MATH 215 FALL 2023 Homework Set 4: §14.1 – 14.5 Zhengyu James Pan (jzpan@umich.edu)

- 1. Do Exercise 32 of §14.1 of Stewart's Multivariable Calculus.
- 2. Do Exercises 61-66 of §14.1 of Stewart's Multivariable Calculus.
- 3. Do Exercise 6 of §14.3 of Stewart's Multivariable Calculus.
- 4. (a) Suppose $g(x,y) = \sqrt{9-9x^2-y^2}$. Draw a contour map for g and then sketch the
 - (b) Draw a contour map of the function $m(x,y) = \frac{x}{(x^2+3y^2)}$, showing and labelling several level curves. curves.
- 5. (a) Use a linear approximation to estimate (0.99)3 + (2.01)3 6(0.99)(2.01).
 - (b) Let $f(x,y) = xe^{y^2} ye^{x^2}$ and find the equation for the tangent plane to the graph of f at (1, 2).
 - (c) What point on the surface $z = x^2 y^2$ has a tangent plane parallel to the plane found in the previous part?
- 6. The wave heights h in the open sea depend on the speed v of the wind and the length of time t that the wind has been blowing at that speed. Values of the function h = f(v, t)are recorded in feet in the following table:

Duration (hours)

Wind speed (knots)

v t	5	10	15	20	30	40	50
10	2	2	2	2	2	2	2
15	4	4	5	5	5	5	5
20	5	7	8	8	9	9	9
30	9	13	16	17	18	19	19
40	14	21	25	28	31	33	33
50	19	29	36	40	45	48	50
60	24	37	47	54	62	67	69

(a) What are the meanings of the partial derivatives $\frac{\delta h}{\delta v}$ and $\frac{\delta h}{\delta t}$?

- (b) Estimate the values of $f_v(40, 15)$ and $f_t(40, 15)$. What are the practical interpretations of these values?
- (c) Estimate the values of $f_{vv}(30, 20)$, $f_{tt}(30, 20)$, $f_{vt}(30, 20)$, and $f_{tv}(30, 20)$. Are your answers for f_{tv} the same as for f_{vt} ? Should they be? Explain. Hint: This problem might be trickier than it looks.
- 7. Determine which of the following functions is a solution to Laplace's equation uxx + uyy = 0:
 - (a)