Chapter 4. Submanifolds in \mathbb{R}^n and Constrained Extremum Problems

We are now going to introduce the notion of submanifolds of \mathbb{R}^n which are generalizations to general dimensions of smooth surfaces in \mathbb{R}^3 .

lacksquare 4.1. Submanifolds in \mathbb{R}^n

Let us begin by looking at *hypersurfaces* in \mathbb{R}^n . Let $f:\mathbb{R}^n \longrightarrow \mathbb{R}$ be a C^1 -function and let $M=\{x\in\mathbb{R}^n: f(x)=0\}=f^{-1}(\{0\})$, that is, the level set of f corresponding to f. If f in a neighborhood of f is a graph of a function of f variables. We may write f in a neighborhood of f is a graph of a function of f in a neighborhood of f in a neighborhood of f is a graph of a function of f in a neighborhood of f in a neighborhood of f is a graph of a function of f in a neighborhood of f in a neighbor

Definition 4.1 A set $M \subseteq \mathbb{R}^n$ is called a k-dimensional submanifold of \mathbb{R}^n if for every $x_0 \in M$, there exists an open neighborhood Ω of $x_0 \in \mathbb{R}^n$ and a C^1 -function $f: \Omega \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^{n-k}$ such that

$$M \cap \Omega = f^{-1}(\{0\})$$
 and rank $Df(x) = n - k$ for any $x \in M \cap \Omega$.

The next theorem, which is a consequence of the Implicit Function Theorem, will tell us that a submanifold can be locally represented as graphs of functions.

Theorem 4.2 Let $M \subseteq \mathbb{R}^n$. Then the following statements are equivalent.

- (a) M is a k-dimensional submanifold of \mathbb{R}^n .
- (b) For each $x_0 \in M$, we can (after suitably relabeling the coordinates) write $x_0 = (y_0, z_0)$ with $y_0 \in \mathbb{R}^k$, $z_0 \in \mathbb{R}^{n-k}$ and find an open neighborhood U of y_0 in \mathbb{R}^k , an open neighborhood V of $z_0 \in \mathbb{R}^{n-k}$, and a C^1 -function $g: U \longrightarrow V$ with $g(y_0) = z_0$ such that

$$M \cap (U \times V) = \{(y, g(y)) : y \in U\}.$$

Remarks:

- (a) By Theorem 4.2, we see that for each point in a k-dimensional submanifold, there is a neighborhood which can be identified with an open set in \mathbb{R}^k . Thus we can think of submanifolds as subsets of \mathbb{R}^n that locally look like open sets in Euclidean space \mathbb{R}^k .
- (b) In fact, it is possible to use the idea above to define abstract k-dimensional manifolds without reference to an embedding in \mathbb{R}^n . Roughly speaking, such a manifold is a space covered by open sets ("charts"), each looks like open sets in \mathbb{R}^k , such that the charts fit together smoothly in a suitable sense. It is in fact possible to transfer the tools of differential and integral calculus to such abstract manifolds.

Example 4.3 (Curves in \mathbb{R}^2)

(a) The unit circle in \mathbb{R}^2 is given by

$$S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$$

Let $f(x,y)=x^2+y^2-1$. Then $S^1=f^{-1}(\{0\})$ and $f'(x,y)=(2x\ 2y)$ has rank 1 at all points of the unit circle (it will have rank 0 at origin which does not lie on the circle). So it is a 1-dimensional submanifold of \mathbb{R}^2 .

(b) Let

$$M = \{(x, y) \in \mathbb{R}^2 : x^3 = y^2 + 1\}.$$

Then $M=f^{-1}(\{0\})$, where $f(x,y)=x^3-y^2-1$. Again, $f'(x,y)=(3x^2-2y)$ has rank 1 at all points of M. So M defines a 1-dimensional submanifold of \mathbb{R}^2 .

(c) Let

$$M = \{(x, y) \in \mathbb{R}^2 : x^2 - y^2 = 0\}.$$

Then $M=f^{-1}(\{0\})$, where $f(x,y)=x^2-y^2$. This time f'(x,y)=(2x-2y) has rank 1 except at the origin, which is on the curve. So the curve M is a 1-dimensional submanifold away from the origin. Geometrically, we can see that the curve is the union of the two lines y=x and y=-x which meet at (0,0).

Example 4.4 (Ellipsoids and Unit Sphere in \mathbb{R}^3) An *ellipsoid* in \mathbb{R}^3 is given by

$$M = \left\{ (x, y, z) \in \mathbb{R}^3 : f(x, y, z) = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1 = 0 \right\}$$

for some a, b, c > 0. Note that this defines a 2-dimensional submanifold of \mathbb{R}^3 . Indeed,

$$f'(x,y,z) = \begin{pmatrix} \frac{2x}{a^2} & \frac{2y}{b^2} & \frac{2z}{c^2} \end{pmatrix}$$

has rank 1 for any $(x,y,z)\in M$. The *unit sphere* in \mathbb{R}^3 , denoted by S^2 , is an ellipsoid with a=b=c=1.

Example 4.5 (Torus in \mathbb{R}^3) Let $r, R \in \mathbb{R}$ with 0 < r < R. A *torus* in \mathbb{R}^3 is given by

$$T = \left\{ (x, y, z) \in \mathbb{R}^3 : f(x, y, z) = \left(\sqrt{x^2 + y^2} - R \right)^2 + z^2 - r^2 = 0 \right\}.$$

Thus the torus consists of the points in \mathbb{R}^3 which have distance r to a circle on the xy-plane centered at the origin with radius R. Since r < R, the torus T does not contain any point on the z-axis, that is, points of the form (0,0,z) do not lie on T. Then

$$f'(x,y,z) = \left(\frac{2x(\sqrt{x^2 + y^2} - R)}{\sqrt{x^2 + y^2}} \quad \frac{2y(\sqrt{x^2 + y^2} - R)}{\sqrt{x^2 + y^2}} \quad 2z\right)$$

is well-defined on T and we see that f'(x,y,z) has rank 1 for any $(x,y,z) \in T$. Hence T is a 2-dimensional submanifold of \mathbb{R}^3 .

We now define the tangent space at a point of the submanifold.

Definition 4.6 Let $M \subseteq \mathbb{R}^n$ be a k-dimensional submanifold of \mathbb{R}^n and let $x_0 \in M$.

- (a) A vector v is called a *tangent vector* to M at x_0 if there exist $\epsilon>0$ and a C^1 -function $\gamma:(-\epsilon,\epsilon)\longrightarrow \mathbb{R}^n$ such that $\gamma(t)\in M$ for any $t\in(-\epsilon,\epsilon)$, $\gamma(0)=x_0$ and $\gamma'(0)=v$.
- (b) The set of all tangent vectors to M at x_0 is called the *tangent space* to M at x_0 and is denoted by $T_{x_0}M$.
- (c) A vector w is called a *normal vector* to M at x_0 if $\langle w, v \rangle = 0$ for all $v \in T_{x_0}M$. Thus the set of all normal vectors to M at x_0 is precisely the orthogonal complement $(T_{x_0}M)^{\perp}$ of $T_{x_0}M$ in \mathbb{R}^n .

Next we prove the generalization of the property that "the gradient is perpendicular to the level sets of a function".

Theorem 4.7 Let $M \subseteq \mathbb{R}^n$ be a k-dimensional submanifold of \mathbb{R}^n and let $x_0 \in M$. Let Ω and f be the same as in Definition 4.1. Then we have

$$T_{r_0}M = \ker Df(x_0),$$

that is, the tangent space equals the kernel of the linear map $Df(x_0): \mathbb{R}^n \longrightarrow \mathbb{R}^{n-k}$.

Remarks:

- (a) This result in particular shows that $T_{x_0}M$ is indeed a k-dimensional vector space, and as a consequence the space of normal vectors is an (n-k)-dimensional vector space.
- (b) Define the *tangent* k-plane to M at x_0 by

$$\{x_0 + v : v \in T_{x_0}M\}.$$

This is a k-dimensional affine space in \mathbb{R}^n . By Theorem 4.7, the tangent k-plane to M at x_0 is given by

$${x \in \mathbb{R}^n : Df(x_0)(x - x_0) = 0}.$$

Example 4.8 From Example 4.4, the ellipsoid M is a 2-dimensional submanifold of \mathbb{R}^3 . Furthermore, we have

$$f'(x,y,z) = \begin{pmatrix} \frac{2x}{a^2} & \frac{2y}{b^2} & \frac{2z}{c^2} \end{pmatrix}.$$

According to Theorem 4.7 and its remark, the tangent 2-plane at any $(x_0, y_0, z_0) \in M$ is given by

$$\left\{ (x, y, z) \in \mathbb{R}^3 : \left(\frac{2x_0}{a^2} \quad \frac{2y_0}{b^2} \quad \frac{2z_0}{c^2} \right) \cdot \begin{pmatrix} x - x_0 \\ y - y_0 \\ z - z_0 \end{pmatrix} = 0 \right\},\,$$

which can be simplified to

$$\left\{ (x, y, z) \in \mathbb{R}^3 : \frac{x_0 x}{a^2} + \frac{y_0 y}{b^2} + \frac{z_0 z}{c^2} = 1 \right\}.$$

4.2. Constrained Extremum Problems

In this section we want to consider the problem of extremizing a function on a submanifold M of \mathbb{R}^n given by a system of equations. The following theorem will provide a necessary condition for an extremal point.

Theorem 4.9 (Theorem on Lagrange Multipliers) Let Ω be an open subset of \mathbb{R}^n and let $g:\Omega \longrightarrow \mathbb{R}$ and $f:\Omega \longrightarrow \mathbb{R}^{n-k}$ be C^1 -functions. If $x_0 \in f^{-1}(\{0\})$ is a local extremum of g on $f^{-1}(\{0\})$, that is, if there exists an open neighborhood V of x_0 such that

$$q(x) > q(x_0)$$
 (or $q(x) < q(x_0)$) for any $x \in V$ with $f(x) = 0$,

and if $\operatorname{rank} Df(x_0) = n - k$, then there exist $\lambda_1, \ldots, \lambda_{n-k} \in \mathbb{R}$ called the Lagrange multipliers such that

$$\nabla g(x_0) = \sum_{i=1}^{n-k} \lambda_i \nabla f_i(x_0).$$

Remark: We can interpret this geometrically as saying that $\nabla g(x_0)$ is normal to the submanifold $f^{-1}(\{0\})$ and the normal space is spanned by $\nabla f_i(x_0)$ for $i=1,\ldots,n-k$.

Example 4.10 Extremize g(x,y,z)=5x+y-3z on the intersection of the plane $\{(x,y,z)\in\mathbb{R}^3:x+y+z=0\}$ with the unit sphere $S^2=\{(x,y,z)\in\mathbb{R}^3:x^2+y^2+z^2=1\}.$

Solution. Define

$$f(x,y,z) = (x+y+z, x^2+y^2+z^2-1)$$
 and $M = \{(x,y,z) \in \mathbb{R}^3 : f(x,y,z) = (0,0)\}.$

Then

$$Df(x,y,z) = \begin{pmatrix} 1 & 1 & 1\\ 2x & 2y & 2z \end{pmatrix}$$

and we have rank Df(x,y,z)=2 for any $(x,y,z)\in M$. Hence M is a 1-dimensional submanifold of \mathbb{R}^3 . Now since M is compact and g is continuous, it follows that g attains its maximum and minimum

values on M. If (x_0, y_0, z_0) is an extremal point of g on M, then Theorem 4.9 implies that there exist $\lambda_1, \lambda_2 \in \mathbb{R}$ such that

$$\nabla g(x_0, y_0, z_0) = \lambda_1 \nabla f_1(x_0, y_0, z_0) + \lambda_2 \nabla f_2(x_0, y_0, z_0),$$

that is,

$$\begin{pmatrix} 5 \\ 1 \\ -3 \end{pmatrix} = \lambda_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 2x_0 \\ 2y_0 \\ 2z_0 \end{pmatrix}.$$

Solving this together with the constraints $f(x_0, y_0, z_0) = 0$ yields

$$(x_0,y_0,z_0) = \left(\frac{1}{\sqrt{2}},0,\frac{-1}{\sqrt{2}}\right) \quad \text{or} \quad \left(\frac{-1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\right).$$

It follows that g attains its maximum at $(\frac{1}{\sqrt{2}},0,\frac{-1}{\sqrt{2}})$ with value $4\sqrt{2}$ and its minimum at $(\frac{-1}{\sqrt{2}},0,\frac{1}{\sqrt{2}})$ with value $-4\sqrt{2}$.

Example 4.11 (Eigenvalues of symmetric matrices) Let A be an $n \times n$ symmetric matrix and let $S^{n-1} = \{x \in \mathbb{R}^n : ||x|| = 1\}$ be the unit sphere in \mathbb{R}^n . Define $g : \mathbb{R}^n \longrightarrow \mathbb{R}$ by

$$g(x) = \langle x, Ax \rangle = x^T A x.$$

Extremize g(x) on the unit sphere S^{n-1} .

Solution. First of all, we observe that S^{n-1} is an (n-1)-dimensional submanifold of \mathbb{R}^n since $S^{n-1}=f^{-1}(\{0\})$ where $f(x)=\|x\|^2-1$ with rank Df(x)=1 for any $x\in S^{n-1}$. As S^{n-1} is compact and g is continuous, it follows that g attains its maximum and minimum values on S^{n-1} . If $x=x_0$ is an extremal point of g on S^{n-1} , then Theorem 4.9 implies that there exists $\lambda\in\mathbb{R}$ such that

$$\nabla g(x_0) = \lambda \nabla f(x_0)$$
, that is, $Ax_0 = \lambda x_0$.

This means that $x_0 \neq 0$ is an eigenvector of A with eigenvalue λ . Furthermore, we have

$$\lambda = \lambda \langle x_0, x_0 \rangle = \langle x_0, \lambda x_0 \rangle = \langle x_0, Ax_0 \rangle = g(x_0).$$

Since $g(x_0)$ is an extreme value of g, thus we have shown that the maximum value of g on S^{n-1} equals the largest eigenvalue of A, and the minimum value of g on S^{n-1} equals the smallest eigenvalue of A. \Box