北师大三附 2015-2016 学年度第一学期期中试题 初二数学

2015. 11

- ,	选择题:本大题共15个小题,	每小题 2 分, 共 30 分.	
	在每小题给出的四个选项中,不	有且只有一项是符合题目要求的.	(将每题的选项填在表
	格中)		

	俗サノ					
1.	下列四组线段能组成三角形	形的是()				
	A. 3cm, 5cm, 8cm		B. 8cm	, 8cm, 18c	em 🙏	
	C. 0.1cm, 0.1cm, 0.1c	m	D. 3cm	, 4cm, 8cm	n	
2.	下列运算中,正确的是()				
	$A. a^4 \Box a^3 = a^7 \qquad \qquad B$	$a^5 + a^5 = a^{10}$	C. $a^5 \div$	$a^5 = a$	D. $(a^3)^3 = a^6$	
3.	3. 下列各式由左边到右边的变形中,正确分解因式的是()					
	A. $3(a+b) = 3a + 3b$		B. $x^2 +$	6x + 9 = x(x +	6) + 9	
	C. ax - ay = a(x - y)		D. $a^2 -$	2 = (a+2)(a-	-2)	
4.	下列各式中,不能用平方差	差公式分解因式的是	()			
	A. $y^2 - 49$ B.	$\frac{1}{49} - x^4$	C_{-m}^4	$-n^4$	D. $\frac{1}{4}(p+q)^2 - 9$	
	71. y 1)	49	c. m	70	4 4	
5.	如果一个多边形的每一个外	外角都等于45°,则这	这个多边界	肜的边数为 ()	
	A. 3	. 4	C. 5		D. 8	
6.	一个多边形的内角和是它的	的外角和的3倍,则注	这个多边	形是()		
	A . 五边形 B .	. 六边形	C. 七边	.形	D. 八边形	
7.	如图四个图形中,线段 BE	$E \triangle ABC$ 的高的图	是()		
	A	C	B		C	
	E	E			$E \nearrow^C$	
		/ / /	','		Ч/	
	B C A	B A	E	C A		
	A.	В.	C.		D.	
8.	在 $\triangle ABC$ 和 $\triangle DEF$ 中,已	└知 $ ∠$ C = $ ∠$ D $, ∠$ B =	<i>∠E</i> ,要	判定这两个三	E 角形全等,还需条	
	件 ()					
	A. $AB = ED$ B	. AB = FD	C. AC	= FD	D. $\angle A = \angle F$	
9.	如图,所示, AB // CD , .	AD // BC, $BE = DF$,则图中	1全等三角	$A \qquad D$	
	形共有()对.					
	A. 2	. 3			E	
	C. 1 D	. 5		j	$B \qquad C$	
10	. 三角形的下列线段中能将	三角形的面积分成相	等两部分	}的是())	

A. 中线

B. 角平分线 C. 垂直平分线 D. 高

11. 如图,已知 $\triangle ABC$ 的六个元素,则下列甲、乙、丙三个三角形中和 $\triangle ABC$ 全等的图形 是()

- A. 甲
- В. Z
- C. 丙
- D. 乙与丙

- 12. 已知 a-b=1,则 a^2-b^2-2b 的值为 ()
 - A. 0
- B. 1
- C. 2
- D. 4

- 13. $25a^3b^2 \div 5a^2b^2$ 的结果是(
 - A. *a*
- B. 5*a*
- C. $5a^2b$
- D. 5a

- 14. 下列各命题中, 真命题是()
 - A. 如果两个三角形的面积不相等,那么这两个三角形不可能全等
 - B. 如果两个三角形不全等,那么这两个三角形面积一定不相等
 - C. 如果 $\triangle MNP \cong \triangle EFG$, $\triangle M'N'P' \cong \triangle E'F'G'$, 那么 $\triangle MNP$ 与 $\triangle EFG$ 面积的和等于 $\triangle M'N'P'$ 与 E'F'G' 面积的和
 - D. 如果 $\triangle MNP \cong \triangle EFG$, $\triangle M'N'P' \cong \triangle E'F'G'$, 那么 $\triangle MNP + \triangle M'N'P' \cong \triangle EFG + \triangle E'F'G'$
- 15. 如图, $\triangle ABC$ 中,AB=AC,D为BC中点,E为AD上任意一点,直线BE 交AC 于 G ,过 C 作 CF // AB 交 BG 于 F ,则下列结论中正确的为(

- $\textcircled{3} \angle EBC = \angle ECB \ \textcircled{4} \angle GBC = \angle CAD$
- A. (1)(2)

B. ①③

C. (1)(2)(3)

D. (1)(2)(3)(4)

- 二、填空题(本大题10个小题,每小题2分,共20分)
- 16. 因式分解 $a^2 16 =$

19. 如图,Rt $\triangle ABC$ 中, $\angle C=90^\circ$,AD 平分 $\angle BAC$,交 BC 于点 D,AB=10, $S_{\triangle ABO}=15$,则 CD 的长为_____.

- 20. 下列四个命题中: ①两条直角边对应相等;
 - ②斜边和一锐角对应相等;
 - ③斜边和一条直角边对应相等;
 - ④两个面积相等.

不能判定两个直角三角形全等的有_____(填序号).

21. 一副分别含有 30° 和 45° 的两个直角三角板,拼成如图图形,其中 $\angle C = 90^{\circ}$, $\angle B = 45^{\circ}$, $\angle E = 30^{\circ}$.则 $\angle BFD$ 的度数是______.

22. 如图,已知 $\angle A = 58^{\circ}$, $\angle B = 44^{\circ}$, $\angle DFB = 42^{\circ}$,则 $\angle C$ 的度数是_____

- 23. 计算: $(-2x^2)^3 =$ _____
- 24. 已知对于整式 A = (x-3)(x-1) , B = (x+1)(x-5) ,如果其中 x 取值相同时,整式 A 与 B 的关系为
- 25. 在直线上依次摆着三个正方形方(如图),两个水平放置和一个倾斜放置,左右两个正方形的边长分别为1和2,则 *AP* 的长度为_____.

- 三、解答题(每题5分,满分50分)
- 26. 分解因式

(1)
$$9a^2b + 6ab^2 + b^3$$

(2)
$$6a(m-n)^2 - 8(n-m)^3$$

$$(3) 2x^m - 4x^{m-1} + 6x^{m-2}$$

(4)
$$4(m+n)^2 - 9(m-n)^2$$

$$(5) a^4 + a^2b^2 + b^4$$

(6)
$$a^2 - 4ab + 3b^2 + 2bc - c^2$$

- 27. 若 $2a^2 + 3a b = 4$, 求代数式 $[(a+b)(a-b) + (a-b)^2 + 4a^2(a+1)] \div a$ 的值.
- 28. 如图,已知 $\triangle DBC$ 和 $\triangle ACE$ 都是等边三角形,点 $B \times C \times A$ 在同一条直线上. (等边三角形: 三条边都相等,三个内角都是 60°)

求证: (1) BE = AD;

- (2) CF = CG.
- (3) 求 ∠BHD 的度数.

29. 在解决线段数量关系问题中,如果条件中有角平分线,经常采用下面构造全等三角形的解决思路,

如:在图 1 中,若C是 $\angle MON$ 的平分线OP上一点,点A在OM上,此时,在ON上 截取OB=OA,连接BC,根据三角形全等判定(SAS),容易构造出全等三角形 $\triangle OBC$ 和 $\triangle OAC$,

参考上面的方法,解答下列问题:

如图 2,在非等边 $\triangle ABC$ 中, $\angle B=60^{\circ}$,AD,CE 分别是 $\angle BAC$, $\angle BCA$ 的平分线,且 AD,CE 交于点 F ,求证: AC=AE+CD .

图 1

图 2

30. 已知: 如图: AC = BC = 5, $\angle ACB = 80^\circ$, $O \neq ABC$ 中一点, $\angle OAB = 10^\circ$, $\angle OBA = 30^\circ$, 求线段 AO 的长.

