

嵌入式系统工程师

s5pv210中断控制系统

大纲

- ➤s5pv210中断概述
- ▶s5pv210中断工作过程
- ▶相关寄存器使用说明
- ▶应用举例——外部中断事件

s5pv210中断控制系统

- ▶s5pv210中断概述
- ▶s5pv210中断工作过程
- ▶相关寄存器使用说明
- ▶应用举例——外部中断事件

- ▶外设与CPU之间数据请求方式有以下三种:
 - > 查询方式:

CPU不断查询外设状态,如果外设准备就绪就开始传输数据,如果外设还没有准备好,就继续循环查询

> 中断方式:

当外设准备好与CPU进行数据交换时,首先向CPU提出中断请求,CPU接到中断请求并在一定条件下,暂停原来的程序,转去执行中断服务程序,完成数据传输过程,执行完成后再次返回到原程序继续执行

▶ DMA方式:

不经过CPU而直接按照事前约定的方式进行数据传输

>中断定义:

当CPU正在执行程序时,系统发生了一件急需处理的事件, CPU把正在执行的程序暂停,转去处理相应的事件,事件处理 完后,CPU再返回继续执行原来的程序,这种情况称为中断

>中断源及中断事件:

能够引起CPU产生中断,并且与CPU当前所执行的程序无直接 关系的系统内部模块或外部硬件,叫中断源;引起中断的事件,叫中断事件

户中断的分类

- ▶ IRQ, 普通中断, 用于处理一般事件
- >FIQ, 快速中断, 一般用于实时性要求较高的情况

> 中断的管理

➤ s5pv210通过4个TZIC(TrustZone Interrupt Controller) 和4个VIC(Vectored Interrupt Controller)进行中断管理。TZIC为中断的安全访问得到了保证

户中断的仲裁

▶ s5pv210的中断仲裁过程交给了硬件去做,直接将中断服务函数入口和VICnVECTADDRm寄存器绑定即可,无需设置中断向量表,使得中断编程更加方便灵活

▶中断源介绍

- ▶ s5pv210中断共有93个中断源,被分成4组,所对应的中断号以及应用领域详情可参考page560
- ▶237个I0口中有178个(除GPI、MP0)都支持中断
- ▶GPH0-3做为专用外部中断(共32个外部中断,17个中断源),有着自己独立的中断控制寄存器,而其它146个GPI0中断共享同一中断源(VIC0的30号)
- ▶其余中断源作为系统内部各个模块请求信号,由相应模块控制寄存器共同配置,如: ADC、TIMER、UART等等

s5pv210中断控制系统

- 户中断概述
- ▶s5pv210中断工作过程
- ▶相关寄存器使用说明
- ▶应用举例——外部中断事件

户中断请求逻辑

▶IRQ中断响应过程

> 中断优先级逻辑结构

>注意事项:

- ▶中断优先级只针对IRQ中断进行设置
- ▶当不同优先级中断同时被触发时,高优先级的中断先得到服务
- ►IRQ中断被分成16个中断优先级,默认所有中断在同一优先级(page581)
- ▶IRQ中断不能嵌套,即使高优先级也必须等到 当前中断服务结束才能被处理,又称硬件屏蔽
- ▶当相同优先级中断被触发时,由硬件裁决,中断号0最高,31号最低
- >中断服务程序的回调是通过VIC中断向量控制 器自动实现的

▶中断响应过程总结:中断源->VIC->CPU

中断源	中断控制器	CPU处理
中断源配置,使得中断源可以正常触发中断事件	对产生的中断事件进行裁决(使能/类型/优先级/中断服务入口地址)	设置总中断开关,执行中断 服务程序

s5pv210中断控制系统

- 户中断概述
- ▶s5pv210中断工作过程
- ▶相关寄存器使用说明
- ▶应用举例——外部中断事件

▶VICSOFTINT: 通过该寄存器可以通过软件触发中断请求,完成后还要清除掉(类似PENDING)

1.4.1.7 Software Interrupt Register (VICSOFTINT, R/W, Address=0xF200_0018, 0xF210_0018, 0xF220_0018, 0xF230_0018)

VICSOFTINT	Bit	Description	Initial State
SoftInt	[31:0]	Setting a bit HIGH generates a software interrupt for the selected source before interrupt masking. Read: 0 = Software interrupt inactive 1 = Software interrupt active Write: 0 = No effect 1 = Enables Software interrupt There is one bit of the register for each interrupt source.	0x0000000

1.4.1.8 Software Interrupt Clear Register (VICSOFTINTCLEAR, W, Address=0xF200 001C, 0xF210 001C, 0xF220 001C, 0xF230 001C)

VICSOFTINTCLEAR	Bit	Description	Initial State
SoftIntClear	[31:0]	Clears corresponding bits in the VICSOFTINT Register: 0 = No effect 1 = Disables Software interrupt in the VICSOFTINT Register. There is one bit of the register for each interrupt source.	-

▶VICRAWINTR: 只读,记录经过中断源屏蔽选择后 保留下来的原始中断

1.4.1.3 Raw Interrupt Status Register (VICRAWINTR, R, Address=0xF200_0008, 0xF210_0008, 0xF220_0008, 0xF230_0008)

VICRAWINTR	Bit	Description	Initial State
RawInterrupt	[31:0]	Shows the status of the FIQ interrupts before masking by the VICINTENABLE and VICINTSELECT Registers:	-
		0 = Interrupt is inactive before masking 1 = Interrupt is active before masking	
		Because this register provides a direct view of the raw interrupt inputs, the reset value is unknown.	
		There is one bit of the register for each interrupt source.	

▶ VICINTENABLE: 中断向量使能寄存器,只能用于使能中断,即决定中断将来能否被送到处理器执行

1.4.1.5 Interrupt Enable Register (VICINTENABLE, R/W, Address=0xF200_0010, 0xF210_0010, 0xF220_0010, 0xF230_0010)

VICINTENABLE	Bit	Description	Initial State
IntEnable	[31:0]	Enables the interrupt request lines, which allows the interrupts to reach the processor. Read: 0 = Disables Interrupt 1 = Enables Interrupt Use this register to enable interrupt. The VICINTENCLEAR Register must be used to disable the interrupt enable. Write: 0 = No effect 1 = Enables Interrupt. On reset, all interrupts are disabled. There is one bit of the register for each interrupt source.	0x00000000

▶ VICINTENCLEAR: 禁止相关中断请求,使得 VICINTENABLE寄存器对应位为0,禁止中断继续 往上提交

1.4.1.6 Interrupt Enable Clear (VICINTENCLEAR, W, Address=0xF200_0014, 0xF210_0014, 0xF220_0014, 0xF230_0014)

VICINTENCLEAR	Bit	Description	Initial State
IntEnable Clear	[31:0]	Clears corresponding bits in the VICINTENABLE Register: 0 = No effect 1 = Disables Interrupt in VICINTENABLE Register. There is one bit of the register for each interrupt source.	=

▶VICINTSELECT: 中断类型选择寄存器,类似于2440 中的中断模式寄存器,选择该中断为IRQ还是FIQ

1.4.1.4 Interrupt Select Register (VICINTSELECT, R/W, Address=0xF200_000C, 0xF210_000C, 0xF220_000C, 0xF230_000C)

VICINTSELECT	Bit	Description	Initial State
IntSelect	[31:0]	Selects interrupt type for interrupt request:	0x00000000
		0 = IRQ interrupt	
		1 = FIQ interrupt	
		There is one bit of the register for each interrupt source.	

▶ VICIRQSTATUS: IRQ中断状态寄存器,只读,由VICINTENABLE和 VICINTSELECT选通,通过后的状态位由VICRAWINTR决定

1.4.1.1 IRQ Status Register (VICIRQSTATUS, R, Address=0xF200_0000, 0xF210_0000, 0xF220_0000, 0XF230_0000)

VICIRQSTATUS	Bit	Description		Initial State
IRQStatus	[31:0]	Shows the status of the interrupts after masking by the VICINTENABLE and VICINTSELECT Registers: 0 = Interrupt is inactive 1 = Interrupt is active. There is one bit of the register for each interrupt source.	4.70	0x00000000

1.4.1.2 FIQ Status Register (VICFIQSTATUS, R, Address=0xF200_0004, 0xF210_0004, 0xF220_0004, 0xF230_0004)

VICFIQSTATUS	Bit	Description	Initial State
FIQStatus	[31:0]	Shows the status of the FIQ interrupts after masking by the VICINTENABLE and VICINTSELECT Registers: 0 = Interrupt is inactive 1 = Interrupt is active. There is one bit of the register for each interrupt source.	0x0000000

▶中断服务程序入口地址,用户可以通过这个寄存器配置各中断源中断入口地址

1.4.1.12 Vector Address Registers (VICVECTADDR[0-31], R/W, Address=0xF200_0100~017C, 0xF210_0100~017C, 0xF220_0100~017C, 0xF230_0100~017C)

VICVECTADDR[0-31]	Bit	Description	Initial State
VectorAddr 0-31	[31:0]	Contains ISR vector addresses.	0x00000000

▶设定中断源优先级,93个中断源共享16个优先级

1.4.1.13 Vector Priority Registers (VICVECTPRIORITY[0-31] and VICVECTPRIORITYDAISY, R/W, Address=0xF200_0200~027C, 0xF210_0200~027C, 0xF220_0200~027C, 0xF230_0200~027C)

VICVECTPRIORITY[0-31] and VICVECTPRIORITYDAISY	Bit	Description	Initial State
Reserved	[31:4]	Reserved, read as 0, do not modify.	0x0
VectPriority	[3:0]	Selects vectored interrupt priority level. You can select any of the 16 vectored interrupt priority levels by programming the register with the hexadecimal value of the priority level required, from 0-15.	0xF

▶中断向量地址寄存器,可以通过该寄存器,读取当前正在被执行的中断服务程序的入口地址,写0可以清除当前中断,否则下次将不再响应

1.4.1.10 Vector Address Register (VICADDRESS, R/W, Address=0xF200 0F00, 0xF210 0F00, 0xF220 0F00, 0xF230 0F00)

VICADDRESS	Bit	Description	Initial State
VectAddr	[31:0]	Contains the address of the currently active ISR, with reset value 0x00000000. A read of this register returns the address of the ISR and sets the current interrupt as being serviced. A read must be performed while there is an active interrupt. A write of any value to this register clears the current interrupt. A write must only be performed at the end of an interrupt service routine.	0x00000000

s5pv210中断控制系统

- 户中断概述
- ▶s5pv210中断工作过程
- ▶相关寄存器使用说明
- ▶应用举例——外部中断事件

- ▶ 专用外部中断(32个) GPH[3:0],它们有自己独立的中断控制寄存器组,分别是:
 - ► EXT_INT_x_MASK: 中断屏蔽寄存器, 0使能, 1屏蔽
 - ▶ EXT_INT_x_PEND: 中断挂起寄存器, 0表示没有发生中断, 1表示产生了中断请求, 写1可以清除中断标志
 - ▶ EXT_INT_x_CON: 主要配置各组中各个中断触发方式(低电平、高电平、上升、下降、双沿)
 - ▶ EXT_INT_x_FLTCONx: 中断滤波控制寄存器,是否开起数字滤波功能,开启后会更加稳定
 - ▶【注】: x=0-3, 每一组寄存器配置8个端口

2.2.60.13 External Interrupt Control Registers (EXT_INT_0_MASK, R/W, Address = 0xE020_0F00)

EXT_INT_0_MASK	Bit	Description	Initial State
Reserved	[31:8]	Reserved	0
EXT_INT_0_MASK[7]	[7]	0 = Enables Interrupt 1 = Masked	1
EXT_INT_0_MASK[6]	[6]	0 = Enables Interrupt 1 = Masked	1
EXT_INT_0_MASK[5]	[5]	0 = Enables Interrupt 1 = Masked	1
FXT INT 0 MASK[4]	[4]	0 = Fnables Interrupt	1

2.2.60.17 External Interrupt Control Registers (EXT_INT_0_PEND, R/W, Address = 0xE020_0F40)

EXT_INT_0_PEND	Bit	Description	Initial State
Reserved	[31:8]	Reserved	0
EXT_INT_0_PEND[7]	[7]	0 = Not occur 1 = Occur interrupt	0
EXT_INT_0_PEND[6]	[6]	0 = Not occur 1 = Occur interrupt	0
EXT_INT_0_PEND[5]	[5]	0 = Not occur 1 = Occur interrupt	0

2.2.60.1 External Interrupt Control Registers (EXT_INT_0_CON, R/W, Address = 0xE020_0E00)

EXT_INT_0_CON	Bit	Description	Initial State
Reserved	[31]	Reserved	0
EXT_INT_0_CON[7]	[30:28]	Sets the signaling method of EXT_INT[7] 000 = Low level 001 = High level 010 = Falling edge triggered 011 = Rising edge triggered 100 = Both edge triggered 101 ~ 111 = Reserved	000
Reserved	[27]	Reserved	0
EXT_INT_0_CON[6]	[26:24]	Sets the signaling method of EXT_INT[6]	000

2.2.60.5 External Interrupt Control Registers (EXT_INT_0_FLTCON0, R/W, Address = 0xE020_0E80)

EXT_INT_0_FLTCON0	Bit	Description	Initial State
FLTEN_0[3]	[31]	Filter Enable for EXT_INT[3] 0 = Disables 1 = Enables	1
FLTSEL_0[3]	[30]	Filter Selection for EXT_INT[3] 0 = Delay filter 1 = Digital filter (clock count)	0
FLTWIDTH_0[3]	[29:24]	Filtering width of EXT_INT[3] This value is valid when FLTSEL30 is 1.	0

▶总结:

中断源		中断控制器	CPU核处理
GPIO (EINT) GPxyCON EXT_INT_n_Pl	V	ICnRAWINTR (R) ICnENABLE ICnSELECT STATUS (irq/fiq)	CPSR I-bit
EXT_INT_n_M 其它中断源类	ASK V E似 V	ICnVECTPRIORITYm ICnADDRESS (高优先级 内VICnVECTADDRm)	PC=VICnADDRESS

- ▶中断初始化步骤:中断源->VIC->CPU
 - 01. 将10配置成中断模式及上下拉使能
 - 02. 设置中断触发方式
 - 03. 清除中断挂起标志位
 - 04. 外部中断屏蔽位禁止
 - 05. 清除中断向量地址VICnADDRESS
 - 06. 绑定中断服务程序入口地址VICnVECTADDRm
 - 07. 设置中断优先级(可选,一般默认即可)
 - 08. 选择中断模式(IRQ或FIQ, 默认为IRQ)
 - 09. 使能中断向量(VICINTENABLE)
 - 10. 使能IRQ(设置CPSR中的I位)

- >中断服务函数:
 - 1. 设置中断模式下堆栈指针SP(也可以提前设置)
 - 2. 保护现场寄存器(压栈)
 - 3. 清除中断向量地址(否则不再进入中断)
 - 4. 清除中断挂起标志位(否则反复进入中断)
 - 5. 执行中断服务程序
 - 6. 恢复现场寄存器(出栈)
 - 7. 退出中断服务程序

>练习:

- 》将例子中的按键任意更换一个
- ▶完成1*5中断按键

值得信赖的教育品牌

Tel: 400-705-9680, Email: edu@sunplusapp.com, BBS: bbs.sunplusedu.com

