\mathcal{KL} as a Knowledge Base Logic in Haskell

Natasha De Kriek, Milan Hartwig, Victor Joss, Paul Weston, Louise Wilk Friday 28th March, 2025

Abstract

In this project, we aim to implement the first-order epistemic logic \mathcal{KL} as introduced by Levesque (1981) and refined by Levesque and Lakemeyer (2001). The semantics for this logic evaluates formulae on world states and epistemic states where world states are sets of formulae that are true at the world and epistemic states are sets of world states that are epistemically accessible. Levesque and Lakemeyer use the language \mathcal{KL} as "a way of communicating with a knowledge base" (ibid. p. 79). For this, they define an ASK- and a TELL-operation on a knowledge base. In our project, we implement a \mathcal{KL} -model, the ASK- and TELL- operations, a tableau-based satisfiablity and validity checking for \mathcal{KL} , as well as compare \mathcal{KL} -models to epistemic Kripke models and implement a translation function between them.

Contents

1	\mathcal{KL} : Syntax and Semantics	2
	1.1 Syntax of \mathcal{KL}	2
	1.2 Semantics of \mathcal{KL}	4
2	Ask and Tell Operators	8
3	Tableau-Based Satisfiability and Validity Checking in \mathcal{KL}	10
	3.1 Tests	12
$\mathbf{B}_{\mathbf{i}}$	ibliography	18

1 \mathcal{KL} : Syntax and Semantics

1.1 Syntax of KL

The syntax of the language \mathcal{KL} is described in Levesque and Lakemeyer (2001) and inspired by Levesque's work (Levesque 1981). The SyntaxKL module establishes the foundation for \mathcal{KL} 's syntax, defining the alphabet and grammar used in subsequent semantic evaluation.

```
{-# LANGUAGE InstanceSigs #-}
module SyntaxKL where
import Test.QuickCheck
```

Symbols of \mathcal{KL}

The expressions of \mathcal{KL} are constituted by sequences of symbols drawn from the following two sets (cf. Levesque 1981): Firstly, the *logical symbols*, which consist of the logical connectives and quantifiers \exists, \lor, \neg , as well as punctuation and parentheses. Furthermore, it compromises a countably infinite supply of first-order variables denoted by the set $\{x, y, z, \ldots\}$, a countably infinite supply of standard names, represented by the set $\{\#1, \#2, \ldots\}$, and the equality symbol =. The *non-logical symbols* comprise predicate symbols of any arity $\{P, Q, R, \ldots\}$, which are intended to represent domain-specific properties and relations, and function symbols of any arity, which are used to denote mappings from individuals to individuals (Levesque and Lakemeyer 2001, p.22).

In this implementation, standard names are represented as strings (e.g., "n1", "n2") via the StdName type, and variables are similarly encoded as strings (e.g., "x", "y") with the Variable type, ensuring that we have a distinct yet infinite supplies of each.

```
arbitraryUpperLetter :: Gen String
arbitraryUpperLetter = (:[]) <$> elements ['A'...'Z']

arbitraryLowerLetter :: Gen String
arbitraryLowerLetter = (:[]) <$> elements ['a'...'z']

-- Represents a standard name (e.g., "n1") from the infinite domain N
newtype StdName = StdName String deriving (Eq, Ord, Show)
instance Arbitrary StdName where
   arbitrary:: Gen StdName
   arbitrary = StdName . ("n" ++) . show <$> elements [1 .. 20::Int]

-- Represents a first-order variable (e.g., "x")
newtype Variable = Var String deriving (Eq, Ord, Show)
instance Arbitrary Variable where
   arbitrary:: Gen Variable
   arbitrary = Var . show <$> elements [1 .. 20::Int]
```

Terms and Atoms

Terms in \mathcal{KL} are the building blocks of expressions, consisting of variables, standard names, or function applications. Atomic propositions (atoms) are formed by applying predicate symbols to lists of terms. To distinguish primitive terms (those that contain no variable and only a single function symbol) and primitive atoms (those atoms that contain no variables and only standard names as terms) for semantic evaluation, we also define PrimitiveTerm and PrimitiveAtom.

```
-- Defines terms: variables, standard names, or function applications

data Term = VarTerm Variable -- A variable (e.g., "x")

| StdNameTerm StdName -- A standard name (e.g., "n1")

| FuncAppTerm String [Term] -- Function application (e.g., "Teacher" ("x"))

deriving (Eq, Ord, Show)

instance Arbitrary Term where
```

```
arbitrary :: Gen Term
  arbitrary = sized $ \n -> genTerm (min n 5) where
    genTerm 0 = oneof [VarTerm <$> arbitrary,
                       StdNameTerm <$> arbitrary]
    genTerm n = oneof [VarTerm <$> arbitrary,
                       StdNameTerm <$> arbitrary,
                       FuncAppTerm <$> arbitraryLowerLetter
                                   <*> resize (n 'div' 2) (listOf1 (genTerm (n 'div' 2)))]
-- Terms with no variables and only a single function symbol
data PrimitiveTerm = PStdNameTerm StdName -- e.g.,
                   | PFuncAppTerm String [StdName]
 deriving (Eq, Ord, Show)
-- Define Atoms as predicates applied to terms
data Atom = Pred String [Term] --e.g. "Teach" ("n1", "n2")
 deriving (Eq, Ord, Show)
instance Arbitrary Atom where
  arbitrary :: Gen Atom
  arbitrary = sized n \rightarrow genAtom (min n 5) where
      genAtom :: Int -> Gen Atom
      genAtom 0 = Pred <$> arbitraryLowerLetter <*> pure []
      genAtom n = Pred <$> arbitraryLowerLetter <*> vectorOf n arbitrary
 - Atoms with only standard names as terms
data PrimitiveAtom = PPred String [StdName]
 deriving (Eq, Ord, Show)
```

Formulas

 \mathcal{KL} -formulas are constructed recursively from atoms, equality, and logical operators. The Formula type includes atomic formulas, equality between terms, negation, disjunction, existential quantification, and the knowledge operator \mathbf{K} . Additional connectives like universal quantification (\forall) , implication (\rightarrow) , and biconditional (\leftrightarrow) are defined as derived forms for convenience.

```
--Defines KL-formulas with logical and epistemic constructs
                                       -- Predicate (e.g. Teach(x, "n1"))
data Formula = Atom Atom
             | Equal Term Term
                                       -- Equality (e.g., x = "n1")
             | Not Formula
                                       -- Negation
              | Or Formula Formula -- Disjunction
             | Exists Variable Formula -- Existential (e.g., exists x (Teach x "sue"))
                                       -- Knowledge Operator (e.g., K (Teach "ted" "sue"))
             l K Formula
             deriving (Eq, Ord, Show)
instance Arbitrary Formula where
  arbitrary :: Gen Formula
  arbitrary = sized $ \n -> genFormula (min n 5)
                                                  where
    genFormula 0 = oneof [Atom <$> arbitrary,
                         Equal <$> arbitrary <*> arbitrary]
    genFormula n = oneof [Not <$> genFormula (n 'div' 2),
                         Exists <$> arbitrary <*> genFormula (n 'div' 2),
K <$> genFormula (n 'div' 2)]
 - Universal quantifier as derived form
klforall :: Variable -> Formula -> Formula
klforall x f = Not (Exists x (Not f))
-- Implication as derived form
implies :: Formula -> Formula -> Formula
implies f1 = Or (Not f1)
 - Biconditional as derived form
iff :: Formula -> Formula -> Formula
iff f1 f2 = Or (Not (Or f1 f2)) (Or (Not f1) f2)
```

We can now use this implementation of \mathcal{KL} 's syntax to implement the semantics.

1.2 Semantics of \mathcal{KL}

 \mathcal{KL} is an epistemic extension of first-order logic designed to model knowledge and uncertainty, as detailed in Levesque and Lakemeyer (2001). It introduces a knowledge operator \mathbf{K} and uses an infinite domain \mathcal{N} of standard names to denote individuals. Formulas are evaluated in world states: consistent valuations of atoms and terms, while epistemic states capture multiple possible worlds, reflecting epistemic possibilities.

The semantics are implemented in the SemanticsKL module, which imports syntactic definitions from SyntaxKL and uses Haskell's Data.Map and Data.Set for efficient and consistent mappings.

```
{-# LANGUAGE InstanceSigs #-}
module SemanticsKL where
import SyntaxKL
import Data.Map (Map)
import qualified Data.Map as Map
import Data.Set (Set)
import qualified Data.Set as Set
import Test.QuickCheck
```

Worlds and Epistemic States

A WorldState represents a single possible world in \mathcal{KL} , mapping truth values to primitive atoms and standard names to primitive terms. An EpistemicState, defined as a set of WorldStates, models the set of worlds an agent considers possible, enabling the evaluation of the K operator.

Constructing World States

We can construct world states by using mkWorldState, which builds a WorldState from lists of primitive atoms and terms. While a WorldState is defined in terms of Atom and Term, we use mkWorldState to make sure that we can only have primitive atoms and primitive terms in the mapping. To be able to use primitive terms and atoms in other functions just as we would use Atom and Term (since primitive atoms and primitive terms are atoms and terms as well), we convert the constructors to those of regular terms and atoms. We then use the function checkDups to ensure that there are no contradictions in the world state (e.g., P(n1) mapped to both True and False), thus reinforcing the single-valuation principle (Levesque and Lakemeyer 2001, p. 24). mkWorldState then constructs maps for efficient lookup.

```
-- Constructs a WorldState from primitive atoms and primitive terms

mkWorldState :: [(PrimitiveAtom, Bool)] -> [(PrimitiveTerm, StdName)] -> WorldState

mkWorldState atoms terms =

let convertAtom (PPred p ns, b) = (Pred p (map StdNameTerm ns), b) -- Convert primitive

atom to Atom

convertTerm (PStdNameTerm n, v) = (StdNameTerm n, v) -- Convert primitive term to

Term

convertTerm (PFuncAppTerm f ns, v) = (FuncAppTerm f (map StdNameTerm ns), v)

atomList = map convertAtom atoms

termList = map convertTerm terms

in WorldState (Map.fromList (checkDups atomList)) (Map.fromList (checkDups termList))
```

```
-- Checks for contradictory mappings in a key-value list checkDups :: (Eq k, Show k, Eq v, Show v) => [(k, v)] -> [(k, v)] checkDups [] = [] -- Empty list is consistent checkDups ((k, v) : rest) = -- Recursively checks each key k against the rest of the list. case lookup k rest of

Just v' | v /= v' -> error $ "Contradictory mapping for " ++ show k ++ ": " ++ show v ++ " vs " ++ show v' -- If k appears with a different value v', throws an error.

--> (k, v) : checkDups rest -- Keep pair if no contradiction
```

Since we have decided to change the constructors of data of type PrimitiveAtom or PrimitiveTerm to those of Atom and Term, we have implemented two helper-functions to check if a Term or an Atom is primitive. This way, we can, if needed, check whether a given Term or Atom is primitive and then change the constructors appropriately.

```
-- Checks if a term is primitive (contains only standard names)
isPrimitiveTerm :: Term -> Bool
isPrimitiveTerm (StdNameTerm _) = True
isPrimitiveTerm (FuncAppTerm _ args) = all isStdName args
where isStdName (StdNameTerm _) = True
isStdName _ = False
isPrimitiveTerm _ = False

-- Checks if an atom is primitive
isPrimitiveAtom :: Atom -> Bool
isPrimitiveAtom (Pred _ args) = all isStdName args
where isStdName (StdNameTerm _) = True
isStdName _ = False
```

Term Evaluation

To evaluate a ground term in a world state, we define a function evalTerm that takes a WorldState and a Term and returns a StdName. The idea is to map syntactic terms to their semantic values (standard names) in a given world state. The function uses pattern matching to handle the three possible forms of Term:

1. VarTerm _

If the term is a variable (e.g., x), it throws an error. This enforces a precondition that evalTerm only works on ground terms (terms with no free variables). In \mathcal{KL} , variables must be substituted with standard names before evaluation, aligning with the semantics where only ground terms have denotations (Levesque and Lakemeyer 2001, p. 24). This is a runtime check to catch ungrounded inputs.

2. StdNameTerm n

If the term is a standard name wrapped in StdNameTerm (e.g., StdNameTerm (StdName "n1")), it simply returns the underlying StdName (e.g., StdName "n1"). Standard names in \mathcal{KL} are constants that denote themselves (ibid., p.22). For example, if n = StdName "n1", it represents the individual n1, and its value in any world is n1. In this case, no lookup or computation is needed.

3. FuncAppTerm f args

If the term is a function application (e.g., f(n1,n2)), evalTerm evaluates the argument, by recursively computing the StdName values of each argument in args using evalTerm w. Next, the ground term is constructed: It builds a new FuncAppTerm term where all arguments are standard names (wrapped in StdNameTerm), ensuring it's fully ground. We then look up the value by querying the termValues map in the worldstate w for the denotation of this ground term, erroring on undefined terms.

```
-- Evaluates a ground term to its standard name in a WorldState
evalTerm :: WorldState -> Term -> StdName
evalTerm w t = case t of

VarTerm _ -> error "evalTerm: Variables must be substituted" -- Variables are not ground
StdNameTerm n -> n -- Standard names denote themselves
FuncAppTerm f args ->

let argValues = map (evalTerm w) args -- Recursively evaluate arguments
groundTerm = FuncAppTerm f (map StdNameTerm argValues) -- Construct ground term
in case Map.lookup groundTerm (termValues w) of
Just n -> n -- Found in termValues
Nothing -> error $ "evalTerm: Undefined ground term " ++ show groundTerm -- Error
if undefined
```

Groundness and Substitution

To support formula evaluation, isGround and isGroundFormula check for the absence of variables, while substTerm and subst perform substitution of variables with standard names, respecting quantifier scope to avoid a capture. We need these functions to be able to define a function that checks whether a formula is satisfiable in a worldstate and epistemic state.

```
-- Check if a term is ground (contains no variables).
isGround :: Term -> Bool
isGround t = case t of
  VarTerm _ -> False
  StdNameTerm \_ -> True
  FuncAppTerm _ args -> all isGround args
 - Check if a formula is ground.
isGroundFormula :: Formula -> Bool
isGroundFormula f = case f of
 Atom (Pred _ terms) -> all isGround terms
  Equal t1 t2 -> isGround t1 && isGround t2
  Not f' -> isGroundFormula f'
 Or f1 f2 -> isGroundFormula f1 && isGroundFormula f2
  Exists _ _ -> False -- always contains a variable
  K f' -> isGroundFormula f'
-- Substitute a variable with a standard name in a term.
substTerm :: Variable -> StdName -> Term -> Term
substTerm x n t = case t of
  VarTerm\ v\ |\ v\ ==\ x\ ->\ StdNameTerm\ n\ --\ Replace\ variable\ with\ name
  VarTerm _ -> t
 StdNameTerm _ -> t
  FuncAppTerm f args -> FuncAppTerm f (map (substTerm x n) args)
 - Substitute a variable with a standard name in a formula.
subst :: Variable -> StdName -> Formula -> Formula
subst x n formula = case formula of
  Atom (Pred p terms) -> Atom (Pred p (map (substTerm x n) terms))
  Equal t1 t2 -> Equal (substTerm x n t1) (substTerm x n t2)
  Not f -> Not (subst x n f)
  Or f1 f2 -> Or (subst x n f1) (subst x n f2)
  Exists y f | y == x -> formula -- Avoid capture
             | otherwise -> Exists y (subst x n f)
  K f -> K (subst x n f)
```

Model and Satisfiability

Since we want to check for satisfiability in a model, we want to make the model explicit:

A Model encapsulates an actual world, an epistemic state, and a domain, enabling the evaluation of formulas with the \mathcal{K} -operator. satisfiesModel implements \mathcal{KL} 's satisfaction relation, checking truth across worlds.

```
-- Checks if a formula is satisfied in a model
satisfiesModel :: Model -> Formula -> Bool
satisfiesModel m = satisfies (epistemicState m) (actualWorld m)
    satisfies e w formula = case formula of
      Atom (Pred p terms) ->
        if all isGround terms
          then Map.findWithDefault False (Pred p terms) (atomValues w)
                                                                        -- Default False
             for undefined atoms
          else error "Non-ground atom in satisfies!"
      Equal t1 t2 ->
                                       -- Equality of denotations
        if isGround t1 && isGround t2
          then evalTerm w t1 == evalTerm w t2
          else error "Non-ground equality in satisfies!"
      Not f ->
       not (satisfies e w f)
      Or f1 f2 ->
        satisfies e w f1 || satisfies e w f2
      Exists x f ->
      -- \(e, w \models \exists x. \alpha\) iff for some name \(n\), \(e, w \models \
         alpha_n^x\)
       any (\n -> satisfies e w (subst x n f)) (Set.toList $ domain m)
      -- \(e, w \models K \alpha\) iff for every \(w' \in e\), \(e, w' \models \alpha\)
      K f ->
        all (\w' -> satisfies e w' f) e
```

Grounding and Model Checking

Building on this we can implement a function checkModel that checks whether a formula holds in a given model. checkModel ensures a formula holds by grounding it with all possible substitutions of free variables, using groundFormula and freeVars to identify and replace free variables systematically.

```
-- Checks if a formula holds in a model by grounding it checkModel :: Model -> Formula -> Bool checkModel m phi = all (satisfiesModel m) (groundFormula phi (domain m))
```

Note that we use the function groundFormula here. Since we have implemented satisfiesModel such that it assumes ground formulas or errors out, we decided to handle free variables by grounding formulas, given a set of free standard names to substitute. Alternatives would be to throw an error or always substitute the same standard name. The implementation that we have chosen is more flexible and allows for more varied usage, however it is computationally expensive (We would appreciate it if you have suggestions to improve this). We implement groundFormula as follows:

```
-- Generates all ground instances of a formula
groundFormula :: Formula -> Set StdName -> [Formula]
groundFormula f dom = groundFormula' f >>= groundExists dom
 where
    -- Ground free variables at the current level
    groundFormula ' formula = do
     let fvs = Set.toList (freeVars formula)
      subs <- mapM (\_ -> Set.toList dom) fvs
     return $ foldl (\acc (v, n) -> subst v n acc) formula (zip fvs subs)
    -- Recursively eliminate Exists in a formula
    groundExists domainEx formula = case formula of
      Exists x f' -> map (n -> subst x n f') (Set.toList domainEx) >>= groundExists
         domainEx
      Atom a -> [Atom a]
      Equal t1 t2 -> [Equal t1 t2]
      Not f' -> map Not (groundExists domainEx f')
      Or f1 f2 -> do
```

```
g1 <- groundExists domainEx f1
g2 <- groundExists domainEx f2
return $ Or g1 g2
K f' -> map K (groundExists domainEx f')
```

This function takes a formula and a domain of standard names and returns a list of all possible ground instances of the formula by substituting its free variables with elements from the domain. We use a function variables that identifies all the variables in a formula that need grounding or substitution. If the Boolean 'includeBound' is 'True', variables returns all variables (free and bound) in the formula. If 'includeBound' is 'False', it returns only free variables, excluding those bound by quantifiers. This way, we can use the function to support both 'freeVars' (free variables only) and 'allVariables' (all variables).

```
-- Collects variables in a formula, with a flag to include bound variables
variables :: Bool -> Formula -> Set Variable
variables includeBound = vars
 where
     - Helper function to recursively compute variables in a formula
    vars formula = case formula of
      -- Union of variables from all terms in the predicate
      Atom (Pred _ terms) -> Set.unions (map varsTerm terms)
      -- Union of variables from both terms in equality
      Equal t1 t2 -> varsTerm t1 'Set.union' varsTerm t2
      Not f' -> vars f'
      Or f1 f2 -> vars f1 'Set.union' vars f2
      Exists x f' -> if includeBound
                     then Set.insert x (vars f') -- Include bound variable x if
                         includeBound is True
                     else Set.delete x (vars f') -- Exclude bound variable x if
                         includeBound is False
      K f' -> vars f' -- Variables in the subformula under K (no binding)
    varsTerm term = case term of
      VarTerm\ v\ 	ext{->}\ Set.singleton\ v\ 	ext{--}\ A variable term contributes itself to the set
      StdNameTerm _ -> Set.empty -- A standard name has no variables
      FuncAppTerm _ args -> Set.unions (map varsTerm args) -- Union of variables from all
          function arguments
-- Collects free variables in a formula
freeVars :: Formula -> Set Variable
freeVars = variables False
-- Collects all variables (free and bound) in a formula
allVariables :: Formula -> Set Variable
allVariables = variables True
```

2 Ask and Tell Operators

To use \mathcal{KL} to interact with a knowledge base, Levesque and Lakemeyer (2001) defines two operators on epistemic states: ask and tell. Informally, ask is used to determine if a sentence is known to a knowledge base, whereas tell is used to add a sentence to the knowledge base. Since epistemic states are sets of possible worlds, the more known sentences there are, the smaller the set of possible worlds. For this purpose, an initial epistemic state is also defined to contain all possible worlds given a finite set of atoms and terms.

```
module AskTell (ask,askModel, tell, tellModel, initial) where
import SyntaxKL
import SemanticsKL
import qualified Data.Set as Set
```

The ask operator determines whether or not a formula is known to a knowledge base. Formally, given an epistemic state e and any sentence α of \mathcal{KL} ,

$$ask[e, \alpha] = \begin{cases} True & \text{if } e \models \mathbf{K}\alpha\\ False & \text{otherwise} \end{cases}$$

When implementing ask in Haskell, we must take into account that a domain is implied by " \models " so that we can evaluate sentences with quantifiers. As such, we will take a domain as our first argument.

We can simplify this into an askModel function that takes only a model and a formula as input.

The second operation, tell, asserts that a sentence is true and in doing so reduces which worlds are possible. In practice, $tell[\varphi, e]$ filters the epistemic state e to worlds where the sentence φ holds. That is,

$$tell[\varphi, e] = e \cap \{w \mid w \models \varphi\}$$

Again, we run into the issue that " \models " requires a domain, and so a domain must be specified to evaluate sentences with quantifiers.

```
-- tell operation
tell :: Set.Set StdName -> EpistemicState -> Formula -> EpistemicState
tell d e alpha = Set.filter filterfunc e where
filterfunc = (\w -> satisfiesModel (Model {actualWorld = w, epistemicState = e, domain = d}) alpha)
```

We can again simplify to a function tellModel, that takes as input a model and formula and produces a model with a modified epistemic state.

```
tellModel :: Model -> Formula -> Model
tellModel m alpha = Model {actualWorld = actualWorld m, epistemicState = Set.filter
filterfunc (epistemicState m), domain = domain m} where
filterfunc = (\w -> satisfiesModel (Model {actualWorld = w, epistemicState =
epistemicState m, domain = domain m}) alpha)
```

In addition to ask and tell, it is valuable to define an initial epistemic state. initial is the epistemic state before any tell operations. This state contains all possible world states as there is nothing known that eliminates any possible world.

```
-- initial operation
-- Generate all possible world states for a finite set of atoms and terms
allWorldStates :: [PrimitiveAtom] -> [PrimitiveTerm] -> [StdName] -> [WorldState]
allWorldStates atoms terms dom = do
   atomVals <- mapM (\_ -> [True, False]) atoms
   termVals <- mapM (\_ -> dom) terms
   return $ mkWorldState (zip atoms atomVals) (zip terms termVals)

initial :: [PrimitiveAtom] -> [PrimitiveTerm] -> [StdName] -> EpistemicState
initial atoms terms dom = Set.fromList (allWorldStates atoms terms dom)
```

3 Tableau-Based Satisfiability and Validity Checking in \mathcal{KL}

Note: For the Beta-version, we omitted function symbol evaluation, limiting the satisfiability and validity checking to a propositional-like subset.

This subsection implements satisfiability and validity checkers for \mathcal{KL} using the tableau method, a systematic proof technique that constructs a tree to test formula satisfiability by decomposing logical components and exploring possible models. In \mathcal{KL} , this requires handling both first-order logic constructs (quantifiers, predicates) and the epistemic operator \mathbf{K} , which requires tracking possible worlds. Note that the full first-order epistemic logic with infinite domains is in general undecidable (Levesque and Lakemeyer 2001 p. 173), so we adopt a semi-decision procedure: it terminates with "satisfiable" if an open branch is found but may loop infinitely for unsatisfiable cases due to the infinite domain \mathcal{N} . The Tableau module builds on SyntaxKL and SemanticsKL:

```
module Tableau where

import SyntaxKL

import SemanticsKL

import Data.Set (Set)

import qualified Data.Set as Set
```

Tableau Approach

The tableau method tests satisfiability as follows: A formula α is satisfiable if there exists an epistemic state e and a world $w \in e$ such that $e, w \models \alpha$. The tableau starts with α and expands it, seeking an open (non-contradictory) branch representing a model. A formula α is valid if it holds in all possible models $(e, w \models \alpha \text{ for all } e, w)$. We test validity by checking if $\neg \alpha$ unsatisfiable (i.e., all tableau branches close). For \mathcal{KL} we have to handle two things:

- Infinite domains: \mathcal{KL} assumes a countably infinite set of standard names (Levesque and Lakemeyer 2001, p.23). The tableau method handles this via parameters (free variables) and δ -rules (existential instantiation), introducing new names as needed. This means that we use a countably infinite supply of parameters (e.g., a1, a2,...) instead of enumerating all standard names.
- ullet Modal handling: The **K**-operator requires branching over possible worlds within an epistemic state.

First, we define new types for the tableau node and branch: A Node pairs formulas with world identifiers, and a Branch tracks nodes and used parameters.

```
-- A tableau node: formula labeled with a world data Node = Node Formula World deriving (Eq, Show)

type World = Int -- World identifier (0, 1, ...)

-- A tableau branch: list of nodes and set of used parameters data Branch = Branch { nodes :: [Node], params :: Set StdName } deriving (Show)
```

Tableau Rules

Rules decompose formulas, producing either a closed branch (contradictory) or open branches (consistent). applyRule implements these rules, handling logical and epistemic operators. The rules are applied iteratively to unexpanded nodes until all branches are either closed or fully expanded (open).

```
-- Result of applying a tableau rule
data RuleResult = Closed | Open [Branch] deriving (Show)
-- Generates fresh parameters not in the used set
newParams :: Set StdName -> [StdName]
newParams used = [StdName ("a" ++ show i) | i <- [(1::Int)..], StdName ("a" ++ show i) 'Set
    .notMember 'used]
-- Applies tableau rules to a node on a branch
applyRule :: Node -> Branch -> RuleResult
applyRule (Node f w) branch = case f of
  Atom _ -> Open [branch]
                             -- If formula is an atom: Do nothing; keep the formula in the
      branch.
  Not (Atom _) -> Open [branch] -- Negated atoms remain, checked by isClosed Equal _ _ -> Open [branch] -- Keep equality as is; closure checks congruence
  Not (Equal _ _) -> Open [branch] -- Keep negated equality
  Not (Not f') -> Open [Branch (Node f' w : nodes branch) (params branch)] -- Case: double
      negation, e.g., replace $\neg \neg \varphi$ with $\varphi$
  Not (Or f1 f2) -> Open [Branch (Node (Not f1) w : Node (Not f2) w : nodes branch) (params
       branch)] -- Case: negated disjunction
  Not (Exists x f') -> Open [Branch (Node (klforall x (Not f')) w : nodes branch) (params
      branch)] -- Case:: negated existential
  Not (K f') -> Open [expandKNot f' w branch] -- Case: negated knowledge
  Or f1 f2 -> Open [ Branch (Node f1 w : nodes branch) (params branch)
                    , Branch (Node f2 w : nodes branch) (params branch) ] -- Disjunction
                        rule, split the branch
 Exists x f' -> -- Existential rule (\theta-value), introduce a fresh parameter a (e.g
    ., a 1 ) not used elsewhere, substitute x with a, and continue let newParam = head (newParams (params branch))
        newBranch = Branch (Node (subst x newParam f') w : nodes branch)
                           (Set.insert newParam (params branch))
    in Open [newBranch]
  K f' -> Open [expandK f' w branch] -- Knowledge rule, add formula to a new world
-- Expands formula K \varphi to a new world
expandK :: Formula -> World -> Branch -> Branch
expandK f w branch = Branch (Node f (w + 1) : nodes branch) (params branch)
-- Expands \not K \varphi to a new world
expandKNot :: Formula -> World -> Branch -> Branch
expandKNot f w branch = Branch (Node (Not f) (w + 1) : nodes branch) (params branch)
```

Branch Closure

The function isClosed determines whether a tableau branch is contradictory (closed) or consistent (open). A branch closes if it contains an explicit contradiction, meaning no model can satisfy all the formulas in that branch. If a branch is not closed, it is potentially part of a satisfiable interpretation. The input is a Branch, which has a list of nodes, nodes :: [Node] (each Node f w is a formula f in world w), and a list of used parameters, params :: Set StdName. The function works as follows: first, we collect the atoms ((a, w, True) for positive atoms (Node (Atom a) w); (a, w, False) for negated atoms (Node (Not (Atom a)) w)). For example, if nodes = [Node (Atom P(n1)) 0, Node (Not (Atom P(n1))) 0], then atoms = [(P(n1), 0, Next, we collect the equalities. After this, we check the atom contradictions. There we use any to find pairs in atoms and return True if a contradiction exists. In a subsequent step, we check for equality contradictions. The result of the function is atomContra || eqContra: this is True if either type of contradiction is found and False otherwise. This function reflects the semantic requirement that a world state w in an epistemic state e can not assign both True and False to the same ground atom or equality

```
-- Branch closure with function symbols
isClosed :: Branch -> Bool
isClosed b =
let atoms = [(a, w, True) | Node (Atom a) w <- nodes b]
++ [(a, w, False) | Node (Not (Atom a)) w <- nodes b]
equals = [((t1, t2), w, True) | Node (Equal t1 t2) w <- nodes b]
```

```
++ [((t1, t2), w, False) | Node (Not (Equal t1 t2)) w <- nodes b]
atomContra = any (\(a1, w1, b1) -> any (\(a2, w2, b2) -> a1 == a2 && w1 == w2 && b1

/= b2) atoms) atoms
eqContra = any (\((t1, t2), w1, b1) -> any (\((t3, t4), w2, b2) ->

t1 == t3 && t2 == t4 && w1 == w2 && b1 /= b2) equals) equals
in atomContra || eqContra -- True if any contradiction exists
```

Tableau Expasion

Next, we have the function expandTableau. It iteratively applies tableau rules to expand all branches, determining if any remain open (indicating satisfiability). It returns Just branches if at least one branch is fully expanded and open, and Nothing if all branches close. This function uses recursion. It continues until either all branches are closed or some are fully expanded.

```
-- Expands the tableau, returning open branches if satisfiable
expandTableau :: [Branch] -> Maybe [Branch]
expandTableau branches
  | all isClosed branches = Nothing -- If every branch is contradictory, return Nothing
 | any (null . nodes) branches = Just branches -- If any branch has no nodes left to expand
       (and isn't closed), it's open and complete
 | otherwise = do
     let (toExpand, rest) = splitAt 1 branches -- Take the first branch (toExpand) and
          leave the rest
         branch = head toExpand --Focus on this branch.
         node = head (nodes branch) --Pick the first unexpanded node.
         remaining = Branch (tail (nodes branch)) (params branch) --he branch minus the
             node being expanded.
      case applyRule node remaining of
        Closed -> expandTableau rest --Skip this branch, recurse on rest.
        Open newBranches -> expandTableau (newBranches ++ rest) --Add the new branches (e.g
            ., from \label{local_to_state} to rest, recurse.
```

Top-Level Checkers

As top-level functions we use isSatisfiable and isValid. The function isSatisfiable tests whether a formula f has a satisfying model. It starts the tableau process and interprets the result. This function gets a Formula f as an input and then creates a single branch with Node f 0 (formula f in world 0) and an empty set of parameters. Next, it calls expandTablaeu on this initial branch. It then interprets the result: if expandTableau returns Just _, this means, that at least one open branch exists, thus, the formula is satisfiable. If expandTableau returns Nothing, this means that all branches are closed and the formula is unsatisfiable.

```
-- Tests if a formula is satisfiable
isSatisfiable :: Formula -> Bool
isSatisfiable f = case expandTableau [Branch [Node f 0] Set.empty] of
Just _ -> True
Nothing -> False
```

The three functions is Satisfiable, expand Tableau, and is Closed interact as follows: is Satisfiable starts the process with a single branch containing the formula. Then, expand Tableau recursively applies apply Rule to decompose formulas, creating new branches as needed (e.g., for \vee , \exists). In a next step, is Closed checks each branch for contradictions, guiding expand Tableau to prune closed branches or halt with an open one.

```
-- Tests if a formula is valid
isValid :: Formula -> Bool
isValid f = not (isSatisfiable (Not f))
```

3.1 Tests

You can run all the tests and examine the current code coverage run stack clean && stack test --coverage

```
{-# LANGUAGE InstanceSigs #-}
module Generators where
import SyntaxKL
import Data.Set (Set)
import qualified Data.Set as Set
import Test.QuickCheck
```

This file contains helper generators, used only in testing. s

```
-- Generator for arbitrary upper case letter
genUpper :: Gen String
genUpper = (:[]) <$> elements ['A'..'Z']
-- Generator for arbitrary lower case letter
genLower :: Gen String
genLower = (:[]) <$> elements ['a'..'z']
-- Generator for ground terms
genGroundTerm :: Gen Term
genGroundTerm = sized genTerm
    where
        genTerm 0 = StdNameTerm <$> arbitrary
        genTerm n = oneof [StdNameTerm <$> arbitrary,
                            FuncAppTerm <$> genLower <*> resize (n 'div' 2) (listOf
                                 genGroundTerm)]
-- Generator for ground Atoms
genGroundAtom :: Gen Atom
genGroundAtom = Pred <$> genUpper<*> listOf genGroundTerm
 - Generator for ground formulas
genGroundFormula :: Gen Formula
genGroundFormula = sized genFormula
    where
        genFormula 0 = Atom <$> genGroundAtom
        genFormula n = oneof [ Atom <$> genGroundAtom
                               , Equal <$> genGroundTerm <*> genGroundTerm
                               , ... genrormula (n 'div' 2)
, Or <$> genFormula (n 'div' 2) <*> genFormula (n 'div' 2)
, K <$> genFormula (n 'div' 2)
]
-- Generator for a set of StdName values
genStdNameSet :: Gen (Set StdName)
genStdNameSet = sized $ \n -> do
 let m = min n 5
  size <- choose (0, m)
  Set.fromList <$> vectorOf size arbitrary
```

```
module AskTellSpec where
import Test.Hspec

import AskTell
import SyntaxKL
import SemanticsKL
import Generators

import Test.QuickCheck
import qualified Data.Map as Map
import Data.Set (Set)
import qualified Data.Set as Set

spec :: Spec
spec = describe "ask - Example Tests" $ do
    let atom = Pred "P" []
```

```
f = Atom atom
    ask_ws1 = WorldState (Map.fromList [(atom, True)]) Map.empty
    ask_ws2 = WorldState (Map.fromList [(atom, False)]) Map.empty
    d = Set.empty
it "ask returns False when the epistemic state is empty" $ do
        let e = Set.empty
        ask d e f 'shouldBe' False
it "ask returns False when formula is not True in all world states." $ do
        let e = Set.fromList [ask_ws1,ask_ws2]
ask d e f 'shouldBe' False
it "ask returns True when formula is True in all world states." $ do
        let e = Set.fromList [ask_ws1]
        ask d e f 'shouldBe' True
describe "ask - Property Tests" $ do
        it "ask is true for all tautologies" $ do
                let taut1 = (Or (Not f) (Not (Not f)))
-- property $ \e -> (e :: Set WorldState) == e
                 property $ \e ->
                    forAll genStdNameSet $ \d' ->
                         tell (d' :: Set StdName) (e :: Set WorldState) taut1 '
                             shouldBe' e
                 -- $ forAll \d -> d :: Set
                 -- property $ tell (domain (m :: Model)) (epistemicState m) taut1 '
                    shouldBe' True
-- arbitrary epistemic state
-- arbitrary domain
-- arbitrary worldstate
-- describe "askModel - Example Tests" $ do
-- TELL
-- TELL ASK - always returns true
describe "tell - Example Tests" $ do
        let atom1 = Pred "P1" []
            atom2 = Pred "P2" []
            tell_ws1 = WorldState (Map.fromList [(atom1, True), (atom2, True)]) Map
            tell_ws2 = WorldState (Map.fromList [(atom1, True), (atom2, False)])
               Map.empty
            e' = Set.fromList [tell_ws1, tell_ws2]
            d' = Set.empty
        it "tell returns the same epistemic state when formula is known" $ do
                let f' = Atom atom1
                tell d'e'f' 'shouldBe'e'
        -- it "tell returns different epistemic state when formula is not known" $
            do
                  let g = Atom atom2
                  (tell d e g) <> e 'shouldBe' True
        _ _
```

```
module SemanticsKLSpec where
import Test.Hspec
import Test.QuickCheck
import Control.Exception (evaluate)

import qualified Data.Map as Map
import qualified Data.Set as Set

import SemanticsKL -- tested module
import SyntaxKL -- types used in tests
import Generators -- helper functions for testing
```

The following tests are for the semantics of \mathcal{KL} , which are defined in the SemanticsKL module. The tests are written using the Hspec testing framework and QuickCheck for property-based testing. The tests cover the evaluation of terms, formulas, and models, as well as model checking function. The Generators file provides helper functions for generating implementing testing, but have been omitted for brevity.

```
spec :: Spec
       describe "evalTerm - Unit Tests" $ do
spec =
       it "evalTerm returns the StdName after applying all functions (depth 2)" $ do
           let n1 = StdName "n1"
               n2 = StdName "n2"
               n3 = StdName "n3"
               n4 = StdName "n4"
               w = WorldState Map.empty (Map.fromList [
                                           (FuncAppTerm "f" [StdNameTerm n1, StdNameTerm
                                              n2], n3),
                                           (FuncAppTerm "g" [StdNameTerm n4], n1)
               t = FuncAppTerm "f" [FuncAppTerm "g" [StdNameTerm n4], StdNameTerm n2]
           evalTerm w t 'shouldBe' StdName "n3"
       describe "evalTerm - Property Tests" $ do
           it "evalTerm errors for all variables passed" $ do
               property $ \ w x -> evaluate (evalTerm w (VarTerm x)) 'shouldThrow'
                   anyException
           it "evalTerm returns the StdName for StdNameTerm" $ do
               describe "isGround - Unit Tests" $ do
           it "isGround returns True for StdNameTerm" $ do
               isGround (StdNameTerm $ StdName "n1") 'shouldBe' True
           it "isGround returns False for VarTerm" $ do
               isGround (VarTerm $ Var "x") 'shouldBe' False
           it "isGround returns True for FuncAppTerm with all ground arguments" $ do
               isGround (FuncAppTerm "f" [StdNameTerm $ StdName "n1"]) 'shouldBe' True
           it "isGround returns False for complex FuncAppTerm with at least one non-ground
                argument" $ do
               let term = FuncAppTerm "f" [FuncAppTerm "g" [VarTerm $ Var "x", StdNameTerm
                    $ StdName "n1"]]
               isGround term 'shouldBe' False
       describe "isGroundFormula - Unit Tests" $ do
           it "isGroundFormula returns False for Atom with a non-ground term" $ do
               isGroundFormula (Atom (Pred "P" [VarTerm $ Var "x"])) 'shouldBe' False
           it "isGroundFormula returns False for Equal with a non-ground term" $ do
               isGroundFormula (Equal (VarTerm $ Var"x") (StdNameTerm $ StdName "n1")) '
                   shouldBe' False
       describe "isGroundFormula - Property Tests" $ do
           it "is{\tt GroundFormula} returns True for groundFormula" $ do
               property $ forAll genGroundFormula $ \f -> isGroundFormula (f :: Formula)
            --todo fix this test
           it "isGroundFormula returns False for Exists" $ do
               property $ \n f -> not $ isGroundFormula (Exists (Var n) (f :: Formula))
       describe "substTerm - Unit Tests" $ do
           it "substTerm replaces the variable with the StdName" $ do
               let term = FuncAppTerm "f" [VarTerm $ Var "x", StdNameTerm $ StdName "n1"]
               substTerm (Var "x") (StdName "n2") term 'shouldBe' FuncAppTerm "f" [
                   StdNameTerm $ StdName "n2", StdNameTerm $ StdName "n1"]
           it "substTerm does not replace the wrong variable" \$ do
               let term = FuncAppTerm "f" [VarTerm $ Var "y", StdNameTerm $ StdName "n1"]
               substTerm (Var "x") (StdName "n2") term 'shouldBe' term
       describe "subst - Unit Tests" $ do
```

```
it "subst replaces the variable with the StdName in an Atom" $ do
                         let atom = Atom (Pred "P" [VarTerm $ Var "x"])
                          show (subst (Var "x") (StdName "n1") atom) 'shouldBe' show (Atom (Pred "P"
                                       [StdNameTerm $ StdName "n1"]))
             it "subst replaces the variable with the StdName in an Equal" $ do
                          let formula = Equal (VarTerm $ Var "x") (StdNameTerm $ StdName "n1")
                          show (subst (Var "x") (StdName "n2") formula) 'shouldBe' show (Equal (
                                    StdNameTerm $ StdName "n2") (StdNameTerm $ StdName "n1"))
             it "subst replaces the variable with the StdName in a Not formula" $ do
   let formula = Not (Atom (Pred "P" [VarTerm $ Var "x"]))
                          show (subst (Var "x") (StdName "n1") formula) 'shouldBe' show (Not (Atom (
                                      Pred "P" [StdNameTerm $ StdName "n1"])))
             it "subst replaces the variable with the StdName in an Or formula" $ do
                         let formula = Or (Atom (Pred "P" [VarTerm $ Var "x"])) (Atom (Pred "Q" [
                                      VarTerm $ Var "y"]))
                          show (subst (Var "x") (StdName "n1") formula) 'shouldBe' show (Or (Atom (
                                      Pred "P" [StdNameTerm $ StdName "n1"])) (Atom (Pred "Q" [VarTerm $ Var
                                       "y"])))
             it "subst replaces the variable with the StdName in an Exists if the variable
                          not in Exists scope" $ do
                          let formula = Exists (Var "x") (Atom (Pred "P" [VarTerm $ Var "x", VarTerm
                                      $ Var "y"]))
                           -- replaces y with n2
                          show (subst (Var "y") (StdName "n2") formula) 'shouldBe' show (Exists (Var
                                      "x") (Atom (Pred "P" [VarTerm $ Var "x", StdNameTerm $ StdName "n2"])))
             it "subst does not replace the variable with the StdName in Exists if the
                          variable is in the Exists scope" $ do
                          let formula = Exists (Var "x") (Atom (Pred "P" [VarTerm $ Var "x", VarTerm
                                      $ Var "y"]))
                           -- does not replace x with n2
                          show (subst (Var "x") (StdName "n2") formula) 'shouldBe' show formula
             it "subst replaces the variable with the StdName in a K formula" $ do
                          let formula = K (Atom (Pred "P" [VarTerm $ Var "x"]))
                          show (subst (Var "x") (StdName "n2") formula) 'shouldBe' show (K (Atom (
                                     Pred "P" [StdNameTerm $ StdName "n2"])))
describe "satisfiesModel - Property Tests" $ do
                 - test fixtures
             let x = Var "x"
                         n1 = StdNameTerm $ StdName "n1"
                         n2 = StdNameTerm $ StdName "n2"
                         p = Atom (Pred "P" [])
                          px = Atom (Pred "P" [VarTerm x])
                          py = Atom (Pred "P" [VarTerm $ Var "y"])
                         pt = Atom (Pred "P" [n1])
             context "satisfiesModel satisfies validities when atoms are ground" $ do
                         it "satisfiesModel satisfies P -> ~~ P" $ do
                                       property \mbox{$\mbox{$\mbox{$\mbox{$}$}} \mbox{$\mbox{$\mbox{$}$}} \mbox{$\mbox{$}$} \mbox{$\mbox{$
                                                      True
                          it "satisfiesModel satisfies P(t) -> ~~ P(t)" $ do
                                       property $ \m -> satisfiesModel m (Or (Not pt) (Not (Not pt))) '
                                                  shouldBe' True
                          it "satisfiesModel errors for P(x) \rightarrow \tilde{\ } P(x)" $ do
                                       property \mbox{\ \ }\mbox{\ \ }
                                                   )) 'shouldThrow' anyException
                          it "satisfiesModel satisfies t=t" $ do
                                       property $ \m -> satisfiesModel m (Equal n1 n1) 'shouldBe' True
                          it "satisfiesModel errors for x=x" $ do
                                      property \mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{}\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\b}}}}}}}}}}
                                                      x))) 'shouldThrow' anyException
                          it "satisfiesModel satisfies ForAll x (P(x) \rightarrow P(x))" $ do
                                       property $ \m -> satisfiesModel m (Not (Exists x (Not (Or (Not px) px))
                                                   )) 'shouldBe' True
                          it "satisfiesModel satisfies ForALL x (P(x) -> ~~ P(x))" \$ do
                                      property \mbox{\ \ }\mbox{\ \ }
                                                      (Not px)))))) 'shouldBe' True
                          it "satisfiesModel satisfies ForAll x (P(x) \rightarrow Exists y P(y))" $ do
                                      property $ \m -> satisfiesModel m (Not (Exists x (Not (Or (Not px) (
                                                   Exists (Var "y") py)) ))) 'shouldBe' True
                          it "satisfiesModel satisfies ((n1 = n2) -> K (n1 = n2)" $ do
                                       property $ \m -> satisfiesModel m (Or (Not (Equal n1 n2)) (K (Equal n1
                                                   n2))) 'shouldBe' True
```

```
it "satisfiesModel satisfies ((n1 /= n2) \rightarrow K (n1 /= n2)" $ do
            property $ \m -> satisfiesModel m (Or (Not (Not (Equal n1 n2))) (K (Not
                 (Equal n1 n2)))) 'shouldBe' True
        it "satisfiesModel satisfies (K alpha -> K K alpha)" $ do
            property $ \m -> satisfiesModel m (Or (Not (K pt)) (K (K pt))) '
                shouldBe' True
        it "satisfiesModel satisfies (~K alpha -> K ~K alpha)" $ do
           property $ \m -> satisfiesModel m (Or (Not (K pt))) (K (Not (K pt)
               ))) 'shouldBe' True
    context "satisfiesModel does not satisfy contradictions when atoms are ground"
       $ do
        it "satisfiesModel does not satisfy (P \ v \ P)" $ do
            property $ \m -> satisfiesModel m (Not (Or p (Not p))) 'shouldBe' False
        it "satisfiesModel does not satisfy (Exists x (x /= x))" \$ do
           property $ \m -> satisfiesModel m (Exists x (Not (Equal (VarTerm x) (
                VarTerm x)))) 'shouldBe' False
describe "freeVars - Unit Tests" $ do
    - test fixtures
    let x = Var "x"
       y = Var "y"
       n1 = StdNameTerm $ StdName "n1"
       n2 = StdNameTerm $ StdName "n2"
        px = Atom (Pred "P" [VarTerm x])
        py = Atom (Pred "P" [VarTerm y])
       pf = Atom (Pred "P" [FuncAppTerm "f" [VarTerm x], FuncAppTerm "g" [VarTerm
           y]])
    it "freeVars returns nothing if no free var in formula" $ do
       let f = Exists x (Or (Or (Not px) (Exists y py)) (Equal n1 n2))
        freeVars f 'shouldBe' Set.fromList []
    it "freeVars returns the free variables in a simple formula" $ do
       let f = Or (Or (Not px) py) (Equal n1 n2)
       freeVars f 'shouldBe' Set.fromList [x, y]
    it "freeVars returns the free variables in a complex formula" $ do
        let f = Exists x (Or (Or (Not px) pf) (Equal n1 n2))
        freeVars f 'shouldBe' Set.fromList [y]
describe "groundFormula - Property Tests" $ do
     - This is an expensive test, so we limit the size of the formula
    it "groundFormula returns a ground formula (dependant on isGroundFormula
       passing all tests)" $ do
       property $ forAll (resize 5 arbitrary) $ \f ->
           forAll genStdNameSet $ \s ->
              all isGroundFormula (groundFormula (f :: Formula) s)
describe "checkModel - Property Tests" $ do
    -- test fixtures
    let x = Var "x"
       px = Atom (Pred "P" [VarTerm x])
    describe "checkModel satisfies validities when atoms are unground" $ do
       it "checkModel arbitrary model satisfies P(x) \rightarrow P(x)" $ do
            property $ \m -> checkModel m (Or (Not px) (Not (Not px))) 'shouldBe'
                True
        it "checkModel arbitrary model satisfies for x=x" $ do
            property $ \m -> checkModel m (Equal (VarTerm x) (VarTerm x)) 'shouldBe
                ' True
```

```
module TableauSpec where

import Test.Hspec
import Tableau
```

```
spec :: Spec
spec = describe "func_name1 - Specify collection of Unit/Property/Integration Tests" $ do
    it "test description" $
        True 'shouldBe' True
```

References

Levesque, Hector J (1981). "The Interaction with Incomplete Knowledge Bases: A Formal Treatment." In: *IJCAI*, pp. 240–245.

Levesque, Hector J and Gerhard Lakemeyer (2001). The logic of knowledge bases. Mit Press.