3.1 Using Data Types (II)

Text Processing

String Data Type

String data type. Basis for text processing.

Set of values. Sequence of Unicode characters.

API. public

public class String (Java string data type)

```
String(String s)
                                                   create a string with the same value as S
           length()
      int
                                                   string length
    char charAt(int i)
                                                   ith character
  String substring(int i, int j)
                                                   ith through (j-1)st characters
 boolean contains(String sub)
                                                   does string contain sub as a substring?
 boolean startsWith(String pre)
                                                   does string start with pre?
 boolean endsWith(String post)
                                                   does string end with post?
      int indexOf(String p)
                                                   index of first occurrence of p
      int indexOf(String p, int i)
                                                   index of first occurrence of p after i
  String concat(String t)
                                                   this string with t appended
      int compareTo(String t)
                                                   string comparison
  String replaceAll(String a, String b)
                                                   result of changing as to bs
String[] split(String delim)
                                                   strings between occurrences of delim
 boolean equals(String t)
                                                   is this string's value the same as t's?
```

Typical String Processing Code

```
public static boolean isPalindrome(String s)
                         int N = s.length();
    is the string
                         for (int i = 0; i < N/2; i++)
                            if (s.charAt(i) != s.charAt(N-1-i))
   a palindrome?
                                return false:
                         return true;
                      }
  extract file name
                     String s = args[0];
and extension from a
                     int dot = s.index0f(".");
                      String base
                                         = s.substring(0, dot);
   command-line
                      String extension = s.substring(dot + 1, s.length());
     argument
                     String query = args[0];
   print all lines in
                     while (!StdIn.isEmpty())
 standard input that
   contain a string
                         String s = StdIn.readLine();
   specified on the
                         if (s.contains(query)) StdOut.println(s);
   command line
                      }
                     while (!StdIn.isEmpty())
print all the hyperlinks
(to educational institu-
                         String s = StdIn.readString();
                         if (s.startsWith("http://") && s.endsWith(".edu"))
tions) in the text file on
                            StdOut.println(s);
   standard input
                      }
```

Gene Finding

Pre-genomics era. Sequence a human genome.

Post-genomics era. Analyze the data and understand structure.

Genomics. Represent genome as a string over { A, C, T, G } alphabet.

Gene. A substring of genome that represents a functional unit.

- Preceded by ATG. [start codon]
- Multiple of 3 nucleotides. [codons other than start/stop]
- Succeeded by TAG, TAA, or TGA. [stop codons]

Goal. Find all genes.

Gene Finding: Algorithm

Algorithm. Scan left-to-right through genome.

- If start codon, then set beg to index i.
- If stop codon and substring is a multiple of 3
 - output gene
 - reset beg to -1

i .	codon		beg	gene	remaining portion of input string						
	start	stop	beg	gene	remaining portion of input string						
0			-1		ATAGATGCATAGCGCATAGCTAGATGTGCTAGC						
1		TAG	-1	multiple of 3 CATAGCGCA	ATAGATGCATAGCGCATAGCTAGATGTGCTAGC						
4	ATG		4		ATAGATGCATAGCGCATAGCTAGATGTGCTAGC						
9		TAG	4		ATAGATGCATAGCGCATAGCTAGATGTGCTAGC						
16		TAG	4		ATAGATGCATAGCGCATAGCTAGATGTGCTAGC						
20		TAG	-1		ATAGATGCATAGCGCATAGCTAGATGTGCTAGC						
23	ATG		23		ATAGATGCATAGCGCATAGCTAGATGTGCTAGC						
29		TAG	23	TGC	ATAGATGCATAGCGCATAGCTAGATGTGCTAGC						

Gene Finding: Implementation

```
public class GeneFind {
   public static void main(String[] args) {
      String start = args[0];
      String stop = args[1];
      String genome = StdIn.readAll();
      int beg = -1;
      for (int i = 0; i < genome.length() - 2; <math>i++) {
         String codon = genome.substring(i, i+3);
         if (codon.equals(start)) beg = i;
         if (codon.equals(stop) && beg !=-1 && beg+3 < i) {
            String gene = genome.substring(beg+3, i);
            if (gene.length() % 3 == 0) {
                StdOut.println(gene);
               beg = -1;
                          % more genomeTiny.txt
                         ATAGATGCATAGCGCATAGCTAGATGTGCTAGC
                         % java GeneFind ATG TAG < genomeTiny.txt
                         CATAGCGCA
                         TGC
```

OOP Context for Strings

Possible memory representation of a string.

genome = "aacaagtttacaagc";

D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	DA	DB	DC	DD	DE
a	a	С	a	a	g	t	t	t	a	С	a	a	g	С

OOP Context for Strings

Possible memory representation of a string.

genome = "aacaagtttacaagc";

D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	DA	DB	DC	DD	DE
a	a	С	a	a	g	t	t	t	a	С	a	a	g	С

memory length address

s = genome.substring(1, 5);

t = genome.substring(9, 13);

в0	в1	в2	в3
D1	4	D9	4

S

s and t refer to different strings that have the same value "acaa"

(s == t) is false, but (s.equals(t)) is true.

compares pointers

compares character sequences

In and Out

Bird's Eye View (Revisited)

Non-Standard Input

or use OS to redirect from one file

Standard input. Read from terminal window.

Goal. Read from several different input streams.

In data type. Read text from stdin, a file, a web site, or network.

Ex: Are two text files identical?

Screen Scraping

Goal. Find current stock price of Google.

```
Last Trade:
<br/>big>
<b>576.50</b>
</big>
>
Trade Time:
11:45AM ET
```

http://finance.yahoo.com/q?s=goog

Screen Scraping

Goal. Find current stock price of Google.

- s.indexOf(t, i): index of first occurrence of pattern t in string s, starting at offset i.
- Read raw html from http://finance.yahoo.com/q?s=goog.
- Find first string delimited by and after Last Trade.

```
public class StockQuote {
  public static void main(String[] args) {
    String name = "http://finance.yahoo.com/q?s=";
    In in = new In(name + args[0]);
    String input = in.readAll();
    int start = input.indexOf("Last Trade:", 0);
    int from = input.indexOf("<b>", start);
    int to = input.indexOf("</b>", from);
    String price = input.substring(from + 3, to);
    StdOut.println(price);
  }
}

    * java StockQuote goog
    576.50
```

Day Trader

Add bells and whistles.

- Plot price in real-time.
- Notify user if price dips below a certain price.
- Embed logic to determine when to buy and sell.
- Automatically send buy and sell orders to trading firm.

Warning. Please, please use at your own financial risk.

The New Yorker, September 6, 1999

OOP Summary

Object. Holds a data type value; variable name refers to object.

In Java, programs manipulate references to objects.

- Exception: primitive types, e.g., boolean, int, double.
- Reference types: string, Picture, Color, arrays, everything else.
- OOP purist: language should not have separate primitive types.

Bottom line. We wrote programs that manipulate colors, pictures, and strings.

Next time. We'll write programs that manipulate our own abstractions.

Extra Slides

Color Separation

```
import java.awt.Color;
public class ColorSeparation {
    public static void main(String args[]) {
        Picture pic = new Picture(args[0]);
        int width = pic.width();
        int height = pic.height();
        Picture R = new Picture(width, height);
        Picture G = new Picture(width, height);
        Picture B = new Picture(width, height);
        for (int x = 0; x < width; x++) {
            for (int y = 0; y < height; y++) {
                Color c = pic.qet(x, y);
                int r = c.getRed();
                int g = c.getGreen();
                int b = c.getBlue();
                R.set(x, y, new Color(r, 0, 0));
                G.set(x, y, new Color(0, q, 0));
                B.set(x, y, new Color(0, 0, b));
        R.show();
        G. show();
        B. show();
}
```

Color Separation

Color Separation. java. Creates three Picture objects and windows.

Memory Management

Value types.

- Allocate memory when variable is declared.
- Can reclaim memory when variable goes out of scope.

Reference types.

- Allocate memory when object is created with new.
- Can reclaim memory when last reference goes out of scope.
- Significantly more challenging if several references to same object.

Garbage collector. System automatically reclaims memory; programmer relieved of tedious and error-prone activity.