Prediction of RNA and DNA binding sites: preliminary presentation

Quirin Heiss^{1,2} Pandu Raharja ^{1,2} Julian Schmidt ^{1,2}

¹Technische Universität München

²Ludwig-Maximilians-Universität München

November 10, 2016

Outline

- Binding prediction and CAFA.
- Background: RNA and RNA binding proteins.
- Background: datasets.
- ► Steps

Definition

- ► RNA/DNA Binding Protein prediction: given a protein, determine whether a protein is RNA/DNA binding.
- ► RNA/DNA binding site prediction: given a protein sequence, determine side chains that bind with a DNA/RNA.

CAFA

- 1. Determine whether protein is RNA or DNA binding.
- 2. Determine binding site.

Methods: abstraction level

Figure 1. Strategies for RNA-binding site and RBP prediction.

L

Possible Features

Sequence-based features:

- Amino acid composition.
- Sequence similarity, such as MSA.
- Evolutionary invormation, such as PSSM.
- Evolutionary invormation, such as PSSM.

Structure-based features:

- Secondary structure: experimental (assigned using DSSPcont) or predicted.
- Accessible surface area, in percnent (%).

Chemical and physical features:

- Hydrophobicity.
- Electrostatic patches.
- Cleft Size.

Methods: previously used algorithm

- Naive Bayes (NB) classifier.
- Support Vector Machine (SVM).
- Random Forest.
- Neural Network (NN).

We think would be better:

Ensemble Learning.

Statistics

Name	Num
SwissProt (HUMAN)	20120
GO:0003676 (HUMAN)	1248
SwissProt (filtered out GD:0003676)	20005

Statistics (cont.)

Results of redundancy reduction on training set:

Before	After
706	567

Steps

- Data pre-processing.
- Models development.
- ► Training.
- ▶ Validation.