M1-SDSI 2024-2025

HOMEWORK 1: MANUAL IMPLEMENTATION OF SIMPLE AND MULTIVARIATE REGRESSION

(Duration: 4 days)

Learning Objectives:

- ✓ Understand and manually implement simple and multivariate regression models.
- ✓ Implement both the least squares method and gradient descent manually without using the scikit-learn library.

Exercise 1: Computing Simple Linear Regression Coefficients Manually using Least Squares Dataset:

You are given the following dataset of study hours () and exam scores ():

Hours Studied	Exam Score	
1	10	
2	11.50	
3	13.50	
4	14	
5	15	

- 1. Compute the slope and intercept manually, then implement the calculations in Python.
- 2. Use the computed and to predict the exam score for a student who studied 6 hours.

Exercise 2: Implementing Simple Linear Regression using Gradient Descent Dataset:

Use the same dataset from Exercise 1.

- 1. Compute the gradient descent <u>manually</u> for 2 iterations. Set initial values:
 - $\theta_0 = \theta_1 = 0$
 - Learning rate: α= 0.01
 - Number of iterations: 2

(Show for each iteration, the values of θ_0 and θ_1)

- 2. Implement gradient descent in Python using loops. Set initial values:
 - $\quad \theta_0 = \theta_1 = 0$
 - Learning rate: α= 0.01
 - Number of iterations: 1000
- 3. Plot the cost function over iterations to check for convergence.
- 4. Compare the final values of θ_0 and θ_1 with the least squares solution from Exercise 1. What do you observe and recommend?

© 2024 H.-E. GUERGOUR Page 1/2

5. Additional Question: Generate synthetic data using a known linear equation with random noise and apply gradient descent to estimate the parameters.

Exercise 3: Computing Multivariate Regression Coefficients Manually (Least Squares)

Dataset:

You are given data about students' study hours and sleep hours, and their corresponding exam scores:

Hours Studied (x2)	Sleep Hours (x2)	Exam Score (y)
1	8	10
2	7	11.50
3	6	13.50
4	6	14
5	5	15

- 1. Compute the slope and intercept manually, then implement the calculations in Python.
- 2. Use the computed values to predict the exam score of a student who studied for 6 hours and slept for 5 hours.

Exercise 4: Implementing Multivariate Regression using Gradient Descent.

Dataset:

Use the same dataset from Exercise 2.

- 1. Compute the gradient descent <u>manually</u> for 2 iterations. Set initial values:
 - $\theta_0 = \theta_1 = \theta_2 = 0$
 - Learning rate: α= 0.01
 - Number of iterations: 2

(Show for each iteration, the values of θ_0 , θ_1 and θ_2)

- 2. Implement gradient descent in Python using loops. Set initial values:
 - $\theta_0 = \theta_1 = \theta_2 = 0$
 - Learning rate: α = 0.01
 - Number of iterations: 10000
- 3. Compare the results with the least squares solution from Exercise 3.
- 4. Additional Question: Effect of Learning Rate (α):
 - a. Implement gradient descent with different values of α (e.g., 0.001, 0.01, 0.1, 1).
 - b. Plot the cost function over iterations for each value.
 - c. What do you observe when a is too small or too large?
- 5. Additional Question: Effect of Number of Iterations:
 - a. Train the model with different iteration values (e.g., 100, 1000, 10,000).
 - b. Plot the cost function for each case.
 - c. How do you decide the optimal number of iterations?
 - d. How can you stop training automatically when the model has converged?