

Cracking the Code on Homes

Nick Catalano, Alaska Lam, Zach Paul

Problem Statement:

We are aiming to better understand the housing market in the Kings County area, specifically for buying/selling houses.

In this presentation, we will investigate how several factors significantly impact sale prices.

Business Value:

By creating a model that can accurately predict sale prices for houses:

Sellers will be able to more competitively price their property armed with this knowledge

Realty companies or individuals who flip houses will be better able to increase their ROI

Methodology:

Analyze past house-sale data to make recommendations to realtors, sellers and/or individuals who flip houses, on how to sell houses at the highest price point possible for their situation

Some of the topics we will explore:

Waterfront properties

Distance to a coast of water

Zipcodes¹

Model 1 - R accuracy value of .933

Model 1: Prices less than \$1M

```
In [43]: model 1 = linear regression model(df[df['price'] < 1000000],</pre>
                              ['price', 'age', 'sqft living', 'waterfront', 'd coast', 'renovated', 'zipcode grade'])
OLS Regression Results
                                                                    0.933
    Dep. Variable:
                             price
                                        R-squared (uncentered):
                              OLS Adj. R-squared (uncentered):
                                                                    0.933
          Model:
                                                                4.682e+04
         Method:
                      Least Squares
                                                   F-statistic:
                  Wed, 30 Sep 2020
                                             Prob (F-statistic):
                                                                     0.00
                          18:20:29
                                               Log-Likelihood: -2.6543e+05
            Time:
 No. Observations:
                            20107
                                                                5.309e+05
                            20101
                                                                5.309e+05
     Df Residuals:
        Df Model:
 Covariance Type:
                         nonrobust
                    coef
                           std err
                                         t P>|t|
                                                     [0.025
                                                               0.975]
               1645.6295
                                    53.539
                                                   1585.383
                                                            1705.876
                            30.737
                                           0.000
                157.8281
                                   131.860
                                                    155.482
                                                             160.174
   sqft living
                                           0.000
               1.199e+05
                          5459.240
                                    21.958
                                            0.000
                                                   1.09e+05
                                                            1.31e+05
                                                              -6e+04
                          3309.393
                                    -20.087
                                           0.000
                                                   -7.3e+04
                                    37.223 0.000
                                                  1.04e+05 1.16e+05
 grade bins 1
              1.101e+05
                         2957.332
              2.766e+05 3473.197
                                    79.648 0.000
                                                   2.7e+05 2.83e+05
      Omnibus:
                677.086
                           Durbin-Watson:
                                              1.916
                                            787.970
                  0.000
                         Jarque-Bera (JB):
 Prob(Omnibus):
                                Prob(JB): 7.84e-172
                  0.421
         Skew:
                  3,480
                                Cond. No. 1.24e+04
      Kurtosis:
```

Model 2 - R accuracy value of .924

Model 2: Prices greater than or equal to \$1M

```
In [35]: model_2 = linear_regression_model(df[df['price'] >= 1000000],
                     ['price', 'age', 'sqft living', 'waterfront', 'd coast', 'renovated', 'zipcode grade'])
```

OLS Regression	Results							
Dep. Variable:		price R		-square	d (uncentere	ed): 0.	: 0.924	
Model:		OLS	OLS Adj. R-squa		d (uncentere	e d): 0.	0.923	
Method: Le		ast Squares			F-statis	tic: 25	560.	
Date: Wed, 3		0 Sep 2020		Pro	ob (F-statist	ic):	0.00	
Time:		17:58:57	Log-Likelihood		od: -215	-21531.		
No. Observations:		1490			А	IC: 4.308e	+04	
Df Residuals:		1483			В	IC: 4.311e	+04	
Df Model:		7						
Covariance Type:		nonrobust						
	coef	std err	t	P> t	[0.025	0.975]		
age	2833.8484	398.061	7.119	0.000	2053.027	3614.670		
sqft_living	316.8489	9.922	31.935	0.000	297.387	336.311		
waterfront	6.305e+05	5.11e+04	12.328	0.000	5.3e+05	7.31e+05		
renovated	2.257e+05	4.1e+04	5.507	0.000	1.45e+05	3.06e+05		
d_coast_bins	-2.27e+05	2.77e+04	-8.202	0.000	-2.81e+05	-1.73e+05		
grade_bins_1	1.786e+05	5.29e+04	3.378	0.001	7.49e+04	2.82e+05		
grade_bins_2	3.702e+05	5.13e+04	7.223	0.000	2.7e+05	4.71e+05		
Omnibus: 527.675		Durbin-Watso		1.9	92			
Prob(Omnibus): 0.000	Jarque-Bera (JB):		3717.312				
Skew: 1.4		Prob(JB):		0.00				
	40 450	22						

Cond. No. 2.44e+04

Recommendation 1:

<u>"Waterfront</u> <u>Property"</u>

Waterfront classification increases price

What is "waterfront"?

According to dataset, "has a view to a waterfront"

What about houses without direct view, but still near a coast of water?

Recommendation 2:

<u>Distance from</u> <u>Coastline</u>

Houses less than .25 miles from shore have mostly higher prices than other houses

Average Sale Price per ZIP Code in Kings County

Recommendation 3:

Mean grade per zipcode in Kings County

Grade of house,

given by King County grading system

Regions with highest grades correlate with regions with highest sale prices

Future Considerations

Analyzing luxury homes [\$1 million+ sale price] separately from non-luxury

Creating separate prediction models for different neighborhoods or regions, and/or change coastal points

Analyzing burglary patterns vs sale price

What about impact of specific construction or realty company?

Thank you!

