

Beyond QWERTY:
Revolutionizing Medical
Insurance Form Filling with
AI-Powered Voice
Recognition

An AI-Intensive Project Transforming Traditional Data Entry

Presented by Rishiraj Yadav, Intern at Infosys Al Springboard, Batch 2

Project Overview: Voice-Based Form Filling

Objective

Replace keyboard entry with Al-powered voice-to-text.

Problem

Manual forms are tedious, error-prone, and inaccessible.

Modernizing Insurance

Our project aims to revolutionize medical insurance form filling using cutting-edge AI technology, specifically voice recognition.

Transforming Data Entry

We envision a future where forms can be filled accurately and quickly, simplifying the process for both users and insurance providers.

Introducing Voice Recognition Technology

Speech-to-Text

Our solution utilizes Al-powered voice recognition technology, allowing users to dictate their information.

PDF Generation

Dynamically creates forms with details.

Automated Data Entry

The system translates spoken words into text, automatically populating form fields.

Accuracy and Efficiency

This streamlines the process, reduces errors, and significantly improves efficiency.

AI-Powered Voice-Based Form Filling: Key Features

Impact on Productivity and Efficiency

30%

Time Savings

Significantly reduces the time required to complete forms, boosting productivity.

80%

Error Reduction

Minimizes data entry errors, leading to fewer corrections and rework.

95%

User Satisfaction

Enhances user experience by simplifying the process and reducing frustration.

The Future of Al-Driven Medical Insurance

Personalized Forms

Al can personalize forms based on individual user profiles and medical history.

Real-Time Assistance

2

3

Users can receive real-time feedback and guidance during form completion.

Advanced Analytics

Insurance companies can leverage data insights from forms to improve decision-making.

Made with Gamma

Technical Architecture

Frontend

HTML, CSS, and JavaScript for a user-friendly interface.

Database

MySQL for secure storage of user and form data.

Backend

Flask Framework for routing, handling requests, and processing data.

PDF Generation

ReportLab library for dynamic PDF creation.

WebkitSpeechRecognition API

WebkitSpeechRecognition API

```
const recognition = new WebkitS peechR ecognition();
recognition.lang = 'en-US';
recognition.start();
recognition.onresult = (event) => {
  const transcript = event.results[0][0].transcript;
  // Process the transcript and populate the form fields.
};
```

Workflow Structure

Al Integration in Detail

Speech Recognition Leveraging NLP to understand and transcribe user inputs. Multilingual Support Powered by Google Translate to ensure inclusivity. Automation 3 Voice recognition combined with PDF generation eliminates manual effort.

Folder Structure

Templates

Contains all HTML files.

Static

Stores CSS and JavaScript for UI/UX enhancement.

Backend

app.py contains Flask routes, API integrations, and database logic.

PDF Generation

Managed using ReportLab and BytesIO modules.

Challenges & Solutions

Challenge 1

Handling speech recognition accuracy in noisy environments.

Solution

3

5

6

2 Implement noise cancellation algorithms.

Challenge 2

Managing multilingual inputs.

Solution

Robust integration with Google Translate API.

Challenge 3

Dynamic PDF creation with complex forms.

Solution

Use ReportLab library for scalable PDF generation.

Accuracy Analysis: WebkitSpeechRecognition in Beyond QWERTY

The accuracy of WebkitSpeechRecognition within our Beyond QWERTY project.

Sowity an accccircy speech data

Methodology for Accuracy Measurement

Data Collection

We collected a diverse dataset of speech samples covering various accents and linguistic styles.

Recognition Testing

The dataset was fed into the WebkitSpeechRecognition API to measure the accuracy of transcriptions.

3 Analysis and Evaluation

We compared the transcribed text to the original speech to determine the percentage of accurate recognition.

Webbkit/sssened RecginiistiPI™ Yebsesalat gaert PI

Accuracy regusorting/ly WirlitSpoeech prestforn. Webkitt language ends and Leangureed metifiung Recognitis and tope ractire, assuraces, ont pleafierm.

Tur attrations, rate webkiSpeechRegunition milliat ensigns detoer Recognitions.

SSSS centiver 55 certivet = LCIV

₩ vigkitSpeech" Conertpant

Key Findings: Recognition Accuracy Rates

Future Improvements and Next Steps

Adaptive Learning

Continued development of AI-powered models to improve recognition accuracy over time.

Multilingual Support

Expanding support for a wider range of languages to cater to diverse user populations.

Personalized Settings

Allowing users to adjust settings like accent and noise cancellation to optimize accuracy.

Beyond QWERTY in Action: Project Demo

Real-Time Demo: Voice Form Filling Process

Beyond QWERTY in Action: Project Demo

The Future of Voice-Driven Form Filling

Voice-driven form filling is poised to transform how we interact with technology. As voice recognition technology continues to advance, we can expect to see even more sophisticated and user-friendly voice-driven forms in various applications, making information gathering more accessible and efficient.