試験問題		試験日	曜日	時限	担当者
科目名	量子力学 II	2018年7月25日	水	2	田崎

答えだけではなく、考え方や計算の筋道を簡潔に書くこと(単純な計算問題は答えだけでもいいが)。解答の順番は(0番以外)自由。解答用紙の裏面も使用してよい。試験後、答案を受け取りにくること。2018年10月を過ぎたら、答案を予告なく処分する。

- **0. これは冒頭に書くこと。**レポートの提出や修正の状況を書け(冒頭に何も記述がなければ、レポートは提出していないとみなす)。レポートは、返却済みのものも新規のものも、今日の答案にはさんで提出すること。
- 1. 1次元の長さ L の区間上の 1 粒子の量子力学を考える。空間の座標 x は、 $0 \le x \le L$ を満たす。

ある瞬間での粒子の状態が波動関数

$$\varphi(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{2\pi}{L}x\right) \tag{1}$$

で表わされるとする。

- (a) 位置演算子を \hat{x} 、運動量演算子を \hat{p} と書く。状態 (1) に関する期待値 $\langle \hat{x} \rangle_{\varphi}$, $\langle \hat{x}^2 \rangle_{\varphi}$, $\langle \hat{p} \rangle_{\varphi}$, $\langle \hat{p}^2 \rangle_{\varphi}$ を求めよ。
- (b) 上で求めた期待値を使って、位置のゆらぎ $\sigma_{\varphi}[\hat{x}] := \sqrt{\langle \hat{x}^2 \rangle_{\varphi} (\langle \hat{x} \rangle_{\varphi})^2}$ および 運動量のゆらぎ $\sigma_{\varphi}[\hat{p}] := \sqrt{\langle \hat{p}^2 \rangle_{\varphi} (\langle \hat{p} \rangle_{\varphi})^2}$ を求めよ。その結果を不確定性原理 の観点から考察せよ。
- **2.** $\hat{r} = (\hat{x}, \hat{y}, \hat{z}), \hat{p} = (\hat{p}_x, \hat{p}_y, \hat{p}_z)$ を 3 次元での位置演算子、運動量演算子とする。 角運動量演算子を $\hat{L} := \hat{r} \times \hat{p}$ と定義する。位置演算子と運動量演算子の交換関係は 既知として用いてよい。

交換子 $[\hat{L}_y,(\hat{p}_x)^2]$, $[\hat{L}_y,(\hat{p}_y)^2]$, $[\hat{L}_y,(\hat{p}_z)^2]$ および $[\hat{L}_y,\hat{\boldsymbol{p}}^2]$ を求めよ。ただし、 $\hat{\boldsymbol{p}}^2:=(\hat{p}_x)^2+(\hat{p}_y)^2+(\hat{p}_z)^2$ である。

3. 水素原子の(より正確には、固定された陽子のまわりの電子の)エネルギー 固有状態のシュレディンガー方程式は、

$$-\frac{\hbar^2}{2\mu}\Delta\varphi(x,y,z) - \frac{e^2}{4\pi\epsilon_0\sqrt{x^2 + y^2 + z^2}}\varphi(x,y,z) = E\,\varphi(x,y,z) \tag{2}$$

である(定数の意味は講義のとおり)。

一般のエネルギー固有状態を求めるのは大変なので、以下では波動関数が

$$\varphi(x, y, z) = z e^{-r/a}, \quad r = \sqrt{x^2 + y^2 + z^2}$$
 (3)

と書けるエネルギー固有状態を探そう。a > 0 はこれから決める定数である。

- (a) $\partial^2 \varphi(x,y,z)/\partial x^2$ を求めよ。
- (b) $\partial^2 \varphi(x,y,z)/\partial z^2$ を求めよ。
- (c) $\Delta \varphi(x,y,z)$ を求めよ。
- (d) 波動関数 (3) をシュレディンガー方程式 (2) に代入し、等式が成立することを要請して、定数 a とエネルギー固有値 E を求めよ。
- **4.** 単独の(大きさ 1/2 の)スピンの状態について考える。スピン演算子を行列表示で、

$$\hat{S}_{\mathbf{x}} = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \hat{S}_{\mathbf{y}} = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \hat{S}_{\mathbf{z}} = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

と表わし、一般のスピン状態を(複素数を成分にもつ)ベクトル $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ で表わす。

- (a) $\hat{\boldsymbol{S}}^2 = (\hat{S}_x)^2 + (\hat{S}_y)^2 + (\hat{S}_z)^2$ および交換子 $[\hat{S}_x, \hat{S}_y]$ を求めよ。
- (b) 演算子 \hat{S}_x の固有値と固有状態を求めよ。
- (c) 状態 $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ (ただし $|\alpha|^2 + |\beta|^2 = 1$) において、 \hat{S}_z および \hat{S}_x を測定したとき、それぞれ、どのような値がどのような確率で得られるか答えよ。