```
In [1]: from __future__ import division
    import pandas as pd
    import numpy as np # numerical operations
    import statsmodels.api as sm
    import statsmodels.formula.api as smf
    import os
    import matplotlib.pyplot as plt
```

```
In [2]:
```

```
!pip install linearmodels
import linearmodels as lm
from linearmodels import PanelOLS
from linearmodels import RandomEffects
from linearmodels import FirstDifferenceOLS
Requirement already satisfied: linearmodels in ./anaconda3/lib/python3.
11/site-packages (5.3)
Requirement already satisfied: numpy>=1.19.0 in ./anaconda3/lib/python
3.11/site-packages (from linearmodels) (1.24.3)
Requirement already satisfied: pandas>=1.1.0 in ./anaconda3/lib/python
3.11/site-packages (from linearmodels) (1.5.3)
Requirement already satisfied: scipy>=1.5.0 in ./anaconda3/lib/python3.
11/site-packages (from linearmodels) (1.10.1)
Requirement already satisfied: statsmodels>=0.12.0 in ./anaconda3/lib/p
ython3.11/site-packages (from linearmodels) (0.14.0)
Requirement already satisfied: mypy-extensions>=0.4 in ./anaconda3/lib/
python3.11/site-packages (from linearmodels) (0.4.3)
Requirement already satisfied: Cython>=0.29.34 in ./anaconda3/lib/pytho
n3.11/site-packages (from linearmodels) (3.0.6)
Requirement already satisfied: pyhdfe>=0.1 in ./anaconda3/lib/python3.1
1/site-packages (from linearmodels) (0.2.0)
Requirement already satisfied: formulaic>=0.6.5 in ./anaconda3/lib/pyth
on3.11/site-packages (from linearmodels) (0.6.6)
Requirement already satisfied: setuptools-scm[toml]<8.0.0,>=7.0.0 in ./
anaconda3/lib/python3.11/site-packages (from linearmodels) (7.1.0)
Requirement already satisfied: astor>=0.8 in ./anaconda3/lib/python3.1
1/site-packages (from formulaic>=0.6.5->linearmodels) (0.8.1)
Requirement already satisfied: interface-meta>=1.2.0 in ./anaconda3/li
b/python3.11/site-packages (from formulaic>=0.6.5->linearmodels) (1.3.
Requirement already satisfied: typing-extensions>=4.2.0 in ./anaconda3/
lib/python3.11/site-packages (from formulaic>=0.6.5->linearmodels) (4.
7.1)
Requirement already satisfied: wrapt>=1.0 in ./anaconda3/lib/python3.1
1/site-packages (from formulaic>=0.6.5->linearmodels) (1.14.1)
Requirement already satisfied: python-dateutil>=2.8.1 in ./anaconda3/li
b/python3.11/site-packages (from pandas>=1.1.0->linearmodels) (2.8.2)
Requirement already satisfied: pytz>=2020.1 in ./anaconda3/lib/python3.
11/site-packages (from pandas>=1.1.0->linearmodels) (2022.7)
Requirement already satisfied: packaging>=20.0 in ./anaconda3/lib/pytho
n3.11/site-packages (from setuptools-scm[toml]<8.0.0,>=7.0.0->linearmod
els) (23.0)
Requirement already satisfied: setuptools in ./anaconda3/lib/python3.1
1/site-packages (from setuptools-scm[toml]<8.0.0,>=7.0.0->linearmodels)
Requirement already satisfied: patsy>=0.5.2 in ./anaconda3/lib/python3.
11/site-packages (from statsmodels>=0.12.0->linearmodels) (0.5.3)
Requirement already satisfied: six in ./anaconda3/lib/python3.11/site-p
```

ackages (from patsy>=0.5.2->statsmodels>=0.12.0->linearmodels) (1.16.0)

```
In [3]: os.chdir('/Users/minpan/Desktop/Data Analysis Data') # change working d.
d = pd.read_csv("panel-for-R (2).csv")
d.head()
```

/ \		
UUL	1.)	

wtpa	wtpannr12	wtpan123	wtpan12	 mar1	panstat_3	panstat_2	sample	oversamp	formwt
0.4	0.435503	0.487828	0.414689	 5.0	1	1	9	1	1
0.4	0.435503	0.487828	0.414689	 5.0	1	1	9	1	1
0.4	0.435503	0.487828	0.414689	 1.0	1	1	9	1	1
3.0	0.766632	0.858741	0.829377	 5.0	1	1	9	1	1
3.0	0.766632	0.858741	0.829377	 5.0	1	1	9	1	1

Variable of Interest

• abany: abortion if woman wants for any reason

Questions associated with this variable: Please tell me whether or not you think it should be possible for a pregnant woman to obtain a legal abortion if the woman wants it for any reason?

0:Inapplicable 1:Yes 2:No 8:Don't know 9:No answer

• partyid: Generally speaking, do you usually think of yourself as a Republican, Democrat, Independent, or what?

-99 .n: No answer -98 .d: Do not Know/Cannot Choose\$ 0 Strong democrat 1 Not very strong democrat 2 Independent, close to democrat 3 Independent (neither, no response) 4 Independent, close to republican 5 Not very strong republican 6 Strong republican 7 Other party

• Degree: RESPONDENT'S DEGREE

0: Less than high school 1: High school 2: Associate/junior college 3: Bachelor's 4: Graduate

-97 .s: Skipped on Web -98 .d: Do not Know/Cannot Choose -99 .n: No answer

```
In [4]: #narrowing down to variables of interest
sub=d[['abany','partyid','degree','idnum','panelwave']]
sub=sub.dropna()
sub.head()
```

Out[4]:

	abany	partyid	degree	idnum	panelwave
0	1.0	0.0	3.0	9	1
1	1.0	0.0	3.0	9	2
2	1.0	0.0	3.0	9	3
3	1.0	1.0	4.0	10	1
4	2.0	0.0	4.0	10	2

```
In [5]: # explore variables
        summary = d['abany'].describe()
        print(summary)
                 3189.000000
        count
                     1.592662
        mean
                    0.491416
        std
        min
                     1.000000
        25%
                     1.000000
        50%
                    2.000000
        75%
                     2,000000
                    2.000000
        max
        Name: abany, dtype: float64
In [6]: | summary2 = d['partyid'].describe()
        print(summary2)
                 4784,000000
        count
        mean
                    2.823370
        std
                    2.073284
        min
                    0.000000
        25%
                     1.000000
        50%
                    3.000000
        75%
                     5.000000
                     7.000000
        max
        Name: partyid, dtype: float64
In [7]: | summary3 = d['degree'].describe()
        print(summary3)
                 4811.000000
        count
        mean
                     1.648098
        std
                     1.218126
                    0.000000
        min
        25%
                     1.000000
        50%
                    1.000000
        75%
                     3.000000
                    4.000000
        max
        Name: degree, dtype: float64
In [8]: # recode 'abany' to binary outcome (0 or 1), representing
        # whether individuals support (1) or no support (0) abortion if a woman
        conditions = [
            (sub['abany'] == 1),
            (sub['abany'] == 2)]
        choices = [1, 0]
        sub['abn'] = np.select(conditions, choices, default=np.nan)
```

```
In [9]: # check the recoding result
         pd.crosstab(index=sub["abn"], columns="count")
 Out [9]:
          col 0 count
           abn
            0.0
                1876
                1296
            1.0
In [10]: # recode 'partyid' to exlude other party Recode 'partyid' to exclude other
         # in this analysis I only examine democratic and republican affiliations
          conditions = [
              (sub['partyid'] >= 0) & (sub['partyid'] <= 6)]</pre>
          choices = [sub['partyid']]
          sub['partyid1'] = np.select(conditions, choices, default=np.nan)
         # check the recoding result
         pd.crosstab(index=sub["partyid1"], columns="count")
Out[10]:
            col_0 count
          partyid1
              0.0
                   520
              1.0
                   551
              2.0
                   376
              3.0
                   549
```

Naive ("pooled") OLS regression on the panel data

4.0

5.0

6.0

251

458

395

In [11]: | lm_ols = smf.ols(formula = 'abn ~ partyid1 + degree', data = sub).fit()
 print (lm_ols.summary())

OLS Regression Results								
======								
Dep. Variable		abn		R-squared:				
0.091			01.6					
Model: 0.091			0LS	Adj. H	R-squared:			
Method:		Least Squ	ares	F-stat	istic:			
155.2		20051 540	a. 05	. 5.4	115 1101			
Date:	Τι	ue, 12 Dec	2023	Prob ((F-statistic)	:		
5.89e-65		20.4						
Time: -2042.7		20:1	9:07	Log-L1	ikelihood:			
No. Observati	ions:		3100	AIC:				
4091.	2051	·	3200	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Df Residuals:	•		3097	BIC:				
4110.			_					
Df Model:	(DO.	nonro	2					
Covariance Ty	/pe: ========	nonro 	ous c =====	======	=========	=========		
======								
_	coef	std err		t	P> t	[0.025		
0.975]								
Intercept	0.4123	0.018	22	.865	0.000	0.377		
0.448								
partyid1	-0.0536	0.004	-12	.935	0.000	-0.062		
-0.045	0 0060	0 007	10	217	0 000	0 072		
degree 0.100	0.0860	0.007	12	.317	0.000	0.072		
=========			=====	======	-=======	=========		
======								
Omnibus:		19865	. 452	Durbir	n-Watson:			
1.313 Prob(Omnibus)	١.	0	.000	larque	Poro (IP).			
362.062) :	Ø	. 000	Jarque	e-Bera (JB):			
Skew:		0	.374	Prob(3	JB):			
2.39e-79								
Kurtosis:		1	.502	Cond.	No.			
8.55								

Notes:

 $\[1\]$ Standard Errors assume that the covariance matrix of the errors is correctly specified.

Data Analysis:

I formulated hypotheses based on the expectation that individuals affiliated with the Democratic party are more inclined to support a woman's right to obtain an abortion for any reason, given the historical stance of the Democratic party on abortion rights. Additionally, I anticipated that individuals with higher educational degrees might be more likely to support abortion, assuming that those with higher education levels are more likely to endorse women's autonomy over their bodies.

The regression output shows that a one-unit increase in political affiliation from being Democratic to Republican is associated with a 5.4% decrease in the likelihood of a respondent supporting abortion if a woman wants it, all else being constant;

A one-unit increase in the respondent's educational degree is associated with an 8.6% increase in the likelihood of supporting abortion if a woman wants it, holding other variables constant, which indicates that higher educational levels are associated with increased support for abortion.

Both coefficients are statistically significant, indicated by p-values of 0.000.

The R-squared value (0.091) suggests that the model explains 9.1% of the variance in opinions

First Differences Regression

In [12]: sub =sub.set_index(["idnum", "panelwave"])
sub

abany partyid degree abn partyid1

Out[12]:

		abany	partyra	acgice	abii	partylar
idnum	panelwave					
	1	1.0	0.0	3.0	1.0	0.0
9	2	1.0	0.0	3.0	1.0	0.0
	3	1.0	0.0	3.0	1.0	0.0
10	1	1.0	1.0	4.0	1.0	1.0
	2	2.0	0.0	4.0	0.0	0.0
4500	1	2.0	6.0	1.0	0.0	6.0
	2	2.0	6.0	1.0	0.0	6.0
	3	2.0	6.0	1.0	0.0	6.0
4505	1	2.0	3.0	0.0	0.0	3.0
	2	2.0	5.0	0.0	0.0	5.0

 $3172 \text{ rows} \times 5 \text{ columns}$

```
In [16]: sub = sub.dropna()
    exog_vars = ["partyid1","degree"]
    exog = sub[exog_vars]
    lm_fd = FirstDifferenceOLS(sub.abn, exog)
    abn_fd = lm_fd.fit(cov_type='clustered', cluster_entity=True)
    print(abn_fd)
```

FirstDifferenceOLS Estimation Summary

======= Dep. Variable: abn R-squared: 0.0026 Estimator: FirstDifferenceOLS R-squared (Between): -0.2193R-squared (Within): No. Observations: 1757 0.0007 Date: Tue, Dec 12 2023 R-squared (Overall): -0.1952Time: 20:20:24 Log-likelihood -1019.0Cov. Estimator: Clustered F-statistic: 2.3123 Entities: 1330 P-value 0.0993 Avg Obs: 2.3308 Distribution: F(2,1755) Min Obs: 1.0000 Max Obs: F-statistic (robust): 3.0000 2.5361 P-value 0.0795 Time periods: Distribution: F(2,1755) Ava Obs: 1033.3 Min Obs: 815.00 Max Obs: 1286.0

Parameter Estimates

========	========	========	========	=======	=======	===
======	Parameter	Std. Err.	T-stat	P-value	Lower CI	U
pper CI						
partyid1 0.0021 degree 0.0099	-0.0143 -0.0280	0.0084 0.0193	-1.7142 -1.4493	0.0867 0.1474	-0.0307 -0.0658	===
======						

Data Analysis:

The R-squared shows that there is only about 0.26% of the variance in the differenced 'abn' variable. This suggests that changes in 'partyid1' and 'degree' over time do not strongly predict changes in abortion support.

A one-unit shift from Democratic to Republican affiliation is associated with a 1.4% decrease in the likelihood of supporting abortion for any reason. This finding aligns with the my expectation of political affiliations influencing abortion views, but the effect size is small. The p-value for 'partyid1' is 0.0867, which is marginally above the conventional threshold of 0.05. This indicates that while there is some evidence of a relationship, it is not strong enough to be considered statistically significany.

Contrary to the OLS regression results and initial hypotheses, the coefficient for 'degree' suggests a negative association between changes in education and support for abortion. However, this relationship is not statistically significant given that p-value is 0.1474.

This result might suggest that within-individual changes in education level over time are not a

```
In [14]: # Log-transformation of the variables
sub['log_abn'] = np.log(sub['abn'] + 1)
sub['log_partyid1'] = np.log(sub['partyid1'] + 1)
sub['log_degree'] = np.log(sub['degree'] + 1)
```

FirstDifferenceOLS Estimation Summary

=======================================	F1rstv1tterenceuLS	=======================================
======		
Dep. Variable:	log_abn	R-squared:
0.0037 Estimator:	FirstDifferenceOLS	R-squared (Between):
-0.3169	I II STDII TETETICEULS	N-squared (between).
No. Observations:	1757	R-squared (Within):
0.0012		·
Date:	Tue, Dec 12 2023	R-squared (Overall):
-0.2807	20.20.21	lan likalihand
Time: -374.13	20:20:31	Log-likelihood
Cov. Estimator:	Clustered	
		F-statistic:
3.2237		
Entities:	1330	P-value
0.0400 Avg Obs:	2.3308	Distribution:
F(2,1755)	213300	DISCI IDUCTOII.
Min Obs:	1.0000	
Max Obs:	3.0000	F-statistic (robust):
2.9458		
0.0528		P-value
Time periods:	3	Distribution:
F(2,1755)	J	DISCI ISUCIONI
Avg Obs:	1033.3	
Min Obs:	815.00	
Max Obs:	1286.0	
	Parameter	Estimates

=========	========	=========	=========	========	========
Upper CI	Parameter	Std. Err.	T-stat	P-value	Lower CI
	-0 . 0358	0.0180	-1.9896	0.0468	-0.0711
log_degree 0.0183 =======	-0.0490 	0.0343 ======	-1.4286 	0.1533 =======	-0.1162 =======

Data Analysis:

The model reveals a statistically significant relationship between changes in political affiliation and the likelihood of supporting abortion. Specifically, a one-percentage point increase in 'partyid1', reflecting a shift towards Republican affiliation, is associated with a 3.5% decrease in the log-transformed likelihood of supporting abortion. This finding underscores the influential role of political ideology in shaping views on abortion, aligning with general expectations about political affiliations and social attitudes. This suggests that the effect of political affiliation changes on abortion views might be more multiplicative or exponential rather than linear.