A PROOF OF THEOREM 3.6

Theorem 3.6 The SMPO-A problem is NP-hard.

PROOF. An instance I of the load-balancing problem is: given a set of jobs J(|J|=n), $\forall j_i \in J$ its processing time is t_i , a set of identical machines M(|M|=m). the goal is to obtain an assignment $f:J\to M$ to assign each job to one machine, while minimize the maximum total processing time of one machine computed by $\max_{m_j \in M} \sum_{\forall f(j_i)=m_j} t_i$. By given the instance I, we can construct an instance O of SMPO-A problem by performing the following mapping: we map the I in I to I to I to I to the proof frequency of each element in I to I to each job in I to the proof frequency of each element in I to I to fulfill I to I

Since $\forall e_i \in E, p_i = 0$, the optimal solution to O is to assign elements in E^* to S^* in a load-balancing way. It implies that if there is an algorithm that can solve the SMPO-A problem in polynomial time, it can also obtain the result of the load-balancing problem. Thus, the SMPO-A problem is also NP-hard.

B PROOF OF THEOREM 3.8

Theorem 3.8 The SMPO-R problem is NP-hard.

PROOF. Given an instance \mathcal{A} of the SMPO-A problem defined in Def. 3.5, we construct an instance \mathcal{R} of SMPO-R problem by performing the following mapping: we map E in \mathcal{A} to the $E-E^r$ in \mathcal{R} , S in \mathcal{A} to the $S-S^r$ in \mathcal{R} with the corresponding usage frequency

of each set. Meanwhile, we map E^* in $\mathcal R$ to the E^r in $\mathcal R$ and let S(e) to be $1 \forall e \in E^r$. Finally, we map δ_s , k and S^* in $\mathcal R$ to the δ_s , k and S^r in $\mathcal R$ respectively. Notice that, for E in $\mathcal R$, it equals to $E \cup E^*$ in $\mathcal R$. For S in $\mathcal R$, it equals to $S \cup S^*$ in $\mathcal R$. Also, we set E^d in $\mathcal R$ to be \emptyset and let $|S^d| = |S^r|$.

In this case, we can map any instance of the SMPO-A problem to the SMPO-R problem. Since the SMPO-A has been proved to be NP-hard, the SMPO-R problem is NP-hard as well. $\ \square$

C PROOF OF THEOREM 5.3

Theorem 5.3 The expected approximation ratio of Algo. 4 is 2 when $\delta_s \leq \frac{1}{\sqrt[3]{|E^r|}}$ and $\sqrt[3]{|E^r|}$ when $\frac{1}{\sqrt[3]{|E^r|}} < \delta_s \leq 1$.

PROOF. **State 1:** $S_{max} \in S^r$ **after phase 1.** Each set in S^r contains $\frac{\sum_{\forall e_i \in E^r} I(e_i)}{|S^r|}$ elements on average. In $Lemma\ 2$, let $n = |S^r|$, $m = \frac{\sum_{\forall e_i \in E^r} I(e_i)}{|S^r|}$, $\epsilon = \mu$, $\alpha = 2$. When $\delta_s \leq \frac{1}{\sqrt[3]{|E^r|}}$, since $\sum_{\forall e_i \in E^r} I(e_i) \geq |E^r|$, $n \leq \lceil \delta_s |E^r| \rceil$, we have $\frac{m}{n^{\frac{1}{2}}} = \frac{\sum_{\forall e_i \in E^r} I(e_i)}{|S^r|^{\frac{3}{2}}} \geq \frac{|E^r|}{\lceil \delta_s |E^r| \rceil^{\frac{3}{2}}}$ $\geq 1 \Rightarrow m \geq n^{\frac{1}{2}}$. Thus, $\mathbb{E}(u_{max}) = \mathbb{E}(\max_{\forall S_i \in S^r} S_i(m)) \leq \frac{2\mu}{\delta_s} = \frac{2\sum_{\forall S_i \in S} u_i}{\delta_s |E|} = 2L_3^r = 2OPT$. When $\frac{1}{\sqrt[3]{|E^r|}} < \delta_s \leq 1$, $\mathbb{E}(u_{max}) \leq \frac{L_1^r}{\delta_s} \leq \sqrt[3]{|E^r|}OPT$. **State 2:** $S_{max} \notin S^r$ **after phase 1.** Due to line 8 in Algo. 4, if

State 2: $S_{max} \notin S^r$ **after phase 1.** Due to line 8 in Algo. 4, if $\delta_S \leq \frac{1}{\sqrt[3]{|E^r|}}$, $\forall S_i \in S^r : u_i = 2 \sum_{\forall e_i \in S_i} \frac{\sum_{\forall S_l \in S} u_l}{|E|(|\mathcal{A}(e_i)| + I(e_i))} \leq 2L_3^r$. Meanwhile we also always have $\forall S_i \in S^r : u_i \leq 2L_2^r$. Thus, the rest proof is similar to State 2 in Theorem 4.4