ENSTA: apprentissage automatique

Deep learning

mots clés : deep learning, convolution, pooling, pytorch, segmentation, exemples adversaires

Adrien CHAN-HON-TONG ONERA

Rappel: apprentissage vs test

Apprentissage

Rappel: apprentissage vs test

Test et/ou production et/ou inférence

Rappel

SVM vs DL

Dans le cas du SVM, on a $f(x, w) = w^T x + w_{biais}$ qui donne un signe

$$f(x, w) > 0$$
 ou $f(x, w) < 0$

pour dire de quel coté on est.

Dans un réseau de neurone c'est PAREIL sauf que

$$f(x,w) = w_Q \times \mathit{relu}(w_{Q-1} \times \mathit{relu}(...(\mathit{relu}(w_1 \times x))))$$

Rappel

L'apprentissage en pratique

L'apprentissage consiste à appliquer la méthode de la descente de gradient stochastique (optimiseur à choisir) à une fonction de perte (à choisir) qui approxime l'erreur d'apprentissage Par exemple

$$partial_loss(w) = \sum_{n \in Batch} relu(1 - y_n f(x_n, w))$$
 $w = w - \lambda_{iter} \nabla_w partial_loss$

Plan

- Rappel
- ► Pytorch
- ► CNN
- Segmentation
- ► Exemples adversaires
- Perspective

Forward - Backward

```
\begin{array}{ll} \text{for } t & \\ & \text{for } i & \\ & \text{for } j & \\ & & A[t][i] \mathrel{+=} \mathsf{relu}(A[t\text{-}1][j]) * \mathsf{w}[t\text{-}1][i][j] \\ \mathsf{DA}[z][1] = \mathsf{partial\_loss} \\ \text{for } t \; \mathsf{from} \; z \; \mathsf{to} \; 1 & \\ & \text{for } j & \\ & & \mathsf{for } i & \\ & & \mathsf{DA}[t][j] \mathrel{+=} \mathsf{DA}[t\text{+}1][i] * \mathsf{w}[t][i][j] * \mathsf{relu'}(A[t][j]) \end{array}
```

Pytorch

```
Forward backward
for t
   for i
      for i
         A[t][i] += relu(A[t-1][j])*w[t-1][i][j]
DA[z][1] = partial loss
for t from z to 1
   for i
      for i
         DA[t][i] += DA[t+1][i]*w[t][i][i]*relu'(A[t][i])
Forward backward en pytorch
z = net(x)
loss = I(z,y)
loss.backward()
```

Pytorch

Qu'est ce que c'est

- C'est un moteur de réseau de neurones : ça permet de programmer à l'aide de fonction haut niveau (loss.backward()), le reste est pris en charge par le moteur
- Cette abstraction est réalisé grâce à des objets *variable* qui stocke leur dépendance : c = a + b, la variable c stocke qu'elle dépend de a et b
- ► En plus, la plupart des objets classiques sont précodés (couches de neurones, stratégie d'optimisation, loss function, activation)
- ► En particulier pour l'image, torchvision propose des fonctions de très haut niveau (ex télécharge et charge en mémoire le jeu de données MNIST)

moindre carré

```
minimisons f(x) = (Ax - b) \cdot (Ax - b)
À la main
pour t de 1 à T:
   \nabla_{\mathbf{x}} f = 2A^T (Ax_t - b)
   x_{t+1} = x_t - \rho \nabla_x f
Pytorch
optimizer = optim.SGD([x], lr=\nabla)
pour t de 1 à T:
   f = (Ax - b) \cdot (Ax - b)
   optimizer.zero grad()
   f.backward()
   optimizer.step()
```

TODO

TODO - on leur dit quoi d'autres sur pytorch??

Plan

- Rappel
- Pytorch
- ► CNN
- Segmentation
- ► Exemples adversaires
- Perspective

Avant le deep learning

Après

Le neurone convolutif

Le neurone convolutif

Si l'entrée est $I \in \mathbb{R}^{C \times H \times L}$: C canaux (3 pour Rouge Vert Bleu) H la hauteur et L la largeur. On peut considérer la convolution de I avec un noyaux $K \in \mathbb{R}^{C \times (2\delta_H + 1) \times (2\delta_L + 1)}$ noté $I \star K \in \mathbb{R}^{H \times L}$ et défini par :

$$(I \star K)_{h,l} = \sum_{c=0}^{C} \sum_{\alpha=0}^{2\delta_H+1} \sum_{\beta=0}^{2\delta_L+1} I_{c,h-\delta_H+\alpha,l-\delta_L+\beta} \times K_{c,\alpha,\beta}$$

Comme pour les neurones, on pourra considérer un groupe de $\mathcal C$ neurones convolutifs $K_1,...,K_{\mathcal C}$ dont on regroupe les sorties en une nouvelle image dans $\mathbb R^{\mathcal C \times H \times L}$.

Le neurone convolutif

Si on considère 1 valeur de $I \star K$ typiquement

$$(I \star K)_{h,l} = \sum_{c=0}^{C} \sum_{\alpha=0}^{2\delta_H + 1} \sum_{\beta=0}^{2\delta_L + 1} I_{c,h-\delta_H + \alpha,l-\delta_L + \beta} \times K_{c,\alpha,\beta}$$

On voit que cette valeur peut tout à fait se coder avec un neurone classique $I \cdot \mathcal{K}$ avec

$$\mathcal{K}_{i,j} = \begin{cases} K_{i-h+\delta_H, j-l+\delta_L} & si & h-\delta_H \leq i \leq h+\delta_H \\ 1-\delta_L \leq j \leq l+\delta_L & sinon \end{cases}$$

SAUF que la convolution n'a que $O(\delta_H \times \delta_L)$ paramètres pour générer $I \star K$ contre $O(H^2 \times L^2)$ avec une couche classique : 9 contre 4294967296 pour une image 256x256 et un noyau 3x3 ...

Le pooling

Le pooling

Si l'entrée est $I \in \mathbb{R}^{C \times H \times L}$, alors $\text{pool}(I) \in \mathbb{R}^{C \times \frac{H}{2} \times \frac{L}{2}}$

$$pool(I)_{c,h,l} = \max_{\alpha \in \{2h,2h+1\}, \beta \in \{2l,2l+1\}} I_{c,\alpha,\beta}$$

Il s'agit plus d'une activation car il n'y a pas de poids.

Notez que le max peut se coder avec un relu (comme vu en TD : $\max(a,b) = relu(b-a) + a$) donc en théorie les réseaux relu peuvent déjà encodé le pooling. Mais en pratique cela force une certaine invariance...

Lenet

Lenet, Alexnet, VGG

VGG, Resnet

Problèmes structurés

segmentation sémantique

raisonner par fenêtre est une mauvaise idée : il faut raisonner par couche !

segmentation sémantique

segmentation sémantique : 2 phases aussi

Apprentissage

segmentation sémantique : 2 phases aussi

Test

Le deep learning est incontestablement l'état de l'art sur les données/problèmes structurées (son, image, vidéo, texte, détection, segmentation, génération...)

Plan

- ► Rappel
- ► Pytorch
- ► CNN
- Segmentation
- ► Exemples adversaires
- Perspective

Exemple adversaire

Les réseaux de neurones sont sensibles à des perturbations invisibles à l'oeil!

Exemple adversaire

Les réseaux de neurones sont sensibles à des perturbations invisibles à l'oeil!

En réalité, c'est pas clair que ce soit grave car ces perturbations ne pas forcément réalisable physiquement

Pourquoi?

L'apprentissage consiste à calculer

$$\nabla_w loss(y_n, f(x_n, w))$$

et à actualiser w de sorte que

$$loss(y_n, f(x_n, w)) \approx 0$$

Pourquoi?

Mais avec le même outils, on peut calculer

$$\nabla_x loss(y_n, f(x_n, w))$$

et actualiser x_n de sorte que

$$loss(y_n, f(x_n, w)) \gg 0$$

Pourquoi?

Mais avec le même outils, on peut calculer

$$\nabla_x loss(y_n, f(x_n, w))$$

et actualiser x_n de sorte que

$$loss(y_n, f(x_n, w)) \gg 0$$

 \Rightarrow ce qui permet de construire une image x_n spécifiquement perturbée pour échapper au réseau : *adversarial exemple*.

Rendre les réseaux robustes

- ▶ f un réseau binaire
- ► Ce qu'on ne veut pas c'est f(x) > 0 et f(x + delta) < 0 (ou l'inverse) sur le testing set
- on veut donc apprendre au réseau à considérer que x est bien classé
 - ightharpoonup non pas si f(x) > 0
 - ▶ mais si $f(x + \delta) > 0$ (avec $||\delta|| < \epsilon$)

Rendre les réseaux robustes

- ▶ f un réseau binaire
- ► Ce qu'on ne veut pas c'est f(x) > 0 et f(x + delta) < 0 (ou l'inverse) sur le testing set
- on veut donc apprendre au réseau à considérer que x est bien classé
 - ightharpoonup non pas si f(x) > 0
 - ▶ mais si $f(x + \delta) > 0$ (avec $||\delta|| < \epsilon$)
 - ⇒ comme ferait le SVM

Rendre les réseaux robustes

Sauf que calculer la marge c'est NP complet pour des réseaux relu!

Rendre les réseaux robustes

- 2 options
 - adversarial training (sous estimé le déplacement maximal)
 - construction d'une enveloppe convexe (sur estimation du déplacement maximal)

Rendre les réseaux robustes

2 options

- adversarial training (sous estimé le déplacement maximal)
- construction d'une enveloppe convexe (sur estimation du déplacement maximal)

provable defenses against adversarial examples via the convex outer adversarial polytope

Rendre les réseaux robustes

Ou tenter des réseaux Lipschitz

Sorting Out Lipschitz Function Approximation

MinMax

$$relu\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} \max(0, a) \\ \max(0, b) \\ \max(0, c) \\ \max(0, d) \end{pmatrix}$$

(les valeurs n'augmentent pas mais elles peuvent diminuer)

$$MinMax \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} \max(a, b) \\ \max(c, d) \\ \min(a, b) \\ \min(c, d) \end{pmatrix}$$

(les valeurs ne changent pas, seul les places changent!)

MinMax

$$\operatorname{\mathit{MinMax}}\left(\begin{array}{c} a \\ 0 \\ b \\ 0 \end{array}\right) = \left(\begin{array}{c} \max(0,a) \\ \max(0,b) \\ \min(0,a) \\ \min(0,b) \end{array}\right) = \left(\begin{array}{c} \operatorname{\mathit{relu}}\left(\begin{array}{c} a \\ b \end{array}\right) \\ -\operatorname{\mathit{relu}}\left(\begin{array}{c} -a \\ -b \end{array}\right) \end{array}\right)$$

MinMax est aussi expressif que Relu en théorie Mais l'activation est repoussée dans la partie linéaire pour permettre un meilleur contrôle du réseau!

Perspectives

Les axes de recherche aujourd'hui

- frugal learning : apprendre avec peu de données
- incremental learning : Apprentissage de classes à la volé
- fairness, privacy preserving : Apprentissage éthique
- robustness : on en a parlé (tempête dans un verre d'eau)
- explainability : Apprentissage et langage
- physically informed neural network : Apprentissage hybride
- self supervised learning, representation learning : Apprentissage de représentation
- transfert learning : Adaptation de domaine

Perspectives

Les axes de recherche aujourd'hui

- frugal learning : apprendre avec peu de données
- incremental learning : Apprentissage de classes à la volé
- ► fairness, privacy preserving : Apprentissage éthique
- robustness : on en a parlé (tempête dans un verre d'eau)
- explainability : Apprentissage et langage
- physically informed neural network : Apprentissage hybride
- self supervised learning, representation learning : Apprentissage de représentation
- transfert learning : Adaptation de domaine

Mais le problème de la généralisation n'est PAS réglé!

Conclusion

La généralisation

→ c'est un problème d'apprentissage mais aussi d'industrialisation de la collecte de données

Conclusion

La généralisation

→ c'est un problème d'apprentissage mais aussi d'industrialisation de la collecte de données

Open building dataset : l'Afrique en entier

Questions?