ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

1

(21) 4691069/03

(22) 12.05.89

(46) 30.04.92. Бюл. № 16

(71) Туркменский государственный научноисследовательский и проектный институт нефтяной промышленности "ТуркменНИ-ПИнефть"

(72) Р.А.Аллахвердиев и Р.Т.Еганянц

(53) 622.245.42(088.8)

(56) Технология создания конструкции открытого забоя скважины РД-39-2-1319-85. М.: Миннефтепром, 1985, с. 4, рис. б.

Особенности техники и технологии закачивания скважин в неустойчивых коллекторах. М.: Недра, 1979. с. 2-5. 2

(54) КОНСТРУКЦИЯ ЗАБОЯ СКВАЖИНЫ (57) Изобретение относится к конструкции скважины. Цель — уменьшение трудоемкости работ. После бурения скважины до кровли продуктивного объекта 4 спускают эксплуатационную колонну 1 и цементируют ее. Далее осуществляют бурение продуктивного объекта 4 долотом. диаметр которого меньше внутреннего диаметра эксплуатационной колонны 1. после чего расширяют ее раздвижными расширителями. Выполняют работы по измерению фактического диаметра ствола скважины. Собирают перфорированную обсадную колонну (ПОК) труб 3 из металла с памятью

..., SU 1730429 A.1

20

цилиндрической формы с наружным диаметром, равным диаметру расширенного ствола скважины, и внутренним диаметром больше внутреннего диаметра эксплуатационной колонны. Перед спуском в скважину ПОК 3 придают форму с поперечными размерами, обеспечивающими свободный спуск ее в интервал залегания продуктивного объекта 4. В этом интервале ПОК 3 нагревают до восстановления формы. 4 ил.

Изобретение относится к нефтегазодобыче и может быть использовано при строительстве скважин.

Известна конструкция забоя скважины. включающая эксплуатационную колонну. спущенную до кровли продуктивного объекта, потайную колонну с перфорированными отверстиями (щелями), установленную против продуктивного объекта, при этом наружный диаметр потайной колонны меньше диаметра ствола скважины, а последний меньше внутреннего диаметра эксплуатадионной колонны.

Однако в данней конструкции забоя внутренний диаметр потайной перфорироаанной колонны существенно меньше внутренчего диаметра эксплуатационной кслонны, что определяет низкую продуктивность скважины и затрудняет ее обслуживаное и очетауатацию.

При наличии кольцевого зазора давление на степку скважины в процессе ее экспоуатации уменьшается и со временем приствольная зона скважины разрушается. Последнее также приводит к разрушению 25 потайной колонни.

Наиболее близка к предлагаемой конструкция скважины, включающая эксплуатационную колонну, спущенную до кровли скважины в интервале залегания продуктивного объекта, потайную перфорированную колонну обсадных труб, установленную против интервала залегания продуктивного рушения пласта кольцевое пространство за потайной колонной набивают гравийнопесчаным фильтром. Известная конструкция скважины обладает следующими недостатками: высока трудоемкость работ 40 по созданию гравийно-песчаного фильтра; по мере эксплуатации гравийно-песчаный фильтр забивается и продуктивность скважины уменьшается; малый диаметр потайной колонны определяет низкую 45 продуктивность скважины и затрудняет ее обслуживание и эксплуатацию.

Цель изобретения - уменьшение трудоемкости работ и увеличение производитель - 50 ности скважины.

Указанная цель достигается тем, что в конструкции скважины, включающей эксплуатационную колонну, спущенную до кровли продуктивного объекта, расширенный ствол скважины в интервале залегания продуктивного объекта, перфорированную колонну, установленную против интервала залегания продуктивного объекта, перфорированная колонна обсадных труб выполнена из металла с памятью, восстанавливающей первоначальную форму после спуска ее в интервал крепления, причем наружный диаметр перфорированной колонны обсадных труб первоначальной цилиндрической формы равен диаметру ствола скважины, а внутренний диамстр больше внутреннего диаметра эксплуатационной колонны.

Принцип действия металла с памятью заключается в следующем.

Известно, что имеются металлические сплавы, у которых неупругие деформации полностью восстанавливаются при снятии нагрузки или нагрева, т.е. металл, "вспоминая", приобретает прежнюю форму. Это явление, обнаруженное во многих чистых металлах, сплавах и металлических композициях, называется эффектом памяти формы.

На фиг. 1 представлена схематически продуктивного объекта, расширенный ствол 30 предлагаемая конструкция забоя скважины; на фиг. 2 – сечение А-А на фиг. 1; на фиг. 3 – деформированная перед спуском в скважину потайная колонна; на фиг. 4 - сечение Б-Б на фиг. 3 (наибольший диаметр поперечного объекта, при этом для предупреждения раз- 35 сечения деформированной колонны меньше внутрениего диаметра эксплуатационной колонны).

Конструкция забоя скважины включает эксплуатационную колонну 1. расширенный ствол 2 скважины в интервале залегания продуктивного объекта 4 и перфорированную колонну 3 обсадных труб.

После бурения скважины до кровли продуктивного объекта 4 спускают эксплуатационную колонну 1 и цементируют ее. Далее осуществляют бурение продуктивного объекта 4 долотом, диаметр которого меньше внутреннего диаметря эксплуатационной колонны 1, после чего расширяют его раздвижными расширителями. Выполняют работы по измерению фактического диаметра ствола скважины. Собирают перфорированную обсадную колонну 3 труб из металла с памятью цилиндрической формы с наружным диаметром, равным диаметру расширенного ствола скважины. Перед спуском в скважину перфорированной колонне 3 придают форму с поперечными размерами, обеспечивающими свободный спуск ее в интервал залегания продуктивного объекта 4. С помощью электронагревателя или другим путем осуществляют нагрев стержня с памятью до расчетной температуры. При этом стержень с памятью восстанавливает свою первоначальную форму.

Пример. Бурение под эксплуатацион- 15 ную колонну до глубины 2000 м осуществляют долотом Ø 215.9 мм. На указанную глубину спускают эксплуатационную колонну из труб Ø 168 мм с толщиной 10 мм и цементируют. Залегающий наже продуктивный объект разбуривают долотом Ø 145 мм до проектной глубины 2020 м. затем ствол скважины расширяют раздвижными расширителями до диаметра Ø 250 мм. Из металла с памятью изготавливают перфори- 25 рованную колонну длиной L=22 м и размерамы б₁=148 мм. б2=250 мм. Колонну деформируют, придав поперечному профилю вид на фиг. 4 с наибольшим диаметром поперечного сечения дз=140 мм. что обеспе- 30 чивает кольцевой зазор, равный 4 мм, с внутренним диаметром эксплуатационной колонны 148 мм и, следовательно, свободную транспортировку потайной колонны в интервал залегания продуктивного объекта. 35 Спускают деформированную колонну на кабеле в скважину до упора с ее забоем. Включают систему электронагрева. После выдержки в течение определенного времени потайная колонна восстанавливает свою 40 первоначальную цилиндрическую форму с наружным диаметром 250 мм.

Экономическая эффективность от внедрения предлагаемого технического реше-

ния определяется дополнительным дебитом скважины. По формуле Дюлюи дебит скважины Q обратно пропорционален натуральному логарифму отношений радиуса контура питания (R_k) и радиуса скважины (r_c), на основании чего производительность скважины с увеличенным радиусом r_{c1} при прочих равных условиях определяется выражением

$$Q_1 = Q \frac{\ln \frac{R_k}{r_{c1}}}{\ln \frac{R_k}{r_{c1}}}$$

Принимая R_{κ} =200 м. r_c =0.145 м. получают Q_1 =0.08 Q_2

Таким образом, достигается увеличение производительности за счет реализации предлагаемого технического решения.

Формула изобретения

Конструкция забоя скважины, включающая эксплуатационную колонну, спущенную до кровли продуктивного объекта. расширенный ствол скважины в интервале залегания продуктивного объекта, перфорированную колонну обсадных труб, установленную против интервала залегания продуктивного объекта, отличающаяс я тем, что, с целью уменьшения трудоемкости работ и увеличения производительности скважины, перфорированная колонна обсадных труб выполнена из металла с памятью, восстанавливающей первоначальную форму после спуска в интервал крепления, причем наружный диаметр перфорированной колонны обсадных труб первоначальной цилиндрической формы равен диаметру ствола скважины, а внутренний диаметр больше внутреннего диаметра эксплуатационной колонны.

Qu2.3

Редактор А.Огар

Составитель Р.Аллахвердиев

Техред М.Моргентал

Корректор С.Лыжова

Заказ 1503

Тираж

Подписное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР 113035, Москва, Ж-35, Раушская наб., 4/5

Производственно-издательский комбинат "Патент", г. Ужгород, ул.Гагарина, 101

[state seal] Union of Soviet Socialist Republics

(51)5 E 21 B 33/13, 43/10

(19) **SU**

USSR State Committee on Inventions and Discoveries

SPECIFICATION OF INVENTOR'S CERTIFICATE

1 [1st page]

- (21) 4691069/03
- (22) May 12, 1989
- (46) April 30, 1992, Bulletin No. 16
- (71) Turkmen State Scientific-Research and Planning Institute of the Oil Industry, TurkmenNIPIneft
- (72) R. A. Allakhverdiev and R. T. Eganyants
- (53) 622.245.42 (088.8)
- (56) Technology for Designing Construction of an Open Well Bottomhole, RD-39-2-1319-85. M.: Minnefteprom, Moscow 1985, p. 4, Fig. 6.

Technique and Technology for Well Injection in Unstable Reservoirs M.: Nedra, Moscow 1979, pp. 2-5.

2 [1st page]

(11) 1730429

A1

- (54) CONSTRUCTION OF A WELL BOTTOMHOLE
- (57) The invention relates to well construction. The aim is to make it less labor-intensive. After drilling the well down to the top of producing formation 4, flow string 1 is lowered and cemented. Then producing formation 4 is drilled with a bit of diameter less than the inner diameter of flow string 1, after which it is reamed with underreamers. Operations are carried out to measure the actual diameter of the wellbore. A perforated casing 3 is assembled using pipes made from memory metal [abstract continued on 2nd page]

[under columns 1 and 2, 1st page]

[see Russian original for figure]

 d_{well}

Fig. 1

[vertically along right margin]

(19) <u>SU</u> (11) <u>1730429 A1</u>

[Abstract, 2nd page, 1st column]

and of cylindrical shape, with outer diameter equal to the diameter of the reamed wellbore and inner diameter greater than the inner diameter of the flow string. Before it is lowered downhole,

[Abstract, 2nd page, 2nd column]

perforated casing 3 is given a shape with transverse dimensions allowing it to be lowered unhindered to the interval where producing formation 4 occurs. At this interval, perforated casing 3 is heated to restore its shape. 4 drawings.

The invention relates to oil and gas production and may be used in well construction.

A bottomhole construction is known that includes a flow string lowered to the top of the producing formation, a flush string with perforated holes (slots) placed facing the producing formation, where the outer diameter of the flush string is less than the diameter of the wellbore, and the latter is less than the inner diameter of the flow string.

However, in that bottomhole construction, the inner diameter of the flush perforated string is substantially less than the inner diameter of the flow string, which results in low well productivity and makes it difficult to service and operate.

When annular clearance is present, the pressure on the wall of the well decreases during its operation, and over time the wellbore zone of the well caves in. The latter also leads to failure of the flush string.

The well construction closest to the proposed approach includes a flow string lowered to the top of the producing formation, a reamed wellbore in the interval where the producing formation occurs, a flush perforated casing placed facing the interval where the producing formation occurs, where to avoid caving of the formation, the flush string—borehole annular space is packed with a gravel—sand filter. The known well construction has the following disadvantages: very labor-intensive operations for making the gravel—sand filter; as operations proceed, the gravel—sand filter gets clogged and well productivity decreases; the small diameter of the flush string results in low well productivity and makes servicing and operation difficult.

The aim of the invention is to make the operations less labor-intensive and to increase well productivity.

The aforementioned aim is achieved by the fact that in well construction including a flow string lowered to the top of the producing formation, a reamed wellbore in the interval where the producing formation occurs, and a perforated string placed facing the interval where the producing formation occurs, the perforated casing is made of memory metal that recovers its original shape after it is lowered to the interval to be cased, where the outer diameter of the perforated casing for the original cylindrical shape is equal to the diameter of the wellbore, and the inner diameter is greater than the inner diameter of the flow string.

The working principle of memory metal is as follows.

It is known that there are metallic alloys which completely recover from inelastic deformations when the load is removed or they are heated, i.e., the metal "remembers" and takes on its previous shape. This phenomenon, observed in many pure metals, alloys, and metal composites, is called the shape memory effect.

Fig. 1 shows schematically the proposed well bottomhole construction; Fig. 2 shows the A—A cross section in Fig. 1; Fig. 3 shows the flush string, deformed before lowering downhole; Fig. 4 shows the B—B cross section in Fig. 3 (the largest diameter of the transverse cross section of the deformed string is less than the inner diameter of the flow string).

The well bottomhole construction includes flow string 1, reamed wellbore 2 in the interval where producing formation 4 occurs, and perforated casing 3.

After the well is drilled down to the top of producing formation 4, flow string 1 is lowered and cemented. Then producing formation 4 is drilled with a bit of diameter less than the inner diameter of flow string 1, after which it is reamed with underreamers. Operations are carried out to measure the actual

diameter of the wellbore. Perforated casing 3 is assembled using pipes made from memory metal and of cylindrical shape, with outer diameter equal to the diameter of the reamed wellbore. Before it is lowered downhole, perforated casing 3 is given a shape with transverse dimensions allowing it to be lowered unhindered to the interval where producing formation 4 occurs. An electric heater or other means is used to heat the memory metal piece up to the calculated temperature. Then the memory metal piece recovers its original shape.

Example. Drilling to accommodate a flow string down to a depth of 2000 m is carried out with a Ø 215.9 mm bit. A flow string made from Ø 168 mm pipes with thickness 10 mm is run to the aforementioned depth and cemented. The producing formation occurring below is drilled out with a Ø 145 mm bit to the planned depth of 2020 m, then the wellbore is reamed with underreamers up to a diameter of Ø 250 mm. A perforated string is made up using memory metal, length L = 22 m and dimensions $d_1 = 148$ mm, $d_2 = 250$ mm. The string is deformed and given a cross-sectional profile of the shape shown in Fig. 4, with largest diameter of the transverse cross section $d_3 = 140$ mm, which provides annular clearance equal to 4 mm, with inner diameter of the flow string equal to 148 mm, and consequently unhindered conveyance of the flush string to the interval where the producing formation occurs. The deformed string is lowered downhole on a cable until it sets on the bottom. The electric heating system is switched on. After a certain holding period, the flush string recovers its original cylindrical shape with outer diameter 250 mm.

The savings from adoption of the proposed design

is determined by the additional well production rate. According to the Dupuis formula, the well production rate Q is inversely proportional to the natural logarithm of the ratio of the external reservoir boundary radius (R_b) to the well radius (r_w) , based on which the well productivity, with an increase in the radius r_{w1} and all other conditions being equal, is determined by the expression

$$Q_1 = Q \frac{\ln \frac{R_b}{r_w}}{\ln \frac{R_b}{r_w}}$$

[sic- one of the r_{wl} 's should be r_{wl}

Assuming $R_b = 200$ m, $r_w = 0.145$ m, we obtain $Q_1 = 0.08Q$. Thus an increase in productivity is achieved by implementation of the proposed design.

Claim

A well bottomhole construction including a flow string lowered to the top of the producing formation, a reamed wellbore in the interval where the producing formation occurs, a perforated casing placed facing the interval where the producing formation occurs, distinguished by the fact that, with the aim of making the operations less labor-intensive and increasing the well productivity, a perforated casing is made from memory metal, which recovers the original shape after lowering to the interval to be cased, where the outer diameter of the perforated casing for the initial cylindrical shape is equal to the wellbore diameter, and the inner diameter is greater than the inner diameter of the flow string.

[see Russian original for figure]

<u>A—A</u>

Fig. 2

[see Russian original for figure]

B

В

[see Russian original for figure]

<u>B—B</u>

Fig. 3 Fig. 4

Compiler R. Allakhverdiev

Editor A. Ogar Tech. Editor M. Morgental Proofreader S. Lyzhova

Order 1503 Run Subscription edition

All-Union Scientific Research Institute of Patent Information and Technical and Economic Research of the USSR State Committee on Inventions and Discoveries [VNIIPI] of the State Committee on Science and Technology

4/5 Raushkaya nab., Zh-35, Moscow 113035

"Patent" Printing Production Plant, Uzhgorod, 101 ul. Gagarina

AFFIDAVIT OF ACCURACY

I, Kim Stewart, hereby certify that the following is, to the best of my knowledge and belief, true and accurate translations performed by professional translators of the following Patents and Abstracts from Russian to English:

ATLANTA BOSTON BRUSSELS CHICAGO DALLAS DETROIT FRANKFI IRT HOUSTON LONDON LOS ANGELES MIAMI MINNEAPOLIS NEW YORK PARIS PHILADELPHIA SAN DIEGO SAN FRANCISCO SEATTLE WASHINGTON, DC

Patent 989038 Abstract 976019 Patent 959878 Abstract 909114 Patent 907220 Patent 894169 Patent 1041671 A Patent 1804543 A3 Patent 1686123 A1 Patent 1677225 A1 Patent 1698413 A1 Patent 1432190 A1 Patent 1430498 A1 Patent 1250637 A1 Patent 1051222 A Patent 1086118 A Patent 1749267 A1 Patent 1730429 A1 Patent 1686125 A1 Patent 1677248 A1 Patent 1663180 A1 Patent 1663179 A2 Patent 1601330 A1 Patent SU 1295799 A1

Patent 1786241 A1

Patent 1002514

PAGE 2 AFFIDAVIT CONTINUED

(Russian to English Patent/Abstract Translations)

Kim Stewart

TransPerfect Translations, Inc. 3600 One Houston Center

1221 McKinney

Houston, TX 77010

Sworn to before me this 9th day of October 2001.

Signature, Notary Public

Stamp, Notary Public

Harris County

Houston, TX