JZ4770 Mobile Application Processor

Data Sheet

Release Date: Nov. 20, 2014

JZ4770 Mobile Application Processor

Data Sheet

Copyright © 2005-2014 Ingenic Semiconductor Co. Ltd. All rights reserved.

Disclaimer

This documentation is provided for use with Ingenic products. No license to Ingenic property rights is granted. Ingenic assumes no liability, provides no warranty either expressed or implied relating to the usage, or intellectual property right infringement except as provided for by Ingenic Terms and

Conditions of Sale.

Ingenic products are not designed for and should not be used in any medical or life sustaining or

supporting equipment.

All information in this document should be treated as preliminary. Ingenic may make changes to this

document without notice. Anyone relying on this documentation should contact Ingenic for the current

documentation and errata.

Ingenic Semiconductor Co., Ltd.

Ingenic Headquarters, East Bldg. 14, Courtyard #10,

Xibeiwang East Road, Haidian District, Beijing 100193, China

Tel: 86-10-56345000

Fax: 86-10-56345001

Http://www.ingenic.com

CONTENTS

1	Ov	erv	iew	1
	1.1	Bloc	ck Diagram	2
	1.2	Fea	tures	2
	1.2.	1	CPU	2
	1.2.	2	VPU	3
	1.2.	3	GPU	3
	1.2.	4	Display/Camera/Audio	4
	1.2.	5	Memory Interface	5
	1.2.	6	System Functions	6
	1.2.	7	Peripherals	7
	1.2.	8	Bootrom	9
	1.3	Cha	aracteristic	9
2	Pa	cka	iging and Pinout Information	10
	2.1	Ove	erview	10
	2.2	Solo	der Process	10
	2.3	Moi	sture Sensitivity Level	10
	2.4	JZ4	770 Package	11
	2.5	Pin	Description [1][2]	13
	2.5.	1	DDR	13
	2.5.	2	BOOT and storage	15
	2.5.	3	LCD	16
	2.5.	4	MAC/PCM1	17
	2.5.	5	CIM	18
	2.5.	6	TSSI/SSI/MSC/UART/I2C	19
	2.5.	7	PCM0/PCM1/PS2/SCC/PWM/AIC/UART	23
	2.5.	8	System/JTAG/UART3/OTG/GPIO	24
	2.5.	9	Digital power/ground	26
	2.5.	10	Analog	26
3	Ele	ctri	ical Specifications	30
	3.1	Abs	olute Maximum Ratings	30
	3.2	Red	commended operating conditions	31
	3.3	DC	Specifications	32
	3.4	Aud	lio codec electronic characteristics	36
	3.4.	1	Line input to audio ADC path	36
	3.4.	2	Microphone input to audio ADC path	
	3.4.	3	Audio DAC to headphone output path	
	3.4.	4	Audio DAC to mono line output path	
	3.4.	5	Line input to headphone output path (analog bypass)	
	3.4.	6	Microphone input to headphone output path (analog sidetone)	

CONTENTS

3.4.7	Micbias and reference	39
3.5 F	Power On, Reset and BOOT	40
3.5.1	Power-On Timing	40
3.5.2	Reset procedure	41
353	BOOT	42

1 Overview

JZ4770 is a mobile application processor targeting for multimedia rich and mobile devices like smartphone, tablet computer, mobile digital TV, and GPS. This SOC introduces a kind of innovative architecture to fulfill both high performance mobile computing and high quality video decoding requirements addressed by mobile multimedia devices. JZ4770 provides high-speed CPU computing power, good 3D experience and fluent 1080p video replay.

The CPU (Central Processing Unit) core, equipped with 16kB instruction and 16kB data level 1 cache, and 256kB level 2 cache, operating at 1000MHz, and full feature MMU function performs OS related tasks. At the heart of the CPU core is XBurst processor engine. XBurst is an industry leading microprocessor core which delivers superior high performance and best-in-class low power consumption. A hardware floating-point unit which compatible with IEEE754 is also included.

The VPU (Video Processing Unit) core is powered with another XBurst processor engine. The SIMD instruction set implemented by XBurst engine, in together with the on chip video accelerating engine and post processing unit, delivers high video performance. The maximum resolution of 1080p in the formats of H.264, VC-1, MPEG-2, MPEC-4, RealVideo and VP8 are supported in decoding, the maximum resolution of 720p in the format of H.264 are supported in encoding.

The GPU (Graph Processing Unit) core supports numerous 2D/3D graphics applications. It delivers hardware acceleration for 2D and 3D graphics displays, and supports screen sizes range from the smallest cell phones to full HD 1080p displays. It supports the standard APIs such as OpenGL ES2.0 and 1.1, and Open VG. The OS of Android, Linux and Windows are supported. The GPU provides high performance, high quality graphics and low power consumption.

The memory interface supports a variety of memory types that allow flexible design requirements, including glueless connection to SLC NAND flash memory or 4-bit/8-bit/12-bit/16-bit/24-bit ECC MLC/TLC NAND flash memory for cost sensitive applications. It provides the interface to DDR2, DDR and LPDDR memory chips with lower power consumption.

On-chip modules such as audio CODEC, multi-channel SAR-ADC, AC97/I2S controller and camera interface offer designers a rich suite of peripherals for multimedia application. GPS baseband is embedded. TV encoder unit 10-bits DAC provide composite TV signal output in PAL or NTSC format. The LCD controller support up to 1920x1080 output, LVDS as well as plain RGB output which support external HDMI transmitter. The EPD controller supports mainstream vendors' EPD panels in market, up to 5-bit grayscale and 8-zone concurrent updating. WLAN, Bluetooth and expansion options are supported through high-speed SPI and MMC/SD/SDIO host controllers. The TS (Transport stream) interface provides enough bandwidth to connect to an external mobile digital TV demodulator. Other peripherals such as USB OTG and USB 1.1 host, Ethernet MAC with MII and RMII interface, UART and SPI as well as general system resources provide enough computing and connectivity capability for many applications.

1.1 Block Diagram

Figure 1-1 JZ4770 Diagram

1.2 Features

1.2.1 CPU

- XBurst CPU
 - XBurst® RISC instruction set
 - XBurst[®] SIMD instruction set
 - XBurst[®] FPU instruction set supporting both single and double floating point format which are IEEE754 compatible
 - XBurst[®] 8-stage pipeline micro-architecture up to 1000MHz
- MMU
 - 32-entry joint-TLB
 - 4 entry Instruction TLB
 - 4 entry data TLB
- L1 Cache
 - 16kB instruction cache
 - 16kB data cache
- Hardware debug support
- 16kB tight coupled memory

- L2 Cache
 - 256kB unify cache

1.2.2 VPU

- XBurst CPU for video processing
 - XBurst[®] RISC instruction set
 - XBurst® SIMD instruction set
 - XBurst[®] 8-stage pipeline micro-architecture up to 500MHz
- Video acceleration engine
 - Motion compensation
 - Motion estimation
 - De-block
 - DCT/IDCT for 4x4 block
 - Parser
- 48kB tight coupled memory
- 28kB scratch RAM

1.2.3 GPU

- 2D graphic
 - Bit BLT and stretch BLT
 - Line/Rectangle
 - ROP2, ROP3, ROP4/Alpha blending/scaling/Filter
 - Rotation (90/180/270 degree)/Mirror/Transparency/Rendering
 - Pixel rate up to 200M pix/s
- 3D graphic
 - OpenGL ES2.0 compliance, including extensions
 - OpenGL ES1.1/OpenVG 1.1 compliance
 - DirectFB/GDI/DirectDraw compliance
 - Geometry rate up to 20M tri/s
 - Pixel rate up to 200M pix/s
- Alpha-osd
 - Support ARGB8888, RGB565, RGB555
 - Each layer has an alpha value for all pixels
 - Up to 800*480
 - Software can change overlay orders
 - The level of overlay can be set by software
 - Software must make sure the address of source and destination are 64-word aligned
 - Support 64-burst in AHB bus
 - In RGB656 & RGB555mode, software must make sure each line aligned in word

1.2.4 Display/Camera/Audio

- LCD controller
 - Single-panel display in active mode, and single- or dual-panel displays in passive mode
 - 2, 4, 16 grayscales and up to 4096 colors in STN mode
 - 2, 4, 16, 256, 4K, 32K, 64K, 256K and 16M colors in TFT mode
 - 24-bit data bus
 - Support 1,2,4,8 pins STN panel, 16bit, 18bit and 24bit TFT and 8bit I/F TFT
 - Display size up to 1920x1080 pixels
 - 256×16 bits internal palette RAM
 - Support ITU601/656 data format
 - Support smart LCD (SRAM-like interface LCD module)
 - Support delta RGB
 - One single color background and two foreground OSD
 - Compressed frame supported
 - Support LVDS signal output

TV encoder

- Support NTSC or PAL
- Support CVBS signal
- 10 bits DAC

EPD controller

- Supports Electro-Phoretic Display and compatible devices
- Supports different size of display panel
- Supports different width of pixel data
- Supports internal DMA operation and register operation

Image post processor

- Video frame resize
- Color space conversion: 420/444/422 YUV to RGB convert
- Bi-cubic algorithm supported
- Video enhancement

Camera interface module

- Input image size up to 4096x4096 pixels
- Supports CCIR656 data format
- YCbCr 4:2:2 and YCbCr 4:4:4 data format
- Raw data input
- 64×32 image data receive FIFO with DMA support

AC97/I2S/SPDIF controller

- Supports 8, 16, 18, 20 and 24 bit for sample for AC-link and I2S/MSB-Justified format
- Support 2/4/6/8 channels data out for I2S
- Support compress data format for SPDIF
- DMA transfer mode support
- Support variable sample rate mode for AC-link format
- Power down mode and two wake-up mode support for AC-link format
- Programmable Interrupt function support

- Support the on-chip CODEC
- Support off-chip CODEC
- Support off-chip HDMI transmitter audio

Two PCM interfaces

- Data starts with the frame PCMSYN or one PCMCLK later
- Support three modes of operation for PCM: Short frame sync mode, Long frame sync mode, Multi-slot mode
- Data is transferred and received with the MSB first
- Support master mode and slave mode
- The PCM serial output data, PCMDOUT, is clocked out using the rising edge of the PCMSCLK
- The PCM serial input data, PCMDIN, is clocked in on the falling edge of the PCMSCLK.
- 8/16 bit sample data sizes supported
- DMA transfer mode supported
- Two FIFOs for transmit and receive respectively with 16 samples capacity in every direction

• On-chip audio CODEC

- 24-bit DAC, SNR: 95dB
- 24-bit ADC, SNR: 90dB
- Sample rate: 8/9.6/11.025/12/16/22.05/24/32/44.1/48/96kHz
- L/R channels line input
- 2 MICs input, differential or single-ended
- L/R channels headphone output amplifier support up to 16ohm load
- Capacitor-coupled
- Mono differential line out
- Mono 450mW amplifier for speaker out for 80hm load

1.2.5 Memory Interface

- DDR Controller
 - Support DDR2, DDR, mobile DDR (LPDDR) memory
 - Support x16 and x32 external DDR data width
 - Support clock frequency ratio (BUS clock) : (DDR clock) = 2:1
 - Support clock frequency ratio (BUS clock) : (DDR clock) = 1:1
 - Support clock-stop mode
 - Support auto-refresh and self-refresh
 - Support power-down mode and deep-power-down mode
 - Programmable DDR timing parameters
 - Programmable DDR row and column address width
- Static memory interface
 - Direct interface to SRAM, ROM, Burst ROM, and NOR Flash
 - Six chip-select pins for static memory, each can be configured separately
 - Support 8 or 16 bits data width

- 6 bits address
- NAND flash interface
 - Support 4-bit/8-bit/12-bit/16-bit/24-bit MLC/TLC NAND as well as SLC NAND
 - Support all 8-bit/16-bit NAND Flash devices regardless of density and organization
 - Support automatic boot up from NAND Flash devices
- BCH Controller
 - Support 4-bit/8-bit/12-bit/16-bit/20-bit/24-bit ECC encoding and decoding for NAND
- The XBurst processor system supports little endian only

1.2.6 System Functions

- Clock generation and power management
 - On-chip oscillator circuit for an 32768Hz clock and an 12MHz clock
 - On-chip phase-locked loops (PLL) with programmable multiple-ratio. Internal counter are used to ensure PLL stabilize time
 - PLL on/off is programmable by software
 - ICLK, PCLK, HCLK, MCLK and LCLK frequency can be changed separately for software by setting division ratio
 - Supports six low-power modes and function: NORMAL mode; DOZE mode; IDLE mode;
 SLEEP mode; HIBERNATE mode; and MODULE-STOP function
 - Support module power-down
- Timer and counter unit with PWM output and/or input edge counter
 - Provide eight separate channels, six of them have input signal transition edge counter
 - 16-bit A counter and 16-bit B counter with auto-reload function every channel
 - Support interrupt generation when the A counter underflows
 - Three clock sources: RTCLK (real time clock), EXCLK (external clock input), PCLK (APB Bus clock) selected with 1, 4, 16, 64, 256 and 1024 clock dividing selected
 - Every channel has PWM output
- OS timer
 - One channel
 - 32-bit counter and 32-bit compare register
 - Support interrupt generation when the counter matches the compare register
 - Three clock sources: RTCLK (real time clock), EXCLK (external clock input), PCLK (APB Bus clock) selected with 1, 4, 16, 64, 256 and 1024 clock dividing selected
- Interrupt controller
 - Total 32 maskable interrupt sources from on-chip peripherals and external request through GPIO ports
 - Interrupt source and pending registers for software handling
 - Unmasked interrupts can wake up the chip in sleep or standby mode
- Watchdog timer
 - 16-bit counter in RTC clock with 1, 4, 16, 64, 256 and 1024 clock dividing selected
 - Generate power-on reset
- Direct memory access controllers

- BDMA controller
 - > 3 independent DMA channels
 - Support data transfer between normal memory (NAND, SRAM, etc.) / BCH and system memory (DDR)
- General purpose DMA
 - > 12 independent DMA channels
 - Support data transfer between On-chip Peripherals (e.g. I2C, MSC, etc.) and system memory (DDR)
 - > APB bus bridge
- Common features
 - Descriptor supported
 - > Transfer data units: byte, 2-byte (half word), 4-byte (word), 16-byte, 32-byte or 64-byte
 - Transfer number of data unit: 1 ~ 224
 - Independent source and target port width: 8-bit, 16-bit, 32-bit

SADC

- 12-bit, 1Msps/200ksps
- XP/XN, YP/YN inputs for touch screen
- Battery voltage inputs for internal/external resistor divider respectively
- 2 generic input channels
- 5mW@1Msps, 2.2mW@200ksps
- RTC (Real Time Clock)
 - 32-bit second counter
 - 1Hz from 32768hz
 - Alarm interrupt
 - Independent power
 - A 32-bits scratch register used to indicate whether power down happens for RTC power

1.2.7 Peripherals

- General-Purpose I/O ports
 - Total GPIO pin number is 181, where 5 are dedicated and all others are shared
 - Each pin can be configured as general-purpose input or output or multiplexed with internal chip functions
 - Each pin can act as a interrupt source and has configurable rising/falling edge or high/low level detect manner, and can be masked independently
 - Each pin can be configured as open-drain when output
 - Each pin can be configured as internal resistor pull-up/down on or off
- One-wire bus interface
 - Overdrive and regular speed
 - Master only
 - LSB first
 - Bit or byte operate modes

- Three I2C bus interfaces
 - Only supports single master mode
 - Supports I2C standard-mode and F/S-mode up to 400 kHz
 - Double-buffered for receiver and transmitter
 - Supports general call address and START byte format after START condition
- Two Synchronous serial interfaces (SSI0, SSI1)
 - Up to 50MHz speed
 - Supports three formats: TI's SSP, National Microwire, and Motorola's SPI
 - Configurable 2 17 (or multiples of them) bits data transfer
 - Full-duplex/transmit-only/receive-only operation
 - Supports normal transfer mode or Interval transfer mode
 - Programmable transfer order: MSB first or LSB first
 - 17-bit width, 128-level deep transmit-FIFO and receive-FIFO
 - Programmable divider/prescaler for SSI clock
 - Back-to-back character transmission/reception mode
- Four UARTs (UART0, UART1, UART2, UART3)
 - 5, 6, 7 or 8 data bit operation with 1 or 1.5 or 2 stop bits, programmable parity (even, odd, or none)
 - 32x8bit FIFO for transmit and 32x11bit FIFO for receive data
 - Interrupt support for transmit, receive (data ready or timeout), and line status
 - Supports DMA transfer mode
 - Provide complete serial port signal for modem control functions
 - Support slow infrared asynchronous interface (IrDA)
 - IrDA function up to 115200bps baudrate
 - UART function up to 3.7Mbps baudrate
 - Hardware flow control
- Three MMC/SD/SDIO controllers (MSC0, MSC1, MSC2)
 - Support automatic boot up from MSC0, which has 4-bit data bus
 - MSC1 with 4-bit data bus
 - Compliant with "The MultiMediaCard System Specification version 4.2"
 - Compliant with "SD Memory Card Specification version 2.0" and "SDIO Card Specification version 1.0" with 1 command channel and 4 data channels
 - Up to 320 Mbps data rate in MSC0
 - Up to 320 Mbps data rate in MSC1
 - Supports up to 10 cards (including one SD card)
 - Maskable hardware interrupt for SD I/O interrupt, internal status, and FIFO status
- USB 1.1 host interface
 - Open Host Controller Interface (OHCI)-compatible and USB Revision 1.1-compatible
 - Full speed and low speed
 - Embedded USB 1.1 PHY
- USB 2.0 OTG interface
 - Compliant with USB protocol revision 2.0 OTG
 - High speed and full speed supported for device role

- High speed, full speed and low speed supported for host role
- Embedded USB OTG PHY
- Ethernet MAC interface
 - Compliant with IEEE802.3
 - 10/100 Mbps data transfer rate with full and half duplex modes
 - MII/RMII interface to talk to an external PHY
- Transport stream slave interface
 - 8-bit or 1-bit data bus selectable
 - Support PID filtering
- SIM IF
 - Supports normal card and UIM card
 - 8-bit, 16-level receive-/transmit- FIFO
 - Supports asynchronous character (T=0) communication modes
 - Supports asynchronous block (T=1) communication modes
 - Supports setting of clock-rate conversion factor F (372, 512, 558, etc.), and bit-rate adjustment factor D (1, 2, 4, 8, 16, 32, 12, 20, etc.)
 - Supports extra guard time waiting
 - Auto-error detection in T=0 receive mode
 - Auto-character repeat in T=0 transmit mode
 - Transforms inverted format to regular format and vice versa
 - Support stop clock function in some power consuming sensitive applications
- OTP Slave Interface
 - Total 256 bits. Lower 128bits are read-able and write-able, Higher 128bits are read only

1.2.8 Bootrom

8kB Boot ROM memory

1.3 Characteristic

Item	Characteristic
Process Technology	65nm CMOS low power
Power supply voltage	General purpose I/O: 1.6~3.6V
	DDR I/O for mDDR: 1.8V± 0.2V
	DDR I/O for DDR: 2.5V± 0.2V
	DDR I/O for DDR2: 1.8V± 0.2V
	RTC I/O: 3.0V~3.6V
	EFUSE programming: 2.5V± 10%
	Analog power suppy 1: 2.5V± 10%
	Analog power suppy 2: 3.3V± 10%
	Core: 1.2 -0.1/+0.2 V
Package	BGA379 14mm x 14mm x 1.1mm, 0.65mm pitch
Operating frequency	1000MHz

2 Packaging and Pinout Information

2.1 Overview

JZ4770 processor is offered in 379-pin LFBGA package, which is 14mm x 14mm x 1.1mm outline, 21 x 21 matrix ball grid array and 0.65mm ball pitch, show in Figure 2-1. The JZ4770 pin to ball assignment is show in Figure 2-2.

The detailed pin description is listed in Table 2-1~Table 2-26.

2.2 Solder Process

JZ4770 package is lead-free. It's reflow profile follows the IPC/JEDEC lead-free reflow profile as contained in <u>J-STD-020C</u>.

2.3 Moisture Sensitivity Level

JZ4770 package moisture sensitivity is level 3.

2.4 JZ4770 Package

Figure 2-1 JZ4770 package outline drawing

S

MSC1D3

CIM_D10 I2C2SDA

D7

CIM_D8 DMICCLK

D2 D6

S

GPF19

21

20

61

8

16

15

23

12

CIM_VSYN CO S CIM MSC1CLK SSICLK CIM_D9 DMICIN GPF18 B6 G3 RO R4 MSC1D2 SSIGPC LRCLK 12C1SCK GPF20 GPF22 **DA10** DA2 19 CD CD S 딩 0 \overline{C} GO R2 MSC1D0 SSIDR P11 DWE DA3 DA1 CD CD CIM 12C2 CD G4 9 DA15 MSC1D1 SSIDT CIM_MCLK GPF21 DA14 DCSO PCM0SY DCS1 DA0 CD CD S S S B5 G7 G5 NCSDATI SDAT01 PCMOCLK $\frac{8}{2}$ PCM0DI DA13 LCD_HSY CAS 5 8 CD O. CD CD D2 90 D3 \Box TDI UART3RXD PSZKCLK 3GA379, 14mm x 14mm x 1.2mm, 0.65pitch, top view BOOTSELO QQV VDD D5 **D**7 CCD 7 CD JZ4770 Ball Assignment Ver1.13.3 BOOTSEL2 **VSSMEM** D14 VDD QQV VSS 80 11 SCCDATA VSSMEM 퓜 NDD VSS VSS VSS **PS2KCLK** VSSMEM DQS1 **D12** NDD VDD VSS 60 PS2MCLK VSSMEM TSD12 BR DQS2 VDD **/**SS VSS VSS VSS DM1 VSSMEM TSD16 TSD13 rsD17 D20 D18 VSS VSS VSS 9 VDD UART2 TXD UART2 RTS_ 12C0SCK /SSMEM TSDI5 MIITXD3 DM3/ DM1 D19 ND N **D17** D22 D21 DQS3S/ DQS1S UART2 RXD D25/D9 UART2 CTS_ SSICLK DQS3/ DQS1 D23 UART SSICEO D29/ D13 D27 D11 PWM4 SSIDT **SD15** GPS_CLK **SD14 PWRO** 5 D31/ D15 D30/ D14 D28/ D126/ D10 DA4 SA5 LDO **MSCD1** WKUP VDDRTC DA11 CKO DA6 SD8 WAIT SKO DA7 MIIMDIO PCM1SYN MSCD6 겅 VDEFUSE SDO DA8 SD4 CS5 SAO MIITXEN PCM1DO XRTCLK SD10 SD2 CS4 B MIIMDC PCM1CLK MSCD2 **MSCD5** MSCCLK AVDPLL PWM2 MIITX D0 MIITXD1 **SD11** SD3 SD6 SA3 SA4 SD WE

VSYN G2

CD

S CO

LCD_PCLK

CD

B1

O, CD

B0 B4 DE R3

CD

Figure 2-2 JZ4770 pin to ball assignment

2.5 Pin Description [1][2]

2.5.1 DDR

Table 2-1 DDR(mDDR, DDR2, DDR) Pins (74)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
D0	Ю	B16	Bi-dir, Single-end	D0: DDR data bus bit 0 in 32-bit and 16-bit data bus	VDD _{MEM}
D1	Ю	A16	Bi-dir, Single-end	D1: DDR data bus bit 1 in 32-bit and 16-bit data bus	VDD_{MEM}
D2	Ю	C15	Bi-dir, Single-end	D2: DDR data bus bit 2 in 32-bit and 16-bit data bus	VDD _{MEM}
D3	Ю	B15	Bi-dir, Single-end	D3: DDR data bus bit 3 in 32-bit and 16-bit data bus	VDD_{MEM}
D4	Ю	C14	Bi-dir, Single-end	D4: DDR data bus bit 4 in 32-bit and 16-bit data bus	VDD_{MEM}
D5	Ю	D14	Bi-dir, Single-end	D5: DDR data bus bit 5 in 32-bit and 16-bit data bus	VDD _{MEM}
D6	Ю	A15	Bi-dir, Single-end	D6: DDR data bus bit 6 in 32-bit and 16-bit data bus	VDD_{MEM}
D7	Ю	E14	Bi-dir, Single-end	D7: DDR data bus bit 7 in 32-bit and 16-bit data bus	VDD _{MEM}
D8	Ю	B13	Bi-dir, Single-end	D8: DDR data bus bit 8 in 32-bit data bus	VDD_{MEM}
D9	Ю	E11	Bi-dir, Single-end	D9: DDR data bus bit 9 in 32-bit data bus	VDD _{MEM}
D10	Ю	C12	Bi-dir, Single-end	D10: DDR data bus bit 10 in 32-bit data bus	VDD_{MEM}
D11	Ю	C13	Bi-dir, Single-end	D11: DDR data bus bit 11 in 32-bit data bus	VDD_{MEM}
D12	Ю	C11	Bi-dir, Single-end	D12: DDR data bus bit 12 in 32-bit data bus	VDD _{MEM}
D13	Ю	A12	Bi-dir, Single-end	D13: DDR data bus bit 13 in 32-bit data bus	VDD_{MEM}
D14	Ю	A13	Bi-dir, Single-end	D14: DDR data bus bit 14 in 32-bit data bus	VDD _{MEM}
D15	Ю	B12	Bi-dir, Single-end	D15: DDR data bus bit 15 in 32-bit data bus	VDD_{MEM}
D16	Ю	E9	Bi-dir, Single-end	D16: DDR data bus bit 16 in 32-bit data bus	VDD _{MEM}
D17	Ю	A8	Bi-dir, Single-end	D17: DDR data bus bit 17 in 32-bit data bus	VDD_{MEM}
D18	Ю	В9	Bi-dir, Single-end	D18: DDR data bus bit 18 in 32-bit data bus	VDD _{MEM}
D19	Ю	B8	Bi-dir, Single-end	D19: DDR data bus bit 19 in 32-bit data bus	VDD_{MEM}
D20	Ю	A9	Bi-dir, Single-end	D20: DDR data bus bit 20 in 32-bit data bus	VDD _{MEM}
D21	Ю	D8	Bi-dir, Single-end	D21: DDR data bus bit 21 in 32-bit data bus	VDD_{MEM}
D22	Ю	C8	Bi-dir, Single-end	D22: DDR data bus bit 22 in 32-bit data bus	VDD _{MEM}
D23	Ю	A7	Bi-dir, Single-end	D23: DDR data bus bit 23 in 32-bit data bus	VDD _{MEM}
D24 D8	Ю	E6	Bi-dir, Single-end	D24: DDR data bus bit 24 in 32-bit data bus D8: DDR data bus bit 8 in 16-bit data bus	VDD _{MEM}
D25 D9	Ю	C7	Bi-dir, Single-end	D25: DDR data bus bit 25 in 32-bit data bus D9: DDR data bus bit 9 in 16-bit data bus	VDD _{MEM}
D26 D10	Ю	D5	Bi-dir, Single-end	D26: DDR data bus bit 26 in 32-bit data bus D10: DDR data bus bit 10 in 16-bit data bus	VDD _{MEM}
D27 D11	Ю	В6	Bi-dir, Single-end	D27: DDR data bus bit 27 in 32-bit data bus D11: DDR data bus bit 11 in 16-bit data bus	VDD _{MEM}
D28 D12	Ю	C5	Bi-dir, Single-end	D28: DDR data bus bit 28 in 32-bit data bus D12: DDR data bus bit 12 in 16-bit data bus	VDD_{MEM}
D29 D13	Ю	C6	Bi-dir, Single-end	D29: DDR data bus bit 29 in 32-bit data bus D13: DDR data bus bit 13 in 16-bit data bus	VDD _{MEM}
D30 D14	Ю	B5	Bi-dir, Single-end	D30: DDR data bus bit 30 in 32-bit data bus D14: DDR data bus bit 14 in 16-bit data bus	VDD _{MEM}
D31 D15	Ю	A5	Bi-dir, Single-end	D31: DDR data bus bit 31 in 32-bit data bus D15: DDR data bus bit 15 in 16-bit data bus	VDD _{MEM}
DA0	0	E17	Output, Single-end	DA0: DDR address bus bit 0	VDD _{MEM}
DA1	0	B18	Output, Single-end	DA1: DDR address bus bit 1	VDD_{MEM}
DA2	0	B19	Output, Single-end	DA2: DDR address bus bit 2	VDD_{MEM}
DA3	0	C18	Output, Single-end	DA3: DDR address bus bit 3	VDD_{MEM}
			•	•	

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
DA4	0	F5	Output, Single-end	DA4: DDR address bus bit 4	VDD_{MEM}
DA5	0	В3	Output, Single-end	DA5: DDR address bus bit 5	VDD_{MEM}
DA6	0	D4	Output, Single-end	DA6: DDR address bus bit 6	VDD_{MEM}
DA7	0	E4	Output, Single-end	DA7: DDR address bus bit 7	VDD_{MEM}
DA8	0	А3	Output, Single-end	DA8: DDR address bus bit 8	VDD_{MEM}
DA9	0	G5	Output, Single-end	DA9: DDR address bus bit 9	VDD_{MEM}
DA10	0	A19	Output, Single-end	DA10: DDR address bus bit 10	VDD_{MEM}
DA11	0	C4	Output, Single-end	DA11: DDR address bus bit 11	VDD_{MEM}
DA12	0	E5	Output, Single-end	DA12: DDR address bus bit 12	VDD_{MEM}
DA13	0	F16	Output, Single-end	DA13: DDR address bus bit 13	VDD_{MEM}
DA14	0	B17	Output, Single-end	DA14: DDR address bus bit 14	VDD_{MEM}
DA15	0	D17	Output, Single-end	DA15: DDR address bus bit 15	VDD_{MEM}
DA16	0	E15	Output, Single-end	DA16: DDR address bus bit 16	VDD_{MEM}
DCS0_	0	C17	Output, Single-end	DCS0_: DDR chip select 0	VDD_{MEM}
DCS1_	0	A17	Output, Single-end	DCS1_: DDR chip select 1	VDD_{MEM}
RAS_	0	C16	Output, Single-end	RAS_: DDR row address strobe	VDD_{MEM}
CAS_	0	E16	Output, Single-end	CAS_: DDR column address strobe	VDD_{MEM}
DWE_	0	A18	Output, Single-end	DWE_: DDR write enable	VDD_{MEM}
DQS0S	Ю	E13	Bi-dir, Single-end	DQS0S: DDR data byte 0 strobe in 32-bit and 16-bit data bus	VDD_{MEM}
DQS1S	Ю	D11	Bi-dir, Single-end	DQS1S: DDR data byte 1 strobe in 32-bit data bus	VDD_{MEM}
DQS2S	10	E10	Bi-dir, Single-end	DQS2S: DDR data byte 2 strobe in 32-bit data bus	VDD_{MEM}
DQS3S DQS1S	Ю	E7	Bi-dir, Single-end	DQS3S: DDR data byte 3 strobe in 32-bit data bus DQS1S: DDR data byte 1 strobe in 16-bit data bus	VDD _{MEM}
DQS0	Ю	B14		DQS0: DDR data byte 0 strobe positive in 32-bit and 16-bit data bus	VDD_{MEM}
DQS0_	Ю	A14	Bi-dir, Differential	DQS0_: DDR data byte 0 strobe negative in 32-bit and 16-bit data bus	VDD _{MEM}
DQS1	Ю	B11	Di dia Differential	DQS1: DDR data byte 1 strobe positive in 32-bit data bus	VDD_{MEM}
DQS1_	Ю	A11	Bi-dir, Differential	DQS1_: DDR data byte 1 strobe negative in 32-bit data bus	VDD_{MEM}
DQS2	Ю	A10	Di dia Differential	DQS2: DDR data byte 2 strobe positive in 32-bit data bus	VDD_{MEM}
DQS2_	Ю	B10	Bi-dir, Differential	DQS2_: DDR data byte 2 strobe negative in 32-bit data bus	VDD_{MEM}
DQS3 DQS1	Ю	В7	Di dia Differential	DQS3: DDR data byte 3 strobe positive in 32-bit data bus DQS1: DDR data byte 1 strobe positive in 16-bit data bus	VDD _{MEM}
DQS3_ DQS1_	Ю	A6	Bi-dir, Differential	DQS3_: DDR data byte 3 strobe negative in 32-bit data bus DQS1_: DDR data byte 1 strobe negative in 16-bit data bus	VDD _{MEM}
DM0	0	E12	Output, Single-end	DM0: DDR data byte 0 mask in 32-bit and 16-bit data bus	VDD_{MEM}
DM1	0	C10	Output, Single-end	DM1: DDR data byte 1 mask in 32-bit data bus	VDD_{MEM}
DM2	0	C9	Output, Single-end	DM2: DDR data byte 2 mask in 32-bit data bus	VDD_{MEM}
DM3 DM1	0	E8	Output, Single-end	DM3: DDR data byte 3 mask in 32-bit data bus DM1: DDR data byte 1 mask in 16-bit data bus	VDD _{MEM}
СКО	0	B4		CKO: DDR clock output	VDD_{MEM}
CKO_	0	A4	Output, Differential	CKO_: DDR inverse clock output	VDD_{MEM}
CKE	0	C3	Output, Single-end	CKE: DDR clock enable	VDD _{MEM}
VREFmem	Al	F11		VREFmem: DDR/DDR2 input reference voltage	VDD _{MEM}

2.5.2 BOOT and storage

Table 2-2 Static-Memory/MSC0/SPI0/DMA/1WIRE Pins (36; all GPIO shared: PA0~29, PB0~5)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
SD0 PA0	10 10	D3	8mA, pullup-pe	SD0: Static memory/NAND data bus bit 0 PA0: GPIO group A bit 0	VDDIOn
SD1 PA1	10 10	A1	8mA, pullup-pe	SD1: Static memory/NAND data bus bit 1 PA1: GPIO group A bit 1	VDDIOn
SD2 PA2	10 10	A2	8mA, pullup-pe	SD2: Static memory/NAND data bus bit 2 PA2: GPIO group A bit 2	VDDIOn
SD3 PA3	10 10	B1	8mA, pullup-pe	SD3: Static memory/NAND data bus bit 3 PA3: GPIO group A bit 3	VDDIOn
SD4 PA4	10 10	E3	8mA, pullup-pe	SD4: Static memory/NAND data bus bit 4 PA4: GPIO group A bit 4	VDDIOn
SD5 PA5	10 10	E2	8mA, pullup-pe	SD5: Static memory/NAND data bus bit 5 PA5: GPIO group A bit 5	VDDIOn
SD6 PA6	10 10	C1	8mA, pullup-pe	SD6: Static memory/NAND data bus bit 6 PA6: GPIO group A bit 6	VDDIOn
SD7 PA7	10 10	F2	8mA, pullup-pe	SD7: Static memory/NAND data bus bit 7 PA7: GPIO group A bit 7	VDDIOn
SD8 PA8	10 10	H4	8mA, pullup-pe	SD8: Static memory/NAND data bus bit 8 PA8: GPIO group A bit 8	VDDIOn
SD9 PA9	10 10	B2	8mA, pullup-pe	SD9: Static memory/NAND data bus bit 9 PA9: GPIO group A bit 9	VDDIOn
SD10 PA10	10 10	C2	8mA, pullup-pe	SD10: Static memory/NAND data bus bit 10 PA10: GPIO group A bit 10	VDDIOn
SD11 PA11	10 10	D1	8mA, pullup-pe	SD11: Static memory/NAND data bus bit 11 PA11: GPIO group A bit 11	VDDIOn
SD12 PA12	10 10	F3	8mA, pullup-pe	SD12: Static memory/NAND data bus bit 12 PA12: GPIO group A bit 12	VDDIOn
SD13 PA13	10 10	G2	8mA, pullup-pe	SD13: Static memory/NAND data bus bit 13 PA13: GPIO group A bit 13	VDDIOn
SD14 PA14	10 10	H5	8mA, pullup-pe	SD14: Static memory/NAND data bus bit 14 PA14: GPIO group A bit 14	VDDIOn
SD15 PA15	10 10	J5	8mA, pullup-pe	SD15: Static memory/NAND data bus bit 15 PA15: GPIO group A bit 15	VDDIOn
SA0 (CL) PB0	0	НЗ	8mA, pulldown-pe, rst-pe	SA1: Static memory address bus bit 0 If NAND flash is used, this pin is used as NAND CL (command latch) pin PB0: GPIO group B bit 0	VDDIOn
SA1 (AL) PB1	0 10	J2	8mA, pulldown-pe, rst-pe	SA1: Static memory address bus bit 1 If NAND flash is used, this pin is used as NAND AL (address latch) pin PB1: GPIO group B bit 1	VDDIOn
SA2 PB2	0 10	J3	8mA, pullup-pe	SA2: Static memory address bus bit 2 PB2: GPIO group B bit 2	VDDIOn
SA3 PB3	0 10	G1	8mA, pullup-pe	SA3: Static memory address bus bit 3 PB3: GPIO group B bit 3	VDDIOn
SA4 DREQ1 MII_CRS PB4(FRB1)	0 	J1	8mA, pullup-pe	SA4: Static memory address bus bit 4 DREQ1: External DMA request input 1 MII_ CRS: Ethernet carrier sense for MII PB4: GPIO group B bit 4. NAND flash FRB input 1 candidate	VDDIO
SA5 DACK1 PB5(FRB1)	0 0 IO	L5	8mA, pullup-pe	SA5: Static memory address bus bit 5 DACK1: External DMA acknowledge output 1 PB5: GPIO group B bit 5. NAND flash FRB input 1 candidate	VDDIO
RD_ PA16	0 10	D2	8mA, pullup-pe, rst-pe	RD_: Static memory read strobe PA16: GPIO group A bit 16	VDDIOn

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
WE_ PA17	00	E1	8mA, pullup-pe, rst-pe	WE_: Static memory write strobe PA17: GPIO group A bit 17	VDDIOn
FRE_ MSC0_CLK SSI0_CLK PA18	0009	H2	8mA, pullup-pe, rst-pe	FRE_: NAND read enable MSC0_CLK: MSC (MMC/SD) 0 clock output SSI0_CLK: SSI 0 clock output PA18: GPIO group A bit 18	VDDIOn
FWE_ MSC0_CMD SSI0_CE0_ PA19	0000	G3	8mA, pullup-pe, rst-pe	FEW_: NAND write enable MSC0_CMD: MSC (MMC/SD) 0 command SSI0_CE0_: SSI 0 chip enable 0 PA19: GPIO group A bit 19	VDDIOn
MSC0_D0 SSI0_DR PA20(FRB0)	9-9	F1	8mA, pullup-pe	MSC0_D0: MSC (MMC/SD) 0 data bit 0 SSI0_DR: SSI 0 data input PA20: GPIO group A bit 20. NAND flash FRB (ready/busy) input 0	VDDIOn
CS1_ MSC0_D1 SSI0_DT PA21	5050	H6	8mA, pullup-pe, rst-pe	CS1_: NAND/NOR/SRAM chip select 1 MSC0_D1: MSC (MMC/SD) 0 data bit 1 SSI0_DT: SSI 0 data output PA21: GPIO group A bit 21	VDDIOn
CS2_ MSC0_D2 PA22	000	K5	8mA, pullup-pe, rst-pe	CS2_: NAND/NOR/SRAM chip select 2 MSC0_D2: MSC (MMC/SD) 0 data bit 2 PA22: GPIO group A bit 22	VDDIOn
CS3_ MSC0_D3 PA23	099	J6	8mA, pullup-pe, rst-pe	CS3_: NAND/NOR/SRAM chip select 3 MSC0_D3: MSC (MMC/SD) 0 data bit 3 PA23: GPIO group A bit 23	VDDIOn
CS4_ PA24	50	K2	8mA, pullup-pe, rst-pe	CS4_: NAND/NOR/SRAM chip select 4 PA24: GPIO group A bit 24	VDDIO
CS5_ PA25	0 0	L3	8mA, pullup-pe, rst-pe	CS5_: NAND/NOR/SRAM chip select 5 PA25: GPIO group A bit 25	VDDIO
CS6_ RDWR_ PA26	000	M3	8mA, pullup-pe, rst-pe	CS6_: NAND/NOR/SRAM chip select 6 RDWR_: Static memory access indicator, 1 for read and 0 for write PA26: GPIO group A bit 26	VDDIO
WAIT_ PA27(FRB1)	<u>Г</u>	L4	8mA, pullup-pe	WAIT_: Slow static memory/device wait signal PA27: GPIO group A bit 27. NAND flash FRB input 1 candidate	VDDIO
DREQ0 PA28(FRB1)	- 0	H1	8mA, pullup-pe	DREQ0: External DMA request input 0 PA28: GPIO group A bit 28. NAND flash FRB input 1 candidate	VDDIO
DACK0 OWI PA29(FRB1)	000	K3	8mA, pullup-pe	DACK0: External DMA acknowledge output 0 OWI: One wire interface PA29: GPIO group A bit 29. NAND flash FRB input 1 candidate	VDDIO

2.5.3 LCD

Table 2-3 LCDC Pins (28; all GPIO shared: PC0~27)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
LCD_B0 LCD_REV PC0	0 0 0	J20	8mA, pullup-pe	LCD_B0: LCD Blue data bit 0 LCD_REV: LCD REV output for special TFT PC0: GPIO group C bit 0	VDDIO
LCD_B1 LCD_PS PC1	0 0 0	J21	8mA, pullup-pe	LCD_B1: LCD Blue data bit 1 LCD_PS: LCD PS output for special TFT PC1: GPIO group C bit 1	VDDIO
LCD_B2 PC2	0 10	K21	8mA, pullup-pe	LCD_B2: LCD Blue data bit 2 PC2: GPIO group C bit 2	VDDIO
LCD_B3 PC3	0 10	M14	8mA, pullup-pe	LCD_B3: LCD Blue data bit 3 PC3: GPIO group C bit 3	VDDIO

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
LCD_B4 PC4	0 10	K20	8mA, pullup-pe	LCD_B4: LCD Blue data bit 4 PC4: GPIO group C bit 4	VDDIO
LCD_B5 PC5	0 10	L16	8mA, pullup-pe	LCD_B5: LCD Blue data bit 5 PC5: GPIO group C bit 5	VDDIO
LCD_B6 PC6	0 10	K19	8mA, pullup-pe	LCD_B6: LCD Blue data bit 6 PC6: GPIO group C bit 6	VDDIO
LCD_B7 PC7	0 10	N14	8mA, pullup-pe	LCD_B7: LCD Blue data bit 7 PC7: GPIO group C bit 7	VDDIO
LCD_PCLK PC8	0 10	L21	16mA, pullup-pe	LCD_PCLK: LCD pixel clock PC8: GPIO group C bit 8	VDDIO
LCD_DE PC9	0 10	L20	8mA, pullup-pe	LCD_DE: STN AC bias drive/non-STN data enable PC9: GPIO group C bit 9	VDDIO
LCD_G0 LCD_SPL PC10	0 0 10	L18	8mA, pullup-pe, rst-pe	LCD_G0: LCD Green data bit 0 LCD_SPL: LCD SPL output PC10: GPIO group C bit 10	VDDIO
LCD_G1 PC11	0 10	L17	8mA, pullup-pe	LCD_G1: LCD Green data bit 1 PC11: GPIO group C bit 11	VDDIO
LCD_G2 PC12	0 10	N21	8mA, pullup-pe	LCD_G2: LCD Green data bit 2 PC12: GPIO group C bit 12	VDDIO
LCD_G3 PC13	0 10	L19	8mA, pullup-pe	LCD_G3: LCD Green data bit 3 PC13: GPIO group C bit 13	VDDIO
LCD_G4 PC14	0 10	P17	8mA, pullup-pe	LCD_G4: LCD Green data bit 4 PC14: GPIO group C bit 14	VDDIO
LCD_G5 PC15	0 10	R16	8mA, pullup-pe	LCD_G5: LCD Green data bit 5 PC15: GPIO group C bit 15	VDDIO
LCD_G6 PC16	0 10	R17	8mA, pullup-pe	LCD_G6: LCD Green data bit 6 PC16: GPIO group C bit 16	VDDIO
LCD_G7 PC17	0 10	P16	8mA, pullup-pe	LCD_G7: LCD Green data bit 7 PC17: GPIO group C bit 17	VDDIO
LCD_HSYN PC18	10 10	M16	8mA, pullup-pe	LCD_HSYN: LCD line clock/horizontal sync PC18: GPIO group C bit 18	VDDIO
LCD_VSYN PC19	10 10	M21	8mA, pullup-pe	LCD_VSYN: LCD frame clock/vertical sync PC19: GPIO group C bit 19	VDDIO
LCD_R0 LCD_CLS PC20	0 0 10	M19	8mA, pullup-pe	LCD_R0: LCD Red data bit 0 LCD_CLS: LCD CLS output PC20: GPIO group C bit 20	VDDIO
LCD_R1 PC21	0 10	N16	8mA, pullup-pe	LCD_R1: LCD Red data bit 1 PC21: GPIO group C bit 21	VDDIO
LCD_R2 PC22	0 10	P18	8mA, pullup-pe	LCD_R2: LCD Red data bit 2 PC22: GPIO group C bit 22	VDDIO
LCD_R3 PC23	0 10	M20	8mA, pullup-pe	LCD_R3: LCD Red data bit 3 PC23: GPIO group C bit 23	VDDIO
LCD_R4 PC24	0 10	N19	8mA, pullup-pe	LCD_R4: LCD Red data bit 4 PC24: GPIO group C bit 24	VDDIO
LCD_R5 PC25	0 10	N17	8mA, pullup-pe	LCD_R5: LCD Red data bit 5 PC25: GPIO group C bit 25	VDDIO
LCD_R6 PC26	0 10	P19	8mA, pullup-pe	LCD_R6: LCD Red data bit 6 PC26: GPIO group C bit 26	VDDIO
LCD_R7 PC27	0 10	M17	8mA, pullup-pe	LCD_R7: LCD Red data bit 7 PC27: GPIO group C bit 27	VDDIO

2.5.4 MAC/PCM1

Table 2-4 MAC-MII/RMII/PCM1 Pins (12; all GPIO shared: PF4~15)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
MII_TXD0 PF4	0 10	K1	8mA, pulldown-pe	MII_TXD0: Ethernet transmit data bit 0 for MII and RMII PF4: GPIO group F bit 4. Pull-down not enabled at and after reset	VDDIO
MII_TXD1 PF5	0 10	L1	8mA, pulldown-pe	MII_TXD1: Ethernet transmit data bit 1 for MII and RMII PF5: GPIO group F bit 5. Pull-down not enabled at and after reset	VDDIO
MII_TXCLK (RMII_CLK) PF6	I Ю	L2	8mA, pulldown-pe	MII_TXCLK: Ethernet 25MHz transmit clock for MII or (RMII_CLK) ethernet 50MHz reference clock for RMII PF6: GPIO group F bit 6. Pull-down not enabled at and after reset	VDDIO
MII_RXCLK PF7	I IO	M2	8mA, pulldown-pe	MII_RXCLK: Ethernet receive clock for MII (25MHz) PF7: GPIO group F bit 7. Pull-down not enabled at and after reset	VDDIO
MII_RXER PF8	I Ю	N3	8mA, pulldown-pe	MII_RXER: Ethernet receive error for MII and RMII PF8: GPIO group F bit 8. Pull-down not enabled at and after reset	VDDIO
MII_RXDV PF9	I 10	M1	8mA, pulldown-pe	MII_RXDV: Ethernet receive data valid for MII and RMII PF9: GPIO group F bit 9. Pull-down not enabled at and after reset	VDDIO
MII_RXD0 PF10	I 10	N2	8mA, pulldown-pe	MII_RXD0: Ethernet receive data bit 0 for MII and RMII PF10: GPIO group F bit 10. Pull-down not enabled at and after reset	VDDIO
MII_RXD1 PF11	I Ю	N1	8mA, pulldown-pe	MII_RXD1: Ethernet receive data bit 1 for MII and RMII PF11: GPIO group F bit 11. Pull-down not enabled at and after reset	VDDIO
MII_TXEN PCM1_DO PF12	0 0 10	P2	8mA, pullup-pe	MII_TXEN: Ethernet transmit enable for MII and RMII PCM1_DO: PCM 1 data out PF12: GPIO group F bit 12	VDDIO
MII_MDC PCM1_CLK PF13	0 10 10	P1	8mA, pullup-pe	MII_MDC: Ethernet management clock for MII and RMII PCM1_CLK: PCM 1 clock PF13: GPIO group F bit 13	VDDIO
MII_MDIO PCM1_SYN PF14	10 10 10	P3	8mA, pullup-pe	MII_MDIO: Ethernet management data for MII and RMII PCM1_SYN: PCM 1 sync PF14: GPIO group F bit 14	VDDIO
MII_COL PCM1_DI PF15	I I IO	R1	8mA, pullup-pe	MII_COL: Ethernet collision for MII PCM1_DI: PCM 1 data in PF15: GPIO group F bit 15	VDDIO

2.5.5 CIM

Table 2-5 CIM/EPD/I2C2/DMIC Pins (16; all GPIO shared: PB6~19, PF16~17)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
CIM_PCLK PB6	I 10	B20	8mA, pullup-pe	CIM_PCLK: CIM pixel clock input PB6: GPIO group B bit 6	VDDIO
CIM_HSYN PB7	0	G17	8mA, pullup-pe	CIM_HSYN: CIM horizonal sync input PB7: GPIO group B bit 7	VDDIO
CIM_VSYN PB8	10	C20	8mA, pullup-pe, rst-pe	CIM_VSYN: CIM vertical sync input PB8: GPIO group B bit 8	VDDIO
CIM_MCLK EPD_PWC PB9	0 0 10	H17	8mA, pullup-pe	CIM_MCLK: CIM master clock output EPD_PWC: EPD power control common PB9: GPIO group B bit 9	VDDIO
CIM_D0 EPD_PWR0 PB10	-00	A21	8mA, pulldown-pe	CIM_D0: CIM data input bit 0. When use 8-bit data, use CIM_D0~D7 EPD_PWR0: EPD power control bit 0 PB10: GPIO group B bit 10	VDDIO
CIM_D1 EPD_PWR1 PB11	-09	B21	8mA, pulldown-pe	CIM_D1: CIM data input bit 1 EPD_PWR1: EPD power control bit 1 PB11: GPIO group B bit 11	VDDIO
CIM_D2 EPD_SCE2_	- 0	D20	8mA, pullup-pe	CIM_D2: CIM data input bit 2 EPD_SCE2_: EPD source driver chip select 2	VDDIO

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
PB12	Ю			PB12: GPIO group B bit 12	
CIM_D3 EPD_SCE3_ PB13	<u> </u>	E19	8mA, pullup-pe	CIM_D3: CIM data input bit 3 EPD_SCE3_: EPD source driver chip select 3 PB13: GPIO group B bit 13	VDDIO
CIM_D4 EPD_SCE4_ PB14	00-	C21	8mA, pullup-pe	CIM_D4: CIM data input bit 4 EPD_SCE4_: EPD source driver chip select 4 PB14: GPIO group B bit 14	VDDIO
CIM_D5 EPD_SCE5_ PB15	00-	F19	8mA, pullup-pe	CIM_D5: CIM data input bit 5 EPD_SCE5_: EPD source driver chip select 5 PB15: GPIO group B bit 15	VDDIO
CIM_D6 EPD_PWR2 PB16	00-	E20	8mA, pulldown-pe	CIM_D6: CIM data input bit 6 EPD_PWR6: EPD power control bit 2 PB16: GPIO group B bit 16	VDDIO
CIM_D7 EPD_PWR3 PB17	00-	F20	8mA, pulldown-pe	CIM_D7: CIM data input bit 7 EPD_PWR7: EPD power control bit 3 PB17: GPIO group B bit 17	VDDIO
CIM_D8 EPD_BD0 DMIC_CLK PB18	-000	D21	8mA, pulldown-pe	CIM_D8: CIM data input bit 8 EPD_BD0: EPD border management bit 0 DMIC_CLK: Digital MIC clock output PB18: GPIO group B bit 18	VDDIO
CIM_D9 EPD_ BD1 DMIC_IN PB19	0-0-	G19	8mA, pulldown-pe	CIM_D9: CIM data input bit 9 EPD_BD1: EPD border management bit 1 DMIC_IN: Digital MIC input PB19: GPIO group B bit 19	VDDIO
CIM_D10 EPD_BD2 I2C2_SDA PF16	- o <u>o</u>	E21	8mA, pullup-pe	CIM_D10: CIM data input bit 10 EPD_BD2: EPD border management bit 2 I2C2_SDA: I2C 2 serial data PF16: GPIO group F bit 16	VDDIO
CIM_D11 EPD_ BD3 I2C2_SCK PF17	- 0 0	H18	8mA, pullup-pe	CIM_D11: CIM data input bit 11 EPD_BD3: EPD border management bit 3 I2C2_SCK: I2C 2 serial clock PF17: GPIO group F bit 17	VDDIO

2.5.6 TSSI/SSI/MSC/UART/I2C

Table 2-6 TSSI/MSC2/SSI Pins (12; all GPIO shared: PB20~31)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
MSC2_D0 SSI0_DR SSI1_DR TSD0 PB20	0 0	Y8	8mA, pullup-pe	MSC2_D0: MSC (MMC/SD) 2 data bit 0 SSI0_DR: SSI 0 data input SSI1_DR: SSI 1 data input TSD0: TS slave interface input data bus bit 0 PB20: GPIO group B bit 20	VDDIO
MSC2_D1 SSI0_DT SSI1_DT TSD1 PB21	10 0 0 1	W8	8mA, pullup-pe	MSC2_D1: MSC (MMC/SD) 2 data bit 1 SSI0_DT: SSI 0 data output SSI1_DT: SSI 1 data output TSD1: TS interface input data bus bit 1 PB21: GPIO group B bit 21	VDDIO
TSD2 PB22	I IO	W10	8mA, pullup-pe	TSD2: TS interface input data bus bit 2 PB22: GPIO group B bit 22	VDDIO
TSD3 PB23	I 10	P9	8mA, pullup-pe	TSD3: TS interface input data bus bit 3 PB23: GPIO group B bit 23	VDDIO
TSD4 PB24	I 10	AA9	8mA, pullup-pe	TSD4: TS interface input data bus bit 4 PB24: GPIO group B bit 24	VDDIO
TSD5 PB25	I IO	N8	8mA, pullup-pe	TSD5: TS interface input data bus bit 5 PB25: GPIO group B bit 25	VDDIO

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
TSD6 PB26	I Ю	T9	8mA, pullup-pe	TSD6: TS interface input data bus bit 6 PB26: GPIO group B bit 26	VDDIO
TSD7 PB27	I 10	Y9	8mA, pullup-pe	TSD7: TS interface input data bus bit 7 PB27: GPIO group B bit 27	VDDIO
MSC2_CLK SSI0_CLK SSI1_CLK TSCLK PB28	0 0 0 - 0	AA8	8mA, pullup-pe	MSC2_CLK: MSC (MMC/SD) 2 clock output SSI0_CLK: SSI 0 clock output SSI1_CLK: SSI 1 clock output TSCLK: TS interface clock input PB28: GPIO group B bit 28	VDDIO
MSC2_CMD SSI0_CE0_ SSI1_CE0_ TSSTR PB29	10 0 0 1 10	W9	8mA, pullup-pe, rst-pe	MSC2_CMD: MSC (MMC/SD) 2 command SSI0_CE0_: SSI 0 chip enable 0 SSI1_CE0_: SSI 1 chip enable 0 TSSTR: TS interface frame start input PB29: GPIO group B bit 29	VDDIO
MSC2_D2 SSI0_GPC SSI1_GPC TSFAIL PB30	10 0 0 1	AA7	8mA, pullup-pe	MSC2_D2: MSC (MMC/SD) 2 data bit 2 SSI0_GPC: SSI 0 general-purpose control signal SSI1_GPC: SSI 1 general-purpose control signal TSFAIL: TS interface error package indicator input PB30: GPIO group B bit 30	VDDIO
MSC2_D3 SSI0_CE1_ SSI1_CE1_ TSFRM PB31	10 0 0 1	Y7	8mA, pullup-pe, rst-pe	MSC2_D3: MSC (MMC/SD) 2 data bit 3 SSI0_CE1_: SSI 0 chip enable 1 SSI1_CE1_: SSI 1 chip enable 1 TSFRM: TS interface frame valid input PB31: GPIO group B bit 31	VDDIO

Table 2-7 UART0/GPSBB Pins (4; all GPIO shared: PF0~3)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
UARTO_RxD GPS_CLK PF0	 	T5	8mA, pullup-pe	UART0_RxD: UART 0 Receiving data GPS_CLK: GPS baseband clock input from RF PF0: GPIO group F bit 0	VDDIO
UARTO_CTS_ GPS_MAG PF1	- - 0	R5	8mA, pullup-pe, rst-pe	UART0_CTS_: UART 0 CTS_ input GPS_MAG: GPS baseband MAG input from RF PF1: GPIO group F bit 1	VDDIO
UARTO_RTS_ GPS_SIG PF2	0 1 10	P6	8mA, pullup-pe, rst-pe	UART0_RTS_: UART 0 RTS_ output GPS_SIG: GPS baseband SIG input from RF PF2: GPIO group F bit 2	VDDIO
UART0_TxD PF3	00	Т6	8mA, pullup-pe, rst-pe	UART0_TxD: UART 0 transmitting data PF3: GPIO group F bit 3	VDDIO

Table 2-8 MSC1/SSI, Pins (6; all GPIO shared: PD20~25)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
MSC1_D0 SSI0_DR SSI1_DR PD20	00	D18	8mA, pullup-pe	MSC1_D0: MSC (MMC/SD) 1 data bit 0 SSI0_DR: SSI 0 data input SSI1_DR: SSI 1 data input PD20: GPIO group D bit 20	VDDIO
MSC1_D1 SSI0_DT SSI1_DT PD21	10 0 0	F17	8mA, pullup-pe	MSC1_D1: MSC (MMC/SD) 1 data bit 1 SSI0_DT: SSI 0 data output SSI1_DT: SSI 1 data output PD21: GPIO group D bit 21	VDDIO
MSC1_D2 SSI0_GPC SSI1_GPC PD22	10 0 0 10	C19	8mA, pullup-pe	MSC1_D2: MSC (MMC/SD) 1 data bit 2 SSI0_GPC: SSI 0 general-purpose control signal SSI1_GPC: SSI 1 general-purpose control signal PD22: GPIO group D bit 22	VDDIO

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
MSC1_D3 SSI0_CE1_ SSI1_CE1_ PD23	0000	A20	8mA, pullup-pe, rst-pe	MSC1_D3: MSC (MMC/SD) 1 data bit 3 SSI0_CE1_: SSI 0 chip enable 1 SSI1_CE1_: SSI 1 chip enable 1 PD23: GPIO group D bit 23	VDDIO
MSC1_CLK SSI0_CLK SSI1_CLK PD24	0 0 0 10	D19	8mA, pullup-pe	MSC1_CLK: MSC (MMC/SD) 1 clock output SSI0_CLK: SSI 0 clock output SSI1_CLK: SSI 1 clock output PD24: GPIO group D bit 24	VDDIO
MSC1_CMD SSI0_CE0_ SSI1_CE0_ PD25	10 0 0 10	E18	8mA, pullup-pe, rst-pe	MSC1_CMD: MSC (MMC/SD) 1 command SSI0_CE0_: SSI 0 chip enable 0 SSI1_CE0_: SSI 1 chip enable 0 PD25: GPIO group D bit 25	VDDIO

Table 2-9 UART1/MII Pins (4; all GPIO shared: PD26~29)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
UART1_RxD MII_RXD2 PD26	0	L6	8mA, pullup-pe	UART1_RxD: UART 1 Receiving data MII_RXD2: Ethernet receive data bit 2 for MII PD26: GPIO group D bit 26	VDDIO
UART1_CTS_ MII_RXD3 PD27	0	M5	8mA, pullup-pe	UART1_CTS_: UART 1 CTS_ input MII_RXD3: Ethernet receive data bit 3 for MII PD27: GPIO group D bit 27	VDDIO
UART1_TxD MII_TXD2 PD28	000	M6	8mA, pullup-pe, rst-pe	UART1_TxD: UART 1 transmitting data MII_TXD2: Ethernet transmit data bit 2 for MII PD28: GPIO group D bit 28	VDDIO
UART1_RTS_ MII_TXD3 PD29	009	M8	8mA, pullup-pe, rst-pe	UART1_RTS_: UART 1 RTS_ output MII_TXD3: Ethernet transmit data bit 3 for MII PD29: GPIO group D bit 29	VDDIO

Table 2-10 UART2 Pins (0/4/4; all GPIO shared: PC28~31)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
UART2_RxD PC28	I IO	T7	8mA, pullup-pe	UART2_RxD: UART 2 Receiving data PC28: GPIO group C bit 28	VDDIO
UART2_CTS_ PC29	I IO	U7	8mA, pullup-pe	UART2_CTS_: UART 2 CTS_ input PC29: GPIO group C bit 29	VDDIO
UART2_TxD PC30	0	P8	8mA, pullup-pe, rst-pe	UART2_TxD: UART 2 transmitting data PC30: GPIO group C bit 30	VDDIO
UART2_RTS_ PC31	0 10	U8	8mA, pullup-pe, rst-pe	UART2_RTS_: UART 2 RTS_ output PC31: GPIO group C bit 31	VDDIO

Table 2-11 I2C0/I2C1 Pins (4; all GPIO shared: PD30~31, PE30~31)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
I2C0_SDA PD30	10 10	R6	8mA, pullup-pe	I2C0_SDA: I2C 0 serial data PD30: GPIO group D bit 30	VDDIO
I2C0_SCK PD31	10 10	Т8	8mA, pullup-pe	I2C0_SCK: I2C 0 serial clock PD31: GPIO group D bit 31	VDDIO
I2C1_SDA PE30	10 10	R19	8mA, pullup-pe	I2C1_SDA: I2C 1 serial data PE30: GPIO group E bit 30	VDDIO

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
I2C1_SCK PE31	00	119	8mA, pullup-pe	I2C1_SCK: I2C 1 serial clock PE31: GPIO group E bit 31	VDDIO

Table 2-12 MSC Pins (10; all GPIO shared: PE20~29)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
MSC0_CLK MSC1_CLK MSC2_CLK PE28	0000	V1	16mA, pullup-pe	MSC0_CLK: MSC (MMC/SD) 0 clock output MSC1_CLK: MSC (MMC/SD) 1 clock output MSC2_CLK: MSC (MMC/SD) 2 clock output PE28: GPIO group E bit 28	VDDIO
MSC0_CMD MSC1_CMD MSC2_CMD PE29	0000	V2	8mA, pullup-pe	MSC0_CMD: MSC (MMC/SD) 0 command MSC1_CMD: MSC (MMC/SD) 1 command MSC2_CMD: MSC (MMC/SD) 2 command PE29: GPIO group E bit 29	VDDIO
MSC0_D0 MSC1_D0 MSC2_D0 PE20	0000	R2	8mA, pullup-pe	MSC0_D0: MSC (MMC/SD) 0 data bit 0 MSC1_D0: MSC (MMC/SD) 1 data bit 0 MSC2_D0: MSC (MMC/SD) 2 data bit 0 PE20: GPIO group E bit 20	VDDIO
MSC0_D1 MSC1_D1 MSC2_D1 PE21	0000	P4	8mA, pullup-pe	MSC0_D1: MSC (MMC/SD) 0 data bit 1 MSC1_D1: MSC (MMC/SD) 1 data bit 1 MSC2_D1: MSC (MMC/SD) 2 data bit 1 PE21: GPIO group E bit 21	VDDIO
MSC0_D2 MSC1_D2 MSC2_D2 PE22	0000	T1	8mA, pullup-pe	MSC0_D2: MSC (MMC/SD) 0 data bit 2 MSC1_D2: MSC (MMC/SD) 1 data bit 2 MSC2_D2: MSC (MMC/SD) 2 data bit 2 PE22: GPIO group E bit 22	VDDIO
MSC0_D3 MSC1_D3 MSC2_D3 PE23	0000	T2	8mA, pullup-pe	MSC0_D3: MSC (MMC/SD) 0 data bit 3 MSC1_D3: MSC (MMC/SD) 1 data bit 3 MSC2_D3: MSC (MMC/SD) 2 data bit 3 PE23: GPIO group E bit 23	VDDIO
MSC0_D4 MSC1_D4 MSC2_D4 PE24	0000	R3	8mA, pullup-pe	MSC0_D4: MSC (MMC/SD) 0 data bit 4 MSC1_D4: MSC (MMC/SD) 1 data bit 4 MSC2_D4: MSC (MMC/SD) 2 data bit 4 PE24: GPIO group E bit 24	VDDIO
MSC0_D5 MSC1_D5 MSC2_D5 PE25	0000	U1	8mA, pullup-pe	MSC0_D5: MSC (MMC/SD) 0 data bit 5 MSC1_D5: MSC (MMC/SD) 1 data bit 5 MSC2_D5: MSC (MMC/SD) 2 data bit 5 PE25: GPIO group E bit 25	VDDIO
MSC0_D6 MSC1_D6 MSC2_D6 PE26	0000	Т3	8mA, pullup-pe	MSC0_D6: MSC (MMC/SD) 0 data bit 6 MSC1_D6: MSC (MMC/SD) 1 data bit 6 MSC2_D6: MSC (MMC/SD) 2 data bit 6 PE26: GPIO group E bit 26	VDDIO
MSC0_D7 MSC1_D7 MSC2_D7 PE27	0000	U2	8mA, pullup-pe	MSC0_D7: MSC (MMC/SD) 0 data bit 7 MSC1_D7: MSC (MMC/SD) 1 data bit 7 MSC2_D7: MSC (MMC/SD) 2 data bit 7 PE27: GPIO group E bit 27	VDDIO

Table 2-13 SSI Pins (6; all GPIO shared: PE14~19)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
SSI0_DR SSI1_DR PE14	I I I	V8	8mA, pullup-pe	SSI0_DR: SSI 0 data input SSI1_DR: SSI 1 data input PE14: GPIO group E bit 14	VDDIO
SSI0_CLK SSI1_CLK PE15	0 0 10	W7	8mA, pullup-pe	SSI0_CLK: SSI 0 clock output SSI1_CLK: SSI 1 clock output PE15: GPIO group E bit 15	VDDIO

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
SSI0_CE0_ SSI1_CE0_ PE16	0 0 10	Y6	8mA, pullup-pe, rst-pe	SSI0_CE0_: SSI 0 chip enable 0 SSI1_CE0_: SSI 1 chip enable 0 PE16: GPIO group E bit 16	VDDIO
SSI0_DT SSI1_DT PE17	0 0 10	AA5	8mA, pullup-pe	SSI0_DT: SSI 0 data output SSI1_DT: SSI 1 data output PE17: GPIO group E bit 17	VDDIO
SSI0_CE1_ SSI1_CE1_ PE18	0 0 10	U9	8mA, pullup-pe, rst-pe	SSI0_CE1_: SSI 0 chip enable 1 SSI1_CE1_: SSI 1 chip enable 1 PE18: GPIO group E bit 18	VDDIO
SSI0_GPC SSI1_GPC PE19	0 0 10	AA6	8mA, pullup-pe	SSI0_GPC: SSI 0 general-purpose control signal SSI1_GPC: SSI 1 general-purpose control signal PE19: GPIO group E bit 19	VDDIO

2.5.7 PCM0/PCM1/PS2/SCC/PWM/AIC/UART

Table 2-14 PCM0/PS2/SCC Pins (10; all GPIO shared: PD0~9)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
PCM0_DO PD0	0 0	U18	8mA, pullup-pe	PCM0_DO: PCM 0 data out PD0: GPIO group D bit 0	VDDIO
PCM0_CLK PD1	00	U16	8mA, pullup-pe	PCM0_CLK: PCM 0 clock PD1: GPIO group D bit 1	VDDIO
PCM0_SYN PD2	00	T17	8mA, pullup-pe	PCM0_SYN: PCM 0 sync PD2: GPIO group D bit 2	VDDIO
PCM0_DI PD3	0 –	T16	8mA, pullup-pe	PCM0_DI: PCM 0 data in PD3: GPIO group D bit 3	VDDIO
PS2_MCLK PD4	10	T10	8mA, pullup-pe	PS2_MCLK: PS/2 mouse clock PD4: GPIO group D bit 4	VDDIO
PS2_MDATA PD5	10	V11	8mA, pullup-pe	PS2_MDATA: PS/2 mouse data PD5: GPIO group D bit 5	VDDIO
PS2_KCLK PD6	10	T11	8mA, pullup-pe	PS2_KCLK: PS/2 keyboard clock PD6: GPIO group D bit 6	VDDIO
PS2_KDATA PD7	00	U11	8mA, pullup-pe	PS2_KDATA: PS/2 keyboard data PD7: GPIO group D bit 7	VDDIO
SCC_DATA PD8	00	T12	8mA, pullup-pe	SCC_DATA: Smartcard controller (7816-3) data PD8: GPIO group D bit 8	VDDIO
SCC_CLK CLK48M_I PD9	0 - 0	U12	8mA, pullup-pe	SCC_CLK: Smartcard controller (7816-3) clock CLK48M_I: 48MHz clock input for USB1.1 host PD9: GPIO group D bit 9	VDDIO

Table 2-15 PWM/AIC/UART3/EPD Pins (17; all GPIO shared: PE0~9, 11~13, PD10~13)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
PWM0 PE0	10	P10	8mA, pulldown-pe	PWM0: PWM output or pulse input 0 PE0: GPIO group E bit 0. Pull-down not enabled at and after reset	VDDIO
PWM1 PE1	00	U10	8mA, pulldown-pe	PWM1: PWM 1 output. This PWM can run in sleep mode in RTCLK clock PE1: GPIO group E bit 1. Pull-down not enabled at and after reset	VDDIO
PWM2 PE2	00	W1	8mA, pullup-pe	PWM2: PWM 2 output. This PWM can run in sleep mode in RTCLK clock PE2: GPIO group E bit 2. Pull-up not enabled at and after reset	VDDIO
PWM3 PE3	10 10	N5	8mA, pullup-pe	PWM3: PWM output or pulse input 3 PE3: GPIO group E bit 3. Pull-up not enabled at and after reset	VDDIO

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
PWM4 PE4	10	P5	8mA, pullup-pe	PWM4: PWM output or pulse input 4 PE4: GPIO group E bit 4	VDDIO
PWM5 UART3_TxD SCLK_RSTN PE5	0000	F21	8mA, pullup-pe, rst-pe	PWM5: PWM output or pulse input 5 UART3_TxD: UART 3 transmitting data SCLK_RSTN: AIC0 I2S system clock output or AC97 reset output PE5: GPIO group E bit 5	VDDIO
PWM6 PD10	10	W13	8mA, pullup-pe	PWM6: PWM output or pulse input 6 PD10: GPIO group D bit 10	VDDIO
PWM7 PD11	10	P12	8mA, pullup-pe	PWM7: PWM output or pulse input 7 PD11: GPIO group D bit 11	VDDIO
UART3_RxD BCLK EPD_PWR4 PD12	-000	G20	8mA, pulldown-pe	UART3_RxD: UART 3 Receiving data BCLK: AIC AC97 bit clock/I2S unified or DAC bit clock EPD_PWR6: EPD power control bit 4 PD12: GPIO group D bit 12	VDDIO
LRCLK EPD_PWR5 PD13	000	H19	8mA, pulldown-pe	LRCLK: AIC AC97 frame SYNC/I2S unified or DAC Left/Right clock EPD_PWR6: EPD power control bit 5 PD13: GPIO group D bit 13	VDDIO
AIC_SDATI EPD_PWR6 PE6	-00	H16	8mA, pullup-pe	AIC_SDATI: AIC AC97/I2S serial data input EPD_PWR6: EPD power control bit 6 PE6: GPIO group E bit 6	VDDIO
AIC_SDATO EPD_PWR7 PE7	000	G21	8mA, pulldown-pe	AIC_SDATO: AIC AC97/I2S serial data output or SPDIF output EPD_PWR6: EPD power control bit 7 PE7: GPIO group E bit 7	VDDIO
UART3_CTS_ BCLK_AD PE8	-00	J17	8mA, pullup-pe	UART3_CTS_: UART 3 CTS_ input BCLK_AD: AIC I2S ADC bit clock PE8: GPIO group E bit 8	VDDIO
UART3_RTS_ LRCLK\u00a8_AD PE9	000	H20	8mA, pullup-pe, rst-pe	UART3_RTS_: UART 3 RTS_ output LRCLK\(\theta\)_AD: AIC\(\theta\) I2S ADC Left/Right clock PE9: GPIO group E bit 9	VDDIO
SDATO1 PE11	00	J16	8mA, pullup-pe	SDATO1: AICe I2S serial data output 1 for AIC0 PE11: GPIO group E bit 11	VDDIO
SDATO2 PE12	0 0	H21	8mA, pullup-pe	SDATO2: AIC# I2S serial data output 2 for AIC0 PE12: GPIO group E bit 12	VDDIO
SDATO3 PE13	0 10	K16	8mA, pullup-pe	SDATO3: AIC@ I2S serial data output 3 for AIC0 PE13: GPIO group E bit 13	VDDIO

2.5.8 System/JTAG/UART3/OTG/GPIO

Table 2-16 GPIO Pins (5, GPIO PF18~22)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
PF18	Ю	J19	8mA, pullup-pe	PF18: GPIO group F bit 18	VDDIO
PF19	Ю	AA21	8mA, pulldown-pe	PF19: GPIO group F bit 19	VDDIO
PF20	Ю	U19	8mA, pulldown-pe	PF20: GPIO group F bit 20	VDDIO
PF21	Ю	K17	8mA, pullup-pe	PF21: GPIO group F bit 21	VDDIO
PF22	Ю	V19	8mA, pulldown-pe	PF22: GPIO group F bit 22	VDDIO

Table 2-17 JTAG/UART3/PS2 Pins (5, GPIO PA30~31 are used to control)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
TRST_	I	U15	Schmitt, pull-down	TRST_: JTAG reset	VDDIO
TCK UART3_RTS_ PS2_MCLK	-00	P13	8mA, Schmitt, pulldown-pe, rst-pe	TCK: JTAG clock UART3_RTS_: UART 3 RTS_ output PS2_MCLK: PS/2 mouse clock PA30 is used to select between JTAG and PS2, PA31 is used to select between JTAG and UART and control the pull-down enable	VDDIO
TMS UART3_CTS_ PS2_MDATA	- - 0	U13	8mA, Schmitt, pullup-pe, rst-pe	TMS: JTAG mode select UART3_CTS_: UART 3 CTS_ input PS2_MDATA: PS/2 mouse data PA30 is used to select between JTAG and PS2, PA31 is used to select between JTAG and UART and control the pull-down enable	VDDIO
TDI UART3_RxD PS2_KCLK	I I IO	P14	8mA, Schmitt, pullup-pe, rst-pe	TDI: JTAG serial data input UART3_RxD: UART 3 Receiving data PS2_KCLK: PS/2 keyboard clock PA30 is used to select between JTAG and PS2, PA31 is used to select between JTAG and UART and control the pull-down enable	VDDIO
TDO UART3_TxD PS2_KDATA	000	U14	8mA, Schmitt, pullup-pe, rst-pe	TDO: JTAG serial data output UART3_TxD: UART 3 transmitting data PS2_KDATA: PS/2 keyboard data PA30 is used to select between JTAG and PS2, PA31 is used to select between JTAG and UART and control the pull-down enable	VDDIO

Table 2-18 System Pins (3, all GPIO shared: PD17~19)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
PD17 (BOOT_SEL0)	I 10	T14	8mA, pullup-pe	PD17: GPIO group D bit 17 It is taken as BOOT select bit 0 by Boot ROM code	VDDIO
PD18 (BOOT_SEL1)	I 10	T15	8mA, pullup-pe	PD18: GPIO group D bit 18 It is taken as BOOT select bit 1 by Boot ROM code	VDDIO
PD19 (BOOT_SEL2)	I 10	T13	8mA, pullup-pe	PD19: GPIO group D bit 19 It is taken as BOOT select bit 2 by Boot ROM code	VDDIO

Table 2-19 USB OTG Digital Pins (1, all GPIO shared: PE10)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
DRVVBUS PE10	0 0		8mA, pulldown-pe, rst-pe	DRVVBUS: USB OTG VBUS driver control signal PE10: GPIO group E bit 10	VDDIO

Table 2-20 EXCLK output Pins (1, all GPIO shared: PD15)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
EXCLKO PD15	0 10		8mA, pulldown-pe, rst-pe	EXCLKO: output external clock PD15: GPIO group D bit 15	VDDIO

2.5.9 Digital power/ground

Table 2-21 IO/Core power supplies for FBGA-379 package (51)

Pin Names	Ю	Loc	Pin Description	Power
VDDmem	Р	F6 G6 F7 F8 F9 F10 F12 F13 F14 F15	VDDmem: 10 IO digital power for DDR, 1.8V~2.5V	-
VSSmem	Р	H8 J8 K8 H9 H10 H11 H12 H13 H14 J14 G16	VSSmem: 11 IO digital ground for DDR, 0V	-
VDDIOn	Р	K6	VDDIOn: (or VDDIOnand) 1 IO digital power for NAND power domain, 1.8V~3.3V	-
VDDIO	Р	P11 N12 M13 N13	VDDIO: 4 IO digital power for none DDR/NAND, 3.3V	-
VSS	Р	J9 K9 L9 K10 L10 M10 N10 K11 L11 M11 N11 K12 L12 M12 L13	VSS: 15 IO digital ground for none DDR and CORE digital ground, 0V	-
VDDcore	Р	L8 M9 N9 J10 J11 J12 J13 K13 K14 L14	VDDcore: 10 CORE digital power, 1.2V	-

2.5.10 Analog

Table 2-22 Audio CODEC Pins (19)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
AOHPL	AO	Y17		AOHPL: Left headphone out	AVD _{CDC}
AOHPR	AO	AA17		AOHPR: Right headphone out	AVD _{CDC}
AOHPM	AO	W16		AOHPM: Headphone common mode output	AVD _{CDC}
AOHPMS	Al	Y16		AOHPMS: Headphone common mode sense input	AVD _{CDC}
AOLP	AO	Y15		AOLP: Line out positive	AVD _{CDC}
AOLN	AO	AA16		AOLN: Line out negative	AVD _{CDC}
MICP1	Al	U17		MICP1: Microphone 1 input or input positive	AVD _{CDC}
MICN1	Al	V18		MICN1: Microphone 1 input negative	AVD _{CDC}
MICP2	ΑI	AA19		MICP2: Microphone 2 input positive	AVD _{CDC}
MICN2	Al	Y19		MICN2: Microphone 2 input negative	AVD_{CDC}
MICBIAS	AO	W19		MICBIAS: Microphone bias	AVD _{CDC}
AIL	Al	Y20		AIL: Left line input	AVD_{CDC}
AIR	ΑI	AA20		AIR: Right line input	AVD _{CDC}
VCAP	AO	Y18		VCAP: Voltage Reference Output. An electrolytic capacitor more than 10µF in parallel with a 0.1µF ceramic capacitor attached from this pin to AVSCDC eliminates the effects of high frequency noise?	
AVDCDC	Р	W18		AVDCDC: CODEC analog power, 2.5V	-
AVSCDC	Р	V17		AVSCDC: CODEC analog ground	-
AVDHP	Р	AA18		AVDHP: Headphone amplifier power, 2.5V	-
AVSHP	Р	W17		AVSHP: Headphone amplifier ground	-

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
OTG_DP	AIO	Y14		OTG_DP: USB OTG data plus	AVD _{OTG}
OTG_DM	AIO	AA14		OTG_DM: USB OTG data minus	AVD _{OTG}
VBUS	AIO	W15		VBUS: USB 5-V power supply pin for USB OTG. An external charge pump must provide power to this pin	AVD _{OTG}
OTG_ID	AI	V15		OTG_ID: USB mini-receptacle identifier. It differentiates a mini-A from a mini-B plug. If this signal is not used, internal resistance pulls the signal's voltage level to AVDOTG25.	AVD _{OTG}
TXR_RKL	AIO	W14		TXR_RKL: Transmitter resister tune. It connects to an external resistor of 44.2Ω with 1% tolerance to analog ground AVSOTG25, that adjusts the USB 2.0 high-speed source impedance	AVD _{OTG}
UHC_DP	AIO	AA3		USB_DP: USB 1.1 host data plus	AVD _{USB}
UHC_DM	AIO	Y4		USB_DM: USB 1.1 host data minus	AVD _{USB}
AVDUSB	Р	AA15		AVDUSB: USB 1.1 host & USB OTG analog power, 3.3V	-
AVDOTG25	Р	Y13		AVDOTG25: USB OTG analog power, 2.5V	-
AVSUSB	Р	V14		AVSUSB: USB 1.1 host & USB OTG analog ground	-

Table 2-24 SAR ADC Pins (9)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
XP_BR	AIO	AA10		XP_BR: Touch screen input, X+ for 4-wire, bottom-right for 5-wire, or ADC general purpose input	AVD _{AD}
XN_TL	AIO	Y12		XN_TL: Touch screen input, X- for 4-wire, top-left for 5-wire, or ADC general purpose input	AVD_AD
YP_TR	AIO	Y10		YP_TR: Touch screen input Y+ for 4-wire, top-right for 5-wire, or ADC general purpose input	AVD _{AD}
YN_BL	AIO	AA12		YN_BL: Touch screen input Y- for 4-wire, bottom-left for 5-wire, or ADC general purpose input	AVD _{AD}
WIPER	AIO	AA13		WIPER: Top sheet connection for 5-wire touch screen or ADC general purpose input	AVD _{AD}
AUX	ΑI	W11		AUX: ADC general purpose input	AVD _{AD}
VBAT	Al	W12		VBAT: Battery voltage input with external resistance divider or ADC general purpose input	1.2V
AVDAD	Р	AA11		AVDAD: ADC analog power, 3.3 V	-
AVSAD	Р	Y11		AVDAD: ADC analog ground	-

Table 2-25 EFUSE Pins (1)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
AVDEFUSE	Р	U3		AVDEFUSE: EFUSE programming power, 0V/2.5V	AVD_{AD}

Table 2-26 Video DAC Pins (4)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	
LUMA	AO	V3		LUMA: DAC analog output for CVBS or luminance of S-Video	AVD_{DA}
AVDDA	Р	Y1		AVDDA: Power supply for LUMA and CHROMA output, 3.3 V (IO1:AVD33R, IO2:AVD33G, IO3:AVDD, VDWELL)	-
AVSDA	Р	W2		AVSDA: Ground for LUMA and CHROMA output (IO1/IO2: AVS33R, AVS33G, AVSS, VSSUB)	-

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	
REXT	AO	U4		EXT: For external resistor. REXT(ohm)=VREFIN(V)*7.31 /IOFS(A)	

Table 2-27 LVDS Pins (14)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
LVDS_CKP LCD_VSYN	AO O	R21		LVDS_CKP: LVDS CLK output positive for LCD LCD_VSYN: LCD frame clock/Vertical sync	AVD _{LVDS}
LVDS_CKN LCD_HSYN	AO O	P20		LVDS_CKN: LVDS CLK output negative for LCD LCD_HSYN: LCD line clock/horizontal sync	AVD _{LVDS}
LVDS_D0P LCD_G1	AO O	R20		LVDS_D0P: LVDS date channel 0 output positive for LCD LCD_G1: LCD Green data bit 1	AVD _{LVDS}
LVDS_D0N LCD_DE	AO O	T21		LVDS_D0N: LVDS date channel 0 output negative for LCD LCD_DE: STN AC bias drive/non-STN data enable	AVD _{LVDS}
LVDS_D1P LCD_G3	AO O	T20		LVDS_D1P: LVDS date channel 1 output positive for LCD LCD_G3: LCD Green data bit 3	AVD _{LVDS}
LVDS_D1N LCD_G2	AO O	U21		LVDS_D1N: LVDS date channel 1 output negative for LCD LCD_G3: LCD Green data bit 2	
LVDS_D2P LCD_G5	AO O	U20		LVDS_D2P: LVDS date channel 2 output positive for LCD LCD_G4: LCD Green data bit 5	AVD _{LVDS}
LVDS_D2N LCD_G4	AO O	V21		LVDS_D2N: LVDS date channel 2 output negative for LCD LCD_G5: LCD Green data bit 4	AVD _{LVDS}
LVDS_D3P LCD_G7	AO O	V20		LVDS_D3P: LVDS date channel 3 output positive for LCD LCD_G6: LCD Green data bit 7	AVD _{LVDS}
LVDS_D3N LCD_G6	AO O	W21		LVDS_D3N: LVDS date channel 3 output negative for LCD LCD_G7: LCD Green data bit 6	AVD _{LVDS}
AVDLVDS12	Р	P21		AVDLVDS12: Power supply for LVDS output, 1.2 V	AVD _{LVDS}
AVSLVDS12	Р	N20		AVSLVDS12: Ground for LVDS output 1.2V power	AVD _{LVDS}
AVDLVDS	Р	Y21		AVDLVDS: Power supply for LVDS output, 3.3 V	-
AVSLVDS	Р	W20		AVSLVDS: Ground for LVDS output	-

Table 2-28 CPM Pins (4)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
EXCLK	Al			EXCLK: OSC input or 12MHz clock input	VDDIO
XCLK	AO		Oscillator, OSC on/off	XCLK: OSC output	VDDIO
AVDPLL	Р	AA1		AVDPLL: PLL analog power, 1.2V	-
AVSPLL	Р	Y2		AVSPLL: PLL analog ground	-

Table 2-29 RTC Pins (9, 2 with GPIO input: PA30, PD14)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
RTCLK	Al	Y3		RTCLK: OSC input	VDD_{RTC}
XRTCLK	AO	AA2	Oscillator	XRTCLK: OSC output or 32768Hz clock input	VDD_{RTC}
PWRON	0	V5	8mA	PWRON: Power on/off control of main power	VDD_{RTC}

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	
CLK32K PD14	0 0	U5	8mA, pullup-pe	32768Hz clock output PD14: GPIO group D bit 14. When main power down, this pin is controlled by RTC register: CLK32K or PD14, pull-up enable/disable, input/output if it is PD14, 0/1 if it is PD14 output	VDD _{RTC}
WKUP PA30	I	V4	Schmitt	WKUP: Wakeup signal after main power down PA30: GPIO group A bit 30, input/interrupt only	VDD _{RTC}
PPRST_	I	W3	Schmitt	PPRST_: RTC power on reset and RESET-KEY reset input	VDD _{RTC}
VDDRTC	Р	W4		VDDRTC: 3.3V power for RTC and hibernating mode controlling that never power down	-
LDO_CAP	AIO	W5		LDO_CAP: Capacitor pin for RTC LDO	
TEST_E	I	N6	Schmitt, pull-down	TEST_E: Manufacture test enable, program readable	VDD _{RTC}

NOTES:

- 1 The meaning of phases in IO cell characteristics are:
 - a Bi-dir, Single-end: bi-direction and single-ended DDR IO are used.
 - b Output, Single-end: output and single-ended DDR IO are used.
 - c Output, Differential: output and differential signal DDR IO are used.
 - d Bi-dir, Differential: bi-direction and differential signal DDR IO are used.
 - e 8/16mA out: The IO cell's output driving strength is about 8/16mA.
 - f Pull-up: The IO cell contains a pull-up resistor.
 - g Pull-down: The IO cell contains a pull-down resistor.
 - h Pullup-pe: The IO cell contains a pull-up resistor and the pull-up resistor can be enabled or disabled by setting corresponding register.
 - i Pulldown-pe: The IO cell contains a pull-down resistor and the pull-down resistor can be enabled or disabled by setting corresponding register.
 - j rst-pe: these pins are initialed (during reset and after reset) to IO internal pull (up or down) enabled. Otherwise, the pins are initialed to pull disabled
 - k Schmitt: The IO cell is Schmitt trig input.
- 2 All GPIO shared pins are reset to GPIO input.
- 3 These IOs are 5V input tolerance.

3 Electrical Specifications

3.1 Absolute Maximum Ratings

The absolute maximum ratings for the processors are listed in Table 3-1. Do not exceed these parameters or the part may be damaged permanently. Operation at absolute maximum ratings is not guaranteed.

Table 3-1 Absolute Maximum Ratings

Parameter	Min	Max	Unit
Storage Temperature	-65	150	°C
Operation Temperature	-40	125	°C
VDDmem power supplies voltage	-0.5	4.6	V
VDDIO power supplies voltage	-0.5	4.6	V
VDDIOn power supplies voltage	-0.5	4.6	V
VDDcore power supplies voltage	-0.2	2.2	V
AVDPLL power supplies voltage	-0.2	2.2	V
AVDEFUSE power supplies voltage	-0.5	3.5	V
VDDRTC power supplies voltage	-0.5	4.6	V
AVDOTG25 power supplies voltage	-0.5	3.5	V
AVDUSB power supplies voltage	-0.5	4.6	V
AVDAD power supplies voltage	-0.5	4.6	V
AVDDA power supplies voltage	-0.5	4.6	V
AVDCDC power supplies voltage	-0.5	2.75	V
AVDHP power supplies voltage	-0.5	3.5	V
AVDLVDS12 power supplies voltage	-0.2	2.2	V
AVDLVDS power supplies voltage	-0.5	4.6	V
Input voltage to VDDmem supplied non-supply pins	-0.3	4.6	V
Input voltage to VDDIO supplied non-supply pins with 5V tolerance	-0.5	6	V
Input voltage to VDDIO supplied non-supply pins without 5V tolerance	-0.5	4.6	V
Input voltage to VDDIOn supplied non-supply pins	-0.5	4.6	V
Input voltage to VDDRTC supplied non-supply pins	-0.5	4.6	V
Input voltage to AVDCDC supplied non-supply pins	-0.5	2.75	V
Input voltage to AVDOTG25 supplied non-supply pins	-0.5	3.5	V
Input voltage to AVDUSB supplied non-supply pins	-0.5	6	V
Input voltage to AVDAD supplied non-supply pins	-0.5	4.6	V
Input voltage to AVDDA supplied non-supply pins	-0.5	4.6	V
Output voltage from VDDmem supplied non-supply pins	-0.5	4.6	V
Output voltage from VDDIO supplied non-supply pins	-0.5	4.6	V
Output voltage from VDDIOn supplied non-supply pins	-0.5	4.6	V
Output voltage from VDDRTC supplied non-supply pins	-0.5	4.6	V

Output voltage from AVDOTG25 supplied non-supply pins	-0.5	3.5	V
Output voltage from AVDUSB supplied non-supply pins	-0.5	4.6	V
Output voltage from AVDAD supplied non-supply pins	-0.5	4.6	V
Output voltage from AVDDA supplied non-supply pins	-0.5	4.6	V
Output voltage from AVDCDC supplied non-supply pins	-0.5	2.75	V
Output voltage from AVDLVDS supplied non-supply pins	-0.5	4.6	V
Maximum ESD stress voltage, Human Body Model; Any pin to any			
supply pin, either polarity, or Any pin to all non-supply pins together,		2000	V
either polarity. Three stresses maximum.			

3.2 Recommended operating conditions

Table 3-2 Recommended operating conditions for power supplies

Symbol	Description	Min	Typical	Max	Unit
	VDDmem voltage for SSTL18 (DDR2)	1.7	1.8	1.9	V
V_{MEM}	VDDmem voltage for SSTL2 (DDR)	2.3	2.5	2.7	V
	VDDmem voltage for LPDDR	1.7	1.8	1.9	V
V _{IO}	VDDIO voltage	1.62	_	3.63	V
V _{ION}	VDDIOn voltage	1.62	_	3.63	V
V _{CORE}	VDDcore voltage	1.08	1.2	1.40	V
V _{PLL}	AVDPLL analog voltage	1.08	1.2	1.40	V
V _{EFUSE}	AVDEFUSE voltage	2.25	2.5	2.75	V
V_{RTC}	VDDRTC voltage	2.5	_	3.6	V
V _{OTG25}	AVDOTG25 voltage	2.25	2.5	2.75	V
V_{USB}	AVDUSB voltage	3.0	_	3.6	V
V_{ADC}	AVDAD voltage	3.0	3.3	3.6	V
V_{DAC}	AVDDA voltage	3.0	3.3	3.6	V
V _{CDC}	AVDCDC voltage	2.25	2.5	2.75	V
V_{HP}	AVDHP voltage	2.25	2.5	2.75	V
V _{LVDS12}	AVDLVDS12 voltage	1.08	1.2	1.40	V
V _{LVDS}	AVDLVDS voltage	3.0	3.3	3.6	V

Table 3-3 Recommended operating conditions for VDDmem supplied pins

Symbol	Parameter	Min	Typical	Max	Unit
V _{I18}	Input voltage for DDR2/LPDDR applications	0		1.9	V
V _{O18}	Output voltage for DDR2/LPDDR applications	0		1.9	V
V ₁₂₅	Input voltage for DDR application	0		2.7	V
V _{O25}	Output voltage for DDR application	0		2.7	V

Table 3-4 Recommended operating conditions for VDDIO/VDDIOn/VDDRTC supplied pins

Symbol	Parameter	Min	Typical	Max	Unit
V _{IH18}	Input high voltage for 1.8V I/O application	1.17		3.6	V
V _{IL18}	Input low voltage for 1.8V I/O application	-0.3		0.63	V
V _{IH25}	Input high voltage for 2.5V I/O application	1.7		3.6	V
V _{IL25}	Input low voltage for 2.5V I/O application	-0.3		0.7	V
V _{IH33}	Input high voltage for 3.3V I/O application	2		3.6	V
V _{IL33}	Input low voltage for 3.3V I/O application	-0.3		0.8	V

Table 3-5 Recommended operating conditions for others

Symbol	Description	Min	Typical	Max	Unit
T _A	Ambient temperature	-40		85	ô

Table 3-6 Recommended operating conditions for ADC pins

Symbol	Description	Min	Typical	Max	Unit
Vbat	VBAT input voltage range	0		1.2	V
V _{IADC}	AUX/WIPER/XN_TL/XP_BR/YN_BL/YP_TR	0		AVD_{AD}	V
	input voltage range	0		AVDAD	V

3.3 DC Specifications

The DC characteristics for each pin include input-sense levels and output-drive levels and currents. These parameters can be used to determine maximum DC loading, and also to determine maximum transition times for a given load. All DC specification values are valid for the entire temperature range of the device.

Table 3-7 DC characteristics for VDDmem supplied pins in DDR2 application

Symbol	Parameter	Min	Typical	Max	Unit
V_{REFMEM}	Reference voltage supply	0.49	0.5	0.51	V_{MEM}
V _{TT}	Terminal Voltage	V _{REFMEM} – 0.4	V_{REFMEM}	V _{REFMEM} + 0.4	V
V _{IH}	DC input logic high	V _{REFMEM} + 0.125		$V_{MEM} + 0.3$	V
V _{IL}	DC input logic low	-0.3		V _{REFMEM} – 0.125	V
V _{IN}	DC input signal voltage	-0.3		$V_{MEM} + 0.3$	V
V _{ID}	DC differential input voltage	0.25		V _{MEM} + 0.6	V
IL	Leakage current			±0.2	μA

Table 3-8 DC characteristics for VDDmem supplied pins in DDR2 application (Full driving strength case)

Symbol	Parameter	Condition	Typical	Unit
I _{OH}	Minimum DC source current of output driver	$V_{OH} = V_{MEM}(Min) - 0.28V$	-13.4	mA
I _{OL}	Minimum DC sink current of output driver	$V_{OL} = 0.28V$ and $V_{MEM} = 1.7V$	13.4	mA
RT	Terminal resistor		25	Ω
RS	Series resistor		20	Ω

Table 3-9 DC characteristics for VDDmem supplied pins in DDR2 application (Half driving strength case)

Symbol	Parameter	Condition	Typical	Unit
I _{OH}	Minimum DC source current of	$V_{OH} = V_{MEM}(Min) - 0.28V$	-6.7	mA
ЮП	output driver	VOH = V MEM(WIII) = 0.20 V	0.7	1117 (
١,	Minimum DC sink current of output	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	6.7	A
I _{OL}	driver	$V_{OL} = 0.28V$ and $V_{MEM} = 1.7V$	0.7	mA
RT	Terminal resistor		50	Ω
RS	Series resistor		20	Ω

Table 3-10 DC characteristics for VDDmem supplied pins in DDR application

Symbol	Parameter	Min	Typical	Max	Unit
V_{REFMEM}	Reference voltage supply	0.49	0.5	0.51	V_{MEM}
V _{TT}	Terminal Voltage	V _{REFMEM} – 0.4	V_{REFMEM}	V _{REFMEM} + 0.4	V
V _{IH}	DC input logic high	V _{REFMEM} + 0.15		$V_{MEM} + 0.3$	V
V _{IL}	DC input logic low	-0.3		V _{REFMEM} – 0.15	V
V _{IN}	DC input signal voltage	-0.3		$V_{MEM} + 0.3$	V
V _{ID}	DC differential input voltage	0.3		V _{MEM} + 0.6	V
IL	Leakage current			±0.2	μA

Table 3-11 DC characteristics for VDDmem supplied pins in DDR application (Class I)

Symbol	Parameter	Condition	Typical	Unit
I _{OH}	Minimum DC source current of output driver	V _{OH} = 1.7V	-8.1	mA
I _{OL}	Minimum DC sink current of output driver	V _{OL} = 0.56	8.1	mA
RT	Terminal resistor		50	Ω
RS	Series resistor		25	Ω

Table 3-12 DC characteristics for VDDmem supplied pins in DDR application (Class II)

Symbol	Parameter	Condition	Typical	Unit
I _{OH}	Minimum DC source current of output driver	V _{OH} = 1.7V	-16.2	mA
I _{OL}	Minimum DC sink current of output driver	$V_{OL} = 0.56$	16.2	mA
RT	Terminal resistor		25	Ω
RS	Series resistor		25	Ω

Table 3-13 DC characteristics for VDDmem supplied pins in LPDDR application

Symbol	Parameter	Min	Typical	Max	Unit
V _{IH}	DC input high voltage	0.7 * V _{MEM}		V _{MEM} + 0.3	V
V _{IL}	DC input low voltage	-0.3		0.3 * V _{MEM}	V
V _{OH}	DC output high voltage (I _{OH} =-0.1mA)	0.9 * V _{MEM}			V
V _{OL}	DC output low voltage (I _{OH} =0.1mA)			0.1 * V _{MEM}	V
IL	Leakage current			±0.2	μA

Table 3-14 DC characteristics for VDDIO/VDDIOn/VDDRTC supplied pins for 1.8V application

Symbol	Parameter		Min	Typical	Max	Unit
V_T	Threshold point		0.79	0.86	0.94	V
V_{T+}	Schmitt trig low to high threshold point		0.95	1.06	1.16	V
V_{T-}	Schmitt trig high to low threshold point		0.58	0.69	0.79	V
V_{TPU}	Threshold point with pull-up resistor enal	oled	0.79	0.86	0.94	V
V_{TPD}	Threshold point with pull-down resistor e	nabled	0.79	0.86	0.94	V
V _{TPU+}	Schmitt trig low to high threshold point with pull-up resistor enabled		0.95	1.06	1.16	V
V _{TPU} _	Schmitt trig high to low threshold point with pull-down resistor enabled		0.58	0.68	0.78	V
V _{TPD+}	Schmitt trig low to high threshold point with pull-down resistor enabled		0.96	1.07	1.17	V
V _{TPD}	Schmitt trig high to low threshold point with pull-up resistor enabled		0.59	0.69	0.79	V
IL	Input Leakage Current @ V _I =1.8V or 0V				±10	μA
I _{OZ}	Tri-State output leakage current @ V _i =1.	8V or 0V			±10	μA
R _{PU}	Pull-up Resistor		66	114	211	kΩ
R _{PD}	Pull-down Resistor		58	103	204	kΩ
V _{OL}	Output low voltage				0.45	V
V _{OH}	Output high voltage		1.35			V
	Low level output current @ V _{OL} (max)	8mA	5.3	9.8	15.8	mA
I _{OL}	Low level output current & vol(max)	16mA	10.8	19.7	31.8	mA
	High level output current @ \/ /mis\	8mA	3.3	8.3	16.6	mA
I _{OH}	High level output current @ V _{OH} (min)	16mA	6.6	16.5	33.2	mA

Table 3-15 DC characteristics for VDDIO/VDDIOn/VDDRTC supplied pins for 2.5V application

Symbol	Parameter		Min	Typical	Max	Unit
V _T	Threshold point		1.06	1.17	1.27	V
V _{T+}	Schmitt trig low to high threshold point		1.27	1.40	1.50	V
V _{T-}	Schmitt trig high to low threshold point		0.86	0.98	1.09	V
V _{TPU}	Threshold point with pull-up resistor enal	oled	1.05	1.16	1.25	V
V _{TPD}	Threshold point with pull-down resistor e	nabled	1.06	1.17	1.27	V
V _{TPU+}	Schmitt trig low to high threshold point with pull-up resistor enabled		1.27	1.39	1.48	V
V _{TPU}	Schmitt trig high to low threshold point with pull-down resistor enabled		0.85	0.97	1.08	V
V _{TPD+}	Schmitt trig low to high threshold point with pull-down resistor enabled		1.27	1.41	1.50	V
V _{TPD}	Schmitt trig high to low threshold point with pull-up resistor enabled		0.88	0.99	1.10	V
IL	Input Leakage Current @ V _I =1.8V or 0V				±10	μΑ
I _{OZ}	Tri-State output leakage current @ V _I =1.3	8V or 0V			±10	μΑ
R _{PU}	Pull-up Resistor		43	69	120	kΩ
R _{PD}	Pull-down Resistor		41	66	124	kΩ
V _{OL}	Output low voltage				0.7	V
V _{OH}	Output high voltage		1.7			V
	Low lovel output ourrent @ \/ ()	8mA	11.6	19.4	28.4	mA
I _{OL}	Low level output current @ V _{oL} (max)	16mA	23.3	39.1	57.2	mA
	High level output ourrent @ \/ (mis)	8mA	9.3	19.4	34.6	mA
I _{OH}	High level output current @ V _{OH} (min)	16mA	18.6	38.7	69.2	mA

Table 3-16 DC characteristics for VDDIO/VDDIOn/VDDRTC supplied pins for 3.3V application

Symbol	Parameter	Min	Typical	Max	Unit
V _T	Threshold point	1.39	1.50	1.65	V
V_{T+}	Schmitt trig low to high threshold point	1.62	1.75	1.90	٧
V_{T-}	Schmitt trig high to low threshold point	1.18	1.29	1.44	V
V_{TPU}	Threshold point with pull-up resistor enabled	1.36	1.48	1.64	V
V_{TPD}	Threshold point with pull-down resistor enabled	1.40	1.52	1.66	V
V _{TPU+}	Schmitt trig low to high threshold point with pull-up resistor enabled	1.62	1.75	1.89	٧
V _{TPU} _	Schmitt trig high to low threshold point with pull-down resistor enabled	1.16	1.28	1.43	V
V _{TPD+}	Schmitt trig low to high threshold point with pull-down resistor enabled	1.64	1.77	1.91	V

V _{TPD}	Schmitt trig high to low threshold point with pull-up resistor enabled		1.19	1.31	1.45	V
IL	Input Leakage Current @ V _I =1.8V or 0V				±10	μA
I _{OZ}	Tri-State output leakage current @ V _I =1.8	8V or 0V			±10	μA
R _{PU}	Pull-up Resistor		34	51	81	kΩ
R _{PD}	Pull-down Resistor		35	51	88	kΩ
V _{OL}	Output low voltage				0.4	V
V _{OH}	Output high voltage		2.4			V
	Low level output current @ V _{OL} (max)	8mA	10.0	15.2	20.2	mΑ
I _{OL}	Low level output current & vol(max)	16mA	20.2	30.6	40.6	mA
	High lovel output current @ \/ (min)	8mA	13.9	28.0	48.2	mA
Іон	Trigit level output current @ V _{OH} (IIIIII)	High level output current @ V _{OH} (min) 16mA		56.0	96.3	mA

3.4 Audio codec electronic characteristics

3.4.1 Line input to audio ADC path

Measurement conditions:						
T = 25°C, AVDCDC = AVDHP = VREFP = 2.5V, input sine wave with a frequency of 1kHz, Fmclk =						
12MHz, Fs = 8 to 96kHz	z, measurement bandwidth 20Hz – 20kHz, ι	ınless ot	herwise	specified	d.	
Parameter	Test conditions	Min.	Тур	Max.	Unit	
Input level	Full Scale, Gain GIDL, GIDR = 0dB (note	1.89	2.12	2.39	Van	
	1)				Vpp	
Input resistance		8.5			kOhm	
Input capacitance	Includes 10pF for ESD, bonding and			25	ς.E	
	package pins capacitances				pF	
Input bypass	Cbyline		1		uF	
capacitor					ur	

NOTE: The Full Scale input voltage scales with AVDCDC, equals to 0.85*VREF (typ).

3.4.2 Microphone input to audio ADC path

Measurement conditions:						
T = 25°C, AVDCDC = AVDHP = VREFP = 2.5V, input sine wave with a frequency of 1kHz, Fmclk =						
12MHz, Fs = 8 to 96kHz, measurement bandwidth 20Hz – 20kHz, unless otherwise specified.						
Parameter	Test conditions	Min.	Тур	Max.	Unit	
Input level	Full Scale, Gain GIDL, GIDR = 0dB,	0.189	0.212	0.239	Vpp	

	boost gain GIM1,GIM2 = 20dB (note 1)				
Input resistance	Boost gain GIM1,GIM2 = 0 dB	66	80	100	
(Differential mic configuration)	Boost gain GIM1,GIM2 = 20 dB	10	13	15	kOhm
Input resistance	Boost gain GIM1,GIM2 = 0 dB	92	115	138	
(single-ended mic configuration)	Boost gain GIM1,GIM2 = 20 dB	19	24	29	kOhm
Input capacitance	Includes 10pF for ESD, bonding and package pins capacitances			25	pF
Input bypass capacitor	Cbyline		1		uF

NOTE: The Full Scale input voltage scales with AVDCDC, equals to 0.085*VREF (typ).

3.4.3 Audio DAC to headphone output path

Measurement conditions:								
T = 25°C, AVDCDC = AVDHP = VREFP = 2.5V, input sine wave with a frequency of 1kHz, Fmclk =								
12MHz, Fs = 8 to 96 kHz, measurement bandwidth 20Hz – 20kHz, unless otherwise specified.								
Parameter	Test conditions	Min.	Тур	Max.	Unit			
DAC playback on 16 Ohm HeadPhone								
Output level	Full Scale, Gain GOL, GOR = -3 dB,	1.33	1.5	1.69	Van			
	GODL, GODR=0dB, 16 Ohm load				Vpp			
Maximum output	RI = 16 Ohm		17.6		mW			
power					IIIVV			
Output resistance	R1	16			Ohm			
Output bypass	CI (RI = 16 Ohm)			220	uF			
capacitor					ur			
	DAC playback to 10k Ohms lineout si	ngle						
Output level	Full Scale, Gain GOL, GOR = 0 dB,	1.89	2.12	2.39	Von			
	GODL, GODR=0dB (note 1)				Vpp			
Output resistance	R1	10k			Ohm			
Output bypass	CI (RI = 10 kOhm)			1	uF			
capacitor					ur			
	Common characteristics							
Output capacitance	Ср			200	nE			
(note 2)					pF			

NOTES:

1 The Full Scale output voltage scales with AVDCDC, equals to 0.85*VREF. The minimum and maximum output levels are given with gain accuracy.

2 Output may oscillate above specified load capacitances. The capacitance is equivalent to a 2-meter cable.

3.4.4 Audio DAC to mono line output path

Measurement conditions:						
T = 25°C, AVDCDC = AVDHP = VREFP = 2.5V, input sine wave with a frequency of 1kHz, Fmclk =						
12MHz, Fs = 8 to 96kH	z, measurement bandwidth 20Hz – 20kHz, ι	unless ot	herwise	specified	d.	
Parameter	Test conditions	Min.	Тур	Max.	Unit	
Output level	Full Scale, Gain GODL, GODR = 0dB (note 1)	3.78	4.25	4.78	Vpp	
Output resistance		10			kOhm	
Output capacitance	Ср			100	pF	
Output bypass capacitor	CI (RI = 10 kOhm)			1	uF	

NOTE: The Full Scale output voltage scales with AVDCDC, equals to 1.7*VREF (typ).

3.4.5 Line input to headphone output path (analog bypass)

Measurement conditions:							
T = 25°C, AVDCDC = AVDHP = VREFP = 2.5V, input sine wave with a frequency of 1kHz, Fmclk =							
12MHz, Fs = 8 to 96 kHz, measurement bandwidth 20Hz – 20kHz, unless otherwise specified.							
Parameter	Test conditions	Min.	Тур	Max.	Unit		
Input level	Full Scale	1.89	2.12	2.39	Vpp		
Input resistance		8.5			kOhm		
	bypass on 16 Ohm HeadPhone						
Output level	Full Scale, Gain GOL, GOR = -3 dB, GIL,	1.33	1.5	1.69	Vpp		
	GIR=0dB, 16 Ohm load						
Output resistance	R1	16			Ohm		
	bypass to 10k Ohms lineout single	е					
Output level	Full Scale, Gain GOL, GOR = 0 dB, GIL,	1.89	2.12	2.39	Van		
	GIR=0 dB (note 1)				Vpp		
	Common characteristics						
Input capacitance	Includes 10pF for ESD, bonding and			25	, r		
	package pins capacitances				pF		
Input bypass	Cbyline		1		uF		
capacitor					ur		

NOTE: The Full Scale output voltage scales with AVDCDC, equals to 1.7*VREF (typ).

3.4.6 Microphone input to headphone output path (analog sidetone)

Measurement conditions:						
T = 25°C, AVDCDC = AVDHP = VREFP = 2.5V, input sine wave with a frequency of 1kHz, Fmclk =						
12MHz, Fs = 8 to 96kHz, measurement bandwidth 20Hz – 20kHz, unless otherwise specified.				d.		
Parameter	Test conditions	Min.	Тур	Max.	Unit	
Input level	Full Scale, Gain GOL, GOR = 0dB, boost	0.189	0.212	0.239	Van	
	gain GIM1,GIM2 = 20dB (note 1)				Vpp	

1.89

1.33

2.12

1.5

2.39

1.69

Vpp

Vpp

NOTES:

Output level

1 The Full Scale input voltage scales with AVDCDC, equals to 0.085*VREF (typ).

Full Scale, Gain GOL, GOR = 0dB, boost

gain GIM1,GIM2 = 0 to 20dB, 10kOhm

Full Scale, Gain GOL, GOR = -3 dB, boost

gain GIM1,GIM2 = 0 to 20dB, 16Ohm

load (note 2)

load (note 2)

2 The Full Scale output voltage scales with AVDCDC, equals to 0.85*VREF (typ).

3.4.7 Micbias and reference

Measurement conditions:							
T = 25°C, AVDCDC = AVDHP = VREFP = 2.5V, input sine wave with a frequency of 1kHz, Fmclk =							
12MHz, Fs = 8 to 96kHz	12MHz, Fs = 8 to 96kHz, measurement bandwidth 20Hz – 20kHz, unless otherwise specified.						
Parameter	Test conditions	Min.	Тур	Max.	Unit		
Micbias output level	(note 1)		2.08		V		
			1.66		V		
Micbias output current				4	mA		
Micbias decoupling	Cmic	0.75	1	1.25	nF		
capacitor					IIF		
VCAP voltage	(note 2)		2		V		

NOTES:

- 1 Micbias output voltage scales with AVDCDC, equals to 5/6*VREF or 4/6*VREF (typ).
- 2 VCAP output voltage scales with AVDCDC, equals to 0.8*VREF (typ).

3.5 Power On, Reset and BOOT

3.5.1 Power-On Timing

The external voltage regulator and other power-on devices must provide the JZ4770 processor with a specific sequence of power and resets to ensure proper operation. Figure 3-1 shows this sequence and Table 3-17 gives the timing parameters. Following are the name of the power.

- VDDRTC
- AVDAUD: AVDCDC, AVDHP
- VDD12: all 1.2V power supplies, include VDDCORE, AVDPLL, AVDLVDS12
- VDD: all other digital IO, include DDR power supplies: VDDMEM, VDDIO, VDDIOn
- AVD: all other analog power supplies: AVDAD, AVDDA, AVDOTG25, AVDUSB, AVDLVDS
- AVDEFUSE

Table 3-17 Power-On Timing Parameters

Symbol	Parameter	Min	Max	Unit
t _{R_VDDRTC}	VDDRTC rise time ^[1]	0	5	ms
t _{R_VDD}	VDD rise time ^[1]	0	5	ms
4	Delay between VDDRTC arriving 50% (or 90%) to VDD33	0		mo
t _{D_VDD}	arriving 50% (or 90%)	U	_	ms
t _{R_VDD12}	VDD12 rise time ^[1]	0	5	ms
4	Delay between VDD arriving 50% (or 90%) to VDD12	1	1	m.a
t _{D_VDD12}	arriving 50% (or 90%)	– 1		ms
t _{R_AVDAUD}	AVDAUD rise time ^[1]	0	5	ms
4	Delay between VDD12 arriving 50% (or 90%) to AVDAUD	0.01	1	ma
t _{D_AVDAUD}	arriving 50% (or 90%)	0.01	'	ms
t _{R_AVD}	AVD rise time ^[1]	0	5	ms
t _{D_AVDA}	Delay between VDD arriving 50% to AVD arriving 50%	-1	1	ms
t _{D_PPRST_}	Delay between VDDAUD stable and PPRST_ deasserted	0	_	ms ^[2]
4	Delay between PPRST_ finished and E-fuse programming	0		mo
t _{D_VPEFUSE}	power apply	U	_	ms

NOTES:

- 1 The power rise time is defined as 10% to 90%.
- 2 The PPRST_ must be kept at least 100us. After PPRST_ is deasserted, the corresponding chip reset will be extended at least 40ms.

Figure 3-1 Power-On Timing Diagram

3.5.2 Reset procedure

There 3 reset sources: 1 PPRST_ pin reset; 2 WDT timeout reset; and 3 hibernating reset when exiting hibernating mode. After reset, program start from boot.

- 1 PPRST_pin reset.
 - This reset is trigged when PPRST_ pin is put to logic 0. It happens in power on RTC power and RESET-KEY pressed to reset the chip from unknown dead state. The reset end time is about 1M EXCLK cycles after rising edge of PPRST_.
- 2 WDT reset.
 - This reset happens in case of WDT timeout. The reset keeps for about a few RTCLK cycles.
- 3 Hibernating reset.
 - This reset happens in case of wakeup the main power from power down. The reset keeps for about 1ms ~ 125ms programable, plus 1M EXCLK cycles, start after WKUP_ signal is

recognized.

After reset, all GPIO shared pins are put to GPIO input function and most of their internal pull-up/down resistor are set to on, see "2.5Pin Description [1][2]" for details. The PWRON is output 1. The oscillators are on. The USB 2.0 OTG PHY and USB 1.1 PHY, the audio CODEC DAC/ADC, the SAR-ADCs and the video DAC are put in suspend mode.

3.5.3 BOOT

JZ4770 supports 6 different boot sources depending on BOOT_SEL0, BOOT_SEL1 and BOOT_SEL2 pins values. Table 3-18 lists them.

BOOT_SEL2 BOOT_SEL1 BOOT_SEL0 Boot From 1 NAND flash at CS1 1 0 0 SD card: MSC0 1 1 0 SPI: SPI0/CE0 0 1 1 NOR flash at CS4 1 1 0 USB2.0 OTG as device with EXCLK = 12MHz 0 0 0 iNAND: at MSC0 0 0 1 USB2.0 OTG as device with EXCLK = 26MHz 1 USB2.0 OTG as device with EXCLK = 19.2MHz

Table 3-18 Boot from 3 boot sources

The boot procedure is showed in the following flow chart:

- In case of NAND/SDcard/iNAND/SPI boot, if it fails, enter USB boot.
- In case of USB boot, if it cannot connect to USB host within 10 seconds, restart the boot procedure.
- In case of NOR boot, if it fails, restart the boot procedure.
- If the boot procedure has been repeated more than 10 times, enter hibernating mode.

