Tribhuvan University

Institute of Science and Technology 2072

Bachelor Level/First Year/First Semester/Science

Full Marks: 80 Computer Science and Information Technology (MTH:104) Pass Marks: 32 Time: 3 hours.

(Calculus and analytical Geometry) Old Course

Candidates are required to give their answers in their own words as for as practicable. The figures in the margin indicate full marks.

Attempt all questions.

Group A $(10\times2=20)$

- **1.** If f(x) = (x 1) + x, then prove that $f(x) \cdot f(1 x) = 1$
- **2.** Define critical point .Find the critical point of $f(x)=x^2$.
- **3.** Evaluate: $\lim_{n \to \infty} \frac{3-5n^6}{n^6-3}$.
- 4. Find the equation of the parabola with vertex at the origin and directrix at y=2
- **5.** Find the angle between the planes x 2y 2z = 5 and 5x 2y z = 0
- $\int_0^3 \int_0^2 (4 y^2) dx dy.$ **6.** Evaluate
- 7. Find $\frac{dt}{dx}$ and $\frac{dt}{dy}$ if $f(x,y) = ye^2$.
- **8.** Find the equation for the tangent plane to the surfaces $Z = f(x, y) = g x^2 y^2$ at the point (1,2,3).
- **9.** Show that $y = c_1 x e^{-2x} + c_2 e^{-2x}$ is the solution of y'' + y' 2y = 0.
- **10.** Solve $\frac{d^2y}{dx^2} + \frac{dy}{dx^2} = 0$.

Group B $(5\times4=20)$

- **11.** Verify Rolles's theorem for $f(x) = x^2, x \in [-1,1]$.
- **12.** Find the Taylors series expression of $f(x) = \cos \theta$ at x = 1.
- **13.** Find the Cartesian equation of the polar equation $rcos\left(\theta \frac{\pi}{3}\right) = 3$
- **14.** Show that the function $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$ is continuous at every point except the origin.

15. Solve
$$xz \frac{dz}{dx} + yz \frac{dz}{dy} = xy$$

Group C
$$(5\times8=40)$$

16. Find the area bounded on right by the line y=x-2 on the left by the parabola $x=y^2$ and below by the x-axis

Or

What is an improper integral? Evaluate

(a).
$$\int_{2}^{\infty} \frac{dx}{\sqrt{x-1}}$$

(b)
$$\int_2^\infty \frac{dx}{(x-1)^2}$$

17. Define curvature of a curve .find that the curvature of a helix

$$\vec{R}(t) = (a\cos wt)\vec{l} + (a\sin wt)\vec{j} + (bt)\vec{k}$$

- **18.** Find the area enclosed by $r^2 = 2a^2 \cos 2\theta$
- 19. Find the extreme values of $Z = x^3 y^3 2xy + 6$.

OR

Find the extreme value of function F(x, y) = xy takes on the ellipse $\frac{x^2}{8} + \frac{y^2}{2} = 1$

20. Define initial boundary values problems .Derive the heat equation or wave equation in one dimension