資料庫系統 Class 2: E-R Model

逢甲資工 許懷中

實體關係模型 Entity-Relationship Model

- 實體 (Entity)
 - 各式各樣的事物
 - 人、地、事件、產品等
- 關係 (Relationship)
 - 事物之間的關聯性
- 藉由釐清實體與關係,我們希望避免
 - 重複的資料/資訊
 - 不完全的設計

何為實體

instructor_ID instructor_name

76766	Crick	
45565	Katz	
10101	Srinivasan	
98345	Kim	
76543	Singh	

instructor

實體 Entity student_ID student_name

98988	Tanaka
12345	Shankar
00128	Zhang
76543	Brown
76653	Aoi
23121	Chavez
44553	Peltier

student

何為實體 (cont.)

instructor_ID instructor_name

 76766
 Crick

 45565
 Katz

 10101
 Srinivasan

 98345
 Kim

 76543
 Singh

 22222
 Einstein

實體集 Entity Set student_ID student_name

98988	Tanaka
12345	Shankar
00128	Zhang
76543	Brown
76653	Aoi
23121	Chavez
44553	Peltier

student

instructor

相同類型且具有同樣性質的實體之集合

何為實體 (cont.)

instructor_ID instructor name Crick 76766 45565 | Katz 10101 Srinivasan 98345 | Kim Singh 76543 Einstein 22222

屬性 Attribute

student name student ID 98988 Tanaka 12345 Shankar Zhang 00128 76543 Brown Aoi 76653 23121 Chavez 44553 Peltier

student

instructor

每個實體的每個屬性 都有其相對應的值(Value)

何為關係 (Relationship)

何為關係 (cont.)

student

指導教授 (Advisor) 關係集 (Relationship Set)

何為關係 (cont.)

關係也可以有屬性 (Attribute)

何為關係 (cont.)

- 聯繫兩個實體的關係 => 二元關係 (Binary Relationship)
- 聯繫 N 個實體 => N-ary Relationship

屬性 (Attribute)

- 一個實體是由一組屬性所呈現
 - instructor = (ID, name, street, city, salary)
 - course = (course_id, title, credits)
- (領域) Domain
- 屬性的類型
 - 簡易或複合 (Simple or Composite)
 - 單值或多值 (Single-valued, Multivalued)
 - 衍生屬性 (Derived Attribute)
 - 年齡、打擊率、級分

複合屬性 (Composite Attributes)

基數限制 (Cardinality Constraints)

並未強制集合中所有實體都必須有所對應

基數限制 (cont.)

並未強制集合中所有實體都必須有所對應

鍵 (Key)

- 可以辨別實體集中不同實體的屬性集合
- 超鍵 (Super Key)
- 候選鍵 (Candidate Key)
- 主鍵 (Primary Key)

關係集的鍵

- 一個關係集所關聯的實體集之主鍵的組合 (Combination) => 關係集的超鍵
 - (student_id, instructor_id) 是指導教授關係集 的超鍵
 - 在某一個關係集中,一對實體之間最多只會存在一個關係
 - 因此在揀選實體集的主鍵時,應考慮與該實體 有關之關係的涵意

實體關係圖 Entity-Relationship Diagram

instructor

```
\underline{ID}
name
   first_name
   middle_initial
   last_name
address
   street
      street_number
      street_name
      apt_number
   city
   state
   zip
{ phone_number }
date_of_birth
age()
```


這張 E-R Diagram 有什麼問題?

需要嗎?

一對一關係

一對多關係

多對一關係

多對多關係

全然/部分參與關係 (Total Participation Relationship)

每個section都必須要有對應的課程,全然參與

並非每個教授都有指導學生,部分參與

基數限制的表示法

三元關係 (Ternary Relationship)

弱實體集

實體集本身沒有 Super Key,需要藉由特定關係的存在, 才能分辨其中的 Entity

該特定關係另一側之實體,稱為該弱實體集的辨認實體集 (Identifying Entity)

Section 的主鍵為 (course_id, sec_id, semester, year)

Summary Quiz

- 何為實體、實體集、關係、關係集?
- 何為屬性?關係的屬性代表什麼意義?
- 何為弱實體集?
- 請試著畫一張關於訂單與商品的 E-R Diagram

實體關係模型

用實體關係模型設計資料庫結構

以簡單屬性表達的實體集

- 對於強實體集
 - course(<u>course_id</u>, title, credits)
- 對於弱實體集
 - section(course_id, sec_id, semester, year)

用一張單獨的資料表 表現多對多關係

advisor(<u>s_id</u>, <u>i_id</u>)

增添外來鍵

■ 在多對一關係中多的那一側,增添一的那 側的主鍵為外來鍵

處理重複性

- 在一對一的關係中,兩側可以擇一增添外來鍵
- 在多對一關係中,假如多的那側僅是部分 參與,則增添的外來鍵可能是空值
- 就弱實體集與其辨認實體集之間的關係鍵 表是不必要的

instructor

```
ID
name
  first_name
   middle_initial
   last_name
address
   street
      street_number
      street_name
      apt_number
   city
   state
   zip
{ phone_number }
date_of_birth
age()
```

處理複合屬性

扁平化

處理多值

- 另外增建資料表

instructor

ID name salary phone_number

關係二元化

普遍化/繼承

彙整 (Aggregation)

• 其他需要的屬性

總結

- 思考要用屬性還是實體來代表現實(應用系統) 中的物件
- 思考一個現實上的概念究竟是實體集還是關係 集
- 選擇使用強實體集還是用弱實體集
- 善用普遍化/繼承的概念