Studio matematico per software Leibnitz

Marco Marini

9 novembre 2012

Indice

Ι	Calcolo tensoriale	1
1	Vettore controvariante 1.1 Generalizzazione	
2	Vettore covariante	5
	2.1 Generalizzazione	
	2.2 Trasformazione inversa	7
3	Metrica	8

Sommario

Parte I

Calcolo tensoriale

1 Vettore controvariante

Prendiamo un sistema cartesiano associato ad un sistema di riferimento x^1, \ldots, x^n . Prendiamo poi un diverso sistema sistema di riferimento con basi z^1, \ldots, z^n e le relative funzioni di trasformazione dei due sistema di riferimento

$$z^1 = z^1(x^1, \dots, x^n)$$

$$z^n = z^n(x^1, \dots, x^n)$$

Prendiamo una funzione parametrica che esprime una linea nel sistema x_1, \ldots, x_n :

$$f(t) = (f^1(t), \dots, f^n(t))$$

La stessa funzione è espressa nel sistema z^1, \ldots, z^n come:

$$h(t) = (h^1(t), \dots, h^n(t))$$

ovvero

$$h^{1}(t) = z^{1} \left(f^{1}(t), \dots, f^{n}(t) \right)$$

$$h^{n}(t) = z^{n} \left(f^{1}(t), \dots, f^{n}(t) \right)$$

Calcoliamo la derivata rispetto t

$$\frac{d}{dt}f(t) = \left(\frac{d}{dt}f^1(t), \dots, \frac{d}{dt}f^n(t)\right) \tag{1}$$

mentre nel sistema di riferimento (x_1', \dots, x_n') sarà:

$$\frac{d}{dt}h(t) = \left(\frac{d}{dt}h^1(t), \dots, \frac{d}{dt}h^n(t)\right)$$
 (2)

applicando le funzioni di trasformazione avremo

$$\frac{d}{dt}h^{1}(t) = \sum_{i=1}^{n} \frac{\partial z^{1}}{\partial x^{i}} \frac{d}{dt} f^{i}(t)
\dots
\frac{d}{dt}h^{n} = \sum_{i=1}^{n} \frac{\partial z^{n}}{\partial x^{i}} \frac{d}{dt} f^{i}(t)$$
(3)

Siano $\vec{e_1}, \dots, \vec{e_n}$ e $\vec{e_1}, \dots, \vec{e_n'}$ i vettori base dei rispettivi sistemi di riferimento. Possiamo esprimere la (1) con la notazione vettoriale:

$$\frac{d}{dt}\vec{f}(t) = \frac{d}{dt}f^{1}(t)\vec{e_{1}} + \ldots + \frac{d}{dt}f^{n}(t)\vec{e_{n}} = \sum_{i=1}^{n} \frac{d}{dt}f^{i}(t)\vec{e_{i}}$$

o in forma più concisa (notazione di Einstein)

$$\frac{d}{dt}\vec{f}(t) = \frac{d}{dt}f^{i}(t)\vec{e_{i}}$$

Allo stesso modo possiamo esprimere la (2) come:

$$\frac{d}{dt}\vec{h}(t) = \frac{d}{dt}h^i(t)\vec{e_i'}$$

e dalla (3)

$$\frac{d}{dt}\vec{h}(t) = \frac{\partial z^i}{\partial r^j}\frac{d}{dt}f^j(t)\vec{e_i'}$$

La notazione vettoriale permette di identificare facilmente il sistema di riferimento evidenziando le specifiche basi. **Esempio** Prendiamo il sistema di riferimento euclideo x, y, z e il sistema cilindrico r, ψ, z . Le funzioni di trasformazione sono:

$$x = r \cos \psi$$
$$y = r \sin \psi$$
$$z = z$$

Prendiamo la curva f(t) espressa nel sistema r, ψ, z dalle espressioni

$$f(t) = (t, \psi_0, kt)$$

La curva è una retta passante per l'origine con pendenza k e diretta con angolo polare ψ_0 .

Nelle coordinare euclidee la curva è:

$$h(t) = (t\cos\psi_0, t\sin\psi_0, kt)$$

La derivata nel sistema r, ψ, z è

$$\frac{d}{dt}\vec{f}(t) = \frac{d}{dt}f^{i}(t)\vec{e_{i}} = \vec{e_{r}} + 0\vec{e_{\psi}} + k\vec{e_{z}}$$

Posto che

$$\begin{array}{lll} \frac{\partial x}{\partial r} = \cos \psi & \frac{\partial x}{\partial \psi} = -r \sin \psi & \frac{\partial x}{\partial z} = 0 \\ \frac{\partial y}{\partial r} = \sin \psi & \frac{\partial x}{\partial \psi} = r \cos \psi & \frac{\partial x}{\partial z} = 0 \\ \frac{\partial z}{\partial r} = 0 & \frac{\partial z}{\partial \psi} = 0 & \frac{\partial z}{\partial z} = 1 \end{array}$$

Nel sistema x, y, z avremo:

$$\frac{d}{dt}\vec{h}(t) = \frac{\partial z^{i}}{\partial x^{j}}\frac{d}{dt}f^{j}(t)\vec{e}_{i}$$

$$= \left(\frac{\partial x}{\partial r}\frac{d}{dt}f^{r}(t) + \frac{\partial x}{\partial \psi}\frac{d}{dt}f^{\psi}(t) + \frac{\partial x}{\partial z}\frac{d}{dt}f^{z}(t)\right)\vec{e}_{x}$$

$$+ \left(\frac{\partial y}{\partial r}\frac{d}{dt}f^{r}(t) + \frac{\partial y}{\partial \psi}f^{\psi}(t) + \frac{\partial y}{\partial z}\frac{d}{dt}f^{z}(t)\right)\vec{e}_{y}$$

$$+ \left(\frac{\partial z}{\partial r}\frac{d}{dt}f^{r}(t) + \frac{\partial z}{\partial \psi}f^{\psi}(t) + \frac{\partial z}{\partial z}\frac{d}{dt}f^{z}(t)\right)\vec{e}_{z}$$

$$= \cos\psi\vec{e}_{x} + \sin\psi\vec{e}_{y} + k\vec{e}_{z}$$

ma essendo $\psi = \psi_0$ abbiamo

$$\frac{d}{dt}\vec{h}(t) = \cos\psi_0\vec{e_x} + \sin\psi_0\vec{e_y} + k\vec{e_z}$$

1.1 Generalizzazione

Sia $\xi = (\xi^1, \dots, \xi^n)$ un vettore associato al sistema di coordinate x^1, \dots, x^n . Se due sistemi di coordinate x^1, \dots, x^n e z^1, \dots, z^n sono legati mediante una trasformazione della forma x = x(z) tale che $x^i(z_0^1, \dots, z_0^n) = x_0^i, i = 1, \dots, n$, lo stesso vettore si definisce nel nuovo sistema di coordinate z mediante un altro insieme di punti ζ^1, \dots, ζ^n legato dalla formula:

$$\xi^i = \frac{\partial x^i}{\partial z^j} \zeta^j \tag{4}$$

Se $\vec{e_i} = (\vec{e_1}, \dots, \vec{e_n})$ e $\vec{e_i'} = (\vec{e_1'}, \dots, \vec{e_n'})$ sono i vettori base rispettivamente in x^1, \dots, x^n e z^1, \dots, z^n abbiamo:

$$\vec{\zeta} = \zeta^i \vec{e_i'}$$

$$\vec{\xi} = \xi^i \vec{e_i} = \frac{\partial x^i}{\partial z^j} \zeta^j \vec{e_i}$$

.

1.2 Trasformazione inversa

Sia $\xi = (\xi^1, \dots, \xi^n)$ un vettore associato al sistema di coordinate x^1, \dots, x^n e $\zeta = (\zeta^1, \dots, \zeta^n)$ lo stesso vettore associato al sistema di coordinate z^1, \dots, z^n . per la (4) abbiamo:

$$\xi^i = \frac{\partial x^i}{\partial z^j} \zeta^j$$

Identifichiamo le relative funzioni di trasformazione inverse da z^1,\dots,z^n a x^1,\dots,x^n con

$$x^1 = x^1(z^1, \dots, z^n)$$

. . .

$$x^n = x^n(z^1, \dots, z^n)$$

avremo che

$$\zeta^i = \frac{\partial z^i}{\partial x^j} \xi^j$$

quindi

$$\zeta^{i} = \frac{\partial z^{i}}{\partial x^{j}} \frac{\partial x^{j}}{\partial z^{k}} \zeta^{k} = \delta^{i}_{k} \zeta^{k}$$

.

Da questo consegue che

$$\frac{\partial z^i}{\partial x^j} \frac{\partial x^j}{\partial z^k} = \delta_k^i \Longrightarrow \frac{\partial z^i}{\partial x^j} = \left(\frac{\partial x^i}{\partial z^j}\right)^{-1} \tag{5}$$

2 Vettore covariante

Prendiamo un sistema cartesiano associato ad un sistema di riferimento x^1, \ldots, x^n . Prendiamo poi un diverso sistema sistema di riferimento con coordinate z^1, \ldots, z^n e le relative funzioni di trasformazione dei due sistema di riferimento

$$z^{1} = z^{1}(x^{1}, \dots, x^{n})$$

$$\vdots$$

$$z^{n} = z^{n}(x^{1}, \dots, x^{n})$$

Prendiamouna funzione scalare nel sistema x_1, \ldots, x_n

$$f(x^1,\ldots,x^n)$$

La stessa funzione è espressa nel sistema z_1, \ldots, z_n come:

$$h(z^1, \dots, z^n) = f(x^1, \dots, x^n)$$

ovvero

$$h(z^{1}(x^{1},...,x^{n}),...,z^{n}(x^{1},...,x^{n}))$$

Calcoliamo il gradiente della funzione:

$$grad(f) = \left(\frac{\partial f}{\partial x^1}, \dots, \frac{\partial f}{\partial x^n}\right) = \left(\frac{\partial h}{\partial x^1}, \dots, \frac{\partial f}{\partial x^n}\right)$$
 (6)

mentre nel sistema di riferimento (x'_1, \ldots, x'_n) sarà:

$$grad(h) = \left(\frac{\partial h}{\partial z^1}, \dots, \frac{\partial h}{\partial z^n}\right)$$
 (7)

applicando le funzioni di trasformazione avremo

$$grad(f) = \left(\frac{\partial h(z^{1}(x^{1},...,x^{n}),...,z^{n}(x^{1},...,x^{n})}{\partial x^{1}}, \dots, \frac{\partial h(z^{1}(x^{1},...,x^{n}),...,z^{n}(x^{1},...,x^{n})}{\partial x^{n}}\right)$$
$$= \left(\sum \frac{\partial h}{\partial z^{i}} \frac{\partial z^{i}}{\partial x^{1}} \dots, \sum \frac{\partial h}{\partial z^{i}} \frac{\partial z^{i}}{\partial x^{n}}\right)$$
(8)

Siano $(\vec{e^1}, \dots, \vec{e^n})$ e $(\vec{e^{\prime 1}}, \dots, \vec{e^{\prime n}})$ i vettori base dei rispettivi sistemi di riferimento. Possiamo esprimere la (6) con la notazione vettoriale:

$$grad(f) = \frac{\partial f}{\partial x^1} \vec{e^1} + \ldots + \frac{\partial f}{\partial x^n} \vec{e^n} = \sum_{i=1}^n \frac{\partial f}{\partial x^i} \vec{e^i}$$

o in forma più concisa (notazione di Einstein)

$$grad(f) = \frac{\partial f}{\partial x^i} \vec{e^i}$$

Allo stesso modo possiamo esprimere la (7) come:

$$grad(h) = \frac{\partial h}{\partial z^i} \vec{e'^i}$$

e dalla (8)

$$grad(f) = \frac{\partial h}{\partial z^j} \frac{\partial z^j}{\partial x^i} \vec{e'}_i$$

La notazione vettoriale permette di identificare facilmente il sistema di riferimento evidenziando le specifiche basi.

Esempio Prendiamo il sistema di riferimento euclideo x, y, z e il sistema cilindrico r, ψ, z . Le funzioni di trasformazione sono:

$$x = r \cos \psi$$
$$y = r \sin \psi$$
$$z = z$$

Prendiamo la funzione h(x,y,z) espressa nel sistema x,y,z dalle espressioni

$$h(x, y, z) = k_1 x + k_2 y + k_3 z$$

Nel sistema cilindrico la funzione diventa:

$$f(r, \psi, z) = k_1 r \cos \psi + k_2 r \sin \psi + k_3 z$$

Il gradiente nel sistema x, y, z è

$$grad(h) = \frac{\partial h}{\partial z^i} \vec{e^i} = k_1 \vec{e^x} + k_2 \vec{e^y} + k_3 \vec{e^z}$$

Posto che

$$\frac{\partial x}{\partial r} = \cos \psi \qquad \frac{\partial x}{\partial \psi} = -r \sin \psi \qquad \frac{\partial x}{\partial z} = 0$$

$$\frac{\partial y}{\partial r} = \sin \psi \qquad \frac{\partial x}{\partial \psi} = r \cos \psi \qquad \frac{\partial x}{\partial z} = 0$$

$$\frac{\partial z}{\partial r} = 0 \qquad \frac{\partial z}{\partial \psi} = 0 \qquad \frac{\partial z}{\partial z} = 1$$

Nel sistema r, ψ, z avremo:

$$\begin{split} grad(f) &= \frac{\partial z^j}{\partial x^i} \frac{\partial h}{\partial z^j} \vec{e^{r^i}} \\ &= \left(\frac{\partial x}{\partial r} \frac{\partial h}{\partial x} + \frac{\partial y}{\partial r} \frac{\partial h}{\partial y} + \frac{\partial z}{\partial r} \frac{\partial h}{\partial z} \right) \vec{e^r} \\ &+ \left(\frac{\partial x}{\partial \psi} \frac{\partial h}{\partial x} + \frac{\partial y}{\partial \psi} \frac{\partial h}{\partial y} + \frac{\partial z}{\partial \psi} \frac{\partial h}{\partial z} \right) \vec{e^{\psi}} \\ &+ \left(\frac{\partial x}{\partial z} \frac{\partial h}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial h}{\partial y} + \frac{\partial z}{\partial z} \frac{\partial h}{\partial z} \right) \vec{e^z} \end{split}$$

 $= (k_1 \cos \psi + k_2 \sin \psi)\vec{e^r} + (-k_1 r \sin \psi + k_2 r \cos \psi)\vec{e^\psi} + k_z \vec{e^z}$

2.1Generalizzazione

Sia $\xi = (\xi_1, \dots, \xi_n)$ un covettore associato al sistema di coordinate x^1, \dots, x^n . Se due sistemi di coordinate x^1, \ldots, x^n e z^1, \ldots, z^n sono legati mediante una trasformazione della forma x = x(z) tale che $x^{i}(z_{0}^{1}, \ldots, z_{0}^{n}) = x_{0}^{i}, i =$ $1, \ldots, n$, lo stesso covettore si definisce nel nuovo sistema di coordinate zmediante un altro insieme di punti ζ_1, \ldots, ζ_n legato dalla formula:

$$\zeta_i = \frac{\partial x^j}{\partial z^i} \xi_j \tag{9}$$

Se $\vec{e^i}=(\vec{e^1},\ldots,\vec{e^n})$ e $\vec{e^{\prime i}}=(\vec{e^{\prime 1}},\ldots,\vec{e^{\prime n}})$ sono i vettori base rispettivamente in x^1,\ldots,x^n e z^1,\ldots,z^n abbiamo:

$$\vec{\xi} = \xi_i \vec{e^{i}}$$

$$\vec{\zeta} = \zeta_i \vec{e^{i}} = \frac{\partial x^j}{\partial z^i} \zeta_j \vec{e^{i}}$$

Trasformazione inversa

Sia $\xi = (\xi_1, \dots, \xi_n)$ un covettore associato al sistema di coordinate x^1, \dots, x^n e $\zeta = (\zeta_1, \dots, \zeta_n)$ lo stesso covettore associato al sistema di coordinate z^1, \ldots, z^n . per la (9) abbiamo:

$$\zeta_i = \frac{\partial x^j}{\partial z^i} \xi_j$$

Identifichiamo le relative funzioni di trasformazione inverse da z^1, \ldots, z^n a x^1, \ldots, x^n con

$$x^1 = x^1(z^1, \dots, z^n)$$

 $x^n = x^n(z^1, \dots, z^n)$

avremo che

 $\xi_i = \frac{\partial z^j}{\partial x^i} \zeta_j$

quindi

$$\xi_i = \frac{\partial z^j}{\partial x^i} \frac{\partial x^k}{\partial z^j} \xi_k = \delta_i^k \xi_k$$

Da questo consegue che

$$\frac{\partial z^j}{\partial x^i} \frac{\partial x^k}{\partial z^j} = \delta_i^k \Longrightarrow \frac{\partial z^j}{\partial x^i} = \left(\frac{\partial x^i}{\partial z^j}\right)^{-1} \tag{10}$$

3 Metrica

Prendiamo due curve rappresentate dalle funzione parametriche $f_1(t), f_2(t)$ espresse nel sistema x^1, \ldots, x^n .

Consideriamo gli elementi infinitesimali lineari sulle curve considerate nello stesso punto $t=t_0$ (distanze infinitesimale tra due punti):

$$d\vec{x}_1 = dx_1^i \vec{e}_i = \left. \frac{df_1^i}{dt} dt \, \vec{e}_i \right|_{t=t_0}$$
$$d\vec{x}_2 = dx_2^i \vec{e}_i = \left. \frac{df_2^i}{dt} dt \, \vec{e}_i \right|_{t=t_0}$$

Supponiamo che il sistema x^1,\dots,x^n sia euclideo. Abbiamo che il prodotto scalare dei due vettori è

$$d\vec{x}_1 d\vec{x}_2 = dx_1^i dx_2^i = \delta_{ij} dx_1^i dx_2^j = \delta_{ij} \frac{df_1^i}{dt} \frac{df_2^j}{dt} dt^2$$
(11)

Siano $h_1(t), h_2(t)$ la relative funzioni espresse nel sistema z^1, \ldots, z^n . Consideriamo gli elementi infinitesimali lineari sulle curve considerate nello stesso punto $t = t_0$:

$$\vec{dz_1} = dz_1^i \vec{e_i'} = \frac{dh_1^i}{dt} dt \, \vec{e_i'} \bigg|_{t=t_0}$$

$$\vec{dz_2} = dz_2^i \vec{e_i'} = \frac{dh_2^i}{dt} dt \, \vec{e_i'} \bigg|_{t=t_0}$$

Applicando le trasformazioni abbiamo che

$$d\vec{x}_1 = \frac{\partial x^i}{\partial z^j} \frac{dh_1^j}{dt} dt \, \vec{e}_i = \frac{\partial x^i}{\partial z^j} dz_1^j dt \, \vec{e}_i$$
$$d\vec{x}_2 = \frac{\partial x^i}{\partial z^j} \frac{dh_2^j}{dt} dt \, \vec{e}_i = \frac{\partial x^i}{\partial z^j} dz_2^j dt \, \vec{e}_i$$

quindi il prodotto scalare può essere espresso con

$$\vec{ds_1} \vec{ds_2} = \delta_{ij} \frac{\partial x^i}{\partial z^k} dz_1^k \frac{\partial x^j}{\partial z^l} dz_2^l$$

ponendo

$$g_{ij} = \delta_{kl} \frac{\partial x^k}{\partial z_i} \frac{\partial x^l}{\partial z^j}$$

abbiamo

$$\vec{ds_1} \vec{ds_2} = g_{ij} dz_1^k dz_2^l$$

Il prodotto scalare è invariante rispetto al sistema di riferimento quindi

$$\vec{ds_1} \vec{ds_2} = \vec{ds_1'} \vec{ds_2'}$$

ma viene espresso da forme bilineari diverse nei vari sistemi di riferimento:

$$\vec{ds_1} \vec{ds_2} = \vec{ds_1} \vec{ds_2} = \delta_{ij} dx_1^i dx_2^j = g_{ij} dz_1^i dz_2^j$$

Le forme bilineare $\delta_{ij}dx_1^idx_2^j$ e $g_{ij}dz_1^idz_2^j$ si dicono metriche. Se g_{ij} è la metrica nel sistema x^1, \ldots, x^n e g'_{ij} è la metrica nel sistema z^1, \ldots, z^n , le matrice metriche si trasformano secondo le funzioni:

$$g'_{ij} = g_{kl} \frac{\partial x^k}{\partial z^i} \frac{\partial x^l}{\partial z^j} \tag{12}$$

Si può notare che le matrici metriche sono matrici simmetriche quindi

$$g_{ij} = g_{ji}$$

Esempio Nel sistema euclideo la metrica è

$$g_{ij} = \delta_{ij} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

Nel sistema cilindrico $z=(r,\psi,z)$ invece è:

$$g'_{ij} = \delta_{kl} \frac{\partial x^k}{\partial z^i} \frac{\partial x^l}{\partial z^j} = \frac{\partial x^k}{\partial z^i} \frac{\partial x^k}{\partial z^j}$$

cioè

$$g'_{ij} = \begin{vmatrix} \left(\frac{\partial x}{\partial r}\right)^2 + \left(\frac{\partial y}{\partial r}\right)^2 + \left(\frac{\partial z}{\partial r}\right)^2, & \frac{\partial x}{\partial r} \frac{\partial x}{\partial \psi} + \frac{\partial y}{\partial r} \frac{\partial y}{\partial \psi} + \frac{\partial z}{\partial r} \frac{\partial z}{\partial \psi}, & \frac{\partial x}{\partial r} \frac{\partial x}{\partial z} + \frac{\partial y}{\partial r} \frac{\partial y}{\partial z} + \frac{\partial z}{\partial r} \frac{\partial z}{\partial z} \\ \frac{\partial x}{\partial r} \frac{\partial x}{\partial \psi} + \frac{\partial y}{\partial r} \frac{\partial y}{\partial \psi} + \frac{\partial z}{\partial r} \frac{\partial z}{\partial \psi}, & \left(\frac{\partial x}{\partial \psi}\right)^2 + \left(\frac{\partial y}{\partial \psi}\right)^2 + \left(\frac{\partial z}{\partial \psi}\right)^2, & \frac{\partial x}{\partial \psi} \frac{\partial x}{\partial z} + \frac{\partial y}{\partial \psi} \frac{\partial y}{\partial z} + \frac{\partial z}{\partial \psi} \frac{\partial z}{\partial z} \\ \frac{\partial x}{\partial r} \frac{\partial x}{\partial z} + \frac{\partial y}{\partial r} \frac{\partial y}{\partial z} + \frac{\partial z}{\partial r} \frac{\partial z}{\partial z}, & \frac{\partial x}{\partial \psi} \frac{\partial x}{\partial z} + \frac{\partial y}{\partial \psi} \frac{\partial y}{\partial z} + \frac{\partial z}{\partial \psi} \frac{\partial z}{\partial z}, & \left(\frac{\partial x}{\partial z}\right)^2 + \left(\frac{\partial y}{\partial z}\right)^2 + \left(\frac{\partial y}{\partial z}\right)^2 \end{vmatrix}$$

$$= \begin{vmatrix} \cos^2 \psi + \sin^2 \psi, & -r \sin \psi \cos \psi + r \sin \psi \cos \psi, & 0 \\ -r \sin \psi \cos \psi + r \sin \psi \cos \psi, & r^2 \sin^2 \psi + r^2 \cos^2 \psi, & 0 \\ 0, & 0, & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1, & 0, & 0 \\ 0, & r^2, & 0 \\ 0, & 0, & 1 \end{vmatrix}$$

Il quadrato della lunghezza dell'elemento infinitesimale lineare ds^2 di una curva f(t) nel sistema x,y,z è quindi dato da

$$ds^2 = dx^2 + dy^2 + dz^2$$

mentre nel sistema r, ψ, z

$$ds^2 = dr^2 + r^2 d\psi^2 + dz^2$$