Lezioni del 30 Ottobre del prof. Frigerio

Definizione 0.1 (Compatto).

Uno spazio topologico X è **compatto** se ogni suo ricoprimento aperto un sottoricoprimento finito, cioè se dato

$$\mathfrak{U} = \{U_i\}_{i \in I} \quad U_i \text{ aperto } \forall i \in I \quad X = \bigcup_{i \in I} U_i$$
$$\exists i_0, \dots, i_n \quad U = U_{i_0} \cup \dots \cup U_{i_n}$$

Definizione 0.2. Un sottospazio si dice compatto se è compatto con la topologia di sottospazio

Definizione 0.3. Uno spazio metrico è limitato se

$$\exists x_0 \in X \in \exists R > 0 \quad X = B(x_0, R)$$

In modo equivalente

$$textdiam(X) = \sup_{x,y \in X} \{d(x,y)\} < +\infty$$

Osservazione 1. Mostriamo l'equivalenza delle definizioni.

Supponiamo $X = B(x_0, R)$ allora $\forall x, y \in X$ vale $d(x, y) < d(x_0, x) + d(x_0, y) < 2R$ se $diam(X) = d < +\infty$ allora $\forall x_0 \in X$ vale $X = B(x_0, d+1)$

Lemma 0.1. X metrico compatto $\Rightarrow X$ limitato

Dimostrazione. Scelto $x_0 \in X$ e posto $U_n = B(x_0, n)$ con $n \in \mathbb{N}$ allora $\mathfrak{U} = \{U_n\}_{n \in \mathbb{N}}$ è un ricoprimento aperto.

Dalla compattezza di X segue

$$X \subseteq U_{n_0} \cup \cdots \cup U_{n_k}$$

da cui $X \subseteq B(x_0, R)$ con $R = \max\{n_0, \dots, n_k\}$

Corollario 0.2. \mathbb{R} non è compatto

Teorema 0.3. [0,1] è compatto

Dimostrazione. Sia $\mathfrak{U} = \{U_i\}_{i \in I}$ un ricoprimento aperto di [0,1]

$$A = \left\{ t \in [0,1] \mid \exists J \subseteq I \text{ finito con } [0,t] \subseteq \bigcup_{i \in J} U_i \right\}$$

La tesi, è dunque equivalente a $1 \in A$.

Poichè $0 \in U_{i_0}$ e U_{i_0} è aperto abbiamo $[0, \varepsilon) \subseteq U_{i_0}$ per un qualche $\varepsilon > 0$.

se $t \in [0, \varepsilon)$ si ha $[0, t] \subseteq U_{i_0}$ dunque $[0, \varepsilon) \subseteq A$.

Ora A non è vuoto ed è limitato superiormente dunque è ben definito $t_0 = \sup A > 0$.

Mostriamo che t_0 è un massimo per A

Per definizione di ricoprimento $\exists U_i$ aperto con $t_0 \in U_i$ e poichè $t_0 > 0$

$$\exists \delta > 0 \quad (t_0 - \delta, t_0] \subseteq U_i$$

e dalla definizione di estremo superiore

$$\exists \, \overline{t} \in (t_0 - \delta, t_0] \cap A \quad \Rightarrow \quad [0, \overline{t}] \subseteq U_{i_1} \cup \cdots \cup U_{i_n}$$

dunque

$$[0, t_0] \subseteq U_{i_1} \cup \cdots \cup U_{i_n} \cup U_i \quad \Rightarrow \quad t_0 \in A$$

Proviamo che $t_0 = 1$, supponiamo che $t_0 < 1$.

Come prima $\exists U_i \text{ con } t_0 \in U_i \text{ e } [t_0, t_0 + \delta) \subseteq U_i \text{ per qualche } \delta > 0.$

Poichè $t_0 \in A$

$$[0, t_0] \subseteq U_{i_1} \cup \dots \cup U_{i_n} \quad \Rightarrow \quad \left[0, t_0 + \frac{\delta}{2}\right] \subseteq U_{i_1} \cup \dots \cup U_{i_n} \cup U_i \quad \Rightarrow \quad t_0 + \frac{\delta}{2} \in A$$

Ma ciò è un assurdo poichè $t_0 = \max A$

Teorema 0.4. $f: X \to Y$ continua.

$$X \ compatto \Rightarrow f(X) \ compatto$$

Dimostrazione. Sia $\mathfrak{U} = \{U_i\}_{i \in I}$ un ricoprimento aperto di f(X)

Ora essendo f continua, dalla propietà universale della topologia di sottospazio, anche la funzione $\tilde{f}: X \to f(X)$ è continua.

Osserviamo che $\{\tilde{f}^{-1}(U_i)\}_{i\in I}$ è un ricoprimento aperto di X.

Dalla compattezza di X segue $\exists J \subseteq I$ finito con

$$X = \bigcup_{i \in J} \tilde{f}^{-1}(U_i) \quad \Rightarrow \quad f(X) = \bigcup_{i \in J} U_i$$

dunque f(X) è compatto

Fatti 0.5.

- Ogni spazio finito è compatto
- Unione finita di sottospazi compatti è compatto

Teorema 0.6. Sia X uno spazio compatto

$$Y \subseteq X \ chiuso \Rightarrow Y \ compatto$$

Dimostrazione. Sia $\mathfrak{U} = \{U_i\}_{i \in I}$ un ricoprimento aperto di Y.

Dalla topologia di sottospazio posso supporre che $\forall i \in I$ si ha V_i aperto di X con $U_i = Y \cap V_i$. Poichè $\{U_i\}$ è un ricoprimento di X si ha $Y \subseteq \bigcup V_i$.

Poichè Y è chiuso $W = X \backslash Y$ è aperto allora

$$\{V_i\}_{i\in I}\cup W$$
 è un ricoprimento aperto di X

Per compattezza $X = V_{i_1} \cup \cdots \cup V_{i_n} \cup W$.

Poichè $W \cap Y = \emptyset$ se ne deduce che

$$Y \subseteq V_{i_1} \cup \cdots \cup V_{i_n} \quad \Rightarrow \quad Y = U_{i_1} \cup \cdots \cup U_{i_n}$$

da cui la tesi \Box

Osservazione 2. Abbiamo visto che

$$Y \subseteq X$$
 compatto \Leftrightarrow

$$\Leftrightarrow \forall \{U_i\}_{i\in I} \text{ famiglia di aperti di } X \quad Y\subseteq \bigcup_{i\in I} U_i \text{ si ha } \exists J\subseteq I \text{ finito } \quad Y\subseteq \bigcup_{i\in J} U_i$$

Osservazione 3. Un sottospazio compatto non è chiuso.

Prendiamo X con la topologia cofinita, mostriamo che ogni sottoinsieme è un compatto.

Sia
$$Y \subseteq X$$
 e supponiamo che $Y \subseteq \bigcup U_i$ con U_i aperto di X .

Se $Y = \emptyset$ allora è compatto, altrimenti $\exists y_0 \in Y$ e dunque $y_0 \in U_{i_0}$ per un $i_0 \in I$. Ora essendo U_{i_0} aperto $X \setminus U_{i_0}$ è finito dunque a maggior ragione anche $Y \setminus U_{i_0}$ è finito.

$$Y \setminus U_{i_0} = \{y_1, \dots, y_n\} \quad \forall j = 1, \dots, n \quad \exists i_j \text{ con } y_j \subseteq U_{i_j}$$

$$Y = U_{i_0} \cup U_{i_1} \cup \dots \cup U_{i_n}$$

ovvero Y è compatto.

Potevamo prendere come controesempio un generico X con la topologia indiscreta. Tutti i ricoprimenti aperti sono fatti da X stesso dunque ogni sottoinsieme è compatto ma nessuno escluso il vuoto e X stesso sono chiusi

Teorema 0.7. Sia X spazio T2 e $Y \subseteq X$

$$Y \ compatto \Rightarrow Y \ chiuso$$

Dimostrazione. Dobbiamo mostrare che $X \setminus Y$ è aperto ovvero intorno di ogni suo punto. Fissiamo $x_0 \in X \setminus Y$

$$\forall y \in Y \quad \exists U_y, V_y \text{ aperti disgiunti di } X \quad x_0 \in U_y \quad y \in V_i$$

Ora $\{V_y\}_{y\in Y}$ è un ricoprimento di Y con aperti di X.

Per compattezza di $Y, \exists y_1, \cdots, y_n \in Y$ con

$$Y \subseteq V_{y_1} \cup \cdots \cup V_{y_n}$$

Pongo

$$V = V_{y_1} \cap \dots \cap V_{y_n}$$

$$U = U_{y_1} \cup \dots \cup U_{y_n}$$

ora U aperto e $x_0 \in V$ aperto essendo intersezione finita di aperti.

Per costruzione $U \cap V = \emptyset$ dunque $x_0 \in U \subseteq X \setminus V \subseteq X \setminus Y$

Lemma 0.8. X compatto $T2 \Rightarrow X$ regolare

 $Dimostrazione. T2 \Rightarrow T1$ per cui basta vedere che vale T3

Siano $x_0 \in X$ e $Y \subseteq X$ chiuso con $x_0 \notin Y$

Poichè chiuso in un compatto è compatto (Teorema 0.6), Y è compatto.

Gli aperti U e V della dimostrazione precedente verificano $x_0 \in U, Y \subseteq V$ ed inoltre $U \cap V = \emptyset$

Teorema 0.9. X compatto $T2 \Rightarrow X$ normale

Dimostrazione. $T2\Rightarrow T1$ dunque basta dimostrare che vale T4Siano C,Dchiusi di X con $C\cap D=\emptyset$ Poichè Xregolare per il lemma precedente

 $\forall x \in C \quad \exists U_x, \, V_x \text{ aperti disgiunti di } X \text{ con } x \in U_x \quad D \subseteq V_x$

$$C \subseteq \bigcup_{x \in C} U_x$$

inoltre C è chiuso in un compatto dunque compatto

$$\exists x_1, \cdots, x_n \in C \quad C \subseteq U_{x_1} \cup \cdots \cup U_{x_n}$$

Pongo

$$U = U_{x_1} \cup \dots \cup U_{x_n}$$
$$V = V_{x_1} \cap \dots \cap V_{x_n}$$

Ue Vsono aperti con la propietà richiesta da T4

 $Osservazione~4.~{\it Abbiamo dimostrato di più}.$

Se X è T2 con $C, D \subseteq X$ compatti disgiunti allora essi si possono separare con aperti.