Regelungstechnik: FAST Reference sheet

Dino Colombo, Michael van Huffel

January 21, 2021

Testsignale 1. Ordnung

Aussage über ein system

Lyapunov Stabilität

- 1. Asymptotisch stabil: $\lim_{t\to\infty} ||x(t)|| = 0$, falls alle EW $\text{Re}(\lambda_i) < 0$.
- 2. **Stabil:** $(\|x(t)\| < \infty \forall t \in [0, \infty])$, falls mehrere EW $\text{Re}(\lambda_k) = 0$ und kein EW $\text{Re}(\lambda_i) > 0$.
- 3. Instabil: $\lim_{t\to\infty}\|x(t)\|=\infty$ falls mindestens ein EW $\mathrm{Re}(\lambda_i)>0$.

BIBO Stabilität

Ein System ist BIBO Stabil, falls für die Impulsantwort $\delta(t)$ folgendes gilt: $\int_0^\infty |\delta(t)| dt < \infty$

- $Re(\pi_i) < 0, \forall i \in \mathcal{N}$
- Nicht BIBO stabil in allen anderen Fällen.

-barkeit

- Steuer-/Erreich-: $\mathcal{R} = \begin{bmatrix} b, & A \cdot b, & A^2 \cdot b, & \dots, & A^{n-1} \cdot b \end{bmatrix}$: vollen Rang (Det(\mathcal{R}) \neq 0).
- Stabilisier-: Ein (instabiles) System ist potentiell Stabilisierbar, falls alle Zustände, die nicht steuerbar sind asymptotisch stabil sind.

• Beobachtbar-:
$$\mathcal{O} = \begin{bmatrix} c \\ c \cdot A \\ c \cdot A^2 \\ \vdots \\ c \cdot A^{n-1} \end{bmatrix}$$
: vollen Rang (Det(\mathcal{O}) \neq 0)

• **Detektier**-: Ein System ist nur detektierbar, falls alle seine nicht-beobachtbaren Zustände asymptotisch stabil sind.

1

Übertragungsfunktion

Achtung: #Pole = Ordnung des Systems $\Sigma(s) = \frac{Y(s)}{U(s)} = \frac{c \cdot \mathrm{Adj}(s\mathbb{I} - A) \cdot b}{\det(s\mathbb{I} - A)} + d$

Most common adj()

Adjunkte für eine $n \times n$ Matrix:

$$adj(A) = C^T = ((-1)^{i+j} M_{ji})_{1 \le i, j \le n}$$

Adjunkte für eine 2×2 -Matrix:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \xrightarrow{\underline{adjungieren}} Adj(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Adjunkte für eine 3×3 -Matrix:

$$adj \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = C^T = \begin{pmatrix} +\det\begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix} & -\det\begin{pmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{pmatrix} & +\det\begin{pmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{pmatrix} \\ -\det\begin{pmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{pmatrix} & +\det\begin{pmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{pmatrix} & -\det\begin{pmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{pmatrix} \\ +\det\begin{pmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} & -\det\begin{pmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{pmatrix} & +\det\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

Laplace-Transformation

Wichtige Singaltransformationen:

x(t)	X(S)
$\delta(t)$	1
h(t) (=1)	$\frac{1}{s}$
p(t) (=t)	$\frac{1}{s^2}$
$h(t) \cdot t^n \cdot e^{\alpha \cdot t}$	$\frac{n!}{(s-\alpha)^{n+1}}$
$h(t) \cdot sin(\omega \cdot t)$	$\frac{\omega}{s^2 + \omega^2}$
$h(t) \cdot cos(\omega \cdot t)$	$\frac{s}{s^2 + \omega^2}$
$h(t)\cdot sinh(\omega\cdot t)$	$\frac{\omega}{s^2 - \omega^2}$
$h(t) \cdot cosh(\omega \cdot t)$	$\frac{s}{s^2 - \omega^2}$
$h(t)\cdot (e^{at}-1)$	$\frac{a}{s(s-a)}$
$h(t) \cdot \frac{e^{at} - e^{bt}}{a - b}$	$\frac{1}{(s-a)(s-b)}$
$h(t) \cdot \frac{ae^{at} - be^{bt}}{a - b}$	$\frac{s}{(s-a)(s-b)}$

Wichtige Eigenschaften:

Linearität	$\mathcal{L}\{ax_1(t) + bx_2(T)\} = aX_1(s) + bX_2(s)$
$\ddot{\mathrm{A}}\mathrm{hnlichkeit}$	$\mathcal{L}\left\{\frac{1}{a} \cdot x\left(\frac{t}{a}\right)\right\} = X(s \cdot a)$
Verschiebung	$\mathcal{L}\{x(t-T)\} = e^{-T \cdot s} \cdot X(S)$
Dämpfung	$\mathcal{L}\{(x(t) \cdot e^{a \cdot t}\} = X(s-a)$
Ableitung t	$\mathcal{L}\left\{\frac{d}{dt}x(t)\right\} = s \cdot X(s) - x(0)$
2. Ableitung t	$\mathcal{L}\left\{\frac{d^2}{dt^2}x(t)\right\} = s^2 \cdot X(s) - s \cdot x(0) - \frac{d}{dt}x(0)$
$n{ m -te}$ Abl. t	$s^n \cdot X(s) - s^{n-1}x(0) - \dots - s^0 \frac{d^{n-1}}{dt^{n-1}}$
Ableitung s	$\mathcal{L}\{t \cdot x(t)\} = -\frac{d}{ds}X(s)$
Integration t	$\mathcal{L}\{\int_0^t x(\tau)d\tau\} = \frac{1}{s} \cdot X(s)$
Integration s	$\mathcal{L}\left\{\frac{1}{t} \cdot x(t)\right\} = \int_{s}^{\infty} X(\sigma) d\sigma$
Convolution t	$\mathcal{L}\{x_1(t) * x_2(t)\} = X_1(s) \cdot X_2(s)$
${\bf Convolution\ s}$	$\mathcal{L}\{x_1(t) \cdot x_2(t)\} = X_1(s) * X_2(s)$
${\bf An fangs wert}$	$\lim_{t \to 0^+} x(t) = \lim_{s \to \infty} s \cdot X(s)$
${\bf Endwert}$	$\lim_{t \to \infty} x(t) = \lim_{s \to 0} s \cdot X(s)$

dB Skala

Dec	dB	dB	Dec
∞	∞	∞	∞
1000	60	1000	$1 \cdot 10^{50}$
100	40	100	$100000 = 10^5$
50	33.98	80	$10000 = 10^4$
20	26.02	60	$1000 = 10^3$
10	20	40	100
9	19.08	30	31.62
8	18.06	20	10
7	16.90	15	5.62
6	15.56	10	$3.16 = \sqrt{10}$
5	13.98	9	2.82
4	12.04	8	2.51
3	9.54	7	2.24
2	6.02	6	≈ 2
1	0	5	$1.78 = \sqrt[4]{10}$
$\begin{array}{l} \frac{1}{2} = 0.5 \\ \frac{1}{3} \approx 0.33 \\ \frac{1}{4} = 0.25 \\ \frac{1}{5} = 0.2 \\ \frac{1}{6} \approx 0.17 \\ \frac{1}{7} \approx 0.14 \end{array}$	-6.02	4	1.58
$\frac{1}{3} \approx 0.33$	-9.54	3	$1.41 \approx \sqrt{2}$
$\frac{1}{4} = 0.25$	-12.04	2	$1.26 = \sqrt[10]{10}$
$\frac{1}{5} = 0.2$	-13.98	1	$1.12 = \sqrt[20]{10}$
$\frac{1}{6} \approx 0.17$	-15.56	0.1	≈ 1.01
$\frac{1}{7} \approx 0.14$	-16.90	0.01	≈ 1.001
0.1	-20.00	0	1
0.01	-40.00	$x_{dB} < 0$	$-\frac{1}{x_{dec}}$
0	$-\infty$	$-\infty$	$0^{x_{dec}}$

$$\frac{1}{x_{dB}} = -x_{dB} \leftrightarrow \frac{1}{5dB} = -5dB$$

Trigonometric function

$\alpha \deg$	α rad	$\cos(\alpha)$	$\sin(\alpha)$	$tan(\alpha)$	$\cot(\alpha)$
0°	0	1	0	0	_
30°	$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1
60°	$\frac{\pi}{3}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$
90°	$\frac{\pi}{2}$	0	1	_	0

Einfluss von Nullstellen

${\bf Standard elemente}$	Verstärkung $\left[\frac{dB}{dec}\right]$	Phase
Stabiler Pol	$-20 \text{ bei } \omega_g$	-90° bei ω_g
Instabiler Pol	$-20 \text{ bei } \omega_g$	$+90^{\circ}$ bei ω_g
Minimalphasige NullST	$+20 \text{ bei } \omega_q$	$+90^{\circ}$ bei ω_g
Nichtminimalphasige NullST	$+20 \text{ bei } \omega_g$	-90° bei ω_g
Delay um $\tau(\forall \omega)$	0	$-\frac{180}{\pi}\cdot\omega\cdot\tau^{\circ}$

 $\omega_g = \frac{1}{\tau}$: Cutoff-frequency (Eckfrequenz) immer bei -3dB

Graph bei $\omega = 1$

Systemtyp k

 10^{-2}

Der Systemtyp $k = \text{Vielfachheit offener Integratoren } (\frac{1}{s^k})$

 10^{0}

 ω

 10^{1}

$$\angle \Sigma(0) = \begin{cases} -k \cdot \frac{\pi}{2}, & sgn(\frac{b_0}{a_0}) > 0\\ -\pi - k \cdot \frac{\pi}{2}, & sgn(\frac{b_0}{a_0}) < 0 \text{ (neg. stat. Gain)} \end{cases}$$

 10^{-2}

 10^{-1}

 10^{0}

 ω

 10^{1}

 10^{2}

Relativer Grad r = n - m

 10^{-1}

Die Steigung des Magnitudenverlauf im Bode-Diagramm konvergiert asymptotisch zu:

 10^2

$$\frac{\partial |\Sigma(j\omega)|_{dB}}{\partial \log(\omega)} = -r \cdot 20 \frac{dB}{\text{decade}}$$

Nyquist

 $Asymptotisch-stabil \leftrightarrow n_c \stackrel{!}{=} \frac{n_0}{2} + n_+$

 n_c : Anzahl Umrundungen um den kritischen Punkt (-1,0)

Positiv falls Umrundung gegen Uhrzeigersinn.

 n_0 : Anzahl Pole von L(s) mit Realteil = 0

 n_+ : Anzahl Pole von L(s) mit Realteil > 0

Frequenzbedingung des geschlossenen Regelkreises

$$\omega_c = \text{Durchtrittsfrequen } \omega_c = \begin{cases} \omega_c > \max\{10 \cdot \omega_d, 2 \cdot \omega_{\pi^+}\} \\ \omega_c < \min\{\frac{1}{10} \cdot \omega_n, \frac{1}{10} \cdot \omega_2, \frac{1}{2} \cdot \omega_\tau, \frac{1}{2} \cdot \omega_{\zeta^+}\} \end{cases}$$

1.
$$\omega_2 \leftrightarrow |W_2(j\omega_2)| = 1$$

2.
$$\omega_{\tau} = \frac{1}{\tau}$$
, mit $L_{\tau}(s) = C(s) \cdot P(s) e^{-\tau \cdot s}$. Wenn konservativ Faktor $\frac{1}{5}$

3. ω_{ζ^+} kleinster positiver Nullstelle. Wenn konservativ Faktor $\frac{1}{5}$

4.
$$\omega_n \leftrightarrow |N(j\omega_n)| = 0$$

5. ω_{π^+} grossten positiver Pol. Wenn konservativ Faktor 5

6.
$$\omega_d \leftrightarrow |D(j\omega_d)| = 0$$

PID-Regler

$$C_{\text{PID}}(s) = k_p \cdot \left(\underbrace{\frac{T_d \cdot T_i \cdot s^2 + T_i \cdot s + 1}{T_i \cdot s}}_{\text{nicht kausal}} \right) \cdot \frac{1}{(\tau \cdot s + 1)^2}$$

Ziegler-Nicholas Parameter

$$|k_p^* \cdot P(j\omega^*)| \stackrel{!}{=} 1 \quad \angle k_p^* \cdot P(j\omega^*) \stackrel{!}{=} -\pi \quad T^* = \frac{2\pi}{\omega^*}$$

Regler	k_p	T_{i}	T_d
P	$0.5 \cdot k_p^*$	$\infty \cdot T^*$	$0 \cdot T^*$
PΙ	$0.45 \cdot k_p^*$	$0.85 \cdot T^*$	$0 \cdot T^*$
PD	$0.55 \cdot k_p^*$	$\infty \cdot T^*$	$0.15 \cdot T^*$
PID	$0.6 \cdot k_p^*$	$0.5 \cdot T^*$	$0.125 \cdot T^*$

Phasenreserve

γ	Verstärkungsreserve	Verstärkungsreserve zu $ (-1+0j) \text{ bei } \angle L(j\omega) = -\pi $
φ	Phasenreserve	Phasenabstand zu $-\pi$ bei der Durchtrittsfrequenz ω_c
μ	kritische Abstand	Kleinste Distanz zwischen $(-1+0j)$ und $L(j\omega)$

More Laplace transform

$\frac{\{f(t)\}}{1/s}$	f(t)	$ \{f(t)\} $	$\frac{f(t)}{u(t-a)}$
,	1	$\begin{cases} f(t) \\ e^{-as}/s \end{cases}$	u(t-a)
$1/s^2$	t	e^{-as}	$\frac{\delta(t-a)}{1}$
$1/s^n$	$t^{n-1}/(n-1)!$	$\frac{1}{\sqrt{s}}e^{-\omega/s}$	$\frac{1}{\sqrt{\pi t}}\cos 2\sqrt{\omega t}$
$1/\sqrt{s}$	$1/\sqrt{\pi t}$	$e^{-k\sqrt{s}}$	$\frac{\delta(t-a)}{\delta(t-a)}$ $\frac{1}{\sqrt{\pi t}}\cos 2\sqrt{\omega t}$ $\frac{k}{2\sqrt{\pi t^3}}e^{-k^2/4t}$ $\frac{1}{a-b}(e^{at}-e^{bt})$ $\frac{1}{a-b}(ae^{at}-be^{at})$
$1/s^{3/2}$	$2\sqrt{t/\pi}$	$ \frac{1}{(s-a)(s-b)} $ $ \frac{s}{(s-a)(s-b)} $ $ \frac{2\omega^{3}}{(s^{2}+\omega^{2})^{2}} $ $ \frac{2\omega s}{(s^{2}+\omega^{2})^{2}} $ $ \frac{2\omega s^{2}}{(s^{2}+\omega^{2})^{2}} $ $ \frac{s^{2}}{(s^{2}+a^{2})(s^{2}+b^{2})} $ $ \frac{4\omega^{3}}{s^{4}+4\omega^{4}} $	$\frac{1}{a-b}(e^{at} - e^{bt})$
$1/s^k$	$t^{k-1}/\Gamma(k)$	$\frac{s}{(s-a)(s-b)}$	$\frac{1}{a-b}(ae^{at} - be^{at})$
$\frac{1}{s-a}$	e^{at}	$\frac{2\omega^3}{(s^2+\omega^2)^2}$	$\sin \omega t - \omega t \cos \omega t$
$\frac{1}{(s-a)^2}$	e^{at} te^{at} $\frac{1}{(n-1)!}t^{n-1}e^{at}$ $\frac{1}{\Gamma(k)}t^{k-1}e^{at}$ $\sin \omega t$	$\frac{2\omega s}{(s^2 + \omega^2)^2}$	$t\sin\omega t$
$\frac{1}{(s-a)^n}$	$\frac{1}{(n-1)!}t^{n-1}e^{at}$	$\frac{2\omega s^2}{(s^2 + \omega^2)^2}$	$\sin \omega t + \omega t \cos \omega t$
$\frac{1}{(s-a)^k}$	$\frac{1}{\Gamma(k)}t^{k-1}e^{at}$	$\frac{s^2}{(s^2+a^2)(s^2+b^2)}$	$\frac{1}{b^2 - a^2} (\cos at - \cos bt)$
$\frac{\omega}{s^2 + \omega^2}$	$\sin \omega t$	$ \frac{4\omega^3}{s^4 + 4\omega^4} $ $ \frac{2\omega^2 s}{2\omega^2 s} $	$\sin \omega t \cos \omega t - \cos \omega t \sinh \omega t$
$\frac{a}{s^2 - a^2}$	$\sinh at$	$ \frac{2\omega^2 s}{s^4 + 4\omega^4} $ $ 2\omega^3 $	$\sin \omega t \sinh \omega t$
$\frac{\omega}{(s-a)^2 + \omega^2}$	$e^{at}\sin\omega t$	 	$\sinh \omega t - \sin \omega t$
$\frac{\omega}{(s-a)^2 - \omega^2}$ $\frac{s}{s^2 + \omega^2}$	$e^{at}\sinh\omega t$	$\frac{2\omega^2 s}{s^4 - \omega^4}$	$ \cosh \omega t - \cos \omega t $
$\frac{s}{s^2 + \omega^2}$	$\cos \omega t$		$\frac{1}{t}(e^{bt} - e^{at})$ $\frac{2}{t}(1 - \cos \omega t)$
$\frac{3}{s^2 - a^2}$	$\cosh at$	$ \frac{2\omega^{2}s}{s^{4} - \omega^{4}} $ $ \frac{1\ln\frac{s - a}{s - b}}{\ln\frac{s^{2} + \omega^{2}}{s^{2}}} $ $ \frac{1\ln\frac{s^{2} - \omega^{2}}{s^{2}}}{s^{2}} $	$\frac{2}{t}(1-\cos\omega t)$
$\frac{\frac{s-a}{(s-a)^2 + \omega^2}}{\frac{s-a}{(s-a)^2 - \omega^2}}$	$e^{at}\cos\omega t$		$\frac{2}{r}(1-\cosh\omega t)$
$\frac{s-a}{(s-a)^2-\omega^2}$	$e^{at}\cosh\omega t$		
$\frac{\omega^2}{s(s^2 + \omega^2)}$	$1 - \cos \omega t$		
$\frac{\omega^3}{s^2(s^2+\omega^2)}$	$\omega t - \sin \omega t$	$k > 0, \ n \in \mathbb{N}, \ a \neq$	$b, \ \gamma \approx 0.5772$