QCM 6

lundi 15 avril

Question 11

Soit $(a, b, c) \in \mathbb{Z}^3$ tel que $a \mid b$ et $a \mid c$. On a

× \d. a est un multiple de b.

e. Aucune des autres réponses

Question 12

Considérons l'égalité $295 = 7 \times 41 + 8$. On a

 χ \a. Le quotient de la division euclidienne de 295 par 7 est 41.

c. Aucune des autres réponses

Question 13

Cochez la(les) réponse(s) correcte(s) :

b.
$$28 \equiv -4[12]$$

c.
$$12^3\,\equiv 3[9]$$

$$\sqrt{1}$$
 d. $12^3 \equiv 0[9]$

e. Aucune des autres réponses

Question 14

Soit $(a, b) \in \mathbb{Z}^2$ tel que 3a + 2b = 7. Alors $a \wedge b = 7$

\ a. Vrai

b. Faux

Question 15

Soient $(n,p) \in \mathbb{N}^2$ avec p premier. On a

a.
$$p^n \equiv p[n]$$

$$\$$
 b. $n^p \equiv n[p]$

c.
$$p^{n-1} \equiv p[n]$$

d.
$$n^{p-1} \equiv n[p]$$

e. Aucune des autres réponses

Question 16

Soit $a = 2^3 \times 3^2 \times 7$. On a

d. Aucune des autres réponses

Question 17

On considère le polynôme $P(X) = X^2(X+2)^5$. Le degré de P est égal à

d. Aucune des autres réponses

Question 18

Soient A et B deux polynômes de $\mathbb{R}[X]$ avec B non nul. Faire la division euclidienne de A par B, c'est trouver deux polynômes Q et R dans $\mathbb{R}[X]$ tels que

a.
$$A = BQ + R$$

b.
$$A = BQ + R$$
 avec $R < B$

c.
$$A = BQ + R$$
 avec $0 \le R < B$

\ d. Aucune des autres réponses

Question 19

On considère le polynôme $P(X) = 2X(X+1)^4$. On a

- b. 1 est une racine de P.
- c. P n'a pas de racine réelle.
- d. Aucune des autres réponses

Question 20

Cochez le(les) polynôme(s) de $\mathbb{R}[X]$:

$$\sim$$
 a. $A(X) = X + \sqrt{X}$

$$B(X) = -X^5 + X^4 + 9X - 8$$

$$\angle$$
 d. $D(X) = X^{-1} + 2X$

e. Aucune des autres réponses