2016-2017学年第二学期期末试题

一、选择题(每小题3分,共15分)			
1 . 四阶行列式中含负号并且包含元素 a_{23} , a_{31} 的项为 ().			
(A) $a_{12}a_{23}a_{31}a_{44}$	(B) $a_{14}a_{23}a_{31}a_{42}$	(C) $a_{14}a_{23}a_{31}a_{44}$	(D) $a_{12}a_{23}a_{31}a_{42}$
2. 设行列式 $\left a_{ij}\right =m(i,j=1,2,\cdots,5)$, 将 $\left a_{ij}\right $ 的第二列元素乘以 2 后与第三列交换,再转置,则结果为 ().			
(A) $-2m$	(B) $-32m$	(C) 32 <i>m</i>	(D) 2 <i>m</i>
3 . 设 A 为 n 阶矩阵,则在下列矩阵中,为反对称矩阵的是().			
(A) AA^T	(B) $A^T A$	(C) $A + A^T$	(D) $A - A^T$
4. 设 A 是 n 阶方阵,且 A 可逆,则下列叙述不正确的是 ().			
$(A) A \neq 0,$		(B) Ax = 0 有非零角	•
(C) $r(A) = n$,		(D) A 可表示为某些	些例等矩阵之积
5 . 设 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 是一组 n 维向量,其中 $\alpha_1,\alpha_2,\alpha_3$ 线性相关,则().			
(A) α_1 , α_2 , α_3 中必有零向量,		(B) α_1 , α_2 必线性相关,	
(C) α_2 , α_3 必线性无关,		(D) $\alpha_1, \alpha_2, \alpha_1, \alpha_4$ 必线性相关,	
二、填空题(每题3分,共15分)			
1. $\begin{vmatrix} 7 & 8 & 9 & x \\ 1 & -1 & 0 & 3 \\ 0 & 2 & 0 & 4 \\ 0 & 4 & 3 & 5 \end{vmatrix} + x$	c 的系数为		

2. 设A, B 均为3阶方阵,且 |A| = 4, |B| = 2, 则 $|2(B^TA^{-1})| = _____.$

3. 设
$$A = (3,0,1,0), B = \begin{pmatrix} -1 \\ 7 \\ 4 \\ 11 \end{pmatrix}$$
,则 $(AB)^{2017} = \underline{\qquad}$

4. 设
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 5 \\ 0 & -1 & 4 \end{pmatrix}$$
, 则 $(A^*)^{-1} = \underline{\qquad}$.

5. 设 $A = \begin{pmatrix} a & b & c \\ 1 & 2 & 3 \end{pmatrix}$, $B = \begin{pmatrix} a & b & c - 2b \\ 1 & 2 & -1 \end{pmatrix}$, 且 AP = B, 其中 P 为初等矩阵, 则初等

矩阵 P = .

三、计算题(第1、2小题每题8分,第3-6题每小题10分)

2. 行列式 $D = \begin{vmatrix} 1 & 0 & 2 & 0 \\ -1 & 4 & 3 & 6 \\ 0 & 2 & -5 & 3 \\ 3 & 1 & 1 & 0 \end{vmatrix}$ 其中 A_{ij} 是 D 的 (i,j) 元的代数余子式,求 $A_{31} + 3A_{32} - 2A_{33} + 2A_{34}$

3. 求行列式
$$D = \begin{vmatrix} a & b & b & \dots & b \\ b & a & b & \dots & b \\ b & b & a & \dots & b \\ \dots & \dots & \dots & \dots & \dots \\ b & b & b & \dots & a \end{vmatrix}$$
 的值.

4. 求矩阵
$$X$$
, 使 $AX = B$, 其中 $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \\ 3 & 4 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 5 \\ 3 & 1 \\ 4 & 3 \end{pmatrix}$.

- **5.** 设向量组 $\alpha_1 = (1, t, 1, 2)^T$, $\alpha_2 = (0, 1, 1, 3)^T$, $\alpha_3 = (1, 1, 0, -1)^T$, 问 t 取何值时,该向量组的秩为2,且找出此时向量组的一个极大无关组,并将其余向量用此极大无关组线性表示.
- 6. 求线性方程组 $\begin{cases} 2x_1 + x_2 x_3 + x_4 = 1 \\ 4x_1 + 2x_2 2x_3 + x_4 = 2 \end{cases}$ 的通解及对应的齐次线性方程组的基 $2x_1 + x_2 x_3 x_4 = 1$ 础解系.

四、证明题 (每小题7分,共14分)

- **1.** 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,且 $\beta_1 = \alpha_1 \alpha_2, \beta_2 = \alpha_2 \alpha_1, \beta_3 = \alpha_3 \alpha_1$,问向量组 $\beta_1, \beta_2, \beta_3$ 是线性相关还是线性无关,并证明你的结论。
- 2. 设 A 为 n 阶非零实矩阵, $A^* = A^T$, 共中 A^* 是A的伴随矩阵, 证明: A 可逆.