Directed Graphs

- Directed Graphs (Digraphs)
- Digraph Applications
- Transitive Closure
- Digraph Traversal
- Example: Web Crawling
- PageRank

Directed Graphs (Digraphs)

Reminder: directed graphs are ...

- graphs with V vertices, E edges (v,w)
- edge (v,w) has source v and destination w
- unlike undirected graphs, $v \rightarrow w \neq w \rightarrow v$

Example digraph:

Digraph Applications

Potential application areas:

Domain	Vertex	Edge
Web	web page	hyperlink
scheduling	task	precedence
chess	board position	legal move
science	journal article	citation
dynamic data	malloc'd object	pointer
programs	function	function call
make	file	dependency

... Digraph Applications

Problems to solve on digraphs:

- is there a directed path from s to t? (transitive closure)
- what is the shortest path from s to t? (shortest path)
- are all vertices mutually reachable? (strong connectivity)
- how to organise a set of tasks? (topological sort)
- which web pages are "important"? (PageRank)
- how to build a web crawler? (graph traversal)

Transitive Closure

Problem: computing reachability (reachable(G,s,t))

Given a digraph G it is potentially useful to know

• is vertex *t* reachable from vertex *s*?

Example applications:

- can I complete a schedule from the current state?
- is a malloc'd object being referenced by any pointer?

One possibility to implement a reachability check:

- use hasPath(G,s,t) (itself implemented by DFS or BFS algorithm)
- feasible only if *reachable(G,s,t)* is an infrequent operation

What about applications that frequently check reachability?

Would be very convenient/efficient to have:

```
reachable(G,s,t) = G.tc[s][t]
```

tc[][] is called the transitive closure matrix

• tc[s][t] is 1 if there is a path from s to t, 0 otherwise

Of course, if *V* is large, then this may not be feasible either.

... Transitive Closure

The tc[][] matrix shows all directed paths in the graph

	а	b	С	d	е	f	g
a	1	0	0	1	0	0	0
b	1	0	1	0	0	0	0
С	0	1	0	1	0	0	1
d	0	1	0	0	0	1	1
е	0	0	0	1	0	0	0
f	1	0	0	1	0	0	1
g	0	0	0	0	0	0	1

	a	b	С	d	е	f	g
а	1	1	1	1	0	1	1
b	1	1	1	1	0	1	1
С	1	1	1	1	0	1	1
d	1	1	1	1	0	1	1
е	1	1	1	1	0	1	1
f	1	1	1	1	0	1	1
g	0	0	0	0	0	0	1

adjacency matrix

reachability matrix

Question: how to build tc[][] from edges[][]?

Goal: produce a matrix of reachability values

Observations:

- $\forall s,t \in \text{vertices}(G): (s,t) \in \text{edges}(G) \Rightarrow tc[s][t] = 1$
- $\forall i, s, t \in \text{vertices}(G): (s, i) \in \text{edges}(G) \land (i, t) \in \text{edges}(G) \Rightarrow tc[s][t] = 1$

In other words

- tc[s][t]=1 if there is an edge from s to t (path of length 1)
- tc[s][t]=1 if there is a path from s to t of length 2 $(s \rightarrow i \rightarrow t)$

Extending the above observations gives ...

An algorithm to convert **edges** into a *tc*

This is known as Warshall's algorithm

... Transitive Closure

How it works ...

After copying edges[][], tc[s][t] is 1 if $s \rightarrow t$ exists

After first iteration (i=0), tc[s][t] is 1 if

• either $s \rightarrow t$ exists or $s \rightarrow 0 \rightarrow t$ exists

After second interation (i=1), tc[s][t] is 1 if any of

• $s \rightarrow t$ or $s \rightarrow 0 \rightarrow t$ or $s \rightarrow 1 \rightarrow t$ or $s \rightarrow 0 \rightarrow 1 \rightarrow t$ or $s \rightarrow 1 \rightarrow 0 \rightarrow t$

After the V^{th} iteration, tc[s][t] is 1 if

there is a directed path in the graph from s to t

❖ ... Transitive Closure

Tracing Warshall's algorithm on a simple graph:

Graph

	[0]	[1]	[2]	[3]
[0]	0	1	1	1
[1]	1	0	1	0
[2]	0	1	0	0
[3]	0	0	0	0

Initially

After first iteration

After second iteration

No change on any following iterations

... Transitive Closure

Cost analysis:

- storage: additional V^2 items (but each item may be 1 bit)
- computation of transitive closure: V^3
- computation of reachable(): O(1) after generating tc[][]

Amortisation: need many calls to **reachable()** to justify setup cost

Alternative: use DFS in each call to reachable()

Cost analysis:

- storage: cost of Stack and Set during DFS calculation
- computation of **reachable()**: $O(V^2)$ (for adjacency matrix)

Digraph Traversal

Same algorithms as for undirected graphs:

```
depthFirst(G,v):
   mark v as visited
   for each (v,w) \in edges(G) do
      if w has not been visited then
         depthFirst(w)
      end if
   end for
breadthFirst(G,v):
   enqueue \nu
   while queue not empty do
      curr=dequeue
      if curr not already visited then
         mark curr as visited
         enqueue each w where (curr, w) \in edges(G)
      end if
   end while
```

COMP2521 20T2 ♦ Directed Graphs [12/19]

Example: Web Crawling

Goal: visit every page on the web Solution: breadth-first search with "implicit" graph

visit scans page and collects e.g. keywords and links

❖ PageRank

Goal: determine which Web pages are "important"

Approach: ignore page contents; focus on hyperlinks

- treat Web as graph: page = vertex, hyperlink = di-edge
- pages with many incoming hyperlinks are important
- need to computing "incoming degree" for vertices

Problem: the Web is a *very* large graph

• approx. 10^{10} pages, 10^{11} hyperlinks

Assume for the moment that we could build a graph ...

Naive PageRank algorithm:

Note: requires inbound link check (normally, we check outbound)

... PageRank

V= # pages in Web, E= # hyperlinks in Web

Costs for computing PageRank for each representation:

Representation	linkExists(v,w)	Cost
Adjacency matrix	edge[v][w]	1
Adjacency lists	<pre>inLL(list[v],w)</pre>	<i>≅ E/V</i>

Not feasible ...

- adjacency matrix ... $V \cong 10^{10} \Rightarrow$ matrix has 10^{20} cells
- adjacency list ... V lists, each with $\cong 10$ hyperlinks $\Rightarrow 10^{11}$ list nodes

So how to really do it?

The random web surfer strategy.

Each page typically has many outbound hyperlinks ...

- choose one at random, without a **visited[]** check
- follow link and repeat above process on destination page

If no visited check, need a way to (mostly) avoid loops

Important property of this strategy

- if we randomly follow links in the web ...
- ... more likely to re-discover pages with many inbound links

Random web surfer algorithm ...

```
curr=random page, prev=null
for a long time do
   if curr not in array rank[] then
      rank[curr]=0
   end if
   rank[curr]=rank[curr]+1
   if random(0,100) < 85 then // with 85% chance ...
      prev=curr
                               // ... keep crawling
      curr=choose hyperlink from curr
   else
      curr=random page, not prev // avoid getting stuck
      prev=null
   end if
end for
```

❖ ... PageRank

Above is a very rough approximation to reality.

If you want the details ...

- The Anatomy of a Large-Scale Hypertextual Web Search Engine https://research.google/pubs/pub334/
- The PageRank Citation Ranking: Bringing Order to the Web http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf

And the background ...

• Authoritative Sources in a Hyperlinked Environment https://dl.acm.org/doi/pdf/10.1145/324133.324140

Produced: 16 Jul 2020