姓名: _____

学号: _____

学院 (系):____

____ 级____ 班

大 连 理 工 大 学

课程名称: <u>工程数值方法</u> 试卷: <u>A</u> 考试形式: <u>闭卷</u>

授课院 (系): 运载 考试日期: 2013年7月21日 试卷共4页

	1	1 1	11	四	五	六	总分
标准分	10	20	15	15	20	20	100
得 分							

一. 填空题(每空2分,共10分)

1. 复合梯形求积公式的代数精度为 1 , 复合辛普森求积公式的代数精度为

__3_。 (第4章)

2. Simpson 求积公式 $S = \frac{b-a}{6} \left[f(a) + 4f \left(\frac{a+b}{2} \right) + f(b) \right]$ 。当 $f(x) = Ax^2 + Bx + C$ 时,则 $\int_a^b f(x) dx - S = \underline{0}$ 。 (第 4 章)

3. 用 Gauss—Seidel 迭代法解方程组 $\begin{cases} x_1 + ax_2 = 4 \\ 2ax_1 + x_2 = -3 \end{cases}$, 其中 a 为实数,方法收敛的充

要条件是满足 $-\frac{\sqrt{2}}{2} < a < \frac{\sqrt{2}}{2}$ 。 (第 6 章)

4. 已知近似值 0.07014×10^3 的绝对误差限是最末一位的半个单位,则此近似值具有 ____4____位有效数字。 (第1章)

评分标准: 每空正确得2分, 错误得0分。

- 二. 选择题(每空2分,共20分)
- 1. 求方程 $x^2 18x + 1 = 0$ 的根 x_1, x_2 时,取四位浮点数计算。 $x_1 = 9 + \sqrt{80}$ 则 $x_2 = (C)$ 。 (第 1 章)

(A)
$$9 - \sqrt{80}$$
 (B) $9 + \sqrt{80}$ (C) $\frac{1}{x_1}$

装

订

线

2. 设 <i>p</i> (<i>x</i>) 为满足	插值条件 $p(x_i) = y_i$	$(x_i$ 互异, $i = 0,1,\dots,n)$ 的	插值多项式,则 $p(x)$
的次数是(D (A) 大于 <i>n</i>)。 <mark>(第2章)</mark> (B)小于 <i>n</i>	(C) 等于 n	(D) 不超过 <i>n</i>
3. 牛顿−柯特斯求	积公式中的柯特斯求	积系数 $c_{i}\left(i=0,\!1,\!\cdots,n ight)$,成	ጀ $\dot{oldsymbol{\Sigma}}\sum_{i=0}^n c_i =$ (C).
<mark>(第4章)</mark> (A) <i>b-a</i>	(B) 0	(6) 1	(D) c
4. 对任意初始向量	$\mathbf{E} x^{(0)}$ 及右端向量 f ,	, Jacobi 迭代公式	
$\boldsymbol{x}^{(k+1)} = \boldsymbol{B}\boldsymbol{x}^{(k)} + \boldsymbol{f}$	(第6章)		
收敛于方程组的精研	确解 $oldsymbol{x}^*$ 的充要条件是	<u>!</u> (A).	
(A) $\rho(B) < 1$	(B) $\ {\bm B} \ _{\infty} < 1$	(C) $\ \boldsymbol{B} \ _{1} < 1$	(D) $\ \mathbf{B}\ _2 < 1$
$5. 32 A = \begin{bmatrix} 2 & a \\ a & 3 \\ 0 & a \end{bmatrix}$	$\begin{bmatrix} 0 \\ a \\ 2 \end{bmatrix}$, 要使 $A = LL^T$,	则 <i>a 必</i> 须满足(B), j	其中 L 为对角元为正
的下三角矩阵。(<mark>第</mark>			
$(\mathbf{A}) \ a < \sqrt{6}$	(B) $ a < \sqrt{3}$	$(c) a \le \sqrt{6}$	(D) $ a \le \sqrt{3}$
6. 用迭代公式 $x^{(k)}$	$\mathbf{G}^{(k)} = \mathbf{G}\mathbf{x}^{(k)} + \mathbf{d}$ 求解约	浅性代数方程组 $Ax=b$ 的角	犀,则(D)时,
迭代收敛。 (<mark>第</mark> (A)方程组系数矩	[6 章 <mark>)</mark> [阵 <i>A</i> 严格对角占优	(B)迭代矩阵(5 严格对角占优 3 2 3 4 5 6 6 7 6 7 6 7 7 9 7 9 7 9 7 9 7 9 7 9 7
(C)方程组系数矩	阵 A 对称正定		G 的谱半径 $ ho(G)$ < 1
7. 五个节点的高期 (A)5	f求积公式,其代数制 (B)7	青度为(C)。 <mark>(第4章</mark> (C)9	E) (D) 11
8. 五个节点的牛顿 (A)4	页-柯特斯求积公式 , (B)5	其代数精度为(B)。 (C) 6	(第4章) (D) 7
9. 设 $x_i (i = 0, 1, 2)$	2,3,4,5) 为互异节,	点, $l_i(x)$ 为对应的 5 次 Lag	grange 插值基函数,
则 $\sum_{i=0}^{5} x_i^5 l_i(0) = $ (A)。(第2章)	作业题的证明	
(A) 0	(B) 1	(C) x^5	(D) $l_i(0)$
10. 若 <i>n</i> 阶方阵 <i>A</i> 的	D谱半径 $ ho(A)$ $<$ 1 , 则	求解 $Ax=b$ 的 Jacob i 迭代	法和GaussSeidel

迭代法(B)。 (第6章)

- (A) 都收敛
- (B) 无法判断收敛和发散
- (C) Jacobi 迭代法收敛而 Gauss--Seidel 迭代法发散
- (D) Jacobi 迭代法发散而 Gauss--Seidel 迭代法收敛

评分标准: 每空正确得2分, 错误得0分。

三. (15 分) 用欧拉 (Euler) 法计算积分 $\int_0^x \frac{\sin t}{t} dt$ 在点 x = 0.1, 0.2, 0.3, 0.4, 0.5 上

的近似值。取步长 h=0.1,小数点后至少保留 5 位。 (第9章) 与作业题类似

解:
$$\Leftrightarrow y = \int_0^x \frac{\sin t}{t} dt$$
, 则 $y' = \frac{\sin x}{x}$, 且 $y(0) = 0$ 。

欧拉格式为 $y_{i+1} = y_i + hf(x_i, y_i)$, 其中 $f(x_i, y_i) = \frac{\sin x_i}{x_i}$, h = 0.1

故
$$y_{i+1} = y_i + h \frac{\sin x_i}{x_i} = y_i + 0.1 \frac{\sin x_i}{x_i}$$

由
$$y_0 = y(0) = 0$$
 计算得

$$y(0.1) = \int_0^{0.1} \frac{\sin t}{t} dt \approx y_1 = 0 + 0.1 \frac{\sin 0}{0} = 0.1$$

$$y(0.2) = \int_0^{0.2} \frac{\sin t}{t} dt \approx y_2 = y_1 + 0.1 \frac{\sin 0.1}{0.1} = 0.19983$$

$$y(0.3) = \int_0^{0.3} \frac{\sin t}{t} dt \approx y_3 = y_2 + 0.1 \frac{\sin 0.2}{0.2} = 0.29917$$

$$y(0.4) = \int_0^{0.4} \frac{\sin t}{t} dt \approx y_4 = y_3 + 0.1 \frac{\sin 0.3}{0.3} = 0.39768$$

$$y(0.5) = \int_0^{0.5} \frac{\sin t}{t} dt \approx y_5 = y_4 + 0.1 \frac{\sin 0.4}{0.4} = 0.49503$$

评分标准: (1) 写对基本求解格式 5 分; (2) 写对欧拉格式 5 分; (3) 计算每步 1 分; 如没有写欧拉格式直接计算,则计算每步 2 分。"如果计算过程正确,结果错误则中 2 分"。

四. (15 分) 用改进的平方根(LDL^T)法解方程组 $\begin{cases} 3x_1 + 3x_2 + 5x_3 = 10 \\ 3x_1 + 5x_2 + 9x_3 = 16 \end{cases}$ 。(第 5 章) $5x_1 + 9x_2 + 17x_3 = 30$

解: 方程组系数阵
$$A = \begin{bmatrix} 3 & 3 & 5 \\ 3 & 5 & 9 \\ 5 & 9 & 17 \end{bmatrix}$$
, 改进的平方根法 $A = LDL^T$, 即

$$\begin{bmatrix} 3 & 3 & 5 \\ 3 & 5 & 9 \\ 5 & 9 & 17 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{bmatrix} \begin{bmatrix} 1 & l_{21} & l_{31} \\ 0 & 1 & l_{32} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} d_1 & 0 & 0 \\ l_{21}d_1 & d_2 & 0 \\ l_{31}d_1 & l_{32}d_2 & d_3 \end{bmatrix} \begin{bmatrix} 1 & l_{21} & l_{31} \\ 0 & 1 & l_{32} \\ 0 & 0 & 1 \end{bmatrix}$$

由矩阵乘法得 $d_1 = 3$, $l_{21} = 1$, $l_{31} = 5/3$, $d_2 = 2$, $l_{32} = 2$, $d_3 = 2/3$,

由
$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 5/3 & 2 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 10 \\ 16 \\ 30 \end{bmatrix}$$
 符 $y = \begin{bmatrix} 10 \\ 6 \\ 4/3 \end{bmatrix}$

评分标准: (1)写出 L、D 和 L^T 矩阵形式 5 分; (2) 求出矩阵内参数 3 分; (3) 写出求解方程组的形式 4 分; (4) 结果求解正确 3 分。

- 五. (20 分) 已知 $f(x) = x^3 + 4x^2 10$ 在[1, 2]上有且仅有一个零点 α ,
 - (1) 试写出能保证收敛到 f(x) 的零点 α 的不动点迭代公式;
- (2) 用此迭代公式求零点 α ,取初始值为 $x_0=1.5$,要求 $\left|x_{k+1}-x_k\right|<10^{-3}$ 。

(第7章)

解: 迭代格式不唯一, 所以有的格式不收敛, 首先利用定理 7.1 中的第(1)条验证迭代函数是否也在区间内

(1) 由
$$f(x) = 0$$
,得 $x = \sqrt{\frac{10}{x+4}}$,故迭代函数 $g(x) = \sqrt{\frac{10}{x+4}}$, $\forall x \in [1,2]$ 。

因
$$\forall x \in [1,2], \quad g'(x) = -\frac{1}{2} \frac{\sqrt{10}}{\sqrt{(x+4)^3}} < 0$$
,故 $g(x)$ 单调递减,

$$1 < \sqrt{\frac{3}{5}} = g(2) \le g(x) \le g(1) = \sqrt{2} < 2$$

因
$$\forall x \in [1,2], \quad \frac{d|g'(x)|}{dx} = -g''(x) = -\frac{3}{4} \frac{\sqrt{10}}{\sqrt{(x+4)^5}} < 0$$
,故 $|g'(x)|$ 单调递减,

$$|g'(x)| = \left| \frac{\sqrt{10}}{2\sqrt{(x+4)^3}} \right| \le |g'(1)| = \frac{\sqrt{10}}{2\sqrt{(1+4)^3}} = \frac{1}{\sqrt{50}} < 1$$

所以 $\forall x_0 \in [1,2]$, 迭代 $x_{n+1} = g(x_n)$ 均收敛于 f(x) 的零点 α 。

(2) 迭代公式
$$x_{k+1} = \sqrt{\frac{10}{x_k + 4}}$$
 , $x_0 = 1.5$

计算结果如下

迭代次数 k	0	1	2	3	4	5	
χ_{k}	1.5	1.3484	1.3674	1.3650	1.3653	1.3652	

$$|x_5 - x_4| = |1.3653 - 1.3652| = 0.0001 < 10^{-3},$$

故 *α* ≈ 1.365

评分标准: (1) 写出不动点迭代公式 10 分; (2) 证明迭代公式收敛 6 分; (3) 结果求解正确 4 分。"此题若用牛顿迭代法求解正确只给 8 分。"

六. (20分)给定表中数据

х	1	2	3
у	$e^{1.6}$	e^2	$e^{2.5}$

试求形如 $y = ae^{bx}$ 的拟合函数。

(第3章,例11) 6种非线性拟合之一

解: 取对数, 得 $\ln y = \ln a + bx$, 令 $w = \ln y$, $A = \ln a$, 则得

w = A + bx。根据数据(x_i, y_i)算出对应的(x_i, w_i),得表如下

х	1	2	3
w	1.6	2	2.5

法方程为
$$\begin{bmatrix} \sum_{i=0}^{2} 1 & \sum_{i=0}^{2} x_i \\ \sum_{i=0}^{2} x_i & \sum_{i=0}^{2} x_i^2 \end{bmatrix} A = \begin{bmatrix} \sum_{i=0}^{2} w_i \\ b \end{bmatrix}, \quad \mathbb{D} \begin{bmatrix} 3 & 6 \\ 6 & 14 \end{bmatrix} A = \begin{bmatrix} 6.1 \\ 13.1 \end{bmatrix}$$

解得
$${A \brace b} = {17/15 \brace 9/20}, a = e^A = e^{\frac{17}{15}}.$$

拟合函数为 $y = e^{\frac{17}{15}}e^{\frac{9}{20}x} = e^{\frac{17}{15} + \frac{9}{20}x}$

这里不用法方程用线性矛盾方程组方法同样可以得到结果

$$A + b = 1.6$$

$$A + 2b = 2$$

$$A + 3b = 2.5$$

写成矩阵形式
$$\mathbf{C}$$
 $\begin{Bmatrix} A \\ b \end{Bmatrix} = \mathbf{D}$,其中系数矩阵 $\mathbf{C} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}$, $\mathbf{D} = \begin{Bmatrix} 1.6 \\ 2 \\ 2.5 \end{Bmatrix}$

$$\mathbf{C}^{\mathsf{T}}\mathbf{C} \begin{Bmatrix} A \\ b \end{Bmatrix} = \mathbf{C}^{\mathsf{T}}\mathbf{D}, \ \mathbb{R} \begin{bmatrix} 3 & 6 \\ 6 & 14 \end{bmatrix} \begin{Bmatrix} A \\ b \end{Bmatrix} = \begin{Bmatrix} 6.1 \\ 13.1 \end{Bmatrix}$$

解得
$${A \brace b} = {17/15 \brace 9/20}, a = e^A = e^{\frac{17}{15}}.$$

拟合函数为 $y = e^{\frac{17}{15}}e^{\frac{9}{20}x} = e^{\frac{17}{15} + \frac{9}{20}x}$

评分标准:

(1) 取对数,得到 A 和 b 的线性函数 w = A + bx 2 分;(2) 根据数据(x_i, y_i) 算出对应的(x_i, w_i) 2 分;(3) 得到法方程 12 分;(4) 求出 A 和 b 2 分;(4) 写出拟合函数 2 分。