МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. УЛЬЯНОВА (ЛЕНИНА) Кафедра алгоритмической математики

КУРСОВАЯ РАБОТА по дисциплине «Дифференциальные уравнения» Тема: Соскальзывание цепочки

	Кобенко В.П.
Студенты гр. 8382	 Черницын П.А.
Преподаватель	 Павлов Д.А.

Санкт-Петербург 2021

ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

Студент Кобенко В.П. Студент Черницын П.А. Группа 8382

Тема работы: Соскальзывание цепочки

Исходные данные:

Соскальзывание цепочки

Содержание пояснительной записки:

«Содержание», «Введение», «2-ой Закон Ньютона», «Прямой метод Ньютона», «Обратный метод Ньютона», «Метод Рунге-Кутты-Фельберга 4-5-го порядка», «Метод Хойна», «Метод Адамса», «Графический интерфейс», «Заключение», «Список использованных источников».

Предполагаемый объем пояснительной записки: Не менее 20 страниц.

Дата выдачи задания: 09.05.2021

Дата сдачи курсовой работы: 14.06.2021

Дата защиты курсовой работы: 14.06.2021

	Кобенко В.П.		
Студенты	Черницын П.А.		
Преподаватель	Павлов Д.А.		

АННОТАЦИЯ

В курсовой работе рассмотрена задача соскальзывание цепочки. Для этого использовался 2-ой Закон Ньютона, его дифференциальная формулировка. Для решения поставленной задачи было использовано несколько методов: «Прямой метод Ньютона», «Обратный метод Ньютона», «Метод Рунге-Кутты-Фельберга 4-5-го порядка», «Метод Хойна», «Метод Адамса 4-го порядка». Результаты решения данного уравнения были представлены в виде графиков в графическом интерфейсе.

SUMMARY

In the course work, the problem of chain slip. For this, the 2nd Newton law, its differential formulation, was used. To solve the problem, several methods were used: "Forward Newton's method", "Backward Newton's method", "Runge-Kutta-Felberg method of the 4-5th order", "Heun's method", "Adams method of the 4th order". The results of solving this equation were presented in the form of graphs in the graphical interface.

СОДЕРЖАНИЕ

ЗАДАНИЕ	2
на курсовую работу	2
АННОТАЦИЯ	3
Введение	
2-ой Закон Ньютона	6
Прямой метод Эйлера	8
Обратный метод Эйлера	11
Метод Рунге-Кутты-Фельберга 4-5 порядка	14
Метод Хойна	16
Метод Адамса-Башфорта 4-го порядка	18
Сводная таблица методов	20
GUI	21
Вывод	24
Используемая литература	26

Введение

Дифференциальное уравнение является одним из фундаментальных понятий математики, широко применяемое в различных областях современных наук. Оно также применимо в физических процессах, один из которых рассматривается в данной курсовой работе. Соскальзывание цепочки является этим процессом. Были использованы методы интегрирования дифференциальных уравнений динамических систем для решения 2-ого закона Ньютона, такие как: «Прямой метод Ньютона», «Обратный метод Ньютона», «Метод Рунге-Кутты-Фельберга 4-5-го порядка», «Метод Хойна», «Метод Адамса Башфорта 4-го порядка».

2-ой Закон Ньютона

2-ой Закон Ньютона устанавливает связь между силой **F**, действующей на тело массы **m**, и ускорением **a**, которое приобретает тело под действием этой силы. Дифференциальная формулировка выглядит так:

$$F = \frac{dp}{dt}$$

 Γ де \mathbf{F} – сила, \mathbf{t} – время, \mathbf{p} – импульс.

В предположении, что движение одномерное, второй закон Ньютона в этом случае записывается в виде дифференциального уравнения второго порядка:

$$F(t) = m \frac{d^2x}{dt^2}$$

Согласно второму закону Ньютона, дифференциальное уравнение движения цепочки имеет вид:

$$m\frac{d^2x}{dt^2} = P - F_{\rm T}p$$

Отсюда:

$$m\frac{d^2x}{dt^2} = mg\frac{x}{L} - \mu mg\frac{L - x}{L}$$

Поделим обе части уравнения на т:

$$\frac{d^2x}{dt^2} = g\frac{x}{L} - \mu g\frac{L - x}{L}$$

Получаем:

$$\frac{d^2x}{dt^2} - x\frac{g(1+\mu)}{L} = -\mu g$$

Отсюда следует, что ускорение будет выглядеть так:

$$\frac{d^2x}{dt^2} = x\frac{g(1+\mu)}{L} - \mu g$$

Для получения аналитической формулы должно быть известно начальное условие:

$$x(t=0) = \frac{\mu L}{1+\mu} + \varepsilon$$
$$v(t=0) = 0$$

Длина свисающей части цепочки при равновесии составляет:

$$x = \frac{\mu L}{1 + \mu}$$

Скольжение цепочки описывается законом:

$$x(t) = \frac{\varepsilon}{2} e^{\operatorname{sqrt}\left(\frac{(1+\mu)g}{L}\right)t} + \frac{\varepsilon}{2} e^{-\operatorname{sqrt}\left(\frac{(1+\mu)g}{L}\right)t} + \frac{\mu L}{1+\mu}$$

Прямой метод Эйлера

В нашем коде этот метод был реализован так:

```
def main_FE(self):
    appr = int((self.time - 0)/self.h)

v = 0
y0 = self.coef * self.chain_len / (1 + self.coef) + 2 * self.eps/1000
x = np.array([y0, v])
res = []
self.f.write(str(0) + ' ')

for i in range(appr):
    xdot = np.array(mf.myFunc(x, self.coef, self.chain_len))

x = x + xdot * self.h

if (x[0] > self.chain_len):
    x[0] = self.chain_len
res = np.append(res, x[0])

self.f.write(str(i*self.h) + ' ')
self.f.write('\n')
return res
```

a,v- ускорение и скорость, полученные в результате выполнения функции f(x,t), self.h – это длина шага по x, $my_func.py$ выглядит так:

```
import numpy as np

def myFunc(x, v, mu, 1):
    # x - длина свисающей части
    a = (1 + mu) * 9.8 * x / 1 - mu * 9.8
    # v = v + (-9.8 * (x + h) * mu + (9.8 * (x + h) * y * (1 + mu))/1) - (-9.8 * x * mu + (9.8 * x * y * (1 + mu))/1)
    # v += a*h
    return a, v
```

Где mu – это коэффициент трения, а 9.8 – ускорение свободного падения.

Для сравнения с аналитическим решением использовался график, желтая линия – график метода, синяя – аналитическое решение.

Реализация аналитического решения выглядит так (для всех методов она одинаковая):

```
for i in t:
    T = 2 * self.eps/2000 * np.exp(np.sqrt((1 + self.coef) * 9.8 / self.chain_len) * i) + 2 * self.eps/2000 * n
    if (T > 1):
        T = 1
    self.f.write(str(T) + ' ')
self.f.write('\n')
```

← → + Q = B

Обратный метод Эйлера

В нашем коде этот метод был реализован так:

```
def main_BE(self):
    appr = int((self.time - 0)/self.h)

v = 0
y0 = self.coef * self.chain_len / (1 + self.coef) + 2 * self.eps/1000
x = np.array([y0, v])
res = []

self.f.write(str(0) + ' ')

for i in range(appr):
    xdot = np.array(mf.myFunc(x, self.coef, self.chain_len))

x = x + xdot * self.h

if (x[0] > self.chain_len):
    x[0] = self.chain_len
res = np.append(res, x[0])
self.f.write(str(i*self.h) + ' ')
self.f.write('\n')
return res
```

 Γ де a,v — ускорение и скорость, полученные в результате выполнения функции f(x, t), self.h — это длина шага по x.

Для сравнения с аналитическим решением использовался график, желтая линия – график метода, синяя – аналитическое решение.

Метод Рунге-Кутты-Фельберга 4-5 порядка

Этот метод был реализован таким образом:

Для сравнения с аналитическим решением использовался график, желтая линия – график метода, синяя – аналитическое решение.

Метод Хойна

В работе метод был реализован так:

```
def main_H(self):
    appr = int((self.time - 0)/self.h)
   y0 = self.coef * self.chain len / (1 + self.coef) + 2 * self.eps/1000
   x = np.array([y0, v])
    res = []
    self.f.write(str(0) + ' ')
    for i in range(appr):
       xdot1 = np.array(mf.myFunc(x, self.coef, self.chain_len))
       xdot2 = np.array(mf.myFunc(x + xdot1*self.h, self.coef, self.chain len))
       x = x + (xdot1 + xdot2) * self.h/2
       if (x[0] > self.chain_len):
            x[0] = self.chain_len
       res = np.append(res, x[0])
        self.f.write(str(i*self.h) + ' ')
    self.f.write('\n')
    return res
```

Для сравнения с аналитическим решением использовался график, желтая линия – график метода, синяя – аналитическое решение.

Метод Адамса-Башфорта 4-го порядка

В работе метод был реализован так:

```
t = 0

for i in range(3, dx):
    xdot1 = np.array(mf.myFunc(x[i], self.coef, self.chain_len))
    xdot2 = np.array(mf.myFunc(x[i - 1], self.coef, self.chain_len))
    xdot3 = np.array(mf.myFunc(x[i - 2], self.coef, self.chain_len))
    xdot4 = np.array(mf.myFunc(x[i - 3], self.coef, self.chain_len))

    xp = x[i] + (self.h/24)*(55 * xdot1 - 59 * xdot2 + 37 * xdot3 - 9 * xdot4 )
    xdotp = np.array(mf.myFunc(xp, self.coef, self.chain_len))

    xn = x[i] + (self.h/24) * (9 * xdotp + 19 * xdot1 - 5 * xdot2 + xdot3)

    if (xn[0] > self.chain_len):
        xn[0] = self.chain_len
    # print (yn)

    t = t_temp[i] + self.h
    t_arr = np.append(t_arr, t)

    self.x = t_arr

    res = np.append(res, xn[0])
    return [t_arr, res]
```

Для сравнения с аналитическим решением использовался график, желтая линия – график метода, синяя – аналитическое решение.

Сводная таблица методов

	Прямой метод		Обратн	братный Метод РКФ4-5			1		Метод	Адамса
	Эйлера		метод Эйлера		 				Башфорта 4-го	
									порядка	
h	h=	h=	h=	h=	h=	h=	h=	h=	h=	h=
,	0.01,	0.0001,	0.01,	0.0001	0.01,	0.0001	0.01,	0.0001	0.01,	0.0001,
N	N =	N =	N =	,	N =	,	N =	,	N =	N =
	300	30000	300	N =	300	N =	300	N =	300	30000
				30000		30000		30000		
M	0.0500	0.0005	0.0465	0.0005	1.5097	1.6653	0.0005	6.0135	0.0872	0.0009
a	900956	357570	73653	354085	36780	34536	686965	34326	58553	373288
X	061466	531380	59159	268496	03651	93773	691512	05478	69559	624401
	34	196	882	345	9e-11	48e-15	613	1e-08	576	344
e										
r										
r										
1	h=		h	<u> </u>	h=		h=		h=	
e	0.000001		0.00	0.01		01	0.001		0.00001	
-										
6										

Был реализован графический интерфейс на языке Python с помощью библиотеки PySimpleGUI. Код программы представлен в приложении A.

Интерфейс программы включает в себя 6 кнопок, 3 слайдера, окно для графиков и лэйбл с выводом информации об успешном/неуспешном запуске программы:

Первые пять кнопок в интерфейсе вызывают численные методы:

Forward Euler:

Backward Euler:

Runge Kutt:

Heun:

Adams-Bashfourth:

С помощью слайдеров можно менять условия поставленной задачи.

Chain length отвечает за длину цепочки, Epsilon за смещение цепочки относительно точки равновесия, Time – за время, кнопка Discard params – сбрасывает значения на исходные.

Также справа от графика выводится глобальная ошибка для конкретного метода с шагом h=0.0001 и график глобальной ошибки.

Вывод

В курсовой работе был рассмотрен процесс соскальзывания цепочки. Для решения задачи были использованы такие методы, как: «Прямой метод Ньютона», «Обратный метод Ньютона», «Метод Рунге-Кутты-Фельберга 4-5го порядка», «Метод Хойна», «Метод Адамса». Было написано приложение на языке Python, решающее поставленную задачу данными методами и сравнивающее решение с аналитическим. Графический интерфейс позволяет увидеть отличия между методами на графиках.

Используемая литература

https://old.math.tsu.ru/EEResources/pdf/diff_equation.pdf

http://math.smith.edu/~callahan/cic/ch4.pdf

https://en.wikipedia.org/wiki/Newton%27s law_of_cooling

https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%9

<u>0%D0%B4%D0%B0%D0%BC%D1%81%D0%B0</u>

http://w.ict.nsc.ru/books/textbooks/akhmerov/nm-ode_unicode/1-3.html

https://tftwiki.ru/wiki/Heun%27s_method

https://pysimplegui.readthedocs.io/en/latest/

https://www.python.org/