Задача 11-1

На изображенной ниже схеме приведены превращения соединений $\mathbf{A} - \mathbf{H}$, содержащих в своем составе элемент \mathbf{X} :

Х – простое вещество, образованное элементом Х. При его взаимодействии со щелочью при нагревании образуется смесь веществ А и В (р-ция 1), а если реакцию проводить при пониженной температуре (-5 °C), то образуется смесь веществ А и С (р-ция 2). Пропускание дифторида ксенона через водный раствор В (р-ция 3) приводит к образованию вещества D с тем же качественным, но иным количественным составом. Вещество **D** в одну стадию можно превратить в вещество **А** (*p-ция* 4). При взаимодействии **X** со фтором в CCl₃F при -40 °C (р-ция 5), а дальнейшее \mathbf{E} удается получить вещество фторирование 1 эквивалентом F_2 приводит к образованию вещества F (*p*-ция 6), причем его масса на 27,76 % больше массы Е. Вещество Г можно в одну стадию превратить в вещество **В** (*p*-*ция* 7). **Е** – летучая жидкость соломенного цвета $(T_{\text{кип.}} = 125,8 \, ^{\circ}\text{C})$, способная растворять золото (*p-ция 9*) с образованием соединения G (см. рисунок). Взаимодействие смеси X и F с избытком SbF₅ (р-ция 10) происходит без изменения степени окисления сурьмы и приводит $(T_{\pi\pi} = 85.5 \, ^{\circ}C)$, к образованию вещества H ярко-красных кристаллов содержащего два атома Х на формульную единицу. Массовая доля Х в Н составляет $\omega(\mathbf{X}) = 19,28 \%$, а катион в 4,188 раза легче аниона. Кроме того, известно, что ни один из элементов не входит одновременно в состав катиона и аниона.

Вопросы:

- **1.** Определите неизвестные вещества X и A H. Ответ обоснуйте, подтвердите расчетами. Изобразите строение аниона вещества H.
 - 2. Напишите уравнения реакций 1–10.

Решение задачи 11-1 (авторы: Карнаухов Т. М.)

1. Судя по тому, что **X** растворяется в щелочи с образованием двух **X**-содержащих соединений, а продукты реакции при -5 °C отличаются, скорее всего, это галоген. Кроме того, **X** – не фтор, так как фтор реагирует с **X**.

Вещества \mathbf{E} и \mathbf{F} – фториды элемента \mathbf{X} . Так как \mathbf{F} получается из \mathbf{E} по реакции с 1 эквивалентом F_2 , то эти вещества отличаются на 2 атома фтора. Обозначим \mathbf{E} как XF_n , тогда \mathbf{F} – XF_{n+2} . Можно составить уравнение на изменение массы:

$$\frac{A_r(\mathbf{X}) + 18,998n + 37,996}{A_r(\mathbf{X}) + 18,998n} = 1,2776.$$

Его решение приводит к парам значений n и M(X):

n	1	2	3	4	5	6
$A_r(X)$, г/моль	117,87	98,88	79,88	60,88	41,88	22,88
X	-	-	Br	-	-	Na?

Таким образом, элемент **X** – бром, простое вещество **X** – Br₂, **E** – фторид брома (III) BrF₃, **F** – фторид брома (V) BrF₅. При взаимодействии брома со щелочью при комнатной температуре получается смесь бромида и бромата калия KBr (**A**) и KBrO₃ (**B**) и (реакция 1), а при низкой температуре (реакция 2) образуются гипобромит KBrO (**C**) и бромид KBr (**A**). Пропускание дифторида ксенона через водный раствор бромата калия приводит к образованию **D** – пербромата калия KBrO₄ (реакция 3). Из него можно получить вещество **A** – бромид калия – различными способами, например, разложением или реакцией с восстановителем (реакция 4). Действием КОН на пентафторид брома можно получить бромат калия (реакция 7).

При температуре выше 0 °C гипобромит-ион диспропорционирует на бромид и бромат (реакция 8).

Соединение **G** образуется при растворении золота в трифториде брома. На рисунке в окружении атома золота находятся 4 атома, причём два из них являются мостиковыми. Вокруг черного атома на различных расстояниях

также находятся 4 атома, из которых два также являются мостиковыми. Так как BrF₃ растворяет золото, а в состав соединения **G** (судя по рисунку в условии задания) входят атомы трёх сортов, следует предположить, что в окружении атомов золота и брома находятся атомы фтора, а состав соединения может быть представлен формулой AuBrF₆ или AuF₃·BrF₃ или даже BrF₂[AuF₄], последнее не совсем соответствует изображённой структуре, однако в литературе такая форма записи встречается.

В соответствии с методом получения, вещество **H** может содержать атомы брома, сурьмы и фтора. Так как вещество **H** содержит два атома брома на формульную единицу, его молярная масса может быть легко рассчитана:

$$Mr(\mathbf{H}) = 79,904 \cdot 2 / 0,1928 = 828,88$$
 г/моль.

Молярная масса катиона (M) в 4,188 раза меньше массы аниона, можно составить уравнение:

$$M + M \cdot 4,188 = 828,88$$

Откуда молярная масса катиона M = 828,88 / 5,188 = 159,77 г/моль, что соответствует либо $[SbF_2]^{n+}$, либо $[Br_2]^{n+}$. На анион приходится 828,88 - 159,77 = 669,11 г/моль. В случае катиона $[SbF_2]^{n+}$ анион должен состоять только из атомов брома, однако молярная масса явно превышает молярную массу двух атомов брома. Поэтому подходит только катион $[Br_2]^{n+}$. В таком случае, анион состоит из атомов сурьмы и фтора. Пусть формула анионной комплексной частицы $[Sb_xF_y]^{5x-y}$ (заряд будет таким при условии, что сурьма не меняет степень окисления, тогда его молярная масса равна

 $121,76\cdot x + 18,998\cdot y = 669,11$. Можно сделать перебор по количеству атомов сурьмы:

x	1	2	3	4	5
y	28,81	22,40	15,99	9,58	3,17
Заряд	-24	-12	-1	+10	+22

Как видим, хорошие целые значения x и y, а также наиболее адекватный (и, главное – отрицательный!) заряд аниона получается при x = 3, y = 16. Итого, формула $\mathbf{H} - [\mathrm{Br_2}]^+[\mathrm{Sb_3F_{16}}]^-$. Для сурьмы характерно координационное число 6,

т.е. два из 16 атомов фтора должны быть мостиковыми, т.е. находиться в окружении пары атомов сурьмы:

Итого, неизвестные вещества:

X	A	В	C	D	E	F	G	Н
D.	VD.	VDO	VD.	VD.	D.E	D _* F	AuBrF ₆ или	ID., IICL E 1
Br ₂	KBr	KBrO ₃	KBrO	KBrO ₄	Brr ₃	BrF ₅	AuF₃·BrF₃ или BrF₂[AuF₄]	[Br ₂][Sb ₃ F ₁₆]

Уравнения реакций:

1)
$$3Br_2 + 6 \text{ KOH } \xrightarrow{t^{\circ}C} 5 \text{ KBr} + \text{KBrO}_3 + 3H_2O$$

2) Br₂ + 2 KOH
$$\xrightarrow{-5^{\circ}C}$$
 KBr + KBrO + H₂O

3)
$$KBrO_3 + XeF_2 + H_2O \rightarrow KBrO_4 + Xe\uparrow + 2 HF$$

4)
$$KBrO_4 + 4 KNO_2 \rightarrow KBr + 4 KNO_3$$

или реакция с другим восстановителем или разложение

$$KBrO_4 \xrightarrow{t^{\circ}C} KBr + 2 O_2$$

5) Br₂ + 3 F₂
$$\xrightarrow{-40 \text{ °C, CCl}_3 F}$$
 2 BrF₃

6)
$$BrF_3 + F_2 \rightarrow BrF_5$$

7)
$$BrF_5 + 6 KOH \rightarrow KBrO_3 + 5 KF + 3 H_2O$$

8) 3 KBrO
$$\xrightarrow{T>0}$$
 °C \rightarrow 2 KBr + KBrO₃

9)
$$2 \text{ Au} + 4 \text{ BrF}_3 \rightarrow 2 \text{ AuF}_3 \cdot \text{BrF}_3 + \text{Br}_2$$

10) 9 Br₂ + 2 BrF₅ + 30 SbF₅
$$\rightarrow$$
 10 [Br₂][Sb₃F₁₆]

Система оценивания:

1.	Вещества Х, А- Н по 1 баллу	10 баллов
	Структура аниона Н (любое схематичное изображение,	
	верно отражающее строение аниона) – 1 балл	
2.	Уравнения реакций 1-10 по 1 баллу	10 баллов
	итого:	20 баллов