Universal Gate – NAND

NAND Gate

X	Y	Z
0	0	1
0	1	1
1	0	1
1	1	0

NAND Gate as an Inverter Gate

NAND Gate as an AND Gate

NAND Gate as an OR Gate

NAND Gate Equivalent to AOI Gates

Process for NAND Implementation

- If starting from a logic expression, implement the design with AOI logic.
- 2. In the AOI implementation, identify and replace every AND,OR, and INVERTER gate with its NAND equivalent.
- 3. Redraw the circuit.
- 4. Identify and eliminate any double inversions (i.e., back-to-back inverters).
- 5. Redraw the final circuit.

NAND Implementation

Example:

Design a NAND Logic Circuit that is equivalent to the AOI circuit shown below.

NAND Implementation

Solution – Step 2

Identify and replace every AND,OR, and INVERTER gate with its NAND equivalent.

NAND Implementation Solution – Step 3

Redraw the circuit.

NAND Implementation Solution – Step 4

Identify and eliminate any double inversions.

NAND Implementation Solution – Step 5

Redraw the circuit.

Proof of Equivalence

AOI vs. NAND

IC Type	Gates	Gate / IC	# ICs
74LS04	1	6	1
74LS08	2	4	1
74LS32	1	4	1
Total Number of ICs →			3

IC Type	Gates	Gate / IC	# ICs
74LS00	4	4	1
Total Number of ICs →			1