Problem 1. Consider the following probabalistic game: There are four doors (Q, R, S, T). Behind each door is a device which displays ± 1 randomly according to the probability $P(Q = \pm 1, R = \pm 1, S = \pm 1, T = \pm 1)$. Alice and Bob are on the same team. Alice has to choose either Q and R, and then Bob has to choose either S and S. When the numbers match, they get S and S are when they open S and S are exception. When the numbers (do not) match, they get S are exception.

1.1 Let's assume Alice and Bob open the doors completely randomly. When all numbers are +1 with probability 1, what is the expectation value of the point they get?

Solution. Let \mathbf{E} be the expectation value of the number of points. In this case, the numbers behind the two doors will always match. So

$$\mathbf{E} = \frac{QS + RS + RT - QT}{4} = \frac{1 + 1 + 1 - 1}{4} = \frac{1}{2}.$$

1.2 As it turns out, irrespective of how hard you fine tune the probability $P(Q = \pm 1, R = \pm 1, S = \pm 1, T = \pm 1)$, the expectation value of the point Alice and Bob get cannot exceed a certain value Max:

$$\frac{\mathbf{E}(QS) + \mathbf{E}(RS) + \mathbf{E}(RT) - \mathbf{E}(QT)}{4} \le \mathrm{Max}.$$

Here, $\mathbf{E}(QS)$, etc. is the expectation value of the point when Alice opens Q and Bob opens S. This is a Bell inequality. Determine Max.

Hint: For a given realization of the numbers $Q = \pm 1$, $R = \pm 1$, $S = \pm 1$, $T = \pm 1$, which occurs with probability P(Q, R, S, T), note that QS + RS + RT - QT = (Q + R)S + (R - Q)T, where one of $\{(R + Q), (R - Q)\}$ is 2 and the other 0.

Solution. In addition to the information provided in the hint, both S and T must be ± 1 . This means the only possibilities for the number of points earned are

$$\frac{(Q+R)S + (R-Q)T}{4} = \begin{cases} \frac{(0)(-1) + (2)(1)}{4} = \frac{1}{2}, \\ \frac{(0)(1) + (2)(-1)}{4} = -\frac{1}{2}. \end{cases}$$

Thus,

$$Max = \frac{1}{2}.$$

1.3 Frustrated by the upper bound set by the Bell inequality, Bob decides to cheat. He now changes the value of T after Alice chooses Q or R. Assume Q, R, S are set to be +1 with probability 1. To make the expectation value of the point they get equal to +1, what values should Bob set after Alice chooses Q or R?

Solution. If Alice chooses R, Bob should set T=1. If Alice chooses Q, Bob should set T=-1. This way,

$$\frac{\mathbf{E}(QS) + \mathbf{E}(RS) + \mathbf{E}(RT) - \mathbf{E}(QT)}{4} = \frac{1 + 1 + 1 + 1}{4} = 1.$$

March 6, 2020

1.4 Now consider a quantum mechanical version of the game. There are quantum states of two spin-1/2 degrees of freedom shared by Alice and Bob. Alice can measure the z component or x components of the first spin \mathbf{S}^A . (This corresponds to $Q=\pm 1$ or $R=\pm 1$.) Bob can measure the -(z+x) component or the (z-x) component of the second spin \mathbf{S}^B . (This corresponds to $S=\pm 1$ or $S=\pm 1$.)

More specifically, Alice and Bob share the quantum state

$$|\psi\rangle = \frac{|\uparrow_z\rangle \otimes |\downarrow_z\rangle - |\downarrow_z\rangle \otimes |\uparrow_z\rangle}{\sqrt{2}}.$$

The operators to be measured are

$$Q = S_z^A,$$
 $S = -\frac{S_z^B + S_x^B}{\sqrt{2}},$ $T = \frac{S_z^B - S_x^B}{\sqrt{2}}.$

Let us consider the case when Alice measures Q and Bob measures T. Calculate the probability P(Q,T) for Alice and Bob getting the measurement outcomes $(Q,T)=(\pm 1,\pm 1)$.

Solution. From Sakurai (3.9.11), the probability of measuring $\mathbf{S} \cdot \hat{\mathbf{a}}$ and $\mathbf{S} \cdot \hat{\mathbf{b}}$ to both be positive is

$$P(\hat{\mathbf{a}}+;\hat{\mathbf{b}}+) = \frac{1}{2}\sin^2\biggl(\frac{\theta_{ab}}{2}\biggr),$$

where the 1/3 comes from the probability of measuring θ_{ab} is the angle between the $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$ directions. For the other combinations, we may generalize this expression using Fig. (3.9) in Sakurai: This gives us

$$P(\hat{\mathbf{a}}-;\hat{\mathbf{b}}-) = \frac{1}{2}\sin^2\left(\frac{\theta_{ab}}{2}\right) = P(\hat{\mathbf{a}}+;\hat{\mathbf{b}}+), \quad P(\hat{\mathbf{a}}+;\hat{\mathbf{b}}-) = \frac{1}{2}\sin^2\left(\frac{\theta_{ab}+\pi/2}{2}\right) = \frac{1}{2}\cos^2\left(\frac{\theta_{ab}}{2}\right) = P(\hat{\mathbf{a}}+;\hat{\mathbf{b}}-). \tag{1}$$

For Q and T, $\theta_{ab} = \pi/4$. So we have

$$P(Q = \pm 1, T = \pm 1) = \frac{1}{2}\sin^2\left(\frac{\pi}{8}\right) = \frac{1}{2}\left(\frac{\sqrt{2-\sqrt{2}}}{2}\right)^2 = \frac{1}{2}\frac{2-\sqrt{2}}{4} = \frac{2-\sqrt{2}}{8} \approx 0.073,$$

$$P(Q = \pm 1, T = \mp 1) = \frac{1}{2}\cos^2\left(\frac{\pi}{8}\right) = \frac{1}{2}\left(\frac{\sqrt{2+\sqrt{2}}}{2}\right)^2 = \frac{1}{2}\frac{2+\sqrt{2}}{4} = \frac{2+\sqrt{2}}{8} \approx 0.427.$$

1.5 Similarly, consider the case when Alice measures R and Bob measures T. Calculate the probability P(R,T) for Alice and Bob getting the measurement outcomes $(R,T)=(\pm 1,\pm 1)$.

Solution. Again applying (1), for R and T, $\theta_{ab} = 3\pi/4$. So we have

$$P(R = \pm 1, T = \pm 1) = \frac{1}{2}\sin^2\left(\frac{3\pi}{8}\right) = \frac{1}{2}\left(\frac{\sqrt{2+\sqrt{2}}}{2}\right)^2 = \frac{1}{2}\frac{2+\sqrt{2}}{4} = \frac{2+\sqrt{2}}{8} \approx 0.427,$$

$$P(R = \pm 1, T = \mp 1) = \frac{1}{2}\cos^2\left(\frac{3\pi}{8}\right) = \frac{1}{2}\left(\frac{\sqrt{2-\sqrt{2}}}{2}\right)^2 = \frac{1}{2}\frac{2-\sqrt{2}}{4} = \frac{2-\sqrt{2}}{8} \approx 0.073.$$

March 6, 2020 2

1.6 Compute the expectation values $\mathbf{E}(QS)$, $\mathbf{E}(RS)$, $\mathbf{E}(QT)$, and $\mathbf{E}(RT)$. Compute

$$\frac{\mathbf{E}(QS) + \mathbf{E}(RS) + \mathbf{E}(RT) - \mathbf{E}(QT)}{4}$$

Solution. We need to find the probabilities of obtaining $(Q, S) = (\pm 1, \pm 1)$ and $(R, S) = (\pm 1, \pm 1)$. For Q and S, $\theta_{ab} = 3\pi/4$, so

$$P(Q = \pm 1, S = \pm 1) = P(R = \pm 1, T = \pm 1),$$
 $P(Q = \pm 1, S = \mp 1) = P(R = \pm 1, T = \mp 1).$

For R and S, $\theta_{ab} = 5\pi/4$, so

$$P(R = \pm 1, S = \pm 1) = \frac{1}{2}\sin^2\left(\frac{5\pi}{8}\right) = \frac{1}{2}\left(\frac{\sqrt{2+\sqrt{2}}}{2}\right)^2 = \frac{1}{2}\frac{2+\sqrt{2}}{4} = \frac{2+\sqrt{2}}{8} \approx 0.427,$$

$$P(R = \pm 1, S = \mp 1) = \frac{1}{2}\cos^2\left(\frac{5\pi}{8}\right) = \frac{1}{2}\left(\frac{\sqrt{2-\sqrt{2}}}{2}\right)^2 = \frac{1}{2}\frac{2-\sqrt{2}}{4} = \frac{2-\sqrt{2}}{8} \approx 0.073.$$

The expectation value of a random variable X is defined

$$E(X) = \sum_{i} p_i x_i,$$

where x_i are all of the possible values of X, and p_i the probabilities associated with each. Then

$$\mathbf{E}(QS) = 2P(Q = \pm 1, S = \pm 1) - 2P(Q = \pm 1, S = \mp 1) = \frac{2 + \sqrt{2}}{4} - \frac{2 - \sqrt{2}}{4} = \frac{\sqrt{2}}{2},$$

$$\mathbf{E}(RS) = 2P(R = \pm 1, S = \pm 1) - 2P(R = \pm 1, S = \mp 1) = \frac{2 + \sqrt{2}}{4} - \frac{2 - \sqrt{2}}{4} = \frac{\sqrt{2}}{2},$$

$$\mathbf{E}(RT) = 2P(R = \pm 1, T = \pm 1) - 2P(R = \pm 1, T = \mp 1) = \frac{2 + \sqrt{2}}{4} - \frac{2 - \sqrt{2}}{4} = \frac{\sqrt{2}}{2},$$

$$\mathbf{E}(QT) = 2P(Q = \pm 1, T = \pm 1) - 2P(Q = \pm 1, T = \mp 1) = \frac{2 - \sqrt{2}}{4} - \frac{2 + \sqrt{2}}{4} = -\frac{\sqrt{2}}{2}$$

Finally,

$$\frac{\mathbf{E}(QS) + \mathbf{E}(RS) + \mathbf{E}(RT) - \mathbf{E}(QT)}{4} = \frac{1}{4} \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \right) = \frac{\sqrt{2}}{2},$$

which is greater than Max, thereby violating Bell's inequality.

March 6, 2020 3

Problem 2. Consider a quantum particle with mass m moving in the presence of the square well potential

$$V(r) = \begin{cases} -V_0 & r \le a, \\ 0 & r > a. \end{cases}$$

2.1 Writing the wave function in polar coordinates as $\psi(\mathbf{r}) = R_l(r) Y_{lm}(\theta, \phi)$, write down the Schrödinger equation obeyed by R_l .

Solution. From (A.5.1) in Sakurai, the full Schrödinger equation is

$$-\frac{\hbar^2}{2m} \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi_E}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi_E}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \psi_E}{\partial \phi^2} \right] + V(r) \psi_E = E \psi_E,$$

where the angular part of ψ_E satisfies (A.5.4),

$$-\left[\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2}{\partial\phi^2}\right]Y_{lm} = l(l+1)Y_{lm}.$$

Then the equivalent one-dimensional Schrödinger equation is the equation immediately following (A.5.8),

$$-\frac{\hbar^2}{2m}\frac{d^2u_E}{dr^2} + \left[V(r) + \frac{l(l+1)\hbar^2}{2mr^2}\right]u_E = Eu_E,$$
(2)

where $u_E(r) = rR(r)$. In terms of R_l ,

$$-\frac{\hbar^2}{2m}\frac{d^2}{dr^2}(rR_l) + \left[V(r) + \frac{l(l+1)\hbar^2}{2mr^2}\right]rR_l = ErR_l.$$

or

$$\frac{\hbar^2}{2m} \left[-\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + V(r) + \frac{l(l+1)}{r^2} \right] R_l(r) = E_l R_l(r).$$

From (7.7.1), the effective potential at low energies for the *l*th partial wave is

$$V_{\text{eff}} = V(r) + \frac{\hbar^2}{2m} \frac{l(l+1)}{r^2},$$

so the Schrödinger equation can be rewritten as

$$\left[-\frac{\hbar^2}{2m} \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + V_{\text{eff}} \right] R_l(r) = E_l R_l(r).$$

2.2 When V_0 is a certain value, there is one bound state for the s wave (l=0). The bound state energy ε is small $(0 < |\varepsilon| \ll V_0)$. Obtain the range of the depth of the well V_0 (? $\leq V_0 <$?). Also, calculate for the bound state the probability for the particle to exist outside of the well.

Solution. Inside the well, R_l are given by (A.5.16),

$$R_l(r) = \text{constant } j_l(\alpha r),$$

where α is defined in Eq. (A.5.17),

$$\alpha = \sqrt{\frac{2m(V_0 - |E|)}{\hbar^2}}, \quad r < a,$$

March 6, 2020

and the spherical Bessel functions j_l is given by (A.5.12),

$$j_l(\rho) = \sqrt{\frac{\pi}{2\rho}} J_{l+1/2}(\rho).$$

For the s wave, the relevant Bessel function is given by (A.5.12),

$$j_0(\rho) = \frac{\sin \rho}{\rho}.$$

But for l-0, V_{eff} reduces to V(r), so (2) reduces to the one-dimensional problem for u_E ,

$$-\frac{\hbar^2}{2m}\frac{d^2u_E}{dr^2} + V(r)u_E = Eu_E.$$

The bound-state solutions are given by (A.2.6),

$$u_E \sim \begin{cases} e^{-\kappa r} & \text{for } r > a, \\ \cos kr & \text{(even parity)} & \text{for } r < a, \\ \sin kr & \text{(odd parity)} & \text{for } r > a, \end{cases}$$

where k and κ are defined by (A.2.7),

$$k = \sqrt{\frac{2m(V_0 - |E|)}{\hbar^2}}, \qquad \qquad \kappa = \sqrt{\frac{2m|E|}{\hbar^2}}.$$

So we see that $\alpha = k$, and thus we are interested in the odd-parity solutions to the one-dimensional problem.

For the one-dimensional problem, the allowed values of bound-state energy

$$E = -\frac{\hbar^2 \kappa^2}{2m}$$

can be found by solving (A.2.8),

 $ka \tan ka = \kappa a$ (even parity),

 $ka \cot ka = -\kappa a$ (odd parity),

where κ and k are related by (A.2.9),

$$\frac{2mV_0a^2}{\hbar^2} = (k^2 + \kappa^2)a^2.$$

We are interested in the odd parity solutions, so we want to solve

$$ka \cot ka = -\kappa a. \tag{3}$$

For the right side, we can write

$$\kappa a = -\sqrt{\frac{2mV_0a^2}{\hbar^2} - k^2a^2} \equiv -\sqrt{z^2 - (ka)^2},\tag{4}$$

where we have defined z.

Now we can solve the equation graphically. Note that ka and z are both positive definite. This means the odd parity equation in (3) has its first ka axis intercept at $ka = \pi/2$, where the slope is negative. Note also that κa given by (4) is an equation for one quarter of an ellipse in quadrant IV, so it is not defined above the ka axis. Therefore it is not possible for the two graphs to intersect for $z < \pi/2$. For $z > 3\pi/2$, the plots intersect twice, meaning there is more than one bound state. In Fig. 1, this is illustrated with κa for $z = n\pi/2$ with $n = 1, 2, 3, \ldots$

Finally, we have the restriction

$$\frac{\pi}{2} < \sqrt{\frac{2mV_0a^2}{\hbar^2}} < \frac{3\pi}{2} \quad \implies \quad \frac{\pi^2\hbar^2}{8ma^2} < V_0 < \frac{9\pi^2\hbar^2}{8ma^2}.$$

Figure 1: Plot demonstrating single bound state solutions to (3) in the range $\pi/2 < z < 3\pi/2$, where z is defined in (4).

2.3 Consider the scattering problem by the well. For each l, for large enough r, when $R_l(r)$ is given by $R_l(r) \sim A_l \sin(kr - l\pi/2 + \delta_l)/r$, δ_l is called the scattering phase shift. For the value of V_0 within the range you obtained in the above problem, when the energy of the incident wave is is $E = 9V_0/16$, calculate $\tan \delta_0$ (where δ_0 is the scattering phase shift for the s wave).

2.4 Now consider the S matrix, $S \equiv \exp(2i\delta_0) = \exp(i\delta_0)/\exp(-i\delta_0)$. Compare the condition on s wave bound state energies and the zero of the denominator of S. Explain their relation.

Problem 3. Consider a three dimensional potential

$$V(|r|) = \frac{\hbar^2 \gamma}{2m} \delta(|r| - a).$$

The s wave Schrödinger equation is given by

$$-\frac{\hbar^2}{2m}\frac{d^2\chi_0(r)}{dr^2} + \frac{\hbar^2\gamma}{2m}\delta(r-a)\,\chi_0(r) = E\,\chi_0(r).$$

The s wave function must be regular (zero) at r=0. At r=a, it is continuous, but its derivative can jump.

- **3.1** Calculate the s wave scattering phase shift (k), where k is related to E as $E=\hbar^2k^2/2m$.
- 3.2 When $\gamma \gg k$, 1/a and when $\sin ka$ is not small, discuss the behavior of the scattering phase shift.
- 3.3 Obtain the condition to have resonant states and calculate the energy of the resonant states.
- **3.4** Calculate the width Γ of the resonance. Discuss its behavior when γ is big.

3.5 When the velocity of the incident wave is small, obtain the scattering cross section.

I consulted Sakurai's *Modern Quantum Mechanics*, Shankar's *Principles of Quantum Mechanics*, and the Wikipedia article on a particle in a spherically symmetric potential while writing up these solutions.

March 6, 2020 7