8.2 Chip economics

High NRE cost encourages mass-production

A **chip** (aka **integrated circuit** or **IC**) is a digital circuit manufactured on a fingernail-sized piece of silicon, typically placed inside a black or silver insulating package.

Non-recurring engineering (or **NRE**) cost is the cost to design and set up a computer chip for manufacturing. Due to the complexity of modern chips having billions of transistors, NRE costs may be tens or hundreds of millions of dollars. That cost adds to a chip's cost, depending on the number of chips made. Ex: NRE cost for a chip may be \$10,000,000. If 10 made, \$10,000,000/10,000 = \$1000 needs to be added per chip to cover NRE cost. But if 1,000,000 chips are made, only \$10,000,000/1,000,000 = \$10 need be added. Thus, mass-producing a chip allows for lower chip costs, since NRE cost can

PARTICIPATION ACTIVITY 8.2.1: High NRE cost favors mass-producing chips.				
Non	2x speed x100M x100M x-recurring engineering ost to design the chip: \$10,000,000	10,000 sold \$10,000,000 / 10,000 = \$1000 1,000,000 sold \$10,000,000 / 1,000,000 = \$10	\$1000 \$1000 \$1000 \$100 \$1000 \$1000	\$10

PARTICIPATION ACTIVITY 8.2.2: NRE and mass-produced chips.	
Assume NRE cost is evenly distributed among chips sold. 1) NRE cost for a given chip is \$10 million. If 1 million chips are sold, how much is added per chip to cover NRE cost?	
Check Show answer	
2) NRE cost for a given chip is \$10 million. If 10 million chips are sold, how much is added per chip to cover NRE cost?	
Check Show answer	
3) A chip maker currently sells a 128 MB chip for \$10. A customer wants 10,000 256 MB chips for \$50 per chip. The NRE cost for designing a 256 MB chip will be \$10 million. Should the chip maker design a new 256 MB chip for the customer? Type yes or no.	
Check Show answer	

Low yield of large chips encourages smaller chips

The chip manufacturing process simultaneously creates multiple identical chips on a silicon wafer (a round silicon slice), a chip is cut out. The manufacturing process may take hours or days and is costly. Unfortunately, a wafer may have defects, wire, that render some chips unusable. **Yield** is the percentage of chips that are usable and free from significant defects. Exchips on a wafer are usable, yield is 40/50 = 80%. Larger chips are more likely to enclose a defect and thus have lower yield

For learning purposes, this section shows only a few chips per wafer. However, a real wafer may fit hundreds or even thous

PARTICIPATION ACTIVITY	8.2.4: Yield.	
	manufacturing cost is evenly distributed among usable chips. Ex: If the wafer g cost is \$50 and a wafer has 10 usable chips, the cost is \$50 / 10 = \$5 per chip.	
1) A wafer ho	ds 50 chips and costs \$100.	

What is the cost per chip, assuming all chips are usable?	
Check Show answer	
2) A wafer holds 50 chips. 10 defects appear on the wafer, making 5 chips unusable. How many usable chips result?	
Check Show answer	
3) A wafer holds 50 chips. 20 defects cause 15 to be unusable. What is the yield? Answer as: 50%	
Check Show answer	
4) An \$80 wafer holds 50 small chips. 10 defects cause only 40 chips to be usable (80% yield). What is the wafer cost per usable chip?	
Check Show answer	
5) An \$80 wafer holds 20 large chips. 10 defects cause only 10 chips to be	

	usable (50% yield). What is the wafer cost per usable chip?				
	Check	Show answer			
6	and any defe	st holds one massive chip, ect renders a chip unusabl efects can be tolerated?			
	Check	Show answer			

Example 8.2.1: Memory card composed of multiple memory chips.

If one looks inside a computer, one is likely to find memory chips arranged in an array to form a larger memory (described in another section). Below is a memory card from a personal computer, with 16 4 Gb chips (8 on each side of the card). Those 16 chips form a 16*4 = 64 Gb memory, meaning an 8 GB memory. Building a larger memory by composing smaller memory chips is more economical, as described above.

1/3/2019 8.2. Chip economics

Provide feedback on this section