

Sequence Listing

5 <110> Lee, James
Wood, William I.
<120> VEGF-RELATED PROTEIN
<130> P0963R1D1
10 <140> US 09/313,299
<141> 1999-05-17

<150> US 08/706,054
<151> 1996-08-30
15 <150> US 60/003,491
<151> 1995-09-08

20 <160> 12
<210> 1
<211> 2031
<212> DNA
25 <213> artificial sequence

30 <400> 1
cgcggggtgt tctgggtgtcc cccgccccgc ctctccaaaa agctacacccg 50
acgcggaccg cggcggcgtc ctccctcgcc ctcgcttac ac 100
ccgaatgcgg ggagctcgga tgtccggttt cctgtgaggc tttaacctga 150
cacccgcccgc ctttccccgg cactggctgg gagggcgccc tgaaaattg 200
35 ggaacgcgga gccccggacc cgctcccgcc goctccggct ccccaagggg 250
gggtcgccgg gaggagcccg ggggagaggg accaggaggg gcccgcggcc 300
40 tcgcaggggc gccccggccc ccacccctgc ccccgccagc ggaccgggtcc 350
cccacccccc gtccttccac catgcacttg ctgggcttct tctctgtggc 400
gtgttctctg ctcggcgctg cgctgc ccc gggtcctcgcc gagggcgcccg 450
45 cccggccgc cgccttcgag tccggactcg acctctcgga cgcggagccc 500
gacgcggggcg aggccacggc ttatgcaagc aaagatgtgg aggagcagt 550
50 acggtctgtg tccagtgttag atgaactcat gactgtactc tacccagaat 600
attggaaaat gtacaagtgt dagctaagga aaggaggctg gcaacataac 650
agagaacagg ccaaccaa ctcaaggaca gaagagacta taaaatttgc 700
55 tgcagcacat tataatacag agatcttcaa aagtattgtat aatgagtgaa 750
gaaagactca atgcattcca cgggaggtgt gtatagatgt gggaaaggag 800
60 tttggagtcg cgacaaacac cttctttaaa cttccatgtg tgcgtctca 850
cagatgtggg ggttgctgca atagtgaggg gctgcagtgc atgaacacca 900

gcacgagcta cctcagcaag acgttatttg aaattacagt gcctctctct 950
5 caaggccccca aaccagtaac aatcagtttt gccaaatcaca cttccctgccg 1000
atgcatgtct aaactggatg tttacagaca agttcattcc attatttagac 1050
gttccctgcc agcaacacta ccacagtgtc aggcaagcgaa caagacctgc 1100
10 cccaccaatt acatgtggaa taatcacatc tgcatgtgcc tggctgagga 1150
agattttatg ttttcctcgg atgctggaga tgactcaaca gatggattcc 1200
15 atgacatctg tggaccaaacc aaggagctgg atgaagagac ctgtcagtgt 1250
gtctgcagag cggggcttcg gcctgccagc tgtggacccc acaaagaact 1300
agacagaaaac tcataccaggat gtgtctgtaa aaacaaaactc ttccccagcc 1350
20 aatgtggggc caaccgagaa tttgatgaaaa acacatgcca gtgtgtatgt 1400
aaaagaacct gccccagaaaa tcaaccccta aatcctggaa aatgtgcctg 1450
25 tgaatgtaca gaaagtccac agaaatgttt gttaaaagga aagaagttcc 1500
accaccaaaac atgcagctgt tacagacggc catgtacgaa ccggccagaag 1550
gcttgtgagc caggattttc atatagtgaa gaagtgtgtc gttgtgtccc 1600
30 ttcatattgg aaaagaccac aaatgagcta agattgtact gttttccagt 1650
tcatacgattt tctattatgg aaaactgtgt tgccacagta gaactgtctg 1700
tgaacagaga gacccttgg ggtccatgct aacaaagaca aaagtctgtc 1750
35 tttcctgaac catgtggata actttacaga aatggactgg agctcatctg 1800
caaaaggcct cttgtaaaga ctggtttct gccaaatgacc aaacagccaa 1850
40 gattttcctc ttgtgatttc tttaaaagaa tgactatata atttatttcc 1900
actaaaaata ttgtttctgc attcattttt atagcaacaa caattggtaa 1950
aactcactgt gatcaatatt ttatatatcat gcaaaatatg tttaaaataa 2000
45 aatgaaaatt gtataaaaaa aaaaaaaaaa a 2031

<210> 2
<211> 2031
50 <212> DNA
<213> artificial sequence

<400> 2
55 tttttttttt ttttttaata caatttcat tttattttaa acatatttg 50
catgatataa aaatattgtat cacagtggat tttaccaatt gttgttgcta 100
taaaaaatgaa tgcagaaaaca atattttag tgaaaataaa ttatatagtc 150
60 attcttttaa agaaatcaca agagggaaat cttggctgtt tggcattgg 200

cagaaaacca gtcttacaa gaggccttt gcagatgagc tccagtccat 250
ttctgtaaag ttatccacat ggtcaggaa agacagactt ttgtcttgt 300
5 tagcatggac ccacaagggt ctctctgttc acagacagtt ctactgtggc 350
aacacagttt tccataatag aaaatcgatg aactggaaaa cagtacaatc 400
ttagctcatt tgtggtctt tccaatatga agggacacaa cgacacactt 450
10 cttcactata tgaaaatcct ggctcacaag cttctggcg gttcgatcat 500
ggccgtctgt aacagctgca tgtttggtgg tggaaacttct ttcctttcaa 550
15 caagcatttc tgtggacttt ctgtacattc acaggcacat tttccaggat 600
tttagggttt attctgggg caggttcttt tacatacaca ctggcatgtg 650
20 tttcatcaa attctcggtt ggccccacat tggctgggg aagatggtt 700
tttacagaca cactggcatg agtttctgtc tagtttttg tggggtccac 750
agctggcagg ccgaagcccc gctctgcaga cacactgaca ggtctttca 800
25 tccagctcct tgtttggtcc acagatgtca tggaaatccat ctgttgagtc 850
atctccagca tccgaggaaa acataaaatc ttccctgagcc aggcatctgc 900
30 agatgtgatt attccacatg taattggtgg ggaggtctt gttcgctgcc 950
tgacactgtg gtagtgttgc tggcaggaa cgtctaataa tggaaatgaac 1000
ttgtctgtaa acatccagtt tagacatgca tcggcaggaa gtgtgattgg 1050
35 caaaaactgat tgttactggt ttggggcctt gagagagagg cactgttaatt 1100
tcaaataacg tcttgctgag gtagctgtg ctgggtttca tgcactgcag 1150
40 cccctcacta ttgcagcaac ccccacatct gtagacggac acacatggag 1200
gtttaaagaa ggtgtttgtc gcgactccaa actccctccc cacatctata 1250
cacacctccc gtggcatgca ttgagtttt ctccactcat tatcaataact 1300
45 tttcaagatc tctgtattat aatgtgtgc agcaaatttt atagtctttt 1350
ctgtccttga gttgaggttg gcctgttctc tggtatgttgc ccagcctcct 1400
50 ttccttagct gacacttgta cattttccaa tattctgggt agagtacagt 1450
catgagttca tctacactgg acacagaccg taactgctcc tccagatctt 1500
tgcttgcata agccgtggcc tcgccccggt cgggctccgc gtccgagagg 1550
55 tcgagtcgg actcgaaggc ggcggcggcg gcggggcgct cgcgaggacc 1600
cgggagcagc acagcggcga gcagagaaca cgccacagag aagaagccca 1650
gcaagtgcac ggtggaaagga cgggggggtgg gggaccggtc cgctggcggg 1700
60 ggcaggggtg gggcgcggg cgccccctgca aggccgcggg cccctccctgg 1750

tccctctccc ccgggctcct cccggcgacc ccccctgggc gagccggagg 1800
 cggcgggagc gggtccgggg ctccgcgttc ccaactttgc agggcgccct 1850
 5 cccagccagt accggggaaa ggccgggggt gtcaggtaaa agcctcacag 1900
 gaaaccggac atccgagctc cccgcattcg gagcccgcga ggtgaagcga 1950
 10 gggcgagggga ggacgcccgc gcggtccgcg tcggtgttagc tttttggaga 2000
 ggcggggcgg gggacaccag aacacccgc g 2031
 <210> 3
 15 <211> 419
 <212> PRT
 <213> artificial sequence
 <400> 3
 20 Met His Leu Leu Gly Phe Phe Ser Val Ala Cys Ser Leu Leu Ala
 1 5 10 15
 Ala Ala Leu Leu Pro Gly Pro Arg Glu Ala Pro Ala Ala Ala
 20 25 30
 25 Ala Phe Glu Ser Gly Leu Asp Leu Ser Asp Ala Glu Pro Asp Ala
 35 40 45
 Gly Glu Ala Thr Ala Tyr Ala Ser Lys Asp Leu Glu Glu Gln Leu
 50 55 60
 30 Arg Ser Val Ser Ser Val Asp Glu Leu Met Thr Val Leu Tyr Pro
 65 70 75
 35 Glu Tyr Trp Lys Met Tyr Lys Cys Gln Leu Arg Lys Gly Gly Trp
 80 85 90
 Gln His Asn Arg Glu Gln Ala Asn Leu Asn Ser Arg Thr Glu Glu
 95 100 105
 40 Thr Ile Lys Phe Ala Ala Ala His Thr Asn Thr Glu Ile Leu Lys
 110 115 120
 Ser Ile Asp Asn Glu Trp Arg Lys Thr Gln Cys Met Pro Arg Glu
 125 130 135
 45 Val Cys Ile Asp Val Gly Lys Glu Phe Gly Val Ala Thr Asn Thr
 140 145 150
 50 Phe Phe Lys Pro Pro Cys Val Ser Val Tyr Arg Cys Gly Gly Cys
 155 160 165
 Cys Asn Ser Glu Gly Leu Gln Cys Met Asn Thr Ser Thr Ser Tyr
 170 175 180
 55 Leu Ser Lys Thr Leu Phe Glu Ile Thr Val Pro Leu Ser Gln Gly
 185 190 195
 Pro Lys Pro Val Thr Ile Ser Phe Ala Asn His Thr Ser Cys Arg
 200 205 210

Cys Met Ser Lys Leu Asp Val Tyr Arg Gln Val His Ser Ile Ile
 215 220 225

5 Arg Arg Ser Leu Pro Ala Thr Leu Pro Gln Cys Gln Ala Ala Asn
 230 235 240

Lys Thr Cys Pro Thr Asn Tyr Met Trp Asn Asn His Ile Cys Arg
 245 250 255

10 Cys Leu Ala Gln Glu Asp Phe Met Phe Ser Ser Asp Ala Gly Asp
 260 265 270

Asp Ser Thr Asp Gly Phe His Asp Ile Cys Gly Pro Asn Lys Glu
 275 280 285

15 Leu Asp Glu Glu Thr Cys Gln Cys Val Cys Arg Ala Gly Leu Arg
 290 295 300

20 Pro Ala Ser Cys Gly Pro His Lys Glu Leu Asp Arg Asn Ser Cys
 305 310 315

Gln Cys Val Cys Lys Asn Lys Leu Phe Pro Ser Gln Cys Gly Ala
 320 325 330

25 Asn Arg Glu Phe Asp Glu Asn Thr Cys Gln Cys Val Cys Lys Arg
 335 340 345

Thr Cys Pro Arg Asn Gln Pro Leu Asn Pro Gly Lys Cys Ala Cys
 350 355 360

30 Glu Cys Thr Glu Ser Pro Gln Lys Cys Leu Leu Lys Gly Lys Lys
 365 370 375

35 Phe His His Gln Thr Cys Ser Cys Tyr Arg Arg Pro Cys Thr Asn
 380 385 390

Arg Gln Lys Ala Cys Glu Pro Gly Phe Ser Tyr Ser Glu Glu Val
 395 400 405

40 Cys Arg Cys Val Pro Ser Tyr Trp Lys Arg Pro Gln Met Ser
 410 415 419

<210> 4
 <211> 147
 45 <212> PRT
 <213> artificial sequence

<400> 4
 50 Met Asn Phe Leu Leu Ser Trp Val His Trp Ser Leu Ala Leu Leu
 1 5 10 15

Leu Tyr Leu His His Ala Lys Trp Ser Gln Ala Ala Pro Met Ala
 20 25 30

55 Glu Gly Gly Gly Gln Asn His His Glu Val Val Lys Phe Met Asp
 35 40 45

Val Tyr Gln Arg Ser Tyr Cys His Pro Ile Glu Thr Leu Val Asp
 50 55 60

60 Ile Phe Gln Glu Tyr Pro Asp Glu Ile Glu Tyr Ile Phe Lys Pro

65 70 75

5 Ser Cys Val Pro Leu Met Arg Cys Gly Gly Cys Cys Asn Asp Glu
80 85 90

5 Gly Leu Glu Cys Val Pro Thr Glu Glu Ser Asn Ile Thr Met Gln
95 100 105

10 Ile Met Arg Ile Lys Pro His Gln Gly Gln His Ile Gly Glu Met
110 115 120

15 Ser Phe Leu Gln His Asn Lys Cys Glu Cys Arg Pro Lys Lys Asp
125 130 135

15 Arg Ala Arg Gln Glu Lys Cys Asp Lys Pro Arg Arg
140 145 147

<210> 5
<211> 149
20 <212> PRT
<213> artificial sequence

<400> 5
25 Met Pro Val Met Arg Leu Phe Pro Cys Phe Leu Gln Leu Leu Ala
1 5 10 15

Gly Leu Ala Leu Pro Ala Val Pro Pro Gln Gln Trp Ala Leu Ser
20 25 30

30 Ala Gly Asn Gly Ser Ser Glu Val Glu Val Val Pro Phe Gln Glu
35 40 45

Val Trp Gly Arg Ser Tyr Cys Arg Ala Leu Glu Arg Leu Val Asp
50 55 60

35 Val Val Ser Glu Tyr Pro Ser Glu Val Glu His Met Phe Ser Pro
65 70 75

40 Ser Cys Val Ser Leu Leu Arg Cys Thr Gly Cys Cys Gly Asp Glu
80 85 90

Asn Leu His Cys Val Pro Val Glu Thr Ala Asn Val Thr Met Gln
95 100 105

45 Leu Leu Lys Ile Arg Ser Gly Asp Arg Pro Ser Tyr Val Glu Leu
110 115 120

50 Thr Phe Ser Gln His Val Arg Cys Glu Cys Arg Pro Leu Arg Glu
125 130 135

55 Lys Met Lys Pro Glu Arg Cys Gly Asp Ala Val Pro Arg Arg
140 145 149

<210> 6
<211> 299
<212> DNA
<213> artificial sequence

60 <220>
<221> unknown
<222> 74

<223> unknown base

<400> 6
ccgtctacag atgtgggggt tgctgcaata gtgaggggct gcagtgcatt 50
5
aacaccagca cgagctacct cagnaagacg ttatggaaa ttacagtgcc 100
tctctctcaa ggccccaaac cagtaacaat cagtttgcc aatcacactt 150
10
cctgccgatg catgtctaaa ctggatgttt acagacaagt tcattccatt 200
attagacgtt ccctgccagc aacactacca cagtgtcagg cagcgaacaa 250
15
gacctgcccc accaattaca tgtgaaataa tcacatctgc agatgcctg 299

<210> 7
<211> 50
<212> DNA
<213> artificial sequence

20
<400> 7
ctgggtttca tgcactgcag cccctcacta ttgcagcaac cccacatct 50

<210> 8
25
<211> 50
<212> DNA
<213> artificial sequence

<400> 8
30
gcatctgcag atgtgattat tccacatgta attgggtggg caggtttgt 50

<210> 9
<211> 8
<212> PRT
35
<213> artificial sequence

<400> 9
Tyr Ser Met Thr Pro Pro Thr Leu
1 5 8
40
<210> 10
<211> 9
<212> PRT
<213> artificial sequence

<400> 10
Ser Leu Arg Arg Gln Gln Gln Asp
1 5 9
45
<210> 11
<211> 40
<212> PRT
<213> artificial sequence

50
<400> 11
Lys Tyr Ala Leu Ala Asp Ala Ser Leu Lys Met Ala Asp Pro Asn
1 5 10 15

55
Arg Phe Arg Gly Lys Asp Leu Pro Val Leu Asp Gln Leu Leu Glu
20 25 30

60

Gly Gly Ala Ala His Tyr Ala Leu Leu Pro
35 40

5 <210> 12
<211> 13
<212> PRT
<213> artificial sequence

10 <400> 12
Gly Pro Arg Glu Ala Pro Ala Ala Ala Ala Phe Glu
1 5 10 13

Sequence Listing

<110> Lee, James
Wood, William I.

<120> VEGF-RELATED PROTEIN

<130> P0963R1D1

10860
<140> US 09/313,299
<141> 1999-05-17

<150> US 08/706,054
<151> 1996-08-30

<150> US 60/003,491
<151> 1995-09-08

<160> 12

<210> 1
<211> 2031
<212> DNA
<213> Human

<220>
<221> Human
<222> 1-2031
<223> Sequence source: VRP

<400> 1
cgcggggtgt tctgggtgtcc cccgccccgc ctctccaaaa agctacacccg 50
acgcggaccg cggcgccggtc ctcccctcgcc ctgcgttac ac 100
ccgaatgcgg ggagctcgga tgtccggttt cctgtgaggc tttaacctga 150
cacccgcccgc ctttccccgg cactggctgg gagggcgccc tgcaaagtgg 200
ggAACGCGGA GCCCCGGACC CGCTCCGCC GCCTCCGGCT CGCCCAGGGG 250
gggtcgccgg gaggagcccg ggggagaggg accaggaggg gcccgcggcc 300
tcgcagggggc gcccgcggccc ccacccctgc ccccgccagc ggaccgggtcc 350
cccaccccccgt gtccttccac catgcacttg ctgggcttct tctctgtggc 400
gtgttctctg ctgcggcgtc cgctgctccc gggtcctcgcc gagggcgcccg 450
ccgcccggcgc cgccttcgag tccggactcg acctctcgga cgcggagccc 500
gacgcggggcg aggccacggc ttatgcaagc aaagatctgg aggagcagtt 550
acggtctgtg tccagtgttag atgaactcat gactgtactc tacccagaat 600
atggaaaat gtacaagtgt cagctaagga aaggaggctg gcaacataac 650
agagaacagg ccaacctcaa ctcaaggaca gaagagacta taaaatttgc 700
tgcagcacat tataatacag agatcttcaa aagtattgtat aatgagtgaa 750
gaaagactca atgcatgccca cgggaggtgt gtatagatgt ggggaaggag 800

tttggagtgcg cgacaaacac cttctttaaa cctccatgtg tgtccgtcta 850
cagatgtggg ggttgctgca atagtgaggg gctgcagtgc atgaacacca 900
gcacgagcta cctcagcaag acgttattt aaattacagt gcctctct 950
caaggccccca aaccagtaac aatcagttt gccaatcaca cttcctgccg 1000
atgcatgtct aaactggatg tttacagaca agttcattcc attattagac 1050
gttccctgcc agcaacacta ccacagtgtc aggcagcgaa caagacctgc 1100
cccaccaatt acatgtggaa taatcacatc tgcaagatgcc tggctcagga 1150
agatTTTATG TTTCCCTCGG ATGCTGGAGA TGACTCAACA GATGGATTCC 1200
atgacatctg tggaccaaac aaggagctgg atgaagagac ctgtcagtgt 1250
gtctgcagag cggggcttcg gcctgccagc tgtggacccc acaaagaact 1300
agacagaaac tcatgccagt gtgtctgtaa aaacaaactc ttccccagcc 1350
aatgtggggc caaccgagaa tttgatgaaa acacatgcca gtgtgtatgt 1400
aaaagaacct gccccagaaa tcaaccccta aatcctggaa aatgtgcctg 1450
tgaatgtaca gaaagtccac agaaaatgctt gttaaaagga aagaagttcc 1500
accaccaaac atgcagctgt tacagacggc catgtacgaa ccggcagaag 1550
gcttgtgagc caggatttc atatagtgaa gaagtgtgtc gttgtgtccc 1600
ttcatattgg aaaagaccac aaatgagcta agattgtact gttttccagt 1650
tcatcgattt tctattatgg aaaactgtgt tgccacagta gaactgtctg 1700
tgaacagaga gacccttgtg ggtccatgct aacaaagaca aaagtctgtc 1750
tttcctgaac catgtggata actttacaga aatggactgg agctcatctg 1800
caaaaggcct cttgtaaaga ctggtttct gccaatgacc aaacagccaa 1850
gattttcctc ttgtgatttc ttAAAAGAA tgacttatata atttatttcc 1900
actaaaaata ttgtttctgc attcatttt atagcaacaa caattggtaa 1950
aactcactgt gatcaatatt ttatatatcat gcaaaaatgt ttAAAATAA 2000
aatgaaaatt gtatTTTTAA aaaaaaaaaa a 2031

<210> 2
<211> 2031
<212> DNA
<213> Human

<220>
<221> Human
<222> 1-2031
<223> Sequence source: complement to SEQ ID NO. 1

<400> 2

Page 2
81

ttttttttt ttttttaata caattttcat tttatTTTaa acatattttg 50
catgatataaa aaatattgtat cacagttagt tttaccaatt gttgttgcta 100
taaaaaatgaa tgcagaaaca atatTTTtag tgaaataaa ttatatagtc 150
attctttaa agaaatcaca agaggaaaat cttggctgtt tggtcattgg 200
cagaaaacca gtcttacaa gaggccttt gcagatgagc tccagtccat 250
ttctgtaaag ttatccacat gtttcaggaa agacagactt ttgtcttgt 300
tagcatggac ccacaagggt ctctctgttc acagacagtt ctactgtggc 350
aacacagttt tccataatag aaaatcgatg aactggaaaa cagtacaatc 400
ttagctcatt tgtggcttt tccaatatga agggacacaa cgacacactt 450
cttcactata tgaaaatcct ggctcacaag cttctggcg gttcgtacat 500
ggccgtctgt aacagctgca tgTTTgggtgg tggaacttct ttccTTTaa 550
caaggatttc tgtggacttt ctgtacattc acaggcacat ttccaggat 600
ttaggggttg atttctgggg caggttctt tacatacaca ctggcatgtg 650
tttcatcaa attctcggtt ggccccacat tggctggga agagttgtt 700
tttacagaca cactggcatg agtttctgtc tagttcttg tggggtccac 750
agctggcagg ccgaagcccc gctctgcaga cacactgaca ggtctcttca 800
tccagctcct tgTTTgggtcc acagatgtca tggaatccat ctgttgagtc 850
atctccagca tccgagggaaa acataaaatc ttccctgagcc aggcatctgc .900
agatgtgatt attccacatg taattgggtgg ggcaggtctt gttcgctgcc 950
tgacactgtg gtagtgtgc tggcagggaa cgtctaataa tggaatgaac 1000
ttgtctgtaa acatccagtt tagacatgca tcggcaggaa gtgtgattgg 1050
caaaactgat tgTTTactggt ttggggcctt gagagagagg cactgtaatt 1100
tcaaataacg tcttgctgag gtagctcggt ctgggtttca tgcactgcag 1150
cccctcacta ttgcagcaac ccccacatct gtagacggac acacatggag 1200
gtttaaagaa ggtgtttgtc gcgactccaa actcctccc cacatctata 1250
cacaccccgtggcatgca ttgagtcttt ctccactcat tatcaataact 1300
tttcaagatc tctgtattat aatgtgctgc agcaaattt atagtcttt 1350
ctgtccttga gttgaggttg gcctgttctc tgTTTatgttg ccagcctcct 1400
ttccttagct gacacttgta cattttccaa tattctgggt agagtagact 1450
catgagttca tctacactgg acacagacccg taactgctcc tccagatctt 1500
tgcttgata agccgtggcc tcgccccggt cgggctccgc gtccgagagg 1550

tcgagtcgg actcgaaggc ggccggcgac gcgggcgcct cgcgaggacc 1600
cgggagcagc acagcggcga gcagagaaca cgccacagag aagaagccca 1650
gcaagtgcac ggtggaaaggc ccgggggtgg gggaccggtc cgctggcggg 1700
ggcagggttg gggcgccggg cccccctgcg aggccgcggg cccctcctgg 1750
tccctctccc cccggctcct cccggcggacc cccctcctggc gagccggagg 1800
cgccgggagc gggtcgggg ctccgcgttc ccaactttgc agggcgccct 1850
cccagccagt accggggaaa ggcggcggt gtcaggtaaa agcctcacag 1900
gaaaccggac atccgagctc cccgcattcg gagccgcga ggtgaagcga 1950
gggcgaggaga ggacgccgccc gcggtccgcg tcggtgttagc ttttggaga 2000
ggcggggcgg gggacaccag aacacccgc g 2031

<210> 3
<211> 419
<212> PRT
<213> Human

<220>
<221> Human
<222> 1-419
<223> Sequence source: VRP

<400> 3
Met His Leu Leu Gly Phe Phe Ser Val Ala Cys Ser Leu Leu Ala
1 5 10 15
Ala Ala Leu Leu Pro Gly Pro Arg Glu Ala Pro Ala Ala Ala
20 25 30
Ala Phe Glu Ser Gly Leu Asp Leu Ser Asp Ala Glu Pro Asp Ala
35 40 45
Gly Glu Ala Thr Ala Tyr Ala Ser Lys Asp Leu Glu Glu Gln Leu
50 55 60
Arg Ser Val Ser Ser Val Asp Glu Leu Met Thr Val Leu Tyr Pro
65 70 75
Glu Tyr Trp Lys Met Tyr Lys Cys Gln Leu Arg Lys Gly Gly Trp
80 85 90
Gln His Asn Arg Glu Gln Ala Asn Leu Asn Ser Arg Thr Glu Glu
95 100 105
Thr Ile Lys Phe Ala Ala Ala His Thr Asn Thr Glu Ile Leu Lys
110 115 120
Ser Ile Asp Asn Glu Trp Arg Lys Thr Gln Cys Met Pro Arg Glu
125 130 135
Val Cys Ile Asp Val Gly Lys Glu Phe Gly Val Ala Thr Asn Thr
140 145 150
Phe Phe Lys Pro Pro Cys Val Ser Val Tyr Arg Cys Gly Gly Cys

155	160	165
Cys Asn Ser Glu Gly Leu Gln Cys Met	Asn Thr Ser Thr Ser Tyr	
170	175	180
Leu Ser Lys Thr Leu Phe Glu Ile Thr Val Pro Leu Ser Gln Gly		
185	190	195
Pro Lys Pro Val Thr Ile Ser Phe Ala Asn His Thr Ser Cys Arg		
200	205	210
Cys Met Ser Lys Leu Asp Val Tyr Arg Gln Val His Ser Ile Ile		
215	220	225
Arg Arg Ser Leu Pro Ala Thr Leu Pro Gln Cys Gln Ala Ala Asn		
230	235	240
Lys Thr Cys Pro Thr Asn Tyr Met Trp Asn Asn His Ile Cys Arg		
245	250	255
Cys Leu Ala Gln Glu Asp Phe Met Phe Ser Ser Asp Ala Gly Asp		
260	265	270
Asp Ser Thr Asp Gly Phe His Asp Ile Cys Gly Pro Asn Lys Glu		
275	280	285
Leu Asp Glu Glu Thr Cys Gln Cys Val Cys Arg Ala Gly Leu Arg		
290	295	300
Pro Ala Ser Cys Gly Pro His Lys Glu Leu Asp Arg Asn Ser Cys		
305	310	315
Gln Cys Val Cys Lys Asn Lys Leu Phe Pro Ser Gln Cys Gly Ala		
320	325	330
Asn Arg Glu Phe Asp Glu Asn Thr Cys Gln Cys Val Cys Lys Arg		
335	340	345
Thr Cys Pro Arg Asn Gln Pro Leu Asn Pro Gly Lys Cys Ala Cys		
350	355	360
Glu Cys Thr Glu Ser Pro Gln Lys Cys Leu Leu Lys Gly Lys Lys		
365	370	375
Phe His His Gln Thr Cys Ser Cys Tyr Arg Arg Pro Cys Thr Asn		
380	385	390
Arg Gln Lys Ala Cys Glu Pro Gly Phe Ser Tyr Ser Glu Glu Val		
395	400	405
Cys Arg Cys Val Pro Ser Tyr Trp Lys Arg Pro Gln Met Ser		
410	415	419

<210> 4
<211> 147
<212> PRT
<213> Human

<220>
<221> Human
<222> 1-147
<223> Sequence source: VEGE-121

<400> 4

Met	Asn	Phe	Leu	Leu	Ser	Trp	Val	His	Trp	Ser	Leu	Ala	Leu	Leu
1					5				10					15
Leu	Tyr	Leu	His	His	Ala	Lys	Trp	Ser	Gln	Ala	Ala	Pro	Met	Ala
					20			25					30	
Glu	Gly	Gly	Gly	Gln	Asn	His	His	Glu	Val	Val	Lys	Phe	Met	Asp
				35				40				45		
Val	Tyr	Gln	Arg	Ser	Tyr	Cys	His	Pro	Ile	Glu	Thr	Leu	Val	Asp
				50				55				60		
Ile	Phe	Gln	Glu	Tyr	Pro	Asp	Glu	Ile	Glu	Tyr	Ile	Phe	Lys	Pro
				65				70				75		
Ser	Cys	Val	Pro	Leu	Met	Arg	Cys	Gly	Gly	Cys	Cys	Asn	Asp	Glu
				80				85				90		
Gly	Leu	Glu	Cys	Val	Pro	Thr	Glu	Glu	Ser	Asn	Ile	Thr	Met	Gln
				95				100				105		
Ile	Met	Arg	Ile	Lys	Pro	His	Gln	Gly	Gln	His	Ile	Gly	Glu	Met
				110				115				120		
Ser	Phe	Leu	Gln	His	Asn	Lys	Cys	Glu	Cys	Arg	Pro	Lys	Lys	Asp
				125				130				135		
Arg	Ala	Arg	Gln	Glu	Lys	Cys	Asp	Lys	Pro	Arg	Arg			
				140				145			147			

<210> 5

<211> 149
<212> PRT
<213> Human

<220>

<221> Human
<222> 1-149
<223> Sequence source: PIGE-131

<400> 5

Met	Pro	Val	Met	Arg	Leu	Phe	Pro	Cys	Phe	Leu	Gln	Leu	Leu	Ala
1					5				10					15
Gly	Leu	Ala	Leu	Pro	Ala	Val	Pro	Pro	Gln	Gln	Trp	Ala	Leu	Ser
					20				25				30	
Ala	Gly	Asn	Gly	Ser	Ser	Glu	Val	Glu	Val	Val	Pro	Phe	Gln	Glu
				35				40				45		
Val	Trp	Gly	Arg	Ser	Tyr	Cys	Arg	Ala	Leu	Glu	Arg	Leu	Val	Asp
				50				55				60		
Val	Val	Ser	Glu	Tyr	Pro	Ser	Glu	Val	Glu	His	Met	Phe	Ser	Pro
				65				70				75		
Ser	Cys	Val	Ser	Leu	Leu	Arg	Cys	Thr	Gly	Cys	Cys	Gly	Asp	Glu
				80				85				90		
Asn	Leu	His	Cys	Val	Pro	Val	Glu	Thr	Ala	Asn	Val	Thr	Met	Gln

~~Page 6~~
90

95 100 105
Leu Leu Lys Ile Arg Ser Gly Asp Arg Pro Ser Tyr Val Glu Leu
110 115 120
Thr Phe Ser Gln His Val Arg Cys Glu Cys Arg Pro Leu Arg Glu
125 130 135
Lys Met Lys Pro Glu Arg Cys Gly Asp Ala Val Pro Arg Arg
140 145 149

<210> 6
<211> 299
<212> DNA
<213> Unknown

<220>
<223> Sequence source: EST

<220>
<221> unsure
<222> 74
<223> unknown base

<400> 6
ccgtctacag atgtgggggt tgctgcaata gtgaggggct gcagtgcatt 50
aacaccagca cgagctacct cagnaagacg ttatggaaa ttacagtgcc 100
tctctctcaa ggccccaac cagtaacaat cagtttgcc aatcacactt 150
cctgccatg catgtctaaa ctggatgtt acagacaagt tcattccatt 200
attagacgtt ccctgccagc aacactacca cagtgtcagg cagcgaacaa 250
gacctgcccc accaattaca tgtgaaataa tcacatctgc agatgcctg 299

<210> 7
<211> 50
<212> DNA
<213> Artificial sequence

<220>
<223> Sequence source: synthetic probe

<400> 7
ctgggtttca tgcactgcag cccctcacta ttgcagcaac ccccacatct 50

<210> 8
<211> 50
<212> DNA
<213> Artificial sequence

<220>
<223> Sequence source: synthetic probe

<400> 8
gcatctgcag atgtgattat tccacatgta attgggtggg caggtcttgt 50

<210> 9
<211> 8
<212> PRT

<213> Human

<220>

<221> Human

<222> 1-8

<223> Sequence source: Flt4 partial sequence

<400> 9

Tyr Ser Met Thr Pro Pro Thr Leu
1 5 8

<210> 10

<211> 9

<212> PRT

<213> Human

<220>

<221> Human

<222> 1-9

<223> Sequence source: Flt4 partial sequence

<400> 10

Ser Leu Arg Arg Arg Gln Gln Gln Asp
1 5 9

<210> 11

<211> 40

<212> PRT

<213> Unknown

<220>

<223> Sequence source: Herpes glycoprotein D partial sequence

<400> 11

Lys Tyr Ala Leu Ala Asp Ala Ser Leu Lys Met Ala Asp Pro Asn
1 5 10 15

Arg Phe Arg Gly Lys Asp Leu Pro Val Leu Asp Gln Leu Leu Glu
20 25 30

Gly Gly Ala Ala His Tyr Ala Leu Leu Pro
35 40

<210> 12

<211> 13

<212> PRT

<213> Human

<220>

<221> Human

<222> 1-13

<223> Sequence source: partial VRP sequence

<400> 12

Gly Pro Arg Glu Ala Pro Ala Ala Ala Ala Phe Glu
1 5 10 13

Page 8
92

HSP
JMP

Application No.: _____

NOTICE TO COMPLY WITH REQUIREMENTS FOR PATENT APPLICATIONS CONTAINING NUCLEOTIDE SEQUENCE AND/OR AMINO ACID SEQUENCE DISCLOSURES

The nucleotide and/or amino acid sequence disclosure contained in this application does not comply with the requirements for such a disclosure as set forth in 37 C.F.R. 1.821 - 1.825 for the following reason(s):

- 1. This application clearly fails to comply with the requirements of 37 C.F.R. 1.821-1.825. Applicant's attention is directed to these regulations, published at 1114 OG 29, May 15, 1990 and at 55 FR 18230, May 1, 1990.
- 2. This application does not contain, as a separate part of the disclosure on paper copy, a "Sequence Listing" as required by 37 C.F.R. 1.821(c).
- 3. A copy of the "Sequence Listing" in computer readable form has not been submitted as required by 37 C.F.R. 1.821(e).
- 4. A copy of the "Sequence Listing" in computer readable form has been submitted. However, the content of the computer readable form does not comply with the requirements of 37 C.F.R. 1.822 and/or 1.823, as indicated on the attached copy of the marked-up "Raw Sequence Listing."
- 5. The computer readable form that has been filed with this application has been found to be damaged and/or unreadable as indicated on the attached CRF Diskette Problem Report. A Substitute computer readable form must be submitted as required by 37 C.F.R. 1.825(d).
- 6. The paper copy of the "Sequence Listing" is not the same as the computer readable form of the "Sequence Listing" as required by 37 C.F.R. 1.821(e).
- 7. Other: *Diskette submitted was blank*

Applicant Must Provide:

- An initial or substitute computer readable form (CRF) copy of the "Sequence Listing".
- An initial or substitute paper copy of the "Sequence Listing", as well as an amendment directing its entry into the specification.
- A statement that the content of the paper and computer readable copies are the same and, where applicable, include no new matter, as required by 37 C.F.R. 1.821(e) or 1.821(f) or 1.821(g) or 1.825(b) or 1.825(d).

For questions regarding compliance to these requirements, please contact:

For Rules Interpretation, call (703) 308-4216

For CRF Submission Help, call (703) 308-4212

For PatentIn software help, call (703) 308-6856

PLEASE RETURN A COPY OF THIS NOTICE WITH YOUR RESPONSE