Linear Regression: Ordinary Least Square

Xiang Zhou

School of Data Science Department of Mathematics City University of Hong Kong

Ordinary Linear Regression

Review of linear regression (univariate and multivariate)

- Least-square: is usually credited to Carl Friedrich Gauss (1795), but it
 was first published by Adrien-Marie Legendre (1805). history note.
 The approach was first successfully applied to problems in astronomy.
- Loss function: squared error loss $\ell(y, \hat{y}) = |y \hat{y}|^2$
- Hypothesis space (model class): linear function (affine function with intercept)

History note : "method of least squares" by Gauss and Legendre

Based on d'Alembert's principle, Gauss derived Principle of least constraint:

$$Z = \sum_{i=1}^{N} \frac{1}{2m_i} (\mathbf{F}_i - m_i \mathbf{A}_i)^2$$

 ${m F}_i$ and ${m A}_i$ are the forces and accelerations, respectively. For free particles, it recovers the classic Newton's motion ${m F}_i = m_i {m A}_i$. If constraints prevent the free choice of the ${m A}_i$, we can still minimize Z under the given auxiliary conditions. The solution obtained yields the actual motion of the system realized in nature.

Example

A particle is forced to stay on the surface z=c(x,y) by the action of the force ${\pmb F}$. Find the motion of the equation. Hint: $\dot z=c_x\dot x+c_y\dot y$ and $\ddot z=c_x\ddot x+c_{xx}\dot x^2+c_{yy}\ddot y+c_{yy}\dot x^2\approx c_x\ddot x+c_y\ddot y$. The constraint for ${\pmb A}=(\ddot x,\ddot y,\ddot z)$ is the linear equation $\ddot z=c_x\ddot x+c_y\ddot y$.

Simple linear regression

Data $(x_1, y_1), \ldots, (x_n, y_n)$, where

- ullet x_i is the predictor (independent variable, input, feature)
- y_i is the response (dependent variable, output, outcome)

We denote the regression function as

$$f(x) = \mathbb{E}(Y|X=x).$$

The linear regression model assumes a specific linear form for f,

$$f(x) = \beta_0 + \beta x,$$

which is usually thought of as an approximation to the truth.

Least squared fitting

Minimize:

$$(\hat{\beta}_0, \hat{\beta}) = \underset{\beta_0, \beta}{\operatorname{argmin}} \sum_{i=1}^n (y_i - \beta_0 - \beta x_i)^2.$$

Solution is:

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2},$$

$$\hat{\beta}_0 = \bar{y} - \bar{x}\hat{\beta}.$$

- $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}x_i$ are the fitted values
- $r_i = y_i \hat{y}_i$ are the residuals

Standard errors and confidence intervals

Assume further that

$$y_i = \beta_0 + \beta x_i + \epsilon_i,$$

where $E(\epsilon_i) = 0$ and $Var(\epsilon_i) = \sigma^2$. Then

$$se(\hat{\beta}) = \left(\frac{\sigma^2}{\sum (x_i - \bar{x})^2}\right)^{1/2},$$

where σ^2 can be estimated by $\hat{\sigma}^2 = \sum (y_i - \hat{y})^2/(n-2)$.

Under additional normality assumption of ϵ_i 's, a $(1-\alpha)100\%$ confidence interval of β is

$$\hat{\beta} \pm z_{\alpha/2} \widehat{se}(\hat{\beta}).$$

Ordinary Least Square (OLS)

• The predictor variable $x=(x_0\equiv 1,x_1,\ldots,x_p)$ and **Design Matrix**

$$X = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & \dots & x_{2p} \\ & & \dots & & \\ 1 & x_{n1} & x_{n2} & \dots & x_{np} \end{bmatrix} \in \mathbb{R}^{n \times (p+1)}.$$

n is the number of samples. The first column $x_{i0} \equiv 1$.

- Response vector : $Y = [y_1, y_2, \dots, y_n]^T$.
- Linear model $\mathcal{H} = \{f : f(x) = \beta^{\intercal} x, \beta = (\beta_0, \beta_1, \dots, \beta_p) \in \mathbb{R}^{p+1} \}.$
- Risk minimization view:

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \|Y - X\beta\|_{2}^{2} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y.$$

• Model-based interpretation:

$$Y = X\beta + \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, \sigma^2).$$

Standarlization of Data

The standarlization processing is helpful in many cases:

- Centering
 - $ightharpoonup x_{ij}
 ightarrow x_{ij} \bar{x}_{\cdot j}$, where $\bar{x}_{\cdot j} = \frac{1}{n} \sum_i x_{ij}$
 - $y_i \to y_i \bar{y}$

Then $\sum_i x_{ij} = \sum_i y_i = 0$. Then the intercept in OLS β_0 vanishes. For centered data: $\frac{1}{n}X^\mathsf{T}X = \frac{1}{\sum_i}(x_{ij}x_{ik})$ is the covariate matrix of the predictor.

Standardization (after centering):

$$x_{ij} o \frac{x_{ij}}{\sqrt{\frac{1}{n} \sum_i x_{ij}^2}}.$$

Then $\frac{1}{n}\sum_{i}x_{ij}^{2}\equiv 1,\ \forall j.$

- Understanding OLS from the perspective of MLE and Bayes
- 2 Understanding OLS from the perspective of linear algebra: orthogonal project, pseudo-inverse, Gram-Schmidt procedure; QR, SVD
- **3** Understanding uncertainty in $\hat{\beta}$: variance analysis
- Understanding OSL as the minimum variance unbiased estimator of the response : Gauss-Markov theorem

 $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ leads to the log-likelihood function

$$\begin{split} \log \mathcal{L}(\beta; x_i, y_i) &= \log \prod_{i=1}^n p(y_i | x_i) p(x_i) = \sum_{i=1}^n \log p(y_i | x_i) + \sum_{i=1}^n \log p(x_i) \\ &= \sum_{i=1}^n \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \beta^\mathsf{T} x_i)^2}{2\sigma^2}} \right] + \sum_{i=1}^n \log p(x_i) \\ &= -\frac{1}{2\sigma^2} \sum_{i=1}^n \left(y_i - \beta^\mathsf{T} x_i \right)^2 + \text{terms not depend on } \beta. \end{split}$$

Therefore $\hat{\beta}^{\text{MLE}} = \hat{\beta}^{\text{OLS}}$.

• Understanding OLS from the perspective of linear algebra: orthogonal project, pseudo-inverse, Gram-Schmidt procedure; QR, SVD

OLS prediction as the orthogonal projection

The optimal prediction

$$\hat{Y} = X\hat{\beta} = X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y =: \operatorname{Proj}_{\mathsf{X}}Y \tag{1}$$

is the orthogonal projection of the vector $Y\in\mathbb{R}^n$ onto the subspace spanned by the p+1 column vectors of the matrix X

$$\mathsf{X} = \mathsf{span}\{X_0, X_1, \dots, X_p\}$$

- \hat{Y} is the point in \mathbb{R}^n with the shortest Euclidian distance to this subspace X.
- It would be nice if we have a set of p+1 orthonormal basis vector of X. This can be done by Gram-Schmidt procedure (Sec. 3.2.3. in [ESL] under the name "sequential linear regression") .
- In addition, one can use QR, SVD decomposition of X^TX . To efficiently find the orthogonal projection of the vector Y onto a subspace spanned by X_i in \mathbb{R}^n is a classic topic in numerical linear algebra.

Properties of Projection matrix

$$P = \operatorname{Proj}_{\mathsf{X}} = X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}$$

satisfies

- symmetric: $P = P^{\mathsf{T}}$;
- idempotent: $P^2 = \mathbf{I}_n$ identity matrix;
- $\operatorname{rank} = \dim(X) = p + 1$
- eigenvalues: p+1 ones and n-(p+1) zeros;
- trace = $\dim(X)$.

Other names used in statistics literature for the projection matrix Proj_X

- influence matrix;
- hat matrix

Singular Value Decomposition

- Assume $X = UDV^{\mathsf{T}}$ is a SVD of the design matrix X, then $D = \operatorname{diag} \{d_0, \dots, d_n\}, d_i \text{ is the singular value of } X.$
- The column vectors of U, $\{U_i, 0 \le i \le p\}$, is a set of orthonormal basis of X.
- Then $X^{\mathsf{T}}X = VD^2V^{\mathsf{T}}$, and $\operatorname{Proj}_{\mathbf{X}} = X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}} = (UDV^{\mathsf{T}})VD^{-2}V^{\mathsf{T}}VDU^{\mathsf{T}} = UU^{\mathsf{T}}.$

$$\hat{Y} = \operatorname{Proj}_{\mathsf{X}} Y = UU^{\mathsf{T}} Y = \sum_{i=0}^{p} \alpha_i U_i, \quad \text{where} \quad \alpha_i = U_i \cdot Y.$$

Exercise

The projection matrix $Proj_X$ has the trace p+1.

(Hint $\operatorname{Trace}(AB) = \operatorname{Trace}(BA)$. The eigenvalues of the projection matrix are either 0 or 1.)

Exercise

Exercise 3.4 in [ESL].

The decomposition of sum-of-squares

For the OLS predicted response $\hat{Y} = X\hat{\beta}$, we have

$$SST = SSR + SSE$$

• SST= total sum of squares for the response variable

$$SST = \sum_{i} (y_i - \bar{y})^2 = ||Y - \bar{Y}||_2^2$$

• SSE=sum of squares of errors ¹

$$SSE = \sum_{i} (y_i - \hat{y}_i)^2 = ||Y - \text{proj}_X Y||_2^2$$

• SSR = sum of squares explained by regression

$$SSR = \sum_{i} (\hat{y}_i - \bar{\hat{y}})^2 = \|\hat{Y} - \bar{Y}\|_2^2$$

Note that the average of the training response \bar{y} is equal to the average of predicted response $\bar{\hat{y}}$

¹[ISL] [ESL] name this as RSS= residual sum of squares

Proof of SST = SSE + SSR: Exercise! (consider $Z = Y - \bar{y}1_n$ and $1_n = X_0 \in X$. consider f centered data where $\bar{y} = 0$.)

Exercise

Show that

$$SSE = \|(\mathbf{I}_n - \operatorname{Proj}_{\mathsf{X}})\varepsilon\|_2^2 = \|\operatorname{Proj}_{\mathsf{X}^{\perp}}(\varepsilon)\|_2^2$$

 $I_n - Proj_X$ is called residual marker matrix sometimes.

by using $Y = X\beta + \varepsilon$ and $\hat{Y} = \operatorname{Proj}_{\mathsf{X}} Y$.

Draw a picture to illustrate this result.

• Understanding uncertainty in $\hat{\beta}$: unbiasedness, consistence, variance analysis

The distribution of the OLS coefficient $\hat{\beta}$

Since
$$Y = X\beta + \varepsilon$$
, then
$$\hat{\beta} = (X^\mathsf{T} X)^{-1} X^\mathsf{T} Y = (X^\mathsf{T} X)^{-1} X^\mathsf{T} (X\beta + \varepsilon)$$

$$= \beta + (X^\mathsf{T} X)^{-1} X^\mathsf{T} \varepsilon$$

Note that $\varepsilon \sim N(0, \sigma^2 I_n)$, thus

$$\mathbb{E}\,\hat{\beta} = \beta \qquad \text{(unbiased estimator)}$$

$$\mathbb{V}(\hat{\beta}) = \mathbb{V}((X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\varepsilon)$$

$$= (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbb{V}(\varepsilon)(X^{\mathsf{T}}X^{-1}X^{\mathsf{T}})^{\mathsf{T}}$$

$$= \sigma^{2}(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}I_{n}X(X^{\mathsf{T}}X)^{-1}$$

$$= \sigma^{2}(X^{\mathsf{T}}X)^{-1}.$$

Therefore,

$$\hat{\beta} \sim \mathcal{N}(\beta, \sigma^2(X^\mathsf{T} X)^{-1})$$
,

from which the confidence interval of $\hat{\beta}$ can be calculated.

Consistency of $\hat{\beta}$

Assume that

$$\lim_{n \to \infty} \left(\frac{X^{\mathsf{T}} X}{n} \right) = \Delta$$

exists as a nonstochastic and nonsingular matrix (for example, $|x_{ji}| \leq c$ is bounded). Then

$$\lim_{n \to \infty} \mathbb{E} |\hat{\beta} - \beta|^2 = \lim_{n \to \infty} \mathbb{V}(\hat{\beta})$$

$$= \sigma^2 \lim_{n \to \infty} \frac{1}{n} \left(\frac{X^\mathsf{T} X}{n} \right)^{-1}$$

$$= \sigma^2 \lim_{n \to \infty} \frac{1}{n} \Delta^{-1}$$

$$= 0$$

This implies that OLSE $\hat{\beta}$ converges to in quadratic mean. Thus OLSE $\hat{\beta}$ is a consistent estimator of β .

- The distribution of $\hat{Y} = X\hat{\beta}$ is then $\mathcal{N}(X\beta, \sigma^2 X(X^\mathsf{T} X)^{-1} X^\mathsf{T})$
- When a new data of input x arrives, taking value $x_i = a_i, i = 1, \ldots, p$, with $a = (1, a_1, a_2, \ldots, a_p)^\mathsf{T} \in \mathbb{R}^{p+1}$, then the prediction from the regression equation is

$$\hat{y} := a^{\mathsf{T}} \hat{\beta} \sim \mathcal{N}(a^{\mathsf{T}} \beta, \ \sigma^2 a^{\mathsf{T}} (X^{\mathsf{T}} X)^{-1}) a)$$

which can give the confidence interval of $\hat{y} = a^{\mathsf{T}} \hat{\beta}$.

• But remember that in our model $Y=X\beta+\varepsilon$, it is assumed that the data you *observe* inevitably is contaminated by the measurement error ε . By including this measurement error, the predicted value at this new input x=a is

$$\hat{y} + \varepsilon_a = a^{\mathsf{T}} \hat{\beta} + \varepsilon_a$$

where ε_a is $\mathcal{N}(0,\sigma_a^2)$ and independent of the training data you used to build the regression equation.

It is clear that the distribution of $\hat{y} + \varepsilon_a$ is

$$\mathcal{N}(a^{\mathsf{T}}\beta, \ \sigma^2 a^{\mathsf{T}} (X^{\mathsf{T}} X)^{-1}) a + \sigma_a^2),$$

which gives the prediction interval.

The variance of the measurement error σ^2

- Recall SST is the sample variance of Y then $\mathbb{E} SST = (n-1)\sigma^2$ since $\mathbb{V}(Y) = \mathbb{V}(\varepsilon) = \sigma^2$.
- We show below that $\mathbb{E} SSE = (n-p-1)\sigma^2$
- Which one among SST and SSE should be used to define $\hat{\sigma}^2$, the estimate of the variance of ε ?

From exercise, we have

$$SSE = \|\operatorname{Proj}_{\mathsf{X}^{\perp}}(\varepsilon)\|_2^2 = \varepsilon^{\mathsf{T}}(\operatorname{Proj}_{\mathsf{X}^{\perp}})^{\mathsf{T}}(\operatorname{Proj}_{\mathsf{X}^{\perp}})\varepsilon.$$

where the Gaussian vector ε have variance matrix $\sigma^2 I_n$. Since the dimension $\dim X^{\perp} = n - \dim(\mathsf{X}) = n - (p+1)$, then $\operatorname{Trace}(\operatorname{Proj}_{\mathsf{X}^{\perp}}) = n - (p+1)$. Then we have the conclusion

$$\mathbb{E} SSE = \operatorname{Trace}((\operatorname{Proj}_{\mathsf{X}^{\perp}})\sigma^2 I_n) = (n - (p+1))\sigma^2.$$

Exercise

Let $\mu = \mathbb{E}(X)$ and $\Sigma = \mathbb{V}(X)$ be the mean vector and the covariance matrix of the random vector X in \mathbb{R}^n . M is $n \times n$ symmetric matrix. Define the random variable $z = (X - \mu)^T M(X - \mu)$, then

$$\mathbb{E}(z) = \operatorname{Trace}(M\Sigma) = \operatorname{Trace}(\Sigma M)$$

and thus

$$\mathbb{E}(X^{\mathsf{T}}MX) = \operatorname{Trace}(M\Sigma) + \mu^{\mathsf{T}}M\mu.$$

Gauss-Markov theorem (Rao, 1973)

- Recall that given a training dataset D, the function to approximate in the hypothesis space \mathcal{H} , $\hat{f}_{\mathrm{D}} \in \mathcal{H}$, is a function of x. In OLS, we assumed that \hat{f}_{D} is a linear function of x.
- Now, if we fix a testing input x=a, $\hat{f}_{\mathsf{D}}(a)$ then is a mapping (<u>statistics</u>) from D to \mathcal{Y} . What if we assume this mapping is linear and consider the \mathbf{MVU} (minimum variance unbiased) estimator of the ground truth $\beta^{\mathsf{T}}a$ at x=a?
- Fix the design matrix X, then this estimator takes the linear form in the response of training examples Y:

$$Y \to c^{\mathsf{T}} Y$$

with the coefficient $c \in \mathbb{R}^n$.

Theorem (Gauss-Markov Theorem)

Let u be an unbiased estimate of the ground truth response $a^T\beta$ at the new input x=a, and u is in the space of linear transformations from the response training data $Y=X\beta+\varepsilon$, where $\varepsilon\sim N(0,\sigma^2I_n)$. This is to say that $u=c^TY$ for some vector $c\in\mathbb{R}^n$ satisfying $\mathbb{E}\,u=a^T\beta$ for any β in \mathbb{R}^{p+1} . Prove

$$Var(u) \ge Var(\hat{y}) = \sigma^2 a^T (X^T X)^{-1} a$$

where $\hat{y} = a^T \hat{\beta}^{OLS} = a^T (X^T X)^{-1} X^T Y$. (see Exercise 3.3 in [ESL].)

Proof.

 $\mathbb{E} u = c^{\mathsf{T}} \mathbb{E} Y = c^{\mathsf{T}} X \beta$ must equal $a^{\mathsf{T}} \beta$ for any β , then

$$X^{\mathsf{T}}c = a$$
.

 $\operatorname{Var}(u) = c^{\mathsf{T}} \mathbb{V}(Y) c = \sigma^2 \|c\|_2^2$. The optimal c is the L_2 -minimal solution of the linear system $X^{\mathsf{T}} c = a$ (which is exactly the "pseudo-inverse" of X^{T}). The remaining is left as an exercise.

This exercise is optional. If you know Cramer-Rao bound, it is worth trying.

Exercise

Find the Fisher information matrix I, which is the covariance matrix of the parameter-gradient of the log likelihood function $I(\beta) := \mathbb{V}(\partial_{\beta} \log p(Y;\beta))$ and show that the variance matrix of $\hat{\beta}^{OLS} = (X^TX)^{-1}X^TY$ is the lower bound $I^{-1}(\beta)$