

Claims

1 1. A material composition comprising elements of Si, C, O and H, said
2 composition having a covalently bonded structure and a dielectric constant of not more than 3.6.

1 2. A material composition according to claim 1, wherein said composition
2 further comprises between about 5 and about 40 atomic percent of Si; between about 5 and about
3 45 atomic percent of C; between 0 and about 50 atomic percent of O; and between about 10 and
4 about 55 atomic percent of H.

1 3. A material composition according to claim 1, wherein said composition
2 having a covalently bonded three-dimensional network.

1 4. A material composition according to claim 1, wherein said composition
2 having a covalently bonded ring network.

1 5. A material composition according to claim 1, wherein said composition being
2 thermally stable to a temperature of at least 350°C.

1 6. A film formed of the material composition according to claim 1, wherein said
2 film having a thickness of not more than 1.3 micrometers and a crack propagation velocity in water
3 of less than 10^{-9} m/s.

1 7. A film according to claim 6, wherein said crack propagation velocity in water
2 is less than 10^{-10} m/s.

1 8. A material composition according to claim 1, wherein said Si atoms are at
2 least partially substituted by Ge atoms.

1 9. A material composition according to claim 1, wherein said composition
2 preferably having a covalently bonded ring network and a dielectric constant of not more than 3.2.

1 10. A material composition according to claim 1 further comprising at least one
2 element selected from the group consisting of F, N, and Ge.

1 11. A method for fabricating a thermally stable low dielectric constant film
2 comprising the steps of:

3 providing a plasma enhanced chemical vapor deposition (PECVD) chamber,
4 positioning substrate in said chamber,
5 flowing a precursor gas containing Si and at least two elements selected from the
6 group consisting of C, O and H into said PECVD chamber, and
7 depositing a hydrogenated silicon carbon or hydrogenated oxidized silicon carbon
8 film on said substrate.

1 12. A method according to claim 11, wherein said plasma enhanced chemical
2 vapor deposition chamber is a parallel plate type plasma reactor.

1 13. A method according to claim 11, wherein a plasma in said PECVD is run in
2 a continuous mode during film deposition.

1 14. A method according to claim 11, wherein a plasma in said PECVD is run in
2 a pulsed mode during film deposition.

1 15. A method according to claim 11 further comprising the step of flowing a
2 precursor gas comprising molecules of a ring structure into said PECVD chamber.

1 16. A method according to claim 11 further comprising the step of selecting a
2 precursor having molecules with ring structures from the group consisting of
3 1,3,5,7-tetramethylcyclotetrasiloxane (TMCTS, or $C_4H_{16}O_4Si_4$), tetraethylcyclotetrasiloxane
4 ($C_8H_{24}O_4Si_4$), decamethylcyclopentasiloxane ($C_{10}H_{30}O_5Si_5$), and precursor mixtures comprising Si,
5 O, and C.

1 17. A method according to claim 15, wherein said precursor gas is TMCTS.

1 18. A method according to claim 11 further comprising the step of mixing said
2 precursor with at least one member selected from the group consisting of hydrogen, oxygen,
3 germanium, nitrogen or fluorine containing gases.

1 19. A method for fabricating a thermally stable hydrogenated oxidized silicon
2 carbon low dielectric constant film according to claim 11 further comprising optionally the step of
3 heat treating said film at a temperature not higher than 300°C for a first time period and heat treating
4 said film at a temperature not lower than 300°C for a second time period, said second time period
5 being longer than said first time period.

1 20. An electronic structure having layers of insulating material as intralevel or
2 interlevel dielectrics in a wiring structure comprising:

3 a pre-processed semiconducting substrate having a first region of metal embedded
4 in a first layer of insulating material,

5 a first region of conductor embedded in a second layer of insulating material which
6 comprises SiCOH, said second layer of insulating material being in intimate contact with said first
7 layer of insulating material, said first region of conductor being in electrical communication with
8 said first region of metal, and

9 a second region of conductor being in electrical communication with said first region
10 of conductor and being embedded in a third layer of insulating material comprising SiCOH, said
11 third layer of insulating material being in intimate contact with said second layer of insulating

12 material.

1 21. An electronic structure having layers of insulating material as intralevel or
2 interlevel dielectrics in a wiring structure according to claim 20 further comprising a dielectric cap
3 layer situated in-between said second layer of insulating material and said third layer of insulating
4 material.

1 22. An electronic structure having layers of insulating material as intralevel or
2 interlevel dielectrics in a wiring structure according to claim 20 further comprising:
3 a first dielectric cap layer between said second layer of insulating material and said
4 third layer of insulating material, and
5 a second dielectric cap layer on top of said third layer of insulating material.

1 23. An electronic structure having layers of insulating material as intralevel or
2 interlevel dielectrics in a wiring structure according to claim 21, wherein said dielectric cap layer
3 being formed of a material selected from the group consisting of silicon oxide, silicon nitride, silicon
4 oxinitride, refractory metal silicon nitride with the refractory metal being Ta, Zr, Hf or W, silicon
5 carbide, silicon carbo-oxide, their hydrogen-containing compounds and modified SiCOH.

1 24. An electronic structure having layers of insulating material as intralevel or
2 interlevel dielectrics in a wiring structure according to claim 22, wherein said first and said second

3 dielectric cap layers are formed of a material selected from the group consisting of silicon oxide,
4 silicon nitride, silicon oxinitride, refractory metal silicon nitride with the refractory metal being Ta,
5 Zr, Hf or W, silicon carbo-oxide, their hydrogen-containing compounds and modified SiCOH.

1 25. An electronic structure having layers of insulating material as intralevel or
2 interlevel dielectrics in a wiring structure according to claim 20, wherein said first layer of insulating
3 material is silicon oxide, silicon nitride, phosphosilicate glass (PSG), borophosphosilicate glass
4 (BPSG) or other doped varieties of these materials.

1 26. An electronic structure having layers of insulating material as intralevel or
2 interlevel dielectrics in a wiring structure according to claim 20 further comprising:
3 a diffusion barrier layer of a dielectric material deposited on at least one of said
4 second layer of insulating material and said third layer of insulating material.

1 27. An electronic structure having layers of insulating material as an intralevel
2 or interlevel dielectrics in a wiring structure according to claim 20 further comprising:
3 a dielectric reactive ion etching (RIE) hard mask/polish stop layer on top of said
4 second layer of insulating material, and
5 a dielectric diffusion barrier layer on top of said RIE hard mask/polish stop layer.

1 28. An electronic structure having layers of insulating material as intralevel or
2 interlevel dielectrics in a wiring structure according to claim 20 further comprising:
3 a first dielectric RIE hard mask/polish stop layer on top of said second layer of
4 insulating material,
5 a first dielectric diffusion barrier layer on top of said first dielectric RIE hard
6 mask/polish stop layer,
7 a second dielectric RIE hard mask/polish stop layer on top of said third layer of
8 insulating material, and
9 a second dielectric diffusion barrier layer on top of said second dielectric RIE hard
10 mask/polish stop layer.

1 29. An electronic structure having layers of insulating material as intralevel or
2 interlevel dielectrics in a wiring structure according to claim 28 further comprising a dielectric cap
3 layer between an interlevel dielectric of SiCOH and an intralevel dielectric of SiCOH.

1 30. An electronic structure having layers of insulating material as intralevel or
2 interlevel dielectrics in a wiring structure comprising:
3 a pre-processed semiconducting substrate having a first region of metal embedded
4 in a first layer of insulating material, and
5 at least one first region of conductor embedded in at least one second layer of
6 insulating material which comprises SiCOH, one of said at least one second layer of insulating

7 material being in intimate contact with said first layer of insulating material, one of said at least one
8 first region of conductor being in electrical communication with said first region of metal.

1 31. An electronic structure having layers of insulating material as intralevel or
2 interlevel dielectrics in a wiring structure according to claim 30 further comprising a dielectric cap
3 layer situated in-between each of said at least one second layer of insulating material.

1 32. An electronic structure having layers of insulating material as intralevel or
2 interlevel dielectrics in a wiring structure according to claim 30 further comprising:

3 a first dielectric cap layer between each of said at least one second layer of insulating
4 material, and

5 a second dielectric cap layer on top of said topmost second layer of insulating
6 material.

1 33. An electronic structure having layers of insulating material as intralevel or
2 interlevel dielectrics in a wiring structure according to claim 32, wherein said first and said second
3 dielectric cap layers are formed of SiCOH or modified SiCOH.

1 34. An electronic structure having layers of insulating material as intralevel or
2 interlevel dielectrics in a wiring structure according to claim 31, wherein said dielectric cap layer
3 being formed of a selected material selected from the group consisting of silicon oxide, silicon

4 nitride, silicon oxinitride, refractory metal silicon nitride with the refractory metal being Ta, Zr, Hf
5 or W, silicon carbide, silicon carbo-oxide, their hydrogen-containing compounds and modified
6 SiCOH.

1 35. An electronic structure having layers of insulating material as intralevel or
2 interlevel dielectrics in a wiring structure comprising:

3 a pre-processed semiconducting substrate having a first region of metal embedded
4 in a first layer of insulating material,

5 a first region of conductor embedded in a second layer of insulating material, said
6 second layer of insulating material being in intimate contact with said first layer of insulating
7 material, said first region of conductor being in electrical communication with said first region of
8 metal,

9 a second region of conductor being in electrical communication with said first region
10 of conductor and being embedded in a third layer of insulating material, said third layer of insulating
11 material being in intimate contact with said second layer of insulating material,

12 a first dielectric cap layer between said second layer of insulating material and said
13 third layer of insulating material, and

14 a second dielectric cap layer on top of said third layer of insulating material wherein
15 said first and said second dielectric cap layers are formed of a material comprising atoms of Si, C,
16 O and H.

1 36. An electronic structure having layers of insulating material as intralevel or
2 interlevel dielectrics in a wiring structure comprising:
3 a pre-processed semiconducting substrate having a first region of metal embedded
4 in a first layer of insulating material,
5 a first region of conductor embedded in a second layer of insulating material, said
6 second layer of insulating material being in intimate contact with said first layer of insulating
7 material, said first region of conductor being in electrical communication with said first region of
8 metal,
9 a second region of conductor being in electrical communication with said first region
10 of conductor and being embedded in a third layer of insulating material, said third layer of insulating
11 material being in intimate contact with said second layer of insulating material, and
12 a diffusion barrier layer formed of a material comprising atoms of Si, C, O and H
13 deposited on at least one of said second layer and said third layer of insulating material.

1 37. An electronic structure having layers of insulating material as intralevel or
2 interlevel dielectrics in a wiring structure comprising:
3 a pre-processed semiconducting substrate having a first region of metal embedded
4 in a first layer of insulating material,
5 a first region of conductor embedded in a second layer of insulating material, said
6 second layer of insulating material being in intimate contact with said first layer of insulating
7 material, said first region of conductor being in electrical communication with said first region of

8 metal,
9 a second region of conductor being in electrical communication with said first region
10 of conductor and being embedded in a third layer of insulating material, said third layer of insulating
11 material being in intimate contact with said second layer of insulating material,
12 a reactive ion etching (RIE) hard mask/polish stop layer on top of said second layer
13 of insulating material, and
14 a diffusion barrier layer on top of said RIE hard mask/polish stop layer, wherein said
15 RIE hard mask/polish stop layer and said diffusion barrier layer are formed of a material comprising
16 atoms of Si, C, O and H.

1 38. An electronic structure having layers of insulating material as intralevel or
2 interlevel dielectrics in a wiring structure comprising:
3 a pre-processed semiconducting substrate having a first region of metal embedded
4 in a first layer of insulating material,
5 a first region of conductor embedded in a second layer of insulating material, said
6 second layer of insulating material being in intimate contact with said first layer of insulating
7 material, said first region of conductor being in electrical communication with said first region of
8 metal,
9 a second region of conductor being in electrical communication with said first region
10 of conductor and being embedded in a third layer of insulating material, said third layer of insulating
11 material being in intimate contact with said second layer of insulating material,

12 a first RIE hard mask/polish stop layer on top of said second layer of insulating
13 material,
14 a first diffusion barrier layer on top of said first RIE hard mask/polish stop layer,
15 a second RIE hard mask/polish stop layer on top of said third layer of insulating
16 material, and
17 a second diffusion barrier layer on top of said second RIE hard mask/polish stop
18 layer, wherein said RIE hard mask/polish stop layers and said diffusion barrier layers are formed of
19 a material comprising atoms of Si, C, O and H.

1 39. An electronic structure having layers of insulating material as intralevel or
2 interlevel dielectrics in a wiring structure according to claim 38 further comprising a dielectric cap
3 layer formed of a material comprising Si, C, O and H situated between an interlevel dielectric layer
4 and an intralevel dielectric layer.