Lab 5: Localization

April 8, 2019

Kevin Carlson, Susan Ni, Talia Pelts, Jonathan Samayoa, Vlad Seremet

Localization Goals: Determine the robot's orientation and position in a known environment

Motion Model

The motion model updates particle positions using odometry data that is rotated into the particle's coordinate frame

Sensor Model

4 cases for our lidar model

 Probability of detecting a known obstacle in the map

$$p_{hit}(z_t|x_t, m) = \begin{cases} \eta \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(z_t - z_t^*)^2}{2\sigma^2}\right) & \text{if } 0 \le z_t \le z_{max} \\ 0 & \text{otherwise} \end{cases}$$

2. Probability of a short measurement

$$p_{short}(z_t|x_t, m) = \frac{2}{z_t^*} \begin{cases} 1 - \frac{z_t}{z_t^*} & \text{if } 0 \le z_t \le z_t^* \\ 0 & \text{otherwise} \end{cases}$$

*combined via a weighted average

3. Probability of a very large measurement

$$p_{max}(z_t|x_t, m) = \begin{cases} 1 & \text{if } z_t = z_{max} \\ 0 & \text{otherwise} \end{cases}$$

4. Probability of a random measurement

$$p_{rand}(z_t|x_t, m) = \begin{cases} \frac{1}{z_{max}} & \text{if } 0 \le z_t \le z_{max} \\ 0 & \text{otherwise} \end{cases}$$

Probability distribution over measured distance and ground truth

Particle Filter

The particle filter updates particles positions with the motion model and resamples particles with the sensor model

MCL in rviz, including particles, inferred pose, and laser scan visualization

Particle Filter Convergence Times in Simulator

Simulation 1: 2.7 s

Simulation 2: 4.5 s

Particle Filter Convergence Times in Simulator

23 Trials

- Average Convergence
 Time of 1.99 s
- Average Convergence Rate of 3.11 m/s

MCL on real robot with rviz and laser scan visualization

Future Steps

Refine & Improve

dgf

Implement for Path Planning

Lorem ipsum dolor sit amet, consectetur adipiscing. Donec risus dolor, porta venenatis neque sit amet, pharetra luctus felis.

Apply Systematic Testing

Lorem ipsum dolor sit amet, consectetur adipiscing. Donec risus dolor, porta venenatis neque sit amet, pharetra luctus felis.

□ Something

20XX

Questions?