

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129
Název projektu	SŠPU Opava – učebna IT
Typ šablony klíčové aktivity:	III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (20 vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	SPS II
Popis sady vzdělávacích materiálů:	Stavba a provoz strojů II, 2. ročník
Sada číslo:	C-07
Pořadové číslo vzdělávacího materiálu:	04
Označení vzdělávacího materiálu: (pro záznam v třídní knize)	VY_32_INOVACE_C-07-04
Název vzdělávacího materiálu:	Kolíky a čepy
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Ing. Hynek Palát

Kolíky a čepy

Kolíkové spoje jsou rozebíratelné. Používají se především pro spojování strojních součástí při současném zajištění jejich vzájemné polohy. Znamená to, že dva strojní dílce spojené kolíkem nemají možnost vzájemného posunutí ani pootočení. Válcové i kuželové kolíky tedy slouží k ustavení přesné polohy spojovaných součástí. Po demontáži a opětovné montáži jsou součásti opět v původní poloze.

Rozdělení kolíků

Na obrázku je v pořadí zleva: válcový kolík, kuželový kolík a pružný kolík

- Válcové kolíky se používají nejčastěji. Díra pro ně musí být do obou spojovaných dílců zhotovena současně na jedno upnutí a musí být přesná. To znamená, že se musí nejprve předvrtat vrtákem s o něco menším průměrem, poté vyhrubovat výhrubníkem a nakonec přesně dokončit výstružníkem.
- Kuželové kolíky mají stejnou funkci jako kolíky válcové. Protože však mají kuželový tvar v poměru
 1:50, jsou samosvorné. Nevypadnou ani při otřesech. I zde je nutné otvory předvrtat, vyhrubovat a vystružit.
- Pružné kolíky jsou duté, po straně rozříznuté a ve volném stavu mají o něco větší průměr než díra. Po vsazení do díry vytvoří tlak na její vnitřní stěnu, což je zajistí proti vypadnutí. Díry se nevystružují.
- Rýhované kolíky jsou na svém povrchu opatřeny několika rýhami, které při vražení kolíku do otvoru vyvozují tlak na jeho stěny a zabraňují vypadnutí. Díra se nevystružuje.
- Ke kolíkům přiřazujeme i hřeby, které se používají např. pro upevňování výrobních štítků na stěnu stroje apod.

Rýhovaný kolík

Výpočet kolíkových spojů

Kolíkové spoje v zásadě vždy kontrolujeme na smyk a na otlačení. Při kontrole na otlačení bereme v úvahu nejmenší otlačovanou plochu. Například pro provedení na obrázku platí:

• kontrola na smyk (střih):

$$\tau_S = \frac{F}{S} \le \tau_{S \, DOV}$$

$$\tau_S = \frac{4F}{\pi d^2} \le \tau_{SDOV}$$

• kontrola na otlačení:

$$p_1 = \frac{F}{d \cdot a} \le p_{DOV}$$

$$p_2 = \frac{F}{d \cdot b} \le p_{DOV}$$

• zde platí rozdělení smykové síly na dvě plochy. Jinak je výpočet stejný jako u předchozího provedení:

$$\tau_S = \frac{2F}{\pi d^2} \le \tau_{SDOV}$$

Příčný kolík aplikovaný dle níže uvedeného obrázku musíme dimenzovat podle tohoto výpočtu:

kontrola na smyk (střih)

$$\tau_S = \frac{F}{S} \le \tau_{SDOV}$$

Zde musíme dosadit za sílu F:

$$M_k = F \cdot D \to F = \frac{M_k}{D}$$

takže výsledný vzorec pro smyk bude ve tvaru:

$$\tau_{S} = \frac{\frac{M_{k}}{D}}{\frac{\pi \cdot d^{2}}{4}} = \frac{4M_{k}}{\pi \cdot D \cdot d^{2}} \le \tau_{S \, DOV}$$

• tlak ve styčných plochách je pak nutné získat z následující úvahy:

$$M_k = F' \cdot \frac{2}{3}D$$

kam je třeba dosadit:

$$p_{st\check{r}} = \frac{F'}{S'} \rightarrow F' = S' \cdot p_{st\check{r}} = \frac{D}{2} \cdot d \cdot \frac{p_{max}}{2}$$

Pak získáme výsledný tvar:

$$M_k = \frac{D}{2} \cdot d \cdot \frac{p_{max}}{2} \cdot \frac{2}{3}D \rightarrow p_{max} = \frac{6M_k}{D^2 \cdot d} \le p_{DOV}$$

Když klasický válcový nebo kuželový kolík aplikujeme dle následujícího obrázku, získáme **spárový kolík**. Ten je taky nutné kontrolovat na smyk i otlačení, funkční síly i plochy jsou zde ale odlišné.

kontrola na smyk (střih)

$$\tau_S = \frac{F}{S} \le \tau_{S \, DOV}$$

Když za F dosadíme:

$$F = \frac{M_k}{\frac{D}{2}} = \frac{2M_k}{D}$$

dostaneme výsledný tvar:

$$\tau_S = \frac{2M_k}{D \cdot d \cdot l} \le \tau_{S \ DOV}$$

kontrola na otlačení

$$p = \frac{F}{S'} = \frac{\frac{2M_k}{D}}{l \cdot \frac{d}{2}} = \frac{4M_k}{D \cdot d \cdot l} \le p_{DOV}$$

Výpočet kolíků (čepů) na smyk a ohyb

Je-li mezi spojovanými díly vůle, je pak kolík namáhán na smyk (střih) a ohyb současně. Při jeho dimenzování musíme vypočítat redukované napětí, které pak porovnáme s dovoleným ohybovým napětím materiálu. Nakonec provedeme kontrolu kolíku na otlačení.

 Nejsložitější je odvození výpočtu ohybového napětí. Kolík přitom pokládáme za nosník se spojitým zatížením.

Nakonec provedeme zjednodušení do podoby:

Základní pevnostní podmínka pro ohyb kolíku má tvar:

$$\sigma_o = \frac{M_o}{W_o} \le \sigma_{o \ DOV}$$

Za ohybový moment dosadíme:

$$M_o = \frac{F}{2} \cdot \frac{l}{2} - \frac{F}{2} \cdot \frac{b}{4}$$

$$M_o = \frac{F}{8} \cdot (2l - b)$$

$$M_o = \frac{F}{8} \cdot (2a + b)$$

Za modul průřezu dosadíme:

$$W_o = \frac{\pi \cdot d^3}{32}$$

Pevnostní podmínka pro ohyb pak dostane tvar:

$$\sigma_o = \frac{M_o}{W_o} = \frac{\frac{F}{8} \cdot (2a+b)}{\frac{\pi \cdot d^3}{32}} = \frac{4F \cdot (2a+b)}{\pi \cdot d^3} \le \sigma_{o \ DOV}$$

• Následuje výpočet kolíku na smyk (střih):

$$\tau_S = \frac{F}{\frac{\pi d^2}{4} \cdot 2} = \frac{2F}{\pi \cdot d^2} \le \tau_{SDOV}$$

• Třetím krokem je výpočet redukovaného napětí:

$$\sigma_{RED} = \sqrt{\sigma_o^2 + 3\tau_S^2} \le \sigma_{o\ DOV}$$

Pozn.: Redukované napětí vyjadřuje vzájemný vliv ohybového a smykového namáhání kolíku a je vždy nepříznivější než samotné napětí ohybové nebo smykové.

Čepové spoje

Nejčastěji nalezneme v kloubových spojích různých mechanismů. Jsou to vlastně poněkud větší válečkové kolíky. Někdy jsou opatřeny hlavou. Jejich hlavní provedení jsou na následujícím obrázku:

Při návrhu čepů dodržujeme určité zásady. Díry pro čepy jsou vždy lícovány. Obvyklá uložení čepů v dírách jsou D11/h11, D9/h8 nebo H7/f8. Z důvodu dobré otěruvzdornosti je třeba čepy cementovat a kalit. Proto se vyrábějí zejména z cementačních ocelí – např. 14 220 nebo 12 020. Čepy je zpravidla potřeba zajistit proti vypadnutí. Způsoby zajištění jsou např. závlačkou, pojistným kroužkem, příložkou a šroubem apod.

Na obrázku jsou způsoby zajištění čepů proti samovolnému vypadnutí. Vlevo je pomocí závlaček, uprostřed pomocí pojistného kroužku a vpravo pomocí šroubu a příložky.

Pevnostní výpočty čepů jsou identické s výpočty kolíků v předchozí kapitole.

Opakovací otázky a úkoly

- Jaký je rozdíl v použití kolíků a čepů a jaké druhy kolíků a čepů znáš?
- Proveď odvození výpočtu kolíku namáhaného na smyk a otlačení.
- Proveď odvození výpočtu kolíku namáhaného smykem a ohybem.

Seznam použité literatury

- KŘÍŽ, R. a kol.: Stavba a provoz strojů I, Části strojů. Praha: SNTL, 1977.
- LEINVEBER, J. VÁVRA, P.: Strojnické tabulky. 3. doplněné vydání. Praha: Albra, 2006. ISBN 80-7361-033-7.