Exam Review D-don't Act Dumb

Daiwei Chen

<2019-02-27 Wed>

Contents

1	God Please Don't Forget These	1
2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 2
3	Complexities	2
4	Dynamic Programming: Optimal Substructure	2
1	God Please Don't Forget These • Define Algorithm • Summations, Logs, Ceiling, Floor • Counting Operations • Complexities (O, Ω, Θ) • Divide & Conquer • Greedy Algorithms	
	Dynamic Programming	

2 Logs

When it comes to CS, log always has a base of 2 unless specified otherwise. Let's take a look at $\Theta(n \log n)$.

Log Identities 2.1

$$\log(x^y) = y \log x$$

$$\log(xy) = \log x + \log y$$

$$\log_b a = \frac{\log_x a}{\log_x b}$$

2.2 $\log_{2742} n$ wtf why

$$\begin{array}{l} \log_{2742} n \leq c \log n \, n \geq k \\ \frac{\log n}{\log 2742} \leq c \log n \\ \frac{1}{\log 2742} \log n \leq c \log n \, c = \frac{1}{\log 2742} \end{array}$$

Doing it the limit way:
$$\begin{aligned} &\lim_{n\to\infty}\frac{\log_{2742}n}{\log n}\\ &=\lim_{n\to\infty}\frac{\log n}{\log 2742}\frac{1}{\log n}\\ &=\lim_{n\to\infty}\frac{\log n}{\log 2742*\log n}\\ &=\frac{1}{\log 2742}\end{aligned}$$

3 Complexities

$$\Theta(n) + \Theta(1) = \Theta(n+1) = \Theta(n)$$

$$\Theta(n) + \Theta(n) = \Theta(n)$$

$$\Theta(n) * \Theta(n) * \Theta(n) = \Theta(n^3)$$

Dynamic Programming: Optimal Substructure 4

Optimal answers to smaller problems are still applicable. For example, in the coin changing case, it's still better to use the two 6 cent pieces and not the bigger 10 cent piece.