Tut 1: Basics of Statistical Learning

 $May/June\ 2022$

Cross industry standard **process** of data mining (CRISP-DM):

• Business understanding	
• Data understanding (Prob & Stat I)	
• Data preparation	
• Modelling	
• Evaluation	
• Deployment	
Business Understanding	
1. Describe the things that predictive analytics can help tackle in real-world business problems. out in 2022 Jan 2022 Semester Final Exam. 4 marks)	(Come

Data Preparation

2. You are given the following data.

Candidate	Project	Experience	Major	Hired (Class)
1	Y	Н	CS	Y
2	N	$_{ m H}$	SE	Y
3	Y	M	$^{\mathrm{CE}}$	Y
4	N	L	AS	N
5	Y	L	AM	N
6	Y	M	CE	Y
7	Y	L	FM	N
8		Н	SE	Y
9	Y	Н	AM	Y
10	N	L	AS	N

Use the following method to replace the missing value (of a categorical data)

(a) Mode

(b) Hot deck

3. There are 290 customers in ABC company. Given that the mean customer weight from ABC company database is 55.8kg. It is found that a customer's weight was incorrectly recorded as 580kg. Recalculate the mean if

(a) The correct weight is 58kg.

(b)	The en	rror is	ren	laced	by	mean

(c) The error is replaced by regression. Note that the height of this customer is 160cm and from overall data and the regression line of weight, y, against the height of the customer, x, is

$$y = 0.39x - 6.8$$

Mode	elling	
4. (Ja	an 2021 Final Q1(a)) Describe the classification of supervised models using	
(8	a) the Bayesian approach.	(1 mark)
(1	b) the output's type.	(1 mark)
,	an 2022 Final Q1(b)) Assuming the inputs of the data are all numeric and the outputive two examples of supervised learning models for each of the following class.	it is binary.
(8	a) parametric discriminative models	(2 marks)
(1	b) nonparametric discriminative models	(2 marks)
(.	a) gan and time medale	(2 marks)
(0	c) generative models	(2 marks)
fle	or each parts (a) through (d), indicate whether we would generally expect the performance exible statistical learning method to be better or worse than an inflexible method. In swer.	
(3)	a) The sample size n is extremely large, and the number of predictors p is small.	
(1	b) The number of predictors p is extremely large, and the sample size n is small.	
(0	c) The relationship between the predictors and response is highly non-linear.	
(0	d) The variance of the error terms $\sigma^2 = var(\epsilon)$ is extremely high.	

7. Exp.								fication n. Fina		_	_			and i	ndic	ate v	vheth	er we a	re
(a)	num	ber of	emp	loyee							-							rd profi ng whic	
(b)	or a prod	failur uct w	e. W e hav	e colve re	lect da corded	ata o whe	n 20 ether	simila	r pro a su	ducts ccess	that or fa	wer ilure	e pre , pri	eviou	ısly l	aunc	hed.	a succe For eac produc	cł
(c)	Woo			od in	prodic	eting	the r	vorcent	200.0	hange	a in M	IVR	in ro	latio	n to	tho r		y chang	_
(6)	in the record	e wor	rld st perc	ock i	narket ge char	s. H nge in	ence. n MY	, we co	llect perc	week entag	ly da ge cha	ta fo	r all	of 2	015.	For	each	week v	V
Evalua	tion																		
8. Tabl	le belo	ow sh	ows a	a con	fusion	matı	rix fo	or a bin	ary (classif	ficatio	n pı	oble	m af	ter a	pply	ing M	Iodel A	•
									Tru	ie +	True	e -							
								ted +		14	16								
						P	Predic	cted -		72	12	5							
(a)	Calcu	late t	he fo	llowi	ng acc	uracy	y me	asures.											
	(i)	Sensit	ivity																
	(ii)	Specif	ficity																_
																			_
	(iii)	Accur	acy																_

(i	v) Positive predictiv	e value			
(-	v) Negative predictiv	ve value			
. ,	ompare the recall and th refer to the perfor		lasses (posi	tive and negative	e). Interpret your resul
(Jan 2	022 Final Q1(c)) Gi	ven the confusion m	atrix of a 1	.002 training dat	a for a predictive mod
of the		nostic with a respons	se variable	Result of values	"B" (positive, an abbr
	0 /	Table 1.1: C			
		Prediction		ual M	
		B	507	131	
		M	104	260	
	_			260	
	ate the following star accuracy (ACR)			260	
	_			260	
(a) A	_			260	(2 mark
(a) A	accuracy (ACR)			260	(2 mark
(a) A (b) Se	accuracy (ACR)			260	(2 mark
(a) A (b) Se	ensitivity			260	of the predictive mode (2 mark (2 mark)

(e)	Kappa Statistic
()	$Kappa = \frac{Accuracy - RandomAccuracy}{1 - RandomAccuracy}$
	where
	$RandomAccuracy = \frac{(TN+FP) \times (TN+FN) + (FN+TP) \times (FP+TP)}{(Total \ Number \ of \ Test \ Data)^2}.$
	The Kappa statistic compares the accuracy of the system to the accuracy of a random system. The accuracy of the system is an observational probability of agreement and the random accuracy is a hypothetical expected probability of agreement under an appropriate set of baseline constraints. (2 marks)
Deploy	vment
`	a 2021 Final Q1(b)) Write down two applications of supervised learning. In the two applications,
stat	e the target variables. (2 marks)