Homework 9

Math 25a

Due November 15, 2017

Topics covered: inner product spaces, adjoints, spectral theorem Instructions:

- The homework is divided into one part for each CA. You will submit each part to the corresponding CA's mailbox on the second floor of the science center.
- If your submission to any one CA takes multiple pages, then staple them together. A stapler is available in the Cabot library in the science center.
- If you collaborate with other students, please mention this near the corresponding problems.
- Some problems from this assignment come from the 3rd edition of Axler's book. I've indicated this next to the problems. For example, Axler 1.B.4 means problem 4 from the exercises to Section B of Chapter 1. Sometimes the problem in Axler is slightly different, so make sure you do the problem as listed in the assignment.

1 For Charlie

In all of the problems below, V always denotes a finite dimensional real inner product space, unless otherwise stated.

Problem 1 (Axler 7.A.1). Define $T \in L(\mathbb{R}^n)$ by $T(x_1, \ldots, x_n) = (0, x_1, \ldots, x_{n-1})$. Find a formula for the adjoint T^* . (It might help to look at Axler §7.A, Example 7.3.)

 \Box

Problem 2 (Axler 7.A.3). Suppose $T \in L(V)$ and $U \subset V$ is a subspace. Prove that U is invariant under T if and only if U^{\perp} is invariant under T^* .

 \Box

Problem 3 (Axler 7.A.6). Make $Poly_2(\mathbb{R})$ into an inner product space by defining

$$\langle p, q \rangle = \int_0^1 p(x)q(x)dx$$

Define $T \in L(Poly_2(\mathbb{R}))$ by $T(a_2x^2 + a_1x + a_0) = a_1x$.

- (a) Show that T is not self-adjoint.
- (b) Observe that the matrix of T with respect to the basis $(1, x, x^2)$ is symmetric:

$$\left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

How is it possible that this matrix is symmetric, but T is not self-adjoint?!

Solution. \Box

2 For Michele

Problem 4 (Axler 7.A.8). Show that the set of self-adjoint operators on V is a subspace of L(V). Is the set of orthogonal operators a subspace of L(V)?

 \Box

Problem 5 (Axler 7.B.1). True or false: There exists $T \in L(\mathbb{R}^3)$ such that T is not self-adjoint (with respect to the usual inner product) and such that there exists a basis of \mathbb{R}^3 consisting of eigenvectors of T.

 \Box

Problem 6 (Axler 6.A.18). Suppose p > 0. Prove that there is an inner product on \mathbb{R}^2 such that the associated norm is given by

$$||(x,y)|| = (x^p + y^p)^{1/p}$$

for all $(x,y) \in \mathbb{R}^2$ if and only if p = 2.

 \Box

3 For Natalia

Problem 7 (Axler 7.B.11). Prove or give a counterexample: every self-adjoint operator $T \in L(V)$ has a cube root, i.e. there exists $S \in L(V)$ so that $S^3 = T$.

Solution.
$$\Box$$

Problem 8 (Axler 6.A.19). Prove that

$$\langle u, v \rangle = \frac{||u + v||^2 - ||u - v||^2}{4}$$

for all $u, v \in V$. Explain why this implies that an isometry of V preserves angles.

Solution.
$$\Box$$

Problem 9 (Axler 7.B.10). Give an example of a real inner product space V and $T \in L(V)$ and real numbers b, c with $b^2 < 4c$ such that $T^2 + bT + cI$ is not invertible.

$$\square$$

4 For Ellen

Problem 10 (Axler 7.A.4). Prove that $T \in L(V)$ is injective if and only if T^* is surjective, prove that T is surjective if and only if T^* is injective.	and
Solution.	
Problem 11 (Axler 7.A.7). Suppose $S, T \in L(V)$ are self-adjoint. Prove that ST is self-adjoint only if S and T commute, i.e. $ST = TS$.	int if
Solution.	
Problem 12 (Axler 7.A.11). Suppose $P \in L(V)$ and $P^2 = P$. Prove there exists a subspace U such that $P = P_U$ if and only if P is self-adjoint. (Recall that P_U denotes the orthogonal projection U .)	
Solution.	