## **Databases**

## Project Work

## < National Basketball Association(NBA) Database>

Project elaborator: Goncalves Charles Nicolas Kormyshev Mendes, DWFD1I,

Charlesgoncalve07@gmail.com

University: Óbudai Egyetem – Neumann János Informatikai Kar

Major: Computer Science BSc

Semester: 2020/2021-1

## **Table of Contents**

| 1  | Project work's topic description                        | 3  |
|----|---------------------------------------------------------|----|
| 2  | Project work's table structure diagram                  | 4  |
| 3  | Project work's ER diagram                               | 5  |
| 4  | Proof that my table structure is BCNF                   | 6  |
| 5  | Proof that my table structure is lossless decomposition | 6  |
| 6  | All CREATE TABLE + INSERT INTO statements               | 8  |
| 7  | Simple single-table select statements(Q1-Q4)            | 11 |
| 8  | Simple single-table group by(Q5-Q7)                     | 13 |
| 9  | Complex multi-table select (Q8-Q12)                     | 14 |
| 10 | Complex subquery select(Q13-Q17)                        | 16 |
| 11 | Analyics/advanced grouping query (Q18-Q22)              | 17 |
| 12 | DML: 2 insert, 2 update, 2 delete (Q23-Q28)             | 19 |

#### 1 Project work's topics description

I chose the topic **National Basketball Association(NBA) Database** because I truly enjoy watching professional basketball leagues, and NBA being one of the most famous and watched in the world happened to be chosen as the topic for myproject's Work.

When you think about a basketball in general, the first thing that comes to your mind are the names of the famous players in the world(usually from the NBA), well known due to their outstanding performances throughout their career and the yearly individual awards they've got, because of their individual skills of course, but we can't forget that factors like age, hight, the way they play on their positions and deliver themselves to the game determines the salary/contract they'll be signing with a team on the following seasons.

Now its time to give place for the amazing combination of players that each team has that makes the league more competitive and exiting. Its basically a race that every team form the different conferences (Western and Eastern) has at the end of the season to get the players that best suit their team, cause at the end of the day, they all want the same thing, winning the championship!

Thinking more deeply about what is behind the scenes, we realize that the coaches, inclouding shooting coach, handles coach and defense coach, are the ones that make all the show that we watch come true.

To sumarize the description of my project work's topic, I've chosen the 3 entities mentioned above for the tables that I've created, namely:

- Player: containing the ID as a primary key, name, age, position, height, weight, salary, draftDate as attributes and Team as foreign key that stablishes the one to many relation with the Team, where one player can play for one and only team at a time, and one team can have many players so it's a 1:N relation;
- Team: containing the ID as primary key and name, conference, foundation date, number of championships won, arena as attributes;
- Connector table Team-Coach: containing the ID as primary key and stablishes the many to many relation between the Team and the coach, because the team can have many coaches(considering the many types of coache) and a coach can work for many teams, depending on the need of the team, so it's a N:M relation;
- Coach: containing the ID as primary key and name, type, salary, years of experience, hire date, age, email as attributes.

### 2 Project work's table structure diagram



# 3 Project work's ER diagram



#### 4 Proof that my table structure is BCNF

My table table structures are BCNF because they fulfil all the requirements for 0NF, 1NF, 2NF, 3NF and BCNF.

They fulfil the 0NF for not having any unnecessary data, having only the ones that I really intend store and add to the table;

They fulfil the 1NF for having only atomic cells in every row of the relation, so each rows has their own data field cells, which implies not having any merged rows/columns, and also it doesn't contain any complex data attributes, in other words, It doesn't have any cell that contains a list inside it, otherwise it would be unusable by the SQL.

They fulfil the 2NF, because on the tables that I've created the fields are either a key field or a field that functionally depends on the key fields, which basically means that I have an attribute that clrearly defines the value of the other attributes on the table.

Satisfying this way the definition of functional dependency(FD), I can also state that every table has one and only functional dependency(FD), where every secondary attribute functionally depends on the key of the relation.

They fulfil the 3NF, because every non key attribute or secondary attributes depend only on the key field, not functionally depending on any other attributes in the relation, this way there is no field that is transitively dependent on the key(s);

They end up also fulfilling the BCNF because it fulfils all the other normal forms.

# 5 Proof that my table structure is lossless decomposition (Using the Chase algorithm)

On my table structures I have 24 data fields and they are the following:

```
R={ p_id, p_name, p_age, p_position, p_height, p_weight, p_salary, p_draftDate, p_fieldGoal, t_id, t_name, t_conference, t_foundationDate, t_champWon, t_anena, c_id, c_name, c_type, c_salary, c_hireDate, c_YearsXP, c_age, c_email}
```

And the Functional dependencies that could be made out of this data fields can be seen below:

```
F={
    Fplayer: { p_id } => { p_name, p_age, p_position, p_height, p_weight, p_salary, p_draftDate, p_fieldGoal, }

Fteam: { t_id } => { t_name, t_conference, t_foundationDate, t_champWon, t_anena }

Fcoach: { c_id } => { c_name, c_type, c_salary, c_hireDate, c_YearsXP, c_age, c_email }
}
```

On the first row of the chase algorithm table that created to proof the lossless decomposition I will have every single data field from every single table that I've created and since I followed the rule that every single table must have at most 1 FD (2NF), I have 3 functional dependencies on 3 different tables, so they will be represented by more 3 rows on the chase algorithm table, plus another row representing the connector table for the many to many relation existing between the team and the coach tables, while the data fields will be represented with by columns, which means that I will have a 5x24 table.

At the starting point we have only unknown values which are represented by B(i:j) values which will be replaced by A values if the current table/functional dependency contain the field.

|                 | p_id   | p_name | p_age  | p_pos  | p_height | p_weight | p_sal  | p_dd   | p_FG   | t_id    | t_name  | t_conf  | t_FD    | t_ChW   | t_arena | Conn_id | c_id    | c_name  | c_type  | c_sal   | c_HD    | c_yearXP | c_age   | c_email |
|-----------------|--------|--------|--------|--------|----------|----------|--------|--------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|---------|---------|
| Player          | B(1,1) | B(1,2) | B(1,3) | B(1,4) | B(1,5)   | B(1,6)   | B(1,7) | B(1,8) | B(1,9) | B(1,10) | B(1,11) | B(1,12) | B(1,13) | B(1,14) | B(1,15) | B(1,16) | B(1,17) | B(1,18) | B(1,19) | B(1,20) | B(1,21) | B(1,22)  | B(1,23) | B(1,24) |
| Team            | B(2,1) | B(2,2) | B(2,3) | B(2,4) | B(2,5)   | B(2,6)   | B(2,7) | B(2,8) | B(2,9) | B(2,10) | B(2,11) | B(2,12) | B(2,13) | B(2,14) | B(2,15) | B(2,16) | B(2,17) | B(2,18) | B(2,19) | B(2,20) | B(2,21) | B(2,22)  | B(2,21) | B(2,24) |
| Conn_team_coach | B(3,1) | B(3,2) | B(3,3) | B(3,4) | B(3,5)   | B(3,6)   | B(3,7) | B(3,8) | B(3,9) | B(3,10) | B(3,11) | B(3,12) | B(3,13) | B(3,14) | B(3,15) | B(3,16) | B(3,17) | B(3,18) | B(3,19) | B(3,20) | B(3,21) | B(3,22)  | B(3,23) | B(3,24) |
| Coach           | B(4,1) | B(4,2) | B(4,3) | B(4,4) | B(4,5)   | B(4,6)   | B(4,7) | B(4,8) | B(4,9) | B(4,10) | B(4,11) | B(4,12) | B(4,13) | B(4,14) | B(4,15) | B(4,16) | B(4,17) | B(4,18) | B(4,19) | B(4,20) | B(4,21) | B(4,22)  | B(4,23) | B(4,24) |

After replacing those B(i:j) values by A values we get:

|                 | p_id   | p_name | p_age  | p_pos  | p_height | p_weight | p_sal  | p_dd   | p_FG   | t_id    | t_name  | t_conf  | t_FD    | t_ChW   | t_arena | Conn_id | c_id    | c_name  | c_type  | c_sal   | c_HD    | c_yearXP | c_age   | c_email |
|-----------------|--------|--------|--------|--------|----------|----------|--------|--------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|---------|---------|
| Player          | A(1)   | A(2)   | A(3)   | A(4)   | A(5)     | A(6)     | A(7)   | A(8)   | A(9)   | A(10)   | B(1,11) | B(1,12) | B(1,13) | B(1,14) | B(1,15) | B(1,16) | B(1,17) | B(1,18) | B(1,19) | B(1,20) | B(1,21) | B(1,22)  | B(1,23) | B(1,24) |
| Team            | B(2,1) | B(2,2) | B(2,3) | B(2,4) | B(2,5)   | B(2,6)   | B(2,7) | B(2,8) | B(2,9) | A(10)   | A(11)   | A(12)   | A(13)   | A(14)   | A(15)   | B(2,16) | B(2,17) | B(2,18) | B(2,19) | B(2,20) | B(2,21) | B(2,22)  | B(2,21) | B(2,24) |
| Conn_team_coach | B(3,1) | B(3,2) | B(3,3) | B(3,4) | B(3,5)   | B(3,6)   | B(3,7) | B(3,8) | B(3,9) | A(10)   | B(3,11) | B(3,12) | B(3,13) | B(3,14) | B(3,15) | A(16)   | A(17)   | B(3,18) | B(3,19) | B(3,20) | B(3,21) | B(3,22)  | B(3,23) | B(3,24) |
| Coach           | B(4,1) | B(4,2) | B(4,3) | B(4,4) | B(4,5)   | B(4,6)   | B(4,7) | B(4,8) | B(4,9) | B(4,10) | B(4,11) | B(4,12) | B(4,13) | B(4,14) | B(4,15) | B(4,16) | A(17)   | A(18)   | A(19)   | A(20)   | A(21)   | A(22)    | A(23)   | A(24)   |

Now that we already have all the fields present in the tables replaced by A values, we can start looping through the functional dependencies to see if we can replace some more values accordingly to the relation stablished between the tables, in other words replacing all the values that depend on the the a known value.

On this case all the fields in the FD relation that has the team\_id and coahc\_id as known values will be replaced by known values:

|                 | p_id   | p_name | p_age  | p_pos  | p_height | p_weight | p_sal  | p_dd   | p_FG   | t_id    | t_name  | t_conf  | t_FD    | t_ChW   | t_arena | Conn_id | c_id    | c_name  | c_type  | c_sal   | c_HD    | c_yearXP | c_age   | c_email |
|-----------------|--------|--------|--------|--------|----------|----------|--------|--------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|---------|---------|
| Player          | A(1)   | A(2)   | A(3)   | A(4)   | A(5)     | A(6)     | A(7)   | A(8)   | A(9)   | A(10)   | A(11)   | A(12)   | A(13)   | A(14)   | A(15)   | B(1,16) | B(1,17) | B(1,18) | B(1,19) | B(1,20) | B(1,21) | B(1,22)  | B(1,23) | B(1,24) |
| Team            | B(2,1) | B(2,2) | B(2,3) | B(2,4) | B(2,5)   | B(2,6)   | B(2,7) | B(2,8) | B(2,9) | A(10)   | A(11)   | A(12)   | A(13)   | A(14)   | A(15)   | B(2,16) | B(2,17) | B(2,18) | B(2,19) | B(2,20) | B(2,21) | B(2,22)  | B(2,21) | B(2,24) |
| Conn_team_coach | B(3,1) | B(3,2) | B(3,3) | B(3,4) | B(3,5)   | B(3,6)   | B(3,7) | B(3,8) | B(3,9) | A(10)   | A(11)   | A(12)   | A(13)   | A(14)   | A(15)   | A(16)   | A(17)   | A(18)   | A(19)   | A(20)   | A(21)   | A(22)    | A(23)   | A(24)   |
| Coach           | B(4,1) | B(4,2) | B(4,3) | B(4,4) | B(4,5)   | B(4,6)   | B(4,7) | B(4,8) | B(4,9) | B(4,10) | B(4,11) | B(4,12) | B(4,13) | B(4,14) | B(4,15) | B(4,16) | A(17)   | A(18)   | A(19)   | A(20)   | A(21)   | A(22)    | A(23)   | A(24)   |

After executing the chase algorithm and replacing all the possible values we get didn't get any row that contains only know data due to the many to many relation, because there is a hidden dependency, from the chase algorithm point of view we have a composite dependency. On the connector table we have that the connector table id determines the coach id and the team id, there is a dependency between them that the FD hides which is the following:

executing this we get the corret result with the full row of know values which means that our table structure is lossless.

|                 | p_id   | p_name | p_age  | p_pos  | p_height | p_weight | p_sal  | p_dd   | p_FG   | t_id    | t_name  | t_conf  | t_FD    | t_ChW   | t_arena | Conn_id | c_id  | c_name | c_type | c_sal | c_HD  | c_yearXP | c_age | c_email |
|-----------------|--------|--------|--------|--------|----------|----------|--------|--------|--------|---------|---------|---------|---------|---------|---------|---------|-------|--------|--------|-------|-------|----------|-------|---------|
| Player          | A(1)   | A(2)   | A(3)   | A(4)   | A(5)     | A(6)     | A(7)   | A(8)   | A(9)   | A(10)   | A(11)   | A(12)   | A(13)   | A(14)   | A(15)   | A(16)   | A(17) | A(18)  | A(19)  | A(20) | A(21) | A(22)    | A(23) | A(24)   |
| Team            | B(2,1) | B(2,2) | B(2,3) | B(2,4) | B(2,5)   | B(2,6)   | B(2,7) | B(2,8) | B(2,9) | A(10)   | A(11)   | A(12)   | A(13)   | A(14)   | A(15)   | A(16)   | A(17) | A(18)  | A(19)  | A(20) | A(21) | A(22)    | A(23) | A(24)   |
| Conn_team_coach | B(3,1) | B(3,2) | B(3,3) | B(3,4) | B(3,5)   | B(3,6)   | B(3,7) | B(3,8) | B(3,9) | A(10)   | A(11)   | A(12)   | A(13)   | A(14)   | A(15)   | A(16)   | A(17) | A(18)  | A(19)  | A(20) | A(21) | A(22)    | A(23) | A(24)   |
| Coach           | B(4,1) | B(4,2) | B(4,3) | B(4,4) | B(4,5)   | B(4,6)   | B(4,7) | B(4,8) | B(4,9) | B(4,10) | B(4,11) | B(4,12) | B(4,13) | B(4,14) | B(4,15) | B(4,16) | A(17) | A(18)  | A(19)  | A(20) | A(21) | A(22)    | A(23) | A( +    |

#### 6 All CREATE TABLE + INSERT INTO statements

```
□IF object_id('conn_coach_team', 'U') is not null DROP TABLE conn_coach_team;
 IF object id('coach', 'U') is not null DROP TABLE coach;
 IF object_id('player', 'U') is not null DROP TABLE player;
  IF object_id('team', 'U') is not null DROP TABLE team;
 GO
 □CREATE TABLE team(
       team_id int primary key,
       team_name nvarchar(100),
       team_conference nvarchar(100),
       team_foundationDate date,
       team_championshipsWon int,
       team_arena nvarchar(100)
 CREATE TABLE coach(
       coach_id int primary key,
       coach name nvarchar(100),
       coach_type nvarchar(100),
       coach_yearsOfExperience int,
       coach hireDate date,
       coach_salary int,
       coach_age int,
       coach_email nvarchar(100)
 □CREATE TABLE player(
       player_id int primary key,
       player_name nvarchar(100),
       player_age int,
       player_position nvarchar(100),
       player_height float,
       player weight float,
       player_salary int,
       player_fieldGoal float,
       player_draftDate date,
       player_team int NOT NULL references team(team_id)
 CREATE TABLE conn_coach_team(
       conn_id int identity primary key,
       conn_coach int references coach(coach_id),
       conn_team int references team(team_id)
  GO
```

```
□INSERT INTO team VALUES(1, 'Los Angeles Lakers', 'Western', '1947-10-06', 17, 'Staples Center')
 INSERT INTO team VALUES(2, 'Los Angeles Clippers', 'Western', '1970-09-30', 0, 'Staples Center')
 INSERT INTO team VALUES(3, 'Houston Rockets', 'Western', '1967-11-26', 2, 'Toyota Center')
 INSERT INTO team VALUES(4, 'Milwaukee Bucks', 'Eastern', '1968-05-07', 1, 'Fiserv Forum')
 INSERT INTO team VALUES(5, 'Boston Celtics', 'Eastern', '1946-06-09', 17,'TD Garden');
 INSERT INTO coach VALUES(1, 'Joseph Clanaghan', 'Handles coach', 10, '2019-06-05', 900000, 38, 'Joseph Clanaghan 07@gmail.com')
 INSERT INTO coach VALUES(2, 'James Cooper', 'Shooting coach', 15, '2018-03-16', 1500000, 40, 'Jamescooper3445@gmail.com')
 INSERT INTO coach VALUES(3, 'Jacob Smith', 'Defense coach', 6, '2020-07-20', 5000000, 32, 'Jacobsmith867@gmail.com')
 INSERT INTO coach VALUES(4, 'Theo Williams', 'Defense coach',8, '2019-11-23', 7000000, 37, 'Theowilliams34@gmail.com')
 INSERT INTO coach VALUES(5, 'Marc Thompson', 'Handles coach',9, '2017-01-31', 8000000, 35, 'Marcthompson6541@gmail.com')
 INSERT INTO coach VALUES(6, 'Harry Addams', 'Shooting coach',12, '2020-06-11', 1300000, 42, 'Marcthompson6541@gmail.com');
 INSERT INTO player VALUES(1, 'Lebron James', 35, 'PF', 2.06, 113.0, 37000000, 49.3, 2003-06-09', 1)
 INSERT INTO player VALUES(2, 'Anthony Davis', 27, 'C', 2.08, 114.0, 27000000, 50.3, '2012-10-15', 1)
 INSERT INTO player VALUES(3, 'Kawhi Leonard', 29, 'SF', 2.01, 102.0, 32000000, 49.1, '2011-03-14', 2)
 INSERT INTO player VALUES(4, 'Paul George', 30, 'SG', 2.03, 99.0, 33000000, 43.3, '2010-04-21', 2)
 INSERT INTO player VALUES(5, 'James Harden', 31, 'SG', 1.96, 99.0, 38000000, 44.4, '2009-01-22', 3)
 INSERT INTO player VALUES(6, 'Russell Westbrook', 27, 'PG', 1.90, 90.0, 38000000, 43.7, '2008-04-10', 3)
 INSERT INTO player VALUES(7, 'Giannis Antetokounmpo', 25, 'PF', 2.11, 109.0, 24000000, 55.3, '2013-02-03', 4)
 INSERT INTO player VALUES(8, 'George Hill', 34, 'PG', 1.90, 85.0, 8000000, 51.6, '2008-07-17', 4)
 INSERT INTO player VALUES(9, 'Jayson Tatum', 22, 'SF', 2.03, 95.0, 7000000, 45.0, '2017-12-03', 5)
 INSERT INTO player VALUES(10, 'Tacko Fall', 24, 'C', 2.26, 141.0, 1000000, 78.6, '2019-01-30', 5);
 INSERT INTO conn coach team (conn coach, conn team) VALUES (1,1), (2,1), (2,2), (3,2), (3,3), (4,3), (4,4), (5,4), (5,5), (6,5), (1,6);
 GO
```

# 7 Simple single-table select statements(Q1-Q4)

#### Q1 => SELECT \* FROM team;

| ⊞ Results |         |                      |                 |                     |                       |                |  |  |  |  |  |  |
|-----------|---------|----------------------|-----------------|---------------------|-----------------------|----------------|--|--|--|--|--|--|
|           | team_id | team_name            | team_conference | team_foundationDate | team_championshipsWon | team_arena     |  |  |  |  |  |  |
| 1         | 1       | Los Angeles Lakers   | Western         | 1947-10-06          | 17                    | Staples Center |  |  |  |  |  |  |
| 2         | 2       | Los Angeles Clippers | Western         | 1970-09-30          | 0                     | Staples Center |  |  |  |  |  |  |
| 3         | 3       | Houston Rockets      | Western         | 1967-11-26          | 2                     | Toyota Center  |  |  |  |  |  |  |
| 4         | 4       | Milwaukee Bucks      | Eastern         | 1968-05-07          | 1                     | Fiserv Forum   |  |  |  |  |  |  |
| 5         | 5       | Boston Celtics       | Eastern         | 1946-06-09          | 17                    | TD Garden      |  |  |  |  |  |  |

#### Q2 => SELECT \* FROM player;

| ⊞ F | Results 📳 | Messages              |            |                 |               |               |               |                  |                  |             |
|-----|-----------|-----------------------|------------|-----------------|---------------|---------------|---------------|------------------|------------------|-------------|
|     | player_id | player_name           | player_age | player_position | player_height | player_weight | player_salary | player_fieldGoal | player_draftDate | player_team |
| 1   | 1         | Lebron James          | 35         | PF              | 2.06          | 113           | 37000000      | 49.3             | 2003-06-09       | 1           |
| 2   | 2         | Russell Westbrook     | 27         | PG              | 1.9           | 90            | 38000000      | 43.7             | 2008-04-10       | 3           |
| 3   | 3         | George Hill           | 34         | PG              | 1.9           | 85            | 8000000       | 51.6             | 2008-07-17       | 4           |
| 4   | 4         | James Harden          | 31         | SG              | 1.96          | 99            | 38000000      | 44.4             | 2009-01-22       | 3           |
| 5   | 5         | Paul George           | 30         | SG              | 2.03          | 99            | 33000000      | 43.3             | 2010-04-21       | 2           |
| 6   | 6         | Kawhi Leonard         | 29         | SF              | 2.01          | 102           | 32000000      | 49.1             | 2011-03-14       | 2           |
| 7   | 7         | Anthony Davis         | 27         | С               | 2.08          | 114           | 27000000      | 50.3             | 2012-10-15       | 1           |
| 8   | 8         | Giannis Antetokounmpo | 25         | PF              | 2.11          | 109           | 24000000      | 55.3             | 2013-02-03       | 4           |
| 9   | 9         | Jayson Tatum          | 22         | SF              | 2.03          | 95            | 7000000       | 45               | 2017-12-03       | 5           |
| 10  | 10        | Tacko Fall            | 24         | С               | 2.26          | 141           | 1000000       | 78.6             | 2019-01-30       | 5           |

#### Q3 => SELECT \* FROM coach;

| ⊞ F | ⊞ Results |                  |                |                         |                |              |           |                             |  |  |  |  |  |
|-----|-----------|------------------|----------------|-------------------------|----------------|--------------|-----------|-----------------------------|--|--|--|--|--|
|     | coach_id  | coach_name       | coach_type     | coach_yearsOfExperience | coach_hireDate | coach_salary | coach_age | coach_email                 |  |  |  |  |  |
| 1   | 1         | Joseph Clanaghan | Handles coach  | 10                      | 2019-06-05     | 900000       | 38        | Josephclanaghan07@gmail.com |  |  |  |  |  |
| 2   | 2         | James Cooper     | Shooting coach | 15                      | 2018-03-16     | 1500000      | 40        | Jamescooper3445@gmail.com   |  |  |  |  |  |
| 3   | 3         | Jacob Smith      | Defense coach  | 6                       | 2020-07-20     | 5000000      | 32        | Jacobsmith867@gmail.com     |  |  |  |  |  |
| 4   | 4         | Theo Williams    | Defense coach  | 8                       | 2019-11-23     | 7000000      | 37        | Theowilliams34@gmail.com    |  |  |  |  |  |
| 5   | 5         | Marc Thompson    | Handles coach  | 9                       | 2017-01-31     | 8000000      | 35        | Marcthompson6541@gmail.com  |  |  |  |  |  |
| 6   | 6         | Harry Addams     | Shooting coach | 12                      | 2020-06-11     | 1300000      | 42        | Marcthompson6541@gmail.com  |  |  |  |  |  |

### Q4 => SELECT \* FROM conn\_coach\_team;

| ⊞R | esults |    | Messages   |           |
|----|--------|----|------------|-----------|
|    | conn_i | id | conn_coach | conn_team |
| 1  | 1      |    | 1          | 1         |
| 2  | 2      |    | 2          | 1         |
| 3  | 3      |    | 2          | 2         |
| 4  | 4      |    | 3          | 2         |
| 5  | 5      |    | 3          | 3         |
| 6  | 6      |    | 4          | 3         |
| 7  | 7      |    | 4          | 4         |
| 8  | 8      |    | 5          | 4         |
| 9  | 9      |    | 5          | 5         |
| 10 | 10     |    | 6          | 5         |

#### 8 Simple single-table group by (Q5-Q7)

Q5 => List the number of teams belonging to each conference and the total number of championships won in each conference:

SELECT team\_conference , count(team\_id) as numberOfTeams, sum(team\_championshipsWon)
as championshipsWon
FROM team
GROUP BY team conference;

| ⊞ R | esults 📳   | Messag | es            |                  |
|-----|------------|--------|---------------|------------------|
|     | team_confe | erence | numberOfTeams | championshipsWon |
| 1   | Eastern    |        | 2             | 18               |
| 2   | Western    |        | 3             | 19               |

 $Q6 \Rightarrow$  List the number of players for each position and the best and the worse field goal on the current position:

SELECT player\_position, count(player\_id) as numberPerPosition, max(player\_fieldGoal)
bestFGperPosition, min(player\_fieldGoal) worseFGperPosition
from player
group by player\_position;

| ⊞ F | Results 🗐 Mess  | sages             |                   |                    |
|-----|-----------------|-------------------|-------------------|--------------------|
|     | player_position | numberPerPosition | bestFGperPosition | worseFGperPosition |
| 1   | C               | 2                 | 78.6              | 50.3               |
| 2   | PF              | 2                 | 55.3              | 49.3               |
| 3   | PG              | 2                 | 51.6              | 43.7               |
| 4   | SF              | 2                 | 49.1              | 45                 |
| 5   | SG              | 2                 | 44.4              | 43.3               |

 $Q7 \Rightarrow$  List the number of coaches accordingly to the type of coach and the average salary for each type:

| ⊞ R | esults [ | Mess  | ages     |         |
|-----|----------|-------|----------|---------|
|     | coach_ty | ре    | CoachNum | AVGsal  |
| 1   | Defense  | coach | 2        | 6000000 |
| 2   | Handles  | coach | 2        | 4450000 |
| 3   | Shooting | coach | 2        | 1400000 |

### 9 Complex multi-table select (Q8-Q12)

Q8 => List the number of coaches for each team:

| ⊞ R | esults Message       | es       |
|-----|----------------------|----------|
|     | team_name            | numCoach |
| 1   | Boston Celtics       | 2        |
| 2   | Houston Rockets      | 2        |
| 3   | Los Angeles Clippers | 2        |
| 4   | Los Angeles Lakers   | 2        |
| 5   | Milwaukee Bucks      | 2        |

Q9 => List the number of players in each team:

```
SELECT team_name, count(player_id) as numbeOfPlayers, avg(player_fieldGoal) as
AvgFGTeam
from player inner join team on player_team = team_id
group by team_name;
```

| ■R | ■ Results            |                |           |  |  |  |  |  |  |
|----|----------------------|----------------|-----------|--|--|--|--|--|--|
|    | team_name            | numbeOfPlayers | AvgFGTeam |  |  |  |  |  |  |
| 1  | Boston Celtics       | 2              | 61.8      |  |  |  |  |  |  |
| 2  | Houston Rockets      | 2              | 44.05     |  |  |  |  |  |  |
| 3  | Los Angeles Clippers | 2              | 46.2      |  |  |  |  |  |  |
| 4  | Los Angeles Lakers   | 2              | 49.8      |  |  |  |  |  |  |
| 5  | Milwaukee Bucks      | 2              | 53.45     |  |  |  |  |  |  |

Q10 => List the team name and the coach name working for them:

| ⊞ R | esults 🖺 Messages    | 3                |  |  |
|-----|----------------------|------------------|--|--|
|     | team_name            | coach_name       |  |  |
| 1   | Boston Celtics       | Marc Thompson    |  |  |
| 2   | Boston Celtics       | Harry Addams     |  |  |
| 3   | Houston Rockets      | Jacob Smith      |  |  |
| 4   | Houston Rockets      | Theo Williams    |  |  |
| 5   | Los Angeles Clippers | James Cooper     |  |  |
| 6   | Los Angeles Clippers | Jacob Smith      |  |  |
| 7   | Los Angeles Lakers   | Joseph Clanaghan |  |  |
| 8   | Los Angeles Lakers   | James Cooper     |  |  |
| 9   | Milwaukee Bucks      | Theo Williams    |  |  |
| 10  | Milwaukee Bucks      | Marc Thompson    |  |  |

 $Q11 \Rightarrow$  List the name of the players and the name of the team where they are playing for:

SELECT team\_name, player\_name
FROM player inner join team on player\_team = team\_id
order by team\_name;



Q12 => List the coach type that each teams are currently working with:

| ⊞ R | esults 🗐 Message     | es             |
|-----|----------------------|----------------|
|     | team_name            | coach_type     |
| 1   | Boston Celtics       | Handles coach  |
| 2   | Boston Celtics       | Shooting coach |
| 3   | Houston Rockets      | Defense coach  |
| 4   | Houston Rockets      | Defense coach  |
| 5   | Los Angeles Clippers | Shooting coach |
| 6   | Los Angeles Clippers | Defense coach  |
| 7   | Los Angeles Lakers   | Handles coach  |
| 8   | Los Angeles Lakers   | Shooting coach |
| 9   | Milwaukee Bucks      | Defense coach  |
| 10  | Milwaukee Bucks      | Handles coach  |

#### 10 Complex subquery select (Q13-Q17)

```
Q13/14 => Who are the oldest(Veteran) and the most recent(Rookie) players in the
league?
if object_id('v1', 'v') is not null drop view v1;
create view v1 as
      select datediff(year, player_draftDate, GETDATE()) yearsInTheLeague
        from player
go
select player_name as Veteran, player_draftDate, (select max(yearsInTheLeague) from
v1) as yearsInTheLeague
from (select player name, player draftDate from player) as subquery
order by player draftDate
offset 0 rows
fetch first 1 row only;
select player name as Rookie, player draftDate, (select min(yearsInTheLeague) from v1)
as yearsInTheLeague
from (select player name, player draftDate from player) as subquery
order by player draftDate desc
offset 0 rows
fetch first 1 row only;
 Veteran
                    player draftDate
                                   vearsInTheLeague
      Lebron James
                    2003-06-09
 1
      Rookie
                 player_draftDate
                                yearsInTheLeague
                 2019-01-30
 1
      Tacko Fall
                                1
Q15 => What was the longest interval of time(in years) that the NBA stayed without
getting a new player in the league?
select max(subquery.intervalInYears) as intervalInYears
from (select datediff(year, p1.player_draftDate, p2.player_draftDate) as
intervalInYears
      from player p1 inner join player p2 on p1.player_id = p2.player_id - 1) as
subquery;
intervalInYears
    5
016 => How many years after the teams foundation did each of them hire one of their
actual coach? how many coaches does each team have?
select team name, min(interval) as yearsAfterFoundation, count(coach id) as
CoachesHiredSinceThen
from (
      select coach id, coach hireDate, team name, team foundationDate, datediff(year,
team foundationDate, coach hireDate) as interval
        from team inner join conn_coach_team on team_id = conn_team
                  inner join coach on conn_coach = coach_id
        order by coach_name offset 0 rows
) as subquery
group by team_name;
```

| ⊞ R | esults          | Messages       |                      |                       |
|-----|-----------------|----------------|----------------------|-----------------------|
|     | team_name       |                | yearsAfterFoundation | CoachesHiredSinceThen |
| 1   | Boston Celtics  |                | 71                   | 2                     |
| 2   | Houston Rockets |                | 52                   | 2                     |
| 3   | Los An          | geles Clippers | 48                   | 2                     |
| 4   | Los An          | geles Lakers   | 71                   | 2                     |
| 5   | Milwau          | ikee Bucks     | 49                   | 2                     |

 $Q17 \Rightarrow$  Considering this coaches, what age was the earliest that a coach got into the league?

#### 11 Analyics/advanced grouping query (Q18-Q22)

Q18 => List the rank of the teams in the league accordingly to the championships won

#### **SELECT**

DENSE\_RANK() OVER(ORDER BY team\_championshipsWon desc) AS RankInTheLeague, team\_name
as Name,team\_championshipsWon as ChampionshipsWon, (select
sum(team\_championshipsWon)from team) as OutOf
FROM team
ORDER BY RankInTheLeague ASC;
select \* from player



Q19/20 => List the rank of the better paid coaches and players

```
SELECT

DENSE_RANK() OVER(ORDER BY coach_salary desc) AS RankInTheLeague, coach_name as Name, coach_salary as Salary FROM coach

ORDER BY RankInTheLeague ASC;

SELECT

DENSE_RANK() OVER(ORDER BY player_salary desc) AS RankInTheLeague, player_name as Name, player_salary as Salary FROM player

ORDER BY RankInTheLeague ASC;
```

| Results |                 |                  |         |  |  |  |  |  |
|---------|-----------------|------------------|---------|--|--|--|--|--|
|         | RankInTheLeague | Name             | Salary  |  |  |  |  |  |
| 1       | 1               | Marc Thompson    | 8000000 |  |  |  |  |  |
| 2       | 2               | Theo Williams    | 7000000 |  |  |  |  |  |
| 3       | 3               | Jacob Smith      | 5000000 |  |  |  |  |  |
| 4       | 4               | James Cooper     | 1500000 |  |  |  |  |  |
| 5       | 5               | Harry Addams     | 1300000 |  |  |  |  |  |
| 6       | 6               | Joseph Clanaghan | 900000  |  |  |  |  |  |

|    | RankInTheLeague | Name              | Salary   |
|----|-----------------|-------------------|----------|
| 1  | 1               | James Harden      | 38000000 |
| 2  | 1               | Russell Westbrook | 38000000 |
| 3  | 2               | Lebron James      | 37000000 |
| 4  | 3               | Paul George       | 33000000 |
| 5  | 4               | Kawhi Leonard     | 32000000 |
| 6  | 5               | Anthony Davis     | 27000000 |
| 7  | 6               | Giannis Antetoko  | 24000000 |
| 8  | 7               | George Hill       | 8000000  |
| 9  | 8               | Jayson Tatum      | 7000000  |
| 10 | 9               | Tacko Fall        | 1000000  |

Q21 => How many players got draftet on the same month and year, also only on the same year, what about in total drafted?

select DATEPART(YEAR,player\_draftDate) as 'Year', DATEPART(MONTH,player\_draftDate)as
'Month',count(player\_id)
from player inner join team on player\_team = team\_id
group by rollup(DATEPART(YEAR,player\_draftDate), DATEPART(MONTH,player\_draftDate));

| ⊞R | esults | ■ Mes | sages            |
|----|--------|-------|------------------|
|    | Year   | Month | (No column name) |
| 1  | 2003   | 6     | 1                |
| 2  | 2003   | NULL  | 1                |
| 3  | 2008   | 4     | 1                |
| 4  | 2008   | 7     | 1                |
| 5  | 2008   | NULL  | 2                |
| 6  | 2009   | 1     | 1                |
| 7  | 2009   | NULL  | 1                |
| 8  | 2010   | 4     | 1                |
| 9  | 2010   | NULL  | 1                |
| 10 | 2011   | 3     | 1                |
| 11 | 2011   | NULL  | 1                |
| 12 | 2012   | 10    | 1                |
| 13 | 2012   | NULL  | 1                |
| 14 | 2013   | 2     | 1                |
| 15 | 2013   | NULL  | 1                |
| 16 | 2017   | 12    | 1                |
| 17 | 2017   | NULL  | 1                |
| 18 | 2019   | 1     | 1                |
| 19 | 2019   | NULL  | 1                |
| 20 | NU     | NULL  | 10               |

Q21 => What is the total amount spent to pay the players? how much exactly does each of the team pay for their players, and the average of the salary of the players on that team

select team\_name, sum(player\_salary) as TotalSpent, avg(player\_salary) as AvgSalary
from player inner join team on player\_team = team\_id
group by rollup(team\_name);

| ⊞ R | esults Messages      |            |           |
|-----|----------------------|------------|-----------|
|     | team_name            | TotalSpent | AvgSalary |
| 1   | Boston Celtics       | 8000000    | 4000000   |
| 2   | Houston Rockets      | 76000000   | 38000000  |
| 3   | Los Angeles Clippers | 65000000   | 32500000  |
| 4   | Los Angeles Lakers   | 64000000   | 32000000  |
| 5   | Milwaukee Bucks      | 32000000   | 16000000  |
| 6   | NULL                 | 245000000  | 24500000  |

#### 12 DML: 2 insert, 2 update, 2 delete (Q23-Q28)

Q23 => Insert a random player in the league.

select \* from player inner join team on player\_team = team\_id where player\_id = 11

| <b>III</b> | ■ Results |                   |            |                 |               |               |               |                  |                  |             |         |                      |                 |                     |                       |                |
|------------|-----------|-------------------|------------|-----------------|---------------|---------------|---------------|------------------|------------------|-------------|---------|----------------------|-----------------|---------------------|-----------------------|----------------|
|            | player_id | player_name       | player_age | player_position | player_height | player_weight | player_salary | player_fieldGoal | player_draftDate | player_team | team_id | team_name            | team_conference | team_foundationDate | team_championshipsWon | team_arena     |
| 1          | 11        | Charles Gonçalves | 28         | PG              | 1.7           | 74.1          | 10030142      | 48.5             | 2003-06-09       | 2           | 2       | Los Angeles Clippers | Western         | 1970-09-30          | 0                     | Staples Center |

```
Q24 => Update the team table by adding a new column "jersey Color"
alter table team
add team_jerseyColor nvarchar(50)
update team
set team jerseyColor = case team id
                         when 1 then
                                        'Black and Yellow'
                                                       'White, Red and Blue'
                                        when 2 then
                                        when 3 then
                                                      'Black and Red'
                                        when 4 then
                                                      'Black and Green'
                                        when 5 then
                                                      'White and Green'
select team_name, team_jerseyColor
from team;
go
team_name
                        team_jerseyColor
     Los Angeles Lakers
                       Black and Yellow
      Los Angeles Clippers | White, Red and Blue
 2
      Houston Rockets
                        Black and Red
 3
      Milwaukee Bucks
                        Black and Green
                        White and Green
 5
      Boston Celtics
Q25 => The player's Name, Salary, draft date, by which team, and the years of waiting
for the next draft
if object id('tableau', 'U') is not null drop table tableau;
create table tableau(
        Drafted nvarchar(50),
              DraftDate date,
              TeamName nvarchar(50),
              Salary int,
              YearsToNextDraft int
insert into tableau
select Drafted, DraftDate, team_name, salary, YearsToNextDraft
from (select p1.player_team as team, p1.player_name as Drafted, p1.player_draftDate
as DraftDate, datediff(year, p1.player_draftDate, p2.player_draftDate) as
YearsToNextDraft,
              p1.player_salary as salary
      from player p1 inner join player p2 on p1.player_id = p2.player_id - 1) as
subquery inner join team on team = team_id
select * from tableau;
Drafted
                    DraftDate
                               TeamName
                                               Salary
                                                        YearsToNextDraft
     Lebron James
                    2003-06-09
                               Los Angeles Lakers
                                              37000000
                                                        5
     Russell Westbrook
                    2008-04-10
                               Houston Rockets
                                               38000000
                                                        0
 2
     George Hill
                     2008-07-17 Milwaukee Bucks
 3
                                               8000000
 4
     James Harden
                     2009-01-22 Houston Rockets
                                               38000000
 5
     Paul George
                    2010-04-21 Los Angeles Clipp... 33000000
 6
     Kawhi Leonard
                     2011-03-14 Los Angeles Clipp...
                                              32000000
     Anthony Davis
                    2012-10-15 Los Angeles Lakers 27000000
                                               24000000 4
 8
     Giannis Antetoko...
                    2013-02-03 Milwaukee Bucks
     Jayson Tatum
                    2017-12-03 Boston Celtics
                                               7000000
                                                        2
 9
```

2019-01-30 Boston Celtics

10

Tacko Fall

1000000

-16

```
Q26 => Add the a column team_playOffMAde using Rand(), which Is equal to 1 if the team passed or 0 if the team didn't pass to the play
offs
alter table team
add team playOffMade nvarchar(50)
go
update team
set team playOffMade = case team id
                       when 1 then Convert(nvarchar, floor( Rand()*(2 - 0) + 0))
                                  when 2 then Convert(nvarchar, floor( Rand()*(2 - 0) + 0))
                                  when 3 then Convert(nvarchar, floor( Rand()*(2 - 0) + 0))
                                  when 4 then Convert(nvarchar, floor( Rand()*(2 - 0) + 0))
                                  when 5 then Convert(nvarchar, floor( Rand()*(2 - 0) + 0))
                                  end;
update team
set team playOffMade = case team playOffMade
                       when '0' then 'Did not make to the Play Off'
                                  when '1' then 'Made to the PLay Off'
```

|   | team_id | team_name            | team_conference | team_foundationDate | team_championshipsWon | team_arena     | team_jerseyColor    | team_playOffMade     |
|---|---------|----------------------|-----------------|---------------------|-----------------------|----------------|---------------------|----------------------|
| 1 | 1       | Los Angeles Lakers   | Western         | 1947-10-06          | 17                    | Staples Center | Black and Yellow    | Made to the PLay Off |
| 2 | 2       | Los Angeles Clippers | Western         | 1970-09-30          | 0                     | Staples Center | White, Red and Blue | Made to the PLay Off |
| 3 | 3       | Houston Rockets      | Western         | 1967-11-26          | 2                     | Toyota Center  | Black and Red       | Did not make to th   |
| 4 | 4       | Milwaukee Bucks      | Eastern         | 1968-05-07          | 1                     | Fiserv Forum   | Black and Green     | Made to the PLay Off |
| 5 | 5       | Boston Celtics       | Eastern         | 1946-06-09          | 17                    | TD Garden      | White and Green     | Did not make to th   |

end;

select \* from team;

Q27 => All the players that belong to the teams that didn't make to the play off should be deleted.

```
delete player
from player inner join team on player_team = team_id
where team.team_playOffMade = 'Did not make to the Play Off';
go

select team_name as remainingTeam, count(player_id) as players, avg(player_fieldGoal)
as TeamFG
from player inner join team on player_team = team_id
group by team_name;
```

|   | remainingTeam      | players | TeamFG |
|---|--------------------|---------|--------|
| 1 | Boston Celtics     | 2       | 61.8   |
| 2 | Los Angeles Lakers | 2       | 49.8   |
| 3 | Milwaukee Bucks    | 3       | 62.9   |

 $Q28 \Rightarrow$  If at this stage there are still teams with 0 championships won, their players should be deleted from the table.

|   | player_name           | team_name          | team_championshipsWon |
|---|-----------------------|--------------------|-----------------------|
| 1 | Lebron James          | Los Angeles Lakers | 17                    |
| 2 | Anthony Davis         | Los Angeles Lakers | 17                    |
| 3 | Jayson Tatum          | Boston Celtics     | 17                    |
| 4 | Tacko Fall            | Boston Celtics     | 17                    |
| 5 | George Hill           | Milwaukee Bucks    | 1                     |
| 6 | Giannis Antetokounmpo | Milwaukee Bucks    | 1                     |
| 7 | Charles Gonçalves     | Milwaukee Bucks    | 1                     |