MCS2 Linear Algebra (Assignment 2)

October 2021

Questions 1

- 1. Show that the transformation $T(x_1, x_2) = (4x_1 2x_2, 3|x_2|)$ is not linear.
- 2. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ projects each point (x_1, x_2, x_3) onto the x_1x_2 plane. Find the matrix representation of the linear transformation T
- 3. Find the kernel and range of the following linear transformations:
 - (i) Differential operator $D: P^3 \to P^2$ defined by $D(p(x)) = \frac{d}{dx}p(x)$, P^i is a polynomial of degree i.

 - (ii) $S: P^1 \to R, \ S(p(x)) = \int_0^1 p(x) dx$ (iii) $T: M_{22} \to M_{22}, \ T(A) = A^T, \ M_{22}$ is a $2 \otimes 2$ matrix and T is the transpose of the matrix.
- 4. Let $B = [v_1, v_2,v_n]$ be a basis of a vector space V and let $u_1, u_2....u_n$ be vectors in V. Then show that $[u_1, u_2, \dots, u_n]$ is linearly independent in V iff $[[u_1]_B, [u_2]_B....[u_n]_B]$ is linearly independent in \mathbb{R}^n .
- 5. Let B and C be bases for P_2 (set of all real polynomials upto degree 2) . If $B = [x, 1 + x, 1 - x + x^2]$ and the change of basis matrix from Bto C is

$$P_{C \leftarrow B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ -1 & 1 & 1 \end{pmatrix}$$
 Then find the basis C .

- 6. A linear transformation $T:V\to V$ is given. If possible find a basis C for
 - V such that the matrix $[T]_C$ of T with respect to C is diagonal.

 (a) $T: R^2 \to R^2$ defined by $T\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -4b \\ a+5b \end{bmatrix}$ (b) $T: P_2 \to P_2$ defined by T(p(x)) = p(3x+2).
- 7. Define V as the vector space of all polynomials in x of degree < 3 over R. Define a set $B = \{x^2, x, 1\}$. Define a transformation T as

$$T(x^2) = x + m$$

$$T(x) = (m-1)x$$

$$T(1) = x^2 + m$$

Answer the following:

- (a) Prove that B is a basis.
- (b) Show that T is a linear transformation.
- (c) Find the matrix representation of T relative to the given basis.
- (d) Find kernel(T) for all values of m.
- (e) Find the image of T for all values of m.
- 8. Find the coordinate vector of the matrix $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ with respect to the Basis $B = [E_{22}, E_{21}, E_{12}, E_{11}]$ of $M_{2\times 2}$ (set of all 2×2 matrices) (E_{ij} are the standard basis vectors).