Amplificadores Operacionais – AMP OP

Objetivos

- Analisar o funcionamento do AMP OP
- Apresentar seus elementos internos
- Amplificador em malha aberta
- Amplificador com realimentação
- Conceito de terra virtual

AMP OP – Circuito Integrado

AMP OP – Operação

Entrada única

AMP OP – Operação

Entrada diferencial

AMP OP – Amplificação

AMP OP – Amplificação

AMP OP – Diagrama Elétrico

AMP OP – Modelo

AMP OP – Circuito equivalente

AMP OP – Circuito equivalente

AMP OP ideal ⇒

AMP OP – Circuito equivalente

AMP OP - Limites da tensão de saída

AMP OP - Limites da tensão de saída

^{*} Apenas alguns modelos operam dessa forma

Ganho em malha fechada

$$V_{I} - I(R_{I} + R_{f}) - A_{v}. v_{i} = 0$$
 (1)
 $V_{i} + R_{f}.I + A_{v}. v_{i} = 0$ (2)

$$V_{I} - I(R_{I} + R_{f}) - A_{v} \cdot v_{i} = 0 \quad (1)$$

$$V_{i} + R_{f} \cdot I + A_{v} \cdot v_{i} = 0 \quad (2)$$

$$D_{e} \quad (1) : \quad I = \underbrace{V_{i} - A_{v} \cdot v_{i}}_{R_{i} + R_{f}}$$

$$V_{1} - I(R_{1} + R_{1}) - A_{v}.v_{i} = o$$
 (1)
 $V_{i} + R_{1}.I + A_{v}.v_{i} = o$ (2)
 D_{e} (1): $I = \frac{V_{1} - A_{v}.v_{i}}{R_{1}.R_{1}}$ (3)
 D_{e} (2): $I = -\frac{V_{1} - A_{v}.v_{i}}{R_{1}}$ (4)

$$I = \frac{V_1 - A_{V.} V_i}{R_1 + R_f}$$
 (3)

$$I = -\frac{V_{i} - A_{\sigma} \cdot V_{i}}{R_{f}} \qquad (4)$$

$$(3) = (4)$$

$$I = \frac{V_1 - A_{V.} V_i}{R_1 + R_f}$$
 (3)

$$I = -\frac{V_i - A \sigma_i V_i}{R \rho} \qquad (A)$$

Usando Av. Vi = Vo

Usando Av. Vi = Vo

$$= > \left[\frac{V_1}{V_0} - 1\right] / \left(R_1 + R_1\right) = -\frac{1}{A_V} - 1$$

$$R_f$$

Usando Av. Vi = Vo

$$= > \left[\frac{V_1}{V_0} - 1\right] / (R_1 + R_1) = \frac{1}{R_1}$$

$$\left[\frac{V_1}{V_0}-1\right]/(R_1+R_1)=\frac{0}{R_1}$$

$$\left[\frac{V_1}{V_0}-1\right]/(R_1+R_1)=\frac{0}{R_1}$$

$$\frac{V_{1}}{V_{0}}-1=-\frac{R_{1}+R_{1}}{R_{1}}$$

$$\Rightarrow$$
 $V_i = R_i.I_i$

$$\Rightarrow$$
 $V_i = R_i.I_i$

$$\Rightarrow$$
 $V_i = R_i.I_i$