Felicitaciones! ¡Aprobaste!

Calificación recibida 100 %
Calificación del último envío 100 %
Para Aprobar 80 % o más

Ir al siguiente elemento

1. Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word in the i^{th} training example?

1 / 1 punto

- $(x^{(i) < j > j})$
- $\bigcap x^{< i > (j)}$
- $(\gamma^{(j) < i})$
- $\bigcap x^{< j > (i)}$
 - ✓ Correcto

We index into the i^{th} row first to get the i^{th} training example (represented by parentheses), then the j^{th} column to get the j^{th} word (represented by the brackets).

2. Consider this RNN:

1 / 1 punto

This specific type of architecture is appropriate when:

- $T_x = T_y$
- $\bigcap T_x < T_y$
- $\bigcap T_x > T_y$
- O $T_x = 1$
 - ✓ Correcto

It is appropriate when every input should be matched to an output.

3. To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

1 / 1 punto

- ☐ Speech recognition (input an audio clip and output a transcript)
- Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)
 - ✓ Correcto
 Correct!
- ☐ Image classification (input an image and output a label)
- Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)
 - Correct!

1/1 punto

4. You are training this RNN language model.

At the t^{th} time step, what is the RNN doing? Choose the best answer.

- O Estimating $P(y^{<1>}, y^{<2>}, \dots, y^{<t-1>})$
- $\bigcirc \text{ Estimating } P(y^{< t >})$
- **(a)** Estimating $P(y^{< t>} | y^{< 1>}, y^{< 2>}, \dots, y^{< t-1>})$
- O Estimating $P(y^{< t>} | y^{< 1>}, y^{< 2>}, \dots, y^{< t>})$

Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.

5. You have finished training a language model RNN and are using it to sample random sentences, as follows:

1 / 1 punto

What are you doing at each time step *t*?

	0	(i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{}$. (ii) Then pass the ground-truth word from the training set to the next time-step.	
	0	(i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.	
	0	(i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\mathcal{Y}^{< t>}$. (ii) Then pass this selected word to the next time-step.	
	•	(i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{}$. (ii) Then pass this selected word to the next time-step.	
	(Correcto Yes!	
6.	tak	u are training an RNN, and find that your weights and activations are all ing on the value of NaN ("Not a Number"). Which of these is the most likely use of this problem?	1 / 1 punto
	0	Vanishing gradient problem.	
	•	Exploding gradient problem.	
	0	ReLU activation function g(.) used to compute g(z), where z is too large.	
	0	Sigmoid activation function $g(.)$ used to compute $g(z)$, where z is too large.	
	(Correcto	
7.	are	ppose you are training a LSTM. You have a 10000 word vocabulary, and using an LSTM with 100-dimensional activations $a^{<\!\!\!/}$. What is the nension of Γ_u at each time step?	1 / 1 punto
	0	1	
	•	100	
	0	300	

- 10000
 - ✓ Correcto

Correct, Γ_u is a vector of dimension equal to the number of hidden units in the LSTM.

8. Here're the update equations for the GRU.

1 / 1 punto

GRU

 $a^{< t>} = c^{< t>}$

$$\tilde{c}^{} = \tanh(W_c[\Gamma_r * c^{}, x^{}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{}, x^{}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{}, x^{}] + b_r)$$

$$c^{} = \Gamma_u * \tilde{c}^{} + (1 - \Gamma_u) * c^{}$$

Alice proposes to simplify the GRU by always removing the Γ_u . I.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . I. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

- \bigcirc Alice's model (removing Γ_u), because if $\Gamma_r \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
- O Alice's model (removing Γ_u), because if $\Gamma_r \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.
- **(a)** Betty's model (removing Γ_r), because if $\Gamma_u \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
- O Betty's model (removing Γ_r), because if $\Gamma_u \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.
 - **⊘** Correcto

Yes. For the signal to backpropagate without vanishing, we need $c^{< t>}$ to be highly dependant on $c^{< t-1>}$.

9. Here are the equations for the GRU and the LSTM:

1/1 punto

GRU

LSTM

$$\tilde{c}^{} = \tanh(W_c[\Gamma_r * c^{}, x^{}] + b_c)$$

$$\tilde{c}^{} = \tanh(W_c[a^{}, x^{}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{}, x^{}] + b_u)$$

$$\Gamma_u = \sigma(W_u[a^{}, x^{}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{}, x^{}] + b_r)$$

$$\Gamma_f = \sigma(W_f[a^{}, x^{}] + b_f)$$

$$C^{} = \Gamma_u * \tilde{c}^{} + (1 - \Gamma_u) * c^{}$$

$$\Gamma_o = \sigma(W_o[a^{}, x^{}] + b_o)$$

$$C^{} = \Gamma_u * \tilde{c}^{} + \Gamma_f * c^{}$$

$$C^{} = \Gamma_u * \tilde{c}^{} + \Gamma_f * c^{}$$

$$C^{} = \Gamma_u * \tilde{c}^{} + \Gamma_f * c^{}$$

$$C^{} = \Gamma_u * \tilde{c}^{} + \Gamma_f * c^{}$$

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to _____ and ____ in the GRU. What should go in the the blanks?

- \bullet Γ_u and $1 \Gamma_u$
- $\bigcap \Gamma_u$ and Γ_r
- \bigcap 1 Γ_u and Γ_u
- $\bigcap \Gamma_r$ and Γ_u
 - ✓ Correcto
 Yes, correct!
- **10.** You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as $x^{<1>}, \ldots, x^{<365>}$. You've also collected data on your dog's mood, which you represent as $y^{<1>}, \ldots, y^{<365>}$. You'd like to build a model to map from $x \to y$. Should you use a Unidirectional RNN or Bidirectional RNN for this problem?
 - Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.
 - Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.
 - Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< 1>}, \dots, x^{< t>}$, but not on $x^{< t+1>}, \dots, x^{< 365>}$
 - O Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< t>}$, and not other days' weather.

1/1 punto

