Лабораторна робота №3 з Чисельних методів Варіант №10 Петрів Владислав

Зміст

Лабораторна робота №3	1
Завдання 1	3
1) Умова завдання	3
2) Теоретичні відомості	3
3) Необхідні обчислення	3
4) Результат роботи програми	3
Завдання 2	4
1) Умова завдання	4
2) Теоретичні відомості	4
3) Необхідні обчислення	4
4) Результат роботи програми	4

Завдання 1

1) Умова завдання

Методом Якобі розв'язати систему рівнянь,

6	3	1	0		X1		25
		0		v	X2	_	31
1	0	3	1	х	1 ^x X3	-	19
0	2	1	5		X4		35

2) Теоретичні відомості

Припустімо, що діагональні коефіцієнти невиродженої матриці A ненульові $(a_{ii} \neq 0)$. Якщо деякі $a_{ii} = 0$, то цього можна досягти, переставивши деякі рядки. Розділивши i — те рівняння на a_{ii} отримаємо таку СЛАР:

$$x_{i} = -\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_{j} - \sum_{j=i+1}^{n} \frac{a_{ij}}{a_{ii}} x_{j} + \frac{b_{i}}{a_{ii}}, i = \overline{1, n}.$$

Задамо якесь початкове наближення $ec{x}^0 = (x_1^0, ..., x_n^0)$. Наступні наближення обчислимо за формулами

$$x_i^{k+1} = -\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_j^k - \sum_{j=i+1}^n \frac{a_{ij}}{a_{ii}} x_j^k + \frac{b_i}{a_{ii}}, i = \overline{1, n}, k = 0, 1, \dots.$$

Метод збігається, тобто $\lim_{k \to \infty} \left\| \vec{x}^k - \vec{x} \right\| = 0$, якщо виконуються умови діагональної переваги матриці $A \left| a_{ij} \right| \geq \sum_{\substack{j=1 \ j \neq i}}^n \left| a_{ij} \right|, i = \overline{1,n}$. Якщо ж виконуються нерівності $\left| q \right| \left| a_{ii} \right| \geq \sum_{\substack{j=1 \ j \neq i}}^n \left| a_{ij} \right|, i = \overline{1,n}$

 $\overline{1,n},q<1$,то правдива така оцінка точності:

$$\|\vec{x}^k - \vec{x}\| \le \frac{q^k}{1 - q} \|\vec{x}^0 - \vec{x}^1\|.$$

Ітерації виконують, поки не буде отримано потрібну кількість цифр у компонентах розв'язку чи до виконання умови $\frac{q^k}{1-q} < \varepsilon$.

Вибір останньої умови пояснюється тим, що в разі її виконання для $ec{x}^0 = 0$ маємо оцінку

$$\delta(\vec{x}) \le \frac{\|\vec{x}^k - \vec{x}\|}{\|\vec{x}\|} \le \frac{q^k}{1 - q} < \varepsilon.$$

3) Необхідні обчислення

Перевіримо умову діагональної переваги:

$$|6| \ge |3| + |1|$$
; $|5| \ge |3| + |2|$; $|3| \ge |1| + |1|$; $|5| \ge |2| + |1|$;

Отже можна застосувати метод Якобі

4) Результат роботи програми

```
---Jacobi---

System Solution:

x[0]= 1.99874

x[1]= 3.00119

x[2]= 4.00079

x[3]= 4.99937
```

Завдання 2

1) Умова завдання

Методом Зейделя розв'язати систему рівнянь

5	1	1	0		X1		17
	2			Х	X2	_	8
1	0	4	2		2 ^X X3	=	28
0	0	2	3		X4		23

2) Теоретичні відомості

Якщо в першій сумі використати вже відомі нові значення x_j^{k+1} , $j=\overline{1,i-1}$, то отримаємо формулу:

$$x_i^{k+1} = -\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_j^{k+1} - \sum_{j=i+1}^{n} \frac{a_{ij}}{a_{ii}} x_j^k + \frac{b_i}{a_{ii}}, i = \overline{1, n}, k = 0, 1, \dots.$$

Достатні умови збіжності методу Зейделя такі самі, як для методу Якобі. Крім того, метод Зейделя збігається якщо $A^T=A\geq 0$. Умова невід'ємності симетричної матриці A означає, що невід'ємні її головні мінори.

Змінивши порядок обчислення компонент, отримаємо ще одну формулу методу Зейделя:

$$x_i^{k+1} = -\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_j^k - \sum_{j=i+1}^n \frac{a_{ij}}{a_{ii}} x_j^{k+1} + \frac{b_i}{a_{ii}}, i = \overline{1, n}, k = 0, 1, \dots$$

Умова зупинки ітераційного процесу Зейделя при досягнені точності в спрощеній формі має вигляд

$$||x^{(k+1)} - x^{(k)}|| \le \varepsilon$$

Більш точна умова закінчення ітераційного процесу має вигляд

$$||Ax^{(k)} - b|| \le \varepsilon$$

3) Необхідні обчислення

Перевіримо СЛАУ на збіжність:

$$|5| \ge |1| + |1|$$
; $|5| \ge |1|$; $|4| \ge |2| + |1|$; $|3| \ge |2|$;

Отже можна застосувати метод Зейделя

4) Результат роботи програми

```
---Zeidel---

System Solution:

x[1]= 1.99966

x[2]= 3.00017

x[3]= 4.0005

x[4]= 4.99966
```