

- Interface prediction
- Hot-spot identification
- Application to drug design targeting PPIs
- Pathological mutations affecting PPIs

Protein-protein interface size

Defining macromolecular interfaces based on solvent accessibility

ASA accessible surface area

measures molecule-solvent contacts with the rolling ball algorithm

Lee & Richards, JMB, 1971

Protein-protein interface size

Defining macromolecular interfaces based on solvent accessibility

ASA accessible surface area

measures molecule-solvent contacts with the rolling ball algorithm

Lee & Richards, JMB, 1971

BSA buried surface area

measures molecule-molecule contacts *Chothia & Janin, Nature, 1975*

Interface atoms or residues

are all atoms or residues that contribute to the BSA. On average, each interface atom contributes \approx 10 $\mbox{\normalfont\AA}^2$

Hydrophobic effect

(Common Descriptors Used for Prediction of Interaction Sites			
	Descriptor	Comments		
		Evolutionary Features		
S	equence profile	Extracted from a multiple sequence alignment, a profile reveals patterns of evolutionary conservation.		
(Conservation score	A quantification of the level of conservation of an individual position.		
(Conservation of physicochemical traits	If the position is not conserved, scoring conservation of traits such as charge, hydrophobicity, or size may improve prediction		
		Physicochemical Features		
I	Iydrophobicity	Several different scales are available.		
I	Electrostatic potential	Measured for individual residue or for a patch. Requires 3-D structure.		
	Atom propensities	Serves as a way to sum physicochemical properties across residues in the patch.		
ia (I	Desolvation energy	Used mostly in predictions for rigid-body docking.		
		External Knowledge		
I	Protein-protein interaction	Can be used to: (1) identify sequence or structural elements that are significantly overrepresented in interacting pairs, and (2) to assess coevolution of positions in interacting pairs.		
I	functional annotation of the protein	Enzyme-inhibitor and antigen-antibody have different types of interfaces than other complexes. Adding this information may improve prediction.		

Method name	Input data	Method	Details	Web
ISIS ⁵⁸	sequence	Neural network	Predicted structural features, evolutionary information	http://cubic.bioc.columbia.edu/services/isis/
TreeDet 71	sequence, structure	Scoring function	sequence and structural alignments	http://treedetv2.bioinfo.cnio.es/treedet/index.html
Promate ⁷³	structure	Scoring function	Secondary structure, sequence conservation, residue type	http://bioinfo41.weizmann.ac.il/promate/
PINUP ⁷⁶	structure	Scoring function	side-chain energy score, propensity, sequence	http://sparks.informatics.iupui.edu/PINUP/
InterProSurf ⁵⁹	structure	Scoring function	solvent accessibility, propensities	http://curie.utmb.edu/
PRISM ⁷⁷	structure	Scoring function	geometric complementarity, conservation	http://prism.ccbb.ku.edu.tr/prism/
ConSurf ⁶⁸	structure	Scoring function	conservation	http://consurf.tau.ac.il/
ET ⁶⁶	structure	Scoring function	multiple sequence alignments	http://mammoth.bcm.tmc.edu/traceview/
JET ⁷⁰	structure	Scoring function	structural and functional conservation	http://www.ihes.fr/~carbone/data.htm
WHISCY ⁷⁹	structure	Scoring function	conservation, surface properties	http://www.nmr.chem.uu.nl/Software/whiscy/startpage.h tm
PIER ⁶¹	structure	Scoring function	atomic statistical	http://abagyan.ucsd.edu/PIER/
			propensities	

		•		ace prediction
Method name	Input data	Method	Details	Web
SiteEngines ⁶⁰	structure	Hierarchical scoring function	structural matching, physico-chemical properties	http://bioinfo3d.cs.tau.ac.il/SiteEngine/
PPI-Pred ⁸⁴	structure	SVM	surface shape, electrostatic potential	http://bioinformatics.leeds.ac.uk/ppi-pred
cons-PPISP80,81	structure	Neural network	PSI-Blast sequence profile and solvent accessibility	http://pipe.scs.fsu.edu/ppisp.html
SPPIDER85	structure	Neural Network	solvent accessibility and other features	http://sppider.cchmc.org/
Patch Finder Plus ⁸²	structure	Neural Network	conservation, concavity, area, H-bond, residue frequency	http://pfp.technion.ac.il/
meta-PPISP ⁸⁷	structure	Meta web server	cons- PPISP, Promate and PINUP	http://pipe.scs.fsu.edu/meta-ppisp.html
PI ² PE ⁸⁸	structure	Meta web server	cons-PPISP, WESA, DISPLAR	http://pipe.scs.fsu.edu/
SHARP ²⁹⁰	structure	Energy-based, scoring function	Desolvation, hydrophobicity, ASA, propensity, surface shape	http://www.bioinformatics.sussex.ac.uk/SHARP2/sharp. .html
ODA ⁶²	structure	Energy-based	Desolvation energy	http://www.molsoft.com/oda.html
NIP ¹⁰⁰	structure	Energy-based	Docking simulations	https://life.bsc.es/pid/pydock/

Promate http://bioinfo41.weizmann.ac.il/promate/ Please choose the scores configuration: • use default • let me choose Single amino acids distribution: use odon't use Atoms distribution: • use Odon't use Chemical character: • use Odon't use Amino acid pairs distribution: • use odon't use Evolutionary conserved positions: Non-regular secondary structure length: use odon't use Sequence distances within a circle: • use • don't use Secondary structure: Domains: use odon't use Hydrophobic patch rank: ● use □ don't use Hydrophobic patch size: use odon't use Temperature factor (B-factor): use odon't use Water molecules: • use odon't use Initial probabilities file: use odon't use Please select the output files to be produced: A text file with the surface dots probabilities A pdb file with the AAs colored by their interface probability (full range of colors) A pdb file with the surface atoms colored by their interface probability (full range of colors) A pdb file with the predicted interface patch colored in red

Interface prediction Hot-spot identification Application to drug design targeting PPIs Pathological mutations affecting PPIs

Method name	Input data	Method	Details	Sensitivity	PPV	availability
ISIS ⁵⁸	sequence	Neural network	Predicted structural features, evolutionary information	15%	89%	http://cubic.bioc.columbia.edu/services/isis
FOLDEF ¹²⁶	complex structure	Energy-based	Alanine scanning	45-72%ª	61-73% ^a	http://foldx.crg.es/
ROBETTA ¹²²	complex structure	Energy-based	Alanine scanning	28-69% ^b	60-71%b	http://robetta.org/submit.jsp
K-FADE ¹²⁵ / K-CON/ ROBETTA	complex structure	Machine learning algorithm	Physical- biochemical features	48%	53%	http://kfc.mitchell-lab.org
MAPPIS ¹¹⁹	complex structure	Evolutionary conservation	Multiple alignments, 3D clustering	66%	63%	http://bioinfo3d.cs.tau.ac.il/MAPPIS
HotPoint ¹²¹	complex structure	Empirical model	Accessibility, knowledge-based potentials	59%	70%	http://prism.ccbb.ku.edu.tr/hotpoint
pyDockNIP ¹²⁷	unbound protein structure	Energy-based	Docking simulations	42-43%	68-75%	http://mmb.pcb.ub.es/PyDock

Interface prediction
Hot-spot identification
Application to drug design targeting PPIs
Pathological mutations affecting PPIs

Major dij	\$ 14-1 \$ 14-1	
Problem	Possible solution	
No natural cavities in PP interfaces	MD to generate transient	cavities
Transient cavities difficult to identify (even bound-to-inhibitor cavities difficult)	Specialized pocket predi	ction tools
Where to search (in most cases, PP interface not known)	PP docking	
Find best binding site (to compete with a large interface)	Target hot-spots	
Find best PP inhibitor (chemically different from traditional ligands)	Specific libraries for PP i	nhibitors

Interface prediction
Hot-spot identification
Application to drug design targeting PPIs
Pathological mutations affecting PPIs

