

Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών ΕΜΠ

Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Ηλεκτρονικής

Ηλεκτρονική Ι (4° Εξαμήνου) **2**η Σειρά Ασκήσεων

<u>Ονοματεπώνυμο</u>: Δημήτριος Ζάρρας

<u>A.M.</u>: 031 15 092

<u>Εξάμηνο</u>: 4<u>0</u>

Ακαδημαϊκή Περίοδος: 2016 - 2017

Διδάσκων: Αν. Καθηγητής Παύλος-Πέτρος Σωτηριάδης

Μελέτη: Δίοδοι – Παρ. 3.1, 3.2, 3.3 (έως και 3.3.7) από το βιβλίο «Μικροηλεκτρονικά Κυκλώματα», 5^{η} Έκδοση, Εκδόσεις Παπασωτηρίου.

Zappas A.M.: 031 15 092 Egopmo: 4º Zxo24: HMMY EMN - Np3627pg 3.2 H Sissos agres, espacos eiras aplà roduping. (01) Γυνρίβομε ότι τίναι ιδανική. Ενομέντη θα έχτη διαμαρά διναμινα $V_0 = 0$ 6 τα σύμο της. Αρα V = -3V ναι I = [3-(-3)] V = 6V3 love (Exing La) 61 H Siobor Sur agra, reposor rivar andstooped rollyiery. Cropius (I=0), apai 160 Surpris pe avointaningupa. Harristaty em 10 kg rias y surpris abidippoy, apoi de (Exima 16) Scappieras and y Drurpsus prima. And to uspo to Ohm sings: I= = R= Or Opus, pe I=0 para viva nenepagning y upij mys arciocolis R= 10 me Las da NOEME: DV=0 > 3-V=0V = V=3V H Isaving biosos civas gold roduning, 13v H ISAVILLY ScoSos will and stopping whying war apa, ou ager. la réasuppei, es वंत्रव वर्षा पता १६० हिम्मूमां मूर हैन Boaxminlyna, ME Vaso. Apa, ropieus, pre avoirionia) upo vai Sloke DV aps, [I-D]. Opping pre 6 (B) V=3V uq, I=[3-(-3)]V= -3V = 1=0,6 mA Aponing V=-3V (Exipa 18) (Expr 15)

(Συνέχεια Άσκησης 1 - Προβλήματος 3.2, για επαλήθευση των Ι και V)

Για μετατροπή της διόδου σε ιδανική, τοποθετούμε μία δίοδο που παρέχει το LTSpice, στη συνέχεια πατάμε "S" στο σχηματικό και στο παράθυρο που ανοίγει κάνουμε paste αυτό: $.model\ D\ D(Ron=0\ Roff=100T\ Vfwd=0)$

Στο ερώτημα (β) βλέπουμε ότι το ρεύμα που διαρρέει τη δίοδο είναι πάρα πολύ μικρό και μπορεί να θεωρηθεί μηδενικό, οπότε συμπίπτει με αυτό που υπολογίστηκε. (Το γεγονός ότι δεν προκύπτει απευθείας 0 οφείλεται στο ότι δεν μπορούμε να ρυθμίσουμε άπειρη την Roff, που είναι η αντίσταση της διόδου στην περίπτωση που δεν άγει).

Ομοίως με το ερώτημα (β), στο ερώτημα (δ) προκύπτει $I \approx 0$.

Παρατηρούμε, λοιπόν, ότι σε όλες τις προσομοιώσεις (με διαμορφωμένη τη δίοδο ως ιδανική για τις ανάγκες της άσκησης) τα αποτελέσματα των DC προσομοιώσεων συμφωνούν με τα υπολογισθέντα.

(Συνέχεια Άσκησης 2 - Προβλήματος 3.3, για επαλήθευση των Ι και V)

Στο ερώτημα (β) βλέπουμε ότι το ρεύμα της αντίστασης των $2k\Omega$ είναι 0,009999999Α που πρακτικά ισούται με το 1mA που υπολογίστηκε.

Παρατηρούμε, λοιπόν, ότι και στις δύο προσομοιώσεις τα αποτελέσματα των DC προσομοιώσεων συμφωνούν με τα υπολογισθέντα.

- Apollagna 3.5

· Otar y Us 24,5 v , y De sing, gold rollyning us snopiums, agres ty olappi, no y De sing, and president avaicepaped rollyning use snopiums our agres. Apa, grause Us 24,5 v y De 160 olappis pre avoinceminal upper, orice is =0.

• Arabitus, otar y $U_{R} > 4,5v$ y D_{R} 160 divapper pre anoma unimbuga was y D_{R} aigra, orothe is = I = 100 mA.

Hydrog any to primates the maraples Brimge ou viva [18max = 0,1 A].

Για $\frac{1}{2}$ μίας $\frac{1}{2}$ τω έχαμε: $\frac{1}{2}$ $\frac{1}{2}$ Γίβ(ε) $\frac{1}{2}$ = $\frac{1}{2}$ Γίβ(ε) $\frac{1}{2}$ = $\frac{1}{2}$ Γίβ(ε) $\frac{1}{2}$ $\frac{1}{2}$ Γίβ(ε) $\frac{1}{2}$ $\frac{1}{2}$ Γίβ(ε) $\frac{1}{2}$ Γίβ

tar, ripa, y pipor ripi res us prindri was 10% da viva U1=3. sint. 2000, y pripares up repares res prarapias da reparejus librar = 0,1A, apri y 170; pripares I our xiju va pospodorus pre 100 mA = 0,1A to minimpa uno us idres oudjues.

Average we pay a exame time party puria 0' one $U'_1 = 4.5v \iff 35 \text{ mg}' = \frac{1}{4.5} \iff 9' = 30 \text{ md}$. Apa, $\text{cib} > = \frac{1}{4} \int_{0}^{1} i_{B} |_{A} |_{A} |_{A} |_{A} = \frac{1}{4} \int_{0}^{1} i_{B} |_{A} |_{A} |_{A} |_{A} = \frac{1}{4} \int_{0}^{1} i_{B} |_{A} |_$

(Συνέχεια Άσκησης 3 – Προβλήματος 3.5)

Εκτελέστηκε transient προσομοίωση στο κύκλωμα του προβλήματος 3.5 στο χρονικό διάστημα $t \in [0s,16s]$. Η προσομοίωση εκτελέστηκε, τόσο για πλάτος ίσο με 10V, όσο και για πλάτος 9V της κυματομορφής της U1. Απεικονίζεται το ρεύμα που διαρρέει την πηγή τάσης B, $i_B(t)$, καθώς και η ημιτονοειδής τάση $U_1(t)$.

Enisy as N.P.W. 00 B: $I=i_{L}-i_{L}=-0,5$ mA <0 . Exprises, y apxing violes of april.	in mai
Ynotitage ou y Dz agen ug y Dz ax. Naipage to Exigna 48".	
6/ 1/2 9/	
Apa' y De Jenpajne o'th Sur aign (us ison	my diodos
Sike of another anouncering and it I =0.	,
(+) sv	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$(\Sigma_{xypq} 48')$ = $15000i = 10$ to $i = \frac{L}{4} $ A >C	Hon win C
Στο υσίω συρο εγς, γ ανείσθας των 562 έχεις διαριώς $-5V$. Άρα, για είχεις έχαρε $V-(-5)=i$ εν $V-(-5)=\frac{1}{1500}$ 5000 $V=(3,333-5)V=V=-\frac{1}{1500}$, tys V
Exame V-(-5) = V-(-5) = 1 5000 V = V= (3,333-5)V = V=-	1,667V.
5000	
Apa, cina, [I=0 na, V=-1,667V].	
1 pa , Usal [2] val (V2,00+V).	

(Συνέχεια Άσκησης 4 - Προβλήματος 3.9, για επαλήθευση των Ι και V)

Επαληθεύονται οι τιμές των μεγεθών που υπολογίστηκαν. Μάλιστα, στο (α) ερώτημα, η τιμή της τάσης V προκύπτει μέσω της προσομοίωσης πολύ μικρή, άρα θεωρείται ίση με 0, όπως και υπολογίστηκε. Ομοίως, για το ρεύμα που διαρρέει τη δίοδο D_1 στο ερώτημα (β).

(Συνέχεια Άσκησης 5 - Προβλήματος 3.10, για επαλήθευση των Ι και V)

Παρατηρούμε ότι και στις δύο προσομοιώσεις τα αποτελέσματα των DC προσομοιώσεων συμφωνούν με τα υπολογισθέντα. Στο (β) ερώτημα προκύπτει, επίσης, σωστά $V = v_1 - v_2 = 4,5V - 2,5V = -2V$ και η τιμή του ρεύματος που διαρρέει τη δίοδο θεωρείται μηδενική, όπως και υπολογίστηκε.

Abrusen 6 - Apise 3.19

Ita Ima y Siodos ward the open no dues the taken of taken of

(10 Jarappia 629 Vz=9,5V da avastixis prima: Iz=Is.e Vz/uV+ = Is.e 35/4 @

 $\frac{(1)}{2} = \frac{0,001}{1} = e^{\frac{1}{4}(0,2-0,5)}$

Outprises $V_1 \simeq 25 \text{ mV}$ pre deprotected Superior, do visas $3 \Rightarrow 1_2 = \frac{0,001}{0.025} \quad A = 0,001 \cdot E^8 A \Rightarrow I_2 = 0,335 \text{ pA}$

Abryan 7 - Apolohyra 3.22 (a)

Example: I = 10 mA, V = 700mV = 0, 7V, Valso = 600mV = 0, 6V = V'

 $I_{\text{oxion}}, 2_{\text{olndy}}, \quad I = I_{\text{s}} \cdot e^{\sqrt{h_{\text{vy}}}} = \frac{I}{I'} = e^{\frac{V-V'}{h_{\text{vy}}}} = \frac{V-V'}{h_{\text{vy}}} = \ln\left(\frac{I}{I'}\right) = \frac{I}{h_{\text{vy}}}$

 $= V = \frac{V - V'}{V_1 \cdot \ln(U_{11})} \frac{I' = \frac{1}{10}}{9,025 \cdot \ln 10} = \frac{9,1}{9,025 \cdot 2,3026} = \frac{9}{9,025 \cdot 2,3026}$

= 4= 1,737 on Ourpjeyer V1 = 25mV p4 06pm-

 A_{pq} , $I = I_{s} \cdot e^{V/hV_{f}} = I_{s} = I_{e}^{-V/hV_{f}} = 0,01 \cdot e^{-\frac{97}{1,737 \cdot 0,02s}} A = 0,01 \cdot Lo. Lo. B A = 1.5 = 10^{-3} A$.

(10 ty tois tys Sides or LOI de Exagre: Veri = 4.VT. lu LoI =

= 4,737. 0,025. ly 9,1 V = 0,043425. L8,42 V = VLOI = 0,8 V

Ear to pring the InA anopopy of and to appoint the typic that popular, the of Siosan of Siosan of Siosan and pring (3,81-1) mA = 2,81 mA.

Apa, na taley typica, wipa, ily pre Vo Da than na pring and the Siosans:

$$\frac{V_0'}{3} = u.V_7. lu \frac{I'}{I_s} = \frac{I' = 381 u_A}{10^{-14}} = 0,025. lu \frac{9,00281}{10^{-14}} = 1$$

= 1/6' = 0,075. ly (2810000000) V = 0,075.26,36462051 V = 1/377 V

Apa, y peraboly as risks eyiso de river: DVo = Vo'-Vo = 1,377 V - 2V = 0 DVo = -0,023 V = DVo = -23 mV.

Compigance to prime no Supplies ty Dz , apa spisnage try ties of impo tys: V(Dz) = VA-0 = 4 V7 ly i(Dz) = VA = 4 V7 ly i(Dz) 2 (10 ty Dz, opoins, V(Dz) = VA-V = 4V7 la i(Dz) 1 VA-V = 4V7 la i(Dz) 3 -1 VA-V = 4VT ly i(01) - 4VT (-VA) - 4VT -V = 4VT ly i(01) + YA - $V = -uV_7 \ln \frac{i(D_4)}{40.i(D_4)} = -1.0,025. \ln \frac{0,002}{40.0,008} V = -0,025. (-3,6883) V$ = V = 0,0922 V = V= 32,2 mV (ing) V= -47 h i(D1) i(D2) = I2 V= -47 h I2 (D1-I2) Apa, pa a cival V=50mV da péna: S=1 0,05 = -9,025. $lm \frac{I_2}{lo(0,01-I_2)} = -2 = lm \frac{I_2}{lo(0,01-I_2)} = -2$ $= \frac{1}{21 - 101} = e^{-1} = 12 = e^{-1}(0, 1 - 101) (5.1.) =$ $= I_{2}(1+10e^{-1}) = 0.1 \cdot e^{-1} (s.1) = I_{2} = \frac{0.1 \cdot e^{-1}}{1+10e^{-1}} A =$ = 0,013634 A = Iz = 0,00575 A = [z = 5,75 mA), were

"AGNy6y 10 - Npibayra 3.33 VOD=W, R= 110, Is=10-15A, n=1
2 Lo.
And N.T.K : - VOD + IOR + VO =0 = 10 = VOD-VO (1)
No
VOD T VO ANÓ N.T.K.: - VOD + ID·R + VD = 0 = 1D = VOD-VO D R
= EULIVARE TO GRANDONINI SIAGRADIA MODETOVICAS VO=0,7 V UQI
$D = 10 = \frac{1 - 0.7}{100}$ A = 0,0003 A = 0,3 mA
1000 1 1 0,5 11
XPJGIPONDISIPE EZU EZIGUEZ EZI SIOSO , pra va mozapespre pra vaziera posignetarió
entiples tys Vo, Bien to Io no possis unosopialyne:
$V_0 = 4.7 \cdot \ln \frac{10}{15} = 0,025 \cdot \ln \frac{0,0003}{10^{-15}} = 0,025 \cdot 26,427 \lor 3$
= V0 = 9,6607 V
Apa, y rowey enaud 244y Siver ID = 0,3 mA mai V=0,6607 V.
Nay we narryo toon my Vo =0,6607 V y D Sing.
Now, we national spars, pa $V_0 = 9.6607 V$ of D firm. $D = 1 L_0 = \frac{1 - 9.6607}{100} A = 1 L_0 = 0,3333 \text{ mA}$
1000
H & Yiéney as Sioler Siver parts puiper avec. $V_0 = uV_7 \ln \frac{I_0}{I_5} = 0,005 \cdot \ln \frac{0,00033.93}{10^{-15}} V = 0,025 \cdot 26,555 V = 0.00033.93$
Vo - 1 1/2 0 1/2 - 2 mg 1, 0,000 33 93 / - 2 226 2/461/
1 = 4 V 1 M - 15 V = 9,063 . 20,55 V =
⇒ V ₀ = 0,6638 ∨
`A C
Apa, y Switzer enavisyty Sim To = 93393 mA Mai Vo = 0,6638 V. Blinge da y 21-
my the Vo Se Stapiper Gypartend and enting no nipaper 6th spire enangly by. Ourpoint in
pa by Vo Sow and with the vise end with you dexignable us thing 2'by, pa by
765 Vo Tyv: [Vo = 0, 6638 V], pro Tyv april Exapte pro to pripe Io:
D= Ip = 1-0,6638 A = Ip=0,3362 mA), y oneig up; Eins not world GE
مرا المام ال
arejo so specific porposions.