Data Science for Data Wranglers Part 4: The Structure of Visualizations

Data Manipulation

Changing the variables, values, and units of analysis contained in the data set.

Data Tidying

Changing the layout of tabular data to make it suitable for a particular piece of software (R).

Data Visualization

Transforming the data to a visual format that reveals visual patterns.

mpg cyl disp hp 21.0 6 160.0 2 21.0 6 160.0 2 22.8 4 108.0 1 21.4 6 258.0 2 18.7 8 360.0 3 18.1 6 225.0 2 14.3 8 360.0 5 24.4 4 146.7 1 22.8 4 140.8 1 19.2 6 167.6 2 17.8 6 167.6 2 16.4 8 275.8 3 17.3 8 275.8 3 15.2 8 275.8 3	
21.0 6 160.0 2 22.8 4 108.0 1 21.4 6 258.0 2 18.7 8 360.0 3 18.1 6 225.0 2 14.3 8 360.0 5 24.4 4 146.7 1 22.8 4 140.8 1 19.2 6 167.6 2 17.8 6 167.6 2 16.4 8 275.8 3 17.3 8 275.8 3 15.2 8 275.8 3	
22.8 4 108.0 1 21.4 6 258.0 2 18.7 8 360.0 3 18.1 6 225.0 2 14.3 8 360.0 5 24.4 4 146.7 1 22.8 4 140.8 1 19.2 6 167.6 2 17.8 6 167.6 2 16.4 8 275.8 3 17.3 8 275.8 3 15.2 8 275.8 3	
21.4 6 258.0 2 18.7 8 360.0 3 18.1 6 225.0 2 14.3 8 360.0 5 24.4 4 146.7 1 22.8 4 140.8 1 19.2 6 167.6 2 17.8 6 167.6 2 16.4 8 275.8 3 17.3 8 275.8 3 15.2 8 275.8 3	
18.7 8 360.0 3 18.1 6 225.0 2 14.3 8 360.0 5 24.4 4 146.7 1 22.8 4 140.8 1 19.2 6 167.6 2 17.8 6 167.6 2 16.4 8 275.8 3 17.3 8 275.8 3 15.2 8 275.8 3	
18.1 6 225.0 2 14.3 8 360.0 5 24.4 4 146.7 1 22.8 4 140.8 1 19.2 6 167.6 2 17.8 6 167.6 2 16.4 8 275.8 3 17.3 8 275.8 3 15.2 8 275.8 3	
14.3 8 360.0 5 24.4 4 146.7 1 22.8 4 140.8 1 19.2 6 167.6 2 17.8 6 167.6 2 16.4 8 275.8 3 17.3 8 275.8 3 15.2 8 275.8 3	
24.4 4 146.7 1 22.8 4 140.8 1 19.2 6 167.6 2 17.8 6 167.6 2 16.4 8 275.8 3 17.3 8 275.8 3 15.2 8 275.8 3	
22.8 4 140.8 1 19.2 6 167.6 2 17.8 6 167.6 2 16.4 8 275.8 3 17.3 8 275.8 3 15.2 8 275.8 3	
19.2 6 167.6 2 17.8 6 167.6 2 16.4 8 275.8 3 17.3 8 275.8 3 15.2 8 275.8 3	
17.8 6 167.6 2 16.4 8 275.8 3 17.3 8 275.8 3 15.2 8 275.8 3	
16.4 8 275.8 3 17.3 8 275.8 3 15.2 8 275.8 3	
17.3 8 275.8 3 15.2 8 275.8 3	
15.2 8 275.8 3	
10.4 8 472.0 4	
10.4 8 460.0 4	
14.7 8 440.0 4	
32.4 4 78.7 1	
30.4 4 75.7 1	
33.9 4 71.1 1	

data mark

coordinate system

			fill 1	
mpg	cyl	disp	hp	
21.0	6	160.0	2	
21.0	6	160.0	2	
22.8	4	108.0	1	
21.4	6	258.0	2	
18.7	8	360.0	3	
18.1	6	225.0	2	
14.3	8	360.0	5	
24.4	4	146.7	1	
22.8	4	140.8	1	
19.2	6	167.6	2	
17.8	6	167.6	2	
16.4	8	275.8	3	
17.3	8	275.8	3	
15.2	8	275.8	3	
10.4	8	472.0	4	
10.4	8	460.0	4	
14.7	8	440.0	4	
32.4	4	78.7	1	
30.4	4	75.7	1	
33.9	4	71.1	1	

coordinate system

shape			fill	
	_ĵ			
mpg	cyl	disp	hp	
21.0	6 +	160.0	2	+
21.0	6 +	160.0	2	+
22.8	4 •	108.0	1	
21.4	6 +	258.0	2	+
18.7	8 ♦	360.0	3	
18.1	6 +	225.0	2	+
14.3	8 ♦	360.0	5	
24.4	4 •	146.7	1	
22.8	4 •	140.8	1	
19.2	6 +	167.6	2	. *
17.8	6 +	167.6	2	
16.4	8 ♦	275.8	3	
17.3	8 ♦	275.8	3	
15.2	8 ♦	275.8	3	
10.4	8 ♦	472.0	4	
10.4	8 ♦	460.0	4	
14.7	8 ♦	440.0	4	
32.4	4 ●	78.7	1	
30.4	4 ●	75.7	1	
33.9	4 ●	71.1	1	

coordinate system

	shape	X	fill	
mpg	cyl	disp	hp	
21.0	6	160.0	2	+
21.0	6	160.0	2	+
22.8	4	108.0	1	
21.4	6	258.0	2	+
18.7	8	360.0	3	
18.1	6	225.0	2	+
14.3	8	360.0	5	
24.4	4	146.7	1	
22.8	4	140.8	1	
19.2	6	167.6	2	+
17.8	6	167.6	2	
16.4	8	275.8	3	
17.3	8	275.8	3	
15.2	8	275.8	3	
10.4	8	472.0	4	
10.4	8	460.0	4	
14.7	8	440.0	4	
32.4	4	78.7	1	
30.4	4	75.7	1	
33.9	4	71.1	1	

coordinate system

У	shape	X	fill	
1		_1	_1_	
mpg	cyl	disp	hp	
21.0	6	160.0	2	
21.0	6	160.0	2	
22.8	4	108.0	1	
21.4	6	258.0	2	
18.7	8	360.0	3	
18.1	6	225.0	2	
14.3	8	360.0	5	
24.4	4	146.7	1	
22.8	4	140.8	1	
19.2	6	167.6	2	
17.8	6	167.6	2	
16.4	8	275.8	3	
17.3	8	275.8	3	
15.2	8	275.8	3	
10.4	8	472.0	4	
10.4	8	460.0	4	
14.7	8	440.0	4	
32.4	4	78.7	1	
30.4	4	75.7	1	
33.9	4	71.1	1	

coordinate system

У	shape	X	fill	
1	1	$\hat{1}$	$\hat{1}$	
mpg	cyl	disp	hp	
21.0	6	160.0	2	+
21.0	6	160.0	2	-
22.8	4	108.0	1	-
21.4	6	258.0	2	+
18.7	8	360.0	3	_
18.1	6	225.0	2	+
14.3	8	360.0	5	
24.4	4	146.7	1	_
22.8	4	140.8	1	
19.2	6	167.6	2	-
17.8	6	167.6	2	
16.4	8	275.8	3	
17.3	8	275.8	3	
15.2	8	275.8	3	
10.4	8	472.0	4	
10.4	8	460.0	4	
14.7	8	440.0	4	
32.4	4	78.7	1	
30.4	4	75.7	1	
33.9	4	71.1	1	

coordinate system

y 1		X 1		
mpg	cyl	disp	hp	
21.0	6	160.0	2	-
21.0	6	160.0	2	-
22.8	4	108.0	1	-
21.4	6	258.0	2	-
18.7	8	360.0	3	-
18.1	6	225.0	2	-
14.3	8	360.0	5	-
24.4	4	146.7	1	-
22.8	4	140.8	1	-
19.2	6	167.6	2	
17.8	6	167.6	2	
16.4	8	275.8	3	-
17.3	8	275.8	3	-
15.2	8	275.8	3	-
10.4	8	472.0	4	
10.4	8	460.0	4	
14.7	8	440.0	4	
32.4	4	78.7	1	
30.4	4	75.7	1	
33.9	4	71.1	1	

data

system

À		llik		
mpg	cyl	disp	hp	
21.0	6	160.0	2	
21.0	6	160.0	2	
22.8	4	108.0	1	
21.4	6	258.0	2	
18.7	8	360.0	3	
18.1	6	225.0	2	
14.3	8	360.0	5	
24.4	4	146.7	1	
22.8	4	140.8	1	
19.2	6	167.6	2	
17.8	6	167.6	2	
16.4	8	275.8	3	
17.3	8	275.8	3	
15.2	8	275.8	3	
10.4	8	472.0	4	
10.4	8	460.0	4	
14.7	8	440.0	4	
32.4	4	78.7	1	
30.4	4	75.7	1	
33.9	4	71.1	1	

data mark points lines bars

coordinate system

mpg	cyl	disp	hp	
21.0	6	160.0	2	
21.0	6	160.0	2	
22.8	4	108.0	1	>
21.4	6	258.0	2	
18.7	8	360.0	3	
18.1	6	225.0	2	
14.3	8	360.0	5	
24.4	4	146.7	1	
22.8	4	140.8	1	
19.2	6	167.6	2	
17.8	6	167.6	2	
16.4	-8	275.8	3	
17.3	-8	275.8	3	
15.2	8	275.8	3	
10.4	8	472.0	4	7
10.4	8	460.0	4	
14.7	8	440.0	4	
32.4	4	78.7	1	
30.4	4	75.7	1	
33.9	4	71.1	1	

A visualization is a collection of

1. visual marks

A visualization is a collection of

1. visual marks (observations)

			fill	
mpg	cyl	disp	hp	
21.0	6	160.0	2	
21.0	6	160.0	2	
22.8	4	100.0	1	
21.4	6	258.0	2	
18.7	8	360.0	3	
18.1	6	225.0	2	
14.3	8	360.0	5	
24.4	4	146.7	1	
22.8	4	140.8	1	
19.2	6	167.6	2	
17.8	6	167.6	2	
16.4	8	275.8	3	
17.3	8	275.8	3	
15.2	8	275.8	3	
10.4	8	472.0	4	
10.4	8	460.0	4	
14.7	8	440.0	4	
32.4	4	78.7	1	
30.4	4	75.7	1	
33.9	4	71.1	1	

A visualization is a collection of

1. visual marks (observations)

that have

2. visual properties

	shape	•	fill	
	Î		$\hat{1}$	
mpg	cyl	disp	hp	
21.0	6 +	160.0	2	+
21.0	6 +	160.0	2	+
22.8	4 •	108.0	1	
21.4	6 +	258.0	2	+
18.7	8 ♦	360.0	3	
18.1	6 +	225.0	2	+
14.3	8 ♦	360.0	5	
24.4	4 •	146.7	1	
22.8	4 •	140.8	1	
19.2	6 +	167.6	2	+
17.8	6 +	167.6	2	+
16.4	8 ♦	275.8	3	
17.3	8 ♦	275.8	3	
15.2	8 ♦	275.8	3	
10.4	8 ♦	472.0	4	
10.4	8 ♦	460.0	4	
14.7	8 ♦	440.0	4	
32.4	4 ●	78.7	1	
30.4	4 ●	75.7	1	
33.9	4 ●	71.1	1	

A visualization is a collection of

1. visual marks (observations)

that have

2. visual properties

data mark

A visualization is a collection of

1. visual marks (observations)

that have

2. visual properties (variables)

The structure of data sets parallels the structure of data visualizations

Your Turn

If you do not have tb3, recreate it now to use in the next sections.

```
tb2 <- tb %>%
 mutate(cases = child + adult + elderly) %>%
  select(country:sex, cases) %>%
  filter(!is.na(cases)) %>%
  group_by(country, year) %>%
  summarise(cases = sum(cases)) %>%
  ungroup()
population <- population %>%
  gather("year", "population", -1, convert = TRUE)
tb3 <- tb2 %>%
  left_join(population, by = c("country", "year")) %>%
  mutate(rate = cases / population * 10000) ***
 select(country, year, rate)
```

Visualizing observations

ggvis

A package that visualizes data.

ggvis implements the *grammar of graphics*, a system for building visualizations that is built around observations and variables.

```
# install.packages("ggvis")
library(ggvis)
```

ggvis()

ggvis begins a graph ...with no marks and no properties.

Your Turn

```
china <- tb3 %>% filter(country == "China")
```

How do the following commands differ? How does their output differ?

```
china %>% ggvis(x = ~year, y = ~rate) %>% layer_points()
china %>% ggvis(x = ~year, y = ~rate) %>% layer_lines()
china %>% ggvis(x = ~year, y = ~rate) %>% layer_bars()
china %>% ggvis(x = ~year, y = ~rate) %>% layer_smooths()
```


china %>%
 ggvis(x = ~year,
 y = ~rate) %>%
 layer_bars()

china %>%
 ggvis(x = ~year,
 y = ~rate) %>%
 layer_smooths()

Layers

Each layer represents observations (or groups of observations) with a different mark. Open a layer's help page to see which properties it uses, e.g. ?layer_arcs

layer_arcs

layer_bars

layer_boxplots

layer_densities

layer_freqpolys

layer_histograms

layer_images

layer_model_predictions

layer_paths

layer_points

layer_rects

layer_ribbons

layer_smooths

layer_text

Layers

Add multiple layers to depict observations in multiple ways.

Your Turn

```
indochina <- filter(tb3, country %in% c("India", "China"))</pre>
```

How do the following commands differ? Can you tell what is happening?

```
indochina %>%
   ggvis(x = ~year, y = ~cases) %>% layer_points()

indochina %>%
   ggvis(x = ~year, y = ~cases) %>% layer_lines()

indochina %>% group_by(country) %>%
   ggvis(x = ~year, y = ~cases) %>%layer_lines()
```

indochina <- filter(tb3, country %in% c("India", "China"))</pre>

grouping

ggvis will draw a separate mark for each group of observations

in grouped data.

ggvis will automatically group data when necessary, e.g.

Your Turn

Plot a line graph of the tb3 data. Put year on the x axis, cases on the y axis, and include a separate line for each country.

```
tb3 %>%
  group_by(country) %>%
  ggvis(x = ~year, y = ~cases) %>%
  layer_lines()
```


Saving plots

Visualizing variables

Your Turn

This graph sets the x location property to year and the y location property to rate. Try to set the y location property to population

and set the fill property to rate.

```
china %>%
    ggvis(x = ~year, y = ~rate) %>%
    layer_points()
```


china %>%
 ggvis(x = ~year, y = ~population, fill = ~rate) %>%
 layer_points()

Quiz

```
x <- c(1, 2, 3)

df <- data.frame(
    x = c("a", "b", "c"),
    y = 1:3, stringsAsFactors = FALSE)</pre>
```

What will each of these commands return?

x "x" df\$x

df

3

~

The ~ syntax provides a shortcut for referring to a column in your data frame.

fill * rate fill "x"rate" fild * * rate

The object named rate

The literal value "rate" (a string)

The column named rate in the data frame that you passed to ggvis

Your Turn

china <- tb3 %>% filter(country == "China")

Try to create the graph below.

china %>%
 ggvis(x = ~population, y = ~cases, size = ~rate) %>%
 layer_points()

What if you want to manually set a property?

e.g. make all of the points red?

What if you want to manually set a property?

e.g. make all of the points red?

What if you want to manually set a property?

e.g. make all of the points red?


```
indochina %>% group_by(country) %>%
  ggvis(x = ~year, y = ~cases, stroke = "green") %>%
  layer_lines()
```



```
indochina %>% group_by(country) %>%
  ggvis(x = ~year, y = ~cases, stroke := "green") %>%
  layer_lines()
```



```
indochina %>%
   ggvis(x = ~country, y = ~cases, fill := "orange") %>%
   layer_boxplots()
```



```
color <- "yellow"
indochina %>%
  ggvis(x = ~country, y = ~cases, fill := color) %>% layer_boxplots()
```


interactive graphs

Inputs

Make plots interactive by mapping properties to an input control. Create input controls with an input_ function.

```
sliderBox <- input_slider(.1, 2, value = 1, step = .1,
  label = "Bandwidth adjustment")

selectBox <- input_select(c("Gaussian" = "gaussian",
  "Epanechnikov" = "epanechnikov", "Rectangular" = "rectangular",
  "Triangular" = "triangular", "Biweight" = "biweight",
  "Cosine" = "cosine", "Optcosine" = "optcosine"), label = "Kernel")

mtcars %>%
  ggvis(x = ~wt) %>%
  layer_densities(adjust = sliderBox, kernel = selectBox)
```

Inputs

Currently available input functions.

```
input_checkbox
input_checkboxgroup
input_numeric
input_radiobuttons
input_select
input_slider
input_text
```

Hover events

```
# This function receives information about the hovered
# point and returns an HTML string to display
all values <- function(x) {
  if(is.null(x)) return(NULL)
  paste0(names(x), ": ", format(x), collapse = "<br />")
mtcars %>% ggvis(x = \simwt, y = \simmpg) %>%
  layer_points(fill.hover := "red") %>%
  add_tooltip(all_values, "hover")
```

Recap: visualization

ggvis: A package that visualizes data.

Depict observations as visual marks with a layer_*() function

Map variables to visual properties

Keep track of data space and visual space with = and := syntax