RESULTATS DE TEORIA DE HODGE

JORDI CARDIEL

Índex

1	Teoria de Hodge sobre varietats riemannianes compactes
	1.1 *
	1.2 Operadors diferencials el·líptics
	1.3 Isomorfisme de Hodge
2	Teoria de Hodge sobre varietats kählerianes
	2.1 ∂ i $\overline{\partial}$
	2.2 Estructura hermítica i kähleriana
	2.3 Identitats de Kähler i descomposició de Hodge

L'objectiu d'aquest document és presentar resultats bàsics de la teoria de Hodge per a varietats reals i complexes. En particular, varietats riemannianes compactes i varietats kählerianes, que són varietats diferenciables equipades d'una estructura complexa i una mètrica de Riemann compatible. Veurem l'anomenada descomposició de Hodge en ambdós casos.

1 Teoria de Hodge sobre varietats riemannianes compactes

Sigui (M, g) una n-varietat riemanniana orientada compacte, $\eta_M \in \Omega^n(M)$ element de volum de M.

1.1 *

Definició 1.1. Sigui $\star_k : \Omega^k(M) \to \Omega^{n-k}(M)$ l'operador definit per la identitat $\alpha \wedge \star_k \beta := g(\alpha, \beta)\eta_M$. Diem que \star_k és l'operador de Hodge.

Pensarem \star_k com una família d'operadors per cada k i escriurem \star . Es comprova que \star ve definit per un isomorfisme (veure [Voi02], 5.1.1.). La idea és que l'operador de Hodge completa una k-forma diferenciable al element de volum η_M . Tenim que $\Omega^k(M)$ és un espai prehilbertià si el dotem pel producte escalar

$$\langle \alpha, \beta \rangle = \int_{M} g(\alpha, \beta) \eta_{M} = \int_{M} \alpha \wedge \star \beta$$

Veiem propietats de l'operador de Hodge.

Lema 1.2. L'operador de Hodge satisfà $\star^2 = (-1)^{k(n-k)}id_{\Omega^k(M)}$, on $\star^2 : \Omega^k(M) \to \Omega^{n-k}(M) \to \Omega^k(M)$.

Demostració. Sigui $\beta \in \Omega^k(M)$. Tenim que

$$\begin{split} \alpha \wedge \star \beta &= g(\alpha,\beta)\eta_M & (\star \text{ operador de Hodge}) \\ &= g(\star \alpha, \star \beta)\eta_M & (\star \text{ preserva } g) \\ &= g(\star \beta, \star \alpha)\eta_M & (g \text{ simètrica}) \\ &= \star \beta \wedge \star \star \alpha & (\star \text{ operador de Hodge}) \\ &= (-1)^{k(n-k)} \star \star \alpha \wedge \star \beta & (\alpha \in \Omega^k(M), \star \beta \in \Omega^{n-k}(M) \text{ i } \omega_1 \wedge \omega_2 = (-1)^{\operatorname{ord} \omega_1 \operatorname{ord} \omega_2} \omega_2 \wedge \omega_1) \end{split}$$

d'on deduïm que $\star^2 = (-1)^{k(n-k)}id_{\Omega^k(M)}$.

Lema 1.3. $d^* := (-1)^k \star^{-1} d\star$ és l'operador adjunt de d.

Demostració. Sigui $\alpha \in \Omega^{k-1}(M), \beta \in \Omega^k(M)$. Aleshores,

$$\langle d\alpha, \beta \rangle = \int_{M} d\alpha \wedge \star \beta \qquad \qquad \text{(Per definició de } \langle \cdot, \cdot \rangle \text{)}$$

$$= \int_{M} d(\alpha \wedge \star \beta) + (-1)^{k} \alpha \wedge d \star \beta \qquad \qquad (\omega_{1}, \omega_{2} \in \Omega^{k}(M), d(\omega_{1} \wedge \omega^{2}) = d\omega_{1} \wedge \omega_{2} + (-1)^{k} \omega_{1} \wedge d\omega_{2})$$

$$= \int_{M} (-1)^{k} \alpha \wedge d \star \beta \qquad \qquad \text{(Teorema de Stokes: } \int_{M} d(\alpha \wedge \star \beta) = 0 \text{)}$$

$$= \int_{M} (-1)^{k} \alpha \wedge \star (\star^{-1} d \star \beta) \qquad \qquad (\star \text{ isomorfisme})$$

$$= \langle \alpha, (-1)^{k} \star^{-1} d \star \beta \rangle \qquad \text{(Per definició de } \langle \cdot, \cdot \rangle \text{)}$$

com volíem veure.

Definició 1.4. Sigui $\Delta_k^d: \Omega^k(M) \to \Omega^k(M)$ l'operador definit per $\Delta_k^d \alpha := (d_{k-1}d_k^* + d_{k+1}^*d_k)\alpha$. Diem que Δ_k^d és l'operador de Laplace-Beltrami.

Escriurem, fent un abús de notació, Δ_d .

Lema 1.5. $\langle \alpha, \Delta_d \alpha \rangle = \langle d^* \alpha, d^* \alpha \rangle + \langle d\alpha, d\alpha \rangle$.

Demostració. Tenim que

$$\begin{split} \langle \alpha, \Delta_d \alpha \rangle &= \langle \alpha, (dd^* + d^*d) \alpha \rangle & \text{(Per definici\'o de } \Delta_d) \\ &= \langle \alpha, dd^* \alpha \rangle + \langle \alpha, d^*d \alpha \rangle & \text{($\langle \cdot, \cdot \rangle$ lineal)} \\ &= \langle d^* \alpha, d^* \alpha \rangle + \langle d\alpha, d\alpha \rangle & \text{(d, d^* adjunts)} \end{split}$$

com volíem. \Box

Corol·lari 1.6. Δ_d és autoadjunt.

Demostració. Fent el mateix, $\langle \Delta_d \alpha, \alpha \rangle = \langle d^* \alpha, d^* \alpha \rangle + \langle d \alpha, d \alpha \rangle = \langle \alpha, \Delta_d \alpha \rangle$.

Corol·lari 1.7. $\ker \Delta_d = \ker d \cap \ker d^*$.

Demostració. Sigui $\alpha \in \ker \Delta_d$. Aleshores,

$$\|d^*\alpha\|^2 + \|d\alpha\|^2 = \langle \alpha, \Delta_d \alpha \rangle = 0 \qquad (\alpha \in \ker \Delta_d: \Delta_d \alpha = 0)$$

$$\implies \|d^*\alpha\|^2 = 0 \wedge \|d\alpha\|^2 = 0 \qquad (\|\cdot\| \ge 0)$$

$$\implies d^*\alpha = 0 \wedge d\alpha = 0 \qquad (\text{Per definició de } \|\cdot\|)$$

$$\implies \alpha \in \ker d \cap \ker d^*$$

Aleshores, $\ker \Delta_d \subset \ker d \cap \ker d^*$. Sigui $\alpha \in \ker d \cap \ker d^*$. Aleshores, $\Delta_d \alpha = dd^*\alpha + d^*d\alpha = 0 + 0 = 0$, d'on $\alpha \in \ker \Delta_d$ i $\ker d \cap \ker d^* \subset \ker \Delta_d$. Per doble inclusió, $\ker \Delta_d = \ker d \cap \ker d^*$.

1.2 Operadors diferencials el·líptics

Per descriure la descomposició de Hodge, requerim de les següents nocions. La referència principal d'aquesta subsecció és [Dem97].

Definició 1.8. Siguin E, F fibrats vectorials reals (o complexos) de M. Un operador diferencial de grau δ de E a F és un operador \mathbb{R} -lineal (o \mathbb{C} -lineal) $P: \mathcal{C}^{\infty}(M, E) \to \mathcal{C}^{\infty}(M, F)$ de la forma

$$Pf(x) = \sum_{|\alpha| \le \delta} a_{\alpha}(x) D^{\alpha} f(x)$$

on $E|_U \cong U \times \mathbb{R}^r$ (o $E|_U \cong U \times \mathbb{C}^r$), $F|_U \cong U \times \mathbb{R}^{r'}$ (o $F|_U \cong U \times \mathbb{C}^{r'}$) són trivializats localment en una carta local U de M equipada amb coordenades (x_1, \ldots, x_m) , on $a_{\alpha}(x) = (a_{\alpha_{\lambda,\mu}}(x))_{1 \leq \lambda \leq r', 1 \leq \mu \leq r}$ és una matriu d'ordre $r' \times r$ a coefficients a $C^{\infty}(U)$.

Definició 1.9. Un operador diferencial P és el·líptic si $\sigma_P(p,\xi) = \sum_{|\alpha|=\delta} a_{\alpha}(x)\xi^{\alpha} \in \text{Hom}(E_x,F_x)$ és injectiu per tot $p \in M$ i $\xi \in T_pM^* - \{0\}$.

Lema 1.10. El símbol de Δ_d és $\sigma_{\Delta_d}(\alpha)(\omega) = -g(\alpha,\alpha)\omega$.

Demostració. És suficient demostrar la igualtat localment i per la mètrica $g := \sum_{i=1}^{n} dx_i \otimes dx_i$ ([Voi02], 5.18). Es comprova que, si $\omega := \sum_{i_1 < ... < i_p} \omega_{i_1,...,i_p} dx_{i_1} \wedge ... \wedge dx_{i_p} \in \Omega^p(M)$, aleshores

$$\Delta_d \omega = -\sum_{i_1 < \dots < i_p} \left(\sum_{j=1}^n \partial_{x_j}^2 \omega_{i_1, \dots, i_p} \right) dx_{i_1} \wedge \dots \wedge dx_{i_p}$$

d'on es dedueix el resultat (pels càlculs, veure [Dem97], IV.3.12.)

Del darrer resultat es dedueix la el·lípticitat de Δ_d .

El següent resultat és cabdal pels resultats principals d'aquest treball. La demostració es basa en resultats de teoria el·líptica d'equacions en derivades parcials.

Teorema 1.11. Sigui $P: E \to F$ un operador diferencial el·líptic sobre una varietat compacte tals que E, F tenen el mateix rang i tenen una mètrica. Aleshores, $\ker P \subset \mathcal{C}^{\infty}(E)$ és de dimensió finita, $P(\mathcal{C}^{\infty}(E)) \subset \mathcal{C}^{\infty}(F)$ és tancat i de codimensió finita i $\mathcal{C}^{\infty}(E) = \ker P \oplus P^*(\mathcal{C}^{\infty}(F))$.

Demostració. Veure [Dem97], IV.2.4.

1.3 Isomorfisme de Hodge

La idea és aplicar 1.11 a l'operador Δ_d .

Teorema 1.12. $\ker \Delta_k^d \cong H^k(\Omega^{\bullet}(M;\mathbb{R}),d).$

Demostració. Per la descomposició anterior, en particular tenim

$$\Omega^{k}(M) = \ker \Delta_{d} \oplus \Delta_{d}^{*}(\Omega^{k}(M)) \qquad (\Delta_{d} \text{ operador el·líptic})$$

$$= \ker \Delta_{d} \oplus \Delta_{d}(\Omega^{k}(M)) \qquad (\Delta_{d} \text{ autoadjunt})$$

Considerem el morfisme

$$\pi \circ \iota : \ker \Delta_d \hookrightarrow \ker(d : \Omega^k(M) \to \Omega^{k+1}(M)) \twoheadrightarrow H^k(\Omega^{\bullet}(M; \mathbb{R}), d)$$

Sigui $\alpha \in \ker \pi \circ \iota$. Aleshores, $\alpha \in \operatorname{im} d$. Com $\alpha \in \ker \Delta_d$, en particular $\alpha \in \ker d^*$ ($\ker \Delta_d = \ker d \cap \ker d^*$), d'on deduïm que $\alpha \in \operatorname{im} d \cap \ker d^*$. Com d, d^* són adjunts, $\operatorname{im} d \cap \ker d^* = \operatorname{im} d \cap (\operatorname{im} d)^{\perp} = \{0\}$. Aleshores, $\alpha \in \{0\}$, d'on $\ker \pi \circ \iota \subset \{0\}$. Com la inclusió $\{0\} \subset \ker \pi \circ \iota$ és evident, per doble inclusió $\ker \pi \circ \iota = \{0\}$, d'on resulta la injectivitat de $\pi \circ \iota$.

Sigui $\alpha \in \ker d$. En particular, $\alpha \in \Omega^k(M) = \ker \Delta_d \oplus \Delta_d(\Omega^k(M))$, d'on $\exists \beta \exists \gamma (\beta \in \ker \Delta_d, \gamma \in \Omega^k(M)) \land \alpha = \beta + \Delta_d \gamma$. D'aquí obtenim que $d^*d\gamma = \alpha - \beta - dd^*\gamma \in \ker d$, ja que $\alpha, \beta, dd^*\gamma \in \ker d$. Per tant, $d^*d\gamma \in \ker d \cap \operatorname{im} d^* = \ker d \cap (\ker d)^{\perp} = \{0\}$, d'on deduïm que $d^*d\gamma = 0$. Aleshores, $\alpha = \beta + dd^*\gamma$. Passant al quocient, $\alpha + \operatorname{im} d = \beta + \operatorname{im} d$, d'on resulta l'exhaustivitat de $\pi \circ \iota$ (ja que hem vist que $\forall \alpha + \operatorname{im} d \in H^k(\Omega^{\bullet}(M;\mathbb{R}), d) \Rightarrow \exists \beta (\beta \in \ker \Delta_d \land \pi \circ \iota(\beta) = \alpha + \operatorname{im} d)$).

Per tant, $\iota \circ \pi$ és isomorfisme, d'on resulta $\ker \Delta_d \cong H^k(\Omega^{\bullet}(M;\mathbb{R}), d)$.

Corol·lari 1.13. $H^k(\Omega^{\bullet}(M;\mathbb{R}),d)$ és de dimensió finita.

Demostració. $\ker \Delta_d \cong H^k(\Omega^{\bullet}(M;\mathbb{R}),d)$ i $\ker \Delta_d$ és de dimensió finita per 1.11.

El darrer isomorfisme ens permet demostrar la dualitat de Poincaré per la cohomologia amb coeficients reals. Necessitem un lema previ sobre la commutativitat de \star i Δ_d .

Lema 1.14. \star *i* Δ_d *commuten*.

Demostració. Sigui $\alpha \in \Omega^k(M)$. Fixem-nos que

$$d^*\alpha = (-1)^k \star^{-1} d \star \alpha$$
 (Per definició de d^*)

$$= (-1)^k \star^{-1} \star^{-1} \star d \star \alpha$$

$$= (-1)^k (-1)^{k(n-k)} \star d \star \alpha$$
 ($\star^2 = (-1)^{k(n-k)}$)

D'una banda,

$$\star \Delta_{d} \alpha = \star dd^{*} \alpha + \star d^{*} d\alpha$$
 (Per definició de Δ_{d})
$$= (-1)^{k} (-1)^{k(n-k)} \star d \star d \star \alpha + (-1)^{k+1} (-1)^{(k+1)(n-(k+1))} \star \star d \star d\alpha$$
 ($\alpha \in \Omega^{k}, d\alpha \in \Omega^{k+1}$)
$$= (-1)^{k(n-k+1)} \star d \star d \star \alpha + (-1)^{k+1} (-1)^{(k+1)(n-(k+1))} (-1)^{k(n-k)} d \star d\alpha$$
 ($\star^{2} = (-1)^{k(n-k)}$)
$$= (-1)^{k(n-k+1)} \star d \star d \star \alpha + (-1)^{n-k} d \star d\alpha$$

D'altra banda,

$$\begin{split} \Delta_d \star \alpha &= dd^* \star \alpha + d^*d \star \alpha &\qquad \text{(Per definició de } \Delta_d) \\ &= (-1)^{n-k} (-1)^{k(n-k)} d \star d \star \star \alpha + (-1)^{n-k+1} (-1)^{(n-k+1)(k-1)} \star d \star d \star \alpha &\qquad (\star \alpha \in \Omega^{n-k}) \\ &= (-1)^{n-k} (-1)^{k(n-k)} (-1)^{k(n-k)} d \star d\alpha + (-1)^{k(n-k+1)} \star d \star d \star \alpha &\qquad (\star^2 = (-1)^{k(n-k)}) \\ &= (-1)^{n-k} d \star d\alpha + (-1)^{k(n-k+1)} \star d \star d \star \alpha &\qquad (\star^2 = (-1)^{k(n-k)}) \end{split}$$

d'on resulta $\star \Delta_d = \Delta_d \star$.

Teorema 1.15 (Dualitat de Poincaré). $H^k(\Omega^{\bullet}(M;\mathbb{R}),d) \cong \operatorname{Hom}_{\mathbb{R}}(H^{n-k}(\Omega^{\bullet}(M;\mathbb{R}),d),\mathbb{R}).$

Demostració. Considerem la forma bilineal $\varphi: H^k(\Omega^{\bullet}(M;\mathbb{R}), d) \times H^{n-k}(\Omega^{\bullet}(M;\mathbb{R}), d) \to \mathbb{R}$ definida per

$$\varphi(\alpha + \operatorname{im} d, \beta + \operatorname{im} d) := \int_{M} \alpha \wedge \beta$$

Siguin $\alpha + \operatorname{im} d$, $\alpha' + \operatorname{im} d \in H^k(\Omega^{\bullet}(M; \mathbb{R}), d)$ i $\beta + \operatorname{im} d$, $\beta' + \operatorname{im} d \in H^{n-k}(\Omega^{\bullet}(M; \mathbb{R}), d)$ tal que $\alpha + \operatorname{im} d = \alpha' + \operatorname{im} d$ i $\beta + \operatorname{im} d = \beta' + \operatorname{im} d$. Aleshores, $\exists \gamma (\gamma \in \Omega^{k-1}(M) \land \alpha = \alpha' + d\gamma)$ i $\exists \gamma' (\gamma \in \Omega^{k-1}(M) \land \beta = \beta' + d\gamma')$. Pel teorema de Stokes i com β' , α' , $d\gamma' \in \ker d$, obtenim

$$\begin{split} &\int_{M} \alpha \wedge \beta \\ &= \int_{M} (\alpha' + d\gamma) \wedge (\beta' + d\gamma') \\ &= \int_{M} \alpha' \wedge \beta' + d(\gamma \wedge \beta') + (-1)^{k} \gamma \wedge d\beta' + d(\alpha' \wedge \beta') + (-1)^{k+1} d\alpha' \wedge \beta' + d(\gamma \wedge d\gamma') + (-1)^{k} \gamma \wedge d^{2} \gamma' \\ &= \int_{M} \alpha' \wedge \beta' + d(\gamma \wedge \beta') + d(\alpha' \wedge \beta') + d(\gamma \wedge d\gamma') \\ &= \int_{M} \alpha' \wedge \beta' \end{split}$$

és a dir, $\varphi(\alpha + \operatorname{im} d, \beta + \operatorname{im} d) = \varphi(\alpha' + \operatorname{im} d, \beta + \operatorname{im} d)$. Per tant, φ esta ben definida.

Ara, considerem $\Phi: H^k(\Omega^{\bullet}(M;\mathbb{R}),d) \to \operatorname{Hom}(H^{n-k}(\Omega^{\bullet}(M;\mathbb{R}),d),\mathbb{R})$ definda per $\Phi(\alpha+\operatorname{im} d)(\beta+\operatorname{im} d):=\varphi(\alpha,\beta)$ (clarament ben definida). Sigui $\alpha+\operatorname{im} d\in \ker\Phi$. Aleshores, $\forall \beta+\operatorname{im} d(\beta+\operatorname{im} d\in H^{n-k}(\Omega^{\bullet}(M;\mathbb{R}),d))$ $\Rightarrow \Phi(\alpha+\operatorname{im} d)(\beta+\operatorname{im} d)=0$. Suposem que $\alpha+\operatorname{im} d\neq \operatorname{im} d$ (i, en particular, $\alpha\neq 0$). Com $\ker\Delta_d\cong H^k(\Omega^{\bullet}(M;\mathbb{R}),d)$, podem suposar sense pèrdua de la generalitat que $\alpha\in\ker\Delta_d$. Per la commutativitat de \star i Δ_d , $\star\alpha\in\ker\Delta_d$. Ara,

$$\begin{split} \Phi(\alpha + \operatorname{im} d)(\star \alpha + \operatorname{im} d) &= \varphi(\alpha + \operatorname{im} d, \star \alpha + \operatorname{im} d) & \text{(Per definició de } \Phi) \\ &= \int_{M} \alpha \wedge \star \alpha & \text{(Per definició de } \varphi) \\ &= \|\alpha\|^{2} \neq 0 & (\alpha \neq 0) \end{split}$$

contradicció, ja que $\Phi(\alpha + \operatorname{im} d)(\star \alpha + \operatorname{im} d) = 0$. Per tant, $\alpha + \operatorname{im} d = \operatorname{im} d$, d'on $\ker \Phi \subset \{\operatorname{im} d\}$. Com $\{\operatorname{im} d\} \subset \ker \Phi$ és evident, per doble inclusió $\ker \Phi = \{\operatorname{im} d\}$, d'on Φ és injectiva. Similarment, podriem haver definit $\Phi' : H^{n-k}(\Omega^{\bullet}(M;\mathbb{R}),d) \to \operatorname{Hom}(H^k(\Omega^{\bullet}(M;\mathbb{R}),d),\mathbb{R})$ injectiva. Com $H^k(\Omega^{\bullet}(M;\mathbb{R}),d), H^{n-k}(\Omega^{\bullet}(M;\mathbb{R}),d)$ són de dimensió finita, per la injectivitat de Φ i Φ' , tenen la mateixa dimensió. Per tant, Φ és isomorfisme, d'on resulta $H^k(\Omega^{\bullet}(M;\mathbb{R}),d) \cong \operatorname{Hom}(H^{n-k}(\Omega^{\bullet}(M;\mathbb{R}),d),\mathbb{R})$.

2 Teoria de Hodge sobre varietats kählerianes

Sigui M una 2n-varietat amb un atles holomorf.

2.1 $\partial i \overline{\partial}$

Direm que una estructura quasi complexa en M és un endomorfisme $J:TM\to TM$ tal que $J^2=-Id_{TM}$. El parell (M,J) s'anomenarà 2n-varietat quasi complexa. Fixem-nos que J dota a TM (i per tant a TM^*) d'una estructura de \mathbb{C} -mòdul.

Considerem la complexificació de TM^* , $TM^* \otimes_{\mathbb{R}} \mathbb{C}$. Podem estendre J^* a $TM^* \otimes_{\mathbb{R}} \mathbb{C}$ via $J^* \otimes_{\mathbb{R}} Id_{\mathbb{C}}$. Per definició de J^* , $i \otimes_{\mathbb{R}} 1_{\mathbb{C}}$ i $-i \otimes_{\mathbb{R}} 1_{\mathbb{C}}$ són els valors propis de $J^* \otimes_{\mathbb{R}} Id_{\mathbb{C}}$, deduïm la descomposició

$$TM^* \otimes_{\mathbb{R}} \mathbb{C} = \ker((J^* - iId_{TM^*}) \otimes_{\mathbb{R}} Id_{\mathbb{C}}) \oplus \ker((J^* + iId_{TM^*}) \otimes_{\mathbb{R}} Id_{\mathbb{C}})$$

Tenim que, si $\{v_1, \ldots, v_n\}$, $\{w_1, \ldots, w_n\}$ \mathbb{C} -bases de $\ker((J^* - iId_{TM^*}) \otimes_{\mathbb{R}} Id_{\mathbb{C}})$, $\ker((J^* + iId_{TM^*}) \otimes_{\mathbb{R}} Id_{\mathbb{C}})$ respectivament,

$$\{v_{i_1} \wedge \ldots \wedge v_{i_p} \otimes_{\mathbb{C}} w_{j_1} \wedge \ldots \wedge w_{j_q} : 1 \leq i_1 < \ldots i_p \leq n \wedge 1 \leq j_1 < \ldots j_q \leq n\}$$

és una base de

$$\bigwedge^{p} \ker((J^{*} - iId_{TM^{*}}) \otimes_{\mathbb{R}} Id_{\mathbb{C}}) \otimes_{\mathbb{C}} \bigwedge^{q} \ker((J^{*} + iId_{TM^{*}}) \otimes_{\mathbb{R}} Id_{\mathbb{C}})$$

d'on deduïm que té dimensió $\binom{n}{p}\binom{n}{q}$. Aleshores, d'una banda tenim que $\dim_{\mathbb{C}}(TM^*\otimes_R\mathbb{C})=\binom{2n}{k}$ i de l'altra

d'on deduïm la descomposició

$$TM^* \otimes_{\mathbb{R}} \mathbb{C} = \bigoplus_{p+q=k} \bigwedge^p \ker((J^* - iId_{TM^*}) \otimes_{\mathbb{R}} Id_{\mathbb{C}}) \otimes_{\mathbb{C}} \bigwedge^q \ker((J^* + iId_{TM^*}) \otimes_{\mathbb{R}} Id_{\mathbb{C}})$$

Aquest argument serveix per qualsevol \mathbb{C} -mòdul finitament generat amb una estructura quasi complexa. La darrera descomposició indueix una descomposició en les seccions, és a dir, les k-formes \mathbb{C} -diferenciables:

$$\Omega^k(M) \otimes_{\mathbb{R}} \mathbb{C} = \bigoplus_{p+q=K} \Omega^p(\ker((J^* - iId_{TM^*}) \otimes_{\mathbb{R}} Id_{\mathbb{C}})) \otimes_{\mathbb{C}} \Omega^q(\ker((J^* + iId_{TM^*}) \otimes_{\mathbb{R}} Id_{\mathbb{C}}))$$

Escriurem $\mathcal{A}^{p,q}(M) := \Omega^p(\ker((J^* - iId_{TM^*}) \otimes_{\mathbb{R}} Id_{\mathbb{C}})) \otimes_{\mathbb{C}} \Omega^q(\ker((J^* + iId_{TM^*}) \otimes_{\mathbb{R}} Id_{\mathbb{C}})).$ Recordem que d és la derivada exterior.

Definició 2.1. Definim els operadors ∂ i $\overline{\partial}$ per

$$\begin{split} \partial_{p,q} &:= \pi^{p+1,q} \circ (d \otimes_{\mathbb{R}} id_{\mathbb{C}}) \circ \iota^{p,q} : \mathcal{A}^{p,q}(M) \hookrightarrow \Omega^k(M) \otimes_{\mathbb{R}} \mathbb{C} \to \Omega^{k+1}(X) \otimes_{\mathbb{R}} \mathbb{C} \twoheadrightarrow \mathcal{A}^{p+1,q}(M) \\ \overline{\partial}_{p,q} &:= \pi^{p,q+1} \circ (d \otimes_{\mathbb{R}} id_{\mathbb{C}}) \circ \iota^{p,q} : \mathcal{A}^{p,q}(M) \hookrightarrow \Omega^k(M) \otimes_{\mathbb{R}} \mathbb{C} \to \Omega^{k+1}(X) \otimes_{\mathbb{R}} \mathbb{C} \twoheadrightarrow \mathcal{A}^{p,q+1}(M) \end{split}$$

Es demostra que per una 2n-varietat quasi complexa (M, J), M és n-varietat complexa si i només si $d = \partial + \overline{\partial}$. De $d^2 = 0$, es dedueix que $\partial^2 = \overline{\partial}^2 = 0$ i $\partial \overline{\partial} + \overline{\partial} \partial = 0$. Obtenim el bicomplex de cocadenes $\mathcal{A}^{\bullet, \bullet}$:

$$0 \longrightarrow \mathcal{A}^{0,0}(M) \stackrel{\overline{\partial}}{\longrightarrow} \mathcal{A}^{0,1}(M) \stackrel{\overline{\partial}}{\longrightarrow} \mathcal{A}^{0,2}(M) \longrightarrow \cdots$$

$$\downarrow \partial \qquad \qquad \downarrow \partial \qquad \qquad \downarrow \partial \qquad \qquad \downarrow \partial$$

$$0 \longrightarrow \mathcal{A}^{1,0}(M) \stackrel{\overline{\partial}}{\longrightarrow} \mathcal{A}^{1,1}(M) \stackrel{\overline{\partial}}{\longrightarrow} \mathcal{A}^{1,2}(M) \longrightarrow \cdots$$

$$\downarrow \partial \qquad \qquad \downarrow \partial \qquad \qquad \downarrow \partial$$

$$0 \longrightarrow \mathcal{A}^{2,0}(M) \stackrel{\overline{\partial}}{\longrightarrow} \mathcal{A}^{2,1}(M) \stackrel{\overline{\partial}}{\longrightarrow} \mathcal{A}^{2,2}(M) \longrightarrow \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

De cada fila i cada columna podem definir una cohomologia:

Definició 2.2. Definim els grups de cohomologia de Dolbeault i anti-Dolbeault com $H^q(\mathcal{A}^{p,\bullet}(M), \overline{\partial})$ i $H^p(\mathcal{A}^{\bullet,q}(M), \partial)$ respectivament.

Es pot comprovar que $H^q(\mathcal{A}^{p,\bullet}(M), \overline{\partial}) = H^q(\mathcal{A}^{\bullet,p}(M), \partial)$ ja que ∂ i $\overline{\partial}$ són conjugats. Volem ara recuperar els operadors de la secció anterior. Podem estendre \star a $\mathcal{A}^{p,q}(M)$ completant el següent diagrama:

$$\Omega^{k}(M) \hookrightarrow \Omega^{k}(M) \otimes_{R} \mathbb{C} \xrightarrow{\pi^{p,q}} \mathcal{A}^{p,q}(M)$$

$$\downarrow^{\star} \qquad \qquad \downarrow^{\star \otimes_{\mathbb{R}} id_{\mathbb{C}}}$$

$$\Omega^{2n-k}(M) \hookrightarrow \Omega^{2n-k}(M) \otimes_{R} \mathbb{C} \xrightarrow{\pi^{n-p,n-q}} \mathcal{A}^{n-p,n-q}(M)$$

Es comprova que el morfisme que fa commutatiu el diagrama és $\pi^{n-p,n-q} \circ (\star_k \otimes_{\mathbb{R}} id_{\mathbb{C}}) \circ \iota^{p,q}$. El denotem per $\star_{p,q}$. De forma similar a la secció anterior, obtenim que

$$\partial_{p,q}^* = -\star_{2n-p+1,2n-q}^{-1} \circ \partial_{2n-p,2n-q} \circ \star_{p,q} : \mathcal{A}^{p,q}(M) \to \mathcal{A}^{p-1,q}(M)$$
$$\overline{\partial}_{p,q}^* = -\star_{2n-p,2n-q+1}^{-1} \circ \overline{\partial}_{2n-p,2n-q} \circ \star_{p,q} : \mathcal{A}^{p,q}(M) \to \mathcal{A}^{p,q-1}(M)$$

són els operadors adjunts amb el producte escalar

$$\langle \alpha, \beta \rangle = \int_{M} \alpha \wedge \overline{\star_{p,q} \beta}, \ \alpha, \beta \in \mathcal{A}^{p,q}(M)$$

de $\partial, \overline{\partial}$. Ara, podem definir els operadors de Laplace-Beltrami sobre $\partial, \overline{\partial}$ com

$$\begin{split} & \Delta^{\partial}_{p,q} := \partial_{p-1,q} \circ \partial^*_{p,q} + \partial^*_{p+1,q} \circ \partial_{p,q} : \mathcal{A}^{p,q}(M) \to \mathcal{A}^{p,q}(M) \\ & \Delta^{\overline{\partial}}_{p,q} := \overline{\partial}_{p,q-1} \circ \overline{\partial}^*_{p,q} + \overline{\partial}^*_{p,q+1} \circ \overline{\partial}_{p,q} : \mathcal{A}^{p,q}(M) \to \mathcal{A}^{p,q}(M) \end{split}$$

Per definir Δ_d sobre $\mathcal{A}^{p,q}(M)$, el pensem com $\pi^{p,q} \circ (\Delta_k^p \otimes_{\mathbb{R}} id_{\mathbb{C}}) \circ \iota^{p,q}$:

$$\mathcal{A}^{p,q}(M) \stackrel{\iota^{p,q}}{----} \Omega^k(M) \otimes_R \mathbb{C} \stackrel{d_k^* \otimes_{\mathbb{R}} id_{\mathbb{C}}}{------} \Omega^{k-1}(M) \otimes_R \mathbb{C}$$

$$\downarrow^{d_k \otimes_{\mathbb{R}} id_{\mathbb{C}}} \downarrow^{d_k \otimes_{\mathbb{R}} id_{\mathbb{C}}} \downarrow^{d_{k-1} \otimes_{\mathbb{R}} id_{\mathbb{C}}}$$

$$\Omega^{k+1}(M) \otimes_R \mathbb{C} \stackrel{d_{k+1}^* \otimes_{\mathbb{R}} id_{\mathbb{C}}}{------------------} \Omega^k(M) \otimes_R \mathbb{C} \stackrel{\pi^{p,q}}{---------------------} \mathcal{A}^{p,q}(M)$$

Tots els resultats de la secció anterior es compleixen amb aquests nous operadors. Cometrem abusos de notació i escriurem $\Delta_{p,q}^{\partial} = \Delta_{\partial}$ i viceversa.

2.2 Estructura hermítica i kähleriana

Definició 2.3. Sigui (M,J) una 2n-varietat quasi complexa i g mètrica de Riemann en M. g és compatible amb l'estructura quasi complexa J si $\forall p(p \in M \Rightarrow \forall u \forall v(u,v \in T_pM \Rightarrow g_p(v,w) = g_p(J(v),J(w))))$. En aquest cas, direm que g és una estructura hermítica en M, que (M,J) dotada d'una estructura hermítica és una varietat hermítica i anomenarem $\omega := g(J(\cdot),\cdot)$ la forma fonamental.

Fixem-nos que tota varietat quasi complexa és una varietat hermítica: admet una estructura hermítica via $h_p(v,w) := g_p(v,w) + g_p(J(v),J(w))$, on g és una mètrica riemanniana de M arbitrària. En coordenades holomorfes (z_1,\ldots,z_n) , la forma fonamental s'escriu com

$$\omega = \frac{i}{2} \sum_{i,j=1}^{n} h_{i,j} dz_i \wedge d\overline{z}_j$$

Ara, considerem varietats complexes.

Definició 2.4. Una estructura kähleriana és una estructura hermítica tal que la seva forma fonamental és tancada. Anomenarem n-varietat kähleriana a una n-varietat complexa equipada amb una estructura kähleriana.

Lema 2.5. Sigui (M, g, J) una n-varietat kähleriana. Aleshores, en tot entorn de $p \in M$ existeixen coordenades z'_1, \ldots, z'_n tals que $h = Id + O(||z||^2)$.

Demostració. Considerem coordenades holomorfes (z_1,\ldots,z_n) centrades en $p\in M$. Llevat d'un canvi de coordenades lineal, podem suposar que $(h_{ij})(0)=Id_n$. Si $\partial_{z_k}:=\frac{\partial}{\partial z_k}, \partial_{\overline{z}_k}:=\frac{\partial}{\partial \overline{z}_k}$, per holomorfia,

$$g_{ij} = \delta_{ij} + \sum_{k=1}^{n} \left(\partial_{z_k} h_{ij}(0) z_k + \partial_{\overline{z}_k} h_{ij}(0) \overline{z}_k \right) + O(\|h\|^2)$$
 ((h_{ij})(0) = Id_n)

Fixem-nos que

$$\begin{array}{ll} \partial_{\overline{z}_k} g_{i,j} \mathrm{d} \overline{z}_k \wedge \mathrm{d} z_i \wedge \mathrm{d} \overline{z}_j & (\partial_{\overline{z}} f = \partial_z \overline{f}) \\ &= \partial_{z_k} g_{j,i} \mathrm{d} \overline{z}_k \wedge \mathrm{d} z_i \wedge \mathrm{d} \overline{z}_j & (g \text{ hermitica}) \\ &= -\partial_{z_k} g_{j,i} \mathrm{d} z_i \wedge \mathrm{d} \overline{z}_j & (\wedge \text{ alternada}) \\ &= -\partial_{z_i} g_{j,k} \mathrm{d} z_k \wedge \mathrm{d} \overline{z}_i \wedge \mathrm{d} \overline{z}_j & (i := k, k := i) \\ &= -\partial_{\overline{z}_i} g_{j,k} \mathrm{d} z_k \wedge \mathrm{d} z_i \wedge \mathrm{d} \overline{z}_j & (z_i := \overline{z}_i, \overline{z}_i := z_i) \\ &= -\partial_{z_i} \overline{g_{j,k}} \mathrm{d} z_k \wedge \mathrm{d} z_i \wedge \mathrm{d} \overline{z}_j & (\partial_{\overline{z}} f = \partial_z \overline{f}) \\ &= -\partial_{z_i} g_{j,j} \mathrm{d} z_k \wedge \mathrm{d} z_i \wedge \mathrm{d} \overline{z}_j & (g \text{ hermitica}) \end{array}$$

Tenim que $d\omega = 0$ ja que M és kähleriana. A més,

$$d\omega = (\partial + \overline{\partial}) \left(\frac{i}{2} \sum_{i,j=1}^{n} h_{i,j} dz_{i} \wedge d\overline{z}_{j} \right)$$

$$= \frac{i}{2} \sum_{i,j,k=1}^{n} \partial_{z_{k}} h_{i,j} dz_{k} \wedge dz_{i} \wedge d\overline{z}_{j} + \partial_{\overline{z}_{k}} h_{i,j} d\overline{z}_{k} \wedge dz_{i} \wedge d\overline{z}_{j}$$

$$= \frac{i}{2} \sum_{i,j,k=1}^{n} (\partial_{z_{k}} h_{i,j} - \partial_{z_{i}} g_{k,j}) dz_{k} \wedge dz_{i} \wedge d\overline{z}_{j}$$

$$\left(\partial_{\overline{z}_{k}} g_{i,j} d\overline{z}_{k} \wedge dz_{i} \wedge d\overline{z}_{j} \right)$$

$$\left(\partial_{\overline{z}_{k}} g_{i,j} d\overline{z}_{k} \wedge dz_{i} \wedge d\overline{z}_{j} \right)$$

$$\left(\partial_{\overline{z}_{k}} g_{i,j} d\overline{z}_{k} \wedge dz_{i} \wedge d\overline{z}_{j} \right)$$

$$\left(\partial_{\overline{z}_{k}} g_{i,j} d\overline{z}_{k} \wedge dz_{i} \wedge d\overline{z}_{j} \right)$$

d'on deduïm que $\partial_{z_k} h_{i,j} = \partial_{z_i} g_{k,j}$. Definim $z'_j := z_j + \frac{1}{2} \sum_{i,k=1}^n \partial_{z_k} g_{i,j}(0) z_i z_k$. Aleshores

$$\begin{split} &\operatorname{d} z_j' \wedge \operatorname{d} \overline{z}_j' \\ &= \operatorname{d} \left(z_j + \frac{1}{2} \sum_{i,k=1}^n \partial_{z_k} g_{i,j}(0) z_i z_k \right) \wedge \operatorname{d} \left(\overline{z}_j + \frac{1}{2} \sum_{i,k=1}^n \partial_{\overline{z}_k} g_{j,i}(0) \overline{z}_i \overline{z}_k \right) \\ &= \left(\operatorname{d} z_j + \frac{1}{2} \sum_{i,k=1}^n \left(\partial_{z_k} g_{i,j}(0) + \partial_{z_i} g_{k,j}(0) \right) z_k \operatorname{d} z_i \right) \wedge \left(\operatorname{d} \overline{z}_j + \frac{1}{2} \sum_{i,k=1}^n \left(\partial_{\overline{z}_k} g_{j,i}(0) + \partial_{\overline{z}_i} g_{j,k}(0) \right) \overline{z}_k \operatorname{d} \overline{z}_i \right) \\ &= \left(\operatorname{d} z_j + \sum_{i,k=1}^n \partial_{z_k} g_{i,j}(0) z_k \operatorname{d} z_i \right) \wedge \left(\operatorname{d} \overline{z}_j + \sum_{i,k=1}^n \partial_{\overline{z}_k} g_{j,i}(0) \overline{z}_k \operatorname{d} \overline{z}_i \right) \\ &= \operatorname{d} z_j \wedge \operatorname{d} \overline{z}_j + \sum_{i,k=1}^n \partial_{z_k} g_{i,j}(0) z_k \operatorname{d} z_i \wedge \operatorname{d} \overline{z}_j + \sum_{i,k=1}^n \partial_{\overline{z}_k} g_{j,i}(0) \overline{z}_k \operatorname{d} z_j \wedge \operatorname{d} \overline{z}_i + O(\|z\|^2) \end{split}$$

d'on deduïm que

$$\omega = \frac{i}{2} \sum_{i,j=1}^{n} \left(\delta_{ij} + \sum_{k=1}^{n} \left(\partial_{z_k} h_{ij}(0) z_k + \partial_{\overline{z}_k} h_{ij}(0) \overline{z}_k \right) + O(\|h\|^2) \right) dz_i \wedge d\overline{z}_j$$

$$= \frac{i}{2} \sum_{j=1}^{n} \left(dz_j \wedge d\overline{z}_j + \sum_{i,k=1}^{n} \partial_{z_k} g_{i,j}(0) z_k dz_i \wedge d\overline{z}_j + \sum_{i,k=1}^{n} \partial_{\overline{z}_k} g_{j,i}(0) \overline{z}_k dz_j \wedge d\overline{z}_i \right) + O(\|z\|^2)$$

$$= \frac{i}{2} \sum_{j=1}^{n} dz'_i \wedge d\overline{z}'_j$$

com volíem veure.

2.3 Identitats de Kähler i descomposició de Hodge

Sigui M n-varietat kähleriana amb forma fonamental ω . Definim l'operador de Lefschetz $L_k: \Omega^k(M) \to \Omega^{k+2}(M)$ via $L_k(\alpha) := \omega \wedge \alpha$. Es comprova que els seu operador autoadjunt és $\Lambda_k: \Omega^k(M) \to \Omega^{k-2}(M)$ definit via $\Lambda_k:=\star_{2n-k+2}^{-1}\circ L_{2n-k}\circ \star_k$. Escriurem L i Λ .

Proposició 2.6. $[\overline{\partial}^*, L] = i\partial$, $[\partial^*, L] = -i\overline{\partial}$, $[\Lambda, \overline{\partial}] = -i\partial^*$ $i [\Lambda, \partial] = i\overline{\partial}^*$.

Demostració. Demostrem només $[\overline{\partial}^*, L] = i\partial$. Les altres igualtats resulten de la propietat d'adjunció i per conjugació.

Donat $p \in M$, podem escollir coordenades holomorfes (z_1, \ldots, z_n) tals que $\omega = \sum_{\ell=1}^n \mathrm{d}z_\ell \wedge \mathrm{d}\overline{z}_\ell$. En coordenades, podem veure que

$$\overline{\partial}^* \alpha = -\sum_{j=1}^n \partial_{z_j} \, \mathrm{d} \partial_{z_j} \, \alpha$$

on \lrcorner és el producte interior. Fixem-nos que, si $\ell = j$,

$$\begin{split} \partial_{z_j} \, \lrcorner \big(\mathrm{d} z_\ell \wedge \mathrm{d} \overline{z}_\ell \wedge \partial_{z_j} \alpha \big) &= \partial_{z_j} \, \lrcorner \big(\mathrm{d} z_\ell \wedge \mathrm{d} \overline{z}_\ell \big) \wedge \partial_{z_j} \alpha + \mathrm{d} z_\ell \wedge \mathrm{d} \overline{z}_\ell \wedge \partial_{z_j} \, \lrcorner \partial_{z_j} \alpha & \qquad \qquad \big(\lrcorner \; \mathrm{derivaci\'o} \big) \\ &= \big(\partial_{z_j} \, \lrcorner \mathrm{d} z_\ell \wedge \mathrm{d} \overline{z}_\ell - \mathrm{d} z_\ell \wedge \partial_{z_\ell} \, \lrcorner \mathrm{d} \overline{z}_\ell \big) \wedge \partial_{z_j} \alpha + \mathrm{d} z_\ell \wedge \mathrm{d} \overline{z}_\ell \wedge \partial_{z_j} \, \lrcorner \partial_{z_j} \alpha & \qquad \big(\lrcorner \; \mathrm{derivaci\'o} \big) \\ &= -\mathrm{d} z_\ell \wedge \partial_{z_\ell} \, \lrcorner \mathrm{d} \overline{z}_\ell \wedge \partial_{z_j} \alpha + \mathrm{d} z_\ell \wedge \mathrm{d} \overline{z}_\ell \wedge \partial_{z_j} \, \lrcorner \partial_{z_j} \alpha & \qquad \big(\partial_{z_j} \, \lrcorner \mathrm{d} z_j = 0 \big) \\ &= -\mathrm{d} z_\ell \wedge \partial_{z_j} \alpha + \mathrm{d} z_\ell \wedge \mathrm{d} \overline{z}_\ell \wedge \partial_{z_j} \, \lrcorner \partial_{z_j} \alpha & \qquad \big(\partial_{z_j} \, \lrcorner \mathrm{d} \overline{z}_j = 1 \big) \end{split}$$

Aleshores,

$$\begin{split} [\overline{\partial}^*, L] \alpha &= \overline{\partial}^* (\omega \wedge \alpha) - \omega \wedge \overline{\partial}^* \alpha \\ &= -\sum_{j=1}^n \partial_{z_j} \lrcorner \partial_{z_j} (\omega \wedge \alpha) + \omega \wedge \sum_{j=1}^n \partial_{z_j} \lrcorner \partial_{z_j} \alpha \\ &= -\sum_{j=1}^n \partial_{z_j} \lrcorner \partial_{z_j} \left(i \sum_{\ell=1}^n \mathrm{d} z_\ell \wedge \mathrm{d} \overline{z}_\ell \wedge \alpha \right) + i \sum_{\ell=1}^n \mathrm{d} z_\ell \wedge \mathrm{d} \overline{z}_\ell \wedge \sum_{j=1}^n \partial_{z_j} \lrcorner \partial_{z_j} \alpha \\ &= -\sum_{j=1}^n \left(i \sum_{\ell=1}^n \partial_{z_j} \lrcorner \left(\mathrm{d} z_\ell \wedge \mathrm{d} \overline{z}_\ell \wedge \partial_{z_j} \alpha \right) \right) + \sum_{j=1}^n \left(i \sum_{\ell=1}^n \mathrm{d} z_\ell \wedge \mathrm{d} \overline{z}_\ell \wedge \partial_{z_j} \lrcorner \partial_{z_j} \alpha \right) \\ &= \sum_{j=1}^n \mathrm{d} z_\ell \wedge \partial_{z_j} \alpha \\ &= i \partial \alpha \end{split}$$

com volíem. \Box

Proposició 2.7. $\Delta_d = 2\Delta_{\partial} = 2\Delta_{\overline{\partial}}$.

Demostració. Tenim que

$$\begin{split} & \Delta_d = dd^* + d^*d & (\text{Definici\'o de } \Delta_d) \\ & = (\partial + \overline{\partial})(\partial^* + \overline{\partial}^*) + (\partial^* + \overline{\partial}^*)(\partial + \overline{\partial}) & (d = \partial + \overline{\partial}) \\ & = (\partial + \overline{\partial})(\partial^* - i[\Lambda, \partial]) + (\partial^* - i[\Lambda, \partial])(\partial + \overline{\partial}) & ([\Lambda, \partial] = i\overline{\partial}^*) \\ & = \Delta_\partial + \overline{\partial}\partial^* - i\partial\Lambda\partial - i\overline{\partial}\Lambda\partial + i\partial^2\Lambda + i\partial\overline{\partial}\Lambda - i\Lambda\partial^2 + i\partial\Lambda\partial - i\Lambda\partial\overline{\partial} + i\partial\Lambda\overline{\partial} + \partial^*\overline{\partial} & (\text{Definici\'o de } \Delta_\partial) \\ & = \Delta_\partial + \overline{\partial}\partial^* - i\overline{\partial}\Lambda\partial + i\partial\overline{\partial}\Lambda - i\Lambda\partial\overline{\partial} + i\partial\Lambda\overline{\partial} + \partial^*\overline{\partial} & (\partial^2 = 0) \end{split}$$

Fixem-nos que

$$\begin{split} \partial^* \overline{\partial} &= i [\Lambda, \overline{\partial}] \overline{\partial} \\ &= i \Lambda \overline{\partial} \overline{\partial} - i \overline{\partial} \Lambda \overline{\partial} \\ &= -i \overline{\partial} \Lambda \overline{\partial} \\ &= -i \overline{\partial} \Lambda \overline{\partial} + i \overline{\partial} \overline{\partial} \Lambda \\ &= -\overline{\partial} (i [\Lambda, \overline{\partial}]) \\ &= -\overline{\partial} \partial^* \end{split} \qquad (\overline{\partial}^2 = 0)$$

Aleshores,

$$\begin{split} \Delta_{d} &= \Delta_{\partial} + \overline{\partial}\partial^{*} - i\overline{\partial}\Lambda\partial + i\partial\overline{\partial}\Lambda - i\Lambda\partial\overline{\partial} + i\partial\Lambda\overline{\partial} + \partial^{*}\overline{\partial} \\ &= \Delta_{\partial} - i\overline{\partial}\Lambda\partial + i\partial\overline{\partial}\Lambda - i\Lambda\partial\overline{\partial} + i\partial\Lambda\overline{\partial} \\ &= \Delta_{\partial} + \partial(i[\Lambda, \overline{\partial}]) + i[\Lambda, \overline{\partial}]\partial \\ &= \Delta_{\partial} + \partial\partial^{*} + \partial^{*}\partial \\ &= 2\Delta_{\partial} \end{split} \qquad \begin{aligned} &(\partial^{*}\overline{\partial} = -\overline{\partial}\partial^{*}) \\ &([\Lambda, \overline{\partial}] = -i\partial^{*}) \\ &([\Lambda, \overline{\partial}] = -i\partial^{*}) \end{aligned}$$

$$([\Lambda, \overline{\partial}] = -i\partial^{*})$$

La igualtat $\Delta_d = 2\Delta_{\overline{\partial}}$ és similar, d'on obtenim el resultat.

Corol·lari 2.8. $\Delta_d(\mathcal{A}^{p,q}(M)) \subset \mathcal{A}^{p,q}(M)$.

Demostració. Donat
$$\omega \in \mathcal{A}^{p,q}(M), \ \Delta_d \omega = 2\Delta_{\partial} \omega \in \mathcal{A}^{p,q}(M).$$

Corol·lari 2.9. Si $\alpha \in \Omega^k(M) \otimes_{\mathbb{R}} \mathbb{C}$ és harmònic, les seves components $\alpha^{p,q} \in \mathcal{A}^{p,q}(M)$ són harmòniques.

Demostració. Recordem la descomposició
$$\Omega^k(M) \otimes_{\mathbb{R}} \mathbb{C} = \bigoplus_{p+q=k} \mathcal{A}^{p,q}(M)$$
. Com $\ker \Delta_d \subset \Omega^k(M) \otimes_{\mathbb{R}} \mathbb{C}$, donat $\alpha \in \ker \Delta_d$, escrivim $\alpha = \sum_{p+q=k} \alpha^{p,q}$, on $\alpha^{p,q} \in \mathcal{A}^{p,q}(M)$. Aleshores, $0 = \Delta_d \alpha = \sum_{p+q=k} \Delta_d \alpha^{p,q}$. Com $\Delta_d(\mathcal{A}^{p,q}(M)) \subset \mathcal{A}^{p,q}(M)$, deduïm que $\forall p \forall q (p+q=k \Rightarrow \alpha^{p,q}=0)$.

El recíproc és cert. En particular tenim la descomposició $\ker \Delta_k^d = \bigoplus_{p+q=k} \ker \Delta_{p,q}^{\overline{\partial}}$.

Teorema 2.10. Donada M una varietat kähleriana compacte, $H^k(\Omega^{\bullet}(M;\mathbb{C})) = \bigoplus_{p+q=k} H^q(\mathcal{A}^{p,\bullet}(M), \overline{\partial}).$

Demostració. Per el·lipticitat de $\Delta_{p,q}^{\overline{\partial}}$, deduïm que $\ker \Delta_{p,q}^{\overline{\partial}} \cong H^q(\mathcal{A}^{p,\bullet}(M), \overline{\partial})$ de forma similar a 1.12. Per tant,

$$H^k(\Omega^{\bullet}(M;\mathbb{C})) = H^k(\Omega^{\bullet}(M;\mathbb{R})) \otimes_{\mathbb{R}} \mathbb{C} \cong \ker \Delta_k^d = \bigoplus_{p+q=k} \ker \Delta_{p,q}^{\overline{\partial}} \cong \bigoplus_{p+q=k} H^q(\mathcal{A}^{p,\bullet}(M),\overline{\partial})$$

La igualtat vindrà donada pel fet que l'isomorfisme és canònic, en el sentit que no depèn de la mètrica de Kähler (veure [Voi02], 6.11.: la idea és considerar el \mathbb{C} -submòdul $K^{p,q} \subset H^k(\Omega^{\bullet}(M;\mathbb{C}))$ que consisteix en les classes de cohomologia representables per una forma tancada de tipus (p,q) i veure que $K^{p,q} = H^q(\mathcal{A}^{p,\bullet}(M), \overline{\partial})$. Com $K^{p,q}$ no depèn de la mètrica, haurem acabat).

Referències

- [Dem97] J.P. Demailly. Complex Analytic and Differential Geometry. Université de Grenoble I, 1997. URL: https://books.google.es/books?id=jQHtGwAACAAJ.
- [Voi02] Claire Voisin. *Hodge Theory and Complex Algebraic Geometry I.* Ed. de LeilaTranslator Schneps. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2002.