Class	:	
Batch	:	
Roll. No	:	
ABC ID	:	
Assignment No.	:	B.3.b
Assignment Name	:	2:1 MULTIPLEXER Using TRANSMISSION GATE (TG)
Date Of Performance	:	

SYMBOL:-

S = SELECT LINE of 2:1 MULTIPLEXER (DATA-SELECTOR)

Y = 10, for S = 0

Y = I1, for S = 1

MOSFET-LEVEL SCHEMATIC of 2:1 MUX Using TG:-

Truth Table :-

S	Y_mux
0	10
1	I1

Layout (90 nm Foundry) : ($V_{dd} = 1.2 V$)

Conclusion:-

- 1) Drawn the LAYOUT of 2:1 MULTIPLEXER USING TRANSMISSION GATE (TG) for 90 nm Foundry.
- 2) MOSFET Count for 2:1 MULTIPLEXER using Conventional CMOS Logic would be **20 MOSFETs** (Y mux = $\overline{S.10}$ + S.11)
- 3) Using the TG → MUX Approach , we reduced the MOSFET count to just 6 MOSFETs as seen in the LAYOUT.
- 4) **Power Dissipation** in is just **2.344μW** thus exhibiting the Merit of Very Low Power Dissipation of CMOS Logic Family.
- 5) "I0", "I1" are chosen as VH-Frequency & Relatively Lower Frequency Clocks ,while LF-Clock is chosen as "S"
- 6) Simulated the LAYOUT to observe waveforms & verified its functionality as per TRUTH-TABLE.
- 7) Being a **Pure-CMOS System** (PMOS // NMOS & CMOS INVERTER) , it gives both **S-1** & **S-0** as O/P.