

密级状态: 绝密() 秘密() 内部() 公开(√)

RKNN API For RK356X User Guide

(技术部,图形计算平台中心)

文件状态:	当前版本:	0.6.0
[]正在修改	作 者:	НРС
[√] 正式发布	完成日期:	2021-03-01
	审核:	熊伟
	完成日期:	2021-03-01

瑞芯微电子股份有限公司
Rockchips Semiconductor Co., Ltd
(版本所有,翻版必究)

更新记录

版本	修改人	修改日期	修改说明	核定人
v0.6.0	НРС	2021-3-1	初始版本	熊伟

目 录

1	主要功能说明	5
2	硬件平台	5
3	使用说明	5
	3.1 RKNN SDK 开发流程	5
	3.2 RKNN Linux 平台开发说明	5
	3.2.1 Linux 平台 RKNN API 库	5
	3.2.1.1 Linux 平台 Demo	5
	3.3 RKNN ANDROID 平台开发说明	6
	3.3.1 ANDROID 平台 RKNN API 库	6
	3.3.2 EXAMPLE 使用说明	7
	3.4 RKNN C API	7
	3.4.1 API 流程说明	7
	3.4.1.1 API 内部处理流程	8
	3.4.1.2 量化和反量化	9
	3.4.2 API 详细说明	9
	3.4.2.1 rknn_init	9
	3.4.2.2 rknn_destroy	10
	3.4.2.3 rknn_query	10
	3.4.2.4 rknn_inputs_set	13
	3.4.2.5 rknn_run	13
	3.4.2.6 rknn_outputs_get	14
	3.4.2.7 rknn_outputs_release	15
	3.4.3 RKNN 数据结构定义	15
	3.4.3.1 rknn input output num	15

	3.4.3.2 rknn_tensor_attr	. 16
	3.4.3.3 rknn_input	.17
	3.4.3.4 rknn_tensor_mem	17
	3.4.3.5 rknn_output	. 18
	3.4.3.6 rknn_perf_detail	18
	3.4.3.7 rknn_sdk_version	. 18
3.	4.4 RKNN 返回值错误码	.19

1 主要功能说明

RKNN SDK 为带有 NPU 的 RK3566,RK3568 芯片平台提供编程接口,能够帮助用户部署使用 RKNN-Toolkit2 导出的 RKNN 模型,加速 AI 应用的落地。

2 硬件平台

本文档适用如下硬件平台:

RK3566、RK3568

注: 文档部分地方使用 RK356X 来表示 RK3566、RK3568。

3 使用说明

3.1 RKNN SDK 开发流程

在使用 RKNN SDK 之前,用户首先需要使用 RKNN-Toolkit2 工具将用户的模型转换为 RKNN 模型。

得到 RKNN 模型文件之后,用户可以选择使用 C接口在 RK3566、RK3568 平台开发应用,后续章节将说明如何在 RK3566、RK3568 平台上基于 RKNN SDK 进行开发。

3.2 RKNN Linux 平台开发说明

3.2.1 Linux 平台 RKNN API 库

对于 RK3566、RK3568, SDK 库文件为<sdk>/rknpu2/下的 librknn api.so

3.2.1.1 Linux 平台 Demo

SDK 提供了 Linux 平台的 MobileNet 图像分类、SSD 目标检测示例。这些 Demo 能够为客户

基于 RKNN SDK 开发自己的 AI 应用提供参考。Demo 代码位于<sdk>/rknpu2/examples 目录。下面以 rknn mobilenet demo 为例来讲解如何快速上手运行。

1) 编译 Demo

cd examples/rknn_mobilenet_demo #设置 build-linux.sh 下的 GCC_COMPILER 为正确的编译器路径 ./build-linux.sh

2) 部署到 RK3566 或 RK3568 设备

adb push install/rknn_mobilenet_demo_Linux /userdata/

3) 运行 Demo

adb shell cd /userdata/rknn_mobilenet_demo_Linux/ ./rknn_mobilenet_demo model/mobilenet_v1.rknn model/dog_224x224.jpg

3.3 RKNN ANDROID 平台开发说明

3.3.1 ANDROID 平台 RKNN API 库

对于需要通过 CTS 测试的 Android 设备可以使用 Android 平台的 RKNN API。Android 平台的 RKNN API 位于 Android 系统 SDK 的 vendor/rockchip/hardware/interfaces/neuralnetworks 目录下。当 完成 Android 系统编译后,将会生成一些 NPU 相关的库,如下所示:

/system/lib64/librknn_api.so
/system/lib64/librknnhal_bridge.rockchip.so
/vendor/lib64/rockchip.hardware.neuralnetworks@1.0.so
/vendor/lib64/rockchip.hardware.neuralnetworks@1.0-adapter-helper.so
/vendor/lib64/librknnrt.so
/vendor/lib64/hw/rockchip.hardware.neuralnetworks@1.0-impl.so

其中对于应用只需要链接使用 librknn api.so 即可调用开发,该库的接口为 RKNN C API。

3.3.2 EXAMPLE 使用说明

目前,SDK 提供了 MobileNet 图像分类、SSD 目标检测示例。Demo 代码位于 <sdk>/rknpu2/examples 目录。用户可以使用 NDK 编译 Android 命令行中执行的 demo。下面以 rknn_mobilenet_demo 为例来讲解在 Android 平台上该 demo 如何使用:

1)编译 Demo

cd examples/rknn_mobilenet_demo #设置 build-android.sh 下的 ANDROID_NDK_PATH 为正确的 NDK 路径 ./build-android.sh

2) 部署到 RK3566 或 RK3568 设备

adb push install/rknn_mobilenet_demo_Android /data/

3) 运行 Demo

adb shell cd /data/rknn_mobilenet_demo_Android/ ./rknn_mobilenet_demo model/mobilenet_v1.rknn model/dog_224x224.jpg

3.4 RKNN CAPI

3.4.1 API 流程说明

首先,用户使用 rknn_inputs_set 函数设置模型输入,等待推理结束后,使用 rknn_outputs_get 函数获取推理的输出。API 调用流程如图 3-1 所示。

图 3-1 RKNN SDK API 调用流程

3.4.1.1 API 内部处理流程

在推理 RKNN 模型时,原始数据要经过输入处理、NPU 运行模型、输出处理三大流程。在典型的图片推理场景中,假设输入数据 data 是 3 通道的图片且为 NHWC 排布格式,运行时(Runtime)对数据处理的流程如图 3-2 所示。在 API 层面上,rknn_inputs_set 接口(当 pass_through=0 时,详见 rknn_input 结构体)包含了颜色通道交换、归一化、量化、NHWC 转换成 NCHW/NC1HWC2 的过程,rknn_outputs_get 接口(当 want_float=1 时,详见 rknn_output 结构体)包含了 NC1HWC2 转换 NCHW 和反量化的过程。

图 3-2 完整的图片数据处理流程

3.4.1.2 量化和反量化

量化和反量化用到的量化方式、量化数据类型以及量化参数,可以通过 <u>rknn_query</u>接口 查询。

目前,RK3566/RK3568 只支持非对称量化,不支持动态定点量化,数据类型和量化方式组合包括:

- int8(非对称量化)
- int16(非对称量化,暂未实现)
- float16

通常,归一化后的数据用 32 位浮点数保存,32 位浮点转换成 16 位浮点数请参考 IEEE-754 标准。假设归一化后的 32 位浮点数据是 *D*,下面介绍量化流程:

1) float32 转 int8 (非对称量化)

假设输入 tensor 的非对称量化参数是 S_a , ZP , 数据 D 量化过程表示为下式:

$$D_q = round(clamp(D/S_q + ZP, -128, 127))$$

上式中, clamp 表示将数值限制在某个范围。round 表示做舍入处理。

2) float32 转 int16 (非对称量化)

假设输入 tensor 的非对称量化参数是 S_q , $Z\!P$,数据 D 量化过程表示为下式:

$$D_a = round(clamp(D/S_a + ZP, -32768, 32767))$$

反量化流程是量化的逆过程,可以根据上述量化公式反推出反量化公式,这里不做赘述。

3.4.2 API 详细说明

3.4.2.1 rknn init

rknn_init 初始化函数将创建 rknn_context 对象、加载 RKNN 模型以及根据 flag 执行特定的初始化行为。

API rknn_init

功能	初始化 rknn	
参数	rknn_context *context: rknn_context 指针。函数调用之后,context 将会被赋值。	
	void *model: RKNN 模型的二进制数据。	
	uint32_t size: 模型大小。	
	uint32_t flag: 特定的初始化标志。目前 RK3566, RK3568 平台暂不支持设置标志。	
返回值	int 错误码(见 rknn 返回值错误码)。	

示例代码如下:

```
rknn_context ctx;
int ret = rknn_init(&ctx, model_data, model_data_size, 0);
```

3.4.2.2 rknn_destroy

rknn_destroy 函数将释放传入的 rknn_context 及其相关资源。

API	rknn_destroy
功能	销毁 rknn_context 对象及其相关资源。
参数	rknn_context context: 要销毁的 rknn_context 对象。
返回值	int 错误码(见 rknn 返回值错误码)。

示例代码如下:

int ret = rknn_destroy (ctx);

3.4.2.3 rknn_query

rknn_query 函数能够查询获取到模型输入输出以及 SDK 版本等信息。

API	rknn_query
功能	查询模型与 SDK 的相关信息。
参数	rknn_context context: rknn_context 对象。
	rknn_query_cmd cmd: 查询命令。

	void* info: 存放返回结果的结构体变量。	
uint32_t size: info 对应的结构体变量的大小。		
返回值	int 错误码(见 <u>rknn 返回值错误码</u>)	

当前 SDK 支持的查询命令如下表所示:

查询命令	返回结果结构体	功能
RKNN_QUERY_IN_OUT_NU	rknn_input_output_num	查询输入输出 Tensor 个数
M		
RKNN_QUERY_INPUT_ATT	rknn_tensor_attr	查询输入 Tensor 属性
R		
RKNN_QUERY_OUTPUT_A	rknn_tensor_attr	查询输出 Tensor 属性
TTR		
RKNN_QUERY_PERF_DETA	rknn_perf_detail	查询网络各层运行时间
IL		(RK3566,RK3568 暂不支持
		该功能)
RKNN_QUERY_SDK_VERSI	rknn_sdk_version	查询 SDK 版本
ON		

接下来的将依次详解各个查询命令如何使用。

1) 查询输入输出 Tensor 个数

传入 RKNN_QUERY_IN_OUT_NUM 命令可以查询模型输入输出 Tensor 的个数。其中需要先创建 rknn_input_output_num 结构体对象。

示例代码如下:

2) 查询输入 Tensor 属性

传入 RKNN_QUERY_INPUT_ATTR 命令可以查询模型输入 Tensor 的属性。其中需要先创建 rknn tensor attr 结构体对象。

示例代码如下:

3) 查询输出 Tensor 属性

传入 RKNN_QUERY_OUTPUT_ATTR 命令可以查询模型输出 Tensor 的属性。其中需要先创建 rknn_tensor_attr 结构体对象。

示例代码如下:

4) 查询 SDK 版本

传入 RKNN_QUERY_SDK_VERSION 命令可以查询 RKNN SDK 的版本信息。其中需要 先创建 rknn_sdk_version 结构体对象。

示例代码如下:

3.4.2.4 rknn_inputs_set

通过 rknn_inputs_set 函数可以设置模型的输入数据。该函数能够支持多个输入,其中每个输入是 rknn_input 结构体对象,在传入之前用户需要设置该对象。

API	rknn_inputs_set	
功能	设置模型输入数据。	
参数	rknn_context context: rknn_contex 对象。	
	uint32_t n_inputs: 输入数据个数。	
	rknn_input inputs[]: 输入数据数组,数组每个元素是 rknn_input 结构体对象。	
返回值	int 错误码(见 rknn 返回值错误码)	

示例代码如下:

```
rknn_input inputs[1];
memset(inputs, 0, sizeof(inputs));
inputs[0].index = 0;
inputs[0].type = RKNN_TENSOR_UINT8;
inputs[0].size = img_width*img_height*img_channels;
inputs[0].fmt = RKNN_TENSOR_NHWC;
inputs[0].buf = in_data;

ret = rknn_inputs_set(ctx, 1, inputs);
```

3.4.2.5 rknn_run

rknn_run 函数将执行一次模型推理,调用之前需要先通过 rknn_inputs_set 函数设置输入数据。

rknn_run

功能	执行一次模型推理。
参数	rknn_context context: rknn_context 对象。
	rknn_run_extend* extend: 保留扩展,当前没有使用,传入 NULL 即可。
返回值	int 错误码(见 rknn 返回值错误码)

示例代码如下:

ret = rknn_run(ctx, NULL);

3.4.2.6 rknn outputs get

rknn_outputs_get 函数可以获取模型推理的输出数据。该函数能够一次获取多个输出数据。 其中每个输出是 rknn_output 结构体对象,在函数调用之前需要依次创建并设置每个rknn output 对象。

对于输出数据的 buffer 存放可以采用两种方式: 一种是用户自行申请和释放,此时 rknn_output 对象的 is_prealloc 需要设置为 1,并且将 buf 指针指向用户申请的 buffer; 另一种是由 rknn 来进行分配,此时 rknn_output 对象的 is_prealloc 设置为 0 即可,函数执行之后 buf 将指向输出数据。

API	rknn_outputs_get
功能	获取模型推理输出。
参数	rknn_context context: rknn_context 对象。
	uint32_t n_outputs: 输出数据个数。
	rknn_output outputs[]:输出数据的数组,其中数组每个元素为 rknn_output 结构体对
	象,代表模型的一个输出。
	rknn_output_extend* extend: 保留扩展,当前没有使用,传入 NULL 即可
返回值	int 错误码(见 rknn 返回值错误码)

示例代码如下:


```
rknn_output outputs[io_num.n_output];
memset(outputs, 0, sizeof(outputs));
for (int i = 0; i < io_num.n_output; i++) {
    outputs[i].want_float = 1;
}
ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL);</pre>
```

3.4.2.7 rknn_outputs_release

rknn_outputs_release 函数将释放 rknn_outputs_get 函数得到的输出的相关资源。

API	rknn_outputs_release
功能	释放 rknn_output 对象。
参数	rknn_context context: rknn_context 对象。
	uint32_t n_outputs: 输出数据个数。
	rknn_output outputs[]: 要销毁的 rknn_output 数组。
返回值	int 错误码(见 rknn 返回值错误码)

示例代码如下

```
ret = rknn_outputs_release(ctx, io_num.n_output, outputs);
```

3.4.3 RKNN 数据结构定义

3.4.3.1 rknn_input_output_num

结构体 rknn_input_output_num 表示输入输出 Tensor 个数, 其结构体成员变量如下表所示:

成员变量	数据类型	含义
n_input	uint32_t	输入 Tensor 个数
n_output	uint32_t	输出 Tensor 个数

3.4.3.2 rknn_tensor_attr

结构体 rknn_tensor_attr 表示模型的 Tensor 的属性,结构体的定义如下表所示:

成员变量	数据类型	含义
index	uint32_t	表示输入输出 Tensor 的索引位置。
n_dims	uint32_t	Tensor 维度个数。
dims	uint32_t[]	Tensor 各维度值。
name	char[]	Tensor 名称。
n_elems	uint32_t	Tensor 数据元素个数。
size	uint32_t	Tensor 数据所占内存大小。
fmt	rknn_tensor_format	Tensor 维度的格式,有以下格式:
		RKNN_TENSOR_NCHW
		RKNN_TENSOR_NHWC
type	rknn_tensor_type	Tensor 数据类型,有以下数据类型:
		RKNN_TENSOR_FLOAT32
		RKNN_TENSOR_FLOAT16
		RKNN_TENSOR_INT8
		RKNN_TENSOR_UINT8
		RKNN_TENSOR_INT16
qnt_type	rknn_tensor_qnt_type	Tensor 量化类型,有以下的量化类型:
		RKNN_TENSOR_QNT_NONE: 未量化;
		RKNN_TENSOR_QNT_DFP: 动态定点量化;
		RKNN_TENSOR_QNT_AFFINE_ASYMMET
		RIC: 非对称量化。
fl	int8_t	RKNN_TENSOR_QNT_DFP 量化类型的参数。
zp	uint32_t	RKNN_TENSOR_QNT_AFFINE_ASYMMETRI

		C量化类型的参数。
scale	float	RKNN_TENSOR_QNT_AFFINE_ASYMMETRI
		C 量化类型的参数。

3.4.3.3 rknn_input

结构体 rknn_input 表示模型的一个数据输入,用来作为参数传入给 rknn_inputs_set 函数。 结构体的定义如下表所示:

成员变量	数据类型	含义
index	uint32_t	该输入的索引位置。
buf	void*	输入数据 Buffer 的指针。
size	uint32_t	输入数据 Buffer 所占内存大小。
pass_through	uint8_t	设置为 1 时会将 buf 存放的输入数据直接设置给
		模型的输入节点,不做任何预处理。(目前,
		RK3566和RK3568暂不支持pass_through=1的配
		置)
type	rknn_tensor_type	输入数据的类型。
fmt	rknn_tensor_format	输入数据的格式。

3.4.3.4 rknn_tensor_mem

结构体 rknn_tensor_mem 表示 tensor 初始化后的存储状态信息,目前,RK3566 和 RK3568 还未提供使用该结构体的接口,暂时保留以便后续扩展。结构体的定义如下表所示:

成员变量	数据类型	含义
logical_addr	void*	该输入的虚拟地址。
physical_addr	uint64_t	该输入的物理地址。
fd	int32_t	该输入的 fd。
size	uint32_t	该输入 tensor 占用的内存大小。

handle	uint32_t	该输入的 handle。
priv_data	void*	保留的数据。
reserved_flag	uint64_t	保留的标志位。

3.4.3.5 rknn_output

结构体 rknn_output 表示模型的一个数据输出,用来作为参数传入给 rknn_outputs_get 函数,在函数执行后,结构体对象将会被赋值。结构体的定义如下表所示:

成员变量	数据类型	含义
want_float	uint8_t	标识是否需要将输出数据转为 float 类型输出。
is_prealloc	uint8_t	标识存放输出数据的 Buffer 是否是预分配。
index	uint32_t	该输出的索引位置。
buf	void*	输出数据 Buffer 的指针。
size	uint32_t	输出数据 Buffer 所占内存大小。

3.4.3.6 rknn_perf_detail

结构体 rknn_perf_detail 表示模型的性能详情,结构体的定义如下表所示:

成员变量	数据类型	含义
perf_data	char*	性能详情包含网络每层运行时间,能够直接打印
		出来查看。
data_len	uint64_t	存放性能详情的字符串数组的长度。

3.4.3.7 rknn_sdk_version

结构体 rknn_sdk_version 用来表示 RKNN SDK 的版本信息,结构体的定义如下:

成员变量	数据类型	含义
------	------	----

api_version	char[]	SDK 的版本信息。
drv_version	char[]	SDK 所基于的驱动版本信息。

3.4.4 RKNN 返回值错误码

RKNN API 函数的返回值错误码定义如下表所示:

KKWAIT 超效的运程值值获特定入如下农州办:	
错误码	错误详情
RKNN_SUCC (0)	执行成功
RKNN_ERR_FAIL (-1)	执行出错
RKNN_ERR_TIMEOUT (-2)	执行超时
RKNN_ERR_DEVICE_UNAVAILABLE	NPU 设备不可用
(-3)	
RKNN_ERR_MALLOC_FAIL (-4)	内存分配失败
RKNN_ERR_PARAM_INVALID (-5)	传入参数错误
RKNN_ERR_MODEL_INVALID (-6)	传入的 RKNN 模型无效
RKNN_ERR_CTX_INVALID (-7)	传入的 rknn_context 无效
RKNN_ERR_INPUT_INVALID (-8)	传入的 rknn_input 对象无效
RKNN_ERR_OUTPUT_INVALID (-9)	传入的 rknn_output 对象无效
RKNN_ERR_DEVICE_UNMATCH (-10)	版本不匹配
RKNN_ERR_INCOMPATILE_OPTIMIZAT	RKNN 模型设置了优化等级的选项,但是和当前驱动
ION_LEVEL_VERSION (-12)	不兼容
RKNN_ERR_TARGET_PLATFORM_UNM	RKNN 模型和当前平台不兼容。
ATCH (-13)	