3B Expectation

Contents

3BThe	Expected Value (Theoretical Mean)
B.1	Intro
B.2	Ex: Throw a Die Once
B.3	Expectation is a long-run average
B.4	Theoretical Mean (Expectation)
B.5	Ex: Pooled Blood Testing
B.6	Ex: Casino Simplified
B.7	How to calculate $E(g(X))$
B.8	Ex: Expectation of $g(X)$

3B The Expected Value (Theoretical Mean)

[ToC]

B.1 Intro

• Expected Value of a random variable X, whose range is $x_1, x_2, x_3, \dots x_n$ is defined as

$$E(X) = \mu = \sum_{i=1}^{n} x_i \cdot p(x_i)$$

B.2 Ex: Throw a Die Once

pmf is:

Then the expectation is

$$E(X) = 1 \cdot \left(\frac{1}{6}\right) + 2 \cdot \left(\frac{1}{6}\right) + 3 \cdot \left(\frac{1}{6}\right) + 4 \cdot \left(\frac{1}{6}\right) + 5 \cdot \left(\frac{1}{6}\right) + 6 \cdot \left(\frac{1}{6}\right) = 3.5$$

So what does this number mean?

B.3 Expectation is a long-run average

Suppose you rolled a die 20 times.

Calculate the sample mean:

That's same as...

The sample mean:

$$(1+1+1+1+2+3+3+3+3+4+4+4+4+4+5+5+6+6+6+6) / 20$$

That's same as...

$$\bar{X} = 1 \cdot \left(\frac{4}{20}\right) + 2 \cdot \left(\frac{1}{20}\right) + 3 \cdot \left(\frac{4}{20}\right) + 4 \cdot \left(\frac{5}{20}\right) + 5 \cdot \left(\frac{2}{20}\right) + 6 \cdot \left(\frac{4}{20}\right)$$

Sample Mean

$$\bar{X} = 1 \cdot \left(\text{Rel. Freq. of } \#1 \right) + 2 \cdot \left(\text{Rel. Freq. of } \#2 \right) + 3 \cdot \left(\text{Rel. Freq. of } \#3 \right)$$

$$+ 4 \cdot \left(\text{Rel. Freq. of } \#4 \right) + 5 \cdot \left(\text{Rel. Freq. of } \#5 \right) + 6 \cdot \left(\text{Rel. Freq. of } \#6 \right)$$

B.4 Theoretical Mean (Expectation)

Theoretical Mean (Expectation)

$$E(X) = 1 \cdot \left(\frac{1}{6}\right) + 2 \cdot \left(\frac{1}{6}\right) + 3 \cdot \left(\frac{1}{6}\right) + 4 \cdot \left(\frac{1}{6}\right) + 5 \cdot \left(\frac{1}{6}\right) + 6 \cdot \left(\frac{1}{6}\right) = 3.5$$

• Sample Mean converges to The Expectation as $n \to \infty$.

B.5 Ex: Pooled Blood Testing

- Each blood sample has .1 change of testing positive.
- New procedure called "pooled testing" combines 10 blood sample before testing.
- If comes back negative, no further test is done. If comes back positive, then 10 more test must be done using individual samples.
- What is the long-run average of the test number in the new scheme?

B.6 Ex: Casino Simplified

- You charge each person \$1 to play this game.
- Each player has 1% chance of winning \$100.
- Does this make sence as business?
- What if you change 1% chance to .5% chance?

B.7 How to calculate E(g(X))

• Expected Value of a function of random variable X, say g(X) is defined as

$$E(g(X)) = \sum_{i=1}^{n} g(x_i) \cdot p(x_i)$$

 \bullet If a and b are constants, then

$$E(aX + b) = aE(X) + b$$

B.8 Ex: Expectation of g(X)

$$\begin{array}{c|cccc} x & 1 & 2 & 3 \\ \hline P(X=x) & .5 & .1 & .4 \\ \end{array}$$

- E(X) is 1.9.
- Calculate $E(X^2)$.
- Calculate E(3X + 5)