18.Definite Integrals and Applications of Integrals

AI24BTECH11006-Bugada Roopansha

Section-A JEE Advanced/IIT-JEE

C. MCQs with One Correct Answer

- 21) If $l(m,n) = \int_0^1 t^m (1+t)^n dt$, then the expression for l(m, n) in terms of l(m + 1, n - 1) is (2003S)

 - a) $\frac{2^n}{m+1} \frac{n}{m+1} l(m+1, n-1)$ b) $\frac{n}{m+1} l(m+1, n-1)$ c) $\frac{2^n}{m+1} + \frac{n}{m+1} l(m+1, n-1)$ d) $\frac{m}{n+1} l(m+1, n-1)$
- 22) If $f(x) = \int_{y^2}^{x^2+1} e^{-t^2} dt$, then f(x) increases in (2003S)
 - a) (-2,2)
 - b) no value of x
 - c) $(0, \infty)$
 - d) $(-\infty,0)$
- 23) The area bounded by the curves $y = \sqrt{x}, 2y + 3 = x$ and x-axis in the 1st quadrant is (2003S)
 - a) 9
 - b) $\frac{27}{4}$
 - c) 36
 - d) 18
- 24) If f(x) is differentiable and $\int_0^{t^2} x f(x) dx = \frac{2}{5}t^5$, then $f\left(\frac{4}{25}\right)$ equals

 - a) $\frac{2}{5}$ b) $\frac{-5}{2}$ c) 1

 - d) $\frac{5}{2}$
- 25) The value of the integral $\int_0^1 \sqrt{\frac{1-x}{1+x}} dx$ is (2004S)

 - b) $\frac{\bar{\pi}}{2} 1$
 - c) -1
 - d) 1
- 26) The area enclosed between the curves $y=ax^2$ and $x = ay^2(a > 0)$ is 1 sq.unit, then the value of a is (2004S)
 - a) $\frac{1}{\sqrt{3}}$
 - b) $\frac{1}{2}$
 - c) 1
 - d) $\frac{1}{3}$

- 27) $\int_{-2}^{0} x^3 + 3x^2 + 3x + 3 + (x+1)\cos(x+1) dx$ is equal to
 - a) -4
 - b) 0
 - c) 4
 - d) 6
- 28) The area bounded by the parabolas y = $(x+1)^2$ and $y = (x-1)^2$ and the line $y = \frac{1}{4}$ is (2005S)
 - a) 4sq.units
 - b) $\frac{1}{6}$ sq.units
 - c) $\frac{4}{3}$ sq.units
 - d) $\frac{1}{3}$ sq.units
- 29) The area of the region between the curves y = $\sqrt{\frac{1+\sin x}{\cos x}}$ and $y = \sqrt{\frac{1-\sin x}{\cos x}}$ bounded by the lines x = 0 and $x = \frac{\pi}{4}$ is (2008)
 - a) $\int_{0}^{\sqrt{2}-1} \frac{t}{(1+t^2)\sqrt{1-t^2}} dt$ b) $\int_{0}^{\sqrt{2}-1} \frac{4t}{(1+t^2)\sqrt{1-t^2}} dt$ c) $\int_{0}^{\sqrt{2}+1} \frac{4t}{(1+t^2)\sqrt{1-t^2}} dt$ d) $\int_{0}^{\sqrt{2}+1} \frac{t}{(1+t^2)\sqrt{1-t^2}} dt$
- 30) Let fbe a non-negative function defined on the interval $[0, 1] \cdot \text{If} \int_0^x \sqrt{1 - (f'(t))^2} =$ $\int_{0}^{x} f(t) dt, 0 \le x \le 1, \text{and } f(0) = 0, \text{then} \quad (2009)$
 - a) $f\left(\frac{1}{2}\right) < \frac{1}{2}$ and $f\left(\frac{1}{3}\right) > \frac{1}{3}$

 - b) $f\left(\frac{1}{2}\right) > \frac{1}{2} and f\left(\frac{1}{3}\right) > \frac{1}{3}$ c) $f\left(\frac{1}{2}\right) < \frac{1}{2} and f\left(\frac{1}{3}\right) < \frac{1}{3}$
 - d) $f\left(\frac{1}{2}\right) > \frac{1}{2}$ and $f\left(\frac{1}{3}\right) < \frac{1}{3}$
- 31) The value of $\lim_{x \to 0} \frac{1}{x^3} \int_0^x \frac{t \ln(1+t)}{t^4+4} dt$ is (2010)

 - b) $\frac{1}{12}$ c) $\frac{1}{24}$ d) $\frac{1}{64}$
- 32) Let f be a real valued function defined on the interval (-1, 1) such that $e^{-x} f(x) = 2 +$ $\int_{0}^{x} \sqrt{t^4 + 1} dt$, for all $x \in (-1, 1)$, and let f^{-1} be

the inverse function f. Then $(f^{-1})'(2)$ is equal

- a) 1

- b) $\frac{1}{3}$ c) $\frac{1}{2}$ d) $\frac{1}{e}$
- 33) The value of $\int_{\sqrt{\ln 2}}^{\sqrt{\ln 3}} \frac{x \sin x^2}{\sin x^2 + \sin(\ln 6 x^2)} dx$ is (2011)
 - a) $\frac{1}{4} \ln \frac{3}{2}$ b) $\frac{1}{2} \ln \frac{3}{2}$

 - c) $\ln \frac{3}{2}$
 - c) $\ln \frac{3}{2}$ d) $\frac{1}{6} \ln \frac{3}{2}$
- 34) Let the straight linex = b divide the area enclosed by $y = (1 - x)^2$, y = 0, and x = 0 into two parts $R_1 (0 \le x \le b)$ and $R_2 (b \le x \le 1)$ such that $R_1 - R_2 = \frac{1}{4}$. Then *b* equals
 - a) $\frac{3}{4}$ b) $\frac{1}{2}$ c) $\frac{1}{3}$ d) $\frac{1}{4}$
- 35) Let $f: [-1,2] \rightarrow [0,\infty)$ be a continuous function such that f(x) = f(1-x) for all $x \in (-1,2)$.Let $R_1 = \int_{-1}^{2} x f(x) dx$, and R_2 be the area of the region bounded by y = f(x)x = -1, x = 2, and the x-axis

Then (2011)

- a) $R_1 = 2R_2$
- b) $R_1 = 3R_2$
- c) $2R_1 = R_2$
- d) $3R_1 = R_2$