

AD A119115

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER ADA 119115 (None) S. TYPE OF REPORT & PERIOD COVERED 4. TITLE (and Subtitle) Final Report ANNUAL REPORT 1981 FY81 (1 Oct 80 - 31 Sep 81) PART II 6. PERFORMING ORG. REPORT NUMBER JANUARY 1982 7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(e) Reservoir Control Center Southwestern Division (Albuquerque, Fort Worth, Galveston, Little Rock, and Tulsa Districts) PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 9. PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Corps of Engineers Southwestern Division (SWDED-WR) 1114 Commerce Street Dallas, Texas 75242
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE January 1982 Office, Chief of Engineers, U.S. Army 13. NUMBER OF PAGES Washington, D.C. 20314 115 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)
U.S. Army Corps of Engineers 15. SECURITY CLASS. (of this report) Southwestern Division (SWDED-WR) Unclassified 1114 Commerce Street 15a. DECLASSIFICATION/DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

Dallas, Texas 75242

Available from

Administrator, Defense Technical Information Center, ATTN: DTIC/DDA-2 Bldg. #5, Cameron Station, Alexandria, VA 22814

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Water control activities Water control manuals Water quality activities Sediment activities Cooperative programs

TRACT (Couthus on reverse side if necessary and identify by block number)

This report presents detailed summaries of reservoir conditions, water quality activities and coordinating activities with other Federal and nonfederal basin interests groups.

PART I

TABLE OF CONTENTS

SECTION	I - INTRODUCTION	PAGE
1.	PURPOSE OF REPORT	I-1
2.	REFERENCES	I-1
3.	OBJECTIVES OF THE RESERVOIR CONTROL CENTER	1-1
SECTION	II - WATER CONTROL ACTIVITIES IN SWD	
1.	RESERVOIR REGULATION	11-1
	a. LAKE REGULATION DURING FY 81	11-1
	b. REGULATION PLANS	11-1
	c. WATER CONTROL MANUALS	11-1
	d. SECTION 7 PROJECT REGULATION	11-2
2.	SWD WATER QUALITY PROGRAM AND ACTIVITIES	11-2
	a. RESPONSIBILITIES	11-2
	b. ORGANIZATION	11-3
	c. SPECIAL ACTIVITIES IN FY 81	11-3
	d. LONG-TERM GOALS	11-4
	e. IMMEDIATE GOALS	11-5
3.	SWD SEDIMENT PROGRAM AND ACTIVITIES	11-6
4.	DATA COLLECTION AND MANAGEMENT	11-6
	a. STREAM GAGING PROGRAM	11-6
	b. COOPERATIVE REPORTING NETWORKS	11-6
	c. CURRENT MONITORING SYSTEM	11-7
	d. WATER CONTROL AUTOMATED DATA SYSTEM	11-7
	e. COOPERATIVE DATA BANK AND FORECASTING ACTIVITY	II -9

PART I

TABLE OF CONTENTS (CONTINUED)

		PAGE
SECTION	II - WATER CONTROL ACTIVITIES IN SWD (CONTINUED)	
5.	COORDINATION WITH WATER MANAGEMENT INTERESTS	11-9
	a. INTERNAL	11-9
	b. OTHER AGENCIES	11-10
SECTION	III - FACILITIES AND PERSONNEL	
1.	FACILITIES	III-l
	a. OFFICE SPACE	III-l
	b. DISPLAY FACILITIES	111-1
	c. COMMUNICATIONS EQUIPMENT	111-1
2.	PERSONNEL	III-l
	a. STAFF	111-1
	b. TRAINING	III-1
	c. TREND OF DISTRICT RESERVOIR REGULATION STAFFING	111-1
	ADDENDUM	
MENTINES	OF BOO ANDRIAL MEDITING	Add No 1

MINUTES OF RCC ANNUAL MEETING

Add. No. 1

PLATE

DAMS AND RESERVOIRS IN THE SOUTHWESTERN DIVISION

Inside Front Cover

PART II

SECTION IV - STATUS OF RESERVOIR WATER CONTROL MANUALS IN SWD

SECTION V - REGULATION OF MULTI-PURPOSE PROJECTS WITH HYDROPOWER

SECTION VI - DISTRICT WATER CONTROL ACTIVITIES

- 1. SPECIAL RESERVOIR OPERATION
- 2. WATER QUALITY PROGRAM AND ACTIVITIES
- 3. SEDIMENT PROGRAM AND ACTIVITIES
- 4. COOPERATIVE PROGRAMS

SECTION VII - RESERVOIR DATA SUMMARY

- 1. SWD MAP
- 2. INDEX BY BASINS
- 3. INDEX IN ALPHABETHICAL ORDER
- 4. DATA TABLES

SECTION VIII - MEETINGS WITH BASIN INTERESTS GROUPS

- 1. ARKANSAS RIVER BASIN COORDINATING COMMITTEE
- 2. TRINITY RIVER BASIN WATER MANAGEMENT INTERESTS GROUP

STATUS OF WATER CONTROL MANUALS IN SWD (Report Control Symbol DAEN-CWE-16)

Revised: 1 January 1982

RESERVOTE	STERAM	OWNER	DIST	UATED	CONTROL MANILAI	II VI
				SUBMITTED	SCHEDULED THRU FY 84	APPROVED
White Riv Master		뜅	LRD	Dec 54 F		Dec 55 OCE
Beaver	White Riv Basin	CE	LRD	99		29
Table Rock	White Riv Basin	CE	LRD	Oct 66 F		67
Bull Shoals	White Riv Basin	3	LRD	99		29
Norfork	White Riv Basin	8	LRD	Oct 66 F		29
Clearwater	Black River	3	LRD	Jan 73 U	Jun 82 R	Feb 73 SWD R*
Greers Ferry	Little Red River	뜅	LRD			66 OCE
Arkansas Master		83	ΦD	Apr 69 F		Jun 70 OCE
Pueblo (1)	Arkansas River	BR	ΑD	11		
Trinidad	Purgatorie River	뜅	æ	Jul 78 F		Oct 79 SWD
John Martin	Arkansas River	뜅	æ	29	Mar 82 R	
Arkansas Master		CE	e	Apr 76 U		Sep 80 SWD
Cheney (1)	N. F. Ninnescah	BR	Ę	Oct 65	Jun 84 R	Mar 66 OCE AR
El Dorado	Walnut River	뇘	ŧ	Feb 81	Dec 81	Sep 81 SWD R*
Kan	Arkansas River	CE	£	Dec 77 F		Jan 78 SWD
Great Salt Plains	Salt Fork Ark	S	£	Nov 66 F		Apr 67 OCE
Keystone	Arkansas River	뜅	£		Sep 84 R	
Heyburn	Polecat Creek	뜅	£	Jan 57	Dec 82 R	Feb 62 OCE AR
Verdigris System						
Toronto	Verdigris River	8	Ð	Jun 66 F	May 84 R	Aug 66 OCE
Fall River	Fall River	8	£	Jun 66 F	•	
Elk City	Elk River	3	e	Jun 66 F		99
Big H111	Big Hill Creek	8	£		Feb 82	•
Oologah	Verdigris River	뜅	£	Dec 75 U		Jan 76 SWD AR
Bul ch	Caney River	8	£	Oct 68		Jun 69 0CE AR
Copen	Caney River	8	£		Jul 81	
Birch	Bird Creek	8	£	Aug 81 F		Sep 81 SWD
Skiatook	Moming Creek	8	e		Aug 84	

Page 1 of 5

STATUS OF WATER CONTROL MANUALS IN SWD

RESERVOIR	STREAM	OWNER	DIST	WATER SUBMITTED	CONTROL MANUAL SCHEDULED A THRU FY 84	JAL APPROVED	OVED		
Upper Grand Sys Council Grove Marion	Neosho Kiver Cottonwood River	888	888	Apr 74 F Jul 74 F		May Aug	74 S 74 S	SWD	
Pensacola (1) Markham Ferry (1) Fort Gibson Tenkiller Ferry	Neosho River Neosho River Neosho River Illinois River Canadian River	GRDA GRDA GR	88888	64 44 67 67 67	Jul 83 R Feb 84 R Feb 85 R	Mar Mar Mar Jan	65 0 65 0 65 0 67 0 68 0	000 1 000 1	45 45
Sanford (1) Norman (1) Optima Fort Supply Canton Arcadia Eufaula Newt Graham PT VI, L&D 18 Chouteau PT V, L&D 17 Webbers Falls PT IV, L&D 16 R. S. Kerr PT III, L&D 15	Canadian River Little River N. Canadian River Wolf Creek N. Canadian River Deep Fork River Canadian River Arkansas River Arkansas River Arkansas River	## # # # # # # # # # # # # # # # # # #	8888888888	Sep 65 Feb 65 F Dec 69 Dec 69 Dec 69 Apr 72 F Apr 72 F Apr 72 F	Nov 83 U Dec 84	Feb Nov Feb Feb Feb Jun Jun Jun	66 0 65 0 70 8 70 8 70 8 72 8 72 8 72 8 72 8 72	OCE / SWD /	3 333
W. D. Mayo PT II, L&D 14 Wister Blue Mountain Nimrod	Arkansas River Poteau River Petit Jean Fourche La Fave	8888	TO TO TO TEND TEND TO TEND TO TEND TO TEND TEND TO TEND TO TEND TO TEND TEND TO TEND TEND TEND TEND TEND TEND TEND TEND	Oct 72 Mar 74 F Feb 68 F Sep 67 F	Jan 84 R	Jan Jun Mar Mar	73 S 74 S 68 0 68 0	SWD / SWD OCE OCE	A.R.
Lock & Dem 13 Ozark-Jeta Taylor Dardanelle Lock & Dem 9 Lock & Dem 8 Toad Suck Ferry Lock & Dem 7 Murray Lock & Dem 6 David D. Terry	Arkansas River Arkansas River Arkansas River Arkansas River Arkansas River Arkansas River	888888	LRD LRD LRD LRD LRD LRD	Sep 74 F Sep 74 F Mar 76 F Jul 74 F Jul 74 F Oct 71 F		Sep April Sep	74 Signature 2 of Signature 3 of Sig	SWD SWD SWD SWD SWD SWD SWD	

STATUS OF WATER CONTROL MANUALS IN SWD

RESERVOIR	STREAM	OWNER	DIST	WATER SUBMITTED	CONTROL MANUAL SCHEDULED THRU FY 84		APPROVED	
Lock & Dam 5 Lock & Dam 4 Lock & Dam 3 Lock & Dam 2	Arkansas River Arkansas River Arkansas River Arkansas River	8888	LRO LRO LRO LRO	Oct 71 F Oct 71 F Oct 71 F Oct 71 F		Sep Sep Sep	74 SWD 74 SWD 74 SWD 74 SWD	
Red River Master Altus (1) Mountain Park (1) Lake Kemp (1) Waurika Foss (1)	N. Fork Red Otter Creek Wichita River Beaver Creek Wachita River	CE BR WCID BR	22222	Nov 62 Dec 67 F Jan 76 May 73 Apr 77 Feb 61 F	Jun 85 R Jun 83 R	Feb (Oct (Mar 7) Jun /Apr /	63 OCE 68 OCE 76 SWD 73 SWD 77 SWD 61 OCE	AR R*
Fort Cobb (1) Arbuckle (1) Texoma Pat Mayse Clayton McGee Greek (1) Bugo	Cobb Creek Rock Creek Red River Sanders Creek Jackfork Creek Muddy Boggy Greek	8 8 8 8 8 8 8 8 8 8 8 8 8	222222	Jan 60 F Nov 66 Jun 75 Dec 66 F Nov 80	Jan 83 R Apr 82 Apr 84 Feb 82	Mar 6 Sep 6 Nov 7 Oct 6	61 OCE 67 OCE 75 SWD 67 OCE 81 SWD	AR R*
Little Riv Sys Pine Creek Broken Bow DeQueen Gillham Dierks	Little River Mountain Fork Rolling Fork Cossatot River Saline River Little River	888888	955599	May 74 R Jul 74 R May 76 F Mar 67 Jun 75 Sep 73 F	May 82 R	Jul 7 Nov 7 Jun 7 Apr 8 Apr 7 Nov 7	74 SWD 74 SWD 76 SWD 81 SWD 76 SWD 73 SWD	R AR
Sulphur Riv Master Cooper Wright Patman Lake O' The Pines	Sulphur River Sulphur River Cypress Creek	888	FWD FWD FWD	Sep 74 U Jun 74 U	Dec 82 R Dec 83 R	Nov 7	74 LMVD 74 LMVD	9.9
Neches Riv Master B. A. Steinhagen Sam Rayburn	Neches River Angelina River	SSSS	FWD FWD	May 62 Jul 51 Jan 73 R	Apr 84 R Aug 83 R Feb 82 R	Mar Feb 6 Feb 7	63 OCE 63 OCE 73 SWD	AR AR
Trinity Riv Master Benbrook Lewisville	Clear Fork Elm Fork	8 8 8	FWD FWD FWD	May 75 P May 75 P May 75 P	Sep 83 May 84	May 7 May 7 May 7.	75 SWD 75 SWD 75 SWD 3 of 5	

STATUS OF WATER CONTROL MANUALS IN SWD

RESERVOIR	STREAM	OWNER	DIST	WATER SUBMITTED	R CONTROL MANUAL SCHEDULED THRU FY 84	AL APPROVED
Grapevine Lavon Navarro Hills Bardwell Wallisville	Denton Creek East Fork Richland Creek Waxahachie Creek Trinity River	28222	FWD FWD FWD FWD GD	May 75 P May 75 P May 63 Aug 63 (Work on pro	Apr 84 project stopped)	May 75 SWD May 75 SWD Jul 64 OCE AR Jul 65 OCE AR
Buffalo Bayou Master Barker Addicks	Buffalo Bayou Buffalo Bayou	8 8 8 8 8 8	8 8 8	May 63 F May 63 F		72 SWD 72 SWD
Brazos Riv Master Whitney Aquilla Proctor Belton Stillhouse Hollow	Brazos River Aquilla Creek Leon River Leon River Lampasas River	2 2 2 2 2 2	ewd ewd ewd ewd ewd			75 SWD 74 SWD 76 SWD 76 SWD 76 SWD
Georgetown Granger Waco Somerville	N. F. San Gabriel San Gabriel Bosque River Yegua Creek	8 8 8 8 8	ewd Pwd Pwd Pwd	Dec 79 P Jan 80 P Jul 73 F Oct 73 F	Aug 82 Mar 82 Sep 84 U	
Colorado Riv Master Hords Creek O. C. Fisher Twin Buttes (1) Marehall Ford (1)	Hords Creek N. Concho S. Concho Colorado River	20 20 28 28 20 20 28 28	FWD FWD FWD FWD	Sep 55 Jan 56 Jan 66 P Dec 79	Sep 84 R Feb 83 R Dec 83	May 62 OCE AR Dec 62 OCE AR Sep 66 FR May 80 SWD R/FR
Guadalupe Riv Master Canyon Rio Grande Master Abiquiu Galisteo	Guadalupe River Río Chama Galisteo Creek Río Grande	25 25 25	FWD FWD AD AD AD	Oct 63 Mar 73 Aug 66 F Feb 68 Mar 68 F Aug 78		Jan 66 OCE AR May 73 SWD Feb 67 OCE May 81 SWD R Apr 68 OCE Jun 81 SWD Page 4 of 5

4.00

RESERVOIR	STREAM	OWNER	DIST	WATER SUBMITTED	WATER CONTROL MANUAL D SCHEDULED / THRU FY 84	UAL APPROVED
Jemez Canyon Platoro (1)	Jemez River Conjos River	CE BR	AD GA	Aug 66 F Apr 64 F	Aug 82 U	Feb 67 OCE May 64 OCE
Pecos Riv Master Santa Rosa Sumner (1) Two Rivers	Pecos River Pecos River Rio Hondo	CE 28 CE	AP AP OP OP	Nov 77 Dec 79 Jun 62 F	Jul 82	Nov 77 SWD AR Sep 81 SWD Jun 64 OCE

(1) - Section 7 project, flood control regulation by CE.

AR = Approved, comments to be answered.

F = Complete, comments have been answered and approved.

FR * Published in Federal Register.

P = Plan.

R = Revision or answer to comments.

R* = Returned without approval.

U = Update of existing approved manual.

WCID - Wichita County Water Improvement District. GRDA - Grand River Dam Authority.

LCRA = Lower Colorado River Authority. BR = Bureau of Reclamation.

Page 5 of 5

SECTION V - NESULATION D-MULTI-PURPOSE PROJECTS WITH INNIMEDIAL

HYDROPOWER GENERATION AT SOUTHWESTERN DIVISION PROJECTS

The 17 hydropower projects are listed in the following table. Generation by the projects, since impoundment, is shown on the graphs following the table in the order in which they are listed.

Project	Basin	Stream	No. <u>Units</u>	Total Capacity <u>MW</u>	Plate
Beaver	White	White	2	112	1
Table Rock	White	White	4	200	2
Bull Shoals	White	White	8	340	3
Norfork	White	North Fork	2	70	4
Greers Ferry	White	Little Red	2	96	5
Keystone	Arkansas	Arkansas	2	70	6
Ft. Gibson	Arkansas	Grand	4	45	7
Webbers Falls	Arkansas	Arkansas	3	60	8
Tenkiller Ferry	Arkansas	Illinois	2	34	9
Eufaula	Arkansas	S. Canadian	3	90	10
R.S. Kerr	Arkansas	Arkansas	4	110	11
Ozark-Jeta Taylor	Arkansas	Arkansas	5	100	12
Dardanelle	Arkansas	Arkansas	4	124	13
Denison	Red	Red	2	70	14
Broken Bow	Red	Mountain Fork	2	100	15
Sam Rayburn	Neches	Angelina	2	52	16
Whitney	Brazos	Brazos	2	30	17

PLATE 1

PLATE 3

PLATE 3

PLATE 5

PLATE 6

PLATE 8

PLATE 9

PLATE 11

PLATE 13

PLATE 14

PLATE 15

PLATE 16

- L. Sec. A. Benevit Brist of C.
- S. Sahar, South of Ellins.
- 4. Liverpari in Promote

SECTION VI - DISTRICT WATER CONTROL ACTIVITIES

1. SPECIAL RESERVOIR OPERATION.

- a. Albuquerque District. There were no flood control operations during the past year. Galisteo had eight short periods of flow with very short duration storage, and Two Rivers had two brief periods of storage. Due to the short Rio Grande water supply, Middle Rio Grande Conservancy District borrowed water from the city of Albuquerque for irrigation. Cochiti and Abiquiu were operated during release of the Transmountain water to hold a steady flow below Cochiti to minimize flow past the Isleta diversion weir.
- b. Fort Worth District. The drought of 1980 continued into the first part of 1981 and required the forwarding of three additional drought situation reports. There were no additional special operations due to the drought before it was ended with the floods in May and June. During those floods, 15 of the 22 flood control projects in the district used portions of their flood control storage. Also, there were 13 requests for deviation from the district to the division. Notable project operations are listed below.
- (1) The two new projects in the district, Georgetown and Granger Lakes, first reached top of conservation pool in May 1981. Additional excess runoff in June caused Georgetown to utilize 67 percent of its flood pool, and Granger to utilize 56 percent of its flood pool. When releases were initiated to evacuate the stored flood water, it was found that some of the water broke out of the channel and travelled through an old slough in the lower San Gabriel River Basin causing access problems for one county road and land utilization problems for approximately four land owners. The releases were reduced for several days to determine the extent of the problem. After district personnel visited the area, it was recommended and approved to resume the regulated releases. The problem will persist until some action is taken to correct the low bank area where the water breaks into the slough.
- (2) In February 1981, a meeting was held in the district office to present the new operating plan for Sam Rayburn Reservoir and B. A. Steinhagen Lake. Representatives from the Lower Neches Valley Authority (LNVA), contractor for the water supply, and the Southwestern Power Administration were in attendance. The procedure for using the new operating rule curve was presented, after which all agreed to use the new system until such time as a permanent salt water barrier can be completed on the Lower Neches River. To date, the use of the plan has been very successful.
- (3) Some progress was made on the Water Control Data System (WCDS) in 1981. Thirty satellite data collection platforms were installed by COMSAT General, contractor for the USGS. That contract is to be terminated in January 1982 with the disposition of the dcp's still in doubt. If those dcp's are removed, they will have to be replaced by this office. Six dcp's have been installed by the district for a total of 36 working dcps. There are also 42 DARDC sites operating for a total of 78 currently functioning automated sites.

The Lower Colorado River Authority (LCRA), local sponsor for Marshall Ford Reservoir, a section 7 project, is in the process of installing 21 line of site radio (LSR) automated gages. The data from those LSR gages will be collected by the LCRA and then transmitted via telephone lines to the district minicomputer. Installation of the remaining 48 dcp's on hand in the district will continue as possible over the next year.

c. Galveston District: Barker and Addicks Reservoirs. The only special reservoir operation conducted at Barker and Addicks Reservoirs during the year was gate changes to provide for routine maintenance and painting of the gates and to allow for maintenance to downstream bridges. New area-capacity data and adjusted reference elevations were implemented beginning in FY 81. These changes were necessitated by land-surface subsidence throughout the reservoir area. A study was conducted on inflowing streams above both Reservoirs to determine the effect of relaxing the present district policy of not allowing drainage improvements on Federal lands. The results of this study indicated that some relaxation of the present policy was necessary to relieve critical drainage problems of existing developments upstream of Federal lands.

d. Little Rock District.

- (1) The predominant aspect of FY 81 water control activities was the continuation of rainfall deficiencies through the first 7 months of the year. During the period October 1980 through April 1981, recorded rainfall was 50 to 55 percent of the long term averages on the White River Basin, 70 to 75 percent on the LRD portion of the Arkansas River Basin, and 60 to 75 percent on the Little River Basin. The distribution of the rainfall coupled with the dryness of the watersheds going into the year produced an even more pronounced reduction in streamflows. Discharge volumes during this period were 15 percent of their normal amounts on the Arkansas River and 30 percent of the average volumes for the White River. Flows on the Little River Basin were about 40 percent of their normal.
- (2) During this period low flows on the White River along with extremely low stages on the Mississippi River reduced navigation depths in the entrance channel (lower 10 miles of the White River) to the McClellan-Kerr Navigation System from 16 October through 5 February. Depths in this reach receded to around 7 feet during the worst conditions in January. Restrictions on two sizes and depths greatly reduced navigation during the entire period and for all practical purposes stopped barge traffic into and out of the system. As a result of these restrictions and in view of the continuing shoaling problems, the district is investigating potential long range solutions to depth problems in this reach.
- (3) The system of multiple-purpose lakes on the White River was also severely impacted by the continuation of drought conditions. These lakes received about one-third of their normal inflows through April and, in the case of Bull Shoals and Table Rock Lakes, a severe inflow deficiency continued throughout the year. Storage at the two projects receded to approximately 30 percent of the normal conservation volume by early spring. However, they have experienced some recovery and Table Rock is currently 85 percent full and Bull Shoals is 40 percent full. In general, water conservation measures by the

Southwestern Power Administration prevented the lakes from receding to even more severe levels. Their purchases of nonhydro energy to meet power contract commitments on this system enabled them to maintain lake levels as high as possible for peaking capacity.

- (4) Even though the district was dominated by low flows, there were some flood control operations at all the district lakes, primarily during late spring and summer months. Flood regulation benefits were obtained for 3 rises on the Arkansas River System, 4 on the White River System, and 14 on the Little River System.
- (5) Special operations at specific projects for Water Year 1981 are summarized in the following subparagraphs.
- (a) Table Rock. As in past years, peak generation rates were restricted at the beginning of FY 81 because of low D.O. concentrations in the turbine releases. Peak generation rates were restricted to as low as 30 MW per unit during the period of 17 October through 7 November. A gradual lake overturn began on 7 November with the complete overturn occurring in December. In addition to restrictions on peak generation rates, oxygen injection equipment has been inscalled in the house station units in an effort to improve D.O. concentrations in project releases in FY 82. These injection facilities will be used during those periods when the main units are off line. Testing is currently underway to evaluate the effectiveness of these facilities.
- (b) Bull Shoals and Norfork. Because of the severe lake drawdowns in the White River Lake System during the spring and early summer months, the normal fishery releases for the White River Trout Fishery were suspended as a part of the overall plan for water conservation. A contingency release plan geared to "as needed" requests by the Arkansas Game and Fish Commission was adopted for use throughout the drought period. Because of a failure in communications, temperatures reached lethal ranges in the trout fishery and on 20 July a fairly significant fish kill was experienced. The projects were then returned to their normal fishery release schedules for the remainder of the summer.
- (c) Clearwater. Since its initial filling, Clearwater has experienced a noticeable seepage problem through its left abutment when lake levels exceed elevation 510 (approximately 16 feet into the flood pool). During late May, flood releases were curtailed to allow pool levels to rise to elevation 530 so the Foundations and Materials Branch could investigate the source and mechanics of the leak. Normal flood releases were resumed after completion of the field tests on 26 May. The data from these tests will be used to evaluate the severity of the problem and establish possible remedial actions.

During the period 27 March-10 April, the pool was raised about 2 feet above conservation level to collect water for special releases needed for instream flow needs tests on the Black River downstream of Clearwater Dam. These tests were performed for the Corps by the Kansas City Fish and Wildlife Service in conjunction with the ongoing White River Lakes Restudy. The primary purpose of the tests was to collect data from which fish and wildlife needs could be evaluated and projected for the various flow rates in the Black River.

As an aid to construction and filling operations at the Arkansas Game and Fish Commission's Duck Refuge area near Corning, Arkansas, we delayed the seasonal pool drawdown at Clearwater Lake to 15 October 1980 following last year's seasonal pool operation and until 21 September 1981 following this year's seasonal pool operation. The seasonal pool is normally lowered from elevation 498 to elevation 494 beginning on 15 September. As this is not considered a critical change to the regulation aspects of the project, we plan to incorporate the delay into our Clearwater Regulation Plan in the next manual update.

(d) Millwood. The Millwood Lake drawdown to elevation 255.0 which was begun on 2 September 1980 for the Arkansas Game and Fish Commission was completed on 1 March 1981. The drawdown is requested on 3-year cycles to aid in the control of aquatic vegetation and as a fish management tool. To date we have not received any information on the success of the drawdown.

During the period 7-18 November 1980, floodwaters were held in the pool to elevation 255.7 (conservation level was 255.0 in response to the AG&FC drawdown) for a coordinated release with Tulsa District projects on the Red River to provide flow conditions needed by LMVD at the old river structure on the lower Red River.

- (e) Greers Ferry. As inflows and lake levels at Greers Ferry were substantially better than the other White River Lakes during the drought period at the first of the year, the seasonal pool, elevation 462, was continued through 30 September 1981 in lieu of the normal 1 May drawdown to increase the project's power storage capability. The extra storage would then be available to help offset the impact of the drought on the power production potential. However, inflows were inadequate to fill the pool to this level. The pool peaked near elevation 461 in mid-May and began a slow fall as power loads increased at the project.
- (f) <u>Deviations</u>. The Little Rock District utilized 12 deviations from their project regulation plans in FY 81. These were, in general, of a minor nature. Most of the deviations were used in conjunction with the special operations described in the above subparagraphs. The remainder were for shoaling problems on the Arkansas River Navigation System and were for small increases in navigation pool limits except for one deviation for a 1-foot pool lowering at Pool 2 for construction work on a mooring cell.
- (6) Special studies conducted during FY 81 in support of the district water management functions are summarized in the following subparagraphs.
- (a) White River Lakes Restudy. This study has been underway since March 1975. Its purpose is to determine the advisability of modifying the regulation plans of the existing reservoirs in the White River Basin to provide additional measures for flood control, regional water supply, agricultural water supply, hydroelectric power, navigation, recreation, fish and wildlife, and other related land resources. It is in stage 3 and is scheduled for completion in September 1982.

(b) <u>Hydropower Studies</u>. During FY 81, the Little Rock District prepared and submitted the following reports on hydropower studies on the Arkansas River:

Survey Report - Murray L&D Stage 1 and 2 Report - L&D 8, 9, and 13 Draft Survey Report - L&D 8, 9, and 13

In addition, work was accomplished on the following hydropower reports for submission in early FY 82.

Final Survey Report - L&D 8, 9, & 13 Stage 1 & 2 Report - L&D 2 through 6 Draft Survey Report - L&D 2 through 6

(c) Flood Emergency Plans. Flood Emergency Plans for Chapter 9 of the O&M manuals, inundation maps for Reservoir Regulation Manuals, and for Conway Filling D. M. Computations were completed for Norfork, Clearwater, and Conway Dams. Computations on the other dams are in the stages described below:

Beaver	90%	complete
Table Rock	9 0%	complete
Bull Shoals	0%	complete
Nimrod	25%	complete
Blue Mountain	20%	complete
Dam No. 2	95%	complete

e. Tulsa District.

(1) Arkansas River Basin. Flows in the Arkansas River basin were only about 25 percent of normal this year. No major flooding was experienced during the year. Inflows into Hulah Lake on the Caney River were only about 7 percent of normal. Toronto and Fall River Lakes, which had only 10 percent and 40 percent of their conservation storages remaining at the beginning of the FY, fell to 6 percent and 24 percent before refilling in May. Record low pool levels since ultimate conservation impoundment were established at Birch, Council Grove, Heyburn, Hulah, Oologah, and Toronto. Normal and above normal rainfalls over most of the Arkansas River basin during May, June, and July broke the drought pattern which had existed for more than a year. Impoundment was begun at Big Hill Lake on 31 March 1981 and at El Dorado Lake on 29 June 1981. Neither pool had risen to the minimum conservation level by the end of the FY. Kansas Gas and Electric Company began using the entire yield of the water supply storage in John Redmond Reservoir in October 1980. An agreement with the Kansas Board of Agriculture, Water Resources Division, for passing natural flows through John Redmond Dam and Reservoir for downstream water rights was signed in August 1981. Hominy Creek was diverted through the

outlet works at Skiatook at 2:20 pm on 26 June 1981. Water supply releases of 30,000 ac-ft and 25,000 ac-ft were made from Canton in November 1980 and April 1981 for the city of Oklahoma City. Special releases were made at Keystone Dam and at Robert S. Kerr and W. D. Mayo Locks and Dams in September to provide flows for raft races at Tulsa and Fort Smith. All three power units at Webbers Falls Lock and Dam remained out of service. No navigation tapers were made this FY.

(2) Red River Basin. Lake pool elevations were below normal at all projects except Pine Creek and Hugo Lakes at the beginning of the fiscal year. The spring rains allowed all the projects from Lake Texoma and Arbuckle Lake and east to enter summer with full conservation pools. Arbuckle set a record low pool of 867.61 feet on 24 February 1981. Most of the projects ended the fiscal year with the lowest pool elevations of the year. Irrigation releases drew Altus Reservoir to elevation 1525.78 at the end of September. This is the lowest pool level since October 1953 and 92 percent of the irrigation and water supply storage was withdrawn. Both hydropower projects in the Red River basin ended below normal with Lake Texoma down 27 percent and Broken Bow down 35 percent into their conservation pools. The precipitation amounts for the Red River basin varied from near normal in the western part of the basin to very much below normal in the eastern part of the basin. The basin rainfall at the Corps' projects varied from 18.44 inches below normal at Pat Mayse Lake to 4.50 inches above normal at Waurika Lake. Months with above average rainfall in the western part of the basin were December 1980 and February through August 1981. In the eastern part of the basin the only months with above average precipitation were October of 1980 and July and August 1981. Although the rainfall was near normal in the western part of the basin, the inflows were generally well below normal with some above normal inflows during the spring. Altus Lake had only 14 percent and Lake Texoma had 61 percent of normal inflows. The inflows in the eastern part of the basin were also below normal and varied from 73 percent at Pat Mayse and Hugo to 88 percent at Pine Creek. Inflows were above normal in the eastern part of the basin in October and December of 1980 and in June and July of 1981. A seasonal pool operation was started at Pine Creek Lake in an effort to improve the fish habitat. After the Fourth of July weekend the pool was drawn from 443.5 feet to 440.0 by the end of July 1981. This elevation was held through the Labor Day weekend. The pool was then lowered to elevation 438.0 during September. Water was diverted through the conduit at the Clayton Lake project at 9:20 am on 4 May 1981. Special releases or operations were made at Lake Texoma and Broken Bow Lake to facilitate canoe races.

2. WATER QUALITY PROGRAM AND ACTIVITIES.

a. Albuquerque District.

- (1) The goals of the Albuquerque District water quality data collection program are to provide an accurate picture of lake conditions as to pH, temperatures, and dissolved oxygen. Trends can be monitored to show improvement or degradation of water quality and the data can be used to identify public health, fish and wildlife problems.
- (2) Data are entered into EPA STORET data base and used to monitor standard lake conditions. Monthly readings for pH, dissolved oxygen, and temperature are taken downstream during water release to monitor discharge water quality.
- (3) Parameters measured are surface pH, turbidity, and dissolved oxygen-temperature profiles at 1 meter intervals to the lake bottom. Data are collected monthly as follows:

PROJECT	LOCATIONS SAMPLED	NUMBER
Abiquiu	Chama inflow, Canones inflow, reservoir near dam, release	4
Cochiti	Bland canyon, reservoir near dam, release	3
Conchas	Conchas and Canadian inflow, reservoir near dam, irrigation headworks	4
John Martin	Arkansas inflow, reservoir near boat ramp, reservoir near dam, reservoir near Ft. Lyon Hospital, two Lake Hasty locations, release	7
Trindad	Purgatoire inflow, reservoir near dam, release, reservoir near Carpios ridge	4
Jemez Canyon	Inflow, reservoir near dam	2
Santa Rosa	Pecos inflow, reservoir near dam, reservoir near asphalt pit, release	4

Biological samples are tested monthly at Cochiti and occasionally at other projects. One person in operations is trained in the use of a gas chromatograph to test for dissolved nitrogen. Base line testing at projects is planned during 1982 spring runoff. Tests at Santa Rosa are planned for hardness and sulfate to monitor effects of gypsum deposits in the reservoir. Samples of inflow and releases at two reservoir locations will be tested monthly.

b. Fort Worth District.

(1) Goals. The goals of the Fort Worth District water quality data collection program are to collect water quality data at all the existing projects in order to establish base line conditions, monitor subsequent changes, and identify water quality problems and resolve same where possible.

(2) Summary of Activities.

- (a) Water quality sampling program at the Fort Worth District for FY 82 will continue at about the same level as for FY 81. Intensive monitoring started in FY 81 will establish base line conditions by the end of FY 82 at 17 of 21 projects in the district. Intensive monitoring at these 17 projects will be discontinued at the end of FY 82. Beginning FY 83, maintenance monitoring will be started at projects where intensive monitoring showed problems. Intensive monitoring as well as maintenance monitoring will be conducted in accordance with SWD draft regulations on Water Quality Activities at SWD Civil Works projects.
- (b) The district completed turbine venting tests at Sam Rayburn Reservoir during the summer of 1981. Turbine aeration at Sam Rayburn depended on the existence of a negative static pressure in the draft tube. However, the turbine units at Sam Rayburn have the turbine water wheel set below tailwater elevation, thus producing only a small negative pressure or even positive pressure in the draft tube except at extremely low gate openings.
- (c) The first set of tests was made with one turbine in operation at a discharge of 2,200 cubic feet per second (c.f.s.). Turbine vent was closed on the first day of the test and opened on the second day of test. The D.O. concentration level of 3 mg/l was observed with the turbine vent closed and 4.9 mg/l with the turbine vent open. With about 45 percent gate opening for a discharge of 2,200 c.f.s. and with the turbine vent open, an improvement of about 2 mg/l of D.O. was observed in the water released through the turbine. This improvement was not from venting alone. Part of the improvement was due to the aeration by turbulence of water flowing out of the powerhouse. It was observed that airflow into the venting system from the atmosphere was higher at the beginning of releases, but reduced considerably when the releases and tail-water elevation stabilized.
- (d) The second set of tests consisted of releases at 4,400 c.f.s. with one turbine in operation, both with and without the turbine venting. Tests with vent open had to be discontinued within minutes after starting of the tests because of the water being pulled into the venting lines as a result of positive pressure in the draft tube. This was caused by the decrease in the velocity of discharge through the turbine runner and increase in the tail-water elevation.

- (e) The third set of runs consisted of releases at 2,200 c.f.s. through each of the two units (total 4,400 c.f.s.) both with and without the venting. The negative pressure produced was so small that the airflow from the atmosphere into venting line was very insignificant. The result was that there was very little difference in the D.O. content of turbine discharges with and without the venting.
- (f) Further tests of 3,300 c.f.s. through each of the two units (tota! 6,600 c.f.s.) were cancelled since tests with 2,200 c.f.s. through each of the two units (total 4,400 c.f.s.) were not sucessful.
- (g) The problem of positive pressure can sometimes be overcome by installing wedge shaped deflector plates in the draft tube as was done at the Alabama Power Company's Logan Martin Dam. Deflector plate causes the flow to separate from the draft tube wall and produces a pressure lower than the free stream static pressure. However, discussion with the Alabama Power Company personnel indicates that the deflector plate method is not suitable for any turbine with adjustable blade runner, similar to the one at Sam Rayburn. In order for the flow to separate from the draft tube wall to produce negative pressure, the flow leaving the turbine runner must be in line with the deflector plate. It is not possible with the adjustable blade runner for the flow to be in line with the deflector plate.
- (h) It is noted that D.O. levels during these tests, except on the first day of tests when the D.O. level was 3 mg/l, were very nearly equal to or exceeded the required minimum of 5 mg/l. However, the D.O. measurements taken in the stilling basin each morning before the tests were started indicated D.O. concentration levels of less than 1.6 mg/l with surface water temperatures ranging between 65°F and 70°F. Contrary to the premise that the fish will not survive in waters with D.O. concentrations less than 2 mg/l, several different types of fish-stripers, bass and catfish of 1 to 2 feet in length—were observed moving in large groups in the stilling basin at all times except when power was being generated.
- (i) The only remaining viable physical option to the D.O. problem below Sam Rayburn Reservoir is a skimming weir. However, the very basic question as to what are the benefits remains unanswered. No fish kills or environmental damages have been observed. The State regulations allow 8 hours of diurnal variation down to 4 mg/l of D.O. We usually generate for 12 hours or less per day in the summer. Since no obvious environmental damage has occurred, either the State or LNVA should consider a study to evaluate whether any damage does actually occur. In light of currently available information, it is recommended that the State be asked to consider changing the D.O. standards for segment 609 below Sam Rayburn to allow up to 12 hours of daily variation down to 4 mg/l of D.O. Should future detailed biologic studies by LNVA or the State indicate significant environmental damage, further consideration should be given to the skimming weir option.

c. Galveston District.

- (1) <u>Barker Reservoir</u>. The 3-year water quality program for Barker Reservoir is being concluded upon mutual agreement with the U.S. Geological Survey that sufficient data now exists to show the effects of the length of impoundment on quality and what release rates produced the most improvement downstream. A detailed report will be available in FY 82.
- (2) Addicks Reservoir. The 3-year water quality program for Addicks Reservoir is being concluded upon mutual agreement with the U.S. Geological Survey that sufficient data now exists to show the effects of the length of impoundment on quality and what release rates produced the most improvement downstream. A detailed report will be available in FY 82.
- d. Little Rock District. The overall goal of the water quality management program is to improve or maintain water quality in the Little Rock District projects at the highest level possible, consistent with each project's purposes, design, and funding. Specific objectives to achieve this goal will be identified as the District Water Quality Management Plan is approved and implemented. The district water quality management programs are divided among various elements of the Construction-Operations and Engineering Division by functional missions.
- (1) Construction-Operations Division Responsibilities. The Permits Branch has been given the responsibility for conducting the district water quality program for Construction-Operations Division. The branch is composed of a Permits and Water Quality Section and a Compliance and Data Collection Section. Since the regulatory functions of the branch closely parallel functions of the division's water quality management program, field activities are very conveniently and efficiently combined to implement the programs. This is primarily due to the related procedural and logistical requirements of both regulatory functions and water quality activities. These responsibilities include the following programs relating to water quality management.
- (a) Lake Monitoring. General lake water quality monitoring of all Little Rock District Lakes other than the main stem of the Arkansas River is presently performed three times per year on each lake at six to eight stations at various depths. The field work is done by USGS personnel under Corps of Engineers contract. Approximately 26 parameters are measured to ascertain general lake water quality and to provide background data in abating water pollution. There are no State or other Federal programs which routinely provide these data on the main stem reservoirs operated by the Corps. Data obtained are maintained in the Permits Branch and are available from STORET and annual USGS Water Resources Data Publications for Arkansas and Missouri. Data obtained are used to evaluate long and short term water quality changes, to identify pollution sources, and to properly manage lake water quality. Their evaluations include the identification of potential pollution sources so

as to enable the Corps' influence to bear its persuasiveness at pressure points in decision making processes of others. This will assist project personnel and district officials in assuring that best management practices are followed for erosion control in development around lake areas and that best available technology is applied where domestic and industrial wastewater discharges are allowed in district lakes. These findings are published in Water Quality Management Reports and annual updates for each project. The Greers Ferry Water Quality Management Report has been published and the Table Rock Report will be published as soon as final revisions are made.

- (b) Discharge Permit and Operational Monitoring. Monitoring of district wastewater treatment systems and other NPDES discharges in Missouri and Arkansas is performed in accordance with NPDES permit requirements. Permits Branch personnel obtain the necessary monthly samples and the USGS laboratory analyzes these for BOD, bacteria, and suspended solids. Operational monitoring performed twice weekly by the sewage treatment plant operators includes pH, flow, chlorine residual, dissolved oxygen, and settleability. This program is conducted in accordance with Section 402 of the Clean Water Act. This program is implemented by the State of Missouri and EPA, Region VI in Arkansas.
- (c) <u>Bathing Beach Monitoring</u>. Monitoring is performed five times monthly by resident area personnel on district bathing beaches during the swimming season to insure safe bacteriological quality of lake waters. Samples are analyzed by the Missouri and Arkansas Health Departments free of charge. A central log containing results for all projects is maintained by the Permits and Water Quality Section. This program is administered in accordance with SWD Regulation 1130-2-9 and applicable State laws.
- (d) Potable Water Monitoring. Potable water supplies of the district are tested for physical, chemical, and bacteriological quality to insure their adequacy and safeness. Bacteriological samples are collected by resident area personnel and mailed to the appropriate health departments, which presently perform the analyses free of charge. Permits Branch personnel collect samples for complete chemical analysis by the health departments on each new water supply and for periodic nitrate analysis thereafter. Data obtained are used in an annual sanitary survey and report forwarded to SWD for reporting to OCE. This program is conducted as per ER 1130-2-407 and applicable Federal and State drinking water standards for noncommunity water supply systems.
- (e) <u>Dredged Material Analysis</u>. Three times yearly, a bottom sediment survey is performed at eight locations along the Arkansas River navigation project and less frequently at other locations on other district rivers and lakes. Sediment and water column samples are frozen and sent to SWD laboratory for sediment, water, and elutriate analyses. The purpose of this program is to detect potential effects of dredging operations on water quality. These operations include both commercial dredging under Corps permits and channel maintenance dredging performed under Corps of Engineers contract.

- (f) Pollution Complaints and Hazardous Substance Spill. Permits Branch receives calls reporting instances of pollution and hazardous substance spills and coordinates these reports with appropriate Federal and State officials. On occasions, branch personnel investigate these pollution complaints to verify existing conditions and determine effects on project operations. During oil and other hazardous substance spills, branch personnel participate in emergency containment and cleanup measures with Coast Guard and EPA officials and when so designated act as the Federal on-scene coordinator for these two agencies.
- (g) Special Studies. The Compliance and Data Collection Section routinely assists Engineering Division in obtaining samples and analyses for special water quality studies conducted by that division, such as for planning purposes. Coordination is also accomplished with studies being performed by other agencies such as EPA, State Pollution Control, Health Department, Soil Conservation Service, etc.
- (2) Engineering Division Responsibilities. There is no specific organization for water quality studies within Engineering Division. Responsibility is assigned to the various elements based on the nature of the program or study.
- (a) Lake Profile and Release Monitoring. Water quality data have been collected from Beaver, Table Rock, Bull Shoals, Norfork, and Greers Ferry Lakes since 1966. Presently, monthly profiles of pH, temperature, dissolved oxygen, and specific conductance are obtained from the five lakes, as well as a grab sample below each dam. Additional profiles are obtained from Table Rock Lake during critical times of the year. These data are used in the design of operating features needed for preventing or lessening water quality problems downstream of the dams. They also contribute to the water control management activities required to maximize dissolved oxygen concentrations in the fall releases from Table Rock and to maintain acceptable temperatures downstream of all lake projects from May through October. Hydraulics Branch is responsible for this program and data collection is contracted to USGS. The program was expanded in FY 81 to include Blue Mountain, Clearwater, and Nimrod Lakes. Similar data collection at DeQueen, Dierks, Gillham, and Millwood Lakes began in April 1981 after these lakes were transferred to LRD from the Tulsa District.
- (b) Instream Flow Problems and Needs Evaluation. The results of preliminary instream flow studies conducted in response to EC 1110-2-214 were presented in part III of last year's report. Special studies were recommended by the district for Nimrod, Blue Mountain, Clearwater, and Greers Ferry Lakes to investigate problems identified in the prelimnary studies. These four projects were included in a group of 20 studies recommended by SWD for further study, but they have not been funded yet.

Evaluations of instream flow needs for fisheries in the tail waters of Bull Shoals, Norfork, Greers Ferry, and Clearwater Lakes have been conducted by the U.S. Fish and Wildlife Service under contract to the Little Rock District. The Incremental Flow Methodology developed by the Cooperative Stream Flow Group, Fort Collins, Colorado, was used for the evaluations. This method quantifies the usable potential habitat available to various life history stages of selected fishes for a range of discharges.

Work continues in an effort to minimize adverse effects on the White River trout fishery due to high temperatures. An emergency procedure to utilize conduit releases is being formulated. A field study is being planned to measure time of travel and related temperature changes for different discharge rates on the White River. The results will be very useful because the timing of releases is critical in preventing excessively high temperature. Four temperature monitoring stations are being installed on the White and North Fork Rivers to provide real time temperature data.

- (c) <u>Special Studies</u>. The Planning and Hydraulics Branches periodically conduct water quality studies as part of normal project planning efforts such as preparation of survey reports, design memorandums, and environmental impact statements. Certain special water quality related studies are identified below:
- (i) Table Rock Dissolved Oxygen. The impacts of various levels of dissolved oxygen in the releases from Table Rock Lake are being studied: how they affect the fishery in Lake Taneycomo and the socioeconomics of the surrounding area. Alternative solutions will also be investigated as appropriate. The study being conducted by LRD with assistance from SWD and others is continuing. Some delay has been experienced because of shifted priorities and utilization of available expertise; however, we are resuming with the development and evaluation of the technical features which are to be considered in different combinations as alternative solutions to the problem. In the interim, we have begun the technical evaluation of the benefit analysis developed by the Missouri Department of Conservation. We have also printed some of the completed reports to be used as references and appendixes to the study report.

Additional oxygen lines have been designed by SWD and LRD and installed to provide oxygen to the house unit penstocks. These new lines tie into the existing oxygen lines serving the main turbines. These additional lines will provide oxygen input during the seasonal low hypolimnetic dissolved oxygen period at those times when the main turbines are not generating. Tests are presently underway (October) to evaluate the effectiveness of this system.

(ii) <u>Greers Ferry Lake Environmental Protection Study</u>. The Planning Branch has completed the problems and needs determination of this 208 Water Quality Management-type study which also addresses solid waste disposal needs.

- (iii) Little Rock Metro Urban Study. This study, which included a 208 WQM study, was completed in FY 81. Most of the water quality work, which included data collection, modeling, and evaluation, was contracted.
- (iv) Southwestern Lakes. A water quality study of the Tri-Lakes and Lake Millwood was conducted during the summer of 1981. The data collected will be used to determine base line water quality conditions and establish the permanent monitoring program, prepare environment assessments for Millwood and Dierks, identify existing or potential sources of pollution and relating them to any resultant effects on the lakes, and evaluating causes of short and long term changes in water quality.
- (v) Norfork Units 3 & 4 Feasibility Study. An essential part of this study is an evaluation of the water quality impacts of the proposed pump-back units and afterbay on Norfork Lake, within the proposed afterbay, and downstream on the North Fork and White Rivers. Modeling has been initiated and will be completed in the early part of FY 82.
- (vi) White River Lakes Study. This study includes an evaluation of how the release schemes of Bull Shoals, Norfork, and Greers Ferry Lakes might be modified to minimize adverse water qualty impacts downstream.
- (vii) <u>Taylor Bay Siltation Study</u>. This study investigated the effects of suspended sediment on fishing in Taylor Bay near Augusta, Arkansas. The sources of the silt were identified and alternate solutions were developed. Funds are included in the FY 82 budget to develop a plan to reduce or eliminate sediment in Taylor Bay.
- (d) <u>Laboratory Capabilities</u>. Water quality analyses performed at the district level are limited to the following capabilities:
- (1) Field testing of water quality which may be conducted by Corps personnel includes dissolved oxygen, temperature, pH, specific conductivity, Secchi Disc measurements, and others using HAC field test kits approved by EPA.
- (ii) A small laboratory located in Construction-Operations Division can perform the following analyses: dissolved oxygen, color, turbidity, alkalinity, hardness, and others using colorimeter methods for analyses.
- (e) <u>Data Management</u>. Lake water quality data collected and analyzed by USGS are entered into WATSTORE AND STORET, the computerized data management systems of the USGS and EPA, respectively. These data are also published in the annual USGS water resources reports for Arkansas and Missouri. Results of potable water, bathing beaches, NPDES, and other monitoring are kept in log books or files as appropriate. Special data collection results are contained in the reports dealing with the specific subject for which data were collected.

(f) Future Water Quality Management Program. A comprehensive coordinated District Water Quality Management (WQM) Plan is being developed. It will assign responsibilities for the various aspects of the overall program and establish guidelines for assigning responsibility for new programs and studies. A District Water Quality Committee is being established. It will guide the development of the WQM Plan, periodically evaluate the program, and help establish priorities for future work. A major feature of the plan will be the establishment of a three-phase process for evaluation of all projects. Phase I would result in specific WQM objectives for each project based on a preliminary assessment of available data. Phase 2 would involve collecting data, developing and assessing alternatives, and recommending programs to meet the project objectives. Phase 3 would be implementation of the recommended plan and monitoring to assess its success.

Funds have been budgeted for FY 82 to establish a STORET account and data file, assess nitrogen supersaturation potential at selected projects, and assess the performance of the unique outlet structure design at the Conway Water Supply project.

- e. <u>Tulsa District</u>. Studies conducted to evaluate various regulation procedures designed to provide quick response to potential fish kills and long term regulation procedures to enhance downstream water quality were continued during FY 81. These studies included the power projects which typically release water from the anoxic hypolimnetic zone. During the summer and early fall of 1981, dissolved oxygen, temperature, conductivity, and pH data were taken at Lake Texoma, Eufaula, Keystone, Broken Bow, and Tenkiller. Data were taken at specific intervals when releases were being made through the power units, sluice gates, or both in order to evaluate effects downstream.
- (1) At Keystone water samples were analyzed for chloride and sulfate content when unusually high conductivity data were observed. A minor fish kill was observed below Keystone during a period of no generation in early May 1981. A possible cause was leakage of anoxic water having a high conductivity through the power units during a period of no generation. Minimal releases through a sluice improved downstream conditions during periods of no power release.
- (2) Studies of effects of releases from the various intake levels at Birch on downstream dissolved oxygen content were performed during August. These studies showed releases through the low flow facilities to have D.O. levels near saturation even though the D.O. level in the lake was anoxic below a depth of 5.5 meters.
- (3) Data was taken at Hugo to evaluate lake stratification in conjunction with a proposed selective level water supply intake for the city of Hugo, Oklahoma. At Pine Creek Lake, localized destratification tests were run in conjunction with Oklahoma State University research studies.

- (4) Water quality samples were taken on Cow Creek and Cache Creek during the summer to determine if releases from the Waurika water conveyance system would help the quality of these streams. The results are not yet available.
- (5) Data collected below Denison Dam showed the conditions to be critical for the fishery in early September. When fish were observed in stress on 4 September, discharge of 50 c.f.s was made through the flood conduit. This release not only prevented a fish kill, but improved the fishing during nongenerating periods. D.O. levels were near saturation below the stilling basin as a result of the release. The release ended on 22 September when the lake had sufficiently destratified.

3. SEDIMENT PROGRAM AND ACTIVITIES.

a. Albuquerque District.

- (1) Revised area-capacity data for Trinidad and John Martin, based on FY 80 surveys, were implemented in FY 81. A technical report by LTC Peter F. Lagasse of the U.S. Military Academy in West Point which assessed the impact of the operation of Cochiti on the Rio Grande channel between the dam and Isleta was completed in December 1980. Copies of this report are available.
- (2) A sedimentation study of the Rio Grande Basin between Cochiti Lake and Elephant Butte Reservoir has been submitted to the district in final draft by the contractor, Simons, Li and Associates of Ft. Collins, Colorado. This study includes an analysis of the effects of the existing features of the Middle Rio Grande Project over a 100-year period of time. Computer programs for routing water and sediment (by size fractions) through the river system have been developed, as well as a program which determines reservoir sediment deposition based on the empirical area-reduction method. User manuals for these programs will be made available.

b. Fort Worth District.

- (1) Sediment activities consisted of the routine studies in connection with hydrology investigations.
- (2) The sediment sampling stations for the Navasota River near Bryan, Brazos River Basin, and Trinity River near Oakwood, Trinity River Basin, were discontinued.
- (3) The field portion of the Bardwell Lake sediment resurvey, Trinity River Basin was completed during the period July-September.
- c. Galveston District. No sediment work was conducted at Barker and Addicks Reservoirs during FY 81.

d. Little Rock District.

(1) Summary of Activities. Suspended sediment samples are collected at 17 stations. The 247 sediment ranges on the main stem of the Arkansas River are resurveyed as near annually as funds and survey work load permit. From October 1980 through September 1981, there were 143 ranges scheduled for resurveying; all resurveys were accomplished. There are 139 ranges scheduled to be resurveyed in FY 82. Fifty-four tributary ranges are resurveyed less frequently when appreciable deposits are suspected. About 50 index ranges out of 350 sediment ranges in the other eight lakes are resurveyed at 10-year intervals. During the period from October 1980 through September 1981, none were resurveyed.

- (2) White River Entrance Channel Model. Water years 1980 and early 1981 produced drought-like conditions along the Mississippi River Basin. The conditions created intermittent navigation depth problems in the White River Entrance Channel. For 58 days between mid-October 1980 and early February 1981, entrance channel traffic was restricted to tows of limited size and draft because of channel constrictions resulting from low Mississippi River stages. A Design Memorandum (White River Entrance Channel, Mississippi River to Arkansas Post Canal, Design Memorandum No. 1, General, Supplement No. 3) was prepared which described the problem, described the reasons the problem occurred, and addressed possible solutions to the problem. The approved D.M. recommended a physical hydraulic model at the Waterways Experiment Station to verify the recommended actions and study their effectiveness. Data is being gathered to begin development of the physical model.
- e. Tulsa District. The following sediment activities were accomplished during FY 81. Segmental elevation-area data for John Redmond Dam and Reservoir was developed. Reconnaissance surveys of Fort Supply and Heyburn Lakes and John Redmond Dam and Reservoir were completed. A contract was initiated and completed for the installation of sedimentation and degradation ranges at El Dorado, KS. Installation of the end monuments and initial survey of sedimentation and degradation ranges at Clayton Lake were completed. Only those sedimentation ranges set forth in the D.M. 15, Clayton Lake, Sedimentation and Degradation Ranges, Apr. 1975, have been installed. Installation of the inner monuments will be accomplished during the first part of FY 82. The 1962 and 1969 Report on Resurvey of Sedimentation and Degradation Ranges for Lake Texoma was approved. Reservoir Sediment Data Summary for John Redmond Dam and Reservoir was approved and drafts for Webbers Falls L&D 16, R.S. Kerr L&D 15, Keystone Lake have been prepared. Hydrographic survey data was collected on Bardwell Lake for the Fort Worth District. Suspended sediment samples were collected at 17 sites.

4. Cooperative Programs.

a. Albuquerque District. The climatic program with the Weather Bureau is unchanged. The cooperative stream gaging program with the U.S. Geological Survey covers 43 stations. All stations on local protection projects have been discontinued. Total program cost for FY 82 is \$192,750.

STATION SUMMARY

	STATION	S	
BASIN	STREAM	RESERVOIR	TOTAL
Arkansas	8	2	10
Canadian	4	1	5
Rio Grande	13	4	17
Pecos	8	3	11

Note: Only 3 gages not associated with project operation.

b. Fort Worth District.

(1) National Weather Service. Funds were transferred by FWD to the NWS in the amount of \$84,167 for FY 81. Under ongoing programs, the Corps collects rainfall at project offices while the NWS collects all other rainfall reports and maintains weather stations, including those at Corps' projects. Rainfall summaries are transmitted to the Corps via teletype, telephone, and a daily computer printed map which displays current totals for reporting stations. Supplemental and accumulative storm total printouts are provided upon request. Additional hydromet information was received from the NWS via the teletype circuits and AFOS. Radar scans were obtained on facsimile copier via a direct connection to the NWS Stephenville radar site (which covers the geographic area where the majority of the district's projects are concentrated) and via commercial long-distance telephone into NWS radar sites at Galveston, Hondo, and Brownsville, Texas, and into Oklahoma City, Oklahoma. Continuous updates are possible during storm periods.

(2) U.S. Geological Survey.

(a) General. The USGS performed operation and maintenance on all streamflow, lake level, sediment sampling and some water quality stations in cooperation with the district. In addition, they arranged for reporting at river stages during flood events, made supplemental flow measurements, and processed all published data.

(b) Funds. The Fort Worth District transferred to the USGS for the Cooperative Stream Gaging Program a total of \$562,830 in FY 81. Table 1 indicates the number of stations, the types of funds for each of several groups of stations and both the USGS and the CE contributions toward the total station cost.

c. Galveston District.

- (1) Barker Reservoir. Two cooperative programs are in existence in relation to the operation of Barker Reservoir. The program with the U.S. Geological Survey provides the operation and maintenance for the gates that furnish streamflow and reservoir content data used in the operation of the project. The program with the National Weather Service provides for the operation and maintenance of the precipitation gages and collection of data used in project operation. This project shares some of the streamflow and precipitation data used in the operation of the adjacent Addicks Reservoir.
- (2) Addicks Reservoir. Two cooperative programs are in existence in relation to the operation of Addicks Reservoir. The program with the U.S. Geological Survey provides the operation and maintenance for the gates that furnish streamflow and reservoir content data used in the operation of the project. The program with the National Weather Service provides for the operation and maintenance of the precipitation gages and collection of data used in project operation. This project shares some of the streamflow and precipitation data used in the operation of the adjacent Barker Reservoir.
- d. Little Rock District. Approximately 176 rainfall and/or river stage reporting stations were operated by the National Weather Service and the Corps of Engineers in or near the Little Rock District. Of these, 112 stations are in the Corps of Engineers/National Weather Service program. The remaining 64 stations are operated solely by the National Weather Service within or near the Little Rock District. Six of these stations are airway stations that report at 6-hour intervals. Reports from these stations are used in forecasting streamflows for flood warning and operation of reservoir projects. The stream gaging data required by the district are collected under a cooperative agreement with the USGS. During the fiscal year, 100 stations were operated, of which 67 were operated cooperatively and 33 were operated by the Corps of Engineers. The FY 81 total cost for collection of streamflow and some sediment data was \$377,660 of which \$226,130 was transferred to USGS. The FY 82 cooperative program was increased by six stations and contemplates a cost of \$429,670 of which \$254,120 will be transferred to USGS.
- e. Tulsa District. Much of the information required for regulation, investigation and design of our water resources projects results from the reporting and measurement of flow, water quality, and sediment provided by a cooperative stream gaging program with the USGS. During FY 81 this cooperative program included 250 stations of which 40 were operated independently

TABLE 1
PROPOSED COOPRATIVE STREAMFLOW DATA PROCRAM SURVEY
POR
PISCAL YEAR 1981
PART A EXPERIMENT FORM (March 1976)

PORT MORTH DISTRICT 6 August 1980 DATE OF PREPARATION REPORTS CONTROL SYNGOL DAEM-CME-14

SOUTHWESTERN DIVISION

STATIONS IN COMPERATIVE PROCRAM WITH USGS
DOLLARS SUPPORTING PROGRAM
PROPOSED TRANSFER TO USGS FROM CORPS

CROSS

GENN CONST TOTAL FOR OTHER TOTAL IA,500 0 0 14,500 14,500 670 0 15,170 0 0 0 11,640 0 11,640 0 15,020 15,000 0 0 0 457,080 457,080 457,080 15,020 84,080 0 19,610 79,610 79,610 45,240 8,140 84,250 14,500 457,080 562,830 572,450 34,240 23,160 597,070											
0 0 14,500 14,500 670 0 15,170 0 0 0 9,620 1,080 0 1,080 0 11,640 11,640 11,640 12,490 0 457,080 457,080 27,000 15,020 464,080 0 79,610 79,610 4,640 8,140 84,250 0 91,250 457,080 562,830 572,450 34,240 23,160 397,070	USGS	-	GEN	CONST	3	TOTAL	TOTAL CE/USGS PROGRAM	FOR CORPS OPERATION	OTHER USGS TUNDS	TOTAL FOR CORPS	TOTAL STATION SUPPORT
11,640 0 14,500 14,500 670 0 15,170 0 15,170 0 15,170 0 15,170 0 15,170 0 15,620 1,080 0 1,080 0 1,080 0 12,490 0 12,490 0 12,490 0 12,490 0 12,490 0 12,490 0 12,490 0 12,490 0 12,490 0 12,500 457,080 457,080 457,080 562,830 572,450 34,240 23,160 597,070			3	150							
11,640 0 11,640 11,640 13,640 0 12,490	71 0	7	200	0	0	14,500	14,500	670	•	15,170	15,170
11,640 0 11,640 11,640 27,080 15,020 457,080 27,000 15,020 464,080 179,610 79,610 4,640 81,250 457,080 562,830 572,450 34,240 23,160 597,070	0.420	•	2	•	0	0	9.620	1,080	0	1.000	10,700
0 457,080 457,080 457,080 27,000 15,020 484,080 79,610 6,640 6,140 84,250 91,250 457,080 562,830 572,450 34,240 23,160 597,070			• c	11.640	•	11.640	11.640	850	•	12,490	12,490
79,610 0 79,610 79,610 4,640 6,140 84,250 91,250 457,080 562,830 572,450 34,240 23,160 597,070	• •		, c		457.080	457,080	457,080	27,000	15,020	484.080	499,100
91,250 457,080 562,830 572,450 34,240 23,160 597,070	• •		0	79,610	0	79,610	79,610	4,640	8,140	84,250	92,390
000100 000100 000100 000100 000116		:	8		760	018 675	677 450	34.240	23,160	597.070	629.850
	C'+? 079'6	C 6.7	3	067.16	000 1/6	0001700	200	1			

Total is 1 less than shown Station OS110200 has dual funding. Hote

CORPS GRAID TOTAL COST	15,170 1,080 12,490 484,080 84,230
COST FOR CORPS STATIONS	ZNON
NIMBER OF STATIONS	ZHOW
COST FOR CORPS OPERATION	670 1,080 850 27,000 4,640 34,240
TOTAL	
CLASS OF FUNDS	E C C E E E E E E E E E E E E E E E E E

CLASS OF FUNDS:

D - Advance Engineering and Design E - Operation and Maintenance B - Surveys C - General Coverage

F - New Work or Construction

by the Corps of Engineers. The gaging program in the Tulsa District cost \$769,450 in FY 81 with \$567,810 of this being transferred to the USGS for operation of stations. The following tabulation shows a breakdown of the program by class of funds used to finance the program.

Class of Funds	No. of Stations	C of E Cost
Survey Investigation General Coverage	25	6,300
Planning	7	59,470
Operation & Maintenance	209	644,150
New Work & Construction	_9	59,530
TOTAL	*250	769,450

^{*}Some stations are counted under more than one classification.

SECTION VII - RESERVOIR DATA SUMMARY

- 1. SWD MAP
- 2. INDEX BY BASINS
- 3. INDEX IN ALPHABETICAL ORDER
- 4. DATA TABLES

LAKE SUMMARY TABLE INDEX

	LA	KE SUN	MARY TA	BLE INDEX					
							CAPAC		
=				YR	POOL ELI		1000		PAGE
LAKE NAME	STREAM	DIST	STATE	COMP	CONS	<u>FC</u>	CONS	FC	NO
			WUTE O	1450 DACIN					
Baayam.	White		AR AR	IVER BASIN	1120.0	1170 0	1660	700	
Beaver Table Rock	White White	LRD LRD	AR/MO	66 50	1120.0	1130.0 931.0	1652	300	1
		LRO	-	58 52	915.0		2702	760	1
Bull Shoals Norfork	White North Fork	LRO	AR/MO AR/MO	52 45	654.0	695.0	3048	2360	2
Clearwater	Black	LRO	MO MO	48	552.0	580.0	1251 22	732	2
Greers Ferry	Little Red	LRO	AR.	40 62	494.0 461.0	567.0 487.0	1911	391	3 3
Or del S Ferry	Fillia Mad	LAU	AN	62	401.0	40/.0	1911	934	,
		ARK A	NSAS PI	VER BASIN					
Pueblo	Arkansas	AD*	00	74	4880.6	4898.7	264	93	4
Trinidad	Purgatorie R	AD	$\widetilde{\infty}$	78	6226.4	6260.0	64	58	4
John Martin	Arkansas	AD .	$_{\infty}^{\infty}$	51	3851.0	3870.0	351	270	5
Cheney	N F Ninnescah	TD*	KS	64	1421.6	1429.0	167	81	5
Eldorado	Walnut	TD	KS	80	1339.0	1347.5	157	79	6
Kaw	Arkansas	το	OK/KS	76	1010.0	1044.5	429	919	6
Great Salt Plains	Salt Fork Ark	ΤD	OK	41	1125.0	1138.5	31	240	7
Keystone	Arkansas	10	OK	64	723.0	754.0	618	1219	7
Heyburn	Polecat Cr	TD TD	OK .	50	761.5	784.0	7	48	8
Toronto	Verdigris R	ΤD	KS	60	901.5	931.0	22	178	8
Fall River	Fall	ΤD	KS	49	948.5	987.5	24	235	9
Elk City	Elk	πD	KS	66	792.0	825.0	34	256	ģ
Big Hill	Big Hill Cr	τD	KS	81	858.0	867.5	27	13	10
0o logah	Verdigris R	10	OΚ	63	638.0	661.0	553	966	10
Hulah	Caney	TD	OK/KS	51	733.0	765.0	36	258	11
Copan	L Caney	πD	OK/KS	80	710.0	732.0	43	184	11
Birch	Birch Creek	TD	OK	79	750.5	774.0	19	39	12
Sklatook	Hominy Creek	110	OK	82	714.0	729.0	305	182	12
Newt Graham LD 18	Verdigris	TD	OK	70	532.0	_	24	0	13
Chouteau LD 17	Verdigris	TD	OK	70	511.0	-	23	ō	13
Council Grove	Neosho R	TD	KS	65	1270.0	1289.0	38	76	14
Marion	Cottonwood R	TD	KS	68	1350.5	1358.5	86	60	14
John Redmon	Neosho R	TD	KS	64	1039.0	1068.0	82	563	15
Grand Lake	Neosho (Grand)	TD*	OK	40	745.0	755.0	1672	525	15
Lake Hudson	Neosho (Grand)	TD*	OK	64	619.0	636.0	200	244	16
Fort Gibson	Neosho (Grand)	TD.	OK	52	554.0	582.0	365	919	16
Webbers Falls LD 16	Arkansas	TD	OK	70	490.0		165	0	17
Tenkiller Ferry	IIIInois R	TD	OK	52	632.0	667.0	654	577	17
Conchas	Canadian R	AD	NM	39	4201.0	4218.0	330	198	18
Meredith	Canadian R	TD*	TX	65	2941.3	2965.0	945	463	18
Thunderbird	Little R	TD*	TX	65	1039.0	1049.4	120	77	19
Optima	N Canadian R	TD	OK	78	2763.5	2779.0	129	101	19
Fort Supply	Wolf Cr	TD	OK	42	2004.0	2028.0	14	87	20
Canton	N Canadian R	TD	OK	48	1615.2	1638.0	1 16	268	20
Eufaula	Canadian R	TD	OK	64	585.0	597.0	2329	1470	21
R S Kerr LD 15	Arkansas	TD	OK	70	460.0	-	494	0	21
W D Mayo LD 14	Arkansas	סד	OK	70	413.0	-	16	0	21
Wister	Poteau R	TO	OK	49	471.6	502.5	27	400	22
LD 13	Arkansas	LRO	AR/OK	69	392.0	-	54	0	22
Ozark-J T LD 12	Arkansas	LRD	AR	69	372.0	-	148	0	23
Dardanelle LD 10	Arkansas	LRD	AR	64	338.0	-	486	0	24
Blue Mountain	Petit Jean	LRD	AR	47	384.0	419.0	25	233	24
LD 9	Arkansas	LRO	AR AS	69	287.0	-	65	0	25
Toad Suck Ferry LD 8	Arkansas	LRO	AR	69	265.0	-	35	0	25
Nimrod	Fourche La Fave		AR AR	42	342.0	373.0	29	307	26
Murray LD 7	Arkansas	LRD	AR AD	69	249.0	-	87	0	26
D D Terry LD 6	Arkansas	LRO	AR AD	68	231.0	-	50	0	27
LD 5	Arkansas	LRD	AR AD	68	213.0	-	65	0	27
LD 4	Arkansas	LRO	AR AB	68	196.0	-	70	0	28
LD 3 LD 2	Arkansas	LRD	ar ar	68 67	182.0	-	46	0	28
	Arkansas Arkansas	LRO	AR AR	67 67	162.0	-	110	0	29
ம் 1	ni Nanada	LRD	ALC:	67	142.0	-	2	0	29

^{*} Section 7 Flood Control Projects
**Includes dead storage, conservation, water supply, power, irrigation, etc.

		R	ED RIVE	BASIN					
Altus	N F Red	TD*	OK	46	1559.0	1562.0	141	21	30
Tom Steed	W Otter Creek	TD#	OK .	75	1411.0	1414.0	96	20	30
Lake Kemp	Wichita R	TD#	TX	77	1144.0	1156.0	299	225	31
Waur i ka	Beaver Creek	ַ סַד	OK	78	951.4	962.5	203	140	31
Foss	Washita	TD#	OK	61	1562.0	1668.6	256	181	32
Fort Cobb	Cobb Creek	TD*	OK	59	1342.0	1354.8	78	64	32
Arbuckie	Rock Creek	TD#	OK	67	872.0	885.3	72	36	33
Lake Texoma	Red	TD	TX/OK	45	617.3	640.0	2836	2660	33
Pat Mayse	Sanders Creek	TD	TX	68	451.0	460.5	124	65	34
Clayton	Jack Fork Creek	TD	OK	84	599.0	607.0	302	128	34
Hugo	Klamichi R	TD	OK	74	404.5	437.5	157	809	35
Pine Creek	Little R	TD	OK	69	443.5	480.0	78	366	35
Broken Bow	Mountain fork	TD	OK	69	599.5	627.5	919	450	36
DeQueen	Rolling Fork	LRO	AR	77	437.0	473.5	35	101	37
Giliham Dierks	Cossatot Saline R	LRO	AR	76 76	502.0	569.0	33	189	37
Millwood	Little R	LRO LRO	AR AD	76	526.0	557.5	30 207	67	38
Wright Patman		FWD	AR TX	66 56	259.2	287.0	207	1653	38
wright raiman Lake O the Pines	Sulphur River	FWD			220.0	259.5	143	2509	39
Lake U The Pines	Cypress Creek	FWU	TX	60	228.5	249.5	251	580	39
		NEC	HES RIVE	R BASIN					
Sam Rayburn	Angelina R	FWD	TX	65	164.4	173.0	2898	1009	40
B A Steinhagen	Neches R	FWD	TX	51	81.0	83.0	70	24	40
		TO	MITY DIV	ED DACH	.				
Benbrook	Clear Fork	FWD	NITY RIV	52	694.0	724.0	88	170	41
Lewisville	Elm Fork	FND	TX	54	515.0	532.0	465	525	41
Grapevine	Denton Cr	FWD	TX	52	535.0	560.0	189	248	42
Lavon	East Fork	FWD	ΤX	77	492.0	503.5	457	277	42
Navarro Milis	Richland Cr	FWD	TX	68	424.5	443.0	63	149	43
Bardwell	Waxahachie Cr	FWD	TX	65	421.0	439.0	55	85	43
			ACINTO F		SIN				
Barker	Buffalo Bayou	GD	TX	45	-	107.0	0	207	44
Addicks	Buffalo Bayou	GD	TX	48	-	114.0	0	205	44
		BRA	ZOS RIVE	R BASIN					
Whitney	Brazos	FWD	TX	51	533.0	571.0	627	1372	45
Waco	Bosque	FWD	TX	65	455.0	500.0	153	574	45
Proctor	Leon R	FWD	TX	63	1162.0	1197.0	59	315	46
Belton	Leon R	FWD	TX	54	594.0	631.0	458	640	46
Stillhouse H	Lampasas R	FWD	TX	68	622.0	666.0	236	395	47
Georgetown	N F San Gabriel	FWD	TX	79	791.0	834.0	37	93	47
Granger	San Gabriel	FWD	TX	79	504.0	524.0	66	179	48
Somerville	Yegua Cr	FWD	TX	67	238.0	258.0	160	347	48
# (= D.44	0114 O		RADO RIV			1000 1	100		
Twin Buttes	S&M Concho R	FWD*		63 52	1940.2	1969.1	186	454	49
O C Fisher	N Concho R	PWD	TX TX	52	1908.0	1938.5	119	277	49
Hords Cr Marshall Ford	Hords Cr Colorado r	FWD*	TX	48 40	1900.0 681.0	1920.0 714.0	9 1172	17 780	50 50
mgi silati 1014	COTOT BEOT	1 110	10	70	551.50	71410	1172	,,,,	J
			ALUPE RI	VER BAS					
Canyon	Guada l upe R	FWD	TX	64	909.0	943.0	386	355	51
		RI	O GRANDE	BASIN					
Platoro	Conejos R	AD*	00	51	10027.5	10034.0	54	6	52
Abiquiu	Rio Chama	AD	NM	63	-	6283.5	0	568	52
Cochiti	Rio Grande	AD .	NM	75	5321.45	5460.5	47	539	53
Gailsteo	Gallisteo Cr	ND.	184	70	_	5608.0	0	90	53
Jemez Canyon	Jamez R	AD	NM	53	5160.0	5232.0	2	104	54
Santa Rosa	Pecos R	AD .	NM	80	4776.5	4797.0	267	182	54
Summer	Pecos R	AD*	NM	37	4261.0	4282.0	47	86	55
Two Rivers	Rio Hondo	N D	NM	63	-	4032.0	0	168	55

^{*}Section 7 Flood Control Projects

^{**}Includes deed storage, conservation, water supply, power, irrigation, etc.

ALPHABETICAL INDEX

PROJECT NAME	RIVER BASIN	PAGE NO.
Abiquiu	Rio Grande	52
Addicks	San Jacinto	44
Altus	Red	30
Arbuckle	Red	33
B A Steinhagen	Neches	40
Bardwell	Trinity	43
Barker	San Jacinto	44
Beaver	White	1
Belton	Brazos	46
Benbrook	Trinity	41
Big Hill	Arkansas	10
Birch	Arkansas	12
Blue Mountain	Arkansas	24
Broken Bow	Red	36
Bull Shoals	White	2
Canton	Arkansas	20
Canyon	Guadalupe	51
Cheney	Arkansas	5
Chouteau LD 17	Arkansas	13
Clayton	Red	34
Clearwater	White	3
Cochiti	Rio Grande	53
Conchas	Arkansas	18
Copan	Arkansas	11
Council Grove	Arkansas	14
D D Terry LD 6	Arkansas	27
Dardanelle LD 10	Arkansas	24
Denison Dam (Lake Texoma)	Red	33
DeQueen	Red	37
Dierks	Red	38
Eldorado	Arkansas	6
Elk City	Ark ans as	9
Eufaula	Arkansas	21
Ferrells Bridge Dam (Lake O' the Pines)	Red	39
Fall River	Arkansas	9
Fort Cobb	Red	32
Fort Gibson	Arkansas	16
Fort Supply	Arkansas	20
Foss	Red	32
Galisteo	Rio Grande	53
Garza-Little Elm Dam (Lake Lewisville)	Trinity	41
Gillham	Red	37
Grand Lake 0' the Cherokees (Pensacola Dam)	Arkans as	15
Granger	Brazos	48
Grapevine	Trinity	42
Great Salt Plains	Arkansas	7
Greers Ferry	White	3

PROJECT NAME	RIVER BASIN	PAGE NO.
Heyburn	Ark ans as	8
Hords Creek	Colorado	50
Hudson (Lake Hudson) Markham Ferry Dam	Arkansas	16
Hugo	Red	35
Hulah	Arkansas	11
Jemez Canyon	Rio Grande	54
John Martin	Arkansas	5
John Redmond	Arkans as	15
Kaw	Arkans as	6
Lake Kemp	Red	31
Keystone	Arkansas	7
Lake O the Pines	Red	39
Lavon	Trinity	42
Lewisville (Garza-Little Elm Dam)	Trinity	41
Lock & Dam 18 (Newt Graham)	Ark ans as	13
Lock & Dam 17 (Chouteau)	Arkans as	13
Lock & Dam 16 (Webbers Falls)	Arkansas	17
Lock & Dam 15 (Robert S. Kerr	Arkans as	21
Lock & Dam 14 (W. D. Mayo)	Ark ans as	22
Lock & Dam 13	Arkansas	23
Lock & Dam 12 (Ozark - Jeta Taylor)	Arkansas	23
Lock & Dam 10 (Dardanelle)	Arkansas	24
Lock & Dam 9	Arkansas	25
Lock & Dam 8 (Toad Suck Ferry)	Arkansas	25
Lock & Dam 7 (Murray)	Arkansas	26
Lock & Dam 6 (David D. Terry)	Arkansas	27
Lock & Dam 5	Arkansas	27
Lock & Dam 4	Arkansas	28
Lock & Dam 3	Arkansas	28
Lock & Dam 2	Arkansas	29
Lock & Dam 1	Arkansas	29
Santa Rosa	Rio Grande	54
Marion	Ark <i>a</i> ns as	14
Markham Ferry Dam (Lake Hudson)	Arkansas	16
Mansfield Dam (Marshall Ford Dam) Lake Travis		50
Marshall Ford Dam (Mansfield Dam) Lake Travis	Colorado	50
Meredith	Arkansas	18
Mountain Park Dam, Tom Steed Reservoir	Red	30
Millwood	Red	38
Murray LD 7	Arkansas	26
Navarro Mills	Trinity	43
Newt Graham LD 18	Arkansas	13
Nimrod	Arkansas	26
Norfork	White	2
Norman Dam, Lake Thunderbird	Arkansas	19
Georgetown	Brazos	47

PROJECT NAME	RIVER BASIN	PAGE NO.
0 C Fisher	Colorado	49
Oologah	Arkansas	10
Optima	Arkansas	19
Ozark-J T LD 12	Arkansas	23
Pat Mayse	Red	34
Pensacola Dam, Grand Lake O' the Cherokees	Arkansas	15
Pine Creek	Red	35
Platoro	Rio Grande	52
Proctor	Brazos	46
Pueblo	Arkansas	4
R S Kerr LD 15	Arkansas	21
Sam Rayburn	Neches	40
Sanford Dam, Lake Meredith	Arkansas	18
Skiatook	Arkansas	12
Somerville	Brazos	48
Stillhouse H	Brazos	47
Sumner	Rio Grande	55
Table Rock	White	1
Tenkiller Ferry	Arkansas	17
Texoma Lake (Denison Dam)	Red	33
Thunderbird	Arkansas	19
Toad Suck Ferry LD 8	Arkansas	25
Tom Steed	Red	30
Toronto	Arkans as	8
Trinidad	Arkansas	4
Twin Buttes	Colorado	49
Two Rivers	Rio Grande	55
W D Mayo LD 14	Arkansas	22
Waco	Brazos	45
Waurika	Red	31
Webbers Falls LD 16	Arkansas	17
Whitney	Brazos	45
Wister	Arkansas	22
Wright Patman	Red	39

 $\mathcal{L}(\mathbb{R}_{>0}, \mathbf{r}_{0}, \mathbf{r}_{0})$

SUMMARY OF LAKE CONDITIONS FOR WATER YEAR 1981

					WHITE R	RIVER BASIN	_						
BEAVER LAKE	0CT	AON	DEC	JAN	834	MAR	APR	ΗΑΥ	JUN	JUL	AUG	SEP	TOTAL
Inflows (1,000 AC. FT.) Avg 1968 thru 1981 WY 1981	48.1 16.6	107.9 6.8	100.6	74.0	96.1 27.5	194.7	164.6 58.8	126.7	85.3 170.6	26.5 28.6	15.0 64.6	33.3 6.1	1,072.8
Releases (1,000 AC. FT.) Avg 1968 thru 1981 WY 1981	3.4	60.6 28.5	71.1 8.8	87.3	85.3 1.5	80.4 1.4	104.6	100.2	87.6 77.8	91.0	92.2	57.7 72.8	1,048.3
Basin Rainfall (inches) Avg 1968 thru 1961 WY 1961 Deviation	4.1 -0.1	3.6 1.8	3.0 2.0 -1.0	1.8 0.8 -1.0	2.1 3.2 +1.1	4.1 3.0 -1.1	3.9 3.0 -0.9	4.5 43.8	4.1 6.0 +1.9	2.0 0.6 8.6	2.7 6.8 44.1	4.0 1.6 -2.4	40.7 22.3 -18.4
Pool Elevation End of Month Maximum Minimum	1,107.44 1,107.74 1,107.17	1,106.25 1,107.44 1,106.14	1,106.09 1,106.27 1,105.93	1,105.98 1,106.10 1,105.94	1,106.78 1,106.78 1,105.92	1,109.23 1,109.23 1,106.78	1,111.05 1,111.05 1,109.23	1,116.22 1,116.22 1,111.05	1,119.11 1,119.77 1,116.22	1,115.83 1,119.27 1,115.83	1,114.75 1,116.33 1,114.75	1,111.86 1,114.75 1,111.86	
Pool Content EOM (1,000 AC. FT.)	1,323.5	1,294.9	1,291.1	1,288.4	1,307.6	1,367.2	1,412.7	1,547.7	1,627.1	1,537.2	1,508.4	1,433.2	
TABLE ROCK LAKE	0CT	AQN	DEC	JAN	FEB	MAR	APR	MAY	NOC	JUL	AUG	e H	TOTAL
Inflows (1,000 At. PT.) Avg 1961 thru 1981 4T 1981	98.0 19.2	216.5 42.5	209.1 37.5	201.3	198.5 30.0	363.4 52.1	391.1 75.3	378.6 177.2	222.9 301.1	141.8 179.1	114.8 241.6	104.9 87.6	2,640.9
Melesses (1,000 AC. FT.) Avg 1961 thru 1961 WT 1961	118.7 33.7	188.0 83.4	211.3	217.0	198.3	256.7 49.5	298.7 15.5	332.6 20.6	206.5	211.6	162.2	120.3 46.8	2,521.9
Intervening Masin Rainfall (inches) ² Avg 1968 thru 1981 4.3 WY 1981 3.4 Barianan -0.9	11 (inches) 4.3 3.4	3.9	3.1	1.7	4.1	4.1 1.6	4 6 1. 6. 6	4.8	4.0 6.4	3.0	3.3	6.2	37.7
Pool Elevation End of Month Maximum Minimum	897.95 898.71 897.95	896.49 897.96 896.49	896.24 896.99 896.19	895.15 896.27 895.15	894.08 895.15 893.94	893.81 894.39 893.56	895.20 895.20 893.81	899.38 899.38	905.96 905.96 899.38	908.30 908.30 905.96	912.26 912.26 908.25	912.87	ř
Pool Content EOM (1,000 AC. FT.)	2,042.3	1,992.7	1,984.2	1,948.0	1,912.6	1,903.8	1,949.6	2,092.3	2,333.5	2,425.0	2,585.9	2,611.5	

					WHITE RIVER	R BASIN							
BULL SHOALS LAKE	120	NOV	DEC	JAN	833	HAR	APR	HA Y	JUN	Tor	AUG	SEP	TOTAL
Inflows (1,000 AC. FT.) Avg 1953 thru 1961 HY 1961	141.4	253.9 99.2	280.1 48.0	265.7 46.0	300.0 83.4	476.2	511.6	588.2 122.2	342.2 110.9	387.9 98.4	194.7	161.2	3,903.1
Releases (1,000 AC. FT.) Avg 1953 thru 1961 WY 1961	220.9	196.3 95.3	242.6 153.6	301.6	266.0 133.9	298.9 137.8	362.7 12.0	402.9	310.9	394.3 106.5	341.0	248.0 55.7	3,586.1
Intervening Basin Rainfall (inches) Avg 1968 thru 1981 3.5 MY 1981 2.3 Deviation -1.2	fall (inches) 3.5 2.3 -1.2	4.1 2.5 -1.6	2.6 0.0 -2.6	1.7 0.4 -1.3	1.8	3.6 1.1 -2.5	4.1 -0.2	4.2 5.0 •0.8	3.2 4.2 +1.0	3.5 3.9 4.0	3.2 5.4 2.2	4.3 4.2	40.0 30.2 -19.8
Pool Elevation End of Month Maximum Hinimum	648.03 648.76 648.03	643.78 648.06 647.58	644.93 647.80 644.93	640.57 644.93 640.48	638.90 640.72 638.90	636.91 638.94 636.73	637.72 637.75 636.91	639.77 639.77 637.64	640.80 640.99 639.77	639.94 640.86 639.94	640.15 640.72 639.86	639.62 640.15 639.62	
Pool Content EOM (1,000 AC. FT.)	2,785.3	2,774.8	2,656.1	2,482.5	2,418.2	2,343.1	2,373.5	2,451.3	2,491.6	2,457.7	2,465.9	2,445.6	
HORPORK LAKE	50	VOM	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	ZZS	TOTAL
Juflows (1,000 AC, FT.) Avg 1946 thru 1961 HY 1961	48.1 33.2	86.4 33.1	99.3 33.9	119.8 32.8	124.1 37.8	182.3	192.7 52.6	193.7 86.1	104.7	77.1	48.6 3.86	46.5 19.0	1,323.3
Releases (1,000 AC. PT.) Avg 1946 thru 1981 WY 1981	68.4	69.6 29.6	89.3 8.5	117.6 3.5	114.7	54.0 5.0	127.1	63.4 34.1	109.6 79.1	119.6	111.4	85.3 19.0	1,130.0
Basin Rainfall (inches) Avg 1946 chru 1981 HY 1961 Deviation	2.8 2.9 0.1	3.5 1.7 1.8	2.9	2.5 0.9 -1.6	2.7 1.8 -0.9	3.7 2.7 -1.0	4.1 3.0 -1.1	5.0 5.1	4.0 4.2	3.4	8.0 9.0	3.5 -2.6	41.4 31.3 -10.1
Pool Elevation End of Month Maximum Minimum	540.84 540.88 540.13	540.60 540.92 540.30	\$41.55 541.55 \$40.60	542.67 542.67 541.55	544.04 544.04 542.67	546.17 546.17 544.04	548.03 548.03 546.17	550.03 550.21 548.01	548.84 550.05 548.51	547.93 548.93 547.93	545.61 547.97 545.61	542.16 545.63 542.16	
Pool Content ECH (1,000 AC. PT.)	1,022.5	1,018.0	1,036.1	1,057.7	1,084.8	1,127.7	1,166.0	1,208.4	1,183.0	1,163.9	1,116.2	1,047.9	

					-	WHITE RIVER	R BASIN							
-,	CLEARWATER LAKE	00.7	ACM	DEC	JAN	FEB	MAR	APR	HA Y	NOC	Jul	AUG	SEP	TOTAL
	Inflows (1,000 AC. FT.) Avg 1949 thru 1981 WY 1981	20.0	39.1 14.8	48.5	54.0 14.1	53.6 17.9	91.1	91.2	76.6	34.7	27.5	16.5	19.6 12.4	572 ,4 358.9
	Releases (1,000 AC. FT.) Avg 1949 thru 1961 WY 1981	20.5	32.1 14.8	48.5	48.6	56.1 17.9	76.9 16.0	88.8 30.5	74.7	50.0 109.0	32.3	27.0	24.3	579.8 361.2
	Basin Rainfall (inches) Avg 1949 chru 1961 WY 1961 Deviation	2.6 2.9 40.3	3.6 2.0 -1.6	3.1	2.6 0.8 -1.8	2.7 2.6 -0.1	4.1 2.0 -2.1	4.2 2.8 -1.4	8.0 +3.3	3.6 4.8 +1.2	8. 83 8. 2. 4	3.5 5.5 5.5	3.4 1.1 -2.3	41.9 39.4 -2.5
	Pool Elevation End of Month Maximum Minimum	494.33 497.65 497.38	494.17 494.33 494.05	494.10 494.39 494.07	494.24 494.24 494.09	494.13 494.48 494.05	495.74 495.74 494.02	494.05 497.77 494.05	520.51 521.78 494.03	500.92 520.58 500.92	509.79 510.20 497.38	496.85 509.78 496.61	494.09 497.16 494.05	
	Pool Content EOM (1,000 AC. FT.)	22.5	22.2	22.1	22.3	22.1	24.8	22.0	93.7	34.6	56.7	26.8	22.1	
	GREERS PERRY LAKE	961	VON	DEC	JAN	838	MAR	APR	MAY	JUN	JAF	AUG	SE	TOTAL
7	Inflows (1,000 AC, FT.) Avg 1965 thru 1981 WY 1981	35.8	99.1	157.5	119.5	135.4	246.4 150.4	214.0	151.7	63.1	12.0	8.7 13.5	33.8	1,277.0
	Releases (1,000 AC. FT.) Avg 1965 thru 1981 WY 1981	41.8	3.6	82.1 5.0	135.6	113.9	118.2	123.7 8.8	130.4	93.5 112.5	109.3	99.9	58.2 67.6	1,156.0
	Basin Rainfall (inches) Avg 1964 thru 1981 WY 1981 Deviation	3.5 9.7	4.2 1.9	4.1 1.5 -2.6	2.7	2.9 3.9 +1.0	5.1 4.3 -0.8	4.7 3.1 -1.6	5.2 5.6 4.0	3.8 3.7 -0.1	3.6 4.1 40.5	3.2 4.0 +1.8	5.1 -3.9	#8.1 38.1
	Pool Elevation End of Month Maximum Minimum	449.88 450.13 449.74	449.94 449.94 449 .79	450.78 450.82 449.91	450.75 450.79 450.70	453.93 453.93 450.75	458.46 458.46 453.93	460.72 460.72 458.46	461.22 461.36 460.69	459.70 461.49 459.70	458.23 459.78 458.23	456.01 458.23 456.01	453.10 456.01 453.10	
	Pool Content EOH (1,000 AC. FT.)	1,586.6	1,581.3	1,604.8	1,604.0	1,695.0	1,831.3	1,901.7	1,917.4	1,869.7	1,824.1	1,757.3	1,670.9	

	0CT	NOV	DEC	JAN	8 3.4	WAK.	APR	1MY	Jun	ij	Alac	å	į
Avg 1894 thru 1981		22.6	21.3	20.0	16.5	15.7	24.0	67.8	131.1	88.5	3	7,	TOTAL
rt 1981	19.2	28.2	26.2	18.6	19.1	15.0	9.1	19.3	52.4	39.0	44.8	30.5	321.2
Beleases (1000 Ac. Ft.)												}	
AVE 1966 CRTG 1981 FY 1981	7.5	7.1	4·	4.3	80 °	12.5	20.0	29.5	65.3	44.2	25.5	10.2	234.4
•	63.3	70.3	•	4	17.7	15.2	23.6	31.5	22.6	54.1	45.0	28.0	276.7
Ξ													
Avg 19 thru 19	π.	77.	94.	.33	.42	π.	1.36	1.76	1.30	1.95	5.7	8	12 00
•	0	.32	.02	.02	.14	2.07	90.	&	1.28	2.03	3.89	1.1	11.82
Pool Elevation (EOM)	4801.14	4810.69	4822.20	4828.48	4831,36	4830.90	4824.32	4817.94	08 8087	4797 98	76 7077	07 0017	
Minimus	4801.14 4799.81	4810.69 4801.20	4822.20 4810.69	4828.48	4831.36	4832.91	4830.80	4823.92	4818.01	4808.73	4800.26	4799.25	4832.91
Fool Content (EOM)									3		7		4/30.34
(1000 Ac. Pt.)	36.4	51.3	73.4	87.5	94.5	93.4	78.0	64.7	48.3	32.0	31.2	33.0	
TRINIDAD LAKE													
Inflows (1000 Ac. Ft.)													
Avg thru FY 1921	1.3	1.4	1.1	80,	۲.	œ,	2.1	14.8	1.6	10.1	8,4	1.7	63.0
	1.0	7.	2.1	.,	.7	1.2	1.2	2.3	3.8	8.3	26.9	64.2	112.6
Meleases Avg 19 thru 19	1.2	,	u	u	•	•	•	•	!				
E	1.2	: 7:	. 0	. 0	• -:	j o	7.4	20 - O	7.11	11.7	7.2	2.8	41.9
Ξ									•	•	;	:	
Avg 19 thru 19	1.03	8.	3.	1.04	1.15	1.11	.71	3.30	1.80	1.32	2.62	1.29	15.86
	77:	89.	J.	.01	.45	2.13	.65	2.88	1.59	19.4	6.35	1.89	20.32
Pool elevation (EOM) Maximum	6206.51	6203.31	6208.15	6208.62	6209.11	6209.94	6206.02	6197.72	6192.10	6193.06	6210.16	6209.02	
Minimum	6206.09	6206.55	6207.33	6208.62 6208.16	6209.11 6208.62	6209.94 6209.13	6210.10 6206.02	6205.74 6197.45	6198.20 6192.10	6194.80 6191.78	6210.16 6192.79	6212.94 6209.02	6212.94 6191.78
(1000 Ac. ft.)	39.7	40.5	41.4	41.9	42.4	43.3	39.2	31.5	26.9	30.7	47.0	8,54	
											:		

AKKANSAS KIVER BASIN

JOHN HARTIN RES.								!	;	:			ļ
Inflows (1000 Ac. Ft.)	00.7	NON	DEC	NV?	FEB	¥	APR	¥4.	anc	TOT	SQ.	7	TOTAL
Avg 1943 thru 1981	6.7	6.1	6.3	7.5	8.9	6.9	7.1	14.9	47.4	36.4	27.3	8.3	181.7
Fr 1981	5.5	7.4	11.9	11.1	7.6	7.5	2.6	5.5	15.2	17.9	55.1	17.4	164.7
Releases (1000 Ac. Ft.)	2	,	*		a c	ď	4	6	9	5		\$,
FY 1981	15.1	7. 9 .	°	<u>;</u> -:	° -:		17.5	20.4	19.2	35.9	35.9	30.0	175.0
Rainfall (Inches) Avg 19 43 thru 19 81 FY 19 81	67.	.42	.23	.24	.20	.56 .25	1.01	2.11	3.5	1.88	1.83	. 79	11.50
Pool Elevation (EOM) Haxinum Hinimum	3803.97 3807.10 3803.79	3804.88 3805.88 3803.97	3809.18 3809.18 3806.11	381).96 3811.96 3809.28	3812.60 3813.60 3812.00	3815.00 3815.00 3813.65	3810.80 3815.01 3810.80	3806.07 3810.54 3805.07	3804.04 3806.33 3806.33	3796.18 3806.33 3796.18	38 88 5	3798 3802 3798	3815.01
Pool Content (EOM) (1000 Ac. Pt.)	35.4	41.5	52.9	63.3	6.69	75.8	58.9	40.1	35.6	15.6			
CHENEY RESERVOIR	00.1	NOV	DEC	JAN	FEB	Ŧ.	APR	#AA	NS.	35	AUG	SEP	TOTAL
INFLOWS(1000AC, FT.) AVG 1938 THRU 1961	8 8.	6.26	ເດ ເດ	5.76	7.93	11.14	13.63	22.35	20, 15	15	4	7.	7 761
FY 1981	2.59		5.46	4.75	3.19	6.48	6.79	17.50	10.55	4.36	4.78	6.37	72.9
RELEASES(1000AC.FT.) AVG 1976 THRU 1981 FY 1931	1.45	20.10	3.54 0.	4.18 0.	4.18 0.	96 0.	11.53 0.	17.15 0.	11.44	0.50 0.	2.12 0.	2.32 13.94	87.8 18.8
RAINFALL (INCHES) AVS 1930 THRU 1977	2.12	1.30	0.50	0.66	0,92	1.54	2,50	3,60	4.10	3.14	2.97	3,09	26.84
FV 1981	1.10			o.	0.04	1.30	1.09	6.54	3,83	3.42	0.92	1.41	21.0
DEVIATION	-1.02	-1.24	0.43	-0.66	00°	4:.0-	-1.41	2. 44	-0.27	0.28	-2.05	-1.68	-5.80
Proc ELEVATION FNI OF MONTH MAXIMIM MINIMIM	1419, 14	1419.15 1419.23	1419,52 1419,52 1419,09	1419.79	1419.97 1419.98	1420.44 1420.45	1420.52 1420.55	1421.76	1421.48	1421.09	1420.77	1419.27	
POOL CONTENT-EOM	144.65	144.74	148.00	150.37	151.96	1565	156.98	168.59		162.23	159.27	145.80	

ARKANSAS RIVER BASIN

SEP TOTAL	5.50 76.e 0.13 5.2		3.92 31.86 1.15 28.99 -2.77 -2.87	1289.79 1290.26 1289.79	1.28		SEP TOTAL	145.90 2146.9 41.55 646.3	127.24 1643.1 25.42 598.6	3.70 31.05 1.91 25.29 -1.79 -5.76	1008.33 1008.33 1007.50	
AUG	3.40		3.19 3.96 0.77		1.36		AUG					
				0 1290.26 3 1290.42 0 1289.02				140.50 83.60	54.94 8 80.34	•	1007.69 1008.24 1007.19	
J.	7.40		3.71 4.42 0.71	1289.10 1289.63 1280.60	1.17		亨	2 46. 10 100. 86	170.40 131.98	3.60 3.03	1008.04 1010.62 1008.04	
NOO	14.40		4.74 5.77 1.03	1280.60 1281.00 1279.30	0.33		N N	335.90 143.15	270.09 134.04	4.4.0 08.0	1010.49 1010.88 1010.01	
MAY	11.80		4.40 5.71	1280.10 1281.60 1279.00	0.30		MAY	301.10	184.80	4.31 6.41 2.10	1010.66 1011.53 1009.01	
APR	10.20 0.02		2.97 0.79 -2.18	1279.00 1279.30 1279.00	0.25		APR	253.70 27.77	223.27 8.33	2.92 0.97 -1.95	1009.11 1009.13 1008.42	
P.AR	6.20 0.04		1.87 2.21 0.34	1279.00 1279.20 1279.00	0.25	NISUS	Ŧ	164.30 30.62	198.65 12.30	1.80 1.34 -0.46	1008.42 1008.49 1007.72	
FEB	2.80		0.08 0.09 -0.00	1279.10 1279.10 1275.00	0.26	ARKANSAS RIVER BASIN	FEB	92.60	79.74	1.02 0.14 -0.83	1007.72 1007.77 1007.49	
NAIS	2.70		0.85 0.	1279.10 1279.10 1279.10	0.26	ARKANSAS	NA.	86.70 24.20	56.22 66.00	0.84 -0.84	1007.53 1010.18 1007.45	
DEC	2.80 0.17		1.12 1.98 0.86	1279.10 1279.90 1279.00	0.26		DEC	88.10 28.16	63.29 25.15	1.12	1010.07 1010.47 1009.90	
NON	4.40		1.66	1279.00 1279.30 1279.00	0.25		20	119.30	171.36	1.64 0.23 -1.41	1009.97 1010.10 1009.85	
100	5.00		2.45 2.86 0.41	1279.20 1279.80 1279.00	0.26		00.1	172.70 18.45	43.06 10.45	2.40 1.67 -0.73	1009.85 1009.90 1009.57	
ELIMRADO	INFLOWS(1000AC.FT.) AVG 1921 THRU 1978 FY 1981	MELEASES(1000AC.FT.) LAKE HAS NOT FILLED	RAINFALL(INCHES) AVG 1930 THRU 1977 FY 1931 IEVIATION	FOOL ELEVATION END OF MONTH MAXIMUM MINIMUM	POOL CONTENT-EOM (1000AC.FT)		KAW LAKE	INFLOWS(1000AC.FT.) AVG 1922 THRU 1974 FY 1981	RELEASES(1000AC.FT.) AVG 1977 THRU 1981 FY 1981	RAINFALL (INCHES) AVG 1930 THRU 1977 FY 1981 IEVIATION	POOL ELEVATION END OF MONTH MAXIMUM MINIMUM	POOL CONTENT-EOM

ARKANSAS RIVER BASIN

TOTAL	283.6 162.1	189.9	24.45 21.86 -2.59				TOTAL	4674.7 1284.8	2951.5 1127.1	30.33 26.34 -3.99		
SEP	19.16 39.85	12.50 33.11	2.46 2.56 0.10	1125.16 1126.38 1125.05	32.90		S. G.	339.40 108.10	221.07 168.44	3.50 2.70 -0.80	719.81 722.89 719.81	539.49
AUG	24.35 10.35	4.82 5.00	2.96 1.97 -0.93	1125.05 1125.33 1125.02	31.88		AUG	307.50 136.86	181.57	3.03 2.13 -0.90	722.83 724.35 722.83	613.65
Ę,	25.40 9.90	7,80	2.00 0.00 0.00 0.00 0.00	1125.12 1125.23 1124.75	32.53		JUL T	511.30	352.95 201.83	3.20 3.85 0.65	723.84 724.77 723.21	640.18
NOS	48.45 22.80	38.71 24.34	3.59 3.17 -0.42	1125.11 1126.01 1125.05	32.44		NOS	789.90	553.99 291.38	4.18 4.75 0.57	723.89 724.80 723.44	641.50
AA.	59.79	52.30 37.99	3.61 6.19 2.58	1125.89 1126.64 1124.89	39.68		F A	776.40	500.80 124.50	4.37 5.65 1.28	724.12 724.12 721.13	647.70
APR	27.30	20.24	2.37 0.23 -2.14	1124.94 1125.47 1124.94	30,93		4	539.30 36.99	343.96 28.07	2.90 1.06 -1.84	721.32 721.53 721.08	575.54
A AR	14.98	20.26	1.45 1.22 -0.23	1125.12 1125.40 1125.00	33.46	BASIN	Meir	259.50 47.74	225.29	1.81	721.28 721.29 720.64	574.54
FER	13.22	6.89 0.15	0.91 0.07 -0.84	1125.01 1125.09 1124.69	31.51	RIVER	FEB	178.00 39.67	95.70 26.80	1.11 0.48 -0.63	720.66 720.73 720.24	559,54
NA	თ 4 ია 3	5,58 0,23	0.66 0.01 -0.65	1124.78 1124.78 1124.22	29.63	ARKANSAS	JAN	157.00 74.38	85.28 2 5.64	0.95 0.02 -0.93	720.42 720.42 718.33	553.85
rec	8.29	4.77	0.85 1.46 0.61	1124.22 1124.22 1123.42	25.07		DEC	172.30	107.54 30.45	1.18 1.54 0.36	718.36 718.46 717.26	506.56
NOV	11.25	14.23	0.05	1123, 42, 1123, 43 1123, 75, 1123, 44 1123, 34, 1123, 32	19.17		NON	345.60 23.60	202.50	1.68 0.39 -1.29	717.52 717.96 717.46	488.42
E OCT	22.59	1.83	1.87 1.03 -0.79	1123. 42 1123. 75 1123.34	19.10		00.1	398.60 49.98	80.85 30.92	2.42 1.79 -0.63	717.81 718.04 716.80	494.57
GREAT SALT PLAINS LAKE	INFLOWS(1000AC.FT.) AVC 1923 THRU 1963 FY 1981	RELEASES (100CAC.FT.) AVG 1976 THRU 1981 FY 1981	RAINFALL (INCHES) AVG 1930 THRU 1977 FY 1931 DEVIATION	YOUL ELEVATION END OF MONTH MAXIMUM MINIMUM	FOOL CONTENT-EOM (1000AC.FT)		KEYSTONE LAKE	INFLOWS(1000AC,FT.) AVG 1923 THRU 1970 FY 1981	RELEASES(1000AC.FT.) AVG 1976 THRU 1981 FY 1981	RAINFALL(INCHES) AVG 1930 THRU 1977 FY 1931 DEVIATION	POOL ELEVATION FND OF MONTH MAXIMUM MINIMUM	PCOL CONTENT-EOM (1000AC,FT)

ARKANSAS RIVER BASIN

ARKANSAS RIVER BASIN

TOTAL	219.0	166.0 22.8	33.31 33.39 0.08				TOTAL	249.0	224.3	8. 25. 5. 8. 25. 25. 25. 25.		
SEP	14.31	4.60 6.30	4.18 1.25 -2.93	948.73 949.23 948.72	22.46		SEP	16.95	4.60 0.83	4.53 0.72 -3.81	794.40 795.14 794.40	38.02
₽.yc	6.66	1.52	3.16 4.91 1.75	949.23 949.93 949.23	23.69		AUG	4.83 1.50	5.94 0.86	3.17 2.98 -0.19	795.13 795.56 795.13	41.02
4	20.12	15.47	3.60 3.02 -0.78	949.30 953.56 949.29	23.87		Ŋ	20.30	81.33 1.00	3.71 1.81 -1.90	795.42 796.20 795.42	42.26
NON	33.96 19.72	30.26 3.81	4.86 9.47	953.45 953.57 948.36	36.14		S. S.	41.67	31.65	5.04 0.11	796.20 796.44 793.58	45.67
ች	35.80 11.48	27.81 0.13	4.45 6.49 2.04	948.36 948.36 942.73	21.60		Į.	44.17	30.24	4.75 7.29 2.54	793.58 793.58 790.71	34.80
APR	36.98	22.79	3.19 0.80 -2.39	942.94 943.37 942.64	11.03		APR	43.80	21.94 0.71	3.55 1.59 -1.96	790.89 791.06 790.69	25.33
MAR	19.49	16.78	2.10 1.76 -0.34	943.34 943.47 943.11	11.70	ASIN	I AR	19.04	20.88 0.80	2.28 2.24 -1.04	791.06 791.31 791.05	25. 8
FEB	8.39 0.02	5.98	0.22	943.45 943.52 943.40	11.88	RIVER BASIN	FEB	8.20 0.28	5.43 0.78	1.17	791.29 791.50 791.29	26.64
NA.	7.98	1.65	0.93 0.11 -0.82	943.50 943.73 943.49	11.97	ARKANSAS	N	8.31 0.02	1.36	1.23 0.08 -1.15	791.50 791.83 791.48	27.34
DEC	7.05	2.69	1.24 2.03 0.79	943.73 943.88 943.54	12.36		DEC	6.99 0.56	5.41	1.36 1.73 0.37	791.88 792.16 791.86	28.61
NON	12.40	10.19	1.72 0.36 -1.36	943.73 944.22 943.73	12.36		NO.	14.25	14.21 0.83	2.13 0.78 -1.35	792.09 792.47 792.09	29.34
OCT	15.86 0.34	2.58	2.64 2.97 0.33	944.22 944.59 944.12	13.21		901	20.42	1.33 0.86	2.87 2.45 -0.42	792.47 793.00 792.47	30.69
FALL RIVER LAKE	INFLOWS(1000AC,FT.) AVG 1922 THRU 1964 FY 1981	RELEASES(1000AC.FT.) AVG 4976 THRU 1981 FY 1981	RAINFALL (INCHES) AVG 1930 THRU 1977 FY 1981 DEVIATION	POOL ELEVATION END OF MONTH MAXIMUM MINIMUM	PUOL CONTENT-EOM (1000AC.FT)		ELK CITY LAKE	INFLOWS(1000AC.FT.) AVG 1922 THRU 1964 FY 1981	RELEASES(1000AC.FT.) AVG 1976 THRU 1981 FY 1981	RAINFALL(INCHES) AVG 1930 THRU 1977 FY 1981 DEVIATION	POCL ELEVATION END OF MONTH MAXIMUM MINIMUM	POOL CONTENT-EOM (1000AC.FT)

SEP TOTAL	1.33 19.4 0.02 0.5		4.90 39.17 1.33 30.03 -3.57 -9.14	813.99 814.56 813.99	0.29		SEP TOTAL	109.00 1816.4 43.34 348.9	51.50 1303.9 28.92 117.0	4.79 38.21 1.44 30.75 -3.35 -7.46	637.76 638.30 637.71	546.52
AUG	0.27		3.04 9.04	814.35 81 814.35 81 812.57 81	0.32		AUG	53.98 10 28.66 4	40.80 9.06	3.31 1.85 1.84	637.91 63 638.22 63 6.7.76 63	550.63 54
701	1.73		3.81 2.03 -1.78	812.76 813.49 812.75	0.21		身	154.70	345.45 62.16	3.69	637.81 638.67 637.67	547.96
NUC	3.60		5.67 5.81 0.14	813.09 813.09 811.15	0.23		S	290.30 92.73	145.13	5.28 5.89 0.61	638.63 638.66 636.41	572.37
M A A	3.13		5.18 5.09 -0.09	811.15 811.20 808.95	0.13		¥	297.90 58.56	147.09		636.41 636.43 634.66	507.92
APR	2.30 0.05		3.82 1.10 -2.72	809.05 809.15 808.25	0.06		A E	280.20	191.41	3.74 1.98 -1.76	634.92 635.03 634.22	467.26
∄ AR	1.69		2.54 1.59 0.98	808.85 809.05 808.75	90.0	NISt	AAR	135.20 8.49	157.11	2.51 1.66 -0.83	634.40 635.07 634.52	456.76
FER	0.67		1.34 0.72 -0.62	808.75 803.75 808.64	0.05	RIVER BA	FEB	70.94	34.53	1.32 0.8%	634.74 635.09 634.62	462.48
NAU	1.05		1.46	808.70 808.90 808.70	0.03	ARKANSAS RIVER BASIN	N	79.26	12.36	1.45 0:11 -1.34	634.81 635.05 634.81	** 34
DEC	0.75		1.52 1.52 0.	808.90 809.10 808.78	0.06	-	DEC	73.31 6.33	32.78	1.54	635.05 635.43 634.98	470.74
NON.	1.19		2.43 0.89 -1.54	808.78 803.90 808.78	0.05		3	111.80	118.45	2.30 0.60 -1.70	635, 12 637, 53 35, 12	472.62
000	1.69		3.14 3.38 0.24	808.90 808.90	0.06		OCT	159.80 8.92	27.28	3.21	635.51 635.85 635.36	483.11
BIG HILL	INFLOWS(1000AC,FT.) AVG 1929 THRU 1978 FY 1981	RELEASES(1000AC.FT.) LAKE HAS NOT FILLED	RAINFALL(INCHES) AVG 1930 THRU 1977 FY 1981 DEVIATION	POOL ELEVATION END OF MONTH MAXIMUM MINIMUM	POOL CONTENT-EOM		OOLOGAH LAKE	INFLOWS(1000AC.FT.) AVG 1923 THRU 1972 FY 1981	RELEASES(1000AC.FT.) AVG 1976 THRU 1981 FY 1981	RAINFALL(INCHES) AVG 1930 THRU 1977 FY 1981 DEVIATION	POOL ELEVATION END OF MONTH MAXIMUM MINIMUM	POOL CONTENT-EON (1000AC,FT)

	HULAH LAKE	OCT	20	DEC	NA.	FEB	MAR	AFR	A A	Z	JUL	AUG	SEP	TOTAL
	INFLOWS(1000AC.FT.) AVG 1918 THRU 1965 FY 1981	32.89	19.51	8.17	7.00	6.95	17.26 0.85	41.27	48.09	38.39	34.39 0.85	15.25	32.09 0.36	301.3
	RELEASES(1000AC.FT.) AVG 1976 THRU 1981 FY 1981	.80 0.58	20.58	9.92	1.57	7.30	14.55 0.07	24.30 0.28	35.93 0.25	30.20	35.02 0.46	9.62	3.62	197.4 3.6
	RAINFALL(INCHES) AVG 1930 THRU 1977 FY 1981 DEVIATION	2.97 1.08 -1.89	2.10 0.34 -1.76	1.90	1.23 0.03 -1.20	1.20 0.55 -0.65	2.19 1.89 -0.30	3.50 1.73 -1.77	4.77 5.84 1.07	4.72 3.15 -1.57	3.45 2.31 -1.14	3.35 -0.50	4.21 1.79 -2.42	35.09 23.46 -11.63
	POOL ELEVATION END OF MONTH MAXIMUM MINIMUM	728.64 729.30 728.64	728.16 728.64 728.16	727.97 728.44 727.97	727.57 727.97 727.57	727.17 727.57 727.17	726.80 727.24 726.77	726.07 726.80 726.07	728.64 728.64 725.95	729.36 729.61 723.64	728.55 729.36 728.48	728.44 726.80 728.24	727.58 728.50 727.58	
11	POOL CONTENT-EOM (1000AC.FT)	17.69	16.46	15.98	15.06	14.14	13,35	11.86	17.69	19.61	17.46	17.18	15.09	
					arkansas	RIVER BASIN	ASIN							
	COPAN	0CT	NOV	DEC	NAU.	FEB	A FIR	4 ጸ	Ā	NON	19 2	AUG	SEP	TOTAL
	INFLOWS(1000AC,FT.) AVG 1936 THRU 1962 FY 1981	6.52	6.35 0.02	14.96	29.68	43.76	27.49	21.27	5.24	13.54 8.62	16.57	9.25	5.36 0.28	200.0
	RELEASES(1000AC.FT.) LAKE HAS NOT FILLED													
	RAINFALL(INCHES) AVG 1930 THRU 1977 FY 1981 DEVIATION	3.06 2.08 -0.98	2.22 0.42 -1.80	1.40 1.78 0.38	1.32 0.08 -1.24	1.25 0.80 -0.45	2.35 2.17 -0.18	3.52 2.02 -1.50	4.89 7.17 2.28	5.01 4.11 -0.90	3.46 2.92 -0.54	3.16 4.48 1.32	4.00 1.16 -2.84	35.64 29.19 -6.45
	POOL ELEVATION END OF MONTH MAXIMUM MINIMUM	680.34 680.34 679.21	680.60 680.60 680.34	676.20 679.96 675.30	676.30 676.30 676.10	676.20 676.40 676.20	677.10 677.60 676.:0	676.60 677.80 676.10	695.42 697.30 676.20	691.42 697.02 691.42	675.40 691.42 675.40	676.15 682.75 675.38	675.55 680.60 675.55	
	POOL CONTENT-EOM (1000AC.FT)	0.16	0.17	0.05	0.08	0.05	0.07	0.06	3.81	1.43	0.04	0.05	0.04	

OCT NOV DEC JAN FEB MAR APR MAY JUN JUL ANG	2.37 0.97 0.80 0.62 0.64 1.90 3.03 5.34 3.04 1.88 0.84 0.06 0. 0.12 0. 0.09 0.43 0.58 3.74 1.52 0.51 0.03	0.23 0.19 0.17 0.19 0.18 0.79 1.73 2.77 1.65 0.87 0.28 0.19 0.12 0.12 0.12 0.12 0.33 0.44 0.25	2.85 2.08 1.45 1.24 1.31 2.37 3.28 5.01 4.52 3.23 3.31 1.27 0.41 1.38 0. 0.99 2.79 2.38 6.33 4.96 4.89 2.76 -1.58 -1.67 -0.07 -1.24 -0.32 0.42 -0.90 1.32 0.44 1.66 -0.55	748.23 747.91 747.76 747.52 747.44 747.50 747.46 750.43 750.95 750.48 749.89 749.29 748.23 748.23 748.00 747.76 747.54 747.54 747.53 750.43 751.20 750.95 750.49 749.89 748.23 747.91 747.52 747.43 747.35 747.35 747.36 750.32 749.71 749.89	16.68 16.34 16.18 15.92 15.84 15.90 15.86 19.11 19.69 19.16 18.50	ARKANSAS RIVER BASIN	OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG	13.47 8.09 3.91 3.61 4.29 12.59 15.35 28.43 16.19 10.64 4.09 0. 0. 0. 0. 0. 0. 0. 3.28		0. 0. 0. 0. 0. 0. 0. 0. 0. 4.33 3.33 3.3	0. 0. 0. 0. 0. 0. 0. 0. 0. 620.90 622.40 620.29 620.10 0. 0. 0. 0. 0. 0. 0. 621.00 622.50 630.50 620.70 0. 0. 0. 0. 0. 0. 0. 6. 619.50 620.20 620.10	0. 0. 0. 0. 0. 0. 0. 0.03 0.05 0.02
BIRCH LAKE	INFLOWS(1000AC,FT.) AVG 1936 THRU 1972 FY 1981	RELEASES(1000AC.FT.) AVG 1979 THRU 1981 FY 1981	RAINFALL(INCHES) AVG 1930 THRU 1977 FY 1981 DEVIATION	POOL ELEVATION END OF MONTH MAXIMUM HINIMUM	POOL CONTENT-EOM (1000AC.FT)		SKIATOOK LAKE	INFLONS(1000AC,FT.) AVG 1935 THRU 1978 FY 1981	RELEASES(1000AC.FT.) LAKE HAS NOT FILLED	RAINFALL(INCHES) AVG 1930 THRU 1977 FY 1981 DEVIATION	POOL ELEVATION END OF HONTH MAXIMUM MINIMUM	POOL CONTENT-EOM (1000AC.FT)

NEWT GRAHAM LOCK AND DAM OCT	XCK AND	DAM OCT	NON	DEC	NA	FEB	MAR	APR	¥	25. N	JUL.	AUG	SEP	TOTAL
INFLOWS(1000AC.FT.) AVG 1923 THOU 1957 FY 1981	5.FT.) J 1957	30 6. 03 9. 00	306.03 159.47 9.00 11.79	104.65 12.02	137.73	123.85 11.45	203.04 13.36	501.27	562.13 97.39	549.77 100.48	233.60 118.07	99.67 59.40	137.64 54.94	3118.9 521.2
RELEASES(1000AC.FT. AVG 4976 THRU 1981 FY 1981	AC.FT.) J 1981	43.21 8.61	192.37 11.55	64. 12 12.23	39.75 5.82	86.23 11.44	236.28 12.45	341.56	360.40 97.80	299.35	427.02 117.42	80.59 59.26	79.73 54.45	2250.6 519.7
RAINFALL (INCHES) AVG 1930 THRU 1977 FY 1981 DEVIATION	ES) J 1977	3.21 2.24 -0.97	2.26 0.54 -1.72	1.58	1.46 0.16 -1.30	1.26	2.28	3.62 2.64 -0.98	4.87 6.57 1.70	4.72 4.29 -0.43	2.37 4.39 2.02	3.25 3.41 0.16	4.49 2.46 -2.03	35,79 31,68 -4,11
POOL ELEVATION END OF MONTH MAXIMUM MINIMUM	7	532.26 532.49 532.10	532.24 532.49 532.16	532.49 532.49 511.59	532.49 532.49 532.30	532.44 532.53 532.20	532.49 532.52 532.23	532.39 532.52 531.80	532.46 532.67 531.76	532.49 532.53 531.90	532.47 532.55 532.01	532.30 532.52 532.05	532.38 532.49 532.02	
POOL CONTENT-EOM (1000AC.FT)	FO.	23.89	23.86	24.24	24.24	24.17	24.24	24.09	24.20	24.24	24.21	23.95	24.08	

CHOUTEAU LOCK AND DAM	1 OCT	<u>8</u>	DEC	NAS	FEB	AAR	APR	MAY	N O	JUL.	AUG	SEP	TOTAL
INFLOWS(1000AC,FT.) AVG 1923 THRU 1957 FY 1981	306.03 9.26	306.03 159.47 9.26 7.88	104.65	137.73	123.85 11.06	203.31 14.34	501.22	562.13 73.19	549.77 92.31	233.60 119.48	99.67 52.85	137.64 39.94	3119.1
RELEASES(1000AC.FT.) AVG 1976 THRU 1981 FY 1981	42.22 8.40	42,22 188.88 8.40 7.53	57.93 10.75	34.79	80.73 10.41	225.99 13.73	345.51 22.20	345.10 72.00	302.12 91.21	413.98	76.38 52.00	71.62	2185.2 455.4
RAINFALL (INCHES) AVG 1930 THRU 1977 FY 1931 DEVIATION	1.65 2.24 0.59	2.77 1.28 -1.49	2.05 1.53 -0.52	1.92 0.31 -1.61	2.04 2.08 0.04	2.89 2.12 -0.77	4.19 3.17 -1.02	5.19 7.06 1.87	2.55 -2.41	3.17 4.75 1.58	2.96 2.85 -0.11	4.30 3.32 -0.98	38.09 33.26 -4.83
POOL ELEVATION END OF MONTH MAXIMUM MINIMUM	511.24 511.45 511.51 511.47 511.15 511.24	511.45 511.47 511.24	511.42 511.52 511.27	511.45 511.52 511.29	511.46 511.54 511.16	511.47 511.53 511.18	511.42 511.69 511.06	511.28 511.55 511.08	511.38 5:1.58 510.97	511.30 511.57 511.12	511.43 511.50 511.20	511.30 511.52 511.24	
POOL CONTENT-EOM (1000AC.FT)	23.11	23.59	23.52	23,59	23.61	23. ^4	23.52	23.20	23.43	23.25	28.55	23.25	

	COUNCIL GROVE LAKE	00.1	NOV	DEC	NAU	FEB	r A	APR	I A	CCN	J. P.	AUG	SEP	TOTAL
	INFLOWS(1000AC.FT.) AVG 1922 THRU 1971 FY 1981	5.05	4.28	2.42	2.50	3.27 0.55	5.60	9.60	13.85	15.39 28.12	12.87	5.97	8.16 2.73	69.0 56.1
	RELEASES(1000AC.FT.) AVG 1976 THRU 1981 FY 1981	0.71	1.44	1.53	0.34	1.19	5.56	7.04	3.45	8.51	20.21 23.73	1.31	1.33	52.6 34.1
	RAINFALL(INCHES) AVG 1730 THRU 1977 FY 1931 DEVIATION	3.39 3.71 0.32	1.63 0.03 -1.60	1.20 2.45 1.25	0.85 -0.83	0.20	1.51	3.17 1.64 -1.53	4.72 5.85 1.13	5.05 8.80 3.75	3.83 4.42 0.54	3.55 2.52 -1.03	4.00 1.84 -2.16	34.27 33.08 -1.19
	POOL ELEVATION END OF MONTH MAXIMUM MINIMUM	1267.79 1267.44 1268.09 1267.79 1267.79 1267.44	1267.44 1267.79 1267.44	1267.56 1267.67 1267.39	1267.40 1267.56 1267.40	1267.37 1267.41 1267.33	1267.34 1267.40 1267.17	1267.01 1267.34 1267.01	1268.15 1268.17 1266.87	1276.54 1276.54 1268.10	1272.28 1276.56 1271.92	1272.49 1272.75 1271.72	1272.32 1273.00 1272.28	
14	POCL CONTENT-EOM (1000AC.FT)	30.26	29.35	29.66	29.24	29.16	29.09	28.23	31.21	57.13	43.08	43.73	43.20	
					ARKANSAS	S RIVER BASIN	BASIN							
	MARION LAKE	00.1	2	DEC	Z.	F B	AAR	APR	ĦAY	S.S.	3	AUG	SEP	TOTAL
	INFLOWS(1000AC.FT.) AND 1938 THRU 1971 FY 1981	3.16	1.28	1.49	1.94	2.08	3.31 1.81	5.91	8.70 3.90	10.17	7.13	1.78	4.79	51.7
	RELEASES(1000AC.FT.) AVG 1976 THRU 1981 FY 1981	0.49	4.21	0.35	0.71	1.83	2.29	6.63	5.63	4.30	12.12 0.55	0.77	0.60	39.9
	RAINFALL(INCHES) AVG 1930 THRU 1977 FY 1981 DEVIATION	2.47	1.36 0.06 -1.50	1.06 2.62 1.56	0.77 0.07 -0.70	0.97 0.17 -0.80	1.76 2.81 1.05	2.31	4.51 5.82 1.31	4.80 1.30	3.90 4.60 0.70	3.28 3.96 0.68	3.84 1.74 -2.10	31.73 30.77 -0.96
	POOL SLEVATION END OF MONTH MAXIMUM MINIMUM	1347.51 1347.93 1347.51	1347.27 1347.51 1347.27	1347, 32 1347, 41 1347, 15	1347.35 1347.37 1347.32	1347.22 1347.43 1347.21	1347.33 1347.34 1347.19	1347,15 1347,33 1347,15	1347.43 1347.43 1347.06	1347.50 1347.50 1347.25	1348.12 1348.17 1347.50	1348.64 1348.66 1348.12	1348.80 1349.12 1348.66	
	POOL CONTENT-EOH (1000AC,FT)	66.45	65.16	65.43	65.59	64.89	65.48	64.52	66.02	66.40	69.76	72.81	73.60	

د لا

JOHN REDMOND DAM AND RES OCT	A DND	ES 0CT	NOC	DEC	N N	FEB	T AR	A R	F A	NO.	ה	AUG	SEP	TOTAL
INFLOWS(1000AC.FT.) AVG 1922 THRU 1965 FY 1981	1965	65.59 8.69	51.19	35.89 10.41	34.38	34.45	76.13 5.83	130.65	145,55 58,33	150,15 151,43	123.42 161.84	44.53 60.19	75.81 57.65	967.7 529.0
RELEASES(1000AC.FT.) AVG 1976 THRU 1981 FY 1981	.FT.)	9.12	29.04 8.13	18.82 5.89	10.43 5.20	20.08 5.29	71.78 8.28	109.30	67.63 16.20	110.76 102.38	172.91 212.08	29.12 52.76	31.79 63.21	680.8 485.0
RAINFALL(INCHES) AVG 1930 THRU 1977 FY 1931 DEVIATION	1977	2.65 3.19 0.54	1.67 0.05 -1.62	1.16 2.19 1.03	0.88 0.01 -0.87	0.96 0.07 -0.89	1.96 1.64 -0.32	3.05 0.86 -2.19	4.55 6.64 2.09	4.95 7.06 2.11	3.89 5.38 1.49	3,43 4,62 1,19	4.17	33, 32 33, 27 -0, 05
POOL ELEVATION END OF MONTH MAXIMUM MINIMUM	end end ₆₄₈	1037.68 1037.80 1037.07	1036.90 1037.68 1036.90	1037.39 1037.42 1036.80	1037, 15 1037, 48 1036, 99	1036,65 1037,55 1036,65	1036.09 1036.65 1035.95	1036.13 1036.18 1036.04	1040.64 1040.64 1035.98	1044.68 1045.00 1039.18	1039.95 1044.85 1039.34	1040.30 1040.30 1038.92	1039.33 1042.85 1039.11	
POOL CONTENT-EOM (1000AC.FT)	r	59.79	53.40	57,39	55,40	51.49	47.20	47.51	87.14	133.06	80,25	83.73	74.40	
15					ARKANSAS	S RIVER BASIN	MSIN							
(Grand) PENSACOLA [†] LAKE		100	NON	DEC	Z S	FEB	MAR	APR	¥	3	#	AUG	SEP	TOTAL
INFLOWS(1000AC.FT.) AVG 1923 THRU 1977 FY 1981	FT.) 1977	340.04 53.95	324.13 27.97	245.40 36.49	25.59	285.68 30.15	455.00 48.79	625.42 74.38	721.37	752.16 446.68	411.64	175.32 179.70	275.35 143.70	4871.6
RELEASES(1000AC.FT.) AVG 1976 THRU 1981 FY 1981		133.81	181.32	146.14	87.53 14.06	109.14 9.56	348.26 32.63	439.34	304.70 42.82	359.63 226.10	634.27 397.09	239.64	200.81	3184.6
RAINFALL (INCHES) AVG 1930 THRU 1977 FY 1981 DEVIATION	1977	3.44 0.60	2.62 0.52 -2.10	1.93 1.43 -0.50	1.74 0.10 -1.64	1.75 1.43 -0.32	2.86 1.19 -1.47	4.08 2.22 -1.86	5.19 4.27 -0.92	5.32 5.76 0.44	3.64 3.36 -0.28	3.37 4.87 1.50	4.83 1.87 -2.96	40.77 31.06 -9.71
POOL ELEVATION END OF MONTH HAXIMUM HINIMUM		735.20 735.20 734.00	735.32 735.46 735.20	736.22 736.22 735.31	736.29 736.40 736.22	73 6.86 736.86 736.23	736.83 737.46 736.75	737.77 737.77 736.76	740,31 740,31 737,69	744.89 744.97 740.22	743.68 745.91 743.68	741.19 743.93 741.18	740.56 742.64 740.56	
POOL CONTENT-EOM (1000AC.FT)		1264.40	1264.40 1268.84	1302.36	1305.02	1326.68	1325.54	1362.03	1465.02	1666.94		1611.60 1502.17	1475.52	, ;

LAKE HUDSON	90	2 0	DEC	NA	FEB	A A A	APR	¥	S.	J.	AUG	SEP	TOTAL
INFLOWS(1000AC.FT.) AVG 1923 THRU 1977 FY 1981	388.47 11.58	333.45 13.68	283.02	292.19 12.81	326. 78 8.97	488.81	705.69 24.69	829.43 66.55	829.39 260.63	477.30 393.66	231.98 269.99	302.67	5489.2
RELEASES(1000AC.FT.) AVG 1976 THRU 1981 FY 1981	143.27 10.08	204.50	163.86 0.44	94.85	3.91	405.41	613.81	354.40	485.73 269.55	672.36 380.21	244, 19 265, 15	208.59	3720.9 1190.5
RAINFALL(INCHES) AVG 1930 THRU 1977 FY 1981 DEVIATION	3.86 3.90 0.04	2.93 0.84 -2.09	2.21	1.97	2.11 2.36 0.25	3.12 1.50 -1.62	4.32 3.05 -1.27	9.9.9. 46.9.9.0.16	5.22 5.40 0.18	3.29 3.79 0.50	3.43 4.48 1.05	4.68 2.58 -2.30	42.84 34.98 -7.86
POOL ELEVATION END OF MONTH MAXIMUM MINIMUM	619.39 619.74 618.45	618.59 619.56 618.41	618.50 619.30 618.35	618.84 619.16 618.21	619.07 619.46 618.60	619.50 619.99 618.97	619.93 620.18 619.10	619.67 620.45 618.94	618.73 619.77 618.66	619.25 619.83 618.09	619.47 619.79 618.50	619.62 619.62 618.59	
POOL CONTENT-EOM	204.61	195.91	194.94	198.59	201.07	205, 63	210.58	207.70	197.41	203.06	205.49	207.15	
				ARKANSAS	RIVER	BASIN							
FORT GIBSON LAKE	50	X) 	NAN	FEB	A A	8	¥	S.	*	AUG	SEP	TOTAL
INFLOWS(1000AC.FT.) AVG 1923 THRU 1962 FY 1981	431.30 18.25	322.90 11.70	258.40 12.50	289.20 8.33	352.30 15.47	489.50	831.60 35.70	1037.90 97.98	946.20 302.67	504.00	251.40 277.96	341.70	6056.4 1393.7
RELEASES(1000AC.FT.) AVG 1976 THRU 1981 FY 1981	156.57 8.42	217.56	189.20 12.26	119.88 4.35	130.67	436.92 62.00	651.24 31.12	406.24 83.00	483.95	752.99 439.01	254.42 289.39	207.27	4006.9
RAINFALL (INCHES) AVG 1930 THRU 1977 FY 1981 DEVIATION	3.72 2.44 -1.28	2.90 1.07 -1.83	2.22 1.55 -0.67	1.99	2.15 2.56 0.41	3.11	4.32 2.94 -1.38	5.40 6.19 0.79	3.80	3.13 4.72 1.59	3.25 4.48 1.23	4.15 2.80 -1.35	41.43
POOL ELEVATION END OF MONTH MAXIMUM HINIMUM	554, 34 554, 36 553, 92	354.34 354.39 354.21	554.22 554.52 554.13	554.30 554.40 554.21	554.14 554.52 554.01	552,70 554,17 552,70	552.47 552.70 552.18	552.99 553.35 552.30	554.82 556.11 552.68	554.20 555.34 553.59	553.21 554.40 552.93	553.59 553.81 553.17	
POOL CONTENT-EDM (1000AC.FT)	371.76	371.76	369.45	370.99	367.90	341.10	336.96	346.32	381.03	369.06	350.43	357.53	

3	WEBBERS FALLS LAD	00	200	DEC	A	FEB	MAR	APŘ	¥ Y	N _D	JUL	AUG	SEP	TOTAL
_	INFLOWS(1000AC,FT.) AVG 1923 THRU 1961 FY 1981	1241.40	785.50 72.79	655.50 85.09	602.00 72.00	690.90 79.54	934.00 128.43	1555.00 113.85	2503,10 413,99	2314,10	1640.50 872.23	925.40 579.25	834.40 401.20	14687.6 3717.6
u.	RELEASES(1000AC.FT.) AVG 4976 THRU 1981 FY 1981	279.80 55.54	639.16 70.29	366.54 83.55	247.86 68.54	303.27 76.50	923.77 124.52	1432.82	1372.16	1487.99 852.57	1520.76 881.55	507.29	534.07 419.31	9615.5 3729.0
u.	RAINFALL (INCHES) AVG 1930 THRU 1977 FY 1981 DEVIATION	1.29 2.08 0.79	2.79 1.21 -1.58	2.14 1.63 -0.51	1.93 0.40 -1.53	2.14 2.16 0.02	2.55 2.23 -0.72	4.30 2.6.5 3.65	5.22 6.02 0.80	5.00 2.93 -2.07	3.11 5.50 2.39	2.99	4.35 2.62 -1.73	38.21 34.66 -3.55
u -	POOL ELEVATION END OF MONTH MAXIMUM MINIMUM	489.77 490.17 489.56	489.67 489.99 489.45	489.57 490.20 489.35	489.74 490.01 489.50	489.83 490.30 489.16	489.91 490.40 489.55	489.97 490.33 489.48	489.87 490.34 488.98	489.96 490.22 489.60	489.75 490.20 489.27	489.74 490.14 489.55	489.57 490.10 489.56	
17	POOL CONTENT-EOM (1000AC.FT)	162.76	161.70	160.64	162.44	163.40	164.25	164.88	163.82	164.77	162.55	162.44	160.64	
,				-	ARKANSAS	RIVER	BASIN							
-	TENKILLER LAKE	3CT	NO So	DEC	JAN	FEB	MAR	APR	Ħ	NON	JOF	AUG	SEP	TOTAL
_	INFLOWS(1000AC.FT.) AVG 1923 THRU 1971 FY 1981	54.06 2.85	59.60 6.09	75.26 11.37	85.66 6.88	99.58 12.65	126.53 25.68	171.28 31.96	198.38 90.78	115.63 67.61	54.87 52.44	42.85	31.93	1115.6 361.3
•	RELEASES(1000AC.FT.) AVG 1976 THRU 1981 FY 1981	37.73	21.24	33.68	39.53 2.91	28.93	50.11	106.91 3.21	99.75 3.07	62.03 73.05	53.80 72.17	46.20 63.03	30.35 55.07	610.3 288.6
•	RAINFALL (INCHES) AVG 1930 THRU 1977 FY 1981 DEVIATION	3.71 2.57 -1.14	3.16 1.56 -1.60	2.65 1.81 -0.84	2.26 0.15 -2.11	2.69	3.50 2.11 -1.39	4.70 3.20 -1.50	5.63 5.78 0.15	4.86 3.06 -1.80	3.22 5.59 2.37	3.38 2.74	4.43 1.83 -2.60	44.19 35.82 -8.37
•	POOL ELEVATION END OF MONTH MAXIMUM MINIMUM	620.99 621.44 620.98	621.00 621.07 620.92	621.68 621.69 621.00	621.96 621.96 621.67	622.71 622.71 621.96	624.37 624.37 622.71	626.48 626.48 624.37	633.21 633.21 626.48	632.40 634.39 632.38	630.34 632.55 625.33	628.32 631.50 628.32	624.06 628.32 624.06	
_	PDOL CONTENT-EOM (1000AC.FT)	522.89	523.00	530.41	533.46	541.92	561.09	585.66	669.95	659.34	632.88	606.04	557.50	

ARKANSAS RIVER BASIN

CONCHAS LAKE			,		i	2	9	\$	2	5	AIC	235	- Portal
Inflows (1000 Ac. Pt.)	5	A C	3 .	7	9 (¥ ,	į .						
Avg 1940 thru 19 61	9.7	21.5	19.9	9.01 1	2 0 4	1.5 4.5	20 es	7.6	14.0 2.8	22.1	32.8	13.7	106.0
11981	2	:	•	:	•	;	?	:	•	;	2		
heleases (1000 Ac. Ft.)	•	-	0.5	æ	0.1	•	14.1	9	6	-		12.7	A
FT 19 81	12.6	9.	7	0	7	₹.	12.2	10.1	9.7	4.5	3.2	9.9	60.1
Rainfall (Inches)	;	•	:	;	;	;	;			•			;
Avg 1940 thru 19 81 Fr 19 81	20.	3.4	. 8	ž. 0	. 80.	1.21	. 62	1.38	1.44	1.49	5.3 5.33	8.3	13.18 21.11
Pool Elevation (BOM)	4167.84	4167.58	4167.53	4167.58	4167.47	4167.30	4163.77	4160.50	4157.66	4158.25	-		,
	4167.84	4167.58	4167.51	4167.54	4167.45	4167.30	4163.77	4160.50	4157.24	4157.90	41/3./2	4175.72	4177.24
Pool Content (EOH) (1000 Ac. Ft.)	116.0	114.9	114.7	114.9	114.5	113.8	100.0	88.2	78.8	80.7	151.5	155.9	
(Meredith)													
SAMFORD RESERVOIR	964	40	DEC	3	FEB	\$	\$	¥	3	쿡	ACC.	SEP	TOTAL
INFLOWS(1000AC, FT.) AVG 1923 THRU 1961	28.80	3.30	2.20	3.60	9.5	8:	14.40	49.60	45.20	47.90	41.70	39.40	279.6
FV 1981	0.05	0.0	2.3	- 40	%	4.66	e. 8	₩.38	18.72	14.82	143.40	43.48	236.2
RELEASES(1000AC.FT.) LAKE HAS NOT FILLED													
RAINFALL (INCHES) ANG 1930 THRU 1977	8.7	6	9	0.43	0.47	0.67	1.13	2.44	2,38	2,75	2.48	8 7	8
FY 1981	. S	4	96	0.0	0.02	8	0.36	1.43	3	1.76	6.63	2.42	17.19
DECIATION	-1.01	9	9	9	6 2	0.42	0.37	%	% ?	-0.99	4.17	0.71	• •
POOL ELEVATION END OF MONTH	2882.07	2881.10	2880,30	2879.55	2878.80			2876.39	2877.12	2877.21	2893.99	2897.74	
MINIMUM	2883.59 2882.04	2882.07 2861.10	2881.10	2890.32 2879.55	2879.57	2878.80 2878.28	2878.28	2877.32			2893.99	2897. 75 2893. 98	
POCL CONTENT-EON (1000AC.FT)	212.27	212.27 205.07	199.24	193.85	188.53	184.90	177.92	171.90	176.89	177.51	313.56	350.01	

AKKANSAS RIVER BASIN

JUN JUL AUG SEP TOTAL	2.10 4.40 0.70 2.40 %6.5 5.74 2.78 1.38 0.34 19.4	1,89 0.86 0. 0. 3.4 0. 0. 0. 0. 0.	4.30 2.93 2.66 3.60 33.92 6.15 3.41 3.78 1.29 29.57 1.85 0.48 1.12 -2.31 -4.35	20 1034.98 1034.60 1033.95 28 1035.37 1034.98 1034.66 78 1034.62 1034.60 1033.95	90 96.70 94.78 91.50		JUN JUL AUG SEP TOTAL	7.23 4,49 3.84 3.57 34.4 0.35 0.31 3.10 0.01 4.8		2.24 2.73 2.45 1.67 16.55 0.93 1.63 3.13 0.35 10.03 1.31 -1.10 0.68 -1.32 -6.52	90 2717,40 2720,55 2720,00 60 2717,90 2720,65 2720,55 90 2717,40 2717,30 2720,00	3.04 2.71 5.25 4.73
YAM	13.70 12. 2.49 5.	0.63 1.	5.33 4. 4.20 6. -1.13 1.	1034.79 1035.20 1034.94 1035.28 1034.67 1034.78	95.74 97.90		MAY	6.28 7. 0.30 0.		2.55 2.24 2.14 0.93 -0.41 -1.31	2718.60 2717.90 2713.90 2718.60 2718.60 2717.90	3.57 9.
APR	9.50	÷ •	3.52 1.85 -1.67	1034.63 1 1035.08 1 1034.83 1	95,94		4 8	1.84		1.21 0.43 -0.78	2718.80 2719.10 2718.80	3.72
MAR	4. 20 2. 80	· · ·	2,23 3,98 1,15	1035,08 1035,22 1034,99	97.24	BASIN	MAR	1.16		0.76 0.58 -0.18	2719.10 2719.30 2719.00	4 0 2 26
HER	2.10	ંઠં	1.53 1.63 0.10	1035.00 1035.10 1034.89	96.80	S RIVER BASIN	FEB	0.95		0.42	2719.30 2719.60 2719.30	4. 1.
JAN	0. 0.		1.31 0.01 -1.30	1035.10 1035.39 1035.09	97.35	ARKANSAS	NAU	0.88		0.36	2719.60 2719.70 2719.60	98,39
DEC	1.60	ŏ ö	1.52	1035.39 1035.60 1035.37	48.94		, DEC	0.75		0.21	2719.70 2719.70 2719.60	4.47
NON	0.90	66	2.03	1035.69 1035.43 1036.35 1035.69 1035.69 1035.43	98.16		NON .	0.92		0.58	2719.60 2719.70 2719.50	4.39
OCT	3.80 0.	•••	2.96 1.06 -1.90	1035.69 1036.35 1035.69	100.60		00.1	2.47		0.17	2719.70 2720.20 2719.70	4.47
(Thunderbird)	INFLOMS(1000AC,FT,) AVG 1926 THRU 1961 FY 1981	RELEASES(1000AC,FT,) AVG 1976 THRU 1981 FY 1981	RAINFALL(INCHES) Avg 1930 Thru 1977 FY 1931 DEVIATION	FOOL ELEVATION END OF MONTH MAXIMUM MINIMUM	POOL CONTENT-EOM (1000AC.FT)	10	OPTIMA LAKE	INFLOWS(1000AC.FT.) AVG 1939 THRU 1977 FY 1981	RELEASES (1000AC.FT.) LAKE HAS NOT FILLED	RAINFALL(INCHES) AVG 1930 THRU 1977 FY 1981 DEVIATION	FOOL ELEVATION END OF MONTH MAXIMIM MINIMIM	POOL CONTENT-EOM (10000G, FT)

70 2.00 2.70 4.70 13.00 13.80 5.20 4.10 4.40 63 1.85 2.68 2.56 2.19 0.94 0.72 0.95 0.47	79 1.36 1.63 2.74 12.14 4.74 0.45 0.32 0.42 0.13 2.52 1.29 1.19 0. 0. 0. 0. 0.	55 0.80 1.14 1.72 3.47 3.09 2.47 2.47 1.86 01 0.01 2.06 0.64 2.23 1.29 2.58 2.96 1.38 54 -0.79 0.92 -1.08 -1.24 -1.80 0.11 0.49 -0.48	75 2004.40 2004.19 2004.17 2004.16 2003.69 2003.33 2003.22 2002.97 84 2004.46 2004.46 2004.40 2004.26 2004.24 2003.75 2003.35 2003.39 98 2003.75 2004.19 2003.98 2003.65 2003.69 2003.50 2003.20 2003.07	44 14.66 14.26 14.22 14.20 13.33 12.68 12.48 12.03	ISAS RIVER BASIN	IAN FEB MAR APR MAY JUN JUL AUG SEP	20 5.60 7.50 13.80 39.90 42.50 17.50 11.50 13.70 32 2.44 5.76 4.37 3.45 3.82 2.06 1.60 0.64	45 1.31 2.72 8.66 3.67 13.17 3.30 1.36 6.26 31 0.19 0.25 24.63 1.07 0.36 0.38 0.31	51 0.71 1.09 1.64 3.20 2.81 2.58 2.54 1.83 01 0.02 1.84 0.80 3.33 1.65 2.57 3.02 1.90 50 -0.69 0.75 -0.84 0.13 -1.16 -0.01 0.48 0.07	45 1608.63 1609.41 1605.05 1605.06 1605.00 1604.54 1604.20 1603.80 49 1608.69 1609.35 1609.47 1605.13 1605.19 1605.00 1604.54 1604.27 30 1608.41 1608.63 1605.05 1604.85 1604.69 1604.54 1604.09 1603.70	
				~					•	3 1605. 3 1605.	;
-							(r)			5 1605.0 7 1605.1 5 1604.6	;
				-			-		•	1605.00 1609.47 1605.00	;
			2004.19 2004.46 2004.19		BASIN	#AR					1
2.00	1.36	0.80 0.01 -0.79	2004.40 2004.46 2003.75	14.66	RIVER	FEB	5.60	1.31	0.71	1608.63 1608.69 1608.41	;
1.70	0.79	0.55 0.01 42.0-	2003.75 2003.84 2002.98	13.44	ARKANSAS	NAU	4.20	3.45 0.31	0.51 0.01 -0.50	1608.45 1608.49 1608.30	4
1.70	0.75	0.66 1.24 0.58	2:302.99 2002.99 2002.09	12.06		DEC	3.90	6.87 0.39	0.60 1.31 0.71	1608.34 1608.44 1608.08	
3.70	0.88 0.	0.96 0.11 -0.85	2002.13 2002.14 2001.90	10.64		¥6.	5.70 0.	5.10	0.92 0.29 -0.63	1608.21 1613.19 1608.19	
7.40	0.03	1.61 0.46 -1.15	2001.91 2002.34 2001.85	10.29		961	22.90 0.50	5.39	 0.60 88	1613.16 1613.70 1613.16	8
INFLOWS(1000AC.FT.) AVG 1923 THRU 1966 FY 1981	RELEASES(1000AC.FT.) AVG 1976 THRU 1981 FY 1981	RAINFALL(INCHES) AVG 1930 THRU 1977 FY 1981 DEVIATION	POOL ELEVATION END OF MONTH MAXIMUM MINIMUM	POOL CONTENT-EOM (1000AC,FT)		CANTON LAKE	INFLOWS(1000AC,FT.) AVG 1923 THRU 1966 FY 1981	RELEASES(10000AC.FT.) AVG 1976 THRU 1981 FY 1981	RAINFALL (INCHES) AVG 1930 THRU 1977 FY 1981 DEVIATION	POOL ELEVATION END OF MONTH MAXIMUM MINIMUM	POOL CONTENT-EOM

ARKANSAS RIVER BASIN

EUFAULA LAKE	OCT	NGO	DEC	NO	ት ሕ	1	T See	MAY	NUS	JUL.	AUG	SEP	TOTAL
INFLOWS(1000AC.FT.) AVG 1923 THRU 1978 FY 1981	329.09 8.33	249.47 17.26	213,86	214,29	268.70 44.33	564.17	4.04.47 6.00.00	801.15 267.81	593.79 284.69	259, 73 88, 29	146.22 63.84	222.09 31.40	\$208.1 969.8
KELEASES(1000AC.FT.) AVG 1976 THRU 1931 FY 1981	78.82	66.98 13.06	47.23	88.84 6.16	57.78 6.55	36.57 7.03	127.42	321.24 5.71	373.60 60.81	223.56 .33.53	146.70 274.06	60.99 85.31	1629.7
RAINFALL (INCHES) AVG 1930 THRU 1977 FY 1931 DEVIATION	3.24 1.64 -1.60	2.42 1.15	1.92 1.97 0.05	1,64 0,10 -1,54	1.98 1.95 -0.03	2.71 2.40 -0.21	3.41 1.75 -2.16	5.44 0.32	4 8.0 9.0 4 8.0 9.0	3.10 5.61 2.51	2.90 4.63 1.78	2.40 2.40 -1.63	37.68 34.75 -2.93
POOL ELEVATION END OF MONTH MAXIMUM MINIMUM	578.93 579.49 578.93	578.80 578.93 578.70	579, 12 579, 24 578, 63	579.12 579.15 579.03	579,44 579,44 574,02	580,73 580,15 579,44	580,46 530,51 580,20	582,39 582,39 580,43	584,28 584,80 582,39	583,25 584,58 583,08	580,54 583,35 580,54	579.57 580.54 579.57	
POOL CONTENT-EOM (1000AC.FT)	:766.61	:766.61 1755.86	1782.66	1782.66	1816.02	1878, 09	67,8681	2073.24	2256.83	2155,15	1905,31	1821.13	
				ARKANGAS	RIVER BASIN	MEIN							
R.S.KERR LOCK AND DAM	a oct	NON	DEC	JAN	FEB	MAR	APR	Ā	NOS	JUL	AUG	SEP	TOTAL
INFLOWS(1000AC.FT.) AVG 1923 THRU 1960 FY 1981	1628,20 1073,50 85,83 80,73	1073,50 80.73	1006.60	1061.90 65.55	1130.70 98.18	1509, 50 173, 35	2213.00 140.53	3584.70 488.75	3196.60 906.64	2192.00 954.64	1271.50	1063.90 502.61	20678.1 4396.8
RELEASES(1000AC.FT.) AVG 1976 THRU 1981 FY 1981	385.17 83.38	720.90 66.70	465.61	392.62 42.45	433.48 87.74	1130.93	1765.90 110.31	1959.17 471.52	1991.68	1764.29 936.83	702.66 839.84	603.83 503.70	12316.2 4339.3
RAINFALL (INCHES) AVG 1930 THRU 1977 FY 1931 DEVIATION	3.69 2.33 -1.36	3.05 1.81 -1.24	2.63 1.89 -0.74	2.16 0.49 -1.67	2.64 2.67 0.03	3.42 2.69 -0.73	4.63 3.11 -1.52	5.55 7.11 1.56	4.64 2.43 -2.21	3.21 5.72 2.51	3.24 4.08 0.84	4.27 2.96 -1.31	43.13 37.29 -5.84
POOL ELEVATION END OF MONTH MAXIMUM MINIMUM	459.48 459.74 459.21	459.48 459.98 459.34	459.20 459.84 459.13	459.54 459.54 458.90	459.60 460.00 459.16	459, 18 459, 90 458, 65	459.47 459.75 453.45	459.79 460.19 458.44	459.28 4e0.00 458.78	459.30 460.11 458.99	759, 43 460, 13 458, 97	459.20 460.03 459.08	

472.90 472.90 461.76 475.29 477.68 460.96 472.51 485.24 464.94 465.74 470.91 461.76

POOL CONTENT-EOM (1000AC.FT)

TOTAL	20878.1 5046.7	12826.7	42.99 38.82 -4.17				TOTAL	794.1	524.3 574.2	48.18 49.09 0.91		
SEP	1063, 90 535, 74	654.01 555.79	4.17	412.17 413.24 412.17	14.45		SEP	18.49	5.68 2.63	4.17 2.35 -1.82	478.00 478.11 477.94	62.36
AUG	1217.50 886.61	757.11	3.08 4.78 1.70	412.60 413.11 412.22	15, 13		AUG	10.33	8.57 18.49	3.36 6.20 2.84	478.04 478.77 478.03	62.66
JUL	2192.00 1001.45	180 4.07 1002.94	3.19 6.79 3.60	412.92 413.19 412.13	15.64		J.	25.42 42.96	22.83 38.88	3.597.74	478.53 480.66 477.94	66.40
NUN	3196.60 951.08	2040.37 950.47	4.31 2.89 -1.42	413.10 413.26 411.69	15,93		S	46.25 199.84	95.12 218.00	4.13 5.06 0.93	478.43 492.88 478.43	65.64
MAY	3584.70 538.99	1902.59 546.80	5.48 5.56 0.08	412.85 413.17 412.31	15,53		MAY	143.40 139.13	85.23 77.10	5.73 8.54 2.81	481.24 481.24 471.91	89.30
APR	2213.00 176.23	1803.89 175.16	3.60 -0.94	413.00 413.17 412.31	15.77		A R	138.30 29.36	66.61 28.72	4.69 3.49 -1.20	472.17 473.16 471.54	29.44
MAR	1509.50 242.98	1231.49 236.71	3.63 3.35 -0.28	412.59 413.17 412.13	15.12	BASIN	MAR	119.00	106.63 75.65	3.98 3.73 -0.25	472.39 478.17 471.60	30.40
FEB	1130.70 151.04	462.42	2.83 2.55 -0.28	412.79 413.12 412.20	15.44	RIVER	FEB	101.10 34.66	38.64 27.08	3.17 2.80 -0.37	473.33 474.18 471.59	34.68
NAN	1061.90	448.28 109.56	2.26 0.74 -1.52	412.86 413.11 412.31	15.55	ARKANSAS	NA)	75.08 5.00	37.45 5.20	2.74 0.55 -2.19	471.68 471.90 471.65	27.42
DEC	1006.60	519.63	2.76 1.35 -1.41	412.73 413.15 412.18	15.34		DEC	58.34 42.03	50.58 76.00	3.14 2.14 -1.00	471.85 478.47 471.85	28.09
NOV	1073.50 132.67	764.86 132.95	3.29 2.12 -1.17	412.57 413.09 412.43	15.09		NO.	42.54 8.23	5.91 5.88	3.56 1.93 -1.63	477.99 478.41 477.84	62.29
M OCT	1628.20 1073.50 145.80 132.67	437.48	3,45 3,13 -0,32	412.92 413.18 412.37	15.64		90.1	15.73	1.07	5.92 4.56 -1.36	477.84 477.84 474.88	61.24
M.D. MAYO LOCK AND DAM	INFLOWS(1000AC,FT.) AVG 1923 THRU 1960 FY 1931	RELEASES(1000AC.FT.) AVG 1976 THRU 1981 FY 1981	RAINFALL (INCHES) AVG 1930 THRU 1977 FY 1931 DEVIATION	POOL ELEVATION END OF MONTH MAXIMUM MINIMUM	POOL CONTENT-EDM		WISTER LAKE	INFLOWS(1000AC,FT,) AVG 1938 THRU 1970 FY 1981	RELEASES(1000AC,FT.) AVG 1976 THRU 1981 FY 1981	RAINFALL(INCHES) AVG 1930 THRU 1977 FY 1981 DEVIATION	POOL ELEVATION END OF MONTH MAXIMUM MINIMUM	POOL CONTENT-EOM (1000AC.FT)

						AKKANSAS	RIVER BASIN	Z.						
٦,	LIC % AND DAM NO. 13	100	NOV	DEC	JAN	FEB	MAR	APR	MA Y	JUN	JUL	AUG	SEP	TOTAL
	Releas (1.000 AC, FT.) Ag 1 '1 thri 1981 WY 19.	1,237.6	2,331.2 80.9	1,825.2	1,470.7	1,411.0	2,897.4	2,780.9	2,903.6	3,035.7 1,362.6	1,622.2	728.3 898.7	840.7	23,084.5
	Project Rainfall (inches) Avg 1972 thru 1981 WY 1981 Deviation	3.0 3.2 40.2	4.4 1.8 -2.6	2.4 1.4 -1.0	1.5 0.9 -0.6	2.2 3.1 40.9	4.7 3.3 -1.4	3.1 2.3 -0.8	4.5 6.4 +1.9	4.0 4.0 0.0	2.9 5.8 +2.9	2.3 2.8 -0.5	4.0 1.4 -2.6	35.4 36.4 +1.0
	Pool Elevation End of Month Maximum Winimum	392.63 392.05 391.03	391.42 392.34 391.20	391.47 392.40 391.10	391.60 392.10 391.40	391.90 392.15 391.12	391.72 292.18 391.16	391.72 392.35 391.09	391.79 392.35 391.20	391.55 392.21 391.00	391.82 392.22 391.13	391.82 392.27 391.02	391.94 392.28 390.82	
	Pool Content EOM (1,000 AC. FT.)	56.7	55.3	55.6	56.5	58.4	57.3	57.3	57.7	56.1	57.9	57.9	58.7	
٥I	OZARK-JETA TAYLOR LAKE	007	AON	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	TOTAL
^	Releases (1,000 AC. FT.) Avg 1972 thru 1981 WY 1981	1,093.9	2,525.8	2,104.8 226.1	1,536.3	1,537.2	3,284.5	3,188.1	3,195;3 911.0	3,279.8	1,736.4	817.6	886.5	25,186.2 7,223.6
7	Project Rainfall (inches) Avg 1973 thru 1981 WY 1981 Deviation	3.0 3.2 40.2	5.0 1.7 -3.3	3.0 1.3 -1.7	2.0 0.9 -1.1	2.5 3.6 +1.1	5.2 4.1 -1.1	3.5 2.2 -1.3	5.0 6.3 +1.3	4.4 5.1 0.7	3,5 8,4 8,3	2.2 4.1 +1.9	4.4 1.9 -2.5	43.7 39.2 -4.5
	Pool Elevation End of Month Maximum Minimum	371.32 372.18 370.20	371.82 372.05 370.44	370.78 372.44 370.07	371.34 371.45 370.30	370.90 372.58 370.90	370.70 372.67 370.12	371.20 371.94 370.00	372.47 372.56 370.20	372.62 372.70 371.64	371.94 372.68 371.48	371.92 372.20 371.42	372.08 372.17 371.28	
	Pool Content EOM (1,000 AC. FT.)	141.8	146.7	136.6	142,0	137.7	135.8	140.6	153.9	155.7	147.8	147.6	149.3	

BASIN
RIVER
RKANSAS

DARDANELLE LAKE	0CT	NON	DEC	JAN	FEB	MAR	APR	ΗĄΥ	JUN	JUL	AuG	SEP	TOTAL
Releases (1,000 AC. FT.) Avg 1966 thru 1981 HY 1981	1,226.7	2,098.1	1,912.5	1,578.7	1,622.3	2,768.5 585.6	3,027.8	3,266.9	2,890.7	1,642.3	916.9 959.4	888.5 526.8	23,839.9
Project Rainfall (inches) Avg 1971 thru 1981 HY 1981 Deviation	3.9 3.6 -0.3	4.8 1.8 -3.0	4.3 1.4 -2.9	2.5	3.0 2.7 -0.3	5.7 5.0 -0.7	3.9 1.4 -2.5	8.6 6.6	5.0 5.0	2.2 1.6 -0.6	3.1 5.6 +2.5	4.1 0.7 -3.4	47.7 38.6 -9.1
Pool Elevation End of Month Maximum Minimum	337.05 337.05 336.40	337.15 337.28 336.74	337.42 338.03 337.10	337.36 337.42 337.02	337.71 338.39 337.35	337.94 338.02 336.84	337.86 337.97 336.86	337.97 338.37 336.96	336.77 338.37 336.77	337.70 338.03 336.77	337.32 338.01 337.16	337.02 338.13 337.02	
Pool Content EOM (1,000 AC. Fi.)	454.4	457.7	8.997	8.494	476.5	484.2	481.5	485.2	445.4	476.2	463.4	453.4	
BLUE HOUNTAIN LAKE	007	AQN	DEC	JAN	FEB	MAR	APR	HA Y	NUL	JUL	AUG	SEP	TOTAL
Inflows (1,000 AC. FT.) Avg 1948 thru 1981 WY 1981	5.8 2.5	21.0	30.1 12.8	38.8	43.4	64.7 52.4	56.9 12.0	56.2 64.1	17.0	7.3	5.5	5.4	352.1 354.6
Releases (1,000 AC, FT.) Avg 1948 thru 1981 WY 1981	4.6	13.1	30.5 12.3	34.9 1.5	39.3 14.6	48.8	44.9 12.5	53.6 23.9	36.8 80.5	19.2	12.6	7.2	345.5 243.1
Basin Rainfall (inches) Avg 1948 thru 1981 4Y 1981 Deviation	3.1 3.1 0.0	3.3 2.1 -1.2	3.3 1.9 -1.4	2.6 1.8 -0.8	2.9 2.6 -0.3	4.1 4.3 0.2	4.2 2.4 -1.8	5.2 9.0 +3.8	3.6 4.9 +1.3	4.1 5.7 +1.6	3.3 4.8 1.5	3.7 2.3 -1.4	43.4 44.9 +1.5
Pool Elevation End of Month Maximum Minimum	384.33 384.51 383.99	384.17 384.52 384.12	384.27 385.97 384.12	384.07 384.28 384.07	384.43 385.95 384.07	385.81 387.91 384.22	385.39 385.81 384.18	395.39 395.39 385.39	391.93 403.85 391.93	386.29 391.93 385.74	364.87 387.07 364.87	384.26 384.87 384.26	
Pool Content EOM (1,000 AC. PT.)	25.7	25.2	25.5	24.9	26.0	30.2	28.9	68.3	52.5	31.7	27.3	25.4	

BASIN
RIVER
NSAS
RKA

					É	ANNAMACA MINER BASIN	NICUG NE							
	LOCK AND DAM NO. 9	OCT	NON	DEC	JAN	FEB	MAR	APR	MAY	NUC	JUL	AUG	SEP	TOTAL
	Releases (1,000 AC. FT.) Avg 1970 thru 1981 WY 1981	1,373.8	2,571.4	2,715.6 266.8	1,771.5	1,652.7	3,287.4	3,475.8	3,559.1 1,090.1	3,279.1 2,015.6	1,644.7	784.0 1,075.8	948.6 578.6	27,063.7
	Project Rainfall (inches) Avg. 1971 thru 1981 4Y 1981 Deviation	3.2 2.9 -0.3	4.5 2.6 -1.9	4.0 1.5 -2.5	2.4 0.8 -1.6	2.7 3.9 +1.2	5.0 4.0 -1.0	4.0 2.9 -1.1	5.1 7.9 2.8	4.8 7.4 +2.6	2.6 1.2 -1.4	2.9 4.3 4.4	4.3 0.6 -3.7	45.5 40.0 -5.5
	Pool Elevation End of Month Maximum Minimum	286.19 287.25 284.60	285.34 287.20 285.04	286.28 287.07 285.31	286.13 286.42 285.73	286.69 287.13 285.44	286.41 287.19 285.05	285.57 287.50 285.30	285.70 287.12 285.21	286.47 287.30 284.90	286.38 287.59 284.84	286.32 287.22 285.50	286.26 287.30 284.55	
	Pool Content EOM (1,000 AC. FT.)	60.1	55.7	9.09	59.8	62.9	61.4	56.9	57.5	61.7	61.2	6.09	60.5	
	TOAD SUCK PERRY LOCK AND DAM	DCT OCT	NOV	DEC	JAN	FE 8	MAR	APR	MAY	NUC	JUL	AUG	SEP	TOTAL
25	Releases (1,000 AC. PT.) Avg 1970 thru 1981 WY 1981	1,288.3	2,604.1 142.6	2,352.2	1,966.4	1,818.6	3,636.9	3,667.3	3,709.3	3,377.4	2,316.3 1,104.0	792.6 1,069.7	966.3 562.1	28,495.7 8,559.9
•	Project Rainfall (inches) Avg 1971 thru 1981 WY 1981 Deviation	3.3 1.3 -2.0	5.2 4.2 -1.0	4.4 1.6 -2.8	2.7 0.8 -1.9	2.9 3.7 40.8	5.1 4.1 -1.0	4.1 2.8 -1.3	5.2 6.7 +1.5	5.1 5.6 5.5	2.5 3.3 0.8	2.4 2.8 40.4	4.2 0.9 -3.3	47.1 37.8 -9.3
	Pool Elevation End of Month Maximum Minimum	265.28 265.53 264.98	265.35 265.50 265.05	265.40 265.56 264.79	265.42 265.50 264.86	265.15 265.70 264.82	265.30 265.74 264.79	265.32 265.60 264.76	264.60 265.42 264.55	265.02 265.50 264.35	264.87 265.60 264.80	265.30 265.62 264.80	265.15 265.58 264.84	
	Pool Content EOM (1,000 AC. FT.)	34.2	34.5	34.7	34.8	33.6	34.3	34.4	31.4	33.1	32.5	34.3	33.6	

				AR	ARKANSAS RIVER BASIN	ER BASIN							
NIMBOD LAKE	0CT	NON	DEC	JAN	FEB	X X	APR	MAY	JUN	זמר	AUG	SEP	TOTAL
Inflows (1,000 AC. FT.) Avg 1944 thru 1981 HY 1981	11.0	34.8 10.7	58.9 44.3	68.9 5.5	85.1 35.6	101.8 88.9	90.8 31.5	97.4 101.8	35.8 123.3	12.7	6.2	7.9	611.3
Releases (1,000 AC. FT.) Avg 1944 thru 1981 WY 1981	8.7	25.1 10.8	55.7	62.6	74.8 33.6	99.1 82.4	94.1 25.1	95.8 90.8	51.4 134.0	24.5	11.0	10.3	613.1
Basin Rainfall (inches) Avg 1944 thru 1961 WY 1961 Deviation	3.4 3.4 0.0	3.7 2.1 -1.6	3.7 2.3 -1.4	3.1 1.0 -2.1	3.5 2.6 -0.9	5.0 4.5	4.8 2.8 -2.0	5.7 8.2 +2.5	4.0 5.6 1.6	4.1 6.9 +2.8	3.1 4.6 +1.5	8.6 6.9	47.9 46.9 -1.0
Pool Elevation End of Month Maximum Minimum	342.18 344.57 341.93	342.07 342.33 342.05	342.00 346.95 342.00	342.09 342.26 342.00	342.54 344.56 342.09	343.95 345.33 342.17	345.19 345.40 341.97	347.14 348.70 345.03	344.55 355.49 344.52	344.40 346.11 343.88	343.16 344.62 343.16	342.10 343.16 342.10	
Pool Content EOM (1,000 AC. FT.)	29.6	29.3	29.0	29.3	30.9	36.6	42.0	51.7	39.1	38.5	33.2	29.4	
MURRAY LOCK AND DAM	00	MOV	DEC	JAN	FE.8	HAR	APR	¥ ¥	NUC	JOL	AUG	SEP	TOTAL
Releases (1,000 AC. FT.) Avg 1970 thru 1981 HY 1961	1,452.2	2,631.8 143.8	2,608.8 369.9	2,056.8 85.7	1,914.3	3,778.4 989.6	3,849.2	4,082.8 1,276.4	3,481.8	1,677.8	780.0 1,023.1	980.9 535.3	29,294.8 9,066.1
Project Mainfall (inches) Avg 1970 thru 1961 WT 1981 Deviation	3.8	5.1 6.5 +1.4	2.3	3.1 1.0 -2.1	2.8 3.4 0.6	4.5 4.4 -0.1	5.3 2.2 -3.1	5.8 9.7 6.5	4.2 3.8 -0.4	2.5 4.2	2.8 0.7 -2.1	4.1 1.9 -2.2	47.9
Poul Elevation End of Month Meximum Minimum	249.78 250.40 249.33	249.97 249.98 249.51	249.92 250.12 249.58	249.93 250.12 249.72	249.88 250.15 249.64	249.70 250.08 249.24	249.88 250.15 249.61	248.43 250.11 248.43	249.54 249.97 248.43	250.21 250.49 249.32	249.64 250.39 249.64	249.46 249.74 249.33	
Pool Content ECM (1,000 AC. FT.)	95.1	97.1	9.96	7.96	96.2	94.3	96.2	81.9	92.7	99.7	93.7	7.16	

BASIN
RIVER
ARKANSAS
•

ă	DAVID D. TERRY LOCK AND DAM	0CT	NON	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	TOTAL
-	Releases (1,000 AC. FT.) Avg 1969 thru 1981 HY 1981	1,345.0 168.8	2,479.8 167.0	2,717.8	2,303.3	2,248.2	3,853.3 1,042.7	3,975.9	4,084.9 1,306.3	3,586.5	1,815.1	822.4 1,018.9	979.1 545.5	30,211.3 9,253.3
,	Project Rainfall (inches) Avg. 1971 thru 1981 HY 1981 Deviation	3.6 2.0 -1.6	6.0 6.0 1.1+	4.1 2.0 -2.1	3.7 1.1 -2.6	2.8 2.6 -0.2	4.7 4.8 +0.1	4.6 2.1 -2.5	5.2 7.1 +1.9	4.6	3.7 6.3 +2.6	2.3 1.9 -0.4	3.6 2.4 -1.2	47.8 42.6 -5.2
•	Pool Elevation End of Month Maximum Minimum	231.38 231.42 230.87	331.29 231.58 230.93	230.98 231.47 230.86	231.19 231.40 230.98	231.23 231.46 230.80	231.16 231.43 230.84	231.09 231.50 230.86	230.91 231.44 230.70	230.99 231.48 230.44	231.00 231.59 230.04	231.29 231.49 230.30	231.08 231.99 230.74	
jšk _e	Pool Content EOH (1,000 AC. FT.)	51.2	50.8	7.67	50.4	50.6	50.2	6.64	49.2	49.5	49.5	50.8	6.64	
의	LOCK AND DAN NO. S	OCT	NON	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	TOTAL
27	Releases (1,000 AC. FT.) Avg 1972 thru 1981 WY 1981	1,410.1	2,665.0 205.1	2,555.1	2,150.1 102.5	1,851.6	3,875.2 1,163.1	3,996.4	4,067.9	3,600.7	1,749.8	809.4	1,016.2	29,747.5 10,024.6
pi.	Project Rainfall (inches) Avg 1971 thru 1981 HY 1981 Deviation	3.4 2.6 -0.8	5.1 6.7 1.6	4.3 1.7 -2.6	3.4 0.9 -2.5	2.9 2.6 -0.3	5.0 3.7 -1.3	4.4 2.2 -2.2	5.9 8.0 +2.1	3.9 6.4 +2.5	3.4 6.0 72.6	2.3 -0.3	4.0 2.5 -1.5	48.0 45.3 -2.7
D.	Pool Elevation End of Month Maximum Minimum	213.37 213.42 212.82	213.30 213.46 213.05	213.17 213.37 212.80	213.09 213.39 212.88	213.10 213.43 212.87	213.20 213.40 212.85	213.25 213.35 212.94	214.48 213.44 212.12	213.27 213.35 212.29	213.13 213.90 212.70	213.35 213.60 212.82	213.12 213.35 212.88	
p.	Pool Content EOM (1,000 AC. FT.)	0.49	63.5	62.5	61.9	62.0	62.7	63.1	58.0	63.2	62.2	63.8	62.2	

2.
-
U.
4
2
2
•
U
v.
2
a

	LOCK AND DAM NO. 4	007	AQN	DEC	JAN	FEB	KAR	APR	¥AY	NUC	JUL	AUG	8	TOTAL
	Releases (1,000 AC. FT.) Avg 1970 thru 1981 HY 1981	1,422.0	2,699.7 210.6	2,607.0	2,218.9	2,060.7	3,989.0	4,151.1	4,210.6	3,711.8	1,770.1	816.0 1,060.0	1,031.1 546.8	30,688.0 10,067.5
	Project Rainfall (inches) Avg 1972 thru 1981 WY 1981 Devlation	3.4 2.8 -0.6	8.0 8.0	4.3 1.7 -2.6	4.1 0.9 -3.2	3.0 8.0	5.2 3.8 -1.4	4.2	6.1 6.1 6.3	3.8 4.1 6.3	3.1 5.2 +2.1	2.9 4.5 1.6	9.8 2.8 4.1	49.8 42.6 -7.2
	Pool Elevation End of Month Maximum Minimum	196.27 196.39 195.98	196.02 196.51 195.85	196.24 196.62 195.88	196.18 196.35 196.00	196.23 196.38 195.94	196.24 196.40 195.82	195.93 196.40 195.82	195.20 196.38 195.10	196.00 196.42 194.80	195.98 196.62 195.60	195.95 196.59 195.82	196.16 196.48 195.42	
	Pool Content ECH (1,000 AC. FT.)	72.2	70.5	72.0	71.6	71.9	72.0	70.0	66.1	70.4	70.3	70.1	11.5	
	LOCK AND DAM NO. 3	130	AQN	DEC	JAN	FEB	HAR	APR	MAY	Nor	Jur	AUG	SEP	TOTAL
28	Releases (1,000 AC, FT.) Avg 1970 thru 1981 WY 1981	1,418.7	2,705.0 227.1	2,617.7	2,229.3	2,084.6	4,005.6	4,210.2	4,293.6	3,732.1	1,765.2	805.1 1,038.9	1,016.1	30,883.2 9,981.0
	Project Rainfall (inches) Avg 1971 thru 1981 UY 1981 Deviation	3.3 3.4	4.5 3.7 -0.8	4.1 0.9 -3.2	4.2 0.9 -3.3	2.6	5.0 6.2 6.8	4.1	5.6 6.9 H.3	3.5 6.0 6.5	3.7 9.6 0.1	3.8 4.5 40.7	1.4	48.7 37.5 -11.2
	Pool Blevation End of Month Meximum Minimum	182.14 182.48 181.80	182.16 182.42 181.50	182.21 182.50 181.60	182.38 182.45 181.80	182.09 182.42 181.84	181.80 182.43 181.80	182.20 182.36 181.80	181.90 182.49 181.40	182.04 182.39 181.04	182.30 182.48 181.85	182.20 182.45 181.82	182.12 182.40 181.30	
	Pool Content EOM (1,000 AC. FT.)	67.0	47.0	47.2	47.9	8.94	45.6	47.2	46.0	46.6	47.6	47.2	46.9	

ARKANSAS RIVER BASIN

LOCK AND DAH NO. 2	00.1	NON	DEC	JAN	F2.8	MAR	APR	HAY	JUN	Jur	AUG	SEP	TOTAL
Releases (1,000 AC. FT.) Avg 1970 thru 1981 WY 1981	1,414.9	1,414.9 2,707.9 239.2 317.0	2,117.7	2,221.9	2,157.1	4,094.9 1,176.4	4,357.6	3,773.8 1,420.0	3,753.7	1,760.7	806.9 1,083.0	1,836.4	31,603.5
Project Rainfall (inches) Avg 1971 thru 1981 WY 1981 Deviation	3.4 3.8 4.0	6.4 6.4 8.0	4.7 0.5 -4.2	5.3	3.8 3.4 4.0	5.7	4.6 0.5 -4.1	5.8 4.8 -1.0	4.5 3.4 -1.1	3.2 4.9	3.3 4.3 +1.0	3.0	55.6 50.8 -4.8
Pool Elevation End of Month Maximum Minimum	162.29 162.40 162.00	162.25 162.41 162.03	162.20 162.38 162.06	162.08 162.37 162.08	162.07 162.35 161.98	162.14 162.36 161.98	162.09 162.72 161.96	161.80 162.43 161.80	162.36 162.36 161.11	162.44 162.44 161.24	162.60 162.98 162.44	162.21 163.06 160.78	
Pool Content EOM (1,000 AC. FT.)	113.3	112.9	112.3	111.0	110.9	111.7	111.1	108.0	114.1	115.0	116.8	112.4	

NORRELL LOCK NO. 1 (No basic data collected)

ALTUS LAKE	000	NOV	0 5 0	NA.	FEB	A T T T	APR	¥AF	NOIC	JUL	AUG	SEP	TOTAL
INFLOWS(1000AC.FT.) AVG 1938 THRU 1965 FY 1981	9.22	2.67	4.23	4.09 0.06	5.32	2.24 4.24	9.36 2.91	30.86 3.10	26.31	9.95	3.13 0.55	3.42	113.8
RELEASES(1000AC.FT.) AVG 1976 THRU 1981 FY 1981	0.00	0.14	0.10	ંં	0.24	1.62	0.0 8.0	29.83	8 6 9	14.84	11.32	0.83 0.	φ. .
RAINFALL(INCHES) AUG 1930 THRU 1977 FY 1931 DEVIATION	2.06 0.70 -1.36	0.89 0.14 -0.75	0.79 1.07 0.28	0.62 0. -0.62	0.82 0.03 -0.79	1.14 2.16 1.02	2.02 1.24 -0.78	3.93 2.15 -1.78	3.22 3.82 0.60	2.22 2.32 0.10	2.57 3.03 0.46	2.34 1.62 -0.72	22.62 18.28 -4.34
POOL ELEVATION END OF MONTH MAXIMUM MINIMUM	1533.99 1534.39 1533.99	1533.83 1533.99 1533.83	1533.89 1534.02 1533.79	1533.70 1533.89 1533.65	1533,72 1533,74 1533,54	1534,39 1534,41 1533,48	1534.97 1534.97 1534.27	1535.59 1535.59 1534.97	1536. 64 1536. 92 1535. 59	1529.76 1536.65 1529.76	1526.26 1529.76 1526.26	1525.78 1526.26 1525.78	
PCOL CONTENT-EOM (1000AC.FT)	29.39	29.00	29.15	28.69	28.73	30.41	31.89	33.55	36.66	19.73	12.88	12.04	
				RED	RIVER	BASIN							
(Tom Steed)	~												
MOUNTAIN PARK TOAM	UCT	NOV	DEC	NA!	FEB	MAR	APR.	MAY	SUN	JUL	AUG	SEP	TOTAL
INFLOWS(1000AC.FT.) AVG 1926 THRU 1971 FY 1981	1.51	0.33	0.39	0.17	0.26	0.42	1.07 5.89	4.13 3.53	3.56 5.85	1.24	0.77	1.45	15.3
RELEASES(1000AC.FT.) AVG 1981 THRU 1981 FY 1981		•••	ંં	o o	ंं	0.20	0.24	0.22	0.0 0.0	0.06	••	· ·	0.0 8.8
RAINFALL(INCHES) AVG 1930 THRU 1977 FY 1981 DEVIATION	2.59 0.60 -1.99	1.34	1.13 1.33 0.70	1.01 0.15 -0.86	1.17	1.55 2.90 1.35	2.46 3.68 1.22	5.43 0.76	8.00 0.40 0.60	2.28 3.06 0.78	2.27 1.18 -1.09	2.98 1.05	26.85 24.69 -2.16
POOL ELEVATION FND OF MONTH MAXIMUM MINIMUM	1407.56 1408.08 1407.56	1407.56 1407.33 1408.09 1407.56 1407.56 1407.33	1407.33 1407.41 1407.28	1407.08 1407.33 1407.06	1406.96 1407.03 1406.87	1406.81 1406.89 1406.81	1407.45 1407.45 1406.64	1407.52 1407.64 1407.44	1407.87 1408.35 1407.51	1407.32 1407.87 1407.32	1406.43 1407.32 1406.43	1405.83 1406.43 1405.77	
POOL CONTENT-EOM (1000AC.FT)	68.69	67.44	67.44	66.07	65.42	64.63	68.09	68.48	70.39	67.38	62.63	59.52	

RED RIVER BASIN

LAKE KEMP	100	20 N	DEC	A A	FEB	TAR	APR	AA	N	Ð,	AUG	SEP	TOTAL
INFLOWS(1000AC.FT.) AVG 1924 THRU 1969 FY 1931	24.65 5.43	 2.28 2.48	7.93	3.65 0.38	5.93	7.30 7.26	12.74 10.03	40.22 19.50	26.79 53.63	17.23 0.10	20.99	29.27 0.06	202.7 119.2
RELEASES(1000AC.FT.) AVG 1976 THRU 1981 FY 1931	3.78 0.	0.64	2.74	· ·	0.67	4. 78 0.	3.37 0.	2.61 2.43	8.31 1.38	16.96 13.16	12.36	6.05 8.23	62.3 36.5
RAINFALL (INCHES) AUG 1930 THRU 1977 FY 1931 DEVIATION	2.51 0.69 -1.82	1.06 0.45 -0.61	0.97	0.82 0. -0.82	0.99 1.01 0.02	1.10 0.83 -0.27	1.94 2.83 0.89	3.56 1.51 -2.05	3.04 0.34	2.01 0.10 -1.91	2.15 2.27 0.12	2.88 0.97 -1.91	22.69 14.60 -8.09
POOL ELEVATION END OF MONTH MAXIMUM MINIMUM	1128.85 1129.17 1128.84	1129.04 1129.05 1128.79	1129.85 1129.91 1129.02	1129.87 1129.91 1129.83	1131.52 1131.52 1129.84	1132,23 1132,33 1131,52	1133.20 1133.20 1132.03	1134.80 1134.80 1133.18	1139.16 1139.49 1134.80	1136.38 1139.16 1136.88	1135.38 1136.88 1135.38	1134.17 1135.38 1134.15	
POOL CONTENT-EOM (1000AC.FT)	68.70	114.35	119,45	119.58	130.54	135,48	142.66	155.54	200.32	174.82	160.62	150.31	
				KED	RIVER	BASIN							
WAURIKA LAKE	00.1	NOV	DEC	JAN	FEB	AAR	A የ	HAY.	N	J2F	AUG	SEP	TOTAL
INFLOWS(1000AC.FT.) AVG 1925 THRU 1974 FY 1981	7.99	3.48 0.65	3.20	1.76	3.79	5.40 3.21	7.98	25.23 8.31	17.20	3.40	1.71	4.30 3.72	85.4 48.7
RELEASES(1000AC.FT.) LAKE HAS NOT FILLED													
RAINFALL(INCHES) AVG 1930 THRU 1977 FY 1981 DEVIATION	3.05	1.76 1.63 -0.13	1.47 2.06 0.59	1.29 0. -1.25	1.47 1.42 -0.05	1.93 3.25 1.32	2.78 3.50 0.72	5.11 6.38 1.27	3.56 5.67 2.11	2.37 3.45 1.08	2.38 3.23 0.85	3.14 3.11 -0.03	30,31 34,81
POOL ELEVATION END OF MONTH MAXIMUM MINIMUM	941.23 941.62 941.17	941.08 941.26 941.08	941.12 941.32 941.04	941.00 941.14 940.99	941.10 941.13 940.88	941.55 941.53 941.08	941.38 941.39 941.13	942.05 942.07 941.35	944.03 944.24 942.03	943.57 944.06 543.42	943.27 943.57 943.27	943.19 943.65 943.19	
POUL CONTENT-EOM (1000AC.FT)	114.69	113.65	113,93	113,16	113.79	114.82	115.72	120.38	135,24	131.77	129.52	128.92	

FOSS RESERVOIR INFLOWS(1000AC.FT.)	001	NOV	DEC	NAU	A B	T A A	APR	MAY	N N	JAN .	AUG	SEP	TOTAL
AVG 1926 THRU 1958 FY 1981	5.07	1.96	1.53	1.49	0.91	2.49 2.36	12.91	20.68	16.59	4.68 5.27	3.70	3.48	76.4 15.7
RELEASES(1000AC.FT.) AVG 1978 THRU 1981 FY 1981	3.03	0.23	0.21	0.21	0.63	0.20	0.30	0.31	6.77	1.60	0.48 0.31	0.27	3.6 3.6
RAINFALL (INCHES) AVG 1930 THRU 1977 FY 1931 DEVIATION	1.98 1.07 -0.91	1.08 0.29 -0.79	0.76 1.08 0.32	0.63 0. -0.63	0.88 0.10 -0.78	1.26	2.29 1.05 -1.24	4.05 2.36 -1.69	3.14 3.21 0.07	2.00 3.68 1.68	2.49 2.43 -0.06	2.27 1.72 -0.55	22.83 18.76 -4.07
POOL ELEVATION END OF MONTH MAXIM!M MINIM!M	1638.77 1639.33 1638.77	1638.49 1638.77 1638.49	1638.29 1639.49 1638.29	1638.10 1639.29 1638.10	1637.90 1638.10 1637.89	1637.94 1638.14 1637.90	1637.69 1637.94 1637.63	1637.40 1637.69 1637.31	1637.14 1637.53 1637.10	1637.23 1637.26 1636.53	1636.85 1637.23 1636.83	1636.33 1636.85 1636.29	
POOL CONTENT-EOM (1000AC.FT)	157.02	155,30	154.07	152.90	151.69	151.93	150.44	148.70	147.15	147.68	145.43	142.40	
				RED	RIVER	BASIN							
FORT COBB RESERVOIR	9CT	NOS.	DEC	NA	FEB	A R	APR	¥A¥	NO.	JA,	₽UG	SEP	TOTAL
INFLOWS(1000AC,FT.) AVG 1926 THRU 1958 FY 1981	2.18	1.76	2.30	2.37	2.55	3.14	4.62	6.19	6.64 4.90	2.86	1.29	1.75	37.7
RELEASES(1000AC.FT.) AVG 1976 THRU 1981 FY 1981		••	••	••	0.17	••		0.33	4.57	••	••	••	
RAINFALL(INCHES) AVG 1930 THRU 1977 FY 1981 DEVIATION	2.47 0.73 -1.74	1.37 0.36 -1.01	1.19	000	1.11 2.60 1.49	1.60 2.88 1.28	2.63 2.07 -0.56	4.62 3.84 -0.78	3.25 5.26 2.01	2.37 4.54 2.17	2.50 2.71 0.21	3.17 2.90 -0.27	27.27 29.74 2.47
POOL ELEVATION END OF MONTH HAXIMUM HINIMUM	1338.65 1339.41 1338.65	1338.31 1338.66 1338.27	1338,31 1338,53 1338,21	1338.10 1338.32 1338.06	1338.00 1338.12 1337.94	1338, 10 1338, 20 1337, 97	1337.98 1338.10 1337.92	1338, 00 1338, 14 1337, 93	1338. 52 1339. 06 1338. 00	1338.01 1338.70 1337.83	1337.50 1338.02 1337.48	1337, 16 1337, 70 1337, 16	
POOL CONTENT-EOM (1000AC.FT)	67.02	65.78	65.78	65.02	64.65	65.02	64.58	64.65	16.91	64.69	62.89	61.68	

	RBUCKLE RESERVOIR	00.1	NO.	DEC	NAU	FEB	MAR	AFR	₩	NOO	JUL	AUG	SEP	TOTAL
	INFLOWS(1000AC,FT.) AVG 1926 THRU 1963 FY 1981	3.40	2.70	3.30	3.30	5.50	5.20	8.80 0.88	14.00	8.40 9.35	3.70	2.70	4.0 0.8 8	8. E. E. E. E. E.
	RELEASES(1000AC.FT.) AVG 1976 THRU 1981 FY 1981	0.15	0.18	0.16	0.14	0.11	0.12	2.59	4. 70 0.06	7.78	0.14	0.14	0.17	4.6.
	RAINFALL (INCHES) AVG 1930 THRU 1977 FY 1981 DEVIATION	3.16 2.56 -0.60	2.32 1.86 -0.46	2.10 2.64 0.54	1.76 0.18 -1.58	2.21 2.56 0.35	2.37	3.95 1.98 -1.97	5.55 2.45	3.86 2.84 -1.02	2.57 3.85 1.28	2.84 2.48 -0.36	3.80 -0.38	37.02 34.76 -2.26
	POOL ELEVATION END OF MONTH MAXIMUM MINIMUM	868.61 869.20 868.61	868.13 868.61 868.13	868.35 868.61 868.06	867.84 868.35 867.84	867.88 867.88	868.77 863.85 867.83	868.61 868.79 868.57	871.29 871.29 868.42	871.93 873.65 871.29	871.25 871.93 871.10	870.43 871.25 870.43	869.86 870.52 869.86	
3	POCL CONTENT-EOM (1000AC.FT)	64.73	63.68	64.16	63.06	63.14	65.03	64.73	70.75	72.24	70.66	68.78	67.49	
3					RED	RIVER BASIN	MSIN							
	LAKE TEXOMA	100	20	DEC	ي آ	FEB	₹ AAR	APR.	Ā	N)	JOF N	AUG	SEP	TOTAL
	INFLOWS(1000AC.FT.) AVG 1928 THRU 1978 FY 1981	274.37	187.93 26.88	142.53	124.95 29.38	183.17	240.24 328.84	358.25 140.53	792.18 408.49	596.41	204.88 58.91	113.70	208.05 45.89	3426.7 2101.9
	RELEASES(1000AC.FT.) AVG 1976 THRU 1981 FY 1981	93.99 36.35	76.63	87.44 41.50	104.75	82.70 71.12	55.92 91.40	100.33 75.48	272.72 167.20	602.97 751.89	139.77 189.46	136.89 173.66	106.11	1860.2 1827.6
	RAINFALL (INCHES) AVG 1930 THRU 1977 FY 1981 DEVIATION	2.58 1.18 -1.40	1.38 0.85 -0.53	1.23 1.25 0.02	1.13 0.05 -1.08	1.28 1.22 -0.06	1.62 2.39 0.77	2.52 3.03 0.51	4.28 4.62 0.34	3.30	2.25 2.20 -0.05	2.34	2.92 1.75 -1.17	26.83 25.03 -1.80
	POOL ELEVATION END OF MONTH MAXIMUM MINIMUM	613.60 613.77 612.88	613.15 613.64 613.14	614.00 614.23 613.09	613.44 614.00 613.41	613.08 613.52 612.74	615.83 616.10 613.03	616.11 616.35 615.65	618.54 618.54 616.05	617.49 620.68 617.49	615.26 617.49 615.26	612,93 615,29 612,93	611.37 612.93 611.37	
	POOL CONTENT-EOM (1000AC.FT)	2368.32 2334.0	2334.03	2398.80	2356.13	2356.13 2328.70 2543.20 2566.32	2543.20		2783.09 2687.40 2497.60 2317.40 2202.63	2687.40	2497.60	2317.40	2202.63	

PAT MAYSE LAKE	50	NOV	DEC	Ŋ	i i								
INFLOWS (1000AC.FT.)					D L	E E	¥ ₹	¥₽¥	NO?	AF.	AUG	SEP	TOTA
MVO 1937 THRU 1965 FY 1981	3.26	6.19 0.16	5.71	7.14	12.51	10.72	16.31	16.77				(
RELEASES(1000AC.FT.)					}	ŝ	e. G		30.40	0.65	0.03	0.02	98.3 72.1
FY 1981	0.00	0.03 0.18	0.78 2.52	0.76	2.62	4.64	9.17	5.12	8.07	č			
RAINFALL (INCHES)			•		5	1.61	0.92	8.87	25.46	3.61	0.0	ဝ င -	34.9
AVG 1530 THRU 1977	2.81	3,32	6.	,	;								2
DEVIATION	2.86	1.26	1.84	0.52	3.10	3,75	4. 85	5,27	4.06	3.34			
	2.50	-2.06	-1.31	-2.23	-1.93	0.00	, ç	9. 69.	3.32	1.21			43,31
POCL ELEVATION							•	-1.32	-0.74	-2.15	-1.12	88	-18.44
MONTH HONTH	451.09	450.82	451.32	45.0	4	į							
MINIM	451, 10	451.09	451.94	451.32	450.90	451.20	451.47	452.16	452.26	450.97	450.34	440 74	
POOL CONTENT-EOM	50.55	430.85	450.77	450.95	450.74	450.90	450.92	452.69	454.33	452, 26	450.98		
(1000AC, FT)	125.05	123.44	124 45	3				1		430.77	450.36	449.76	
7			CF : 27	05.471	123.91	125.72	127.37	131.59	132.21	124.32	120.72	117.71	
KΔ													
					RED ELV	RED ELVER BASIN							
CLAYTOR	ţ	AOM	DEC.	388		3	;	ļ					
LMFLONS (1000AC. FT.)				!	3	ž	Y.	KY	3CM	JUL	P DC	11	TOTAL
AVG 1926 THIND 1978 FY 1981	7.87	15.55	21.19	22.40	27.25	30,85	40.45	38.60	19.51	7. (;	;	
ELEASES (1000AC.FT.)								11.72	9.23	1.46	3.01	10.20 0.33	245.04
	RESER	POIR OPERA	RESERVOIR OPERATED AS DETENTION BASIN ONLY.	ENTION BAS	IN ONLY.	LMPOUNDED	DAT SCHEDU	IMPOUNDMENT SCHEDULED TO BEGIN DKC 1982	THE DEC. 10	2			
MAIMPALL (INCHES) AVC 1926 THRU 1978 FY 1981	3.20	3.46	3.04	3.02	j		1						
DEVIATION				}	Ş	7	2.7g	6.73 8.47	3.92	3.14	3.24	4.30	46.16
POOL ELEVATION END OF HONTH								1.76	0.17	1.61	1.76	1.63	
MAXINES Hirined								543.30			533,40	534. 20	
POOL CONTENTS-EQU									534.90	538.00 533.00		\$35.60 \$32.00	
								0.40	0.03	0.04	0.01	0.02	

HUGO LAKE	000	8	DEC	S S	FEB	MAR	APR	MAY	S	¥	AUG	SEP	TOTAL
INFLOWS(1000AC,FT.) AVG 1926 THRU 1964 FY 1981	40.79	74.01	117.34	160.37	177.57 75.86	171.23	257.85 £2.08	250.16 172.58	114.02	36.90 36.55	19.14	49.05 4.68	1465.4
RELEASES(1000AC.FT.) AVG 1976 THRU 1981 FY 1981	25.01 108.65	11.36	49.84	68.54 14.44	99.64 66.73	197.50 165.48	283.09 62.63	195.29 152.88	139.49 274.68	21.89	17.80	13.10	1122.6
RAINFALL(INCHES) AVG 1930 THRU 1977 FY 1981 DEVIATION	3.67 4.10 0.43	3.76 1.34 -2.42	3.20 2.31 -0.89	2.89 0.42 -2.47	3.30 2.96 -0.34	3.92 2.87 -1.05	5.12 2.72 -2.40	5.99 7.22 1.23	4.33 4.22 -0.11	3.61	3.42	4.55 1.72 -2.83	47.76 38.41 -9.35
POOL ELEVATION END OF MONTH MAXIMUM MINIMUM	405.47 407.26 404.48	405.25 405.47 404.36	404.67 408.48 404.63	404.65 404.68 404.34	405.20 406.71 404.49	404.98 408.50 404.35	404.57 405.14 404.46	405.63 406.87 404.36	404.42 412.64 404.40	404.19 405.09 404.14	403.56 404.27 403.56	402.51 403.57 402.51	
POOL CONTENT-EOM (1000AC.FT)	170.69	167.70	159.84	159.58	167.02	164.03	158.49	172.87	156.47	153.36	145.34	132.37	
				RED	RIVER BASIN	ASIR							
PINE CREEK LAKE	0 CT	\$	DEC	NA)	A B	Ī	APR	¥	3	¥	P. C.	SE	TOTAL
INFLOAS(1000AC,FT.) AVG 1929 THRU 1973 FY 1981	21.89 59.09	37.76 15.02	59.17 52.18	44.45	81.41	81.35 65.38	99.21 27.31	108.20 101.63	39.88 139.87	18.91 28.29	6.56 11.08	18.28 5.26	639.1 561.6
RELEASES(1000AC.FT.) Avg 1976 THRU 1981 FY 1981	20.39	5.70	27.19 51.02	34.95	40.47	87.84 67.71	25.86 25.86	78.08 94.38	58.47	11.56 39.46	6.78 10.78	5.39 12.50	472.0
RAINFALL(INCHES) ANG 1930 THAU 1977 FY 1981 DEVIATION	2.6. 5.9.	3.90 1.08 -2.82	3.59 2.25 -1.34	3.17 0.31 -2.86	6.25 5.55 5.55	1.79	5:24 -2.30	6.12 0.98	2.70	6.40 9.40 9.40	6.40 3.83	4.2.2. 88.50	49.10 33.40 -15.70
POOL ELEVATION END OF HONTH HAXIMM HIMIMM	443.63 451.80 443.47	443.63 443.90 443.50	443.78 448.03 443.45	443.62 443.83 443.58	444.33 446.41 443.22	443.68 447.55 443.55	443.68 444.95 443.44	444.82 448.40 443.54	443.45 457.37 443.45	440.50 444.42 440.50	440.18 440.70 440.02	436.04 440.18 436.04	
POOL CONTENT-EON (1600AC, FT)	78.37	78.37	79.12	78.32	81.94	78.62	78.62	84.50	77.48	63.82	62.45	8.	

BROKEN BOW LAKE	50	Š	DEC	NOT	FEB	#AR	ą. R	¥.	3	3	AUG	SEP	TOTAL
INFLONS(1000AC.FT.) ANG 1930 THRU 1978 FY 1981	33.70 35.83	57.90	92.11	112.65	115.23 83.73	140.07	130.09	131.16	48.14	25.09 66. 05	13.96	23.21	923.3
RELEASES(1000AC.FT.) AVG 1976 THRU 1981 FY 1981	2.2 2.3	22.5 88	44.67	63.75	49.43	82.04 126.17	112.63	76.53	105.31 186.74	54.49 102.83	8.8 5.8	23.43 54.53	693.9
RAINFALL(INCHES) AND 1930 THRU 1977 FY 1981 DEVIATION	2.69	4.08 1.20 -2.88	4.12 2.33 -1.57	3.76 0.71 -3.03	3.88 5.50 5.50	4.86 3.12 -1.74	5.32 -2.53	5.13 5.69 6.46	4.38 4.38	4.25 2.93	3.82 4.52 0.70	2.4. 2.06	53.32 41.94 -11.38
POOL ELEVATION END OF HONTH MAXIMEN HINIMEN	390.71 390.74 389.21	590.65 590.87 590.53	594,48 594.97 590.22	594.02 594.48 594.01	599.21 599.21 594.02	596.94 601.65 596.54	598.83 598.93 596.91	600.03 601.71 598.83	599.05 607.31 599.05	595.67 601.02 595.48	591.53 595.81 591.53	586.72 591.53 586.72	
POOL CONTENT-EOM	798.55	796. 55 797.77	848.54	848.54 842.34 913.98 RB2.20 908.61 925.61 911.71 844.74 809.27 747.44	913.98	882,20	908.61	925, 61	911,71	844.74	806.27	747.64	

					RED RIVER BASIN	BASIN							
DEQUEEN LAKE	0CT	NON	DEC	JAN	F2.	MAR	APR	K	JUN	Jul	AUG	4 23 8	TOTAL
Inflows (1,000 AC. FT.) Avg 1930 thru 1981 WY 1981	6.3	13.0 5.8	20.6	24.6 1.6	24.6 15.7	30.2 21.3	29.5	29.4 32.2	11.0	5.4 9.6	0.4	4.6	204.4 180.6
Releases (1,000 AC. FT.) Avg 1979 thru 1981 AT 1981	8.6	10.2 6.2	18.5	17.0	16.2 14.4	26.0 22.2	32.6 8.7	27.8	34.1 54.6	6.2 9.1	9.6 4.6	1.6	206.0 192.3
Masin Rainfall (inches) Avg 1930 thru 1981 Avf 1981 Deviation	3.8 3.1 -0.7	4.2 -1.8	4.1 3.1 -1.0	9.8 0.5 6.5	3.8 0.8	4.9 3.6 1.3	2.8 -2.6	6.3 8.6 42.3	4.2 6.9 7.7	6.2 +1.9	3.4 6.1	4 % 8	52.6 67.9 -4.7
Pool Elevation End of Month Maximum Minimum	437.35 446.93 435.88	436.98 437.52 436.98	437.03 444.26 436.85	437.11 437.16 437.03	437.77 440.36 437.09	437.04 440.58 436.98	437.33 438.14 436.57	440.45 440.96 437.29	436.98 455.29 436.94	436.87 438.98 436.81	436.88 437.63 436.78	437.00 437.24 436.86	
Pool Content ECH (1,000 AC. FT.)	35.5	34.9	35.0	35.1	36.2	35.0	35.5	41.0	34.9	34.7	34.7	34.9	
CILLEAN LAKE	5	AQN	DEC	JAN	FEB	MAR	APR	MAY	JUN	70.0	ADG	218	TOTAL
Inflows (1,000 AC. FT.) Avg 1930 thru 1961 WF 1961	11.5 8.8	23.5	38.1 33.1	47.0	43.6 5.6	55.6 40.6	49.9 32.8	51.2 56.7	19.8 70.8	10.4 32.0	5.2	10.1	365.9 300.2
Melenses (1,000 AC. FT.) Avg 1977 thru 1981 WF 1981	5.0 15.6	14.5	29.2 33.2	28.0 3.3	25.3 22.0	60.3 43.0	76.9 35.1	47.9	36.8 79.9	9.2	10.7 10.8	2.8	347.1 328.6
Basin Rainfall (inches) Avg 1930 thru 1961 gr 1961 Beviation	6.4.0 6.4.0	4.4 -2.0	4.6. 6.4.8	3.9 0.8 -3.1	4.60	3.9 1.2	5.4 3,1	6.3 7.2	4.6 6.8 2.2	4.4 4.9 5.0	4 2 2 4 2 2 2 4	4.6 1.5 9.9	\$5.2 51.3
Pool Elevation End of Month Marians Minimus	502.66 507.53 501.82	502.13 502.68 502.00	502.00 515.07 501.69	501.46 502.00 501.44	505.93 508.12 501.46	504.10 512.65 502.08	502.17 509.23 501.96	508.56 509.72 502.16	502.00 529.19 502.00	504.14 510.99 502.00	501.79 504.52 501.79	500.98 501.8 T 500.98	
Peel Cantons 10H (1,000 AC. FT.)	ø.°	33.2	33.0	32.3	38.7	36.0	33,3	42.8	33.0	36.0	32.7	31.7	

					RED RIVER BASIN	BASIN							
DIERES LAKE	5	AQN	DEC	JAN	728	MAR	APR	HAY	Mar	70,	ADG	275	TOTAL
Inflows (1,000 AC. PT.) Avg 1930 thru 1981 WF 1981	4. í 12. 2	9.6	15.3	19.9	17.8	22.4 12.9	19.8	21.6	£.4	4.1 15.1	1.2	6.6	165.7
Releases (1,000 AC. FT.) Avg 1977 thru 1961 WT 1961	3.8	9.8 9.8	10.6 15.0	10.5 0.9	10.6	20.7	20.2	19.2	13.9	 	9.0		127.2
Masin Mainfall (inches) Avg 1930 thru 1981 Avg 1981 Deviation	4.4 5.2 6.8	2.2.4 2.2.5	4.3 1.0	4.0 -3.3	3.9 0.2	5.1 4.0 -1.1	22.25	6.2 1.9	6.9 9.9 1.2	484	6.5. 6.5.	4.0 2.9	53.9 51.9 -2.0
Pool Elevation End of Meath Maximum Maximum	526.29 531.07 525.97	526.06 526.72 526.03	526.00 532.99 525.94	526.04 526.04 525.95	526.71 528.68 526.02	526.80 529.61 526.02	526.08 526.80 526.04	529.67 529.67 525.99	538.93 546.51 529.59	526.69 542.89 526.69	\$26.05 \$26.69 \$25.93	\$25.77 \$26.06 \$25.77	
Poel Contact ECH (1,080 AC. FT.)	30.1	1.62	29.7	7.62	30.6	30.8	29.8	34.9	51.1	30.6	29.7	29.3	
HILLIAGO LAKE	ğ	AQ	DEC	JAH	£	MAR	APR	MAY	MOC	701	ADG	ĝ	TOTAL.
Inflowe (1,000 AC. FT.) Avg 1929 thru 1981 GF 1961	112.4	239.9	265.7	33.1	489.1	576.5 446.6	613.2 149.0	663.3	287.7	116.7	% %.2	100.0 90.8	3,980.3
Maleases (1,000 AC, FT.) Avg 1976 thru 1981 AF 1981	97.2 358.9	145.5	206.7	291.1 30.8	296.7 186.4	448.6 335.4	573.6 147.4	434.4	398.5	135.4	67.9	69.7 79.8	3,169.3
Incorvering Datin Mainfall (inches) Avg 1930 thru 1981 3.6 WT 1981 3.6 Buriation 0.0	(inches) 3.6 3.6 3.6 0.0	4 W 6	3.8	3.6		4.6	4 - 4	7.3	9.6	4.0	6.6.	. u .	6.04
Pool Elevation End of Memth Thisiam Hisiams	255.74 259.36 255.29	255.36 256.33 255.34	255.21 258.15 255.14	255.26 255.27 255.06	255.50 256.65 255.10	259.61 259.65 255.50	259.38 259.61 259.20	259.72 260.09 259.14	259.82 264.76 259.25	259.22 261.25 259.05	259.20	259.28	4
Past Contest BOH (1,000 AC. FT.)	117.0	109.0	105.8	106.9	111.9	217.4	210.5	220.7	223.7	205.7	205.1	207.8	

_
-
7
2
3
E.
w
_
Z
4
-

	ទ	S	291	SAN	774	. PAR	AFK	PAX	430	717.	Atc	133	TOTAL
16 1641 FATANA LAKE 18616AS (1000 AC.FT.) 186 1957 1860 1961 FY 1961	383	160	226 87	170 10	234	261 71	29 22 22	419 346	165	62 79	31.0	34	2133 1541
ALLEALLS (1000 AC, F1.) ANG 1957 TABU 1961 FY 1961	165 58	136	196 119	213	221 12	240 60	207	274 86	235 610	152 340	23,	8,0	2066 1355
Bainfall (Inches) ang 1857 ingg 1977 by 1961 Elvinion	22.66 68.66 88.89	22.25	2.65 -1.57	49.0 49.0	6.55 5.55 5.55	3.53	-3.65 -3.65	43.4	4.25 7.25 3.06	3.13	2.50 2.50 71.0	4.86 1.66 -3.00	39.57
ECCL LIBVATICA LNE CA NCATA NATINIA NINTELA	223.42 225.15 223.42	221.97 223.42 221.97	220.12 222.53 220.12	220.11 220.12 220.12	221.07 221.05 220.11	221.07 222.91 220.89	221.45 221.60 221.07	229.45 229.45 221.40	233, 76 235, 49 228, 96	226.48 233.76 226.45	225.81 226.46 225.81	225.05 225.61 225.61	
LCL CCATEAL ECA (1606 AC.PL.)	225	169	147	146	168	166	111	416	557	314	253	270	
				KED KI	RIVER BASIN	4							
	3	Ş	סת	JAN	FEB	P.P.K	AFE	KAX	S C	J.C	AKG	433	SCIAL
IAME C The Files INFLCAE (1000 AC.FT.) AVC 1556 ThFU 1561 FY 1961	ው	25 80	20	15. 12.	57 14	75 26	60 14	63 106	30 157	011	N IO	***	377
MALIASES (1000 AC.FT.) AVG 1956 18NU 1561 FY 1561	φO	ฉีล	a n	3 3	54	76 19	55 11	56 61	34	228	øп	7,	430 284
Dainfall (inches.) Avg. 1857 abru. 1877 Fy. 1861 Eulmich	3.67 3.22 0.15	3.53 -0.25 2.25	3.65	22.44	3.16 -1.02	3.73	1.35	4.01 5.61 5.60	 6.5.0	22.7 0.26 53	44.0 6.46.4 6.46.4	2,163	35.17
ECCL ELLVATICA EM. CE MATE MYIMIA MINIMA	226.35 226.46 226.15	228.46 226.62 228.32	226 226 226 26 26 26 26 26 26 26 26 26 2	226.70 228.70 226.50	228.80 228.50 226.30	228 228 228 528 528 538 538 538 538 538 538 538 538 538 53	222 228 228 5.56 5.56	236.41 231.66 226.54	233 233 36 36 37 36	225.91 230.35 239.35	2222 2222 2223 2023 3025 6026	2222 2222 525 525 525 525 525 525	
FCCL CCMIENT LCA.	253	254	255	259	266	255	256	252	251	262	275	390	

EASIL
KIVER
AECHES

	§	Ş	910	NAC.	3.5	3	AFK	MAX	75.0	JUE.	ALG	SEP .	SCEAL
SAN EAVEIND EESEKVOIR TAKLOAS (1000 AC. FT.) AVC. 1306 TREU 1361 AVC. 1304	6 6	6 07	174	256	259	284 93	284 38	313	136 246	10.40 60.41	₩. 4 .4	33	1959 837
ELLEAGES (1600 AC,FT.) ANG 1965 THEO 1961 BY 1961	\$1 10\$	22	1023	35 35 35	1119	151	155	213 3\$	194	146	101	23	1467
EATMENT (1945BS) AC 1531 TRE 1960 Pt 1961 EAVINGE	3.15 1.99 -1.16	-1.36 1.39	5.05 1.64 1.16	41.65 20.01	2.16	9.50 9.21 9.45	4.64 2.19 -2.45	5.22 6.86 1.64	6.55 22.55	3.72 3.60 -0.12	22.1- 22.1-	2.50 2.63	46.29 36.85 -11.44
FCCL ELE WATICE ENE CP MONTH NAXIMA ATHINA	156.07 157.56 156.07	155.00 156.07 154.96	153.89 155.12 153.89	153.22 153.90 153.16	153.71 153.60 153.21	154.52 154.65 153.69	153.94 154.76 153.70	154.33 154.33 153.80	156.58 156.64 154.23	156.75 157.02 156.56	155.16 156.76 155.04	155.64 156.72 155.12	
LCCL CCATENT ECH (1600 AC.PT.)	2036	1941	1644	1677	1628	1699	1846	1682	2085	2101	1956	2017	
				SZHOZN	Liver	BASIN							
	8	Ż,	280	38%	168	23	AFF	KYX	200	Jor	AUC		SCEAL
B.A. STE IMBACLY, LAKE													
1k:1.745 (1000 AC.FT.) ANG 1966 THEO 1961 FY 1961	73	152	287	3 2	##	300 37	516 81	606	291 275	140	8 5	Şĕ	3598 1296
MEMBERS (1000 AC.FT.) AGC 1551 That 1561 FY 1961	1095	151 171	236 118	320	**	3 8 5 27	6 <u>1</u>	3 55	296 255	177	122	122	3229 1285
MAINDAIL (INCHES) MC 1931 TRIG 1960 19 1961 GP-108 ION	4.20 24.00 24.00	4.25 -1.23	1.05	4.10 1.88 -2.22	1.23	6.00 6.00 6.00 6.00	4.50 -2.11 -2.49	3.7.5 2.23	3.43 5.53	3.27 4.01 6.74	2.431	444	2.5. 2.8.2.
PCCL MANAGED INC. MINISTER CONTRACT PROPERTY OF PROPER	61.97 62.21 60.54	80.59 63.15 80.24	60.20 61.26 60.09	79.87 50.63 75.88	82.56 22.56 600 600	78.72 63.06 78.72	\$6.35 76.35	61.63 63.69 60.44	62.59 63.64 80.73	79.83 79.23 69.69	60.26 79.70 66.70	444 644 644 644	

3

3

2

9

8

3

63

BASIN
RIVER
PRINITY

	8	NO.	DEC	JAN	88	MAR	APR	MAX	JUN	JUL	AUG	933	TOTAL
DOK LANE 11MFLONG (1000 AC.FT.) AND 1924 THEN 1961 FY 1961	40	70	24	6 4	9-1	r- 4	60	5 7	10 00	40	ศศ	84	53
RELEAGES (1000 AC,FT.) AVG 1952 TERU 1961 FY 1961	40	7-1	77	00	40	wo	wo	1 0	പെ		44	-1-1	3-
MAINFALL (INCHES) ANG 1931 THRU 1960 FY 1961 DEVIATION	2.08 -2.08	9,55	2.30 -0.29	2.06 0.39 -1.67	2.06 0.71 -1.35	2.00 2.00 3.00 5.00	3.79 2.47 -1.32	4.75 3.99	3.28 3.85 0.57	2.16 1.81 -0.35	2.10 1.88 -0.22	2.97 6.53	32.35 26.11 -6.24
NOCL ELEVATION END OF NORTH MAXIMUM RESIDEN	689.71 690.66 689.71	689.38 689.71 689.38	689.36 689.56 689.34	689.33 689.37 689.31	689.40 689.40 689.32	690.31 690.31 689.44	690.52 690.57 690.31	691.19 691.23 690.23	691.16 691.55 691.16	690.15 691.17 690.15	689.57 690.15 689.57	689.09 689.87 689.09	
NOCL CONTENT EQU (1606 AC.PY:)	23	27	27	22	72	75	92	78	78	z	22	น	
				TRINIT	TRINITY RIVER	BASIN							
	ş	MOV	DEC	JAN	929	K	APR	MAX	SUE.	Juc	AUG	98	TOTAL
NULLE LANK INFLOME (1000 AC.FT.) AMG 1924 THAN 1961 FY 1961	8.38	22	35 32	77	0 .0	57 87	25 45	87 137	920 820	18	ដ -	22	3 3
MILES (1900 NC.PT.) MC 1954 THE 1961 PT 1961	25	ᆏᆏ	25. 25.	22	저크	 	23	89	17 55	25 25 25 25 25 25 25 25 25 25 25 25 25 2	22	85	118
MATHERALL (INCHES) AND 1931 TRAU 1960 FF 1961 DEFINE TOR	0.96 0.89 0.83	4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	44.6 503	2.14	2.66 1.15 -1.51	1.53	4.08	5.05 7.88 2.83	3.88	6.25 8.27	1.11	0.00 6.00 6.00 6.00	36.0 58.0 48.0
POC. ELEVITICA END CP MONTA MAXIMON MÉRITAN	504.73 504.73 501.85	504.01 504.01 504.01	504.99 505.36 503.76	504.52 504.99 504.52	0000 0000 0000 0000 0000 0000	508 508 508 503	508.41 508.45 507.73	514.52 514.52 508.41	515.61 517.49 514.52	514.71 516.50 514.71	513.06 514.71 513.06	512.34 513.10 512.34	
NOCL CONTENT ECH (1600 AC.FT.)	265	255	369	262	254	316	324	447	472	451		ž	

3
ᇽ
4
S
•
_
-
2
•
=
-
•
£
Ξ
=
3
2
E

	ş	KOV.	DEC	JAK	82	3	APR	MAX	100	Jur	AUG	i i	TOTAL
SEATONS (1800 AC.FT.) AND 1504 Then 1941 FT 1941	•4	wo	~ n	60	สา	9 7 1	4 2	36	22	1010	70	9 -1	134
201 200 100 100 100 100 100 100 100 100	♥ ₼	44	•~	•~	SO CA	SO CT	21	27	ವ ಒ	97	6 64	mm	84
MANGRAL (INCRES) ANG 1931 TREU 1960 FT 1961 FF 1963	3.13	2.19 1.19 1.83	426	1.90	2.26 0.88 -1.38	2.42 2.48 2.22	~~ ~ ~ ~ ~	4.46 3.61	3.28 3.76 0.48	2.56 1.17 -1.39	2. 48 1.47	2.78 4.61 1.83	33.43
BOCK, ELEVAETOR BRID OF MONTH MENLINER MENLINER	522.61 522.97 522.61	522.15 522.61 522.15	522.11 522.41 522.06	521.71 522.11 521.70	\$21.47 \$21.75 \$21.39	523.65 523.65 521.47	523.91 523.91 523.48	529.42 529.45 523.91	533.49 533.68 529.45	532.81 533.67 532.81	531.84 532.81 531.84	531.15 531.89 531.15	
FOOL CONTENT BON (1606 AC.PT.)	104	102	102	100	2	110	m	143	170	766	159	154	
42													
				TRINITY	RIVER	BASIN							
	8	NOM.	DEC	JAN	5	KAR	APR	MAX	205	JUL	AUG	# #	TOTAL
1960 1968													
11FZOR (1000 AC.FT.) AVG 1924 TERU 1961 FT 1961	3 .	81 °	23 15	52.5	5 0	32	28		36 132	22	mn	27	327 305
MILEAGES (1000 AC.FT.) ANG 1953 THRU 1961 FT 1961	61	ಇಂ	20	9 70	£10	20	9 <u>7</u> 0	4 0	% 0	מר	4 0	4 0	223 7
MAINFALL (INCHES) ANG 1931 THEO 1960 FY 1961 DEFLECOR	3.28 3.44 0.16	2.87 1.43 -1.44	656 686	2.47	2.87 1.01 1.81	3.37 4.18 0.81	4.57 3.54 1.03	5.24	3.99 6.17 2.18	2.36 0.16	2.71 1.15 -1.56	6.41 241	30.00 30.00 30.00
BOCK, RIAWETON BAD OF ACTIN MALINEN HEBINEN	483.92 483.92 403.40	483.16 483.54 483.13	483.46 483.73 483.07	483.21 483.46 483.16	482.98 483.22 482.86	484.15 484.15 482.98	484.45 484.74 483.93	486.73 486.73 484.45	492.44 492.59 486.73	491.98 493.16 491.98	490.89 491.98 490.89	490.23 490.23 490.23	
BOOK, CONTENT BON (1606 AC.PT.)	297	280	295	291	287	307	31.2	353	999	456	434	92	

Z
2
BASIN
RIVER
IIX
TEINITY
-

から のこのないとというというというと

MAVALBO MILLS FASE	Ę	> S	PFC	JAN	त्र ख	MAR	APK	MAX	SCN	JUL	ALG	SEP	ICTAL
IMPLUMS (1000 AC.FT.) AVG 1908 THRU 1981 FY 1981	νэ	9-1	207 1	00	0 0	12	29 1	29	14 83	₩.	~,	m	121
RELEASES (1006 AC,FT.) AVG 1563 16RU 1961 FY 1961	70	90	7 0	% O	4 0	۰,0	64	17	5 75	27 2	- 00	- no	100 25
RAINFALL (INCLES) Avg 1931 Thru 1960 FY 1981 LEVIATICH	2.64 0.54 -2.10	2.60 1.95 -0.65	2.61 2.42 -0.19	2.62 0.94 -1.68	2.60	2,67 3,92 1,25	4.36 2.09 -2.27	4.98 4.93 -0.05	3.50 11.61 6.11	1.82 2.11 0.29	1.60 1.160 4.0-	2.28	34.84 35.31
Pool Elevation Eng of Honth Paxinim Minimum	421.17 421.11 421.17	420.88 421.17 420.87	420.97 421.33 420.79	420.65 420.97 420.55	420.37 420.69 420.34	420.88 421.19 420.37	420.34 420.88 420.34	421.52 421.76 420.23	426.91 433.06 421.48	424.10 428.91 424.10	\ \tau_{-1}-	423.09 423.66	•
HOUL CONTENT ECH (1600 AC.FT.)	#	07	41	39	38	40	38	4 3	82	9	52	50.0	
				Thinity	RIVER	BASIN							
	Ş	1	CEC	7									
BANDWELL LAKE	}	i	3	Š	3	MAR	APR	k.A.y	NOC	JUL	AUG	SEP 1	TOTAL
IMPLCAS (1000 AC.FT.) AVG 1938 THRU 1961 FY 1981	mo	ma	44	4-	9~	۰	ส	4.	~;	~	-	.~	3
RELEASES (1000 AC,FT.) ANG 1965 TRKU 1961 FY 1981	-10	ທອ	mo	40	4 .00	۰ ب	и г о	7 E	7 27	m 74	- o	·	
BAINPALL (INCHES) AVG 1931 THRU 1960 FY 1981 DEVIACION	2.90 -2.36	2.73	2.94 2.26 -0.68	2.53 0.94 -1.59	2.81 0.97	3.73 0.98	2.5- 1.90 2.21	2.24 7.56 7.56	3.09 10.51	1.98 2.42	0 .2.5 2.16 3.5.16	2.74	42 35.53 35.96
Pol Elevator Enc Ca' Donth Maximia Minimia	418.01 416.54 418.01	417.81 418.01 417.79	417.94 418.10 417.80	417.99 417.95 417.85	417.87 417.91 417.79	900	• • •	4,44	• • •	₽ M an u	-0.01 421.10 421.55	•	₹.
FOCL CONTENT ECH (1000 AC.FT.)	42	42	4 5	42	42	. ~	13		; ;	(. 12 (. 13	ò	20.7	

MARKER RE INTRONS (AND 194 FV 1961 FV	INTIONS (1000 AC. Ft.) Ang 1945 thru 1981 FY 1981 Releases (1000 Ac. Ft.) Aug. 1964 thru 1981 FY 1981 Reinfall (Inches) Aug. 1945 thru 1981	5:4 6:9 7:0 6:5 6:8	N 0 0 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5.0 5.0 5.7 3.33	2.6 2.6 2.6 2.6 2.6	FE3 7.5 1.2 1.2 98.6	7. 2. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	8 00 40 60 8 00 70 60	7.7 7.7 6.2 5.9 5.9	10.5 10.0 10.0 3.87	3.16	3.7 3.5 3.7 3.79	33.2 33.2 4.25	
Pr 1981 Pool Elev End of Haximum Hinimum Pool Cont	FY 1981 Pool Elevation End of Month Naximum Minimum Minimum Fool Content E.O.M. (1000 Ac. Ft.)	73.51 73.51 73.46	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	73.23 75.88 73.23 0	2.47. 74.19 81.05 73.21 0	73.64 75.24 73.27 0	73.74 78.49 73.61	73.85 81.31 73.70	74.56 86.18 73.82	85.46 85.47 73.84	74.00 88.49 74.00 0	89.20 89.20 73.78	. 484 0	2 2 2 2 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
ADDICKS R Larlons (Arg. 1981) FY 1981 R 1981 (Arg. 1987)	ADDICKS RESERVOIR Inflows (1000 Ac. Ft.) Awg. 1948 thru 1961 FY 1981 Aug. 1964 thru 1961 FY 1981	6.1 8.5 8.3 8.6	4.0 7.0 7.0	6. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	6.5 7.7 4.0	7.0 2.1 2.7.4	8.91 8.92 6.63 8.63	ය.අ. ය.අ. ම.ට ටට	7.5 14.8 9.1	7.4 10.5 7.5 9.2	5.4 17.3 5.7 18.8	5.2 22.1 3.6 1.6	6.7 19.7 8.3	
	Rainfall (Inches) Aug. 1948 thru 1981 FY 1981 Pool Elevation End of Month Maximum	8.3 8.3 8.8 8.8	3.31 1.92 71.35 72.65	3.42 1.12 79.05 79.05	3.04 1.63 75.79 83.60	3.16 2.11 72.14 72.14	2.13 1.48 71.61 79.98 71.57	3.48 2.11 71.79 83.42 71.58	4.11 5.43 72.53 91.27 71.65	3.75 4.34 85.55 86.24 71.64	3.18 5.35 71.80 90.53 71.80	3.34 7.96 14.14 11.74	4.48 4.64 27.90 27.36 7.90	87 000
Pool Content (1000 Ac.	ol Content (1000 Ac. Ft.)	•	•	0	0	0	0	0	0	1.5	0	17.3	0	

-
S
á
VER
Z
8
2
置

		ည်	202	DEC	CAN	FEB	MAR	APR	MAX	3 5	70 F	A UG	SEP	TOTAL
E	WEITHEY LAKE													
	INFLONS (1000 AC.FT.) AVG 1899 THRU 1981 FY 1981	109	67 17	68 52	456 50	21	98	137	274 65	162 208	96 49	73	109	1279 814
	RELEASES (1000 AC, FT.) AVG 1951 THEU 1981 FY 1981	78	21	4 39	920 930	£84 483	W W Style	33	204	164	9 <u>0</u>	5 3	72 25	946 554
	PAINFALL (INCHES) AVG 1931 THRU 1960 FY 1961 EEVIATION	2.88 0.42 -2.46	1.94	2.16 2.17 0.01	1.96 0.63 -1.33	2.25 7.22 4.97	2.06 3.76 1.70	3.49 1.97 -1.52	4.76 2.95 -1.81	2.97 6.98 4.01	2.07 2.20 0.13	1.81 2.52 0.71	2.76 1.51 -1.25	31.11 33.95 2.84
	POOL ELEVATION BND OF MONTH MAXIMUM MINIMUM	532.56 532.90 522.90	532.12 532.64 532.12	532.26 532.60 531.91	531.33 532.27 531.32	529.92 531.34 529.81	531.28 531.44 529.82	531.17 531.29 531.06	531.74 531.99 531.13	532.83 531.47 531.63	531.93 531.93	530.03 531.95	528.73 531.21 528.73	
	POOL CONTENT EOM (1000 AC.FT.)	617	209	019	589	558	588	585	598	623	602	260	532	
45														
					BRAZOS	RIVER B	BASIN							
		8	MOV	DEC	JAN	FEB	MAR	APR	MAX	JUN	JUL	AUG	SEP	TOTAL
8	WACO LAKE													
	INFLOAS (1000 AC.FT.) AVG 1907 THEU 1981 FY 1981	25 1	16 1	ส *	18	7 °	26 13	7∞	٥ <u>ر</u> 1	31 153	72	@ M	11	317
	NELEASES (1000 AC,FT.) AVG 1965 THRU 1961 FY 1961	000	15	70	17	20	50 0	80	9 <u>7</u> 0	32 110	17	mo	9 0	278 135
	PAINFALL (INCHES) AVG 1931 THRU 1960 FY 1961 DEVIACION	2.58 0.45 -2.13	2.19 2.07 -0.12	2.20 -2.30 -2.30	2.26 0.72 -1.54	2.39 1.26 -1.13	2.09 4.07 1.98	3.83 1.80 -2.03	4.83 3.09 -1.74	2.88 5.82 5.83	2.14 1.76 -0.38	1.67	3.00 2.25 -0.75	32.36 30.08 -2.28
	POOL ELEVACION END OF NONTE MAXIMUM NINIMUM	451.04 451.76 451.01	450.40 451.04 450.39	450.46 450.73 450.28	450.15 450.46 450.13	450.10 450.18 450.07	451.46 451.46 450.10	451.85 451.86 451.46	452.04 452.11 451.62	457.15 463.50 451.97	454.59 457.40 454.59	453.89 454.59 453.86	453.54 454.09 453.54	
	FOCL CONTENT FOR (1000 AC.FT.)	122	111	118	116	116	124	127	128	165	146	141	139	

		8	NO.	DEC	3AN	834	MAR	APR	MAX	NOS	JOE	AUG	SEP 7	TOTAL
2	PROCTOR LAKE						,	,		•		-	,	7
	AVG 1922 THEO 1981 FY 1961	mo	77	aa	ma	77	w 64	so et	37	≠ ∞	-0	40	7-4	;=
	BELEASES (1000 AC,FT.) ANG 1963 THEO 1961 FY 1961	mo	mo	00	ma	۲0	νo	90	a°	& \to	L-12	4m	44	99
	PAINFALL (INCHES) AVG 1931 THEO 1960 FY 1961 DEVIATION	2.71	1.66	1.76 2.31 0.55	1.65	1.69	1.55 3.61 2.06	3.06	4.68 3.59 -1.09	2.75	2.08 1.28 -0.80	1.65 2.04 0.39	0.52	27.97 25.86 -2.11
	BOOL ELEVATION END OF MONTH MAXIMUM MINIMUM	1157.06 1157.58 1157.06	1156.80 1157.04 1156.80	1156.86 1157.03 1156.70	1156.75 1156.86 1156.62	1156.76 1156.76 1156.61	1156.81 1157.14 1156.63	1156.50 1 1156.81 1 1156.50 1	1156.44 1 1156.67 1 1156.21 1	1157.98 1 1158.33 1 1156.38 1	1156.80 1 1156.08 1 1156.80 1	1155.26 1156.80 1155.26	1154.46 1155.26 1154.46	
46	FOOL CONTENT EOM (1000 AC.FT.)	39	39	39	38	38	39	37	37	£	39	*	Ħ	
					BRAZOS	RIVER	EASIN							
		ğ	MOV	DEC	JAN	FEB	MAR	APR	MAX	SGR	JUE	AUG	SEP	TOTAL
	BELFOR LATE													
	INFLONS (1000 AC.FT.) ANG 1908 TREE 1981 FY 1981	g°	สุน	∺	ਜ਼ੂ ਵ	36	37	14	103	149	24 18	7,	108	468 234
	HELEASES (1000 AC.FT.) AVG 1954 THRU 1981 FY 1961	52	777	20	27	22	39	3E.c.	19	89	46 87	3 9	ø₹	394 120
	MAINFALL (INCHES) ANG 1931 THEO 1960 FY 1981 DEVIATION	2.01	22.11	1.91	2.10	2.21	1.96 4.09 2.13	3.56 -1.47	4.6 3.4.6 1.21	2.8 8.17 5.28	2.07	1.69	22.20- 1.00-	31.06 31.77 0.71
	POCL ELEVATION RING OF MORTH MAXIMUM MIDITALM	589.52 590.29 589.52	589.22 589.52 589.18	589.17 589.43 589.15	589.17 588.17 588.92	589.04 589.19	589.90 589.90	590.41 590.41 589.90	590.70 590.87 590.17	601.06 601.44 590.68	595.12 601.06 595.12	594.13 595.12 594.13	593.98 594.52 593.96	
	FOOL CONTENT BON	389	385	385	383	383	393	399	402	535	456	=	442	

Z,
-
ລ
S S
Δ.
24
Ř
>
-
Z
S
8
N
<
%
Φ

	T	NOV	DEC J	JAN	FEB	MAR	APR P	MAX	C NOC	JUL A	y ync	SEP TO	TOTAL
STILLHOUSE HOLLOW LAKE INFLOSS (1000 AC.FT.) AVG 1924 THRU 1981	410	012	133	16 1	22 3	83 8	56 9	12	21 108	111	w ⊄	12	218 171
FY 1981 RELEASES (1000 AC,FT.) AVG 1966 THRU 1961 SY 1981	, ,0	۲0	07	£1 0	13	16 0	210	35.0	27 36	24 64	44	70	112
EAINFALL (INCHES) ANG 1931 THRU 1960 FY 1981 DEVIATION	2.78 0.51 -2.27	2.16 2.68 0.52	2.33	2.02 0.88 -1.14	2.13 1.57 -0.56	1.84 3.87 2.03	3.35 2.22 -1.13	3.71	2.99 9.06 6.07	1.98 0.82 -1.16	1.92 2.39 0.47	3.11 3.42 0.31	31.03 32.86 1.83
POOL ELEVATION END OF MONTH MAXIMUM MINIMUM	616.67 617.12 616.67	616.75 616.79 616.56	616.87 616.97 616.74	616.87 616.90 616.79	617.14 617.14 616.87	618.14 618.14 617.14	619.25 619.25 618.14	620.74 620.83 619.22	630.73 633.91 620.74	622.73 630.73 622.73	622.57 622.73 622.27	622.15 623.29 622.15	
FOOL CONTENT EOH (1000 AC.PT.)	203	204	204	204	206	212	21R	228	296	240	539	237	
				9000	d 3VI v	11:0 4 8							
				BKAGO	NIVER	1100							
	ocr	MOV	DEC	JAN	FLE	HAR	APk	XVI1	NOC	JUL	AUG	35. T	TOTAL
GEONGETOWN LAKE													;
INPLOMS (1000 AC.FT.) AVG 1980 THRU 1981 FY 1981	••	••	0-1	01		МW	4	21 6	38	→ ∞	17	14 26	128
RELEASES (1000 AC.FT.) AVG 1980 THRU 1981 FY 1981	00	00	00	00	00	00	00	00	18 35	23 45	4 7	13	55 108
RAINFALL (INCHES) AVG 1931 THRU 1960 FY 1961 DEVIATION	0.00 1.75 1.75	0.00 3.12 3.12	1.10	0.00 1.08 1.08	0.00 2.32 2.32	3.37	3.29	0.00 5.71 5.71	0.00	0.00	2.55	0 v v 8 8 8	42.38 42.38 43.38
POCL ELEVATION END OF MONTH MAXIMUM MINIMUM	778.67 779.12 778.67	778.56 778.67 778.39	778.92 778.92 778.56	779.23 779.23 778.92	780.07 780.07 79.22	782.38 782.38 780.07	785.45 785.45 782.38	792.42 792.42 785.45	813.35 819.44 792.42	791.68 813.35 791.34	791.51 791.60 791.18	791.49 806.11 791.03	
POCE CONTENT EOM (1000 AC.FT.)	24	23	24	24	25	27	30	39	92	æ	38	38	

3
3
æ
配
ì
·
ర్ల
3
=

		ğ	XOV	DEC	JAN	FEB	MAR	APR	MAX	NOC	JUL	AUG	SEP	TOTAL
SPAR	GRANGER LAKE INFLONS (1000 AC.FT.) ANG 1980 THRU 1981 FY 1981	46	46	чm	mm	ΝΦ	03 00	91	16	87 172	009	11	888 88	193 341
	MCLEASES (1000 AC,FT.) AVG 1980 THEN 1981 FY 1981	99	90	00	00	00	00		aa	4. 8.2	64	126	55 55	148 291
	DAINFALL (INCHES) AVG 1931 THRU 1960 FY 1981 DEVIATION	0.00 2.11 2.11	0 mm. 0 mm. 0 mm.	0.00	0.00	0.00 2.26 2.26	0.00 3.57	0.00 2.94 94	0.04 4.93 0.00	0.00 12.15 12.15	0.00 1.35	2.28 2.28 2.28	9.00 5.11	42.51 42.51
	POCL ELEVATION END OF MONTH NAXIMON MINIMON	495.08 495.10 494.65	495.73 495.73 495.08	496.53 496.53 495.73	497.18 497.18 496.53	498.22 498.22 497.18	500.38 500.38 498.22	501.63 501.63 500.38	504.33 504.51 501.63	516.95 522.25 504.30	505.41 516.95 504.78	504.68 505.47 504.68	504.33 508.73 503.95	
48	PODL CONTENT BON (1000 AC.PT.)	35	æ	39	7	;	23	*	19	142	72	69	2	
													•	
					BRAZOS	RIVER B	BASIN							
		ş	X 04	သူ့ရ	JAN	128	MAR.	APR	MAY	15	JEC.	AUG	38	TOTAL
8	SCHENTILE LAKE													
	INFLONS (1000 AC.FT.) ANG 1924 THRU 1961 FY 1961	12	4 ~	17	25 35	77	91 E	88 38	37	22 7	22	~~	3~	221
	NELEASES (1000 AC,PT.) AVG 1967 TMM 1961 PY 1901	77 0	20	510	30	61 0	710	23	32	193	21	wa	wo	88 88
	MAINFALL (INCHES) AVG 1931 THRU 1960 FY 1961 DEVIATION	2.05 -0.05 -0.66	6 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	3.15	2.89 2.38 -0.51	2.87	2.64 0.23	3.71 5.86 5.86	3.95 1.41	4.00 4.00 6.00 6.00	2.35 0.05 0.05	2.45 0.12	3.09	43.45
	POOL ELEVATION RING OF NOFTH MAKINGH MININGH	233.41 233.67 233.35	233.44 233.50 233.23	233.27 233.52 233.27	233.43 233.46 233.17	233. 48 233. 57 233. 38	233.52 233.68 233.46	233.37 233.56 233.25	234.24 234.38 233.28	238.88 240.07 234.23	238.30 238.92 238.28	237.64 238.30 237.42	237.49	
	FOOL CONTENT RON (1060 AC.FT.)	113	113	111	113	113	114	112	120	170	75	156	154	

			5	CULLIKANO	KIVER G	LASIN						o TCTAL	<u>۔</u>
		NOV CEC		J.A. 44.0	8	MAR A	AFF.	ic xen	JUN JUN		à		ı
TAIN BUTTES LAKE	4	•		mu	ma	mи	19 00	6 01	~ •	200		27	62
AVG 1963 THRU 1981 FY 1961 LETERSES (1000 AC,FT.)	, m	m 7	, 1	n ~10	,	~~	~ ~	юm	4- 10	vo va	mm	44	30
ANG 1963 THRU 1961 by 1961 Rainfall (1MCHES) ang 1931 Theu 1960	10 10	0.76	0 0.91 1.96	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 000 6.36 8.06 8.06	2,20	3.79	25.09 14.09	1.83 2.06 0.23	1.74	1.65	2.37	18.05 22.12 4.07
FY 1961 LEVIATION LOOL ELEVATION ELE CF NONTE		55 1 55 1 55	191.	0.25 925.13 925.13	8 8 8 8	75.67	1927.13 1: 1927.13 1: 1926.23	1 79.729 1 79.729 1 51.729	1 72.729 1 226.16 1 72.729	925.53 19 927.27 19 925.53 19	923.40 19 925.41 19 923.40 19	922.87 923.47 922.87	
MAXINIM MINIMUM FGLL CANTEN ECH (1000 AC.PT.)	1921.45	8.	7 09	944.19		16	95	56	96	67	92	92	
49				7330	Section BlvEh	EASIN							
)	5	> 04	DEC	JAN	\$EB		2.PK	MAX	30%	JUE	AUG	SEF	TOTAL
C.C.FISHER LAKE	•	0:	٥.	90	40	ศศ	→ ~	90	mH	mo	44	9 0	۳۲
FX 1961 FELEASES (1000 AC.FT.)	0 7	-	, 00	, 00	00	00	99	30	00	40	40	00	40
FI 1961 FAINFALL (1MCHES) ANG 1931 THRU 1960 FY 1961	0 .40.00.00 .00.00 .00.00 .00.00 .00.00 .00.00		, i.o	30 m	M G	4 0.86 0 2.01 1.15	5 2.27	2.71	2.10	1.54	1.65 1.88 0.23	2.18 1.52 -0.66	18.34
DEVIATION LOS LISUMICS ENE CF PARTS	1864.99	1684	1684.9	1884.	97 1664.9 02 1665.6	06 1684. 00 1685.	99 1685.2 26 1685.3 96 1684.6	5 1655.6 3 1685.6 6 1864.9	1 1685.4 5 1665.6 1 1885.4	2 1664.70 7 1685.49 2 1684.70	1684.33 1684.70 1884.33	1683.82 1864.42 1883.82	
MALIMINA MINISHIM FOLL CONTENT EON (1000 AC.FT.)	34.9	34.6	364.6	34	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ŧ.	×	35	35	8	32	31	

-
-
အ
4
_3
_
2
تن
>
_
2
-
3
Δ
2
2
a
3
3
J

	£3	13	DEC.	JAN	FLB	MAŘ	AFE	MAY	สูก	JUL	AUG	SEP 1	1CI AL
HORDS CREEK LAKE INFLAS (1000 AC.FT.) AVG 1942 THE 1961 FY 1981	00	00	••	00	00	0-1	40	10	00	••	00	00	7.1
heleases (1000 AC,FT) AVG 1953 THEU 1961 FY 1981	90	90	99	99	00	90	သ	99	99	90	90	99	99
MINFALL (INCHES) ANG 1931 THRU 1560 FY 1961 DEVIATION	2.49 0.03 -2.46	1.31 2.19 0.88	1.44 2.13 0.69	1.56	1.29	1.25	2.90 1.75 -1.15	4.49 2.99 -1.50	2.73 1.66 -1.07	2.38 1.22 -1.16	1.54 0.88 -1.06	3.04 2.52 -0.52	26.82 21.60 -5.82
PCCL ELEVATION END CF MONTH MAXINIA MINIMAN	1886.07 1886.53 1886.07	1885.99 1686.07 1685.90	1686.40 1866.52 1885.85	1686.40 1686.45 1886.36	1886.32 1886.40 1886.24	1888.88 1690.04 1666.32	1688.73 1869.01 1888.73	1868.33 1886.73 1883.33	1687.76 1688.36 1867.76	1686.75 1687.76 1686.75	1685.85 1886.75 1865.85	1885.36 1686.04 1885.36	
POOL CONTENT EOM (1000 AC.FT.)	м	m	m	м	м	•	4	•	•	m	м	ю	
!													
50													
				COLORA	COLORAGO RIVER	PASIN							
	23	Ş	DEC	JAN	FE.B	MAR	AFR	MAX	SOS	JOE	AUG	SEP 1	TOTAL
MAKSHALL FULD													
INFLOAS (1000 AC.FT.) AVG 1941 THRU 1941 FY 1981	123 29	163	52 16	78 15	62 13	90	126 54	238 33	164	52 22 22	87 21	110 18	1305 511
RELEASES (1000 AC,FT.) AVG 1944 THEL 1961 FY 1961	40	20	52 0	25 0	78 0	35 0	80	& O	18	% 0	57 133	4.80 0.80	567 239
PAINFALL (INCHES) AVG 1931 1880 1960 FY 1961 LEVIATION	2.39 1.13 -1.26	1.46 2.36 0.90	1.42 1.53 0.11	1.13 0.93 -0.20	1.16	1.27 3.56 2.29	2.70 5.24 4.84	3.27		2.02 2.59 0.57	2.03 0.41	2.76	23.89 5.79 5.90
POOL ELEVATION END OF NORTH MAKINIA MINIMA	660.33 680.33 673.89	680.44 680.49 680.08	680.44 680.55 680.15	680.24 680.67 680.02	680.44 680.48 680.16	680.71 680.94 680.27	680.33 680.86 679.86	678.85 680.59 678.04	683.31 689.73 678.61	679.75 683.05 679.75	674.83 679.79 674.83	671.88 675.55 671.88	
FOCE CONTENT ECH. (1000 AC.FT.)	1159	1161	1161	1157	1911	1166	1159	1131	1216	1146	1059	1009	

z
\mathbf{H}
ŝ
~
BASI
ų,
3
~
=
_

ш
3
~
_
4
3
ų
•
3

	Ş	NO.	OR.	JAN	£1.8	ĸĄĸ	AFR	MAY	Z Z Z	JUL	ALG	413	TCIAL
CANYCA LAKE													
INFLAMS (1000 AC.FT.) AWG 1515 THRU 1981 FY 1981	30 28	16 14	17 16	20 15	131	23	33 54	8.E.	36 197	25 25	18 21	27 18	294 512
RELEASES (1000 AC,FT.) Avg 1564 Teru 1961 FY 1961	16 23	16 13	ជជ	17	16 14	19 31	4 22	7 7 7 9 8	31	23 75	4 28	17	241 461
Fainfall (inches) ang 1931 thru 1960 fy 1961 leviation	3.05 2.14 -0.91	1.67	2.18 0.86 -1.32	2.07 1.28 -0.79	2.20	2.58 2.28	3.00 3.16 0.18	4.03 3.08 -0.95	2.96 9.91 6.93	2.40 0.96 -1.44	1.86	4.02 1.84 -2.18	31.67 33.39 1.72
PCCL ELEVATION ENE CF PONTE PALINIA NIEINIA	906.03 907.07 905.36	905.89 906.03 905.59	906.18 906.25 905.90	906.33 506.33 906.10	905.97 906.43 905.96	907.98 907.99 905.95	908.98 909.07 907.32	907.21 906.98 907.20	913.14 919.20 907.10	909.91 913.94 909.91	905.97 905.91 905.97	905.01 905.97 904.92	
POUL CONTENT ECH (1000 AC.PT.)	358	357	359	360	356	374	362	367	417	390	358	350	

1					RIO GEAN	RIO CRANDE BASIN							
PLATONO DAN			Š	7		MAR	APR	HAY	E S	Ę	AUG	81.5	TOTAL
Inflowe (1000 Ac. Pt.)	001	AOM M			2	į	i i			,	•	•	3
	'n							77.7	17.4	3.1	1:3	7.7	ì
Melesses (1000 Ac. ft.) Avg 19 thru 19 FT 1961	•							11.5	17.2	3.1	1.6	2.4	×.
Rainfall (Inches) Avg 19 chru 19 FT 19 8£	2.11							2.70	1.25	4.53	3.94	3.5	17.19
Paol Elevation (EOM) Maximum Hisians	9982.40 9982.50 9982.40							9982.50 9982.80 9982.20	9982.60 9982.80 9982.10	9982.50 9982.60 9982.30	9982.6 9982.50 9982.50	222 222 332 34	9982.80 9982.10
Pool Contest (ECH) (1000 Ac. Pt.)	19.7							19.8	19.8	19.8	19.7	1.01	
Paca for compiling averages unavailable	erages una	ratioble											
ABIQUIU DAK INTIONE (1950 Ac. Ft.) Avg 19 62 thru 19 81 FT	6.8 6.3 1.21	15.7 5.5	18.2	6.3	6.4 6.5	15.0 6.8	45.2	%.2.2	45.8	21.6	25.55 6.65	34.6	205.4
helenes Avg 1963 thru 1981 FT 1981	9.9 0.21	23.5 55.0	22.8 48.5	9.7	6.0 4.2	13.8	34.9	58.7 34.0	\$0.9 \$4.2	31.5 31.6	23.1	14.2	298.0
Bainfall (Inches) Avg 1957 thru 1981 FT 1961	8.2	ņ		भ्न	.05	16.	કું હૈ	2.7	2 s	1.61	1.96	1.07	19.51
Past elevation (2000) Maximum Minimum	6202.00 6202.30 6202.00	6184.65 6201.73 6184.65	6164.48 6184.00 6164.48	6164.60 6164.81 6164.81	6164.40 6164.66 6164.40	6164.44 6164.48 6164.26	6163.76 6164.70 6163.76	6163.39 6164.03 6163.22	6162.80 6163.40 6162.50	6162.30 6162.93 6162.20	6162.19 6162.75 6161.91	6161.75 6162.27 6161.73	6202.30
Past Contact COSS As. fc.)	132.3	61.7	46.3	40.5	40.2	40.0	3.1	38.6	37.6	*	x.7	X	

COCNITI LAKE					1		į		į	ŧ	Ş	1	į
Inflows (1000 Ac. Pt.)	001	NON	DEC	NYC	FEB	HAR A col	APK 4	¥ 6	100 y	JUL 83 2	3 5	17	1260.4
Avg 1910 thru 1981 PY 1981	48.7	52.3 72.0	47.6 84.7	126.5 48.8	35.4	40.3	34.3	49.1	55.3	6.4	39.5	25.2	558.5
halesses (1000 Ac. Pt.) Avg 1973 thru 19 gg Ff 19gg	29.9	47.6	49.9 83.8	37.8	37.2	39.9	105.5 34.8	223.2	204.5	133.7	38.4	39.1 24.6	1019.9 551.5
Rainfall (Inches) Avg 19 67 thru 19 81 FF 1981	.96	2 K	85.90	.10	.29	.51	84.	.92	.75	1.90	2.51	1.47	116.40
Pool Elevation (EDM) Maximum Hinimum	5321.58 5321.64 5321.28	5321.68 5322.48 5321.18	5322.17 5322.17 5321.12	5321.50 5321.94 5321.40	5322.39 5324.37 5320.63	5322.28 5323.32 5321.09	5321.26 5323.94 5321.26	5321.50 5322.17 5321.30	5321.59 5321.74 5321.08	5321.20 5322.09 5321.20	5321.43 5322.64 5321.10	5321.47 5322.10 5321.38	5324.37
Pool Content (EOH) (1000 Ac. Ft.)	46.4	4.94	47.1	46.3	47.3	47.2	46.0	46.3	4.6.4	45.6	46.2	46.2	
CALISTED DAM Inflows (1000 Ac. Ft.) Avg 19 71 thru 19 81 FF 1981													
Molecases Avg 19 71 thru 19 81 FF 1981	¥.0	.07	.07	80.		.12	et. 0	.14	.14	1.63	1.02	1.0	4.8
Mainfall (Inches) Avg 1958 thru 1981 Ff 1981	11.	3 . 04.	.26	64.	.37	.35 64.	.51 .91	1.03	. 49	1.35	1.41	1.24	8.71
Pool elevation (BOM) Meximum Historia	Empty all year	year			'								
Pool Contant (1000 Ac. ft.) *infloamOutflow ** Invert Elevation	0	J	0	•	0	0	•	•	•	0	•	•	

JEGEZ CANYON DAM													
Inflowe (1000 Ac. Ft.) Avg 1953 thru 1981 Ff 1981	0.1 6.1	90M 1.9	DEC 1.4	JAN 1.5 1.4	7EB 1.7 1.1	3.5 1.3	APR 12.5 6.7	10.6 4.0	2.4 9.9	JUL 1.1 1.6	AUG 3.0 .5	5EP 1.0	TOTAL 42.5 21.6
Apleases (1000 Ac. Ft.) Avg 1954 thre 1981 Ff 1981	1.7	1.9 8.	1.3	1.5	2.5 æ.	4.6.	6.9 5.5	11.6	ي ھ و	1.3	2.9	1.0	#. 8.3
Lainfall (Inches) Avg 1953 thru 1941 FF 1961	6.	£4.	14.	3.0	. 38	26	.35	1.73	44	1.21	1.57	1.00	7.98
Pool Elevation (NOO) Mariana Hisiana	5158.89 5154.89 5157.98	\$159.02 \$159.12 \$158.95	5158.88 5159.34 5158.66	5158.86 5159.29 5158.78	\$159.65 \$159.65 \$158.43	5160.82 5160.82 5159.66	5161.46 5162.18 5157.68	5160.32 5162.87 5160.32	5159.45 5161.18 5159.42	\$159.49 \$161.53 \$159.17	\$159.75 \$160.17 \$159.31	5159.97 5162.06 5159.67	5162.87 5157.68
Peel Content (EUM) (1000 Ac. Pk.)	1.7	1.7	1.7	1.7	1.9	2.2	2.2	2.1	1.8	1.8	1.9	2.0	
SANTA BORA Tarland (1800 Ac. Pt.) Avg FF 1941	7	1:1	1:1	ø;	å	,	'n	ø.	•	4.	16.2	:	33.6
i i	•	ċ	••	.,	ż	₹.	₹.	3.5	•	7.4	10.2	ņ	26.8
Referent (Inches) Aug 19 thru 19 FF 1961	•	₹	•	.18	80.	₹.	ż.	s.	s.	2.43	3.	1.07	15.5
Peal elevation (NOW) Martines Martines	4673.75 4673.75 4671.85	4674.77 4674.77 4673.77	4675.83 4675.83 4674.82	4676.84 4676.84 4675.84	4677.31 4677.31 4676.85	4677.99 4677.99 4677.29	4678.47 4678.47 4678.00	4644.65 4678.57 4644.65			4716.23 4716.23 P ET	4720.99 4721.16 4716.25	4721.10 Paper
Paul Concess (1989 As. ft.) *Samufficient data for everages etwores started in April 1981	2.7 or emineral bertl 1941	5.	3.0	3.2	3.2	3.6	ë.	÷.	•	•	38.	×.	

	TOTAL.	;; •	\$	13.76	Papity Papity
	ABG	•	8	3.09 Pocy	•
	¥.	-:	1.9	3. J	•
	aut.	9	1.33	8. J	a
	¥ 4 6	•	9		•
	ž vo	•	.3	, in the second	•
	MAR 5.0		8 . c	, ti	•
	2 % o			, dada	•
	₹ . 0		ä.		•
ıble	ğ r. o		ç. 6		•
No data available	Ž • e		ij.		•
No dat	g		š-	i v	•
Sumer Lake	Ind elvers name ladder. Pt.) Avg 1964 chre 1961	Malesson (1808 Ac. Pt.) * Ang 19 thru 19 FF 19	Aninfall (lackes) Ang 1973 chen 1981 FT 19	Peol Bloveties (BOR) Marieum Marieum	Peel Cantana (1000) (1000 Ac. Pt.)

MINUTES

Arkansas River Basin Coordinating Committee Meeting

7 April 1981

- 1. Welcome. Colonel Waldrop, Tulsa District welcomed the group to the meeting which was held in the Tulsa District office.
- 2. <u>Introduction</u>. Mr. R. Terry Coomes, Chairman of the committee, opened the meeting and introduced those in attendance. A list of the attendees is furnished on Inclosure 1. He stated that the theme of the meeting this year would focus on low flows. The flows at Van Buren have been below normal for the past 5 years. Water supply deliveries and diversions are up.

3. Review of 1980 Operations.

- a. <u>Below Fort Smith</u>. Mr. James Proctor, Corps of Engineers, Little Rock District, reviewed the operations below Fort Smith. This verbal presentation summarized the details of the 1980 regulations which are presented in the "Arkansas River Basin Coordinating Committee Report on 1980 Activities".
- b. Above Fort Smith. Mr. Ross Copley, Corps of Engineers, Tulsa District, reviewed the operation above Fort Smith. This verbal presentation summarized the details of the 1980 regulations which are presented in the "Arkansas River Basin Coordinating Committee Report on 1980 Activities".
- 4. Arkansas State Water Plan. Mr. Douglas E. Edwards, Arkansas Soil and Water Commission, reported on the state water plan. They are working on four phases of developing the plan, which includes gathering information, evaulating information, etc. They are dividing the plan into several areas instead of putting it all in one volume. The lower Mississippi area will be in one volume in which they will identify water problems, shortages, emerging problems such as salt water encroachment. It will also contain a surface and subsurface water budget. Are working with the U.S.G.S. in developing a ground water budget for some 12 areas. The Department of Agriculture is assisting in monitoring drawdown in wells in several counties in the eastern portion of the state.

The past legislature created a "Water Supply Commission" that is to last 2 years. It was formed by people representing all representative areas in the state. The present size is about 39.

- 5. Management of Water Quality Storage in Kansas. Mr. John A. Henderson, P.E., Kansas Water Resources Board presented a report on the Management of Water Quality in Kansas. The State of Kansas now has 24 major federal reservoirs within its borders. Nine of these 24 are in the Arkansas Basin drainage controlled by the Tulsa District. Corps of Engineers. Seven of the nine include water quality as a project function. Municipal and industrial water supply is a major function in seven of the nine, and the state has contracted for water supply storage in five. The seven reservoirs with water quality storage contain approximately 167,000 acre-feet of storage which will provide a yield of about 70 million gallons per day. The management of water quality is difficult with the problems which presently exist. These problems include drought, state water law, federal water policy and differences in interpretation. We are trying to manage the water quality storage to provide benefits over an extended period of time. In this effort, we coordinate with the other state agencies and with the Corps of Engineers to determine what releases should be made from the individual reservoirs, the quantity of flow required, and when the flow should be changed or terminated. This has worked well throughout the past winter and into early spring. However, as the growing season begins we anticipate problems will occur as irrigation systems are started up to provide for crops in the areas affected by drought.
- 6. Report on Drought Situation in Arkansas Basin. Mr. David Brown, Corps of Engineers, Southwestern Division presented a report on the drought situation in the basin. During the past 5-years the flows in the basin as measured at Van Buren have been below median and on a monthly basis there was only one month during the past year when flows exceeded median. Since July of 1980 the monthly flows have been below the lower quartile. So the flows are still extremely low. The projects in southern Kansas are low. Examples are Toronto 7%, Fall River 33%, Heyburn 44% and Hulah 43% of the conservation storage remaining.

He discussed the "Palmer Drought Index" which is an index of meteorological drought. This index is a basic indicator of the amount of not only soil moisture but also, groundwater, streamflow and lake storage. The recent National Weather Service "Weekly Weather and Crop Bulletin" shows "Palmer Drought Index" map that indicates moderate to extreme drought conditions in the Arkansas Basin. Indications are that it would require 8-10 inches of rain over most of the basin to restore the moisture conditions to normal.

7. Mississippi River Low Water and Impact on Navigation in Arkansas Basin. Messers Jim Proctor and Paul Revis, Corps of Engineers, Little Rock District presented a review of the lower end of the navigation system and the impact of the low flows on traffic. The major problems occurred in the White River reach of the navigation system because of low stages on the Mississippi River and low flows in the White River. This is the lowest reach where the system enters the Mississippi.

During design the White River low flow was considered to be about 8,400 cfs with a Mississippi River water surface at elevation 110.0 feet, m.s.l. at the mouth. This year the White River low flow was about 4,000 to 5,000 cfs with a Mississippi River elevation of 106.8. Navigation problems were experienced in October 1980 and continued, in some degree, through February 1981 as a result of the low stages and low White River flows. The lowest elevation at the mouth of the White River (106.8 ft) was experienced on 22-23 January 81. This was the lowest since the project was placed in operation in the late 60's.

Currently the traffic on the navigation system is about 9-10 million tons per year. This involves about 7200 barges per year or 1600 tow boats per year going through the first lock. One of the larger expenses in operating this reach of the system is dredging. The average amount of material that is being dredged out of the lower reach is close to the design amount. However, the design cost was about 30¢ per cubic yard and is now in the range of \$1.00 per cubic yard, and higher during emergency situations.

8. Long Range Forecasts & Forecast for Arkansas Basin. Mr. Bill Curry, Acting Meterologist-in-Charge, National Weather Service, Oklahoma City presented discussion on long range forecasts. The Oklahoma City office issues 24-48 hour forecasts. The longer range forecasts are issued by the national meterological group in Washington. This group issues 3-5 day forecasts, 6-10 day forecasts, 30-day outlooks which are issued twice a month. They also issue a seasonal outlook four times a year. These long term outlooks are based on long term periods of record and also the collection of observations around the hemisphere. They keep track of migrating high and low pressure areas, temperatures and other data.

Information for the Palmer Drought Index is collected from 9 meterological districts by the Oklahoma City office. The rainfall and temperature measurements are collected and averages computed each Monday for each of the 9 districts. This information is then sent to Washington for use in updating the Palmer Drought Index. There is also another index called the Crop Moisture Index which reflects the moisture available to crops.

The long range forecasts still indicates that the high pressure system is forcing the major rain producing storms to the north of this area. There is the possibility that we will have another dry year.

9. Oklahoma Water Plan. Mr. Richard Cochran, Oklahoma Water Resources Board presented a slide show which discussed the development and contents of the Oklahoma Water Plan. This audio-visual presentation is outstanding and would be very suitable for use by various public organizations for learning about the plan.

10. Status of the Water Control Data System. Mr. John R. Parks, Corps of Engineers, SWD, reported that since the meeting last year the design documents and solicitation documents for the system have been completed and approved. The solicitation document was issued to the vendor community on 2 March 1981 with a closing date of 22 April for submission of proposals. The plans for installation of the automated data processing equipment portion of the system call for the installation of equipment at Dallas and Tulsa during FY 1981. The remainder of the sites would be installed during FY 1982.

The Tulsa District purchased 16 data collection platforms during 1980. These are to be delivered within the next few weeks. Installation is expected to be accomplished this spring and summer. There are not any funds for the purchase of platforms during 1981 fiscal year. The available funds for this year are being used for acquisition of the ADPE portion of the system.

- 11. Mechanical Problems at Webbers Falls and Ozark Powerplants. Mr. Edward Westmeyer, Corps of Engineers, SWD, presented a review of the mechanical problems which have been experienced at the Webbers Falls and Ozark project powerplants. He explained that in 1970 SWD had 15 powerplants, all vertical-axis units. About 1972 we began operating slant-axis turbines at the Webbers Falls and Ozark powerplants. The advantage over the vertical axis turbines is that the slant axis turbines do not require the excavation of a deep hole for a draft tube elbow. A disadvantage of slant axis turbines is that the rotating turbine parts are subject to fatigue failure because of fluctuating stresses caused by the force of gravity on the nearly horizontal turbine shaft. There are 5 of these slantaxis generators at Ozark and 3 at Webbers Falls. In about 1975 we began to notice some problems. The heads of the cap screws that hold the runner hub together were breaking off and the 5" studs holding the turbine shaft to the turbine wheel were cracking. These problems were solved and other problems developed. The latest problem involves cracks in the turbine shafts. Design work to solve this problem has been done and corrective actions have been initiated. It is expected that all of the units will be back in service by March 83.
- a. Impact of Webbers Falls & Ozark outages on Southwestern

 Power Administration. Mr. Oscar E. Hembree Jr., Southwestern Power

 Administration (SWPA) discussed the impact of these outages on SWPA.

The three units at Webbers Falls and four of the five units at Ozark are out of service due to cracked shafts. SWPA has marketed 145 MW from the seven units presently out of service. Therefore, there will be a capacity deficiency in the system this summer and next summer. SWPA has taken the following steps to offset this loss of capacity

- (1) Arrange for a transfer of up to 100 MW from the Western Power Administration.
- (2) Hold the reservoirs higher than normal to provide more capacity from system projects.
 - (3) Fully utilize available capacity at all projects.
- (4) Resolve operational problems at several projects by installation of capacitor banks and repairing equipment to prevent overheating.

These actions will help alleviate the problem until repairs can be made. The outage of the seven units has resulted in the loss of 60 million kwh of energy with a replacement cost of \$1,200,000. Though the capacity loss of these units has been replaced with available reserves, if additional outages are experienced, this capacity may have to be replaced this summer at an estimated cost of approximately \$200,000 per month.

12. Summary of Permit Activities. Mr. Lenard B. Young, Federal Energy Regulatory Commission, Ft. Worth presented a report summarizing the permit activities in the Arkansas-White-Red Basins. A copy of this report is attached as Inclosure 2.

ATTENDANCE LIST

ARKANSAS BASIN COORDINATING COMMITTEE MEETING

Tulsa, OK 7 April 1981

MEMBERS

R. Terry Coomes, Chairman

Gerald L. Wright
Lenard B. Young
Robert P. Cantrell
Oscar E. Kembree, Jr.
John A. Henderson
Richard Cochran
Douglas E. Edwards

AGENCY

Corps of Engineers, SWD Water & Power Resources Service Federal Energy Regulatory Comm., Ft. Worth Soil Conservation Service, Little Rock Southwestern Power Administration, Tulsa Kansas Water Resources Board, Topeka

Oklahoma Water Resources Board Arkansas Soil & Water Comm., Little Rock

OTHERS

Charles H. Sullivan John R. Parks David R. Brown Edward Westmeyer James Proctor Paul N. Revis Colonel Waldrop Weldon M. Gamel Carroll Scoggins Ross Copley Guy L. Cabbiness Harold Chitwood Gene Jones David Kannady Loren Pope Susan Shook Mark Swift John R. Walker Eldon Beard Bill Curry Jack Bowman

Ed Lindsey

Corps of Engineers, SWD Corps of Engineers, SWD Corps of Engineers, SWD Corps of Engineers, SWD

Corps of Engineers, Little Rock Corps of Engineers, Little Rock Corps of Engineers, Tulsa Corps of Engineers, Tulsa Corps of Engineers, Tulsa Corps of Engineers, Tulsa

Corps of Engineers, Tulsa Corps of Engineers, Tulsa Corps of Engineers, Tulsa Corps of Engineers, Tulsa Corps of Engineers, Tulsa Corps of Engineers, Tulsa Corps of Engineers, Tulsa Corps of Engineers, Tulsa

National Weather Service, Ok. City National Weather Service, Ok. City National Weather Service, Tulsa Rv Forecast

Southwestern Power Administration, Tulsa

Preliminary Permits

Arkansas-White-Red Basins

Prelimin Number	Preliminary Permit Number Status	Project	Applicant	Effective Date	Expiration Date
7908 <u>7</u> /	Teenad	10:10 F-0 C# 00-			
2002	70000	2011 2011 2011 2011 2011 2011 2011 2011	5	7- 1-80	6-30-83
200		#4-Ked	Town of Vidalia, LA	12- 1-79	11-30-82
70762	rssued	#5-Red	of	•	5-33-82
1.50	Issued	L&D #1-Red River	City of Alexandria, IA		
2950-7	Issued	L&D #2-Red River	=	 •	20-15-1
2999 . /	Issued	Lake D'Arbonne-Bayon D'Arbonne		- ·	1-31-83
300C-/-	Issued	Columbia 120-Diachte Divos	cajun electric rower coop., inc.	5- 1-80	4-30-83
7-1008	Teched	Johnstoff of the Street	= :	•	4-30-83
3002	Tened	Caddo Late Dam Continuo Damini		-	4-30-83
3032]/	Teened	ted at a filter of the state of		5- 1-80	4-30-82
	7037	LGD #4-AFKGHSAS KIVET	Arkansas Electric Coop. Corp. &	11- 1-80	10-31-82
•			Riceland Elec. Coop., Inc. &		
3033/	Teened		Cal Electric Coop., Inc.		
30.34]	Teenod	#2-Arkansas	=	9- 1-80	8-31-82
2000	133060	#3-Arkansas		•	A-21-82
2045	rssned	#5-Arkansas	= = = =		0-1-0
3043	Issued	u		_ '	10-31-82
			Arkansas Electric Coop. Corp. &	9- 1-80	8-31-82
3044	Tseupe		Arkansas Valley Elec. Coop. Corp.		
3045	Tering	Kiver		11- 1-80	10-31-82
		David U. Terry-L&D #6-Arkansas R.	Arkansas Electric Coon Corn. A		10-21-02
			4	,	30-16-01
	16				
308	Issued好,	Chouteau-L&D #17_Arkanese D			;
3082	Issued ² /		AND Electric Cooperative, Inc.		7-31-82
3083	Issued		: :	_	7-31-82
3084	Issued	A I VET	=	8- 1-80	7-31-82
3085	1senad2	Colonia Den Kantansas K.	=	8- 1-80	7-31-82
3098	Issued	Minney 1 ale Terralgris River	= = = = = = = = = = = = = = = = = = = =		7-31-82
3088	Teched	ne La Fave R.	Arkansas Electric Cooperative Corp.	9- 1-80	8-31-8)
3201	Tecined Technology	iso as Anti-off Cake-Petit Jean R.	. = = =	-	8-31-81
3275	Teened	Lau #0-Arkansas River	City of Conway, Arkansas	,	10-31-82
1281	Teened	County (Neosho) R.		1- 1-81	6-30-82
3282	Tesued Tesued	rerrelisbridge Dam-Cypress Creek		_	11-30-81
220K		Wright Patman Dam-Sulphur River		12- 1-80	130-81
2220		<u></u>	Continental Hydro Corporation	_	7-31-82
222	Touch	Altus Jam-N. Fork Red River	City of Altus, Oklahoma		\$
****	7 2 2 0 6 0	Clearwater Dam-Black River	Continental Hydro Corporation	2- 1-8]	1-31-83
					1

Prelimin Number	Preliminary Permit Number Status	Project	Applicant	Effective Date	Expiration Date
					333
22663/	Danding	Meton Dam Dates: Divon	continue Continue		
/Energ	יבווסווא	מוארכן המווויוס ושמו אוענו	continental nyaro corporation		
33/25/	Pending	Pine Creek Dam-Little River	=		
3392~	Pending	Conchas Dam-Canadian River	Sequoia Energy Corporation		
3395	Issued	Hulah-Canev River	Continental Hydro Cornoration	12 1-81	6-30-R2
2412	Teenad	Oxford Dam Antancae Divon	City of Oxford Papers		11 30 05
25		ONION Dail-Arkansas KIVER	CICY OF CATOFA, NATISAS		10-00-11
3432	Issued	Dequeen Lake-Kolling Fork Kiver	City of Mope, Arkansas	_	8-31-82
3433	Issued	Dierks Lake-Saline River	= = =	3- 1-81	8-31-82
3434	Issued	Gillham Lake-Cossatot River	= = =		2-28-83
3435	Issued	Millwood Lake-Little River	= = =	-	2-28-83
3449	Issued	Murray L&D #7-Arkansas River	City of North Little Rock, Arkansas	3- 1-81	2-28-83
3553	Tssupp	Owell-Sorted River	Rainfiber Toc.	3- 1-0	8-31-82
35553/	Pendina	Hudo Lake-Kiamichi River	Rame Corporation		•
3578	Pending	Sanford Dam-Canadian River	Continental Hydro Corporation		
36574,	Pending	Pine Creek Dam-Little River	Ramel Corporation		
36583/	Pending	White River L&D #1-White River	=		
37113/	Pending	_	Mitchell Energy Co., Inc.		
37503/	Pending	Hugo Lake-Kiamichi River	Western Farmers Flectric Consenting		
38113/	Dending	Diskly Camanatan Dise			
20103/					
) 200 200 200 200 200 200 200 200 200 20	Pendang	Sugar Loat Dam-LK.PK.Arkansas K.			
3829-7	Pending	Pine Creek Dam-Little River	Western Farmers Electric Cooperative		
38304	Pending	Wister Dam-Poteau River			
3848%	Pending	Sugar Loaf Dam-Lk.Fk.Arkansas R.	Continental Hydro Corporation		
38614/	Pending	Pueblo Dam-Arkansas River	Harrison-Western Corporation		
3871-2		Hugo Lake-Kiamichi River	Oklahoma Renewable Resources, Inc.		
3982		Eagle Nest Dam-Cimarron Creek	City of Lamar, Colorado		
3983,		Trinidad Dam-Purgatoire River	= = =		
4 0153/		White River L&D #2-White River	Arkansas Power & Light Company		
\$ %			.= = =		
40 %			Arkansas Electric Cooperative Corp.		
4020%					
4118%		Conchas Dam-Canadian River	City of Farmington, New Mexico		
4178%		Hugo Lake-Kiamichi River	Enagenics		
42043/1		White River L&D #1-White River	City of Batesville, Arkansas		
423627-2		Norrell	Enagenics		
42921/		ğ	Arkansas Electric Cooperative Corp.		
43152	Pending	White River L&D's #2 & #3-	Independence County, Arkansas		
		White River			

大学 大学 はいかい

Technically located in Lower Mississippi River Basin.
 Permit surrendered.
 Competing application.

AGENDA

Eleventh Annual Meeting Trinity River Basin Water Management Interests

Date: 6 May 1981 Time: 9:30 a.m.

Place: Trinity River Authority of Texas

General Office

Topic

- I. Introduction Mr. Sam Aiken, Corps of Engineers, SWD
- II. Welcome Sam Scott, Trinity River Authority
- III. Minutes and Comments on 1980 Meeting Mr. Terry Coomes, Corps of Engineers, SWD
- IV. Update on Status of Corps of Engineers Trinity River Projects -Galveston and Fort Worth Districts
- V. Potential Hydroelectric Power Development at Ray Roberts Dam Mr. Chris Hartung, City Manager, Denton, Texas
- VI. Blending Red River Water in Lake Lavon Mr. Carl Riehn, Executive Director, North Texas Municipal Water District
- VII. USGS/Comsat General Pilot Program for Real Time Hydrologic Data Mr. Ralph Ollman, Ft. Worth Subdistrict Office, U.S. Geological Survey
- VIII. New Legislation for Funding Water Projects in Texas Mr. Allen White, Assistant Director of Planning, Texas Department of Natural Resources
 - IX. Current Status, Richland-Chambers Reservoir Project Mr. Bill Hilliard, Tarrant County Water Control and Improvement District No. 1
 - X. Long Range Weather Forecasting and Outlook for the Trinity River Basin Mr. Daniel Smith, Chief, Scientific Services, NWS, Southern Region
 - XI. Water Quality Surveillance at Lake Livingston Mr. Mike Knight, Water Quality Supervisor, Lake Livingston Project, TRA
- XII. Comments and General Discussion a. Municipalities b. Water Districts
 c. State Agencies d. Private Organizations e. Federal Agencies

XIII. Adjourn

ATTENDANCE LIST

TRINITY RIVER BASIN WATER MANAGEMENT INTERESTS MEETING

TRINITY RIVER AUTHORITY GENERAL OFFICE 6 MAY 1981

Name	Organization
Bill Bailey	City of Arlington
Charles Bresett	City of Carrollton
Don Cline	to 10 10
Thomas Taylor	City of Dallas
Roger Proza	14 14
Chris Hartung	City of Denton
Lee C. Bradley, Jr.	City of Fort Worth
Jim Scanlan	10 10 10
Larry Champagne	North Central Texas Council of Governments
John Promise	30 35 10 10 19
Carl W. Riehn	North Texas Municipal Water District
E. H. "Whitey" Ingram	49 11 11 tt tt
J. Michael Millican	74 N N N N
David Stephens	10 11 11 11 01
Bill Hilliard	Tarrant Co Water Control & Imp Dist No. 1
Allen White	Texas Department of Water Resources
Charles Gilliam	od 20 to 10 11 11
Frances Jo Pelley	Texoma Regional Planning Commission
Sam Scoll	Trinity River Authority
Mike Knight	11 P4 te
Bill Holder	99 99
Dewayne Calum	99 99 10
Tom Newsom	Dallas Power and Light
Don Parvin	16 ts 60 FF
Justin Johnson	Texas Electric Service Company
Bob Almond	Texas Power & Light Company
I. M. Rice	Trinity Improvement Association
Dick Berryhill	Espey, Huston
Jerry M. Nunn	National Weather Service
Daniel Smith	* * *
David Smith	* *
Beade O. Northcut	Soil Conservation Service, Waco
Jimmy Hill	" " Tyler
Raiph H. Oliman	US Geological Survey, Fort Worth
Martin R. Howland	Corps of Engineers, Galveston District
Cecil J. McFarland	" " Fort Worth District
Tom Donaldson	
Sam Aiken	Corps of Engineers, Southwestern Division
Terry Coomes	
Charles Sullivan	
David Brown	