INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE B.MATH - Third Year, 2021-22

Statistics - III, Test 2, November 22, 2021

1. Consider the following model:

$$y_1 = \alpha + \beta + \gamma + \epsilon_1$$

$$y_2 = \alpha - \beta + \epsilon_2$$

$$y_3 = \alpha - 2\gamma + \epsilon_3$$

$$y_4 = \alpha + \gamma + \epsilon_4$$

where α, β, γ are unknown constants and ϵ_i are uncorrelated random variables having mean 0 and variance σ^2 .

- (a) Is $\alpha + \beta$ is estimable? Justify.
- (b) Does there exist a BLUE for $\alpha + \beta$? Find it if it does.
- (c) Find an unbiased estimate of σ^2 .

[15]

- **2.** Consider the model $\mathbf{Y} = X\beta + \epsilon$, where $X_{n \times p}$ has rank $r \leq p$; also $\epsilon \sim N_n(\mathbf{0}, \sigma^2 I_n)$. Let $(X'X)^-$ be a generalized inverse of X'X, and $\hat{\beta}$ be a least squares solution of β . Suppose $A\beta$ is estimable where the rank of $A_{q \times p}$ is q.
- (a) Show that $A(X'X)^{-}X'X(X'X)^{-}A' = A(X'X)^{-}A'$.
- (b) Find the probability distribution of $A\hat{\beta}$.

[10]