Конспект билетов

Аналитическая механика

Содержание

1	Кинематика точки. Траектория, скорость и ускорение точки. Скорость и ускорение точки в полярных координатах	5
	1.1 Кинематика точки	5 5
2	Кинематика точки. Естественный трёхгранник. Теорема Гюйгенса о разложении ускорения точки на тангенциальное и нормальное 2.1 Кинематика точки. Естественный трёхгранник	5 5 5
3	Криволинейные координаты точки. Коэффициенты Ламе. Скорость и ускорение точки в криволинейных координатах. Скорость точки в цилиндрических и сферических координатах 3.1 Криволинейные координаты точки	5 5 5 6
4	Угловая скорость и угловое ускорение твёрдого тела. Скорости и ускорения точек твёрдого тела в общем случае его движения (формулы Эйлера и Ривальса) 4.1 Угловая скорость и угловое ускорение твёрдого тела 4.2 Скорости и ускорения точек твёрдого тела в общем случае его движения (формулы Эйлера и Ривальса)	6
5	Плоское движение твёрдого тела. Мгновенный центр скоростей. Мгновенный центр ускорений 5.1 Плоское движение твёрдого тела	6
6	Кинематические инварианты. Кинематический винт. Мгновенная винтовая ось 6.1 Кинематические инварианты 6.2 Кинематический винт 6.3 Мгновенная винтовая ось	77
7	Алгебра кватернионов	7
8	Кватернионный способ задания ориентации твёрдого тела. Теорема Эйлера о конечном повороте 8.1 Кватернионный способ задания ориентации твёрдого тела	7 7 7
9	Формулы сложения поворотов твёрдого тела в кватернионах. Параметры Родрига- Гамильтона. Теорема Эйлера о конечном повороте твёрдого тела с неподвижной точ- кой 9.1 Формулы сложения поворотов твёрдого тела в кватернионах	7 7 8
10	Кинематические уравнения вращательного движения твёрдого тела в кватернионах (уравнения Пуассона). Прецессионное движение твёрдого тела 10.1 Кинематические уравнения вращательного движения твёрдого тела в кватернионах (уравнения Пуассона)	8

11	Кинематика сложного движения точки. Вычисление скоростей и ускорений в сложном движении	8
	11.1 Кинематика сложного движения точки	8 8
12	Кинематика сложного движения тела. Сложение мгновенных вращений твёрдого тела вокруг пересекающихся осей. Кинематические уравнения Эйлера 12.1 Кинематика сложного движения тела. Сложение мгновенных вращений твёрдого тела во-	8
	круг пересекающихся осей	8 8
13	Кинематика сложного движения тела. Сложение мгновенных вращений твёрдого тела вокруг параллельных осей. Пара вращений 13.1 Кинематика сложного движения тела. Сложение мгновенных вращений твёрдого тела во-	9
	круг параллельных осей	9 9
14	Сложное движение твёрдого тела. Общий случай сложения движений 14.1 Сложное движение твёрдого тела	9 9
15	Момент силы относительно точки и оси, главный вектор и главный момент сил системы. Элементарная работа сил системы. Работа сил, приложенных к твёрдому телу. Силовое поле. Силовая функция. Потенциал	9
	15.1 Момент силы относительно точки и оси, главный вектор и главный момент сил системы	9
	15.2 Элементарная работа сил системы	9
	15.3 Работа сил, приложенных к твёрдому телу	9
	15.4 Силовое поле	10 10
	15.5 Силовая функция	
16	Количество движения. Центр масс. Теорема об изменении количества движения системы. Теорема о движении центра масс	10
		10
		10
	<u>.</u>	10 10
17	Главный момент количества движения (кинетический момент) системы относительно заданного центра. Кинетический момент системы для ее движения относительно центра масс. Теорема Кенига о вычислении кинетического момента	10
	17.1 Главный момент количества движения (кинетический момент) системы относительно заданного центра	10
	17.2 Кинетический момент системы для ее движения относительно центра масс	10 11
18	Теорема об изменении кинетического момента системы	11
19	Кинетическая энергия системы. Теорема Кенига о вычислении кинетической энергии. Теорема об изменении кинетической энергии системы. Закон сохранения полной метической энергии системы.	11
	ханической энергии системы 19.1 Кинетическая энергия системы	11
	19.2 Теорема Кенига о вычислении кинетической энергии	11
	19.3 Теорема об изменении кинетической энергии системы	11
	19.4 Закон сохранения полной механической энергии системы	11
20	Основные теоремы динамики в неинерциальной системе отсчёта. Переносная и кориолисова силы инерции. Основные теоремы динамики для движения относительно	
	центра масс	11
	20.1 Основные теоремы динамики в неинерциальной системе отсчёта. Переносная и кориолисова силы инерции	11
	20.2 Основные теоремы динамики для движения относительно центра масс	12

21	Движение материальной точки в центральном поле. Интеграл площадей; второй закон Кеплера. Уравнение Бине 21.1 Движение материальной точки в центральном поле	12 12 12
22	Движение точки в поле всемирного тяготения: уравнение орбиты, законы Кеплера. Интеграл площадей, интеграл энергии, интеграл Лапласа. Задача двух тел 22.1 Движение точки в поле всемирного тяготения: уравнение орбиты, законы Кеплера 22.2 Интеграл площадей, интеграл энергии, интеграл Лапласа	12 12 12
23	Момент инерции системы относительно оси. Матрица тензора инерции. Эллипсоид инерции. 23.1 Момент инерции системы относительно оси	13 13 13 13
24	Моменты инерции относительно параллельных осей; теорема Гюйгенса — Штейнера. Преобразование матрицы тензора инерции при параллельном переносе осей. Свойства осевых моментов инерции	
	24.1 Моменты инерции относительно параллельных осей; теорема Гюйгенса — Штейнера 24.2 Преобразование матрицы тензора инерции при параллельном переносе осей	13 13
25	Кинетический момент и кинетическая энергия твёрдого тела, вращающегося вокруг неподвижной точки или вокруг неподвижной оси. Кинетический момент и кинетическая энергия твёрдого тела при его произвольном движении 25.1 Кинетический момент и кинетическая энергия твёрдого тела, вращающегося вокруг непо-	13
	движной точки или вокруг неподвижной оси	13 14
26	Дифференциальное уравнение вращения твёрдого тела вокруг неподвижной оси. Дифференциальные уравнения движения свободного твёрдого тела. Уравнения плоского движения твёрдого тела 26.1 Дифференциальное уравнение вращения твёрдого тела вокруг неподвижной оси 26.2 Дифференциальные уравнения движения свободного твёрдого тела 26.3 Уравнения плоского движения твёрдого тела	14 14 14
27	Дифференциальные уравнения движения твёрдого тела вокруг неподвижной точки. Динамические уравнения Эйлера. Случай Эйлера движения твёрдого тела вокруг неподвижной точки: первые интегралы уравнений движения; стационарные вращения 27.1 Дифференциальные уравнения движения твёрдого тела вокруг неподвижной точки. Динамические уравнения Эйлера	14 14
28	Случай Эйлера движения твёрдого тела вокруг неподвижной точки: регулярная прецессия в случае динамической симметрии тела; геометрическая интерпретация Пуансо	
29	Вынужденная регулярная прецессия динамически симметричного твёрдого тела с неподвижной точкой. Основная формула гироскопии. О приближенной теории гироскопов 29.1 Вынужденная регулярная прецессия динамически симметричного твёрдого тела с неподвижной точкой	
30	Уравнения движения тяжёлого твёрдого тела с неподвижной точкой. Первые интегралы. Случаи Эйлера, Лагранжа, Ковалевской интегрируемости уравнений движения 30.1 Уравнения движения тяжёлого твёрдого тела с неподвижной точкой	15 15

	30.3 Случаи Эйлера, Лагранжа, Ковалевской интегрируемости уравнений движения	16
31	Случай Лагранжа движения твёрдого тела с неподвижной точкой. Регулярная прецессия в случае Лагранжа. Общий случай исследования движения; геометрическая	
	интерпретация	16
	31.1 Случай Лагранжа движения твёрдого тела с неподвижной точкой	
	31.2 Регулярная прецессия в случае Лагранжа	16
	31.3 Общий случай исследования движения; геометрическая интерпретация	16
32	Несвободные системы. Связи и их классификация. Возможные, действительные и вир-	
	туальные перемещения точек системы. Число степеней свободы системы	16
	32.1 Несвободные системы	16
	32.2 Связи и их классификация	16
	32.3 Возможные, действительные и виртуальные перемещения точек системы	16
	32.4 Число степеней свободы системы	17
33	Идеальные связи. Общее уравнение динамики (принцип Даламбера-Лагранжа)	17
	33.1 Идеальные связи	17
	33.2 Общее уравнение динамики (принцип Даламбера-Лагранжа)	17
34	Элементарная работа сил системы в обобщённых координатах. Обобщённые силы и их	
	вычисление. Случай потенциального поля сил	17
	34.1 Элементарная работа сил системы в обобщённых координатах	17
	34.2 Обобщённые силы и их вычисление	17
		17

1 Кинематика точки. Траектория, скорость и ускорение точки. Скорость и ускорение точки в полярных координатах

1.1 Кинематика точки

Опр Кинематика точки. Траектория, скорость и ускорение точки

Раздел механики, изучающий математическое описание (средствами геометрии, алгебры, математического анализа...) движения материальной точки без рассмотрения причин движения (массы, сил и т. д.)

Опр Траектория

Опр Скорость

Опр Ускорение

1.2 Скорость и ускорение точки в полярных координатах

Опр Радиальная ось

Опр Трансверсальная ось

Для того чтобы получить скорость и ускорение в полярных координатах, достаточно выразить x и y в терминах r, φ , продифференцировать нужное число раз и вычленить базисные векторы

2 Кинематика точки. Естественный трёхгранник. Теорема Гюйгенса о разложении ускорения точки на тангенциальное и нормальное

2.1 Кинематика точки. Естественный трёхгранник

Опр Естественный способ задания движения

Опр Естественный трёхгранник

2.2 Теорема Гюйгенса о разложении ускорения точки на тангенциальное и нормальное

Запишем две формулы из дифференциальной геометрии и продифференцируем r и v с их учётом. Получим две компоненты ускорения: тангенциальное и нормальное

Theorem Гюйгенса о разложении ускорения

3 Криволинейные координаты точки. Коэффициенты Ламе. Скорость и ускорение точки в криволинейных координатах. Скорость точки в цилиндрических и сферических координатах

3.1 Криволинейные координаты точки

Опр Криволинейные координаты

Опр Первая координатная линия

Опр Первая координатная ось

Аналогично определяются и последующие координатные линии и оси

3.2 Коэффициенты Ламе

Опр Единичный вектор координатной оси

Опр Коэффициент Ламе

Опр Ортогональные криволинейные координаты

3.3 Скорость и ускорение точки в криволинейных координатах

Скорость находится по определению. Ускорение смотреть в конспекте Холостовой с 8 страницы

3.4 Скорость точки в цилиндрических и сферических координатах

Опр Цилиндрическая система координат

Опр Сферическая система координат

Скорость точки в этих координатах находится с помощью коэффициентов Ламе

4 Угловая скорость и угловое ускорение твёрдого тела. Скорости и ускорения точек твёрдого тела в общем случае его движения (формулы Эйлера и Ривальса)

4.1 Угловая скорость и угловое ускорение твёрдого тела

Опр Поступательно движущаяся и связанная системы координат

Опр Углы Эйлера

Углы, описывающие поворот абсолютно твердого тела в трёхмерном евклидовом пространстве

Опр Линия узлов

Пересечение координатных плоскостей начальной и конечной СК

Опр Угол прецессии, нутации, собтвенного вращения

Переход от одной системы координат к другой посредством вращений на углы, можно задать с помощью матриц поворота

Матрица поворота (или матрица направляющих косинусов)

Опр Ортогональная матрица, которая используется для выполнения собственного ортогонального преобразования в евклидовом пространстве. При умножении любого вектора на матрицу поворота длина вектора сохраняется. Определитель матрицы поворота равен единице

Матрицы поворота вокруг различных осей выглядят по-разному

Опр Угловая скорость

Физическая величина, характеризующая быстроту и направление вращения материальной точки или абсолютно твёрдого тела относительно оси

Опр Угловое ускорение

4.2 Скорости и ускорения точек твёрдого тела в общем случае его движения (формулы Эйлера и Ривальса)

Theorem Формула Эйлера

Формула Ривальса Получается формальным дифференцированием формулы Эйлера

5 Плоское движение твёрдого тела. Мгновенный центр скоростей. Мгновенный центр ускорений

5.1 Плоское движение твёрдого тела

Опр Плоское движение

5.2 Мгновенный центр скоростей

Theorem О мгновенном центре скоростей **Опр** Мгновенный центр скоростей

5.3 Мгновенный центр ускорений

Theorem О мгновенном центре ускорений

Опр Мгновенный центр ускорений

Мгновенный центр ускорений можно построить за два шага

6 Кинематические инварианты. Кинематический винт. Мгновенная винтовая ось

6.1 Кинематические инварианты

Опр Инвариант

Величина, остающаяся неизменной при преобразованиях

Опр Первый кинематический инвариант

Опр Второй кинематический инвариант

Отсюда следует, что величины проекции скоростей двух точек поступательного движущегося тела на прямую, их соединяющуюся, равны

6.2 Кинематический винт

Опр Кинематический винт

Опр Параметр винта

6.3 Мгновенная винтовая ось

Если расписать итоговую скорость точки по координатам, то можно получить

Опр Мгновенная винтовая ось

Опр Правый и левый винт

7 Алгебра кватернионов

Опр Кватернион, кватернионные единицы

Свойства Кватернионного сложения

Опр Скалярная и векторные части кватерниона

Свойства Кватернионного умножения единиц

Свойства Кватернионного умножения

Опр Сопряжённый кватернион

Опр Норма кватерниона, нормированный кватернион

Опр Обратный кватернион

Форма Тригонометрическая записи кватерниона

Результат умножения кватернионов в таком случае получается из свойств тригонометрии

Аналог Формулы Муавра

8 Кватернионный способ задания ориентации твёрдого тела. Теорема Эйлера о конечном повороте

8.1 Кватернионный способ задания ориентации твёрдого тела

Опр Неподвижный и связанный базисы

Theorem

8.2 Теорема Эйлера о конечном повороте

Theorem Эйлера о конечном повороте

Если воспользоваться предыдущей теоремой, то видно, что при повороте положение e сохраняется, а j поворачивается

9 Формулы сложения поворотов твёрдого тела в кватернионах. Параметры Родрига-Гамильтона. Теорема Эйлера о конечном повороте твёрдого тела с неподвижной точкой

9.1 Формулы сложения поворотов твёрдого тела в кватернионах

Можно показать, что результирующий кватернион после N поворотов будет записан в обратном порядке в одном базисе

9.2 Параметры Родрига-Гамильтона

Опр Параметры Родрига-Гамильтона

Если записать преобразованные от смены базисные единицы и подставить в новый кватернион, то он будет выражен в исходном базисе через параметры Родрига-Гамильтона. Порядок записи кватернионов в результирующем повороте будет уже прямой

9.3 Теорема Эйлера о конечном повороте твёрдого тела с неподвижной точкой

Тheorem Эйлера о конечном повороте твёрдого тела с неподвижной точкой

10 Кинематические уравнения вращательного движения твёрдого тела в кватернионах (уравнения Пуассона). Прецессионное движение твёрдого тела

10.1 Кинематические уравнения вращательного движения твёрдого тела в кватернионах (уравнения Пуассона)

Опр Угловая скорость Через предел

Уравнение Пуассона

Можно показать, что два определения угловой скорости эквивалентны. В конце мы придём к уравнению Эйлера (то есть верному утверждению), а значит мы были правы

10.2 Прецессионное движение твёрдого тела

Рассмотрим вращение оси тела вокруг неподвижной вращающейся оси и решим уравнение Пуассона для этого случая

11 Кинематика сложного движения точки. Вычисление скоростей и ускорений в сложном движении

11.1 Кинематика сложного движения точки

Опр Относительное, переносное и абсолютное движение

Можно посчитать относительные и абсолютные производные радиус-вектора и получить их связь

11.2 Вычисление скоростей и ускорений в сложном движении

Опр Относительные, переносные и абсолютные скорость и ускорение

Theorem О сложении скоростей

Theorem О сложении ускорений или теорема Кориолиса

Опр Кориолисово ускорение

12 Кинематика сложного движения тела. Сложение мгновенных вращений твёрдого тела вокруг пересекающихся осей. Кинематические уравнения Эйлера

12.1 Кинематика сложного движения тела. Сложение мгновенных вращений твёрдого тела вокруг пересекающихся осей

Сложение *Поступательных движений* Сложение *Вращательных движений*

12.2 Кинематические уравнения Эйлера

Если тело участвует одновременно в трёх вращениях, то записав суммарное вращение в проекциях на связанные оси, имеем

Уравнения Эйлера кинематические

13 Кинематика сложного движения тела. Сложение мгновенных вращений твёрдого тела вокруг параллельных осей. Пара вращений

13.1 Кинематика сложного движения тела. Сложение мгновенных вращений твёрдого тела вокруг параллельных осей

Сложение Сонаправленных вращений Сложение Разнонаправленных вращений

13.2 Пара вращений

Пара Вращений

Опр Момент и плечо пары вращений

Поступательное движение можно заменить на пару вращений бесчисленным множеством способов

14 Сложное движение твёрдого тела. Общий случай сложения движений

14.1 Сложное движение твёрдого тела

Лемма

14.2 Общий случай сложения движений

В общем случае движения приведём все поступательные и вращательные к единой точке приложения по алгоритму

Алгоритм Приведения к простому движению

15 Момент силы относительно точки и оси, главный вектор и главный момент сил системы. Элементарная работа сил системы. Работа сил, приложенных к твёрдому телу. Силовое поле. Силовая функция. Потенциал

15.1 Момент силы относительно точки и оси, главный вектор и главный момент сил системы

Опр Сила

Мера воздействия тел друг на друга, причина ускорения точки

Аксиома Инерции

Опр Инертность, масса

Закон Динамики основной

Аксиома Взаимодействия материальных точек

Аксиома Независимости действия сил (принцип суперпозиции)

Опр Главный вектор всех сил системы

 $\mathbf{O}\pi\mathbf{p}$ Момент силы относительно точки

Опр Момент силы относительно оси

Можно показать корректность этого определения

Опр Главный момент сил системы

15.2 Элементарная работа сил системы

Опр Элементарная работа

Можно получить выражение для полной работы

15.3 Работа сил, приложенных к твёрдому телу

В общем случае работа внутренних сил ненулевая. Запишем суммарную работу всех сил системы

15.4 Силовое поле

Опр Силовое поле

Векторное поле в пространстве, в каждой точке которого на точку действует определённая по величине и направлению сила (вектор силы)

15.5 Силовая функция

Опр Силовая функция

Опр Потенциальное поле

Опр Потенциальная сила

Опр (Не)стационарное поле

15.6 Потенциал

Опр Потенциал

Скалярная величина, характеризующая силовое поле

 $\mathbf{y}_{\mathbf{TB}}$

Опр Потенциальная энергия

Скалярная физическая величина, представляющая собой часть полной механической энергии системы, находящейся в поле консервативных сил

16 Количество движения. Центр масс. Теорема об изменении количества движения системы. Теорема о движении центра масс

16.1 Количество движения

Опр Количество движения (импульс)

16.2 Центр масс

Опр Центр масс системы

16.3 Теорема об изменении количества движения системы

Theorem Об изменении количества движения системы

16.4 Теорема о движении центра масс

Theorem О движении центра масс

- 17 Главный момент количества движения (кинетический момент) системы относительно заданного центра. Кинетический момент системы для ее движения относительно центра масс. Теорема Кенига о вычислении кинетического момента
- 17.1 Главный момент количества движения (кинетический момент) системы относительно заданного центра

Опр Момент импульса (кинетический момент) точки

17.2 Кинетический момент системы для ее движения относительно центра масс

Опр Кинетический момент (главный момент количества движения) системы

Опр Кинетический момент системы относительно точки

Можно показать корректность этого определения

Покажем связь главных моментов двух точек в общем и частном случаях

17.3 Теорема Кенига о вычислении кинетического момента

Опр Кёнигова система координат

Найдём выражения для скорости и кинетического момента точки и системы

Если под движением системы относительно центра масс понимать движение в Кёниговой системе координат, то верна

Theorem Këнига о кинетическом моменте

18 Теорема об изменении кинетического момента системы

Посчитаем производную кинетического момент относительно точки

Theorem Об изменении кинетического момента системы

Также рассмотрим частные случаи теоремы

19 Кинетическая энергия системы. Теорема Кенига о вычислении кинетической энергии. Теорема об изменении кинетической энергии системы. Закон сохранения полной механической энергии системы

19.1 Кинетическая энергия системы

Опр Кинетическая энергия системы

Запишем, как она преобразуется при смене системы координат

19.2 Теорема Кенига о вычислении кинетической энергии

В частном случае прошлых выкладок получаем

Theorem Кенига о вычислении кинетической энергии

19.3 Теорема об изменении кинетической энергии системы

Theorem Об изменении кинетической энергии системы

19.4 Закон сохранения полной механической энергии системы

Закон Сохранения полной механической энергии системы

20 Основные теоремы динамики в неинерциальной системе отсчёта. Переносная и кориолисова силы инерции. Основные теоремы динамики для движения относительно центра масс

20.1 Основные теоремы динамики в неинерциальной системе отсчёта. Переносная и кориолисова силы инерции

Выразим относительное ускорение в неИСО

Опр Переносная и кориолисова силы инерции

Закон Основной динамики в неИСО

Theorem Об изменении количества движения

Опр Главный вектор внешних сил и сил инерции

Theorem О движении иентра масс

Для неподвижной точки в неИСО справедлива

Theorem Об изменении кинетического момента

Theorem Об изменении кинетической энергии

20.2 Основные теоремы динамики для движения относительно центра масс

Все теоремы далее записаны в Кёниговой системе координат

Theorem Об изменении количества движения

Theorem Об изменении кинетического момента

Theorem Об изменении кинетической энергии

21 Движение материальной точки в центральном поле. Интеграл площадей; второй закон Кеплера. Уравнение Бине

21.1 Движение материальной точки в центральном поле

Опр Центральное поле Сила должна удовлетворять условию

21.2 Интеграл площадей; второй закон Кеплера

Опр Интеграл площадей

Опр Радиальная и трансверсальная скорости

Форма Полярная интеграла площадей

Опр Секториальная скорость точки

Закон Кеплера II

21.3 Уравнение Бине

Если переписать основной закон динамики в центральном поле, то получим **Уравнение** *Бине*

22 Движение точки в поле всемирного тяготения: уравнение орбиты, законы Кеплера. Интеграл площадей, интеграл энергии, интеграл Лапласа. Задача двух тел

22.1 Движение точки в поле всемирного тяготения: уравнение орбиты, законы Кеплера

Опр Поле всемирного тяготения

Если записать уравнение Бине для силы всемирного тяготения, то в конечном итоге получим

Уравнение Орбиты

Опр Параметр и эксцентриситет орбиты

В зависимости от эксцентриситета, орбита будет являться той или иной конической поверхностью

Закон Кеплера І

Закон Кеплера III

22.2 Интеграл площадей, интеграл энергии, интеграл Лапласа

Интеграл площадей был рассмотрен в предыдущем билете

Интеграл Энергии

Интеграл Лапласа

Опр Вектор Лапласа, истинная аномалия

22.3 Задача двух тел

Рассмотрев движение двух тел в центральном поле друг друга, получим

Уравнение Относительного движения точек

Эта система замкнута и её центр масс движется равномерно, поэтому можно найти закон изменения его радиус-вектора

23 Момент инерции системы относительно оси. Матрица тензора инерции. Эллипсоид инерции. Главные оси и главные моменты инерции

23.1 Момент инерции системы относительно оси

Опр Момент инерции системы относительно оси

Опр Осевые и центробежные моменты инерции

23.2 Матрица тензора инерции

Опр Тензор инерции системы для точки

23.3 Эллипсоид инерции

Найдём момент инерции тела относительно оси, заданной направляющими косинусами Уравнение Эллипсоида инерции системы

23.4 Главные оси и главные моменты инерции

Опр 1 Главные оси инерции

Опр Главные моменты инерции

Уравнение Эллипсоида инерции в главных осях

Опр 2 Главные оси инерции

Можно показать эквивалентность двух определений

Утв Угол поворота осей для перехода к главным

- 24 Моменты инерции относительно параллельных осей; теорема Гюйгенса Штейнера. Преобразование матрицы тензора инерции при параллельном переносе осей. Свойства осевых моментов инерции
- 24.1 Моменты инерции относительно параллельных осей; теорема Гюйгенса
 Штейнера

Theorem Гюйгенса – Штейнера

24.2 Преобразование матрицы тензора инерции при параллельном переносе осей

Theorem Гюйгенса – Штейнера для тензора инерции

24.3 Свойства осевых моментов инерции

Theorem *Неравенства треугольников для осевых моментов инерции* Равенство достигается только в случае плоского распределения масс

- 25 Кинетический момент и кинетическая энергия твёрдого тела, вращающегося вокруг неподвижной точки или вокруг неподвижной оси. Кинетический момент и кинетическая энергия твёрдого тела при его произвольном движении
- 25.1 Кинетический момент и кинетическая энергия твёрдого тела, вращающегося вокруг неподвижной точки или вокруг неподвижной оси

Утв Кинетический момент тела, вращающегося вокруг неподвижной точки Можно рассмотреть два частных случая и получить

Утв Кинетический момент тела, вращающегося вокруг неподвижной оси

Утв Кинетическая энергия твёрдого тела, вращающегося вокруг неподвижной точки

Можно рассмотреть два частных случая и получить

Утв Кинетическая энергия тела с неподвижной осью

25.2 Кинетический момент и кинетическая энергия твёрдого тела при его произвольном движении

Утв Кинетический момент и кинетическая энергия твёрдого тела при его произвольном движении

- 26 Дифференциальное уравнение вращения твёрдого тела вокруг неподвижной оси. Дифференциальные уравнения движения свободного твёрдого тела. Уравнения плоского движения твёрдого тела
- 26.1 Дифференциальное уравнение вращения твёрдого тела вокруг неподвижной оси

Если запишем производную кинетического момента, то получим Уравнение Дифференциальное вращения твёрдого тела вокруг неподвижной оси

26.2 Дифференциальные уравнения движения свободного твёрдого тела

Уравнение Эйлера динамические

Для свободного тела можно найти два интеграла движения

26.3 Уравнения плоского движения твёрдого тела

В случае плоского движения направим Oz по вектору вращения и получим **Уравнение** Плоского движения твёрдого тела

- 27 Дифференциальные уравнения движения твёрдого тела вокруг неподвижной точки. Динамические уравнения Эйлера. Случай Эйлера движения твёрдого тела вокруг неподвижной точки: первые интегралы уравнений движения; стационарные вращения
- 27.1 Дифференциальные уравнения движения твёрдого тела вокруг неподвижной точки. Динамические уравнения Эйлера

Эти уравнения были подробно получены в прошлом билете

27.2 Случай Эйлера движения твёрдого тела вокруг неподвижной точки: первые интегралы уравнений движения; стационарные вращения

Опр Первый интеграл

Первый два интеграла были также получены в прошлом билете

Опр Стационарное вращение

Случай Эйлера

Ось вращения неподвижная в теле и пространственный модуль ω постоянен

Случай Асимметрии

Случай Динамической симметрии

Случай Сферической симметрии

Итак, в случае Эйлера вращение может происходить только вокруг главных осей инерции

28 Случай Эйлера движения твёрдого тела вокруг неподвижной точки: регулярная прецессия в случае динамической симметрии тела; геометрическая интерпретация Пуансо

Найдём пару интегральчиков движения, из которых получим

Утв Угловая скорость прецессии

Утв Угловая скорость собственного вращения

Таким образом, динамически симметричное тело в случае Эйлера совершает регулярную прецессию (вращение вокруг вращающейся оси). Найдём у этого явления геометрическую интерпретацию (Пуансо)

Опр Плоскость Пуансо

Получим четыре новых факта

- 1. Пропорциональность скорости вращения и радиус-вектора постоянна
- 2. Вектор кинетического момента перпендикулярен плоскости Пуансо
- 3. Плоскость Пуансо неподвижна в абсолютном пространстве
- 4. Скорость точки касания отсутствует (то есть качение без проскальзывания)

29 Вынужденная регулярная прецессия динамически симметричного твёрдого тела с неподвижной точкой. Основная формула гироскопии. О приближенной теории гироскопов

29.1 Вынужденная регулярная прецессия динамически симметричного твёрдого тела с неподвижной точкой

Οπρ Γυροсκοπ

Мы уже рассмотрели в предыдущем билете случай нулевого внешнего момента. Теперь рассмотрим случай ненулевого

29.2 Основная формула гироскопии

Формула Основная гироскопии

Внешний момент направлен по линии узлов и сохраняет своё абсолютное значение

29.3 О приближенной теории гироскопов

В случае, когда тело вращается сильно быстрее, чем поворачивается, верна **Формула** *Приближенная гироскопии*

30 Уравнения движения тяжёлого твёрдого тела с неподвижной точкой. Первые интегралы. Случаи Эйлера, Лагранжа, Ковалевской интегрируемости уравнений движения

30.1 Уравнения движения тяжёлого твёрдого тела с неподвижной точкой

Рассмотрим движение твёрдого тела в неподвижной и связной системах координат и получим Уравнения $\Pi yaccona$

Если дополнительно запишем динамические уравнения Эйлера, то вкупе с Пуассоновыми, получим **Уравнения** Эйлера-Пуассона

30.2 Первые интегралы

Опр Геометрический (тривиальный) интеграл

Помимо него, всегда существуют ещё два: проекция кинетического момента на Oz и механическая энергия

30.3 Случаи Эйлера, Лагранжа, Ковалевской интегрируемости уравнений движения

Из теории дифференциальных уравнений известно, что для того, чтобы наша система из шести уравнений была решена хотя бы в квадратурах, необходимо, чтобы существовал дополнительный, независимый от них первый интеграл. Случаев такой интегрируемости не так много

- 1. Случай Эйлера
- 2. Случай Лагранжа
- 3. Случай Ковалевской
- 4. Некоторые частные решения с определённым классом начальных условий
- 31 Случай Лагранжа движения твёрдого тела с неподвижной точкой. Регулярная прецессия в случае Лагранжа. Общий случай исследования движения; геометрическая интерпретация
- 31.1 Случай Лагранжа движения твёрдого тела с неподвижной точкой

Сам случай Лагранжа упоминался в прошлом билете

31.2 Регулярная прецессия в случае Лагранжа

Еси запишем момент внешних сил в случае точной гироскопии, получим разное количество прецессий

31.3 Общий случай исследования движения; геометрическая интерпретация

В общем случае запишем первые интегралы, рассмотрим область возможных движений и получим 1 или 2 корня на [-1;1]

Рассмотрим геометрическую интерпретацию с помощью единичной сферы $\mathbf{Onp}\ Ane\kappa c$

32 Несвободные системы. Связи и их классификация. Возможные, действительные и виртуальные перемещения точек системы. Число степеней свободы системы

32.1 Несвободные системы

Опр (Не)свободные системы

32.2 Связи и их классификация

- Oпр Cвязь
- Опр Удерживающая (двусторонняя неосвобождающая) связь
- Опр Неудерживающая (односторонняя освобождающая) связь
- Опр Геометрическая (конечная голономная) связь
- Опр Дифференциальная ((не)интегрируемая или (неголономная) геометрическая) связь
- У последних связей есть чёткое аналитическое представление, а в случае примера— конька на льду— можно показать её неинтегрируемость, используя понятие л.н.з,
 - Опр Стационарная геометрическая или дифференциальная связь
 - Опр (Не)голономная система
 - Опр Склерономная и реономная система

32.3 Возможные, действительные и виртуальные перемещения точек системы

- Опр Возможное перемещение
- Опр Действительное перемещение
- Опр Виртуальное перемещение

32.4 Число степеней свободы системы

Опр Число степеней свободы системы

Опр Число независимых обобщённых координат

У этих координат есть три свойства и их число совпадает со степенями свободы для голономных систем

33 Идеальные связи. Общее уравнение динамики (принцип Даламбера-Лагранжа)

33.1 Идеальные связи

Опр Идеальные связи

Рассмотрим четыре системы и найдём работы

33.2 Общее уравнение динамики (принцип Даламбера-Лагранжа)

Уравнения Общее динамики (принцип Даламбера-Лагранжа)

Опр Принцип

Опр Вариационный принцип (дифференциальный или интегральный)

Принцип Даламбера – Лагранжа является дифференциальным и обладает двумя свойствами

34 Элементарная работа сил системы в обобщённых координатах. Обобщённые силы и их вычисление. Случай потенциального поля сил

34.1 Элементарная работа сил системы в обобщённых координатах

Опр Обобщённые скорости

34.2 Обобщённые силы и их вычисление

Опр Обобщённая сила

В общем случае силы вычисляются как частные производные

34.3 Случай потенциального поля сил

В случае потенциального поля используется потенциальная энергия (полностью или частично)

35 Общее уравнение динамики в обобщённых координатах. Уравнения Лагранжа второго рода

35.1 Общее уравнение динамики в обобщённых координатах

Уравнения Общее динамики в обобщённых координатах

35.2 Уравнения Лагранжа второго рода

Уравнения Лагранжа второго рода

Они обладают свойством ковариантности