# Pesquisa Operacional - Problema da Corrente de Equilíbrio

Eduardo César<sup>1</sup> Manassés Ferreira<sup>1</sup> Marzo Júnior<sup>1</sup> Thiago Linke<sup>1</sup>

<sup>1</sup>Universidade Federal de Minas Gerais, Brasil

Pesquisa Operacional, 2013

#### Resumo

- Modelagem
  - O Problema
  - O Modelo
- Resolução
  - Resolução sistema quadrático
  - Resolução Fluxo em Redes
- Conclusões

#### Determinação da corrente de equilíbrio

Deseja-se determinar a corrente de equilíbrio que flui em um circuito elétrico como por exemplo:



#### **Modelos**

Existe mais de uma forma de se resolver o este problema. Três dessas formas serão mostradas aqui:

- Modelagem como sistema de equações lineares.
- Modelagem com sistema quadrático
- Modelagem como fluxo em redes com custo convexo.

## Modelagem como sistema linear

- Problema é resolvido introduzindo-se uma variável x<sub>ii</sub> representando o fluxo de corrente no arco(i, j) do circuito elétrico e montar um sistema de equações de equilíbrio para estes fluxos. A solução para este sistema fornece a intensidade  $x_{ij}$  para cada arco respectivo.
- Baseia-se nos príncipios físicos:
  - Lei de Ohm  $\longrightarrow V = R \times I$
  - 1<sup>a</sup> Lei de Kirchhof  $\longrightarrow I_1 = I_2 + I_3$

## Modelagem como fluxo em redes com custo convexo

Esta formulação se utiliza de um comportamento conhecido de que as correntes de equilíbrio nos resistores são os fluxos para qual os resistores dissipam a menor potência total suprida pelas fonte de tensão (ou seja, a corrente elétrica segue o caminho de menor resistência.)

Minimizar 
$$\sum_{(i,j)\in A} r_{ij} x_{ij}^2$$
 sujeito a

$$\sum_{j:(i,j)\in A} x_{ij} - \sum_{i:(j,i)\in A} x_{ji} = b(i)$$
 para cada nodo  $i \in N$ ,

$$x_{ij} \ge 0$$
 para cada arco  $(i, j) \in A$ .

## Linearização do custo convexo

#### Aproximação por segmentação:

- Cada custo de arco C<sub>ij</sub>(x<sub>ij</sub>) possui p segmentos lineares:
  0 = d<sub>ij</sub><sup>0</sup> < d<sub>ij</sub><sup>1</sup> < d<sub>ij</sub><sup>2</sup> < d<sub>ij</sub> < ..., que denotam os pontos onde a função "quebra".</li>
- custo varia linearmente no intervalo  $[d_{ij}k 1, d_{ij}^k]$ . Denotamos  $c_{ij}^k$  como o coeficiente de custo linear no intervalo  $[d_{ij}k - 1, d_{ii}^k]$ .
- Sendo assim, para especificar o a função aproximada, precisamos especificar os segmentos e a inclinação da função nesses segmentos.

## Linearização do custo convexo



## Linearização do custo convexo





#### Linearização do custo convexo

Arco original e arcos correspondentes na nova rede:



# Linearização do custo convexo



Resolução sistema quadrático

## Sistema quadrático

$$F:A\longrightarrow I\subset\mathbb{N}$$

$$F[(i,j)] = K$$

Tal que 
$$(i_1, j_1) < (i_2, j_2) \longleftrightarrow F[(i_1, j_1)] < F[(i_2, j_2)]$$

Sendo que 
$$(a,b) < (c,d) \longleftrightarrow (a < c) || ((a == c) \& \& (b < d))$$

Esta ordem total faz com que F seja invertível.

# Sistema quadrático

$$F:A\longrightarrow I\subset\mathbb{N}$$

$$H_{ij}=0$$
  $i \neq j$ 

$$lb_i = 0 \forall i$$

$$lb_i = \infty \forall i$$

$$A_{i,F(i,j)} = 1$$

$$\forall i, j : (i, j) \in A$$

$$A_{i,F(i,j)} = -1$$

$$\forall i, j : (j, i) \in A$$

$$A_{i,j}=0$$

Caso contrário

## Sistema quadrático

$$b_1 = 10$$

$$b_6 = 5$$

$$b_7 = -15$$

$$b_i = 0$$
 Caso contrário

Resolução Fluxo em Redes

# Resolução Fluxo em Redes

| segmento | 1-2 | 1-3 | 2-3 | 2-4  | 2-7   | 3-5  | 3-7   | 4-5 | 4-6 | 4-7   | 5-6 | 5-7   | tempo(ms) |
|----------|-----|-----|-----|------|-------|------|-------|-----|-----|-------|-----|-------|-----------|
| 1        | 100 |     |     |      | 100   |      |       |     | -50 | 50    |     |       | 12        |
| 2        | 75  | 25  |     |      | 75    | 25   |       |     | -50 | 50    |     |       | 15        |
| 4        | 62  | 38  |     |      | 62    |      | 38    |     | -38 | 38    | -12 | 12    | 19        |
| 8        | 43  | 57  |     | 19   | 38    | 5    | 38    |     | -19 | 38    | -31 | 36    | 22        |
| 16       | 54  | 46  |     | 9    | 45    | 9    | 37    |     | -27 | 36    | -23 | 32    | 30        |
| 32       | 50  | 50  |     | 10   | 45    | 10   | 40    |     | -25 | 35    | -25 | 35    | 77        |
|          |     |     |     |      |       |      |       |     |     |       |     |       |           |
| linear   | 50  | 50  |     | 8.33 | 41.67 | 8.33 | 41.67 |     | -25 | 33.33 | -25 | 33.33 | 15        |
| octave   | 50  | 50  |     | 8.33 | 41.67 | 8.33 | 41.67 |     | -25 | 33.33 | -25 | 33.33 | 150       |

#### Conclusões

 O algoritmo em redes é mais eficiente que a resolução em sistemas de equações lineares.

#### Conclusões

- O algoritmo em redes é mais eficiente que a resolução em sistemas de equações lineares.
- O equilíbrio está associado à condição de optimalidade do problema linear associado.

#### **Dúvidas**













