UNIVERSITY OF TORONTO Faculty of Arts and Science APRIL 2014 EXAMINATIONS

CSC 438H1S/2404H1S

Duration - 3 hours No Aids Allowed

There are 9 questions worth a total of 100 marks. Answer all questions on the question paper, using backs of pages for scratch work. Check that your exam book has 11 pages (including this cover page).

PLEASE COMPLETE THIS SECTION:			
Name			
(Please underline	your family name.)		
Student Number			
	FOR USE IN MA	ARKING:	
	1	/10	
	2	/20	
	3	/10	
	4	/8	
	5	/12	
	6	/8	
	7	/8	
	8	/10	
	9	/14	
	Total:	/100	

[10] 1. Let f and g be unary function symbols, and let A be the formula $\forall xfgx=x$ and let B be the formula $\forall xgfx=x$. Prove that $A\not\models B$.

[20] 2. Let PRIMES be the set of prime numbers. Define

$$A = \{x \mid dom(\{x\}_1) \subseteq \mathsf{PRIMES}\}$$

Is A r.e.? Is A^c r.e. Justify your answers. (You may use Church's Thesis.) DO NOT USE RICE'S THEOREM.

You may continue your solution on the next page.

(Continue your solution to Question 1 here).

[10] 3. Let f be a unary function (not necessarily total). Recall that graph(f) is the relation $R_f(x,y) = (y = f(x))$. Prove that if graph(f) is r.e. then f is recursive. DO NOT USE CHURCH'S THESIS. (Or use Church's thesis for part credit.)

[8] 4. Let G(x,y) be a total computable function from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} . For each $e \in \mathbb{N}$ let $f_e(x) = G(e,x)$ for all $x \in \mathbb{N}$. Show that there is a total unary computable function h(x) such that h is not in the list f_0, f_1, f_2, \ldots

[12] 5. Suppose that A = range(f) for some computable unary function f. Give a primitive recursive relation R(x, y) such that

 $A = \{x \mid \exists y R(x, y)\}$

[8] 6. Let \mathcal{L} be a first-order language with finitely many function and predicate symbols. Give an informal proof that the set of unsatisfiable \mathcal{L} -sentences is r.e., using Church's thesis together with the LK completeness theorem.

[8] 7. Recall that RA is a theory with 9 axioms P1, ... P9 over the language L_A.
The RA Representation Theorem states that every r.e. relation is representable in RA by an ∃Δ₀ formula. Use this theorem to prove that RA is undecidable.

[10] 8. Use the RA Representation Theorem (see previous question) to prove that every sound theory Σ with vocabulary \mathcal{L}_A is undecidable. (Recall that Σ is sound if $\underline{\mathbb{N}}$ is a model of Σ .)

[14] 9. Let Σ be an axiomatizable theory over the vocabulary \mathcal{L}_A of arithmetic such that every r.e. relation is representable in Σ by some $\exists \Delta_0$ formula. Show that there is a $\forall \Delta_0$ sentence (one of the form $\forall yB$, where B is bounded) such that $\Sigma \not\vdash A$ and $\Sigma \not\vdash \neg A$.

You may continue your solution on the next page.

(Continue your solution to Question 9 here.)