Compilers and Interpreters

Top-Down Parsing

Where are we?

Review

- Goal of syntax analysis: recover the intended structure of the program.
- Idea: Use a context-free grammar to describe the programming language.
- Given a sequence of tokens, look for a parse tree that generates those tokens.
- Recovering this syntax tree is called parsing.

Different Types of Parsing

Top-Down Parsing

 Beginning with the start symbol, try to guess the productions to apply to end up at the user's program.

Bottom-Up Parsing

• Beginning with the user's program, try to apply productions in reverse to convert the program back into the start symbol.

Top-Down Parsing

The parse tree is created top to bottom (from root to leaves).

By always replacing the leftmost nonterminal symbol via a production rule, we are guaranteed of developing a parse tree in a leftto-right fashion that is consistent with scanning the input.

Figure 4.12: Top-down parse for id + id * id

Top-Down Parsing (cont.)

Top-down parser

Recursive-Descent Parsing

Backtracking is needed (If a choice of a production rule does not work, we backtrack to try other alternatives.)

It is a general parsing technique, but not widely used.

Not efficient

Predictive Parsing

no backtracking

efficient

 $A \Rightarrow aBc \Rightarrow adDc \Rightarrow adec$ (scan a, scan d, scan e, scan c - accept!)

needs a special form of grammars (LL(1) grammars).

Recursive Predictive Parsing is a special form of Recursive Descent parsing without backtracking.

Non-Recursive (Table Driven) Predictive Parser is also known as LL(1) parser.

Parsing Top-Down

Goal: construct a **leftmost derivation** of string while reading in

sequential token stream (**left-to-right**) $S \rightarrow E + S \mid E$ E \rightarrow num | (S)

Partly-derived String	Lookahead	parsed part unparsed part
→E + S	((1+2+(3+4))+5
\rightarrow (S) + S	1	(1+2+(3+4))+5
\rightarrow (E+S)+S	1	(1+2+(3+4))+5
→ (1+S)+S	2	(1+ 2+(3+4))+5
→(1+E+S)+S	2	(1+ 2+(3+4))+5
→(1+2+S)+S	2	(1+ 2+(3+4))+5
→(1+2+E)+S	((1+2+(3+4))+5
→(1+2+(S))+S	3	(1+2+(3+4))+5
\rightarrow (1+2+(E+S))+S	3	(1+2+(3+4))+5
→		

Problem with Top-Down Parsing

Want to decide which production to apply based on next symbol (token).

```
S \rightarrow E + S \mid E

E \rightarrow \text{num} \mid (S)

Ex1: "(1)" S \rightarrow E \rightarrow (S) \rightarrow (E) \rightarrow (1)

Ex2: "(1)+2" S \rightarrow E+S \rightarrow (S)+S \rightarrow (E)+S \rightarrow (1)+E \rightarrow (1)+2
```

How did you know to pick E+S in Ex2, if you picked E followed by (S), you couldn't parse it?

Grammar is Problem

$$S \rightarrow E + S \mid E$$

 $E \rightarrow num \mid (S)$

- This grammar cannot be parsed top-down with only a single look-ahead symbol!
- Not LL(1) = <u>Left-to-right scanning</u>, <u>Left-most derivation</u>, 1 look-ahead symbol
- Is it LL(k) for some k?
- If yes, then can rewrite grammar to allow topdown parsing: create LL(1) grammar for same language

Making a Grammar LL(1)

$$S \rightarrow E + S$$

 $S \rightarrow E$
 $E \rightarrow num$
 $E \rightarrow (S)$

$$S \rightarrow ES'$$

 $S' \rightarrow \varepsilon$
 $S' \rightarrow +S$
 $E \rightarrow num$
 $E \rightarrow (S)$

- Problem: Can't decide which S production to apply until we see the symbol after the first expression
- Left-factoring: **Factor** common S prefix, add new non-terminal S' at decision point. S' derives (+S)*
- Also: Convert left recursion to right recursion

Left Factoring

 Needed to produce grammar suitable for predictive top-down parsing

$$A \rightarrow \alpha \beta_1 \mid \alpha \beta_2$$

After left factoring becomes:

$$A \rightarrow \alpha A'$$

$$A' \rightarrow \beta_1 \mid \beta_2$$

$$S \rightarrow iEtS \mid iEtSeS \mid a$$

 $E \rightarrow b$

$$S \rightarrow iEtSS'|a$$

 $S' \rightarrow eS|\epsilon$
 $E \rightarrow b$

Left Factoring

- Algorithm: Left Factoring a grammer
- INPUT: Grammar G
- OUTPUT: An equivalent left-factored grammar

METHOD: For each nonterminal A, find the longest prefix α common to two or more of its alternatives. If $\alpha \neq \epsilon$ — i.e., there is a nontrivial common prefix — replace all of the A-productions $A \to \alpha\beta_1 \mid \alpha\beta_2 \mid \cdots \mid \alpha\beta_n \mid \gamma$, where γ represents all alternatives that do not begin with α , by

Here A' is a new nonterminal. Repeatedly apply this transformation until no two alternatives for a nonterminal have a common prefix. \Box

Parsing with New Grammar

$S \rightarrow ES'$ $S' \rightarrow \varepsilon \mid +S$	$E \rightarrow num \mid (S)$
--	------------------------------

Partly-derived String	Lookahead	parsed part unparsed part
→ES'	((1+2+(3+4))+5
→ (S)S'	1	(1+2+(3+4))+5
→(ES')S'	1	(1+2+(3+4))+5
→ (1S')S'	+	(1 +2+(3+4))+5
→(1+ES')S'	2	(1+2+(3+4))+5
→(1+2S')S'	+	(1+2+(3+4))+5
→(1+2+S)S'	((1+2+(3+4))+5
→(1+2+ES')S'	((1+2+(3+4))+5
→(1+2+(S)S')S'	3	(1+2+(3+4))+5
\rightarrow (1+2+(ES')S')S'	3	(1+2+(3+4))+5
→(1+2+(3S')S')S'	+	(1+2+(3+4))+5
\rightarrow (1+2+(3+E)S')S'	4	(1+2+(3+4))+5
→		

Grammars

- Have been using grammar for language "sums with parentheses" (1+2+(3+4))+5
- Started with simple, right-associative grammar

```
S \rightarrow E + S \mid E
 E \rightarrow num \mid (S)
```

Transformed it by left factoring:

```
S \rightarrow ES'

S' \rightarrow \varepsilon \mid +S

E \rightarrow \text{num } (S)
```

What if we start with a left-associative grammar?

$$S \rightarrow S + E \mid E$$

E \rightarrow num \rightarrow (S)

Reminder: Left vs Right Associativity

Consider a simpler string on a simpler grammar: "1 + 2 + 3 + 4"

Right recursion: right associative

$$S \rightarrow E + S$$

 $S \rightarrow E$
 $E \rightarrow num$

Left recursion: left associative

$$S \rightarrow S + E$$

 $S \rightarrow E$
 $E \rightarrow num$

Left Recursion

$$S \rightarrow S + E$$

 $S \rightarrow E$ "1 + 2 + 3 + 4"
 $E \rightarrow \text{num}$

derived string	lookahead	read/unread
S	1	1+2+3+4
S+E	1	1+2+3+4
S+E+E	1	1+2+3+4
S+E+E+E	1	1+2+3+4
E+E+E+E	1	1+2+3+4
1+E+E+E	2	1 +2+3+4
1+2+E+E	3	1+2+3+4
1+2+3+E	4	1+2+3+4
1+2+3+4	\$	1+2+3+4

Is this right? If not, what's the problem?

Left-Recursive Grammars

- Left-recursive grammars don't work with topdown parsers: we don't know when to stop the recursion
- Left-recursive grammars are NOT LL(1)!

$$S \rightarrow S\alpha$$

$$S \rightarrow \beta$$

Eliminate Left Recursion

Consider following grammar

$$A \rightarrow A \alpha \mid \beta$$

Replace by non-left-recursive productions

$$A \rightarrow \beta A'$$

 $A' \rightarrow \alpha A' \mid \epsilon$

Eliminate Left Recursion (cont)

Replace

$$X \rightarrow X\alpha_1 \mid \dots \mid X\alpha_m$$

 $X \rightarrow \beta_1 \mid \dots \mid \beta_n$

With

$$X \rightarrow \beta_1 X' \mid ... \mid \beta_n X'$$

 $X' \rightarrow \alpha_1 X' \mid ... \mid \alpha_m X' \mid \epsilon$

See complete algorithm in Dragon book

Eliminate Left Recursion (cont)

Predictive Parsing

• LL(1) grammar:

- -For a given non-terminal, the lookahead symbol uniquely determines the production to apply
- –Top-down parsing = predictive parsing
- Driven by predictive parsing table

Parsing with Table

$$S \rightarrow ES'$$
 $S' \rightarrow \varepsilon \mid +S$ $E \rightarrow num \mid (S)$

Partly-derived String	Lookahead	parsed part unparsed part
→ES'	((1+2+(3+4))+5
→ (S)S'	1	(1+2+(3+4))+5
→(ES')S'	1	(1+2+(3+4))+5
→(1S')S'	+	(1 +2+(3+4))+5
→(1+S)S'	2	(1+ 2+(3+4))+5
→(1+ES')S'	2	(1+2+(3+4))+5
→(1+2S')S'	+	(1+2+(3+4))+5

	num	+	()	\$
S	→ ES'		\rightarrow ES'		
S'		→ +S		3 ←	⇒ ε
E	→ num		→ (S)		

How to Implement This?

 Table can be converted easily into a recursive descent parser

• 3 procedures: parse_S(), parse_S'(), and parse_E()

	num	+	()	\$
S	→ ES'		→ ES'		
S'		→ +S		⇒ε	⇒ ε
E	→ num		→ (S)		

Recursive-Descent Parser

```
void parse_S() {
    switch (token) {
        case num: parse_E(); parse_S'(); return;
        case '(': parse_E(); parse_S'(); return;
        default: ParseError();
    }
}
```

	num	+	()	\$
S	→ ES'		\rightarrow ES'		
S'		→ +S		→ ε	3 ←
Е	→ num		→ (S)		

Recursive-Descent Parser (2)

```
void parse_S'() {
    switch (token) {
        case '+': token = input.read(); parse_S(); return;
        case ')': return;
        case EOF: return;
        default: ParseError();
    }
}
```

	num	+	()	\$
S	→ ES'		→ ES'		
S'		→ +S		3 ←	3 ←
E	→ num		→ (S)		

Recursive-Descent Parser (3)

```
void parse_E() {
    switch (token) {
        case number: token = input.read(); return;
        case '(': token = input.read(); parse_S();
            if (token != ')') ParseError();
            token = input.read(); return;
        default: ParseError();
    }
}
```

	num	+	()	\$
S	→ ES'		\rightarrow ES'		
S'		→ +S		→ ε	3 ←
Е	→ num		→ (S)		

Call Tree = Parse Tree

How to Construct Parsing Tables?

Needed: Algorithm for automatically generating a predictive parse table from a grammar

$$S \rightarrow ES'$$

 $S' \rightarrow \varepsilon \mid +S$
 $E \rightarrow \text{number} \mid (S)$

	num	+	()	\$
S	ES'		ES'		
S'		+S		3	ω
Ε	num		(S)		

Building the parse table

- Define two functions on the symbols of the grammar: FIRST and FOLLOW.
- For a non-terminal N, FIRST (N) is the set of terminal symbols that can start any derivation from N.

```
First (If_Statement) = {if}First (Expr) = {id, ( }
```

 FOLLOW (N) is the set of terminals that can appear after a string derived from N:

```
- Follow (Expr) = \{+, \}
```

FIRST Set

- •FIRST(\mathbf{A}) = { $\mathbf{t} \mid \mathbf{A} \Rightarrow^* \mathbf{t} \boldsymbol{\omega}$ for some $\boldsymbol{\omega}$ }
 - 1. If X is a terminal, $FIRST(X) = \{X\}$
 - 2. If $X \rightarrow \varepsilon$ is a production rule, add ε to FIRST (X)
 - 3. If X is a non-terminal, and $X \rightarrow Y_1Y_2...Y_k$ is a production rule

```
Place FIRST(Y<sub>1</sub>) in FIRST (X) if Y_1 \Rightarrow^* \epsilon, Place FIRST (Y<sub>2</sub>) in FIRST(X) if Y_2 \Rightarrow^* \epsilon, Place FIRST(Y<sub>3</sub>) in FIRST(X) ... if Y_{k-1} \Rightarrow^* \epsilon, Place FIRST(Y<sub>k</sub>) in FIRST(X)
```

Repeat above steps until no more elements are added to any FIRST() set.

Checking " $Y_i \Rightarrow \epsilon$?" essentially amounts to checking whether ϵ belongs to FIRST(Y_i)

Computing FIRST(X): All Grammar Symbols - continued

Informally, suppose we want to compute

```
FIRST(X_1 X_2 ... X_n) = FIRST (X_1)

+ FIRST (X_2) if \epsilon is in FIRST (X_1)

+ FIRST (X_3) if \epsilon is in FIRST (X_2)

...

+ FIRST (X_n) if \epsilon is in FIRST (X_{n-1})
```

- Note 1: Only add ϵ to FIRST (X₁ X₂ ... X_n) if ϵ is in FIRST (X_i) for all i
- Note 2: For FIRST(X_1), if $X_1 \rightarrow Z_1 Z_2 ... Z_m$, then we need to compute FIRST($Z_1 Z_2 ... Z_m$)!

Motivation Behind FIRST

- Is used to help find the appropriate reduction to follow given the top-of-the-stack nonterminal and the current input symbol.
- If $A \to \alpha$, and a is in FIRST(α), then when α =input, replace A with α . (α is one of first symbols of α , so when A is on the stack and a is input, POP A and PUSH α .)

```
Example: A \rightarrow aB \mid bC
B \rightarrow b \mid dD
C \rightarrow c
D \rightarrow d
```

FIRST Example

```
FIRST(TE') = {(,id)}

FIRST(+TE') = {+}

FIRST(\varepsilon) = {\varepsilon}

FIRST(FT') = {(,id)}

FIRST(*FT') = {*}

FIRST(\varepsilon) = {\varepsilon}

FIRST(\varepsilon) = {\varepsilon}

FIRST((E)) = {()}

FIRST(id) = {id}
```

FIRST(F) =
$$\{(,id)\}$$

FIRST(T') = $\{*, \epsilon\}$
FIRST(T) = $\{(,id)\}$
FIRST(E') = $\{+, \epsilon\}$
FIRST(E) = $\{(,id)\}$

G:
$$E \rightarrow TE'$$
 input:
 $E' \rightarrow +TE' | \epsilon$ i+i \$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' | \epsilon$
 $F \rightarrow (E) | i$

E: FIRST(TE') = { (, i }
E': FIRST(+TE') = { + } FIRST(
$$\epsilon$$
) = { ϵ }
T: FIRST(FT') = { (, i }
T': FIRST(*FT') = { * } FIRST(ϵ) = { ϵ }
F: FIRST((E)) = { (} FIRST(i) = {i}

Left Most Derivation of the Example

```
E \Rightarrow TE'
                                                           \blacksquare E \rightarrow TE'
         \Rightarrow FT'E'
                                                               T \rightarrow FT'
         ⇒ iT'E'
                                                                F \rightarrow i
         \Rightarrow is E'
                                                                T' \rightarrow \epsilon
                                                               E' \rightarrow +TE'
         \Rightarrow ie + TE'
         \Rightarrow ie+FT'E'
                                                               T→FT'
         \Rightarrow ie+iT'E'
                                                                F \rightarrow i
         \Rightarrow ie+ieE'
                                                               T' \rightarrow \epsilon
         \Rightarrow ie+iee = i+i
                                                               E' \rightarrow \epsilon
```

Constructing Parse Tables

- Can construct predictive parser if:
 - -For every non-terminal, every lookahead symbol can be handled by at most 1 production
- FIRST(β) for an arbitrary string of terminals and non-terminals β is:
 - –Set of symbols that might begin the fully expanded version of β
- FOLLOW(X) for a non-terminal X is:
 - –Set of symbols that might follow the derivation of X in the input stream

FIRST

FOLLOW

FOLLOW Set

FOLLOW: Let A be a non-terminal. FOLLOW(A) is the set of terminals a that can appear directly to the right of A in some sentential form. (S $\Rightarrow \alpha Aa\beta$, for some α and β).

NOTE: If $S \Rightarrow \alpha A$, then \$ is FOLLOW(A).

FOLLOW Set (cont.)

To compute FOLLOW(A) for all nonterminals A, apply the following rules until nothing can be added to any FOLLOW set.

- Place \$ in FOLLOW(S), where S is the start symbol, and \$ is the input right endmarker.
- If there is a production $A \rightarrow \alpha B \beta$, then everything in FIRST(β) except ε is in FOLLOW(B).
- If there is a production $A \to B\beta$, or a production $A \to \alpha B\beta$, where FIRST(β) contains ε , then everything in FOLLOW(A) is in FOLLOW(B).

FOLLOW Example

```
\begin{array}{c} \mathsf{E} \to \mathsf{TE'} \\ \mathsf{E'} \to + \mathsf{TE'} \mid \; \epsilon \\ \mathsf{T} \to \; \mathsf{FT'} \\ \mathsf{T'} \to \; ^*\mathsf{FT'} \mid \; \epsilon \\ \mathsf{F} \to (\mathsf{E}) \; \mid \; \mathsf{id} \end{array}
```

```
FIRST(F) = \{(i, id)\}
FIRST(T') = \{*, \epsilon\}
FIRST(T) = \{(,id)\}
FIRST(E') = \{+, \epsilon\}
FIRST(E) = \{(,id)\}
FOLLOW(E) = \{ , \}
FOLLOW(E') = \{ , \}
FOLLOW(T) = \{ +, \}, 
FOLLOW(T') = \{ +, \}, 
FOLLOW(F) = \{*, +, \}
```

Motivation Behind FOLLOW

- Is used when FIRST has a conflict, to resolve choices, or when FIRST gives no suggestion. When $\alpha \to \epsilon$ or $\alpha \Rightarrow^* \epsilon$, then what follows A dictates the next choice to be made.
- If $A \to \alpha$, and b is in FOLLOW(A), then when $\alpha \Rightarrow^* \epsilon$ and b is an input character, then we expand A with α , which will eventually expand to ϵ , of which b follows! ($\alpha \Rightarrow^* \epsilon$: i.e., FIRST(α) contains ϵ .)

Parse Table Entries

- Consider a production $X \rightarrow \beta$
- Add → β to the X row for each symbol in FIRST(β)
- If β can derive ε (β is nullable), add → β for each symbol in FOLLOW(X)
- Grammar is LL(1) if no conflicting entries

$$S \rightarrow ES'$$

 $S' \rightarrow \varepsilon \mid +S$
 $E \rightarrow \text{number} \mid (S)$

	num	+	()	\$
S	ES'		ES'		
S'		+S		3	3
E	num		(S)		

Computing Nullable

- X is nullable if it can derive the empty string:
 - -If it derives ε directly (X \rightarrow ε)
 - -If it has a production $X \rightarrow YZ \dots$ where all RHS symbols (Y,Z) are nullable
- Algorithm: assume all non-terminals are nonnullable, apply rules repeatedly until no change

```
S \rightarrow ES'

S' \rightarrow \varepsilon \mid +S

E \rightarrow \text{number} \mid (S)
```

Only S' is nullable

Compute FIRST

```
S \rightarrow ES'

S' \rightarrow \varepsilon \mid +S

E \rightarrow \text{number} \mid (S)

FIRST(S) = FIRST(E) = {num, (}

FIRST(S') = {\varepsilon, +}

FIRST(E) = {num, (}
```

Compute FOLLOW

 $S \rightarrow ES'$

FIRST(S) = {num, (}

```
FIRST(S') = \{\varepsilon, +\}
   S' \rightarrow \varepsilon \mid +S
                                              FIRST(E) = { num, ( }
    E \rightarrow number | (S)
Step 1: FOLLOW(S) = \{\$\}
Step 2: S \rightarrow ES' FOLLOW(E) += {FIRST(S') - \varepsilon} = {+}
          S' \rightarrow \varepsilon \mid +S
          E \rightarrow \text{num} \mid (S) \text{ FOLLOW}(S) += \{\text{FIRST}(')') - \varepsilon\} = \{\$, \}
Step 3: S \rightarrow ES' FOLLOW(E) += FOLLOW(S) = {+,$,}}
                                                   (because S' is nullable)
                               FOLLOW(S') += FOLLOW(S) = \{\$,\}
```

Parse Table

```
FIRST(S) = {num, ( }

FIRST(S') = {\epsilon, + }

FIRST(E) = { num, ( }
```

- **⋄**Consider a production $X \rightarrow \beta$
- $Add \rightarrow \beta$ to the X row for each symbol in FIRST(β)
- \star If β can derive ϵ (β is nullable), add $\rightarrow \beta$ for each symbol in FOLLOW(X)

$$S \rightarrow ES'$$

 $S' \rightarrow \varepsilon \mid +S$
 $E \rightarrow \text{number} \mid (S)$

	num	+	()	\$
S	ES'		ES'		
S'		+S		3	ε
E	num		(S)		

Top-Down Parsing Up to This Point

Now we know

- How to build parsing table for an LL(1) grammar (ie FIRST/FOLLOW)
- How to construct recursive-descent parser from parsing table
- Call tree = parse tree

Predictive Parser

a grammar

eliminate left

left recursion factor

a grammar suitable for pedictive parsing (a LL(1) grammar) no %100 guarantee.

When re-writing a non-terminal in a derivation step, a predictive parser can uniquely choose a production rule by just looking the **current symbol** in the input string.

$$\mathbf{A} \to \alpha_1 \mid ... \mid \alpha_n \qquad \qquad \text{input: ... a}$$
 current token

Predictive Parser

```
stmt → if expr then stmt else stmt
|while expr do stmt
|begin stmt_list end
|for stmt...
```

- When we are trying to write the non-terminal **stmt**, if the current token is **if** we have to choose first production rule.
- When we are trying to write the non-terminal stmt, we can uniquely choose the production rule by just looking the current token.
- We eliminate the left recursion in the grammar, and left factor it. But it may not be suitable for predictive parsing (not LL(1) grammar).

Recursive-Descent Parsing

```
void A() {
       Choose an A-production, A \to X_1 X_2 \cdots X_k;
      for ( i = 1 \text{ to } k ) {
             if (X_i is a nonterminal)
                     call procedure X_i();
              else if (X_i equals the current input symbol a)
                     advance the input to the next symbol;
             else /* an error has occurred */;
```

A typical procedure for a nonterminal in a top-down parse

Recursive Predictive Parsing

```
A \rightarrow aBb \mid bAB
proc A {
  case of the current token {
       'a': - match the current token with a, and move to the
               next token;
            - call 'B';
            - match the current token with b, and move to the
              next token;
       'b': - match the current token with b, and move to the
              next token;
            - call 'A';
            - call 'B';
```

$F \rightarrow (E) \mid number$

```
PROCEDURE F;
BEGIN
 IF token = '(' THEN
 BEGIN
   match('(');
  E;
  match(')');
 END;
 ELSE
   IF token = number
   THEN
      match(number);
   ELSE ERROR;
END
```

```
PROCEDURE match(expectedToken);
BEGIN
 IF token = expectedToken THEN
 BEGIN
    getNextToken();
 END
 ELSE ERROR;
END
```

■ G:
$$E \rightarrow T|E+T$$

 $T \rightarrow F|T*E$
 $F \rightarrow i|(E)$

EBNF expression:

G:
$$E \rightarrow T\{+T\}$$

 $T \rightarrow F\{*E\}$
 $F \rightarrow i|(E)$


```
PROCEDURE MAIN;
   BEGIN
     token = nexttoken();
   END
PROCEDURE match(t:token);
   BEGIN
     IF token = t THEN
       getNextToken()
     ELSE ERROR
END
```

```
E \rightarrow T\{+T\}
PROCEDURE E;
  BEGIN
    T;
    WHILE token = '+' DO
       BEGIN
          match('+');
          T;
       END
  END
```

```
F \rightarrow i \mid (E)
PROCEDURE F;
   BEGIN
     IF token = i THEN match(i)
      ELSE
        IF token ='(' THEN
           BEGIN
             match('(');
             E;
             IF token = ')' THEN match(')')
             ELSE ERROR;
           END
         ELSE ERROR
    END
```

```
T \rightarrow F\{*F\}
   PROCEDURE T;
      BEGIN
         F;
         WHILE token = '*' DO
             BEGIN
                match('*');
                F;
             END
       END
```

Simple Predictive Parser: LL(1)

- Top-down, predictive parsing:
 - L: Left-to-right scan of the tokens
 - L: Leftmost derivation.
 - (1): One token of lookahead
- Construct a leftmost derivation for the sequence of tokens.
- When expanding a nonterminal, we predict the production to use by looking at the next token of the input. The decision is forced.

LL(1) Grammars

- A grammar G is LL(1) if and only if the following conditions hold for two distinctive production rules $A \rightarrow \alpha$ and $A \rightarrow \beta$
 - Both α and β cannot derive strings starting with same terminals.

```
A \rightarrow \alpha_1 | \alpha_2 | \dots | \alpha_n, FIRST(\alpha_i) \cap FIRST(\alpha_j) = \emptyset (1 \le i \ne j \le n)
```

- At most one of α and β can derive to ϵ .
- If β can derive to ϵ , then α cannot derive to any string starting with a terminal in FOLLOW(A).

```
If \varepsilon \in FIRST(\alpha_i)(1 \le i \le n), then FIRST(\alpha_i) \cap FOLLOW(A) = \emptyset
```

NOW predictive parsers can be constructed for LL(1) grammars since the proper production to apply for a nonterminal can be selected by looking only at the current input symbol.

Constructing LL(1) Parsing Table

Algorithm 4.31

INPUT: Grammar G.

OUTPUT: Parsing table M.

METHOD: For each production $A \rightarrow \alpha$ of the grammar, do the following:

- 1. For each terminal α in FIRST(A), add $A \rightarrow \alpha$ to M[A, α].
- 2. If E is in FIRST(a), then for each terminal b in FOLLOW(A), add $A \to \alpha$ to M [A, b]. If E is in FIRsT(a) and \$\\$ is in FOLLOW(A), add $A \to \alpha$ to M[A, \$\\$] as well.
- 3. If, after performing the above, there is no production at all in M[A, a], then set M[A, a] to error (which we normally represent by an empty entry in the table).

58

$E \rightarrow TE'$ $E' \rightarrow +TE' [\epsilon \quad T \rightarrow FT' \quad T' \rightarrow *FT' [\epsilon \quad F \rightarrow (E)] i$

```
■ FIRST Set

FIRST(TE') = { (, i }

FIRST(+TE') = { + }

FIRST(ε) = { ε }

FIRST(FT') = { (, i }

FIRST(*FT') = { * }

FIRST(ε) = {ε}

FIRST((Ε)) = { ( }

FIRST(i) = {i}
```

FOLLOW Set
FOLLOW(E) = {), \$ }
FOLLOW(E') = {), \$ }
FOLLOW(T) = { +,), \$ }
FOLLOW(T') = {+,), \$ }
FOLLOW(F) = { * ,+,), \$ }

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	input symbol							
V _N	i	+	*	()	\$		
E	$E \rightarrow TE'$			$E \rightarrow TE'$				
E'		E' → + TE'			Ε ′→ε	Ε' →ε		
Т	T→FT′			T→FT′				
T'		T ′→ε	T' → *FT'		T ′→ε	T ′→ε		
F	F→i			F → (E)				

LL(1) Parser

input buffer

 our string to be parsed. We will assume that its end is marked with a special symbol \$.

output

 a production rule representing a step of the derivation sequence (left-most derivation) of the string in the input buffer.

stack

- contains the grammar symbols
- at the bottom of the stack, there is a special end marker symbol \$.
- initially the stack contains only the symbol \$ and the starting symbol
 S.
- when the stack is emptied (ie. only \$ left in the stack), the parsing is completed.

parsing table

Non-Recursive / Table Driven

General parser behavior: (X : top of stack a : current input)

- 1. When X=a =\$ halt, accept, success
- 2. When $X=a \neq \$$, POP X off stack, advance input, go to 1.
- 3. When X is a non-terminal, examine M[X,a] if it is an error, then call recovery routine if M[X,a] = {X → UVW}, POP X, PUSH W,V,U DO NOT expend any input

 $E \rightarrow TE'$ $E' \rightarrow +TE' | \epsilon$ $T \rightarrow FT'$ $T' \rightarrow *FT' | \epsilon$ $F \rightarrow (E) | i$

input: $i_1*i_2+i_3$

stack	input	output	stack	input	output
\$E	i ₁ *i ₂ +i ₃ \$		\$E'	+i ₃ \$	$T' \rightarrow \epsilon$
\$E'T	i ₁ *i ₂ +i ₃ \$	$E \rightarrow TE'$	\$E'T+	+i ₃ \$	$E' \rightarrow +TE'$
\$E'T'F	i ₁ *i ₂ +i ₃ \$	T→FT′	\$E'T	i ₃ \$	
\$E'T'i	i ₁ *i ₂ +i ₃ \$	$F \rightarrow i$	\$E'T'F	i ₃ \$	T→FT′
\$E'T'	*i ₂ +i ₃ \$		\$E'T'i	i ₃ \$	$F \rightarrow i$
\$E'T'F*	*i ₂ +i ₃ \$	$T' \rightarrow *FT'$	\$E'T'	\$	
\$E'T'F	i ₂ +i ₃ \$		\$E'	\$	$T' \rightarrow \epsilon$
\$E'T'i	i ₂ +i ₃ \$	$F \rightarrow i$	\$	\$	$\mathbf{E'} \rightarrow \mathbf{\epsilon}$
\$E'T'	+i ₃ \$				accept

Revisit LL(1) Grammar

LL(1) grammars

== there have no multiply-defined entries in the parsing table.

Properties of LL(1) grammars:

- Grammar can't be ambiguous or left recursive
- Grammar is LL(1) \Leftrightarrow when $A \rightarrow \alpha \mid \beta$
- 1. α and β do not derive strings starting with the same terminal a
 - 2. Either α or β can derive ϵ , but not both.

Note: It may not be possible for a grammar to be manipulated into an LL(1) grammar

A Grammar which is not LL(1)

- A left recursive grammar cannot be a LL(1) grammar.
 - $A \rightarrow A\alpha \mid \beta$
 - any terminal that appears in FIRST(β) also appears FIRST($A\alpha$) because $A\alpha \Rightarrow \beta\alpha$.
 - If β is ε, any terminal that appears in FIRST(α) also appears in FIRST(Aα) and FOLLOW(A).
- A grammar is not left factored, it cannot be a LL(1) grammar
 - $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2$
 - any terminal that appears in FIRST($\alpha\beta_1$) also appears in FIRST($\alpha\beta_2$).
- An ambiguous grammar cannot be a LL(1) grammar.

A Grammar which is not LL(1) (cont.)

- What do we have to do it if the resulting parsing table contains multiply defined entries?
 - If we didn't eliminate left recursion, eliminate the left recursion in the grammar.
 - If the grammar is not left factored, we have to left factor the grammar.
 - If its (new grammar's) parsing table still contains multiply defined entries, that grammar is ambiguous or it is inherently not a LL(1) grammar.

$$S \rightarrow iEtSS'|a \quad S' \rightarrow eS|\epsilon \quad E \rightarrow b$$

$$FIRST(S) = \{i,a\} \quad FIRST(iEtSS') = \{i\} \quad FIRST(a) = \{a\}$$

$$FIRST(S') = \{e, \epsilon\} \quad FIRST(eS) = \{e\} \quad FIRST(\epsilon) = \{\epsilon\}$$

$$FIRST(E) = \{b\} \quad FIRST(b) = \{b\}$$

$$FELLOW(S) = \{e, \$\}$$

$$FELLOW(S') = \{e, \$\}$$

$$FELLOW(E) = \{t\}$$

M	input symbol							
V _N	а	b	е	i	Т	\$		
S	S→a			S→iEtSS′				
S'			S'→eS S'→ε			S ′→ε		
Е		E→b						

Error Recovery in Predictive Parsing

- An error may occur in the predictive parsing (LL(1) parsing)
 - if the terminal symbol on the top of stack does not match with the current input symbol.
 - if the top of stack is a non-terminal A, the current input symbol is a, and the parsing table entry M[A,a] is empty.
- What should the parser do in an error case?
 - The parser should be able to give an error message (as much as possible meaningful error message).
 - It should be recover from that error case, and it should be able to continue the parsing with the rest of the input.

Error Recovery Techniques

- Panic-Mode Error Recovery
 - Skipping the input symbols until a synchronizing token is found.
- Phrase-Level Error Recovery
 - Each empty entry in the parsing table is filled with a pointer to a specific error routine to take care that error case.
- Global-Correction
 - Ideally, we would like a compiler to make as few change as possible in processing incorrect inputs.
 - We have to globally analyze the input to find the error.
 - This is an expensive method, and it is not in practice.

Error Recovery Techniques (cont.)

- Error-Productions (used in GCC etc.)
 - If we have a good idea of the common errors that might be encountered, we can augment the grammar with productions that generate erroneous constructs.
 - When an error production is used by the parser, we can generate appropriate error diagnostics.
 - Since it is almost impossible to know all the errors that can be made by the programmers, this method is not practical.

Panic-Mode Error Recovery in LL(1) Parsing

- In panic-mode error recovery, we skip all the input symbols until a synchronizing token is found.
- What is the synchronizing token?
 - All the terminal-symbols in the follow set of a nonterminal can be used as a synchronizing token set for that non-terminal.

Panic-Mode Error Recovery in LL(1) Parsing (cont.)

- A simple panic-mode error recovery for the LL(1) parsing:
 - All the empty entries are marked as *synch* to indicate that the parser will skip all the input symbols until a symbol in the follow set of the non-terminal A which on the top of the stack. Then the parser will pop that non-terminal A from the stack. The parsing continues from that state.
 - To handle unmatched terminal symbols, the parser pops that unmatched terminal symbol from the stack and it issues an error message saying that that unmatched terminal is inserted.

Panic-Mode Error Recovery - Example

$$S \rightarrow AbS \mid e \mid \epsilon$$

 $A \rightarrow a \mid cAd$

FOL	LOW(S)={\$}	
FOL	$LOW(A) = \{b,d\}$	

	а	b	С	d	е	\$
S	$S \rightarrow AbS$	sync	$S \rightarrow AbS$	sync	$S \rightarrow e$	$S \rightarrow \epsilon$
Α	$A \rightarrow a$	sync	$A \rightarrow cAd$	sync	sync	sync

<u>stack</u>	<u>input</u>	<u>output</u>
\$S	aab\$	$S \rightarrow AbS$
\$SbA	aab\$	$A \rightarrow a$
\$Sba	aab\$	
\$Sb	ab\$	
	Error: miss	sing b, inserted
\$S	ab\$	$S \rightarrow AbS$
\$SbA	ab\$	$A \rightarrow a$
\$Sba	ab\$	
\$Sb	b\$	
\$S	\$	$S \rightarrow \epsilon$
\$	\$	accept 72

Panic-Mode Error Recovery – Example

 $S \rightarrow AbS \mid e \mid \epsilon$ $A \rightarrow a \mid cAda$

	а	b	С	d	е	\$
S	$S \rightarrow AbS$	sync	$S \rightarrow AbS$	sync	$S \rightarrow e$	$S \rightarrow \epsilon$
Α	$A \rightarrow a$	sync	$A \rightarrow cAd$	sync	sync	sync

<u>stack</u>	<u>input</u>	<u>output</u>	
\$S	ceadb\$	$S \rightarrow AbS$	
\$SbA	ceadb\$	$A \rightarrow cAd$	
\$SbdAc	ceadb\$		
\$SbdA	eadb\$ l	Error:unexpected e (illegal A)	
	(Remo	ve all input tokens until first b or d, pop A)	
\$Sbd	db\$		
\$Sb	b\$		
\$S	\$	$S \rightarrow \epsilon$	
\$	\$ 6	accept	73

W	input symbol							
V _N	i	+	*	()	\$		
E	E→TE′			E→TE′	synch	synch		
E'		E'→+TE'			E ′→ε	E ′→ε		
Т	T→FT′	synch		T→FT′	synch	synch		
T'		T ′→ε	T'→* FT'		T ′→ε	T ′→ε		
F	F→i	synch	synch	F→(E)	synch	synch		

W	input symbol							
V _N	i	+	*	()	\$		
E	E→TE′			E→TE′	synch	synch		
E'		E'→+TE'			E ′→ε	E ′→ε		
Т	T→FT′	synch		T→FT′	synch	synch		
T'		T′→ε	T'→* FT'		T ′→ε	T ′→ε		
F	F→i	synch	synch	F→(E)	synch	synch		

Stack	Input	Actions	
\$E)x*+y\$	Skip ')'	
\$E	x*+y\$		
\$E'T	x*+y\$	E→TE′	
\$E'T'F	x*+y\$	T→F	
\$E'T'x	x*+y\$	F→x	
\$E'T'	*+y\$		
\$E'T'F*	*+y\$	T'→* FT'	
\$ E'T'F	+y\$	75	

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	input symbol					
V _N	i	+	*	()	\$
E	E→TE′			E→TE′	synch	synch
E'		E'→+TE'			E ′→ε	E ′→ε
Т	T→FT′	synch		T→FT′	synch	synch
T'		T ′→ε	T'→* FT'		T ′→ε	T ′→ε
F	F→i	synch	synch	F→(E)	synch	synch

Stack	Input	Actions
\$ E'T'	+y\$	
\$E'T'	+y\$	T′→ε
\$E'	+y\$	
\$E'T+	+y\$	E'→+TE'
\$E'T	y\$	
\$E'T'F	y\$	T′→ε
\$E'T'	\$	E ′→ε
\$E'	\$	76

Phrase-Level Error Recovery

- Each empty entry in the parsing table is filled with a pointer to a special error routine which will take care that error case.
- These error routines may:
 - change, insert, or delete input symbols.
 - issue appropriate error messages
 - pop items from the stack.
- We should be careful when we design these error routines, because we may put the parser into an infinite loop.

Summary

- Top-down parsing tries to derive the user's program from the start symbol.
- Leftmost BFS is one approach to top-down parsing; it is mostly
 of theoretical interest.
- Leftmost DFS is another approach to top-down parsing that is uncommon in practice.
- LL(1) parsing scans from left-to-right, using one token of lookahead to find a leftmost derivation.
- FIRST sets contain terminals that may be the first symbol of a production.
- FOLLOW sets contain terminals that may follow a nonterminal in a production.
- Left recursion and left factorability cause LL(1) to fail and can be mechanically eliminated in some cases.

Summary (cont.)

Top Down parsing

- 1. Rewrite grammars if necessary
- 2. onstruct LL(1) predictive tables
- 3. predictive parsing using the predictive table

We've identified its shortcomings:

Not all grammars can be made LL(1)!

Next Time

- Top-Down Parsing
 - Recursive descent parsing
 - Predictive parsing
 - LL(1)
- Bottom-Up Parsing
 - Shift-Reduce Parsing
 - LR parser

Reference

- Compilers Principles, Techniques & Tools (Second Edition) Alfred Aho., Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman, Addison-Wesley, 2007
 - Chapter 4.1, 4.2, 4.3, 4.4
- Coursera Course Compiler, http://www. Coursera.org
- Stanford Course CS143 by Keith Schwarz, http://cs143.stanford.edu

