Subjectul A. MECANICĂ

Nr. item	Soluţie/Rezolvare
II.a.	
	m_1 se deplasează uniform, vertical în jos
	$m_1 \cdot g + m \cdot g \cdot \sin \alpha = \mu \cdot m \cdot g \cdot \cos \alpha + m_2 \cdot g$
	$\it m_{ m 1}$ se deplasează uniform, vertical în sus
	$m_1 \cdot g + m \cdot g \cdot \sin \alpha + \mu \cdot m \cdot g \cdot \cos \alpha = m_2 \cdot g$
	Rezultat final: $m_{1\max im} \cong 2,69 \text{Kg si} m_{1\min im} \cong 1,30 \text{Kg}$
b.	
	$(m_1 + m + m_2) \cdot a = m_1 \cdot g + m \cdot g \cdot \sin \alpha - \mu \cdot m \cdot g \cdot \cos \alpha - m_2 \cdot g$
	Rezultat final: $a \cong 1,09 m/s^2$
C.	
	$m_1 \cdot a = m_1 \cdot g - T_1 \implies T_1 = m_1 \cdot (g - a)$
	Rezultat final: $T_1 = 35,64 N$
d.	
	$m_2 \cdot a = T_2 - m_2 \cdot g \Rightarrow T_2 = m_2 \cdot (g + a)$
	$R^2 = T_2^2 + T_2^2 + 2 \cdot T_2 \cdot T_2 \cdot \cos 60^0 \Rightarrow R = T_2 \cdot \sqrt{3}$; unde $\sqrt{3} = 1,73$
	Rezultat final: $R \cong 76,74 N$