Introduction

• What is artificial intelligence?

A brief history

The state of the art

What is AI?

Systems that think like humans	Systems that think rationally
Systems that act like humans	Systems that act rationally

Acting humanly: The Turing test

Turing (1950) "Computing machinery and intelligence":

- "Can machines think?" -→ "Can machines behave intelligently?"
- Operational test for intelligent behavior: the Imitation Game

- Predicted that by 2000, a machine might have a 30% chance of fooling a lay person for 5 minutes
- Anticipated all major arguments against AI in following 50 years
- Suggested major components of AI: knowledge, reasoning, language understanding, learning

Problem: Turing test is not reproducible, constructive, or amenable to mathematical analysis

Thinking humanly: Cognitive Science

- 1960s "cognitive revolution": information-processing psychology replaced prevailing orthodoxy of behaviorism
- Requires scientific theories of internal activities of the brain
 - What level of abstraction? "Knowledge" or "circuits"?
 - How to validate? Requires
 - Predicting and testing behavior of human subjects (top-down) or
 - Direct identification from neurological data (bottom-up)
- Both approaches (roughly, Cognitive Science and Cognitive Neuroscience) are now distinct from AI
- Both share with AI the following characteristic:

the available theories do not explain (or engender) anything resembling human-level general intelligence

Thinking rationally: Laws of Thought

- Normative (or prescriptive) rather than descriptive
- Aristotle: what are correct arguments/thought processes?
- Several Greek schools developed various forms of logic: notation and rules of derivation for thoughts; may or may not have proceeded to the idea of mechanization
- Direct line through mathematics and philosophy to modern AI
- Problems:
 - Not all intelligent behavior is mediated by logical deliberation
 - What is the purpose of thinking? What thoughts should I have out of all the thoughts (logical or otherwise) that I could have?

Acting rationally

- Rational behavior: doing the right thing
- The right thing: that which is expected to maximize goal achievement, given the available information
- Doesn't necessarily involve thinking e.g., blinking reflex—but thinking should be in the service of rational action
- Aristotle (Nicomachean Ethics):
 Every art and every inquiry, and similarly every action and pursuit, is thought to aim at some good

Rational agents

- An agent is an entity that perceives and acts
- This course is about designing rational agents
- Abstractly, an agent is a function from percept histories to actions:

$$f: P^* \rightarrow A$$

- For any given class of environments and tasks, we seek the agent (or class of agents) with the best performance
- Caveat: computational limitations make perfect rationality unachievable
- → design best program for given machine resources

AI prehistory

Philosophy logic, methods of reasoning

mind as physical system

foundations of learning, language, rationality

Mathematics formal representation and proof

algorithms, computation, (un)decidability, (in)tractability

probability

Psychology adaptation

phenomena of perception and motor control

experimental techniques (psychophysics, etc.)

Economics formal theory of rational decisions

Linguistics knowledge representation

grammar

Neuroscience plastic physical substrate for mental activity

Control theory homeostatic systems, stability

simple optimal agent designs

Potted history of AI

1943	McCulloch & Pitts: Boolean circuit model of brain
1950	Turing's "Computing Machinery and Intelligence"
1952–69	Look, Ma, no hands!
1950s	Early AI programs, including Samuel's checkers program,
	Newell & Simon's Logic Theorist, Gelernter's Geometry Engine
1956	Dartmouth meeting: "Artificial Intelligence" adopted
1965	Robinson's complete algorithm for logical reasoning
1966–74	AI discovers computational complexity
	Neural network research almost disappears
1969–79	Early development of knowledge-based systems
1980–88	Expert systems industry booms
1988–93	Expert systems industry busts: "AI Winter"
1985–95	Neural networks return to popularity
1988-	Resurgence of probability; general increase in technical depth
	"Nouvelle AI": ALife, GAs, soft computing
1995-	Agents, agents, everywhere
2003-	Human-level AI back on the agenda

State of the art

Which of the following can be done at present?

- Play a decent game of table tennis
- Drive safely along a curving mountain road
- Drive safely along the Boston Post road
- Buy a week's worth of groceries on the web
- Play a decent game of Jeopardy
- Discover and prove a new mathematical theorem
- Design and execute a research program in molecular biology
- Write an intentionally funny story
- Give competent legal advice in a specialized area of law
- Translate spoken English into spoken Swedish in real time
- Converse successfully with another person for an hour
- Perform a complex surgical operation
- Unload any dishwasher and put everything away

Risks and Benefits of AI

"First solve AI, then use AI to solve everything else." Demis Hassabis, CEO of Google DeepMind

Benefits:

- Decrease repetitive work
- Increase production of goods and services
- Accelerate scientific research (disease cures, climate change and resource shortages solutions)

Risks:

- Lethal autonomous weapons
- Surveillance and persuasion
- Biased decision making
- Impact on employment
- Safety-critical applications
- Cybersecurity threats

Risks and Benefits of AI

Development of an artificial superintelligence that surpasses human intelligence may pose a significant risk

- Analogous to the "Gorilla problem"
 - Humans and gorillas evolved from the same species, but humans have more control than other primates.
- Thus, we should design AI systems in such a way that they do not end up taking control in the way that Turing suggests they might.