

UNIVERSIDAD DE SANTANDER – UDES	Página 1 de 9
Trabajo / Tarea / Taller / Quiz	Versión: 01
PROGRAMA INGENIERÍA DE SOFTWARE	Semestre B-2024

Examen Parcial #1

Nombre: Santiago Alexander Ospina Pabón Código: 01220371058

Docente: Jeison Mauricio Delgado González

" Cualquier tecnología lo suficientemente avanzada es indistinguible de la magia"

Arthur C. Clarkel

Descripción

Este examen está diseñado para evaluar no solo su comprensión de los conceptos fundamentales discutidos en clase, como la Máquina Ábaco, la Máquina Super Ábaco, y la Arquitectura de Von Neumann, sino también su capacidad para analizar, investigar y aplicar estos conceptos en un contexto más amplio.

1. Ejercicio de Apareamiento:

A continuación se presentan una lista de características de diferentes tipos memoria principal, escriba frente al tipo de memoria la letra que corresponda:

Características		Tipo de Memoria
a) Tipo de RAM que requiere refrescar su contenido constantemente para mantener los datos almacenados.	a	DRAM (Dynamic RAM)
b) Memoria más rápida y más costosa, que no necesita ser refrescada y se utiliza en cachés de procesadores.	b	SRAM (Static RAM)

UNIVERSIDAD DE SANTANDER – UDES	Página 2 de 9
Trabajo / Tarea / Taller / Quiz	Versión: 01
PROGRAMA INGENIERÍA DE SOFTWARE	Samestra R-2024

c) Memoria RAM que sincroniza sus operaciones con el reloj del sistema para mejorar la eficiencia.	С	SDRAM (Synchronous DRAM)
d) Evolución de SDRAM que duplica la velocidad de transferencia de datos al realizar operaciones de lectura y escritura en ambos flancos del ciclo de reloj.	d	DDR (Double Data Rate SDRAM)
e) Segunda generación de DDR que mejora la velocidad y la eficiencia energética respecto a DDR.	е	DDR2
f) Tercera generación de DDR con mayor velocidad y menor consumo de energía que DDR2.	f	DDR3
g) Cuarta generación de DDR que ofrece mejoras significativas en la velocidad y capacidad de almacenamiento.	g	DDR4
h) Última generación de DDR, conocida por su alta capacidad de transferencia de datos y eficiencia energética mejorada.	h	DDR5
i) Tipo de RAM desarrollada por Rambus Inc., conocida por su alto rendimiento en su época, pero también por su alto costo y latencia.	i	RDRAM (Rambus DRAM)
j) Variante de DDR optimizada para dispositivos móviles, con bajo consumo energético.	j	LPDDR (Low Power DDR)
k) Tipo de RAM que mejoró el acceso de datos al permitir que una operación de lectura comenzara antes de que la operación anterior finalizara.	k	EDO RAM (Extended Data Out RAM)
l) Memoria de acceso rápido que utilizó un modo de acceso en páginas para mejorar el rendimiento en la lectura de datos secuenciales.	ι	FPM RAM (Fast Page Mode RAM)
m) RAM especializada en gráficos, optimizada para operaciones intensivas de video.	m	SGRAM (Synchronous Graphics RAM)
n) Memoria RAM diseñada específicamente para almacenar frames de video, utilizada en tarjetas gráficas.	n	VRAM (Video RAM)

UNIVERSIDAD DE SANTANDER – UDES	Página 3 de 9
Trabajo / Tarea / Taller / Quiz	Versión: 01
PROGRAMA INGENIERÍA DE SOFTWARE	Semestre B-2024

o) Tipo de RAM que incluye un mecanismo de corrección de errores, utilizado en sistemas que requieren alta fiabilidad.	0	ECC RAM (Error-Correcting Code RAM)
p) Módulo de memoria registrado que contiene un búfer para mejorar la estabilidad en configuraciones de alta densidad.	p	RDIMM (Registered DIMM)
q) Módulo de memoria sin búfer, que es más común en computadoras personales debido a su menor costo.	q	UDIMM (Unbuffered DIMM)
r) Tipo de memoria no volátil que utiliza la resistencia magnética para almacenar datos.	r	MRAM (Magnetoresistive RAM)
s) Memoria que utiliza materiales de cambio de fase para almacenar datos, ofreciendo mayor velocidad y durabilidad.	S	PRAM (Phase-change RAM)
t) Tecnología de memoria no volátil desarrollada por Intel y Micron, conocida por su alta velocidad y durabilidad, utilizada en unidades de almacenamiento avanzadas.	t	3D XPoint

2. Vamos a recorrer la historia de la arquitectura hasta nuestros días, a continuación por favor poner la letra frente a la característica.

Características
a) Circuito digital que realiza operaciones matemáticas y lógicas dentro de la CPU.
b) Componente de la CPU que dirige las operaciones y ejecuta las instrucciones.
c) Canal que transporta los datos entre la CPU, la memoria, y los periféricos.

	Definicion de Tecnología
a	Unidad Aritmético-Lógica (ALU)
b	Unidad de Control
С	Bus de Datos

UNIVERSIDAD DE SANTANDER – UDES	Página 4 de 9
Trabajo / Tarea / Taller / Quiz	Versión: 01
PROGRAMA INGENIERÍA DE SOFTWARE	Semestre B-2024

d) Canal que transporta las direcciones de memoria donde se encuentran los datos.	d	Bus de Dirección
e) Canal que transporta señales de control para coordinar las operaciones del sistema. F	е	Bus de Control
) Registro que contiene la instrucción que se está ejecutando actualmente.	f	Registro de Instrucción
g) Registro que almacena la dirección de la próxima instrucción a ser ejecutada en la memoria.	g	Registro de Dirección de Memoria (MAR)
h) Registro que guarda los datos que se están transfiriendo hacia o desde la memoria.	h	Registro de Datos de Memoria (MDR)
i) Componente que convierte las instrucciones en señales que la CPU puede ejecutar.	i	Decodificador de Instrucciones
j) Registro que guarda la dirección de la próxima instrucción a ejecutar.	j	Contador de Programa (PC)
k) Memoria pequeña y rápida que almacena datos frecuentemente utilizados para acelerar el acceso.	k	Memoria Caché
l) Memoria volátil que almacena datos e instrucciones en uso mientras la computadora está encendida.	l	Memoria RAM
m) Memoria no volátil que almacena el firmware o las instrucciones de arranque del sistema.	m	Memoria ROM
n) Dispositivo de almacenamiento magnético de alta capacidad que guarda datos a largo plazo.	n	Disco Duro
o) Dispositivo de almacenamiento basado en flash que ofrece acceso más rápido que los discos duros.	o	Unidad de Estado Sólido (SSD)

UNIVERSIDAD DE SANTANDER – UDES	Página 5 de 9
Trabajo / Tarea / Taller / Quiz	Versión: 01
PROGRAMA INGENIERÍA DE SOFTWARE	Semestre B-2024

p) Tiempo necesario para completar un ciclo de operación en la CPU.	р	Ciclo de Reloj
q) Señal que interrumpe el flujo normal de ejecución para atender eventos externos.	q	Interrupción
r) Área de memoria que almacena información sobre las llamadas a subrutinas o funciones.	r	Pila de Llamadas (Stack)
s) Dispositivo que selecciona una línea de datos entre varias entradas.	s	Multiplexor
t) Dispositivo que separa una señal de entrada en varias salidas.	t	Desmultiplexor

3. Seleccione todas las respuestas correctas:

¿Cuáles de las siguientes características son verdaderas sobre la Máquina de Von Neumann?

- a) Utiliza un acumulador para todas las operaciones aritméticas.
- b) Tiene una unidad de control separada de la unidad aritmético-lógica.
- c) Almacena el programa y los datos en la misma memoria.
- d) Requiere un ciclo de memoria de dos impulsos de reloj.

En relación con la memoria secundaria, ¿cuáles son las afirmaciones correctas?

- a) Es volátil y se borra al apagar el sistema.
- b) Tiene tiempos de acceso más rápidos que la memoria principal.
- c) Se utiliza para almacenamiento de largo plazo.
- d) Ejemplos incluyen discos duros y unidades de estado sólido (SSD).

INGENIERÍA DE SOFTWARE: La optimización de los procesos está en nuestras manos.

UNIVERSIDAD DE SANTANDER – UDES	Página 6 de 9
Trabajo / Tarea / Taller / Quiz	Versión: 01
PROGRAMA INGENIERÍA DE SOFTWARE	Semestre B-2024

En la Máquina Super Ábaco, ¿cuál es la función del registro 0?

- a) Acumular el resultado final de las operaciones.
- b) Manejar operaciones inmediatas o de propósito general.
- c) Controlar el flujo de datos entre la memoria principal y la CPU.
- d) Almacenar la dirección base de todas las operaciones.

¿Cuál es una de las principales desventajas de la arquitectura de Von Neumann?

- a) La limitación de registros para operaciones aritméticas.
- b) La posibilidad de colisión en el acceso simultáneo a memoria y a las instrucciones.
- c) La necesidad de un reloj de alta frecuencia para operar eficientemente.
- d) La dependencia total de la memoria secundaria para almacenar programas.
- 4. Analice el impacto del uso de la memoria secundaria en la velocidad de procesamiento de un sistema computacional, considerando la Máquina de Von Neumann como referencia.

El acceder a cierta información que no se encuentra en la memoria principal, sino que se tiene que buscar en la memoria secundaria, afecta el rendimiento completo del sistema por la velocidad de lectura evidentemente menor que tiene la memoria secundaria, por lo que transmitir información entre la memoria principal y la secundaria genera latencia en el procesamiento de los datos

5. Con el avance en las tecnologías de memoria no volátil (NVM), como la memoria de cambio de fase (PCM) o la memoria resistiva (ReRAM), ¿cómo podrían estas influir en la evolución de la arquitectura de Von Neumann? ¿Podríamos ver una fusión entre memoria principal y secundaria en el futuro? Justifique su respuesta

El avance de estas tecnologías ah permitido reducir notablemente las diferencias en tiempos de acceso entre la memoria principal y memoria secundaria, por lo que fácilmente se puede llegar a considerar una fusión entre estas tecnologías, aun así esto supone retos como la reestructuración de la arquitectura en algunas secciones, ya que al desaparecer la brecha entre memoria principal secundaria algunas técnicas o tecnologías

UNIVERSIDAD DE SANTANDER – UDES	Página 7 de 9
Trabajo / Tarea / Taller / Quiz	Versión: 01
PROGRAMA INGENIERÍA DE SOFTWARE	Semestre B-2024

como la memoria cache ya no serían tan útiles porque no se necesita seguir mitigando el lento acceso a la información de la memoria secundaria, aun así es una tecnología que por costos no es tan optima hasta el momento, y requiere de "madurar" para normalizarlas y que empiecen a ser mas accesibles para ser consideradas en el mercado

6. Considerando el auge de las arquitecturas no Von Neumann, como la computación cuántica o neuromórfica, ¿cómo podría esto influir en la enseñanza y en la relevancia de las máquinas como el Super Ábaco en los próximos 20 años?

El hecho de que la tecnología avance también significa que la educación y la enseñanza lo hará, por lo que empezaran a incluir mayor cantidad de arquitecturas o modelos que reflejen el avance de las tecnologías, que también afectaran a maquinas como el super ábaco al tener que enfrentarse a nuevos enfoques, cambiaran los fundamentos computacionales que dicta para adaptarse a las nuevas eras, incluyendo conceptos mas complejos, como los fundamentos de la computación cuántica o la neuromórfica

7. En un cuadro comparativo explica tres diferencias clave entre las arquitecturas **RISC** y **CISC** en términos de diseño, ejecución de instrucciones y eficiencia.

	RISC	CISC
Diseño	Su diseño se basa en ser	Es un conjunto más
	mas simple y uniforme, por	complejo para realizar
	lo que generalmente es	instrucciones mas
	mas compatible con	complejas, puede variar
	distintos sistemas	mucho en tamaño y puede
		incluir incluso acceso a la
		memoria
Instrucciones	Se ejecutan en 1 solo ciclo	Pueden llegar a requerir
	de reloj de la CPU, tratando	múltiples ciclos de reloj
	de ser lo mas simple	para completarse por lo
	posible y rápido posible	que sus instrucciones son
		más complejas
Eficiencia	Tienen una ejecución muy	Sus instrucciones pueden
	rápida y eficiente por su	variar mucho así que se
	simplicidad y que	reduce su eficiencia, aun
	básicamente se enfoca en	así, en casos muy
	reducir los tiempos de	específicos puede llegar a
	ejecución	ser mas eficiente que la
		CISC

UNIVERSIDAD DE SANTANDER – UDES	Página 8 de 9
Trabajo / Tarea / Taller / Quiz	Versión: 01
PROGRAMA INGENIERÍA DE SOFTWARE	Semestre B-2024

8. A continuación, marque si la característica corresponde a la tecnología RISC o CISC.

Tipo	Características	RISC/CiSC
	Utiliza un conjunto extenso y complejo de instrucciones.	CISC
Número de Instrucciones	Utiliza un conjunto reducido de instrucciones.	RISC
	Cada instrucción suele ejecutarse en un solo ciclo de reloj.	RISC
Ciclos de Reloj por Instrucción	Las instrucciones pueden requerir múltiples ciclos de reloj para completarse.	CISC
Handa Minus of disc	Emplea microcódigo para implementar instrucciones complejas.	CISC
Uso de Microcódigo	No utiliza microcódigo; las instrucciones se implementan directamente en hardware.	RISC
Acceso a la Memoria	Minimiza el acceso a la memoria, utilizando un gran número de registros para almacenar datos temporales.	RISC
Acceso a la Memona	Accede a la memoria con mayor frecuencia debido a la ejecución de instrucciones complejas.	CISC
Eficionoia Energética	Diseñada para ser más eficiente energéticamente, con menor consumo de energía por instrucción.	RISC
Eficiencia Energética	Generalmente consume más energía debido a la complejidad de sus operaciones.	CISC

UNIVERSIDAD DE SANTANDER – UDES	Página 9 de 9
Trabajo / Tarea / Taller / Quiz	Versión: 01
PROGRAMA INGENIERÍA DE SOFTWARE	Semestre B-2024

9. Describe brevemente la tecnología RISC (Reduced Instruction Set Computing).

La tecnología RISC se basa en instrucciones simples, de consumo bajo y que puedan ser ejecutadas directamente en el hardware para reducir latencia y aumentar la eficiencia, también son instrucciones que se cumplen en 1 ciclo de reloj por lo que deben estar mucho simplificadas, en RISC, la mayoría de las operaciones se realizan utilizando registros, reduciendo la necesidad de accesos frecuentes a la memoria.

10. Describa brevemente la tecnología CISC (Complex Instruction Set Computing).

Al contrario de las RISC las CISC se basan en instrucciones mas complejas que normalmente utilizan más de un ciclo de reloj, su tiempo de ejecución es mayor al tener que acceder a la memoria incluso en múltiples ocasiones, al ser mas complejas no operan con microcódigo directamente en el hardware, pero pueden llegar a ser más eficientes en casos específicos donde la complejidad aumenta, utilizan microcódigos para descomponer el código y aumentar también su eficiencia, se utilizan normalmente donde no sale a cuenta realizar múltiples operaciones RISC en una sola operacion