ALGORITHME DE DICHOTOMIE

Soit la fonction f définie sur l'intervalle I = [-4; 4] par $f(x) = x^3 - 6x + 1$.

PARTIE I

1) f étant une fonction polynomiale, elle est dérivable (et donc continue) sur $]-\infty$; $+\infty[$ et a fortiori sur I.

On a
$$f'(x) = 3x^2 - 6 = 3(x^2 - 2) = 3(x + \sqrt{2})(3 - \sqrt{2})$$
.

$$f'(x) = 0$$
 pour $x_1 = -\sqrt{2}$ et $x_2 = \sqrt{2}$.

f' étant un polynôme du deuxième degré dont le coefficient de x^2 est positif, elle est strictement positive sur $]-\infty$; $-\sqrt{2}[$, strictement négative sur $]-\sqrt{2}$; $\sqrt{2}[$ et strictement positive sur $]\sqrt{2}$; $+\infty[$.

2) Tableau de variations de *f* sur *I* :

X	-4		$-\sqrt{2}$		$\sqrt{2}$		4
$\overline{f'(\mathbf{x})}$	42	+	0	_	0	+	42
$f(\mathbf{x})$	-39		$4\sqrt{2+1}$ = 6,66		$-4\sqrt{2+1}$ $= -4,66$		7 41

3) f(x) est strictement décroissante sur $[-\sqrt{2}; \sqrt{2}]$ c'est à dire [-1,414; 1,414], intervalle auquel appartiennent x = 0 et x = 1.

On a f(0) = 1 > 0 et f(1) = -4 < 0. Il s'ensuit qu'il existe une unique solution α pour l'équation f(x) = 0 sur [0; 1].

PARTIE 2

1) Algorithme de dichotomie pour déterminer une valeur approchée de $\boldsymbol{\alpha}$:

a	b	h	b-a > h	m	$f(a) \times f(m) > 0$
0	1	0,1	vrai	0,5	faux
0	0,5	0,1	vrai	0,25	faux
0	0,25	0,1	vrai	0,125	vrai
0,125	0,25	0,1	vrai	0,1875	faux
0,125	0,1875	0,1	faux		

2) En sortie d'algorithme, on obtient les valeurs :

$$a = 0.125$$
; $b = 0.1875$

qui représentent respectivement les estimations inférieure et supérieure de α à 0,1 près.

3) a et b représentent respectivement les estimations inférieure et supérieure (a < b) de α . Elles convergent et se rapprochent de α à chaque étape de l'algorithme, ce dernier s'arrêtant lorsque la différence b – a est inférieure ou égale à une valeur fixée à l'avance, ici h = 0,1. A chaque étape de l'algorithme, une nouvelle valeur de m = (a + b)/2 est calculée et est attribuée à b si $f(a) \times f(m) > 0$ et à a dans le cas contraire, ce qui assure la convergence de a et b vers α .