ResNeSt: Split-Attention Networks

Hang Zhang, Chongruo Wu*, Zhongyue Zhang, Yi Zhu, Haibin Lin, Zhi Zhang, Yue Sun, Tong He, Jonas Mueller, R. Manmatha, Mu Li, and Alexander Smola

Amazon, University of California, Davis* {hzaws,chongrwu,zhongyue,yzaws,haibilin,zhiz,ysunmzn, htong,jonasmue,manmatha,mli,smola}@amazon.com

Presented by: Hengtao Guo 06/10/2020

Motivations

- 1. ResNet models are originally designed for classification tasks, and may not be suitable for other downstream tasks (object detection, segmentation etc)
- 2. Boosting the performance requires manually "surgery" to the ResNet structure, based on different downstream tasks:
 - a) Pyramid Module
 - b) Long-range connections
 - c) Cross-channel feature map attention

Can we create a versatile backbone with universally improved feature representations, thereby improving performance across multiple tasks at the same time?

Motivations

- 1. Cross-channel information has demonstrated success in downstream applications [56,64,65]
- 2. Recent image classification networks focused more on group or depth-wise convolution

Introducing cross-channel information into the basic block of ResNet!

Benefits downstream tasks!

Contributions

- By stacking several Split-Attention blocks, we create a ResNet-like network called ResNeSt (S stands for \split").
- 2. Large scale benchmarks on image classification and transfer learning applications.

Generally, this work is the combination of: ResNeXt + Split Attention

SE-Net (squeezing & excitation)

SK-Net (Selective Kernel Convolution)

Group Convolution

Split-Attention

1. Global Average Pooling

$$s_c^k = \frac{1}{H \times W} \sum_{i=1}^H \sum_{j=1}^W \hat{U}_c^k(i,j).$$

2. Softmax

$$a_i^k(c) = \begin{cases} \frac{exp(\mathcal{G}_i^c(s^k))}{\sum_{j=0}^R exp(\mathcal{G}_j^c(s^k))} & \text{if } R > 1, \\ \frac{1}{1 + exp(-\mathcal{G}_i^c(s^k))} & \text{if } R = 1, \end{cases}$$

3. Feature-map channel attention

$$V_c^k = \sum_{i=1}^R a_i^k(c) U_{R(k-1)+i},$$

Fig. 2: Split-Attention within a cardinal group. For easy visualization in the figure, we use c = C/K in this figure.

Experiments

- 1. Classification tasks
- 2. Downstream tasks
 - a) Object Detection
 - b) Instance Segmentation
 - c) Semantic Segmentation

ImageNet Classification

	#P GFLOPs		top-1 acc (%)		
	#P	GFLOPs	224×	320×	
ResNet-50 23	25.5M	4.14	76.15	76.86	
ResNeXt-50 60	25.0M	4.24	77.77	78.95	
SENet-50 [29]	27.7M	4.25	78.88	80.29	
ResNetD-50 $[26]$	25.6M	4.34	79.15	79.70	
SKNet-50 [38]	27.5M	4.47	79.21	80.68	
ResNeSt-50-fast(ours)	27.5M	4.34	80.64	81.43	
ResNeSt-50(ours)	27.5M	5.39	81.13	81.82	
ResNet-101 [23]	44.5M	7.87	77.37	78.17	
ResNeXt-101 60	44.3M	7.99	78.89	80.14	
SENet-101 [29]	49.2M	8.00	79.42	81.39	
ResNetD-101 [26]	44.6M	8.06	80.54	81.26	
SKNet-101 [38]	48.9M	8.46	79.81	81.60	
ResNeSt-101-fast(ours)	48.2M	8.07	81.97	82.76	
ResNeSt-101(ours)	48.3M	10.2	82.27	83.00	

GFLOPS:

Giga Floating-point Operations Per Second

Top-1 accuracy is the conventional accuracy, which means that the model answer (the one with the highest probability) must be exactly the expected answer.

Top-5 accuracy means that *any* of your model that gives 5 highest probability answers that must match the expected answer.

Table 3: Image classification results on ImageNet, comparing our proposed ResNeSt with other ResNet variants of similar complexity in 50-layer and 101-layer configurations. We report top-1 accuracy using crop sizes 224 and 320.

Method	Backbone	mAP%
뇐	ResNet101 22	37.3
Faster-RCNN [46]	ResNeXt101 5 60	40.1
	SE-ResNet101 29	41.9
Faster-RCNN+DCN [12]	ResNet101 5	42.1
Cascade-RCNN [2]	ResNet101	42.8
	ResNet50 57	$\bar{39.25}$
Faster-RCNN 46	ResNet101 57	41.37
raster-KCNN [40]	ResNeSt50 (ours)	42.33
Results	ResNeSt101 (ours)	44.72
B	ResNet50 57	$\bar{42.52}$
E Casas da BCNN [5]	ResNet101 57	44.03
○ Cascade-RCNN [2]	ResNeSt50 (ours)	45.41
	ResNeSt101 (ours)	47.50
Cascade-RCNN 2	ResNeSt200 (ours)	49.03

Table 5: Object detection results on the MS-COCO validation set. Both Faster-RCNN and Cascade-RCNN are significantly improved by our ResNeSt backbone.

Object Detection

Compared to the baselines using standard ResNet, Our backbone is able to boost mean average precision by around 3% on both Faster-RCNNs and Cascade-RCNNs. The result demonstrates our backbone has good generalization ability and can be easily transferred to the downstream task. Notably, our ResNeSt50 outperforms ResNet101 on both Faster-RCNN and Cascade-RCNN detection models, using significantly fewer parameters. Detailed results in Table 10. We evaluate our Cascade-RCNN with ResNeSt101 deformable, that is trained using 1x learning rate schedule on COCO test-dev set as well. It yields a box mAP of 49.2 using single scale inference.

X	Method	Backbone	box mAP%	mask mAP%
Work	DCV-V2 72	ResNet50	42.7	37.0
Prior V	HTC 4	ResNet50	43.2	38.0
	Mask-RCNN 22	ResNet101 5	39.9	36.1
	Cascade-RCNN 3	ResNet101	44.8	38.0
Our Results	Mask-RCNN 22	ResNet50 57	39.97	36.05
		ResNet101 57	41.78	37.51
		ResNeSt50 (ours)	42.81	38.14
		ResNeSt101 (ours)	45.75	40.65
	Cascade-RCNN 2	ResNet50 57	43.06	37.19
		ResNet101 57	44.79	38.52
		ResNeSt50 (ours)	46.19	39.55
		ResNeSt101 (ours)	48.30	41.56

Table 6: Instance Segmentation results on the MS-COCO validation set. Both Mask-RCNN and Cascade-RCNN models are improved by our ResNeSt backbone. Models with our ResNeSt-101 outperform all prior work using ResNet-101.

Method	Backbone	pixAcc%	mIoU%		Method	Backbone	mIoU%
UperNet 59	ResNet101	81.01	42.66		DANet 16	ResNet101	77.6
FSPNet 69	ResNet101	81.39	43.29	ork	PSANet 70	ResNet101	77.9
ĕEncNet 65	ResNet101	81.69	44.65	×	PSPNet 69	ResNet101	78.4
ÖCFNet 66	ResNet101	81.57	44.89	ior		ResNet101	79.2
OCNet 63	ResNet101	-	45.45	Pri	DeeplabV3 [7]	ResNet101	79.3
ACNet 17	ResNet101	81.96	45.90		OCNet [63]	ResNet101	80.1
DeeplabV3 [7]	ResNet50 21	80.39	42.1	S Deepleh V2	ResNet50 21	78.72	
	ResNet101 21	81.11	44.14		DeeplabV3 7	ResNet101 21	79.42
	ResNeSt-50 (ours)	81.17	45.12	Õ		ResNeSt-50 (ours)	79.87
	ResNeSt-101 (ours)	82.07	46.91			ResNeSt-101 (ours)	80.42

Table 7: Semantic segmentation results on validation set of: ADE20K (Left), Citscapes (Right). Models are trained without coarse labels or extra data.

Conclusion

- 1. This work proposed the ResNeSt architecture with a novel Split-Attention block that universally improves the learned feature representations to boost performance across image classification, object detection, instance segmentation and semantic segmentation.
- 2. In the latter downstream tasks, the empirical improvement produced by simply switching the backbone network to our ResNeSt is substantially better than task-specific modifications applied to a standard backbone such as ResNet.
- 3. Our Split-Attention block is easy to work with and computationally efficient, and thus should be broadly applicable across vision tasks.

- 56. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 7794–7803 (2018)
- 64. Yuhui Yuan, J.W.: Ocnet: Object context network for scene parsing. arXiv preprint arXiv:1809.00916 (2018)
- 65. Zhang, H., Dana, K., Shi, J., Zhang, Z., Wang, X., Tyagi, A., Agrawal, A.: Context encoding for semantic segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2018)