SUPPLEMENTARY LECTURE NOTES

System of non-linear equations

Objectives

At the end of this section you will learn how to solve non-linear systems using

- 1. functional fixed-point iteration,
- 2. the Gauss-Seidel(Extra Reading) and
- 3. Newton's methods.

Introduction

Solutions $x = x_0$ to equations of the form f(x) = 0 are often required where it is impossible or infeasible to find an analytical expression for the vector \mathbf{x} . If the scalar function f depends on f independent variables f in the solution \mathbf{x} will describe a surface in f independent variables and f independent variables we may consider the vector function $f(\mathbf{x}) = \mathbf{0}$, the solutions of which typically collapse to particular values of \mathbf{x} . For this course we restrict our attention to f independent variables f independent variables f is vector valued.

Fixed Point Method for Functions of Several Variables

The general of a system of nonlinear equations is

$$f_1(x_1, x_2, ..., x_n) = 0$$

$$f_2(x_1, x_2, ..., x_n) = 0$$

$$\vdots$$

$$f_n(x_1, x_2, ..., x_n) = 0$$

where each function f_i maps n-dimensional space, R^n , into the real line R. The above system can be defined alternatively by defining the function $F(\mathbf{x}) = 0$, where

$$F: R^n \to R^n, \ \mathbf{x} = (x_1, x_2, ..., x_n) \ \text{and}$$

$$F(x_1, x_2, ..., x_n) = \left(f_1(x_1, x_2, ..., x_n), f_2(x_1, x_2, ..., x_n), ..., f_n(x_1, x_2, ..., x_n)\right).$$

1.1 Functional or Fixed Point Iteration

Suppose a nonlinear system of the form F(x) = 0 has been transformed into an equivalent fixed point problem G(x) = x. The functional or fixed point iteration process applied to G is as follows:

1. Select
$$\mathbf{x}^{(0)} = (x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)})$$
.

2. Generate the sequence of vectors
$$\mathbf{x}^{(k)} = \left(x_1^{(k)}, x_2^{(k)}, \ldots, x_n^{(k)}\right)$$
 by $\mathbf{x}^{(k)} = \mathbf{G}\left(\mathbf{x}^{(k-1)}\right)$ for each $i=1,2,3,\ldots$ or, component-wise,

$$x_{1}^{(k)} = g_{1}\left(x_{1}^{(k-1)}, x_{2}^{(k-1)}, \dots, x_{n}^{(k-1)}\right)$$

$$x_{2}^{(k)} = g_{2}\left(x_{1}^{(k-1)}, x_{2}^{(k-1)}, \dots, x_{n}^{(k-1)}\right)$$

$$\vdots$$

$$x_{n}^{(k)} = g_{n}\left(x_{1}^{(k-1)}, x_{2}^{(k-1)}, \dots, x_{n}^{(k-1)}\right)$$

The following theorem provides conditions for the iterative process to converge.

Theorem

Let $D = \{(x_1, x_2, ..., x_n) : a_i \le x_i \le b_i$, for each $i = 1, 2, ..., n\}$, for some collection of constants $(a_1, a_2, ..., a_n)$ and $(b_1, b_2, ..., b_n)$. Suppose G is a continuous function with continuous first partial derivatives from $D \subset R^n$ into R^n with the property that $G(\mathbf{x}) \in D$ whenever $\mathbf{x} \in D$. If a constant K < 1 exists with

$$\left| \frac{\partial g_i(\mathbf{x})}{\partial x_i} \right| \le \frac{K}{n} \quad \text{whenever} \quad \mathbf{x} \in D$$

for each $j=1,2,\ldots,n$ and each component function g_i , then the sequence $\left\{\mathbf{x}^{(k)}\right\}_{k=0}^{\infty}$ defined by $\mathbf{x}^{(k)}=\mathbf{G}\left(\mathbf{x}^{(k-1)}\right)$ for each $i=1,2,3,\ldots$ converges to the unique fixed point $\mathbf{p}\in D$, for any $\mathbf{x}^{(0)}$ in D, and $\left\|\mathbf{x}^{(j)}-\mathbf{p}\right\|_{\infty} \leq \frac{K^j}{1-K} \left\|\mathbf{x}^{(1)}-\mathbf{x}^{(0)}\right\|_{\infty}$.

Example 1

$$3x_{1} - \cos(x_{2}x_{3}) \qquad -\frac{1}{2} = 0$$

$$x_{1}^{2} - 81(x_{2} + 0.1)^{2} + \sin x_{3} + 1.06 = 0$$

$$e^{-x_{1}x_{2}} \qquad +20x_{3} + \frac{10\pi - 3}{3} = 0$$

$$f_{1}(x_{1}, x_{2}, ..., x_{n}) = 3x_{1} - \cos(x_{2}x_{3}) - \frac{1}{2}$$

$$f_{2}(x_{1}, x_{2}, ..., x_{n}) = x_{1}^{2} - 81(x_{2} + 0.1)^{2} + \sin x_{3} + 1.06$$

$$f_{3}(x_{1}, x_{2}, ..., x_{n}) = e^{-x_{1}x_{2}} + 20x_{3} + \frac{10\pi - 3}{3}$$

$$F(x_{1}, x_{2}, ..., x_{n}) = \left(f_{1}(x_{1}, x_{2}, ..., x_{n}), f_{2}(x_{1}, x_{2}, ..., x_{n}), ..., f_{n}(x_{1}, x_{2}, ..., x_{n})\right)$$

$$= \left(3x_{1} - \cos(x_{2}x_{3}) - \frac{1}{2}, x_{1}^{2} - 81(x_{2} + 0.1)^{2} + \sin x_{3} + 1.06, e^{-x_{1}x_{2}} + 20x_{3} + \frac{10\pi - 3}{3}\right)$$

Example 2

$$3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0$$

$$x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0$$

$$e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0$$

If the *i*th equation is solved for x_i , the system can be changed into the fixed point problem

$$x_1 = \frac{1}{3}\cos(x_2x_3) + \frac{1}{6},$$

$$x_2 = \frac{1}{9}\sqrt{x_1^2 + \sin x_3 + 1.06} - 0.1,$$

$$x_3 = -\frac{1}{20}e^{-x_1x_2} - \frac{10\pi - 3}{60}.$$

Let
$$G: R^3 \to R^3$$
 be defined by $G(\mathbf{x}) = \left(g_1(\mathbf{x}), g_2(\mathbf{x}), g_3(\mathbf{x})\right)$ where $g_1(x_1, x_2, x_3) = \frac{1}{3}\cos(x_2x_3) + \frac{1}{6}$, $g_2(x_1, x_2, x_3) = \frac{1}{9}\sqrt{x_1^2 + \sin x_3 + 1.06} - 0.1$, $g_3(x_1, x_2, x_3) = -\frac{1}{20}e^{-x_1x_2} - \frac{10\pi - 3}{60}$.
$$\left|g_1(x_1, x_2, x_3)\right| \leq \frac{1}{3}\left|\cos(x_2x_3)\right| + \frac{1}{6} \leq \frac{1}{2}, \\ \left|g_2(x_1, x_2, x_3)\right| = \left|\frac{1}{9}\sqrt{x_1^2 + \sin x_3 + 1.06} - 0.1\right| \\ \leq \frac{1}{9}\sqrt{1 + \sin 1 + 1.06} - 0.1 < 0.90, \\ \left|g_3(x_1, x_2, x_3)\right| = \frac{1}{20}e^{-x_1x_2} + \frac{10\pi - 3}{60} \\ \leq \frac{1}{20}e + \frac{10\pi - 3}{60} < 0.61$$

so $-1 \le g_i(x_1, x_2, x_3) \le 1$, for each i = 1, 2, 3. Thus, $G(\mathbf{x}) \in D$ whenever $\mathbf{x} \in D$. Finding bounds on the partial derivatives on D gives the following:

$$\left|\frac{\partial g_1}{\partial x_1}\right| = 0, \quad \left|\frac{\partial g_1}{\partial x_2}\right| \le \frac{1}{3} \left|x_3\right| \left|\sin(x_2 x_3)\right| \le \frac{1}{3} \sin 1 = 0.281, \quad \left|\frac{\partial g_1}{\partial x_3}\right| \le \frac{1}{3} \left|x_2\right| \left|\sin(x_2 x_3)\right| \le \frac{1}{3} \sin 1 = 0.281,$$

$$\begin{aligned} \left| \frac{\partial g_2}{\partial x_1} \right| &= \frac{|x_1|}{9\sqrt{x_1^2 + \sin x_3 + 1.06}} < \frac{1}{9\sqrt{0.218}} < 0.238, \quad \left| \frac{\partial g_2}{\partial x_2} \right| \le 0, \\ \left| \frac{\partial g_2}{\partial x_3} \right| &\le \frac{|\cos x_3|}{18\sqrt{x_1^2 + \sin x_3 + 1.06}} < \frac{1}{18\sqrt{0.218}} < 0.119, \end{aligned}$$

$$\left| \frac{\partial g_3}{\partial x_1} \right| = \frac{|x_2|}{20} e^{-x_1 x_2} \le \frac{1}{20} e = 0.14, \quad \left| \frac{\partial g_3}{\partial x_2} \right| = \frac{|x_1|}{20} e^{-x_1 x_2}$$

Since the partial derivatives are bounded on D, the above Theorem implies that these functions are continuous on D. Consequently, G is continuous on D. Moreover, for every $x \in D$

$$\left| \frac{\partial g_i(\mathbf{x})}{\partial x_j} \right| \le 0.281$$
 for each $i = 1, 2, 3$ and $j = 1, 2, 3$, and the condition in the second part of

Theorem 9.7 holds for K=0.843. It can be shown that $\partial g_i(\mathbf{x})/\partial x_j$ for each i=1,2,3 and j=1,2,3 is continuous on D. Consequently, G has a unique fixed point on D and the nonlinear system has a solution in D.

Example 3

$$3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0$$

$$x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0$$

$$e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0$$

Solution

If the i^{th} equation is solved for x_i , the system can be changed into the fixed point problem as

$$x_1 = \frac{1}{3}\cos(x_2x_3) + \frac{1}{6},$$

$$x_2 = \frac{1}{9}\sqrt{x_1^2 + \sin x_3 + 1.06} - 0.1,$$

$$x_3 = -\frac{1}{20}e^{-x_1x_2} - \frac{10\pi - 3}{60}.$$

and write the iterative process as

$$x_1^{(k)} = \frac{1}{3}\cos\left(x_2^{(k-1)}x_3^{(k-1)}\right) + \frac{1}{6},$$

$$x_2^{(k)} = \frac{1}{9}\sqrt{\left(x_1^{(k-1)}\right)^2 + \sin x_3^{(k-1)} + 1.06} - 0.1,$$

$$x_3^{(k)} = -\frac{1}{20}e^{-x_1^{(k-1)}x_2^{(k-1)}} - \frac{10\pi - 3}{60}.$$

$$\|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\|_{\infty} < 10^{-5}$$

k	$X_1^{(k)}$	$x_{2}^{(k)}$	$x_{3}^{(k)}$	$\left\ \mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\right\ _{\infty}$
0	0.10000000	0.10000000	-0.10000000	
1	0.49998333	0.00944115	-0.52310127	0.423
2	0.49999593	0.00002557	-0.52336331	9.4×10^{-3}
3	0.50000000	0.00001234	-0.52359814	2.3×10^{-4}
4	0.50000000	0.00000003	-0.52359847	1.2×10^{-5}
5	0.50000000	0.00000002	-0.52359877	3.1×10^{-7}

$$\begin{aligned} & \left\| \mathbf{x}^{(5)} - \mathbf{p} \right\|_{\infty} \le \frac{(0.843)^{5}}{1 - 0.843} 0.423 < 1.15 \\ & \mathbf{x}^{(3)} = \left(0.500000000, 1.234 \times 10^{-5}, -0.52359814 \right) \\ & \left\| \mathbf{x}^{(5)} - \mathbf{p} \right\|_{\infty} \le \frac{(0.843)^{5}}{1 - 0.843} (1.20 \times 10^{-5}) < 5.5 \times 10^{-5} \\ & \mathbf{p} = \left(0.5, 0, -\frac{\pi}{6} \right) \approx \left(0.5, 0, -0.5235987757 \right) \\ & \left\| \mathbf{x}^{(5)} - \mathbf{p} \right\|_{\infty} \le 2 \times 10^{-8} \\ & x_{1}^{(k)} = \frac{1}{3} \cos \left(x_{2}^{(k-1)} x_{3}^{(k-1)} \right) + \frac{1}{6}, \\ & x_{2}^{(k)} = \frac{1}{9} \sqrt{\left(x_{1}^{(k)} \right)^{2} + \sin x_{3}^{(k-1)} + 1.06} - 0.1, \\ & x_{3}^{(k)} = -\frac{1}{20} e^{-x_{1}^{(k)} x_{2}^{(k)}} - \frac{10\pi - 3}{60}. \end{aligned}$$

k	$x_1^{(k)}$	$x_{2}^{(k)}$	$x_3^{(k)}$	$\left\ \mathbf{X}^{(k)} - \mathbf{X}^{(k-1)}\right\ _{\infty}$
0	0.10000000	0.10000000	-0.10000000	
1	0.49998333	0.02222979	-0.52304613	0.423
2	0.49997747	0.00002815	-0.52359807	2.2×10^{-2}
3	0.50000000	0.00000004	-0.52359877	2.8×10^{-5}
4	0.50000000	0.00000000	-0.52359877	3.8×10^{-8}

Newton's Method

In order to construct an algorithm that led to an appropriate fixed-point method

$$A(\mathbf{x}) = \begin{pmatrix} a_{11}(\mathbf{x}) & a_{12}(\mathbf{x}) & \cdots & a_{1n}(\mathbf{x}) \\ a_{21}(\mathbf{x}) & a_{22}(\mathbf{x}) & \cdots & a_{2n}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}(\mathbf{x}) & a_{n2}(\mathbf{x}) & \cdots & a_{nn}(\mathbf{x}) \end{pmatrix}$$

where each of the entries $a_{ij}(\mathbf{x})$ is a function from $R^n \to R$. The procedure requires that $A(\mathbf{x})$ be found so that $G(\mathbf{x}) = \mathbf{x} - A(\mathbf{x})^{-1} F(\mathbf{x})$ gives quadratic convergence to the solution $F(\mathbf{x}) = 0$, provided that $A(\mathbf{x})$ is nonsingular at the fixed point.

Theorem

Suppose p is a solution of $G(\mathbf{x}) = \mathbf{x}$ for some function $G = (g_1, g_2, ..., g_n)$, mapping R^n into R^n . If a number $\delta > 0$ exists with the property that

- i) $\partial g_i/\partial x_j$ is continuous on $N_{\delta} = \{\mathbf{x} : ||\mathbf{x} \mathbf{p}|| < \delta\}$ for each i = 1, 2, ..., n and j = 1, 2, ..., n,
- ii) $\partial^2 g_i(\mathbf{x})/\partial x_j \, \partial x_k$ is continuous, and $\|\partial^2 g_i(\mathbf{x})/\partial x_j \, \partial x_k\| \leq M$ for some constant M whenever $\mathbf{x} \in N_\delta$ for each $i=1,2,\ldots,n,\ j=1,2,\ldots,n$ and $k=1,2,\ldots,n$,
- $$\begin{split} &\partial g_i(\mathbf{p})\big/\partial x_j=0 \ \text{ for each } i=1,2,\ldots,n \text{ and } j=1,2,\ldots,n \text{,} \\ &\text{ then the sequence generated by } \mathbf{x}^{(k)}=G\Big(\mathbf{x}^{(k-1)}\Big) \text{ converges quadratically to } \mathbf{p} \\ &\text{ for any choice of } \mathbf{x}^{(0)}\in N_{\mathcal{S}} \text{ and } \left\|\mathbf{x}^{(k)}-\mathbf{p}\right\|_{\infty} \leq \frac{n^2M}{2}\left\|\mathbf{x}^{(k-1)}-\mathbf{p}\right\|_{\infty}^2 \qquad \text{for each } k\geq 1 \,. \end{split}$$

Since
$$G(\mathbf{x}) = \mathbf{x} - A(\mathbf{x})^{-1} F(\mathbf{x})$$
, $g_i(\mathbf{x}) = x_i - \sum_{i=1}^n b_{ij}(\mathbf{x}) f_j(\mathbf{x})$;

so
$$\frac{\partial g_{i}(\mathbf{x})}{\partial x_{k}} = \begin{cases} 1 - \sum_{j=1}^{n} \left(b_{ij}(\mathbf{x}) \frac{\partial f_{j}}{\partial x_{k}}(\mathbf{x}) + \frac{\partial b_{ij}}{\partial x_{k}}(\mathbf{x}) f_{j}(\mathbf{x}) \right), & \text{if } i = k, \\ - \sum_{j=1}^{n} \left(b_{ij}(\mathbf{x}) \frac{\partial f_{j}}{\partial x_{k}}(\mathbf{x}) + \frac{\partial b_{ij}}{\partial x_{k}}(\mathbf{x}) f_{j}(\mathbf{x}) \right), & \text{if } i \neq k. \end{cases}$$

$$0 = 1 - \sum_{i=1}^{n} b_{ij}(\mathbf{p}) \frac{\partial f_{j}}{\partial x_{k}}(\mathbf{p})$$

so
$$\sum_{j=1}^{n} b_{ij}(\mathbf{p}) \frac{\partial f_j}{\partial x_k}(\mathbf{p}) = 1$$

$$0 = -\sum_{j=1}^{n} b_{ij}(\mathbf{p}) \frac{\partial f_{j}}{\partial x_{k}}(\mathbf{p})$$

So
$$\sum_{j=1}^{n} b_{ij}(\mathbf{p}) \frac{\partial f_{j}}{\partial x_{k}}(\mathbf{p}) = 0$$

$$J(\mathbf{x}) = \begin{pmatrix} \frac{\partial f_1(\mathbf{x})}{\partial x_1} & \frac{\partial f_1(\mathbf{x})}{\partial x_2} & \cdots & \frac{\partial f_1(\mathbf{x})}{\partial x_n} \\ \frac{\partial f_2(\mathbf{x})}{\partial x_1} & \frac{\partial f_2(\mathbf{x})}{\partial x_2} & \cdots & \frac{\partial f_2(\mathbf{x})}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n(\mathbf{x})}{\partial x_1} & \frac{\partial f_n(\mathbf{x})}{\partial x_2} & \cdots & \frac{\partial f_n(\mathbf{x})}{\partial x_n} \end{pmatrix}$$

$$A(p)^{-1}J(p) = I$$

so
$$J(p) = A(p)$$

$$G(x) = x - J(x)^{-1} F(x)$$

$$x^{(k)} = G(x^{(k-1)}) = x^{(k-1)} - J(x^{(k-1)})^{-1} F(x^{(k-1)})$$

Example 1

Solve the nonlinear system

$$3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0$$

$$x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0$$

$$e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0$$

Solution

The Jacobian matrix for the system is given by

$$J(x_1, x_2, x_3) = \begin{pmatrix} 3 & x_3 \sin x_2 x_3 & x_2 \sin x_2 x_3 \\ 2x_1 & -162(x_2 + 0.1) & \cos x_3 \\ -x_2 e^{-x_1 x_2} & -x_1 e^{-x_1 x_2} & 20 \end{pmatrix}$$

and

$$\begin{pmatrix} x_1^{(k)} \\ x_2^{(k)} \\ x_3^{(k)} \end{pmatrix} = \begin{pmatrix} x_1^{(k-1)} \\ x_2^{(k-1)} \\ x_3^{(k-1)} \end{pmatrix} + \begin{pmatrix} h_1^{(k-1)} \\ h_2^{(k-1)} \\ h_3^{(k-1)} \end{pmatrix}$$

where

$$\begin{pmatrix} h_1^{(k-1)} \\ h_2^{(k-1)} \\ h_3^{(k-1)} \end{pmatrix} = - \left[J\left(x_1^{(k-1)}, x_2^{(k-1)}, x_3^{(k-1)}\right) \right]^{-1} F\left(x_1^{(k-1)}, x_2^{(k-1)}, x_3^{(k-1)}\right).$$

Thus, at the k^{th} step, the linear system

$$\begin{pmatrix} 3 & x_3^{(k-1)} \sin x_2^{(k-1)} x_3^{(k-1)} & x_2 \sin x_2^{(k-1)} x_3^{(k-1)} \\ 2x_1^{(k-1)} & -162(x_2^{(k-1)} + 0.1) & \cos x_3^{(k-1)} \\ -x_2^{(k-1)} e^{-x_1^{(k-1)} x_2^{(k-1)}} & -x_1^{(k-1)} e^{-x_1^{(k-1)} x_2^{(k-1)}} & 20 \end{pmatrix} \begin{pmatrix} h_1^{(k-1)} \\ h_2^{(k-1)} \\ h_3^{(k-1)} \end{pmatrix}$$

$$= \begin{pmatrix} 3x_1^{(k-1)} - \cos(x_2^{(k-1)} x_3^{(k-1)}) - \frac{1}{2} \\ \left(x_1^{(k-1)}\right)^2 - 81(x_2^{(k-1)} + 0.1)^2 + \sin x_3^{(k-1)} + 1.06 \\ e^{-x_1^{(k-1)} x_2^{(k-1)}} + 20x_3^{(k-1)} + \frac{10\pi - 3}{3} \end{pmatrix}$$

must be solved. The results obtained using the above iterative procedure is as shown below

k	$x_1^{(k)}$	$x_{2}^{(k)}$	$X_3^{(k)}$	$\left\ \mathbf{X}^{(k)} - \mathbf{X}^{(k-1)}\right\ _{\infty}$
0	0.10000000	0.10000000	-0.10000000	
1	0.50003702	0.01946686	-0.52152047	0.422
2	0.50004593	0.00158859	-0.52355711	1.79×10^{-2}
3	0.50000034	0.00001244	-0.52359845	1.58×10^{-3}
4	0.50000000	0.00000000	-0.52359877	1.24×10^{-5}
5	0.50000000	0.00000000	-0.52359877	0

$$p = (0.5, 0, -\frac{\pi}{6}) \approx (0.5, 0, -0.5235987757)$$

Examples

1. The nonlinear system

$$\underline{F}(x,y) = \begin{bmatrix} x^2 - 10x + y^2 + 8 \\ xy^2 + x - 10y + 8 \end{bmatrix} = 0$$

can be transformed into the fixed point problem

$$G(x, y) = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{x^2 + y^2 + 8}{10} \\ \frac{xy^2 + x + 8}{10} \end{bmatrix}$$

- (a) Starting with the initial estimates $x_0 = y_0 = 0$, apply functional iteration to G to approximate the solution to an accuracy of 10^{-5} .
- (b) Does Gauss-Seidel Method accelerate convergence?

Solution

(a)

_	i	Х	У	g1(x,y)	g2(x,y)	Tol
	0	0	0	0.8	0.8	
	1	0.8	0.8	0.928	0.9312	0.8
	2	0.928	0.9312	0.972832	0.97327	0.1312
	3	0.972832	0.97327	0.989366	0.989435	0.044832
	4	0.989366	0.989435	0.995783	0.995794	0.016534
	5	0.995783	0.995794	0.998319	0.998321	0.006417
	6	0.998319	0.998321	0.999328	0.999329	0.002536
	7	0.999328	0.999329	0.999732	0.999732	0.00101
	8	0.999732	0.999732	0.999893	0.999893	0.000403
	9	0.999893	0.999893	0.999957	0.999957	0.000161
	10	0.999957	0.999957	0.999983	0.999983	6.44E-05
	11	0.999983	0.999983	0.999993	0.999993	2.58E-05
	12	0.999993	0.999993	0.999997	0.999997	1.03E-05
	13	0.999997	0.999997	0.999999	0.999999	4.12E-06
	14	0.999999	0.999999	1	1	1.65E-06

(b)

i	Х	У	g1(x,y)	g2(x,y)	Tol
0	0	0	0.8	0.88	
1	0.8	0.88	0.94144	0.967049	0.88
2	0.94144	0.967049	0.982149	0.990064	0.14144
3	0.982149	0.990064	0.994484	0.99693	0.040709
4	0.994484	0.99693	0.998287	0.999045	0.012335
5	0.998287	0.999045	0.999467	0.999703	0.003803
6	0.999467	0.999703	0.999834	0.999907	0.00118
7	0.999834	0.999907	0.999948	0.999971	0.000367
8	0.999948	0.999971	0.999984	0.999991	0.000114
9	0.999984	0.999991	0.999995	0.999997	3.56E-05
10	0.999995	0.999997	0.999998	0.999999	1.11E-05
11	0.999998	0.999999	1	1	3.46E-06

(c)

From (a) and (b) it is seen that Gauss-Seidel Method accelerate convergence.

2. Convert the nonlinear system

$$3x - \cos(yz) - \frac{1}{2} = 0$$
$$x^{2} - 81\left(y + \frac{1}{10}\right)^{2} + \sin z + 1.06 = 0$$
$$e^{-xy} + 20z + \frac{10\pi - 3}{3} = 0$$

to a fixed point problem and use both functional iteration and the Gauss-Seidel variant of functional iteration to approximate the root to within 10^{-5} in the l_{∞} norm, starting the initial estimate $x_0=y_0=0.1$ and $z_0=-0.1$. [Note the exact root is $\left(\frac{1}{2},0,-\frac{\pi}{6}\right)^T$]

Solution

$$x = \frac{\cos(yz) + \frac{1}{2}}{3}$$
, $y = \sqrt{\frac{x^2 + \sin z + 1.06}{81}} - \frac{1}{10}$, $z = \frac{-e^{-xy} - \frac{10\pi - 3}{3}}{20}$

For k = 1, 2, ..., the functional iteration and the Gauss-Seidel variant of functional iteration are given as

$$x^{(k)} = \frac{\cos(y^{(k-1)}z^{(k-1)}) + \frac{1}{2}}{3}$$

$$y^{(k)} = \sqrt{\frac{(x^{(k-1)})^2 + \sin z^{(k-1)} + 1.06}{81}} - \frac{1}{10} \text{ and}$$

$$z^{(k)} = \frac{-e^{-x^{(k-1)}y^{(k-1)}} - \frac{10\pi - 3}{3}}{20}$$

$$x^{(k)} = \frac{\cos(y^{(k-1)}z^{(k-1)}) + \frac{1}{2}}{3}$$

$$y^{(k)} = \sqrt{\frac{(x^{(k)})^2 + \sin z^{(k-1)} + 1.06}{81}} - \frac{1}{10} \text{ respectively for the above fixed point}$$

$$z^{(k)} = \frac{-e^{-x^{(k)}y^{(k)}} - \frac{10\pi - 3}{3}}{20}$$

problem.

Using the functional iteration we have the following table:

<u>i</u>	Х	У	Z	g1(x,y,z)	g2(x,y,z)	g3(x,y,z)	Tol
0	0.1	0.1	-0.1	0.499983	0.009441	-0.5231013	
1	0.499983	0.009441	-0.523101	0.499996	2.56E-05	-0.5233633	0.399983
2	0.499996	2.56E-05	-0.523363	0.5	1.23E-05	-0.5235981	0.009154
3	0.5	1.23E-05	-0.523598	0.5	3.42E-08	-0.5235985	4.07E-06
4	0.5	3.42E-08	-0.523598	0.5	1.65E-08	-0.5235988	1.2E-05
5	0.5	1.65E-08	-0.523599	0.5	4.57E-11	-0.5235988	6.95E-12
6	0.5	4.57E-11	-0.523599	0.5	2.2E-11	-0.5235988	1.6E-08
7	0.5	2.2E-11	-0.523599	0.5	6.1E-14	-0.5235988	0
8	0.5	6.1E-14	-0.523599	0.5	2.94E-14	-0.5235988	2.14E-11
9	0.5	2.94E-14	-0.523599	0.5	0	-0.5235988	0
10	0.5	0	-0.523599	0.5	0	-0.5235988	2.87E-14

Using the Gauss-Seidel variant of functional iteration we have the following table:

i	Х	У	Z	g1(x,y,z)	g2(x,y,z)	g3(x,y,z)	Tol
0	0.1	0.1	-0.1	0.499983	0.02223	-0.5230461	
1	0.499983	0.02223	-0.523046	0.499977	2.82E-05	-0.5235981	0.399983
2	0.499977	2.82E-05	-0.523598	0.5	3.76E-08	-0.5235988	0.02165
3	0.5	3.76E-08	-0.523599	0.5	5.03E-11	-0.5235988	2.74E-05
4	0.5	5.03E-11	-0.523599	0.5	6.72E-14	-0.5235988	3.66E-08
5	0.5	6.72E-14	-0.523599	0.5	0	-0.5235988	4.9E-11
6	0.5	0	-0.523599	0.5	0	-0.5235988	6.55E-14

3. Starting with the initial guess $x_0 = y_0 = 1.0$, use fixed point (functional iteration to approximate the solution to the system

$$2x^2 + y^2 = 4.32$$
, $x^2 - y^2 = 0$

by performing 5 iterations.

4. Consider the nonlinear system

$$2x + xy - 1 = 0$$

$$2y - xy + 1 = 0$$

which has a unique root $x = (1,-1)^T$. Starting with the initial estimate $x_0 = y_0 = 0$, compare the methods of functional iteration, Gauss-Seidel Newton when approximating the root of this system (perform 5 iterations in each case).

5. Use Newton's Method to approximate the solution of the nonlinear system

$$x^{2} - 2x - y + \frac{1}{2} = 0$$
$$x^{2} + 4y^{2} - 4 = 0$$

starting with the initial estimate $(x_0, y_0) = (2, \frac{1}{4})$ and computing 3 iterations. Solution

Using the Newton's iterative method

$$x^{(k)} = x^{(k-1)} - J^{-1}(x^{(k-1)})F(x^{(k-1)}), \text{ for } k = 1, \dots \text{ with } x^{(0)} = (x_0, y_0) = (2, \frac{1}{4}), \text{ we have}$$

$$x^{(1)} = x^{(0)} - J^{-1}(x^{(0)})F(x^{(0)}) = \begin{pmatrix} 2 \\ 0.25 \end{pmatrix} - \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix}^{-1} \begin{pmatrix} 0.25 \\ 0.25 \end{pmatrix}$$

$$= \begin{pmatrix} 2 \\ 0.25 \end{pmatrix} - \frac{1}{8} \begin{pmatrix} 2 \\ -4 \\ 2 \end{pmatrix} \begin{pmatrix} 0.25 \\ 0.25 \end{pmatrix} = \begin{pmatrix} 2 \\ 0.25 \end{pmatrix} - \frac{1}{8} \begin{pmatrix} 0.75 \\ -0.50 \end{pmatrix} = \begin{pmatrix} 1.90625 \\ 0.3125 \end{pmatrix}$$

$$x^{(2)} = x^{(1)} - J^{-1}(x^{(1)})F(x^{(1)}) = \begin{pmatrix} 1.90625 \\ 0.3125 \end{pmatrix} - \begin{pmatrix} 1.8125 \\ 3.8125 \end{pmatrix} - \begin{pmatrix} 1 \\ 3.8125 \end{pmatrix} - \begin{pmatrix} 0.00879 \\ -1.70312 \end{pmatrix}$$

$$= \begin{pmatrix} 1.90625 \\ 0.3125 \end{pmatrix} - \frac{1}{8.34375} \begin{pmatrix} 2.5 \\ -3.8125 \end{pmatrix} + \begin{pmatrix} 0.00879 \\ -1.70312 \end{pmatrix} = \begin{pmatrix} 2.10773 \\ 0.68232 \end{pmatrix}$$

6. Use Newton's Method to approximate the two solutions of the nonlinear system $ye^x = 2$, $x^2 + y^2 = 4$

by computing 2 iterations for each of the given initial estimates

(a)
$$(x_0, y_0) = (-0.6, +3.7)$$

(b)
$$(x_0, y_0) = (+1.9, +0.4)$$

7. Use Newton's Method to approximate the solution of the nonlinear system

$$x^{2} + y^{2} + 0.6y - 0.16 = 0$$
$$x^{2} - y^{2} + x - 1.6y = 0$$

by computing 3 iterations with the initial estimate of $(x_0, y_0) = (0.6, 0.25)$.

Using the more accurate initial estimate of $(x_0, y_0) = (0.3, 0.1)$, repeat the process using the modified Newton's method whereby the Jacobian is evaluated and held constant for subsequent iterations. Compare the two results.