化学中的数学

蒋然 王崇斌

2021年3月1日

目录

4 目录

Chapter 1

Hamilton 运动方程

1.1 牛顿运动方程

1.1.1 牛顿运动方程及保守系统

这里抛开经典力学的时空观和经典力学的相对性原理(即经典力学中的物理规律在伽利略变换下不变)不谈,关注经典力学的另一个特征——决定性。实验事实(指一定精度下的实验,完全有可能被更为精确的实验所推翻)告诉我们对于一个封闭的力学系统,其初始位置 $\mathbf{x}(t_0)$ 和初始速度 $\dot{\mathbf{x}}(t_0)$ 的情况下可以唯一确定这个系统今后的运动状态。

既然对于一个力学系统其初始位置和初始速度可以决定其运动状态,那么它们也决定了系统任意时刻的加速度,即存在一个函数 F 使得:

$$m\ddot{\boldsymbol{x}} = \boldsymbol{F}(\boldsymbol{x}, \dot{\boldsymbol{x}}, t) \tag{1.1}$$

由微分方程解的存在唯一性定理,若已知 $x(t_0)$, $\dot{x}(t_0)$ 与 \mathbf{F} 则上述微分方程唯一确定了一个运动。函数 F 的形式要通过实验来确定,如果确定了其形式,那么就知道了对应力学系统的运动方程。

如果一个力学系统的运动方程可以写为:

$$m\ddot{\boldsymbol{x}} = -\frac{\partial V(\boldsymbol{x})}{\partial \boldsymbol{x}} \tag{1.2}$$

这样的力学系统称为保守系统。一个完全等价的说法是,在外力场中运动的系统,外力对其 所做的功与路径无关,只与起点和终点有关;用数学语言描述,对于位形空间中的任何一条 闭合的光滑曲线 *C*,下式成立:

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = 0 \tag{1.3}$$

可以证明,若上述条件满足,那么存在一个函数 U(x) 使得 $F = -\nabla U(x)$,这样的系统为保

守系统。一般而言,我们讨论的系统都属于保守系统,比如重力场、中心力场等。

保守系统中的势能函数很大程度上决定了系统的性质,其中最基本的是势能的对称性确保了力学系统中的一些守恒量。下面仅用势能的时间平移不变性(势函数不显含时间)来说明系统的能量守恒。能量被定义为:

$$E = T + V = \frac{1}{2}m\dot{x}^2 + V(x)$$
(1.4)

考虑 E 对时间的全导数,即考虑一个真实路径 x(t) 上 E 对时间的导数 (带入运动方程):

$$\frac{dE}{dt} = m\ddot{\boldsymbol{x}}\dot{\boldsymbol{x}} + \frac{dV(\boldsymbol{x}(t))}{dt}
= -\frac{\partial V(\boldsymbol{x})}{\partial \boldsymbol{x}} \cdot \dot{\boldsymbol{x}} + \frac{\partial V(\boldsymbol{x})}{\partial \boldsymbol{x}} \cdot \dot{\boldsymbol{x}}
= 0$$
(1.5)

这就说明在运动过程中能量 E 是一个守恒量。(类似的还有势能的平移对称性对应的动量守恒和旋转对称性对应的角动量守恒,这提示我们势能的对称性和守恒量之间存在对应关系)

1.1.2 使用牛顿方程解决问题

牛顿方程是一个二阶微分方程,对于高阶微分方程,一般的研究方法是将其化为一阶微分方程组。在这里仅考虑一维系统,引入物理中具有重要意义的量——动量: $p := \frac{\dot{x}}{m}$,将牛顿方程转化为一个微分方程组(此时动量 p 与位置 x 为独立的变量):

$$\dot{x} = \frac{p}{m}\dot{p} = -\frac{\partial V}{\partial x} \tag{1.6}$$

首先研究 HCl 分子。每个原子的坐标有 3 个自由度,总共是 6 个自由度。而这个分子总体有 3 个平动自由度,2 个转动自由度,还剩余 1 个振动自由度。振动自由度的能量由**势能**面来描述 1 。势能面是两个原子的距离 r 的函数,满足

$$\lim_{r \to \infty} V(r) = 0 \tag{1.10}$$

$$E = \frac{1}{2}\mu \left(\dot{r}^2 + r^2\dot{\phi}^2\right) + V(r) \tag{1.7}$$

考虑到中心力场中角动量守恒,即 $J = \mu r^2 \dot{\phi}$ 是一个守恒量,带入能量守恒的表达式:

$$E = \frac{1}{2}\mu \left(\dot{r}^2 + \frac{J^2}{\mu^2 r^2}\right) + V(r) \tag{1.8}$$

 $^{^{1}}$ 按照笔记修改者的理解,势能面应该是体系势能与坐标之间的函数关系。对于二体问题而言,仅用势能面来描述系统振动自由度的势能是不合适的,它忽略了转动对于振动的影响。如果严格处理这个问题,首先在相对位置坐标(直接采用极坐标 (r,ϕ) ,其中 μ 为折合质量)下写出能量守恒的表达式:

1.1. 牛顿运动方程 3

当 r 减小时,势能逐渐减小,有一个**极小值**,对应的两原子距离称为平衡位置 r_{eq} ,然后再减小 r 时,势能增大,最后达到

$$\lim_{r \to 0^+} V(r) = +\infty \tag{1.11}$$

这与两个原子的间距不能无穷近是一致的。实际上在平衡位置附近,我们把势能函数用二次函数近似²(即将真实的物理系统想象成为谐振子)。通过改变势能零点的定义,我们总可以把势能写为

$$V(r) = \frac{1}{2}k(r - r_{\rm eq})^2 \tag{1.12}$$

根据势能的形式可以写出力的形式

$$F = -\frac{\partial V}{\partial r} = -k(r - r_{eq}) \tag{1.13}$$

做变换 $x = r - r_{eq}$,可以将势能写为

$$V(x) = \frac{1}{2}kx^2 {(1.14)}$$

带入牛顿运动方程,得到关于位置和动量的微分方程组:

$$\dot{x} = \frac{p}{m}$$

$$\dot{p} = -kx$$
(1.15)

现在求解这个运动方程:

$$\ddot{x} = \frac{\dot{p}}{m} = -\frac{kx}{m} \tag{1.16}$$

这是一个二阶常微分方程,通解为:

$$x = A\cos\omega t + B\sin\omega t$$

$$p = -Am\omega\sin\omega t + Bm\omega\cos\omega t$$
(1.17)

其中 $\omega = \sqrt{\frac{k}{m}}$. 如果给定初始条件:

$$x(0) = x_0 p(0) = p_0 (1.18)$$

将上式对时间求导后就会得到径向运动方程:

$$\mu \ddot{r} - \frac{J^2}{\mu r^3} + \frac{\partial V}{\partial r} = 0 \tag{1.9}$$

可以看出,只有在不考虑转动时(角动量很小或者为 0)才是正文中所讨论的情况 ²将势能函数在平衡位置 Taylor 展开,保留到二阶(除非没有二阶项)

将这两个方程代入到通解中,得到:

$$x = x_0 \cos \omega t + \frac{p_0}{m\omega} \sin \omega t$$

$$p = p_0 \cos \omega t - m\omega x_0 \sin \omega t$$
(1.19)

1.2 Hamilton 正则方程

1.2.1 Hamilton 方程的导出和性质

前面已经看到,我们通过定义**动量**为独立变量的方式,将一维系统的一个二阶常微分方程化为了两个变量组成的一阶常微分方程组。这样的方法也能推广到 n 维系统,由于 2n 个初始条件(初始坐标和初始速度)决定了这个系统的运动,对应的我们也需要 2n 个一阶的方程组来描述这个系统;另一个问题是如何选择独立的变量,自然的想法是将 n 个坐标和 n 个"动量"(严格来讲是广义动量)选为独立变量,这样得到的方程组称为 Hamilton 正则方程。

关于 Hamilton 方程组的严格导出需要从 Lagrange 量和 Euler-Lagrange 方程出发,这里仅给出相关结论(具体的过程可以参考后面的章节)。一般而言,系统的 Hamilton 函数是系统坐标、动量与时间的函数 $H = H(\{x_i\}, \{p_i\}, t)$,系统的运动方程由 Hamilton 正则方程给出:

$$\begin{cases} \dot{x}_i = \frac{\partial H}{\partial p_i} \\ \dot{p}_i = -\frac{\partial H}{\partial x_i} \end{cases} \qquad i = 1, 2, 3, \dots, n$$

$$(1.20)$$

这里不经证明地给出一维(可以推广到高维)保守体系体系在直角坐标系中的 Hamilton 函数:

$$H(x, p, t) = \frac{p^2}{2m} + V(x)$$
 (1.21)

可以在一维情形下通过牛顿方程验证正则方程的正确性:

$$\frac{\partial H}{\partial x} = \frac{\partial V}{\partial x} = -\dot{p}$$

$$\frac{\partial H}{\partial p} = \frac{p}{m} = \dot{x}$$
(1.22)

现在希望验算对于 Hamilton 量不含时(具有时间平移对称性)的系统,在其任何一个由正则 方程决定的路径上 Hamilton 量守恒,即:

$$H(x(t), p(t), t) = H(x(0), p(0), 0) \quad \forall t$$
 (1.23)

考虑 Hamilton 量对于时间的导数,同时带入正则方程:

$$\frac{\mathrm{d}H}{\mathrm{d}t} = \frac{\partial H}{\partial x}\dot{x} + \frac{\partial H}{\partial p}\dot{p} + \frac{\partial H}{\partial t} = \frac{\partial H}{\partial t} = 0 \tag{1.24}$$

在谐振子模型中, Hamilton 函数不显含时间, 故

$$\frac{\mathrm{d}H}{\mathrm{d}t} = 0\tag{1.25}$$

这个体系可以在**相空间**³ 中描述,即把它的状态画在 (x,p) 二维平面上,观察系统的代表点随时间的运动。显然谐振子体系在相空间中的轨迹是一个椭圆:

$$\frac{p^2}{2m} + \frac{1}{2}kx^2 = E_0 ag{1.26}$$

其中 E_0 由初始状态决定。由于之前已经解出谐振子的运动方程,容易得到运动的周期:

$$T = \frac{2\pi}{\omega} \tag{1.27}$$

但是,对于任意的满足能量守恒的体系,其在相空间中的轨迹不一定是一条封闭的曲线(即并不是所有的运动都是周期的,尤其是对于高维的问题),在一些情况下有可能充满相空间的某个区域。常见的例子有中心力场[?]、二维谐振子等[?],这里给出一个简单的例子。考虑一个二维的谐振子,其 Hamilton 量为:

$$H = \frac{1}{2m}(p_1^2 + p_2^2) + \frac{m}{2}(\omega_1^2 x_1^2 + \omega_2^2 x_2^2)$$
(1.28)

可以解出运动方程为:

$$x_1 = A_1 \cos(\omega_1 t + \phi_1)$$

 $x_2 = A_2 \cos(\omega_2 + \phi_2)$ (1.29)

可以看出,如果 ω_1/ω_2 为一个有理数,那么上面的运动(参数方程所代表的二维曲线)就是有周期的;如果是无理数,那么曲线应该在某个区域内是稠密的(没有周期)。现在考虑质量是 x,p 的函数,即 $m_{\text{eff}}(x,p)$,在这种情况下 Hamilton 函数为

$$H(x,p) = \frac{p^2}{2m_{\text{eff}}(x,p)} + V(x)$$
 (1.30)

³事实上,相空间就是 Hamilton 方程中独立变量所张成的空间

在这种情况下的运动方程为:

$$\dot{x} = \frac{\partial H}{\partial p} = \frac{p}{2m_{\text{eff}}} - \frac{p^2}{2m_{\text{eff}}^2} \frac{\partial m_{\text{eff}}}{\partial p}
\dot{p} = -\frac{\partial H}{\partial x} = \frac{p^2}{2m_{\text{eff}}^2} \frac{\partial m_{\text{eff}}}{\partial x} + \frac{\partial V}{\partial x}$$
(1.31)

这种情况下能量仍然守恒,因为 Hamilton 函数不显含时间。

1.2.2 Hamilton 方程的数值解法

容易想象(从上面的习题同样可以看出),对于一般的力学系统,给出运动方程的解析形式非常困难,这时候就要求我们通过一些其他的手段来获取运动方程的信息,一个常用的方法是数值求解。数值求解的基本思路是用有限差分代替微分,然后利用计算机来求解差分方程。对于同一个微分方程,可以设计不同的差分格式,它们在极限情况下(步长趋于0)都会回到原来的微分方程,但是在步长有限的情况下,这些差分方程对于问题的描述可能会有明显的差异,这里只做简单的介绍。首先考虑一般形式微分方程的初值问题:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(x,t)$$

$$x(t_0) = x_0$$
(1.32)

Euler 法

考虑使用有限差分代替微分:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(x,t) \approx \frac{x(t+h) - x(t)}{h} \tag{1.33}$$

将上式改写为递推的形式:

$$x_{n+1} = x_n + h \cdot f(x_n, t_n) \tag{1.34}$$

只要知道初始条件,上式可以不断递推。上面的方法称为向前欧拉法,是一种显式的单步算法。⁴相应的有向后欧拉法:

$$x_{n+1} = x_n + h \cdot f(x_{n+1}, t_{n+1}) \tag{1.35}$$

这是一个隐式的单步算法,需要在知道 f 的具体形式后从上式中反解 x_{n+1} 。

⁴单步:可以通过 x_n 的数值计算 x_{n+1} 的数值;显式:如果 x_n+1 只需要 $x_{m < n}$ 的数值计算

Runge-Kutta 法

二阶 Runge-Kutta 法

$$\begin{cases} k_1 = h \cdot f(x_n, t_n) \\ k_2 = h \cdot f(x_n + \frac{1}{2}k_1, t_n + \frac{1}{2}h) \\ x_{n+1} = x_n + k_2 + O(h^3) \end{cases}$$
 (1.36)

四阶 Runge-Kutta 法

$$\begin{cases} k_1 = h \cdot f(x_n, t_n) \\ k_2 = h \cdot f(x_n + \frac{1}{2}k_1, t_n + \frac{1}{2}h) \\ k_3 = h \cdot f(x_n + \frac{1}{2}k_2, t_n + \frac{1}{2}h) \\ k_4 = h \cdot f(x_n + k_3, t_n + h) \\ y_{n+1} = y_n + \frac{1}{6}k_1 + \frac{1}{3}k_2 + \frac{1}{3}k_3 + \frac{1}{6}k_4 + O(h^5) \end{cases}$$

$$(1.37)$$

Runge-Kutta 法是一种常用的精度较高的单步算法,在同样的 t 步长下拥有比 Euler 法更高的精度。 5 对于常微分方程组,只用将上述差分格式中的 k_i, x_n, f 改为向量即可。

velocity-Verlet 方法

容易想象,前几种方法求解微分方程时每一步误差都会累积,一定时间后数值解就会与真实解产生明显偏离。由于 Hamilton 方程具有比一般微分方程更加丰富的性质,这就意味着有可能存在适用于 Hamilton 系统的差分方案,它可以保持 Hamilton 系统中的一些守恒量⁶,从而在相当长时间内给出较为精确的数值解⁷,下面给出的 velocity—Verlet 方法就是这样一个差分格式。这里只给出一维系统的例子,容易推广到任意维系统。假设系统的哈密顿量为:

$$H = \frac{p^2}{2m} + V(x) \tag{1.38}$$

$$\begin{cases}
p_{j+0.5} = p_j - \frac{\Delta t}{2} \left. \frac{\partial V}{\partial x} \right|_{x=x_j} \\
x_{j+1} = \frac{p_{j+0.5}}{m} \Delta t + x_j \\
p_{j+1} = p_{j+0.5} - \left. \frac{\Delta t}{2} \left. \frac{\partial V}{\partial x} \right|_{x=x_{j+1}}
\end{cases}$$
(1.39)

⁵关于差分格式的误差估计与稳定性分析这里无法展开讨论,应参考相关书籍

⁶可以通过数值计算验证无论是 Euler 法还是 Runge-Kutte 法都不能保证演化过程中系统的能量稳定

⁷当然,保证了能量守恒并不一定能保证数值解在任意时刻都可以与真实解任意接近。

可以写程序验证,至少对于一维四次方势系统,velocity-Verlet 方法给出的数值解能量是稳定的。

1.3 Homework

作业1 一维四次势中粒子的运动。尝试在给定初始条件的情况下给出解析解;同时尝试用不同的数值方法求解运动方程,比较几种方法的差异(能量是否稳定?)

作业2 竖立粉笔的问题。竖立在桌面上的粉笔是否会永远静止?如果不是,请求出粉笔偏离 平衡位置的角度的平均值与平方平均值。

Chapter 2

Liouville 定理

匀变速直线运动,应当有

$$x(t) = x(0) + vt + \frac{1}{2}at^{2}$$
$$= x(0) + \dot{x}t + \frac{1}{2}\ddot{x}t^{2}$$

这相当于位置对时间作了 Taylor 展开,展开到二阶。但是为什么只考虑前两阶,而不考虑后面的项呢?可以这样考虑:在给定了 Hamilton 函数的情形下,正则方程最多只涉及到对时间的二阶导数,最终解出位置对时间的函数,以及动量对时间的函数只有两个待定常数,因此只用位置和动量初始的条件。¹

2.1 20200928: 相空间不同时刻体积元的关系

现在开始研究一个多维体系,它的位置和动量分别不是一个标量,而是一个向量 x, p. 如果系统的在 t 时刻的状态 (x_t, p_t) 对应一个相空间中的体积元: $dx_t dp_t$ 。如果给定初始条件 (x_0, p_0) ,希望在正则方程成立的条件下,能够确定 0 时刻和 t 时刻的相空间体积元的关系。这个问题可以等效地理解为,将初始条件产生一个很小的偏差 (dx_0, dp_0) ,要求在 t 时刻的偏差和初始条件的关系。

这实际上给出了两种研究问题的办法:一种是参考系不动,一种是参考系随着时间跟踪 系统在相空间中的轨线进行运动。

¹这里给出的是笔记书写者的看法。为什么牛顿方程是二阶常微分方程,修改者认为这是由经典力学的 决定性导致的。力学系统的位置和位置对于时间的导数可以唯一决定力学系统今后的状态,如果在位形空间中列出运动方程(Newton 方程、Euler-Lagrange 方程),那必然是二阶微分方程(此时微分方程解的存在唯一性定理与经典力学的决定性相容);如果在相空间

对于任意个不显含时间的函数 $f(x_t, p_t)$, 它和 $f(x_0, p_0)$ 的关系为:

$$\int f(\boldsymbol{x}_t, \boldsymbol{p}_t) \mathrm{d}\boldsymbol{x}_t \mathrm{d}\boldsymbol{p}_t = \int f(\boldsymbol{x}_0, \boldsymbol{p}_0) \left| \frac{\partial(\boldsymbol{x}_t, \boldsymbol{p}_t)}{\partial(\boldsymbol{x}_0, \boldsymbol{p}_0)} \right| \mathrm{d}\boldsymbol{x}_0 \mathrm{d}\boldsymbol{p}_0$$

由此可知,算出 Jacobi 行列式的值是非常重要的。Jacobi 行列式的对应矩阵写为

$$\begin{pmatrix} \frac{\partial x_t}{\partial x_0} & \frac{\partial x_t}{\partial p_0} \\ \frac{\partial p_t}{\partial x_0} & \frac{\partial p_t}{\partial p_0} \end{pmatrix}$$

我们可以把 t 时刻的状态写成初始条件的函数:

$$egin{aligned} oldsymbol{x}_t &= oldsymbol{x}_t(oldsymbol{x}_0, oldsymbol{p}_0) \ oldsymbol{p}_t &= oldsymbol{p}_t(oldsymbol{x}_0, oldsymbol{p}_0) \end{aligned}$$

如果初始状态偏离 (dx_0, dp_0) , 那么

$$egin{aligned} oldsymbol{x}_t(oldsymbol{x}_0+\mathrm{d}oldsymbol{x}_0,oldsymbol{p}_0+\mathrm{d}oldsymbol{p}_0) &= oldsymbol{x}_t(oldsymbol{x}_0,oldsymbol{p}_0) + rac{\partial oldsymbol{x}_t}{\partial oldsymbol{x}_0}\mathrm{d}x_0 + rac{\partial oldsymbol{p}_t}{\partial oldsymbol{p}_0}\mathrm{d}p_0 \ oldsymbol{p}_t(oldsymbol{x}_0+\mathrm{d}oldsymbol{x}_0,oldsymbol{p}_0+\mathrm{d}oldsymbol{p}_0) &= oldsymbol{p}_t(oldsymbol{x}_0,oldsymbol{p}_0) + rac{\partial oldsymbol{p}_t}{\partial oldsymbol{x}_0}\mathrm{d}x_0 + rac{\partial oldsymbol{p}_t}{\partial oldsymbol{p}_0}\mathrm{d}p_0 \end{aligned}$$

此处只考虑 Taylor 展开到一阶的结果。或者写成

$$d\mathbf{x}_{t} = \frac{\partial \mathbf{x}_{t}}{\partial \mathbf{x}_{0}} dx_{0} + \frac{\partial \mathbf{x}_{t}}{\partial \mathbf{p}_{0}} dp_{0}$$
$$d\mathbf{p}_{t} = \frac{\partial \mathbf{p}_{t}}{\partial \mathbf{x}_{0}} dx_{0} + \frac{\partial \mathbf{p}_{t}}{\partial \mathbf{p}_{0}} dp_{0}$$

矩阵没有办法直接求出来,我们尝试对时间求导。

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \boldsymbol{x}_t}{\partial \boldsymbol{x}_0} \right)_{\boldsymbol{p}_0} &= \left(\frac{\partial}{\partial \boldsymbol{x}_0} \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{x}_t \right)_{\boldsymbol{p}_0} = \left(\frac{\partial}{\partial \boldsymbol{x}_0} \left(\frac{\partial H}{\partial \boldsymbol{p}_t} \right)_{\boldsymbol{x}_t} \right)_{\boldsymbol{p}_0} = \left(\frac{\partial^2 H}{\partial \boldsymbol{x}_t \partial \boldsymbol{p}_t} \right) \left(\frac{\partial \boldsymbol{x}_t}{\partial \boldsymbol{x}_0} \right)_{\boldsymbol{p}_0} + \left(\frac{\partial^2 H}{\partial \boldsymbol{p}_t^2} \right)_{\boldsymbol{x}_t} \left(\frac{\partial \boldsymbol{p}_t}{\partial \boldsymbol{x}_0} \right)_{\boldsymbol{p}_0} \\ \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \boldsymbol{x}_t}{\partial \boldsymbol{p}_0} \right)_{\boldsymbol{x}_0} &= \left(\frac{\partial}{\partial \boldsymbol{p}_0} \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{x}_t \right)_{\boldsymbol{x}_0} = \left(\frac{\partial}{\partial \boldsymbol{p}_0} \left(\frac{\partial H}{\partial \boldsymbol{p}_t} \right)_{\boldsymbol{x}_t} \right)_{\boldsymbol{x}_0} = \left(\frac{\partial^2 H}{\partial \boldsymbol{x}_t \partial \boldsymbol{p}_t} \right) \left(\frac{\partial \boldsymbol{x}_t}{\partial \boldsymbol{p}_0} \right)_{\boldsymbol{x}_0} + \left(\frac{\partial^2 H}{\partial \boldsymbol{p}_t^2} \right)_{\boldsymbol{x}_t} \left(\frac{\partial \boldsymbol{p}_t}{\partial \boldsymbol{p}_0} \right)_{\boldsymbol{x}_0} \\ \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \boldsymbol{p}_t}{\partial \boldsymbol{x}_0} \right)_{\boldsymbol{p}_0} &= \left(\frac{\partial}{\partial \boldsymbol{x}_0} \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{p}_t \right)_{\boldsymbol{p}_0} = - \left(\frac{\partial}{\partial \boldsymbol{x}_0} \left(\frac{\partial H}{\partial \boldsymbol{x}_t} \right)_{\boldsymbol{p}_t} \right)_{\boldsymbol{p}_0} = - \left(\frac{\partial^2 H}{\partial \boldsymbol{x}_t^2} \right)_{\boldsymbol{p}_t} \left(\frac{\partial \boldsymbol{x}_t}{\partial \boldsymbol{x}_0} \right)_{\boldsymbol{p}_0} - \left(\frac{\partial^2 H}{\partial \boldsymbol{p}_t \partial \boldsymbol{x}_t} \right) \left(\frac{\partial \boldsymbol{p}_t}{\partial \boldsymbol{x}_0} \right)_{\boldsymbol{p}_0} \\ \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \boldsymbol{p}_t}{\partial \boldsymbol{p}_0} \right)_{\boldsymbol{x}_0} &= \left(\frac{\partial}{\partial \boldsymbol{p}_0} \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{p}_t \right)_{\boldsymbol{x}_0} = - \left(\frac{\partial}{\partial \boldsymbol{p}_0} \left(\frac{\partial H}{\partial \boldsymbol{x}_t} \right)_{\boldsymbol{p}_t} \right)_{\boldsymbol{x}_0} = - \left(\frac{\partial^2 H}{\partial \boldsymbol{x}_t^2} \right)_{\boldsymbol{p}_t} \left(\frac{\partial \boldsymbol{x}_t}{\partial \boldsymbol{x}_0} \right)_{\boldsymbol{x}_0} - \left(\frac{\partial^2 H}{\partial \boldsymbol{p}_t \partial \boldsymbol{x}_t} \right) \left(\frac{\partial \boldsymbol{p}_t}{\partial \boldsymbol{x}_t} \right)_{\boldsymbol{p}_0} \\ \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \boldsymbol{p}_t}{\partial \boldsymbol{p}_0} \right)_{\boldsymbol{x}_0} &= - \left(\frac{\partial}{\partial \boldsymbol{p}_0} \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{p}_t \right)_{\boldsymbol{x}_0} = - \left(\frac{\partial}{\partial \boldsymbol{p}_0} \left(\frac{\partial H}{\partial \boldsymbol{x}_t} \right)_{\boldsymbol{p}_t} \right)_{\boldsymbol{x}_0} \\ \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \boldsymbol{p}_t}{\partial \boldsymbol{p}_0} \right)_{\boldsymbol{x}_0} &= - \left(\frac{\partial^2 H}{\partial \boldsymbol{p}_0} \right)_{\boldsymbol{x}_0} - \left(\frac{\partial^2 H}{\partial \boldsymbol{p}_0} \right)_{\boldsymbol{x}_0} - \left(\frac{\partial^2 H}{\partial \boldsymbol{p}_0} \right)_{\boldsymbol{x}_0} \\ \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \boldsymbol{p}_t}{\partial \boldsymbol{p}_0} \right)_{\boldsymbol{x}_0} &= - \left(\frac{\partial^2 H}{\partial \boldsymbol{p}_0} \right)_{\boldsymbol{x}_0} - \left(\frac{\partial^2 H}{\partial \boldsymbol{p}_0} \right)_{\boldsymbol{x}_0} - \left(\frac{\partial^2 H}{\partial \boldsymbol{p}_0} \right)_{\boldsymbol{x}_0} \\ \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \boldsymbol{p}_t}{\partial \boldsymbol{p}_0} \right)_{\boldsymbol{x}_0} &= - \left(\frac{\partial^2 H}{\partial \boldsymbol{p}_0} \right)_{\boldsymbol{x}_0} - \left(\frac{\partial^2 H}{\partial \boldsymbol{p}_0} \right)_{\boldsymbol{x}_0} - \left(\frac{\partial^2 H}{\partial \boldsymbol{p}_0} \right)_{\boldsymbol{x}_0} \\ \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \boldsymbol{p}_0}{\partial \boldsymbol{p}_0} \right)_{\boldsymbol{x}_0} &= - \left(\frac{\partial^2 H}{\partial \boldsymbol{p}_0}$$

由此可以得到

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \frac{\partial x_t}{\partial x_0} & \frac{\partial x_t}{\partial p_0} \\ \frac{\partial p_t}{\partial x_0} & \frac{\partial p_t}{\partial p_0} \end{pmatrix} = \begin{pmatrix} \frac{\partial^2 H}{\partial x_t \partial p_t} & (\frac{\partial^2 H}{\partial p_t^2})_{x_t} \\ -(\frac{\partial^2 H}{\partial x_t^2})_{p_t} & -\frac{\partial^2 H}{\partial x_t \partial p_t} \end{pmatrix} \begin{pmatrix} \frac{\partial x_t}{\partial x_0} & \frac{\partial x_t}{\partial p_0} \\ \frac{\partial p_t}{\partial x_0} & \frac{\partial p_t}{\partial p_0} \end{pmatrix}$$

将此处的 Jacobi 矩阵称为**稳定性矩阵**,其含义是如果系统初始时刻状态变化很小,那么 t 时刻的变化也很小。

作业3 第1次作业第3题: Liouville 定理的证明

2.2 20201009: Liouville 定理

设矩阵

$$\mathbf{A} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$$

它的行列式为

$$\det \boldsymbol{A} = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \boldsymbol{A}_{ij}^*, \ \forall \ i$$

其中, A_{ij}^* 表示 a_{ij} 的代数余子式。定义 A 的伴随矩阵 \bar{A} 为

$$ar{m{A}}_{ij} = m{A}_{ii}^*$$

矩阵的逆矩阵为

$$\boldsymbol{A}^{-1} = \frac{1}{\det \boldsymbol{A}} \bar{\boldsymbol{A}}$$

对行列式的求导并不是对每个元素求导再求行列式,而是依照下列方法:

$$\frac{\mathrm{d}}{\mathrm{d}t}\det \mathbf{A} = \sum_{i} \det \tilde{\mathbf{A}}_{i}$$

其中, A_i 是只对第i行的所有元素对时间求导,其他元素不变得到的矩阵。进一步得到

$$\frac{\mathrm{d}}{\mathrm{d}t} \det \mathbf{A} = \sum_{i} \det \tilde{\mathbf{A}}_{i} = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\mathrm{d}a_{ij}}{\mathrm{d}t} \mathbf{A}_{ij}^{*}$$
$$= \mathrm{Tr} \left(\frac{\mathrm{d}\mathbf{A}}{\mathrm{d}t} \bar{\mathbf{A}} \right) = \mathrm{Tr} \left(\frac{\mathrm{d}\mathbf{A}}{\mathrm{d}t} \mathbf{A}^{-1} \right) \det \mathbf{A}$$

将两边同时除以 A 的行列式,得到

$$rac{\mathrm{d}}{\mathrm{d}t} \ln \det oldsymbol{A} = \mathrm{Tr}igg(rac{\mathrm{d}oldsymbol{A}}{\mathrm{d}t}oldsymbol{A}^{-1}igg)$$

如果

$$\frac{\mathrm{d}}{\mathrm{d}t}A = MA$$

就有

$$\frac{\mathrm{d}}{\mathrm{d}t} \ln \det \mathbf{A} = \operatorname{Tr} \mathbf{M}$$

对于上一节讲的 Jacobi 矩阵,有

$$oldsymbol{M} = egin{pmatrix} rac{\partial^2 H}{\partial ec{x}_t \partial ec{p}_t} & (rac{\partial^2 H}{\partial ec{p}_t^2})_{ec{x}_t} \ -(rac{\partial^2 H}{\partial ec{x}_t^2})_{ec{p}_t} & -rac{\partial^2 H}{\partial ec{x}_t \partial ec{p}_t} \end{pmatrix}$$

显然这个矩阵的迹为 0, 所以

$$\left| \frac{\mathrm{d}}{\mathrm{d}t} \det \left| \frac{\partial(\boldsymbol{x}_t, \boldsymbol{p}_t)}{\partial(\boldsymbol{x}_0, \boldsymbol{p}_0)} \right| = 0 \right|$$

但初始时刻显然 Jacobi 行列式为 1, 所以 Jacobi 行列式一直为 1, 就有

$$\mathrm{d}\boldsymbol{x}_t\mathrm{d}\boldsymbol{p}_t=\mathrm{d}\boldsymbol{x}_0\mathrm{d}\boldsymbol{p}_0$$

这个结论称为 Liouville 定理。注意到这个结论的推导只用到了正则方程,只要正则方程成立,这个结论就成立。

如果定义一个概率密度 $\rho(x,p)$,它满足归一化条件,且处处不小于 0. 假设初始条件下在 x_0, p_0 位置有个体积元 $dx_0 dp_0$,跟踪这个体积元经历的轨线,达到 $dx_t dp_t$ 时,在这个体积元的概率应为不变的。这可以理解为,根据 Liouville 定理,最开始在体积元里面的状态仍然会在初始状态演化后的体积元里。这可以表述为

$$\rho(\boldsymbol{x}_t, \boldsymbol{p}_t) = \rho(\boldsymbol{x}_0, \boldsymbol{p}_0)$$

它对任意的 t 都成立,则

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = \frac{\partial\rho}{\partial t} + \frac{\partial\rho}{\partial \boldsymbol{x}_t}\dot{\boldsymbol{x}}_t + \frac{\partial\rho}{\partial\boldsymbol{p}_t}\dot{\boldsymbol{p}}_t = 0$$

再利用正则方程,得到

$$-\frac{\partial \rho}{\partial t} = \left(\frac{\partial \rho}{\partial \boldsymbol{x}_t}\right)^{\mathrm{T}} \frac{\partial H}{\partial \boldsymbol{p}_t} - \left(\frac{\partial \rho}{\partial \boldsymbol{p}_t}\right)^{\mathrm{T}} \frac{\partial H}{\partial \boldsymbol{x}_t}$$

定义 Poisson 括号为

$$\{\rho, H\} = \left(\frac{\partial \rho}{\partial \boldsymbol{x}_t}\right)^{\mathrm{T}} \frac{\partial H}{\partial \boldsymbol{p}_t} - \left(\frac{\partial \rho}{\partial \boldsymbol{p}_t}\right)^{\mathrm{T}} \frac{\partial H}{\partial \boldsymbol{x}_t}$$

则有

$$-\frac{\partial \rho}{\partial t} = \{\rho, H\}$$

这也是 Liouville 定理的一种形式。如果 Hamilton 函数满足形式

$$H(\boldsymbol{x}_t, \boldsymbol{p}_t) = \frac{1}{2} \boldsymbol{p}_t^{\mathsf{T}} \boldsymbol{M}^{-1} \boldsymbol{p}_t + V(\boldsymbol{x}_t)$$

则有

$$-\frac{\partial \rho}{\partial t} = \left(\frac{\partial \rho}{\partial \boldsymbol{x}_t}\right)^{\mathrm{T}} \boldsymbol{M}^{-1} \boldsymbol{p}_t - \left(\frac{\partial \rho}{\partial \boldsymbol{p}_t}\right)^{\mathrm{T}} \frac{\partial V}{\partial \boldsymbol{x}_t}$$

一种常见的分布: Boltzmann 分布:

$$\rho(\boldsymbol{x},\boldsymbol{p}) \propto \mathrm{e}^{-\beta H(\boldsymbol{x},\boldsymbol{p})}$$

如果一个分布满足

$$\frac{\partial \rho}{\partial t} = 0$$

则称为稳态分布。但是即使不是稳态分布,它也会满足对时间的全导数是 0。这也是 Liouville 定理的一个形式。

作业 4 第 2 次作业第 1 题: Boltzmann 分布是否为稳态分布?

研究一个概率密度的时候,有两种方式:一种是研究密度对时间的偏导,看静止空间的概率密度的变化,这称为 Euler 图象。另一种方式是研究密度对时间的劝导,跟踪状态运动的轨线,研究这个密度体积元在不同的时间的位置,这称为 Lagrange 图象。

Chapter 3

Liouville 方程

3.1 20201012: Euler 图象演化概率密度

Liouville 定理有两种表述形式:

$$-\frac{\partial \rho}{\partial t} = \{\rho, H\}$$

以及

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = 0$$

第一种形式下, $\rho=\rho(x,p,t)$,第二种形式下 $\rho=\rho(x_t,p_t,t)$. 分别表示了 Euler 和 Lagrange 两种图象。

回顾描述 HCl 分子的振动的例子,我们可以用 Morse 势来描述这个振动:

$$V(x) = D_e(1 - e^{-a(r - r_{eq})})^2 = D_e(1 - e^{-ax})^2$$

其中有 a > 0,在平衡位置附近可以使用谐振子近似。写出其 Boltzmann 分布

$$\rho(x, p, 0) = \frac{1}{Z} e^{-\beta(\frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2)}$$

由概率密度的归一化,可以得到配分函数的值,这里涉及到 Gauss 函数的积分

$$I = \int_0^{+\infty} e^{-ax^2} x^n dx$$

$$I = \int_0^{+\infty} e^{-t} \left(\frac{t}{a}\right)^{\frac{n}{2}} \frac{dt}{\sqrt{at}}$$

$$= \frac{1}{2a^{\frac{n+1}{2}}} \int_0^{+\infty} e^{-t} t^{\frac{n-1}{2}} dt$$

$$= \frac{\Gamma(\frac{n+1}{2})}{2a^{\frac{n+1}{2}}}$$

据此算出配分函数

$$Z = \int e^{-\beta(\frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2)} dx dp = \frac{2\pi}{\beta\omega}$$

从量纲上分析,在配分函数中少了 $\mathbf{d}x\mathbf{d}p$ 的量纲。本质上应该除以 $2\pi\hbar$,相当于对相空间做了量子化。于是

$$Z = \frac{1}{\beta \overline{h}\omega}$$

就是无量纲的配分函数。

回到用 Morse 势描述 HCl 的振动的问题,Morse 势的常数 a 可以用谐振子近似的 ω 进行估计。令 $x \to 0$,对 V(x) 在平衡位置附近作 Taylor 展开,展开到二阶。

$$V(x) = D_e a^2 x^2 + o(x^2)$$

它与谐振子近似一致, 因此

$$\frac{1}{2}m\omega^2 x^2 = D_e a^2 x^2$$

于是

$$\omega = \sqrt{\frac{2D_e a^2}{m}}$$

作业 5 第 2 次作业第 2 题:构造H,分子的 Morse 势

作业 6 第 2 次作业第 3 题:以 Boltzmann 分布为初始分布,在 Morse 势,Euler 图象下演化 H_2 的 t 时刻的分布。

事实上,对双原子分子 HCl,它有 6 个自由度,3 个平动,2 个转动,所以我们可以只用振动自由度来描述 HCl 的分子结构。

3.2 20201016: Lagrange 图象演化概率密度

除了用 Euler 图象来演化密度以外,也可以用 Lagrange 图象来演化密度。由

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho(x_t, p_t, t) = 0$$

可以得到 t 时刻的概率密度为

$$\rho(x, p, t) = \int \rho(x_0, p_0, 0) \delta(x - x_t(x_0, p_0)) \delta(p - p_t(x_0, p_0)) dx_0 dp_0$$

这里引入了 δ 函数。 δ 函数满足

$$\delta(x - x_0) = 0, \ \forall \ x \neq x_0$$
$$\int_{-\infty}^{+\infty} \delta(x - x_0) dx = 1$$
$$\int_{-\infty}^{+\infty} f(x) \delta(x - x_0) dx = f(x_0)$$

现在希望给 δ 函数给一个形式,让它和上面满足的性质自治:可以利用 Fourier 变换及其逆变换的定义

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{ikx} dx = F(k)$$
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} F(k) e^{-ikx} dk = f(x)$$

于是有

$$f(x_0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{ikx} dx e^{-ikx_0} dk$$
$$= \frac{1}{2\pi} \iint f(x) e^{ik(x-x_0)} dx dk$$
$$= \frac{1}{2\pi} \iint f(x) e^{ik(x-x_0)} dk dx$$

于是可以写出 δ 函数为

$$\delta(x - x_0) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{ik(x - x_0)} dk$$

某个物理量的期望定义为

$$\langle B(t) \rangle = \int \rho(x, p, t) B(x, p) dx dp$$

回到用 Morse 势描述 HCl 的振动的问题,在这个问题下,初始时刻为 Boltzmann 分布时,

$$\begin{split} \langle x \rangle &= 0 \\ \langle x^2 \rangle &= \frac{1}{\beta m \omega^2} \\ \Delta x &= \sqrt{\langle x^2 \rangle - \langle x \rangle^2} = \frac{1}{\sqrt{\beta m \omega^2}} \end{split}$$

作业 7 第 3 次作业第 2 题:以 Boltzmann 分布为初始分布,在 Morse 势,Lagrange 图象下演 化 H_2 的 t 时刻的分布。

Chapter 4

多自由度的小振动

4.1 20201019: 多自由度振动的频率计算

利用上一节得到的 δ 函数,可以计算在 t 时刻的物理量期望为

$$\begin{split} \langle B(t) \rangle &= \int \rho(\boldsymbol{x}, \boldsymbol{p}, t) B(\boldsymbol{x}, \boldsymbol{p}) \mathrm{d}\boldsymbol{x} \mathrm{d}\boldsymbol{p} \\ &= \int \int \rho(\boldsymbol{x}_0, \boldsymbol{p}_0, 0) \delta(\boldsymbol{x} - \boldsymbol{x}_t(\boldsymbol{x}_0, \boldsymbol{p}_0)) \delta(\boldsymbol{p} - \boldsymbol{p}_t(\boldsymbol{x}_0, \boldsymbol{p}_0)) \mathrm{d}\boldsymbol{x}_0 \mathrm{d}\boldsymbol{p}_0 B(\boldsymbol{x}, \boldsymbol{p}) \mathrm{d}\boldsymbol{x} \mathrm{d}\boldsymbol{p} \\ &= \int \int \delta(\boldsymbol{x} - \boldsymbol{x}_t(\boldsymbol{x}_0, \boldsymbol{p}_0)) \delta(\boldsymbol{p} - \boldsymbol{p}_t(\boldsymbol{x}_0, \boldsymbol{p}_0)) B(\boldsymbol{x}, \boldsymbol{p}) \mathrm{d}\boldsymbol{x} \mathrm{d}\boldsymbol{p} \rho(\boldsymbol{x}_0, \boldsymbol{p}_0, 0) \mathrm{d}\boldsymbol{x}_0 \mathrm{d}\boldsymbol{p}_0 \\ &= \int B(\boldsymbol{x}_t, \boldsymbol{p}_t) \rho(\boldsymbol{x}_0, \boldsymbol{p}_0, 0) \mathrm{d}\boldsymbol{x}_0 \mathrm{d}\boldsymbol{p}_0 \end{split}$$

这意味着,只用初始概率密度也可以得到 t 时刻的物理量的期望。

现在研究复杂一些的 H_2O 分子的振动。它总共有 3 个原子,所以 9 个自由度。平动 3 个自由度,转动也有 3 个自由度,因此振动是 3 个自由度。3 个振动自由度分别为剪切振动、对称伸缩振动和不对称伸缩振动。

作业8 第 3 次作业第 3 题:水分子的简谐振动分析

水分子的 O-H 振动波数约为 3700 cm $^{-1}$, 剪切振动波数约为 1600 cm $^{-1}$, 伸缩振动 1 个周期应 当约为 20.8 fs, 剪切振动波数约为 9 fs. 而 1 a.u. = 0.024 fs. 即可据此估计模拟过程中的时间 步长。

对于水分子, 定义其坐标为

$$oldsymbol{x} = egin{pmatrix} oldsymbol{x}_{ ext{O}} \ oldsymbol{x}_{ ext{H1}} \ oldsymbol{x}_{ ext{H2}} \end{pmatrix}$$

并给定了其势能V(x),给出质量矩阵

$$\mathbf{M} = \operatorname{diag}\{m_1, ..., m_9\} = \begin{pmatrix} m_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & m_9 \end{pmatrix}$$

其中, m_1, m_2, m_3 等于氧原子的质量, $m_4, ..., m_9$ 等于氢原子的质量。

定义 Hessian 矩阵 升为

$$\mathcal{H}_{ij} = \frac{1}{\sqrt{m_i}} \frac{\partial^2 V}{\partial x_i \partial x_j} \frac{1}{\sqrt{m_j}}$$

它的单位为 s^{-2} . 显然地,这是一个实对称矩阵,可以由正交矩阵作对角化:

$$T^{\mathrm{T}}\mathcal{H}T=\Omega$$

其中T为正交矩阵,满足

$$T^{\mathrm{T}}T = TT^{\mathrm{T}} = I$$

并且

$$\mathbf{\Omega} = \mathrm{diag}\{\omega_1^2,...,\omega_9^2\}$$

这样就得到了角频率, ω_i 对应的能量为 $\hbar\omega_i$ 。总共得到了 9 个模式的频率,其中 3 个模式的频率对应平动,3 个模式频率对应转动(平动转动的频率趋于 0),3 个模式频率对应振动。

如果用矩阵形式来表示 Hessian 矩阵,应有

$$\mathcal{H} = M^{-\frac{1}{2}} V^{(2)} M^{-\frac{1}{2}}$$

4.2 20201023: 简正坐标

上一节研究的 Hessian 矩阵对角化向量形式应为

$$\mathcal{H} oldsymbol{b}_j = \omega_j^2 oldsymbol{b}_j$$

由此可知

$$oldsymbol{H} egin{pmatrix} oldsymbol{b}_1 & \cdots & oldsymbol{b}_N \end{pmatrix} = egin{pmatrix} oldsymbol{b}_1 & \cdots & oldsymbol{b}_N \end{pmatrix} oldsymbol{\Omega}$$

所以

$$oldsymbol{T} = egin{pmatrix} oldsymbol{b}_1 & \cdots & oldsymbol{b}_N \end{pmatrix}$$

有

$$HT = T\Omega$$

要得到本征值,应当有

$$\det(\mathcal{H} - \omega^2 \mathbf{I}) = 0$$

即可得到N本征频率。

作业9 第 3 次作业第 1 题:证明 Hessian 矩阵的本征值都是实数。

水分子在谐振子近似下的势能函数为

$$\begin{split} V(\boldsymbol{x}) &= V(\boldsymbol{x}_{\text{eq}}) + \frac{1}{2}(\boldsymbol{x} - \boldsymbol{x}_{\text{eq}})^{\text{T}} \boldsymbol{V}^{(2)}(\boldsymbol{x} - \boldsymbol{x}_{\text{eq}}) \\ &= V(\boldsymbol{x}_{\text{eq}}) + \frac{1}{2}(\boldsymbol{x} - \boldsymbol{x}_{\text{eq}})^{\text{T}} \boldsymbol{M}^{\frac{1}{2}} \boldsymbol{\mathcal{H}} \boldsymbol{M}^{\frac{1}{2}}(\boldsymbol{x} - \boldsymbol{x}_{\text{eq}}) \\ &= V(\boldsymbol{x}_{\text{eq}}) + \frac{1}{2}(\boldsymbol{x} - \boldsymbol{x}_{\text{eq}})^{\text{T}} \boldsymbol{M}^{\frac{1}{2}} \boldsymbol{T} \boldsymbol{\Omega} \boldsymbol{T}^{\text{T}} \boldsymbol{M}^{\frac{1}{2}}(\boldsymbol{x} - \boldsymbol{x}_{\text{eq}}) \end{split}$$

定义简正坐标 Q 为

$$oldsymbol{Q} = oldsymbol{T}^{ ext{T}} oldsymbol{M}^{rac{1}{2}} (oldsymbol{x} - oldsymbol{x}_{ ext{eq}})$$

于是势能面可以写为

$$V(\boldsymbol{Q}) = V(\boldsymbol{0}) + \frac{1}{2}\boldsymbol{Q}^{\mathrm{T}}\boldsymbol{\Omega}\boldsymbol{Q} = V(\boldsymbol{0}) + \sum_{j=1}^{N} \frac{1}{2}\omega_{j}^{2}Q_{j}^{2}$$

4.3 20201026: 简正坐标和 Cartesian 坐标的关系

上一节讨论了势能在简正坐标下的形式。要想得到全能量,还需要给出动量在简正坐标下的形式。根据

$$oldsymbol{p} = oldsymbol{M}\dot{oldsymbol{x}} = oldsymbol{M}\dot{oldsymbol{z}}^{rac{1}{2}}oldsymbol{T}\dot{oldsymbol{Q}}$$

这是在 Cartesian 坐标系下的动量。定义简正坐标下的动量为

$$oldsymbol{P} = \dot{oldsymbol{Q}} = oldsymbol{T}^{\mathrm{T}} oldsymbol{M}^{-\frac{1}{2}} oldsymbol{p}$$

那么,可以得到动能的表达式为

$$E_k = \frac{1}{2} \boldsymbol{p}^T \boldsymbol{M}^{-1} \boldsymbol{p} = \frac{1}{2} \dot{\boldsymbol{x}}^T \boldsymbol{M} \dot{\boldsymbol{x}} = \frac{1}{2} \dot{\boldsymbol{Q}}^T \boldsymbol{Q} = \frac{1}{2} \boldsymbol{P}^T \boldsymbol{P}$$

总结简正坐标和 Cartesian 坐标的变换:

$$egin{aligned} oldsymbol{Q} &= oldsymbol{T}^{ ext{T}} oldsymbol{M}^{rac{1}{2}} (oldsymbol{x} - oldsymbol{x}_{ ext{eq}}) \ oldsymbol{P} &= oldsymbol{T}^{ ext{T}} oldsymbol{M}^{-rac{1}{2}} oldsymbol{p} \ oldsymbol{x} &= oldsymbol{x}_{ ext{eq}} + oldsymbol{M}^{-rac{1}{2}} oldsymbol{T} oldsymbol{Q} \ oldsymbol{p} &= oldsymbol{M}^{rac{1}{2}} oldsymbol{T} oldsymbol{P} \end{aligned}$$

有了简正坐标下的动量就可以得到简正坐标下的 Hamilton 函数:

$$H = \frac{1}{2} \boldsymbol{P}^{\mathsf{T}} \boldsymbol{P} + \frac{1}{2} \boldsymbol{Q}^{\mathsf{T}} \boldsymbol{\Omega} \boldsymbol{Q}$$

很容易可以验证,正则方程在简正坐标下依旧成立:

$$\begin{split} \dot{\boldsymbol{Q}} &= \frac{\partial H}{\partial \boldsymbol{P}} = \boldsymbol{P} \\ \dot{\boldsymbol{P}} &= -\frac{\partial H}{\partial \boldsymbol{Q}} = -\Omega \boldsymbol{Q} \end{split}$$

要求出每个元素的值也十分容易:

$$\dot{Q}_j = P_j$$

$$\dot{P}_j = -\omega_j^2 Q_j$$

但如果在 Cartesian 坐标下用正则方程,得到每个元素的值结果为

$$\dot{x}_i = \frac{p_j}{m_i}$$

$$\dot{p}_i = \sum_i \frac{\partial^2 V}{\partial x_i \partial x_j} (x_j - x_{\text{eq}}^{(j)})$$

显然要比在简正坐标下的形式要复杂很多。这体现了简正坐标的优势。

我们可以根据初始条件 $(\boldsymbol{x}_0, \boldsymbol{p}_0)$,得到 $(\boldsymbol{x}, \boldsymbol{p}$ 每个分量的解析表达式。将它变换为简正坐标,得到

$$Q_{j} = \sum_{i} T_{ij} m_{i}^{\frac{1}{2}} (x_{0}^{(i)} - x_{eq}^{(i)})$$

$$P_{j} = \sum_{i} T_{ij} m_{i}^{-\frac{1}{2}} (p_{0}^{(i)})$$

由正则方程的形式可以给出

$$Q_j(t) = Q_0^{(j)} \cos \omega_j t + \frac{P_0^{(j)}}{\omega} \sin \omega_j t$$

$$P_j(t) = P_0^{(j)} \cos \omega_j t - \omega_j Q_0^{(j)} \sin \omega_j t$$

再变换回 Cartesian 坐标,得到

$$x_i(t) - x_{\text{eq}}^{(i)} = \sum_j m_j^{-\frac{1}{2}} T_{ij} Q_j(t)$$
$$p_i(t) = \sum_j m_j^{\frac{1}{2}} T_{ij} P_j(t)$$

如果水分子服从 Boltzmann 分布, 即

$$\rho \propto \mathrm{e}^{-\beta(\frac{1}{2} {\pmb P}^{\mathsf{T}} {\pmb P} + \frac{1}{2} {\pmb Q}^{\mathsf{T}} {\pmb \Omega} {\pmb Q})} = \mathrm{e}^{-\frac{\beta}{2} \sum_j (P_j^2 + \omega_j^2 Q_j^2)} = \prod_j \mathrm{e}^{-\frac{\beta}{2} (P_j^2 + \omega_j^2 Q_j^2)}$$

要想将 Cartesian 坐标下的积分变换成简正坐标下的积分,需要计算 Jacobi 行列式:

$$\left|\frac{\partial(\boldsymbol{Q},\boldsymbol{P})}{\partial(\boldsymbol{x},\boldsymbol{p})}\right| = \det\begin{pmatrix}\boldsymbol{T}^{\mathsf{T}}\boldsymbol{M}^{\frac{1}{2}} & 0\\ 0 & \boldsymbol{T}^{\mathsf{T}}\boldsymbol{M}^{-\frac{1}{2}}\end{pmatrix} = 1$$

这里用到了正交矩阵的行列式为1(这也是显然成立的)。因此可以积分得到配分函数,从而得到简正坐标下的某个分量概率密度为

$$\mathcal{P}_j = \frac{2\pi}{\beta\omega_j} e^{-\frac{\beta}{2}(P_j^2 + \omega_j^2 Q_j^2)}$$

总概率密度为

$$\mathcal{P} = \prod_{j} \mathcal{P}_{j}$$

由此可以得到 Cartesian 坐标下概率密度。

Chapter 5

时间关联函数

5.1 20201030: 物理量及其时间关联函数

对简正坐标下的 Hamilton 函数

$$H = \frac{1}{2} \boldsymbol{P}^{\mathrm{T}} \boldsymbol{P} + \frac{1}{2} \boldsymbol{Q}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{Q}$$

它满足 Boltzmann 分布时, 配分函数为

$$Z = \int \mathrm{e}^{-eta H} \mathrm{d}oldsymbol{Q} \mathrm{d}oldsymbol{P} = \left(rac{2\pi}{eta}
ight)^N rac{1}{\det\Omega}$$

量子化以后得到的结果是

$$Z = \frac{1}{(\beta \overline{h})^N \det \Omega}$$

要计算物理量的期望,应有

$$\langle B \rangle = \frac{\int B(\boldsymbol{Q}, \boldsymbol{P}) e^{-\beta H} d\boldsymbol{Q} d\boldsymbol{P}}{\int e^{-\beta H} d\boldsymbol{Q} d\boldsymbol{P}}$$

在 t 时刻也可以写出类似的形式

$$\langle B(t) \rangle = \frac{\int B(\boldsymbol{Q}, \boldsymbol{P}) \rho_t(\boldsymbol{Q}, \boldsymbol{P}) \mathrm{d}\boldsymbol{Q} \mathrm{d}\boldsymbol{P}}{\int \rho_t(\boldsymbol{Q}, \boldsymbol{P}) \mathrm{d}\boldsymbol{Q} \mathrm{d}\boldsymbol{P}}$$

再由

$$\rho_t(\boldsymbol{Q},\boldsymbol{P}) = \int \mathrm{e}^{-\beta H(\boldsymbol{Q_0},\boldsymbol{P_0})} \delta(\boldsymbol{Q}-\boldsymbol{Q}_t) \delta(\boldsymbol{P}-\boldsymbol{P}_t) \mathrm{d}\boldsymbol{Q}_0 \mathrm{d}\boldsymbol{P}_0$$

代入, 可以得到

$$\langle B(t) \rangle = \frac{\int B(\boldsymbol{Q}_t, \boldsymbol{P}_t) \rho_0(\boldsymbol{Q}_0, \boldsymbol{P}_0) \mathrm{d}\boldsymbol{Q}_0 \mathrm{d}\boldsymbol{P}_0}{\int \rho_0(\boldsymbol{Q}_0, \boldsymbol{P}_0) \mathrm{d}\boldsymbol{Q}_0 \mathrm{d}\boldsymbol{P}_0}$$

现在开始研究一些光谱的性质。设红外光谱为 $I(\omega)$, 让分子不转动,则得到的红外光谱为分立的线。对红外光谱做 Fourier 变换,得到

$$f(t) = \int I(\omega) e^{i\omega t} d\omega$$

它反映了分子的动力学性质。这个时间是什么?现在问有没有可能成为某个物理量的 Fourier 变换?

作业 10 第 4 次作业第 1 题: Fourier 变换

定义两点时间关联函数:

$$\langle B(0)B(t)\rangle = \int \rho_0(x_0, p_0)B(x_0, p_0)B(x_t(x_0, p_0), p_t(x_0, p_0))dx_0dp_0$$

同一物理量的两点时间关联函数如果交换顺序并不会有变化,因为 Liouville 定理,

$$\langle B(0)B(t)\rangle = \int \rho_0(x_0, p_0)B(x_0, p_0)B(x_t(x_0, p_0), p_t(x_0, p_0))dx_0dp_0$$

$$= \int \rho_t(x_t, p_t)B(x_t, p_t)B(x_0(x_t, p_t), p_0(x_t, p_t))dx_tdp_t$$

$$= \langle B(t)B(0)\rangle$$

现在要求 $\langle B(0)B(t)\rangle$ 和 $\langle B(0)B(-t)\rangle$ 的关系。在积分的条件下,因为积分变量是哑变量,

$$\begin{split} \langle B(0)B(t)\rangle &= \int \rho_0(x_0,p_0)B(x_0,p_0)B(x_t(x_0,p_0),p_t(x_0,p_0))\mathrm{d}x_0\mathrm{d}p_0\\ &= \int \rho_0(x_{-t},p_{-t})B(x_{-t},p_{-t})B(x_0(x_{-t},p_{-t}),p_0(x_{-t},p_{-t}))\mathrm{d}x_{-t}\mathrm{d}p_{-t}\\ &= \int \rho_0(x_{-t},p_{-t})B(x_{-t},p_{-t})B(x_0(x_{-t},p_{-t}),p_0(x_{-t},p_{-t}))\mathrm{d}x_{-t}\mathrm{d}p_{-t} \end{split}$$

其中, 第二步是作变量替换

$$x_0 \to x_{-t}$$

并且 $x_t(x_0,p_0)$ 是初始时间为 0 时演化 t 时间的结果,而将 x_{-t} 演化 t 时间为 x_0 。如果假设

$$\frac{\partial \rho}{\partial t} = 0 = \{H, \rho\}$$

则显然地,

$$\langle B(0)B(t)\rangle = \int \rho_0(x_{-t}, p_{-t})B(x_{-t}, p_{-t})B(x_0(x_{-t}, p_{-t}), p_0(x_{-t}, p_{-t}))dx_{-t}dp_{-t}$$

$$= \int \rho_{-t}(x_{-t}, p_{-t})B(x_{-t}, p_{-t})B(x_0(x_{-t}, p_{-t}), p_0(x_{-t}, p_{-t}))dx_{-t}dp_{-t}$$

$$= \langle B(-t)B(0)\rangle$$

作业11 第 4 次作业第 2 题:时间自关联函数是否有时间平移对称性?

5.2 20201102: 平衡分布的时间关联函数

更一般情况的两点时间关联函数为

$$\langle A(0)B(t)\rangle = \int
ho_0(\boldsymbol{x}_0, \boldsymbol{p}_0)A(\boldsymbol{x}_0, \boldsymbol{p}_0)B(\boldsymbol{x}_t, \boldsymbol{p}_t)\mathrm{d}\boldsymbol{x}_0\mathrm{d}\boldsymbol{p}_0$$

如果是平衡分布,即

$$\frac{\partial \rho}{\partial t} = 0$$

例如 Boltzmann 分布,那么

$$\langle A(0)B(t)\rangle = \int \rho_{eq}(\boldsymbol{x}_0, \boldsymbol{p}_0)A(\boldsymbol{x}_0, \boldsymbol{p}_0)B(\boldsymbol{x}_t, \boldsymbol{p}_t)d\boldsymbol{x}_0d\boldsymbol{p}_0$$

$$= \int \rho_{eq}(\boldsymbol{x}_{t'}, \boldsymbol{p}_{t'})A(\boldsymbol{x}_{t'}, \boldsymbol{p}_{t'})B(\boldsymbol{x}_{t+t'}, \boldsymbol{p}_{t+t'})d\boldsymbol{x}_{t'}d\boldsymbol{p}_{t'}$$

$$= \langle A(t')B(t'+t)\rangle$$

这样时间关联函数有时间平移对称性。但是如果不是平衡分布,就没有时间平移对称性。同样由 Liouville 定理很容易证明

$$\langle A(0)B(t)\rangle = \langle B(t)A(0)\rangle$$

平衡分布满足

$$\langle B(t) \rangle = \langle B(0) \rangle$$

于是平衡分布对应的平均物理量为

$$\langle B \rangle = \frac{1}{T} \int_0^T \langle B(t) \rangle dt$$

对于 Liouville 方程,有

$$-\frac{\partial \rho}{\partial t} = \{H, \rho\}$$

此时,满足

$$\rho_0 = \rho_{\rm eq}$$

两点关联函数满足

$$\langle A(0)B(t)\rangle = \int \rho_{eq}(\boldsymbol{x_0}, \boldsymbol{p_0})A(\boldsymbol{x_0}, \boldsymbol{p_0})B(\boldsymbol{x_t}, \boldsymbol{p_t})$$

$$= \int \rho_{eq}(\boldsymbol{x_{t'}}, \boldsymbol{p_{t'}})A(\boldsymbol{x_{t'}}, \boldsymbol{p_{t'}})B(\boldsymbol{x_{t+t'}}, \boldsymbol{p_{t+t'}})$$

$$= \langle A(t')B(t+t')\rangle$$

这只有在

$$\rho_0(\boldsymbol{x},\boldsymbol{p}) = \rho_{t'}(\boldsymbol{x},\boldsymbol{p})$$

时成立。

现在想要探索 $\langle A(0)B(t)\rangle$ 和 $\langle A(0)B(-t)\rangle$ 的关系。

$$\begin{split} \langle A(0)B(t)\rangle &= \int \rho_{\text{eq}}(\boldsymbol{x_0},\boldsymbol{p_0})A(\boldsymbol{x_0},\boldsymbol{p_0})B(\boldsymbol{x_t},\boldsymbol{p_t}) \\ &= \int \rho_{\text{eq}}(\boldsymbol{x_t},\boldsymbol{p_t})A(\boldsymbol{x_0},\boldsymbol{p_0})B(\boldsymbol{x_t},\boldsymbol{p_t})\mathrm{d}\boldsymbol{x_t}\mathrm{d}\boldsymbol{p_t} \\ &= \int \rho_{\text{eq}}(\boldsymbol{x},\boldsymbol{p})B(\boldsymbol{x},\boldsymbol{p})A(\boldsymbol{x_{-t}}(x,p),\boldsymbol{p_{-t}}(x,p))\mathrm{d}x\mathrm{d}p \\ &= \langle B(0)A(-t)\rangle \end{split}$$

如果只考虑一个物理量的自关联函数,作 Fourier 积分

$$I(\omega) = \int_{-\infty}^{+\infty} e^{-i\omega t} \langle B(0)B(t)\rangle dt$$

t = -s,则

$$\begin{split} I(\omega) &= -\int_{+\infty}^{-\infty} \mathrm{e}^{\mathrm{i}\omega s} \langle B(0)B(-s)\rangle \mathrm{d}s \\ &= \int_{-\infty}^{+\infty} \mathrm{e}^{\mathrm{i}\omega s} \langle B(0)B(-s)\rangle \mathrm{d}s \\ &= \int_{-\infty}^{+\infty} \mathrm{e}^{\mathrm{i}\omega t} \langle B(0)B(-t)\rangle \mathrm{d}t \\ &= \int_{-\infty}^{+\infty} \mathrm{e}^{\mathrm{i}\omega t} \langle B(0)B(t)\rangle \mathrm{d}t \\ &= I(-\omega) \end{split}$$

所以自关联函数的 Fourier 变换在频率空间是一个偶函数。

这在量子力学中并不成立,如果它在能级 0 和能级 1 之间跃迁,则它在能级 0 的概率为 $\frac{1}{2}e^{-\beta\epsilon_0}$,在能级 1 的概率为 $\frac{1}{2}e^{-\beta\epsilon_1}$,配分函数为

$$Z = e^{-\beta \epsilon_0} + e^{-\beta \epsilon_1}$$

设 $E=\epsilon_1-\epsilon_0$, 从 0 到 1 的跃迁对应的光谱 Fourier 变换的强度为 $\mathrm{e}^{-\beta\epsilon_0}\delta(E-\hbar\omega)$,从 1 到 0 的跃迁对应的强度为 $\mathrm{e}^{-\beta\epsilon_1}\delta(E+\hbar\omega)$,于是

$$e^{-\beta(\epsilon_1-\epsilon_0)}I(\omega)=I(-\omega)$$

或写成

$$e^{-\beta \hbar \omega} I(\omega) = I(-\omega)$$

这与前面所得到的经典情况下 Fourier 变换得到的频谱为偶函数的结论并不相同,称为**细致 平衡**。经典极限下, $\hbar \to 0$,变成了偶函数。

Chapter 6

Gauss 积分

6.1 20201106: Gauss 积分的计算

回顾一维 Gauss 积分的计算:

$$I = \int_0^{+\infty} e^{-ax^2} x^n dx$$

令 $t = ax^2$, 则 dt = 2axdx 所以

$$I = \int_0^{+\infty} e^{-t} \left(\frac{t}{a}\right)^{\frac{n}{2}} \frac{dt}{\sqrt{at}}$$

$$= \frac{1}{2a^{\frac{n+1}{2}}} \int_0^{+\infty} e^{-t} t^{\frac{n-1}{2}} dt$$

$$= \frac{\Gamma(\frac{n+1}{2})}{2a^{\frac{n+1}{2}}}$$

利用一维 Gauss 积分的计算结果可以计算多维的 Gauss 积分。比如计算

$$I = \int oldsymbol{x}^{\mathsf{T}} oldsymbol{B} oldsymbol{x} \mathrm{e}^{-oldsymbol{x}^{\mathsf{T}} oldsymbol{A} oldsymbol{x}} \mathrm{d}oldsymbol{x}$$

其中,A为正定的实对称矩阵。首先将A对角化,得到

$$\boldsymbol{T}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{T}=\boldsymbol{D}$$

其中T为正交矩阵、D为对角矩阵。所以

$$I = \int oldsymbol{x}^{ extsf{T}} oldsymbol{B} oldsymbol{x} \mathrm{e}^{-oldsymbol{x}^{ extsf{T}} oldsymbol{T} oldsymbol{T} oldsymbol{x}} \mathrm{d}oldsymbol{x}$$

作换元 $y = T^{T}x$,则有

$$dy = \det T^{T} dx = dx$$

原积分化为

$$I = \int oldsymbol{y}^{ extsf{T}} oldsymbol{T} oldsymbol{T}^{ extsf{T}} oldsymbol{B} oldsymbol{T} oldsymbol{y}^{ extsf{T}} oldsymbol{D} oldsymbol{y} ext{d}$$

令 $E = T^{T}BT$, 于是

$$egin{aligned} I &= \int oldsymbol{y}^{\mathrm{T}} oldsymbol{E} oldsymbol{y} \mathrm{e}^{-oldsymbol{y}^{\mathrm{T}} D oldsymbol{y}} \mathrm{d} oldsymbol{y} \ &= \int \sum_{i} \sum_{j} E_{ij} y_{i} y_{j} \mathrm{e}^{-\sum_{k} d_{k} y_{k}^{2}} \prod_{k} \mathrm{d} y_{k} \end{aligned}$$

可以通过分离变量将各个积分分开,显然, $i \neq j$ 的项都是奇函数对全空间的积分,得到的结果为 0,只有 i = j 的项会有贡献。于是积分化为

$$I = \int \sum_{i} E_{ii} y_{i}^{2} e^{-\sum_{k} d_{k} y_{k}^{2}} \prod_{k} dy_{k}$$

$$= \prod_{k} \sqrt{\frac{\pi}{d_{k}}} \sum_{i} \frac{E_{ii}}{2d_{i}}$$

$$= \frac{\pi^{\frac{n}{2}}}{2\sqrt{\det \mathbf{D}}} \operatorname{Tr}(\mathbf{E}\mathbf{D}^{-1})$$

而

$$\det D = \det A$$

并且

$$\operatorname{Tr}(\boldsymbol{E}\boldsymbol{D}^{-1}) = \operatorname{Tr}(\boldsymbol{T}^{\mathsf{T}}\boldsymbol{B}\boldsymbol{T}\boldsymbol{T}^{\mathsf{T}}\boldsymbol{A}^{-1}\boldsymbol{T}) = \operatorname{Tr}(\boldsymbol{T}^{\mathsf{T}}\boldsymbol{B}\boldsymbol{A}^{-1}\boldsymbol{T}) = \operatorname{Tr}(\boldsymbol{B}\boldsymbol{A}^{-1})$$

所以

$$I = \frac{\pi^{\frac{n}{2}}}{2\sqrt{\det \boldsymbol{A}}}\mathrm{Tr}(\boldsymbol{B}\boldsymbol{A}^{-1})$$

接下来尝试计算

$$oldsymbol{I} = \int oldsymbol{x} oldsymbol{x}^{\mathsf{T}} \mathrm{e}^{-oldsymbol{x}^{\mathsf{T}} oldsymbol{A} oldsymbol{x}} \mathrm{d}oldsymbol{x}$$

用相同的还原方法得到

$$oldsymbol{I} = \int oldsymbol{T} oldsymbol{y}^{ extsf{T}} oldsymbol{T}^{ extsf{T}} \mathrm{e}^{-y^{ extsf{T}} D y} \mathrm{d} oldsymbol{y}$$

计算每个元素

$$egin{aligned} I_{ij} &= \int (oldsymbol{T}oldsymbol{y})_i (oldsymbol{y}^{\mathsf{T}}oldsymbol{T}^{\mathsf{T}})_j \mathrm{e}^{-oldsymbol{y}^{\mathsf{T}}oldsymbol{D}oldsymbol{y}} \mathrm{d}oldsymbol{y} \ &= \int \sum_k T_{ik} y_k \sum_l T_{jl} \mathrm{e}^{-oldsymbol{y}^{\mathsf{T}}oldsymbol{D}oldsymbol{y}} \mathrm{d}oldsymbol{y} \ &= \int \sum_{k,l} T_{ik} T_{jl} y_k y_l \mathrm{e}^{-oldsymbol{y}^{\mathsf{T}}oldsymbol{D}oldsymbol{y}} \mathrm{d}oldsymbol{y} \end{aligned}$$

同样地,只有在k=l时才有贡献,故

$$I_{ij} = \int \sum_{k} T_{ik} T_{jk} y_k^2 \mathrm{e}^{-y^{\mathrm{T}} D y} \mathrm{d} y$$

$$= \prod_{l} \sqrt{\frac{\pi}{d_l}} \sum_{k} T_{ik} T_{jk} \frac{1}{2d_k}$$

$$= \frac{\pi^{\frac{n}{2}}}{2\sqrt{\det D}} (TD^{-1}T^{\mathrm{T}})_{ij}$$

$$= \frac{\pi^{\frac{n}{2}}}{2\sqrt{\det A}} A_{ij}^{-1}$$

因此,

$$\boldsymbol{I} = \frac{\pi^{\frac{n}{2}}}{2\sqrt{\det \boldsymbol{A}}} \boldsymbol{A}^{-1}$$

作业 12 第 4 次作业第 3 题: Gauss 积分的计算

Chapter 7

Hamilton 力学和量子力学的算符形式

7.1 20201109: 量子力学基本假设

从本节开始讨论量子力学。量子力学中第一个重要的概念是**态**。有了态我们可以进行测量,得到这个态的物理量。用 |ψ⟩ 来表示态。

如何来描述这个态呢?我们可以选择一个空间进行描述。对于经典力学,我们之前选择 了相空间。但对于量子力学,我们选择位置空间或者动量空间进行描述。如果选取位置空间, 对这个态的描述为

$$\langle \boldsymbol{x} | \psi \rangle = \psi(\boldsymbol{x})$$

将这个函数称为波函数。如果选取动量空间,类似地可以描述为

$$\langle \boldsymbol{p} | \psi \rangle = \psi(\boldsymbol{p})$$

量子力学中,位置空间和动量空间都是连续的。

我们也可以在离散的空间中描述态。态可以看作一个向量,它可以用一组基展开。回顾 在线性代数中,

$$c = \sum_n c_n e_n$$

如果这组基是内积空间中的规范正交基,则

$$oldsymbol{c} = \sum_n oldsymbol{e}_n(oldsymbol{e}_n^{ extsf{T}} oldsymbol{c}) = \sum_n |n
angle \langle n|c
angle$$

由此可见

$$I = \sum_{n} |n\rangle\langle n|$$

在量子力学中,我们可以类似地描述态:

$$|\psi\rangle = \sum_{n} |n\rangle\langle n|\psi\rangle = \sum_{n} c_n |n\rangle$$

物理量测量都是实数。物理量在量子力学中都对应一个算符, 假设

$$\hat{A}|n\rangle = a_n|n\rangle$$

其中 a_n 为实数,那么 $|n\rangle$ 就是 \hat{A} 的一个本征态。我们可以把态对于 \hat{A} 的本征态来展开,得到

$$\hat{A}|\psi\rangle = \hat{A}\hat{I}|\psi\rangle = \hat{A}\sum_{n}|n\rangle\langle n|\psi\rangle = \sum_{n}c_{n}a_{n}|n\rangle$$

可以计算出 \hat{A} 的平均值为

$$\langle \hat{A} \rangle = \langle \psi | \hat{A} | \psi \rangle$$

$$= \sum_{n} \langle n | c_{n}^{*} \sum_{m} c_{m} a_{m} | m \rangle$$

$$= \sum_{n} \sum_{m} c_{n}^{*} c_{m} a_{m} \langle n | m \rangle$$

$$= \sum_{n} |c_{n}|^{2} a_{n}$$

这里用到了

$$\langle n|m\rangle = \delta_{nm}$$

注意到 $|c_n|^2 \in [0,1]$,且 $\sum_n |c_n|^2 = 1$ (我们总可以让这个态乘一个常数使该式成立,此时态也满足归一化条件 $\langle \psi | \psi \rangle = 1$),所以可以认为这个态处于该本征态的概率。按照 Copenhagen 学派的观点,我们测量某一个物理量时这个态会坍塌到这个物理量的一个本征态,而 $|c_n^2|$ 反应了坍塌到第 n 个本征态的概率。

对于波函数 $\langle x|\psi\rangle$, 它的模方是在位置空间的概率密度。定义一个位置算符 \hat{y} 。应有

$$\hat{m{x}}|m{x}_0
angle=m{x}_0|m{x}_0
angle$$

其中态 $|x_0\rangle$ 代表精确地处在 x_0 位置的态。引入动量算符 \hat{p} ,同样有

$$|\hat{m{p}}|m{p}_0
angle\equivm{p}_0|m{p}_0
angle$$

类比在可数个物理量本征态下的展开,同样有

$$\hat{I} = \int |oldsymbol{x}
angle \langle oldsymbol{x}| \mathrm{d}oldsymbol{x}$$

于是对位置的测量应有

$$\hat{m{x}}|\psi
angle = \int \hat{m{x}}|m{x}
angle\langlem{x}|\psi
angle\mathrm{d}m{x} = \int m{x}|m{x}
angle\langlem{x}|\psi
angle\mathrm{d}m{x}$$

同样,任意一个态可以展开到位置空间

$$|\psi\rangle=\int|oldsymbol{x}\rangle\langleoldsymbol{x}|\psi
angle\mathrm{d}oldsymbol{x}$$

类似地得到位置的平均值为

$$\langle \psi | \hat{\boldsymbol{x}} | \psi \rangle = \int \boldsymbol{x} |\langle \boldsymbol{x} | \psi \rangle|^2 \mathrm{d} \boldsymbol{x}$$

这就给出了波函数的概率诠释。

接下来讨论动量算符在位置空间的描述。假设

$$\langle \boldsymbol{x} | \hat{\boldsymbol{p}} | \psi \rangle = \langle \boldsymbol{x} | \phi \rangle$$

如果选择

$$\hat{\boldsymbol{p}} = -\mathrm{i}\overline{h}\frac{\partial}{\partial \boldsymbol{x}}$$

就得到

$$\langle \boldsymbol{x}|\hat{\boldsymbol{p}}|\psi\rangle = -\mathrm{i}\overline{h}\frac{\partial}{\partial \boldsymbol{x}}\langle \boldsymbol{x}|\psi\rangle$$

有了位置算符和动量算符,我们可以讨论两个算符的对易

$$[\hat{m{x}},\hat{m{p}}]=\hat{m{x}}\hat{m{p}}-\hat{m{p}}\hat{m{x}}$$

先计算

$$egin{aligned} \langle oldsymbol{x}_0 | \hat{oldsymbol{p}} \hat{oldsymbol{x}} | \psi
angle &= -\mathrm{i} \overline{h} rac{\partial}{\partial oldsymbol{x}_0} \langle oldsymbol{x}_0 | \hat{oldsymbol{x}} | \psi
angle \ &= -\mathrm{i} \overline{h} rac{\partial}{\partial oldsymbol{x}_0} (oldsymbol{x}_0 \psi(oldsymbol{x}_0)) \ &= -\mathrm{i} \overline{h} \psi(oldsymbol{x}_0) - \mathrm{i} \overline{h} oldsymbol{x}_0 rac{\partial \psi(oldsymbol{x}_0)}{\partial oldsymbol{x}_0} \end{aligned}$$

再计算

$$\langle \boldsymbol{x}_0 | \hat{\boldsymbol{x}} \hat{\boldsymbol{p}} | \psi \rangle = \boldsymbol{x}_0 \langle \boldsymbol{x}_0 \hat{\boldsymbol{p}} | \psi \rangle$$

$$= -i \overline{h} \boldsymbol{x}_0 \frac{\partial \psi(\boldsymbol{x}_0)}{\partial \boldsymbol{x}_0}$$

这两个式子相比较,得到

$$[\hat{\boldsymbol{x}},\hat{\boldsymbol{p}}]=\mathrm{i}\overline{h}$$

此即 Heisenberg 不确定性原理。

7.2 20201113: 不确定性原理

总结一下量子力学的基本假设

- 1. 波函数: $\delta |\psi\rangle$ 可以在位置空间描述 $\langle x|\psi\rangle$
- 2. 算符:物理量对应 Hermite 算符。
- 3. 测量:对某个态测量某个物理量,会得到其本征值。
- 4. 不确定性原理: $[\hat{\boldsymbol{x}},\hat{\boldsymbol{p}}]=i\hbar$

在量子力学中,位置空间、动量空间是连续的,时间也是连续的,并且认为质量不变。量子力学中,位置和动量都有对应的算符,但时间没有。

可以定义位置的量子涨落

$$\Delta x = \sqrt{\langle \hat{x}^2 \rangle - \langle \hat{x} \rangle^2}$$

同理可以定义动量的量子涨落

$$\Delta p = \sqrt{\langle \hat{p}^2 \rangle - \langle \hat{p} \rangle^2}$$

现在定义

$$\Delta \hat{x} = \hat{x} - \langle \hat{x} \rangle$$

$$\Delta \hat{p} = \hat{p} - \langle \hat{p} \rangle$$

希望求出

$$\langle \Delta \hat{x}^2 \rangle \langle \Delta \hat{p}^2 \rangle$$

设

$$|\phi_x\rangle = \Delta \hat{x}^2 |\psi\rangle$$
$$|\phi_n\rangle = \Delta \hat{p}^2 |\psi\rangle$$

于是

$$\langle \Delta \hat{x}^2 \rangle \langle \Delta \hat{p}^2 \rangle = \langle \phi_x | \phi_x \rangle \langle \phi_p | \phi_p \rangle$$

考察

$$|\langle \phi_x | \phi_p
angle| = |oldsymbol{a}^\dagger oldsymbol{b}| = |oldsymbol{a}||oldsymbol{b}|\cos heta \leqslant |oldsymbol{a}||oldsymbol{b}|$$

应有

$$\langle \Delta \hat{x}^2 \rangle \langle \Delta \hat{p}^2 \rangle = \langle \phi_x | \phi_x \rangle \langle \phi_p | \phi_p \rangle$$

$$\geqslant |\langle \phi_x | \phi_p \rangle|^2$$

$$= |\langle \psi | \Delta \hat{x} \Delta \hat{p} | \psi \rangle|^2$$

所以只需要求出

$$\Delta \hat{x} \Delta \hat{p} = \frac{1}{2} ([\Delta \hat{x}, \Delta \hat{p}] + \{\Delta \hat{x}, \Delta \hat{p}\})$$

其中反对易关系

$$\{\hat{A},\hat{B}\} = \hat{A}\hat{B} + \hat{B}\hat{A}$$

因此

$$|\langle \psi | \Delta \hat{x} \Delta \hat{p} | \psi \rangle|^2 = \frac{1}{4} |\langle \psi | [\Delta \hat{x}, \Delta \hat{p}] | \psi \rangle + \langle \psi | \{\Delta \hat{x}, \Delta \hat{p}\} | \psi \rangle|^2$$

注意

$$[\Delta \hat{x}, \Delta \hat{p}] = [\hat{x} - \langle \hat{x} \rangle, \hat{p} - \langle \hat{p} \rangle] = [\hat{x}, \hat{p}] = i \overline{h}$$

上面就是一个复数模的平方,得到

$$|\langle \psi | \Delta \hat{x} \Delta \hat{p} | \psi \rangle|^2 = \frac{\overline{h}^2}{4} + \frac{1}{4} |\langle \psi | \{ \Delta \hat{x}, \Delta \hat{p} \} | \psi \rangle|^2 \geqslant \frac{\overline{h}^2}{4}$$

这是不确定性原理的另一种表述形式。

现在来在位置空间描述动量本征态,即求出 $\langle x|p\rangle$ 。这表示动量精确地处在p时,在位置

空间的描述。显然地,它满足

$$\langle x|\hat{p}|p\rangle = p\langle x|p\rangle$$

由此可知

$$-\mathrm{i}\overline{h}\frac{\partial}{\partial x}\langle x|p\rangle = p\langle x|p\rangle$$

解这个常微分方程,得到

$$\langle x|p\rangle = C\mathrm{e}^{\frac{\mathrm{i}px}{\hbar}}$$

C 由归一化条件决定。首先考虑

$$\langle p'|p_0\rangle = \delta(p'-p_0)$$

这是因为

$$|p_0\rangle = \int |p\rangle\langle p|p_0\rangle \mathrm{d}p$$

显然 δ 函数满足这个要求。又

$$\langle p'|p_0\rangle = \delta(p'-p_0) = \frac{1}{2\pi \overline{h}} \int e^{\frac{i(p-p_0)x}{\overline{h}}} dx$$

并且

$$\langle p'|p_0\rangle = \int \langle p'|x\rangle \langle x|p_0\rangle dx$$
$$= \int (\langle x|p'\rangle)^* \langle x|p_0\rangle dx$$
$$= C^*C \int e^{\frac{i(p_0 - p')x}{\hbar}} dx$$

所以,

$$C = \frac{1}{\sqrt{2\pi \overline{h}}}$$

这样就得到

$$\langle x|p\rangle = \frac{1}{\sqrt{2\pi \overline{h}}} e^{\frac{ipx}{\overline{h}}}$$

并由此可以得到

$$\langle p|x\rangle = \frac{1}{\sqrt{2\pi h}} e^{-\frac{ipx}{h}}$$

作业13 第 5 次作业第 1 题: 计算动量空间的位置算符。

作业 14 第 5 次作业第 2 题: δ 函数算符问题。

7.3 20201116: 一维无限深势阱

考虑动能算符和动量算符的对易关系,

$$\left[\frac{\hat{p}^2}{2m}, \hat{p}\right] = 0$$

事实上可以证明

$$[f(\hat{A}), g(\hat{A})] = 0$$

作业15 第6次作业第1题(1):证明上述结论。

如果

$$[\hat{A}, \hat{B}] = 0$$

并设 $|\phi_n\rangle$ 是 \hat{A} 的一个本征态

$$\hat{A}|\phi_n\rangle = a_n|\phi_n\rangle$$

那么

$$\hat{A}\hat{B}|\phi_n\rangle = \hat{B}\hat{A}|\phi_n\rangle = a_n\hat{B}|\phi_n\rangle$$

这说明,如果 \hat{A} , \hat{B} 对易,则 $\hat{B}|\phi_n\rangle$ 必然是 \hat{A} 的本征态,且本征值为 a_n 。如果不简并,那么 $\hat{B}|\phi_n\rangle$ 一定是 ϕ_n 的一个倍数,即

$$\hat{B}|\phi_n\rangle = b_n|\phi_n\rangle$$

对于简并的情况, $\hat{B}|\phi_n$ 只能是所有本征值为 a_n 的本征态的线性组合。也就是说,如果

$$\hat{A}|\phi_{n+m} = a_n|\phi_{n+m}, \ m = 0, ..., k$$

并且 \hat{A} , \hat{B} 对易,那么

$$\hat{B}|\phi_n\rangle = \sum_{m=0}^k c_m |\phi_{n+m}\rangle$$

我们可以再将一个 \hat{B} 算符作用上来,得到

$$\hat{B}\hat{A}\sum_{m=0}^{k}c_{m}|\phi_{n+m}\rangle=\hat{A}\hat{B}\sum_{m=0}^{k}c_{m}|\phi_{n+m}\rangle=\hat{A}\sum_{m=0}^{k}c'_{m}|\phi_{n+m}\rangle$$

在简并的情况下,可以通过构造得到 \hat{B} 的本征态。这是因为 \hat{B} 是一个 Hermite 算符,可以对角化:

$$oldsymbol{U}^\dagger oldsymbol{B} oldsymbol{U} = oldsymbol{\Lambda}$$

可以得到其本征态。

我们已经讨论过动能算符和动量算符是对易的,如果

$$E_0 = \frac{\hat{p}^2}{2m}$$

那么

$$p = \pm \sqrt{2mE_0}$$

就是动能算符的两个本征态。也就是说,

$$\frac{p_0^2}{2m}|\psi\rangle = \frac{\hat{p}^2}{2m}(c_+|p_0\rangle + c_-|p_0\rangle)$$

现在求解一维无限深势阱的能量本征态。其势能算符为

$$V(x) = \begin{cases} 0, & x \in \left[-\frac{L}{2}, \frac{L}{2}\right] \\ \infty, & \text{otherwise} \end{cases}$$

Hamilton 算符为

$$\hat{H} = \frac{\hat{p}^2}{2m}$$

波函数只能在 $\left[-\frac{L}{2},\frac{L}{2}\right]$ 区间内,并且边界条件给出

$$\phi(x = -\frac{L}{2}) = 0$$
$$\phi(x = \frac{L}{2}) = 0$$

应有

$$\phi_n(x) = c_+ \langle x | p_n \rangle + c_- \langle x | p_n \rangle$$
$$= \frac{1}{\sqrt{2\pi h}} (c_+ e^{\frac{ixp_n}{h}} + c_- e^{-\frac{ixp_n}{h}})$$

再加上边界条件

$$c_{+}e^{\frac{iLp_{n}}{2\hbar}} + c_{-}e^{-\frac{iLp_{n}}{2\hbar}} = 0$$
$$c_{+}e^{-\frac{iLp_{n}}{2\hbar}} + c_{-}e^{\frac{iLp_{n}}{2\hbar}} = 0$$

又有归一化条件

$$\langle \phi_n | \phi_n \rangle = \int_{-\frac{L}{2}}^{\frac{L}{2}} |\phi_n(x)|^2 dx = 1$$

定义算符 Â 满足

$$\langle x|\hat{B}|p\rangle = \langle x+\lambda|p\rangle$$

由于

$$\langle x|\hat{B}|p\rangle = \langle x+\lambda|p\rangle = \frac{\mathrm{e}^{\frac{\mathrm{i}(x+\lambda)p}{\hbar}}}{\sqrt{2\pi\hbar}}$$

显然地,应有

$$\hat{B} = e^{\frac{i\lambda\hat{p}}{\hbar}}$$

这个算符称为平移算符。左矢形式表达为

$$\langle x|e^{\frac{i\lambda\hat{p}}{\hbar}} = \langle x+\lambda|$$

右矢形式表达为

$$e^{-\frac{i\lambda\hat{p}}{\hbar}}|x\rangle = |x+\lambda\rangle$$

我们使用平移算符,将一维势阱的体系作平移,将波函数平移到 $[0,\frac{L}{2}]$ 的位置上。此时体系满足

$$V(x) = \begin{cases} 0, & x \in [0, L] \\ \infty, & \text{otherwise} \end{cases}$$

由边界条件

$$\phi(0) = 0$$

$$\phi(L) = 0$$

得到

$$c_{+} + c_{-} = 0$$

$$c_{+}e^{\frac{iLp_{n}}{\hbar}} + c_{-}e^{-\frac{iLp_{n}}{\hbar}} = 0$$

将前一个式子代入后一个,得到

$$c_{+}e^{\frac{iLp_{n}}{\hbar}} - c_{+}e^{-\frac{iLp_{n}}{\hbar}} = 0$$

于是

$$2ic_{+}\sin\frac{Lp_{n}}{\overline{h}}=0$$

但是 $c_+ \neq 0$ (否则得到零解),所以

$$\frac{Lp_n}{\overline{h}} = n\pi$$

即

$$p_n = \frac{n\pi\overline{h}}{L}$$

 c_{+} 的选择取决于归一化条件,

$$\int_0^L |c|^2 \sin^2 \frac{n\pi x}{L} \mathrm{d}x = 1$$

算出

$$c = \sqrt{\frac{2}{L}}$$

于是,一维无限深势阱的解为

$$\langle x|\phi_n\rangle=\sqrt{\frac{2}{L}}\sin\frac{n\pi x}{L}$$

本征值为

$$\epsilon_n = \frac{\overline{h}^2}{2m} \left(\frac{n\pi}{L}\right)^2$$

平移回来,得到

$$\langle x|\phi_n\rangle = \sqrt{\frac{2}{L}}\sin\left(\frac{n\pi}{L}\left(x+\frac{L}{2}\right)\right), \ n=1,2,3,...$$

本征值和平移前一样。

作业16 第 5 次作业第 3 题 (1): 一维无限深势阱能量本征态在动量空间的表示。

作业17 第6次作业第1题(2): 动量平移算符。

7.4 20201120: 一维势阱求解自由粒子问题

上一节在求解一维无限深势阱的过程中,引入了平移算符。我们想要了解 $e^{\frac{i\hat{Y}}{\hbar}}\hat{H}e^{-\frac{i\hat{Y}}{\hbar}}$ 的性质。显然地,这是一个 Hermite 算符,并且新的算符和原来的 Hamilton 算符 \hat{H} 有相同的本征值。这是因为我们只改变了坐标的选取。

作业18 第6次作业第1题(2):证明这个结论。

现在想要来模拟自由粒子,只需要让 $L \to \infty$ 。对于自由粒子,如果给定温度 T,动量应当满足 Boltzmann 分布:

$$\rho(p) = \sqrt{\frac{\beta}{2\pi m}} e^{-\frac{\beta p^2}{2m}}$$

计算能量的平均值

$$\langle \frac{p^2}{2m} \rangle = \frac{1}{2\beta}$$

如果

$$\hat{H}|\phi_n\rangle = \epsilon_n|\phi_n$$

那么显然有

$$f(\hat{H})|\phi_n\rangle = f(\epsilon_n)|\phi_n\rangle$$

定义 Boltzmann 算符 $e^{-\beta \hat{H}}$, 并且定义配分函数为

$$Z = \operatorname{Tr} e^{-\beta \hat{H}} = \sum_{n} \langle n | e^{-\beta \hat{H}} | n \rangle = \sum_{n} e^{-\beta \epsilon_{n}}$$

那么这个配分函数是否收敛呢?

$$Z = \sum_{n} \mathrm{e}^{-\beta \frac{\bar{h}^2}{2m} (\frac{n\pi}{L})^2}$$

定义 $x_n = \frac{n}{L}$, 于是 $\Delta x = \frac{1}{L}$. 由此可以将求和变成积分。

$$Z = L \sum_{n} \Delta x e^{-\beta \frac{\hbar^2 \pi^2 x^2}{2m}}$$
$$= L \int_{0}^{+\infty} e^{-\beta \frac{\hbar^2 \pi^2 x^2}{2m}} dx$$
$$= L \sqrt{\frac{m}{2\pi \beta \overline{h}^2}}$$

或者我们定义

$${
m Tr}\,{
m e}^{-rac{eta\hat{p}^2}{2m}}=\int{
m e}^{-rac{eta p^2}{2m}}\langle p|p
angle{
m d}p$$

发现这里并不好处理,只能知道该值为 ∞ ,但不能给出具体的表达形式。这就是我们使用一维无限深势阱来近似自由粒子的原因。

有了一维形式的配分函数,类比得到三维粒子为

$$Z = V \left(\frac{m}{2\pi\beta\overline{h}^2}\right)^{\frac{3}{2}}$$

有了配分函数可以得到一维情况下能量的平均值:

$$\langle \hat{H} \rangle = \frac{\operatorname{Tr} \left(\mathrm{e}^{-\beta \hat{H}} \hat{H} \right)}{Z} = \frac{\sum_{n} \epsilon_{n} \mathrm{e}^{-\beta \epsilon_{n}}}{\sum_{n} \mathrm{e}^{-\beta \epsilon_{n}}} = -\frac{\partial}{\partial \beta} \ln Z$$

将配分函数代入得到

$$\langle \hat{H} \rangle = \frac{1}{2\beta}$$

该结果和经典情况得到的结果是一致的。得到结论,自由粒子的体系经典和量子力学的结果 是一致的。

作业19 第5次作业第3题(3): 能量涨落的计算

作业20 第5次作业第3题(4):比热的计算

作业21 第 5 次作业第 3 题 (5): 用一维势阱求解共轭体系

7.5 20201123: 用一维势阱模型展开其他势能体系

我们解出了一维势阱能量本征态在位置空间的描述,现在要求在动量空间的描述:

$$\langle p|\phi_n\rangle = \int \langle p|x\rangle\langle x|\phi_n\rangle dx$$

两个有限维矩阵乘积的求迹:

$$\operatorname{Tr}(\boldsymbol{A}\boldsymbol{B}) = \operatorname{Tr}(\boldsymbol{B}\boldsymbol{A})$$

证明是显然的,只需要直接展开

$$\operatorname{Tr}(\boldsymbol{A}\boldsymbol{B}) = \sum_{i} (\boldsymbol{A}\boldsymbol{B})_{ii} = \sum_{i} \sum_{k} a_{ik} b_{ki} = \sum_{k} \sum_{i} b_{ki} a_{ik} = \sum_{k} (\boldsymbol{B}\boldsymbol{A})_{kk} = \operatorname{Tr}(\boldsymbol{B}\boldsymbol{A})$$

但对于无限维的,必须保证二重级数绝对收敛才能够交换次序才能成立。

作业22 第 5 次作业第 3 题 (2): 位置算符和动量算符乘积交换后迹是否相等?

一维无限深势阱的能级差会随着 n 的增大而增大。

$$\Delta\epsilon = \frac{\overline{h}^2}{2m} \left(\frac{n\pi}{L}\right)^2 (2n+1)$$

虽然如此,我们仍可以用一维无限深势阱的能量本征态来对其他的体系进行研究。比如一个势能算符为 \hat{V}' 时,势能矩阵元为

$$\langle \phi_k | \hat{V}' | \phi_n \rangle = \int_{-\frac{L}{2}}^{+\frac{L}{2}} \phi_k^*(x) V(x) \phi_n(x) dx$$

但是动能算符和原来是一样的。

$$\langle \phi_k | \frac{\hat{p^2}}{2m} | \phi_n \rangle = \delta_{kn} \frac{\overline{h}^2}{2m} \left(\frac{\pi}{L} \right)^2 n^2$$

由此可以得到 Hamilton 算符的矩阵元 $\langle \phi_k | \hat{H} | \phi_n \rangle$,将它对角化就可以用来展开其他势能下的能量本征态。

作业 23 第 6 次作业第 2 题:用一维无限深势阱展开一维谐振子的能量本征态和四次势的本征态。

我们进入下一个话题: 求解一维谐振子体系。一维谐振子的势能函数为

$$V(x) = \frac{1}{2}m\omega^2 x^2$$

Hamilton 算符为

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{x}^2$$

类比复数域的

$$a^2 + b^2 = (a + b\mathbf{i})(a - b\mathbf{i})$$

对于数字这样分解是可以的,但是对于算符来说,只有对易的算符才成立。先考虑数字的情况

$$\frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2 = \frac{1}{2}(\frac{p}{\sqrt{m}} + i\sqrt{m}\omega x)(\frac{p}{\sqrt{m}} - i\sqrt{m}\omega x)$$

可以先把能量 $\hbar\omega$ 提出来,这样就可以操作里面的没有量纲的算符,会更方便一些。

7.6 20201127: 一维谐振子的求解(1)

继续讨论一维谐振子的求解问题。定义算符

$$\hat{c} = \frac{\hat{p}}{\sqrt{2m}} + i\sqrt{\frac{m}{2}}\omega\hat{x}$$

算符的对易满足如下性质:

$$\begin{split} [\hat{A} + \hat{B}, \hat{C}] &= [\hat{A}, \hat{C}] + [\hat{B}, \hat{C}] \\ [\alpha \hat{A}, \beta \hat{B}] &= \alpha \beta [\hat{A}, \hat{B}] \\ [\hat{A}\hat{B}, \hat{C}] &= \hat{A}[\hat{B}, \hat{C}] + [\hat{A}, \hat{C}]\hat{B} \end{split}$$

作业24 第6次作业第3题(1):证明上述结论

可以计算

$$\begin{split} [\hat{c}, \hat{c}^{\dagger}] &= [d_1 \hat{p} + \mathrm{i} d_2 \hat{x}, d_1 \hat{p} - \mathrm{i} d_2 \hat{x}] \\ &= [d_1 \hat{p}, d_1 \hat{p} - \mathrm{i} d_2 \hat{x}] + [\mathrm{i} d_2 \hat{x}, d_1 \hat{p} - \mathrm{i} d_2 \hat{x}] \\ &= [d_1 \hat{p}, -\mathrm{i} d_2 \hat{x}] + [\mathrm{i} d_2 \hat{x}, d_1 \hat{p}] \\ &= -\mathrm{i} d_1 d_2 [\hat{p}, \hat{x}] + \mathrm{i} d_1 d_2 [\hat{x}, \hat{p}] \\ &= -2 d_1 d_2 \overline{h} \\ &= -\overline{h} \omega \end{split}$$

为了让算符无量纲化,定义

$$\hat{a} = \frac{\hat{c}}{\sqrt{\hbar\omega}} = \frac{1}{\sqrt{2}} \left(\frac{\hat{p}}{\sqrt{m\hbar\omega}} + i\sqrt{\frac{m\omega}{\hbar}} \hat{x} \right)$$

作业 25 第 6 次作业第 3 题 (2): 证明 $\hat{a}\hat{a}^{\dagger}$ 和 $\hat{a}^{\dagger}\hat{a}$ 都是 Hermite 算符。

显然

$$[\hat{a}, \hat{a}^{\dagger}] = \hat{a}\hat{a}^{\dagger} - \hat{a}^{\dagger}\hat{a} = -1$$

可以用 â 写出 Hamilton 算符:

$$\hat{H} = \frac{\overline{h}\omega}{2}(\hat{a}\hat{a}^{\dagger} + \hat{a}^{\dagger}\hat{a})$$

可以计算

$$\begin{aligned} [\hat{a}^{\dagger}\hat{a}, \hat{a}\hat{a}^{\dagger}] &= \hat{a}^{\dagger}[\hat{a}, \hat{a}\hat{a}^{\dagger}] + [\hat{a}^{\dagger}, \hat{a}\hat{a}^{\dagger}]\hat{a} \\ &= \hat{a}^{\dagger}\hat{a}[\hat{a}, \hat{a}^{\dagger}] + [\hat{a}^{\dagger}, \hat{a}]\hat{a}^{\dagger}\hat{a} \\ &= 0 \end{aligned}$$

作业 26 第 6 次作业第 3 题 (3): 证明

$$\hat{H} = \frac{\overline{h}\omega}{2}(\hat{a}\hat{a}^{\dagger} + \hat{a}^{\dagger}\hat{a})$$

上面结果也给出了

$$\hat{a}^{\dagger}\hat{a} = \hat{a}\hat{a}^{\dagger} + 1$$

于是

$$\hat{H} = \hbar\omega \left(\hat{a}\hat{a}^{\dagger} + \frac{1}{2} \right)$$

现在定义

$$\hat{b} = \frac{1}{\sqrt{2}} \left(\sqrt{\frac{m\omega}{\hbar}} \hat{x} + \frac{\mathrm{i}\hat{p}}{\sqrt{m\omega\hbar}} \right)$$

用相同的方法得到

$$\hat{H} = \overline{h}\omega \left(\hat{b}^{\dagger} \hat{b} + \frac{1}{2} \right)$$

并且

$$[\hat{b},\hat{b}^{\dagger}]=1$$

定义

$$\hat{N} = \hat{b}^{\dagger} \hat{b}$$

于是

$$\hat{H} = \overline{h}\omega \left(\hat{N} + \frac{1}{2}\right)$$

因此

$$[\hat{N}, \hat{H}] = 0$$

两个对易的算符有相同的本征态。假设

$$\hat{N}|\phi_n\rangle = \lambda_n|\phi_n\rangle$$

则

$$\hat{H}|\phi_n\rangle = \left(\hat{N} + \frac{1}{2}\right)\overline{h}\omega|\phi_n\rangle = \left(\lambda_n + \frac{1}{2}\right)\overline{h}\omega|\phi_n\rangle$$

并且

$$\langle \phi_n | \hat{N} | \phi_n \rangle = \lambda_n \langle \phi_n | \phi_n \rangle = \lambda_n$$

而

$$\langle \phi_n | \hat{N} | \phi_n \rangle = \langle \phi_n | \hat{b}^{\dagger} \hat{b} | \phi_n \rangle = \lambda_n$$

令

$$|\psi_n\rangle = \hat{b}|\phi_n\rangle$$

那么

$$\langle \phi_n | \hat{N} | \phi_n \rangle = \langle \phi_n | \hat{b}^\dagger \hat{b} | \phi_n \rangle = \langle \psi_n | \psi_n \rangle = \lambda_n \geqslant 0$$

这样证明了 \hat{N} 的本征值必然是非负数。

那么 $|\psi_n\rangle$ 是否仍然是 \hat{N} 的本征态呢? 计算

$$\hat{N}|\psi_n\rangle = \hat{b}^{\dagger}\hat{b}^2|\phi_n\rangle = (\hat{b}\hat{b}^{\dagger}\hat{b} - \hat{b})|\phi_n\rangle = \hat{b}(\hat{N} - \hat{I})|\phi_n\rangle = (\lambda_n - 1)\hat{b}|\phi_n\rangle = (\lambda_n - 1)|\psi_n\rangle$$

这说明 \hat{b} 作用于 \hat{N} 的本征态以后得到的态仍然是 \hat{N} 的本征态,且本征值减少1.于是可以设

$$\hat{b}|\phi_n\rangle = |\psi_n\rangle = \sqrt{\lambda_n}|\phi_m\rangle$$

将 \hat{N} 作用上来,得到

$$\hat{N}\sqrt{\lambda_n}|\phi_m\rangle = \sqrt{\lambda_n}(\lambda_n - 1)|\phi_m\rangle$$

这构造了一个循环,将 \hat{b} 作用在 \hat{N} 的本征态上,得到一个新的 \hat{N} 的本征态,且 \hat{N} 的本征值减少 1,并且它仍然是非负的。依次类推,总会有一个态 \hat{N} 的本征值为 0,且 \hat{N} 的本征值都是整数。如果 \hat{N} 的本征值为 0,此时如果再用 \hat{b} 作用,则得到零向量。所以

$$\hat{N}|\phi_n\rangle = n|\phi_n\rangle$$

故将 \hat{N} 称为**数值算符**。

7.7 20201130: 一维谐振子的求解(2)

一维谐振子在通过 \hat{b} 算符的作用时, \hat{N} 的本征值下降 1,故吧 \hat{b} 称为**下降算符**。最终本征值下降到 0 时,应有

$$\hat{b}|\phi_0\rangle = 0$$

可以推出

$$\hat{N}|\phi_0\rangle = 0$$

求解

$$\langle x|\hat{b}|\phi_0\rangle = 0$$

将 \hat{b} 的定义代入,得到

$$\langle x|\sqrt{\frac{1}{2}}\left(\sqrt{\frac{m\omega}{\hbar}}\hat{x} + \frac{i\hat{p}}{\sqrt{m\omega\hbar}}\right)|\phi_0\rangle = 0$$

解得

$$\langle x|\phi_0\rangle = \left(\frac{m\omega}{\pi \overline{h}}\right)^{\frac{1}{4}} e^{-\frac{m\omega}{2\overline{h}}x^2}$$

求出基态的能量

$$\hat{H}|\phi_0\rangle = \frac{1}{2}\overline{h}\omega|\phi_0\rangle$$

基态也有一定的能量, 称为零点能。

现在研究一下 \hat{b}^{\dagger} 作用于 \hat{N} 的本征态上。

$$\hat{N}\hat{b}^{\dagger}|\phi_{n}\rangle = (\hat{b}^{\dagger}\hat{b})\hat{b}^{\dagger}|\phi_{n}\rangle = \hat{b}^{\dagger}(\hat{b}^{\dagger}\hat{b} + \hat{I})|\phi_{n}\rangle = (\lambda_{n} + 1)\hat{b}^{\dagger}|\phi_{n}\rangle$$

所以, \hat{b}^{\dagger} 作用在 \hat{N} 的本征态上还会得到 \hat{N} 的本征态,会使得 \hat{N} 的本征值上升 1,于是将 \hat{b}^{\dagger} 称为**上升算符**。

同理可以得到

$$\hat{b}^{\dagger}|\phi_n\rangle = \sqrt{\lambda_n + 1}|\phi_m\rangle$$

如果想要得到各个激发态的波函数,可以通过用 \hat{b}^{\dagger} 不断作用在基态的波函数上面:

$$|\phi_n\rangle = \frac{1}{\sqrt{n!}}\hat{b}^{\dagger n}|\phi_0\rangle$$

作业 27 第 6 次作业第 4 题: 求出一维谐振子的第 n 个能级的波函数及其势能。

7.8 20201204: 时间演化算符

前面我们用一维无限深势阱来展开不同的势能函数,有了一维谐振子的解我们也可以用 一维谐振子的解来展开其他势能函数的情况。

有了一维谐振子的解,我们可以拓展到多维,类比之前的简谐振动分析,得到能量的本 征值为

$$E = \sum_{j=1}^{F} \left(n_j + \frac{1}{2} \right) \overline{h} \omega_j$$

在简正坐标下的波函数为

$$\langle \boldsymbol{Q} | \psi \rangle = \prod_{j=1}^{F} \langle Q_j | \phi_{n_j} \rangle$$

其中

$$\langle Q_j | \phi_{n_j} \rangle = \left(\frac{\omega}{\pi \hbar}\right)^{\frac{1}{4}} e^{-\frac{\omega_j}{2\hbar}Q_j^2}$$

注意此处没有质量,因为它被概率在简正坐标变换时引入的 Jacobi 行列式约掉了。

如果 Hamilton 函数为两个 Hamilton 函数之和

$$\hat{H} = \hat{H}_1 + \hat{H}_2$$

设它们本征态为 $\phi_{n_1}^{(1)}$ 和 $\phi_{n_2}^{(2)}$ 于是

$$\hat{H}|\phi_{n_1}^{(1)}\rangle|\phi_{n_2}^{(2)} = \epsilon_{n_1}|\phi_{n_1}^{(1)}\rangle \otimes |\phi_{n_2}^{(2)} + \epsilon_{n_2}|\phi_{n_2}^{(2)}\rangle \otimes |\phi_{n_1}^{(1)} = (\epsilon_{n_1} + \epsilon_{n_2})|\phi_{n_1}^{(1)}\rangle \otimes |\phi_{n_2}^{(2)}\rangle$$

更普遍地,对于多维谐振子,应有

$$\hat{H} = \sum_{j=1}^{F} \hat{H}_j$$

其中

$$\hat{H}_{j} = \frac{1}{2}\hat{P}_{j}^{2} + \frac{1}{2}\omega_{j}^{2}Q_{j}^{2}$$

如果我们已知了

$$\hat{H}|\phi_n\rangle = \epsilon_n|\phi_n\rangle$$

那么

$$e^{-\frac{i\hat{H}t}{\hbar}}|\phi_n\rangle = e^{-\frac{i\epsilon_n t}{\hbar}}|\phi_n\rangle$$

含时的 Schrodinger 方程为

$$\mathrm{i}\hbar\frac{\partial}{\partial t}|\psi(t)\rangle = \hat{H}|\psi(t)\rangle$$

注意时间在量子力学中并没有算符,而是一个参量。由含时的 Schrodinger 方程可以推出

$$e^{-\frac{i\hat{H}t}{\hbar}}|\psi(0)\rangle = |\psi(t)\rangle$$

所以把 $e^{-\frac{i\hat{H}}{\hbar}}$ 称为**时间演化算符**。可以得到任意物理量在时间 t 的平均值

$$\langle \hat{B}(t) \rangle = \langle \psi(t) | \hat{B} | \psi(t) \rangle = \langle \psi(0) | \mathrm{e}^{\frac{\mathrm{i} \hat{H} t}{\hbar}} \hat{B} \mathrm{e}^{-\frac{\mathrm{i} \hat{H} t}{\hbar}} | \psi(0) \rangle$$

定义 $e^{i\frac{\hat{H}t}{\hbar}}\hat{B}e^{-i\frac{\hat{H}t}{\hbar}}$ 为算符 \hat{B} 的 Heisenberg **算符**.

时间演化算符可以写在能量本征态上

$$\mathrm{e}^{-\frac{\mathrm{i}\hat{H}t}{\hbar}} = \sum_{n} \mathrm{e}^{-\frac{\mathrm{i}\epsilon_{n}t}{\hbar}} |\phi_{n}\rangle\langle\phi_{n}|$$

代入,得到

$$\begin{split} \langle \hat{B}(t) \rangle &= \langle \psi(t) | \hat{B} | \psi(t) \rangle \\ &= \langle \psi(0) | \mathrm{e}^{\frac{\mathrm{i} \hat{H} t}{\hbar}} \hat{B} \mathrm{e}^{-\frac{\mathrm{i} \hat{H} t}{\hbar}} | \psi(0) \rangle \\ &= \langle \psi(0) | \sum_{n} \mathrm{e}^{\frac{\mathrm{i} \epsilon_{n} t}{\hbar}} | \phi_{n} \rangle \langle \phi_{n} | \hat{B} | \sum_{m} \mathrm{e}^{-\frac{\mathrm{i} \epsilon_{m} t}{\hbar}} | \phi_{m} \rangle \langle \phi_{m} | \psi(0) \rangle \\ &= \sum_{m,n} \langle \psi(0) | \phi_{n} \rangle \langle \phi_{n} | \hat{B} | \phi_{m} \rangle \langle \phi_{m} | \psi(0) \rangle \mathrm{e}^{\frac{\mathrm{i} (\epsilon_{n} - \epsilon_{m}) t}{\hbar}} \end{split}$$

作业 28 第 7 次作业第 1 题:高维谐振子 t 时刻的物理量

7.9 20201207: 一维谐振子经典和量子处理的比较

作业 29 第 7 次作业第 2 题: 高维谐振子的时间自关联函数计算

光谱的定义为

$$I(\omega) = \int_{-\infty}^{+\infty} \langle \hat{A}(0)\hat{A}(t)\rangle e^{\frac{i\omega t}{\hbar}} dt$$

如果 $\hat{A} = \hat{M}$ 则为红外光谱; 如果 $\hat{A} = \hat{\beta}$ 则为 Raman 光谱。

我们比较一下谐振子的经典和量子描述。经典配分函数为

$$Z_{\rm cl} = \int {
m e}^{-eta H(x,p)} rac{{
m d}x{
m d}p}{2\pi\hbar} = rac{1}{eta\hbar\omega}$$

量子体系的配分函数为

$$Z_{\mathsf{Q}} = \operatorname{Tr} \, \mathrm{e}^{-\beta \hat{H}} = \sum_{n} \mathrm{e}^{-\beta \epsilon_{n}} = \frac{1}{2 \sinh \frac{\beta \hbar \omega}{2}}$$

这两个结果在 $\beta\hbar\omega \to 0$ 时是一致的。如果 $\beta \to 0$ 则对应高温极限; $\hbar \to 0$ 对应经典极限; $\omega \to 0$ 对应能级差很小,也逼近经典情况。根据 $m\omega^2 = k$,增大约化质量会使得 ω 减小,这就是同位素效应。

有了配分函数就可以求出各个热力学函数。定义

$$u = \beta \overline{h} \omega$$

自由能为

$$\begin{split} F_{\rm cl} &= -\frac{1}{\beta} \ln Z_{\rm cl} = \frac{1}{\beta} \ln u \\ F_{\rm Q} &= -\frac{1}{\beta} \ln Z_{\rm Q} = \frac{1}{\beta} \ln \sinh \frac{u}{2} + \frac{\ln 2}{\beta} \end{split}$$

熵为

$$\begin{split} S_{\text{cl}} &= - \bigg(\frac{\partial F_{\text{cl}}}{\partial T} \bigg)_V = -k_B \ln u + k_B \\ S_{\text{Q}} &= - \bigg(\frac{\partial F_{\text{Q}}}{\partial T} \bigg)_V = -k_B \ln \sinh \frac{u}{2} + \frac{k_B u}{2} \coth \frac{u}{2} - k_B \ln 2 \end{split}$$

内能为

$$\begin{split} U_{\rm cl} &= -\frac{\partial}{\partial\beta} \ln Z_{\rm cl} = \frac{1}{\beta} \\ U_{\rm Q} &= -\frac{\partial}{\partial\beta} \ln Z_{\rm Q} = \frac{u}{2\beta} \coth \frac{u}{2} \end{split}$$

热容为

$$C_{Vcl} = -k_B \beta^2 \left(\frac{\partial U_{cl}}{\partial T}\right) = k_B$$

$$C_{VQ} = -k_B \beta^2 \left(\frac{\partial U_{Q}}{\partial T}\right) = k_B \frac{\left(\frac{u}{2}\right)^2}{\sinh^2 \frac{u}{2}}$$

定义量子校正因子

$$Q(\frac{u}{2}) = \frac{u}{2} \coth \frac{u}{2}$$

于是

$$\langle \hat{H} \rangle = U = \frac{Q(\frac{u}{2})}{\beta}$$

当 $u \to 0, Q(\frac{u}{2}) \to 1$,接近经典结果;当 $u \to +\infty$, $\frac{Q(\frac{u}{2})}{\frac{u}{2}} \to 1$,于是

$$U \to \frac{\overline{h}\omega}{2}$$

能量即为零点能,即都聚集在基态。

对于热容,如果
$$u \to +\infty$$
 则有 $C_V \to 0$

Chapter 8

Lagrange 力学和量子力学的路径积分形式

8.1 20201221: 传播子的计算

如果求出传播子

$$\langle x_0 | \mathrm{e}^{-\frac{\mathrm{i}\hat{H}t}{\hbar}} | y_0 \rangle$$

那么就可以求解含时 Schrodinger 方程,这时就将研究对象从波函数变为传播子。所以现在需要求解传播子。

首先研究 $e^{\lambda \hat{A}}e^{\lambda \hat{B}}$ 和 $e^{\lambda(\hat{A}+\hat{B})}$ 的关系。应有

$$\mathrm{e}^{\lambda\hat{A}}\mathrm{e}^{\lambda\hat{B}}=\mathrm{e}^{\lambda(\hat{A}+\hat{B})+\frac{1}{2}\lambda^2[\hat{A},\hat{B}]+O(\lambda^2)}$$

如果 $\lambda \to 0$, 可以忽略二阶无穷小量, 则有

$$\mathrm{e}^{\lambda\hat{A}}\mathrm{e}^{\lambda\hat{B}}=\mathrm{e}^{\lambda(\hat{A}+\hat{B})}$$

将时间平均分为 N 份,令 $\lambda = \frac{t}{N}$,并令 $N \to \infty$. 所以

$$e^{\frac{t}{N}(-\frac{i}{\hbar})\hat{K}}e^{\frac{t}{N}(-\frac{i}{\hbar})\hat{V}} = e^{\frac{t}{N}(-\frac{i}{\hbar})\hat{H}}$$

代入传播子,得到

$$\begin{split} \langle x_0|\mathrm{e}^{-\frac{\mathrm{i}\hat{H}t}{N\hbar}}|y_0\rangle &= \langle x|\mathrm{e}^{\frac{t}{N}(-\frac{\mathrm{i}}{\hbar})\frac{\hat{p}^2}{2m}}\mathrm{e}^{\frac{t}{N}(-\frac{\mathrm{i}}{\hbar})\hat{V}}|y\rangle \\ &= \langle x|\mathrm{e}^{\frac{t}{N}(-\frac{\mathrm{i}}{\hbar})\frac{\hat{p}^2}{2m}}|y\rangle\mathrm{e}^{\frac{t}{N}(-\frac{\mathrm{i}}{\hbar})V(y)} \\ &= \int \langle x|\mathrm{e}^{\frac{t}{N}(-\frac{\mathrm{i}}{\hbar})\frac{\hat{p}^2}{2m}}|p\rangle\langle p|y\rangle\mathrm{d}p \times \mathrm{e}^{\frac{t}{N}(-\frac{\mathrm{i}}{\hbar})V(y)} \\ &= \int \langle x|p\rangle\langle p|y\rangle\mathrm{e}^{\frac{t}{N}(-\frac{\mathrm{i}}{\hbar})\frac{p^2}{2m}}\mathrm{d}p \times \mathrm{e}^{\frac{t}{N}(-\frac{\mathrm{i}}{\hbar})V(y)} \\ &= \frac{1}{2\pi\hbar}\int \mathrm{e}^{\frac{\mathrm{i}(x-y)p}{\hbar}}\mathrm{e}^{\frac{t}{N}(-\frac{\mathrm{i}}{\hbar})\frac{p^2}{2m}}\mathrm{d}p \times \mathrm{e}^{\frac{t}{N}(-\frac{\mathrm{i}}{\hbar})V(y)} \end{split}$$

根据 Gauss 积分

$$\int_{-\infty}^{+\infty} e^{-ax^2 + bx} dx = \sqrt{\frac{\pi}{a}} e^{-\frac{b^2}{4a}}$$

由此得到传播子为

$$\langle x_0 | \mathrm{e}^{-\mathrm{i} \frac{\hat{H}t}{N\hbar}} | y_0 \rangle = \sqrt{\frac{mN}{2\pi \mathrm{i} \hbar t}} \mathrm{e}^{-\mathrm{i} \frac{mN(x-y)^2}{2\hbar t}} \mathrm{e}^{-\frac{\mathrm{i}t}{N\hbar}V(y)}$$

前两项来自于动能算符,第三项来自于势能算符。动能算符和势能算符虽然不对易,但是在 $N \to \infty$ 时可以得到这个结果。

自由粒子体系的势能为 0,所以可以不需要把时间分成 N 份,而是直接对整个传播子来计算。把 V=0,N=1 代入上式,即得到

$$\langle x_0 | \mathrm{e}^{-\mathrm{i} \hat{H} t \over \hbar} | y_0 \rangle = \sqrt{\frac{m}{2\pi \mathrm{i} \hbar t}} \mathrm{e}^{-\mathrm{i} \frac{m(x-y)^2}{2\hbar t}}$$

如果推广到 F 维体系,则有

$$\langle \boldsymbol{x_0} | \mathrm{e}^{-\frac{\mathrm{i}\hat{H}t}{\hbar}} | \boldsymbol{y_0} \rangle = (\frac{1}{2\pi\mathrm{i}\hbar t})^{\frac{F}{2}} |\boldsymbol{M}|^{\frac{1}{2}} \mathrm{e}^{-\mathrm{i}\frac{(\boldsymbol{x}-\boldsymbol{y})^\mathrm{T}\boldsymbol{M}(\boldsymbol{x}-\boldsymbol{y})}{2\hbar t}}$$

可以将传播子写成

$$\langle y_0|\mathrm{e}^{-\frac{\mathrm{i}\hat{H}t}{\hbar}}|x_0\rangle = C(t)\mathrm{e}^{\frac{\mathrm{i}S(x(t))}{\hbar}}$$

在经典情况下写出作用量

$$S(x(t)) = \int_0^t \mathcal{L}(x, \dot{x}, t') dt' = \frac{1}{2} \int_0^t m \dot{x}^2 dt'$$

Lagrange 函数会满足 Euler-Lagrange 方程,而对于自由粒子,Lagrange 函数不显含坐标,所

以

$$\frac{\mathrm{d}}{\mathrm{d}t}(m\dot{x}) = 0$$

由此可见,速度不随时间变化,且

$$\dot{x} = \frac{y_0 - x_0}{t}$$

所以,上述作用量积分的结果为

$$S = \frac{m(y_0 - x_0)^2}{2t}$$

显然地,这个结果代入上面写出的传播子表达式相吻合。现在希望能把 C(t) 求出。给定初始条件

$$t \to 0$$
, $\langle y_0 | x_0 \rangle = \delta(y_0 - x_0)$

计算出

$$\int_{-\infty}^{+\infty} e^{\frac{i}{\hbar} \frac{m(y_0 - x_0)^2}{2t}} dy_0 = C(t) \sqrt{\frac{2\pi i \overline{h} t}{m}}$$

于是

$$C(t) = \sqrt{\frac{m}{2\pi \mathrm{i} \overline{h} t}} D(t)$$

其中 D(0) = 1. 现在希望证明 D(t) = 1. 计算

$$-\mathrm{i} \overline{h} \frac{\partial}{\partial t} \langle y_0 | \mathrm{e}^{-\frac{\mathrm{i} \hat{H} t}{\overline{h}}} | x_0 \rangle = \langle y_0 | \hat{H} \mathrm{e}^{-\frac{\mathrm{i} \hat{H} t}{\overline{h}}} | x_0 \rangle = -\frac{\overline{h}^2}{2m} \frac{\partial^2}{\partial y_0^2} \langle y_0 | \mathrm{e}^{-\frac{\mathrm{i} \hat{H} t}{\overline{h}}} | x_0 \rangle$$

作业30 第8次作业第四题

如果不是自由体系,则使用多边折线方案。

8.2 20201225: 量子力学和经典力学在路径积分表象下的同构

假设已经得到传播子

$$\langle x|\mathrm{e}^{-rac{i\hat{H}t}{\hbar}}|y
angle = \sqrt{rac{m}{2\pi\mathrm{i}\hbar t}}\mathrm{e}^{\mathrm{i}rac{m(x-y)^2}{2t\hbar}}$$

路径积分是在空间中连接所有x,y的路径都要进行考虑。所以,传播子是对所有路径求和

$$\langle x|\mathrm{e}^{-\frac{i\hat{H}t}{\hbar}} = \sum_{\mathrm{all\ paths}} C_t \mathrm{e}^{\mathrm{i}S_t\hbar}$$

其中

$$C_t = \sqrt{\frac{m}{2\pi i \hbar t}}$$

$$S_t = \int_0^t \mathcal{L}(x, \dot{x}, t') dt' = \int_0^t (\frac{1}{2}m\dot{x}^2 - V(x)) dt'$$

量子体系下的 Boltzmann 分布为

$$e^{-\beta \hat{H}} = \sum_{n} e^{-\beta E_n} |\phi_n\rangle\langle\phi_n|$$

利用了 Schodinger 方程

$$\hat{H}|\phi_n\rangle = E_n|\phi_n\rangle$$

类似地,可以作和

$$e^{-\frac{i\hat{H}t}{\hbar}} = \sum_{n} e^{-\frac{iE_{n}t}{\hbar}} |\phi_{n}\rangle\langle\phi_{n}|$$

上述两个式子可以对应起来,区别在于第二个方程中的时间是虚数,称为**虚时间**。对应关系为

$$t = -\mathrm{i}\overline{\hbar}\beta$$

显然地,高温对应虚时间的短时,低温对应虚时间的长时。同样可求出虚时间下的传播子

$$\langle x|\mathrm{e}^{-\beta\hat{H}}|y\rangle$$

求出配分函数

$$Z = \operatorname{Tr}(e^{-\beta \hat{H}})$$

$$= \sum_{n} \langle n|e^{-\beta \hat{H}}|n\rangle$$

$$= \int \sum_{n} \langle n|e^{-\beta \hat{H}}|x\rangle \langle x|n\rangle dx$$

$$= \int \langle x|\sum_{n} |n\rangle \langle n|e^{-\beta \hat{H}}|x\rangle dx$$

$$= \int \langle x|e^{-\beta \hat{H}}|x\rangle dx$$

在路径积分的语言下,可以放弃态的概念,也不需要有波函数,只要有传播子,就有配分函数,也就有了所有的热力学函数。要求这个积分中的传播子,将 β 分为 N 份. 有

$$\langle x|\mathrm{e}^{-\beta\hat{H}}|x\rangle = \int \langle x_0|\mathrm{e}^{-\frac{\beta\hat{H}}{N}}|x_1\rangle ... \langle x_{n-2}|\mathrm{e}^{-\frac{\beta\hat{H}}{N}}|x_{n-1}\rangle \langle x_{n-1}|\mathrm{e}^{-\frac{\beta\hat{H}}{N}}|x_N\rangle \prod_{i=1}^{N-1} \mathrm{d}x_i$$

其中 $x_0 = x_N = x$. 如果 $N \to \infty$, 则可以把动能项和势能项分开。用和之前传播子计算类似的方法得到

$$\langle x_j | e^{-\Delta \beta \hat{H}} | x_{j+1} \rangle = \sqrt{\frac{m}{2\pi \hbar^2 \Delta \beta}} e^{-\frac{m(x_j - x_{j+1})^2}{2\hbar^2 \Delta \beta}} e^{-\Delta \beta V(x_{j+1})}$$

定义 $\omega_N^2 = \frac{N}{\overline{h}^2 \Delta \beta^2} = \frac{N}{\overline{h}^2 \beta^2}$,则有

$$\langle x_j | e^{-\Delta \beta \hat{H}} | x_{j+1} \rangle = \sqrt{\frac{m}{2\pi \hbar^2 \Delta \beta}} e^{-\frac{\beta m \omega_N^2 (x_j - x_{j+1})^2}{2}} e^{-\Delta \beta V(x_{j+1})}$$

代入得到

$$\langle x | \mathrm{e}^{-\beta \hat{H}} | x \rangle = \left(\frac{mN}{2\pi \overline{h}^2 \beta} \right)^{\frac{N}{2}} \int \mathrm{e}^{-\sum_{j=0}^{N-1} \frac{\beta}{2} m \omega_N^2 (x_{j+1} - x_j)^2} \mathrm{e}^{-\Delta \beta \sum_{j=0}^{N-1} V(x_j)} \prod_{i=1}^{N-1} \mathrm{d} x_i$$

这可以看作 N 个点组成的环两两用弹簧连接,且每个点都额外受外力作用。它可以写成

$$\langle x|e^{-\beta\hat{H}}|x\rangle = \int C(N)e^{-\beta V_{\text{eff}}(\boldsymbol{x})}d\boldsymbol{x}$$

积分不太容易做,可以在这里插入一个关于"动量"的积分

$$\langle x|e^{-\beta\hat{H}}|x\rangle = \int D(N)e^{-\beta V_{\text{eff}}(\boldsymbol{x})}d\boldsymbol{x} \int d\boldsymbol{p}e^{-\frac{\beta}{2}\boldsymbol{p}^{\mathsf{T}}\boldsymbol{M}^{-1}\boldsymbol{p}}$$
$$= \int D(N)e^{-\beta H_{\text{eff}}(\boldsymbol{x},\boldsymbol{p})}d\boldsymbol{x}d\boldsymbol{p}$$

如果 N=1,那么就是经典统计力学的结果。这体现了量子力学和经典统计力学的同构。 如果关心含时 Schodinger 方程:

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle$$

将这个改成对于 β 的方程:

$$-\frac{\partial}{\partial \beta}|\psi(\beta)\rangle = \hat{H}|\psi(\beta)\rangle$$

任意给定一个初态,可以写成 Hamilton 函数的本征函数的线性组合

$$|\psi(0)\rangle = \sum_{n} c_n |\phi_n\rangle$$

并且

$$|\psi(\beta)\rangle = e^{-\beta\hat{H}}|\phi(0)\rangle = \sum_{n} c_n e^{-\beta E_n}|\phi_n\rangle = e^{-\beta E_0} \sum_{n} c_n e^{-\beta(E_n - E_0)}|\phi_n\rangle$$

因此,当 $\beta \to \infty$ 时,得到的就是基态。基于此开发出了**量子 Monte-Carlo 算法**如果要求第一激发态,只需求出系数,把基态从初始条件中减去,得到的新的最低的能量对应的态就是第一激发态。

Chapter 9

Bonmian 动力学

9.1 20210104: Bohmian 动力学

类比经典情况有守恒的连续性方程

$$\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot (\rho \boldsymbol{v}) = 0$$

在量子力学中也有守恒量:

$$\int |\psi(\boldsymbol{x},t)|^2 \mathrm{d}x = 1$$

因此上述连续性方程依然成立。

考虑含时 Schrodinger 方程

$$\mathrm{i}\hbar\frac{\partial}{\partial t}\psi(\boldsymbol{x},t) = \left(\frac{\hbar^2}{2m}\boldsymbol{\nabla} + \boldsymbol{v}\right)\psi$$

波函数可以写成

$$\psi(\boldsymbol{x},t) = \sqrt{\rho} e^{\frac{iS(\boldsymbol{x},t)t}{\hbar}}$$

将波函数的形式代入 Schrodinger 方程可以得到上式以及 Hamilton-Jacobian 方程

$$\frac{\left(\frac{\partial S}{\partial x}\right)^2}{2m} + V(\boldsymbol{x}) - \frac{\overline{h}^2}{2m} \frac{\nabla^2 \sqrt{\rho}}{\sqrt{\rho}} = -\frac{\partial S}{\partial t}$$

前两项可以和经典情况类比,第三项是量子力学而来,定义

$$Q(\boldsymbol{x},t) = -\frac{\overline{h}^2}{2m} \frac{\nabla^2 \sqrt{\rho}}{\sqrt{\rho}}$$

为量子势。速度场即为

$$\boldsymbol{v} = \boldsymbol{M}^{-1} \boldsymbol{p} = \boldsymbol{M}^{-1} \frac{\partial S}{\partial \boldsymbol{x}}$$

从 Hamilton-Jacobian 方程出发,可以得到运动方程。如果是经典的 Hamilton-Jacobian 方程,没有量子势

$$\frac{\left(\frac{\partial S}{\partial x}\right)^2}{2m} + V(\boldsymbol{x}) = -\frac{\partial S}{\partial t}$$

考虑作用量的全导

$$\frac{\mathrm{d}S}{\mathrm{d}t} = \frac{\partial S}{\partial t} + \frac{\partial S}{\partial \boldsymbol{x}_t} \dot{\boldsymbol{x}}_t = \frac{1}{2} \left(\frac{\partial S}{\partial \boldsymbol{x}_t} \right)^{\mathrm{T}} \boldsymbol{M}^{-1} \frac{\partial S}{\partial \boldsymbol{x}_t} - V(\boldsymbol{x})$$

之后可以对位置求偏导, 最终得到

$$egin{aligned} \dot{m{x}}_t &= m{M}^{-1} rac{\partial S(m{x}_t,t)}{\partial m{x}_t} \ \dot{m{p}}_t &= -rac{\partial V(m{x}_t)}{\partial m{x}_t} - rac{\partial Q(m{x}_t)}{\partial m{x}_t} \end{aligned}$$

这称为量子轨线方程。如果对 ρ 求全导,

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = \frac{\partial\rho}{\partial t} + \frac{\partial\rho}{\partial \boldsymbol{x}_t} \dot{\boldsymbol{x}}_t = -\rho \boldsymbol{\nabla} \cdot \dot{\boldsymbol{x}}_t$$

波函数的求解可以转化为用0时刻的求解

$$\psi(\boldsymbol{x},t) = \langle \boldsymbol{x}| \mathrm{e}^{-\frac{\mathrm{i}\hat{H}t}{\hbar}} |\psi(\boldsymbol{x},0)\rangle = \sum_{n} \langle \boldsymbol{x}|\phi_{n}\rangle \langle \phi_{n}|\psi_{0}\rangle \mathrm{e}^{-\frac{\mathrm{i}E_{n}t}{\hbar}}$$

例如,

$$\psi(x,0) = \left(\frac{2a}{\pi}\right)^{\frac{1}{4}} e^{-\alpha(x-x_{\rm eq})^2 + \frac{i\hbar}{p_{\rm eq}}(x-x_{\rm eq})}$$

则

$$S(x_0, 0) = p_{eq}(x_0 - x_{eq})$$
$$p_0 = \frac{\partial S}{\partial x_0} = p_{eq}$$

根据经典情况统计物理的结果

$$\langle A \rangle = \frac{1}{Z} \int \rho(x, p) A(x, p) dx dp$$

其中

$$\rho = \frac{1}{Z} e^{-\beta H(x,p)}$$

$$Z = \int \frac{1}{2\pi \overline{h}} e^{-\beta H(x,p)} dx dp$$

现在要问,量子力学有没有同样的形式?

定义

$$\operatorname{Tr}(\hat{A}\hat{B}) = \frac{1}{2\pi h} \int A(x,p)B(x,p)\mathrm{d}x\mathrm{d}p$$

重要的是求出两个算符在量子力学下的形式。

$$A_{\mathbf{w}}(x,p) = \langle x - \frac{\Delta}{2} | \hat{A} | x + \frac{\Delta}{2} \rangle e^{\frac{i\Delta p}{\hbar}}$$

$$B_{\mathbf{w}}(x,p) = \langle x - \frac{\Delta}{2} | \hat{B} | x + \frac{\Delta}{2} \rangle e^{\frac{i\Delta p}{\hbar}}$$

可以验证,如果 $\hbar \to 0$,应有 $A_{\rm w} \to A_{\rm cl}$, $B_{\rm w} \to B_{\rm cl}$. 可以表示出概率密度分布

$$\hat{\rho} = |\psi\rangle\langle\psi|$$

可以在位置空间和动量空间给出概率密度分布。并可以验证

$$\int \rho_{\mathbf{w}}(x, p) dx = \langle p | \hat{\rho} | p \rangle$$
$$\int \rho_{\mathbf{w}}(x, p) dp = \langle x | \hat{\rho} | x \rangle$$

要求物理量期望值可以写成

$$\langle \psi | \hat{B} | \psi \rangle = \langle \psi | \sum_{n} |\phi_{n}\rangle \langle \phi_{n} | \hat{B} | \psi \rangle$$
$$= \sum_{n} \langle \phi_{n} | \hat{B} | \psi \rangle \langle \psi | \phi_{n} \rangle$$
$$= \operatorname{Tr}(\hat{B} | \psi \rangle \langle \psi |)$$

它等价为

$$\langle \psi | \hat{B} | \psi \rangle = \frac{1}{2\pi \overline{h}} \int \rho_{\mathbf{w}}(x, p) B_{\mathbf{w}}(x, p) dx dp$$

Chapter 10

Winger 函数

10.1 Winger 函数的定义与性质