Numbering Systems Review

- Natural numbers: Things that we count and the base system
 - o base 60: from the Sumerians: used for time, angles, geographical coordinates
 - o base 20: e.g., the Mayan system
 - o base 12: Jan, Feb, ... Dec
 - o base 10: Jan, Feb, ... June, Sept, Oct, Nov, Dec!
 - o base 7: Sun, Mon, Tues, ... Sat, Sun
 - o base 2, 8 (2³), 16 (2⁴)
 - o unary: 110, 11110, 1111111111110, 111011011110=324
- Integers: Positive, Zero, and Negative
- Rational: e.g., $\frac{1}{3}$, 2.3 but not... π
- Real Numbers: e.g., π
- Complex Numbers: e.g., 3 + 2i where $i = \sqrt{-1}$
- The concept of both $-\infty$ and ∞ , x/0 == NaN

Different Representations for "42.25"

- Decimal:
 - 0 42.25
 - 10#42.25 (Bash shell)
 - o 4.225 x10²
 - 4.225E02 (calculators)
- Hexadecimal:
 - o 0x2A.4
 - o 16#2A.4
 - o 2.A4 x16[^]1
- Octal:
 - o 052.2 (Java, C, etc, but not Javascript)
 - 0o52.2 (Javascript)
 - 0 8#52.2
 - o 5.22 x8¹

- Binary:
 - o 0b101010.01
 - 0 2#101010.01
 - o 1.0101001 x2[^] 101
- In COMP122:
 - Use context
 - Allow spacing for clarity
 - Allow for separators
 - Allow for signs
 - E.g., A UTF-8 3, byte sequence

| 1110 - 1010 | 10 – 10 0101 | 10 – 11 0111 |

Computer Limitations and Representation

- Recall the Universal Computer
 - There is a limited tape size to perform calculation
- Recall the von Neumann and Harvard architecture
 - There is a predefined width to registers and memory
- Abstract representations with limited sizes for:
 - Natural Numbers & Zero: unsigned char, unsigned int
 - o Integers:
 - Rational/Real:
 - Fix Point
 - Floating Point

float (singal), double

short int, int, long int, long long int

An encoding of each will include one or more of the following:

sign whole fractional expon sign exponent

+ 4.225 x10[^] +2 +1.010101 x2[^] +101

• Recall from grade school

1234 =	1 x 10^3	1 * 1000 = 1000
	+ 2 x 10^2	2 * 100 = 200
	+ 3 x 10^1	3 * 10 = 30
	+ 4 × 10^0	4 * 1 = 4
		1234

thousands	hundreds	tens	ones
1	2	3	4

Expanded Notation for other Bases

Radix Point

BASE		Colu	mns			
Base 16	4096's	256's	16's	1's	1/16	1/256
Base 10	1000's	100's	10's	1's	1/10	1/100
Base 8	512's	64's	8's	1's	1/8	1/64
Base 2	8's	4's	2's	1's	1/2	1/4

Recall from grade school

154 =	1 x 10^2	100
	+ 5 x 10^1	50
	+ 4 x 10^0	4
		154

Base 16
16# 9A

0x9A =	9 x 16^1	9 x 16 = 144
	+ A x 16^0	10 x 1 = 10
		154

Base 8
0o232
8# 232

Base 10 Value

Base 10 Value

0232 =	2 x 8^2	2 * 64 = 128
	+ 3 x 8^1	3 * 8 = 24
	+ 2 x 8^0	2 * 1 = 2
		154

10	Α
11	В
12	С
13	D
14	E
15	F

• Base 2: 2# 1001 1010

1001 1010 =	1 x 2^7	128
	+ 0 x 2^6	0
	+ 0 x 2^5	0
	+ 1 x 2^4	16
	+ 1 x 2^3	8
	+ 0 x 2^2	0
	+ 1 x 2^1	2
	+ 0 x 2^0	0
		154

Real Numbers

But what about my limitations on the computer!

Fixed Point Numbers

- There is a need to represent rational numbers
- Consider operations on US currency. (dollars and cents)
 - Place the two digits after the decimal (radix) point
 - Provide a register of size 6

Note:

We can't represent standard price of a gallon of gas! \$4.96 9/10

sign	whole	fractional	expon sign	exponent
------	-------	------------	------------	----------

Scientific Notation

- All numbers represented as: m x 10^N
- Simplifies operations on large and small numbers.
 - o Distance between sun and earth: $92,000,000 = 9.2 \times 10^7$
 - Distance between sun and mars: $143,000,000 = 1.43 \times 10^{8}$
- Floating point representation
 - o a representation of scientific notation
 - o introduces the notion of infinity, and NaN (0 / 0 = ?, 0 x infinity = ?)
- Representation of: -1.1011101 x 2 -1001
 - Assume a size of 16
 - Note the whole part is always "1"!

Floating Point Encoding

always 1: so we don't store it

Original number: - 0.000100101

Recall Scientific Notation: -1.0100101 x 2 -100 (4)

- Components to Encode
 - sign: negative
 - significant or the mantissa: 0100101
 - exponent: 100
 - Issue: negative exponents
 - Solution: store values with a bias
- Bias:
 - Shift all numbers along the number line by N
 - Typically it is half the range:
 - 3 bits -> 011 == 3

- 5 bits -> 0 1111 == 15
- - 8 bits -> 0111 1111 == 127
- 11 bits -> 011 1111 1111 == 1023

Symbol	Encoding
+	0
-	1

Number		Encoding (Bias: 4)
-4		000
-3		001
-2		010
-1		011
0	000	100
1	001	101
2	010	110
3	011	111