Wissenschaftliches Rechnen - Großübung 2.2

Themen: Ausgleichsrechnung, Definitheit

Ugo & Gabriel

22. November 2022

Aufgabe 1: Ausgleichsrechnung

Bei der linearen Ausgleichsrechnung versucht man ein unlösbares, überbestimmtes LGS approximativ zu lösen. Statt $\mathbf{A}\mathbf{x} = \mathbf{b}$ löst man $\mathbf{A}^\mathsf{T}\mathbf{A}\mathbf{x} = \mathbf{A}^\mathsf{T}\mathbf{b}$ und minimiert dabei die ℓ^2 -Norm des Residuums $\mathbf{r} = \mathbf{A}\mathbf{x} - \mathbf{b}$, sodass $\mathbf{A}\mathbf{x}$ möglichst nah an \mathbf{b} sein muss.

- 1. Welche geometrische Interpretation hat die Normalengleichung?
- 2. Zunächst betrachten wir den einfachen Fall, dass die Systemmatrix ein einziger Vektor \mathbf{a} ist. Dann haben wir ein lineares Gleichungssystem $\mathbf{a}x = \mathbf{b}$ mit $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$. Welcher Punkt $\hat{\mathbf{b}}$ im linearen Unterraum, der von \mathbf{a} aufgespannt wird, ist am nächsten zu \mathbf{b} ?

Hinweis: Schauen Sie sich die Übungsaufgabe zu Skalarprodukten an.

- 3. Gegeben ein überbestimmtes LGS $\mathbf{A}\mathbf{x} = \mathbf{b}$. Geben Sie eine Formel für den nächsten Punkt $\hat{\mathbf{b}}$ an, welcher sich im Spann der Matrix \mathbf{A} befindet.
- 4. Die letzte Aufgabe lässt sich als lineares Gleichungssystem $\mathbf{Pb} = \hat{\mathbf{b}}$ schreiben. Zeigen Sie, dass diese Matrix \mathbf{P} eine Projektion ist, d.h. $\mathbf{P}^2 = \mathbf{PP} = \mathbf{P}$ (diese Eigenschaft nennt sich idempotent).

5. Gegeben sei die folgende Basis $\mathbf A$ eines linearen Unterraums des $\mathbb R^3$:

$$\mathbf{A} = \begin{bmatrix} 3 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$$

Berechnen Sie die Projektionsmatrix \mathbf{P} , welche jeden Punkt $\mathbf{x} \in \mathbb{R}^3$ auf den nächstgelegenen Punkt $\hat{\mathbf{x}} \in \mathrm{Span}(\mathbf{A})$ projiziert. Ist das Ergebnis überraschend?

Aufgabe 2: Definitheit

Die Definitheit einer Matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ ist über die quadratische Form definiert: Wir sagen \mathbf{A} ist

$$\left. \begin{array}{ll} \text{positiv definit,} & \text{falls } \mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x} > 0 \\ \text{positiv semidefinit,} & \text{falls } \mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x} \geq 0 \\ \text{negativ definit,} & \text{falls } \mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x} < 0 \\ \text{negativ semidefinit,} & \text{falls } \mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x} \leq 0 \\ \text{indefinit,} & \text{sonst} \end{array} \right\} \text{ für alle } \mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}.$$

1. Was genau ist die quadratische Form $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}$? Gib die quadratische Form folgender Matrizen an:

$$\mathbf{A} = \begin{bmatrix} 5 & 1 \\ 3 & 4 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 5 & 2 \\ 2 & 4 \end{bmatrix} \quad \mathbf{C} = \begin{bmatrix} 1 & 2 & 5 \\ 2 & 4 & 2 \\ 5 & 2 & 7 \end{bmatrix}$$

- 2. Warum spricht man bei Definitheit per Konvention über symmetrische bzw. hermitesche Matrizen? Schau dir dazu die quadratische Form der Matrizen A und B in der vorherigen Teilaufgabe an!
- 3. Welche geometrische Bedeutung hat es, dass eine Matrix positiv semidefinit ist?
- 4. Welche Kriterien gibt es, um Definitheit zu untersuchen? Untersuche die folgenden Matrizen auf Definitheit!

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix} \quad \mathbf{C} = \begin{bmatrix} 2 & -3 \\ -3 & 6 \end{bmatrix}$$

$$\mathbf{D} = \begin{bmatrix} 2 & 3 & 1 \\ 3 & -6 & 2 \\ 1 & 2 & 9 \end{bmatrix} \quad \mathbf{E} = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} \quad \mathbf{F} = \begin{bmatrix} -4 & 1 & 4 \\ 1 & -5 & 2 \\ 4 & 2 & -6 \end{bmatrix}$$

- 5. Beweisen Sie, dass die Summe zweier positiv definiter Matritzen $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ wieder eine positiv definite Matrix sein muss.
- 6. Die quadratische ℓ^2 -Norm $\|\mathbf{x}\|^2$ eines Vektors $\mathbf{x} \in \mathbb{R}^n$ lässt sich als eine quadratische Form $\mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x}$ darstellen mit $\mathbf{A} \in \mathbb{R}^{n \times n}$. Geben Sie die zugehörige Matrix \mathbf{A} an.