Initial length of the square-shaped steel plate edge	L_{1}	[m]
Final length of the square-shaped steel plate edge	L_2	[m]
Initial area of the square-shaped steel plate	A_1	$[m^2]$
Final area of the square-shaped steel plate	A_2	$[m^2]$
Initial temperature of the steel plate	T_1	[°C]
Final temperature of the steel plate	T_2	[°C]
Percentage of area increase	AI	[%]
Coefficient of thermal expansion	α	[1/K]

Formulas:

$$L_2 = L_1 + \alpha L_1 \Delta T$$

$$A = L^2$$

$$AI = \frac{A_2 - A_1}{A_1} \cdot 100 \%$$

Solution:

$$AI = \frac{A_2 - A_1}{A_1} \cdot 100 \%$$

Substitute expressions

$$AI = \frac{L_2^2 - L_1^2}{L_1^2}$$

Use algebra

$$AI = \frac{L_2^2}{L_1^2} - 1 = \left(\frac{L_2}{L_1}\right)^2 - 1$$

Substitute expressions

$$AI = \left(\frac{L_1 + \alpha L_1 \Delta T}{L_1}\right)^2 - 1$$

Use algebra

$$AI = (1 + \alpha \Delta T)^2 - 1 = 1 + 2\alpha \Delta T + (\alpha \Delta T)^2 - 1 = 2\alpha \Delta T + (\alpha \Delta T)^2$$

 $(\alpha \Delta T)^2$ can be omitted as it is very small

$$AI = 2\alpha\Delta T$$

Initial pressure of the car tire	p_1	[Pa]
Final pressure of the car tire	p_2	[Pa]
Initial temperature inside the car tire	T_1	[K]
Final temperature inside the car tire	T_2	[K]
Initial molar amount of gas inside the car tire	N_1	[mol]
Final molar amount of gas inside the car tire	N_2	[mol]
Initial volume of gas inside the car tire	V_1	$[m^3]$
Final volume of gas inside the car tire	V_2	[m ³]
Universal gas constant	R	[J/(mol K)]

Constants:

$$R = J/(mol K)$$

Unit conversions:

$$T = (T_{\text{CEL}} + 273.15) \text{ K}$$

Formulas:

$$p_1V_1 = N_1RT_1$$

$$p_2V_2 = N_2RT_2$$

$$V_1 = V_2$$

$$N_1 = N_2$$

Solution:

$$p_1V_1 = N_1RT_1$$
solve for V_1/N_1

$$\frac{V_1}{N_1} = \frac{RT_1}{p_1}$$

$$p_2V_2 = N_2RT_2$$
solve for V_2/N_2

$$\frac{V_2}{N_2} = \frac{RT_2}{p_2}$$
substitute expressions

$$\frac{V_2}{N_2} = \frac{V_1}{N_1} = \frac{RT_1}{p_1} = \frac{RT_2}{p_2}$$

Solve for p_2

$$p_2 = \frac{T_2}{T_1} p_1$$

Initial pressure of the car tire	p_1	[Pa]
Final pressure of the car tire	p_2	[Pa]
Initial temperature inside the car tire	T_1	[K]
Final temperature inside the car tire	T_2	[K]
Initial molar amount of gas inside the car tire	N_1	[mol]
Final molar amount of gas inside the car tire	N_2	[mol]
Initial volume of gas inside the car tire	V_1	$[m^3]$
Final volume of gas inside the car tire	V_2	$[m^3]$
Universal gas constant	R	[J/(mol K)]

Constants:

$$R = J/(mol K)$$

Unit conversions:

$$T = (T_{\text{CEL}} + 273.15) \text{ K}$$

Formulas:

$$p_1V_1 = N_1RT_1$$

$$p_2V_2 = N_2RT_2$$

$$N_1 = N_2$$

Solution:

$$p_1 V_1 = N_1 R T_1$$

solve for N_1R

$$N_1 R = \frac{p_1 V_1}{T_1}$$

$$p_2V_2 = N_2RT_2$$

solve for N_2R

$$N_2 R = \frac{p_2 V_2}{T_2}$$

Substitute expressions

$$N_2 R = N_1 R = \frac{p_2 V_2}{T_2} = \frac{p_1 V_1}{T_1}$$

Solve for V_2

$$V_2 = \frac{p_1}{p_2} \frac{T_2}{T_1} V_1$$

Task 4

Temperature of the condenser	T_{1}	[K]
Temperature of the water vapor entering the steam turbine	T_2	[K]
Temperature rise of the conder water	ΔT	[K]
Specific heat capacity of liquid water	С	[J/(kg K)]
Theoretic maximum efficiency	η	[-]
Electric power output of the plant	P	[W]
Cooling requirement in the condenser	Ф	[W]
Mass flow rate of the condenser water	ṁ	[kg/s]

Unit conversions:

$$T = (T_{\text{CEL}} + 273.15) \text{ K}$$

Formulas:

$$\eta = \frac{T_2 - T_1}{T_2}$$

$$\eta = \frac{P}{\Phi}$$

$$\Phi = \dot{m}c\Delta T$$

Solution:

Temperature of the condenser:

$$\eta = \frac{T_2 - T_1}{T_2}$$

Solve for T_1

$$T_1=(1-\eta)T_2$$

Substitute initial values

Condenser water requirement:

$$\eta = \frac{P}{\Phi}$$

solve for Φ

$$\Phi = \frac{P}{\eta}$$

$$\Phi = \dot{m}c\Delta T$$

solve for \dot{m}

$$\dot{m} = \frac{\Phi}{c\Delta T}$$

substitute expressions

$$\dot{m} = \frac{P}{\eta c \Delta T}$$

Task 5

Total mass of water	m	[kg]
Mass of water that evaporates	$m_{ m evap}$	[kg]
Power of the electric heater	P	[W]
Electric energy consumed by the electric heater	$E_{ m heater}$	[J]
Electric energy needed to heat the water to its boiling point	$E_{ m water}$	[J]
and evaporate part of it		
Percentage of electric energy transferred to water	EP	[%]
Heating time	t	[s]
Initial temperature of the water	T_1	[K]
Boiling point of water	T_{b}	[K]
Specific enthalpy of evaporation of water	$h_{ m fg}$	[J/kg]
Specific heat capacity of liquid water	C	[J/(kg K)]

Unit conversions:

$$T = (T_{CEL} + 273.15) \text{ K}$$

1 minute = 60 s
1 kg = 1000 g

Constants:

$$h_{\rm fg} = 2,260,000 \, {\rm J/kg}$$

Formulas:

$$\begin{split} E_{\text{heater}} &= Pt \\ E_{\text{water}} &= cm(T_{\text{b}} - T_{1}) + m_{\text{evap}}h_{\text{fg}} \\ EP &= \frac{E_{\text{water}}}{E_{\text{heater}}} \cdot 100 \, \% \end{split}$$

Solution:

$$EP = \frac{E_{\text{water}}}{E_{\text{heater}}} \cdot 100 \%$$

substitute expressions

$$EP = \frac{cm(T_b - T_1) + m_{\text{evap}}h_{\text{fg}}}{Pt} \cdot 100 \%$$

Task 6

Mass of the ice	$m_{ m ice}$	[kg]
Mass of the water in the pool before adding the ice	$m_{ m water}$	[kg]
Pool width	w	[m]
Pool length	l	[m]
Pool depth before adding the ice	d_1	[m]
Pool depth after adding the ice	d_2	[m]
Pool surface rise	Δd	[m]
Density of the ice	$ ho_{ m ice}$	$[kg/m^3]$
Density of the water	$ ho_{ m water}$	$[kg/m^3]$
Energy needed to transform the ice into liquid water	$E_{ m icetowater}$	[J]
Energy released when the pool of water cools to the final temperature	$E_{ m water}$	[J]
Initial temperature of the ice	$T_{1,ice}$	[K]
Temperature of the pool before adding the ice	$T_{1, water}$	[K]
Melting point of ice	$T_{ m f}$	[K]
Final temperature of the pool when all ice has melted and	T_2	[K]
water and melted ice have reached a common temperature		
Specific heat capacity of the water	c_{water}	[J/(kg K)]
Specific heat capacity of the ice	$c_{ m ice}$	[J/(kg K)]
Specific enthalpy of fusion of water	$h_{ m f}$	[J/kg]
Initial volume of the pool	V_1	$[m^3]$
Final volume of the pool	V_2	$[m^3]$
Volume of the ice	$V_{\rm ice}$	[m ³]

Unit conversions:

$$1 \text{ m} = 100 \text{ cm}$$

Constants:

$$\begin{split} h_{\rm f} &= 333,\!550\,{\rm J/kg}\\ c_{\rm water} &= 4,\!180\,{\rm J/kg}\\ c_{\rm ice} &= 2,\!090\,{\rm J/kg}\\ \rho_{\rm water} &= 1000\,{\rm kg/m^3}\\ T_{\rm f} &= 0\,{\rm ^{\circ}C} \end{split}$$

Formulas:

$$\begin{split} E_{\text{icetowater}} &= m_{\text{ice}} [c_{\text{ice}} \big(T_{\text{f}} - T_{\text{1,ice}} \big) + h_{\text{f}} + c_{\text{water}} (T_{2} - T_{\text{f}})] \\ E_{\text{water}} &= m_{\text{water}} c_{\text{water}} (T_{\text{1,water}} - T_{2}) \\ E_{\text{icetowater}} &= E_{\text{water}} \\ m_{\text{water}} &= V_{1} \rho_{\text{water}} \\ \Delta d &= d_{2} - d_{1} \\ V_{\text{ice}} &= \frac{m_{\text{ice}}}{\rho_{\text{ice}}} \\ V_{1} &= wld_{1} \end{split}$$

$$V_2 = wld_2$$

$$V_2 = V_1 + V_{\text{ice}}$$

Solution:

Water surface rise:

$$V_2 = V_1 + V_{\text{ice}}$$

Substitute expression

$$wld_1 + \frac{m_{\rm ice}}{\rho_{\rm ice}} = wld_2$$

solve for d_2-d_1

$$d_2 - d_1 = \frac{m_{ice}}{w l \rho_{ice}}$$

substitute expression

$$\Delta d = \frac{m_{\rm ice}}{w l \rho_{\rm ice}}$$

Substitute initial values

Note, if you 1: have calculated how much the surface has risen after the ice has melt or 2: assume that the ice floats on the water as it is less dense than liquid water, then

$$\Delta d = \frac{m_{\rm ice}}{w l \rho_{\rm water}}$$

Substitute initial values

Final temperature of the water:

 $E_{icetowater} = E_{water}$

Substitute expressions

$$m_{\rm ice} ig[c_{
m ice} ig(T_{
m f} - T_{
m 1,ice} ig) + h_{
m f} + c_{
m water} (T_2 - T_{
m f}) ig] = m_{
m water} c_{
m water} (T_{
m 1,water} - T_2)$$
 solve for T_2

$$T_2 = \frac{m_{\text{water}} c_{\text{water}} T_{1,\text{water}} - m_{\text{ice}} [c_{\text{ice}} (T_{\text{f}} - T_{1,\text{ice}}) + h_{\text{f}} - c_{\text{water}} T_{\text{f}}]}{c_{\text{water}} (m_{\text{water}} + m_{\text{ice}})}$$