(19) 日本国特新庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-24818

(43)公開日 平成9年(1997)1月28日

(51) Int.Cl.⁶

識別記号 庁内整理番号

FΙ

技術表示箇所

B60T 13/14 8/32 B60T 13/14 8/32

審査請求 未請求 請求項の数3 OL (全 8 頁)

(21)出願番号

特願平7-177108

(22)出願日

平成7年(1995)7月13日

(71)出額人 000000011

アイシン精機株式会社

愛知県刈谷市朝日町2丁目1番地

(72) 発明者 寺 澤 禎

愛知県刈谷市朝日町2丁目1番地 アイシ

ン精機株式会社内

(72) 発明者 西 井 理 治

愛知県刈谷市朝日町2丁目1番地 アイシ

ン精機株式会社内

(54) 【発明の名称】 車両用プレーキ制御装置

(57)【要約】

(修正有)

【課題】 構造変更を最小限に止めながら、緊急ブレー キ力を増大できる車両用ブレーキ制御装置を提供する。 【解決手段】 シリンダボデー2内に摺動可能に設置さ れその一端にて圧力室10に面し、他端において前記シ リンダボデー内のレギュレータ圧室24に面して前記圧 力室中の圧力と前記レギュレータ圧室中の圧力を受けて 軸方向に移動することによって圧力源26からの圧力を 調圧してレギュレータポート2aに出力するスプール部 材18を備え、前記レギュレータポートから出力される 圧力は前記レギュレータ圧室に導入されると共に車両の ホイルシリンダ33,34,35,36に導入して、更 に緊急ブレーキ操作検出手段65と、緊急のブレーキ操 作を検出した時に前記圧力源を前記ホイルシリンダに連 通させるブレーキ圧切換手段62,66,68を備え る。

【特許請求の範囲】

【請求項1】 ブレーキ操作部材の操作とは無関係に圧力を発生する圧力源からの圧力をブレーキ操作部材の操作力に応じて調圧して車両のホイルシリンダに出力するブレーキ倍力装置と、緊急のブレーキ操作を検出する緊急ブレーキ操作検出手段と、前記緊急ブレーキ操作検出手段が緊急のブレーキ操作を検出した時に前記圧力源を前記ホイルシリンダに連通させるブレーキ圧切換手段を備えたことを特徴とする車両用ブレーキ制御装置。

【請求項2】 前記ブレーキ倍力装置は前記圧力源から の圧力が導入されるシリンダボデーと、前記シリンダボ デー内に設置されたレギュレータ圧室と、前記シリンダ ボデー内に設置され一側にブレーキ操作力を受けると共 に他側に前記レギュレータ圧室の圧力を受けて軸方向に 移動することによって前記圧力源からの圧力を調圧する スプール部材と、前記シリンダボデーに設置され前記圧 力源からの圧力を調圧した圧力が導入されると共に前記 ホイルシリンダに連通したレギュレータポートを備え、 前記ブレーキ圧切換手段は前記レギュレータポートと前 記レギュレータ圧室との間に設置され、前記レギュレー タ圧室を前記レギュレータボートに連通する第1位置 と、前記レギュレータ圧室を大気圧に連通すると共に前 記レギュレータ圧室と前記レギュレータポートとの連通 を遮断する第2位置とを選択する切換弁であることを特 徴とする請求項1を満足する車両用ブレーキ制御装置。 【請求項3】 前記ブレーキ倍力装置は前記圧力源から の圧力が導入されるシリンダボデーと、前記シリンダボ デー内に設置されたレギュレータ圧室と、前記シリンダ ボデー内に設置され一側にブレーキ操作力を受けると共 に他側に前記レギュレータ圧室の圧力を受けて軸方向に

デー内に設置されたレギュレータ圧室と、前記シリンダボデー内に設置され一側にブレーキ操作力を受けると共に他側に前記レギュレータ圧室の圧力を受けて軸方向に移動することによって前記圧力源からの圧力を調圧するスプール部材と、前記シリンダボデーに設置され前記圧力源からの圧力を調圧した圧力が導入されるレギュレータポートを備え、前記ブレーキ圧切換手段は前記ホイルシリンダを前記圧力源との連通を遮断すると共に前記ホイルシリンダを前記圧力源に連通すると共に前記ホイルシリンダと前記圧力源に連通すると共に前記ホイルシリンダと前記レギュレータポートとの連通を遮断する第2位置とを選択する切換弁であることを特徴とする請求項1を満足する車両用ブレーキ制御装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、車両の車輪のホイルブレーキに液圧を与える車両用ブレーキ制御装置に関するものである。

[0002]

【従来の技術】車両の運転者の緊急時のブレーキ操作を 検出して、ブレーキ操作力に対するブレーキ力を増大さ せることを目的とした車両用の液圧ブレーキ装置には、 特開平6-191395号に記載されたものが従来技術として公知である。この従来技術では、車両の運転者による緊急ブレーキ操作が検出された時、ブレーキ力を伝達するバキュームブースタの反動板の受圧面積を減少させることによって、バキュームブースタの助勢比を増大している。これによって、緊急ブレーキ時には通常ブレーキ時に比べ、その制動距離を著しく短縮している。

【0003】この従来技術においては、特にバキュームブースタ内に助勢比を可変にするためのプランジャー及び該プランジャー駆動用のソレノイド等が必要となり、バキュームブースタを大幅に構造変更する必要があるため、コスト上大きな課題を含んだものであった。

[0004]

【発明が解決しようとする課題】本発明の課題とするところは、従来のブレーキシステムの構造変更を最小限に止めながら、緊急ブレーキ時のブレーキ力を増大させることができる車両用ブレーキ制御装置を提供することである。

[0005]

【課題を解決するための手段】上記課題を解決するために本発明の請求項1においては、ブレーキ操作部材の操作とは無関係に圧力を発生する圧力源からの圧力をブレーキ操作部材の操作力に応じて調圧して車両のホイルシリンダに出力するブレーキ倍力装置と、緊急のブレーキ操作を検出する緊急ブレーキ操作検出手段と、前記緊急ブレーキ操作を検出手段が緊急のブレーキ操作を検出した時に前記圧力源を前記ホイルシリンダに連通させるブレーキ圧切換手段を備えたことを特徴とする車両用ブレーキ制御装置とした。

【0006】又、請求項2においては前記ブレーキ倍力 装置は前記圧力源からの圧力が導入されるシリンダボデ ーと、前記シリンダボデー内に設置されたレギュレータ 圧室と、前記シリンダボデー内に設置され一側にブレー キ操作力を受けると共に他側に前記レギュレータ圧室の 圧力を受けて軸方向に移動することによって前記圧力源 からの圧力を調圧するスプール部材と、前記シリンダボ デーに設置され前記圧力源からの圧力を調圧した圧力が 導入されると共に前記ホイルシリンダに連通したレギュ レータポートを備え、前記ブレーキ圧切換手段は前記レ ギュレータポートと前記レギュレータ圧室との間に設置 され、前記レギュレータ圧室を前記レギュレータポート に連通する第1位置と、前記レギュレータ圧室を大気圧 に連通すると共に前記レギュレータ圧室と前記レギュレ ータポートとの連通を遮断する第2位置とを選択する切 換弁であることを特徴とする請求項1を満足する車両用 ブレーキ制御装置とした。

【0007】又、請求項3においては前記ブレーキ倍力 装置は前記圧力源からの圧力が導入されるシリンダボデーと、前記シリンダボデー内に設置されたレギュレータ 圧室と、前記シリンダボデー内に設置され一側にブレー キ操作力を受けると共に他側に前記レギュレータ圧室の 圧力を受けて軸方向に移動することによって前記圧力源 からの圧力を調圧するスプール部材と、前記シリンダボ デーに設置され前記圧力源からの圧力を調圧した圧力が 導入されるレギュレータポートを備え、前記ブレーキ圧 切換手段は前記ホイルシリンダを前記レギュレータポートに連通すると共に前記ホイルシリンダと前記圧力源と の連通を遮断する第1位置と、前記ホイルシリンダを前 記圧力源に連通すると共に前記ホイルシリンダを前 記圧力源に連通すると共に前記ホイルシリンダを前 記圧力源に連通すると共に前記ホイルシリンダと前記レ ギュレータポートとの連通を遮断する第2位置とを選択 する切換弁であることを特徴とする請求項1を満足する 車両用ブレーキ制御装置とした。

【0008】上記した本発明の請求項1に記載された手段による車両用ブレーキ制御装置によれば、車両の運転者により緊急ブレーキが操作された時、緊急ブレーキ操作検出手段が緊急のブレーキ操作を検出し、ブレーキ圧切換手段が圧力源を前記ホイルシリンダに連通させることにより制動力が増大される。

【0009】又、上記した本発明の請求項2に記載された手段による車両用ブレーキ制御装置によれば、前記緊急ブレーキ操作検出手段が緊急のブレーキ操作を検出した時、切換弁がレギュレータ圧室を大気圧に連通すると共に前記レギュレータ圧室と前記レギュレータポートとの連通を遮断するため、スプール部材の急速な移動により前記圧力源が前記ホイルシリンダに連通されることにより制動力が増大される。

【0010】又、上記した本発明の請求項3に記載された手段による車両用ブレーキ制御装置によれば、前記緊急ブレーキ操作検出手段が緊急のブレーキ操作を検出した時、切換弁が前記ホイルシリンダを前記圧力源に連通すると共に前記ホイルシリンダと前記レギュレータボートとの連通を遮断することにより制動力が増大される。【0011】

【発明の実施の形態】以下、本発明を表す図面を参照し ながら説明する。

【0012】図1は本発明の車両用ブレーキ制御装置の第1の形態を表すシステム図である。図1において、1は本発明による車両用ブレーキ制御装置を構成する油圧ブースタを表す。該油圧ブースタ1のシリンダボデー2内には第1ピストン3が摺動可能に設置され、前記第1ピストン3は、プッシュロッド4を介してブレーキペダル5と連結している。前記ブレーキペダル5には前記ブレーキペダル5には前記ブレーキペダル5には前記ブレーキペダル5には前記ブレーキペダル5には前記ブレーキペダル5には前記ブレーキペダル5には前記ブレーキペダルラには前記ブレーキペダルラには前記第1ピストン3はリタンスプリング6からの付勢力を受けスリーブ7に当接し、更に、スナップリング7aにて位置決めされている。前記スリーブ7の前部にはストッパー7bが設置され、前記スリーブ7が前方に移動することを防いている。前記第1ピストン3の連通孔3a内には、インレットバルブ8が嵌揮され、前記インレットバルブ8はいて、1

ブスプリング8 aによって付勢され、前記第1ピストン 3の非作動時には、前記シリンダボデー1に固定され、 前記第1ピストン3に設けられた貫通孔3bに挿通され たピン9に当接しており、この状態では前記インレット バルブ8のバルブ部8 bと前記ピストン3のバルブ面3 cとは当接しておらず、インレットバルブ8は開弁して いる。前記第1ピストン3は、その前端においてシール カップ3 dが装着され、更に、その後端においてシール カップ3 eが装着されている。又、前記スリーブ7に は、各々内径シール7 c、および外径シール7 dが装着 されている。これらのシール部材によって、前記第1ピ ストン3の前方には圧力室10が、又、後方には前記ス リーブ7との間で、補助圧力室11が形成されている。 又、12は液圧ブレーキ装置1を外部と遮断しているブ ーツであり、13は前記ブーツ12を支持して、前記プ ッシュロッド4の径方向への移動を規制するリテーナで ある。更に、14は前記リタンスプリング6を前記第1 ピストン3に係合させ、且つ、前記シールカップ3 dが 前記第1ピストン3から脱落しないように規制している カップリテーナである。

【0013】スリーブ部材15は、その右端において前 記リタンスプリング6からの付勢力を受けて、シリンダ ボデー2の底部に当接している。前記スリーブ部材15 にはシール部材15aが装着され、前記第1ピストン3 との間で前記した圧力室10を形成している。前記スリ ーブ部材15には第2ピストン16が摺動可能に嵌挿さ れ、スナップリング16aに係止したピストンスプリン グ15bによって前記スリーブ部材15に対して右方に 付勢されており、ストッパー15 c に当接することで位 置決めされている。前記第2ピストン16は、カップシ ール16bを備えることによって前記圧力室10を形成 すると共に、前記圧力室10に発生する圧力を受けて図 において左方に摺動可能となっている。前記第2ピスト ン16には、ピン17によってスプールバルブ18と連 結しており、前記スプールバルブ18は前記第2ピスト ン16と一体的に移動可能となっている。

【0014】更に、前記スプールバルブ18の左端にはスプリング19を介してピストン戻し部材20が設置され、前記ピストン戻し部材20には、規制手段を構成する台形状の係合部材21が装着されている。前記係合部材21は、前記スプリング19の付勢力によって例えばゴムによって形成された、やはり規制手段を構成する弾性部材22と当接している。23は前記スリーブ部材15の移動防止部材であり、前記スリーブ部材15に固定されている。更に、前記移動防止部材23には、シール部材23aと連通孔23b,23cが備えられている。ここで、前記弾性部材22は前記移動防止部材23との間で、レギュレータ圧室24を形成している。

【0015】前記スリーブ部材15は、前記したシール 部材15a以外に、図において右方からシール部材15

d、15e、15fを備えている。前記シール部材15 dと15eの間には、車両の後左輪に設置されたホイル ブレーキ33および後右輪に設置されたホイルブレーキ 34へとつながる主管路31と連結するアウトレットポ ート15gが、又、前記シール部材15eと15fの間 には、アキュムレータ26に蓄圧されたブレーキ液が導 入されるインレットポート15hが形成されている。前 記アキュムレータ26へは、リザーバタンク27に貯蔵 されたブレーキ液がポンプ28によって加圧され蓄えら れる。前記スリーブ部材15に設けられたアウトレット ポート15g、インレットポート15hは、各々前記シ リンダボデー2に設置されたポート2a,2bに連結し ている。又、前記シリンダボデー2には、更にポート2 cが設置され、前左輪に設置されたホイルブレーキ35 および前右輪に設置されたホイルブレーキ36へとつな がる主管路32に連結される。又、前記シリンダボデー 2には2つのインレットポート2d, 2eが設置され、 双方共前記リザーバタンク27へと連通している。

【0016】前記スプールバルブ18にはその外周部に、第1スリット18aと第2スリット18bとが形成され、又、前記スリーブ部材15にもスリット15iが形成されている。又、前記シリンダボデー2に設置されたポート2a(レギュレータポート)は前記レギュレータ圧室24へ連通するポート2fとレギュレータ管路37によって連結されており、更に、前記補助圧力室11へと連通している連通孔2gとフィードバック管路38によって連結している。

【0017】次に、前記油圧ブースタ1と前記各ホイルブレーキ33、34、35および36との間に設置された圧力制御装置39について説明する。前記前輪用ホイルブレーキ35、36は各々増圧管路40、41によって前記主管路32と連結しており、前記増圧管路40、41上には、制御回路100によって作動される常開型の電磁弁である増圧弁42、43が備えられている。又、大気圧リザーバ44、45は各々前記増圧管路40、41上の前記増圧弁42、43と前記ホイルブレーキ35、36との間と、リリーフ管路46、47を介して連通されており、該リリーフ管路46、47上にはやはり前記制御回路100によって作動される各々常閉型の電磁弁である減圧弁48、49が介装されている。

【0018】前記主管路32上の前記増圧弁42,43と前記ポート2cとの間には、やはり前記制御回路100によって作動される3ボート型の電磁弁である切換弁50が設置されている。該切換弁50は非作動状態において前記油圧ブースタ1の圧力室10へ連通する前記ポート2cと前記増圧弁42,43とを連通し、前記増圧弁42,43との間を遮断し、前記増圧弁42,43と前記レギュレータポート2cと前記増圧弁42,43と前記レギュレータポート2aとを連通している。

【0019】前記増圧管路40,41上の前記増圧弁42,43と前記前輪用ホイルブレーキ35,36との間と、前記切換弁50と前記増圧弁42,43との間を連結するように各々戻し管路51,52が設置され、該戻し管路51,52上には各々チェック弁53,54が備えられ、前記ホイルブレーキ35,36から前記油圧ブースタ1方向への作動油の流れは許容するが、前記油圧ブースタ1から前記ホイルブレーキ35,36方向への作動油の流れは遮断している。

【0020】一方、前記後輪用主管路31上には、やはり前記制御回路100によって作動される常開型の電磁弁である増圧弁55が備えられている。又、大気圧リザーバ56は前記主管路31上の前記増圧弁55と前記ホイルブレーキ33,34との間と、リリーフ管路57を介して連通されており、該リリーフ管路57上にはやはり前記制御回路100によって作動される常閉型の電磁弁である減圧弁58が介装されている。

【0021】前記主管路31上の前記増圧弁55と前記後輪用ホイルブレーキ33,34との間と、前記油圧ブースタ1の前記レギュレータポート2aと前記増圧弁55との間を連結するように戻し管路59が設置され、該戻し管路59上にはチェック弁60が備えられ、前記ホイルブレーキ33,34から前記油圧ブースタ1方向への作動油の流れは許容するが、前記油圧ブースタ1から前記ホイルブレーキ33,34方向への作動油の流れは遮断している。

【0022】前記レギュレータ管路37上には前記レギュレータポート2aを前記レギュレータ圧室24に連通する第1位置と前記レギュレータ圧室24を大気リザーバ61に連通させると共に前記レギュレータポート2aとの連通を遮断する第2位置を選択するブレーキ圧切換弁62が設置されており、常時は前記第1位置の状態にされている。

【0023】次に、本発明による液圧ブレーキ装置を車両に適用した場合の作動について説明する。運転者が通常時ブレーキペダル5を作動させるとプッシュロッド4を介して第1ピストン3が、図1において左方にストロークするため、インレットバルブ8がピン9から離れ、バルブスプリング8aに付勢されバルブ部8bと、第1ピストン3のバルブ面3cとが当接することによって圧力室10をリザーバタンク27から遮断する。その後、第1ピストン3のストロークが更に増えるに従って、前記圧力室10の容積が減少し、前記圧力室10に圧力PMが発生する。

【0024】この時、第2ピストン16は、前記圧力室 10に発生した圧力PMを受けるため、図1において、 前記第2ピストン16の断面積をSAとするとPM×S Aの力が、図1において左方に働き、第2ピストン16 は左方に移動する。前記スプールバルブ18は、ピン1 7にて前記第2ピストン16に係合しているため、前記

第2ピストン16と共に左方に移動し、スプリング19 を圧縮してピストン戻し部材20と当接する。前記スプ ールバルブ18の移動によって、前記スプールバルブ1 8に設けられた第1スリット18aが、前記スリーブ部 材15に設置されたインレットポート15hと連通し、 前記インレットポート15hと前記スリーブ部材15に 設置されたスリット15iとを連通させる。又、前記ス プールバルブ18に設置された第2スリット18bは前 記スリット151と連通して、前記スリット151とア ウトレットポート15gとを連通させるため、結局、前 記スプールバルブ18の図1の左方への移動によって、 前記スリーブ部材15に設置されたインレットポート1 5hはアウトレットポート15gと連通する。従って、 前記シリンダボデー2に備えられたインレットポート2 bは、インレットポート15h→第1スリット18a→ スリット15i→第2スリット18b→アウトレットポ ート15gを経由して、同じく前記シリンダボデー2に 設置されたレギュレータポート2aと連通するため、前 記アキュムレータ26に蓄えられていた圧力は、前記レ ギュレータポート2aから、前記ブレーキ圧切換弁62 および前記ポート2fを介してレギュレータ圧室24へ 導入される。ここで、前記レギュレータ圧室24へ導入 された圧力は、弾性部材22を図1において右方に付勢 して、係合部材21、前記ピストン戻し部材20を介し て、前記スプールバルブ18を図1において右方に押し 返し、前記スプールバルブ18の両端に働く力がつりあ ったところで平衡に達して、レギュレータ圧が決定され る。この時、前記弾性部材22が前記係合部材21と当 接している部位の面積を、SVとすると、前記圧力室1 Oに発生した圧力PMと、前記アキュムレータ26から 前記スプールバルブ18を経てレギュレータ圧となって 前記レギュレータ圧室24に導入される圧力PR との間 には、リタンスプリングの荷重等による損失を無視すれ ばPM×SA = PR ×SVという関係があるため、前記レ ギュレータ圧室24に導入される圧力:レギュレータ圧 はPR = PM × SA / SVとなり、前記圧力室10に発 生する圧力PM に対して、前記第2ピストン16の断面 積SAの、前記弾性部材22が前記係合部材21に当接 している部位の面積に対する比を乗じたものとなる。こ こで、前記レギュレータ圧室24の圧力が比較的低圧で ある場合は、前記弾性部材22が前記係合部材21に向 けて付勢される力がさほど大きくないため、前記した弾 性部材22が前記係合部材21と当接している部位の面 積SV も小さく、前記レギュレータ圧室24の圧力が上 昇するにつれて面積SV も増大し、最大時として図1に おけるSB まで増大する。従って、前記圧力室10に発 生する圧力PM とレギュレータ圧PR との特性は、図3 におけるXに示すようなゆるやかな曲線を描く。この曲 線で描かれる特性は、前記弾性部材22の硬度、或いは 前記係合部材21の前記弾性部材22と当接する部位の

形状を変更することによって、従来技術の圧力室の圧力 の増加に対して、レギュレータ圧が直線的に増加するも のと比べて、その特性を任意に設定できる。

【0025】その後、前記圧力室10に発生する圧力PMの上昇に伴って、レギュレータ圧PRが上昇し、最終的に図3のY部に示す如く、PR=PM×SA/SBとなり、SA,SBは不変の値であるため、これ以降はレギュレータ圧PRは圧力室10の圧力PMの上昇に伴って、直線的に上昇する。つまり、前記圧力室10に発生する圧力PMに対する、レギュレータ圧PRの設定(図3において、Y部の直線の傾きで表される)は、前記第2ピストン16の断面積SAと規制手段の一部である前記係合部材21の断面積SBを変えることによって自由に設定でき、ブレーキの効きを任意に設定できる。

【0026】前記スプールバルブ18によってアキュム レータ圧が調圧されて前記レギュレータポート2aに出 力されたレギュレータ圧PR は、前記連通孔2gを経由 して補助圧力室11に伝達され、前記第1ピストン3に 働く入力の助勢力として供されるのと同時に、増圧弁5 5を介して後輪に設置されたホイルブレーキ33,34 に供給される。尚、前記圧力室10に発生した圧力PM は、切換弁50および各増圧弁42,43を介して前輪 に設置されたホイルブレーキ35,36に供給される。 【0027】車両が低摩擦係数の路面、例えば雪道或い は凍結路を走行中に運転者がブレーキペダルを操作して 車輪にブレーキ力を発生させた時に、車輪に取付けられ た図示しない車輪速度センサによって検出された車輪速 度に基づいて、前記制御回路100が前輪の固着(ロッ ク)を検知すると、前記切換弁50が励磁されて前記油 圧ブースタ1の前記圧力室10に連通するポート2cと 前記増圧弁42,43との連通を遮断し、前記油圧ブー スタ1の前記レギュレータポート2aと前記増圧弁4 2,43とを連通することによって、前輪用ホイルブレ ーキ35,36に前記圧力室10内の圧力PMに代わ り、前記スプールバルブ18によって調圧されたレギュ レータ圧PR が導入される。それとともに、例えば前左 輪のロックが検知された場合は、増圧弁42を作動させ て閉状態として前左輪に取付けられたホイルブレーキ3 5を油圧ブースタ1から遮断すると共に、減圧弁48を 作動させて開状態としてホイルブレーキ35をリリーフ 管路46を介して大気圧リザーバ44に連通し、ホイル ブレーキ35中の作動液を大気圧リザーバ44に放出す ることによってホイルブレーキ35中の圧力を減少させ る(アンチロック制御)。

【0028】ホイルブレーキ35中の圧力を減少させることによって車輪のロックが解除されたことが前記制御回路100によって検知されると、前記増圧弁42および前記減圧弁48が再び非作動状態に復帰されて、油圧ブースタ1からレギュレータ圧PRが切換弁50および増圧弁42を介してホイルブレーキ35に導入される。

【0029】前右輪のロックが制御回路100によって 検出された時は、上記と同様に制御回路100によって 増圧弁43および減圧弁49が作動されて、ホイルブレーキ36中の圧力が調整される。又、後輪のロックが制 御回路100によって検出された時も同様に制御回路1 00によって増圧弁55および減圧弁58が作動され て、ホイルブレーキ33,34中の圧力が調整される。 【0030】前記前輪用戻し管路51,52および後輪 用戻し管路59に各々設置されたチェック弁53,54 および60は、アンチロック制御中に車両の運転者によってブレーキペダル5が戻された時に開弁することによって、ホイルブレーキ33,34,35および36から 作動液が油圧ブースタ1に速やかに戻されるのに使用される。

【0031】車両の運転者が突然の障害物の発見等によって車両を急停車させるベくブレーキペダル5を急作動させた時、前記ブレーキペダル5と連結した前記ストロークセンサ65が検出した前記ブレーキペダル5のストロークに基づいて前記制御回路100が緊急ブレーキ操作と判断する。緊急ブレーキ操作があったと判断した前記制御回路100は前記ブレーキ圧切換弁62を第2位置に切り換える。これによって、前記レギュレータ圧室24が前記ブレーキ圧切換弁62を介して大気リザーバ61に連通されると共に、前記レギュレータ圧室24と前記レギュレータポート2aとの連通が遮断される。

【0032】ここで、緊急ブレーキ操作によって前記ブ レーキペダル5と連結した第1ピストン3の急激な移動 によって前記圧力室10中の圧力PM が急激に上昇する が、これによって前記スプールバルブ18はその一端を 前記圧力室10にさらしている前記第2ピストン16と 一体となって図1において左方向に急速に大きく移動す るため、インレットポート2bはレギュレータポート2 aと連通して、前記アキュムレータ26に蓄えられてい た高圧力は、前記インレットポート2bから前記レギュ レータポート2aに導入されるが、前記レギュレータ圧 室24は前記レギュレータポート2aと遮断され、前記 大気リザーバ61に連通されているために、前記スプー ルバルブ18は図1において右方向に戻されることはな い。よって、前記レギュレータポート2aに導入された 前記アキュムレータ26の圧力が前記切換弁50および 増圧弁42,43を介して前輪用ホイルブレーキ35, 36へ導入され、又、増圧弁55を介して後輪用ホイル ブレーキ33,34へ導入される。この時図3において 線図Zにて示すように、前記レギュレータ圧力PRは前 記アキュムレータ26の圧力がそのまま導入されている ため、前記圧力室10中の圧力PM に対して非常に大き なものとなっている。

【0033】上記実施の形態油圧ブースタ1においては、前記圧力室10中の圧力PMと前記レギュレータ圧力PRとの関係が非線型となるように、スプールバルブ

18と弾性部材22との間に台形状の係合部材21を備えているが、本発明は上記油圧プースタ1を使用することに限定されるものではなく、前記圧力室10中の圧力PMと前記レギュレータ圧力PRとの関係が線型となるような油圧プースタを使用しても実施できることは言うまでもない。この場合、前記圧力室10中の圧力PMと前記レギュレータ圧力PRとの関係は図4に示した通りとなる。図4においてLSは主に前記ピストンスプリング15bおよびスプリング19の組付荷重の和に相当する。

【0034】その後、車両を停止させる必要が無くなり 運転者が前記ブレーキペダル5を戻すことによって、前 記ストロークセンサ65、或いは前記ブレーキペダル5 に設置された図示しないブレーキスイッチによってブレーキの戻し操作が検出されると、前記制御回路100が前記ブレーキ圧切換弁62を再び第1位置に切り換える。これによって、前記レギュレータ圧室24が前記ブレーキ圧切換弁62を介して前記レギュレータボート2 aに連通されると共に、前記大気リザーバ61との連通が遮断される。

【0035】図2は本発明による車両用ブレーキ制御装置の第2の形態を表すシステム図である。図2において第1の形態と同様の構成については図1と同じ符号を付してある。本実施の形態が第1の形態と異なるところは、まず前記油圧ブースタ1と前記各ホイルブレーキ33、34、35および36との間に設置された圧力制御装置39について、前輪用の各ホイルブレーキ35、36へ導入される前記圧力室10中の圧力PMと前記レギュレータ圧PRの切換弁を各ホイルブレーキシリンダ35、36に対し各々に1つずつ、増圧弁12、13および減圧弁48、49の下流側に配置したことと、前輪側と同様に後輪側にも各ホイルブレーキシリンダ33、34ごとに増圧管路31a、31b、リリーフ管路57a、57bおよび戻し管路59a、59bを設けたことである。

【0036】本実施の形態の最も特徴的なところは、前記油圧プースタ1のレギュレータポート2aと前記圧力制御装置39とを連結する管路上に常開型の電磁弁である第1電磁弁66を設置し、更に、前記アキュムレータ26と前記圧力制御装置39とを連結する管路67を設け、該管路67上に常閉型の電磁弁である第2電磁弁68を設置したことである。

【0037】本実施の形態においては、前記制御回路100が緊急ブレーキ操作と判断すると前記第1電磁弁66を閉状態、前記第2電磁弁68を開状態に切換え、前記アキュムレータ26から調圧されていない高圧のブレーキ液を管路67および前記第2電磁弁68を介して各ホイルブレーキシリンダ33,34,35および36に導入する。

【0038】尚、前記第1電磁弁66および第2電磁弁

68を使用するかわりに、2位置3ポートの電磁弁1つ に置き換えることもできる。

【0039】又、上記実施の形態においては緊急ブレーキ操作検出手段として、ブレーキペダルに設置されたストロークセンサが使用されているが、緊急ブレーキ操作検出手段としてはこれに限定されるものではなく、例えば、油圧ブースタの圧力室の圧力を検出する圧力センサによる手段、或いは、ブレーキペダルへのブレーキ操作力を検出するペダル踏力センサによる手段、或いは、車輪速度センサからの検出値に基づいて演算される車体速度の微分値を用いる手段によっても良い。

[0040]

【発明の効果】上記したように、本発明の車両用ブレーキ制御装置によれば、従来からあるブレーキ制御装置に 切換弁を追加するだけで緊急ブレーキ時のブレーキ力を 増大させることができ、低コストであるだけでなく、簡素な構成であるため信頼性の高い車両用ブレーキ制御装置とすることができる。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態による車両用ブレー キ制御装置のシステム図

【図2】本発明の第2の実施の形態による車両用ブレーキ制御装置のシステム図

【図3】本発明による車両用ブレーキ制御装置の特性図 【図4】本発明の変形例による車両用ブレーキ制御装置 の特性図

【符号の説明】

2 シリンダボデー 2a レギュータポート 3 第1 ピストン

5 ブレーキペダル 10 圧力室 18 スプー ルバルブ

24 レギュレータ圧室26 アキュムレータ33,34,35,36 ホイルブレーキ62 ブレーキ圧切換弁

65 ストロークセンサ 66 第1電磁弁 68 第2電磁弁

【図1】

【図2】

【図4】

【図3】

