CURVATURES, INVARIANTS AND TO GET THEM WITHOUT (M) ANY DERIVATIVES

Mathieu Desbrun & Peter Schröder

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

CLASSICAL NOTIONS

Curves

arclength parameterization

$$c: I \to \mathbb{R}^3 \quad |\ddot{c}(t)| = \kappa(t)$$

- center of osculating ("kissing") circle (also defines osc. plane)
 - tilt of plane is torsion
- Euclidian motion invariant
 - uniquely characterizes curve!

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

SURFACES

First fundamental form

parameterized surface

$$S: \mathbb{R}^2 \supset \Omega \to \mathbb{R}^3$$

$$S(u,v) = (x(u,v), y(u,v), z(u,v))$$

tangent vectors

$$c: I \to S$$
 $c(0) = p$ $\dot{c}(0) = \alpha$

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

2

TANGENT VECTOR

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

/1

TANGENT PLANE

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

5

NORMAL VECTOR

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

6

METRIC

Measure stuff

- angle, length, area
 - symmetric, bilinear form $I_p: (T_pM)^2 \to \mathbb{R}$ $I_p(X,Y) = g(X,Y) = df(X) \cdot df(Y)$

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

_

METRIC

Measuring area

areas in tangent space

$$\int \int_{\Omega} |df(X) \times df(Y)| \, dx \, dy = A(S) = \int_{S} 1 \, dA$$

- no dependence on parameterization
- discrete setting... easy
 - sum areas of triangles

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

Q

METRIC

Within each triangle

the metric is obvious

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

_

GEOMETRY OF THE NORMAL

Gauss map

normal at point

$$N(p) = \frac{df(X) \times df(Y)}{|df(X) \times df(Y)|}(p) \quad N: M \to \mathbb{S}^2 \subset \mathbb{R}^3$$

- consider curve in surface again
 - study its curvature at p
 - "tilting" of normal along the curve

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

10

SHAPE OPERATOR

Derivative of Gauss map

tangent space to itself

$$dN_p:T_pM o T_pM$$
 $ext{linear map}$

express in tangent space

$$dN(X) = df(SX)$$

second fundamental form

$$II_p(X,Y) = g(SX,Y)$$
 \longrightarrow self-adjoint

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

11

CURVATURE OF SURFACES

Normal curvature

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

12