GAJ/EBC/CF/CMR/ARP

Cálculo III (521227) Práctica 12

Teorema de Gauss.

- 1. Utilizar el Teorema de la divergencia para calcular la integral de superficie $\iint_S \vec{F} \cdot \vec{n} d\vec{S}$ para los siguientes \vec{F} y S, donde S esta orientada de forma que la normal apunta hacia afuera.
 - (a) $\vec{F}(x,y,z) = (x^2,z,-y)$, y S es la esfera unitaria $x^2 + y^2 + z^2 = 1$,
 - (b) $\vec{F}(x,y,z) = (x,y,z)$ y S es la frontera de la región $x^2 + y^2 \le z \le \sqrt{2 x^2 y^2}$.
 - (c) $\vec{F}(x,y,z) = (x^2,y^2,z^2)$ y S es la frontera del cubo $0 \le x,y,z \le a$.
 - (d) $\vec{F}(x,y,z) = (\frac{x}{a^2}, \frac{y}{b^2}, \frac{z}{c^2})$ y S es la frontera del elipsoide $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}$.
 - (e) $\vec{F}(x,y,z) = (x^2, -2xy, z^2)$ y $S = \{(x,y,z) \colon (x,y) \in W\}$, donde W es cualquier región en el plano con frontera de clase C^1 .

Teorema de Stokes.

- 2. Sea $\vec{F}(x,y,z) = (x(x^2+y^2+z^2),y(x^2+y^2+z^2),z(x^2+y^2+z^2))$ y S la esfera de radio a con centro en el origen. Calcular $\iint_S \vec{F} \cdot \vec{n} d\vec{S}$, directamente y utilizando el Teorema de la Divergencia.
- 3. Utilizar el Teorema de Stokes para calcular $\int_C (x-z)dx + (x+y)dy + (y+z)dz$ donde C es la curva dada por la intersección del cilindro $x^2 + y^2 = 1$ y el plano z = y, orientado en sentido anti horario visto desde arriba.
- 4. Utilizar el Teorema de Stokes para calcular $\int_C (y) dx + (y^2) dy + (x+2z) dz$ donde C es la curva dada por la intersección de la esfera $x^2 + y^2 + z^2 = a^2$ y el plano z + y = a, orientado en sentido anti horario visto desde arriba.
- 5. Calcular $\iint_S (\nabla \times \vec{F}) \cdot \vec{n} d\vec{S}$ donde $\vec{F}(x,y,z) = (y,x-2x^3z,xy^3)$ y S es la parte de la esfera $x^2+y^2+z^2=a^2$ arriba del plano x,y.
- 6. Calcular $\iint_S (\nabla \times \vec{F}) \cdot \vec{n} d\vec{S}$ donde $\vec{F}(x,y,z) = (2x,2y,x^2+y^2+z^2)$ y S es la parte del elipsoide $\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{27} = 1$ debajo del plano x,y.
- 7 Sea $\vec{F} = (\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}, 0)$
 - (a) Verificar que $\nabla \times \vec{F} = 0$.
 - (b) Verificar, directamente de la definición, que $\int_C \vec{F} \cdot d\vec{r} = 2\pi$, donde C es cualquier circulo horizontal con centro sobre el eje z.
 - (c) ¿Por qué los incisos anteriores no contradicen el Teorema de Stokes?