

Mecánica de Sólidos

4.9. Interpretación de los gráficos de colores de esfuerzos y deformaciones

Universidad Nacional de Colombia sede Manizales Departamento de Ingeniería Civil

> Michael Heredia Pérez mherediap@unal.edu.co

Docente Ocasional Ingeniero Civil Esp. en Estructuras Maestrando en Estructuras – Investigación

Advertencia

Estas presentaciones son solo una herramienta didáctica para guiar la clase, por si solas no deben tomarse como material de estudio y el estudiante debe dirigirse a la literatura recomendada.

4.9. Interpretación de los gráficos de colores de esfuerzos y deformaciones

- 4.9.1. Interpretación de los gráficos sx, sy y txy
- 4.9.2. Interpretación de los gráficos de las deformaciones ex, ey, ez, gxy
- 4.9.3. Interpretación de los gráficos de los esfuerzos principales y esfuerzo cortante máximo
- 4.9.4. Relación de los diagramas de colores de una viga con sus diagramas de cortante y momento
- 4.9.5. Disposición de los flejes si la viga estuviera hecha con concreto reforzado

Resultados del software de EF

Modelos poco comunes

Los gráficos son radiografías de las estructuras

¿Cómo relaciono esfuerzos y deformaciones?

4.9. Interpretación de los gráficos de esfuerzos y deformaciones

Figura 4.18: Viga referida en el ejemplo de la Sección 4.9.

4.9. Interpretación de los gráficos de esfuerzos y deformaciones

• Condiciones de frontera:

$$\tau_{xy}(x, y = \pm c, z) = 0$$
 $(\tau_{xy} = 0 \text{ en el borde superior e inferior de la viga})$
 $\sigma_y(x, y = -c, z) = 0$ (el borde inferior no soporta cargas)
$$\sigma_y(x, y = +c, z) = \frac{q}{t}$$
 (el borde superior soporta la carga distribuida)

• Fuerza cortante V y momento flector M en los extremos:

$$V(\pm L) = -\int_{-c}^{c} \int_{0}^{t} \tau_{xy}(\pm L, y, z) \, dz \, dy = \pm qL$$

$$M(\pm L) = -\int_{-c}^{c} \int_{0}^{t} \sigma_{x}(\pm L, y, z) y \, dz \, dy = 0;$$

• Fuerza axial en toda su longitud:

$$f_{\text{axial}}(x) = \int_{-c}^{c} \int_{0}^{t} \sigma_{x}(x, y, z) \, dz \, dy = 0$$

4.9. Interpretación de los gráficos de esfuerzos y deformaciones

• Esfuerzos en el interior de la viga:

$$\sigma_{x}(x, y, z) = -\frac{q}{2I} \left(x^{2}y - \frac{2}{3}y^{3} + \frac{2}{5}c^{2}y - L^{2}y \right)$$

$$\sigma_{y}(x, y, z) = -\frac{q}{2I} \left(\frac{1}{3}y^{3} - c^{2}y - \frac{2}{3}c^{3} \right)$$

$$\sigma_{z}(x, y, z) = 0$$

$$\tau_{xy}(x, y, z) = -\frac{q}{2I} \left(c^{2} - y^{2} \right) x$$

$$\tau_{xz}(x, y, z) = 0$$

$$\tau_{yz}(x, y, z) = 0$$

Los esfuerzos son independientes de la profundidad en z.

Análisis

https://github.com/michaelherediaperez/mecanica_de_solidos_un/blob/main/codigos/cap_04/04_09_graficos_colores.ipynb

Esfuerzo normal en x, σ_x

Esfuerzo normal en y, $\sigma_{\rm y}$

Esfuerzo cortante en xy, τ_{xy}

Convención de signos en vigas

Curso de Estática; [Herrera, 2018] [Hibbeler R.C.(2012) Structural Analysis]

Convención de signos en vigas

• Significado físico del signo de la fuerza cortante:

• Significado físico del signo del momento flector:

Curso de Estática; [Herrera, 2018] [Hibbeler R.C.(2012) Structural Analysis]

Distribuciones en la sección transversal

Figura 9.7: Un momento de flexión positivo es aquel que produce tracción en la fibra inferior de la viga. Este momento es generado por los esfuerzos σ_x que varían de forma lineal con respecto al eje y. Observe que $M_z(x) = M(x)$ puede entenderse como la magnitud de un momento formado por los esfuerzos σ_x alrededor del eje z de acuerdo con la regla de la mano derecha en la sección transversal ubicada en la posición x.

Figura 9.10: La fuerza cortante es la resultante de sumar las contribuciones de fuerzas generadas por los esfuerzos cortantes τ_{xy} mostrados (ver ecuación (9.15)); estos esfuerzos, en el caso de una viga de sección rectangular, varían de forma parabólica con respecto al eje y. La fuerza cortante es positiva cuando la resultante de los esfuerzos cortantes τ_{xy} mostrados apunta en la dirección contraria al eje y, de acuerdo con la convención de signos establecida en la Figura 9.8.

4.9.4. Relación de los diagramas de colores de una viga con sus diagramas de cortante y momento

https://github.com/michaelherediaperez/mecanica_de_solidos_un/blob/main/codigos/cap_04/04_0 9 04.ipynb

Figura 4.25: Diagrama de fuerzas cortantes V y momentos de flexión M en la viga analizada en la Sección 4.9. Recuerde que la carga aplicada es q = -10 kN/m.

4.9.4. Relación de los diagramas de colores de una viga con sus diagramas de cortante y momento

• $M(x) y \sigma_x$

$$M(x) = -\int_{-c}^{c} \int_{0}^{t} y \sigma_{x}(x, y, z) dz dy$$

$$M(x) = -\frac{q}{2} \left(L^{2} - x^{2} \right)$$

4.9.4. Relación de los diagramas de colores de una viga con sus diagramas de cortante y momento

• $V(x) y \tau_{xy}$

$$V(x) = -\int_{-c}^{c} \int_{0}^{t} \tau_{xy}(x, y, z) \, dz \, dy$$

$$V(x) = qx$$

4.9.2. Interpretación de los gráficos de las deformaciones ε_x , ε_y , ε_z , γ_{xy}

 $\boldsymbol{\epsilon}_{\mathrm{x}},\;\boldsymbol{\epsilon}_{\mathrm{y}},\;\boldsymbol{\epsilon}_{\mathrm{z}},\;\boldsymbol{\gamma}_{\mathrm{xy}}$

Deformación longitudinal en x, ε_x

 $\boldsymbol{\varepsilon}_{\mathrm{x}}, \; \boldsymbol{\varepsilon}_{\mathrm{y}}, \; \boldsymbol{\varepsilon}_{\mathrm{z}}, \; \boldsymbol{\gamma}_{\mathrm{xy}}$

Deformación longitudinal en y, $\varepsilon_{\rm v}$

 $\boldsymbol{\epsilon}_{\mathrm{x}},\;\boldsymbol{\epsilon}_{\mathrm{y}},\;\boldsymbol{\epsilon}_{\mathrm{z}},\;\boldsymbol{\gamma}_{\mathrm{xy}}$

Deformación longitudinal en z, $\boldsymbol{\epsilon}_{\mathrm{z}}$

 $\boldsymbol{\varepsilon}_{\mathrm{x}}, \; \boldsymbol{\varepsilon}_{\mathrm{y}}, \; \boldsymbol{\varepsilon}_{\mathrm{z}}, \; \boldsymbol{\gamma}_{\mathrm{xy}}$

Deformación angular en xy, γ_{xv}

Comentarios sobre el concreto

Comentarios sobre el concreto: compresión (compression)

Wight & MacGregor: capítulo 3

[...] "Brittle materials tend to develop tensile fractures perpendicular to the directon of the largest tensile strain"

[...] "Thus, when concrete is subjected to uniaxial compressive loading, crack tend to develop parallel to the maximun compressive stress"

Comentarios sobre el concreto: compresión (compression)

Wight & MacGregor: capítulo 3

[...] "The stress-strain curve remains linear up to 30% of the compressive strength of the concrete"

Comentarios sobre el concreto: tracción (tensile)

Wight & MacGregor:

[...] "The tensile strength of concrete falls between 8 and 15 percent of the compressive strength"

Nawy

[...] "The tensile strength of concrete is relatively low. A good approximation for the tensile strength f_{ct} is $0.10f_c' < f_{ct} < 0.20 f_c'$ "

[...] "is is difficult to measure tensile strength due to gripping"

10/25/2022 30

Comentarios sobre el concreto: cortante (shear)

Nawy

[...] "Varying from 20% of the compressive strength in normal loading to a considerably higher percentage of up to 85% of the compressive strength in cases where direct shear exist in combination with compression"

10/25/2022 31

Comentarios sobre el concreto: biaxial

Wight & MacGregor:

Fig. 3-12 Strength and modes of failure of unreinforced concrete subjected to biaxial stresses. (From [3-32].)

Comentarios sobre el concreto: f'_{c max}

Wight & MacGregor:

Fig. 3-18
Typical concrete stress–strain curves in compression.
[Plotted using Eqs. (3-20) to (3-26).]

Criterio de falla de Mohr-Coulomb:

Wight & MacGregor:

Fig. 3-15 Axial stress–strain curves from triaxial compression tests on concrete cylinders; unconfined compressive strength $f'_c = 3600$ psi. (From [3-3].)

Fig. 3-16 Mohr rupture envelope for concrete tests from Fig. 3-15.

Esfuerzos principales $(\sigma_1)_{xy}$ y $(\sigma_2)_{xy}$

$$(\sigma_1)_{xy} = \frac{\sigma_x + \sigma_y}{2} + \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} \quad \tan 2\theta_1 = \frac{2\tau_{xy}}{(\sigma_x - \sigma_y)}$$
$$(\sigma_2)_{xy} = \frac{\sigma_x + \sigma_y}{2} - \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} \quad \tan 2\theta_2 = \frac{-2\tau_{xy}}{-(\sigma_x - \sigma_y)}$$

• Esfuerzo principal $(\sigma_1)_{xy}$

$$(\sigma_1)_{xy} = \frac{\sigma_x + \sigma_y}{2} + \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$
 $\tan 2\theta_1 = \frac{2\tau_{xy}}{(\sigma_x - \sigma_y)}$

• Esfuerzo principal $(\sigma_2)_{xy}$

$$(\sigma_2)_{xy} = \frac{\sigma_x + \sigma_y}{2} - \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} \qquad \tan 2\theta_2 = \frac{-2\tau_{xy}}{-(\sigma_x - \sigma_y)}$$

10/25/2022

38

• Trayectorias de esfuerzos

Figura 4.22: Líneas de tracción y de compresión en la viga analizada en la Sección 4.9. A estas líneas se les conoce también como las trayectorias de los esfuerzos. Observe que las líneas de tracción y de compresión son mutuamente ortogonales.

Figura 4.24: Grietas en una viga de concreto reforzado de 140 cm de longitud, 15 cm de altura y 10 cm de ancho. La viga aquí mostrada es una doblemente reforzada (acero longitudinal superior e inferior); adicionalmente, tiene flejes en los tercios extremos, es decir, el tercio central de la luz no tiene flejes. Los apoyos están separados 120 cm y las cargas puntuales, las cuales son de igual magnitud, se aplicaron a 40 cm de los apoyos. La foto superior muestra el patrón de agrietamiento de dicha viga; la foto intermedia es un acercamiento de la mitad derecha; la figura inferior muestra el ángulo de inclinación θ_2 para aquellas posiciones en las cuales el esfuerzo $(\sigma_1)_{xy}$ es mayor que la resistencia a tracción del concreto f_t , es decir, $(\sigma_1)_{xy} > f_t$; dicho patrón de agrietamiento se calculó mediante un programa de elementos finitos, asumiendo que el material de la viga tiene un comportamiento lineal elástico. Observe que el patrón de agrietamiento de la viga coincide, en gran medida, con aquel dado por las inclinaciones θ_2 . Estas fotografías fueron tomadas por el autor en el Laboratorio de Estructuras de la Universidad Nacional de Colombia, Sede Manizales; los ensayos fueron realizados por el profesor Juan Pablo Herrera Castaño y sus alumnos en el curso Diseño de Estructuras de Concreto I.

líneas de tracción
líneas de compresión

Figura 4.22: Líneas de tracción y de compresión en la viga analizada en la Sección 4.9. A estas líneas se les conoce también como las trayectorias de los esfuerzos. Observe que las líneas de tracción y de compresión son mutuamente ortogonales.

Posición del refuerzo líneas de tracción líneas de compresión no hay separación barras longitudinales dobladas hacia arriba

Figura 4.23: El refuerzo para resistir los esfuerzos cortantes también puede proveerse al doblar una parte del refuerzo longitudinal de modo que siga las trayectorias de tensión en aquellas partes donde no se necesita el refuerzo longitudinal para resistir los esfuerzos de tensión a flexión. De todos modos, la mayoría de diseñadores usan, por facilidad constructiva, siempre los convencionales flejes verticales para resistir las fallas por tensión diagonal.

• Esfuerzo cortante máximo $(\tau_{max})_{xy}$

Asociado con el esfuerzo de falla de Tresca

$$\tau_{Tresca} = \frac{\tau_{max}}{2}$$

Influencia de τ_{xy} en $(\sigma_1)_{xy}$

Disposición de los flejes si la viga estuviera hecha con concreto reforzado

ESTRIBOS: Verticales e inclinados

10/25/2022 Rochel, 2012

44

Flejes según la zona de amenaza sísmica

Figura 7 - Definición de la capacidad de disipación de energía en el rango inelástico

Referencias

• Álvarez Diego A. (2022) - Notas de clase del curso mecánica de sólidos. En preparación. (main.pdf)