Wprowadzenie do programu Multisim

Łukasz Jezapkowicz

12.04.2019

Spis treści

1	Spr	awdzenie działania prawa Ohma i praw Kirchhoffa na przykładzie obwodu rezy-	
	star	ncyjnego	•
	1.1	Cel ćwiczenia	4
	1.2	Przebieg ćwiczenia	4
	1.3	Wnioski	2
2		aliza obwodów RC w dziedzinie czasu	2
	2.1	Cel ćwiczenia	4
	2.2	Przebieg ćwiczenia	4
		Wnioski	
3	Ana	aliza dzielnika napięciowego	(
	3.1	Cel ćwiczenia	
	3.2	Przebieg ćwiczenia	
	3 3	Wnjoski	

1 Sprawdzenie działania prawa Ohma i praw Kirchhoffa na przykładzie obwodu rezystancyjnego

1.1 Cel ćwiczenia

Celem ćwiczenia było zapoznanie się z programem MultiSim, który jest wirtualnym laboratorium elektronicznym, na podstawie prostego obwodu rezystancyjnego.

1.2 Przebieg ćwiczenia

Na pulpicie symulacyjnym zbudowałem obwód rezystancyjny widoczny na **Rys. 1**. Przedstawiony poniżej układ zawiera źródło napięcia stałego V_1 , rezystor R_1 oraz potencjometr R_2 . Na potencjometrze ustawiłem wartość rezystancji 600Ω . Korzystając z prawa Ohma i praw Kirchhoffa obliczę prąd płynący w obwodzie 1 oraz spadek napięcia na potencjonometrze R_2 czyli U_{R_2} .

Rys. 1: Schemat obwodu rezystancyjnego

Oporniki R_1 i R_2 są połączone szeregowo więc ich opór zastępczy $R_Z=R_1+R_2=1000\Omega+600\Omega=1600\Omega$. Z prawa Ohma wiemy, że natęzenie prądu w obwodzie równe jest: $I=\frac{U}{R_Z}=\frac{12V}{1600\Omega}=0,0075A=7,5mA$. Dzięki temu możemy obliczyć spadek napięcia na potencjonometrze $R_2:U_{R_2}=R_2*I=600\Omega*7,5mA=4,5V$.

Następnie dołączyłem do obwodu multimetry (rys. 2) i przy ich pomocy zmierzyłem prąd I oraz napięcie U_{R_2} .

Moim celem było porównanie wyników obliczeń z wskazaniami multimetrów XMM1 oraz XMM2.

Rys. 2: Schemat obwodu rezystancyjnego z dołączonymi multimetrami XMM1 oraz XMM2

Następnie wykonałem analizę stałoprądową DC Operating Point by znów obliczyć te same wartości co wcześniej. Wyniki analizy DC widoczne są na rys. 3 .

	Design1 DC Operating Point Analysis								
	Variable	Operating point value							
1	V(1)	12.00000							
2	V(2)	4.50000							
3	I(V1)	-7.50000 m							

Rys. 3: Wyniki analizy stałoprądowej DC na wyżej zamieszczonym obwodzie.

Wyniki moich działań można podsumować tabelką (rys. 4).

$R_2 = 600\Omega$	Obliczenia	Multimetry	Analiza DC
I [A]	7,5 m	7,5 m	-7,5m
$U_{R2}[V]$	4,5	4,5	4,5

Rys. 4: Tabela zawierajacą wyniki ćwiczenia.

1.3 Wnioski

Na podstawie porównania otrzymanych wyników w tabelce można stwierdzić, że MultiSim prawidłowo dokonuje symulacji prostego obwodu rezystancyjnego, korzysta z prawa Ohma i praw Kirchhoffa oraz podaje wyniki mocno zbliżone do rzeczywistych.

2 Analiza obwodów RC w dziedzinie czasu

2.1 Cel ćwiczenia

Celem ćwiczenia było zapoznanie się z analizą obwodów w dziedzinie czasu. Ćwiczenie miało na celu wyznaczenie stałych czasowych ładowania i rozładowywania kondensatora w obwodzie RC.

2.2 Przebieg ćwiczenia

Na pulpicie symulacyjnym zbudowałem obwód RC widoczny na $\mathbf{Rys.}$ 5. Układ ten zawiera generator sygnału prostokątnego V_1 o amplitudzie 5V i częstotliwości 200Hz, rezystor R_1 o rezystancji 1000Ω , potencjonometr R_2 , na którym ustawiłem wartość rezystancji 600Ω oraz kondensator C_1 o pojemności 1μ . Do układu dołączyłem również oscyloskop XSC1 umożliwiający obserwację przebiegów czasowych. W celu łatwiejszego rozróżnienia przebiegów zmieniłem kolor jednego z przewodów by na ekranie oscyloskopu były one lepiej rozróżnialne. Na $\mathbf{Rys.}$ 5 widać ekran oscyloskopu.

Rys. 5: Schemat obwodu RC z generatorem V_1 oraz oscyloskopem XSC1.

W celu uzyskania na ekranie czytelnych wyników, należało dobrać odpowiednie wartości podstawy czasu i wzmocnienia dla obu kanałów. Niestety oscyloskop pozwala jedynie na poglądową obserwację przebiegów czasowych. W dokładniejszej analizie posłużyła mi analiza Transient

Teraz przeprowadziłem analizę Transient przebiegów czasowych by uzyskać obraz przebiegów napięcia wejściowego (z generatora) i wyjściowego (na kondensatorze C_1). W opcjach analizy Transient ustawiłem zakres czasu obserwacji od 0s do 0,005s. Należało również wybrać węzły, w których dokonuje się obserwacji, w tym wypadku przebieg napięcia generowanego przez źródło sygnału V_1 oraz przebieg napięcia na kondensatorze C_1 . Po uruchomieniu symulacji dostałem obraz przebiegów widoczny na \mathbf{Rys} . 6. W celu zwiększenia czytelności włączyłem siatkę, kursory i białe tło przebiegów. Na rysunku zamieściłem również tabele ze współrzednymi kursorów.

Rys. 6: Wyniki analizy Transient.

Drugi wskaźnik ustawiłem na największej wartości napięcia na kondensatorze $U_0 = 1,8727V$. Czas potrzebny by osiągnać to napięcia to $t_0 = 2,4987s$. W celu policzenia stałej ładowania ustawiłem pierwszy wskaźnik na wartości napięcia równej $0,63U_0 = 1,1798V$. Czas potrzebny do osiągnięcia takiego napięcia to t = 0,372s. Wynika stąd, że stała ładowania $\tau = 0,372s$. By obliczyć stałą rozładowania musiałem znaleźć czas, po którym wartość napięcia na kondensatorze spadła do $0,37U_0 = 0,6929V$. Czas potrzebny do osiągnięcia tego napięcia licząc od momentu t_0 wynosi t = 0,373s. Wynika stąd, że stała rozładowywania równa jest $\tau = 0,373s$. Wyniki podsumowuje tabelka (**rys. 7**).

	$\underline{\mathbf{Dla}} \ \mathbf{R}_2 = 600\Omega$
Stała ładowania	0,372ms
Stała rozładowywania	0,373ms

Rys. 7: Tabela zawierająca obliczone stałe.

2.3 Wnioski

Analiza Transient pozwala osiągnać dokładniejsze wyniki niż oscyloskop. Stałe ładowania i rozładowywania kondensatora mają zbliżone wartości, a różnica wynika z niedokładnego przybliżenia e^-1 i niedokładności odczytu wartości.

3 Analiza dzielnika napięciowego

3.1 Cel ćwiczenia

Celem ćwiczenia było zapoznanie się z przykładowym dzielnikiem napięciowym i obliczenie napięcia U_{R_2} na wyjściu.

3.2 Przebieg ćwiczenia

Na pulpicie symulacyjnym zbudowałem dzielnik napięciowy widoczny na $\mathbf{Rys.}$ 8. Zawiera on źródło napięcia V_1 o wartości 30V, rezystor R_1 o wartości $56k\Omega$ oraz rezystor R_2 o wartości $100k\Omega$. W celu policzenia napięcia między rezystorami potrzebuje policzyć opór zastępczy układu. Oporniki połączone są szeregowo a więc $R_Z = R_1 + R_2 = 56k\Omega + 100k\Omega = 156k\Omega$. Z prawa Ohma mamy: $U_{R_2} = I*R_Z = \frac{V_1}{R_Z}*R_2 = \frac{12V}{156k\Omega}*100k\Omega = 19,23V$. Dołączyłem multimetr XMM1 w celu porównania wyników. Jak widać są one zgodne.

Rys. 8: Dzielnik napięciowy bez obciążenia.

Następnie dołączyłem równoległe do rezystora R_2 rezystor obciążenia $R_L=10k\Omega$ (**rys. 9**). W celu policzenia napięcia między rezystorami znowu potrzebuje policzyć opór zastępczy układu. Oporniki R_L oraz R_2 są połączone równoległe więc ich opór zastępczy $\frac{1}{R_X}=\frac{1}{R_L}+\frac{1}{R_2}$. Po przekształceniach $R_X=\frac{R_2*R_L}{R_2+R_L}=\frac{100k\Omega*10k\Omega}{100k\Omega*10k\Omega}=9,09k\Omega$. Oporniki R_X oraz R_1 są połączone szeregowo a więc ich opór zastępczy $R_Z=R_X+R_1=9,09k\Omega+56k\Omega=65,09k\Omega$. Natężenie prądu w obwodzie to $I=\frac{V_1}{R_Z}=\frac{30V}{65,09k\Omega}=0,46mA$. A zatem napięcie $U_{R_2}=I*R_Z=0,46mA*9,09k\Omega=4,18V$. Dołączyłem również multimetr XMM1 w celu porównania wyników. Jak widać są one niemal zgodne.

Rys. 9: Dzielnik napięciowy z obciążeniem R_L = $10k\Omega.$

Całość podsumowuje tabelka na Rys. 10.

Wyjście dzielnika	U _{R2} obliczone	U _{R2} zmierzone
Nieobciążone	19,23V	19,23V
$Z R_L = 10kΩ na wyjściu$	4,18V	4,19V

Rys. 10: Tabela zawierająca obliczone wielkości.

3.3 Wnioski

Zbudowany dzielnik napięciowy pozwala skutecznie obliczać napięcie na wyjściu w danym miejscu układu. Różnice w obliczeniach są małe i wynikają z niedokładnego przybliżenia oporów zastępczych, natężenia prądu i niedokładności odczytu wartości. Po wykonaniu trzech ćwiczeń można stwierdzić, że MultiSim to skuteczny program do symulacji prostych obwodów.