notebook04-avaliando_a_generalizacao_de_algoritmos

December 11, 2020

1 Avaliando a generalização de algoritmos

1.1 Dados do Curso

Instituição: IFES

Curso: Mestrado Profissional Computação Aplicada

Professor: Francisco de Assis Boldt

Aluno: Arthur Chisté Lucas

1.2 Ambiente

IDE: MS Visual Studio Code

Versão Python: 3.8.3 64bits com anaconda 2020.07

1.3 Introdução

Nesta tarefa, será utilizado um dataset contendo a classificação de celulares obtido na Kaggle

https://www.kaggle.com/iabhishekofficial/mobile-price-classification

O dataset foi baixado e armazenado em meu GitHub público, sendo acessado diretamente de lá, conforme a URL abaixo:

https://github.com/arthurclucas/ReconhecimentoPadroes/blob/main/data/mobile_price_classification/train.csv

Nesta tarefa, faremos a transformação de dados por meio dos scalers StandardScaler, RobustScaler e MinMaxScaler dentro e fora do pipeline e o cross validation dos dados com os cross validators TimeSeriesSplit, KFold, ShuffleSplit, StratifiedKFold, StratifiedShuffleSplit.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import pylab as pl
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import (cross_validate, TimeSeriesSplit, KFold,
→ShuffleSplit, StratifiedKFold, StratifiedShuffleSplit)
from sklearn.preprocessing import (StandardScaler, RobustScaler, MinMaxScaler)
from sklearn.pipeline import Pipeline
from sklearn.neighbors import KNeighborsClassifier
```

```
[48]: url = 'https://github.com/arthurclucas/ReconhecimentoPadroes/blob/main/data/

→mobile_price_classification/train.csv?raw=true'
dados = pd.read_csv(url)
dados.head(5)
```

[48]:		battery_power	blue	clock_sp	peed	dual_sim	fc	four_g	int_m	emory	m_de	p \
	0	842	0		2.2	0	1	0		7	0.	6
	1	1021	1		0.5	1	0	1		53	0.	7
	2	563	1		0.5	1	2	1		41	0.	9
	3	615	1		2.5	0	0	0		10	0.	8
	4	1821	1		1.2	0	13	1		44	0.	6
		mobile_wt n_c	ores .	px_hei	ght	px_width	ran	n sc_h	sc_w	talk_	time	\
	0	188	2.	••	20	756	2549	9	7		19	
	1	136	3.	••	905	1988	2631	l 17	3		7	
	2	145	5.	 1	1263	1716	2603	3 11	2		9	
	3	131	6.	 1	1216	1786	2769	9 16	8		11	
	4	141	2 .	1	1208	1212	1411	L 8	2		15	
		three_g touch	_screer	n wifi	pric	e_range						
	0	0	(0 1		1						
	1	1	1	1 0		2						
	2	1	1	1 0		2						
	3	1	(0 0		2						
	4	1		1 0		1						

[5 rows x 21 columns]

[49]: dados.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2000 entries, 0 to 1999
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	battery_power	2000 non-null	int64
1	blue	2000 non-null	int64
2	clock_speed	2000 non-null	float64
3	dual_sim	2000 non-null	int64
4	fc	2000 non-null	int64
5	four_g	2000 non-null	int64
6	int_memory	2000 non-null	int64
7	m_dep	2000 non-null	float64
8	mobile_wt	2000 non-null	int64
9	n_cores	2000 non-null	int64
10	pc	2000 non-null	int64
11	px_height	2000 non-null	int64
12	px_width	2000 non-null	int64

```
13 ram
                   2000 non-null
                                   int64
                   2000 non-null
 14 sc_h
                                   int64
                   2000 non-null
                                   int64
 15 sc_w
 16 talk_time
                   2000 non-null
                                   int64
                   2000 non-null
 17 three g
                                   int64
 18 touch_screen 2000 non-null
                                   int64
 19 wifi
                   2000 non-null
                                   int64
20 price_range
                   2000 non-null
                                   int64
dtypes: float64(2), int64(19)
memory usage: 328.2 KB
```

Segue histograma de como os dados se encontram na base

```
[50]: # fig = plt.figure(figsize = (20,20))
# plt.xticks(fontsize=12)
# plt.yticks(fontsize=12)
# ax = fig.gca()
# dados.hist(ax = ax)
```

Declara as instâncias dos Scalers, Cross Validator e modelos de classificação que serão utilizados.

A variável $\mathbf{X}\mathbf{s}$ terá uma lista de tuplas no formado (descrição, dados) gerados após tratamento pelos Scalers

```
[52]: Xs.clear()
Xs.append(('NoScaler', X))

for sc in scs:
    Xs.append((type(sc).__name__, sc.fit_transform(X)))
```

Imprime os histogramas dos dados tratados por cada um dos scalers

```
[53]: columns = dados.columns.drop('price_range')
for Xi in Xs:
    df = pd.DataFrame(data=Xi[1], columns=columns)
    fig = plt.figure(figsize = (20,20))
    plt.xticks(fontsize=12)
    plt.yticks(fontsize=12)
    ax = fig.gca()
    df.hist(ax = ax)
    pl.suptitle(Xi[0])
```

NoScaler

A seguir teremos duas análises, a primeira sem utilização do pipeline, realizando o treinamento e a a predição para cada um dos modelos e cross validators, porém com os dados já ajustados pelos scalers conforme histogramas acima. A segunda análise será por meio da utilização de pipelines, passando os dados originais e atribuindo scalers a eles.

```
[58]: final.clear()
for cv in cvs:
    for modelo in modelos:
        for Xi in Xs:
        mean = 0
```

```
for i in range(10):
                scores = cross_validate(modelo, Xi[1], y, cv=cv)
                mean += np.mean(scores['test_score'])
            mean = mean/10
            final.append((type(modelo).__name__, type(cv).__name__, Xi[0],__
→mean, False))
for cv in cvs:
    for modelo in modelos:
        for sc in scs:
            mean = 0
            for i in range(10):
                pipeline = Pipeline([("padronizacao", sc), ("classificador", u)
→modelo)])
                scores = cross_validate(pipeline, X, y, cv=cv)
                mean += np.mean(scores['test_score'])
            mean = mean /10
            final.append((type(modelo).__name__, type(cv).__name__, type(sc).
 →__name__, mean, True))
```

```
[59]: df = pd.DataFrame(data=final, columns=final_cols)
```

Abaixo os resultados da primeira análise, sem o pipeline.

```
[60]: df1 = df[df['pipeline'] == False]
    df1 = df1.sort_values(by='mean', ascending=False)
    df1 = df1.drop('pipeline', axis=1)
    df1.head(10)
```

```
[60]:
                       modelo
                                     cross_validator
                                                             scaler
                                                                        mean
     9
           LogisticRegression
                                        ShuffleSplit
                                                      StandardScaler 0.96680
     25
           LogisticRegression StratifiedShuffleSplit
                                                     StandardScaler 0.96410
                                               KFold StandardScaler 0.96250
           LogisticRegression
     1
     17
           LogisticRegression
                                     StratifiedKFold StandardScaler 0.96250
           LogisticRegression
     10
                                        ShuffleSplit
                                                       RobustScaler 0.95810
           LogisticRegression
                                     StratifiedKFold
                                                       RobustScaler 0.95450
     18
           LogisticRegression StratifiedShuffleSplit
     26
                                                       RobustScaler 0.95420
     2
           LogisticRegression
                                                       RobustScaler 0.95400
                                               KFold
     33
           LogisticRegression
                                     TimeSeriesSplit StandardScaler 0.93994
     12 KNeighborsClassifier
                                        ShuffleSplit
                                                           NoScaler 0.92970
```

Abaixo, o resultado da segunda análise, com os pipelines.

```
[61]: df2 = df[df['pipeline']]
df2 = df2.sort_values(by='mean', ascending=False)
df2 = df2.drop('pipeline', axis=1)
df2.head(10)
```

[61]:		modelo	${ t cross_validator}$	scaler	mean
	58	LogisticRegression	${\tt StratifiedShuffleSplit}$	StandardScaler	0.96710
	46	LogisticRegression	${\tt ShuffleSplit}$	StandardScaler	0.96260
	40	LogisticRegression	KFold	StandardScaler	0.96250
	52	LogisticRegression	${f Stratified KFold}$	StandardScaler	0.96250
	47	LogisticRegression	${\tt ShuffleSplit}$	RobustScaler	0.95850
	59	LogisticRegression	${\tt StratifiedShuffleSplit}$	RobustScaler	0.95590
	41	LogisticRegression	KFold	RobustScaler	0.95450
	53	LogisticRegression	${f Stratified KFold}$	RobustScaler	0.95450
	64	LogisticRegression	TimeSeriesSplit	StandardScaler	0.93994
	60	${\tt LogisticRegression}$	${\tt StratifiedShuffleSplit}$	MinMaxScaler	0.92980

Concluindo, para a base utilizada, a regressão logística trouxe quase sempre uma predição melhor que o KNN (19 em 20). O melhor scaler foi o Standard Scaler e houve uma pequena diferença quando se usa pipeline de quando não se utiliza.