Ординация и классификация с использованием мер сходства-различия

Математические методы в зоологии с использованием R

Марина Варфоломеева

- 1 Коэффициенты сходства и различия
- 2 Неметрическое многомерное шкалирование
- 3 Кластерный анализ
- 4 Методы класстеризации на основании расстояний
- 5 Сравнение и интерпретация результатов кластеризации

Меры сходства и различия, ординация, классификация

Вы сможете

- Выбирать подходящий для данных коэффициент сходства/различия
- Представлять многомерные данные в меньшем числе измерений при помощи неметрического многомерного шкалирования
- Строить дендрограммы при помощи подходящего метода аггрегации

Коэффициенты сходства и различия

Коэффициенты сходства и различия

Коэффициенты сходства и различия

Расстояния

Сходства

$$0 \le S \le 1$$
 или $-1 \le S \le 1$

- Используются в качестве исходных данных для многих видов многомерных анализов, в т.ч. для неметрического многомерного шкалирования и некоторых видов кластерного анализа
- Из сходств можно получить расстояния и наоборот
- Свои коэффициенты для количественных и качественных признаков

Свойства коэффициентов сходства-различия

Метрики и полуметрики

Адекватность: $d_{A,A}=0$

Только метрики

Триангулярность: $d_{A,B} \leq d_{A,C} + d_{C,B}$

Неметрики

Все остальное

Симметричность: $d_{A,B} = d_{B,A}$

Свойства коэффициентов сходства-различия

Нестандартные

$$-\inf \leq d \leq \inf$$

Стандартные

$$d_{min} \leq d \leq d_{max}$$

 частный случай стандартных коэффициентов коррелятивные коэффициенты сходства

$$-1 \le S \le 1$$

Примеры коэффициентов

Метрики:

- без стандартизации:
 - Евклидово расстояние
 Мануеттен (расстояние
 - Манхеттен (расстояние городских кварталов)
- со стандартизацией:
 - Канберра
 - хи-квадрат
 - Евклидово расстояние, рассчитанное по стандартизованным данным

Полуметрики:

• расстояние Махаланобиса

Неметрики:

- со стандартизацией:
 - коррелятивные:
 - корреляция Пирсона
 - некоррелятивные:
 - коэффициент Брея-Куртиса

Если количественные признаки измерены в одинаковых шкалах

Метрики без стандартизации

• Евклидово расстояние

Неевклидовы метрики

• Квадрат Евклидова расстояния

• Манхэттеновское расстояние

Если количественные признаки измерены в разных шкалах

Можно стандартизовать исходные данные

 Евклидово (или другое) расстояние, рассчитанное по стандартизованным данным

Можно использовать коэффициенты со стандартизацией

- ullet Канберра (метрика) $d = \sum rac{|x_{ik} x_{jk}|}{|x_{ik}| + |x_{jk}|}$
- ullet хи-квадрат (метрика) $\chi^2 = \sqrt{\sum rac{1}{c_k} (x_{ik} x_{jk})^2}$
- ullet Коэффициент Махаланобиса (неметрика, not a distance) $d=rac{\sum x_{ik}-x_{jk}}{\sigma^2}$
- ullet Корреляция Браве-Пирсона (коррелятивный) $S=rac{\sum (x_{ik}-ar{x}_i)(x_{ik}-ar{x}_j)}{n\sigma_i^2\sigma_j^2}$
- Коэффициент Брея-Куртиса (не метрика) $BC_{ij} = \frac{2C_{ij}}{S_i + S_j}$, где C_{ij} сумма минимальных значений из тех, которые не равны нулю для обоих объектов, S_i и S_j общее число ненулевых значений признаков для обоих объектов.

Если признаки - подсчеты численности

Можно стандартизовать исходные данные

Простая стандартизация не подходит (счет, не может быть среднее 0) Можно использовать трансформации: - корень, корень 4-й степени - логарифмирование со сдвигом (log10(1+n))

Можно использовать коэффициенты со стандартизацией

- ullet Канберра (метрика) $d = \sum rac{|x_{ik} x_{jk}|}{|x_{ik}| + |x_{jk}|}$
- ullet хи-квадрат (метрика) $\chi^2 = \sqrt{\sum rac{1}{c_k} (x_{ik} x_{jk})^2}$

Если признаки - доли или проценты

- ullet хи-квадрат (метрика) $\chi^2 = \sqrt{\sum rac{1}{c_k} (x_{ik} x_{jk})^2}$
- ullet коэффициент Брея-Куртиса (не метрика) В $C_{ij}=rac{2C_{ij}}{S_i+S_j}$
- ullet Евклидово расстояние $d=\sqrt{\sum{(x_{ik}+x_{jk})^2}}$

Если используются бинарные данные (присутствие-отсутствие признака)

I\J	+	-		
+	а	b		
ı	O	d		

I,
$$J - M$$
ножества
 $n_J = a + c \quad n_I = a + b$
 $n = a + b + c + d$

	I	J	
1	+	+	а – сходство по наличию
2	+	-	b – различие
3	-	+	с – различие
4	-	-	d – сходство по отсутствию

Примеры коэффициентов для качественных данных

Jaccard и Russel Rao

I\J	+	-	
+	а	b	
-	С	d	

Jaccard S = a/(a+b+c)

С учетом сходства по отсутствию

Russel, Rao S = a/n

Без учета сходства по отсутствию

a=2, b=1, c=0, d=2

Если данные смешанные (качественные и количественные)

Коэффициенты для смешанных данных

• расстояние Говера

Неметрическое многомерное шкалирование

Неметрическое многомерное шкалирование визуализирует отношения между объектами на основе расстояний между ними

Если бы мы знали расстояния по автодорогам между городами Европы

Athens Barcelona Brussels
Barcelona 3313
Brussels 2963 1318
Calais 3175 1326 204
Cherbourg 3339 1294 583

мы бы смогли восстановить по ним карту

Неметрическое многомерное шкалирование

Неметрическое многомерное шкалирование (nonmetric multidimensional scaling, nMDS) - метод визуализации отношений между объектами в пространстве с небольшим числом измерений.

Исходные данные - матрица расстояний между объектами в многомерном пространстве

nMDS подбирает расстояния между объектами на графике так, чтобы сохранились соотношение исходных расстояний между ними. Т.е. если исходно А и В были ближе, чем В и С, то и в результате они должны быть ближе, чем В и С. Ординацию nMDS можно поворачивать, отражать, сдвигать - результат от этого не изменится.

Пример: Морфометрия поссумов

Possum by Hasitha Tudugalle on Flickr https://www.flickr.com/photos/hasitha_tudugalle/6037880962

Данные Lindenmayer et al. (1995)

Знакомимся с данными

```
library(DAAG)
data(possum)
colnames(possum)
```

```
# [1] "case" "site" "Pop" "sex" "age" "hdlngth"
# [7] "skullw" "totlngth" "taill" "footlgth" "earconch" "eye"
# [13] "chest" "belly"
```

```
sum(is.na(possum))
```

[1] 3

BB36

```
possum[!complete.cases(possum), ]
```

```
41
         2 Vic f
                      88.4
                           57.0
                                   83 36.5
BB36
                5
                                              NA
                     85.1 51.5
                                   76 35.5 70.3
BB41 44 2 Vic m NA
BB45
     46
         2 Vic
                 NA 91.4 54.4
                                   84 35.0
                                            72.8
   earconch eye chest belly
```

case site Pop sex age hdlngth skullw totlngth taill footlgth

BB41 52.6 14.4 23.0 27.0 Марина Варфоломеева Ординация и классификация с использование

40.3 15.9 27.0 30.5

```
# Добавим названия сайтов

possum$site <- factor(possum$site, levels = 1:7,

labels = c("Cambarville","Bellbird",

"Whian Whian", "Byrangery",

"Conondale ","Allyn River",

"Bulburin"))
```

Отберем переменные, с которыми будем работать

```
colnames(possum)
```

```
# [1] "case" "site" "Pop" "sex" "age" "hdlngth"
# [7] "skullw" "totlngth" "taill" "footlgth" "earconch" "eye"
# [13] "chest" "belly"

possumc <- possum[complete.cases(possum), c(3:4, 5:14)]</pre>
```

Square root transformation

Неметрическое многомерное шкалирование

Построим ординацию поссумов на основе их сходства по морфометрии и возрасту.

Функция metaMDS трансформирует и стандартизует данные, а затем итеративно подбирает координаты поссумов в новом пространстве (двумерном по умолчанию).

```
library(vegan)
ord_euclid <- metaMDS(possumc[, 3:10], distance = "euclid")</pre>
```

```
# Wisconsin double standardization
# Run 0 stress 0.03822067
# Run 1 stress 0.03822856
# ... Procrustes: rmse 0.000589092 max resid 0.004658078
# ... Similar to previous best
# Run 2 stress 0.04030306
# Run 3 stress 0.03822725
# ... Procrustes: rmse 0.0005297189 max resid 0.003888266
# ... Similar to previous best
# Run 4 stress 0.04029624
# Run 5 stress 0.03822739
```

Качество подгонки модели

stress - оценивает, насколько были искажены исходные расстояния между объектами при снижении размерности

ord_euclid\$stress

[1] 0.03822067

- Эмпирическое правило предложено Краскалом
- S > 20% плохо
- S = 10% нормально
- S < 5% хорошо
- S = 0 прекрасно

Ординация

ordiplot(ord euclid, type = "t")

head(ord euclid\$points, 10)

```
MDS1
#
                           MDS2
      -0.03856702 -0.008631770
      -0.02326647
                  -0.003786437
      -0.02192530
                  -0.003824108
     -0.02278328
                  -0.005940789
  C23
       0.02197540
                  -0.005716512
  C24
       0.04206661
                  -0.008601634
  C26
       0.02220393
                  -0.004639378
      -0.02330802 -0.007341595
      -0.04597908
                  -0.007863745
  C31 -0.02401606 -0.006624305
```

Задание:

При помощи ggplot2 постройте график неметрического многомерного шкалирования.

Для графика используйте координаты точек ord_euclid\$points и исходные данные.

Раскрасьте график по значениям переменных Рор и аде

Изобразите поссумов разного пола на разных панелях

Решение:

```
library(ggplot2)
theme_set(theme_bw(base_size = 12) + theme(legend.key = element_blank()))
ord_euclid_points <- data.frame(ord_euclid$points, possumc)
gg <- ggplot(ord_euclid_points, aes(x = MDS1, y = MDS2)) +
    geom_point() + facet_wrap(~sex) +
    theme(legend.key = element_blank())</pre>
```

Примеры графиков nMDS ординации

Задание:

Постройте nMDS ординацию при помощи евклидова расстояния, **без** стандартизации

Воспользуйтесь справкой к функции metaMDS(), чтобы узнать, какие аргументы потребуется изменить.

Решение:

Стресс сильно вырос, эта ординация хуже. Почему так произошло?

ord raw <- metaMDS(possumc[, 3:10], dis = "euclide", autotransform = FALSE)

```
# Run 0 stress 0.1008672
# Run 1 stress 0.1297468
# Run 2 stress 0.1008672
# ... Procrustes: rmse 0.00003375784 max resid 0.0002317046
# ... Similar to previous best
# Run 3 stress 0.1180912
# Run 4 stress 0.1008672
# ... Procrustes: rmse 0.000045804 max resid 0.0003163518
# ... Similar to previous best
# Run 5 stress 0.1008672
# ... New best solution
# ... Procrustes: rmse 0.00002726726 max resid 0.0001868805
# ... Similar to previous best
# Run 6 stress 0.1008672
# ... Procrustes: rmse 0.000007782235 max resid 0.00005308215
# ... Similar to previous best
# Run 7 stress 0.1008672
```

... Procrustes: rmse 0.000006535649 max resid 0.00003858896

Графики ординации по матрице евклидовых расстояний без стандартизации

```
ord_raw_points <- data.frame(ord_raw$points, possumc)
library(gridExtra)
grid.arrange(gg %+% ord_raw_points + aes(colour = Pop),
gg %+% ord_raw_points + aes(colour = age),
ncol = 2)</pre>
```


Популяции можно различить, но возраста смешались

Графики ординации по матрице евклидовых расстояний без стандартизации

```
ord_raw_points <- data.frame(ord_raw$points, possumc)
library(gridExtra)
grid.arrange(gg %+% ord_raw_points + aes(colour = Pop),
gg %+% ord_raw_points + aes(colour = age),
ncol = 2)</pre>
```


Популяции можно различить, но возраста смешались

 Это произошло потому, что нет стандартизации, и теперь на расстояния между поссумами влияют в основном переменные, измеренные в больших единицах (общая длина, длина ног), а возраст не влияет

Как изменилась сама ординация?

Прокрустово преобразование

```
procrustes(что_стало, что_было)
```

```
proc <- procrustes(ord_raw, ord_euclic plot(proc)
proc

Procrustes errors

#
# Call:
# procrustes(X = ord_raw, Y = ord_eucl
#
# Procrustes sum of squares:</pre>
```


5670

Похоже, что в этом случае лучшая ординация была получена при использовании евклидова расстояния со стандартизацией

```
ord_euclid_points <- data.frame(ord_euclid$points, possumc)
grid.arrange(gg %+% ord_euclid_points + aes(colour = Pop),
gg %+% ord_euclid_points + aes(colour = age),
ncol = 2)</pre>
```


Кластерный анализ

Пример: поссумы

Морфометрия самок поссумов

```
library(DAAG)
data(fossum)
# создадим "говорящие" имена строк
rownames(fossum) <- paste(fossum$Pop, rownames(fossum), sep = "_")
fossumc <- fossum[complete.cases(fossum), 5:14]</pre>
```

Какие бывают методы построения деревьев?

Методы класстеризации на основании расстояний (о них сегодня)

- Метод ближайшего соседа
- Метод отдаленного соседа
- Метод среднегруппового расстояния
- Метод Варда
- ⊚ и т.д. и т.п.

Методы кластеризации на основании признаков

- Метод максимальной бережливости
- Метод максимального правдоподобия

Методы классте	оизации на	основании	расстояний

Методы класстеризации на основании расстояний

Этапы кластеризации

От чего зависит результат кластеризации

Результат кластеризации зависит от

- коэффициента сходства-различия
- от алгоритма кластеризации

В начале лекции мы обнаружили, что евклидово расстояние, расчитанное по стандартизованным данным, хорошо разделяет поссумов.

```
d <- dist(x = scale(fossumc), method = "euclidean")</pre>
```

Давайте построим деревья при помощи нескольких алгоритмов кластеризации и сравним их.

Методы кластеризации

Метод ближайшего соседа Метод отдаленного соседа Метод Варда Метод среднегруппового расстояния

Метод ближайшего соседа

- = nearest neighbour = single linkage
- к кластеру присоединяется ближайший к нему кластер/объект
- кластеры объединяются в один на расстоянии, которое равно расстоянию между ближайшими объектами этих кластеров

Особенности:

- Может быть сложно интерпретировать, если нужны группы
- объекты на дендрограмме часто не образуют четко разделенных групп
- часто получаются цепочки кластеров (объекты присоединяются как бы по-одному)
- Хорош для выявления градиентов

Метод ближайшего соседа в R

```
hc_single <- hclust(d, method = "single")
library(ape)
ph_single <- as.phylo(hc_single)
plot(ph_single, type = "phylogram", cex = 0.7)
axisPhylo()</pre>
```


Метод отдаленного соседа

- = furthest neighbour = complete linkage
- к кластеру присоединяется отдаленный кластер/объект
- кластеры объединяются в один на расстоянии, которое равно расстоянию между самыми отдаленными объектами этих кластеров (следствие - чем более крупная группа, тем сложнее к ней присоединиться)

Особенности:

- На дендрограмме образуется много отдельных некрупных групп
- Хорош для поиска дискретных групп в данных

Метод отдаленного соседа в R

```
ph_compl <- as.phylo(hclust(d, method = "complete"))
plot(ph_compl, type = "phylogram", cex = 0.7)
axisPhylo()</pre>
```


Метод невзвешенного попарного среднего

- = UPGMA = Unweighted Pair Group Method with Arithmetic mean
- кластеры объединяются в один на расстоянии, которое равно среднему значению всех возможных расстояний между объектами из разных кластеров.

Особенности:

 UPGMA и WUPGMC иногда могут приводить к инверсиям на дендрограммах

Метод невзвешенного попарного среднего в R

```
ph_avg <- as.phylo(hclust(d, method = "average"))
plot(ph_avg, type = "phylogram", cex = 0.7)
axisPhylo()</pre>
```


Метод Варда

- = Ward's Minimum Variance Clustering
- объекты объединяются в кластеры так, чтобы внутригрупповая дисперсия расстояний была минимальной

Особенности:

 метод годится и для неевклидовых расстояний несмотря на то, что внутригрупповая дисперсия расстояний рассчитывается так, как будто это евклидовы расстояния

Метод Варда в R

```
ph_w2<- as.phylo(hclust(d, method = "ward.D2"))
plot(ph_w2, type = "phylogram", cex = 0.7)
axisPhylo()</pre>
```


Сравнение и интерпретация результатов кластеризации

Кофенетическая корреляция

Кофенетическое расстояние - расстояние между объектами на дендрограмме

Кофенетическую корреляцию можно рассчитать как пирсоновскую корреляцию (обычную) между матрицами исходных и кофенетических расстояний между всеми парами объектов

Метод, который дает наибольшую кофенетическую корреляцию дает кластеры лучше всего отражающие исходные данные

Кофенетическая корреляция в R

```
c single <- cophenetic(ph single)</pre>
c compl <- cophenetic(ph compl)</pre>
c avg <- cophenetic(ph avg)</pre>
c w2 <- cophenetic(ph w2)
cor(d, as.dist(c single))
# [1] 0.6787649
cor(d, as.dist(c compl))
 [1] 0.5238481
cor(d, as.dist(c avg)) # лучше всех отражает структуру данных
```

[1] 0.7424007

cor(d, as.dist(c w2))

Марина Варфоломеева

На каком уровне нужно делить дендрограмму на кластеры?

- Можно субъективно, на любом выбранном уровне. Главное, чтобы кластеры были осмысленными и интерпретируемыми.
- Можно выбрать, глядя на распределение расстояний ветвления
- Можно оценить вероятность разделения на кластеры при помощи бутстрепа

итераций должно быть 10000 и больше

Бутстреп

library(pvclust)

здесь мало для скорости

```
set.seed(42)
cl_boot <- pvclust(scale(t(fossumc)), method.hclust = "average", nboot = 50,

# Bootstrap (r = 0.5)... Done.
# Bootstrap (r = 0.6)... Done.
# Bootstrap (r = 0.7)... Done.
# Bootstrap (r = 0.8)... Done.
# Bootstrap (r = 0.9)... Done.
# Bootstrap (r = 1.0)... Done.
# Bootstrap (r = 1.0)... Done.</pre>
```

Bootstrap (r = 1.2)... Done. # Bootstrap (r = 1.3)... Done. # Bootstrap (r = 1.4)... Done.

plot(cl_boot) pvrect(cl_boot)

Cluster dendrogram with AU/BP values (%)

Distance: euclidean Cluster method: average

52 / 55

И небольшая демонстрация - дерево по генетическим данным

```
webpage <-"http://evolution.genetics.washington.edu/book/primates.dna"
primates.dna <- read.dna(webpage)
d_pri <- dist.dna(primates.dna, model = "K80")
hc_pri <- hclust(d_pri, method = "average")
ph_pri <- as.phylo(hc_pri)
plot(ph_pri)
axisPhylo()</pre>
```


Take home messages

- Неметрическое многомерное шкалирование способ снижения размерности, сохраняющий ранги расстояний между объектами
- Направления на графике многомерного шкалирования можно интерпретировать произвольным образом в зависимости от изменения других переменных (не обязательно вдоль осей)
- Результат многомерного шкалирования зависит от выбора коэффициента различия

Дополнительные ресурсы

- Borcard, D., Gillet, F., Legendre, P., 2011. Numerical ecology with R. Springer.
- Legendre, P., Legendre, L., 2012. Numerical ecology. Elsevier.
- Oksanen, J., 2011. Multivariate analysis of ecological communities in R: vegan tutorial. R package version 2–0.
- Quinn, G.G.P., Keough, M.J., 2002. Experimental design and data analysis for biologists. Cambridge University Press.

Borcard, D., Gillet, F., Legendre, P., 2011. Numerical ecology with R. Springer.

Как работает UPGMA можно посмотреть здесь: http://www.southampton.ac.uk/~relu06/teaching/upgma/

pvclust: An R package for hierarchical clustering with p-values [WWW Document], n.d. URL
 http://www.sigmath.es.osaka-u.ac.jp/shimo-lab/prog/pvclust/ (accessed 11.7.14).

Для анализа молекулярных данных: - Paradis, E., 2011. Analysis of Phylogenetics and Evolution with R. Springer.