Goal: To examine properties of the definite integral.

1. Let f be the function graphed below. Note: The graph of f consists of two straight line segments and two quarter-circles.

(a) Evaluate $\int_0^{13} f(x) dx$.

= Area of quadrilated over
$$[0,2]$$
 + Area of quarter-circle - Area quarter circle - Area Quarter circle - $\frac{1}{4}\pi(3)^2 - \frac{1}{2}.5.3$
= $\frac{1}{4}\pi(3)^2 - \frac{1}{4}\pi(3)^2 - \frac{1}{2}.5.3$

- (b) Evaluate $\int_{9}^{12} f(x)dx$. To solve this problem we need the y-coords. of the pts with x = 9 and x = 12. Assuming that the line possess through the point (8, -3) the equ of line under interval [8, 13] is $y = \frac{3}{5}(x-13)$; so when x = 9, $y = \frac{-12}{5}$ is when x = 12, $y = \frac{-3}{5}$. It follows that the integral equals: $|x|^{-\frac{3}{5}}| + \frac{1}{2}$ $|x|^{-\frac{9}{5}}| = \frac{27}{10}$ $|x|^{-\frac{13}{5}}| + \frac{1}{2}$ $|x|^{-\frac{9}{5}}| = \frac{27}{10}$
 - (c) Evaluate $\int_0^{13} |f(x)| dx$.

This integral equals the sun of the absolute values of the 4 areas in (a).

- 2. Which of the following definite integrals is not zero, and why.
- (a) $\int_{-\pi}^{\pi} \sin^3(x) dx$. The integrand is odd (i.e., $\sin^3(-x) = -\sin(x)$) so the integral equals 0.
- (b) $\int_{-\pi}^{\pi} x^2 \sin(x) dx$. The integrand is odd (i.e., $(-x)^2 \sin(-x) = x^2 \sin(-x) = \sin(x)$ so the integral equals 0.
- (c) $\int_{-\pi}^{\pi} \cos^2(x) dx$. The function $\cos^2(x)$ is ≥ 0 for all points in the interval $[-\pi, \pi]$ and positive for some of these x-values so the integral is non-zero lit is positive.
- (d) $\int_0^\pi \cos(x) dx$. This integral equals 0 since $\int_0^\pi \cos(x) dx = -\int_{\pi/2}^\pi \cos(x) dx$

(e) $\int_{\pi}^{\pi} \cos(x) dx$. This integral equals O since it is over an interval consisting of a single point.

3. Calculate

$$\int_{-3}^{3} (x+5)\sqrt{9-x^2} dx.$$

Hint: Use $(x+5)\sqrt{9-x^2}=x\sqrt{9-x^2}+5\sqrt{9-x^2}$ and THINK GEOMETRICALLY about the graphs of $y=x\sqrt{9-x^2}$ and $y=5\sqrt{9-x^2}$

$$\int_{-3}^{3} 5\sqrt{9-x^{2}} dx = 5 \int_{-3}^{3} \sqrt{9-x^{2}} dx = 5 \cdot \left(\frac{1}{2} \ln(3)^{2}\right) = 45 \pi$$
avec of Semi-circle
of vading 3