METR4202

Robotics & Automation

Week 8: Practical - ROS Architecture, Gripper and Robot Assembly

Summary of Today's Session

- Handing out Camera mounts and bases. Construction of the Robot and Camera Mount (30 Mins)
- Gripper Code and Usage (30 Mins)
- ROS Architecture Discussion (30 Mins)
- General Help (30 Mins)

Robot Base

Complete Assembly

Using the Gripper

Connect the gripper as follows:

- Connect the Red Wire of the Battery Connector to the Red wire on the Servo
- Connect the Black Wire of the Battery Connector to a GND pin on the Raspberry Pi
- Connect the Orange Wire of the Servo to Pin 18 of the Raspberry Pi
- Connect the Black Wire of Servo to a GND pin on the Raspberry Pi

Wiring Guide

Driving the Gripper

The gripper can be driven with code available from the METR4202 git repo. To drive the gripper you need to install the pigpio library.

Instructions are on the git repo.

- The first step is to enable the pigpio daemon with the command sudo pigpiod
- ENSURE THAT THE SERVO IS ZEROED BEFORE RUNNING ANY CODE

Driving the Gripper

- Firstly, zero the servo, demo to be shown
- The code details how to send a different pulsewidth to PIN 18
 - 1000 Corresponds to closed
 - 2000 Corresponds to Open
 - 1500 is the sufficient width to collect a block

Helpful ROS tools

With ROS, communication between various scripts is made easier, and ROS comes with a suite of tools to help you debug and make workflow faster.

Some Examples:

- rqt_graph Used to visualise how nodes and topics communicate with each other
- rqt_plot Can be used to plot how a topic changes over time by plotting its value over time

Any Questions?

