Introduction to Financial Models Lecture 03: Voting Theory

- Introduction to Voting
- 2 Individual Preferences
- Voting Paradox
- 4 Voting Systems: Majority Rule
- 5 Voting Systems: Positional Voting
- 6 Arrow's Impossibility Theorem
- Single-Peaked Preferences
- 8 Voting as Information Aggregation
- Insincere Voting for Information Aggregation
- Sequential Voting and Information Cascades
- Conclusion

Introduction to Voting

• Voting: A method to aggregate information across a group

- Voting: A method to aggregate information across a group
- Key differences between voting systems and markets:

- Voting: A method to aggregate information across a group
- Key differences between voting systems and markets:
 - Voting explicitly tries to reach a single decision that speaks for the group

- Voting: A method to aggregate information across a group
- Key differences between voting systems and markets:
 - Voting explicitly tries to reach a single decision that speaks for the group
 - Markets synthesize opinions indirectly through transactions

- Voting: A method to aggregate information across a group
- Key differences between voting systems and markets:
 - Voting explicitly tries to reach a single decision that speaks for the group
 - Markets synthesize opinions indirectly through transactions
 - Market choices are often numerical and can be averaged

- Voting: A method to aggregate information across a group
- Key differences between voting systems and markets:
 - Voting explicitly tries to reach a single decision that speaks for the group
 - Markets synthesize opinions indirectly through transactions
 - Market choices are often numerical and can be averaged
 - Voting choices often lack natural averaging methods (e.g., choosing between candidates)

- Voting: A method to aggregate information across a group
- Key differences between voting systems and markets:
 - Voting explicitly tries to reach a single decision that speaks for the group
 - Markets synthesize opinions indirectly through transactions
 - Market choices are often numerical and can be averaged
 - Voting choices often lack natural averaging methods (e.g., choosing between candidates)
- Types of voting applications:

- Voting: A method to aggregate information across a group
- Key differences between voting systems and markets:
 - Voting explicitly tries to reach a single decision that speaks for the group
 - Markets synthesize opinions indirectly through transactions
 - Market choices are often numerical and can be averaged
 - Voting choices often lack natural averaging methods (e.g., choosing between candidates)
- Types of voting applications:
 - Political elections (population choosing candidates)

- Voting: A method to aggregate information across a group
- Key differences between voting systems and markets:
 - Voting explicitly tries to reach a single decision that speaks for the group
 - Markets synthesize opinions indirectly through transactions
 - Market choices are often numerical and can be averaged
 - Voting choices often lack natural averaging methods (e.g., choosing between candidates)
- Types of voting applications:
 - Political elections (population choosing candidates)
 - Jury decisions (determining verdicts)

- Voting: A method to aggregate information across a group
- Key differences between voting systems and markets:
 - Voting explicitly tries to reach a single decision that speaks for the group
 - Markets synthesize opinions indirectly through transactions
 - Market choices are often numerical and can be averaged
 - Voting choices often lack natural averaging methods (e.g., choosing between candidates)
- Types of voting applications:
 - Political elections (population choosing candidates)
 - Jury decisions (determining verdicts)
 - Legislative votes (passing bills)

- Voting: A method to aggregate information across a group
- Key differences between voting systems and markets:
 - Voting explicitly tries to reach a single decision that speaks for the group
 - Markets synthesize opinions indirectly through transactions
 - Market choices are often numerical and can be averaged
 - Voting choices often lack natural averaging methods (e.g., choosing between candidates)
- Types of voting applications:
 - Political elections (population choosing candidates)
 - Jury decisions (determining verdicts)
 - Legislative votes (passing bills)
 - Prize committees (selecting award recipients)

- Voting: A method to aggregate information across a group
- Key differences between voting systems and markets:
 - Voting explicitly tries to reach a single decision that speaks for the group
 - Markets synthesize opinions indirectly through transactions
 - Market choices are often numerical and can be averaged
 - Voting choices often lack natural averaging methods (e.g., choosing between candidates)
- Types of voting applications:
 - Political elections (population choosing candidates)
 - Jury decisions (determining verdicts)
 - Legislative votes (passing bills)
 - Prize committees (selecting award recipients)
 - Critics' rankings (best movies, albums, etc.)

- Voting: A method to aggregate information across a group
- Key differences between voting systems and markets:
 - Voting explicitly tries to reach a single decision that speaks for the group
 - Markets synthesize opinions indirectly through transactions
 - Market choices are often numerical and can be averaged
 - Voting choices often lack natural averaging methods (e.g., choosing between candidates)
- Types of voting applications:
 - Political elections (population choosing candidates)
 - Jury decisions (determining verdicts)
 - Legislative votes (passing bills)
 - Prize committees (selecting award recipients)
 - Critics' rankings (best movies, albums, etc.)
 - Online applications: meta-search engines, recommendation systems

- Voting: A method to aggregate information across a group
- Key differences between voting systems and markets:
 - Voting explicitly tries to reach a single decision that speaks for the group
 - Markets synthesize opinions indirectly through transactions
 - Market choices are often numerical and can be averaged
 - Voting choices often lack natural averaging methods (e.g., choosing between candidates)
- Types of voting applications:
 - Political elections (population choosing candidates)
 - Jury decisions (determining verdicts)
 - Legislative votes (passing bills)
 - Prize committees (selecting award recipients)
 - Critics' rankings (best movies, albums, etc.)
 - Online applications: meta-search engines, recommendation systems
- Voting can reflect genuine preference differences or different interpretations of information

• Each voter has a preference relation over alternatives

- Each voter has a preference relation over alternatives
- Notation: $X \succ_i Y$ means voter i prefers X to Y

- Each voter has a preference relation over alternatives
- Notation: $X \succ_i Y$ means voter i prefers X to Y
- Two key assumptions about rational preferences:

- Each voter has a preference relation over alternatives
- Notation: $X \succ_i Y$ means voter i prefers X to Y
- Two key assumptions about rational preferences:
 - Completeness: For any two alternatives X and Y, either $X \succ_i Y$ or $Y \succ_i X$ (no abstention or indifference)

- Each voter has a preference relation over alternatives
- Notation: $X \succ_i Y$ means voter i prefers X to Y
- Two key assumptions about rational preferences:
 - Completeness: For any two alternatives X and Y, either $X \succ_i Y$ or $Y \succ_i X$ (no abstention or indifference)
 - Transitivity: If $X \succ_i Y$ and $Y \succ_i Z$, then $X \succ_i Z$ (consistency across choices)

- Each voter has a preference relation over alternatives
- Notation: $X \succ_i Y$ means voter i prefers X to Y
- Two key assumptions about rational preferences:
 - Completeness: For any two alternatives X and Y, either X ≻_i Y or Y ≻_i X (no abstention or indifference)
 - Transitivity: If $X \succ_i Y$ and $Y \succ_i Z$, then $X \succ_i Z$ (consistency across choices)
- Non-transitive preferences can be problematic:

- Each voter has a preference relation over alternatives
- Notation: $X \succ_i Y$ means voter i prefers X to Y
- Two key assumptions about rational preferences:
 - Completeness: For any two alternatives X and Y, either $X \succ_i Y$ or $Y \succ_i X$ (no abstention or indifference)
 - Transitivity: If $X \succ_i Y$ and $Y \succ_i Z$, then $X \succ_i Z$ (consistency across choices)
- Non-transitive preferences can be problematic:
 - Example: If Chocolate \succ_i Vanilla \succ_i Strawberry \succ_i Chocolate

- Each voter has a preference relation over alternatives
- Notation: $X \succ_i Y$ means voter i prefers X to Y
- Two key assumptions about rational preferences:
 - Completeness: For any two alternatives X and Y, either X ≻_i Y or Y ≻_i X (no abstention or indifference)
 - Transitivity: If $X \succ_i Y$ and $Y \succ_i Z$, then $X \succ_i Z$ (consistency across choices)
- Non-transitive preferences can be problematic:
 - Example: If Chocolate \succ_i Vanilla \succ_i Strawberry \succ_i Chocolate
 - No "best" choice exists each flavor is defeated by another

- Each voter has a preference relation over alternatives
- Notation: $X \succ_i Y$ means voter i prefers X to Y
- Two key assumptions about rational preferences:
 - Completeness: For any two alternatives X and Y, either $X \succ_i Y$ or $Y \succ_i X$ (no abstention or indifference)
 - Transitivity: If $X \succ_i Y$ and $Y \succ_i Z$, then $X \succ_i Z$ (consistency across choices)
- Non-transitive preferences can be problematic:
 - Example: If Chocolate \succ_i Vanilla \succ_i Strawberry \succ_i Chocolate
 - No "best" choice exists each flavor is defeated by another
 - Leads to indecision or exploitation in sequential choices

- Each voter has a preference relation over alternatives
- Notation: $X \succ_i Y$ means voter i prefers X to Y
- Two key assumptions about rational preferences:
 - Completeness: For any two alternatives X and Y, either X ≻_i Y or Y ≻_i X (no abstention or indifference)
 - Transitivity: If $X \succ_i Y$ and $Y \succ_i Z$, then $X \succ_i Z$ (consistency across choices)
- Non-transitive preferences can be problematic:
 - Example: If Chocolate \succ_i Vanilla \succ_i Strawberry \succ_i Chocolate
 - No "best" choice exists each flavor is defeated by another
 - Leads to indecision or exploitation in sequential choices
- If preferences are complete and transitive, they correspond to a ranked list

- Each voter has a preference relation over alternatives
- Notation: $X \succ_i Y$ means voter i prefers X to Y
- Two key assumptions about rational preferences:
 - Completeness: For any two alternatives X and Y, either X ≻_i Y or Y ≻_i X (no abstention or indifference)
 - Transitivity: If $X \succ_i Y$ and $Y \succ_i Z$, then $X \succ_i Z$ (consistency across choices)
- Non-transitive preferences can be problematic:
 - Example: If Chocolate \succ_i Vanilla \succ_i Strawberry \succ_i Chocolate
 - No "best" choice exists each flavor is defeated by another
 - Leads to indecision or exploitation in sequential choices
- If preferences are complete and transitive, they correspond to a ranked list
- Mathematically provable: Any complete and transitive preferences can be represented as a ranked list, and vice versa

Voting Paradox

Voting Paradox (Condorcet Paradox)

• The Simplest Case: Three voters, three alternatives

Voter	First preference	Second preference	Third preference
Voter 1	Α	В	С
Voter 2	В	C	Α
Voter 3	С	Α	В

- Each voter has rational (transitive) preferences
- Majority rule on pairs produces:
 - A beats B (voters 1 and 3)
 - B beats C (voters 1 and 2)
 - C beats A (voters 2 and 3)
- Result: Cyclic group preferences despite transitive individual preferences
- Paradox: Even with rational individuals, the group can be "irrational"
- This creates fundamental problems for democratic decision-making

Voting Paradox in Social Contexts

• A More Complicated Situation: Party preferences over spending priorities

Party	First preference	Second preference	Third preference
Left (3)	education	health	security
Center (4)	health	security	education
Right (5)	security	education	health

- Individual vs. Multi-criteria decision making:
 - The paradox can arise even for a single individual deciding between options with multiple criteria
 - Example: College choice based on ranking, class size, and scholarship money

College	National Ranking	Average Class Size	Scholarship Money
A	4	40	\$3000
В	8	18	\$1000
С	12	24	\$8000

When each option wins on different criteria, cycling can occur

• For two alternatives: the alternative preferred by majority wins

- For two alternatives: the alternative preferred by majority wins
 - Natural, intuitive, and widely accepted

- For two alternatives: the alternative preferred by majority wins
 - Natural, intuitive, and widely accepted
 - Treats all voters equally

- For two alternatives: the alternative preferred by majority wins
 - Natural, intuitive, and widely accepted
 - Treats all voters equally
 - Produces a complete, transitive ranking

- For two alternatives: the alternative preferred by majority wins
 - Natural, intuitive, and widely accepted
 - Treats all voters equally
 - Produces a complete, transitive ranking
- For three or more alternatives:

- For two alternatives: the alternative preferred by majority wins
 - Natural, intuitive, and widely accepted
 - Treats all voters equally
 - Produces a complete, transitive ranking
- For three or more alternatives:
 - Create group preferences by majority vote on each pair (pairwise comparisons)

- For two alternatives: the alternative preferred by majority wins
 - Natural, intuitive, and widely accepted
 - Treats all voters equally
 - Produces a complete, transitive ranking
- For three or more alternatives:
 - Create group preferences by majority vote on each pair (pairwise comparisons)
 - Problem: Group preferences may not be transitive (Condorcet Paradox)

- For two alternatives: the alternative preferred by majority wins
 - Natural, intuitive, and widely accepted
 - Treats all voters equally
 - Produces a complete, transitive ranking
- For three or more alternatives:
 - Create group preferences by majority vote on each pair (pairwise comparisons)
 - Problem: Group preferences may not be transitive (Condorcet Paradox)
 - Cannot simply produce a ranked list when cycles occur

- For two alternatives: the alternative preferred by majority wins
 - Natural, intuitive, and widely accepted
 - Treats all voters equally
 - Produces a complete, transitive ranking
- For three or more alternatives:
 - Create group preferences by majority vote on each pair (pairwise comparisons)
 - Problem: Group preferences may not be transitive (Condorcet Paradox)
 - Cannot simply produce a ranked list when cycles occur
- Elimination tournaments based on majority rule:

- For two alternatives: the alternative preferred by majority wins
 - · Natural, intuitive, and widely accepted
 - Treats all voters equally
 - Produces a complete, transitive ranking
- For three or more alternatives:
 - Create group preferences by majority vote on each pair (pairwise comparisons)
 - Problem: Group preferences may not be transitive (Condorcet Paradox)
 - Cannot simply produce a ranked list when cycles occur
- Elimination tournaments based on majority rule:
 - Structure comparisons as sequential eliminations

- For two alternatives: the alternative preferred by majority wins
 - · Natural, intuitive, and widely accepted
 - Treats all voters equally
 - Produces a complete, transitive ranking
- For three or more alternatives:
 - Create group preferences by majority vote on each pair (pairwise comparisons)
 - Problem: Group preferences may not be transitive (Condorcet Paradox)
 - Cannot simply produce a ranked list when cycles occur
- Elimination tournaments based on majority rule:
 - Structure comparisons as sequential eliminations
 - Arrange alternatives in pairs for voting

- For two alternatives: the alternative preferred by majority wins
 - Natural, intuitive, and widely accepted
 - Treats all voters equally
 - Produces a complete, transitive ranking
- For three or more alternatives:
 - Create group preferences by majority vote on each pair (pairwise comparisons)
 - Problem: Group preferences may not be transitive (Condorcet Paradox)
 - Cannot simply produce a ranked list when cycles occur
- Elimination tournaments based on majority rule:
 - Structure comparisons as sequential eliminations
 - Arrange alternatives in pairs for voting
 - The winner advances to face the next alternative

- For two alternatives: the alternative preferred by majority wins
 - · Natural, intuitive, and widely accepted
 - Treats all voters equally
 - Produces a complete, transitive ranking
- For three or more alternatives:
 - Create group preferences by majority vote on each pair (pairwise comparisons)
 - Problem: Group preferences may not be transitive (Condorcet Paradox)
 - Cannot simply produce a ranked list when cycles occur
- Elimination tournaments based on majority rule:
 - Structure comparisons as sequential eliminations
 - Arrange alternatives in pairs for voting
 - The winner advances to face the next alternative
 - Continue until overall winner emerges

- For two alternatives: the alternative preferred by majority wins
 - · Natural, intuitive, and widely accepted
 - Treats all voters equally
 - Produces a complete, transitive ranking
- For three or more alternatives:
 - Create group preferences by majority vote on each pair (pairwise comparisons)
 - Problem: Group preferences may not be transitive (Condorcet Paradox)
 - Cannot simply produce a ranked list when cycles occur
- Elimination tournaments based on majority rule:
 - Structure comparisons as sequential eliminations
 - Arrange alternatives in pairs for voting
 - The winner advances to face the next alternative
 - Continue until overall winner emerges
- Key insight: The ordering of the pairs (the "agenda") affects the outcome

- For two alternatives: the alternative preferred by majority wins
 - Natural, intuitive, and widely accepted
 - Treats all voters equally
 - Produces a complete, transitive ranking
- For three or more alternatives:
 - Create group preferences by majority vote on each pair (pairwise comparisons)
 - Problem: Group preferences may not be transitive (Condorcet Paradox)
 - Cannot simply produce a ranked list when cycles occur
- Elimination tournaments based on majority rule:
 - Structure comparisons as sequential eliminations
 - Arrange alternatives in pairs for voting
 - The winner advances to face the next alternative
 - Continue until overall winner emerges
- Key insight: The ordering of the pairs (the "agenda") affects the outcome
- Raises concerns about fairness and manipulation

• Individual rankings:

- Individual rankings:
 - Voter 1: $X \succ Y \succ Z$

- Individual rankings:
 - Voter 1: $X \succ Y \succ Z$
 - Voter 2: $Y \succ Z \succ X$

- Individual rankings:
 - Voter 1: $X \succ Y \succ Z$
 - Voter 2: $Y \succ Z \succ X$
 - Voter 3: Z ≻ X ≻ Y

- Individual rankings:
 - Voter 1: $X \succ Y \succ Z$
 - Voter 2: $Y \succ Z \succ X$
 - Voter 3: Z ≻ X ≻ Y
- Pairwise majority votes:

- Individual rankings:
 - Voter 1: $X \succ Y \succ Z$
 - Voter 2: $Y \succ Z \succ X$
 - Voter 3: Z ≻ X ≻ Y
- Pairwise majority votes:
 - X beats Y (voters 1 and 3)

- Individual rankings:
 - Voter 1: $X \succ Y \succ Z$
 - Voter 2: $Y \succ Z \succ X$
 - Voter 3: Z ≻ X ≻ Y
- Pairwise majority votes:
 - X beats Y (voters 1 and 3)
 - Y beats Z (voters 1 and 2)

- Individual rankings:
 - Voter 1: $X \succ Y \succ Z$
 - Voter 2: $Y \succ Z \succ X$
 - Voter 3: Z ≻ X ≻ Y
- Pairwise majority votes:
 - X beats Y (voters 1 and 3)
 - Y beats Z (voters 1 and 2)
 - Z beats X (voters 2 and 3)

- Individual rankings:
 - Voter 1: $X \succ Y \succ Z$
 - Voter 2: $Y \succ Z \succ X$
 - Voter 3: $Z \succ X \succ Y$
- Pairwise majority votes:
 - X beats Y (voters 1 and 3)
 - Y beats Z (voters 1 and 2)
 - Z beats X (voters 2 and 3)
- Agenda manipulation through different tournament structures:

- Individual rankings:
 - Voter 1: $X \succ Y \succ Z$
 - Voter 2: $Y \succ Z \succ X$
 - Voter 3: Z ≻ X ≻ Y
- Pairwise majority votes:
 - X beats Y (voters 1 and 3)
 - Y beats Z (voters 1 and 2)
 - Z beats X (voters 2 and 3)
- Agenda manipulation through different tournament structures:
 - Agenda 1: X vs Y first, then winner vs $Z \Longrightarrow Z$ wins

- Individual rankings:
 - Voter 1: $X \succ Y \succ Z$
 - Voter 2: Y > Z > X
 - Voter 3: Z ≻ X ≻ Y
- Pairwise majority votes:
 - X beats Y (voters 1 and 3)
 - Y beats Z (voters 1 and 2)
 - Z beats X (voters 2 and 3)
- Agenda manipulation through different tournament structures:
 - Agenda 1: X vs Y first, then winner vs $Z \implies Z$ wins
 - Agenda 2: Y vs Z first, then winner vs $X \Longrightarrow X$ wins

- Individual rankings:
 - Voter 1: $X \succ Y \succ Z$
 - Voter 2: Y > Z > X
 - Voter 3: Z ≻ X ≻ Y
- Pairwise majority votes:
 - X beats Y (voters 1 and 3)
 - Y beats Z (voters 1 and 2)
 - Z beats X (voters 2 and 3)
- Agenda manipulation through different tournament structures:
 - Agenda 1: X vs Y first, then winner vs $Z \implies Z$ wins
 - Agenda 2: Y vs Z first, then winner vs $X \implies X$ wins
 - Agenda 3: X vs Z first, then winner vs $Y \implies Y$ wins

- Individual rankings:
 - Voter 1: $X \succ Y \succ Z$
 - Voter 2: Y > Z > X
 - Voter 3: $Z \succ X \succ Y$
- Pairwise majority votes:
 - X beats Y (voters 1 and 3)
 - Y beats Z (voters 1 and 2)
 - Z beats X (voters 2 and 3)
- Agenda manipulation through different tournament structures:
 - Agenda 1: X vs Y first, then winner vs $Z \implies Z$ wins
 - Agenda 2: Y vs Z first, then winner vs $X \implies X$ wins
 - Agenda 3: X vs Z first, then winner vs $Y \Longrightarrow Y$ wins
- Power of agenda-setting: The person who controls the order of voting can determine the outcome

- Individual rankings:
 - Voter 1: $X \succ Y \succ Z$
 - Voter 2: Y > Z > X
 - Voter 3: Z ≻ X ≻ Y
- Pairwise majority votes:
 - X beats Y (voters 1 and 3)
 - Y beats Z (voters 1 and 2)
 - Z beats X (voters 2 and 3)
- Agenda manipulation through different tournament structures:
 - Agenda 1: X vs Y first, then winner vs $Z \implies Z$ wins
 - Agenda 2: Y vs Z first, then winner vs $X \implies X$ wins
 - Agenda 3: X vs Z first, then winner vs $Y \Longrightarrow Y$ wins
- Power of agenda-setting: The person who controls the order of voting can determine the outcome
- Real-world impact: Parliamentary procedure, committee votes, and meeting agendas all involve this kind of strategic sequencing

Voting Systems: Positional Voting

• Direct approach: Assign weights based on position in each voter's ranking

- Direct approach: Assign weights based on position in each voter's ranking
- Borda Count: Named after Jean-Charles de Borda (1770)

- Direct approach: Assign weights based on position in each voter's ranking
- Borda Count: Named after Jean-Charles de Borda (1770)
 - With k alternatives: k-1 points for first place, k-2 for second, etc.

- Direct approach: Assign weights based on position in each voter's ranking
- Borda Count: Named after Jean-Charles de Borda (1770)
 - With k alternatives: k-1 points for first place, k-2 for second, etc.
 - Each alternative receives points based on its positions in all rankings

- Direct approach: Assign weights based on position in each voter's ranking
- Borda Count: Named after Jean-Charles de Borda (1770)
 - With k alternatives: k-1 points for first place, k-2 for second, etc.
 - Each alternative receives points based on its positions in all rankings
 - Alternatives ranked by total points received

- Direct approach: Assign weights based on position in each voter's ranking
- Borda Count: Named after Jean-Charles de Borda (1770)
 - With k alternatives: k-1 points for first place, k-2 for second, etc.
 - Each alternative receives points based on its positions in all rankings
 - Alternatives ranked by total points received
 - Used in: Heisman Trophy, AP poll rankings, MLB MVP selection

- Direct approach: Assign weights based on position in each voter's ranking
- Borda Count: Named after Jean-Charles de Borda (1770)
 - With k alternatives: k-1 points for first place, k-2 for second, etc.
 - Each alternative receives points based on its positions in all rankings
 - Alternatives ranked by total points received
 - Used in: Heisman Trophy, AP poll rankings, MLB MVP selection
- Plurality voting:

- Direct approach: Assign weights based on position in each voter's ranking
- Borda Count: Named after Jean-Charles de Borda (1770)
 - With k alternatives: k-1 points for first place, k-2 for second, etc.
 - Each alternative receives points based on its positions in all rankings
 - Alternatives ranked by total points received
 - Used in: Heisman Trophy, AP poll rankings, MLB MVP selection
- Plurality voting:
 - 1 point for first place, 0 for all others

- Direct approach: Assign weights based on position in each voter's ranking
- Borda Count: Named after Jean-Charles de Borda (1770)
 - With k alternatives: k-1 points for first place, k-2 for second, etc.
 - Each alternative receives points based on its positions in all rankings
 - Alternatives ranked by total points received
 - Used in: Heisman Trophy, AP poll rankings, MLB MVP selection
- Plurality voting:
 - 1 point for first place, 0 for all others
 - Special case of positional voting

- Direct approach: Assign weights based on position in each voter's ranking
- Borda Count: Named after Jean-Charles de Borda (1770)
 - With k alternatives: k-1 points for first place, k-2 for second, etc.
 - Each alternative receives points based on its positions in all rankings
 - Alternatives ranked by total points received
 - Used in: Heisman Trophy, AP poll rankings, MLB MVP selection
- Plurality voting:
 - 1 point for first place, 0 for all others
 - Special case of positional voting
 - Used in: Most political elections, "first past the post" systems

- Direct approach: Assign weights based on position in each voter's ranking
- Borda Count: Named after Jean-Charles de Borda (1770)
 - With k alternatives: k-1 points for first place, k-2 for second, etc.
 - Each alternative receives points based on its positions in all rankings
 - Alternatives ranked by total points received
 - Used in: Heisman Trophy, AP poll rankings, MLB MVP selection
- Plurality voting:
 - 1 point for first place, 0 for all others
 - Special case of positional voting
 - Used in: Most political elections, "first past the post" systems
- Advantages:

- Direct approach: Assign weights based on position in each voter's ranking
- Borda Count: Named after Jean-Charles de Borda (1770)
 - With k alternatives: k-1 points for first place, k-2 for second, etc.
 - Each alternative receives points based on its positions in all rankings
 - Alternatives ranked by total points received
 - Used in: Heisman Trophy, AP poll rankings, MLB MVP selection
- Plurality voting:
 - 1 point for first place, 0 for all others
 - Special case of positional voting
 - Used in: Most political elections, "first past the post" systems
- Advantages:
 - Always produces a complete, transitive ranking

- Direct approach: Assign weights based on position in each voter's ranking
- Borda Count: Named after Jean-Charles de Borda (1770)
 - With k alternatives: k-1 points for first place, k-2 for second, etc.
 - Each alternative receives points based on its positions in all rankings
 - Alternatives ranked by total points received
 - Used in: Heisman Trophy, AP poll rankings, MLB MVP selection
- Plurality voting:
 - 1 point for first place, 0 for all others
 - Special case of positional voting
 - Used in: Most political elections, "first past the post" systems
- Advantages:
 - Always produces a complete, transitive ranking
 - Considers all positions in rankings (Borda)

- Direct approach: Assign weights based on position in each voter's ranking
- Borda Count: Named after Jean-Charles de Borda (1770)
 - With k alternatives: k-1 points for first place, k-2 for second, etc.
 - Each alternative receives points based on its positions in all rankings
 - Alternatives ranked by total points received
 - Used in: Heisman Trophy, AP poll rankings, MLB MVP selection
- Plurality voting:
 - 1 point for first place, 0 for all others
 - Special case of positional voting
 - Used in: Most political elections, "first past the post" systems
- Advantages:
 - Always produces a complete, transitive ranking
 - Considers all positions in rankings (Borda)
 - Simple to implement and understand

- Direct approach: Assign weights based on position in each voter's ranking
- Borda Count: Named after Jean-Charles de Borda (1770)
 - With k alternatives: k-1 points for first place, k-2 for second, etc.
 - Each alternative receives points based on its positions in all rankings
 - Alternatives ranked by total points received
 - Used in: Heisman Trophy, AP poll rankings, MLB MVP selection
- Plurality voting:
 - 1 point for first place, 0 for all others
 - Special case of positional voting
 - Used in: Most political elections, "first past the post" systems
- Advantages:
 - Always produces a complete, transitive ranking
 - Considers all positions in rankings (Borda)
 - Simple to implement and understand
- Key problems:

- Direct approach: Assign weights based on position in each voter's ranking
- Borda Count: Named after Jean-Charles de Borda (1770)
 - With k alternatives: k-1 points for first place, k-2 for second, etc.
 - Each alternative receives points based on its positions in all rankings
 - Alternatives ranked by total points received
 - Used in: Heisman Trophy, AP poll rankings, MLB MVP selection
- Plurality voting:
 - 1 point for first place, 0 for all others
 - Special case of positional voting
 - Used in: Most political elections, "first past the post" systems
- Advantages:
 - Always produces a complete, transitive ranking
 - Considers all positions in rankings (Borda)
 - Simple to implement and understand
- Key problems:
 - Results can be manipulated by strategic voting

- Direct approach: Assign weights based on position in each voter's ranking
- Borda Count: Named after Jean-Charles de Borda (1770)
 - With k alternatives: k-1 points for first place, k-2 for second, etc.
 - Each alternative receives points based on its positions in all rankings
 - Alternatives ranked by total points received
 - Used in: Heisman Trophy, AP poll rankings, MLB MVP selection
- Plurality voting:
 - 1 point for first place, 0 for all others
 - Special case of positional voting
 - Used in: Most political elections, "first past the post" systems
- Advantages:
 - Always produces a complete, transitive ranking
 - Considers all positions in rankings (Borda)
 - Simple to implement and understand
- Key problems:
 - Results can be manipulated by strategic voting
 - "Irrelevant" alternatives can change the outcome

- Direct approach: Assign weights based on position in each voter's ranking
- Borda Count: Named after Jean-Charles de Borda (1770)
 - With k alternatives: k-1 points for first place, k-2 for second, etc.
 - Each alternative receives points based on its positions in all rankings
 - Alternatives ranked by total points received
 - Used in: Heisman Trophy, AP poll rankings, MLB MVP selection
- Plurality voting:
 - 1 point for first place, 0 for all others
 - Special case of positional voting
 - Used in: Most political elections, "first past the post" systems
- Advantages:
 - Always produces a complete, transitive ranking
 - Considers all positions in rankings (Borda)
 - Simple to implement and understand
- Key problems:
 - Results can be manipulated by strategic voting
 - "Irrelevant" alternatives can change the outcome
 - Vulnerable to strategic addition or removal of alternatives

Example of Borda Count

• Example with 4 alternatives (A, B, C, D) and 2 voters:

Voter	Ranking	
Voter 1 Voter 2	$\begin{array}{c} A \succ_1 B \succ_1 C \succ_1 D \\ B \succ_2 C \succ_2 A \succ_2 D \end{array}$	

- Points assigned:
 - A receives: 3 (from voter 1) + 1 (from voter 2) = 4 points
 - B receives: 2 (from voter 1) + 3 (from voter 2) = 5 points
 - C receives: 1 (from voter 1) + 2 (from voter 2) = 3 points
 - D receives: 0 (from voter 1) + 0 (from voter 2) = 0 points
- Group ranking: $B \succ A \succ C \succ D$
- Note that B wins even though neither voter places the same alternatives in the same positions
- The Borda Count attempts to account for "strength of preference" by including all positions

Example of Strategic Manipulation in Borda Count

• True preferences of five film critics:

Critics	First	Second	Third
1,2,3	Citizen Kane	The Godfather	Pulp Fiction
4,5	The Godfather	Citizen Kane	Pulp Fiction

- Calculating the Borda Count:
 - Citizen Kane receives: 3(2) + 2(1) = 8 points
 - The Godfather receives: 3(1) + 2(2) = 7 points
 - Pulp Fiction receives: 3(0) + 2(0) = 0 points
- Strategic misrepresentation by critics 4,5:

Critics	First	Second	Third
1,2,3	Citizen Kane	The Godfather	Pulp Fiction
4,5	The Godfather	Pulp Fiction	Citizen Kane

- Citizen Kane receives: 3(2) + 2(0) = 6 points
- The Godfather receives: 3(1) + 2(2) = 7 points
- The Godfather now wins by strategically "burying" the main competitor
- Strategic voting is rational when voters understand the system
- This undermines the goal of having votes reflect true preferences

• Question: Is there any voting system that avoids all pathologies we've seen?

- Question: Is there any voting system that avoids all pathologies we've seen?
- Consider voting systems that satisfy three reasonable properties:

- Question: Is there any voting system that avoids all pathologies we've seen?
- Consider voting systems that satisfy three reasonable properties:
 - Unanimity (Pareto Principle): If all voters prefer X to Y, then the group ranking puts X above Y

- Question: Is there any voting system that avoids all pathologies we've seen?
- Consider voting systems that satisfy three reasonable properties:
 - Unanimity (Pareto Principle): If all voters prefer X to Y, then the group ranking puts X above Y
 - Independence of Irrelevant Alternatives (IIA): The group ranking of X and Y depends only on how each voter ranks X and Y (not on other alternatives)

- Question: Is there any voting system that avoids all pathologies we've seen?
- Consider voting systems that satisfy three reasonable properties:
 - Unanimity (Pareto Principle): If all voters prefer X to Y, then the group ranking puts X above Y
 - Independence of Irrelevant Alternatives (IIA): The group ranking of X and Y depends only on how each voter ranks X and Y (not on other alternatives)
 - Non-dictatorship: No single voter determines the outcome for all profiles

- Question: Is there any voting system that avoids all pathologies we've seen?
- Consider voting systems that satisfy three reasonable properties:
 - Unanimity (Pareto Principle): If all voters prefer X to Y, then the group ranking puts X above Y
 - Independence of Irrelevant Alternatives (IIA): The group ranking of X and Y depends only on how each voter ranks X and Y (not on other alternatives)
 - Non-dictatorship: No single voter determines the outcome for all profiles
- Arrow's Theorem (Kenneth Arrow, 1950s):

- Question: Is there any voting system that avoids all pathologies we've seen?
- Consider voting systems that satisfy three reasonable properties:
 - Unanimity (Pareto Principle): If all voters prefer X to Y, then the group ranking puts X above Y
 - Independence of Irrelevant Alternatives (IIA): The group ranking of X and Y depends only on how each voter ranks X and Y (not on other alternatives)
 - Non-dictatorship: No single voter determines the outcome for all profiles
- Arrow's Theorem (Kenneth Arrow, 1950s):
 - If there are at least three alternatives, then no voting system can satisfy all three properties simultaneously

- Question: Is there any voting system that avoids all pathologies we've seen?
- Consider voting systems that satisfy three reasonable properties:
 - Unanimity (Pareto Principle): If all voters prefer X to Y, then the group ranking puts X above Y
 - Independence of Irrelevant Alternatives (IIA): The group ranking of X and Y depends only on how each voter ranks X and Y (not on other alternatives)
 - Non-dictatorship: No single voter determines the outcome for all profiles
- Arrow's Theorem (Kenneth Arrow, 1950s):
 - If there are at least three alternatives, then no voting system can satisfy all three properties simultaneously
 - Equivalent formulation: Any voting system satisfying Unanimity and IIA must be a dictatorship

- Question: Is there any voting system that avoids all pathologies we've seen?
- Consider voting systems that satisfy three reasonable properties:
 - Unanimity (Pareto Principle): If all voters prefer X to Y, then the group ranking puts X above Y
 - Independence of Irrelevant Alternatives (IIA): The group ranking of X and Y depends only on how each voter ranks X and Y (not on other alternatives)
 - Non-dictatorship: No single voter determines the outcome for all profiles
- Arrow's Theorem (Kenneth Arrow, 1950s):
 - If there are at least three alternatives, then no voting system can satisfy all three properties simultaneously
 - Equivalent formulation: Any voting system satisfying Unanimity and IIA must be a dictatorship
- Consequences:

- Question: Is there any voting system that avoids all pathologies we've seen?
- Consider voting systems that satisfy three reasonable properties:
 - Unanimity (Pareto Principle): If all voters prefer X to Y, then the group ranking puts X above Y
 - Independence of Irrelevant Alternatives (IIA): The group ranking of X and Y depends only on how each voter ranks X and Y (not on other alternatives)
 - Non-dictatorship: No single voter determines the outcome for all profiles
- Arrow's Theorem (Kenneth Arrow, 1950s):
 - If there are at least three alternatives, then no voting system can satisfy all three properties simultaneously
 - Equivalent formulation: Any voting system satisfying Unanimity and IIA must be a dictatorship
- Consequences:
 - All voting systems must violate at least one of these reasonable properties

- Question: Is there any voting system that avoids all pathologies we've seen?
- Consider voting systems that satisfy three reasonable properties:
 - Unanimity (Pareto Principle): If all voters prefer X to Y, then the group ranking puts X above Y
 - Independence of Irrelevant Alternatives (IIA): The group ranking of X and Y depends only on how each voter ranks X and Y (not on other alternatives)
 - Non-dictatorship: No single voter determines the outcome for all profiles
- Arrow's Theorem (Kenneth Arrow, 1950s):
 - If there are at least three alternatives, then no voting system can satisfy all three properties simultaneously
 - Equivalent formulation: Any voting system satisfying Unanimity and IIA must be a dictatorship
- Consequences:
 - All voting systems must violate at least one of these reasonable properties
 - No "perfect" voting system exists

- Question: Is there any voting system that avoids all pathologies we've seen?
- Consider voting systems that satisfy three reasonable properties:
 - Unanimity (Pareto Principle): If all voters prefer X to Y, then the group ranking puts X above Y
 - Independence of Irrelevant Alternatives (IIA): The group ranking of X and Y depends only on how each voter ranks X and Y (not on other alternatives)
 - Non-dictatorship: No single voter determines the outcome for all profiles
- Arrow's Theorem (Kenneth Arrow, 1950s):
 - If there are at least three alternatives, then no voting system can satisfy all three properties simultaneously
 - Equivalent formulation: Any voting system satisfying Unanimity and IIA must be a dictatorship
- Consequences:
 - All voting systems must violate at least one of these reasonable properties
 - No "perfect" voting system exists
 - Social choice involves fundamental trade-offs

- Question: Is there any voting system that avoids all pathologies we've seen?
- Consider voting systems that satisfy three reasonable properties:
 - Unanimity (Pareto Principle): If all voters prefer X to Y, then the group ranking puts X above Y
 - Independence of Irrelevant Alternatives (IIA): The group ranking of X and Y depends only on how each voter ranks X and Y (not on other alternatives)
 - Non-dictatorship: No single voter determines the outcome for all profiles
- Arrow's Theorem (Kenneth Arrow, 1950s):
 - If there are at least three alternatives, then no voting system can satisfy all three properties simultaneously
 - Equivalent formulation: Any voting system satisfying Unanimity and IIA must be a dictatorship
- Consequences:
 - All voting systems must violate at least one of these reasonable properties
 - No "perfect" voting system exists
 - Social choice involves fundamental trade-offs
 - Earned Arrow the Nobel Prize in Economics (1972)

Understanding Independence of Irrelevant Alternatives

- Independence of Irrelevant Alternatives (IIA) is subtle but critical:
 - \bullet The group ranking of X and Y should depend only on how each individual ranks X and Y
 - Changes in the ranking of other alternatives shouldn't affect X vs Y outcome
- Example: Two profiles with different rankings but same X vs Y preferences

Profile 1		Profile 2		
Individual	Ranking	Individual	Ranking	
1	$W \succ X \succ Y \succ Z$	1	$X \succ Y \succ W \succ Z$	
2	$W \succ Z \succ Y \succ X$	2	$Z \succ Y \succ X \succ W$	
3	$X \succ W \succ Z \succ Y$	3	$W \succ X \succ Y \succ Z$	

- In both profiles, individual 1 and 3 prefer X to Y, while individual 2 prefers Y to X
- IIA requires the group ranking of X and Y to be the same in both profiles
- Violations of IIA:
 - The Borda Count violates IIA (as we saw in the film critics example)
 - Elimination tournaments violate IIA (through strategic agenda-setting)
- IIA prevents "irrelevant" alternatives from acting as spoilers

• Let F be a voting system satisfying Unanimity and IIA

- Let F be a voting system satisfying Unanimity and IIA
- Notation:

- Let F be a voting system satisfying Unanimity and IIA
- Notation:
 - P: a profile of individual rankings (complete collection of all voters' rankings)

- Let F be a voting system satisfying Unanimity and IIA
- Notation:
 - P: a profile of individual rankings (complete collection of all voters' rankings)
 - F(P): the group ranking produced by applying F to profile P

- Let F be a voting system satisfying Unanimity and IIA
- Notation:
 - P: a profile of individual rankings (complete collection of all voters' rankings)
 - F(P): the group ranking produced by applying F to profile P
 - $X \succ_i Y$: voter i prefers X to Y

- Let F be a voting system satisfying Unanimity and IIA
- Notation:
 - P: a profile of individual rankings (complete collection of all voters' rankings)
 - F(P): the group ranking produced by applying F to profile P
 - $X \succ_i Y$: voter *i* prefers X to Y
 - $X \succ Y$: the group ranking places X above Y

- Let F be a voting system satisfying Unanimity and IIA
- Notation:
 - P: a profile of individual rankings (complete collection of all voters' rankings)
 - F(P): the group ranking produced by applying F to profile P
 - $X \succ_i Y$: voter *i* prefers X to Y
 - $X \succ Y$: the group ranking places X above Y
- Goal: Show that F must be a dictatorship (i.e., there exists a voter j such that for any profile, the group ranking always matches j's individual ranking)

- Let F be a voting system satisfying Unanimity and IIA
- Notation:
 - P: a profile of individual rankings (complete collection of all voters' rankings)
 - F(P): the group ranking produced by applying F to profile P
 - $X \succ_i Y$: voter *i* prefers X to Y
 - $X \succ Y$: the group ranking places X above Y
- Goal: Show that F must be a dictatorship (i.e., there exists a voter j such that for any profile, the group ranking always matches j's individual ranking)
- Proof approach:

- Let F be a voting system satisfying Unanimity and IIA
- Notation:
 - P: a profile of individual rankings (complete collection of all voters' rankings)
 - F(P): the group ranking produced by applying F to profile P
 - $X \succ_i Y$: voter *i* prefers X to Y
 - $X \succ Y$: the group ranking places X above Y
- Goal: Show that F must be a dictatorship (i.e., there exists a voter j such that for any profile, the group ranking always matches j's individual ranking)
- Proof approach:
 - Step 1: Show that polarizing alternatives must be ranked first or last

- Let F be a voting system satisfying Unanimity and IIA
- Notation:
 - P: a profile of individual rankings (complete collection of all voters' rankings)
 - F(P): the group ranking produced by applying F to profile P
 - $X \succ_i Y$: voter *i* prefers X to Y
 - $X \succ Y$: the group ranking places X above Y
- Goal: Show that F must be a dictatorship (i.e., there exists a voter j such that for any profile, the group ranking always matches j's individual ranking)
- Proof approach:
 - Step 1: Show that polarizing alternatives must be ranked first or last
 - Step 2: Identify a voter with decisive power

Complete Proof: Setting and Terminology

- Let F be a voting system satisfying Unanimity and IIA
- Notation:
 - P: a profile of individual rankings (complete collection of all voters' rankings)
 - F(P): the group ranking produced by applying F to profile P
 - $X \succ_i Y$: voter *i* prefers X to Y
 - $X \succ Y$: the group ranking places X above Y
- Goal: Show that F must be a dictatorship (i.e., there exists a voter j such that for any profile, the group ranking always matches j's individual ranking)
- Proof approach:
 - Step 1: Show that polarizing alternatives must be ranked first or last
 - Step 2: Identify a voter with decisive power
 - Step 3: Prove this voter is a dictator for all pairs of alternatives

ullet **Definition**: An alternative X is polarizing if every voter ranks it either first or last

- Definition: An alternative X is polarizing if every voter ranks it either first or last
- Claim: In any profile P where X is polarizing, F must place X either first or last in the group ranking F(P)

- Definition: An alternative X is polarizing if every voter ranks it either first or last
- Claim: In any profile P where X is polarizing, F must place X either first or last in the group ranking F(P)
- Proof by contradiction:

- Definition: An alternative X is polarizing if every voter ranks it either first or last
- Claim: In any profile P where X is polarizing, F must place X either first or last in the group ranking F(P)
- Proof by contradiction:
 - Suppose X is neither first nor last in F(P)

- Definition: An alternative X is polarizing if every voter ranks it either first or last
- Claim: In any profile P where X is polarizing, F must place X either first or last in the group ranking F(P)
- Proof by contradiction:
 - Suppose X is neither first nor last in F(P)
 - Then there exist alternatives Y, Z such that $Y \succ X \succ Z$ in F(P)

- Definition: An alternative X is polarizing if every voter ranks it either first or last
- Claim: In any profile P where X is polarizing, F must place X either first or last in the group ranking F(P)
- Proof by contradiction:
 - Suppose X is neither first nor last in F(P)
 - Then there exist alternatives Y, Z such that $Y \succ X \succ Z$ in F(P)
 - \bullet Construct profile P' by moving Z ahead of Y in each ranking where Y was preferred to Z

- Definition: An alternative X is polarizing if every voter ranks it either first or last
- Claim: In any profile P where X is polarizing, F must place X either first or last in the group ranking F(P)
- Proof by contradiction:
 - Suppose X is neither first nor last in F(P)
 - Then there exist alternatives Y, Z such that $Y \succ X \succ Z$ in F(P)
 - Construct profile P' by moving Z ahead of Y in each ranking where Y was preferred to Z
 - ullet The relative positions of X vs. Y and X vs. Z remain unchanged in each individual ranking

- Definition: An alternative X is polarizing if every voter ranks it either first or last
- Claim: In any profile P where X is polarizing, F must place X either first or last in the group ranking F(P)
- Proof by contradiction:
 - Suppose X is neither first nor last in F(P)
 - Then there exist alternatives Y, Z such that $Y \succ X \succ Z$ in F(P)
 - Construct profile P' by moving Z ahead of Y in each ranking where Y was preferred to Z
 - ullet The relative positions of X vs. Y and X vs. Z remain unchanged in each individual ranking
 - By IIA, the group ranking of X vs. Y and X vs. Z must remain the same in F(P')

- Definition: An alternative X is polarizing if every voter ranks it either first or last
- Claim: In any profile P where X is polarizing, F must place X either first or last in the group ranking F(P)
- Proof by contradiction:
 - Suppose X is neither first nor last in F(P)
 - Then there exist alternatives Y, Z such that $Y \succ X \succ Z$ in F(P)
 - Construct profile P' by moving Z ahead of Y in each ranking where Y was preferred to Z
 - The relative positions of X vs. Y and X vs. Z remain unchanged in each individual ranking
 - By IIA, the group ranking of X vs. Y and X vs. Z must remain the same in F(P')
 - So $Y \succ X \succ Z$ still holds in F(P')

- Definition: An alternative X is polarizing if every voter ranks it either first or last
- Claim: In any profile P where X is polarizing, F must place X either first or last in the group ranking F(P)
- Proof by contradiction:
 - Suppose X is neither first nor last in F(P)
 - Then there exist alternatives Y, Z such that $Y \succ X \succ Z$ in F(P)
 - Construct profile P' by moving Z ahead of Y in each ranking where Y was preferred to Z
 - The relative positions of X vs. Y and X vs. Z remain unchanged in each individual ranking
 - By IIA, the group ranking of X vs. Y and X vs. Z must remain the same in F(P')
 - So $Y \succ X \succ Z$ still holds in F(P')
 - ullet But in P', every voter ranks Z ahead of Y

- Definition: An alternative X is polarizing if every voter ranks it either first or last
- Claim: In any profile P where X is polarizing, F must place X either first or last in the group ranking F(P)
- Proof by contradiction:
 - Suppose X is neither first nor last in F(P)
 - Then there exist alternatives Y, Z such that $Y \succ X \succ Z$ in F(P)
 - Construct profile P' by moving Z ahead of Y in each ranking where Y was preferred to Z
 - The relative positions of X vs. Y and X vs. Z remain unchanged in each individual ranking
 - By IIA, the group ranking of X vs. Y and X vs. Z must remain the same in F(P')
 - So $Y \succ X \succ Z$ still holds in F(P')
 - But in P', every voter ranks Z ahead of Y
 - By Unanimity, $Z \succ Y$ must hold in F(P')

- Definition: An alternative X is polarizing if every voter ranks it either first or last
- Claim: In any profile P where X is polarizing, F must place X either first or last in the group ranking F(P)
- Proof by contradiction:
 - Suppose X is neither first nor last in F(P)
 - Then there exist alternatives Y, Z such that $Y \succ X \succ Z$ in F(P)
 - Construct profile P' by moving Z ahead of Y in each ranking where Y was preferred to Z
 - The relative positions of X vs. Y and X vs. Z remain unchanged in each individual ranking
 - By IIA, the group ranking of X vs. Y and X vs. Z must remain the same in F(P')
 - So $Y \succ X \succ Z$ still holds in F(P')
 - ullet But in P', every voter ranks Z ahead of Y
 - By Unanimity, $Z \succ Y$ must hold in F(P')
 - This creates a cycle: $Y \succ X \succ Z \succ Y$, contradicting transitivity

- Definition: An alternative X is polarizing if every voter ranks it either first or last
- Claim: In any profile P where X is polarizing, F must place X either first or last in the group ranking F(P)
- Proof by contradiction:
 - Suppose X is neither first nor last in F(P)
 - Then there exist alternatives Y, Z such that $Y \succ X \succ Z$ in F(P)
 - Construct profile P' by moving Z ahead of Y in each ranking where Y was preferred to Z
 - The relative positions of X vs. Y and X vs. Z remain unchanged in each individual ranking
 - By IIA, the group ranking of X vs. Y and X vs. Z must remain the same in F(P')
 - So $Y \succ X \succ Z$ still holds in F(P')
 - But in P', every voter ranks Z ahead of Y
 - By Unanimity, $Z \succ Y$ must hold in F(P')
 - This creates a cycle: $Y \succ X \succ Z \succ Y$, contradicting transitivity
- Therefore, X must be ranked either first or last in F(P)

• Construct a sequence of profiles P_0 , P_1 , ..., P_k where:

- Construct a sequence of profiles P_0 , P_1 , ..., P_k where:
 - P₀: All voters rank alternative X last

- Construct a sequence of profiles P_0 , P_1 , ..., P_k where:
 - P₀: All voters rank alternative X last
 - P_i : The first i voters rank X first, the rest rank X last

- Construct a sequence of profiles P_0 , P_1 , ..., P_k where:
 - P₀: All voters rank alternative X last
 - P_i : The first i voters rank X first, the rest rank X last
 - P_k : All voters rank X first

- Construct a sequence of profiles P_0 , P_1 , ..., P_k where:
 - P₀: All voters rank alternative X last
 - P_i : The first i voters rank X first, the rest rank X last
 - P_k: All voters rank X first
- By Unanimity:

- Construct a sequence of profiles P_0 , P_1 , ..., P_k where:
 - P₀: All voters rank alternative X last
 - P_i : The first i voters rank X first, the rest rank X last
 - P_k : All voters rank X first
- By Unanimity:
 - X is ranked last in $F(P_0)$

- Construct a sequence of profiles P_0 , P_1 , ..., P_k where:
 - P₀: All voters rank alternative X last
 - P_i : The first i voters rank X first, the rest rank X last
 - P_k: All voters rank X first
- By Unanimity:
 - X is ranked last in $F(P_0)$
 - X is ranked first in $F(P_k)$

- Construct a sequence of profiles P_0 , P_1 , ..., P_k where:
 - P₀: All voters rank alternative X last
 - P_i : The first i voters rank X first, the rest rank X last
 - P_k: All voters rank X first
- By Unanimity:
 - X is ranked last in $F(P_0)$
 - X is ranked first in $F(P_k)$
- Therefore, X must change position from last to first at some point

- Construct a sequence of profiles P_0 , P_1 , ..., P_k where:
 - P₀: All voters rank alternative X last
 - P_i : The first i voters rank X first, the rest rank X last
 - P_k: All voters rank X first
- By Unanimity:
 - X is ranked last in $F(P_0)$
 - X is ranked first in $F(P_k)$
- Therefore, X must change position from last to first at some point
- Let j be the first index such that X is not last in $F(P_j)$

- Construct a sequence of profiles P_0 , P_1 , ..., P_k where:
 - P₀: All voters rank alternative X last
 - P_i : The first i voters rank X first, the rest rank X last
 - P_k: All voters rank X first
- By Unanimity:
 - X is ranked last in $F(P_0)$
 - X is ranked first in $F(P_k)$
- Therefore, X must change position from last to first at some point
- Let j be the first index such that X is not last in $F(P_i)$
- Since X is polarizing in P_j , and not last in $F(P_j)$, it must be first in $F(P_j)$

- Construct a sequence of profiles P_0 , P_1 , ..., P_k where:
 - P₀: All voters rank alternative X last
 - P_i : The first i voters rank X first, the rest rank X last
 - P_k: All voters rank X first
- By Unanimity:
 - X is ranked last in $F(P_0)$
 - X is ranked first in $F(P_k)$
- Therefore, X must change position from last to first at some point
- Let j be the first index such that X is not last in $F(P_i)$
- Since X is polarizing in P_j , and not last in $F(P_j)$, it must be first in $F(P_j)$
- Voter *j* has decisive power: changing just *j*'s vote moves *X* from last to first in the group ranking

- Construct a sequence of profiles P_0 , P_1 , ..., P_k where:
 - P₀: All voters rank alternative X last
 - P_i : The first i voters rank X first, the rest rank X last
 - P_k: All voters rank X first
- By Unanimity:
 - X is ranked last in $F(P_0)$
 - X is ranked first in $F(P_k)$
- Therefore, X must change position from last to first at some point
- Let j be the first index such that X is not last in $F(P_i)$
- Since X is polarizing in P_j , and not last in $F(P_j)$, it must be first in $F(P_j)$
- Voter *j* has decisive power: changing just *j*'s vote moves *X* from last to first in the group ranking
- This voter *j* is our candidate for being the dictator

ullet We must show j is a dictator for all pairs of alternatives

- We must show j is a dictator for all pairs of alternatives
- First, consider any Y, $Z \neq X$ where j ranks Y above Z

- We must show j is a dictator for all pairs of alternatives
- First, consider any Y, $Z \neq X$ where j ranks Y above Z
- Construct a profile Q' where:

- We must show j is a dictator for all pairs of alternatives
- First, consider any Y, $Z \neq X$ where j ranks Y above Z
- Construct a profile Q' where:
 - ullet X is ranked first by voters $1,\,\ldots,\,j$ and last by others

- We must show j is a dictator for all pairs of alternatives
- First, consider any Y, $Z \neq X$ where j ranks Y above Z
- Construct a profile Q' where:
 - X is ranked first by voters $1, \ldots, j$ and last by others
 - In j's ranking, Y is placed just ahead of X

- We must show *j* is a dictator for all pairs of alternatives
- First, consider any Y, $Z \neq X$ where j ranks Y above Z
- Construct a profile Q' where:
 - ullet X is ranked first by voters $1, \ldots, j$ and last by others
 - In j's ranking, Y is placed just ahead of X
 - ullet All other relative orderings remain the same as in P_j

- We must show *j* is a dictator for all pairs of alternatives
- First, consider any Y, $Z \neq X$ where j ranks Y above Z
- Construct a profile Q' where:
 - ullet X is ranked first by voters $1, \ldots, j$ and last by others
 - In j's ranking, Y is placed just ahead of X
 - All other relative orderings remain the same as in P_j
- Observations:

- We must show j is a dictator for all pairs of alternatives
- First, consider any Y, $Z \neq X$ where j ranks Y above Z
- Construct a profile Q' where:
 - X is ranked first by voters $1, \ldots, j$ and last by others
 - In j's ranking, Y is placed just ahead of X
 - All other relative orderings remain the same as in P_j
- Observations:
 - Q' and P_j are identical when restricted to X and Z, so by IIA, $X \succ Z$ in F(Q')

- We must show j is a dictator for all pairs of alternatives
- First, consider any Y, $Z \neq X$ where j ranks Y above Z
- Construct a profile Q' where:
 - X is ranked first by voters $1, \ldots, j$ and last by others
 - In j's ranking, Y is placed just ahead of X
 - All other relative orderings remain the same as in P_j
- Observations:
 - Q' and P_j are identical when restricted to X and Z, so by IIA, $X \succ Z$ in F(Q')
 - Q' and P_{j-1} are identical when restricted to X and Y, so by IIA, $Y \succ X$ in F(Q')

- We must show j is a dictator for all pairs of alternatives
- First, consider any Y, $Z \neq X$ where j ranks Y above Z
- Construct a profile Q' where:
 - X is ranked first by voters $1, \ldots, j$ and last by others
 - In j's ranking, Y is placed just ahead of X
 - All other relative orderings remain the same as in P_j
- Observations:
 - Q' and P_j are identical when restricted to X and Z, so by IIA, $X \succ Z$ in F(Q')
 - Q' and P_{j-1} are identical when restricted to X and Y, so by IIA, $Y \succ X$ in F(Q')
 - By transitivity of the group ranking, $Y \succ Z$ in F(Q')

- We must show j is a dictator for all pairs of alternatives
- First, consider any Y, $Z \neq X$ where j ranks Y above Z
- Construct a profile Q' where:
 - X is ranked first by voters $1, \ldots, j$ and last by others
 - In j's ranking, Y is placed just ahead of X
 - All other relative orderings remain the same as in P_j
- Observations:
 - Q' and P_j are identical when restricted to X and Z, so by IIA, $X \succ Z$ in F(Q')
 - Q' and P_{j-1} are identical when restricted to X and Y, so by IIA, $Y \succ X$ in F(Q')
 - By transitivity of the group ranking, $Y \succ Z$ in F(Q')
- For any profile Q where j ranks Y above Z:

- We must show j is a dictator for all pairs of alternatives
- First, consider any Y, $Z \neq X$ where j ranks Y above Z
- Construct a profile Q' where:
 - X is ranked first by voters $1, \ldots, j$ and last by others
 - In j's ranking, Y is placed just ahead of X
 - All other relative orderings remain the same as in P_j
- Observations:
 - Q' and P_j are identical when restricted to X and Z, so by IIA, $X \succ Z$ in F(Q')
 - Q' and P_{j-1} are identical when restricted to X and Y, so by IIA, $Y \succ X$ in F(Q')
 - By transitivity of the group ranking, $Y \succ Z$ in F(Q')
- For any profile Q where j ranks Y above Z:
 - ullet Q and Q' are identical when restricted to Y and Z

- We must show j is a dictator for all pairs of alternatives
- First, consider any Y, $Z \neq X$ where j ranks Y above Z
- Construct a profile Q' where:
 - X is ranked first by voters $1, \ldots, j$ and last by others
 - In j's ranking, Y is placed just ahead of X
 - All other relative orderings remain the same as in P_j
- Observations:
 - Q' and P_j are identical when restricted to X and Z, so by IIA, $X \succ Z$ in F(Q')
 - Q' and P_{j-1} are identical when restricted to X and Y, so by IIA, $Y \succ X$ in F(Q')
 - By transitivity of the group ranking, $Y \succ Z$ in F(Q')
- For any profile Q where j ranks Y above Z:
 - ullet Q and Q' are identical when restricted to Y and Z
 - By IIA, $Y \succ Z$ in F(Q)

- We must show j is a dictator for all pairs of alternatives
- First, consider any Y, $Z \neq X$ where j ranks Y above Z
- Construct a profile Q' where:
 - X is ranked first by voters $1, \ldots, j$ and last by others
 - In j's ranking, Y is placed just ahead of X
 - All other relative orderings remain the same as in P_j
- Observations:
 - Q' and P_j are identical when restricted to X and Z, so by IIA, $X \succ Z$ in F(Q')
 - Q' and P_{j-1} are identical when restricted to X and Y, so by IIA, $Y \succ X$ in F(Q')
 - By transitivity of the group ranking, $Y \succ Z$ in F(Q')
- For any profile Q where j ranks Y above Z:
 - ullet Q and Q' are identical when restricted to Y and Z
 - By IIA, $Y \succ Z$ in F(Q)
- \bullet Therefore, j dictates the group ranking for all pairs not involving X

• Now we must show j is also a dictator for pairs involving X

- Now we must show j is also a dictator for pairs involving X
- Proof by contradiction:

- Now we must show j is also a dictator for pairs involving X
- Proof by contradiction:
 - ullet Suppose there exists another voter $\ell
 eq j$ who dictates some pair involving X

- Now we must show j is also a dictator for pairs involving X
- Proof by contradiction:
 - ullet Suppose there exists another voter $\ell
 eq j$ who dictates some pair involving X
 - ullet Apply the same construction using a different alternative W instead of X

- Now we must show j is also a dictator for pairs involving X
- Proof by contradiction:
 - Suppose there exists another voter $\ell \neq j$ who dictates some pair involving X
 - ullet Apply the same construction using a different alternative W instead of X
 - ullet This would establish ℓ as a dictator for all pairs not involving W

- Now we must show j is also a dictator for pairs involving X
- Proof by contradiction:
 - Suppose there exists another voter $\ell \neq j$ who dictates some pair involving X
 - ullet Apply the same construction using a different alternative W instead of X
 - ullet This would establish ℓ as a dictator for all pairs not involving W
 - ullet Consider X and some third alternative Y different from X and W

- Now we must show j is also a dictator for pairs involving X
- Proof by contradiction:
 - Suppose there exists another voter $\ell \neq j$ who dictates some pair involving X
 - ullet Apply the same construction using a different alternative W instead of X
 - ullet This would establish ℓ as a dictator for all pairs not involving W
 - ullet Consider X and some third alternative Y different from X and W
 - For profiles P_{j-1} and P_j :

- Now we must show j is also a dictator for pairs involving X
- Proof by contradiction:
 - Suppose there exists another voter $\ell \neq j$ who dictates some pair involving X
 - \bullet Apply the same construction using a different alternative W instead of X
 - ullet This would establish ℓ as a dictator for all pairs not involving W
 - Consider X and some third alternative Y different from X and W
 - For profiles P_{i-1} and P_i:
 - These profiles differ only in j's ranking

- Now we must show j is also a dictator for pairs involving X
- Proof by contradiction:
 - Suppose there exists another voter $\ell \neq j$ who dictates some pair involving X
 - ullet Apply the same construction using a different alternative W instead of X
 - ullet This would establish ℓ as a dictator for all pairs not involving W
 - Consider X and some third alternative Y different from X and W
 - For profiles P_{i-1} and P_i :
 - These profiles differ only in j's ranking
 - The ordering of X and Y changes in the group ranking

- Now we must show j is also a dictator for pairs involving X
- Proof by contradiction:
 - Suppose there exists another voter $\ell \neq j$ who dictates some pair involving X
 - ullet Apply the same construction using a different alternative W instead of X
 - ullet This would establish ℓ as a dictator for all pairs not involving W
 - Consider X and some third alternative Y different from X and W
 - For profiles P_{i-1} and P_i :
 - These profiles differ only in j's ranking
 - The ordering of X and Y changes in the group ranking
 - \bullet But this contradicts ℓ being a dictator for this pair

- Now we must show j is also a dictator for pairs involving X
- Proof by contradiction:
 - Suppose there exists another voter $\ell \neq j$ who dictates some pair involving X
 - ullet Apply the same construction using a different alternative W instead of X
 - ullet This would establish ℓ as a dictator for all pairs not involving W
 - Consider X and some third alternative Y different from X and W
 - For profiles P_{i-1} and P_i :
 - These profiles differ only in j's ranking
 - The ordering of X and Y changes in the group ranking
 - ullet But this contradicts ℓ being a dictator for this pair
- Therefore:

- Now we must show j is also a dictator for pairs involving X
- Proof by contradiction:
 - Suppose there exists another voter $\ell \neq j$ who dictates some pair involving X
 - ullet Apply the same construction using a different alternative W instead of X
 - ullet This would establish ℓ as a dictator for all pairs not involving W
 - Consider X and some third alternative Y different from X and W
 - For profiles P_{i-1} and P_i :
 - These profiles differ only in j's ranking
 - The ordering of X and Y changes in the group ranking
 - ullet But this contradicts ℓ being a dictator for this pair
- Therefore:
 - Voter j must be the dictator for all pairs

- Now we must show j is also a dictator for pairs involving X
- Proof by contradiction:
 - Suppose there exists another voter $\ell \neq j$ who dictates some pair involving X
 - ullet Apply the same construction using a different alternative W instead of X
 - ullet This would establish ℓ as a dictator for all pairs not involving W
 - Consider X and some third alternative Y different from X and W
 - For profiles P_{i-1} and P_i :
 - These profiles differ only in j's ranking
 - The ordering of X and Y changes in the group ranking
 - ullet But this contradicts ℓ being a dictator for this pair
- Therefore:
 - Voter *j* must be the dictator for all pairs
 - The only voting systems satisfying Unanimity and IIA are dictatorships

- Now we must show j is also a dictator for pairs involving X
- Proof by contradiction:
 - Suppose there exists another voter $\ell \neq j$ who dictates some pair involving X
 - ullet Apply the same construction using a different alternative W instead of X
 - ullet This would establish ℓ as a dictator for all pairs not involving W
 - Consider X and some third alternative Y different from X and W
 - For profiles P_{i-1} and P_i :
 - These profiles differ only in j's ranking
 - The ordering of X and Y changes in the group ranking
 - ullet But this contradicts ℓ being a dictator for this pair
- Therefore:
 - Voter j must be the dictator for all pairs
 - The only voting systems satisfying Unanimity and IIA are dictatorships
 - This completes the proof of Arrow's Impossibility Theorem

• Definition: A voter has single-peaked preferences if there is no alternative X_s for which both neighboring alternatives X_{s-1} and X_{s+1} are preferred to X_s

- Definition: A voter has single-peaked preferences if there is no alternative X_s for which both neighboring alternatives X_{s-1} and X_{s+1} are preferred to X_s
- Intuition: Alternatives are ordered along a spectrum, and each voter has a most preferred point

- Definition: A voter has single-peaked preferences if there is no alternative X_s for which both neighboring alternatives X_{s-1} and X_{s+1} are preferred to X_s
- Intuition: Alternatives are ordered along a spectrum, and each voter has a most preferred point
 - Preferences decrease consistently moving away from that peak in either direction

- Definition: A voter has single-peaked preferences if there is no alternative X_s for which both neighboring alternatives X_{s-1} and X_{s+1} are preferred to X_s
- Intuition: Alternatives are ordered along a spectrum, and each voter has a most preferred point
 - Preferences decrease consistently moving away from that peak in either direction
 - No "valleys" in the preference ranking

- Definition: A voter has single-peaked preferences if there is no alternative X_s for which both neighboring alternatives X_{s-1} and X_{s+1} are preferred to X_s
- Intuition: Alternatives are ordered along a spectrum, and each voter has a most preferred point
 - Preferences decrease consistently moving away from that peak in either direction
 - No "valleys" in the preference ranking
- Visual representation examples:

• Natural settings for single-peaked preferences:

- Natural settings for single-peaked preferences:
 - Political candidates (left to right spectrum)

- Natural settings for single-peaked preferences:
 - Political candidates (left to right spectrum)
 - Levels of spending (low to high amounts)

- Natural settings for single-peaked preferences:
 - Political candidates (left to right spectrum)
 - Levels of spending (low to high amounts)
 - Temperature settings (cold to hot)

- Natural settings for single-peaked preferences:
 - Political candidates (left to right spectrum)
 - Levels of spending (low to high amounts)
 - Temperature settings (cold to hot)
 - Geographic locations (distance from ideal point)

- Natural settings for single-peaked preferences:
 - Political candidates (left to right spectrum)
 - Levels of spending (low to high amounts)
 - Temperature settings (cold to hot)
 - Geographic locations (distance from ideal point)
 - Tax rates (optimal rate somewhere between 0% and 100%)

- Natural settings for single-peaked preferences:
 - Political candidates (left to right spectrum)
 - Levels of spending (low to high amounts)
 - Temperature settings (cold to hot)
 - Geographic locations (distance from ideal point)
 - Tax rates (optimal rate somewhere between 0% and 100%)
 - Environmental regulations (balance between economic and ecological concerns)

- Natural settings for single-peaked preferences:
 - Political candidates (left to right spectrum)
 - Levels of spending (low to high amounts)
 - Temperature settings (cold to hot)
 - Geographic locations (distance from ideal point)
 - Tax rates (optimal rate somewhere between 0% and 100%)
 - Environmental regulations (balance between economic and ecological concerns)
- Importance: Majority rule works well with single-peaked preferences

- Natural settings for single-peaked preferences:
 - Political candidates (left to right spectrum)
 - Levels of spending (low to high amounts)
 - Temperature settings (cold to hot)
 - Geographic locations (distance from ideal point)
 - Tax rates (optimal rate somewhere between 0% and 100%)
 - Environmental regulations (balance between economic and ecological concerns)
- Importance: Majority rule works well with single-peaked preferences
- Example of non-single-peaked preferences: Preferring extremes to middle positions

- Natural settings for single-peaked preferences:
 - Political candidates (left to right spectrum)
 - Levels of spending (low to high amounts)
 - Temperature settings (cold to hot)
 - Geographic locations (distance from ideal point)
 - Tax rates (optimal rate somewhere between 0% and 100%)
 - Environmental regulations (balance between economic and ecological concerns)
- Importance: Majority rule works well with single-peaked preferences
- Example of non-single-peaked preferences: Preferring extremes to middle positions
- Real-world implications:

- Natural settings for single-peaked preferences:
 - Political candidates (left to right spectrum)
 - Levels of spending (low to high amounts)
 - Temperature settings (cold to hot)
 - Geographic locations (distance from ideal point)
 - Tax rates (optimal rate somewhere between 0% and 100%)
 - Environmental regulations (balance between economic and ecological concerns)
- Importance: Majority rule works well with single-peaked preferences
- Example of non-single-peaked preferences: Preferring extremes to middle positions
- Real-world implications:
 - Many political preferences naturally follow a single-peaked pattern

- Natural settings for single-peaked preferences:
 - Political candidates (left to right spectrum)
 - Levels of spending (low to high amounts)
 - Temperature settings (cold to hot)
 - Geographic locations (distance from ideal point)
 - Tax rates (optimal rate somewhere between 0% and 100%)
 - Environmental regulations (balance between economic and ecological concerns)
- Importance: Majority rule works well with single-peaked preferences
- Example of non-single-peaked preferences: Preferring extremes to middle positions
- Real-world implications:
 - Many political preferences naturally follow a single-peaked pattern
 - Economic policy preferences often peak at a voter's ideal point on a spectrum

Single-Peaked Preference II

- Natural settings for single-peaked preferences:
 - Political candidates (left to right spectrum)
 - Levels of spending (low to high amounts)
 - Temperature settings (cold to hot)
 - Geographic locations (distance from ideal point)
 - Tax rates (optimal rate somewhere between 0% and 100%)
 - Environmental regulations (balance between economic and ecological concerns)
- Importance: Majority rule works well with single-peaked preferences
- Example of non-single-peaked preferences: Preferring extremes to middle positions
- Real-world implications:
 - Many political preferences naturally follow a single-peaked pattern
 - Economic policy preferences often peak at a voter's ideal point on a spectrum
 - When preferences are single-peaked, voting cycles are less likely to occur

Single-Peaked Preference II

- Natural settings for single-peaked preferences:
 - Political candidates (left to right spectrum)
 - Levels of spending (low to high amounts)
 - Temperature settings (cold to hot)
 - Geographic locations (distance from ideal point)
 - Tax rates (optimal rate somewhere between 0% and 100%)
 - Environmental regulations (balance between economic and ecological concerns)
- Importance: Majority rule works well with single-peaked preferences
- Example of non-single-peaked preferences: Preferring extremes to middle positions
- Real-world implications:
 - Many political preferences naturally follow a single-peaked pattern
 - Economic policy preferences often peak at a voter's ideal point on a spectrum
 - When preferences are single-peaked, voting cycles are less likely to occur
 - This helps explain why many democratic systems work despite Arrow's theorem

• If all preferences are single-peaked, then:

- If all preferences are single-peaked, then:
 - Majority rule applied to pairs produces transitive group preferences

- If all preferences are single-peaked, then:
 - Majority rule applied to pairs produces transitive group preferences
 - The "median voter's" favorite alternative defeats all others in pairwise majority votes

- If all preferences are single-peaked, then:
 - Majority rule applied to pairs produces transitive group preferences
 - The "median voter's" favorite alternative defeats all others in pairwise majority votes
- Median voter: The voter whose favorite alternative is the median among all voters' favorites

- If all preferences are single-peaked, then:
 - Majority rule applied to pairs produces transitive group preferences
 - The "median voter's" favorite alternative defeats all others in pairwise majority votes
- Median voter: The voter whose favorite alternative is the median among all voters' favorites
- Intuition: The median voter's favorite position has majority support against any alternative

- If all preferences are single-peaked, then:
 - Majority rule applied to pairs produces transitive group preferences
 - The "median voter's" favorite alternative defeats all others in pairwise majority votes
- Median voter: The voter whose favorite alternative is the median among all voters' favorites
- Intuition: The median voter's favorite position has majority support against any alternative
- Proof outline:

- If all preferences are single-peaked, then:
 - Majority rule applied to pairs produces transitive group preferences
 - The "median voter's" favorite alternative defeats all others in pairwise majority votes
- Median voter: The voter whose favorite alternative is the median among all voters' favorites
- Intuition: The median voter's favorite position has majority support against any alternative
- Proof outline:
 - For any alternative to the right of the median, all voters with peaks at or left of the median prefer the median

- If all preferences are single-peaked, then:
 - Majority rule applied to pairs produces transitive group preferences
 - The "median voter's" favorite alternative defeats all others in pairwise majority votes
- Median voter: The voter whose favorite alternative is the median among all voters' favorites
- Intuition: The median voter's favorite position has majority support against any alternative
- Proof outline:
 - For any alternative to the right of the median, all voters with peaks at or left of the median prefer the median
 - This gives the median position majority support against all alternatives to its right

- If all preferences are single-peaked, then:
 - Majority rule applied to pairs produces transitive group preferences
 - The "median voter's" favorite alternative defeats all others in pairwise majority votes
- Median voter: The voter whose favorite alternative is the median among all voters' favorites
- Intuition: The median voter's favorite position has majority support against any alternative
- Proof outline:
 - For any alternative to the right of the median, all voters with peaks at or left of the median prefer the median
 - This gives the median position majority support against all alternatives to its right
 - Similarly, the median defeats all alternatives to its left

- If all preferences are single-peaked, then:
 - Majority rule applied to pairs produces transitive group preferences
 - The "median voter's" favorite alternative defeats all others in pairwise majority votes
- Median voter: The voter whose favorite alternative is the median among all voters' favorites
- Intuition: The median voter's favorite position has majority support against any alternative
- Proof outline:
 - For any alternative to the right of the median, all voters with peaks at or left of the median prefer the median
 - This gives the median position majority support against all alternatives to its right
 - Similarly, the median defeats all alternatives to its left
 - Therefore, the median position wins all pairwise contests

• Consequences:

- Consequences:
 - No cycles in majority rule when preferences are single-peaked

- Consequences:
 - No cycles in majority rule when preferences are single-peaked
 - Political candidates tend to adopt positions near the median voter

- Consequences:
 - No cycles in majority rule when preferences are single-peaked
 - Political candidates tend to adopt positions near the median voter
 - Explains the tendency toward moderation in two-party systems

- Consequences:
 - No cycles in majority rule when preferences are single-peaked
 - Political candidates tend to adopt positions near the median voter
 - Explains the tendency toward moderation in two-party systems
 - Economic policy often targets the middle class ("median income voter")

- Consequences:
 - No cycles in majority rule when preferences are single-peaked
 - Political candidates tend to adopt positions near the median voter
 - Explains the tendency toward moderation in two-party systems
 - Economic policy often targets the middle class ("median income voter")
 - Stability of democratic outcomes despite theoretical challenges

- Consequences:
 - No cycles in majority rule when preferences are single-peaked
 - Political candidates tend to adopt positions near the median voter
 - Explains the tendency toward moderation in two-party systems
 - Economic policy often targets the middle class ("median income voter")
 - Stability of democratic outcomes despite theoretical challenges
- Limitations:

- Consequences:
 - No cycles in majority rule when preferences are single-peaked
 - Political candidates tend to adopt positions near the median voter
 - Explains the tendency toward moderation in two-party systems
 - Economic policy often targets the middle class ("median income voter")
 - Stability of democratic outcomes despite theoretical challenges
- Limitations:
 - Assumes alternatives can be ordered on a single dimension

- Consequences:
 - No cycles in majority rule when preferences are single-peaked
 - Political candidates tend to adopt positions near the median voter
 - Explains the tendency toward moderation in two-party systems
 - Economic policy often targets the middle class ("median income voter")
 - Stability of democratic outcomes despite theoretical challenges
- Limitations:
 - Assumes alternatives can be ordered on a single dimension
 - Complex issues often involve multiple dimensions

• Consequences:

- No cycles in majority rule when preferences are single-peaked
- Political candidates tend to adopt positions near the median voter
- Explains the tendency toward moderation in two-party systems
- Economic policy often targets the middle class ("median income voter")
- Stability of democratic outcomes despite theoretical challenges
- Limitations:
 - Assumes alternatives can be ordered on a single dimension
 - Complex issues often involve multiple dimensions
 - Strategic behavior can still affect outcomes

Voting as Information Aggregation

• Setting:

- Setting:
 - Two alternatives, one of which is objectively better

- Setting:
 - Two alternatives, one of which is objectively better
 - Each voter receives an independent signal about which is better

- Setting:
 - Two alternatives, one of which is objectively better
 - Each voter receives an independent signal about which is better
 - ullet Signals favor the correct alternative with probability q>1/2

- Setting:
 - Two alternatives, one of which is objectively better
 - Each voter receives an independent signal about which is better
 - ullet Signals favor the correct alternative with probability q>1/2
- Condorcet Jury Theorem:

- Setting:
 - Two alternatives, one of which is objectively better
 - Each voter receives an independent signal about which is better
 - ullet Signals favor the correct alternative with probability q>1/2
- Condorcet Jury Theorem:
 - As the number of voters increases, the probability that the majority chooses the correct alternative approaches 1

- Setting:
 - Two alternatives, one of which is objectively better
 - Each voter receives an independent signal about which is better
 - ullet Signals favor the correct alternative with probability q>1/2
- Condorcet Jury Theorem:
 - As the number of voters increases, the probability that the majority chooses the correct alternative approaches 1
- Mathematical formulation:

- Setting:
 - Two alternatives, one of which is objectively better
 - Each voter receives an independent signal about which is better
 - Signals favor the correct alternative with probability q>1/2
- Condorcet Jury Theorem:
 - As the number of voters increases, the probability that the majority chooses the correct alternative approaches 1
- Mathematical formulation:
 - Let X_i be 1 if voter i votes correctly, 0 otherwise

- Setting:
 - Two alternatives, one of which is objectively better
 - Each voter receives an independent signal about which is better
 - ullet Signals favor the correct alternative with probability q>1/2
- Condorcet Jury Theorem:
 - As the number of voters increases, the probability that the majority chooses the correct alternative approaches 1
- Mathematical formulation:
 - Let X_i be 1 if voter i votes correctly, 0 otherwise
 - Each X_i is independent with $\mathbb{P}(X_i=1)=q>1/2$

- Setting:
 - Two alternatives, one of which is objectively better
 - Each voter receives an independent signal about which is better
 - Signals favor the correct alternative with probability q>1/2
- Condorcet Jury Theorem:
 - As the number of voters increases, the probability that the majority chooses the correct alternative approaches 1
- Mathematical formulation:
 - Let X_i be 1 if voter i votes correctly, 0 otherwise
 - Each X_i is independent with $\mathbb{P}(X_i = 1) = q > 1/2$
 - By the Law of Large Numbers, as $n \to \infty$:

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}>\frac{1}{2}\right)\to 1$$

- Setting:
 - Two alternatives, one of which is objectively better
 - Each voter receives an independent signal about which is better
 - Signals favor the correct alternative with probability q>1/2
- Condorcet Jury Theorem:
 - As the number of voters increases, the probability that the majority chooses the correct alternative approaches 1
- Mathematical formulation:
 - Let X_i be 1 if voter i votes correctly, 0 otherwise
 - Each X_i is independent with $\mathbb{P}(X_i = 1) = q > 1/2$
 - By the Law of Large Numbers, as $n \to \infty$:

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}>\frac{1}{2}\right)\to 1$$

• Implications:

- Setting:
 - Two alternatives, one of which is objectively better
 - Each voter receives an independent signal about which is better
 - Signals favor the correct alternative with probability q>1/2
- Condorcet Jury Theorem:
 - As the number of voters increases, the probability that the majority chooses the correct alternative approaches 1
- Mathematical formulation:
 - Let X_i be 1 if voter i votes correctly, 0 otherwise
 - Each X_i is independent with $\mathbb{P}(X_i = 1) = q > 1/2$
 - By the Law of Large Numbers, as $n \to \infty$:

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}>\frac{1}{2}\right)\to 1$$

- Implications:
 - "Wisdom of crowds" in situations with objectively correct answers

- Setting:
 - Two alternatives, one of which is objectively better
 - Each voter receives an independent signal about which is better
 - Signals favor the correct alternative with probability q>1/2
- Condorcet Jury Theorem:
 - As the number of voters increases, the probability that the majority chooses the correct alternative approaches 1
- Mathematical formulation:
 - Let X_i be 1 if voter i votes correctly, 0 otherwise
 - Each X_i is independent with $\mathbb{P}(X_i = 1) = q > 1/2$
 - By the Law of Large Numbers, as $n \to \infty$:

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}>\frac{1}{2}\right)\to 1$$

- Implications:
 - "Wisdom of crowds" in situations with objectively correct answers
 - Larger juries may reach more accurate verdicts

The Condorcet Jury Theorem

- Setting:
 - Two alternatives, one of which is objectively better
 - Each voter receives an independent signal about which is better
 - Signals favor the correct alternative with probability q > 1/2
- Condorcet Jury Theorem:
 - As the number of voters increases, the probability that the majority chooses the correct alternative approaches 1
- Mathematical formulation:
 - Let X_i be 1 if voter i votes correctly, 0 otherwise
 - Each X_i is independent with $\mathbb{P}(X_i = 1) = q > 1/2$
 - By the Law of Large Numbers, as $n \to \infty$:

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}>\frac{1}{2}\right)\to 1$$

- Implications:
 - "Wisdom of crowds" in situations with objectively correct answers
 - Larger juries may reach more accurate verdicts
 - Statistical foundation for democratic decision-making

The Condorcet Jury Theorem

- Setting:
 - Two alternatives, one of which is objectively better
 - Each voter receives an independent signal about which is better
 - Signals favor the correct alternative with probability q>1/2
- Condorcet Jury Theorem:
 - As the number of voters increases, the probability that the majority chooses the correct alternative approaches 1
- Mathematical formulation:
 - Let X_i be 1 if voter i votes correctly, 0 otherwise
 - Each X_i is independent with $\mathbb{P}(X_i = 1) = q > 1/2$
 - By the Law of Large Numbers, as $n \to \infty$:

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}>\frac{1}{2}\right)\to 1$$

- Implications:
 - "Wisdom of crowds" in situations with objectively correct answers
 - Larger juries may reach more accurate verdicts
 - Statistical foundation for democratic decision-making
 - Provides theoretical justification for polling and aggregating expert opinions

The Condorcet Jury Theorem

- Setting:
 - Two alternatives, one of which is objectively better
 - Each voter receives an independent signal about which is better
 - ullet Signals favor the correct alternative with probability q>1/2
- Condorcet Jury Theorem:
 - As the number of voters increases, the probability that the majority chooses the correct alternative approaches 1
- Mathematical formulation:
 - Let X_i be 1 if voter i votes correctly, 0 otherwise
 - Each X_i is independent with $\mathbb{P}(X_i = 1) = q > 1/2$
 - By the Law of Large Numbers, as $n \to \infty$:

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}>\frac{1}{2}\right)\to 1$$

- Implications:
 - "Wisdom of crowds" in situations with objectively correct answers
 - Larger juries may reach more accurate verdicts
 - Statistical foundation for democratic decision-making
 - Provides theoretical justification for polling and aggregating expert opinions
 - Shows how collective intelligence can exceed individual intelligence

• Surprising result: Sometimes voters should vote insincerely even when trying to reach the correct group decision

- Surprising result: Sometimes voters should vote insincerely even when trying to reach the correct group decision
- Example scenario:

- Surprising result: Sometimes voters should vote insincerely even when trying to reach the correct group decision
- Example scenario:
 - Urn with either all white marbles or 90% green, 10% white

- Surprising result: Sometimes voters should vote insincerely even when trying to reach the correct group decision
- Example scenario:
 - Urn with either all white marbles or 90% green, 10% white
 - Each person draws one marble, then votes on urn type

- Surprising result: Sometimes voters should vote insincerely even when trying to reach the correct group decision
- Example scenario:
 - Urn with either all white marbles or 90% green, 10% white
 - Each person draws one marble, then votes on urn type
 - Group wins only if majority vote is correct

- Surprising result: Sometimes voters should vote insincerely even when trying to reach the correct group decision
- Example scenario:
 - Urn with either all white marbles or 90% green, 10% white
 - Each person draws one marble, then votes on urn type
 - Group wins only if majority vote is correct
- Strategic insight:

- Surprising result: Sometimes voters should vote insincerely even when trying to reach the correct group decision
- Example scenario:
 - Urn with either all white marbles or 90% green, 10% white
 - Each person draws one marble, then votes on urn type
 - Group wins only if majority vote is correct
- Strategic insight:
 - Your vote only matters when it breaks a tie

- Surprising result: Sometimes voters should vote insincerely even when trying to reach the correct group decision
- Example scenario:
 - Urn with either all white marbles or 90% green, 10% white
 - Each person draws one marble, then votes on urn type
 - Group wins only if majority vote is correct
- Strategic insight:
 - Your vote only matters when it breaks a tie
 - In that case, others' signals provide valuable information

- Surprising result: Sometimes voters should vote insincerely even when trying to reach the correct group decision
- Example scenario:
 - Urn with either all white marbles or 90% green, 10% white
 - Each person draws one marble, then votes on urn type
 - Group wins only if majority vote is correct
- Strategic insight:
 - Your vote only matters when it breaks a tie
 - In that case, others' signals provide valuable information
 - Optimal strategy may be to vote against your own signal

- Surprising result: Sometimes voters should vote insincerely even when trying to reach the correct group decision
- Example scenario:
 - Urn with either all white marbles or 90% green, 10% white
 - Each person draws one marble, then votes on urn type
 - Group wins only if majority vote is correct
- Strategic insight:
 - Your vote only matters when it breaks a tie
 - In that case, others' signals provide valuable information
 - Optimal strategy may be to vote against your own signal
- Mathematical formulation:

- Surprising result: Sometimes voters should vote insincerely even when trying to reach the correct group decision
- Example scenario:
 - Urn with either all white marbles or 90% green, 10% white
 - Each person draws one marble, then votes on urn type
 - Group wins only if majority vote is correct
- Strategic insight:
 - Your vote only matters when it breaks a tie
 - In that case, others' signals provide valuable information
 - Optimal strategy may be to vote against your own signal
- Mathematical formulation:
 - Let s_i be voter i's signal

- Surprising result: Sometimes voters should vote insincerely even when trying to reach the correct group decision
- Example scenario:
 - Urn with either all white marbles or 90% green, 10% white
 - Each person draws one marble, then votes on urn type
 - Group wins only if majority vote is correct
- Strategic insight:
 - Your vote only matters when it breaks a tie
 - In that case, others' signals provide valuable information
 - Optimal strategy may be to vote against your own signal
- Mathematical formulation:
 - Let s_i be voter i's signal
 - A rational voter computes: $\mathbb{P}(\text{correct urn} \mid s_i, \text{my vote matters})$

- Surprising result: Sometimes voters should vote insincerely even when trying to reach the correct group decision
- Example scenario:
 - Urn with either all white marbles or 90% green, 10% white
 - Each person draws one marble, then votes on urn type
 - Group wins only if majority vote is correct
- Strategic insight:
 - Your vote only matters when it breaks a tie
 - In that case, others' signals provide valuable information
 - Optimal strategy may be to vote against your own signal
- Mathematical formulation:
 - Let s_i be voter i's signal
 - A rational voter computes: $\mathbb{P}(\text{correct urn} \mid s_i, \text{my vote matters})$
 - This probability may favor the opposite of what s_i suggests

- Surprising result: Sometimes voters should vote insincerely even when trying to reach the correct group decision
- Example scenario:
 - Urn with either all white marbles or 90% green, 10% white
 - Each person draws one marble, then votes on urn type
 - Group wins only if majority vote is correct
- Strategic insight:
 - Your vote only matters when it breaks a tie
 - In that case, others' signals provide valuable information
 - Optimal strategy may be to vote against your own signal
- Mathematical formulation:
 - Let s_i be voter i's signal
 - A rational voter computes: $\mathbb{P}(\text{correct urn} \mid s_i, \text{my vote matters})$
 - This probability may favor the opposite of what s_i suggests
- Broader implications:

- Surprising result: Sometimes voters should vote insincerely even when trying to reach the correct group decision
- Example scenario:
 - Urn with either all white marbles or 90% green, 10% white
 - Each person draws one marble, then votes on urn type
 - Group wins only if majority vote is correct
- Strategic insight:
 - Your vote only matters when it breaks a tie
 - In that case, others' signals provide valuable information
 - Optimal strategy may be to vote against your own signal
- Mathematical formulation:
 - Let s_i be voter i's signal
 - A rational voter computes: $\mathbb{P}(\text{correct urn} \mid s_i, \text{my vote matters})$
 - This probability may favor the opposite of what s_i suggests
- Broader implications:
 - Strategic voting can actually improve group accuracy

- Surprising result: Sometimes voters should vote insincerely even when trying to reach the correct group decision
- Example scenario:
 - Urn with either all white marbles or 90% green, 10% white
 - Each person draws one marble, then votes on urn type
 - Group wins only if majority vote is correct
- Strategic insight:
 - Your vote only matters when it breaks a tie
 - In that case, others' signals provide valuable information
 - Optimal strategy may be to vote against your own signal
- Mathematical formulation:
 - Let s_i be voter i's signal
 - A rational voter computes: $\mathbb{P}(\text{correct urn} \mid s_i, \text{my vote matters})$
 - This probability may favor the opposite of what s_i suggests
- Broader implications:
 - Strategic voting can actually improve group accuracy
 - Optimal voting behavior should account for pivotality

- Surprising result: Sometimes voters should vote insincerely even when trying to reach the correct group decision
- Example scenario:
 - Urn with either all white marbles or 90% green, 10% white
 - Each person draws one marble, then votes on urn type
 - Group wins only if majority vote is correct
- Strategic insight:
 - Your vote only matters when it breaks a tie
 - In that case, others' signals provide valuable information
 - Optimal strategy may be to vote against your own signal
- Mathematical formulation:
 - Let s_i be voter i's signal
 - A rational voter computes: $\mathbb{P}(\text{correct urn} \mid s_i, \text{my vote matters})$
 - This probability may favor the opposite of what s_i suggests
- Broader implications:
 - Strategic voting can actually improve group accuracy
 - Optimal voting behavior should account for pivotality
 - Simple majority rule may not extract all available information

- Surprising result: Sometimes voters should vote insincerely even when trying to reach the correct group decision
- Example scenario:
 - Urn with either all white marbles or 90% green, 10% white
 - Each person draws one marble, then votes on urn type
 - Group wins only if majority vote is correct
- Strategic insight:
 - Your vote only matters when it breaks a tie
 - In that case, others' signals provide valuable information
 - Optimal strategy may be to vote against your own signal
- Mathematical formulation:
 - Let s_i be voter i's signal
 - A rational voter computes: $\mathbb{P}(\text{correct urn} \mid s_i, \text{my vote matters})$
 - This probability may favor the opposite of what s_i suggests
- Broader implications:
 - Strategic voting can actually improve group accuracy
 - Optimal voting behavior should account for pivotality
 - Simple majority rule may not extract all available information
 - Suggests need for mechanisms that encourage information sharing

- Surprising result: Sometimes voters should vote insincerely even when trying to reach the correct group decision
- Example scenario:
 - Urn with either all white marbles or 90% green, 10% white
 - Each person draws one marble, then votes on urn type
 - Group wins only if majority vote is correct
- Strategic insight:
 - Your vote only matters when it breaks a tie
 - In that case, others' signals provide valuable information
 - Optimal strategy may be to vote against your own signal
- Mathematical formulation:
 - Let s_i be voter i's signal
 - A rational voter computes: $\mathbb{P}(\text{correct urn} \mid s_i, \text{my vote matters})$
 - This probability may favor the opposite of what s_i suggests
- Broader implications:
 - Strategic voting can actually improve group accuracy
 - Optimal voting behavior should account for pivotality
 - Simple majority rule may not extract all available information
 - Suggests need for mechanisms that encourage information sharing
 - Relates to "pivotal voter" models in political economy

• Criminal trials: Conviction requires unanimous vote

- Criminal trials: Conviction requires unanimous vote
- "Beyond reasonable doubt" standard: High threshold for conviction

- Criminal trials: Conviction requires unanimous vote
- "Beyond reasonable doubt" standard: High threshold for conviction
- Each juror receives private signals about guilt/innocence

- Criminal trials: Conviction requires unanimous vote
- "Beyond reasonable doubt" standard: High threshold for conviction
- Each juror receives private signals about guilt/innocence
- Paradox with unanimity rule:

- Criminal trials: Conviction requires unanimous vote
- "Beyond reasonable doubt" standard: High threshold for conviction
- Each juror receives private signals about guilt/innocence
- Paradox with unanimity rule:
 - A juror's vote matters only when everyone else votes to convict

- Criminal trials: Conviction requires unanimous vote
- "Beyond reasonable doubt" standard: High threshold for conviction
- Each juror receives private signals about guilt/innocence
- Paradox with unanimity rule:
 - A juror's vote matters only when everyone else votes to convict
 - This implies strong evidence of guilt, even with an innocence signal

- Criminal trials: Conviction requires unanimous vote
- "Beyond reasonable doubt" standard: High threshold for conviction
- Each juror receives private signals about guilt/innocence
- Paradox with unanimity rule:
 - A juror's vote matters only when everyone else votes to convict
 - This implies strong evidence of guilt, even with an innocence signal
 - Creates incentive to disregard innocence signals

- Criminal trials: Conviction requires unanimous vote
- "Beyond reasonable doubt" standard: High threshold for conviction
- Each juror receives private signals about guilt/innocence
- Paradox with unanimity rule:
 - A juror's vote matters only when everyone else votes to convict
 - This implies strong evidence of guilt, even with an innocence signal
 - Creates incentive to disregard innocence signals
- Game-theoretic analysis (Feddersen & Pesendorfer, 1998):

- Criminal trials: Conviction requires unanimous vote
- "Beyond reasonable doubt" standard: High threshold for conviction
- Each juror receives private signals about guilt/innocence
- Paradox with unanimity rule:
 - A juror's vote matters only when everyone else votes to convict
 - This implies strong evidence of guilt, even with an innocence signal
 - Creates incentive to disregard innocence signals
- Game-theoretic analysis (Feddersen & Pesendorfer, 1998):
 - In equilibrium, jurors with "innocent" signals sometimes vote to convict

- Criminal trials: Conviction requires unanimous vote
- "Beyond reasonable doubt" standard: High threshold for conviction
- Each juror receives private signals about guilt/innocence
- Paradox with unanimity rule:
 - A juror's vote matters only when everyone else votes to convict
 - This implies strong evidence of guilt, even with an innocence signal
 - Creates incentive to disregard innocence signals
- Game-theoretic analysis (Feddersen & Pesendorfer, 1998):
 - In equilibrium, jurors with "innocent" signals sometimes vote to convict
 - As jury size increases, probabilty of convicting innocent defendants doesn't vanish

- Criminal trials: Conviction requires unanimous vote
- "Beyond reasonable doubt" standard: High threshold for conviction
- Each juror receives private signals about guilt/innocence
- Paradox with unanimity rule:
 - A juror's vote matters only when everyone else votes to convict
 - This implies strong evidence of guilt, even with an innocence signal
 - Creates incentive to disregard innocence signals
- Game-theoretic analysis (Feddersen & Pesendorfer, 1998):
 - In equilibrium, jurors with "innocent" signals sometimes vote to convict
 - As jury size increases, probabilty of convicting innocent defendants doesn't vanish
 - Supermajority rules (e.g., 10 out of 12) may produce better outcomes than unanimity

- Criminal trials: Conviction requires unanimous vote
- "Beyond reasonable doubt" standard: High threshold for conviction
- Each juror receives private signals about guilt/innocence
- Paradox with unanimity rule:
 - A juror's vote matters only when everyone else votes to convict
 - This implies strong evidence of guilt, even with an innocence signal
 - Creates incentive to disregard innocence signals
- Game-theoretic analysis (Feddersen & Pesendorfer, 1998):
 - In equilibrium, jurors with "innocent" signals sometimes vote to convict
 - As jury size increases, probabilty of convicting innocent defendants doesn't vanish
 - Supermajority rules (e.g., 10 out of 12) may produce better outcomes than unanimity
- Counterintuitive result: Unanimity rule may lead to more false convictions than majority rule

- Criminal trials: Conviction requires unanimous vote
- "Beyond reasonable doubt" standard: High threshold for conviction
- Each juror receives private signals about guilt/innocence
- Paradox with unanimity rule:
 - A juror's vote matters only when everyone else votes to convict
 - This implies strong evidence of guilt, even with an innocence signal
 - Creates incentive to disregard innocence signals
- Game-theoretic analysis (Feddersen & Pesendorfer, 1998):
 - In equilibrium, jurors with "innocent" signals sometimes vote to convict
 - As jury size increases, probabilty of convicting innocent defendants doesn't vanish
 - Supermajority rules (e.g., 10 out of 12) may produce better outcomes than unanimity
- Counterintuitive result: Unanimity rule may lead to more false convictions than majority rule
- Policy implications:

- Criminal trials: Conviction requires unanimous vote
- "Beyond reasonable doubt" standard: High threshold for conviction
- Each juror receives private signals about guilt/innocence
- Paradox with unanimity rule:
 - A juror's vote matters only when everyone else votes to convict
 - This implies strong evidence of guilt, even with an innocence signal
 - Creates incentive to disregard innocence signals
- Game-theoretic analysis (Feddersen & Pesendorfer, 1998):
 - In equilibrium, jurors with "innocent" signals sometimes vote to convict
 - As jury size increases, probabilty of convicting innocent defendants doesn't vanish
 - Supermajority rules (e.g., 10 out of 12) may produce better outcomes than unanimity
- Counterintuitive result: Unanimity rule may lead to more false convictions than majority rule
- Policy implications:
 - Voting rules should account for strategic behavior

- Criminal trials: Conviction requires unanimous vote
- "Beyond reasonable doubt" standard: High threshold for conviction
- Each juror receives private signals about guilt/innocence
- Paradox with unanimity rule:
 - A juror's vote matters only when everyone else votes to convict
 - This implies strong evidence of guilt, even with an innocence signal
 - Creates incentive to disregard innocence signals
- Game-theoretic analysis (Feddersen & Pesendorfer, 1998):
 - In equilibrium, jurors with "innocent" signals sometimes vote to convict
 - As jury size increases, probabilty of convicting innocent defendants doesn't vanish
 - Supermajority rules (e.g., 10 out of 12) may produce better outcomes than unanimity
- Counterintuitive result: Unanimity rule may lead to more false convictions than majority rule
- Policy implications:
 - Voting rules should account for strategic behavior
 - Deliberation before voting may improve information sharing

- Criminal trials: Conviction requires unanimous vote
- "Beyond reasonable doubt" standard: High threshold for conviction
- Each juror receives private signals about guilt/innocence
- Paradox with unanimity rule:
 - A juror's vote matters only when everyone else votes to convict
 - This implies strong evidence of guilt, even with an innocence signal
 - Creates incentive to disregard innocence signals
- Game-theoretic analysis (Feddersen & Pesendorfer, 1998):
 - In equilibrium, jurors with "innocent" signals sometimes vote to convict
 - As jury size increases, probabilty of convicting innocent defendants doesn't vanish
 - Supermajority rules (e.g., 10 out of 12) may produce better outcomes than unanimity
- Counterintuitive result: Unanimity rule may lead to more false convictions than majority rule
- Policy implications:
 - Voting rules should account for strategic behavior
 - Deliberation before voting may improve information sharing
 - Legal systems should balance error costs carefully

- Criminal trials: Conviction requires unanimous vote
- "Beyond reasonable doubt" standard: High threshold for conviction
- Each juror receives private signals about guilt/innocence
- Paradox with unanimity rule:
 - A juror's vote matters only when everyone else votes to convict
 - This implies strong evidence of guilt, even with an innocence signal
 - Creates incentive to disregard innocence signals
- Game-theoretic analysis (Feddersen & Pesendorfer, 1998):
 - In equilibrium, jurors with "innocent" signals sometimes vote to convict
 - As jury size increases, probabilty of convicting innocent defendants doesn't vanish
 - Supermajority rules (e.g., 10 out of 12) may produce better outcomes than unanimity
- Counterintuitive result: Unanimity rule may lead to more false convictions than majority rule
- Policy implications:
 - Voting rules should account for strategic behavior
 - Deliberation before voting may improve information sharing
 - Legal systems should balance error costs carefully
 - Simple voting rules may have complex strategic consequences

• When voting is sequential rather than simultaneous: Later voters see earlier votes (but not private signals), information cascades can develop

- When voting is sequential rather than simultaneous: Later voters see earlier votes (but not private signals), information cascades can develop
- Process:

- When voting is sequential rather than simultaneous: Later voters see earlier votes (but not private signals), information cascades can develop
- Process:
 - After two votes for the same alternative, all subsequent voters rationally disregard their own signals; all follow the established pattern

- When voting is sequential rather than simultaneous: Later voters see earlier votes (but not private signals), information cascades can develop
- Process:
 - After two votes for the same alternative, all subsequent voters rationally disregard their own signals; all follow the established pattern
 - Can lead to incorrect group decision even with many voters

- When voting is sequential rather than simultaneous: Later voters see earlier votes (but not private signals), information cascades can develop
- Process:
 - After two votes for the same alternative, all subsequent voters rationally disregard their own signals; all follow the established pattern
 - Can lead to incorrect group decision even with many voters
- Mathematical formulation:

- When voting is sequential rather than simultaneous: Later voters see earlier votes (but not private signals), information cascades can develop
- Process:
 - After two votes for the same alternative, all subsequent voters rationally disregard their own signals; all follow the established pattern
 - Can lead to incorrect group decision even with many voters
- Mathematical formulation:
 - Voter *n* decides based on prior votes v_1, \ldots, v_{n-1} and private signal s_n

- When voting is sequential rather than simultaneous: Later voters see earlier votes (but not private signals), information cascades can develop
- Process:
 - After two votes for the same alternative, all subsequent voters rationally disregard their own signals; all follow the established pattern
 - Can lead to incorrect group decision even with many voters
- Mathematical formulation:
 - Voter *n* decides based on prior votes v_1, \ldots, v_{n-1} and private signal s_n
 - Vote according to $\mathbb{P}(\text{correct option} \mid v_1, \ldots, v_{n-1}, s_n)$

- When voting is sequential rather than simultaneous: Later voters see earlier votes (but not private signals), information cascades can develop
- Process:
 - After two votes for the same alternative, all subsequent voters rationally disregard their own signals; all follow the established pattern
 - Can lead to incorrect group decision even with many voters
- Mathematical formulation:
 - Voter *n* decides based on prior votes v_1, \ldots, v_{n-1} and private signal s_n
 - Vote according to $\mathbb{P}(\text{correct option} \mid v_1, \ldots, v_{n-1}, s_n)$
 - After certain voting patterns, this probability becomes independent of s_n

- When voting is sequential rather than simultaneous: Later voters see earlier votes (but not private signals), information cascades can develop
- Process:
 - After two votes for the same alternative, all subsequent voters rationally disregard their own signals; all follow the established pattern
 - Can lead to incorrect group decision even with many voters
- Mathematical formulation:
 - Voter *n* decides based on prior votes v_1, \ldots, v_{n-1} and private signal s_n
 - Vote according to $\mathbb{P}(\text{correct option} \mid v_1, \ldots, v_{n-1}, s_n)$
 - After certain voting patterns, this probability becomes independent of s_n
- Key differences from Condorcet Jury Theorem:

- When voting is sequential rather than simultaneous: Later voters see earlier votes (but not private signals), information cascades can develop
- Process:
 - After two votes for the same alternative, all subsequent voters rationally disregard their own signals; all follow the established pattern
 - Can lead to incorrect group decision even with many voters
- Mathematical formulation:
 - Voter *n* decides based on prior votes v_1, \ldots, v_{n-1} and private signal s_n
 - Vote according to $\mathbb{P}(\text{correct option} \mid v_1, \ldots, v_{n-1}, s_n)$
 - After certain voting patterns, this probability becomes independent of s_n
- Key differences from Condorcet Jury Theorem:
 - Sequential voting can lead to wrong cascades

- When voting is sequential rather than simultaneous: Later voters see earlier votes (but not private signals), information cascades can develop
- Process:
 - After two votes for the same alternative, all subsequent voters rationally disregard their own signals; all follow the established pattern
 - Can lead to incorrect group decision even with many voters
- Mathematical formulation:
 - Voter *n* decides based on prior votes v_1, \ldots, v_{n-1} and private signal s_n
 - Vote according to $\mathbb{P}(\text{correct option} \mid v_1, \ldots, v_{n-1}, s_n)$
 - After certain voting patterns, this probability becomes independent of s_n
- Key differences from Condorcet Jury Theorem:
 - Sequential voting can lead to wrong cascades
 - Adding more voters doesn't guarantee correct outcome

- When voting is sequential rather than simultaneous: Later voters see earlier votes (but not private signals), information cascades can develop
- Process:
 - After two votes for the same alternative, all subsequent voters rationally disregard their own signals; all follow the established pattern
 - Can lead to incorrect group decision even with many voters
- Mathematical formulation:
 - Voter *n* decides based on prior votes v_1, \ldots, v_{n-1} and private signal s_n
 - Vote according to $\mathbb{P}(\text{correct option} \mid v_1, \ldots, v_{n-1}, s_n)$
 - After certain voting patterns, this probability becomes independent of s_n
- Key differences from Condorcet Jury Theorem:
 - Sequential voting can lead to wrong cascades
 - Adding more voters doesn't guarantee correct outcome
 - Group decision uses only the first few signals

- When voting is sequential rather than simultaneous: Later voters see earlier votes (but not private signals), information cascades can develop
- Process:
 - After two votes for the same alternative, all subsequent voters rationally disregard their own signals; all follow the established pattern
 - Can lead to incorrect group decision even with many voters
- Mathematical formulation:
 - Voter *n* decides based on prior votes v_1, \ldots, v_{n-1} and private signal s_n
 - Vote according to $\mathbb{P}(\text{correct option} \mid v_1, \ldots, v_{n-1}, s_n)$
 - After certain voting patterns, this probability becomes independent of s_n
- Key differences from Condorcet Jury Theorem:
 - Sequential voting can lead to wrong cascades
 - Adding more voters doesn't guarantee correct outcome
 - Group decision uses only the first few signals
 - Initial voters have disproportionate influence

- When voting is sequential rather than simultaneous: Later voters see earlier votes (but not private signals), information cascades can develop
- Process:
 - After two votes for the same alternative, all subsequent voters rationally disregard their own signals; all follow the established pattern
 - Can lead to incorrect group decision even with many voters
- Mathematical formulation:
 - Voter *n* decides based on prior votes v_1, \ldots, v_{n-1} and private signal s_n
 - Vote according to $\mathbb{P}(\text{correct option} \mid v_1, \ldots, v_{n-1}, s_n)$
 - After certain voting patterns, this probability becomes independent of s_n
- Key differences from Condorcet Jury Theorem:
 - Sequential voting can lead to wrong cascades
 - Adding more voters doesn't guarantee correct outcome
 - Group decision uses only the first few signals
 - Initial voters have disproportionate influence
 - Small changes in initial conditions can lead to different outcomes

- When voting is sequential rather than simultaneous: Later voters see earlier votes (but not private signals), information cascades can develop
- Process:
 - After two votes for the same alternative, all subsequent voters rationally disregard their own signals; all follow the established pattern
 - Can lead to incorrect group decision even with many voters
- Mathematical formulation:
 - Voter *n* decides based on prior votes v_1, \ldots, v_{n-1} and private signal s_n
 - Vote according to $\mathbb{P}(\text{correct option} \mid v_1, \ldots, v_{n-1}, s_n)$
 - After certain voting patterns, this probability becomes independent of s_n
- Key differences from Condorcet Jury Theorem:
 - Sequential voting can lead to wrong cascades
 - Adding more voters doesn't guarantee correct outcome
 - Group decision uses only the first few signals
 - Initial voters have disproportionate influence
 - Small changes in initial conditions can lead to different outcomes
- Real-world examples:

- When voting is sequential rather than simultaneous: Later voters see earlier votes (but not private signals), information cascades can develop
- Process:
 - After two votes for the same alternative, all subsequent voters rationally disregard their own signals; all follow the established pattern
 - Can lead to incorrect group decision even with many voters
- Mathematical formulation:
 - Voter *n* decides based on prior votes v_1, \ldots, v_{n-1} and private signal s_n
 - Vote according to $\mathbb{P}(\text{correct option} \mid v_1, \ldots, v_{n-1}, s_n)$
 - After certain voting patterns, this probability becomes independent of s_n
- Key differences from Condorcet Jury Theorem:
 - Sequential voting can lead to wrong cascades
 - Adding more voters doesn't guarantee correct outcome
 - Group decision uses only the first few signals
 - Initial voters have disproportionate influence
 - Small changes in initial conditions can lead to different outcomes
- Real-world examples:
 - Primary elections (early states influence later voters)

- When voting is sequential rather than simultaneous: Later voters see earlier votes (but not private signals), information cascades can develop
- Process:
 - After two votes for the same alternative, all subsequent voters rationally disregard their own signals; all follow the established pattern
 - Can lead to incorrect group decision even with many voters
- Mathematical formulation:
 - Voter *n* decides based on prior votes v_1, \ldots, v_{n-1} and private signal s_n
 - Vote according to $\mathbb{P}(\text{correct option} \mid v_1, \ldots, v_{n-1}, s_n)$
 - After certain voting patterns, this probability becomes independent of s_n
- Key differences from Condorcet Jury Theorem:
 - Sequential voting can lead to wrong cascades
 - Adding more voters doesn't guarantee correct outcome
 - Group decision uses only the first few signals
 - Initial voters have disproportionate influence
 - Small changes in initial conditions can lead to different outcomes
- Real-world examples:
 - Primary elections (early states influence later voters)
 - Committee discussions (early speakers shape consensus)

- When voting is sequential rather than simultaneous: Later voters see earlier votes (but not private signals), information cascades can develop
- Process:
 - After two votes for the same alternative, all subsequent voters rationally disregard their own signals; all follow the established pattern
 - Can lead to incorrect group decision even with many voters
- Mathematical formulation:
 - Voter *n* decides based on prior votes v_1, \ldots, v_{n-1} and private signal s_n
 - Vote according to $\mathbb{P}(\text{correct option} \mid v_1, \ldots, v_{n-1}, s_n)$
 - After certain voting patterns, this probability becomes independent of s_n
- Key differences from Condorcet Jury Theorem:
 - Sequential voting can lead to wrong cascades
 - Adding more voters doesn't guarantee correct outcome
 - Group decision uses only the first few signals
 - Initial voters have disproportionate influence
 - Small changes in initial conditions can lead to different outcomes
- Real-world examples:
 - Primary elections (early states influence later voters)
 - Committee discussions (early speakers shape consensus)
 - Online reviews and ratings (early ratings influence later evaluations)

- When voting is sequential rather than simultaneous: Later voters see earlier votes (but not private signals), information cascades can develop
- Process:
 - After two votes for the same alternative, all subsequent voters rationally disregard their own signals; all follow the established pattern
 - Can lead to incorrect group decision even with many voters
- Mathematical formulation:
 - Voter *n* decides based on prior votes v_1, \ldots, v_{n-1} and private signal s_n
 - Vote according to $\mathbb{P}(\text{correct option} \mid v_1, \ldots, v_{n-1}, s_n)$
 - After certain voting patterns, this probability becomes independent of s_n
- Key differences from Condorcet Jury Theorem:
 - Sequential voting can lead to wrong cascades
 - Adding more voters doesn't guarantee correct outcome
 - Group decision uses only the first few signals
 - Initial voters have disproportionate influence
 - Small changes in initial conditions can lead to different outcomes
- Real-world examples:
 - Primary elections (early states influence later voters)
 - Committee discussions (early speakers shape consensus)
 - Online reviews and ratings (early ratings influence later evaluations)
 - Academic citation patterns (papers with early citations attract more)

Conclusion

• Voting systems face fundamental limitations:

- Voting systems face fundamental limitations:
 - Condorcet Paradox: Even with rational individuals, group preferences can be cyclical

- Voting systems face fundamental limitations:
 - Condorcet Paradox: Even with rational individuals, group preferences can be cyclical
 - Arrow's Impossibility Theorem: No voting system can satisfy all desired properties simultaneously

- Voting systems face fundamental limitations:
 - Condorcet Paradox: Even with rational individuals, group preferences can be cyclical
 - Arrow's Impossibility Theorem: No voting system can satisfy all desired properties simultaneously
 - Sequential voting can lead to information cascades that disregard most available information

- Voting systems face fundamental limitations:
 - Condorcet Paradox: Even with rational individuals, group preferences can be cyclical
 - Arrow's Impossibility Theorem: No voting system can satisfy all desired properties simultaneously
 - Sequential voting can lead to information cascades that disregard most available information
- Practical implications:

- Voting systems face fundamental limitations:
 - Condorcet Paradox: Even with rational individuals, group preferences can be cyclical
 - Arrow's Impossibility Theorem: No voting system can satisfy all desired properties simultaneously
 - Sequential voting can lead to information cascades that disregard most available information
- Practical implications:
 - Majority rule works well with single-peaked preferences (Median Voter Theorem)

- Voting systems face fundamental limitations:
 - Condorcet Paradox: Even with rational individuals, group preferences can be cyclical
 - Arrow's Impossibility Theorem: No voting system can satisfy all desired properties simultaneously
 - Sequential voting can lead to information cascades that disregard most available information
- Practical implications:
 - Majority rule works well with single-peaked preferences (Median Voter Theorem)
 - Different voting contexts require different systems with different trade-offs

- Voting systems face fundamental limitations:
 - Condorcet Paradox: Even with rational individuals, group preferences can be cyclical
 - Arrow's Impossibility Theorem: No voting system can satisfy all desired properties simultaneously
 - Sequential voting can lead to information cascades that disregard most available information
- Practical implications:
 - Majority rule works well with single-peaked preferences (Median Voter Theorem)
 - Different voting contexts require different systems with different trade-offs
 - Strategic concerns must be considered in voting system design

- Voting systems face fundamental limitations:
 - Condorcet Paradox: Even with rational individuals, group preferences can be cyclical
 - Arrow's Impossibility Theorem: No voting system can satisfy all desired properties simultaneously
 - Sequential voting can lead to information cascades that disregard most available information
- Practical implications:
 - Majority rule works well with single-peaked preferences (Median Voter Theorem)
 - Different voting contexts require different systems with different trade-offs
 - Strategic concerns must be considered in voting system design
 - Institutional design should account for strategic voter behavior

- Voting systems face fundamental limitations:
 - Condorcet Paradox: Even with rational individuals, group preferences can be cyclical
 - Arrow's Impossibility Theorem: No voting system can satisfy all desired properties simultaneously
 - Sequential voting can lead to information cascades that disregard most available information
- Practical implications:
 - Majority rule works well with single-peaked preferences (Median Voter Theorem)
 - Different voting contexts require different systems with different trade-offs
 - Strategic concerns must be considered in voting system design
 - Institutional design should account for strategic voter behavior
 - Deliberation before voting may improve outcomes

- Voting systems face fundamental limitations:
 - Condorcet Paradox: Even with rational individuals, group preferences can be cyclical
 - Arrow's Impossibility Theorem: No voting system can satisfy all desired properties simultaneously
 - Sequential voting can lead to information cascades that disregard most available information
- Practical implications:
 - Majority rule works well with single-peaked preferences (Median Voter Theorem)
 - Different voting contexts require different systems with different trade-offs
 - Strategic concerns must be considered in voting system design
 - Institutional design should account for strategic voter behavior
 - Deliberation before voting may improve outcomes
- Information aggregation aspects:

- Voting systems face fundamental limitations:
 - Condorcet Paradox: Even with rational individuals, group preferences can be cyclical
 - Arrow's Impossibility Theorem: No voting system can satisfy all desired properties simultaneously
 - Sequential voting can lead to information cascades that disregard most available information
- Practical implications:
 - Majority rule works well with single-peaked preferences (Median Voter Theorem)
 - Different voting contexts require different systems with different trade-offs
 - Strategic concerns must be considered in voting system design
 - Institutional design should account for strategic voter behavior
 - Deliberation before voting may improve outcomes
- Information aggregation aspects:
 - Condorcet Jury Theorem shows wisdom of crowds in simple settings

- Voting systems face fundamental limitations:
 - Condorcet Paradox: Even with rational individuals, group preferences can be cyclical
 - Arrow's Impossibility Theorem: No voting system can satisfy all desired properties simultaneously
 - Sequential voting can lead to information cascades that disregard most available information
- Practical implications:
 - Majority rule works well with single-peaked preferences (Median Voter Theorem)
 - Different voting contexts require different systems with different trade-offs
 - Strategic concerns must be considered in voting system design
 - Institutional design should account for strategic voter behavior
 - Deliberation before voting may improve outcomes
- Information aggregation aspects:
 - Condorcet Jury Theorem shows wisdom of crowds in simple settings
 - But insincere voting and information cascades can limit this wisdom

- Voting systems face fundamental limitations:
 - Condorcet Paradox: Even with rational individuals, group preferences can be cyclical
 - Arrow's Impossibility Theorem: No voting system can satisfy all desired properties simultaneously
 - Sequential voting can lead to information cascades that disregard most available information
- Practical implications:
 - Majority rule works well with single-peaked preferences (Median Voter Theorem)
 - Different voting contexts require different systems with different trade-offs
 - Strategic concerns must be considered in voting system design
 - Institutional design should account for strategic voter behavior
 - Deliberation before voting may improve outcomes
- Information aggregation aspects:
 - Condorcet Jury Theorem shows wisdom of crowds in simple settings
 - But insincere voting and information cascades can limit this wisdom
 - Voting rules like unanimity can have unexpected consequences

- Voting systems face fundamental limitations:
 - Condorcet Paradox: Even with rational individuals, group preferences can be cyclical
 - Arrow's Impossibility Theorem: No voting system can satisfy all desired properties simultaneously
 - Sequential voting can lead to information cascades that disregard most available information
- Practical implications:
 - Majority rule works well with single-peaked preferences (Median Voter Theorem)
 - Different voting contexts require different systems with different trade-offs
 - Strategic concerns must be considered in voting system design
 - Institutional design should account for strategic voter behavior
 - Deliberation before voting may improve outcomes
- Information aggregation aspects:
 - Condorcet Jury Theorem shows wisdom of crowds in simple settings
 - But insincere voting and information cascades can limit this wisdom
 - Voting rules like unanimity can have unexpected consequences
 - Optimal aggregation mechanisms depend on information structure

- Voting systems face fundamental limitations:
 - Condorcet Paradox: Even with rational individuals, group preferences can be cyclical
 - Arrow's Impossibility Theorem: No voting system can satisfy all desired properties simultaneously
 - Sequential voting can lead to information cascades that disregard most available information
- Practical implications:
 - Majority rule works well with single-peaked preferences (Median Voter Theorem)
 - Different voting contexts require different systems with different trade-offs
 - Strategic concerns must be considered in voting system design
 - Institutional design should account for strategic voter behavior
 - Deliberation before voting may improve outcomes
- Information aggregation aspects:
 - Condorcet Jury Theorem shows wisdom of crowds in simple settings
 - But insincere voting and information cascades can limit this wisdom
 - Voting rules like unanimity can have unexpected consequences
 - Optimal aggregation mechanisms depend on information structure
 - Transparency vs. privacy trade-offs in information revelation

Classic works:

- Classic works:
 - Arrow, K. (1951). Social Choice and Individual Values

- Classic works:
 - Arrow, K. (1951). Social Choice and Individual Values
 - Black, D. (1958). The Theory of Committees and Elections

- Classic works:
 - Arrow, K. (1951). Social Choice and Individual Values
 - Black, D. (1958). The Theory of Committees and Elections
 - Downs, A. (1957). An Economic Theory of Democracy

- Classic works:
 - Arrow, K. (1951). Social Choice and Individual Values
 - Black, D. (1958). The Theory of Committees and Elections
 - Downs, A. (1957). An Economic Theory of Democracy
- Modern extensions:

- Classic works:
 - Arrow, K. (1951). Social Choice and Individual Values
 - Black, D. (1958). The Theory of Committees and Elections
 - Downs, A. (1957). An Economic Theory of Democracy
- Modern extensions:
 - Feddersen, T. & Pesendorfer, W. (1998). "Convicting the Innocent"

- Classic works:
 - Arrow, K. (1951). Social Choice and Individual Values
 - Black, D. (1958). The Theory of Committees and Elections
 - Downs, A. (1957). An Economic Theory of Democracy
- Modern extensions:
 - Feddersen, T. & Pesendorfer, W. (1998). "Convicting the Innocent"
 - Sen, A. (1999). "The Possibility of Social Choice"

- Classic works:
 - Arrow, K. (1951). Social Choice and Individual Values
 - Black, D. (1958). The Theory of Committees and Elections
 - Downs, A. (1957). An Economic Theory of Democracy
- Modern extensions:
 - Feddersen, T. & Pesendorfer, W. (1998). "Convicting the Innocent"
 - Sen, A. (1999). "The Possibility of Social Choice"
 - Saari, D. (2001). Decisions and Elections: Explaining the Unexpected

- Classic works:
 - Arrow, K. (1951). Social Choice and Individual Values
 - Black, D. (1958). The Theory of Committees and Elections
 - Downs, A. (1957). An Economic Theory of Democracy
- Modern extensions:
 - Feddersen, T. & Pesendorfer, W. (1998). "Convicting the Innocent"
 - Sen, A. (1999). "The Possibility of Social Choice"
 - Saari, D. (2001). Decisions and Elections: Explaining the Unexpected
 - Austen-Smith, D. & Banks, J. (1996). "Information Aggregation, Rationality, and the Condorcet Jury Theorem"

- Classic works:
 - Arrow, K. (1951). Social Choice and Individual Values
 - Black, D. (1958). The Theory of Committees and Elections
 - Downs, A. (1957). An Economic Theory of Democracy
- Modern extensions:
 - Feddersen, T. & Pesendorfer, W. (1998). "Convicting the Innocent"
 - Sen, A. (1999). "The Possibility of Social Choice"
 - Saari, D. (2001). Decisions and Elections: Explaining the Unexpected
 - Austen-Smith, D. & Banks, J. (1996). "Information Aggregation, Rationality, and the Condorcet Jury Theorem"
 - Maskin, E. & Sen, A. (2016). The Arrow Impossibility Theorem

- Classic works:
 - Arrow, K. (1951). Social Choice and Individual Values
 - Black, D. (1958). The Theory of Committees and Elections
 - Downs, A. (1957). An Economic Theory of Democracy
- Modern extensions:
 - Feddersen, T. & Pesendorfer, W. (1998). "Convicting the Innocent"
 - Sen, A. (1999). "The Possibility of Social Choice"
 - Saari, D. (2001). Decisions and Elections: Explaining the Unexpected
 - Austen-Smith, D. & Banks, J. (1996). "Information Aggregation, Rationality, and the Condorcet Jury Theorem"
 - Maskin, E. & Sen, A. (2016). The Arrow Impossibility Theorem
- Applications:

- Classic works:
 - Arrow, K. (1951). Social Choice and Individual Values
 - Black, D. (1958). The Theory of Committees and Elections
 - Downs, A. (1957). An Economic Theory of Democracy
- Modern extensions:
 - Feddersen, T. & Pesendorfer, W. (1998). "Convicting the Innocent"
 - Sen, A. (1999). "The Possibility of Social Choice"
 - Saari, D. (2001). Decisions and Elections: Explaining the Unexpected
 - Austen-Smith, D. & Banks, J. (1996). "Information Aggregation, Rationality, and the Condorcet Jury Theorem"
 - Maskin, E. & Sen, A. (2016). The Arrow Impossibility Theorem
- Applications:
 - Al: Recommendation systems, PageRank algorithms, algorithmic decision-making, multi-agent systems

- Classic works:
 - Arrow, K. (1951). Social Choice and Individual Values
 - Black, D. (1958). The Theory of Committees and Elections
 - Downs, A. (1957). An Economic Theory of Democracy
- Modern extensions:
 - Feddersen, T. & Pesendorfer, W. (1998). "Convicting the Innocent"
 - Sen, A. (1999). "The Possibility of Social Choice"
 - Saari, D. (2001). Decisions and Elections: Explaining the Unexpected
 - Austen-Smith, D. & Banks, J. (1996). "Information Aggregation, Rationality, and the Condorcet Jury Theorem"
 - Maskin, E. & Sen, A. (2016). The Arrow Impossibility Theorem
- Applications:
 - AI: Recommendation systems, PageRank algorithms, algorithmic decision-making, multi-agent systems
 - Economics: Mechanism design, market design, public choice theory

- Classic works:
 - Arrow, K. (1951). Social Choice and Individual Values
 - Black, D. (1958). The Theory of Committees and Elections
 - Downs, A. (1957). An Economic Theory of Democracy
- Modern extensions:
 - Feddersen, T. & Pesendorfer, W. (1998). "Convicting the Innocent"
 - Sen, A. (1999). "The Possibility of Social Choice"
 - Saari, D. (2001). Decisions and Elections: Explaining the Unexpected
 - Austen-Smith, D. & Banks, J. (1996). "Information Aggregation, Rationality, and the Condorcet Jury Theorem"
 - Maskin, E. & Sen, A. (2016). The Arrow Impossibility Theorem
- Applications:
 - Al: Recommendation systems, PageRank algorithms, algorithmic decision-making, multi-agent systems
 - Economics: Mechanism design, market design, public choice theory
 - Political science: Electoral systems, legislative procedures

- Classic works:
 - Arrow, K. (1951). Social Choice and Individual Values
 - Black, D. (1958). The Theory of Committees and Elections
 - Downs, A. (1957). An Economic Theory of Democracy
- Modern extensions:
 - Feddersen, T. & Pesendorfer, W. (1998). "Convicting the Innocent"
 - Sen, A. (1999). "The Possibility of Social Choice"
 - Saari, D. (2001). Decisions and Elections: Explaining the Unexpected
 - Austen-Smith, D. & Banks, J. (1996). "Information Aggregation, Rationality, and the Condorcet Jury Theorem"
 - Maskin, E. & Sen, A. (2016). The Arrow Impossibility Theorem
- Applications:
 - Al: Recommendation systems, PageRank algorithms, algorithmic decision-making, multi-agent systems
 - Economics: Mechanism design, market design, public choice theory
 - Political science: Electoral systems, legislative procedures
 - Law: Jury decision rules, judicial panels

- Classic works:
 - Arrow, K. (1951). Social Choice and Individual Values
 - Black, D. (1958). The Theory of Committees and Elections
 - Downs, A. (1957). An Economic Theory of Democracy
- Modern extensions:
 - Feddersen, T. & Pesendorfer, W. (1998). "Convicting the Innocent"
 - Sen, A. (1999). "The Possibility of Social Choice"
 - Saari, D. (2001). Decisions and Elections: Explaining the Unexpected
 - Austen-Smith, D. & Banks, J. (1996). "Information Aggregation, Rationality, and the Condorcet Jury Theorem"
 - Maskin, E. & Sen, A. (2016). The Arrow Impossibility Theorem
- Applications:
 - Al: Recommendation systems, PageRank algorithms, algorithmic decision-making, multi-agent systems
 - Economics: Mechanism design, market design, public choice theory
 - Political science: Electoral systems, legislative procedures
 - Law: Jury decision rules, judicial panels
 - Business: Committee decision-making, corporate governance