

Title of the Invention

NUCLEOTIDE SEQUENCES CODING FOR THE lysR1 GENE

Cross-Reference to Related Application

5 The present application claims priority to German Application No. DE 100 39 044.7 filed August 10, 2000, the entire contents of which are incorporated herein by reference.

BACKGROUND OF THE INVENTION

Field of the Invention

The invention provides nucleotide sequences from *Coryneform* bacteria which code for the lysR1 gene and a process for the fermentative preparation of amino acids, in particular L-lysine by attenuation of the lysR1 gene. The lysR1 gene codes for the LysR1 protein, which is a transcription regulator of the LysR family.

Discussion of the Background

L-amino acids, in particular L-lysine, are used in human medicine and in the pharmaceutical industry, in the

20 foodstuffs industry, and most particularly in animal nutrition.

It is known that amino acids can be produced by fermentation of strains of *Coryneform* bacteria, in particular *Corynebacterium glutamicum*. On account of the great importance of these amino acids constant efforts are being made to improve the production processes.

Improvements in production processes may involve fermentation technology measures, such as for example stirring and provision of oxygen, or the composition of the

nutrient media, such as for example the sugar concentration during the fermentation, or the working up to the product form by for example ion exchange chromatography, or the intrinsic performance properties of the microorganism

5 itself.

Methods involving mutagenesis, selection and mutant selection are used to improve the performance properties of these microorganisms. In this way strains are obtained that are resistant to antimetabolites or are auxotrophic

10 for regulatorily significant metabolites and that produce amino acids.

Methods of recombinant DNA have also been employed for improving strains of *Corynebacterium* strains which produce L-amino acids.

However, there remains a critical need for improved methods of producing L-amino acids and thus for the provision of strains of bacteria producing higher amounts of L-amino acids. On a commercial or industrial scale even small improvements in the yield of L-amino acids, or the efficiency of their production, are economically significant. Prior to the present invention, it was not recognized that attenuation of lysR1 gene encoding the a LysR1 transcriptional regulation protein would improve L-amino acid yields.

25

SUMMARY OF THE INVENTION

One object of the present invention, is providing a new process adjuvant for improving the fermentative production of L-amino acids, particularly L-lysine and L-glutamate.

Such process adjuvants include enhanced bacteria,
30 preferably enhanced *Coryneform* bacteria which express attenuated amounts of LysR1 transcriptional regulator which is encoded by the lysR1 gene.

Thus, another object of the present invention is providing such an bacterium, which expresses an attenuated amount of LysR1 transcriptional regulator or gene products of the lysR1 gene.

5 Another object of the present invention is providing a bacterium, preferably a *Coryneform* bacterium, which expresses a polypeptide that has an attenuated LysR1 transcriptional regulator activity.

Another object of the invention is to provide a nucleotide sequence encoding a polypeptide which has LysR1 transcriptional regulator sequence. One embodiment of such a sequence is the nucleotide sequence of SEQ ID NO: 1.

A further object of the invention is a method of making LysR3 transcriptional regulator or an isolated polypeptide having a LysR1 transcriptional regulator activity, as well as use of such isolated polypeptides in the production of amino acids. One embodiment of such a polypeptide is the polypeptide having the amino acid sequence of SEQ ID NO: 2.

Other objects of the invention include methods of detecting nucleic acid sequences homologous to SEQ ID NO: 1, particularly nucleic acid sequences encoding polypeptides that have LysR1 transcriptional regulator activity, and methods of making nucleic acids encoding such polypeptides.

The above objects highlight certain aspects of the invention. Additional objects, aspects and embodiments of the invention are found in the following detailed description of the invention.

BRIEF DESCRIPTION OF THE DRAWING

Figure 1: Map of the plasmid pCR2.1lysR1int.

DETAILED DESCRIPTION OF THE INVENTION

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art of molecular biology. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described herein. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In addition, the materials, methods, and examples are illustrative only and are not intended to be limiting.

Reference is made to standard textbooks of molecular biology that contain definitions and methods and means for carrying out basic techniques, encompassed by the present invention. See, for example, Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York (1982) and Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York (1989) and the various references cited therein.

As used herein, L-amino acids or amino acids are understood to mean and amino acid or its salt. Preferably, the amino acids are chosen from the group consisting of L-asparagine, L-threonine, L-serine, L-glutamate, L-glycine, L-alanine, L-cysteine, L-valine, L-methionine, L-isoleucine, L-leucine, L-tyrosine, L-phenylalanine, L-histidine, L-lysine, L-tryptophan and L-arginine. L-Lysine is particularly preferred.

As used herein L-lysine or lysine include not only the bases but also the salts, such as e.g. lysine monohydrochloride or lysine sulfate.

The invention provides an isolated polynucleotide of *Coryneform* bacteria containing a polynucleotide sequence 5 coding for the *lysR1* gene, selected from the group comprising

- a) polynucleotide that is at least 70% identical to a polynucleotide coding for a polypeptide that contains the amino acid sequence of SEQ ID No. 2,
- b) polynucleotide coding for a polypeptide that contains an amino acid sequence that is at least 70% identical to the amino acid sequence of SEQ ID No. 2,
- c) polynucleotide that is complementary to the polynucleotides of a) or b), and
- d) polynucleotide containing at least 15 successive nucleotides of the polynucleotide sequence of a), b) or c),
the polypeptide preferably having the activity of the transcription regulator *lysR1*.

20 The invention also provides the aforementioned polynucleotide, which is preferably a replicable DNA containing:

- (i) the nucleotide sequence shown in SEQ ID No.1, or
- (ii) at least one sequence that corresponds to the sequence (i) within the region of degeneration of the genetic code, or
- (iii) at least one sequence that hybridises with the sequences that are complementary to the sequences (i) or (ii), and optionally

(iv) functionally neutral sense mutations in (i).

The invention furthermore provides:

a replicable DNA containing the nucleotide sequence as illustrated in SEQ ID No.1;

5 a polynucleotide coding for a polypeptide that contains the amino acid sequence as is illustrated in SEQ ID No. 2;

a vector containing the polynucleotide d) according to the invention, in particular pCR2.1lysRlint inserted into *E. Coli* DSM 13616 and filed at DSMZ, Brunswick, (Germany);

and *Coryneform* bacteria that in the lysR1 gene contain an insertion or deletion, in particular by using the vector pCR2.1lysRlint.

The invention thus provides polynucleotides consisting substantially of a polynucleotide sequence, that are obtainable by screening by hybridising a corresponding gene library that contains the complete gene with the polynucleotide sequence corresponding to SEQ ID No.1, with a probe that contains the sequence of the aforementioned polynucleotide according to SEQ ID No. 1 or a fragment thereof, and isolating the aforementioned DNA sequence.

Polynucleotide sequences according to the invention are suitable as hybridisation probes for RNA, cDNA and DNA, in order to isolate nucleic acids, polynucleotides or genes in their full length that code for lysR1 protein, or to isolate such nucleic acids or polynucleotides or genes that have a high degree of similarity to the sequence of the lysR1 gene.

Polynucleotide sequences according to the invention are further suitable as primers with the polymerase chain

reaction (PCR), DNA of genes can be produced that code for lysR1 protein.

Such oligonucleotides serving as probes or primers contain at least 30, preferably at least 20, and most particularly preferably at least 15 successive nucleotides. Also suitable are oligonucleotides having a length of at least 40 or 50 nucleotides.

"Isolated" denotes separated from its natural environment.

"Polynucleotide" refers in general to polyribonucleotides and polydeoxyribonucleotides, which may either be unmodified RNA or DNA or modified RNA or DNA.

The term "polypeptides" denotes peptides or proteins that contain two or more amino acids bound via peptide bonds.

The polypeptides according to the invention include a polypeptide according to SEQ ID No. 2, in particular those peptides having the biological activity of lysR1 protein, and also those polypeptides that are at least 70%, preferably at least 80% and particularly preferably at least 90% to 95% identical to the polypeptide according to SEQ ID No. 2 and have the aforementioned activity.

The present invention furthermore relates to a process for the enzymatic production of amino acids, in particular L-lysine, using *Coryneform* bacteria that in particular already produce amino acids and in which the nucleotide sequences coding for the lysR1 gene are attenuated, in particular are switched off or are expressed at a low level.

The term "attenuation" used in this context denotes the reduction or switching off of the intracellular activity of one or more enzymes (proteins) in a microorganism that are coded by the corresponding DNA, by for example using a weak promoter or using a gene or allele that codes for a

corresponding gene having a low activity or that inactivates the corresponding gene or enzyme (protein), and optionally combining these measures.

The microorganisms that are the subject of the present invention may produce amino acids, in particular L-lysine, from glucose, sucrose, lactose, fructose, maltose, molasses, starch, cellulose or from glycerol and ethanol. These microorganisms may be representatives of *Coryneform* bacteria, in particular of the genus *Corynebacterium*. In the genus *Corynebacterium* the species *Corynebacterium glutamicum* should in particular be mentioned, which is known to those skilled in the art for its ability to produce L-amino acids.

Suitable strains of the genus *Corynebacterium*, in particular of the species *Corynebacterium glutamicum* (*C. glutamicum*), are in particular the known wild type strains

Corynebacterium glutamicum ATCC13032
Corynebacterium acetoglutamicum ATCC15806
Corynebacterium acetoacidophilum ATCC13870
Corynebacterium melassecola ATCC17965
Corynebacterium thermoaminogenes FERM BP-1539
Brevibacterium flavum ATCC14067
Brevibacterium lactofermentum ATCC13869 and
Brevibacterium divaricatum ATCC14020

or mutants or strains formed therefrom that produce L-amino acids, such as for example the strains producing L-lysine.

Corynebacterium glutamicum FERM-P 1709
Brevibacterium flavum FERM-P 1708
Brevibacterium lactofermentum FERM-P 1712
Corynebacterium glutamicum FERM-P 6463
Corynebacterium glutamicum FERM-P 6464
Corynebacterium glutamicum DM58-1
Corynebacterium glutamicum DG52-5

Corynebacterium glutamicum DSM 5714 and
Corynebacterium glutamicum DSM 12866

Preferably, a bacterial strain with attenuated expression
5 of a lysR1 gene that encodes a polypeptide with LysR1
transcriptional regulation activity will improve amino acid
yield at least 1%.

The inventors have successfully isolated the new lysR1 gene
from *C. glutamicum* coding for lysR1 protein, which is a
transcription regulator of the lysR family.

In order to isolate the lysR1 gene or also other genes from
C. glutamicum, a gene library of this microorganism is
first of all introduced into *Escherichia coli* (*E. coli*).
The introduction of gene libraries is described in
generally known textbooks and manuals. As an example there
may be mentioned the textbook by Winnacker: Gene and Klone,
Eine Einführung in die Gentechnologie (Verlag Chemie,
Weinheim, Germany, 1990), or the manual by Sambrook et al.:
Molecular Cloning, A Laboratory Manual (Cold Spring Harbor
Laboratory Press, 1989). A very well-known gene library is
that of the *E. coli* K-12 strain W3110, which was introduced
by Kohara et al. (Cell 50, 495-508 (1987)) into λ-vectors.
Bathe et al. (Molecular and General Genetics, 252:255-265,
1996) describe a gene library of *C. glutamicum* ATCC13032,
25 which was introduced by means of the cosmid vector SuperCos
I (Wahl et al., 1987, Proceedings of the National Academy
of Sciences USA, 84:2160-2164) in the *E. coli* K-12 strain
NM554 (Raleigh et al., 1988, Nucleic Acids Research
16:1563-1575). Börmann et al. (Molecular Microbiology
30 6(3), 317-326 (1992)) again describe a gene library of *C.*
glutamicum ATCC13032 using the cosmid pHG79 (Hohn and
Collins, 1980, Gene 11, 291-298).

In order to produce a gene library of *C. glutamicum* in *E. coli* plasmids such as pBR322 (Bolivar, 1979, Life Sciences, 25, 807-818) or pUC9 (Vieira et al., 1982, Gene, 19:259-268) may also be employed. Suitable hosts are in particular those *E. coli* strains that are restriction and recombinant defective, for example the strain DH5 α , (Jeffrey H. Miller: "A Short Course in Bacterial Genetics, A Laboratory Manual and Handbook for *Escherichia coli* and Related Bacteria", Cold Spring Harbor Laboratory Press, 10 1992)

The long DNA fragments cloned with the help of cosmids or other λ -vectors may then in turn be subcloned into conventional vectors suitable for DNA sequencing.

Methods of DNA sequencing are described in, *inter alia*, Sanger et al. (Proceedings of the National Academy of Sciences of the United States of America USA, 74:5463-5467, 1977).

The DNA sequences obtained may then be investigated with known algorithms or sequence analysis programs, such as for example that of Staden (Nucleic Acids Research 14, 217-232(1986)), that of Marck (Nucleic Acids Research 16, 1829-1836 (1988)) or the GCG program of Butler (Methods of Biochemical Analysis 39, 74-97 (1998)).

The new DNA sequence of *C. glutamicum* coding for the lysR1 gene was obtained in this way, and as SEQ ID No. 1 is part of the present invention. The amino acid sequence of the corresponding protein was also derived from the existing DNA sequence using the aforescribed methods. The resulting amino acid sequence of the lysR1 gene product is 30 shown in SEQ ID No. 2.

Coding DNA sequences that are obtained from SEQ ID No. 1 as a result of the degenerability of the genetic code are also covered by the invention. Similarly, DNA sequences that

PCT/EP1999/001520

hybridise with SEQ ID No. 1 or parts of SEQ ID No. 1 are also covered by the invention. Furthermore, in this specialist field conservative amino acid replacements, such as for example the replacement of glycine by alanine or of 5 aspartic acid by glutamic acid in proteins, are known as sense mutations, which do not lead to any fundamental change in the activity of the protein, i.e. are functionally neutral. Furthermore, it is known that changes at the N-terminus and/or C-terminus of a protein do 10 not significantly impair or may even stabilise its function. Those skilled in the art can find details of this in, *inter alia*, Ben-Bassat et al. (Journal of Bacteriology 169:751-757 (1987)), in O'Regan et al. (Gene 77:237-251 (1989)), in Sahin-Toth et al. (Protein Sciences 3:240-247 (1994)), in Hochuli et al. (Bio/Technology 6:1321-1325 (1988)) and in known textbooks of genetics and molecular biology. Amino acid sequences that are obtained in a corresponding manner from SEQ ID No. 2 are likewise covered by the invention.

Finally, DNA sequences that are produced by the polymerase chain reaction (PCR) using primers resulting from SEQ ID No. 1, are also covered by the invention. Such oligonucleotides typically have a length of at least 15 nucleotides.

25 The person skilled in the art can find details of the identification of DNA sequences by means of hybridisation in, *inter alia*, the textbook "The DIG System User's Guide for Filter Hybridization" published by Boehringer Mannheim GmbH (Mannheim, Germany, 1993) and in Liebl et al. 30 (International Journal of Systematic Bacteriology 41: 255-260 (1991)). The person skilled in the art can obtain details of the amplification of DNA sequences by means of the polymerase chain reaction (PCR) in, *inter alia*, the handbook by Gait: Oligonucleotide Synthesis: A Practical 35 Approach (IRL Press, Oxford, UK, 1984) and the Newton and

Graham: PCR (Spektrum Akademischer Verlag, Heidelberg, Germany, 1994).

In the course of work carried out on the present invention it was found that *Coryneform* bacteria after attenuation of 5 the lysR1 gene produce amino acids, in particular L-lysine, in an improved manner.

In order to achieve an attenuation, either the expression of the lysR1 gene or the catalytic properties of the enzyme protein may be reduced or switched off. Optionally both 10 measures may be combined.

The reduction of the gene expression may be achieved by suitable culture conditions or by genetic alteration (mutation) of the signal structures of the gene expression. Signal structures of the gene expression are for example repressor genes, activator genes, operators, promoters, attenuators, ribosome binding sites, the start codon and terminators. The person skilled in the art can obtain further information on this in for example patent application WO 96/15246, in Boyd and Murphy (Journal of Bacteriology 170: 5949 (1988)), in Voskuil and Chambliss (Nucleic Acids Research 26: 3548 (1998)), in Jensen and Hammer (Biotechnology and Bioengineering 58: 191 (1998)), 20 in Pátek et al. (Microbiology 142: 1297 (1996)), Vasicova et al. (Journal of Bacteriology 181: 6188 (1999)) and in known textbooks of genetics and molecular biology, such as 25 for example the textbook by Knippers ("Molekulare Genetik", 6th Edition, Georg Thieme Verlag, Stuttgart, Germany, 1995) or the textbook by Winnacker ("Gene and Klone", VCH Verlagsgesellschaft, Weinheim, Germany, 1990).

30 Mutations that lead to an alteration or reduction of the catalytic properties of enzyme proteins are known in the prior art; as examples there may be mentioned the work of Qiu and Goodman (Journal of Biological Chemistry 272: 8611-8617 (1997)), Sugimoto et al. (Bioscience Biotechnology and

Biochemistry 61: 1760-1762 (1997)) and Möckel ("Die Threonindehydrolase aus *Corynebacterium glutamicum*: Aufhebung der allosterischen Regulation und Struktur des Enzyms", and reports published by the Jülich Research Centre, Jül-2906, ISSN09442952, Jülich, Germany, 1994). Overviews may be obtained from known textbooks on genetics and molecular biology, for example that of Hagemann ("Allgemeine Genetik", Gustav Fischer Verlag, Stuttgart, 1986).

10 Mutations in the present context include transitions, transversions, insertions and deletions. Depending on the effect of the amino acid replacement on the enzyme activity, one talks either of missense mutations or nonsense mutations. Insertions or deletions of at least one base pair (bp) in a gene lead to frame shift mutations, following which false amino acids are incorporated or the translation terminates prematurely. Deletions of several codons typically lead to a complete cessation of enzyme activity. Details of the production of such mutations are part of the prior art and may be obtained from known textbooks on genetics and molecular biology, such as for example the textbook by Knippers ("Molekulare Genetik", 6th Edition, Georg Thieme Verlag, Stuttgart, Germany, 1995), the textbook by Winnacker ("Gene and Klone", VCH Verlagsgesellschaft, Weinheim, Germany, 1990) or the textbook by Hagemann ("Allgemeine Genetik", Gustav Fischer Verlag, Stuttgart, 1986).

25 A conventional method of mutating genes of *C. glutamicum* is the method of gene disruption and gene replacement described by Schwarzer and Pühler (Bio/Technology 9, 84-87 (1991)).

30 In the method of gene disruption a central part of the coding region of the gene in question is cloned into a plasmid vector that can replicate in a host (typically *E. coli*), but not in *C. glutamicum*. Suitable vectors are for

example pSUP301 (Simon et al., Bio/Technology 1, 784-791 (1983)), pK18mob or pK19mob (Schäfer et al., Gene 145, 69-73 (1994)), pK18mobsacB or pK19mobsacB (Jäger et al., Journal of Bacteriology 174: 5462-65 (1992)), pGEM-T (Promega Corporation, Madison, WI, USA), pCR2.1-TOPO (Shuman (1994), Journal of Biological Chemistry 269:32678-84; US-Patent 5,487,993), pCR®Blunt (Invitrogen, Groningen, Netherlands; Bernard et al., Journal of Molecular Biology, 234: 534-541 (1993)) or pEM1 (Schrumpf et al, 1991, Journal of Bacteriology 173:4510-4516). The plasmid vector that contains the central part of the coding region of the gene is then converted by conjugation or transformation into the desired strain of *C. glutamicum*. The method of conjugation is described for example by Schäfer et al. (Applied and Environmental Microbiology 60, 756-759 (1994)). Methods of transformation are described for example in Thierbach et al. (Applied Microbiology and Biotechnology 29, 356-362 (1988)), Dunican and Shivnan (Bio/Technology 7, 1067-1070 (1989)) and Tauch et al. (FEMS Microbiological Letters 123, 343-347 (1994)). After homologous recombination by means of a cross-over event, the coding region of the relevant gene is disrupted by the vector sequence and two incomplete alleles are obtained, missing respectively the 3'- and 5'-end. This method has been used for example by Fitzpatrick et al. (Applied Microbiology and Biotechnology 42, 575-580 (1994)) to switch off the recA gene of *C. glutamicum*.

Fig. 1 shows for example the plasmid vector pCR2.1 lysR1int, by means of which the lysR1 gene can be disrupted or switched off.

In the gene replacement method a mutation, such as for example a deletion, insertion or base replacement, is produced *in vitro* in the gene that is of interest. The resultant allele is in turn cloned into a non-replicative vector for *C. glutamicum*, and this is then converted by

transformation or conjugation into the desired host of *C. glutamicum*. After homologous recombination by means of a first cross-over event effecting integration, and an appropriate second cross-over event effecting an excision,
5 the incorporation of the mutation or allele in the target gene or in the target sequence is achieved. This method has been used for example by Peters-Wendisch et al.
(Microbiology 144, 915 - 927 (1998)) to switch off the pyc gene of *C. glutamicum* by a deletion.

10 A deletion, insertion or a base replacement can be incorporated into the lysR1 gene in this way.

In addition, it may be advantageous for the production of L-amino acids, in particular L-lysine, in addition to the attenuation of the lysR1 gene, also to enhance, in particular overexpress, one or more enzymes of the respective biosynthesis pathway, glycolysis, anapleurosis, pentose phosphate cycle, or amino acid export.

20 Thus for example, for the production of L-lysine one or more of the genes selected from the following group may simultaneously be enhanced, in particular overexpressed

- the gene dapA coding for dihydrodipicolinate synthase (EP-B 0 197 335),
- the gene eno coding for enolase (DE: 19947791.4),
- the gene zwf coding for the zwf gene product (JP-A-09224661),
25
- the gene pyc coding for pyruvate carboxylase (Peters-Wendisch et al. (Microbiology 144, 915 - 927 (1998)))
- the gene lysE coding for lysine export (DE-A-195 48 222).

Also, it may be advantageous for the production of amino acids, especially L-lysine, besides attenuating the lysR1 gene, at the same time to attenuate one or more of the genes selected from the group

5 • the gene pck coding for phosphoenol pyruvate carboxykinase (DE 199 50 409.1, DSM 13047),
 • the gene pgi coding for glucose-6-phosphate isomerase (US 09/396,478, DSM 12969),
 • the gene poxB coding for pyruvate oxidase
10 (DE:1995 1975.7, DSM 13114)

Moreover, it may be advantageous for the production of amino acids, in particular L-lysine, in addition to attenuating the lysR1 gene also to switch off undesirable secondary reactions (Nakayama: "Breeding of Amino Acid Producing Microorganisms", in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).

The microorganisms produced according to the invention are likewise covered by the invention and for the purposes of producing L-amino acids, in particular L-lysine, may be cultivated continuously or batchwise in a batch process, or in a feed batch process or repeated batch process. A summary of known cultivation methods is described in the textbook by Chmiel (Bioprozesstechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) or in the textbook by Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Brunswick/Wiesbaden, 1994)).

The culture medium to be used must satisfy in an appropriate manner the requirements of the respective strains. Descriptions of culture media for various microorganisms are given in the handbook "Manual of Methods for General Bacteriology" of the American Society for

Bacteriology (Washington D.C., USA, 1981). As carbon source there may be used sugars and carbohydrates such as for example glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose, oils and fats such as for example soya oil, sunflower oil, groundnut oil and coconut oil, fatty acids such as for example palmitic acid, stearic acid and linoleic acid, alcohols such as for example glycerol and ethanol, and organic acids such as for example acetic acid. These substances may be used individually or 10 as a mixture.

As nitrogen source there may be used organic nitrogen-containing compounds such as peptones, yeast extract, meat extract, malt extract, corn steep liquor, soya bean flour and urea, or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate. The nitrogen sources may be used individually or as a mixture.

As phosphorus source there may be used phosphoric acid, potassium dihydrogen phosphate or dipotassium hydrogen phosphate, or the corresponding sodium-containing salts. The culture medium must furthermore contain salts of metals, such as for example magnesium sulfate or iron sulfate, that are necessary for growth. Finally, essential growth promoters such as amino acids and vitamins may in 25 addition be added to the aforementioned substances.

Suitable precursors may moreover be added to the culture medium. The aforementioned starting substances may be added to the culture in the form of a single batch, or metered in in an appropriate manner during the cultivation 30 procedure.

In order to control the pH of the culture basic compounds such as sodium hydroxide, potassium hydroxide, ammonia or ammonia water, or acidic compounds such as phosphoric acid or sulfuric acid may be added in an appropriate manner. In 35 order to control foam formation anti-foaming agents such as

for example fatty acid polyglycol esters may be used. In order to maintain the stability of plasmids selectively acting substances, such as for example antibiotics, may be added to the medium. In order to maintain aerobic 5 conditions, oxygen or oxygen-containing gas mixtures, such as for example air, are pumped into the culture. The temperature of the culture is normally 20°C to 45°C and preferably 25°C to 40°C. The cultivation is continued until a maximum amount of the desired product has been 10 formed. This target is normally reached within 10 hours to 160 hours.

Methods for determining L-amino acids are known from the prior art. The analysis may for example be carried out as described by Spackman et al. (*Analytical Chemistry*, 30, (1958), 1190) by anion exchange chromatography followed by ninhydrin derivatisation, or it may be carried out by reversed phase HPLC, as described by Lindroth et al. (*Analytical Chemistry* (1979) 51: 1167-1174).

The following microorganism has been filed according to the Budapest Convention at the German Collection for Microorganisms and Cell Cultures (DSMZ, Brunswick, Germany).

- *Escherichia coli* strain *E. coli* TOP10F/pCR2.1lysR1int as DSM 13616.

25 The process according to the invention serves for the enzymatic production of amino acids, in particular L-lysine.

The present invention is illustrated in more detail hereinafter with the aid of examples of implementation.

30 The isolation of plasmid DNA from *Escherichia coli* as well as all techniques for the restriction, Klenow and alkaline phosphatase treatment were carried out according to Sambrook et al. (*Molecular Cloning. A Laboratory Manual*,

1989, Cold Spring Harbour Laboratory Press, Cold Spring Harbor, NY, USA). Methods for the transformation of *Escherichia coli* are likewise described in this handbook.

5 The compositions of conventional nutrient media such as LB medium or TY medium may also be obtained from the handbook by Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York (1989).

Example 1

10 Production of a genomic cosmid gene library from *C. glutamicum* ATCC 13032

Chromosomal DNA from *C. glutamicum* ATCC 13032 was isolated as described by Tauch et al., (1995, Plasmid 33:168-179) and partially cleaved with the restriction enzyme Sau3AI (Amersham Pharmacia, Freiburg, Germany, Product Description Sau3AI, Code no. 27-0913-02). The DNA fragments were dephosphorylated with shrimp alkaline phosphatase (Roche Molecular Biochemicals, Mannheim, Germany, Product Description SAP, Code no. 1758250). The DNA of the cosmid vector SuperCos1 (Wahl et al. (1987), Proceedings of the National Academy of Sciences, USA 84:2160-2164), obtained from Stratagene (La Jolla, USA, Product Description SuperCos1 Cosmid Vector Kit, Code no. 251301) was cleaved with the restriction enzyme XbaI (Amersham Pharmacia, Freiburg, Germany, Product Description XbaI, Code no. 27-0948-02) and likewise dephosphorylated with shrimp alkaline phosphatase.

The cosmid DNA was then cleaved with the restriction enzyme BamHI (Amersham Pharmacia, Freiburg, Germany, Product Description BamHI, Code no. 27-0868-04). The cosmid DNA treated in this way was mixed with the treated ATCC13032-DNA, and the batch was then treated with T4-DNA ligase (Amersham Pharmacia, Freiburg, Germany, Product Description T4-DNA ligase, Code no.27-0870-04). The ligation mixture

was then packed into phages using Gigapack II XL Packing Extracts (Stratagene, La Jolla, USA, Product Description Gigapack II XL Packing Extract, Code no. 200217).

In order to infect the *E. coli* strain NM554 (Raleigh et al. 5 1988, Nucleic Acid Res. 16:1563-1575) the cells were taken up in 10 mM MgSO₄ and mixed with an aliquot of the phage suspension. Infection and titration of the cosmid library were carried out as described by Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring 10 Harbor), the cells being plated out on LB agar (Lennox, 1955, Virology, 1:190) + 100 µg/ml ampicillin. After incubation overnight at 37°C recombinant individual clones were selected.

Example 2

Isolation and sequencing of the gene lysR1

The cosmid DNA of an individual colony was isolated with the Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) according to the manufacturer's instructions and then partially cleaved with the 20 restriction enzyme Sau3AI (Amersham Pharmacia, Freiburg, Germany, Product Description Sau3AI, Product No. 27-0913-02). The DNA fragments were dephosphorylated with shrimp alkaline phosphatase (Roche Molecular Biochemicals, Mannheim, Germany, Product Description SAP, Product No. 25 1758250). After gel electrophoresis separation the cosmid fragments were isolated in the size range from 1500 to 2000 bp using the QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany).

The DNA of the sequencing vector pZero-1 obtained from 30 Invitrogen (Groningen, Netherlands, Product Description Zero Background Cloning Kit, Product No. K2500-01) was cleaved with the restriction enzyme BamHI (Amersham Pharmacia, Freiburg, Germany, Product Description BamHI,

Product No. 27-0868-04). The ligation of the cosmid
fragments into the sequencing vector pZero-1 was carried
out as described by Sambrook et al. (1989, Molecular
Cloning: A Laboratory Manual, Cold Spring Harbor), the DNA
5 mixture having been incubated overnight with T4 ligase
(Pharmacia Biotech, Freiburg, Germany). This ligation
mixture was then electroporated into the *E. coli* strain
DH5 MCR (Grant, 1990, Proceedings of the National Academy
of Sciences, U.S.A., 87:4645-4649) (Tauch et al. 1994, FEMS
10 Microbiol. Letters, 123:343-7) and plated out onto LB-agar
(Lennox, 1955, Virology, 1:190) with 50 µg/l zeocin.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
943

non-redundant database of the National Center for Biotechnology Information (NCBI, Bethesda, MD, USA).

The nucleotide sequence thus obtained is represented in SEQ ID No. 1. Analysis of the nucleotide sequence revealed an 5 open reading frame of 912 base pairs, which was termed the lysR1 gene. The lysR1 gene codes for a polypeptide of 304 amino acids.

Example 3

Production of an integration vector for the integration 10 mutagenesis of the lysR1 gene

Chromosomal DNA was isolated from the strain ATCC 13032 by the method of Eikmanns et al. (Microbiology 140: 1817 - 1828 (1994)). On account of the sequence of the lysR1 gene known from Example 2 for *C. glutamicum*, the following oligonucleotides were selected for the polymerase chain reaction:

lysR1intA:

5`TTC CAA TCC CTG CTG TTC AC 3` (SEQ ID NO;4)

lysR1intB:

20 5`GTG ACC TTT GAA ACC AGC GA 3` (SEQ ID NO:5)

The represented primers were synthesised by MWG Biotech (Ebersberg, Germany) and the PCR reaction was carried out according to the standard PCR method of Innis et al. (PCR protocols. A guide to methods and applications, 1990, Academic Press) using Pwo polymerase from Boehringer. By 25 means of the polymerase chain reaction a 383 bp long internal fragment of the lysR1 gene was isolated, which is shown in SEQ ID No. 3.

The amplified DNA fragment was ligated into the vector pCR2.1-TOPO (Mead at al. (1991) Bio/Technology 9:657-663) using the TOPO TA Cloning Kit from Invitrogen Corporation (Carlsbad, CA, USA; Cat. No. K4500-01).

The *E. coli* strain TOP10F was then transformed with the ligation batch (Hanahan, In: DNA cloning. A practical approach. Vol. I. IRL-Press, Oxford, Washington DC, USA, 1985). Plasmid-carrying cells were selected by plating out 5 the transformation batch onto LB agar (Sambrook et al., Molecular cloning: a laboratory manual. 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989) that had been supplemented with 25 mg/l of kanamycin. Plasmid DNA was isolated from a transformant using the 10 QIAprep Spin Miniprep Kit from Qiagen and was checked by restriction with the restriction enzyme EcoRI followed by agarose gel electrophoresis (0.8%). The plasmid was named pCR2.1lysR1int.

Example 4

15 Integration mutagenesis of the lysR1 gene in the lysine producer DSM 5715

20 The vector pCR2.1lysR1int mentioned in Example 3 was electroporated into *Corynebacterium glutamicum* DSM 5715 according to the electroporation method of Tauch et. al. (FEMS Microbiological Letters, 123:343-347 (1994)). The strain DSM 5715 is an AEC-resistant lysine producer. The vector pCR2.1lysR1int cannot replicate independently in DSM 5715 and thus only remains in the cell if it has integrated 25 into the chromosome of DSM 5715. The selection of clones with pCR2.1lysR1int integrated into the chromosome was made by plating out the electroporation batch onto LB agar (Sambrook et al., Molecular cloning: a laboratory manual. 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.) that had been supplemented with 15 mg/l of 30 kanamycin.

In order to demonstrate the integration the lysR1int fragment was labelled using the Dig Hybridisation Kit from Boehringer according to the method described in "The DIG System User's Guide for Filter Hybridization" published by

Boehringer Mannheim GmbH (Mannheim, Germany, 1993). Chromosomal DNA of a potential integrant was isolated according to the method of Eikmanns et al. (Microbiology 140: 1817 - 1828 (1994)) and was in each case cleaved with 5 the restriction enzymes SalI, SacI and HindIII. The resultant fragments were separated by means of agarose gel electrophoresis and hybridised at 68°C using the Dig Hybridisation Kit from Boehringer. The plasmid pCR2.1lysR1int mentioned in Example 3 had inserted itself 10 into the chromosome of DSM 5715 within the chromosomal lysR1 gene. The strain was designated DSM 5715::pCR2.1lysR1int.

Example 5

Production of lysine

The *C. glutamicum* strain DSM 5715::pCR2.1lysR1int obtained in Example 4 was cultivated in a nutrient medium suitable for the production of lysine and the lysine content in the culture supernatant was determined.

For this purpose the strain was first of all incubated for 20 24 hours at 33°C on an agar plate with the corresponding antibiotic (brain-heart agar with kanamycin (25 mg/l)).

Starting from this agar plate culture a preculture was inoculated (10 ml of medium in a 100 ml Erlenmeyer flask). The full medium CgIII was used as medium for the 25 preculture.

Medium Cg III

NaCl 2.5 g/l

Bacto-Peptone 10 g/l

Bacto-Yeast Extract 10 g/l

Glucose (autoclaved separately) 2% (w/v)

The pH value was adjusted to pH
7.4

Kanamycin (25 mg/l) was added to this preculture. The preculture was then incubated for 24 hours at 33°C at 240 rpm on a shaker table. From this preculture a main culture was inoculated so that the initial OD (660 nm) of the main culture was 0.1 OD. The medium MM was used for the main culture.

Medium MM

CSL (Corn Steep Liquor)	5 g/l
MOPS	20 g/l
Glucose (autoclaved separately)	50g/l
Salts:	
(NH ₄) ₂ SO ₄)	25 g/l
KH ₂ PO ₄	0.1 g/l
MgSO ₄ · 7H ₂ O	1.0 g/l
CaCl ₂ · 2H ₂ O	10 mg/l
FeSO ₄ · 7H ₂ O	10 mg/l
MnSO ₄ · H ₂ O	5.0 mg/l
Biotin (sterile filtered)	0.3 mg/l
Thiamine.HCl (sterile filtered)	0.2 mg/l
Leucine (sterile filtered)	0.1 g/l
CaCO ₃	25 g/l

CSL, MOPS and the salt solution are adjusted with ammonia water to pH 7 and autoclaved. The sterile substrate and

vitamin solutions as well as the dry autoclaved CaCO₃ are then added.

Cultivation is carried out in a 10 ml volume in a 100 ml Erlenmeyer flask equipped with baffles. Kanamycin was added 5 (25 mg/l). The cultivation was carried out at 33°C and 80% atmospheric humidity.

After 72 hours the OD was determined at a measurement wavelength of 660 nm with a Biomek 1000 (Beckmann Instruments GmbH, Munich). The amount of lysine formed was 10 determined by ion exchange chromatography and post-column derivatisation with ninhydrin detection using an amino acid analyser from Eppendorf-BioTronik (Hamburg, Germany).

The results of the experiment are shown in Table 1.

Table 1

Strain	OD(660)	Lysine-HCl g/l
DSM 5715	7.5	13.01
DSM 5715:: pCR2.1lysR1int	7.7	15.64

The acronyms and abbreviations used have the following meanings.

KmR: Kanamycin resistance gene

EcoRI: Cleavage site of the restriction enzyme
EcoRI

lysR1int: Internal fragment of the lysR1 gene

ColE1 ori: Replication origin of the plasmid ColE1

Obviously, numerous modifications and variations on the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.

PCT/EP2003/000700