Работа 4.3.4

Метод преобразования Фурье в оптике

Малиновский Владимир galqiwi@galqiwi.ru

Цель работы: Пронаблюдать дифракционные картины и происследовать их с точки зрения разложения разложения в ряд Фурье порождающего шаблона.

В работе используются: Гелий-неоновый лазер, кассета с набором сеток разного периода, щель с микрометрическим винтом, линзы, экран, линейка.

Теория

Анализ сложного волнового поля во многих случаях целесообразно проводить, разлагая его на простейшие составляющие, например, представляя его в виде разложения по плоским волнам. При этом оказывается, что если мы рассматриваем поле, полученное после прохождения плоской монохроматической волны через предмет или транспарант (изображение предмета на фотоплёнке или стеклянной пластинке) с функцией пропускания t(x), то разложение по плоским волнам соответствует преобразованию Фурье от этой функции. Если за предметом поставить линзу, то каждая плоская волна сфокусируется в свою точку в задней фокальной плоскости линзы. Таким образом, картина, наблюдаемая в фокальной плоскости линзы, даёт нам представление о спектре плоских волн падающего на линзу волнового поля. Поэтому можно утверждать, что с помощью линзы в оптике осуществляется пространственное преобразование Фурье.

Определение ширины щели с помощью линзы

1-3

Включим лазер и соберем установку, установив вплотную к лазеру тубус с щелью и получив изображение щели на экране с помощью короткофокусной линзы.

4

Определим начало отсчета щели по ее открытию. Получим значение $D_0=(0.140\pm0.005)\,\mathrm{mm}$

5

Измерим ширину размера изображения D_1 в зависимости от ширины щели D. Изменение ширины щели будем вести в сторону увеличения, чтобы исключить влияние люфта.

$D_{\rm raw}$, MKM	D, mkm	D_1 , MM
140	0	0.0
200	60	4.0
250	110	7.0
300	160	10.0
350	210	12.0
400	260	15.0
450	310	17.0
500	360	20.0
550	410	23.0
600	460	25.0
650	510	30.0

$$\Delta D_{
m raw} = 5$$
 мкм, $\Delta D = 7$ мкм, $\Delta D_1 = 0.5$ мм

Из графика получим увеличение системы

$$\Gamma = 55 \pm 2$$
.

6

Далее посмотрим на значения значения $b_1=(1308\pm 8)\,\mathrm{mm}$ и $a_1=\frac{Fb}{b-F}=(25.5\pm 0.3)\mathrm{mm}$ Получим, что увеличение

$$\Gamma = \frac{b}{a} = 51.3 \pm 0.9.$$

Это значение примерно совпадает с полученным ранее.

Определение ширины щели по ее спектру

8-10

Уберем линзу. Получим на удаленном экране спектр щели. Меняя ширину щели, проследим за изменением спектра на экране.

Для различных значений D, измерим расстояние X_m между m минимумами. Зная расстояние $L=(1332\pm 8)\,\mathrm{mm}$ от щели до экрана, получим значение ширины щели

$$D_{\rm c} = \frac{\lambda L}{X_m/(m+1)},$$

где $\lambda = 532$ нм.

$D_{\rm raw}$, MKM	D, mkm	m	X_m, mm	$D_{\rm c}$, MKM	$\Delta D_{\rm c}$, MKM
160	20	3.0	90.0	31.49	0.17
200	60	7.0	80.0	70.9	0.4
250	110	13.0	82.0	121.0	0.7
300	160	13.0	60.0	165.3	1.4
350	210	17.0	60.0	212.6	1.8
400	260	17.0	50.0	255	3
450	310	15.0	37.0	306	4
500	360	9.0	20.0	354	9

$$\Delta D_{
m raw} = 5$$
 мкм, $\Delta D = 7$ мкм, $\Delta X_m = 0.5\,{
m mm}$

Из графика следует, что

$$\frac{D_c}{D} = 1.00 \pm 0.01$$

Определение периода по спектру на удаленном экране

1-6

Поставим кассету в двумерными решетками вплотную к выходному окну лазера и измерим расстояние X_m между m максимумами. Зная расстояние до экрана $L=(1300\pm 8)\,\mathrm{mm}$, получим период решетки

$$d = \frac{\lambda L}{X_m/m}.$$

#решетки	m	X_m , mm	X, mm	ΔX , mm	d, mkm	Δd , mkm
1	5.0	175.0	35.0	0.1	19.76	0.06
2	7.0	165.0	23.57	0.07	29.34	0.09
3	16.0	185.0	11.56	0.03	59.81	0.16
4	31.0	185.0	5.968	0.016	115.9	0.3
5	43.0	183.0	4.256	0.012	162.5	0.4

$$\Delta X_m = 0.5 \, \mathrm{mm}$$

Мультиплицирование

1-2

Поставим обратно тубус с щелью к окну лазера. Найдем на экране резкое щели с помозью линзы Π 2. Подберем такое значение ширины щели, чтобы на экране можно было наблюдать мультиплицированное изображение сеток.

Рис. 8. Схема для наблюдения мультиплицирования

3-4 Получим зависимость расстояния Y между K изображениями щели от номера решетки.

#решетки	Y, mm	K	K/Y, $1/mm$	$\Delta K/Y$, $1/\text{mm}$	d, mkm	Δd , mkm
2.0	80.0	7.0	0.088	0.006	29.34	0.09
3.0	40.0	7.0	0.175	0.013	59.81	0.16
4.0	20.0	6.0	0.30	0.03	115.9	0.3
5.0	15.0	7.0	0.47	0.03	162.5	0.4

$$\Delta Y = 0.5 \, \mathrm{mm}$$

Проверим линейность зависимости K/Y от размера решетки.

Как видно, зависимость линейная. Это подтверждает полученные в прошлом пункте результаты.

Вывод

Мы научились исследовать параметры паттернов через порождающие дифракционные картины с помощью разложения в ряд фурье. В частности мы происследовали поведение щели и двумерных решеток. В экспериментах мы получили различные числовые значения, подтверждающие друг друга.