The Language of Models

Author: Nicholas G Reich

This material is part of the statsTeachR project

Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en_US

Today's topics

- The language of models
- Model formulas and coefficients

Example: predicting respiratory disease severity ("lung" dataset)

Reading: Kaplan, Chapters 6 and 7.

Figure acknowledgements to Hadley Wickham.

Watch the first five minutes of Hadley's UseR! 2016 talk

" ... every model has to make assumptions, and a model by its very nature cannot question those assumptions...

models can never fundamentally surprise you because they cannot question their own assumptions."

Lung Data Example

99 observations on patients who have sought treatment for the relief of respiratory disease symptoms.

The variables are:

- disease measure of disease severity (larger values indicates more serious condition).
- education highest grade completed
- crowding measure of crowding of living quarters (larger values indicate more crowding)
- airqual measure of air quality at place of residence (larger number indicates poorer quality)
- nutrition nutritional status (larger number indicates better nutrition)
- smoking smoking status (1 if smoker, 0 if non-smoker)

Lung Data Example: terms defined

```
dat <- read.table("lungc.txt", header=TRUE)
ggplot(dat, aes(crowding, disease)) + geom_point() +
    geom_smooth(method="lm", se=FALSE)</pre>
```


Identify: response variable, explanatory variable, model value, residual.

Models are functions

Definition: "a **function** is a relation between a set of inputs and a set of permissible outputs with the property that each input is related to exactly one output".¹

In statistical models, inputs are explanatory variables and outputs are "typical" or "expected" values of response variables.

¹ Wikipedia, https://en.wikipedia.org/wiki/Function_(mathematics)

Reading model values

What is the expected value of disease when crowding = 20? 30?

Characterize the relationship

Broadly speaking, is there a relationship between crowding and disease?

Lung Data Example: what is the model?

What do you like/dislike about this statement: "Based on this data, disease status worsens when crowding increases."

Difference between these representations of education?

Formulas for Statistical Models

```
[ explanatory variable ] \sim intercept + terms Y = a + b \cdot X Y = \beta_0 + \beta_1 \cdot X + \epsilon
```

Types of terms

- ▶ intercept
- main effects
- interaction terms
- transformations
- smooth terms

Model terms: intercept

Model terms: main effects

Model terms: main effects

 $\textit{model :} \textit{disease} \sim 1 + \textit{smoking}$

Model terms: main effects

 $model: disease \sim 1 + crowding * smoking$

Model terms: smooth effects

 $model: disease \sim 1 + s(education)$

```
ggplot(dat, aes(education, disease)) + geom_point() +
    geom_smooth( se=FALSE, span=2)
   80
   70 -
   60
 disease
   40 -
   30 -
        5.0
                          7.5
                                                               12.5
                                            10.0
                                      education
```

Lung Data Example

```
mlr1 <- lm(disease ~ crowding, data=dat)
kable(summary(mlr1)$coef, digits=2, format="latex")</pre>
```

	Estimate	Std. Error	t value	Pr(¿—t—)
(Intercept)	12.99	3.48	3.74	0
crowding	1.51	0.14	10.83	0

```
mlr2 <- lm(disease ~ crowding + airqual, data=dat)
kable(summary(mlr2)$coef, digits=2, format="latex")</pre>
```

	Estimate	Std. Error	t value	Pr(¿—t—)
(Intercept)	2.88	2.49	1.16	0.25
crowding	1.40	0.09	15.02	0.00
airqual	0.31	0.03	11.06	0.00

Why are the coefficients different?

Lung Data Example

	Estimate	Std. Error	t value	Pr(¿—t—)
(Intercept)	2.88	2.49	1.16	0.25
crowding	1.40	0.09	15.02	0.00
airqual	0.31	0.03	11.06	0.00

What are the interpretations of the coefficients?

Example data

- D = a quantitative variable
- A = a quantitative variable
- G = a categorical variable with two levels, S and K

- D = a quantitative variable
- A = a quantitative variable
- G = a categorical variable with two levels, S and K

- D = a quantitative variable
- A = a quantitative variable
- G = a categorical variable with two levels, S and K

- D = a quantitative variable
- A = a quantitative variable
- G = a categorical variable with two levels, S and K

- D = a quantitative variable
- A = a quantitative variable
- G = a categorical variable with two levels, S and K

- D = a quantitative variable
- A = a quantitative variable
- G = a categorical variable with two levels, S and K

- D = a quantitative variable
- A = a quantitative variable
- G = a categorical variable with two levels, S and K

- D = a quantitative variable
- A = a quantitative variable
- G = a categorical variable with two levels, S and K

Parting wisdom

Up next: the mechanics and math of fitting models to data!

* Image credits: XKCD, http://xkcd.com/552/