

工作汇报

汇报人:解君豪

GaussianFormer: Scene as Gaussians for Vision-Based 3D Semantic Occupancy Prediction

Yuanhui Huang, Wenzhao Zheng[†], Yunpeng Zhang, Jie Zhou, Jiwen Lu [‡] Tsinghua University, UC Berkeley

[Paper (Arxiv)] [Code (GitHub)]

† Project Leader. ‡ Corresponding author.

- 提出一种面向对象的三维语义高斯表示
- 结合稀疏卷积和跨注意力机制,高效的将二维图像转换为三维高斯表示
- 设计了一个可通过cuda高效实现高斯到体素的泼溅模块

- 体素表示:将三维空间划分为规则的立方体网格,每个体素相当于一个像素立方块,对于每个像素,分配一个长度固定的特征向量,用于刻画该位置的几何占据/语义类别
- BEV(鸟瞰图):将三维点/图像特征沿着高度方向(Z轴)投影/压缩到地平面上,得到一个二维网格图,该平面每个像素对应一定范围的水平位置,通道上编码高度、密度、语义、特征等信息
- TPV(三视角):在BEV的基础上,增加前视角(FV)、测视角(SV)等额外的二维平面,将 三维空间从多个正交方向进行投影。BEV捕获平面布局,FV补充垂直高度与立面细节, SV进一步捕获深度和高度的联合信息。

- 体素表示: 为三维空间中每个体素分配一个特征, 但是由于三维空间的稀疏性, 这会导致大量冗余。
- BEV和TPV:采用2D平面来描述三维空间,虽然能够在一定程度上缓解冗余问题,但是 会丢失部分细节。
- 提出的面向对象的三维高斯表示,通过混合高斯的强大逼近能力,能够自适应的聚焦于灵活的兴趣区域,同时能够刻画场景的细粒度结构,有效兼顾效率和表达能力。

基于视觉的三维语义占据预测旨在利用多视角相机图像,预测某一范围内每个体素网格的密集占据状态以及其语义类别,形式化的,给定多视角图像集合:

$$I = \left\{ I_i \in \mathbb{R}^{3 \times H \times W} \mid i = 1, 2, 3 \dots N \right\}$$

相机内参数集合:

$$K = \{K_i \in \mathbb{R}^{3 \times 3} \mid i = 1, 2, 3 \dots N\}$$

以及相机外参数集合:

$$T = \{T_i \in \mathbb{R}^{4 \times 4} \mid i = 1, 2, 3 \dots N\}$$

目标是: 预测三维语义占据体积:

$$O \in R^{C \times X \times Y \times Z}$$

其中N为视角数量,{H,W}为图像分辨率,C为语义类别,{X,Y,Z}为目标体素分辨率由于体素、BEV、TPV三种表达方式的弊端,本文提出了一种面向对象的三维表示方式,用可变形的三维高斯分布来描述场景中的各个区域,而非固定的网格,如图所示,我们用P个三维高斯构成的集合 $G = \{G_i\}_{i=1}^P$,每个高斯由一个d维的向量表示($m \in \mathbb{R}^3$, $S \in \mathbb{R}^3$, $r \in \mathbb{R}^4$, $c \in \mathbb{R}^{|c|}$),其中m为高斯中心坐标,S为尺度向量(协方差矩阵),r为四元数,c为语义特征。

设点p=(x, y, z), 单个语义高斯在该位置的分布值为:

$$g(p; m, s, r, c) = \exp\left(-\frac{1}{2}(p-m)^T \Sigma^{-1}(p-m)\right)c$$

其中

$$\Sigma = RSS^TR^T$$
, $S = diag(s)$, $R = q2r(r)$

将所有高斯在p处的贡献累加,即得到该点的预测占据及其语义向量:

$$\widehat{o}(p,\mathcal{G}) = \sum_{i=1}^{P} g_{i}(p; m_{i}, s_{i}, r_{i}, c_{i}) = \sum_{i=1}^{P} \exp\left(-\frac{1}{2}(p - m_{i})^{T} \Sigma_{i}^{-1}(p - m_{i})\right) c_{i}$$

初始化高斯属性和查询向量 将每个三维高斯的属性定义为集合 $G=\{G_i\in\mathbb{R}^d\}_{i=1}^P$ 同时初始化一组高维的查询向量 $Q=\{Q_i\in\mathbb{R}^m\}_{i=1}^P$ 用于在后续模块中隐式编码和传递三维信息

优化迭代B个GaussianFormer块

Self-encoding block: 为了使高斯分布之间能够高效交互,模型首先将每个高斯中心视为一个点,按其均值m生成点云,并通过体素化,映射到稀疏网格上,再在该网格上施加三维稀疏卷积,由于高斯数量P远少于常规模型的体素数量,稀疏卷积既能利用稀疏性,又与可变形注意力保持线性计算复杂度。

Image Cross-attention block: 用于从多视角图像中提取视觉特征:

- 1. 对于每个高斯G,根据其协方差在其均值m周围生成R个参考点集合, $\mathcal{R}=\{m+\Delta m_i\}_{i=1}^R$,偏移量由协方差决定,以反映高斯分布形状。
- 2. 将这些三维参考点利用相机外参T和内参K投影到各视角的图像特征图 F_n 上
- 3. 通过可变形注意力,将查询向量Q与投影后的参考点位置 $\pi(\mathcal{R}, \mathcal{T}, \mathcal{K})$ 以及对应的图像特征 F_n 交互,最后对所有视角与参考点聚合求平均: $ICA(\mathcal{R}, \mathcal{Q}, \{F_n\}; \mathcal{T}, \mathcal{K}) = \frac{1}{N} \sum_{n=1}^{N} \sum_{i=1}^{R} DA(Q, \pi(\mathcal{R}, \mathcal{T}, \mathcal{K}), F_n)$

Refinement block: 在自编码和跨注意力更新后,利用更新后的查询向量Q来微调三维高斯的物理属性,以逼近真实的场景分布。

对于高斯G=(m,s,r,c), 先通过一个MLP, 从对应的查询向量Q解码出一组中间属性。 $\hat{G} = (\hat{m}, \hat{s}, \hat{r}, \hat{c}) = MLP(Q)$ 使用中间属性更新原有属性时,将中间的均值 \hat{m} 视为增量残差加到老的均值m上,而对于其他属性则直接替换 $G_{new} = (m + \hat{m}, \hat{s}, \hat{r}, \hat{c})$

高斯到体素的泼溅

设计了一个高效的"高斯到体素"投溅模块,仅通过局部聚合操作,将三维高斯表示转换为三维占据预测。

$$\widehat{o}(p,\mathcal{G}) = \sum_{i=1}^{P} g_i(p; m_i, s_i, r_i, c_i) = \sum_{i=1}^{P} \exp\left(-\frac{1}{2}(p - m_i)^T \Sigma_i^{-1}(p - m_i)\right) c_i$$

上式展示了对高斯的贡献做加权和的思想,但是如果对每个体素都查询所有的高斯,其计算的复杂度和存储复杂度将达到 $O(XYZ \times P)$,这是十分庞大的。

鉴于高斯的分布权重,其实远处的高斯贡献较小,因此我们只需要考虑体素领域内的高斯,忽略远处的高斯。

首先根据各个高斯的均值m,将其签入到目标的体素网格中(大小为XYZ),然后对每个高斯,按照其尺度属性s计算领域半径,在该领域内将高斯索引g与体素索引v组合成元组(g,v)加入列表,按照体素索引,对该列表进行排序,可得到每个体素应聚合的高斯索引序列。

$$\operatorname{sort}_{\operatorname{vox}} \left([(g, v_{g_1}), \dots, (g, v_{g_k})]_{g=1}^P \right) = [(g_{v_1}, v), \dots, (g_{v_l}, v)]_{v=1}^{XYZ},$$

$$\hat{o}(p;\mathcal{G}) \ = \ \sum_{i \in \mathcal{N}(p)} g_i(p;\, m_i, s_i, r_i, c_i).$$

由于整个GaussianFormer可端到端的训练,因此采用了TPVFormer的训练损失L:

$$L = \sum_{i=1}^{B} (L_{ce}^{i} + L_{lov}^{i})$$

Method		SC IoU	SSC mIoU	■ barrier	bicycle	snq	= car	const. veh.	motorcycle	pedestrian	traffic cone	trailer		truck	drive. suf.	■ other flat	■ sidewalk	terrain	manmade	vegetation
MonoScene [4]		23.96	7.31	4.03	0.35	8.00	8.04	2.90	0.28	1.16	0.67	4.0	1 4.	35 2	27.72	5.20	15.13	11.29	9.03	14.86
Atlas [38]		28.66	15.00	10.64	5.68	19.66	24.94	8.90	8.84	6.47	3.28	10.4	42 16	.21 3	34.86	15.46	21.89	20.95	11.21	20.54
BEVFormer [20	6]	30.50	16.75	14.22	6.58	23.46	28.28	8.66	10.77	6.64	4.05	11.	20 17	.78 3	37.28	18.00	22.88	22.17	13.80	22.2
TPVFormer [16	6]	11.51	11.66	16.14	7.17	22.63	17.13	8.83	11.39	10.46	8.23	9.4	3 17	.02	8.07	13.64	13.85	10.34	4.90	7.37
TPVFormer* [16]	30.86	17.10	15.96	5.31	23.86	27.32	9.79	8.74	7.09	5.20	10.9	97 19	.22 3	88.87	21.25	24.26	23.15	11.73	20.81
OccFormer [57]		31.39	19.03	18.65	10.4	1 23.92	30.29	10.31	14.19	13.59	10.13	3 12.	49 20	. 77 3	8.78	19.79	24.19	22.21	13.48	21.3
SurroundOcc [50]	31.49	20.30	20.59	11.6	8 28.06	30.86	10.70	15.14	14.09	12.06	3 14.	38 22	.26	37.29	23.70	24.49	22.77	14.89	21.86
Ours		29.83	19.10	19.52	11.2	6 26.11	29.78	10.47	13.83	12.58	8.67	12.	74 21	.57 3	9.63	23.28	24.46	22.99	9.59	19.12
				'									-							-
Method	Input	SC IoU	SSC mIoU	car	bicycle	motorcycle rruck	other-veh.	■ person	road	parking	sidewalk	other-grnd	building	■ fence	■ vegetation	terrain	pole =	trafsign	other-struct.	other-object
LMSCNet [43]	$_{ m L}$	47.53	13.65	20.91	0	0 0.20	6 0	0	62.95	13.51	33.51	0.2	43.67	0.33	40.0	1 26.80	0	0	3.63	0
SSCNet [44]	L	53.58	16.95	31.95	0 0	.17 10.2	9 0.58	0.07	65.7	17.33	41.24	3.22	44.41	6.77	43.72	2 28.87	0.78	0.75	8.60	0.67
MonoScene [4]	$ \mathbf{C} $	37.87	12.31	19.34	0.43 0	.58 8.0	2 2.03	0.86	48.35	11.38	28.13	3.22	32.89	3.53	26.1	5 16.78	6.92	5.67	4.20	3.09
Voxformer [23]	\mathbf{C}	38.76	11.91	17.84	1.16 0	.89 4.50	6 2.06	1.63	47.01	9.67	27.21	2.89	31.18	4.97	28.99	9 14.69	6.51	6.92	3.79	2.43
TPVFormer [16]	\mathbf{C}	40.22	13.64	21.56	1.09 1	.37 8.00	6 2.57	2.38	52.99	11.99	31.07	3.78	34.83	4.80	30.0	8 17.5	7.4 6	5.86	5.48	2.70
OccFormer [57]		40.27	19 91	22 58	0.66.0	26 9.8	9 3.82	2.77	54.30	13.44	31.53	3.55	36.42	4.80	31.0	0 19.5	1 7.77	8.51	6.95	4.60
[]	$ \vee $	40.27	19.61	22.00	0.00	.20 5.0														
Symphonies [18]	1 1											6.93	35.11	8.58	38.3	3 11.52	14.0	1 9.57	14.44	11.28
. ,	C	44.12	18.58	30.02	1.85 5		7 12.0	6 8.20	54.94	13.83	32.76									

SSCBench-KITTI-360

nuScenes