

On-line Kronecker Product Structured Covariance Estimation with Riemannian geometry for t-distributed data

Florent Bouchard¹, Arnaud Breloy², **Ammar Mian**³, Guillaume Ginolhac³

1: L2S, CentraleSupélec, CNRS, Univ. Paris Saclay

2: LEME, Univ. Paris Nanterre

3: LISTIC, Univ. Savoie Mont-Blanc

@Freepil

Outline

- 1 Introduction
- 2 Information geometry and recursive estimation
- **3** Numerical results
- **4** Conclusion
- **5** References

Introduction

1 Introduction

- 2 Information geometry and recursive estimation
- **3** Numerical results
- **4** Conclusion
- **6** References

Kronecker structure of data arises in numerous applications:

- MIMO : [YBO⁺04]
- MEG/EEG data: [dMHWHo2]
- Space Time Adaptive Processing: [GZH16]
- Synthetic Aperture Radar : [MOAG19]

Moreover, when resolution of data is high (in radar), the data is **heterogeneous** and modeled by heavy-tailed distributions.

Introduction

The data set $\{x_i\}_{i=1}^n \in (\mathbb{R}^p)^n$ is assumed to contain independent and identically distributed vectors drawn from the multivariate real Student t-distribution with **unknown** scatter matrix Σ and **known** $d \in \mathbb{N}^*$ degrees of freedom. The model, denoted

$$f(\mathbf{x}) \propto \left| \mathbf{\Sigma} \right|^{-1/2} \left(1 + \frac{\mathbf{x}^T \mathbf{\Sigma}^{-1} \mathbf{x}}{d} \right)^{-(a+p)/2}.$$
 (1)

Kronecker structure

The scatter matrix Σ is assumed to admit a Kronecker product structure, *i.e.*, $\Sigma = A \otimes B$, where $A \in s\mathcal{S}_a^{++} = \{M \in \mathcal{S}_a^{++} : |M| = 1\}$ and $B \in \mathcal{S}_b^{++}$.

 $\mathbf{x} \sim \mathbb{R}t_d(\mathbf{0}, \boldsymbol{\Sigma})$, implies that the probability density function of \mathbf{x} is of the form

Introduction

Estimation problem

Parameter of interest: $\theta = (A, B)$

Maximum likelihood estimation

$$\hat{\theta} = \underset{\theta \in (sS_a^{++} \times S_b^{++})}{\operatorname{argmin}} - \sum_{i=1}^n \log f(\mathbf{x}_i; \theta)$$
 (2)

- Problem is non-convex in Euclidean sense but iterative algorithms exists [SBP16, MRB+21].
- On the other hand, considering the parameter space as the product manifold $\mathcal{M}_{a,b} = s\mathcal{S}_a^{++} \times \mathcal{S}_b^{++}$, it is geodesic-convex.

Problems to tackle

- · High-dimensionality of Kronecker products is costly
- · Online estimation

Solution: Use a Riemannian recursive framework [ZS19]

Stochastic gradient on manifolds allow to obtain fast and efficient estimation of the parameters. The scheme is as follows:

$$\theta_{i+1} = \exp_{\theta_i} \left(-t_i \operatorname{grad} \ell_i(\theta_i) \right),$$
(3)

where $\ell_i(\theta) = -\log f(\mathbf{x}_i, \theta)$.

Recursive estimation illustration

Outline

- 1 Introduction
- 2 Information geometry and recursive estimation
- **3** Numerical results
- **Conclusion**
- **6** References

What we need

Information geometry

We can use geometry of product manifold without taking into account the statistical model but not as efficient[Ama99].

 \rightarrow Derivation of Fisher Information metric.

Gradient

We also need the **Riemannian gradient** of the likelihood $\ell_i(\theta)$.

Proposition

Given $\theta \in \mathcal{M}_{a,b}$, ξ and $\eta \in T_{\theta}\mathcal{M}_{a,b}$, the Fisher information metric on $\mathcal{M}_{a,b}$ induced by the likelihood is

$$\langle \xi, \eta \rangle_{\theta} = \alpha b \operatorname{tr}(\boldsymbol{A}^{-1} \boldsymbol{\xi}_{\boldsymbol{A}} \boldsymbol{A}^{-1} \boldsymbol{\eta}_{\boldsymbol{A}}) + \alpha a \operatorname{tr}(\boldsymbol{B}^{-1} \boldsymbol{\xi}_{\boldsymbol{B}} \boldsymbol{B}^{-1} \boldsymbol{\eta}_{\boldsymbol{B}}) + (\alpha - 1) a^2 \operatorname{tr}(\boldsymbol{B}^{-1} \boldsymbol{\xi}_{\boldsymbol{B}}) \operatorname{tr}(\boldsymbol{B}^{-1} \boldsymbol{\eta}_{\boldsymbol{B}}),$$
(4)

where $\alpha = (d+p)/(d+p+1)$.

Proof: Derived from results of [BBG⁺21, Proposition 7] on mappings and Fisher information metric of elliptical distributions in [BGRB19].

the Riemannian exponential mapping at $\theta \in \mathcal{M}_{a,b}$ is defined for $\xi \in T_{\theta}\mathcal{M}_{a,b}$ as

$$\exp_{\theta}^{\mathcal{M}_{a,b}}(\xi) = \left(\boldsymbol{A} \exp(\boldsymbol{A}^{-1} \boldsymbol{\xi}_{\boldsymbol{A}}), \boldsymbol{B} \exp(\boldsymbol{B}^{-1} \boldsymbol{\xi}_{\boldsymbol{B}}) \right). \tag{5}$$

For better numerical cost and stability, it might be advantageous to prefer a second order approximation:

Retraction

$$R_{\theta}(\xi) = \left(\mathbf{A} + \xi_{A} + \frac{1}{2} \xi_{A} \mathbf{A}^{-1} \xi_{A}, \mathbf{B} + \xi_{B} + \frac{1}{2} \xi_{B} \mathbf{B}^{-1} \xi_{B} \right).$$
 (6)

Riemannian gradient

Proposition

The Riemannian gradient of ℓ_i at $\theta \in \mathcal{M}_{a,b}$ according to the Fisher information metric is:

$$\operatorname{grad} \ell_{i}(\theta) = \left(\frac{1}{\alpha b} P_{\mathbf{A}}(\mathbf{A} \operatorname{sym}(\nabla_{\mathbf{A}} \ell_{i}(\theta)) \mathbf{A}), \frac{1}{\alpha a} \mathbf{B} \operatorname{sym}(\nabla_{\mathbf{B}} \ell_{i}(\theta)) \mathbf{B} - \frac{(\alpha - 1) \operatorname{tr}(\mathbf{B} \nabla_{\mathbf{B}} \ell_{i}(\theta))}{\alpha (\alpha + (\alpha - 1)p)} \mathbf{B}\right),$$
(7)

where $\operatorname{sym}(\cdot)$ returns the symmetrical part of its argument; $P_A: \mathcal{S}_a \to T_A s \mathcal{S}_a^{++}$ is the orthogonal projection map such that $P_A(\boldsymbol{\xi}_A) = \boldsymbol{\xi}_A - \frac{\operatorname{tr}(A^{-1}\boldsymbol{\xi}_A)}{a}A$; and $\nabla \ell_i(\theta) = (\nabla_A \ell_i(\theta), \nabla_B \ell_i(\theta))$ is the Euclidean gradient of ℓ_i at θ , defined as

$$\nabla_{\mathbf{A}}\ell_i(\theta) = \frac{1}{2}\mathbf{A}^{-1}\left(b\mathbf{A} - \frac{d+p}{d+Q_i(\theta)}\mathbf{M}_i^T\mathbf{B}^{-1}\mathbf{M}_i\right)\mathbf{A}^{-1}, \nabla_{\mathbf{B}}\ell_i(\theta) = \frac{1}{2}\mathbf{B}^{-1}\left(a\mathbf{B} - \frac{d+p}{d+Q_i(\theta)}\mathbf{M}_i\mathbf{A}^{-1}\mathbf{M}_i^T\right)\mathbf{B}^{-1},$$

with M_i , the $b \times a$ matrix such that $\text{vec}(M_i) = x_i$ and $Q_i(\theta) = \text{tr}(A^{-1}M_i^TB^{-1}M_i)$.

Recursive algorithm

Algorithm 1: Online estimation of θ

Result: Estimate $\theta = (A, B)$

initialization with $\theta = (\mathbf{A}_0, \mathbf{B}_0)$;

for *i*=1,...,*n* **do**

$$\theta_i = R_{\theta_i} \left(-\frac{1}{i} \operatorname{grad} \ell_i(\theta_i) \right)$$

end

Outline

- 1 Introduction
- 2 Information geometry and recursive estimation
- **3** Numerical results
- **4** Conclusion
- **6** References

100 sets $\{x_i\}_{i=1}^n$ are drawn from the multivariate Student t-distribution with covariance Σ and $d \in \{3, 100\}$ degrees of freedom, where $n \in [1, 500]$. To generate a Σ :

$$\Sigma = A \otimes B,$$

$$A = U_A \Lambda_A U_A^T, \qquad B = U_B \Lambda_B U_B^T,$$
(8)

where a = b = 4.

- U_A and U_B are random orthogonal matrices.
- Λ_A and Λ_B are diagonal matrices whose minimal and maximal elements are $1/\sqrt{c}$ and \sqrt{c} (c=10 is the condition number with respect to inversion); their other elements are randomly drawn from the uniform distribution between $1/\sqrt{c}$ and \sqrt{c} ; the determinant of Λ_{Λ} is then normalized.

Setup of Montecarlo ii

For this experiment, we consider the following estimators:

- the classical **maximum-likelihood estimator** obtained with Riemannian gradient descent (GD). Optimization for this estimator is performed with manopt toolbox [BMAS14].
- the online version obtained through stochastic gradient descent (SGD) presented here.

Both algorithms are initialized with $\theta_0 = (I_a, I_b)$.

In order to measure the performance, we consider an error measure for each component A and B, which are given by the usual Riemannian distances on sS_a^{++} and S_b^{++}

$$\begin{aligned}
&\text{err}(\widehat{\mathbf{A}}) = \|\log(\mathbf{A}^{-1/2}\widehat{\mathbf{A}}\mathbf{A}^{-1/2})\|_{2}^{2}, \\
&\text{err}(\widehat{\mathbf{B}}) = \|\log(\mathbf{B}^{-1/2}\widehat{\mathbf{B}}\mathbf{B}^{-1/2})\|_{2}^{2}.
\end{aligned} \tag{9}$$

Comparison between gradient descent and recursive estimation (d = 3)

Figure 1: Mean of error measures on A (left) and B (right) of the classical gradient descent method (GD) and its on-line counterpart (SGD) as functions of the number of samples n. d=3.

Comparison between gradient descent and recursive estimation (d=100)

Figure 2: Mean of error measures on A (left) and B (right) of the classical gradient descent method (GD) and its on-line counterpart (SGD) as functions of the number of samples n. d=100.

- Introduction
- Information geometry and recursive estimation
- **Numerical results**
- **4** Conclusion
- References

Conclusion

We have achieved:

- Information geometry on Kronecker products based on Fisher information metric of a Student-t distribution.
- · Efficient online scheme for estimation.

Next:

- Extension to all elliptical distributions and deterministic compound-Gaussian distribution.
- Applications in STAP and SAR problems.

Outline

- 1 Introduction
- Information geometry and recursive estimation
- **3** Numerical results
- **4** Conclusion
- **5** References

References i

18/21

- Shun-ichi Amari, Natural gradient learning for over-and under-complete bases in ica, Neural computation **11** (1999), no. 8, 1875–1883.
- F. Bouchard, A. Breloy, G. Ginolhac, A. Renaux, and F. Pascal, A Riemannian framework for low-rank structured elliptical models, IEEE Transactions on Signal Processing **69** (2021), 1185–1199.
- A. Breloy, G. Ginolhac, A. Renaux, and F. Bouchard, *Intrinsic Cramèr Rao bounds for scatter and shape matrices estimation in CES distributions*, IEEE Signal Processing Letters **26** (2019), no. 2, 262–266.

References ii

- J.C. de Munck, H.M. Huizenga, L.J. Waldorp, and R.A. Heethaar, Estimating stationary dipoles from meg/eeg data contaminated with spatially and temporally correlated background noise, IEEE Transactions on Signal Processing **50** (2002), no. 7, 1565–1572.
- Kristjan Greenewald, Edmund Zelnio, and Alfred Hero, Robust sar stap via kronecker decomposition, 2016.
- A. Mian, J. Ovarlez, A. M. Atto, and G. Ginolhac, IEEE Transactions on Geoscience and Remote Sensing **57** (2019), no. 6, 3919–3932.

References iii

- Bruno Meriaux, Chengfang Ren, Arnaud Breloy, Mohammed Nabil El Korso, and Philippe Forster, Efficient estimation of kronecker product of linear structured scatter matrices under t-distribution, 2020 28th European Signal Processing Conference (EUSIPCO), IEEE, 2021, pp. 2418–2422.
- Ying Sun, Prabhu Babu, and Daniel P Palomar, Robust estimation of structured covariance matrix for heavy-tailed elliptical distributions, IEEE Transactions on Signal Processing **64** (2016), no. 14, 3576–3590.
- i Kai Yu, M. Bengtsson, B. Ottersten, D. McNamara, P. Karlsson, and M. Beach, *Modeling of wide-band mimo radio channels based on nlos indoor measurements*, IEEE Transactions on Vehicular Technology **53** (2004), no. 3, 655–665.

References iv

Jialun Zhou and Salem Said, Fast, asymptotically efficient, recursive estimation in a Riemannian manifold, Entropy **21** (2019), no. 10, 1021.