Создание групп и коммуникаторов

Параллельное программирование

Группы

- **Группа** представляет собой *упорядоченное множество процессов*. Каждый процесс идентифицируется переменной целого типа. Идентификаторы процессов образуют непрерывный ряд, начинающийся с *нуля*.
- В МРІ вводится специальный тип данных **МРІ_Group** и набор функций для работы с переменными и константами этого типа.

Существует две предопределенных группы:

- **MPI_GROUP_EMPTY** группа, не содержащая ни одного процесса;
- **MPI_GROUP_NULL** возвращаемое значение функций, когда группа не может быть создана.
- Созданная группа не может быть модифицирована расширена или усечена, может быть только создана новая группа. Интересно отметить, что при инициализации MPI не создается группы, соответствующей коммуникатору MPI_COMM_WORLD. Она должна создаваться специальной функцией явным образом.

Функция MPI_Comm_group

создает группу *group* для множества процессов, входящих в область связи коммуникатора *comm*.

int MPI_Comm_group (MPI_Comm comm, MPI_Group *group)

■ Входные параметры:

comm	коммуникатор области связи
------	----------------------------

group	созданная группа

Функция MPI_Group_incl

создает новую группу newgroup из n процессов, входящих в группу oldgroup. Ранги этих процессов содержатся в массиве ranks

```
int MPI_Group_incl (MPI_Group oldgroup, int n,
int *ranks, MPI_Group *newgroup)
```

■ Входные параметры:

oldgroup	существующая группа, на основе которой создается новая
n	количество процессов в новой группе
ranks	ранги процессов, вошедших в эту группу

· · · · · · · · · · · · · · · · · · ·	· • • • • • • • • • • • • • • • • • • •
newgroup	созданная группа

Функция MPI_Group_incl

создает новую группу newgroup из n процессов, входящих в группу oldgroup. Ранги этих процессов содержатся в массиве ranks

```
int MPI_Group_incl (MPI_Group oldgroup, int n,
int *ranks, MPI_Group *newgroup)
```

В НОВУЮ группу войдут процессы с рангами ranks[0], ..., ranks[n-1], причем рангу i в новой группе соответствует ранг ranks(i) в старой группе. При n = 0 создается пустая группа MPI_GROUP_EMPTY.

С помощью данной функции можно не только создать новую группу, но и изменить порядок процессов в старой группе.

Функция MPI_Group_excl

создает группу newgroup, исключая из исходной группы (oldgroup) процессы с рангами ranks[0], ..., ranks[n-1]

```
int MPI_Group_excl (MPI_Group oldgroup, int n,
int *ranks, MPI_Group *newgroup)
```

■ Входные параметры:

oldgroup	существующая группа, на основе которой создается новая
n	количество удаляемых из группы процессов
ranks	ранги процессов, которые не войдут в группу

· · · · · · · · · · · · · · · · · · ·	· • • • • • • • • • • • • • • • • • • •
newgroup	созданная группа

Функция MPI_Group_union

формирует новую группу из всех элементов 1-й и 2-й групп (объединение множеств)

```
int MPI_Group_union (MPI_Group group1,
MPI_Group group2, MPI_Group *newgroup)
```

■ Входные параметры:

group1	первая группа
group2	вторая группа

newaroup	созданная группа
1101191045	Созданная группа

Функция MPI_Group_intersection

новая группа формируется из элементов 1-й группы, которые входят также и во 2-ю. Упорядочивание, как в 1-й группе (пересечение множеств)

```
int MPI_Group_intersection (MPI_Group group1,
MPI_Group group2, MPI_Group *newgroup)
```

Входные параметры:

group1	первая группа
group2	вторая группа

newgroup	созданная группа
----------	------------------

Функция MPI_Group_difference

формирует новую группу из всех элементов 1-й группы, которые не входят во 2-ю. Упорядочивание, как в 1-й группе (дополнение множеств)

```
int MPI_Group_difference (MPI_Group group1,
MPI_Group group2, MPI_Group *newgroup)
```

■ Входные параметры:

group1	первая группа
group2	вторая группа

newgroup	созданная группа
----------	------------------

Функция MPI_Group_size

определяет количество (size) процессов в группе group

int MPI_Group_size (MPI_Group group, int *size)

■ Входные параметры:

group	группа
-------	--------

количество процессов	size	количество процессов
----------------------	------	----------------------

Функция MPI_Group_rank

возвращает ранг (rank) процесса в группе group

int MPI_Group_rank (MPI_Group group, int *rank)

■ Входные параметры:

group	группа
_	14

Выходные параметры:

rank pan	г процесса в данной группе	(или МРІ	UNDEFINED)

Если процесс не входит в указанную группу, вторым аргументом возвращается значение **MPI_UNDEFINED**

MPI_Group_translate_ranks -

Функция установки соответствия между номерами процессов в двух группах.

```
int MPI_Group_rank (MPI_Group group1, int n, int *ranks1,
MPI_Group group2, int *ranks2)
```

■ Входные параметры:

group1	группа1
n	число процессов, для которых устанавливается соответствие
ranks1	Массив номеров процессов из первой группы
group2	группа2

ranks2	номера тех же процессов во второй группе
--------	--

Функция MPI_Group_free

уничтожает группу group

int MPI_Group_free (MPI_Group *group)

■ Входные параметры:

group	уничтожаемая группа

group	указатель на пустую группу MPI_GROUP_NULL
J 1	j masarone na njorjio rpjimij mi i_ono or _rvo 22

Коммуникаторы

Коммуникатор представляет собой скрытый объект с некоторым набором атрибутов, а также правилами его создания, использования и уничтожения. Коммуникатор описывает некоторую область связи. Одной и той же области связи может соответствовать несколько коммуникаторов, но даже в этом случае они не являются тождественными и не могут участвовать во взаимном обмене сообщениями. Если данные посылаются через один коммуникатор, процесс-получатель может получить их только через тот же самый коммуникатор.

При инициализации МРІ создается два предопределенных коммуникатора:

- MPI_COMM_WORLD описывает область связи, содержащую все процессы;
- MPI_COMM_SELF описывает область связи, состоящую из одного процесса.

Функция MPI_Comm_create

создает новый коммуникатор из группы group

```
int MPI_Comm_create (MPI_Comm comm, MPI_Group group,
MPI_Comm *newcomm)
```

■ Входные параметры:

comm	родительский коммуникатор
group	группа, для которой создается коммуникатор

пемсотт новый коммуникатор

Функция MPI_Comm_dup

Функция дублирования коммуникатора

int MPI_Comm_dup (MPI_Comm comm, MPI_Comm *newcomm)

■ Входные параметры:

comm	родительский коммуникатор
------	---------------------------

newcomm	новый коммуникатор

Функция MPI_Comm_split

расщепляет группу, связанную с родительским коммуникатором, на непересекающиеся подгруппы

```
int MPI_Comm_split (MPI_Comm comm, int color,
int key, MPI_Comm *newcomm)
```

■ Входные параметры:

comm	родительский коммуникатор
color	признак подгруппы
key	управление упорядочиванием

newcomm	новый коммуникатор
	nobbii komajimarop

Функция MPI_Comm_split

```
int MPI_Comm_split (MPI_Comm comm, int color,
int key, MPI_Comm *newcomm)
```

Функция расщепляет группу, связанную с родительским коммуникатором, на непересекающиеся подгруппы по одной на каждое значение признака подгруппы color. Значение color должно быть неотрицательным. Каждая подгруппа содержит процессы с одним и тем же значением color. Параметр key управляет упорядочиванием внутри новых групп: меньшему значению key соответствует меньшее значение идентификатора процесса. В случае равенства параметра key для нескольких процессов упорядочивание выполняется в соответствии с порядком в родительской группе.

Функция MPI_Comm_split

Алгоритм расщепления группы из восьми процессов на три подгруппы:

```
MPI_comm comm, newcomm;
int myid, color;
.....
MPI_Comm_rank(comm, &myid);
color = myid%3;
MPI_Comm_split(comm, color, myid, &newcomm);
```


В данном примере первую подгруппу образовали процессы, номера которых делятся на 3 без остатка, вторую, для которых остаток равен 1, и третью, для которых остаток равен 2. Отметим, что после выполнения функции MPI_Comm_split значения коммуникатора пеwcomm в процессах разных подгрупп будут отличаться.

Функция MPI_Comm_free

уничтожает коммуникатор comm

comm	уничтожаемый коммуникатор
------	---------------------------