Ejercicios propuestos

- 1. Demuestre, en forma binómica, todas las propiedades de la suma y el producto de los números complejos que hacen que $(\mathbb{C}, +, \cdot)$ sea un cuerpo.
- 2. Determine el número real a para que $z = \frac{a+6i}{2-i}$,
 - a) sea un número real,
 - b) sea imaginario puro,
 - c) represente un punto de la bisectriz del segundo y cuarto cuadrante.
- 3. Exprese en forma binómica los siguientes números complejos:

a)
$$\frac{1}{1+i} + \frac{1}{1-i}$$

$$b) \left(\frac{\sqrt{3} - i}{1 + i\sqrt{3}} \right)$$

a)
$$\frac{1}{1+i} + \frac{1}{1-i}$$
 b) $\left(\frac{\sqrt{3}-i}{1+i\sqrt{3}}\right)^9$ c) $\frac{1+ia}{2a+i(a^2-1)}, a \in \mathbb{R}$

- 4. Demuéstrese que si $z,z'\in\mathbb{C}$ son tales que $zz'\neq -1$ y |z|=|z'|=1, entonces $w = \frac{z + z'}{1 + zz'}$ es un número real.
- 5. Resuelva en \mathbb{C} la ecuación $z^2 = \overline{z}$.
- 6. Halle, en \mathbb{C} , las soluciones de las ecuaciones:

a)
$$z^{10} + 2z^5 + 1 = 0$$

b)
$$z^2 + 2(1+i)z - 5(1+2i) = 0$$

c)
$$z^6 + z^3(z+1)^3 + (z+1)^6 = 0$$
.

7. Dados dos números complejos z y z', demuestre las identidades siguientes:

a)
$$|z + z'|^2 = |z|^2 + 2\operatorname{Re}(z \cdot \overline{z'}) + |z'|^2$$

b)
$$|z - z'|^2 = |z|^2 - 2\operatorname{Re}(z \cdot \overline{z'}) + |z'|^2$$

- c) $|z+z'|^2+|z-z'|^2=2(|z|^2+|z'|^2)$. Interprete geométricamente esta
- d) Sea $r \in \mathbb{R}$ con r > 0 una constante. Demuestre que la ecuación de la circunferencia de radio r centrado en un punto Ω de afijo w es $|z|^2$ $2\operatorname{Re}(z\cdot\overline{w}) + |w|^2 = r^2$
- a) Sean a, b y c tres números complejos tales que $a \neq 0$. Se considera en $\mathbb C$ la ecuación $az^2 + bz + c = 0$. Sean z_1 y z_2 las soluciones de la ecuación. Exprese la suma $z_1 + z_2$ y el producto $z_1 \cdot z_2$ de las raíces de la ecuación, en función de a, b y c.

- b) Sean b y c dos números complejos y la ecuación $z^2 + bz + c = 0$ en \mathbb{C} . Sean z_1 y z_2 las soluciones de la ecuación.
 - 1) Demuestre que si se cumple que $|z_1| = |z_2| = 1$, entonces |c| = 1, $|b| \le 2$ y $\arg(c) = 2\arg(b)$.
 - 2) ¿Es cierto el recíproco?
- 9. Sean P y Q los puntos de afijos z y $1+z^2$ respectivamente, con $z\in\mathbb{C}$.
 - a) Halle el conjunto de los puntos P tales que las rectas OP y OQ son perpendiculares.
 - b) Halle el conjunto de los puntos P tales que O, P, y Q están alineados.
- 10. Obténgase $\cos 5\alpha$ y sen 5α en función de $\cos \alpha$ y sen α . Dedúzcase el valor de $\cos \frac{\pi}{10}$.
- 11. Demuestre, por inducción, la fórmula de Moivre.
- 12. En el conjunto \mathfrak{U}_n , definido en el ejemplo 7.11, de las raíces n-ésimas de la unidad, compruébese que para todo $k = 0, 1, 2, \ldots, n-1$ se cumple que

$$z_k = (z_1)^k .$$

Dedúzcase que (\mathfrak{U}_n, \cdot) es un grupo isomorfo al grupo $(\mathbb{Z}/(n), +)$. ¿Tiene $(\mathfrak{U}_n, +, \cdot)$ estructura de cuerpo?

- 13. Halle la suma y el producto de las raíces n-ésimas de la unidad.
- Halle los números complejos correspondientes a los vértices de los siguientes hexágonos.

- 15. Sean los puntos A, B y C de afijos respectivos $e^{i\pi}$, $2 e^{i(\pi/2)}$ y $3\sqrt{2} e^{i(\pi/4)}$. Calcule las coordenadas del punto D para que ABCD sea un paralelogramo y halle las coordenadas del centro del paralelogramo.
- 16. Halle las coordenadas de los vértices de un cuadrado de centro el punto (1,1) sabiendo que uno de los vértices es el punto $(2,\sqrt{3}+1)$.
- 17. Dado el punto M de coordenadas (b,c), le asociamos la ecuación de segundo grado:

$$z^2 - 2bz + c = 0 (7.4)$$

Determine el conjunto de puntos tales que:

- a) Las raíces de la ecuación (7.4) no sean reales.
- b) Las raíces de la ecuación (7.4) sean reales y distintas.
- c) Las raíces de la ecuación (7.4) sean iguales.
- d) Las raíces z_1 y z_2 de la ecuación (7.4) verifican la desigualdad $|z_1-z_2| < \varepsilon$, siendo ε un número real tal que $\varepsilon > 0$.

267

18. Enteros de Gauss

Sea $\mathcal{G}=\{z\in\mathbb{C}\mid z=a+ib,\ a,b\in\mathbb{Z}\}$ con las operaciones + y \cdot de \mathbb{C} restringidas a \mathcal{G} .

- a) Demuestre que $(\mathcal{G}, +, \cdot)$ es un anillo.
- b) Determine el conjunto $\mathcal{J} = \{z \in \mathcal{G} \mid z \text{ es inversible en } \mathcal{G}\}$. Demuestre que (\mathcal{J}, \cdot) es un grupo.
- 19. Se considera en C la ecuación polinómica

$$a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0 = 0$$
,

siendo $a_0, a_1, \ldots, a_{n-1}, a_n \in \mathbb{R}$ y $a_n \neq 0$.

- a) Demuestre que si $z_1 \in \mathbb{C}$ es solución de la ecuación, también es solución de la ecuación $\overline{z_1}$.
- b) Dedúzcase, utilizando el teorema fundamental del Álgebra, que todo polinomio de coeficientes reales admite una descomposición en polinomios de grado 1 o 2 con coeficientes reales.