

SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

PROGRAMA SINTÉTICO

UNIDAD ACADÉMICA: ESCUELA SUPERIOR DE CÓMPUTO (ESCOM), UNIDAD PROFESIONAL INTERDISCIPLINARIA DE INGENIERÍA, CAMPUS ZACATECAS (UPIIZ)

PROGRAMA ACADÉMICO: Ingeniería en Sistemas Computacionales

UNIDAD DE APRENDIZAJE: Machine learning

SEMESTRE: VI
PLAN DE ESTUDIOS: 2020

Desarrolla aplicaciones			_		E APRENDIZAJE los clasificadores lineal	es, no lineales y clust	ering.	
CONTENIDOS:		icación b icadores icadores	asada en lineales no lineale	las té	automático cnicas de las redes Bay g)	resianas		
	Métodos de e	nseñan	za		Estrategias de aprer	ndizaje		
,	a) Inductivo			Х	a) Estudio de Casos			
ORIENTACIÓN DIDÁCTICA:	b) Deductivo			Х	b) Aprendizaje Basa	do en Problemas	Х	
DIDACTICA.	c) Analógico				c) Aprendizaje Orien	tado a Proyectos		
	d) Heurístico			Х	d)			
	Diagnóstica			Х	Saberes Previament	e Adquiridos	Х	
	Solución de o	casos			Organizadores gráficos			
_	Problemas re			Problemarios		Х		
EVALUACIÓN Y ACREDITACIÓN:	Reporte de p	royectos	S		Exposiciones		Х	
ACKEDITACION.	Reportes de indagación			Х				
	Reportes de	Reportes de prácticas			Otras evidencias a evaluar:			
	Evaluación e	scrita						
	Autor(es)	Año	1	Γítulo	del documento	Editorial / ISB	N	
	Deisenroth, M.	2020	Mathem	atics f	or Machine Learning	Cambridge Univers Press/ 978-110845	•	
BIBLIOGRAFÍA	Hard, M. & Recht, B.	2022			ictions, and Actions: f Machine Learning	Princeton University Press/ 978-0691233734		
BÁSICA:	Hui, J.	2022	Machine	Learr	Cambridge Univer Press/ 978-110883			
	Huyen, C.	2022	Systems	s: An It	chine Learning terative Process for ady Applications O'Reilly Media/ 978-1098107963			
	Kubat, M.	2021	An Introduction to Machine Learning Springer/ 978-3030819347					

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

PROGRAMA DE ESTUDIOS

UNIDAD DE APRENDIZAJE: Machine learning HOJA 2 DE 8

UNIDAD ACADÉMICA: ESCUELA SUPERIOR DE CÓMPUTO (ESCOM), UNIDAD PROFESIONAL INTERDISCIPLINARIA DE INGENIERÍA, CAMPUS ZACATECAS (UPIIZ)

PROGRAMA ACADÉMICO: Ingeniería en Sistemas Computacionales

SEMESTRE: VI ÁREA DE FORMACIÓN: MODALIDAD: PLAN DE ESTUDIOS: 2020 Profesional Escolarizada

TIPO DE UNIDAD DE APRENDIZAJE:

Teórica- práctica/ Optativa

VIGENTE A PARTIR DE: CRÉDITOS:

Agosto 2022 **TEPIC:** 7.5 **SATCA:** 6.3

INTENCIÓN EDUCATIVA

La unidad de aprendizaje contribuye al perfil de egreso de la Ingeniería en Sistemas Computacionales desarrollando habilidades que le permitan analizar problemas, estructurar sistemas que resuelvan problemas aplicados a las técnicas del Machine learning, y Deep learning, así como su evaluación y principales requerimientos de un problema planteado. Asimismo, desarrolla habilidades transversales como el pensamiento estratégico, creativo, participativo y colaborativo.

Esta unidad de aprendizaje se relaciona de manera antecedente con Análisis y diseño de algoritmos, Fundamentos de programación, Matemáticas discretas y Teoría de la computación; lateralmente con Inteligencia artificial; y de manera consecuente con Image analysis y Natural languaje processing.

PROPÓSITO DE LA UNIDAD DE APRENDIZAJE

Desarrolla aplicaciones de aprendizaje automático con base en los clasificadores lineales, no lineales y clustering.

TIEMPOS ASIGNADOS

HORAS TEORÍA/SEMANA: 3.0

HORAS PRÁCTICA/SEMANA: 1.5

HORAS TEORÍA/SEMESTRE: 54.0

HORAS PRÁCTICA/SEMESTRE:

27.0

HORAS APRENDIZAJE AUTÓNOMO: 24.0

HORAS TOTALES/SEMESTRE: 81.0

UNIDAD DE APRENDIZAJE

REDISEÑADA POR: Academia de Ciencias de la Computación

REVISADA POR:

M. en C. Iván Giovanny Mosso García Subdirector Académico ESCOM

APROBADA POR:

Consejo Técnico Consultivo Escolar

M. en C. Andrés Ortigoza Campos Presidente ESCOM 06/07/2022

> Dr. Fernando Flores Mejía Presidente UPIIZ 27/06/2022

APROBADO POR: Comisión de Programas Académicos del Consejo General Consultivo del IPN.

11/06/2022

AUTORIZADO Y VALIDADO POR:

Mtro. Mauricio Igor Jasso Zaranda Director de Educación Superior

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Machine learning HOJA 3 DE 8

UNIDAD TEMÁTICA I Fundamentos del	CONTENIDO	HORA: DOCI	HRS AA	
aprendizaje automático		T	Р	
UNIDAD DE COMPETENCIA Analiza los fundamentos del aprendizaje automático con	1.1 Conceptualización del machine learning 1.1.1 Paradigma del aprendizaje automático 1.1.2 Forma generalizada de una base de datos 1.1.3 Datos 1.1.4 Imágenes 1.1.5 Atributos	1.5		
base en la eficiencia de las técnicas de clasificación.	1.2 Tipos de modelización aplicados al machine learning 1.3 Tasa de error, rapidez, e interpretabilidad del modelo	1.5 1.5		1.5
	1.4 Técnicas de clasificación 1.4.1 Supervisadas 1.4.2 No supervisadas	3.0	1.5	
	1.5 Técnicas para medir la eficiencia de los clasificadores en general 1.5.1 Resustitución 1.5.2 Validación cruzada 1.5.3 Deja uno fuera	3.0	1.5	1.5
	Subtotal	10.5	3.0	3.0

UNIDAD TEMÁTICA II Clasificación basada en las	CONTENIDO		HORAS CON DOCENTE		
técnicas de las redes Bayesianas		Т	Р		
UNIDAD DE COMPETENCIA Diseña clasificadores de elementos representativos	2.1 Teoría y fundamentos de la decisión Bayesiana 2.1.1 Fundamentos 2.1.2 Teorema de Bayes 2.1.3 Distribución a priori y a posteriori 2.1.4 Distribución predictiva	4.5	3.0	1.5	
con base en la teoría de la decisión bayesiana y del criterio del vecino más cercano.	2.2 Redes Bayesianas 2.2.1 Inferencia 2.2.2 Aprendizaje de los clasificadores Bayesianos 2.2.3 Clasificador Bayesiano simple con distribución normal 2.2.4 Aprendizaje de redes Bayesianas 2.2.5 Aprendizaje de redes Bayesianas dinámicas	3.0	3.0	3.0	
	2.3 Clasificador del vecino más cercano K-NN 2.3.1 Funcionamiento del K-NN 2.3.2 K-NN rápidos 2.3.3 Aplicables en espacios métricos 2.3.4 Aplicables en espacios no métricos 2.3.4 Aplicaciones	3.0	3.0	1.5	
	Subtotal	10.5	9.0	6.0	

SECRETARÍA ACADÉMICA

UNIDAD DE APRENDIZAJE:

Machine learning

HOJA

DE 8

UNIDAD TEMÁTICA III Clasificadores lineales	CONTENIDO			S CON ENTE	HRS AA
			Т	Р	
UNIDAD DE COMPETENCIA	3.1 Funciones discriminantes 3.1.1 Lineales 3.1.2 Cuadráticas 3.1.3 Polinomiales		3.0	3.0	1.5
Diseña clasificadores de elementos representativos con base en funciones	3.2 Modelos generativos y discriminativos		3.0		1.5
discriminantes.	3.3 Kernels 3.3.1 La kernelización de los algoritmos 3.3.2 Perceptrón: versión con kernels		1.5	1.5	1.5
	3.4 Máquinas de soporte vectorial 3.4.1 Fundamentos 3.4.2 Hiperplano de margen máximo 3.4.3 Optimización de funciones 3.4.4 Propiedades de solución		4.5	3.0	1.5
		Subtotal	12.0	7.5	6.0

UNIDAD TEMÁTICA IV Clasificadores no lineales	CONTENIDO		S CON ENTE	HRS AA
		T	Р	
UNIDAD DE COMPETENCIA Diseña clasificadores de elementos representativos con base en redes neuronales.	 4.1 Redes neuronales 4.1.1 Fundamentos 4.1.2 El perceptrón simple 4.1.3 Reglas de adaptación del perceptrón 4.2 Entrenamiento de las redes y método de la retro propagación 4.2.1 Funciones de activación no lineales 4.2.2 Perceptrón multicapa 4.2.3 Algoritmo de la retro propagación 	3.0 4.5	1.5	1.5
	4.3 Redes convolucionales 4.4 Redes neuronales Bayesianas 4.4.1 Aprendizaje paramétrico 4.4.2 Aprendizaje estructural 4.4.3 Aprendizaje de árboles 4.4.4 Aprendizaje de redes dinámicas	1.5 3.0	1.5	1.5 1.5
	Subtotal	12.0	4.5	6.0

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Machine learning HOJA 5 DE 8

UNIDAD TEMÁTICA V Análisis de clústers	CONTENIDO		S CON ENTE	HRS AA
(Clustering)		Т	Р	
UNIDAD DE COMPETENCIA	5.1 Fundamentos y aplicaciones de los clústers 5.1.1 Distancias y similitudes	3.0	1.5	1.5
Diseña clasificadores no supervisados de elementos representativos con base	5.2 Algoritmo de los k-centros 5.2.1 Segmentación de imágenes	3.0		
en los tipos de clústers.	5.3. Mezclas de Gaussianas	1.5		
	5.4. Algoritmo de la esperanza y maximización	1.5	1.5	1.5
	Subtotal	9.0	3.0	3.0

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

6

HOJA:

DE 8

UNIDAD DE APRENDIZAJE:

Machine learning

EVALUACIÓN DE LOS APRENDIZAJES

Evaluación diagnóstica

Portafolio de evidencias:

- 1. Presentación digital
- 2. Problemario resuelto
- 3. Reporte de indagación bibliográfica que incluya el uso de tablas comparativas.
- 4. Reporte de prácticas

ESTRATEGIAS DE APRENDIZAJE

Estrategia de aprendizaje basado en problemas

El alumno desarrollará las siguientes actividades:

- 1. Exposiciones en equipo
- 2. Resolución de problemario
- 3. Búsquedas bibliográfica e implementaciones del estado del arte acerca de sus propias investigaciones
- 4. Realización de prácticas

RELACIÓN DE PRÁCTICAS									
PRÁCTICA No.	NOMBRE DE LA PRÁCTICA	UNIDADES TEMÁTICAS	LUGAR DE REALIZACIÓN						
1	Clasificador por el método de la Distancia Euclidiana	I							
2	Clasificador por el Método de Bayes	II							
3	Clasificador por el Método del vecino más cercano (K-nn)	II							
4	Clasificador por el Método de la Máquina de Soporte Vectorial (SVM)	III							
5	Clasificador por el Método del Perceptrón	IV	Laboratorio						
6	Clasificador con redes Neuronales por el Método de la propagación hacia atrás (retropropagación)	IV							
7	Evaluador general de cualquier clasificador	V							
8	Clasificador por el método de aprendizaje de k-means	V							
9	Clasificador de imagen, mediante la agrupación de pixeles	V							
		TOTAL DE HORAS	27.0						

Tipo

С

В

С

В

В

В

В

С

С

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE:

Autor(es)

Bishop, C.

Deisenroth,

Fukunaga, K.

Hard, M. &

Recht, B.

Huyen, C.

Kubat, M

Mitchel, T.

Sierra, B

Hui, J.

Año

1996

2020

1990

2022

2022

2022

2021

1997

2006

Machine learning				Н	OJA:	: 7	0	E	8
Bibliografía									
							Do	cume	nto
Título del documento	Editorial/ ISBN				Libro	Antología	Otros		
Neural Networks for Pattern Recognition		ord L 0198			Pres	s/	Х		
Mathematics for Machine Learning		nbrid ss/ 9				5	Х		
Introduction to Statistical Patter Recognition	Academic Press/ 9780122698514						Х		
Patterns, Predictions, and Actions: Foundations of Machine Learning	Princeton University Press/ 978-0691233734				Х				
Machine Learning fundamentals	Cambridge University Press/ 978-1108837040					Х			
Designing Machine Learning Systems: An Iterative Process for Production- Ready Applications	O'Reilly Media/ 978-1098107963					Х			
An Introduction to Machine Learning		inger 0819		}-			Х		
Machine Learning Mc Graw Hill Science/ 9780070428072						Х			
Aprendizaje automático Pearson Prentice Hall/ 9788483223185						Х			
Recursos digitales									
tulo y Dirección Electrónica		Texto	Simulador	Imagen	Tutorial	Video	resentación	Diccionario	Otro

Autor, año, título y Dirección E ഗ 莅 Serrano, J., Avilés-Cruz, C., Villegas-Cortez, J. y Sossa-Azuela, J. (2013). Recuperación de imágenes de escenas naturales autoorganizadas. Χ Recuperado el 05 de abril de 2022. http://dx.doi.org/10.1016/j.eswa.2012.10.064 Mitchel, T. (1997). Machine Learning. McGraw Hill Science. Recuperado el 05 Χ abril de 2022, https://drive.google.com/file/d/1taKCS5ce39xCRvboH97v0AS4eyFlyko-/view Serrano, F., Avilés, C., Sossa, H., Villegas, J. y Olague, G. (2010). Unsupervised Image Retrieval with Similar Lighting Conditions. Recuperado Χ el 05 de abril de 2022, de: https://doi.org/10.1109/icpr.2010.1062

SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

8

UNIDAD DE APRENDIZAJE:

Machine learning

HOJA:

DE 8

PERFIL DOCENTE: Maestría en Sistemas Computacionales o afín (deseable), y/o Doctorado en Ciencias de la Computación o área afín (preferentemente)

EXPERIENCIA PROFESIONAL	CONOCIMIENTOS	HABILIDADES DIDÁCTICAS	ACTITUDES
Un año en docencia a nivel superior Un año en desarrollo de sistemas de Maching Learning Un año en aplicación de técnicas y métodos de programación en cualquier lenguaje Un año en participación de proyectos de investigación	De reconocimientos de patrones De análisis en la selección y extracción de características De técnicas de clasificación De lenguajes de programación Del Maching Learning Del Modelo Educativo Institucional (MEI)	Análisis y síntesis de problemas Evaluar documentos de investigación Toma de decisiones Manejo de conflictos Manejo de grupos	Compromiso con la enseñanza Congruencia Disponibilidad al cambio Generosidad Honestidad Respeto Responsabilidad Solidaridad Tolerancia Vocación de servicio
			Liderazgo

ELABORÓ REVISÓ AUTORIZÓ Dr. en C. José Félix Serrano Talamantes Coordinador M. en C. Andrés Ortigoza Campos Dr. en C. Tonatiuh Arturo Ramírez **Director ESCOM** Moreno **Participante** M. en C. Cristhian Alejandro Ávila Sánchez **Participante** M. en C Roberto Oswaldo Cruz Leija M. en C. Iván Giovanny Mosso Dr. Fernando Flores Mejía **Participante** García **Director UPIIZ**

Subdirector Académico ESCOM