STA3010 Regression Analysis

Feng YIN

The Chinese University of Hong Kong (Shenzhen) yinfeng@cuhk.edu.cn

March 5, 2020

Multicollinearity

- Multicollinearity is said to exist, when there are near linear dependencies among the inputs/features/regressors.
- For a subset of inputs, there exists linear dependency $\sum_{i=1}^{p} t_i \mathbf{x}_i = \mathbf{0}$, $t_i \neq 0$. Even the above equality approximately holds, your computer may doubt about the existence of the multicollinearity problem.

Feng YIN (CUHKSZ) Lecture 5b March 5, 2020 2 / 6

Effects of Multicollinearity

- Consider a multiple linear regression model with two inputs, x_1 and x_2 . Both the output y and the inputs x_1 and x_2 are scaled to unit length.
- The least-squares estimator, $\hat{\beta}_1$ and $\hat{\beta}_2$ are obtained as:

$$\hat{\beta}_1 = \frac{r_{1y} - r_{12}r_{2y}}{1 - r_{12}^2}, \qquad \hat{\beta}_2 = \frac{r_{2y} - r_{12}r_{1y}}{1 - r_{12}^2}.$$
 (1)

- Strong multicollinearity results in:
 - the correlation coefficient r_{12} will be large.
 - $var(\hat{\beta}_j) = \sigma^2 \mathbf{C}_{jj} \to \infty$, as $|r_{12}| \to 1$, namely large variances and covariances for the least-squares estimators of the model parameters.

Multicollinearity Diagnosis

1. Examination of the correlation matrix: Diagnose multicollinearity through inspecting the off-diagonal elements. If input x_i and x_j are nearly linearly dependent, then $|r_{ij}|$ will be close to 1.

$$\mathbf{X'X} = \begin{bmatrix} 1.000 & 0.224 & -0.958 & -0.132 & 0.443 & 0.205 & -0.271 & 0.031 & -0.577 \\ 1.000 & -0.240 & 0.039 & 0.192 & -0.023 & -0.148 & 0.498 & -0.224 \\ 1.000 & 0.194 & -0.661 & -0.274 & 0.501 & -0.018 & 0.765 \\ 1.000 & -0.265 & -0.975 & 0.246 & 0.398 & 0.274 \\ 1.000 & 0.323 & -0.972 & 0.126 & -0.972 \\ 1.000 & -0.279 & -0.374 & 0.358 \\ 1.000 & -0.124 & 0.874 \\ 1.000 & -0.158 \\ 1.000 & Symmetric \end{bmatrix}$$

Source: textbook

This method is only able to detect linear or near-linear dependence between pairs of inputs/regressors!

Multicollinearity Diagnosis

2. Eigensystem analysis of $\mathbf{X}^T\mathbf{X}$: The eigenvalues of $\mathbf{X}^T\mathbf{X}$ can be used to measure the extent of multicollinearity in the data.

The procedure is the following:

- Step 1: perform eigenvalue decomposition of $\mathbf{X}^T\mathbf{X}$ and obtain the eigenvalues $\lambda_1, \lambda_2, ..., \lambda_p$.
- Step 2: rank the eigenvalues and compute the condition number of $\mathbf{X}^T\mathbf{X}$ as $\kappa=\frac{\lambda_{max}}{\lambda_{min}}$.
- Step 3: If the condition number κ exceeds 1000, severe multicollinearity is indicated. Otherwise, it is numerically safe.

Feng YIN (CUHKSZ) Lecture 5b March 5, 2020

Multicollinearity Diagnosis

For the acetylene data (refer our textbook), the resulting condition indices, $\kappa_j=\frac{\lambda_{max}}{\lambda_j}$, j=1,2,...,p, are obtained as

$$\kappa_1 = \frac{4.2048}{4.2048} = 1,$$
 $\kappa_2 = \frac{4.2048}{2.1626} = 1.94,$
 $\kappa_3 = \frac{4.2048}{1.1384} = 3.69$

$$\kappa_4 = \frac{4.2048}{1.0413} = 4.04,$$
 $\kappa_5 = \frac{4.2048}{0.3845} = 10.94,$
 $\kappa_6 = \frac{4.2048}{0.0495} = 84$

$$\kappa_7 = \frac{4.2048}{0.0136} = 309.18,$$
 $\kappa_8 = \frac{4.2048}{0.0051} = 824.47,$

$$\kappa_9 = \frac{4.2048}{0.0001} = 42,048$$

Source: textbook

There is at least one strong near-linear dependence in the acetylene data. Eigensystem analysis can also be used to identify the nature of the near-linear dependencies in data.