234073

 $Numer\ indeksu$ Aleksandra Kowalczyk

Imię i nazwisko

234102

 $Numer\ indeksu$ Zbigniew Nowacki

Imię i nazwisko

234106

Numer indeksu

Karol Podlewski

Imię i nazwisko

Informatyka Stosowana Kierunek

Stopień

Specjalizacja Semestr Data Science

Data oddania 18 listopada 2020

Przetwarzanie i analiza dużych zbiorów danych

Zadanie 3

1 Cel zadania

Celem zadania była implementacja algorytmu k-średnich z uwzględnieniem dwóch miar - euklidesowej oraz Manhattan - dla dwóch rozmieszeń centrów skupień - losowego oraz maksymalnie od siebie oddalonych centroidów według odległości euklidesowej.

Dla każdej iteracji należało obliczyć funkcje kosztu $\phi(i)$ oraz $\psi(i)$, wygenerować wykresy oraz obliczyć procentową zmianę kosztu po 10 iteracjach algorytmu dla obydwu miar odległości z wskazaniem, które z dwóch początkowych rozmieszeń skupień pozwoliło uzyskać lepsze rezultaty.

Miara euklidesowa:

odległość:
$$||a - b|| = \sqrt{\sum_{i=1}^{d} (a_i - b_i)^2}$$
 (1)

koszt:
$$\phi = \sum_{x \in X} \min_{c \in C} ||x - c||^2$$
 (2)

Miara Manhattan:

odległość:
$$|a - b| = \sum_{i=1}^{d} |a_i - b_i|$$
 (3)

koszt:
$$\psi = \sum_{x \in X} \min_{c \in C} |x - c|$$
 (4)

2 Opis implementacji

Do implementacji zadania wykorzystano język Python wraz z API PySpark, które umożliwiło skorzystanie z możliwości języka Apache Spark w pythonowym kodzie. Wszystkie funkcje (odległości, kosztu) zostały zaimplementowane w programie, nie korzystano z bibliotek.

3 Uzyskane wyniki

Analiza zajęła około 7 minut i 20 sekund.

Tabela 1: Uzyskane wartości funkcji kosztu

Iteracja	Metryka euklidesowa		Metryka Manhattan	
rocracja	Plik 3b.txt	Plik 3c.txt	Plik 3b.txt	Plik 3c.txt
1	623 660 345,30	438 747 790,02	550 117,14	1 433 739,31
2	509 862 908,29	249 803 933,62	$464\ 661,07$	1 084 488,77
3	485 480 681,87	194 494 814,40	$471\ 200,04$	$973\ 431,71$
4	463 997 011,68	$169\ 804\ 841,45$	$484\ 160,69$	$895\ 934,59$
5	$460\ 969\ 266{,}57$	$156\ 295\ 748,\!80$	$489\ 251,72$	$865\ 128{,}33$
6	$460\ 537\ 847,98$	149 094 208,10	$487\ 564,74$	845 846,64
7	460 313 099,65	$142\ 508\ 531{,}61$	$483\ 404,05$	$827\ 219{,}58$
8	$460\ 003\ 523{,}88$	$132\ 303\ 869{,}40$	$475\ 365{,}34$	803 590,34
9	459 570 539,31	117 170 969,83	$474\ 924,05$	$756\ 039{,}51$
10	459 021 103,34	108 547 377,17	$457\ 233{,}64$	$717\ 332,90$
11	458 490 656,19	$102\ 237\ 203{,}31$	$447\ 495{,}09$	$694\ 587,92$
12	457 944 232,58	$98\ 278\ 015{,}74$	$451\ 004,30$	$684\ 444,50$
13	$457\ 558\ 005,19$	$95\ 630\ 226{,}12$	$451\ 222,09$	$674\ 574,74$
14	$457\ 290\ 136{,}35$	$93\ 793\ 314{,}05$	$451\ 973,84$	$667\ 409,46$
15	457 050 555,05	$92\ 377\ 131,96$	$451\ 585,\!35$	$663\ 556,62$
16	$456\ 892\ 235{,}61$	$91\ 541\ 606,\!25$	$452\ 756,64$	$660\ 162{,}77$
17	456 703 630,73	$91\ 045\ 573{,}83$	$452\ 893,79$	$656\ 041,32$
18	$456\ 404\ 203{,}01$	$90\ 752\ 240{,}10$	$450\ 382,23$	$653\ 036{,}75$
19	$456\ 177\ 800,54$	$90\ 470\ 170{,}18$	$450\ 023{,}96$	$651\ 112,42$
20	455 986 871,02	90 216 416,17	448 929,47	649 689,01

Zmiana względna
$$\phi_{3b.txt}\Big(\phi_{3b.txt}(1), \phi_{3b.txt}(10)\Big) = \frac{623660345, 3 - 459021103, 34}{623660345, 3} = 0,2639886329 \approx 26,4\%$$
Zmiana względna $\phi_{3c.txt}\Big(\phi_{3c.txt}(1), \phi_{3c.txt}(10)\Big) = \frac{438747790, 02 - 108547377, 17}{438747790, 02} = 0,7525973244 \approx 75,26\%$
Zmiana względna $\psi_{3b.txt}\Big(\psi_{3b.txt}(1), \psi_{3b.txt}(10)\Big) = \frac{550117, 14 - 457233, 64}{550117, 14} = 0,1688431304 \approx 16,88\%$
Zmiana względna $\psi_{3c.txt}\Big(\psi_{3c.txt}(1), \psi_{3c.txt}(10)\Big) = \frac{1433739, 31 - 717332, 90}{1433739, 31} = 0,4996768973 \approx 49,97\%$

Tabela 2: Procentowa zmiana kosztu po 10 iteracjach

Metryka	Rozmieszczenie centroidów	Zmiana kosztu
Metryka euklidesowa	Plik 3b.txt Plik 3c.txt	26,4% $75,26%$
Metryka Manhattan	Plik 3b.txt Plik 3c.txt	16,88% $49,97%$

Rysunek 1: Wykresy funkcji kosztu

4 Analiza wyników

Wykresy funkcji (rysunek 3) celu dla identycznych początkowych skupień posiadają podobny kształt, co widać szczególnie dobrze w przypadku pliku 3c.txt, gdzie spadek kosztu robi się mniej gwałtowny po 4 iteracji, by delikatnie przyśpieszyć między 8 a 10 iteracją, po czym wykres zaczyna się widocznie wypłaszczać (co dokładniej można zobaczyć w tabeli 1).

W przypadku pliku 3b.txt kształt funkcji nie jest już tak zbliżony, głównie ze względu na fakt, że dla metryki Manhattan wartość funkcji celu nie zawsze maleje (wzrost można zaobserwować w iteracjach 3-5, 12-14 oraz 16-17). Niezależnie od metryki, kształt funkcji zaczyna się dużo wcześniej wypłaszczać niż w przypadku drugiego początkowego rozłożenia centroidów.

Wniosek, że dla badanych początkowych środków skupień wykresy szybciej zaczynają się wypłaszczać w przypadku gdy centroidy są losowe (plik 3b.txt) widać także w tabeli 2. Zmiana kosztu jest prawie 3-krotnie większa dla maksymalnie oddalonych cenroidów. Wartości te są też większe dla metryki euklidesowej.