Unit 5: Genetic algorithms

A. Riscos Núñez J. L. Ruiz Reina

Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

Introduction: optimization problems

- Algorithms for searching optimal solutions
 - Search for the best solution within the space of possible (candidate) solutions
 - Maximization or minimization
- Iterative improvement
 - Start on an "arbitrary" initial solutions
 - Improve it step by step
- Algorithms:
 - Hill-climbing
 - Random-restart hill-climbing
 - Simulated annealing
 - Genetic algorithms
 - . . .
- None of the above algorithms is complete, but very often they are the only feasible option in practice.

Example: The travelling salesman problem

Problem:

Given a list of cities, find the **shortest** possible route that visits each city exactly once and returns to the origin city (assuming all of them are directly connected and their pairwise distances are known)

Genetic algorithms: Darwinian evolution

- Optimization inspired on the evolutionary process going on in Nature:
 - Evolution is carried out within the chromosomes of the individuals
 - The "good structures" get higher survival probabilities than the rest
 - New genetic material is obtained by crossover and mutations
- Genetic algorithms:
 - Application of such ideas for searching optimal solutions
 - There are many genetic algorithms
 - It is a general denomination for this kind of evolutive algorithms

Genetic algorithms: codification of the problem

- First step is to represent the states of the original problem as individuals of a population
 - Genes: basic genetic material
 - Chromosomes: sequence of genes codifying a state of the problem
 - Population: Set of chromosomes (not too large, "manageable")
 - The population evolves into different generations
 - Genotype vs. phenotype

Fitness of individuals

According to the value of the objective function

Genetics algorithms: elements for the representation

- Optimization problems: a simple example
 - Example: find the minimum of the function $f(x) = x^2$ en $[0, 2^{10}) \cap N$
- Variables *GENES* and *INDIVIDUALS-LENGTH*
 - In our example (square function): [0, 1] and 10, resp.
- Function **DECODE** (X), defines the *phenotype*
 - For the square function example: a chromosome can be read as a binary number of 10 digits (and in reverse order). The phenotype of a chromosome is such a number (in decimal notation)
 - Example: (0 1 1 0 0 1 0 0 0 0) is a chromosome representing number 38
- Function FITNESS (X), is the value to be optimized (acting over the phenotype)
 - For the square function example: a function that gets a natural number and returns this number squared

Genetics algorithm: a general description

INITIALIZE population EVALUATE each individual of the population

Repeat until HALTING-CONDITION
SELECT parents
COMBINE pairs of parents
MUTE offsprings
EVALUATE new individuals
SELECT individuals for the next generation

Return the best individual of the last generation

Example of execution (minimizing the square function)

```
>>> genetic_algorithm(sqr_gen, 20, 10, 0.75, 0.6, 0.1)
Generation: 1. Average: 361954.9, Best: (0 1 1 0 0 1 0 0 0), Fitness: 1444
 Generation: 2. Average: 79730.6, Best: (0 1 1 0 0 1 0 0 0), Fitness: 1444
 Generation: 3. Average: 22278.6, Best: (0 1 1 0 0 1 0 0 0), Fitness: 1444
 Generation: 4. Average: 3537.7, Best: (1 1 1 1 0 0 0 0 0), Fitness: 225
                                               0 0 0 0 0 0), Fitness: 144
 Generation: 5. Average: 1597.3, Best: (0 0 1 1
 Generation: 6. Average: 912.8, Best: (0 1 0 0
                                              0 0 0 0 0 0), Fitness: 4
 Generation: 7. Average: 345.3, Best: (0 1 0 0
 Generation: 8. Average: 60.7, Best: (0 1 0 0 0 0 0 0 0), Fitness: 4
 Generation: 9. Average: 14.0, Best: (0 1 0 0 0 0 0 0 0), Fitness: 4
 Generation: 10. Average: 4.5, Best: (0 1 0 0 0 0 0 0 0), Fitness: 4
 Generation: 11. Average: 3.7, Best: (1 0 0 0 0 0 0 0 0), Fitness: 1
 Generation: 12. Average: 3.4, Best: (1 0 0 0 0 0 0 0 0), Fitness: 1
 Generation: 13. Average: 2.4, Best: (0 0 0 0 0 0 0 0 0), Fitness: 0
 . . . .
```

Combining individuals

- Operators combining parents information to obtain new offsprings
- Single-point crossover:

- Randomness: when chossing the crossover point
- Alternatives:
 - Multi-point crossover (several swapping points)
 - Uniform cross-over (for every offspring position, randomly choose from which parent "inherits")
 - Specific crossover, for particular representations (for example, permutations)

Mutations in individuals

• Mutations:

- Randomness:
 - With a given probability (usally low) change some genes
 - When changing, randomly choose the new gene
- Variants:
 - Specific of the representation (for example, permutations)

Selection mechanisms

- A genetic algorithm needs a method to select individuals from a population:
 - To select parents
 - Sometimes, to select which offsprings
- In general, the selection method must be biassed towards individuals having better fitness, but keeping some degree of diversity
 - Usually, with randomness
- Some popular selection mechanisms:
 - Fitness proportional
 - Tournement
 - Elitist + randomness

Fitness-proportional selection

- Idea:
 - Select randomly, but in such a way that each individual can be selected with a proablilty equal to the proportion of its fitness with respect to the total fitness of the population
 - Therefore, the better the individual, the more probable to be selected
- The probability of selecting individual *i* is

$$P(i) = \frac{F(i)}{\sum_{j=1}^{n} F(j)}$$

- Important: this selection method can only be used when we have a maximization problem (why?)
- In case of minimization, we can transform its fitness
- Variant: ranking selection
 - The probability to be selected is proportional to its relative position in the population (ordered by fitness)

Roulette-wheel selection method

Selecting one chromosome

- Calculate, for each individual in the population, its associated cumulative sum of the objective function values
- ② Generate a random number x between 1 and the total sum of values
- Iterate over the population, and return the first chromosome whose cummulative sum is greater or equal than x

Example of Roulette-wheel selection

- Populatin with 5 individuals, fitness 2,7,1,4,6 resp.
- Accumulated sums: 2,9,10,14,20
- For example, to select four individuals, we take four random values between 0 and 20: 7, 13, 17, 5
- Selected: individuals 2,4,5 and 2 (note that one individual can be seelcted more than once)

Tournement and elitism

- Tournement selection:
 - To select one individual, randomly choose k individuals and select the best
 - Advantages: it does not depend on the fitness magnitude, and it can be applied both to minimization and maximization
 - The larger the k used, the bigger the selection pressure
- Elitist selection:
 - Directly select some of the individuals among the best
 - To introduce diversity, randomly select individuals from the rest

Other components of a genetic algorithm

- Initial population:
 - Usually we create N individuals, randomly
- Termination of the algorithm:
 - A given number of generations
 - If fitness is not improved after a number of generations
 - Until we get an individual better than a given threshold fitness
- Parameters:
 - Population size
 - Parents proportion
 - Crossover and/or muaution probabilities

Genetic algorithm using tournement selection (pseudocode)

```
t. := 0
Init-Population P(t)
Eval-Population P(t)
While not End do:
         = Select by tournement (1-r)·p individuals from P(t)
   P1
         = Select by tournement (r.p) individuals from P(t)
    P2
   P3
         = Apply pairwise crossovers to P2
   P4
         = Union of P1 and P3
 P(t+1) = Mutate P4
 Eval-Population P(t+1)
 t = t+1
End-While
Return the best individual in P(t)
```

 Parameters: population size (p), number of generations, parents proportion (r), mutation probability

A genetic algorithm with selection by elitism and randomness (pseudocode)

```
t := 0
Init-Population P(t)
Eval-Population P(t)

While not End do
    P' := Select-Parents P(t)
    P'' := Crossover P'
    P''' := Mutation P''
    Eval-Population P'''
    P(t+1) := Select-Best P''',P(t)
    t:= t+1
End-While
Return the best individual in P(t)
```

 Parameters: population size, number of generations, proportion of parents, proportion of best individuals among parents, mutation probability

GA representation: example

GA representation for the Andalusian TSP

- GENES = (AL CA CO GR HU JA MA SE)
- INDIVIDUALS-LENGTH = 8
- DECODE (X) = X
- F-OBJECTIVE(X) = circuit length??
 - The codification allows repeated cities in chromosomes
 - A penalty is required for such individuals

GA representation: example

GA representation for the Andalusian TSP (cont.)

Penalty for incomplete paths

```
PENALTY (PATH) = 100 * |GENES - PATH|
```

Objective function

```
F-OBJECTIVE(X) = 2*DISTANCE-TRIP(X) + 50*PENALTY(X)
```

- Combination of distance and penalty
- The weights of each component can be adjusted experimentally

Genetic algorithm: practice

Experimental results for Andalusian TSP (illustrative):

Pop. size	Crossover %	From-best %	Mutation prob.
50	0.75	0.6	0.05

One run:

Best individual found: (HU SE CO GR AL JA MA CA)

Value: 2015.8258

After repeating 84 times:

Best individual found: (MA GR AL JA CO SE HU CA)

• Value: 1859.8511 (optimal!)

Conclusion '

- Genetic algorithms as a local search process
 - Iterative improvement
 - Crossover, mutations and diversity try to avoid the problem of local optima
- Many other implementations of genetic algorithms are available
 - Always based in the same principles: reproduction, mutation, biassed selection for the best, and looking after diversity
- Easily applied to many types of problems:
 - optimization, machine learning, planification,...
- Performance of the results acceptable in some problems
 - Although they do not compete against specific-purpose algorithms

Bibliography

- Russell, S. and Norvig, P. Artificial Intelligence (A Modern Approach) 3rd edition (Prentice-Hall, 2010).
 - Ch. 4 "Beyond classical search".
- Mitchell, T.M. Machine Learning (McGraw-Hill, 1997)
 - Ch. 9: "Genetic Algorithms"
- Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs (Springer, 1999).
 - Ch. 2 "GAs: How Do They Work?".