COMPUTER SYSTEMS FUNDAMENTALS (4COSCO04W)

Week 1. Part 2 of 2

Contact details

- Module Leader:
 - Noam Weingarten
 - Email : weingan@westminster.ac.uk
 - See BlackBoard site for further contact details

BINARY - BASE 2

Positive Integers

By the end of this video, you will:

- Be able to convert Binary Positive Integers to their Denary values
- Be able to convert Denary Positive Integers to their Binary values
 - Division by 2 & observation techniques
- Quick parity check
- The Bit
- The Nibble

Decimal / Denary - Base 10

Base 10 Denary

Base 10 Denary

Base 10 Denary

Base 10 Denary

Denary	Binary				Hexadecimal
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	2
3	0	0	1	1	3
4	0	1	0	0	4
5	0	1	0	1	5
6	0	1	1	0	6
7	0	1	1	1	7
8	1	0	0	0	8
9	1	0	0	1	9
10	1	0	1	0	Α
11	1	0	1	1	В
12	1	1	0	0	С
13	1	1	0	1	D
14	1	1	1	0	Е
15	1	1	1	1	F

Converting Binary to Denary

Converting Binary to Denary

$$128 + 64 + 16 + 8 + 4 + 2 + 1 = 223$$

```
40/2 = 20 remainder 0

20/2 = 10 remainder 0

10/2 = 5 remainder 0

5/2 = 2 remainder 1

2/2 = 1 remainder 0

1/2 = 0 remainder 1
```

Denary 40:

Which is the largest power of 2 which fits in 40?

Now subtract the 32 from the original 40

Which is the largest power of 2 which fits in 8?


```
43/2 = 21 remainder 1

21/2 = 10 remainder 1

10/2 = 5 remainder 0

5/2 = 2 remainder 1

2/2 = 1 remainder 0

1/2 = 0 remainder 1
```

Denary 43:

Which is the largest power of 2 which fits in 43?

Now subtract the 32 from the original 43

Which is the largest power of 2 which fits in 11?

Now subtract the 8 from the 11

The Byte, The Nibble & The Bit

- Byte:
 - An 8-Bit Binary Value
 - 256 possible values
 - 28
- Nibble:
 - A 4-Bit Binary Value
 - 16 possible values (2⁴)
- Bit:
 - Single Binary Bit
 - 0 or 1
 - 2¹

Parity check

- If the Denary value is **odd**
 - The Least Significant Binary Bit will be 1
- If the Denary value is **even**
 - The *Least Significant Binary Bit* will be *0*

Try it out for yourself part 1

- Write down an 8-Bit binary value
- Try to convert it into Denary
 - Start with the Least Significant Digit (on the right)
 - Work through all the Bits
 - Add up the Denary values of each Bit
- Write down the Denary value of the Binary value you started with
 - On another piece of paper
- Try another

Try it out for yourself part 2

- Try to convert each of the Denary values,
 - back to their Binary representation
 - Try both methods
 - Make sure they both give you the same result

An exercise for you:

Convert the **Denary** number 123 into **Binary**:

```
123 / 2 = 61 remainder 1
61 / 2 = 30 remainder 1
30 / 2 = 15 remainder 0
15 / 2 = 7 remainder 1
7 / 2 = 3 remainder 1
3 / 2 = 1 remainder 1
1 / 2 = 0 remainder 1
```

Denary 123:

Which is the largest power of 2 which fits in 123?

Now subtract the 64 from the original 123

Which is the largest power of 2 which fits in 59?

Now subtract the 32 from the 59

In this video we have covered:

- Binary:
 - Converting from Binary to Denary
 - Converting from Denary to Binary
 - Division by 2 method
 - Observation method

Number System Triangle

Tutorial exercise:

- This will provide you with:
 - Binary values to convert to Denary
 - Denary values to convert to Binary

In the next video we will cover:

- Hexadecimal:
 - Theory
 - Denary Binary Hexadecimal triangle
 - Why use Hexadecimal
 - Quick Binary Hexadecimal conversions

© The University of Westminster (2020)
The right of Noam Weingarten to be identified as author of this work has been asserted by them in accordance with the Copyright, Designs and Patents Act 1988