Course	Course Name	L-T-P-	Year of Introduction
code		Credits	
BM203	NETWORK ANALYSIS	3-1-0-4	2016

Prerequisite:Nil

Course Objectives

- 1. To understand the various Network theorem and apply them in biomedical circuits
- 2. To expose the students to the basic concepts of electric circuits and their analysis in time and frequency domain
- 3. To introduce the concept of filter circuits and design of passive filters
- 4. To introduce the techniques of network synthesis

Syllabus

Network theorems, Network topology, Transient analysis, S-Domain analysis of circuits, Network functions, Two-port network, Symmetrical two-port networks, Symmetrical two-port reactive filters, Attenuators, Elements of realizability theory, Driving point synthesis.

Expected Outcome

Students would be able to

- (i) realize Network theorems and apply them in biomedical circuits.
- (ii) analyze electric circuit in time and frequency domain.

Text Books:

- 1. Van Valkenberg, Network Analysis, Prentice-Hall of India.
- 2. D. Roy Choudhary, *Networks and Systems*, New Age International Publishers, Second Edition.

Reference Books:

- 1. Edminister, *Electric Circuits Schaum's Outline Series*, McGraw-Hill.
- 2. Franklin F. Kuo, *Network Analysis and Synthesis*, Wiley India, Second Edition.
- 3. William H Hayt & Jack E Kemmerly, Engineering Circuit Analysis, TMH.

COURSE PLAN

Module	Contents	Hours	Sem. Exam Marks	
I	Thevenin's and Norton's theorems – Superposition theorem – Source transformations – Maximum Power Transfer theorem – Reciprocity theorem	4		
	Definition of basic terms – Incidence matrix – Tie-sets and Cut-sets – Analysis and formulation of network equations using tie-set and cut-set	3 15%		
	Response of RC, RL and LC networks to impulse and step inputs – Step response of RLC network			
П	Review of Laplace transform – Transforms of basic signals – Transformation of a circuit into S-domain – Transformed equivalent of inductance, capacitance and mutual inductance – Impedance and admittance in the transformed domain		150/	
	Nodal analysis and Mesh analysis of the transformed circuit	2	15%	
	Impulse response and Transfer function – Poles and Zeros – Restriction of pole and zero locations of network functions - Steady state response and Frequency response from Laplace transform	4		

	FIRST INTERNAL EXAM		
Ш	Characterization in terms of Impedance, Admittance, Transmission and Hybrid parameters – Inter-relationships among parameter sets	2	
	Analysis of interconnected two-port networks – Series, Parallel and Cascade connections of two-port networks	3 15%	
	T and π equivalent of a two-port network	2	-
IV	Image impedance – Characteristic impedance and propagation constant of a symmetrical two-port network	2	
	Filter fundamentals – Pass and stop bands – Types of filtering – Brick wall specifications	2	-
	Characteristic impedance – Design of Constant K – Low Pass, High Pass, Band Pass and Band Reject Filters	2	15%
	T and π sections – Design of m-derived Low Pass and High Pass filters. Types of attenuators, T and Bridged T attenuators -	3	
	compensated attenuators		
	SECOND INTERNAL EXAM		1
V	polynomials – Properties of Hurwitz polynomials	lusality and Stability analysis of network functions – Hurwitz lynomials – Properties of Hurwitz polynomials	
	Positive real functions – Properties of positive real functions – Testing driving point functions	3	20%
	Application of maximum modulus theorems – Brune's positive real functions – Strum's theorem – Elementary synthesis procedures	3	
VI	Foster and Cauer forms of realization of network functions – Properties of driving point immittance functions of LC networks		20%
	Synthesis of LC driving point functions – Properties of RC driving point immittance functions, Synthesis of RC network functions	4	
	Properties of RL driving point immittance functions, Synthesis of RL network functions	3	
	END SEMESTER EXAM		

QUESTION PAPER PATTERN:

Maximum Marks: 100 Exam Duration: 3 Hours

There shall be three parts for the question paper.

Part A includes Modules 1 & 2 and shall have three questions of fifteen marks out of which two are to be answered. There can be subdivisions, limited to a maximum of 4, in each question.

Part B includes Modules 3 & 4 and shall have three questions of fifteen marks out of which two are to be answered. There can be subdivisions, limited to a maximum of 4, in each question.

Part C includes Modules 5 & 6 and shall have three questions of twenty marks out of which two are to be answered. There can be subdivisions, limited to a maximum of 4, in each question.

Note: Each part shall have questions uniformly covering both the modules in it.