

National University of Computer and Emerging Sciences

CS4075-Cloud Computing

Three-tier architecture- Manual

Submitted By:

Shaheer Sarfraz

Question:

Deploy an application on a three tier architecture.

Problem Understanding:

The three-tier architecture is the most popular implementation of a multi-tier architecture and consists of a single presentation tier, logic tier, and data tier. This architecture is used in a client-server application such as a web application that has the frontend, the backend and the database.

What we are solving?

Modularity:

The essence of having a three-tier architecture is to modularize our application so that each part can be managed independently.

Scalability:

Each tier of the architecture can scale horizontally to support the traffic and request demand coming to it.

High Availability:

we can design our infrastructure to be highly available by hosting our application in different locations known as the availability zones.

Fault Tolerance

We want our infrastructure to comfortably adapt to any unexpected change both to traffic and fault.

Security:

We want to design an infrastructure that is highly secured and protected from the prying eyes of hackers.

AWS Services:

- Elastic Compute Cloud (EC2)
- Auto Scaling Group
- Virtual Private Cloud (VPC)
- Elastic Load Balancer (ELB)
- Security Groups
- Internet Gateway.

Architecture Deployment:

Step 1: VPC

Create Virtual Private Cloud

Fig:1.1

Fig:1.1 shows assigning IPv4 CIDR and Name tag for our VPC.

Fig:1.2

Step 2: Subnets

VPC			
VPC ID Create subnets in this VPC	vpc-000850ad2509		
vpc-000850ad2509	33e31 (assignment-vpc)	▼.	
Associated VPC CID	Rs Details into		
IPv4 CIDRs			
172.20.0.0/20			

Fig:2.1

For creating subnets we need to assign our VPC which is shown in fig:2.1.

Fig:2.2

Now creating subnet for web tier, setting availability zone and IPv4 which would be different for web subnet 1 and subnet 2.

Now Creating Subnets for private app tier which is shown in fig:2.3.

Fig:2.3

Now Creating Subnets for private DB tier which is shown in fig:2.4.

Fig:2.4

Now we will create Route tables to which we can attach our subnets.

Fig:3.1

Fig:3.2

Attaching public-web-subnets to our public-web-route-table shown in fig:3.2.

Fig:3.3

Fig:3.4

Attaching private-app-subnets to our private-app-route-table shown in fig:3.4.

Fig:3.5

Fig:3.6

Attaching private-db-subnets to our private-db-route-table shown in fig:3.6.

Step 4: Internet Gateway

Creating Internet gateway which would be attached to our VPC.

Fig:4.1

Fig:4.2

Creating NAT gateway for our private subnets.

Name - optional Create a tag with a key of 'Name' and a value that you specify.		
nat-gateway-1		
The name can be up to 256 characters long.		
Subnet		
Select a subnet in which to create the NAT gateway.		
subnet-09560e7d0c1a56c67 (public-web-subnet-1)	•	
Connectivity type		
Select a connectivity type for the NAT gateway.		
Public		
O Private		
Elastic IP allocation ID Info		
Assign an Elastic IP address to the NAT gateway.		
Select an Elastic IP	▼	Allocate Elastic IP

Fig:5.1

Step 6:Setting Routes

Now we will set routes for public and private tiers.

Fig:6.1

Setting NAT for App tier shown in fig:6.1.

Fig:6.2

Setting NAT for DB tier shown in fig:6.2.

Fig:6.3

Setting Internet Gateway for Web layer shown in fig:6.3.

Step:7 Launch Instances

Setting jump server instance for our architecture

Fig:7.1

Now selecting our VPC, subnet and security group

Fig:7.2

Now creating php server instance

Fig:7.3

Now selecting our VPC, subnet and security group.

Fig:7.4

For the inbound rule we will set custom and choose our jump server.

Fig:7.5

Create instance for php subnet 2

Fig:7.6

We will choose the app subnet 2 and choose our existing security group which we made for php-server-

Fig:7.7

Step:8 Connection with local machine

Now we will connect jump-server to our local machine and php-servers to jump-server

Connecting jump-server to php-app-server.