PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS

Primer semestre de 2022

MAT1203 – Álgebra Lineal

Solución Interrogación 3

1. Sea V un espacio vectorial de dimensión 3 que está generado por el conjunto $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. Si $T: V \to V$ es una transformación lineal tal que

$$T(\mathbf{v}_1) = \mathbf{v}_1 , \quad T(\mathbf{v}_2) = \mathbf{0} , \quad y \quad T(\mathbf{v}_3) = -\mathbf{v}_3 ,$$

encuentre la dimensión del espacio nulo (o núcleo) de T. Justifique su respuesta.

Solución. Si \mathbf{v} es un elemento de V entonces, como S es un conjunto generador, existen $c_1, c_2, c_3 \in \mathbb{R}$ tal que $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3$. Entonces \mathbf{v} pertenece al espacio nulo de T si y solo si

$$\mathbf{0} = T(\mathbf{v}) = c_1 T(\mathbf{v}_1) + c_2 T(\mathbf{v}_2) + c_3 T(\mathbf{v}_3) = c_1 \mathbf{v}_1 - c_3 \mathbf{v}_3.$$

Ahora bien, como S tiene tres elementos y genera a V que es de dimensión tres, S debe ser base de V y, en particular, S es linealmente independiente. Por lo tanto, si se satisface la ecuación anterior debemos tener que $c_1 = 0$ y $c_3 = 0$.

Por lo tanto, \mathbf{v} pertenece al espacio nulo de T si y solo si $\mathbf{v} = c_2 \mathbf{v}_2 \in Gen\{\mathbf{v}_2\}$. Es decir, el espacio nulo de T es el generado por \mathbf{v}_2 y, en particular, es entonces de dimension 1.

Otra forma: Como S tiene tres elementos y genera a V que es de dimensión tres, S debe ser

base de V. Entonces, la S-matriz de T es $[T]_S = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$. Se sigue que el espacio nulo de la S-matriz está generado por el vector $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$. Por lo tanto, el espacio nulo de T tiene dimensión

1.

Puntaje Pregunta 1.

- 1,5 puntos por argumentar que S es base de V.
- 3 puntos por hallar un conjunto generado para el espacio nulo.
- 1,5 puntos por concluir que la dimensión del espacio nulo es 1.

2. Sea A una matriz tal que la $\dim(\text{Fil}(A)) = 3$ y

$$A \begin{bmatrix} -1\\0\\1\\2\\1 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \quad A \begin{bmatrix} 4\\2\\-2\\0\\1 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}.$$

a) Determine una base para el Nul(A).

[4 puntos]

b) Demuestre que $Col(A) = \mathbb{R}^3$.

[2 puntos]

Solución.

$$a) \ \operatorname{Como} A \begin{bmatrix} -1 \\ 0 \\ 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \ \text{y} \ A \begin{bmatrix} 4 \\ 2 \\ -2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \ \text{entonces Gen} \left\{ \begin{bmatrix} -1 \\ 0 \\ 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 4 \\ 2 \\ -2 \\ 0 \\ 1 \end{bmatrix} \right\} \leqslant \operatorname{Nul}(A) \ .$$

Además, tenemos que la matriz A tiene 5 columnas y 3 filas.

Como rango(A) = dim(Fil(A)) = 3, en virtud del teorema del rango tenemos que

$$\operatorname{rango}(A) + \dim(\operatorname{Nul}(A)) = 5 \Longrightarrow \dim(\operatorname{Nul}(A)) = 2$$

Por lo cual una base una base para $\operatorname{Nul}(A)$ es $\left\{ \begin{bmatrix} -1\\0\\1\\2\\1 \end{bmatrix}, \begin{bmatrix} 4\\2\\-2\\0\\1 \end{bmatrix} \right\}$

b) Tenemos que $\operatorname{Col}(A) \leq \mathbb{R}^3$ y $\dim(\operatorname{Fil}(A)) = \dim(\operatorname{Col}(A)) = 3$ luego $\operatorname{Col}(A) = \mathbb{R}^3$.

Puntaje Pregunta 2.

- 1 punto por ver que los vectores $\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} y \begin{bmatrix} 4 \\ 2 \\ -2 \\ 0 \\ 1 \end{bmatrix}$ están en el espacio nulo.
- 1 punto por saber que $\operatorname{rango}(A) = \dim(\operatorname{Fil}(A))$.
- 1 punto por usar el teorema del rango y concluir que el espacio nulo tiene dimensión 2.
- 1 punto por exhibir una base para el espacio nulo de A.
- \blacksquare 1 puntos por saber que $\dim(\operatorname{Fil}(A)) = \dim(\operatorname{Col}(A))$
- 1 punto por concluir que $Col(A) = \mathbb{R}^3$

3. Considere los vectores
$$\mathbf{v}_1 = \begin{bmatrix} -2\\2\\3 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -8\\5\\2 \end{bmatrix}$ y $\mathbf{v}_3 = \begin{bmatrix} -7\\2\\6 \end{bmatrix}$ y la matriz

$$P = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ -3 & 1 & 1 \end{bmatrix} .$$

Encuentre una base $\mathcal{B} = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ de \mathbb{R}^3 tal que la matriz P sea la matriz de cambio de coordenadas de \mathcal{B} a la base $\mathcal{C} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.

Solución. La matriz de cambio de base de \mathcal{B} a \mathcal{C} está dada por $P = [[\mathbf{u}_1]_{\mathcal{C}} \ [\mathbf{u}_2]_{\mathcal{C}} \ [\mathbf{u}_3]_{\mathcal{C}}]$. Luego, los vectores \mathbf{u}_1 , \mathbf{u}_2 y \mathbf{u}_3 deben cumplir que

$$[\mathbf{u}_1]_{\mathcal{C}} = \begin{bmatrix} 1\\0\\-3 \end{bmatrix}, \ [\mathbf{u}_2]_{\mathcal{C}} = \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \ [\mathbf{u}_3]_{\mathcal{C}} = \begin{bmatrix} 2\\1\\1 \end{bmatrix}.$$

Por lo tanto, los vectores buscados son

$$\mathbf{u}_1 = 1\mathbf{v}_1 - 3\mathbf{v}_3 = \begin{bmatrix} 19 \\ -4 \\ -15 \end{bmatrix}, \quad \mathbf{u}_2 = \mathbf{v}_2 + \mathbf{v}_3 = \begin{bmatrix} -15 \\ 7 \\ 8 \end{bmatrix}, \quad \mathbf{u}_3 = 2\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 = \begin{bmatrix} -19 \\ 11 \\ 14 \end{bmatrix}.$$

Puntaje Pregunta 3.

- 3 puntos por concluir que $[\mathbf{u}_k]_{\mathcal{C}}$ se corresponden con las columnas de la matriz cambio de base.
- 3 puntos por encontrar los vectores \mathbf{u}_k .

4. Sea A una matriz de $n \times n$. Demuestre que A y A^T tienen la misma ecuación característica.

Solución. Usando que el determinante de una matriz es igual al determinante de su transpuesta y la propiedad $(A + B)^T = A^T + B^T$ se tiene

$$0 = \det(A - \lambda I) \stackrel{\mathbf{1}}{=} \det(A - \lambda I)^T \stackrel{\mathbf{2}}{=} \det(A^T - \lambda I^T) \stackrel{\mathbf{3}}{=} \det(A^T - \lambda I).$$

Puntaje Pregunta 4.

- 2 puntos por la igualdad 1
- $\blacksquare \ 2$ puntos por la igualdad ${\bf 2}$
- 2 puntos por la igualdad **3**

5. Diagonalice, si es posible, la siguiente matriz
$$A = \begin{bmatrix} 4 & 0 & -1 \\ 0 & 4 & -1 \\ 1 & 0 & 2 \end{bmatrix}$$
.

Solución. La ecuación característica de A es

$$0 = \det(A - \lambda I) = \begin{vmatrix} 4 - \lambda & 0 & -1 \\ 0 & 4 - \lambda & -1 \\ 1 & 0 & 2 - \lambda \end{vmatrix} = (4 - \lambda) \begin{vmatrix} 4 - \lambda & -1 \\ 0 & 2 - \lambda \end{vmatrix} - \begin{vmatrix} 0 & 4 - \lambda \\ 1 & 0 \end{vmatrix}$$
$$= (4 - \lambda)(4 - \lambda)(2 - \lambda) + (4 - \lambda) = (4 - \lambda)[(4 - \lambda)(2 - \lambda) + 1]$$
$$= (4 - \lambda)[\lambda^2 - 6\lambda + 9] = (4 - \lambda)(\lambda - 3)^2$$

Los valores propios son $\lambda = 3$ y $\lambda = 4$. Los espacios propios son:

Base para
$$\lambda = 3$$
: $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
Base para $\lambda = 4$: $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

Se sigue que, es imposible construir una base en \mathbb{R}^3 utilizando vectores propios de A. Por lo tanto, A no es diagonalizable.

Puntaje Pregunta 5.

- \blacksquare 2 puntos por encontrar los valores propios de A.
- \blacksquare 2 puntos por encontrar los vectores propios de A.
- lacksquare 2 puntos por concluir que A no es diagonalizable.

6. Encuentre una matriz invertible P y una matriz C de la forma $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ tal que la matriz $A = \begin{bmatrix} 1 & -5 \\ 1/2 & 0 \end{bmatrix}$ tenga la forma $A = PCP^{-1}$.

Solución. Los valores propios de A son $\lambda = \frac{1 \pm 3i}{2}$, y $\mathbf{v} = \begin{bmatrix} 1 - 3i \\ 1 \end{bmatrix}$ es el vector propio correspondiente al valor propio $\lambda = \frac{1 - 3i}{2}$.

Luego, sabemos que simplemente podemos tomar $P = \begin{bmatrix} \operatorname{Re} \mathbf{v} & \operatorname{Im} \mathbf{v} \end{bmatrix} = \begin{bmatrix} 1 & -3 \\ 1 & 0 \end{bmatrix}$ y

$$C = P^{-1}AP = \begin{bmatrix} 0 & 1 \\ -1/3 & 1/3 \end{bmatrix} \begin{bmatrix} 1 & -5 \\ 1/2 & 0 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1/2 & -3/2 \\ 3/2 & 1/2 \end{bmatrix} .$$

Otra forma. Para $\lambda = \frac{1+3i}{2}$ un vector propio es $\mathbf{w} = \overline{\mathbf{v}} = \begin{bmatrix} 1+3i \\ 1 \end{bmatrix}$. Entonces, podemos obtener la matriz $P = \begin{bmatrix} \operatorname{Re}\mathbf{w} & \operatorname{Im}\mathbf{w} \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 1 & 0 \end{bmatrix}$ y

$$C = P^{-1}AP = \begin{bmatrix} 0 & 1 \\ 1/3 & -1/3 \end{bmatrix} \begin{bmatrix} 1 & -5 \\ 1/2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1/2 & 3/2 \\ -3/2 & 1/2 \end{bmatrix}.$$

Puntaje Pregunta 6.

- ullet 1,5 puntos por encontrar los valores propios de A.
- 1,5 puntos por encontrar el vector propio de A asociado a $\lambda = a bi$.
- 1,5 puntos por encontrar la matriz P.
- 1,5 puntos por encontrar la matriz C.

7. Sea
$$A = \begin{bmatrix} 1 & -1 & 0 & 1 \\ 2 & 2 & 2 & 0 \\ -1 & 1 & -1 & 1 \\ 2 & 2 & 1 & 2 \end{bmatrix}$$
. Determine una base para $(\operatorname{Col}(A))^{\perp}$.

Solución. Sabemos que $(\operatorname{Col}(A))^{\perp} = \operatorname{Nul}(A^{T})$

$$A^{T} = \begin{bmatrix} 1 & 2 & -1 & 2 \\ -1 & 2 & 1 & 2 \\ 0 & 2 & -1 & 1 \\ 1 & 0 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Luego el Nul
$$(A^T)$$
 = Gen $\left\{ \begin{bmatrix} -1\\-1\\-1\\1 \end{bmatrix} \right\}$ así una base para $(\operatorname{Col}(A))^{\perp}$ es $\left\{ \begin{bmatrix} -1\\-1\\-1\\1 \end{bmatrix} \right\}$.

Puntaje Pregunta 7.

- 2 puntos por saber que $(\operatorname{Col}(A))^{\perp} = \operatorname{Nul}(A^{T})$
- lacksquare 2 puntos por encontrar la forma escalonada reducida de $A^T.$
- 2 puntos por encontrar el generado del espacio nulo de A^T . (Cualquier múltiplo del vector $\begin{bmatrix} -1 \\ -1 \\ -1 \\ \end{bmatrix}$ es una respuesta correcta).

8. Sean
$$\mathbf{y} = \begin{bmatrix} 4 \\ 8 \\ 1 \end{bmatrix}$$
, $\mathbf{u}_1 = \begin{bmatrix} 2/3 \\ 1/3 \\ 2/3 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} -2/3 \\ 2/3 \\ 1/3 \end{bmatrix}$ y $W = \text{Gen}\{\mathbf{u}_1, \mathbf{u}_2\}$. Calcule $\text{proy}_W \mathbf{y}$.

Solución. Como $U^TU=I$, entonces la columnas de U forman una base ortonormal para W y luego

$$\operatorname{proy}_{W} \mathbf{y} = UU^{T} \mathbf{y} = \begin{bmatrix} 8/9 & -2/9 & 2/9 \\ -2/9 & 5/9 & 4/9 \\ 2/9 & 4/9 & 5/9 \end{bmatrix} \begin{bmatrix} 4 \\ 8 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 5 \end{bmatrix}.$$

Puntaje Pregunta 8.

- lacksquare 2 puntos por verificar que $U^TU=I$
- 2 puntos por saber que $\text{proy}_W \mathbf{y} = UU^T$
- 2 puntos por calcular $UU^T\mathbf{y}$.

En caso de no usar que las columnas de U forman una base ortonormal de W, entonces otorgar 6 puntos por obtener correctamente la proyección de \mathbf{y} sobre W.