What Can Transformers Learn In-Context? A Case Study of Simple Function Classes

in context learning

Как работает ICL

- 1) Берется предобученная LLM
- 2) Берется промпт состоящий из примеров решения задачи и тестового примера
- 3) Из LLM получаем решение тестового примера

Как работает ICL

```
Input: 2014-06-01
Output: !06!01!2014!
Input: 2007-12-13
                         in-context
Output: !12!13!2007!
                        examples
Input: 2010-09-23
Output: !09!23!2010!
Input: 2005-07-23
                         test example
Output: !07!23!2005!
           - - model completion
```

Подходы к ICL

Regular In-Context Learning Contains no wit [...] Negative Language Very good viewing [...] Positive Positive Model A smile on your face Natural language targets: {Positive/Negative} sentiment Flipped-Label In-Context Learning Contains no wit [...] Positive Language Very good viewing [...] Negative Negative Model A smile on your face Flipped natural language targets: {Negative/Positive} sentiment Semantically-Unrelated Label In-Context Learning Contains no wit [...] Foo Language Very good viewing [...] \n Bar Bar Model A smile on your face \n

Semantically-unrelated targets: {Foo/Bar}, {Apple/Orange}, {A/B}

Chain of thought

Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls, 2 cans of 3 tennis balls each is 6 tennis balls, 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The answer is 27.

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9. <

ICL подход из статьи

1)Берется трансформер Decoder Only

Model	Embedding size	#Layers	#Heads	(Total parameters)
Tiny	64	3	2	0.2M
Small	128	6	4	1.2M
Standard	256	12	8	9.5M

2)Семплируются х из D_х и f из D_f

3)Обучается с нуля на $(x_1, f(x_1), \dots, x_k, f(x_k), x_query) \rightarrow f(x_query)$

ICL на линейных функциях

- 1) х из нормального распределения
- 2) f(x) = wx
- 3) w из нормального распределения
- 4) Out-of-distribution:
 - Добавление шума в f(x) при инференсе
 - Взятие на инференсе х извне распределения

Трансформер достигает минимальной ошибки 0.02 при d примерах и падает до 0.0006 при 2d примерах

Трансформер достигает лучших результатов при использовании curriculum learning

При количестве примеров меньше чем d точного решения не получить, но хочется получить лучшее приблизительное

(b) gradients

10

20

in-context examples

gradient and true w

gradient and projected w

30

40

average inner product

0.8

0.6

0.4

0.2

0.0

0

Out of distribution

Prompting strategy	$D_{\mathcal{X}}^{\mathrm{train}} \neq D_{\mathcal{X}}^{\mathrm{test}}$	$D_{\mathcal{F}}^{\mathrm{train}} eq D_{\mathcal{F}}^{\mathrm{test}}$	$D_{ ext{query}}^{ ext{test}} eq D_{\mathcal{X}}^{ ext{test}}$
Skewed covariance d/2-dimensional subspace Scale inputs			
Noisy output Scale weights		✓	
Different Orthants Orthogonal query Query matches example			

Out of distribution результаты

Out of distribution при скейле

(b) scaled w, Transfomer

Out of distribution при увеличении размерностей

(c) skewed covariance

ICL на более сложных функциях

Разреженные матрицы:

- х из нормального распределения
- f(x) = wx
- В w ровно s ненулевых координат из нормального распределения Деревья решений:
- х из нормального распределения
- f = полное решающее дерево глубины 4
- Предикаты на знак случайных переменных
- Во всех листьях значения таргета из нормального распределения NN:
- 2 линейных слоя с relu
- Веса семплируются из нормального распределения

Результаты ICL на более сложных функциях

Результаты:

(b) Decision trees

(c) 2-layer NN (d) 2-layer NN

1.2

1.0

0.8

0.6

0.4

0.2

0.0

(d) 2-layer NN, eval on linear functions

in-context examples