LAPORAN AKHIR PROYEK MATA KULIAH COMPUTATIONAL PHYSICS

Louis Oktovianus - 2602078884

BINA NUSANTARA UNIVERSITY 2023/2024

SOAL NOMOR 1

From the following circuit, proof your manual calculation using PPE simulation to calculate parameters below:

- 1. Total Current flow in the circuit
- 2. Potential difference at each end of the resistance
- 3. The amount of current that passes through resistance 2 and resistance 3

Answer Using Manual:

Pengerjaan melalui proses manual dimana menghitung, menggunakan rumus hukum ohm yang mengkombinasikan rumus V = I * R. Untuk Jawaban dilampirkan dalam bentuk File Foto dibawah ini.

Penyelasain Soal Bagian Pertama, dimana kita diminta mencari Arus total, namun terlebih dahulu kita harus mencari Hambatan total dengan etika Hukum Ohm I.

```
2) mencari tegangan di setiap resistor
  . > tegangan di Ri
        UR. = IT. R.
            = 0, 15 A . 2 1
             = 1,5 Voit
   ·> tegangan di R2 dan R3
       tegangan R2 = R3 karena rangkain
       pararel .
       · Notes: mencari tegangan di ujung
              rangkaian R2 dan R3
          UAB = Usumber - URI
              = 3 voit - 1,5 Voit
              = 1,5 Uolt
                   atau
           UAB = It . Rp2,3
                = 0,75 A . 2 1
                = 1,5 Uolt
```

Penyelesaian Soal Bagian Kedua, Soal meminta kita untuk meneimukan solusi untuk mencari tegangan di setiap Resistor.

a) mencari arus di R2 don R3

•
$$I_{R2} = \frac{V_{9B}}{R_{1}} = \frac{1.5 \text{ Volt}}{3 \text{ L}} = 0.5 \text{ Ampere}$$

• $I_{R3} = \frac{V_{AB}}{R_{3}} = \frac{1.5 \text{ Volt}}{6 \text{ L}} = 0.25 \text{ Ampere}$

Penyelasain Soal Bagian Ketiga, dimana kita diminta untuk mencari di Resistor 2 dan Resistor 3 sehingga didapatkan 0,5 Ampere dan 0,25 Ampere.

Answer Using PPE:

Pengerjaan menggunakan proses digitalisasi menggunakan bantuan aplikasi PPE. Berikut adalah proses pengerjaan menggunakan PPE.

Membuat Circuit sesuai dengan apa yang diberikan di soal.

,,,,,,,wire,Voltmeter_load2,wire,u	wire wire			
,wire,Voltmeter_load1,wire,wire,v				
,wire,,,,wire,,,,wire,,,,				
,wire,,,,wire,,,,wire,,,,				
,wire,,,,wire,,wire,wire,Resis	tor_load2,wire,Ammet	er_load2,wire,wire,wi	ге,,	
wire,wire,Resistor_load1,wire,Am	nmeter_load1,wire,wire	,wire,,,,,,wire,wire,w	ire	
wire,,,,,wire,,,,,,wire,,wire				
wire,,,,,,wire,,,wire,,wire				
wire,,,,,wire,,,,,wire,,wire				
wire,,,,,wire,,,,,,wire,,wire				
wire,,,,,wire,,,wire,,wire				
wire,,,,,,wire,wire,Resistor_l	oad3,wire,Ammeter_lo	pad3,wire,wire,wire,,v	vire	
wire,,,,,wire,,,,wire				
wire,,,,,wire,,,,wire				
wire,wire,Voltmeter_load3,w	ire,wire,wire,,,,wire			
wirewire				
wireAmmeter_load				
wirewire				
wire,,,,,wire				
wire,,,,,,,wire				

Pastikan dalam file.csv

wire	wire	Ammeter_	wire	wire	Resistor_	s wire	wire	VoltageSc	wire	wire	wire	wire	wire	wire	wire	wire	wire	
vire																	wire	
ire																	wire	
ire																	wire	
vire																	wire	
vire																	wire	
vire																	wire	
vire																	wire	
vire																	Ammeter_	load
wire																	wire	
vire									wire	Voltmeter	wire	wire	wire				wire	
vire									wire				wire				wire	
vire									wire				wire				wire	
vire							wire	wire	wire	Resistor_I	wire	Ammeter_	wire	wire	wire		wire	
vire							wire								wire		wire	
vire							wire								wire		wire	
vire							wire								wire		wire	
wire							wire								wire		wire	
vire			11110				wire								wire		wire	
vire	wire	Resistor_I	wire	Ammeter_		wire	wire	WIIC	WIIC	110313(01_1	WIIC	Anince_	WITC	WIIC	wire	wire	wire	
	wire				wire		wire	wire	wire	Resistor_I	wire	Ammeter		wire	wire			
	wire				wire				wire				wire					
	wire wire	Voltmeter_	wire	wire	wire wire				wire wire				wire wire					
									wire	Voltmeter	wire	wire	wire					

Berikut adalah Visualisasi dari file CSV yang sudah kita buat sebelumnya.

Melakukan proses penetuan nilai dan arah positif pada setiap komponen yang ada.

		Start Stage					
Voltmeter	load1	2C	Rated voltage level to	Positive polarity			
voitmeter	10401	20	be measured = 1000.0	towards (cell) = 2B			
Voltmeter	load2	1K	Rated voltage level to	Positive polarity			
voitilletei	IUauz	IK	be measured = 1000.0	towards (cell) = 1J			
			Rated voltage level to	Positive polarity			
Voltmeter	load3	15K	be measured = 1000.0	towards (cell) =			
			be measured = 1000.0	15J			
Resistor	load1	6C	3				
Resistor	load2	5K	2				
Resistor	load3	12K	6				
Resistor	Rsource	25F	0,01				
Ammeter	load1	6E	Positive polarity				
Allilletei	ioaui	OE.	towards (cell) = 6F				
Ammeter	load2	5M	Positive polarity				
Allilletel	IOduz	JIVI	towards (cell) = 5N				
Ammeter	load3	12M	Positive polarity				
Allilletel	ioaus	12101	towards (cell) = 12N				
Ammeter	source	25C	Positive polarity				
Ammeter	Jource	250	towards (cell) = 25B				
Ammeter	load	17R	Positive polarity				
Animeter	1000	2711	towards (cell) = 18R				
							Positive
				Frequency (Hertz)		Dc offset	polarity
VoltageSource	source	251	Peak (Volts) = 4.240000	= 60.000000	(degrees) =	=	towards
				- 00.00000	0.000000	0.000000	(cell) =
							25J

Tujuan dari penentuan nilai dan pemberian arah positif ialah untuk membuat rangkaian berjalan sesuai dengan sebenarnya dan tidak terjadi kesalahan dalam penghasilan output nantinya, dan hal ini bertujuan menghindari error pada PPE nantinya.

Proses memasukan nilai ke dalam PPE

1	Compon	ent type: Ammeter ent name: load ent position: 17R direction of current: 18R	ı	Edit parameters
2	Compon	ent type: Ammeter lent name: load1 lent position: 6E direction of current: 6F		Edit parameters
3	Compor	eent type: Ammeter eent name: load2 eent position: 5M direction of current: 5N		Edit parameters
4	Compon	nent type: Ammeter lent name: load3 lent position: 12M direction of current: 12N		Edit parameters
5	Compon	nent type: Ammeter lent name: source lent position: 25C direction of current: 25B		Edit parameters
6	Compon	eent type: Resistor rent name: load1 rent position: 6C value: 3.0		Edit parameters
9	Comp	onent type: Resistor onent name: load2 onent position: 5K or value: 2.0		Edit parameters
	Comp	onent type: Resistor onent name: load3 onent position: 12K or value: 6.0		Edit parameters
	Comp	onent type: Resistor onent name: source onent position: 25F or value: 0.01		Edit parameters
	Comp Comp Peak v Freque Phase Dc offs	onent type: VoltageSource onent name: acsource onent position: 25I value: 4.24 energie: 60.0 energie: 0.0 set: 0.0 ve polarity: 25J		Edit parameters
	Compo Compo Voltag	onent type: Voltmeter onent name: load1 onent position: 2C e level: 1000.0 re direction of voltage: 2B		Edit parameters

Berikut adalah semua nilai dan arah positif dari setiap komponen yang sudah kita masukan ke dalam PPE.

Melakukan Proses Plotting

Menghasilkan Output

Grafik ini menghasilkan semua data pada rangkaian yang sudah kita buat, berikut penjelasan setiap komponen:

- 1. **iLoad** merupakan arus yang mengalir setelah melalui resistor 1, resistor 2, dan resistor 3.
- 2. iLoad1 merupakan arus yang mengalir pada resistor 1
- 3. iLoad2 merupakan arus yang mengalir pada resistor 2
- 4. iLoad3 merupakan arus yang mengalir pada resistor 3
- 5. iSource merupakan arus yang mengalir pada rangkaian seluruhnya.
- 6. vLoad1 merupakan beda potensial yang ada pada resistor 1
- 7. vLoad2 merupakan beda potensial yang ada pada resistor 2
- 8. vLoad3 merupakan beda potensial yang ada pada resistor 3

Terlihat nilai grafik yang berbeda digambar, hal ini menunjukan bahwa tiap nilai arus dan tegangan di tiap resistor itu berbeda.

Berikut adalah grafik khusus untuk menunjukan nilai arus yang sudah dijelaskan di atas. Setiap arus memiliki nilai yang berbeda. Arus yang terbesar terjadi ketika melalui Resistor 1, lalu arus berikutnya pada Resistor 2 dan terakhir ialah Resistor 3. Jika kita mengacu pada hukum arus dimana arus akan selalu berada pada nilai yang sama pada resistor saat resistor tersebut seri. Sehingga bisa dikatakan bahwa iLoad_1 = iLoad_2 + iLoad_3. Sedangkan arus ILoad 1 akan bernilai sama dengan iLoad (arus rangkaian tersebut).

Berikut adalah grafik yang didapatkan pada pengukuran tegangan di setiap resistornya dimana terdapat vLoad_1 yaitu tegangan yang berada di resistor 1, vLoad_2 yaitu tegangan yang berada di resistor 2, dan vLoad_3 yaitu tegangan yang berada di resistor 3. Hal ini tentunya memperlihatkan bahwa tegangan di resistor 1 lebih besar dari pada yang terdapat di resistor 2 dan resistor 3. Perlu kita ingat hukum tegangan di sebuah rangkaian, dimana tegangan akan bernilai sama ketika dia berada di dalam posisi pararel. Dari sifat inilah bisa terlihat bahwa tegangan yang ada di resistor 2 yaitu vLoad_2 sama dengan tegangan yang ada di resistor 3 yaitu vLoad_3 (vLoad_2 = vLoad_3). Selain itu bisa kita simpulkan sesuai dengan sifat tegangan bahwa vLoad = vLoad_1 + vLoad_2 = vLoad_1 + vLoad_3.

SOAL NOMOR 2

You are planning to conduct a small electronic project. You are planning to make a simple LED circuit (see diagram). The circuit contains three green LED lights that connected using parallel connections. From the LED specification sheet, you know that the LED will works on a minimum voltage of 2 V. Also, you gain information that the LED will break if the current that flow through it exceed 20 mA. For that, you need to use some resistor to limit the current that flow through the LED.

To power the circuit, you are planning to use a micro hydro generator that you already have. However, you realize that you need to convert the current from AC to DC so you can light up the LED. But you don't have the proper converter at the moment. So, you decide to make your own rectifier, *a basic RLC rectifier*, from only the components you have (see table) at hand. Assume that your component supply is large enough, so you can use any number of each component.

Assume that your LED does not have any internal resistance. The LED circuit will be connected to the rectifier at point and (see diagram). The generator has an output of 5V with frequency of 20 Hz. **So, what is your solution for the basic RLC rectifier?** Assume that each component on the table (including the EMF) has internal resistance of 0.1.

No	Component	Value
1		3 Ω
2		24 Ω
3		36 Ω
4	Resistor	100 Ω
5		130 Ω
6		220 Ω
7		510 Ω
8		1.0 μF
9	Capacitor	3.3 μF
10	1	22 μF
11		2 μΗ
12	Inductor	5.1 μH
13		2 mH
14		400 mH

Answer:

1. Menggambar Circuit yang ingin digunakan

(Menggunakan Comma Limited)

`	,								
"wire,Resistor_Lfilter1,wire,,,,,,,	,,,,,,,,,,								
"wire"wire""""""									
"wire,,Inductor_filter2,,,,,,,,,	m								
"wire"wire,,,,,,,,									
Inductor_filter,wire,wire,,Resisto	or_Lfilter2,wire,wire,v	wire,Ammeter	_Isource,wire,	wire,wire,wire	e,wire,wire,wir	e,wire,wire	mm		
Diode_D1,,,,,,,wire,,,wire,,wire,	,wire,,,,,,								
wire,,,,,,,wire,,,wire,,wire,	wire,wire,wire,wire,w	vire,wire,wire							
wire,wire,wire,,,,wire,,,wire,,Re	esistor_Cfilter1,,Resis	tor_Cfilter2,,,	wire,,wire,,wire	9					
Resistor_Rsource,,wire,,,,,,Amm	neter_load,,,wire,,wir	e,,,wire,,,,Resist	or_Cfilter3,,Re	sistor_Cfilter	4,,Resistor_Cfi	lter5			
wire,,,wire,,,,wire,,,wire,,,wire,,v	vire,,,wire,,wire,,wire								
wire,,Voltmeter_source,,,,,,,Resi	stor_load1,,,Voltmet	er_diode,,Cap	acitor_filter1,,	Capacitor_filt	er2,,,Capacito	r_filter3,,Ca	pacitor_filt	er4,,Capaci	tor_filter5
wire,,wire,,,,,,wire,,,wire,,wire,,v	vire,,,wire,,wire,,wire								
VoltageSource_Vsource,,wire,,,,,	,,,Resistor_load2,,,wi	re,,wire,wire,v	vire,wire,,wire,	wire,wire,wire	e,wire				
wire,,,wire,,,,wire,,,wire,,,wire,,,	wire,,wire,,,,								
wire,wire,wire,,,,,,,,Resistor_load	13,,,wire,,wire,,,wire,,\	wire,,,,							
wire,,,,,,,wire,,,wire,,,wire,,	,wire,wire,,,,								
wire,wire,wire,wire,wire,wire,wi	re,wire,wire,wire,wire	e,wire,wire,wi	re,wire,wire,,,,	,,,,					

(Rangkaian RLC)

(Rangkaian RLC - Warna)

2. Mencari Peak Voltage dan Resistor Equivalent

Diketahui:

V Output = 5 Volt

I Output = 20 mA = 0.02 A

Peak Voltage

Rumus: V output * sqrt(2) ---> V output * Akar 2

: 5 Volt * sqrt (2)

: 7,071 Volt

R Equivalent

R equivalent : V Peak / I Output

: 7.071 Volt / 0.02 Ampere

: 353. 55

Sehingga, dapat kita simpulkan bahwa kita akan memakai 3 resistor dengan kombinasi nilai yaitu 3 Ohm, 120 Ohm, dan 220 Ohm. Tujuannya ialah ketika kita menserikan ketiga resitor maka nilai resistor itu setara dengan resistor Equvalent yang diinginkan yaitu R1 + R2 + R3 = 3 Ohm + 120 Ohm + 220 Ohm = 353 Ohm.

3. Define a feasible value for each component

(Informasi Umum)

No	Nama Komponen	Jenis Komponen	Posisi Asal	Arah Positif	Value
1	Inductor	filter	5A	-	0.4 H
2	Inductor	filter2	3E	-	0.4 H
3	Capacitor	filter 1	11P	10P	0.000022 Farad
4	Capacitor	filter2	11R	10R	0.000022 Farad
5	Capacitor	filter3	11U	10U	0.000022 Farad
6	Capacitor	filter4	11W	10W	0.000022 Farad
7	Capacitor	filter5	11Y	10Y	0.000022 Farad
8	Resistor	Rsource	9A	-	0.01 Ohm
9	Resistor	Lfilter1	D1	-	0.1 Ohm
10	Resistor	Lfilter2	5E	-	0.1 Ohm
11	Resistor	load1	11K	-	220.0 Ohm
12	Resistor	load2	13K	-	130.0 Ohm
13	Resistor	load3	15K	-	3.0 Ohm
14	Resistor	Cfilter1	8P	-	0.1 Ohm
15	Resistor	Cfilter2	8R	-	0.1 Ohm
16	Resistor	Cfilter3	9U	-	0.1 Ohm
17	Resistor	Cfilter4	9W	-	0.1 Ohm
18	Resistor	Cfilter5	9Y	-	0.1 Ohm
19	Ammeter	Isource	5I	5J	-
20	Ammeter	load	9K	10K	-
21	Dioda	D1	6A	5A	1000 Volt
22	Voltmeter	source	11C	10C	1000 Volt
23	Voltmeter	diode	11N	10N	1000 Volt
24	VoltageSource	Vsource	13A	12A	Peak Voltage : 7.0710000, Frequency: 20.0000 Hz

Informasi dalam PPE

- Mengubah Voltage Source sesuai dengan Peak Source = 7,071 Volt
- Mengubah Resistor Load menjadi Resistor Equivalent = 353 Ohm
 - \circ R1 = 220 Ohm
 - \circ R2 = 130 Ohm
 - \circ R3 = 3 Ohm

Capacitor

Dalam susunan ini, lima kapasitor dengan kapasitas 22 Mikrofarad disatukan secara paralel untuk mencapai kapasitas total sebesar 110 Mikrofarad. Kapasitas total ini berperan penting dalam menstabilkan fluktuasi tegangan yang semula naik dari 0 V hingga 7,071 V, menjadi rentang antara 3 V dan 7,071 V. Ketika digunakan bersamaan dengan induktor berkapasitas 0,8 Henry, rentang ini berubah menjadi 3 V hingga 6 V.

Inductor

Dalam susunan ini, dua kapasitor dengan kapasitas 0,4 Henry dihubungkan secara seri untuk mencapai nilai total induktor sebesar 0,8 Henry. Saat menggunakan nilai total induktor yang lebih rendah, yaitu sekitar 2 Microhenry, fluktuasi arus memiliki rentang antara 0,0075 A hingga 0,02 A, dengan perbedaan sekitar 0,0125 A. Namun, ketika menggunakan nilai total induktor sebesar 0,8 Henry, rentang fluktuasi tersebut berubah menjadi sekitar 0,0075 A hingga 0,0175 A, dengan perbedaan sekitar 0,01 A.

LED (Light Emiting Diode)

Nilai resistansi pada LED rendah karena keluaran dari penyearah (rectifier) telah memenuhi persyaratan tegangan dan arus yang diperlukan oleh LED, sehingga tidak diperlukan adanya resistor untuk mengurangi tegangan atau arus yang diterima oleh LED.

4. Analyze the given input/output charger values based on the output graph

The simulation has been stopped. If you want to restart it, click on the Run button.

Klik Run untuk menjalankan PPE

Plotting untuk melihat keseluruhan Voltage dan Current.

(Grafik All Current and Voltage)

kita pakai Rangkaian Listrik RLC, dimana terdapat diode sebagai rectifier atau penyearah gelombang arus, jadi dia bisa ngubah arus AC yang berasal dari stopkontak menuju ke arus DC yang akan dimasukkan ke laptop. Terus ada dua komponen penting, Capacitor dan Inductor yang keduanya berfungsi untuk menyeimbangkan dan menstabilkan arus listrik agar tidak over / underload akibat didode yang menolkan arus listrik tertentu agar bisa searah dengan menyimpan energi listrik yang ada. Lalu, dengan adanya diode tanpa Kapasitor dan Induktor, pengecasan akan menjadi tidak aman, karena tegangan listrik akan mati nyala secara continue dan menyebabkan spike yang bisa menciderai devices kita.

Makna Grafik:

- iSource (yang warna Orange) → berisi arus listrik yang setiap waktunya akan difilter menggunakan capacitor dan inductor. Di awal, isource akan sangat tinggi dikarenakan untuk menekan atau menarik tegangan listriknya agar bisa rendah dan stabil. Hal ini disebut dengan charging equation dimana arus listrik akan terus diseimbangkan dan disimpan dalam kapasitor, sehingga seiring berjalannya waktu isource ini akan semakin rendah yang bertanda kapasitor dan induktor sudah dicharge penuh.
- iLoad (yang warna Biru) → berisi arus listrik keluar sebagai output dari chargeran menuju ke laptop. Ini adalah arus listrik yang didapat dari kapasitor yang semakin ke kanan akan semakin stabil dapat dilihat dari graphnya.
- vSource (yang warna Merah) → berisi tegangan listrik dari PLN / sumber listrik yang belum difilter sama sekali dan masih dalam bentuk AC, sehingga dapat dilihat dari graphnya dia masih bentukannya gelombang AC. Tegangan listrik AC tidak cocok untuk dijadikan charger karena lonjakan tegangan listrik yang ekstrim dan tidak stabil.
- vLoad (yang warna Hijau) → berisi tegangan listrik keluar yang sudah berubah menjadi DC dan sudah di filter, sehingga vloadnya itu cenderung konstan dan stabil, sehingga cocok untuk dijadikan charger.

(Grafik Arus)

Dari grafik diatas tentunya bisa nantinya skala diperbesar arus dia akan berada di sekitaran 0.02 Ampere atau setara dengan 20 mA sesuai dengan apa yang dihasilkan oleh Arus Output tersebut yang tentunya membuat nantinya sesuai dengan harapan dan aman untuk digunakan.

(Grafik Voltage)

Dari grafik diatas tentunya bisa nantinya skala diperbesar Tegangan dia akan berada di sekitaran 7,071 Volt sesuai dengan apa yang dihasilkan oleh Voltage Peak tersebut yang tentunya membuat nantinya sesuai dengan harapan dan aman untuk digunakan.

5. Kesimpulan

Kesimpulannya, rangkaian RLC yang saya rancang beserta valueya aman digunakan untuk chargeran, dikarenakan output iLoad dan vLoadnya sudah berada di range yang tepat sesuai dengan spesifikasi chargerannya. Dan dari hasil graph, dapat dilihat bahwa vLoad yang dihasilkan itu sudah cukup stabil, terlihat dari adanya spike yang sangat minim, walaupun masih ada gejala spike sedikit, namun hal itu masih bisa ditoleransikan, sehingga keseluruhan rangkaian ini aman untuk digunakan dan dapat meminimalisir untuk menciderai gadget.