```
import pandas as pd
import pylab as pl
import numpy as np
import scipy.optimize as opt
from sklearn import preprocessing
%matplotlib inline
import matplotlib.pyplot as plt
from collections import Counter
from imblearn.over_sampling import SMOTE
```

In [2]: credit_df = pd.read_csv(r".\Project 1 Finance Predictive Analysis-ML.csv")
 credit_df.head()

Out[2]:		customer_id	loan_id	loan_type	loan_amount	interest_rate	loan_term	employment_type	inco
	0	CUST- 00004912	LN00004170	Car Loan	16795	0.051852	15	Self-employed	
	1	CUST- 00004194	LN00002413	Personal Loan	1860	0.089296	56	Full-time	
	2	CUST- 00003610	LN00000024	Personal Loan	77820	0.070470	51	Full-time	
	3	CUST- 00001895	LN00001742	Car Loan	55886	0.062155	30	Full-time	
	4	CUST- 00003782	LN00003161	Home Loan	7265	0.070635	48	Part-time	

In [3]: credit_df["default_status"].value_counts()

Out[3]: default_status False 4001 True 999

Name: count, dtype: int64

Choose only relevant columns

In [4]: #the application_date, approval_date, disbursement_date, due_date has been dropped
 credit_df = credit_df[["loan_type", "loan_amount","interest_rate","employment_type","i
 credit_df.head()

Out[4]:		loan_type	loan_amount	interest_rate	employment_type	income_level	credit_score	gender	marit
	0	Car Loan	16795	0.051852	Self-employed	Medium	833	Male	
	1	Personal Loan	1860	0.089296	Full-time	Medium	776	Female	
	2	Personal Loan	77820	0.070470	Full-time	Low	697	Male	
	3	Car Loan	55886	0.062155	Full-time	Low	795	Female	
	4	Home Loan	7265	0.070635	Part-time	Low	519	Female	

```
In [5]: credit_df["default_status"].value_counts()
```

Out[5]: default_status False 4001 True 999

Name: count, dtype: int64

Change the categorical data to numeric

```
In [6]: # The categorical data are loan_type, employment_type, income_level, gender, marital_s
from sklearn.preprocessing import LabelEncoder
LabelEncoder = LabelEncoder()

credit_df["loan_type"] = LabelEncoder.fit_transform(credit_df["loan_type"])
credit_df["employment_type"] = LabelEncoder.fit_transform(credit_df["employment_type"]
credit_df["income_level"] = LabelEncoder.fit_transform(credit_df["income_level"])
credit_df["gender"] = LabelEncoder.fit_transform(credit_df["gender"])
credit_df["marital_status"] = LabelEncoder.fit_transform(credit_df["education_level"])
credit_df["education_level"] = LabelEncoder.fit_transform(credit_df["education_level"])
credit_df["default_status"] = LabelEncoder.fit_transform(credit_df["default_status"])
```

Out[6]:		loan_type	loan_amount	interest_rate	employment_type	income_level	credit_score	gender	m
	0	0	16795	0.051852	2	2	833	1	
	1	3	1860	0.089296	0	2	776	0	
	2	3	77820	0.070470	0	1	697	1	
	3	0	55886	0.062155	0	1	795	0	
	4	2	7265	0.070635	1	1	519	0	
	•••								
	4995	0	37945	0.070087	2	0	511	1	
	4996	3	48937	0.056405	1	2	502	1	
	4997	2	7476	0.064212	0	0	452	0	
	4998	0	52756	0.094914	2	2	728	1	
	4999	3	91101	0.083821	2	1	586	1	

5000 rows × 10 columns

```
In [7]:
        credit_df.columns
        Index(['loan_type', 'loan_amount', 'interest_rate', 'employment_type',
Out[7]:
                'income_level', 'credit_score', 'gender', 'marital_status',
                'education_level', 'default_status'],
               dtype='object')
```

Identify the features and Targets

```
In [8]: X = np.asanyarray(credit_df[['loan_type', 'loan_amount', 'interest_rate', 'employment_
                'income_level', 'credit_score', 'gender', 'marital_status',
                'education_level']])
        Χ
        array([[0.0000000e+00, 1.6795000e+04, 5.1851709e-02, ..., 1.0000000e+00,
Out[8]:
                2.0000000e+00, 2.0000000e+00],
                [3.0000000e+00, 1.8600000e+03, 8.9295672e-02, ..., 0.0000000e+00,
                1.0000000e+00, 0.0000000e+00],
                [3.0000000e+00, 7.7820000e+04, 7.0469564e-02, ..., 1.0000000e+00,
                0.0000000e+00, 1.0000000e+00],
                [2.0000000e+00, 7.4760000e+03, 6.4211792e-02, ..., 0.0000000e+00,
                2.0000000e+00, 1.0000000e+00],
                [0.0000000e+00, 5.2756000e+04, 9.4914482e-02, ..., 1.0000000e+00,
                1.0000000e+00, 3.0000000e+00],
                [3.0000000e+00, 9.1101000e+04, 8.3820967e-02, ..., 1.0000000e+00,
                2.0000000e+00, 2.0000000e+00]])
In [9]: y = np.asanyarray(credit_df["default_status"])
        array([0, 0, 0, ..., 1, 0, 0], dtype=int64)
```

Normalize dataset

```
In [10]: from sklearn import preprocessing
         X = preprocessing.StandardScaler().fit(X).transform(X)
         X[0:5]
         array([[-1.33965636, -1.15378622, -1.82077885, 1.22327807, 1.21940701,
Out[10]:
                  1.63771851, 0.98333878, 1.23850864, 0.43330448],
                [ 1.32085541, -1.6738365 , 0.63804616, -1.22818099, 1.21940701,
                  1.27839553, -1.01694352, 0.01104715, -1.34544953],
                [ 1.32085541, 0.97115975, -0.59820399, -1.22818099, -0.01406154,
                  0.78038648, 0.98333878, -1.21641433, -0.45607253],
                [-1.33965636, 0.20739793, -1.14419476, -1.22818099, -0.01406154,
                  1.39816986, -1.01694352, 0.01104715, 1.32268148],
                [ 0.43401815, -1.48562948, -0.58735223, -0.00245146, -0.01406154,
                 -0.34170985, -1.01694352, 0.01104715, -0.45607253])
         To avoid oversampling
In [11]: # Apply SMOTE (Over-sampling)
         from imblearn.over sampling import SMOTE
         smote = SMOTE(random state=42)
         X_resampled, y_resampled = smote.fit_resample(X, y)
         print("Balanced Classes:", Counter(y_resampled))
         Balanced Classes: Counter({0: 4001, 1: 4001})
         Split into train /test dataset
In [12]: from sklearn.model_selection import train_test_split
         X_train, X_test, y_train, y_test = train_test_split( X_resampled, y_resampled, test_si
         print ('Train set:', X_train.shape, y_train.shape)
         print ('Test set:', X_test.shape, y_test.shape)
         Train set: (5601, 9) (5601,)
         Test set: (2401, 9) (2401,)
         Using Logistic Regression: BaseLine Model
In [13]: from sklearn.linear_model import LogisticRegression
         from sklearn.metrics import confusion_matrix
         LR = LogisticRegression(class weight='balanced').fit(X train,y train)
         LR
Out[13]:
                     LogisticRegression
         LogisticRegression(class_weight='balanced')
In [14]: yhat = LR.predict(X_test)
         yhat
```

array([0, 1, 1, ..., 0, 0, 1], dtype=int64)

Out[14]:

```
In [15]: yhat_prob = LR.predict_proba(X_test)
         yhat_prob
         array([[0.51450651, 0.48549349],
Out[15]:
                [0.48403872, 0.51596128],
                [0.46184774, 0.53815226],
                [0.54536605, 0.45463395],
                [0.55695312, 0.44304688],
                [0.48099621, 0.51900379]])
         Accuracy
In [16]: from sklearn.metrics import f1 score
         f1 = f1_score(y_test, yhat,average='weighted')
         print("the f1 score of the dataset using xgboost is:", f1)
         the f1 score of the dataset using xgboost is: 0.5251923983166351
In [17]: from sklearn.metrics import classification_report, confusion_matrix
         import itertools
         def plot_confusion_matrix(cm, classes,
                                    normalize=False,
                                    title='Confusion matrix',
                                    cmap=plt.cm.Blues):
             0.00
             This function prints and plots the confusion matrix.
             Normalization can be applied by setting `normalize=True`.
             if normalize:
                 cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
                 print("Normalized confusion matrix")
                 print('Confusion matrix, without normalization')
             print(cm)
             plt.imshow(cm, interpolation='nearest', cmap=cmap)
             plt.title(title)
             plt.colorbar()
             tick_marks = np.arange(len(classes))
             plt.xticks(tick_marks, classes, rotation=45)
             plt.yticks(tick_marks, classes)
             fmt = '.2f' if normalize else 'd'
             thresh = cm.max() / 2.
             for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
                  plt.text(j, i, format(cm[i, j], fmt),
                           horizontalalignment="center",
                           color="white" if cm[i, j] > thresh else "black")
             plt.tight_layout()
             plt.ylabel('True label')
             plt.xlabel('Predicted label')
         print(confusion_matrix(y_test, yhat, labels=[1,0]))
```

[[632 559] [581 629]]

```
In [18]: # Compute confusion matrix
    cnf_matrix = confusion_matrix(y_test, yhat, labels=[1,0])
    np.set_printoptions(precision=2)

# Plot non-normalized confusion matrix
    plt.figure()
    plot_confusion_matrix(cnf_matrix, classes=['churn=1','churn=0'],normalize= False, tit

Confusion matrix, without normalization
    [[632 559]
    [581 629]]
```


In [19]: print (classification_report(y_test, yhat)) precision recall f1-score support 0 0.53 0.52 0.52 1210 1 0.52 0.53 0.53 1191 0.53 2401 accuracy 0.53 0.53 0.53 2401 macro avg weighted avg 0.53 0.53 0.53 2401

In [20]: from sklearn.metrics import log_loss
 log_loss(y_test, yhat_prob)

Out[20]: 0.6926675767869327

For XGBOOST: Advanced model

```
In [21]: from xgboost import XGBClassifier
         model = XGBClassifier(use_label_encoder=False, eval_metric='logloss')
         model.fit(X_train, y_train)
         # 5 Make Predictions
         y_hat_new = model.predict(X_test)
         c:\Users\Owner\anaconda3\envs\geospatial\lib\site-packages\xgboost\core.py:158: UserW
         arning: [21:06:52] WARNING: C:\buildkite-agent\builds\buildkite-windows-cpu-autoscali
         ng-group-i-08cbc0333d8d4aae1-1\xgboost\xgboost-ci-windows\src\learner.cc:740:
         Parameters: { "use_label_encoder" } are not used.
           warnings.warn(smsg, UserWarning)
In [22]: yhat_prob_new = model.predict_proba(X_test)
         yhat_prob_new
        array([[0.45, 0.55],
Out[22]:
                [0.4, 0.6],
                [0.08, 0.92],
                . . . ,
                [0.16, 0.84],
                [0.79, 0.21],
                [0.35, 0.65]], dtype=float32)
In [23]: from sklearn.metrics import f1 score
         f1 = f1_score(y_test, y_hat_new,average='weighted')
         print("the f1 score of the dataset using xgboost is:", f1)
         the f1 score of the dataset using xgboost is: 0.8322759026936165
In [24]: | from sklearn.metrics import classification_report, confusion_matrix
         import itertools
         def plot confusion matrix(cm, classes,
                                    normalize=False,
                                    title='Confusion matrix',
                                    cmap=plt.cm.Blues):
             This function prints and plots the confusion matrix.
             Normalization can be applied by setting `normalize=True`.
             if normalize:
                 cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
                 print("Normalized confusion matrix")
                  print('Confusion matrix, without normalization')
             print(cm)
             plt.imshow(cm, interpolation='nearest', cmap=cmap)
             plt.title(title)
             plt.colorbar()
             tick_marks = np.arange(len(classes))
             plt.xticks(tick_marks, classes, rotation=45)
             plt.yticks(tick_marks, classes)
             fmt = '.2f' if normalize else 'd'
```

```
thresh = cm.max() / 2.
             for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
                  plt.text(j, i, format(cm[i, j], fmt),
                          horizontalalignment="center",
                           color="white" if cm[i, j] > thresh else "black")
             plt.tight_layout()
             plt.ylabel('True label')
             plt.xlabel('Predicted label')
         print(confusion_matrix(y_test, yhat, labels=[1,0]))
         [[632 559]
          [581 629]]
In [25]: # Compute confusion matrix
         cnf_matrix = confusion_matrix(y_test, y_hat_new, labels=[1,0])
         np.set_printoptions(precision=2)
         # Plot non-normalized confusion matrix
         plt.figure()
         plot_confusion_matrix(cnf_matrix, classes=['churn=1','churn=0'],normalize= False, tit
         Confusion matrix, without normalization
         [[ 917 274]
          [ 127 1083]]
                                       Confusion matrix
                                                                                   1000
                                  917
                                                            274
             churn=1
                                                                                  800
          True label
                                                                                  600
                                                                                   400
                                  127
                                                           1083
             churn=0
                                                                                   200
```

Predicted label

precision	recall	f1-score	support
0.00			4040
0.80	0.90	0.84	1210
0.88	0.77	0.82	1191
		0.83	2401
0.84	0.83	0.83	2401
0.84	0.83	0.83	2401
	0.80 0.88 0.84	0.80 0.90 0.88 0.77 0.84 0.83	0.80 0.90 0.84 0.88 0.77 0.82 0.83 0.84 0.83 0.83

In [27]: from sklearn.metrics import log_loss
log_loss(y_test, yhat_prob_new)

Out[27]: 0.38048987960747194