Chapter 4.7

Topics: Optimization Problems

Many real world applications depend on optimizing (minimizing/maximizing) a quantity.

Steps to solving an optimization problem.

- 1. Draw a picture.
- 2. Identify relevant knowns/unknowns and give them notation.
- 3. Write the desired quantity to be optimized in terms of **one** other variable.
- 4. If the input variable is on a *finite* interval use the **closed interval method**.
- 5. If the input variable is on an *infinite* interval use the **first derivative test**.

Example 1. A farmer has 2400ft of fencing to create a rectangular field next to a straight river. How does he create a field of largest area?

Example 2. Find the point on the ellipse

$$4x^2 + y^2 = 4$$

farthest from the point (1,0).

Useful tip: Some optimization problems do not have a finite interval of possible inputs. In this case we can use the first derivative test! Assume c is a critical number of f. Then:

- 1. If f'(x) > 0 for all x < c and f'(x) < 0 for all x > c then
- 2. If f'(x) < 0 for all x < c and f'(x) > 0 for all x > c then

Example 3. Find the dimensions of a rectangle with area $1000m^2$ whose perimeter is as small as possible.

Example 4. A retailer is selling 1200 tablets a week at \$350 each. The marketing department estimates that an additional 80 tablets will sell each week for every \$10 that the price is lowered. Find a function describing the profit as a function of price. Then, determine the price that will maximize the total profit.

Example 5. Let's figure out how long it takes for caffeine to be absorbed and released from the body. The following function models the concentration, c, of caffeine in the bloodstream at time t:

$$c(t) = .2te^{-t/2}.$$

Find when the caffeine in the bloodstream is highest.