

Geometria Analitica

Videoaula 3.9

Ângulo entre vetores

Departamento de Matemática (UF\$C)

Professora ALDA MORTARI

Professor CHRISTIAN WAGNER

Professor FELIPE TASCA

Professor GIULIANO BOAVA

Professor LEANDRO MORGADO

Professora MARÍA ASTUDILLO

Professor MYKOLA KHRYPCHENKO

Ângulo entre vetores

O ângulo entre dois vetores \vec{u} e \vec{v} é o menor ângulo formado quando consideramos esses vetores com a mesma origem.

Como calcular o ângulo?

Sejam \vec{u} e \vec{v} dois vetores não nulos.

$$cos(\theta) = \frac{u \cdot v}{|\vec{u}| |\vec{v}|}$$

O ângulo θ formado por esses vetores é dado por:

Como deduzir essa fórmula?

Exemplo

Calcule o ângulo entre os vetores $\vec{u}=(1,\ 1,\ 4)$ e $\vec{v}=(-1,\ 2,\ 2)$.

Condição de ortogonalidade

O produto escalar entre dois vetores é igual a zero se e somente se o ângulo formado entre eles é um **ângulo reto**.

Exercício

Encontre o valor de k para que os vetores

$$\vec{v} = (1, 2, 3)$$
 e $\vec{u} = (-2, k, 4)$ sejam ortogonais.

Outras observações

- O produto escalar entre dois vetores é positivo se e somente se o ângulo formado entre eles é um ângulo agudo ou nulo.
- O produto escalar entre dois vetores é negativo se e somente se o ângulo formado entre eles é um ângulo obtuso ou raso.

Condição de paralelismo

Lembre que dois vetores \vec{u} e \vec{v} são paralelos se um é múltiplo do outro, ou seja, se existe $k \in \mathbb{R}$ tal que $\vec{u} = k \ \vec{v}$ ou $\vec{v} = k \ \vec{u}$.

Observação

- O vetor $\vec{0}$ é paralelo a qualquer vetor \vec{u} , pois $\vec{0} = 0 \vec{u}$.
- O vetor $\vec{0}$ é ortogonal a qualquer vetor \vec{u} , pois $\vec{0} \cdot \vec{u} = 0$.

Exercício

Sejam $\vec{u} = (1, 2, 3)$ e $\vec{v} = (-1, 0, 2)$.

Encontre o vetor \vec{w} que é paralelo a \vec{u} , e que satisfaz $\vec{v} \cdot \vec{w} = 10$.

Projeção Ortogonal

Suponha dois vetores não nulos \vec{u} e \vec{v} , com ângulo θ entre eles.

Vamos deduzir as coordenadas do vetor \vec{w} , que representa a projeção de \vec{u} sobre \vec{v} .

Conclusão

Suponha dois vetores não nulos \vec{u} e \vec{v} , com ângulo θ entre eles.

A projeção ortogonal de \vec{u} sobre \vec{v} é dada por:

$$proj_{\vec{v}}\vec{u} = \left(\frac{\vec{u}\cdot\vec{v}}{\vec{v}\cdot\vec{v}}\right)\vec{v}.$$

Exercício

Determine a projeção ortogonal de $\vec{u}=(2,\ 3,\ 4)$ sobre $\vec{v}=(1,-1,\ 0).$