Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding

Han, Song, Huizi Mao, and William J. Dally arXiv preprint arXiv:1510.00149 (2015).

Introduction

- 모델이 더 높은 정확도를 얻기 위해 대형화 되면서
 모델의 가중치가 많은 저장공간과 메모리 대역폭을 소비하게 됨
 - Caffe 기준

AlexNet: 약 200MB VGG16: 약 500MB

■ 이러한 모델은 모바일 장치에서 활S용하기 어려움

Introduction

■ 본 논문은 정확도를 유지하면서 신경망을 압축하기 위해 Pruning, Quantization, Huffman Coding을 사용

Network Pruning

 Han, Song, et al. "Learning both weights and connections for efficient neural network." Advances in neural information processing systems. 2015.

Figure 2: Three-Step Training Pipeline.

Figure 3: Synapses and neurons before and after pruning.

- 학습이 끝난 신경망에서 입계값 이하의 가중치를 가진 연결을 제거
- 남은 연결을 가지고 재 학습
- 이 과정을 반복하여 최소한의 연결을 가진 신경망을 확보

Network Pruning

Dropout Issue

- Pruning을 적용한 신경망 모델은 이미 연결이 희소해졌기 때문에 기존의 Dropout 비율을 그대로 적용하면 안됨
- 본 논문은 다음과 같이 Dropout 비율을 조정할 것을 제안

$$D_r = D_o \sqrt{\frac{C_{ir}}{C_{io}}}$$

- $-D_r$: 조정된 Dropout 비율
- Do: 기존 Dropout 비율
- C_{ir} : Pruning 이후 노드간 연결의 수
- C_{io} : 기존 노드간 연결의 수

Network Pruning

 Pruning 된 가중치를 더욱 압축하여 저장하기 위해 인덱스 간의 거리를 저장

거리가 (예를 들어) 3비트를 초과할 경우,
 중간에 0 값을 추가해서 거리를 저장

- K-means Clustering 이용해 Weight를 각 index별로 Quantization
- Gradient를 통해 fine-tuning

- Quantization 이전: $32 bit \times 16 = 512 bit$
- Quantization 이후: $32 \ bit \times 4 + 2 \ bit \times 16 = 160 \ bit$
 - Quantization을 통해 3.2배 압축

Centroid Initialization을 위한 방법

- Forgy(random), Density-based, Linear
- Forgy와 Density-based 방식은 많이 나타나는 weight 값으로 집중되는 경향 - 높은 가중치 값이 적게 나타나는 경우 무시될 수 있음
- Linear 방식은 이런 문제를 피할 수 있음

- 4bit Quantization까지는 Linear 방식이 더 높은 accuracy를 얻음
- 따라서 Linear 방식을 적용

Huffman Coding

- 자주 사용되는 값에 낮은 bit를 할당해 데이터를 압축하는 방식
 - A(15), B(7), C(6), D(6), E(5)
 - → A(1), B(011), C(010), D(001), E(000)
 - ACBCBCAAAAAEAAED $(8bit \times 16 = 128bit)$
 - \rightarrow 10100110100110101111100011000001 (32*bit*)

Huffman Coding

- AlexNet의 마지막 FC 레이어를 보면 Weight index와 Location index는 편향되어 있음
- Huffman coding을 통해 높은 압축 효율을 얻을 수 있음

Figure 5: Distribution for weight (Left) and index (Right). The distribution is biased.

Experiments

AlexNet

Table 4: Compression statistics for AlexNet. P: pruning, Q: quantization, H:Huffman coding.

Layer	#Weights	Weights% (P)	Weight	Weight	Index	Index	Compress	Compress
			bits	bits	bits	bits	rate	rate
		(1)	(P+Q)	(P+Q+H)	(P+Q)	(P+Q+H)	(P+Q)	(P+Q+H)
conv1	35K	84%	8	6.3	4	1.2	32.6%	20.53%
conv2	307K	38%	8	5.5	4	2.3	14.5%	9.43%
conv3	885K	35%	8	5.1	4	2.6	13.1%	8.44%
conv4	663K	37%	8	5.2	4	2.5	14.1%	9.11%
conv5	442K	37%	8	5.6	4	2.5	14.0%	9.43%
fc6	38M	9%	5	3.9	4	3.2	3.0%	2.39%
fc7	17M	9%	5	3.6	4	3.7	3.0%	2.46%
fc8	4M	25%	5	4	4	3.2	7.3%	5.85%
Total	61M	11%(9×)	5.4	4	4	3.2	3.7% (27 ×)	$2.88\% (35 \times)$

Experiments

VGG16

Table 5: Compression statistics for VGG-16. P: pruning, Q:quantization, H:Huffman coding.

Layer	#Weights	Weights% (P)	Weigh bits (P+Q)	Weight bits (P+Q+H)	Index bits (P+Q)	Index bits (P+Q+H)	Compress rate (P+Q)	Compress rate (P+Q+H)
conv1_1	2K	58%	8	6.8	5	1.7	40.0%	29.97%
conv1_2	37K	22%	8	6.5	5	2.6	9.8%	6.99%
conv2_1	74K	34%	8	5.6	5	2.4	14.3%	8.91%
conv2_2	148K	36%	8	5.9	5	2.3	14.7%	9.31%
conv3_1	295K	53%	8	4.8	5	1.8	21.7%	11.15%
conv3_2	590K	24%	8	4.6	5	2.9	9.7%	5.67%
conv3_3	590K	42%	8	4.6	5	2.2	17.0%	8.96%
conv4_1	1M	32%	8	4.6	5	2.6	13.1%	7.29%
conv4_2	2M	27%	8	4.2	5	2.9	10.9%	5.93%
conv4_3	2M	34%	8	4.4	5	2.5	14.0%	7.47%
conv5_1	2M	35%	8	4.7	5	2.5	14.3%	8.00%
conv5_2	2M	29%	8	4.6	5	2.7	11.7%	6.52%
conv5_3	2M	36%	8	4.6	5	2.3	14.8%	7.79%
fc6	103M	4%	5	3.6	5	3.5	1.6%	1.10%
fc7	17M	4%	5	4	5	4.3	1.5%	1.25%
fc8	4M	23%	5	4	5	3.4	7.1%	5.24%
Total	138M	$7.5\%(13\times)$	6.4	4.1	5	3.1	3.2% (31 ×)	2.05% (49×)

■ Pruning, Quantization 효율 비교

■ Pruning, Quantization 효율 비교

■ Quantization에 따른 error rate 비교 (AlexNet)

#CONV bits / #FC bits	Top-1 Error	Top-5 Error	Top-1 Error Increase	Top-5 Error Increase
32bits / 32bits	42.78%	19.73%	-	-
8 bits / 5 bits	42.78%	19.70%	0.00%	-0.03%
8 bits / 4 bits	42.79%	19.73%	0.01%	0.00%
4 bits / 2 bits	44.77%	22.33%	1.99%	2.60%

- 8bit / 4bit Quantization까지는 성능 저하가 거의 없음
- 약간의 성능 저하를 허용한다면 더 공격적인 모델 압축을 할 수 있음

■ 본 논문의 방법이 다른 압축 방법보다 높은 효율을 얻음

Network	Top-1 Error	Top-5 Error	Parameters	Compress Rate
Baseline Caffemodel (BVLC)	42.78%	19.73%	240MB	1×
Fastfood-32-AD (Yang et al., 2014)	41.93%	-	131MB	$2\times$
Fastfood-16-AD (Yang et al., 2014)	42.90%	-	64MB	$3.7 \times$
Collins & Kohli (Collins & Kohli, 2014)	44.40%	-	61MB	$4\times$
SVD (Denton et al., 2014)	44.02%	20.56%	47.6MB	$5 \times$
Pruning (Han et al., 2015)	42.77%	19.67%	27MB	9×
Pruning+Quantization	42.78%	19.70%	8.9MB	$27\times$
Pruning+Quantization+Huffman	42.78%	19.70%	6.9MB	$35 \times$

Conclusion

- 본 논문은 Pruning, Quantization, Huffman coding을 통해 정확도 손실 없이 모델 가중치를 AlexNet은 35배, VGG16은 49배 줄임
- 이러한 방법을 통해 메모리 공간이 제한된 환경에서도 복잡한 신경망을 사용할 수 있음

