สรูป Chapter 1 Introduction

Data Warehouse & Data Mining

Data Warehouse คือ ข้อมูลเก็บมามีการคัดแยกและคัดเก็บ หลังจากนั้น ข้อมูลที่ถูกเก็บ จะนำไปทำ Data Mining ต่อไป

Warehouse หมายถึง โรงงาน

Data Mining คือ การสิ่งที่มีค่าในข้อมูลที่มากมาย

Mining หมายถึง การทำเหมือง

Chapter 1. Introduction

- Why Data Mining?
- □ What Is Data Mining?
- ☐ A Multi-Dimensional View of Data Mining
- □ What Kinds of Data Can Be Mined?
- □ What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- □ What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary

Why Data Mining?

- ☐ The Explosive Growth of Data: from terabytes to petabytes
 - Data collection and data availability
 - Automated data collection tools, database systems, Web, computerized society
- Major sources of abundant data
- Business: Web, e-commerce, transactions, stocks, ...
- □ Science: Remote sensing, bioinformatics, scientific simulation, ...
- ☐ Society and everyone: news, digital cameras, YouTube
- □ We are drowning in data, but starving for knowledge!
- "Necessity is the mother of invention"—Data mining—Automated analysis of massive data sets

Data Mining คือการทำเหมืองข้อมูล และในปัจจุบันนี้ข้อมูลมีอยู่มากมายขึ้น เรื่อย ๆ และทุกอย่างสามารถเก็บข้อมูลได้ ยกตัวอย่างเช่น เซนเซอร์อุณหภูมิ เซนเซอร์อากาศ เซนเซอร์ปริมาณน้ำฝน เวลาเก็บข้อมูลจะสุ่มเก็บทุกชั่วโมงทุกนาที ข้อมูลจึงเกิดการ ล้นมากขึ้น เรื่อย ๆ

What Is Data Mining?

- Data mining (knowledge discovery from data)
- Extraction of interesting (non-trivial, implicit, previously unknown and potentially useful) patterns or knowledge from huge amount of data
- Data mining: a misnomer?
- Alternative names
 - Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc.
- Watch out: Is everything "data mining"?
 - Simple search and query processing
 - (Deductive) expert systems

Data Mining การทำเหมืองข้อมูลคล้าย ๆ การที่ขุดเหมือง เราขุดหินดินสกัดไปเรื่อย ๆ จนเห็นเพชร ทอง Data Mining ก็เช่นเดียวกัน มีข้อมูลมากมายเต็มไปหมดแต่ไม่สามาถนำมาใช้ โดยตรงได้ จึงต้องใช้ Data Mining สกัดข้อมูลนั้น ๆ

การมีชื่อเรียกอื่น ๆ

- Alternative names
 - Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc.

*แต่ละชื่อตั้งให้ตรงตามวัตถุประสงค์ของตัววิชา

<u>ลักษณะภาพรวม</u>

- เริ่มต้น 1. Databases เราจะเก็บข้อมูลยังไงให้มีประสิทธิภาพ
 - 2. การจัดการข้อมูล
- 3. เอาข้อมูลหลาย ๆ แหล่งมารวมกันเผื่อไปเก็บไว้ใน Data Warehouse ดึงข้อมูลที่เรา จำเป็นที่ใช้ประโยชน์มารวมกัน สามารถดุข้อมูลแบบสรุปหรือละเอียดได้
 - 4. เอาข้อมูลเลือกเอาเฉพาะที่เราจะเอามาสกัดเอาความรู้เอามาทำ Data Mining
 - 5. จะได้ Pattern รูปแบบที่ช่อนอยู่ในข้อมูล
 - 6. วัดผลดูว่าข้อมูลเราเป้นองค์ความรู้จริง ๆ จึงสรุปออกมาเป็นความรู้

Example: A Web Mining Framework

- Web mining usually involves
 - Data cleaning
 - Data integration from multiple sources
 - Warehousing the data
 - Data cube construction
 - Data selection for data mining
 - Data mining
 - Presentation of the mining results
 - Patterns and knowledge to be used or stored into knowledge-base

ยกตัวอย่างการทำ Mining Web ว่าทำอย่างไร มีขั้นตอนอย่างไร

Data Mining in Business Intelligence

เป็นลักษณะคล้ายเดิม บอกขั้นตอน และตอนจบเป็นคนตัดสินใจว่าข้อมูลที่เราให้จะนำไปใช้อะไร

KDD Process: A View from ML and Statistics

☐ This is a view from typical machine learning and statistics communities

เราจะเรียนหลัก ๆ มีอยู่ 3 เรื่อง คือ

Pattern discovery (หารูปแบบที่ซ่อนอยู่ในข้อมูล)

Classification (การจำแนกข้อมูล)

Clustering (การแบ่งกลุ่มข้อมูล)

How the data suppose to look like

	id	name	domain_id	closed	city_name	zipcode	geohash	new_open	weighted_average_rating	number_of_chains	-	good_for_groups
0	2	นครินทร์ ปนอกรรม	2	0	Samut Songkhram	75000	w4rh7g3	0	5.000000	NaN		NaN
1	4	Corner House	1	0	Bangkok Metropolitan Region	12150	w4rx73h	0	2.000000	NaN	2.	NaN
2	5	ร์ดโดกแสุดา ขาย	4	0	Phra Nakhon Si Ayutthaya	13000	w4x96jk	0	4,000000	NaN		NaN
3	6	นันพัดาราโอ เกะ	1	0	Bangkok Metropolitan Region	10700.0	w4rqw9q	0	0.000000	NaN		NaN
4	7	Buono Caffe	1	0	Bangkok Metropolitan	10220	w4rx4gd	0	3.738462	NaN		NaN

ลักษณะข้อมูลที่เราจะเรียน มีการจัดการข้อมูลออกมาในรูปแบบนี้

แนวตั้ง (คอลลัมม์) เป็น Attributes,Field,Features คำที่ใช้อธิบายคุณสมบัติของข้อมูล แถว : Records, Data point ข้อมูลแต่ละตัว

การสกัดหารูปแบบที่เกิดขึ้นซ้ำ ๆ ในข้อมูล

Data Mining Functions: (2) Pattern Discovery

เทคนิคที่จะเรียนคือ association rule เป็นเทคนิคที่ทำให้คนรู้จัก Data Mining เพราะว่า เหมือน ทำให้คนมหัศจรรย์ว่าสามารถทำอย่างนี้ด้วย

association rule ตัวอย่างที่ทำให้คนรู้จักคือ ผ้าอ้อมกับเบียร์ ใช้เทคนิคนี้ในการวิเคราะห์ใบเสร็จ ของคนมาซ้อปปิ้ง เก็บรวมใบเสร็จกับคนมาซ้อปปิ้งไว้ สิ่งที่เกิดขึ้นคือคนที่ซื้อผ้าอ้อมมักจะซื้อเบียร์ ด้วย ซึ่งคนที่จะซื้อผ้าอ้อมกับเบียร์มักจะเป็นคุณพ่อที่มาซื้อ และคนที่รู้ข้อมูลนี้คือเจ้าของชุปเปอร์ มาเก็ตจึงสามารถเอาข้อมูลแพทเทินนี้ไปใช้เป็นแนวทางในการจัดทางในแบบต่าง ๆ

Data Mining Functions: (3) Classification

- Classification and label prediction
 - Construct models (functions) based on some training examples
 - Describe and distinguish classes or concepts for future prediction
 - Ex. 1. Classify countries based on (climate)
 - Ex. 2. Classify cars based on (gas mileage)
 - Predict some unknown class labels
- Typical methods
- Decision trees, naïve Bayesian classification, support vector machines, neural networks, rule-based classification, pattern-based classification, logistic regression, ...
- □ Typical applications:
 - Credit card fraud detection, direct marketing, classifying stars, diseases, webpages, ...

Classification เป็นการจำแนกกลุ่ม

- มีการเก็บข้อมูลทุก ๆ วัน
- มีค่า Y ในการทำนาย

Data Mining Functions: (4) Cluster Analysis

- Unsupervised learning (i.e., Class label is unknown)
- Group data to form new categories (i.e., clusters), e.g., cluster houses to find distribution patterns
- Principle: Maximizing intra-class similarity
 & minimizing interclass similarity
- Many methods and applications

Cluster Analysis เป็นการจัดกลุ่ม

- จัดกลุ่มข้อมูล ไม่มีการทำนาย
- ข้อมูลคล้าย ๆ กันมาอยู่ด้วยกัน