NCERT 11.9.2 Q7

EE23BTECH11204 - Ashley Ann Benoy*

Question: Find the sum of n terms of the A.P. whose kth term is 5k + 1.

Symbol	Value	Parameter
x(0)	1	First Term
x(n)	(5n+1)u(n)	kth Term
d	5	Common Difference
y(n)	?	Sum of N terms

TABLE 0
GIVEN PARAMETERS

Expression	Z-Transform	ROC	
nu[n]	$\frac{z^{-1}}{(1-z^{-1})^2}$	z > 1	
n(n-1)u[n]	$\frac{2z^{-1}}{(1-z^{-1})^3}$	z > 1	
TABLE 0			

Z Transform Pairs

Apply the Z-transform to x(n):

$$X(z) = \frac{5z^{-1}}{(1 - z^{-1})^2} + \frac{1}{(1 - z^{-1})} \quad |z| > 1$$
 (1)

Sum of First *n* Terms:

$$y(n) = x(n) * u(n)$$
 (2)

Applying Z transform on both sides:

$$Y(z) = X(z)U(z)$$
 (3)

$$= \frac{1}{(1-z^{-1})^2} + \frac{5z^{-1}}{(1-z^{-1})^3}$$
 (4)

Rewriting the expression:

$$= \frac{1}{(1-z^{-1})^2} + \frac{5}{2} \cdot \frac{2z^{-1}}{(1-z^{-1})^3}$$
 (5)

On referring the above table we can obtain the Z trnasform inverse as follows:

$$y[n] = nu[n] + \frac{5}{2}n(n-1)u[n]$$
 (6)

Therefore we have got the sun of n terms as:

$$y[n] = [n + \frac{5}{2}n(n-1)]u[n]$$
 (7)

The stem plot is given as

