# **Transformations of Input or Output**

Johanni Brea

Introduction à l'apprentissage automatique

**GYMINF 2021** 

#### **Table of Contents**

1. Transformations of the Input

2. Transformations of the Output



### Transformations of the Input: Feature Representations

With input X, Polynomial Regression could also be written as

$$\hat{Y} = \theta_{\text{O}} + \theta_{1}H_{1} + \theta_{2}H_{2} + \dots + \theta_{p}H_{p}$$
 where  $H_{i} = X^{i}$ 

We call  $H_1, \ldots, H_p$  the feature representation of X.

In the following we will see some other feature representations.

# Categorical Predictors: Dummy Variables/One-Hot-Coding

Example: Chicken weight as a function of time and diet.

Should we encode diet as  $X_1 \in \{1, 2, 3, 4\}$ ? No.

Instead:  $H_i = 1$  if diet  $X_1 = i$ , otherwise  $H_i = 0$ .

For example, if  $x_{11} = 2$ 

$$(h_{11}, h_{12}, h_{13}, h_{14}) = (0, 1, 0, 0)$$

|   | Time | Diet1 | Diet2 | Diet3 | Diet4 | Weight |
|---|------|-------|-------|-------|-------|--------|
| 1 | 0    | 1     | 0     | 0     | 0     | 134    |
| 2 | 2    | 1     | Ο     | Ο     | Ο     | 145    |
| 3 | 4    | 1     | Ο     | Ο     | Ο     | 160    |
| 4 | 0    | 0     | 1     | Ο     | Ο     | 124    |
| 5 | 2    | 0     | 1     | 0     | 0     | 139    |



#### **Vector-Features**



Logistic Regression fails:
There is no linear decision boundary.



#### **Vector-Features**

Project data to a higher dimensional space by computing the scalar products between feature vectors  $w_1, \ldots, w_q$  and input vectors  $x_i$  and thresholding.



For example  $h_{21} = \max(0, w_1^T x_2)$ .

Logistic Regression on the features works.

## **Splines**



A **degree-**d **spline** is a piecewise degree-d polynomial, with continuity in derivatives up to degree d-1.

$$H_1 = X, H_2 = X^2, \dots, H_d = X^d$$
  
 $H_{1+d} = h(X, c_1), \dots, H_{K+d} = h(X, c_K)$ 

with knots  $c_1, \ldots, c_K$  and truncated power basis function:

$$h(x,c) = \begin{cases} (x-c)^d & x > c \\ 0 & \text{otherwise} \end{cases}$$

There are also other possibilities for the basis of a degree-d spline. E.g. the B-spline basis (not discussed here) has better numerical properties.

# **Generalized Additive Model (GAM)**



$$\hat{Y} = s_1(X_1) + s_2(X_2) + \ldots + s_p(X_p)$$
  
with splines  $s_i(X_i) = \sum_j \beta_{ij} H_{ij}$ .



#### Pros and Cons of GAMs

- ▲ GAMs allow to fit non-linear  $s_i$  to each  $s_i$ .
- ▲ The non-linear fit can potentially make more accurate predictions.
- ▲ GAMs are useful for inference: because of additivity one can still examine each effect, holding all the other variables fixed.
- ▲ The smoothness of each function s<sub>j</sub> can be summarized via degrees of freedom.
- ▼ Important interactions can be missed. It is possible to add interactions of the form  $s_{ij}(X_i, X_j)$  but this becomes costly very soon.

### **Table of Contents**

1. Transformations of the Input

2. Transformations of the Output



### Transformations of the Output: Changing the Noise Model

Applying linear regression to log-transformed outputs is equivalent to assuming a log-normal distribution for the conditional data generator Y|X.

Instead of thinking about suitable transformations of the output, it is preferable to think about which distribution is most reasonable for the conditional data generator Y|X.

