

KSTAR ECEI diagnostics and fluctana code

Minjun J. Choi (mjchoi@nfri.re.kr)

The KSTAR ECEI channel numbering

- There are three ECEI systems (L, H, G), and each has 24 (vertical) x 8 (radial) = 192 channels
- For example, the ECEI G system channel numbering

The ECEI data analysis and fluctana code

- The ECEI measures 2D local electron cyclotron emission intensity (∝ local electron temperature when optical depth is large)
- MHD instability research
 - Mode number identification

Lee RSI 2016

- Plasma displacement estimation for MHD mode growth/decay rate Choi RSI 2016
- Turbulence research
 - Spectral analysis

Choi APS 2011 & 2015, Lee PRL 2016, Choi NF 2017

- Statistical analysis
- fluctana
 - 'adv_analysis' (matlab) developed in 2011; significantly improved in 2012—
 2014 (ack: Dr. S. Zoletnik and Prof. Y.-c. Ghim); being re-written in Python

Introduction to spectral methods used in fluctana

Minjun J. Choi (mjchoi@nfri.re.kr)

Spectral analysis

- Cross power spectral density (FFT)
- Coherence (FFT)
- Cross phase / wavenumber (FFT)

Cross power spectral density (CPSD) and cross phase

Definition

- For two time series data x(t) and y(t)Let X(f) and Y(f) be the Fourier transform of x(t) and y(t), respectively.
- CPSD is defined as

$$\langle X(f)Y^*(f)\rangle$$

where () denotes an ensemble average

Meaning

- $X(f) = A_x(f) e^{-i\theta_x(f)}$ $A_x(f)$ is (sinusoidal) amplitude of x(t) at given f $\theta_x(f)$ is (sinusoidal) phase of x(t) at given f
- $X(f)Y^*(f) = A_x(f)A_y(f) e^{-i(\theta_x(f) \theta_y(f))}$ $A_{xy}(f) = A_x(f)A_y(f)$ is product of amplitudes $\theta_{xy}(f) = \theta_x(f) - \theta_y(f)$ is cross phase (phase difference btw of x(t) and y(t))

Cross power spectral density (CPSD) and cross phase

$$-\langle X(f)Y^*(f)\rangle = \frac{X_1(f)Y_1^*(f) + \dots + X_N(f)Y_N^*(f)}{N}$$

Non-coherent (random phase) (including noise) components will be canceled out for a large N

Coherence

Definition

Normalized CPSD

$$\frac{|\langle X(f)Y^*(f)\rangle|}{\sqrt{\langle X(f)X^*(f)\rangle\langle Y(f)Y^*(f)\rangle}}$$

where $\langle X(f)X^*(f)\rangle$ is auto power spectral density

Meaning

- It means the coherent (constant θ_{xy}) power fraction over total power (0—1)
- In contrast to CPSD, it is normalized by total power, and so a large power noncoherent (remaining) component is safely excluded
- It is also useful when the background noise level (or the channel position) is not stationary

Coherence

Application

Turbulence near pedestal, q=2, ...

Choi NF 2017

Local cross phase or wavenumber

Definition

– For two signals from two separated channels, $\theta_{xy}(f) = \mathbf{k} \cdot \mathbf{d}$ is local cross phase where \mathbf{k} is wavenumber vector and \mathbf{d} is separation vector $\mathbf{x}(t)$

Meaning

- Wavenumber can be estimated using above relation
- It is a local dispersion relation and the phase velocity is $v_p = \frac{\omega}{k} = \frac{2\pi f}{\theta_{xy}/d} = \frac{2\pi f}{\theta_{xy}}d$
- Application

k

y(t)