Lag Penalized Weighted Correlation (LPWC)

Thevaa Chandereng, Anthony Gitter

Biological Time Series

Figure 1: Simple time series plot with 8 time points and 3 replicates

1

Existing Time Series Clustering Methods

Partition-based

- Short Time-series Expression Miner (STEM)
- Graphical Query Language (GQL)
- Cluster Analysis of Gene Expression Dynamics (CAGED)

Hierarchical-based

- Dynamic Time Warping (DTW)
- Short Time Series Distance (STS)

Toy Example: Algorithmic Clustering

s	Clustering Algorithm	Cluster 1	Cluster 2
3	hLPWC/ILPWC	• •	• •
	DTW	•	• • •
	STS	•	•••
	heuc	•	• • •

(b) Cluster assignment of the 4 genes

(a) Hypothetical example with 4 genes

Figure 2: Existing methods do not group early and late genes

Motivation

Irregular time sampling

Figure 3: Irregularly sampled time series data

Motivation

Delayed response (lags)

Figure 4: Gene 1 spikes after gene 2

What is a Lag?

Figure 5: This plot shows two genes that are lagged. The upper plot shows the actual intensity of the genes. The middle plot shows a -1 lag for gene 1 and the lower plot shows a lag of 1 for gene 2.

Method Overview

LPWC is composed of two steps:

- computing optimal lags for each gene
- · computing final correlation matrix for all gene

General Formula

$$\mathit{corr}_{\mathit{LPWC}}(i,j,X_i,X_j) = \exp(\frac{-E(w)}{C}) * \mathit{corr}_w(L^{X_i}Y_i,L^{X_j}Y_j,\exp(\frac{-w}{C}))$$

7

Algorithm

Computing optimal lag

$$score_j = \max_{X_i \in \{-m, ..., m\}} corr_{LPWC}(i, j, X_i, 0) \quad \forall j \neq i$$

$$lag_j = \underset{X_i \in \{-m, \dots, m\}}{\operatorname{arg \, max}} \ \ corr_{LPWC}(i, j, X_i, 0) \quad \forall j \neq i$$

Then, a best lag \hat{X}_i for gene i assigned by

$$\hat{X}_i = \argmax_{k \in \{-m, \dots, m\}} \sum_{j \neq i} I(lag_j = k) * score_j$$

This is repeated to select a best lag for all genes.

Computing final correlation matrix

$$corr_{LPWC}(i, j, \hat{X}_i, \hat{X}_j) = exp(\frac{-E(w)}{C}) * corr_w(L^{\hat{X}_i}Y_i, L^{\hat{X}_j}Y_j, exp(\frac{-w}{C}))$$

8

Simulated Data

Figure 6: Four models simulated using ImpulseDE. Random noise was added to the model parameters to induce variation around a common trend.

Clustering Accuracy

- Adjusted Rand Index (ARI): similarity between two data clusterings and adjusted for chance
- ARI score close to 1 indicates similar clusterings, score close to 0 otherwise

ARI Score for Simulated Data

Figure 7: ARI score for different clustering methods for the simulated data where the real clusters are known.

Conclusion & Future Work

- Algorithm tackles the issue of irregular time samples and delayed responses
- Preference for distance-based or correlation-based clustering is subjective
- R package available on CRAN (LPWC) and preprint on Bioarxiv
- Allow missing data (imputation)
- Support clustering a mixed dataset with different time points
- Improve the optimal lag assignments

Acknowledgements

- Ron Stewart, Karl Broman, James Dowell, Wenzhi Cao, Jen Birstler, and members of Gitter lab
- Funding from the NSF and UW Carbone Cancer Center