PROPERTIES OF CONTEXT-FREE LANGUAGES

a.y. 2023-2024

1 / 58

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2023

Non-terminals play variables

LEMMA

Let $\mathcal{G} = (V, T, S, \mathcal{P})$. Then every grammar \mathcal{G}' obtained from \mathcal{G} by renaming its non-terminals is such that $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{G}')$.

Non-terminals play variables **EXAMPLE**

• For instance, any derivation for the grammar

$$\begin{array}{ccc} \mathcal{S} & \rightarrow & a \mathcal{S} b \mathcal{C} \mid a b \\ \mathcal{C} & \rightarrow & c \mathcal{C} \mid c \end{array}$$

• Can be mimicked using the grammar

$$R \rightarrow aRbD \mid ab$$

 $D \rightarrow cD \mid c$

And viceversa

3 / 58

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2023

Cleaning up free grammars

LEMMA

Let $\mathcal L$ be a context-free language. Then there exists a context-free grammar $\mathcal G$ such that $\mathcal L(\mathcal G)=\mathcal L\setminus\{\epsilon\}$ and that has:

- No ϵ -production (i.e. no production of the shape $A \to \epsilon$)
- No unit production (i.e. no production of the shape $A \rightarrow B$)
- No useless non-terminal (i.e. non-terminals that never appear in some derivations of some strings of terminals)

Cleaning up free grammars

$$\begin{array}{ccc} S & \rightarrow & ABC \mid abc \\ A & \rightarrow & aB \mid \epsilon \\ B & \rightarrow & bA \mid C \\ C & \rightarrow & \epsilon \end{array}$$

5 / 58

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2023

Cleaning up free grammars

 $\epsilon ext{-PRODUCTION ELIMINATION}$

- Find **nullable** non-terminals, i.e., every non-terminal A such that $A \Rightarrow^* \epsilon$
 - Base: if $A \rightarrow \epsilon$ is a production, then A is nullable
 - **Iteration:** if $A \to Y_1 Y_2 \dots Y_n$ is a production and Y_1, Y_2, \dots, Y_n are all nullable, then A is nullable
- Substitute each production $A \to Y_1 Y_2 \dots Y_n$ by a family of productions where combinations of nullable Y_i s are removed from the body. (Exception: If all of Y_i s are nullable do not take in the family the production $A \to \epsilon$)
- Eliminate every production $A \rightarrow \epsilon$

Cleaning up free grammars

$$\begin{array}{ccc} S & \rightarrow & ABC \mid abc \\ A & \rightarrow & aB \mid \epsilon \\ B & \rightarrow & bA \mid C \\ C & \rightarrow & \epsilon \end{array}$$

- Find **nullable** non-terminals
 - ullet A and C nullable by $A
 ightarrow \epsilon, C
 ightarrow \epsilon$
 - ullet B nullable by B o C and C nullable
 - ullet S nullable by S o ABC and A,B,C nullable

7 / 58

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2023

Cleaning up free grammars

$$\begin{array}{ccc} S & \rightarrow & ABC \mid abc \\ A & \rightarrow & aB \mid \epsilon \\ B & \rightarrow & bA \mid C \end{array}$$

 $C \rightarrow \epsilon$

• Substitute each production $A \to Y_1 Y_2 \dots Y_n$ by a family of productions (if all of Y_i s are nullable is useless to take in the family the production $A \to \epsilon$)

$$\begin{array}{lll} S & \rightarrow & ABC \mid abc \mid AB \mid AC \mid BC \mid A \mid B \mid C \\ A & \rightarrow & aB \mid a \mid \epsilon \\ B & \rightarrow & bA \mid b \mid C \\ C & \rightarrow & \epsilon \end{array}$$

Cleaning up free grammars EXAMPLE

$$\begin{array}{lll} S & \to & ABC \mid abc \mid AB \mid AC \mid BC \mid A \mid B \mid C \\ A & \to & aB \mid a \mid \epsilon \\ B & \to & bA \mid b \mid C \\ C & \to & \epsilon \end{array}$$

• Eliminate every production $A \rightarrow \epsilon$

$$\begin{array}{lll} S & \to & ABC \mid abc \mid AB \mid AC \mid BC \mid A \mid B \mid C \\ A & \to & aB \mid a \\ B & \to & bA \mid b \mid C \end{array}$$

9 / 58

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2023

Cleaning up free grammars EXAMPLE

$$S \rightarrow ABC \mid abc \mid AB \mid AC \mid BC \mid A \mid B \mid C$$

 $A \rightarrow aB \mid a$
 $B \rightarrow bA \mid b \mid C$

Useless non-terminal elimination

Cleaning up free grammars

• Unit production elimination

11 / 58

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2023

Cleaning up free grammars EXAMPLE

From

$$\begin{array}{ccc} S & \rightarrow & ABC \mid abc \\ A & \rightarrow & aB \mid \epsilon \\ B & \rightarrow & bA \mid C \\ C & \rightarrow & \epsilon \end{array}$$

• We get

$$\begin{array}{lll} S & \rightarrow & abc \mid AB \mid aB \mid a \mid bA \mid b \\ A & \rightarrow & aB \mid a \\ B & \rightarrow & bA \mid b \end{array}$$

Closure wrt union

LEMMA

The class of free languages is closed w.r.t. set-union.

- Meaning:
 - If \mathcal{L}_1 and \mathcal{L}_2 are free languages
 - ullet Then $\mathcal{L}_1 \cup \mathcal{L}_2$ is a free language.

13 / 58

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2023

Closure wrt union

PROOF

- Let \mathcal{L}_1 and \mathcal{L}_2 be free languages.
- Then there exist two free grammars $\mathcal{G}_1 = (V_1, T_1, S_1, \mathcal{P}_1)$ and $\mathcal{G}_2 = (V_2, T_2, S_2, \mathcal{P}_2)$ such that $\mathcal{L}_1 = \mathcal{L}(\mathcal{G}_1)$ and $\mathcal{L}_2 = \mathcal{L}(\mathcal{G}_2)$.
- Also, we can assume that $(V_1 \setminus T_1) \cap (V_2 \setminus T_2) = \emptyset$, namely that \mathcal{G}_1 and \mathcal{G}_2 do not share any non-terminal
- Let $\mathcal{G} = (V_1 \cup V_2 \cup \{S\}, T_1 \cup T_2, S, \mathcal{P}_1 \cup \mathcal{P}_2 \cup \{S \to S_1 \mid S_2\})$ where:
 - S is a new symbol not in $V_1 \cup V_2$
- Then $\mathcal{L}(\mathcal{G})$ is free and $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{G}_1) \cup \mathcal{L}(\mathcal{G}_2)$.

Closure wrt union

PROOF: Why is \mathcal{G} free?

- The productions of \mathcal{G} are those in $\mathcal{P}_1 \cup \mathcal{P}_2 \cup \{S \to S_1 \mid S_2\})$
- ullet The productions in both \mathcal{P}_1 and \mathcal{P}_2' have the form A o lpha
- ullet The productions ${\cal S} o {\cal S}_1$ and ${\cal S} o {\cal S}_2$ also have the form ${\cal A} o lpha$
- ullet Hence ${\cal G}$ is free

15 / 58

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2023

Closure wrt union

PROOF: Why is $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{G}_1) \cup \mathcal{L}(\mathcal{G}_2)$?

- $w \in \mathcal{L}(\mathcal{G})$
- iff there exists a derivation $S \Rightarrow^* w$
- iff $S \Rightarrow S_1 \Rightarrow^* w$ or $S \Rightarrow S_2 \Rightarrow^* w$
- iff $S_1 \Rightarrow^* w$ or $S_2 \Rightarrow^* w$
- iff $w \in \mathcal{L}(\mathcal{G}_1)$ or $w \in \mathcal{L}(\mathcal{G}_2)$
- iff $w \in \mathcal{L}(\mathcal{G}_1) \cup \mathcal{L}(\mathcal{G}_2)$.

Closure wrt union

PROOF: Why insisting on G_1 and G_2 not sharing non-terminals?

Take

 $egin{array}{llll} \mathcal{G}_1: & S_1 &
ightarrow & aA & & \mathcal{G}_2: & S_2 &
ightarrow & bA \ & A &
ightarrow & a & & A &
ightarrow & b \end{array}$

- Then $\mathcal{L}(\mathcal{G}_1) = \{aa\}$ and $\mathcal{L}(\mathcal{G}_2) = \{bb\}$.
- However, if we just put everything together and define

 $\mathcal{G}: S \rightarrow S_1 \mid S_2$ $S_1 \rightarrow aA$ $S_2 \rightarrow bA$ $A \rightarrow a \mid b$

- Then $\mathcal{L}(\mathcal{G}) = \{aa, ab, ba, bb\} \neq \mathcal{L}(\mathcal{G}_1) \cup \mathcal{L}(\mathcal{G}_2)$.
- What is the problem here?

17 / 58

Closure wrt union

PROOF: Why insisting on G_1 and G_2 not sharing non-terminals?

Take

 $egin{array}{llll} \mathcal{G}_1: & \mathcal{S}_1 &
ightarrow & aA & & \mathcal{G}_2: & \mathcal{S}_2 &
ightarrow & bA \ & A &
ightarrow & a & & A &
ightarrow & b \end{array}$

- Then $\mathcal{L}(\mathcal{G}_1) = \{aa\}$ and $\mathcal{L}(\mathcal{G}_2) = \{bb\}$.
- ullet The symbol A plays distinct roles in \mathcal{G}_1 and in \mathcal{G}_2
- To reflect this distinction, rather take

 $\mathcal{G}_1: S_1 \rightarrow aA$ $A \rightarrow a$

 $\mathcal{G}_2: S_2 \rightarrow bA'$

• No mix up of productions now, and, by contruction, $\mathcal{L}(\mathcal{G}) = \{aa, bb\}$

Closure wrt concatenation

LEMMA

The class of free languages is closed w.r.t. concatenation.

- Meaning:
 - \bullet If \mathcal{L}_1 and \mathcal{L}_2 are free languages
 - Then $\{w_1w_2 \mid w_1 \in \mathcal{L}_1 \text{ and } w_2 \in \mathcal{L}_2\}$ is a free language.

19 / 58

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2023

Closure wrt concatenation PROOF

- Let \mathcal{L}_1 and \mathcal{L}_2 be free languages.
 - Then there exist two free grammars $\mathcal{G}_1 = (V_1, T_1, S_1, \mathcal{P}_1)$ and $\mathcal{G}_2 = (V_2, T_2, S_2, \mathcal{P}_2)$ such that $\mathcal{L}_1 = \mathcal{L}(\mathcal{G}_1)$ and $\mathcal{L}_2 = \mathcal{L}(\mathcal{G}_2)$.
 - Also, we can assume that there is no clash between the non-terminals of \mathcal{G}_1 and those of \mathcal{G}_2
 - Let $\mathcal{G} = (V_1 \cup V_2 \cup \{S\}, T_1 \cup T_2, S, \mathcal{P}_1 \cup \mathcal{P}_2 \cup \{S \rightarrow S_1 S_2\})$ where S is a new symbol not in $V_1 \cup V_2$.
 - Then $\mathcal{L}(\mathcal{G})$ is free and $\mathcal{L}(\mathcal{G}) = \{w_1 w_2 \mid w_1 \in \mathcal{L}(\mathcal{G}_1) \text{ and } w_2 \in \mathcal{L}(\mathcal{G}_2)\}.$

Are free languages closed w.r.t. intersection?

21 / 58

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2023

Recall

LEMMA

Let \mathcal{L} be a context-free language. Then there exists a context-free grammar \mathcal{G} such that $\mathcal{L}(\mathcal{G}) = \mathcal{L} \setminus \{\epsilon\}$ and that has:

- No ϵ -production (i.e. no production of the shape $A \to \epsilon$)
- No unit production (i.e. no production of the shape $A \rightarrow B$)
- No useless non-terminal (i.e. non-terminals that never appear in some derivations of some strings of terminals)

NOTE

Each production $A \to \beta$ in $\mathcal G$ is such that either β is a single terminal or $|\beta| \ge 2$

LEMMA

Let $\ensuremath{\mathcal{L}}$ be a free language. Then

- $\exists p \in \mathbb{N}^+$ such that
- $\forall z \in \mathcal{L}$ such that |z| > p
- $\exists u, v, w, x, y$ such that
 - z = uvwxy and
 - $|vwx| \leq p$ and
 - |vx| > 0 and
 - $\forall i \in \mathbb{N}.uv^iwx^iy \in \mathcal{L}$

23 / 58

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2023

Pumping Lemma for free languages PROOF

- ullet Let ${\mathcal L}$ be a free language
- \bullet The lemma is about words longer than p>0, and hence different from ϵ
- Then just consider a "cleaned-up" free grammar $\mathcal G$ such that $\mathcal L(\mathcal G)=\mathcal L\setminus\{\epsilon\}$

- \bullet Transform ${\cal G}$ in (Chomsky normal form) a grammar ${\cal G}'$ where each production has
 - either the form $A \rightarrow a$
 - ullet or the form $A o A_1 A_2$
- Example
 - $S \rightarrow aSb \mid ab$
 - Both aSb and ab are to be changed. Pick up a new non-terminal for a, say A, and a new non-terminal for b, say B, and transform
 - $S \rightarrow ASB \mid AB$, $A \rightarrow a$, $B \rightarrow b$
 - *ASB* is longer than 2, pick up a new non-terminal for *SB*, say *C*, and transform
 - $\bullet \ \ S \to AC \ | \ AB, \qquad C \to SB, \qquad A \to a, \qquad B \to b$

25 / 58

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2023

Pumping Lemma for free languages PROOF

- ullet Let k be the number of non-terminals in \mathcal{G}'
- ullet Observe that any derivation tree for words in $\mathcal{L}(\mathcal{G}')$ has
 - Exactly 2⁰ nodes at level 0
 - At most 2¹ nodes at level 1
 - At most 2² nodes at level 2
 -
 - At most 2^j nodes at level j
- Take $p = 2^{k+1}$

- Let $z \in \mathcal{L}$ be such that |z| > p
- Then the derivation tree for z must have at least k + 2 levels
- ullet Then every longest path of the derivation tree for z has a terminal at the last level and traverses at least k+1 non-terminals
- Hence there is at least one non-terminal occurring twice or more along the path

27 / 58

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2023

Pumping Lemma for free languages PROOF

- Consider the longest path in the tree, and the deepest pair of occurrences of the same non-terminal along that path (i.e. choose the non-terminal whose second occurrence is found first going bottom-up)
- For instance, below the deepest pair is always the pair of As

Let A be non-terminal of the deepest pair of occurrences of the same non-terminal along the path

29 / 58

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2023

Pumping Lemma for free languages PROOF

Call A1 and A2 the two occurrences of A

Then there are two distinct subtrees rooted at A: the "pink subtree" and the "green subtree"

31 / 58

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2023

Pumping Lemma for free languages PROOF

Then z = uvwxy

Then $uv^0wx^0y\in\mathcal{L}$.

33 / 58

Formal Languages and Compilers

Paola Quaglia, 2023

Pumping Lemma for free languages PROOF

Then $uv^2wx^2y \in \mathcal{L}$.

Then $uv^3wx^3y \in \mathcal{L}$.

35 / 58

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2023

Pumping Lemma for free languages PROOF

Then

- $\forall i \in \mathbb{N}.uv^iwx^iy \in \mathcal{L}$
- $|vwx| \leq p$
 - Because we have chosen the deepest pair of repeated non-terminals (A1, A2) along the longest path from S
 - Then along the longest path from A2, below A2, no non-terminal can occur more than once
 - Then the subtree rooted at A2 has at most k+1 levels
 - ullet Then the length of the yield of the subtree is bound by 2^{k+1}
- |vx| > 0
 - ullet Because \mathcal{G}' is cleaned-up
 - Then it cannot be $A\Rightarrow^+A$ but rather $A\Rightarrow^+\alpha A\beta$ with at least one terminal derived by either α or β

WHAT IS THIS LEMMA GOOD FOR?

- Recall the structure of the statement
- ullet " Let ${\mathcal L}$ be a free language. Then *PL-THESIS*."
- By no means the lemma can be used to show that a certain language is free
- It is used to show that a language is not free
- Schema of such proofs:
 - ullet Assume that language ${\cal L}$ is free
 - Show that *PL-THESIS* is false, i.e., prove *not(PL-THESIS)*
 - \bullet By contradiction, conclude that ${\cal L}$ is not free

37 / 58

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2023

Pumping Lemma for free languages

PL-THESIS

- $\exists p \in \mathbb{N}^+$. $\forall z \in \mathcal{L}$: |z| > p. $\exists u, v, w, x, y$. P
- where
 - $P \equiv P1$ and P2 and P3 and P4
 - $P1 \equiv z = uvwxy$
 - $P2 \equiv |vwx| \le p$
 - $P3 \equiv |vx| > 0$
 - $P4 \equiv \forall i \in \mathbb{N}.uv^iwx^iy \in \mathcal{L}$

not(PL-THESIS)

- not $(\exists p \in \mathbb{N}^+. \forall z \in \mathcal{L}: |z| > p. \exists u, v, w, x, y. P)$
- $\forall p \in \mathbb{N}^+$. not $(\forall z \in \mathcal{L}: |z| > p. \exists u, v, w, x, y. P)$
- $\forall p \in \mathbb{N}^+$. $\exists z \in \mathcal{L}$: |z| > p. not $(\exists u, v, w, x, y, P)$
- $\forall p \in \mathbb{N}^+$. $\exists z \in \mathcal{L}$: |z| > p. $\forall u, v, w, x, y$. not (P)
- $\forall p \in \mathbb{N}^+$. $\exists z \in \mathcal{L}$: |z| > p. $\forall u, v, w, x, y$. not (P1 and P2 and P3 and P4)

39 / 58

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2023

Pumping Lemma for free languages

not (P1 and P2 and P3 and P4)

- not (P1 and P2 and P3 and P4)
- not ((P1 and P2 and P3) and P4)
- not (P1 and P2 and P3) **or** not P4
- (P1 and P2 and P3) implies not P4
- (P1 and P2 and P3) implies not ($\forall i \in \mathbb{N}.uv^iwx^iy \in \mathcal{L}$)
- (P1 and P2 and P3) implies $\exists i \in \mathbb{N}$. not ($uv^iwx^iy \in \mathcal{L}$)

not(PL-THESIS)

- $\forall p \in \mathbb{N}^+$. $\exists z \in \mathcal{L}$: |z| > p. $\forall u, v, w, x, y$.
 - $(z = uvwxy \text{ and } |vwx| \le p \text{ and } |vx| > 0)$
 - implies
 - $\exists i \in \mathbb{N}.uv^iwx^iy \notin \mathcal{L}$
- Operationally:
- Whichever positive natural number p is
- Choose a word z longer than p and belonging to the language
- Show that, **whichever** unpacking of z into uvwxy with $|vwx| \le p$ and |vx| > 0 is taken
- A natural number i can be **chosen** which is such that $uv^iwx^iy \notin \mathcal{L}$

41 / 58

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2023

Pumping Lemma at work

$$\mathcal{G}: S \rightarrow aSBc \mid abc$$
 $cB \rightarrow Bc$
 $bB \rightarrow bb$

- \mathcal{G} is context-dependent and $\mathcal{L}(\mathcal{G}) = \{a^n b^n c^n \mid n > 0\}.$
- Is $\mathcal{L}(\mathcal{G})$ a free language?

LEMMA

 $\mathcal{L} = \{a^n b^n c^n \mid n > 0\}$ is not free.

43 / 58

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2023

Pumping Lemma at work

- Suppose \mathcal{L} is free, and let p be an arbitrary positive integer
- Take $z = a^p b^p c^p$
- If $(z = uvwxy \text{ and } |vwx| \le p \text{ and } |vx| > 0)$
- Then vx cannot have occurrences of both as and cs because the last occurrence of a and the first occurrence of c are p+1 positions far. In fact, for some positive k and j
 - Either $vwx = a^k$
 - Or $vwx = a^k b^j$
 - Or $vwx = b^j$
 - Or $vwx = b^j c^k$
 - Or $vwx = c^k$

- Then vx has either no occurrences of c or no occurrences of a
- Then uv^0wx^0y cannot have the form $a^nb^nc^n$, hence $uv^0wx^0y\not\in\mathcal{L}$
- ullet Then, by contradiction wrt the Pumping Lemma, ${\cal L}$ is not free

45 / 58

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2023

Pumping Lemma at work

AGAIN ON THE PROOF STRUCTURE

- ...let p be an arbitrary positive integer $\forall p$: Any p
- Take $z = a^p b^p c^p$ $\exists z$: Choose $z \in \mathcal{L}$ longer than p
- ... If $(z = uvwxy \text{ and } |vwx| \le p \text{ and } |vx| > 0)$ then $\forall u, v, w, x, y : z = uvwxy \text{ and } |vwx| \le p \text{ and } |vx| > 0$
- ... $uv^0wx^0y \notin \mathcal{L}$ $\exists i$: Choose a value for the iterator
- ... contradiction

$$\begin{array}{cccc} \mathcal{G}: & S & \rightarrow & CD \\ & C & \rightarrow & aCA \mid bCB \mid \epsilon \\ & AD & \rightarrow & aD \\ & BD & \rightarrow & bD \\ & Aa & \rightarrow & aA \\ & Ab & \rightarrow & bA \\ & Ba & \rightarrow & aB \\ & Bb & \rightarrow & bB \\ & D & \rightarrow & \epsilon \end{array}$$

- ullet \mathcal{G} is context-dependent
- What is $\mathcal{L}(\mathcal{G})$?

47 / 58

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2023

Pumping Lemma at work

• Derived strings have a bookmark D initially at rightmost position

$$S \rightarrow CD$$

• Strings can only grow longer by replacing C

$$C \rightarrow aCA \mid bCB \mid \epsilon$$

 Non-terminals close to the rightmost delimiter can be converted to the corresponding terminal

$$AD \rightarrow aD$$

$$BD \rightarrow bD$$

 Non-terminals and terminals can be swapped when the terminal is at the right of the non-terminal

$$Aa \rightarrow aA$$

$$Ab \rightarrow bA$$

$$Ba \rightarrow aB$$

$$Bb \rightarrow bB$$

```
S
                          by S \rightarrow CD
                          by C \rightarrow aCA
\Rightarrow CD
\Rightarrow aCAD
                          by C \rightarrow aCA
\Rightarrow aaCAAD
                          by C \rightarrow bCB
\Rightarrow aabCBAAD
                          by C 	o \epsilon
\Rightarrow aabBAAD
                          by AD \rightarrow aD
\Rightarrow aabBAaD
                          by Aa \rightarrow aA
⇒ aabBaAD
                          by Ba \rightarrow aB
\Rightarrow aabaBAD
                          by AD \rightarrow aD
                          by Ba \rightarrow aB
⇒ aabaBaD
⇒ aabaaBD
                          by BD \rightarrow bD
\Rightarrow aabaabD
                         by D 	o \epsilon
\Rightarrow aabaab
```

49 / 58

FORMAL LANGUAGES AND COMPILER

Paola Quaglia 2023

Pumping Lemma at work

- $\bullet \ \mathcal{L}(\mathcal{G}) = \{ww \mid w \in \{a, b\}^*\}$
- Is $\mathcal{L}(\mathcal{G})$ a free language?

LEMMA

 $\mathcal{L}(\mathcal{G}) = \{ww \mid w \in \{a, b\}^*\}$ is not free.

Proof

Analogous to the previous one.

A good choice for z is $z = a^p b^p a^p b^p$.

51 / 58

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2023

Free or not?

- $\{a^n b^n c^n \mid n > 0\}$
- Not free, by previous lemma
- $\{a^n b^n c^j \mid n, j > 0\}$
- Free, concatenation of two free languages
- $\{a^nb^n \mid n > 0\}$ and $\{c^j \mid j > 0\}$
- $\{a^{j}b^{n}c^{n} \mid j, n > 0\}$
- \bullet Free, concatenation of two free languages
- $\{a^j \mid j > 0\}$ and $\{b^n c^n \mid n > 0\}$

Closure wrt intersection does not hold

LEMMA

The class of free languages is not closed w.r.t. intersection.

Proof

- By contradiction
- ullet Take two free languages \mathcal{L}_1 and \mathcal{L}_2 whose intersection is not free
- $\mathcal{L}_1 = \{a^n b^n c^j \mid n, j > 0\}$
- $\mathcal{L}_2 = \{a^j b^n c^n \mid n, j > 0\}$
- $\bullet \ \mathcal{L}_1 \cap \mathcal{L}_2 = \{a^n b^n c^n \mid n > 0\}$

53 / 58

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2023

Training

$$\mathcal{G}: S \rightarrow aSc \mid aTc \mid T$$
 $T \rightarrow bTa \mid ba$

- Is \mathcal{G} ambiguous?
- Yes
 - $S \Rightarrow aTc \Rightarrow abac$
 - $S \Rightarrow aSc \Rightarrow aTc \Rightarrow abac$
- What is $\mathcal{L}(\mathcal{G})$? $\{a^k b^n a^n c^k \mid k \ge 0, n > 0\}$

Training

$$\mathcal{G}: S \rightarrow 0B \mid 1A$$

$$A \rightarrow 0 \mid 0S \mid 1AA$$

$$B \rightarrow 1 \mid 1S \mid 0BB$$

• What is $\mathcal{L}(\mathcal{G})$? $\{w\mid w\in \left\{0,1\right\}^* \text{ and } \#(0,w)=\#(1,w)\}$

55 / 58

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2023

Training

• Define \mathcal{G} such that $\mathcal{L}(\mathcal{G}) = \{a^k b^n c^{2k} \mid k, n > 0\}$

$$S \rightarrow aScc \mid aBcc$$

$$B \rightarrow bB \mid b$$

ullet Define ${\mathcal G}$ such that ${\mathcal L}({\mathcal G})=\{a^kb^nc^{2k}\mid k,n\geq 0\}$

$$S \rightarrow aScc \mid B$$

$$B \rightarrow bB \mid \epsilon$$

Training

$$\mathcal{G}: \quad S \quad \rightarrow \quad aBS \mid bA$$
 $aB \quad \rightarrow \quad Ac \mid a$ $bA \quad \rightarrow \quad S \mid Ba$

• Is $\mathcal{L}(\mathcal{G}) = \emptyset$? No: $\underline{S} \Rightarrow aB\underline{S} \Rightarrow \underline{aB}bA \Rightarrow \underline{abA} \Rightarrow \underline{aB}a \Rightarrow aa$

57 / 58

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2023

Training

 \bullet Define a grammar ${\cal G}$ such that ${\cal L}({\cal G})$ is the set of all the even binary numbers

$$S \rightarrow 0S \mid 1S \mid 0$$

 \bullet Define a grammar \mathcal{G}' such that $\mathcal{L}(\mathcal{G}') = \{1^n0 \mid n \geq 0\}$

$$S \rightarrow A0 \mid 0$$

$$A \rightarrow 1A \mid 1$$

 $\bullet \ \text{Is} \ \mathcal{L}(\mathcal{G}') = \mathcal{L}(\mathcal{G})?$

No: 000000 is in $\mathcal{L}(\mathcal{G})$ but not in $\mathcal{L}(\mathcal{G}')$