Programmer: Nicholas Trampe, James Kellerman CS 5201 - Clayton Price Assignment: Final - Solving Poisson's Equation Description: Static structure class diagram _____ matrix base '---¬< ------______, matrix symmetrical matrix_poisson matrix banded . -------#m size:size t #m slices: size t #m_size : size_t #convertCoordinatesToIndex(inout aIndex : size_t&, in aRow : const size_t, in aColumn : const size_t) : void #convertCoordinatesToIndex(inout aIndex : size_t&, in aRow : const size_t, in aColumn : const size_t) : void #m_band: size_t #convertIndexToCoordinates(inout aRow : size t&, inout aColumn : size t&, in aIndex : const size t) : void #convertIndexToCoordinates(inout aRow : size_t&, inout aColumn : size_t&, in aIndex : const size_t) : void #m outsideElement: T #at(in aRow : const size t, in aColumn : const size t) : T& #at(in aRow : const size_t, in aColumn : const size_t) : T& #convertCoordinatesToIndex(inout aIndex : size_t&, in aRow : const size_t, in aColumn : const size_t) : void #at(in aRow : const size_t, in aColumn : const size_t) : T #at(in aRow : const size_t, in aColumn : const size_t) : T #convertIndexToCoordinates(inout aRow : size_t&, inout aColumn : size_t&, in aIndex : const size_t) : void #setupMatrix(in aRow : const size_t, in aColumn : const size_t) : void #setupMatrix(in aRow : const size t, in aColumn : const size t) : void #withinDiagonal(in aRow : const size_t, in aColumn : const size_t) : bool +matrix symmetrical() +matrix_poisson() #at(in aRow : const size_t, in aColumn : const size_t) : T& +matrix_symmetrical(in aSize : const size_t) +matrix_poisson(in aSlices : const size_t) #at(in aRow : const size_t, in aColumn : const size_t) : T +matrix_symmetrical(in aCopy : const matrix_symmetrical<T>&) +matrix_poisson(in aCopy : const matrix_poisson<T>&) #setupMatrix(in aRow : const size_t, in aColumn : const size_t) : void +matrix symmetrical(in aMatrix : const matrix base<T>&) +matrix_poisson(in aMatrix : const matrix_base<T>&) +bandWidth(): size_t +~matrix_symmetrical() +~matrix_poisson() +widthAtRow(in aRow : const size_t) : size_t +rows(): size_t +rows(): size_t +startAtRow(in size_t aRow : const size_t) : size_t +columns(): size_t +columns(): size t +endAtRow(in size taRow:constsize_t):size_t +size(): size_t +slices(): size_t +widthAtColumn(in size_t aColumn : const size_t) : size_t +meshSize(): size_ +memorySize(): size_t +startAtColumn(in size_t aColumn : const size_t) : size_t +name() : string +band(): size_t +endAtColumn(in size_t aColumn : const size_t) : size_t +memorySize(): size t +replaceVectorAtRow(in aVector : const vector<T>&, in aRow : const size_t) : void +matrix_banded() +replaceVectorAtColumn(in aVector : const vector<T>&, in aColumn : const size_t) : void +name() : string +matrix_banded(in aSize : const size_t, in aBand : const size_t) +solveMatrix(in aB : const vector<T>&, out aX : vector<T>&) : bool +solveMatrix(in aB : const vector<T>&, out aX : vector<T>&) : bool +matrix_banded(in aCopy : const matrix_banded<T>&) +operator=(in aRHS : const matrix symmetrical <T>&) : matrix symmetrical <T>& +operator=(in aRHS : const matrix_poisson <T>&) : matrix_poisson <T>& +matrix banded(in aMatrix : const matrix base<T>&) +~matrix_banded() +rows(): size_t <<friend>> <<friend>> +columns(): size_t +size(): size_t +band(): size_t +operator-(in aRHS) : matrix_symmetrical<U> +operator-(in aRHS) : matrix poisson<U> +memorySize(): size_t +operator+(in aLHS: const matrix_poisson<U>&, in aRHS: const matrix_poisson<U>&): matrix_poisson<U> +operator+(in aLHS : const matrix_symmetrical<U>&, in aRHS : const matrix_symmetrical<U>&) : matrix_symmetrical<U> +name() : string +operator-(in aLHS: const matrix_symmetrical<U>&, in aRHS: const matrix_symmetrical<U>&): matrix_symmetrical<U> +operator-(in aLHS: const matrix_poisson<U>&, in aRHS: const matrix_poisson<U>&): matrix_poisson<U> +description(): string +operator*(in aLHS: const double&, in aRHS: const matrix_symmetrical<U>&): matrix_symmetrical<U> +operator*(in aLHS: const double&, in aRHS: const matrix_poisson<U>&): matrix_poisson<U> +replaceVectorAtRow(in aVector : const vector<T>&, in aRow : const size_t) : void +operator*(in aLHS: const matrix_symmetrical<U>&, in aRHS: const double&): matrix_symmetrical<U> +operator*(in aLHS: const matrix_poisson<U>&, in aRHS: const double&): matrix_poisson<U> +replaceVectorAtColumn(in aVector : const vector<T>&, in aColumn : const size_t) : void +operator*(in aLHS: const vector<U>&, in aRHS: const matrix_symmetrical<U>&): vector<U> +operator*(in aLHS: const vector<U>&, in aRHS: const matrix_poisson<U>&): vector<U> +solveMatrix(in aB : const vector<T>&, out aX : vector<T>&) : bool +operator*(in aLHS: const matrix symmetrical<U>&, in aRHS: const vector<U>&): vector<U> +operator*(in aLHS: const matrix_poisson<U>&, in aRHS: const vector<U>&): vector<U> +operator=(in aRHS : const matrix_banded <T>&) : matrix_banded <T>& ______ _ - - - - - - - - - - - - - - - - , matrix_tridiagonal matrix_diagonal i-----+matrix_tridiagonal() #convertCoordinatesToIndex(inout aIndex : size t&, in aRow : const size t, in aColumn : const size t) : void -matrix_tridiagonal(in aSize : const size_t) #convertIndexToCoordinates(inout aRow : size t&, inout aColumn : size t&, in aIndex : const size t) : void -----+matrix_tridiagonal(in aCopy : const matrix_tridiagonal<T>&) +matrix_diagonal() +matrix tridiagonal(in aMatrix : const matrix base<T>&) +matrix diagonal(in aSize : const size t) +name(): string +matrix_diagonal(in aCopy : const matrix_diagonal<T>&) +solveMatrix(in aB : const vector<T>&, out aX : vector<T>&) : bool +matrix diagonal(in aMatrix : const matrix base<T>&) +operator=(in aRHS : const matrix_tridiagonal <T>&) : matrix_tridiagonal <T>& +name() : string +replaceVectorAtRow(in aVector : const vector<T>&, in aRow : const size_t) : void +replaceVectorAtColumn(in aVector : const vector<T>&, in aColumn : const size_t) : void Global +solveMatrix(in aB : const vector<T>&, out aX : vector<T>&) : bool +operator-(in aRHS) : matrix banded<U> +operator=(in aRHS : const matrix_diagonal <T>&) : matrix_diagonal <T>& +operator+(in aLHS: const matrix_banded<U>&, in aRHS: const matrix_banded<U>&): matrix_banded<U> +operator-(in aLHS: const matrix_banded<U>&, in aRHS: const matrix_banded<U>&): matrix_banded<U> +operator*(in aLHS: const double&, in aRHS: const matrix banded<U>&): matrix banded<U> <<friend>> +operator*(in aLHS: const matrix_banded<U>&, in aRHS: const double&): matrix_banded<U> +operator*(in aLHS : const vector<U>&, in aRHS : const matrix_banded<U>&) : vector<U> Global +operator*(in aLHS: const matrix banded<U>&, in aRHS: const vector<U>&): vector<U> +operator-(in aRHS) : matrix_diagonal<U> +operator*(in aLHS: const matrix_diagonal<U>&, in aRHS: const matrix_diagonal<U>&): matrix_diagonal<U> +operator*(in aLHS: const vector<U>&, in aRHS: const matrix diagonal<U>&): vector<U>

+operator*(in aLHS: const matrix_diagonal<U>&, in aRHS: const vector<U>&): vector<U>