TD 1: Calcul booléen

Exercice 1:

En utilisant les règles de calcul sur les algèbres de Boole, simplifiez les expressions suivantes (où x, y, z et t sont quatre éléments quelconques d'une algèbre de Boole):

1.
$$A = (x + y) \times (x + \overline{y});$$

 $A = x + y \overline{y} = x + 0 = x$

2.
$$B = xyz + x \overline{y}z$$
;
 $B = xz(y + \overline{y}) = xz \times 1 = xz$

3.
$$C = (x + y) \times \overline{\overline{x} \times y}$$
;
 $C = (x + y)(x + \overline{y}) = x$

4.
$$D = \overline{xy\overline{z} + \overline{x}y}$$
; $D = \overline{y(x\overline{z} + \overline{x})} = \overline{y(\overline{z} + \overline{x})} = \overline{y} + \overline{z} + \overline{x} = \overline{y} + xz$

5.
$$E = \overline{x(y+\overline{z}) + \overline{x}y};$$

 $E = \overline{xy + x\overline{z} + \overline{x}y} = \overline{y + x\overline{z}} = \overline{y} \times (\overline{x} + z) = \overline{x}\overline{y} + \overline{y}z$

6.
$$F = \overline{(x+y+z)(\overline{x}+\overline{y}+\overline{z})}$$
;
 $F = \overline{x} \overline{y} \overline{z} + xyz$

7.
$$G = xyzt + x\overline{t} + yz$$
. $G = yz + x\overline{t}$

8.
$$H = xz + \overline{(x+\overline{z})(z+t)} + yz\overline{t} + xyzt$$

$$\begin{split} H &= xz + \overline{x + \overline{z}} + \overline{z + t} + yz\overline{t} \\ &= xz + \overline{x}z + \overline{z}\,\overline{t} + yz\overline{t} \\ &= z + \overline{z}\,\overline{t} + yz\overline{t} \\ &= z + \overline{t} \end{split}$$

Exercice 2:

Déterminez les tables de vérité, les formes canoniques disjonctives des fonctions booléennes suivantes:

1. $f_1(a,b,c) = ab + \overline{a}c$.

0 1	J 1 (· · · · · · · · · · · · · · · · · ·							
a	b	c	a b	$\overline{a}c$	f_1			
0	0	0	0	0	0			
0	0	1	0	1	1			
0	1	0	0	0	0			
0	1	1	0	1	1			
1	0	0	0	0	0			
1	0	1	0	0	0			
1	1	0	1	0	1			
1	1	1	1	0	1			

forme canonique disjonctive: $f_1 = \overline{a}\,\overline{b}\,c + \overline{a}\,bc + ab\overline{c} + abc$

2. $f_2(a, b, c) = a(b + \overline{a}) + c$

· - \	,2 (, . , . ,							
a	b	c	$b + \overline{a}$	$a(b+\overline{a})$	f_2			
0	0	0	1	0	0			
0	0	1	1	0	1			
0	1	0	1	0	0			
0	1	1	1	0	1			
1	0	0	0	0	0			
1	0	1	0	0	1			
1	1	0	1	1	1			
1	1	1	1	1	1			

forme canonique disjonctive: $f_2 = \overline{a}\,\overline{b}\,c + \overline{a}\,bc + a\overline{b}c + ab\overline{c} + abc$

3. $f_3(a, b, c) = ab + bc + ca$

a	b	c	f_3
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

forme canonique disjonctive: $f_3=\overline{a}\,bc+a\overline{b}c+ab\overline{c}+abc$

4. $f_4(a, b, c) = a(b + ac) \bar{c}$

a	b	c	b + ac	a(b+ac)	f_4
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	1	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	1	1	0

forme canonique disjonctive: $f_4 = ab\overline{c}$

On peut retrouver ce dernier résultat par le calcul.

5. $f_5(a,b,c) = abc + \overline{a}\overline{c}$

a	b	c	abc	$\overline{a}\overline{c}$	f_5
0	0	0	0	1	1
0	0	1	0	0	0
0	1	0	0	1	1
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	1	1	1	0	1

forme canonique disjonctive: $f_5 = \overline{a}\,\overline{b}\,\overline{c} + \overline{a}\,b\overline{c} + abc$

6. $f_6(a, b, c) = (a + bc)(\overline{a} + \overline{b}\overline{c})$

a	b	c	a+bc	$\overline{a} + \overline{b}\overline{c}$	f_6
0	0	0	0	1	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	1	1	1
1	0	0	1	1	1
1	0	1	1	0	0
1	1	0	1	0	0
1	1	1	1	0	0

forme canonique disjonctive: $f_6 = \overline{a}\,bc + a\overline{b}\,\overline{c}$

Exercice 3:

Soit f une fonction booléenne à n variables. On note f^* la fonction booléenne à n variables définie par

$$f^*(x_1, x_2, \dots, x_n) = \overline{f(\overline{x_1}, \overline{x_2}, \dots, \overline{x_n})}$$

Donnez une forme polynomiale et la table de vérité des fonctions f_1^*, f_2^* et f_3^* (les fonctions f_1, f_2 et f_3 ont été définies dans l'exercice précédent).

 $f_{1}^{*}\left(a,b,c\right) = \overline{f_{1}\left(\overline{a},\overline{b},\overline{c}\right)} = \overline{a}\,\overline{b} + a\overline{c} = \left(a+b\right)\left(\overline{a}+c\right) = ac + \overline{a}b + bc$

On obtient la table de vérité de f_1^* à partir de celle de f_1 en remplaçant dans toutes les cases (y compris celles des 3 premières colonnes) les 0 par des 1 et les 1 par des 0.

$$f_2^*(a, b, c) = ac + bc$$

 $f_3^*(a, b, c) = f_3(a, b, c)$

Exercice 4:

- 1. Combien y a-t-il de fonctions booléennes à 2 variables? Il y a $2^4 = 16$ fonctions booléennes à 2 variables. Plus généralement il y a $2^{(2^n)}$ fonctions booléennes à n variables.
- 2. Déterminez toutes les fonctions booléennes à deux variables qui sont symétriques (c'est à dire les fonctions booléennes f telles que pour tout couple $(a,b) \in B_2^2$ on a f(a,b) = f(b,a)). Vous donnerez pour chacune d'entre elles la table de vérité et la forme disjonctive canonique.

Le tableau ci-dessous représente toutes les fonctions booléennes à 2 variables:

a	b	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

les fonctions symétriques sont $f_0, f_1, f_6, f_7, f_8, f_9, f_{14}$ et f_{15} .

Exercice 5:

Déterminez les formes disjonctives minimales dans chacun des cas. Vous pouvez utiliser les diagrammes de Karnaugh:

1. $abcd + \overline{a}b + a\overline{c}d + b\overline{c}\overline{d}$

	a	a	\overline{a}	\overline{a}	
c			1		\overline{d}
c		1	1		d
\overline{c} \overline{c}	1	1	1		d
\overline{c}		1	1		\overline{d}
	\overline{b}	b	b	\overline{b}	

- $f_1 = \overline{a}b + bd + b\overline{c} + a\overline{c}d$
- $2. \ ab\overline{c} + a\overline{b}\,\overline{c} + \overline{a}bc + a\overline{b}c$

		a	a	\overline{a}	\overline{a}
	c	1		1	
ĺ	\bar{c}	1	1		
•		\overline{b}	b	b	\overline{b}

- $f_2 = \overline{a\overline{b} + a\overline{c} + \overline{a}bc}$
- 3. $abcd + a\overline{b} + a\overline{c} + bc + ab(\overline{c} + \overline{d})$

	a	a	\overline{a}	\overline{a}	
c	1	1	1		\overline{d}
c	1	1	1		d
\overline{c} \overline{c}	1	1			d
\overline{c}	1	1			\overline{d}
	\overline{b}	b	b	\overline{b}	
$f_3 =$	= a -	+bc			

4. $a + \overline{a} (\overline{b} \overline{c} \overline{d} + c + d)$

a	$a + \underline{a(bcd + c + d)}$								
		a	a	\overline{a}	\overline{a}				
	c	1	1	1	1	\overline{d}			
	c	1	1	1	1	d			
	\overline{c}	1	1	1	1	d			
	\overline{c}	1	1		1	\overline{d}			
		\overline{b}	b	b	\overline{b}				
f	4 =	= a -	$+ \overline{b}$ -	+ c +	- d				

Exercice 6:

On considère l'expression booléenne $\phi = (x + y\overline{z}) \overline{y}\overline{z}$

1. Ecrivez ϕ sous sa forme canonique disjonctive en utilisant uniquement les règles du calcul booléen.

$$\phi = (x + y\overline{z}) \overline{y}\overline{z} = (x + y\overline{z}) (\overline{y} + \overline{z}) = x\overline{y} + x\overline{z} + y\overline{z}$$

$$\phi = x\overline{y} (z + \overline{z}) + x (y + \overline{y}) \overline{z} + (x + \overline{x}) y\overline{z} = x\overline{y}z + x\overline{y} \overline{z} + xy\overline{z} + \overline{x}y\overline{z}$$

2. Vérifiez le résultat de la question précédente à l'aide d'une table de vérité.

				1	I
X	y	\mathbf{Z}	$(x+y\overline{z})$	\overline{yz}	$(x+y\overline{z})\overline{y}\overline{z}$
0	0	0	0	1	0
0	0	1	0	1	0
0	1	0	1	1	1
0	1	1	0	0	0
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	0	0

Les monomes complets (i.e. "mintermes") trouvés par le calcul à la question 1 correspondent bien aux 1 de la table de vérité.

3. Utilisez un diagramme de Karnaugh pour obtenir une forme polynomiale minimale de ϕ . Pour remplir le diagramme de Karnaugh on utilise la forme polynomiale de la question 1:

	X	X	\overline{x}	\overline{x}
Z	1			
\overline{z}	1	1	1	
	\overline{y}	y	У	\overline{y}

La forme minimale: $\phi = x\overline{y} + y\overline{z}$

Exercice 7:

On considère la fonction booléenne à 3 variables f définie par la formule suivante:

$$f(x, y, z) = xy\overline{z} + x\overline{y} + \overline{x}\,\overline{y}z + \overline{x}y\overline{z} + \overline{y}z$$

1. Dressez le diagramme de Karnaugh correspondant à f:

	X	X	\overline{x}	\overline{x}
\mathbf{Z}	1			1
\overline{z}	1	1	1	
	\overline{y}	y	y	\overline{y}

2. Simplifiez la formule de f en utilisant la méthode de Karnaugh. En appliquant la méthode de Karnaugh on obtient 2 formes minimales:

$$f = x\overline{z} + y\overline{z} + \overline{y}z$$

$$f = x\overline{y} + y\overline{z} + \overline{y}z$$

- 3. Donnez la forme canonique disjonctive de \overline{f} . $\overline{f} = xyz + \overline{x}yz + \overline{x}\overline{y}\overline{z} \text{ (en s'inspirant du diagramme de Karnaugh de f)}$
- 4. Donnez la forme polynomiale simplifiée de \overline{f} . $\overline{f}=yz+\overline{x}\,\overline{y}\,\overline{z}$
- 5. Combien y a-t-il de fonctions booléennes à 3 variables ? $2^{\binom{2^3}{2}} = 2^8 = 256$

Exercice 8:

Soit f une fonction booléenne à 3 variables définie par la formule suivante:

$$f(x, y, z) = \overline{(x + yz)} \times (x + \overline{z}) + yz$$

1. En utilisant les règles du calcul booléen, écrivez f sous la forme d'un polynome booléen (pas nécessairement minimal). Vous détaillerez les étapes de calculs.

$$f = \overline{x} (\overline{y} + \overline{z}) (x + \overline{z}) + yz = \overline{x} \overline{z} (\overline{y} + \overline{z}) + yz = \overline{x} \overline{z} + yz$$

2. Même question pour \overline{f} .

$$\overline{f} = x\overline{y} + x\overline{z} + \overline{y}z$$

3. Complétez la table de vérité de la fonction f:

X	у	Z	f(x,y,z)
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

4. Donnez la forme canonique disjonctive de f .

$$f = \overline{x}\,\overline{y}\,\overline{z} + \overline{x}y\overline{z} + \overline{x}yz + xyz$$

5. Dressez le diagramme de Karnaugh de f .1:

	X	X	\overline{x}	\overline{x}
\mathbf{z}		1	1	
\overline{z}			1	1
	\overline{y}	у	у	\overline{y}

6. Simplifiez f en utilisant la méthode de Karnaugh:

$$f = \overline{x}\,\overline{z} + yz$$

7. Simplifier \overline{f} .

$$\overline{f} = x\overline{z} + \overline{y}z$$
(avec Karnaugh)

Interrogation de maths discrètes n°1 année 2018 Groupe S2

Exercice 1:

Déterminez les tables de vérité des fonctions booléennes suivantes (a,b et c représentent des variables booléennes dans $B = \{0,1\}$):

$$f_1(a, b, c) = ab + \overline{a}c$$

$$f_2(a, b, c) = \underline{a(b + ac)}\overline{c}$$

$$f_3(a, b, c) = \overline{ab} + \overline{abc} + b\overline{c}$$

a	b	c	$f_1(a,b,c)$	$f_2\left(a,b,c\right)$	$f_3(a,b,c)$
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Exercice 2:

Soit la fonction booléenne suivante à 4 variables:

$$f(a, b, c, d) = (ab + cd)(ac + ba)(ad + bc)$$

1. En utilisant uniquement les règles du calcul booléen, démontrez que f(a,b,c,d) = abd + abc + acd. Vous détaillerez chacune de vos étapes de calcul en justifiant précisemment.

2.	Dressez le diagramme de Karnaugh de la fonction booléenne f :

3. Donnez une forme polynomiale simplifiée de la fonction \overline{f} .

Interrogation n°1 groupe S6 année2018

Exercice 1:

Soit f une fonction booléenne à 3 variables définie par la formule suivante :

$$f(x, y, z) = \overline{xy + yz} \times (x + \overline{z}) + \overline{y} \, \overline{z}$$

1. En utilisant les règles du calcul booléen écrivez f sous la forme d'un polynome booléen (pas nécessairement minimal). Vous détaillerez les étapes de calculs :

2. Même question pour \overline{f} :

3. Complétez la table de vérité de la fonction f :

X	у	Z	f(x,y,z)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

4. Donnez la forme canonique disjonctive de f :

Exercice 2:

On considère la fonction booléenne g à 3 variables définie par :

$$g(x, y, z) = x\overline{y}\,\overline{z} + xy\overline{z} + \overline{x}y + \overline{x}\,\overline{y}z$$

1. Dressez le diagramme de Karnaugh de g :

2. Simplifiez g en utilisant la méthode de Karnaugh (vous donnerez toutes les formes polynomiales minimales de g).