

Proof. Let $\Box ABCD$ be a Saccheri quadrilateral with altitude \overline{EF} with $F \in \overrightarrow{AB}$. By the elliptic parallel postulate, the lines \overrightarrow{AB} and \overrightarrow{DC} must intersect at some point, say P. Relative to the ideal line \overrightarrow{AD} , we may say that F - B - P and E - C - P.

Since $\triangle EFP$ is a double-right triangle, Theorem 6.8.4 shows that \overline{EP} and \overline{FP} are polar lengths. Also, $\triangle BPC$ is a right, with $m\angle B=90^{\circ}$. By Theorem 6.8.4, $\angle BCP$ is acute since $\overline{BP}<\overline{FP}$ (relative to \overleftrightarrow{AD}).

Then its supplement, $\angle BCE$ is obtuse.

Proof. Let $\Box ABCD$ be a Saccheri quadrilateral with altitude \overline{EF} with $F \in \overrightarrow{AB}$. By the elliptic parallel postulate, the lines \overrightarrow{AB} and \overrightarrow{DC} must intersect at some point, say P. Relative to the ideal line \overrightarrow{AD} , we may say that F - B - P and E - C - P.

Since $\triangle EFP$ is a double-right triangle, Theorem 6.8.4 shows that \overline{EP} and \overline{FP} are polar lengths. Also, $\triangle BPC$ is a right, with $m\angle C = 90^{\circ}$. By Theorem 6.8.4, $\angle BCP$ is acute since $\overline{BP} < \overline{FP}$ (relative to \overline{AD}). Then its supplement, $\angle BCE$ is obtuse.