# Package 'ade4'

February 6, 2023

**Version** 1.7-22

**Title** Analysis of Ecological Data: Exploratory and Euclidean Methods in Environmental Sciences

Author Stéphane Dray <stephane.dray@univ-lyon1.fr>, Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>, and Jean Thioulouse <jean.thioulouse@univ-lyon1.fr>, with contributions from Thibaut Jombart, Sandrine Pavoine, Jean R. Lobry, Sébastien Ollier, Daniel Borcard, Pierre Legendre, Stéphanie Bougeard and Aurélie Siberchicot. Based on earlier work by Daniel Chessel.

Maintainer Aurélie Siberchicot <aurelie.siberchicot@univ-lyon1.fr>

**Depends** R (>= 2.10)

**Imports** graphics, grDevices, methods, stats, utils, MASS, pixmap, sp, Rcpp

LinkingTo Rcpp, RcppArmadillo

**Suggests** ade4TkGUI, adegraphics, adephylo, ape, CircStats, deldir, lattice, spdep, splancs, waveslim, progress, foreach, parallel, doParallel, iterators

**Description** Tools for multivariate data analysis. Several methods are provided for the analysis (i.e., ordination) of one-table (e.g., principal component analysis, correspondence analysis), two-table (e.g., coinertia analysis, redundancy analysis), three-table (e.g., RLQ analysis) and K-table (e.g., STATIS, multiple coinertia analysis). The philosophy of the package is described in Dray and Dufour (2007) <doi:10.18637/jss.v022.i04>.

**License** GPL (>= 2)

URL http://pbil.univ-lyon1.fr/ADE-4/

BugReports https://github.com/sdray/ade4/issues

**Encoding** UTF-8

NeedsCompilation yes

Repository CRAN

**Date/Publication** 2023-02-06 14:32:37 UTC

# $\mathsf{R}$ topics documented:

| ide4-package  |      |
|---------------|------|
| abouheif.eg   | . 9  |
| ncacia        | . 10 |
| ndd.scatter   | . 11 |
| ıminoacyl     | . 13 |
| ımova         |      |
| npis108       |      |
| ipqe          |      |
| uravo         |      |
| urdeche       |      |
| rea.plot      |      |
| urrival       |      |
| ıs.taxo       |      |
| ıtlas         |      |
| itya          |      |
| ıvijons       |      |
| ıvimedi       |      |
|               |      |
| wiurba        |      |
| pacteria      |      |
| panque        | 32   |
| paran95       | 35   |
| oca           | . 36 |
| oca.coinertia | . 38 |
| oca.rlq       | 40   |
| between       | 41   |
| of88          | . 42 |
| oicenter.wt   |      |
| oordeaux      |      |
| osetal97      |      |
| ouech         |      |
| outterfly     |      |
| owca.dpcoa    |      |
| ailliez       |      |
| capitales     |      |
| arni19        | . 52 |
| earni70       | 53   |
| arniherbi49   | 54   |
| asitas        | . 55 |
| chatcat       | . 56 |
| hats          | . 57 |
| chazeb        | . 58 |
| hevaine       |      |
| chickenk      | 60   |
| elementines   |      |
| enc2003       |      |
| roinertia     | 63   |

| coleo                | . 65  |
|----------------------|-------|
| combine.4thcorner    |       |
| corkdist             |       |
| corvus               |       |
| costatis             | . 70  |
| costatis.randtest    |       |
| dagnelie.test        |       |
| Deprecated functions |       |
| deug                 | . 74  |
| disc                 | . 75  |
| discrimin            | . 76  |
| discrimin.coa        | . 78  |
| dist.binary          | . 79  |
| dist.dudi            | . 80  |
| dist.ktab            | . 81  |
| dist.neig            | . 84  |
| dist.prop            |       |
| dist.quant           |       |
| divc                 |       |
| divcmax              | . 89  |
| dotchart.phylog      | . 90  |
| dotcircle            |       |
| doubs                |       |
| dpcoa                |       |
| dudi                 |       |
| dudi.acm             |       |
| dudi.coa             |       |
| dudi.dec             |       |
| dudi.fca             |       |
| dudi.hillsmith       |       |
| dudi.mix             |       |
| dudi.nsc             | . 107 |
| dudi.pca             |       |
| dudi.pco             |       |
| dunedata             | . 112 |
| ecg                  | . 112 |
| ecomor               | . 113 |
| elec88               |       |
| escopage             | . 117 |
| euro123              | . 118 |
| fission              |       |
| foucart              |       |
| fourthcorner         | . 122 |
| friday87             |       |
| fruits               |       |
| gearymoran           | . 128 |
| ggtortoises          |       |
| ganulo               | 131   |

| gridrowcol                            |     |
|---------------------------------------|-----|
| ndpg                                  | 133 |
| noumousr                              | 134 |
| nousetasks                            | 136 |
| numDNAm                               | 137 |
| chtyo                                 | 137 |
| nertia.dudi                           |     |
| rishdata                              |     |
| s.euclid                              |     |
| ulliot                                |     |
| v73                                   |     |
| ccponds                               |     |
| kdist                                 |     |
| kdist2ktab                            |     |
| kdisteuclid                           |     |
| kplot                                 |     |
| kplot.foucart                         |     |
| kplot.mcoa                            |     |
| kplot.mfa                             |     |
| kplot.pta                             |     |
| kplot.sepan                           |     |
| kplot.statis                          |     |
| krandtest                             |     |
| ktab                                  |     |
| ktab.data.frame                       |     |
| ktab.list.df                          |     |
| ktab.list.dudi                        |     |
| ktab.match2ktabs                      |     |
| ktab.within                           |     |
| ascaux                                |     |
| ingoes                                |     |
| izards                                |     |
| oocv.between                          |     |
| oocv.discrimin                        |     |
| oocv.dudi                             |     |
| macaca                                |     |
| macon                                 |     |
| macroloire                            |     |
| mafragh                               |     |
| mantel.randtest                       |     |
| mantel.rtest                          |     |
| maples                                |     |
| mariages                              |     |
| e e e e e e e e e e e e e e e e e e e |     |
| mbpcaiv                               |     |
| mbpls                                 |     |
| mcoa                                  |     |
| mdpcoa                                |     |
| meau                                  | 190 |

| meaudret            | . 197 |
|---------------------|-------|
| mfa                 |       |
| microsatt           |       |
| mjrochet            |       |
| mld                 |       |
| mollusc             |       |
| monde84             |       |
| morphosport         |       |
| mstree              |       |
| multiblock          |       |
| multispati          |       |
| multispati.randtest |       |
| multispati.rtest    |       |
| neig                |       |
| newick.eg           |       |
| newick2phylog       |       |
| niche               |       |
| nipals              |       |
| njplot              |       |
| olympic             |       |
| oribatid            |       |
| originality         |       |
| orthobasis          |       |
| ours                |       |
| palm                |       |
| pap                 |       |
| pcaiv               |       |
| peaivortho          |       |
| pcoscaled           |       |
| pew                 |       |
| perthi02            |       |
| phylog              |       |
| PI2newick           |       |
| piosphere           |       |
| plot.phylog         |       |
| presid2002          |       |
| •                   |       |
| procella            |       |
| procuste            |       |
| procuste.randtest   |       |
| procuste.rtest      |       |
| pta                 |       |
| quasieuclid         |       |
| randboot            |       |
| randboot.multiblock |       |
| randtest            |       |
| randtest.amova      |       |
| randtest.between    |       |
| randtast coinartia  | 260   |

| randtest.discrimin  |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       | <br>270   |
|---------------------|--|---|--|---|------|---|------|---|-------|-------|-------|------|---|------|---|-------|-----------|
| randtest.dpcoa      |  |   |  |   | <br> |   |      |   |       |       |       | <br> |   |      |   |       | <br>271   |
| randtest.pcaiv      |  |   |  |   | <br> |   |      |   |       |       |       | <br> |   |      |   |       | <br>272   |
| randxval            |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       | 273       |
| rankrock            |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       | 274       |
| reconst             |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       | 275       |
| rhizobium           |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       | 276       |
| rhone               |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       | 277       |
| rlq                 |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       | 278       |
| rpjdl               |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       |           |
| rtest               |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       |           |
|                     |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       |           |
| rtest.between       |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       |           |
| rtest.discrimin     |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       |           |
| RV.randtest         |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       |           |
| RV.rtest            |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       |           |
| RVdist.randtest .   |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       |           |
| RVintra.randtest .  |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       | <br>287   |
| s.arrow             |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       | <br>288   |
| s.chull             |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       | <br>290   |
| s.class             |  |   |  |   | <br> |   |      |   |       |       |       |      |   |      |   |       | <br>291   |
| s.corcircle         |  |   |  |   | <br> |   |      |   |       |       |       | <br> |   |      |   |       | <br>293   |
| s.distri            |  |   |  |   | <br> |   |      |   |       |       |       | <br> |   |      |   |       | <br>295   |
| s.hist              |  |   |  |   | <br> |   |      |   |       |       |       |      |   |      |   |       | <br>297   |
| s.image             |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       |           |
| s.kde2d             |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       |           |
| s.label             |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       |           |
| s.logo              |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       |           |
| s.match             |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       |           |
| s.match.class       |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       |           |
| s.multinom          |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       |           |
|                     |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       |           |
| s.traject           |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       |           |
| s.value             |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       |           |
| santacatalina       |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       | 314       |
| sarcelles           |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       | <br>315   |
| scalewt             |  | • |  | - |      | - |      | • | <br>- | <br>- | <br>- |      | - |      | - | <br>- | <br>316   |
| scatter             |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       | <br>317   |
| scatter.acm         |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       |           |
| scatter.coa         |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       | <br>319   |
| scatter.dudi        |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       | <br>320   |
| scatter.fca         |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       | <br>321   |
| scatterutil         |  |   |  |   | <br> |   |      |   |       |       |       |      |   |      |   |       | <br>322   |
| sco.boxplot         |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       |           |
| sco.class           |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       |           |
| sco.distri          |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       |           |
| sco.gauss           |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       |           |
| sco.gauss sco.label |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       |           |
|                     |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   |       |           |
| sco.match           |  |   |  |   |      |   |      |   |       |       |       |      |   |      |   | <br>٠ |           |
| sco.quant           |  |   |  |   | <br> |   | <br> |   |       |       |       |      |   | <br> |   |       | <br>. 332 |

| score              | . 333 |
|--------------------|-------|
| score.acm          | . 334 |
| score.coa          | . 335 |
| score.mix          | . 336 |
| score.pca          | . 337 |
| seconde            | . 338 |
| sepan              | . 339 |
| skulls             |       |
| statico            |       |
| statico.krandtest  |       |
| statis             |       |
| steppe             |       |
| supcol             |       |
| supdist            |       |
| 1                  |       |
| suprow             |       |
| suprow.pta         |       |
| symbols.phylog     |       |
| syndicats          |       |
| t3012              |       |
| table.cont         |       |
| table.dist         |       |
| table.paint        |       |
| table.phylog       | . 359 |
| table.value        | . 360 |
| tarentaise         | . 362 |
| taxo.eg            | . 363 |
| testdim            | . 364 |
| testdim.multiblock |       |
| tintoodiel         |       |
| tithonia           |       |
| tortues            |       |
| toxicity           |       |
| triangle.class     |       |
| triangle.plot      |       |
| trichometeo        |       |
|                    |       |
| ungulates          |       |
| uniquewt.df        |       |
| variance.phylog    |       |
| varipart           |       |
| vegtf              |       |
| veuvage            |       |
| wca                | . 382 |
| wca.coinertia      | . 383 |
| wca.rlq            | . 385 |
| westafrica         | . 386 |
| within             | . 388 |
| withinpca          |       |
| withvit coo        | 301   |

8 ade4-package

| Index |           |    |   |   |  |   |   |   |  |  |  |   |  |   |  |   |  |  |  |   |   |  |  |  |  | <b>39</b> 9 |
|-------|-----------|----|---|---|--|---|---|---|--|--|--|---|--|---|--|---|--|--|--|---|---|--|--|--|--|-------------|
|       | zealand . |    |   |   |  |   |   |   |  |  |  |   |  |   |  |   |  |  |  |   |   |  |  |  |  | 397         |
|       | yanomama  | ι. |   |   |  |   |   |   |  |  |  |   |  |   |  |   |  |  |  |   |   |  |  |  |  | 396         |
|       | worksurv  |    |   |   |  |   |   |   |  |  |  |   |  |   |  |   |  |  |  |   |   |  |  |  |  | 394         |
|       | woangers  |    | • | • |  | • | • | • |  |  |  | • |  | • |  | • |  |  |  | • | • |  |  |  |  | 392         |

ade4-package

The ade4 package

# **Description**

This package is developed in the Biometry and Evolutionary Biology Lab (UMR CNRS 5558) - University Lyon 1. It contains Data Analysis functions to analyse Ecological and Environmental data in the framework of Euclidean Exploratory methods, hence the name ade4.

ade4 is characterized by (1) the implementation of graphical and statistical functions, (2) the availability of numerical data, (3) the redaction of technical and thematic documentation and (4) the inclusion of bibliographic references.

To cite ade4, please use citation("ade4").

# Author(s)

Stéphane Dray, Anne-Béatrice Dufour, and Jean Thioulouse. Contributions from Daniel Borcard, Stéphanie Bougeard, Thibaut Jombart, Pierre Legendre, Jean R. Lobry, Sébastien Ollier, Sandrine Pavoine and Aurélie Siberchicot. Based on earlier work by Daniel Chessel.

### References

Dray S and Dufour A (2007). "The ade4 Package: Implementing the Duality Diagram for Ecologists." \_Journal of Statistical Software\_, \*22\*(4), pp. 1-20. doi: 10.18637/jss.v022.i04 (URL: http://doi.org/10.18637/jss.v022.i04).

See ade4 website: http://pbil.univ-lyon1.fr/ADE-4/

# See Also

ade4TkGUI, adegenet, adehabitat, adegraphics

abouheif.eg 9

abouheif.eg

Phylogenies and quantitative traits from Abouheif

### **Description**

This data set gathers three phylogenies with three sets of traits as reported by Abouheif (1999).

### Usage

```
data(abouheif.eg)
```

#### **Format**

abouheif.eg is a list containing the 6 following objects:

**tre1** is a character string giving the first phylogenetic tree made up of 8 leaves.

**vec1** is a numeric vector with 8 values.

**tre2** is a character string giving the second phylogenetic tree made up of 7 leaves.

**vec2** is a numeric vector with 7 values.

tre3 is a character string giving the third phylogenetic tree made up of 15 leaves.

vec3 is a numeric vector with 15 values.

#### Source

Data taken from the phylogenetic independence program developped by Ehab Abouheif

#### References

Abouheif, E. (1999) A method for testing the assumption of phylogenetic independence in comparative data. *Evolutionary Ecology Research*, **1**, 895–909.

```
data(abouheif.eg)
par(mfrow=c(2,2))
symbols.phylog(newick2phylog(abouheif.eg$tre1), abouheif.eg$vec1,
    sub = "Body Mass (kg)", csi = 2, csub = 2)
symbols.phylog(newick2phylog(abouheif.eg$tre2), abouheif.eg$vec2,
    sub = "Body Mass (kg)", csi = 2, csub = 2)
dotchart.phylog(newick2phylog(abouheif.eg$tre1), abouheif.eg$vec1,
    sub = "Body Mass (kg)", cdot = 2, cnod = 1, possub = "topleft",
        csub = 2, ceti = 1.5)
dotchart.phylog(newick2phylog(abouheif.eg$tre2), abouheif.eg$vec2,
    sub = "Body Mass (kg)", cdot = 2, cnod = 1, possub = "topleft",
        csub = 2, ceti = 1.5)
par(mfrow = c(1,1))
w.phy=newick2phylog(abouheif.eg$tre3)
dotchart.phylog(w.phy,abouheif.eg$vec3, clabel.n = 1)
```

10 acacia

acacia

Spatial pattern analysis in plant communities

# **Description**

Counts of individuals of Acacia ehrenbergiana from five parallel transects of 32 quadrats.

### Usage

```
data(acacia)
```

### **Format**

acacia is a data frame with 15 variables:

se.T1, se.T2, se.T3, se.T4, se.T5 are five numeric vectors containing quadrats counts of seedlings from transects 1 to 5 respectively;

sm.T1, sm.T2, sm.T3, sm.T4, sm.T5 are five numeric vectors containing quadrats counts of small trees (crown  $< 1 m^2$  in canopy) of transects 1 to 5 respectively;

la.T1, la.T2, la.T3, la.T4, la.T5 are five numeric vectors containing quadrats counts of trees with large crown (crown > 1  $m^2$  in canopy) of transects 1 to 5 respectively.

#### Source

Greig-Smith, P. and Chadwick, M.J. (1965) Data on pattern within plant communities. III. *Acacia-Capparis* semi-desert scrub in the Sudan. *Journal of Ecology*, **53**, 465–474.

### References

Hill, M.O. (1973) The intensity of spatial pattern in plant communities. *Journal of Ecology*, **61**, 225–235.

### **Examples**

```
data(acacia)
if(adegraphicsLoaded()) {
    gg <- s1d.barchart(acacia, p1d.horizontal = FALSE, psub.position = "topleft",
        plabels.cex = 0, ylim = c(0,20))
} else {
    par(mfcol = c(5, 3))
    par(mar = c(2, 2, 2, 2))
    for(k in 1:15) {
        barplot(acacia[, k], ylim = c(0, 20), col = grey(0.8))
        ade4:::scatterutil.sub(names(acacia)[k], 1.5, "topleft")
    }
    par(mfcol = c(1, 1))
}</pre>
```

10

add.scatter 11

|--|

# **Description**

add.scatter is a function which defines a new plot area within an existing plot and displays an additional graphic inside this area. The additional graphic is determined by a function which is the first argument taken by add.scatter. It can be used in various ways, for instance to add a screeplot to an ordination scatterplot (add.scatter.eig).

The function add.scatter.eig uses the following colors: black (represented axes), grey(axes retained in the analysis) and white (others).

#### Usage

```
add.scatter(func,posi = c("bottomleft","bottomright","topleft","topright"),
ratio = 0.2, inset = 0.01, bg.col = 'white')
add.scatter.eig(w, nf = NULL, xax, yax, posi = "bottomleft", ratio =
.25, inset = 0.01, sub = "Eigenvalues", csub = 2 * ratio)
```

### Arguments

| func   | an - evaluated - function producing a graphic                                                                                                                                                                           |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| posi   | a character vector (only its first element being considered) giving the position of the added graph. Possible values are "bottomleft" (="bottom"), "bottomright", "topleft" (="top"), "topright", and "none" (no plot). |
| ratio  | the size of the added graph in proportion of the current plot region                                                                                                                                                    |
| inset  | the inset from which the graph is drawn, in proportion of the whole plot region. Can be a vector of length 2, giving the inset in x and y. If atomic, same inset is used in x and y                                     |
| bg.col | the color of the background of the added graph                                                                                                                                                                          |
| W      | numeric vector of eigenvalues                                                                                                                                                                                           |
| nf     | the number of retained factors, NULL if not provided                                                                                                                                                                    |
| xax    | first represented axis                                                                                                                                                                                                  |
| yax    | second represented axis                                                                                                                                                                                                 |
| sub    | title of the screeplot                                                                                                                                                                                                  |
| csub   | size of the screeplot title                                                                                                                                                                                             |
|        |                                                                                                                                                                                                                         |

# Details

add.scatter uses par("plt") to redefine the new plot region. As stated in par documentation, this produces to (sometimes surprising) interactions with other parameters such as "mar". In particular, such interactions are likely to reset the plot region by default which would cause the additional graphic to take the whole plot region. To avoid such inconvenient, add par([other options], plt=par("plt")) when using par in your graphical function (argument func).

12 add.scatter

#### Value

The matched call (invisible).

#### Author(s)

Thibaut Jombart <t.jombart@imperial.ac.uk>

### See Also

scatter

```
data(microsatt)
w <- dudi.coa(data.frame(t(microsatt$tab)), scann = FALSE, nf = 3)</pre>
if(adegraphicsLoaded()) {
 a1 <- rnorm(100)
 b1 <- s1d.barchart(sort(a1), p1d.horizontal = FALSE, plot = FALSE)
 h1 <- s1d.hist(a1, pgrid.draw = FALSE, porigin.draw = FALSE, pbackground.col = "grey",
    plot = FALSE, ppoly.col = "white", ppoly.alpha = 1)
  g1 <- insert(h1, b1, posi = "topleft", plot = FALSE)</pre>
 a2 < - rnorm(100)
 b2 <- s1d.barchart(sort(a2), p1d.horizontal = FALSE, plot = FALSE)</pre>
 h2 <- s1d.hist(a2, pgrid.draw = FALSE, porigin.draw = FALSE, pbackground.col = "grey",
    plot = FALSE, ppoly.col = "white", ppoly.alpha = 1)
 g2 \leftarrow insert(h2, b2, posi = "topleft", inset = c(0.25, 0.01), plot = FALSE)
 a3 < - rnorm(100)
 b3 <- s1d.barchart(sort(a3), p1d.horizontal = FALSE, plot = FALSE)
 h3 <- s1d.hist(a3, pgrid.draw = FALSE, porigin.draw = FALSE, pbackground.col = "grey",
    plot = FALSE, ppoly.col = "white", ppoly.alpha = 1)
  g3 <- insert(h3, b3, posi = "bottomleft", inset = 0.4, ratio = 0.2, plot = FALSE)
 a4 < - rnorm(100)
 b4 <- s1d.barchart(sort(a4), p1d.horizontal = FALSE, plot = FALSE)
 h4 <- s1d.hist(a4, pgrid.draw = FALSE, porigin.draw = FALSE, pbackground.col = "grey",
    plot = FALSE, ppoly.col = "white", ppoly.alpha = 1)
  g4 <- insert(h3, b3, posi = "bottomright", ratio = 0.3, plot = FALSE)
  G1 \leftarrow ADEgS(list(g1, g2, g3, g4), layout = c(2, 2), plot = TRUE)
  g5 <- s.label(w$co, plot = FALSE)
 g6 <- plotEig(w$eig, w$nf, psub = list(text = "Eigenvalues"),</pre>
    pbackground = list(box = TRUE), plot = FALSE)
  G2 <- insert(g6, g5, posi = "bottomright", ratio = 0.25)
} else {
  par(mfrow=c(2,2))
  f1 <- function(a){</pre>
    opar=par("mar","xaxt","yaxt","plt")
```

aminoacyl 13

```
on.exit(par(opar))
  par(mar=rep(.1,4),xaxt="n",yaxt="n",plt=par("plt"))
  hist(a,xlab="",ylab="",main="",col="white",proba=TRUE)
  lines(seq(-4,4,le=50), dnorm(seq(-4,4,le=50)), col="red")
}
a <- rnorm(100)
barplot(sort(a))
add.scatter(f1(a),posi="topleft",bg.col="grey")
a <- rnorm(100)
barplot(sort(a))
add.scatter(f1(a),posi="topleft",bg.col="grey",inset=c(.25,.01))
a <- rnorm(100)
barplot(sort(a))
add.scatter(f1(a),posi="topleft",bg.col="grey",inset=.25,ratio=.1)
a <- rnorm(100)
barplot(sort(a))
add.scatter(f1(a),posi="bottomright",bg.col="grey",ratio=.3)
par(mfrow=c(1,1))
s.label(w$co)
add.scatter.eig(w$eig,w$nf,posi="bottomright",1,2)
```

aminoacyl

Codon usage

# **Description**

aminoacyl is a list containing the codon counts of 36 genes encoding yeast aminoacyl-tRNA-synthetase(S.Cerevisiae).

### Usage

```
data(aminoacyl)
```

### **Format**

aminoacyl is a list containing the 5 following objects:

**genes** is a vector giving the gene names.

**localisation** is a vector giving the cellular localisation of the proteins (M = mitochondrial, C = cytoplasmic, I = indetermined, CI = cyto and mito).

**codon** is a vector containing the 64 triplets.

**AA** is a factor giving the amino acid names for each codon.

usage.codon is a dataframe containing the codon counts for each gene.

14 amova

### **Source**

```
Data prepared by D. Charif Charif@versailles.inra.fr> starting from: http://www.expasy.org/sprot/
```

### References

Chiapello H., Olivier E., Landes-Devauchelle C., Nitschké P. and Risler J.L (1999) Codon usage as a tool to predict the cellular localisation of eukariotic ribosomal proteins and aminoacyl-tRNA synthetases. *Nucleic Acids Res.*, **27**, 14, 2848–2851.

# **Examples**

```
data(aminoacyl)
aminoacyl$genes
aminoacyl$usage.codon
dudi.coa(aminoacyl$usage.codon, scannf = FALSE)
```

amova

Analysis of molecular variance

# Description

The analysis of molecular variance tests the differences among population and/or groups of populations in a way similar to ANOVA. It includes evolutionary distances among alleles.

# Usage

```
amova(samples, distances, structures)
## S3 method for class 'amova'
print(x, full = FALSE, ...)
```

# **Arguments**

| samples    | a data frame with haplotypes (or genotypes) as rows, populations as columns and abundance as entries                             |
|------------|----------------------------------------------------------------------------------------------------------------------------------|
| distances  | an object of class dist computed from Euclidean distance. If distances is null, equidistances are used.                          |
| structures | a data frame containing, in the jth row and the kth column, the name of the group of level k to which the jth population belongs |
| x          | an object of class amova                                                                                                         |
| full       | a logical value indicating whether the original data ('distances', 'samples', 'structures') should be printed                    |
|            | further arguments passed to or from other methods                                                                                |

apis108

### Value

Returns a list of class amova

call call

results a data frame with the degrees of freedom, the sums of squares, and the mean

squares. Rows represent levels of variability.

componentsofcovariance

a data frame containing the components of covariance and their contribution to

the total covariance

statphi a data frame containing the phi-statistics

#### Author(s)

Sandrine Pavoine pavoine@mnhn.fr>

#### References

Excoffier, L., Smouse, P.E. and Quattro, J.M. (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. *Genetics*, **131**, 479–491.

#### See Also

```
randtest.amova
```

# **Examples**

```
data(humDNAm)
amovahum <- amova(humDNAm$samples, sqrt(humDNAm$distances), humDNAm$structures)
amovahum</pre>
```

apis108

Allelic frequencies in ten honeybees populations at eight microsatellites loci

# **Description**

This data set gives the occurences for the allelic form on 8 loci in 10 populations of honeybees.

# Usage

```
data(apis108)
```

#### **Format**

A data frame containing 180 rows (allelic forms on 8 loci) and 10 columns (populations of honeybees: El.Hermel, Al.Hoceima, Nimba, Celinda, Pretoria, Chalkidiki, Forli, Valenciennes, Umea and Seville).

16 apqe

### **Source**

```
http://www1.montpellier.inra.fr/URLB/apis/libanfreq.pdf
```

Franck P., Garnery L., Solignac M. and Cornuet J.M. (2000) Molecular confirmation of a fourth lineage in honeybees from the Near-East. *Apidologie*, **31**, 167–180.

# Examples

```
data(apis108)
str(apis108)
names(apis108)
```

apqe

Apportionment of Quadratic Entropy

# **Description**

The hierarchical apportionment of quadratic entropy defined by Rao (1982).

# Usage

```
apqe(samples, dis = NULL, structures)
## S3 method for class 'apqe'
print(x, full = FALSE, ...)
```

# Arguments

| samp | les    | a data frame with haplotypes (or genotypes) as rows, populations as columns and abundance or presence-absence as entries              |
|------|--------|---------------------------------------------------------------------------------------------------------------------------------------|
| dis  |        | an object of class dist computed from Euclidean distance. If dis is null, equidistances are used.                                     |
| stru | ctures | a data frame that contains, in the jth row and the kth column, the name of the group of level $k$ to which the jth population belongs |
| Х    |        | an object of class appe                                                                                                               |
| full |        | a logical value that indicates whether the original data ('distances', 'samples', 'structures') should be printed                     |
|      |        | further arguments passed to or from other methods                                                                                     |

### Value

Returns a list of class appe

call call

results a data frame that contains the components of diversity.

aravo 17

### Author(s)

#### References

Rao, C.R. (1982) Diversity: its measurement, decomposition, apportionment and analysis. *Sankhya: The Indian Journal of Statistics*, **A44**, 1–22.

Pavoine S. and Dolédec S. (2005) The apportionment of quadratic entropy: a useful alternative for partitioning diversity in ecological data. *Environmental and Ecological Statistics*, **12**, 125–138.

# **Examples**

```
data(ecomor)
ecomor.phylog <- taxo2phylog(ecomor$taxo)
apqe(ecomor$habitat, ecomor.phylog$Wdist)</pre>
```

aravo

Distribution of Alpine plants in Aravo (Valloire, France)

### Description

This dataset describe the distribution of 82 species of Alpine plants in 75 sites. Species traits and environmental variables are also measured.

### Usage

```
data(aravo)
```

# **Format**

aravo is a list containing the following objects:

spe is a data.frame with the abundance values of 82 species (columns) in 75 sites (rows).

**env** is a data.frame with the measurements of 6 environmental variables for the sites.

traits is data.frame with the measurements of 8 traits for the species.

**spe.names** is a vector with full species names.

### **Details**

The environmental variables are:

| Aspect | Relative south aspect (opposite of the sine of aspect with flat coded 0)                                            |
|--------|---------------------------------------------------------------------------------------------------------------------|
| Slope  | Slope inclination (degrees)                                                                                         |
| Form   | Microtopographic landform index: 1 (convexity); 2 (convex slope); 3 (right slope); 4 (concave slope); 5 (concavity) |
| Snow   | Mean snowmelt date (Julian day) averaged over 1997-1999                                                             |
| PhysD  | Physical disturbance, i.e., percentage of unvegetated soil due to physical processes                                |
| ZoogD  | Zoogenic disturbance, i.e., quantity of unvegetated soil due to marmot activity: no; some; high                     |

18 ardeche

The species traits for the plants are:

Height Vegetative height (cm) Spread Maximum lateral spread of clonal plants (cm) Leaf elevation angle estimated at the middle of the lamina Angle Area Area of a single leaf Thick Maximum thickness of a leaf cross section (avoiding the midrib) SLA Specific leaf area Nmass Mass-based leaf nitrogen content Seed Seed mass

### Source

Choler, P. (2005) Consistent shifts in Alpine plant traits along a mesotopographical gradient. *Arctic, Antarctic, and Alpine Research*, **37**,444–453.

### **Examples**

```
data(aravo)
coa1 <- dudi.coa(aravo$spe, scannf = FALSE, nf = 2)
dudienv <- dudi.hillsmith(aravo$env, scannf = FALSE, nf = 2, row.w = coa1$lw)
duditrait <- dudi.pca(aravo$traits, scannf = FALSE, nf = 2, row.w = coa1$cw)
rlq1 <- rlq(dudienv, coa1, duditrait, scannf = FALSE, nf = 2)
plot(rlq1)</pre>
```

ardeche

Fauna Table with double (row and column) partitioning

### **Description**

This data set gives information about species of benthic macroinvertebrates in different sites and dates.

#### **Usage**

data(ardeche)

### **Format**

ardeche is a list with 6 components.

tab is a data frame containing fauna table with 43 species (rows) and 35 samples (columns).

**col.blocks** is a vector containing the repartition of samples for the 6 dates: july 1982, august 1982, november 1982, february 1983, april 1983 and july 1983.

**row.blocks** is a vector containing the repartition of species in the 4 groups defining the species order.

**dat.fac** is a date factor for samples (6 dates).

**sta.fac** is a site factor for samples (6 sites).

esp.fac is a species order factor (Ephemeroptera, Plecoptera, Coleoptera, Trichoptera).

area.plot

#### **Details**

The columns of the data frame ardeche\$tab define the samples by a number between 1 and 6 (the date) and a letter between A and F (the site).

#### Source

Cazes, P., Chessel, D., and Dolédec, S. (1988) L'analyse des correspondances internes d'un tableau partitionné: son usage en hydrobiologie. *Revue de Statistique Appliquée*, **36**, 39–54.

# Examples

```
data(ardeche)
dudi1 <- dudi.coa(ardeche$tab, scan = FALSE)
s.class(dudi1$co, ardeche$dat.fac)
if(adegraphicsLoaded()) {
   s.label(dudi1$co, plab.cex = 0.5, add = TRUE)
} else {
   s.label(dudi1$co, clab = 0.5, add.p = TRUE)
}</pre>
```

area.plot

Graphical Display of Areas

### **Description**

'area' is a data frame with three variables.

The first variable is a factor defining the polygons.

The second and third variables are the xy coordinates of the polygon vertices in the order where they are found.

area.plot: grey levels areas mapping

poly2area takes an object of class 'polylist' (maptools package) and returns a data frame of type area.

area2poly takes an object of type 'area' and returns a list of class 'polylist'

area2link takes an object of type 'area' and returns a proximity matrix which terms are given by the length of the frontier between two polygons.

area.util.contour,area.util.xy and area.util.class are three utility functions.

### Usage

```
area.plot(x, center = NULL, values = NULL, graph = NULL, lwdgraph = 2,
nclasslegend = 8, clegend = 0.75, sub = "", csub = 1,
possub = "topleft", cpoint = 0, label = NULL, clabel = 0, ...)

area2poly(area)
poly2area(polys)
area2link(area)
area.util.contour(area)
area.util.xy(area)
```

20 area.plot

### **Arguments**

a data frame with three variables Х center a matrix with the same row number as x and two columns, the coordinates of polygone centers. If NULL, it is computed with area.util.xy values if not NULL, a vector which values will be mapped to grey levels. The values must be in the same order as the values in unique(x.area[,1]) if not NULL, graph is a neighbouring graph (object of class "neig") between graph polygons lwdgraph a line width to draw the neighbouring graph nclasslegend if value not NULL, a number of classes for the legend clegend if not NULL, a character size for the legend, used with par("cex")\*clegend sub a string of characters to be inserted as sub-title a character size for the sub-titles, used with par("cex")\*csub csub a string of characters indicating the sub-titles position ("topleft", "topright", possub "bottomleft", "bottomright") cpoint if positive, a character size for drawing the polygons vertices (check up), used with par("cex")\*cpoint label if not NULL, by default the levels of the factor that define the polygons are used as labels. To change this value, use label. These labels must be in the same order than unique(x.area[,1]) clabel if not NULL, a character size for the polygon labels, used with par("cex")\*clabel a list belonging to the 'polylist' class in the spdep package polys a data frame of class 'area' area

further arguments passed to or from other methods

# Value

. . .

```
poly2area returns a data frame 'factor,x,y'. area2poly returns a list of class polylist.
```

### Author(s)

Daniel Chessel

```
data(elec88)
par(mfrow = c(2, 2))
area.plot(elec88$area, cpoint = 1)
area.plot(elec88$area, lab = elec88$lab$dep, clab = 0.75)
area.plot(elec88$area, clab = 0.75)
# elec88$neig <- neig(area = elec88$area)</pre>
```

area.plot 21

```
area.plot(elec88$area, graph = elec88$neig, sub = "Neighbourhood graph", possub = "topright")
par(mfrow = c(1, 1))
## Not run:
    par(mfrow = c(3, 3))
    for(i in 1:9) {
      x \leftarrow elec88$tab[,i]
      area.plot(elec88$area, val = x, sub = names(elec88$tab)[i], csub = 3, cleg = 1.5)
   par(mfrow = c(1, 1))
    if(adegraphicsLoaded()) {
      if(requireNamespace("sp", quietly = TRUE)) {
        s.value(elec88$xy, elec88$tab, Sp = elec88$Spatial,
          method = "color", psub.text = names(elec88$tab), psub.cex = 3,
          pSp.col = "white", pgrid.draw = FALSE, porigin.include = FALSE)
      }
    } else {
      par(mfrow = c(3, 3))
      for(i in 1:9) {
        x <- elec88$tab[, i]
        s.value(elec88$xy, elec88$tab[, i], contour = elec88$contour,
         meth = "greylevel", sub = names(elec88$tab)[i], csub = 3,
         cleg = 1.5, incl = FALSE)
      par(mfrow = c(1, 1))
    if(!adegraphicsLoaded()) {
      data(irishdata)
      par(mfrow = c(2, 2))
      w <- ade4:::area.util.contour(irishdata$area)</pre>
      xy <- ade4:::area.util.xy(irishdata$area)</pre>
      area.plot(irishdata$area, cpoint = 1)
      apply(w, 1, function(x) segments(x[1], x[2], x[3], x[4], lwd = 3))
      area.plot(irishdata$area, clabel = 1)
      s.label(xy, area = irishdata$area, incl = FALSE, clab = 0,
        cpoi = 3, addax = FALSE, contour = w)
      s.label(xy, area = irishdata$area, incl = FALSE,
        addax = FALSE, contour = w)
      par(mfrow = c(1, 1))
    }
## End(Not run)
data(irishdata)
w <- irishdata$area[c(42:53, 18:25), ]</pre>
w$poly <- as.factor(as.character(w$poly))</pre>
area.plot(w, clab = 2)
points(68, 59, pch = 20, col = "red", cex = 3)
```

22 arrival

```
points(68, 35, pch = 20, col = "red", cex = 3)
points(45, 12, pch = 20, col = "red", cex = 3)
sqrt((59 - 35) ^ 2) + sqrt((68 - 45) ^ 2 + (35 - 12) ^ 2)
area2link(w)
```

arrival

Arrivals at an intensive care unit

# Description

This data set gives arrival times of 254 patients at an intensive care unit during one day.

# Usage

```
data(arrival)
```

### **Format**

arrival is a list containing the 2 following objects:

times is a vector giving the arrival times in the form HH:MM

hours is a vector giving the number of arrivals per hour for the day considered

### **Source**

Data taken from the Oriana software developed by Warren L. Kovach <sales@kovcomp.com>starting from https://www.kovcomp.co.uk/oriana/index.html.

#### References

Fisher, N. I. (1993) Statistical Analysis of Circular Data. Cambridge University Press.

```
data(arrival)
dotcircle(arrival$hours, pi/2 + pi/12)
```

as.taxo 23

as.taxo Taxonomy

### **Description**

The function as.taxo creates an object of class taxo that is a sub-class of data.frame. Each column of the data frame must be a factor corresponding to a level j of the taxonomy (genus, family,...). The levels of factor j define some classes that must be completly included in classes of factor j+1.

A factor with exactly one level is not allowed. A factor with exactly one individual in each level is not allowed. The function dist.taxo compute taxonomic distances.

# Usage

```
as.taxo(df)
dist.taxo(taxo)
```

### **Arguments**

df a data frame

taxo a data frame of class taxo

### Value

as.taxo returns a data frame of class taxo. dist.taxo returns a numeric of class dist.

## Author(s)

```
Daniel Chessel
Sébastien Ollier <sebastien.ollier@u-psud.fr>
```

# See Also

taxo2phylog to transform an object of class taxo into an object of class phylog

```
data(taxo.eg)
tax <- as.taxo(taxo.eg[[1]])
tax.phy <- taxo2phylog(as.taxo(taxo.eg[[1]]),add.tools=TRUE)
par(mfrow = c(1,2))
plot(tax.phy, clabel.l = 1.25, clabel.n = 1.25, f = 0.75)
plot(taxo2phylog(as.taxo(taxo.eg[[1]][sample(15),])),
    clabel.l = 1.25, clabel.n = 1.25, f = 0.75)
par(mfrow = c(1,1))
all(dist.taxo(tax)==tax.phy$Wdist)</pre>
```

24 atlas

atlas

Small Ecological Dataset

### Description

atlas is a list containing three kinds of information about 23 regions (The French Alps): geographical coordinates, meteorology and bird presences.

### Usage

```
data(atlas)
```

#### **Format**

atlas is a list of 9 components:

area is a convex hull of 23 geographical regions.

xy are the coordinates of the region centers and altitude (in meters).

names.district is a vector of region names.

**meteo** is a data frame with 7 variables: min and max temperature in january; min and max temperature in july; january, july and total rainfalls.

birds is a data frame with 15 variables (species).

**contour** is a data frame with 4 variables (x1, y1, x2, y2) for the contour display of The French Alps.

alti is a data frame with 3 variables altitude in percentage [0,800], [800,1500] and [1500,5000].

**Spatial** is the map of the 23 regions of The French Alps (an object of the class SpatialPolygons of sp).

**Spatial.contour** is the contour of the map of the 23 regions of the French Alps (an object of the class SpatialPolygons of sp).

### Source

Extract from:

Lebreton, Ph. (1977) Les oiseaux nicheurs rhonalpins. *Atlas ornithologique Rhone-Alpes*. Centre Ornithologique Rhone-Alpes, Universite Lyon 1, 69621 Villeurbanne. Direction de la Protection de la Nature, Ministere de la Qualite de la Vie. 1–354.

```
data(atlas)
if(adegraphicsLoaded()) {
  if(requireNamespace("sp", quietly = TRUE)) {
    g11 <- s.Spatial(atlas$Spatial, pSp.col = "white", plot = FALSE)
    g12 <- s.label(atlas$area[, 2:3], plabels.cex = 0, plot = FALSE)
    g1 <- superpose(g11, g12, plot = FALSE)
    g2 <- s.label(atlas$xy, lab = atlas$names.district, Sp = atlas$Spatial,</pre>
```

atya 25

```
pgrid.dra = FALSE, pSp.col = "white", plot = FALSE)
    obj3 <- sp::SpatialPolygonsDataFrame(Sr = atlas$Spatial, data = atlas$meteo)
   g3 <- s.Spatial(obj3[, 1], nclass = 12, psub = list(position = "topleft",
     text = "Temp Mini January", cex = 2), plot = FALSE)
  g4 <- s.corcircle((dudi.pca(atlas$meteo, scann = FALSE)$co), plabels.cex = 1, plot = FALSE)
   G1 \leftarrow ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
   obj5 <- sp::SpatialPolygonsDataFrame(Sr = atlas$Spatial,</pre>
     data = dudi.pca(atlas$meteo, scann = FALSE)$li)
   g5 <- s.Spatial(obj5[, 1], nclass = 12, psub = list(position = "topleft",
      text = "Principal Component Analysis analysis", cex = 1.5), plot = FALSE)
    coa1 <- dudi.coa(atlas$birds, scann = FALSE, nf = 1)</pre>
    obj6 <- sp::SpatialPolygonsDataFrame(Sr = atlas$Spatial, data = coa1$1i)</pre>
   g6 <- s.Spatial(obj6[, 1], nclass = 12, psub = list(position = "topleft",</pre>
     text = "Correspondence analysis", cex = 1.5), plot = FALSE)
   g7 <- s.value(atlas$xy, coa1$li$Axis1, Sp = atlas$Spatial.contour, ppoints.cex = 2,
     porigin.include = FALSE, paxes.draw = FALSE, pSp.col = "white", plot = FALSE)
   g8 <- triangle.label(atlas$alti, plabels.cex = 0, plot = FALSE)</pre>
   G2 \leftarrow ADEgS(list(g5, g6, g7, g8), layout = c(2, 2))
 }
} else {
 op <- par(no.readonly = TRUE)</pre>
 par(mfrow = c(2, 2))
 area.plot(atlas$area, cpoin = 1.5)
 area.plot(atlas$area, lab = atlas$names.district, clab = 1)
 x <- atlas$meteo$mini.jan
 names(x) <- row.names(atlas$meteo)</pre>
 area.plot(atlas$area, val = x, ncl = 12, sub = "Temp Mini January", csub = 2, cleg = 1)
 s.corcircle((dudi.pca(atlas$meteo, scann = FALSE)$co), clab = 1)
 area.plot(atlas$area, val = dudi.pca(atlas$meteo,scann=FALSE)$li[, 1], ncl = 12,
    sub = "Principal Component Analysis analysis", csub = 1.5, cleg = 1)
 birds.coa <- dudi.coa(atlas$birds, sca = FALSE, nf = 1)</pre>
 x <- birds.coa$li$Axis1
 area.plot(atlas$area, val = x, ncl = 12, sub = "Correspondence analysis", csub = 1.5, cleg = 1)
 s.value(atlas$xy, x, contour = atlas$contour, csi = 2, incl = FALSE, addax = FALSE)
 triangle.plot(atlas$alti)
 par(op)
 par(mfrow = c(1, 1))
```

atya

Genetic variability of Cacadors

#### **Description**

This data set contains information about genetic variability of *Atya innocous* and *Atya scabra* in Guadeloupe (France).

26 avijons

### Usage

```
data(atya)
```

#### **Format**

```
atya is a list with the following components:
xy a data frame with the coordinates of the 31 sites
gen a data frame with 22 variables collected on 31 sites
neig an object of class neig
nb a neighborhood object (class nb defined in package spdep)
```

#### Source

Fievet, E., Eppe, F. and Dolédec, S. (2001) Etude de la variabilité morphométrique et génétique des populations de Cacadors (*Atya innocous* et *Atya scabra*) de l'île de Basse-Terre. Direction Régionale de L'Environnement Guadeloupe, Laboratoire des hydrosystèmes fluviaux, Université Lyon 1.

# **Examples**

```
## Not run:
data(atya)
if(requireNamespace("pixmap", quietly = TRUE)) {
 atya.digi <- pixmap::read.pnm(system.file("pictures/atyadigi.pnm",</pre>
      package = "ade4"))
 atya.carto <- pixmap::read.pnm(system.file("pictures/atyacarto.pnm",</pre>
      package = "ade4"))
 par(mfrow = c(1, 2))
 pixmap:::plot(atya.digi)
 pixmap:::plot(atya.carto)
 points(atya$xy, pch = 20, cex = 2)
if(requireNamespace("spdep", quietly = TRUE)) {
 plot(neig2nb(atya$neig), atya$xy, col = "red", add = TRUE, lwd = 2)
 par(mfrow = c(1,1))
}
## End(Not run)
```

avijons

Bird species distribution

### **Description**

This data set contains information about spatial distribution of bird species in a zone surrounding the river Rhône near Lyon (France).

avijons 27

### Usage

```
data(avijons)
```

#### **Format**

avijons is a list with the following components:

xy a data frame with the coordinates of the sites

area an object of class area

**fau** a data frame with the abundance of 64 bird species in 91 sites

**spe.names.fr** a vector of strings of character with the species names in french

**Spatial** an object of the class SpatialPolygons of sp, containing the map

#### Source

Bournaud, M., Amoros, C., Chessel, D., Coulet, M., Doledec, S., Michelot, J.L., Pautou, G., Rostan, J.C., Tachet, H. and Thioulouse, J. (1990). *Peuplements d'oiseaux et propriétés des écocomplexes de la plaine du Rhône : descripteurs de fonctionnement global et gestion des berges.* Rapport programme S.R.E.T.I.E., Ministère de l'Environnement CORA et URA CNRS 367, Univ. Lyon I.

#### References

Thioulouse, J., Chessel, D. and Champely, S. (1995) Multivariate analysis of spatial patterns: a unified approach to local and global structures. *Environmental and Ecological Statistics*, **2**, 1–14.

See a data description at http://pbil.univ-lyon1.fr/R/pdf/pps051.pdf (in French).

```
data(avijons)
w1 <- dudi.coa(avijons$fau, scannf = FALSE)$li
area.plot(avijons$area, center = avijons$xy, val = w1[, 1], clab = 0.75,
 sub = "CA Axis 1", csub = 3)
## Not run:
data(avijons)
if(!adegraphicsLoaded()) {
 if(requireNamespace("pixmap", quietly = TRUE)) {
   pnm.eau <- pixmap::read.pnm(system.file("pictures/avijonseau.pnm", package = "ade4"))</pre>
   pnm.rou <- pixmap::read.pnm(system.file("pictures/avijonsrou.pnm", package = "ade4"))</pre>
   pnm.veg <- pixmap::read.pnm(system.file("pictures/avijonsveg.pnm", package = "ade4"))</pre>
   pnm.vil <- pixmap::read.pnm(system.file("pictures/avijonsvil.pnm", package = "ade4"))</pre>
    jons.coa <- dudi.coa(avijons$fau, scan = FALSE, nf = 4)</pre>
    par(mfcol = c(3, 2))
    s.value(avijons$xy, jons.coa$li[, 1], pixmap = pnm.rou, inclu = FALSE,
      grid = FALSE, addax = FALSE, cleg = 0, sub = "F1+ROADS", csub = 3)
    s.value(avijons$xy, jons.coa$li[, 1], pixmap = pnm.veg, inclu = FALSE,
      grid = FALSE, addax = FALSE, cleg = 0, sub = "F1+TREES", csub = 3)
    s.value(avijons$xy, jons.coa$li[, 1], pixmap = pnm.eau, inclu = FALSE,
```

28 avimedi

```
grid = FALSE, addax = FALSE, cleg = 0, sub = "F1+WATER", csub = 3)
   s.value(avijons$xy, jons.coa$li[, 2], pixmap = pnm.rou, inclu = FALSE,
     grid = FALSE, addax = FALSE, cleg = 0, sub = "F2+ROADS", csub = 3)
   s.value(avijons$xy, jons.coa$li[, 2], pixmap = pnm.veg, inclu = FALSE,
     grid = FALSE, addax = FALSE, cleg = 0, sub = "F2+TREES", csub = 3)
   s.value(avijons$xy, jons.coa$li[, 2], pixmap = pnm.eau, inclu = FALSE,
      grid = FALSE, addax = FALSE, cleg = 0, sub = "F2+WATER", csub = 3)
   par(mfrow = c(1, 1))
 }
 if(requireNamespace("spdep", quietly = TRUE) &
    requireNamespace("pixmap", quietly = TRUE)) {
   link1 <- area2link(avijons$area)</pre>
   lw1 \leftarrow apply(link1, 1, function(x) x[x > 0])
   neig1 \leftarrow neig(mat01 = 1*(link1 > 0))
   nb1 <- neig2nb(neig1)</pre>
   listw1 <- spdep::nb2listw(nb1,lw1)</pre>
   jons.ms <- multispati(jons.coa, listw1, scan = FALSE, nfp = 3, nfn = 2)</pre>
   summary(jons.ms)
   par(mfrow = c(2, 2))
   barplot(jons.coa$eig)
   barplot(jons.ms$eig)
   s.corcircle(jons.ms$as)
   plot(jons.coa$li[, 1], jons.ms$li[, 1])
   par(mfrow = c(1, 1))
   par(mfcol = c(3, 2))
   s.value(avijons$xy, jons.ms$li[, 1], pixmap = pnm.rou, inclu = FALSE,
     grid = FALSE, addax = FALSE, cleg = 0, sub = "F1+ROADS", csub = 3)
   s.value(avijons$xy, jons.ms$li[, 1], pixmap = pnm.veg, inclu = FALSE,
      grid = FALSE, addax = FALSE, cleg = 0, sub = "F1+TREES", csub = 3)
   s.value(avijons$xy, jons.ms$li[, 1], pixmap = pnm.eau, inclu = FALSE,
      grid = FALSE, addax = FALSE, cleg = 0, sub = "F1+WATER", csub = 3)
   s.value(avijons$xy, jons.ms$li[, 2], pixmap = pnm.rou, inclu = FALSE,
      grid = FALSE, addax = FALSE, cleg = 0, sub = "F2+ROADS", csub = 3)
   s.value(avijons$xy, jons.ms$li[, 2], pixmap = pnm.veg, inclu = FALSE,
      grid = FALSE, addax = FALSE, cleg = 0, sub = "F2+TREES", csub = 3)
   s.value(avijons$xy, jons.ms$li[, 2], pixmap = pnm.eau, inclu = FALSE,
      grid = FALSE, addax = FALSE, cleg = 0, sub = "F2+WATER", csub = 3)
   par(mfrow = c(1, 1))
}}
## End(Not run)
```

avimedi

Fauna Table for Constrained Ordinations

### Description

avimedi is a list containing the information about 302 sites: frequencies of 51 bird species; two factors (habitats and Mediterranean origin).

avimedi 29

#### Usage

```
data(avimedi)
```

#### **Format**

This list contains the following objects:

fau is a data frame 302 sites - 51 bird species.

**plan** is a data frame 302 sites - 2 factors: reg with two levels Provence (Pr, South of France) and Corsica (Co); str with six levels describing the vegetation from a very low matorral (1) up to a mature forest of holm oaks (6).

**nomesp** is a vector 51 latin names.

#### Source

Blondel, J., Chessel, D., & Frochot, B. (1988) Bird species impoverishment, niche expansion, and density inflation in mediterranean island habitats. *Ecology*, **69**, 1899–1917.

```
## Not run:
data(avimedi)
coa1 <- dudi.coa(avimedi$fau, scan = FALSE, nf = 3)</pre>
bet1 <- bca(coa1, avimedi$plan$str, scan = FALSE)</pre>
wit1 <- wca(coa1, avimedi$plan$reg, scan=FALSE)</pre>
pcaiv1 <- pcaiv(coa1, avimedi$plan, scan = FALSE)</pre>
if(adegraphicsLoaded()) {
  g1 <- s.class(coa1$li, avimedi$plan$str:avimedi$plan$reg,</pre>
    psub.text = "Correspondences Analysis", plot = FALSE)
  g2 \leftarrow s.class(bet1\$ls, avimedi\$plan\$str, psub.text = "Between Analysis", plot = FALSE)
  g3 <- s.class(wit1$li, avimedi$plan$str, psub.text = "Within Analysis", plot = FALSE)
  g41 <- s.match(pcaiv1$li, pcaiv1$ls, plabels.cex = 0,
    psub.text = "Canonical Correspondences Analysis", plot = FALSE)
  g42 <- s.class(pcaiv1$li, avimedi$plan$str:avimedi$plan$reg, plot = FALSE)
  g4 <- superpose(g41, g42, plot = FALSE)
  G \leftarrow ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
} else {
  par(mfrow = c(2,2))
  s.class(coa1$li,avimedi$plan$str:avimedi$plan$reg,
      sub = "Correspondences Analysis")
  s.class(bet1$ls, avimedi$plan$str,
      sub = "Between Analysis")
  s.class(wit1$li, avimedi$plan$str,
      sub = "Within Analysis")
  s.match(pcaiv1$li, pcaiv1$ls, clab = 0,
      sub = "Canonical Correspondences Analysis")
  s.class(pcaiv1$li, avimedi$plan$str:avimedi$plan$reg,
```

30 aviurba

```
add.plot = TRUE)
par(mfrow=c(1,1))
}
## End(Not run)
```

aviurba

Ecological Tables Triplet

### **Description**

This data set is a list of information about 51 sites: bird species and environmental variables. A data frame contains biological traits for each species.

# Usage

```
data(aviurba)
```

#### **Format**

This list contains the following objects:

**fau** is a data frame 51 sites 40 bird species.

mil is a data frame 51 sites 11 environmental variables (see details).

traits is a data frame 40 species 4 biological traits (see details).

**species.names.fr** is a vector of the species names in french.

species.names.la is a vector of the species names in latin.

**species.family** is a factor: the species families.

#### **Details**

aviurba\$mil contains for each site, 11 habitat attributes describing the degree of urbanization. The presence or absence of farms or villages, small buildings, high buildings, industry, fields, grassland, scrubby areas, deciduous woods, coniferous woods, noisy area are noticed. At least, the vegetation cover (variable 11) is a factor with 8 levels from a minimum cover (R5) up to a maximum (R100).

aviurba\$traits contains four factors: feeding habit (insectivor, granivore, omnivore), feeding stratum (ground, aerial, foliage and scrub), breeding stratum (ground, building, scrub, foliage) and migration strategy (resident, migrant).

# Source

Dolédec, S., Chessel, D., Ter Braak, C. J. F. and Champely S. (1996) Matching species traits to environmental variables: a new three-table ordination method. *Environmental and Ecological Statistics*, **3**, 143–166.

bacteria 31

### **Examples**

```
data(aviurba)
a1 <- dudi.coa(aviurba$fau, scan = FALSE, nf=4)
a2 <- dudi.acm(aviurba$mil, row.w = a1$lw, scan = FALSE, nf = 4)
plot(coinertia(a1, a2, scan = FALSE))</pre>
```

bacteria

Genomes of 43 Bacteria

### **Description**

bacteria is a list containing 43 species and genomic informations: codons, amino acid and bases.

### Usage

```
data(bacteria)
```

#### **Format**

This list contains the following objects:

code is a factor with the amino acid names for each codon.

espcodon is a data frame 43 species 64 codons.

espaa is a data frame 43 species 21 amino acid.

espbase is a data frame 43 species 4 bases.

#### **Source**

Data prepared by J. Lobry <Jean.Lobry@univ-lyon1.fr> starting from https://www.jcvi.org/.

```
data(bacteria)
names(bacteria$espcodon)
names(bacteria$espaa)
names(bacteria$espbase)
sum(bacteria$espcodon) # 22,619,749 codons

if(adegraphicsLoaded()) {
   g <- scatter(dudi.coa(bacteria$espcodon, scann = FALSE),
        posi = "bottomleft")
} else {
   scatter(dudi.coa(bacteria$espcodon, scann = FALSE),
        posi = "bottom")
}</pre>
```

32 banque

banque

Table of Factors

### **Description**

banque gives the results of a bank survey onto 810 customers.

# Usage

data(banque)

#### **Format**

This data frame contains the following columns:

- 1. csp: "Socio-professional categories" a factor with levels
  - agric Farmers
  - artis Craftsmen, Shopkeepers, Company directors
  - cadsu Executives and higher intellectual professions
  - inter Intermediate professions
  - emplo Other white-collar workers
  - ouvri Manual workers
  - retra Pensionners
  - inact Non working population
  - etudi Students
- 2. duree: "Time relations with the customer" a factor with levels
  - dm2 <2 years
  - d24 [2 years, 4 years[
  - d48 [4 years, 8 years[
  - d812 [8 years, 12 years[
  - dp12 >= 12 years
- 3. oppo: "Stopped a check?" a factor with levels
  - non no
  - oui yes
- 4. age: "Customer's age" a factor with levels
  - ai25 [18 years, 25 years[
  - ai35 [25 years, 35 years[
  - ai45 [35 years, 45 years[
  - ai55 [45 years, 55 years[
  - ai75 [55 years, 75 years[
- 5. sexe: "Customer's gender" a factor with levels
  - hom Male

banque 33

- fem Female
- 6. interdit: "No checkbook allowed" a factor with levels
  - non no
  - oui yes
- 7. cableue: "Possess a bank card?" a factor with levels
  - non no
  - oui yes
- 8. assurvi: "Contrat of life insurance?" a factor with levels
  - non no
  - oui yes
- 9. soldevu: "Balance of the current accounts" a factor with levels
  - p4 credit balance > 20000
  - p3 credit balance 12000-20000
  - p2 credit balance 4000-120000
  - p1 credit balance >0-4000
  - n1 debit balance 0-4000
  - n2 debit balance >4000
- 10. eparlog: "Savings and loan association account amount" a factor with levels
  - for > 20000
  - fai >0 and <20000
  - nul nulle
- 11. eparliv: "Savings bank amount" a factor with levels
  - for > 20000
  - fai >0 and <20000
  - nul nulle
- 12. credhab: "Home loan owner" a factor with levels
  - non no
  - oui yes
- 13. credcon: "Consumer credit amount" a factor with levels
  - nul none
  - fai >0 and <20000
  - for > 20000
- 14. versesp: "Check deposits" a factor with levels
  - oui yes
  - non no
- 15. retresp: "Cash withdrawals" a factor with levels
  - fai < 2000
  - moy 2000-5000
  - for > 5000

34 banque

- 16. remiche: "Endorsed checks amount" a factor with levels
  - for >10000
  - moy 10000-5000
  - fai 1-5000
  - nul none
- 17. preltre: "Treasury Department tax deductions" a factor with levels
  - nul none
  - fai <1000
  - moy > 1000
- 18. prelfin: "Financial institution deductions" a factor with levels
  - nul none
  - fai <1000
  - moy > 1000
- 19. viredeb: "Debit transfer amount" a factor with levels
  - nul none
  - fai <2500
  - moy 2500-5000
  - for >5000
- 20. virecre: "Credit transfer amount" a factor with levels
  - for >10000
  - moy 10000-5000
  - fai <5000
  - nul aucun
- 21. porttit: "Securities portfolio estimations" a factor with levels
  - nul none
  - fai < 20000
  - moy 20000-100000
  - for >100000

### **Source**

anonymous

```
data(banque)
banque.acm <- dudi.acm(banque, scannf = FALSE, nf = 3)
apply(banque.acm$cr, 2, mean)
banque.acm$eig[1:banque.acm$nf] # the same thing

if(adegraphicsLoaded()) {
   g <- s.arrow(banque.acm$c1, plabels.cex = 0.75)
} else {
   s.arrow(banque.acm$c1, clab = 0.75)
}</pre>
```

baran95 35

baran95

African Estuary Fishes

### **Description**

This data set is a list containing relations between sites and fish species linked to dates.

### Usage

```
data(baran95)
```

#### **Format**

This list contains the following objects:

**fau** is a data frame 95 seinings and 33 fish species.

**plan** is a data frame 2 factors: date and site. The date has 6 levels (april 1993, june 1993, august 1993, october 1993, december 1993 and february 1994) and the sites are defined by 4 distances to the Atlantic Ocean (km03, km17, km33 and km46).

**species.names** is a vector of species latin names.

#### Source

Baran, E. (1995) *Dynamique spatio-temporelle des peuplements de Poissons estuariens en Guinée* (*Afrique de l'Ouest*). Thèse de Doctorat, Université de Bretagne Occidentale. Data collected by net fishing sampling in the Fatala river estuary.

#### References

See a data description at http://pbil.univ-lyon1.fr/R/pdf/pps027.pdf (in French).

36 bca

```
G2 <- kplot(stat1, arrow = FALSE, traject = FALSE, class = baran95$plan$site,
   col.plabels.cex = 0, ppoints.cex = 0.5)
 g3 <- s.class(mfa1$co, baran95$plan$site, facets = baran95$plan$date,
   pellipses.axes.draw = FALSE, ppoints.cex = 0.5, plot = FALSE)
 n2 <- length(g3@ADEglist)</pre>
 g4 <- ADEgS(lapply(1:n2, function(i) s.label(mfa1$co, plabels.cex = 0,
   ppoints.cex = 0.5, plot = FALSE)), positions = g3@positions, plot = FALSE)
 G3 <- superpose(g4, g3, plot = TRUE)
} else {
 par(mfrow = c(3, 2))
 w2 <- split(stat1$C.Co, baran95$plan$date)</pre>
 w3 <- split(baran95$plan$site, baran95$plan$date)</pre>
 for (j in 1:6) {
   s.label(stat1$C.Co[,1:2], clab = 0, sub = tab.names(fatala)[j], csub = 3)
   s.class(w2[[j]][, 1:2], w3[[j]], clab = 2, axese = FALSE, add.plot = TRUE)
 }
 par(mfrow = c(1, 1))
 kplot(stat1, arrow = FALSE, traj = FALSE, clab = 2, uni = TRUE,
   class = baran95$plan$site) #simpler
 par(mfrow = c(3, 2))
 w4 <- split(mfa1$co, baran95$plan$date)</pre>
 for (j in 1:6) {
   s.label(mfa1$co[, 1:2], clab = 0, sub = tab.names(fatala)[j], csub = 3)
   s.class(w4[[j]][, 1:2], w3[[j]], clab = 2, axese = FALSE, add.plot = TRUE)
 par(mfrow = c(1, 1))
}
```

bca

Between-Class Analysis

# **Description**

Performs a particular case of a Principal Component Analysis with respect to Instrumental Variables (pcaiv), in which there is only a single factor as explanatory variable.

### Usage

```
## S3 method for class 'dudi'
bca(x, fac, scannf = TRUE, nf = 2, ...)
```

### **Arguments**

Χ

a duality diagram, object of class dudi from one of the functions dudi.coa, dudi.pca,...

bca 37

| fac    | a factor partitioning the rows of dudi\$tab in classes                         |
|--------|--------------------------------------------------------------------------------|
| scannf | a logical value indicating whether the eigenvalues barplot should be displayed |
| nf     | if scannf FALSE, a numeric value indicating the number of kept axes            |

... further arguments passed to or from other methods

#### Value

Returns a list of class dudi, subclass 'between' containing

| tab   | a data frame class-variables containing the means per class for each variable |
|-------|-------------------------------------------------------------------------------|
| CW    | a numeric vector of the column weigths                                        |
| lw    | a numeric vector of the class weigths                                         |
| eig   | a numeric vector with all the eigenvalues                                     |
| rank  | the rank of the analysis                                                      |
| nf    | an integer value indicating the number of kept axes                           |
| c1    | a data frame with the column normed scores                                    |
| 11    | a data frame with the class normed scores                                     |
| со    | a data frame with the column coordinates                                      |
| li    | a data frame with the class coordinates                                       |
| call  | the matching call                                                             |
| ratio | the bewteen-class inertia percentage                                          |
| ls    | a data frame with the row coordinates                                         |
| as    | a data frame containing the projection of inertia axes onto between axes      |

# Note

To avoid conflict names with the base:::within function, the function within is now deprecated and removed. To be consistent, the between function is also deprecated and is replaced by the method bca.dudi of the new generic bca function.

### Author(s)

Daniel Chessel
Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>

## References

Dolédec, S. and Chessel, D. (1987) Rythmes saisonniers et composantes stationnelles en milieu aquatique I- Description d'un plan d'observations complet par projection de variables. *Acta Oecologica, Oecologia Generalis*, **8**, 3, 403–426.

38 bca.coinertia

### **Examples**

```
data(meaudret)
pca1 <- dudi.pca(meaudret$env, scan = FALSE, nf = 4)</pre>
pca2 <- dudi.pca(meaudret$spe, scal = FALSE, scan = FALSE, nf = 4)</pre>
bet1 <- bca(pca1, meaudret$design$site, scan = FALSE, nf = 2)
bet2 <- bca(pca2, meaudret$design$site, scan = FALSE, nf = 2)</pre>
if(adegraphicsLoaded()) {
 g1 <- s.class(pca1$li, meaudret$design$site, psub.text = "Principal Component Analysis (env)",
    plot = FALSE)
 g2 <- s.class(pca2$li, meaudret$design$site, psub.text = "Principal Component Analysis (spe)",
    plot = FALSE)
 g3 <- s.class(bet1$ls, meaudret$design$site, psub.text = "Between sites PCA (env)", plot = FALSE)
 g4 <- s.class(bet2$ls, meaudret$design$site, psub.text = "Between sites PCA (spe)", plot = FALSE)
 G \leftarrow ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
} else {
  par(mfrow = c(2, 2))
 s.class(pca1$li, meaudret$design$site, sub = "Principal Component Analysis (env)", csub = 1.75)
 s.class(pca2$li, meaudret$design$site, sub = "Principal Component Analysis (spe)", csub = 1.75)
  s.class(bet1$ls, meaudret$design$site, sub = "Between sites PCA (env)", csub = 1.75)
  s.class(bet2$1s, meaudret$design$site, sub = "Between sites PCA (spe)", csub = 1.75)
  par(mfrow = c(1, 1))
}
coib <- coinertia(bet1, bet2, scann = FALSE)</pre>
plot(coib)
```

bca.coinertia

Between-class coinertia analysis

### **Description**

Performs a between-class analysis after a coinertia analysis

#### **Usage**

```
## S3 method for class 'coinertia'
bca(x, fac, scannf = TRUE, nf = 2, ...)
```

## **Arguments**

| Х      | a coinertia analysis (object of class coinertia) obtained by the function coinertia |
|--------|-------------------------------------------------------------------------------------|
| fac    | a factor partitioning the rows in classes                                           |
| scannf | a logical value indicating whether the eigenvalues barplot should be displayed      |
| nf     | if scannf FALSE, an integer indicating the number of kept axes                      |
|        | further arguments passed to or from other methods                                   |

bca.coinertia 39

#### **Details**

This analysis is equivalent to do a between-class analysis on each initial dudi, and a coinertia analysis on the two between analyses. This function returns additional outputs for the interpretation.

#### Value

An object of the class betcoi. Outputs are described by the print function

#### Note

To avoid conflict names with the base:::within function, the function within is now deprecated and removed. To be consistent, the betweencoinertia function is also deprecated and is replaced by the method bca.coinertia of the new generic bca function.

#### Author(s)

Stéphane Dray < stephane . dray@univ-lyon1 . fr> and Jean Thioulouse < jean . thioulouse@univ-lyon1 . fr>

#### References

Franquet E., Doledec S., and Chessel D. (1995) Using multivariate analyses for separating spatial and temporal effects within species-environment relationships. *Hydrobiologia*, **300**, 425–431.

#### See Also

```
coinertia, bca
```

```
data(meaudret)
pca1 <- dudi.pca(meaudret$env, scan = FALSE, nf = 4)
pca2 <- dudi.pca(meaudret$spe, scal = FALSE, scan = FALSE, nf = 4)

bet1 <- bca(pca1, meaudret$design$site, scan = FALSE, nf = 2)
bet2 <- bca(pca2, meaudret$design$site, scan = FALSE, nf = 2)
coib <- coinertia(bet1, bet2, scannf = FALSE)

coi <- coinertia(pca1, pca2, scannf = FALSE, nf = 3)
coi.b <- bca(coi,meaudret$design$site, scannf = FALSE)

## coib and coi.b are equivalent

plot(coi.b)</pre>
```

40 bca.rlq

|     | - |    |
|-----|---|----|
| bca | r | lɾ |
|     |   |    |

Between-Class RLQ analysis

### **Description**

Performs a particular RLQ analysis where a partition of sites (rows of R) is taken into account. The between-class RLQ analysis search for linear combinations of traits and environmental variables maximizing the covariances between the traits and the average environmental conditions of classes.

### Usage

```
## S3 method for class 'rlq'
bca(x, fac, scannf = TRUE, nf = 2, ...)
## S3 method for class 'betrlq'
plot(x, xax = 1, yax = 2, ...)
## S3 method for class 'betrlq'
print(x, ...)
```

### Arguments

| X      | an object of class rlq (created by the rlq function) for the bca.rlq function. An object of class betrlq for the print and plot functions |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------|
| fac    | a factor partitioning the rows of R                                                                                                       |
| scannf | a logical value indicating whether the eigenvalues bar plot should be displayed                                                           |
| nf     | if scannf FALSE, an integer indicating the number of kept axes                                                                            |
| xax    | the column number for the x-axis                                                                                                          |
| yax    | the column number for the y-axis                                                                                                          |
|        | further arguments passed to or from other methods                                                                                         |

## Value

The bca.rlq function returns an object of class 'betrlq' (sub-class of 'dudi'). See the outputs of the print function for more details.

### Author(s)

```
Stéphane Dray <stephane.dray@univ-lyon1.fr>
```

### References

Wesuls, D., Oldeland, J. and Dray, S. (2012) Disentangling plant trait responses to livestock grazing from spatio-temporal variation: the partial RLQ approach. *Journal of Vegetation Science*, **23**, 98–113.

### See Also

```
rlq, bca, wca.rlq
```

between 41

### **Examples**

```
data(piosphere)
afcL <- dudi.coa(log(piosphere$veg + 1), scannf = FALSE)
acpR <- dudi.pca(piosphere$env, scannf = FALSE, row.w = afcL$lw)
acpQ <- dudi.hillsmith(piosphere$traits, scannf = FALSE, row.w =
    afcL$cw)
rlq1 <- rlq(acpR, afcL, acpQ, scannf = FALSE)
brlq1 <- bca(rlq1, fac = piosphere$habitat, scannf = FALSE)
brlq1
plot(brlq1)</pre>
```

between

Between-Class Analysis

### **Description**

Outputs and graphical representations of the results of a between-class analysis.

### Usage

```
## S3 method for class 'between'
plot(x, xax = 1, yax = 2, ...)
## S3 method for class 'between'
print(x, ...)
## S3 method for class 'betcoi'
plot(x, xax = 1, yax = 2, ...)
## S3 method for class 'betcoi'
print(x, ...)
## S3 method for class 'between'
summary(object, ...)
```

#### **Arguments**

```
x, object an object of class between or betcoixax, yax the column index of the x-axis and the y-axisfurther arguments passed to or from other methods
```

### Author(s)

```
Daniel Chessel
Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>
Stéphane Dray <stephane.dray@univ-lyon1.fr>
```

#### References

Dolédec, S. and Chessel, D. (1987) Rythmes saisonniers et composantes stationnelles en milieu aquatique I- Description d'un plan d'observations complet par projection de variables. *Acta Oecologica, Oecologia Generalis*, **8**, 3, 403–426.

42 bf88

#### See Also

bca.dudi, bca.coinertia

### **Examples**

```
data(meaudret)
pca1 <- dudi.pca(meaudret$env, scan = FALSE, nf = 4)</pre>
pca2 <- dudi.pca(meaudret$spe, scal = FALSE, scan = FALSE, nf = 4)</pre>
bet1 <- bca(pca1, meaudret$design$site, scan = FALSE, nf = 2)</pre>
bet2 <- bca(pca2, meaudret$design$site, scan = FALSE, nf = 2)</pre>
if(adegraphicsLoaded()) {
 g1 <- s.class(pca1$li, meaudret$design$site, psub.text = "Principal Component Analysis (env)",</pre>
    plot = FALSE)
 g2 <- s.class(pca2$li, meaudret$design$site, psub.text = "Principal Component Analysis (spe)",</pre>
    plot = FALSE)
  g3 <- s.class(bet1$ls, meaudret$design$site, psub.text = "Between sites PCA (env)",
    plot = FALSE)
  g4 <- s.class(bet2$1s, meaudret$design$site, psub.text = "Between sites PCA (spe)",
    plot = FALSE)
  G \leftarrow ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
} else {
  par(mfrow = c(2, 2))
 s.class(pca1$li, meaudret$design$site, sub = "Principal Component Analysis (env)", csub = 1.75)
 s.class(pca2$li, meaudret$design$site, sub = "Principal Component Analysis (spe)", csub = 1.75)
  s.class(bet1\$ls, meaudret\$design\$site, sub = "Between sites PCA (env)", csub = 1.75)
  s.class(bet2$ls, meaudret$design$site, sub = "Between sites PCA (spe)", csub = 1.75)
  par(mfrow = c(1,1))
}
coib <- coinertia(bet1, bet2, scann = FALSE)</pre>
plot(coib)
```

bf88

Cubic Ecological Data

### **Description**

bf88 is a list of 6 data frames corresponding to 6 stages of vegetation. Each data frame gives some bird species informations for 4 counties.

# Usage

```
data(bf88)
```

bicenter.wt 43

#### **Format**

A list of six data frames with 79 rows (bird species) and 4 columns (counties).

The 6 arrays (S1 to S6) are the 6 stages of vegetation.

The attribut 'nomesp' of this list is a vector of species French names.

### Source

Blondel, J. and Farre, H. (1988) The convergent trajectories of bird communities along ecological successions in european forests. *Oecologia* (Berlin), **75**, 83–93.

### **Examples**

```
data(bf88)
fou1 <- foucart(bf88, scann = FALSE, nf = 3)</pre>
fou1
if(adegraphicsLoaded()) {
 g1 <- scatter(fou1, plot = FALSE)</pre>
 g2 <- s.traject(fou1$Tco, fou1$TC[, 1], plines.lty = 1:length(levels(fou1$TC[, 1])), plot = FALSE)
 g3 <- s.traject(fou1$Tco, fou1$TC[, 2], plines.lty = 1:length(levels(fou1$TC[, 2])), plot = FALSE)
 g41 <- s.label(fou1$Tco, plot = FALSE)
 g42 <- s.label(fou1$co, plab.cex = 2, plot = FALSE)
 g4 <- superpose(g41, g42, plot = FALSE)
 G1 \leftarrow ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
 G2 <- kplot(fou1, row.plab.cex = 0, psub.cex = 2)
} else {
 par(mfrow = c(2,2))
 scatter(fou1)
 s.traject(fou1$Tco, fou1$TC[, 1])
 s.traject(fou1$Tco, fou1$TC[, 2])
 s.label(fou1$Tco)
 s.label(fou1$co, add.p = TRUE, clab = 2)
 par(mfrow = c(1, 1))
 kplot(fou1, clab.c = 2, clab.r = 0, csub = 3)
}
```

bicenter.wt

Double Weighted Centring

## Description

This function creates a doubly centred matrix.

## Usage

```
bicenter.wt(X, row.wt = rep(1, nrow(X)), col.wt = rep(1, ncol(X)))
```

44 bordeaux

### **Arguments**

| Χ      | a matrix with n rows and p columns               |
|--------|--------------------------------------------------|
| row.wt | a vector of positive or null weights of length n |
| col.wt | a vector of positive or null weights of length p |

#### Value

returns a doubly centred matrix

# Author(s)

Daniel Chessel

### **Examples**

```
w <- matrix(1:6, 3, 2)
bicenter.wt(w, c(0.2,0.6,0.2), c(0.3,0.7))
w <- matrix(1:20, 5, 4)
sum(bicenter.wt(w, runif(5), runif(4))^2)</pre>
```

bordeaux

Wine Tasting

# Description

The bordeaux data frame gives the opinions of 200 judges in a blind tasting of five different types of claret (red wine from the Bordeaux area in the south western parts of France).

### Usage

```
data(bordeaux)
```

#### **Format**

This data frame has 5 rows (the wines) and 4 columns (the judgements) divided in excellent, good, mediocre and boring.

### Source

van Rijckevorsel, J. (1987) *The application of fuzzy coding and horseshoes in multiple correspondence analysis*. DSWO Press, Leiden (p. 32)

```
data(bordeaux)
bordeaux
score(dudi.coa(bordeaux, scan = FALSE))
```

bsetal97 45

bsetal97

Ecological and Biological Traits

#### Description

This data set gives ecological and biological characteristics of 131 species of aquatic insects.

### Usage

data(bsetal97)

#### **Format**

bsetal97 is a list of 8 components.

**species.names** is a vector of the names of aquatic insects.

taxo is a data frame containing the taxonomy of species: genus, family and order.

biol is a data frame containing 10 biological traits for a total of 41 modalities.

biol.blo is a vector of the numbers of items for each biological trait.

**biol.blo.names** is a vector of the names of the biological traits.

**ecol** is a data frame with 7 ecological traits for a total of 34 modalities.

**ecol.blo** is a vector of the numbers of items for each ecological trait.

ecol.blo.names is a vector of the names of the ecological traits.

### Details

The 10 variables of the data frame bsetal97\$biol are called in bsetal97\$biol.blo.names and the number of modalities per variable given in bsetal97\$biol.blo. The variables are: female size - the body length from the front of the head to the end of the abdomen (7 length modalities), egg length - the egg size (6 modalities), egg number - count of eggs actually oviposited, generations per year (3 modalities:  $\leq 1$ , 2, > 2), oviposition period - the length of time during which oviposition occurred (3 modalities:  $\leq 2$  months, between 2 and 5 months, > 5 months), incubation time - the time between oviposition and hatching of the larvae (3 modalities:  $\leq 4$  weeks, between 4 and 12 weeks, > 12 weeks), egg shape (1-spherical, 2-oval, 3-cylindrical), egg attachment - physiological feature of the egg and of the female (4 modalities), clutch structure (1-single eggs, 2-grouped eggs, 3-egg masses), clutch number (3 modalities: 1, 2, > 2).

The 7 variables of the data frame bsetal97\$ecol are called in bsetal97\$ecol.blo.names and the number of modalities per variable given in bsetal97\$ecol.blo. The variables are: oviposition site - position relative to the water (7 modalities), substratum type for eggs - the substratum to which the eggs are definitely attached (6 modalities), egg deposition - the position of the eggs during the oviposition process (4 modalities), gross habitat - the general habitat use of the species such as temporary waters or estuaries (8 modalities), saturation variance - the exposure of eggs to the risk of dessication (2 modalities), time of day (1-morning, 2-day, 3-evening, 4-night), season - time of the year (1-Spring, 2-Summer, 3-Automn).

46 buech

#### **Source**

Statzner, B., Hoppenhaus, K., Arens, M.-F. and Richoux, P. (1997) Reproductive traits, habitat use and templet theory: a synthesis of world-wide data on aquatic insects. *Freshwater Biology*, **38**, 109–135.

#### References

See a data description at http://pbil.univ-lyon1.fr/R/pdf/pps029.pdf (in French).

## **Examples**

buech

Buech basin

## **Description**

This data set contains informations about Buech basin characteristics.

### Usage

data(buech)

#### **Format**

buech is a list with the following components:

tab1 a data frame with 10 environmental variables collected on 31 sites in Juin (1984)

tab2 a data frame with 10 environmental variables collected on 31 sites in September (1984)

xy a data frame with the coordinates of the sites

neig an object of class neig

contour a data frame for background map

**nb** the neighbouring graph between sites, object of the class nb

**Spatial** an object of the class SpatialPolygons of sp, containing the map

#### Details

Variables of buech\$tab1 and buech\$tab2 are the following ones:

pH ; Conductivity ( $\mu$  S/cm) ; Carbonate (water hardness (mg/l CaCO3)) ; hardness (total water hardness (mg/l CaCO3)) ; Bicarbonate (alcalinity (mg/l HCO3-)) ; Chloride (alcalinity (mg/l Cl-)) ; Suspens (particles in suspension (mg/l)) ; Organic (organic particles (mg/l)) ; Nitrate (nitrate rate (mg/l NO3-)) ; Ammonia (amoniac rate (mg/l NH4-))

butterfly 47

### **Source**

Vespini, F. (1985) Contribution à l'étude hydrobiologique du Buech, rivière non aménagée de Haute-Provence. Thèse de troisième cycle, Université de Provence.

Vespini, F., Légier, P. and Champeau, A. (1987) Ecologie d'une rivière non aménagée des Alpes du Sud: Le Buëch (France) I. Evolution longitudinale des descripteurs physiques et chimiques. *Annales de Limnologie*, **23**, 151–164.

### **Examples**

```
data(buech)
if(adegraphicsLoaded()) {
 if(requireNamespace("sp", quietly = TRUE)) {
   g1 <- s.label(buech$xy, Sp = buech$Spatial, nb = buech$nb,</pre>
      pSp.col = "transparent", plot = FALSE)
   g2 <- s.value(buech$xy, buech$tab2$Suspens - buech$tab1$Suspens,</pre>
      Sp = buech$Spatial, nb = buech$nb, pSp.col = "transparent", plot = FALSE)
   G <- cbindADEg(g1, g2, plot = TRUE)
 }
} else {
 par(mfrow = c(1,2))
 s.label(buech$xy, contour = buech$contour, neig = buech$neig)
 s.value(buech$xy, buech$tab2$Suspens - buech$tab1$Suspens,
   contour = buech$contour, neig = buech$neig, csi = 3)
 par(mfrow = c(1,1))
}
```

butterfly

Genetics-Ecology-Environment Triple

# Description

This data set contains environmental and genetics informations about 16 *Euphydryas editha* butterfly colonies studied in California and Oregon.

#### Usage

```
data(butterfly)
```

### Format

butterfly is a list with the following components:

xy a data frame with the two coordinates of the 16 Euphydryas editha butterfly colonies
envir a environmental data frame of 16 sites - 4 variables
genet a genetics data frame of 16 sites - 6 allele frequencies
contour a data frame for background map (California map)
Spatial an object of the class SpatialPolygons of sp, containing the map

48 bwca.dpcoa

#### **Source**

McKechnie, S.W., Ehrlich, P.R. and White, R.R. (1975). Population genetics of Euphydryas butterflies. I. Genetic variation and the neutrality hypothesis. *Genetics*, **81**, 571–594.

#### References

Manly, B.F. (1994) *Multivariate Statistical Methods. A primer.* Second edition. Chapman & Hall, London. 1–215.

# **Examples**

```
data(butterfly)
if(adegraphicsLoaded()) {
 if(requireNamespace("sp", quietly = TRUE)) {
    g1 <- s.label(butterfly$xy, Sp = butterfly$Spatial, pSp.col = "white",</pre>
      porigin.include = FALSE, plot = FALSE)
    g2 <- table.value(dist(butterfly$xy), plot = FALSE)</pre>
    g3 <- s.value(butterfly$xy, dudi.pca(butterfly$envir, scan = FALSE)$li[, 1],</pre>
     Sp = butterfly$Spatial, pori.inc = FALSE, pSp.col = "transparent", ppoints.cex = 2,
        plot = FALSE)
    ## mt <- mantel.randtest(dist(butterfly$xy), dist(butterfly$gen), 99)</pre>
    G \leftarrow ADEgS(list(g1, g2, g3), layout = c(2, 2), plot = TRUE)
} else {
 par(mfrow = c(2, 2))
 s.label(butterfly$xy, contour = butterfly$contour, inc = FALSE)
 table.dist(dist(butterfly$xy), labels = row.names(butterfly$xy)) # depends of mva
 s.value(butterfly$xy, dudi.pca(butterfly$envir, scan = FALSE)$li[,1],
      contour = butterfly$contour, inc = FALSE, csi = 3)
 plot(mantel.randtest(dist(butterfly$xy), dist(butterfly$gen), 99),
      main = "genetic/spatial")
 par(mfrow = c(1,1))
}
```

bwca.dpcoa

Between- and within-class double principal coordinate analysis

### Description

These functions allow to study the variations in diversity among communities (as in dpcoa) taking into account a partition in classes

### Usage

```
bwca.dpcoa(x, fac, cofac, scannf = TRUE, nf = 2, ...)
## S3 method for class 'dpcoa'
bca(x, fac, scannf = TRUE, nf = 2, ...)
## S3 method for class 'dpcoa'
```

49 bwca.dpcoa

```
wca(x, fac, scannf = TRUE, nf = 2, ...)
## S3 method for class 'betwit'
randtest(xtest, nrepet = 999, ...)
## S3 method for class 'betwit'
summary(object, ...)
## S3 method for class 'witdpcoa'
print(x, ...)
## S3 method for class 'betdpcoa'
print(x, ...)
```

### **Arguments**

an object of class dpcoa Х fac a factor partitioning the collections in classes scannf a logical value indicating whether the eigenvalues barplot should be displayed nf if scannf FALSE, a numeric value indicating the number of kept axes further arguments passed to or from other methods

a cofactor partitioning the collections in classes used as a covariable cofac

the number of permutations nrepet

xtest, object an object of class betwit created by a call to the function bwca. dpcoa

#### Value

Objects of class betdpcoa, witdpcoa or betwit

### Author(s)

Stéphane Dray < stephane . dray@univ-lyon1 . fr>

### References

Dray, S., Pavoine, S. and Aguirre de Carcer, D. (2015) Considering external information to improve the phylogenetic comparison of microbial communities: a new approach based on constrained Double Principal Coordinates Analysis (cDPCoA). Molecular Ecology Resources, 15, 242–249. doi:10.1111/1755-0998.12300

## See Also

dpcoa

```
## Not run:
## First example of Dray et al (2015) paper
con <- url("https://pbil.univ-lyon1.fr/datasets/dray/MER2014/soilmicrob.rda")</pre>
load(con)
```

50 cailliez

```
close(con)
## Partial CCA
coa <- dudi.coa(soilmicrob$OTU, scannf = FALSE)</pre>
wcoa <- wca(coa, soilmicrob$env$pH, scannf = FALSE)</pre>
wbcoa <- bca(wcoa,soilmicrob$env$VegType, scannf = FALSE)</pre>
## Classical DPCoA
dp <- dpcoa(soilmicrob$OTU, soilmicrob$dphy, RaoDecomp = FALSE, scannf = FALSE)</pre>
## Between DPCoA (focus on the effect of vegetation type)
bdp <- bca(dp, fac = soilmicrob$env$VegType , scannf = FALSE)</pre>
bdp$ratio ## 0.2148972
randtest(bdp) ## p = 0.001
## Within DPCoA (remove the effect of pH)
wdp <- wca(dp, fac = soilmicrob$env$pH, scannf = FALSE)</pre>
wdp$ratio ## 0.5684348
## Between Within-DPCoA (remove the effect of pH and focus on vegetation type)
wbdp <- bwca.dpcoa(dp, fac = soilmicrob$env$VegType, cofac = soilmicrob$env$pH, scannf = FALSE)
wbdp$ratio ## 0.05452813
randtest(wbdp) ## p = 0.001
## End(Not run)
```

cailliez

Transformation to make Euclidean a distance matrix

## **Description**

This function computes the smallest positive constant that makes Euclidean a distance matrix and applies it.

### Usage

```
cailliez(distmat, print = FALSE, tol = 1e-07, cor.zero = TRUE)
```

### **Arguments**

distmat an object of class dist

print if TRUE, prints the eigenvalues of the matrix

tol a tolerance threshold for zero

cor.zero if TRUE, zero distances are not modified

### Value

an object of class dist containing a Euclidean distance matrix.

capitales 51

### Author(s)

```
Daniel Chessel
Stéphane Dray <stephane.dray@univ-lyon1.fr>
```

### References

Cailliez, F. (1983) The analytical solution of the additive constant problem. *Psychometrika*, **48**, 305–310.

Legendre, P. and Anderson, M.J. (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. *Ecological Monographs*, **69**, 1–24.

Legendre, P., and Legendre, L. (1998) *Numerical ecology*, 2nd English edition edition. Elsevier Science BV, Amsterdam.

### **Examples**

```
data(capitales)
d0 <- capitales$dist
is.euclid(d0) # FALSE
d1 <- cailliez(d0, TRUE)
# Cailliez constant = 2429.87867
is.euclid(d1) # TRUE
plot(d0, d1)
abline(lm(unclass(d1)~unclass(d0)))
print(coefficients(lm(unclass(d1)~unclass(d0))), dig = 8) # d1 = d + Cte
is.euclid(d0 + 2428) # FALSE
is.euclid(d0 + 2430) # TRUE the smallest constant</pre>
```

capitales

Road Distances

# Description

This data set gives the road distances between 15 European capitals and their coordinates.

### Usage

```
data(capitales)
```

### **Format**

capitales is a list with the following components:

xy a data frame containing the coordinates of capitals

area a data frame containing three variables, designed to be used in area.plot function

52 carni19

logo a list of pixmap objects, each one symbolizing a capitalSpatial an object of the class SpatialPolygons of sp, containing the mapdist a dist object the road distances between 15 European capitals

### **Examples**

```
data(capitales)
attr(capitales$dist, "Labels")
index <- pmatch(tolower(attr(capitales$dist, "Labels")), names(capitales$logo))</pre>
w1 <- capitales$area
if(adegraphicsLoaded()) {
 if(requireNamespace("sp", quietly = TRUE)) {
   g1 <- s.label(capitales$xy, lab = rownames(capitales$xy), porigin.include = FALSE,
      plot = FALSE)
    g2 <- s.logo(capitales$xy[sort(rownames(capitales$xy)), ], capitales$logo,</pre>
    Sp = capitales$Spatial, pbackground.col = "lightblue", pSp.col = "white", pgrid.draw = FALSE,
      plot = FALSE)
   g3 \leftarrow table.value(capitales sdist, ptable.margin = list(b = 5, l = 5, t = 15, r = 15),
      ptable.x.tck = 3, ptable.y.tck = 3, plot = FALSE)
   {\tt g4 <- s.logo(pcoscaled(lingoes(capitales\$dist)), capitales\$logo[index], plot = FALSE)}
    G \leftarrow ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
} else {
 if(requireNamespace("pixmap", quietly = TRUE)) {
    par(mfrow = c(2, 2))
   s.label(capitales$xy, lab = attr(capitales$dist, "Labels"), include.origin = FALSE)
    area.plot(w1)
   rect(min(w1$x), min(w1$y), max(w1$x), max(w1$y), col = "lightblue")
   invisible(lapply(split(w1, w1$id), function(x) polygon(x[, -1], col = "white")))
   s.logo(capitales$xy, capitales$logo, klogo = index, add.plot = TRUE,
   include.origin = FALSE, clogo = 0.5) # depends on pixmap
    table.dist(capitales$dist, lab = attr(capitales$dist, "Labels")) # depends on mva
   s.logo(pcoscaled(lingoes(capitales$dist)), capitales$logo, klogo = index, clogo = 0.5)
      # depends on pixmap
    par(mfrow = c(1, 1))
 }
```

carni19

Phylogeny and quantative trait of carnivora

#### Description

This data set describes the phylogeny of carnivora as reported by Diniz-Filho et al. (1998). It also gives the body mass of these 19 species.

carni70 53

### Usage

```
data(carni19)
```

### **Format**

carni19 is a list containing the 2 following objects:

tre is a character string giving the phylogenetic tree in Newick format.

**bm** is a numeric vector which values correspond to the body mass of the 19 species (log scale).

#### **Source**

Diniz-Filho, J. A. F., de Sant'Ana, C.E.R. and Bini, L.M. (1998) An eigenvector method for estimating phylogenetic inertia. *Evolution*, **52**, 1247–1262.

### **Examples**

```
data(carni19)
carni19.phy <- newick2phylog(carni19$tre)
par(mfrow = c(1,2))
symbols.phylog(carni19.phy,carni19$bm-mean(carni19$bm))
dotchart.phylog(carni19.phy, carni19$bm, clabel.l=0.75)
par(mfrow = c(1,1))</pre>
```

carni70

Phylogeny and quantitative traits of carnivora

### **Description**

This data set describes the phylogeny of 70 carnivora as reported by Diniz-Filho and Torres (2002). It also gives the geographic range size and body size corresponding to these 70 species.

## Usage

```
data(carni70)
```

# Format

carni70 is a list containing the 2 following objects:

**tre** is a character string giving the phylogenetic tree in Newick format. Branch lengths are expressed as divergence times (millions of years)

tab is a data frame with 70 species and two traits: size (body size (kg)); range (geographic range size (km)).

54 carniherbi49

### Source

Diniz-Filho, J. A. F., and N. M. Tôrres. (2002) Phylogenetic comparative methods and the geographic range size-body size relationship in new world terrestrial carnivora. *Evolutionary Ecology*, **16**, 351–367.

### **Examples**

```
## Not run:
if (requireNamespace("adephylo", quietly = TRUE) & requireNamespace("ape", quietly = TRUE)) {
 data(carni70)
 carni70.phy <- newick2phylog(carni70$tre)</pre>
 plot(carni70.phy)
 size <- scalewt(log(carni70$tab))[,1]</pre>
 names(size) <- row.names(carni70$tab)</pre>
 symbols.phylog(carni70.phy,size)
 tre <- ape::read.tree(text = carni70$tre)</pre>
 adephylo::orthogram(size, tre = tre)
 yrange <- scalewt(carni70$tab[,2])</pre>
 names(yrange) <- row.names(carni70$tab)</pre>
 symbols.phylog(carni70.phy,yrange)
 adephylo::orthogram(as.vector(yrange), tre = tre)
 if(adegraphicsLoaded()) {
    g1 <- s.label(cbind.data.frame(size, yrange), plabel.cex = 0)</pre>
    g2 <- addhist(g1)
 } else {
    s.hist(cbind.data.frame(size, yrange), clabel = 0)
## End(Not run)
```

carniherbi49

Taxonomy, phylogenies and quantitative traits of carnivora and herbivora

# Description

This data set describes the taxonomic and phylogenetic relationships of 49 carnivora and herbivora species as reported by Garland and Janis (1993) and Garland et al. (1993). It also gives seven traits corresponding to these 49 species.

## Usage

```
data(carniherbi49)
```

casitas 55

#### **Format**

carniherbi49 is a list containing the 5 following objects:

taxo is a data frame with 49 species and 2 columns: 'fam', a factor family with 14 levels and 'ord', a factor order with 3 levels.

- **tre1** is a character string giving the phylogenetic tree in Newick format as reported by Garland et al. (1993).
- **tre2** is a character string giving the phylogenetic tree in Newick format as reported by Garland and Janis (1993).
- **tab1** is a data frame with 49 species and 2 traits: 'bodymass' (body mass (kg)) and 'homerange' (home range (km)).
- **tab2** is a data frame with 49 species and 5 traits: 'clade' (dietary with two levels Carnivore and Herbivore), 'runningspeed' (maximal sprint running speed (km/h)), 'bodymass' (body mass (kg)), 'hindlength' (hind limb length (cm)) and 'mtfratio' (metatarsal/femur ratio).

#### Source

Garland, T., Dickerman, A. W., Janis, C. M. and Jones, J. A. (1993) Phylogenetic analysis of covariance by computer simulation. *Systematics Biology*, **42**, 265–292.

Garland, T. J. and Janis, C.M. (1993) Does metatarsal-femur ratio predict maximal running speed in cursorial mammals? *Journal of Zoology*, **229**, 133–151.

#### **Examples**

```
## Not run:
data(carniherbi49)
par(mfrow=c(1,3))
plot(newick2phylog(carniherbi49$tre1), clabel.leaves = 0,
    f.phylog = 2, sub = "article 1")
plot(newick2phylog(carniherbi49$tre2), clabel.leaves = 0,
    f.phylog = 2, sub = "article 2")
taxo <- as.taxo(carniherbi49$taxo)
plot(taxo2phylog(taxo), clabel.nodes = 1.2, clabel.leaves = 1.2)
par(mfrow = c(1,1))
## End(Not run)</pre>
```

casitas

Enzymatic polymorphism in Mus musculus

### **Description**

This data set is a data frame with 74 rows (mice) and 15 columns (loci enzymatic polymorphism of the DNA mitochondrial). Each value contains 6 characters coding for two allelles. The missing values are coding by '000000'.

56 chatcat

### Usage

```
data(casitas)
```

#### **Format**

The 74 individuals of casitas belong to 4 groups:

- 1 24 mice of the sub-species Mus musculus domesticus
- 2 11 mice of the sub-species Mus musculus castaneus
- 3 9 mice of the sub-species Mus musculus musculus
- 4 30 mice from a population of the lake Casitas (California)

#### **Source**

Exemple du logiciel GENETIX. Belkhir k. et al. GENETIX, logiciel sous WindowsTM pour la génétique des populations. Laboratoire Génome, Populations, Interactions CNRS UMR 5000, Université de Montpellier II, Montpellier (France).

```
https://kimura.univ-montp2.fr/genetix/
```

### References

Orth, A., T. Adama, W. Din and F. Bonhomme. (1998) Hybridation naturelle entre deux sous espèces de souris domestique *Mus musculus domesticus* et *Mus musculus castaneus* près de Lake Casitas (Californie). *Genome*, **41**, 104–110.

## **Examples**

```
data(casitas)
str(casitas)
names(casitas)
```

chatcat

Qualitative Weighted Variables

# Description

This data set gives the age, the fecundity and the number of litters for 26 groups of cats.

### Usage

```
data(chatcat)
```

#### **Format**

```
chatcat is a list of two objects:
```

```
tab is a data frame with 3 factors (age, feco, nport).
```

eff is a vector of numbers.

chats 57

### **Details**

One row of tab corresponds to one group of cats. The value in eff is the number of cats in this group.

### **Source**

Pontier, D. (1984) *Contribution à la biologie et à la génétique des populations de chats domestiques* (*Felis catus*). Thèse de 3ème cycle. Université Lyon 1, p. 67.

### **Examples**

chats

Pair of Variables

### **Description**

This data set is a contingency table of age classes and fecundity classes of cats Felis catus.

### Usage

```
data(chats)
```

### **Format**

```
chats is a data frame with 8 rows and 8 columns. The 8 rows are age classes (age1, ..., age8). The 8 columns are fecundity classes (f0, f12, f34, ..., fcd). The values are cats numbers (contingency table).
```

### **Source**

Legay, J.M. and Pontier, D. (1985) Relation âge-fécondité dans les populations de Chats domestiques, Felis catus. *Mammalia*, **49**, 395–402.

58 chazeb

### **Examples**

```
data(chats)
chatsw <- as.table(t(chats))</pre>
chatscoa <- dudi.coa(data.frame(t(chats)), scann = FALSE)</pre>
if(adegraphicsLoaded()) {
 g1 <- table.value(chatsw, ppoints.cex = 1.3, meanX = TRUE, ablineX = TRUE, plabel.cex = 1.5,
    plot = FALSE)
 g2 <- table.value(chatsw, ppoints.cex = 1.3, meanY = TRUE, ablineY = TRUE, plabel.cex = 1.5,
   plot = FALSE)
 g3 <- table.value(chatsw, ppoints.cex = 1.3, coordsx = chatscoa$c1[,
 1], coordsy = chatscoa$11[, 1], meanX = TRUE, ablineX = TRUE, plot = FALSE)
 g4 <- table.value(chatsw, ppoints.cex = 1.3, meanY = TRUE, ablineY = TRUE,
    coordsx = chatscoa$c1[, 1], coordsy = chatscoa$l1[, 1], plot = FALSE)
 G \leftarrow ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
} else {
 par(mfrow = c(2, 2))
 table.cont(chatsw, abmean.x = TRUE, csi = 2, abline.x = TRUE, clabel.r = 1.5, clabel.c = 1.5)
 table.cont(chatsw, abmean.y = TRUE, csi = 2, abline.y = TRUE, clabel.r = 1.5, clabel.c = 1.5)
 table.cont(chatsw, x = \frac{chatscoa}{1]}, y = \frac{sl1}{1}, abmean.x = \frac{TRUE}{1}, csi = 2,
    abline.x = TRUE, clabel.r = 1.5, clabel.c = 1.5)
 table.cont(chatsw, x = chatscoa$c1[, 1], y = chatscoa$11[, 1], abmean.y = TRUE, csi = 2,
    abline.y = TRUE, clabel.r = 1.5, clabel.c = 1.5)
 par(mfrow = c(1, 1))
}
```

chazeb

Charolais-Zebus

#### **Description**

This data set gives six different weights of 23 charolais and zebu oxen.

#### Usage

```
data(chazeb)
```

### **Format**

chazeb is a list of 2 components.

tab is a data frame with 23 rows and 6 columns.

cla is a factor with two levels "cha" and "zeb".

#### Source

```
Tomassone, R., Danzard, M., Daudin, J. J. and Masson J. P. (1988) Discrimination et classement, Masson, Paris. p. 43
```

chevaine 59

### **Examples**

chevaine

Enzymatic polymorphism in Leuciscus cephalus

### **Description**

This data set contains a list of three components: spatial map, allellic profiles and sample sizes.

### Usage

```
data(chevaine)
```

### **Format**

This data set is a list of three components:

```
tab a data frame with 27 populations and 9 allelic frequencies (4 locus)
```

coo a list containing all the elements to build a spatial map

eff a numeric containing the numbers of fish samples per station

# References

Guinand B., Bouvet Y. and Brohon B. (1996) Spatial aspects of genetic differentiation of the European chub in the Rhone River basin. *Journal of Fish Biology*, **49**, 714–726.

```
See a data description at http://pbil.univ-lyon1.fr/R/pdf/pps054.pdf (in French).
```

```
data(chevaine)
names(chevaine)
str(chevaine)
```

60 chickenk

| chickenk | Veterinary epidemiological study to assess the risk factors for losses in broiler chickens |
|----------|--------------------------------------------------------------------------------------------|
|          |                                                                                            |

## **Description**

This data set contains information about potential risk factors for losses in broiler chickens

#### **Usage**

```
data(chickenk)
```

#### **Format**

A list with 5 components:

**mortality** a data frame with 351 observations and 4 variables which describe the losses (dependent dataset Y)

**FarmStructure** a data frame with 351 observations and 5 variables which describe the farm structure (explanatory dataset)

**OnFarmHistory** a data frame with 351 observations and 4 variables which describe the flock characteristics at placement (explanatory dataset)

**FlockCharacteristics** a data frame with 351 observations and 6 variables which describe the flock characteristics during the rearing period (explanatory dataset)

**CatchingTranspSlaught** a data frame with 351 observations and 5 variables which describe the transport, lairage conditions, slaughterhouse and inspection features (explanatory dataset)

#### Source

Lupo C., le Bouquin S., Balaine L., Michel V., Peraste J., Petetin I., Colin P. and Chauvin C. (2009) Feasibility of screening broiler chicken flocks for risk markers as an aid for meat inspection. *Epidemiology and Infection*, 137, 1086-1098

```
data(chickenk)
kta1 <- ktab.list.df(chickenk)</pre>
```

clementines 61

clementines

Fruit Production

### **Description**

The clementines is a data set containing the fruit production of 20 clementine trees during 15 years.

### Usage

```
data(clementines)
```

#### **Format**

A data frame with 15 rows and 20 columns

#### **Source**

Tisné-Agostini, D. (1988) Description par analyse en composantes principales de l'évolution de la production du clémentinier en association avec 12 types de porte-greffe. Rapport technique, DEA Analyse et modélisation des systèmes biologiques, Université Lyon 1.

```
data(clementines)
op <- par(no.readonly = TRUE)</pre>
par(mfrow = c(5, 4))
par(mar = c(2, 2, 1, 1))
for(i in 1:20) {
  w0 <- 1:15
  plot(w0, clementines[, i], type = "b")
  abline(lm(clementines[, i] ~ w0))
}
par(op)
pca1 <- dudi.pca(clementines, scan = FALSE)</pre>
if(adegraphicsLoaded()) {
  g1 <- s.corcircle(pca1$co, plab.cex = 0.75)
  g2 <- s1d.barchart(pca1$li[, 1], p1d.hori = FALSE)</pre>
} else {
  s.corcircle(pca1$co, clab = 0.75)
  barplot(pca1$li[, 1])
}
op <- par(no.readonly = TRUE)
par(mfrow = c(5, 4))
par(mar = c(2, 2, 1, 1))
clem0 <- pca1$tab</pre>
croi <- 1:15
```

62 cnc2003

```
alter <- c(rep(c(1, -1), 7), 1)
for(i in 1:20) {
    y <- clem0[,i]
    plot(w0, y, type = "b", ylim = c(-2, 2))
    z <- predict(lm(clem0[, i] ~ croi * alter))
    points(w0, z, pch = 20, cex = 2)
    for(j in 1:15)
        segments(j, y[j], j, z[j])
}
par(op)
par(mfrow = c(1, 1))</pre>
```

cnc2003

Frequenting movie theaters in France in 2003

### **Description**

cnc2003 is a data frame with 94 rows (94 departments from continental Metropolitan France)and 12 variables.

### Usage

```
data(cnc2003)
```

#### **Format**

This data frame contains the following variables:

**popu** is the population department in million inhabitants.

entr is the number of movie theater visitors in million.

rece is the takings from ticket offices.

**sean** is the number of proposed shows in thousands.

**comm** is the number of equipped communes in movie theaters (units).

**etab** is the number of active movie theaters (units).

salle is the number of active screens.

faut is the number of proposed seats.

artes is the number of movie theaters offering "Art and Essay" movies.

multi is the number of active multiplexes.

**depart** is the name of the department.

reg is the administrative region of the department.

#### Source

National Center of Cinematography (CNC), september 2003

coinertia 63

### See Also

This dataset is compatible with elec88 and presid2002

# **Examples**

```
data(cnc2003)
sco.quant(cnc2003$popu, cnc2003[,2:10], abline = TRUE, csub = 3)
```

coinertia

Coinertia Analysis

### **Description**

The coinertia analysis performs a double inertia analysis of two tables.

### Usage

```
coinertia(dudiX, dudiY, scannf = TRUE, nf = 2)
## S3 method for class 'coinertia'
plot(x, xax = 1, yax = 2, ...)
## S3 method for class 'coinertia'
print(x, ...)
## S3 method for class 'coinertia'
summary(object, ...)
```

# Arguments

| dudiX     | a duality diagram providing from one of the functions dudi.coa, dudi.pca,         |
|-----------|-----------------------------------------------------------------------------------|
| dudiY     | a duality diagram providing from one of the functions dudi.coa, dudi.pca, $\dots$ |
| scannf    | a logical value indicating whether the eigenvalues bar plot should be displayed   |
| nf        | if scannf FALSE, an integer indicating the number of kept axes                    |
|           |                                                                                   |
| x, object | an object of class 'coinertia'                                                    |
| xax, yax  | the numbers of the x-axis and the y-axis                                          |
| • • •     | further arguments passed to or from other methods                                 |
|           |                                                                                   |

### Value

Returns a list of class 'coinertia', sub-class 'dudi' containing:

call call rank

nf a numeric value indicating the number of kept axes

RV a numeric value, the RV coefficient

64 coinertia

| eig | a numeric vector with all the eigenvalues                 |
|-----|-----------------------------------------------------------|
| lw  | a numeric vector with the rows weigths (crossed table)    |
| CW  | a numeric vector with the columns weigths (crossed table) |
| tab | a crossed table (CT)                                      |
| li  | CT row scores (cols of dudiY)                             |
| 11  | Principal components (loadings for cols of dudiY)         |
| со  | CT col scores (cols of dudiX)                             |
| c1  | Principal axes (cols of dudiX)                            |
| 1X  | Row scores (rows of dudiX)                                |
| mX  | Normed row scores (rows of dudiX)                         |
| 1Y  | Row scores (rows of dudiY)                                |
| mY  | Normed row scores (rows of dudiY)                         |
| aX  | Correlations between dudiX axes and coinertia axes        |
| aY  | Correlations between dudiY axes and coinertia axes        |
|     |                                                           |

### WARNING

IMPORTANT: dudi1 and dudi2 must have identical row weights.

### Author(s)

Daniel Chessel

Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>

### References

Dolédec, S. and Chessel, D. (1994) Co-inertia analysis: an alternative method for studying species-environment relationships. *Freshwater Biology*, **31**, 277–294.

Dray, S., Chessel, D. and J. Thioulouse (2003) Co-inertia analysis and the linking of the ecological data tables. *Ecology*, **84**, 11, 3078–3089.

```
data(doubs)
dudi1 <- dudi.pca(doubs$env, scale = TRUE, scan = FALSE, nf = 3)
dudi2 <- dudi.pca(doubs$fish, scale = FALSE, scan = FALSE, nf = 2)
coin1 <- coinertia(dudi1,dudi2, scan = FALSE, nf = 2)
coin1
summary(coin1)

if(adegraphicsLoaded()) {
  g1 <- s.arrow(coin1$11, plab.cex = 0.7)
  g2 <- s.arrow(coin1$c1, plab.cex = 0.7)
  g3 <- s.corcircle(coin1$aX, plot = FALSE)
  g4 <- s.corcircle(coin1$aY, plot = FALSE)</pre>
```

coleo 65

```
cbindADEg(g3, g4, plot = TRUE)
  g5 <- plot(coin1)

} else {
  s.arrow(coin1$11, clab = 0.7)
  s.arrow(coin1$c1, clab = 0.7)
  par(mfrow = c(1,2))
  s.corcircle(coin1$aX)
  s.corcircle(coin1$aY)
  par(mfrow = c(1,1))
  plot(coin1)
}</pre>
```

coleo

Table of Fuzzy Biological Traits

### **Description**

This data set coleo (coleoptera) is a a fuzzy biological traits table.

### Usage

```
data(coleo)
```

#### **Format**

coleo is a list of 5 components.

tab is a data frame with 110 rows (species) and 32 columns (categories).

species.names is a vector of species names.

moda.names is a vector of fuzzy variables names.

families is a factor species family.

col.blocks is a vector containing the number of categories of each trait.

#### **Source**

Bournaud, M., Richoux, P. and Usseglio-Polatera, P. (1992) An approach to the synthesis of qualitative ecological information from aquatic coleoptera communities. *Regulated rivers: Research and Management*, **7**, 165–180.

```
data(coleo)
op <- par(no.readonly = TRUE)
coleo.fuzzy <- prep.fuzzy.var(coleo$tab, coleo$col.blocks)
fca1 <- dudi.fca(coleo.fuzzy, sca = FALSE, nf = 3)
indica <- factor(rep(names(coleo$col), coleo$col))</pre>
```

66 combine.4thcorner

```
if(adegraphicsLoaded()) {
 glist <- list()</pre>
 for(i in levels(indica)) {
    df <- coleo$tab[, which(indica == i)]</pre>
    names(df) <- coleo$moda.names[which(indica == i)]</pre>
    glist[i] <- s.distri(fca1$11, df, psub.text = as.character(i), ellipseSize = 0,</pre>
      starSize = 0.5, plot = FALSE, storeData = TRUE)
 G \leftarrow ADEgS(glist, layout = c(3, 3))
} else {
 par(mfrow = c(3, 3))
  for(j in levels(indica))
   s.distri(fca1$11, coleo$tab[, which(indica == j)], clab = 1.5, sub = as.character(j),
      cell = 0, csta = 0.5, csub = 3, label = coleo$moda.names[which(indica == j)])
 par(op)
 par(mfrow = c(1, 1))
}
```

combine.4thcorner

Functions to combine and adjust the outputs 3-table methods

### **Description**

Functions to combine and adjust the outputs of the fourthcorner and randtest.rlq functions created using permutational models 2 and 4 (sequential approach).

### Usage

```
combine.randtest.rlq(obj1, obj2, ...)
combine.4thcorner(four1,four2)
p.adjust.4thcorner(x, p.adjust.method.G = p.adjust.methods,
p.adjust.method.D = p.adjust.methods, p.adjust.D = c("global",
"levels"))
```

#### **Arguments**

```
four1 an object of the class 4thcorner created with modeltype = 2 (or 4)

four2 an object of the class 4thcorner created with modeltype = 4 (or 2)

obj1 an object created with randtest.rlq and modeltype = 2 (or 4)

obj2 an object created with randtest.rlq and modeltype = 4 (or 2)

x an object of the class 4thcorner

p.adjust.method.G

a string indicating a method for multiple adjustment used for output tabG, see p.adjust.methods for possible choices

p.adjust.method.D

a string indicating a method for multiple adjustment used for output tabD/tabD2, see p.adjust.methods for possible choices
```

combine.4thcorner 67

| p.adjust.D | a string indicating if multiple adjustment for tabD/tabD2 should be done glob-      |
|------------|-------------------------------------------------------------------------------------|
|            | ally or only between levels of a factor ("levels", as in the original paper of Leg- |
|            | endre et al. 1997)                                                                  |

... further arguments passed to or from other methods

#### **Details**

The functions combines the outputs of two objects (created by fourthcorner and randtest.rlq functions) as described in Dray and Legendre (2008) and ter Braak et al (2012).

#### Value

The functions return objects of the same class than their argument. They simply create a new object where pvalues are equal to the maximum of pvalues of the two arguments.

#### Author(s)

```
Stéphane Dray <stephane.dray@univ-lyon1.fr>
```

#### References

Dray, S. and Legendre, P. (2008) Testing the species traits-environment relationships: the fourth-corner problem revisited. *Ecology*, **89**, 3400–3412.

ter Braak, C., Cormont, A., and Dray, S. (2012) Improved testing of species traits-environment relationships in the fourth corner problem. *Ecology*, **93**, 1525–1526.

### See Also

```
rlq, fourthcorner, p.adjust.methods
```

```
data(aravo)
four2 <- fourthcorner(aravo$env, aravo$spe, aravo$traits, nrepet=99,modeltype=2)
four4 <- fourthcorner(aravo$env, aravo$spe, aravo$traits, nrepet=99,modeltype=4)
four.comb <- combine.4thcorner(four2,four4)
## or directly :
## four.comb <- fourthcorner(aravo$env, aravo$spe, aravo$traits, nrepet=99,modeltype=6)
summary(four.comb)
plot(four.comb, stat = "G")</pre>
```

68 corkdist

| corkdist | Tests of randomization between distances applied to 'kdist' objetcs |
|----------|---------------------------------------------------------------------|
|          |                                                                     |

# Description

The mantelkdist and RVkdist functions apply to blocks of distance matrices the mantel.rtest and RV.rtest functions.

### Usage

```
mantelkdist (kd, nrepet = 999, ...)
RVkdist (kd, nrepet = 999, ...)
## S3 method for class 'corkdist'
plot(x, whichinrow = NULL, whichincol = NULL,
    gap = 4, nclass = 10,...)
```

### **Arguments**

| kd         | a list of class kdist                                                                      |
|------------|--------------------------------------------------------------------------------------------|
| nrepet     | the number of permutations                                                                 |
| X          | an objet of class corkdist, coming from RVkdist or mantelkdist                             |
| whichinrow | a vector of integers to select the graphs in rows (if NULL all the graphs are computed)    |
| whichincol | a vector of integers to select the graphs in columns (if NULL all the graphs are computed) |
| gap        | an integer to determinate the space between two graphs                                     |
| nclass     | a number of intervals for the histogram                                                    |
|            | further arguments passed to or from other methods                                          |

### **Details**

The corkdist class has some generic functions print, plot and summary. The plot shows bivariate scatterplots between semi-matrices of distances or histograms of simulated values with an error position.

## Value

a list of class corkdist containing for each pair of distances an object of class randtest (permutation tests).

# Author(s)

```
Daniel Chessel
Stéphane Dray <stephane.dray@univ-lyon1.fr>
```

corvus 69

### **Examples**

```
data(friday87)
fri.w <- ktab.data.frame(friday87$fau, friday87$fau.blo, tabnames = friday87$tab.names)</pre>
fri.kc <- lapply(1:10, function(x) dist.binary(fri.w[[x]], 10))</pre>
names(fri.kc) <- substr(friday87$tab.names, 1, 4)</pre>
fri.kd <- kdist(fri.kc)</pre>
fri.mantel <- mantelkdist(kd = fri.kd, nrepet = 999)</pre>
plot(fri.mantel, 1:5, 1:5)
plot(fri.mantel, 1:5, 6:10)
plot(fri.mantel, 6:10, 1:5)
plot(fri.mantel, 6:10, 6:10)
s.corcircle(dudi.pca(as.data.frame(fri.kd), scan = FALSE)$co)
plot(RVkdist(fri.kd), 1:5, 1:5)
data(yanomama)
m1 <- mantelkdist(kdist(yanomama), 999)</pre>
summary(m1)
plot(m1)
```

corvus

Corvus morphology

## **Description**

This data set gives a morphological description of 28 species of the genus Corvus split in two habitat types and phylogeographic stocks.

### Usage

```
data(corvus)
```

#### **Format**

corvus is data frame with 28 observations (the species) and 4 variables :

```
wing : wing length (mm)
bill : bill length (mm)
```

**habitat**: habitat with two levels clos and open

**phylog**: phylogeographic stock with three levels amer(America), orien(Oriental-Australian), pale(Paleoarctic-African)

### References

Laiolo, P. and Rolando, A. (2003) The evolution of vocalisations in the genus Corvus: effects of phylogeny, morphology and habitat. *Evolutionary Ecology*, **17**, 111–123.

70 costatis

### **Examples**

```
data(corvus)

if(adegraphicsLoaded()) {
    g1 <- s.label(corvus[, 1:2], plab.cex = 0, porigin.include = FALSE, pgrid.draw = FALSE,
        paxes.draw = TRUE, paxes.asp = "full", xlab = names(corvus)[2],
        ylab = names(corvus)[2], plot = FALSE)
    g2 <- s.class(corvus[, 1:2], corvus[, 4]:corvus[, 3], plot = FALSE)
    G <- superpose(g1, g2, plot = TRUE)

} else {
    plot(corvus[, 1:2])
    s.class(corvus[, 1:2], corvus[, 4]:corvus[, 3], add.p = TRUE)
}</pre>
```

costatis

STATIS and Co-Inertia: Analysis of a series of paired ecological tables

# Description

Analysis of a series of pairs of ecological tables. This function uses Partial Triadic Analysis (pta) and coinertia to do the computations.

### Usage

```
costatis(KTX, KTY, scannf = TRUE)
```

## **Arguments**

KTX an objet of class ktab
KTY an objet of class ktab

scannf a logical value indicating whether the eigenvalues bar plot should be displayed

#### **Details**

This function takes 2 ktabs. It does a PTA (partial triadic analysis: pta) on each ktab, and does a coinertia analysis (coinertia) on the compromises of the two PTAs.

### Value

a list of class coinertia, subclass dudi. See coinertia

# WARNING

IMPORTANT: KTX and KTY must have the same k-tables structure, the same number of columns, and the same column weights.

costatis.randtest 71

### Author(s)

Jean Thioulouse < Jean. Thioulouse@univ-lyon1.fr>

### References

Thioulouse J. (2011). Simultaneous analysis of a sequence of paired ecological tables: a comparison of several methods. *Annals of Applied Statistics*, **5**, 2300-2325.

# Examples

```
data(meau)
wit1 <- withinpca(meau$env, meau$design$season, scan = FALSE, scal = "total")
pcaspe <- dudi.pca(meau$spe, scale = FALSE, scan = FALSE, nf = 2)
wit2 <- wca(pcaspe, meau$design$season, scan = FALSE, nf = 2)
kta1 <- ktab.within(wit1, colnames = rep(c("S1","S2","S3","S4","S5","S6"), 4))
kta2 <- ktab.within(wit2, colnames = rep(c("S1","S2","S3","S4","S5","S6"), 4))
costatis1 <- costatis(kta1, kta2, scan = FALSE)
plot(costatis1)</pre>
```

costatis.randtest

Monte-Carlo test on a Costatis analysis (in C).

### **Description**

Performs a Monte-Carlo test on a Costatis analysis.

### Usage

```
costatis.randtest(KTX, KTY, nrepet = 999, ...)
```

## **Arguments**

KTX an objet of class ktab

KTY an objet of class ktab

nrepet the number of permutations

... further arguments passed to or from other methods

# Value

a list of the class randtest

### Author(s)

Jean Thioulouse < Jean. Thioulouse@univ-lyon1.fr>

72 dagnelie.test

#### References

Thioulouse J. (2011). Simultaneous analysis of a sequence of paired ecological tables: a comparison of several methods. *Annals of Applied Statistics*, **5**, 2300-2325.

### **Examples**

```
data(meau)
wit1 <- withinpca(meau$env, meau$design$season, scan = FALSE, scal = "total")
pcaspe <- dudi.pca(meau$spe, scale = FALSE, scan = FALSE, nf = 2)
wit2 <- wca(pcaspe, meau$design$season, scan = FALSE, nf = 2)
kta1 <- ktab.within(wit1, colnames = rep(c("S1","S2","S3","S4","S5","S6"), 4))
kta2 <- ktab.within(wit2, colnames = rep(c("S1","S2","S3","S4","S5","S6"), 4))
costatis1 <- costatis(kta1, kta2, scan = FALSE)
costatis.randtest(kta1, kta2)</pre>
```

dagnelie.test

Dagnelie multinormality test

### **Description**

Compute Dagnelie test of multivariate normality on a data table of n objects (rows) and p variables (columns), with n > (p+1).

#### Usage

```
dagnelie.test(x)
```

#### **Arguments**

Х

Multivariate data table (matrix or data.frame).

#### **Details**

Dagnelie's goodness-of-fit test of multivariate normality is applicable to multivariate data. Mahalanobis generalized distances are computed between each object and the multivariate centroid of all objects. Dagnelie's approach is that, for multinormal data, the generalized distances should be normally distributed. The function computes a Shapiro-Wilk test of normality of the Mahalanobis distances; this is our improvement of Dagnelie's method. The null hypothesis (H0) is that the data are multinormal, a situation where the Mahalanobis distances should be normally distributed. In that case, the test should not reject H0, subject to type I error at the selected significance level.

Numerical simulations by D. Borcard have shown that the test had correct levels of type I error for values of n between 3p and 8p, where n is the number of objects and p is the number of variables in the data matrix (simulations with  $1 \le p \le 100$ ). Outside that range of n values, the results were too liberal, meaning that the test rejected too often the null hypothesis of normality. For p = 2, the simulations showed the test to be valid for  $6 \le n \le 13$  and too liberal outside that range. If H0 is not rejected in a situation where the test is too liberal, the result is trustworthy.

dagnelie.test 73

Calculation of the Mahalanobis distances requires that n > p+1 (actually, n > rank+1). With fewer objects (n), all points are at equal Mahalanobis distances from the centroid in the resulting space, which has  $\min(rank, (n-1))$  dimensions. For data matrices that happen to be collinear, the function uses ginv for inversion.

This test is not meant to be used with univariate data; in simulations, the type I error rate was higher than the 5% significance level for all values of n. Function shapiro.test should be used in that situation.

#### Value

A list containing the following results:

Shapiro. Wilk W statistic and p-value

dim dimensions of the data matrix, n and p rank the rank of the covariance matrix

D Vector containing the Mahalanobis distances of the objects to the multivariate

centroid

### Author(s)

Daniel Borcard and Pierre Legendre

### References

Dagnelie, P. 1975. L'analyse statistique a plusieurs variables. Les Presses agronomiques de Gembloux, Gembloux, Belgium.

Legendre, P. and L. Legendre. 2012. Numerical ecology, 3rd English edition. Elsevier Science BV, Amsterdam, The Netherlands.

```
# Example 1: 2 variables, n = 100
n <- 100; p <- 2
mat <- matrix(rnorm(n*p), n, p)
(out <- dagnelie.test(mat))

# Example 2: 10 variables, n = 50
n <- 50; p <- 10
mat <- matrix(rnorm(n*p), n, p)
(out <- dagnelie.test(mat))

# Example 3: 10 variables, n = 100
n <- 100; p <- 10
mat <- matrix(rnorm(n*p), n, p)
(out <- dagnelie.test(mat))

# Plot a histogram of the Mahalanobis distances</pre>
```

74 deug

```
hist(out$D)

# Example 4: 10 lognormal random variables, n = 50
n <- 50; p <- 10
mat <- matrix(round(exp(rnorm((n*p), mean = 0, sd = 2.5))), n, p)
(out <- dagnelie.test(mat))
# Plot a histogram of the Mahalanobis distances
hist(out$D)</pre>
```

Deprecated functions Deprecated functions in ade4

### **Description**

The functions/data listed below are deprecated. The R code of the deprecated functions are stored for memory in the file ade4-deprecated.R.

- between: replaced by bca
- betweencoinertia: replaced by bca.coinertia
- char2genet: replaced by df2genind and genind2genpop in the adegenet package
- count2genet: replaced by df2genind and genind2genpop in the adegenet package
- dist.genet: replaced by dist.genpop in the adegenet package
- EH: replaced by EH in the adiv package
- freq2genet: replaced by df2genind and genind2genpop in the adegenet package
- fuzzygenet: replaced by df2genind in the adegenet package
- optimEH: replaced by optimEH in the adiv package
- orisaved: replaced by orisaved in the adiv package
- orthogram: replaced by orthogram in the adephylo package
- randEH: replaced by randEH in the adiv package
- within: replaced by wca
- withincoinertia: replaced by wca.coinertia

deug

Exam marks for some students

### Description

This data set gives the exam results of 104 students in the second year of a French University onto 9 subjects.

## Usage

data(deug)

disc 75

### **Format**

deug is a list of three components.

**tab** is a data frame with 104 students and 9 subjects : Algebra, Analysis, Proba, Informatic, Economy, Option1, Option2, English, Sport.

result is a factor of 104 components giving the final exam levels (A+, A, B, B-, C-, D).

cent is a vector of required marks by subject to get exactly 10/20 with a coefficient.

#### **Source**

University of Lyon 1

### **Examples**

```
data(deug)
# decentred PCA
pca1 <- dudi.pca(deug$tab, scal = FALSE, center = deug$cent, scan = FALSE)

if(adegraphicsLoaded()) {
   g1 <- s.class(pca1$li, deug$result, plot = FALSE)
   g2 <- s.arrow(40 * pca1$c1, plot = FALSE)
   G <- superpose(g1, g2, plot = TRUE)

} else {
   s.class(pca1$li, deug$result)
   s.arrow(40 * pca1$c1, add.plot = TRUE)
}</pre>
```

disc

Rao's dissimilarity coefficient

## **Description**

Calculates the root square of Rao's dissimilarity coefficient between samples.

## Usage

```
disc(samples, dis = NULL, structures = NULL)
```

## **Arguments**

| samples    | a data frame with elements as rows, samples as columns, and abundance, presence-<br>absence or frequencies as entries             |
|------------|-----------------------------------------------------------------------------------------------------------------------------------|
| dis        | an object of class dist containing distances or dissimilarities among elements. If dis is NULL, equidistances are used.           |
| structures | a data frame containing, in the jth row and the kth column, the name of the group of level k to which the jth population belongs. |

76 discrimin

### Value

Returns a list of objects of class dist

### Author(s)

#### References

Rao, C.R. (1982) Diversity and dissimilarity coefficients: a unified approach. *Theoretical Population Biology*, **21**, 24–43.

### **Examples**

```
data(humDNAm)
humDNA.dist <- disc(humDNAm$samples, sqrt(humDNAm$distances), humDNAm$structures)
humDNA.dist
is.euclid(humDNA.dist$samples)
is.euclid(humDNA.dist$regions)

## Not run:
data(ecomor)
dtaxo <- dist.taxo(ecomor$taxo)
ecomor.dist <- disc(ecomor$habitat, dtaxo)
ecomor.dist
is.euclid(ecomor.dist)

## End(Not run)</pre>
```

discrimin

Linear Discriminant Analysis (descriptive statistic)

# Description

performs a linear discriminant analysis.

## Usage

```
discrimin(dudi, fac, scannf = TRUE, nf = 2)
## S3 method for class 'discrimin'
plot(x, xax = 1, yax = 2, ...)
## S3 method for class 'discrimin'
print(x, ...)
```

discrimin 77

# Arguments

| dudi   | a duality diagram, object of class dudi                                         |
|--------|---------------------------------------------------------------------------------|
| fac    | a factor defining the classes of discriminant analysis                          |
| scannf | a logical value indicating whether the eigenvalues bar plot should be displayed |
| nf     | if scannf FALSE, an integer indicating the number of kept axes                  |
|        |                                                                                 |
| X      | an object of class 'discrimin'                                                  |
| xax    | the column number of the x-axis                                                 |
| yax    | the column number of the y-axis                                                 |
|        | further arguments passed to or from other methods                               |

### Value

returns a list of class 'discrimin' containing:

| nf  | a numeric value indicating the number of kept axes                               |
|-----|----------------------------------------------------------------------------------|
|     |                                                                                  |
| eig | a numeric vector with all the eigenvalues                                        |
| fa  | a matrix with the loadings: the canonical weights                                |
| li  | a data frame which gives the canonical scores                                    |
| va  | a matrix which gives the cosines between the variables and the canonical scores  |
| ср  | a matrix which gives the cosines between the components and the canonical scores |
| gc  | a data frame which gives the class scores                                        |

# Author(s)

```
Daniel Chessel
Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>
```

# See Also

1da in package MASS

78 discrimin.coa

discrimin.coa

Discriminant Correspondence Analysis

# Description

performs a discriminant correspondence analysis.

## Usage

```
discrimin.coa(df, fac, scannf = TRUE, nf = 2)
```

#### **Arguments**

df a data frame containing positive or null values

fac a factor defining the classes of discriminant analysis

scannf a logical value indicating whether the eigenvalues bar plot should be displayed

nf if scannf FALSE, an integer indicating the number of kept axes

#### Value

a list of class discrimin. See discrimin

## Author(s)

Daniel Chessel

Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>

### References

Perriere, G., Lobry, J. R. and Thioulouse J. (1996) Correspondence discriminant analysis: a multivariate method for comparing classes of protein and nucleic acid sequences. *CABIOS*, **12**, 519–524.

Perriere, G. and Thioulouse, J. (2003) Use of Correspondence Discriminant Analysis to predict the subcellular location of bacterial proteins. *Computer Methods and Programs in Biomedicine*, **70**, 2, 99–105.

```
data(perthi02)
plot(discrimin.coa(perthi02$tab, perthi02$cla, scan = FALSE))
```

dist.binary 79

dist.binary

Computation of Distance Matrices for Binary Data

### **Description**

computes for binary data some distance matrice.

### Usage

```
dist.binary(df, method = NULL, diag = FALSE, upper = FALSE)
```

### **Arguments**

| df     | a matrix or a data frame with positive or null numeric values. Used with as .matrix(1 $\star$ (df > 0))        |
|--------|----------------------------------------------------------------------------------------------------------------|
| method | an integer between 1 and $10$ . If NULL the choice is made with a console message. See details                 |
| diag   | a logical value indicating whether the diagonal of the distance matrix should be printed by 'print.dist'       |
| upper  | a logical value indicating whether the upper triangle of the distance matrix should be printed by 'print.dist' |

## **Details**

Let be the contingency table of binary data such as  $n_{11} = a$ ,  $n_{10} = b$ ,  $n_{01} = c$  and  $n_{00} = d$ . All these distances are of type  $d = \sqrt{1-s}$  with s a similarity coefficient.

- **1 = Jaccard index (1901)** S3 coefficient of Gower & Legendre  $s_1 = \frac{a}{a+b+c}$
- **2 = Simple matching coefficient of Sokal & Michener (1958)** S4 coefficient of Gower & Legendre  $s_2 = \frac{a+d}{a+b+c+d}$
- **3 = Sokal & Sneath(1963)** S5 coefficient of Gower & Legendre  $s_3 = \frac{a}{a+2(b+c)}$
- **4 = Rogers & Tanimoto (1960)** S6 coefficient of Gower & Legendre  $s_4 = \frac{a+d}{(a+2(b+c)+d)}$
- **5 = Dice (1945) or Sorensen (1948)** S7 coefficient of Gower & Legendre  $s_5 = \frac{2a}{2a+b+c}$
- **6 = Hamann coefficient** S9 index of Gower & Legendre (1986)  $s_6 = \frac{a (b + c) + d}{a + b + c + d}$
- **7 = Ochiai (1957)** S12 coefficient of Gower & Legendre  $s_7 = \frac{a}{\sqrt{(a+b)(a+c)}}$
- **8 = Sokal & Sneath (1963)** S13 coefficient of Gower & Legendre  $s_8 = \frac{ad}{\sqrt{(a+b)(a+c)(d+b)(d+c)}}$
- **9 = Phi of Pearson** S14 coefficient of Gower & Legendre  $s_9 = \frac{ad-bc}{\sqrt{(a+b)(a+c)(b+d)(d+c)}}$
- 10 = S2 coefficient of Gower & Legendre  $s_1 = \frac{a}{a+b+c+d}$

## Value

returns a distance matrix of class dist between the rows of the data frame

80 dist.dudi

### Author(s)

```
Daniel Chessel
Stéphane Dray <stephane.dray@univ-lyon1.fr>
```

### References

Gower, J.C. and Legendre, P. (1986) Metric and Euclidean properties of dissimilarity coefficients. *Journal of Classification*, **3**, 5–48.

## **Examples**

```
data(aviurba)
for (i in 1:10) {
    d <- dist.binary(aviurba$fau, method = i)
    cat(attr(d, "method"), is.euclid(d), "\n")}</pre>
```

dist.dudi

Computation of the Distance Matrix from a Statistical Triplet

### **Description**

computes for a statistical triplet a distance matrix.

### Usage

```
dist.dudi(dudi, amongrow = TRUE)
```

### **Arguments**

dudi a duality diagram, object of class dudi

amongrow a logical value computing the distance if TRUE, between rows, if FALSE be-

tween columns.

#### Value

```
an object of class dist
```

### Author(s)

```
Daniel Chessel
Stéphane Dray <stephane.dray@univ-lyon1.fr>
```

```
data (meaudret)
pca1 <- dudi.pca(meaudret$env, scan = FALSE)
sum((dist(scalewt(meaudret$env)) - dist.dudi(pca1))^2)
#[1] 4.045e-29 the same thing</pre>
```

dist.ktab 81

dist.ktab

Mixed-variables coefficient of distance

# Description

The mixed-variables coefficient of distance generalizes Gower's general coefficient of distance to allow the treatment of various statistical types of variables when calculating distances. This is especially important when measuring functional diversity. Indeed, most of the indices that measure functional diversity depend on variables (traits) that have various statistical types (e.g. circular, fuzzy, ordinal) and that go through a matrix of distances among species.

## Usage

```
dist.ktab(x, type, option = c("scaledBYrange", "scaledBYsd", "noscale"),
scann = FALSE, tol = 1e-8)
ldist.ktab(x, type, option = c("scaledBYrange", "scaledBYsd",
"noscale"), scann = FALSE, tol = 1e-8)
kdist.cor(x, type, option = c("scaledBYrange", "scaledBYsd", "noscale"),
scann = FALSE, tol = 1e-8, squared = TRUE)
prep.fuzzy(df, col.blocks, row.w = rep(1, nrow(df)), labels = paste("F",
1:length(col.blocks), sep = ""))
prep.binary(df, col.blocks, labels = paste("B", 1:length(col.blocks), sep = ""))
prep.circular(df, rangemin = apply(df, 2, min, na.rm = TRUE), rangemax =
apply(df, 2, max, na.rm = TRUE))
```

### **Arguments**

tol

squared df

| x      | Object of class ktab (see details)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| type   | Vector that provide the type of each table in $x$ . The possible types are "Q" (quantitative), "O" (ordinal), "N" (nominal), "D" (dichotomous), "F" (fuzzy, or expressed as a proportion), "B" (multichoice nominal variables, coded by binary columns), "C" (circular). Values in type must be in the same order as in $x$ .                                                                                                                                                                                                                                                  |
| option | A string that can have three values: either "scaledBYrange" if the quantitative variables must be scaled by their range, or "scaledBYsd" if they must be scaled by their standard deviation, or "noscale" if they should not be scaled. This last option can be useful if the the values have already been normalized by the known range of the whole population instead of the observed range measured on the sample. If x contains data from various types, then the option "scaledBYsd" is not suitable (a warning will appear if the option selected with that condition). |
| scann  | A logical. If TRUE, then the user will have to choose among several possible functions of distances for the quantitative, ordinal, fuzzy and binary variables.                                                                                                                                                                                                                                                                                                                                                                                                                 |

A tolerance threshold: a value less than tol is considered as null.

A logical, if TRUE, the squared distances are considered.

Objet of class data.frame

82 dist.ktab

col.blocks A vector that contains the number of levels per variable (in the same order as in

df)

row.w A vector of row weigths labels the names of the traits

rangemin A numeric corresponding to the smallest level where the loop starts

A numeric corresponding to the highest level where the loop closes

#### **Details**

When preparing the object of class ktab (object x), variables of type "Q", "O", "D", "F", "B" and "C" should be of class numeric (the class ordered is not yet considered by dist.ktab); variables of type "N" should be of class character or factor

### Value

The functions provide the following results:

dist.ktab returns an object of class dist;

ldist.ktab returns a list of objects of class dist that correspond to the distances between

species calculated per trait;

kdist.cor returns a list of three objects: "paircov" provides the covariance between traits

in terms of (squared) distances between species; "paircor" provides the correlations between traits in terms of (squared) distances between species; "glocor" provides the correlations between the (squared) distances obtained for each trait and the global (squared) distances obtained by mixing all the traits (= contribu-

tions of traits to the global distances);

prep.binary and prep.fuzzy

returns a data frame with the following attributes: col.blocks specifies the number of columns per fuzzy variable; col.num specifies which variable each column

belongs to;

prep.circular returns a data frame with the following attributes: max specifies the number of

levels in each circular variable.

### Author(s)

Sandrine Pavoine <pavoine@mnhn.fr>

### References

Pavoine S., Vallet, J., Dufour, A.-B., Gachet, S. and Daniel, H. (2009) On the challenge of treating various types of variables: Application for improving the measurement of functional diversity. *Oikos*, **118**, 391–402. doi:10.1111/j.16000706.2008.16668.x

Appendix available at: http://www.oikosjournal.org/sites/oikosjournal.org/files/appendix/o16668.pdf http://www.oikosjournal.org/sites/oikosjournal.org/files/appendix/o16668\_files.zip

dist.ktab 83

#### See Also

daisy in the case of ratio-scale (quantitative) and nominal variables; and woangers for an application.

```
# With fuzzy variables
data(bsetal97)
w <- prep.fuzzy(bsetal97$biol, bsetal97$biol.blo)</pre>
w[1:6, 1:10]
ktab1 <- ktab.list.df(list(w))</pre>
dis <- dist.ktab(ktab1, type = "F")</pre>
as.matrix(dis)[1:5, 1:5]
## Not run:
# With ratio-scale and multichoice variables
data(ecomor)
wM <- log(ecomor$morpho + 1) # Quantitative variables
wD <- ecomor$diet
# wD is a data frame containing a multichoice nominal variable
# (diet habit), with 8 modalities (Granivorous, etc)
# We must prepare it by prep.binary
head(wD)
wD <- prep.binary(wD, col.blocks = 8, label = "diet")</pre>
wF <- ecomor$forsub
# wF is also a data frame containing a multichoice nominal variable
# (foraging substrat), with 6 modalities (Foliage, etc)
# We must prepare it by prep.binary
head(wF)
wF <- prep.binary(wF, col.blocks = 6, label = "foraging")
# Another possibility is to combine the two last data frames wD and wF as
# they contain the same type of variables
wB <- cbind.data.frame(ecomor$diet, ecomor$forsub)</pre>
head(wB)
wB <- prep.binary(wB, col.blocks = c(8, 6), label = c("diet", "foraging"))
# The results given by the two alternatives are identical
ktab2 <- ktab.list.df(list(wM, wD, wF))</pre>
disecomor <- dist.ktab(ktab2, type= c("Q", "B", "B"))</pre>
as.matrix(disecomor)[1:5, 1:5]
contrib2 <- kdist.cor(ktab2, type= c("Q", "B", "B"))</pre>
contrib2
ktab3 <- ktab.list.df(list(wM, wB))</pre>
disecomor2 <- dist.ktab(ktab3, type= c("Q", "B"))</pre>
as.matrix(disecomor2)[1:5, 1:5]
contrib3 <- kdist.cor(ktab3, type= c("Q", "B"))</pre>
contrib3
# With a range of variables
data(woangers)
```

84 dist.neig

```
traits <- woangers$traits</pre>
# Nominal variables 'li', 'pr', 'lp' and 'le'
# (see table 1 in the main text for the codes of the variables)
tabN <- traits[,c(1:2, 7, 8)]
# Circular variable 'fo'
tabC <- traits[3]</pre>
tabCp <- prep.circular(tabC, 1, 12)</pre>
# The levels of the variable lie between 1 (January) and 12 (December).
# Ordinal variables 'he', 'ae' and 'un'
tab0 <- traits[, 4:6]
# Fuzzy variables 'mp', 'pe' and 'di'
tabF <- traits[, 9:19]
tabFp <- prep.fuzzy(tabF, c(3, 3, 5), labels = c("mp", "pe", "di"))
# 'mp' has 3 levels, 'pe' has 3 levels and 'di' has 5 levels.
# Quantitative variables 'lo' and 'lf'
tabQ <- traits[, 20:21]</pre>
ktab1 <- ktab.list.df(list(tabN, tabCp, tabO, tabFp, tabQ))</pre>
distrait <- dist.ktab(ktab1, c("N", "C", "O", "F", "Q"))</pre>
is.euclid(distrait)
contrib <- kdist.cor(ktab1, type = c("N", "C", "O", "F", "Q"))
contrib
dotchart(sort(contrib$glocor), labels = rownames(contrib$glocor)[order(contrib$glocor[, 1])])
## End(Not run)
```

dist.neig

Computation of the Distance Matrix associated to a Neighbouring Graph

# **Description**

This distance matrix between two points is the length of the shortest path between these points.

## Usage

```
dist.neig(neig)
```

### **Arguments**

neig

a neighbouring graph, object of class neig

#### Value

returns a distance matrix, object of class dist

### Author(s)

```
Daniel Chessel
```

Stéphane Dray <stephane.dray@univ-lyon1.fr>

dist.prop 85

### **Examples**

```
data(elec88)
d0 <- dist.neig(elec88$neig)
plot(dist(elec88$xy),d0)</pre>
```

dist.prop

Computation of Distance Matrices of Percentage Data

# Description

computes for percentage data some distance matrices.

### Usage

```
dist.prop(df, method = NULL, diag = FALSE, upper = FALSE)
```

## **Arguments**

| df     | a data frame containing only positive or null values, used as row percentages                            |
|--------|----------------------------------------------------------------------------------------------------------|
| method | an integer between 1 and 5. If NULL the choice is made with a console message. See details               |
| diag   | a logical value indicating whether the diagonal of the distance matrix should be printed by 'print.dist' |
| upper  | a logical value indicating whether the upper triangle of the distance matrix                             |

should be printed by 'print.dist'

## **Details**

**1 = Manly** 
$$d_1 = \frac{1}{2} \sum_{i=1}^{K} |p_i - q_i|$$

**2 = Overlap index Manly** 
$$d_2 = 1 - \frac{\sum_{i=1}^K p_i q_i}{\sqrt{\sum_{i=1}^K p_i^2} \sqrt{\sum_{i=1}^K q_i^2}}$$

**3 = Rogers 1972 (one locus)** 
$$d_3 = \sqrt{\frac{1}{2} \sum_{i=1}^{K} (p_i - q_i)^2}$$

**4 = Nei 1972 (one locus)** 
$$d_4 = \ln \frac{\sum_{i=1}^K p_i q_i}{\sqrt{\sum_{i=1}^K p_i^2} \sqrt{\sum_{i=1}^K q_i^2}}$$

**5 = Edwards 1971 (one locus)** 
$$d_5 = \sqrt{1 - \sum_{i=1}^{K} \sqrt{p_1 q_i}}$$

### Value

returns a distance matrix, object of class dist

### Author(s)

Daniel Chessel

Stéphane Dray <stephane.dray@univ-lyon1.fr>

86 dist.quant

### References

Edwards, A. W. F. (1971) Distance between populations on the basis of gene frequencies. *Biometrics*, **27**, 873–881.

Manly, B. F. (1994) *Multivariate Statistical Methods. A primer.*, Second edition. Chapman & Hall, London.

Nei, M. (1972) Genetic distances between populations. The American Naturalist, 106, 283–292.

### **Examples**

```
data(microsatt)
w <- microsatt$tab[1:microsatt$loci.eff[1]]</pre>
if(adegraphicsLoaded()) {
  g1 <- scatter(dudi.pco(lingoes(dist.prop(w, 1)), scann = FALSE), plot = FALSE)
  g2 <- scatter(dudi.pco(lingoes(dist.prop(w, 2)), scann = FALSE), plot = FALSE)</pre>
  g3 <- scatter(dudi.pco(dist.prop(w, 3), scann = FALSE), plot = FALSE)</pre>
  g4 <- scatter(dudi.pco(lingoes(dist.prop(w, 4)), scann = FALSE), plot = FALSE)
  G \leftarrow ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
} else {
  par(mfrow = c(2, 2))
  scatter(dudi.pco(lingoes(dist.prop(w, 1)), scann = FALSE))
  scatter(dudi.pco(lingoes(dist.prop(w, 2)), scann = FALSE))
  scatter(dudi.pco(dist.prop(w, 3), scann = FALSE))
  scatter(dudi.pco(lingoes(dist.prop(w, 4)), scann = FALSE))
  par(mfrow = c(1, 1))
}
```

dist.quant

Computation of Distance Matrices on Quantitative Variables

## Description

computes on quantitative variables, some distance matrices as canonical, Joreskog and Mahalanobis.

#### **Usage**

```
dist.quant(df, method = NULL, diag = FALSE, upper = FALSE,
    tol = 1e-07)
```

### **Arguments**

df a data frame containing only quantitative variables

an integer between 1 and 3. If NULL the choice is made with a console message.

See details

dist.quant 87

| diag  | a logical value indicating whether the diagonal of the distance matrix should be printed by 'print.dist'       |
|-------|----------------------------------------------------------------------------------------------------------------|
| upper | a logical value indicating whether the upper triangle of the distance matrix should be printed by 'print.dist' |
| tol   | used in case 3 of method as a tolerance threshold for null eigenvalues                                         |

#### **Details**

```
All the distances are of type d = \|x - y\|_A = \sqrt{(x - y)^t A(x - y)}

1 = Canonical A = Identity

2 = Joreskog A = \frac{1}{diag(cov)}

3 = Mahalanobis A = inv(cov)
```

#### Value

an object of class dist

## Author(s)

```
Daniel Chessel
Stéphane Dray <stephane.dray@univ-lyon1.fr>
```

```
data(ecomor)

if(adegraphicsLoaded()) {
    g1 <- scatter(dudi.pco(dist.quant(ecomor$morpho, 3), scan = FALSE), plot = FALSE)
    g2 <- scatter(dudi.pco(dist.quant(ecomor$morpho, 2), scan = FALSE), plot = FALSE)
    g3 <- scatter(dudi.pco(dist(scalewt(ecomor$morpho)), scan = FALSE), plot = FALSE)
    g4 <- scatter(dudi.pco(dist.quant(ecomor$morpho, 1), scan = FALSE), plot = FALSE)
    G <- ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))

} else {
    par(mfrow = c(2, 2))
    scatter(dudi.pco(dist.quant(ecomor$morpho, 3), scan = FALSE))
    scatter(dudi.pco(dist.quant(ecomor$morpho, 2), scan = FALSE))
    scatter(dudi.pco(dist.quant(ecomor$morpho, 1), scan = FALSE))
    scatter(dudi.pco(dist.quant(ecomor$morpho, 1), scan = FALSE))
    par(mfrow = c(1, 1))
}</pre>
```

88 divc

| divc | Rao's diversity coefficient also called quadratic entropy |
|------|-----------------------------------------------------------|
| divc | Rao's diversity coefficient also called quadratic entropy |

## **Description**

Calculates Rao's diversity coefficient within samples.

# Usage

```
divc(df, dis, scale)
```

## Arguments

| df    | a data frame with elements as rows, samples as columns, and abundance, presence-<br>absence or frequencies as entries                       |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------|
| dis   | an object of class dist containing distances or dissimilarities among elements. If dis is NULL, Gini-Simpson index is performed.            |
| scale | a logical value indicating whether or not the diversity coefficient should be scaled by its maximal value over all frequency distributions. |

#### Value

Returns a data frame with samples as rows and the diversity coefficient within samples as columns

# Author(s)

Sandrine Pavoine pavoine@mnhn.fr>

### References

Rao, C.R. (1982) Diversity and dissimilarity coefficients: a unified approach. *Theoretical Population Biology*, **21**, 24–43.

Gini, C. (1912) Variabilità e mutabilità. Universite di Cagliari III, Parte II.

Simpson, E.H. (1949) Measurement of diversity. *Nature*, **163**, 688.

Champely, S. and Chessel, D. (2002) Measuring biological diversity using Euclidean metrics. *Environmental and Ecological Statistics*, **9**, 167–177.

```
data(ecomor)
dtaxo <- dist.taxo(ecomor$taxo)
divc(ecomor$habitat, dtaxo)

data(humDNAm)
divc(humDNAm$samples, sqrt(humDNAm$distances))</pre>
```

divcmax 89

| divcmax | Maximal value of Rao's diversity coefficient also called quadratic en- |
|---------|------------------------------------------------------------------------|
|         | tropy                                                                  |

# Description

For a given dissimilarity matrix, this function calculates the maximal value of Rao's diversity coefficient over all frequency distribution. It uses an optimization technique based on Rosen's projection gradient algorithm and is verified using the Kuhn-Tucker conditions.

### Usage

```
divcmax(dis, epsilon, comment)
```

### **Arguments**

dis an object of class dist containing distances or dissimilarities among elements.
epsilon a tolerance threshold: a frequency is non null if it is higher than epsilon.
comment a logical value indicating whether or not comments on the optimization tech-

nique should be printed.

#### Value

Returns a list

value the maximal value of Rao's diversity coefficient.

vectors a data frame containing four frequency distributions : sim is a simple distribu-

tion which is equal to  $\frac{D1}{1^tD1}$ , pro is equal to  $\frac{z}{1^tz1}$ , where z is the nonnegative eigenvector of the matrix containing the squared dissimilarities among the elements, met is equal to  $z^2$ , num is a frequency vector maximizing Rao's diversity

coefficient.

#### Author(s)

```
Stéphane Champely <Stephane.Champely@univ-lyon1.fr>
Sandrine Pavoine <pavoine@mnhn.fr>
```

### References

Rao, C.R. (1982) Diversity and dissimilarity coefficients: a unified approach. *Theoretical Population Biology*, **21**, 24–43.

Gini, C. (1912) Variabilità e mutabilità. Universite di Cagliari III, Parte II.

Simpson, E.H. (1949) Measurement of diversity. Nature, 163, 688.

Champely, S. and Chessel, D. (2002) Measuring biological diversity using Euclidean metrics. *Environmental and Ecological Statistics*, **9**, 167–177.

Pavoine, S., Ollier, S. and Pontier, D. (2005) Measuring diversity from dissimilarities with Rao's quadratic entropy: are any dissimilarities suitable? *Theoretical Population Biology*, **67**, 231–239.

90 dotchart.phylog

### **Examples**

```
data(elec88)
# Dissimilarity matrix.
d0 <- dist(elec88$xy/100)</pre>
# Frequency distribution maximizing spatial diversity in France
# according to Rao's quadratic entropy.
France.m <- divcmax(d0)</pre>
w0 <- France.m$vectors$num</pre>
v0 <- France.m$value
idx <- (1:94) [w0 > 0]
if(!adegraphicsLoaded()) {
  # Smallest circle including all the 94 departments.
  # The squared radius of that circle is the maximal value of the
  # spatial diversity.
  w1 <- elec88$xy[idx, ]/100
  w.c \leftarrow apply(w1 * w0[idx], 2, sum)
  plot(elec88$xy[, 1]/100, elec88$xy[, 2]/100, asp=1)
  symbols(w.c[1], w.c[2], circles = sqrt(v0), inches = FALSE, add = TRUE)
  s.value(elec88$xy/100, w0, add.plot = TRUE)
}
```

dotchart.phylog

Representation of many quantitative variables in front of a phylogenetic tree

### **Description**

dotchart.phylog represents the phylogenetic tree and draws Cleveland dot plot of each variable.

## Usage

```
dotchart.phylog(phylog, values, y = NULL, scaling = TRUE, ranging =
TRUE, yranging = NULL, joining = TRUE, yjoining = NULL, ceti = 1, cdot =
1, csub = 1, f.phylog = 1/(1 + ncol(values)), ...)
```

### **Arguments**

| phylog   | an object of class phylog                                                                                                       |
|----------|---------------------------------------------------------------------------------------------------------------------------------|
| values   | a vector or a data frame giving the variables                                                                                   |
| у        | a vector which values correspond to leaves positions                                                                            |
| scaling  | if TRUE, data are scaled                                                                                                        |
| ranging  | if TRUE, dotplots are drawn with the same horizontal limits                                                                     |
| yranging | a vector with two values giving the horizontal limits. If NULL, horizontal limits are defined by lower and upper values of data |

dotchart.phylog 91

| joining  | if TRUE, segments join each point to a central value                                           |
|----------|------------------------------------------------------------------------------------------------|
| yjoining | a vector with the central value. If NULL, the central value equals 0                           |
| ceti     | a character size for editing horizontal limits, used with par("cex")*ceti                      |
| cdot     | a character size for plotting the points of the dot plot, used with par("cex")*cdot            |
| csub     | a character size for editing the names of variables, used with par("cex")*csub                 |
| f.phylog | a size coefficient for tree size (a parameter to draw the tree in proportion to leaves labels) |
|          | further arguments passed to or from other methods                                              |

# Author(s)

```
Daniel Chessel
Sébastien Ollier <sebastien.ollier@u-psud.fr>
```

### See Also

```
symbols.phylog and table.phylog
```

```
# one variable
tre <- c("((A,B),(C,D));")</pre>
phy <- newick2phylog(tre)</pre>
x <- 1:4
par(mfrow = c(2,2))
dotchart.phylog(phy, x, scaling = FALSE)
dotchart.phylog(phy, x)
dotchart.phylog(phy, x, joining = FALSE)
dotchart.phylog(phy, x, scaling = FALSE,
yjoining = 0, yranging = c(-1, 5))
par(mfrow = c(1,1))
# many variables
data(mjrochet)
phy <- newick2phylog(mjrochet$tre)</pre>
tab <- data.frame(log(mjrochet$tab))</pre>
dotchart.phylog(phy, tab, ceti = 0.5, csub = 0.6,
cleaves = 0, cdot = 0.6)
par(mfrow=c(1,1))
```

92 dotcircle

| do. | ιL | . т | ı | тс |
|-----|----|-----|---|----|

Representation of n values on a circle

## **Description**

This function represents n values on a circle. The n points are shared out regularly over the circle and put on the radius according to the value attributed to that measure.

### Usage

```
dotcircle(z, alpha0 = pi/2, xlim = range(pretty(z)),
  labels = names(z), clabel = 1, cleg = 1)
```

## **Arguments**

z : a numeric vector

alpha0 : polar angle to put the first value

xlim : the ranges to be encompassed by the circle radius

labels : a vector of strings of characters for the angle labels

clabel : a character size for the labels, used with par("cex")\*clabel

cleg : a character size for the ranges, used with par("cex")\*cleg

## Author(s)

Daniel Chessel

### See Also

```
circ.plot
```

```
w <- scores.neig(neig(n.cir = 24))
par(mfrow = c(4,4))
for (k in 1:16) dotcircle(w[,k],labels = 1:24)
par(mfrow = c(1,1))</pre>
```

doubs 93

doubs

Pair of Ecological Tables

#### **Description**

This data set gives environmental variables, fish species and spatial coordinates for 30 sites.

#### **Usage**

data(doubs)

#### **Format**

doubs is a list with 4 components.

env is a data frame with 30 rows (sites) and 11 environmental variables.

**fish** is a data frame with 30 rows (sites) and 27 fish species.

xy is a data frame with 30 rows (sites) and 2 spatial coordinates.

**species** is a data frame with 27 rows (species) and 4 columns (names).

#### **Details**

The rows of doubs\$env, doubs\$fish and doubs\$xy are 30 sites along the Doubs, a French and Switzerland river.

doubs\$env contains the following variables: dfs - distance from the source (km \* 10), alt - altitude (m), slo ( $\ln(x+1)$  where x is the slope (per mil \* 100), flo - minimum average stream flow (m3/s \* 100), pH (\* 10), har - total hardness of water (mg/l of Calcium), pho - phosphates (mg/l \* 100), nit - nitrates (mg/l \* 100), amm - ammonia nitrogen (mg/l \* 100), oxy - dissolved oxygen (mg/l \* 10), bdo - biological demand for oxygen (mg/l \* 10).

doubs\$fish contains the abundance of the following fish species: Cottus gobio (Cogo), Salmo trutta fario (Satr), Phoxinus phoxinus (Phph), Nemacheilus barbatulus (Neba), Thymallus thymallus (Thth), Telestes soufia agassizi (Teso), Chondrostoma nasus (Chna), Chondostroma toxostoma (Chto), Leuciscus leuciscus (Lele), Leuciscus cephalus cephalus (Lece), Barbus barbus (Baba), Spirlinus bipunctatus (Spbi), Gobio gobio (Gogo), Esox lucius (Eslu), Perca fluviatilis (Pefl), Rhodeus amarus (Rham), Lepomis gibbosus (Legi), Scardinius erythrophtalmus (Scer), Cyprinus carpio (Cyca), Tinca tinca (Titi), Abramis brama (Abbr), Ictalurus melas (Icme), Acerina cernua (Acce), Rutilus rutilus (Ruru), Blicca bjoerkna (Blbj), Alburnus alburnus (Alal), Anguilla anguilla (Anan).

doubs\$species contains the names of the 27 fish species. The four columns correspond to: 1 = scientific name (Genus species), 2 = French common name, 3 = English common name, 4 = Four character code.

#### Source

Verneaux, J. (1973) Cours d'eau de Franche-Comté (Massif du Jura). Recherches écologiques sur le réseau hydrographique du Doubs. Essai de biotypologie. Thèse d'état, Besançon. 1–257.

94 dpcoa

### References

See a French description of fish species at http://pbil.univ-lyon1.fr/R/pdf/pps047.pdf. Chessel, D., Lebreton, J.D. and Yoccoz, N.G. (1987) Propriétés de l'analyse canonique des correspondances. Une illustration en hydrobiologie. *Revue de Statistique Appliquée*, **35**, 4, 55–72.

### **Examples**

```
data(doubs)
pca1 <- dudi.pca(doubs$env, scan = FALSE)</pre>
pca2 <- dudi.pca(doubs$fish, scale = FALSE, scan = FALSE)</pre>
coiner1 <- coinertia(pca1, pca2, scan = FALSE)</pre>
if(adegraphicsLoaded()) {
  g1 <- s.corcircle(coiner1$aX, plot = FALSE)</pre>
  g2 <- s.value(doubs$xy, coiner1$1X[, 1], plot = FALSE)</pre>
  g3 <- s.value(doubs$xy, coiner1$1X[, 2], plot = FALSE)</pre>
  g4 <- s.arrow(coiner1$c1, plot = FALSE)
  g5 <- s.match(coiner1$mX, coiner1$mY, plot = FALSE)
  g6 <- s.corcircle(coiner1$aY, plot = FALSE)</pre>
  g7 <- s.arrow(coiner1$11, plot = FALSE)
  g8 <- s.value(doubs$xy, coiner1$1Y[, 1], plot = FALSE)</pre>
  g9 <- s.value(doubs$xy, coiner1$1Y[, 2], plot = FALSE)</pre>
  G \leftarrow ADEgS(list(g1, g2, g3, g4, g5, g6, g7, g8, g9), layout = c(3, 3))
} else {
  par(mfrow = c(3, 3))
  s.corcircle(coiner1$aX)
  s.value(doubs$xy, coiner1$1X[, 1])
  s.value(doubs$xy, coiner1$1X[, 2])
  s.arrow(coiner1$c1)
  s.match(coiner1$mX, coiner1$mY)
  s.corcircle(coiner1$aY)
  s.arrow(coiner1$11)
  s.value(doubs$xy, coiner1$1Y[, 1])
  s.value(doubs$xy, coiner1$1Y[, 2])
  par(mfrow = c(1, 1))
}
```

dpcoa

Double principal coordinate analysis

#### **Description**

Performs a double principal coordinate analysis

#### Usage

```
dpcoa(df, dis = NULL, scannf = TRUE, nf = 2, full = FALSE, tol = 1e-07,
RaoDecomp = TRUE)
```

95 dpcoa

```
## S3 method for class 'dpcoa'
plot(x, xax = 1, yax = 2, ...)
## S3 method for class 'dpcoa'
print(x, ...)
## S3 method for class 'dpcoa'
summary(object, ...)
```

### **Arguments**

df a data frame with samples as rows and categories (i.e. species) as columns and abundance or presence-absence as entries. Previous releases of ade4 (<=1.6-2) considered the transposed matrix as argument. dis an object of class dist containing the distances between the categories. a logical value indicating whether the eigenvalues bar plot should be displayed scannf RaoDecomp a logical value indicating whether Rao diversity decomposition should be performed nf if scannf is FALSE, an integer indicating the number of kept axes full a logical value indicating whether all non null eigenvalues should be kept tol a tolerance threshold for null eigenvalues (a value less than tol times the first one is considered as null) x, object an object of class dpcoa the column number for the x-axis xax the column number for the y-axis

... further arguments passed to or from other methods

#### Value

yax

. . .

Returns a list of class dpcoa containing:

| call       | call                                                                                                  |
|------------|-------------------------------------------------------------------------------------------------------|
| nf         | a numeric value indicating the number of kept axes                                                    |
| dw         | a numeric vector containing the weights of the elements (was $w1$ in previous releases of $ade4$ )    |
| lw         | a numeric vector containing the weights of the samples (was w2 in previous releases of ${\bf ade4}$ ) |
| eig        | a numeric vector with all the eigenvalues                                                             |
| RaoDiv     | a numeric vector containing diversities within samples                                                |
| RaoDis     | an object of class dist containing the dissimilarities between samples                                |
| RaoDecodiv | a data frame with the decomposition of the diversity                                                  |
| dls        | a data frame with the coordinates of the elements (was 11 in previous releases of $ade4$ )            |
| li         | a data frame with the coordinates of the samples (was 12 in previous releases of $ade4$ )             |
| c1         | a data frame with the scores of the principal axes of the elements                                    |

96 dudi

### Author(s)

```
Daniel Chessel
Sandrine Pavoine <pavoine@mnhn.fr>
Stéphane Dray <stephane.dray@univ-lyon1.fr>
```

#### References

Pavoine, S., Dufour, A.B. and Chessel, D. (2004) From dissimilarities among species to dissimilarities among communities: a double principal coordinate analysis. *Journal of Theoretical Biology*, **228**, 523–537.

# **Examples**

```
data(humDNAm)
dpcoahum <- dpcoa(data.frame(t(humDNAm$samples)), sqrt(humDNAm$distances), scan = FALSE, nf = 2)</pre>
if(adegraphicsLoaded()) {
  g1 <- plot(dpcoahum)</pre>
} else {
  plot(dpcoahum)
## Not run:
data(ecomor)
dtaxo <- dist.taxo(ecomor$taxo)</pre>
dpcoaeco <- dpcoa(data.frame(t(ecomor$habitat)), dtaxo, scan = FALSE, nf = 2)</pre>
dpcoaeco
if(adegraphicsLoaded()) {
  g1 <- plot(dpcoaeco)</pre>
} else {
  plot(dpcoaeco)
}
## End(Not run)
```

dudi

Duality Diagram

### Description

as.dudi is called by many functions (dudi.pca, dudi.coa, dudi.acm, ...) and not directly by the user. It creates duality diagrams.

t.dudi returns an object of class 'dudi' where the rows are the columns and the columns are the rows of the initial dudi.

is.dudi returns TRUE if the object is of class dudi

redo.dudi computes again an analysis, eventually changing the number of kept axes. Used by other functions.

dudi 97

## Usage

```
as.dudi(df, col.w, row.w, scannf, nf, call, type, tol = 1e-07,
    full = FALSE)
## S3 method for class 'dudi'
print(x, ...)
is.dudi(x)
redo.dudi(dudi, newnf = 2)
## S3 method for class 'dudi'
t(x)
## S3 method for class 'dudi'
summary(object, ...)
## S3 method for class 'dudi'
x[i,j]
```

## Arguments

| df              | a data frame with <i>n</i> rows and <i>p</i> columns                                                         |
|-----------------|--------------------------------------------------------------------------------------------------------------|
| col.w           | a numeric vector containing the row weights                                                                  |
| row.w           | a numeric vector containing the column weights                                                               |
| scannf          | a logical value indicating whether the eigenvalues bar plot should be displayed                              |
| nf              | if scannf FALSE, an integer indicating the number of kept axes                                               |
| call            | <pre>generally match.call()</pre>                                                                            |
| type            | a string of characters: the returned list will be of class c(type, "dudi")                                   |
| tol             | a tolerance threshold for null eigenvalues (a value less than tol times the first one is considered as null) |
| full            | a logical value indicating whether all non null eigenvalues should be kept                                   |
| x, dudi, object | objects of class dudi                                                                                        |
|                 | further arguments passed to or from other methods                                                            |
| newnf           | an integer indicating the number of kept axes                                                                |
| i,j             | elements to extract (integer or empty): index of rows (i) and columns (j)                                    |
|                 |                                                                                                              |

# Value

as.dudi and all the functions that use it return a list with the following components:

| tab  | a data frame with n rows and p columns                      |
|------|-------------------------------------------------------------|
| CW   | column weights, a vector with n components                  |
| lw   | row (lines) weights, a vector with p components             |
| eig  | eigenvalues, a vector with min(n,p) components              |
| nf   | integer, number of kept axes                                |
| c1   | principal axes, data frame with p rows and nf columns       |
| 11   | principal components, data frame with n rows and nf columns |
| со   | column coordinates, data frame with p rows and nf columns   |
| li   | row coordinates, data frame with n rows and nf columns      |
| call | original call                                               |

98 dudi.acm

#### Author(s)

```
Daniel Chessel
Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>
Stéphane Dray <stephane.dray@univ-lyon1.fr>
```

#### References

Escoufier, Y. (1987) The duality diagram: a means of better practical applications In *Development in numerical ecology*, Legendre, P. & Legendre, L. (Eds.) NATO advanced Institute, Serie G. Springer Verlag, Berlin, 139–156.

### **Examples**

```
data(deug)
dd1 <- dudi.pca(deug$tab, scannf = FALSE)
dd1
t(dd1)
is.dudi(dd1)
redo.dudi(dd1,3)
summary(dd1)</pre>
```

dudi.acm

Multiple Correspondence Analysis

#### **Description**

```
dudi.acm performs the multiple correspondence analysis of a factor table.

acm.burt an utility giving the crossed Burt table of two factors table.

acm.disjonctif an utility giving the complete disjunctive table of a factor table.

boxplot.acm a graphic utility to interpret axes.
```

## Usage

```
dudi.acm (df, row.w = rep(1, nrow(df)), scannf = TRUE, nf = 2)
acm.burt (df1, df2, counts = rep(1, nrow(df1)))
acm.disjonctif (df)
## S3 method for class 'acm'
boxplot(x, xax = 1, ...)
```

### **Arguments**

```
df, df1, df2 data frames containing only factors

row.w, counts vector of row weights, by default, uniform weighting

scannf a logical value indicating whether the eigenvalues bar plot should be displayed

if scannf FALSE, an integer indicating the number of kept axes
```

dudi.acm 99

```
x an object of class acmxax the number of factor to display... further arguments passed to or from other methods
```

#### Value

```
\mbox{\tt dudi.acm} returns a list of class \mbox{\tt acm} and \mbox{\tt dudi} (see \mbox{\tt dudi}) containing
```

cr a data frame which rows are the variables, columns are the kept scores and the values are the correlation ratios

#### Author(s)

Daniel Chessel

Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>

### References

Tenenhaus, M. & Young, F.W. (1985) An analysis and synthesis of multiple correspondence analysis, optimal scaling, dual scaling, homogeneity analysis and other methods for quantifying categorical multivariate data. *Psychometrika*, **50**, 1, 91-119.

Lebart, L., A. Morineau, and M. Piron. 1995. Statistique exploratoire multidimensionnelle. Dunod, Paris.

### See Also

```
s.chull, s.class
```

```
data(ours)
summary(ours)
if(adegraphicsLoaded()) {
 g1 <- s1d.boxplot(dudi.acm(ours, scan = FALSE)$li[, 1], ours)</pre>
} else {
 boxplot(dudi.acm(ours, scan = FALSE))
}
## Not run:
data(banque)
banque.acm <- dudi.acm(banque, scann = FALSE, nf = 3)</pre>
if(adegraphicsLoaded()) {
 g2 <- adegraphics:::scatter.dudi(banque.acm)</pre>
} else {
 scatter(banque.acm)
}
apply(banque.acm$cr, 2, mean)
banque.acm$eig[1:banque.acm$nf] # the same thing
```

100 dudi.coa

```
if(adegraphicsLoaded()) {
  g3 <- s1d.boxplot(banque.acm$li[, 1], banque)</pre>
  g4 <- scatter(banque.acm)
} else {
  boxplot(banque.acm)
  scatter(banque.acm)
}
s.value(banque.acm$li, banque.acm$li[,3])
bb <- acm.burt(banque, banque)</pre>
bbcoa <- dudi.coa(bb, scann = FALSE)</pre>
plot(banque.acm$c1[,1], bbcoa$c1[,1])
# mca and coa of Burt table. Lebart & coll. section 1.4
bd <- acm.disjonctif(banque)</pre>
bdcoa <- dudi.coa(bd, scann = FALSE)</pre>
plot(banque.acm$li[,1], bdcoa$li[,1])
# mca and coa of disjonctive table. Lebart & coll. section 1.4
plot(banque.acm$co[,1], dudi.coa(bd, scann = FALSE)$co[,1])
## End(Not run)
```

dudi.coa

Correspondence Analysis

## **Description**

performs a correspondence analysis.

### Usage

```
dudi.coa(df, scannf = TRUE, nf = 2)
```

### **Arguments**

df a data frame containing positive or null values

scannf a logical value indicating whether the eigenvalues bar plot should be displayed

nf if scannf FALSE, an integer indicating the number of kept axes

### Value

returns a list of class coa and dudi (see dudi) containing

N the sum of all the values of the initial table

dudi.dec 101

### Author(s)

Daniel Chessel

Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>

#### References

Benzécri, J.P. and Coll. (1973) L'analyse des données. II L'analyse des correspondances, Bordas, Paris. 1–620.

Greenacre, M. J. (1984) Theory and applications of correspondence analysis, Academic Press, London.

### **Examples**

```
data(rpjdl)
chisq.test(rpjdl$fau)$statistic
rpjdl.coa <- dudi.coa(rpjdl$fau, scannf = FALSE, nf = 4)</pre>
sum(rpjdl.coa$eig)*rpjdl.coa$N # the same
if(adegraphicsLoaded()) {
 g1 <- s.label(rpjdl.coa$co, plab.cex = 0.6, lab = rpjdl$frlab, plot = FALSE)
 g2 <- s.label(rpjdl.coa$li, plab.cex = 0.6, plot = FALSE)</pre>
 cbindADEg(g1, g2, plot = TRUE)
} else {
 par(mfrow = c(1,2))
 s.label(rpjdl.coa$co, clab = 0.6, lab = rpjdl$frlab)
 s.label(rpjdl.coa$li, clab = 0.6)
 par(mfrow = c(1,1))
}
data(bordeaux)
db <- dudi.coa(bordeaux, scan = FALSE)</pre>
score(db)
```

dudi.dec

Decentred Correspondence Analysis

### **Description**

performs a decentred correspondence analysis.

### Usage

```
dudi.dec(df, eff, scannf = TRUE, nf = 2)
```

102 dudi.fca

### **Arguments**

df a data frame containing positive or null values

eff a vector containing the reference distribution. Its length is equal to the number

of rows of df

scannf a logical value indicating whether the eigenvalues bar plot should be displayed

nf if scannf FALSE, an integer indicating the number of kept axes

### Value

Returns a list of class dec and dudi (see dudi) containing also

R sum of all the values of the initial table

### Author(s)

Daniel Chessel

Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>

#### References

Dolédec, S., Chessel, D. and Olivier J. M. (1995) L'analyse des correspondances décentrée: application aux peuplements ichtyologiques du haut-Rhône. *Bulletin Français de la Pêche et de la Pisciculture*, **336**, 29–40.

### **Examples**

dudi.fca

Fuzzy Correspondence Analysis and Fuzzy Principal Components Analysis

## Description

Theses functions analyse a table of fuzzy variables.

A fuzzy variable takes values of type  $a = (a_1, \dots, a_k)$  giving the importance of k categories.

A missing data is denoted (0,...,0).

Only the profile a/sum(a) is used, and missing data are replaced by the mean profile of the others in the function prep. fuzzy.var. See ref. for details.

dudi.fca 103

### Usage

```
prep.fuzzy.var (df, col.blocks, row.w = rep(1, nrow(df)))
dudi.fca(df, scannf = TRUE, nf = 2)
dudi.fpca(df, scannf = TRUE, nf = 2)
```

#### **Arguments**

df a data frame containing positive or null values

col.blocks a vector containing the number of categories for each fuzzy variable

row.w a vector of row weights

scannf a logical value indicating whether the eigenvalues bar plot should be displayed

nf if scannf FALSE, an integer indicating the number of kept axes

#### Value

The function prep.fuzzy.var returns a data frame with the attribute col.blocks. The function dudi.fca returns a list of class fca and dudi (see dudi) containing also

cr a data frame which rows are the blocs, columns are the kept axes, and values are the correlation ratios.

The function dudi. fpca returns a list of class pca and dudi (see dudi) containing also

- 1. cent
- 2. norm
- 3. blo
- 4. indica
- 5. FST
- 6. inertia

## Author(s)

Daniel Chessel

Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>

### References

Chevenet, F., Dolédec, S. and Chessel, D. (1994) A fuzzy coding approach for the analysis of long-term ecological data. *Freshwater Biology*, **31**, 295–309.

```
w1 <- matrix(c(1,0,0,2,1,1,0,2,2,0,1,0,1,1,1,0,1,3,1,0), 4, 5)
w1 <- data.frame(w1)
w2 <- prep.fuzzy.var(w1, c(2, 3))
w1
w2
attributes(w2)</pre>
```

104 dudi.hillsmith

```
data(bseta197)
w <- prep.fuzzy.var(bseta197$biol, bseta197$biol.blo)

if(adegraphicsLoaded()) {
    g1 <- plot(dudi.fca(w, scann = FALSE, nf = 3), plabels.cex = 1.5)
} else {
    scatter(dudi.fca(w, scann = FALSE, nf = 3), csub = 3, clab.moda = 1.5)
    scatter(dudi.fpca(w, scann = FALSE, nf = 3), csub = 3, clab.moda = 1.5)
}

## Not run:
w1 <- prep.fuzzy.var(bseta197$biol, bseta197$biol.blo)
w2 <- prep.fuzzy.var(bseta197$ecol, bseta197$ecol.blo)
d1 <- dudi.fca(w1, scannf = FALSE, nf = 3)
d2 <- dudi.fca(w2, scannf = FALSE, nf = 3)
plot(coinertia(d1, d2, scannf = FALSE))

## End(Not run)</pre>
```

dudi.hillsmith

Ordination of Tables mixing quantitative variables and factors

### **Description**

performs a multivariate analysis with mixed quantitative variables and factors.

### Usage

```
dudi.hillsmith(df, row.w = rep(1, nrow(df))/nrow(df),
    scannf = TRUE, nf = 2)
```

#### **Arguments**

df a data frame with mixed type variables (quantitative and factor)

row.w a vector of row weights, by default uniform row weights are used

scannf a logical value indicating whether the eigenvalues bar plot should be displayed

if scannf FALSE, an integer indicating the number of kept axes

### **Details**

If df contains only quantitative variables, this is equivalent to a normed PCA. If df contains only factors, this is equivalent to a MCA.

This analysis is the Hill and Smith method and is very similar to dudi.mix function. The differences are that dudi.hillsmith allow to use various row weights, while dudi.mix deals with ordered variables.

dudi.hillsmith

The principal components of this analysis are centered and normed vectors maximizing the sum of :

squared correlation coefficients with quantitative variables correlation ratios with factors

#### Value

Returns a list of class mix and dudi (see dudi) containing also

index a factor giving the type of each variable : f = factor, q = quantitative

assign a factor indicating the initial variable for each column of the transformed table

cr a data frame giving for each variable and each score:

the squared correlation coefficients if it is a quantitative variable

the correlation ratios if it is a factor

### Author(s)

```
Stéphane Dray <stephane.dray@univ-lyon1.fr>
Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>
```

#### References

Hill, M. O., and A. J. E. Smith. 1976. Principal component analysis of taxonomic data with multistate discrete characters. *Taxon*, **25**, 249-255.

#### See Also

```
dudi.mix
```

```
data(dunedata)
attributes(dunedata$envir$use)$class <- "factor"  # use dudi.mix for ordered data
dd1 <- dudi.hillsmith(dunedata$envir, scann = FALSE)
if(adegraphicsLoaded()) {
   g <- scatter(dd1, row.plab.cex = 1, col.plab.cex = 1.5)
} else {
   scatter(dd1, clab.r = 1, clab.c = 1.5)
}</pre>
```

106 dudi.mix

| dudi.mix | Ordination of Tables mixing quantitative variables and factors |
|----------|----------------------------------------------------------------|
|----------|----------------------------------------------------------------|

### **Description**

performs a multivariate analysis with mixed quantitative variables and factors.

## Usage

```
dudi.mix(df, add.square = FALSE, scannf = TRUE, nf = 2)
```

### **Arguments**

df a data frame with mixed type variables (quantitative, factor and ordered)

add. square a logical value indicating whether the squares of quantitative variables should

be added

scannf a logical value indicating whether the eigenvalues bar plot should be displayed

nf if scannf FALSE, an integer indicating the number of kept axes

#### **Details**

If df contains only quantitative variables, this is equivalent to a normed PCA.

If df contains only factors, this is equivalent to a MCA.

Ordered factors are replaced by poly(x, deg=2).

This analysis generalizes the Hill and Smith method.

The principal components of this analysis are centered and normed vectors maximizing the sum of

squared correlation coefficients with quantitative variables squared multiple correlation coefficients with polynoms correlation ratios with factors.

### Value

Returns a list of class mix and dudi (see dudi) containing also

index a factor giving the type of each variable: f = factor, o = ordered, q = quantitative assign a factor indicating the initial variable for each column of the transformed table

cr a data frame giving for each variable and each score:

the squared correlation coefficients if it is a quantitative variable

the correlation ratios if it is a factor

the squared multiple correlation coefficients if it is ordered

dudi.nsc 107

### Author(s)

Daniel Chessel

Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>

#### References

Hill, M. O., and A. J. E. Smith. 1976. Principal component analysis of taxonomic data with multistate discrete characters. *Taxon*, **25**, 249-255.

De Leeuw, J., J. van Rijckevorsel, and . 1980. HOMALS and PRINCALS - Some generalizations of principal components analysis. Pages 231-242 in E. Diday and Coll., editors. Data Analysis and Informatics II. Elsevier Science Publisher, North Holland, Amsterdam.

Kiers, H. A. L. 1994. Simple structure in component analysis techniques for mixtures of qualitative ans quantitative variables. *Psychometrika*, **56**, 197-212.

## **Examples**

```
data(dunedata)
dd1 <- dudi.mix(dunedata$envir, scann = FALSE)
if(adegraphicsLoaded()) {
   g1 <- scatter(dd1, row.plab.cex = 1, col.plab.cex = 1.5)
} else {
   scatter(dd1, clab.r = 1, clab.c = 1.5)
}

dd2 <- dudi.mix(dunedata$envir, scann = FALSE, add.square = TRUE)
if(adegraphicsLoaded()) {
   g2 <- scatter(dd2, row.plab.cex = 1, col.plab.cex = 1.5)
} else {
   scatter(dd2, clab.r = 1, clab.c = 1.5)
}</pre>
```

dudi.nsc

Non symmetric correspondence analysis

## Description

performs a non symmetric correspondence analysis.

### Usage

```
dudi.nsc(df, scannf = TRUE, nf = 2)
```

# Arguments

df a data frame containing positive or null values
scannf a logical value indicating whether the eigenvalues bar plot should be displayed
if scannf FALSE, an integer indicating the number of kept axes

108 dudi.pca

### Value

Returns a list of class nsc and dudi (see dudi) containing also

Ν

sum of the values of the initial table

#### Author(s)

```
Daniel Chessel
Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>
```

#### References

Kroonenberg, P. M., and Lombardo R. (1999) Nonsymmetric correspondence analysis: a tool for analysing contingency tables with a dependence structure. *Multivariate Behavioral Research*, **34**, 367–396.

### **Examples**

```
data(housetasks)
nsc1 <- dudi.nsc(housetasks, scan = FALSE)
if(adegraphicsLoaded()) {
   g1 <- s.label(nsc1$c1, plab.cex = 1.25)
   g2 <- s.arrow(nsc1$li, add = TRUE, plab.cex = 0.75)
} else {
   s.label(nsc1$c1, clab = 1.25)
   s.arrow(nsc1$li, add.pl = TRUE, clab = 0.75) # see ref p.383
}</pre>
```

dudi.pca

Principal Component Analysis

### **Description**

dudi. pca performs a principal component analysis of a data frame and returns the results as objects of class pca and dudi.

## Usage

```
dudi.pca(df, row.w = rep(1, nrow(df))/nrow(df),
    col.w = rep(1, ncol(df)), center = TRUE, scale = TRUE,
    scannf = TRUE, nf = 2)
```

### **Arguments**

```
df a data frame with n rows (individuals) and p columns (numeric variables)
row.w an optional row weights (by default, uniform row weights)
col.w an optional column weights (by default, unit column weights)
```

dudi.pca 109

center a logical or numeric value, centring option

if TRUE, centring by the mean

if FALSE no centring

if a numeric vector, its length must be equal to the number of columns of the

data frame df and gives the decentring

scale a logical value indicating whether the column vectors should be normed for the

row.w weighting

scannf a logical value indicating whether the screeplot should be displayed

nf if scannf FALSE, an integer indicating the number of kept axes

#### Value

Returns a list of classes pca and dudi (see dudi) containing the used information for computing the principal component analysis:

tab the data frame to be analyzed depending of the transformation arguments (center

and scale)

cw the column weights

lw the row weights

eig the eigenvalues

rank the rank of the analyzed matrice

nf the number of kept factors

c1 the column normed scores i.e. the principal axes

the row normed scores
the column coordinates

1i the row coordinates i.e. the principal components

call the call function

cent the p vector containing the means for variables (Note that if center = F, the

vector contains p(0)

norm the p vector containing the standard deviations for variables i.e. the root of the

sum of squares deviations of the values from their means divided by n (Note that

if norm = F, the vector contains p(1)

## Author(s)

Daniel Chessel

Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>

#### See Also

prcomp, princomp in the mva library

110 dudi.pco

# **Examples**

```
data(deug)
deug.dudi <- dudi.pca(deug$tab, center = deug$cent, scale = FALSE, scan = FALSE)</pre>
deug.dudi1 <- dudi.pca(deug$tab, center = TRUE, scale = TRUE, scan = FALSE)</pre>
if(adegraphicsLoaded()) {
 g1 <- s.class(deug.dudi$li, deug$result, plot = FALSE)</pre>
 g2 <- s.arrow(deug.dudi$c1, lab = names(deug$tab), plot = FALSE)</pre>
 g3 <- s.class(deug.dudi1$li, deug$result, plot = FALSE)
 g4 <- s.corcircle(deug.dudi1$co, lab = names(deug$tab), full = FALSE, plot = FALSE)
 G1 <- rbindADEg(cbindADEg(g1, g2, plot = FALSE), cbindADEg(g3, g4, plot = FALSE), plot = TRUE)
 G2 \leftarrow s1d.hist(deug.dudi$tab, breaks = seq(-45, 35, by = 5), type = "density", xlim = c(-40, 40),
    right = FALSE, ylim = c(0, 0.1), porigin.lwd = 2)
} else {
 par(mfrow = c(2, 2))
 s.class(deug.dudi$li, deug$result, cpoint = 1)
 s.arrow(deug.dudi$c1, lab = names(deug$tab))
 s.class(deug.dudi1$li, deug$result, cpoint = 1)
 s.corcircle(deug.dudi1$co, lab = names(deug$tab), full = FALSE, box = TRUE)
 par(mfrow = c(1, 1))
 # for interpretations
 par(mfrow = c(3, 3))
 par(mar = c(2.1, 2.1, 2.1, 1.1))
 for(i in 1:9) {
   hist(deug.duditab[,i], xlim = c(-40, 40), breaks = seq(-45, 35, by = 5),
     prob = TRUE, right = FALSE, main = names(deug$tab)[i], xlab = "", ylim = c(0, 0.10))
 abline(v = 0, lwd = 3)
 par(mfrow = c(1, 1))
```

dudi.pco

Principal Coordinates Analysis

# **Description**

dudi.pco performs a principal coordinates analysis of a Euclidean distance matrix and returns the results as objects of class pco and dudi.

# Usage

```
dudi.pco(d, row.w = "uniform", scannf = TRUE, nf = 2,
    full = FALSE, tol = 1e-07)
## S3 method for class 'pco'
scatter(x, xax = 1, yax = 2, clab.row = 1, posieig = "top",
    sub = NULL, csub = 2, ...)
```

dudi.pco 111

# **Arguments** d

| d        | an object of class dist containing a Euclidean distance matrix.                                                                                                                         |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| row.w    | an optional distance matrix row weights. If not NULL, must be a vector of positive numbers with length equal to the size of the distance matrix                                         |
| scannf   | a logical value indicating whether the eigenvalues bar plot should be displayed                                                                                                         |
| nf       | if scannf FALSE, an integer indicating the number of kept axes                                                                                                                          |
| full     | a logical value indicating whether all the axes should be kept                                                                                                                          |
| tol      | a tolerance threshold to test whether the distance matrix is Euclidean: an eigenvalue is considered positive if it is larger than -tol*lambda1 where lambda1 is the largest eigenvalue. |
|          |                                                                                                                                                                                         |
| х        | an object of class pco                                                                                                                                                                  |
| xax      | the column number for the x-axis                                                                                                                                                        |
| yax      | the column number for the y-axis                                                                                                                                                        |
| clab.row | a character size for the row labels                                                                                                                                                     |
| posieig  | if "top" the eigenvalues bar plot is upside, if "bottom" it is downside, if "none" no plot                                                                                              |
| sub      | a string of characters to be inserted as legend                                                                                                                                         |
| csub     | a character size for the legend, used with par("cex")*csub                                                                                                                              |
|          | further arguments passed to or from other methods                                                                                                                                       |

## Value

dudi. pco returns a list of class pco and dudi. See dudi

# Author(s)

Daniel Chessel

Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>

# References

Gower, J. C. (1966) Some distance properties of latent root and vector methods used in multivariate analysis. *Biometrika*, **53**, 325–338.

```
data(yanomama)
gen <- quasieuclid(as.dist(yanomama$gen))
geo <- quasieuclid(as.dist(yanomama$geo))
ant <- quasieuclid(as.dist(yanomama$ant))
geo1 <- dudi.pco(geo, scann = FALSE, nf = 3)
gen1 <- dudi.pco(gen, scann = FALSE, nf = 3)
ant1 <- dudi.pco(ant, scann = FALSE, nf = 3)
plot(coinertia(ant1, gen1, scann = FALSE))</pre>
```

112 ecg

dunedata

Dune Meadow Data

# **Description**

dunedata is a data set containing for 20 sites, environmental variables and plant species.

## Usage

```
data(dunedata)
```

## **Format**

dunedata is a list with 2 components.

envir is a data frame with 20 rows (sites) 5 columns (environnemental variables).

veg is a data frame with 20 rows (sites) 30 columns (plant species).

#### Source

Jongman, R. H., ter Braak, C. J. F. and van Tongeren, O. F. R. (1987) *Data analysis in community and landscape ecology*, Pudoc, Wageningen.

# **Examples**

```
data(dunedata)
summary(dunedata$envir)
is.ordered(dunedata$envir$use)
score(dudi.mix(dunedata$envir, scan = FALSE))
```

ecg

Electrocardiogram data

# **Description**

These data were measured during the normal sinus rhythm of a patient who occasionally experiences arrhythmia. There are 2048 observations measured in units of millivolts and collected at a rate of 180 samples per second. This time series is a good candidate for a multiresolution analysis because its components are on different scales. For example, the large scale (low frequency) fluctuations, known as baseline drift, are due to the patient respiration, while the prominent short scale (high frequency) intermittent fluctuations between 3 and 4 seconds are evidently due to patient movement. Heart rhythm determines most of the remaining features in the series. The large spikes occurring about 0.7 seconds apart the R waves of normal heart rhythm; the smaller, but sharp peak coming just prior to an R wave is known as a P wave; and the broader peak that comes after a R wave is a T wave.

ecomor 113

## Usage

```
data(ecg)
```

#### **Format**

A vector of class ts containing 2048 observations.

# Source

Gust Bardy and Per Reinhall, University of Washington

#### References

Percival, D. B., and Walden, A.T. (2000) Wavelet Methods for Time Series Analysis, Cambridge University Press.

# **Examples**

```
## Not run:
# figure 130 in Percival and Walden (2000)
if (requireNamespace("waveslim") == TRUE) {
    data(ecg)
    ecg.level <- haar2level(ecg)
    ecg.haar <- orthobasis.haar(length(ecg))
    ecg.mld <- mld(ecg, ecg.haar, ecg.level, plot = FALSE)
    res <- cbind.data.frame(apply(ecg.mld[,1:5],1,sum), ecg.mld[,6:11])
    par(mfrow = c(8,1))
    par(mar = c(2, 5, 1.5, 0.6))
    plot(as.ts(ecg), ylab = "ECG")
    apply(res, 2, function(x) plot(as.ts(x), ylim = range(res),
        ylab = ""))
    par(mfrow = c(1,1))
}
## End(Not run)</pre>
```

ecomor

Ecomorphological Convergence

## **Description**

This data set gives ecomorphological informations about 129 bird species.

# Usage

```
data(ecomor)
```

114 ecomor

#### **Format**

ecomor is a list of 7 components.

**forsub** is a data frame with 129 species, 6 variables (the feeding place classes): foliage, ground, twig, bush, trunk and aerial feeders. These dummy variables indicate the use (1) or no use (0) of a given feeding place by a species.

**diet** is a data frame with 129 species and 8 variables (diet types): Gr (granivorous: seeds), Fr (frugivorous: berries, acorns, drupes), Ne (frugivorous: nectar), Fo (folivorous: leaves), In (invertebrate feeder: insects, spiders, myriapods, isopods, snails, worms), Ca (carnivorous: flesh of small vertebrates), Li (limnivorous: invertebrates in fresh water), and Ch (carrion feeder). These dummy variables indicate the use (1) or no use (0) of a given diet type by a species.

**habitat** is a data frame with 129 species, 16 dummy variables (the habitats). These variables indicate the species presence (1) or the species absence (0) in a given habitat.

**morpho** is a data frame with 129 species abd 8 morphological variables: wingl (Wing length, mm), taill (Tail length, mm), culml (Culmen length, mm), bilh (Bill height, mm), bilw (Bill width, mm), tarsl (Tarsus length, mm), midtl (Middle toe length, mm) and weig (Weight, g).

taxo is a data frame with 129 species and 3 factors: Genus, Family and Order. It is a data frame of class 'taxo': the variables are factors giving nested classifications.

labels is a data frame with vectors of the names of species (complete and in abbreviated form.

**categ** is a data frame with 129 species, 2 factors: 'forsub' summarizing the feeding place and 'diet' the diet type.

#### Source

Blondel, J., Vuilleumier, F., Marcus, L.F., and Terouanne, E. (1984). Is there ecomorphological convergence among mediterranean bird communities of Chile, California, and France. In *Evolutionary Biology* (eds M.K. Hecht, B. Wallace and R.J. MacIntyre), 141–213, **18**. Plenum Press, New York.

#### References

See a data description at http://pbil.univ-lyon1.fr/R/pdf/pps023.pdf (in French).

```
data(ecomor)
ric <- apply(ecomor$habitat, 2, sum)
s.corcircle(dudi.pca(log(ecomor$morpho), scan = FALSE)$co)

forsub <- data.frame(t(apply(ecomor$forsub, 1, function (x) x / sum(x))))
pca1 <- dudi.pca(forsub, scan = FALSE, scale = FALSE)
w1 <- as.matrix(forsub)
if(adegraphicsLoaded()) {
   g1 <- s.arrow(pca1$c1, plot = FALSE)
   g2 <- s.label(w1, plab.cex = 0, ppoi.cex = 2, plot = FALSE)
   G1 <- superpose(g1, g2, plot = TRUE)
} else {</pre>
```

elec88

```
s.arrow(pca1$c1)
  s.label(w1, clab = 0, add.p = TRUE, cpoi = 2)
}
diet <- data.frame(t(apply(ecomor$diet, 1, function (x) x / sum(x))))</pre>
pca2 <- dudi.pca(diet, scan = FALSE, scale = FALSE)</pre>
w2 <- as.matrix(diet)</pre>
if(adegraphicsLoaded()) {
  g3 <- s.arrow(pca2$c1, plot = FALSE)
  g4 <- s.label(w2, plab.cex = 0, ppoi.cex = 2, plot = FALSE)
  G2 <- superpose(g3, g4, plot = TRUE)
} else {
  s.arrow(pca2$c1)
  s.label(w2, clab = 0, add.p = TRUE, cpoi = 2)
## Not run:
dmorpho <- dist.quant(log(ecomor$morpho), 3)</pre>
dhabitat <- dist.binary(ecomor$habitat, 1)</pre>
dtaxo <- dist.taxo(ecomor$taxo)</pre>
mantel.randtest(dmorpho, dhabitat)
RV.rtest(pcoscaled(dmorpho), pcoscaled(dhabitat), 999)
procuste.randtest(pcoscaled(dmorpho), pcoscaled(dhabitat))
ecophy <- taxo2phylog(ecomor$taxo, add.tools=TRUE)</pre>
table.phylog(ecomorhabitat, ecophy, clabel.n = 0.5, f = 0.6,
     clabel.c = 0.75, clabel.r = 0.5, csi = 0.75, cleg = 0)
plot(ecophy, clabel.n = 0.75, clabel.1 = 0.75,
     labels.l = ecomor$labels[,"latin"])
mantel.randtest(dmorpho, dtaxo)
mantel.randtest(dhabitat, dtaxo)
## End(Not run)
```

elec88

Electoral Data

## **Description**

This data set gives the results of the presidential election in France in 1988 for each department and all the candidates.

## Usage

```
data(elec88)
```

116 elec88

#### **Format**

elec88 is a list with the following components:

tab a data frame with 94 rows (departments) and 9 variables (candidates)

res the global result of the election all-over the country

**lab** a data frame with two variables: elec88\$lab\$dep is a vector containing the names of the 94 french departments, elec88\$lab\$reg is a vector containing the names of the 21 French administrative regions.

area the data frame of 3 variables returning the boundary lines of each department. The first variable is a factor. The levels of this one are the row.names of tab. The second and third variables return the coordinates (x, y) of the points of the boundary line.

contour a data frame with 4 variables (x1, y1, x2, y2) for the contour display of France

xy a data frame with two variables (x, y) giving the position of the center for each department

neig the neighbouring graph between departments, object of the class neig

**nb** the neighbouring graph between departments, object of the class nb

**Spatial** the map of the french departments in Lambert II coordinates (an object of the class SpatialPolygons of sp)

**Spatial.contour** the contour of the map of France in Lambert II coordinates (an object of the class SpatialPolygons of sp)

#### Source

Public data

#### See Also

This dataset is compatible with presid2002 and cnc2003

```
data(elec88)
apply(elec88$tab, 2, mean)
summary(elec88$res)
pca1 <- dudi.pca(elec88$tab, scale = FALSE, scannf = FALSE)

if(adegraphicsLoaded()) {
   if(requireNamespace("sp", quietly = TRUE)) {
      data1 <- as.data.frame(as.numeric(rownames(elec88$tab) == "D25"))
      rownames(data1) <- row.names(elec88$Spatial)
      obj1 <- sp::SpatialPolygonsDataFrame(Sr = elec88$Spatial, data = data1)
      g1 <- s.Spatial(obj1, psub.text = "", plot = FALSE)
      g2 <- s.Spatial(obj1, psub.text = "", nb = elec88$nb, pnb.node.cex = 0, plot = FALSE)

data3 <- as.data.frame(elec88$xy[, 1] + elec88$xy[, 2])
      rownames(data3) <- row.names(elec88$Spatial)
      obj3 <- sp::SpatialPolygonsDataFrame(Sr = elec88$Spatial, data = data3)
      g3 <- s.Spatial(obj3, psub.text = "", plot = FALSE)</pre>
```

escopage 117

```
data4 <- as.data.frame(pca1$li[, 1])</pre>
    rownames(data4) <- row.names(elec88$Spatial)</pre>
    obj4 <- sp::SpatialPolygonsDataFrame(Sr = elec88$Spatial, data = data4)</pre>
    g4 <- s.Spatial(obj4, psub.text = "F1 PCA", plot = FALSE)
    G \leftarrow ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
 }
} else {
 par(mfrow = c(2, 2))
 plot(elec88\$area[, 2:3], type = "n", asp = 1)
 lpoly <- split(elec88$area[, 2:3], elec88$area[, 1])</pre>
 lapply(lpoly, function(x) {points(x, type = "1"); invisible()})
 polygon(elec88\$area[elec88\$area\$V1 == "D25", 2:3], col = 1)
 area.plot(elec88$area, graph = elec88$neig, lwdg = 1)
 polygon(elec88\$area\$V1 == "D25", 2:3], col = 1)
 area.plot(elec88$area, val = elec88$xy[, 1] + elec88$xy[, 2])
 area.plot(elec88$area, val = pca1$li[, 1], sub = "F1 PCA",
    csub = 2, cleg = 1.5)
 par(mfrow = c(1, 1))
}
```

escopage

K-tables of wine-tasting

## **Description**

This data set describes 27 characteristics of 21 wines distributed in four fields: rest, visual, olfactory and global.

# Usage

data(escopage)

# Format

escopage is a list of 3 components.

tab is a data frame with 21 observations (wines) and 27 variables.

tab.names is the vector of the names of sub-tables: "rest" "visual" "olfactory" "global".

**blo** is a vector of the numbers of variables for each sub-table.

# Source

Escofier, B. and Pagès, J. (1990) *Analyses factorielles simples et multiples : objectifs, méthodes et interprétation* Dunod, Paris. 1–267.

Escofier, B. and Pagès, J. (1994) Multiple factor analysis (AFMULT package). *Computational Statistics and Data Analysis*, **18**, 121–140.

118 euro123

## **Examples**

```
data(escopage)
w <- data.frame(scale(escopage$tab))
w <- ktab.data.frame(w, escopage$blo)
names(w)[1:4] <- escopage$tab.names
plot(mfa(w, scan = FALSE))</pre>
```

euro123

Triangular Data

## **Description**

This data set gives the proportions of employement in the primary, secondary and tertiary sectors for 12 European countries in 1978, 1986 and 1997.

# Usage

```
data(euro123)
```

## **Format**

euro123 is a list of 4 components.

in 78 is a data frame with 12 rows and 3 variables.

**in86**: idem in 1986 **in97**: idem in 1997

**plan** is a data frame with two factors to both organize the 3 tables.

## **Source**

Encyclopaedia Universalis, Symposium, Les chiffres du Monde. Encyclopaedia Universalis, Paris. 519.

```
data(euro123)

if(adegraphicsLoaded()) {
    g1 <- triangle.label(euro123$in78, addaxes = TRUE, plabels.cex = 0,
        plot = FALSE)
    g2 <- triangle.label(euro123$in86, addaxes = TRUE, plabels.cex = 0,
        plot = FALSE)
    g3 <- triangle.label(euro123$in97, addaxes = TRUE, plabels.cex = 0,
        plot = FALSE)
    g4 <- triangle.match(euro123$in78, euro123$in97, plot = FALSE)
    G <- ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
} else {</pre>
```

fission 119

```
par(mfrow = c(2,2))
triangle.plot(euro123$in78, addaxes = TRUE)
triangle.plot(euro123$in86, addaxes = TRUE)
triangle.plot(euro123$in97, addaxes = TRUE)
triangle.biplot(euro123$in78, euro123$in97)
par(mfrow = c(1,1))
}
```

fission

Fission pattern and heritable morphological traits

## **Description**

This data set contains the mean values of five highly heritable linear combinations of cranial metric (GM1-GM3) and non metric (GN1-GN2) for 8 social groups of Rhesus Macaques on Cayo Santiago. It also describes the fission tree depicting the historical phyletic relationships.

## Usage

```
data(fission)
```

# **Format**

fission is a list containing the 2 following objects:

tre is a character string giving the fission tree in Newick format.

tab is a data frame with 8 social groups and five traits: cranial metrics (GM1, GM2, GM3) and cranial non metrics (GN1, GN2)

## References

Cheverud, J. and Dow, M.M. (1985) An autocorrelation analysis of genetic variation due to lineal fission in social groups of rhesus macaques. *American Journal of Physical Anthropology*, **67**, 113–122.

```
data(fission)
fis.phy <- newick2phylog(fission$tre)
table.phylog(fission$tab[names(fis.phy$leaves),], fis.phy, csi = 2)
gearymoran(fis.phy$Amat, fission$tab)</pre>
```

120 foucart

| foucart K-tables Correspondence Analysis with the same rows and the sam columns | ne |
|---------------------------------------------------------------------------------|----|
|---------------------------------------------------------------------------------|----|

# Description

K tables have the same rows and the same columns.

Each table is transformed by P = X/sum(X). The average of P is computing.

A correspondence analysis is realized on this average.

The initial rows and the initial columns are projected in supplementary elements.

# Usage

# **Arguments**

| X      | a list of data frame where the row names and the column names are the same for each table                     |
|--------|---------------------------------------------------------------------------------------------------------------|
| scannf | a logical value indicating whether the eigenvalues bar plot should be displayed                               |
| nf     | if scannf FALSE, an integer indicating the number of kept axes                                                |
|        |                                                                                                               |
| X      | an object of class 'foucart'                                                                                  |
| xax    | the column number of the x-axis                                                                               |
| yax    | the column number of the y-axis                                                                               |
| clab   | if not NULL, a character size for the labels, used with par("cex")*clab                                       |
| csub   | a character size for the legend, used with par("cex")*csub                                                    |
| possub | a string of characters indicating the sub-title position ("topleft", "topright", "bottomleft", "bottomright") |
|        | further arguments passed to or from other methods                                                             |

## Value

foucart returns a list of the classes 'dudi', 'coa' and 'foucart'

call origine

nf axes-components saved

rank rank

blo useful vector

foucart 121

| CW  | vector: column weights                   |
|-----|------------------------------------------|
| lw  | vector: row weights                      |
| eig | vector: eigen values                     |
| tab | data.frame: modified array               |
| li  | data.frame: row coordinates              |
| 11  | data.frame: row normed scores            |
| со  | data.frame: column coordinates           |
| c1  | data.frame: column normed scores         |
| Tli | data.frame: row coordinates (each table) |
| Тсо | data.frame: col coordinates (each table) |
| TL  | data.frame: factors for Tli              |
| TC  | data.frame: factors for Tco              |

# Author(s)

# References

Foucart, T. (1984) Analyse factorielle de tableaux multiples, Masson, Paris.

122 fourthcorner

fourthcorner

Functions to compute the fourth-corner statistic

# Description

These functions allow to compute the fourth-corner statistic for abundance or presence-absence data. The fourth-corner statistic has been developed by Legendre et al (1997) and extended in Dray and Legendre (2008). The statistic measures the link between three tables: a table L (n x p) containing the abundances of p species at n sites, a second table R (n x m) containing the measurements of m environmental variables for the n sites, and a third table Q (p x s) describing s species traits for the p species.

# Usage

```
fourthcorner(tabR, tabL, tabQ, modeltype = 6, nrepet = 999, tr01 =
FALSE, p.adjust.method.G = p.adjust.methods, p.adjust.method.D =
p.adjust.methods, p.adjust.D = c("global", "levels"), ...)
fourthcorner2(tabR, tabL, tabQ, modeltype = 6, nrepet = 999, tr01 =
FALSE, p.adjust.method.G = p.adjust.methods, ...)
## S3 method for class '4thcorner'
print(x, varQ = 1:length(x$varnames.Q), varR =
1:length(xvarnames.R), stat = c("D", "D2"), ...)
## S3 method for class '4thcorner'
summary(object,...)
## S3 method for class '4thcorner'
plot(x, stat = c("D", "D2", "G"), type = c("table",
"biplot"), xax = 1, yax = 2, x.rlq = NULL, alpha = 0.05, col =
c("lightgrey", "red", "deepskyblue", "purple"), ...)
fourthcorner.rlq(xtest, nrepet = 999, modeltype = 6, typetest =
c("axes", "Q.axes", "R.axes"), p.adjust.method.G = p.adjust.methods,
p.adjust.method.D = p.adjust.methods, p.adjust.D = c("global",
"levels"), ...)
```

#### **Arguments**

| tabR      | a dataframe containing the measurements (numeric values or factors) of m environmental variables (columns) for the n sites (rows). |
|-----------|------------------------------------------------------------------------------------------------------------------------------------|
| tabL      | a dataframe containing the abundances of p species (columns) at n sites (rows).                                                    |
| tabQ      | a dataframe containing numeric values or factors describing s species traits (columns) for the p species (rows).                   |
| modeltype | an integer (1-6) indicating the permutation model used in the testing procedure (see details).                                     |
| nrepet    | the number of permutations                                                                                                         |
| tr01      | a logical indicating if data in tabL must be transformed to presence-absence data (FALSE by default)                               |

fourthcorner 123

| object          | an object of the class 4thcorner                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X               | an object of the class 4thcorner                                                                                                                                                                                                                                                                                                                                                                                              |
| varR            | a vector containing indices for variables in tabR                                                                                                                                                                                                                                                                                                                                                                             |
| varQ            | a vector containing indices for variables in tabQ                                                                                                                                                                                                                                                                                                                                                                             |
| type            | results are represented by a table or on a biplot (see x.rlq)                                                                                                                                                                                                                                                                                                                                                                 |
| alpha           | a value of significance level                                                                                                                                                                                                                                                                                                                                                                                                 |
| p.adjust.method | l.G                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                 | a string indicating a method for multiple adjustment used for output tabG, see p.adjust.methods for possible choices                                                                                                                                                                                                                                                                                                          |
| p.adjust.method | I.D                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                 | a string indicating a method for multiple adjustment used for output tabD/tabD2, see p. adjust.methods for possible choices $ \begin{tabular}{ll} \hline \end{tabular} $                                                                                                                                                                                                                                                      |
| p.adjust.D      | a string indicating if multiple adjustment for tabD/tabD2 should be done globally or only between levels of a factor ("levels", as in the original paper of Legendre et al. 1997)                                                                                                                                                                                                                                             |
| stat            | a character to specify if results should be plotted for cells (D and D2) or variables (G) $$                                                                                                                                                                                                                                                                                                                                  |
| xax             | an integer indicating which rlq axis should be plotted on the x-axis                                                                                                                                                                                                                                                                                                                                                          |
| yax             | an integer indicating which rlq axis should be plotted on the y-axis                                                                                                                                                                                                                                                                                                                                                          |
| x.rlq           | an object created by the rlq function. Used to represent results on a biplot (type should be "biplot" and object created by the fourthcorner functions)                                                                                                                                                                                                                                                                       |
| col             | a vector of length 4 containing four colors used for the graphical representations. The first is used to represent non-significant associations, the second positive significant, the third negative significant. For the 'biplot' method and objects created by the fourthcorner.rlq function, the second corresponds to variables significantly linked to the x-axis, the third for the y-axis and the fourth for both axes |
| xtest           | an object created by the rlq function                                                                                                                                                                                                                                                                                                                                                                                         |
| typetest        | a string indicating which tests should be performed                                                                                                                                                                                                                                                                                                                                                                           |
|                 | further arguments passed to or from other methods                                                                                                                                                                                                                                                                                                                                                                             |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                               |

## **Details**

For the fourthcorner function, the link is measured by a Pearson correlation coefficient for two quantitative variables (trait and environmental variable), by a Pearson Chi2 and G statistic for two qualitative variables and by a Pseudo-F and Pearson r for one quantitative variable and one qualitative variable. The fourthcorner2 function offers a multivariate statistic (equal to the sum of eigenvalues of RLQ analysis) and measures the link between two variables by a square correlation coefficient (quant/quant), a Chi2/sum(L) (qual/qual) and a correlation ratio (quant/qual). The significance is tested by a permutation procedure. Different models are available:

- model 1 (modeltype=1): Permute values for each species independently (i.e., permute within each column of table L)
- model 2 (modeltype=2): Permute values of sites (i.e., permute entire rows of table L)

124 fourthcorner

• model 3 (modeltype=3): Permute values for each site independently (i.e., permute within each row of table L)

- model 4 (modeltype=4): Permute values of species (i.e., permute entire columns of table L)
- model 5 (modeltype=5): Permute values of species and after (or before) permute values of sites (i.e., permute entire columns and after (or before) entire rows of table L)
- model 6 (modeltype=6): combination of the outputs of models 2 and 4. Dray and Legendre (2008) and ter Braak et al. (20012) showed that all models (except model 6) have inflated type I error.

Note that the model 5 is strictly equivalent to permuting simultaneously the rows of tables R and Q, as proposed by Doledec et al. (1996).

The function summary returns results for variables (G). The function print returns results for cells (D and D2). In the case of qualitative variables, Holm's corrected pvalues are also provided.

The function plot produces a graphical representation of the results (white for non significant, light grey for negative significant and dark grey for positive significant relationships). Results can be plotted for variables (G) or for cells (D and D2). In the case of qualitative / quantitative association, homogeneity (D) or correlation (D2) are plotted.

#### Value

The fourthcorner function returns a a list where:

tabD is a krandtest object giving the results of tests for cells of the fourth-corner (homogeneity for quant./qual.). tabD2 is a krandtest object giving the results of tests for cells of the fourth-corner (Pearson r for quant./qual.). tabG is a krandtest object giving the results of tests for variables (Pearson's Chi2 for qual./qual.).

The fourthcorner2 function returns a list where:

tabG is a krandtest object giving the results of tests for variables. trRLQ is a krandtest object giving the results of tests for the multivariate statistic (i.e. equivalent to randtest.rlq function).

# Author(s)

Stéphane Dray <stephane.dray@univ-lyon1.fr>

## References

Doledec, S., Chessel, D., ter Braak, C.J.F. and Champely, S. (1996) Matching species traits to environmental variables: a new three-table ordination method. *Environmental and Ecological Statistics*, **3**, 143–166.

Legendre, P., R. Galzin, and M. L. Harmelin-Vivien. (1997) Relating behavior to habitat: solutions to the fourth-corner problem. *Ecology*, **78**, 547–562.

Dray, S. and Legendre, P. (2008) Testing the species traits-environment relationships: the fourth-corner problem revisited. *Ecology*, **89**, 3400–3412.

ter Braak, C., Cormont, A., and Dray, S. (2012) Improved testing of species traits-environment relationships in the fourth corner problem. *Ecology*, **93**, 1525–1526.

Dray, S., Choler, P., Doledec, S., Peres-Neto, P.R., Thuiller, W., Pavoine, S. and ter Braak, C.J.F (2014) Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation. *Ecology*, **95**, 14–21. doi:10.1890/13-0196.1

friday87 125

## See Also

```
rlq, combine.4thcorner, p.adjust.methods
```

## **Examples**

```
data(aviurba)
## Version using the sequential test (ter Braak et al 2012)
## as recommended in Dray et al (2013),
## using Holm correction of P-values (only 99 permutations here)
four.comb.default <- fourthcorner(aviurba$mil,aviurba$fau,aviurba$traits,nrepet=99)</pre>
summary(four.comb.default)
plot(four.comb.default, stat = "G")
## using fdr correction of P-values
four.comb.fdr <- fourthcorner(aviurba$mil, aviurba$fau, aviurba$traits,</pre>
nrepet = 99, p.adjust.method.G = 'fdr', p.adjust.method.D = 'fdr')
summary(four.comb.fdr)
plot(four.comb.fdr, stat = "G")
## Explicit procedure to combine the results of two models
## proposed in Dray and Legendre (2008); the above does this implicitly
four2 <- fourthcorner(aviurba$mil,aviurba$fau,aviurba$traits,nrepet=99,modeltype=2)</pre>
four4 <- fourthcorner(aviurba$mil,aviurba$fau,aviurba$traits,nrepet=99,modeltype=4)</pre>
four.comb <- combine.4thcorner(four2, four4)</pre>
summary(four.comb)
plot(four.comb, stat = "G")
```

friday87

Faunistic K-tables

# Description

This data set gives informations about sites, species and environmental variables.

#### **Usage**

```
data(friday87)
```

## Format

friday87 is a list of 4 components.

**fau** is a data frame containing a faunistic table with 16 sites and 91 species.

mil is a data frame with 16 sites and 11 environmental variables.

fau.blo is a vector of the number of species per group.

tab.names is the name of each group of species.

126 fruits

## **Source**

Friday, L.E. (1987) The diversity of macroinvertebrate and macrophyte communities in ponds, *Freshwater Biology*, **18**, 87–104.

# **Examples**

fruits

Pair of Tables

# **Description**

28 batches of fruits -two types- are judged by two different ways.

They are classified in order of preference, without ex aequo, by 16 individuals.

15 quantitative variables described the batches of fruits.

#### Usage

```
data(fruits)
```

## **Format**

fruits is a list of 3 components:

**typ** is a vector returning the type of the 28 batches of fruits (peaches or nectarines).

jug is a data frame of 28 rows and 16 columns (judges).

var is a data frame of 28 rows and 16 measures (average of 2 judgements).

# Details

fruits\$var is a data frame of 15 variables:

- 1. taches: quantity of cork blemishes (0=absent maximum 5)
- 2. stries: quantity of stria (1/none maximum 4)
- 3. abmucr: abundance of mucron (1/absent 4)
- 4. irform: shape irregularity (0/none 3)

fruits 127

```
5. allong: length of the fruit (1/round fruit - 4)
```

- 6. suroug: percentage of the red surface (minimum 40% maximum 90%)
- 7. homlot: homogeneity of the intra-batch coloring (1/strong 4)
- 8. homfru: homogeneity of the intra-fruit coloring (1/strong 4)
- 9. pubesc: pubescence (0/none 4)
- 10. verrou: intensity of green in red area (1/none 4)
- 11. foncee: intensity of dark area (0/pink 4)
- 12. comucr: intensity of the mucron color (1=no contrast 4/dark)
- 13. impres: kind of impression (1/watched 4/pointillé)
- 14. coldom: intensity of the predominating color (0/clear 4)
- 15. calibr: grade (1/<90g 5/>200g)

## Source

Kervella, J. (1991) Analyse de l'attrait d'un produit : exemple d'une comparaison de lots de pêches. Agro-Industrie et méthodes statistiques. Compte-rendu des secondes journées européennes. Nantes 13-14 juin 1991. Association pour la Statistique et ses Utilisations, Paris, 313–325.

```
data(fruits)
pcajug <- dudi.pca(fruits$jug, scann = FALSE)</pre>
pcavar <- dudi.pca(fruits$var, scann = FALSE)</pre>
if(adegraphicsLoaded()) {
 g1 <- s.corcircle(pcajug$co, plot = FALSE)</pre>
 g2 <- s.class(pcajug$li, fac = fruits$type, plot = FALSE)</pre>
 g3 <- s.corcircle(pcavar$co, plot = FALSE)
 g4 <- s.class(pcavar$li, fac = fruits$type, plot = FALSE)
 G1 \leftarrow ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
 G2 <- plot(coinertia(pcajug, pcavar, scan = FALSE))</pre>
} else {
 par(mfrow = c(2,2))
 s.corcircle(pcajug$co)
 s.class(pcajug$li, fac = fruits$type)
 s.corcircle(pcavar$co)
 s.class(pcavar$li, fac = fruits$type)
 par(mfrow = c(1,1))
 plot(coinertia(pcajug, pcavar, scan = FALSE))
}
```

128 gearymoran

| gearymoran | Moran's I and Geary'c randomization tests for spatial and phyloge- |
|------------|--------------------------------------------------------------------|
|            | netic autocorrelation                                              |

# Description

This function performs Moran's I test using phylogenetic and spatial link matrix (binary or general). It uses neighbouring weights so Moran's I and Geary's c randomization tests are equivalent.

# Usage

```
gearymoran(bilis, X, nrepet = 999, alter=c("greater", "less", "two-sided"))
```

# **Arguments**

bilis : a n by n link matrix where n is the row number of X

X : a data frame with continuous variables

nrepet : number of random vectors for the randomization test

alter a character string specifying the alternative hypothesis, must be one of "greater"

(default), "less" or "two-sided"

#### **Details**

bilis is a squared symmetric matrix which terms are all positive or null.

bilis is firstly transformed in frequency matrix A by dividing it by the total sum of data matrix:

$$a_{ij} = \frac{bilis_{ij}}{\sum_{i=1}^{n} \sum_{j=1}^{n} bilis_{ij}}$$

The neighbouring weights is defined by the matrix  $D = diag(d_1, d_2, ...)$  where  $d_i = \sum_{j=1}^n bilis_{ij}$ . For each vector x of the data frame X, the test is based on the Moran statistic  $x^t A x$  where x is D-centred.

# Value

Returns an object of class krandtest (randomization tests).

## Author(s)

Sébastien Ollier <sebastien.ollier@u-psud.fr> Daniel Chessel

# References

Cliff, A. D. and Ord, J. K. (1973) Spatial autocorrelation, Pion, London.

Thioulouse, J., Chessel, D. and Champely, S. (1995) Multivariate analysis of spatial patterns: a unified approach to local and global structures. *Environmental and Ecological Statistics*, **2**, 1–14.

ggtortoises 129

## See Also

moran.test and geary.test for classical versions of Moran's test and Geary's one

# **Examples**

```
# a spatial example
data(mafragh)
tab0 <- (as.data.frame(scalewt(mafragh$env)))</pre>
bilis0 <- neig2mat(mafragh$neig)</pre>
gm0 <- gearymoran(bilis0, tab0, 999)</pre>
plot(gm0, nclass = 20)
## Not run:
# a phylogenetic example
data(mjrochet)
mjr.phy <- newick2phylog(mjrochet$tre)</pre>
mjr.tab <- log(mjrochet$tab)</pre>
gearymoran(mjr.phy$Amat, mjr.tab)
gearymoran(mjr.phy$Wmat, mjr.tab)
if(adegraphicsLoaded()) {
  g1 <- table.value(mjr.phy$Wmat, ppoints.cex = 0.35, nclass = 5,
    axis.text = list(cex = 0), plot = FALSE)
  g2 <- table.value(mjr.phy$Amat, ppoints.cex = 0.35, nclass = 5,</pre>
    axis.text = list(cex = 0), plot = FALSE)
  G <- cbindADEg(g1, g2, plot = TRUE)
} else {
  par(mfrow = c(1, 2))
  table.value(mjr.phy$Wmat, csi = 0.25, clabel.r = 0)
  table.value(mjr.phy$Amat, csi = 0.35, clabel.r = 0)
  par(mfrow = c(1, 1))
}
## End(Not run)
```

ggtortoises

Microsatellites of Galapagos tortoises populations

# **Description**

This data set gives genetic relationships between Galapagos tortoises populations with 10 microsatellites.

# Usage

```
data(ggtortoises)
```

130 ggtortoises

#### **Format**

ggtortoises is a list with the following components:

area a data frame designed to be used in the area. plot function

ico a list of three pixmap icons representing the tortoises morphotypes

pop a data frame containing meta informations about populations

misc a data frame containing the coordinates of the island labels

loc a numeric vector giving the number of alleles by marker

tab a data frame containing the number of alleles by populations for 10 microsatellites

Spatial an object of the class SpatialPolygons of sp, containing the map

#### Source

M.C. Ciofi, C. Milinkovitch, J.P. Gibbs, A. Caccone, and J.R. Powell (2002) Microsatellite analysis of genetic divergence among populations of giant galapagos tortoises. *Molecular Ecology* **11**: 2265-2283.

#### References

M.C. Ciofi, C. Milinkovitch, J.P. Gibbs, A. Caccone, and J.R. Powell (2002). Microsatellite analysis of genetic divergence among populations of giant galapagos tortoises. *Molecular Ecology* **11**: 2265-2283.

See a data description at http://pbil.univ-lyon1.fr/R/pdf/pps069.pdf (in French).

```
if(requireNamespace("pixmap", quietly=TRUE)) {
 data(ggtortoises)
 if(adegraphicsLoaded()) {
    if(requireNamespace("sp", quietly = TRUE)) {
     g1 <- s.logo(ggtortoises$pop, ggtortoises$ico[as.character(ggtortoises$pop$carap)],</pre>
        Sp = ggtortoises$Spatial, pbackground.col = "lightblue", pSp.col = "white",
        pgrid.draw = FALSE, ppoints.cex = 0.5)
      g1 <- s.label(ggtortoises$misc, pgrid.draw = FALSE, porigin.include = FALSE,
        paxes.draw = FALSE, add = TRUE)
    }
 } else {
  a1 <- ggtortoises$area
  area.plot(a1)
  rect(min(a1$x), min(a1$y), max(a1$x), max(a1$y), col = "lightblue")
   invisible(lapply(split(a1, a1$id), function(x) polygon(x[, -1], col = "white")))
  s.label(ggtortoises$misc, grid = FALSE, include.ori = FALSE, addaxes = FALSE, add.p = TRUE)
  listico <- ggtortoises$ico[as.character(ggtortoises$pop$carap)]</pre>
  s.logo(ggtortoises$pop, listico, add.p = TRUE)
}
```

granulo 131

granulo

Granulometric Curves

# **Description**

This data set gives the repartition in diameter classes of deposit samples.

# Usage

```
data(granulo)
```

#### **Format**

granulo is a list of 2 components.

tab contains the 49 deposit samples, 9 diameter classes, weight of grains by size class

**born** contains the boundaries of the diameter classes

#### Source

Gaschignard-Fossati, O. (1986) Répartition spatiale des macroinvertébrés benthiques d'un bras vif du Rhône. Rôle des crues et dynamique saisonnière. Thèse de doctorat, Université Lyon 1.

```
data(granulo)
w \leftarrow t(apply(granulo\$tab, 1, function (x) x / sum(x)))
w <- data.frame(w)</pre>
wtr <- data.frame(t(w))</pre>
wmoy <- data.frame(matrix(apply(wtr, 1, mean), 1))</pre>
d1 <- dudi.pca(w, scal = FALSE, scan = FALSE)</pre>
wmoy <- suprow(d1, wmoy)$lisup</pre>
if(adegraphicsLoaded()) {
  s.arrow(d1$c1, plab.cex = 1.5)
  s.distri(d1$c1, wtr, starSize = 0.33, ellipseSize = 0,
    add = TRUE, plab.cex = 0.75)
  s.label(wmoy, ppoints.cex = 5, plab.cex = 0, add = TRUE)
} else {
  s.arrow(d1$c1, clab = 1.5)
  s.distri(d1$c1, wtr, cstar = 0.33, cell = 0,
    axesell = FALSE, add.p = TRUE, clab = 0.75)
  s.label(wmoy, cpoi = 5, clab = 0, add.p = TRUE)
}
```

132 gridrowcol

| gri |  |  |
|-----|--|--|
|     |  |  |
|     |  |  |

Complete regular grid analysis

# **Description**

This function defines objects to analyse data sets associated with complete regular grid.

# Usage

```
gridrowcol(nrow, ncol, cell.names = NULL)
```

# **Arguments**

nrow size of the grid (number of rows)
ncol size of the grid (number of columns)

cell.names grid cell labels

#### Value

Returns a list containing the following items:

xy : a data frame with grid cell coordinates

area : a data frame with three variables to display grid cells as areas

neig : an object of class 'neig' corresponding to a neighbouring graph of the grid

(rook case)

orthobasis : an object of class 'orthobasis' corresponding to the analytical solution for

the neighbouring graph

# Author(s)

```
Sébastien Ollier <sebastien.ollier@u-psud.fr>
Daniel Chessel
```

#### References

Méot, A., Chessel, D. and Sabatier, D. (1993) Opérateurs de voisinage et analyse des données spatio-temporelles. *in* J.D. Lebreton and B. Asselain, editors. Biométrie et environnement. Masson, 45-72.

Cornillon, P.A. (1998) *Prise en compte de proximités en analyse factorielle et comparative*. Thèse, Ecole Nationale Supérieure Agronomique, Montpellier.

#### See Also

```
orthobasis, orthogram, mld
```

hdpg 133

## **Examples**

```
w <- gridrowcol(8, 5)
par(mfrow = c(1, 2))
area.plot(w$area, center = w$xy, graph = w$neig, clab = 0.75)
area.plot(w$area, center = w$xy, graph = w$neig, clab = 0.75, label = as.character(1:40))
par(mfrow = c(1, 1))
if(adegraphicsLoaded()) {
  fac1 <- w$orthobasis</pre>
  names(fac1) <- as.character(signif(attr(w$orthobasis, "values"), 3))</pre>
 s.value(w$xy, fac1, porigin.include = FALSE, plegend.drawKey = FALSE, pgrid.text.cex = 0,
   ylim = c(0, 10)
} else {
  par(mfrow = c(5,8))
  for(k in 1:39)
    s.value(w$xy, w$orthobasis[, k], csi = 3, cleg = 0, csub = 2,
     sub = as.character(signif(attr(w$orthobasis, "values")[k], 3)),
      incl = FALSE, addax = FALSE, cgr = 0, ylim = c(0,10))
  par(mfrow = c(1,1))
```

hdpg

Genetic Variation In Human Populations

# Description

This data set gives genotypes variation of 1066 individuals belonging to 52 predefined populations, for 404 microsatellite markers.

# Usage

data(hdpg)

#### **Format**

hdpg is a list of 3 components.

- tab is a data frame with the genotypes of 1066 individuals encoded with 6 characters (individuals in row, locus in column), for example '123098' for a heterozygote carrying alleles '123' and '098', '123123' for a homozygote carrying two alleles '123' and, '000000' for a not classified locus (missing data).
- ind is a a data frame with 4 columns containing information about the 1066 individuals: hdpg\$ind\$id containing the Diversity Panel identification number of each individual, and three factors hdpg\$ind\$sex, hdpg\$ind\$population and hdpg\$ind\$region containing the names of the 52 populations belonging to 7 major geographic regions (see details).

134 houmousr

**locus** is a dataframe containing four columns: hdpg\$locus\$marknames a vector of names of the microsatellite markers, hdpg\$locus\$allbyloc a vector containing the number of alleles by loci, hdpg\$locus\$chromosome a factor defining a number for one chromosome and, hdpg\$locus\$maposition indicating the position of the locus in the chromosome.

#### **Details**

The rows of hdpg\$pop are the names of the 52 populations belonging to the geographic regions contained in the rows of hdpg\$region. The chosen regions are: America, Asia, Europe, Middle East North Africa, Oceania, Subsaharan AFRICA.

The 52 populations are: Adygei, Balochi, Bantu, Basque, Bedouin, Bergamo, Biaka Pygmies, Brahui, Burusho, Cambodian, Columbian, Dai, Daur, Druze, French, Han, Hazara, Hezhen, Japanese, Kalash, Karitiana, Lahu, Makrani, Mandenka, Maya, Mbuti Pygmies, Melanesian, Miaozu, Mongola, Mozabite, Naxi, NewGuinea, Nilote, Orcadian, Oroqen, Palestinian, Pathan, Pima, Russian, San, Sardinian, She, Sindhi, Surui, Tu, Tujia, Tuscan, Uygur, Xibo, Yakut, Yizu, Yoruba.

hdpg\$freq is a data frame with 52 rows, corresponding to the 52 populations described above, and 4992 microsatellite markers.

#### Source

Extract of data prepared by the Human Diversity Panel Genotypes (invalid http://research.marshfieldclinic.org/genetics/Freq/I prepared by Hinda Haned, from data used in: Noah A. Rosenberg, Jonatahan K. Pritchard, James L. Weber, Howard M. Cabb, Kenneth K. Kidds, Lev A. Zhivotovsky, Marcus W. Feldman (2002) Genetic Structure of human Populations *Science*, **298**, 2381–2385.

Lev A. Zhivotovsky, Noah Rosenberg, and Marcus W. Feldman (2003). Features of Evolution and Expansion of Modern Humans, Inferred from Genomewide Microsatellite Markers *Am. J. Hum. Genet*, **72**, 1171–1186.

## **Examples**

data(hdpg)
names(hdpg)
str(hdpg)

houmousr

Morphometric data set

## **Description**

Morphometric data set describing the shape of the first upper molar in populations of the Western European house mouse (*Mus musculus domesticus*)

# Usage

data(houmousr)

houmousr 135

#### **Format**

houmousr is a list with 2 components.

dfcc is a data frame with 214 rows (mice) and 128 morphometric variables.

**faccc** is a factor giving the sampling location of the 214 mice.

#### **Details**

The rows of houmousr\$dfcc correspond to 214 mice sampled in five locations in France and Italy. The 128 columns are 128 aligned coordinates describing the shape of the occlusal surface of the first upper molar (UM1).

houmousr\$faccc is a factor giving the location where mice were sampled: Montpellier, Frontignan, Gardouch (South of France), Lombardy (Northern Italy), and Corsica.

#### **Source**

Thioulouse, J., Renaud, S., Dufour, AB. et al. Overcoming the Spurious Groups Problem in Between-Group PCA. Evol Biol (2021). https://doi.org/10.1007/s11692-021-09550-0

#### References

Renaud S, Pantalacci S, Auffray J (2011) Differential evolvability along lines of least resistance of upper and lower molars in island house mice. PLoS ONE 6, https://doi.org/10.1371/journal.pone.0018951

Renaud S, Dufour A, Hardouin E, Ledevin R, Auffray J (2015) Once upon multivariate analyses: when they tell several stories about biological evolution. PLoS ONE 10, https://doi.org/10.1371/journal.pone.0132801

Renaud S, Ledevin R, Souquet L, Gomes Rodrigues H, Ginot S, Agret S, Claude J, Herrel A, Hautier L (2018) Evolving teeth within a stable masticatory apparatus in Orkney mice. Evolutionary Biology 45:405–424

```
data(houmousr)
fac1 <- houmousr$faccc</pre>
df1 <- houmousr$dfcc
nf1 <- nlevels(fac1) - 1</pre>
# Compute PCA
pca1 <- dudi.pca(df1, scale = FALSE, scannf = FALSE, nf = nf1)</pre>
# Compute BGA
bca1 <- bca(pca1, fac1, scannf = FALSE, nf = nf1)
if(adegraphicsLoaded()) {
s.class(bca1$ls, fac1, starSize = 0, chullSize = 1, ellipseSize = 0, ppoint.cex = 0,
plabel.cex = 0, plegend.drawKey = FALSE, col = TRUE)
s.class(bca1$ls, fac1, starSize = 1, ellipseSize = 0, col = TRUE, add = T)
} else {
col1 <- c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00")
s.class(bca1$ls, fac1, cstar = 1, cellipse = 0, col = col1)
s.chull(bca1$ls, fac1, optchull = 1, add.plot = TRUE, col = col1)
## Not run:
```

136 housetasks

```
# Compute cross-validated coordinates
xbca1 <- loocv(bca1)
plot(xbca1)
## End(Not run)</pre>
```

housetasks

Contingency Table

# **Description**

The housetasks data frame gives 13 housetasks and their repartition in the couple.

# Usage

```
data(housetasks)
```

## **Format**

This data frame contains four columns: wife, alternating, husband and jointly. Each column is a numeric vector.

## **Source**

Kroonenberg, P. M. and Lombardo, R. (1999) Nonsymmetric correspondence analysis: a tool for analysing contingency tables with a dependence structure. *Multivariate Behavioral Research*, **34**, 367–396

```
data(housetasks)
nsc1 <- dudi.nsc(housetasks, scan = FALSE)

if(adegraphicsLoaded()) {
    s.label(nsc1$c1, plab.cex = 1.25)
    s.arrow(nsc1$li, add = TRUE, plab.cex = 0.75)
} else {
    s.label(nsc1$c1, clab = 1.25)
    s.arrow(nsc1$li, add.pl = TRUE, clab = 0.75)
}</pre>
```

humDNAm 137

humDNAm

human mitochondrial DNA restriction data

## **Description**

This data set gives the frequencies of haplotypes of mitochondrial DNA restriction data in ten populations all over the world.

It gives also distances among the haplotypes.

## **Usage**

```
data(humDNAm)
```

#### **Format**

humDNAm is a list of 3 components.

**distances** is an object of class dist with 56 haplotypes. These distances are computed by counting the number of differences in restriction sites between two haplotypes.

**samples** is a data frame with 56 haplotypes, 10 abundance variables (populations). These variables give the haplotype abundance in a given population.

**structures** is a data frame with 10 populations, 1 variable (classification). This variable gives the name of the continent in which a given population is located.

## Source

Excoffier, L., Smouse, P.E. and Quattro, J.M. (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. *Genetics*, **131**, 479–491.

# **Examples**

```
data(humDNAm)
dpcoahum <- dpcoa(data.frame(t(humDNAm$samples)),
        sqrt(humDNAm$distances), scan = FALSE, nf = 2)
plot(dpcoahum)</pre>
```

ichtyo

Point sampling of fish community

# Description

This data set gives informations between a faunistic array, the total number of sampling points made at each sampling occasion and the year of the sampling occasion.

138 inertia.dudi

## Usage

```
data(ichtyo)
```

#### **Format**

ichtyo is a list of 3 components.

tab is a faunistic array with 9 columns and 32 rows.

eff is a vector of the 32 sampling effort.

dat is a factor where the levels are the 10 years of the sampling occasion.

#### **Details**

The value n(i,j) at the *ith* row and the *jth* column in tab corresponds to the number of sampling points of the *ith* sampling occasion (in eff) that contains the *jth* species.

#### **Source**

Dolédec, S., Chessel, D. and Olivier, J. M. (1995) L'analyse des correspondances décentrée: application aux peuplements ichtyologiques du haut-Rhône. *Bulletin Français de la Pêche et de la Pisciculture*, **336**, 29–40.

## **Examples**

```
data(ichtyo)
dudi1 <- dudi.dec(ichtyo$tab, ichtyo$eff, scannf = FALSE)
s.class(dudi1$li, ichtyo$dat, wt = ichtyo$eff / sum(ichtyo$eff))</pre>
```

inertia.dudi

Decomposition of inertia (i.e. contributions) in multivariate methods

## Description

Computes the decomposition of inertia to measure the contributions of row and/or columns in multivariate methods

#### **Usage**

```
## S3 method for class 'dudi'
inertia(x, row.inertia = FALSE, col.inertia = FALSE, ...)
## S3 method for class 'inertia'
print(x, ...)
## S3 method for class 'inertia'
summary(object, sort.axis = 1, subset = 5, ...)
```

inertia.dudi 139

# **Arguments**

| x, object   | a duality diagram, object of class dudi for inertia.dudi. An object of class inertia for the methods print and summary |
|-------------|------------------------------------------------------------------------------------------------------------------------|
| row.inertia | if TRUE, returns the decomposition of inertia for the rows                                                             |
| col.inertia | if TRUE, returns the decomposition of inertia for the columns                                                          |
| sort.axis   | the kept axis used to sort the contributions in decreasing order                                                       |
| subset      | the number of rows and/or columns to display in the summary                                                            |
|             | further arguments passed to or from other methods                                                                      |

## **Details**

Contributions are printed in percentage and the sign is the sign of the coordinates

# Value

An object of class inertia, i.e. a list containing:

| tot.inertia | repartition of the total inertia between axes                                    |
|-------------|----------------------------------------------------------------------------------|
| row.contrib | contributions of the rows to the total inertia                                   |
| row.abs     | absolute contributions of the rows (i.e. decomposition per axis)                 |
| row.rel     | relative contributions of the rows                                               |
| row.cum     | cumulative relative contributions of the rows (i.e. decomposition per row)       |
| col.contrib | contributions of the columns to the total inertia                                |
| col.abs     | absolute contributions of the columns (i.e. decomposition per axis)              |
| col.rel     | relative contributions of the columns                                            |
| col.cum     | cumulative relative contributions of the columns (i.e. decomposition per column) |
| nf          | the number of kept axes                                                          |

# Author(s)

```
Daniel Chessel
Stéphane Dray <stephane.dray@univ-lyon1.fr>
Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>
```

# References

Lebart, L., Morineau, A. and Tabart, N. (1977) *Techniques de la description statistique, méthodes et logiciels pour la description des grands tableaux*, Dunod, Paris, 61–62.

```
Volle, M. (1981) Analyse des données, Economica, Paris, 89-90 and 118
```

Lebart, L., Morineau, L. and Warwick, K.M. (1984) *Multivariate descriptive analysis: correspondence and related techniques for large matrices*, John Wiley and Sons, New York.

140 irishdata

Greenacre, M. (1984) *Theory and applications of correspondence analysis*, Academic Press, London, 66.

Rouanet, H. and Le Roux, B. (1993) Analyse des données multidimensionnelles, Dunod, Paris, 143-144.

Tenenhaus, M. (1994) Méthodes statistiques en gestion, Dunod, Paris, p. 160, 161, 166, 204.

Lebart, L., Morineau, A. and Piron, M. (1995) *Statistique exploratoire multidimensionnelle*, Dunod, Paris, p. 56,95-96.

# **Examples**

```
data(housetasks)
coa1 <- dudi.coa(housetasks, scann = FALSE)
res <- inertia(coa1, col = TRUE, row = FALSE)
res
summary(res)</pre>
```

irishdata

Geary's Irish Data

## **Description**

This data set contains geographical informations about 25 counties of Ireland.

# Usage

```
data(irishdata)
```

## **Format**

irishdata is a list of 13 components:

area a data frame with polygons for each of the 25 contiguous counties

county.names a vector with the names of the 25 counties

xy a data frame with the coordinates centers of the 25 counties

tab a data frame with 25 rows (counties) and 12 variables

contour a data frame with the global polygon of all the 25 counties

link a matrix containing the common length between two counties from area

**area.utm** a data frame with polygons for each of the 25 contiguous counties expressed in Universal Transverse Mercator (UTM) coordinates

xy.utm a data frame with the UTM coordinates centers of the 25 counties

link.utm a matrix containing the common length between two counties from area.utm

irishdata 141

tab.utm a data frame with the 25 counties (explicitly named) and 12 variables

contour.utm a data frame with the global polygon of all the 25 counties expressed in UTM coordinates

Spatial the map of the 25 counties of Ireland (an object of the class SpatialPolygons of sp)

**Spatial.contour** the contour of the map of the 25 counties of Ireland (an object of the class SpatialPolygons of sp)

#### **Source**

Geary, R.C. (1954) The contiguity ratio and statistical mapping. *The incorporated Statistician*, **5**, 3, 115–145.

Cliff, A.D. and Ord, J.K. (1973) Spatial autocorrelation, Pion, London. 1–178.

```
data(irishdata)
if(adegraphicsLoaded()) {
 if(requireNamespace("sp", quietly = TRUE)){
 g1 <- s.label(irishdata$xy.utm, Sp = irishdata$Spatial, pSp.col = "white", plot = FALSE)
 g21 <- s.label(irishdata$xy.utm, Sp = irishdata$Spatial, pSp.col = "white", plab.cex = 0,</pre>
   ppoints.cex = 0, plot = FALSE)
 g22 <- s.label(irishdata$xy.utm, Sp = irishdata$Spatial.contour, pSp.col = "transparent",</pre>
   plab.cex = 0, ppoints.cex = 0, pSp.lwd = 3, plot = FALSE)
 g2 <- superpose(g21, g22)
 g3 <- s.corcircle(dudi.pca(irishdata$tab, scan = FALSE)$co, plot = FALSE)
 score <- dudi.pca(irishdata$tab, scannf = FALSE, nf = 1)$li$Axis1</pre>
 names(score) <- row.names(irishdata$Spatial)</pre>
 obj <- sp::SpatialPolygonsDataFrame(Sr = irishdata$Spatial, data = as.data.frame(score))</pre>
 g4 <- s.Spatial(obj, plot = FALSE)
 G \leftarrow ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
 }
} else {
 par(mfrow = c(2, 2))
 area.plot(irishdata$area, lab = irishdata$county.names, clab = 0.75)
 area.plot(irishdata$area)
 apply(irishdatax), function(x) segments(x[1], x[2], x[3], x[4], lwd = 3))
 s.corcircle(dudi.pca(irishdata$tab, scannf = FALSE)$co)
  score <- dudi.pca(irishdata$tab, scannf = FALSE, nf = 1)$li$Axis1</pre>
 names(score) <- row.names(irishdata$tab)</pre>
 area.plot(irishdata$area, score)
 par(mfrow = c(1, 1))
}
```

142 is.euclid

|    |      | -        | ٠ |   |
|----|------|----------|---|---|
| 10 | . eu | $\sim 1$ | 7 | М |
| 13 | . cu | -1       | 1 | u |

Is a Distance Matrix Euclidean?

# **Description**

Confirmation of the Euclidean nature of a distance matrix by the Gower's theorem. is.euclid is used in summary.dist.

# Usage

```
is.euclid(distmat, plot = FALSE, print = FALSE, tol = 1e-07)
## S3 method for class 'dist'
summary(object, ...)
```

# Arguments

| distmat | an object of class 'dist'                                                                                                                                   |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| plot    | a logical value indicating whether the eigenvalues bar plot of the matrix of the term $-\frac{1}{2}d_{ij}^2$ centred by rows and columns should be diplayed |
| print   | a logical value indicating whether the eigenvalues of the matrix of the term $-\frac{1}{2}d_{ij}^2$ centred by rows and columns should be printed           |
| tol     | a tolerance threshold: an eigenvalue is considered positive if it is larger than -tol*lambda1 where lambda1 is the largest eigenvalue.                      |
| object  | an object of class 'dist'                                                                                                                                   |
|         | further arguments passed to or from other methods                                                                                                           |

## Value

returns a logical value indicating if all the eigenvalues are positive or equal to zero

# Author(s)

```
Daniel Chessel
Stéphane Dray <stephane.dray@univ-lyon1.fr>
```

## References

Gower, J.C. and Legendre, P. (1986) Metric and Euclidean properties of dissimilarity coefficients. *Journal of Classification*, **3**, 5–48.

julliot 143

## **Examples**

```
w <- matrix(runif(10000), 100, 100)
w <- dist(w)
summary(w)
is.euclid (w) # TRUE
w <- quasieuclid(w) # no correction need in: quasieuclid(w)
w <- lingoes(w) # no correction need in: lingoes(w)
w <- cailliez(w) # no correction need in: cailliez(w)
rm(w)</pre>
```

julliot

Seed dispersal

# **Description**

This data set gives the spatial distribution of seeds (quadrats counts) of seven species in the understorey of tropical rainforest.

## Usage

```
data(julliot)
```

#### **Format**

julliot is a list with the following components:

tab a data frame with 160 rows (quadrats) and 7 variables (species)

xy a data frame with the coordinates of the 160 quadrats (positioned by their centers)

**area** a data frame with 3 variables returning the boundary lines of each quadrat. The first variable is a factor. The levels of this one are the row.names of tab. The second and third variables return the coordinates (x,y) of the points of the boundary line.

**Spatial** an object of the class SpatialPolygons of sp, containing the map

## **Details**

Species names of julliot\$tab are: Pouteria torta, Minquartia guianensis, Quiina obovata, Chrysophyllum lucentifolium, Parahancornia fasciculata, Virola michelii, and Pourouma spp.

# References

Julliot, C. (1992). Utilisation des ressources alimentaires par le singe hurleur roux, *Alouatta senicu- lus* (Atelidae, Primates), en Guyane : impact de la dissémination des graines sur la régénération forestière. Thèse de troisième cycle, Université de Tours.

Julliot, C. (1997). Impact of seed dispersal by red howler monkeys *Alouatta seniculus* on the seedling population in the understorey of tropical rain forest. *Journal of Ecology*, **85**, 431–440.

144 julliot

```
data(julliot)
## Not run:
if(adegraphicsLoaded()) {
 if(requireNamespace("sp", quietly = TRUE)) {
  obj1 <- sp::SpatialPolygonsDataFrame(Sr = julliot$Spatial, data = log(julliot$tab + 1))
   g1 <- s.Spatial(obj1)</pre>
   g2 <- s.value(julliot$xy, scalewt(log(julliot$tab + 1)), Sp = julliot$Spatial,</pre>
      pSp.col = "white", pgrid.draw = FALSE)
} else {
 if(requireNamespace("splancs", quietly = TRUE)) {
   par(mfrow = c(3, 3))
    for(k in 1:7)
      area.plot(julliot$area, val = log(julliot$tab[, k] + 1),
        sub = names(julliot$tab)[k], csub = 2.5)
   par(mfrow = c(1, 1))
   par(mfrow = c(3, 3))
    for(k in 1:7) {
      area.plot(julliot$area)
      s.value(julliot$xy, scalewt(log(julliot$tab[, k] + 1)),
        sub = names(julliot$tab)[k], csub = 2.5, add.p = TRUE)
   par(mfrow = c(1, 1))
 }
## End(Not run)
if(adegraphicsLoaded()) {
 if(requireNamespace("sp", quietly = TRUE)) {
   g3 <- s.image(julliot$xy, log(julliot$tab + 1), span = 0.25)
 g4 <- s.value(julliot$xy, log(julliot$tab + 1))
} else {
 if(requireNamespace("splancs", quietly = TRUE)) {
   par(mfrow = c(3, 3))
    for(k in 1:7)
      s.image(julliot$xy, log(julliot$tab[, k] + 1), kgrid = 3, span = 0.25,
        sub = names(julliot$tab)[k], csub = 2.5)
   par(mfrow = c(1, 1))
   par(mfrow = c(3, 3))
    for(k in 1:7)
      s.value(julliot$xy, log(julliot$tab[, k] + 1),
        sub = names(julliot$tab)[k], csub = 2.5)
   par(mfrow = c(1, 1))
 }
}
```

jv73

```
## Not run:
if (requireNamespace("spdep", quietly = TRUE)) {
    neig0 <- nb2neig(spdep::dnearneigh(as.matrix(julliot$xy), 1, 1.8))
    if(adegraphicsLoaded()) {
        g5 <- s.label(julliot$xy, nb = spdep::dnearneigh(as.matrix(julliot$xy), 1, 1.8))

    } else {
        par(mfrow = c(1, 1))
        s.label(julliot$xy, neig = neig0, clab = 0.75, incl = FALSE,
        addax = FALSE, grid = FALSE)
    }
    gearymoran(ade4:::neig.util.LtoG(neig0), log(julliot$tab + 1))

    if (requireNamespace("adephylo", quietly = TRUE)) {
        adephylo::orthogram(log(julliot$tab[, 3] + 1), ortho = scores.neig(neig0))
    }
}

## End(Not run)</pre>
```

jv73

K-tables Multi-Regions

### **Description**

This data set gives physical and physico-chemical variables, fish species, spatial coordinates about 92 sites.

# Usage

```
data(jv73)
```

### **Format**

jv73 is a list with the following components:

morpho a data frame with 92 sites and 6 physical variables
phychi a data frame with 92 sites and 12 physico-chemical variables
poi a data frame with 92 sites and 19 fish species
xy a data frame with 92 sites and 2 spatial coordinates
contour a data frame for mapping

fac.riv a factor distributing the 92 sites on 12 rivers

Spatial an object of the class SpatialLines of sp, containing the map

#### Source

Verneaux, J. (1973) Cours d'eau de Franche-Comté (Massif du Jura). Recherches écologiques sur le réseau hydrographique du Doubs. Essai de biotypologie. Thèse d'Etat, Besançon.

146 kcponds

### References

See a data description at http://pbil.univ-lyon1.fr/R/pdf/pps047.pdf (in French).

### **Examples**

```
data(jv73)
w <- split(jv73$morpho, jv73$fac.riv)</pre>
w <- lapply(w, function(x) t(dudi.pca(x, scann = FALSE)))</pre>
w <- ktab.list.dudi(w)</pre>
if(adegraphicsLoaded()) {
  if(requireNamespace("sp", quietly = TRUE)) {
  g11 <- s.label(jv73$xy, Sp = jv73$Spatial, pori.incl = FALSE, plab.cex = 0.75, plot = FALSE)
    g12 <- s.class(jv73$xy, jv73$fac.riv, ellipseSize = 0, pellipses.axes.draw = FALSE,
      starSize = 0, ppoints.cex = 0, plab.cex = 1.25, plot = FALSE)
    g1 <- superpose(g11, g12, plot = TRUE)
    g2 <- kplot(sepan(w), perm = TRUE, row.plab.cex = 0, posieig = "none")</pre>
  }
} else {
  s.label(jv73$xy, contour = jv73$contour, incl = FALSE, clab = 0.75)
  s.class(jv73$xy, jv73$fac.riv, add.p = TRUE, cell = 0, axese = FALSE, csta = 0,
    cpoi = 0, clab = 1.25)
  kplot(sepan(w), perm = TRUE, clab.r = 0, clab.c = 2, show = FALSE)
}
```

kcponds

Ponds in a nature reserve

#### **Description**

This data set contains informations about 33 ponds in De Maten reserve (Genk, Belgium).

## Usage

```
data(kcponds)
```

#### **Format**

kponds is a list with the following components:

```
tab a data frame with 15 environmental variables (columns) on 33 ponds (rows)
area an object of class area
xy a data frame with the coordinates of ponds
neig an object of class neig
nb the neighbourhood graph of the 33 sites (an object of class nb)
Spatial an object of the class SpatialPolygons of sp, containing the map
```

keponds 147

#### **Details**

Variables of kcponds\$tab are the following ones: depth, area, O2 (oxygen concentration), cond (conductivity), pH, Fe (Fe concentration), secchi (Secchi disk depth), N (NNO concentration), TP (total phosphorus concentration), chla (chlorophyll-a concentration), EM (emergent macrophyte cover), FM (floating macrophyte cover), SM (submerged macrophyte cover), denMI (total density of macroinvertebrates), divMI (diversity macroinvertebrates)

#### Source

Cottenie, K. (2002) Local and regional processes in a zooplankton metacommunity. PhD, Katholieke Universiteit Leuven, Leuven, Belgium.

https://bio.kuleuven.be/eco/phdkarlcottenie.pdf

```
data(kcponds)
w <- as.numeric(scalewt(kcponds$tab$N))</pre>
if(adegraphicsLoaded()) {
  if(requireNamespace("sp", quietly = TRUE)) {
    g1 <- s.label(kcponds$xy, Sp = kcponds$Spatial, pSp.col = "white", nb = kcponds$nb,
      plab.cex = 0, paxes.asp = "fill", plot = FALSE)
   g2 <- s.label(kcponds$xy, Sp = kcponds$Spatial, pSp.col = "white", plabels.cex = 0.8,</pre>
      paxes.asp = "fill", plot = FALSE)
   g3 <- s.value(kcponds$xy, w, psub.text = "Nitrogen concentration", paxe.asp = "fill",
      plot = FALSE)
    G <- rbindADEg(g1, g2, g3, plot = TRUE)
 }
} else {
 par(mfrow=c(3, 1))
 area.plot(kcponds$area)
 s.label(kcponds$xy, add.p = TRUE, cpoi = 2, clab = 0)
 s.label(kcponds$xy, add.p = TRUE, cpoi = 3, clab = 0)
 s.label(kcponds$xy, add.p = TRUE, cpoi = 0, clab = 0, neig = kcponds$neig, cneig = 1)
 area.plot(kcponds$area)
 s.label(kcponds$xy, add.p = TRUE, clab = 1.5)
 s.value(kcponds$xy, w, cleg = 2, sub = "Nitrogen concentration", csub = 4,
    possub = "topright", include = FALSE)
 par(mfrow = c(1, 1))
}
## Not run:
 par(mfrow = c(3, 1))
 pca1 <- dudi.pca(kcponds$tab, scan = FALSE, nf = 4)</pre>
 if(requireNamespace("spdep", quietly = TRUE)) {
  multi1 <- multispati(pca1, spdep::nb2listw(neig2nb(kcponds$neig)), scannf = FALSE, nfposi = 2,</pre>
      nfnega = 1)
    summary(multi1)
 par(mfrow = c(1, 1))
```

148 kdist

```
## End(Not run)
```

kdist

the class of objects 'kdist' (K distance matrices)

### **Description**

An object of class kdist is a list of distance matrices observed on the same individuals

### Usage

```
kdist(..., epsi = 1e-07, upper = FALSE)
```

## Arguments

... a sequence of objects of the class kdist.

epsi a tolerance threshold to test if distances are Euclidean (Gower's theorem) using

 $\frac{\lambda_n}{\lambda_1}$  is larger than -epsi.

upper a logical value indicating whether the upper of a distance matrix is used (TRUE)

or not (FALSE).

#### **Details**

The attributs of a 'kdist' object are:

names: the names of the distances

size: the number of points between distances are known

labels: the labels of points

euclid: a logical vector indicating whether each distance of the list is Euclidean or not.

call: a call order class: object 'kdist'

### Value

returns an object of class 'kdist' containing a list of semidefinite matrices.

### Author(s)

Daniel Chessel

Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>

### References

Gower, J. C. (1966) Some distance properties of latent root and vector methods used in multivariate analysis. *Biometrika*, **53**, 325–338.

kdist 149

```
# starting from a list of matrices
data(yanomama)
lapply(yanomama, class)
kd1 = kdist(yanomama)
print(kd1)
# giving the correlations of Mantel's test
cor(as.data.frame(kd1))
pairs(as.data.frame(kd1))
# starting from a list of objects 'dist'
data(friday87)
fri.w <- ktab.data.frame(friday87$fau, friday87$fau.blo,</pre>
    tabnames = friday87$tab.names)
fri.kd = lapply(1:10, function(x) dist.binary(fri.w[[x]],2))
names(fri.kd) = friday87$tab.names
unlist(lapply(fri.kd,class)) # a list of distances
fri.kd = kdist(fri.kd)
fri.kd
s.corcircle(dudi.pca(as.data.frame(fri.kd), scan = FALSE)$co)
# starting from several distances
data(ecomor)
d1 <- dist.binary(ecomor$habitat, 1)</pre>
d2 <- dist.prop(ecomor$forsub, 5)</pre>
d3 <- dist.prop(ecomor$diet, 5)</pre>
d4 <- dist.quant(ecomor$morpho, 3)</pre>
d5 <- dist.taxo(ecomor$taxo)</pre>
ecomor.kd \leftarrow kdist(d1, d2, d3, d4, d5)
names(ecomor.kd) = c("habitat", "forsub", "diet", "morpho", "taxo")
class(ecomor.kd)
s.corcircle(dudi.pca(as.data.frame(ecomor.kd), scan = FALSE)$co)
data(bsetal97)
X <- prep.fuzzy.var(bsetal97$biol, bsetal97$biol.blo)</pre>
w1 <- attr(X, "col.num")
w2 <- levels(w1)
w3 <- lapply(w2, function(x) dist.quant(X[,w1==x], method = 1))</pre>
names(w3) <- names(attr(X, "col.blocks"))</pre>
w3 \leftarrow kdist(list = w3)
s.corcircle(dudi.pca(as.data.frame(w3), scan = FALSE)$co)
data(rpjdl)
w1 = lapply(1:10, function(x) dist.binary(rpjdl$fau, method = x))
w2 = c("JACCARD", "SOKAL_MICHENER", "SOKAL_SNEATH_S4", "ROGERS_TANIMOTO")
w2 = c(w2, "CZEKANOWSKI", "S9_GOWER_LEGENDRE", "OCHIAI", "SOKAL_SNEATH_S13")
w2 <- c(w2, "Phi_PEARSON", "S2_GOWER_LEGENDRE")</pre>
names(w1) \leftarrow w2
w3 = kdist(list = w1)
w4 <- dudi.pca(as.data.frame(w3), scan = FALSE)$co
w4
```

150 kdist2ktab

| kdist2ktab | Transformation of K distance matrices (object 'kdist') into K Euclidean representations (object 'ktah') |
|------------|---------------------------------------------------------------------------------------------------------|
|            | clidean representations (object 'ktab')                                                                 |

### **Description**

The function creates a ktab object with the Euclidean representations from a kdist object. Notice that the euclid attribute must be TRUE for all elements.

## Usage

```
kdist2ktab(kd, scale = TRUE, tol = 1e-07)
```

# Arguments

| kd    | an object of class kdist                                                                                          |
|-------|-------------------------------------------------------------------------------------------------------------------|
| scale | a logical value indicating whether the inertia of Euclidean representations are equal to 1 (TRUE) or not (FALSE). |
| tol   | a tolerance threshold, an eigenvalue is considered equal to zero if eig\$values > (eig\$values \( \)1 * tol)      |

## Value

returns a list of class ktab containing for each distance of kd the data frame of its Euclidean representation

### Author(s)

```
Daniel Chessel
Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>
```

```
data(friday87)
fri.w <- ktab.data.frame(friday87$fau, friday87$fau.blo, tabnames = friday87$tab.names)
fri.kd <- lapply(1:10, function(x) dist.binary(fri.w[[x]], 10))
names(fri.kd) <- substr(friday87$tab.names, 1, 4)
fri.kd <- kdist(fri.kd)
fri.ktab <- kdist2ktab(kd = fri.kd)
fri.sepan <- sepan(fri.ktab)
plot(fri.sepan)

tapply(fri.sepan$Eig, fri.sepan$TC[,1], sum)
# the sum of the eigenvalues is constant and equal to 1, for each K tables

fri.statis <- statis(fri.ktab, scan = FALSE, nf = 2)
round(fri.statis$RV, dig = 2)</pre>
```

kdisteuclid 151

```
fri.mfa <- mfa(fri.ktab, scan = FALSE, nf = 2)
fri.mcoa <- mcoa(fri.ktab, scan = FALSE, nf = 2)
apply(fri.statis$RV, 1, mean)
fri.statis$RV.tabw
plot(apply(fri.statis$RV, 1, mean), fri.statis$RV.tabw)
plot(fri.statis$RV.tabw, fri.statis$RV.tabw)</pre>
```

kdisteuclid

a way to obtain Euclidean distance matrices

## **Description**

a way to obtain Euclidean distance matrices

# Usage

```
kdisteuclid(obj, method = c("lingoes", "cailliez", "quasi"))
```

### **Arguments**

obj an object of class kdist

method a method to convert a distance matrix in a Euclidean one

#### Value

returns an object of class kdist with all distances Euclidean.

### Author(s)

```
Daniel Chessel
Stéphane Dray <stephane.dray@univ-lyon1.fr>
```

## References

Gower, J.C. and Legendre, P. (1986) Metric and Euclidean properties of dissimilarity coefficients. *Journal of Classification*, **3**, 5–48.

Cailliez, F. (1983) The analytical solution of the additive constant problem. *Psychometrika*, **48**, 305–310.

Lingoes, J.C. (1971) Somme boundary conditions for a monotone analysis of symmetric matrices. *Psychometrika*, **36**, 195–203.

Legendre, P. and Anderson, M.J. (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. *Ecological Monographs*, **69**, 1–24.

Legendre, P., and L. Legendre. (1998) Numerical ecology, 2nd English edition edition. Elsevier Science BV, Amsterdam.

152 kplot

### **Examples**

```
w \leftarrow c(0.8, 0.8, 0.377350269, 0.8, 0.377350269, 0.377350269) # see ref.
w <- kdist(w)
w1 <- c(kdisteuclid(kdist(w), "lingoes"), kdisteuclid(kdist(w), "cailliez"),</pre>
  kdisteuclid(kdist(w), "quasi"))
print(w, print = TRUE)
print(w1, print = TRUE)
data(eurodist)
par(mfrow = c(1, 3))
eu1 <- kdist(eurodist) # an object of class 'dist'
plot(data.frame(unclass(c(eu1, kdisteuclid(eu1, "quasi")))), asp = 1)
title(main = "Quasi")
abline(0,1)
plot(data.frame(unclass(c(eu1, kdisteuclid(eu1, "lingoes")))), asp = 1)
title(main = "Lingoes")
abline(0,1)
plot(data.frame(unclass(c(eu1, kdisteuclid(eu1, "cailliez")))), asp = 1)
title(main = "Cailliez")
abline(0,1)
```

kplot

Generic Function for Multiple Graphs in a K-tables Analysis

## **Description**

Methods for foucart, mcoa, mfa, pta, sepan, sepan.coa and statis

### Usage

```
kplot(object, ...)
```

### **Arguments**

object an object used to select a method
... further arguments passed to or from other methods

```
methods(plot)
methods(scatter)
methods(kplot)
```

kplot.foucart 153

kplot.foucart

Multiple Graphs for the Foucart's Correspondence Analysis

# Description

performs high level plots of a Foucart's Correspondence Analysis, using an object of class foucart.

## Usage

```
## $3 method for class 'foucart'
kplot(object, xax = 1, yax = 2, mfrow = NULL,
    which.tab = 1:length(object$blo), clab.r = 1, clab.c = 1.25,
    csub = 2, possub = "bottomright", ...)
```

## **Arguments**

| object    | an object of class foucart                                                                                    |
|-----------|---------------------------------------------------------------------------------------------------------------|
| xax, yax  | the numbers of the x-axis and the y-axis                                                                      |
| mfrow     | a vector of the form 'c(nr,nc)', otherwise computed by as special own function $n2mfrow\\$                    |
| which.tab | vector of table numbers for analyzing                                                                         |
| clab.r    | a character size for the row labels                                                                           |
| clab.c    | a character size for the column labels                                                                        |
| csub      | a character size for the sub-titles used with par("cex")*csub                                                 |
| possub    | a string of characters indicating the sub-title position ("topleft", "topright", "bottomleft", "bottomright") |
|           | further arguments passed to or from other methods                                                             |

```
data(bf88)
fou1 <- foucart(bf88, scann = FALSE, nf = 3)
if(adegraphicsLoaded()) {
   g <- kplot(fou1, row.plab.cex = 0, psub.cex = 2)
} else {
   kplot(fou1, clab.c = 2, clab.r = 0, csub = 3)
}</pre>
```

154 kplot.mcoa

kplot.mcoa

Multiple Graphs for a Multiple Co-inertia Analysis

# Description

performs high level plots of a Multiple Co-inertia Analysis, using an object of class mcoa.

### Usage

```
## S3 method for class 'mcoa'
kplot(object, xax = 1, yax = 2, which.tab = 1:nrow(object$cov2),
    mfrow = NULL, option = c("points", "axis", "columns"),
    clab = 1, cpoint = 2, csub = 2, possub = "bottomright",...)
```

## **Arguments**

| object    | an object of class mcoa                                                                                       |
|-----------|---------------------------------------------------------------------------------------------------------------|
| xax, yax  | the numbers of the x-axis and the y-axis                                                                      |
| which.tab | a numeric vector containing the numbers of the tables to analyse                                              |
| mfrow     | a vector of the form 'c(nr,nc)', otherwise computed by as special own function $n2mfrow$                      |
| option    | a string of characters for the drawing option                                                                 |
|           | "points" plot of the projected scattergram onto the co-inertia axes                                           |
|           | "axis" projections of inertia axes onto the co-inertia axes.                                                  |
|           | "columns" projections of variables onto the synthetic variables planes.                                       |
| clab      | a character size for the labels                                                                               |
| cpoint    | a character size for plotting the points, used with par("cex")*cpoint. If zero, no points are drawn.          |
| csub      | a character size for the sub-titles, used with par("cex")*csub                                                |
| possub    | a string of characters indicating the sub-title position ("topleft", "topright", "bottomleft", "bottomright") |
|           | further arguments passed to or from other methods                                                             |

#### Author(s)

Daniel Chessel

```
data(friday87)
w1 <- data.frame(scale(friday87$fau, scal = FALSE))
w2 <- ktab.data.frame(w1, friday87$fau.blo, tabnames = friday87$tab.names)
mcoa1 <- mcoa(w2, "lambda1", scan = FALSE)
kplot(mcoa1, option = "axis")
kplot(mcoa1)
kplot(mcoa1, option = "columns")</pre>
```

kplot.mfa

|     |      | •       |
|-----|------|---------|
| kn. | lot. | mt a    |
| ND. | LUL. | 11111 6 |

Multiple Graphs for a Multiple Factorial Analysis

## **Description**

performs high level plots of a Multiple Factorial Analysis, using an object of class mfa.

# Usage

```
## S3 method for class 'mfa'
kplot(object, xax = 1, yax = 2, mfrow = NULL,
    which.tab = 1:length(object$blo), row.names = FALSE, col.names = TRUE,
    traject = FALSE, permute.row.col = FALSE,
    clab = 1, csub = 2, possub = "bottomright", ...)
```

# Arguments

| object         | an object of class mfa                                                                                        |
|----------------|---------------------------------------------------------------------------------------------------------------|
| xax, yax       | the numbers of the x-axis and the y-axis                                                                      |
| mfrow          | a vector of the form 'c(nr,nc'), otherwise computed by a special own function $n2mfrow$                       |
| which.tab      | vector of the numbers of tables used for the analysis                                                         |
| row.names      | a logical value indicating whether the row labels should be inserted                                          |
| col.names      | a logical value indicating whether the column labels should be inserted                                       |
| traject        | a logical value indicating whether the trajectories of the rows should be drawn                               |
|                | in a natural order                                                                                            |
| permute.row.co | 1                                                                                                             |
|                | if TRUE, the rows are represented by vectors and columns by points, otherwise                                 |
|                | it is the opposite                                                                                            |
| clab           | a character size for the labels                                                                               |
| csub           | a character size for the sub-titles, used with par("cex")*csub                                                |
| possub         | a string of characters indicating the sub-title position ("topleft", "topright", "bottomleft", "bottomright") |
|                | further arguments passed to or from other methods                                                             |

### Author(s)

Daniel Chessel

```
data(friday87)
w1 <- data.frame(scale(friday87$fau, scal = FALSE))
w2 <- ktab.data.frame(w1, friday87$fau.blo, tabnames = friday87$tab.names)
mfa1 <- mfa(w2, scann = FALSE)
kplot(mfa1)</pre>
```

156 kplot.pta

| kplot.pta | Multiple Graphs for a Partial Triadic Analysis |
|-----------|------------------------------------------------|
|           |                                                |

# Description

performs high level plots of a Partial Triadic Analysis, using an object of class pta.

# Usage

```
## S3 method for class 'pta'
kplot(object, xax = 1, yax = 2, which.tab = 1:nrow(object$RV),
    mfrow = NULL, which.graph = 1:4, clab = 1, cpoint = 2, csub = 2,
    possub = "bottomright", ask = par("ask"), ...)
```

# Arguments

| object      | an object of class pta                                                                                              |
|-------------|---------------------------------------------------------------------------------------------------------------------|
| xax, yax    | the numbers of the x-axis and the y-axis                                                                            |
| which.tab   | a numeric vector containing the numbers of the tables to analyse                                                    |
| mfrow       | parameter of the array of figures to be drawn, otherwise the graphs associated to a table are drawn on the same row |
| which.graph | an option for drawing, an integer between 1 and 4. For each table of which tab, are drawn :                         |
|             | 1 the projections of the principal axes                                                                             |
|             | 2 the projections of the rows                                                                                       |
|             | 3 the projections of the columns                                                                                    |
|             | 4 the projections of the principal components onto the planes of the compromise                                     |
| clab        | a character size for the labels                                                                                     |
| cpoint      | a character size for plotting the points, used with par("cex")*cpoint. If zero, no points are drawn.                |
| csub        | a character size for the sub-titles, used with par("cex")*csub                                                      |
| possub      | a string of characters indicating the sub-title position ("topleft", "topright", "bottomleft", "bottomright")       |
| ask         | a logical value indicating if the graphs requires several arrays of figures                                         |
| • • •       | further arguments passed to or from other methods                                                                   |

## Author(s)

Daniel Chessel

157 kplot.sepan

### **Examples**

```
wit1 <- wca(dudi.pca(meaudret$spe, scan = FALSE, scal = FALSE),</pre>
 meaudret$design$season, scan = FALSE)
kta1 <- ktab.within(wit1, colnames = rep(c("S1", "S2", "S3", "S4", "S5"), 4))
kta2 <- t(kta1)
pta1 <- pta(kta2, scann = FALSE)</pre>
kplot(pta1)
kplot(pta1, which.graph = 3)
```

kplot.sepan

Multiple Graphs for Separated Analyses in a K-tables

## **Description**

performs high level plots for Separed Analyses in a K-tables, using an object of class sepan.

### Usage

```
## S3 method for class 'sepan'
kplot(object, xax = 1, yax = 2, which.tab = 1:length(object$blo),
    mfrow = NULL, permute.row.col = FALSE, clab.row = 1,
    clab.col = 1.25, traject.row = FALSE, csub = 2,
    possub = "bottomright", show.eigen.value = TRUE,...)
kplotsepan.coa(object, xax = 1, yax = 2, which.tab = 1:length(object$blo),
    mfrow = NULL, permute.row.col = FALSE, clab.row = 1,
    clab.col = 1.25, csub = 2, possub = "bottomright",
    show.eigen.value = TRUE, poseig = c("bottom", "top"), ...)
```

# **Arguments**

| object          | an object of class sepan                                                                            |
|-----------------|-----------------------------------------------------------------------------------------------------|
| xax, yax        | the numbers of the x-axis and the y-axis                                                            |
| which.tab       | a numeric vector containing the numbers of the tables to analyse                                    |
| mfrow           | parameter for the array of figures to be drawn, otherwise use n2mfrow                               |
| permute.row.col |                                                                                                     |
|                 | if TRUE the rows are represented by arrows and the columns by points, if FALSE it is the opposite   |
| clab.row        | a character size for the row labels                                                                 |
| clab.col        | a character size for the column labels                                                              |
| traject.row     | a logical value indicating whether the trajectories between rows should be drawn in a natural order |
| csub            | a character size for the sub-titles, used with par("cex")*csub                                      |

158 kplot.sepan

#### **Details**

kplot.sepan superimposes the points for the rows and the arrows for the columns using an adapted rescaling such as the scatter.dudi.

kplotsepan.coa superimposes the row coordinates and the column coordinates with the same scale.

#### Author(s)

Daniel Chessel

```
data(escopage)
w1 <- data.frame(scale(escopage$tab))</pre>
w1 <- ktab.data.frame(w1, escopage$blo, tabnames = escopage$tab.names)</pre>
sep1 <- sepan(w1)</pre>
if(adegraphicsLoaded()) {
  kplot(sep1, posieig = "none")
} else {
  kplot(sep1, show = FALSE)
}
data(friday87)
w2 <- data.frame(scale(friday87$fau, scal = FALSE))</pre>
w2 <- ktab.data.frame(w2, friday87$fau.blo, tabnames = friday87$tab.names)
if(adegraphicsLoaded()) {
  kplot(sepan(w2), row.plabel.cex = 1.25, col.plab.cex = 0)
} else {
  kplot(sepan(w2), clab.r = 1.25, clab.c = 0)
}
data(microsatt)
w3 <- dudi.coa(data.frame(t(microsatt$tab)), scann = FALSE)</pre>
loci.fac <- factor(rep(microsatt$loci.names, microsatt$loci.eff))</pre>
wit <- wca(w3, loci.fac, scann = FALSE)</pre>
microsatt.ktab <- ktab.within(wit)</pre>
if(adegraphicsLoaded()) {
 kplotsepan.coa(sepan(microsatt.ktab), posieig = "none", col.plab.cex = 0, row.plab.cex = 1.5)
  kplotsepan.coa(sepan(microsatt.ktab), show = FALSE, clab.c = 0,
    mfrow = c(3,3), clab.r = 1.5)
}
```

kplot.statis 159

| kplot.statis | Multiple Graphs of a STATIS Analysis |
|--------------|--------------------------------------|
|--------------|--------------------------------------|

an object of class statis

# Description

performs high level plots for a STATIS analysis, using an object of class statis.

# Usage

```
## S3 method for class 'statis'
kplot(object, xax = 1, yax = 2, mfrow = NULL,
    which.tab = 1:length(object$tab.names), clab = 1.5, cpoi = 2,
    traject = FALSE, arrow = TRUE, class = NULL,
    unique.scale = FALSE, csub = 2, possub = "bottomright",...)
```

# Arguments

object

| 3            |                                                                                                               |
|--------------|---------------------------------------------------------------------------------------------------------------|
| xax, yax     | the numbers of the x-axis and the y-axis                                                                      |
| mfrow        | parameter for the array of figures to be drawn                                                                |
| which.tab    | a numeric vector containing the numbers of the tables to analyse                                              |
| clab         | a character size for the labels                                                                               |
| cpoi         | the size of points                                                                                            |
| traject      | a logical value indicating whether the trajectories should be drawn in a natural order                        |
| arrow        | a logical value indicating whether the column factorial diagrams should be plotted                            |
| class        | if not NULL, a factor of length equal to the number of the total columns of the $K$ -tables                   |
| unique.scale | if TRUE, all the arrays of figures have the same scale                                                        |
| csub         | a character size for the labels of the arrays of figures used with par("cex")*csub                            |
| possub       | a string of characters indicating the sub-title position ("topleft", "topright", "bottomleft", "bottomright") |
|              | further arguments passed to or from other methods                                                             |
|              |                                                                                                               |

## Author(s)

Daniel Chessel

160 krandtest

### **Examples**

```
data(jv73)
dudi1 <- dudi.pca(jv73$poi, scann = FALSE, scal = FALSE)
wit1 <- wca(dudi1, jv73$fac.riv, scann = FALSE)
kta1 <- ktab.within(wit1)
statis1 <- statis(kta1, scann = FALSE)

if(adegraphicsLoaded()) {
   g1 <- kplot(statis1, traj = TRUE, arrow = FALSE, plab.cex = 0, psub.cex = 2, ppoi.cex = 2)
} else {
   kplot(statis1, traj = TRUE, arrow = FALSE, unique = TRUE, clab = 0, csub = 2, cpoi = 2)
}</pre>
```

krandtest

Class of the Permutation Tests (in C).

### **Description**

Plot, print and extract permutation tests. Objects of class 'krandtest' are lists.

### Usage

```
as.krandtest(sim, obs, alter = "greater", call = match.call(),
    names = colnames(sim), p.adjust.method = "none", output = c("light", "full"))

## S3 method for class 'krandtest'
plot(x, mfrow = NULL, nclass = 10, main.title = x$names, ...)

## S3 method for class 'krandtest'
print(x, ...)

## S3 method for class 'krandtest'
x[i]

## S3 method for class 'krandtest'
x[[i]]
```

### **Arguments**

| sim                      | a matrix or data.frame of simulated values (repetitions as rows, number of tests as columns                                                                                                                                                  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| obs                      | a numeric vector of observed values for each test                                                                                                                                                                                            |
| alter                    | a vector of character specifying the alternative hypothesis for each test. Each element must be one of "greater" (default), "less" or "two-sided". The length must be equal to the length of the vector obs, values are recycled if shorter. |
| call                     | a call order                                                                                                                                                                                                                                 |
| names<br>p.adjust.method | a vector of names for tests                                                                                                                                                                                                                  |
|                          | a stain a indication a math of fan analtinia adirectment and a addirect math of                                                                                                                                                              |

a string indicating a method for multiple adjustment, see p.adjust.methods for possible choices.

ktab 161

| output     | a character string specifying if all simulations should be stored ("full"). This was the default until ade4 1.7-5. Now, by default ("light"), only the distribution of simulated values is stored in element plot as produced by the hist function. |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X          | an object of class 'krandtest'                                                                                                                                                                                                                      |
| mfrow      | a vector of the form 'c(nr,nc)', otherwise computed by as special own function $n2mfrow$                                                                                                                                                            |
| nclass     | a number of intervals for the histogram. Ignored if object output is "light"                                                                                                                                                                        |
| main.title | a string of character for the main title                                                                                                                                                                                                            |
|            | further arguments passed to or from other methods                                                                                                                                                                                                   |
| i          | numeric indices specifying elements to extract                                                                                                                                                                                                      |

#### Value

plot.krandtest draws the p simulated values histograms and the position of the observed value. [.krandtest returns a krandtest object and [[.krandtest returns a randtest object.

## Author(s)

Daniel Chessel and Stéphane Dray <stephane.dray@univ-lyon1.fr>

### See Also

randtest

# **Examples**

```
wkrandtest <- as.krandtest(obs = c(0, 1.2, 2.4, 3.4, 5.4, 20.4),
    sim = matrix(rnorm(6*200), 200, 6))
wkrandtest
plot(wkrandtest)
wkrandtest[c(1, 4, 6)]
wkrandtest[[1]]</pre>
```

ktab

the class of objects 'ktab' (K-tables)

# Description

an object of class ktab is a list of data frames with the same row.names in common. a list of class 'ktab' contains moreover:

**blo**: the vector of the numbers of columns for each table

lw: the vector of the row weightings in common for all tables

cw: the vector of the column weightings

162 ktab

TL: a data frame of two components to manage the parameter positions associated with the rows of tables

TC: a data frame of two components to manage the parameter positions associated with the columns of tables

**T4**: a data frame of two components to manage the parameter positions of 4 components associated to an array

## Usage

```
## S3 method for class 'ktab'
c(...)
## S3 method for class 'ktab'
x[i,j,k]
is.ktab(x)
## S3 method for class 'ktab'
t(x)
## S3 method for class 'ktab'
row.names(x)
## S3 method for class 'ktab'
col.names(x)
tab.names(x)
ktab.util.names(x)
```

### **Arguments**

```
x an object of the class ktab
... a sequence of objects of the class ktab
i,j,k elements to extract (integer or empty): index of tables (i), rows (j) and columns (k)
```

#### **Details**

```
A 'ktab' object can be created with:
a list of data frame: ktab.list.df
a list of dudi objects: ktab.list.dudi
a data.frame: ktab.data.frame
an object within: ktab.within
a couple of ktabs: ktab.match2ktabs
```

#### Value

- c.ktab returns an object ktab. It concatenates K-tables with the same rows in common.
- t.ktab returns an object ktab. It permutes each data frame into a K-tables. All tables have the same column names and the same column weightings (a data cube).
- "[" returns an object ktab. It allows to select some arrays in a K-tables.
- is.ktab returns TRUE if x is a K-tables.

ktab.data.frame

row. names returns the vector of the row names common with all the tables of a K-tables and allowes to modifie them.

col.names returns the vector of the column names of a K-tables and allowes to modifie them.

 $\label{lem:tab.names} \ \text{returns the vector of the array names of a $K$-tables and allowes to modifie them.}$ 

ktab.util.names is a useful function.

#### Author(s)

Daniel Chessel

Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr> Stéphane Dray <stephane.dray@univ-lyon1.fr>

## **Examples**

ktab.data.frame

Creation of K-tables from a data frame

### **Description**

creates K tables from a data frame.

## Usage

```
ktab.data.frame(df, blocks, rownames = NULL, colnames = NULL,
  tabnames = NULL, w.row = rep(1, nrow(df)) / nrow(df),
  w.col = rep(1, ncol(df)))
```

#### **Arguments**

df a data frame

blocks an integer vector for which the sum must be the number of variables of df. Its

length is the number of arrays of the K-tables

164 ktab.list.df

rownames the row names of the K-tables (otherwise the row names of df)

colnames the column names of the K-tables (otherwise the column names of df)

tabnames the names of the Arrays of the K-tables (otherwise "Ana1", "Ana2", ...)

w.row a vector of the row weightings

w.col a vector of the column weightings

#### Value

returns a list of class ktab. See ktab.

## Author(s)

Daniel Chessel
Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>

## **Examples**

ktab.list.df

Creating a K-tables from a list of data frames.

### **Description**

creates a list of class ktab from a list of data frames

### Usage

```
ktab.list.df(obj, rownames = NULL, colnames = NULL, tabnames = NULL,
   w.row = rep(1, nrow(obj[[1]])), w.col = lapply(obj, function(x)
   rep(1 / ncol(x), ncol(x))))
```

## **Arguments**

| obj      | a list of data frame                                                                                                      |
|----------|---------------------------------------------------------------------------------------------------------------------------|
| rownames | the names of the K-tables rows (otherwise, the row names of the arrays)                                                   |
| colnames | the names of the K-tables columns (otherwise, the column names of the arrays)                                             |
| tabnames | the names of the arrays of the K-tables (otherwise, the names of the obj if they exist, or else "Ana1", "Ana2", $\dots$ ) |
| w.row    | a vector of the row weightings in common with all the arrays                                                              |
| w.col    | a list of the vector of the column weightings for each array                                                              |

ktab.list.dudi 165

#### **Details**

Each element of the initial list have to possess the same names and row numbers

#### Value

```
returns a list of class ktab. See ktab
```

#### Author(s)

Daniel Chessel

Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>

### **Examples**

```
data(jv73)
10 <- split(jv73$morpho, jv73$fac.riv)
10 <- lapply(10, function(x) data.frame(t(scalewt(x))))
kta <- ktab.list.df(10)
kplot(sepan(kta[c(2, 5, 7, 10)]), perm = TRUE)</pre>
```

ktab.list.dudi

Creation of a K-tables from a list of duality diagrams

### **Description**

creates a list of class ktab from a list of duality diagrams.

# Usage

```
ktab.list.dudi(obj, rownames = NULL, colnames = NULL, tabnames = NULL)
```

### **Arguments**

obj a list of objects of class 'dudi'. Each element of the list must have the same row

names for \$tab and even for \$1w

rownames the row names of the K-tables (otherwise the row names of the \$tab)

colnames the column names of the K-tables (otherwise the column names of the \$tab) the names of the arrays of the K-tables (otherwise the names of the obj if they

exist, or else "Ana1", "Ana2", ...)

#### Value

```
returns a list of class ktab. See ktab
```

#### Author(s)

Daniel Chessel

Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>

166 ktab.match2ktabs

### **Examples**

```
data(euro123)
pca1 <- dudi.pca(euro123$in78, scale = FALSE, scann = FALSE)</pre>
pca2 <- dudi.pca(euro123$in86, scale = FALSE, scann = FALSE)</pre>
pca3 <- dudi.pca(euro123$in97, scale = FALSE, scann = FALSE)</pre>
ktabeuro <- ktab.list.dudi(list(pca1, pca2, pca3),</pre>
    tabnames = c("1978", "1986", "1997"))
if(adegraphicsLoaded()) {
  kplot(sepan(ktabeuro))
} else {
  kplot(sepan(ktabeuro), mfr = c(2, 2), clab.c = 1.5)
}
data(meaudret)
w1 <- split(meaudret$env,meaudret$design$season)</pre>
11 <- lapply(w1, dudi.pca, scann = FALSE)</pre>
kta <- ktab.list.dudi(ll, rownames <- paste("Site", 1:5, sep = ""))</pre>
if(adegraphicsLoaded()) {
  kplot(sepan(kta), row.plab.cex = 1.5, col.plab.cex = 0.75)
} else {
  kplot(sepan(kta), clab.r = 1.5, clab.c = 0.75)
}
data(jv73)
w <- split(jv73$poi, jv73$fac.riv)</pre>
wjv73poi <- lapply(w, dudi.pca, scal = FALSE, scan = FALSE)</pre>
wjv73poi <- lapply(wjv73poi, t)</pre>
wjv73poi <- ktab.list.dudi(wjv73poi)</pre>
kplot(sepan(wjv73poi), permut = TRUE, traj = TRUE)
```

ktab.match2ktabs

STATIS and Co-Inertia: Analysis of a series of paired ecological tables

## Description

Prepares the analysis of a series of paired ecological tables. Partial Triadic Analysis (see pta) can be used thereafter to perform the analysis of this k-table.

## Usage

```
ktab.match2ktabs(KTX, KTY)
```

#### **Arguments**

```
KTX an objet of class ktab
KTY an objet of class ktab
```

ktab.within 167

#### Value

a list of class ktab, subclass kcoinertia. See ktab

#### WARNING

IMPORTANT: KTX and KTY must have the same k-tables structure, the same number of columns, and the same column weights.

## Author(s)

Jean Thioulouse < Jean. Thioulouse@univ-lyon1.fr>

#### References

Thioulouse J., Simier M. and Chessel D. (2004). Simultaneous analysis of a sequence of paired ecological tables. *Ecology* **85**, 272-283..

Simier, M., Blanc L., Pellegrin F., and Nandris D. (1999). Approche simultanée de K couples de tableaux : Application a l'étude des relations pathologie végétale - environnement. *Revue de Statistique Appliquée*, **47**, 31-46.

### **Examples**

```
data(meau)
wit1 <- withinpca(meau$env, meau$design$season, scan = FALSE, scal = "total")
pcaspe <- dudi.pca(meau$spe, scale = FALSE, scan = FALSE, nf = 2)
wit2 <- wca(pcaspe, meau$design$season, scan = FALSE, nf = 2)
kta1 <- ktab.within(wit1, colnames = rep(c("S1","S2","S3","S4","S5","S6"), 4))
kta2 <- ktab.within(wit2, colnames = rep(c("S1","S2","S3","S4","S5","S6"), 4))
kcoi <- ktab.match2ktabs(kta1, kta2)
ptacoi <- pta(kcoi, scan = FALSE, nf = 2)
plot(ptacoi)
kplot(ptacoi)</pre>
```

ktab.within

Process to go from a Within Analysis to a K-tables

## **Description**

performs the process to go from a Within Analysis to a K-tables.

#### Usage

```
ktab.within(dudiwit, rownames = NULL, colnames = NULL, tabnames = NULL)
```

168 lascaux

## **Arguments**

dudiwit an objet of class within

rownames the row names of the K-tables (otherwise the row names of dudiwit\$tab)

colnames the column names of the K-tables (otherwise the column names

of dudiwit\$tab)

tabnames the names of the arrays of the K-tables (otherwise the levels of the factor which

defines the within-classes)

### Value

```
a list of class ktab. See ktab
```

#### Author(s)

Daniel Chessel

Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>

## **Examples**

```
data(bacteria)
w1 <- data.frame(t(bacteria$espcodon))
dudi1 <- dudi.coa(w1, scann = FALSE, nf = 4)
wit1 <- wca(dudi1, bacteria$code, scannf = FALSE)
kta1 <- ktab.within(wit1)
plot(statis(kta1, scann = FALSE))
kta2 <- kta1[kta1$blo>3]
kplot(mfa(kta2, scann = FALSE))
```

lascaux

Genetic/Environment and types of variables

## **Description**

This data set gives meristic, genetic and morphological data frame for 306 trouts.

## Usage

```
data(lascaux)
```

#### **Format**

lascaux is a list of 9 components.

```
riv is a factor returning the river where 306 trouts are captured code vector of characters : code of the 306 trouts
```

sex factor sex of the 306 trouts

lascaux 169

```
meris data frame 306 trouts - 5 meristic variables
tap data frame of the total number of red and black points
gen factor of the genetic code of the 306 trouts
morpho data frame 306 trouts 37 morphological variables
colo data frame 306 trouts 15 variables of coloring
ornem data frame 306 trouts 15 factors (ornementation)
```

#### **Source**

Lascaux, J.M. (1996) Analyse de la variabilité morphologique de la truite commune (Salmo trutta L.) dans les cours d'eau du bassin pyrénéen méditerranéen. Thèse de doctorat en sciences agronomiques, INP Toulouse.

#### References

See a data description at http://pbil.univ-lyon1.fr/R/pdf/pps022.pdf (in French).

```
data(lascaux)
if(adegraphicsLoaded()) {
 g1 <- s1d.barchart(dudi.pca(lascaux$meris, scan = FALSE)$eig, psub.text = "Meristic",</pre>
   p1d.horizontal = FALSE, plot = FALSE)
 g2 <- s1d.barchart(dudi.pca(lascaux$colo, scan = FALSE)$eig, psub.text = "Coloration",
   p1d.horizontal = FALSE, plot = FALSE)
 g3 <- s1d.barchart(dudi.pca(na.omit(lascaux$morpho), scan = FALSE)$eig,
   psub.text = "Morphometric", p1d.horizontal = FALSE, plot = FALSE)
 g4 <- s1d.barchart(dudi.acm(na.omit(lascaux$orne), scan = FALSE)$eig,</pre>
   psub.text = "Ornemental", p1d.horizontal = FALSE, plot = FALSE)
 G \leftarrow ADEgS(c(g1, g2, g3, g4), layout = c(2, 2))
} else {
 par(mfrow = c(2,2))
 barplot(dudi.pca(lascaux$meris, scan = FALSE)$eig)
 title(main = "Meristic")
 barplot(dudi.pca(lascaux$colo, scan = FALSE)$eig)
 title(main = "Coloration")
 barplot(dudi.pca(na.omit(lascaux$morpho), scan = FALSE)$eig)
 title(main = "Morphometric")
 barplot(dudi.acm(na.omit(lascaux$orne), scan = FALSE)$eig)
 title(main = "Ornemental")
 par(mfrow = c(1,1))
```

170 lingoes

lingoes

Transformation of a Distance Matrix for becoming Euclidean

## **Description**

transforms a distance matrix in a Euclidean one.

#### Usage

```
lingoes(distmat, print = FALSE, tol = 1e-07, cor.zero = TRUE)
```

### **Arguments**

distmat an object of class dist

print if TRUE, prints the eigenvalues of the matrix

tol a tolerance threshold for zero

cor.zero if TRUE, zero distances are not modified

### **Details**

The function uses the smaller positive constant k which transforms the matrix of  $\sqrt{d_{ij}^2 + 2*k}$  in an Euclidean one

## Value

returns an object of class dist with a Euclidean distance

### Author(s)

```
Daniel Chessel
Stéphane Dray <stephane.dray@univ-lyon1.fr>
```

#### References

Lingoes, J.C. (1971) Some boundary conditions for a monotone analysis of symmetric matrices. *Psychometrika*, **36**, 195–203.

```
data(capitales)
d0 <- capitales$dist
is.euclid(d0) # FALSE
d1 <- lingoes(d0, TRUE)
# Lingoes constant = 2120982
is.euclid(d1) # TRUE
plot(d0, d1)
x0 <- sort(unclass(d0))
lines(x0, sqrt(x0^2 + 2 * 2120982), lwd = 3)</pre>
```

lizards 171

lizards

Phylogeny and quantitative traits of lizards

### **Description**

This data set describes the phylogeny of 18 lizards as reported by Bauwens and Díaz-Uriarte (1997). It also gives life-history traits corresponding to these 18 species.

### Usage

```
data(lizards)
```

#### **Format**

lizards is a list containing the 3 following objects:

**traits** is a data frame with 18 species and 8 traits.

**hprA** is a character string giving the phylogenetic tree (hypothesized phylogenetic relationships based on immunological distances) in Newick format.

**hprB** is a character string giving the phylogenetic tree (hypothesized phylogenetic relationships based on morphological characteristics) in Newick format.

## **Details**

Variables of lizards\$traits are the following ones: mean.L (mean length (mm)), matur.L (length at maturity (mm)), max.L (maximum length (mm)), hatch.L (hatchling length (mm)), hatch.m (hatchling mass (g)), clutch.S (Clutch size), age.mat (age at maturity (number of months of activity)), clutch.F (clutch frequency).

#### References

Bauwens, D., and Díaz-Uriarte, R. (1997) Covariation of life-history traits in lacertid lizards: a comparative study. *American Naturalist*, **149**, 91–111.

See a data description at http://pbil.univ-lyon1.fr/R/pdf/pps063.pdf (in French).

172 loocy.between

### **Examples**

```
data(lizards)
w <- data.frame(scalewt(log(lizards$traits)))
par(mfrow = c(1,2))
wphy <- newick2phylog(lizards$hprA)
table.phylog(w, wphy, csi = 3)
wphy <- newick2phylog(lizards$hprB)
table.phylog(w, wphy, csi = 3)
par(mfrow = c(1,1))</pre>
```

loocv.between

Leave-one-out cross-validation for a bca

# Description

Leave-one-out cross-validation for bca.

#### Usage

```
## S3 method for class 'between'
loocv(x, nax = 0, progress = FALSE, parallel = FALSE, ...)
## S3 method for class 'bcaloocv'
print(x, ...)
## S3 method for class 'bcaloocv'
plot(x, xax = 1, yax = 2, ...)
```

#### **Arguments**

| X        | dudi of the bca on which cross-validation should be done                  |
|----------|---------------------------------------------------------------------------|
| nax      | list of axes for mean overlap index computation ( $0 = \text{all axes}$ ) |
| progress | logical, TRUE = display a progress bar during computations                |
| parallel | logical, TRUE = process cross-validation in parallel computing            |
| xax, yax | the numbers of the x-axis and the y-axis                                  |
|          | further arguments passed to or from other methods                         |

#### **Details**

This function returns a list containing the cross-validated coordinates of the rows (the rows of the original analysis, not the rows of the bca). The dudi on which the bca was computed is redone after removing each row of the data table, one at a time. A bca is done on this new dudi and the coordinates of the missing row are computed by projection as supplementary element in the corresponding bca. This is most useful in the case  $p \gg n$  (many variables and few samples), where bca graphs can show spurious groups (see Refs.)

For parallel computing (parallel argument = TRUE), the new dudi, bca and cross-validation computations are processed in parallel on all the available nodes of the computer processor(s).

loocv.between 173

#### Value

A list with:

- XValCoord: the cross-validated row coordinates
- PRESS: the Predicted Residual Error Sum for each row
- PRESSTot: the sum of PRESS for each bca axis
- Oij\_bga: the mean overlap index for BGA
- Oij\_XVal: the mean overlap index for cross-validation
- DeltaOij: the spuriousness index

### Author(s)

Jean Thioulouse

#### References

Thioulouse J, Renaud S, Dufour AB, Dray S. Overcoming the Spurious Groups Problem in Between-Group PCA. Evolutionary Biology (2021). (Accepted).

Cardini A, Polly D. Cross-validated Between Group PCA Scatterplots: A Solution to Spurious Group Separation? Evolutionary Biology (2020) 47:85–95. doi:10.1007/s1169202009494x

Cardini A, O'Higgins P, Rohlf J. Seeing Distinct Groups Where There are None: Spurious Patterns from Between-Group PCA. Evolutionary Biology (2019) 46:303-316. doi:10.1007/s11692-019094875

Bookstein F. Pathologies of Between-Groups Principal Components Analysis in Geometric Morphometrics. Evolutionary Biology (2019) 46:271-302. doi:10.1007/s11692019094848

#### See Also

loocv.dudi loocv.discrimin

```
# Data = meaudret
data(meaudret)
pca1 <- dudi.pca(meaudret$env, scannf = FALSE, nf = 3)
bca1 <- bca(pca1, meaudret$design$site, scannf = FALSE, nf = 3)
pst1 <- paste0("Meaudret BGA randtest: p=",
randtest(bca1)$pvalue, " ratio=", round(bca1$ratio, 2))
xbca1 <- loocv(bca1, progress = TRUE)

if(adegraphicsLoaded()){
    sc1 <- s.class(bca1$ls, meaudret$design$site, col = TRUE,
    psub.text = pst1, ellipseSize=0, chullSize=1, plot = FALSE)
    sc2 <- s.class(xbca1$XValCoord, meaudret$design$site,
    col = TRUE, psub.text = "Meaudret cross-validation",
    ellipseSize=0, chullSize=1, plot = FALSE)
    ADEgS(list(sc1, sc2))
} else {</pre>
```

174 loocy.discrimin

```
par(mfrow=c(2,2))
s.chull(dfxy = bca1$ls, fac = meaudret$design$site, cpoint = 1,
     col = hcl.colors(5, "Dark 2"), sub = pst1)
    s.class(bca1$ls, meaudret$design$site, col = hcl.colors(5, "Dark 2"),
     cellipse = 0, add.plot = TRUE)
s.chull(dfxy = xbca1$XValCoord, fac = meaudret$design$site, cpoint = 1,
     col = hcl.colors(5, "Dark 2"), sub = "Meaudret cross-validation")
    s.class(xbca1$XValCoord, meaudret$design$site, col = hcl.colors(5, "Dark 2"),
     cellipse = 0, add.plot = TRUE)
## Not run:
# Data = rnorm()
set.seed(9)
fac1 \leftarrow as.factor(rep(1:3, each = 10))
tab <- as.data.frame(matrix(rnorm(10800), nrow = 30))</pre>
pca2 <- dudi.pca(tab, scannf = FALSE)</pre>
bca2 <- bca(pca2, fac1, scannf = FALSE)</pre>
pst2 <- paste0("rnorm spurious groups: p=",</pre>
randtest(bca2)$pvalue, " ratio=", round(bca2$ratio, 2))
xbca2 <- loocv(bca2, progress = TRUE)</pre>
if(adegraphicsLoaded()){
sc3 <- s.class(bca2$ls, fac1, col = TRUE,</pre>
psub.text = pst2, ellipseSize=0, chullSize=1,
xlim = c(-8, 8), ylim = c(-8, 8), plot = FALSE)
sc4 <- s.class(xbca2$XValCoord, fac1, col = TRUE,</pre>
psub.text = "rnorm cross-validation", ellipseSize=0,
chullSize=1, xlim = c(-8, 8), ylim = c(-8, 8), plot = FALSE)
ADEgS(list(sc3, sc4))
} else {
par(mfrow=c(2,2))
s.chull(bca2$1s, fac1, optchull = 1, cpoint = 1, xlim = c(-8, 8), ylim = c(-8, 8),
     col = hcl.colors(3, "Dark 2"), sub = pst2)
    s.class(bca2$1s, fac1, xlim = c(-8, 8), ylim = c(-8, 8),
     col = hcl.colors(3, "Dark 2"), cellipse = 0, add.plot = TRUE)
s.chull(xbca2$XValCoord, fac1, optchull = 1, cpoint = 1, xlim = c(-8, 8),
ylim = c(-8, 8), col = hcl.colors(3, "Dark 2"), sub = "rnorm cross-validation")
    s.class(xbca2$XValCoord, fac1, xlim = c(-8, 8), ylim = c(-8, 8),
     col = hcl.colors(3, "Dark 2"), cellipse = 0, add.plot = TRUE)
}
## End(Not run)
```

loocv.discrimin

Leave-one-out cross-validation for a discrimin analysis

#### **Description**

Leave-one-out cross-validation to test the existence of groups in a discrimin analysis.

loocv.discrimin 175

### Usage

```
## S3 method for class 'discrimin'
loocv(x, nax = 0, progress = FALSE, ...)
## S3 method for class 'discloocv'
print(x, ...)
## S3 method for class 'discloocv'
plot(x, xax = 1, yax = 2, ...)
```

### **Arguments**

the discrimin analysis on which cross-validation should be done

list of axes for mean overlap index computation (0 = all axes)

progress logical to display a progress bar during computations (see the progress package)

xax, yax the numbers of the x-axis and the y-axis

... further arguments passed to or from other methods

#### **Details**

This function returns a list containing the cross-validated coordinates of the rows. The analysis on which the discrimin was computed is redone after removing each row of the data table, one at a time. A discrimin analysis is done on this new analysis and the coordinates of the missing row are computed by projection as supplementary element in the new discrimin analysis. This can be useful to check that the groups evidenced by the discrimin analysis are supported.

# Value

A list with:

- XValCoord: the cross-validated row coordinates

- PRESS: the Predicted Residual Error Sum for each row

- PRESSTot: the sum of PRESS for each bca axis

- Oij\_disc: the mean overlap index for the discriminant analysis

- Oij\_XVal: the mean overlap index for cross-validation

- DeltaOij: the spuriousness index

## Author(s)

Jean Thioulouse

#### See Also

loocv.dudi loocv.between

176 loocy.discrimin

```
## Not run:
# Data = skulls
data(skulls)
pcaskul <- dudi.pca(skulls, scan = FALSE)</pre>
facskul \leftarrow gl(5,30)
diskul <- discrimin(pcaskul, facskul, scan = FALSE)</pre>
xdiskul <- loocv(diskul, progress = TRUE)</pre>
oijdisc <- xdiskul$0ij_disc</pre>
oijxval <- xdiskul$0ij_XVal
Doij <- (oijxval - oijdisc)/0.5*100
pst1 <- paste0("Skulls discrimin randtest: p=", round(randtest(diskul)$pvalue, 4),</pre>
", 0ij = ", round(oijdisc,2))
pst2 <- paste0("Skulls cross-validation: Oij = ", round(oijxval,2), ", dOij = ",</pre>
round(Doij), "%")
if (adegraphicsLoaded()) {
sc1 <- s.class(diskul$li, facskul, col = TRUE, psub.text = pst1, ellipseSize=0,</pre>
chullSize=1, plot = FALSE)
sc2 <- s.class(xdiskul$XValCoord, facskul, col = TRUE, psub.text = pst2,</pre>
ellipseSize=0, chullSize=1, plot = FALSE)
ADEgS(list(sc1, sc2), layout=c(2,2))
} else {
par(mfrow=c(2,2))
s.class(diskul$li, facskul, sub = pst1)
s.class(xdiskul$XValCoord, facskul, sub = pst2)
data(chazeb)
pcacz <- dudi.pca(chazeb$tab, scan = FALSE)</pre>
discz <- discrimin(pcacz, chazeb$cla, scan = FALSE)</pre>
xdiscz <- loocv(discz, progress = TRUE)</pre>
oijdiscz <- xdiscz$0ij_disc
oijxvalz <- xdiscz$0ij_XVal
Doijz <- (oijxvalz - oijdiscz)/0.5*100
pst1 <- paste0("Chazeb discrimin randtest: p=", round(randtest(discz)$pvalue, 4),</pre>
", Oij = ", round(oijdiscz,2))
pst2 <- paste0("Chazeb cross-validation: Oij = ", round(oijxvalz,2), ", dOij = ",</pre>
round(Doijz), "%")
if (adegraphicsLoaded()) {
tabi <- cbind(discz$li, pcacz$tab)</pre>
gr1 <- s.class(tabi, xax=1, yax=2:7, chazeb$cla, col = TRUE, plot = FALSE)
for (i in 1:6) gr1[[i]] \leftarrow update(gr1[[i]], psub.text = names(tabi)[i+1],
plot = FALSE)
pos1 <- gr1@positions</pre>
pos1[,1] \leftarrow c(0, .3333, .6667, 0, .3333, .6667)
pos1[,2] <- c(.6667, .6667, .6667, .3333, .3333, .3333)
pos1[,3] <- c(.3333, .6667, 1, .3333, .6667, 1)
pos1[,4] \leftarrow c(1, 1, 1, .6667, .6667, .6667)
gr1@positions <- pos1</pre>
sc1 <- s1d.gauss(discz$li, chazeb$cla, col = TRUE, psub.text = pst1,</pre>
plot = FALSE)
sc2 <- s1d.gauss(xdiscz$XValCoord, chazeb$cla, col = TRUE, psub.text = pst2,</pre>
plot = FALSE)
```

loocv.dudi 177

```
ADEgS(list(gr1[[1]], gr1[[2]], gr1[[3]], gr1[[4]], gr1[[5]], gr1[[6]], sc1, sc2))
} else {
dev.new()
sco.gauss(discz$li[,1], as.data.frame(chazeb$cla), sub = pst1)
dev.new()
sco.gauss(xdiscz$XValCoord[,1], as.data.frame(chazeb$cla), sub = pst2)
}
## End(Not run)
```

loocv.dudi

Leave-one-out cross-validation for a dudi

## **Description**

Leave-one-out cross-validation to check the dispersion of row coordinates in a dudi.

## Usage

```
## S3 method for class 'dudi'
loocv(x, progress = FALSE, ...)
```

### **Arguments**

the dudi of the bca on which cross-validation should be done
 logical to display a progress bar during computations (see the progress package)
 further arguments passed to or from other methods

### Details

This function does a cross-validation of the row coordinates of a dudi. Each row is removed from the table one at a time, and its coordinates are computed by projection of this row in the analysis of the table with the removed row. This can be used to check the sensitivity of an analysis to outliers. The cross-validated and original coordinates can be compared with the s.match function (see example).

### Value

A list with:

- XValCoord: the cross-validated row coordinates
- PRESS: the Predicted Residual Error Sum for each row
- PRESSTot: the sum of PRESS for each bca axis

## Author(s)

Jean Thioulouse

178 macaca

### See Also

loocv.between, loocv.discrimin, suprow, s.match

### **Examples**

```
data(meaudret)
envpca <- dudi.pca(meaudret$env, scannf = FALSE, nf = 3)
xvpca <- loocv(envpca)
s.match(envpca$li, xvpca$XValCoord)</pre>
```

macaca

Landmarks

### **Description**

This data set gives the landmarks of a macaca at the ages of 0.9 and 5.77 years.

### Usage

```
data(macaca)
```

#### **Format**

macaca is a list of 2 components.

**xy1** is a data frame with 72 points and 2 coordinates.

**xy2** is a data frame with 72 points and 2 coordinates.

#### Source

Olshan, A.F., Siegel, A.F. and Swindler, D.R. (1982) Robust and least-squares orthogonal mapping: Methods for the study of cephalofacial form and growth. *American Journal of Physical Anthropology*, **59**, 131–137.

```
data(macaca)
pro1 <- procuste(macaca$xy1, macaca$xy2, scal = FALSE)
pro2 <- procuste(macaca$xy1, macaca$xy2)

if(adegraphicsLoaded()) {
   g1 <- s.match(macaca$xy1, macaca$xy2, plab.cex = 0, plot = FALSE)
   g2 <- s.match(pro1$tabX, pro1$rotY, plab.cex = 0.7, plot = FALSE)
   g3 <- s.match(pro1$tabY, pro1$rotX, plab.cex = 0.7, plot = FALSE)
   g4 <- s.match(pro2$tabY, pro2$rotX, plab.cex = 0.7, plot = FALSE)
   G <- ADEgS(c(g1, g2, g3, g4), layout = c(2, 2))
} else {
   par(mfrow = c(2,2))</pre>
```

macon 179

```
s.match(macaca$xy1, macaca$xy2, clab = 0)
s.match(pro1$tabX, pro1$rotY, clab = 0.7)
s.match(pro1$tabY, pro1$rotX, clab = 0.7)
s.match(pro2$tabY, pro2$rotX, clab = 0.7)
par(mfrow = c(1,1))
}
```

macon

Wine Tasting

## Description

The macon data frame has 8 rows-wines and 25 columns-tasters. Each column is a classification of 8 wines (Beaujolais, France).

## Usage

```
data(macon)
```

#### **Source**

Foire Nationale des Vins de France, Mâcon, 1985

### **Examples**

```
data(macon)
s.corcircle(dudi.pca(macon, scan = FALSE)$co)
```

macroloire

Assemblages of Macroinvertebrates in the Loire River (France)

# Description

A total of 38 sites were surveyed along 800 km of the Loire River yielding 40 species of Trichoptera and Coleoptera sampled from riffle habitats. The river was divided into three regions according to geology: granitic highlands (Region#1), limestone lowlands (Region#2) and granitic lowlands (Region#3). This data set has been collected for analyzing changes in macroinvertebrate assemblages along the course of a large river. Four criterias are given here: variation in 1/ species composition and relative abundance, 2/ taxonomic composition, 3/ Body Sizes, 4/ Feeding habits.

## Usage

```
data(macroloire)
```

180 macroloire

#### **Format**

macroloire is a list of 5 components.

**fau** is a data frame containing the abundance of each species in each station.

**traits** is a data frame describes two traits: the maximal sizes and feeding habits for each species. Each trait is divided into categories. The maximal size achieved by the species is divided into four length categories: <= 5mm; >5-10mm; >10-20mm; >20-40mm. Feeding habits comprise seven categories: engulfers, shredders, scrapers, deposit-feeders, active filter-feeders, passive filter-feeders and piercers, in this order. The affinity of each species to each trait category is quantified using a fuzzy coding approach. A score is assigned to each species for describing its affinity for a given trait category from "0" which indicates no affinity to "3" which indicates high affinity. These affinities are further transformed into percentage per trait per species.

**taxo** is a data frame with species and 3 factors: Genus, Family and Order. It is a data frame of class "taxo": the variables are factors giving nested classifications.

envir is a data frame giving for each station, its name (variable "SamplingSite"), its distance from the source (km, variable "Distance"), its altitude (m, variable "Altitude"), its position regarding the dams [1: before the first dam; 2: after the first dam; 3: after the second dam] (variable "Dam"), its position in one of the three regions defined according to geology: granitic highlands, limestone lowlands and granitic lowlands (variable "Morphoregion"), presence of confluence (variable "Confluence")

**labels** is a data frame containing the latin names of the species.

#### **Source**

Ivol, J.M., Guinand, B., Richoux, P. and Tachet, H. (1997) Longitudinal changes in Trichoptera and Coleoptera assemblages and environmental conditions in the Loire River (France). *Archiv for Hydrobiologie*, **138**, 525–557.

Pavoine S. and Doledec S. (2005) The apportionment of quadratic entropy: a useful alternative for partitioning diversity in ecological data. *Environmental and Ecological Statistics*, **12**, 125–138.

```
data(macroloire)
apqe.Equi <- apqe(macroloire$fau, , macroloire$morphoregions)
apqe.Equi
#test.Equi <- randtest.apqe(apqe.Equi, method = "aggregated", 99)
#plot(test.Equi)

## Not run:

m.phy <- taxo2phylog(macroloire$taxo)
apqe.Tax <- apqe(macroloire$fau, m.phy$Wdist, macroloire$morphoregions)
apqe.Tax
#test.Tax <- randtest.apqe(apqe.Tax, method = "aggregated", 99)
#plot(test.Tax)</pre>
```

mafragh 181

```
dSize <- sqrt(dist.prop(macroloire$traits[ ,1:4], method = 2))
apqe.Size <- apqe(macroloire$fau, dSize, macroloire$morphoregions)
apqe.Size
#test.Size <- randtest.apqe(apqe.Size, method = "aggregated", 99)
#plot(test.Size)

dFeed <- sqrt(dist.prop(macroloire$traits[ ,-(1:4)], method = 2))
apqe.Feed <- apqe(macroloire$fau, dFeed, macroloire$morphoregions)
apqe.Feed
#test.Feed <- randtest.apqe(apqe.Feed, method = "aggregated", 99)
#plot(test.Size)

## End(Not run)</pre>
```

mafragh

Phyto-Ecological Survey

# Description

This data set gives environmental and spatial informations about species and sites.

## Usage

data(mafragh)

#### **Format**

mafragh is a list with the following components:

xy the coordinates of 97 sites

**flo** a data frame with 97 sites and 56 species

neig the neighbourhood graph of the 97 sites (an object of class neig)

env a data frame with 97 sites and 11 environmental variables

**partition** a factor classifying the 97 sites in 7 classes

area a data frame of class area

tre a character providing the phylogeny as a newick object

traits a list of data frame. Each data frame provides the value of biological traits for plant species

**nb** the neighbourhood graph of the 97 Mafragh sites (an object of class nb)

Spatial the map of the 97 Mafragh sites (an object of the class SpatialPolygons of sp)

spenames a data frame with 56 rows (species) and 2 columns (names)

Spatial.contour the contour of the Magragh map (an object of the class SpatialPolygons of sp)

182 mafragh

#### **Source**

de Bélair, Gérard and Bencheikh-Lehocine, Mahmoud (1987) Composition et déterminisme de la végétation d'une plaine côtière marécageuse : La Mafragh (Annaba, Algérie). *Bulletin d'Ecologie*, **18**(4), 393–407.

Pavoine, S., Vela, E., Gachet, S., de Bélair, G. and Bonsall, M. B. (2011) Linking patterns in phylogeny, traits, abiotic variables and space: a novel approach to linking environmental filtering and plant community assembly. *Journal of Ecology*, **99**, 165–175. doi:10.1111/j.1365-2745.2010.01743.x

#### References

See a data description at http://pbil.univ-lyon1.fr/R/pdf/pps053.pdf (in French).

```
data(mafragh)
coa1 <- dudi.coa(mafragh$flo, scan = FALSE)</pre>
pca1 <- dudi.pca(mafragh$xy, scan = FALSE)</pre>
if(adegraphicsLoaded()) {
 g1 <- s.label(mafragh$xy, nb = mafragh$nb, psub.text = "Samples & Neighbourhood graph",
   plot = FALSE)
 g2 \leftarrow s.value(mafragh$xy, coa1$li[, 1], psub.text = "Axis 1 - COA", plot = FALSE)
 g3 <- s.value(mafragh$xy, pca1$li[, 1], psub.text = "Axis 1 - PCA", plot = FALSE)
 g4 <- s.class(pca1$li, mafragh$partition, psub.text = "Plane 1-2 - PCA", plot = FALSE)
 g5 \leftarrow s.class(coa1$li, mafragh$partition, psub.text = "Plane 1-2 - COA", plot = FALSE)
 g6 <- s.class(mafragh$xy, mafragh$partition, chullSize = 1, ellipseSize = 0, starSize = 0,
    ppoints.cex = 0, plot = FALSE)
 G \leftarrow ADEgS(c(g1, g2, g3, g4, g5, g6), layout = c(3, 2))
} else {
 par(mfrow = c(3, 2))
 s.label(mafragh$xy, inc = FALSE, neig = mafragh$neig, sub = "Samples & Neighbourhood graph")
 s.value(mafragh$xy, coa1$li[, 1], sub = "Axis 1 - COA")
 s.value(mafragh$xy, pca1$li[, 1], sub = "Axis 1 - PCA")
 s.class(pca1$li, mafragh$partition, sub = "Plane 1-2 - PCA")
 s.class(coa1$li, mafragh$partition, sub = "Plane 1-2 - COA")
 s.chull(mafragh$xy, mafragh$partition, optchull = 1)
 par(mfrow = c(1, 1))
}
## Not run:
link1 <- area2link(mafragh$area)</pre>
neig1 \leftarrow neig(mat01 = 1*(link1 > 0))
nb1 <- neig2nb(neig1)</pre>
if(adegraphicsLoaded()) {
  if(requireNamespace("sp", quietly = TRUE)) {
   g7 <- s.label(mafragh$xy, Sp = mafragh$Spatial, pSp.col = "white", plot = FALSE)
  g8 <- s.label(mafragh$xy, Sp = mafragh$Spatial, pSp.col = "white", nb = nb1, plab.cex = 0,
      pnb.node.cex = 0, ppoints.cex = 0, plot = FALSE)
    G \leftarrow ADEgS(c(g7, g8), layout = c(2, 1))
```

mantel.randtest 183

```
} else {
 par(mfrow = c(2, 1))
 area.plot(mafragh$area, center = mafragh$xy, clab = 0.75)
 area.plot(mafragh$area, center = mafragh$xy, graph = neig1)
 par(mfrow = c(1, 1))
}
if(requireNamespace("spdep", quietly = TRUE)) {
 lw1 \leftarrow apply(link1, 1, function(x) x[x > 0])
 listw1 <- spdep::nb2listw(nb1, lw1)</pre>
 coa1 <- dudi.coa(mafragh$flo, scan = FALSE, nf = 4)</pre>
 ms1 <- multispati(coa1, listw1, scan = FALSE, nfp = 2, nfn = 0)</pre>
 summary(ms1)
 if(adegraphicsLoaded()) {
    if(requireNamespace("lattice", quietly = TRUE)) {
      g9 <- s1d.barchart(coa1$eig, p1d.hori = FALSE, plot = FALSE)</pre>
      g10 <- s1d.barchart(ms1$eig, p1d.hori = FALSE, plot = FALSE)</pre>
      g11 <- s.corcircle(ms1$as, plot = FALSE)</pre>
      g12 <- lattice::xyplot(ms1$li[, 1] ~ coa1$li[, 1])</pre>
      G \leftarrow ADEgS(list(g9, g10, g11, g12), layout = c(2, 2))
    }
 } else {
    par(mfrow = c(2, 2))
    barplot(coa1$eig)
   barplot(ms1$eig)
    s.corcircle(ms1$as)
   plot(coa1$li[, 1], ms1$li[, 1])
    par(mfrow = c(1, 1))
 }
}
## End(Not run)
```

mantel.randtest

Mantel test (correlation between two distance matrices (in C).)

## **Description**

Performs a Mantel test between two distance matrices.

## Usage

```
mantel.randtest(m1, m2, nrepet = 999, ...)
```

184 mantel.rtest

# **Arguments**

```
m1 an object of class dist
m2 an object of class dist
nrepet the number of permutations
... further arguments passed to or from other methods
```

## Value

```
an object of class randtest (randomization tests)
```

## Author(s)

```
Jean Thioulouse < Jean. Thioulouse@univ-lyon1.fr>
```

## References

Mantel, N. (1967) The detection of disease clustering and a generalized regression approach. *Cancer Research*, **27**, 209–220.

## **Examples**

```
data(yanomama)
gen <- quasieuclid(as.dist(yanomama$gen))
geo <- quasieuclid(as.dist(yanomama$geo))
plot(r1 <- mantel.randtest(geo,gen), main = "Mantel's test")
r1</pre>
```

mantel.rtest

*Mantel test (correlation between two distance matrices (in R).)* 

## **Description**

Performs a Mantel test between two distance matrices.

# Usage

```
mantel.rtest(m1, m2, nrepet = 99, ...)
```

# **Arguments**

```
m1 an object of class dist
m2 an object of class dist
nrepet the number of permutations
```

. . . further arguments passed to or from other methods

maples 185

## Value

```
an object of class rtest (randomization tests)
```

## Author(s)

```
Daniel Chessel
Stéphane Dray <stephane.dray@univ-lyon1.fr>
```

#### References

Mantel, N. (1967) The detection of disease clustering and a generalized regression approach. *Cancer Research*, **27**, 209–220.

# **Examples**

```
data(yanomama)
gen <- quasieuclid(as.dist(yanomama$gen))
geo <- quasieuclid(as.dist(yanomama$geo))
plot(r1 <- mantel.rtest(geo,gen), main = "Mantel's test")
r1</pre>
```

maples

Phylogeny and quantitative traits of flowers

# Description

This data set describes the phylogeny of 17 flowers as reported by Ackerly and Donoghue (1998). It also gives 31 traits corresponding to these 17 species.

## Usage

```
data(maples)
```

# **Format**

tithonia is a list containing the 2 following objects:

tre is a character string giving the phylogenetic tree in Newick format.

tab is a data frame with 17 species and 31 traits

#### References

Ackerly, D. D. and Donoghue, M.J. (1998) Leaf size, sapling allometry, and Corner's rules: phylogeny and correlated evolution in Maples (Acer). *American Naturalist*, **152**, 767–791.

186 mariages

## **Examples**

```
data(maples)
phy <- newick2phylog(maples$tre)</pre>
dom <- maples$tab$Dom</pre>
bif <- maples$tab$Bif</pre>
if (requireNamespace("adephylo", quietly = TRUE) & requireNamespace("ape", quietly = TRUE)) {
  phylo <- ape::read.tree(text = maples$tre)</pre>
  adephylo::orthogram(dom, tre = phylo)
  adephylo::orthogram(bif, tre = phylo)
  par(mfrow = c(1, 2))
  dotchart.phylog(phy, dom)
  dotchart.phylog(phy, bif, clabel.nodes = 0.7)
  par(mfrow = c(1, 1))
  plot(bif, dom, pch = 20)
  abline(lm(dom~bif))
  summary(lm(dom~bif))
  cor.test(bif, dom)
  pic.bif <- ape::pic(bif, phylo)</pre>
  pic.dom <- ape::pic(dom, phylo)</pre>
  cor.test(pic.bif, pic.dom)
}
```

mariages

Correspondence Analysis Table

## Description

This array contains the socio-professionnal repartitions of 5850 couples.

## Usage

```
data(mariages)
```

## Format

The mariages data frame has 9 rows and 9 columns. The rows represent the wife's socio-professionnal category and the columns the husband's socio-professionnal category (1982).

Codes for rows and columns are identical: agri (Farmers), ouva (Farm workers), pat (Company directors (commerce and industry)), sup (Liberal profession, executives and higher intellectual professions), moy (Intermediate professions), emp (Other white-collar workers), ouv (Manual workers), serv (Domestic staff), aut (other workers).

## Source

Vallet, L.A. (1986) Activité professionnelle de la femme mariée et détermination de la position sociale de la famille. Un test empirique : la France entre 1962 et 1982. *Revue Française de Sociologie*, **27**, 656–696.

mbpcaiv 187

## **Examples**

```
data(mariages)
w <- dudi.coa(mariages, scan = FALSE, nf = 3)</pre>
if(adegraphicsLoaded()) {
  g1 <- scatter(w, met = 1, posi = "bottomleft", plot = FALSE)</pre>
  g2 <- scatter(w, met = 2, posi = "bottomleft", plot = FALSE)</pre>
  g3 <- scatter(w, met = 3, posi = "bottomleft", plot = FALSE)
  ## g4 <- score(w, 3)
  G \leftarrow ADEgS(list(g1, g2, g3), layout = c(2, 2))
} else {
  par(mfrow = c(2, 2))
  scatter(w, met = 1, posi = "bottom")
  scatter(w, met = 2, posi = "bottom")
  scatter(w, met = 3, posi = "bottom")
  score(w, 3)
  par(mfrow = c(1, 1))
}
```

mbpcaiv

Multiblock principal component analysis with instrumental variables

## **Description**

Function to perform a multiblock redundancy analysis of several explanatory blocks  $(X_1, \ldots, X_k)$ , defined as an object of class ktab, to explain a dependent dataset \$Y\$, defined as an object of class dudi

## Usage

```
mbpcaiv(dudiY, ktabX, scale = TRUE, option = c("uniform", "none"), scannf = TRUE, nf = 2)
```

# Arguments

| dudiY  | an object of class dudi containing the dependent variables                                                                                                                                      |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ktabX  | an object of class ktab containing the blocks of explanatory variables                                                                                                                          |
| scale  | logical value indicating whether the explanatory variables should be standardized                                                                                                               |
| option | an option for the block weighting. If uniform, the block weight is equal to $1/K$ for $(X_1, \ldots, X_K)$ and to $1$ for $X$ and $Y$ . If none, the block weight is equal to the block inertia |
| scannf | logical value indicating whether the eigenvalues bar plot should be displayed                                                                                                                   |
| nf     | integer indicating the number of kept dimensions                                                                                                                                                |

188 mbpcaiv

# Value

A list containing the following components is returned:

| call   | the matching call                                                                                                      |
|--------|------------------------------------------------------------------------------------------------------------------------|
| tabY   | data frame of dependent variables centered, eventually scaled (if 'scale=TRUE') and weighted (if 'option="uniform"')   |
| tabX   | data frame of explanatory variables centered, eventually scaled (if 'scale=TRUE') and weighted (if 'option="uniform"') |
| TL, TC | data frame useful to manage graphical outputs                                                                          |
| nf     | numeric value indicating the number of kept dimensions                                                                 |
| lw     | numeric vector of row weights                                                                                          |
| X.cw   | numeric vector of column weighs for the explanalatory dataset                                                          |
| blo    | vector of the numbers of variables in each explanatory dataset                                                         |
| rank   | maximum rank of the analysis                                                                                           |
| eig    | numeric vector containing the eigenvalues                                                                              |
| 1X     | matrix of the global components associated with the whole explanatory dataset (scores of the individuals)              |
| 1Y     | matrix of the components associated with the dependent dataset                                                         |
| Yc1    | matrix of the variable loadings associated with the dependent dataset                                                  |
| Tli    | matrix containing the partial components associated with each explanatory dataset                                      |
| T11    | matrix containing the normalized partial components associated with each explanatory dataset                           |
| Tfa    | matrix containing the partial loadings associated with each explanatory dataset                                        |
| cov2   | squared covariance between IY and Tl1                                                                                  |
| Yco    | matrix of the regression coefficients of the dependent dataset onto the global components                              |
| faX    | matrix of the regression coefficients of the whole explanatory dataset onto the global components                      |
| XYcoef | list of matrices of the regression coefficients of the whole explanatory dataset onto the dependent dataset            |
| bip    | block importances for a given dimension                                                                                |
| bipc   | cumulated block importances for a given number of dimensions                                                           |
| vip    | variable importances for a given dimension                                                                             |
| vipc   | cumulated variable importances for a given number of dimensions                                                        |
|        |                                                                                                                        |

# Author(s)

Stéphanie Bougeard (<stephanie.bougeard@anses.fr>) and Stéphane Dray (<stephane.dray@univ-lyon1.fr>)

mbpls 189

## References

Bougeard, S., Qannari, E.M. and Rose, N. (2011) Multiblock Redundancy Analysis: interpretation tools and application in epidemiology. *Journal of Chemometrics*, **23**, 1-9

Bougeard, S. and Dray S. (2018) Supervised Multiblock Analysis in R with the ade4 Package. *Journal of Statistical Software*, **86** (1), 1-17. doi:10.18637/jss.v086.i01

#### See Also

```
mbpls, testdim.multiblock, randboot.multiblock
```

## **Examples**

```
data(chickenk)
Mortality <- chickenk[[1]]
dudiY.chick <- dudi.pca(Mortality, center = TRUE, scale = TRUE, scannf = FALSE)
ktabX.chick <- ktab.list.df(chickenk[2:5])
resmbpcaiv.chick <- mbpcaiv(dudiY.chick, ktabX.chick, scale = TRUE, option = "uniform", scannf = FALSE)
summary(resmbpcaiv.chick)
if(adegraphicsLoaded())
plot(resmbpcaiv.chick)</pre>
```

mbpls

Multiblock partial least squares

## **Description**

Function to perform a multiblock partial least squares (PLS) of several explanatory blocks  $(X_1, \ldots, X_k)$  defined as an object of class ktab, to explain a dependent dataset \$Y\$ defined as an object of class dudi

#### Usage

```
mbpls(dudiY, ktabX, scale = TRUE, option = c("uniform", "none"), scannf = TRUE, nf = 2)
```

## **Arguments**

| dudiY  | an object of class dudi containing the dependent variables                                                                                                                                      |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ktabX  | an object of class ktab containing the blocks of explanatory variables                                                                                                                          |
| scale  | logical value indicating whether the explanatory variables should be standardized                                                                                                               |
| option | an option for the block weighting. If uniform, the block weight is equal to $1/K$ for $(X_1, \ldots, X_K)$ and to $1$ for $X$ and $Y$ . If none, the block weight is equal to the block inertia |
| scannf | logical value indicating whether the eigenvalues bar plot should be displayed                                                                                                                   |
| nf     | integer indicating the number of kept dimensions                                                                                                                                                |

190 mbpls

## Value

A list containing the following components is returned:

| call   | the matching call                                                                                                      |
|--------|------------------------------------------------------------------------------------------------------------------------|
| tabY   | data frame of dependent variables centered, eventually scaled (if 'scale=TRUE') and weighted (if 'option="uniform"')   |
| tabX   | data frame of explanatory variables centered, eventually scaled (if 'scale=TRUE') and weighted (if 'option="uniform"') |
| TL, TC | data frame useful to manage graphical outputs                                                                          |
| nf     | numeric value indicating the number of kept dimensions                                                                 |
| lw     | numeric vector of row weights                                                                                          |
| X.cw   | numeric vector of column weighs for the explanalatory dataset                                                          |
| blo    | vector of the numbers of variables in each explanatory dataset                                                         |
| rank   | maximum rank of the analysis                                                                                           |
| eig    | numeric vector containing the eigenvalues                                                                              |
| 1X     | matrix of the global components associated with the whole explanatory dataset (scores of the individuals)              |
| lY     | matrix of the components associated with the dependent dataset                                                         |
| Yc1    | matrix of the variable loadings associated with the dependent dataset                                                  |
| cov2   | squared covariance between IY and TIX                                                                                  |
| Tc1    | matrix containing the partial loadings associated with each explanatory dataset (unit norm)                            |
| TlX    | matrix containing the partial components associated with each explanatory dataset                                      |
| faX    | matrix of the regression coefficients of the whole explanatory dataset onto the global components                      |
| XYcoef | list of matrices of the regression coefficients of the whole explanatory dataset onto the dependent dataset            |
| bip    | block importances for a given dimension                                                                                |
| bipc   | cumulated block importances for a given number of dimensions                                                           |
| vip    | variable importances for a given dimension                                                                             |
| vipc   | cumulated variable importances for a given number of dimensions                                                        |
|        |                                                                                                                        |

## Author(s)

Stéphanie Bougeard (<stephanie.bougeard@anses.fr>) and Stéphane Dray (<stephane.dray@univ-lyon1.fr>)

## References

Bougeard, S., Qannari, E.M., Lupo, C. and Hanafi, M. (2011). From multiblock partial least squares to multiblock redundancy analysis. A continuum approach. *Informatica*, 22(1), 11-26

Bougeard, S. and Dray S. (2018) Supervised Multiblock Analysis in R with the ade4 Package. *Journal of Statistical Software*, **86** (1), 1-17. doi:10.18637/jss.v086.i01

mcoa 191

#### See Also

```
mbpls, testdim.multiblock, randboot.multiblock
```

# **Examples**

```
data(chickenk)
Mortality <- chickenk[[1]]
dudiY.chick <- dudi.pca(Mortality, center = TRUE, scale = TRUE, scannf = FALSE)
ktabX.chick <- ktab.list.df(chickenk[2:5])
resmbpls.chick <- mbpls(dudiY.chick, ktabX.chick, scale = TRUE, option = "uniform", scannf = FALSE)
summary(resmbpls.chick)
if(adegraphicsLoaded())
plot(resmbpls.chick)</pre>
```

mcoa

Multiple CO-inertia Analysis

## **Description**

performs a multiple CO-inertia analysis, using an object of class ktab.

## Usage

```
mcoa(X, option = c("inertia", "lambda1", "uniform", "internal"),
    scannf = TRUE, nf = 3, tol = 1e-07)
## S3 method for class 'mcoa'
print(x, ...)
## S3 method for class 'mcoa'
summary(object, ...)
## S3 method for class 'mcoa'
plot(x, xax = 1, yax = 2, eig.bottom = TRUE, ...)
```

## **Arguments**

an object of class ktab

a string of characters for the weightings of the arrays options:

"inertia" weighting of group k by the inverse of the total inertia of the array k

"lambda1" weighting of group k by the inverse of the first eigenvalue of the k
analysis

"uniform" uniform weighting of groups

"internal" weighting included in X\$tabw

scannf a logical value indicating whether the eigenvalues bar plot should be displayed

if scannf FALSE, an integer indicating the number of kept axes

192 mcoa

tol a tolerance threshold, an eigenvalue is considered positive if it is larger than

-tol\*lambda1 where lambda1 is the largest eigenvalue.

x, object an object of class 'mcoa'

... further arguments passed to or from other methods

xax, yax the numbers of the x-axis and the y-axis

eig. bottom a logical value indicating whether the eigenvalues bar plot should be added

## Value

mcoa returns a list of class 'mcoa' containing:

pseudoeig a numeric vector with the all pseudo eigenvalues

call the call-up order

nf a numeric value indicating the number of kept axes

SynVar a data frame with the synthetic scores axis a data frame with the co-inertia axes

Tli a data frame with the co-inertia coordinates
Tl1 a data frame with the co-inertia normed scores

Tax a data frame with the inertia axes onto co-inertia axis

Tco a data frame with the column coordinates onto synthetic scores

TL a data frame with the factors for Tli Tl1
TC a data frame with the factors for Tco
T4 a data frame with the factors for Tax

lambda a data frame with the all eigenvalues (computed on the separate analyses) cov2 a numeric vector with the all pseudo eigenvalues (synthetic analysis)

#### Author(s)

Daniel Chessel

Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>

#### References

Chessel, D. and Hanafi, M. (1996) Analyses de la co-inertie de K nuages de points, *Revue de Statistique Appliquée*, **44**, 35–60.

```
data(friday87)
w1 <- data.frame(scale(friday87$fau, scal = FALSE))
w2 <- ktab.data.frame(w1, friday87$fau.blo, tabnames = friday87$tab.names)
mcoa1 <- mcoa(w2, "lambda1", scan = FALSE)
mcoa1
summary(mcoa1)
plot(mcoa1)</pre>
```

mdpcoa 193

mdpcoa

Multiple Double Principal Coordinate Analysis

#### **Description**

The DPCoA analysis (see dpcoa) has been developed by Pavoine et al. (2004). It has been used in genetics for describing inter-population nucleotide diversity. However, this procedure can only be used with one locus. In order to measure and describe nucleotide diversity with more than one locus, we developed three versions of multiple DPCoA by using three ordination methods: multiple co-inertia analysis, STATIS, and multiple factorial analysis. The multiple DPCoA allows the impact of various loci in the measurement and description of diversity to be quantified and described. This method is general enough to handle a large variety of data sets. It complements existing methods such as the analysis of molecular variance or other analyses based on linkage disequilibrium measures, and is very useful to study the impact of various loci on the measurement of diversity.

## Usage

```
mdpcoa(msamples, mdistances = NULL, method =
    c("mcoa", "statis", "mfa"),
    option = c("inertia", "lambda1", "uniform", "internal"),
    scannf = TRUE, nf = 3, full = TRUE,
    nfsep = NULL, tol = 1e-07)
kplotX.mdpcoa(object, xax = 1, yax = 2, mfrow = NULL,
    which.tab = 1:length(object$nX), includepop = FALSE,
    clab = 0.7, cpoi = 0.7, unique.scale = FALSE,
    csub = 2, possub = "bottomright")
prep.mdpcoa(dnaobj, pop, model, ...)
```

## **Arguments**

| msamples   | A list of data frames with the populations as columns, alleles as rows and abundances as entries. All the tables should have equal numbers of columns (populations). Each table corresponds to a locus; |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mdistances | A list of objects of class 'dist', corresponding to the distances among alleles. The order of the loci should be the same in msamples as in mdistances;                                                 |
| method     | One of the three possibilities: "mcoa", "statis", or "mfa". If a vector is given, only its first value is considered;                                                                                   |
| option     | One of the four possibilities for normalizing the population coordinates over the loci: "inertia", "lambda1", "uniform", or "internal". These options are used with MCoA and MFA only;                  |
| scannf     | a logical value indicating whether the eigenvalues bar plots should be displayed;                                                                                                                       |
| nf         | if scannf is FALSE, an integer indicating the number of kept axes for the multiple analysis;                                                                                                            |
| full       | a logical value indicating whether all the axes should be kept in the separated analyses (one analysis, DPCoA, per locus);                                                                              |

194 mdpcoa

nfsep if full is FALSE, a vector indicating the number of kept axes for each of the

separated analyses;

tol a tolerance threshold for null eigenvalues (a value less than tol times the first one

is considered as null);

object an object of class 'mdpcoa'; xax the number of the x-axis; yax the number of the y-axis;

mfrow a vector of the form 'c(nr,nc)', otherwise computed by as special own function

'n2mfrow';

which.tab a numeric vector containing the numbers of the loci to analyse;

includepop a logical indicating if the populations must be displayed. In that case, the alleles

are displayed by points and the populations by labels;

clab a character size for the labels;

cpoi a character size for plotting the points, used with 'par("cex")'\*cpoint. If zero,

no points are drawn;

unique.scale if TRUE, all the arrays of figures have the same scale;

csub a character size for the labels of the arrays of figures used with 'par("cex")\*csub'; possub a string of characters indicating the sub-title position ("topleft", "topright", "bot-

tomleft", "bottomright");

dnaobj a list of dna sequences that can be obtained with the function read. dna of the

ape package;

pop a factor that gives the name of the population to which each sequence belongs;

model a vector giving the model to be applied for the calculations of the distances for

each locus. One model should be attributed to each locus, given that the loci are in alphabetical order. The models can take the following values: "raw", "JC69", "K80" (the default), "F81", "K81", "F84", "BH87", "T92", "TN93", "GG95", "logdet", or "paralin". See the help documentation for the function "dist.dna" of

ape for a describtion of the models.

... further arguments passed to or from other methods

## Details

An object obtained by the function mdpcoa has two classes. The first one is "mdpcoa" and the second is either "mcoa", or "statis", or "mfa", depending on the method chosen. Consequently, other functions already available in ade4 for displaying graphical results can be used: With MCoA, - plot.mcoa: this function displays (1) the differences among the populations according to each locus and the compromise, (2) the projection of the principal axes of the individual analyses onto the synthetic variables, (3) the projection of the principal axes of the individual analyses onto the co-inertia axes, (4) the squared vectorial covariance among the coinertia scores and the synthetic variables; - kplot.mcoa: this function divides previous displays (figures 1, 2, or 3 described in plot.mcoa) by giving one plot per locus.

With STATIS, - plot.statis: this function displays (1) the scores of each locus according to the two first eigenvectors of the matrix Rv, (2) the scatter diagram of the differences among populations

mdpcoa 195

according to the compromise, (3) the weight attributed to each locus in abscissa and the vectorial covariance among each individual analysis with the notations in the main text of the paper) and the compromise analysis in ordinates, (4) the covariance between the principal component inertia axes of each locus and the axes of the compromise space; - kplot.statis: this function displays for each locus the projection of the principal axes onto the compromise space.

With MFA, - plot.mfa: this function displays (1) the differences among the populations according to each locus and the compromise, (2) the projection of the principal axes of the individual analyses onto the compromise, (3) the covariance between the principal component inertia axes of each locus and the axes of the compromise space, (4) for each axis of the compromise, the amount of inertia conserved by the projection of the individual analyses onto the common space. - kplot.mfa: this function displays for each locus the projection of the principal axes and populations onto the compromise space.

#### Value

The functions provide the following results:

```
dist.ktab returns an object of class dist;
```

#### Author(s)

Sandrine Pavoine <pavoine@mnhn.fr>

#### References

Pavoine, S. and Bailly, X. (2007) New analysis for consistency among markers in the study of genetic diversity: development and application to the description of bacterial diversity. *BMC Evolutionary Biology*, **7**, e156.

Pavoine, S., Dufour, A.B. and Chessel, D. (2004) From dissimilarities among species to dissimilarities among communities: a double principal coordinate analysis. *Journal of Theoretical Biology*, **228**, 523–537.

## See Also

dpcoa

196 meau

```
dis <- lapply(dis, quasieuclid)
mdpcoa1 <- mdpcoa(sam, dis, scannf = FALSE, nf = 2)

# Reference analysis
plot(mdpcoa1)

# Differences between the loci
kplot(mdpcoa1)

# Alleles projected on the population maps.
kplotX.mdpcoa(mdpcoa1)
}</pre>
```

meau

Ecological Data: sites-variables, sites-species, where and when

## Description

This data set contains information about sites, environmental variables and Ephemeroptera Species.

# Usage

```
data(meau)
```

#### **Format**

meau is a list of 3 components.

env is a data frame with 24 sites and 10 physicochemical variables.

fau is a data frame with 24 sites and 13 Ephemeroptera Species.

**design** is a data frame with 24 sites and 2 factors.

- season: is a factor with 4 levels = seasons.
- site: is a factor with 6 levels = sites.

#### Details

Data set equivalents to meaudret, except that one site (6) along the Bourne (a Meaudret affluent) and one physico chemical variable - the oxygen concentration were added.

# Source

Pegaz-Maucet, D. (1980) Impact d'une perturbation d'origine organique sur la dérive des macro-invertébrés benthiques d'un cours d'eau. Comparaison avec le benthos. Thèse de 3ème cycle, Université Lyon 1, 130 p.

Thioulouse, J., Simier, M. and Chessel, D. (2004) Simultaneous analysis of a sequence of paired ecological tables. *Ecology*, **85**, 1, 272–283.

meaudret 197

## **Examples**

```
data(meau)
pca1 <- dudi.pca(meau$env, scan = FALSE, nf = 4)</pre>
pca2 <- bca(pca1, meau$design$season, scan = FALSE, nf = 2)</pre>
if(adegraphicsLoaded()) {
  g1 <- s.class(pca1$li, meau$design$season, psub.text = "Principal Component Analysis",</pre>
    plot = FALSE)
  g2 <- s.class(pca2$ls, meau$design$season,</pre>
    psub.text = "Between seasons Principal Component Analysis", plot = FALSE)
  g3 <- s.corcircle(pca1$co, plot = FALSE)
  g4 <- s.corcircle(pca2$as, plot = FALSE)
  G \leftarrow ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
} else {
  par(mfrow = c(2, 2))
  s.class(pca1$li, meau$design$season,
      sub = "Principal Component Analysis")
 s.class(pca2$ls, meau$design$season, sub = "Between seasons Principal Component Analysis")
  s.corcircle(pca1$co)
  s.corcircle(pca2$as)
  par(mfrow = c(1, 1))
```

meaudret

Ecological Data: sites-variables, sites-species, where and when

## **Description**

This data set contains information about sites, environmental variables and Ephemeroptera Species.

#### Usage

```
data(meaudret)
```

## Format

meaudret is a list of 4 components.

env is a data frame with 20 sites and 9 variables.

**fau** is a data frame with 20 sites and 13 Ephemeroptera Species.

**design** is a data frame with 20 sites and 2 factors.

- season is a factor with 4 levels = seasons.
- site is a factor with 5 levels = sites along the Meaudret river.

**spe.names** is a character vector containing the names of the 13 species.

198 mfa

#### **Details**

Data set equivalents to meau: site (6) on the Bourne (a Meaudret affluent) and oxygen concentration were removed.

#### Source

Pegaz-Maucet, D. (1980) Impact d'une perturbation d'origine organique sur la dérive des macro-invertébrés benthiques d'un cours d'eau. Comparaison avec le benthos. Thèse de 3ème cycle, Université Lyon 1, 130 p.

Thioulouse, J., Simier, M. and Chessel, D. (2004) Simultaneous analysis of a sequence of paired ecological tables. *Ecology*, **85**, 1, 272–283.

## **Examples**

```
data(meaudret)
pca1 <- dudi.pca(meaudret$env, scan = FALSE, nf = 4)</pre>
pca2 <- bca(pca1, meaudret$design$season, scan = FALSE, nf = 2)</pre>
if(adegraphicsLoaded()) {
 g1 <- s.class(pca1$li, meaudret$design$season,</pre>
   psub.text = "Principal Component Analysis", plot = FALSE)
 g2 <- s.class(pca2$ls, meaudret$design$season,</pre>
   psub.text = "Between dates Principal Component Analysis", plot = FALSE)
 g3 <- s.corcircle(pca1$co, plot = FALSE)
 g4 <- s.corcircle(pca2$as, plot = FALSE)
 G \leftarrow ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
} else {
 par(mfrow = c(2, 2))
 s.class(pca1$li, meaudret$design$season, sub = "Principal Component Analysis")
 s.class(pca2$ls, meaudret$design$season, sub = "Between dates Principal Component Analysis")
 s.corcircle(pca1$co)
 s.corcircle(pca2$as)
 par(mfrow = c(1, 1))
}
```

mfa

Multiple Factorial Analysis

## **Description**

performs a multiple factorial analysis, using an object of class ktab.

#### Usage

```
mfa(X, option = c("lambda1", "inertia", "uniform", "internal"),
    scannf = TRUE, nf = 3)
## S3 method for class 'mfa'
```

mfa 199

```
plot(x, xax = 1, yax = 2, option.plot = 1:4, ...)
## S3 method for class 'mfa'
print(x, ...)
## S3 method for class 'mfa'
summary(object, ...)
```

## **Arguments**

X K-tables, an object of class ktab

option a string of characters for the weighting of arrays options :

lambda1 weighting of group k by the inverse of the first eigenvalue of the k

analysis

inertia weighting of group k by the inverse of the total inertia of the array k

uniform uniform weighting of groups internal weighting included in X\$tabw

scannf a logical value indicating whether the eigenvalues bar plot should be displayed

nf if scannf FALSE, an integer indicating the number of kept axes

x, object an object of class 'mfa'

xax, yax the numbers of the x-axis and the y-axis

option.plot an integer between 1 and 4, otherwise the 4 components of the plot are displayed

... further arguments passed to or from other methods

#### Value

## Returns a list including:

tab a data frame with the modified array rank a vector of ranks for the analyses a numeric vector with the all eigenvalues eig a data frame with the coordinates of rows li TL a data frame with the factors associated to the rows (indicators of table) a data frame with the coordinates of columns co a data frame with the factors associated to the columns (indicators of table) TC a vector indicating the number of variables for each table blo lisup a data frame with the projections of normalized scores of rows for each table a data frame containing the projected inertia and the links between the arrays link

## Author(s)

#### Daniel Chessel

Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>

and the reference array

200 microsatt

## References

Escofier, B. and Pagès, J. (1994) Multiple factor analysis (AFMULT package), *Computational Statistics and Data Analysis*, **18**, 121–140.

## **Examples**

microsatt

Genetic Relationships between cattle breeds with microsatellites

## **Description**

This data set gives genetic relationships between cattle breeds with microsatellites.

## Usage

```
data(microsatt)
```

## Format

microsatt is a list of 4 components.

**tab** contains the allelic frequencies for 18 cattle breeds (Taurine or Zebu,French or African) and 9 microsatellites.

**loci.names** is a vector of the names of loci.

loci.eff is a vector of the number of alleles per locus.

alleles.names is a vector of the names of alleles.

#### Source

Extract of data prepared by D. Laloë <ugendla@dga2.jouy.inra.fr> from data used in:

Moazami-Goudarzi, K., D. Laloë, J. P. Furet, and F. Grosclaude (1997) Analysis of genetic relationships between 10 cattle breeds with 17 microsatellites. *Animal Genetics*, **28**, 338–345.

mjrochet 201

Souvenir Zafindrajaona, P., Zeuh V., Moazami-Goudarzi K., Laloë D., Bourzat D., Idriss A., and Grosclaude F. (1999) Etude du statut phylogénétique du bovin Kouri du lac Tchad à l'aide de marqueurs moléculaires. Revue d'Elevage et de Médecine Vétérinaire des pays Tropicaux, 55, 155–162.

Moazami-Goudarzi, K., Belemsaga D. M. A., Ceriotti G., Laloë D., Fagbohoun F., Kouagou N. T., Sidibé I., Codjia V., Crimella M. C., Grosclaude F. and Touré S. M. (2001)

Caractérisation de la race bovine Somba à l'aide de marqueurs moléculaires. *Revue d'Elevage et de Médecine Vétérinaire des pays Tropicaux*, **54**, 1–10.

#### References

See a data description at http://pbil.univ-lyon1.fr/R/pdf/pps055.pdf (in French).

## **Examples**

```
## Not run:
data(microsatt)
fac <- factor(rep(microsatt$loci.names, microsatt$loci.eff))
w <- dudi.coa(data.frame(t(microsatt$tab)), scann = FALSE)
wit <- wca(w, fac, scann = FALSE)
microsatt.ktab <- ktab.within(wit)

plot(sepan(microsatt.ktab)) # 9 separated correspondence analyses
plot(mcoa(microsatt.ktab, scan = FALSE))
plot(mfa(microsatt.ktab, scan = FALSE))
plot(statis(microsatt.ktab, scan = FALSE))
## End(Not run)</pre>
```

mjrochet

Phylogeny and quantitative traits of teleos fishes

## **Description**

This data set describes the phylogeny of 49 teleos fishes as reported by Rochet et al. (2000). It also gives life-history traits corresponding to these 49 species.

## Usage

```
data(mjrochet)
```

#### **Format**

mjrochet is a list containing the 2 following objects:

tre is a character string giving the phylogenetic tree in Newick format.

tab is a data frame with 49 rows and 7 traits.

202 mld

#### **Details**

Variables of mjrochet\$tab are the following ones: tm (age at maturity (years)), lm (length at maturity (cm)), l05 (length at 5 per cent survival (cm)), t05 (time to 5 per cent survival (years)), fb (slope of the log-log fecundity-length relationship), fm (fecundity the year of maturity), egg (volume of eggs  $(mm^3)$ ).

#### Source

```
Data taken from:

Summary of data - Clupeiformes: http://www.ifremer.fr/maerha/clupe.html

Summary of data - Argentiniformes: http://www.ifremer.fr/maerha/argentin.html

Summary of data - Salmoniformes: http://www.ifremer.fr/maerha/salmon.html

Summary of data - Gadiformes: http://www.ifremer.fr/maerha/gadi.html

Summary of data - Lophiiformes: http://www.ifremer.fr/maerha/loph.html

Summary of data - Atheriniformes: http://www.ifremer.fr/maerha/ather.html

Summary of data - Perciformes: http://www.ifremer.fr/maerha/perci.html

Summary of data - Pleuronectiformes: http://www.ifremer.fr/maerha/pleuro.html

Summary of data - Scorpaeniformes: http://www.ifremer.fr/maerha/scorpa.html

Phylogenetic tree: http://www.ifremer.fr/maerha/life_history.html
```

#### References

Rochet, M. J., Cornillon, P-A., Sabatier, R. and Pontier, D. (2000) Comparative analysis of phylogenic and fishing effects in life history patterns of teleos fishes. *Oïkos*, **91**, 255–270.

#### **Examples**

```
data(mjrochet)
mjrochet.phy <- newick2phylog(mjrochet$tre)
tab <- log((mjrochet$tab))
tab0 <- data.frame(scalewt(tab))
table.phylog(tab0, mjrochet.phy, csi = 2, clabe1.r = 0.75)
if (requireNamespace("adephylo", quietly = TRUE)) {
   adephylo::orthogram(tab0[,1], ortho = mjrochet.phy$Bscores)
}</pre>
```

mld

Multi Level Decomposition of unidimensional data

# Description

The function mld performs an additive decomposition of the input vector x onto sub-spaces associated to an orthonormal orthobasis. The sub-spaces are defined by levels of the input factor level. The function haar2level builds the factor level such that the multi level decomposition corresponds exactly to a multiresolution analysis performed with the haar basis.

mld 203

## Usage

```
mld(x, orthobas, level, na.action = c("fail", "mean"), plot = TRUE, dfxy = NULL, phylog = NULL, ...) haar2level(x)
```

## Arguments

| х         | is a vector or a time serie containing the data to be decomposed. This must be a dyadic length vector (power of 2) for the function haar2level. |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| orthobas  | is a data frame containing the vectors of the orthonormal basis.                                                                                |
| level     | is a factor which levels define the sub-spaces on which the function ${\tt mld}$ performs the additive decomposition.                           |
| na.action | if 'fail' stops the execution of the current expression when x contains any missing value. If 'mean' replaces any missing values by mean(x).    |
| plot      | if TRUE plot x and the components resulting from the decomposition.                                                                             |
| dfxy      | is a data frame with two coordinates.                                                                                                           |
| phylog    | is an object of class phylog.                                                                                                                   |

further arguments passed to or from other methods.

## Value

. . .

A data frame with the components resulting from the decomposition.

## Author(s)

Sébastien Ollier < sebastien.ollier@u-psud.fr>

## References

Mallat, S. G. (1989) A theory for multiresolution signal decomposition: the wavelet representation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, **11**, 7, 674–693.

Percival, D. B. and Walden, A. T. (2000) Wavelet Methods for Time Series Analysis, Cambridge University Press.

#### See Also

gridrowcol, orthobasis, orthogram, mra for multiresolution analysis with various families of wavelets

```
## Not run:
# decomposition of a time serie
data(co2)
x <- log(co2)
orthobas <- orthobasis.line(length(x))
level<-rep("D", 467)</pre>
```

204 mollusc

```
level[1:3]<-rep("A", 3)</pre>
level[c(77,78,79,81)]<-rep("B", 4)</pre>
level[156]<-"C"
level<-as.factor(level)</pre>
res <- mld(x, orthobas, level)</pre>
sum(scale(x, scale = FALSE) - apply(res, 1, sum))
## End(Not run)
# decomposition of a biological trait on a phylogeny
data(palm)
vfruit<-palm$traits$vfruit
vfruit<-scalewt(vfruit)</pre>
palm.phy<-newick2phylog(palm$tre)
level <- rep("F", 65)</pre>
level[c(4, 21, 3, 6, 13)] \leftarrow LETTERS[1:5]
level <- as.factor(level)</pre>
res <- mld(as.vector(vfruit), palm.phy$Bscores, level,</pre>
phylog = palm.phy, clabel.nod = 0.7, f.phylog=0.8,
 csize = 2, clabel.row = 0.7, clabel.col = 0.7)
```

mollusc

Faunistic Communities and Sampling Experiment

## **Description**

This data set gives the abundance of 32 mollusk species in 163 samples. For each sample, 4 informations are known: the sampling sites, the seasons, the sampler types and the time of exposure.

## Usage

```
data(mollusc)
```

#### **Format**

mollusc is a list of 2 objects.

fau is a data frame with 163 samples and 32 mollusk species (abundance).

**plan** contains the 163 samples and 4 variables.

#### **Source**

Richardot-Coulet, M., Chessel D. and Bournaud M. (1986) Typological value of the benthos of old beds of a large river. Methodological approach. *Archiv für Hydrobiologie*, **107**, 363–383.

monde84 205

## **Examples**

```
data(mollusc)
coa1 <- dudi.coa(log(mollusc$fau + 1), scannf = FALSE, nf = 3)</pre>
if(adegraphicsLoaded()) {
  g1 <- s.class(coa1$li, mollusc$plan$site, ellipseSize = 0, starSize = 0, chullSize = 1,
   xax = 2, yax = 3, plot = FALSE)
 g2 <- s.class(coa1$li, mollusc$plan$season, ellipseSize = 0, starSize = 0, chullSize = 1,
    xax = 2, yax = 3, plot = FALSE)
 g3 <- s.class(coa1$li, mollusc$plan$method, ellipseSize = 0, starSize = 0, chullSize = 1,
   xax = 2, yax = 3, plot = FALSE)
 g4 <- s.class(coa1$li, mollusc$plan$duration, ellipseSize = 0, starSize = 0, chullSize = 1,
   xax = 2, yax = 3, plot = FALSE)
  G \leftarrow ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
} else {
  par(mfrow = c(2, 2))
  s.chull(coa1$li, mollusc$plan$site, 2, 3, opt = 1, cpoi = 1)
  s.chull(coa1$li, mollusc$plan$season, 2, 3, opt = 1, cpoi = 1)
  s.chull(coa1$li, mollusc$plan$method, 2, 3, opt = 1, cpoi = 1)
  s.chull(coa1$li, mollusc$plan$duration, 2, 3, opt = 1, cpoi = 1)
  par(mfrow = c(1, 1))
```

monde84

Global State of the World in 1984

## **Description**

The monde84 data frame gives five demographic variables for 48 countries in the world.

## Usage

data(monde84)

#### **Format**

This data frame contains the following columns:

- 1. pib: Gross Domestic Product
- 2. croipop: Growth of the population
- 3. morta: Infant Mortality
- 4. anal: Literacy Rate
- 5. scol: Percentage of children in full-time education

#### Source

Geze, F. and Coll., eds. (1984) L'état du Monde 1984 : annuaire économique et géopolitique mondial. La Découverte, Paris.

206 morphosport

## **Examples**

```
data(monde84)
X <- cbind.data.frame(lpib = log(monde84$pib), monde84$croipop)
Y <- cbind.data.frame(lmorta = log(monde84$morta),
    lanal = log(monde84$anal + 1), rscol = sqrt(100 - monde84$scol))
pcaY <- dudi.pca(Y, scan = FALSE)
pcaiv1 <- pcaiv(pcaY, X0 <- scale(X), scan = FALSE)
sum(cor(pcaiv1$l1[,1], Y0 <- scale(Y))^2)
pcaiv1$eig[1] #the same</pre>
```

morphosport

Athletes' Morphology

## Description

This data set gives a morphological description of 153 athletes split in five different sports.

# Usage

```
data(morphosport)
```

#### **Format**

```
morphosport is a list of 2 objects.

tab is a data frame with 153 athletes and 5 variables.

sport is a factor with 6 items
```

## **Details**

Variables of morphosport\$tab are the following ones: dbi (biacromial diameter (cm)), tde (height (cm)), tas (distance from the buttocks to the top of the head (cm)), lms (length of the upper limbs (cm)), poids (weigth (kg)).

The levels of morphosport\$sport are: athl (athletics), foot (football), hand (handball), judo, nata (swimming), voll (volleyball).

## Source

Mimouni , N. (1996) Contribution de méthodes biométriques à l'analyse de la morphotypologie des sportifs. Thèse de doctorat. Université Lyon 1.

```
data(morphosport)
plot(discrimin(dudi.pca(morphosport$tab, scan = FALSE),
    morphosport$sport, scan = FALSE))
```

mstree 207

mstree

Minimal Spanning Tree

## **Description**

Minimal Spanning Tree

#### **Usage**

```
mstree(xdist, ngmax = 1)
```

## **Arguments**

xdist an object of class dist containing an observed dissimilarity

ngmax a component number (default=1). Select 1 for getting classical MST. To add n

supplementary edges k times: select k+1.

#### Value

returns an object of class neig

#### Author(s)

Daniel Chessel

```
data(mafragh)
maf.coa <- dudi.coa(mafragh$flo, scan = FALSE)</pre>
maf.mst <- ade4::mstree(dist.dudi(maf.coa), 1)</pre>
if(adegraphicsLoaded()) {
  g0 <- s.label(maf.coa$li, plab.cex = 0, ppoints.cex = 2, nb = neig2nb(maf.mst))</pre>
} else {
  s.label(maf.coa$li, clab = 0, cpoi = 2, neig = maf.mst, cnei = 1)
xy \leftarrow data.frame(x = runif(20), y = runif(20))
if(adegraphicsLoaded()) {
  g1 <- s.label(xy, xlim = c(0, 1), ylim = c(0, 1),
    nb = neig2nb(ade4::mstree(dist.quant(xy, 1), 1)), plot = FALSE)
  g2 <- s.label(xy, xlim = c(0, 1), ylim = c(0, 1),
    nb = neig2nb(ade4::mstree(dist.quant(xy, 1), 2)), plot = FALSE)
  g3 <- s.label(xy, xlim = c(0, 1), ylim = c(0, 1),
    nb = neig2nb(ade4::mstree(dist.quant(xy, 1), 3)), plot = FALSE)
  g4 <- s.label(xy, xlim = c(0, 1), ylim = c(0, 1),
    nb = neig2nb(ade4::mstree(dist.quant(xy, 1), 4)), plot = FALSE)
  G \leftarrow ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
```

208 multiblock

```
} else {
   par(mfrow = c(2, 2))
   for(k in 1:4) {
     neig <- mstree(dist.quant(xy, 1), k)
     s.label(xy, xlim = c(0, 1), ylim = c(0, 1), addax = FALSE, neig = neig)
   }
}</pre>
```

multiblock

Display and summarize multiblock objects

# Description

Generic methods print and summary for mulitblock objects

# Usage

```
## S3 method for class 'multiblock'
summary(object, ...)
## S3 method for class 'multiblock'
print(x, ...)
```

# Arguments

an object of class multiblock created by mbpls or mbpcaiv

an object of class multiblock created by mbpls or mbpcaiv

other arguments to be passed to methods

## Author(s)

Stéphanie Bougeard (<stephanie.bougeard@anses.fr>) and Stéphane Dray (<stephane.dray@univ-lyon1.fr>)

## References

Bougeard, S. and Dray S. (2018) Supervised Multiblock Analysis in R with the ade4 Package. *Journal of Statistical Software*, **86** (1), 1-17. doi:10.18637/jss.v086.i01

# See Also

```
mbpls, mbpcaiv
```

multispati 209

multispati

Multivariate spatial analysis

## **Description**

These functions are deprecated. See the function multispati and the methods plot.multispati, summary.multispati and print.multispati in the package adespatial.

This function ensures a multivariate extension of the univariate method of spatial autocorrelation analysis. By accounting for the spatial dependence of data observations and their multivariate covariance simultaneously, complex interactions among many variables are analysed. Using a methodological scheme borrowed from duality diagram analysis, a strategy for the exploratory analysis of spatial pattern in the multivariate is developed.

#### Usage

```
multispati(dudi, listw, scannf = TRUE, nfposi = 2, nfnega = 0)
## S3 method for class 'multispati'
plot(x, xax = 1, yax = 2, ...)
## S3 method for class 'multispati'
summary(object, ...)
## S3 method for class 'multispati'
print(x, ...)
```

#### **Arguments**

| dudi      | an object of class dudi for the duality diagram analysis                        |
|-----------|---------------------------------------------------------------------------------|
| listw     | an object of class listw for the spatial dependence of data observations        |
| scannf    | a logical value indicating whether the eigenvalues bar plot should be displayed |
| nfposi    | an integer indicating the number of kept positive axes                          |
| nfnega    | an integer indicating the number of kept negative axes                          |
| x, object | an object of class multispati                                                   |
| xax, yax  | the numbers of the x-axis and the y-axis                                        |
|           | further arguments passed to or from other methods                               |
|           |                                                                                 |

#### **Details**

This analysis generalizes the Wartenberg's multivariate spatial correlation analysis to various duality diagrams created by the functions (dudi.pca, dudi.coa, dudi.acm, dudi.mix...) If *dudi* is a duality diagram created by the function dudi.pca and *listw* gives spatial weights created by a row normalized coding scheme, the analysis is equivalent to Wartenberg's analysis.

We note X the data frame with the variables, Q the column weights matrix and D the row weights matrix associated to the duality diagram *dudi*. We note L the neighbouring weights matrix associated to *listw*. Then, the 'multispati' analysis gives principal axes v that maximize the product of spatial autocorrelation and inertia of row scores:

$$I(XQv) * ||XQv||^2 = v^t Q^t X^t DLXQv$$

210 multispati

#### Value

Returns an object of class multispati, which contains the following elements:

| eig    | a numeric vector containing the eigenvalues                                                                                               |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------|
| nfposi | integer, number of kept axes associated to positive eigenvalues                                                                           |
| nfnega | integer, number of kept axes associated to negative eigenvalues                                                                           |
| c1     | principle axes (v), data frame with p rows and (nfposi + nfnega) columns                                                                  |
| li     | principal components (XQv), data frame with n rows and (nfposi + nfnega) columns                                                          |
| ls     | lag vector onto the principal axes (LXQv), data frame with n rows and (nfposi + nfnega) columns                                           |
| as     | principal axes of the dudi analysis (u) onto principal axes of multispati (t(u)Qv), data frame with nf rows and (nfposi + nfnega) columns |

## Author(s)

```
Daniel Chessel
Sebastien Ollier <sebastien.ollier@u-psud.fr>
Thibaut Jombart <t.jombart@imperial.ac.uk>
```

#### References

Dray, S., Said, S. and Debias, F. (2008) Spatial ordination of vegetation data using a generalization of Wartenberg's multivariate spatial correlation. *Journal of vegetation science*, **19**, 45–56.

Grunsky, E. C. and Agterberg, F. P. (1988) Spatial and multivariate analysis of geochemical data from metavolcanic rocks in the Ben Nevis area, Ontario. *Mathematical Geology*, **20**, 825–861.

Switzer, P. and Green, A.A. (1984) Min/max autocorrelation factors for multivariate spatial imagery. Tech. rep. 6, Stanford University.

Thioulouse, J., Chessel, D. and Champely, S. (1995) Multivariate analysis of spatial patterns: a unified approach to local and global structures. *Environmental and Ecological Statistics*, **2**, 1–14.

Wartenberg, D. E. (1985) Multivariate spatial correlation: a method for exploratory geographical analysis. *Geographical Analysis*, **17**, 263–283.

Jombart, T., Devillard, S., Dufour, A.-B. and Pontier, D. A spatially explicit multivariate method to disentangle global and local patterns of genetic variability. Submitted to *Genetics*.

## See Also

```
dudi,mat2listw
```

```
## Not run:
if (requireNamespace("spdep", quietly = TRUE)) {
   data(mafragh)
   maf.xy <- mafragh$xy
   maf.flo <- mafragh$flo</pre>
```

multispati 211

```
maf.listw <- spdep::nb2listw(neig2nb(mafragh$neig))</pre>
if(adegraphicsLoaded()) {
  g1 <- s.label(maf.xy, nb = neig2nb(mafragh$neig), plab.cex = 0.75)
} else {
  s.label(maf.xy, neig = mafragh$neig, clab = 0.75)
}
maf.coa <- dudi.coa(maf.flo,scannf = FALSE)</pre>
maf.coa.ms <- multispati(maf.coa, maf.listw, scannf = FALSE, nfposi = 2, nfnega = 2)</pre>
maf.coa.ms
### detail eigenvalues components
fgraph <- function(obj){</pre>
  # use multispati summary
  sum.obj <- summary(obj)</pre>
  # compute Imin and Imax
  L <- spdep::listw2mat(eval(as.list(obj$call)$listw))</pre>
  Imin \leftarrow min(eigen(0.5*(L+t(L)))$values)
  Imax \leftarrow max(eigen(0.5*(L+t(L)))$values)
  I0 <- -1/(nrow(obj$li)-1)</pre>
  # create labels
  labels <- lapply(1:length(obj$eig),function(i) bquote(lambda[.(i)]))</pre>
  # draw the plot
  xmax <- eval(as.list(obj$call)$dudi)$eig[1]*1.1</pre>
  par(las=1)
  var <- sum.obj[,2]</pre>
  moran <- sum.obj[,3]</pre>
  plot(x=var,y=moran,type='n',xlab='Inertia',ylab="Spatial autocorrelation (I)",
       xlim=c(0,xmax),ylim=c(Imin*1.1,Imax*1.1),yaxt='n')
  text(x=var,y=moran,do.call(expression,labels))
  ytick <- c(I0,round(seq(Imin,Imax,le=5),1))</pre>
  ytlab <- as.character(round(seq(Imin,Imax,le=5),1))</pre>
  ytlab <- c(as.character(round(I0,1)),as.character(round(Imin,1)),</pre>
       ytlab[2:4],as.character(round(Imax,1)))
  axis(side=2,at=ytick,labels=ytlab)
  rect(0,Imin,xmax,Imax,lty=2)
  segments(0,I0,xmax,I0,lty=2)
  abline(v=0)
  title("Spatial and inertia components of the eigenvalues")
fgraph(maf.coa.ms)
## end eigenvalues details
if(adegraphicsLoaded()) {
  g2 <- s1d.barchart(maf.coa$eig, p1d.hori = FALSE, plot = FALSE)</pre>
  g3 <- s1d.barchart(maf.coa.ms$eig, p1d.hori = FALSE, plot = FALSE)
  g4 <- s.corcircle(maf.coa.ms$as, plot = FALSE)
  G1 \leftarrow ADEgS(list(g2, g3, g4), layout = c(1, 3))
} else {
  par(mfrow = c(1, 3))
  barplot(maf.coa$eig)
  barplot(maf.coa.ms$eig)
  s.corcircle(maf.coa.ms$as)
```

212 multispati.randtest

```
par(mfrow = c(1, 1))
    if(adegraphicsLoaded()) {
      g5 <- s.value(maf.xy, -maf.coa$li[, 1], plot = FALSE)</pre>
      g6 <- s.value(maf.xy, -maf.coa$li[, 2], plot = FALSE)</pre>
      g7 <- s.value(maf.xy, maf.coa.ms$li[, 1], plot = FALSE)
      g8 <- s.value(maf.xy, maf.coa.ms$li[, 2], plot = FALSE)</pre>
      G2 \leftarrow ADEgS(list(g5, g6, g7, g8), layout = c(2, 2))
    } else {
      par(mfrow = c(2, 2))
      s.value(maf.xy, -maf.coa$li[, 1])
      s.value(maf.xy, -maf.coa$li[, 2])
      s.value(maf.xy, maf.coa.ms$li[, 1])
      s.value(maf.xy, maf.coa.ms$li[, 2])
      par(mfrow = c(1, 1))
    }
   w1 <- -maf.coa$li[, 1:2]
   w1m <- apply(w1, 2, spdep::lag.listw, x = maf.listw)</pre>
    w1.ms \leftarrow maf.coa.ms$li[, 1:2]
    w1.msm \leftarrow apply(w1.ms, 2, spdep::lag.listw, x = maf.listw)
    if(adegraphicsLoaded()) {
      g9 <- s.match(w1, w1m, plab.cex = 0.75, plot = FALSE)
      g10 <- s.match(w1.ms, w1.msm, plab.cex = 0.75, plot = FALSE)
      G3 <- cbindADEg(g9, g10, plot = TRUE)
    } else {
      par(mfrow = c(1,2))
      s.match(w1, w1m, clab = 0.75)
      s.match(w1.ms, w1.msm, clab = 0.75)
      par(mfrow = c(1, 1))
    }
   maf.pca <- dudi.pca(mafragh$env, scannf = FALSE)</pre>
   multispati.randtest(maf.pca, maf.listw)
   maf.pca.ms <- multispati(maf.pca, maf.listw, scannf=FALSE)</pre>
    plot(maf.pca.ms)
## End(Not run)
```

multispati.randtest *Multivariate spatial autocorrelation test (in C)* 

## **Description**

}

This function performs a multivariate autocorrelation test.

multispati.randtest 213

## Usage

```
multispati.randtest(dudi, listw, nrepet = 999, ...)
```

## **Arguments**

dudi an object of class dudi for the duality diagram analysis

listw an object of class listw for the spatial dependence of data observations

nrepet the number of permutations

... further arguments passed to or from other methods

#### **Details**

We note X the data frame with the variables, Q the column weights matrix and D the row weights matrix associated to the duality diagram *dudi*. We note L the neighbouring weights matrix associated to *listw*. This function performs a Monte-Carlo Test on the multivariate spatial autocorrelation index:

$$r = \frac{trace(X^tDLXQ)}{trace(X^tDXQ)}$$

## Value

Returns an object of class randtest (randomization tests).

## Author(s)

Daniel Chessel Sébastien Ollier <sebastien.ollier@u-psud.fr>

## References

Smouse, P. E. and Peakall, R. (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. *Heredity*, **82**, 561–573.

# See Also

```
dudi.mat2listw
```

```
if (requireNamespace("spdep", quietly = TRUE)) {
   data(mafragh)
   maf.listw <- spdep::nb2listw(neig2nb(mafragh$neig))
   maf.pca <- dudi.pca(mafragh$env, scannf = FALSE)
   multispati.randtest(maf.pca, maf.listw)
   maf.pca.ms <- multispati(maf.pca, maf.listw, scannf = FALSE)
   plot(maf.pca.ms)
}</pre>
```

214 multispati.rtest

multispati.rtest

Multivariate spatial autocorrelation test

## **Description**

This function performs a multivariate autocorrelation test.

# Usage

```
multispati.rtest(dudi, listw, nrepet = 99, ...)
```

## **Arguments**

dudi an object of class dudi for the duality diagram analysis

listw an object of class listw for the spatial dependence of data observations

nrepet the number of permutations

... further arguments passed to or from other methods

#### **Details**

We note X the data frame with the variables, Q the column weight matrix and D the row weight matrix associated to the duality diagram *dudi*. We note L the neighbouring weights matrix associated to *listw*. This function performs a Monte-Carlo Test on the multivariate spatial autocorrelation index:

$$r = \frac{X^t D L X Q}{X^t D X Q}$$

## Value

Returns an object of class randtest (randomization tests).

# Author(s)

Daniel Chessel
Sébastien Ollier <sebastien.ollier@u-psud.fr>

## References

Smouse, P. E. and Peakall, R. (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. *Heredity*, **82**, 561–573.

#### See Also

dudi,mat2listw

neig 215

## **Examples**

```
if (requireNamespace("spdep", quietly = TRUE)) {
    data(mafragh)
    maf.listw <- spdep::nb2listw(neig2nb(mafragh$neig))
    maf.pca <- dudi.pca(mafragh$env, scannf = FALSE)
    multispati.rtest(maf.pca, maf.listw)
    maf.pca.ms <- multispati(maf.pca, maf.listw, scannf = FALSE)
    plot(maf.pca.ms)
}</pre>
```

neig

Neighbourhood Graphs

## **Description**

```
neig creates objects of class neig with:
a list of edges
a binary square matrix
a list of vectors of neighbours
an integer (linear and circular graphs)
a data frame of polygons (area)

scores.neig returns the eigenvectors of neighbouring,
orthonormalized scores (null average, unit variance 1/n and null covariances) of maximal autocorrelation.

nb2neig returns an object of class neig using an object of class nb in the library 'spdep'
neig2nb returns an object of class nb using an object of class neig
neig2mat returns the incidence matrix between edges (1 = neighbour; 0 = no neighbour)
neig.util.GtoL and neig.util.LtoG are utilities.
```

## Usage

216 neig

# **Arguments**

```
list
                   a list which each component gives the number of neighbours
                   a symmetric square matrix of 0-1 values
mat01
edges
                   a matrix of 2 columns with integer values giving a list of edges
                   the number of points for a linear plot
n.line
n.circle
                   the number of points for a circular plot
area
                   a data frame containing a polygon set (see area.plot)
                   an object of class 'nb'
nb
neig, x, obj, object
                   an object of class 'neig'
                   further arguments passed to or from other methods
```

## Author(s)

Daniel Chessel

#### References

Thioulouse, J., D. Chessel, and S. Champely. 1995. Multivariate analysis of spatial patterns: a unified approach to local and global structures. *Environmental and Ecological Statistics*, **2**, 1–14.

```
if(!adegraphicsLoaded()) {
 if(requireNamespace("deldir", quietly = TRUE)) {
    data(mafragh)
   par(mfrow = c(2, 1))
   provi <- deldir::deldir(mafragh$xy)</pre>
   provi.neig <- neig(edges = as.matrix(provi$delsgs[, 5:6]))</pre>
   s.label(mafragh$xy, neig = provi.neig, inc = FALSE,
      addax = FALSE, clab = 0, cnei = 2)
   dist <- apply(provi.neig, 1, function(x)</pre>
     sqrt(sum((mafragh$xy[x[1], ] - mafragh$xy[x[2], ]) ^ 2)))
    #hist(dist, nclass = 50)
   mafragh.neig <- neig(edges = provi.neig[dist < 50, ])</pre>
   s.label(mafragh$xy, neig = mafragh.neig, inc = FALSE,
     addax = FALSE, clab = 0, cnei = 2)
    par(mfrow = c(1, 1))
   data(irishdata)
    irish.neig <- neig(area = irishdata$area)</pre>
    summary(irish.neig)
   print(irish.neig)
   s.label(irishdata$xy, neig = irish.neig, cneig = 3,
     area = irishdata$area, clab = 0.8, inc = FALSE)
```

neig 217

```
irish.scores <- scores.neig(irish.neig)</pre>
  par(mfrow = c(2, 3))
  for(i in 1:6)
    s.value(irishdata$xy, irish.scores[, i], inc = FALSE, grid = FALSE, addax = FALSE,
      neig = irish.neig, csi = 2, cleg = 0, sub = paste("Eigenvector ",i), csub = 2)
  par(mfrow = c(1, 1))
  a.neig <- neig(n.circle = 16)</pre>
  a.scores <- scores.neig(a.neig)</pre>
  xy \leftarrow cbind.data.frame(cos((1:16) * pi / 8), sin((1:16) * pi / 8))
  par(mfrow = c(4, 4))
  for(i in 1:15)
    s.value(xy, a.scores[, i], neig = a.neig, csi = 3, cleg = 0)
  par(mfrow = c(1, 1))
  a.neig <- neig(n.line = 28)</pre>
  a.scores <- scores.neig(a.neig)</pre>
  par(mfrow = c(7, 4))
  par(mar = c(1.1, 2.1, 0.1, 0.1))
  for(i in 1:27)
    barplot(a.scores[, i], col = grey(0.8))
 par(mfrow = c(1, 1))
if(requireNamespace("spdep", quietly = TRUE)) {
  data(mafragh)
  maf.rel <- spdep::relativeneigh(as.matrix(mafragh$xy))</pre>
  maf.rel <- spdep::graph2nb(maf.rel)</pre>
  s.label(mafragh$xy, neig = neig(list = maf.rel), inc = FALSE,
    clab = 0, addax = FALSE, cne = 1, cpo = 2)
  par(mfrow = c(2, 2))
  w <- matrix(runif(100), 50, 2)</pre>
  x.gab <- spdep::gabrielneigh(w)</pre>
  x.gab <- spdep::graph2nb(x.gab)</pre>
  s.label(data.frame(w), neig = neig(list = x.gab), inc = FALSE,
    clab = 0, addax = FALSE, cne = 1, cpo = 2, sub = "relative")
  x.rel <- spdep::relativeneigh(w)</pre>
  x.rel <- spdep::graph2nb(x.rel)</pre>
  s.label(data.frame(w), neig = neig(list = x.rel), inc = FALSE,
    clab = 0, addax = FALSE, cne = 1, cpo = 2, sub = "Gabriel")
  k1 <- spdep::knn2nb(spdep::knearneigh(w))</pre>
  s.label(data.frame(w), neig = neig(list = k1), inc = FALSE,
    clab = 0, addax = FALSE, cne = 1, cpo = 2, sub = "k nearest neighbours")
  all.linked <- max(unlist(spdep::nbdists(k1, w)))</pre>
  z <- spdep::dnearneigh(w, 0, all.linked)</pre>
  s.label(data.frame(w), neig = neig(list = z), inc = FALSE, clab = 0,
    addax = FALSE, cne = 1, cpo = 2, sub = "Neighbourhood contiguity by distance")
  par(mfrow = c(1, 1))
```

218 newick.eg

}

newick.eg

Phylogenetic trees in Newick format

# **Description**

This data set contains various exemples of phylogenetic trees in Newick format.

## Usage

```
data(newick.eg)
```

#### **Format**

newick.eg is a list containing 14 character strings in Newick format.

#### **Source**

Trees 1 to 7 were obtained from the URL

http://evolution.genetics.washington.edu/phylip/newicktree.html.

Trees 8 and 9 were obtained by Clémentine Carpentier-Gimaret.

Tree 10 was obtained from Treezilla Data Sets .

Trees 11 and 12 are taken from Bauwens and Díaz-Uriarte (1997).

Tree 13 is taken from Cheverud and Dow (1985).

Tree 13 is taken from Martins and Hansen (1997).

#### References

Bauwens, D. and Díaz-Uriarte, R. (1997) Covariation of life-history traits in lacertid lizards: a comparative study. *American Naturalist*, **149**, 91–111.

Cheverud, J. and Dow, M.M. (1985) An autocorrelation analysis of genetic variation due to lineal fission in social groups of rhesus macaques. *American Journal of Physical Anthropology*, **67**, 113–122.

Martins, E. P. and Hansen, T.F. (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. *American Naturalist*, **149**, 646–667.

```
data(newick.eg)
newick2phylog(newick.eg[[11]])
radial.phylog(newick2phylog(newick.eg[[7]]), circ = 1,
  clabel.l = 0.75)
```

newick2phylog 219

| newick2phylog | Create phylogeny |  |
|---------------|------------------|--|
|               |                  |  |

# **Description**

The first three functions ensure to create object of class phylog from either a character string in Newick format (newick2phylog) or an object of class 'hclust' (hclust2phylog) or a taxonomy (taxo2phylog). The function newick2phylog.addtools is an internal function called by newick2phylog, hclust2phylog and taxo2phylog when newick2phylog.addtools = TRUE. It adds some items in 'phylog' objects.

# Usage

```
newick2phylog(x.tre, add.tools = TRUE, call = match.call())
hclust2phylog(hc, add.tools = TRUE)
taxo2phylog(taxo, add.tools = FALSE, root="Root", abbrev=TRUE)
newick2phylog.addtools(res, tol = 1e-07)
```

# **Arguments**

| x.tre     | a character string corresponding to a phylogenetic tree in Newick format (http://evolution.genetics.washington.edu/phylip/newicktree.html) |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|
| add.tools | if TRUE, executes the function newick2phylog.addtools                                                                                      |
| call      | call                                                                                                                                       |
| hc        | an object of class hclust                                                                                                                  |
| taxo      | an object of class taxo                                                                                                                    |
| res       | an object of class phylog (an internal argument of the function newick2phylog)                                                             |
| tol       | used in case 3 of method as a tolerance threshold for null eigenvalues                                                                     |
| root      | a character string for the root of the tree                                                                                                |
| abbrev    | logical: if TRUE levels are abbreviated by column and two characters are added before                                                      |

#### Value

Return object of class phylog.

# Author(s)

```
Daniel Chessel
Sébastien Ollier <sebastien.ollier@u-psud.fr>
```

## See Also

```
phylog, plot.phylog, as.taxo
```

220 newick2phylog

```
W \leftarrow "((((,,),,(,)),(,));"
w.phy <- newick2phylog(w)</pre>
print(w.phy)
plot(w.phy)
## Not run:
# newick2phylog
data(newick.eg)
radial.phylog(newick2phylog(newick.eg[[8]], FALSE), cnode = 1,
clabel.l = 0.8)
w <- NULL
w[3] \leftarrow "(((((,),),(,(,))),(((,),(,)))),((,,((,),)),((,),(,)),((,),(,)))
w[5] <^{-}"), (((,(,(,(,)))),(,)),(((,),((((((,),(,)),(,)),(,)),(,))),((,))"))))
w[8] \leftarrow ",(,)),(((((((((,(,,)),(,)),((((,(,,),(,(,(,))))),((,),(,(,))))),((,),(,(,))))),((,,),(,(,,)))),((,,,(,(,,)))),((,,,(,(,,)))),((,,,(,(,,))))),((,,,(,(,,))))),((,,,(,(,,)))))
 w[12] \leftarrow ",)),),(((,),,))),(((,),(,),(,(,))),(((,),(,)))," 
 w[21] \leftarrow ",),),((,),)),(,)),),((((((,),),(((,),),(,)),(,)))) 
phy1 <- newick2phylog(w,FALSE)</pre>
phy1
radial.phylog(phy1, clabel.1 = 0, circle = 2.2, clea = 0.5,
cnod = 0.5)
data(newick.eg)
radial.phylog(newick2phylog(newick.eg[[8]], FALSE), cnode = 1,
clabel.l = 0.8)
# hclust2phylog
data(USArrests)
hc <- hclust(dist(USArrests), "ave")</pre>
par(mfrow = c(1,2))
plot(hc, hang = -1)
phy <- hclust2phylog(hc)</pre>
plot(phy, clabel.l = 0.75, clabel.n = 0.6, f = 0.75)
```

niche 221

```
par(mfrow = c(1,1))
row.names(USArrests)
names(phy$leaves) #WARNING not the same for two reasons
row.names(USArrests) <- gsub(" ","_",row.names(USArrests))</pre>
row.names(USArrests)
names(phy$leaves) #WARNING not the same for one reason
USArrests <- USArrests[names(phy$leaves),]</pre>
row.names(USArrests)
names(phy$leaves) #the same
table.phylog(data.frame(scalewt(USArrests)), phy, csi = 2.5,
clabel.r = 0.75, f = 0.7)
#taxo2phylog
data(taxo.eg)
tax <- as.taxo(taxo.eg[[1]])</pre>
tax.phy <- taxo2phylog(as.taxo(taxo.eg[[1]]))</pre>
par(mfrow = c(1,2))
plot(tax.phy, clabel.l = 1.25, clabel.n = 1.25, f = 0.75)
plot(taxo2phylog(as.taxo(taxo.eg[[1]][sample(15),])),
clabel.1 = 1.25, clabel.n = 1.25, f = 0.75)
par(mfrow=c(1,1))
plot(taxo2phylog(as.taxo(taxo.eg[[2]])), clabel.l = 1,
clabel.n = 0.75, f = 0.65)
## End(Not run)
```

niche

Method to Analyse a pair of tables: Environmental and Faunistic Data

### **Description**

performs a special multivariate analysis for ecological data.

# Usage

```
niche(dudiX, Y, scannf = TRUE, nf = 2)
## S3 method for class 'niche'
print(x, ...)
## S3 method for class 'niche'
plot(x, xax = 1, yax = 2, ...)
niche.param(x)
## S3 method for class 'niche'
rtest(xtest,nrepet=99, ...)
```

#### **Arguments**

dudiX

a duality diagram providing from a function dudi.coa, dudi.pca, ... using an array sites-variables

222 niche

| a data frame sites-species according to dudiX\$tab with no columns of zero      |
|---------------------------------------------------------------------------------|
| a logical value indicating whether the eigenvalues bar plot should be displayed |
| if scannf FALSE, an integer indicating the number of kept axes                  |
| an object of class niche                                                        |
| further arguments passed to or from other methods                               |
| the numbers of the x-axis and the y-axis                                        |
| an object of class niche                                                        |
| the number of permutations for the testing procedure                            |
|                                                                                 |

### Value

Returns a list of the class niche (sub-class of dudi) containing:

| rank | an integer indicating the rank of the studied matrix          |
|------|---------------------------------------------------------------|
| nf   | an integer indicating the number of kept axes                 |
| RV   | a numeric value indicating the RV coefficient                 |
| eig  | a numeric vector with the all eigenvalues                     |
| lw   | a data frame with the row weigths (crossed array)             |
| tab  | a data frame with the crossed array (averaging species/sites) |
| li   | a data frame with the species coordinates                     |
| 11   | a data frame with the species normed scores                   |
| со   | a data frame with the variable coordinates                    |
| c1   | a data frame with the variable normed scores                  |
| ls   | a data frame with the site coordinates                        |
| as   | a data frame with the axis upon niche axis                    |
|      |                                                               |

# Author(s)

Daniel Chessel

```
Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr> Stéphane Dray <stephane.dray@univ-lyon1.fr>
```

# References

Dolédec, S., Chessel, D. and Gimaret, C. (2000) Niche separation in community analysis: a new method. *Ecology*, **81**, 2914–1927.

```
data(doubs)
dudi1 <- dudi.pca(doubs$env, scale = TRUE, scan = FALSE, nf = 3)
nic1 <- niche(dudi1, doubs$fish, scann = FALSE)

if(adegraphicsLoaded()) {
   g1 <- s.traject(dudi1$li, plab.cex = 0, plot = FALSE)</pre>
```

nipals 223

```
g2 <- s.traject(nic1$ls, plab.cex = 0, plot = FALSE)</pre>
  g3 <- s.corcircle(nic1$as, plot = FALSE)
  g4 <- s.arrow(nic1$c1, plot = FALSE)
  G1 \leftarrow ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
  glist <- list()
  for(i in 1:ncol(doubs$fish))
  glist[[i]] <- s.distri(nic1$ls, dfdistri = doubs$fish[, i], psub.text = names(doubs$fish)[i],</pre>
      plot = FALSE, storeData = TRUE)
  G2 \leftarrow ADEgS(glist, layout = c(5, 6))
  G3 <- s.arrow(nic1$li, plab.cex = 0.7)
} else {
  par(mfrow = c(2, 2))
  s.traject(dudi1$li, clab = 0)
  s.traject(nic1$ls, clab = 0)
  s.corcircle(nic1$as)
  s.arrow(nic1$c1)
  par(mfrow = c(5, 6))
  for (i in 1:27) s.distri(nic1$ls, as.data.frame(doubs$fish[,i]),
    csub = 2, sub = names(doubs$fish)[i])
  par(mfrow = c(1, 1))
  s.arrow(nic1$li, clab = 0.7)
}
data(trichometeo)
pca1 <- dudi.pca(trichometeo$meteo, scan = FALSE)</pre>
nic1 <- niche(pca1, log(trichometeo$fau + 1), scan = FALSE)</pre>
plot(nic1)
niche.param(nic1)
rtest(nic1,19)
data(rpjdl)
plot(niche(dudi.pca(rpjdl$mil, scan = FALSE), rpjdl$fau, scan = FALSE))
```

nipals

Non-linear Iterative Partial Least Squares (NIPALS) algorithm

### **Description**

This function performs NIPALS algorithm, i.e. a principal component analysis of a data table that can contain missing values.

## Usage

```
nipals(df, nf = 2, rec = FALSE, niter = 100, tol = 1e-09)
```

224 nipals

```
## S3 method for class 'nipals'
scatter(x, xax = 1, yax = 2, clab.row = 0.75, clab.col
= 1, posieig = "top", sub = NULL, ...)
## S3 method for class 'nipals'
print(x, ...)
```

# Arguments

df a data frame that can contain missing values nf an integer, the number of axes to keep a logical that specify if the functions must perform the reconstitution of the data rec using the nf axes an integer, the maximum number of iterations niter a real, the tolerance used in the iterative algorithm tol an object of class nipals the column number for the x-axis xax the column number for the y-axis yax clab.row a character size for the rows clab.col a character size for the columns if "top" the eigenvalues bar plot is upside, if "bottom" it is downside, if "none" posieig no plot a string of characters to be inserted as legend sub

further arguments passed to or from other methods

# **Details**

Data are scaled (mean 0 and variance 1) prior to the analysis.

### Value

Returns a list of classes nipals:

| 4-6  | the scaled data frames                                                           |
|------|----------------------------------------------------------------------------------|
| tab  | the scaled data frame                                                            |
| eig  | the pseudoeigenvalues                                                            |
| rank | the rank of the analyzed matrice                                                 |
| nf   | the number of factors                                                            |
| c1   | the column normed scores                                                         |
| со   | the column coordinates                                                           |
| li   | the row coordinates                                                              |
| call | the call function                                                                |
| nb   | the number of iterations for each axis                                           |
| rec  | a data frame obtained by the reconstitution of the scaled data using the nf axes |

nipals 225

#### Author(s)

Stéphane Dray <stephane.dray@univ-lyon1.fr>

#### References

Wold, H. (1966) Estimation of principal components and related models by iterative least squares. In P. Krishnaiah, editors. *Multivariate Analysis*, Academic Press, 391–420.

Wold, S., Esbensen, K. and Geladi, P. (1987) Principal component analysis *Chemometrics and Intelligent Laboratory Systems*, **2**, 37–52.

#### See Also

```
dudi.pca
```

```
data(doubs)
## nipals is equivalent to dudi.pca when there are no NA
acp1 <- dudi.pca(doubs$env, scannf = FALSE, nf = 2)</pre>
nip1 <- nipals(doubs$env)</pre>
if(adegraphicsLoaded()) {
 if(requireNamespace("lattice", quietly = TRUE)) {
  g1 <- s1d.barchart(acp1$eig, psub.text = "dudi.pca", p1d.horizontal = FALSE, plot = FALSE)
  g2 <- s1d.barchart(nip1$eig, psub.text = "nipals", p1d.horizontal = FALSE, plot = FALSE)
  g3 <- lattice::xyplot(nip1$c1[, 1] ~ acp1$c1[, 1], main = "col scores", xlab = "dudi.pca",
      ylab = "nipals")
  g4 <- lattice::xyplot(nip1$li[, 1] ~ acp1$li[, 1], main = "row scores", xlab = "dudi.pca",
      ylab = "nipals")
    G \leftarrow ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
} else {
 par(mfrow = c(2, 2))
 barplot(acp1$eig, main = "dudi.pca")
 barplot(nip1$eig, main = "nipals")
 plot(acp1$c1[, 1], nip1$c1[, 1], main = "col scores", xlab = "dudi.pca", ylab = "nipals")
 plot(acp1$li[, 1], nip1$li[, 1], main = "row scores", xlab = "dudi.pca", ylab = "nipals")
}
## Not run:
## with NAs:
doubs = v[1, 1] < - NA
nip2 <- nipals(doubs$env)</pre>
cor(nip1$li, nip2$li)
nip1$eig
nip2$eig
```

226 njplot

```
## End(Not run)
```

njplot

Phylogeny and trait of bacteria

## **Description**

This data set describes the phylogeny of 36 bacteria as reported by Perrière and Gouy (1996). It also gives the GC rate corresponding to these 36 species.

### Usage

```
data(njplot)
```

#### **Format**

njplot is a list containing the 2 following objects:

tre is a character string giving the fission tree in Newick format.

tauxcg is a numeric vector that gives the CG rate of the 36 species.

### **Source**

Data were obtained by Manolo Gouy <manolo.gouy@univ-lyon1.fr>

# References

Perrière, G. and Gouy, M. (1996) WWW-Query: an on-line retrieval system for biological sequence banks. *Biochimie*, **78**, 364–369.

```
data(njplot)
njplot.phy <- newick2phylog(njplot$tre)
par(mfrow = c(2,1))
tauxcg0 <- njplot$tauxcg - mean(njplot$tauxcg)
symbols.phylog(njplot.phy, squares = tauxcg0)
symbols.phylog(njplot.phy, circles = tauxcg0)
par(mfrow = c(1,1))</pre>
```

olympic 227

olympic

Olympic Decathlon

#### **Description**

This data set gives the performances of 33 men's decathlon at the Olympic Games (1988).

### Usage

```
data(olympic)
```

#### **Format**

olympic is a list of 2 components.

tab is a data frame with 33 rows and 10 columns events of the decathlon: 100 meters (100), long jump (long), shotput (poid), high jump (haut), 400 meters (400), 110-meter hurdles (110), discus throw (disq), pole vault (perc), javelin (jave) and 1500 meters (1500).

score is a vector of the final points scores of the competition.

#### Source

Example 357 in:

Hand, D.J., Daly, F., Lunn, A.D., McConway, K.J. and Ostrowski, E. (1994) *A handbook of small data sets*, Chapman & Hall, London. 458 p.

Lunn, A. D. and McNeil, D.R. (1991) Computer-Interactive Data Analysis, Wiley, New York

```
data(olympic)
pca1 <- dudi.pca(olympic$tab, scan = FALSE)</pre>
if(adegraphicsLoaded()) {
 if(requireNamespace("lattice", quietly = TRUE)) {
    g1 <- s1d.barchart(pca1$eig, p1d.hori = FALSE, plot = FALSE)</pre>
    g2 <- s.corcircle(pca1$co, plot = FALSE)</pre>
   g3 <- lattice::xyplot(pca1$11[, 1] ~ olympic$score, type = c("p", "r"))
   g41 <- s.label(pca1$11, plab.cex = 0.5, plot = FALSE)
   g42 <- s.arrow(2 * pca1$co, plot = FALSE)
   g4 <- superpose(g41, g42)
    G \leftarrow ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
 }
} else {
 par(mfrow = c(2, 2))
 barplot(pca1$eig)
 s.corcircle(pca1$co)
 plot(olympic$score, pca1$11[, 1])
 abline(lm(pca1$11[, 1] ~ olympic$score))
```

228 oribatid

```
s.label(pca1$11, clab = 0.5)
s.arrow(2 * pca1$co, add.p = TRUE)
par(mfrow = c(1, 1))
}
```

oribatid

Oribatid mite

## **Description**

This data set contains informations about environmental control and spatial structure in ecological communities of Oribatid mites.

# Usage

```
data(oribatid)
```

#### **Format**

oribatid is a list containing the following objects:

fau: a data frame with 70 rows (sites) and 35 columns (Oribatid species)

envir: a data frame with 70 rows (sites) and 5 columns (environmental variables)

xy: a data frame that contains spatial coordinates of the 70 sites

# **Details**

Variables of oribatid\$envir are the following ones:

substrate: a factor with seven levels that describes the nature of the substratum shrubs: a factor with three levels that describes the absence/presence of shrubs

topo: a factor with two levels that describes the microtopography

density: substratum density  $(g.L^{-1})$ 

water: water content of the substratum  $(g.L^{-1})$ 

#### Source

Data prepared by P. Legendre < Pierre. Legendre@umontreal.ca > and D. Borcard < borcardd@magellan.umontreal.ca >

#### References

Borcard, D., and Legendre, P. (1994) Environmental control and spatial structure in ecological communities: an example using Oribatid mites (*Acari Oribatei*). *Environmental and Ecological Statistics*, **1**, 37–61.

Borcard, D., Legendre, P., and Drapeau, P. (1992) Partialling out the spatial component of ecological variation. *Ecology*, **73**, 1045–1055.

See a data description at http://pbil.univ-lyon1.fr/R/pdf/pps039.pdf (in French).

originality 229

### **Examples**

originality

Originality of a species

# **Description**

computes originality values for species from an ultrametric phylogenetic tree.

## Usage

```
originality(phyl, method = 5)
```

# **Arguments**

phyl an object of class phylog

method a vector containing integers between 1 and 7.

## **Details**

1 = Vane-Wright et al.'s (1991) node-counting index 2 = May's (1990) branch-counting index 3 = Nixon and Wheeler's (1991) unweighted index, based on the sum of units in binary values 4 = Nixon and Wheeler's (1991) weighted index 5 = QE-based index 6 = Isaac et al. (2007) ED index 7 = Redding et al. (2006) Equal-split index

## Value

Returns a data frame with species in rows, and the selected indices of originality in columns. Indices are expressed as percentages.

## Author(s)

230 orthobasis

#### References

Isaac, N.J.B., Turvey, S.T., Collen, B., Waterman, C. and Baillie, J.E.M. (2007) Mammals on the EDGE: conservation priorities based on threat and phylogeny. *PloS ONE*, **2**, e–296.

Redding, D. and Mooers, A. (2006) Incorporating evolutionary measures into conservation prioritization. *Conservation Biology*, **20**, 1670–1678.

Pavoine, S., Ollier, S. and Dufour, A.-B. (2005) Is the originality of a species measurable? *Ecology Letters*, **8**, 579–586.

Vane-Wright, R.I., Humphries, C.J. and Williams, P.H. (1991). What to protect? Systematics and the agony of choice. *Biological Conservation*, **55**, 235–254.

May, R.M. (1990). Taxonomy as destiny. Nature, 347, 129-130.

Nixon, K.C. and Wheeler, Q.D. (1992). Measures of phylogenetic diversity. In: *Extinction and Phylogeny* (eds. Novacek, M.J. and Wheeler, Q.D.), 216–234, Columbia University Press, New York.

# **Examples**

```
data(carni70)
carni70.phy <- newick2phylog(carni70$tre)
ori.tab <- originality(carni70.phy, 1:7)
names(ori.tab)
dotchart.phylog(carni70.phy, ori.tab, scaling = FALSE, yjoining = 0,
    ranging = FALSE, cleaves = 0, ceti = 0.5, csub = 0.7, cdot = 0.5)</pre>
```

orthobasis

Orthonormal basis for orthonormal transform

### **Description**

These functions returns object of class 'orthobasis' that contains data frame defining an orthonormal basis.

orthobasic.neig returns the eigen vectors of the matrix N-M where M is the symmetric n by n matrix of the between-sites neighbouring graph and N is the diagonal matrix of neighbour numbers. orthobasis.line returns the analytical solution for the linear neighbouring graph.

orthobasic.circ returns the analytical solution for the circular neighbouring graph.

orthobsic.mat returns the eigen vectors of the general link matrix M.

orthobasis. haar returns wavelet haar basis.

## Usage

```
orthobasis.neig(neig)
orthobasis.line(n)
orthobasis.circ(n)
orthobasis.mat(mat, cnw=TRUE)
orthobasis.haar(n)
## S3 method for class 'orthobasis'
```

orthobasis 231

```
print(x,..., nr = 6, nc = 4)
## S3 method for class 'orthobasis'
plot(x,...)
## S3 method for class 'orthobasis'
summary(object,...)
is.orthobasis(x)
```

### **Arguments**

neig is an object of class neig

n is an integer that defines length of vectors
mat is a *n* by *n* phylogenetic or spatial link matrix

cnw if TRUE, the matrix of the neighbouring graph is modified to give Constant

Neighbouring Weights

x, object is an object of class orthobasis

nr, nc the number of rows and columns to be printed

. . . : further arguments passed to or from other methods

### Value

All the functions return an object of class orthobasis containing a data frame. This data frame defines an orthonormal basis with various attributes:

names names of the vectors

row.names row names of the data frame

class class

values optional associated eigenvalues

weights weights for the rows

call : call

#### Note

the function orthobasis.haar uses function wavelet.filter from package waveslim.

# Author(s)

```
Sébastien Ollier <sebastien.ollier@u-psud.fr>
Daniel Chessel
```

# References

Misiti, M., Misiti, Y., Oppenheim, G. and Poggi, J.M. (1993) Analyse de signaux classiques par décomposition en ondelettes. *Revue de Statistique Appliquée*, **41**, 5–32.

Cornillon, P.A. (1998) *Prise en compte de proximités en analyse factorielle et comparative*. Thèse, Ecole Nationale Supérieure Agronomique, Montpellier.

232 orthobasis

#### See Also

gridrowcol that defines an orthobasis for square grid, phylog that defines an orthobasis for phylogenetic tree, orthogram and mld

```
# a 2D spatial orthobasis
w <- gridrowcol(8, 8)
if(adegraphicsLoaded()) {
  g1 <- s.value(w$xy, w$orthobasis[, 1:16], pleg.drawKey = FALSE, pgri.text.cex = 0,
   ylim = c(0, 10), porigin.include = FALSE, paxes.draw = FALSE)
  g2 <- s1d.barchart(attr(w$orthobasis, "values"), p1d.horizontal = FALSE,</pre>
   labels = names(attr(w$orthobasis, "values")), plabels.cex = 0.7)
} else {
  par(mfrow = c(4, 4))
  for(k in 1:16)
    s.value(w$xy, w$orthobasis[, k], cleg = 0, csi = 2, incl = FALSE,
      addax = FALSE, sub = k, csub = 4, ylim = c(0, 10), cgri = 0)
  par(mfrow = c(1, 1))
  barplot(attr(w$orthobasis, "values"))
}
# Haar 1D orthobasis
w <- orthobasis.haar(32)</pre>
par(mfrow = c(8, 4))
par(mar = c(0.1, 0.1, 0.1, 0.1))
 for (k in 1:31) {
   plot(w[, k], type = "S", xlab = "", ylab = "", xaxt = "n",
     yaxt = "n", xaxs = "i", yaxs = "i", ylim = c(-4.5, 4.5))
    points(w[, k], type = "p", pch = 20, cex = 1.5)
# a 1D orthobasis
w <- orthobasis.line(n = 33)</pre>
par(mfrow = c(8, 4))
par(mar = c(0.1, 0.1, 0.1, 0.1))
 for (k in 1:32) {
    plot(w[, k], type = "l", xlab = "", ylab = "", xaxt = "n",
    yaxt = "n", xaxs = "i", yaxs = "i", ylim = c(-1.5, 1.5))
   points(w[, k], type = "p", pch = 20, cex = 1.5)
}
if(adegraphicsLoaded()) {
 s1d.barchart(attr(w, "values"), p1d.horizontal = FALSE, labels = names(attr(w, "values")),
   plab.cex = 0.7)
} else {
  par(mfrow = c(1, 1))
  barplot(attr(w, "values"))
}
```

ours 233

```
w \leftarrow orthobasis.circ(n = 26)
\#par(mfrow = c(5, 5))
\#par(mar = c(0.1, 0.1, 0.1, 0.1))
# for (k in 1:25)
     dotcircle(w[, k], xlim = c(-1.5, 1.5), cleg = 0)
par(mfrow = c(1, 1))
#barplot(attr(w, "values"))
## Not run:
# a spatial orthobasis
data(mafragh)
w <- orthobasis.neig(mafragh$neig)</pre>
if(adegraphicsLoaded()) {
 s.value(mafragh$xy, w[, 1:8], plegend.drawKey = FALSE)
 s1d.barchart(attr(w, "values"), p1d.horizontal = FALSE)
} else {
 par(mfrow = c(4, 2))
 for(k in 1:8)
    s.value(mafragh$xy, w[, k], cleg = 0, sub = as.character(k), csub = 3)
 par(mfrow = c(1, 1))
 barplot(attr(w, "values"))
}
# a phylogenetic orthobasis
data(njplot)
phy <- newick2phylog(njplot$tre)</pre>
wA <- phy$Ascores
wW <- phy$Wscores
table.phylog(phylog = phy, wA, clabel.row = 0, clabel.col = 0.5)
table.phylog(phylog = phy, wW, clabel.row = 0, clabel.col = 0.5)
## End(Not run)
```

ours

A table of Qualitative Variables

# **Description**

The ours (bears) data frame has 38 rows, areas of the "Inventaire National Forestier", and 10 columns.

### Usage

```
data(ours)
```

234 ours

#### **Format**

This data frame contains the following columns:

- 1. altit: importance of the altitudinal area inhabited by bears, a factor with levels:
  - 1 less than 50% of the area between 800 and 2000 meters
  - 2 between 50 and 70%
  - 3 more than 70%
- 2. deniv: importance of the average variation in level by square of 50 km2, a factor with levels:
  - 1 less than 700m
  - 2 between 700 and 900 m
  - 3 more than 900 m
- 3. cloiso: partitioning of the massif, a factor with levels:
  - 1 a great valley or a ridge isolates at least a quarter of the massif
  - 2 less than a quarter of the massif is isolated
  - 3 the massif has no split
- 4. domain: importance of the national forests on contact with the massif, a factor with levels:
  - 1 less than 400 km2
  - 2 between 400 and 1000 km2
  - 3 more than 1000 km2
- 5. boise: rate of afforestation, a factor with levels:
  - 1 less than 30%
  - 2 between 30 and 50%
  - 3 more than 50%
- 6. hetra: importance of plantations and mixed forests, a factor with levels:
  - 1 less than 5%
  - 2 between 5 and 10%
  - 3 more than 10% of the massif
- 7. favor: importance of favorable forests, plantations, mixed forests, fir plantations, a factor with levels:
  - 1 less than 5%
  - 2 between 5 and 10%
  - 3 more than 10% of the massif
- 8. inexp: importance of unworked forests, a factor with levels:
  - 1 less than 4%
  - 2 between 4 and 8%
  - 3 more than 8% of the total area
- 9. citat: presence of the bear before its disappearance, a factor with levels:
  - 1 no quotation since 1840
  - 2 1 to 3 quotations before 1900 and none after
  - 3 4 quotations before 1900 and none after

palm 235

- 4 at least 4 quotations before 1900 and at least 1 quotation between 1900 and 1940
- 10. depart: district, a factor with levels:
  - AHP Alpes-de-Haute-Provence
  - AM Alpes-Maritimes
  - D Drôme
  - HP Hautes-Alpes
  - HS Haute-Savoie
  - I Isère
  - S Savoie

#### Source

Erome, G. (1989) L'ours brun dans les Alpes françaises. Historique de sa disparition. Centre Ornithologique Rhône-Alpes, Villeurbanne. 120 p.

## **Examples**

```
data(ours)
if(adegraphicsLoaded()) {
   s1d.boxplot(dudi.acm(ours, scan = FALSE)$11[, 1], ours)
} else {
   boxplot(dudi.acm(ours, scan = FALSE))
}
```

palm

Phylogenetic and quantitative traits of amazonian palm trees

# **Description**

This data set describes the phylogeny of 66 amazonian palm trees. It also gives 7 traits corresponding to these 66 species.

# Usage

```
data(palm)
```

### **Format**

palm is a list containing the 2 following objects:

tre is a character string giving the phylogenetic tree in Newick format.

**traits** is a data frame with 66 species (rows) and 7 traits (columns).

236 pap

#### **Details**

```
Variables of palm$traits are the following ones: rord: specific richness with five ordered levels h: height in meter (squared transform) dqual: diameter at breast height in centimeter with five levels sout: subterranean, d1(0, 5 cm), d2(5, 15 cm), d3(15, 30 cm) and d4(30, 100 cm) vfruit: fruit volume in mm^3 (logged transform) vgrain: seed volume in mm^3 (logged transform) aire: spatial distribution area (km^2) alti: maximum altitude in meter (logged transform)
```

### Source

This data set was obtained by Clémentine Gimaret-Carpentier.

## **Examples**

```
## Not run:
data(palm)
palm.phy <- newick2phylog(palm$tre)</pre>
radial.phylog(palm.phy,clabel.l=1.25)
if (requireNamespace("adephylo", quietly = TRUE) & requireNamespace("ape", quietly = TRUE)) {
 tre <- ape::read.tree(text = palm$tre)</pre>
 adephylo::orthogram(palm$traits[, 4], tre)
}
dotchart.phylog(palm.phy,palm$traits[,4], clabel.l = 1,
labels.n = palm.phy$Blabels, clabel.n = 0.75)
w <- cbind.data.frame(palm.phy$Bscores[,c(3,4,6,13,21)],</pre>
scalewt((palm$traits[,4])))
names(w)[6] <- names(palm$traits[4])</pre>
table.phylog(w, palm.phy, clabel.r = 0.75, f = 0.5)
gearymoran(palm.phy$Amat, palm$traits[,-c(1,3)])
## End(Not run)
```

рар

Taxonomy and quantitative traits of carnivora

## Description

This data set describes the taxonomy of 39 carnivora. It also gives life-history traits corresponding to these 39 species.

## Usage

```
data(pap)
```

### **Format**

```
pap is a list containing the 2 following objects :
```

taxo is a data frame with 39 species and 3 columns.

tab is a data frame with 39 species and 4 traits.

#### **Details**

Variables of pap\$tab are the following ones: genre (genus with 30 levels), famille (family with 6 levels), superfamille (superfamily with 2 levels).

Variables of pap\$tab are Group Size, Body Weight, Brain Weight, Litter Size.

#### **Source**

Data taken from the phylogenetic autocorrelation package

# **Examples**

```
data(pap)
taxo <- taxo2phylog(as.taxo(pap$taxo))
table.phylog(as.data.frame(scalewt(pap$tab)), taxo, csi = 2, clabel.nod = 0.6,
f.phylog = 0.6)</pre>
```

pcaiv

Principal component analysis with respect to instrumental variables

# **Description**

performs a principal component analysis with respect to instrumental variables.

# Usage

```
pcaiv(dudi, df, scannf = TRUE, nf = 2)
## S3 method for class 'pcaiv'
plot(x, xax = 1, yax = 2, ...)
## S3 method for class 'pcaiv'
print(x, ...)
## S3 method for class 'pcaiv'
summary(object, ...)
```

#### **Arguments**

dudi a duality diagram, object of class dudi

df a data frame with the same rows

scannf a logical value indicating whether the eigenvalues bar plot should be displayed

nf if scannf FALSE, an integer indicating the number of kept axes

x, object an object of class pcaiv

xax the column number for the x-axis yax the column number for the y-axis

... further arguments passed to or from other methods

### Value

returns an object of class pcaiv, sub-class of class dudi

tab a data frame with the modified array (projected variables)

cw a numeric vector with the column weigths (from dudi)

lw a numeric vector with the row weigths (from dudi)

eig a vector with the all eigenvalues

rank an integer indicating the rank of the studied matrix nf an integer indicating the number of kept axes

c1 a data frame with the Pseudo Principal Axes (PPA)

li a data frame dudi\$1s with the predicted values by X

co a data frame with the inner products between the CPC and Y data frame with the Constraint Principal Components (CPC)

call the matched call

X a data frame with the explanatory variables
Y a data frame with the dependant variables

1s a data frame with the projections of lines of dudi\$tab on PPA

param a table containing information about contributions of the analyses: absolute

(1) and cumulative (2) contributions of the decomposition of inertia of the dudi object, absolute (3) and cumulative (4) variances of the projections, the ration (5) between the cumulative variances of the projections (4) and the cumulative contributions (2), the square coefficient of correlation (6) and the eigenvalues of

the pcaiv (7)

as a data frame with the Principal axes of dudi\$tab on PPA

fa a data frame with the loadings (Constraint Principal Components as linear com-

binations of X

cor a data frame with the correlations between the CPC and X

#### Author(s)

```
Daniel Chessel
Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>
Stéphane Dray <stephane.dray@univ-lyon1.fr>
```

#### References

Rao, C. R. (1964) The use and interpretation of principal component analysis in applied research. *Sankhya*, **A 26**, 329–359.

Obadia, J. (1978) L'analyse en composantes explicatives. Revue de Statistique Appliquee, 24, 5–28.

Lebreton, J. D., Sabatier, R., Banco G. and Bacou A. M. (1991) Principal component and correspondence analyses with respect to instrumental variables: an overview of their role in studies of structure-activity and species- environment relationships. In J. Devillers and W. Karcher, editors. *Applied Multivariate Analysis in SAR and Environmental Studies*, Kluwer Academic Publishers, 85–114.

Ter Braak, C. J. F. (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. *Ecology*, **67**, 1167–1179.

Ter Braak, C. J. F. (1987) The analysis of vegetation-environment relationships by canonical correspondence analysis. *Vegetatio*, **69**, 69–77.

Chessel, D., Lebreton J. D. and Yoccoz N. (1987) Propriétés de l'analyse canonique des correspondances. Une utilisation en hydrobiologie. *Revue de Statistique Appliquée*, **35**, 55–72.

```
# example for the pcaiv
data(rhone)
pca1 <- dudi.pca(rhone$tab, scan = FALSE, nf = 3)</pre>
iv1 <- pcaiv(pca1, rhone$disch, scan = FALSE)</pre>
summary(iv1)
plot(iv1)
# example for the caiv
data(rpjdl)
millog <- log(rpjdl$mil + 1)</pre>
coa1 <- dudi.coa(rpjdl$fau, scann = FALSE)</pre>
caiv1 <- pcaiv(coa1, millog, scan = FALSE)</pre>
if(adegraphicsLoaded()) {
  G1 <- plot(caiv1)</pre>
  # analysis with c1 - as - li -ls
  # projections of inertia axes on PCAIV axes
  G2 <- s.corcircle(caiv1$as)</pre>
```

```
# Species positions
 g31 < -s.label(caiv1$c1, xax = 2, yax = 1, plab.cex = 0.5, xlim = c(-4, 4), plot = FALSE)
 # Sites positions at the weighted mean of present species
 g32 <- s.label(caiv1$ls, xax = 2, yax = 1, plab.cex = 0, plot = FALSE)
 G3 <- superpose(g31, g32, plot = TRUE)
 # Prediction of the positions by regression on environmental variables
 G4 \leftarrow s.match(caiv1$ls, caiv1$li, xax = 2, yax = 1, plab.cex = 0.5)
 # analysis with fa - 11 - co -cor
 # canonical weights giving unit variance combinations
 G5 <- s.arrow(caiv1$fa)</pre>
 # sites position by environmental variables combinations
 # position of species by averaging
 g61 <- s.label(caiv1$11, xax = 2, yax = 1, plab.cex = 0, ppoi.cex = 1.5, plot = FALSE)
 g62 <- s.label(caiv1$co, xax = 2, yax = 1, plot = FALSE)
 G6 <- superpose(g61, g62, plot = TRUE)
 G7 <- s.distri(caiv1$11, rpjdl$fau, xax = 2, yax = 1, ellipseSize = 0, starSize = 0.33)
 # coherence between weights and correlations
 g81 <- s.corcircle(caiv1$cor, xax = 2, yax = 1, plot = FALSE)
 g82 <- s.arrow(caiv1$fa, xax = 2, yax = 1, plot = FALSE)
 G8 <- cbindADEg(g81, g82, plot = TRUE)
} else {
 plot(caiv1)
 \# analysis with c1 - as - li -ls
 # projections of inertia axes on PCAIV axes
 s.corcircle(caiv1$as)
 # Species positions
 s.label(caiv1$c1, 2, 1, clab = 0.5, xlim = c(-4, 4))
 # Sites positions at the weighted mean of present species
 s.label(caiv1$ls, 2, 1, clab = 0, cpoi = 1, add.p = TRUE)
 # Prediction of the positions by regression on environmental variables
 s.match(caiv1$ls, caiv1$li, 2, 1, clab = 0.5)
 # analysis with fa - l1 - co -cor
 # canonical weights giving unit variance combinations
 s.arrow(caiv1$fa)
 # sites position by environmental variables combinations
 # position of species by averaging
 s.label(caiv1$11, 2, 1, clab = 0, cpoi = 1.5)
 s.label(caiv1$co, 2, 1, add.plot = TRUE)
 s.distri(caiv1$11, rpjdl$fau, 2, 1, cell = 0, csta = 0.33)
 s.label(caiv1$co, 2, 1, clab = 0.75, add.plot = TRUE)
```

pcaivortho 241

```
# coherence between weights and correlations
par(mfrow = c(1, 2))
s.corcircle(caiv1$cor, 2, 1)
s.arrow(caiv1$fa, 2, 1)
par(mfrow = c(1, 1))
}
```

pcaivortho

Principal Component Analysis with respect to orthogonal instrumental variables

# **Description**

performs a Principal Component Analysis with respect to orthogonal instrumental variables.

# Usage

```
pcaivortho(dudi, df, scannf = TRUE, nf = 2)
## S3 method for class 'pcaivortho'
summary(object, ...)
```

## **Arguments**

dudi a duality diagram, object of class dudi

df a data frame with the same rows

scannf a logical value indicating whether the eigenvalues bar plot should be displayed

nf if scannf FALSE, an integer indicating the number of kept axes

object an object of class pcaiv

... further arguments passed to or from other methods

an integer indicating the rank of the studied matrix

#### Value

rank

an object of class 'pcaivortho' sub-class of class dudi

| nf  | an integer indicating the number of kept axes              |
|-----|------------------------------------------------------------|
| eig | a vector with the all eigenvalues                          |
| lw  | a numeric vector with the row weigths (from dudi)          |
| CW  | a numeric vector with the column weigths (from dudi)       |
| Υ   | a data frame with the dependant variables                  |
| Χ   | a data frame with the explanatory variables                |
| tab | a data frame with the modified array (projected variables) |
| c1  | a data frame with the Pseudo Principal Axes (PPA)          |
| as  | a data frame with the Principal axis of dudi\$tab on PAP   |

242 pcaivortho

| ls    | a data frame with the projection of lines of dudi\$tab on PPA |
|-------|---------------------------------------------------------------|
| li    | a data frame dudi $\$$ 1s with the predicted values by $X$    |
| 11    | a data frame with the Constraint Principal Components (CPC)   |
| со    | a data frame with the inner product between the CPC and Y     |
| param | a data frame containing a summary                             |

#### Author(s)

```
Daniel Chessel
```

```
Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr> Stéphane Dray <stephane.dray@univ-lyon1.fr>
```

#### References

Rao, C. R. (1964) The use and interpretation of principal component analysis in applied research. *Sankhya*, **A 26**, 329–359.

Sabatier, R., Lebreton J. D. and Chessel D. (1989) Principal component analysis with instrumental variables as a tool for modelling composition data. In R. Coppi and S. Bolasco, editors. *Multiway data analysis*, Elsevier Science Publishers B.V., North-Holland, 341–352

```
## Not run:
data(avimedi)
cla <- avimedi$plan$reg:avimedi$plan$str</pre>
# simple ordination
coa1 <- dudi.coa(avimedi$fau, scan = FALSE, nf = 3)</pre>
# within region
w1 <- wca(coa1, avimedi$plan$reg, scan = FALSE)</pre>
# no region the same result
pcaivnonA <- pcaivortho(coa1, avimedi$plan$reg, scan = FALSE)</pre>
summary(pcaivnonA)
# region + strate
interAplusB <- pcaiv(coa1, avimedi$plan, scan = FALSE)</pre>
if(adegraphicsLoaded()) {
  g1 <- s.class(coa1$li, cla, psub.text = "Sans contrainte", plot = FALSE)
  g21 <- s.match(w1$li, w1$ls, plab.cex = 0, psub.text = "Intra Région", plot = FALSE)
  g22 <- s.class(w1$li, cla, plot = FALSE)
  g2 <- superpose(g21, g22)</pre>
 g31 <- s.match(pcaivnonA$li, pcaivnonA$ls, plab.cex = 0, psub.tex = "Contrainte Non A",
    plot = FALSE)
  g32 <- s.class(pcaivnonA$li, cla, plot = FALSE)
  g3 <- superpose(g31, g32)
 g41 <- s.match(interAplusB$li, interAplusB$ls, plab.cex = 0, psub.text = "Contrainte A + B",
    plot = FALSE)
  g42 <- s.class(interAplusB$li, cla, plot = FALSE)
  g4 <- superpose(g41, g42)
  G \leftarrow ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
```

pcoscaled 243

```
} else {
  par(mfrow = c(2, 2))
  s.class(coa1$li, cla, sub = "Sans contrainte")
  s.match(w1$li, w1$ls, clab = 0, sub = "Intra Région")
  s.class(w1$li, cla, add.plot = TRUE)
  s.match(pcaivnonA$li, pcaivnonA$ls, clab = 0, sub = "Contrainte Non A")
  s.class(pcaivnonA$li, cla, add.plot = TRUE)
  s.match(interAplusB$li, interAplusB$ls, clab = 0, sub = "Contrainte A + B")
  s.class(interAplusB$li, cla, add.plot = TRUE)
  par(mfrow = c(1,1))
}
### End(Not run)
```

pcoscaled

Simplified Analysis in Principal Coordinates

# Description

performs a simplified analysis in principal coordinates, using an object of class dist.

## Usage

```
pcoscaled(distmat, tol = 1e-07)
```

# **Arguments**

distmat an object of class dist

tol a tolerance threshold, an eigenvalue is considered as positive if it is larger than

-tol\*lambda1 where lambda1 is the largest eigenvalue

#### Value

returns a data frame containing the Euclidean representation of the distance matrix with a total inertia equal to 1

## Author(s)

Daniel Chessel

### References

Gower, J. C. (1966) Some distance properties of latent root and vector methods used in multivariate analysis. *Biometrika*, **53**, 325–338.

244 pcw

## **Examples**

pcw

Distribution of of tropical trees along the Panama canal

## **Description**

Abundance of tropical trees, environmental variables and spatial coordinates for 50 sites. Data are available at doi:10.1126/science.1066854 but plots from Barro Colorado Island were removed.

### Usage

data(pcw)

#### **Format**

A list with 5 components.

**spe** Distribution of the abundances of 778 species in 50 sites

env Measurements of environmental variables for the 50 sites

xy Spatial coordinates for the sites (decimal degrees)

xy.utm Spatial coordinates for the sites (UTM)

map Map of the study area stored as a SpatialPolygons object

#### Source

Condit, R., N. Pitman, E. G. Leigh, J. Chave, J. Terborgh, R. B. Foster, P. Núnez, S. Aguilar, R. Valencia, G. Villa, H. C. Muller-Landau, E. Losos, and S. P. Hubbell. (2002) Beta-diversity in tropical forest trees. *Science*, **295**, 666-669.

Pyke, C. R., R. Condit, S. Aguilar, and S. Lao. (2001) Floristic composition across a climatic gradient in a neotropical lowland forest. *Journal of Vegetation Science*, **12**, 553–566.

#### References

Dray, S., R. Pélissier, P. Couteron, M. J. Fortin, P. Legendre, P. R. Peres-Neto, E. Bellier, R. Bivand, F. G. Blanchet, M. De Caceres, A. B. Dufour, E. Heegaard, T. Jombart, F. Munoz, J. Oksanen, J. Thioulouse, and H. H. Wagner. (2012) Community ecology in the age of multivariate multiscale spatial analysis. *Ecological Monographs*, **82**, 257–275.

perthi02 245

## **Examples**

```
if(adegraphicsLoaded()) {
   data(pcw)
   if(requireNamespace("spdep", quietly = TRUE)) {
     nb1 <- spdep::graph2nb(spdep::gabrielneigh(pcw$xy.utm), sym = TRUE)
     s.label(pcw$xy, nb = nb1, Sp = pcw$map)
   }
}</pre>
```

perthi02

Contingency Table with a partition in Molecular Biology

# **Description**

This data set gives the amino acids of 904 proteins distributed in three classes.

# Usage

```
data(perthi02)
```

#### **Format**

perthi02 is a list of 2 components.

tab is a data frame 904 rows (proteins of 201 species) 20 columns (amino acids).

cla is a factor of 3 classes of protein

The levels of perthi02\$cla are cyto (cytoplasmic proteins) memb (integral membran proteins) peri (periplasmic proteins)

#### Source

Perriere, G. and Thioulouse, J. (2002) Use of Correspondence Discriminant Analysis to predict the subcellular location of bacterial proteins. *Computer Methods and Programs in Biomedicine*, **70**, 2, 99–105.

```
data(perthi02)
plot(discrimin.coa(perthi02$tab, perthi02$cla, scan = FALSE))
```

246 phylog

|--|

## **Description**

Create and use objects of class phylog.

phylog.extract returns objects of class phylog. It extracts sub-trees from a tree.

phylog.permut returns objects of class phylog. It creates the different representations compatible with tree topology.

### Usage

```
## $3 method for class 'phylog'
print(x, ...)
phylog.extract(phylog, node, distance = TRUE)
phylog.permut(phylog, list.nodes = NULL, distance = TRUE)
```

# Arguments

x, phylog : an object of class phylog

... : further arguments passed to or from other methods

node : a string of characters giving a node name. The functions extracts the tree

rooted at this node.

distance : if TRUE, both functions retain branch lengths. If FALSE, they returns tree

with arbitrary branch lengths (each branch length equals one)

list.nodes : a list which elements are vectors of string of character corresponding to direct

descendants of nodes. This list defines one representation compatible with tree

topology among the set of possibilities.

#### Value

Returns a list of class phylog:

tre : a character string of the phylogenetic tree in Newick format whithout branch

length values

leaves : a vector which names corresponds to leaves and values gives the distance

between leaves and nodes closest to these leaves

nodes : a vector which names corresponds to nodes and values gives the distance be-

tween nodes and nodes closest to these leaves

parts : a list which elements gives the direct descendants of each nodes

paths : a list which elements gives the path leading from the root to taxonomic units

(leaves and nodes)

droot : a vector which names corresponds to taxonomic units and values gives distance

between taxonomic units and the root

phylog 247

call : call

Wmat : a phylogenetic link matrix, generally called the covariance matrix. Matrix

values  $Wmat_{ij}$  correspond to path length that lead from root to the first common

ancestor of the two leaves i and j

Wdist : a phylogenetic distance matrix of class 'dist'. Matrix values  $Wdist_{ij}$  cor-

respond to  $\sqrt{d_{ij}}$  where  $d_{ij}$  is the classical distance between two leaves i and

j

Wvalues : a vector with the eigen values of Wmat

Wscores : a data frame with eigen vectors of Wmat. This data frame defines an orthobasis

that could be used to calculate the orthonormal decomposition of a biological

trait on a tree.

Amat : a phylogenetic link matrix stemed from Abouheif's test and defined in Ollier

et al. (submited)

Avalues : a vector with the eigen values of Amat

Adim : number of positive eigen values

Ascores : a data frame with eigen vectors of Amat. This data frame defines an orthobasis

that could be used to calculate the orthonormal decomposition of a biological

trait on a tree.

Aparam : a data frame with attributes associated to nodes.

Bindica : a data frame giving for some taxonomic units the partition of leaves that is

associated to its

Bscores : a data frame giving an orthobasis defined by Ollier et al. (submited) that could

be used to calculate the orthonormal decomposition of a biological trait on a

tree.

By alues : a vector giving the degree of phylogenetic autocorrelation for each vectors of

Bscores (Moran's form calculated with the matrix Wmat)

Blabels : a vector giving for each nodes the name of the vector of Bscores that is associ-

ated to its

## Author(s)

Daniel Chessel

Sébastien Ollier < sebastien.ollier@u-psud.fr>

# References

Ollier, S., Couteron, P. and Chessel, D. (2006) Orthonormal transform to decompose the variance of a life-history trait across a phylogenetic tree. *Biometrics* Biometrics, **62**, 2, 471–477.

#### See Also

newick2phylog, plot.phylog

248 PI2newick

### **Examples**

```
marthans.tre <- NULL
marthans.tre[1] <-"((((1:4,2:4)a:5,(3:7,4:7)b:2)c:2,5:11)d:2,"
marthans.tre[2] <- "((6:5,7:5)e:4,(8:4,9:4)f:5)g:4);"
marthans.phylog <- newick2phylog(marthans.tre)
marthans.phylog

if(requireNamespace("ape", quietly = TRUE)) {
   marthans.phylo <- ape::read.tree(text = marthans.tre)
   marthans.phylo

   par(mfrow = c(1, 2))
   plot(marthans.phylog, cnode = 3, f = 0.8, cle = 3)
   plot(marthans.phylo)
   par(mfrow = c(1, 1))
}</pre>
```

PI2newick

Import data files from Phylogenetic Independance Package

# **Description**

This function ensures to transform a data set written for the Phylogenetic Independence package of Abouheif (1999) in a data set formatting for the functions of ade4.

#### Usage

```
PI2newick(x)
```

#### **Arguments**

Х

is a data frame that contains information on phylogeny topology and trait values

#### Value

Returns a list containing:

tre : a character string giving the phylogenetic tree in Newick format

trait : a vector containing values of the trait

# Author(s)

```
Sébastien Ollier <sebastien.ollier@u-psud.fr> Daniel Chessel
```

#### References

Abouheif, E. (1999) A method for testing the assumption of phylogenetic independence in comparative data. *Evolutionary Ecology Research*, **1**, 895–909.

piosphere 249

## **Examples**

piosphere

Plant traits response to grazing

## **Description**

Plant species cover, traits and environmental parameters recorded around livestock watering points in different habitats of central Namibian farmlands. See the Wesuls et al. (2012) paper for a full description of the data set.

# Usage

```
data(piosphere)
```

#### Format

piosphere is a list of 4 components.

veg is a data frame containing plant species cover

**traits** is a data frame with plant traits

env is a data frame with environmental variables

habitat is a factor describing habitat/years for each site

#### **Source**

Wesuls, D., Oldeland, J. and Dray, S. (2012) Disentangling plant trait responses to livestock grazing from spatio-temporal variation: the partial RLQ approach. *Journal of Vegetation Science*, **23**, 98–113.

```
data(piosphere)
names(piosphere)
afcL <- dudi.coa(log(piosphere$veg + 1), scannf = FALSE)
acpR <- dudi.pca(piosphere$env, scannf = FALSE, row.w = afcL$lw)
acpQ <- dudi.hillsmith(piosphere$traits, scannf = FALSE, row.w = afcL$cw)
rlq1 <- rlq(acpR, afcL, acpQ, scannf = FALSE)
plot(rlq1)</pre>
```

250 plot.phylog

# **Description**

plot.phylog draws phylogenetic trees as linear dendograms. radial.phylog draws phylogenetic trees as circular dendograms. enum.phylog enumerate all the possible representations for a phylogeny.

# Usage

```
## S3 method for class 'phylog'
plot(x, y = NULL, f.phylog = 0.5, cleaves = 1, cnodes = 0,
  labels.leaves = names(x$leaves), clabel.leaves = 1,
  labels.nodes = names(x$nodes), clabel.nodes = 0, sub = "",
  csub = 1.25, possub = "bottomleft", draw.box = FALSE, ...)
radial.phylog(phylog, circle = 1, cleaves = 1, cnodes = 0,
  labels.leaves = names(phylog$leaves), clabel.leaves = 1,
  labels.nodes = names(phylog$nodes), clabel.nodes = 0,
  draw.box = FALSE)
enum.phylog(phylog, no.over = 1000)
```

# **Arguments**

| x, phylog     | an object of class phylog                                                                                                       |
|---------------|---------------------------------------------------------------------------------------------------------------------------------|
| У             | a vector which values correspond to leaves positions                                                                            |
| f.phylog      | a size coefficient for tree size (a parameter to draw the tree in proportion to leaves label)                                   |
| circle        | a size coefficient for the outer circle                                                                                         |
| cleaves       | a character size for plotting the points that represent the leaves, used with par ("cex")*cleaves. If zero, no points are drawn |
| cnodes        | a character size for plotting the points that represent the nodes, used with par ("cex")*cnodes. If zero, no points are drawn   |
| labels.leaves | a vector of strings of characters for the leaves labels                                                                         |
| clabel.leaves | a character size for the leaves labels, used with par("cex")*clabel.leaves. If zero, no leaves labels are drawn                 |
| labels.nodes  | a vector of strings of characters for the nodes labels                                                                          |
| clabel.nodes  | a character size for the nodes labels, used with par("cex")*clabel.nodes. If zero, no nodes labels are drawn                    |
| sub           | a string of characters to be inserted as legend                                                                                 |
| csub          | a character size for the legend, used with par("cex")*csub                                                                      |
| possub        | a string of characters indicating the sub-title position ("topleft", "topright", "bottomleft", "bottomright")                   |

plot.phylog 251

```
draw.box if TRUE draws a box around the current plot with the function box()
... further arguments passed to or from other methods
no.over a size coefficient for the number of representations
```

### **Details**

The vector y is an argument of the function plot.phylog that ensures to plot one of the possible representations of a phylogeny. The vector y is a permutation of the set of leaves  $\{1,2,\ldots,f\}$  compatible with the phylogeny's topology.

#### Value

The function enum.phylog returns a matrix with as many columns as leaves. Each row gives a permutation of the set of leaves  $\{1,2,\ldots,f\}$  compatible with the phylogeny's topology.

### Author(s)

```
Daniel Chessel
Sébastien Ollier <sebastien.ollier@u-psud.fr>
```

## See Also

```
phylog
```

```
data(newick.eg)
par(mfrow = c(3,2))
for(i in 1:6) plot(newick2phylog(newick.eg[[i]], FALSE),
clea = 2, clabel.1 = 3, cnod = 2.5)
par(mfrow = c(1,1))
## Not run:
par(mfrow = c(1,2))
plot(newick2phylog(newick.eg[[11]], FALSE), clea = 1.5,
clabel.1 = 1.5, clabel.nod = 0.75, f = 0.8)
plot(newick2phylog(newick.eg[[10]], FALSE), clabel.l = 0,
 clea = 0, cn = 0, f = 1)
par(mfrow = c(1,1))
## End(Not run)
par(mfrow = c(2,2))
w7 \leftarrow newick2phylog("(((((1,2,3)b),(6)c),(4,5)d,7)f);")
plot(w7, clabel.1 = 1.5, clabel.n = 1.5, f = 0.8, cle = 2,
 cnod = 3, sub = "(((((1,2,3)b),(6)c),(4,5)d,7)f);", <math>csub = 2)
w <- NULL
w[1] \leftarrow "(((e1:4,e2:4)a:5,(e3:7,e4:7)b:2)c:2,e5:11)d:2,"
w[2] <- "((e6:5,e7:5)e:4,(e8:4,e9:4)f:5)g:4);"
plot(newick2phylog(w), f = 0.8, cnod = 2, cleav = 2, clabel.1 = 2)
```

252 presid2002

```
data(taxo.eg)
w <- taxo2phylog(as.taxo(taxo.eg[[1]]))</pre>
plot(w, clabel.lea = 1.25, clabel.n = 1.25, sub = "Taxonomy",
csub = 3, f = 0.8, possub = "topleft")
provi.tre <- "(((a,b,c,d,e)A,(f,g,h)B)C)D;"
provi.phy <- newick2phylog(provi.tre)</pre>
plot(provi.phy, clabel.1 = 2, clabel.n = 2, f = 0.8)
par(mfrow = c(1,1))
## Not run:
par(mfrow = c(3,3))
for (j in 1:6) radial.phylog(newick2phylog(newick.eg[[j]],
FALSE), clabel.1 = 2, cnodes = 2)
radial.phylog(newick2phylog(newick.eg[[7]],FALSE), clabel.1 = 2)
radial.phylog(newick2phylog(newick.eg[[8]],FALSE), clabel.l = 0,
 circle = 1.8)
radial.phylog(newick2phylog(newick.eg[[9]],FALSE), clabel.l = 1,
clabel.n = 1, cle = 0, cnode = 1)
par(mfrow = c(1,1))
data(bsetal97)
bsetal.phy = taxo2phylog(as.taxo(bsetal97$taxo[,1:3]), FALSE)
radial.phylog(bsetal.phy, cnod = 1, clea = 1, clabel.1 = 0.75,
draw.box = TRUE, cir = 1.1)
par(mfrow = c(1,1))
## End(Not run)
## Not run:
# plot all the possible representations of a phylogenetic tree
a \leftarrow "((a,b)A,(c,d,(e,f)B)C)D;"
wa <- newick2phylog(a)</pre>
wx <- enum.phylog(wa)</pre>
dim(wx)
par(mfrow = c(6,8))
fun <- function(x) {</pre>
    w <-NULL
    lapply(x, function(y) w<<-paste(w,as.character(y),sep=""))</pre>
    plot(wa, x, clabel.n = 1.25, f = 0.75, clabel.l = 2,
     box = FALSE, cle = 1.5, sub = w, csub = 2)
    invisible()}
apply(wx,1,fun)
par(mfrow = c(1,1))
## End(Not run)
```

presid2002 253

## Description

presid2002 is a list of two data frames tour1 and tour2 with 93 rows (93 departments from continental Metropolitan France) and, 4 and 12 variables respectively.

### Usage

```
data(presid2002)
```

### **Format**

tour1 contains the following arguments:

the number of registered voters (inscrits); the number of abstentions (abstentions); the number of voters (votants); the number of expressed votes (exprimes) and, the numbers of votes for each candidate: Megret, Lepage, Gluksten, Bayrou, Chirac, Le\_Pen, Taubira, Saint.josse, Mamere, Jospin, Boutin, Hue, Chevenement, Madelin, Besancenot.

tour 2 contains the following arguments:

the number of registered voters (inscrits); the number of abstentions (abstentions); the number of voters (votants); the number of expressed votes (exprimes) and, the numbers of votes for each candidate: Chirac and Le\_Pen.

#### Source

Site of the ministry of the Interior, of the Internal Security and of the local liberties https://www.interieur.gouv.fr/Elections/Les-resultats/Presidentielles/elecresult\_presidentielle\_2002/(path)/presidentielle\_2002/index.html

### See Also

This dataset is compatible with elec88 and cnc2003

```
data(presid2002)
all((presid2002$tour2$Chirac + presid2002$tour2$Le_Pen) == presid2002$tour2$exprimes)

## Not run:
data(elec88)
data(cnc2003)
w0 <- ade4:::area.util.class(elec88$area, cnc2003$reg)
w1 <- scale(elec88$tab$Chirac)
w2 <- scale(presid2002$tour1$Chirac / presid2002$tour1$exprimes)
w3 <- scale(elec88$tab$Mitterand)
w4 <- scale(presid2002$tour2$Chirac / presid2002$tour2$exprimes)

if(adegraphicsLoaded()) {
   g1 <- s.value(elec88$xy, w1, Sp = elec88$Spatial, pSp.col = "white", pgrid.draw = FALSE, psub.text = "Chirac 1988 T1", plot = FALSE)
   g2 <- s.value(elec88$xy, w2, Sp = elec88$Spatial, pSp.col = "white", pgrid.draw = FALSE, psub.text = "Chirac 2002 T1", plot = FALSE)</pre>
```

254 procella

```
g3 <- s.value(elec88$xy, w3, Sp = elec88$Spatial, pSp.col = "white", pgrid.draw = FALSE,
   psub.text = "Mitterand 1988 T1", plot = FALSE)
 g4 <- s.value(elec88$xy, w4, Sp = elec88$Spatial, pSp.col = "white", pgrid.draw = FALSE,
   psub.text = "Chirac 2002 T2", plot = FALSE)
 G \leftarrow ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
} else {
 par(mfrow = c(2, 2))
 par(mar = c(0.1, 0.1, 0.1, 0.1))
 area.plot(w0)
 s.value(elec88$xy, w1, add.plot = TRUE)
 scatterutil.sub("Chirac 1988 T1", csub = 2, "topleft")
 area.plot(w0)
 s.value(elec88$xy, w2, add.plot = TRUE)
 scatterutil.sub("Chirac 2002 T1", csub = 2, "topleft")
 area.plot(w0)
 s.value(elec88$xy, w3, add.plot = TRUE)
 scatterutil.sub("Mitterand 1988 T1", csub = 2, "topleft")
 area.plot(w0)
 s.value(elec88$xy, w4, add.plot = TRUE)
 scatterutil.sub("Chirac 2002 T2", csub = 2, "topleft")
## End(Not run)
```

procella

Phylogeny and quantitative traits of birds

## **Description**

This data set describes the phylogeny of 19 birds as reported by Bried et al. (2002). It also gives 6 traits corresponding to these 19 species.

### Usage

```
data(procella)
```

## **Format**

procella is a list containing the 2 following objects:

tre is a character string giving the phylogenetic tree in Newick format.

traits is a data frame with 19 species and 6 traits

procuste 255

#### **Details**

Variables of procella\$traits are the following ones: site.fid: a numeric vector that describes the percentage of site fidelity mate.fid: a numeric vector that describes the percentage of mate fidelity mass: an integer vector that describes the adult body weight (g)

ALE: a numeric vector that describes the adult life expectancy (years)

BF: a numeric vector that describes the breeding frequencies col.size: an integer vector that describes the colony size (no nests monitored)

#### References

Bried, J., Pontier, D. and Jouventin, P. (2002) Mate fidelity in monogamus birds: a re-examination of the Procellariiformes. *Animal Behaviour*, **65**, 235–246.

See a data description at http://pbil.univ-lyon1.fr/R/pdf/pps037.pdf (in French).

### **Examples**

```
data(procella)
pro.phy <- newick2phylog(procella$tre)
plot(pro.phy,clabel.n = 1, clabel.l = 1)
wt <- procella$traits
wt$site.fid[is.na(wt$site.fid)] <- mean(wt$site.fid[!is.na(wt$site.fid)])
wt$site.fid <- asin(sqrt(wt$site.fid/100))
wt$ALE[is.na(wt$ALE)] <- mean(wt$ALE[!is.na(wt$ALE)])
wt$ALE <- sqrt(wt$ALE)
wt$BF[is.na(wt$BF)] <- mean(wt$BF[!is.na(wt$BF)])
wt$mass <- log(wt$mass)
wt <- wt[, -6]
table.phylog(scalewt(wt), pro.phy, csi = 2)
gearymoran(pro.phy$Amat,wt,9999)</pre>
```

procuste

Simple Procruste Rotation between two sets of points

# Description

performs a simple procruste rotation between two sets of points.

### Usage

```
procuste(dfX, dfY, scale = TRUE, nf = 4, tol = 1e-07)
## S3 method for class 'procuste'
plot(x, xax = 1, yax = 2, ...)
## S3 method for class 'procuste'
print(x, ...)
## S3 method for class 'procuste'
randtest(xtest, nrepet = 999, ...)
```

256 procuste

## **Arguments**

dfX, dfY two data frames with the same rows

scale a logical value indicating whether a transformation by the Gower's scaling (1971)

should be applied

nf an integer indicating the number of kept axes

tol a tolerance threshold to test whether the distance matrix is Euclidean: an eigen-

value is considered positive if it is larger than -tol\*lambda1 where lambda1 is

the largest eigenvalue.

x, xtest an objet of class procuste

xax the column number for the x-axis
yax the column number for the y-axis

nrepet the number of repetitions to perform the randomization test

... further arguments passed to or from other methods

#### Value

returns a list of the class procuste with 9 components

d a numeric vector of the singular values

rank an integer indicating the rank of the crossed matrix

nf an integer indicating the number of kept axes
tabX a data frame with the array X, possibly scaled
tabY a data frame with the array Y, possibly scaled

rotX a data frame with the result of the rotation from array X to array Y
rotY a data frame with the result of the rotation from array Y to array X

loadX a data frame with the loadings of array X
loadY a data frame with the loadings of array Y
scorX a data frame with the scores of array X
scorY a data frame with the scores of array Y

call a call order of the analysis

#### Author(s)

Daniel Chessel

Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>

procuste 257

#### References

Digby, P. G. N. and Kempton, R. A. (1987) Multivariate Analysis of Ecological Communities. *Population and Community Biology Series*, Chapman and Hall, London.

Gower, J.C. (1971) Statistical methods of comparing different multivariate analyses of the same data. In *Mathematics in the archaeological and historical sciences*, Hodson, F.R, Kendall, D.G. & Tautu, P. (Eds.) University Press, Edinburgh, 138–149.

Schönemann, P.H. (1968) On two-sided Procustes problems. Psychometrika, 33, 19–34.

Torre, F. and Chessel, D. (1994) Co-structure de deux tableaux totalement appariés. *Revue de Statistique Appliquée*, **43**, 109–121.

Dray, S., Chessel, D. and Thioulouse, J. (2003) Procustean co-inertia analysis for the linking of multivariate datasets. *Ecoscience*, **10**, 1, 110-119.

```
data(macaca)
pro1 <- procuste(macaca$xy1, macaca$xy2, scal = FALSE)</pre>
pro2 <- procuste(macaca$xy1, macaca$xy2)</pre>
if(adegraphicsLoaded()) {
 g1 <- s.match(pro1$tabX, pro1$rotY, plab.cex = 0.7, plot = FALSE)
 g2 <- s.match(pro1$tabY, pro1$rotX, plab.cex = 0.7, plot = FALSE)</pre>
 g3 <- s.match(pro2$tabX, pro2$rotY, plab.cex = 0.7, plot = FALSE)
 g4 <- s.match(pro2$tabY, pro2$rotX, plab.cex = 0.7, plot = FALSE)
 G \leftarrow ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
} else {
 par(mfrow = c(2, 2))
 s.match(pro1$tabX, pro1$rotY, clab = 0.7)
 s.match(pro1$tabY, pro1$rotX, clab = 0.7)
 s.match(pro2$tabX, pro2$rotY, clab = 0.7)
 s.match(pro2$tabY, pro2$rotX, clab = 0.7)
 par(mfrow = c(1,1))
}
data(doubs)
pca1 <- dudi.pca(doubs$env, scal = TRUE, scann = FALSE)</pre>
pca2 <- dudi.pca(doubs$fish, scal = FALSE, scann = FALSE)</pre>
pro3 <- procuste(pca1$tab, pca2$tab, nf = 2)</pre>
if(adegraphicsLoaded()) {
 g11 <- s.traject(pro3$scorX, plab.cex = 0, plot = FALSE)
 g12 <- s.label(pro3$scorX, plab.cex = 0.8, plot = FALSE)
 g1 <- superpose(g11, g12)
 g21 <- s.traject(pro3$scorY, plab.cex = 0, plot = FALSE)
 g22 <- s.label(pro3$scorY, plab.cex = 0.8, plot = FALSE)
 g2 <- superpose(g21, g22)
 g3 <- s.arrow(pro3$loadX, plab.cex = 0.75, plot = FALSE)
 g4 <- s.arrow(pro3$loadY, plab.cex = 0.75, plot = FALSE)
 G \leftarrow ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
```

258 procuste.randtest

```
} else {
   par(mfrow = c(2, 2))
   s.traject(pro3$scorX, clab = 0)
   s.label(pro3$scorX, clab = 0.8, add.p = TRUE)
   s.traject(pro3$scorY, clab = 0)
   s.label(pro3$scorY, clab = 0.8, add.p = TRUE)
   s.arrow(pro3$loadX, clab = 0.75)
   s.arrow(pro3$loadY, clab = 0.75)
   par(mfrow = c(1, 1))
}

plot(pro3)
randtest(pro3)

data(fruits)
plot(procuste(scalewt(fruits$jug), scalewt(fruits$var)))
```

 $\verb"procuste.randtest"$ 

Monte-Carlo Test on the sum of the singular values of a procustean rotation (in C).

# **Description**

performs a Monte-Carlo Test on the sum of the singular values of a procustean rotation.

# Usage

```
procuste.randtest(df1, df2, nrepet = 999, ...)
```

# **Arguments**

df1 a data frame df2 a data frame

nrepet the number of permutations

... further arguments passed to or from other methods

### Value

returns a list of class randtest

### Author(s)

Jean Thioulouse < Jean. Thioulouse@univ-lyon1.fr>

## References

Jackson, D.A. (1995) PROTEST: a PROcustean randomization TEST of community environment concordance. *Ecosciences*, **2**, 297–303.

procuste.rtest 259

### **Examples**

```
data(doubs)
pca1 <- dudi.pca(doubs$env, scal = TRUE, scann = FALSE)
pca2 <- dudi.pca(doubs$fish, scal = FALSE, scann = FALSE)
protest1 <- procuste.randtest(pca1$tab, pca2$tab, 999)
protest1
plot(protest1,main="PROTEST")</pre>
```

procuste.rtest

Monte-Carlo Test on the sum of the singular values of a procustean rotation (in R).

# **Description**

performs a Monte-Carlo Test on the sum of the singular values of a procustean rotation.

# Usage

```
procuste.rtest(df1, df2, nrepet = 99, ...)
```

# Arguments

df1 a data frame df2 a data frame

nrepet the number of permutations

... further arguments passed to or from other methods

## Value

returns a list of class rtest

### Author(s)

Daniel Chessel

Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>

#### References

Jackson, D.A. (1995) PROTEST: a PROcustean randomization TEST of community environment concordance. *Ecosciences*, **2**, 297–303.

260 pta

### **Examples**

```
data(doubs)
pca1 <- dudi.pca(doubs$env, scal = TRUE, scann = FALSE)
pca2 <- dudi.pca(doubs$fish, scal = FALSE, scann = FALSE)
proc1 <- procuste(pca1$tab, pca2$tab)
protest1 <- procuste.rtest(pca1$tab, pca2$tab, 999)
protest1
plot(protest1)</pre>
```

pta

Partial Triadic Analysis of a K-tables

# **Description**

performs a partial triadic analysis of a K-tables, using an object of class ktab.

# Usage

```
pta(X, scannf = TRUE, nf = 2)
## S3 method for class 'pta'
plot(x, xax = 1, yax = 2, option = 1:4, ...)
## S3 method for class 'pta'
print(x, ...)
```

### **Arguments**

| X        | an object of class ktab where the arrays have 1) the same dimensions 2) the same names for columns 3) the same column weightings |
|----------|----------------------------------------------------------------------------------------------------------------------------------|
| scannf   | a logical value indicating whether the eigenvalues bar plot should be displayed                                                  |
| nf       | if scannf FALSE, an integer indicating the number of kept axes                                                                   |
| X        | an object of class 'pta'                                                                                                         |
| xax, yax | the numbers of the x-axis and the y-axis                                                                                         |
| option   | an integer between 1 and 4, otherwise the 4 components of the plot are displayed                                                 |
|          | further arguments passed to or from other methods                                                                                |

### Value

returns a list of class 'pta', sub-class of 'dudi' containing:

RV a matrix with the all RV coefficients
RV.eig a numeric vector with the all eigenvalues (interstructure)
RV.coo a data frame with the scores of the arrays
tab.names a vector of characters with the array names
nf an integer indicating the number of kept axes

pta 261

| rank  | an integer indicating the rank of the studied matrix             |
|-------|------------------------------------------------------------------|
| tabw  | a numeric vector with the array weights                          |
| CW    | a numeric vector with the column weights                         |
| lw    | a numeric vector with the row weights                            |
| eig   | a numeric vector with the all eigenvalues (compromis)            |
| cos2  | a numeric vector with the $\cos^2$ between compromise and arrays |
| tab   | a data frame with the modified array                             |
| li    | a data frame with the row coordinates                            |
| 11    | a data frame with the row normed scores                          |
| со    | a data frame with the column coordinates                         |
| c1    | a data frame with the column normed scores                       |
| Tli   | a data frame with the row coordinates (each table)               |
| Тсо   | a data frame with the column coordinates (each table)            |
| Tcomp | a data frame with the principal components (each table)          |
| Tax   | a data frame with the principal axes (each table)                |
| TL    | a data frame with the factors for Tli                            |
| TC    | a data frame with the factors for Tco                            |
| T4    | a data frame with the factors for Tax and Tcomp                  |
|       |                                                                  |

### Author(s)

```
Pierre Bady 
pierre.bady@univ-lyon1.fr>
Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>
```

### References

Blanc, L., Chessel, D. and Dolédec, S. (1998) Etude de la stabilité temporelle des structures spatiales par Analyse d'une série de tableaux faunistiques totalement appariés. *Bulletin Français de la Pêche et de la Pisciculture*, **348**, 1–21.

Thioulouse, J., and D. Chessel. 1987. Les analyses multi-tableaux en écologie factorielle. I De la typologie d'état à la typologie de fonctionnement par l'analyse triadique. *Acta Oecologica, Oecologia Generalis*, **8**, 463–480.

```
data(meaudret)
wit1 <- withinpca(meaudret$env, meaudret$design$season, scan = FALSE, scal = "partial")
kta1 <- ktab.within(wit1, colnames = rep(c("S1", "S2", "S3", "S4", "S5"), 4))
kta2 <- t(kta1)
pta1 <- pta(kta2, scann = FALSE)
pta1
plot(pta1)</pre>
```

262 quasieuclid

quasieuclid

Transformation of a distance matrice to a Euclidean one

# **Description**

transforms a distance matrix in a Euclidean one.

### Usage

```
quasieuclid(distmat)
```

# **Arguments**

distmat

an object of class dist

#### **Details**

The function creates a distance matrice with the positive eigenvalues of the Euclidean representation.

Only for Euclidean distances which are not Euclidean for numeric approximations (for examples, in papers as the following example).

### Value

object of class dist containing a Euclidean distance matrice

## Author(s)

```
Daniel Chessel
Stéphane Dray <stephane.dray@univ-lyon1.fr>
```

```
data(yanomama)
geo <- as.dist(yanomama$geo)
is.euclid(geo) # FALSE
geo1 <- quasieuclid(geo)
is.euclid(geo1) # TRUE
par(mfrow = c(2,2))
lapply(yanomama, function(x) plot(as.dist(x), quasieuclid(as.dist(x))))
par(mfrow = c(1,1))</pre>
```

randboot 263

| randboot Bootstrap simulations |
|--------------------------------|
|--------------------------------|

# Description

Functions and classes to manage outputs of bootstrap simulations for one (class randboot) or several (class krandboot) statistics

# Usage

```
as.krandboot(obs, boot, quantiles = c(0.025, 0.975), names =
colnames(boot), call = match.call())
## S3 method for class 'krandboot'
print(x, ...)
as.randboot(obs, boot, quantiles = c(0.025, 0.975), call = match.call())
## S3 method for class 'randboot'
print(x, ...)
randboot(object, ...)
```

### **Arguments**

| obs       | a value (class randboot) or a vector (class krandboot) with observed statistics                     |
|-----------|-----------------------------------------------------------------------------------------------------|
| boot      | a vector (class randboot) or a matrix (class krandboot) with the bootstrap values of the statistics |
| quantiles | a vector indicating the lower and upper quantiles to compute                                        |
| names     | a vector of names for the statistics                                                                |
| call      | the matching call                                                                                   |
| x         | an object of class randboot or krandboot                                                            |
| object    | an object on which bootstrap should be perform                                                      |
|           | other arguments to be passed to methods                                                             |

### Value

an object of class randboot or krandboot

# Author(s)

```
Stéphane Dray (<stephane.dray@univ-lyon1.fr>)
```

## References

Carpenter, J. and Bithell, J. (2000) Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians. *Statistics in medicine*, 19, 1141-1164

264 randboot.multiblock

### See Also

```
randboot.multiblock
```

### **Examples**

```
## an example corresponding to 10 statistics and 100 repetitions
bt <- as.krandboot(obs = rnorm(10), boot = matrix(rnorm(1000), nrow = 100))
bt
if(adegraphicsLoaded())
plot(bt)</pre>
```

randboot.multiblock

Bootstraped simulations for multiblock methods

# Description

Function to perform bootstraped simulations for multiblock principal component analysis with instrumental variables or multiblock partial least squares, in order to get confidence intervals for some parameters, *i.e.*, regression coefficients, variable and block importances

### Usage

```
## S3 method for class 'multiblock'
randboot(object, nrepet = 199, optdim, ...)
```

# **Arguments**

object an object of class multiblock created by mbpls or mbpcaiv
nrepet integer indicating the number of repetitions
optdim integer indicating the optimal number of dimensions, *i.e.*, the optimal number of global components to be introduced in the model
... other arguments to be passed to methods

#### Value

A list containing objects of class krandboot

## Author(s)

Stéphanie Bougeard (<stephanie.bougeard@anses.fr>) and Stéphane Dray (<stephane.dray@univ-lyon1.fr>)

### References

Carpenter, J. and Bithell, J. (2000) Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians. *Statistics in medicine*, 19, 1141-1164.

Bougeard, S. and Dray S. (2018) Supervised Multiblock Analysis in R with the ade4 Package. *Journal of Statistical Software*, **86** (1), 1-17. doi:10.18637/jss.v086.i01

randtest 265

### See Also

```
mbpcaiv, mbpls, testdim.multiblock, as.krandboot
```

### **Examples**

```
data(chickenk)
Mortality <- chickenk[[1]]
dudiY.chick <- dudi.pca(Mortality, center = TRUE, scale = TRUE, scannf = FALSE)
ktabX.chick <- ktab.list.df(chickenk[2:5])
resmbpcaiv.chick <- mbpcaiv(dudiY.chick, ktabX.chick, scale = TRUE, option = "uniform", scannf = FALSE, nf = 4)
## nrepet should be higher for a real analysis
test <- randboot(resmbpcaiv.chick, optdim = 4, nrepet = 10)
test
if(adegraphicsLoaded())
plot(test$bipc)</pre>
```

randtest

Class of the Permutation Tests (in C).

### **Description**

randtest is a generic function. It proposes methods for the following objects between, discrimin, coinertia ...

# Usage

```
randtest(xtest, ...)
as.randtest(sim, obs, alter = c("greater", "less", "two-sided"),
  output = c("light", "full"), call = match.call(), subclass = NULL)
## S3 method for class 'randtest'
plot(x, nclass = 10, coeff = 1, ...)
## S3 method for class 'randtest'
print(x, ...)
```

# **Arguments**

| xtest  | an object used to select a method                                                                                                                                                                                                                   |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| x      | an object of class randtest                                                                                                                                                                                                                         |
|        | further arguments passed to or from other methods; in plot.randtest to hist                                                                                                                                                                         |
| output | a character string specifying if all simulations should be stored ("full"). This was the default until ade4 1.7-5. Now, by default ("light"), only the distribution of simulated values is stored in element plot as produced by the hist function. |
| nclass | a number of intervals for the histogram. Ignored if object output is "light"                                                                                                                                                                        |

266 randtest

| coeff    | to fit the magnitude of the graph. Ignored if object output is "light"                                                 |
|----------|------------------------------------------------------------------------------------------------------------------------|
| sim      | a numeric vector of simulated values                                                                                   |
| obs      | a numeric vector of an observed value                                                                                  |
| alter    | a character string specifying the alternative hypothesis, must be one of "greater" (default), "less" or "two-sided" $$ |
| call     | a call order                                                                                                           |
| subclass | a character vector indicating the subclasses associated to the returned object                                         |

### **Details**

If the alternative hypothesis is "greater", a p-value is estimated as: (number of random values equal to or greater than the observed one + 1)/(number of permutations + 1). The null hypothesis is rejected if the p-value is less than the significance level. If the alternative hypothesis is "less", a p-value is estimated as: (number of random values equal to or less than the observed one + 1)/(number of permutations + 1). Again, the null hypothesis is rejected if the p-value is less than the significance level. Lastly, if the alternative hypothesis is "two-sided", the estimation of the p-value is equivalent to the one used for "greater" except that random and observed values are firstly centered (using the average of random values) and secondly transformed to their absolute values. Note that this is only suitable for symmetric random distribution.

# Value

```
as.randtest returns a list of class randtest.
plot.randtest draws the simulated values histograms and the position of the observed value.
```

### See Also

randtest.amova, randtest.between, randtest.coinertia, randtest.discrimin, randtest.dpcoa, randtest.pcaiv, rtest, rtest.between, rtest.discrimin, RV.rtest, RVdist.randtest, mantel.randtest, mantel.rtest, procuste.randtest, procuste.rtest

```
par(mfrow = c(2,2))
for (x0 in c(2.4,3.4,5.4,20.4)) {
    10 <- as.randtest(sim = rnorm(200), obs = x0)
    print(10)
    plot(10,main=paste("p.value = ", round(10$pvalue, dig = 5)))
}
par(mfrow = c(1,1))</pre>
```

randtest.amova 267

randtest.amova

*Permutation tests on an analysis of molecular variance (in C).* 

# Description

Tests the components of covariance with permutation processes described by Excoffier et al. (1992).

# Usage

```
## S3 method for class 'amova'
randtest(xtest, nrepet = 99, ...)
```

# **Arguments**

xtest an object of class amova
nrepet the number of permutations

... further arguments passed to or from other methods

### Value

returns an object of class krandtest or randtest

# Author(s)

Sandrine Pavoine pavoine@mnhn.fr>

### References

Excoffier, L., Smouse, P.E. and Quattro, J.M. (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. *Genetics*, **131**, 479–491.

```
data(humDNAm)
amovahum <- amova(humDNAm$samples, sqrt(humDNAm$distances), humDNAm$structures)
amovahum
randtesthum <- randtest(amovahum, 49)
plot(randtesthum)</pre>
```

268 randtest.between

randtest.between

Monte-Carlo Test on the between-groups inertia percentage (in C).

# **Description**

Performs a Monte-Carlo test on the between-groups inertia percentage.

# Usage

```
## S3 method for class 'between'
randtest(xtest, nrepet = 999, ...)
```

# **Arguments**

xtest an object of class between nrepet the number of permutations

... further arguments passed to or from other methods

# Value

a list of the class randtest

# Author(s)

Jean Thioulouse < Jean. Thioulouse@univ-lyon1.fr>

### References

Romesburg, H. C. (1985) Exploring, confirming and randomization tests. *Computers and Geosciences*, **11**, 19–37.

```
data(meaudret)
pca1 <- dudi.pca(meaudret$env, scan = FALSE, nf = 3)
rand1 <- randtest(bca(pca1, meaudret$design$season, scan = FALSE), 99)
rand1
plot(rand1, main = "Monte-Carlo test")</pre>
```

randtest.coinertia 269

randtest.coinertia *Monte-Carlo test on a Co-inertia analysis (in C).* 

# **Description**

Performs a Monte-Carlo test on a Co-inertia analysis.

### Usage

```
## S3 method for class 'coinertia'
randtest(xtest, nrepet = 999, fixed=0, ...)
```

### Arguments

xtest an object of class coinertia nrepet the number of permutations

fixed when non uniform row weights are used in the coinertia analysis, this parameter

must be the number of the table that should be kept fixed in the permutations

... further arguments passed to or from other methods

#### Value

a list of the class randtest

# Note

A testing procedure based on the total coinertia of the analysis is available by the function randtest.coinertia. The function allows to deal with various analyses for the two tables. The test is based on random permutations of the rows of the two tables. If the row weights are not uniform, mean and variances are recomputed for each permutation (PCA); for MCA, tables are recentred and column weights are recomputed. If weights are computed using the data contained in one table (e.g. COA), you must fix this table and permute only the rows of the other table. The case of decentred PCA (PCA where centers are entered by the user) is not yet implemented. If you want to use the testing procedure for this case, you must firstly center the table and then perform a non-centered PCA on the modified table. The case where one table is treated by hill-smith analysis (mix of quantitative and qualitative variables) will be soon implemented.

### Author(s)

Jean Thioulouse < Jean. Thioulouse@univ-lyon1.fr> modified by Stéphane Dray < stephane.dray@univ-lyon1.fr>

### References

Dolédec, S. and Chessel, D. (1994) Co-inertia analysis: an alternative method for studying species-environment relationships. *Freshwater Biology*, **31**, 277–294.

270 randtest.discrimin

## **Examples**

```
data(doubs)
dudi1 <- dudi.pca(doubs$env, scale = TRUE, scan = FALSE, nf = 3)
dudi2 <- dudi.pca(doubs$fish, scale = FALSE, scan = FALSE, nf = 2)
coin1 <- coinertia(dudi1,dudi2, scan = FALSE, nf = 2)
plot(randtest(coin1))</pre>
```

randtest.discrimin

Monte-Carlo Test on a Discriminant Analysis (in C).

# **Description**

Test of the sum of a discriminant analysis eigenvalues (divided by the rank). Non parametric version of the Pillai's test. It authorizes any weighting.

# Usage

```
## S3 method for class 'discrimin'
randtest(xtest, nrepet = 999, ...)
```

## **Arguments**

xtest an object of class discrimin nrepet the number of permutations

... further arguments passed to or from other methods

#### Value

returns a list of class randtest

#### Author(s)

Jean Thioulouse < Jean. Thioulouse@univ-lyon1.fr>

```
data(meaudret)
pca1 <- dudi.pca(meaudret$env, scan = FALSE, nf = 3)
rand1 <- randtest(discrimin(pca1, meaudret$design$season, scan = FALSE), 99)
rand1
#Monte-Carlo test
#Observation: 0.3035
#Call: as.randtest(sim = sim, obs = obs)
#Based on 999 replicates
#Simulated p-value: 0.001
plot(rand1, main = "Monte-Carlo test")
summary.manova(manova(as.matrix(meaudret$env)~meaudret$design$season), "Pillai")</pre>
```

randtest.dpcoa 271

```
# Df Pillai approx F num Df den Df Pr(>F)
# meaudret$design$season 3 2.73 11.30 27 30 1.6e-09 ***
# Residuals 16
# ---
# Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
# 2.731/9 = 0.3034
```

randtest.dpcoa

Permutation test for double principal coordinate analysis (DPCoA)

### **Description**

randtest.dpcoa calculates the ratio of beta to gamma diversity associated with DPCoA and compares the observed value to values obtained by permuting data.

### Usage

```
## $3 method for class 'dpcoa'
randtest(xtest, model = c("1p","1s"), nrepet = 99,
alter = c("greater", "less", "two-sided"), ...)
```

### **Arguments**

```
xtest an object of class dpcoa

model either "1p", "1s", or the name of a function, (see details)

nrepet the number of permutations to perform, the default is 99

alter a character string specifying the alternative hypothesis, must be one of "greater" (default), "less" or "two-sided"

... further arguments passed to or from other methods
```

#### **Details**

Model 1p permutes the names of the columns of the abundance matrix. Model 1s permutes the abundances of the categories (columns of the abundance matrix, usually species) within collections (rows of the abundance matrix, usually communities). Only the categories with positive abundances are permuted. The null models were introduced in Hardy (2008).

Other null model can be used by entering the name of a function. For example, loading the picante package of R, if model=randomizeMatrix, then the permutations will follow function randomizeMatrix available in picante. Any function can be used provided it returns an abundance matrix of similar size as the observed abundance matrix. Parameters of the chosen function can be added to randtest.dpcoa. For example, using parameter null.model of randomizeMatrix, the following command can be used: randtest.dpcoa(xtest, model = randomizeMatrix, null.model = "trialswap")

### Value

an object of class randtest

272 randtest.pcaiv

### Author(s)

Sandrine Pavoine pavoine@mnhn.fr>

#### References

Hardy, O. (2008) Testing the spatial phylogenetic structure of local communities: statistical performances of different null models and test statistics on a locally neutral community. *Journal of Ecology*, **96**, 914–926

### See Also

dpcoa

# **Examples**

```
data(humDNAm)
dpcoahum <- dpcoa(data.frame(t(humDNAm$samples)), sqrt(humDNAm$distances), scan = FALSE, nf = 2)
randtest(dpcoahum)</pre>
```

randtest.pcaiv

Monte-Carlo Test on the percentage of explained (i.e. constrained) inertia

# **Description**

Performs a Monte-Carlo test on on the percentage of explained (i.e. constrained) inertia. The statistic is the ratio of the inertia (sum of eigenvalues) of the constrained analysis divided by the inertia of the unconstrained analysis.

### Usage

```
## $3 method for class 'pcaiv'
randtest(xtest, nrepet = 99, ...)
## $3 method for class 'pcaivortho'
randtest(xtest, nrepet = 99, ...)
```

# Arguments

xtest an object of class pcaiv, pcaivortho or caiv

nrepet the number of permutations

... further arguments passed to or from other methods

#### Value

a list of the class randtest

randxval 273

### Author(s)

Stéphane Dray <stephane.dray@univ-lyon1.fr>, original code by Raphaël Pélissier

# **Examples**

```
data(rpjdl)
millog <- log(rpjdl$mil + 1)
coa1 <- dudi.coa(rpjdl$fau, scann = FALSE)
caiv1 <- pcaiv(coa1, millog, scan = FALSE)
randtest(caiv1)</pre>
```

randxval

Two-fold cross-validation

# Description

Functions and classes to manage outputs of two-fold cross-validation for one (class randxval) or several (class krandxval) statistics

# Usage

```
as.krandxval(RMSEc, RMSEv, quantiles = c(0.25, 0.75), names =
colnames(RMSEc), call = match.call())
## S3 method for class 'krandxval'
print(x, ...)
as.randxval(RMSEc, RMSEv, quantiles = c(0.25, 0.75), call =
match.call())
## S3 method for class 'randxval'
print(x, ...)
```

# **Arguments**

| RMSEc     | a vector (class randxval) or a matrix (class krandxval) with the root-mean-square error of calibration (statistics as columns and repetions as rows) |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| RMSEv     | a vector (class randxval) or a matrix (class krandxval) with the root-mean-square error of validation (statistics as columns and repetions as rows)  |
| quantiles | a vector indicating the lower and upper quantiles to compute                                                                                         |
| names     | a vector of names for the statistics                                                                                                                 |
| call      | the matching call                                                                                                                                    |
| х         | an object of class randxval or krandxval                                                                                                             |
|           | other arguments to be passed to methods                                                                                                              |

# Value

an object of class randxval or krandxval

274 rankrock

### Author(s)

```
Stéphane Dray (<stephane.dray@univ-lyon1.fr>)
```

#### References

Stone M. (1974) Cross-validatory choice and assessment of statistical predictions. *Journal of the Royal Statistical Society*, 36, 111-147

### See Also

```
testdim.multiblock
```

# **Examples**

```
## an example corresponding to 10 statistics and 100 repetitions
cv <- as.krandxval(RMSEc = matrix(rnorm(1000), nrow = 100), RMSEv =
matrix(rnorm(1000, mean = 1), nrow = 100))
cv
if(adegraphicsLoaded())
plot(cv)</pre>
```

rankrock

Ordination Table

## **Description**

This data set gives the classification in order of preference of 10 music groups by 51 students.

# Usage

```
data(rankrock)
```

### **Format**

A data frame with 10 rows and 51 columns.

Each column contains the rank (1 for the favorite,  $\dots$ , 10 for the less appreciated) attributed to the group by a student.

```
data(rankrock)
dudi1 <- dudi.pca(rankrock, scannf = FALSE, nf = 3)
if(adegraphicsLoaded()) {
   g <- scatter(dudi1, row.plab.cex = 1.5)
} else {
   scatter(dudi1, clab.r = 1.5)
}</pre>
```

reconst 275

reconst

Reconstitution of Data from a Duality Diagram

# **Description**

Generic Function for the reconstitution of data from a principal component analysis or a correspondence analysis

### Usage

```
reconst (dudi, ...)
## S3 method for class 'pca'
reconst(dudi, nf = 1, ...)
## S3 method for class 'coa'
reconst(dudi, nf = 1, ...)
```

### **Arguments**

dudi an object of class dudi used to select a method: pca or coa nf an integer indicating the number of kept axes for the reconstitution further arguments passed to or from other methods

## Value

returns a data frame containing the reconstituted data

### Author(s)

Daniel Chessel
Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>

## References

Gabriel, K.R. (1978) Least-squares approximation of matrices by additive and multiplicative models. *Journal of the Royal Statistical Society*, B, **40**, 186–196.

```
data(rhone)
dd1 <- dudi.pca(rhone$tab, nf = 2, scann = FALSE)
rh1 <- reconst(dd1, 1)
rh2 <- reconst(dd1, 2)
par(mfrow = c(4,4))
par(mar = c(2.6,2.6,1.1,1.1))
for (i in 1:15) {
    plot(rhone$date, rhone$tab[,i])
    lines(rhone$date, rh1[,i], lty = 2)
    lines(rhone$date, rh2[,i], lty = 1)</pre>
```

276 rhizobium

```
ade4:::scatterutil.sub(names(rhone$tab)[i], 2, "topright")}

data(chats)
chatsw <- data.frame(t(chats))
chatscoa <- dudi.coa(chatsw, scann = FALSE)
model0 <- reconst(chatscoa, 0)
round(model0,3)
round(chisq.test(chatsw)$expected,3)
chisq.test(chatsw)$statistic
sum(((chatsw-model0)^2)/model0)
effectif <- sum(chatsw)
sum(chatscoa$eig)*effectif
model1 <- reconst(chatscoa, 1)
round(model1, 3)
sum(((chatsw-model1)^2)/model0)
sum(chatscoa$eig[-1])*effectif</pre>
```

rhizobium

Genetic structure of two nitrogen fixing bacteria influenced by geographical isolation and host specialization

# Description

The data set concerns fixing bacteria belonging to the genus Sinorhizobium (Rhizobiaceae) associated with the plant genus Medicago (Fabaceae). It is a combination of two data sets fully available online from GenBank and published in two recent papers (see reference below). The complete sampling procedure is described in the Additional file 3 of the reference below. We delineated six populations according to geographical origin (France: F, Tunisia Hadjeb: TH, Tunisia Enfidha: TE), the host plant (*M. truncatula* or similar symbiotic specificity: T, M. laciniata: L), and the taxonomical status of bacteria (S. meliloti: mlt, S. medicae: mdc). Each population will be called hereafter according to the three above criteria, e.g. THLmlt is the population sampled in Tunisia at Hadjeb from M. laciniata nodules which include S. meliloti isolates. S. medicae interacts with M. truncatula while S. meliloti interacts with both M. laciniata (S. meliloti bv. medicaginis) and M. truncatula (S. meliloti bv. meliloti). The numbers of individuals are respectively 46 for FTmdc, 43 for FTmlt, 20 for TETmdc, 24 for TETmlt, 20 for TELmlt, 42 for THTmlt and 20 for THLmlt.

Four different intergenic spacers (IGS), IGSNOD, IGSEXO, IGSGAB, and IGSRKP, distributed on the different replication units of the model strain 1021 of S. meliloti bv. meliloti had been sequenced to characterize each bacterial isolate (DNA extraction and sequencing procedures are described in an additional file). It is noteworthy that the IGSNOD marker is located within the nod gene cluster and that specific alleles at these loci determine the ability of S. meliloti strains to interact with either M. laciniata or M. truncatula.

#### Usage

data(rhizobium)

rhone 277

#### **Format**

rhizobium is a list of 2 components.

dnaobj: list of dna lists. Each dna list corresponds to a locus. For a given locus, the dna list
provides the dna sequences The ith sequences of all loci corresponds to the ith individual of
the data set.

• pop: The list of the populations which each individual sequence belongs to.

#### **Source**

Pavoine, S. and Bailly, X. (2007) New analysis for consistency among markers in the study of genetic diversity: development and application to the description of bacterial diversity. *BMC Evolutionary Biology*, 7, e156.

# **Examples**

```
# The functions used below require the package ape
data(rhizobium)
if(requireNamespace("ape", quietly = TRUE)) {
dat <- prep.mdpcoa(rhizobium[[1]], rhizobium[[2]],</pre>
    model = c("F84", "F84", "F84", "F81"),
    pairwise.deletion = TRUE)
sam <- dat$sam
dis <- dat$dis
# The distances should be Euclidean.
# Several transformations exist to render a distance object Euclidean
# (see functions cailliez, lingoes and quasieuclid in the ade4 package).
# Here we use the quasieuclid function.
dis <- lapply(dis, quasieuclid)</pre>
mdpcoa1 <- mdpcoa(sam, dis, scann = FALSE, nf = 2)</pre>
# Reference analysis
plot(mdpcoa1)
# Differences between the loci
kplot(mdpcoa1)
# Alleles projected on the population maps.
kplotX.mdpcoa(mdpcoa1)
}
```

rhone

Physico-Chemistry Data

### **Description**

This data set gives for 39 water samples a physico-chemical description with the number of sample date and the flows of three tributaries.

278

### Usage

```
data(rhone)
```

### **Format**

rhone is a list of 3 components.

tab is a data frame with 39 water samples and 15 physico-chemical variables.

date is a vector of the sample date (in days).

**disch** is a data frame with 39 water samples and the flows of the three tributaries.

#### Source

Carrel, G., Barthelemy, D., Auda, Y. and Chessel, D. (1986) Approche graphique de l'analyse en composantes principales normée : utilisation en hydrobiologie. *Acta Oecologica, Oecologia Generalis*, 7, 189–203.

# Examples

```
data(rhone)
pca1 <- dudi.pca(rhone$tab, nf = 2, scann = FALSE)
rh1 <- reconst(pca1, 1)
rh2 <- reconst(pca1, 2)
par(mfrow = c(4,4))
par(mar = c(2.6,2.6,1.1,1.1))
for (i in 1:15) {
    plot(rhone$date, rhone$tab[,i])
    lines(rhone$date, rh1[,i], lwd = 2)
    lines(rhone$date, rh2[,i])
    ade4:::scatterutil.sub(names(rhone$tab)[i], 2, "topright")
}
par(mfrow = c(1,1))</pre>
```

rlq

RLQ analysis

# Description

RLQ analysis performs a double inertia analysis of two arrays (R and Q) with a link expressed by a contingency table (L). The rows of L correspond to the rows of R and the columns of L correspond to the rows of Q.

rlq 279

### Usage

```
rlq(dudiR, dudiL, dudiQ, scannf = TRUE, nf = 2)
## S3 method for class 'rlq'
print(x, ...)
## S3 method for class 'rlq'
plot(x, xax = 1, yax = 2, ...)
## S3 method for class 'rlq'
summary(object, ...)
## S3 method for class 'rlq'
randtest(xtest,nrepet = 999, modeltype = 6,...)
```

### **Arguments**

dudiR a duality diagram providing from one of the functions dudi.hillsmith, dudi.pca, dudiL a duality diagram of the function dudi.coa a duality diagram providing from one of the functions dudi.hillsmith, dudi.pca, dudiQ a logical value indicating whether the eigenvalues bar plot should be displayed scannf nf if scannf FALSE, an integer indicating the number of kept axes Х an rlq object the column number for the x-axis xax the column number for the y-axis yax object an rlq object an rlq object xtest the number of permutations nrepet the model used to permute data(2: permute rows of R, 4: permute rows of Q, 5: modeltype

permute both, 6: sequential approach, see ter Braak et al. 2012)

further arguments passed to or from other methods

## Value

aa11

Returns a list of class 'dudi', sub-class 'rlq' containing:

0011

| call | can                                                       |
|------|-----------------------------------------------------------|
| rank | rank                                                      |
| nf   | a numeric value indicating the number of kept axes        |
| RV   | a numeric value, the RV coefficient                       |
| eig  | a numeric vector with all the eigenvalues                 |
| lw   | a numeric vector with the rows weigths (crossed array)    |
| CW   | a numeric vector with the columns weigths (crossed array) |
| tab  | a crossed array (CA)                                      |
| li   | R col = CA row: coordinates                               |

280 rlq

| 11 | R col = CA row: normed scores     |
|----|-----------------------------------|
| со | Q col = CA column: coordinates    |
| c1 | Q col = CA column: normed scores  |
| 1R | the row coordinates (R)           |
| mR | the normed row scores (R)         |
| 1Q | the row coordinates (Q)           |
| mQ | the normed row scores (Q)         |
| aR | the axis onto co-inertia axis (R) |
| aQ | the axis onto co-inertia axis (Q) |

#### WARNING

IMPORTANT: row weights for dudiR and dudiQ must be taken from dudiL.

### Note

A testing procedure based on the total coinertia of the RLQ analysis is available by the function randtest.rlq. The function allows to deal with various analyses for tables R and Q. Means and variances are recomputed for each permutation (PCA); for MCA, tables are recentred and column weights are recomputed. The case of decentred PCA (PCA where centers are entered by the user) for R or Q is not yet implemented. If you want to use the testing procedure for this case, you must firstly center the table and then perform a non-centered PCA on the modified table.

### Author(s)

Stéphane Dray <stephane.dray@univ-lyon1.fr>

### References

Doledec, S., Chessel, D., ter Braak, C.J.F. and Champely, S. (1996) Matching species traits to environmental variables: a new three-table ordination method. *Environmental and Ecological Statistics*, **3**, 143–166.

Dray, S., Pettorelli, N., Chessel, D. (2002) Matching data sets from two different spatial samplings. *Journal of Vegetation Science*, **13**, 867–874.

Dray, S. and Legendre, P. (2008) Testing the species traits-environment relationships: the fourth-corner problem revisited. *Ecology*, **89**, 3400–3412.

ter Braak, C., Cormont, A., Dray, S. (2012) Improved testing of species traits-environment relationships in the fourth corner problem. *Ecology*, **93**, 1525–1526.

#### See Also

coinertia, fourthcorner

rpjdl 281

## **Examples**

```
data(aviurba)
coa1 <- dudi.coa(aviurba$fau, scannf = FALSE, nf = 2)
dudimil <- dudi.hillsmith(aviurba$mil, scannf = FALSE, nf = 2, row.w = coa1$lw)
duditrait <- dudi.hillsmith(aviurba$traits, scannf = FALSE, nf = 2, row.w = coa1$cw)
rlq1 <- rlq(dudimil, coa1, duditrait, scannf = FALSE, nf = 2)
plot(rlq1)
summary(rlq1)
randtest(rlq1)
fourthcorner.rlq(rlq1,type="Q.axes")
fourthcorner.rlq(rlq1,type="R.axes")</pre>
```

rpjdl

Avifauna and Vegetation

# Description

This data set gives the abundance of 51 species and 8 environmental variables in 182 sites.

### Usage

```
data(rpjdl)
```

### **Format**

rpjdl is a list of 5 components.

fau is the faunistic array of 182 sites (rows) and 51 species (columns).

mil is the array of environmental variables: 182 sites and 8 variables.

**frlab** is a vector of the names of species in French.

**lalab** is a vector of the names of species in Latin.

lab is a vector of the simplified labels of species.

#### **Source**

Prodon, R. and Lebreton, J.D. (1981) Breeding avifauna of a Mediterranean succession: the holm oak and cork oak series in the eastern Pyrénées. 1: Analysis and modelling of the structure gradient. *Oïkos*, 37, 21–38.

Lebreton, J. D., Chessel D., Prodon R. and Yoccoz N. (1988) L'analyse des relations espèces-milieu par l'analyse canonique des correspondances. I. Variables de milieu quantitatives. *Acta Oecologica*, *Oecologia Generalis*, **9**, 53–67.

### References

See a data description at http://pbil.univ-lyon1.fr/R/pdf/pps048.pdf (in French).

282 rtest

### **Examples**

rtest

Class of the Permutation Tests (in R).

## **Description**

rtest is a generic function. It proposes methods for the following objects between, discrimin, procuste . . .

# Usage

```
rtest(xtest, ...)
```

# **Arguments**

xtest an object used to select a method

... further arguments passed to or from other methods; in plot.randtest to hist

### Value

rtest returns an object of class randtest

### Author(s)

Daniel Chessel

rtest.between 283

### See Also

```
RV.rtest, mantel.rtest, procuste.rtest, randtest
```

### **Examples**

rtest.between

*Monte-Carlo Test on the between-groups inertia percentage (in R).* 

# Description

Performs a Monte-Carlo test on the between-groups inertia percentage.

# Usage

```
## S3 method for class 'between'
rtest(xtest, nrepet = 99, ...)
```

# Arguments

xtest an object of class between
nrepet the number of permutations

... further arguments passed to or from other methods

## Value

a list of the class rtest

# Author(s)

Daniel Chessel

### References

Romesburg, H. C. (1985) Exploring, confirming and randomization tests. *Computers and Geosciences*, **11**, 19–37.

284 rtest.discrimin

## **Examples**

```
data(meaudret)
pca1 <- dudi.pca(meaudret$env, scan = FALSE, nf = 3)
rand1 <- rtest(bca(pca1, meaudret$design$season, scan = FALSE), 99)
rand1
plot(rand1, main = "Monte-Carlo test")</pre>
```

rtest.discrimin

Monte-Carlo Test on a Discriminant Analysis (in R).

# Description

Test of the sum of a discriminant analysis eigenvalues (divided by the rank). Non parametric version of the Pillai's test. It authorizes any weighting.

# Usage

```
## S3 method for class 'discrimin'
rtest(xtest, nrepet = 99, ...)
```

# Arguments

xtest an object of class discrimin nrepet the number of permutations

... further arguments passed to or from other methods

## Value

returns a list of class rtest

# Author(s)

Daniel Chessel

```
data(meaudret)
pca1 <- dudi.pca(meaudret$env, scan = FALSE, nf = 3)
rand1 <- rtest(discrimin(pca1, meaudret$design$season, scan = FALSE), 99)
rand1
#Monte-Carlo test
#Observation: 0.3035
#Call: as.rtest(sim = sim, obs = obs)
#Based on 999 replicates
#Simulated p-value: 0.001
plot(rand1, main = "Monte-Carlo test")
summary.manova(manova(as.matrix(meaudret$env)~meaudret$design$season), "Pillai")
# Df Pillai approx F num Df den Df Pr(>F)
```

RV.randtest 285

```
# meaudret$design$season 3 2.73 11.30 27 30 1.6e-09 ***
# Residuals 16
# ---
# Signif. codes: 0 `***' 0.001 `**' 0.05 `.' 0.1 ` ' 1
# 2.731/9 = 0.3034
```

RV.randtest

Monte-Carlo Test on the sum of eigenvalues of a co-inertia analysis (in C++ with Rcpp).

# Description

performs a Monte-Carlo Test on the sum of eigenvalues of a co-inertia analysis.

# Usage

```
RV.randtest(df1, df2, nrepet = 999, ...)
```

## **Arguments**

df1, df2 two data frames with the same rows

nrepet the number of permutations

... further arguments passed to or from other methods

#### Value

returns a list of class 'randtest'

# Author(s)

Daniel Chessel and Jean Thioulouse

## References

Heo, M. & Gabriel, K.R. (1997) A permutation test of association between configurations by means of the RV coefficient. Communications in Statistics - Simulation and Computation, **27**, 843-856.

```
data(doubs)
pca1 <- dudi.pca(doubs$env, scal = TRUE, scann = FALSE)
pca2 <- dudi.pca(doubs$fish, scal = FALSE, scann = FALSE)
rv1 <- RV.randtest(pca1$tab, pca2$tab, 99)
rv1
plot(rv1)</pre>
```

286 RV.rtest

RV.rtest

Monte-Carlo Test on the sum of eigenvalues of a co-inertia analysis (in R).

# Description

performs a Monte-Carlo Test on the sum of eigenvalues of a co-inertia analysis.

# Usage

```
RV.rtest(df1, df2, nrepet = 99, ...)
```

# **Arguments**

df1, df2 two data frames with the same rows

nrepet the number of permutations

... further arguments passed to or from other methods

### Value

returns a list of class 'rtest'

# Author(s)

Daniel Chessel

#### References

Heo, M. & Gabriel, K.R. (1997) A permutation test of association between configurations by means of the RV coefficient. Communications in Statistics - Simulation and Computation, **27**, 843-856.

```
data(doubs)
pca1 <- dudi.pca(doubs$env, scal = TRUE, scann = FALSE)
pca2 <- dudi.pca(doubs$fish, scal = FALSE, scann = FALSE)
rv1 <- RV.rtest(pca1$tab, pca2$tab, 99)
rv1
plot(rv1)</pre>
```

RVdist.randtest 287

| RVdist.randtest | Tests of randomization on the correlation between two distance matri- |
|-----------------|-----------------------------------------------------------------------|
|                 | ces (in R).                                                           |

# **Description**

performs a RV Test between two distance matrices.

# Usage

```
RVdist.randtest(m1, m2, nrepet = 999, ...)
```

# Arguments

m1, m2 two Euclidean matrices
nrepet the number of permutations

. . . further arguments passed to or from other methods

### Value

returns a list of class 'randtest'

## Author(s)

Daniel Chessel

#### References

Heo, M. & Gabriel, K.R. (1997) A permutation test of association between configurations by means of the RV coefficient. Communications in Statistics - Simulation and Computation, **27**, 843-856.

RVintra.randtest  $Monte-Carlo\ Test\ on\ the\ sum\ of\ eigenvalues\ of\ a\ within-class\ coinertia\ analysis\ (in\ C++\ with\ Rcpp).$ 

# **Description**

performs a Monte-Carlo Test on the sum of eigenvalues of a within-class co-inertia analysis.

# Usage

```
RVintra.randtest(df1, df2, fac, nrepet = 999, ...)
```

288 s.arrow

## Arguments

```
df1, df2 two data frames with the same rows

fac the factor defining classes

nrepet the number of permutations

... further arguments passed to or from other methods
```

#### Value

returns a list of class 'randtest'

#### Author(s)

Daniel Chessel and Jean Thioulouse

#### References

Heo, M. & Gabriel, K.R. (1997) A permutation test of association between configurations by means of the RV coefficient. Communications in Statistics - Simulation and Computation, **27**, 843-856.

# **Examples**

```
data(meaudret)
pca1 <- dudi.pca(meaudret$env, scan = FALSE, nf = 4)
pca2 <- dudi.pca(meaudret$spe, scal = FALSE, scan = FALSE, nf = 4)
wit1 <- wca(pca1, meaudret$design$season, scan = FALSE, nf = 2)
wit2 <- wca(pca2, meaudret$design$season, scan = FALSE, nf = 2)
coiw <- coinertia(wit1, wit2, scann = FALSE)
rv1 <- RVintra.randtest(pca1$tab, pca2$tab, meaudret$design$season, nrep=999)
rv1
plot(rv1)</pre>
```

s.arrow

Plot of the factorial maps for the projection of a vector basis

# **Description**

performs the scatter diagrams of the projection of a vector basis.

# Usage

```
s.arrow(dfxy, xax = 1, yax = 2, label = row.names(dfxy),
    clabel = 1, pch = 20, cpoint = 0, boxes = TRUE, edge = TRUE, origin = c(0,0),
    xlim = NULL, ylim = NULL, grid = TRUE, addaxes = TRUE, cgrid = 1,
    sub = "", csub = 1.25, possub = "bottomleft", pixmap = NULL,
    contour = NULL, area = NULL, add.plot = FALSE)
```

s.arrow 289

# Arguments

| dfxy     | a data frame containing the two columns for the axes                                                           |
|----------|----------------------------------------------------------------------------------------------------------------|
| xax      | the column number of x in dfxy                                                                                 |
| yax      | the column number of y in dfxy                                                                                 |
| label    | a vector of strings of characters for the point labels                                                         |
| clabel   | if not NULL, a character size for the labels used with par("cex")*clabel                                       |
| pch      | if ${\tt cpoint} > 0$ , an integer specifying the symbol or the single character to be used in plotting points |
| cpoint   | a character size for plotting the points, used with par<br>("cex")*cpoint. If zero, no points are drawn.       |
| boxes    | if TRUE, labels are framed                                                                                     |
| edge     | a logical value indicating whether the arrows should be plotted                                                |
| origin   | the fixed point in the graph space, by default $c(0,0)$ the origin of axes. The arrows begin at cent.          |
| xlim     | the ranges to be encompassed by the x-axis, if NULL they are computed                                          |
| ylim     | the ranges to be encompassed by the y-axis, if NULL they are computed                                          |
| grid     | a logical value indicating whether a grid in the background of the plot should be drawn                        |
| addaxes  | a logical value indicating whether the axes should be plotted                                                  |
| cgrid    | a character size, parameter used with $par("cex")*cgrid$ , to indicate the mesh of the grid                    |
| sub      | a string of characters to be inserted as legend                                                                |
| csub     | a character size for the legend, used with par("cex")*csub                                                     |
| possub   | a string of characters indicating the legend position ("topleft", "topright", "bottomleft", "bottomright")     |
| pixmap   | an object 'pixmap' displayed in the map background                                                             |
| contour  | a data frame with 4 columns to plot the contour of the map : each row gives a segment $(x1,y1,x2,y2)$          |
| area     | a data frame of class 'area' to plot a set of surface units in contour                                         |
| add.plot | if TRUE uses the current graphics window                                                                       |
|          |                                                                                                                |

# Value

The matched call.

# Author(s)

Daniel Chessel

```
s.arrow(cbind.data.frame(runif(55,-2,3), runif(55,-3,2)))
```

290 s.chull

|  | hι |  |
|--|----|--|
|  |    |  |
|  |    |  |

Plot of the factorial maps with polygons of contour by level of a factor

# Description

performs the scatter diagrams with polygons of contour by level of a factor.

### Usage

```
s.chull(dfxy, fac, xax = 1, yax = 2,
    optchull = c(0.25, 0.5, 0.75, 1), label = levels(fac), clabel = 1,
    cpoint = 0, col = rep(1, length(levels(fac))), xlim = NULL, ylim = NULL,
    grid = TRUE, addaxes = TRUE, origin = c(0,0), include.origin = TRUE,
    sub = "", csub = 1, possub = "bottomleft", cgrid = 1, pixmap = NULL,
    contour = NULL, area = NULL, add.plot = FALSE)
```

| dfxy           | a data frame containing the two columns for the axes                                                          |
|----------------|---------------------------------------------------------------------------------------------------------------|
| fac            | a factor partioning the rows of the data frame in classes                                                     |
| xax            | the column number of x in dfxy                                                                                |
| yax            | the column number of y in dfxy                                                                                |
| optchull       | the number of convex hulls and their interval                                                                 |
| label          | a vector of strings of characters for the point labels                                                        |
| clabel         | if not NULL, a character size for the labels, used with par("cex")*clabel                                     |
| cpoint         | a character size for plotting the points, used with $par("cex")*cpoint$ . If zero, no points are drawn        |
| col            | a vector of colors used to draw each class in a different color                                               |
| xlim           | the ranges to be encompassed by the x axis, if NULL, they are computed                                        |
| ylim           | the ranges to be encompassed by the y axis, if NULL they are computed                                         |
| grid           | a logical value indicating whether a grid in the background of the plot should be drawn                       |
| addaxes        | a logical value indicating whether the axes should be plotted                                                 |
| origin         | the fixed point in the graph space, for example $c(0,0)$ the origin axes                                      |
| include.origin | a logical value indicating whether the point "origin" should be belonged to the graph space                   |
| sub            | a string of characters to be inserted as legend                                                               |
| csub           | a character size for the legend, used with par("cex")*csub                                                    |
| possub         | a string of characters indicating the sub-title position ("topleft", "topright", "bottomleft", "bottomright") |
| cgrid          | a character size, parameter used with $par("cex")^*$ cgrid to indicate the mesh of the grid                   |

s.class 291

| pixmap   | an object 'pixmap' displayed in the map background                                                          |
|----------|-------------------------------------------------------------------------------------------------------------|
| contour  | a data frame with 4 columns to plot the contour of the map : each row gives a segment $(x1,\!y1,\!x2,\!y2)$ |
| area     | a data frame of class 'area' to plot a set of surface units in contour                                      |
| add.plot | if TRUE uses the current graphics window                                                                    |

#### Value

The matched call.

### Author(s)

Daniel Chessel

### **Examples**

```
xy <- cbind.data.frame(x = runif(200,-1,1), y = runif(200,-1,1))
posi <- factor(xy$x > 0) : factor(xy$y > 0)
coul <- c("black", "red", "green", "blue")

if(adegraphicsLoaded()) {
   s.class(xy, posi, ppoi.cex = 1.5, chullSize = c(0.25, 0.5, 0.75, 1), ellipseSize = 0,
        starSize = 0, ppoly = list(col = "white", border = coul))
} else {
   s.chull(xy, posi, cpoi = 1.5, col = coul)
}</pre>
```

s.class

Plot of factorial maps with representation of point classes

# Description

performs the scatter diagrams with representation of point classes.

### Usage

```
s.class(dfxy, fac, wt = rep(1, length(fac)), xax = 1,
    yax = 2, cstar = 1, cellipse = 1.5, axesell = TRUE,
    label = levels(fac), clabel = 1, cpoint = 1, pch = 20,
    col = rep(1, length(levels(fac))), xlim = NULL, ylim = NULL,
    grid = TRUE, addaxes = TRUE, origin = c(0,0),
    include.origin = TRUE, sub = "", csub = 1, possub = "bottomleft",
    cgrid = 1, pixmap = NULL, contour = NULL, area = NULL, add.plot = FALSE)
```

292 s.class

# Arguments

| dfxy           | a data frame containing the two columns for the axes                                                                          |
|----------------|-------------------------------------------------------------------------------------------------------------------------------|
| fac            | a factor partitioning the rows of the data frame in classes                                                                   |
| wt             | a vector of the point weightings of the data frame used for computing the means (star centers) and the ellipses of dispersion |
| xax            | the column number of x in dfxy                                                                                                |
| yax            | the column number of y in dfxy                                                                                                |
| cstar          | a number between 0 and 1 which defines the length of the star size                                                            |
| cellipse       | a positive coefficient for the inertia ellipse size                                                                           |
| axesell        | a logical value indicating whether the ellipse axes should be drawn                                                           |
| label          | a vector of strings of characters for the point labels                                                                        |
| clabel         | if not NULL, a character size for the labels, used with par("cex")*clabel                                                     |
| cpoint         | a character size for plotting the points, used with par("cex")*cpoint. If zero, no points are drawn                           |
| pch            | if $cpoint > 0$ , an integer specifying the symbol or the single character to be used in plotting points                      |
| col            | a vector of colors used to draw each class in a different color                                                               |
| xlim           | the ranges to be encompassed by the x, if NULL they are computed                                                              |
| ylim           | the ranges to be encompassed by the y, if NULL they are computed                                                              |
| grid           | a logical value indicating whether a grid in the background of the plot should be drawn                                       |
| addaxes        | a logical value indicating whether the axes should be plotted                                                                 |
| origin         | the fixed point in the graph space, for example $c(0,0)$ the origin axes                                                      |
| include.origin | a logical value indicating whether the point "origin" should be belonged to the graph space                                   |
| sub            | a string of characters to be inserted as legend                                                                               |
| csub           | a character size for the legend, used with par("cex")*csub                                                                    |
| possub         | a string of characters indicating the sub-title position ("topleft", "topright", "bottomleft", "bottomright")                 |
| cgrid          | a character size, parameter used with $par("cex")^*$ cgrid to indicate the mesh of the grid                                   |
| pixmap         | an object 'pixmap' displayed in the map background                                                                            |
| contour        | a data frame with 4 columns to plot the contour of the map : each row gives a segment $(x1,\!y1,\!x2,\!y2)$                   |
| area           | a data frame of class 'area' to plot a set of surface units in contour                                                        |
| add.plot       | if TRUE uses the current graphics window                                                                                      |
|                |                                                                                                                               |

# Value

The matched call.

s.corcircle 293

### Author(s)

Daniel Chessel

### **Examples**

```
if(!adegraphicsLoaded()) {
 xy \leftarrow cbind.data.frame(x = runif(200, -1, 1), y = runif(200, -1, 1))
 posi <- factor(xy$x > 0) : factor(xy$y > 0)
 coul <- c("black", "red", "green", "blue")</pre>
 par(mfrow = c(2, 2))
 s.class(xy, posi, cpoi = 2)
 s.class(xy, posi, cell = 0, cstar = 0.5)
 s.class(xy, posi, cell = 2, axesell = FALSE, csta = 0, col = coul)
 s.chull(xy, posi, cpoi = 1)
 par(mfrow = c(1, 1))
 ## Not run:
 data(banque)
 dudi1 <- dudi.acm(banque, scannf = FALSE)</pre>
 coul = rainbow(length(levels(banque[, 20])))
 par(mfrow = c(2, 2))
 s.label(dudi1$li, sub = "Factorial map from ACM", csub = 1.5,
   possub = "topleft")
 s.class(dudi1$li, banque[, 20], sub = names(banque)[20],
   possub = "bottomright", cell = 0, cstar = 0.5, cgrid = 0, csub = 1.5)
 s.class(dudi1$li, banque[, 20], csta = 0, cell = 2, cgrid = 0,
   clab = 1.5)
 s.class(dudi1$li, banque[, 20], sub = names(banque)[20],
    possub = "topright", cgrid = 0, col = coul)
 par(mfrow = c(1, 1))
 par(mfrow = n2mfrow(ncol(banque)))
 for(i in 1:(ncol(banque)))
    s.class(dudi1$li, banque[, i], clab = 1.5, sub = names(banque)[i],
      csub = 2, possub = "topleft", cgrid = 0, csta = 0, cpoi = 0)
 s.label(dudi1$li, clab = 0, sub = "Common background")
 par(mfrow = c(1, 1))
## End(Not run)
```

s.corcircle

Plot of the factorial maps of a correlation circle

#### **Description**

performs the scatter diagram of a correlation circle.

294 s.corcircle

### **Usage**

```
s.corcircle(dfxy, xax = 1, yax = 2, label = row.names(df),
    clabel = 1, grid = TRUE, sub = "", csub = 1, possub = "bottomleft",
    cgrid = 0, fullcircle = TRUE, box = FALSE, add.plot = FALSE)
```

### **Arguments**

| dfxy       | a data frame with two coordinates                                                                             |
|------------|---------------------------------------------------------------------------------------------------------------|
| xax        | the column number for the x-axis                                                                              |
| yax        | the column number for the y-axis                                                                              |
| label      | a vector of strings of characters for the point labels                                                        |
| clabel     | if not NULL, a character size for the labels, used with par("cex")*clabel                                     |
| grid       | a logical value indicating whether a grid in the background of the plot should be drawn                       |
| sub        | a string of characters to be inserted as legend                                                               |
| csub       | a character size for the legend, used with par("cex")*csub                                                    |
| possub     | a string of characters indicating the sub-title position ("topleft", "topright", "bottomleft", "bottomright") |
| cgrid      | a character size, parameter used with $par("cex")*cgrid$ to indicate the mesh of the grid                     |
| fullcircle | a logical value indicating whether the complete circle sould be drawn                                         |
| box        | a logical value indcating whether a box should be drawn                                                       |
|            |                                                                                                               |

if TRUE uses the current graphics window

### Value

The matched call.

add.plot

# Author(s)

Daniel Chessel

```
if(!adegraphicsLoaded()) {
   data (olympic)
   dudi1 <- dudi.pca(olympic$tab, scan = FALSE) # a normed PCA
   par(mfrow = c(2, 2))
   s.corcircle(dudi1$co, lab = names(olympic$tab))
   s.corcircle(dudi1$co, cgrid = 0, full = FALSE, clab = 0.8)
   s.corcircle(dudi1$co, lab = as.character(1:11), cgrid = 2,
    full = FALSE, sub = "Correlation circle", csub = 2.5,
    possub = "bottomleft", box = TRUE)
   s.arrow(dudi1$co, clab = 1)
   par(mfrow = c(1, 1))
}</pre>
```

s.distri 295

| s.distri | Plot of a frequency distribution |
|----------|----------------------------------|
|----------|----------------------------------|

# Description

performs the scatter diagram of a frequency distribution.

# Usage

```
s.distri(dfxy, dfdistri, xax = 1, yax = 2, cstar = 1,
    cellipse = 1.5, axesell = TRUE, label = names(dfdistri),
    clabel = 0, cpoint = 1, pch = 20, xlim = NULL, ylim = NULL,
    grid = TRUE, addaxes = TRUE, origin = c(0,0),
    include.origin = TRUE, sub = "", csub = 1, possub = "bottomleft",
    cgrid = 1, pixmap = NULL, contour = NULL, area = NULL, add.plot = FALSE)
```

| dfxy           | a data frame containing two columns for the axes                                                         |
|----------------|----------------------------------------------------------------------------------------------------------|
| dfdistri       | a data frame containing the mass distributions in columns                                                |
| xax            | the column number for the x-axis                                                                         |
| yax            | the column number for the y-axis                                                                         |
| cstar          | a number between 0 and 1 which defines the length of the star size                                       |
| cellipse       | a positive coefficient for the inertia ellipse size                                                      |
| axesell        | a logical value indicating whether the ellipse axes should be drawn                                      |
| label          | a vector of strings of characters for the distribution centers labels                                    |
| clabel         | if not NULL, a character size for the labels, used with par("cex")*clabel                                |
| cpoint         | a character size for plotting the points, used with $par("cex")*cpoint$ . If zero, no points are drawn   |
| pch            | if $cpoint > 0$ , an integer specifying the symbol or the single character to be used in plotting points |
| xlim           | the ranges to be encompassed by the x, if NULL they are computed                                         |
| ylim           | the ranges to be encompassed by the y, if NULL they are computed                                         |
| grid           | a logical value indicating whether a grid in the background of the plot should be drawn                  |
| addaxes        | a logical value indicating whether the axes should be plotted                                            |
| origin         | the fixed point in the graph space, for example $c(0,0)$ the origin axes                                 |
| include.origin | a logical value indicating whether the point "origin" should be belonged to the graph space              |
| sub            | a string of characters to be inserted as legend                                                          |
| csub           | a character size for the legend, used with par("cex")*csub                                               |
|                |                                                                                                          |

296 s.distri

| possub   | a string of characters indicating the sub-title position ("topleft", "topright", "bottomleft", "bottomright") |
|----------|---------------------------------------------------------------------------------------------------------------|
| cgrid    | a character size, parameter used with $par("cex")^*$ cgrid to indicate the mesh of the grid                   |
| pixmap   | an object 'pixmap' displayed in the map background                                                            |
| contour  | a data frame with 4 columns to plot the contour of the map : each row gives a segment $(x1,y1,x2,y2)$         |
| area     | a data frame of class 'area' to plot a set of surface units in contour                                        |
| add.plot | if TRUE uses the current graphics window                                                                      |

#### Value

The matched call.

### Author(s)

Daniel Chessel

```
if(!adegraphicsLoaded()) {
 xy \leftarrow cbind.data.frame(x = runif(200, -1, 1), y = runif(200, -1, 1))
 distri \leftarrow data.frame(w1 = rpois(200, xy$x * (xy$x > 0)))
 s.value(xy, distri$w1, cpoi = 1)
 s.distri(xy, distri, add.p = TRUE)
 w1 \leftarrow as.numeric((xy$x> 0) & (xy$y > 0))
 w2 \leftarrow ((xy$x > 0) & (xy$y < 0)) * (1 - xy$y) * xy$x
 w3 \leftarrow ((xy$x < 0) & (xy$y > 0)) * (1 - xy$x) * xy$y
 w4 \leftarrow ((xy$x < 0) & (xy$y < 0)) * xy$y * xy$x
 distri <- data.frame(a = w1 / sum(w1), b = w2 / sum(w2),</pre>
   c = w3 / sum(w3), d = w4 / sum(w4))
 s.value(xy, unlist(apply(distri, 1, sum)), cleg = 0, csi = 0.75)
 s.distri(xy, distri, clab = 2, add.p = TRUE)
 data(rpjdl)
 xy <- dudi.coa(rpjdl$fau, scan = FALSE)$li</pre>
 par(mfrow = c(3, 4))
 for (i in c(1, 5, 8, 20, 21, 23, 26, 33, 36, 44, 47, 49)) {
    s.distri(xy, rpjdl$fau[, i], cell = 1.5, sub = rpjdl$frlab[i],
      csub = 2, cgrid = 1.5)
 par(mfrow = c(1, 1))
}
```

s.hist 297

s.hist

Display of a scatterplot and its two marginal histograms

# Description

performs a scatterplot and the two marginal histograms of each axis.

# Usage

```
s.hist(dfxy, xax = 1, yax = 2, cgrid = 1, cbreaks = 2, adjust = 1, ...)
```

### **Arguments**

| dfxy    | a data frame with two coordinates                                                                                                                                                                                                         |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| xax     | column for the x axis                                                                                                                                                                                                                     |
| yax     | column for the y axis                                                                                                                                                                                                                     |
| cgrid   | a character size, parameter used with par("cex")*cgrid to indicate the mesh of the grid                                                                                                                                                   |
| cbreaks | a parameter used to define the numbers of cells for the histograms. By default, two cells are defined for each interval of the grid displayed in s.label. With an increase of the integer cbreaks, the number of cells increases as well. |
| adjust  | a parameter passed to density to display a kernel density estimation                                                                                                                                                                      |
| • • •   | further arguments passed from the s.label for the scatter plot                                                                                                                                                                            |

# Value

The matched call.

# Author(s)

Daniel Chessel

```
data(rpjdl)
coa1 <- dudi.coa(rpjdl$fau, scannf = FALSE, nf = 4)
s.hist(coa1$li)
s.hist(coa1$li, cgrid = 2, cbr = 3, adj = 0.5, clab = 0)
s.hist(coa1$co, cgrid = 2, cbr = 3, adj = 0.5, clab = 0)</pre>
```

298 s.image

# Description

performs a scatterplot

# Usage

```
s.image(dfxy, z, xax = 1, yax = 2, span = 0.5, xlim = NULL, ylim = NULL,
kgrid = 2, scale = TRUE, grid = FALSE, addaxes = FALSE, cgrid = 0,
include.origin = FALSE, origin = c(0, 0), sub = "", csub = 1,
possub = "topleft", neig = NULL, cneig = 1, image.plot = TRUE,
contour.plot = TRUE, pixmap = NULL, contour = NULL, area = NULL,
add.plot = FALSE)
```

| a data frame containing the two columns for the axes                                                                    |
|-------------------------------------------------------------------------------------------------------------------------|
| a vector of values on the dfxy rows                                                                                     |
| the column number of x in dfxy                                                                                          |
| the column number of y in dfxy                                                                                          |
| the parameter alpha which controls the degree of smoothing                                                              |
| the ranges to be encompassed by the x-axis, if NULL they are computed                                                   |
| the ranges to be encompassed by the y-axis, if NULL they are computed                                                   |
| a number of points used to locally estimate the level line through the nodes of the grid, used by kgrid*sqrt(length(z)) |
| if TRUE, data are centered and reduced                                                                                  |
| if TRUE, the background grid is traced                                                                                  |
| a logical value indicating whether the axes should be plotted                                                           |
| a character size, parameter used with $par("cex")^*$ cgrid to indicate the mesh of the grid                             |
| a logical value indicating whether the point "origin" should be belonged to the graph space                             |
| the fixed point in the graph space, for example $c(0,0)$ the origin axes                                                |
| a string of characters to be inserted as legend                                                                         |
| a character size for the legend, used with par("cex")*csub                                                              |
| a string of characters indicating the sub-title position ("topleft", "topright", "bottomleft", "bottomright")           |
| an object of class neig                                                                                                 |
| a size for the neighbouring graph lines used with par("lwd")*cneig                                                      |
|                                                                                                                         |

s.image 299

```
image.plot if TRUE, the image is traced contour.plot if TRUE, the contour lines are plotted pixmap an object 'pixmap' displayed in the map background contour a data frame with 4 columns to plot the contour of the map: each row gives a segment (x1,y1,x2,y2) area a data frame of class 'area' to plot a set of surface units in contour add.plot if TRUE uses the current graphics window
```

#### Value

The matched call.

### Author(s)

Daniel Chessel

```
if(!adegraphicsLoaded()) {
 if(requireNamespace("splancs", quietly = TRUE)) {
   wxy <- data.frame(expand.grid(-3:3, -3:3))</pre>
   names(wxy) \leftarrow c("x", "y")
   z \leftarrow (1 / sqrt(2)) * exp(-(wxy$x ^ 2 + wxy$y ^ 2) / 2)
   par(mfrow = c(2, 2))
    s.value(wxy, z)
    s.image(wxy, z)
    s.image(wxy, z, kgrid = 5)
   s.image(wxy, z, kgrid = 15)
   par(mfrow = c(1, 1))
 }
 ## Not run:
 data(t3012)
 if(requireNamespace("splancs", quietly = TRUE)) {
    par(mfrow = c(3, 4))
    for(k in 1:12)
      s.image(t3012$xy, scalewt(t3012$temp[, k]), kgrid = 3)
    par(mfrow = c(1, 1))
 }
 data(elec88)
 if(requireNamespace("splancs", quietly = TRUE)) {
   par(mfrow = c(3,4))
    for(k in 1:12)
      s.image(t3012$xy, scalewt(t3012$temp[, k]), kgrid = 3, sub = names(t3012$temp)[k],
        csub = 3, area = elec88$area)
    par(mfrow = c(1, 1))
 }
## End(Not run)
```

300 s.kde2d

### **Description**

performs a scatter of points without labels by a kernel Density Estimation in One or Two Dimensions

### Usage

```
s.kde2d(dfxy, xax = 1, yax = 2, pch = 20, cpoint = 1, neig = NULL, cneig = 2,
    xlim = NULL, ylim = NULL, grid = TRUE, addaxes = TRUE, cgrid = 1,
    include.origin = TRUE, origin = c(0, 0), sub = "", csub = 1.25,
    possub = "bottomleft", pixmap = NULL, contour = NULL,
    area = NULL, add.plot = FALSE)
```

| dfxy           | a data frame with at least two coordinates                                                                    |
|----------------|---------------------------------------------------------------------------------------------------------------|
| xax            | the column number for the x-axis                                                                              |
| yax            | the column number for the y-axis                                                                              |
| pch            | if $cpoint > 0$ , an integer specifying the symbol or the single character to be used in plotting points      |
| cpoint         | a character size for plotting the points, used with $par("cex")*cpoint$ . If zero, no points are drawn        |
| neig           | a neighbouring graph                                                                                          |
| cneig          | a size for the neighbouring graph lines used with par("lwd")*cneig                                            |
| xlim           | the ranges to be encompassed by the x axis, if NULL, they are computed                                        |
| ylim           | the ranges to be encompassed by the y axis, if NULL, they are computed                                        |
| grid           | a logical value indicating whether a grid in the background of the plot should be drawn                       |
| addaxes        | a logical value indicating whether the axes should be plotted                                                 |
| cgrid          | a character size, parameter used with par<br>("cex")* 'cgrid' to indicate the mesh of the grid                |
| include.origin | a logical value indicating whether the point "origin" should be belonged to the graph space                   |
| origin         | the fixed point in the graph space, for example $c(0,0)$ the origin axes                                      |
| sub            | a string of characters to be inserted as legend                                                               |
| csub           | a character size for the legend, used with par("cex")*csub                                                    |
| possub         | a string of characters indicating the sub-title position ("topleft", "topright", "bottomleft", "bottomright") |
| pixmap         | an object pixmap displayed in the map background                                                              |
|                |                                                                                                               |

s.label 301

contour a data frame with 4 columns to plot the contour of the map : each row gives a

segment (x1,y1,x2,y2)

area a data frame of class 'area' to plot a set of surface units in contour

add.plot if TRUE uses the current graphics window

#### Value

The matched call.

### Author(s)

Daniel Chessel

### **Examples**

```
# To recognize groups of points
if(!adegraphicsLoaded()) {
  data(rpjdl)
  coa1 <- dudi.coa(rpjdl$fau, scannf = FALSE, nf = 3)
  s.kde2d(coa1$li)
}</pre>
```

s.label

Scatter Plot

# Description

performs the scatter diagrams with labels.

### Usage

```
s.label(dfxy, xax = 1, yax = 2, label = row.names(dfxy),
    clabel = 1, pch = 20, cpoint = if (clabel == 0) 1 else 0, boxes = TRUE,
    neig = NULL, cneig = 2, xlim = NULL, ylim = NULL, grid = TRUE,
    addaxes = TRUE, cgrid = 1, include.origin = TRUE, origin = c(0,0),
    sub = "", csub = 1.25, possub = "bottomleft", pixmap = NULL,
    contour = NULL, area = NULL, add.plot = FALSE)
```

| dfxy   | a data frame with at least two coordinates                                                               |
|--------|----------------------------------------------------------------------------------------------------------|
| xax    | the column number for the x-axis                                                                         |
| yax    | the column number for the y-axis                                                                         |
| label  | a vector of strings of characters for the point labels                                                   |
| clabel | if not NULL, a character size for the labels, used with par("cex")*clabel                                |
| pch    | if $cpoint > 0$ , an integer specifying the symbol or the single character to be used in plotting points |

302 s.label

| cpoint                          | a character size for plotting the points, used with par("cex")*cpoint. If zero, no points are drawn                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| boxes                           | if TRUE, labels are framed                                                                                                                                                                                                                                                                                                                                                                                                                  |
| neig                            | a neighbouring graph                                                                                                                                                                                                                                                                                                                                                                                                                        |
| cneig                           | a size for the neighbouring graph lines used with par("lwd")*cneig                                                                                                                                                                                                                                                                                                                                                                          |
| xlim                            | the ranges to be encompassed by the x axis, if NULL, they are computed                                                                                                                                                                                                                                                                                                                                                                      |
| ylim                            | the ranges to be encompassed by the y axis, if NULL, they are computed                                                                                                                                                                                                                                                                                                                                                                      |
| grid                            | a logical value indicating whether a grid in the background of the plot should be drawn                                                                                                                                                                                                                                                                                                                                                     |
| addaxes                         | a logical value indicating whether the axes should be plotted                                                                                                                                                                                                                                                                                                                                                                               |
| cgrid                           | a character size, parameter used with $par("cex")^*$ cgrid to indicate the mesh of the grid                                                                                                                                                                                                                                                                                                                                                 |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| include.origin                  | a logical value indicating whether the point "origin" should be belonged to the graph space                                                                                                                                                                                                                                                                                                                                                 |
| origin                          |                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -                               | graph space                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| origin                          | graph space the fixed point in the graph space, for example $c(0,0)$ the origin axes                                                                                                                                                                                                                                                                                                                                                        |
| origin<br>sub                   | graph space the fixed point in the graph space, for example $c(0,0)$ the origin axes a string of characters to be inserted as legend                                                                                                                                                                                                                                                                                                        |
| origin<br>sub<br>csub           | graph space the fixed point in the graph space, for example c(0,0) the origin axes a string of characters to be inserted as legend a character size for the legend, used with par("cex")*csub a string of characters indicating the sub-title position ("topleft", "topright", "bot-                                                                                                                                                        |
| origin<br>sub<br>csub<br>possub | graph space the fixed point in the graph space, for example c(0,0) the origin axes a string of characters to be inserted as legend a character size for the legend, used with par("cex")*csub a string of characters indicating the sub-title position ("topleft", "topright", "bottomleft", "bottomright")                                                                                                                                 |
| origin sub csub possub          | graph space the fixed point in the graph space, for example c(0,0) the origin axes a string of characters to be inserted as legend a character size for the legend, used with par("cex")*csub a string of characters indicating the sub-title position ("topleft", "topright", "bottomleft", "bottomright") an object 'pixmap' displayed in the map background a data frame with 4 columns to plot the contour of the map: each row gives a |

# Value

The matched call.

# Author(s)

Daniel Chessel

```
if(!adegraphicsLoaded()) {
    layout(matrix(c(1, 2, 3, 2), 2, 2))
    data(atlas)
    s.label(atlas$xy, lab = atlas$names.district,
        area = atlas$area, inc = FALSE, addax = FALSE)
    data(mafragh)
    s.label(mafragh$xy, inc = FALSE, neig = mafragh$neig, addax = FALSE)
    data(irishdata)
    s.label(irishdata$xy, inc = FALSE, contour = irishdata$contour,
        addax = FALSE)
```

s.logo

```
par(mfrow = c(2, 2))
cha <- ls()
s.label(cbind.data.frame(runif(length(cha)),
    runif(length(cha))), lab = cha)
x <- runif(50, -2, 2)
y <- runif(50, -2, 2)
z <- x^2 + y^2
s.label(data.frame(x, y), lab = as.character(z < 1))
s.label(data.frame(x, y), clab = 0, cpoi = 1, add.plot = TRUE)
symbols(0, 0, circles = 1, add = TRUE, inch = FALSE)
s.label(cbind.data.frame(runif(100, 0, 10), runif(100, 5, 12)),
    incl = FALSE, clab = 0)
s.label(cbind.data.frame(runif(100, -3, 12),
    runif(100, 2, 10)), cl = 0, cp = 2, include = FALSE)
}</pre>
```

s.logo

Representation of an object in a graph by a picture

### **Description**

performs the scatter diagrams using pictures to represent the points

### Usage

```
s.logo(dfxy, listlogo, klogo=NULL, clogo=1, rectlogo=TRUE,
    xax = 1, yax = 2, neig = NULL, cneig = 1, xlim = NULL, ylim = NULL,
    grid = TRUE, addaxes = TRUE, cgrid = 1, include.origin = TRUE,
    origin = c(0, 0), sub = "", csub = 1.25, possub = "bottomleft",
    pixmap = NULL, contour = NULL, area = NULL, add.plot = FALSE)
```

| dfxy     | a data frame with at least two coordinates                                                                                        |
|----------|-----------------------------------------------------------------------------------------------------------------------------------|
| listlogo | a list of pixmap pictures                                                                                                         |
| klogo    | a numeric vector giving the order in which pictures of listlogo are used; if NULL, the order is the same than the rows of dfxy $$ |
| clogo    | a numeric vector giving the size factor applied to each picture                                                                   |
| rectlogo | a logical to decide whether a rectangle should be drawn around the picture (TRUE) or not (FALSE) $$                               |
| xax      | the column number for the x-axis                                                                                                  |
| yax      | the column number for the y-axis                                                                                                  |
| neig     | a neighbouring graph                                                                                                              |
| cneig    | a size for the neighbouring graph lines used with par("lwd")*cneig                                                                |
| xlim     | the ranges to be encompassed by the x axis, if NULL, they are computed                                                            |
|          |                                                                                                                                   |

304 s.logo

| ylim           | the ranges to be encompassed by the y axis, if NULL, they are computed                                        |
|----------------|---------------------------------------------------------------------------------------------------------------|
| grid           | a logical value indicating whether a grid in the background of the plot should be drawn                       |
| addaxes        | a logical value indicating whether the axes should be plotted                                                 |
| cgrid          | a character size, parameter used with $par("cex")^*$ cgrid to indicate the mesh of the grid                   |
| include.origin | a logical value indicating whether the point "origin" should be belonged to the graph space                   |
| origin         | the fixed point in the graph space, for example $c(0,0)$ the origin axes                                      |
| sub            | a string of characters to be inserted as legend                                                               |
| csub           | a character size for the legend, used with par("cex")*csub                                                    |
| possub         | a string of characters indicating the sub-title position ("topleft", "topright", "bottomleft", "bottomright") |
| pixmap         | an object 'pixmap' displayed in the map background                                                            |
| contour        | a data frame with 4 columns to plot the contour of the map : each row gives a segment $(x1,y1,x2,y2)$         |
| area           | a data frame of class 'area' to plot a set of surface units in contour                                        |
| add.plot       | if TRUE uses the current graphics window                                                                      |
|                |                                                                                                               |

#### Value

The matched call.

### Author(s)

Daniel Chessel and Thibaut Jombart <t.jombart@imperial.ac.uk>

```
if(requireNamespace("pixmap", quietly = TRUE) & requireNamespace("sp", quietly = TRUE)) {
 if(!adegraphicsLoaded()) {
  data(ggtortoises)
  a1 <- ggtortoises$area
  area.plot(a1)
  rect(min(a1$x), min(a1$y), max(a1$x), max(a1$y), col = "lightblue")
  invisible(lapply(split(a1, a1$id), function(x) polygon(x[, -1],col = "white")))
 s.label(ggtortoises$misc, grid = FALSE, include.ori = FALSE, addaxes = FALSE, add.p = TRUE)
  listico <- ggtortoises$ico[as.character(ggtortoises$pop$carap)]</pre>
  s.logo(ggtortoises$pop, listico, add.p = TRUE)
 } else {
  data(capitales, package = "ade4")
  # 'capitales' data doesn't work with ade4 anymore
   g3 <- s.logo(capitales$xy[sort(rownames(capitales$xy)), ], capitales$logo,</pre>
      Sp = capitales$Spatial, pbackground.col = "lightblue", pSp.col = "white",
      pgrid.draw = FALSE)
}
```

s.match 305

| s.match | Plot of Paired Coordinates |
|---------|----------------------------|
|         |                            |

# Description

performs the scatter diagram for a paired coordinates.

# Usage

```
s.match(df1xy, df2xy, xax = 1, yax = 2, pch = 20, cpoint = 1,
    label = row.names(df1xy), clabel=1, edge = TRUE, xlim = NULL,
    ylim = NULL, grid = TRUE, addaxes = TRUE, cgrid = 1,
    include.origin = TRUE, origin = c(0,0), sub = "", csub = 1.25,
    possub = "bottomleft", pixmap = NULL, contour = NULL, area = NULL,
    add.plot = FALSE)
```

| df1xy          | a data frame containing two columns from the first system                                             |
|----------------|-------------------------------------------------------------------------------------------------------|
| df2xy          | a data frame containing two columns from teh second system                                            |
| xax            | the column number for the x-axis of both the two systems                                              |
| yax            | the column number for the y-axis of both the two systems                                              |
| pch            | if cpoint > 0, an integer specifying the symbol or the single character to be used in plotting points |
| cpoint         | a character size for plotting the points, used with par("cex")*cpoint. If zero, no points are drawn   |
| label          | a vector of strings of characters for the couple labels                                               |
| clabel         | if not NULL, a character size for the labels, used with par("cex")*clabel                             |
| edge           | If TRUE the arrows are plotted, otherwise only the segments are drawn                                 |
| xlim           | the ranges to be encompassed by the x axis, if NULL they are computed                                 |
| ylim           | the ranges to be encompassed by the y axis, if NULL they are computed                                 |
| grid           | a logical value indicating whether a grid in the background of the plot should be drawn               |
| addaxes        | a logical value indicating whether the axes should be plotted                                         |
| cgrid          | a character size, parameter used with $par("cex")^*$ cgrid to indicate the mesh of the grid           |
| include.origin | a logical value indicating whether the point "origin" should be belonged to the graph space           |
| origin         | the fixed point in the graph space, for example $c(0,0)$ the origin axes                              |
| sub            | a string of characters to be inserted as legend                                                       |
| csub           | a character size for the legend, used with par("cex")*csub                                            |

306 s.match.class

| possub   | a string of characters indicating the sub-title position ("topleft", "topright", "bottomleft", "bottomright") |
|----------|---------------------------------------------------------------------------------------------------------------|
| pixmap   | aan object pixmap displayed in the map background                                                             |
| contour  | a data frame with 4 columns to plot the contour of the map : each row gives a segment $(x1,\!y1,\!x2,\!y2)$   |
| area     | a data frame of class 'area' to plot a set of surface units in contour                                        |
| add.plot | if TRUE uses the current graphics window                                                                      |

#### Value

The matched call.

### Author(s)

Daniel Chessel

# **Examples**

```
if(!adegraphicsLoaded()) {
    X <- data.frame(x = runif(50, -1, 2), y = runif(50, -1, 2))
    Y <- X + rnorm(100, sd = 0.3)
    par(mfrow = c(2, 2))
    s.match(X, Y)
    s.match(X, Y, edge = FALSE, clab = 0)
    s.match(X, Y, edge = FALSE, clab = 0)
    s.label(X, clab = 1, add.plot = TRUE)
    s.label(Y, clab = 0.75, add.plot = TRUE)
    s.match(Y, X, clab = 0)
    par(mfrow = c(1, 1))
}</pre>
```

s.match.class

Scatterplot of two sets of coordinates and a partionning into classes

# Description

Performs a graphical representation of two sets of coordinates (different colors and symbols) and a partitionning into classes

# Usage

```
s.match.class(df1xy, df2xy, fac, wt = rep(1/nrow(df1xy), nrow(df1xy)),
xax = 1, yax = 2, pch1 = 16, pch2 = 15, col1 = rep("lightgrey",
nlevels(fac)), col2 = rep("darkgrey", nlevels(fac)), cpoint = 1, label =
levels(fac), clabel = 1, cstar = 1, cellipse = 0, axesell = TRUE, xlim =
NULL, ylim = NULL, grid = TRUE, addaxes = TRUE, cgrid = 1,
include.origin = TRUE, origin = c(0, 0), sub = "", csub = 1.25, possub =
"bottomleft", pixmap = NULL, contour = NULL, area = NULL, add.plot = FALSE)
```

s.match.class 307

| df1xy          | a dataframe with the first system of coordinates                                                              |
|----------------|---------------------------------------------------------------------------------------------------------------|
| df2xy          | a dataframe with the second system of coordinates                                                             |
| fac            | a factor partitioning the rows of the data frame in classes                                                   |
| wt             | a vector of weights                                                                                           |
| xax            | a number indicating which column should be plotted on the x-axis                                              |
| yax            | a number indicating which column should be plotted on the x-axis                                              |
| pch1           | if $cpoint > 0$ , an integer specifying the symbol or the single character to be used for plotting points     |
| pch2           | if cpoint > 0, an integer specifying the symbol or the single character to be used for plotting points        |
| col1           | a color for symbols                                                                                           |
| col2           | a color for symbols                                                                                           |
| cpoint         | a character size for plotting the points, used with par("cex")*cpoint. If zero, no points are drawn           |
| label          | a vector of strings of characters for the couple labels                                                       |
| clabel         | if not NULL, a character size for the labels, used with par("cex")*clabel                                     |
| cstar          | a number between 0 and 1 which defines the length of the star size                                            |
| cellipse       | a positive coefficient for the inertia ellipse size                                                           |
| axesell        | a logical value indicating whether the ellipse axes should be drawn                                           |
| xlim           | the ranges to be encompassed by the x axis, if NULL they are computed                                         |
| ylim           | the ranges to be encompassed by the y axis, if NULL they are computed                                         |
| grid           | a logical value indicating whether a grid in the background of the plot should be drawn                       |
| addaxes        | a logical value indicating whether the axes should be plotted                                                 |
| cgrid          | a character size, parameter used with par("cex")* cgrid to indicate the mesh of the grid                      |
| include.origin | a logical value indicating whether the point "origin" should belong to the graph space                        |
| origin         | a fixed point in the graph space, for example $c(0,0)$ for the origin of axes                                 |
| sub            | a string of characters to be inserted as legend                                                               |
| csub           | a character size for the legend, used with par("cex")*csub                                                    |
| possub         | a string of characters indicating the sub-title position ("topleft", "topright", "bottomleft", "bottomright") |
| pixmap         | a pixmap object                                                                                               |
| contour        | a dataframe with 4 columns to plot the contour of the map : each row gives a segment $(x1,y1,x2,y2)$          |
| area           | a dataframe of class 'area' to plot an areal map                                                              |
| add.plot       | if TRUE, add the plot to the current graphic device                                                           |
|                |                                                                                                               |

308 s.multinom

### Value

The matched call.

#### Author(s)

Stéphane Dray < stephane . dray@univ-lyon1 . fr>

#### See Also

```
s.class, s.match
```

```
xy <- data.frame(matrix(rnorm(100), 50, 2))</pre>
xy[, 1] \leftarrow xy[, 1] + rep(seq(0, 12, by = 3), rep(10, 5))
xy[, 2] \leftarrow xy[, 2] + rep(seq(0, 12, by = 3), rep(10, 5))
fac <- gl(5, 10)
xy2 <- xy + matrix(rnorm(100), 50, 2) + 1
if(adegraphicsLoaded()) {
  mat <- rbind(xy, xy2)</pre>
  minmat <- apply(mat, 2, min)</pre>
  maxmat <- apply(mat, 2, max)</pre>
  lag <- 0.1 * abs(minmat - maxmat)</pre>
  xli <- c(minmat[1] - lag[1], maxmat[1] + lag[1])</pre>
  yli \leftarrow c(minmat[2] - lag[2], maxmat[2] + lag[2])
  g1 <- s.class(xy, fac, ellipseSize = 0, col = rep("grey45", nlevels(fac)), xlim = xli,
    ylim = yli, plabels.cex = 0, plot = FALSE)
  g2 <- s.class(xy2, fac, ellipseSize = 0, col = rep("grey75", nlevels(fac)), xlim = xli,
    ylim = yli, plabels.cex = 0, plot = FALSE)
  g3 <- s.match(g1@stats$means, g2@stats$means, xlim = xli, ylim = yli, plines.lwd = 2,
    psub.text = "xy -> xy2", plot = FALSE)
  g4 <- do.call("superpose", list(g1, g2))</pre>
  g4@Call <- call("superpose", g1@Call, g2@Call)</pre>
  g4 <- do.call("superpose", list(g4, g3))</pre>
  g4@Call <- call("superpose", g4@Call, g3@Call)
} else {
  s.match.class(xy, xy2, fac)
```

s.multinom 309

### **Description**

The main purpose of this function is to draw categories using scores and profiles by their gravity center. Confidence intervals of the average position (issued from a multinomial distribution) can be superimposed.

#### Usage

```
s.multinom(dfxy, dfrowprof, translate = FALSE, xax = 1, yax = 2,
labelcat = row.names(dfxy), clabelcat = 1, cpointcat = if (clabelcat == 0) 2 else 0,
labelrowprof = row.names(dfrowprof), clabelrowprof = 0.75,
cpointrowprof = if (clabelrowprof == 0) 2 else 0, pchrowprof = 20,
coulrowprof = grey(0.8), proba = 0.95, n.sample = apply(dfrowprof, 1, sum),
axesell = TRUE, ...)
```

### **Arguments**

dfxy dfxy is a data frame containing at least two numerical variables. The rows of

dfxy are categories such as 1,2 and 3 in the triangular plot.

dfrowprof is a data frame whose the columns are the rows of dfxy. The rows of

dfxy are profiles or frequency distributions on the categories. The column number of dfrowprof must be equal to the row number of dfxy. row.names(dfxy)

and names(dfrowprof) must be identical.

translate a logical value indicating whether the plot should be translated(TRUE) or not.

The origin becomes the gravity center weighted by profiles.

xax the column number of dfxy for the x-axis yax the column number of dfxy for the y-axis

labelcat a vector of strings of characters for the labels of categories

clabelcat an integer specifying the character size for the labels of categories, used with

par("cex")\*clabelcat

cpointcat an integer specifying the character size for the points showing the categories,

used with par("cex")\*cpointcat

labelrowprof a vector of strings of characters for the labels of profiles (rows of dfrowprof)

clabelrowprof an integer specifying the character size for the labels of profiles used with par("cex")\*clabelrowprof

cpointrowprof an integer specifying the character size for the points representative of the pro-

files used with par("cex")\*cpointrowprof

pchrowprof either an integer specifying a symbol or a single character to be used for the

profile labels

coulrowprof a vector of colors used for ellipses, possibly recycled

proba a value lying between 0.500 and 0.999 to draw a confidence interval

n.sample a vector containing the sample size, possibly recycled. Used n.sample = 0 if

the profiles are not issued from a multinomial distribution and that confidence

intervals have no sense.

axesell a logical value indicating whether the ellipse axes should be drawn

... further arguments passed from the s.label for the initial scatter plot.

310 s.traject

#### Value

Returns in a hidden way a list of three components:

tra a vector with two values giving the done original translation.

ell a matrix, with 5 columns and for rows the number of profiles, giving the means,

the variances and the covariance of the profile for the used numerical codes

(column of dfxy)

call the matched call

#### Author(s)

Daniel Chessel

### **Examples**

```
par(mfrow = c(2,2))
par(mar = c(0.1,0.1,0.1,0.1))
proba <- matrix(c(0.49,0.47,0.04,0.4,0.3,0.3,0.05,0.05,0.9,0.05,0.7,0.25), ncol = 3, byrow = TRUE)
proba.df <- as.data.frame (proba)
names(proba.df) <- c("A","B","C"); row.names(proba.df) <- c("P1","P2","P3","P4")
w.proba <- triangle.plot(proba.df, clab = 2, show = FALSE)
box()

w.tri = data.frame(x = c(-sqrt(1/2), sqrt(1/2),0), y = c(-1/sqrt(6),-1/sqrt(6),2/sqrt(6)))
L3 <- c("A","B","C")
row.names(w.tri) <- L3
s.multinom(w.tri, proba.df, n.sample = 0, coulrowprof = "black", clabelrowprof = 1.5)
s.multinom(w.tri, proba.df, n.sample = 30, coul = palette()[5])
s.multinom(w.tri, proba.df, n.sample = 60, coul = palette()[6], add.p = TRUE)
s.multinom(w.tri, proba.df, n.sample = 120, coul = grey(0.8), add.p = TRUE)
print(s.multinom(w.tri, proba.df[-3,], n.sample = 0, translate = TRUE)$tra)</pre>
```

s.traject

Trajectory Plot

### **Description**

performs the scatter diagram with trajectories.

# Usage

```
s.traject(dfxy, fac = factor(rep(1, nrow(dfxy))),
    ord = (1:length(fac)), xax = 1, yax = 2, label = levels(fac),
    clabel = 1, cpoint = 1, pch = 20, xlim = NULL, ylim = NULL,
    grid = TRUE, addaxes = TRUE, edge = TRUE, origin = c(0,0),
    include.origin = TRUE, sub = "", csub = 1, possub = "bottomleft",
    cgrid = 1, pixmap = NULL, contour = NULL, area = NULL, add.plot = FALSE)
```

s.traject 311

# Arguments

| dfxy           | a data frame containing two columns for the axes                                                              |
|----------------|---------------------------------------------------------------------------------------------------------------|
| fac            | a factor partioning the rows of the data frame in classes                                                     |
| ord            | a vector of length equal to fac. The trajectory is drawn in an ascending order of the ord values              |
| xax            | the column number for the x-axis                                                                              |
| yax            | the column number for the y-axis                                                                              |
| label          | a vector of strings of characters for the point labels                                                        |
| clabel         | if not NULL, a character size for the labels, used with par("cex")*clabel                                     |
| cpoint         | a character size for plotting the points, used with $par("cex")*cpoint$ . If zero, no points are drawn        |
| pch            | if $cpoint > 0$ , an integer specifying the symbol or the single character to be used in plotting points      |
| xlim           | the ranges to be encompassed by the x, if NULL they are computed                                              |
| ylim           | the ranges to be encompassed by the y, if NULL they are computed                                              |
| grid           | a logical value indicating whether a grid in the background of the plot should be drawn                       |
| addaxes        | a logical value indicating whether the axes should be plotted                                                 |
| edge           | if TRUE the arrows are plotted, otherwhise only the segments                                                  |
| origin         | the fixed point in the graph space, for example $c(0,0)$ the origin axes                                      |
| include.origin | a logical value indicating whether the point "origin" should be belonged to the graph space                   |
| sub            | a string of characters to be inserted as legend                                                               |
| csub           | a character size for the legend, used with par("cex")*csub                                                    |
| possub         | a string of characters indicating the sub-title position ("topleft", "topright", "bottomleft", "bottomright") |
| cgrid          | a character size, parameter used with $par("cex")*cgrid$ to indicate the mesh of the grid                     |
| pixmap         | aan object 'pixmap' displayed in the map background                                                           |
| contour        | a data frame with 4 columns to plot the contour of the map : each row gives a segment $(x1,\!y1,\!x2,\!y2)$   |
| area           | a data frame of class 'area' to plot a set of surface units in contour                                        |
| add.plot       | if TRUE uses the current graphics window                                                                      |
|                |                                                                                                               |

# Value

The matched call.

# Author(s)

Daniel Chessel

312 s.value

### **Examples**

```
if(!adegraphicsLoaded()) {
    rw <- function(a) {
        x <- 0
        for(i in 1:49) x <- c(x, x[length(x)] + runif(1, -1, 1))
        x
    }
    y <- unlist(lapply(1:5, rw))
    x <- unlist(lapply(1:5, rw))
    z <- gl(5, 50)
    s.traject(data.frame(x, y), z, edge = FALSE)
}</pre>
```

s.value

Representation of a value in a graph

# **Description**

performs the scatter diagram with the representation of a value for a variable

### Usage

```
s.value(dfxy, z, xax = 1, yax = 2, method = c("squaresize", "greylevel"),
    zmax=NULL, csize = 1, cpoint = 0, pch = 20, clegend = 0.75, neig = NULL,
    cneig = 1, xlim = NULL, ylim = NULL, grid = TRUE, addaxes = TRUE,
    cgrid = 0.75, include.origin = TRUE, origin = c(0,0), sub = "",
    csub = 1, possub = "topleft", pixmap = NULL, contour = NULL,
    area = NULL, add.plot = FALSE)
```

| dfxy   | a data frame with two coordinates                                                                                                                                                                                                                                                |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| z      | a vector of the values corresponding to the rows of dfxy                                                                                                                                                                                                                         |
| xax    | column for the x axis                                                                                                                                                                                                                                                            |
| yax    | column for the y axis                                                                                                                                                                                                                                                            |
| method | a string of characters "squaresize" gives black squares for positive values and white for negative values with a proportional area equal to the absolute value. "greylevel" gives squares of equal size with a grey level proportional to the value. By default the first choice |
| zmax   | a numeric value, equal by default to $\max(abs(z))$ , can be used to impose a common scale of the size of the squares to several drawings in the same device                                                                                                                     |
| csize  | a size coefficient for symbols                                                                                                                                                                                                                                                   |
| cpoint | a character size for plotting the points, used with par("cex")*cpoint. If zero, no points are drawn                                                                                                                                                                              |

s.value 313

| pch            | if $cpoint > 0$ , an integer specifying the symbol or the single character to be used in plotting points      |
|----------------|---------------------------------------------------------------------------------------------------------------|
| clegend        | a character size for the legend used by par("cex")*clegend                                                    |
| neig           | a neighbouring graph                                                                                          |
| cneig          | a size for the neighbouring graph lines used with par("lwd")*cneig                                            |
| xlim           | the ranges to be encompassed by the x, if NULL they are computed                                              |
| ylim           | the ranges to be encompassed by the y, if NULL they are computed                                              |
| grid           | a logical value indicating whether a grid in the background of the plot should be drawn                       |
| addaxes        | a logical value indicating whether the axes should be plotted                                                 |
| cgrid          | a character size, parameter used with $par("cex")*cgrid$ to indicate the mesh of the grid                     |
| include.origin | a logical value indicating whether the point "origin" should be belonged to the graph space                   |
| origin         | the fixed point in the graph space, for example $c(0,0)$ the origin axes                                      |
| sub            | a string of characters to be inserted as legend                                                               |
| csub           | a character size for the legend, used with par("cex")*csub                                                    |
| possub         | a string of characters indicating the sub-title position ("topleft", "topright", "bottomleft", "bottomright") |
| pixmap         | an object 'pixmap' displayed in the map background                                                            |
| contour        | a data frame with 4 columns to plot the contour of the map : each row gives a segment $(x1,y1,x2,y2)$         |
| area           | a data frame of class 'area' to plot a set of surface units in contour                                        |
|                |                                                                                                               |
| add.plot       | if TRUE uses the current graphics window                                                                      |

### Value

The matched call.

# Author(s)

Daniel Chessel

```
if(!adegraphicsLoaded()) {
    xy <- cbind.data.frame(x = runif(500), y = runif(500))
    z <- rnorm(500)
    s.value(xy, z)

    s.value(xy, z, method = "greylevel")

    data(rpjdl)
    fau.coa <- dudi.coa(rpjdl$fau, scan = FALSE, nf = 3)
    s.value(fau.coa$li, fau.coa$li[,3], csi = 0.75, cleg = 0.75)</pre>
```

314 santacatalina

```
data(irishdata)
par(mfrow = c(3, 4))
irq0 <- data.frame(scale(irishdata$tab, scale = TRUE))
for (i in 1:12) {
    z <- irq0[, i]
    nam <- names(irq0)[i]
    s.value(irishdata$xy, z, area = irishdata$area, csi = 3,
        csub = 2, sub = nam, cleg = 1.5, cgrid = 0, inc = FALSE,
        xlim = c(16, 205), ylim = c(-50, 268), adda = FALSE, grid = FALSE)
}</pre>
```

santacatalina

Indirect Ordination

### **Description**

This data set gives the densities per hectare of 11 species of trees for 10 transects of topographic moisture values (mean of several stations per class).

### Usage

```
data(santacatalina)
```

### **Format**

a data frame with 11 rows and 10 columns

#### Source

Gauch, H. G. J., Chase, G. B. and Whittaker R. H. (1974) Ordination of vegetation samples by Gaussian species distributions. *Ecology*, **55**, 1382–1390.

```
data(santacatalina)
coa1 <- dudi.coa(log(santacatalina + 1), scan = FALSE) # 2 factors

if(adegraphicsLoaded()) {
   g1 <- table.value(log(santacatalina + 1), plot = FALSE)
   g2 <- table.value(log(santacatalina + 1)[, sample(10)], plot = FALSE)
   g3 <- table.value(log(santacatalina + 1)[order(coa1$li[, 1]), order(coa1$co[, 1])], plot = FALSE)
   g4 <- scatter(coa1, posi = "bottomright", plot = FALSE)
   G <- ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
} else {
   par(mfrow = c(2, 2))
   table.value(log(santacatalina + 1))
   table.value(log(santacatalina + 1)[, sample(10)])
   table.value(log(santacatalina + 1)[order(coa1$li[, 1]), order(coa1$co[, 1])])</pre>
```

sarcelles 315

```
scatter(coa1, posi = "bottomright")
par(mfrow = c(1, 1))
}
```

sarcelles

Array of Recapture of Rings

### **Description**

The data frame sarcelles\$tab contains the number of the winter teals ( $Anas\ C.\ Crecca$ ) for which the ring was retrieved in the area i during the month j (n=3049).

### Usage

```
data(sarcelles)
```

#### **Format**

sarcelles is a list with the following components:

tab a data frame with 14 rows-areas and 12 columns-months

xy a data frame with the 2 spatial coordinates of the 14 region centers

neig the neighbouring graph between areas, object of the class neig

col.names a vector containing the month items

**nb** a neighborhood object (class nb defined in package spdep)

### Source

Lebreton, J.D. (1973). Etude des déplacements saisonniers des Sarcelles d'hiver, Anas c. crecca L., hivernant en Camargue à l'aide de l'analyse factorielle des correspondances. *Compte rendu hebdomadaire des séances de l'Académie des sciences*, Paris, D, III, **277**, 2417–2420.

```
## Not run:
if(!adegraphicsLoaded()) {
    # depends of pixmap
    if(requireNamespace("pixmap", quietly = TRUE)) {
        bkgnd.pnm <- pixmap::read.pnm(system.file("pictures/sarcelles.pnm", package = "ade4"))
        data(sarcelles)
        par(mfrow = c(4, 3))
        for(i in 1:12) {
            s.distri(sarcelles$xy, sarcelles$tab[, i], pixmap = bkgnd.pnm,
            sub = sarcelles$col.names[i], clab = 0, csub = 2)
            s.value(sarcelles$xy, sarcelles$tab[, i], add.plot = TRUE, cleg = 0)
        }
        par(mfrow = c(1, 1))
    }
} ## End(Not run)</pre>
```

316 scalewt

| scalewt | Compute or scale data using (weighted) means, variances and covariances (possibly for the levels of a factor) |
|---------|---------------------------------------------------------------------------------------------------------------|

### **Description**

These utility functions compute (weighted) means, variances and covariances for dataframe partitioned by a factor. The scale transforms a numeric matrix in a centred and scaled matrix for any weighting.

### **Usage**

```
covwt(x, wt, na.rm = FALSE)
varwt(x, wt, na.rm = FALSE)
scalewt(df, wt = rep(1/nrow(df), nrow(df)), center = TRUE, scale = TRUE)
meanfacwt(df, fac = NULL, wt = rep(1/nrow(df), nrow(df)), drop = FALSE)
varfacwt(df, fac = NULL, wt = rep(1/nrow(df), nrow(df)), drop = FALSE)
covfacwt(df, fac = NULL, wt = rep(1/nrow(df), nrow(df)), drop = FALSE)
scalefacwt(df, fac = NULL, wt = rep(1/nrow(df), nrow(df)), scale = TRUE, drop = FALSE)
```

### **Arguments**

| X      | a numeric vector (varwt) or a matrix (covwt) containg the data.                                  |
|--------|--------------------------------------------------------------------------------------------------|
| na.rm  | a logical value indicating whether NA values should be stripped before the computation proceeds. |
| df     | a matrix or a dataframe containing the data.                                                     |
| fac    | a factor partitioning the data.                                                                  |
| wt     | a numeric vector of weights.                                                                     |
| drop   | a logical value indicating whether unused levels should be kept.                                 |
| scale  | a logical value indicating whether data should be scaled or not.                                 |
| center | a logical value indicating whether data should be centered or not.                               |

### **Details**

Functions returns biased estimates of variances and covariances (i.e. divided by n and not n-1)

### Value

For varwt, the weighted variance. For covwt, the matrix of weighted co-variances. For scalewt, the scaled dataframe. For other function a list (if fac is not null) of dataframes with approriate values

# Author(s)

```
Stéphane Dray <stephane.dray@univ-lyon1.fr>
```

scatter 317

### **Examples**

```
data(meau)
w <- rowSums(meau$spe)
varwt(meau$env, w)
varfacwt(meau$env, wt = w)
varfacwt(meau$env, wt = w, fac = meau$design$season)
covfacwt(meau$env, wt = w, fac = meau$design$season)
scalewt(meau$env, wt = w)</pre>
```

scatter

Graphical representation of the outputs of a multivariate analysis

### **Description**

scatter is a generic function that has methods for the classes coa, dudi, fca, acm and pco. It plots the outputs of a multivariate analysis by representing simultaneously the rows and the colums of the original table (biplot). The function biplot returns exactly the same representation.

The function screeplot represents the amount of inertia (usually variance) associated to each dimension.

### Usage

```
scatter(x, ...)
## S3 method for class 'dudi'
biplot(x, ...)
## S3 method for class 'dudi'
screeplot(x, npcs = length(x$eig), type = c("barplot", "lines"),
    main = deparse(substitute(x)), col = c(rep("black", x$nf),
rep("grey", npcs - x$nf)), ...)
```

### **Arguments**

| Х    | an object of the class dud1 containing the outputs of a multivariate analysis |
|------|-------------------------------------------------------------------------------|
| npcs | the number of components to be plotted                                        |
| type | the type of plot                                                              |
| main | the title of the plot                                                         |
| col  | a vector of colors                                                            |
|      | further arguments passed to or from other methods                             |

### Author(s)

```
Daniel Chessel
Stéphane Dray <stephane.dray@univ-lyon1.fr>
```

318 scatter.acm

### See Also

```
s.arrow, s.chull, s.class, s.corcircle, s.distri, s.label, s.match, s.traject, s.value, add.scatter
```

# **Examples**

```
data(rpjdl)
rpjdl.coa <- dudi.coa(rpjdl$fau, scannf = FALSE, nf = 4)
screeplot(rpjdl.coa)
biplot(rpjdl.coa)</pre>
```

scatter.acm

Plot of the factorial maps in a Multiple Correspondence Analysis

# Description

performs the scatter diagrams of a Multiple Correspondence Analysis.

### Usage

```
## S3 method for class 'acm'
scatter(x, xax = 1, yax = 2, mfrow=NULL, csub = 2, possub = "topleft", ...)
```

### **Arguments**

| X      | an object of class acm                                                                                                           |
|--------|----------------------------------------------------------------------------------------------------------------------------------|
| xax    | the column number for the x-axis                                                                                                 |
| yax    | the column number for the y-axis                                                                                                 |
| mfrow  | a vector of the form " $c(nr,nc)$ ", if NULL (the default) is computed by n2mfrow                                                |
| csub   | a character size for the legend, used with par("cex")*csub                                                                       |
| possub | a string of characters indicating the legend position ("topleft", "topright", "bottomleft", "bottomright") in a array of figures |
|        | further arguments passed to or from other methods                                                                                |

### Author(s)

Daniel Chessel

```
data(lascaux)
if(adegraphicsLoaded()) {
  plot(dudi.acm(lascaux$ornem, sca = FALSE))
} else {
  scatter(dudi.acm(lascaux$ornem, sca = FALSE), csub = 3)
}
```

scatter.coa 319

| scatter.d |
|-----------|
|-----------|

Plot of the factorial maps for a correspondence analysis

# Description

performs the scatter diagrams of a correspondence analysis.

# Usage

### **Arguments**

| X        | an object of class coa                                                                                                                                                      |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| xax      | the column number for the x-axis                                                                                                                                            |
| yax      | the column number for the y-axis                                                                                                                                            |
| method   | an integer between 1 and 3 1 Rows and columns with the coordinates of lambda variance 2 Columns variance 1 and rows by averaging 3 Rows variance 1 and columns by averaging |
| clab.row | a character size for the rows                                                                                                                                               |
| clab.col | a character size for the columns                                                                                                                                            |
| posieig  | if "top" the eigenvalues bar plot is upside,vif "bottom" it is downside, if "none" no plot                                                                                  |
| sub      | a string of characters to be inserted as legend                                                                                                                             |
| csub     | a character size for the legend, used with par("cex")*csub                                                                                                                  |
|          | further arguments passed to or from other methods                                                                                                                           |
|          |                                                                                                                                                                             |

# Author(s)

Daniel Chessel

### References

Oksanen, J. (1987) Problems of joint display of species and site scores in correspondence analysis. *Vegetatio*, **72**, 51–57.

320 scatter.dudi

### **Examples**

```
data(housetasks)
w <- dudi.coa(housetasks, scan = FALSE)</pre>
if(adegraphicsLoaded()) {
 g1 <- scatter(w, method = 1, psub.text = "1 / Standard", posieig = "none", plot = FALSE)
 g2 <- scatter(w, method = 2, psub.text = "2 / Columns -> averaging -> Rows",
   posieig = "none", plot = FALSE)
  g3 <- scatter(w, method = 3, psub.text = "3 / Rows -> averaging -> Columns ",
   posieig = "none", plot = FALSE)
  G \leftarrow ADEgS(list(g1, g2, g3), layout = c(2, 2))
} else {
  par(mfrow = c(2, 2))
  scatter(w, method = 1, sub = "1 / Standard", posieig = "none")
  scatter(w, method = 2, sub = "2 / Columns -> averaging -> Rows", posieig = "none")
  scatter(w, method = 3, sub = "3 / Rows -> averaging -> Columns ", posieig = "none")
  par(mfrow = c(1, 1))
}
```

scatter.dudi

Plot of the Factorial Maps

### **Description**

performs the scatter diagrams of objects of class dudi.

### Usage

```
## S3 method for class 'dudi'
scatter(x, xax = 1, yax = 2, clab.row = 0.75, clab.col = 1,
    permute = FALSE, posieig = "top", sub = NULL, ...)
```

| X        | an object of class dudi                                                                         |
|----------|-------------------------------------------------------------------------------------------------|
| xax      | the column number for the x-axis                                                                |
| yax      | the column number for the y-axis                                                                |
| clab.row | a character size for the rows                                                                   |
| clab.col | a character size for the columns                                                                |
| permute  | if FALSE, the rows are plotted by points and the columns by arrows. If TRUE it is the opposite. |
| posieig  | if "top" the eigenvalues bar plot is upside, if "bottom" it is downside, if "none" no plot      |
| sub      | a string of characters to be inserted as legend                                                 |
|          | further arguments passed to or from other methods                                               |

scatter.fca 321

### **Details**

scatter.dudi is a factorial map of individuals and the projection of the vectors of the canonical basis multiplied by a constante of rescaling. In the eigenvalues bar plot, the used axes for the plot are in black, the other kept axes in grey and the other in white.

The permute argument can be used to choose between the distance biplot (default) and the correlation biplot (permute = TRUE).

### Author(s)

Daniel Chessel

### **Examples**

scatter.fca

Plot of the factorial maps for a fuzzy correspondence analysis

### **Description**

performs the scatter diagrams of a fuzzy correspondence analysis.

### Usage

```
## S3 method for class 'fca'
scatter(x, xax = 1, yax = 2, clab.moda = 1, labels = names(x$tab),
    sub = NULL, csub = 2, ...)
```

| X         | an object of class fca                                                    |
|-----------|---------------------------------------------------------------------------|
| xax       | the column number for the x-axis                                          |
| yax       | the column number for the y-axis                                          |
| clab.moda | the character size to write the modalities                                |
| labels    | a vector of strings of characters for the labels of the modalities        |
| sub       | a vector of strings of characters to be inserted as legend in each figure |
| csub      | a character size for the legend, used with par("cex")*csub                |
|           | further arguments passed to or from other methods                         |
|           |                                                                           |

322 scatterutil

### Author(s)

Daniel Chessel

### References

Chevenet, F., Dolédec, S. and Chessel, D. (1994) A fuzzy coding approach for the analysis of long-term ecological data. *Freshwater Biology*, **31**, 295–309.

### **Examples**

```
data(coleo)
coleo.fuzzy <- prep.fuzzy.var(coleo$tab, coleo$col.blocks)
fca1 <- dudi.fca(coleo.fuzzy, sca = FALSE, nf = 3)

if(adegraphicsLoaded()) {
   plot(fca1)
} else {
   scatter(fca1, labels = coleo$moda.names, clab.moda = 1.5,
      sub = names(coleo$col.blocks), csub = 3)
}</pre>
```

scatterutil

Graphical utility functions

### Description

These are utilities used in graphical functions.

### **Details**

The functions scatter use some utilities functions:

scatterutil.base defines the layer of the plot for all scatters
scatterutil.sco defines the layer of the plot for sco functions
scatterutil.chull plots the polygons of the external contour
scatterutil.eigen plots the eigenvalues bar plot
scatterutil.ellipse plots an inertia ellipse for a weighting distribution
scatterutil.eti.circ puts labels on a correlation circle
scatterutil.eti puts labels centred on the points
scatterutil.grid plots a grid and adds a legend
scatterutil.legend.bw.square puts a legend of values by square size
scatterutil.legend.square.grey puts a legend by squares and grey levels
scatterutil.legendgris adds a legend of grey levels for the areas
scatterutil.scaling to fit a plot on a background bipmap
scatterutil.star plots a star for a weighting distribution
scatterutil.sub adds a string of characters in sub-title of a graph
scatterutil.convrot90 is used to rotate labels

scatterutil 323

#### Author(s)

Daniel Chessel, Stéphane Dray <stephane.dray@univ-lyon1.fr>

#### See Also

```
s.arrow, s.chull, s.class, s.corcircle, s.distri, s.label, s.match, s.traject, s.value, add.scatter
```

```
par(mfrow = c(3,3))
plot.new()
ade4:::scatterutil.legendgris(1:20, 4, 1.6)
ade4:::scatterutil.sub("lkn555555555551kn", csub = 2, possub = "bottomleft")
ade4:::scatterutil.sub("lkn555555555551kn", csub = 1, possub = "topleft")
ade4:::scatterutil.sub("jdjjl", csub = 3, possub = "topright")
ade4:::scatterutil.sub("**", csub = 2, possub = "bottomright")
x \leftarrow c(0.5, 0.2, -0.5, -0.2); y \leftarrow c(0.2, 0.5, -0.2, -0.5)
eti <- c("toto", "kjbk", "gdgiglgl", "sdfg")
plot(x, y, xlim = c(-1,1), ylim = c(-1,1))
ade4:::scatterutil.eti.circ(x, y, eti, 2.5)
abline(0, 1, lty = 2); abline(0, -1, lty = 2)
x \leftarrow c(0.5, 0.2, -0.5, -0.2); y \leftarrow c(0.2, 0.5, -0.2, -0.5)
eti <- c("toto", "kjbk", "gdgiglgl", "sdfg")
plot(x, y, xlim = c(-1,1), ylim = c(-1,1))
ade4:::scatterutil.eti(x, y, eti, 1.5)
plot(runif(10,-3,5), runif(10,-1,1), asp = 1)
ade4:::scatterutil.grid(2)
abline(h = 0, v = 0, lwd = 3)
x \leftarrow runif(10,0,1) ; y \leftarrow rnorm(10) ; z \leftarrow rep(1,10)
plot(x,y); ade4:::scatterutil.star(x, y, z, 0.5)
plot(x,y); ade4:::scatterutil.star(x, y, z, 1)
x \leftarrow c(runif(10,0,0.5), runif(10,0.5,1))
y <- runif(20)
plot(x, y, asp = 1) \# asp=1 is essential to have perpendicular axes
ade4:::scatterutil.ellipse(x, y, rep(c(1,0), c(10,10)), cell = 1.5, ax = TRUE)
ade4:::scatterutil.ellipse(x, y, rep(c(0,1), c(10,10)), cell = 1.5, ax = TRUE)
x \leftarrow c(runif(100,0,0.75), runif(100,0.25,1))
y \leftarrow c(runif(100,0,0.75), runif(100,0.25,1))
z \leftarrow factor(rep(c(1,2), c(100,100)))
plot(x, y, pch = rep(c(1,20), c(100,100)))
ade4:::scatterutil.chull(x, y, z, opt = c(0.25, 0.50, 0.75, 1))
par(mfrow = c(1,1))
```

324 sco.boxplot

| sco.boxplot Representation of the link between a variable and a set of qualitative variables | sco.boxplot | Representation of the link between a variable and a set of qualitative variables |
|----------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------|

# Description

represents the link between a variable and a set of qualitative variables.

### Usage

```
sco.boxplot(score, df, labels = names(df), clabel = 1, xlim = NULL,
    grid = TRUE, cgrid = 0.75, include.origin = TRUE, origin = 0,
    sub = NULL, csub = 1)
```

# Arguments

| score          | a numeric vector                                                                            |
|----------------|---------------------------------------------------------------------------------------------|
| df             | a data frame with only factors                                                              |
| labels         | a vector of strings of characters for the labels of variables                               |
| clabel         | if not NULL, a character size for the labels, used with par("cex")*clabel                   |
| xlim           | the ranges to be encompassed by the x axis, if NULL they are computed                       |
| grid           | a logical value indicating whether the scale vertical lines should be drawn                 |
| cgrid          | a character size, parameter used with $par("cex")*cgrid$ to indicate the mesh of the scale  |
| include.origin | a logical value indicating whether the point "origin" should be belonged to the graph space |
| origin         | the fixed point in the graph space, for example 0 the origin axis                           |
| sub            | a string of characters to be inserted as legend                                             |
| csub           | a character size for the legend, used with par("cex")*csub                                  |

### Author(s)

Daniel Chessel

```
w1 <- rnorm(100,-1)
w2 <- rnorm(100)
w3 <- rnorm(100,1)
f1 <- g1(3,100)
f2 <- g1(30,10)
sco.boxplot(c(w1,w2,w3), data.frame(f1,f2))
data(banque)
banque.acm <- dudi.acm(banque, scan = FALSE, nf = 4)</pre>
```

sco.class 325

```
par(mfrow = c(1,3))
sco.boxplot(banque.acm$l1[,1], banque[,1:7], clab = 1.8)
sco.boxplot(banque.acm$l1[,1], banque[,8:14], clab = 1.8)
sco.boxplot(banque.acm$l1[,1], banque[,15:21], clab = 1.8)
par(mfrow = c(1,1))
```

sco.class

1D plot of a numeric score and a factor with labels

## Description

Draws evenly spaced labels, each label linked to the corresponding values of the levels of a factor.

# Usage

```
sco.class(score, fac, label = levels(fac), clabel = 1, horizontal = TRUE,
    reverse = FALSE, pos.lab = 0.5, pch = 20, cpoint = 1, boxes = TRUE,
    col = rep(1, length(levels(fac))), lim = NULL, grid = TRUE,
    cgrid = 1, include.origin = TRUE, origin = c(0, 0), sub = "",
    csub = 1.25, possub = "bottomleft")
```

#### **Arguments**

| score      | a numeric vector                                                                                                                                                                                      |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| fac        | a factor                                                                                                                                                                                              |
| label      | labels for the levels of the factor                                                                                                                                                                   |
| clabel     | a character size for the labels, used with par("cex")*clabel                                                                                                                                          |
| horizontal | logical. If TRUE, the plot is horizontal                                                                                                                                                              |
| reverse    | logical. If horizontal = TRUE and reverse=TRUE, the plot is at the bottom, if reverse = FALSE, the plot is at the top. If horizontal = FALSE, the plot is at the right (TRUE) or at the left (FALSE). |
| pos.lab    | a values between 0 and 1 to manage the position of the labels.                                                                                                                                        |
| pch        | an integer specifying the symbol or the single character to be used in plotting points                                                                                                                |
| cpoint     | a character size for plotting the points, used with $par("cex")*cpoint$ . If zero, no points are drawn                                                                                                |
| boxes      | if TRUE, labels are framed                                                                                                                                                                            |
| col        | a vector of colors used to draw each class in a different color                                                                                                                                       |
| lim        | the range for the $x$ axis or $y$ axis (if horizontal = FALSE), if NULL, they are computed                                                                                                            |
| grid       | a logical value indicating whether a grid in the background of the plot should be drawn                                                                                                               |
| cgrid      | a character size, parameter used with par<br>("cex")* $\mbox{cgrid}$ to indicate the mesh of the grid                                                                                                 |
|            |                                                                                                                                                                                                       |

326 sco.distri

include.origin a logical value indicating whether the point "origin" should belong to the plot

origin the fixed point in the graph space, for example c(0,0) the origin axes

sub a string of characters to be inserted as legend

csub a character size for the legend, used with par("cex")\*csub

possub a string of characters indicating the sub-title position ("topleft", "topright", "bot-

tomleft", "bottomright")

#### Value

The matched call.

#### Author(s)

Stéphane Dray <stephane.dray@univ-lyon1.fr>

## **Examples**

```
data(meau)
envpca <- dudi.pca(meau$env, scannf=FALSE)
par(mfrow=c(2,1))
sco.class(envpca$li[,1],meau$design$season, col = 1:6)
sco.class(envpca$li[,1],meau$design$season, col = 1:4, reverse = TRUE)</pre>
```

sco.distri

Representation by mean-standard deviation of a set of weight distributions on a numeric score

# Description

represents the mean-standard deviation of a set of weight distributions on a numeric score.

## Usage

```
sco.distri(score, df, y.rank = TRUE, csize = 1, labels = names(df),
    clabel = 1, xlim = NULL, grid = TRUE, cgrid = 0.75,
    include.origin = TRUE, origin = 0, sub = NULL, csub = 1)
```

## **Arguments**

| S | core  | a numeric vector                                                                     |
|---|-------|--------------------------------------------------------------------------------------|
| d | f     | a data frame with only positive or null values                                       |
| У | rank. | a logical value indicating whether the means should be classified in ascending order |
| С | size  | an integer indicating the size segment                                               |
| 1 | abels | a vector of strings of characters for the labels of the variables                    |
| С | label | if not NULL, a character size for the labels, used with par("cex")*clabel            |

sco.distri 327

| xlim           | the ranges to be encompassed by the x axis, if NULL they are computed                       |  |
|----------------|---------------------------------------------------------------------------------------------|--|
| grid           | a logical value indicating whether the scale vertical lines should be drawn                 |  |
| cgrid          | cgrid a character size, parameter used with par("cex")*cgrid to indicate the n of the scale |  |
| include.origin | a logical value indicating whether the point "origin" should be belonged to the graph space |  |
| origin         | the fixed point in the graph space, for example $c(0,0)$ the origin axes                    |  |
| sub            | a string of characters to be inserted as legend                                             |  |
| csub           | a character size for the legend, used with par("cex")*csub                                  |  |

#### Value

returns an invisible data.frame with means and variances

## Author(s)

Daniel Chessel

```
if(!adegraphicsLoaded()) {
 w \leftarrow seq(-1, 1, le = 200)
 distri <- data.frame(lapply(1:50,</pre>
    function(x) sample((200:1)) * ((w >= (-x / 50)) & (w <= x / 50))))
 names(distri) <- paste("w", 1:50, sep = "")</pre>
 par(mfrow = c(1, 2))
 sco.distri(w, distri, csi = 1.5)
 sco.distri(w, distri, y.rank = FALSE, csi = 1.5)
 par(mfrow = c(1, 1))
 data(rpjdl)
 coa2 <- dudi.coa(rpjdl$fau, FALSE)</pre>
 sco.distri(coa2$li[, 1], rpjdl$fau, lab = rpjdl$frlab, clab = 0.8)
 data(doubs)
 par(mfrow = c(2, 2))
 poi.coa <- dudi.coa(doubs$fish, scann = FALSE)</pre>
 sco.distri(poi.coa$11[, 1], doubs$fish)
 poi.nsc <- dudi.nsc(doubs$fish, scann = FALSE)</pre>
 sco.distri(poi.nsc$l1[, 1], doubs$fish)
 s.label(poi.coa$11)
 s.label(poi.nsc$11)
 data(rpjdl)
 fau.coa <- dudi.coa(rpjdl$fau, scann = FALSE)</pre>
 sco.distri(fau.coa$11[,1], rpjdl$fau)
 fau.nsc <- dudi.nsc(rpjdl$fau, scann = FALSE)</pre>
 sco.distri(fau.nsc$l1[,1], rpjdl$fau)
 s.label(fau.coa$11)
 s.label(fau.nsc$11)
```

328 sco.gauss

```
par(mfrow = c(1, 1))
```

 ${\tt sco.gauss}$ 

Relationships between one score and qualitative variables

# Description

Draws Gauss curves with the same mean and variance as the scores of indivivuals belonging to categories of several qualitative variables.

# Usage

```
sco.gauss(score, df, xlim = NULL, steps = 200, ymax = NULL, sub =
names(df), csub = 1.25, possub = "topleft", legen =TRUE, label = row.names(df),
clabel = 1, grid = TRUE, cgrid = 1, include.origin = TRUE, origin = c(0, 0))
```

# Arguments

| score          | a numeric vector                                                                                              |
|----------------|---------------------------------------------------------------------------------------------------------------|
| df             | a dataframe containing only factors, number of rows equal to the length of the score vector                   |
| xlim           | starting point and end point for drawing the Gauss curves                                                     |
| steps          | number of segments for drawing the Gauss curves                                                               |
| ymax           | max ordinate for all Gauss curves. If NULL, ymax is computed and different for each factor                    |
| sub            | vector of strings of characters for the lables of qualitative variables                                       |
| csub           | character size for the legend                                                                                 |
| possub         | a string of characters indicating the sub-title position ("topleft", "topright", "bottomleft", "bottomright") |
| legen          | if TRUE, the first graphic of the series displays the score with evenly spaced labels (see sco.label)         |
| label          | labels for the score                                                                                          |
| clabel         | a character size for the labels, used with par("cex")*clabel                                                  |
| grid           | a logical value indicating whether a grid in the background of the plot should be drawn                       |
| cgrid          | a character size, parameter used with $par("cex")*cgrid$ to indicate the mesh of the grid                     |
| include.origin | a logical value indicating whether the point "origin" should belong to the plot                               |
| origin         | the fixed point in the graph space, for example $c(0,0)$ the origin axes                                      |
|                |                                                                                                               |

sco.label 329

#### **Details**

Takes one vector containing quantitative values (score) and one dataframe containing only factors that give categories to wich the quantitative values belong. Computes the mean and variance of the values in each category of each factor, and draws a Gauss curve with the same mean and variance for each category of each factor. Can optionally set the start and end point of the curves and the number of segments. The max ordinate (ymax) can also be set arbitrarily to set a common max for all factors (else the max is different for each factor).

#### Value

The matched call.

## Author(s)

Jean Thioulouse, Stéphane Dray <stephane.dray@univ-lyon1.fr>

## **Examples**

```
data(meau)
envpca <- dudi.pca(meau$env, scannf=FALSE)
dffac <- cbind.data.frame(meau$design$season, meau$design$site)
sco.gauss(envpca$li[,1], dffac, clabel = 2, csub = 2)</pre>
```

sco.label

1D plot of a numeric score with labels

#### **Description**

Draws evenly spaced labels, each label linked to the corresponding value of a numeric score.

## Usage

```
sco.label(score, label = names(score), clabel = 1, horizontal = TRUE,
reverse = FALSE, pos.lab = 0.5, pch = 20, cpoint = 1, boxes = TRUE, lim
= NULL, grid = TRUE, cgrid = 1, include.origin = TRUE, origin = c(0, 0),
sub = "", csub = 1.25, possub = "bottomleft")
```

#### **Arguments**

score a numeric vector label labels for the score

clabel a character size for the labels, used with par("cex")\*clabel

horizontal logical. If TRUE, the plot is horizontal

reverse logical. If horizontal = TRUE and reverse=TRUE, the plot is at the bottom, if

reverse = FALSE, the plot is at the top. If horizontal = FALSE, the plot is at the

right (TRUE) or at the left (FALSE).

330 sco.match

| pos.lab                                                                                 | a values between 0 and 1 to manage the position of the labels.                                                |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| pch                                                                                     | an integer specifying the symbol or the single character to be used in plotting points                        |
| cpoint                                                                                  | a character size for plotting the points, used with $par("cex")*cpoint$ . If zero, no points are drawn        |
| boxes                                                                                   | if TRUE, labels are framed                                                                                    |
| lim                                                                                     | the range for the x axis or y axis (if horizontal = FALSE), if NULL, they are computed                        |
| grid a logical value indicating whether a grid in the background of the plot s<br>drawn |                                                                                                               |
| cgrid                                                                                   | a character size, parameter used with par("cex")* cgrid to indicate the mesh of the grid                      |
| include.origin                                                                          | a logical value indicating whether the point "origin" should belong to the plot                               |
| origin                                                                                  | the fixed point in the graph space, for example $c(0,0)$ the origin axes                                      |
| sub                                                                                     | a string of characters to be inserted as legend                                                               |
| csub                                                                                    | a character size for the legend, used with par("cex")*csub                                                    |
| possub                                                                                  | a string of characters indicating the sub-title position ("topleft", "topright", "bottomleft", "bottomright") |

#### Value

The matched call.

#### Author(s)

Stéphane Dray <stephane.dray@univ-lyon1.fr>, Jean Thioulouse

# **Examples**

```
data(meau)
envpca <- dudi.pca(meau$env, scannf=FALSE)
par(mfrow=c(2,1))
sco.label(envpca$l1[,1], row.names(envpca$l1), lim=c(-1,3.5))
sco.label(envpca$co[,1], row.names(envpca$co), reverse = TRUE, lim=c(-1,3.5))</pre>
```

sco.match 1D plot of a pair of numeric scores with labels

# Description

Draws evenly spaced labels, each label linked to the corresponding values of two numeric score.

sco.match 331

## Usage

```
sco.match(score1, score2, label = names(score1), clabel = 1,
horizontal = TRUE, reverse = FALSE, pos.lab = 0.5, wmatch = 3,
pch = 20, cpoint = 1, boxes = TRUE, lim = NULL, grid = TRUE,
cgrid = 1, include.origin = TRUE, origin = c(0, 0), sub = "",
csub = 1.25, possub = "bottomleft")
```

# Arguments

| score1         | a numeric vector                                                                                                                                                                                      |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| score2         | a numeric vector                                                                                                                                                                                      |
| label          | labels for the score                                                                                                                                                                                  |
| clabel         | a character size for the labels, used with par("cex")*clabel                                                                                                                                          |
| horizontal     | logical. If TRUE, the plot is horizontal                                                                                                                                                              |
| reverse        | logical. If horizontal = TRUE and reverse=TRUE, the plot is at the bottom, if reverse = FALSE, the plot is at the top. If horizontal = FALSE, the plot is at the right (TRUE) or at the left (FALSE). |
| pos.lab        | a values between 0 and 1 to manage the position of the labels.                                                                                                                                        |
| wmatch         | a numeric values to specify the width of the matching region in the plot. The width is equal to wmatch * the height of character                                                                      |
| pch            | an integer specifying the symbol or the single character to be used in plotting points                                                                                                                |
| cpoint         | a character size for plotting the points, used with par("cex")*cpoint. If zero, no points are drawn                                                                                                   |
| boxes          | if TRUE, labels are framed                                                                                                                                                                            |
| lim            | the range for the x axis or y axis (if horizontal = FALSE), if NULL, they are computed                                                                                                                |
| grid           | a logical value indicating whether a grid in the background of the plot should be drawn                                                                                                               |
| cgrid          | a character size, parameter used with $par("cex")^*$ cgrid to indicate the mesh of the grid                                                                                                           |
| include.origin | a logical value indicating whether the point "origin" should belong to the plot                                                                                                                       |
| origin         | the fixed point in the graph space, for example $c(0,0)$ the origin axes                                                                                                                              |
| sub            | a string of characters to be inserted as legend                                                                                                                                                       |
| csub           | a character size for the legend, used with par("cex")*csub                                                                                                                                            |
| possub         | a string of characters indicating the sub-title position ("topleft", "topright", "bottomleft", "bottomright")                                                                                         |

## Value

The matched call.

sco.quant

#### Author(s)

```
Stéphane Dray <stephane.dray@univ-lyon1.fr>
```

# **Examples**

```
sco.match(-5:5,2*(-5:5))
```

| sco.quant | Graph to Analyse the Relation between a Score and Quantitative Vari- |
|-----------|----------------------------------------------------------------------|
| ·         | ables                                                                |

# Description

represents the graphs to analyse the relation between a score and quantitative variables.

# Usage

```
sco.quant (score, df, fac = NULL, clabel = 1, abline = FALSE,
    sub = names(df), csub = 2, possub = "topleft")
```

# Arguments

| score  | a numeric vector                                                                                              |
|--------|---------------------------------------------------------------------------------------------------------------|
| df     | a data frame which rows equal to the score length                                                             |
| fac    | a factor with the same length than the score                                                                  |
| clabel | character size for the class labels (if any) used with par("cex")*clabel                                      |
| abline | a logical value indicating whether a regression line should be added                                          |
| sub    | a vector of strings of characters for the labels of variables                                                 |
| csub   | a character size for the legend, used with par("cex")*csub                                                    |
| possub | a string of characters indicating the sub-title position ("topleft", "topright", "bottomleft", "bottomright") |

# Author(s)

Daniel Chessel

```
w <- runif(100, -5, 10)
fw <- cut (w, 5)
levels(fw) <- LETTERS[1:5]
wX <- data.frame(matrix(w + rnorm(900, sd = (1:900) / 100), 100, 9))
sco.quant(w, wX, fac = fw, abline = TRUE, clab = 2, csub = 3)</pre>
```

score 333

| score | Graphs for One Dimension |  |
|-------|--------------------------|--|
|       |                          |  |

# Description

score is a generic function. It proposes methods for the objects 'coa', 'acm', 'mix', 'pca'.

# Usage

```
score(x, \ \ldots) \\ scoreutil.base(y, \ xlim, \ grid, \ cgrid, \ include.origin, \ origin, \ sub, \ csub)
```

# Arguments

| Χ              | an object used to select a method                                                           |
|----------------|---------------------------------------------------------------------------------------------|
|                | further arguments passed to or from other methods                                           |
| у              | a numeric vector                                                                            |
| xlim           | the ranges to be encompassed by the x axis, if NULL they are computed                       |
| grid           | a logical value indicating whether the scale vertical lines should be drawn                 |
| cgrid          | a character size, parameter used with $par("cex")*cgrid$ to indicate the mesh of the scale  |
| include.origin | a logical value indicating whether the point "origin" should be belonged to the graph space |
| origin         | the fixed point in the graph space, for example 0 the origin axis                           |
| sub            | a string of characters to be inserted as legend                                             |
| csub           | a character size for the legend, used with par("cex")*csub                                  |

# **Details**

scoreutil.base is a utility function - not for the user - to define the bottom of the layout of all score.

## Author(s)

Daniel Chessel

## See Also

```
sco.boxplot, sco.distri, sco.quant
```

334 score.acm

#### **Examples**

```
## Not run:
par(mar = c(1, 1, 1, 1))
ade4:::scoreutil.base (runif(20, 3, 7), xlim = NULL, grid = TRUE, cgrid = 0.8,
   include.origin = TRUE, origin = 0, sub = "Uniform", csub = 1)
## End(Not run)
# returns the value of the user coordinate of the low line.
# The user window id defined with c(0,1) in ordinate.
# box()
```

score.acm

Graphs to study one factor in a Multiple Correspondence Analysis

## **Description**

performs the canonical graph of a Multiple Correspondence Analysis.

## Usage

## Arguments

| X         | an object of class acm                                                                                            |
|-----------|-------------------------------------------------------------------------------------------------------------------|
| xax       | the column number for the used axis                                                                               |
| which.var | the numbers of the kept columns for the analysis, otherwise all columns                                           |
| mfrow     | a vector of the form $\mbox{"c(nr,nc)"},$ otherwise computed by a special own function $\mbox{n2mfrow}$           |
| sub       | a vector of strings of characters to be inserted as sub-titles, otherwise the variable names of the initial array |
| csub      | a character size for the sub-titles                                                                               |
| possub    | a string of characters indicating the sub-title position ("topleft", "topright", "bottomleft", "bottomright")     |
|           | further arguments passed to or from other methods                                                                 |

## Author(s)

Daniel Chessel

```
data(banque)
banque.acm <- dudi.acm(banque, scann = FALSE, nf = 3)
score(banque.acm, which = which(banque.acm$cr[, 1] > 0.2))
```

score.coa 335

| score.coa | Reciprocal scaling after a | correspondence analysis |
|-----------|----------------------------|-------------------------|
|-----------|----------------------------|-------------------------|

## Description

performs the canonical graph of a correspondence analysis.

## Usage

```
## S3 method for class 'coa'
score(x, xax = 1, dotchart = FALSE, clab.r = 1, clab.c = 1,
    csub = 1, cpoi = 1.5, cet = 1.5, ...)
reciprocal.coa(x)
```

## **Arguments**

| X        | an object of class coa                                                    |
|----------|---------------------------------------------------------------------------|
| xax      | the column number for the used axis                                       |
| dotchart | if TRUE the graph gives a "dual scaling", if FALSE a "reciprocal scaling" |
| clab.r   | a character size for row labels                                           |
| clab.c   | a character size for column labels                                        |
| csub     | a character size for the sub-titles, used with par("cex")*csub            |
| cpoi     | a character size for the points                                           |
| cet      | a coefficient for the size of segments in standard deviation              |
|          | further arguments passed to or from other methods                         |

# **Details**

In a "reciprocal scaling", the reference score is a numeric code centred and normalized of the non zero cells of the array which both maximizes the variance of means by row and by column. The bars are drawn with half the length of this standard deviation.

#### Value

return a data.frame with the scores, weights and factors of correspondences (non zero cells)

## Author(s)

Daniel Chessel

## References

Thioulouse, J. and Chessel D. (1992) A method for reciprocal scaling of species tolerance and sample diversity. *Ecology*, **73**, 670–680.

336 score.mix

#### **Examples**

```
layout(matrix(c(1,1,2,3), 2, 2), resp = FALSE)
data(aviurba)
dd1 <- dudi.coa(aviurba$fau, scan = FALSE)
score(dd1, clab.r = 0, clab.c = 0.75)
recscal <- reciprocal.coa(dd1)</pre>
head(recscal)
abline(v = 1, lty = 2, lwd = 3)
sco.distri(dd1$11[,1], aviurba$fau)
sco.distri(dd1$c1[,1], data.frame(t(aviurba$fau)))
# 1 reciprocal scaling correspondence score -> species amplitude + sample diversity
# 2 sample score -> averaging -> species amplitude
# 3 species score -> averaging -> sample diversity
layout(matrix(c(1,1,2,3), 2, 2), resp = FALSE)
data(rpjdl)
rpjdl1 <- dudi.coa(rpjdl$fau, scan = FALSE)</pre>
score(rpjdl1, clab.r = 0, clab.c = 0.75)
if (requireNamespace("MASS", quietly = TRUE)) {
   data(caith, package = "MASS")
   score(dudi.coa(caith, scan = FALSE), clab.r = 1.5, clab.c = 1.5, cpoi = 3)
   data(housetasks)
   score(dudi.coa(housetasks, scan = FALSE), clab.r = 1.25, clab.c = 1.25,
        csub = 0, cpoi = 3)
}
par(mfrow = c(1,1))
score(rpjdl1, dotchart = TRUE, clab.r = 0)
```

score.mix

Graphs to Analyse a factor in a Mixed Analysis

#### Description

performs the canonical graph of a mixed analysis.

#### Usage

```
## S3 method for class 'mix'
score(x, xax = 1, csub = 2, mfrow = NULL, which.var = NULL, ...)
```

# Arguments

| X     | an object of class mix                                                                |
|-------|---------------------------------------------------------------------------------------|
| xax   | the column number for the used axis                                                   |
| csub  | a character size for the sub-titles, used with par("cex")*csub                        |
| mfrow | a vector of the form "c(nr,nc)", otherwise computed by a special own function n2mfrow |

score.pca 337

which.var the numbers of the kept columns for the analysis, otherwise all columns further arguments passed to or from other methods

#### Author(s)

Daniel Chessel

## **Examples**

```
data(lascaux)
w <- cbind.data.frame(lascaux$colo, lascaux$ornem)
dd <- dudi.mix(w, scan = FALSE, nf = 4, add = TRUE)
score(dd, which = which(dd$cr[,1] > 0.3))
```

score.pca

Graphs to Analyse a factor in PCA

## **Description**

performs the canonical graph of a Principal Component Analysis.

## Usage

```
## S3 method for class 'pca'
score(x, xax = 1, which.var = NULL, mfrow = NULL, csub = 2,
    sub = names(x$tab), abline = TRUE, ...)
```

## **Arguments**

| X         | an object of class pca                                                                                  |
|-----------|---------------------------------------------------------------------------------------------------------|
| xax       | the column number for the used axis                                                                     |
| which.var | the numbers of the kept columns for the analysis, otherwise all columns                                 |
| mfrow     | a vector of the form $\mbox{"c(nr,nc)"},$ otherwise computed by a special own function $\mbox{n2mfrow}$ |
| csub      | a character size for sub-titles, used with par("cex")*csub                                              |
| sub       | a vector of string of characters to be inserted as sub-titles, otherwise the names of the variables     |
| abline    | a logical value indicating whether a regression line should be added                                    |
|           | further arguments passed to or from other methods                                                       |
|           |                                                                                                         |

## Author(s)

Daniel Chessel

338 seconde

## **Examples**

```
data(deug)
dd1 <- dudi.pca(deug$tab, scan = FALSE)
score(dd1)

# The correlations are :
dd1$co[,1]
# [1] 0.7925 0.6532 0.7410 0.5287 0.5539 0.7416 0.3336 0.2755 0.4172</pre>
```

seconde

Students and Subjects

## **Description**

The seconde data frame gives the marks of 22 students for 8 subjects.

# Usage

```
data(seconde)
```

## **Format**

This data frame (22,8) contains the following columns: - HGEO: History and Geography - FRAN: French literature - PHYS: Physics - MATH: Mathematics - BIOL: Biology - ECON: Economy - ANGL: English language - ESPA: Spanish language

## **Source**

Personal communication

```
data(seconde)
if(adegraphicsLoaded()) {
   scatter(dudi.pca(seconde, scan = FALSE), row.plab.cex = 1, col.plab.cex = 1.5)
} else {
   scatter(dudi.pca(seconde, scan = FALSE), clab.r = 1, clab.c = 1.5)
}
```

sepan 339

| sepan | Separated Analyses in a K-tables |
|-------|----------------------------------|
|       |                                  |

# Description

performs K separated multivariate analyses of an object of class ktab containing K tables.

## Usage

```
sepan(X, nf = 2)
## S3 method for class 'sepan'
plot(x, mfrow = NULL, csub = 2, ...)
## S3 method for class 'sepan'
summary(object, ...)
## S3 method for class 'sepan'
print(x, ...)
```

# Arguments

| X         | an object of class ktab                                                                    |
|-----------|--------------------------------------------------------------------------------------------|
| nf        | an integer indicating the number of kept axes for each separated analysis                  |
| x, object | an object of class 'sepan'                                                                 |
| mfrow     | a vector of the form $"c(nr,nc)"$ , otherwise computed by a special own function $n2mfrow$ |
| csub      | a character size for the sub-titles, used with par("cex")*csub                             |
|           | further arguments passed to or from other methods                                          |
|           |                                                                                            |

#### **Details**

The function plot on a sepan object allows to compare inertias and structures between arrays. In black, the eigenvalues of kept axes in the object 'sepan'.

## Value

returns a list of class 'sepan' containing:

| call      | a call order                                                        |
|-----------|---------------------------------------------------------------------|
| tab.names | a vector of characters with the names of tables                     |
| blo       | a numeric vector with the numbers of columns for each table         |
| rank      | a numeric vector with the rank of the studied matrix for each table |
| Eig       | a numeric vector with all the eigenvalues                           |
| Li        | a data frame with the row coordinates                               |
| L1        | a data frame with the row normed scores                             |
| Со        | a data frame with the column coordinates                            |

340 skulls

| C1 | a data frame with | the column r | normed coordinates |
|----|-------------------|--------------|--------------------|
|    |                   |              |                    |

TL a data frame with the factors for Li L1
TC a data frame with the factors for Co C1

#### Author(s)

Daniel Chessel

# **Examples**

```
data(escopage)
w <- data.frame(scale(escopage$tab))
w <- ktab.data.frame(w, escopage$blo, tabnames = escopage$tab.names)
sep1 <- sepan(w)
sep1
summary(sep1)
plot(sep1)</pre>
```

skulls

Morphometric Evolution

# Description

This data set gives four anthropometric measures of 150 Egyptean skulls belonging to five different historical periods.

#### Usage

```
data(skulls)
```

#### **Format**

The skulls data frame has 150 rows (egyptean skulls) and 4 columns (anthropometric measures). The four variables are the maximum breadth (V1), the basibregmatic height (V2), the basialveolar length (V3) and the nasal height (V4). All measurements were taken in millimeters.

#### **Details**

The measurements are made on 5 groups and 30 Egyptian skulls. The groups are defined as follows

- 1 the early predynastic period (circa 4000 BC)
- 2 the late predynastic period (circa 3300 BC)
- 3 the 12th and 13th dynasties (circa 1850 BC)
- 4 the Ptolemiac period (circa 200 BC)
- 5 the Roman period (circa 150 BC)

statico 341

#### Source

Thompson, A. and Randall-Maciver, R. (1905) *Ancient races of the Thebaid*, Oxford University Press.

#### References

Manly, B.F. (1994) *Multivariate Statistical Methods. A primer*, Second edition. Chapman & Hall, London. 1–215.

The example is treated pp. 6, 13, 51, 64, 72, 107, 112 and 117.

# **Examples**

```
data(skulls)
pca1 <- dudi.pca(skulls, scan = FALSE)
fac <- gl(5, 30)
levels(fac) <- c("-4000", "-3300", "-1850", "-200", "+150")
dis.skulls <- discrimin(pca1, fac, scan = FALSE)
if(!adegraphicsLoaded())
  plot(dis.skulls, 1, 1)</pre>
```

statico

STATIS and Co-Inertia: Analysis of a series of paired ecological tables

# Description

Does the analysis of a series of pairs of ecological tables. This function uses Partial Triadic Analysis (pta) and ktab.match2ktabs to do the computations.

## Usage

```
statico(KTX, KTY, scannf = TRUE)
```

## **Arguments**

KTX an objet of class ktab
KTY an objet of class ktab

scannf a logical value indicating whether the eigenvalues bar plot should be displayed

## **Details**

This function takes 2 ktabs and crosses each pair of tables of these ktabs with the function ktab.match2ktabs. It then does a partial triadic analysis on this new ktab with pta.

## Value

a list of class ktab, subclass kcoinertia. See ktab

342 statico.krandtest

#### WARNING

IMPORTANT: KTX and KTY must have the same k-tables structure, the same number of columns, and the same column weights.

#### Author(s)

Jean Thioulouse < jean.thioulouse@univ-lyon1.fr>

#### References

Thioulouse J. (2011). Simultaneous analysis of a sequence of paired ecological tables: a comparison of several methods. *Annals of Applied Statistics*, **5**, 2300-2325. Thioulouse J., Simier M. and Chessel D. (2004). Simultaneous analysis of a sequence of paired ecological tables. *Ecology* **85**, 272-283. Simier, M., Blanc L., Pellegrin F., and Nandris D. (1999). Approache simultanée de K couples de tableaux: Application a l'étude des relations pathologie végétale - environnement. *Revue de Statistique Appliquée*, **47**, 31-46.

## **Examples**

```
data(meau)
wit1 <- withinpca(meau$env, meau$design$season, scan = FALSE, scal = "total")
spepca <- dudi.pca(meau$spe, scale = FALSE, scan = FALSE, nf = 2)
wit2 <- wca(spepca, meau$design$season, scan = FALSE, nf = 2)
kta1 <- ktab.within(wit1, colnames = rep(c("S1","S2","S3","S4","S5","S6"), 4))
kta2 <- ktab.within(wit2, colnames = rep(c("S1","S2","S3","S4","S5","S6"), 4))
statico1 <- statico(kta1, kta2, scan = FALSE)
plot(statico1)
kplot(statico1)</pre>
```

statico.krandtest

Monte-Carlo test on a Statico analysis (in C).

#### **Description**

Performs the series of Monte-Carlo coinertia tests of a Statico analysis (one for each couple of tables).

## Usage

```
statico.krandtest(KTX, KTY, nrepet = 999, ...)
```

## **Arguments**

KTX an objet of class ktab containing the environmental data
KTY an objet of class ktab containing the species data

nrepet the number of permutations

further arguments passed to or from other methods

statis 343

#### **Details**

This function takes 2 ktabs and does a coinertia analysis with coinertia on each pair of tables. It then uses the randtest function to do a permutation test on each of these coinertia analyses.

#### Value

krandtest, a list of randtest objects. See krandtest

#### WARNING

IMPORTANT: KTX and KTY must have the same k-tables structure, the same number of columns, and the same column weights.

#### Author(s)

Jean Thioulouse < jean.thioulouse@univ-lyon1.fr>

#### References

Thioulouse J. (2011). Simultaneous analysis of a sequence of paired ecological tables: a comparison of several methods. *Annals of Applied Statistics*, **5**, 2300-2325.

## **Examples**

```
data(meau)
wit1 <- withinpca(meau$env, meau$design$season, scan = FALSE, scal = "total")
spepca <- dudi.pca(meau$spe, scale = FALSE, scan = FALSE, nf = 2)
wit2 <- wca(spepca, meau$design$season, scan = FALSE, nf = 2)
kta1 <- ktab.within(wit1, colnames = rep(c("S1","S2","S3","S4","S5","S6"), 4))
kta2 <- ktab.within(wit2, colnames = rep(c("S1","S2","S3","S4","S5","S6"), 4))
statico1 <- statico(kta1, kta2, scan = FALSE)
kr1 <- statico.krandtest(kta1, kta2)
plot(kr1)</pre>
```

statis

STATIS, a method for analysing K-tables

## Description

performs a STATIS analysis of a ktab object.

# Usage

```
statis(X, scannf = TRUE, nf = 3, tol = 1e-07)
## S3 method for class 'statis'
plot(x, xax = 1, yax = 2, option = 1:4, ...)
## S3 method for class 'statis'
print(x, ...)
```

344 statis

# Arguments X

scannf a logical value indicating whether the number of kept axes for the compromise should be asked

nf if scannf FALSE, an integer indicating the number of kept axes for the compro-

mise

tol a tolerance threshold to test whether the distance matrix is Euclidean: an eigen-

value is considered positive if it is larger than -tol\*lambda1 where lambda1 is

the largest eigenvalue

an object of class 'ktab'

x an object of class 'statis'

xax, yax the numbers of the x-axis and the y-axis

option an integer between 1 and 4, otherwise the 4 components of the plot are dispayed

. . . further arguments passed to or from other methods

#### Value

statis returns a list of class 'statis' containing:

RV a matrix with the all RV coefficients
RV.eig a numeric vector with all the eigenvalues

RV. coo a data frame with the array scores

tab. names a vector of characters with the names of the arrays

RV. tabw a numeric vector with the array weights
C.nf an integer indicating the number of kept axes
C.rank an integer indicating the rank of the analysis

C.1i a data frame with the row coordinatesC.Co a data frame with the column coordinates

C. T4 a data frame with the principal vectors (for each table)

TL a data frame with the factors (not used)
TC a data frame with the factors for Co
T4 a data frame with the factors for T4

#### Author(s)

Daniel Chessel

#### References

Lavit, C. (1988) Analyse conjointe de tableaux quantitatifs, Masson, Paris.

Lavit, C., Escoufier, Y., Sabatier, R. and Traissac, P. (1994) The ACT (Statis method). *Computational Statistics and Data Analysis*, **18**, 97–119.

steppe 345

#### **Examples**

```
data(jv73)
kta1 <- ktab.within(withinpca(jv73$morpho, jv73$fac.riv, scann = FALSE))</pre>
statis1 <- statis(kta1, scann = FALSE)</pre>
plot(statis1)
dudi1 <- dudi.pca(jv73$poi, scann = FALSE, scal = FALSE)</pre>
wit1 <- wca(dudi1, jv73$fac.riv, scann = FALSE)
kta3 <- ktab.within(wit1)</pre>
data(jv73)
statis3 <- statis(kta3, scann = FALSE)</pre>
plot(statis3)
if(adegraphicsLoaded()) {
  s.arrow(statis3$C.li, pgrid.text.cex = 0)
  kplot(statis3, traj = TRUE, arrow = FALSE, plab.cex = 0, psub.cex = 3, ppoi.cex = 3)
  s.arrow(statis3$C.li, cgrid = 0)
  kplot(statis3, traj = TRUE, arrow = FALSE, unique = TRUE,
    clab = 0, csub = 3, cpoi = 3)
statis3
```

steppe

Transect in the Vegetation

## **Description**

This data set gives the presence-absence of 37 species on 515 sites.

## Usage

```
data(steppe)
```

# Format

steppe is a list of 2 components.

**tab** is a data frame with 512 rows (sites) and 37 variables (species) in presence-absence. **esp.names** is a vector of the species names.

## Source

Estève, J. (1978) Les méthodes d'ordination : éléments pour une discussion. in J. M. Legay and R. Tomassone, editors. *Biométrie et Ecologie*, Société Française de Biométrie, Paris, 223–250.

346 supcol

#### **Examples**

supcol

Projections of Supplementary Columns

# Description

performs projections of supplementary columns.

# Usage

```
supcol(x, ...)
## S3 method for class 'dudi'
supcol(x, Xsup, ...)
## S3 method for class 'coa'
supcol(x, Xsup, ...)
```

## Arguments

x an object used to select a method

Xsup an array with the supplementary columns (Xsup and x\$tab have the same row

number)

... further arguments passed to or from other methods

#### **Details**

If supcol.dudi is used, the column vectors of Xsup are projected without prior modification onto the principal components of dudi with the scalar product associated to the row weightings of dudi.

# Value

A list of two components:

tabsup data frame containing the array with the supplementary columns transformed or

not

cosup data frame containing the coordinates of the supplementary projections

supdist 347

#### Author(s)

Daniel Chessel
Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>

## **Examples**

```
data(rpjdl)
rpjdl.coa <- dudi.coa(rpjdl$fau, scan = FALSE, nf = 4)
rpjdl.coa$co[1:3, ]
supcol(rpjdl.coa, rpjdl$fau[, 1:3])$cosup #the same

data(doubs)
dudi1 <- dudi.pca(doubs$fish, scal = FALSE, scan = FALSE)
if(adegraphicsLoaded()) {
   g1 <- s.arrow(dudi1$co, plot = FALSE)
   g2 <- s.arrow(supcol(dudi1, data.frame(scalewt(doubs$env)))$cosup, plab.cex = 2, plot = FALSE)
   G <- superpose(g1, g2, plot = TRUE)
} else {
   s.arrow(dudi1$co)
   s.arrow(supcol(dudi1, data.frame(scalewt(doubs$env)))$cosup, add.p = TRUE, clab = 2)
   symbols(0, 0, circles = 1, inches = FALSE, add = TRUE)
}</pre>
```

supdist

Projection of additional items in a PCO analysis

#### **Description**

This function takes the grand distance matrix between all items (Active + Supplementary). It computes the PCO of the distance matrix between Active items, and projects the distance matrix of Supplementary items in this PCO.

## Usage

```
supdist(d, fsup, tol = 1e-07)
```

# Arguments

| d    | Grand distance matrix between all (Active + Supplementary) items                                                                 |
|------|----------------------------------------------------------------------------------------------------------------------------------|
| fsup | A factor with two levels giving the Active (level 'A') or Supplementary (level 'S') status for each item in the distance matrix. |
| tol  | Numeric tolerance used to evaluate zero eigenvalues                                                                              |

#### Value

| coordSup | Coordinates of Supplementary items projected in the PCO of Active items |
|----------|-------------------------------------------------------------------------|
| coordAct | Coordinates of Active item                                              |
| coordTot | Coordinates of Active plus Supplementary items                          |

348 supdist

#### Author(s)

Jean Thioulouse

#### References

Computations based on the Methods section of the following paper: Pele J, Abdi H, Moreau M, Thybert D, Chabbert M (2011) Multidimensional Scaling Reveals the Main Evolutionary Pathways of Class A G-Protein-Coupled Receptors. PLoS ONE 6(4): e19094. doi:10.1371/journal.pone.0019094

#### See Also

```
dudi.pco, suprow
```

```
data(meau)
## Case 1: Supplementary items = subset of Active items
## Supplementary coordinates should be equal to Active coordinates
## PCO of active items (meau dataset has 6 sites and 10 variables)
envpca1 <- dudi.pca(meau$env, scannf = FALSE)</pre>
dAct <- dist(envpca1$tab)</pre>
pco1 <- dudi.pco(dAct, scannf = FALSE)</pre>
## Projection of rows 19:24 (winter season for the 6 sites)
## Supplementary items must be normalized
f1 <- function(w) (w - envpca1$cent) / envpca1$norm
envSup <- t(apply(meau$env[19:24, ], 1, f1))</pre>
envTot <- rbind.data.frame(envpca1$tab, envSup)</pre>
dTot <- dist(envTot)</pre>
fSA1 \leftarrow as.factor(rep(c("A", "S"), c(24, 6)))
cSup1 <- supdist(dTot, fSA1)</pre>
## Comparison (coordinates should be equal)
cSup1$coordSup[, 1:2]
pco1$li[19:24, ]
data(meaudret)
## Case 2: Supplementary items = new items
## PCO of active items (meaudret dataset has only 5 sites and 9 variables)
envpca2 <- dudi.pca(meaudret$env, scannf = FALSE)</pre>
dAct <- dist(envpca2$tab)</pre>
pco2 <- dudi.pco(dAct, scannf = FALSE)</pre>
## Projection of site 6 (four seasons, without Oxyg variable)
## Supplementary items must be normalized
f1 <- function(w) (w - envpca2$cent) / envpca2$norm</pre>
envSup <- t(apply(meau\$env[seq(6, 24, 6), -5], 1, f1))
envTot <- rbind.data.frame(envpca2$tab, envSup)</pre>
dTot <- dist(envTot)</pre>
fSA2 <- as.factor(rep(c("A", "S"), c(20, 4)))
cSup2 <- supdist(dTot, fSA2)
## Supplementary items vs. real items (both in red)
if(!adegraphicsLoaded()) {
 par(mfrow = c(2, 2))
 s.label(pco1$li, boxes = FALSE)
```

suprow 349

```
s.label(rbind.data.frame(pco2$li, cSup2$coordSup[, 1:2]), boxes = FALSE)
} else {
gl1 <- s.label(pco1$li, plabels.optim = TRUE, plabels.col=rep(c(rep("black", 5), "red"), 4))
gl2 <- s.label(rbind.data.frame(pco2$li, cSup2$coordSup[, 1:2]),
   plabels.optim = TRUE, plabels.col=rep(c("black", "red"), c(20, 4)))
ADEgS(list(gl1, gl2))
}</pre>
```

suprow

Projections of Supplementary Rows

## **Description**

This function performs a projection of supplementary rows (i.e. supplementary individuals).

## Usage

```
## S3 method for class 'coa'
suprow(x, Xsup, ...)
## S3 method for class 'dudi'
suprow(x, Xsup, ...)
## S3 method for class 'dudi'
predict(object, newdata, ...)
## S3 method for class 'pca'
suprow(x, Xsup, ...)
## S3 method for class 'acm'
suprow(x, Xsup, ...)
## S3 method for class 'mix'
suprow(x, Xsup, ...)
## S3 method for class 'fica'
suprow(x, Xsup, ...)
```

#### **Arguments**

```
x, object an object of class dudiXsup, newdata an array with the supplementary rowsfurther arguments passed to or from other methods
```

## **Details**

If suprow. dudi is used, the column vectors of Xsup are projected without prior modifications onto the principal components of dudi with the scalar product associated to the row weightings of dudi.

#### Value

predict returns a data frame containing the coordinates of the supplementary rows. suprow returns a list with the transformed table Xsup in tabsup and the coordinates of the supplementary rows in lisup.

350 suprow

#### Author(s)

Daniel Chessel
Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>

#### References

Gower, J. C. (1967) Multivariate analysis and multivariate geometry. *The statistician*, 17, 13–28.

```
data(euro123)
par(mfrow = c(2, 2))
w <- euro123[[2]]</pre>
dudi1 <- dudi.pca(w, scal = FALSE, scan = FALSE)</pre>
if(adegraphicsLoaded()) {
 g11 <- s.arrow(dudi1$c1, psub.text = "Classical", psub.posi = "bottomright", plot = FALSE)</pre>
 g12 <- s.label(suprow(dudi1, w)$tabsup, plab.cex = 0.75, plot = FALSE)
 g1 <- superpose(g11, g12)
 g21 <- s.arrow(dudi1$c1, psub.text = "Without centring", psub.posi = "bottomright", plot = FALSE)
 g22 <- s.label(suprow(dudi1, w)$tabsup, plab.cex = 0.75, plot = FALSE)</pre>
 g2 <- superpose(g21, g22)</pre>
 g3 <- triangle.label(w, plab.cex = 0.75, label = row.names(w), adjust = FALSE, plot = FALSE)
 g4 <- triangle.label(w, plab.cex = 0.75, label = row.names(w), adjust = TRUE, plot = FALSE)
 G \leftarrow ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
} else {
 s.arrow(dudi1$c1, sub = "Classical", possub = "bottomright", csub = 2.5)
 s.label(suprow(dudi1, w), add.plot = TRUE, clab = 0.75)
 s.arrow(dudi1$c1, sub = "Without centring", possub = "bottomright", csub = 2.5)
 s.label(suprow(dudi1, w), clab = 0.75, add.plot = TRUE)
 triangle.plot(w, clab = 0.75, label = row.names(w), scal = FALSE)
  triangle.plot(w, clab = 0.75, label = row.names(w), scal = TRUE)
data(rpjdl)
rpjdl.coa <- dudi.coa(rpjdl$fau, scann = FALSE, nf = 4)
rpjdl.coa$li[1:3, ]
suprow(rpjdl.coa,rpjdl$fau[1:3, ])$lisup #the same
data(deug)
deug.dudi <- dudi.pca(df = deug$tab, center = deug$cent, scale = FALSE, scannf = FALSE)</pre>
suprow(deug.dudi, deug$tab[1:3, ])$lisup #the supplementary individuals are centered
deug.dudi$li[1:3, ] # the same
```

suprow.pta 351

| suprow.pta | Projections of Supplementary Rows for a Partial Triadic Analysis of K-tables |
|------------|------------------------------------------------------------------------------|
|            |                                                                              |

# **Description**

This function performs a projection of supplementary rows (i.e. supplementary individuals) for a Partial Triadic Analysis (pta) of K-tables. Computations are valid ONLY if the pta has been done on a K-Tables obtained by the withinpca function, followed by calls to the ktab.within and t functions.

## Usage

```
## S3 method for class 'pta'
suprow(x, Xsup, facSup, ...)
```

#### **Arguments**

x an object of class pta

X sup a table with the supplementary rows facSup a factor partitioning the rows of X sup

... further arguments passed to or from other methods

#### **Details**

This function computes the coordinates of the supplementary rows for a K-tables. The table of supplementary rows is standardized according to the 'Bouroche' standardization used in the Within Analysis of the original pta. In a first step, the table of supplementary rows is standardized (centred and normed) with the mean and variance of the original table of active individuals (i.e. the K-tables used in pta). Then, according to the withinpca procedure, a second transformation is applied.

For "partial", supplementary rows are standardized in each sub-table (corresponding to each level of the factor) by the mean and variance of each corresponding sub-sample in the table of active individuals. Hence, supplementary rows have null mean and unit variance in each sub-table.

For "total", supplementary rows are centred in each sub-table with the mean of each coresponding sub-sample in the table of active individuals and then normed with the global variance of the table of active individuals. Hence, supplementary rows have a null mean in each sub-table and a global variance equal to one.

#### Value

Returns a list with the transformed table Xsup in tabsup and the coordinates of the supplementary rows in lisup.

#### Author(s)

```
Benjamin Alric <benjamin.alric@irstea.fr>
Jean Thioulouse < jean.thioulouse@univ-lyon1.fr>
```

352 suprow.pta

#### References

Bouroche, J. M. (1975) *Analyse des données ternaires: la double analyse en composantes principales*. Thèse de 3ème cycle, Université de Paris VI.

```
data(meau)
# Active rows
actenv <- meau$env[meau$design$site != "S6", -c(5)]</pre>
actfac <- meau$design$season[meau$design$site != "S6"]</pre>
# Suplementary rows
supenv <- meau$env[meau$design$site == "S6", -c(5)]</pre>
supfac <- meau$design$season[meau$design$site == "S6"]</pre>
# Total = active + suplementary rows
totenv <- meausenv[, -c(5)]
totfac <- meau$design$season</pre>
# PTA with 6 sampling sites
wittot <- withinpca(df = totenv, fac = totfac, scannf = FALSE, scaling = "partial")</pre>
kta1tot <- ktab.within(wittot, colnames = rep(c("S1", "S2", "S3", "S4", "S5", "S6"), 4))
kta2tot <- t(kta1tot)</pre>
pta1tot <- pta(kta2tot, scann = FALSE)</pre>
# PTA with 5 sampling sites and site 6 added as supplementary element
wit1 <- withinpca(df = actenv, fac = actfac, scannf = FALSE, scaling = "partial")</pre>
kta1 <- ktab.within(wit1, colnames = rep(c("S1", "S2", "S3", "S4", "S5"), 4))
kta2 <- t(kta1)
pta1 <- pta(kta2, scann = FALSE)</pre>
supenv.pta <- suprow(x = pta1, Xsup = supenv, facSup = supfac)
if (adegraphicsLoaded()) {
# g1t = active + suplementary rows
g1t <- s.label(pta1tot$Tli, labels = rownames(totenv),</pre>
 plabels = list(box = list(draw = FALSE), optim = TRUE), x = c(-6, 5), y = c(-5, 5),
  psub = list(text="Total", position="topleft"), plot = FALSE)
# g1 = Active rows
g1 <- s.label(pta1$Tli, labels = rownames(actenv),
 plabels = list(box = list(draw = FALSE), optim =TRUE), x \lim = c(-6, 5), y \lim = c(-5, 5),
  psub = list(text="Active", position="topleft"), pgrid = list(text=list(cex = 0)),
  plot = FALSE)
# g2 = Supplementary rows
g2 \leftarrow s.label(supenv.pta$lisup, plabels = list(box = list(draw = FALSE), optim = TRUE),
  ppoints = list(col = "red"), psub = list(text="Supplementary", position="topright"),
  pgrid = list(text=list(cex = 0)), plot = FALSE)
# g3 = superposition of active and suplementary rows
g3 <- g1 + g2
# Comparison of the total analysis and the analysis with supplementary rows
ADEgS(list(g1t,g3))
} else {
par(mfrow=c(2,2))
# g1t = active + suplementary rows
g1t <- s.label(pta1totTli, label = rownames(totenv), xlim = c(-6, 5), ylim = c(-5, 5),
 sub="Total")
# g1 = Active rows
g1 <- s.label(pta1$Tli, label = rownames(actenv), clabel = 1, xlim = c(-6, 5),
```

symbols.phylog 353

symbols.phylog

Representation of a quantitative variable in front of a phylogenetic tree

## **Description**

symbols.phylog draws the phylogenetic tree and represents the values of the variable by symbols (squares or circles) which size is proportional to value. White symbols correspond to values which are below the mean, and black symbols correspond to values which are over.

## Usage

```
symbols.phylog(phylog, circles, squares, csize = 1, clegend = 1,
sub = "", csub = 1, possub = "topleft")
```

# Arguments

| phylog  | an object of class phylog                                                                                     |
|---------|---------------------------------------------------------------------------------------------------------------|
| circles | a vector giving the radii of the circles                                                                      |
| squares | a vector giving the length of the sides of the squares                                                        |
| csize   | a size coefficient for symbols                                                                                |
| clegend | a character size for the legend used by par("cex")*clegend                                                    |
| sub     | a string of characters to be inserted as legend                                                               |
| csub    | a character size for the legend, used with par("cex")*csub                                                    |
| possub  | a string of characters indicating the sub-title position ("topleft", "topright", "bottomleft", "bottomright") |

## Author(s)

```
Daniel Chessel
Sébastien Ollier <sebastien.ollier@u-psud.fr>
```

#### See Also

```
table.phylog and dotchart.phylog for many variables
```

354 syndicats

## **Examples**

```
data(mjrochet)
mjrochet.phy <- newick2phylog(mjrochet$tre)
tab0 <- data.frame(scalewt(log(mjrochet$tab)))
par(mfrow=c(3,2))
for (j in 1:6) {
    w <- tab0[,j]
    symbols.phylog(phylog = mjrochet.phy, w, csi = 1.5, cleg = 1.5,
    sub = names(tab0)[j], csub = 3)
}
par(mfrow=c(1,1))</pre>
```

syndicats

Two Questions asked on a Sample of 1000 Respondents

# **Description**

This data set is extracted from an opinion poll (period 1970-1980) on 1000 respondents.

## Usage

```
data(syndicats)
```

## **Format**

The syndicats data frame has 5 rows and 4 columns.

"Which politic family are you agreeing about?" has 5 response items: extgauche (extreme left) left center right and extdroite (extreme right)

"What do you think of the trade importance?" has 4 response items: trop (too important) adequate insufficient nesaispas (no opinion)

#### **Source**

unknown

```
data(syndicats)
par(mfrow = c(1,2))
dudi1 <- dudi.coa(syndicats, scan = FALSE)
score (dudi1, 1, TRUE)
score (dudi1, 1, FALSE)</pre>
```

t3012 355

t3012

Average temperatures of 30 French cities

## **Description**

This data set gives the average temperatures of 30 French cities during 12 months.

#### Usage

```
data(t3012)
```

#### **Format**

t3012 is a list with the following components:

xy a data frame with 30 rows (cities) and 2 coordinates (x, y)

**temp** a data frame with 30 rows (cities) and 12 columns (months). Each column contains the average temperature in tenth of degree Celsius.

**contour** a data frame with 4 columns (x1, y1, x2, y2) for the contour display of France

Spatial an object of the class SpatialPolygons of sp, containing the map

## **Source**

Besse, P. (1979) *Etude descriptive d'un processus; approximation, interpolation*. Thèse de troisième cycle, Université Paul Sabatier, Toulouse.

```
data(t3012)
data(elec88)

if(adegraphicsLoaded()) {
   if(requireNamespace("sp", quietly = TRUE)) {
      s.arrow(t3012$xy, pori.ori = as.numeric(t3012$xy["Paris", ]), Sp = t3012$Spatial,
      pSp.col = "white", pgrid.draw = FALSE)
   }
} else {
   area.plot(elec88$area)
   s.arrow(t3012$xy, ori = as.numeric(t3012$xy["Paris", ]), add.p = TRUE)
}
```

356 table.cont

# Description

presents a graph for viewing contingency tables.

# Usage

```
table.cont(df, x = 1:ncol(df), y = 1:nrow(df),
    row.labels = row.names(df), col.labels = names(df),
    clabel.row = 1, clabel.col = 1, abmean.x = FALSE, abline.x = FALSE,
    abmean.y = FALSE, abline.y = FALSE, csize = 1, clegend = 0, grid = TRUE)
```

# Arguments

| df         | a data frame with only positive or null values                                                                     |
|------------|--------------------------------------------------------------------------------------------------------------------|
| x          | a vector of values to position the columns                                                                         |
| у          | a vector of values to position the rows                                                                            |
| row.labels | a character vector for the row labels                                                                              |
| col.labels | a character vetor for the column labels                                                                            |
| clabel.row | a character size for the row labels                                                                                |
| clabel.col | a character size for the column labels                                                                             |
| abmean.x   | a logical value indicating whether the column conditional means should be drawn                                    |
| abline.x   | a logical value indicating whether the regression line of y onto x should be plotted                               |
| abmean.y   | a logical value indicating whether the row conditional means should be drawn                                       |
| abline.y   | a logical value indicating whether the regression line of $\boldsymbol{x}$ onto $\boldsymbol{y}$ should be plotted |
| csize      | a coefficient for the square size of the values                                                                    |
| clegend    | if not NULL, a character size for the legend used with par("cex")*clegend                                          |
| grid       | a logical value indicating whether a grid in the background of the plot should be drawn                            |
|            |                                                                                                                    |

## Author(s)

Daniel Chessel

table.dist 357

## **Examples**

```
data(chats)
chatsw <- data.frame(t(chats))</pre>
chatscoa <- dudi.coa(chatsw, scann = FALSE)</pre>
par(mfrow = c(2,2))
table.cont(chatsw, abmean.x = TRUE, csi = 2, abline.x = TRUE,
    clabel.r = 1.5, clabel.c = 1.5)
table.cont(chatsw, abmean.y = TRUE, csi = 2, abline.y = TRUE,
    clabel.r = 1.5, clabel.c = 1.5)
table.cont(chatsw, x = \text{chatscoa} c1[,1], y = \text{chatscoa} 1[,1],
    abmean.x = TRUE, csi = 2, abline.x = TRUE, clabel.r = 1.5, clabel.c = 1.5)
table.cont(chatsw, x = \text{chatscoa} c1[,1], y = \text{chatscoa} 1[,1],
    abmean.y = TRUE, csi = 2, abline.y = TRUE, clabel.r = 1.5, clabel.c = 1.5)
par(mfrow = c(1,1))
## Not run:
data(rpjdl)
w <- data.frame(t(rpjdl$fau))</pre>
wcoa <- dudi.coa(w, scann = FALSE)</pre>
table.cont(w, abmean.y = TRUE, x = wcoa$c1[,1], y = rank(wcoa$11[,1]),
    csi = 0.2, clabel.c = 0, row.labels = rpjdl$lalab, clabel.r = 0.75)
## End(Not run)
```

table.dist

Graph Display for Distance Matrices

## Description

presents a graph for viewing distance matrices.

#### **Usage**

```
table.dist(d, x = 1:(attr(d, "Size")), labels = as.character(x),
    clabel = 1, csize = 1, grid = TRUE)
```

# **Arguments**

| d      | an object of class dist                                                                 |
|--------|-----------------------------------------------------------------------------------------|
| X      | a vector of the row and column positions                                                |
| labels | a vector of strings of characters for the labels                                        |
| clabel | a character size for the labels                                                         |
| csize  | a coefficient for the circle size                                                       |
| grid   | a logical value indicating whether a grid in the background of the plot should be drawn |

358 table.paint

#### Author(s)

Daniel Chessel

# **Examples**

```
data(eurodist)
table.dist(eurodist, labels = attr(eurodist, "Labels"))
```

table.paint

Plot of the arrays by grey levels

# Description

presents a graph for viewing the numbers of a table by grey levels.

# Usage

```
table.paint(df, x = 1:ncol(df), y = nrow(df):1,
    row.labels = row.names(df), col.labels = names(df),
    clabel.row = 1, clabel.col = 1, csize = 1, clegend = 1)
```

# Arguments

| df         | a data frame                                                                 |
|------------|------------------------------------------------------------------------------|
| x          | a vector of values to position the columns, used only for the ordered values |
| У          | a vector of values to position the rows, used only for the ordered values    |
| row.labels | a character vector for the row labels                                        |
| col.labels | a character vector for the column labels                                     |
| clabel.row | a character size for the row labels                                          |
| clabel.col | a character size for the column labels                                       |
| csize      | if 'clegend' not NULL, a coefficient for the legend size                     |
| clegend    | a character size for the legend, otherwise no legend                         |

# Author(s)

Daniel Chessel

table.phylog 359

#### **Examples**

table.phylog

Plot arrays in front of a phylogenetic tree

## Description

This function gives a graphical display for viewing the numbers of a table by square sizes in front of the corresponding phylogenetic tree.

## Usage

```
table.phylog(df, phylog, x = 1:ncol(df), f.phylog = 0.5,
labels.row = gsub("[_]", " ", row.names(df)), clabel.row = 1,
labels.col = names(df), clabel.col = 1,
labels.nod = names(phylog$nodes), clabel.nod = 0, cleaves = 1,
cnodes = 1, csize = 1, grid = TRUE, clegend = 0.75)
```

## **Arguments**

df : a data frame or a matrix
phylog : an object of class 'phylog'
x : a vector of values to position the columns

f.phylog : a size coefficient for tree size (a parameter to draw the tree in proportion to

leaves labels)

labels.row : a vector of strings of characters for row labels

clabel.row : a character size for the leaves labels, used with par("cex")\*clabel.row. If

zero, no row labels are drawn

labels.col : a vector of strings of characters for columns labels

clabel.col : a character size for the leaves labels, used with par("cex")\*clabel.col. If

zero, no column labels are drawn

360 table.value

labels.nod : a vector of strings of characters for the nodes labels

clabel.nod : a character size for the nodes labels, used with par("cex")\*clabel.nodes.

If zero, no nodes labels are drawn

cleaves : a character size for plotting the points that represent the leaves, used with

par("cex")\*cleaves. If zero, no points are drawn

cnodes : a character size for plotting the points that represent the nodes, used with

par("cex")\*cnodes. If zero, no points are drawn

csize : a size coefficient for symbols

grid : a logical value indicating whether the grid should be plotted

clegend : a character size for the legend (if 0, no legend)

## **Details**

The function verifies that sort(row.names(df))==sort(names(phylog\$leaves)). If df is a matrix the function uses as.data.frame(df).

## Author(s)

```
Daniel Chessel
Sébastien Ollier < sebastien.ollier@u-psud.fr>
```

#### See Also

```
symbols.phylog for one variable
```

#### **Examples**

```
## Not run:
data(newick.eg)
w.phy <- newick2phylog(newick.eg[[9]])
w.tab <- data.frame(matrix(rnorm(620), 31, 20))
row.names(w.tab) <- sort(names(w.phy$leaves))
table.phylog(w.tab, w.phy, csi = 1.5, f = 0.5,
    clabel.n = 0.75, clabel.c = 0.5)
## End(Not run)</pre>
```

table.value

Plot of the Arrays

## Description

presents a graph for viewing the numbers of a table by square sizes.

table.value 361

# Usage

```
table.value(df, x = 1:ncol(df), y = nrow(df):1,
    row.labels = row.names(df), col.labels = names(df), clabel.row = 1,
    clabel.col = 1, csize = 1, clegend = 1, grid = TRUE)
```

# Arguments

| df         | a data frame                                                  |
|------------|---------------------------------------------------------------|
| X          | a vector of values to position the columns                    |
| У          | a vector of values to position the rows                       |
| row.labels | a character vector for the row labels                         |
| col.labels | a character vector for the column labels                      |
| clabel.row | a character size for the row labels                           |
| clabel.col | a character size for the column labels                        |
| csize      | a coefficient for the square size of the values               |
| clegend    | a character size for the legend (if 0, no legend)             |
| grid       | a logical value indicating whether the grid should be plotted |

### Author(s)

Daniel Chessel

```
if(!adegraphicsLoaded()) {
   data(olympic)
   w <- olympic$tab
   w <- data.frame(scale(w))
   wpca <- dudi.pca(w, scann = FALSE)
   par(mfrow = c(1, 3))
   table.value(w, csi = 2, clabel.r = 2, clabel.c = 2)
   table.value(w, y = rank(wpca$li[, 1]), x = rank(wpca$co[, 1]), csi = 2,
        clabel.r = 2, clabel.c = 2)
   table.value(w, y = wpca$li[, 1], x = wpca$co[, 1], csi = 2,
        clabel.r = 2, clabel.c = 2)
   par(mfrow = c(1, 1))
}</pre>
```

362 tarentaise

tarentaise

Mountain Avifauna

# Description

This data set gives informations between sites, species, environmental and biolgoical variables.

### Usage

data(tarentaise)

#### **Format**

tarentaise is a list of 5 components.

ecol is a data frame with 376 sites and 98 bird species.

frnames is a vector of the 98 French names of the species.

alti is a vector giving the altitude of the 376 sites in m.

envir is a data frame with 14 environmental variables.

**traits** is a data frame with 29 biological variables of the 98 species.

# **Details**

The attribute col.blocks of the data frame tarentaise\$traits indicates it is composed of 6 units of variables.

#### Source

Original data from Hubert Tournier, University of Savoie and Philippe Lebreton, University of Lyon 1.

# References

Lebreton, P., Tournier H. and Lebreton J. D. (1976) Etude de l'avifaune du Parc National de la Vanoise VI Recherches d'ordre quantitatif sur les Oiseaux forestiers de Vanoise. *Travaux Scientifiques du parc National de la vanoise*, **7**, 163–243.

Lebreton, Ph. and Martinot, J.P. (1998) Oiseaux de Vanoise. Guide de l'ornithologue en montagne. *Libris*, Grenoble. 1–240.

Lebreton, Ph., Lebrun, Ph., Martinot, J.P., Miquet, A. and Tournier, H. (1999) Approche écologique de l'avifaune de la Vanoise. *Travaux scientifiques du Parc national de la Vanoise*, **21**, 7–304.

See a data description at http://pbil.univ-lyon1.fr/R/pdf/pps038.pdf (in French).

taxo.eg 363

### **Examples**

```
data(tarentaise)
coa1 <- dudi.coa(tarentaise$ecol, sca = FALSE, nf = 2)
s.class(coa1$li, tarentaise$envir$alti, wt = coa1$lw)
## Not run:
acm1 <- dudi.acm(tarentaise$envir, sca = FALSE, nf = 2)
s.class(acm1$li, tarentaise$envir$alti)
## End(Not run)</pre>
```

taxo.eg

Examples of taxonomy

# Description

This data sets contains two taxonomies.

## Usage

```
data(taxo.eg)
```

### **Format**

taxo.eg is a list containing the 2 following objects:

taxo.eg[[1]] is a data frame with 15 species and 3 columns.

taxo.eg[[2]] is a data frame with 40 species and 2 columns.

# **Details**

Variables of the first data frame are : genre (a factor genre with 8 levels), famille (a factor familiy with 5 levels) and ordre (a factor order with 2 levels).

Variables of the second data frame are : gen(a factor genre with 29 levels), fam (a factor family with 19 levels).

```
data(taxo.eg)
taxo.eg[[1]]
as.taxo(taxo.eg[[1]])
class(taxo.eg[[1]])
class(as.taxo(taxo.eg[[1]]))

tax.phy <- taxo2phylog(as.taxo(taxo.eg[[1]]), add.tools = TRUE)
plot(tax.phy,clabel.l=1)

par(mfrow = c(1,2))</pre>
```

364 testdim

```
table.phylog(tax.phy$Bindica,tax.phy)
table.phylog(tax.phy$Bscores,tax.phy)
par(mfrow = c(1,1))
radial.phylog(taxo2phylog(as.taxo(taxo.eg[[2]])))
```

testdim

Function to perform a test of dimensionality

# **Description**

This functions allow to test for the number of axes in multivariate analysis. The procedure testdim.pca implements a method for principal component analysis on correlation matrix. The procedure is based on the computation of the RV coefficient.

# Usage

```
testdim(object, ...)
## S3 method for class 'pca'
testdim(object, nrepet = 99, nbax = object$rank, alpha = 0.05, ...)
```

#### **Arguments**

object an object corresponding to an analysis (e.g. duality diagram, an object of class

dudi)

nrepet the number of repetitions for the permutation procedure nbax the number of axes to be tested, by default all axes

alpha the significance level ... other arguments

#### Value

An object of the class krandtest. It contains also:

nb The estimated number of axes to keep

nb.cor The number of axes to keep estimated using a sequential Bonferroni procedure

### Author(s)

```
Stéphane Dray <stephane.dray@univ-lyon1.fr>
```

## References

Dray, S. (2008) On the number of principal components: A test of dimensionality based on measurements of similarity between matrices. *Computational Statistics and Data Analysis*, **Volume 52**, 2228–2237. doi:10.1016/j.csda.2007.07.015

testdim.multiblock 365

### See Also

```
dudi.pca, RV.rtest,testdim.multiblock
```

## **Examples**

```
tab <- data.frame(matrix(rnorm(200),20,10))
pca1 <- dudi.pca(tab,scannf=FALSE)
test1 <- testdim(pca1)
test1
test1$nb
test1$nb.cor
data(doubs)
pca2 <- dudi.pca(doubs$env,scannf=FALSE)
test2 <- testdim(pca2)
test2
test2$nb
test2$nb.cor</pre>
```

testdim.multiblock

Selection of the number of dimension by two-fold cross-validation for multiblock methods

# **Description**

Function to perform a two-fold cross-validation to select the optimal number of dimensions of multiblock methods, *i.e.*, multiblock principal component analysis with instrumental Variables or multiblock partial least squares

## Usage

```
## S3 method for class 'multiblock'
testdim(object, nrepet = 100, quantiles = c(0.25, 0.75), ...)
```

# **Arguments**

object an object of class multiblock created by mbpls or mbpcaiv
nrepet integer indicating the number of repetitions
quantiles a vector indicating the lower and upper quantiles to compute
... other arguments to be passed to methods

### Value

An object of class krandxval

# Author(s)

Stéphanie Bougeard (<stephanie.bougeard@anses.fr>) and Stéphane Dray (<stephane.dray@univ-lyon1.fr>)

366 tintoodiel

### References

Stone M. (1974) Cross-validatory choice and assessment of statistical predictions. *Journal of the Royal Statistical Society*, **36**, 111-147.

Bougeard, S. and Dray S. (2018) Supervised Multiblock Analysis in R with the ade4 Package. *Journal of Statistical Software*, **86** (1), 1-17. doi:10.18637/jss.v086.i01

### See Also

```
mbpcaiv, mbpls, randboot.multiblock, as.krandxval
```

# **Examples**

```
data(chickenk)
Mortality <- chickenk[[1]]
dudiY.chick <- dudi.pca(Mortality, center = TRUE, scale = TRUE, scannf =
FALSE)
ktabX.chick <- ktab.list.df(chickenk[2:5])
resmbpcaiv.chick <- mbpcaiv(dudiY.chick, ktabX.chick, scale = TRUE,
option = "uniform", scannf = FALSE)
## nrepet should be higher for a real analysis
test <- testdim(resmbpcaiv.chick, nrepet = 10)
test
if(adegraphicsLoaded())
plot(test)</pre>
```

tintoodiel

Tinto and Odiel estuary geochemistry

### **Description**

This data set contains informations about geochemical characteristics of heavy metal pollution in surface sediments of the Tinto and Odiel river estuary (south-western Spain).

### Usage

```
data(tintoodiel)
```

### **Format**

tintoodiel is a list with the following components:

```
xy a data frame that contains spatial coordinates of the 52 sites
```

```
tab a data frame with 12 columns (concentration of heavy metals) and 52 rows (sites) neig an object of class neig
```

```
nb the neighbourhood graph of the 52 sites (an object of class nb)
```

tithonia 367

### **Source**

Borrego, J., Morales, J.A., de la Torre, M.L. and Grande, J.A. (2002) Geochemical characteristics of heavy metal pollution in surface sediments of the Tinto and Odiel river estuary (south-western Spain). *Environmental Geology*, **41**, 785–796.

## **Examples**

```
data(tintoodiel)
if(!adegraphicsLoaded()) {
 ## Not run:
 if(requireNamespace("pixmap", quietly = TRUE)) {
  estuary.pnm <- pixmap::read.pnm(system.file("pictures/tintoodiel.pnm", package = "ade4"))</pre>
    s.label(tintoodiel$xy, pixmap = estuary.pnm, neig = tintoodiel$neig,
      clab = 0, cpoi = 2, cneig = 3, addax = FALSE, cgrid = 0, grid = FALSE)
 }
## End(Not run)
 estuary.pca <- dudi.pca(tintoodiel$tab, scan = FALSE, nf = 4)
 if(requireNamespace("spdep", quietly = TRUE)) {
    estuary.listw <- spdep::nb2listw(neig2nb(tintoodiel$neig))</pre>
  estuary.pca.ms <- multispati(estuary.pca, estuary.listw, scan = FALSE, nfposi = 3, nfnega = 2)
    summary(estuary.pca.ms)
    par(mfrow = c(1, 2))
    barplot(estuary.pca$eig)
    barplot(estuary.pca.ms$eig)
    par(mfrow = c(1, 1))
}}
```

tithonia

Phylogeny and quantitative traits of flowers

# Description

This data set describes the phylogeny of 11 flowers as reported by Morales (2000). It also gives morphologic and demographic traits corresponding to these 11 species.

### Usage

```
data(tithonia)
```

#### **Format**

tithonia is a list containing the 2 following objects:

tre is a character string giving the phylogenetic tree in Newick format.

tab is a data frame with 11 species and 14 traits (6 morphologic traits and 8 demographic).

368 tortues

#### **Details**

```
Variables of tithonia$tab are the following ones:
morho1: is a numeric vector that describes the seed size (mm)
morho2: is a numeric vector that describes the flower size (mm)
morho3: is a numeric vector that describes the female leaf size (cm)
morho4: is a numeric vector that describes the head size (mm)
morho5: is a integer vector that describes the number of flowers per head
morho6: is a integer vector that describes the number of seeds per head
demo7: is a numeric vector that describes the seedling height (cm)
demo8: is a numeric vector that describes the growth rate (cm/day)
demo9: is a numeric vector that describes the germination time
demo10: is a numeric vector that describes the establishment (per cent)
demo11: is a numeric vector that describes the germination (per cent)
demo13: is a integer vector that describes the resource allocation
demo14: is a numeric vector that describes the adult height (m)
```

#### Source

Data were obtained from Morales, E. (2000) Estimating phylogenetic inertia in Tithonia (Asteraceae): a comparative approach. *Evolution*, **54**, 2, 475–484.

### **Examples**

```
data(tithonia)
phy <- newick2phylog(tithonia$tre)
tab <- log(tithonia$tab + 1)
table.phylog(scalewt(tab), phy)
gearymoran(phy$Wmat, tab)
gearymoran(phy$Amat, tab)</pre>
```

tortues

Morphological Study of the Painted Turtle

## **Description**

This data set gives a morphological description (4 characters) of 48 turtles.

### Usage

```
data(tortues)
```

#### **Format**

a data frame with 48 rows and 4 columns (length (mm), maximum width(mm), height (mm), gender).

toxicity 369

### Source

Jolicoeur, P. and Mosimann, J. E. (1960) Size and shape variation in the painted turtle. A principal component analysis. *Growth*, **24**, 339–354.

# **Examples**

```
data(tortues)
xyz <- as.matrix(tortues[, 1:3])
ref <- -svd(xyz)$u[, 1]
pch0 <- c(1, 20)[as.numeric(tortues$sexe)]
plot(ref, xyz[, 1], ylim = c(40, 180), pch = pch0)
abline(lm(xyz[, 1] ~ -1 + ref))
points(ref,xyz[, 2], pch = pch0)
abline(lm(xyz[, 2] ~ -1 + ref))
points(ref,xyz[, 3], pch = pch0)
abline(lm(xyz[, 3] ~ -1 + ref))</pre>
```

toxicity

Homogeneous Table

### **Description**

This data set gives the toxicity of 7 molecules on 17 targets expressed in -log(mol/liter)

# Usage

```
data(toxicity)
```

### **Format**

toxicity is a list of 3 components.

tab is a data frame with 7 columns and 17 rows

**species** is a vector of the names of the species in the 17 targets

chemicals is a vector of the names of the 7 molecules

## Source

Devillers, J., Thioulouse, J. and Karcher W. (1993) Chemometrical Evaluation of Multispecies-Multichemical Data by Means of Graphical Techniques Combined with Multivariate Analyses. *Ecotoxicology and Environnemental Safety*, **26**, 333–345.

370 triangle.class

### **Examples**

```
data(toxicity)
if(adegraphicsLoaded()) {
  table.image(toxicity$tab, labelsy = toxicity$species, labelsx = toxicity$chemicals, nclass = 7,
    ptable.margin = list(b = 5, l = 25, t = 25, r = 5), ptable.y.pos = "left", pgrid.draw = TRUE)
  table.value(toxicity$tab, labelsy = toxicity$species, labelsx = toxicity$chemicals,
    ptable.margin = list(b = 5, l = 5, t = 25, r = 26))
} else {
  table.paint(toxicity$tab, row.lab = toxicity$species, col.lab = toxicity$chemicals)
  table.value(toxicity$tab, row.lab = toxicity$species, col.lab = toxicity$chemicals)
}
```

triangle.class

Triangular Representation and Groups of points

# **Description**

Function to plot triangular data (i.e. dataframe with 3 columns of positive or null values) and a partition

## Usage

```
triangle.class(ta, fac, col = rep(1, length(levels(fac))),
   wt = rep(1, length(fac)), cstar = 1, cellipse = 0, axesell = TRUE,
   label = levels(fac), clabel = 1, cpoint = 1, pch = 20, draw.line = TRUE,
   addaxes = FALSE, addmean = FALSE, labeltriangle = TRUE, sub = "", csub = 1,
   possub = "bottomright", show.position = TRUE, scale = TRUE, min3 = NULL,
   max3 = NULL)
```

### **Arguments**

| ta       | a data frame with 3 columns of null or positive numbers                                                                                                     |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| fac      | a factor of length the row number of ta                                                                                                                     |
| col      | a vector of color for showing the groups                                                                                                                    |
| wt       | a vector of row weighting for the computation of the gravity centers by class                                                                               |
| cstar    | a character size for plotting the stars between 0 (no stars) and 1 (complete star) for a line linking a point to the gravity center of its belonging class. |
| cellipse | a positive coefficient for the inertia ellipse size                                                                                                         |
| axesell  | a logical value indicating whether the ellipse axes should be drawn                                                                                         |
| label    | a vector of strings of characters for the labels of gravity centers                                                                                         |
| clabel   | if not NULL, a character size for the labels, used with par("cex")*clabel                                                                                   |
| cpoint   | a character size for plotting the points, used with par("cex")*cpoint. If zero, no points are drawn                                                         |

triangle.class 371

| pch           | if cpoint > 0, an integer specifying the symbol or the single character to be used in plotting points            |
|---------------|------------------------------------------------------------------------------------------------------------------|
| draw.line     | a logical value indicating whether the triangular lines should be drawn                                          |
| addaxes       | a logical value indicating whether the axes should be plotted                                                    |
| addmean       | a logical value indicating whether the mean point should be plotted                                              |
| labeltriangle | a logical value indicating whether the varliable labels of ta should be drawn on the triangular sides            |
| sub           | a string of characters for the graph title                                                                       |
| csub          | a character size for plotting the graph title                                                                    |
| possub        | a string of characters indicating the sub-title position ("topleft", "topright", "bottomleft", "bottomright")    |
| show.position | a logical value indicating whether the sub-triangle containing the data should be put back in the total triangle |
| scale         | a logical value for the graph representation : the total triangle (FALSE) or the sub-triangle (TRUE) $$          |
| min3          | if not NULL, a vector with 3 numbers between 0 and 1                                                             |
| max3          | if not NULL, a vector with 3 numbers between 0 and 1. Let notice that $min3+max3$ must equal $c(1,1,1)$          |

### Author(s)

Daniel Chessel

```
if(!adegraphicsLoaded()) {
 data(euro123)
 par(mfrow = c(2, 2))
 x <- rbind.data.frame(euro123$in78, euro123$in86, euro123$in97)</pre>
 triangle.plot(x)
 triangle.class(x, as.factor(rep("G", 36)), csta = 0.5, cell = 1)
 triangle.class(x, euro123$plan$an)
 triangle.class(x, euro123$plan$pays)
 triangle.class(x, euro123$plan$an, cell = 1, axesell = TRUE)
 triangle.class(x, euro123planan, cell = 0, csta = 0,
   col = c("red", "green", "blue"), axesell = TRUE, clab = 2, cpoi = 2)
 triangle.class(x, euro123$plan$an, cell = 2, csta = 0.5,
    axesell = TRUE, clab = 1.5)
 triangle.class(x, euro123$plan$an, cell = 0, csta = 1, scale = FALSE,
    draw.line = FALSE, show.posi = FALSE)
 par(mfrow = c(2, 2))
```

372 triangle.plot

triangle.plot Triangular Plotting

# **Description**

Graphs for a dataframe with 3 columns of positive or null values triangle.plot is a scatterplot triangle.biplot is a paired scatterplots triangle.posipoint, triangle.param, add.position.triangle are utilitaries functions.

# Usage

```
triangle.plot(ta, label = as.character(1:nrow(ta)), clabel = 0,
    cpoint = 1, draw.line = TRUE, addaxes = FALSE, addmean = FALSE,
    labeltriangle = TRUE, sub = "", csub = 0, possub = "topright",
    show.position = TRUE, scale = TRUE, min3 = NULL, max3 = NULL,
    box = FALSE)
triangle.biplot (ta1, ta2, label = as.character(1:nrow(ta1)),
    draw.line = TRUE, show.position = TRUE, scale = TRUE)
```

### **Arguments**

ta, ta1, ta2,

| ,,            | Fg                                                                                                            |
|---------------|---------------------------------------------------------------------------------------------------------------|
| label         | a vector of strings of characters for the point labels                                                        |
| clabel        | if not NULL, a character size for the labels, used with par("cex")*clabel                                     |
| cpoint        | a character size for plotting the points, used with par("cex")*cpoint. If zero, no points are drawn           |
| draw.line     | a logical value indicating whether the lines into the triangle should be drawn                                |
| addaxes       | a logical value indicating whether the principal axes should be drawn                                         |
| addmean       | a logical value indicating whether the mean should be plotted                                                 |
| labeltriangle | a logical value indicating whether the variable names should be wrote                                         |
| sub           | a string of characters to be inserted as legend                                                               |
| csub          | a character size for the legend, used with par("cex")*csub                                                    |
| possub        | a string of characters indicating the sub-title position ("topleft", "topright", "bottomleft", "bottomright") |
| show.position | a logical value indicating whether the used triangle should be shown in the complete one                      |
| scale         | a logical value indicating whether the smaller equilateral triangle containing the plot should be used        |
| min3          | If scale is FALSE, a vector of three values for the minima e.g. $c(0.1,0.1,0.1)$ can be used                  |
| max3          | If scale is FALSE a vector of three values for the maxima e.g. $c(0.9,0.9,0.9)$ can be used                   |
| box           | a logical value indicating whether a box around the current plot should be drawn                              |
|               |                                                                                                               |

data frame with three columns, will be transformed in percentages by rows

trichometeo 373

#### Value

triangle.plot returns an invisible matrix containing the coordinates used for the plot. The graph can be supplemented in various ways.

### Author(s)

Daniel Chessel

# **Examples**

```
data(euro123)
tot <- rbind.data.frame(euro123$in78, euro123$in86, euro123$in97)</pre>
row.names(tot) <- paste(row.names(euro123\sin 78), rep(c(1, 2, 3), rep(12, 3)), sep = "")
triangle.plot(tot, label = row.names(tot), clab = 1)
par(mfrow = c(2, 2))
triangle.plot(euro123$in78, clab = 0, cpoi = 2, addmean = TRUE, show = FALSE)
triangle.plot(euro123$in86, label = row.names(euro123$in78), clab = 0.8)
triangle.biplot(euro123$in78, euro123$in86)
triangle.plot(rbind.data.frame(euro123$in78, euro123$in86), clab = 1,
 addaxes = TRUE, sub = "Principal axis", csub = 2, possub = "topright")
triangle.plot(euro123[[1]], min3 = c(0, 0.2, 0.3), max3 = c(0.5, 0.7, 0.8),
 clab = 1, label = row.names(euro123[[1]]), addax = TRUE)
triangle.plot(euro123[[2]], min3 = c(0, 0.2, 0.3), max3 = c(0.5, 0.7, 0.8),
 clab = 1, label = row.names(euro123[[1]]), addax = TRUE)
triangle.plot(euro123[[3]], min3 = c(0, 0.2, 0.3), max3 = c(0.5, 0.7, 0.8),
 clab = 1, label = row.names(euro123[[1]]), addax = TRUE)
triangle.plot(rbind.data.frame(euro123[[1]], euro123[[2]], euro123[[3]]))
par(mfrow = c(1, 1))
wtriangleplot <- cbind.data.frame(a = runif(100), b = runif(100), c = runif(100, 4, 5))
wtriangleplot <- triangle.plot(wtriangleplot)</pre>
points(wtriangleplot, col = "blue", cex = 2)
wtriangleplot <- colMeans(wtriangleplot)</pre>
points(wtriangleplot[1], wtriangleplot[2], pch = 20, cex = 3, col = "red")
rm(wtriangleplot)
```

trichometeo

Pair of Ecological Data

# Description

This data set gives for trappong nights informations about species and meteorological variables.

## Usage

```
data(trichometeo)
```

374 ungulates

#### **Format**

trichometeo is a list of 3 components.

**fau** is a data frame with 49 rows (trapping nights) and 17 species.

meteo is a data frame with 49 rows and 11 meteorological variables.

**cla** is a factor of 12 levels for the definition of the consecutive night groups

#### Source

Data from P. Usseglio-Polatera

### References

Usseglio-Polatera, P. and Auda, Y. (1987) Influence des facteurs météorologiques sur les résultats de piégeage lumineux. *Annales de Limnologie*, **23**, 65–79. (code des espèces p. 76)

See a data description at http://pbil.univ-lyon1.fr/R/pdf/pps034.pdf (in French).

# **Examples**

```
data(trichometeo)
faulog <- log(trichometeo$fau + 1)
pca1 <- dudi.pca(trichometeo$meteo, scan = FALSE)
niche1 <- niche(pca1, faulog, scan = FALSE)

if(adegraphicsLoaded()) {
   g1 <- s.distri(niche1$ls, faulog, plab.cex = 0.6, ellipseSize = 0, starSize = 0.3, plot = FALSE)
   g2 <- s.arrow(7 * niche1$c1, plab.cex = 1, plot = FALSE)
   G <- superpose(g1, g2, plot = TRUE)

} else {
   s.label(niche1$ls, clab = 0)
   s.distri(niche1$ls, faulog, clab = 0.6, add.p = TRUE, cell = 0, csta = 0.3)
   s.arrow(7 * niche1$c1, clab = 1, add.p = TRUE)
}</pre>
```

ungulates

Phylogeny and quantitative traits of ungulates.

# **Description**

This data set describes the phylogeny of 18 ungulates as reported by Pélabon et al. (1995). It also gives 4 traits corresponding to these 18 species.

# Usage

```
data(ungulates)
```

uniquewt.df 375

#### **Format**

```
fission is a list containing the 2 following objects:

tre is a character string giving the phylogenetic tree in Newick format.

tab is a data frame with 18 species and 4 traits
```

#### **Details**

```
Variables of ungulates$tab are the following ones: afbw: is a numeric vector that describes the adult female body weight (g) mnw: is a numeric vector that describes the male neonatal weight (g) fnw: is a numeric vector that describes the female neonatal weight (g) ls: is a numeric vector that describes the litter size
```

#### Source

Data were obtained from Pélabon, C., Gaillard, J.M., Loison, A. and Portier, A. (1995) Is sex-biased maternal care limited by total maternal expenditure in polygynous ungulates? *Behavioral Ecology and Sociobiology*, **37**, 311–319.

# **Examples**

```
data(ungulates)
ung.phy <- newick2phylog(ungulates$tre)</pre>
plot(ung.phy,clabel.l=1.25,clabel.n=0.75)
ung.x <- log(ungulates$tab[,1])</pre>
ung.y <- \log((ungulates*tab[,2]+ungulates*tab[,3])/2)
names(ung.x) <- names(ung.phy$leaves)</pre>
names(ung.y) <- names(ung.x)</pre>
plot(ung.x,ung.y)
abline(lm(ung.y~ung.x))
symbols.phylog(ung.phy,ung.x-mean(ung.x))
dotchart.phylog(ung.phy,ung.x,cle=1.5,cno=1.5,cdot=1)
if (requireNamespace("adephylo", quietly = TRUE) & requireNamespace("ape", quietly = TRUE)) {
  tre <- ape::read.tree(text = ungulates$tre)</pre>
  adephylo::orthogram(ung.x, tre)
  ung.z <- residuals(lm(ung.y~ung.x))</pre>
  names(ung.z) <- names(ung.phy$leaves)</pre>
  dotchart.phylog(ung.phy,ung.z,cle=1.5,cno=1.5,cdot=1,ceti=0.75)
  adephylo::orthogram(ung.z, tre)
}
```

uniquewt.df

Elimination of Duplicated Rows in a Array

# Description

An utility function to eliminate the duplicated rows in a array.

376 variance.phylog

### Usage

```
uniquewt.df(x)
```

# **Arguments**

Х

a data frame which contains duplicated rows

### Value

The function returns a y which contains once each duplicated row of x. y is an attribut 'factor' which gives the number of the row of y in which each row of x is found y is an attribut 'length.class' which gives the number of duplicates in x with an attribut of each row of y with an attribut

# Author(s)

**Daniel Chessel** 

## **Examples**

```
data(ecomor)
forsub.r <- uniquewt.df(ecomor$forsub)
attr(forsub.r, "factor")
forsub.r[1,]
ecomor$forsub[126,] #idem

dudi.pca(ecomor$forsub, scale = FALSE, scann = FALSE)$eig
# [1] 0.36845 0.24340 0.15855 0.09052 0.07970 0.04490
w1 <- attr(forsub.r, "len.class") / sum(attr(forsub.r, "len.class"))
dudi.pca(forsub.r, row.w = w1, scale = FALSE, scann = FALSE)$eig
# [1] 0.36845 0.24340 0.15855 0.09052 0.07970 0.04490</pre>
```

variance.phylog

The phylogenetic ANOVA

# **Description**

This function performs the variance analysis of a trait on eigenvectors associated to a phylogenetic tree.

# Usage

```
variance.phylog(phylog, z, bynames = TRUE,
na.action = c("fail", "mean"))
```

variance.phylog 377

# Arguments

phylog : an object of class phylog

z : a numeric vector of the values corresponding to the variable

bynames : if TRUE checks if z labels are the same as phylog leaves label, possibly in

a different order. If FALSE the check is not made and z labels must be in the

same order than phylog leaves label

na.action : if 'fail' stops the execution of the current expression when z contains any

missing value. If 'mean' replaces any missing values by mean(z)

#### **Details**

phylog\$Amat defines a set of orthonormal vectors associated the each nodes of the phylogenetic tree.

phylog\$Adim defines the dimension of the subspace **A** defined by the first phylog\$Adim vectors of phylog\$Amat that corresponds to phylogenetic inertia.

variance.phylog performs the linear regression of z on A.

#### Value

Returns a list containing

1m : an object of class 1m that corresponds to the linear regression of z on A.

anova : an object of class anova that corresponds to the anova of the precedent model.

smry : an object of class anova that is a summary of the precedent object.

### Author(s)

```
Sébastien Ollier <sebastien.ollier@u-psud.fr>
Daniel Chessel
```

### References

Grafen, A. (1989) The phylogenetic regression. *Philosophical Transactions of the Royal Society London B*, **326**, 119–156.

Diniz-Filho, J. A. F., Sant'Ana, C.E.R. and Bini, L.M. (1998) An eigenvector method for estimating phylogenetic inertia. *Evolution*, **52**, 1247–1262.

#### See Also

```
phylog, lm
```

```
data(njplot)
njplot.phy <- newick2phylog(njplot$tre)
variance.phylog(njplot.phy,njplot$tauxcg)
par(mfrow = c(1,2))
table.phylog(njplot.phy$Ascores, njplot.phy, clabel.row = 0,</pre>
```

378 varipart

```
clabel.col = 0.1, clabel.nod = 0.6, csize = 1)
dotchart.phylog(njplot.phy, njplot$tauxcg, clabel.nodes = 0.6)
if (requireNamespace("adephylo", quietly = TRUE) & requireNamespace("ape", quietly = TRUE)) {
   tre <- ape::read.tree(text = njplot$tre)
   adephylo::orthogram(njplot$tauxcg, tre = tre)
}</pre>
```

varipart

Partition of the variation of a response multivariate table by 2 explanatory tables

# **Description**

The function partitions the variation of a response table (usually community data) with respect to two explanatory tables. The function performs the variation partitioning based on redundancy analysis (RDA, if dudiY is obtained by dudi.pca) or canonical correspondance analysis (CCA, if dudiY is obtained by dudi.coa) and computes unadjusted and adjusted R-squared. The significance of R-squared are evaluated by a randomization procedure where the rows of the explanatory tables are permuted.

# Usage

```
varipart(Y, X, W = NULL, nrepet = 999, type = c("simulated", "parametric"),
scale = FALSE, ...)
## S3 method for class 'varipart'
print(x, ...)
```

# Arguments

| Υ      | a vector, matrix or data frame or an object of class dudi. If not a dudi object, the data are trated by a principal component analysis (dudi.pca).                                                    |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X, W   | dataframes or matrices of explanatory (co)variables (numeric and/or factor variables). By default, no covariables are considered (W is NULL) and this case corresponds to simple caonical ordination. |
| nrepet | an integer indicating the number of permutations.                                                                                                                                                     |
| type   | a character specifying the algorithm which should be used to adjust R-squared (either "simulated" or $\c$ code "parametric").                                                                         |
| scale  | If Y is not a dudi, a logical indicating if variables should be scaled                                                                                                                                |
| • • •  | further arguments passed to as.krandtest or as.randtest (if no covariables are considered) for function varipart.                                                                                     |
| x      | an object of class varipart                                                                                                                                                                           |

varipart 379

#### **Details**

Two types of algorithm are provided to adjust R-squared. The "simulated" procedure estimates the unadjusted R-squared expected under the null hypothesis H0 and uses it to adjust the observed R-squared as follows: R2.adj = 1 - (1 - R2) / (1 - E(R2|H0)) with R2.adj the adjusted R-squared and R2 the unadjusted R-squared. The "parametric" procedure performs the Ezequiel's adjustement on the unadjusted R-squared as: R2.adj = 1 - (1 - R2) / (1 - p / (n - 1)) where n is the number of sites, and p the number of predictors.

### Value

It returns an object of class varipart. It is a list with:

test the significance test of fractions [ab], [bc], and [abc] based on randomization procedure. An object of class krandtest

R2 unadjusted estimations of fractions [a], [b], [c], and [d]

R2.adj adjusted estimations of fractions [a], [b], [c], and [d]

call the matched call

### Author(s)

Stephane Dray <stephane.dray@univ-lyon1.fr> and Sylvie Clappe <sylvie.clappe@univ-lyon1.fr>

#### References

Borcard, D., P. Legendre, and P. Drapeau. 1992. Partialling out the spatial component of ecological variation. Ecology 73:1045.

Peres-Neto, P. R., P. Legendre, S. Dray, and D. Borcard. 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614-2625.

#### See Also

pcaiv

```
data(mafragh)

# PCA on response table Y
Y <- mafragh$flo
dudiY <- dudi.pca(Y, scannf = FALSE, scale = FALSE)

# Variation partitioning based on RDA
# without covariables
vprda <- varipart(dudiY, mafragh$env)
vprda
# Variation partitioning based on RDA
# with covariables and parametric estimation
vprda <- varipart(dudiY, mafragh$env, mafragh$xy, type = "parametric")</pre>
```

380 vegtf

```
vprda
names(vprda)
```

vegtf

Vegetation in Trois-Fontaines

### **Description**

This data set contains abundance values (Braun-Blanquet scale) of 80 plant species for 337 sites. Data have been collected by Sonia Said and François Debias.

### Usage

```
data(vegtf)
```

#### **Format**

vegtf is a list with the following components:

veg a data.frame with the abundance values of 80 species (columns) in 337 sites (rows)

xy a data.frame with the spatial coordinates of the sites

area a data.frame (area) which define the boundaries of the study site

**sp.names** a vector containing the species latin names

**nb** a neighborhood object (class nb defined in package spdep)

Spatial an object of the class SpatialPolygons of sp, containing the map

#### Source

Dray, S., Said, S. and Debias, F. (2008) Spatial ordination of vegetation data using a generalization of Wartenberg's multivariate spatial correlation. *Journal of vegetation science*, **19**, 45–56.

```
if(requireNamespace("spdep", quietly = TRUE)) {
   data(vegtf)
   coa1 <- dudi.coa(vegtf$veg, scannf = FALSE)
   ms.coa1 <- multispati(coa1, listw = spdep::nb2listw(vegtf$nb), nfposi = 2,
        nfnega = 0, scannf = FALSE)
   summary(ms.coa1)
   plot(ms.coa1)

if(adegraphicsLoaded()) {
   g1 <- s.value(vegtf$xy, coa1$li[, 1], Sp = vegtf$Spatial, pSp.col = "white", plot = FALSE)
   g2 <- s.value(vegtf$xy, ms.coa1$li[, 1], Sp = vegtf$Spatial, pSp.col = "white", plot = FALSE)
   g3 <- s.label(coa1$c1, plot = FALSE)
   g4 <- s.label(ms.coa1$c1, plot = FALSE)
   G <- ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
} else {</pre>
```

veuvage 381

```
par(mfrow = c(2, 2))
    s.value(vegtf$xy, coa1$li[, 1], area = vegtf$area, include.origin = FALSE)
    s.value(vegtf$xy, ms.coa1$li[, 1], area = vegtf$area, include.origin = FALSE)
    s.label(coa1$c1)
    s.label(ms.coa1$c1)
}
```

veuvage

Example for Centring in PCA

# **Description**

The data come from the INSEE (National Institute of Statistics and Economical Studies). It is an array of widower percentages in relation with the age and the socioprofessional category.

# Usage

```
data(veuvage)
```

#### **Format**

veuvage is a list of 2 components.

tab is a data frame with 37 rows (widowers) 6 columns (socio-professional categories)

age is a vector of the ages of the 37 widowers.

#### **Details**

The columns contain the socioprofessional categories:

- 1- Farmers, 2- Craftsmen, 3- Executives and higher intellectual professions,
- 4- Intermediate Professions, 5- Others white-collar workers and 6- Manual workers.

### Source

unknown

382 wca

| wca | Within-Class Analysis |  |
|-----|-----------------------|--|
|     |                       |  |

# Description

Performs a particular case of an Orthogonal Principal Component Analysis with respect to Instrumental Variables (orthopcaiv), in which there is only a single factor as covariable.

# Usage

```
## S3 method for class 'dudi'
wca(x, fac, scannf = TRUE, nf = 2, ...)
```

# Arguments

| x      | a duality diagram, object of class $\ensuremath{dudi}$ from one of the functions $\ensuremath{dudi}.\ensuremath{coa},$ $\ensuremath{dudi}.\ensuremath{pca},$ |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| fac    | a factor partitioning the rows of dudi\$tab in classes                                                                                                       |
| scannf | a logical value indicating whether the eigenvalues bar plot should be displayed                                                                              |
| nf     | if scannf FALSE, an integer indicating the number of kept axes                                                                                               |
|        | further arguments passed to or from other methods                                                                                                            |

# Value

Returns a list of the sub-class within in the class dudi

| 11 decreation of H                              |  |
|-------------------------------------------------|--|
| call the matching call                          |  |
| nf number of kept axes                          |  |
| rank the rank of the analysis                   |  |
| ratio percentage of within-class inertia        |  |
| eig a numeric vector containing the eigenvalues |  |
| lw a numeric vector of row weigths              |  |
| cw a numeric vector of column weigths           |  |
| tabw a numeric vector of class weigths          |  |
| fac the factor defining the classes             |  |
| li data frame row coordinates                   |  |
| data frame row normed scores                    |  |
| co data frame column coordinates                |  |
| c1 data frame column normed scores              |  |
| 1s data frame supplementary row coordinates     |  |
| as data frame inertia axis onto within axis     |  |

wca.coinertia 383

#### Note

To avoid conflict names with the base:::within function, the function within is now deprecated and removed. It is replaced by the method wca.dudi of the new generic wca function.

### Author(s)

Daniel Chessel
Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>

#### References

Benzécri, J. P. (1983) Analyse de l'inertie intra-classe par l'analyse d'un tableau de correspondances. Les Cahiers de l'Analyse des données, **8**, 351–358.

Dolédec, S. and Chessel, D. (1987) Rythmes saisonniers et composantes stationnelles en milieu aquatique I- Description d'un plan d'observations complet par projection de variables. *Acta Oecologica, Oecologia Generalis*, **8**, 3, 403–426.

# **Examples**

```
data(meaudret)
pca1 <- dudi.pca(meaudret$env, scan = FALSE, nf = 4)</pre>
wit1 <- wca(pca1, meaudret$design$site, scan = FALSE, nf = 2)</pre>
if(adegraphicsLoaded()) {
 g1 <- s.traject(pca1$li, meaudret$design$site, psub.text = "Principal Component Analysis",</pre>
    plines.lty = 1:nlevels(meaudret$design$site), psub.cex = 1.5, plot = FALSE)
  g2 <- s.traject(wit1$li, meaudret$design$site,</pre>
    psub.text = "Within site Principal Component Analysis",
    plines.lty = 1:nlevels(meaudret$design$site), psub.cex = 1.5, plot = FALSE)
  g3 <- s.corcircle (wit1$as, plot = FALSE)
  G \leftarrow ADEgS(list(g1, g2, g3), layout = c(2, 2))
} else {
  par(mfrow = c(2, 2))
 s.traject(pca1$li, meaudret$design$site, sub = "Principal Component Analysis", csub = 1.5)
 s.traject(wit1$li, meaudret$design$site, sub = "Within site Principal Component Analysis",
    csub = 1.5)
  s.corcircle (wit1$as)
  par(mfrow = c(1,1))
}
plot(wit1)
```

wca.coinertia

Within-class coinertia analysis

## **Description**

Performs a within-class analysis after a coinertia analysis

384 wca.coinertia

### Usage

```
## S3 method for class 'coinertia'
wca(x, fac, scannf = TRUE, nf = 2, ...)
```

## **Arguments**

a coinertia analysis (object of class coinertia) obtained by the function coinertia
fac a factor partitioning the rows in classes
scannf a logical value indicating whether the eigenvalues barplot should be displayed
if scannf FALSE, an integer indicating the number of kept axes
... further arguments passed to or from other methods

#### **Details**

This analysis is equivalent to do a within-class analysis on each initial dudi, and a coinertia analysis on the two within analyses. This function returns additional outputs for the interpretation.

#### Value

An object of the class witcoi. Outputs are described by the print function

#### Note

To avoid conflict names with the base:::within function, the function within is now deprecated and removed. To be consistent, the withincoinertia function is also deprecated and is replaced by the method wca.coinertia of the generic wca function.

# Author(s)

Stéphane Dray < stephane . dray@univ-lyon1 . fr> and Jean Thioulouse < jean . thioulouse@univ-lyon1 . fr>

### References

Franquet E., Doledec S., and Chessel D. (1995) Using multivariate analyses for separating spatial and temporal effects within species-environment relationships. *Hydrobiologia*, **300**, 425–431.

#### See Also

```
coinertia, wca
```

```
data(meaudret)
pca1 <- dudi.pca(meaudret$env, scan = FALSE, nf = 4)
pca2 <- dudi.pca(meaudret$spe, scal = FALSE, scan = FALSE, nf = 4)
wit1 <- wca(pca1, meaudret$design$site, scan = FALSE, nf = 2)
wit2 <- wca(pca2, meaudret$design$site, scan = FALSE, nf = 2)
coiw <- coinertia(wit1, wit2, scannf = FALSE)</pre>
```

wca.rlq 385

```
coi <- coinertia(pca1, pca2, scannf = FALSE, nf = 3)
coi.w <- wca(coi, meaudret$design$site, scannf = FALSE)
## coiw and coi.w are equivalent
plot(coi.w)</pre>
```

wca.rlq

Within-Class RLQ analysis

# Description

Performs a particular RLQ analysis where a partition of sites (rows of R) is taken into account. The within-class RLQ analysis search for linear combinations of traits and environmental variables of maximal covariance.

# Usage

```
## S3 method for class 'rlq'
wca(x, fac, scannf = TRUE, nf = 2, ...)
## S3 method for class 'witrlq'
plot(x, xax = 1, yax = 2, ...)
## S3 method for class 'witrlq'
print(x, ...)
```

# **Arguments**

| X      | an object of class rlq (created by the rlq function) for the wca.rlq function. An object of class witrlq for the print and plot functions |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------|
| fac    | a factor partitioning the rows of R                                                                                                       |
| scannf | a logical value indicating whether the eigenvalues bar plot should be displayed                                                           |
| nf     | if scannf FALSE, an integer indicating the number of kept axes                                                                            |
| xax    | the column number for the x-axis                                                                                                          |
| yax    | the column number for the y-axis                                                                                                          |
|        | further arguments passed to or from other methods                                                                                         |
|        |                                                                                                                                           |

### Value

The wca.rlq function returns an object of class 'betrlq' (sub-class of 'dudi'). See the outputs of the print function for more details.

## Author(s)

Stéphane Dray <stephane.dray@univ-lyon1.fr>

386 westafrica

#### References

Wesuls, D., Oldeland, J. and Dray, S. (2012) Disentangling plant trait responses to livestock grazing from spatio-temporal variation: the partial RLQ approach. *Journal of Vegetation Science*, **23**, 98–113.

#### See Also

```
rlq, wca, wca.rlq
```

## **Examples**

```
data(piosphere)
afcL <- dudi.coa(log(piosphere$veg + 1), scannf = FALSE)
acpR <- dudi.pca(piosphere$env, scannf = FALSE, row.w = afcL$lw)
acpQ <- dudi.hillsmith(piosphere$traits, scannf = FALSE, row.w = afcL$cw)
rlq1 <- rlq(acpR, afcL, acpQ, scannf = FALSE)
wrlq1 <- wca(rlq1, fac = piosphere$habitat, scannf = FALSE)
wrlq1
plot(wrlq1)</pre>
```

westafrica

Freshwater fish zoogeography in west Africa

# **Description**

This data set contains informations about faunal similarities between river basins in West africa.

# Usage

```
data(westafrica)
```

## **Format**

westafrica is a list containing the following objects:

tab: a data frame with absence/presence of 268 species (rows) at 33 embouchures (columns)

**spe.names**: a vector of string of characters with the name of species

spe.binames: a data frame with the genus and species (columns) of the 256 species (rows)

riv.names: a vector of string of characters with the name of rivers

**atlantic**: a data frame with the coordinates of a polygon that represents the limits of atlantic (see example)

**riv.xy**: a data frame with the coordinates of embouchures

lines: a data frame with the coordinates of lines to complete the representation (see example)

cadre: a data frame with the coordinates of points used to make the representation (see example)

westafrica 387

#### Source

Data provided by B. Hugueny <hugueny@mnhn.fr>.

Paugy, D., Traoré, K. and Diouf, P.F. (1994) Faune ichtyologique des eaux douces d'Afrique de l'Ouest. In *Diversité biologique des poissons des eaux douces et saumâtres d'Afrique. Synthèses géographiques*, Teugels, G.G., Guégan, J.F. and Albaret, J.J. (Editors). Annales du Musée Royal de l'Afrique Centrale, Zoologie, **275**, Tervuren, Belgique, 35–66.

Hugueny, B. (1989) *Biogéographie et structure des peuplements de Poissons d'eau douce de l'Afrique de l'ouest : approches quantitatives*. Thèse de doctorat, Université Paris 7.

#### References

Hugueny, B., and Lévêque, C. (1994) Freshwater fish zoogeography in west Africa: faunal similarities between river basins. *Environmental Biology of Fishes*, **39**, 365–380.

```
data(westafrica)
if(!adegraphicsLoaded()) {
  s.label(westafrica$cadre, xlim = c(30, 500), ylim = c(50, 290),
   cpoi = 0, clab = 0, grid = FALSE, addax = 0)
 old.par <- par(no.readonly = TRUE)</pre>
 par(mar = c(0.1, 0.1, 0.1, 0.1))
 rect(30, 0, 500, 290)
 polygon(westafrica$atlantic, col = "lightblue")
 points(westafrica$riv.xy, pch = 20, cex = 1.5)
 apply(westafrica1, x[2], x[3], x[4], w = 1)
 apply(westafricariv.xy,1, function(x) segments(x[1], x[2], x[3], x[4], lwd = 1))
 text(c(175, 260, 460, 420), c(275, 200, 250, 100), c("Senegal", "Niger", "Niger", "Volta"))
 par(srt = 270)
 text(westafrica$riv.xy$x2, westafrica$riv.xy$y2-10, westafrica$riv.names, adj = 0, cex = 0.75)
 par(old.par)
 rm(old.par)
}
# multivariate analysis
afri.w <- data.frame(t(westafrica$tab))</pre>
afri.dist <- dist.binary(afri.w,1)</pre>
afri.pco <- dudi.pco(afri.dist, scannf = FALSE, nf = 3)
if(adegraphicsLoaded()) {
 G1 <- s1d.barchart(afri.pco$li[, 1:3], p1d.horizontal = FALSE, plabels.cex = 0)
} else {
 par(mfrow = c(3, 1))
 barplot(afri.pco$li[, 1])
 barplot(afri.pco$li[, 2])
 barplot(afri.pco$li[, 3])
}
if(requireNamespace("spdep", quietly = TRUE)) {
 # multivariate spatial analysis
 afri.neig <- neig(n.line = 33)
```

388 within

```
afri.nb <- neig2nb(afri.neig)</pre>
 afri.listw <- spdep::nb2listw(afri.nb)</pre>
 afri.ms <- multispati(afri.pco, afri.listw, scannf = FALSE, nfposi = 6, nfnega = 0)
 if(adegraphicsLoaded()) {
   G2 <- s1d.barchart(afri.ms$li[, 1:3], p1d.horizontal = FALSE, plabels.cex = 0)
  g31 <- s.label(afri.ms$li, plabels.cex = 0.75, ppoints.cex = 0, nb = afri.nb, plot = FALSE)
   g32 <- s.value(afri.ms$li, afri.ms$li[, 3], plot = FALSE)</pre>
   g33 <- s.value(afri.ms$li, afri.ms$li[, 4], plot = FALSE)
   g34 <- s.value(afri.ms$li, afri.ms$li[, 5], plot = FALSE)
   G3 \leftarrow ADEgS(list(g31, g32, g33, g34), layout = c(2, 2))
 } else {
    par(mfrow = c(3, 1))
    barplot(afri.ms$li[, 1])
    barplot(afri.ms$li[, 2])
    barplot(afri.ms$li[, 3])
    par(mfrow = c(2, 2))
    s.label(afri.ms$li, clab = 0.75, cpoi = 0, neig = afri.neig, cneig = 1.5)
    s.value(afri.ms$li, afri.ms$li[, 3])
    s.value(afri.ms$li, afri.ms$li[, 4])
    s.value(afri.ms$li, afri.ms$li[, 5])
 }
 summary(afri.ms)
}
par(mfrow = c(1, 1))
plot(hclust(afri.dist, "ward.D"), h = -0.2)
```

within

Within-Class Analysis

# **Description**

Outputs and graphical representations of the results of a within-class analysis.

### Usage

```
## S3 method for class 'within'
plot(x, xax = 1, yax = 2, ...)
## S3 method for class 'within'
print(x, ...)
## S3 method for class 'witcoi'
plot(x, xax = 1, yax = 2, ...)
## S3 method for class 'witcoi'
print(x, ...)
## S3 method for class 'within'
summary(object, ...)
```

within 389

### **Arguments**

```
x, object an object of class within or witcoi

xax the column index for the x-axis

yax the column index for the y-axis

further arguments passed to or from other methods
```

#### Author(s)

```
Daniel Chessel
Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>
Stéphane Dray <stephane.dray@univ-lyon1.fr>
```

#### References

Benzécri, J. P. (1983) Analyse de l'inertie intra-classe par l'analyse d'un tableau de correspondances. Les Cahiers de l'Analyse des données, **8**, 351–358.

Dolédec, S. and Chessel, D. (1987) Rythmes saisonniers et composantes stationnelles en milieu aquatique I- Description d'un plan d'observations complet par projection de variables. *Acta Oecologica, Oecologia Generalis*, **8**, 3, 403–426.

#### See Also

```
wca.dudi, wca.coinertia
```

```
data(meaudret)
pca1 <- dudi.pca(meaudret$env, scan = FALSE, nf = 4)</pre>
wit1 <- wca(pca1, meaudret$design$site, scan = FALSE, nf = 2)</pre>
if(adegraphicsLoaded()) {
 g1 <- s.traject(pca1$li, meaudret$design$site, psub.text = "Principal Component Analysis",</pre>
    plines.lty = 1:length(levels(meaudret$design$site)), plot = FALSE)
  g2 <- s.traject(wit1$li, meaudret$design$site, psub.text =</pre>
    "Within site Principal Component Analysis",
    plines.lty = 1:length(levels(meaudret$design$site)), plot = FALSE)
  g3 <- s.corcircle (wit1$as, plot = FALSE)
  G \leftarrow ADEgS(list(g1, g2, g3), layout = c(2, 2))
} else {
  par(mfrow = c(2, 2))
 s.traject(pca1$li, meaudret$design$site, sub = "Principal Component Analysis", csub = 1.5)
 s.traject(wit1$li, meaudret$design$site, sub = "Within site Principal Component Analysis",
    csub = 1.5)
  s.corcircle (wit1$as)
  par(mfrow = c(1, 1))
plot(wit1)
```

390 withinpca

| withinpca | Normed within principal component analysis |  |
|-----------|--------------------------------------------|--|
|           |                                            |  |

# Description

Performs a normed within Principal Component Analysis.

## Usage

```
withinpca(df, fac, scaling = c("partial", "total"),
    scannf = TRUE, nf = 2)
```

# Arguments

df a data frame with quantitative variables

fac a factor partitioning the rows of df in classes

scaling a string of characters as a scaling option:

if "partial", the sub-table corresponding to each class is centred and normed. If "total", the sub-table corresponding to each class is centred and the total table

is then normed.

scannf a logical value indicating whether the eigenvalues bar plot should be displayed

nf if scannf FALSE, an integer indicating the number of kept axes

#### **Details**

This functions implements the 'Bouroche' standardization. In a first step, the original variables are standardized (centred and normed). Then, a second transformation is applied according to the value of the scaling argument. For "partial", variables are standardized in each sub-table (corresponding to each level of the factor). Hence, variables have null mean and unit variance in each sub-table. For "total", variables are centred in each sub-table and then normed globally. Hence, variables have a null mean in each sub-table and a global variance equal to one.

### Value

returns a list of the sub-class within of class dudi. See wca

# Author(s)

```
Daniel Chessel
Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr>
```

# References

Bouroche, J. M. (1975) *Analyse des données ternaires: la double analyse en composantes principales*. Thèse de 3ème cycle, Université de Paris VI.

witwit.coa 391

# **Examples**

```
data(meaudret)
wit1 <- withinpca(meaudret$env, meaudret$design$season, scannf = FALSE, scaling = "partial")
kta1 <- ktab.within(wit1, colnames = rep(c("S1", "S2", "S3", "S4", "S5"), 4))
unclass(kta1)
# See pta
plot(wit1)</pre>
```

witwit.coa

Internal Correspondence Analysis

# Description

witwit.coa performs an Internal Correspondence Analysis. witwitsepan gives the computation and the barplot of the eigenvalues for each separated analysis in an Internal Correspondence Analysis.

# Usage

```
witwit.coa(dudi, row.blocks, col.blocks, scannf = TRUE, nf = 2)
## S3 method for class 'witwit'
summary(object, ...)
witwitsepan(ww, mfrow = NULL, csub = 2, plot = TRUE)
```

# **Arguments**

| dudi       | an object of class coa                                                                       |
|------------|----------------------------------------------------------------------------------------------|
| row.blocks | a numeric vector indicating the row numbers for each block of rows                           |
| col.blocks | a numeric vector indicating the column numbers for each block of columns                     |
| scannf     | a logical value indicating whether the eigenvalues bar plot should be displayed              |
| nf         | if scannf FALSE, an integer indicating the number of kept axes                               |
|            |                                                                                              |
| object     | an object of class witwit                                                                    |
|            | further arguments passed to or from other methods                                            |
|            |                                                                                              |
| ww         | an object of class witwit                                                                    |
| mfrow      | a vector of the form $"c(nr,nc)"$ , otherwise computed by a special own function $`n2mfrow'$ |
| csub       | a character size for the sub-titles, used with par("cex")*csub                               |
| plot       | if FALSE, numeric results are returned                                                       |

392 woangers

#### Value

returns a list of class witwit, coa and dudi (see as.dudi) containing

rbvar a data frame with the within variances of the rows of the factorial coordinates

1bw a data frame with the marginal weighting of the row classes

cvar a data frame with the within variances of the columns of the factorial coordinates

cbw a data frame with the marginal weighting of the column classes

# Author(s)

Daniel Chessel Anne-Béatrice Dufour <anne-beatrice.dufour@univ-lyon1.fr> Correction by Campo Elías PARDO <cepardot@cable.net.co>

#### References

Cazes, P., Chessel, D. and Dolédec, S. (1988) L'analyse des correspondances internes d'un tableau partitionné: son usage en hydrobiologie. *Revue de Statistique Appliquée*, **36**, 39–54.

## **Examples**

```
data(ardeche)
coa1 <- dudi.coa(ardeche$tab, scann = FALSE, nf = 4)
ww <- witwit.coa(coa1, ardeche$row.blocks, ardeche$col.blocks, scann = FALSE)
ww
summary(ww)

if(adegraphicsLoaded()) {
   g1 <- s.class(ww$co, ardeche$sta.fac, plab.cex = 1.5, ellipseSi = 0, paxes.draw = FALSE,
        plot = FALSE)
   g2 <- s.label(ww$co, plab.cex = 0.75, plot = FALSE)
   G <- superpose(g1, g2, plot = TRUE)
} else {
   s.class(ww$co, ardeche$sta.fac, clab = 1.5, cell = 0, axesell = FALSE)
   s.label(ww$co, add.p = TRUE, clab = 0.75)
}
witwitsepan(ww, c(4, 6))</pre>
```

woangers

Plant assemblages in woodlands of the conurbation of Angers (France)

### **Description**

This data set gives the presence of plant species in relevés of woodlands in the conurbation of Angers; and their biological traits.

woangers 393

#### Usage

data(woangers)

#### **Format**

woangers is a list of 2 components.

1. flo: is a data frame that contains the presence/absence of species in each sample site. In the codes for the sample sites (first column of the data frame), the first three letters provide the code of the woodland and the numbers represent the 5 quadrats sampled in each site. Codes for the woodlands are based on either their local name when they have one or on the name of the nearest locality.

- 2. traits: is a data frame that contains the values of the 13 functional traits considered in the paper. One trait can be encoded by several columns. The codes are as follows:
  - Column 1: Species names;
  - Column 2: 1i, nominal variable that indicates the presence (y) or absence (n) of ligneous structures:
  - Column 3: pr, nominal variable that indicates the presence (y) or absence (n) of prickly structures;
  - Column 4: fo, circular variable that indicates the month when the flowering period starts (from 1 January to 9 September);
  - Column 5: he, ordinal variable that indicates the maximum height of the leaf canopy;
  - Column 6: ae, ordinal variable that indicates the degree of aerial vegetative multiplication:
  - Column 7: un, ordinal variable that indicates the degree of underground vegetative multiplication;
  - Column 8: 1p, nominal variable that represents the leaf position by 3 levels (ros = rosette, semiros = semi-rosette and leafy = leafy stem);
  - Column 9: 1e, nominal variable that represents the mode of leaf persistence by 5 levels (seasaes = seasonal aestival, seashib = seasonal hibernal, seasver = seasonal vernal, everalw = always evergreen, everparti = partially evergreen);
  - Columns 10, 11 and 12: fuzzy variable that describes the modes of pollination with 3 levels (auto = autopollination, insects = pollination by insects, wind = pollination by wind); this fuzzy variable is expressed as proportions, i.e. for each row, the sum of the three columns equals 1;
  - Columns 13, 14 and 15: fuzzy variable that describes the life cycle with 3 levels (annual, monocarpic and polycarpic); this fuzzy variable is expressed as proportions, i.e. for each row, the sum of the three column equals 1;
  - Columns 16 to 20: fuzzy variable that describes the modes of dispersion with 5 levels (elaio = dispersion by ants, endozoo = injection by animals, epizoo = external transport by animals, wind = transport by wind, unsp = unspecialized transport); this fuzzy variable is expressed as proportions, i.e. for each row, the sum of the three columns equals 1;
  - Column 21: 10, quantitative variable that provides the seed bank longevity index;
  - Column 22: 1f, quantitative variable that provides the length of the flowering period.

394 worksurv

#### Source

Pavoine, S., Vallet, J., Dufour, A.-B., Gachet, S. and Daniel, H. (2009) On the challenge of treating various types of variables: Application for improving the measurement of functional diversity. *Oikos*, **118**, 391–402.

# **Examples**

```
# Loading the data
data(woangers)
# Preparating of the traits
traits <- woangers$traits</pre>
# Nominal variables 'li', 'pr', 'lp' and 'le'
# (see table 1 in the main text for the codes of the variables)
tabN <- traits[, c(1:2, 7, 8)]
# Circular variable 'fo'
tabC <- traits[3]
tabCp <- prep.circular(tabC, 1, 12)</pre>
# The levels of the variable lie between 1 (January) and 12 (December).
# Ordinal variables 'he', 'ae' and 'un'
tab0 <- traits[, 4:6]</pre>
# Fuzzy variables 'mp', 'pe' and 'di'
tabF <- traits[, 9:19]</pre>
tabFp \leftarrow prep.fuzzy(tabF, c(3, 3, 5), labels = c("mp", "pe", "di"))
# 'mp' has 3 levels, 'pe' has 3 levels and 'di' has 5 levels.
# Quantitative variables 'lo' and 'lf'
tabQ <- traits[, 20:21]
# Combining the traits
ktab1 <- ktab.list.df(list(tabN, tabCp, tabO, tabFp, tabQ))</pre>
## Not run:
# Calculating the distances for all traits combined
distrait <- dist.ktab(ktab1, c("N", "C", "O", "F", "Q"))</pre>
is.euclid(distrait)
# Calculating the contribution of each trait in the combined distances
contrib <- kdist.cor(ktab1, type = c("N", "C", "O", "F", "Q"))
dotchart(sort(contrib$glocor), labels = rownames(contrib$glocor)[order(contrib$glocor[, 1])])
## End(Not run)
```

worksurv

French Worker Survey (1970)

#### **Description**

The worksurv data frame gives 319 response items and 4 questions providing from a French Worker Survey.

worksurv 395

### Usage

data(worksurv)

#### **Format**

This data frame contains the following columns:

1. pro: Professional elections. In professional elections in your firm, would you rather vote for a list supported by?

- CGT
- CFDT
- F0
- CFTC
- Auton Autonomous
- Abst
- · Nonaffi Not affiliated
- NR No response
- 2. una: Union affiliation. At the present time, are you affiliated to a Union, and in the affirmative, which one?
  - CGT
  - CFDT
  - F0
  - CFTC
  - Auton Autonomous
  - CGC
  - Notaffi Not affiliated
  - NR No response
- 3. pre: Presidential election. On the last presidential election (1969), can you tell me the candidate for whom you havevoted?
  - Duclos
  - Deferre
  - Krivine
  - Rocard
  - Poher
  - Ducatel
  - Pompidou
  - NRAbs No response, abstention
- 4. pol: political sympathy. Which political party do you feel closest to, as a rule?
  - Communist (PCF)
  - Socialist (SFIO+PSU+FGDS)
  - Left (Party of workers,...)
  - Center MRP+RAD.

396 yanomama

- RI
- Right INDEP.+CNI
- Gaullist UNR
- NR No response

## **Details**

The data frame worksurv has the attribute 'counts' giving the number of responses for each item.

### **Source**

Rouanet, H. and Le Roux, B. (1993) Analyse des données multidimensionnelles. Dunod, Paris.

### References

Le Roux, B. and Rouanet, H. (1997) Interpreting axes in multiple correspondence analysis: method of the contributions of points and deviation. Pages 197-220 in B. J. and M. Greenacre, editors. *Visualization of categorical data*, Acamedic Press, London.

# **Examples**

```
data(worksurv)
acm1 <- dudi.acm(worksurv, row.w = attr(worksurv, "counts"), scan = FALSE)

if(adegraphicsLoaded()) {
   s.class(acm1$li, worksurv)
} else {
   par(mfrow = c(2, 2))
   apply(worksurv, 2, function(x) s.class(acm1$li, factor(x), attr(worksurv, 'counts')))
   par(mfrow = c(1, 1))
}</pre>
```

yanomama

Distance Matrices

# Description

This data set gives 3 matrices about geographical, genetic and anthropometric distances.

# Usage

```
data(yanomama)
```

#### **Format**

```
yanomama is a list of 3 components:
```

```
geo is a matrix of 19-19 geographical distances gen is a matrix of 19-19 SFA (genetic) distances ant is a matrix of 19-19 anthropometric distances
```

zealand 397

#### **Source**

Spielman, R.S. (1973) Differences among Yanomama Indian villages: do the patterns of allele frequencies, anthropometrics and map locations correspond? *American Journal of Physical Anthropology*, **39**, 461–480.

#### References

Table 7.2 Distance matrices for 19 villages of Yanomama Indians. All distances are as given by Spielman (1973), multiplied by 100 for convenience in: Manly, B.F.J. (1991) *Randomization and Monte Carlo methods in biology* Chapman and Hall, London, 1–281.

## **Examples**

```
data(yanomama)
gen <- quasieuclid(as.dist(yanomama$gen)) # depends of mva
ant <- quasieuclid(as.dist(yanomama$ant)) # depends of mva
par(mfrow = c(2,2))
plot(gen, ant)
t1 <- mantel.randtest(gen, ant, 99);
plot(t1, main = "gen-ant-mantel") ; print(t1)
t1 <- procuste.rtest(pcoscaled(gen), pcoscaled(ant), 99)
plot(t1, main = "gen-ant-procuste") ; print(t1)
t1 <- RV.rtest(pcoscaled(gen), pcoscaled(ant), 99)
plot(t1, main = "gen-ant-RV") ; print(t1)</pre>
```

zealand

Road distances in New-Zealand

## **Description**

This data set gives the road distances between 13 towns in New-Zealand.

## Usage

```
data(zealand)
```

#### **Format**

zealand is a list with the following components:

**road** a data frame with 13 rows (New Zealand towns) and 13 columns (New Zealand towns) containing the road distances between these towns

xy a data frame containing the coordinates of the 13 towns

neig an object of class neig, a neighbour graph to visualize the map shape

**nb** a neighborhood object (class nb defined in package spdep)

398 zealand

### **Source**

Manly, B.F. (1994). *Multivariate Statistical Methods*. *A primer*., Second edition, Chapman and Hall, London, 1–215, page 172.

## **Examples**

```
data(zealand)
d0 <- as.dist(as.matrix(zealand$road))</pre>
d1 <- cailliez (d0)
d2 <- lingoes(d0)</pre>
if(adegraphicsLoaded()) {
 G1 <- s.label(zealand$xy, lab = as.character(1:13), nb = zealand$nb)</pre>
 g1 <- s.label(cmdscale(dist(zealand$xy)), lab = as.character(1:13), nb = zealand$nb,
   psub.text = "Distance canonique", plot = FALSE)
 g2 <- s.label(cmdscale(d0), lab = as.character(1:13), nb = zealand$nb,
   psub.text = "Distance routiere", plot = FALSE)
 g3 <- s.label(cmdscale(d1), lab = as.character(1:13), nb = zealand$nb,
   psub.text = "Distance routiere / Cailliez", plot = FALSE)
 g4 <- s.label(cmdscale(d2), lab = as.character(1:13), nb = zealand$nb,
   psub.text = "Distance routiere / Lingoes", plot = FALSE)
 G2 \leftarrow ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
} else {
 s.label(zealand$xy, lab = as.character(1:13), neig = zealand$neig)
 par(mfrow = c(2, 2))
 s.label(cmdscale(dist(zealand$xy)), lab = as.character(1:13),
   neig = zealand$neig, sub = "Distance canonique", csub = 2)
 s.label(cmdscale(d0), lab = as.character(1:13), neig = zealand$neig,
    sub = "Distance routiere", csub = 2)
 s.label(cmdscale(d1), lab = as.character(1:13), neig = zealand$neig,
    sub = "Distance routiere / Cailliez", csub = 2)
 s.label(cmdscale(d2), lab = as.character(1:13), neig = zealand$neig,
   sub = "Distance routiere / Lingoes", csub = 2)
}
```

# **Index**

| * ~bca               | bordeaux, 44       |
|----------------------|--------------------|
| loocv.discrimin, 174 | bsetal97, 45       |
| * ~dplot             | buech, 46          |
| loocv.discrimin, 174 | butterfly, 47      |
| * ~multivariate      | capitales, 51      |
| loocv.discrimin, 174 | carni19, <u>52</u> |
| * array              | carni70, <u>53</u> |
| cailliez, 50         | carniherbi49, 54   |
| dist.binary,79       | casitas, 55        |
| dist.dudi, 80        | chatcat, 56        |
| dist.neig,84         | chats, 57          |
| dist.prop, 85        | chazeb, 58         |
| dist.quant, 86       | chevaine, 59       |
| dudi.pco, 110        | chickenk, 60       |
| is.euclid, 142       | clementines, 61    |
| lingoes, 170         | cnc2003, 62        |
| mantel.randtest, 183 | coleo, 65          |
| mantel.rtest, 184    | corvus, 69         |
| pcoscaled, 243       | deug, 74           |
| quasieuclid, 262     | doubs, 93          |
| * chron              | dunedata, 112      |
| arrival, 22          | ecg, 112           |
| * datasets           | ecomor, 113        |
| abouheif.eg, 9       | elec88, 115        |
| acacia, 10           | escopage, 117      |
| aminoacyl, 13        | euro123, 118       |
| apis108, 15          | fission, 119       |
| aravo, 17            | friday87, 125      |
| ardeche, 18          | fruits, 126        |
| arrival, 22          | ggtortoises, 129   |
| atlas, 24            | granulo, 131       |
| atya, 25             | hdpg, 133          |
| avijons, 26          | houmousr, 134      |
| avimedi, 28          | housetasks, 136    |
| aviurba, 30          | humDNAm, 137       |
| bacteria, 31         | ichtyo, 137        |
| banque, 32           | irishdata, 140     |
| baran95, 35          | julliot, 143       |
| bf88, 42             | jv73, 145          |
|                      |                    |

| kcponds, 146                    | veuvage, 381                 |
|---------------------------------|------------------------------|
| lascaux, 168                    | westafrica, 386              |
| lizards, 171                    | woangers, 392                |
| macaca, 178                     | worksurv, 394                |
| macon, 179                      | yanomama, 396                |
| macroloire, 179                 | zealand, 397                 |
| mafragh, 181                    | * dplot                      |
| maples, 185                     | loocv.between, 172           |
| mariages, 186                   | loocv.dudi, 177              |
| meau, 196                       | * hplot                      |
| meaudret, 197                   | add.scatter, 11              |
| microsatt, 200                  | area.plot, 19                |
| mjrochet, 201                   | dotchart.phylog, 90          |
| mollusc, 204                    | dotcircle, 92                |
| monde84, 205                    | kplot, 152                   |
| morphosport, 206                | kplot.foucart, 153           |
| newick.eg, 218                  | kplot.mcoa, 154              |
| njplot, 226                     | kplot.mfa, 155               |
| olympic, 227                    | kplot.pta, 156               |
| oribatid, 228                   | kplot.sepan, 157             |
| ours, 233                       | kplot.statis, 159            |
| palm, 235                       | plot.phylog, 250             |
| pap, 236                        | s.arrow, 288                 |
| pcw, 244                        | s.chull, 290                 |
| perthi02, 245                   | s.class, 291                 |
| piosphere, 249                  | s.corcircle, 293             |
| presid2002, 252                 | s.distri, 295                |
| procella, 254                   | s.hist, 297                  |
| rankrock, 274<br>rhizobium, 276 | s.image, 298<br>s.kde2d, 300 |
| rhone, 277                      | s.label, 301                 |
| rpjdl, 281                      | s.logo, 303                  |
| santacatalina, 314              | s. match, 305                |
| sarcelles, 315                  | s.match, 505                 |
| seconde, 338                    | s.multinom, 308              |
| skulls, 340                     | s.traject, 310               |
| steppe, 345                     | s. value, 312                |
| syndicats, 354                  | scatter, 317                 |
| t3012, 355                      | scatter.acm, 318             |
| tarentaise, 362                 | scatter.coa, 319             |
| taxo.eg, 363                    | scatter.dudi, 320            |
| tintoodiel, 366                 | scatter.fca, 321             |
| tithonia, 367                   | scatterutil, 322             |
| tortues, 368                    | sco.boxplot, 324             |
| toxicity, 369                   | sco.class, 325               |
| trichometeo, 373                | sco.distri, 326              |
| ungulates, 374                  | sco.gauss, 328               |
| vegtf, 380                      | sco.label, 329               |
|                                 | 222,22,02                    |

|     | sco.match, 330        | dist.dudi, $80$          |
|-----|-----------------------|--------------------------|
|     | sco.quant, 332        | dist.ktab, 81            |
|     | score, 333            | dist.neig, 84            |
|     | score.acm, 334        | dist.prop,85             |
|     | score.coa, 335        | dist.quant,86            |
|     | score.mix, 336        | divc, 88                 |
|     | score.pca, 337        | divcmax, 89              |
|     | symbols.phylog, 353   | dpcoa, 94                |
|     | table.cont, 356       | dudi,96                  |
|     | table.dist, 357       | dudi.acm, 98             |
|     | table.paint, 358      | dudi.coa, 100            |
|     | table.phylog, 359     | dudi.dec, 101            |
|     | table.value, 360      | dudi.fca, 102            |
|     | triangle.class, 370   | dudi.hillsmith, 104      |
|     | triangle.plot, 372    | dudi.mix, 106            |
| k h | test                  | dudi.nsc, 107            |
|     | randboot, 263         | dudi.pca, 108            |
|     | randxval, 273         | dudi.pco, 110            |
| k m | anip                  | foucart, 120             |
|     | ade4-package, 8       | fourthcorner, 122        |
|     | as.taxo, 23           | inertia.dudi, 138        |
|     | newick2phylog, 219    | kdist, 148               |
|     | phylog, 246           | kdist2ktab, 150          |
|     | PI2newick, 248        | kdisteuclid, 151         |
| k m | ethods                | kplot, 152               |
|     | krandtest, 160        | kplot.foucart, 153       |
|     | randtest, 265         | kplot.mcoa, 154          |
|     | rtest, 282            | kplot.mfa, 155           |
| k m | odels                 | kplot.pta, 156           |
|     | variance.phylog, 376  | kplot.sepan, 157         |
| k m | ultivariate           | kplot.statis, 159        |
|     | add.scatter, 11       | ktab, 161                |
|     | ade4-package, 8       | ktab.data.frame, 163     |
|     | amova, 14             | ktab.list.df, 164        |
|     | apqe, 16              | ktab.list.dudi, 165      |
|     | bca, 36               | ktab.match2ktabs, 166    |
|     | bca.coinertia, 38     | ktab.within, 167         |
|     | bca.rlq, 40           | lingoes, 170             |
|     | between, 41           | loocv.between, 172       |
|     | bwca.dpcoa, 48        | loocv.dudi, 177          |
|     | coinertia, 63         | mbpcaiv, 187             |
|     | combine.4thcorner, 66 | mbpls, 189               |
|     | costatis, 70          | mcoa, 191                |
|     | costatis.randtest, 71 | mdpcoa, 193              |
|     | disc, 75              | mfa, 198                 |
|     | discrimin, 76         | multiblock, 208          |
|     | discrimin.coa, 78     | multispati, 209          |
|     | dist.binary, 79       | multispati.randtest, 212 |

| multispati.rtest, 214             | sco.label, 329                     |
|-----------------------------------|------------------------------------|
| niche, 221                        | sco.match, 330                     |
| nipals, 223                       | sco.quant, 332                     |
| originality, 229                  | score, 333                         |
| pcaiv, 237                        | score.acm, 334                     |
| pcaivortho, 241                   | score.coa, 335                     |
| procuste, 255                     | score.mix, 336                     |
| procuste.randtest, 258            | score.pca, 337                     |
| procuste.rtest, 259               | sepan, 339                         |
| pta, 260                          | statico, 341                       |
| randboot.multiblock, 264          | statico.krandtest, 342             |
| randtest.amova, 267               | statis, 343                        |
| randtest.between, 268             | supcol, 346                        |
| randtest.coinertia, 269           | supdist, 347                       |
| randtest.discrimin, 270           | suprow, 349                        |
| randtest.pcaiv, 272               | suprow.pta, 351                    |
| reconst, 275                      | testdim, 364                       |
| rlq, 278                          | testdim.multiblock, 365            |
| rtest.between, 283                | wca, 382                           |
| rtest.discrimin, 284              | wca.coinertia,383                  |
| RV.randtest, 285                  | wca.rlq,385                        |
| RV.rtest, 286                     | within, 388                        |
| RVdist.randtest, 287              | withinpca, 390                     |
| RVintra.randtest, 287             | witwit.coa, 391                    |
| s.arrow, 288                      | * nonparametric                    |
| s.chull, 290                      | corkdist, 68                       |
| s.class, 291                      | costatis.randtest, 71              |
| s.corcircle,293                   | mantel.randtest, 183               |
| s.distri, 295                     | mantel.rtest, 184                  |
| s.hist, 297                       | multispati.randtest, 212           |
| s.kde2d, 300                      | multispati.rtest, 214              |
| s.label, 301                      | procuste.randtest, 258             |
| s.logo, 303                       | procuste.rtest, 259                |
| s.match, 305                      | randtest.amova, 267                |
| s.match.class, 306                | randtest.between, 268              |
| s.multinom, 308                   | randtest.coinertia,269             |
| s.traject, 310                    | randtest.discrimin, 270            |
| s.value, 312                      | randtest.pcaiv, 272                |
| scatter, 317                      | rtest.between, 283                 |
| scatter.acm, 318                  | rtest.discrimin, 284               |
| scatter.coa,319                   | RV.randtest, 285                   |
| scatter.dudi,320                  | RV.rtest, 286                      |
| scatter.fca, 321                  | RVdist.randtest, 287               |
| scatterutil, 322                  | RVintra.randtest, 287              |
|                                   |                                    |
| sco.boxplot, 324                  | * spatial                          |
| sco.class, 325                    | gearymoran, 128                    |
| sco.class, 325<br>sco.distri, 326 | gearymoran, 128<br>gridrowcol, 132 |
| sco.class, 325                    | gearymoran, 128                    |

| multispati, 209                                  | as.krandboot,265               |
|--------------------------------------------------|--------------------------------|
| multispati.randtest, 212                         | as.krandboot (randboot), 263   |
| multispati.rtest, 214                            | as.krandtest (krandtest), 160  |
| orthobasis, 230                                  | as.krandxval, <i>366</i>       |
| rlq, 278                                         | as.krandxval(randxval), 273    |
| * ts                                             | as.randboot (randboot), 263    |
| gearymoran, 128                                  | as.randtest (randtest), 265    |
| mld, 202                                         | as.randxval (randxval), 273    |
| orthobasis, 230                                  | as.taxo, 23, 219               |
| * utilities                                      | atlas, 24                      |
| bicenter.wt, 43                                  | atya, 25                       |
| kdisteuclid, 151                                 | avijons, 26                    |
| mstree, 207                                      | avimedi, 28                    |
| neig, 215                                        | aviurba, 30                    |
| scalewt, 316                                     | ,                              |
| uniquewt.df, 375                                 | bacteria, 31                   |
| [.dudi(dudi), 96                                 | banque, 32                     |
| [.kdist (kdist), 148                             | baran95, 35                    |
| [.krandtest (krandtest), 160                     | bca, 36, <i>39</i> , <i>40</i> |
| [.ktab (ktab), 161                               | bca.coinertia, 38, 42          |
| [[.krandtest (krandtest), 160                    | bca.dpcoa(bwca.dpcoa), 48      |
|                                                  | bca.dudi, 42                   |
| abouheif.eg, 9                                   | bca.rlq,40                     |
| acacia, 10                                       | between, 41                    |
| acm.burt (dudi.acm), 98                          | bf88, 42                       |
| acm.disjonctif(dudi.acm), 98                     | bicenter.wt, 43                |
| <pre>add.position.triangle(triangle.plot),</pre> | biplot.dudi (scatter), 317     |
| 372                                              | bordeaux, 44                   |
| add.scatter, 11, 318, 323                        | boxplot.acm(dudi.acm), 98      |
| ade4 (ade4-package), 8                           | bseta197, 45                   |
| ade4-deprecated (Deprecated functions),          | buech, 46                      |
| 74                                               | butterfly, 47                  |
| ade4-package, 8                                  | bwca.dpcoa, 48                 |
| aminoacyl, 13                                    | ,                              |
| amova, 14                                        | c.kdist(kdist), 148            |
| apis108, 15                                      | c.ktab (ktab), 161             |
| apqe, 16                                         | cailliez, 50                   |
| aravo, 17                                        | capitales, 51                  |
| ardeche, 18                                      | carni19, <u>52</u>             |
| area.plot, 19, 216                               | carni70, 53                    |
| area.util.class(area.plot), 19                   | carniherbi49, 54               |
| area.util.contour (area.plot), 19                | casitas, 55                    |
| area.util.xy(area.plot), 19                      | chatcat, 56                    |
| area2link (area.plot), 19                        | chats, 57                      |
| area2poly (area.plot), 19                        | chazeb, 58                     |
| arrival, 22                                      | chevaine, 59                   |
| as.data.frame.kdist(kdist), 148                  | chickenk, 60                   |
| as.dudi, <i>392</i>                              | circ.plot, 92                  |
| as.dudi (dudi), 96                               | clementines, 61                |

| cnc2003, 62                                    | ecg, 112                                 |
|------------------------------------------------|------------------------------------------|
| coinertia, 38, 39, 63, 70, 280, 343, 384       | ecomor, 113                              |
| col.names (ktab), 161                          | elec88, 115                              |
| col.names<- (ktab), 161                        | <pre>enum.phylog(plot.phylog), 250</pre> |
| coleo, 65                                      | escopage, 117                            |
| combine.4thcorner, 66, 125                     | euro123, 118                             |
| combine.randtest.rlq                           |                                          |
| (combine.4thcorner), 66                        | fission, 119                             |
| corkdist, 68                                   | foucart, 120                             |
| corvus, 69                                     | fourthcorner, <i>67</i> , 122, 280       |
| costatis, 70                                   | fourthcorner2 (fourthcorner), 122        |
| costatis.randtest, 71                          | friday87, <u>125</u>                     |
| covfacwt (scalewt), 316                        | fruits, 126                              |
| covwt (scalewt), 316                           |                                          |
| covwe (Scarcwe), 510                           | geary.test, 129                          |
| dognolio toot 72                               | gearymoran, 128                          |
| dagnelie.test,72                               | ggtortoises, 129                         |
| daisy, 83                                      | granulo, 131                             |
| Deprecated functions, 74                       | gridrowcol, 132, 203, 232                |
| deug, 74                                       | 1 21 1 (11) 202                          |
| disc, 75                                       | haar2level (mld), 202                    |
| discrimin, 76, 78                              | hclust2phylog (newick2phylog), 219       |
| discrimin.coa, 78                              | hdpg, 133                                |
| dist.binary, 79                                | houmousr, 134                            |
| dist.dudi, 80                                  | housetasks, 136                          |
| dist.ktab, 81                                  | humDNAm, 137                             |
| dist.neig, 84                                  | ichtus 127                               |
| dist.prop, 85                                  | ichtyo, 137                              |
| dist.quant, 86                                 | inertia (inertia.dudi), 138              |
| dist.taxo(as.taxo), 23                         | inertia.dudi, 138                        |
| divc, 88                                       | irishdata, 140                           |
| divcmax, 89                                    | is.dudi (dudi), 96                       |
| dotchart.phylog, 90, 353                       | is.euclid, 142                           |
| dotcircle, 92                                  | is.ktab (ktab), 161                      |
| doubs, 93                                      | is.orthobasis(orthobasis), 230           |
| dpcoa, 49, 94, 193, 195, 272                   | julliot, 143                             |
| dudi, 36, 37, 96, 99, 100, 102, 103, 105, 106, | jv73, 145                                |
| 108, 109, 111, 210, 213, 214, 382              | JV73, 143                                |
| dudi.acm, 98                                   | kcponds, 146                             |
| dudi.coa, 100                                  | kdist, 148                               |
| dudi.dec, 101                                  | kdist.cor(dist.ktab),81                  |
| dudi.fca, 102                                  | kdist2ktab, 150                          |
| dudi.fpca (dudi.fca), 102                      | kdisteuclid, 151                         |
| dudi.hillsmith, 104                            | kplot, 152                               |
| dudi.mix, 106                                  | kplot.foucart, 153                       |
| dudi.nsc, 107                                  | kplot.mcoa, 154                          |
| dudi.pca, 108, 225, 365                        | kplot.mfa, 155                           |
| dudi.pco, 110, 348                             | kplot.pta, 156                           |
| dunedata, 112                                  | kplot.sepan, 157                         |
| danicació, 112                                 | 11p±00.00puii, ±01                       |

| kplot.statis, 159                               | multiblock, 208                                 |
|-------------------------------------------------|-------------------------------------------------|
| kplotsepan.coa (kplot.sepan), 157               | multispati, 209                                 |
| kplotX.mdpcoa (mdpcoa), 193                     | multispati.randtest, 212                        |
| krandtest, 160, <i>343</i>                      | multispati.rtest, 214                           |
| krandxval (randxval), 273                       |                                                 |
| ktab, 161, 164, 165, 167, 168, 341              | nb2neig (neig), 215                             |
| ktab.data.frame, <i>162</i> , 163               | neig, 215                                       |
| ktab.list.df, <i>162</i> , 164                  | neig2mat(neig), 215                             |
| ktab.list.dudi, <i>162</i> , 165                | neig2nb (neig), 215                             |
| ktab.match2ktabs, 162, 166, 341                 | newick.eg, 218                                  |
| ktab.within, <i>162</i> , 167                   | newick2phylog, 219, 247                         |
|                                                 | niche, 221                                      |
| lascaux, 168                                    | nipals, 223                                     |
| ldist.ktab(dist.ktab), 81                       | njplot, 226                                     |
| lingoes, 170                                    |                                                 |
| lizards, 171                                    | olympic, 227                                    |
| lm, <i>377</i>                                  | oribatid, 228                                   |
| loocv (loocv.dudi), 177                         | originality, 229                                |
| loocv.between, 172, 175, 178                    | orthobasis, <i>132</i> , <i>203</i> , 230       |
| loocv.discrimin, 173, 174, 178                  | orthogram, <i>132</i> , <i>203</i> , <i>232</i> |
| loocv.dudi, <i>173</i> , <i>175</i> , 177       | ours, 233                                       |
| macaca, 178                                     | p.adjust.4thcorner(combine.4thcorner)           |
| macon, 179                                      | 66                                              |
| macroloire, 179                                 | p.adjust.methods, 66, 67, 123, 125              |
| mafragh, 181                                    | palm, 235                                       |
| mantel.randtest, 183, 266                       | pap, 236                                        |
| mantel.rtest, 184, 266, 283                     | pcaiv, 237, <i>379</i>                          |
| mantelkdist (corkdist), 68                      | pcaivortho, 241                                 |
| maples, 185                                     | pcoscaled, 243                                  |
| mariages, 186                                   | pcw, 244                                        |
| mat2listw, <i>210</i> , <i>213</i> , <i>214</i> | perthi02, <u>245</u>                            |
| mbpcaiv, 187, 208, 264, 265, 365, 366           | phylog, 219, 232, 246, 251, 377                 |
| mbpls, 189, 189, 191, 208, 264, 265, 365, 366   | PI2newick, 248                                  |
| mcoa, 191                                       | piosphere, 249                                  |
| mdpcoa, 193                                     | plot.4thcorner (fourthcorner), 122              |
| meanfacwt (scalewt), 316                        | plot.bcaloocv(loocv.between), 172               |
| meau, 196, <i>198</i>                           | plot.betcoi (between), 41                       |
| meaudret, <i>196</i> , 197                      | plot.betrlq(bca.rlq),40                         |
| mfa, 198                                        | plot.between (between), 41                      |
| microsatt, 200                                  | plot.coinertia(coinertia),63                    |
| mjrochet, 201                                   | plot.corkdist(corkdist),68                      |
| mld, 132, 202, 232                              | plot.discloocv(loocv.discrimin), 174            |
| mollusc, 204                                    | plot.discrimin (discrimin), 76                  |
| monde84, 205                                    | plot.dpcoa (dpcoa), 94                          |
| moran.test, <i>129</i>                          | plot.foucart (foucart), 120                     |
| morphosport, 206                                | plot.krandtest(krandtest), 160                  |
| mra, 203                                        | plot.mcoa (mcoa), 191                           |
| mstree, 207                                     | plot.mfa(mfa), 198                              |
|                                                 |                                                 |

| plot.multispati (multispati), 209      | print.niche(niche), 221                                                            |
|----------------------------------------|------------------------------------------------------------------------------------|
| plot.niche (niche), 221                | print.nipals(nipals), 223                                                          |
| plot.orthobasis(orthobasis), 230       | print.orthobasis(orthobasis), 230                                                  |
| plot.pcaiv(pcaiv), 237                 | print.pcaiv(pcaiv), 237                                                            |
| plot.phylog, 219, 247, 250             | print.phylog(phylog), 246                                                          |
| plot.procuste (procuste), 255          | print.procuste(procuste), 255                                                      |
| plot.pta (pta), 260                    | print.pta(pta),260                                                                 |
| plot.randtest (randtest), 265          | print.randboot(randboot), 263                                                      |
| plot.rlq(rlq),278                      | print.randtest (randtest), 265                                                     |
| plot.sepan(sepan), 339                 | print.randxval(randxval), 273                                                      |
| plot.statis(statis), 343               | print.rlq(rlq), 278                                                                |
| plot.witcoi (within), 388              | print.sepan(sepan), 339                                                            |
| plot.within (within), 388              | print.statis(statis), 343                                                          |
| plot.witrlq(wca.rlq), 385              | print.varipart(varipart),378                                                       |
| poly2area (area.plot), 19              | print.witcoi(within), 388                                                          |
| predict.dudi(suprow), 349              | print.witdpcoa(bwca.dpcoa),48                                                      |
| prep.binary (dist.ktab), 81            | print.within(within), 388                                                          |
| prep.circular (dist.ktab), 81          | print.witrlq(wca.rlq),385                                                          |
| prep.fuzzy (dist.ktab), 81             | procella, 254                                                                      |
| prep.fuzzy.var (dudi.fca), 102         | procuste, 255                                                                      |
| prep.mdpcoa (mdpcoa), 193              | procuste.randtest, 258, 266                                                        |
| presid2002, 252                        | procuste.rtest, 259, 266, 283                                                      |
| print.4thcorner (fourthcorner), 122    | pta, 70, 166, 260, 341                                                             |
| print.amova (amova), 14                | 111.060                                                                            |
| print.apqe (apqe), 16                  | quasieuclid, 262                                                                   |
| print.bcaloocv (loocv.between), 172    | radial phylog (plot phylog) 250                                                    |
| print.betcoi (between), 41             | radial.phylog(plot.phylog), 250                                                    |
| print.betdpcoa (bwca.dpcoa), 48        | randboot, 263                                                                      |
| print.betrlq(bca.rlq), 40              | randboot.multiblock, 189, 191, 264, 264, 366                                       |
| print.between (between), 41            |                                                                                    |
| print.coinertia (coinertia), 63        | randtest, 161, 265, 283, 343                                                       |
| print.corkdist (corkdist), 68          | randtest.amova, <i>15</i> , <i>266</i> , 267<br>randtest.between, <i>266</i> , 268 |
| print.discloocy (loocy.discrimin), 174 |                                                                                    |
| print.discrimin (discrimin), 76        | randtest.betwit (bwca.dpcoa), 48                                                   |
| print.dpcoa (dpcoa), 94                | randtest.coinertia, 266, 269 randtest.discrimin, 266, 270                          |
| print.dudi (dudi), 96                  | randtest.discrimin, 200, 270                                                       |
| print.foucart (foucart), 120           | randtest.pcaiv, 266, 272                                                           |
| print.inertia(inertia.dudi), 138       | randtest.pcaiv, 200, 272 randtest.pcaiv),                                          |
| print.kdist (kdist), 148               | 272                                                                                |
| print.krandboot (randboot), 263        | randtest.procuste (procuste), 255                                                  |
| print.krandtest (krandtest), 160       | randtest.rlq (rlq), 278                                                            |
| print.krandxval (randxval), 273        | randxval, 273                                                                      |
| print.ktab (ktab), 161                 | rankrock, 274                                                                      |
| print.mcoa (mcoa), 191                 | reciprocal.coa (score.coa), 335                                                    |
| print.mfa (mfa), 198                   | reconst, 275                                                                       |
| print.multiblock (multiblock), 208     | redo.dudi (dudi), 96                                                               |
| print.multispati (multispati), 209     | rhizobium, 276                                                                     |
| print.neig (neig), 215                 | rhone, 277                                                                         |
| PI THE HETS (HETS), 213                | 1 11011C, 411                                                                      |

| rlq, 40, 67, 125, 278, 386                                                 | score, 333                                          |
|----------------------------------------------------------------------------|-----------------------------------------------------|
| row.names.ktab(ktab), 161                                                  | score.acm, 334                                      |
| row.names <ktab(ktab), 161<="" td=""><td>score.coa, 335</td></ktab(ktab),> | score.coa, 335                                      |
| rpjdl, 281                                                                 | score.mix, 336                                      |
| rtest, 266, 282                                                            | score.pca, 337                                      |
| rtest.between, 266, 283                                                    | scores.neig(neig), 215                              |
| rtest.discrimin, 266, 284                                                  | scoreutil.base(score),333                           |
| rtest.niche (niche), 221                                                   | screeplot.dudi(scatter),317                         |
| RV.randtest, 285                                                           | seconde, 338                                        |
| RV.rtest, 266, 283, 286, 365                                               | sepan, 339                                          |
| RVdist.randtest, 266, 287                                                  | skulls, 340                                         |
| RVintra.randtest, 287                                                      | statico, 341                                        |
| RVkdist (corkdist), 68                                                     | statico.krandtest, 342                              |
|                                                                            | statis, 343                                         |
| s.arrow, 288, <i>318</i> , <i>323</i>                                      | steppe, 345                                         |
| s.chull, 99, 290, 318, 323                                                 | summary.4thcorner(fourthcorner), 122                |
| s.class, 99, 291, 308, 318, 323                                            | summary.between (between), 41                       |
| s.corcircle, 293, 318, 323                                                 | summary.betwit(bwca.dpcoa),48                       |
| s.distri, 295, 318, 323                                                    | summary.coinertia(coinertia),63                     |
| s.hist, 297                                                                | summary.corkdist(corkdist),68                       |
| s.image, 298                                                               | <pre>summary.dist(is.euclid), 142</pre>             |
| s.kde2d, 300                                                               | summary.dpcoa(dpcoa), 94                            |
| s.label, 301, 318, 323                                                     | summary.dudi (dudi), 96                             |
| s.logo, 303                                                                | summary.inertia(inertia.dudi), 138                  |
| s.match, 178, 305, 308, 318, 323                                           | summary.mcoa(mcoa), 191                             |
| s.match.class, 306                                                         | summary.mfa(mfa), 198                               |
| s.multinom, 308                                                            | summary.multiblock(multiblock), 208                 |
| s.traject, 310, <i>318</i> , <i>323</i>                                    | <pre>summary.multispati (multispati), 209</pre>     |
| s.value, 312, <i>318</i> , <i>323</i>                                      | summary.neig(neig), 215                             |
| santacatalina, 314                                                         | summary.orthobasis(orthobasis), 230                 |
| sarcelles, 315                                                             | summary.pcaiv(pcaiv), 237                           |
| scalefacwt (scalewt), 316                                                  | summary.pcaivortho(pcaivortho), 241                 |
| scalewt, 316                                                               | summary.rlq(rlq),278                                |
| scatter, 12, 317                                                           | summary.sepan(sepan), 339                           |
| scatter.acm, 318                                                           | summary.within(within), 388                         |
| scatter.coa, 319                                                           | summary.witwit(witwit.coa), 391                     |
| scatter.dudi, 320                                                          | supcol, 346                                         |
| scatter.fca, 321                                                           | supdist, 347                                        |
| scatter.nipals(nipals), 223                                                | suprow, 178, 348, 349                               |
| scatter.pco(dudi.pco), 110                                                 | suprow.pta, 351                                     |
| scatterutil, 322                                                           | symbols.phylog, <i>91</i> , <i>353</i> , <i>360</i> |
| scatterutil.logo(s.logo),303                                               | syndicats, 354                                      |
| sco.boxplot, 324, 333                                                      |                                                     |
| sco.class, 325                                                             | t.dudi (dudi), 96                                   |
| sco.distri, 326, 333                                                       | t.ktab (ktab), 161                                  |
| sco.gauss, 328                                                             | t3012, 355                                          |
| sco.label, 329                                                             | tab.names (ktab), 161                               |
| sco.match, 330                                                             | tab.names<- (ktab), 161                             |
| sco.quant, 332, 333                                                        | table.cont, 356                                     |

```
table.dist, 357
table.paint, 358
table.phylog, 91, 353, 359
table.prepare (table.value), 360
table.value, 360
tarentaise, 362
taxo.eg, 363
taxo2phylog, 23
taxo2phylog (newick2phylog), 219
testdim, 364
testdim.multiblock, 189, 191, 265, 274,
        365, 365
tintoodiel, 366
tithonia, 367
tortues, 368
toxicity, 369
triangle.biplot(triangle.plot), 372
triangle.class, 370
triangle.param(triangle.plot), 372
triangle.plot, 372
triangle.posipoint (triangle.plot), 372
trichometeo, 373
ungulates, 374
uniquewt.df, 375
varfacwt (scalewt), 316
variance.phylog, 376
varipart, 378
varwt (scalewt), 316
vegtf, 380
veuvage, 381
wavelet.filter, 231
wca, 382, 384, 386, 390
wca.coinertia, 383, 389
wca.dpcoa (bwca.dpcoa), 48
wca.dudi, 389
wca.rlq, 40, 385, 386
westafrica, 386
within, 388
withinpca, 390
witwit.coa, 391
witwitsepan (witwit.coa), 391
woangers, 83, 392
worksurv, 394
yanomama, 396
zealand, 397
```