MINUTES OF THE 39TH COMPUTER RESOURCES INTEGRATION MANAGEMENT MEETING

12 March 1991

19980302 079

BROWN ENGINEERING

Cummings Research Park • Huntsville, Alabama 35807

BMDOTIC

DTIC QUALITY INSPECTED ?

DISTRIBUTION STATEMENT

Approved for public releases Distribution Unlimited U2909

Accession Number: 2909

Title: Minutes of the 39th Computer Resources Integration Management

Meeting, 12 March 1991

Contract Number: DASG60-87-C-0042

Corporate Author or Publisher: Teledyne Brown Engineering,

Huntsville, AL 35807

Publication Date: Mar 14, 1991

Pages: 00150

Comments on Document: Contains copies of briefing

presentations.

Descriptors, Keywords: SDS Computer Resource Management

Productivity Ada Software SEIC Reuse

NTF NTB L2SS PROTO+ MICOM ISSI SDDS

RATIONAL Model Simulation

MINUTES OF THE 39TH COMPUTER RESOURCES INTEGRATION MANAGEMENT MEETING 12 March 1991

PREPARED FOR:

UNITED STATES ARMY STRATEGIC DEFENSE COMMAND

CONTRACT: DASG60-87C-0042

PREPARED BY:

TELEDYNE BROWN ENGINEERING CUMMINGS RESEARCH PARK HUNTSVILLE, ALABAMA 35807

PREPARED ON: 14 March 1991

Minutes of the 39th CRIM

- 1. The 39th CRIM was held 12 March 1991 at 1300 hours in Room 2D1100. The theme for this CRIM was Software Productivity, with presenters from both the government and the private sector about lessons learned and Ada development tools to enhance productivity. The meeting began with Mr. Frank Poslajko presenting the agenda. Next, Mr. Poslajko presented a slide depicting various areas of software productivity. In addition, a fact slide was presented on the Ada Fundamentals Workshop scheduled to begin March 25.
- 2. Mr. Michael Walker presented the SEIC Software Activity Status. Mr. Walker discussed the ongoing activities related to the documents SEIC is responsible for developing. A discussion occurred about distribution of SEIC documents with a general consensus of the need for broader distribution in the USASDC community. Mr. Walker presented an update of the Trusted Software Development Methodology with a recommendation for its' incorporation into the Software Engineering Support Environment (SESE) System Specification. Next, he provided insight into projects under development in the field of Trusted Software.
- 3. Mr. Terry Gill of Carnegie Mellon University presented highlights of the Software Reuse Program for the SDIO Software Engineering Integration Center (SSEIC) at the National Test Bed. Mr. Gill touched upon the major topics (i.e., determining SDS software reuse requirements, establishing a concept of operation) for the Software Reuse Program. Mr. Gill presented an organizational chart of how SSEIC views the Level 2 System Simulation (L2SS) Software Reuse Organization. Mr. Gill tentatively identified the top level players, but he requested USASDC provide inputs for the element level reuse experts. In addition, Mr. Gill presented the basic goals of the reuse program.
- 4. Mr. Bruce Lewis of the Software Engineering Directorate, MICOM, discussed the Ada Policy as it is applied at MICOM. Mr. Lewis presented the mission of the MICOM Life Cycle Software Engineering Center (LCSE) and a list of the projects which are under development using Ada almost exclusively. Mr. Lewis displayed some of the "Key" Ada policy issues, and discussed certain ambiguities which need to be addressed with the contractors. Mr. Lewis presented lessons learned in getting the contractor to try Ada for the first time. Finally, he presented several slides displaying the productivity of the Ada language in association with good software engineering practices.
- 5. Ms. Elizabeth S. Kean of Rome Laboratory presented the Aspects of Reusability in PROTO+. This tool is being developed by International Software Systems, Inc (ISSI). Ms. Kean discussed the system technology and the two levels of reuse foreseen in the system (e.g., low level components, major functional component with subcomponents). In addition, Ms. Kean presented the major characteristics of the PROTO+ tool. She discussed how the PROTO+ tool supports reuse, and what additions would be added in the future. At present, the PROTO+ tool is virtually identical to SDDS (refer to para. 6), but the PROTO+ tool will deviate in the future. Finally, Ms. Kean walked through a demonstration of the tool.
- 6. Ms. Kathryn H. Hiles of Teledyne Brown Engineering, representing Jackie Cristina from BM/C³ Technology Branch, presented the SDS Common Framework. Ms. Hiles discussed the major differences in the SDS common framework and the Strategic Defense Development System (SDDS) tool now under development by ISSI. Ms. Hiles presented a slide with the eight basic requirements of the common framework, and then discussed the full life support cycle of the framework. In addition, Ms. Hiles presented the current status of the SDDS tool and its current

ability to only support four of the eight requirements. Ms. Hiles presented several slide showing the areas of SDDS which would have to be emphasized to allow conformance to the SDS common framework and explained ISSI's contract was being redirected to expand these areas.

- 7. Mr. Tom Matson of Rational presented an overview of the Rational system and some of the projects on which Rational has proven its capabilities. Mr. Matson discused the challenges facing the developers of extremely large Ada systems and the goals Rational had for assisting in the development environment. Mr. Matson presented the main goals as automating life cycle activities, improving quality and reliability, shortening schedules, and helping the transition to Ada. In addition, Mr. Matson discussed the design facilities within the Rational environment. Mr. Glenn Hughes II concluded the presentation with a look at two examples of the benefits of the Rational design environment.
- 8. Mr. Paul Larson of Integrated Systems Inc. presented the ISI tools for modeling, simulation, code generation, and real-time testing. Mr. Larson discussed the conventional real-time software/control system development loop, and the basic problem of the inability to detect errors until the integration and testing of the software. Mr. Larson presented a slide on the ability of prototyping to detect errors earlier in the design, but this approach still involved looping back to make changes to the design. Finally, Mr. Larson presented ISI's software and hardware tools and explained how they could be used to avoid retracing steps in the design of a system.
- 9. The meeting was adjourned by 1505. The 40th CRIM is scheduled for 9 April 1991.

39TH COMPUTER RESOURCES INTEGRATION MEETING 12 March 1991 LIST OF ATTENDEES

NAME	ORGANIZATION	TELEPHONE
Dr. Davies	CSSD-TD	895-3520
Frank Poslajko	CSSD-SP	955-1995
Pete Cerny	CSSD-SP	955-3069
Ted Allen	TBE	726-1285
Ben Herrin	DRC	(703)521-3812 x6034
Terry Gill	CMU/NTB	(719)380-2465
Robert Ellis	TBE	726-2748
Liz Kean	Rome Laboratory	(315)330-2762
Rachel Ramey	CSSD-CA-S	955-3124
Tom Matson	Rational	(813)885-8955
Kevin Haar	Rational	(314)428-8640
Glenn Hughes II	Rational	(301)897-4024
Bill Burrows	SFAE-SD-GBR-E	955-5877
Bill Shelton	CSSD-CA	955-3612
Lance Smind	Rational	351-2715
Henry Kunkel	Boeing	464-4437
Michael Walker	SEIC/GE-HSV	355-8086
Paul Larson	Integrated Systems	(408)980-1500
LTC Steve Rice	SLKT	955-3643
Sandra Brazelton	GBR-I	955-5798 <i>*</i>
Reggie Anderson	GBR-E	955-5981
Tom Nuttall	CSSD-TE-P	955-3909
Dr. Ron Green	SFAE-SD-GST-D	722-1844
Dr. Virginia Kobler	CSSD-SA-BT	955-3857
Kathy Hiles	TBE	726-2350

39th Computer Resource Integration Management (CRIM) Meeting Action Items

1. Provide a status update on the Software Organization and Development at NTF.

2. Schedule status briefing on SDS committees to include purpose, accomplishments, plans, and schedules.

3. Establish a Data Reduction Planning Committee.

4. Disc 4 to coordinate with Ada 9X project office on Ada language deficiencies.

5. ADCCS project office to report on the number of Ada waiver requests submitted to DISC 4.

6. Discuss broadening the distribution of SEIC documents to the USASDC community.

7. Provide location of controlled experiment for Trusted Software Case Study.

8. Arrange demonstration of ISI tools.

9. Addition of Trusted Software Requirements to Software Engineering Support Environment (SESE) System Specification.

John Hawk - ext 3920

Frank Poslajko - ext 1995

Barbara Rogers - 722-1518 Bob Johnson - AV 227-0259

Denise Jones - 895-3397

Frank Poslajko - ext 1995

Terry Gill - (719)380-2465

Frank Poslajko - ext 1995 Frank Poslajko - ext 1995

PRESENTER: FRANK POSLAJKO

- 1) 2)
- AGENDA ACTION ITEMS

39th CRIM

12 Mar 91

COMPUTER

RESOURCE

INTEGRATION

MEETING

THEME: SOFTWARE PRODUCTIVITY

Agenda 39th Computer Resources Integration Management Meeting 12 March 1991

Conference Room 2D700, 0810-1500

0810-0820	Introduction	Frank Poslajko - ext. 1995
0820-0830	SEIC Software Activity Status	Mike Walker/Terry Starr 883-1170
0830-0855	NTB Software Development Highlights	CPT Andrews/T. Gill 719-380-2465
0855-0920	MICOM Software Center Support	D. Copeland/B. Lewis 876-3931
0920-0955	RADC System Definition, Requirements, And Specification Reuse Tool	Liz Kean AUTOVON 587-2762
0955-1010	SDS Software Engineering Support Environment (SESE) System Specification.	Jackie Cristina - ext. 1337
1010-1020	Break	
1020-1100	Rational Software Support Environment	Tom Matson - 813-885-8955
1100-1145	ISI Ada Development Environment for Boeing on Freedom Space Station	Paul Larson 408-980-1500 x239
1145-1200	Ada Implementation Plan	Frank Poslajko - ext. 1995

39th Computer Resources Integration Management Meeting 12 March 1991 Agenda

Conference Room 2D1100, 0815-1500

1300-1315	Action Items	Frank Poslajko - ext. 1995
1315-1325	SEIC Software Activity Status	Mike Walker - 883-1170
1325-1340	NTB Software Development Highlights	CPT Andrews/T. Gill 719-380-2465
1340-1355	MICOM Software Center Support	D. Copeland/B. Lewis 876-3931
1355-1405	SDS Software Engineering Support Environment (SESE) Development Status	Jackie Cristina - ext. 1337
1405-1420	RADC System Definition, Requirements, and Specification Reuse Tool	Liz Kean AUTOVON 587-2762
1420-1440	Rational Software Support Environment	Tom Matson - 813-885-8955
1440-1500	ISI Ada Development Environment for Boeing on Freedom Space Station	Paul Larson 408-980-1500 x239

Software Productivity

L				
	Repositories	Training	Software Development Environments	Environments
	RAPID	•DCDS	•DCDS	
L	IBM/SAIC	•Ada Workshops	SDDS (Interface Framework)	work)
	KDEC	•BRAT	DATIONAL Exodom	Choop Ctotion
<u> </u>	ELI/ARC Reuse	•UAH	TATIONAL - FIEGUOIII Space Station	Space Station
·	CECOM/SPS 1st	•SEI	•ISI Ada Development	
	Helease Sept 91	TCI V	Aug A_2 - 1 A30	
	COSMIC	.AIDI		
	SDITIC			
	NESC	SW Tools	SW Engr Practice	Quality
<u> </u>	SW Components	•CDRL Tracker	•Ada Language	•Testing
	EVB-GRACE Comp	•C2 DATE	•Portability	(Quality
	CAMP	-LOGICAN-2167A	·REUSE	Factor)
	ВООСН	Tailoring Tool	Toilogipa (0467A)	·Trusted SW
	MATH MODELS	·COCOMO		•REUSE
]				

Quality

- Testing (Quality Factor)
- **Trusted SW**
 - REUSE

Open Architectures

39TH Computer Resource Integration Meeting (CRIM) **Action Items**

Provide a status update on the Software	Organization and Development at NTF.
- :	

John Hawk - ext 3920

Schedule status briefings on SDS committees to include purpose, accomplishments, plans, and schedules. તં

Frank Poslajko ext 1995

Establish a Data Reduction Planning Committee. Barbara Rogers 722-1518 က

Frank Poslajko ext 1995

notification of software policy compliance Require higher management signature on for solicitations and contracts.

Bob Johnson AV227-0259 DISC 4 to coordinate with Ada 9X project office on Ada language deficiencies. S.

Denise Jones 895-3397

ADCCS project office to report on the number of Ada waiver requests submitted to DISC 4. 9

CSSD- (715e)

SUBJECT: Review of the U. S. Army Strategic Defense Command (USASDC) Software Policy; Notification of Compliance for Solicitations and Contracts

FOR CSSD-CM

TITLE OF CONTRACT REQUIREMENT PACKAGES:

I have evaluated the above Contract Requirements Package (CRP) and it is my judgment that:

Requirements are adequate and in compliance with U.S. Army Strategic Defense Command (USASDC) Software Policy; Therefore, a waiver will not be provided with Contract Requirements Package (CRP). Requirements are not in compliance with USASDC Software Policy and a waiver is being provided. (Submit a copy of the waiver to Software Engineering Division.)

PE Manager / Project Manager / Office Chief

Date

2nd Ada Fundamentals Workshop

- Starts 25 Mar 91
- 8 hours/week for ten weeks
- Mondays 4 hours classroom
- Session makeup through video program
- Fridays 4 hours on VAX terminals solving problems
- Provide flexibility to access terminal other times
- PC modem access
- 16 new participants selected
- Previous workshop participants can makeup missed sessions to obtain certificate (12 People)
- Each classroom session to be video taped by IMO services
- Certificates to be awarded based on performance
- Goal is to have majority of attendees awarded certificates

PRESENTER: MR R. M. WALKER SEIC SOFTWARE ACTIVITY STATUS

SEIC SOFTWARE ACTIVITY STATUS INTEGRATION MEETING (CRIM) FOR COMPUTER RESOURCE **MARCH 12, 1991**

DR. R.M. WALKER

SOFTWARE ENGINEERING

- SOFTWARE ENGINEERING SUPPORT ENVIRONMENT (SESE) SYSTEM SPECIFICATION (CDRL A096)
- COORDINATION DRAFT ISSUED JANUARY 31, USASDC COMMENTS RECEIVED
 - **REWRITTEN AND RESTRUCTURED**
- INCORPORATES TECHNICAL APPROACH DEVELOPED BY SDS CRWG SOFTWARE **ENGINEERING ENVIRONMENT (SEE) COMMITTEE**
- COMMENTS INTEGRATION/ISSUE RESOLUTION AT SDIO SEE COMMITTEE MEETING **MARCH 11 & 12**
- CONTROLLED VERSION PLANNED RELEASE MAY 17
- SDS SOFTWARE STANDARDS, PRACTICES AND CONVENTIONS (CDRL A095)
- PREVIOUS COMMENTS INCORPORATED
- REISSUED JANUARY 17
- REDLINED DOCUMENT TO BE REVIEWED AT SDS CRWG STANDARDS COMMITTEE MEETING APRIL 5
- CONTROLLED VERSION PLANNED RELEASE MAY 24

SOFTWARE ENGINEERING

- SDS SOFTWARE DEVELOPMENT ROLES AND RESPONSIBILITIES (CDRL A139)
- **POC DRAFT PLANNED RELEASE JUNE 14**
- CONTROLLED VERSION SEPTEMBER 30
- CONTENTS TO BE INCORPORATED INTO SDS CRLCMP
- COMPUTER RESOURCE LIFE CYCLE MANAGEMENT PLANS (SDS, ARMY & AIR FORCE)
- SDS CRLCMP (CDRL A057) WILL BE UPDATED AND ISSUED FOR CRWG REVIEW JULY 15
- ARMY AND AIR FORCE CRLCMPs (CDRLs A058, A149) WILL BE UPDATED AND ISSUED
 - **SEPTEMBER 30**

TRUSTED SOFTWARE DEVELOPMENT METHODOLOGY

- PRINCIPLES, COMPLIANCE CRITERIA, AND CRITERIA CLASSES BEING TRUSTED SOFTWARE DEVELOPMENT METHODOLOGY (CDRL A075)-
- INCLUDES A MODEL SOFTWARE DEVELOPMENT PLAN AND TRUST METHODOLOGY **TEMPLATES TO IMPLEMENT PROCEDURES**
- EXTENDED TO ALL 2167A SOFTWARE DEVELOPMENT AND ACQUISITION LIFE CYCLE
- INCLUDES A MODIFIED SOFTWARE LIFE CYCLE (PROTOYPING)
- METHODOLOGY INCORPORATION INTO THE SESE SPECIFICATION UNDER RECOMMENDATIONS FOR TRUSTED SOFTWARE DEVELOPMENT DEVELOPMENT
- SECURITY TRAINING COURSE FOR SOFTWARE SECURITY UNDER **DEVELOPMENT**
- EVALUATING SOFTWARE ENGINEERING INSTITUTES (SEI) METHODOLOGY TO ASSESS SOFTWARE DEVELOPERS MATURITY, FOR APPLICATION TO TRUST DEVELOPMENT

TRUSTED SOFTWARE DEVELOPMENT METHODOLOGY

TRUSTED SOFTWARE CASE STUDY UNDERWAY

- ANALYTICAL IMPACT ASSESSMENT AND TECHNICAL APPROACH DEFINED TO QUANTIFY EFFECTS AND RESULTS OF USING TRUST METHODOLOGIES
- EXPERIMENT AND DEVELOPMENT PLANS FOR CONTROLLED EXPERIMENT BEING PREPARED FOR REVIEW MARCH 21

RMW-5

PRESENTER: TERRY GILL

NATIONAL TEST BED
SDIO SOFTWARE ENGINEERING INTEGRATION CENTER
(SSEIC)

National Test Bed (NTB) Strategic Defense Initiative Organization (SDIO)

Software Engineering Integration Center (SSEIC)

Unclassified

Software Engineering Integration Center(SSEIC)

- Purpose
- Status
- Programs
- Software Integration and Test Facility(SITF)
- Software Productivity Tools Program
- Software Reuse Program
- Software Measuring/Monitoring/Costing Program

A division of Carnegie Mellon University

SSEIC PURPOSE

- software, or actual hardware for SDS integration testing and/or framework that can integrate simulation software, operational 1. Provide an SDI integration and test laboratory which uses a software/hardware evaluation.
- 2. Evaluate software development productivity tools for SDI-wide use.
- 3. Implement a distributed software reuse program for SDI-wide use.
- 4. Assist in developing and implementing a SDI-wide software quality evaluation and metrics program.
- 5. Evaluate programs during L2SS where applicable (i.e. Reuse and Metrics).

SSEIC STATUS

- NTB provided SDIO program direction through DEM/VAL topics(formally Key Goal #15).
- NTB system specification and statement of work (SOW) rewritten to accommodate SDIO direction.
- NTBIC response to new NTB system spec and SOW being evaluated by NTBJPO.
- New NTB system spec and SOW scheduled for finalization/implementation in April 91.

NTBJPO currently seeking additional government slots to fulfil forecasted manning requirements.

| RESEARCH | INSTITUTE | A division of Carnegie Mellon University

SOFTWARE INTEGRATION AND TEST FACILITY(SITF)

- Define SDS integration and test requirements.
- Develop SDS software integration and test standards based upon requirements.
- Develop a SITF concept of operations.
- Initiate buildout of new NTB building(circa 4th quarter FY91).

SOFTWARE PRODUCTIVITY TOOLS PROGRAM

- laboratory(TIL) but unfunded currently for this fiscal year. • Previously implemented as the NTB technical insertion
- application and provide a laboratory for investigating productivity • New SSEIC program will focus on productivity tools for SDI-wide
- requirements, evaluating the tools, and recommending tool Program goals include determining SDI development tool implementation for SDI-wide use, if applicable.

SOFTWARE MEASURING, MONITORING, & COSTING

- Continue work begun under former NTB software center to validate a set of metrics for SDI-wide application.
- SDS software quality evaluation program being established through the SDS CRWG Software Quality Evaluation (SQE) Committee.
- SQE committee goals include developing a SDS QEP Plan(SQEP) and validating a set of metrics and metric tools using the SDS Software Metrics Evaluation Plan(SMEP).
- SDS SQE Committee consists of key SSD(Lt Dale Brown), SDC(Mr Tom Nuttal), and NTB(Capt Emily Andrew) personnel.

SOFTWARE REUSE PROGRAM

- Determine SDS software reuse requirements
- Establish a concept of operations.
- Start building a trusted repository of small parts initially and more generalized(abstract) parts later.
- Provide connectivity through RAS sites.
- Implement a prototype program on L2SS.

L2SS Software Reuse Organization

Unclassified

L2SS Software Reuse Goals

- Open Communication Channels to Primes & Elements
- Minimally Impact L2SS Build 1 Schedule
- Identify/Secure Common L2SS 'Small' Parts
- Identify/Construct Common L2SS Generalizations
- Provide Initial Reuse Training/Education
- Implement L2SS Reuse Concept of Operations
- Install/Populate SAIC/STARS Repository at NTB
- Survey/Evaluation Software Reuse Repository Architectures
- Establish RAS Connectivity & Distributed Libraries
- Demonstrate the Viability of Reuse
- Report Build 1 Lessons-Learned

Open Communication Channels to Prime & Element Contractors

- Interact during Requirements Analysis Phase
- Interact during Design Phases
- Interact during Coding and Testing Phases

Identify/Secure Common L2SS 'Small' Parts

- Standard Constants(e.g. gravity, earth,...)
- Standard Math Library and Utilities(e.g. NAG, KESS)
- Standard ADT's(e.g. GRACE, Booch)

Domain Analysis for L2SS Build 1

- Identify Existing SDS Domain Studies
- System Simulator
- Command Center
- Communications
- Consolidate Existing Studies
- Develop Initial Cataloging System for SDS Reuse Repository
- Continue Domain Analysis for L2SS Full Life Cycle

Identify/Construct Common L2SS Generalizations

• Identify L2SS Reusable Components from Domain Analysis

• Construct New L2SS Reusable Components from Domain Analysis

• Re-engineer Reusable Components into Common (Abstract) Models

Define L2SS Reuse Concept of Operations

- Legal and Contractual Issues
- New Procedures and Responsibilities
- Reuse Library Processes and Transactions
- Reuse Incentive Program Ideas

A division of Carnegie Mellon University

Install/Populate SAIC/STARS Repository at NTB

• Ada Constants, Algorthims, KESS Elements

• C & FORTRAN Routines from System Sim. Framework

Ada Components Identified from Domain Analysis

• "Small" Parts

• "General" Parts

CARNEGIE MELLON RESEARCH INSTITUTE

Survey/Evaluation Software Reuse Repository Architectures

- SAIC/IBM STARS Repository
- USASDC-W/Softech RAPID Repository
- USAF/Westinghouse RAASP Repository
- McDonnell Douglas CAMP Program
- NASA/Barrios AutoLib Repository

MELLON RESEARCH INSTITUTE CARNEGIE

A division of Carnegie Mellon University

Establish RAS Connectivity & Distributed Libraries

- Central Repository for Configuration Management
- Electronic Bulletin Board for Reuse Information Network
- Electronic Mail System for Reuse Communication and Component Updates
- Coordinate Development of 'Local" Reuse Library

MELLON RESEARCH INSTITUTE

A division of Carnegie Mellon University

TRW's Ada Success

Ada Pros and Cons

Advantages:

Control	Single Representation Format for Design and Code Consistent Tools, Training and Metrics Demonstrable Insight Into Intermediate Products
Productivity	Ada Supports a High Quality NAS Architectural Approach Uniform Structure and Generic Building Blocks Ada Prohibits a Large Class of Programming Errors
Quality	Expands The Number of Potential Software Solutions Self Documenting Ada Prohibits a Large Class of Programming Errors

	Increased Resources	Ada Compilers Do Substantial Work
ges:	Disadvantages: Performance Sensitivity	-
	Environment Maturity	From Excellent to Very Poor; Dependent on
		Host/Target Choice

PRESENTER: BRUCE LEWIS

Ada POLICY APPLIED AT MICOM

Ada Policy Applied at MICOM

Bruce Lewis Software Engineering Directorate Feb. 12, 1991

Mission: MICOM Life Cycle Software Engineering Center (LCSE)

PROVIDE MCCR EXPERTISE TO SUPPORT COMMAND'S WEAPON SYSTEMS OVER THEIR LIFE CYCLE. COMMAND FOCAL POINT FOR MCCR.

- ACQUISITION AND DEVELOPMENT (AD)
- MCCR TECHNOLOGY ASSESSMENT
- SOFTWARE ENGINEERING SUPPORT TO PO
 - MCCR INPUTS TO RFP, CRMP
- SOURCE SELECTION EVALUATION
- SOFTWARE VERIFICATION AND VALIDATION (V&V)
 - NEGUIREMENTS, DESIGN, CODE AND TEST VERIFICATION
- SOFTWARE/SYSTEM VALIDATION
- POST DEPLOYMENT SOFTWARE SUPPORT (PDSS) 0
- MAINTAIN/ENHANCE SOFTWARE OF FIELDED SYSTEMS
- FIELD PROBLEM ANALYSIS/SUPPORT
- INTEROPERABILITY TESTING

Ada Systems at SED

MISSILES/WEAPONS

COMMAND AND CONTROL

RADIO FREQUENCY INTERFEROMETER

HELLFIRE DIGITAL AUTO PILOT

FDDM CHS FAAD C2I

ADVANCED MISSILE SYSTEM - HEAVY

-ANK

LINE OF SIGHT ANTI-TANK HELLFIRE OMS

HELLFIRE LONGBOW

AAWS-M

MLRS TGW

TOW SIGHT IMPROVEMENT PROGRAM

KE ASAT

WOULD HAVE BEEN Ada

TACIT RAINBOW FOTL

NLOS

KEY Ada POLICY ISSUES

15 % of what? System? Tactical? CSCI? Processor? **AMOUNT OF ASSEMBLER ALLOWED AND WHY** Demonstrated need - Do it in Ada first. Assembler source / Ada source 0

Prior to Milestone I approval - before contract on POP WHEN WAIVERS ARE REQUIRED If 15% proves to be inadequate 0

Ours - Commercial or fielded based on AR 70-1 Contractor's - Anything already existing **DEFINITION OF NDI** 0

Keeps those with a life-cycle perspective involved We also validate technical, cost, schedule claims SUPPORTABILITY STATEMENT REQUIREMENT 0

....with adequate supportability." AR70-1 para 4-9 "NDI includes commercial "off the shelf" items, material developed and in use by other U. S. military services or Government agencies, and material developed and in use by other Allies.

Lessons Learned on Getting First Use

Typically difficult to get to use Ada the first time, thereafter no problem

0

- Requires government software engineers who understand the benefits and issues and are willing to stand up for the 0
- Requires support with policy and at each level of government management. Loop holes will be used or invented. 0
- Typical Areas of Resistance:
- Management more often than technical, management risk, and investment adverse (software technical people want it)
- Perception that language or compilers are not efficient (changes after benchmarking current compilers)
- advantage. (But often inadequate causing significant Wants to use last phase hardware/software for a bid problems 0

Lessons Learned for Program Success

- Contractor more open to try new technology in Tech Demo or Proof of Principle. 0
- Training important part of technology transition, especially to obtain software engineering benefits as well as Ada. 0
- CASE tools must support Ada features/methods to be effective. Otherwise may hinder more than help. 0
- Adequate processing power key to getting well engineered software in Ada or any language. 0
- Reserve and growth requirements for throughput and memory critical. 0
- reliable, maintainable, enhanceable, reusable design Adequate schedule to allow software engineered, ather than rework of POP design. 0
- Get a few (or more) Ada experienced personnel as leads on the development team. 0
- management and Ada software engineering training. Software management personnel need Ada program 0

Early Predictions: Effect of Ada on Software Development Costs

Source: B. Boehm, "Software Cost Estimation Using COCOMO", 1987

Ada at NTT

Source: K. Tamaya, "Using Ada at NTT", WAda S'90

Ada at NTT

- When Ada is used 100% productivity improved 30% 0
- Productivity expected to increase more when using software engineering methodology like OOD 0
- NTT has written over 2 million lines of Ada
- SYSL is a PL/1 like systems programming language used on mainframes and for real time software in telecom microprocessors 0
- NTT has adopted Ada instead of SYSL because it is more reliable and easier to maintain

0

Development Cost Data

after they have made the transition to what is called "the Ada mindset." This mindset involves learning and applying new software engineering principles, modern methods like OOD (Object-Oriented Design), and advanced packaging concepts Ada Projects which have made their productivity numbers public are showing about a 20% decrease in costs (over time) and tools, as well as the Ada programming language itself.

from conducting postmortems on over 140 completed Ada projects worldwide. These projects have delivered in excess **These experiences are based upon composite facts gleaned** of 50 million lines of Ada code over the past five years.

Boeing Commercial Airplanes Compiler Benchmarking

Note: The desired value was the average of the survey of avionics suppliers for this type of program.

Source: BCA, SIGAda Seattle, Aug., 1987.

Boeing Commercial Airplanes Compiler Benchmarking

Note: The Ada version includes exception handling which is unavailable in Pascal. Suite consists of application specific benchmarks from 3 avionics suppliers.

Source: BCA, SIGAda Seattle, Aug., 1987.

7J7 Avionics/Flight Systems

	DECISION GATE	ASSESSME FOR INCOF	ASSESSMENT OF RISK FOR INCORPORATION
	FOR PROGRAM	DECISION	6 MONTHS
TECHNOLOGY ITEM:	COMMITMENT:	GATE	LATER:
LVPS	05/16/88	NONE	NONE
FLY-BY-WIRE	05/31/88	LOW	NONE
ALSI	02/01/86	NONE	NONE
DATAC COUPLER	04/01/88	NONE	NONE
RACU	09/01/87	MED*	LOW*
IACS	09/01/87	MED*	LOW*
VERY HIGH #1	11/25/87	LOW	NONE
RELIABILITY CHIP SET #2	04/15/88	MED	LOW
	01/21/88	TLA:MED	TLA: LOW
FIBER OPTIC SENSORS		REST:HIGH	REST:MED
FIBER OPTIC LINEAR			
DATA BUS	01/21/88	MED	TOW
PRIMARY FLT CONTROL			
FBW ACTUATION	05/31/88	LOW	NONE
FLAT PANEL DISPLAYS	06/27/88	MED	LOW
FAULT TOLERANT ADIRS	02/02/89	MED	LOW
ADA	11/13/87	LOW	NONE

*BETTER ASSESSMENT 09/01/87

Source: B. Pflug, BCA, Aug 26 1987, SIGAda Seattle

Source: Telesoft Marketing Info, May 1990.

Tartan Ada outperforms latest "C" compiler

r	
% Faster for Ada	22 53 27 70 60 49 336
Ratio	1.22 1.53 1.27 1.70 1.60 1.49
Tartan Ada C Compiler	472 648 51 201 1429 1429 3040
Tartan Ada	386 422 40 118 888 958 696
Benchmark	-06459 /

Application Specific Benchmarks Supplied by MLRS-TGW Contractor

Source: Tartan Real Times Dec. 1990

Ada Process Model Approach

CODE DEVELOPMENT & INTEGRATION

CCPDS-R Quality Metrics Actuals

Metric	Definition	CCPDS-R Value
Domonia	$R_E = rac{EffortRework}{EffortTotal}$	6.7%
Proportions	$R_S = rac{SLOC}{SLOC}$ Configured	13.5%
Modularity	$Q_{mod} = rac{TotalBreakage}{No.ofSCOs}$	53 <u>\$100</u>
Changeability	$Q_C = rac{Total Effort}{No.of SCOs}$	$15.7 \frac{Hrs}{SCO}$
Maintainability	$Q_M = rac{R_E}{R_S} = rac{ProductivityDevelopment}{ProductivityChange}$.49

SCO: Software Change Order - Discrete Configuration Baseline Change

TRW's Ada	Success

CCPDS-R Changeability Evolution

Conventional:

Cost of Change Increases With Time

CCPDS-R:

• Cost of Change Stablizes, (Even Decreases) With Time

CCPDS-R Changeability Evolution

Equal Contributions of Ada, a Good Ada Process and A Good Ada Architecture

PRESENTER: ELIZABETH S. KEAN
ASPECTS OF REUSABILITY IN PROTO+

ASPECTS OF REUSABILITY IN PROTO+

ELIZABETH S. KEAN

GRIFFISS AFB NY 13441-5700 ROME LABORATORY/COEE

(315) 330-2762/AV 587-2762

OUTLINE

- SYSTEM DEFINITION TECHNOLOGY
- "REUSABLE" REQUIREMENTS SPECIFICATIONS
- WHAT IS PROTO+?
- HOW WILL PROTO+ SUPPORT REUSE?
- PROTO+ WALKTHROUGH
- PROTO+ HARDWARE/SOFTWARE CONFIGURATION

SYSTEM DEFINITION TECHNOLOGY

- AND TOOLS TO SUPPORT THE DEVELOPMENT TASKED WITH DEVELOPING METHODOLOGY OF REQUIREMENTS SPECIFICATIONS FOR LARGE C31 SYSTEMS
- DEFINED REQUIREMENTS ENGINEERING PROCESS MODEL
- DEVELOPED ENVIRONMENT OF TOOLS TO SUPPORT THE PROCESS MODEL

"REUS ABLE" REQUIREMENTS SPECIFICATIONS

TWO LEVELS OF REUSE:

- LOW LEVEL COMPONENT e.g., LIBRARY ROUTINE
- OF SUB COMPONENTS e.g., AN ENTIRE OR COMPONENT CONSISTING OF HIERARCHY MAJOR PIECE OF FUNCTIONALITY

SPECIFY WITH REUSE IN MIND

WHAT IS PROTO+?

- VERY HIGH LEVEL SYSTEM PROTOTYPING TOOL
- EXECUTABLE SPECIFICATION LANGUAGE FOR FOR DESCRIBING SYSTEM FUNCTIONALITY
- OBJECT ORIENTED DATA MANAGEMENT SYSTEM FOR STORING SYSTEM GRAPHS AND DATA

PROTO+ CHARACTERISTICS:

- REPRESENT/ANALYZE/MEASURE PROTOTYPE TIMING CHARACTERISTICS
- CONCURRENT PROCESSES AND COMMUNICATION CHANNELS
- REUSABLE COMPONENTS FOR A C31 DOMAIN
- TOOLS FOR BUILDING/MANAGING REUSE LIBRARY
- TOOLS FOR BUILDING AND TAILORING REUSABLE COMPONENTS

PROTO+ USERS

- SYSTEMS ANALYST LITTLE OR NO PROGRAMMING ABILITIES, HOWEVER KNOWLEDGEABLE IN C31 DOMAIN
- CAPABILITIES/FUNCTIONAL ALGORITHMS PROGRAMMER - ADDS SPECIAL PURPOSE

HOW WILL PROTO+ SUPPORT REUSE?

• PROTO+ AS IT EXISTS TODAY:

REUSABLE COMPONENT LIBRARY AND SUPPORTING TOOLS

ABILITY TO "CUT AND PASTE" BETWEEN COMPONENTS

METHODOLOGY FOR DEVELOPING REUSABLE COMPONENTS

• PROTO+ OF THE FUTURE:

ADD "GLOBAL" LIBRARY FUNCTIONALITY

IMPROVE REUSE METHODOLOGY

DEVELOP C31 TEMPLATES OF REUSABLE SPECS

HARDWARE SOFTWARE CONFIGURATION

- SUN4 SPARC STATION WITH SUN OS 4.1
- ONTOS OBJECT ORIENTED DBMS
- XVIEW (CURRENTLY DELIVERED WITH 4.1)
- PROTO+ SOFTWARE

****NOTE

PROTO+ WILL BE AVAILABLE 30 APRIL 1991 WITH DRAFT DOCUMENTATION

PROTO+ WILL BE AVAILABLE 30 JULY 1991 WITH "APPROVED" DOCUMENTATION PRESENTER: KATHRYN H. HILES
SDS COMMON FRAMEWORK

SDS COMMON FRAMEWORK

KATHRYN H. HILES TELEDYNE BROWN ENGINEERING 12 MARCH 1991

UNCLASSIFIED

SDS SOFTWARE ENGINEERING COMMON FRAMEWORK

- Provides the Software Engineering Environment (SEE)
- Portable to UNIX Based Hardware
- Defines interfaces where external tools can exchange and share data
- Defines the Standard Information Model
- Supports and Accomodates the Full 2167A Life Cycle Development
- Provides the Basis for Software Reuse
- Facilitates the Collection of Quality and Management Metrics
- Provides the Software Process Management

UNCLASSIFIED

FULL LIFE SUPPORT CYCLE

SDS SOFTWARE ENGINEERING COMMON FRAMEWORK

- Provides the Software Engineering Environment (SEE)
- Portable to UNIX Based Hardware
- Defines interfaces where external tools can exchange and share data
- Defines the Standard Information Model
- Supports and Accomodates the Full 2167A Life Cycle Development
- Provides the Basis for Software Reuse
- Facilitates the Collection of Quality and Management Metrics
- Provides the Software Process Management

SDDS FRAMEWORK CAPABILITIES

UNCLASSIFIED

SDDS's DATA MANAGEMENT CSC

UNCLASSIFIED

SDDS's USER INTERFACE CSC

UNCLASSIFIED

S SDDS's EXTERNAL TOOL INTEGRATION CSC

UNCLASSIFIED

SDDS COMMON FRAMEWORK DEVELOPMENT PLANS

- **Common Framework Requirements from System Engineer** Incomplete
- SDIO/SDC Task Force to Lead Rewrite SEE Document
- Prioritize Requirements in SDDS Scope
- FY92 Targeted for Redirection for Framework Development

PRESENTER: TOM MATSON/GLENN HUGHES II
THE RATIONAL ENVIRONMENT

THE RATIONAL ENVIRONMENT

Advanced Technology for Developing Ada Software Systems

RATIONAL'S LARGEST CUSTOMERS

IBM

All major Ada programs including FAA's Advanced

Automation System (AAS) for air traffic control

Bofors Electronics AB

All Ada projects including FS 2000 C³ and

weapons control system

U.S. Army

ATCCS/CHS program, major C³ and MIS systems

including AFATDS, SIDPERS-3, and STANFINS-R

Rockwell

Commercial avionics and space craft electrical

power systems

Lockheed

NASA/SSE for Space Station Freedom, major C³

systems, and classified programs

McDonnell Douglas

Space Station Freedom, C³, and extra vehicular

activity (EVA) systems

Ferranti Computer

Systems

Naval C³/weapons control, trainers, and power

plant automation systems

TRW

Major C³ systems including CCPDS-R, AWIS,

FAAD C²I, and classified programs

Martin Marietta

Air traffic control, SDI/NTB, C³I, and robotics

systems

U.S. Air Force

Major C³, MIS, and avionics systems

Customer Applications

Percentage of processors

TRENDS IN SOFTWARE ENGINEERING

- Iterative process model based on object-oriented methodology
 - Emphasis on graphical representations
 - Extensive use of prototyping
 - Emphasis on reusability
- Heterogeneous target environment
 - UNIX (including real-time applications)
 - Workstations will dominate
- Merger of systems engineering and software engineering
- Networked, workstation-based development environments providing increased automation

RATIONAL ENVIRONMENT ADDS SOFTWARE ENGINEERING SUPPORT TO NETWORKS

Federal Aviation Administration Advanced Automation System (AAS)

Prime

IBM Federal Sector

Contractor:

Division

Purpose:

Replace United States Air

Traffic Control System

Size:

2.5M lines of code (Ada)

Maximum software engin-

eering staff - 500

Development schedule -

10 years

Status:

Systems architecture defined

Prototyping in progress

250 engineers trained

AAS SOFTWARE DEVELOPMENT ENVIRONMENT

FSD's Ada Programming Support Environment (APSE) configuration features a powerful central processor, the Rational R1000 system, and network intelligent workstations that distribute the high-resource demands associated with Ada development.

NASA SPACE STATION FREEDOM PROGRAM ORGANIZATION

055TT 49 1/30/89

SOFTWARE PRODUCTION INITIATIVE

SSE OBJECTIVE/GOALS

ese general en passente massente de la compaction de la c

o OBJECTIVE:

OF A COMMON SOFTWARE SPACE STATION FREEDOM MAINTENANCE ENVIRONMENT PRODUCTION AND FOR THE NASA **ESTABLISHMENT** PROGRAM (SSFP)

GOALS:

- SUPPORT THE LIFE CYCLE MANAGEMENT OF SSFP **OPERATIONAL SOFTWARE**
- MINIMIZE THE OVERALL LIFE CYCLE COST OF THAT SOFTWARE
- FACILITATE THE MIGRATION OF CAPABILITIES FROM GROUND TO SPACE
- SSFP **0**万 THE INTEGRATION **OPERATIONAL SOFTWARE** FACILITATE

WHAT IS A NASA SSE?

* COMMON SOFTWARE DEVELOPMENT METHODOLOGY

THE TOTAL THE PROPERTY OF THE

- * COMMON STANDARDS AND RULES
- DOCUMENTATION

* COMMON INTEGRATED TOOLS

- DESIGN
- CODE
- SOFTWARE TESTING
- MANAGEMENT
- CONFIGURATION MANAGEMENT

* 30+ CONTRACTORS DEVELOPING SSFP SOFTWARE

* 2+ MILLION LINES OF Ada FLIGHT SOFTWARE (initial load)

+ 30 YEAR PROGRAM

* REDUCE RISK AT INTEGRATION

* REDUCE LIFECYCLE COST

SOFTWARE PRODUCTION INITIATIVE

THE SSE HARDWARE ARCHITECTURE

WHY WE SELECTED RATIONAL

* Ada IS ONLY APPROVED LANGUAGE

- * REALIZATION THAT COTS IS THE ONLY PATH
- * SOFTWARE DEVELOPMENT TOOLS NEEDED IN 1990
- * RATIONAL OFFERED THE MOST -- NOW
- RDF
- TBU RPI RTI
- CMVC CDF
- * COMMITMENT & SUPPORT FROM RATIONAL

ATCCS ENVIRONMENT

ARMY PROGRAMS

w/ Rational Development Systems

- C² NODES PRIORITY TO VERTICAL INTEGRATION
- C² INTEROPERABILITY REQUIREMENTS POORLY DEFINED
- REQUIREMENTS DEVELOPMENT PROCESS EMPHASIS ON NODAL ELEMENTS NODAL ELEMENTS IN VARIOUS PHASES OF ACQUISITION PROCESS

ATCCS ENVIRONMENT Contractors

ARMY PROGRAMS

- C² NODES PRIORITY TO VERTICAL INTEGRATION
- C² INTEROPERABILITY REQUIREMENTS POORLY DEFINED
- REQUIREMENTS DEVELOPMENT PROCESS EMPHASIS ON NODAL ELEMENTS
 - NODAL ELEMENTS IN VARIOUS PHASES OF ACQUISITION PROCESS

ATCCS BASIC PSE SYSTEM

AFATDS VI PROGRAMMING SUFFORT ENVIRONMENT CONFIGURATION

Rational Status Update

- ECP 077 is approved
- ATCCS Rational Users
 - TRW/FAADC2I
 - Magnavox/AFATDS
 - Contel Telos/BCS Cannon Ada
 - TRW/CASS
- Other Army Rational Users
 - TRW/AWIS
 - CSC/STANFINS-R
 - Statistica/SIDPERS-3
 - CSC/STARFIARS-M
 - SofTech/RAPID
- Rational-HP integration products are on schedule

IMPACT OF PRODUCTIVITY INCREASES ON PROJECT COST

Productivity Increase (%)	Aggregate Code Production Rate	Eng-Months Saved	\$ Saved
25	250	800	7,667,000
50	300	1,333	12,778,000
100	400	2,000	19,167,000
150	500	2,400	23,000,000
200	600	2,667	25,566,000
250	700	2,857	27,381,000
300	800	3,000	28,156,000

Assumptions:

- 1. Project size equals 800,000 source lines of code.
- 2. Baseline code production rate equals 200 source lines of code per engineering-month.
- 3. Cost per engineering-month is the loaded cost including wages, benefits, facility allocation, management burden, and profit burden. For this case, the cost per engineering-month is assumed to be \$9,583, or \$115,000 per engineering-year.
- 4. Aggregate code production rate is the number of source lines of delivered code divided by the aggregate number of engineering-months required from project start through first delivery.
- 5. The number of engineering-months saved is equal to the number of engineering-months required at the increased productivity less the number required at the base rate.
- 6. \$ Saved equals the number of engineering-months saved multiplied by the cost per engineering-month.

BUSINESS CASE SUMMARY

•	Bofors	CSC	IBM Systems Integration Division
Application	Integrated command and weapon-control system for ships	MIS/Financial accounting system	Command and control-satellite ground system
Size (source lines of code)	1,500,000 x 5 (5 ship designs)	2,000,000	650,000
Status	First ship delivered	Acceptance testing	Top-level design (PDR) completed
Productivity Improvement	118%	106%	93%
Cost savings	\$31.9M	\$24M	\$1.0M
Payback (savings/ investment)	6.5x	9.7x	1.4x*

^{*} Payback is computed through end of top-level design phase only.

Productivity = source lines of code delivered total engineering hours

NASA Space Station Leads Way In Software Development

The software technology for adaptable reliable systems (STARS) program could learn a few lessons from NASA. Although the DOD is still hell-bent on developing its own software-development environments, NASA recently decided to purchase commercial, off-the-shelf solutions for its Space Station. NASA's decision to use Rational Inc.'s Rational Environment rather than build its software support environment (SSE) from scratch, as is being done in the STARS program, blazes a new path in software development the DOD would be wise to follow.

The original NASA software development plan for the Space Station was a disaster. It seems fairly clear that the problems were inherent in the way the original Space Station software development program was designed.

That original plan called for handling the overall project's design and configuration management through a program called automated process control environment (APCE) to be put in place by Lockheed through a subcontractor. APCE turned out to be, in the words of current NASA SSE Project Manager Mike Gremillion, "user-vicious."

But project management in programs the size of the Space Station change frequently. Deputy Director Robert Moorehead joined the program in 1989 and rightly concluded that we could probably build a useable sidewalk to the Space Station before the Space Station software itself would ever be developed. Frank Barnes, Lockheed's program manager for the SSE surveyed the available options and proposed dumping the APCE in favor of the Rational Environment. Barnes redirected the SSE project, and in March of this year, Gremillion was brought on board. He instituted a formal configuration-control program for the project.

Gremillion currently estimates that the project has saved from a year to a year and a half in development time

By Bill Suydam

The proposed NASA Space Station has benefited from the use of off-the-shelf software. (Photo courtesy of Intelligent Light.)

by substituting the Rational Environment for the APC. Unfortunately, as he freely admits, that puts the Space Station program just "not quite as far behind." Meanwhile, selection of the target compiler for the code being developed is still underway, with Alsys and DDC-I proving the finalists in the contest. That compiler will run on the VAX/VMS or IBM platforms and produce code for a bare 80386 platform as well as the multiplexors/demultiplexors (MDMs) of the Space Station platform itself. The Rational incremental compiler is serving as the development compiler for the project.

The SSE itself comprises more than just a combination of software tools for configuration management. It includes several components — software-engineering tools, hardware tools,

operating system interfaces, software-development rules and procedures, and software standards. The SSE, in turn, will be used to provide a development environment for the Space Station's data management system (DMS). The DMS is really more than its name suggests, since it comprises a set of application-level services that rest on the underlying Lynx real-time Unix operating system.

The choice of an existing development system for the Space Station, especially compared to the custom-coded alternative originally proposed, is clearly justified. But we think the larger lesson here is one that should have been learned many times over not only by NASA, but by STARS, the DOD and other agencies responsible for major software-development projects.

An undertaking such as the Space Station program is so vast that no single vendor's solutions really encompass all that is required. But going with off-the-shelf solutions whenever possible — especially in software development, where most of the time and money get spent in a major program — is a step in the right direction. It should be a matter of policy in programs such as the Space Station to rely on commercially available development environments, leaving the design of such environments to the commercial vendors whose products must compete in the marketplace. It is inappropriate for the design of those environments to be turned over, in effect, to government committees.

Nor does this one change in practice and philosophy redeem the entire NASA Space Station Freedom program. Current funding and staffing for the program are totally inadequate to the goal of launching the Space Station by the turn-of-the-century. And, as this goes to press, NASA still has not announced the vendor of the target compiler, although this decision was reportedly made some months ago. \square

PRESENTER: PAUL LARSON Ada CODE GENERATION FOR REAL-TIME SOFTWARE

Ada Code Generation for Real-Time Software:

Space Station Freedom

Satellite Flight Software Testing

March 12, 1991 39th CRIM Huntsville, AL

Topics to be Discussed

- An Introduction to Integrated Systems, Inc.
- Modifying the Conventional Software Development **Process**
- ISI Tools for Modeling, Simulation, Code Generation and Real-Time Testing
- ▶ Application Examples
- Space Station Freedom, Boeing Aerospace
- Satellite Flight Software Testing
- ◆ Summary

An Introduction to Integrated Systems, Inc.

- Principle Facilities in Santa Clara, California
- Incorporated in 1981
- Approximately \$20M in Sales, 125 Employees, Publicly Held
- Provider of Tools and Consulting Services for Real-Time Systems Development

Examples of Real-Time System Design Applications

Aerospace

Hydraulic system management Satellite pointing and tracking Space station environmental control Aircraft flight path control Jet engine control

Automotive

ower-train performance optimization Electronically controlled transmission Engine fuel flow management Four wheel steering system Emission reduction system Active suspension system Anti-lock braking system **Cruise control system** systems

Industrial

Thickness control in aluminum rolling mills Accuracy and speed of wafer steppers Quality optimization in cement kilns Optimization of yield in distillation columns **Material handling**

Others

Computer Peripherals

Servos for optical disk Printer controllers Disk drive servos

Power electronics design

Power plant control

Robot task planning and path optimization Emergency/safety management systems

Competitive Edge: **ISI Provides**

- Higher Reliablity
- Higher Performance
- Lower CGS

Examples of ISI Customers

Aerospace

MartinMarietta Kawasaki Lockheed Rockwell Northrop Boeing Matra NASA

Automotive

General Motors Motorola Honda Nissan TRW Bosch Ford

Manufacturing

General Electric Kaiser Aluminum Fluor Fuji Film Атосо ALCAN Kao

Computer Peripherals

Matsushita Electric Digital Equipment Fujitsu **General Electric** Data General **Control Data** Honeywell Olympus

owa State University Univ. of California Univ. of Colorado Univ. of Michigan Carnegie Mellon Ohio State Stanford

Universities

Conventional Real-Time Software Development

Control System Development Conventional Real-Time

- For complex controllers, an additional "Design Control System" step is required
- ISI's Tools have traditionally performed control analysis, design and simulation

Prototyped Real-Time Control System Development

- ISI Tool enhancements support modification of the control design process
- Requirements errors are identified earlier
- Software integration and test reliability is enhanced
- Risk, time and cost to develop are reduced

ISI's Software and Hardware Tools

- ▶ Graphical Modeling
- ▶ Simulation
- Code Generation in Ada, C, or FORTRAN
- Real-Time Simulation, Test, Control and Data Aquisition

Modeling with the SystemBuild Block Editor

Examples from the 75+ Block

Library Algebraic Nonlinear

 $y = T_{123} + u$

State Transition Diagrams

Finite state machine implementation for:

- Adaptive suspension control
- Switchable engine controllers for power or economy
 - ABS fault diagnostics and recovery

SystemBuild Simulations

What You See is What You Simulate

Simulation Control Panel Editor

Same Editing Paradigms Used in SystemBuild

Interactive Simulation

The ability to monitor and control the dynamic system while it is simulating

Interactive Display

Automatic Code Generation in Ada, C, or Fortran

- ♦ Automatically Resolves Schedules Issues
- ◆ Traceable Back to Diagram
- ◆ No Detailed Code Debugging
 - ♦ Minimal Real-Time Coding
- Works with Other Real-Time Operating Systems

Design Database

Complete Generation of Application Layer

- ▶ Generates Complete Multi-Tasking Application
- ♦ Generates Scheduler
- Preemptive
- Priorities Determined by Rates
- ♦ User Provides Target Specific Layer
- Input/Output Drivers
- Enable/Disable Interrupts
- Fatal Error Recovery
- Optional Background Task

Real-Time Simulation, Test, **Control and Data Aquisition**

Pulse Wide Modulation

i_iłO

Download

Ħ

Compile

u azrī

AutoCode

22 + .52

Database

Integrated Interface

- ♦ Fast Design Iterations
- ◆ Performance Tuning
- Systems Engineers can Test the Solution without Programming

Interact with the Prototype

Actual Plant

Application Example

- Space Station Freedom, Boeing Aerospace
- Boeing's responsibilities include environmental control and life support systems, thermal control, fluid management
- Approximately 15 sub-contractors are participating in the development of software which Boeing must manage and integrate
- An Iterative Rapid Prototyping Design Methodology was adopted to modify the front end of the conventional software development cycle
- ISI's Tools support this modification and enforce consistency through a toolset referred to as the Application Generator (AG)
- System design changes are graphically implemented on a workstation, Ada source code is generated, compiled, downloaded and executed on the AG
- Prototype software is generated rapidly and prototype hardware can be exercised to support iterative testing and design

Boeing Application Generator Hardware

AG Workstation VAXstation 3100 Model 30 19" Color Monitor VMS Operating System

AG I/O Modules
OPTO-22 Optically Isolated
16 Analog Channels
32 Digital Channels

AG Controller 80386 microprocessor Multibus II Backplane 80186 Communications Processor

Boeing Application Generator Software

MATRIXX

Linear Analysis

Graphics

AutoCode

Model Development Simulation

Interactive Animation

Operator-in-the-Loop Sim

Hardware Connection Editor

Ada Code Generator DDC-I Ada Compiler System

Jocument Generator

DDC-I Kernel

//O Drivers - 1553B Bus

- PAMUX Bus
- Ethernet

Application Software

- Generated Code
- Scheduler

Advantages of AG Based Development

- Control System Engineers are able to implement algorithms in a control domain context
- Design drawings are maintained consistent with current design
- Reduces number of steps required for error identification, promoting early detection of design and requirements errors
- Reduces the number of steps required for error correction
- Eliminates the need for labor intensive and error prone hand coding of algorithms
- Permits early testing through simulation and hardware emulation prior to availability of actual hardware
- Provides real-time control and display of processes including hardware-in-the-loop simulations

Application Example

- ◆ Satellite Flight Software Testing
- simulation/emulation which could interact with and verify independently Major aerospace company interested in rapidly developing a real-time developed flight software
- Cadre's Teamwork used for System Requirements Definition and documentation
- ISI's Tools used for detailed satellite model development, simulation, Ada code generation, real-time simulation, and interface to satellite flight computer (OBDP)

System Requirements Definition

- ♦ Cadre's Teamwork:
- CASE Tool for performing systems analysis and design
- Implements the Hatley/Perbhai structured analysis approach to systems and software design
- Below is the highest level systems model developed in Teamwork (DFD 0):

First Level Decomposition of DFD 0

◆ DFD 1 modeled in Teamwork:

Translation from Teamwork to ISI's Graphical Environment

◆ DFD 1 modeled in SystemBuild

Further Decomposition of Orbit Dynamics

Hardware Configuration Simulation/Emulation

SUBSYSTEM/PAYLOAD SIMS

HARDWARE - IN - LOOP

- Concurrent processor with 11 80386 cards (22 MFLOP)
- Extensive hardware interface capabilty
- Concurrent multi-rate simulation and control

Satellite Simulation/Emulation Advantages

- Graphical based programming environment is easy to use
- Automatic Ada Code Generation eliminates coding of algorithms
- Ability to interface to flight computer verifies flight software and/or hardware subsystems
- Reuseable library of standardized spacecraft and space environment models are developed:
- Standard User interface to simulation facility
- Standard for definition of simulation models (purpose, function, assumptions, data, design approach, . . .)
- Standard simulation "structure" (definition of order, rates, dependencies of execution, ...)
- Standard graphical programming simulation "language"
- Standard simulation services (control, data logging, data display, I/O communication with host operating system and external devices . . .)
- Standard for introduction of fault conditions into simulations to simulate subsystem/payload failures (i.e.,fault tolerance)

Summary

- The conventional software development process is nearly concluded before it is possible to identify errors introduced at the Requirements Definition stage
- ◆ These errors are costly to identify and correct

Prototyped Software Development

- ISI offers tools that allow many real-time software development efforts to be compressed
- The result is an efficient path to simulation and real time testing
- Rapid error identification, economical correction, and improved maintenance

A Graphical Development Environment

- Easy to use
- ◆ Facilitates communication
- ◆ Enforcement of standards
- Support of re-useable modules

Reset

Simplified Coding and Real-Time Testing

- ♦ Ada, C and FORTRAN code generators
- ◆ Configurable, turn-key, real-time execution

Software Development Suitable for ISI's Tools

- Real-time software for embedded control as well as simulation of the process and its environment
- Anything which can be characterized in a control-flow/data-flow model:
- Pointing and Tracking Systems
- Engine Control Simulation
- Flight Control Simulation
- Advanced Robotics
- Missile Guidance and Control
- Real-Time Hardware-in-the-Loop Simulation
- Man-in-the-Loop Simulation
- Interceptor Tracking/Trajectory
- Status Determination for sensors, interceptors, etc.
- Or ...?

ISI's Product and Service Focus

System Design and Simulation

Analysis and Design

Modeling and Simulation

MATRIXX

SystemBuild

DSP Module

Interactive Animation Module

> Control Design Module

HyperBuild Module

21222

Robust Control Module

RemoteSim Module

> System ID Module

Optimization Module

Real-Time Software Development

Real-Time Code Generation

AutoCode/Ada Module AutoCode/C Module AutoCode/Fortran Module

Rapid Prototyping Implementation and Testing

AC-100/C System Additional Processor Boards

AC-100/Ada System

Engineering Services

Design Experts Control Systems Robotics

Real-Time Software

Expert

Systems
Signal
Processing

Structural Analysis Fluid Mechanics

MEMORANDUM FOR SEE DISTRIBUTION

SUBJECT: 40th Computer Resource Integration Meeting (CRIM)

- 1. Subject meeting is scheduled for 9 Apr 91, 0800-1500, in room 1C1600. The main focus of this meeting is parallel processing capabilities and technology within the U.S. Army Strategic Defense Command (USASDC). These monthly CRIMs are held to provide the Technical Director an integrated status of significant computer resource activities, developments, and issues in the development of projects, programs, and systems. Organizations involved in related parallel processing activities not being briefed at this meeting should contact this office for presentation at the next CRIM. An open meeting will be held in the morning to provide all USASDC personnel an opportunity to interact with the briefers and ask questions on the products and services presented. An executive overview will be presented to Dr. Davies on the same day from 1300-1500.
- 2. An agenda for this meeting (enclosure 1), action items (enclosure 2), and the minutes of the 39th CRIM (enclosure 3) are provided. A status review of each action item by the action officer is requested at the meeting. Please notify this office of any corrections or additions to the minutes.
- 3. Future meetings will include briefings from the various USASDC organizations on their software development, quality evaluation, parallel processing, and other related software programs. It is therefore requested that all organizations provide representatives to this meeting in preparation for these briefings. The point of contact is Frank Poslajko, 955-1995.
- 4. Security clearances for participants external to this command are to be sent to:

Frank Poslajko
U.S. Army Strategic Defense Command
ATTN: CSSD-SP
P.O. Box 1500
Huntsville, Alabama 35807-3801

FAX No. (205) 955-3958

3 Encls

O. PETER CERNY U
Chief, Systems and Programs
Integration Office

```
CSSD-SP
          40th Computer Resource Integration Meeting (CRIM)
SUBJECT:
DISTRIBUTION:
SFAE-SD-AST/COL Stewart
SFAE-SD-GST/Jerry Cavender
SFAE-SD-GST-D/Dr. Ron Green (w/o encl 3)
SFAE-SD-GBR/COL Meier
SFAE-SD-GBR-E/W. Burrows, Reggie Anderson (w/o encl 3)
SFAE-SD-GBI/James Katechis
SFAE-SD-GBI-I/Bill Roberson, Bill Mobley (w/o encl 3)
SFAE-SD-HED/Alan Sherer
SFAE-SD-HED-E/Terri Russell, Gisele Wilson (w/o encl 3)
SFAE-SD-ASP-E/Donna Brock
CSSD-CM/Billy Perkins
CSSD-CO
CSSD-NT-LO/John Hawk (w/o encl 3)
CSSD-DE/Dr. Lavan
CSSD-DE-C/Bill Hughes, Greg Heinen (w/o encl 3)
CSSD-KA/COL MacNeill
CSSD-KA-R/LTC Harrison (w/o encl 3)
CSSD-LC/R. Hamilton
CSSD-SL/LTC Steve Rice
CSSD-IM/Bob Ogle, Sue Martin (w/o encl 3)
CSSD-IN-T (w/o encl 3)
CSSD-TM/COL T. Kunhart
CSSD-TM-I/David Hayes (w/o encl 3)
CSSD-KE/Dr. Wilkinson
CSSD-KE-T/R. Curtis, Eugene Sanders (w/o encl 3)
CSSD-PA/Ed Vaughn (w/o encl 3)
CSSD-SA/LTC Thomas Shpakowsky
CSSD-SA-E/COL Paul Mullek (w/o encl 3)
CSSD-SA-EE/Ron Liedel (w/o encl 3)
CSSD-SA-EE/Mark McClellan (w/o encl 3)
CSSD-SA-ET/Pam Caruso, David Parsons, Bill McCormick (w/o encl 3)
CSSD-SA-B/LTC John Wilson (w/o encl 3)
CSSD-SA-BA/MAJ James DeLary, Katy Attilio, James Caudle
  (w/o encl 3)
CSSD-SA-BB/Paro Perrett (w/o encl 3)
CSSD-SA-BT/Dr. Virginia Kobler, Jackie Cristina (w/o encl 3)
CSSD-SA-BE/Dr. Doyle Thomas (w/o encl 3)
CSSD-SA-SA/Jim Burch, Mark Walczyk (w/o encl 3)
CSSD-SA-SS/James Keith (w/o encl 3)
CSSD-SO/Don Marsh
CSSD-TE/COL James Green
CSSD-TE-P/John Hartman, Tom Nuttall (w/o encl 3)
CSSD-TE-O/Mickey Jones (w/o encl 3)
CSSD-AT/Dr. Shelba Proffitt, Dick Lenning
CSSD-AT-P/D. Satterfield
CSSD-TD/Dr. William Davies
CSSD-SD/Dr. James Fisher
CSSD-SD-S/Tony Muzzi (w/o encl 3)
CSSD-CA-S/W. Shelton
```

PRELIMINARY AGENDA 40TH COMPUTER RESOURCE INTEGRATION MEETING 9 APRIL 1991 CONFERENCE ROOM 1C1600, 0800-1500

0800-0810	Introduction	Frank Poslajko 955-1995
0810-0825	SDIO Parallel Processing Activities, Organization, etc.	Dr. Leslie Pierre 702-693-1826
0825-0850	NTB Software Development Highlights	Cpt Andrews/T. Gill 719-380-2465
0850-0910	ARC Architecture Overview Environment System Spec.	Bob Cooley 955-1354
0910-0940	A2P Program	Steve Risner 955-3848
0940-1000	Touchstone Hypercube (ips 860)	Dr. Ron Green 722-1844
1000-1010	Break	
1010-1030	Fault Tolerant Processor (FTP)	Bettie Upshaw 955-3704
1030-1050	Georgia Tech Parallel Function Processor Status	Gene Sanders 955-5813
1050-1110	Acousto-Opic Processing	James Fears/ Dr. Dorsett 955-3798
1110-1130	Residue Number System/ Real Time Waveform Processor	Charles Kiss 955-3798
1130-1150	Solid State Optics Processor	Luis Lopez 955-4817
1150-1210	High Performance ARC Network (HPAN)	Luke Huffman (Colsa) 922-1512
1210-1300	Lunch	

PRELIMINARY AGENDA 40TH COMPUTER RESOURCE INTEGRATION MEETING (Cont)

1300-1305	Action Items	Frank Poslajko 955-1995
1305-1310	SDIO Parallel Processing Activities, Organization, etc.	Dr. Leslie Pierre 702-693-1826
1310-1315	SDI Technical Information Center	Mike Metrione 703-521-3812 x6029
1315-1330	NTB Software Development Highlights	Cpt Andrews/T. Gill 719-380-2465
1330-1340	ARC Architecture Overview Environment System Spec.	Bob Cooley 955-1354
1340-1350	A2P Program	Steve Risner 955-3848
1350-1400	Touchstone Hypercube (ips 860)	Dr. Ron Green 722-1844
1400-1410	Fault Tolerant Processor (FTP)	Bettie Upshaw 955-3704
1410-1420	Georgia Tech Parallel Function Processor Status	Gene Sanders 955-5813
1420-1430	Acousto-Opic Processing	James Fears/ Dr. Dorsett 955-3798
1430-1440	Residue Number System/ Real Time Waveform Processor	Charles Kiss 955-3798
1440-1450	Solid State Optics Processor	Luis Lopez 955-4817
1450-1500	High Performance ARC Network (HPAN)	Luke Huffman (Colsa) 922-1512

40TH COMPUTER RESOURCE INTEGRATION MEETING (CRIM) ACTION ITEMS

John Hawk Provide a status update on the software organization and development at the 5-3920 National Test Facility. Frank Poslajko Schedule status briefings on SDS 5-1995 committees to include purpose, accomplishments, plans, and schedules. Barbara Rogers Establish a Data Reduction Planning 3. 722-1518 Committee. Bob Johnson DISC4 to coordinate with Ada 9X **AUTOVON 227-0259** project office on Ada language deficiencies. Denise Jones ADCCS project office to report on the 5. number of Ada waiver requests 895-3397 submitted to DISC4. Broaden distribution of SESE Frank Poslajko 6. 5-1995 specification document to CASE developers. 7. Provide location of controlled Dr. Mike Walker 883-1170 experiment on trusted software development costs. ا د الوراق Dr. Mike Walker Incorporating reuse in the 8. 883-1170 trusted software document and the SEI industry self assessment.

Schedule a Rationale and ISI tools

9.

demonstration

Endosur 2

Frank Poslajko

5-1995