CSGE602055 Operating Systems CSF2600505 Sistem Operasi Week 08: Scheduling

Rahmat M. Samik-Ibrahim (ed.)

University of Indonesia

https://os.vlsm.org/
Always check for the latest revision!

REV202 24-Apr-2019

Operating Systems 2019-1

A (Rm 3114) [Tu/Th 10-12] — B (Rm 3114) [Tu/Th 13-15] — C (Rm 3114) [Tu/Th 16-18] — D (Rm 2401) [Tu/Th 10-12] — E (Rm 2306) [Tu/Th 13-15]

	Week	Schedule	Topic	OSC10
	Week 00	07 Feb - 13 Feb 2019	Overview 1, Virtualization & Scripting	Ch. 1, 2, 18.
	Week 01	14 Feb - 20 Feb 2019	Overview 2, Virtualization & Scripting	Ch. 1, 2, 18.
	Week 02	21 Feb - 27 Feb 2019	Security, Protection, Privacy,	Ch. 16, 17
			& C-language	
	Week 03	28 Feb - 06 Mar 2019	File System & FUSE	Ch. 13, 14, 15
	Week 04	Veek 04 12 Mar - 18 Mar 2019 Addressing, Shared Lib, & I		Ch. 9
	Week 05	19 Mar - 25 Mar 2019	Virtual Memory	Ch. 10
	Mid-Term Tue, 26 Mar 2019 13:00 - 15:30 — MidTe		13:00 - 15:30 — MidTerm (UTS)	
	Week 06	/eek 06		Ch. 3, 4
	Week 08 16 Apr - 22 Apr 2019 Sc		Synchronization & Deadlock	Ch. 6, 7, 8
			Scheduling + W06/W07	Ch. 5
			Storage, Firmware, Bootloader, & Systemd	Ch. 11
	Week 10	/eek 10 30 Apr - 06 May 2019 I/O & Programming		Ch. 12
	Reserved	07 May - 17 May 2019		
	Final	Tue, 21 May 2019	13:00 - 15:00 — Final (UAS)	This schedule is
	Extra	27 Jun 2019	Extra assignment confirmation	subject to change

STARTING POINT — https://os.vlsm.org/

☐ **Text Book** — Any recent/decent OS book. Eg. (**OSC10**) Silberschatz et. al.: **Operating System Concepts**, 10th Edition, 2018. See also http://codex.cs.yale.edu/avi/os-book/OS10/. Weekly Encode your **QRC** with size about 5cm \times 5cm (ca. 400 \times 400 pixels): "OS191 CLASS ID SSO-ACCOUNT Your-Full-Name" Write your Memo (with QRC) every week. See also Assignment#0: Generate your QR Code. Login to badak.cs.ui.ac.id via kawung.cs.ui.ac.id for at least 10 minutes every week. Copy all weekly demo folders into your own badak home directory. Eg.: cp -r /extra/Demos/* ~/mydemos/ Resources All In One — BADAK.cs.ui.ac.id:///extra/(FASILKOM only!). Download Slides and Demos from GitHub.com https://github.com/UI-FASILKOM-OS/SistemOperasi/ Problems — https://rms46.vlsm.org/2/: 195.pdf (W00), 196.pdf (W01), 197.pdf (W02), 198.pdf (W03), 199.pdf (W04), 200.pdf (W05), 201.pdf (W06), 202.pdf (W07), 203.pdf (W08), 204.pdf (W09), 205.pdf (W10).

Agenda

- Start
- Schedule
- 3 Agenda
- 4 Week 08
- Scheduling
- 6 CPU Burst: How Long (When)?
- MultiProcessor Schedulling
- The Two State Model
- The End

Week 08 Scheduling: Topics¹

- Preemptive and non-preemptive scheduling
- Schedulers and policies
- Processes and threads
- Deadlines and real-time issues

¹Source: ACM IEEE CS Curricula 2013

Week 08 Scheduling: Learning Outcomes¹

- Compare and contrast the common algorithms used for both preemptive and non-preemptive scheduling of tasks in operating systems, such as priority, performance comparison, and fair-share schemes. [Usage]
- Describe relationships between scheduling algorithms and application domains. [Familiarity]
- Discuss the types of processor scheduling such as short-term, medium-term, long-term, and I/O. [Familiarity]
- Describe the difference between processes and threads. [Usage]
- Compare and contrast static and dynamic approaches to real-time scheduling. [Usage]
- Discuss the need for preemption and deadline scheduling. [Familiarity]
- Identify ways that the logic embodied in scheduling algorithms are applicable to other domains, such as disk I/O, network scheduling, project scheduling, and problems beyond computing. [Usage]

¹Source: ACM IEEE CS Curricula 2013

Week 08: Scheduling

- Reference: (OSC10-ch05 demo-w08)
- Scheduling
 - Basic Concepts
 - WARNING: It's just a BURST
 - IO Burst
 - CPU Burst
 - CPU Burst vs. Freq (See next slide)
 - Criteria: Utilization, throughput, {turnaround, waiting, response} time.
 - (Burst) Algorithm
 - FCFS, SJF, RR, Priority, Multilevel Queue.
 - Preemptive / Non-preemptive (Cooperative) Scheduling
 - I/O Bound / CPU Bound Processes
- Thread Scheduling
 - User-level \rightarrow Process-Contention Scope (PCS): many to many/one.
 - $\bullet \ \, \mathsf{Kernel\text{-}level} \to \mathsf{System\text{-}Contention} \ \, \mathsf{Scope} \ (\mathsf{SCS}) \text{: one to one}.$
- Standard Linux Scheduling
 - Completely Fair Scheduler (CFS).
 - Real Time Scheduling.

CPU Burst: How Long (When)?

©2013 Silberschatz, Galvin and Gagne Operating System Concepts – 9th Edition

MultiProcessor Schedulling

- Asymmetric Multiprocessing vs. Symmetric Multiprocessing (SMP).
- Processor Affinity: soft vs. hard.
- NUMA: Non-Uniform Memory Access.
- Load Balancing
- Multicore Processors
- Real Time Schedulling: Soft vs. Hard.
- Big O Notation
 - O(1)
 - O(log N)
 - O(N)

The Two State Model

- CPU State I/O State CPU State . . .
 - n: processes in memory.
 - p: I/O time fraction.
 - p^n : probability n processes waiting for I/O.
 - $1 p^n$: CPU utilization of n processes.
 - $\left[\frac{(1-p^n)}{n}\right]$: CPU utilization of ONE processes.
- Example: $p = 60\% \Rightarrow$ CPU Utilization Per Process: $\left\lfloor \frac{1 (60\%)^n}{n} \right\rfloor$

CPU Utilization	Multiprogramming (%)					
N	1	2	3	4	5	
Per Process	40	32	26	21	18	

For 5 concurrent processes:
 If total time is 100 seconds; for each processs, the CPU time will be 18 seconds.

The End

- \square This is the end of the presentation.
- extstyle ext
- This is the end of the presentation.