Q[1-40]

15 April, 2020 Exercise 4.3

Of @ show that V= (9,6) & w= (-6,0) are orthogonal vectors Consider V.W = (9,6). (-5,9)

$$= -9b + 59$$

$$= 0 \implies V \perp W \cdot \begin{pmatrix} v(+0,4) & v(-1,2) \\ (+2,1) & v(-2,1) \\ (+2,1) & v(-2,1) \end{pmatrix}$$

(b) Use the result in part (a) to find the toro vectors that are orthogonal to v=(2,-3)

using result @, we have

$$W = (-b, a) = (-(-3), 2) = (3,2)$$

V. W= (2,-3). (3,2) $4 - \omega = (-3, -2)$ Here = 6-6=0 => VIW

$$V.(-\omega) = (2,-3)(-3,-2)$$

= -6+6

(C) Find two unit vectors that are orthogonal to (-3_4)

let Dy=(x,5) is orthogonal to (-3,4)

(a)
$$y \cdot y = 0$$
 =) $[-3x + 4y = 9]$ $[-3x^2 + y^2 = 0]$

(2) U'is Considered as unit > |U|=1 => 5x2+52=1 ラ (スキャン=1)

From (1)
$$-3x = -49$$
 $x = \frac{4}{3}y \text{ put} = 2$
 $(\frac{4}{3}y)^2 + 5^2 = 1$
 $(\frac{4}{3}y)^2 + 5^2$

(1) $\overrightarrow{AB} \cdot \overrightarrow{BC} = (-3,-1,2) \cdot (-1,-1,-2) = 3+1-4=4-4=0$

$$\frac{\overline{AB} \perp \overline{BC}}{|CA|^2 |AB|^2 + |BC|^2}$$

$$(\sqrt{50})^2 = (\sqrt{14})^2 + (\sqrt{6})^2$$

=) 20= 14+6 20=20 holds. Yes perform vigen Anglo triangle.

let A(x,5,3) be some point on [A(x,5,3)] n=(-2,1,-1)

the plane, then Pg: PA = (x+1, y-3, 3+2). Moreour PA L n therefor PA.n=0 -2(x+1)+1(y-3)+(-1)(3+2)=0-27-2+ガー3-3-2=0 -2x+y-3-7=0 -2x+y-3=7-2×+7-3=7=> 12x-7+3=-7 Coefficiel 12 Note n= (-2,1,-1)

(15) Given planes ore parallel? 3y = 8x - 48 + 5 $x = \frac{1}{2}3 + \frac{1}{4}3$ $\Rightarrow 8x - 2y - 43 + 5 = 0$ 4x = 23 + 3 8x - 2y - 43 = -5 4x - y - 23 = 0 $\tilde{n}_1 = (8, -2, -4)$ $\tilde{n}_2 = (4, -1, -2)$

Consider $n_1 \cdot n_2 = (8,-2,-4) \cdot (4,-1,-2)$ $= 32+2+8 = 42 \pm 0 \text{ not people of <math>n_1 = (8,-2,-4) = 2(4,-1,-2) + 2n_2$ $\Rightarrow n_1 = 2n_2 \Rightarrow n_1 \notin n_2 \text{ are parallel}$

Projection of
$$U$$
 along $Q = \|Proj_{2}U\|$

$$= \frac{\vec{u} \cdot \vec{a}}{\|\vec{a}\|} = \frac{(1,-2) \cdot (-4,-3)}{\|\vec{a}\|}$$

Extra

Projection of Q along $Q = \frac{\vec{a} \cdot \vec{a}}{\|\vec{a}\|} = \frac{\vec{a} \cdot \vec{a}}{\|\vec{a}\|^{2} + (-2)^{2}} = \frac{\vec{a} \cdot \vec{a}}{\sqrt{3}}$

Note

Both were Scalar projection S

Vector possession of y along
$$g = \frac{2}{3} = \frac$$

Vector projection of il arthogonal to a

$$= \vec{u} - proj_{\vec{a}}\vec{u}$$

$$= \vec{u} - \left(\frac{\vec{u} \cdot \vec{a}}{\|\vec{a}\|}\right)\vec{q}$$

$$= (1,-2) - (-6/5, -6/5)$$

$$= (1,-2) + (8/5, 6/5)$$

$$= (1+8/5, -2+6/5)$$

$$= (\frac{13}{8}, -4/5)$$

Verte perjection of a astrogonal to
$$\overline{u}$$

$$= \overline{a} - \left(\frac{\overline{a} \cdot \overline{u}}{|\overline{u}|}\right) \overline{u}$$

$$= (-4,-3) - \left(\frac{2}{55}, -\frac{4}{55}\right) = \left(-4 - \frac{2}{55}, -3 + \frac{4}{55}\right)$$

(1) Distance between two points
$$P(x_1, y_1) \neq Q(x_2, y_2)$$

$$P(x_1, y_1) \neq Q(x_2, y_2)$$

$$P(x_1, y_2) = |y_2| + |y_2|$$

Distance between two planes

Point put x=0, y=0 ~ (1)

(2)
$$\Rightarrow$$
 $-4x+2y+23-12=0$

$$D = \frac{|Ax_1 + By_1 + (3i + cl)|}{\sqrt{A^2 + B^2 + c^2}}$$

$$=\frac{\left|(-4)(0)+(2)(0)+(2)(5)-12\right|}{\sqrt{(-4)^{2}+(2)^{2}+(2)^{2}}}$$

$$= \frac{10+0+10-12}{\sqrt{16+4+4}} = \frac{1-24}{\sqrt{24}} = \frac{22}{\sqrt{24}} = \frac{22}{2\sqrt{6}}$$