

1° de Secundaria

Repaso para el examen de la Unidad 2

Nombre del alumno: Fecha:

Aprendizajes:

- Determina y usa la jerarquía de operaciones y los paréntesis en operaciones con números naturales, enteros y decimales (para multiplicación y división, sólo números positivos).
- Calcula valores faltantes en problemas de proporcionalidad directa, con constante natural, fracción o decimal (incluyendo tablas de variación).
- Resuelve problemas de cálculo de porcentajes, de tanto por ciento y de la cantidad base.
- Calcula el perímetro de polígonos y del círculo, y áreas de triángulos y cuadriláteros desarrollando y aplicando fórmulas.

Puntuación:

Pregunta	1	2	3	4	5	
Puntos	10	10	10	10	10	
Obtenidos						
Pregunta	6	7	8	9	Total	
Puntos	10	10	10	10	90	
Obtenidos						

Jerarquía de operaciones

La operación de suma, resta, multiplicación y división tienen el siguiente orden:

Vocabulario

 $signo \rightarrow característica + o - de una cantidad.$

jerarquía \rightarrow orden por prioridades.

 $incógnita \rightarrow cantidad desconocida.$

 $\mathbf{polígono} \rightarrow \text{figura geométrica de muchos ángulos.}$

 $\mathbf{polígono}$ regular \rightarrow polígono cuya medida de sus

lados es la misma.

 $apotema \rightarrow l$ ínea perpendicular que va desde el centro del polígono hasta cualesquiera de sus lados.

Proporcionalidad directa

Colocaremos en una tabla los 3 datos (a los que llamamos a, b y c) y la incógnita, es decir, el dato que queremos averiguar (que llamaremos x). Después, aplicaremos la siguiente fórmula:

$$\begin{array}{ccc}
a & \longrightarrow & b \\
c & \longrightarrow & x
\end{array}$$

$$\Rightarrow x = \frac{b \cdot c}{a}$$

Figura 1: Solución de una relación proporcional **directa** por medio de la regla de 3

Perímetro: $P = 2\pi r$ Área: $A = \pi r^2$

Ejercicio 1

de 10 puntos

Obten el resultado de las siguientes operaciones tomando en cuenta la jerarquía de operaciones.

 $9 \times 10 + 3 = 93$

Solución:

Solución:

b 6-2(5-3+1) = 0

 $f 9-3 \times 2 = 3$

Solución:

Solución:

=6-2(5-3+1) Suma dentro del paréntesis $=6-2\times3$ Multiplica 2 y 3

=6-6Resta 6 y 6

9 $6 \times 4 + 2 \times 3 = _{\underline{}}$

c $4-1 \neq 2 = 2$

Solución:

Solución:

 $=6\times4+2\times3$ Multiplica 6 y 4 $=24+2\times3$ Multiplica 2 y 3 =24+6Suma 24 y 6

d $2 + 12\nabla \cdot 2 \times 3 =$ **2**

Solución:

h $8\nabla \cdot 4 - (-103\theta \ 8) = 2$

Ejemplo 1

Calcula los siguientes valores faltantes

Darcy cosecha $6\frac{2}{3}$ acres de maíz cada $\frac{3}{4}$ de hora. Darcy cosecha a un ritmo constante.

¿Cuántos acres cosecha por hora?

Solución:

Planteamos la siguiente regla de 3:

acres tiempo (horas)
$$6\frac{2}{3} \Rightarrow \frac{3}{4}$$

$$x \Rightarrow 1$$

entonces,

$$x = \frac{1 \cdot 6\frac{2}{3}}{\frac{3}{4}} = \frac{1 \cdot \frac{20}{3}}{\frac{3}{4}} = \frac{80}{9} = 8.\overline{8}$$

 $\mbox{\bf b}$ Juanito siembra $2\frac{5}{8}$ hectáreas de frijol cada $\frac{5}{6}$ de hora. Juanito siembra a un ritmo constante.

¿Cuántas hectáreas siembra por hora?

Solución:

Planteamos la siguiente regla de 3:

hectáreas tiempo (horas)
$$2\frac{5}{8} \quad \Rightarrow \quad \frac{5}{6} \\ x \quad \Rightarrow \quad 1$$

entonces,

$$x = \frac{1 \cdot 2\frac{5}{8}}{\frac{5}{6}} = \frac{1 \cdot \frac{21}{8}}{\frac{5}{6}} = \frac{85}{48} = 1.77083$$

					\sim
E	IPI	$^{\sim}$	\cap	\sim	٠,
_	🔾		\sim	w	_

Matemáticas

En la Academia de Policía evaluaron la condición física de los cadetes. Marca las afirmaciones que sean equivalentes.

(Sugerencia: Expresa en cada caso el número de cadetes con buenos resultados como una fracción con denominador 100.)

П	Troc	anintag	nartos	t11370	oveolontos	resultados.
ш	res	aumtas	partes	THVO	excelentes	resultados.

Vointo do	cada	veinticinco	cadatas	tuvieron	evcelentes	regultados

	\mathbf{r}	1	•	1		1	1 1	resultados
	1 10	cada	cinco	allimnos	CHATTO	lograron	OVCOLONTOS	racilitadac
_	\mathbf{L}	Caua	CILICO	arumnos.	Cuauro	10graion	CACCICITICS	resurtados

			_	_			
П	De	cien	cadetes.	ochenta	tuvieron	excelentes	resultados.

 \Box Ocho de cada diez lograron excelentes resultados.

Ejemplo 3

En un día soleado los árboles forman sombras y, a la misma hora, la altura y la sombra de diferentes árboles es proporcional.

• Con la información de la figura completa la tabla 1.

Altura (m)	Sombra (m)	Constante de proporcionalidad
12	9	$\frac{12}{9} = {3}$
	3	
8	6	
6		
	15	

Soluciones propuestas

Tabla 1

¿Cómo son los números de la última columna?

Solución:

c Si la sombra de un árbol mide 7.5 m, ¿cómo calcularías su altura? Explica.

Solución:

Figura 3

e La gráfica representa la relación entre la sombra y la altura de un árbol. Unan los puntos que marcaron. ¿Qué observan?

Figura 2

Ejercicio 2

de 10 puntos

Calcula los porcentajes.

- Obten el 10 % de las siguientes cantidades.
 - I. 25 ________
 - II. 36.8 <u>3.68</u>
 - III. 2445.9 **244.59**
 - IV. 66 <u>6.6</u>
- **b** Obten el 5%.

 - II. 36.8 <u>2.5</u>
 - III. 2445.9 <u>**2.5**</u>
 - IV. 66 ________

- c Calcula el 20 %.
 - I. 25 ____**5**___
 - II. 36.8 **2.5**
 - III. 2445.9 **2.5**
 - IV. 66 ________
- d Calcula el 1% de las siguientes cantidades.
 - I. 115.1 <u>1.151</u>
 - II. 780 ____**7.8**___
 - III. 300 ____**3**____
 - IV. 66.6 <u>0.666</u>

Ejercicio 3 de 10 puntos

La gráfica de la Figura 4 muestra la composición de una escuela de 3 200 personas.

Figura 4: Gráfico circular sobre la distribución de los roles en una escuela (en porcentaje).

Cuántas personas trabajan en la administración?

Solución:

b ¿Cuántos profesores hay en esa escuela?

Solución:

Los profesores son el 6% de 3200, entonces:

$$\frac{6}{100} \times 3200 = 0.06 \times 3200 = 192$$

c ¿Cuántas personas son auxiliares?

Solución:

d ¿Cuál es el porcentaje de alumnos?

Solución:

El porcentaje de alumnos es::

$$100\% - 2\% - 6\% - 4\% = 88\%$$

e ¿Cuántos alumnos tiene la escuela?

Ejercicio 4 ____ de 10 puntos

 $Unidad \ 2$

Ejercicio 5 ____ de 10 puntos

Figura 5: Secciones sombreadas de círculos.

Ejercicio 7 de 10 puntos

Observa en la figura 6 que los lados del hexágono regular grande miden el triple que los lados del hexágono regular pequeño.

Soluciones propuestas

Solución:

Solución:

C Expresa algebraicamente el perímetro del polígono grande en términos de la longitud del hexágono pequeño.

Solución:

d ¿Cuántas veces es más grande el perímetro del hexágono mayor respecto al del hexágono pequeño?

Figura 6: DIagrama de los hexágonos del problema

Carlos mandó construir una ventana con la forma y las medidas que aparecen en la figura 7. ¿Qué longitud de material fue necesario para formar el contorno de la ventana?

Figura 7

Un autódromo tiene la forma y las dimensiones que ilustra la figura 8.

Figura 8: Diagrama de la pista de carreras en el autódromo.

a	Calcula la distancia d	que cubre un au	to al recorrer una	vez el circuito p	oor el carril interno.
---	------------------------	-----------------	--------------------	-------------------	------------------------

Solución:

b Calcula la distancia que se recorre en un auto al conducir una vez por el carril externo.

Solución:

C A qué distancia se deben separar dos autos en una carrera de una vuelta para que ambos recorran la misma distancia.