Lecture 4 - 9/12/24

Recall: A space X is a K(A, n) space if its only nontrivial homotopy group is $\pi_n(X) = A$.

Lemma 1. K(A, n)'s exist for all groups A (abelian if $n \ge 2$) and all $n \ge 1$.

Proof. Choose a generating set $\{g_{\alpha}\}$ for A and a set of relations $\{r_{\beta}\}$ such that $A = \langle g_{\alpha}, r_{\beta} \rangle$.

We build a CW complex X where $X^{(n)} = \bigvee_{\alpha} S_{\alpha}^{n}$. Now glue on an (n+1)-cell for every β along a map $S^{n+1} \to \bigvee_{\alpha} S_{\alpha}^{n}$ representing r_{β} . We have an (n+1)-complex with π_{n} what we want, but may have nontrivial π_{n+1} .

At stage k, we've constructed a complex such that $\pi_n(X^{(k)}) = A$ and for all $i \leq k, i \neq n$, $\pi_i(X^{(k)}) = 0$. Now we add k + 1-cells whose boundary maps kill the elements of π_k . By cellular approximation, this doesn't affect π_i for i < k.

Lemma 2. Any two CW complexes that are K(A, n)'s are homotopy equivalent.

Proof. Let X be the complex from the previous lemma, and let Y be some other K(A,n) complex. We

- **1.** Build a map $X \to Y$ which induces equivalences on all π_i .
- 2. Apply Whitehead theorem.

First, map basepoint to basepoint, send n-cells S_{α}^{n} to corresponding generators of $\pi_{n}(Y)$ via a map f_{n} . We know that $f_{n} \circ \partial_{\beta}$ is null homotopic, so we can extend the map to e_{β}^{n} . For higher cells, we can always extend in an arbitrary way.

How to understand $H^*(K(A, n))$? We know $H^*(K(\mathbb{Z}, 1)) = H^*(S^1)$, so we can try to use the fibration

Serre spectral sequence

Say we have some base space B, with $\pi_1(B) = 0$, or, more generally, $\pi_1(B) \curvearrowright H_*(F)$ trivially.

Over this, we have a fibration Y with fiber F. Maybe we understand the homology of B and the homology of F, and we want to understand the homology of Y. Because B is a CW complex, we can look at its skeleta.

Lemma 3. Let $Y_p = \pi^{-1}(B^{(p)})$. Then $H_n(Y_p, Y_{p-1}) \cong C_p(B; H_{n-p}(F))$.

Proof. Let $\phi_{\alpha}:(D^p,\partial D^p)\to(B^{(p)},B^{(p-1)})$ be the inclusion maps of cells e^p_{α} . By Excision,

$$H_n(Y_p, Y_{p-1}) \cong H_n\left(\coprod_{\alpha} F \times e^p_{\alpha}, \coprod_{\alpha} F \times \partial e^p_{\alpha}\right)$$
$$\cong \bigoplus_{\alpha} H_n(F \times e^p, F \times \partial e^p)$$
$$\cong \bigoplus_{\alpha} H_{n-p}(F) \cong C_p(B, H_{n-p}(F))$$

What parts of $H_n(Y_p, Y_{p-1})$ survive to $H_n(Y_{p+1}, Y_{p-2})$? We have the exact sequence

$$H_n(Y_p, Y_{p-1}) \longrightarrow H_n(Y_p, Y_{p-1}) \stackrel{\partial}{\longrightarrow} H_{n-1}(Y_{p-1}, Y_{p-2})$$

$$Z_p(B; H_{n-p}(F))$$
 $C_p(B; H_{n-p}(F)) \xrightarrow{\partial} C_{p-1}(B; H_{n-p}(F))$

To see the second ∂ , consider a map $I^{p-1} \times F \to Y$ which lifts

$$I^{p-1} \times F \longrightarrow I^{p-1} \downarrow \partial_{\alpha}$$

$$B$$

Use HLP to get a map $I^p \times F \to Y$ where $B^{(p-2)} \times F \to Y_{p-2}$, and this is the map we want.

By the same token, the stuff that survives into $H_n(Y_{p+1}, Y_{p-1})$.

Once we let n-cells in (Y_p, Y_{p-1}) see n-cells in (Y_{p+1}, Y_p) and (Y_{p-1}, Y_{p-2}) . What's left is $H_p(B; H_{n-p}(F))$

Next, there's some cancellation between the (p, n - p) entry of this table and the (p-2, n-p+1) entry, then the (p-3, n-p+2), and so on, etc.

In the end, we should be left with "the part of $H_n(Y)$ that comes from n-cells that are p-cells of B times n-p-cells of F."

Now arrange it all into a grid: indices p, q = n - p.

I'm not tikzing this.

I need to figure out all this stuff

Let's do some computation:

Some facts:

- You can do the same thing thing for H^* .
- Moreover, in this case cup products behave nicely with respect to the various pages.

Example 0.1. We want to compute $H^*(\mathbb{CP}^n)$ based on $S^1 \to S^{2n+1} \to \mathbb{CP}^n$. The E_{∞} page (with rational coefficients) should be \mathbb{Q} 's at the 0th and (2n+1)st diagonal and 0s elsewhere. Note that with \mathbb{Q} coefficients, $H_n(B; H_q(F)) \cong H_n(B) \otimes H_q(F)$.