---Periodic Table---

IE increase, atomic radius decrease, increasing electronegativity, same outermost quantum shell, show periodic changes in physical and chemical properties

IE decrease, atomic radius increase, decreasing electronegati vity, same number of valence electrons, similar physical and chemical properties

								Gro	oup								
1	2											13	14	15	16	17	18
				Key			1 H hydrogen 1.0										Helio Helio 4.
3 Li lithium	4 Be beryllium		at	omic numb omic symb	ool			,				5 B boron	6 C carbon	7 N nitrogen	8 O oxygen	9 F fluorine	10 No
6.9	9.0		relat	ive atomic r	nass							10.8	12.0	14.0	16.0	19.0	20
11 Na	Mg_											13 A <i>l</i>	14 Si	15 P	16 S	17 Cl	A
sodium 23.0	magnesium 24.3	3	4	5	6	7	8	9	10	11	12	aluminium 27.0	silicon 28.1	phosphorus 31.0	sulfur 32.1	chlorine 35.5	arg 39
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	3(
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	K
potassium 39.1	calcium 40.1	scandium 45.0	titanium 47.9	vanadium 50.9	chromium 52.0	manganese 54.9	iron 55.8	cobalt 58.9	nickel 58.7	copper 63.5	zinc 65.4	gallium 69.7	germanium 72.6	arsenic 74.9	selenium 79.0	bromine 79.9	kryp 83
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	5
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	X
rubidium 85.5	strontium 87.6	yttrium 88.9	zirconium 91.2	niobium 92.9	molybdenum 95.9	technetium —	ruthenium 101.1	rhodium 102.9	palladium 106.4	silver 107.9	cadmium 112.4	indium 114.8	tin 118.7	antimony 121.8	tellurium 127.6	iodine 126.9	xen 131
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	8
Cs	Ba	lanthanoids	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Τl	Pb	Bi	Po	At	R
caesium	barium 137.3		hafnium 178.5	tantalum 180.9	tungsten	rhenium 186.2	osmium 190,2	iridium 192.2	platinum 195.1	gold 197.0	mercury 200.6	thallium	lead 207.2	bismuth	polonium	astatine	rad
132.9 87	88	89–103	178.5	180.9	183.8 106	186.2	190.2	192.2	110	197.0	112	204.4	114	209.0	116	-	-
Fr	Ra	actinoids	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn		F!		Lv		
francium	radium		rutherfordium		seaborgium	bohrium	hassium		darmstadtium				flerovium		livermorium		
-	_		-	-	-	_	_	-	-	-	-		-		_		
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
lanthanoi	de	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
anananor	us	lanthanum 138.9	cerium 140.1	praseodymium 140.9	neodymium 144.2	promethium —	samarium 150.4	europium 152.0	gadolinium 157.3	terbium 158.9	dysprosium 162.5	holmium 164.9	erbium 167.3	thulium 168.9	ytterbium 173.1	lutetium 175.0	
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
actinoids		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
		actinium —	thorium 232.0	protactinium 231.0	uranium 238.0	neptunium —	plutonium	americium	curium —	berkelium —	californium	einsteinium	fermium	mendelevium —	nobelium —	lawrencium	

^^Atomic Structure and Chemical Bonding explanations will come in handy. Make sure you know how to interpret IE across different element graph and successive IE of an element type graphs. AND need to be able to predict/ suggest properties and possible position in periodic table like AS for this chapter

Note: When describing reactions, you should have:

- a. How it reacts/ dissolves (readily/ vigorously?). Or does it just react/ dissolve?
- b. Description of acidity/ basicity, with pH value
- c. Equation

A) Definitions

- The enthalpy change of fusion of a substance is the enthalpy change when 1 mole of the substance changes state from a solid to a liquid. (Endothermic, positive value)
- The enthalpy change of vaporization of a substance is the enthalpy change when 1 mole of the substance changes state from a liquid to a gas. (Endothermic, positive value)
- Volatility is the tendency of a substance to vaporize and depend on boiling point of the substance (higher boiling point = less volatile).

B) Period 3 Elements

Atomic and Ionic Radius
 Comment on and explain the shapes of the 2 plots obtained (Tut Q9, 5-7m):

Across period 3, the <u>atomic radii of the elements decrease</u> gradually. This is because there is an <u>increase in nuclear charge</u>, while <u>shielding effect by inner shells of electrons remains relatively constant</u>.

The <u>radii of cations are smaller than the radii of corresponding atoms</u>. Atoms lose their valence electrons to form cations. As a result, the cations formed have <u>one less</u> <u>quantum shell of electrons</u>.

The <u>radii of anions are larger than the radii of corresponding atoms</u>. In forming the anions, electrons are added to the outermost quantum shell of atoms. As a result, there is <u>greater electron-electron repulsion in the outermost quantum shell</u> of the anions formed. (5m)

Across the period, there is a decrease in cationic radius from Na+ to Si4+, which are isoelectronic with Ne due to increasing nuclear charge. There is also a decrease in anionic radius from P3- to Cl-, which are isoelectronic with Ar due to increasing nuclear charge. (7m)

Note: Nuclear charge ≠ ionic charge

Tip: Use "radius loosely" when it's hard to be precise (e.g., comparing between ion and atom)

First Ionisation Energy (Recap of Atomic Structure, Tut Q4a, 4m)

The <u>1st IE generally increases across the period</u>. Across the period, <u>nuclear charge increases</u>, while <u>shielding effect by inner shells of electrons remains relatively constant</u>. Hence, <u>effective nuclear charge increases</u>. The <u>atomic radius also decreases</u>. Hence, more energy is required to remove the valence electron from the atom.

However, anomalies are observed from Mg to Al and from P to S.

Mg has electronic configuration: $1s^22s^22p^63s^2$. Al has electronic configuration: $1s^22s^22p^63s^23p^1$.

The <u>3p electron to be removed from Al has a higher energy than the 3s electron to be removed from Mg.</u> Hence, the 2p electron of Al requires less energy to be removed and <u>1st IE</u> of Al is lower than 1st IE of Mg.

P has electronic configuration: $1s^22s^22p^63s^23p^3$. S has electronic configuration: $1s^22s^22p^63s^23p^4$.

<u>Coulombic repulsion between the paired 3p electrons in S makes it easier to remove one of the paired 3p electrons</u> than the unpaired 3p electrons from P. Hence, $\underline{\mathbf{1}^{st}}$ IE of S is lower than $\mathbf{1}^{st}$ IE of P.

Melting point and Boiling point (Recap of Chemical Bonding, Tut Q4b, 5m)

Note: The electrostatic attraction between the positively charged Na+ ions and delocalised valence electrons is actually weaker than the id-id I between S_8 molecules, but it is stronger than the id-id I between P_4 molecules.

The metals (notably Mg and Al) generally have <u>high melting points</u> as they all have <u>giant metallic structures</u>, and a large amount of energy is required to overcome the <u>strong EA between the positively charged metal cation and the delocalised valence</u> electrons.

The melting points increase form Na to Al due to the <u>increase in strength of the</u> <u>metallic bond</u> as the <u>charge density of the metal cations increases together with the increase in the number of delocalised valence electrons.</u>

Si has the <u>highest melting point</u> as it has <u>a giant covalent structure</u>, and a <u>large</u> <u>amount of energy is required to overcome the strong covalent bonds between Si atoms</u>.

The non-metals (P to Ar) have <u>low melting points</u> as they all have <u>simple covalent</u> <u>structures or monoatomic structures in the case of Ar</u>. Less energy is required to overcome the <u>weak id-id I between the molecules or between atoms in the case of Ar</u>.

Melting points of sulfur > phosphorus > chlorine > argon as the <u>number of electrons</u> in S_8 molecule $> P_4$ molecule $> Cl_2$ molecule > Ar atom. Hence the <u>strength of the id-id-libetween the molecules/ atoms decreases from $S_8to\ P_4$ to $Cl_2\ to\ Ar$.</u>

- Electrical Conductivity (Recap of Chemical Bonding, Tut Q4c, 3m)

Electrical conductivity are <u>high for the metals</u> (Na, Mg and Al) due to the <u>presence of delocalised valence electrons</u> which are able to act as <u>mobile charge carriers</u>. Electrical conductivity increases from Na to Al due to an <u>increasing number of delocalised valence electrons</u>.

Electrical conductivity <u>drops sharply at Si</u> as it is a <u>semi-conductor</u>. (N) <u>Few electrons</u> <u>have enough energy at room temperature to break free from the attraction of the <u>nuclei</u> and contribute to some electrical conductivity.</u>

Electrical conductivity <u>drops to almost 0 from P to Ar</u> due to an <u>absence of mobile</u> <u>charge carriers</u> to conduct electricity.

Others:

- Describe the way in which the oxide of the named element is reacting and discuss whether its behaviour is what you would expect form the position of the element in the periodic table (Tut Q10ii/iii, 2m each):

$$2NaOH + BeO \rightarrow Na_2Be(OH)_4 + H_2O$$

BeO is behaving as an acidic oxide, which is not quite expected.

Be is a Group 2 element and thus is **expected to form ionic oxides which have basic properties**.

(N)However, <u>Be2+ has high charge density</u>. Thus, <u>BeO shows a high degree of covalent character and is amphoteric</u> (N.B. diagonal relationship \rightarrow Be displays similar chemical properties as Al). BeO thus have both <u>acidic and basic properties</u>. Hence, it is able to react with basic NaOH to form a salt $Na_2Be(OH)_4$.

$$Bi_2O_3+6HNO_3\rightarrow 2Bi(NO_3)_3+3H_2O$$

 Bi_2O_3 is behaving as a **basic oxide**, which is not quite expected.

Bi is in Group 15, thus it is <u>expected to form covalent oxides which have acic</u> properties.

(N) However,as <u>Bi is at the bottom of the group</u>, it will <u>dispalay greater metallic chracter</u>. Thus, Bi_2O_3 shows a <u>high degree of ionic chracter and is amphoteric</u>. Bi_2O_3 can hence show basic properties and react with HNO_3 to form a salt $Bi(NO_3)_3$ and water.

Explain why AgAt is insoluble in aqueous ammonia (Tut Q12b):

Solubility of silver halides in aqueous ammonia decreases from Group 17 due to decreasing Ksp of silver halides. (N.B. Ksp (AgCl) > AgBr > AgI).

Since AgI is insoluble in aqueous ammonia, <u>AgAt</u>, which <u>has a smaller Ksp value than</u> AgI will also be insoluble in aqueous ammonia.

- Thermal decomposition vs combustion: Thermal decomposition does not require oxygen, but combustion requires oxygen.

- Chlorides of Period 3 Elements

Formula of chloride	NaCl (s)	$MgCl_{2}\left(s\right)$	$AlCl_3(s)$ (covalent due to high charge density)	$SiCl_4(l)^1$	$PCl_{5}(s)$ $PCl_{2}(l)$	$S_2Cl_2(l)$
Oxidation number of period 3 element	+1	+2	+3	+4	+5	+1
Oxidation number of period 3 elen used for bonding with chlorine).	nents in their chloride always positive a	s chlorine is more electronegative that	n period 3 elements and maximum o	oxidation number correspond to nu	mber of valence electrons in e	ach element (all
Electronegativity diff. between element and chlorine	2.1	1.8	1.5	1.2	0.9	0.5
Structure	Giant ionic		Simple covalent		1	
Melting point/°C	808	714	Sublime at 180	-70	$PCl_5(s)$: 167 $PCl_3(l)$: 92	-76
	Large amount of energy the strong EFOA betwee chloride ions	-	Small amount of energ between the discrete r	y required to overcome nolecules	the weak id-id inter	actions
Effect of adding chloride to water	Dissolve readily to give a neutral solution (hydration only as Na+ has low charge density)	Dissolve readily. Hydration and partial hydrolysis to give a weakly acidic solution.	Dissolve readily and undergoes hydration and substantial hydrolysis to give an acidic solution	Dissolve and undergo strongly acidic solutio energetically accessib orbitals for dative bor molecules. (white fur amount of water used	n, as Si/P atom has le vacant 3d nding with water nes of HCl formed if	
Approx. pH of solution	7	6.5	3	2	2	2

N.B. Extent of hydrolysis is highest for Al3+ because its charge density is highest among Na+, Mg2+ and itself. High charge density polarizes and weakens the O-H bond in surrounding water molecules, causing O-H bonds to break, releasing H+ ions.

 $^{^{1}}$ Note that CCl_4 does not react in water due to the lack of energetically accessible vacant 3d orbitals

- Oxides of Period 3 Elements

Formula of oxide	$Na_2O(s)$	MgO(s)	$Al_2O_3(s)$ (with	$SiO_2(s)$	$P_4O_{10}(s)$	$SO_3(l)$	$Cl_2O_7(l)$
			covalent character)		$P_4O_6(s)$	$SO_2(l)$	Cl₂0 (g)
Oxidation	+1	+2	+3	+4	<i>P</i> ₄ <i>O</i> ₁₀ : +5	<i>SO</i> ₃ : +6	<i>Cl</i> ₂ <i>O</i> ₇ : +7
number					P_4O_6 : +3	<i>SO</i> ₂ : +4	Cl ₂ O: +1
Electronegativity	2.6	2.3	2.0	1.7	1.4	1.0	0.5
diff. between							
element and							
oxygen							
Structure	Giant ionic		1	Giant covalent	Simple covalent	ı	
Melting point/	Sublime at	2800	2054	1700	P_4O_{10} : sublime		Cl_2O_7 : 3.5
°C	1275				at 300	SO ₂ : 17	<i>Cl</i> ₂ <i>O</i> : -121
					<i>P</i> ₄ <i>O</i> ₆ : 24		
	•	of energy require				f energy is requir	
	EFOA between n	netal cation and o	xide ions	of energy		nteractions between	een the discrete
				required to	molecules		
				overcome			
				strong covalent			
				bonds between			
A stall Dane	D '-		A11*-	Si and O atom			
Acid, Base	Basic		Amphoteric	Acidic			
behaviour	Doort	React to form a	Incoludo		Doost	React to form an	م دامات مادید
Effect of adding	React		Insoluble		React	React to form an	acidic solution
oxide to water	vigorously to	weakly alkaline			vigorously to form an acidic		
	form a strongly alkaline	solution					
	solution	Solution			solution		
Approx pH	13	8	7	7	2	2	2
Approx. pH	12	0	/	/		_	Z

Reactions of Period 3 chloride with water²:

$$NaCl(s) \rightarrow Na^{+}(aq) + Cl^{-}(aq)$$

$$MgCl_2(s) + 6H_2O(l) \rightarrow [Mg(H_2O)_6]^{2+}(aq) + 2Cl^-(aq)$$

 $[Mg(H_2O)_6]^{2+}(aq) + H_2O(l) \rightleftharpoons [Mg(H_2O)_5(OH)]^{+}(aq) + H_3O^+(aq)$

$$AlCl_3(s) + 6H_2O(l) \rightarrow [Al(H_2O)_6]^{3+}(aq) + 3Cl^{-}(aq)$$
$$[Al(H_2O)_6]^{3+}(aq) + H_2O(l) \rightleftharpoons [Al(H_2O)_5(OH)]^{2+}(aq) + H_3O^{+}(aq)$$

$$SiCl_4(l) + 2H_2O(l) \rightarrow SiO_2(s) + 4HCl(aq)$$

$$PCl_5(s) + H_2O(l) \rightarrow POCl_3(l) + 2HCl(aq)$$
 (cold water/ small amount of water)
 $POCl_3(l) + 3H_2O(l) \rightarrow H_3PO_4(aq) + 3HCl(aq)$ (excess water)
 $Overall: PCl_5(s) + 4H_2O(l) \rightarrow H_3PO_4(aq) + 5HCl(aq)$

$$Cl_2(g) + H_2O(l) \rightleftharpoons HOCl(aq) + HCl(aq)$$

Reactions of Period 3 oxides with water³ and reaction with acid/ base:

(With water)
$$Na_2O(s) + H_2O(l) \rightarrow NaOH(aq)$$

(With acid) $Na_2O(s) + 2H^+(aq) \rightarrow 2Na^+(aq) + H_2O(l)$

(With water)
$$Mg_2O(s) + H_2O(l) \rightarrow Mg(OH)_2(s)$$

(With water) $Mg(OH)_2(s) \rightleftharpoons Mg^{2+}(aq) + 2OH^-(aq)$
(With acid) $MgO(s) + 2H^+(aq) \rightarrow Mg^{2+}(aq) + H_2O(l)$

$$(With \ acid) \ Al_2O_3(s) + 6H^+(aq) \to 2Al^{3+}(aq) + 3H_2O\ (l)$$

$$(With \ alkali) Al_2O_3(s) + 2OH^-\ (aq) + \frac{3H_2O\ (l)}{2[Al(OH)_4]^-(aq)}$$

(With concentrated alkali)
$$SiO_2(s) + 2OH^-(aq) \rightarrow SiO_3^{2-}(aq) + H_2O(l)$$

(With water)
$$P_4O_{10}(s) + 6H_2O(l) \rightarrow 4H_3PO_4(aq)$$

(With alkali) $P_4O_{10}(s) + 12OH^-(aq) \rightarrow 4PO_4^{3-}(aq) + 6H_2O(l)$

$$\begin{array}{c} (With\ water)SO_{3}(l) + H_{2}O\ (l) \to H_{2}SO_{4}\ (aq) \\ (With\ alkali)SO_{3}(l) + 2OH^{-}(aq) \to SO_{4}^{2-}(aq) + H_{2}O\ (l) \end{array}$$

Reactions of Period 3 hydroxides:

Hydroxide (ionic)	Nature	Reaction with acid or base
NaOH	Basic	Typical Acid + Base → Salt + Water
$Mg(OH)_2$		
$Al(OH)_3$	Amphoteric	$Al(OH)_3(s) + 3HCl(aq) \rightarrow AlCl_3(aq) + 3H_2O(l)$
		$Al(OH)_3(s) + OH^-(aq) \rightarrow [Al(OH)_4]^-(aq)$

 $^{^{2}}$ Exclude $PCl_{3}(s)$, $S_{2}Cl_{2}(l)$ not under learning outcome

³ Exclude $SO_2(g)$, $Cl_2O_7(l)$, $Cl_2O(g)$ not under learning outcome

	Group 1	Group 2	Group 13	Group 14	Group 15	Group 16	Group 17	Group 18
Period 3	Sodium	Magnesium	Aluminium	Silicon	Phosphorus	Sulfur	Chlorine	Argon
Type of structure		Giant metal	0ic	Giant covalent	Si		Monoatomic	
	el	elocalised value ectrons + + + + + + + + + + + + + + + + + + +	(+)(+) (+)(+) (+)(+)	A metalloid	Phosphorus has 3 main a@otropic forms known as red, white and black phosphorus. Discussion is usually based on white phosphorus, which contains tetrahedral P4 molecules. White phosphorus (P4):	Sulfur has 2 main allotropic forms known as rhombic and monoclinic sulfur. Both forms of sulfur consist of Sa molecules arranged differently. The eight S atoms are joined to form a puckered octagonal ring, a 'crown shape'. Sa molecule:	CI-CI	Ar atoms
Bonding	Metallic: Strong electrostatic attraction between positively-charged ions and delocalised valence electrons.			Covalent: Strong covalent bonds between atoms (due to strong attraction between the nuclei and the bonding electrons.)	covalent bonds.	Atoms are held together b eak id-id interactions hold her.		Weak id-id interactions hold the discrete atoms together.
Melting point and boiling point	High (increasing from Group 1 to Group 13)			Very high (maxima at Group 14)	Low			Lowest
Electrical conductivity	(increasi	Very Good ng from Group 13)		Low (Semi-conductor)	. N		Non- Conductor	

C) Group 2 Elements⁴

- Reducing power increase down the group <u>from Mg to Ba</u> (increasingly negative E[⊕] value) (can be explained with Atomic Structure: ease of losing electrons by metal)
- All Group 2 metal carbonates are thermally unstable and decompose on heating to give simple metal oxide and carbon dioxide. Thermal stability increases down the group (for Group 2 nitrates and hydroxides as well)

$$MgCO_3(s) \rightarrow MgO(s) + CO_2(g)$$

This is because, down the group, radius of metal cation increases, and its charge density decreases. As a result, the ability of M^{2+} to polarize the electron cloud of the large CO_3^{2-} anion decreases, and the C-O bonds are weakened to a smaller extent. Hence, thermal stability of Group 2 carbonates increases down the group.

-

⁴ exclude reaction of group 2 nitrate and hydroxides (not in H2 syllabus)

D) Group 17 Elements

- Volatility of halogen decreases down the group (stronger id-id interaction)
- Metals have the highest oxidation state in metal fluoride compared to other halides because fluorine is the most electronegative element (strongest OA) which allows it to gain electrons from metals easily.

F_2	Cl_2	Br_2	I_2
Pale yellow gas	Pale greenish-	Reddish-brown	Black solid
	yellow gas	liquia	
Colourless	Pale yellow	Orange-red	Purple
Colourless	Pale yellow	Orange	Brown
	Pale yellow gas Colourless	Pale yellow gas Pale greenish- yellow gas Colourless Pale yellow	Pale yellow gas Pale greenish-yellow gas liquid Colourless Pale yellow Orange-red

- Oxidizing strength decreases down the group (decreasing positive E^{\ominus} value) (i.e. oxidizing power of $Cl_2 > Br_2 > I_2$). Hence, when halogens are added to (i) aqueous solution of different halide ions, followed by (ii) the addition of organic solvent CCl_4 (non-polar), we can observe displacement of the less reactive halide from its salt by another halogen molecule. (e.g. $Cl_2 + 2I^- \rightarrow I_2 + 2Cl^-$)

Halogen	Reaction
F_2	$H_2(g) + F_2(g) \rightarrow 2HF(g)$
	React explosively even in the dark
Cl_2	$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$
	React explosively in sunlight, but slowly in the dark
Br_2	$H_2(g) + Br_2(g) \rightarrow 2HBr(g)$
	React at above 200°C over Pt catalyst
I_2	$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$
	React at above 400°C over Pt catalyst to form equilibrium mixture

- Hydrogen halide dissolve in polar (e.g. water → dissociate to form strong acid) and non-polar solvents (retain covalent character).
- Boiling point highest for HF (hydrogen bond) and increases from HCl to HBr to HI (strength of id-id interaction increases).
- Thermal stability of hydrogen halide decreases down group due to decreasing H-X bond energy⁵. (CB: Orbital overlap)

Hydrogen halide	Reaction
HF/ HCl	Little tendency to decompose
HBr	$2HBr\left(g\right)\to H_{2}(g)+Br_{2}(g)$
	Produces red brown bromine vapour on strong heating
HI	$2HI(g) \to H_2(g) + I_2(g)$
	Gives copious violet fumes of iodine when a red hot steel needle
	is plunged into a jar of hydrogen iodide

⁵ Explanation is part of learning outcome.

.