Introduction to Computing Section 3 – Hardware

Gates & Circuits
Computing Components

Part 2

Computing Components

Computing Components

- Individual Computer Components
- The Stored-Program Concept
- Embedded Systems
- Parallel Architectures

Individual Computer Components

Ad for a laptop computer

Insatavialion 640 Laptop

Exceptional Performance and Portability

- Intel® Core™ 2 Duo (2.66GHz/1066MHz FSB/6MB cache)
- 15.6 High Definition (1080p) LED Backlit LCD Display (1366 x 768)
- 512MB ATI Mobility Radeon Graphics
- Built-in 2.0MP Web Camera
- 4GB Shared Dual Channel DDR2 at 800MHz
- 500GB SATA Hard Drive at 5400RPM
- 8X Slot Load DL DVD+/- RW Drive
- 802.11 a/g/n and Bluetooth 3.0
- 85 WHr Lithium Ion Battery
- (2) USB 2.0, HDMI, 15-pin VGA, Ethernet 10/100/1000, IEEE 1394
 Firewire, Express Card, Audio line-in, line-out, mic-in
- 14.8 W X 1.2 H X 10.1 D, 5.6 lbs
- Microsoft® Windows 8® Professional
- Microsoft® Office Home and Student 2007
- · 36-Month subscription to McAfee Security Center Anti-virus

Stored-Program Concept

Figure 5.1 The von Neumann architecture

Memory

Memory
A collection of cells,
each with a unique
physical address;both
addresses and contents are in binary

7	6	5	4	3	2	1	0	+	 Bit position
1	0	1	0	1	0	1	0]←	Contents

Contents				
11100011				
10101001				
00000000				
11111111				
10101010				
00110011				

Arithmetic/Logic Unit

Performs basic arithmetic operations such as addition, subtractions, multiplication, division

Performs logical operations such as AND, OR, and NOT

Most modern ALUs have a small amount of special storage units called registers

Input/Output Units

Input Unit

A device through which data and programs from the outside world are entered into the computer;

Can you name three?

Output unit

A device through which results stored in the computer memory are made available to the outside world

Can you name two?

Control Unit

Control unit

The organizing force in the computer **Instruction register** (IR)

Contains the instruction that is being executed Program counter (PC)

Contains the address of the next instruction to be executed

Central Processing Unit (CPU)

ALU and the control unit called the, or CPU

Flow of Information

Bus

A set of wires that connect all major sections

Figure 5.2 Data flow through a von Neumann architecture

Bus width

The number of bits that can be transferred in parallel over the bus.

Cache memory

A type of small, high-speed memory used to hold frequently used data.

Pipelining

A technique that breaks an instruction into smaller steps that can be overlapped

Motherboard

The main circuit board of a personal computer.

The Fetch-Execute Cycle

Fetch the next instruction

Decode the instruction

Get data if needed

Execute the instruction

Why is it called a cycle?

The Fetch-Execute Cycle

Figure 5.3 The Fetch-Execute Cycle

PRACTICE

Draw the The Fetch-Execute Cycle to implement the following function:

$$F(a,b,c)=ab+bc'+a'b'c$$

RAM and **ROM**

Random Access Memory (RAM)

Memory in which each location can be accessed and changed

Read Only Memory (ROM)

Memory in which each location can be accessed but *not* changed

RAM and ROM

one major difference between a ROM and a RAM chip

A ROM chip: <u>non-volatile</u> storage, does not require a constant source of power to retain information stored on it ⇒ When power is lost or turned off, a ROM chip will keep the information stored on it.

a RAM chip: <u>volatile</u> and requires a constant source of power to retain information ⇒ When power is lost or turned off, a RAM chip will lose the information stored on it.

RAM and ROM

Other differences between a ROM and a RAM chip

- ➤ A ROM chip is used primarily in the start up process of a computer, whereas a RAM chip is used in the normal operations of a computer after starting up and loading the operating system.
- Writing data to a ROM chip is a slow process, whereas writing data to a RAM chip is a faster process.
- ➤ A RAM chip can store multiple gigabytes (GB) of data, up to 16 GB or more per chip; A ROM chip typically stores only several megabytes (MB) of data, up to 4 MB or more per chip.

Compact Disks

CD

A compact disk that uses a laser to read information stored optically on a plastic disk; data is evenly distributed around track

CD-ROM read-only memory

CD-DA digital audio

CD-WORM write once, read many

RW or RAM both read from and written to

DVD

Digital Versatile Disk, used for storing audio and video

Summary

Logic gates: NOT, AND, OR, NAND, NOR, XOR Boolean algebra Adders, MUX, DEMUX, IC (SSI, MSI), CPU Chips Memory, ALU, Input/Output The Fetch-Execute Cycle RAM, ROM, CD, DVD