Obliczenia

Pomiary

Najmniejsza działka skali linijki wykorzystanej do zmierzenia wysokości lustra wody h jest równa 1 mm. Przeważnie przyjmuje się, że dokładność jest równa najmniejszej działce skali, jednak skorygowaliśmy tę ocenę w górę i subiektywnie oceniliśmy dokładność Δh jako równą 1 cm. W naszej ocenie uwzględniliśmy sposób odczytu z podziałki. Dokładne zmierzenie wysokości, na której zachodzi rezonans było trudne, ponieważ poziom lustra wody cały czas się zmieniał, a obserwowane na oscyloskopie również nie pozwalały precyzyjnie wyznaczyć konkretnej wysokości, na której pojawiał się rezonans. Niepewność typu B wysokości obliczyliśmy w następujący sposób:

$$\Delta h = 1 \text{ cm}$$

$$u_b(h) = \frac{\Delta h}{\sqrt{3}}$$

$$u_b(h) \approx 0.29 \text{ cm}$$

Niepewność typu A uśrednionej wysokości lustra wody obliczyliśmy jako maksymalna różnice między wartością średnią a kolejnymi odczytami:

$$u_a(h_{sr}) = \left| h_{sr} - h_j \right|_{\text{max}}$$

$$dla j = 1, 2, 3$$

Niepewność całkowitą wysokości lustra wody obliczyliśmy w następujący sposób:

$$u(h_{sr}) = \sqrt{u_a^2(h_{sr}) + u_b^2(h)}$$

f, H	Z			1163	
	1	2	3	h _{sr} , cm	u(h _{sr}), cm
h ₁ , cm	22.0	23.0	23.0	22.7	0.9
h ₂ , cm	37.0	38.0	37.0	37.3	0.9
h ₃ , cm	52.0	51.5	52.0	51.8	0.7
h ₄ , cm	67.0	67.0	68.0	67.3	0.9
h ₅ , cm	81.0	81.5	81.8	81.4	0.7

f, Hz		1515				
	1	2	3	h _{sr} , cm	u(h _{sr}), cm	
h ₁ , cm	17.4	18.0	17.0	17.5	0.8	
h ₂ , cm	29.0	29.0	28.5	28.8	0.7	
h ₃ , cm	40.5	40.0	39.5	40.0	0.8	
h ₄ , cm	51.0	52.0	51.0	51.3	0.9	
h ₅ , cm	63.0	63.0	62.5	62.8	0.7	

f, Hz		1898				
	1	2	3	h _{sr} , cm	u(h _{sr}), cm	
h ₁ , cm	22.5	23.0	22.5	22.7	0.7	
h ₂ , cm	32.0	32.5	32.0	32.2	0.7	
h ₃ , cm	41.5	40.5	40.0	40.7	1.0	
h ₄ , cm	50.0	50.5	50.0	50.2	0.7	
h ₅ , cm	59.0	58.0	59.5	58.8	1.0	
h ₆ , cm	69.0	68.5	68.0	68.5	0.8	
h ₇ , cm	77.5	77.0	77.0	77.2	0.7	
h ₈ , cm	87.5	86.0	86.5	86.7	1.0	

Obliczenie prędkości dźwięku

Różnice odległości między kolejnymi rezonansami

$$\Delta h = h_{i+1} - h_i$$

Niepewności różnicy między kolejnymi rezonansami z prawa propagacji niepewności

$$u(y) = \sqrt{\sum_{i=1}^{k} \left(\frac{\partial y}{\partial x_i} u(x_i)\right)^2}$$

$$u(\Delta h) = \sqrt{\left(\frac{\partial \Delta h}{\partial h_{i+1}}u(h_{i+1})\right)^2 + \left(\frac{\partial \Delta h}{\partial h_i}u(h_i)\right)^2} = \sqrt{\left(u(h_{i+1})\right)^2 + \left(-u(h_i)\right)^2}$$

Prędkość dźwięku

$$c = 2f\Delta h$$

Niepewność prędkości dźwięku z prawa propagacji niepewności

$$u(c) = \sqrt{\left(\frac{\partial c}{\partial \Delta h}u(\Delta h)\right)^2 + \left(\frac{\partial c}{\partial f}u(f)\right)^2}$$

Uznaliśmy, że $u(f) \approx 0$, ponieważ częstotliwość fali dźwięku była mierzona znacznie dokładniej niż wysokość lustra wody i nie miałaby istotnego wpływu na niepewność wyznaczenia prędkości dźwięku.

$$u(c) = \sqrt{\left(\frac{\partial c}{\partial \Delta h} u(\Delta h)\right)^2} = \sqrt{\left(2f \cdot u(\Delta h)\right)^2}$$

wysokość lustra wody i nie miałaby istotnego wpływu na niepewność wyznaczenia prędkości dźwięku					
$u(c) = \sqrt{\left(\frac{\partial c}{\partial \Delta h} u(\Delta h)\right)^2} = \sqrt{\left(2\right)^2}$		1991	S. I.		
f, Hz		1163			
	Δh, cm	u(Δh), cm	c, m/s	u(c), m/s	
$\Delta h = h_{2sr}$ - h_{1sr} , cm	14.7	1.2	341	29	
$\Delta h = h_{3sr}$ - h_{2sr} , cm	14.5	1.1	337	26	
$\Delta h = h_{4sr}$ - h_{3sr} , cm	15.5	1,1	361	26	
$\Delta h = h_{5sr}$ - h_{4sr} , cm	14.1	1.1	328	27	

f, Hz	1/1		1515	
	Δh, cm	u(Δh), cm	c, m/s	u(c), m/s
$\Delta h = h_{2sr}$ - h_{1sr} , cm	11.4	1.0	344	31
$\Delta h = h_{3sr}$ - h_{2sr} , cm	11.2	1.0	338	31
$\Delta h = h_{4sr} - h_{3sr}$, cm	11.3	1.2	343	35
$\Delta h = h_{5sr} - h_{4sr}$, cm	11.5	1.1	348	33

f, Hz	1898			
	Δh, cm	u(∆h), cm	c, m/s	u(c), m/s
$\Delta h = h_{2sr} - h_{1sr}$, cm	9.5	0.9	361	36
$\Delta h = h_{3sr} - h_{2sr}$, cm	8.5	1.2	323	46
$\Delta h = h_{4sr} - h_{3sr}$, cm	9.5	1.2	361	46
$\Delta h = h_{5sr} - h_{4sr}$, cm	8.7	1.2	329	46
$\Delta h = h_{6sr} - h_{5sr}$, cm	9.7	1.3	367	48
$\Delta h = h_{7sr} - h_{6sr}$, cm	8.7	1.0	329	38
$\Delta h = h_{8sr}$ - h_{7sr} , cm	9.5	1.2	361	46

Średnią ważoną prędkości dźwięku obliczyliśmy korzystając ze wzoru:

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i w_i}{\sum_{i=1}^{N} w_i}, \quad \text{gdzie} \quad w_i = \frac{1}{u^2(x_i)}, \quad u(\bar{x}) = \sqrt{\frac{1}{\sum_{i=1}^{N} w_i}}$$

dla naszych danych:

$$\bar{c} = \frac{\sum_{i=1}^{15} c_i w_i}{\sum_{i=1}^{15} w_i}, \quad \text{gdzie} \quad w_i = \frac{1}{u^2(c_i)}, \quad u(\bar{c}) = \sqrt{\frac{1}{\sum_{i=1}^{15} w_i}}$$

$$\bar{c} = 343.8 \ \frac{m}{s}$$

$$u(\bar{c}) = 8.7 \frac{\text{m}}{\text{s}}$$

Zapis skrócony:

$$c = 0.3438(87) \frac{\text{km}}{\text{s}}$$

Test zgodności z wartością tablicowa prędkości dźwięku dla warunków normalnych.

OZOSIISIIZIK

Warunek zgodności pomiaru z wartością dokładną

$$|y - y_0| < U(y)$$

Niepewność rozszerzona

$$U(y) = k \cdot u(y)$$

$$k = 2$$

$$U(c) = 17.4 \frac{\text{m}}{\text{s}}$$

Tabela 1 Porównanie wyniku z wartością tablicową prędkości dźwięku dla warunków normalnych

otrzymany wynik	wartość tablicowa
$c = 344 \pm 17 \frac{\text{m}}{\text{s}}$	$c = 331 \frac{\text{m}}{\text{s}}$

Tabela 2 Porównanie wyniku z wartością tablicową prędkości dźwięku dla panujących w laboratorium temperatury ciśnienia

otrzymany wynik	wartość tablicowa
$c = 344 \pm 17 \frac{\text{m}}{\text{s}}$	$c = 343 \frac{\text{m}}{\text{s}}$

Otrzymany wynik jest zgodny z wartościami tablicowymi.

Wnioski

Metodą rezonansową Quincky'ego można prawidłowo wyznaczyć prędkość dźwięku na podstawie zmian odległości między kolejnymi rezonansami. Mimo, że trudno było dokładnie ustawić wysokość lustra wody, dla której zachodzi rezonans, dokładność pomiarów okazała się zadowalająca. Dzięki eksperymentowi zrozumieliśmy praktyczne aspekty teorii dźwięku i zjawisk akustycznych. Podczas laboratorium dostrzegliśmy jak ważna podczas przeprowadzania niektórych eksperymentów jest

ojihilo compressionali situliko situlik