O 0

The slope of this line segment is $\frac{0-1}{1-0} = -1$

	Graded quiz on Cartesian Plane and Types of Function				
	TEST SUBMISSION GRADE 00%				
1.	Which of the following points in the Cartesian Plane have positive x -coordinate and negative y -coordinate?	1/1 point			
	○ (5,7)				
	○ (-4,5) ◎ (7,-1)				
	(v, 2) (0,0)				
	\checkmark Correct The x -coordinate, 7, is positive, and the y -coordinate, -1 , is negative.				
2.	Which of the following points is in the first quadrant of the Cartesian Plane?	1/1 point			
	\bigcirc (5,-1)				
	○ (-5,1) ⊚ (7,11)				
	○ (-4,-7)				
	Correct The first quadrant is defined to be all points in the Cartesian plane whose coordinates are both positive.				
3.	Let A,B,C,D be points in the Cartesian Plane, and let the set $S=\{B,C,D\}$	1/1 point			
	Suppose that the distances from A to B,C,D are $5.3,2.1$, and 11.75 , respectively.				
	Which of the following points is the nearest neighbor to the point ${\cal A}$ in the set ${\cal S}$?				
	O D				
	○ A ⊚ C				
	○ B				
	\checkmark correct $ \mbox{The distance from } A \mbox{ to } C \mbox{ is } 2.1 \mbox{ and that is smaller than the distance from } A \mbox{ to any other element of } S. $				
4.	Find the distance between the points $A=(2,2)$ and $B=(-1,-2)$.	1/1 point			
	○ 25 ○ −25				
	5				
	O 1				
	\checkmark Correct Recall that the distance between points (a,b) and (c,d) is $\sqrt{(c-a)^2+(d-b)^2}$				
	In this case we have:				
	$\sqrt{(-1-2)^2 + (-2-2)^2} = \sqrt{(-3)^2 + (-4)^2} = \sqrt{25} = 5$				
5.	Find the slope of the line segment between the points $A=(0,1)$ and $B=(1,0).$	1/1 point			
	⊚ −1				
	\bigcirc 1 \bigcirc $\sqrt{2}$				
	U V#				

	he point-slope form of the equation of the line with slope -2 that goes through the $(5,4)$.	1/1 point
$\bigcirc y$	-4=2(x-5)	
(5	5,4)	
	-4 = -2(x-5)	
○ y	-5 = -2(x-4)	
~	Correct The point-slope form for the equation of a line with slope m that goes through the point (x_0,y_0) is $y-y_0=m(x-x_0)$.	
	In this case, the slope $m=-2$ is given and the point $(5,4)$ on the line is given.	
7. Which	of the following equations is for a line with the same slope as $y=-3x+2$?	1/1 point
○ y		
	=-3x-8	
$\bigcirc y$	=5x+2	
$\bigcirc y$	=8x-3	
~	Correct $\label{eq:correct}$ The slope-intercept formula for a line is $y=mx+b$, where m is the slope and b is the y -coordinate of the point where the line hits the y -axis.	
	This line has slope $m=-3$ which is the same slope as the given line.	
8. Which	of the following equations is for a line with the same y -intercept as $y=-3x+2$?	1/1 point
\bigcirc y	=5x	
\bigcirc y	=-3x-8	
\bigcirc y	= 8x - 3	
y	=5x+2	
~	Correct The the slope-intercept formula for a line is $y=mx+b$, where m is the slope and b is the y -coordinate of the point where the line hits the y -axis. This line has a y -intercept of 2 which is the same as the given line.	
9. How	many lines contain both the point $A=(1,1)$ and the point $B=(2,2)$?	1 / 1 point
O in	finitely many	
O 2		
① 1		
O N	one	
0.14	one	
~	$\mbox{{\bf Correct}}$ The line with equation $y=x$ is the one and only line that meets the stated requirements.	
	ose that we have two sets, $A=\{a,b\}$ and $Z=\{x,y\}$. How many different functions $ o$ Z are possible?	1/1 point
	nere are infinitely many	
	nere are none	
4	nere are none	
0 1		
0 1		
~	Correct $\mbox{A function } F:A\to Z \mbox{ is a rule which assigns an element } F(a)\in Z \mbox{ to each element } a\in A.$	
	There are two elements in A ; namely, a and b . For each of these elements, there are two assignment choices we could make: x and y .	
	Here are the four possible functions:	
	F(a)=x, F(b)=y , OR	
	F(a)=y, F(b)=x, OR	
	$F(a)=x, F(b)=x, \operatorname{OR}$	
	F(a) = y, F(b) = y.	

11. How many graphs contain both the point $A=\left(0,0\right)$ and the point $B=\left(1,1\right)$	1/1 point
Infinitely many1None2	
\checkmark Correct The graphs of $f(x)=x, g(x)=x^2, h(x)=x^3, s(x)=x^4, \ldots$ all contain both A and B	
 12. Suppose that g: R → R is a continuous function whose graph intersects the x-axis more than once. Which of the following statements is true? g is strictly increasing. All of the above. g is neither strictly increasing nor strictly decreasing. g is strictly decreasing. 	(1/1 point)
\checkmark Correct The function g fails the horizontal line test, so it can neither be strictly increasing nor strictly decreasing.	
13. Find the slope of the line segment between the points $A=(1,1)$ and $B=(5,3)$. (a) $\frac{1}{2}$	1/1 point
$ \begin{array}{c} 2\\ \bigcirc 2\\ \bigcirc 4\\ \bigcirc \sqrt{20} \end{array} $	
\checkmark correct The slope of this line segment is $\frac{3-1}{5-1}=\frac{1}{2}$, where $3-1$ is the rise and $5-1$ is the run.	