Automi e Linguaggi Formali

a.a. 2017/2018

LT in Informatica 27 Febbraio – 1 Marzo 2018

Alfabeti, linguaggi e automi a stati finiti

Nella lezione di ieri abbiamo visto:

- Che cos'è un alfabeto (di simboli/messaggi/azioni)
- Che cos'è un linguaggio formale
- Che cos'è un Automa a stati finiti deterministico
- Cosa vuol dire che un automa accetta un linguaggio

Automi a Stati Finiti Deterministici

Un Automa a Stati Finiti Deterministico (DFA) è una quintupla

$$A = (Q, \Sigma, \delta, q_0, F)$$

- Q è un insieme finito di stati
- \blacksquare Σ è un alfabeto finito (= simboli in input)
- lacksquare δ è una funzione di transizione $(q,a)\mapsto q'$
- $q_0 \in Q$ è lo stato iniziale
- \blacksquare $F \subseteq Q$ è un insieme di stati finali

Possiamo rappresentare gli automi sia come diagramma di transizione che come tabella di transizione.

Linguaggio accettato da un DFA

■ La funzione di transizione δ può essere estesa a $\hat{\delta}$ che opera su stati e parole (invece che su stati e simboli):

Base:
$$\hat{\delta}(q, \varepsilon) = q$$

Induzione: $\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a)$
con $w = xa$ (parola x seguita dal simbolo a)

■ Formalmente, il linguaggio accettato da A è

$$L(A) = \{w : \hat{\delta}(q_0, w) \in F\}$$

 I linguaggi accettati da automi a stati finiti sono detti linguaggi regolari

DFA per i seguenti linguaggi sull'alfabeto {0, 1}:

- Insieme delle stringhe con 01 come sottostringa (fatto)
- Insieme di tutte e sole le stringhe con un numero pari di zeri e un numero pari di uni (fatto)
- Insieme di tutte le stringhe che contengono tre zeri (anche non consecutivi)
- Insieme delle stringhe che cominciano o finiscono (o entrambe le cose) con 01
- Insieme di tutte le stringhe che finiscono con 01

Modello del distributore automatico di bibite.

Esempio

■ DFA che riconosce tutte le parole che terminano con 01

Esempio

■ DFA che riconosce tutte le parole che terminano con 01

Automi a stati finiti non deterministici (NFA) UNIVERSITA DEGLI STUDI DE PRIDOZA

■ Cosa fa questo automa?

Automi a stati finiti non deterministici (NFA

■ Cosa fa questo automa?

Riconosce le parole che terminano con 01 "scommettendo" se sta leggendo gli ultimi due simboli oppure no

- È un esempio di automa a stati finiti non deterministico:
 - può trovarsi contemporaneamente in più stati diversi
 - le transizioni non sono necessariamente complete:
 - \blacksquare da q_1 si esce solo leggendo 1
 - q₂ non ha transizioni uscenti

in questi casi il percorso si blocca, ma può proseguire lungo gli altri percorsi

Definizione formale di NFA

Un Automa a Stati Finiti Non Deterministico (NFA) è una quintupla

$$A = (Q, \Sigma, \delta, q_0, F)$$

- Q è un insieme finito di stati
- \blacksquare Σ è un alfabeto finito (= simboli in input)
- δ è una funzione di transizione che prende in input (q, a) e restituisce un sottoinsieme di Q
- $q_0 \in Q$ è lo stato iniziale
- \blacksquare $F \subseteq Q$ è un insieme di stati finali

Tabella delle transizioni per l'esempio

L'NFA che riconosce le parole che terminano con 01 è

$$A = (Q, \{0, 1\}, \delta, q_0, \{q_2\})$$

dove δ è la funzione di transizione

	0	1
$ ightarrow q_0$	$\{q_0,q_1\}$	$\{q_0\}$
q_1	Ø	$\{q_2\}$
*q2	Ø	Ø

Linguaggio riconosciuto da un NFA

■ La funzione di transizione estesa $\hat{\delta}$ per gli NFA:

Base:

$$\hat{\delta}(q,\varepsilon) = \{q\}$$

Induzione:

$$\hat{\delta}(q, w) = \bigcup_{p \in \hat{\delta}(q, x)} \delta(p, a)$$

con w = xa (parola x seguita dal simbolo a)

- **Esempio:** calcoliamo $\hat{\delta}(q_0,00101)$ alla lavagna
- Formalmente, il linguaggio accettato da A è

$$L(A) = \{w : \hat{\delta}(q_0, w) \cap F \neq \emptyset\}$$

Dimostriamo che l'esempio è corretto

■ Dimostriamo che l'automa d'esempio

accetta il linguaggio $L = \{x01 : x \in \Sigma^*\}.$

Dimostriamo che l'esempio è corretto

■ Dimostriamo che l'automa d'esempio

accetta il linguaggio $L = \{x01 : x \in \Sigma^*\}.$

- Lo faremo dimostrando che valgono tre enunciati che danno le proprietà degli stati:
 - **1** per ogni $w \in \Sigma^*$, $q_0 \in \hat{\delta}(q_0, w)$
 - 2 $q_1 \in \hat{\delta}(q_0, w)$ se e solo se w = x0
 - $\mathbf{3} \ \ q_2 \in \hat{\delta}(q_0, w) \text{ se e solo se } w = x01$

Dimostriamo che l'esempio è corretto

■ Dimostriamo che l'automa d'esempio

accetta il linguaggio $L = \{x01 : x \in \Sigma^*\}.$

- Lo faremo dimostrando che valgono tre enunciati che danno le proprietà degli stati:
 - **1** per ogni $w \in \Sigma^*$, $q_0 \in \hat{\delta}(q_0, w)$
 - 2 $q_1 \in \hat{\delta}(q_0, w)$ se e solo se $w = x_0$
 - 3 $q_2 \in \hat{\delta}(q_0, w)$ se e solo se w = x01
- La dimostrazione è per induzione sulla lunghezza |w| della parola in ingresso

Definire degli automi a stati finiti non deterministici che accettino i seguenti linguaggi:

- \blacksquare L'insieme delle parole sull'alfabeto $\{0,1,\ldots,9\}$ tali che la cifra finale sia comparsa in precedenza
- L'insieme delle parole sull'alfabeto $\{0,1,\ldots,9\}$ tali che la cifra finale *non* sia comparsa in precedenza
- L'insieme delle parole di 0 e 1 tali che esistono due 0 separati da un numero di posizioni multiplo di 4 (0 è un multiplo di 4)

Consideriamo l'alfabeto $\Sigma = \{a, b, c, d\}$ e costruiamo un automa non deterministico che riconosce il linguaggio di tutte le parole tali che uno dei simboli dell'alfabeto non compare mai:

- tutte le parole che non contengono a
- \blacksquare + tutte le parole che non contengono b
- + tutte le parole che non contengono c
- \blacksquare + tutte le parole che non contengono d

Let's Feedback!

Possiamo costruire un DFA che riconosce lo stesso linguaggio?

Go to:

http://lfb.io/phlof

or

Scan this QR code:

Click to enlarge

Login code: phlof

Equivalenza di DFA e NFA

- Sorprendentemente, NFA e DFA sono in grado di riconoscere gli stessi linugaggi
- Per ogni NFA N c'è un DFA D tale che L(D) = L(N), e viceversa
- L'equivalenza di dimostra mediante una costruzione a sottoinsiemi:

Equivalenza di DFA e NFA

- Sorprendentemente, NFA e DFA sono in grado di riconoscere gli stessi linugaggi
- Per ogni NFA N c'è un DFA D tale che L(D) = L(N), e viceversa
- L'equivalenza di dimostra mediante una costruzione a sottoinsiemi:

Dato un NFA

$$N = (Q_N, \Sigma, q_0, \delta_N, F_N)$$

costruiremo un DFA

$$D = (Q_D, \Sigma, \{q_0\}, \delta_D, F_D)$$

tale che

$$L(D) = L(N)$$

La costruzione a sottoinsiemi

- $Q_D = \{S : S \subseteq Q_N\}$ Ogni stato del DFA corrisponde ad un insieme di stati dell'NFA
- $F_D = \{S \subseteq Q_N : S \cap F_N \neq \emptyset\}$ Uno stato del DFA è finale se c'è almeno uno stato finale corrispondente nell'NFA
- lacksquare Per ogni $S\subseteq Q_N$ e per ogni $a\in \Sigma$

$$\delta_D(S,a) = \bigcup_{p \in S} \delta_N(p,a)$$

La funzione di transizione "percorre tutte le possibili strade"

La costruzione a sottoinsiemi

- $Q_D = \{S : S \subseteq Q_N\}$ Ogni stato del DFA corrisponde ad un insieme di stati dell'NFA
- $F_D = \{S \subseteq Q_N : S \cap F_N \neq \emptyset\}$ Uno stato del DFA è finale se c'è almeno uno stato finale corrispondente nell'NFA
- lacksquare Per ogni $S\subseteq Q_N$ e per ogni $a\in \Sigma$

$$\delta_D(S,a) = \bigcup_{p \in S} \delta_N(p,a)$$

La funzione di transizione "percorre tutte le possibili strade"

Nota: $|Q_D| = 2^{|Q_N|}$, anche se spesso la maggior parte degli stati in Q_D sono "inutili", cioè non raggiungibili dallo stato iniziale.

Esempio di costruzione a sottoinsiemi

Costruiamo δ_D per l'NFA qui sopra:

Esempio di costruzione a sottoinsiemi

Costruiamo δ_D per l'NFA qui sopra:

	0	1
Ø	Ø	Ø
$ ightarrow \{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$
$\{q_1\}$	Ø	$\{q_{2}\}$
$*\{q_{2}\}$	Ø	Ø
$\{q_0,q_1\}$	$\{q_0, q_1\}$	$\{q_0,q_2\}$
$*\{q_0, q_2\}$	$\{q_0, q_1\}$	$\{q_0\}$
$*\{q_1,q_2\}$	Ø	$\{q_{2}\}$
$*\{q_0, q_1, q_2\}$	$\{q_0,q_1\}$	$\{q_0,q_2\}$

Diagramma degli stati

La tabella di transizione per D ci permette di ottenere il diagramma di transizione

Per semplificare il disegno, ho omesso gli stati non raggiungibili

Correttezza della costruzione a sottoinsiem UNIVERSITÀ DEGLI STUDI DI PADOVA

Theorem

Sia D il DFA ottenuto da un NFA N con la costruzione a sottoinsiemi. Allora L(D) = L(N).

Dimostrazione:

Theorem

Sia D il DFA ottenuto da un NFA N con la costruzione a sottoinsiemi. Allora L(D) = L(N).

Dimostrazione: Prima mostriamo per induzione su |w| che

$$\hat{\delta}_D(\{q_0\},w)=\hat{\delta}_N(q_0,w)$$

Theorem

Sia D il DFA ottenuto da un NFA N con la costruzione a sottoinsiemi. Allora L(D) = L(N).

Dimostrazione: Prima mostriamo per induzione su |w| che

$$\hat{\delta}_D(\{q_0\}, w) = \hat{\delta}_N(q_0, w)$$

Base: $w = \varepsilon$. L'enunciato segue dalla definizione.

Induzione:

- Sia |w| = n + 1 e supponiamo vero l'enunciato per la lunghezza n. Scomponiamo w in w = xa (con |x| = n e a simbolo finale)
- $lackrel{}$ Per ipotesi induttiva $\hat{\delta}_D(\{q_0\},x)=\hat{\delta}_N(q_0,x)=\{p_1,\ldots,p_k\}$
- lacksquare Per la definizione di $\hat{\delta}$ per gli NFA

$$\hat{\delta}_N(q_0, xa) = \bigcup_{i=1}^k \delta_N(p_i, a)$$

■ Per la costruzione a sottoinsiemi

$$\delta_D(\{p_1,\ldots,p_k\},a)=\bigcup_{i=1}^k\delta_N(p_i,a)$$

Induzione (continua):

lacksquare Per la definizione di $\hat{\delta}$ per i DFA

$$\hat{\delta}_D(\lbrace q_0\rbrace, xa) = \delta_D(\lbrace p_1, \ldots, p_k\rbrace, a) = \bigcup_{i=1}^k \delta_N(p_i, a)$$

lacksquare Quindi abbiamo mostrato che $\hat{\delta}_D(\{q_0\},w)=\hat{\delta}_N(q_0,w)$

Poiché sia D che N accettano se solo se $\hat{\delta}_D(\{q_0\},w)$ e $\hat{\delta}_N(q_0,w)$ contengono almeno un stato in F_N , allora abbiamo dimostrato che L(D)=L(N)

Teorema di equivalenza tra DFA e NFA

Theorem

Un linguaggio L è accettato da un DFA se e solo se è accettato da un NFA.

Dimostrazione:

- La parte "se" è il teorema precedente
- La parte "solo se" si dimostra osservando che ogni DFA può essere trasformato in un NFA modificando δ_D in δ_N con la seguente regola:

Se
$$\delta_D(q, a) = p$$
 allora $\delta_N(q, a) = \{p\}$

Determinare il DFA equivalente all'NFA con la seguente tabella di transizione:

$$\begin{array}{c|cc} & 0 & 1 \\ \hline \rightarrow q_0 & \{q_0\} & \{q_0, q_1\} \\ q_1 & \{q_1\} & \{q_0, q_2\} \\ *q_2 & \{q_1, q_2\} & \{q_0, q_1, q_2\} \\ \end{array}$$

2 Qual è il linguaggio accettato dall'automa?

Trasformare il seguente NFA in DFA

Dato il seguente NFA

- 1 determinare il linguaggio riconosciuto dall'automa
- 2 costruire un DFA equivalente