Property	Sequence	z -Transform	ROC
	g[n] h[n]	G(z) $H(z)$	\mathcal{R}_g \mathcal{R}_h
Conjugation	$g^*[n]$	$G^*(z^*)$	\mathcal{R}_g
Time-reversal	g[-n]	G(1/z)	$1/\mathcal{R}_g$
Linearity	$\alpha g[n] + \beta h[n]$	$\alpha G(z) + \beta H(z)$	Includes $\mathcal{R}_g \cap \mathcal{R}_h$
Time-shifting	$g[n-n_o]$	$z^{-n_o}G(z)$	\mathcal{R}_g , except possibly the point $z = 0$ or ∞
Multiplication by an exponential sequence	$\alpha^n g[n]$	$G(z/\alpha)$	$ lpha \mathcal{R}_g$
Differentiation of $G(z)$	ng[n]	$-z\frac{dG(z)}{dz}$	\mathcal{R}_g , except possibly the point $z = 0$ or ∞
Convolution	$g[n] \circledast h[n]$	G(z)H(z)	Includes $\mathcal{R}_g \cap \mathcal{R}_h$
Modulation	g[n]h[n]	$\frac{1}{2\pi j} \oint_C G(v) H(z/v) v^{-1} dv$	Includes $\mathcal{R}_g\mathcal{R}_h$
Parseval's relation	$\sum_{n=-\infty}^{\infty} g[n]h^*[n] = \frac{1}{2\pi j} \oint_C G(v)H^*(1/v^*)v^{-1} dv$		
Note: If \mathcal{R}_g denotes the region $R_{g^-} < z < R_{g^+}$ and \mathcal{R}_h denotes the region $R_{h^-} < z < R_{h^+}$, then $1/\mathcal{R}_g$ denotes the region $1/R_{g^+} < z < 1/R_{g^-}$ and $\mathcal{R}_g \mathcal{R}_h$ denotes the region $R_{g^-} R_{h^-} < z < R_{g^+} R_{h^+}$.			