Dados Estruturados

Vetores e Matrizes

SCC121 - Introdução à Programação

São Carlos Abril de 2009

Array - Definição

• *Vetor* ou *Array* é a forma mais familiar de dados estruturados.

• Um *array* é um conjunto de componentes do mesmo tipo.

Array - Problema

Dada uma relação de 5 estudantes, imprimir o nome de cada estudante, cuja nota é maior do que a média da classe.

Array - Solução

Imagine fazer um algoritmo deste tipo para 100 números!!!

1º. Algoritmo

Início

```
Leia(nome1,nota1,nome2,nota2,nom) ota3, ne4, nota4,nome5,nota5)
```

```
media \leftarrow (nota1+nota2+nota3+nota4) / 5,0
```

Se nota1 > media **então** escreva (nome1)

Se nota2 > media então escreva (nome2)

Se nota3 > media **então** escreva (nome3)

Se nota4 > media então escreva (nome4)

Se nota5 > media então escreva (nome5)

Fim

Array - Solução 1

1. Uma variável para cada nome \rightarrow 100 variáveis

2. Uma variável para cada nota → + 100 variáveis

3. 100 testes

LABIC - rafr

Array - Definição

- Como estes dados têm uma relação entre si, podemos declará-los com um nome ÚNICO para todos os 100 elementos.
- Conjunto de 100 números = *LISTA*

Array - Definição

 O elemento do vetor tem todas as características de uma variável e pode aparecer em expressões e atribuições.

$$Lista[2] \leftarrow Lista[3] + Lista[20]$$

• Para somar todos os elementos da Lista:

Array - Características

- As características básicas são:
 - é uma estrutura homogênea, isto é, formada de elementos do mesmo tipo
 - todos os elementos da estrutura são igualmente acessíveis, isto é, o tempo e o tipo de procedimento para acessar qualquer um dos elementos do *Array* são iguais
 - cada elemento componente desta estrutura tem um nome próprio segundo sua posição no conjunto

Array - Solução 2

2º. Algoritmo


```
Início
```

```
Para i ← 1 até 5 faça
Leia(nome[i],nota[i])
soma ← 0,0
Para i ← 1 até 5 faça
soma ← soma + nota[i]
media ← soma/5
Para i ← 1 até 5 faça
Se nota[i] > media então escrever (nome[i])
```

Array - Declaração de Tipos

- arrays são agrupamentos de dados adjacentes na memória
- declaração:

tipo_dado nome_array[<tamanho>];

define um arranjo de *<tamanho>* elementos adjacentes na memória do tipo *tipo_dado*

Array - Problema 2

Para um vetor A com N números, formular um algoritmo que determine o maior e o menor elemento deste vetor. Imprimir o vetor, o maior e o menor elemento.

Array - Solução

```
#include<stdlib.h>
#include<stdio.h>
#include <conio.h>
int A[10]; int i, Maior, Menor, N;
int main(){
 printf("Digite valor de N: ");
 scanf("%d",&N);
 for(i=0;i<N;i++){
   printf("%d numero:",i);
    scanf("%d",&A[i]);
 Maior=A[0];
 Menor=A[0];
 for(i=1;i<N;i++){
    if (Maior < A[i]) Maior=A[i];</pre>
    if (Menor > A[i]) Menor=A[i];
 printf("%d %d", Maior, Menor);
 getch( );
```

Matrizes - Definição

- Também chamadas conjuntos bidimensionais, contém:
 - um número fixo de elementos;
 - todos são do mesmo tipo;
 - arranjados na forma de tabela de 2 dimensões;

Matrizes - Definição

• Ex.: Uma matriz chamada *MAT* que tenha *m* elementos (horizontal) e *n* elementos (vertical)

Arrays Multidimensionais

- Arrays podem ter diversas dimensões, cada uma identificada por um par de colchetes na declaração
- Ex:

char matriz[5][10];

declara uma matriz de 5 linhas e 10 colunas:

Matrizes - Problema

Dada uma tabela de 4x5 elementos, calcular a soma dos elementos e o maior elemento.

Matrizes - Solução

```
{continuação...}
  {Inicialização de variáveis}
  Soma = 0;
  Maior=A[0][0];
  {Cálculo da Soma}
  for (i=0;i<4;i++)
     for (j=0;j<5;j++){
       soma=soma + A[i][j];
       if Maior < A[i][j]</pre>
          Maior:=A[i,j];
  {Impressão dos Resultados}
  printf("%d %d", Soma, Maior);
{Fim do programa}
```

Dado um vetor VET, definido por:

```
tipo VET = vetor[1:100] - inteiros
v : VET
```

- a) preenchê-lo com o valor inteiro 30;
- b) preenchê-lo com os números inteiros 1,2,3..100;
- c) preencher VET[i] com 1, se i é um quadrado perfeito, e com 0, nos demais casos.

Fazer um programa em C para somar dois vetores de mesmo número de elementos.

Fazer um programa para calcular a soma de duas matrizes reais de dimensão 3x5.

Fazer um programa para gerar a matriz transposta de uma matriz 3x3.

Dada uma matriz MAT de 4x5 elementos, fazer um programa para somar os elementos de cada linha gerando o vetor **SOMA**. Em seguida, somar os elementos do vetor **SOMA** na variável **TOTAL**, que deve ser impressa no final.

Dados Estruturados

Arrays: Vetores e Matrizes

Material Didático preparado por: profa. Roseli Romero

