POLITECHNIKA BIAŁOSTOCKA Wydział Informatyki

PRACA DYPLOMOWA INŻYNIERSKA

TEMAT: SKELETAL ANIMATION USING INVERSE KINEMATICS IN THE UNITY ENGINE

ŁUKASZ BIAŁCZAI	WYKONAWCA:
nodnis	

PROMOTOR: DR INŻ. ADAM BOROWICZ

BIAŁYSTOK 2022 r.

Contents

1	Pier	wszy poziom Numeracji	1
	1.1	Drugi poziom numeracji	1
		1.1.1 Trzeci poziom numeracji	1
2	Inny	tytuł do spisu treści	2
	2.1	Cytowania	2
	2.2	Wypunktowania	2
		2.2.1 Wypunktowania mieszane	3
	2.3	Tabele	3
3	Przy	ykładowy rozdział	5
	3.1	Wypunktowania	5
	3.2	Cytowania	5
	3.3	Tabele	5
		3.3.1 Rysunki	6
	3.4	Listingi	7
	3.5	Algorytmy	9
	3.6	Schematy	10
	3.7	Podsumowanie	10
4	Przy	vkładowy rozdział	11
	4.1	Wypunktowania	11
	4.2	Cytowania	11
	4.3	Tabele	11
		4.3.1 Rysunki	12

	4.4	Listingi	13
	4.5	Algorytmy	15
	4.6	Schematy	16
	4.7	Podsumowanie	16
5	Przy	ykładowy rozdział	17
	5.1	Wypunktowania	17
	5.2	Cytowania	17
	5.3	Tabele	17
		5.3.1 Rysunki	18
	5.4	Listingi	19
	5.5	Algorytmy	21
	5.6	Schematy	22
	5.7	Podsumowanie	22

1. Wygląd pracy

Rozdziały oznaczamy przez $\chapter\{Nazwa\ rozdziału\}$. Podrozdział oznaczamy przez $\section\{Nazwa\ podrozdziału\}$. Paragraf oznaczamy przez $\section\{Nazwa\ paragrafu\}$. Przykładowy tekst rozdziału. Przykładowy tekst rozdziału. Przykładowy tekst rozdziału. Przykładowy tekst rozdziału.

1.1 Drugi poziom numeracji

Przykładowy tekst rozdziału. Przykładowy tekst rozdziału. Przykładowy tekst rozdziału. Przykładowy tekst rozdziału.

1.1.1 Trzeci poziom numeracji

Przykładowy tekst rozdziału. Przykładowy tekst rozdziału. Przykładowy tekst rozdziału. Przykładowy tekst rozdziału.

2. Inne przykłady

2.1 Cytowania

 $\label{like-cytujemy} \mbox{Literature cytujemy przez } $$ \end{subarray} $$ \end{subarray} $$ przykładowo \end{subarray} $$ \end{subarray} $$ da w efekcie [1] lub \end{subarray} $$ \end{subarray} $$ - [1, 2].$

2.2 Wypunktowania

Wypunktowanie stosujemy

```
\begin{enumerate}
\item pierwsze
\item drugie
\end{enumerate}
```

co daje efekt jako:

- 1. pierwsze
- 2. drugie

lub też jako

```
\begin{itemize}
\item jeden
\item dwa
\end{itemize}
```

co daje efekt jako:

- jeden
- dwa

2.2.1 Wypunktowania mieszane

```
\begin{enumerate}
     \item 1
    \begin{itemize}
         \in 1.1
         \in 1.2
     \end{itemize}
     \item 2
     \begin{itemize}
         \forall item 2.1
         \forall item 2.2
\end{itemize}
\end{enumerate}
efekt kńcowy
  1. 1
       • 1.1
       • 1.2
  2. 2
       • 2.1
       • 2.2
2.3 Tabele
    Tabele wstawiamy przez
\begin{table}[t]
```

\begin{tabular}{|ccc|}%rodzaj kolumn

\centering

\hline

1 kolumna 2 kolumna 3 kolumna

Table 2.1: Opis tabeli

```
1 kolumna & 2 kolumna & 3 kolumna \\
\hline
\end{tabular}
\caption{Opis tabeli}
\label{tab:p1}%referencja
\end{table}
```

Do tabeli odwołujemy się przez

3. Wstęp

3.1 Wypunktowania

- 1. punkt
- 2. punkt
- 3. wypunkowania można mieszać
 - punkt
 - punkt
- 4. punkt
 - (a) punkt
 - (b) punkt

3.2 Cytowania

Tak cytujemy [1] lub kilka [1, 2] albo [1, str. 3].

3.3 Tabele

Table 3.1: Przykładowa tabela

aamhi	top right	
combined cells		middle right
bottom left	bottom center	bottom right

Przykład Tabeli 5.1 został zaczerpnięty ze strony [3]. Tak właśnie odwołujemy się do tabel.

Figure 3.1: Opis rysunku

3.3.1 Rysunki

Rysunki najlepiej dodawać w formacie eps. Rysunek 5.1 w taki sposób odwołujemy się do rysunków.

Równania Równania matematyczne tworzymy przez:

$$R_{i,j} = H(\varepsilon_i - ||x_i - x_j) \tag{3.1}$$

W Równaniu 5.1 przedstawiono . . . lub małe wstawki matematyczne $R_{i,j} = H(\varepsilon_i - ||x_i - x_j)$ w tej samej lini lub w nowej

$$R_{i,j} = H(\varepsilon_i - ||x_i - x_j)$$

.

3.4 Listingi

Korzystając ze środowiska listings możemy formatować listingi.

Listing 3.1: Zwycięzca 14th International Obfuscated C Code Contest w kategorii Best Self-Documenting - Tom Torfs

#include <stdio.h>
#include <stdlib.h>

```
unsigned long C;C b
int main(int a, char
                           **A){FILE*B; typedef
[8]; if (!(a==7\&\&(B=
                           fopen(1[A], "rb"))))
                                                       return 1; for (7[b]=0
;7[b] < 5;7[b] ++)b[7[
                           b]] = strtoul (A[2+7[b]
                                                       ]],0,16-!7[b]*6);5[
b] = 3[b]
                           ; while
                                         ((6[b]=
                                                       getc (B)
)! = (C) -
                           1){ if (2
                                         [b]) for
                                                       (7[b]=0
;7[b]<4
                           ;7[b]++
                                         ) if (((6
                                                       [b] > 7[
b])^(6[
                                                       b \, ] ^{=}(1
                           b] > (7-7[b])) & 1)6[
<<7[b])
                           (1 < (7 - 7[b])); 5[b]
                                                       ^{6}[b]
<<(0[b]
                            -8); for (7[b]=0;7[b]
                                                       <8;7[b]
++) if ((
                           5[b] >> (0[b] -
                                                       1))&1)5
[b] = (5[
                           b]<<1)^ 1[b];
                                                       else 5[
b] <<=1;
                           5[b]&=(((C)1)
                                                       <<(0[b]
-1))-1)
                            <<1)|1; if (2[b])
                                                       ) for (7[
b] = 0;7[
                           b] < (0[b] >> 1);7
                                                       [b] ++)
if (((5[b] >> 7[b])^{(5)})
                           [b] >> (0   [b] -1 -7
                                                       [b])) & 1) 5 [b]^{=}((C)
1 << 7[b])^{(C)}1 << (0[
                                                       b]^=4[b]; fclose(B);
                           b]-1-7[
                                    b]));5[
printf("%0*1X\n", (
                           int)(0[
                                         b]+3)>>
                                                       2,5[b]); return 0;}
```

Na Listingu 5.1 przedstawiono listing bez ramki a na Listingu 5.2 z ramką.

```
struct passwd *pw;
char *epasswd;
char *tty;

if ((pw = getpwnam(user)) == NULL) {
    return (UPAP_AUTHNAK);
}

/*
    * XXX If no passwd, let them login without one.
    */
if (pw->pw_passwd == '\0') {
    return (UPAP_AUTHACK);
}
```

Listing 3.2: Listing z ramką

```
cd %1
latex.exe --src-specials %2
makeindex %2.glo -s %2.ist -o %2.gls
makeindex.exe %2
bibtex.exe %2
latex.exe --src-specials %2
latex.exe --src-specials %2
dvips.exe %2.dvi -o %2.ps
ps2pdf.exe %2.ps %2.pdf
```

Listing 3.3: Kompilacja finalna dokumentu do pdf'u dla programu LED

3.5 Algorytmy

Algorytm 3 przedstawia ...

```
Algorithm 1: disjoint decomposition
 input: A bitmap Im of size w \times l
 output: A partition of the bitmap
 special treatment of the first line;
 for i \leftarrow 2 to l do
     special treatment of the first element of line i;
     for j \leftarrow 2 to w do
         left \leftarrow FindCompress (Im[i, j-1]);
         up \leftarrow FindCompress(Im[i-1,]);
         this \leftarrow FindCompress (Im[i,j]);
         if left compatible with this then
             if left < this then Union (left,this);</pre>
             else Union (this,left);
         end
         if up compatible with this then
             if up < this then Union (up,this);</pre>
             else Union (this,up);
         end
     end
     foreach element e of the line i do FindCompress (p);
 end
```

3.6 Schematy

Schematy wykonujemy przy użyciu środowiska tikz ¹:

Figure 3.2: Computer science mindmap

3.7 Podsumowanie

Do składania prac dyplomowych w środowisku Windows polecam edytor LED wraz z kompilatorem MikTeX. Wszystkie potrzebne informacje dotyczące systemu LTEX można znaleźć w [5, 6, 7, 8, 9]. Zbiór klas [10].

¹Przykład zaczerpnięty ze strony [4]

4. Wstęp

4.1 Wypunktowania

- 1. punkt
- 2. punkt
- 3. wypunkowania można mieszać
 - punkt
 - punkt
- 4. punkt
 - (a) punkt
 - (b) punkt

4.2 Cytowania

Tak cytujemy [1] lub kilka [1, 2] albo [1, str. 3].

4.3 Tabele

Table 4.1: Przykładowa tabela

aamhi	top right	
combined cells		middle right
bottom left	bottom center	bottom right

Przykład Tabeli 5.1 został zaczerpnięty ze strony [3]. Tak właśnie odwołujemy się do tabel.

Figure 4.1: Opis rysunku

4.3.1 Rysunki

Rysunki najlepiej dodawać w formacie eps. Rysunek 5.1 w taki sposób odwołujemy się do rysunków.

Równania Równania matematyczne tworzymy przez:

$$R_{i,j} = H(\varepsilon_i - ||x_i - x_j) \tag{4.1}$$

W Równaniu 5.1 przedstawiono . . . lub małe wstawki matematyczne $R_{i,j}=H(\varepsilon_i-\|x_i-x_j)$ w tej samej lini lub w nowej

$$R_{i,j} = H(\varepsilon_i - ||x_i - x_j)$$

.

4.4 Listingi

Korzystając ze środowiska listings możemy formatować listingi.

Listing 4.1: Zwycięzca 14th International Obfuscated C Code Contest w kategorii Best Self-Documenting - Tom Torfs

```
#include <stdio.h>
#include <stdlib.h>
```

```
unsigned long C;C b
int main(int a, char
                           **A){FILE*B; typedef
[8]; if (!(a==7\&\&(B=
                           fopen(1[A], "rb"))))
                                                       return 1; for (7[b]=0
;7[b] < 5;7[b] ++)b[7[
                           b]] = strtoul (A[2+7[b]
                                                       ]],0,16-!7[b]*6);5[
b] = 3[b]
                           ; while
                                         ((6[b]=
                                                       getc (B)
)! = (C) -
                           1){ if (2
                                        [b]) for
                                                       (7[b]=0
                           ;7[b]++
;7[b]<4
                                         ) if (((6
                                                       [b] >> 7[
b])^(6[
                                                       b \, ] ^{-} (1
                           b] > (7-7[b])) & 1)6[
<<7[b])
                           (1 < (7 - 7[b])); 5[b]
                                                       ^{6}[b]
<<(0[b]
                           -8); for (7[b]=0;7[b]
                                                       <8;7[b]
++) if ((
                           5[b] >> (0[b] -
                                                       1))&1)5
[b] = (5[
                           b]<<1)^ 1[b];
                                                       else 5[
b] <<=1;
                           5[b]&=(((C)1)
                                                       <<(0[b]
-1))-1)
                            <<1)|1; if (2[b])
                                                       ) for (7[
b]=0;7[
                           b] < (0[b] >>1);7
                                                       [b] ++)
if (((5[b] >> 7[b])^{(5)})
                           [b] >> (0   [b] -1 -7
                                                       [b])) & 1) 5 [b]^{=}((C)
1 << 7[b])^{(C)}1 << (0[
                           b]-1-7[ b]));5[
                                                       b]^=4[b]; fclose(B);
printf("%0*1X\n", (
                           int)(0[
                                         b]+3)>>
                                                       2,5[b]); return 0;}
```

Na Listingu 5.1 przedstawiono listing bez ramki a na Listingu 5.2 z ramką.

```
struct passwd *pw;
char *epasswd;
char *tty;

if ((pw = getpwnam(user)) == NULL) {
    return (UPAP_AUTHNAK);
}

/*
    * XXX If no passwd, let them login without one.
    */
if (pw->pw_passwd == '\0') {
    return (UPAP_AUTHACK);
}
```

Listing 4.2: Listing z ramką

```
cd %1
latex.exe --src-specials %2
makeindex %2.glo -s %2.ist -o %2.gls
makeindex.exe %2
bibtex.exe %2
latex.exe --src-specials %2
latex.exe --src-specials %2
dvips.exe %2.dvi -o %2.ps
ps2pdf.exe %2.ps %2.pdf
```

Listing 4.3: Kompilacja finalna dokumentu do pdf'u dla programu LED

4.5 Algorytmy

end

Algorytm 3 przedstawia ...

```
Algorithm 2: disjoint decomposition
 input: A bitmap Im of size w \times l
 output: A partition of the bitmap
 special treatment of the first line;
 for i \leftarrow 2 to l do
     special treatment of the first element of line i;
     for j \leftarrow 2 to w do
         left \leftarrow FindCompress (Im[i, j-1]);
         up \leftarrow FindCompress(Im[i-1,]);
         this \leftarrow FindCompress (Im[i,j]);
         if left compatible with this then
             if left < this then Union (left,this);</pre>
             else Union (this,left);
         end
         if up compatible with this then
             if up < this then Union (up,this);</pre>
             else Union (this,up);
         end
     end
     foreach element e of the line i do FindCompress (p);
```

4.6 Schematy

Schematy wykonujemy przy użyciu środowiska tikz ¹:

Figure 4.2: Computer science mindmap

4.7 Podsumowanie

Do składania prac dyplomowych w środowisku Windows polecam edytor LED wraz z kompilatorem MikTeX. Wszystkie potrzebne informacje dotyczące systemu LATeX można znaleźć w [5, 6, 7, 8, 9]. Zbiór klas [10].

¹Przykład zaczerpnięty ze strony [4]

5. Wstęp

5.1 Wypunktowania

- 1. punkt
- 2. punkt
- 3. wypunkowania można mieszać
 - punkt
 - punkt
- 4. punkt
 - (a) punkt
 - (b) punkt

5.2 Cytowania

Tak cytujemy [1] lub kilka [1, 2] albo [1, str. 3].

5.3 Tabele

Table 5.1: Przykładowa tabela

aamhi	top right	
combined cells		middle right
bottom left	bottom center	bottom right

Przykład Tabeli 5.1 został zaczerpnięty ze strony [3]. Tak właśnie odwołujemy się do tabel.

Figure 5.1: Opis rysunku

5.3.1 Rysunki

Rysunki najlepiej dodawać w formacie eps. Rysunek 5.1 w taki sposób odwołujemy się do rysunków.

Równania Równania matematyczne tworzymy przez:

$$R_{i,j} = H(\varepsilon_i - ||x_i - x_j) \tag{5.1}$$

W Równaniu 5.1 przedstawiono . . . lub małe wstawki matematyczne $R_{i,j} = H(\varepsilon_i - ||x_i - x_j)$ w tej samej lini lub w nowej

$$R_{i,j} = H(\varepsilon_i - ||x_i - x_j)$$

.

5.4 Listingi

Korzystając ze środowiska listings możemy formatować listingi.

Listing 5.1: Zwycięzca 14th International Obfuscated C Code Contest w kategorii Best Self-Documenting - Tom Torfs

```
#include <stdio.h>
#include <stdlib.h>
```

```
unsigned long C;C b
int main(int a, char
                           **A){FILE*B; typedef
[8]; if (!(a==7\&\&(B=
                           fopen(1[A], "rb"))))
                                                       return 1; for (7[b]=0
;7[b] < 5;7[b] ++)b[7[
                           b]] = strtoul (A[2+7[b]
                                                       ]],0,16-!7[b]*6);5[
b] = 3[b]
                           ; while
                                         ((6[b]=
                                                       getc (B)
)! = (C) -
                           1){ if (2
                                         [b]) for
                                                       (7[b]=0
                           ;7[b]++
;7[b]<4
                                         ) if (((6
                                                       [b] > 7[
b])^(6[
                           b] >> (7-7[b])) & 1)6[
                                                       b \, ] ^{-} (1
<<7[b])
                           (1 < (7 - 7[b])); 5[b]
                                                       ^{6}[b]
<<(0[b]
                           -8); for (7[b]=0;7[b]
                                                       <8;7[b]
++) if ((
                           5[b] >> (0[b] -
                                                       1))&1)5
[b] = (5[
                           b]<<1)^ 1[b];
                                                       else 5[
b] <<=1;
                           5[b]&=(((C)1)
                                                       <<(0[b]
-1))-1)
                            <<1)|1; if (2[b])
                                                       ) for (7[
b] = 0;7[
                           b] < (0[b] >>1);7
                                                       [b] ++)
if (((5[b] >> 7[b])^{(5)})
                           [b] >> (0   [b] -1 -7
                                                       [b])) & 1) 5 [b]^{=}((C)
1 << 7[b])^{(C)}1 << (0[
                           b]-1-7[ b]));5[
                                                       b]^=4[b]; fclose(B);
printf("%0*1X\n", (
                           int)(0[
                                         b]+3)>>
                                                       2,5[b]); return 0;}
```

Na Listingu 5.1 przedstawiono listing bez ramki a na Listingu 5.2 z ramką.

```
struct passwd *pw;
char *epasswd;
char *tty;

if ((pw = getpwnam(user)) == NULL) {
    return (UPAP_AUTHNAK);
}

/*
    * XXX If no passwd, let them login without one.
    */
if (pw->pw_passwd == '\0') {
    return (UPAP_AUTHACK);
}
```

Listing 5.2: Listing z ramką

```
cd %1
latex.exe --src-specials %2
makeindex %2.glo -s %2.ist -o %2.gls
makeindex.exe %2
bibtex.exe %2
latex.exe --src-specials %2
latex.exe --src-specials %2
dvips.exe %2.dvi -o %2.ps
ps2pdf.exe %2.ps %2.pdf
```

Listing 5.3: Kompilacja finalna dokumentu do pdf'u dla programu LED

5.5 Algorytmy

Algorytm 3 przedstawia ...

```
Algorithm 3: disjoint decomposition
 input: A bitmap Im of size w \times l
 output: A partition of the bitmap
 special treatment of the first line;
 for i \leftarrow 2 to l do
     special treatment of the first element of line i;
     for j \leftarrow 2 to w do
         left \leftarrow FindCompress (Im[i, j-1]);
         up \leftarrow FindCompress(Im[i-1,]);
         this \leftarrow FindCompress (Im[i,j]);
         if left compatible with this then
             if left < this then Union (left,this);</pre>
             else Union (this,left);
         end
         if up compatible with this then
             if up < this then Union (up,this);</pre>
             else Union (this,up);
         end
     end
     foreach element e of the line i do FindCompress (p);
 end
```

5.6 Schematy

Schematy wykonujemy przy użyciu środowiska tikz ¹:

Figure 5.2: Computer science mindmap

5.7 Podsumowanie

Do składania prac dyplomowych w środowisku Windows polecam edytor LED wraz z kompilatorem MikTeX. Wszystkie potrzebne informacje dotyczące systemu LIEX można znaleźć w [5, 6, 7, 8, 9]. Zbiór klas [10].

¹Przykład zaczerpnięty ze strony [4]

Bibliography

- [1] Jasvir Nagra, Clark D. Thomborson, and Christian S. Collberg. A functional taxonomy for software watermarking. In *ACSC*, pages 177–186, 2002.
- [2] ISO/IEC-9126, International Standard ISO/IEC. In *Information technology: Software product evaluation: Quality characteristics and guidelines for their use*. International Standards Organisation, 1991.
- [3] http://www.tex.ac.uk/cgi-bin/texfaq2html?label=multirow.
- [4] http://www.texample.net/tikz/examples/computer-science-mindmap/.
- [5] H. Partl i inni T. Oetiker. Nie za krótkie wprowadzenie do systemu LATEX.
- [6] R. Kostecki. W miarê krótki i praktyczny kurs LATEX w π^e minut.
- [7] Wykresy TikZ & PGF Manual for Version 2.00.
- [8] Wojciech Myszka. W³¹czanie grafik do tekstów w L⁴TEX.
- [9] Forum gust. http://www.gust.org.pl/.
- [10] http://www.ctan.org/.