

X Bit Labs IN - Software Training Institute

code.xbitlabs.in - Free Coding Tutorials

Training sessions

Master Tomorrow's skill with Hands-On Learning - with www.xbitlabs.in

1

Date :	Oct 4 2024	Board :	CBSE
Class:	12	Session # :	3
Subject :	Mathematics	Assignment # :	IA4
Topic:	Integration	Subtopic(s):	Integration Using Trigonometric identities, Some particular functions

Important Trigonometric Identities:

$$as^2x = \frac{1+as^2x}{2}$$

$$\sin^2 n = \frac{1 - \cos 2n}{2}$$

1.
$$sin(a) + sin(b) = 2sin(\frac{a+b}{2})cos(\frac{a-b}{2})$$

2.
$$sin(a) - sin(b) = 2cos(\frac{a+b}{2})sin(\frac{a-b}{2})$$

3.
$$cos(a) + cos(b) = 2cos(\frac{a+b}{2})cos(\frac{a-b}{2})$$

4.
$$cos(a) - cos(b) = -2sin(\frac{a+b}{2})sin(\frac{a-b}{2})$$

$$sin(a+b)+sin(a-b)=2sin(a)cos(b)$$

$$sin(a+b)-sin(a-b) = 2 cos(a)sin(b)$$

$$cos(a+b)+cos(a-b)=2cos(a)cos(b)$$

$$cos(a+b)-cos(a-b) = -2sin(a)sin(b)$$

$$\sin A \cos B = \frac{1}{2} \left[\sin (A + B) + \sin (A - B) \right]$$

$$\cos A \sin B = \frac{1}{2} \left[\sin (A + B) - \sin (A - B) \right]$$

$$\cos A \cos B = \frac{1}{2} \left[\cos (A + B) + \cos (A - B) \right]$$

$$\sin A \sin B = \frac{1}{2} \left[\cos (A - B) - \cos (A + B) \right]$$

$$Sin(a+b) = sina cosb + cosa sinb$$

$$Sin(a-b) = sina cosb - cosa sinb$$

$$\pm sin(a+b) + sin(a-b) = 2 sina cosb$$

$$\sin^3 x = \frac{3 \sin x - \sin 3x}{4}$$

Integration using Trigonometric Identities:

$$\int \cos^2 x \, dx$$

$$\int \left(1 + us \sin x\right) \, dx$$

$$\int \left(1 + x + \sin x\right) + c$$

$$\int \left(1 + x + \sin x\right) + c$$

$$\int \left(1 + x + \sin x\right) + c$$

Method 1:

Sin3 x dx

$$Sin^{2} n \times \sin x dx$$

$$\int \frac{1 - \cos 2n}{2} \times \sin x$$

$$\int \frac{1}{2} \left[\sin x - \sin x \cos x \right] dx$$

Method 2:

$$\frac{3 \sin^{3} x}{4} = \frac{3 \sin x - \sin 3x}{4}$$

$$\frac{1}{4} \left(\frac{3 \sin x}{4} - \frac{\sin 3x}{4} \right) dx$$

$$\frac{1}{4} \left(\frac{3 \sin x}{4} - \frac{\cos 3x}{4} \right) + \frac{\cos 3x}{4} + \frac{\cos 3x}{4$$

Method 3:

$$\int \sin^3 x \, du$$

$$\int \sin^2 x \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \, \sin x \, du$$

$$\int (1 - \cos^2 x) \, x \,$$

Method 1:

$$\begin{cases} \sin^2(2n+5) dn \\ \sin^2(2n+5) dn \\ -\cos^2(2n+5) d$$

Method 2:

$$\frac{\cos(4n+10)}{\cos(4n)\sin(10)} - \sin(4n)\sin(10)$$

$$\frac{\cos(4n)\sin(10)}{\sin(10)} - \sin(4n)\sin(10)$$

$$\frac{\cos(4n)\sin(10)}{\sin(10)}\cos(4n) + c$$

Now try these questions:

Example 7 Find (i) $\int \cos^2 x \, dx$ (ii) $\int \sin 2x \cos 3x \, dx$ (iii) $\int \sin^3 x \, dx$

Find the integrals of the functions in Exercises 1 to 22:

1.
$$\sin^2(2x+5)$$

2.
$$\sin 3x \cos 4x$$

3.
$$\cos 2x \cos 4x \cos 6x$$

4.
$$\sin^3(2x+1)$$

5.
$$\sin^3 x \cos^3 x$$

4.
$$\sin^3(2x+1)$$
 5. $\sin^3 x \cos^3 x$ **6.** $\sin x \sin 2x \sin 3x$

7.
$$\sin 4x \sin 8x$$

8.
$$\frac{1-\cos x}{1+\cos x}$$
 9. $\frac{\cos x}{1+\cos x}$

9.
$$\frac{\cos x}{1 + \cos x}$$

10.
$$\sin^4 x$$

11.
$$\cos^4 2x$$

11.
$$\cos^4 2x$$
 12. $\frac{\sin^2 x}{1 + \cos x}$

13.
$$\frac{\cos 2x - \cos 2\alpha}{\cos x - \cos \alpha}$$
 14. $\frac{\cos x - \sin x}{1 + \sin 2x}$ 15. $\tan^3 2x \sec 2x$

$$14. \quad \frac{\cos x - \sin x}{1 + \sin 2x}$$

15.
$$\tan^3 2x \sec 2x$$

17.
$$\frac{\sin^3 x + \cos^3 x}{\sin^2 x \cos^2 x}$$

16.
$$\tan^4 x$$
 17. $\frac{\sin^3 x + \cos^3 x}{\sin^2 x \cos^2 x}$ 18. $\frac{\cos 2x + 2\sin^2 x}{\cos^2 x}$

$$19. \quad \frac{1}{\sin x \cos^3 x}$$

19.
$$\frac{1}{\sin x \cos^3 x}$$
 20. $\frac{\cos 2x}{(\cos x + \sin x)^2}$ 21. $\sin^{-1}(\cos x)$

21.
$$\sin^{-1}(\cos x)$$

$$22. \quad \frac{1}{\cos(x-a)\cos(x-b)}$$

Choose the correct answer in Exercises 23 and 24.

23.
$$\int \frac{\sin^2 x - \cos^2 x}{\sin^2 x \cos^2 x} dx$$
 is equal to

(A)
$$\tan x + \cot x + C$$

(B)
$$\tan x + \csc x + C$$

(C)
$$-\tan x + \cot x + C$$

(D)
$$\tan x + \sec x + C$$

24.
$$\int \frac{e^x (1+x)}{\cos^2(e^x x)} dx$$
 equals

(A)
$$-\cot(ex^x) + C$$

(B)
$$\tan(xe^x) + C$$

(C)
$$\tan(e^x) + C$$

(D)
$$\cot(e^x) + C$$

Integration of some particular functions:

(1)
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$$

(2)
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + C$$

(3)
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + C$$

(4)
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \log \left| x + \sqrt{x^2 - a^2} \right| + C$$

(5)
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a} + C$$

(6)
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \log \left| x + \sqrt{x^2 + a^2} \right| + C$$

(7) To find the integral $\int \frac{dx}{ax^2 + bx + c}$, we write

$$ax^{2} + bx + c = a\left[x^{2} + \frac{b}{a}x + \frac{c}{a}\right] = a\left[\left(x + \frac{b}{2a}\right)^{2} + \left(\frac{c}{a} - \frac{b^{2}}{4a^{2}}\right)\right]$$

Now, put $x + \frac{b}{2a} = t$ so that dx = dt and writing $\frac{c}{a} - \frac{b^2}{4a^2} = \pm k^2$. We find the

integral reduced to the form $\frac{1}{a} \int \frac{dt}{t^2 \pm k^2}$ depending upon the sign of $\left(\frac{c}{a} - \frac{b^2}{4a^2}\right)$ and hence can be evaluated.

- (8) To find the integral of the type $\int \frac{dx}{\sqrt{ax^2 + bx + c}}$, proceeding as in (7), we obtain the integral using the standard formulae.
- (9) To find the integral of the type $\int \frac{px+q}{ax^2+bx+c} dx$, where p, q, a, b, c are constants, we are to find real numbers A, B such that

$$px + q = A \frac{d}{dx} (ax^2 + bx + c) + B = A (2ax + b) + B$$

To determine A and B, we equate from both sides the coefficients of x and the constant terms. A and B are thus obtained and hence the integral is reduced to one of the known forms.

(10) For the evaluation of the integral of the type $\int \frac{(px+q) dx}{\sqrt{ax^2 + bx + c}}$, we proceed as in (9) and transform the integral into known standard forms.

End