# Transfer Functions

# **Transfer Functions**

The preparatory reading for this section is Chapter 4.4 (Karris, 2012) which discusses transfer function models of electrical circuits.

An annotatable copy of the notes for this presentation will be distributed before the second class meeting as **Worksheet 7** in the **Week 3: Classroom Activities** section of the Canvas site. I will also distribute a copy to your personal **Worksheets** section of the **OneNote Class Notebook** so that you can add your own notes using OneNote.

You can also view the notes for this presentation as a webpage (HTML) and as a downloadable PDF file.

After class, the lecture recording and the annotated version of the worksheets will be made available through Canvas.

# **Agenda**

ans =

- Transfer Functions
- A Couple of Examples
- Circuit Analysis Using MATLAB LTI Transfer Function Block
- Circuit Simulation Using Simulink Transfer Function Block

```
% Matlab setup
cd ../matlab
pwd
clear all
format compact
```

'/Users/eechris/dev/eg-247-textbook/content/laplace\_transform/matlab'

about:srcdoc Page 1 of 12

### **Transfer Functions for Circuits**

When doing circuit analysis with components defined in the complex frequency domain, the ratio of the output voltage  $V_{\rm out}(s)V_{\rm out}(s)$  to the input voltage  $V_{\rm in}(s)V_{\rm in}(s)$  under zero initial conditions is of great interest.

This ratio is known as the *voltage transfer function* denoted  $G_v(s)G_v(s)$ :

$$G_v(s) = \frac{V_{\text{out}}(s)}{V_{\text{in}}(s)}$$

Similarly, the ratio of the output current  $I_{\text{out}}(s)I_{\text{out}}(s)$  to the input current  $I_{\text{in}}(s)I_{\text{in}}(s)$  under zero initial conditions, is called the *current transfer function* denoted  $G_i(s)G_i(s)$ :

$$G_i(s) = \frac{I_{\text{out}}(s)}{I_{\text{in}}(s)}$$

In practice, the current transfer function is rarely used, so we will use the voltage transfer function denoted:

$$G(s) = \frac{V_{\text{out}}(s)}{V_{\text{in}}(s)}$$

# **Examples**

See worksheet7 for the worked solutions to the examples. We will work through these in class. Here' I'll demonstrate the MATLAB solutions.

#### Example 6

Derive an expression for the transfer function G(s)G(s) for the circuit below. In this circuit  $R_g$   $R_g$  represents the internal resistance of the applied (voltage) source  $v_sv_s$ , and  $R_LR_L$  represents the resistance of the load that consists of  $R_LR_L$ , LL and CC.

about:srcdoc Page 2 of 12



### **Sketch of Solution**

- Replace  $v_s(t)v_s(t)$ ,  $R_g R_g$ ,  $R_L R_L$ , LL and CC by their transformed (complex frequency) equivalents:  $V_s(s)V_s(s)$ ,  $R_g R_g$ ,  $R_L R_L$ , sLsL and 1/(sC)1/(sC)
- Use the *Voltage Divider Rule* to determine  $V_{\mathrm{out}}(s)V_{\mathrm{out}}(s)$  as a function of  $V_{s}(s)V_{s}(s)$
- Form G(s)G(s) by writing down the ratio  $V_{\rm out}(s)/V_s(s)V_{\rm out}(s)/V_s(s)$

### Worked solution.

Pencast: ex6.pdf - open in Adobe Acrobat Reader.

#### **Answer**

$$G(s) = \frac{V_{\text{out}}(s)}{V_s(s)} = \frac{R_L + sL + 1/sC}{R_g + R_L + sL + 1/sC}.$$

### **Example 7**

Compute the transfer function for the op-amp circuit shown below in terms of the circuit constants  $R_1$   $R_1$ ,  $R_2$   $R_2$ ,  $R_3$   $R_3$ ,  $C_1$   $C_1$  and  $C_2$   $C_2$ .

about:srcdoc Page 3 of 12





Then replace the complex variable ss with  $j\omega j\omega$ , and the circuit constants with their numerical values and plot the magnitude

$$|G(j\omega)| = \frac{|V_{\text{out}}(j\omega)|}{|V_{\text{in}}(j\omega)|}$$

versus radian frequency  $\omega \omega$  rad/s.

#### **Sketch of Solution**

- Replace the components and voltages in the circuit diagram with their complex frequency equivalents
- Use nodal analysis to determine the voltages at the nodes either side of the 50K resistor  $R_3 R_3$
- Note that the voltage at the input to the op-amp is a virtual ground
- Solve for  $V_{\mathrm{out}}(s)V_{\mathrm{out}}(s)$  as a function of  $V_{\mathrm{in}}(s)V_{\mathrm{in}}(s)$
- Form the reciprocal  $G(s) = V_{\text{out}}(s)/V_{\text{in}}(s)G(s) = V_{\text{out}}(s)/V_{\text{in}}(s)$
- Use MATLAB to calculate the component values, then replace ss by  $j\omega j\omega$ .
- Plot

 $|G(j\omega)|$ 

on log-linear "paper".

#### Worked solution.

Pencast: ex7.pdf - open in Adobe Acrobat Reader.

#### **Answer**

$$G(s) = \frac{V_{\text{out}}(s)}{V_{\text{in}}(s)} = \frac{-1}{R_1 \left( (1/R_1 + 1/R_2 + 1/R_3 + sC_1) \left( sC_2R_3 \right) + 1/R_2 \right)}.$$

#### The Matlab Bit

See attached script: solution7.m.

#### Week 3: Solution 7

```
syms s;

R1 = 200*10^3;
R2 = 40*10^3;
R3 = 50*10^3;
C1 = 25*10^(-9);
C2 = 10*10^(-9);

den = R1*((1/R1+ 1/R2 + 1/R3 + s*C1)*(s*R3*C2) + 1/R2);
simplify(den)

ans =
100*s*((7555786372591433*s)/302231454903657293676544 + 1/20000) + 5
```

Simplify coefficients of s in denominator

about:srcdoc Page 6 of 12

```
numG = -1;
```

Plot

For convenience, define coefficients aa and bb:

```
a = denG(1);
b = denG(2);
```

$$G(j\omega) = \frac{-1}{a\omega^2 - jb\omega + 5}$$

```
W = 1:10:10000;

Gs = -1./(a*w.^2 - j.*b.*w + denG(3));
```

Plot

```
semilogx(w, abs(Gs))
xlabel('Radian frequency w (rad/s')
ylabel('IVout/VinI')
title('Magnitude Vout/Vin vs. Radian Frequency')
grid
```

about:srcdoc Page 7 of 12



# **Using Transfer Functions in MATLAB for System Analysis**

Please use the file tf\_matlab.m to explore the Transfer Function features provide by MATLAB. Open the file as a Live Script to see a nicely formatted document.

# **Using Transfer Functions in Simulink for System Simulation**



The Simulink transfer function (**Transfer Fcn**) block implements a transfer function

The transfer function block represents a general input output function

$$G(s) = \frac{N(s)}{D(s)}$$

and is not specific nor restricted to circuit analysis.

about:srcdoc Page 8 of 12

It can, however be used in modelling and simulation studies.

### **Example**

Recast Example 7 as a MATLAB problem using the LTI Transfer Function block.

For simplicity use parameters  $R_1=R_2=R_3=1$   $\Omega R_1=R_2=R_3=1$   $\Omega$  , and  $C_1=C_2=1$   $C_1=C_2=1$  F.

Calculate the step response using the LTI functions.

Verify the result with Simulink.

The Matlab solution: example8.m

#### **MATLAB Solution**

From a previous analysis the transfer function is:

$$G(s) = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{-1}{R_1 \left[ (1/R_1 + 1/R_2 + 1/R_3 + sC_1)(sR_3C_2) + 1/R_2 \right]}$$

so substituting the component values we get:

$$G(s) = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{-1}{s^2 + 3s + 1}$$

We can find the step response by letting  $v_{\rm in}(t)=u_0(t)v_{\rm in}(t)=u_0(t)$  so that  $V_{\rm in}(s)=1/s$   $V_{\rm in}(s)=1/s$  then

$$V_{\text{out}}(s) = \frac{-1}{s^2 + 3s + 1} \cdot \frac{1}{s}$$

We can solve this by partial fraction expansion and inverse Laplace transform as is done in the text book with the help of MATLAB's residue function.

Here, however we'll use the LTI block.

about:srcdoc Page 9 of 12

### Define the circuit as a transfer function



# step response is then:





# Simples!

#### Simulink model

See example\_8.slx

about:srcdoc Page 10 of 12





### Result



Let's go a bit further by finding the frequency response:



about:srcdoc Page 11 of 12



# Reference

 Karris, S. T. (2012). Signals and systems with MATLAB computing and Simulink modeling. Fremont, CA.: Orchard Publishing. Retrieved from https://ebookcentral.proquest.com/lib/swansea-ebooks/reader.action?docID=3384197

about:srcdoc Page 12 of 12