Preliminaries for Haar–POVM Tomography: Groups, Permutations, and Conjugacy

Haodong Yang

August 22, 2025

Note. This write-up follows the organization of John Wright's *Quantum Learning Theory* course notes (UC Berkeley, 2024)

Sources. Standard references include Nielsen–Chuang, Watrous, and Wright's course notes [1, 2, 3].

1 Groups and Actions

Definition 1 (Group). A group is a set G with a binary operation $(g,h) \mapsto gh$ such that (i) associativity holds, (ii) there is an identity $e \in G$ with eg = ge = g, and (iii) every $g \in G$ has an inverse g^{-1} with $gg^{-1} = g^{-1}g = e$.

Definition 2 (Homomorphism and isomorphism). A map $\varphi : G \to H$ between groups is a homomorphism if $\varphi(gh) = \varphi(g)\varphi(h)$ for all $g, h \in G$. If, in addition, φ is bijective, it is an isomorphism.

Definition 3 (Group action (left action)). A (left) action of G on a set X is a map $G \times X \to X$, $(g,x) \mapsto g \cdot x$, such that $e \cdot x = x$ and $(gh) \cdot x = g \cdot (h \cdot x)$. We also write a homomorphism $G \to \operatorname{Sym}(X)$, $g \mapsto (x \mapsto g \cdot x)$.

Definition 4 (Orbit and stabilizer). For $x \in X$, the *orbit* is $\mathcal{O}(x) = \{g \cdot x : g \in G\}$ and the *stabilizer* is $G_x = \{g \in G : g \cdot x = x\}$.

Remark 1 (Orbit-stabilizer (finite case)). If G is finite, then $|G| = |G_x| \cdot |\mathcal{O}(x)|$ for every $x \in X$.

2 Permutations and the symmetric group

Let
$$[n] = \{1, \dots, n\}.$$

Definition 5 (Permutation and S_n). A permutation of [n] is a bijection $\pi : [n] \to [n]$. The set of all permutations is the symmetric group S_n , with composition $(\pi\sigma)(i) = \pi(\sigma(i))$. We use two-line notation

$$\pi = \begin{pmatrix} 1 & 2 & \cdots & n \\ \pi(1) & \pi(2) & \cdots & \pi(n) \end{pmatrix} \quad \text{or cycle notation, e.g. } \pi = (1\,3\,2)(4\,5)(6).$$

Proposition 1 (Basic identities). For $\pi, \sigma \in S_n$, π^{-1} is the inverse permutation, $\pi \pi^{-1} = \pi^{-1}\pi = \mathrm{id}$, and composition is associative.

Examples of permutation groups (subgroups of S_n)

Example 1.

$$\pi = (132)(45)(6) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 2 & 5 & 4 & 6 \end{pmatrix}.$$

$$\pi^{-1} = (123)(45)(6) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 1 & 5 & 4 & 6 \end{pmatrix}.$$

Example 2.

$$id = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}.$$

$$id_{S_n} = \begin{pmatrix} 1 & 2 & \cdots & n \\ 1 & 2 & \cdots & n \end{pmatrix}.$$

Example 3 (Cyclic subgroup generated by an *n*-cycle). If $c = (1 \ 2 \dots n)$, then $\langle c \rangle = \{e, c, c^2, \dots, c^{n-1}\} \cong \mathbb{Z}_n$.

Example 4 (Dihedral group D_n). Act on the vertices of a regular n-gon labeled $1, \ldots, n$ by rotations and reflections. As a subgroup of S_n , $D_n = \langle (12 \ldots n), (2n)(3n-1)\cdots \rangle$ has order 2n.

Example 5 (Alternating group A_n). $A_n = \{\pi \in S_n : \pi \text{ is even}\}$ is a normal subgroup of index 2. Example 6 (Young (block) subgroups). For a partition $n = m_1 + \cdots + m_r$, the subgroup $S_{m_1} \times \cdots \times S_{m_r} \subseteq S_n$ permutes elements within each block; useful for symmetrizing tensor indices.

2.1 Permutation representation on n registers

Let $\mathcal{H} \cong \mathbb{C}^d$ and consider $\mathcal{H}^{\otimes n}$ with computational basis $\{|i_1,\ldots,i_n\rangle\}$.

Definition 6 (Unitary permutation operators). For $\pi \in S_n$, define $P(\pi)$ by

$$P(\pi)|i_1,\ldots,i_n\rangle = |i_{\pi^{-1}(1)},\ldots,i_{\pi^{-1}(n)}\rangle.$$
 (1)

Proposition 2 (Homomorphism property). $P: S_n \to U(\mathcal{H}^{\otimes n})$ is a group homomorphism (representation): $P(\pi)P(\sigma) = P(\pi\sigma), \ P(\mathrm{id}) = \mathbb{1}, \ and \ P(\pi)^{-1} = P(\pi^{-1}).$

Remark 2. For this property, we will extend to the representation theory in a later document. Remark 3 (Symmetric subspace). The symmetric subspace is the +1 eigenspace of all $P(\pi)$, i.e. vectors invariant under every permutation of the n registers.

3 Conjugacy in groups and in S_n

Definition 7 (Conjugacy and conjugacy class). In a group G, elements g, h are *conjugate* if there exists $x \in G$ with $h = xgx^{-1}$. The *conjugacy class* of g is $C_G(g) = \{xgx^{-1} : x \in G\}$.

Definition 8 (Cycle type in S_n). Write a permutation $\pi \in S_n$ as a product of disjoint cycles. If m_{ℓ} denotes the number of ℓ -cycles of π (so $\sum_{\ell \geq 1} \ell m_{\ell} = n$), then the cycle type of π is the multiset of lengths

$$type(\pi) = 1^{m_1} 2^{m_2} 3^{m_3} \cdots.$$

equivalently the partition $n = \sum_{\ell > 1} \ell m_{\ell}$.

Theorem 1 (Conjugacy in S_n = same cycle type). Two permutations $\pi, \sigma \in S_n$ are conjugate in S_n if and only if their cycle decompositions have the same cycle type (i.e. the same multiset of cycle lengths).

Proof sketch. If $\sigma = \tau \pi \tau^{-1}$, then σ is obtained from π by relabeling symbols via τ ; conjugation preserves cycle lengths, so cycle types match. Conversely, if π and σ have the same cycle type, pair each cycle of π with a cycle of σ of the same length and define a bijection τ that maps elements along corresponding positions in each cycle. Then $\tau \pi \tau^{-1} = \sigma$.

Example 7 (Same cycle type \Rightarrow same conjugacy class). In S_6 let

$$\pi = (1\,3\,2)(4\,5)(6) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 2 & 5 & 4 & 6 \end{pmatrix}.$$

Its cycle type is $3^1 2^1 1^1$ (partition 3 + 2 + 1). The permutation

$$\sigma = (142)(3)(56) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 3 & 2 & 6 & 5 \end{pmatrix}$$

has the same cycle type $3^1 2^1 1^1$, hence π and σ are conjugate in S_6 .

Example 8 (Other basic types). The identity has type 1^n . Any transposition (ab) has type $2^1 1^{n-2}$ (so all transpositions are conjugate). A 4-cycle (e.g. (1234) in S_6) has type $4^1 1^2$, which is *not* the same as $3^1 2^1 1^1$, so it lies in a different conjugacy class.

Proposition 3 (Size of a conjugacy class in S_n). Let the cycle type of $\pi \in S_n$ be specified by integers $m_{\ell} \geq 0$ (the number of ℓ -cycles), so that $\sum_{\ell \geq 1} \ell m_{\ell} = n$. Then

$$|C_{S_n}(\pi)| = \frac{n!}{\prod_{\ell > 1} \ell^{m_\ell} m_\ell!}.$$

Example 9. In S_6 , the type (3)(2)(1) has $m_1 = 1$, $m_2 = 1$, $m_3 = 1$. The conjugation class size is $6!/(1^1 1! \cdot 2^1 1! \cdot 3^1 1!) = 720/6 = 120$.

Unitary representations

Definition 9 (Unitary representation). Let G be a group and V a complex inner-product space. A unitary representation of G on V is a homomorphism $\mu: G \to \mathrm{U}(V)$, i.e. $\mu(gh) = \mu(g)\mu(h)$ for all $g,h \in G$, and each $\mu(g)$ is unitary.

Permutation (tensor) representation of S_n . Let $\mathcal{H} \cong \mathbb{C}^d$ and consider $\mathcal{H}^{\otimes n}$ with computational basis $\{|i_1,\ldots,i_n\rangle: i_k \in [d]\}$. For $\pi \in S_n$ define

$$P(\pi) | i_1, \dots, i_n \rangle = | i_{\pi^{-1}(1)}, \dots, i_{\pi^{-1}(n)} \rangle.$$

Then $P: S_n \to U(\mathcal{H}^{\otimes n})$ is a unitary representation: $P(\pi)P(\sigma) = P(\pi\sigma)$, $P(\mathrm{id}) = \mathrm{Id}$, and $P(\pi)^{\dagger} = P(\pi^{-1})$ (so $P(\pi)$ is unitary).

Example 10 (n=2: the SWAP). For $\pi=(1\,2),\,P(\pi)\,|i,j\rangle=|j,i\rangle$; this is the usual SWAP gate. Its matrix in the basis $\{|00\rangle,|01\rangle,|10\rangle,|11\rangle\}$ is

$$SWAP = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Symmetric states and the symmetric subspace

Definition 10 (Symmetric vector and subspace). A vector $|\psi\rangle \in \mathcal{H}^{\otimes n}$ is symmetric if $P(\pi) |\psi\rangle = |\psi\rangle$ for all $\pi \in S_n$. The symmetric subspace is

$$\operatorname{Sym}^{n}(\mathbb{C}^{d}) = \{ |\psi\rangle \in \mathcal{H}^{\otimes n} : P(\pi) |\psi\rangle = |\psi\rangle \ \forall \pi \in S_{n} \}.$$

Example 11 (Symmetric vectors). For any $|v\rangle \in \mathbb{C}^d$, the *n*-fold product $|v\rangle^{\otimes n}$ is symmetric. For $d=2,\ n=2$, the vectors $|00\rangle,\ |11\rangle,\ \text{and}\ \frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)$ are symmetric. The uniform superposition $\sum_{x\in[d]^n}|x\rangle$ is also symmetric.

Type classes (histograms) and type vectors

Fix d, n. For a string $x = (x_1, \ldots, x_n) \in [d]^n$, its type (histogram) is $\tau(x) = (\tau_1, \ldots, \tau_d)$ where $\tau_a = \#\{k : x_k = a\}$ and $\sum_{a=1}^d \tau_a = n$. Let $T_\tau = \{x \in [d]^n : \tau(x) = \tau\}$ and define the type vector

$$|\tau\rangle := \frac{1}{\sqrt{|T_{\tau}|}} \sum_{x \in T_{\tau}} |x\rangle.$$

Proposition 4. Each $|\tau\rangle$ is symmetric; the family $\{|\tau\rangle\}$ (over all histograms τ) is orthonormal.

Proof. For any π , $P(\pi)$ permutes the strings inside T_{τ} , so $P(\pi)|\tau\rangle = |\tau\rangle$. If $\tau \neq \tau'$, then $T_{\tau} \cap T_{\tau'} = \emptyset$, hence $\langle \tau \rangle \tau' = 0$. Normalization is by the $1/\sqrt{|T_{\tau}|}$ factor.

Theorem 2 (Type basis and dimension). The type vectors $\{|\tau\rangle\}$ form an orthonormal basis of $\operatorname{Sym}^n(\mathbb{C}^d)$. Consequently,

$$\dim \operatorname{Sym}^n(\mathbb{C}^d) = \#\{histograms \ \tau\} = \binom{n+d-1}{d-1}.$$

Idea. Any symmetric vector must assign equal amplitudes to all strings of the same type (otherwise some permutation changes the state), so it lies in the span of $\{|\tau\rangle\}$; together with Proposition 4, these vectors form an ONB. Counting histograms is the stars-and-bars argument.

Span by product states and a Vandermonde argument

Define $S := \operatorname{span}\{|v\rangle^{\otimes n} : |v\rangle \in \mathbb{C}^d\}$. Clearly $S \subseteq \operatorname{Sym}^n(\mathbb{C}^d)$. We show $S = \operatorname{Sym}^n(\mathbb{C}^d)$ by proving that each type vector lies in S.

Case d=2 (explicit). Write types as $\tau_i=(n-i,i), i=0,\ldots,n,$ and $|\tau_i\rangle=\frac{1}{\sqrt{\binom{n}{i}}}\sum_{|x|=i}|x\rangle,$ where |x| counts 1's. For any $z\in\mathbb{C}$,

$$(|0\rangle + z |1\rangle)^{\otimes n} = \sum_{i=0}^{n} z^{i} \sqrt{\binom{n}{i}} |\tau_{i}\rangle.$$

Choose K = n + 1 distinct complex numbers z_1, \ldots, z_{n+1} and consider the system

$$\sum_{j=1}^{n+1} \alpha_j (|0\rangle + z_j |1\rangle)^{\otimes n} = \sqrt{\binom{n}{i^*}} |\tau_{i^*}\rangle.$$

This reduces to the linear equations $\sum_{j} \alpha_{j} z_{j}^{i} = \delta_{i,i^{*}}$ for i = 0, ..., n, whose coefficient matrix is the $(n+1) \times (n+1)$ Vandermonde $V = (z_{j}^{i})$. Since the z_{j} are distinct, V is invertible; thus every $|\tau_{i}\rangle$ is a linear combination of $|v\rangle^{\otimes n}$'s, so S contains the type basis.

General d. This is a high-level understanding of the proof later. A multivariate version uses $(\sum_{a=1}^d z_a |a\rangle)^{\otimes n}$ and separates coefficients by choosing a finite grid of d-tuples $z^{(j)} = (z_1^{(j)}, \ldots, z_d^{(j)})$ so that the associated multivariate Vandermonde matrix is invertible; this yields each $|\tau\rangle$. Hence $S = \operatorname{Sym}^n(\mathbb{C}^d)$.

Concrete examples (n=2, d=2)

Type classes and type vectors:

$$\tau = (2,0): \ |\tau\rangle = |00\rangle \,, \qquad \tau = (0,2): \ |\tau\rangle = |11\rangle \,, \qquad \tau = (1,1): \ |\tau\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle).$$

Recovering $|\tau = (1,1)\rangle$ from product states:

$$\frac{1}{2}\left(|0\rangle+|1\rangle\right)^{\otimes 2}-\frac{1}{2}\left(|0\rangle-|1\rangle\right)^{\otimes 2}\ =\ \tfrac{1}{\sqrt{2}}(|01\rangle+|10\rangle).$$

Theorem 3 (Product-state span equals the symmetric subspace). Let $\mathcal{H} \simeq \mathbb{C}^d$. Then

$$\operatorname{span}\{|v\rangle^{\otimes n}:|v\rangle\in\mathcal{H}\} = \operatorname{Sym}^n(\mathbb{C}^d).$$

Proof. It is clear that every $|v\rangle^{\otimes n}$ is invariant under all register permutations, so the left-hand side is contained in $\operatorname{Sym}^n(\mathbb{C}^d)$. To prove the reverse inclusion we show that the standard type (histogram) basis of $\operatorname{Sym}^n(\mathbb{C}^d)$ lies in the span of product states.

Step 1 (set up type vectors). For d=2 write types as $\tau_i=(n-i,i)$ and define

$$|\tau_i\rangle = \frac{1}{\sqrt{\binom{n}{i}}} \sum_{\substack{x \in \{0,1\}^n \\ |x|=i}} |x\rangle, \qquad i = 0, 1, \dots, n.$$

Then $\{|\tau_i\rangle\}_{i=0}^n$ is an orthonormal basis of $\mathrm{Sym}^n(\mathbb{C}^2)$. The binomial expansion gives, for any $z\in\mathbb{C}$,

$$(|0\rangle + z |1\rangle)^{\otimes n} = \sum_{i=0}^{n} z^{i} \sqrt{\binom{n}{i}} |\tau_{i}\rangle.$$
 (2)

Step 2 (Vandermonde isolation for d=2). Fix $i^* \in \{0,\ldots,n\}$. Choose K=n+1 distinct complex numbers z_1,\ldots,z_{n+1} and seek coefficients $\alpha_1,\ldots,\alpha_{n+1}$ such that

$$\sum_{i=1}^{n+1} \alpha_j (|0\rangle + z_j |1\rangle)^{\otimes n} = |\tau_{i^*}\rangle.$$

Using (2) this is equivalent to the linear system

$$\sum_{j=1}^{n+1} \alpha_j z_j^i = \begin{cases} \frac{1}{\sqrt{\binom{n}{i^*}}}, & i = i^*, \\ 0, & i \neq i^*, \end{cases}$$
 $i = 0, 1, \dots, n.$

In matrix form $V\alpha = e_{i^*}/\sqrt{\binom{n}{i^*}}$, where

$$V = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ z_1 & z_2 & \cdots & z_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ z_1^n & z_2^n & \cdots & z_{n+1}^n \end{pmatrix}$$

is the $(n+1) \times (n+1)$ Vandermonde matrix. Since the z_j are distinct, V is invertible; hence such α exists and $|\tau_{i^*}\rangle$ is a linear combination of product states. As the $|\tau_i\rangle$'s span $\operatorname{Sym}^n(\mathbb{C}^2)$, we have equality for d=2.

Step 3 (general d via a univariate reduction). For $d \geq 2$, index types by $m = (m_1, \ldots, m_d) \in \mathbb{N}^d$ with $|m| := \sum_a m_a = n$ and set

$$|\tau_m\rangle := \sqrt{\frac{\prod_{a=1}^d m_a!}{n!}} \sum_{\substack{x \in [d]^n \text{type}(x)=m}} |x\rangle,$$

an orthonormal basis of $\operatorname{Sym}^n(\mathbb{C}^d)$. The multinomial theorem yields, for $z=(z_1,\ldots,z_d)\in\mathbb{C}^d$,

$$\left(\sum_{a=1}^{d} z_a |a\rangle\right)^{\otimes n} = \sum_{|m|=n} z^m \sqrt{\frac{n!}{\prod_a m_a!}} |\tau_m\rangle, \qquad z^m := \prod_{a=1}^{d} z_a^{m_a}. \tag{3}$$

Choose a base B := n + 1 and distinct scalars t_1, \ldots, t_M with $M = \binom{n+d-1}{d-1}$. Define points $z^{(j)} \in \mathbb{C}^d$ by

$$z_a^{(j)} := t_i^{B^{a-1}}, \quad a = 1, \dots, d.$$

For |m| = n the monomial evaluates to

$$(z^{(j)})^m = \prod_{a=1}^d t_j^{m_a B^{a-1}} = t_j^{\sum_{a=1}^d m_a B^{a-1}}.$$

Because $0 \le m_a \le n$ and the base is B = n+1, the exponent $\sum_a m_a B^{a-1}$ is the base-B encoding of m; distinct m's yield distinct exponents. Thus the evaluation matrix with entries $(z^{(j)})^m$ is a (rectangular) Vandermonde in the variables t_j with distinct exponents, hence has full row rank. Arguing exactly as in Step 2, we can linearly combine the product states $(\sum_a z_a^{(j)} | a\rangle)^{\otimes n}$ to isolate any fixed $|\tau_m\rangle$. Therefore, every type of vector lies in the span of product states, proving the reverse inclusion.

Definition 11 (Symmetrizer / projector onto the symmetric subspace). Let $\operatorname{Sym}^n(\mathbb{C}^d) \subset (\mathbb{C}^d)^{\otimes n}$ be the symmetric subspace. Define the *symmetrizer*

$$\Pi_{\text{sym}} := \frac{1}{n!} \sum_{\pi \in S_n} P(\pi).$$

Proposition 5 (Uniform pushforward on S_n). If π is uniform on S_n and $\sigma \in S_n$ is fixed, then $\pi \sigma$ is also uniform. Equivalently, for any function $f: S_n \to \mathbb{C}$,

$$\mathbb{E}_{\pi \sim S_n} f(\pi \sigma) = \mathbb{E}_{\pi \sim S_n} f(\pi), \quad and \quad \Pr[\pi = \tau] = \frac{1}{n!} \ \forall \tau \in S_n.$$

Theorem 4 (Averaging projector). The operator Π_{sym} defined in Definition 11 is the orthogonal projector onto $\text{Sym}^n(\mathbb{C}^d)$. In particular,

$$\Pi_{\mathrm{sym}}^{\dagger} = \Pi_{\mathrm{sym}}, \qquad \Pi_{\mathrm{sym}}^2 = \Pi_{\mathrm{sym}}, \qquad \mathrm{Ran}(\Pi_{\mathrm{sym}}) = \mathrm{Sym}^n(\mathbb{C}^d).$$

Proof. Hermitian. Since $P(\pi)^{\dagger} = P(\pi^{-1})$ and the map $\pi \mapsto \pi^{-1}$ is a bijection of S_n ,

$$\Pi_{\text{sym}}^{\dagger} = \frac{1}{n!} \sum_{\pi \in S_n} P(\pi)^{\dagger} = \frac{1}{n!} \sum_{\pi \in S_n} P(\pi^{-1}) = \frac{1}{n!} \sum_{\pi \in S_n} P(\pi) = \Pi_{\text{sym}}.$$

Idempotent. Using group multiplication and Proposition 5,

$$\Pi_{\text{sym}}^2 = \left(\frac{1}{n!} \sum_{\pi} P(\pi)\right) \left(\frac{1}{n!} \sum_{\sigma} P(\sigma)\right) = \frac{1}{(n!)^2} \sum_{\pi,\sigma} P(\pi\sigma) = \frac{1}{n!} \sum_{\tau \in S_n} P(\tau) = \Pi_{\text{sym}},$$

because for each fixed τ there are exactly n! pairs (π, σ) with $\pi\sigma = \tau$ (take any σ and set $\pi = \tau\sigma^{-1}$).

Since Π_{sym} is Hermitian and idempotent, it is an orthogonal projector onto its range.

Range equals the symmetric subspace. (i) If $|\psi\rangle \in \operatorname{Sym}^n(\mathbb{C}^d)$, then $P(\pi) |\psi\rangle = |\psi\rangle$ for all π ; hence $\Pi_{\operatorname{sym}} |\psi\rangle = \frac{1}{n!} \sum_{\pi} |\psi\rangle = |\psi\rangle$. Thus $\operatorname{Sym}^n(\mathbb{C}^d) \subseteq \operatorname{Ran}(\Pi_{\operatorname{sym}})$.

(ii) Conversely, for any $|\phi\rangle$ and any $\sigma \in S_n$,

$$P(\sigma) \Pi_{\text{sym}} |\phi\rangle = \frac{1}{n!} \sum_{\pi} P(\sigma \pi) |\phi\rangle = \frac{1}{n!} \sum_{\tau} P(\tau) |\phi\rangle = \Pi_{\text{sym}} |\phi\rangle,$$

relabeling $\tau = \sigma \pi$. Hence $\Pi_{\text{sym}} | \phi \rangle$ is invariant under all permutations, so $\text{Ran}(\Pi_{\text{sym}}) \subseteq \text{Sym}^n(\mathbb{C}^d)$.

Example 12 (n = 2). Here $S_2 = \{e, (12)\}$ and P(12) = SWAP. Thus

$$\Pi_{\text{sym}} = \frac{1}{2} (I + \text{SWAP}),$$

which projects onto the span of $\{|00\rangle, \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle), |11\rangle\}.$

4 The symmetric subspace and the unitary group action

Definition 12 (Unitary group). $U(d) = \{U \in \mathbb{C}^{d \times d} : U^{\dagger}U = UU^{\dagger} = I\}.$

Proposition 6. U(d) is a group under matrix multiplication (associativity, identity I, and inverses U^{\dagger}).

Definition 13 (Tensor (diagonal) action of U(d)). For $n \ge 1$ and $U \in U(d)$ define the unitary on $(\mathbb{C}^d)^{\otimes n}$

$$Q(U) := U^{\otimes n}.$$

Fact 1 (Representation property). $Q: \mathrm{U}(d) \to \mathrm{U}\big((\mathbb{C}^d)^{\otimes n}\big)$ is a unitary representation since $Q(U)Q(V) = U^{\otimes n}V^{\otimes n} = (UV)^{\otimes n} = Q(UV)$.

Proposition 7 (Invariance of the symmetric subspace). Let $\operatorname{Sym}^n(\mathbb{C}^d) \subset (\mathbb{C}^d)^{\otimes n}$ be the symmetric subspace. Then $Q(U)\operatorname{Sym}^n(\mathbb{C}^d) \subseteq \operatorname{Sym}^n(\mathbb{C}^d)$ for every $U \in \operatorname{U}(d)$.

Proof. By Theorem "product-state span = symmetric subspace", every $|\psi\rangle \in \operatorname{Sym}^n(\mathbb{C}^d)$ can be written as $|\psi\rangle = \sum_i \alpha_i |v_i\rangle^{\otimes n}$. Then $Q(U) |\psi\rangle = \sum_i \alpha_i (U |v_i\rangle)^{\otimes n}$, which is again a linear combination of n-fold product states, hence symmetric.

Remark 4. The permutation representation $P: S_n \to \mathrm{U}((\mathbb{C}^d)^{\otimes n})$ acts trivially on $\mathrm{Sym}^n(\mathbb{C}^d)$: $P(\pi) |\psi\rangle = |\psi\rangle$ for all $\pi \in S_n$ and $|\psi\rangle \in \mathrm{Sym}^n(\mathbb{C}^d)$.

Haar measure and Haar-random vectors

Definition 14 (Haar measure on U(d)). The (normalized) Haar measure μ_{Haar} is the unique probability measure on U(d) that is invariant under left and right multiplication: $\mu_{\text{Haar}}(VUW) = \mu_{\text{Haar}}(U)$ for all fixed $V, W \in U(d)$.

Fact 2 (Haar pushforward to the sphere). Fix any unit vector $|v\rangle \in \mathbb{C}^d$. If $U \sim \mu_{\text{Haar}}$, then $U|v\rangle$ is a Haar-random unit vector (i.e., uniformly distributed on the complex unit sphere). Conversely, a Haar-random unitary can be obtained by sampling d i.i.d. complex Gaussian vectors, applying Gram-Schmidt, and stacking them as columns.

Theorem 5 (Haar moment on the symmetric projector). Let $|v\rangle$ be a Haar-random unit vector in \mathbb{C}^d and

$$M := \mathbb{E}[|v\rangle\langle v|^{\otimes n}].$$

Then M is a scalar multiple of the symmetrizer $\Pi_{sym} = \frac{1}{n!} \sum_{\pi \in S_n} P(\pi)$, namely

$$M = \frac{1}{\binom{n+d-1}{d-1}} \prod_{\text{sym}} .$$

Proof. (i) Invariance under U(d). If $U \sim \mu_{\text{Haar}}$, then $U|v\rangle$ is Haar-random; hence

$$U^{\otimes n} M U^{\otimes n\dagger} = \mathbb{E} \left[(U | v \rangle \langle v | U^{\dagger})^{\otimes n} \right] = M.$$

Thus M lies in the commutant of $Q(U(d)) = \{U^{\otimes n}\}.$

- (ii) Support in the symmetric subspace. Each sample $|v\rangle\langle v|^{\otimes n}$ has range contained in $\operatorname{Sym}^n(\mathbb{C}^d)$; therefore so does M. Hence M acts as zero on the orthogonal complement of $\operatorname{Sym}^n(\mathbb{C}^d)$.
- (iii) Proportionality to Π_{sym} . By Schur-Weyl duality (or by the fact that the only operators on the irreducible U(d)-module $\text{Sym}^n(\mathbb{C}^d)$ commuting with all $U^{\otimes n}$ are scalars), the restriction of M to $\text{Sym}^n(\mathbb{C}^d)$ is a scalar multiple of the identity there: $M = c \Pi_{\text{sym}}$ for some c > 0.
- (iv) Determine c by traces. Since $\operatorname{Tr}(|v\rangle\langle v|^{\otimes n})=1$, we have $\operatorname{Tr}(M)=1$. Also $\operatorname{Tr}(\Pi_{\operatorname{sym}})=\dim\operatorname{Sym}^n(\mathbb{C}^d)=\binom{n+d-1}{d-1}$. Therefore $1=\operatorname{Tr}(M)=c\binom{n+d-1}{d-1}$, giving $c=\binom{n+d-1}{d-1}^{-1}$.

Example 13 (n=2). Using $\Pi_{\text{sym}} = \frac{1}{2} (I+F)$ (with F the swap),

$$\mathbb{E}\left[\left.|v\rangle\langle v\right|^{\otimes 2}\right] = \frac{2}{d(d+1)}\,\Pi_{\mathrm{sym}} = \frac{I+F}{d(d+1)},$$

the familiar second-moment identity.

4.1 Toy example: the n = 1 case

Let $|v\rangle \in \mathbb{C}^d$ be Haar–random on the unit sphere and expand in the computational basis $|v\rangle = \sum_{i=1}^d v_i |i\rangle$ with $\sum_i |v_i|^2 = 1$. Then

$$\mathbb{E}[|v\rangle\langle v|] = \mathbb{E}\left[\left(\sum_{i} v_{i} |i\rangle\right)\left(\sum_{j} \bar{v}_{j} \langle j|\right)\right] = \sum_{i,j} \mathbb{E}[v_{i}\bar{v}_{j}] |i\rangle\langle j|.$$

Off-diagonals vanish. For any diagonal phase unitary $D = \text{diag}(e^{i\theta_1}, \dots, e^{i\theta_d}), D | v \rangle$ is also Haar-distributed, so

$$\mathbb{E}[v_i \bar{v}_j] = \mathbb{E}[(e^{i\theta_i} v_i)(e^{-i\theta_j} \bar{v}_j)] = e^{i(\theta_i - \theta_j)} \mathbb{E}[v_i \bar{v}_j] \quad \forall \, \theta_i, \theta_j.$$

If $i \neq j$ this forces $\mathbb{E}[v_i \bar{v}_i] = 0$.

Diagonals are all equal and sum to 1. By permutation invariance of the Haar measure, $\mathbb{E}[|v_i|^2]$ is the same for all i; write $\mathbb{E}[|v_i|^2] = \alpha$. Taking expectations in $\sum_i |v_i|^2 = 1$ yields

$$1 = \mathbb{E}\left[\sum_{i=1}^{d} |v_i|^2\right] = \sum_{i=1}^{d} \mathbb{E}[|v_i|^2] = d\alpha \quad \Longrightarrow \quad \alpha = \frac{1}{d}.$$

Combining these two facts,

$$\mathbb{E}[|v\rangle\langle v|] = \sum_{i=1}^d \frac{1}{d} |i\rangle\langle i| = \frac{1}{d} I .$$

5 A potential obstruction and irreducibility

5.1 A potential obstruction

Let $|\phi\rangle = |1\rangle^{\otimes n}$ and recall

$$M = \mathbb{E}_{U \sim \text{Haar}} [Q(U) |\phi\rangle\langle\phi| Q(U)^{\dagger}], \qquad Q(U) = U^{\otimes n}.$$

Suppose (hypothetically) that in some fixed basis every Q(U) had the same block–diagonal form $Q(U) = \begin{pmatrix} Q_1(U) & 0 \\ 0 & Q_2(U) \end{pmatrix}$. Then Q(U) would never mix the two invariant subspaces, and averaging could not move a vector from one block into the other. In that case M could be at best a projector onto *one* block, rather than a multiple of the full symmetrizer Π_{sym} . This motivates the need to show that no such nontrivial decomposition exists on the symmetric subspace, i.e. the action is irreducible.

5.2 (Ir)reducible representations and examples

Definition 15 (Reducible / irreducible). A unitary representation (μ, V) of a group G is reducible if there is a nontrivial proper subspace $0 \neq W \subsetneq V$ with $\mu(g)W \subseteq W$ for all $g \in G$. Otherwise it is irreducible. Equivalently, in some basis $\mu(g)$ is block diagonal for all g.

Examples. (1) The permutation representation $P: S_n \to \mathrm{U}((\mathbb{C}^d)^{\otimes n})$ is reducible since it preserves the symmetric subspace $\mathrm{Sym}^n(\mathbb{C}^d)$. (2) The tensor action $Q(U) = U^{\otimes n}$ on $(\mathbb{C}^d)^{\otimes n}$ is also reducible because it preserves $\mathrm{Sym}^n(\mathbb{C}^d)$. (3) On $\mathrm{Sym}^n(\mathbb{C}^d)$, the permutation action $P(\pi)$ is trivial (acts as the identity), hence "extremely" reducible.

5.3 Irreducibility of Q on the symmetric subspace

Theorem 6. Let $Q: \mathrm{U}(d) \to \mathrm{U}(\mathrm{Sym}^n(\mathbb{C}^d))$ be the restricted tensor action $Q(U) = U^{\otimes n}$. Then Q is irreducible on $\mathrm{Sym}^n(\mathbb{C}^d)$.

Proof. We follow the sketch from the notes.

Assume for contradiction that Q is reducible. Then there are nonzero, proper, orthogonal Q-invariant subspaces $X,Y \subset \operatorname{Sym}^n(\mathbb{C}^d)$ with

$$\operatorname{Sym}^n(\mathbb{C}^d) = X \oplus Y, \qquad Q(U)X \subseteq X, \ Q(U)Y \subseteq Y \ \ \forall \, U \in \operatorname{U}(d).$$

By the product-state span theorem (proved earlier), the set $\{|v\rangle^{\otimes n}: |v\rangle \in \mathbb{C}^d\}$ spans $\operatorname{Sym}^n(\mathbb{C}^d)$. Hence there exists a family of unit vectors $\{|v_i\rangle\}$ and an index set I such that $|v_i\rangle^{\otimes n} \in X$ for all $i \in I$, and (since $Y \neq \{0\}$) there is some $j \notin I$ with $|v_j\rangle^{\otimes n} \in Y$.

Because U(d) acts transitively on unit vectors, there exists a unitary $U \in U(d)$ with $U|v_i\rangle = |v_{i_0}\rangle$ for some $i_0 \in I$. Then

$$Q(U) |v_j\rangle^{\otimes n} = (U |v_j\rangle)^{\otimes n} = |v_{i_0}\rangle^{\otimes n} \in X.$$

But $|v_j\rangle^{\otimes n} \in Y$ and Y is Q-invariant, so $Q(U)|v_j\rangle^{\otimes n} \in Y$ as well. Thus $|v_{i_0}\rangle^{\otimes n} \in X \cap Y$, a nonzero vector, contradicting $X \perp Y$ and $\operatorname{Sym}^n(\mathbb{C}^d) = X \oplus Y$.

Therefore no such nontrivial invariant decomposition exists, and Q is irreducible on $\operatorname{Sym}^n(\mathbb{C}^d)$.

5.4 Proof of the Haar moment theorem via irreducibility

Recall Theorem 5: for $|v\rangle$ Haar–random, $M = \mathbb{E}\left[|v\rangle\langle v|^{\otimes n} \right] = \binom{n+d-1}{d-1}^{-1} \Pi_{\text{sym}}$.

Proof (representation-theoretic). For any fixed $U \in U(d)$, Haar invariance gives

$$Q(U) M Q(U)^{\dagger} = \mathbb{E} [(U | v) \langle v | U^{\dagger})^{\otimes n}] = M,$$

so M commutes with every Q(U) and acts trivially on the orthogonal complement of Sym^n . By Theorem 6 and Schur's lemma(which we will show later), $M = c \Pi_{\operatorname{sym}}$ for some c. Taking traces, $1 = \operatorname{Tr}(M) = c \operatorname{Tr}(\Pi_{\operatorname{sym}}) = c \binom{n+d-1}{d-1}$, so $c = \binom{n+d-1}{d-1}^{-1}$.

6 Pure-state tomography via the Haar POVM

Problem. Given n copies of an unknown pure state $|\psi\rangle \in \mathbb{C}^d$, we perform one collective measurement on $|\psi\rangle^{\otimes n}$ and output an estimate $|\hat{\psi}\rangle$. Our accuracy metric will be the (squared) fidelity $F := |\langle \psi | \hat{\psi} \rangle|^2$.

Equivalence for pure states. For pure states,

$$D_{\rm tr}(|\psi\rangle\langle\psi|, |\hat{\psi}\rangle\langle\hat{\psi}|) = \sqrt{1 - |\langle\psi|\hat{\psi}\rangle|^2}.$$

Hence a fidelity target $|\langle \psi | \hat{\psi} \rangle|^2 \ge 1 - \varepsilon^2$ is exactly the trace-distance target $D_{\rm tr} \le \varepsilon$.

Proposition 8 (Expected trace distance). Under the Haar POVM estimator $\hat{\psi} = v$,

$$\mathbb{E}\Big[D_{\mathrm{tr}}\!(|\psi\rangle\!\langle\psi|,|\hat{\psi}\rangle\!\langle\hat{\psi}|)\Big] \leq \sqrt{1 - \mathbb{E}\Big[|\langle\psi|\hat{\psi}\rangle|^2\Big]} = \sqrt{\frac{d-1}{n+d}} \leq \sqrt{\frac{d}{n}}.$$

(The inequality uses concavity of $x \mapsto \sqrt{1-x}$ and Theorem 8.)

Theorem 7 (Tail bound / error exponent in trace distance). Let $F = |\langle \psi | \hat{\psi} \rangle|^2$. Then $F \sim \text{Beta}(n+1,d-1)$, so for any $\varepsilon \in (0,1)$,

$$\Pr[D_{\rm tr} \ge \varepsilon] = \Pr[1 - F \ge \varepsilon^2] = I_{1-\varepsilon^2}(n+1, d-1) \le \frac{(n+d-1)^{d-2}}{(d-2)!(n+1)} e^{-(n+1)\varepsilon^2}.$$

Thus the error probability decays at least like $poly(n,d) e^{-(n+1)\varepsilon^2}$ with exponent $(n+1)\varepsilon^2$.

Proposition 9 (Samples for trace-distance target with tail $\leq \delta$). To ensure $\Pr[D_{\text{tr}} \geq \varepsilon] \leq \delta$, it suffices to take

$$n \geq \frac{(d-2)\log(n+d-1) + \log\left(\frac{1}{(d-2)!\,\delta}\right)}{\varepsilon^2} - 1 = O\left(\frac{d + \log(1/\delta)}{\varepsilon^2}\right).$$

The Haar POVM on $\operatorname{Sym}^n(\mathbb{C}^d)$

By Theorem 5, for Haar–random $|v\rangle$, $\mathbb{E}[|v\rangle\langle v|^{\otimes n}] = \binom{n+d-1}{d-1}^{-1}\Pi_{\text{sym}}$. This implies that the operator density

 $E(dv) = \binom{n+d-1}{d-1} |v\rangle\langle v|^{\otimes n} d\nu(v), \tag{4}$

with $d\nu$ the normalized Haar measure on the unit sphere of \mathbb{C}^d , forms a valid POVM on $\operatorname{Sym}^n(\mathbb{C}^d)$. For input $|\psi\rangle^{\otimes n}$ the outcome law is

$$\Pr[dv \mid \psi] = \binom{n+d-1}{d-1} |\langle v \rangle \psi|^{2n} d\nu(v).$$
 (5)

We use the simple estimator $|\hat{\psi}\rangle := |v\rangle$ (the outcome direction).

Proposition 10. For Haar-random $|v\rangle$ and any fixed $|\psi\rangle$,

$$\mathbb{E}_{\text{Haar}}[\langle \psi | \hat{\psi} \rangle^{2m}] = \binom{m+d-1}{d-1}^{-1} \qquad (m \in \mathbb{N}).$$

Proof. By Theorem 5, $\mathbb{E}[|v\rangle\langle v|^{\otimes m}] = \binom{m+d-1}{d-1}^{-1}\Pi_{\text{sym}}$. Taking the matrix element on $|\psi\rangle^{\otimes m}$ gives the claim since $\Pi_{\text{sym}} |\psi\rangle^{\otimes m} = |\psi\rangle^{\otimes m}$.

Theorem 8 (Expected fidelity). If we measure $|\psi\rangle^{\otimes n}$ with the Haar POVM (4) and output $|\hat{\psi}\rangle = |v\rangle$, then

$$\mathbb{E}\left[\langle \psi | \hat{\psi} \rangle^2\right] = \frac{n+1}{n+d} = 1 - \frac{d-1}{n+d}.$$

Proof. From (5),

$$\mathbb{E}[\langle \psi | \hat{\psi} \rangle^2] = \binom{n+d-1}{d-1} \int |\langle \psi \rangle \, \psi|^{2(n+1)} \, d\nu(v) = \binom{n+d-1}{d-1} \binom{n+d}{d-1}^{-1},$$

using Lemma 10 with m = n + 1. The ratio simplifies to (n + 1)/(n + d).

Full distribution and an error exponent

Let $F := |\langle \psi \rangle \hat{\psi}|^2$. Combining (5) with the well-known fact that $T := |\langle v \rangle \psi|^2$ is Beta(1, d-1) under Haar measure, we find

$$F \sim \text{Beta}(n+1, d-1)$$
 with density $f_F(t) = \frac{t^n (1-t)^{d-2}}{B(n+1, d-1)}$ $(t \in [0, 1]),$

where B is the beta function. In particular, for any $\varepsilon \in (0,1)$,

$$\Pr[1 - F \ge \varepsilon^2] = I_{1-\varepsilon^2}(n+1, d-1), \tag{6}$$

the regularized incomplete beta.

A convenient explicit upper bound (polynomial pre-factor with an exponential rate) is

$$\Pr\left[1 - F \ge \varepsilon^2\right] \le \frac{1}{(n+1)B(n+1,d-1)} (1 - \varepsilon^2)^{n+1} \le \frac{(n+d-1)^{d-2}}{(d-2)!(n+1)} e^{-(n+1)\varepsilon^2}.$$
 (7)

The first inequality integrates the density on $[0, 1 - \varepsilon^2]$ and the second uses $(1 - x) \le e^{-x}$ and $1/B(n+1, d-1) \le \frac{(n+d-1)^{d-2}}{(d-2)!}$. Thus, the *error exponent* is at least $(n+1)\varepsilon^2$ up to a dimension–dependent polynomial pre-factor.

Why Beta, not just "a concentration bound"? Let $T = |\langle v | \psi \rangle|^2$. For $v \sim \text{Haar}$ on \mathbb{C}^d ,

$$T \sim \text{Beta}(1, d-1),$$

because $|v_1|^2$ is the ratio of two independent Γ variables (Dirichlet on the sphere). Under the Haar POVM, the outcome density is tilted by T^n [Eq. (5)], so the posterior law of $F := |\langle \hat{\psi} | \psi \rangle|^2$ is

$$F \sim \text{Beta}(n+1, d-1).$$

This one-dimensional reduction has three advantages:

1. **Exact quantities.** We get $\mathbb{E}[F] = \frac{n+1}{n+d}$ and, for any m, $\mathbb{E}[F^m] = {m+d-1 \choose d-1}^{-1}$ exactly, and the tail is the regularized incomplete beta:

$$\Pr[1 - F \ge \varepsilon^2] = I_{1-\varepsilon^2}(n+1, d-1).$$

2. Sharp, dimension-aware tails. From the Beta form,

$$\Pr[1 - F \ge \varepsilon^2] = \frac{1}{B(n+1, d-1)} \int_0^{1-\varepsilon^2} t^n (1-t)^{d-2} dt \le \frac{(1-\varepsilon^2)^{n+1}}{B(n+1, d-1)},$$

which yields the explicit error exponent $e^{-(n+1)\varepsilon^2}$ up to a polynomial pre-factor in (n+d) [cf. Eq. (7)]. This captures the correct n-vs-d dependence with the best constants you can hope for from this route.

3. No independence assumptions. Standard tools like Hoeffding/Bernstein apply to sums of i.i.d. variables; here F is a single draw whose density already encodes n (via t^n). Forcing a generic concentration argument either does not apply directly or gives looser bounds.

Proposition 11. [Sample complexity with tail $\leq \delta$] For any $\delta \in (0,1)$, it suffices to take

$$n \geq \frac{(d-2)\log(n+d-1) + \log\left(\frac{1}{(d-2)!\,\delta}\right)}{\varepsilon^2} - 1$$

to guarantee $\Pr[1 - F \ge \varepsilon^2] \le \delta$. In coarse scaling, $n = O((d + \log(1/\delta))/\varepsilon^2)$.

7 Single-copy tomography with a Haar-random basis

Definition 16 (Haar-random basis). If $U \in U(d)$ is Haar-random and $\{|1\rangle, \dots, |d\rangle\}$ is a fixed orthonormal basis, then $\{|u_i\rangle := U|i\rangle\}_{i=1}^d$ is a *Haar-random basis*.

Algorithm (incomplete single-copy tomography).

- 1. Draw a Haar-random basis $\{|u_1\rangle, \ldots, |u_d\rangle\}$.
- 2. Measure ρ in this basis; let the outcome be $|u\rangle$.
- 3. Output the estimator

$$\widehat{\rho} := (d+1) |u\rangle\langle u| - I.$$

Haar-basis measurement equals the uniform POVM

[Symmetry of outcomes in a Haar basis] For a Haar-random basis $\{|u_i\rangle\}$ and any state ρ , $\Pr[\text{outcome} = |u_1\rangle] = \cdots = \Pr[\text{outcome} = |u_d\rangle]$.

[Outcome density] Let $|u\rangle$ be any unit vector. Then

$$\Pr[\text{outcome} \in d\nu(u) \text{ around } |u\rangle] = d \operatorname{Tr}[|u\rangle\langle u| \rho] d\nu(u),$$

where $d\nu$ is the normalized Haar measure on the unit sphere of \mathbb{C}^d .

Definition 17 (Uniform POVM). The uniform POVM on \mathbb{C}^d has operator density

$$E(du) = d |u\rangle\langle u| d\nu(u)$$
 (so $\int E(du) = I$).

Performing the Haar-basis measurement is equivalent to applying this POVM.

Unbiased single-copy estimator

Write $Q(U) = U^{\otimes 2}$, F for SWAP, and $\Pi_{\text{sym},2} = \frac{1}{2}(I+F)$. Using Theorem 5 with n=2, $\int |u\rangle\langle u|^{\otimes 2} d\nu(u) = \frac{2}{d(d+1)} \Pi_{\text{sym},2}$. Then

$$\begin{split} \mathbb{E}[|u\rangle\langle u|] &= \int |u\rangle\langle u| \ \Pr[\text{outcome} \in du] = d\int |u\rangle\langle u| \ \Pr[|u\rangle\langle u| \ \rho] \ d\nu(u) \\ &= d \ \operatorname{Tr}_B\bigg[\bigg(\int |u\rangle\langle u|^{\otimes 2} \ d\nu(u)\bigg)(I\otimes\rho)\bigg] = \frac{2}{d+1} \ \operatorname{Tr}_B\big[\Pi_{\text{sym},2}(I\otimes\rho)\big] \\ &= \frac{1}{d+1} \ \operatorname{Tr}_B\big[(I+F)(I\otimes\rho)\big] = \frac{1}{d+1} \ (I+\rho). \end{split}$$

Hence:

Theorem 9 (Unbiasedness). With the uniform POVM and estimator $\hat{\rho} = (d+1)|u\rangle\langle u| - I$,

Second moment and a variance bound

For any outcome $|u\rangle$, in a basis with $|u\rangle$ first, the matrix of $\widehat{\rho}$ is diag $(d, -1, \dots, -1)$. Thus

$$\mathrm{Tr}(\widehat{\rho}^{\,2})=d^2+(d-1)\cdot 1=d^2+d-1\quad (\mathrm{independent\ of\ }|u\rangle\,).$$

Using $\mathbb{E}[\widehat{\rho}] = \rho$,

$$\mathbb{E}[\|\widehat{\rho} - \rho\|_2^2] = \mathbb{E}[\operatorname{Tr}(\widehat{\rho}^2) - 2\operatorname{Tr}(\widehat{\rho}\rho) + \operatorname{Tr}(\rho^2)]$$
$$= \mathbb{E}[\operatorname{Tr}(\widehat{\rho}^2)] - \operatorname{Tr}(\rho^2) \le d^2 + d - 1.$$

Standard unentangled tomography (averaging n copies)

Run the single-copy procedure independently on n copies of ρ , obtaining $\widehat{\rho}_1, \ldots, \widehat{\rho}_n$, and output $\overline{\rho} := \frac{1}{n} \sum_{k=1}^n \widehat{\rho}_k$. Then

$$\mathbb{E}[\|\overline{\rho} - \rho\|_{2}^{2}] = \frac{1}{n^{2}} \sum_{k=1}^{n} \mathbb{E}[\|\widehat{\rho}_{k} - \rho\|_{2}^{2}] \le \frac{d^{2} + d - 1}{n}.$$

Using $||A||_1 \le \sqrt{\operatorname{rank}(A)} \, ||A||_2 \le \sqrt{d} \, ||A||_2$ gives the trace-distance guarantee

$$\mathbb{E}\big[D_{\mathrm{tr}}(\overline{\rho},\rho)\big] = \frac{1}{2}\,\mathbb{E}[\|\overline{\rho} - \rho\|_1] \le \frac{1}{2}\sqrt{d}\,\left(\mathbb{E}\|\overline{\rho} - \rho\|_2^2\right)^{1/2} \le \sqrt{\frac{d^3 + d^2 - d}{4n}}.$$

Hence $n = \Theta(d^3/\varepsilon^2)$ samples suffice to achieve $\mathbb{E}[D_{\mathrm{tr}}(\overline{\rho}, \rho)] \leq \varepsilon$. (With independence, standard scalar concentration upgrades this to $n = O((d^3 + \log(1/\delta))/\varepsilon^2)$ for tail $\leq \delta$.)

Acknowledgments

This note follows the organization and notation of John Wright's *Quantum Learning Theory* course notes (UC Berkeley, 2024) while adding a self-contained derivation of the Haar-POVM inversion.

References

- [1] M. A. Nielsen and I. L. Chuang, *Quantum Computation and Quantum Information*. Cambridge University Press, 10th anniversary ed., 2010.
- [2] J. Watrous, The Theory of Quantum Information. Cambridge University Press, 2018.
- [3] J. Wright, "Quantum learning theory (course notes)." University of California, Berkeley, 2024. Lecture notes, accessed for structure/notation.