

# Webinar Agenda

#### Topic:

- Al at the Edge
- Jetson TX2
- JetPack 3.1
- 2 Days To A Demo
- Case Study

- Isaac Initiative
- Reinforcement Learning
- Conclusion / Q&A

#### **AMAZING ACHIEVEMENTS IN AI**









Play Go

**Play Games** 

Write Captions

Speech Synthesis









Learn Motor Skills

Learn to Walk

Drive

Fly

# GPU DEEP LEARNING IS A NEW COMPUTING MODEL



#### WHY AI AT THE EDGE MATTERS

#### BANDWIDTH



1 billion cameras WW (2020) 10's of petabytes per day

#### **LATENCY**



Safety-critical services Realtime decisions

#### **PRIVACY**



Confidentiality
Private cloud or on-premise storage

#### CONNECTIVITY



50% of populated world < 8mbps Bulk of uninhabited world no 3G+



#### **NVIDIA Jetson TX2**

64-bit ARM Cortex-A57 + NVIDIA Denver 2 CPU 256-core NVIDIA Pascal GPU 8GB LPDDR4, 32GB eMMC 4Kp60 encode/decode







|              | JETSON TX1                                                 | JETSON TX2                          |  |
|--------------|------------------------------------------------------------|-------------------------------------|--|
| GPU          | Maxwell                                                    | Pascal                              |  |
| CPU          | 64-bit A57 CPUs                                            | 64-bit Denver 2 and A57 CPUs        |  |
| Memory       | 4 GB 64 bit LPDDR4<br>25.6 GB/s                            | 8 GB 128 bit LPDDR4<br>58.4 GB/s    |  |
| Storage      | 16 GB eMMC                                                 | 32 GB eMMC                          |  |
| Wi-Fi/BT     | 802.11 2x2 ac/BT Ready                                     | 802.11 2x2 ac/BT Ready              |  |
| Video Encode | 4Kp30   (2x) 1080p60                                       | 4Kp60   (3x) 4Kp30   (8x) 1080p60   |  |
| Video Decode | 4Kp60   (4x) 1080p60                                       | (2x) 4Kp60                          |  |
| Camera       | 1.4Gpix/s<br>Up to 1.5Gbps per lane                        | 1.4Gpix/s<br>Up to 2.5Gbps per lane |  |
| Mechanical   | 50mm x 87mm<br>400-pin Compatible Board to Board Connector |                                     |  |

#### **DUAL OPERATING MODES**

#### MAX-Q: Maximum Efficiency

Maximum energy efficiency

Up to 2x the energy efficiency of Jetson TX1

Less than 7.5 W

#### MAX-P: Maximum Performance

Maximum performance

Up to 2x the performance of Jetson TX1

Less than 15 W





# JETSON TX2 DEVELOPER KIT

Open-source reference design MIPI CSI-2 camera module EDU discount available





















# **JETSON Ecosystem**

Miniature carriers **Enclosures** Cameras **Custom Solutions** 

























#### **NVIDIA JETPACK**

**SDK for Intelligent Devices** 

























Code Samples V4L2 ZeroCopy with CUDA, rendering with Tegra DRM (Direct Rendering Manager)



# JetPack 3.1

2x Low-Latency Inference Performance for Jetson TX1 and TX2



| Software Components       |                             |  |  |
|---------------------------|-----------------------------|--|--|
| Linux4Tegra R28.1         | Linux kernel 4.4            |  |  |
| Reference Root OS         | Ubuntu 16.04 LTS aarch64    |  |  |
| Inference Runtime         | TensorRT 2.1                |  |  |
| CUDA Toolkit 8            | cuDNN v6.0                  |  |  |
| VisionWorks 1.6           | OpenCV4Tegra 2.4.13         |  |  |
| OpenGL 4.5                | EGL 1.4   OpenGL ES 3.1     |  |  |
| Multimedia API SDK        | Argus   V4L2   GStreamer    |  |  |
| Tegra System Profiler 3.8 | Tegra Graphics Debugger 2.4 |  |  |

developer.nvidia.com/jetpack



| NETWORK          | LATENCY      |              | Speedup  |
|------------------|--------------|--------------|----------|
|                  | TensorRT 1.0 | TensorRT 2.1 | Орессиир |
| GoogLeNet, Max-Q | 14.5ms       | 7.1ms        | 2.04x    |
| GoogLeNet, Max-P | 11.4ms       | 5.6ms        | 2.04x    |
| ResNet-50, Max-Q | 31.4ms       | 15.6ms       | 2.01x    |
| ResNet-50, Max-P | 24.7ms       | 12.2ms       | 2.03x    |

#### JetPack 3.1 Doubles Jetson's Low-Latency Inference Performance

https://devblogs.nvidia.com/parallelforall/jetpack-doubles-jetson-inference-perf

#### Realtime Al

Low-Latency Inferencing

Higher batch sizes increase throughput, but add a frame of latency for each additional instance.

A batch of 1 single frame results in the lowest latency, useful for edge systems with realtime constraints like:

- Tracking
- Motion control
- Obstacle detection
- Collision avoidance
- Path following
- Autonomous navigation

With TensorRT 2.1, single-batch performance is doubled with latencies down to 5.5ms for GoogleNet recognition.







#### **NVIDIA TensorRT 2**

Deep Learning Inference Optimizer and Runtime

High-performance neural network inference optimizer and runtime engine for production deployment

Maximize inference throughput for latency-critical services for production in the cloud and embedded

Optimize pretrained models to generate runtime engines that maximize inference throughput

New features in TensorRT 2:

- Optimized single batch inference for low-latency services
- Custom layer plugins and support for Reshape, ROIPooling layers, 32-bit RNNs (LSTM + GRU), and Region Proposal Object Detection networks like Faster-RCNN and YOLO

```
#include "NvInfer.h"
using namespace nvinfer1;
// example plugin definition
class MyPlugin : IPlugin
public:
  int getNbOutputs() const;
  Dims getOutputDimensions(int index, const Dims* inputs,
                           int nbInputDims);
  void configure(const Dims* inputDims, int nbInputs,
                 const Dims* outputDims, int nbOutputs,
                 int maxBatchSize);
  int initialize();
  void terminate();
  size t getWorkspaceSize(int maxBatchSize) const;
  int engueue(int batchSize, const void* inputs,
              void** outputs, void* workspace,
              cudaStream t stream);
  size_t getSerializationSize();
  void serialize(void* buffer);
protected:
  virtual ~MyPlugin();
};
```





#### **NVIDIA TensorRT 2**

Deep Learning Inference Optimizer and Runtime

High-performance neural network inference optimizer and runtime engine for production deployment

Maximize inference throughput for latency-critical services for production in the cloud and embedded

Optimize pretrained models to generate runtime engines that maximize inference throughput

New features in TensorRT 2:

- Optimized single batch inference for low-latency services
- Custom layer plugins and support for Reshape, ROIPooling layers, 32-bit RNNs (LSTM + GRU), and Region Proposal Object Detection networks like Faster-RCNN and YOLO



- Fuse network layers
- Eliminate concatenation layers
- Kernel specialization
- Auto-tuning for target platform
- Select optimal tensor layout
- Batch size tuning
- Half-precision FP16 support



#### TWO DAYS TO A DEMO

#### Get Started with Deep Learning



Train using DIGITS and cloud/PC Deploy to the field with Jetson



All the steps required to follow to train your own models, including the datasets.



Image Recognition, Object Detection and Segmentation



# Two Days to a Demo

Guide to Deploying Deep Learning

#### Create runtime primitives from:

- 16 pretrained models of 1000+ objects
- User-customized models
- From the command line

TensorRT API underneath

Live camera streaming

**ROS** classification nodes

2x faster with TensorRT 2

github.com/dusty-nv/jetson-inference





# Two Days to a Demo

Guide to Deploying Deep Learning

#### Create runtime primitives from:

- 16 pretrained models of 1000+ objects
- User-customized models
- From the command line

TensorRT API underneath

Live camera streaming

**ROS** classification nodes

2x faster with TensorRT 2







# **NVIDIA H.S. INTERNS**

Summer 2017













Test!

# THE ISAAC INITIATIVE



Jetson TX2



**AV Reference Platforms** 



Astro AV Stack



Isaac Lab

# **ISAAC LAB**

Robot &
Environment —
Definition



# JETSON REFERENCE PLATFORMS















enRoute USV JetsonHacks RACECAR/J enRoute Industrial UAV



# Reinforcement Learning



arXiv:1611.06256 GA3C: GPU-based A3C for Deep Reinforcement Learning, Y. Kautz et al., NVIDIA Research, 2016.



#### TWO DAYS TO A DEMO

#### Reinforcement Learning Edition



# OpenAl Gym

Test environments and games for research and verification

# RL Algorithms no you want to continue [Y/n]? y fet:1. http://archive.ubuntu.com/ubuntu/ lucid/universe python-keybinde 112. 288 fet:2. http://archive.ubuntu.com/ubuntu/ lucid/universe terminator 0.93 119080] fet:2. http://archive.ubuntu.com/ubuntu/ lucid/universe terminator 0.93 119080] fetched 20208 in 5s (37.288/s) selecting previously deselected package python-keybinder. 18eading database . 129972 files and directories currently installed Unpacking bython-keybinder (from .../python-keybinder\_0.0.4-1\_386.del Selecting previously deselected package terminator. Unpacking terminator (from .../terminator 0.93-8ubuntul\_all.deb) ... Processing triggers for pekstop-file-utils ... Processing triggers for man-db ... Processing triggers for inclolor-icon-theme ... Processing triggers for hicolor-icon-theme ... Processing triggers for hicolor-icon-theme ... Processing triggers for hicolor-icon-theme ... Processing triggers for python-support ... Setting up terminator (0.93-0ubuntul) ... update-alternatives: using /usr/bin/terminator to provide /usr/bin/xulator (x-terminal-emulator) in auto mode.

DQN, DDPG, A3C, Actor Critic PyTorch and TensorFlow



Observation from vision Pixels-to-actions



Adapt network to real robot Online learning in the field



# Thank you!



**Developer Portal** developer.nvidia.com/embedded

Download JetPack developer.nvidia.com/jetpack

2 Days To a Demo github.com/dusty-nv

Jetson Forums devtalk.nvidia.com

Visit the Wiki eLinux.org/Jetson

**EDU Discount** bit.ly/2veKN1X

**Q&A:** What can I help you build?

