

CHEMISTRY Chapter 19

REACCIONES REDOX I

MOTIVATING STRATEGY

$$4Fe + 3O_2 \rightarrow 2Fe_2O_3$$

REACCIONES REDOX I

Definición:

Una reacción redox o de óxidoreducción es aquella reacción química que involucra una transferencia de electrones entre dos elementos químicos. Mientras que uno pierde electrones (se oxida) otro los gana (se reduce).

•

Estado de Oxidación:

- ✓ Llamado también número de oxidación o índice redox.
- ✓ Es la carga aparente con la que dicho elemento está actuando en un compuesto.

REGLAS

Elemento libre

E.O =0

- $> 0_2^0$
- $> N_2^{0}$
- $> S_8^0$

Hidrógeno

 El hidrógeno trabaja generalmente con

$$E.O = +1$$

En los hidruros metálicos donde lo hace con

$$E.O = -1$$

Oxígeno

 El oxígeno trabaja generalmente con estado de oxidación

 en los peróxidos donde lo hace con: -1 y frente al fluor con: +2 Metales

Los metales alcalinos

IA =+1

Los metales alcalinotérreos

IIA =+2

Compuestos químicos estables

$$\sum E.O=0$$

Ejemplo:

Determine el número de oxidación del cromo en K₂Cr₂O₇

RESOLUCIÓN

$$+1 x -2$$
 $K_2Cr_2O_7$
 $2(+1) + 2(x) + 7(-2) = 0$
 $x = +6$
 $x = 6 + 1$

En los iones ya sea positivo o negativo

$$\sum E.O = carga\ del\ ion$$

Ejemplo:

Determine el número de oxidación del azufre en el ion (SO₃)²⁻

RESOLUCIÓN

$$x - 2$$
 (SO₃)²⁻

$$1(x) + 3(-2) = -2$$

$$x = +4$$
 $x = 4 +$

Oxidación

- ✓ Un elemento se oxida si su estado de oxidación aumenta, para esto pierde electrones
- ✓ El número de electrones perdidos se halla

$$\#e^{-} = {mayor\ carga \choose total} - {menor\ carga \choose total}$$

⇒
$$Zn^{0}$$
 → $Zn^{2+}+2e^{-}$ # $e^{-}=(+2)-(0)=2$

⇒ Mn^{2+} → $Mn^{7+}+5e^{-}$ # $e^{-}=(+7)-(+2)=5$

⇒ Mn^{2+} → 2 $Br^{5+}+10e^{-}$ # $e^{-}=2(+5)-2(+0)=10$

Reducción

- ✓ Un elemento se reduce si su estado de oxidación disminuye, para esto gana electrones
- ✓ El número de electrones ganados se halla

$$\#e^{-} = {mayor\ carga \atop total} - {menor\ carga \atop total}$$

AGENTES

Ejemplo:

Solved Problems

Halle el número de oxidación x para los siguientes compuestos:

$$H_2SO_4$$
: = 6 + H_2SO_4 : = 7 +

RESOLUCIÓN

2

Complete la siguiente semirreacción indicando el número de electrones que se transfieren:

$$P_4 \rightarrow P^{3-}$$

$$#e^{-} = {mayor\ carga \atop total} - {menor\ carga \atop total}$$

$$#e^{-} = 4(0) - 4(-3)$$

 $#e^{-} = 12$

Rpta: 12 e- transferidos

Complete los electrones ganados o perdidos e indique en cada caso si es oxidación o reducción.

RESOLUCIÓN

a.
$$Fe^{2+}$$
 pument_a $\Rightarrow Fe^{3+} + 1e^{-}$ $\Rightarrow e^{-} = (+3) - (+2) = 1$ Oxidación $\Rightarrow e^{-} = (+1) - (0) = 1$ Oxidación c. Ag^{1+} $\Rightarrow Cl^{3+} + 2e^{-}$ $\Rightarrow Cl^{3+} + 2e^{-}$ $\Rightarrow e^{-} = (+5) - (+3) = 2$ Reducción

$$\#e^{-} = {mayor\ carga \atop total} - {menor\ carga \atop total}$$

$$#e^- = (+3) - (+2) = 1$$
 Oxidación

$$#e^- = (+1) - (0) = 1$$
 Oxidación

$$#e^- = (+1) - (0) = 1$$
 Reducción

$$\rightarrow$$
 Cl³⁺+2e⁻ #e⁻ = (+5) - (+3) = 2 Reducción

En la reacción

$$Na + H_2O \rightarrow NaOH + H_2$$

¿cuál es la sustancia que ha sido oxidada?

RESOLUCIÓN

Rpta: sodio se oxida

En la siguiente reacción, determine al agente reductor

$$K + H_2O \rightarrow KOH + H_2$$

RESOLUCIÓN

Rpta: agente reductor: K

Indique el número de electrones transferidos en

$$Cl_2^0 \rightarrow Cl^{5+}$$

RESOLUCIÓN

$$#e^{-} = {mayor\ carga \atop total} - {menor\ carga \atop total}$$

$$#e^- = 2(+5) - 2(0) = 10$$

Rpta: 10 e- transferidos

¿Cuál es la cantidad de electrones que se gana?

$$Y^{3+} \rightarrow Y_2^{1-}$$

RESOLUCIÓN

2
$$Y^{3+}$$
 \rightarrow Y_2^{1-} $+8e^-$

$$#e^{-} = {mayor\ carga \atop total} - {menor\ carga \atop total}$$
$$#e^{-} = 2(+3) - 2(-1) = 8$$

Rpta: 8 e- ganados

Solved Problems

8

Una reacción de óxido-reducción se caracteriza porque hay una transferencia de electrones, en donde una sustancia gana electrones y otra sustancia pierde electrones.

La sustancia que gana electrones disminuye su número de oxidación. Este proceso se llama reducción.

- oxidación. Este proceso se llama reducción.

 La sustancia que pierde electrones aumenta su número de oxidación. Este proceso se llama oxidación.

 Por lo tanto, la reducción es ganancia de electrones y la oxidación es una pérdida de electrones.

 Según lo leído, escriba verdadero (V) o falso (F).
- a. El elemento que pierde electrones se llama oxidación. ()
- La especie que se reduce se encuentra en la semiecuación de reducción.
- c. La reacción de óxido-reducción se denomina redox. (
- d. Si el elemento aumenta su número de oxidación, se denomina reducción.

a. verdadero

la sustancia que en una reacción pierde electrones se le llama oxidación

b. verdadero

En toda reacción química podemos encontrar la semireacción de oxidación y reducción, donde se encuentran las especies que se oxidan y se reducen respectivamente.

<u>c. verdadero</u>

En una reacción redox encontramos las sustancias que se reducen y se oxidan.

d. falso

La sustancia que pierde electrones aumenta su número de oxidación. Este proceso se llama oxidación.

Rpta: VVVF

Thank you