14.1 习题

张志聪

2025年3月10日

14.1.1

修改下证明顺序。

(1) 如果极限 $\lim_{x \to x_0; x \in E} f(x)$ 存在,那么它一定等于 $f(x_0)$ 。

反证法,假设 $\lim_{x\to x_0; x\in E} f(x) = L, L \neq f(x_0)$ 。因为极限 $\lim_{x\to x_0; x\in E} f(x) = L$ 可知,设 $0 < \epsilon < d_Y(f(x_0), L)$,存在 $\delta > 0$,使得只要 $x \in E$ 满足 $d_X(x,x_0) < \delta$,就有 $d_Y(f(x),L) < \epsilon$ 。因为 $x_0 \in E, d_X(x_0,x_0) = 0 < \delta$,即 $x = x_0$ 时 $d_Y(f(x),L) > \epsilon$,存在矛盾。

(2)证明:极限 $\lim_{x\to x_0;x\in E}f(x)$ 存在,当且仅当极限 $\lim_{x\to x_0;x\in E\setminus\{x_0\}}f(x)$ 存在且等于 $f(x_0)$ 。

 $\bullet \Rightarrow$

极限 $\lim_{x \to x_0; x \in E} f(x)$ 存在,按照定义 14.1.1 可知,极限 $\lim_{x \to x_0; x \in E \setminus \{x_0\}} f(x)$ 存在。接下来,需要证明 $\lim_{x \to x_0; x \in E \setminus \{x_0\}} f(x) = f(x_0)$ 。

反证法,假设 $\lim_{x \to x_0; x \in E \setminus \{x_0\}} f(x) = L, f(x_0) \neq L$ 。

由 (1) 可知, $\lim_{x \to x_0; x \in E} f(x) = f(x_0)$ 。

那么,设 $\epsilon = \frac{1}{2}d_Y(f(x_0), L)$,存在 $\delta' > 0$,使得只要 $x \in E$ 满足 $d_X(x, x_0) < \delta'$,就有 $d_Y(f(x), f(x_0)) < \epsilon$ 。

存在 $\delta''>0$,使得只要 $x\in E$ 满足 $0< d_X(x,x_0)<\delta''$,就有 $d_Y(f(x),L)<\epsilon$

综上,取 $\delta = min(\delta', \delta'')$,使得只要 $x \in E$ 满足 $0 < d_X(x, x_0) < \delta$,

就有

$$\begin{cases} d_Y(f(x), f(x_0)) < \epsilon \\ d_Y(f(x), L) < \epsilon \end{cases}$$

于是可得

$$d_Y(f(x_0), L) \le d_Y(f(x), f(x_0)) + d_Y(f(x), L) < d_Y(f(x_0), L)$$

存在矛盾。

• =

按照定义 14.1.1 可以直接证明, 具体过程略。

14.1.2

• $(a) \Leftrightarrow (b)$

与定理 13.1.4 证明相似,不做赘述。

• $(a) \implies (c)$

因为 V 是开集且 $L \in V$,所以存在 r > 0 使得 $B_{(Y,d_Y)}(L,r) \subseteq V$ 。因为 (a) 成立,所以存在 $\delta > 0$ 使得只要 $x \in E$ 满足 $d_X(x,x_0) < \delta$,就 有 $d_Y(f(x),L) < r$ 。

令 $U := B_{(X,d_X)}(x_0,\delta), U \subset X$ 。 对任意 $x \in U \cap E$,都有 $x \in E$ 且 $d_X(x,x_0) < \delta$,于是 $d_Y(f(x),L) < r$,即 $f(x) \in B_{(Y,d_Y)}(L,r) \subseteq V$ 。 所以, $f(U \cap E) \subseteq V$ 。

• $(c) \implies (a)$

设 $(x^{(n)})_{n=1}^{\infty}$ 是 E 中依度量 d_X 收敛于 x_0 的序列。任意 $\epsilon>0$,令 $V:=B_{(Y,d_Y)}(L,\epsilon)$,由 (c) 可知,存在一个包含 x_0 的开集 $U\subset X$,使 得 $f(U\cap E)\subseteq V$ 。

因为 U 是开集,所以存在 $\delta > 0$ 使得 $B_{(X,d_X)}(x_0,\delta) \subseteq U$ 。序列 $(x^{(n)})_{n=1}^{\infty}$ 是 E 中依度量 d_X 收敛于 x_0 的序列,所以存在 $N \ge 1$ 使得

$$d_X(x_0, x^{(n)}) < \delta$$

对所有的 $n \ge N$ 均成立。

于是对 $n \ge N$, 有 $x^{(n)} \in B_{(X,d_X)}(x_0,\delta) \subseteq U, x^{(n)} \in E$, 此时,

$$f(x^{(n)}) \in V$$

即,对任意 $n \ge N$ 都有

$$d_Y(f(x^{(n)}), L) < \epsilon$$

由 ϵ 的任意性可知, $(f(x^{(n)}))_{n=1}^{\infty}$ 收敛于 L。

• $(a) \implies (d)$

(a) 成立,那么,对任意 $\epsilon > 0$,都存在 $\delta > 0$ 使得只要 $x \in E$ 满足 $d_X(x,x_0) < \delta$,就有 $d_Y(f(x),L) < \epsilon$ 。因为 $x \in E \setminus \{x_0\}$ 时 g(x) = f(x),所以,以上性质函数 g 也成立。

现在只需再额外考虑 $x=x_0$ 是否满足定义要求即可。 $d_X(x_0,x_0)=0<\delta$,此时

$$d_Y(g(x), L) = d_Y(g(x_0), L) = d_Y(L, L) = 0 < \epsilon$$

于是可得

$$\lim_{x \to x_0; x \in E \cup \{x_0\}} g(x) = L = g(x_0)$$

所以,g 在 x_0 处是连续的。

特别地, $x \in E$, 由习题 14.1.1 可知 $f(x_0) = L$ 。

• $(d) \implies (a)$

如果 $x_0 \notin E$, 则 $E \setminus \{x_0\} = E$, 由 g 在 x_0 处连续, 我们有

$$\lim_{x \to x_0; x \in E \setminus \{x_0\}} g(x) = \lim_{x \to x_0; x \in E} g(x) = \lim_{x \to x_0; x \in E} f(x) = g(x_0) = L$$

如果 $x_0 \in E$, 由 g 在 x_0 处连续, 我们有

$$\lim_{x \to x_0; x \in E \setminus \{x_0\}} g(x) = \lim_{x \to x_0; x \in E \setminus \{x_0\}} f(x) = g(x_0) = f(x_0)$$

利用习题 14.1.1 可知,

$$\lim_{x \to x_0; x \in E} f(x) = f(x_0)$$

14.1.3

关于拓扑空间的部分, 跳过

14.1.4

关于拓扑空间的部分, 跳过

14.1.5

设 $(x^{(n)})_{n=1}^{\infty}$ 是 E 中依度量 d_X 收敛于 x_0 的序列,由命题 14.1.5(b) 可知,我们只需证明序列 $(g(f(x^n)))_{n=1}^{\infty}$ 收敛于 z_0 即可。

 $\lim_{x \to x_0; x \in E} f(x) = y_0$,由命题 14.1.5(b) 可知序列 $(f(x^{(n)}))_{n=1}^{\infty}$ 依度量 d_Y 收敛于 y_0 , $\lim_{y \to y_0; y \in f(E)} g(y) = z_0$,由命题 14.1.5(b) 可知序列 $(g(f(x^{(n)})))_{n=1}^{\infty}$ 依度量 d_Z 收敛于 z_0 。

14.1.6

(1) 9.3.14 在度量空间下的类比:

设 (X,d_X) 是度量空间,E 是 X 的一个子集, x_0 是 E 的附着点,并且设 $f:X\to\mathbb{R}$ 和 $g:X\to\mathbb{R}$ 都是函数。假设 f 在 x_0 处沿着 E 有极限 L,并且 g 在 x_0 处沿着 E 有极限 M,那么 f+g 在 x_0 处沿着 E 有极限 L+M,f-g 在 x_0 处沿着 E 有极限 L-M,max(f,g) 在 x_0 处沿着 E 有极限 max(L,M),min(f,g) 在 x_0 处沿着 E 有极限 min(L,M),而且 fg 在 x_0 处沿着 E 有极限 fg。如果 g 是一个实数,那么 g 在 g0 处沿着 g0 种别 g0 种别 g0 种别 g1 是 为有 g2 的,那么 g3 是 g4 是 g5 的,那么 g6 是 g6 的,那么 g7 是 g8 是 g8 有极限 g9 是 g9 是

(2) 证明

我们只证明第一个结论(即 f+g 有极限 L+M),其余结论的证明非常类似。

因为 x_0 是 E 的一个附着点,那么根据引理 9.1.14 (更准确的说,是度量空间下的推广)可知,存在一个由 E 中的元素构成的序列 $(x_n)_{n=0}^{\infty}$,它是收敛于 x_0 的。由于 f 在 x_0 处沿着 E 有极限 L,由命题 14.1.15(b) 可知

存在一个由 $f(x_n)$ 组成的序列 $(f(x_n))_{n=0}^{\infty}$,它是收敛于 L 的。由于 g 在 x_0 处沿着 E 有极限 M,由命题 14.1.15(b) 可知存在一个由 $g(x_n)$ 组成的序列 $(g(x_n))_{n=0}^{\infty}$ 。根据序列的极限定律(定理 6.1.19),我们推导出 $((f+g)(x_n))_{n=0}^{\infty}$ 是收敛于 L+M 的。