM}(t) = 6 \cos(2\pi 10^9 t + 4 \sin 2\pi 10^3 t)$, calculate the total mean power of the significant sideband components and the carrier component within the bandwidth, where
 - a. the bandwidth is determined using 1% rule, and
 - b. the bandwidth is determined using Carson's rule.

Q3. (a)
$$f_{FM}(t) = 6\cos(2\pi 10^9 t + 4\sin 4\pi 10^3 t) \Rightarrow \beta = 4.$$
 |J_n(4)|>0.01

From the Bessel function table, no. of significant side-band pairs n'=7.

$$P = \frac{A_c^2}{2} \sum_{n=-7}^{7} J_n^2(\beta) = \frac{6^2}{2} \left\{ (0.3971)^2 + 2[(0.06604)^2 + (0.3641)^2 + (0.4302)^2 + (0.2811)^2 + (0.1321)^2 + (0.04909)^2 + (0.01518)^2] \right\} = \frac{6^2}{2} \times 0.99991 = 17.99838$$

99.991% of the total signal power is included in the bandwidth.

- 3. For an FM signal $f_{FM}(t) = 6 \cos(2\pi 10^9 t + 4 \sin 2\pi 10^3 t)$, calculate the total mean power of the significant sideband components and the carrier component within the bandwidth, where
 - a. the bandwidth is determined using 1% rule, and
 - b. the bandwidth is determined using Carson's rule.
 - (b) Using Carson's rule

$$BW = 2(\beta + 1)f_m = 2(4+1)f_m = 10f_m$$

⇒ The first 5 side-band pairs are included in the bandwidth.

$$P = \frac{A_c^2}{2} \sum_{n=-5}^{5} J_n^2(\beta) = \frac{6^2}{2} \{(0.3971)^2 + 2[(0.06604)^2 + (0.3641)^2 + (0.4302)^2\}$$

+
$$(0.2811)^2$$
+ $(0.1321)^2$]} = $\frac{6^2}{2} \times \boxed{0.99464} = 17.90352$

99.464% of the total signal power is included in the bandwidth.

- 4. A message signal $m(t) = 5 \sin(2000\pi t)$ phase modulates a cosine wave of 100 MHz. The PM signal has peak-phase deviation of $\pi/2$ and amplitude $A_c = 100$ volts.
 - a. Determine the amplitude spectrum of the PM signal.
 - b. Determine the approximate bandwidth which contains 99% of total power of the PM signal.
 - c. Determine the approximate bandwidth using Carson's rule and compare the results with the analytical result obtained in part (b).

Given: $J_0(\pi/2)=0.4720$, $J_1(\pi/2)=0.5668$, $J_2(\pi/2)=0.2497$, $J_3(\pi/2)=0.0690$, $J_4(\pi/2)=0.0140$.

Single Tone Modulation

Now we consider a special message signal, $m(t) = A_m \cos 2\pi f_m t$ (referred to as a <u>single tone</u> message signal).

$$\underline{\mathbf{PM}}: \theta_i(t) = 2\pi f_c t + k_p A_m \cos 2\pi f_m t = 2\pi f_c t + \beta_p \cos 2\pi f_m t$$

where $\beta_p = k_p A_m$ is the "peak phase deviation", i.e., the <u>maximum</u> amount of phase difference between $f_{PM}(t)$ and the unmodulated carrier $A_c \cos 2\pi f_c t$.

The single-tone PM signal is given by

$$f_{PM}(t) = A_c \cos[2\pi f_c t + \beta_p \cos 2\pi f_m t]$$

 β_p is also called <u>modulation index</u> (for PM).

$$\mathbf{Q4.} \quad \textbf{(a)} \quad f_{c} = 10^{8} Hz, \quad f_{m} = 1000 Hz, \quad \beta_{p} = \frac{\pi}{2}, \quad A_{c} = 100 V \\ f_{PM}(t) = 100 \cos[2\pi 10^{8} t + \frac{\pi}{2} \sin 2000\pi t] = 100 \sum_{n=-\infty}^{\infty} J_{n}(\frac{\pi}{2}) \cos[2\pi (10^{8} + n10^{3})t]$$

Using $J_0(\pi/2)=0.4720$, $J_1(\pi/2)=0.5668$, $J_2(\pi/2)=0.2497$, $J_3(\pi/2)=0.0690$, $J_4(\pi/2)=0.0140$,

The amplitude spectrum is obtained as:

(b) The total signal power is

$$\frac{A_c^2}{2} = \frac{100^2}{2} = 5000 \qquad (W)$$

To find the BW (containing 99% of total power), we need to find the minimum integer K with

$$\frac{100^2}{2} \sum_{n=-K}^{K} J_n^2(\frac{\pi}{2}) \ge 0.99 \times 5000$$

From the given Bessel function values, we can find K = 2.

$$BW_{effective} = 2Kf_m = 4000$$
 (Hz)

(C) Using Carson's rule,
$$BW = 2(\frac{\pi}{2} + 1)f_m \approx 5140$$
 (Hz)

Bessel Function Table

Values of the Bessel Functions $J_a(\beta)$

<u> </u>											
n B	0.5	1	2	3	4	5	6	7	8	9	10
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0.9385 <u>0.2423</u> <u>0.03060</u> 0.002564	0.7652 0.4401 0.1149 0.01956 0.002477	0.2239 0.5767 0.3528 0.1289 0.03400 0.007040 0.001202	-0.2601 0.3391 0.4861 0.3091 <u>0.1320</u> 0.04303 0.01139 0.002547	-0.3971 -0.06604 0.3641 0.4302 0.2811 0.1321 0.04909 0.01518 0.004029	-0.1776 -0.3276 0.04657 0.3648 0.3912 0.2611 0.1310 0.05338 0.01841 0.005520 0.001468	0.1506 -0.2767 -0.2429 0.1148 0.3576 0.3621 0.2458 0.1296 0.05653 0.02117 0.006964 0.002048	0.3001 -0.004683 -0.3014 -0.1676 0.1578 0.3479 0.3392 0.2336 0.1280 0.05892 0.02354 0.008335 0.002656	0.1717 0.2346 -0.1130 -0.2911 -0.1054 0.1858 0.3376 0.3206 0.2235 0.1263 0.06077 0.02560 0.009624 0.003275 0.001019	+0.09033 0.2453 0.1448 -0.1809 -0.2655 -0.05504 0.2043 0.3275 0.3051 0.2149 0.1247 0.06222 0.02739 0.01083 0.003895 0.001286	-0.2459 0.04347 0.2546 0.05838 -0.2196 -0.2341 -0.01446 0.2167 0.3179 0.2919 0.2075 0.1231 0.06337 0.02897 0.01196 0.004508 0.001567