Recall that

- A map $T: V \to W$ is called an isomorphism if it is both injective and surjective.
- A map $T: V \to W$ is called injective if $T(v_1) = T(v_2) \implies v_1 = v_2$ for all $v_1, v_2 \in V$.
- A map $T: V \to W$ is called surjective if for all $w \in W$, there exists $v \in V$ such that T(v) = w.

Questions

- 1. Let $S:U\to V,\,T:V\to W$ be linear transformations. Suppose that S is an isomorphism. Show the following
 - (a) $T \circ S$ is injective if and only if T is injective
 - (b) $T \circ S$ is surjective if and only if T is surjective

- 2. Let V, W be n-dimensional vector spaces and $T: V \to W$ be linear transformation. Show that the following statements are equivalent:
 - (a) T is an isomorphism
 - (b) For every bases α, β of V, W respectively, the matrix $[T]^{\beta}_{\alpha}$ is invertible.
 - (c) There exists bases α, β of V, W respectively, the matrix $[T]^{\beta}_{\alpha}$ is invertible.