Interpolation of Supernova Time Series Spectra with Optimal Transport

Jacob Krag Nørgaard, Gustav Gudmandsen, Anna Sophia Maxen and Lucas Hallgren

A&A, 691, A33 (2024) https://doi.org/10.1051/0004-6361/202449170 © The Authors 2024

A novel optimal transport-based approach for interpolating spectral time series

Paving the way for photometric classification of supernovae

Mauricio Ramirez^{1,2,*}, Giuliano Pignata^{3,2}, Francisco Förster^{2,4,5,6}, Santiago González-Gaitán⁷, Claudia P. Gutiérrez ^{10,11}, Bastian Ayala^{1,2}, Guillermo Cabrera-Vives ^{2,12,13}, Márcio Catelan^{2,8,9}, Alejandra M. Muñoz Arancibia^{2,5}, and Jonathan Pineda-García^{1,2}

Importance

- Expect to observe many SNe in the future
- Type classification and photometric properties -> light curve fitting
- Importance of SNe in astronomy

Optimal Transport theory

- OT plan to get from initial to final distribution, $x_i \rightarrow y_i$
- Minimizing total cost

$$C_T = \sum_{i}^{n} c(x_i, T(x_i))$$

• What is cost?

Visual illustration

- Wasserstein distances
- Weighted by α
- Comparing with L2

The Wasserstein distance

"(Finding the Wasserstein barycenter) is like finding a middle point, not in terms of physical distance, but in terms of how much you would have to change each distribution to reach this middle point."

Results

Conclusion

Transportation Theory and OT has a wide range of uses

 This paper highlighted one method, accomplished through interpolation, for astrophysical purposes

Reference

M. Ramirez et al., A novel optimal transport-based approach for interpolating spectral time series: Paving the way for photometric classification of supernovae 691:A33, November 2024. doi: 10.1051/0004-6361/202449170