Problem 1 Prefix Sum and Segment Sum (4%)

Let $A = \{a_1, a_2, \dots, a_n\}$ be a sequence of n integers. The k^{th} prefix sum of $A, 1 \le k \le n$, is defined as

$${\tt Prefix}_k(A) \; = \; \sum_{1 \leq i \leq k} a_i \; = \; a_1 + a_2 + \ldots + a_k \; .$$

Given m segments $(\ell_1, r_1), (\ell_2, r_2), \dots, (\ell_m, r_m)$, where $1 \leq \ell_i \leq r_i \leq n$ for all $1 \leq i \leq m$, your task in this problem is to compute (efficiently) the sum of the elements within these segments, using the prefix sums of the sequence.

Input

The first line contains two integers n and m, $(1 \le n \le 10^5, 1 \le m \le 10^6)$, the length of the input sequence and the number of segments.

The second line contains n integers which are the elements a_i of the sequence, $(1 \le a_i \le 10^4)$. Then m lines follow, each of which contains two integers ℓ_i and r_i , the end-points of the i^{th} segment, where $1 \le \ell_i \le r_i \le n$.

Output

For each input segment, print the sum of the elements in the segment.

Example

S	an	ıp	le	In	ıρι	ıt			
8	4								
9	3	4	2	1	6	7	8		
2	5								
1	8								
4	7								
3	3								

Sample Outp	ut
10	
40	
16	
4	

Note

You may want to use the observation for computing the sum of a segment (L, R):

Due: March 17, 2019

Problem 2 Maximum Sum Segment (4%)

Read a sequence of n integers and compute its maximum sum segment.

Input

The first line contains one integer n, $(1 \le n \le 10^5)$, the length of the input sequence. The second line contains n integers which are the elements a_i of the sequence, $(-10^4 \le a_i \le 10^4)$.

Due: March 17, 2019

Output

Print two integers ℓ and r on the first line, the end-points of the segment that results in the maximum sum possible. Note that we require that $1 \le \ell \le r \le n$.

On the second line print the value of the sum.

If there are multiple solutions, print any of them.

Example 1

Input

6

Output

2 5

6

Example 2

5

Sample Output

2 2

-1

Note

You may want to use the observation given at the end of Problem 1.