§ 2. Проблема единственности.

Рассмотрим уравнение

$$\dot{x} = X(t, x),\tag{1}$$

где $X(t,x) \in C(G)$, G - область в R^2 , $(t_0,x_0) \in G$.

Поставим задачу Коши

$$x(t_0) = x_0. (2)$$

Выполнение условий теоремы Пеано не гарантирует единственности решения задачи Коши (1), (2). Первый пример, который это показывает, привел сам Джузеппе Пеано.

Пример Пеано. Не трудно проверить, что решениями уравнения $\dot{x} = 3\sqrt[3]{x^2}$ являются функции $x \equiv 0$ и $x = (t+c)^3$, где c = const, $c \in R$. И через каждую точку $(t_0,0)$ проходят две интегральные кривые: $x \equiv 0$ и $x = (t-t_0)^3$.

Определение. Говорят, что в точке $(t_0,x_0) \in G$ выполнено условие единственности (или точка (t_0,x_0) является точкой единственности), если существует $\Delta > 0$ такое, что при $|t-t_0| \leq \Delta$ определено решение $x = \varphi(t)$ задачи Коши (1), (2), и при любом δ таком, что $0 < \delta \leq \Delta$, решение $\varphi(t)$ единственно как решение, определенное на сегменте $[t_0 - \delta, t_0 + \delta]$.

Если в точке $(t_0,x_0)\in G$ не выполнено условие единственности, то говорят, что (t_0,x_0) - точка неединственности для уравнения (1).

Возвращаясь к примеру Пеано отметим, что для уравнения $\dot{x}=3\sqrt[3]{x^2}$ каждая точка $(t_0,x_0)\in G=R^2$, где $x_0\neq 0$, есть точка единственности, а точки с координатами $(t_0,0)$ - точки неединственности.

Теорема 1. Пусть $(t_0, x_0) \in G$, а $x = \varphi(t)$ - решение задачи Коши (1), (2), определенное при $t \in (a,b)$, $t_0 \in (a,b)$, и пусть все точки $(t,\varphi(t))$ при $t \in (a,b)$ суть точки единственности.

Тогда решение $x = \varphi(t)$ единственно на (a,b).

Доказательство. Нужно доказать, что для любого решения $x = \psi(t)$ задачи Коши (1), (2), определенного на интервале (a,b), выполнено тождество $\psi(t) \equiv \phi(t)$ на (a,b).

Будем доказывать от противного. Пусть для некоторого решения $x=\psi(t)$ существует точка $t^*\in(a,b)$ такая, что $\psi(t^*)\neq \phi(t^*)$. Заметим, что $t^*\neq t_0$, ибо $\psi(t_0)=\phi(t_0)=x_0$. Положим для определенности $t^*>t_0$.

Определим функцию $u(t) = \varphi(t) - \psi(t)$ при $t \in [t_0, t^*]$. Пусть

$$S = \left\{ t : t \in \left[t_0, t^* \right], u(t) = 0 \right\}.$$

Множество S не пусто (поскольку $t_0 \in S$), ограничено и замкнуто (как множество нулей непрерывной функции u(t)), следовательно, существует $\max S = t_1 \ (t_1 \in S$). Таким образом $t_0 \le t_1 < t^*$, $u(t_1) = 0$, и $u(t) \ne 0$ при всех $t \in (t_1, t^*]$.

Положим $\psi(t_1) = \varphi(t_1) = x_1$, и поставим задачу Коши

$$x(t_1) = x_1. (3)$$

По условию теоремы в точке $(t_1, \varphi(t_1))$ выполнено условие единственности, следовательно, существует $\Delta > 0$ такое, что при $|t-t_1| \leq \Delta$ определено решение $x = \overline{\varphi}(t)$ задачи Коши (1), (2), и при любом δ , принадлежащем промежутку $(0, \Delta]$, решение $\overline{\varphi}(t)$ единственно как решение, определенное при $|t-t_1| \leq \delta$. Пусть $0 < \delta < \min(\Delta, t_1-a, t^*-t_1)$.

Тогда $a < t_1 - \delta$ и $t_1 + \delta < t^*$, поскольку $\delta < t_1 - a$ и $\delta < t^* - t_1$. Следовательно, $(t_1 - \delta, t_1 + \delta) \subset (a, t^*) \subset (a, b)$. Функции $x = \varphi(t)$, $x = \psi(t)$ определены на интервале (a, b), следовательно, определены на $(t_1 - \delta, t_1 + \delta)$, и являются решениями задачи Коши (1), (3). Поэтому (в силу условия единственности) $\psi(t) \equiv \varphi(t) \equiv \overline{\varphi}(t)$ на интервале $(t_1 - \delta, t_1 + \delta)$, что противоречит предположению $\varphi(t) \neq \psi(t)$ при $t \in (t_1, t_1 + \delta)$. Теорема 1 доказана.

Лемма Гронуолла. Пусть функция u(t) непрерывна на промежутке $\langle a,b \rangle$, и $u(t) \ge 0$ для всех $t \in \langle a,b \rangle$.

Пусть существуют константы $c \ge 0$, L > 0 и существует $t_0 \in \langle a,b \rangle$ такие, что при $t \in \langle a,b \rangle$ выполнено неравенство

$$u(t) \le c + L \left| \int_{t_0}^t u(\tau) d\tau \right|. \tag{4}$$

Тогда

$$u(t) \le ce^{L|t-t_0|}. (5)$$

Доказательство леммы Гронуолла. Докажем лемму для $t \ge t_0$ (доказательство для случая $t \le t_0$ аналогично).

Неравенство (4) при $t \ge t_0$ принимает вид

$$u(t) \le c + L \int_{t_0}^t u(\tau) d\tau, \qquad (4')$$

а неравенство (5) принимает вид

$$u(t) \le ce^{L(t-t_0)}. (5')$$

Положим $v(t) = c + L \int_{t_0}^t u(\tau) d\tau$, из неравенства (4') следует, что $u(t) \le v(t)$. Следовательно,

$$\frac{d}{dt}\left(v(t)e^{-Lt}\right) = \dot{v}(t)e^{-Lt} - Lv(t)e^{-Lt} = Le^{-Lt}\left(u(t) - v(t)\right) \le 0,$$

то есть функция $v(t)e^{-Lt}$ монотонно убывает, поэтому

 $v(t)e^{-Lt} \le v(t_0)e^{-Lt_0} = ce^{-Lt_0}$, и $u(t) \le v(t) \le ce^{L(t-t_0)}$, то есть выполнено (5'). Лемма доказана.

Следствие. Если
$$c=0$$
, то есть $u(t) \le L \left| \int_{t_0}^t u(\tau) d\tau \right|$, то $u(t) \equiv 0$ на $\langle a,b \rangle$.

Теорема 2 (теорема единственности). Предположим, что в окрестности точки $(t_0, x_0) \in G$ существует и ограничена частная производная $\partial X(t, x)/\partial x$.

Тогда (t_0, x_0) - точка единственности.

Доказательство. Существуют константы $a>0,\ b>0,\$ и константы $M>0,\ L>0,\$ такие, что $D=\left\{ \left(t,x\right):\left|t-t_{0}\right|\leq a,\left|x-x_{0}\right|\leq b\right\} \subset G$, и $\left|X\left(t,x\right)\right|\leq M$, $\left|\partial X\left(t,x\right)\middle/\partial x\right|\leq L$ для всех $\left(t,x\right)\in D$.

По теореме Пеано на промежутке $\{t: |t-t_0| \le h\}$, где $h=\min(a,b/M)$, существует решение $x=\varphi(t)$ задачи Коши (1), (2). Покажем, что при $\Delta=h$ для (t_0,x_0) выполнено условие единственности.

Пусть $0 < \delta \le h$, и $x = \psi(t)$ - какое- либо другое решение задачи (1), (2), определенное при $|t - t_0| \le \delta$.

1. Покажем, что $(t,\psi(t)) \in D$ при $|t-t_0| \le \delta$, то есть $|\psi(t)-x_0| \le b$.

Допустим, что существует значение t^* такое, что $\left|t^* - t_0\right| \leq \delta$ и $\left|\psi\left(t^*\right) - x_0\right| > b$. Заметим, что $t^* \neq t_0$, поскольку $\left|\psi\left(t_0\right) - x_0\right| = 0 < b$. Пусть для определенности $t^* > t_0$, то есть $t_0 < t^* \leq t_0 + \delta$.

Положим при $t\in \left[t_0,t^*\right]$ $v(t)=\left|\psi(t)-x_0\right|-b\,.$

 $v\!\left(t\right)$ - непрерывная функция, $v\!\left(t_0\right)\!<\!0$, $v\!\left(t^*\right)\!>\!0$. По теореме Коши о промежуточном значении существует θ такое, что $t_0\!<\!\theta\!<\!t^*$ и $v\!\left(\theta\right)\!=\!0$.

Поэтому множество $S = \{t : t \in [t_0, t^*], v(t) = 0\}$ не пусто (поскольку $\theta \in S$), ограничено и замкнуто (как множество нулей непрерывной функции), и существует $\min S = t_1$ ($t_1 \in S$).

При этом $v(t) \le 0$, то есть $|\psi(t) - x_0| \le b$, для всех $t \in [t_0, t_1]$, и поэтому точка $(t, \psi(t))$ принадлежит D при $t \in [t_0, t_1]$. По условию

$$\dot{\psi}(t) = X(t, \psi(t))$$

при $\left|t-t_{0}\right| \leq \delta$. Интегрируя последнее равенство от t_{0} до t_{1} , получим:

$$\psi(t_1) - \psi(t_0) = \int_{t_0}^{t_1} X(\tau, \psi(\tau)) d\tau,$$

следовательно,

$$\left| \psi \left(t_1 \right) - x_0 \right| \le \int_{t_0}^{t_1} \left| X \left(\tau, \psi \left(\tau \right) \right) \right| d\tau \le M \left(t_1 - t_0 \right) < M \delta \le Mh \le b. \tag{6}$$

Из неравенства (6) вытекает, что $v(t_1) < 0$, это противоречит тому, что $t_1 \in S$. Полученное противоречие доказывает, что $(t, \psi(t)) \in D$ при $|t - t_0| \le \delta$.

2. Зафиксируем произвольное $t \in [t_0 - \delta, t_0 + \delta]$ и оценим разность $X(t, \varphi(t)) - X(t, \psi(t))$.

Определим при $0 \le s \le 1$ функцию

$$f(s) = X(t, s\varphi(t) + (1-s)\psi(t)).$$

Покажем, что это определение корректно, то есть точка $(t,s\varphi(t)+(1-s)\psi(t))$ принадлежит D для всех $s\in[0,1]$.

Заметим, что $|\varphi(t)-x_0| \le b$, как следует из доказательства теоремы Пеано, и $|\psi(t)-x_0| \le b$, как доказано выше, поэтому

$$|s\varphi(t) + (1-s)\psi(t) - x_0| = |s\varphi(t) - sx_0 + (1-s)\psi(t) - (1-s)x_0| \le \le s|\varphi(t) - x_0| + (1-s)|\psi(t) - x_0| \le sb + (1-s)b = b,$$

и функция f(s) определена корректно при $0 \le s \le 1$.

Согласно формуле конечных приращений (теореме Лагранжа) существует значение $\sigma \in (0,1)$ такое, что

$$X(t,\varphi(t)) - X(t,\psi(t)) = f(1) - f(0) = f'(\sigma). \tag{7}$$

Кроме того,

$$\left| f'(s) \right| = \left| \frac{\partial X \left(t, s \varphi(t) + (1 - s) \psi(t) \right)}{\partial x} \right| \left| \varphi(t) - \psi(t) \right| \le L \left| \varphi(t) - \psi(t) \right|, \tag{8}$$

поскольку $\left|\partial X(t,x)/\partial x\right| \leq L$ для всех $(t,x) \in D$.

Из (7), (8) следует, что

$$\left| X(t,\varphi(t)) - X(t,\psi(t)) \right| \le L|\varphi(t) - \psi(t)|. \tag{9}$$

3. Докажем теперь, что $\psi(t) \equiv \varphi(t)$ на отрезке $[t_0 - \delta, t_0 + \delta]$.

$$\dot{\varphi}(t) = X(t, \varphi(t)), \ \dot{\psi}(t) = X(t, \psi(t))$$

при $\left|t-t_0\right| \leq \delta$, следовательно,

$$\dot{\varphi}(t) - \dot{\psi}(t) = X(t, \varphi(t)) - X(t, \psi(t)).$$

Интегрируем последнее равенство от t_0 до t:

$$\varphi(t) - \varphi(t_0) - \psi(t) + \psi(t_0) = \int_{t_0}^t \left(X(\tau, \varphi(\tau)) - X(\tau, \psi(\tau)) \right) d\tau.$$
 (10)

 $\varphi(t_0) = \psi(t_0) = x_0$, поэтому, согласно (9) и (10),

$$\left|\varphi(t)-\psi(t)\right| \leq \left|\int_{t_0}^t \left|X\left(\tau,\varphi(\tau)\right)-X\left(\tau,\psi(\tau)\right)\right|d\tau\right| \leq L\left|\int_{t_0}^t \left|\varphi(\tau)-\psi(\tau)\right|d\tau\right|.$$

Положим $|\varphi(t)-\psi(t)|=u(t)$, тогда последнее неравенство можно переписать в виде

$$u(t) \leq L \left| \int_{t_0}^t u(\tau) d\tau \right|.$$

По следствию из леммы Гронуолла $u(t) \equiv 0$, то есть $\psi(t) \equiv \varphi(t)$ на отрезке $\left[t_0 - \delta, t_0 + \delta\right]$. Это и доказывает теорему 2.

Следствие. Предположим, что $\partial X(t,x)/\partial x$ существует и непрерывна в области G. Тогда любая точка из G есть точка единственности.

Геометрически это означает, что через каждую точку области G проходит единственная интегральная кривая.

§ 3. Дифференциальное уравнение в симметричной форме.

Определение. Дифференциальным уравнением в симметричной форме называется равенство

$$M(x,y)dx + N(x,y)dy = 0. (1)$$

Предполагаем, что M(x,y) и N(x,y) непрерывны в области $G \subset R^2$.

Определение. Решением уравнения (1) называется функция $y = \varphi(x)$, $x \in \langle a, b \rangle$, или функция $x = \psi(y)$, $y \in \langle c, d \rangle$, которая, будучи подставленной в уравнение (1), обращает это уравнение в тождество, на $\langle a, b \rangle$ или $\langle c, d \rangle$ соответственно.

Пусть $y = \varphi(x)$, $x \in \langle a, b \rangle$, - решение уравнения (1), тогда

$$M(x,\varphi(x))dx + N(x,\varphi(x))\varphi'(x)dx \equiv 0.$$

Поскольку x - независимая переменная, то dx не равно нулю, и предыдущее тождество можно переписать в виде

$$M(x,\varphi(x)) + N(x,\varphi(x))\varphi'(x) \equiv 0.$$
 (2)

Таким образом, функция $y = \varphi(x)$ есть решение уравнения (1), заданное на промежутке $\langle a,b \rangle$, если и только если на $\langle a,b \rangle$ выполнено тождество (2).

При этом подразумевается, что $(x, \varphi(x)) \in G$ и существует $\varphi'(x)$ при $x \in \langle a, b \rangle$.

Аналогично, функция $x = \psi(y)$ является решением уравнения (1) на промежутке $\langle c, d \rangle$, если на $\langle c, d \rangle$ верно тождество

$$M(\psi(y), y)\psi'(y) + N(\psi(y), y) \equiv 0.$$
 (3)

Если $N(x_0,y_0)\neq 0$ в точке $(x_0,y_0)\in G$, то $N(x,y)\neq 0$ в некоторой окрестности точки (x_0,y_0) в силу непрерывности функции N(x,y), и в этой окрестности уравнение (1) может быть записано в виде

$$\frac{dy}{dx} = -\frac{M(x,y)}{N(x,y)}. (4)$$

Для этого уравнения по теореме Пеано существует решение $y = \varphi(x)$ такое, что $y_0 = \varphi(x_0)$.

Аналогично, если $M\left(x_0,y_0\right)\neq 0$ в точке $\left(x_0,y_0\right)\in G$, то $M\left(x,y\right)\neq 0$ в некоторой окрестности $\left(x_0,y_0\right)$, и в этой окрестности от уравнения (1) можно перейти к уравнению

$$\frac{dx}{dy} = -\frac{N(x,y)}{M(x,y)},\tag{5}$$

которое имеет решение $x = \psi(y)$ такое, что $x_0 = \psi(y_0)$.

Определение. Точка $(x_0,y_0) \in G$, в которой выполнено условие $M(x_0,y_0) = N(x_0,y_0) = 0$, называется *особой точкой* уравнения (1).

Если $M(x_0, y_0) \neq 0$ или $N(x_0, y_0) \neq 0$, то точка называется обыкновенной.

Замечание. Пусть $M\left(x_0,y_0\right)\neq 0$ и $N\left(x_0,y_0\right)\neq 0$ в точке $\left(x_0,y_0\right)\in G$, тогда существует решение (1) $y=\varphi(x)$ такое, что $y_0=\varphi(x_0)$, и функция $\varphi(x)$ удовлетворяет (2), и, следовательно, удовлетворяет (4):

$$\varphi'(x) = -\frac{M(x,\varphi(x))}{N(x,\varphi(x))}, \text{ и } \varphi'(x_0) = -\frac{M(x_0,y_0)}{N(x_0,y_0)} \neq 0.$$

Поэтому функция $y = \varphi(x)$ имеет обратную функцию $x = \psi(y)$ в окрестности точки (x_0, y_0) , при этом $\varphi'(x) = 1/\psi'(y)$, значит,

$$\psi'(y) = -\frac{N(\psi(y), y)}{M(\psi(y), y)}, \quad \text{M} \quad \psi'(y_0) = -\frac{N(x_0, y_0)}{M(x_0, y_0)},$$

то есть функция $\psi(y)$ удовлетворяет (5), и удовлетворяет (3), следовательно, является решением уравнения (1).

Определение. Функция u(x,y) называется *интегралом* уравнения (1) в области G, если выполнены следующие условия:

1) u(x,y) непрерывно дифференцируема в G,

- 2) в каждой обыкновенной точке области G хотя бы одна из частных производных $\partial u/\partial x$ и $\partial u/\partial y$ не равна нулю,
- 3) в G выполняется тождество

$$N(x,y)\frac{\partial u(x,y)}{\partial x} - M(x,y)\frac{\partial u(x,y)}{\partial y} \equiv 0.$$
 (6)

Теорема 1. Пусть $y = \varphi(x)$ - решение уравнения (1), определенное при $x \in \langle a, b \rangle$, и точка $(x, \varphi(x))$ - обыкновенная точка для всех $x \in \langle a, b \rangle$.

Пусть u(x,y) - интеграл уравнения (1) в G . Тогда $u(x,\varphi(x)) = const$ на промежутке $\langle a,b \rangle$.

Доказательство. Так как $y = \varphi(x)$ - решение уравнения (1), то справедливо тождество (2). Из (2) следует, что $N(x,\varphi(x)) \neq 0$ для всех $x \in \langle a,b \rangle$. Действительно, если $N(x,\varphi(x)) = 0$ в некоторой точке $x \in \langle a,b \rangle$, то из (2) следует, что $M(x,\varphi(x)) = 0$, и точка $(x,\varphi(x))$ - особая, что противоречит условию.

Из (2) получаем:

$$\varphi'(x) = -\frac{M(x,\varphi(x))}{N(x,\varphi(x))},$$

и таким образом,

$$\frac{du(x,\varphi(x))}{dx} = \frac{\partial u(x,\varphi(x))}{\partial x} + \frac{\partial u(x,\varphi(x))}{\partial y}\varphi'(x) =
= \frac{\partial u(x,\varphi(x))}{\partial x} - \frac{\partial u(x,\varphi(x))}{\partial y} \frac{M(x,\varphi(x))}{N(x,\varphi(x))} =
= \frac{1}{N(x,\varphi(x))} \left(\frac{\partial u(x,\varphi(x))}{\partial x} N(x,\varphi(x)) - \frac{\partial u(x,\varphi(x))}{\partial y} M(x,\varphi(x)) \right) \equiv 0,$$

согласно тождеству (6). Поэтому $u(x, \varphi(x)) = const$, и теорема доказана.

Аналогично доказывается следующая теорема.

Теорема 2. Пусть $x = \psi(y)$ - решение уравнения (1), определенное при $y \in \langle c, d \rangle$, и точка $(\psi(y), y)$ - обыкновенная точка для всех $y \in \langle c, d \rangle$.

Пусть u(x,y) - интеграл уравнения (1) в G . Тогда $u(\psi(y),y)$ = const на промежутке $\langle c,d \rangle$.

Пусть u(x,y) - интеграл уравнения (1) в G, и $(x_0,y_0) \in G$. Рассмотрим уравнение

$$u(x,y) = u(x_0, y_0). \tag{7}$$

Теорема 3. Предположим, что $N(x_0, y_0) \neq 0$, тогда уравнение (7) имеет решение $y = \varphi(x)$, определенное на некотором интервале (a,b), $x_0 \in (a,b)$ и $y_0 = \varphi(x_0)$. Это решение непрерывно дифференцируемо на (a,b) и является решением уравнения (1).

Доказательство. Покажем, что $\frac{\partial u(x_0, y_0)}{\partial y} \neq 0$.

Действительно, если $\frac{\partial u\left(x_0,y_0\right)}{\partial y}$ = 0, то из равенства (6) в точке $\left(x_0,y_0\right)$ следует, что $\frac{\partial u\left(x_0,y_0\right)}{\partial x}$ = 0, это противоречит второму условию из определения интеграла, поскольку точка $\left(x_0,y_0\right)$ - обыкновенная.

Из неравенства $\frac{\partial u(x_0,y_0)}{\partial y} \neq 0$ по теореме о неявной функции следует, что уравнение (7) имеет решение $y = \varphi(x)$, определенное на некотором интервале $x \in (a,b)$, при этом $x_0 \in (a,b)$, $y_0 = \varphi(x_0)$, и функция $\varphi(x)$ непрерывно дифференцируема на (a,b).

Из непрерывности частных производных функции u(x,y) следует, что $\frac{\partial u(x,\varphi(x))}{\partial y} \neq 0 \text{ при } x \in (a,b), \text{ если интервал } (a,b) \text{ достаточно мал.}$

Дифференцируя равенство $u(x, \varphi(x)) = u(x_0, y_0)$, получаем:

$$\frac{\partial u(x,\varphi(x))}{\partial x} + \frac{\partial u(x,\varphi(x))}{\partial y}\varphi'(x) = 0,$$

И

$$\varphi'(x) = -\frac{\partial u(x, \varphi(x))}{\partial x} / \frac{\partial u(x, \varphi(x))}{\partial y}.$$
 (8)

Подставим равенство (8) в (2):

$$M(x,\varphi(x)) - N(x,\varphi(x)) \left(\frac{\partial u(x,\varphi(x))}{\partial x} \middle/ \frac{\partial u(x,\varphi(x))}{\partial y} \right) =$$

$$= \left(\frac{\partial u(x,\varphi(x))}{\partial y} \right)^{-1} \left(M(x,\varphi(x)) \frac{\partial u(x,\varphi(x))}{\partial y} - N(x,\varphi(x)) \frac{\partial u(x,\varphi(x))}{\partial x} \right) \equiv 0,$$

следовательно, $y = \varphi(x)$ - решение уравнения (1). Теорема доказана.

Аналогично доказывается теорема 4.

Теорема 4. Пусть $M(x_0, y_0) \neq 0$, тогда уравнение (7) имеет решение $x = \psi(y)$, определенное на некотором интервале (c,d), $y_0 \in (c,d)$ и $x_0 = \psi(y_0)$. Это решение непрерывно дифференцируемо на (c,d) и является решением уравнения (1).

Следствием теорем 3 и 4 является теорема 5.

Теорема 5. Если точка (x_0, y_0) - обыкновенная, то уравнение (7) имеет решение вида $y = \varphi(x)$, $x \in (a,b)$ (при этом $x_0 \in (a,b)$ и $y_0 = \varphi(x_0)$), либо решение вида $x = \psi(y)$, $y \in (c,d)$ (и при этом $y_0 \in (c,d)$ и $x_0 = \psi(y_0)$). Это решение является решением уравнения (1).

Определение. Пусть u(x,y) - интеграл уравнения (1) в области G. Равенство u(x,y)=c, где c - произвольная постоянная, называется *общим* интегралом уравнения (1) в G.

Пример. Функция $u(x,y) = x^2 + y^2$ - интеграл уравнения xdx + ydy = 0, равенство $x^2 + y^2 = c$ - общий интеграл уравнения в $G = R^2$.

В окрестности каждой точки $(x_0, y_0) \neq (0,0)$ из равенства $x^2 + y^2 = x_0^2 + y_0^2$ можно выразить решение уравнения (1) в виде $y = \varphi(x)$ или в виде $x = \psi(y)$.

§ 4. Уравнение в полных дифференциалах. Интегрирующий множитель.

Рассмотрим уравнение

$$M(x,y)dx + N(x,y)dy = 0, (1)$$

где функции M(x,y) и N(x,y) непрерывны в области $G \subset \mathbb{R}^2$.

Определение 1. Уравнение (1) называется *уравнением* в полных дифференциалах, если существует непрерывно дифференцируемая в области G функция u(x,y) такая, что для всех $(x,y) \in G$

$$du(x,y) = M(x,y)dx + N(x,y)dy.$$
 (2)

Из определения дифференциала функции u(x, y) следует, что

$$\frac{\partial u(x,y)}{\partial x}dx + \frac{\partial u(x,y)}{\partial y}dy = M(x,y)dx + N(x,y)dy,$$

то есть

$$\frac{\partial u(x,y)}{\partial x} = M(x,y), \quad \frac{\partial u(x,y)}{\partial y} = N(x,y) \tag{3}$$

для всех $(x, y) \in G$.

Теорема 1. Если (1) - уравнение в полных дифференциалах, то функция u(x,y), фигурирующая в определении 1, есть интеграл (1) в области G.

Доказательство теоремы 1. Проверим, что для функции u(x,y) выполняются все три условия из определения интеграла.

Непрерывная дифференцируемость функции u(x,y) следует из ее определения. Из формул (3) следует, что в каждой обыкновенной точке области G хоть одна из частных производных $\frac{\partial u(x,y)}{\partial x}$, $\frac{\partial u(x,y)}{\partial y}$ не равна нулю.

Из равенства

$$N(x,y)\frac{\partial u(x,y)}{\partial x} - M(x,y)\frac{\partial u(x,y)}{\partial y} = N(x,y)M(x,y) - M(x,y)N(x,y) \equiv 0$$

следует третье условие определения.

Таким образом, все условия из определения интеграла для функции u(x,y) выполнены, и теорема доказана.

Теорема2. Пусть (1) - уравнение в полных дифференциалах, и в области G существуют непрерывные производные $\frac{\partial M\left(x,y\right)}{\partial y}$ и $\frac{\partial N\left(x,y\right)}{\partial x}$. Тогда в каждой точке области G выполнено равенство

$$\frac{\partial M(x,y)}{\partial y} = \frac{\partial N(x,y)}{\partial x}.$$
 (4)

Доказательство теоремы 2. В области G выполнены равенства (3), поскольку (1) - уравнение в полных дифференциалах. Дифференцируем первое из равенств (3) по y, а второе – по x:

$$\frac{\partial M(x,y)}{\partial y} = \frac{\partial^2 u(x,y)}{\partial y \partial x}, \quad \frac{\partial N(x,y)}{\partial x} = \frac{\partial^2 u(x,y)}{\partial x \partial y}.$$
 (5)

По условию $\frac{\partial M\left(x,y\right)}{\partial y}$ и $\frac{\partial N\left(x,y\right)}{\partial x}$ существуют и непрерывны в G,

следовательно, существуют и непрерывны $\frac{\partial^2 u(x,y)}{\partial y \partial x}$ и $\frac{\partial^2 u(x,y)}{\partial x \partial y}$. И по теореме о равенстве смешанных производных

$$\frac{\partial^2 u(x,y)}{\partial y \partial x} = \frac{\partial^2 u(x,y)}{\partial x \partial y}$$

в области G, отсюда и из равенств (5) следует (4). Теорема доказана.

Условие (4) - необходимое условие того, что (1) - уравнение в полных дифференциалах. Покажем, что в «прямоугольных» областях это условие является и достаточным.

Пусть $G = \{(x,y): a < x < b, c < y < d\}$ (случаи $a = -\infty$, $b = +\infty$, $c = -\infty$, $d = +\infty$ не исключаются).

Теорема 3. Пусть $\frac{\partial M(x,y)}{\partial y}$ и $\frac{\partial N(x,y)}{\partial x}$ существуют и непрерывны в области G, и выполнено равенство (4) в каждой точке G, тогда (1) — уравнение в полных дифференциалах.

Доказательство теоремы 3. Укажем непрерывно дифференцируемую в области G функцию u(x,y), для которой выполнены условия (3).

Выберем и зафиксируем точку (x_0,y_0) \in G , найдем функцию u в точке (x,y) \in G .

Пусть t лежит между x_0 и x (то есть $x_0 \le t \le x$ или $x \le t \le x_0$), тогда a < t < b , и точка (t,y) принадлежит области G .

Предположим, что функция u удовлетворяет (3), тогда

$$\frac{\partial u(t,y)}{\partial t} = M(t,y).$$

Интегрируем последнее равенство по t от x_0 до x (здесь y оказывается параметром):

$$\int_{x_0}^{x} \frac{\partial u(t, y)}{\partial t} dt = \int_{x_0}^{x} M(t, y) dt,$$

или

$$u(x,y)-u(x_0,y)=\int_{x_0}^x M(t,y)dt,$$

следовательно,

$$u(x,y) = \int_{x_0}^x M(t,y)dt + u(x_0,y). \tag{6}$$

Найдем $u(x_0, y)$.

Пусть теперь s лежит между y_0 и y, тогда c < s < d, точка $\left(x_0, s\right)$ принадлежит G, и, как следует из (3),

$$\frac{\partial u(x_0,s)}{\partial t} = N(x_0,s).$$

Интегрируем последнее равенство по s от y_0 до y:

$$\int_{y_0}^{y} \frac{\partial u(x_0, s)}{\partial s} ds = \int_{y_0}^{y} N(x_0, s) ds,$$

или

$$u(x_0, y) - u(x_0, y_0) = \int_{y_0}^{y} N(x_0, s) ds.$$
 (7)

Функция u(x, y) интересует нас с точностью до аддитивной постоянной, поэтому можем положить $u(x_0, y_0) = 0$. Из равенств (6) и (7) следует, что

$$u(x,y) = \int_{x_0}^{x} M(t,y)dt + \int_{y_0}^{y} N(x_0,s)ds.$$
 (8)

Мы доказали: если функция u(x,y) удовлетворяет условиям (3), то она задается формулой (8). Покажем, что построенная функция u - искомая, то есть функция, определенная формулой (8), удовлетворяет условиям (3).

Из (8) следует:

$$\frac{\partial u(x,y)}{\partial x} = M(x,y),$$

и, пользуясь теоремой Барроу и формулой Лейбница дифференцирования под знаком интеграла, получаем

$$\frac{\partial u(x,y)}{\partial y} = \frac{\partial}{\partial y} \int_{x_0}^{x} M(t,y) dt + N(x_0,y) = \int_{x_0}^{x} \frac{\partial M(t,y)}{\partial y} dt + N(x_0,y) =$$

$$= \int_{x_0}^{x} \frac{\partial N(t,y)}{\partial t} dt + N(x_0,y) = N(x,y) - N(x_0,y) + N(x_0,y) = N(x,y).$$

Теорема доказана.

Поскольку x и y входят в уравнение (1) симметрично, то формула

$$u(x,y) = \int_{x_0}^{x} M(t,y_0) dt + \int_{y_0}^{y} N(x,s) ds.$$
 (8')

тоже определяет интеграл уравнения (1). Нетрудно показать, что формулы (8) и (8') задают одну и ту же функцию u(x, y).

Замечание. Теорема 3 верна, если G - произвольная односвязная область в R^2 . Прямоугольная область G требуется для выбранного нами способа доказательства теоремы.

Интегрирующий множитель.

Определение 2. Функция $\mu(x,y)$, непрерывная в области G, называется интегрирующим множителем уравнения (1), если $\mu(x,y) \neq 0$ в обыкновенных точках G, и уравнение

$$\mu(x,y)M(x,y)dx + \mu(x,y)N(x,y)dy = 0$$
 (9)

есть уравнение в полных дифференциалах.

Считаем, что область G имеет прямоугольный вид, и в G существуют непрерывные производные $\frac{\partial M\left(x,y\right)}{\partial y}$ и $\frac{\partial N\left(x,y\right)}{\partial x}$.

Будем искать интегрирующий множитель $\mu(x,y)$ как непрерывно дифференцируемую в G функцию.

Для того, чтобы (9) было уравнением в полных дифференциалах, необходимо и достаточно, чтобы выполнялось условие

$$\frac{\partial \left(\mu(x,y)M(x,y)\right)}{\partial y} = \frac{\partial \left(\mu(x,y)N(x,y)\right)}{\partial x},$$

или

$$N(x,y)\frac{\partial\mu(x,y)}{\partial x} - M(x,y)\frac{\partial\mu(x,y)}{\partial y} = \mu(x,y)\left(\frac{\partial M(x,y)}{\partial y} - \frac{\partial N(x,y)}{\partial x}\right). \tag{10}$$

Таким образом, функция $\mu(x,y)$ должна быть решением уравнения в частных производных (10).

Будем искать для уравнения (1) интегрирующий множитель μ , зависящий только от x. Из (10) следует, что тогда $\mu(x)$ будет удовлетворять уравнению

$$N(x,y)\frac{d\mu(x)}{dx} = \mu(x)\left(\frac{\partial M(x,y)}{\partial y} - \frac{\partial N(x,y)}{\partial x}\right),$$

или

$$\frac{1}{\mu(x)} \frac{d\mu(x)}{dx} = \frac{1}{N(x,y)} \left(\frac{\partial M(x,y)}{\partial y} - \frac{\partial N(x,y)}{\partial x} \right). \tag{11}$$

Левая часть равенства (11) зависит только от x. Поэтому уравнение (1) допускает интегрирующий множитель $\mu(x)$ тогда и только тогда, когда правая часть (11) тоже зависит только от x. В этом случае обозначая

$$\frac{1}{N(x,y)} \left(\frac{\partial M(x,y)}{\partial y} - \frac{\partial N(x,y)}{\partial x} \right) = f(x),$$

перепишем равенство (11) в виде

$$\frac{1}{\mu(x)}\frac{d\mu(x)}{dx} = f(x).$$

И в качестве интегрирующего множителя мы можем взять любое решение этого уравнения.

$$\mu(x) = \exp\left(\int_{x_0}^x f(s)ds\right),\tag{12}$$

где $x_0 \in (a,b)$.

Аналогично можно показать, что уравнение (1) допускает интегрирующий множитель μ , зависящий только от y, тогда и только тогда, когда функция

$$\frac{1}{M(x,y)} \left(\frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y} \right)$$

зависит только от у.

Пример. Линейное уравнение.

Рассмотрим линейное уравнение

$$y' = p(x)y + q(x), \tag{13}$$

где функции p(x) и q(x) непрерывны на интервале (a,b).

Запишем (13) в симметричной форме:

$$(p(x)y+q(x))dx-dy=0. (14)$$

Уравнение (14) задано в прямоугольной области $G = \big\{ \big(x,y \big) \colon a < x < b, -\infty < y < +\infty \big\}.$

Здесь
$$M(x,y) = p(x)y + q(x)$$
, $N(x,y) = -1$, и $\frac{\partial M(x,y)}{\partial y} \neq \frac{\partial N(x,y)}{\partial x}$.

Ищем интегрирующий множитель μ , зависящий только от x. Уравнение (11) принимает вид

$$\frac{1}{\mu(x)}\frac{d\mu(x)}{dx} = -p(x),$$

следовательно,

$$\mu(x) = \exp\left(-\int_{x_0}^x p(s)ds\right),$$

где $x_0 \in (a,b)$.

Домножим уравнение (14) на $\mu(x)$ и получим уравнение в полных дифференциалах:

$$\exp\left(-\int_{x_0}^x p(s)ds\right)\left(p(x)y+q(x)\right)dx-\exp\left(-\int_{x_0}^x p(s)ds\right)dy=0.$$

Применяя формулу (8') с $y_0 = 0$, находим

$$u(x,y) = \int_{x_0}^x q(t) \exp\left(-\int_{x_0}^t p(s)ds\right) dt - \int_0^y \exp\left(-\int_{x_0}^x p(s)ds\right) dt.$$

Из равенства u(x,y) = -c, которое представляет собой общий интеграл уравнения (1), получаем:

$$y = \exp\left(\int_{x_0}^{x} p(s)ds\right) \left(c + \int_{x_0}^{x} q(t) \exp\left(-\int_{x_0}^{t} p(s)ds\right)dt\right).$$
 (15)

Равенство (15) дает *общее решение* линейного уравнения (13) в форме Коши.

Решение уравнения (13), удовлетворяющее условию $y(x_0) = y_0$, имеет вид

$$y = \exp\left(\int_{x_0}^x p(s)ds\right) \left(y_0 + \int_{x_0}^x q(t)\exp\left(-\int_{x_0}^t p(s)ds\right)dt\right).$$