```
In [80]: import pandas as pd
import warnings
warnings.filterwarnings("ignore")
```

In [81]: data=pd.read_csv("/home/placement/Desktop/csv/Advertising.csv")

In [82]: data.describe()

Out[82]:

	Unnamed: 0	TV	radio	newspaper	sales
count	200.000000	200.000000	200.000000	200.000000	200.000000
mean	100.500000	147.042500	23.264000	30.554000	14.022500
std	57.879185	85.854236	14.846809	21.778621	5.217457
min	1.000000	0.700000	0.000000	0.300000	1.600000
25%	50.750000	74.375000	9.975000	12.750000	10.375000
50%	100.500000	149.750000	22.900000	25.750000	12.900000
75%	150.250000	218.825000	36.525000	45.100000	17.400000
max	200.000000	296.400000	49.600000	114.000000	27.000000

In [83]: data.head()

Out[83]:

	Unnamed: 0	TV	radio	newspaper	sales
0	1	230.1	37.8	69.2	22.1
1	2	44.5	39.3	45.1	10.4
2	3	17.2	45.9	69.3	9.3
3	4	151.5	41.3	58.5	18.5
4	5	180.8	10.8	58.4	12.9

```
In [84]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 200 entries, 0 to 199
         Data columns (total 5 columns):
                          Non-Null Count Dtype
              Column
              Unnamed: 0 200 non-null
                                          int64
          0
                          200 non-null
                                          float64
              TV
                                          float64
          2
              radio
                          200 non-null
                          200 non-null
                                          float64
              newspaper
              sales
                          200 non-null
                                          float64
         dtypes: float64(4), int64(1)
         memory usage: 7.9 KB
In [85]: list(data)
Out[85]: ['Unnamed: 0', 'TV', 'radio', 'newspaper', 'sales']
```

Out[86]:

	TV	radio	newspaper	sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	9.7
197	177.0	9.3	6.4	12.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	13.4

200 rows × 4 columns

In [87]: cor=datal.corr()
cor

Out[87]:

	TV	radio	newspaper	sales
TV	1.000000	0.054809	0.056648	0.782224
radio	0.054809	1.000000	0.354104	0.576223
newspaper	0.056648	0.354104	1.000000	0.228299
sales	0.782224	0.576223	0.228299	1.000000

In [88]: data1.plot()

Out[88]: <Axes: >


```
In [89]: import seaborn as sns
sns.heatmap(cor,vmax=1,vmin=-1,annot=True,linewidths=5,cmap='bwr')
```

Out[89]: <Axes: >


```
In [90]: y=data1['sales']
x=data1.drop('sales',axis=1)
```

In [91]: data1=data.drop(['sales'],axis=1)
 data1

L					
Out[91]:		Unnamed: 0	TV	radio	newspaper
	0	1	230.1	37.8	69.2
	1	2	44.5	39.3	45.1
	2	3	17.2	45.9	69.3
	3	4	151.5	41.3	58.5
	4	5	180.8	10.8	58.4
	195	196	38.2	3.7	13.8
	196	197	94.2	4.9	8.1
	197	198	177.0	9.3	6.4
	198	199	283.6	42.0	66.2

200 232.1

8.6

8.7

200 rows × 4 columns

199

In [92]: x

\sim		1		12	
"	ш	т.	ıv	1 / 1	
v	u	٠.	L	<i>'</i>	

	TV	radio	newspaper
0	230.1	37.8	69.2
1	44.5	39.3	45.1
2	17.2	45.9	69.3
3	151.5	41.3	58.5
4	180.8	10.8	58.4
195	38.2	3.7	13.8
196	94.2	4.9	8.1
197	177.0	9.3	6.4
198	283.6	42.0	66.2
199	232.1	8.6	8.7

200 rows × 3 columns

```
In [93]: from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42)
```

```
In [94]: from sklearn.linear_model import LinearRegression
    reg = LinearRegression()
    reg.fit(x_train,y_train)
    LinearRegression()
```

Out[94]: LinearRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [95]: ypred=reg.predict(x_test)
```

```
In [96]: ypred
Out[96]: array([16.58673085, 21.18622524, 21.66752973, 10.81086512, 22.25210881,
                13.31459455. 21.23875284. 7.38400509. 13.43971113. 15.19445383.
                 9.01548612, 6.56945204, 14.4156926, 8.93560138, 9.56335776,
                12.10760805, 8.86091137, 16.25163621, 10.31036304, 18.83571624,
                19.81058732, 13.67550716, 12.45182294, 21.58072583, 7.67409148,
                 5.67090757, 20.95448184, 11.89301758, 9.13043149, 8.49435255,
                12.32217788, 9.99097553, 21.71995241, 12.64869606, 18.25348116,
                20.17390876, 14.20864218, 21.02816483, 10.91608737, 4.42671034,
                 9.59359543, 12.53133363, 10.14637196, 8.1294087, 13.32973122,
                 5.27563699, 9.30534511, 14.15272317, 8.75979349, 11.67053724,
                15.66273733, 11.75350353, 13.21744723, 11.06273296, 6.41769181,
                 9.84865789, 9.45756213, 24.32601732, 7.68903682, 12.30794356,
                17.57952015, 15.27952025, 11.45659815, 11.12311877, 16.60003773,
                 6.906114781)
In [97]: from sklearn.metrics import r2 score
         r2 score(y test,ypred)
Out[97]: 0.8555568430680086
In [98]: from sklearn.metrics import mean squared error
         mean squared error(ypred,y test)
Out[98]: 3.7279283306815105
```

localhost:8888/notebooks/Advertising.ipynb

```
In [99]: from sklearn.linear model import ElasticNet
          from sklearn.model selection import GridSearchCV
          elastic = ElasticNet()
          parameters = { 'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20]}
          elastic regressor = GridSearchCV(elastic, parameters)
          elastic regressor.fit(x train, y train)
Out[99]: GridSearchCV(estimator=ElasticNet(),
                        param grid={'alpha': [1e-15, 1e-10, 1e-08, 0.0001, 0.001, 0.01, 1,
                                               5, 10, 201})
          In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [100]: elastic regressor.best params
Out[100]: {'alpha': 1}
In [101]: elastic=ElasticNet(alpha=30)
          elastic.fit(x train,y train)
          ypred=elastic.predict(x test)
In [102]: from sklearn.metrics import r2 score
          r2 score(y test,ypred)
Out[102]: 0.8484291012057783
In [103]: from sklearn.metrics import mean squared error
          elastic error=mean squared error(ypred,y test)
          elastic error
Out[103]: 3,9118879684129375
```

```
In [104]: x_test
```

0	١.,	+	ΓΊ	I (.	1/1/1	٠.
u) u	L	IJ	L0	14	1
					-	

	TV	radio	newspaper
95	163.3	31.6	52.9
15	195.4	47.7	52.9
30	292.9	28.3	43.2
158	11.7	36.9	45.2
128	220.3	49.0	3.2
97	184.9	21.0	22.0
31	112.9	17.4	38.6
12	23.8	35.1	65.9
35	290.7	4.1	8.5
119	19.4	16.0	22.3

66 rows × 3 columns

```
In [111]: test=[[110,33,22]]
    ypred_elastic=elastic.predict(test)

In [112]: ypred_elastic

Out[112]: array([13.7015175])

In [108]: test=[110,33,22],[230,60,13]
    ypred_elastic=elastic.predict(test)
```

```
In [109]: ypred_elastic
Out[109]: array([13.7015175 , 22.25012834])
In [ ]:
```