WO0005204

Title: MONOCYCLIC beta -LACTAM COMPOUNDS AND CHYMASE INHIBITORS CONTAINING THE SAME

Abstract:

Chymase inhibitors and cytokine production inhibitors containing compounds represented by general formula (I), prodrugs of the same, pharmaceutically acceptable salts thereof or hydrates of them, wherein A is -CO-, -CONH- or the like; R<1> is optionally substituted lower alkyl, optionally substituted aryl or the like; R<2> and R<3> are each independently hydrogen, optionally substituted lower alkyl or the like; B is -S-, -O- or the like; and R<4> is optionally substituted aryl or the like.

PCT

世界知的所有権機関国 際 事 務 局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C07D 205/08, 401/12, 403/12, 405/06, 405/12, 405/14, A61K 31/395, 31/40, 31/44, 31/445, 31/495, 31/505, 31/535

A1

(11) 国際公開番号

WO00/05204

(43) 国際公開日

2000年2月3日(03.02.00)

(21) 国際出願番号

PCT/JP99/03864

(22) 国際出願日

1999年7月16日(16.07.99)

(30) 優先権データ

特願平10/207540

1998年7月23日(23.07.98)

(71) 出願人(米国を除くすべての指定国について) 塩野義製薬株式会社(SHIONOGI & CO., LTD.)[JP/JP] 〒541-0045 大阪府大阪市中央区道修町3丁目1番8号 Osaka, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

上仲正朗(UENAKA, Masaaki)[JP/JP]

〒563-0131 大阪府豊能郡能勢町野間大原125 Osaka, (JP)

紀伊 誠(KII, Makoto)[JP/JP]

〒660-0881 兵庫県尼崎市昭和通2-8-12-108 Hyogo, (JP)

中嶋雅壽(NAKAJIMA, Masatoshi)[JP/JP]

〒521-1231 滋賀県神崎郡能登川町能登川34 Shiga, (JP)

(74) 代理人

弁理士 山内秀晃,外(YAMAUCHI, Hideaki et al.) 〒553-0002 大阪府大阪市福島区鷺洲5丁目12番4号 塩野義製薬株式会社 特許部 Osaka, (JP)

(81) 指定国 AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), ARIPO特許 (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM)

添付公開書類

国際調査報告書

(54)Title: MONOCYCLIC β-LACTAM COMPOUNDS AND CHYMASE INHIBITORS CONTAINING THE SAME

(54)発明の名称 単環性 β - ラクタム化合物及びそれを含有するキマーゼ阻害剤

$$R^{2} \xrightarrow{R^{3}} B-R^{4}$$

$$O \qquad A-R^{1}$$

(57) Abstract

Chymase inhibitors and cytokine production inhibitors containing compounds represented by general formula (I), prodrugs of the same, pharmaceutically acceptable salts thereof or hydrates of them, wherein A is -CO-, -CONH- or the like; R^1 is optionally substituted lower alkyl, optionally substituted aryl or the like; R^2 and R^3 are each independently hydrogen, optionally substituted lower alkyl or the like; B is -S-, -O- or the like; and R^4 is optionally substituted aryl or the like.

式(I):

$$R^2$$
 N
 $A-R^1$
 $B-R^4$
 $B-R^4$

(式中、Aは-CO-または-CONH-等であり、R 1 は置換基を有していてもよい低級アルキルまたは置換基を有していてもよいアリール等であり、R 2 および R 3 は各々独立して水素、または置換基を有していてもよい低級アルキル等であり、R 4 は置換基を有していてもよいアリール等である)

で示される化合物、そのプロドラッグ、製薬上許容される塩またはそれらの水和 物を含有するキマーゼ阻害剤および/またはサイトカイン産生抑制剤を提供する。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

CI コートジボアール II CM カメルーン IN	ESIRABDEHMNWRRUDELNSTPEGPRエスフフガ英ググガガギギギクハイアイイアイ日ケキ北韓ニンラス ダア ア・ャチリネラエ ラア アギム・インンン がア ア・・キチリネラエ ラア アギム・インン がア ア・・キチリネラエ ラア アギー アーシンル ン タア ン ター・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	KLLIKRSTUP ルタイコーダウンシン アッカ グ イン アッカ アッカー アットア・リー・アット アッカ アッカ アットア・アット アッカ	RSDEGIKLNZDGJZMRTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
Patent provided by Sughruo Mion, PLLC - http://www.sughrus.com			

明細書

単環性β-ラクタム化合物及びそれを含有するキマーゼ阻害剤

5 技術分野

本発明はキマーゼ阻害作用および/またはサイトカイン産生抑制作用を有する 化合物の用途、キマーゼ阻害作用および/またはサイトカイン産生抑制作用を有する新規化合物に関する。詳しくは、キマーゼ阻害作用および/またはサイトカイン産生抑制作用を有する単環性 β -ラクタム化合物を含有するキマーゼ阻害剤、新規単環性 β -ラクタム化合物に関する。

背景技術

10

15

ヒト型キマーゼは、分子量約3万の中性セリンプロテアーゼであり、主として 肥満細胞で合成、貯蔵、分泌され、主として心臓、血管および皮膚等に存在する ことが判明している。

その主な作用として、アンジオテンシンIIの産生が挙げられる。従来、アンジオテンシンIIの産生にはアンジオテンシン変換酵素(以下、ACEと略記する)が作用していると考えられていたが、最近になって、ヒト心臓におけるアンジオテンシンIIの産生においてACEが作用しているのはわずか10~15%20程度にすぎず、80%以上はヒト型キマーゼの作用であることが明らかとなってきた(サーキュレーション・リサーチ(Circulation Research)第66巻,第883頁,1990年、ジャーナル・オブ・バイオロジカル・ケミストリー(Journal of Biological Chemistry),第266巻,第17173頁,1991年)。

25 また、キマーゼは肥満細胞からのヒスタミン遊離促進にも関与しているとされており(ジャーナル・オブ・バイオケミストリー(Journal of Biochemistry)第103巻,第820-822頁,1988年)、その

- WO 00/05204 PCT/JP99/03864

阻害剤は新しいタイプの抗炎症剤、抗アレルギー剤になり得るとして有望視されている。

その他にも、ヒト型キマーゼは様々な活性を有しており、インビトロではマクロファージの泡沫細胞化促進、プロコラゲナーゼから活性型コラゲナーゼの産生、コラーゲン、フィブロネクチン、ビトロネクチン等の細胞外マトリックスの限定分解、ビッグエンドセリンからエンドセリンへの変換、トロンビンやIgGの限定分解等の作用を有することが既に明らかになっている。また、病態生理学的には、バルーン障害後の血管や心筋症の心臓においてキマーゼ活性が上昇していることも知られている。

現在までに、WO93/25574、WO95/27053、WO95/27055にペプチド性キマーゼ阻害剤が開示されている。また、非ペプチド性キマーゼ阻害剤としては、例えばWO96/04248にイミダゾリジン誘導体が、WO96/33974にピリジン誘導体およびピリミジン誘導体が、EP713876Aにトリアジン誘導体が開示されているが、いずれも本発明に係る化合物とは全く構造の異なるものである。

本発明に係る化合物と類似構造を有する化合物が、例えばGB2266527 A、日本特許2736113号、J. Med. Chem., 1995, 38, 2 449-2462、USP5747485等に記載されている。しかし、これらはいずれもエラスターゼ阻害活性を有する化合物であり、本発明とは異なるものである。また、特開平9-263577には本発明に係る化合物と類似構造を有する化合物がエラスターゼ阻害活性およびサイトカイン産生抑制作用を有することが記載されている。

発明の開示

25 本発明の目的は優れた作用を有するキマーゼ阻害剤および/またはサイトカイン産生抑制剤並びにキマーゼ阻害作用および/またはサイトカイン産生抑制作用を有する新規化合物を提供することにある。

本発明は、1)式(I):

$$R^2$$
 $B-R^4$
 $A-R^1$
(I)

(式中、Aは単結合、-CO-、-COOO-、-COCO-、-CONH-または $-SO_2-$ であり、

- R^{-1} は置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよいシクロアルケニルまたは置換基を有していてもよいアリールであり、Aが単結合、-CO-、-COCO-、-CONH-または $-SO_2-$ である場合、 R^{-1} は水素であってもよく、
- 10 R²およびR³は各々独立して水素、ハロゲン、置換基を有していてもよい低級 アルキル、置換基を有していてもよい低級アルコキシカルボニル、置換基を有し ていてもよいアシル、置換基を有していてもよいアミノ、置換基を有していても よいカルバモイルまたは置換基を有していてもよいアリールであり、

Bは単結合、一S一、一〇一、一S一S一、一S〇一または一S〇2一であり、

15 R 4 は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよいアリールまたは置換基を有していてもよいヘテロ環であり、さらにBが単結合、-S-、-O-、-SO-または $-SO_2-$ である場合、置換基を有していてもよいアシルであってもよい)

で示される化合物(以下、化合物(I)とする)、

20 2) A-R¹が

$$-CONH(CHR^{5})m - -CO - + R^{6a} + R^{6b} + R^{6b} + R^{6b} + R^{6b}$$

(式中、R⁵は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルコキシまたは置

換基を有していてもよいアリールであり、R⁶aおよびR⁶bは各々独立して水素、ハロゲン、ヒドロキシ、低級アルキル、カルボキシ、低級アルコキシカルボニル、低級アルコキシ、アリール、アシル、置換基を有していてもよいアミノ、アリールオキシ、低級アルキルチオまたはヘテロ環であるか、一緒になって低級アルキレンジオキシを形成してもよく、mは0または1である)であり、

 \mathbb{R}^{2} および \mathbb{R}^{3} が各々独立して水素、置換基を有していてもよいフェニルまたは置換基を有していてもよいベンジルであり、

B-R⁴が水素、置換基を有していてもよいアシルオキシ、

$$-O - (CH_2)n - (CH_2)n - S - (CH_2)n - (CH$$

10 [式中、 R^{7a} および R^{7b} は各々独立して水素、ハロゲン、低級アルキル、低級アルコキシ、低級アルケニル、アミノ、アシルアミノ、

(式中、X およびWは単結合、低級アルキレンまたは低級アルケニレンであり、Yは単結合、 $-CH_2-$ 、 $-NR^{12}-$ (R^{12} は水素、メチレンジオキシフェ 15 二ルで置換されていてもよい低級アルキル、シクロアルキルまたはヘテロ環)または-O-であり、 R^{8} は水素、置換基を有していてもよい低級アルキルまたは置換基を有していてもよいカルバモイルであり、 R^{9} 、 R^{10} および R^{11} は各々独立して水素、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルキル、置換基を有していてもよいアリールスルホニルである)

であり、nは0~6の整数である]

である1) 記載の化合物、3) A-R¹ が

-CONHCHR⁵
$$\mathbb{R}^{6a}$$
 \mathbb{R}^{6b}

(式中、 R^5 は炭素数 $1\sim3$ のアルキルまたは置換基(ハロゲン、低級アルキルまたは低級アルコキシ)を有していてもよいフェニルであり、 R^6 α および R^6 α は各々独立して水素、ハロゲン、低級アルキルまたは低級アルコキシである)であり、 R^2 が低級アルコキシで置換されていてもよいベンジルであり、 R^3 が水素であり、 R^4 がアシルオキシ、

[式中、R^{7a}が水素、

10 (式中、XおよびWは単結合、メチレンまたはピニレンであり、R 8 は低級アルキルまたはカルバモイルであり、R 9 は水素または置換基を有していてもよい低級アルキル、低級アルキルであり、R 1 0 は水素、置換基を有していてもよい低級アルキル、低級アルケニル、低級アルキルアミノ、アリールアミノ、フェニルまたはアリールスルホニルであり、R 1 1 1 は水素、置換基を有していてもよい低級アルキルまたは置換基を有していてもよいフェニルであり、R 1 2 はメチレンジオキシフェニルで置換されていてもよい低級アルキルまたはシクロアルキルである)

である1)記載の化合物、

である]

$$R^{6a}$$
4) $A - R^{1} h^{5}$ -CONHCHR⁵

(式中、 R^5 は炭素数 $1\sim3$ のアルキルまたは であり、 R^6 a は同時に水素、ハロゲン、低級アルキルまたは低級アルコキシである)である 1)記載の化合物、

5) A - R 1 が - C O N H C H R 5 P h (P h はフェニルを示す) であり、R 2 がベンジルであり、R 3 が炭素数 $1\sim3$ のアルキルであり、B - R 4 が

そのプロドラッグ、製薬上許容される塩またはそれらの水和物を含有するキマーゼ阻害剤および/またはサイトカイン産生抑制剤、詳しくは抗炎症剤を提供する。

10 さらに、1)記載の化合物(I)、そのプロドラッグ、製薬上許容される塩またはそれらの水和物を投与することを特徴とする、キマーゼに起因する疾患(例えば循環器系疾患、炎症、アレルギー性疾患、リュウマチ、喘息またはアトピー)の予防および/または治療の方法を提供する。

さらに別の態様として、キマーゼに起因する疾患の予防および/または治療の 15 ための医薬を製造するための、化合物 (I)、そのプロドラッグ、製薬上許容される塩またはそれらの水和物の使用を提供する。

さらに別の態様として、本発明は 6) 式 (I ') :

(式中、Aおよび

20 R¹は1)と同義であり、

 R^3 は水素、ハロゲン、置換基を有していてもよい低級アルコキシカルボニル、

置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を 有していてもよいアリールまたは置換基を有していてもよいベンジルであり、

R ^{1 3 a} および R ^{1 3 b} は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルキルチオであるか、一緒になって低級アルキレンジオキシを形成し、

 \mathbb{R}^{14} は水素、ヒドロキシ、低級アルキル、低級アルコキシまたはアシルオキシであり、

R^{7a}は水素、

(式中、XおよびWは結合、メチレンまたはビニレンであり、R 8 はメチルまたはカルバモイルであり、R 9 は水素または低級アルキルであり、R 1 0 は置換基(低級アルキルアミノ;ハロゲンで置換されていてもよいフェニル;カルボキシ;またはアリールで置換されていてもよい低級アルコキシカルボニル)を有していてもよい低級アルキル、低級アルケニル、低級アルキルアミノ、フェニルアミノ、フェニルまたはベンゼンスルホニルであり、R 1 1 は水素または置換基(低級アルキルアミノ;アシルオキシ;ハロゲンもしくはメチレンジオキシで置換されていてもよいフェニル;ヘテロ環)を有していてもよい低級アルキルであり、R 1 2 は炭素数 1 2 3 のアルキルまたはシクロヘキシルである)

20 であり、R⁷bは水素であり、

BはOまたはSである)

で示される化合物(以下、化合物(I'))とする)、そのプロドラッグ、製薬上 許容される塩またはそれらの水和物を提供する。

また、本発明は7)式(I''):

(式中、Bおよび R^4 は1)と同義であり、 Aが-CO-、-CONH-または $-SO_2$ -であり、

 \mathbb{R}^{-1} は置換基を有していてもよい低級アルキルまたは置換基を有していてもよい \mathbb{R}^{-1} アリールであり、

R³は水素、ハロゲン、低級アルキル、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいベンジルであり、

10 R ^{1 3 a} および R ^{1 3 b} は各々独立して水素、ハロゲン、ヒドロキシ、置換基を 有していてもよい低級アルキル、置換基を有していてもよい低級アルコキシ、置 換基を有していてもよいアミノ、置換基を有していてもよい低級アルキルチオで あるか、一緒になって低級アルキレンジオキシを形成し、

 \mathbb{R}^{14} は水素、ヒドロキシ、低級アルキル、低級アルコキシまたはアシルオキシ である。

ただし、AがCONHであるとき、B-R 4 は置換基を有していてもよいアリールオキシでなく、かつ置換基を有していてもよいアシルチオでない。) で示される化合物(以下、化合物(I , ,) とする)、

8) $B - R^4 m r v v v x + v$

20

$$-O(CH_2)n - \bigcirc R^{7a} \qquad -S - \bigcirc R^{7a} \qquad \sharp \text{ th} \qquad -S - \bigcirc R^{7a}$$

[式中、nは0または1であり、R^{7a}が水素、

(式中、XおよびWは単結合、メチレンまたはビニレンであり、 R^8 は低級アルキルまたはカルバモイルであり、 R^9 は水素または置換基を有していてもよい低級アルキルであり、 R^{10} は水素、置換基を有していてもよい低級アルキル、低級アルケニル、低級アルキルアミノ、アリールアミノ、フェニルまたはアリール

5 スルホニルであり、 R^{11} は水素、置換基を有していてもよいアルキルまたは置換基を有していてもよいフェニルであり、 R^{12} はメチレンジオキシフェニルで置換されていてもよい低級アルキルまたはシクロアルキルである)

である〕

ド、

である7)記載の化合物、

- 10 9) R 3 が水素である、6) または7) の化合物、
 - 10) R^{13} a が水素またはオルト位に置換した炭素数 $1 \sim 3$ の低級アルコキシであり、 R^{13} b が水素である 6)または 7) の化合物、
 - 11) (a) 4-[3-ベンジル-4-オキソ-1-(1-フェニル-エチルカルバモイル) -アゼチジン-2-イルオキシ] -ベンゾイックアシッド、
- 15 (b) $3 \langle x \rangle y \rangle v 2 [4 (4 \langle x \rangle y y y y z \rangle v 1 \langle x \rangle v v \langle x \rangle v$
 - (c) 3 ベンジルー2 [4 (2 カルバモイルーピロリジン-1 カルボニル) フェノキシ] 4 オキソーアゼチジン-1 カルボキシリックアシッ
- 20 ド (1-フェニル-エチル)ーアミド、
- - (f) $4 [3 (2 \lambda) + + 2 \times 2 \times 2) 4 \lambda + 2 \times 2 1 (1 2 \times 2)$

- WO 00/05204 PCT/JP99/03864

- エチルカルパモイル) - アゼチジン- 2 - イルオキシ] - ベンゾイックアシッド ピリジン- 4 - イルメチル エステル、

- (h) $3-(2-\lambda++\nu-\alpha)\nu)$ $-2-\lambda+\nu-4-[4-(4-\nu)]$ $2\nu-2-\lambda-2\nu-1-\lambda-2\nu$ $2\nu-2-\lambda-2\nu-1-\lambda-2\nu$ $2\nu-2-\lambda-2\nu-1-\lambda-2\nu$ $2\nu-2-\lambda-2\nu-1-\lambda-2\nu$ $2\nu-2-\lambda-2\nu-1-\lambda-2\nu$ $2\nu-2-\lambda-2\nu-1-\lambda-2\nu$ $2\nu-2-\lambda-2\nu-1-\lambda-2\nu$ $2\nu-2-\lambda-2\nu-1-\lambda-2\nu$ $2\nu-2-\lambda-2\nu-1-\lambda-2$
- ルボキシリックアシッド (1-フェニル-エチル)-アミド、

5

25

ックアシッド、

- (j) 3-(2-x++)-(x) -2-[4-(4-x+)-2] -1-x+ -1-x+
- 15 (k) 4 [1 (ベンズヒドリルーカルバモイル) 3 (2 エトキシーベンジル) 4 オキソーアゼチジン 2 イルオキシ] ベンゾイックアシッド、(1) <math>2 [4 (4 シクロヘキシルーピペラジン 1 カルボニル) フェノキシ] 3 (2 エトキシーベンジル) 4 オキソーアゼチジン 1 カルボキシリックアシッド ベンズヒドリルーアミド、
- - (n) $\{4-[1-(ベンズヒドリルーカルバモイル)-3-(2-エトキシーベンジル)-4-オキソーアゼチジン-2-イルオキシ]-フェニル<math>\}$ -アセチ
 - (o) $3 \{4 [1 (ベンズヒドリルーカルバモイル) 3 (2 x x + y x x x + y x$

10

15

20

クリリックアシッド、

- - (r) $4-[1-{[ビス-(4-メトキシーフェニル)-メチル]-カルバモイル}-3-(2-エトキシーベンジル)-4-オキソーアゼチジン-2-イルオキシ]-ベンゾイックアシッドから選択されるいずれかの化合物、$

そのプロドラッグ、製薬上許容される塩またはそれらの水和物を提供する。

さらに、6)~11)のいずれかに記載の化合物、そのプロドラッグ、製薬上 許容される塩またはそれらの水和物を含有する医薬組成物、詳しくはキマーゼ阻 害剤および/またはサイトカイン産生抑制剤、さらに詳しくは抗炎症剤を提供す る。

本発明は、別の態様として、6)~11)のいずれかに記載の化合物、そのプロドラッグ、製薬上許容される塩またはそれらの水和物を投与することを特徴とする、キマーゼに起因する疾患の予防および/または治療の方法、キマーゼに起因する疾患の予防および/または治療のための医薬を製造するための、6)~11)のいずれかに記載の化合物、そのプロドラッグ、製薬上許容される塩またはそれらの水和物の使用を提供する。

本明細書中において、「ハロゲン」とは、フッ素、塩素、臭素およびヨウ素を 包含する。特に塩素および臭素が好ましい。

25 「低級アルキル」とは、炭素数 $1 \sim 10$ 、好ましくは炭素数 $1 \sim 6$ 、さらに好ましくは炭素数 $1 \sim 3$ の直鎖または分枝状のアルキルを意味し、例えばメチル、エチル、n-プロピル、イソプロピル、n-ブチル、1 、1 、1 の 1 の

- WO 00/05204 PCT/JP99/03864

ル、tertーブチル、n-ペンチル、イソペンチル、ネオペンチル、ヘキシル、 イソヘキシル、ヘプチル、イソヘプチル、オクチル、イソオクチル、ノニル、デ シル等を包含する。

「置換基を有していてもよい低級アルキル」とは、例えば任意の位置が1以上 の置換基で置換されていてもよい低級アルキルを包含し、その置換基としてはヒ ドロキシ、ハロゲン、低級アルコキシ、カルボキシ、アシル、アシルオキシ、シ クロアルキル、置換基(低級アルキルで置換されていてもよいアミノ、アリール 等)を有していてもよい低級アルコキシカルボニル、置換基(低級アルキル、ア シル等)を有していてもよいアミノ、カルバモイル、置換基[ハロゲン、置換基 10 {カルボキシ、置換基(アリール、アルキルアミノ等)を有していてもよい低級 アルコキシカルボニル、置換基(アリール、アルキルアミノ等)を有していても よい低級アルケニルオキシカルボニル、置換基 (アリール、アルキルアミノ等) を有していてもよいアリールオキシカルボニルまたは置換基(低級アルキル、カ ルバモイル等)を有していてもよいヘテロ環カルボニル等}を有していてもよい 15 低級アルキル、置換基{カルボキシ、置換基(アリール、アルキルアミノ等)を 有していてもよい低級アルコキシカルボニル、低級アルケニルオキシカルボニル、 アリールオキシカルボニル、置換基(低級アルキル、カルバモイル等)を有して いてもよいヘテロ環カルボニル等}を有していてもよい低級アルケニル、低級ア ルコキシ、カルボキシ、低級アルコキシカルボニル、アリール、アシル、置換基 (低級アルキル等)を有していてもよいアミノ、置換基 {置換基 (低級アルキル 20 アミノ、アリール等)を有していてもよい低級アルキル、置換基(低級アルキル アミノ、アリール等)を有していてもよい低級アルケニル、置換基(低級アルキ ルアミノ、アリール等)を有していてもよいアリール等〉を有していてもよいカ ルバモイル、アリールオキシ、ヘテロ環、置換基(低級アルキル、カルバモイル 等)を有していてもよいヘテロ環カルボニルまたは低級アルキレンジオキシ等] 25 を有していてもよいアリール、ヘテロ環、置換基(低級アルキル等)を有してい てもよいヘテロ環カルボニル等が挙げられる。置換基を有していてもよいアリー

ルで置換された低級アルキルの好ましい例として非置換ベンジル、低級アルコキ シベンジルおよびジフェニルメチルが挙げられる。

「低級アルコキシ」、「低級アルコキシカルボニル」、「低級アルキルアミノ」、 「低級アルキルチオ」のアルキル部分は上記「低級アルキル」と同様であり、これらが置換基を有している場合の置換基も上記アルキルのものと同様である。

5

「低級アルキレン」とは炭素数 1 ~ 6 の直鎖状または分枝状のアルキレンを包含する。例えばメチレン、エチレン、トリメチレン、テトラメチレン、プロピレン、エチルエチレン等を包含する。好ましくはメチレンである。

「低級アルキレンジオキシ」とはメチレンジオキシ、エチレンジオキシ等を包 10 含し、好ましくはメチレンジオキシである。

「低級アルケニル」とは、炭素数 2~10、好ましくは炭素数 2~6、さらに好ましくは炭素数 2~4の直鎖または分枝状のアルケニルを包含する。具体的にはピニル、1ープロペニル、アリル、イソプロペニル、プテニル、イソブテニル、ベンタジエニル、ヘキセニル、イソペンテニル、ベンタジエニル、ヘキセニル、イ15 ソヘキセニル、ヘキサジエニル、ヘブテニル、オクテニル、ノネニル、デセニル等を包含し、任意の位置に1以上の二重結合を有する。「置換基を有していてもよい低級アルケニル」の置換基としてはヒドロキシ、ハロゲン、低級アルコキシ、カルボキシ、アシル、アシルオキシ、シクロアルキル、低級アルコキシカルボニル、アリール、ヘテロ環、置換基(低級アルキル、カルバモイル等)を有していてもよいへテロ環カルボニル等が挙げられ、1以上の任意の位置がこれらの置換基で置換されていてもよい。

「低級アルケニルオキシカルボニル」の低級アルケニル部分および「置換基を 有していてもよい低級アルケニルオキシカルボニル」の置換基部分も上記と同様 である。

25 「低級アルケニレン」とは例えば炭素数 2 ~ 6、好ましくは炭素数 2 ~ 4 の上記「低級アルキレン」の任意の位置に 1 以上の二重結合を有する基等を包含する。 具体的にはビニレン、プロペニレン、プテニレン、ペンテニレンおよびメチルプ . WO 00/05204 PCT/JP99/03864

ロペニレン等が挙げられる。

5

15

「低級アルキニル」とは、炭素数 2~10、好ましくは炭素数 2~6、さらに好ましくは炭素数 2~4の直鎖状または分枝状のアルキニル等を意味し、具体的には、エチニル、プロピニル、ブチニル、ペンチニル、ヘキシニル、ヘプチニル、オクチニル、ノニニル、デシニル等を包含する。これらは任意の位置に1以上の三重結合を有しており、さらに二重結合を有していてもよい。「置換基を有していてもよい低級アルキニル」の置換基は上記低級アルケニルのものと同様である。

「アシル」とは炭素数1~10、好ましくは炭素数1~6、さらに好ましくは炭素数1~3の脂肪族アシルおよびアロイル等を包含する。具体的には、ホルミル、アセチル、プロピオニル、ブチリル、イソブチリル、バレリル、ピバロイル、ヘキサノイル、アクリロイル、プロピオロイル、メタクリロイルおよびクロトノイル、シクロヘキサンカルボニル、ベンゾイル等を包含する。「置換基を有していてもよいアシル」の置換基とはヒドロキシ、ハロゲン、低級アルコキシ、カルボキシ、低級アルコキシカルボニル、アリールまたはヘテロ環等を意味し、1以上の任意の位置がこれらの置換基で置換されていてもよい。

「アシルオキシ」、「アシルアミノ」のアシル部分および「置換基を有していてもよいアシルオキシ」、「置換基を有していてもよいアシルアミノ」の置換基も上記アシルと同様である。アシルオキシの好ましい例はアセチルオキシである。

「シクロアルキル」とは例えば炭素数3~6の炭素環等であり、具体的にはシ 20 クロプロピル、シクロプチル、シクロペンチル、シクロヘキシル等を包含する。 「置換基を有していてもよいシクロアルキル」の置換基とはヒドロキシ、ハロゲン、低級アルコキシカルボニル、低級アルコキシ、アリール、ヘテロ環等が挙げられ、1以上の任意の位置がこれらの置換基で置換されていてもよい。

「シクロアルケニル」とは、上記シクロアルキルの環中の任意の位置に1以上 の二重結合を有しているものを意味し、具体的にはシクロプロペニル、シクロブ テニル、シクロペンテニル、シクロヘキセニル、シクロヘキサジエニル等を包含 する。「置換基を有していてもよいシクロアルケニル」の置換基は上記シクロア

5

10

ルキルのものと同様であり、1以上の任意の位置に置換基を有していてもよい。

「置換基を有していてもよいアミノ」とは、置換アミノおよび非置換アミノを 包含し、置換基として1以上のヒドロキシ、ハロゲン、低級アルキル、低級アル キルアミノ、アシル、カルバモイル、アリール、ヘテロ環等を有していてもよい。

「置換基を有していてもよいカルバモイル」とは、置換カルバモイルおよび非 置換カルバモイルを包含し、置換基としては置換基を有していてもよい低級アル キル (例えば非置換低級アルキル等)、置換基を有していてもよい低級アルケニ ル (例えば非置換低級アルケニル等)、低級アルキルスルホニル、スルファモイ ル、置換基 (ハロゲン等)を有していてもよいアシル、アミノおよび置換基を有 していてもよいアリール (例えば非置換アリール等)等が挙げられる。

「アリール」とは、フェニル、ナフチル、アントラセニル、インデニル、フェ ナンスレニル等を包含する。特にフェニルが好ましい。

「置換基を有していてもよいアリール」の置換基としてはヒドロキシ、ハロゲ ン、置換基[ハロゲン、カルボキシ、置換基(低級アルキルアミノ、アリール等) を有していてもよい低級アルコキシカルボニル、置換基(低級アルキルアミノ、 15 アリール等)を有していてもよい低級アルケニルオキシカルボニル、置換基(低 級アルキルアミノ、アリール等)を有していてもよいアリールオキシカルポニル、 置換基(低級アルキルまたはカルバモイル等)を有していてもよいヘテロ環カル ボニル等]を有していてもよい低級アルキル、置換基[ハロゲン、カルボキシ、 置換基(低級アルキルアミノ、アリール等)を有していてもよい低級アルコキシ 20 カルボニル、置換基(低級アルキルアミノ、アリール等)を有していてもよい低 級アルケニルオキシカルボニル、置換基(低級アルキルアミノ、アリール等)を 有していてもよいアリールオキシカルボニル、置換基(低級アルキル、カルバモ イル等)を有していてもよいヘテロ環カルボニル等]を有していてもよい低級ア ルケニル、置換基(ヒドロキシ、ハロゲン、低級アルコキシ、カルボキシ、低級 25 アルコキシカルポニル、アミノ、低級アルキルアミノ等)を有していてもよい低 級アルコキシ、カルボキシ、置換基(アシルオキシ;低級アルキルアミノ;アル

キレンジオキシもしくはハロゲンで置換されていてもよいアリール;ヘテロ環等) を有していてもよい低級アルコキシカルボニル、低級アルケニルオキシカルボニ ル、低級アルキレンジオキシ、アシル、アシルオキシ、置換基(低級アルキル、 アシル等)を有していてもよいアミノ、ニトロ、置換基【置換基(カルボキシ; 低級アルキルもしくはアロイルで置換されていてもよいアミノ;アリールで置換 5 されていてもよい低級アルコキシカルボニル;ハロゲン、低級アルキルもしくは 低級アルコキシで置換されていてもよいアリール等)を有していてもよい低級ア ルキル、置換基(アリール等)を有していてもよいシクロアルキル、置換基(低 級アルキルアミノ、アリール等) を有していてもよい低級アルケニル、置換基 (低 級アルキル、アリール等)を有していてもよいアミノ、置換基(低級アルキルア 10 ミノ、アリール等)を有していてもよいアリール、アリールスルホニル等] を有 していてもよいカルバモイル、アリール、アリールオキシ、ヘテロ環または置換 基(低級アルキル、低級アルキレンジオキシで置換されていてもよいアリールア ルキル、シクロアルキル、カルバモイル、ヘテロ環等)を有していてもよいヘテ 15 口環カルボニル等が挙げられ、1以上の任意の位置がこれらの置換基で置換され ていてもよい。

「アリールオキシ」、「アリールスルホニル」、「アリールアミノ」のアリール部分は上記「アリール」と同様であり、「置換基を有していてもよいアリールオキシ」、「置換基を有していてもよいアリールスルホニル」の置換基部分も上記アリールの置換基と同様である。

「置換基を有していてもよいベンジル」は、ベンジルのメチレン部分に上記「置換基を有していてもよい低級アルキル」の置換基または低級アルキル基を有していてもよく、フェニル部分に上記「置換基を有していてもよいアリール」の置換基を有していてもよい。メチレン部分の置換基として具体的には低級アルキル、

25 アリール等が挙げられる。

20

「ヘテロ環」とは、〇、SおよびNから任意に選択されるヘテロ原子を環内に 1以上有するヘテロ環を意味し、具体的にはピロリル、イミダゾリル、ピラゾリ - WO 00/05204 PCT/JP99/03864

ル、ピリジル、ピリダジニル、ピリミジニル、ピラジニル、トリアジニル、イソキサゾリル、オキサゾリル、オキサジアゾリル、イソチアゾリル、チアゾリル、チアゾリル、オンドリル、フリルおよびチエニル等の5~6員の芳香族へテロ環や、インドリル、ベンズイミダゾリル、インダゾリル、インドリジニル、キノリル、イソキノリル、シンノリニル、フタラジニル、キナゾリニル、ナフチリジニル、キノキサリニル、ブテリジニル、ベンズイソキサゾリル、ベンズオキサゾリル、キサジアゾリル、ベンズイソチアゾリル、ベンズチアジアゾリル、ベンゾフリル、ベンブチエニル等の縮合芳香族へテロ環、エチレンオキシジニル、ジオキサニル、チイラニル、オキサチオラニル、アゼチジニル、チアニル、ピロリジニル、イミダゾリジニル、ピラゾリジニル、ピペリジニル、ピペラジニル、モルホニル等の脂環式へテロ環を包含する。

5

10

15

20

25

「置換基を有していてもよいヘテロ環」の置換基としてはヒドロキシ、ハロゲン、置換基を有していてもよい低級アルキル (例えば非置換低級アルキル等)、低級アルケニル、低級アルコキシ、カルボキシ、低級アルコキシカルボニル、置換基を有していてもよいカルバモイル (例えば非置換カルバモイル等)、アリール、ヘテロ環等が挙げられ、1以上の任意の位置に置換基を有していてもよい。

「ヘテロ環カルボニル」および「置換基を有していてもよいヘテロ環カルボニル」のヘテロ環部分および置換基も上記「ヘテロ環」および「置換基を有していてもよいヘテロ環」と同様である。好ましい「ヘテロ環カルボニル」の例としてはモルホリルカルボニル、ピペラジニルカルボニル、メチルピペラジニルカルボニル、ピリミジニルピペラジニルカルボニル、ピリミジニルピペラジニルカルボニル、ピペリジルカルボニル、ビペリジルカルボニル、ビペリジルカルボニル、ビペリジルカルボニル、ビペリジルカルボニル、ビペリジルカルボニル

化合物(I)の製薬上許容される塩としては、例えば塩酸、硫酸、硝酸、リン酸、フッ化水素酸、臭化水素酸等の鉱酸の塩;ギ酸、酢酸、酒石酸、乳酸、クエン酸、フマール酸、マレイン酸、コハク酸等の有機酸の塩;アンモニウム、トリメチルアンモニウム、トリエチルアンモニウム等の有機塩基の塩;ナトリウム、カリウム等のアルカリ金属の塩またはカルシウム、マグネシウム等のアルカリ土

. WO 00/05204 PCT/JP99/03864

類金属の塩等を挙げることができる。

本発明は、本発明に係る化合物の水和物も包含し、化合物(I)、(I')または(I'')1分子に対し、任意の数の水分子と配位していてもよい。

また、本発明に係る化合物は、ラセミ体、両対掌体および全ての立体異性体(ジ 5 アステレオマー、エピマー、エナンチオマー等)を含む。

発明を実施するための最良の手段

化合物(I)、(I') および(I'') は全てキマーゼ阻害作用および/またはサイトカイン産生抑制作用を有しているが、その中でも特に以下の化合物が 10 好ましい。

上記式(I)、(I')または(I'')において、

 R^{-1} は置換基を有していてもよい低級アルキルまたは置換基を有していてもよいアリールである(以下、Aおよび R^{-1} がA R^{-1} -1 であるとする)化合物、

15 好ましくはA-R¹が

$$-CONH(CHR^{5})m \xrightarrow{\qquad \qquad \qquad } R^{6a} \\ -CO \xrightarrow{\qquad \qquad } R^{6b} \\ +Ett -SO_{2} \xrightarrow{\qquad \qquad } R^{6b}$$

(式中、R⁵は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルコキシまたは置換基を有していてもよいアリールであり、R⁶aおよびR⁶bは各々独立して水20 素、ハロゲン、ヒドロキシ、低級アルキル、カルボキシ、低級アルコキシカルボニル、低級アルコキシ、アリール、アシル、置換基を有していてもよいアミノ、アリールオキシ、低級アルキルチオまたはヘテロ環であるか、一緒になって低級アルキレンジオキシを形成してもよく、mは0または1である)

である(以下、Aおよび R^1 が AR^1-2 であるとする)化合物、

25 好ましくはA-R¹が

-CONH(CHR⁵)m
$$=$$
 $\begin{vmatrix} R^{6a} \\ -R^{6b} \end{vmatrix}$

(式中、 R^5 は水素、低級アルキルまたは置換基(ハロゲン、低級アルキルまたは低級アルコキシ)を有していてもよいフェニルであり、 R^6 a および R^6 b は各々独立して水素、ハロゲン、低級アルキルまたは低級アルコキシであるか、一緒になってメチレンジオキシを形成し、mは1である)である(以下、Aおよび R^1 がA R^1 - 3であるとする)化合物、好ましくはA - R^1 が

(式中、 R^{5} は炭素数 $1\sim3$ のアルキルまたは置換基(ハロゲン、低級アルキル 10 または低級アルコキシ)を有していてもよいフェニルであり、 R^{6} a および R^{6} b は各々独立して水素、ハロゲン、低級アルキルまたは低級アルコキシである) である(以下、A および R^{1} が A R^{1} -4 であるとする) 化合物、好ましくは A

(式中、 R^5 は炭素数 $1\sim3$ のアルキルまたは であり、 R^6 a は同時 に水素、ハロゲン、低級アルキルまたは低級アルコキシである) である(以下、Aおよび R^1 がA R^1 -5 であるとする)化合物 好ましくはA $-R^1$ が

である(以下、Aおよび R^1 が AR^1-6 であるとする)化合物、

- 2) R^2 が水素、置換基を有していてもよい低級アルキルまたは置換基を有していてもよいアリールである(以下、 R^2 が R^2-1 であるとする)化合物、
- 5 好ましくは R 2 が水素、置換基を有していてもよいフェニルまたは置換基を有していてもよいベンジルである(以下、 R 2 が R 2 2 2 2 2 であるとする)化合物、好ましくは R 2 が

(式中、R¹³aおよびR¹³bは各々独立して水素、ハロゲン、ヒドロキシ、 置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルコ キシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいへ テロ環オキシ、置換基を有していてもよいアミノ (例えば非置換アミノ、低級ア ルキルアミノ、アリールアミノ、ヘテロ環アミノ等)、置換基を有していてもよ い低級アルキルチオ、置換基を有していてもよいアリールチオ、置換基を有して いてもよいヘテロ環チオ、アリールまたはヘテロ環であるか、一緒になって低級 アルキレンジオキシを形成し、

である(以下、 R^2 が R^2 -3であるとする)化合物、

20 好ましくは R²が

(式中、 R^{13a} は水素、低級アルキル、低級アルコキシ、フェニルオキシ、低

級アルキルアミノ、フェニルアミノ、低級アルキルチオ、フェニルチオまたはフェニルである)である(以下、R 2 がR 2 -4であるとする)化合物、 好ましくはR 2 が

5 (式中、 R^{13} a が水素、低級アルキル、低級アルコキシ、低級アルキルアミノまたは低級アルキルチオである)である(以下、 R^2 が R^2 - 5 であるとする) 化合物、

好ましくは R 2 が低級アルコキシで置換されていてもよいベンジルである (以下、 R 2 が R 2 - 6 であるとする) 化合物、

- 10 最も好ましくは R^2 がオルト位を低級アルコキシで置換されていてもよいベンジルである (以下、 R^2 が R^2 7 であるとする) 化合物、
 - 3) R ³が水素、ハロゲン、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいベンジルである
- 15 (以下、 R^3 が $R^3 1$ であるとする) 化合物、

20

好ましくは水素、置換基を有していてもよいフェニルまたは置換基を有していてもよいベンジルである (以下、 R^3 が R^3-2 であるとする) 化合物、

好ましくは水素である(以下、 R^3 が R^3-3 であるとする)化合物、

4) B-R⁴が水素、置換基を有していてもよいアシルオキシ、

$$-O - (CH_2)n -$$

[式中、 R^{7} a および R^{7} b は各々独立して水素、ハロゲン、低級アルキル、低級アルコキシ、低級アルケニル、アミノ、アシルアミノ、

$$-X-CON$$
 Y
 $-CONR^9R^{10}$ $\pm t$ $-W-COOR^{11}$

10 であり、nが0~6の整数である(以下、BおよびR⁴がBR⁴-1であるとする)化合物、

好ましくは $B - R^4$ がアシルオキシ、

[式中、R^{7aが水素、}

15

20

である] である (以下、Bおよび R 4 が B R 4 4 2 であるとする) 化合物、 好ましくは B 4 が

[R^{7a}は水素、

5

(式中、XおよびWは単結合、メチレンまたはビニレンであり、R 8 はメチルまたはカルバモイルであり、R 9 は水素または低級アルキルであり、R 1 0 は置換基(低級アルキルアミノ;ハロゲンで置換されていてもよいフェニル;カルボキシ;またはアリールで置換されていてもよい低級アルコキシカルボニル)を有していてもよい低級アルキル、低級アルケニル、低級アルキルアミノ、フェニルアミノ、フェニルまたはベンゼンスルホニルであり、R 1 1 は水素または置換基(低級アルキルアミノ;アシルオキシ;ハロゲンもしくはメチレンジオキシで置換されていてもよいフェニル;ヘテロ環)を有していてもよい低級アルキルであり、

15 である(以下、BおよびR 4 がBR 4 -3であるとする)化合物、 好ましくはB-R 4 が

 R^{12} は炭素数 $1 \sim 3$ のアルキルまたはシクロヘキシルである)]

[R^{7a}は水素、

$$-X-CON$$
 NR^{12} , $-CON$ O $-X-CON$ $-CONR^9R^{10}$ $\pm \hbar t t$ $-W-COOR^{11}$

20 (式中、XおよびWは単結合を表すかメチレンまたはビニレンであり、 R^8 はメ チルまたはカルバモイルであり、 R^9 は水素または低級アルキルであり、 R^{10} は低級アルキルアミノ低級アルキル、ハロゲンで置換されていてもよいフェニル低級アルキル、低級アルケニル、フェニルアミノまたはベンゼンスルホニルであり、 $\mathbf{R}^{1\,1}$ は水素またはフェニルもしくはヘテロ環で置換されていてもよい低級アルキルであり、 $\mathbf{R}^{1\,2}$ は炭素数 $1\sim3$ のアルキルまたはシクロヘキシルであ

5 る)]

である(以下、 B および R 4 が B R 4 - 4 であるとする) 化合物、 B - R 4 が

[式中、R 7 a は

10

(式中、Xは単結合を表すかまたはメチレンであり、 R^8 はメチルまたはカルバモイルであり、Wは単結合を表すか、メチレンまたはピニレンであり、 R^{12} はメチルまたはシクロヘキシルである)

である] である(以下、Bおよび \mathbf{R}^4 がB \mathbf{R}^4 -5であるとする)化合物、

15 最も好ましくは B - R ⁴ が

(式中、 R^{-1} 2 はメチルまたはシクロヘキシルである)

である(以下、BおよびR 4 がBR 4 ~6であるとする)化合物、

5) R^5 が水素、置換基を有していてもよい低級アルキル、置換基を有していて 20 もよい低級アルケニル、置換基を有していてもよい低級アルコキシまたは置換基 を有していてもよいアリールである(以下、 R^5 が R^5 -1 であるとする)化合 物、

 R^{5} が水素、低級アルキルまたは置換基(ハロゲン、低級アルキルまたは低級ア

- WO 00/05204 PCT/JP99/03864

ルコキシ)を有していてもよいフェニルである(以下、 $R^{\,5}$ が $R^{\,5}$ - 2 であるとする)化合物、

 R^{5} が炭素数 $1\sim3$ のアルキルまたは置換基 (ハロゲン、低級アルキルまたは低級アルコキシ)を有していてもよいフェニル (以下、 R^{5} が $R^{5}-3$ であるとする) 化合物、

 R^{5} がメチルまたは低級アルキルで置換されていてもよいフェニルである (以下、 R^{5} が R^{5} -4 であるとする) 化合物、

6) R^{6a} および R^{6b} が各々独立して水素、ハロゲン、低級アルキル、低級アルコキシカルボニル、低級アルコキシであるか、一緒になって低級アルキレンジ

10 オキシを形成する (以下、 R^6 が R^6-1 であるとする) 化合物、

 R^{6a} および R^{6b} が共に水素、ハロゲン、炭素数 $1\sim3$ のアルキルもしくは炭素数 $1\sim3$ のアルコキシであるか、または一緒になってメチレンジオキシを形成する(以下、 R^{6} が R^{6} -2 であるとする)化合物、

 R^{6} a および R^{6} b が同時に水素または炭素数 $1 \sim 3$ のアルキルである(以下、 R^{6} が $R^{6} - 3$ であるとする)化合物、

 R^{6a} および R^{6b} が同時に水素である(以下、 R^{6} が R^{6-4} であるとする)化合物、

7) R ^{7 a} が水素、

5

15

20 (式中、X およびW は単結合、メチレンまたはビニレンであり、R 8 は低級アルキルまたはカルバモイルであり、R 9 は水素または置換基を有していてもよい低級アルキルであり、R 1 0 は水素、置換基を有していてもよい低級アルキル、低級アルケニル、低級アルキルアミノ、アリールアミノ、フェニルまたはアリールスルホニルであり、R 1 1 1 は水素、置換基を有していてもよい低級アルキルまたは置換基を有していてもよいフェニルであり、R 1 2 はメチレンジオキシフェニ

ルで置換されていてもよい低級アルキルまたはシクロアルキルである) であり、 R^{7b} が水素である] (以下、 R^{7a} および R^{7b} をあわせて、 R^{7} が R^{7-1} であるとする) 化合物、

好ましくは R⁷a が水素、

5

15 であり、 R^{7} b が水素である(以下、 R^{7} a および R^{7} b をあわせて、 R^{7} が R^{7} - 2 であるとする)化合物、

好ましくはR 7 aが

$$-X-CON$$
 NR^{12} , $-CON$ O $-X-CON$ $-CONR^9R^{10}$ $\pm \hbar t$ $-W-COOR^{11}$

(式中、XおよびWは単結合、メチレンまたはビニレンであり、R 8 はメチルま 20 たはカルバモイルであり、R 9 は水素または低級アルキルであり、R 1 0 は低級アルキルアミノ低級アルキルまたは低級アルケニルであり、R 1 1 1 は水素、低級アルキルアミノ低級アルキルまたはベンジルであり、R 1 2 はメチルまたはシクロヘキシルである)

であり、 R^{7} b が水素である(以下、 R^{7} a および R^{7} b をあわせて、 R^{7} が R^{7} - 3 であるとする)化合物、

好ましくはR⁷aが

5 (式中、Xは単結合を表すかまたはメチレンであり、R 8 はメチルまたはカルバモイルであり、Wは単結合を表すか、メチレンまたはビニレンであり、R 1 2 はメチルまたはシクロヘキシルである)

であり、 R^{7} b が水素である(以下、 R^{7} a および R^{7} b をあわせて、 R^{7} が R^{7} - 4 であるとする)化合物、

$$-CON$$
 NR^{12} または $-COOH$ 10 最も好ましくは R^{7} a が

(式中R¹²はメチルまたはシクロヘキシルである)

である(以下、R^{7a}およびR^{7b}をあわせて、R⁷がR⁷-5であるとする) 化合物、

8) R^8 が低級アルキルまたはカルバモイルである(以下 R^8 が R^8-1 である 2 とする)化合物、

好ましくは R^8 が炭素数 $1\sim3$ のアルキルまたはカルバモイルである(以下 R^8 が R^8-2 であるとする)化合物、

好ましくは R 8 がメチルまたはカルバモイルである(以下 R 8 が R 8 - 3 であるとする)化合物、

20 9) R 9 が水素または置換基を有していてもよい低級アルキルである(以下、R 9 が R 9 - 1 であるとする)化合物、

好ましくは R^9 が水素または低級アルキルである(以下 R^9 が R^9-2 であるとする)化合物、

好ましくは R^9 が水素または炭素数 $1\sim3$ のアルキルである(以下 R^9 が R^9 -

15

3であるとする) 化合物、

- 4であるとする) 化合物、

- 10) R^{10} が水素、置換基を有していてもよい低級アルキル、低級アルケニル、低級アルキルアミノ、アリールアミノ、フェニルまたはアリールスルホニルである(以下、 R^{10} が R^{10} 1 であるとする)化合物、
- 5 好ましくは R^{10} が置換基(低級アルキルアミノ; ハロゲンで置換されていてもよいフェニル; カルボキシ; またはアリールで置換されていてもよい低級アルコキシカルボニル)を有していてもよい低級アルキル、低級アルケニル、低級アルキルアミノ、フェニルアミノ、フェニルまたはベンゼンスルホニルである(以下、 R^{10} が R^{10} 2 であるとする)化合物、
- 10 さらに好ましくは R^{10} が置換基(低級アルキルアミノ、ハロゲンで置換されていてもよいフェニル、カルボキシ、アリール低級アルコキシカルボニル)を有していてもよい低級アルキル、低級アルケニルまたはフェニルアミノである(以下、 R^{10} が R^{10} 3 であるとする)化合物、

好ましくは R^{10} が低級アルキルアミノ低級アルキル、フェニル低級アルキル、 ハロゲノフェニル低級アルキル、フェニルアミノである(以下、 R^{10} が R^{10}

- $1\ 1\)$ R $^{1\ 1}$ が水素、置換基を有していてもよい低級アルキルまたは置換基を有していてもよいフェニルである(以下、R $^{1\ 1}$ がR $^{1\ 1}$ $^{-}$ 1 であるとする)化合物、
- 20 好ましくは R^{1} が水素または置換基(低級アルキルアミノ;アシルオキシ;ハロゲンもしくはメチレンジオキシで置換されていてもよいフェニル;ヘテロ環)を有していてもよい低級アルキルである(以下、 R^{1} が R^{1} 1 2 であるとする)化合物、

好ましくは R^{1} が水素、低級アルキルアミノ低級アルキルまたはフェニルアル 25 キルである (以下、 R^{1} が R^{1} 1-3であるとする) 化合物、

最も好ましくは R 1 が水素である(以下、 R 1 が R 1 1 1 - 4 であるとする) 化合物、

- 12) R^{12} がメチレンジオキシフェニルで置換されていてもよい低級アルキル、シクロアルキルまたはピリミジンである(以下 R^{12} が $R^{12}-1$ であるとする) 化合物、
- R^{12} がメチレンジオキシフェニルで置換されていてもよい低級アルキルまたは 5 シクロアルキル (以下 R^{12} が R^{12} 2 であるとする) 化合物、
 - R^{12} が炭素数 $1 \sim 3$ のアルキルまたはシクロアルキルである(以下 R^{12} が R^{12} の R^{12} が R^{12} の R^{12}

最も好ましくは R^{12} がメチルまたはシクロヘキシルである(以下 R^{12} が R^{12} 000 R^{12} 000 R^{12} 100 R^{12} 10 R^{12}

- 10 13) R^{13} a および R^{13} b が各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルキルチオであるか、一緒になってメチレンジオキシを形成する(以下、 R^{13} が R^{13} R^{13} R^{13} R^{14} R^{14} R^{15} R^{15}
- 15 好ましくは R^{13a} が水素、低級アルキル、低級アルコキシ、低級アルキルアミノまたは低級アルキルチオであり、 R^{13b} が水素である(以下、 R^{13} が R^{13a} が $R^{$
 - R^{13} a および R^{13} b が各々独立して水素または低級 アルコキシである (以下、 R^{13} が R^{13} 3 であるとする) 化合物、
- 20 R ^{1 3} a が水素またはオルト位に置換した炭素数 1 ~ 3 の低級アルコキシであり、 R ^{1 3 b} が水素である (以下、R ^{1 3} が R ^{1 3} - 4 であるとする) 化合物、 R ^{1 3 a b b x R R ^{1 3 b} な R ^{1 3} - 4 であるとする) 化合物、}
 - R^{13} aおよび R^{13} bが同時に水素である(以下、 R^{13} が R^{13} -5であるとする)化合物、
 - 14) R^{14} が水素である (以下、 R^{14} が R^{14} 1であるとする) 化合物、
- 25 15) AおよびR 1 がA R 1 1 であり、R 2 がR 2 1 である化合物、

好ましくはAおよびR 1 がAR 1 -2であり、R 2 がR 2 -2であり、R 3 がR

3-2である化合物、

さらに好ましくはAおよび R^1 が AR^1-3 であり、 R^2 が R^2-3 であり、 R^3 が R^3-3 である化合物、

好ましくはAおよび R^1 が AR^1-4 であり、 R^2 が R^2-4 であり、 R^3 が R^3 5 3-3である化合物、

好ましくはAおよび R^1 が AR^1-5 であり、 R^2 が R^2-6 であり、 R^3 が R^3-3 である化合物、最も好ましくはAおよび R^1 が AR^1-6 であり、 R^2 が

10 $R^2 - 7$ であり、 R^3 が $R^3 - 3$ である化合物、

16) Aおよび R^1 がA R^1 -1であり、 R^2 が R^2 -1であり、B R^4 がB R^4 -1である化合物、

好ましくはAおよび R^1 がA R^1 -2であり、 R^2 が R^2 -2であり、B R^4 が B R^4 -2である化合物、

15 さらに好ましくはAおよびR 1 がA R 1 - 3 であり、R 2 がR 2 - 3 であり、B R 4 がB R 4 - 3 である化合物、

好ましくはAおよび R^1 がA R^1 -4であり、 R^2 が R^2 -4であり、 BR^4 が BR^4 -4である化合物、

好ましくはAおよび R^1 がA R^1 -5であり、 R^2 が R^2 -5であり、 BR^4 が

20 BR⁴-5である化合物、

好ましくはAおよび R^1 が AR^1-5 であり、 R^2 が R^2-6 であり、 BR^4 が BR^4-5 である化合物、

最も好ましくはAおよびR 1 がA R 1 - 5 であり、R 2 がR 2 - 7 であり、B R 4 が B R 4 - 5 である化合物、

25 17) Aおよび R^1 が AR^1-1 であり、 R^3 が R^3-1 であり、 BR^4 が BR^4 1である化合物、

好ましくはAおよび R^1 が AR^1-2 であり、 R^3 が R^3-2 であり、 BR^4 が

BR⁴-2である化合物、

さらに好ましくはAおよび R^1 が AR^1-3 であり、 R^3 が R^3-3 であり、B R^4 が BR^4-3 である化合物、

好ましくはAおよび $R^{\,1}$ が $AR^{\,1}$ ー4であり、 $R^{\,3}$ が $R^{\,3}$ ー3であり、 $BR^{\,4}$ が $BR^{\,4}$ ー4である化合物、

最も好ましくはAおよび R^1 が AR^1-5 であり、 R^3 が R^3-3 であり、 BR^4 が BR^4-5 である化合物、

- 18) R^2 が R^2-1 であり、 R^3 が R^3-1 であり、 BR^4 が BR^4-1 である化合物、
- 10 好ましくは R^2 が R^2 2 であり、 R^3 が R^3 2 であり、 BR^4 が BR^4 2 である化合物、

さらに好ましくは R^2 が R^2 -3であり、 R^3 が R^3 -3であり、 BR^4 が BR^4 -3である化合物、

好ましくは R^2 が R^2-4 であり、 R^3 が R^3-3 であり、 BR^4 が BR^4-4 である 化合物、

好ましくは R^2 が R^2-5 であり、 R^3 が R^3-3 であり、 BR^4 が BR^4-4 である化合物、

好ましくは R^2 が R^2 -6であり、 R^3 が R^3 -3であり、 BR^4 が BR^4 -4 である化合物、

20 好ましくは R^2 が R^2-7 であり、 R^3 が R^3-3 であり、 BR^4 が BR^4-4 である化合物、

最も好ましくは R^2 が R^2-7 であり、 R^3 が R^3-3 であり、 BR^4 が BR^4 -5である化合物、

19) Aおよび R 1 、 R 2 、 R 3 並び に B および R 4 の組み合わせが以下の組み 25 合わせのいずれかである化合物

 $(AR^{1}-1, R^{2}-1, R^{3}-2, BR^{4}-2), (AR^{1}-1, R^{2}-1, R^{3}-3, BR^{4}-3).$

 $\begin{array}{c} (AR^{1}-1,R^{2}-2,R^{3}-1,BR^{4}-2) \;,\;\; (AR^{1}-1,R^{2}-2,R^{3}-1,BR^{4}-4) \;,\;\; (AR^{1}-1,R^{2}-2,R^{3}-1,BR^{4}-4) \;,\;\; (AR^{1}-1,R^{2}-2,R^{3}-1,BR^{4}-4) \;,\;\; (AR^{1}-1,R^{2}-2,R^{3}-2,R^{3}-2,R^{3}-2,R^{3}-2) \;,\;\; (AR^{1}-1,R^{2}-2,R^{3}-2,R^{3}-2,R^{3}-2) \;,\;\; (AR^{1}-1,R^{2}-2,R^{3}-2,BR^{4}-2) \;,\;\; (AR^{1}-1,R^{2}-2,R^{3}-2,BR^{4}-4) \;,\;\; (AR^{1}-1,R^{2}-2,R^{3}-2,BR^{4}-5) \;,\;\; (AR^{1}-1,R^{2}-2,R^{3}-3,BR^{4}-2) \;,\;\; (AR^{1}-1,R^{2}-2,R^{3}-3,BR^{4}-3) \;,\;\; (AR^{1}-1,R^{2}-2,R^{3}-3,BR^{4}-4) \;,\;\; (AR^{1}-1,R^{2}-2,R^{3}-3,BR^{4}-3) \;,\;\; (AR^{1}-1,R^{2}-2,R^{3}-3,BR^{4}-4) \;,\;\; (AR^{1}-1,R^{2}-2,R^{3}-3,BR^{4}-5) \;,\;\; (AR^{1}-1,R^{2}-2,R^{3}-3,BR^{4}-4) \;,\;\; (AR^{1}-1,R^{2}-2,R^{3}-3,BR^{4}-4) \;,\;\; (AR^{1}-1,R^{2}-2,R^{3}-3,BR^{4}-4) \;,\;\; (AR^{1}-1,R^{2}-2,R^{3}-3,BR^{4}-4) \;,\;\; (AR^{1}-1,R^{2}-2,R^{3}-3,BR^{4}-4) \;,\;\; (AR^{1}-1,R^{2}-2,R^{3}-3,BR^{4}-4) \;,\;\; (AR^{1}-1,R^{2}-2,R^{3}-2,BR^{4}-4) \;,\;\; (AR^{1}-1,R^{2}-2,R^{3}-2,BR^{4}-4) \;,\;\; (AR^{1}$

10 $(AR^{1}-1, R^{2}-3, R^{3}-1, BR^{4}-2), (AR^{1}-1, R^{2}-3, R^{3}-1, BR^{4}-4), (AR^{1}-1, R^{2}-3, R^{3}-1, BR^{4}-4), (AR^{1}-1, R^{2}-3, R^{3}-1, BR^{4}-4), (AR^{1}-1, R^{2}-3, R^{3}-1, BR^{4}-5), (AR^{1}-1, R^{2}-3, R^{3}-2, BR^{4}-2), (AR^{1}-1, R^{2}-3, R^{3}-2, BR^{4}-3), (AR^{1}-1, R^{2}-3, R^{3}-2, BR^{4}-4), (AR^{1}-1, R^{2}-3, R^{3}-2, BR^{4}-1), (AR^{1}-1, R^{2}-3, R^{3}-3, BR^{4}-2), (AR^{1}-1, R^{2}-3, R^{3}-3, BR^{4}-3),$

 $(AR^{1}-1, R^{2}-3, R^{3}-3, BR^{4}-4), (AR^{1}-1, R^{2}-3, R^{3}-3, BR^{4}-5),$

25 4 \times R³-3 \times BR⁴-3) \times (AR¹-1 \times R²-4 \times R³-3 \times BR⁴-4) \times (AR¹-1 \times R²-4 \times R³-3 \times BR⁴-5) \times

 $(AR^{1}-1,R^{2}-6,R^{3}-1,BR^{4}-2)$, $(AR^{1}-1,R^{2}-6,R^{3}-1)$

-WO 00/05204 PCT/JP99/03864

10 $(AR^{1}-2, R^{2}-2, R^{3}-1, BR^{4}-1), (AR^{1}-2, R^{2}-2, R^{3}-3, BR^{4}-3),$

 $(AR^{1}-2, R^{2}-3, R^{3}-2, BR^{4}-3), (AR^{1}-2, R^{2}-3, R^{3}-3, BR^{4}-2),$

 $(AR^{1}-2, R^{2}-4, R^{3}-2, BR^{4}-5),$

15 $(AR^{1}-2, R^{2}-6, R^{3}-3, BR^{4}-3)$

 $(AR^{1}-2, R^{2}-7, R^{3}-3, BR^{4}-3),$

 $(AR^{1}-3, R^{2}-2, R^{3}-1, BR^{4}-2), (AR^{1}-3, R^{2}-2, R^{3}-1, BR^{4}-3), (AR^{1}-3, R^{2}-2, R^{3}-1, BR^{4}-4), (AR^{1}-3, R^{2}-2, R^{3}-1, BR^{4}-5), (AR^{1}-3, R^{2}-2, R^{3}-2, R^{3}-2)$

20 $BR^{4}-2$) $(AR^{1}-3, R^{2}-2, R^{3}-2, BR^{4}-3)$ $(AR^{1}-3, R^{2}-2, R^{3}-2, BR^{4}-4)$ $(AR^{1}-3, R^{2}-2, R^{3}-2, BR^{4}-5)$ $(AR^{1}-3, R^{2}-2, R^{3}-3, BR^{4}-2)$ $(AR^{1}-3, R^{2}-2, R^{3}-3, BR^{4}-3)$ $(AR^{1}-3, R^{2}-2, R^{3}-3, BR^{4}-4)$ $(AR^{1}-3, R^{2}-2, R^{3}-3, BR^{4}-5)$

25 $(AR^{1}-3, R^{2}-3, R^{3}-1, BR^{4}-2), (AR^{1}-3, R^{2}-3, R^{3}-1, BR^{4}-3), (AR^{1}-3, R^{2}-3, R^{3}-1, BR^{4}-4), (AR^{1}-3, R^{2}-3, R^{3}-1, BR^{4}-4), (AR^{1}-3, R^{2}-3, R^{3}-1, BR^{4}-5), (AR^{1}-3, R^{2}-3, R^{3}-2, R^{$

 $\begin{array}{c} \text{BR}^{4}-2) \; , \; & (\text{AR}^{1}-3) \; , \; \text{R}^{2}-3) \; , \; \text{R}^{3}-2) \; , \; \text{BR}^{4}-3) \; , \; & (\text{AR}^{1}-3) \; , \\ \text{R}^{2}-3) \; , \; \text{R}^{3}-2) \; , \; \text{BR}^{4}-4) \; , \; & (\text{AR}^{1}-3) \; , \; \text{R}^{2}-3) \; , \; \text{R}^{3}-2) \; , \; \text{BR}^{4}-5) \; , \\ \text{S} \; , \; & (\text{AR}^{1}-3) \; , \; \text{R}^{2}-3) \; , \; \text{R}^{3}-3) \; , \; \text{BR}^{4}-2) \; , \; & (\text{AR}^{1}-3) \; , \; \text{R}^{2}-3) \; , \; \text{R}^{3}-3) \; , \; \text{BR}^{4}-4) \; , \\ \text{S} \; & (\text{AR}^{1}-3) \; , \; \text{R}^{2}-3) \; , \; \text{R}^{3}-3) \; , \; \text{BR}^{4}-5) \; , \\ \text{(AR}^{1}-3) \; , \; & (\text{AR}^{1}-3) \; , \; &$

 $(AR^{1}-3, R^{2}-5, R^{3}-3, BR^{4}-3)$

15 $(AR^{1}-3, R^{2}-6, R^{3}-1, BR^{4}-2), (AR^{1}-3, R^{2}-6, R^{3}-1, BR^{4}-4), (AR^{1}-3, R^{2}-6, R^{3}-1, BR^{4}-4), (AR^{1}-3, R^{2}-6, R^{3}-1, BR^{4}-4), (AR^{1}-3, R^{2}-6, R^{3}-1, BR^{4}-5), (AR^{1}-3, R^{2}-6, R^{3}-2, BR^{4}-2), (AR^{1}-3, R^{2}-6, R^{3}-2, BR^{4}-3), (AR^{1}-3, R^{2}-6, R^{3}-2, BR^{4}-4), ($

20 5), $(AR^{1}-3, R^{2}-6, R^{3}-3, BR^{4}-2)$, $(AR^{1}-3, R^{2}-6, R^{3}-3, BR^{4}-3)$, $(AR^{1}-3, R^{2}-6, R^{3}-3, BR^{4}-4)$, $(AR^{1}-3, R^{2}-6, R^{3}-3, BR^{4}-5)$,

 $(AR^{1}-3, R^{2}-7, R^{3}-3, BR^{4}-6)$

 $(AR^{1}-4, R^{2}-7, R^{3}-3, BR^{4}-1), (AR^{1}-4, R^{2}-7, R^{3}-3)$

25 -3, BR 4 -3),

 $(AR^{1}-5, R^{2}-2, R^{3}-1, BR^{4}-2), (AR^{1}-5, R^{2}-2, R^{3}-1, BR^{4}-3), (AR^{1}-5, R^{2}-2, R^{3}-1, BR^{4}-4), (AR^{4}-3)$

1-5, R^2-2 , R^3-1 , BR^4-5), $(AR^1-5$, R^2-2 , R^3-2 , BR^4-2), $(AR^1-5$, R^2-2 , R^3-2 , BR^4-3), $(AR^1-5$, R^2-2 , R^3-2 , BR^4-4), $(AR^1-5$, R^2-2 , R^3-2 , BR^4-4), $(AR^1-5$, R^2-2 , R^3-2 , R^3-2 , R^3-3 , R^2-2 , R^3-3 , R

5 2, $R^3 - 3$, $BR^4 - 3$), $(AR^1 - 5, R^2 - 2, R^3 - 3, BR^4 - 4)$, $(AR^1 - 5, R^2 - 2, R^3 - 3, BR^4 - 5)$,

 $(AR^{1}-5, R^{2}-3, R^{3}-1, BR^{4}-2), (AR^{1}-5, R^{2}-3, R^{3}-1, BR^{4}-3), (AR^{1}-5, R^{2}-3, R^{3}-1, BR^{4}-4), (AR^{1}-5, R^{2}-3, R^{3}-1, BR^{4}-4), (AR^{1}-5, R^{2}-3, R^{3}-1, BR^{4}-5), (AR^{1}-5, R^{2}-3, R^{3}-2, R^{3}-1, BR^{4}-5), (AR^{1}-5, R^{2}-3, R^{3}-2, R^$

- 10 $BR^{4}-2$) $(AR^{1}-5, R^{2}-3, R^{3}-2, BR^{4}-3)$ $(AR^{1}-5, R^{2}-3, R^{3}-2, BR^{4}-4)$ $(AR^{1}-5, R^{2}-3, R^{3}-2, BR^{4}-5)$ $(AR^{1}-5, R^{2}-3, R^{3}-3, BR^{4}-2)$ $(AR^{1}-5, R^{2}-3, R^{3}-3, BR^{4}-3)$ $(AR^{1}-5, R^{2}-3, R^{3}-3, BR^{4}-4)$ $(AR^{1}-5, R^{2}-3, R^{3}-3, BR^{4}-5)$
- 15 $(AR^{1}-5, R^{2}-4, R^{3}-1, BR^{4}-2), (AR^{1}-5, R^{2}-4, R^{3}-1, BR^{4}-3), (AR^{1}-5, R^{2}-4, R^{3}-1, BR^{4}-4), (AR^{1}-5, R^{2}-4, R^{3}-1, BR^{4}-4), (AR^{1}-5, R^{2}-4, R^{3}-1, BR^{4}-5), (AR^{1}-5, R^{2}-4, R^{3}-2, BR^{4}-2), (AR^{1}-5, R^{2}-4, R^{3}-2, BR^{4}-3), (AR^{1}-5, R^{2}-4, R^{3}-2, BR^{4}-4), ($
- 20 5) $(AR^{1}-5, R^{2}-4, R^{3}-3, BR^{4}-2), (AR^{1}-5, R^{2}-4, R^{3}-3, BR^{4}-3), (AR^{1}-5, R^{2}-4, R^{3}-3, BR^{4}-4), (AR^{1}-5, R^{2}-4, R^{3}-3, BR^{4}-5),$

 $\begin{array}{c} (AR^{1}-5,R^{2}-6,R^{3}-1,BR^{4}-2), & (AR^{1}-5,R^{2}-6,R^{3}-1,BR^{4}-3), & (AR^{1}-5,R^{2}-6,R^{3}-1,BR^{4}-4), & (AR^{1}-5,R^{2}-6,R^{3}-1,BR^{4}-4), & (AR^{1}-5,R^{2}-6,R^{3}-1,BR^{4}-5), & (AR^{1}-5,R^{2}-6,R^{3}-2,BR^{4}-2), & (AR^{1}-5,R^{2}-6,R^{3}-2,BR^{4}-3), & (AR^{1}-5,R^{2}-6,R^{3}-2,BR^{4}-2), & (AR^{1}-5,R^{2}-6,R^{2}-2,BR^{4}-2), & (AR^{1}-5,R^{2}-2,BR^{4}-2), & (AR^{1}-5,R^{2}-2,BR^{4}-2), & (AR^{1}-5,R^{2}-2,BR^{4}-2), & (AR^{1}-5,R^{2}-2,BR^{4}-2), & (AR^{1}-5,R^{2}-2,BR^{4}-2), & (AR^{1}-5,R^{2}-2,BR^{4}-2), & (AR^{1}-5,R^{2}-2,B$

 $R^{2}-6$, $R^{3}-2$, $BR^{4}-4$); $(AR^{1}-5$, $R^{2}-6$, $R^{3}-2$, $BR^{4}-4$

5) $(AR^{1}-5, R^{2}-6, R^{3}-3, BR^{4}-2), (AR^{1}-5, R^{2}-6, R^{3}-3, BR^{4}-3), (AR^{1}-5, R^{2}-6, R^{3}-3, BR^{4}-4), (AR^{1}-5, R^{2}-6, R^{3}-3, BR^{4}-5), (AR^{1}-5, R^{2}-6, R^{3}-3, BR^{4}-6),$

5 $(AR^{1}-5, R^{2}-7, R^{3}-3, BR^{4}-1), (AR^{1}-5, R^{2}-7, R^{3}-3, BR^{4}-3), (AR^{1}-5, R^{2}-7, R^{3}-3, BR^{4}-6),$ $(AR^{1}-6, R^{2}-1, R^{3}-1, BR^{4}-3), (AR^{1}-6, R^{2}-1, R^{3}-3, BR^{4}-1),$

 $(AR^{1}-6, R^{2}-2, R^{3}-2, BR^{4}-3), (AR^{1}-6, R^{2}-2, R^{3}-3, BR^{4}-2),$

 $(AR^{1}-6, R^{2}-3, R^{3}-1, BR^{4}-1), (AR^{1}-6, R^{2}-3, R^{3}-2, BR^{4}-2),$

 $(AR^{1}-6, R^{2}-4, R^{3}-3, BR^{4}-5),$

 $(AR^{1}-6, R^{2}-6, R^{3}-3, BR^{4}-6)$

10

 $(AR^{1}-6 \ R^{2}-7 \ R^{3}-3 \ BR^{4}-1)$ 、 $(AR^{1}-6 \ R^{2}-7 \ R^{3}-3 \ BR^{4}-2)$ 、 $(AR^{1}-6 \ R^{2}-7 \ R^{3}-3 \ BR^{4}-3)$ 、 $(AR^{1}-6 \ R^{2}-7 \ R^{3}-3 \ BR^{4}-3)$ 、 $(AR^{1}-6 \ R^{2}-7 \ R^{3}-3 \ BR^{4}-4)$ 、 $(AR^{1}-6 \ R^{2}-7 \ R^{3}-3 \ BR^{4}-6)$ 、 $(AR^{1}-6 \ R^{2}-7 \ R^{3}-3 \$

O CON NR^{12} であり、 $B-R^4$ が であり、 R^5 よび R^{12} は各々独立して炭素数 $1\sim3$ のアルキルである化合物、

21) 3位、4位の炭素が不斉炭素原子であり、その立体配置が3位がβ配置である化合物、さらに好ましくは3位および4位がともにβ配置である化合物。

本発明に係る化合物(I)は、Org. Synth. 1986、65、135 25 記載の方法により、ビニルアセテートよりアゼチジン-2-オン骨格を有する化 合物を得、常法により目的とする置換基を導入することにより得ることができる。

15

20

25

例えば、上記式(I)においてAが-C〇-である化合物を得る場合、まずA-R 1 が水素であるアゼチジン-2-オン化合物を合成し、目的とする置換基R 1 を有する酸無水物またはハロゲン化物等と反応させればよい。この際、溶媒としてはジメチルホルムアミド、テトラヒドロフラン、ジクロロメタンまたはジオキサン等を用い、ピリジン、DMAP、トリエチルアミンもしくはジイソプロピルエチルアミン等の有機塩基または水素化ナトリウム、水素化リチウム、水素化カリウムもしくはリチウムピス(トリメチルシリル)アミド等の塩基の存在下で-60 $^{\circ}$ $^$

Aが-CONH-である化合物を得る場合、まず R^1COOH とアジド化合物(ジフェニルホスホルアジデート、アジ化ナトリウム等)を反応させ、アシルア

ジドを経てイソシアナート化合物を得る。これにさらにA-R¹が水素であるアゼチジン-2-オン化合物を反応させる(Curtius転移)。この反応においては溶媒として塩化メチレン、アセトニトリル、トルエン、t-ブチルアルコール、ベンジルアルコール、テトラヒドロフランまたはジオキサン等を用い、ピリジン、DBU、DMAP、トリエチルアミンもしくはジイソプロピルエチルアミン等の有機塩基または水素化ナトリウム、水素化リチウムもしくは水素化カリウム等の塩基の存在下、氷冷下~加熱下、好ましくは0℃~50℃で数分~数時間、好ましくは1~16時間程度反応させればよい。

Aが-SO2-である化合物を得る場合、A-R¹が水素であるアゼチジンー 2-オン化合物と目的とする置換基R¹を有するスルホニルハライド化合物を反応させればよい。溶媒としてジクロロメタン、ジメチルホルムアミド、トルエン、テトラヒドロフランまたはジオキサン等を用い、ピリジン、DMAP、トリエチルアミンもしくはジイソプロピルエチルアミン等の有機塩基または水素化ナトリウム、水素化リチウム、水素化カリウム、リチウムビス(トリメチルシリル)ア 15 ミド等の塩基の存在下、-80℃~加熱下、好ましくは-60℃~25℃で数分~数時間、好ましくは2時間程度反応させれば目的化合物が得られる。

また、J. Organomet. Chem., 164 (1979) 123-134記載の方法に基づき、スルホニルイソシアナートとシリルエノールエーテルを反応させ、同様の化合物を合成することもできる。

20 BR4が-S-または-O-である化合物を得る場合、例えば上述のOrg. Synth. 1986、65、135記載の方法によりBR4がアシルオキシである化合物を得、目的とする置換基R4を有するメルカプト体またはヒドロキシ体と反応させる。この際、溶媒としてはアセトン、メタノール、エタノール、ジメチルホルムアミド、テトラヒドロフランまたはジオキサン等を用い、ピリジン、25 DMAP、トリエチルアミンもしくはジイソプロピルエチルアミン等の有機塩基または水素化ナトリウム、水素化リチウム、水素化カリウムもしくは水酸化ナトリウム等の塩基の存在下、氷冷下~加熱下、好ましくは0℃~50℃で数分~数

時間、好ましくは3時間程度反応させればよい。

Bが $-SO_2$ 一または-SO 一である化合物は、例えば上記の方法で得たBが-S 一である化合物を酸化することにより得られる。この反応においては溶媒として塩化メチレンまたはテトラヒドロフラン等を用い、酸化剤としてm 一クロロ過安息香酸、過酢酸、過安息香酸、過酸化水素、過トリフルオロ酢酸、過よう素酸ナトリウム、次亜塩素酸ナトリウム、過マンガン酸カリウム等を用いて氷冷下~加熱下、好ましくは0 \sim 50 \sim 0 \sim 0 数時間、好ましくは3時間程度反応させればよい。

BR⁴が水素である化合物は、例えば上記の方法または常法により得られる、 R⁴がフェニルチオである化合物を還元することにより得られる。溶媒としてベンゼンまたはトルエン等を、還元剤としてトリプチルスズ等を用い、氷冷下~加熱下、好ましくは0℃~150℃で数分~数時間、好ましくは1時間程度反応させればよい。この際AIBNまたはジベンゾイルパーオキシド等のフリーラジカル遊離剤存在下で反応させれば好適に目的化合物が得られる。

- 15 R 2 、R 3 が水素以外の基である化合物を得る場合、例えばR 2 およびR 3 が同時水素であるアゼチジンー 2 ーオン化合物と、目的とする置換基R 2 またはR 3 を有するハロゲン化合物を反応させる。溶媒としてはテトラヒドロフランまたはジエチルエーテル等を用い、 $^-$ 8 0 $^\circ$ C $^\circ$ 室温、好ましくは $^-$ 6 0 $^\circ$ C $^\circ$ ② $^\circ$ で数分 $^\circ$ 令数時間、好ましくは 2 時間程度反応させればよい。
- 20 このようにして得られた化合物の各置換基はさらに常法により適宜変換してもよい。

尚、反応を実施する際に支障となる置換基を有する化合物については、その基をあらかじめ適当な保護基で保護しておき、適当な段階で通常の方法により脱離させればよい。例えばアミノ保護基としては、低級アルコキシカルボニル(セーブチルオキシカルボニル等)、低級アルケニルオキシカルボニル(ビニルオキシカルボニル、アリルオキシカルボニル等)、アラルキルオキシカルボニル(ベンジルオキシカルボニル、アーメトキシベンジルオキシカルボニル、ローニトロベ

25

ンジルオキシカルボニル、p-ニトロベンジルオキシカルボニル、フェニルオキシカルボニル等)、トリ低級アルキルシリル (トリメチルシリル、トリエチルシリル、t-ブチルジメチルシリル)、アシル (アセチル、ハロゲン化アセチル、ピパロイル、ベンゾイル、トルオイル等)、低級アルキルスルホニル (メタンスルホニル、トリフルオロエタンスルホニル、トルエンスルホニル、4-t-ブチルベンゼンスルホニル等)等が好適に用いられる。

こうして得られた本発明に係る化合物は常法によりプロドラッグ化することも可能である。プロドラッグとは、化学的または代謝的に分解できる基を有する本発明に係る化合物の誘導体であり、加溶媒分解によりまたは生理学的条件下でインビボにおいて薬学的に活性な本発明に係る化合物となる化合物である。適当なプロドラッグ誘導体を選択する方法および製造する方法は、例えばDesignof Prodrugs, Elsevier, Amsterdam 1985に記載されている。

10

25

本発明に係る化合物がカルボキシを有する場合は、もとになる酸性化合物と適当なアルコールを反応させることによって製造されるエステル誘導体、またはもとになる酸性化合物と適当なアミンを反応させることによって製造されるアミド誘導体のようなプロドラッグが例示される。プロドラッグとして特に好ましいエステルとしては、メチルエステル、エチルエステル、nープロピルエステル、イソプロピルエステル、nーブチルエステル、イソプチルエステル、tertーブチルエステル、モルホリノエチルエステル、N,Nージエチルグリコールアミドエステル等が挙げられる。

本発明に係る化合物がヒドロキシを有する場合は、例えばヒドロキシを有する化合物と適当なアシルハライドまたは適当な酸無水物とを反応させることに製造されるアシルオキシ誘導体のようなプロドラッグが例示される。プロドラッグとして特に好ましいアシルオキシとしては、 $-OCOC_2H_5$ 、-OCO(t-Bu)、 $-OCOC_15H_31$ 、-OCO(m-COONa-Ph)、 $-OCOCH_2N$ (CH2CH2COONa、 $-OCOCH_2N$)

H3)2等が挙げられる。

5

25

本発明化合物がアミノを有する場合は、アミノを有する化合物と適当な酸ハロゲン化物または適当な混合酸無水物とを反応させることにより製造されるアミド誘導体のようなプロドラッグが例示される。プロドラッグとして特に好ましいアミドとしては、 $-NHCO(CH_2)_{20}CH_3$ 、 $-NHCOCH(NH_2)_{CH_3}$ で $-NHCOCH_{20}$ の $-NHCOCH_{2$

本発明のキマーゼ阻害剤は強いキマーゼ阻害活性に加え、高い経口吸収性と血中安定性を有しており、アンジオテンシンIIまたはキマーゼに起因する全ての疾患に有効である。さらにサイトカイン産生抑制剤としても効果を有するため、

- 10 炎症性疾患、アレルギー性疾患または循環器系疾患等に対して優れた予防および /または治療効果を示す。対象疾患の具体例としては、手術後の各種臓器癒着、 血管移植後の狭窄、移植組織の機能異常や不全、移植臓器およびその周辺組織の 異常増殖や過形成、ケロイドおよび瘢痕形成、心筋梗塞後の心不全や心筋症等の 繊維化を伴う慢性炎症性疾患、嚢胞性繊維症、間質性繊維症、リウマチ、喘息、
- 15 アトピー性皮膚炎、非アトピー性皮膚炎、関節炎、乾癬、肝炎、肝硬変、炎症性 眼疾患(結膜炎等)、強皮症、腎炎、大腸炎、クローン病、敗血症ショック、心 筋梗塞、心不全、心肥大、心筋症、鬱血性心疾患、高血圧、PTCA(経皮的冠 状動脈形成術)術後の血管内膜肥厚、末梢循環障害、血管炎、動脈硬化、血管再 狭窄、糖尿病性または非糖尿病性腎障害、脳卒中およびアルツハイマー症等が挙 20 げられる。また免疫抑制剤としての使用も可能である。

また、本発明のキマーゼ阻害剤は強いキマーゼ阻害活性を有する一方でキマーゼと同じセリンプロテアーゼであるエラスターゼ、トリプシン、トロンビン、プラスミン等に対しては阻害活性を有しないか非常に弱いものであり、高いキマーゼ選択性を有する。従って、キマーゼの生理学的意義を研究する上で有用な試薬ともなり得る。

本発明に係る化合物をキマーゼ阻害剤および/またはサイトカイン産生抑制剤として投与する場合、経口的、非経口的のいずれの方法でも投与することができ

5

10

15

20

25

る。経口投与は常法に従って錠剤、顆粒剤、散剤、カプセル剤、丸剤、液剤、シロップ剤、バッカル剤または舌下剤等の通常用いられる剤型に調製して投与すればよい。非経口投与は、例えば筋肉内投与、静脈内投与等の注射剤、坐剤、経皮吸収剤、吸入剤、点眼剤等、通常用いられるいずれの剤型でも好適に投与することができる。特に本発明に係る化合物は良好な経口吸収性を有し、経口投与製剤として好適に用いられる。

本発明に係る化合物の有効量にその剤型に適した賦形剤、結合剤、湿潤剤、崩壊剤、滑沢剤、希釈剤等の各種医薬用添加剤とを必要に応じて混合し医薬製剤とすることができる。注射剤の場合には適当な担体と共に滅菌処理を行なって製剤とすればよい。

具体的には、賦形剤としては乳糖、白糖、ブドウ糖、デンブン、炭酸カルシウムもしくは結晶セルロース等、結合剤としてはメチルセルロース、カルボキシメチルセルロース、ヒドロキシブロピルセルロース、ゼラチンもしくはポリビニルピロリドン等、崩壊剤としてはカルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、デンブン、アルギン酸ナトリウム、カンテン末もしくはラウリル硫酸ナトリウム等、滑沢剤としてはタルク、ステアリン酸マグネシウムもしくはマクロゴール等が挙げられる。坐剤の基剤としてはカカオ脂、マクロゴールもしくはメチルセルロース等を用いることができる。また、液剤もしくは乳濁性、懸濁性の注射剤として調製する場合には通常使用されている溶解補助剤、懸濁化剤、乳化剤、安定化剤、保存剤、等張剤等を適宜添加しても良く、経口投与の場合には嬌味剤、芳香剤等を加えても良い。

本発明キマーゼ阻害剤および/またはサイトカイン産生抑制剤の投与量は、患者の年齢、体重、疾病の種類や程度、投与経路等を考慮した上で設定することが望ましいが、成人に経口投与する場合、通常 0.05~100mg/kg/日であり、好ましくは 0.1~10mg/kg/日の範囲内である。非経口投与の場合には投与経路により大きく異なるが、通常 0.005~10mg/kg/日であり、好ましくは 0.01~1mg/kg/日の範囲内である。これを 1日 1回

~数回に分けて投与すれば良い。

以下に実施例を示し、本発明をさらに詳しく説明するが、これらは本発明を限 定するものではない。

5 実施例

15

参考例 化合物(6)

$$= \stackrel{OAc}{\longrightarrow} \stackrel{OAc}{\longrightarrow} \stackrel{OAc}{\longrightarrow} \stackrel{SPh}{\longrightarrow} \stackrel{PhCH_2}{\longrightarrow} \stackrel$$

(第1工程) 4-Acetoxy-azetidine-2-one(2)

Org. Synth. 1986. 65. 135. Submitted by S.J.Mickel and modified by Chi-

10 Nung Hsiao and M.J.Miller の方法で合成した。

(第2工程) 4-Phenylthio-azetidine-2-one(3)

チオフェノール 20.7ml(1.3eq)のアセトン(40ml)溶液に、5~10℃にて N-NaOH 185ml(1.2eq)を滴下して、同温度にて 10 分間攪拌した。そこに、化合物(2) 20g(155 mmol)のアセトン(80ml)溶液を同温度にて滴下して、10~15℃にて 3 時間攪拌した。反応混合物を氷水に注ぎこみ酢酸エチルで抽出した。有機層を水洗、乾燥、濾過、溶媒を留去して油状残渣(3) 31g を得た。

NMR:H₁,CDCl₃ (δ),2.85-2.94(m,1H),3.22-3.45(m,1H),4.99-5.03(m,1H),6.31(br, 1H),7.34-7.60(m,5H)

(第3工程) 4-Phenylthio-N-(t-butyldimethylsilyl)-azetidine-2-one(4)

化合物(3)31g(155 mmol)の塩化メチレン(200ml)溶液にtーブチルジメチルシリルクロライド 29.2g(1.25eq)とトリエチルアミン 27ml(1.25eq)を5℃にて加え、同温度で 16 時間攪拌した。反応混合物を稀塩化アンモニウム水溶液に注ぎ込み塩化メチレンで抽出した。有機層を水洗、乾燥、濾過、溶媒を留去して油状残渣50g を得た。得られた残渣をシリカゲルクロマト (n-ヘキサン:酢酸エチル)に付し油状物質(4) 37.9g (83% from(2))を得た。

NMR:H₁,CDCl₃ (δ),0.02(s,6H),0.70(s,9H),2.70,2.77 (d,J=2.4Hz,1H),3.15,3.23 (d,J=5.0Hz,1H), 4.59-4.63(m,1H),7.01-7.18(m,5H)

(第4工程) 3-Benzyl-4-phenylthio-N-(t-butyldimethylsilyl)-azetidine-2-one(5)

化合物(4) 16.4g(56mmol)のテトラヒドロフラン(164ml)溶液にベンジルプロマイド 10ml(1.5eq)を加え、-76℃にて 2M LDA 42ml(1.5eq)を 10 分間で滴下した。同温度にて 10 分間攪拌した。反応混合物を稀塩酸に注ぎ込み酢酸エチルで抽出した。有機層を水洗、乾燥、濾過、溶媒を留去して油状残渣 27g を得た。得られた残渣を、シリカゲルクロマト (n-ヘキサン:酢酸エチル) に付し油状物質(5)
 10 12.3g(59%)を得た。

NMR:H¹,CDCl₃ (δ), 0.22(s,6H),0.69(s,9H),2.78(d,J=6.4Hz,2H), 3.31,3. 44 (d,d,J=2.3,6.4Hz,1H), 4.37(d,J=2.3Hz,1H),6.90-7.15(m,10H) IR: ν ;CHCl₃;1742 cm⁻¹

(第5工程) 3-Benzyl-4-phenylthio-azetidine-2-one(6)

- 15 化合物(5) 11.5g (31mmol)のテトラヒドロフラン(77ml)溶液に酢酸 2.12ml(1.2eq), 1M n-Bu₄NF/THF 77ml(1.2eq)を加え、25℃にて 30 分間で攪拌した。反応混合物を稀塩酸に注ぎ込み酢酸エチルで抽出した。有機層を水洗、乾燥、濾過、溶媒を留去して結晶性残渣 9.78g を得た。次いで n-ヘキサン:酢酸エチルより再結晶して化合物(6) 7.22g(87%:mp.119-120℃)を得た。
- 20 NMR:H¹,CDCl₃ (δ)2.90-3.20(m,2H),3.35-3.40(m,1H),4.68(d,J=2.2Hz,1H),6.20 (br, 1H),7.20-7.50(m,10H)

IR: ν ; CHCl₃; 3400, 1766 cm⁻¹

実施例1 化合物(I-1)

25 化合物(6) 454mg (1.65mmol)のジメチルホルムアミド(5.0ml)溶液にベンジル

5

クロライド 0.23ml(1.2eq)を加え、5Cにて 60% NaH 80mg(1.2eq)を加え、同温度にて 3時間攪拌した。反応混合物を稀塩酸に注ぎ込み酢酸エチルで抽出した。有機層を水洗、乾燥、濾過、溶媒を留去して油状残渣 0.85g を得た。得られた残渣をシリカゲルクロマト(\mathbf{n} -ヘキサン:酢酸エチル)に付し油状物質(\mathbf{I} -1) 314mg (58%)を得た。

実施例2 (I-7)

化合物(6)350mg(1.30mmol)の塩化メチレン(4.0ml)溶液にp-クロロフェニルイソシアネート 441mg(2.0eq)、トリエチルアミン 0.36ml(2.0eq)、DMAP 触媒量を加え、25℃にて 16 時間攪拌した。反応混合物を稀塩酸に注ぎ込み酢酸エチルで抽出した。有機層を水洗、乾燥、濾過、溶媒を留去して油状残渣 0.85g を得た。得られた残渣をシリカゲルクロマト(n-ヘキサン-酢酸エチル)に付し結晶性物質(I-7)150mg(26%)を得た。

実施例3 (I-14)

PhCH₂
$$\stackrel{\text{SPh}}{\longrightarrow}$$
 $\stackrel{\text{PhCH}_2}{\longrightarrow}$ $\stackrel{\text{SPh}}{\longrightarrow}$ $\stackrel{\text{SPh}}{\longrightarrow}$ $\stackrel{\text{CH}_3}{\longrightarrow}$ (6)

15

20

10

化合物(6)350mg(1.30mmol)の塩化メチレン(4.0ml)溶液に1-7ェニルーエチルイソシアネートを0.38ml(2.0eq)、トリエチルアミン0.36ml(2.0eq)、DMAP 触媒量を加え、25℃にて16時間攪拌した。反応混合物を稀塩酸に注ぎ込み酢酸エチルで抽出した。有機層を水洗、乾燥、濾過、溶媒を留去して油状残渣0.80gを得た。得られた残渣をシリカゲルクロマト(トルエン:酢酸エチル)に付し油状物質(I-14)520mg(96%)を得た。

<u>実施例4 (I-21)</u>

PhCH₂
$$\stackrel{\text{SPh}}{\longrightarrow}$$
 $\stackrel{\text{PhCH}_2}{\longrightarrow}$ $\stackrel{\text{SPh}}{\longrightarrow}$ $\stackrel{\text{SPh}}{\longrightarrow}$ $\stackrel{\text{O}}{\longrightarrow}$ $\stackrel{\text{O}}{\longrightarrow}$ $\stackrel{\text{CI-21}}{\longrightarrow}$

2-(3,4-メチレンジオキシフェニル) - 酪酸 0.52g(2.5eq)の塩化メチレン(5.0m)浴液にジフェニルホスホラジデート 0.54m(2.5eq),Triethylamine

5 0.35ml(2.5eq)を 25℃にて加え、2時間攪拌した。そこに化合物(6)
 269mg(1.0mmol)、トリエチルアミン 0.35ml(2.5eq)、DMAP 触媒量を加え、45℃にて 4 時間攪拌した。反応混合物を稀塩酸に注ぎ込み酢酸エチルで抽出した。有機層を水洗、乾燥、濾過、溶媒を留去して油状残渣 0.80g を得た。得られた残渣をシリカゲルクロマト(トルエン:酢酸エチル)に付し油状物質 (I-21)

10 440mg(96%)を得た。

実施例5 (I-28)

(第1工程) 3-(3,4-Methylenedioxy benzyl)-4-phenylthio-N-(t-butyldimethyl silyl)-azetidine-2-one(7)

化合物(4) 2.94g(10mmol)のテトラヒドロフラン(30ml)溶液に3,4-メチレンジオキシーベンジルブロミド 2.8g(1.3eq)を加え、-76℃にて 2M LDA
 8.8ml(1.76eq)を 10 分間で滴下した。同温度にて 2 時間攪拌した。反応混合物を稀塩酸に注ぎ込み酢酸エチルで抽出した。有機層を水洗、乾燥、濾過、溶媒を留去して油状残渣 5.5g を得た。得られた残渣をシリカゲルクロマト(n-ヘキサン:酢
 20 酸エチル)に付し油状物質(7)1.42g (33%)を得た。

NMR: H^{1} .CDCl₃ (δ), 0.23(m.6H),0.91(m.9H)2.85-3.00(m,2H).3.42-3.50(m,1H),

5

15

25

4.57(d, J=2.2 Hz, 1H), 5.95(m, 2H), 6.50-7.50(m, 8H)

(第2工程) 3-(3,4-Methylenedioxy benzyl)-4-phenylthio-azetidine-2-one(8)

化合物(7)1.32g (3.09mmol)のテトラヒドロフラン(7ml)溶液に酢酸 0.22ml (1.2eq),1M n-Bu₄NF/THF 3.7ml(1.2eq)を加え、25℃にて 45 分間で攪拌した。反応混合物を稀塩酸に注ぎ込み酢酸エチルで抽出した。有機層を水洗、乾燥、濾過、溶媒を留去して油状残渣 0.85g を得た。得られた残渣を、シリカゲルクロマト(n-ヘキサン:酢酸エチル)に付し結晶性物質(8) 488mg(50%)を得た。

NMR:H₁,CDCl₃(δ),2.85-3.10(m,2H),3.28-3.38(m,1H),4.67(d,J=2.2Hz,1H),5.94 (m,2H),6.10(br,1H),6.70-7.40(m,8H)

10 (第3工程) (I-28)

化合物(8) 407mg(1.3mmol)のジメチルホルムアミド(4.0ml)溶液にベンジルクロライド 0.18ml(1.3eq)を加え、5℃にて 60% NaH 75mg(1.4eq)を加えた。同温度にて 2時間攪拌した。反応混合物を稀塩酸に注ぎ込み酢酸エチルで抽出した。有機層を水洗、乾燥、濾過、溶媒を留去して油状残渣 0.60g を得た。得られた残渣をシリカゲルクロマト(n-ヘキサン:酢酸エチル)に付し油状物質(I-28)270mg (49.7%)を得た。

実施例6 (I-27)

(第1工程) 3-(2,3-Dimethyl benzyl)-4-phenylthio-N-(t-butyldimethylsilyl)-

20 azetidine-2-one(9)

化合物(4) 2.94g(10mmol)のテトラヒドロフラン(30ml)溶液に 2,3 ージメチルー 2.3-Dimethyl-benzyliodide 4.57g(1.3eq)を加え、-76℃にて 2M LDA 7.5ml (1.50eq)を 10 分間で滴下した。同温度にて 0.5 時間攪拌した。反応混合物を稀塩酸に注ぎ込み酢酸エチルで抽出した。有機層を水洗、乾燥、濾過、溶媒を留去して油状残渣 7.8g を得た。得られた残渣をシリカゲルクロマト(n-ヘキサン:酢酸エ

チル)に付し油状物質(9)4.06g(99%)を得た。

(第2工程) 3-(3,4-Dimethyl-benzyl)-4-phenylthio-azetidine-2-one(10)

化合物(9) 3.71g(9.0mmol)のテトラヒドロフラン(25ml)溶液に酢酸

0.62ml(1.2eq),1M n-Bu₄NF/THF 10.8ml(1.2eq)を加え、25℃にて 30 分間で攪拌 した。反応混合物を稀塩酸に注ぎ込み酢酸エチルで抽出した。有機層を水洗、乾燥、濾過、溶媒を留去して油状残渣 3.30g を得た。シリカゲルクロマト(n-ヘキサン:酢酸エチル)に付し結晶性物質(10)1.99g を得た。次いで、n-ヘキサン:酢酸エチルより再結晶して化合物(10)1.07g(63%)を得た。又、クロマトより副生物として

10 を得た。

20

化合物(10)NMR:H¹,CDCl₃(δ),2.23-2.28(m,6H),2.90-3.25(m,2H),3.30-3.42(m,1H), 4.67(d,J=2.2Hz,1H),6.20(br,1H),6.97-7.35(m,8H) 化合物(11) NMR:H¹,CDCl₃(δ),2.15-2.30(m,12H),2.60-3.50(m,4H),4.84,4.90 (s,1H),5.89(s,1H),6.82-7.40(m,11H)

3,3-Bis-(3,4-dimethyl-benzyl)-4-phenylthio-azetidine-2-one(11) 0.40g (10.7%)

15 (第3工程) (I-27)

化合物(10) 446mg(1.5mmol)のジメチルホルムアミド(4.0ml)溶液に Benzoylchloride 0.21ml(1.3eq)を加え、5℃にて 60% NaH 81mg(1.4eq)を加えた。 同温度にて 1.5 時間攪拌した。反応混合物を稀塩酸に注ぎ込み酢酸エチルで抽出した。有機層を水洗、乾燥、濾過、溶媒を留去して油状残渣 0.65g を得た。得られた残渣をシリカゲルクロマト(n-ヘキサン:酢酸エチル)に付し結晶性物質(I-27) 350mg (58.1%)を得た。

実施例7 (I-29)

実施例 6 第 2 工程で得た化合物(11) 350mg(0.84mmol)のジメチルホルムアミ

ド(3.5ml)溶液に Benzoylchloride 0.12ml(1.2eq)を加え、5℃にて 60% NaH 49mg(1.4eq)を加えた。同温度にて 1.5 時間攪拌した。反応混合物を稀塩酸に注ぎ込み酢酸エチルで抽出した。有機層を水洗、乾燥、濾過、溶媒を留去して油状残渣 0.45g を得た。得られた残渣をシリカゲルクロマト(n-ヘキサン:酢酸エチル)に付し結晶性物質(I-29) 240mg(55%)を得た。

実施例8 (I-33)

5

10

15

化合物 (I-21) 0.30g(0.65mmol)の塩化メチレン(5.0ml)溶液にm-

Chloroperbezoic acid 310mg(2.0eq)を 5℃にて加え、同温度で 2 時間、25℃にて 1 時間攪拌した。反応混合物を稀重曹水溶液に注ぎ込み塩化メチレンで抽出した。 有機層を水洗、乾燥、濾過、溶媒を留去して油状残渣 0.35g を得た。得られた残 渣をシリカゲルクロマト(トルエン:酢酸エチル)に付し、油状物質 (I-33) 290mg(91%)を得た。

実施例9 (I-31)

PhCH₂
$$\stackrel{\text{PhCH}_2}{\longrightarrow}$$
 $\stackrel{\text{PhCH}_2}{\longrightarrow}$ $\stackrel{$

(第1工程)3-Benzyl-azetidine-2-one(12)

化合物(6) 3.77g(14mmol)のベンゼン(15ml)溶液に、nBu₃SnH 7.53ml(2.0eq), AIBN 0.46g(2eq)を加え、100℃にて 5.5 時間攪拌した。(2 時間おきに AIBN 0.46gを追加)減圧下溶媒を留去、n-ヘキサンで可溶物を除いた後、残渣をシリカゲルクロマト(n-ヘキサン:酢酸エチル)に付し結晶性残渣 2.2g を得た。得られた残渣を n-ヘキサン:酢酸エチルより再結晶して、化合物(12) 2.10g(92%:mp. 86~87℃%)を得た。

NMR:H₁,CDCl₃ (δ),2.88-3.22(m,3H),3.38(t,J=5.4Hz,1H),3.50-3.60(m,1H),5.85 (br,1H),20-7.40(m,5H)

IR: ν; CHCl₃; 3420, 1753 cm⁻¹

(第2工程) (I-31)

化合物(12) 387mg(2.40mmol)のジメチルホルムアミド(4.0ml)溶液に
 Benzoylchloride 0.34ml(1.2eq)を加え、5℃にて 60% NaH 0.12g(1.2eq)を加えた。
 同温度にて 1.0 時間攪拌した。反応混合物を稀塩酸に注ぎ込み酢酸エチルで抽出した。有機層を水洗、乾燥、濾過、溶媒を留去して油状残渣 0.65g を得た。シリカゲルクロマト(n-ヘキサン:酢酸エチル)に付し油状物質 (I-31) 505mg
 (83.7%)を得た。

実施例10 (I-34)

20

(第1工程)(4R)-Carboxyl-N-(t-butyldimethylsilyl)-azetidine-2-one(13)

Tetrahdron Vol.46 No.13/14 PP.4733-4748 1990. J. E. Boldwin et al の方法に 15 従い(D)-aspartic acid より合成した。

(第2工程) (3S)-Benzyl-(4R)-carboxyl-N-(t-butyldimethylsilyl)-azetidine-2-one(14)

化合物(13)12.84g(56mmol)のテトラヒドロフラン(64ml)溶液に-55~-40℃にて 2M LDA 58.8ml(2.15eq)を 15 分間で滴下した。同温度にて 20 分間攪拌した。次に、-55~-40℃にて Benzylbromide 14.65ml(2.2eq)を加え、-40~-15℃にて 1.5 時間攪拌した。反応混合物を M-NaHSO4水溶液に注ぎ込み酢酸エチルで

抽出した。目的物を重曹水溶液で水層に転溶させ、再度 PH=3.0 にて酢酸エチルで抽出した。有機層を水洗、乾燥、濾過、溶媒を留去して結晶性残渣(14)17.45g (98%)を得た。

NMR: H^1 , CDCl₃ (δ), 0.21(s, 6H), 0.78(s, 9H), 2.95-3.20(m, 2H), 3.60-3.70(m, 1H),

 $5 \quad 3.77(d,J=2.8Hz,1H),7.20-7.40(m,5H),7.80(br,1H)$

10

(第3工程)(3S)-Benzyl-4-acetoxy-azetidine-2-one(15)

化合物(14)17.25(54mmol)のジメチルホルムアミド(50ml)溶液に酢酸 10ml を加え、25℃にて Pb(OAc)4 25.2g(1.0eq)を加え、50~55℃にて 40 分間攪拌した。次いで、20~25℃にて 1M n-Bu4NF/THF 43ml(0.8eq)を加え、同温度にて 1時間攪拌した。反応混合物を稀塩酸に注ぎ込み酢酸エチルで抽出した。有機層を稀重曹水溶液洗浄、水洗、乾燥、濾過、溶媒を留去して油状残渣 11.44g を得た。得られた残渣をシリカゲルクロマト(トルエン:酢酸エチル)に付し油状物質(3S)-Benzyl-(4S)-acetoxy-azetidine-2-one (15-1) 6.24g (53%)及び、(3S)-Benzyl-

(4R)-acetoxy-azetidine-2-one (15-2) 0.65g (6%)、そして混合物 1.07g (9%)を得た。

15 (15-1) NMR: H^1 , CDCl₃(δ), 2.07(s,3H), 2.96-3.19(m,2H), 3.47-3.54(m,1H), 5.15 (d,J=1.0Hz,1H), 6.49(br,1H), 7.20-7.40(m,5H)

(15-2) NMR:H₁,CDCl₃ (δ),2.12(s,3H),3.08-3.15(m,2H),3.63-3.77(m, 1H), 5.89(d,J=4.3Hz,1H), 6.61(br,1H),7.20-7.40(m,5H)

(第4工程) (3S)-Benzyl-(4S)-phenylthio-azetidine-2-one(16)

Thiophenol 0.61ml(1.3eq)の Acetone(6ml)溶液に、5~10℃にて N-NaOH
 5.5ml(1.2eq)を滴下して、同温度にて 10 分間攪拌した。(15-1) 1.0g (4.56mmol)
 の Acetone(7ml)溶液を同温度にて滴下して、10~15℃にて 3 時間攪拌した。反応混合物を氷水に注ぎこみ酢酸エチルで抽出した。有機層を水洗、乾燥、濾過、溶媒を留去して結晶性残渣 1.35g を得た。得られた残渣を n-ヘキサン:酢酸エチルより再結晶して化合物(16) 1.13g(92%)を得た。

NMR:H¹.CDCl₃ (δ),2.95-3.19(m,2H),3.34-3.45(m,1H) 4.68(d,J=2.2Hz.1H), 6.14 (br,1H), 7.18-7.35(m,10H)

(第5工程) (I-34)

化合物(16)162mg(0.60mmol)の塩化メチレン(2.0ml)溶液に室温下、R-(+)-Phenyl-ethyl-isocyanate 0.17ml(2.0eq)、Triethylamine 0.18ml(2.0eq)、DMAP 触媒量を加え、25°Cにて 16 時間攪拌した。反応混合物を稀塩酸に注ぎ込み酢酸エチルで抽出した。有機層を水洗、乾燥、濾過、溶媒を留去して結晶性残渣 0.37gを得た。得られた残渣をシリカゲルクロマト(トルエン:酢酸エチル)に付し結晶性物質(I-34)145mg(58%)を得た。

実施例11 (I-48)

5

15

COOCHPh₂

$$O = A COOCHPh_2$$

10 (第1工程) (3S)-Benzyl-(4S)-(4-benzhydrylcarboxyphenyl)oxy-azetidine-2-one(17-1)

Benzhydryl-4-hydroxy benzoate 2.07g(1.3eq)の Acetone(8ml)溶液に、5~10℃にて N-NaOH 6.0ml(1.2eq)を滴下して、同温度にて 10分間攪拌した。化合物(15-1) 1.1g(5.0mmol)の acetone(6ml)溶液を同温度にて滴下して、10~15℃にて 3 時間攪拌した。反応混合物を氷水に注ぎこみ酢酸エチルで抽出した。有機層を水洗、乾燥、濾過、溶媒を留去して油状残渣 2.75g を得た。得られた残渣をシリカゲルクロマト(トルエン:酢酸エチル)に付し結晶性物質(17-1)1.87g(80%)を得た。又、別のフラクションより結晶性物質(3S)-Benzyl-(4R)-(4-

benzhydrylcarboxyphenyl)oxy-azetidine-2-one(17-2) 0.14g (6%)を得た。

20 (17-1) NMR:H¹,CDCl₃ (δ),3.02-3.28(m,2H),3.59-3.66(m,1H),5.40(s,1H),(br,1H),
7.08(s,1H),7.15-7.48(m,15H) 7.36,7.96 (ABq,J= 8.0 Hz, 4H),
(17-2) NMR:H¹,CDCl₃ (δ),3.19 (d,J=7.6Hz,2H),3.73-3.84(m,1H),5.75(d, J=
4.2Hz,1H),6.70(br,1H),6.86,8.08(ABq,J=8.0Hz,2H),7.09(s,1H),7.157.48(m,15H)

(第2工程) (I-48)

化合物(17-1)1.85g(4.0mmol)の塩化メチレン(18.0ml)溶液に R-(+)-Phenlethyl-isocyanate1.13ml(2.0eq)、Triethylamine 1.12ml(2.0eq),DMAP 触媒量を加え、25℃にて 16 時間攪拌した。反応混合物を稀塩酸に注ぎ込み酢酸エチルで抽出した。有機層を水洗、乾燥、濾過、溶媒を留去して結晶性残渣 3.0g を得た。得られた残渣をシリカゲルクロマト(トルエン:酢酸エチル)に付し結晶性物質 (I-48) 2.02g(83%)を得た。

実施例12 (I-37)

5

10 化合物 (I-48) 1.88g(3.08mmol)のアニソール(9.4ml)溶液に 5℃にて CF₃COOH 2.43ml(10eq)を加え、同温度にて 3.5 時間攪拌した。反応混合物を稀 重曹水溶液に注ぎ込み酢酸エチルで抽出した。有機層を水洗、乾燥、濾過、溶媒 を留去して油状性残渣 10g を得た。n-ヘキサンより結晶化して、結晶性物質 (I-37) 1.23g(90%)を得た。

15 <u>実施例13</u> (I-39)

化合物(I - 3 7) 120mg (0.27 mmol)の塩化メチレン (1.2ml)溶液に 5℃にて 1-Methyl-piperazine 36 μ l(1.2eq), WSCD 62mg(1.2eq)を加え、25℃にて 5 時間 攪拌した。反応混合物を稀重曹水溶液に注ぎ込み酢酸エチルで抽出した。有機層 20 を水洗、乾燥、濾過、溶媒を留去して油状性残渣 143mg を得た。得られた残渣を シリカゲルクロマト(n-ヘキサン:酢酸エチル:メタノール)に付し油状残渣を得た。

次いで n-ヘキサンより結晶化し粉末状物質(I-39) 130mg (92%)を得た。 実施例 14 (I-61)

(第1工程) 化合物(18)

化合物(17-2)463mg(1.0mmol)の塩化メチレン(4.0ml)溶液に R-(+)-Phenylethyl-isocyanate0.28ml(2.0eq)、Triethylamine 0.28ml(2.0eq),DMAP 触媒量を加え、25℃にて 16 時間攪拌した。反応混合物を稀塩酸に注ぎ込み酢酸エチルで抽出した。有機層を水洗、乾燥、濾過、溶媒を留去して結晶性残渣 0.55g を得た。得られた残渣をシリカゲルクロマト(トルエン:酢酸エチル)に付し結晶性物質(18)
 0.50g (82%)を得た。

NMR:H¹,CDCl₃(δ),1.54(d,J=4.6Hz,3H),3.18-3.24(m,2H),3.82-3.94(m,1H),4.96-5.12(m,1H),6.12(d,J=4.6Hz,1H),6.85(d,J=8.3Hz,1H),7.08-8.09(m,25H) (第2工程) (I-61)

化合物(18)0.41g(0.67mmol)のアニソール(2.1ml)溶液に5℃にて CF_3COOH 0.52ml(10eq)を加え、同温度にて5時間攪拌した。反応混合物を稀重曹水溶液に注ぎ込み酢酸エチルで抽出した。有機層を水洗、乾燥、濾過、溶媒を留去して油状性残渣3gを得た。得られた残渣をn-2+サン:エーテルより結晶化して、結晶性物質(I-61)270mg(90%)を得た。

実施例15 (I-62)

15

20

COOH
$$O \leftarrow COOH$$

$$O \leftarrow COOH$$

$$O \leftarrow CH_3$$

化合物 (I-61) 100mg(0.23 mmol)の塩化メチレン(1.2ml)溶液に 5℃にて

1-Methyl-piperazine $30~\mu~l(1.2eq)$,WSCD 56mg(1.2eq)を加え、25℃にて 2.5 時間攪拌した。反応混合物を稀重曹水溶液に注ぎ込み酢酸エチルで抽出した。有機層を水洗、乾燥、濾過、溶媒を留去して油状性残渣 120mg を得た。得られた残渣をシリカゲルクロマト $(n-{\wedge}+ \forall {\vee}+ \forall {\vee$

OAc
$$OCH_2$$
 $COOBH$ OCH_2 $COOBH$ OCH_2 $COOBH$ OCH_3 OCH_3

(第1工程) 化合物(19)

5

Benzhydryl-4-hydroxy phenylacetate 0.80g (1.0eq)のテトラヒドロフラン

(2ml)溶液に、5℃にて 2M t-BuMgCl/Et₂O 1.25ml (1.0eq)を滴下して、同温度にて 15 分間攪拌した。化合物(15)0.55g (2.5 mmol)のテトラヒドロフラン(3ml)溶液を同温度にて滴下して、20~25℃にて 3 時間攪拌した。反応混合物を稀塩酸に注ぎこみ酢酸エチルで抽出した。有機層を水洗、乾燥、濾過、溶媒を留去して油状残渣 1.40g を得た。得られた残渣をシリカゲルクロマト(トルエン:酢酸エチル)に 付し結晶性物質(19) 0.69g (58%)を得た。

NMR:H¹,CDCl₃ (δ),2.79-3.17(m,2H),3.37-3.48(m,1H),4.39(s,2H)
4.84(d,J=1.0Hz,1H),6.26(br,1H), 7.11(s,1H), 7.23-8.10(m,19H)
(第2工程) 化合物(20)

化合物(19) 0.66g (1.38mmol)の塩化メチレン(6.6ml)溶液に R-(+)-Phenyl-

20 ethyl-isocyanate0.39ml (2.0eq)、Triethylamine 0.39ml(2.0eq),DMAP 触媒量を加え、25℃にて 16 時間攪拌した。反応混合物を稀塩酸に注ぎ込み酢酸エチルで

抽出した。有機層を水洗、乾燥、濾過、溶媒を留去して結晶性残渣 1.0g を得た。 得られた残渣をシリカゲルクロマト(トルエン:酢酸エチル)に付し結晶性物質(20) 0.61g (70%)を得た。

NMR:H¹,CDCl₃ (\$\delta\$),1.55(s,3H),2.79-3.16(m,2H),3.46-3.54(m,1H),4.81, 4.96

(ABq,J=14Hz,2H), 4.93-5.10(m,1H)5.12(d,J=1.7Hz,1H), 6.93(d,J=8.0Hz,1H),

7.05-8.10(m,25H)

(第3工程) (I-59)

化合物(20) 0.55g (0.88mmol)のアニソール(2.0ml),塩化メチレン(2.8ml)溶液に5℃にて CF_3COOH 0.68ml(10eq)を加え、同温度にて 4.5 時間攪拌した。反応混合物を稀重曹水溶液に注ぎ込み酢酸エチルで抽出した。有機層を水洗、乾燥、溶媒を留去して油状性残渣 3g を得た。得られた残渣を n-ヘキサン:イソプロピルエーテルより結晶化して、結晶性物質 0.37g を得た。次いでシリカゲルクロマト(n-ヘキサン:酢酸エチル)に付し油状残渣を得た。得られた残渣を n-ヘキサンより結晶化、粉末状物質 (I-59) 220mg(54%)を得た。

15 実施例17 (I-60)

10

20

化合物(I-59) 100mg(0.22mmol)の塩化メチレン(1.2ml)溶液に 5℃にて 1-Methyl-piperazine $30~\mu$ l(1.2eq)、WSCD 55mg(1.2eq)を加え、25℃にて 2.5 時間攪拌した。反応混合物を稀重曹水溶液に注ぎ込み酢酸エチルで抽出した。有機層を水洗、乾燥、濾過、溶媒を留去して油状性残渣 120mg を得た。得られた残渣をシリカゲルクロマト(n-ヘキサン:酢酸エチル:メタノール)に付し油状残渣を得た。次いで、n-ヘキサンより結晶化、粉末状物質(I-60) 67mg(50%)を得た。

実施例18 化合物(I-144)

(第1工程)(4R)-Carboxyl-N-(t-butyldimethylsilyl)-azetidine-2-one(21)

Tetrahdron Vol.46 Nos.13/14 PP.4733-4748 1990. J. E. Boldwin et al の方法に従い(D)-aspartic acid より化合物(21)を合成した。

5 (第2工程) (3S)-2-Ethoxybenzyl-(4R)-carboxyl-N-(t-butyldimethylsilyl)-azetidine-2-one(22)

化合物 (21)5.73g (25mmol)のテトラヒドロフラン(30ml)溶液を-45~-25℃にて 0.68M LDA 77ml (2.1eq) THF 溶液に 15 分間で滴下した。同温度にて 2.5 時間攪拌した。次に、-38~-28℃にて 2-Ethoxybenzylbromide 10.75g (2.0eq)を加え、-28~-15℃にて 2.0 時間攪拌した。反応混合物を N-塩酸水溶液に注ぎ込み酢酸エチルで抽出した。目的物を重曹水溶液で水層に転溶させ、再度 PH=3.0にて酢酸エチルで抽出した。有機層を水洗、乾燥、濾過、溶媒を留去して結晶性残渣(22) 7.82g (86%)を得た。

 $NMR: H^{1}, CDCl_{3}(\delta), 0.22(s, 6H), 0.80(s, 9H), 1.41(t, 3H, J=7.0Hz), 2.90-3.30(m, 2H),$

3.50-3.70(m,1H), 3.87(d,J=3.4Hz,1H), 4.02(q,2H,J=7.0Hz), 6.70-7.340(m,5H)

(第3工程)(3S)-2-Ethoxybenzyl-4-acetoxy-azetidine-2-one(23)

10

20

化合物(22) 7.82g (21.5 mmol)のジメチルホルムアミド(23.5ml)溶液に酢酸 4.7ml を加え、25℃にて Pb(OAc)₄ 9.53g (1.0eq)を加え、50~55℃にて 100 分間 攪拌した。次いで、20~25℃にて 1M n-Bu₄NF/THF 16ml (0.75eq) を加え、同温度にて 2.0 時間攪拌した。反応混合物を稀塩酸に注ぎ込み酢酸エチルで抽出し

た。有機層を稀重曹水溶液洗浄、水洗、乾燥、濾過、溶媒を留去して油状残渣 5.75g を得た。得られた残渣をシリカゲルクロマト(トルエン:酢酸エチル)に付し油状物質(3S)-2-Ethoxybenzyl-(4S)-acetoxy-azetidine-2-one (23-1) 2.43g (43%)及び、(3S)-Ethoxybenzyl-(4R)-acetoxy-azetidine-2-one (23-2)との混合物 1.79g (32%)を得た。

 $(23-1) NMR: H^{1}, CDCl_{3} (\delta), 1.40(t, J=7.0Hz, 3H), 2.05(s, 3H), 2.89-3.22(m, 2H), \\ 3.48-3.68 (m, 1H), 4.05 (q, J=7.0Hz, 2H), 5.61(d, J=1.2Hz, 1H), 6.42(br, 1H), 6.83-7.26(m, 4H)$

(第4工程) (3S)-2-Ethoxybenzyl-(4S)-(4-benzhydrylcarboxyphenyl)oxy-

10 azetidine-2-one(24)

5

Benzhydryl-4-hydroxy benzoate 5.69g(1.2eq)の Acetone (36ml)溶液に、5~10℃にて N-NaOH 17ml (1.1eq)を滴下して、同温度にて 10 分間攪拌した。化合物(23-1,2) 4.1g (15.6 mmol)の acetone (16ml)溶液を同温度にて滴下して、10~15℃にて 1.5 時間攪拌した。反応混合物を氷水に注ぎこみ酢酸エチルで抽出した。

- 有機層を水洗、乾燥、濾過、溶媒を留去して油状残渣 9.41g を得た。得られた残渣をシリカゲルクロマト(トルエン:酢酸エチル)に付し結晶性物質(24-1) 4.82g (61%)を得た。又、別のフラクションより結晶性物質(3S)-Ethoxybenzyl-(4R)-(4-benzhydrylcarboxyphenyl)oxy-azetidine-2-one (24-2) 2.00g (25%)を得た。(24-1)NMR:H¹,CDCl₃(δ),1.35(t,J=7.0Hz,3H),2.95-3.34(m,2H),3.58-3.65(m,
- 20 1H), 4.00 (q,J=7.0Hz,2H),5.49(d,J=0.9Hz,1H),6.43(br,1H),6.71-8.02(m,19H) (第 5 工程) 化合物(25)

Diphenylacetic acid 1.04g(2.5eq)の塩化メチレン(10ml)溶液に Triethylamine 0.69ml (2.5eq), Diphenylphosphoryl amide 1.06ml(2.5eq)を加え、25℃にて 3 時間攪拌した後、化合物 (24-1) 1.00g (2.0 mmol)の塩化メチレン(18.0ml)溶液,

25 Triethylamine 0.69ml (2.5eq),DMAP 触媒量 を加え、25℃にて 24 時間攪拌した。 反応混合物を稀塩酸に注ぎ込み酢酸エチルで抽出した。有機層を水洗、乾燥、濾 過、溶媒を留去して残渣 3.0g を得た。得られた残渣をシリカゲルクロマト(トル

エン:酢酸エチル)に付し(25) 1.29g (91%)を得た。

(25)NMR:H¹,CDCl₃ (δ),1.28(t,J=7.2Hz,3H),2.94-3.34(m,2H),3.66-3.74(m,1H),3.94(q,J=7.2Hz,2H),5.83(d,J=1.3Hz,1H),6.14(br,1H),6.79-8.00(m,30H)
(第6工程) 化合物 (I-144)

化合物(25)1.18g (1.64 mmol)の塩化メチレン(6ml)溶液にアニソール 1.27mlを加え、25℃にて CF₃COOH 1.27ml (10eq)を加え、同温度にて 3.5 時間攪拌した。反応混合物を稀重曹水溶液に注ぎ込み酢酸エチルで抽出した。有機層を水洗、乾燥、濾過、溶媒を留去して油状性残渣 10g を得た。 n-ヘキサンより結晶化して、結晶性物質 0.84g (93%)を得た。得られた残渣をシリカゲルクロマト(n-ヘキサン: 酢酸エチル)に付し結晶性残渣を得た。結晶化し(I-144)825mg (91%)を得た。

同様にしてその他の化合物を合成した。以下に合成した化合物の構造および物性値を示す。

3,4-trans racemate

			, , , , , , , , , , , , , , , , , , , ,
No.	-A-R ¹	No.	-A-R ¹
l- 1		1-3	OCH.
l-2		1-4	
I-5		I-9	H—Cooc₂H₅
I-6	N-C	l-10	CH ₃
I-7		I-11	COOC ₂ H ₅
I-8	N-Br	I-12	O CH3O
I-13	~ H	I-18	
I-14	H CH ₉	I-19	The state of the s
I-15		1-20	THE OCH,
, I-16	H OCH ₉	I-21	
I-17			
		 	

表 2

	•,	a and tadomiato
No.	A-R ¹	B-R⁴
I-31		-H
I-32		-s-(
I-33		

		, _{ry} B-R⁴
		(I-C')
No.	A-R ¹	B-R⁴
I-34	H CH ₃	····is
I- 3 5	TH _O H ₃	······································
I-36	D CH3	OAc
I-37	H CH3	ю—Соон
I-38	The CH ₃	""IO \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
I -3 9	H CH ₃	O CH3
I-40	H CH ₃	····IO CONH ₂
, I-41	H CH ₃	····O—CH ₃
1-42	H CH ₃	
I-43	D CH ₃	······································

表 8

5

表 1 0

No.	A-R ¹	B-R⁴
I-77	O CH ₃	-0-(-)-OH HN-1
I-78	HN CH ₃	-0-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(
l-79	O CH ₃	-0-(-)-F
I-80	O CH ₃	-o-()-OH
I-81	HN CH ₃	-0-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(
I-82	N O CH₃	-o-()-N-)
I-83	H N CH ₃	-0-(-)-(N-)-(N-)-(N-)-(N-)-(N-)-(N-)-(N-
, I-84	O ČH ₃	- 0-{\(\)\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
I-85	O CH ₃	~ S-∕

表 1 1

	B-R⁴ ONA-R1	(I-C"")
No.	A-R ¹	B-R⁴
I-86	H CH ₃	-0-(OH
I-87	O CH ₃	-o-⟨□⟩-⟨N- N- CH ₃
I-88	H O CH ₃	-о-()-о он о о
I-89	O CH ₃	-0-()-(N) CH ₃

表 1 2

	Ø-N, B-R⁴	(I-C ^m)
No.	A-R ¹	B-R⁴
1-90	N CH ₃	он ОН
l-91	O CH ₃	O-(=)-0 N- CH ₃

I-99

I-100

I-101

表 1 3

No. A-R¹ B-R⁴

I-92
$$\downarrow \stackrel{H}{\longrightarrow} \stackrel{}{\longrightarrow} \stackrel$$

ĆНз

表 1 4

No.	A-R ¹	B-R⁴	R ^{13a}
I-102	O CH ₃	·····o-{_}_OH	-ОМе
I-103	O CH ₃	OCHPh ₂	-ОМе
l-104	O CH ₃	·····O-{\bigcirc} \\ \times \text{N-\text{CH}_3}	-ОМе
l-105	O CH ₃		-ОМе
I-106	O CH ₃		-OMe
I-107	O CH ₃	-	-OMe
I-108	O CH ₃		-OMe
I-109	N ČH₃	о-⟨>_он	-OMe
I-110	H N O ĈH₃	····O-⟨¯> OCHPh₂	-ОМе
l-111	O ĈH ₃	O-(O NNCH_3	-OMe

表 1 5

A-R ¹	B-R⁴	R ^{13a}
H N CH ₃	O-{\bigcip} \cdot \c	OMe
CH ₃	о-€>-0	OMe
N CH ₃	·····O-C-OOCHPh2	OMe
H CH3	o-√_>OH	OMe
H CH ₃	···O-CHPh ₂	OMe
	OCHPh ₂	ОМе
H CH ₃	о-{>	ОМе
	o-()-N-	ОМе
H CO CH ₃		ОМе
H CH ₃	O-{\(\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	OMe
		O CH2Ph O C

表 1 6

No.	A-R ¹	B-R⁴	R ^{13a}
I-122		ro-{OH	OEt
I-123		O	OEt
1-124	ZHZ O	O(O O-CH₂Ph	ОМе
l-125		о-(он	ОМе
I-126		·····O-{_}-OH	ОМе

表 1 7

No.	A-R ¹	B-R ⁴	R ^{13a}
l-127	O CH ₃	-0-()-0 OH	ОМе
I-128	O CH ₃	-0-⟨□>-O O-CHPh ₂	ОМе
I-129	O CH ₃	-0-()-0 N	ОМе
l-130	H N O CH₃	- 0-⟨□⟩-⟨0 OH	ОМе
l-131	O CH ₃	- 0-{\bigcip}\bigcip\o\compo	ОМе
I-132	H N C CH₃	-0-()-0 N	ОМе
I-133	N O ČH₃	- 0-{>-0-{>-0-{>-0-{>-0-{>-0-{>-0-{>-0-{	OMe
I-134 (HCl salt)	O ČH ₃	-0-(_)-(N-)-(CH3	ОМе

表 18

	O´	A-R'	
No.	A-R ¹	B-R⁴	R ^{13a}
I-135	H CH ₃	O-{OH	OEt
I-136	O CH ₃	0 O CHPh2	OEt
l-137 (HCl salt)	H CH ₃	-N	OEt
l-138	H O CH₃	O-{OH	OEt
I-139	H CH₃	O-CHPh ₂	OEt
l-140	H CH ₃	O-{OH	OEt
l-141	O CH ₃	O-CHPh ₂	OEt
I-142	H CH ₃	O-√OH	OEt
l-143	H CH ₃	O-(O O-CHPh ₂	OEt

表 19

	o	A-R ¹	
No.	A-R ¹	B-R⁴	R ^{13a}
I-144	H C	о-С О ОН	OEt
I-145 (HCl salt)		"O-{_}_N	OEt
I-146		O-(OEt
I-147		···O	OEt
l-148		···O-{\bigcip} \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	OEt
I-149		···O-√O HN·CHPh₂	OEt
I-150	THE STATE OF THE S	"O-{_}_ONO	OEt
I-151.		HN-S	OEt
l-152		O-(OH	OEt
l-153			OEt

表 2 0

	R ^{13a}	β-R⁴ (I-E')	
		`A-R ¹	
No.	A-R ¹	B-R⁴	R ^{13a}
l-154		···O-√CO ₂ H	OEt
l-155		··O-⟨¯}—\CO₂H	OEt
I-156	TZ CI	⊙-{OH	OEt
I-157	TN CI	···O	OEt
I-158	CH ₃	o-{_>-OH	OEt
I-159	HN F	о- ()—О ОН	OEt
I-160	OMe OMe	о-⟨С)—О ОН	OEt

表 2 1

No.	A-R ¹	B-R⁴	R ^{13a}	
I-161		·····O-{\bigcirc} OH	n-Pr	
I-162		O √N OH	n-Pr	
I-163		o-(OH	i-Pr	

. WO 00/05204 PCT/JP99/03864

表 2 2

No. AR¹ R³ BR⁴

I-164
$$\stackrel{H}{\circ}$$
 Me $\stackrel{\bullet}{\circ}$ OH

I-165 $\stackrel{H}{\circ}$ Me $\stackrel{\bullet}{\circ}$ OH

I-166 $\stackrel{H}{\circ}$ Et $\stackrel{\bullet}{\circ}$ OH

I-167 $\stackrel{H}{\circ}$ Et $\stackrel{\bullet}{\circ}$ OH

I-168 $\stackrel{H}{\circ}$ Et $\stackrel{\bullet}{\circ}$ OH

I-169 $\stackrel{\bullet}{\circ}$ \stackrel

表 2 3

<u>.</u>		R ³ B-R ⁴ NA-R ¹	(I-F")
No.	A-R ¹	R ³	B-R ⁴
I-170	O CH ₃	Me	-0-{\bigcip}-0
I-171	O CH ₃	Ме	-0-()-0 N N CH ₃

表 2 4

		R³ B-R⁴	
		N.A-R1	(I-F')
No.	A-R ¹	R ³	B-R⁴
I-172	N CH ₃	Et	-o-⟨o oH
l-173	O CH ₃	Et	-o-(
I-174	Ö ČH ₃	Et	-o-{□}-OH
I-175	H N ČH₃	Et	-0-()-0-(CH3
l-176	CH ₃	Et	-O-⟨CHPh ₂
I-177	UN CH₃	Et	-0-()-OH
l-178	O CH ₃	Et	-0-(O N CH ₃
I- <u>1</u> 79	O CH3	Et	-0-⟨¯>-0 O CHPh₂
l-180	O CH ₃	Et	-0-{\$\rightarrow\\ OH}
l-181	O CH ₃	Et	-0-(=)-O N-) CH ₃

表 2 5

No.	A-R ¹	B-R⁴
I-182	H O CH ₃	····O-√O-O·CHPh₂
I-183	O CH ₃	····O-{\bigcirc}OH
I-184	H O ČH₃	O-{O O CHPh₂
I-185	O ČH ₃	·····o-{_}-\0

表 2 6

		A-R ¹
	AR ¹	BR ⁴
I-186	СОРЬ	ОРһ-3-СООН
I-187	СОРь	OPh-4-COOH
I-188	СОРь	OPh-4-COOBn
I-189	COPh	OPh-4-CON(Me)(CH ₂) ₂ NMe ₂
I-190	СОРЬ	-0
I-191	СОРЬ	-o-CONH ₂
I-192	COPh	-0-(CH ₃
I-193	СОРь	-o-(
I-194	COPh	OPh-4-CONHCH ₂ CH=CH ₂
I-195	СОРЬ	OPh-4-CONHBn
I-196	СОРЬ	OPh-4-CONHPh
I-197	СОРЬ	OPh-4-COO(CH ₂) ₂ NMe ₂
I-198	СОРЬ	OPh-4-COOCHPh ₂
I-199	СОРЬ	OPh-4-CH ₂ COOH

- WO 00/05204 PCT/JP99/03864

表 2 7

I-200	COPh	-o-(
I-201	COPh	OPh-4-CH ₂ COO(CH ₂) ₂ NMe ₂
I-202	COPh	OPh-4-CH=CHCOOH
I-203	COPh	-o-CONH ₂
I-204	СОРЬ	-0-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(
I-205	COPh	OCH ₂ Ph-4-COOH
I-206	COPh	OCH ₂ —ON—N—N—N—N—N—N—N—N—N—N—N—N—N—N—N—N—N—N
I-207	COPh	SPh-4-COOH
I-208	COPh	-S-CH ₃
I-209	CO-3,4-MD-Ph	OPh-3-COOH

-MD-Ph…メチレンジオキシフェニル

表28

I-210	CO-3,4-MD-Ph	OPh-4-COOH
I-211	CO-3,4-MD-Ph	OPh-4-COOBn
I-212	CO-3,4-MD-Ph	OPh-4-CON(Me)(CH ₂) ₂ NMe ₂
I-213	CO-3,4-MD-Ph	-o-\O _NCH3
I-214	CO-3,4-MD-Ph	-0-CONH ₂
I-215	CO-3,4-MD-Ph	-0-(CH3
I-216	CO-3,4-MD-Ph	-0-\(\bigc\)
I-217	CO-3,4-MD-Ph	OPh-4-CONHCH ₂ CH=CH ₂
I-218	CO-3,4-MD-Ph	OPh-4-CONHBn
I-219	CO-3,4-MD-Ph	OPh-4-CONHPh
I-220	CO-3,4-MD-Ph	OPh-4-COO(CH ₂) ₂ NMe ₂
I-221	CO-3,4-MD-Ph	OPh-4-COOCHPh ₂
1-222	CO-3,4-MD-Ph	OPh-4-CH ₂ COOH
I-223	CO-3,4-MD-Ph	-0-\(\bigcap_CH_2-\bigcap_N\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

表 2 9

CO-3,4-MD-Ph	${\rm OPh\text{-}4\text{-}CH}_2{\rm COO(CH}_2)_2{\rm NMe}_2$
CO-3,4-MD-Ph	OPh-4-CH=CHCOOH
CO-3,4-MD-Ph	-o-CONH ₂
CO-3,4-MD-Ph	-0-_\O_\N_\CH3
CO-3,4-MD-Ph	OCH ₂ Ph-4-COOH
CO-3,4-MD-Ph	-OCH ₂ -ON-N-N-CH ₃
CO-3,4-MD-Ph	SPh-4-COOH
CO-3,4-MD-Ph	-s-\N
CONHPh	OPh-3-COOH
СОМНРЬ	OPh-4-COOH
CONHPh	OPh-4-COOBn
CONHPh	OPh-4-CON(Me)(CH ₂) ₂ NMe ₂
	CO-3,4-MD-Ph CO-3,4-MD-Ph CO-3,4-MD-Ph CO-3,4-MD-Ph CO-3,4-MD-Ph CO-3,4-MD-Ph CONHPh CONHPh CONHPh

表30

I-236	СОМНРЬ	-0-(
I-237	СОМНРЬ	-o-CONH ₂
I-238	СОМНРЬ	-0-(CH ₃
I-239	СОМНРЬ	-o-(-)-(o
I-240	СОМНРЬ	OPh-4-CONHCH ₂ CH=CH ₂
I-241	CONHPh	OPh-4-CONHBn
I-242	CONHPh	OPh-4-CONHPh
I-243	CONHPh	OPh-4-COO(CH ₂) ₂ NMe ₂
I-244	CONHPh	OPh-4-COOCHPh ₂
I-245	CONHPh	OPh-4-CH ₂ COOH
I-246	СОМНРЬ	-0-\(\bigcirc\) CH2-\(\bigcirc\) N-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
I-247	CONHPh	OPh-4-CH ₂ COO(CH ₂) ₂ NMe ₂
I-248	CONHPh	OPh-4-CH=CHCOOH

表 3 1

I-249	СОМНРЬ	-o-CONH ₂
1-250	СОМНРЬ	-0-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(
I-251	CONHPh	OCH ₂ Ph-4-COOH
I-252	СОМНРЬ	-OCH ₂ ——O
I-253	CONHPh	SPh-4-COOH
I-254	СОМНРЬ	-S-CH ₃
I-255	CONHPh-4-OMe	OPh-3-COOH
I-256	CONHPh-4-OMe	OPh-4-COOH
I-257	CONHPh-4-OMe	OPh-4-COOBn
I-258	CONHPh-4-OMe	OPh-4-CON(Me)(CH ₂) ₂ NMe ₂
I-259	CONHPh-4-OMe	-0-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

表 3 2

I-260	CONHPh-4-OMe	
I-261	CONHPh-4-OMe	-o-(CH ₃
I-262	CONHPh-4-OMe	
I-263	CONHPh-4-OMe	OPh-4-CONHCH ₂ CH=CH ₂
I-264	CONHPh-4-OMe	OPh-4-CONHBn
I-265	CONHPh-4-OMe	OPh-4-CONHPh
I-266	CONHPh-4-OMe	OPh-4-COO(CH ₂) ₂ NMe ₂
I-267	CONHPh-4-OMe	OPh-4-COOCHPh ₂
I-268	CONHPh-4-OMe	OPh-4-CH ₂ COOH
I-269	CONHPh-4-OMe	-0-(-)-CH ₂ -(-) N CH ₃
I-270	CONHPh-4-OMe	OPh-4-CH ₂ COO(CH ₂) ₂ NMe ₂
I-271	CONHPh-4-OMe	OPh-4-CH=CHCOOH
í-272	CONHPh-4-OMe	-o-CONH ₂

表 3 3

I-273	CONHPh-4-OMe	-0-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
I-274	CONHPh-4-OMe	OCH ₂ Ph-4-COOH
I-275	СОМНРЬ-4-ОМе	-OCH ₂ ——O
I-276	CONHPh-4-OMe	SPh-4-COOH
I-277	CONHPh-4-OMe	-S-\O _N CH ₃
I-278	CONHPh-4-Cl	OPh-3-COOH
I-279	CONHPh-4-Cl	OPh-4-COOH
I-280	CONHPh-4-Cl	OPh-4-COOBn
I-281	CONHPh-4-Cl	OPh-4-CON(Me)(CH ₂) ₂ NMe ₂
I-282	CONHPh-4-Cl	-0-\(\bigcirc_N\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
I-283	CONHPh-4-Cl	-0
I-284	CONHPh-4-Cl	-0-CH ₃

表 3 4

		
I-285	CONHPh-4-Cl	-0-\(\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
I-286	CONHPh-4-Cl	OPh-4-CONHCH ₂ CH=CH ₂
I-287	CONHPh-4-Cl	OPh-4-CONHBn
I-288	CONHPh-4-Cl	OPh-4-CONHPh
I-289	CONHPh-4-Cl	OPh-4-COO(CH ₂) ₂ NMe ₂
I-290	CONHPh-4-Cl	OPh-4-COOCHPh ₂
I-291	CONHPh-4-Cl	OPh-4-CH ₂ COOH
I-292	CONHPh-4-Cl	-0
I-293	CONHPh-4-Cl	OPh-4-CH ₂ COO(CH ₂) ₂ NMe ₂
I-294	CONHPh-4-Cl	OPh-4-CH=CHCOOH
I-295	CONHPh-4-Cl	O CONH ₂
I-296	CONHPh-4-Cl	-0-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
I-297	CONHPh-4-Cl	OCH ₂ Ph-4-COOH

表 3 5

I-298	CONHPh-4-Cl	-OCH ₂ —O
I-299	CONHPh-4-Cl	SPh-4-COOH
1-300	CONHPh-4-Cl	-S-_____\\\\\\\\\\\\\\\\\\
I-301	CONHPh-4-COOEt	OPh-3-COOH
I-302	CONHPh-4-COOEt	OPh-4-COOH
I-303	CONHPh-4-COOEt	OPh-4-COOBn
I-304	CONHPh-4-COOEt	OPh-4-CON(Me)(CH ₂) ₂ NMe ₂
I-305	CONHPh-4-COOEt	-0-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
I-306	CONHPh-4-COOEt	-O-CONH ₂
I-307	CONHPh-4-COOEt	-0-CH ₃
I-308	CONHPh-4-COOEt	-o-(

表 3 6

I-309	CONHPh-4-COOEt	OPh-4-CONHCH ₂ CH=CH ₂
I-310	CONHPh-4-COOEt	OPh-4-CONHBn
I-311	CONHPh-4-COOEt	OPh-4-CONHPh
I-312	CONHPh-4-COOEt	OPh-4-COO(CH ₂) ₂ NMe ₂
I-313	CONHPh-4-COOEt	OPh-4-COOCHPh ₂
I-314	CONHPh-4-COOEt	OPh-4-CH ₂ COOH
I-315	CONHPh-4-COOEt	-0-CH ₂ -CH ₂ -CH ₃
I-316	CONHPh-4-COOEt	OPh-4-CH ₂ COO(CH ₂) ₂ NMe ₂
I-317	CONHPh-4-COOEt	OPh-4-CH=CHCOOH
I-318	CONHPh-4-COOEt	-O-CONH ₂
I-319	CONHPh-4-COOEt	-0-(T)-(CH3
I-320	CONHPh-4-COOEt	OCH ₂ Ph-4-COOH
I-321	CONHPh-4-COOEt	OCH ₂ —O

表37

		
I-322	CONHPh-4-COOEt	SPh-4-COOH
I-323	CONHPh-4-COOEt	-S-CH3
I-324	CONHPh-3-Me	OPh-3-COOH
I-325	CONHPh-3-Me	OPh-4-COOH
I-326	CONHPh-3-Me	OPh-4-COOBn
1-327	CONHPh-3-Me	OPh-4-CON(Me)(CH ₂) ₂ NMe ₂
I-328	CONHPh-3-Me	-0-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
I-329	CONHPh-3-Me	-o-CONH ₂
I-330	CONHPh-3-Me	-0-(CH ₃)
I-331	CONHPh-3-Me	-o-(\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
I-332	CONHPh-3-Me	OPh-4-CONHCH ₂ CH=CH ₂
1-333	CONHPh-3-Me	OPh-4-CONHBn
I-334	CONHPh-3-Me	OPh-4-CONHPh

表38

I-335	CONHPh-3-Me	OPh-4-COO(CH ₂) ₂ NMe ₂
I-336	CONHPh-3-Me	OPh-4-COOCHPh ₂
I-337	CONHPh-3-Me	OPh-4-CH ₂ COOH
I-338	CONHPh-3-Me	-0-(-)-CH ₂ -(-) N CH ₃
I-339	CONHPh-3-Me	OPh-4-CH ₂ COO(CH ₂) ₂ NMe ₂
I-340	CONHPh-3-Me	OPh-4-CH=CHCOOH
I-341	CONHPh-3-Me	-o-CONH ₂
I-342	CONHPh-3-Me	-0-\OOCH3
I-343	CONHPh-3-Me	OCH ₂ Ph-4-COOH
I-344	CONHPh-3-Me	-OCH ₂
I-345	CONHPh-3-Me	SPh-4-COOH
I-346	CONHPh-3-Me	-S————————————————————————————————————

表 3 9

I-347	CONHPh-2-OMe	OPh-3-COOH
I-348	CONHPh-2-OMe	OPh-4-COOH
I-349	CONHPh-2-OMe	OPh-4-COOBn
I-350	CONHPh-2-OMe	OPh-4-CON(Me)(CH ₂) ₂ NMe ₂
I-351	CONHPh-2-OMe	-0-(CH ₃
I-352	CONHPh-2-OMe	-o-CONH ₂
I-353	CONHPh-2-OMe	-o-(CH ₃
I-354	CONHPh-2-OMe	-0-\(\bigc\)
I-355	CONHPh-2-OMe	OPh-4-CONHCH ₂ CH=CH ₂
I-356	CONHPh-2-OMe	OPh-4-CONHBn
I-357	CONHPh-2-OMe	OPh-4-CONHPh
I-358	CONHPh-2-OMe	OPh-4-COO(CH ₂) ₂ NMe ₂
I-359	CONHPh-2-OMe	OPh-4-COOCHPh ₂
I-360	CONHPh-2-OMe	OPh-4-CH ₂ COOH
I-361	CONHPh-2-OMe	-0-CH ₂ -O N- CH ₃

I-362	CONHPh-2-OMe	OPh-4-CH ₂ COO(CH ₂) ₂ NMe ₂
I-363	CONHPh-2-OMe	OPh-4-CH=CHCOOH
I-364	CONHPh-2-OMe	-o-CONH ₂
I-365	СОМНРһ-2-ОМе	-0-{\rightarrow} \\ \rightarrow \\
I-366	CONHPh-2-OMe	OCH ₂ Ph-4-COOH
I-367	CONHPh-2-OMe	-OCH ₂
I-368	CONHPh-2-OMe	SPh-4-COOH
I-369	CONHPh-2-OMe	-S-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
I-370	CONHBn	OPh-3-COOH
I-371	CONHBn	OPh-4-COOH
I-372	CONHBn	OPh-4-COOBn
I-373	CONHBn	OPh-4-CON(Me)(CH ₂) ₂ NMe ₂

表 4 1

•		
I-374	CONHBn	-0-_N-_N-_CH3
I-375	CONHBn	-o-CONH ₂
I-376	CONHBn	-o-(CH ₃)
I-377	CONHBn	\(\)
1-378	CONHBn	OPh-4-CONHCH ₂ CH=CH ₂
1-379	CONHBn	OPh-4-CONHBn
1-380	CONHBn	OPh-4-CONHPh
I-381	CONHBn	OPh-4-COO(CH ₂) ₂ NMe ₂
I-382	CONHBn	OPh-4-COOCHPh ₂
I-383	CONHBn	OPh-4-CH ₂ COOH
I-384	CONHBn	-0-CH ₂ -O N- CH ₃
1-385	CONHBn	OPh-4-CH ₂ COO(CH ₂) ₂ NMe ₂
I-386	CONHBn	OPh-4-CH=CHCOOH

表 4 2

1-387	CONHBn	-O-CONH ₂
1-388	CONHBn	-0-\O \NCH_3
I-389	CONHBn	OCH ₂ Ph-4-COOH
1-390	CONHBn	-OCH ₂ -OOCH ₂ -OOCH ₃ -OOCH ₃
I-391	CONHBn	SPh-4-COOH
1-392	CONHBn	-S-CH3
I-393	CONHCH(Et)Ph	OPh-3-COOH
I-394	CONHCH(Et)Ph	OPh-4-COOH
I-395	CONHCH(Et)Ph	OPh-4-COOBn
I-396	CONHCH(Et)Ph	OPh-4-CON(Me)(CH ₂) ₂ NMe ₂
I-397	CONHCH(Et)Ph	-0

表 4 3

I-398	CONHCH(Et)Ph	-0 \downarrow
I-399	CONHCH(Et)Ph	-o-CH ₃
I-400	CONHCH(Et)Ph	-0-\(\bigc\)\(\bigc\)
I-401	CONHCH(Et)Ph	OPh-4-CONHCH ₂ CH=CH ₂
I-402	CONHCH(Et)Ph	OPh-4-CONHBn
I-403	CONHCH(Et)Ph	OPh-4-CONHPh
I-404	CONHCH(Et)Ph	OPh-4-COO(CH ₂) ₂ NMe ₂
1-405	CONHCH(Et)Ph	-0 CH_2 N CH_3
I-406	CONHCH(Et)Ph	OPh-4-CH ₂ COO(CH ₂) ₂ NMe ₂
I-407	CONHCH(Et)Ph	OPh-4-CH=CHCOOH
I-408	CONHCH(Et)Ph	-o-CONH ₂

	· · · · · · · · · · · · · · · · · · ·	
I-409	CONHCH(Et)Ph	-0-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
I-410	CONHCH(Et)Ph	OCH ₂ Ph-4-COOH
I-411	CONHCH(Et)Ph	-OCH ₂ ——ON—ON—OCH ₃
I-412	CONHCH(Et)Ph	SPh-4-COOH
I-413	CONHCH(Et)Ph	-S-(-)-(O N-) CH ₃
I-414	CONHCH(OMe)Ph	OPh-3-COOH
I-415	CONHCH(OMe)Ph	OPh-4-COOH
I-416	CONHCH(OMe)Ph	OPh-4-COOBn
I-417	CONHCH(OMe)Ph	OPh-4-CON(Me)(CH ₂) ₂ NMe ₂
I-418	СОМНСН(ОМе)РЬ	-0
I-419	СОМНСН(ОМе)РЬ	-o-CONH ₂
I-420	СОNНСН(ОМе)РЬ	-0-CH ₃

I-421	CONHCH(OMe)Ph	-o-_____\
I-422	CONHCH(OMe)Ph	OPh-4-CONHCH ₂ CH=CH ₂
I-423	CONHCH(OMe)Ph	OPh-4-CONHBn
I-424	CONHCH(OMe)Ph	OPh-4-CONHPh
I-425	CONHCH(OMe)Ph	OPh-4-COO(CH ₂) ₂ NMe ₂
I-426	CONHCH(OMe)Ph	OPh-4-COOCHPh ₂
I-427	CONHCH(OMe)Ph	OPh-4-CH ₂ COOH
I-428	CONHCH(OMe)Ph	-0-(
I-429	CONHCH(OMe)Ph	OPh-4-CH ₂ COO(CH ₂) ₂ NMe ₂
I-430	CONHCH(OMe)Ph	OPh-4-CH=CHCOOH
I-431	СОNНСН(ОМе)РЬ	-o-CONH ₂
. I-432	СОИНСН(ОМе)РЬ	-0-\OOCH3
I-433	CONHCH(OMe)Ph	OCH ₂ Ph-4-COOH

I-434	CONHCH(OMe)Ph	-OCH ₂
I-435	СОМНСН(ОМе)Рһ	SPh-4-COOH
I-436	CONHCH(OMe)Ph	-S-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
I-437	${\tt CONHCHPh}_2$	OPh-3-COOH
I-438	CONHCHPh ₂	OPh-4-COOBn
I-439	CONHCHPh ₂	OPh-4-CON(Me)(CH ₂) ₂ NMe ₂
I-440	CONHCHPh ₂	-0
I-441	CONHCHPh ₂	-o-CONH ₂
I-442	CONHCHPh ₂	-0

表 4 7

		
I-443	CONHCHPh ₂	OPh-4-CONHCH ₂ CH=CH ₂
I-444	CONHCHPh ₂	OPh-4-CONHBn
I-445	CONHCHPh ₂	OPh-4-CONHPh
I-446	CONHCHPh ₂	OPh-4-COO(CH ₂) ₂ NMe ₂
I-447	CONHCHPh ₂	-0-(-)-CH ₂ -(0 N-)
I-448	CONHCHPh ₂	OPh-4-CH ₂ COO(CH ₂) ₂ NMe ₂
I-449	CONHCHPh ₂	OPh-4-CH=CHCOOH
I-450	CONHCHPh ₂	-O-CONH ₂
I-451	CONHCHPh ₂	-O-CH ₃
I-452	CONHCHPh ₂	OCH ₂ Ph-4-COOH
I-453	СОМНСНРЬ2	-OCH ₂

表 4 8

I-454	CONHCHPh ₂	SPh-4-COOH
I-455	СОМНСНРь ₂	-S-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
I-456	COPh-3-OMe	OPh-3-COOH
I-457	COPh-3-OMe	OPh-4-COOH
I-458	COPh-3-OMe	OPh-4-COOBn
I-459	COPh-3-OMe	OPh-4-CON(Me)(CH ₂) ₂ NMe ₂
I-460	COPh-3-OMe	-o-(O
I-461	СОРһ-3-ОМе	
I-462	COPh-3-OMe	-0-CH ₃
I-463	COPh-3-OMe	-0-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
I-464	COPh-3-OMe	OPh-4-CONHCH ₂ CH=CH ₂
I-465	COPh-3-OMe	OPh-4-CONHBn
I-466	COPh-3-OMe	OPh-4-CONHPh

表 4 9

COPh-3-OMe	OPh-4-COO(CH ₂) ₂ NMe ₂
COPh-3-OMe	OPh-4-COOCHPh ₂
COPh-3-OMe	OPh-4-CH ₂ COOH
СОРь-3-ОМе	-0-(-)-CH ₂ -(0 N-)
COPh-3-OMe	OPh-4-CH ₂ COO(CH ₂) ₂ NMe ₂
COPh-3-OMe	OPh-4-CH=CHCOOH
COPh-3-OMe	-o-CONH ₂
COPh-3-OMe	-0-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(
COPh-3-OMe	OCH ₂ Ph-4-COOH
COPh-3-OMe	-OCH ₂
COPh-3-OMe	SPh-4-COOH
	COPh-3-OMe COPh-3-OMe COPh-3-OMe COPh-3-OMe COPh-3-OMe COPh-3-OMe COPh-3-OMe

I-478	COPh-3-OMe	-S-CH ₃
I-479	SO ₂ Ph	OPh-3-COOH
I-480	SO ₂ Ph	OPh-4-COOH
I-481	SO ₂ Ph	OPh-4-COOBn
I-482	SO ₂ Ph	OPh-4-CON(Me)(CH ₂) ₂ NMe ₂
I-483	SO ₂ Ph	-0
I-484	SO ₂ Ph	-0-CONH2
I-485	SO ₂ Ph	-0-(CH ₃
I-486	SO_2 Ph	\(\)
I-487	SO ₂ Ph	OPh-4-CONHCH ₂ CH=CH ₂
I-488	SO ₂ Ph	OPh-4-CONHBn
I-489	SO ₂ Ph	OPh-4-CONHPh
I-490	SO ₂ Ph	OPh-4-COO(CH ₂) ₂ NMe ₂

表 5 1

, , ,		
I-491	SO ₂ Ph	OPh-4-COOCHPh ₂
I-492	SO ₂ Ph	OPh-4-CH ₂ COOH
I-493	SO ₂ Ph	-0-CH ₂ -O N- CH ₃
I-494	SO_2 Ph	${\rm OPh\text{-}4\text{-}CH}_2{\rm COO}({\rm CH}_2)_2{\rm NMe}_2$
I-495	SO ₂ Ph	OPh-4-CH=CHCOOH
I-496	SO ₂ Ph	-o-CONH ₂
I-497	SO ₂ Ph	-0-(CH ₃
I-498	SO ₂ Ph	OCH ₂ Ph-4-COOH
I-499	SO ₂ Ph	-OCH ₂
I-500	SO ₂ Ph	SPh-4-COOH
I-501	SO ₂ Ph	-S-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

I-502	CONHCH(Et)Ph-4-Cl	OPh-3-COOH
I-503	CONHCH(Et)Ph-4-Cl	OPh-4-COOH
I-504	CONHCH(Et)Ph-4-Cl	OPh-4-COOBn
I-505	CONHCH(Et)Ph-4-Cl	OPh-4-CON(Me)(CH ₂) ₂ NMe ₂
I-506	CONHCH(Et)Ph-4-Cl	-0-\NCH3
I-507	CONHCH(Et)Ph-4-Cl	-O-CONH ₂
I-508	CONHCH(Et)Ph-4-Cl	-0-(CH ₃)
I-509	CONHCH(Et)Ph-4-Cl	-o-(
I-510	CONHCH(Et)Ph-4-Cl	OPh-4-CONHCH ₂ CH=CH ₂
I-511	CONHCH(Et)Ph-4-Cl	OPh-4-CONHBn
I-512	CONHCH(Et)Ph-4-Cl	OPh-4-CONHPh
I-513	CONHCH(Et)Ph-4-Cl	OPh-4-COO(CH ₂) ₂ NMe ₂
I-514	CONHCH(Et)Ph-4-Cl	OPh-4-COOCHPh ₂
I-515	CONHCH(Et)Ph-4-Cl	OPh-4-CH ₂ COOH
I-516	CONHCH(Et)Ph-4-Cl	-0-(-)-CH ₂ -(0 N-)-CH ₃ CH ₃

表 5 3

I-517	CONHCH(Et)Ph-4-Cl	OPh-4-CH ₂ COO(CH ₂) ₂ NMe ₂
I-518	CONHCH(Et)Ph-4-Cl	OPh-4-CH=CHCOOH
I-519	CONHCH(Et)Ph-4-Cl	-o-CONH ₂
I-520	CONHCH(Et)Ph-4-Cl	-0
I-521	CONHCH(Et)Ph-4-Cl	OCH ₂ Ph-4-COOH
I-522	CONHCH(Et)Ph-4-Cl	-OCH ₂ ————————————————————————————————————
I-523	CONHCH(Et)Ph-4-Cl	SPh-4-COOH
I-524	CONHCH(Et)Ph-4-Cl	-S-CH ₃
I-525	CONHCH(Et)Ph-3-OMe	ОРҺ-3-СООН
I-526	CONHCH(Et)Ph-3-OMe	OPh-4-COOH
I-527	CONHCH(Et)Ph-3-OMe	OPh-4-COOBn
I-528	CONHCH(Et)Ph-3-OMe	OPh-4-CON(Me)(CH ₂) ₂ NMe ₂

I-529	CONHCH(Et)Ph-3-OMe	-0-{
I-530	CONHCH(Et)Ph-3-OMe	-o-CONH ₂
I-531	CONHCH(Et)Ph-3-OMe	-0-CH ₃
I-532	CONHCH(Et)Ph-3-OMe	
I-533	CONHCH(Et)Ph-3-OMe	OPh-4-CONHCH2CH=CH2
I-534	CONHCH(Et)Ph-3-OMe	OPh-4-CONHBn
I-535	CONHCH(Et)Ph-3-OMe	OPh-4-CONHPh
I-536	CONHCH(Et)Ph-3-OMe	OPh-4-COO(CH ₂) ₂ NMe ₂
I-537	CONHCH(Et)Ph-3-OMe	OPh-4-COOCHPh ₂
I-538	CONHCH(Et)Ph-3-OMe	OPh-4-CH ₂ COOH
I-539	CONHCH(Et)Ph-3-OMe	-0
I-540	CONHCH(Et)Ph-3-OMe	OPh-4-CH ₂ COO(CH ₂) ₂ NMe ₂
I-541	CONHCH(Et)Ph-3-OMe	OPh-4-CH=CHCOOH

I-542	CONHCH(Et)Ph-3-OMe	-o-CONH ₂
I-543	CONHCH(Et)Ph-3-OMe	-0-(T)-(O)-(CH ₃
I-544	CONHCH(Et)Ph-3-OMe	OCH ₂ Ph-4-COOH
I-545	CONHCH(Et)Ph-3-OMe	$-OCH_2 \longrightarrow O$ V V CH_3
I-546	CONHCH(Et)Ph-3-OMe	SPh-4-COOH
I-547	CONHCH(Et)Ph-3-OMe	-S-CH ₃
I-548	CONHCH(Et)-3,4-MD-Ph	OPh-3-COOH
I-549	CONHCH(Et)-3,4-MD-Ph	OPh-4-COOH
I-550	CONHCH(Et)-3,4-MD-Ph	OPh-4-COOBn
I-551	CONHCH(Et)-3,4-MD-Ph	OPh-4-CON(Me)(CH ₂) ₂ NMe ₂
I-552	CONHCH(Et)-3,4-MD-Ph	-0

	·	
I-553	CONHCH(Et)-3,4-MD-Ph	-0-CONH ₂
I-554	CONHCH(Et)-3,4-MD-Ph	-0-CH ₃
I-555	CONHCH(Et)-3,4-MD-Ph	-0-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(
I-556	CONHCH(Et)-3,4-MD-Ph	OPh-4-CONHCH ₂ CH=CH ₂
I-557	CONHCH(Et)-3,4-MD-Ph	OPh-4-CONHBn
I-558	CONHCH(Et)-3,4-MD-Ph	OPh-4-CONHPh
I-559	CONHCH(Et)-3,4-MD-Ph	OPh-4-COO(CH ₂) ₂ NMe ₂
I-560	CONHCH(Et)-3,4-MD-Ph	OPh-4-COOCHPh ₂
I-561	CONHCH(Et)-3,4-MD-Ph	OPh-4-CH ₂ COOH
I-562	CONHCH(Et)-3,4-MD-Ph	-0-CH ₂ -CO N- CH ₃
I-563	CONHCH(Et)-3,4-MD-Ph	OPh-4-CH ₂ COO(CH ₂) ₂ NMe ₂
I-564	CONHCH(Et)-3,4-MD-Ph	OPh-4-CH=CHCOOH
I-565	CONHCH(Et)-3,4-MD-Ph	-o-CONH ₂

表 5 7

I-566	CONHCH(Et)-3,4-MD-Ph	-0
I-567	CONHCH(Et)-3,4-MD-Ph	OCH ₂ Ph-4-COOH
I-568	CONHCH(Et)-3,4-MD-Ph	-OCH ₂
I-569	CONHCH(Et)-3,4-MD-Ph	SPh-4-COOH
I-570	CONHCH(Et)-3,4-MD-Ph	-S-\(\bigcirc\)\(\

I-582	СОПНСН(Ме)Рһ	o-SMe	-0-_\\\\\\\\\\\\\\\\\\\\\\\\\\
I-583	CONHCH(Me)Ph	o-SMe	OPh-4-CH ₂ COOH
I-584	CONHCH(Me)Ph	o-SMe	OPh-4-CH ₂ CH=CHCOOH
I-585	CONHCH(Me)Ph	o-SMe	SPh-3-CH ₂ COOH
I-586	CONHCH(Me)Ph	p-SPh	-O-\NCHex
I-587	CONHCH(Me)Ph	p-SPh	-0-(
I-588	CONHCH(Me)Ph	p-SPh	OPh-4-CH ₂ COOH
I-589	CONHCH(Me)Ph	p-SPh	OPh-4-CH ₂ CH=CHCOOH
I-590	CONHCH(Me)Ph	p-SPh	SPh-3-CH ₂ COOH
I-591	CONHCH(Me)Ph	p-Et	-O-W-N-O-Hex
I-592,	СОМНСН(Ме)Рь	p-Et	-0 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
I-593	CONHCH(Me)Ph	p-Et	OPh-4-CH ₂ COOH
I-594	CONHCH(Me)Ph	p-Et	OPh-4-CH ₂ CH=CHCOOH
I-595	CONHCH(Me)Ph	p-Et	SPh-3-CH ₂ COOH

表 6 0

I-596	CONHCH(Me)Ph	p-Ph	-O-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
I-597	CONHCH(Me)Ph	p-Ph	-0-\
I-598	CONHCH(Me)Ph	p-Ph	OPh-4-CH ₂ COOH
I-599	СОМНСН(Ме)РЬ	p-Ph	OPh-4-CH ₂ CH=CHCOOH
I-600	CONHCH(Me)Ph	p-Ph	SPh-3-CH ₂ COOH
I-601	CONHCHPh ₂	m-NMe ₂	-O-N-N-CHex
I-602	CONHCHPh ₂	m-NMe ₂	-0
I-603	CONHCHPh ₂	${ m m\text{-}NMe}_2$	OPh-4-CH ₂ COOH
I-604	CONHCHPh ₂	m-NMe ₂	OPh-4-CH ₂ CH=CHCOOH
I-605	CONHCHPh ₂	m-NMe ₂	SPh-3-CH ₂ COOH
I-606	${\tt CONHCHPh}_2$	p-NHPh	-O
I-607	CONHCHPh ₂	p-NHPh	-0
I-608	CONHCHPh ₂	p-NHPh	OPh-4-CH ₂ COOH

表 6 1

		_	
I-609	CONHCHPh ₂	p-NHPh	OPh-4-CH ₂ CH=CHCOOH
I-610	CONHCHPh ₂	p-NHPh	SPh-3-CH ₂ COOH
I-611	CONHCHPh ₂	o-SMe	.O-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
I-612	CONHCHPh ₂	o-SMe	-0-(
I-613	CONHCHPh ₂	o-SMe	OPh-4-CH ₂ COOH
I-614	${\tt CONHCHPh}_2$	o-SMe	OPh-4-CH ₂ CH=CHCOOH
I-615	${\tt CONHCHPh}_2$	o-SMe	SPh-3-CH ₂ COOH
I-616	CONHCHPh ₂	p-SPh	-o-_N\chex
I-617	CONHCHPh ₂	p-SPh	-0-\O
I-618	CONHCHPh ₂	p-SPh	OPh-4-CH ₂ COOH
I-619	CONHCHPh ₂	p-SPh	OPh-4-CH ₂ CH=CHCOOH
I-620	CONHCHPh ₂	p-SPh	SPh-3-CH ₂ COOH
I-621	CONHCHPh ₂	p-Et	-O-N-N-CHex

表 6 2

I-622	CONHCHPh ₂	p-Et	-0
I-623	CONHCHPh ₂	p-Et	OPh-4-CH ₂ COOH
I-624	CONHCHPh ₂	p-Et	OPh-4-CH ₂ CH=CHCOOH
I-625	CONHCHPh ₂	p-Et	SPh-3-CH ₂ COOH
I-626	CONHCHPb ₂	p-Ph	-O-N-N-CHex
I-67	CONHCHPh ₂	p-Ph	-0-_N_\CH3
I-628	CONHCHPh ₂	p-Ph	OPh-4-CH ₂ COOH
I-629	CONHCHPh ₂	p-Ph	OPh-4-CH ₂ CH=CHCOOH
I-630	CONHCHPh ₂	p-Ph	SPh-3-CH ₂ COOH
I-631	CONHCH(4-Me-C ₆ H ₄) ₂	m-NMe ₂	-O-\O
I-632	CONHCH(4-Me-C ₆ H ₄) ₂	m-NMe ₂	-o
I-633	CONHCH(4-Me-C ₆ H ₄) ₂	m-NMe2	OPh-4-CH ₂ COOH
I-634	CONHCH(4-Me-C ₆ H ₄) ₂	m-NMe ₂	OPh-4-CH ₂ CH=CHCOOH
I-635	CONHCH(4-Me-C ₆ H ₄) ₂	m-NMe ₂	SPh-3-CH ₂ COOH

表 6 3

I-636	CONHCH(4-Me-C ₆ H ₄) ₂	p-NHPh	-O
I-637	CONHCH(4-Me-C ₆ H ₄) ₂	p-NHPh	-0
I-638	CONHCH(4-Me-C ₆ H ₄) ₂	p-NHPh	OPh-4-CH ₂ COOH
I-639	CONHCH(4-Me- C_6H_4)2	p-NHPh	OPh-4-CH ₂ CH=CHCOOH
I-640	${\rm CONHCH}(4\text{-Me-C}_6{\rm H}_4)_2$	p-NHPh	SPh-3-CH ₂ COOH
I-641	CONHCH(4-Me-C ₆ H ₄) ₂	o-SMe	-O-N-N-CHex
I-642	CONHCH(4-Me-C ₆ H ₄) ₂	o-SMe	-0
I-643	CONHCH(4-Me-C ₆ H ₄) ₂	o-SMe	OPh-4-CH ₂ COOH
I-644	CONHCH(4-Me-C ₆ H ₄) ₂	o-SMe	OPh-4-CH ₂ CH=CHCOOH
I-645	CONHCH(4-Me-C ₆ H ₄) ₂	o-SMe	SPh-3-CH ₂ COOH
I-646	CONHCH(4-Me-C ₆ H ₄) ₂	p-SPh	-O-_NNCHex
I-647	CONHCH(4-Me-C ₆ H ₄) ₂	p-SPh	-0-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
I-648	CONHCH(4-Me-C ₆ H ₄) ₂	p-SPh	OPh-4-CH ₂ COOH
_			

表 6 4

г т			
I-649	CONHCH(4-Me-C ₆ H ₄) ₂	p-SPh	OPh-4-CH ₂ CH=CHCOOH
I-650	CONHCH(4-Me-C ₆ H ₄) ₂	p-SPh	SPh-3-CH ₂ COOH
I-651	CONHCH(4-Me-C ₆ H ₄) ₂	p-Et	-O-(CHex
I-652	CONHCH(4-Me-C ₆ H ₄) ₂	p-Et	-0
I-653	CONHCH(4-Me-C ₆ H ₄) ₂	p-Et	OPh-4-CH ₂ COOH
I-654	CONHCH(4-Me- C_6H_4) ₂	p-Et	OPh-4-CH ₂ CH=CHCOOH
I-655	CONHCH(4-Me- C_6H_4)2	p-Et	SPh-3-CH ₂ COOH
I-656	CONHCH(4-Me-C ₆ H ₄) ₂	p-Ph	O-N-N-CHex
I-657	CONHCH(4-Me-C ₆ H ₄) ₂	p-Ph	-0
I-658	CONHCH(4-Me-C ₆ H ₄) ₂	p-Ph	OPh-4-CH ₂ COOH
I-659	CONHCH(4-Me- C_6H_4)2	p-Ph	OPh-4-CH ₂ CH=CHCOOH
I-660	CONHCH(4-Me- C_6H_4) $_2$	p-Ph	SPh-3-CH ₂ COOH
I-661	CONHCH(3-OEt-C ₆ H ₄) ₂	m-NMe ₂	.o-(

_			
I-662	CONHCH(3-OEt-C ₆ H ₄) ₂	m-NMe ₂	-0-{\bigcirc}_N-\bigcirc_N-\bigci
I-663	CONHCH(3-OEt-C ₆ H ₄) ₂	m-NMe ₂	OPh-4-CH ₂ COOH
I-664	CONHCH(3-OEt-C ₆ H ₄) ₂	m-NMe ₂	OPh-4-CH ₂ CH=CHCOOH
I-665	CONHCH(3-OEt- C_6H_4) $_2$	m-NMe ₂	SPh-3-CH ₂ COOH
I-666	CONHCH(3-OEt-C ₆ H ₄) ₂	p-NHPh	-O-CHex
I-667	CONHCH(3-OEt-C ₆ H ₄) ₂	p-NHPh	-0-_________\\\\
I-668	CONHCH(3-OEt-C ₆ H ₄) ₂	p-NHPh	OPh-4-CH ₂ COOH
I-669	CONHCH(3-OEt-C ₆ H ₄) ₂	p-NHPh	OPh-4-CH ₂ CH=CHCOOH
I-670	${\tt CONHCH(3-OEt-C_6H_4)_2}$	p-NHPh	SPh-3-CH ₂ COOH
I-671	CONHCH(3-OEt-C ₆ H ₄) ₂	o-SMe	-O-\OCHex
I-672	CONHCH(3-OEt-C ₆ H ₄) ₂	o-SMe	-o-(
I-673	CONHCH(3-OEt-C ₆ H ₄) ₂	o-SMe	OPh-4-CH ₂ COOH
I-674	CONHCH(3-OEt-C ₆ H ₄) ₂	o-SMe	OPh-4-CH ₂ CH=CHCOOH
I-675	CONHCH(3-OEt-C ₆ H ₄) ₂	o-SMe	SPh-3-CH ₂ COOH

I-676	CONHCH(3-OEt-C ₆ H ₄) ₂	p-SPh	-0
I-677	CONHCH(3-OEt-C ₆ H ₄) ₂	p-SPh	-0-\(\bigcirc_N\) \(\chi_3\) \(\chi_3\)
I-678	CONHCH(3-OEt-C ₆ H ₄) ₂	p-SPh	OPh-4-CH ₂ COOH
I-679	CONHCH(3-OEt-C ₆ H ₄) ₂	p-SPh	OPh-4-CH ₂ CH=CHCOOH
I-680	CONHCH(3-OEt-C ₆ H ₄) ₂	p-SPh	SPh-3-CH ₂ COOH
I-681	CONHCH(3-OEt-C ₆ H ₄) ₂	p-Et	-O-N-N-CHex
I-682	CONHCH(3-OEt-C ₆ H ₄) ₂	p-Et	-0
I-683	CONHCH(3-OEt-C ₆ H ₄) ₂	p-Et	OPh-4-CH ₂ COOH
I-684	CONHCH(3-OEt-C ₆ H ₄) ₂	p-Et	OPh-4-CH ₂ CH=CHCOOH
I-685	CONHCH(3-OEt-C ₆ H ₄) ₂	p-Et	SPh-3-CH ₂ COOH
I-686 .	CONHCH(3-OEt-C ₆ H ₄) ₂	p-Ph	O-N-N-CHex
I-687	CONHCH(3-OEt-C ₆ H ₄) ₂	p•Ph	O———O N————————————————————————————————
I-688	CONHCH(3-OEt-C ₆ H ₄) ₂	p-Ph	OPh-4-CH ₂ COOH

表 6 7

I-689	CONHCH(3-OEt-C ₆ H ₄) ₂	p-Ph	OPh-4-CH ₂ CH=CHCOOH
I-690	CONHCH(3-OEt- C_6H_4)2	p-Ph	SPh-3-CH ₂ COOH
I-691	CONHCH(2-Cl-C ₆ H ₄) ₂	m-NMe ₂	-O-N-N-CHex
I-692	CONHCH(2-Cl-C ₆ H ₄) ₂	m-NMe ₂	O-CH3
I-693	CONHCH(2-Cl-C ₆ H ₄) ₂	m-NMe ₂	OPh-4-CH ₂ COOH
I-694	${\tt CONHCH(2-Cl-C_6H_4)_2}$	m-NMe ₂	OPh-4-CH ₂ CH=CHCOOH
I-695	${\tt CONHCH(2-Cl-C_6H_4)_2}$	m-NMe ₂	SPh-3-CH ₂ COOH
I-696	CONHCH(2-Cl-C ₆ H ₄) ₂	p-NHPh	-0
I-697	CONHCH(2-Cl-C ₆ H ₄) ₂	p-NHPh	-0-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(
I-698	CONHCH(2-Cl-C ₆ H ₄) ₂	p-NHPh	OPh-4-CH ₂ COOH
I-699	CONHCH(2-Cl-C ₆ H ₄) ₂	p-NHPh	OPh-4-CH ₂ CH=CHCOOH
I-700	CONHCH(2-Cl-C ₆ H ₄) ₂	p-NHPh	SPh-3-CH ₂ COOH
I-701	CONHCH(2-Cl-C ₆ H ₄) ₂ o-SMe		-O-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

表 6 8

I-702	CONHCH(2-Cl-C ₆ H ₄) ₂	o-SMe	-0-(
I-703	CONHCH(2-Cl-C ₆ H ₄) ₂	o-SMe	OPh-4-CH ₂ COOH
I-704	$CONHCH(2-Cl-C_6H_4)_2$	o-SMe	OPh-4-CH ₂ CH=CHCOOH
I-705	$CONHCH(2-Cl-C_6H_4)_2$	o-SMe	SPh-3-CH ₂ COOH
I-706	CONHCH(2-CI-C ₆ H ₄) ₂	p-SPh	-O-N-N-CHex
I-707	CONHCH(2-Cl-C ₆ H ₄) ₂	p-SPh	-0
I-708	$CONHCH(2-Cl-C_6H_4)_2$	p-SPh	OPh-4-CH ₂ COOH
I-709	CONHCH(2-Cl-C ₆ H ₄) ₂	p-SPh	OPh-4-CH ₂ CH=CHCOOH
1-710	CONHCH(2-Cl-C ₆ H ₄) ₂	p-SPh	SPh-3-CH ₂ COOH
I-711	CONHCH(2-Cl-C ₆ H ₄) ₂	p-Et	-O-N-N-CHex
I-712	CONHCH(2-Cl-C ₆ H ₄) ₂	p-Et	-0
I-713	CONHCH(2-Cl-C ₆ H ₄) ₂	p-Et	OPh-4-CH ₂ COOH
I-714	CONHCH(2-Cl-C ₆ H ₄) ₂	p-Et	OPh-4-CH ₂ CH=CHCOOH
I-715	CONHCH(2-Cl-C ₆ H ₄) ₂	p-Et	SPh-3-CH ₂ COOH

表 6 9

			•
I-716	CONHCH(2-Cl-C ₆ H ₄) ₂	p-Ph	-O-N-CHex
I-717	CONHCH(2-Cl-С ₆ H ₄) ₂	p-Ph	-0
I-718	CONHCH(2-Cl-C ₆ H ₄) ₂	p-Ph	OPh-4-CH ₂ COOH
I-719	$CONHCH(2-Cl-C_6H_4)_2$	p-Ph	OPh-4-CH ₂ CH=CHCOOH
I-720	CONHCH(2-Cl-C ₆ H ₄) ₂	p-Ph	SPh-3-CH ₂ COOH
I-721	CONHCH(4-SMe-C ₆ H ₄) ₂	m-NMe ₂	-0
I-722	CONHCH(4-SMe-C ₆ H ₄) ₂	m-NMe ₂	-0-(
I-723	CONHCH(4-SMe-C ₆ H ₄) ₂	m-NMe ₂	OPh-4-CH ₂ COOH
I-724	CONHCH(4-SMe-C ₆ H ₄) ₂	m-NMe ₂	OPh-4-CH ₂ CH=CHCOOH
I-725	CONHCH(4-SMe- C_6H_4) ₂	m-NMe ₂	SPh-3-CH ₂ COOH
I-726	CONHCH(4-SMe-C ₆ H ₄) ₂	p-NHPh	-O-N-N-CHex
I-727	CONHCH(4-SMe-C ₆ H ₄) ₂	p-NHPh	-0-______\\\\\\\\\\
I-728	CONHCH(4-SMe-C ₆ H ₄) ₂	p-NHPh	OPh-4-CH ₂ COOH

表70

I-729	CONHCH(4-SMe-C ₆ H ₄) ₂	p-NHPh	OPh-4-CH ₂ CH=CHCOOH
I-730	CONHCH(4-SMe-C ₆ H ₄) ₂	p-NHPh	SPh-3-CH ₂ COOH
I-731	CONHCH(4-SMe-C ₆ H ₄) ₂	o-SMe	.o-(
I-732	CONHCH(4-SMe-C ₆ H ₄) ₂	o-SMe	-0
I-733	CONHCH(4-SMe-C ₆ H ₄) ₂	o-SMe	OPh-4-CH ₂ COOH
I-734	CONHCH(4-SMe-C ₆ H ₄) ₂	o-SMe	OPh-4-CH ₂ CH=CHCOOH
I-735	CONHCH(4-SMe-C ₆ H ₄) ₂	o-SMe	SPh-3-CH ₂ COOH
I-736	CONHCH(4-SMe-C ₆ H ₄) ₂	p-SPh	
1-737	CONHCH(4-SMe-C ₆ H ₄) ₂	p-SPh	-0
I-738	CONHCH(4-SMe-C ₆ H ₄) ₂	p-SPh	OPh-4-CH ₂ COOH
I-739	CONHCH(4-SMe-C ₆ H ₄) ₂	p-SPh	OPh-4-CH ₂ CH=CHCOOH
I-740	CONHCH(4-SMe-C ₆ H ₄) ₂	p-SPh	SPh-3-CH ₂ COOH
I-741	-0-		-O

表71

I-742	CONHCH(4-SMe-C ₆ H ₄) ₂	p-Et	-0-{\bigcirc}_N-\bigcirc_N-\bigci
I-743	CONHCH(4-SMe-C ₆ H ₄) ₂	p-Et	OPh-4-CH ₂ COOH
I-744	CONHCH(4-SMe-C ₆ H ₄) ₂	p-Et	OPh-4-CH ₂ CH=CHCOOH
I-745	CONHCH(4-SMe-C ₆ H ₄) ₂	p-Et	SPh-3-CH ₂ COOH
I-746	CONHCH(4-SMe-C ₆ H ₄) ₂	p-Ph	-O
I-747	CONHCH(4-SMe-C ₆ H ₄) ₂	p-Ph	-0-{\bigcirc}_N-\bigcirc_N-\bigci
I-748	CONHCH(4-SMe-C ₆ H ₄) ₂	p-Ph	OPh-4-CH ₂ COOH
I-749	CONHCH(4-SMe-C ₆ H ₄) ₂	p-Ph	OPh-4-CH ₂ CH=CHCOOH
I-750	CONHCH(4-SMe- C_6H_4) $_2$	p-Ph	SPh-3-CH ₂ COOH
I-751	CONHCH(3-NH ₂ -C ₆ H ₄) ₂	m-NMe ₂	·o-
I-752	CONHCH(3-NH ₂ -C ₆ H ₄) ₂	m-NMe ₂	-o-{\bigcirc}_N-\circ}_N-\circ}_CH_3
I-753	CONHCH(3-NH ₂ -C ₆ H ₄) ₂	m-NMe ₂	OPh-4-CH ₂ COOH
I-754	CONHCH(3-NH ₂ -C ₆ H ₄) ₂	m-NMe ₂	OPh-4-CH ₂ CH=CHCOOH
I-755	CONHCH(3-NH ₂ -C ₆ H ₄) ₂	m-NMe ₂	SPh-3-CH ₂ COOH

表72

I-756	CONHCH(3-NH ₂ -C ₆ H ₄) ₂	p-NHPh	-O-W-N-N-N-CHex		
I-757	CONHCH(3-NH ₂ -C ₆ H ₄) ₂	p-NHPh	-0-\NCH3		
I-758	${\rm CONHCH}(3\text{-NH}_2\text{-C}_6{\rm H}_4)_2$	p-NHPh	OPh-4-CH ₂ COOH		
I-759	CONHCH(3-NH ₂ -C ₆ H ₄) ₂	p-NHPh	OPh-4-CH ₂ CH=CHCOOH		
I-760	CONHCH(3-NH ₂ -C ₆ H ₄) ₂	p-NHPh	SPh-3-CH ₂ COOH		
I-761	CONHCH(3-NH ₂ -C ₆ H ₄) ₂	o-SMe	-O		
I-762	CONHCH(3-NH ₂ -C ₆ H ₄) ₂	o-SMe	-0-(
I-763	${\rm CONHCH} \hbox{(3-NH$_2$-C$_6H_4$)}_2$	o-SMe	ОР h- 4-СН ₂ СООН		
I-764	${\rm CONHCH} \hbox{(3-NH$_2$-C$_6H_4$)}_2$	o-SMe	OPh-4-CH ₂ CH=CHCOOH		
I-765	${\rm CONHCH} \hbox{(3-NH$_2$-C$_6H_4$)}_2$	o-SMe	SPh-3-CH ₂ COOH		
I-766	CONHCH(3-NH ₂ -C ₆ H ₄) ₂	p-SPh	-O-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-		
I-767	CONHCH(3-NH ₂ -C ₆ H ₄) ₂	p-SPh	-0-\		
I-768	CONHCH(3-NH ₂ -C ₆ H ₄) ₂	p-SPh	OPh-4-CH ₂ COOH		

表 7 3

I-769	CONHCH(3-NH ₂ -C ₆ H ₄) ₂	p-SPh	OPh-4-CH ₂ CH=CHCOOH
I-770	CONHCH(3-NH ₂ -C ₆ H ₄) ₂	p-SPh	SPh-3-CH ₂ COOH
I-771	CONHCH(3-NH ₂ -C ₆ H ₄) ₂	p-Et	-O-N-N-CHex
I-772	CONHCH(3-NH ₂ -C ₆ H ₄) ₂	p-Et	-0
I-773	CONHCH(3-NH ₂ -C ₆ H ₄) ₂	p-Et	OPh-4-CH ₂ COOH
I-774	$CONHCH(3-NH_2-C_6H_4)_2$	p-Et	OPh-4-CH ₂ CH=CHCOOH
I-775	${\tt CONHCH(3-NH_2-C_6H_4)_2}$	p-Et	SPh-3-CH ₂ COOH
I-776	CONHCH(3-NH ₂ -C ₆ H ₄) ₂	p-Ph	-O-N-N-CHex
I-777	CONHCH(3-NH ₂ -C ₆ H ₄) ₂	p-Ph	-0
I-778	CONHCH(3-NH ₂ -C ₆ H ₄) ₂	p-Ph	OPh-4-CH ₂ COOH
I-779	CONHCH(3-NH ₂ -C ₆ H ₄) ₂	p-Ph	OPh-4-CH ₂ CH=CHCOOH
I-780	CONHCH(3-NH ₂ -C ₆ H ₄) ₂	p-Ph	SPh-3-CH ₂ COOH

表 7 4

No.	ν cm-1	<u> </u>	u ¹
1-1	CHCl ₃	CDCl ₃	2.94-3.20(m,2H),3.40-3.49(m,1H),5.16(d,J=3.2Hz,1H),
• •	1792,1679	000.3	7.18-8.90(m,15H)
1-2	CHCl ₃	CDCI ₃	
	1789,1673	_	: 6.05(s,2H),6.83-7.54(m,13H)
1-3	CHCl₃	CDCI ₃	2.94-3.19(m,2H),3.39-3.48(m,1H),3.82(s,3H),5.15(d,
	1792,1675		J=3.5Hz,1H),7.20-7.50(m,14H)
1-4	CHCl ₃	CDCI	2.94(t,J=7.1Hz,2H),3.24-3.33(m,1H),4.97(d,J=3.2Hz,1H),
	1796,1728	3	7.07-7.93(m,15H)
1-5	CHCl₃ 1768	CDC13	2.95-3.20(m,2H),3.40-3.50(m,1H),5.03(d,J=2.7Hz,1H),
	1768		7.06-7.51(m,15H),8.40(s,1H)
I - 6	CHCl₃	CDCl ₃	2.96-3.20(m,2H),3.39-3.48(m,1H),3.79(s,1H),5.02(d,
	1767		J=2.6Hz,1H),6.84-7.55(m,14H),8.27(S,1H)
1-7	CHCl ₃ 1769	CDCl ₃	
	1769		7.16-7.49(m,14H),8.41(s,1H)
1-8	CHCl ₃	CDCI ₃	2.97-3.20(m,2H),3.42-3.52(m,1H),5.03(d,J=2.7Hz,1H),
	1769		7.15-7.50(m,14H),8.42(s,1H)
I-9	CHCl₃	CDCI ₃	1.39(t,J=10.7Hz,3H),2.95-3.24(m,2H),3.43-3.55(m,1H),
	1770	Ĭ	; 4.36(q,J=10.7Hz,2H),5.50(d,J=2.8Hz,1H),7.15-8.04(m,
			14H),8.59(s,1H)
I-10	CHCI ₃	CDCI ₃	2.34(s,3H),2.95-3.20(m,2H),3.38-3.5(m,1H),5.02(d,J=2.7
••••	1768		Hz,1H),6.90-7.50(m,15H),8.35(s,1H)
1-11	CHCl₃	CDCI ₃	1.40(t, J=7.2Hz,3H),2.97-3.22(m,2H),3.42-3.52(m,1H),
	1769		4.38(q,J=7.2Hz,2H),5.04(d,J=2.7Hz,1H),7.15-8.10(m,
1-12	CHCI ₃	CDCI ₃	; <u>14H),8.50(s,1H)</u> ; 2.95-3.22(m,2H),3.38-3.47(m,1H),3.90(s,3H),5.03(d,
	1771	CDCI3	J=2.7Hz,1H),6.85-8.26(m,14H),9.01(s,1H)
I-13		CDCI	2.92-3.18(m,2H),3.33-3.42(m,1H),4.46-4.51(m,2H),4.96
	1768,1707,	00013	(d,J=2.6Hz,1H),6.81(br,1H),7.15-7.45(m,15H)
	1536,1317		
I-14	, ,	CDCl₃	1H),4.90,4.93(d,J=2.6Hz,1H),5.00-5.16(m,1H),6.70-6.80
ļ	1769		(m,1H),7.10-7.50(m,15H)
1 15	CUC	CDCI	0.86-1.00(m,3H),1.76-1.95(m,2H),2.90-3.20(m,2H),3.30-
I-15	CHC ₁₃	CDCI3	3.42(m,1H),4.77-4.88(m,1H),4.89,4.93(d,J=2.6Hz,1H),
			6.77-6.84(m,1H),7.12-7.48(m,15H)
1-16	CHCl ₃	CDCI	2.90-3.20(m,2H),3.35-3.45(m,1H),3.42,3.54(s,3H),4.95,
1-10	1773	00013	4.98(d,J=2.5Hz,1H),6.05-6.10(m,1H),7.00-7.10(m,1H),
	'''		7.15-7.55(m,15H)
1-17	CHCl ₃	CDCI	2.95-3.20(m,2H),3.34-3.48(m,1H),4.95(d,J=2.6Hz,1H),
1-1/	1769		; 2.95-3.20(m,2H),3.34-3.46(m,1H),4.95(d,J=2.6HZ,1H), 6.21(d,J=8.6Hz,1H),7.20-7.45(m,21H)
I-18		CDCI	0.89,0.95(t,J=6.0Hz,3H),1.75-1.95(m,2H),2.90-3.20(m,
1210	1 4300		2H),3.30-3.42(m,1H),4.77-4.88(m,1H),4.89,4.93(d,
	1768		J=2.4Hz,1H),6.70-6.85(m,1H),7.17-7.50(m,15H)
I-19	CHCl ₃	CDCi	\
	1768	UDU13	0.86,0.94(t,J=6.5Hz,3H),1.72-1.90(m,2H),2.98-3.18(m,
			2H),3.30-3.45(m,1H),4.70-4.84(m,1H),4.90,4.92(d, J=2.5Hz,1H),6.78(d,J=7.1Hz,1H),7.12-7.50(m,14H)
1.00		000:	
I-20			0.89,0.95(t,J=6.5Hz,3H),1.75-1.92(m,2H),2.90-3.20(m,2H), 3.30-3.42(m,1H),3.79,3.82(S,3H),4.70-4.84(m,1H),4.90,
	1768		3.30-3.42(m,1H),3.79,3.82(5,3H),4.70-4.84(m,1H),4.90, 4.93(d,J=2.6Hz,1H),6.80(br,1H),6.81-7.45(m,14H)
1-21	CHCl ₃	CDCi	:0.88,0.93(t,J=6.5Hz,3H),1.70-1.90(m,2H),2.90-3.18(m,2H),
1-2, 1	1767		;0.66,0.93(t,J=6.5H2,3H),1.70-1.90(m,2H),2.90-3.18(m,2H); 3.30-3.42(m,1H),4.66-4.78(m,1H),4.90,4.92(d,J=2.6Hz,1H)
			;5.94,5.96(s,2H),6.70(br,1H),6.70-7.45(m,14H)
	ļ	L	, o. o. 1, o.

表 7 5

	,		
No.	ν _{cm-1}		н¹
I-22	CHCl ₃ 1793	CDCI ₃	2.88-3.12(m,2H),3.36-3.45(m,1H),3.79(s,3H), 5.14(d,J=2.8Hz,1H),6.81-7.96(m,14H)
I-23	CHCl ₃ 1792	CDCI3	2.92-3.20(m,2H),3.48-3.58(m,1H),3.78(s,3H), 5.19(d,J=3.4Hz,1H),6.85-7.87(m,14H)
1-24	CHCl₃ 17 9 5	CDCl ₃	2.92-3.18(m,2H),3.38-3.48(m,1H),3.77(s,3H), 5.16(d,J=2.2Hz,1H),6.75-7.87(m,14H)
I-25	CHCl₃ 1794	CDCI ₃	2.90-3.18(m,2H),3.36-3.48(m,1H), 5.14(d,J=3.5Hz,1H),7.05-7.88(m,14H)
I-26	CHCl₃ 1 79 3	CDCl ₃	2.32(s,3H),2.90-3.17(m,2H),3.39-3.49(m,1H), 5.15(d,J=3.4Hz,1H),7.02-7.87(m,14H)
I-27	CHCl ₃ 1794	CDCl ₃	2.16-2.28(m,6H),2.88-3.25(m,2H),3.41-3.50(m,1H), 5.14(d,J=3.4Hz,1H),6.90-7.90(m,13H)
I-28	CHCl ₃ 1794	CDCl ₃	2.85-3.15(m,2H),3.33-3.45(m,1H), 5.14(d,J=3.2Hz,1H),5.94(s,2H),6.60-7.78(m,13H)
I-29	CHCl ₃ 1791	CDCI ₃	2.04-2.33(m,12H),2.70-3.60(m,4H),5.39,5.44(s,1H), 6.60-7.80(m,16H)
I-30	CHCl₃ 1793	CDCl ₃	2.78-3.65(m,2H),3.43,3.89(s,6H),5.3(s,1H), 6.70-7.76(m,18H)
l-31	CHCl ₃ 1787,1695, 1673	CDCl ₃	2.96-3.28(m,2H),3.50-3.68(m,2H), 3.80-3.90(m,1H),7.20-8.18(m,10H)
1-32	CHCl ₃ 1781	CDCI ₃	0.80-1.00(m,3H),1.70-1.90(m,2H),2.30-3.10(m,2H), 3.60-4.15(m,1H),4.35-4.41,4.79-4.85(m,1H), 4.60-4.80(m,1H),6.60-6.80(m,1H),7.057.60(m,15H)
I-33	CHCl ₃ 1788	CDCl ₃	0.79,0.87(t,J=14.6Hz,3H),1.74(q,J=14.6Hz,2H), 3.10-3.19(m,2H),4.10-4.20(m,1H),4.35-4.55(m,1H), 4.76,4.79(d,J=2.5Hz,1H),5.93,5.97(s,2H),6.40-6.56 (m,1H),7.10-7.90(m,13H)

表 7 6

No.	ν cm-1		H ¹
I-34	CHCl ₃ 1767	CDCl ₃	1.55(d,J=7.0Hz,3H),2.90-3.18(m,2H), 3.34-3.43(m,1H),4.91(d,J=2.6Hz,1H), 4.98-5.16(m,1H),6.79(d,J=4.0Hz,1H), 7.10-7.50(m,15H)
I-35	CHCl ₃ 1768	CDCl ₃	1.51(d,J=7.0Hz,3H),2.93-3.18(m,2H), 3.25-3.38(m,1H),4.94(d,J=2.6Hz,1H), 5.01-5.15(m,1H),6.76(d,J=8.2Hz,1H), 7.10-7.50(m,15H)
I-36	CHCl ₃ 1782	CDCl ₃	1.50-1.57(m,3H),2.11,2.12(s,3H), 3.11-3.16(m,2H),3.35-3.48(m,1H), 4.10-5.08(m,1H),6.07,6.08(d,J=2.5Hz,1H) 6.66-6.70(m,1H),7.15-7.40(m,10H)
I-37	CHCl ₃ 1781	DMSO-d ₆	1.44(d,J=6.9Hz,3H),3.13(d,J=7.8Hz,2H), 3.73(m,1H),4.89(m,1H),6.06(s,1H), 6.89(d,J=8.8Hz,2H),7.20-7.40(m,11H), 7.77(d,J=8.8Hz,2H),12.80(br,1H)
1-38	CHCl ₃ 1780	CDCl ₃	1.54(d,J=7.0Hz,3H),1.60-2.80(m,8H), 5.00(m,1H),5.65(d,J=1.2Hz,1H), 6.80-6.95(m,3H),7.15-7.40(m,12H)
I-39	CHCl ₃ 1779	CDCl ₃	1.53(d,J=7.0Hz,3H),2.31(s,3H), 2.20-2.50(br,4H),2.94-3.27(m,2H), 3.40-3.80(br,2H),3.65(m,1H),5.02(m,1H), 5.65(d,J=1.4Hz,1H),6.85(d,J=7.8Hz,1H), 6.91(d,J=8.8Hz,2H),7.15-7.40(m,12H)
I-40	CHCl ₃ 1780	CDCI ₃	1.54(d,J=7.0Hz,3H),1.70-2.15(m,3H), 2.44(m,1H),2.94-3.28(m,2H),3.50(m,2H), 3.66(m,1H),4.77(m,1H),5.01(m,1H), 5.67(d,J=1.4Hz,1H),6.84(d,J=8.2Hz,1H), 6.91(d,J=8.8Hz,2H),7.15-7.45(m,12H)
I-41	CHCl ₃ 1779	CDCl ₃	0.80-2.20(m,7H),1.54(d,J=7.0Hz,3H), 2.93-3.27(m,2H),3.41(m,2H),3.64(m,1H), 5.02(m,1H),5.65(d,J=1.2Hz,1H), 6.86(m,3H),7.15-7.40(m,12H)
I-42	CHCl₃ 1777	CDCl ₃	1.52(d,J=7.0Hz,3H),2.95-3.27(m,2H), 3.64(m,1H),5.00(m,1H),5.32(s,2H), 5.71(d,J=1.4Hz,1H),6.81(d,J=8.0Hz,1H), 6.90(d,J=8.8Hz,2H),7.15-7.45(m,15H), 7.92(d,J=8.8Hz,2H)

表77

No	ν cm-1		H ¹
1-43	CHCl ₃ 1780	CDCI ₃	1.53(d,J=6.9Hz,3H),2.95-3.27(m,2H),3.40-3.80(m,9H), 5.01(m,1H),5.65(d,J=1.4Hz,1H),6.83(d,J=8.0Hz,1H), 6.91(d,J=8.8Hz,2H),7.10-7.40(m,12H)
I-44	CHCl ₃ 1780	CDCl₃	1.53(d,J=6.9Hz,3H),2.94-3.27(m,2H),3.64(m,1H), 4.06(m,2H),5.00(m,1H),5.15-5.29(m,2H), 5.68(d,J=1.4Hz,1H),5.60-6.05(m,2H), 6.83(d,J=8.2Hz,1H),6.91(d,J=8.8Hz,2H), 7.15-7.40(m,10H),7.62(d,J=8.8Hz,2H)
I-45	CHCl ₃ 1780	CDCl₃	1.53(d,J=7.0Hz,3H),2.93-3.27(m,2H),3.64(m,1H), 4.61(d,J=5.5Hz,2H),4.99(m,1H),5.66(d,J=1.4Hz,1H), 6.26(br,1H),6.81(d,J=8.4Hz,1H),6.89(d,J=8.8Hz,2H), 7.15-7.40(m,15H),7.63(d,J=8.8Hz,2H)
I-46	CHCl ₃ 1780	CDCl₃	1.53(d,J=7.0Hz,3H),2.95-3.28(m,2H),3.67(m,1H), 5.05(m,1H),5.67(d,J=1.4Hz,1H),6.85(d,J=8.0Hz,1H), 6.93(d,J=8.8Hz,2H),7.10-7.40(m,13H), 7.59(d,J=8.4Hz,2H),7.68(d,J=8.8Hz,2H),7.77(br,1H)
1-47	CHCl ₃ 1781	CDCl₃	1.53(d,J=7.0Hz,3H),2.33(s,6H),2.69(t,J=5.7Hz,2H), 2.96-3.28m,2H),3.65(m,1H),5.01(m,1H), 5.71(d,J=1.4Hz,1H),6.81(d,J=8.3Hz,1H), 6.90(d,J=8.8Hz,2H),7.15-7.40(m,10H), 7.89(d,J=8.8Hz,2H)
I-48	CHCl ₃ 1780	CDCl ₃	1.53(d,J=7.0Hz,3H),2.90-3.18(m,2H),3.34-3.43(m,1H), 4.91(d,J=2.6Hz,1H),4.98-5.16(m,1H),6.79(d,J=4.0Hz, 1H),7.10-7.50(m,15H)
I-49	CHCl ₃ 1777	DMSO-d ₆	1.44(d,J=7.0Hz,3H),3.12(d,J=7.7Hz,2H),3.47(s,2H), 3.68(m,1H),4.89(m,1H),5.87(d,J=1.3Hz,1H), 6.76(d,J=8.6Hz,2H),7.08(d,J=8.8Hz,2H), 7.20-7.40(m,11H),12.30(br,1H)
I-50	CHCl ₃ 1778	CDCl ₃	1.54(d,J=6.9Hz,3H),2.15-2.40(m,4H),2.26(s,3H), 2.93-3.25(m,2H),3.42(m,2H),3.63(m,3H),5.03(m,1H), 5.61(d,J=1.4Hz,1H),6.84(m,3H),7.06(d,J=8.6Hz,2H), 7.15-7.40(m,10H)
I-51	CHCI ₃	CDCl ₃	1.53(d,J=7.0Hz,3H),2.40(s,6H),2.61 (t,J=5.7Hz,2H), 2.93-3.25(m,2H),3.64(m,1H),4.21(t,J=5.7Hz,2H), 5.01(m,1H),5.61(d,J=1.3Hz,1H),6.84(m,3H), 7.11(d,J=8.8Hz,2H),7.15-7.45(m,10H)
1-52	CHCl ₃ 1780	DMSO-d ₆	1.43(d,J=7.0Hz,3H),3.12(d,J=7.8Hz,2H),3.71(m,1H), 4.89(m,1H),6.02(d,J=1.3Hz,1H),6.63(d,J=16.0Hz,1H), 6.89(d,J=8.7Hz,2H),7.20-7.45(m,11H), 7.51(d,J=16.0Hz,1H),7.54(d,J=8.7Hz,2H)
I-53	CHCl ₃ 1780	CDCl ₃	1.53(d,J=7.0Hz,3H),1.70-2.60(m,4H),2.95-3.27(m,2H), 3.55-3.80(m,3H),4.75(m,1H),5.01(m,1H),5.35(br,1H), 5.67(d,J=1.4Hz,1H),6.61(d,J=15.4Hz,1H),6.84(d, J=7.9Hz,1H),6.91(d,J=8.6Hz,2H),7.15-7.45(m,12H), 7.66(d,J=15.4Hz,1H)

表78

No.	ν _{cm-1}	-	<u>п</u> 1
I-54	CHCl ₃ 1779	CDCl ₃	1.53(d,J=6.9Hz,3H),2.32(s,3H),2.3(m,4H), 2.95-3.26(m,2H),3.60-3.80(m,5H),5.01(m,1H), 5.66(d,J=1.4Hz,1H),6.73(d,J=15.4Hz,1H),6.83 (d,J=8.0Hz,1H),6.89(d,J=8.7Hz,2H),7.10-7.40 (m,12H),7.58(d,J=15.4Hz,1H)
1-55	CHCl₃ 1780	DMSO-d ₆	1.44(d,J=6.9Hz,3H),3.11(d,J=7.9Hz,d), 3.73(m,1H),4.89(m,1H),5.98(d,J=1.4Hz,d), 7.05-7.40(m,13H),7.60(m,2H),13.05(br,1H)
I-56	CHCl ₃ 1779	CDCI ₃	1.53(d,J=7.0Hz,3H),2.31(s,3H), 2.20-2.50(m,4H),2.93-3.25(m,2H), 3.30-3.50(br,2H),4.99(m,1H), 5.64(d,J=1.4Hz,1H),6.84(d,J=7.7Hz,1H), 6.94-7.10(m,3H),7.15-7.40(m,10H)
I-57	CHCl ₃ 1772	DMSO-d ₆	1.44(d,J=7.0Hz,3H),3.08(d,J=8.0Hz,d), 3.58(m,1H),4.90(m,1H),5.39(d,J=2.8Hz,d), 7.05-7.40(m,11H),7.46(d,J=8.4Hz,2H), 7.83(d,J=8.4Hz,2H)
I-58	CHCl₃ 1771	CDCl₃	1.54(d,J=6.9Hz,3H),2.32(s,6H), 2.20-2.50(br,4H),2.92-3.20(m,2H), 3.30-3.90(br,4H),3.46(m,1H), 4.93(d,J=2.6Hz,1H),5.04(m,1H), 6.81(d,J=8.4Hz,1H),7.10-7.40(m,12H) 7.48(d,J=8.3Hz,2H)
I-59	CHCl₃ 1773	CDCl₃	1.55(d,J=7.0Hz,3H),2.81-3.17(m,2H), 3.47-3.56(m,1H),4.82(d,J=13.1Hz,1H), 4.99(d,J=13.1Hz,d),4.94-5.10(m,1H), 5.15(d,1H,J=1.8Hz),6.94(d,J=8.2Hz,1H), 7.10-7.40(m,12H),8.01(d,J=8.2Hz,2H)
I-60	CHCl₃ 1772	CDCI ₃	1.54(d,J=7.0Hz,3H),2.20-2.60(m,4H),2.32(s,3H), 2.81-3.16(m,2H),3.30-3.90(m,5H), 4.75(d,J=12.6Hz,1H),4.94-5.10(m,1H), 5.15(d,J=1.7Hz,1H),6.94(d,J=7.9Hz,1H), 7.10-7.40(m,14H)
I-61	CHCl₃ 1780	DMSO-d ₆	1.44(d,J=7.0Hz,3H),2.80-3.15(m,2H), 4.08(m,1H),4.86(m,1H),6.27(d,J=4.5Hz,d), 7.10-7.40(m,13H),7.84(d,J=8.6Hz,2H), 12.60-12.90(br,1H)
I-62	CHCl ₃ 1778	CDCl₃	1.54(d,J=6.9Hz,3H),2.31(s,3H),2.39(br,4H), 3.16-3.25(m,2H),3.30-3.90(br,4H), 3.80-3.91(m,1H),5.05(m,1H),6.06(d,J=4.5Hz,1H) 6.89(d,J=7.8Hz,1H),7.11-7.40(m,14H)

表 79

No.		H ¹
I-63	CDCl ₃	1.50-1.56(m,3H),2.87-3.20(m,2H),3.30-3.50(m,1H), 3.69,3.75(s,3H),4.48(m,1H),5.00-5.20(m,1H), 6.78-7.50(m,15H)
I-64	CDCl₃	1.51-1.57(m,3H),2.87-3.18(m,2H),3.30-3.45(m,1H), 4.89-4.93(m,1H),5.00-5.18(m,1H),6.73-6.80(m,1H), 7.15-7.50(m,14H)
!-65	CDCl₃	1.50-1.56(m,3H),2.80-3.10(m,2H),3.25-3.40(m,1H), 4.91(m,1H),5.00-5.18(m,1H),5.94(m,2H),6.61-7.55(m,14H)

表80

No.		H ¹
I-66	CDCI ₃	1.54(d, J=6.9Hz,3H),3.10-3.33(m,2H),3.82-3.93(m,1H), 6.13(d,J=4.6Hz,1H),6.85(d,J=8.0Hz,1H),7.08(s,1H), 7.14-7.46(m,22H),8.07(d,J=9.0Hz,2H)
I-67	CDCI ₃	1.54(d, J=7.0Hz,3H),3.18-3.28(m,2H),3.40-3.80(m,8H), 3.80-3.92(m,1H),4.96-5.12(m,1H),6.06(d,J=4.6Hz,1H), 6.88(d,J=8.0Hz,1H),7.10-7.40(m,14H)
1-68	CDCI ₃	1.54(d, J=7.0Hz,3H),3.10-3.33(m,2H),3.80-3.92(m,1H), 4.67(d,J=5.8Hz,1H),4.96-5.11(m,1H),6.09(d,J=4.7Hz,1H), 6.34-6.44(m,1H),6.86(d,J=8.2Hz,1H),7.00-7.47(m,16H), 7.72(d,J=8.8Hz,2H)
I-69	CDCI ₃	1.54(d, J=6.8Hz,3H),3.00-3.32(m,2H),3.81-3.92(m,1H), 4.96-5.11(m,1H),5.33(s,2H),6.11(d,J=4.7Hz,1H), 6.84(d,J=7.8Hz,1H),7.10-7.47(m,17H),8.00(d,J=8.8Hz,2H)
1-70	CDCI ₃	1.00-1.20(m,3H),1.54(d, J=7.0Hz,3H),3.05-3.60(m,4H), 3.79-3.90(m,1H),4.45-4.80(m,2H),4.96-5.12(m,1H), 6.04(d,J=4.6Hz,1H),6.87(d,J=8.3Hz,1H),7.10-7.47(m,19H)
I-71	CDCl ₃	1.54(d, J=6.9Hz,3H),1.64(d,J=6.6Hz,3H),3.09-3.30(m,2H), 3.80-3.92(m,1H),4.97-5.11(m,1H),6.02-6.14(m,2H), 6.85(d,J=8.4Hz,1H),7.10-7.45(m,17H),8.00(d,J=9.0Hz,2H)
I-72	CDCI ₃	1.54(d, J=7.0Hz,3H),3.10-3.43(m,2H),3.81-3.92(m,1H), 4.97-5.11(m,1H),5.22(s,2H),5.97(s,2H),6.11(d,J=4.6Hz,1H), 6.78-6.95(m,4H),7.08-7.40(m,12H),7.97(d,J=9.0Hz,2H)
I-73	CDCI ₃	1.54(d, J=7.0Hz,3H),3.12-3.33(m,2H),3.81-3.94(m,1H), 4.96-5.11(m,1H),6.11(d,J=4.6Hz,1H),6.28(d,J=3.7Hz,1H), 6.84-6.95(m,4H),7.10-7.40(m,14H),7.75(d,J=8.9Hz,2H), 7.83(d,J=3.7Hz,1H)
I-74	CDCI ₃	1.54(d, J=7.0Hz,3H),3.16-3.30(m,2H),3.89-3.91(m,1H), 5.00-5.26(m,4H),6.08(d,J=4.6Hz,1H),6.45(d,J=7.9Hz,1H), 6.86(d,J=7.7Hz,4H),6.98-7.08(m,2H),7.13(d,J=8.8Hz,2H), 7.15-7.40(m,18H),7.63(d,J=8.8Hz,2H)
I-75 .	CDCI ₃	1.54(d, J=7.0Hz,3H),3.10-3.32(m,2H),3.83-3.94(m,1H), 4.96-5.12(m,1H),5.35(s,2H),6.14(d,J=4.6Hz,1H), 6.85(d,J=8.0Hz,1H),7.15-7.45(m,14H),8.02(d,J=9.0Hz,2H), 8.62(d,J=6.1Hz,2H)
1-76	CDCI ₃	1.54(d, J=6.9Hz,3H),2.25-2.50(m,4H),3.19-3.25(m,2H), 3.43(s,2H),3.20-3.90(m,5H),4.95-5.12(m,1H),5.94(s,2H), 6.05(d,J=4.6Hz,1H),6.74(s,1H),6.88(d,J=8.0Hz,1H), 7.10-7.45(m,16H)

表81

No.		н¹
1-77	CDCl₃	1.54(d, J=7.0Hz,3H),3.08-3.40(m,4H),3.80-3.91(m,1H), 3.91-4.40(m,1H),4.90-5.10(m,2H),6.07(d,J=4.7Hz,1H), 6.55(d,J=3.5Hz,1H),6.88(d,J=8.0Hz,1H),7.08(d,J=8.8Hz,2H), 7.15-7.40(m,15H),7.58(d,J=8.8Hz,2H)
I-78 .	CDCI ₃	1.53(d, J=7.0Hz,3H),3.10-3.31(m,2H),3.81-3.92(m,1H), 4.96-5.11(m,1H),5.40(s,2H),6.12(d,J=4.4Hz,1H), 6.84(d,J=7.8Hz,1H),7.02-7.52(m,16H),7.99(d,J=9.2Hz,2H)
I-79	CDCI ₃ (300MHz)	1.54(d, J=6.9Hz,3H),3.13-3.29(m,2H),3.83-3.91(m,1H), 4.98-5.08(m,1H),5.32(s,2H),6.12(d,J=4.8Hz,1H), 6.85(d,J=8.1Hz,1H),6.98-7.40(m,16H),8.00(d,J=9.0Hz,2H)
1-80	DMSO-d ₆	1.45(d, J=6.9Hz,3H),2.96-3.13(m,2H),4.03-4.10(m,1H), 4.85-4.96(m,1H),6.27(d,J=4.5Hz,1H),7.16-7.40(m,13H), 7.86(d,J=9.3Hz,2H),12.75(brs,1H)
I- 81	CDCI ₃	1.54(d,J=7.0Hz,3H),2.32(s,3H),2.30-2.50(m,4H), 3.20-3.27(m,2H),3.30-3.88(m,5H),4.96-5.11(m,1H), 6.02(d,J=4.6Hz,1H),6.92(d,J=8.0Hz,1H),7.10-7.40(m,14H)
1-82	CDCI ₃	1.10-1.35 (m,4H), 1.54(d, J=6.9Hz,3H), 1.60-1.90(m,6H), 2.20-2.40 (m,1H), 2.40-2.70 (m,4H), 3.20-3.30 (m,2H), 3.30-3.80 (m,5H), 4.96-5.12 (m,1H), 6.01 (d,J=4.7Hz,1H), 6.91 (d,J=8.2Hz,1H), 7.10-7.40 (m,14H)
I-83	CDCI ₃	1.55(d,J=7.0Hz,3H),1.40-2.10(m,11H),2.40-3.10(m,8H), 3.20-3.30(m,2H),3.75-3.90(m,1H),4.95-5.12(m,1H), 6.02(d,J=4.5Hz,1H),6.91(d,J=8.0Hz,1H),7.10-7.40(m,14H)
I-84	CDCI ₃	1.53(d, J=7.0Hz,3H),3.12-3.44(m,2H),3.78-3.89(m,1H), 5.33(s,2H),6.07(d,J=4.6Hz,1H),6.88(d,J=8.3Hz,1H), 7.10-7.50(m,17H),8.01(d,J=8.9Hz,2H)
I-85	CDCI ₃	1.52(d, J=7.0Hz,3H),3.09-3.32(m,2H),3.86-3.97(m,1H), 5.02-5.17(m,1H),5.43(d,J=5.6Hz,1H),6.88(d,J=8.3Hz,1H), 7.20-7.45(m,13H),7.52-7.64(m,2H)

表82

No.		H¹
I-86	DMSO-d ₆	1.45(d, J=7.0Hz,3H),3.15(d,J=8.0Hz,2H),3.67-3.76(m,1H), 4.76-4.94(m,1H),6.07(d,J=1.3Hz,1H),6.85(d,J=8.8Hz,2H), 7.20-7.40(m,11H),7.74(d,J=8.8Hz,2H),12.80(brs,1H)
I-87	CDCI ₃	1.54(d, J=7.0Hz,3H),2.32(s,3H),2.20-2.55(m,4H), 2.97-3.90(m,7H),4.96-5.11(m,1H),5.70(d,J=1.2Hz,1H), 6.83(d,J=7.8Hz,1H),6.88(d,J=8.6Hz,2H),7.18-7.41(m,12H)
1-88	DMSO-d ₆	1.44(d, J=6.9Hz,3H),3.13(d,J=7.8Hz,2H),3.69-3.77(m,1H), 4.81-4.97(m,1H),6.06(d,J=1.2Hz,1H),6.89(d,J=8.8Hz,2H), 7.15-7.45(m,11H),7.77(d,J=8.8Hz,2H),12.73(brs,1H)
I-89	CDCl ₃	1.54(d, J=7.0Hz,3H),2.31(s,3H),2.25-2.50(m,4H), 2.94-3.90(m,7H),4.94-5.09(m,1H),5.65(d,J=1.4Hz,1H), 6.85(d,J=7.8Hz,1H),6.91(d,J=8.8Hz,2H),7.15-7.40(m,12H)

表83

No.		Н1
I-90	DMSO-d ₆	1.45(d, J=7.0Hz,3H),2.98-3.15(m,2H),4.00-4.12(m,1H), 4.85-5.00(m,1H),6.27(d,J=4.7Hz,1H),7.10-7.48(m,13H), 7.86(d,J=8.6Hz,2H),12.70(brs,1H)
I-91	CDCl₃	1.54(d, J=6.8Hz,3H),2.32(s,3H),2.25-2.50(m,4H), 3.15-3.90(m,7H),4.95-5.14(m,1H),6.02(d,J=4.8Hz,1H), 6.92(d,J=8.2Hz,1H),7.10-7.40(m,14H)

表84

1H), IH),
1H), 5H),
1H), IH),
,
IH), Iz,1H),
IH), Iz,1H),
IH),
IH), 1z,1H),
IH),
,

表85

No.		H ¹
I-102	DMSO-d ₆	1.45(d, J=7.0Hz,3H),3.09(d,J=8.2Hz,2H),3.58-3.66(m,1H), 3.70(s,3H),4.77-4.92(m,1H),6.00(d,J=1.2Hz,1H), 6.85-6.98(m,4H),7.20-7.40(m,8H),7.76(d,J=8.9Hz,2H), 12.76(brs,1H)
I-103	CDCl₃	1.53(d, J=7.0Hz,3H),2.93-3.27(m,2H),3.59-3.67(m,1H), 3.66(s,3H),4.95-5.10(m,1H),5.79(d,J=1.3Hz,1H), 6.78-8.05(m,25H)
I-104	CDCl₃	1.54(d, J=7.0Hz,3H),2.32(s,3H)2.25-2.50(m,4H), 2.95-3.28(m,2H),3.30-3.80(m,5H),3.67(s,3H), 4.95-5.10(m,1H),5.72(d,J=1.2Hz,1H),6.79-6.94(m,5H), 7.10-7.40(m,9H)
I-105	CDCl₃	1.53(d, J=6.9Hz,3H),2.93-3.29(m,2H),3.68(s,3H), 3.60-3.70(m,1H),4.94-5.05(m,1H),5.34(s,2H), 5.80(d,J=1.2Hz,1H),6.79-7.00(m,5H),7.14-7.40(m,10H), 7.95(d,J=9.0Hz,2H),8.63(d,J=6.0Hz,2H)
I-106	CDCl₃	1.52(d, J=7.0Hz,3H),2.92-3.27(m,2H),3.58-3.70(m,1H), 3.67(s,3H),4.93-5.10(m,1H),5.34(s,2H),5.78(d,J=1.3Hz,1H), 6.75-7.00(m,5H),7.12-7.50(m,13H),7.92(d,J=9.0Hz,2H)
I-107	CDCI ₃	1.53(d, J=6.9Hz,3H),2.92-3.28(m,2H),3.68(s,3H), 3.40-4.00(m,9H),4.96-5.11(m,1H),5.74(d,J=1.3Hz,1H), 6.55(t,J=4.8Hz,1H),6.79-6.96(m,5H),7.10-7.40(m,9H), 8.33(d,J=4.8Hz,2H)
I-108	CDCl₃	1.10-1.35(m,4H),1.53(d, J=6.9Hz,3H),1.60-1.90(m,6H), 2.20-2.40(m,1H),2.40-2.65(m,4H),2.91-3.26(m,2H), 3.30-3.90(m,5H),3.66(s,3H),4.95-5.10(m,1H), 5.72(d,J=1.4Hz,1H),6.77-6.95(m,5H),7.10-7.40(m,9H)
I-109	DMSO-d ₆	1.43(d, J=6.8Hz,3H),2.95-3.20(m,2H),3.59-3.74(m,1H), 3.69(s,3H),4.80-4.96(m,1H),5.99(s,1H),6.87-7.00(m,4H), 7.15-7.40(m,8H),7.79(d,J=8.8Hz,2H),12.75(brs,1H)
I-110	CDCl₃	1.53(d, J=6.8Hz,3H),2.96-3.29(m,2H),3.57-3.63(m,1H), 3.69(s,3H),4.95-5.10(m,1H),5.83(d,J=1.2Hz,1H), 6.75-8.00(m,5H)
l-111	CDCl₃	1.54(d, J=6.9Hz,3H),2.31(s,3H)2.25-2.50(m,4H), 2.95-3.28(m,2H),3.30-3.75(m,5H),3.70(s,3H), 4.95-5.04(m,1H),5.77(d,J=1.3Hz,1H),6.81-6.94(m,5H), 7.15-7.40(m,9H)

表86

No.		H ¹
I-112	CDCI ₃	1.53(d, J=7.0Hz,3H),2.95-3.30(m,2H),3.56-3.63(m,1H), 3.69(s,3H),4.95-5.10(m,1H),5.32(s,2H),5.82(d,J=1.3Hz,1H), 6.85-6.96(m,5H),7.10-7.48(m,12H),7.95(d,J=9.0Hz,2H)
I-113	CDCl₃	0.92(t, J=7.4Hz,3H),1.75-1.90(m,2H),2.93-3.27(m,2H), 3.60-3.69(m,1H),3.66(s,3H),4.71-4.83(m,1H), 5.79(d,J=1.3Hz,1H),6.77-6.95(m,5H),7.10-7.40(m,8H), 7.91(d,J=8.8Hz,2H)
I-114	CDCl ₃	0.91(t, J=7.4Hz,3H),1.78-1.92(m,2H),2.92-3.26(m,2H), 3.60-3.70(m,1H),3.64(s,3H),4.70-4.81(m,1H), 5.78(d,J=1.3Hz,1H),6.70-8.00(m,25H)
1-115	CDCI ₃	0.89(t, J=7.4Hz,3H),1.78-1.89(m,2H),2.97-3.33(m,2H), 3.58-3.67(m,1H),3.72(s,3H),4.72-4.84(m,1H), 5.85(d,J=1.3Hz,1H),6.80-6.90(m,5H),7.17-7.40(m,8H), 7.90(d,J=8.8Hz,2H)
I-116	CDCl₃	0.89(t, J=7.4Hz,3H),1.78-1.92(m,2H),2.97-3.31(m,2H), 3.58-3.65(m,1H),3.70(s,3H),4.72-4.85(m,1H), 5.83(d,J=1.3Hz,1H),6.80-8.00(m,25H)
I-117	CDCl ₃	0.91(t, J=7.2Hz,3H),1.20-1.40(m,2H),1.70-1.85(m,2H), 2.92-3.32(m,2H),3.55-3.70(m,1H),3.65,3.70(s,3H), 4.68-4.80(m,1H),5.75,5.82(d,J=1.5Hz,1H),5.93,5.95(s,2H), 6.73-8.00(m,23H)
l-118	DMSO-d ₆	0.80-0.93(m,3H),1.10-1.45(m,2H),1.53-1.80(m,2H), 3.00-3.15(m,2H),3.56-3.75(m,4H),4.52-4.70(m,1H), 5.94-6.05(m,3H),6.74-7.00(m,7H),7.15-7.35(m,3H), 7.72-7.83(m,2H),12.75(brs,1H)
l-119	CDCl ₃	0.92(t, J=7.1Hz,3H),1.10-1.45(m,6H),1.58-1.80(m,8H), 2.20-2.70(m,5H),2.90-3.90(m,10H),4.68-4.80(m,1H), 5.69-5.76(m,1H),5.92-5.97(m,2H),6.72-6.95(m,7H), 7.12-7.30(m,5H)
I-120 ,	CDCl₃	0.92(t, J=7.1Hz,3H),1.15-1.45(m,2H),1.65-1.76(m,2H), 2.31(s,3H),2.26-2.50(m,4H),2.90-3.95(m,10H), 4.68-4.83(m,1H),5.69-5.76(m,1H),5.90-6.00(m,2H), 6.70-6.95(m,7H),7.10-7.30(m,5H)
I-121	CDCl₃	0.92(t, J=7.2Hz,3H),1.20-2.00(m,17H),2.35-3.32(m,8H), 3.67-3.80(m,4H),4.69-4.82(m,1H), 5.68-5.77(m,1H),5.90-6.00(m,2H),6.72-6.95(m,8H), 7.12-7.40(m,4H)

表87

No.		H ¹	
I-122	CDCl ₃	2.97-3.34(m,2H),3.09(s,3H),3.62-3.75(m,4H), 4.80-5.10(m,2H),5.85(d,J=1.0Hz,1H),6.83-7.50(m,12H), 7.93(d,J=9.0Hz,2H)	
I-123	CDCl ₃	3.07(s,3H),2.95-3.35(m,2H),3.60-3.70(m,1H),3.70(s,3H), 4.95(br,2H),5.83(d,J=1.2Hz,1H),6.78-8.02(m,25H)	
I-124	CDCI ₃	1.22-1.40(m,4H),2.94-3.30(m,2H),3.58-3.63(m,1H), 3.67(s,3H),5.80(d,J=1.3Hz,1H),6.80-8.20(m,25H)	
I-125	DMSO-d ₆	1.10-1.40(m,4H),3.00-3.20(m,2H),3.57-3.67(m,1H), 3.70(s,3H),5.98(d,J=1.2Hz,1H),6.85-7.00(m,4H), 7.10-7.35(m,7H),7.74-7.80(m,3H),12.76(brs,1H)	
I-126	DMSO-d ₆	3.02-3.18(m,2H),3.62-3.75(m,4H),5.99-6.08(m,2H), 6.84-7.00(m,4H),7.16-7.45(m,12H),7.70-7.84(m,3H), 12.7(brs,1H)	

表88

No.		H ¹
l -12 7	DMSO-d ₆	1.45(d, J=6.8Hz,3H),2.98(d,J=8.2Hz,2H),3.75(s,3H), 3.98-4.10(m,1H),4.82-4.99(m,1H),6.25(d,J=4.5Hz,1H), 6.72-6.94(m,2H),7.10-7.40(m,10H),7.88(d,J=8.8Hz,2H), 12.73(brs,1H)
-128	CDCl₃	1.53(d, J=7.0Hz,3H),3.19(d,J=7.7Hz,2H),3.79(s,3H), 3.94-4.04(m,1H),4.95-5.16(m,1H),6.04(d,J=4.7Hz,1H), 6.78-6.92(m,3H),7.08(s,1H),7.10-7.45(m,19H), 8.07(d,J=9.0Hz,2H)
I-129	CDCI ₃	1.53(d, J=7.0Hz,3H),2.32(s,3H)2.25-2.50(m,4H), 3.20(d,J=7.8Hz,2H),3.30-3.90(m,4H),3.80(s,3H), 3.90-4.02(m,1H),4.97-5.10(m,1H),5.97(d,J=4.6Hz,1H), 6.78-6.88(m,2H),6.92(d,J=8.0Hz,1H),7.10-7.40(m,11H)
I-130	CDCl₃	1.44(d, J=6.8Hz,3H),2.96(d,J=8.4Hz,2H),3.75(s,3H), 3.98-4.12(m,1H),4.76-4.94(m,1H),6.26(d,J=4.7Hz,1H), 6.72-6.95(m,2H),7.08-7.42(m,10H),7.85(d,J=8.8Hz,2H), 12.75(brs,1H)
l-131	CDCI ₃	1.53(d, J=7.0Hz,3H),3.18(d,J=7.7Hz,2H),3.80(s,3H), 3.95-4.08(m,1H),4.95-5.12(m,1H),6.09(d,J=4.7Hz,1H), 6.75-6.90(m,3H),7.08(s,1H),7.10-7.45(m,19H), 8.07(d,J=9.0Hz,2H)
I-132	CDCl₃	1.53(d, J=6.9Hz,3H),2.31(s,3H)2.35-2.50(m,4H), 3.18(d,J=7.9Hz,2H),3.30-3.90(m,4H),3.80(s,3H), 3.94-4.05(m,1H),4.97-5.12(m,1H),6.02(d,J=4.6Hz,1H), 6.78-6.92(m,3H),7.10-7.40(m,11H)
I-133	CDCl₃	1.52(d, J=6.9Hz,3H),3.16(d,J=7.9Hz,2H),3.79(s,3H), 3.95-4.07(m,1H),4.95-5.11(m,1H),5.33(s,2H), 6.08(d,J=4.6Hz,1H),6.76-6.90(m,3H),7.10-7.47(m,14H), 8.00(d,J=9.0Hz,2H)
I-134	DMSO-d ₆	1.45(d, J=7.0Hz,3H),2.64(s,3H),2.90-3.15(m,6H), 3.48-3.80(m,4H),3.76(s,3H),3.99-4.10(m,1H), 4.77-4.93(m,1H),6.21(d,J=4.4Hz,1H), 6.72-6.83(m,1H),6.92(d,J=7.6Hz,1H),7.08-7.42(m,12H)

表89

No.		H¹
I-135	CDCI ₃	0.92(t,J=7.4Hz,3H),1.28(t,J=7.0Hz,3H),1.77-1.95(m,2H), 2.91-3.32(m,2H),3.65-3.74(m,1H),3.93(q,J=7.0Hz,2H), 4.70-4.84(m,1H),5.78(d,J=1.3Hz,1H),6.77-7.00(m,5H), 7.12-7.40(m,7H),7.90(d,J=8.9Hz,2H)
I-136	CDCI ₃	0.91 (t,J=7.3Hz,3H),1.27(t,J=7.0Hz,3H),1.76-1.95(m,2H), 2.90-3.31 (m,2H),3.62-3.74(m,1H),3.92(q,J=7.0Hz,2H), 4.69-4.83(m,1H),5.76(d,J=1.3Hz,1H),6.84-6.96(m,5H), 7.07(s,1H),7.12-7.48(m,17H),7.96(d,J=9.0Hz,2H)
I-137	CDCI ₃	0.92(t,J=7.4Hz,3H),1.10-1.40(m,7H),1.55-1.96(m,8H), 2.20-2.70(m,5H),2.88-4.00(m,9H),4.71-4.83(m,1H), 5.69(d,J=1.3Hz,1H),6.76-7.00(m,5H),7.12-7.40(m,10H)
I-138	CDCl ₃	0.89(t,J=7.4Hz,3H),1.32(t,J=7.0Hz,3H),1.78-1.95(m,2H), 2.96-3.38(m,2H),3.62-3.72(m,1H),3.97(q,J=7.0Hz,2H), 4.70-4.85(m,1H),5.84(d,J=1.2Hz,1H),6.78-6.98(m,5H), 7.15-7.40(m,7H),7.89(d,J=8.8Hz,2H)
I-139	CDCI ₃	0.88(t,J=7.4Hz,3H),1.31(t,J=7.0Hz,3H),1.76-1.93(m,2H), 2.94-3.36(m,2H),3.60-3.71(m,1H),3.95(q,J=7.0Hz,2H), 4.71-4.83(m,1H),5.81(d,J=1.2Hz,1H),6.78-6.98(m,5H), 7.07(s,1H),7.14-7.46(m,17H),7.96(d,J=9.0Hz,2H)
I-140	CDCI ₃	0.80-0.94(m,6H),1.00-1.92(m,6H),2.91-3.34(m,2H), 3.66-3.75(m,1H),3.86-4.00(m,2H),4.66-4.86(m,1H), 5.75-5.78(m,1H),6.77-7.40(m,12H),7.90(d,J=8.6Hz,2H)
I-141	CDCl ₃	0.80-1.94(m,9H),2.90-3.33(m,2H),3.64-3.76(m,1H), 3.84-4.00(m,2H),5.74-5.76(m,1H),6.73-7.45(m,23H), 7.96(d,J=8.7Hz,2H)
I-142	CDCI ₃	0.80(t,J=6.8Hz,3H),0.89(t,J=7.0Hz,3H),0.95-1.96(m,3H), 1.32(t,J=7.0Hz,3H),2.96-3.40(m,2H),3.62-3.73(m,1H), 3.90-4.04(m,2H),4.68-4.88(m,1H),5.83(s,1H), 6.82-7.40(m,12H),7.89(d,J=8.8Hz,2H)
I-143	CDCl ₃	0.77-1.95(m,9H),2.95-3.40(m,2H),3.62-3.70(m,1H), 3.90-4.04(m,2H),5.81(s,1H),6.80-7.45(m,23H), 7.96(d,J=8.4Hz,2H)

表90

No.		H ¹
I-144	CDCI ₃	1.29(t,J=7.0Hz,3H),2.94-3.37(m,2H),3.66-3.76(m,1H), 3.95(q,J=7.0Hz,2H),5.84(d,J=1.3Hz,1H),6.16(d,J=8.4Hz,1H), 6.79-6.95(m,4H),7.15-7.40(m,13H),7.91(d,J=8.9Hz,2H)
I-145	CDCI ₃ (300MHz)	1.04-2.20(m,11H),2.20-2.32(m,2H),2.60-4.40(m,14H), 5.77(d,J=1.2Hz,1H),6.13(d,J=8.1Hz,1H),6.84(d,J=8.1Hz,1H), 6.87-6.93(m,3H),7.16-7.40(m,15H)
I-146	CDCI ₃	1.28(t,J=7.0Hz,3H),2.94-3.36(m,2H),3.65-3.75(m,1H), 3.94(q,J=7.0Hz,2H),5.83(d,J=1.3Hz,1H),6.15(d,J=8.6Hz,1H), 6.77-7.00(m,4H),7.07(s,1H),7.12-7.48(m,23H), 7.96(d,J=9.0Hz,2H)
I-147	CDCI ₃	1.26(t,J=7.0Hz,3H),2.90-3.32(m,2H),3.64-3.72(m,1H), 3.90(q,J=7.0Hz,2H),4.02-4.10(m,2H).4.25-4.34(m,1H), 5.74(d,J=1.3Hz,1H),5.83-5.95(m,1H),6.13(d,J=8.2Hz,1H), 6.74-6.90(m,4H),7.20-7.45(m,26H)
I-148	CDCI ₃	1.30(t,J=7.0Hz,3H),2.93-3.34(m,2H),3.40-3.76(m,9H), 3.90-4.00(m,2H),5.76(d,J=1.4Hz,1H),6.15(d,J=8.4Hz,1H), 6.80-6.95(m,4H),7.15-7.40(m,15H)
I-149	CDCl ₃	1.30(t,J=7.0Hz,3H),2.93-3.34(m,2H),3.66-3.75(m,1H), 3.95(q,J=7.0Hz,2H),5.80(d,J=1.4Hz,1H),6.10-7.00(m,7H), 7.25-7.40(m,23H),7.65(d,J=8.8Hz,2H)
I-150	CDCl ₃ (300MHz)	1.29(t,J=6.9Hz,3H),2.53-2.60(m,4H),2.75(t,J=6.0Hz,2H), 3.01(dd,J=8.7,14.3Hz,1H),3.30(dd,J=5.7,14.4Hz,1H), 3.67-3.75(m,5H),3.90-4.01(m,2H),4.42(t,J=6.0Hz,2H), 5.82(d,J=1.5Hz,1H),6.14(d,J=8.7Hz,1H),6.86-6.96(m,4H), 7.15-7.39(m,13H),7.84-7.90(m,2H)
I-151	CDCl ₃ (300MHz)	1.08-1.20(m,3H),2.84-2.97(m,1H),3.11-3.24(m,1H), 3.57-3.66(m,1H),3.72-3.86(m,2H),5.74-5.81(m,1H), 6.14(d,J=8.7Hz,1H),6.56-6.82(m,4H),7.04-7.40(m,17H), 7.62-7.74(m,2H),7.86-7.98(m,2H)
I-152	CD ₃ OD (300MHz)	1.25-1.42(m,3H),2.99-3.13(m,1H),3.22-3.30(m,1H), 3.72-3.80(m,1H),3.94-4.20(m,2H),5.93-6.22(m,2H), 6.73-7.87(m,18H)
I-153	CDCl ₃ (300MHz)	1.22(s,9H),1.29(t,J=7.2Hz,3H),3.01(dd,J=8.7,14.3Hz,1H), 3.30(dd,J=6.0,14.3Hz,1H),3.70(ddd,J=1.2,6.0,8.9Hz,1H), 3.90-4.01(m,2H),5.83(d,J=1.2Hz,1H),5.96(s,2H), 6.14(d,J=8.7Hz,1H),6.80-6.96(m,4H),7.15-7.38(m,13H), 7.86-7.93(m,2H)

表91

	H ¹
DMSO-d ₆	1.22(t,J=7.0Hz,3H),2.96-3.18(m,2H),3.47(s,2H), 3.60-3.70(m,1H),3.95(q,J=7.0Hz,2H),5.87(d,J=1.4Hz,1H), 6.04(d,J=8.0Hz,1H),6.75(d,J=8.6Hz,2H),6.80-7.00(m,2H), 7.07(d,J=8.6Hz,2H),7.15-7.60(m,12H),7.72(d,J=8.0Hz,1H), 12.26(brs,1H)
DMSO-d ₆	1.22(t,J=6.9Hz,3H),3.02-3.15(m,2H),3.64-3.73(m,1H), 3.96(q,J=6.9Hz,2H),6.00(d,J=1.2Hz,1H),6.03(d,J=8.0Hz,1H), 6.39(d,J=16.0Hz,1H),6.82-6.96(m,4H),7.16-7.60(m,15H), 7.74(d,J=8.0Hz,1H),12.30(brs,1H)
CDCl ₃ (300MHz)	1.30(t,J=6.9Hz,3H),3.01(dd,J=8.4,14.1Hz,1H), 3.33(dd,J=8.7,14.1Hz,1H),3.73(ddd,J=1.2,5.7,8.7Hz,1H), 3.91-4.01(m,2H),5.89(d,J=1.2Hz,1H),6.08(d,J=8.7Hz,1H), 6.82-6.94(m,4H),7.10-7.35(m,11H),7.90-7.96(m,2H)
CDCl ₃ (300MHz)	1.29(t,J=6.9Hz,3H),3.00(dd,J=8.7,14.3Hz,1H), 3.31(dd,J=5.4,14.0Hz,1H),3.72(ddd,J=1.2,5.7,8.4Hz,1H), 3.91-4.01(m,2H),5.83(d,J=1.2Hz,1H),6.07(d,J=8.1Hz,1H), 6.80-6.97(m,4H),7.06-7.43(m,22H),7.96-8.01(m,2H)
DMSO-d ₆	1.23(t, J=6.8Hz,3H),2.26(s,3H),2.28(s,3H),3.00-3.15(m,2H), 3.66-3.74(m,1H),3.95(q, J=6.8Hz,2H),5.92(d, J=8.0Hz,1H), 6.03(d, J=1.3Hz,1H),6.82-7.00(m,4H),7.20-7.30(m,10H), 7.61(d, J=8.0Hz,1H),7.77(d, J=8.8Hz,2H),12.70(brs,1H)
CDCl ₃ (300MHz)	1.30(t,J=7.2Hz,3H),3.01(dd,J=8.4,14.3Hz,1H), 3.33(dd,J=6.0,14.1Hz,1H),3.73(ddd,J=1.2,5.7,8.7Hz,1H), 3.91-4.01(m,2H),5.85(d,J=1.5Hz,1H),6.11(d,J=8.1Hz,1H), 6.82-6.95(m,4H),6.99-7.08(m,4H),7.12-7.30(m,7H), 7.89-7.96(m,2H)
DMSO-d ₆	1.21 (t, J=7.0Hz,3H),3.00-3.15 (m,2H),3.62-3.75 (m,1H), 3.72 (s,3H),3.74 (s,3H),3.96 (q, J=7.0Hz,2H), 5.91 (d, J=8.1Hz,1H),6.03 (s,1H),6.82-7.00 (m,8H), 7.13-7.30 (m,6H),7.59 (d, J=8.1Hz,1H),7.77 (d, J=8.8Hz,2H), 12.76 (brs,1H)
	DMSO-d ₆ CDCl ₃ (300MHz) CDCl ₃ (300MHz) DMSO-d ₆

表92

No.		H¹	
l-161	CDCI ₃	0.94(t,J=7.5Hz,3H)1.60-1.79(m,2H),2.95-3.56(m,2H), 3.68-3.79(m,1H),3.84(d,J=6.5Hz,2H),5.83(d,J=1.3Hz,1H), 6.16(d,J=8.5Hz,1H),6.50-6.95(m,4H),7.15-7.40(m,13H), 7.90(d,J=8.8Hz,2H)	
I-162	DMSO-d ₆	0.88(t,J=7.3Hz,3H),1.50-1.71(m,2H),3.00-3.20(m,2H), 3.60-3.75(m,1H),3.86(t,J=6.3Hz,2H),6.00-6.10(m,2H), 6.80-7.00(m,4H),7.16-7.42(m,12H),7.77(d,J=8.7Hz,2H), 12.73(brs,1H)	
l-163	DMSO-d ₆	1.21(d,J=6.9Hz,3H),1.26(d,J=6.1Hz,3H),2.90-3.50(m,2H), 3.68-3.77(m,1H),4.45-4.60(m,2H),5.83(d,J=1.2Hz,1H), 6.16(d,J=8.4Hz,1H),6.80-6.95(m,4H),7.15-7.40(m,13H), 7.89(d,J=8.8Hz,2H)	

表93

No.		H ¹
l-164	DMSO-d ₆	1.23(s,3H),1.42(d,J=7.0Hz,3H),3.03-3.24(m,2H), 4.75-4.91(m,1H),5.96(s,1H),7.00(d,J=8.8Hz,2H), 7.25-7.40(m,11H),7.86(d,J=8.8Hz,2H)
I-1 6 5	CDCl ₃	1.42(s,3H),1.51(d,J=7.0Hz,3H),2.32(s,3H),2.20-2.50(m,4H), 2.89-3.17(m,2H),3.30-3.90(m,4H),4.89-5.05(m,1H), 5.65(s,1H),6.79(d,J=8.0Hz,1H),6.98(d,J=8.8Hz,2H), 7.10-7.40(m,12H)
I-166	DMSO-d ₆	1.10(t,J=7.4Hz,3H),1.41(d,J=6.9Hz,3H),1.55-1.95(m,2H), 3.05-3.23(m,2H),4.72-4.90(m,1H),5.88(s,1H), 7.05(d,J=8.8Hz,2H),7.20-7.40(m,11H),7.87(d,J=8.8Hz,2H), 12.77(brs,1H)
I-167	CDCl₃	1.19(t,J=7.4Hz,3H),1.50(d,J=6.9Hz,3H),1.74-2.12(m,2H), 2.32(s,3H),2.28-2.50(m,4H),2.90-3.19(m,2H), 3.30-3.90(m,4H),4.86-5.02(m,1H),5.61(s,1H), 6.81(d,J=8.1Hz,1H),7.02(d,J=8.8Hz,2H),7.10-7.40(m,12H)
I-168	DMSO-d ₆	1.07(t,J=7.4Hz,3H),1.40(d,J=7.0Hz,3H),1.50-1.90(m,2H), 3.07-3.26(m,2H),4.70-4.85(m,1H),5.93(s,1H), 7.00(d,J=8.8Hz,2H),7.15-7.40(m,11H),7.84(d,J=8.8Hz,2H), 12.76(brs,1H)
I-169	CDCl ₃	1.17(t,J=7.4Hz,3H), 1.48(d,J=7.0Hz,3H), 1.68-2.15(m,2H), 2.32(s,3H),2.20-2.60(m,4H),2.94-3.21(m,2H), 3.30-3.90(m,4H),4.88-5.03(m,1H),5.67(s,1H), 6.78(d,J=8.1Hz,1H),7.01(d,J=8.7Hz,2H),7.15-7.40(m,12H)

表94

表 9 · 4 ———————————————————————————————————			
No.	No. H ¹		
I-170	DMSO-d ₆	1.30(s,3H),1.45(d,J=7.0Hz,3H),2.74-3.23(m,2H), 4.82-4.90(m,1H),6.10(s,1H),7.19-7.50(m,13H), 7.93(d,J=8.8Hz,2H),12.75(brs,1H)	
I-171	CDCl ₃	1.33(s,3H),1.55(d,J=6.9Hz,3H),2.32(s,3H),2.30-2.50(m,4H), 2.93-3.23(m,2H),3.40-3.90(m,4H),4.97-5.13(m,1H), 5.72(s,1H),6.90(d,J=7.8Hz,1H),7.15-7.45(m,14H)	
長95			
No.		H¹	
I-172	DMSO-d ₆	0.91(t,J=7.4Hz,3H),1.45(d,J=7.0Hz,3H),1.60-1.74(m,2H), 2.88-3.27(m,2H),4.68-4.95(m,1H),6.18(s,1H), 7.15-7.45(m,13H),7.92(d,J=8.9Hz,2H),12.76(brs,1H)	
l-173	CDCl ₃	0.97(t,J=7.4Hz,3H),1.55(d,J=7.0Hz,3H),1.60-1.80(m,2H), 2.32(s,3H),2.30-2.50(m,4H),3.00-3.90(m,4H), 4.97-5.12(m,1H),5.81(s,1H),6.93(d,J=7.8Hz,1H), 7.20-7.45(m,14H)	
I-174	0.96/1.7.24-24) 1.45/4 1.7.24-24.5		
l-175	CDCI ₃	0.92(t,J=7.4Hz,3H),1.54(d,J=7.0Hz,3H),1.60-1.75(m,2H), 2.32(s,3H),2.30-2.50(m,4H),3.02-3.90(m,4H), 4.97-5.12(m,1H),5.76(s,1H),6.97(d,J=7.9Hz,1H), 7.20-7.45(m,14H)	
l-176	0.00% 7.41 0.1% 0.00% 7.011 0.1% 1.0%		
I-177 CDCl ₃ 0.91(t,J=7.4Hz,3H),1.01(t,J=7.4Hz,3H),4.76-4.88(m,		0.91(t,J=7.4Hz,3H),1.01(t,J=7.3Hz,3H),1.66-1.96(m,4H), 2.96-3.38(m,2H),4.76-4.88(m,1H),5.93(s,1H), 6.97(d,J=8.2Hz,1H),7.20-7.42(m,12H),8.06(d,J=8.8Hz,2H)	
I-178 CDCI ₃		0.86-1.02(m,6H),1.60-1.78(m,2H),1.80-1.95(m,2H), 2.30-2.52(m,4H),2.32(s,3H),3.00-3.38(m,2H), 3.40-3.80(m,4H),4.75-4.87(m,1H),5.81(s,1H), 6.98(d,J=8.3Hz,1H),7.20-7.45(m,14H)	
I-179 CDCl ₃		0.85-0.95(m,6H),1.58-1.94(m,4H),3.02-3.40(m,2H), 4.71-4.84(m,1H),5.82(s,1H),6.98(d,J=8.3Hz,1H), 7.09(s,1H),7.20-7.46(m,22H),8.14(d,J=8.9Hz,2H)	
I-180 CDCl ₃ 0.87-0.97(m,6H),1.62-1.94(m,4H),3.01-3. 4.73-4.85(m,1H),5.85(s,1H),7.00(d,J=8.6)		0.87-0.97(m,6H),1.62-1.94(m,4H),3.01-3.41(m,2H), 4.73-4.85(m,1H),5.85(s,1H),7.00(d,J=8.6Hz,1H), 7.20-7.40(m,12H),8.08(d,J=8.8Hz,2H)	
I-181 CDCI ₃		0.86-0.97(m,6H),1.59-1.72(m,2H),1.78-1.94(m,2H), 2.30-2.50(m,4H),2.32(s,3H),3.03-3.41(m,2H), 3.41-3.80(m,4H),4.72-4.85(m,1H),5.74(s,1H), 7.02(d,J=8.2Hz,1H),7.20-7.45(m,14H)	

表96

No.		H ¹	
l-182	CDCI ₃	1.51(d, J=7.0Hz,3H),2.02-2.24(m,2H),2.65-2.92(m,2H), 3.30-3.40(m,1H),4.93-5.09(m,1H),5.60(d,J=1.3Hz,1H), 6.84(d,J=8.4Hz,1H),7.08-7.45(m,23H),8.09(d,J=8.8Hz,2H)	
l-183	CDCI ₃	1.52(d, J=6.9Hz,3H),2.07-2.27(m,2H),2.66-2.94(m,2H), 3.32-3.41(m,1H),4.90-5.10(m,1H),5.61(d,J=1.2Hz,1H), 6.86(d,J=8.1Hz,1H),7.15-7.40(m,12H),8.04(d,J=8.8Hz,2H)	
l-184	CDCI ₃	1.55(d, J=6.9Hz,3H),2.08-2.32(m,2H),2.68-2.94(m,2H), 3.29-3.39(m,1H),4.94-5.12(m,1H),5.67(d,J=1.4Hz,1H), 6.81(d,J=8.0Hz,1H),7.08-7.46(m,23H),8.08(d,J=8.9Hz,2H)	
l-1 8 5	CDCl₃	1.55(d, J=7.0Hz,3H),2.10-2.30(m,2H),2.69-2.97(m,2H), 3.30-3.40(m,1H),4.90-5.12(m,1H),5.69(d,J=1.4Hz,1H), 6.83(d,J=8.0Hz,1H),7.10-7.40(m,12H),8.03(d,J=8.9Hz,2H)	

試験例1 キマーゼ酵素阻害活性

(1) 化合物(I) の調製

化合物 (I) はジメチルスルフォキサイド (DMSO) を用いて 10^{-2} Mとなるように溶解した。活性測定の為に持ち込む DMSO 濃度は 1% とした。

5 (2)キマーゼ阻害活性の測定

緩衝液(0.1M Tris-HCl, 1.8M NaCl pH8.0)中に、DMSOに溶解した化合物(I)と精製したヒトキマーゼ(高井ら、Clinica Chimica Acta 265, 1997, 13-20)を加え37℃で30分間処理した後、基質としてSuc-Ala-Ala-Pro-Phe-pNA(バッケム社(BACHE

10 M Feinchemikalien AG) 製)を0.5 mMになるように添加し、37℃で酵素反応を行なった。

反応後、溶液の吸光度 (405 nm)を測定し、その阻害率を算出した。

(3) 結果

化合物 (I) のヒトキマーゼ阻害活性の 50%阻害濃度 (I C_{50}) を以下の表 97に示す。

表 9 7

化合物No.	IC50(nM)
I - 3.6	4.2
I - 3.7	11
I - 3 8	2.2
I - 3.9	0.46
I - 4 0	0.7
I - 4 1	1.9
I - 4 3	1.08
I - 4 4	3.8
I - 4 5	20
I - 4 6	31
I - 47	3.0
I - 49	4.3
I - 5 0	1.13
I - 5 1	30
I - 52	5.2
I - 5 3	3.0
I - 5 4	3.5
I - 5 5	17
I - 5 6	2.95
I - 57	24
I - 58	5.7
I - 6 1	0.33
I-62	0.17
I - 6 7	0.18
I - 6 8	0.68
I - 6 9	16.2
I - 7 0	1.28
I - 7 1	19.0
I - 7 3	0.92
I - 7 4	8.6
I - 75	1.2
I - 76	2.4
I - 77	0.26
I - 8 1	13.0
I - 8 5	2.4
I - 87	0.8

I-89	18.5
I - 9 5	16.0
I - 102	1.0
I - 104	0.19
I - 1 0 5	2.8
I - 1 0 7	0.68
I - 1 0 8	0.48
I - 1 1 1	11.0
I - 1 1 3	0.5
I - 1 1 5	18.0
I - 1 1 8	2.25
I - 1 1 9	2.1
I - 1 2 0	0.26
I - 1 2 1	0.29
I - 1 2 5	19.0
I - 1 2 6	2.95
I - 1 2 9	1.02
I - 1 3 0	1.18
I - 1 3 2	0.25
I - 1 3 4	0.1
I - 1 3 5	2.1
I - 1 3 7	3.4
I - 1 4 0	10.0
I - 1 4 4	3.1
I - 1 4 5	10.8
I - 1 4 8	0.55
I - 1 5 0	5.4
I - 1 5 1	4.6
I - 1 5 2	4.1
I - 1 5 4	2.5
I - 1 5 5	3.8
I - 1 5 8	8.2
I-159	14.5
I - 1 6 0	15.0
I - 1 6 1	18.0
I - 1 7 2	115
I - 1 7 3	190

表 9 7 より、本発明に係る化合物がキマーゼ阻害作用を有していることが分か 5 る。

試験例2 サイトカイン産生抑制活性

へパリン加採血により得たヒト血液を、Filcoll-Hypaque混合液(比重=1.114、モノ・ポリ分離液:大日本製薬株式会社製)に重層した後、遠心して単核球を調製した。細胞を培地(Macrophage-SFM:

5 GIBCO社製)で懸濁し、細胞数を 2×10^6 cells/mlに調製して48穴プレートにまいた。本発明化合物を添加して10分後、ConcanavalinA(5μ g/ml)を添加して細胞を刺激し、48時間後の培養上清中にのIL- 1β 、IL-2、IL-4、IL-5、IL-6、TNF- α 、IFN γ をELISA法にて測定した。なお、これらのサイトカインの定量には以下の10 キットを使用した。

IL-1β: Quantikine (商標) Human IL-1β ELISA KIT (R&D system 製)

IL-2: Quantikine (商標) Human IL-2 ELISA KIT (R&D system 製)

IL-4: Quantikine (商標) Human IL-4 ELISA KIT (R&D system 製)

IL-5: Quantikine (商標) Human IL-5 ELISA KIT (R&D system 製)

15 IL-6: Quantikine (商標) Human IL-6 ELISA KIT (R&D system 製)

TNF-α: Quantikine (商標) Human TNF-α ELISA KIT (R&D system 製)

IFN γ: Quantikine (商標) Human IFN γ ELISA KIT (R&D system 製) 結果を以下の表 9 8 に示す。

表 9 8

	IC ₅₀ (μM)	
	I - 3 9	I - 6 2
I L – 1 β	2.7	11.3
I L - 2	2.7	2.4
I L – 4	11.7	20.2
I L - 5	6.5	13.9
I L - 6	6.4	9.3
TNF- α	1.9	6.8
ΙΓΝγ	12.1	17.1

表98より、本発明に係る化合物がサイトカイン産生抑制作用を有していることが分かる。

試験例3 その他のセリンプロテアーゼに対する阻害作用

- 1) トリプシン
- 10μ1ウシ膵臓トリプシン (1.5μg/ml in 1mM HCl, 20mM CaCl₂、SIGMA製)、80μ1緩衝液 (50mM Tris-HCl, 2mM CaCl₂ pH8.0)および1μ1本発明化合物 (in DMSO)を混合後、室温で20分、さらに37℃で10分間保温した。これに基質10μ1 (5mM sucAAPRpNA (BACHEM Feinchemi kalien AG製) in 50%DMSO)を加え、37℃で約60分反応
 - 2) プラスミン

させ、吸光度(405 nm)を測定した。

mM CaCl₂、SIGMA製)、80μ1バッファー(50mM Trisー 15 HCl, pH7.5,50mM NaCl) および1μ1本発明化合物(in D MSO)を混合後、室温で20分、さらに37℃で10分間保温した。これに基 質10μ1(5mM Chromozyme PL(TosGPKpNA、ベーリ ンガーマンハイム製) in H₂O)を加え、37℃で約30分反応させ、吸光 度(405nm)を測定した。

10μ1ヒト血漿プラスミン (0.1mg/ml in 1mM HCl.20

20 3) トロンピン

10μ1ヒト血漿トロンビン(1U/ml in 10mM Mes, pH6.
0,0.1M NaCl、SIGMA製)、80μ1バッファー(0.1M Tris-HCl, pH8.0,10mM CaCl₂,0.1M NaCl)および1μ1本発明化合物(in DMSO)を混合後、室温20分、さらに37℃で25 10分間保温した。これに基質10μ1(5mM Chromozyme TH(TosGPRpNA、ベーリンガーマンハイム製)in H₂O)を加え、37℃で約60分間反応させ、吸光度(405nm)を測定した。

4) エラスターゼ

10μ1ヒト好中球エラスターゼ(0.02mg/ml in 50mM Tris-HCl, pH7.0, 2mMCaCl₂、Athens research and teccnology製),80μ1バッファー(50mM Tris-HCl, pH8.0,2mM CaCl₂)および1μ1本発明化合物(in DMSO)を混合後、室温で20分、さらに37℃で10分間保温した。これに基質10μl(5mM sucAAVpNA(BACHEM Feinchemikalien AG製) in 50% DMSOを加え、37℃で約30分反応させ、吸光度(405nm)を測定した。

10 5) カテプシンG

 $10\mu1$ のヒト膿性痰カテプシンG(CALBIOCHEM製)(1.7 μ g /ml in 1mM HCl,20mM CaCl₂)、 $80\mu1$ バッファー(50mM Tris-HCl、pH7.5、2mM CaCl₂)および本発明化合物($1\mu1$ in DMSO)を混合後、室温で20分、さらに37℃で10分間保温した。これに基質10 μ l(5mM sucAAPFpNA in DMSO,BACHEM Feinchemikalien AG製)を加え、37℃で約60分反応させ、吸光度(405nm)を測定した。

それぞれのセリンプロテアーゼに対する IC_{50} 値を求め、キマーゼに対する IC_{50} 値と比較した。結果を表99に示す。

20 表99

15

	I - 1 4 4		I - 1 5 8		
	IC ₅₀ (nM)	fold vs chymase	IC ₅₀ (nM)	fold vs chymase	
カテプシンG	35.4	11	143.2	17	
エラスターゼ	>100000	>30000	25000	3000	
トリプシン	25000	8000	6200	760	
トロンピン	>100000	>30000	>100000	>10000	
プラスミン	>10000	>3000	>100000	>10000	

表99より、本発明に係る化合物はキマーゼ選択的な阻害活性を有することが明らかである。

製剤例1 錠剤

本発明化合物15mgデンプン15mg乳糖15mg5 結晶性セルロース19mgポリピニルアルコール3mg蒸留水30mlステアリン酸カルシウム3mg

ステアリン酸カルシウム以外の成分を均一に混合し、破砕造粒して乾燥し、適 10 当な大きさの顆粒剤とした。次にステアリン酸カルシウムを添加して圧縮成形し て錠剤とした。

産業上の利用可能性

以上の試験例から明らかなように、本発明に係る化合物はキマーゼ阻害作用お 15 よび/またはサイトカイン産生抑制作用を示し、循環器系疾患、炎症、アレルギー性疾患、リュウマチ、喘息またはアトピー等の予防剤および/または治療剤として非常に有用である。

請求の範囲

1. 式(I):

10

15

$$R^2$$
 $B-R^4$
 $A-R^1$
(I)

5 (式中、Aは単結合、-CO-、-COO-、-COCO-、-CONH-または-SO₂-であり、

R 1 は置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよいシクロアルケニルまたは置換基を有していてもよいアリールであり、Aが単結合、- CONH-または-SO $_2$ -である場合、R 1 は水素であってもよく、

R²およびR³は各々独立して水素、ハロゲン、置換基を有していてもよい低級 アルキル、置換基を有していてもよい低級アルコキシカルボニル、置換基を有し ていてもよいアシル、置換基を有していてもよいアミノ、置換基を有していても よいカルバモイルまたは置換基を有していてもよいアリールであり、

Bは単結合、一S一、一〇一、一S一S一、一S〇一または一S〇2一であり、

R 4 は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよいアリールまたは置換基を有していてもよいヘテロ環であり、さらにBが単結合、-S-、-O-、-SO-または $-SO_2-$ である場合、置換基を有していても

20 よいアシルであってもよい)

で示される化合物、そのプロドラッグ、製薬上許容される塩またはそれらの水和 物を含有するキマーゼ阻害剤。

 $2. A-R^{1}$ b^{3}

(式中、R⁵は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルコキシまたは置換基を有していてもよいアリールであり、R⁶aおよびR⁶bは各々独立して水素、ハロゲン、ヒドロキシ、低級アルキル、カルボキシ、低級アルコキシカルボニル、低級アルコキシ、アリール、アシル、置換基を有していてもよいアミノ、アリールオキシ、低級アルキルチオまたはヘテロ環であるか、一緒になって低級アルキレンジオキシを形成してもよく、mは0または1である)であり、

 R^2 および R^3 が各々独立して水素、置換基を有していてもよいフェニルまたは 10 置換基を有していてもよいベンジルであり、

B-R⁴が水素、置換基を有していてもよいアシルオキシ、

$$-O - (CH_2)n - (CH_2)n - S - (CH_2)n - (CH$$

[式中、 R^{7} a および R^{7} b は各々独立して水素、ハロゲン、低級アルキル、低級アルコキシ、低級アルケニル、アミノ、アシルアミノ、

$$-X-CON$$
 Y
 $-CONR^9R^{10}$ $\pm \pm ti$ $-W-COOR^{11}$

15

20

(式中、X およびWは単結合、低級Pルキレンまたは低級Pルケニレンであり、Yは単結合、 $-CH_2-$ 、 $-NR^{12}-$ (R^{12} は水素、メチレンジオキシフェニルで置換されていてもよい低級Pルキル、シクロPルキルまたはヘテロ環)または-O-であり、 R^{8} は水素、置換基を有していてもよい低級Pルキルまたは置換基を有していてもよいカルバモイルであり、 R^{9} 、 R^{10} および R^{11} は各々独立して水素、置換基を有していてもよい低級Pルキル、置換基を有していても

よい低級アルケニル、置換基を有していてもよいアミノ、置換基を有していてもよいアリールまたは置換基を有していてもよいアリールスルホニルである)であり、nは0~6の整数である

である請求の範囲第1項記載のキマーゼ阻害剤。

5 3. $A-R^{1}$ by

10

(式中、 R^5 は炭素数 $1\sim3$ のアルキルまたは置換基(ハロゲン、低級アルキルまたは低級アルコキシ)を有していてもよいフェニルであり、 R^6 a および R^6 b は各々独立して水素、ハロゲン、低級アルキルまたは低級アルコキシである)であり、 R^2 が低級アルコキシで置換されていてもよいベンジルであり、 R^3 が水素であり、 $B-R^4$ がアシルオキシ、

[式中、R^{7a}が水素、

$$-X-CON$$
 R^8
 $-X-CON$
 R^8
 $-X-CON$

15 (式中、X およびW は単結合、X チレンまたはビニレンであり、R 8 は低級アルキルまたはカルバモイルであり、R 9 は水素または置換基を有していてもよい低級アルキルであり、R 1 0 は水素、置換基を有していてもよい低級アルキル、低級アルケニル、低級アルキルアミノ、アリールアミノ、フェニルまたはアリールスルホニルであり、R 1 1 は水素、置換基を有していてもよい低級アルキルまたは置換基を有していてもよいフェニルであり、R 1 2 はメチレンジオキシフェニルで置換されていてもよい低級アルキルまたはシクロアルキルである)

であるし

である請求の範囲第1項記載のキマーゼ阻害剤。

4.
$$A - R^{1} b^{5}$$
 -CONHCHR⁵

(式中、 R^5 は炭素数 $1\sim3$ のアルキルまたは であり、 R^6 aは同時に水素、ハロゲン、低級アルキルまたは低級アルコキシである)

- 5 である請求の範囲第1項記載のキマーゼ阻害剤。
 - 5. $A-R^{1}$ が $-CONHCHR^{5}Ph$ (Phはフェニルを示す) であり、 R^{2} がベンジルであり、 R^{3} が炭素数 $1\sim3$ のアルキルであり、 $B-R^{4}$ が

- 10 6. 請求の範囲第1項記載の式(I)で示される化合物、そのプロドラッグ、 製薬上許容される塩またはそれらの水和物を含有するサイトカイン産生抑制剤。
 - 7. $A-R^1$ 、 R^2 、 R^3 および $B-R^4$ が請求の範囲第2項記載のものである化合物、そのプロドラッグ、製薬上許容される塩またはそれらの水和物を含有、するサイトカイン産生抑制剤。
- 15 8. A-R¹、R²、R³およびB-R⁴が請求の範囲第3項記載のものである化合物、そのプロドラッグ、製薬上許容される塩またはそれらの水和物を含有するサイトカイン産生抑制剤。
 - 9. 抗炎症剤である請求の範囲第1項~第5項のいずれかに記載のキマーゼ阻害剤。
- 20 10. 抗炎症剤である請求の範囲第6項~第8項のいずれかに記載のサイトカイン産生抑制剤。
 - 11. 請求の範囲第1項の式(I)で示される化合物、そのプロドラッグ、製

薬上許容される塩またはそれらの水和物を投与することを特徴とする、キマーゼ に起因する疾患の予防および/または治療の方法。

- 12. キマーゼに起因する疾患の予防および/または治療のための医薬を製造するための、請求の範囲第1項の式(I)で示される化合物、そのプロドラッグ、
- 5 製薬上許容される塩またはそれらの水和物の使用。

13. 式(I'):

(式中、AおよびR¹は請求の範囲第1項と同義であり、

R³は水素、ハロゲン、置換基を有していてもよい低級アルコキシカルボニル、

10 置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を 有していてもよいアリールまたは置換基を有していてもよいベンジルであり、

R 1 3 a および R 1 3 b は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルキルチオで

15 あるか、一緒になって低級アルキレンジオキシを形成し、

 \mathbb{R}^{14} は水素、ヒドロキシ、低級アルキル、低級アルコキシまたはアシルオキシであり、

R⁷aは水素、

20 (式中、XおよびWは単結合、メチレンまたはビニレンであり、R 8 はメチルまたはカルバモイルであり、R 9 は水素または低級アルキルであり、R 1 0 は置換基(低級アルキルアミノ;ハロゲンで置換されていてもよいフェニル;カルボキ

シ;またはアリールで置換されていてもよい低級アルコキシカルボニル)を有していてもよい低級アルキル、低級アルケニル、低級アルキルアミノ、フェニルアミノ、フェニルまたはベンゼンスルホニルであり、 R^{11} は水素または置換基(低級アルキルアミノ;アシルオキシ;ハロゲンもしくはメチレンジオキシで置換されていてもよいフェニル;ヘテロ環)を有していてもよい低級アルキルであり、 R^{12} は炭素数 $1\sim 3$ のアルキルまたはシクロヘキシルである)]であり、 R^{7} りは水素であり、

BはOまたはSである)

で示される化合物、そのプロドラッグ、製薬上許容される塩またはそれらの水和 10 物。

14. 式(I''):

20

25

(式中、BおよびR 4 は請求の範囲第1項と同義であり、 Aが-CO-、-CONH-または-SO $_2$ -であり、

 R^{-1} は置換基を有していてもよい低級アルキルまたは置換基を有していてもよい アリールであり、

R³は水素、ハロゲン、低級アルキル、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよいアシル、置換基を有していてもよいアシル、置換基を有していてもよいベンミノ、置換基を有していてもよいベンジルであり、

 R^{13} a および R^{13} b は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルキルチオであるか、一緒になって低級アルキレンジオキシを形成し、 R^{14} は水素、ヒドロキシ、低級アルキル、低級アルコキシまたはアシルオキシである。

ただし、AがCONHであるとき、B-R 4 は置換基を有していてもよいアリールオキシでなく、かつ置換基を有していてもよいアシルチオでない。)

で示される化合物、そのプロドラッグ、製薬上許容される塩またはそれらの水和 物。

 $5 \quad 15. \quad B-R^4 \dot{m} r \partial u \dot{m} + \partial v$

[式中、nは0または1であり、R⁷aが水素、

(式中、X およびW は単結合、X チレンまたはビニレンであり、R 8 は低級アルキルまたはカルバモイルであり、R 9 は水素または置換基を有していてもよい低級アルキルであり、R 1 0 は水素、置換基を有していてもよい低級アルキル、低級アルケニル、低級アルキルアミノ、アリールアミノ、フェニルまたはアリールスルホニルであり、R 1 1 は水素、置換基を有していてもよいアルキルまたは置換基を有していてもよいフェニルであり、R 1 2 はメチレンジオキシフェニルで15 置換されていてもよい低級アルキルまたはシクロアルキルである)

である]

である請求の範囲第14項記載の化合物、そのプロドラッグ、製薬上許容される 塩またはそれらの水和物。

16. R³が水素である、請求の範囲第13項または14項に記載の化合物、そ 20 のプロドラッグ、製薬上許容される塩またはそれらの水和物。

 $17. R^{13}$ a が水素またはオルト位に置換した炭素数 $1 \sim 3$ の低級アルコキシであり、 R^{13} b が水素である請求の範囲第13 項または 14 項に記載の化合物、そのプロドラッグ、製薬上許容される塩またはそれらの水和物。

18. (a) 4-[3-ベンジル-4-オキソ-1-(1-フェニルーエチルカルバモイル) -アゼチジン-2-イルオキシ] -ベンゾイックアシッド、

(b) $3-\alpha \times 2 = [4-(4-x)] + 2 = (4-x) + 2$

5

20

- $(d) 3 \langle x \rangle = (2 \langle x \rangle + \langle x \rangle + (2 \langle x \rangle + \langle x \rangle + (2 \langle x \rangle + \langle x \rangle + (2 \langle x \rangle + \langle x \rangle + (2 \langle x \rangle + \langle x \rangle + (2 \langle x \rangle + \langle x \rangle + (2 \langle x \rangle + \langle x \rangle + (2 \langle x \rangle + \langle x \rangle + (2 \langle x \rangle + \langle x \rangle + (2 \langle x \rangle + \langle x \rangle + (2 \langle x \rangle + \langle x \rangle + (2 \langle x \rangle + \langle x \rangle + (2 \langle x \rangle + \langle x \rangle + (2 \langle x \rangle + \langle x \rangle + (2 \langle x \rangle + (2 \langle x \rangle + \langle x \rangle + (2 \langle x \rangle$
- 10 -フェノキシ]-4-オキソーアゼチジン-1-カルボキシリックアシッド (1 -フェニル-エチル) -アミド、
- - (i) 2-[4-(4-シクロヘキシルーピペラジン-1-カルボニル)-フェ
- 25 J + v 3 (2 x + x + y x + x + y + y + x +
 - (j) 3-(2-メトキシーベンジル) -2-[4-(4-メチルーピベラジン

-1-カルボニル) -フェノキシ] -4-オキソーアゼチジン-1-カルボキシリックアシッド (1-フェニル-エチル) -アミド、

- (k) 4 [1 (ベンズヒドリルーカルバモイル) 3 (2 エトキシーベンジル) 4 オキソーアゼチジン 2 イルオキシ] ベンゾイックアシッド、

10

25

- (n) $\{4-[1-(ベンズヒドリルーカルバモイル)-3-(2-エトキシーベンジル)-4-オキソーアゼチジン-2-イルオキシ]-フェニル<math>\}$ -アセチックアシッド、
- (o) $3 \{4 [1 (ベンズヒドリルーカルバモイル) 3 (2 エトキ$
- 15 シーベンジル) -4-オキソーアゼチジン-2-イルオキシ] <math>-7 クリリックアシッド、
- - (r) $4 [1 {[LZ (4 \lambda + + \nu z + z + \nu) \lambda + \nu] z + \nu] z + \nu$ $x + \nu$
- から選択されるいずれかの化合物、そのプロドラック、製薬上許容される塩また はそれらの水和物。

オキシ] -ベンゾイックアシッド

19. 請求の範囲第13項~第18項のいずれかに記載の化合物、そのプロドラッグ、製薬上許容される塩またはそれらの水和物を含有する医薬組成物。

- 20. キマーゼ阻害剤である請求の範囲第19項記載の医薬組成物。
- 21. サイトカイン産生抑制剤である請求の範囲第19項記載の医薬組成物。
- 5 22. 抗炎症剤である請求の範囲第19項記載の医薬組成物。
 - 23. 請求の範囲第13項~第18項のいずれかに記載の化合物、そのプロドラッグ、製薬上許容される塩またはそれらの水和物を投与することを特徴とする、キマーゼに起因する疾患の予防および/または治療の方法。
 - 24. キマーゼに起因する疾患の予防および/または治療のための医薬を製造
- 10 するための、請求の範囲第13項~第18項のいずれかに記載の化合物、そのプロドラッグ、製薬上許容される塩またはそれらの水和物の使用。

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP99/03864

Int.	A CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁶ C07D205/08, 401/12, 403/12, 405/06, 12, 14, A61K31/395, 40, 44, 445, 495, 505, 535			
	o International Patent Classification (IPC) or to both n	ational classification a	and IPC	
	S SEARCHED			
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁶ C07D205/08, 401/12, 403/12, 405/06, 12, 14, A61K31/395, 40, 44, 445, 495, 505, 535				
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched				
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CA, REGISTRY (STN)				
C. DOCU	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where ap	· ·		Relevant to claim No.
Х	ADLINGTON R.M. et al., "An i N-arylsulfonylation of 2-aze Commun., (1997), 27(21), p.3	tidinones",	of the Synth.	1, 6, 9, 10, 12, 14, 16, 17, 19-22, 24
х	ADLINGTON R.M. et al., "Design monocyclic β lactam inhibitor antigen", Bioorg. Med. Chem. p.1689-94	s of prostat	e specific	1, 14, 16, 17, 19
Х	FINKE P.E. et al., "Orally act of human leukocyte elastase. synthesis and structure-acti 3,3-dialkylazetidin-2-ones", 38(13), p.2449-62	Stereos vity relatio	pecific nships for:	1, 4, 6, 9, 10, 12
х	GB, 2266527, A (Merk & Co In 3 November, 1993 (03. 11. 93		none)	1, 4, 6, 9, 10, 12
	er documents are listed in the continuation of Box C.	See patent far	nily annex.	
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date or priority date claimed of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive set when the document of particular relevance; the claimed invention cannot be considered to involve an inventive set when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combinations the priority date claimed. "A" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combinations the priority date claimed. "A" document published after the international filing date or priority date and not in conflict with the application but cited to understance the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered to involve an inventive such document is taken alone "Y" document published prior to the international filing date but later than the priority date claimed. "A" document published after the international filing date or priority date and not in conflict with the application but cited to understance the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive such document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered novel or cannot be considere		tion but cited to understand vention aimed invention cannot be d to involve an inventive step aimed invention cannot be when the document is focuments, such combination art		
Date of the actual completion of the international search 2 July, 1999 (02. 07. 99) Date of mailing of the international search report 14 September, 1999 (14. 09. 99)				
	Name and mailing address of the ISA/ Japanese Patent Office Authorized officer			
Facsimile N	O. Potent gravided by Suphrum Mi	Telephone No.	suahrus com	

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP99/03864

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO, 96/149451, A1 (Smithkline Beecham PLC), 27 June, 1996 (27. 06. 96) & JP, 11-500415, A & CA, 2208530, A	1, 2, 4, 6, 7, 9, 10, 12 3, 5, 8, 13,
A	& EP, 799200, A1 & AU, 9643898, A & HU, 77089, A & CN, 1175246, A & FI, 9702584, A & NO, 9702909, A	15, 18
х	WO, 95/02579, A1 (ZENECA LIMITED), 26 January, 1995 (26. 01. 95) & AU, 9470800, A	1, 2, 4, 6, 7 9, 10, 12
- X	WO, 97/13750, A1 (CHIROSCIENCE LIMITED), 17 April, 1997 (17. 04. 97) & AU, 9672221, A	1, 4, 6, 9, 10, 12
х	JP, 2-6471, A (Merck & Co., Inc.), 10 January, 1990 (10. 01. 90) & EP, 337549, A1 & ZA, 8902549, A & CA, 1337990, A & AU, 8902549, A & DK, 8901705, A & FI, 8901689, A & NO, 8901470, A & CN, 1037144, A & HU, 50761, A & US, 5229510, A & AU, 9218582, A	1, 4, 6, 9, 10, 12
X	JP, 8-502752, A (Merck & Co., Inc.), 26 March, 1996 (26. 03. 96) & WO, 94/10143, A1 & CA, 2147129, A & AU, 9455875, A & EP, 666846, A1	1, 4, 6, 9, 10, 12
Х	JP, 6-263723, A (Merck & Co., Inc.), 20 September, 1994 (20. 09. 94) & EP, 595557, A1 & CA, 2108584, A & IL, 107321, A & WO, 94/10142, A1 & AU, 9350283, A & CN, 1090272, A & ZA, 9307949, A & HU, 72084, A & US, 5591737, A & FI, 9501992, A & NO, 9501593, A	1, 4, 6, 9, 10, 12
х	JP, 7-242624, A (Japan Tobacco Inc.), 19 September, 1995 (19. 09. 95) (Family: none)	1, 6, 9, 10, 1
;		
	'	

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP99/03864

Box I O	bservations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This intern	national search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. 🗙 (Claims Nos.: 11, 23
thera	because they relate to subject matter not required to be searched by this Authority, namely: Claims 11 and 23 pertain to methods for treatment of the human body by apy.
	Claims Nos.:
6	because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
	Claims Nos.:
ł	because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Interr	national Searching Authority found multiple inventions in this international application, as follows:
	į
	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As and a source of the control of th
	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. 🔲 N	No required additional search fees were timely paid by the applicant. Consequently, this international search report is
	estricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Domark or	- Product - Total - 1991 - 1 - 1 - 1 - 1
Remark or	in approximation of the approx
	No protest accompanied the payment of additional search fees.

A. 発明の属する分野の分類(国際特許分類(IPC))

Int.Cl° C07D205/08, 401/12, 403/12, 405/06, 12, 14, A61K31/395, 40, 44, 445, 495, 505, 535

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl⁶ C 0 7 D 2 0 5 / 0 8, 4 0 1 / 1 2, 4 0 3 / 1 2, 4 0 5 / 0 6, 1 2, 1 4, A 6 1 K 3 1 / 3 9 5, 4 0, 4 4, 4 4 5, 4 9 5, 5 0 5, 5 3 5

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) CA, REGISTRY (STN)

C. 関連すると認められる文献			
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号	
X	ADLINGTON R.M. et al., "An investigation of the N-arylsulfon-ylation of 2-azetidinones", Synth.Commun., (1997), 27(21), p. 3803-13	1, 6, 9, 10, 12, 14, 16, 17, 19- 22, 24	
X	ADLINGTON R.M. et al., "Design and synthesis of novel monocyclic β lactam inhibitors of prostate specific antigen", Bioorg. Med. Chem. Lett., (1997), 7(13), p. 1689-94	1, 14, 16, 17, 19	

x C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願目前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 02.07.99 国際調査報告の発送日 14.09.99 特許庁審査官(権限のある職員) 4 P 9159 国永 保 野便番号100-8915 東京都千代田区設が関三丁目4番3号 電話番号 03-3581-1101 内線 3490

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	FINKE P.E. et al., "Orally active β -lactam inhibitors of human leukocyte elastase. 3. Stereospecific synthesis and structure-activity relationships for 3, 3-dialkylazetidin-2-ones", J. Med. Chem., (1995), 38 (13), p. 2449-62	1, 4, 6, 9, 10, 12
X	GB, 2266527, A (Merk & Co Inc), 3. 11月. 19 93 (03. 11. 93) (ファミリーなし)	1, 4, 6, 9, 10, 12
X	WO, 96/149451, A1 (スミスクライン・ビーチャム・パブリック・リミテッド・カンパニー), 27. 6月. 1996	1, 2, 4, 6, 7, 9,
A	(27.06.96) & JP, 11-500415, A& CA, 2208530, A&EP, 799200, A1& AU, 9643898, A&HU, 77089, A& CN, 1175246, A&FI, 9702584, A& NO, 9702909, A	10, 12 3, 5, 8, 13, 15, 18
X	WO, 95/02579, A1 (ZENECA LIMITED), 26. 1月. 1995 (26. 01. 95) & AU, 9470800, A	1, 2, 4, 6, 7, 9, 10, 12
X	WO, 97/13750, A1 (CHIROSCIENCE LIMITED), 17. 4月. 1997 (17. 04. 97) & AU, 9672221, A	1, 4, 6, 9, 10, 12
X	JP, 2-6471, A (メルク エンド カムパニー インコーポレーテッド), 10. 1月. 1990 (10. 01. 90) & EP, 337549, A1&ZA, 8902549, A&CA, 1337990, A&AU, 8902549, A&DK, 8901705, A&FI, 8901689, A&NO, 8901470, A&CN, 1037144, A&HU, 50761, A&US, 5229510, A&AU, 9218582, A	1, 4, 6, 9, 10, 12
X	JP, 8-502752, A (メルク エンド カムパニー インコーポレーテッド), 26. 3月. 1996 (26. 03. 96) &WO, 94/10143, A1&CA, 2147129, A&AU, 9455875, A&EP, 666846, A1	1, 4, 6, 9, 10, 12
X	JP, 6-263723, A (メルク エンド カムパニー インコーポレーテッド), 20. 9月. 1994 (20. 09. 94) & EP, 595557, A1&CA, 2108584, A& IL, 107321, A&WO, 94/10142, A1& AU, 9350283, A&CN, 1090272, A& ZA, 9307949, A&HU, 72084, A& US, 5591737, A&FI, 9501992, A& NO, 9501593, A	1, 4, 6, 9, 10, 12
X	JP, 7-242624, A (日本たばこ産業株式会社), 19. 9月. 1995 (19. 09. 95) (ファミリーなし)	1, 6, 9, 10, 12

第I欄	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
	第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作
1. x	請求の範囲 <u>11,23</u> は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
	請求の範囲11,23に記載された発明は、人体の治療による処置方法に該当する。
•	·
2.	請求の範囲は、有意義な国際調査をすることができる程度まで所定の要件を満たしてい
	ない国際出願の部分に係るものである。つまり、
。 П	第中の佐田 トナー発展部中の佐田でも、マリハの根側に 4/1/の笠り立及が第2立の相会に
3. []	請求の範囲は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅱ欄	発明の単一性が欠如しているときの意見(第1ページの3の続き)
火化划	べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
1.	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2.	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追 加調査手数料の納付を求めなかった。
3.	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4. 🗆	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載
	されている発明に係る次の請求の範囲について作成した。
追加調查	<u>至</u> 手数料の異議の申立てに関する注意
	 追加調査手数料の納付と共に出願人から異議申立てがあった。 追加調査手数料の納付と共に出願人から異議申立てがなかった。
L	」、足が関連す数性や対抗して光には限入がも光成化されています。