Thursday, 24 June 2021

Analysis and Implementation of Data Imputation Techniques for Laboratory Data

Supervisor: Dr Pantelis Georgiou

Co-supervisor: Dr Bernard Hernandez Perez Second marker: Dr Timothy Constandinou

Agrim Manchanda (CID: 01333674)

Overview of presentation

- Introduction and Motivation
- Background Materials
- Project Aims and Deliverables
- Overview of Design & Implementation
- Experiments & Results
- Conclusion, Achievements and Future Work

Introduction and Motivation

- Missing laboratory data is an ever-present challenge in clinical domain.
- Clinical Decision Support Systems (CDSSs) rely on completeness for accurate predictions.
- Simple techniques exist but are inadequate.
- Scope to investigate better data imputation techniques suitable for laboratory data.

Patient	Date	Lab Code					
		EOS	MONO	BASO		NRBCA	
1	23/03/20	0.40	NaN	0.10		0.00	
2	24/03/20	NaN	0.50	0.10		NaN	
2	23/03/20	0.20	NaN	0.10		0.00	
3	23/03/20	0.40	0.50	NaN		0.00	
4	23/03/20	0.10	NaN	0.10		NaN	
5	23/03/20	NaN	0.40	0.10		0.00	

Background Material (1)

- Types of missing data:
 - Missing at Random (MAR)
 - Missing Completely at Random (MCAR)
 - Missing Not At Random (MNAR)
- Current landscape:
 - Imputation depends on feature types and nature of missing data.
 - Separate studies validated Machine Learning (ML) methods.
 - Increasing potential for use of Bayesian Networks (BN).

Background Material (2)

Project Aims and Deliverables

Aim: "Compare the performance of ML based and BN methods with simple median imputation."

Key Deliverables:

- Design: Imputation framework which provides a methodology.
- **Implementation:** Develop the framework and create an *open source* library.
- **Experimentation:** Carry out an *empirical* study on a real-life laboratory data set.
- **Documentation:** Create a *reference* point for project findings and results.

Experiments

Experiment I – Overview of pathology data

Results: Evaluation Metrics

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y_i})^2}$$

$$\Delta = 100 - \left(100 \times \frac{RMSE_{ML/BN}}{RMSE_{median}}\right)$$

$$NAE = \frac{|y - y_i|}{max(y_i) - min(y_i)}$$

Experiment II – Imputation using ML based methods

Single Feature Removal

For all analytes, error distribution for ML based (orange) is significantly **lower** than median imputation.

→ ML methods impute with **higher** accuracy than median.

Multiple Feature Removal

For all proportions of missing values (10%, 30% and 50%), central *tendency* and *dispersion* remains **below** median imputation.

- → median changes the distribution of data.
- → ML methods to a much lower extent (relatively).

Remaining results presented in Chapter 7 – Section 7.2 of Final Report.

Experiment III – Imputation using BNs (1)

Single Feature Removal

Single Feature Removal

For all analytes, error distribution for BNs (blue) is **lower** than median imputation (orange).

→ BNs perform **better** than median imputation.

Experiment III – Imputation using BNs (2)

Multiple Feature Removal

Multiple Feature Removal

For all proportions of missing values (10%, 30% and 50%), central *tendency* and *dispersion* remains **below** median imputation.

→ BN central tendencies are heterogenous so they are **more** consistent.

Remaining results presented in Chapter 7 – Section 7.3 of Final Report.

Experiment IV – Comparing ML based and BN methods

Single Feature Removal

RMSE scores are more **comparable**.

→ discretisation of data **impacts** performance of ML methods.

Analyte	Unit	Machine Learning (ML)			Bayesian Network (BN)		
		Type	HOTS	CVTS	HOTS	CVTS	
EOS	10 ⁹ /L	LR	0.108	0.107	0.103	0.102	
HCT	L/L	LR	0.017	0.017	0.025	0.027	
HGB	g/L	MLP	5.784	5.863	8.380	8.372	
LY	$10^{9}/L$	LR	0.591	0.536	0.587	0.590	
MCH	pg	MLP	0.624	0.624	0.919	0.920	
MCHC	g/L	MLP	6.625	6.598	7.084	7.080	
MCV	fL	MLP	2.061	2.056	2.749	2.733	
MONO	$10^{9}/L$	LR	0.202	0.200	0.217	0.215	
MPV	fL	MLP	0.993	0.998	1.036	1.033	
NEUT	$10^{9}/L$	LR	0.872	0.844	1.137	1.135	
PLT	$10^{9}/L$	MLP	65.496	66.922	67.472	67.469	
RBC	$10^{12}/L$	MLP	0.209	0.215	0.325	0.323	
RDW	%	MLP	1.242	1.314	1.300	1.298	
WBC	$10^{9}/L$	LR	0.744	0.716	1.186	1.184	
Average	-	-	6.112	6.638	6.609	6.605	

Multiple Feature Removal

For all proportions of missing values (10%, 30% and 50%), more **variation** in the best method.

- → performance of ML methods degrades linearly.
- → BNs have a **lower** RMSE at higher missing values.

Analyte	Unit	Missing	Machine Learning (ML)			Bayesian Network (BN)	
		(%)	Method	HOTS	CVTS	HOTS	CVTS
EOS		10	MLP	0.112	0.114	0.112	0.113
	10 ⁹ /L	30	MLP	0.110	0.108	0.116	0.114
		50	RF	0.114	0.116	0.117	0.115
НСТ	L/L	10	MLP	0.018	0.019	0.026	0.025
		30	MLP	0.027	0.030	0.033	0.032
		50	MLP	0.038	0.039	0.040	0.037
HGB		10	MLP	5.939	5.935	9.148	9.149
	g/L	30	MLP	8.836	8.832	10.684	10.687
		50	MLP	12.598	12.599	11.480	11.475
LY		10	MLP	0.552	0.550	0.616	0.614
	10 ⁹ /L	30	MLP	0.622	0.620	0.643	0.639
		50	MLP	0.690	0.698	0.676	0.675
MCH	pg	10	MLP	0.713	0.708	1.063	1.062
		30	MLP	1.330	1.329	1.248	1.247
		50	MLP	1.961	1.964	1.449	1.446
MCHC	g/L	10	MLP	7.132	7.130	7.684	7.682
		30	MLP	8.966	8.962	8.544	8.542
		50	MLP	10.793	10.791	9.045	9.043

Conclusion, Achievements and Future Work

Conclusions & Achievements

- Empirically shown simple median imputation performs poorly.
 - → high RMSE for all the analytes under all scenarios.
 - → changes the distribution of underlying data.
- Recommendation 1: ML based methods for CDSSs predictive modelling as they impute with high accuracy.
- Recommendation 2: BNs more suitable for clinicians as they are **interpretable** and **intuitive**.
- All project objectives were met.

Future Work

- Integration into CDSS to carry out pilot studies.
- Extending experiments to consider other laboratory panels.
- Temporal profiling to use longitudinal data.
- Enhancing model performances especially BNs.