

FACULTY OF ENGINEERING SCIENCES AND TECHNOLOGY

Department: Computer Science Program: BS

Multivariate Calculus

Assignment 1			
Mapped CLO	SDG	Knowledge Profile	Complex Problem Solving Mapped
CLO1	4 & 9	WK2 (Mathematics)	GA – 2 (Knowledge for Solving Computing Problems)

Problem Statement:

Q1.

The temperature T (in °C) at any point in the region $-10 \le x \le 10$, $-10 \le y \le 10$ is given by the function

$$T(x,y) = 100 - x^2 - y^2.$$

(a) Sketch isothermal curves (curves of constant temperature) for $T=100^{\circ}\text{C}$, $T=75^{\circ}\text{C}$, $T=50^{\circ}\text{C}$, $T=25^{\circ}\text{C}$, and $T=0^{\circ}\text{C}$.

Q2.

Show that the function f does not have a limit at (0,0) by examining the limits of f as $(x,y) \rightarrow (0,0)$ along the line y=x and along the parabola $y=x^2$:

$$f(x,y) = \frac{x^2y}{x^4 + y^2}, \quad (x,y) \neq (0,0).$$

FACULTY OF ENGINEERING SCIENCES AND TECHNOLOGY

Q3.

By approaching the origin along the positive x-axis and the positive y-axis, show that the following limit does not exist:

$$\lim_{(x,y)\to(0,0)} \frac{x+y^2}{2x+y}.$$

Q4.

Explain why the following function is not continuous along the line y = 0:

$$f(x,y) = \begin{cases} 1 - x, & y \ge 0, \\ -2, & y < 0. \end{cases}$$

Q5.

What value of c makes the following function continuous at (0,0)?

$$f(x,y) = \begin{cases} x^2 + y^2 + 1 & \text{if } (x,y) \neq (0,0) \\ c & \text{if } (x,y) = (0,0) \end{cases}$$

Q6.

find the domain of the given function.

$$f\left(x,y\right)=\frac{1}{x}+\sqrt{y+4}-\sqrt{x+1}$$

$$f(x,y) = \ln(2x - 3y + 1)$$

$$f\left(x,y,z
ight) =rac{1}{x^{2}+y^{2}+4z}$$