CS2055 HW8

Fangzheng Guo, Shibo Xing, Zhuolun Li

1. Extendible hashing structure:

Global: (3)

(-)		1	1	1	1	1	
000	001	010	011	100	101	110	111
0 (1)	111 (3)	011 (3)	101 (3)	001 (3)	
2* (10)	31* (1:	1111)	11* (1011)	29* (11101	.) 9* (10	01)	
20* (10100) 7* (11:	1)	3* (011)	13* (1101)	17* (1	0001)	
4* (100)	23* (10	0111)	19* (10011)	5* (101)	25* (1	1001)	

2. B+ tree:

After inserting 7:

After inserting 29:

3. B+ steps:

a. delete 2:

Delete 3 and 5:

4. Number of levels:

Since for a b+-tree with max pointers as 9, at level d the maximum total amount of the nodes is 9^d . Since there are maximum 8 keys in each node, the total number of leaves is $9^d \times 8$. This happens when each node is full. Thus, given a certain number of leaves, the fuller the nodes are the fewer the levels there are in the tree. Thus, we will calculate the number of levels when each node has 9 child nodes, which will be $\log 9(5127/8) = 2.94136$, which rounds to 3.

5.

a.

$H_1=R_3(z)W_2(x)R_2(z)W_2(y)R_1(x)R_3(x)R_3(y)W_1(x)$

Conflicting ops:

W2(x) < R1(x) W2(x) < R3(x) W2(x) < W1(x)

W2(y) < R3(y)

$H_2=W_2(x)W_2(y)W_1(x)R_3(x)R_1(x)R_3(z)R_3(y)R_2(z)$

Conflicting ops:

W2(x) < W1(x) W2(x) < R3(x) W2(x) < R1(x)

W2(y) < R3(y)

W1(x) < R3(x)

$H_3=W_2(y)W_2(x)W_1(x)R_3(y)R_2(z)R_1(x)R_3(x)R_3(z)$

Conflicting ops:

W2(y) < R3(y)

W2(x) < W1(x) W2(x) < R1(x) W2(x) < R3(x)

W1(x) < R3(x)

$H_4=R_3(y)W_2(y)R_2(z)W_1(x)R_3(x)W_2(x)R_3(z)R_1(x)$

Conflicting ops:

R3(y) < W2(y)

W1(x) < R3(x) W1(x) < W2(x)

```
R3(x) < W2(x)
    W2(x) < R1(x)
    H2 and H3 have their conflicting operations in the same order.
    They are conflict equivalent
b.
    H_1=R_3(z)W_2(x)R_2(z)W_2(y)R_1(x)R_3(x)R_3(y)W_1(x)
    W2(x) < R1(x): T2 -> T1
    W2(x) < R3(x): T2 -> T3
Serializable, serial history: T2 -> T1 -> T3
    H_2=W_2(x)W_2(y)W_1(x)R_3(x)R_1(x)R_3(z)R_3(y)R_2(z)
    W2(x) < W1(x): T2 -> T1
    W2(x) < R3(x): T2 -> T3
    W1(x) < R3(x): T1 -> T3
Serializable, serial history: T2 -> T1 -> T3
    H_3=W_2(y)W_2(x)W_1(x)R_3(y)R_2(z)R_1(x)R_3(x)R_3(z)
    W2(y) < R3(y): T2 -> T3
    W2(x) < W1(x): T2 -> T1
    W1(x) < R3(x): T1->T3
Serializable, serial history: T2 -> T1 -> T3
    H_4=R_3(y)W_2(y)R_2(z)W_1(x)R_3(x)W_2(x)R_3(z)R_1(x)
    R3(y) < W2(y): T3 -> T2
    W1(x) < R3(x): T1 -> T3
    W1(x) < W2(x): T1 -> T2
    R3(x) < W2(x): T3 -> T2
Not serializable
c. H2, H3
H_1=R_3(z)W_2(x)R_2(z)W_2(y)R_1(x)R_3(x)R_3(y)W_1(x)
      T1
               T2
                       Т3
             wlock(x)
             rlock(z)
                      rlock(x)
    rlock(z)
    R_3(z)
             W_2(x)
             R_2(z)
```

 $\begin{array}{c} \text{wlock(y)} \\ \text{W2(y)} \\ \text{R1(x)} \\ \text{R3(x)} \\ \text{R3(y)} \\ \end{array}$