```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import calendar

# Load the overdose data
file_path = "/Users/hunterberberich/Desktop/Data/vis_df.csv"
df = pd.read_csv(file_path)
df['date'] = pd.to_datetime(df['date'])
df['month'] = df['date'].dt.month
df['year'] = df['date'].dt.year
```

In [43]: print(df.dtypes) df

T

date	datetime64[ns]
tempmax	float64
tempmin	float64
temp	float64
feelslikemax	float64
feelslikemin	float64
feelslike	float64
dew	float64
humidity	float64
precip	float64
precipcover	float64
preciptype	object
snow	float64
snowdepth	float64
cloudcover	float64
uvindex	int64
severerisk	float64
day	object
gender_desc	object
race	object
susp_od_drug_desc	object
naloxone_administered	object
survive	object
month	int32
year	int32
dtype: object	

Out[43]:		date	tempmax	tempmin	temp	feelslikemax	feelslikemin	feelslike	dew	humidity	р
	0	2018- 01-07	26.2	-4.2	10.1	18.1	-16.6	0.6	-3.8	57.2	(
	1	2018- 01-09	35.8	28.0	32.5	34.7	24.1	26.8	26.6	78.9	(
	2	2018- 01-14	15.3	2.5	9.2	14.6	-6.0	3.5	0.5	68.0	(
	3	2018- 01-14	15.3	2.5	9.2	14.6	-6.0	3.5	0.5	68.0	(
	4	2018- 01-14	15.3	2.5	9.2	14.6	-6.0	3.5	0.5	68.0	(
	•••					•••					
	3679	2024- 04-11	68.8	58.9	61.6	68.8	58.9	61.6	56.7	84.8	
	3680	2024- 04-12	59.4	46.8	50.8	59.4	39.8	46.5	46.3	84.5	(
	3681	2024- 04-13	59.2	44.5	51.1	59.2	37.4	47.9	33.0	51.5	
	3682	2024- 04-14	81.1	45.0	64.1	79.9	39.9	62.9	39.5	42.6	
	3683	2024- 04-14	81.1	45.0	64.1	79.9	39.9	62.9	39.5	42.6	
	3684 r	ows × 2	5 columns								
In [44]:	cat_c	olumns	= df.sel	ect_dtyp	es(ind		at64', 'into ect']).colum r'])		lumns		
In [46]:	key_v	ariabl	es = ['te	empmax',	'tempr	min', 'feel	slike', 'hu	midity',	'pre	cip', 'cl	loı
In [47]:			_summary2 number_su		y_var:	iables].des	cribe().loc	[['min',	'25%	', '50%',	,
	min 25% 50% 75% max	11. 48. 66. 78. 93.	4 -5.00 5 32.80 8 47.50 6 61.62	0 – 0 0 5	13.2 35.7 56.0	26.000	0.0000 0.0000 0.0050 0.1105	udcover 0.000 30.175 55.900 80.700			
In [48]:	plt.f color month plt.t plt.x	<pre>igure(s = pl ly_cou itle(' label(')</pre>	nts.colum figsize=(t.cm.tab2	14, 7)) 0.colors kind='ba	# Us	r.month_abb sing tab20 tacked= Fals]).size().ur r[m] for m : colormap e, figsize=	in month	ly_co	unts.colu	

```
plt.legend(title='Month', bbox_to_anchor=(1.05, 1), loc='upper left')
plt.tight_layout()
plt.show()
```

<Figure size 1400x700 with 0 Axes>


```
In [49]: top_days = df['date'].value_counts().nlargest(3)
         print(top_days)
         date
         2018-04-20
                       11
         2018-11-30
                       11
         2023-01-07
                        10
         Name: count, dtype: int64
In [50]: top_days_weather = df[df['date'].isin(top_days.index)][['date', 'tempmax', 'tem
         # Display the weather conditions for these days
         top_days_weather
         plt.figure(figsize=(10, 6))
         top_days.plot(kind='bar', color='gold', edgecolor='black')
         plt.title('Number of Overdoses on Top 3 Days')
         plt.xlabel('Date')
         plt.ylabel('Number of Overdoses')
         plt.xticks(rotation=45)
         plt.tight_layout()
         plt.show()
```



```
In [51]: #The three days with the highest amount of OD were all on Friday and Saturday,
In [52]: monthly_weather = df.groupby('month')[['temp', 'humidity', 'precip', 'cloudcove

plt.figure(figsize=(14, 7))
    monthly_weather.plot(kind='line', marker='o')
    plt.title('Average Weather Patterns by Month')
    plt.xlabel('Month')
    plt.ylabel('Average Values')
    plt.legend(title='Weather Variables')
    plt.grid(True)
    plt.tight_layout()
    plt.show()
```

<Figure size 1400x700 with 0 Axes>

Month

```
In [62]: plt.figure(figsize=(14, 7))
    sns.countplot(data=df, x='susp_od_drug_desc', hue='survive', palette='viridis'

    plt.title('Overdoses by Suspected Drug Type and Survival Rate', fontsize=16)
    plt.xlabel('Suspected Drug Type', fontsize=14)
    plt.ylabel('Number of Overdoses', fontsize=14)
    plt.legend(title='Survived', title_fontsize='13', fontsize='12')
    plt.xticks(rotation=45, ha='right', fontsize=12)
    plt.yticks(fontsize=12)
```



```
In [67]: survival_counts = df.groupby('susp_od_drug_desc')['survive'].value_counts().uns
survival_counts['Fatal Overdose Rate'] = survival_counts['N'] / (survival_counts
survival_counts = survival_counts.sort_values(by='Fatal Overdose Rate', ascend.sort_sort_values(by='Fatal Overdose Rate'),
plt.figure(figsize=(14, 7))
sns.barplot(x=survival_counts.index, y=survival_counts['Fatal Overdose Rate'],
plt.title('Percentage of Fatal Overdoses for Each Drug Type')
plt.xlabel('Suspected Drug Type')
plt.ylabel('Percentage of Fatal Overdoses')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
plt.show()
```



```
In [54]: plt.figure(figsize=(12, 6))
    sns.countplot(data=df, x='day', order=['Monday', 'Tuesday', 'Wednesday', 'Thurs
    plt.title('Overdoses by Day of the Week')
    plt.xlabel('Day of the Week')
```

```
plt.ylabel('Number of Overdoses')
plt.xticks(rotation=45)
plt.show()
```


In [55]: plt.figure(figsize=(12, 6))
 sns.countplot(data=df, x='preciptype', order=df['preciptype'].value_counts().in
 plt.title('Overdoses by Precipitation Type')
 plt.xlabel('Precipitation Type')
 plt.ylabel('Number of Overdoses')
 plt.xticks(rotation=45)
 plt.show()


```
# Bar chart of overdoses by gender
In [56]:
         plt.figure(figsize=(10, 5))
         sns.countplot(data=df, x='gender_desc')
         plt.title('Overdoses by Gender')
         plt.xlabel('Gender')
         plt.ylabel('Number of Overdoses')
         plt.show()
         # Bar chart of overdoses by race
         plt.figure(figsize=(12, 6))
         sns.countplot(data=df, x='race')
         plt.title('Overdoses by Race')
         plt.xlabel('Race')
         plt.ylabel('Number of Overdoses')
         plt.xticks(rotation=45)
         plt.show()
         # Distribution of temperature values
         plt.figure(figsize=(10, 5))
         sns.histplot(df['temp'], kde=True)
         plt.title('Distribution of Temperature')
         plt.xlabel('Temperature')
         plt.ylabel('Frequency')
         plt.show()
         # Pair plot of key weather variables
         sns.pairplot(df[['tempmax', 'tempmin', 'temp', 'feelslike', 'dew', 'humidity',
         plt.suptitle('Pair Plot of Key Weather Variables', y=1.02)
         plt.show()
```


Distribution of Temperature Frequency 200 Temperature

/Users/hunterberich/anaconda3/lib/python3.11/site-packages/seaborn/axisgri
d.py:118: UserWarning: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

Pair Plot of Key Weather Variables

```
In [57]: df_aggregated = df.groupby('date').size().reset_index(name='overdose_count')

df_merged = pd.merge(df_aggregated, df[['date', 'temp']], on='date', how='left

# Scatter plot of temperature vs. overdose counts
plt.figure(figsize=(12, 6))
sns.scatterplot(data=df_merged, x='temp', y='overdose_count', alpha=0.6)
plt.title('Temperature vs. Overdose Counts')
plt.xlabel('Temperature')
plt.ylabel('Overdose Counts')
plt.show()
```

Temperature vs. Overdose Counts

In []:	
In []:	
In []:	sus