

inBDS Lab Semina

Age- and vaccination status-dependent isolation guidelines based on simulation of SARS-CoV-2 Delta cases in Singapore

2025.08.01.Fri

부산대학교 의생명융합공학부 데이터사이언스전공 김진 01

Age- and vaccination status-dependent isolation guidelines based on simulation of SARS-CoV-2 Delta cases in Singapore

Introduction

- 배경: 팬데믹 이후의 변화
 - 백신, 치료제 중증·사망률 감소에 기여
 - 그러나 변이 출현으로 인해 감염 예방 효과 감소로 비약물적 개입(NPI) 여전히 중요
- 격리의 효과성과 문제점
 - 효과적이지만 개인과 사회에 큰 부담
 - 감염력 소실 시점을 알 수 없어 불필요한 격리 발생
- 기존 격리 방식
 - 고정 기간(Fixed-period): 단순하지만 과도한 격리 발생
 - 검사 기반(Test-based): 정밀하지만 비용과 인프라 부담 큼

Methods

- 바이러스 동역학 모델 개발
 - SARS-CoV-2 Delta 변이 환자의 실제 바이럴 로드 데이터 기반
 - 연령, 백신 접종 여부를 고려한 개별화된 파라미터 학습
- 격리 지침 시뮬레이션
 - 고정 기간(fixed-period) vs. 변동 기간(variable-period) 정책 적용
 - 생성된 가상 바이럴 로드 데이터를 기반으로 시뮬레이션
- 정책 성능 비교 및 최적화
 - 목표: 10% 이하 leaking risk, Re ≤ 1 조건에서
 - 불필요한 격리 부담 최소화하는 기간 도출

Methods

• 대상: Delta 변이 감염 증상자 (n ≥ 3 PCR)

• 기간: 2021.04.01 ~ 2021.06.14

• 검사: Ct 값 기반 바이러스 농도 산출

• 변환식

$$\log_{10} \left(\mathrm{viral~load} \left[\mathrm{copies/mL} \right]
ight) = -0.32 imes C_t \mathrm{values} \left[\mathrm{cycles} \right] + 14.11$$

Methods

• 사용 모델: Target-cell limited model

$$rac{df\left(t
ight)}{dt} = -eta f\left(t
ight)V\left(t
ight) \qquad \qquad rac{dV\left(t
ight)}{dt} = \gamma f\left(t
ight)V\left(t
ight) - \delta V\left(t
ight)$$

- 파라미터:
 - β: 감염률
 - γ: 바이러스 복제 속도
 - δ: 감염세포 소멸률
- 연령과 백신 여부를 공변량으로 고려

Methods

Leaking Risk

$$ext{Leaking Risk} = rac{1}{N} \sum_i Iig(V_i(s_i) > infectiousness \ thresholdig)$$

• Effective Reproduction Number

$$R_e = pR_{e,A} + (1-p)R_{e,S}$$

$$R_e = prac{\sum_i \int_{K_i} heta P_i(s) ds}{N} + (1-p)rac{\sum_i \int_{L_i} heta P_i(s) ds}{N} \qquad \qquad P_i(s) = rac{V_i(s)^lpha}{V_i(s)^lpha + \lambda^lpha}$$

Excess Isolation Burden

$$\frac{1}{N} \sum_i (s_i - u_i)$$

Results

- 분석 대상: 증상자 + PCR 3회 이상 (N=134)
- 백신·연령별 Viral Load 차이 확인
- 맞춤형 격리 기준 설계의 근거 확보

Table 1 Summary of clinical data from SARS-CoV-2 Delta patients

From: Age- and vaccination status-dependent isolation guidelines based on simulation of SARS-CoV-2 Delta cases in Singapore

Variables	Overall sample (N=192)	Analyzed sample ^a (<i>N</i> =134)	
Symptomatic cases (%)	161 (83.9%)	134 (100%)	
Vaccinated cases (%)	62 (32.3%)	32 (23.9%)	
Age range in years	[17, 94]	[19, 94]	
Mean age in years (SD)	48.0 (18.8)	47.9 (19.1)	
<60 years old (%)	139 (72.4%)	96 (71.6%)	
≥60 years old (%)	53 (27.6%)	38 (28.4%)	
Mean number of viral load measurements (SD)	5.42 (4.25)	6.48 (4.53)	
Mean days from symptom onset till the first test (SD)	2.15 (3.06)	2.44 (3.46)	

^aconsists of symptomatic patients with three or more observations

Fig. 1: Viral load trajectories of symptomatic SARS-CoV-2 Delta patients.

Results

- 백신 접종 시: 감염 속도↓, 초기 바이러스양↓, 감소 속도↑
- 고령자: 감염은 느리게 시작되지만 바이러스 오래 유지
- 미접종자: 바이러스 많고 오래 지속 → 격리 기간 길어짐
- → 나이 & 백신 정보 기반 **맞춤형 격리 기간 설계** 타당

Table 2 Estimated parameters for the SARS-CoV-2 viral dynamics model

From: Age- and vaccination status-dependent isolation guidelines based on simulation of SARS-CoV-2 Delta cases in Singapore

Parameters	Symbol	Unit	Median of fixed effect ^a (SE)	Covariate effect per year of age (SE)	Covariate effect of vaccination status ^b (SE)	Standard deviation of random effect ^c (SE)
Maximum rate constant for viral replication	γ	day ⁻¹	4.25 (9.12)	-	-	3.05 (1.89)
Death rate of infected cells	δ	day ⁻¹	0.67 (0.04)	-	0.95 (0.14)	0.48 (0.05)
Rate constant for virus infection	β	(copies/mL) ⁻¹ day ⁻¹	8.03×10 ⁻⁷ (8.24× 10 ⁻⁷)	-0.05 (0.02)	-1.81 (1.03)	0.77 (0.57)
Viral load at symptom onset	V(0)	log ₁₀ (copies/mL)	8.98×10 ⁷ (4.64× 10 ⁷)	-	1.26 (0.96)	2.29 (0.61)

Fig. 2: Estimated viral load curves for symptomatic SARS-CoV-2 Delta patients with different age and vaccination status.

Results

- 고정 격리 기간이 길어질수록 누출 위험(Leaking Risk)과 Re는 감소
- 반면, 과잉 격리 부담(Excess Isolation Burden)은 증가
- Ct=25 기준, Re<1 충족엔 **11일**, Leaking Risk<10%엔 **14일** 필요

Fig. 3: The fixed-period guideline.

Results

- 격리 기간을 **백신 여부 / 연령에 따라 조정** → 사회적 부담 감소
- 백신 미접종자: 더 길게 격리 / 접종자: 짧은 격리 가능
- 기준 만족하면서 과잉 격리 부담 최소화하는 조합 도출

Fig. 4: The variable-period guideline.

Results

- 고정 격리: 불필요한 격리 기간 발생 (최대 7.4일)
- 백신/연령 기반 가변 격리: 과잉 격리 부담 최소화 (최소 2.6일)
- 전파 억제와 사회적 비용 최소화의 균형 필요

Table 3 Simulated excess isolation burden under different isolation guidelines^a

Criteria of acceptable leaking risk/ R_{c}	Isolation guidelines	Length of isolation (days)	Excess isolation burden (days)
	Fixed-period	14	7.4
	Variable-period (vaccination status)	17 (unvaccinated) 9 (vaccinated)	6.4
Leaking risk <10%	Variable-period (vaccination status, age)	16 (unvaccinated, <60) 14 (unvaccinated, >60) 10 (vaccinated, <60) 9 (vaccinated, >60)	6.0
	Fixed-period	11	4.4
	Variable-period	13 (unvaccinated) 6 (vaccinated)	2.9
$R_{\rm e} < 1$	Variable-period (vaccination status, age)	12 (unvaccinated, <60) 13 (unvaccinated, >60) 6 (vaccinated, <60) 7 (vaccinated, >60)	2.6

^aThe infectiousness threshold was set as C_t =25 (10^{6.11} copies/mL).

04

Age- and vaccination status-dependent isolation guidelines based on simulation of SARS-CoV-2 Delta cases in Singapore

Discussion

- 연령·백신 기반 가변 격리는 고정 격리보다 과잉 격리 부담 감소
- 개인 특성 반영한 격리 설계는 효과적이지만, 실현엔 한계 존재
- 테스트 기반 접근과 병행 시 효율성 극대화 가능

End

감사합니다