

Reef Ad Hoc Sensor Network

Continued from Nigel Sim (2003) and Steven Sloots (2004)

Li-Wen Yip

Computer Systems Engineering
James Cook University
Supervisor: John Wicking

Summary

- Ad-hoc networking overview
- Problem Overview
- Previous work
- Project Scope
- Literature Review
- Progress
- Outcomes
- Questions

Ad Hoc Networks

Main Entry: ad hoc

Function: adjective

1 a: concerned with a particular end or purpose

b: formed or used for specific or immediate problems or needs

<ad hoc solutions>

2 : fashioned from whatever is immediately available

Source: Merriam Webster Online Dictionary – www.m-w.com

In computer networking, **ad-hoc** is a connection method for wireless networks that requires no base station — devices discover others within range to form a network for those computers.

Source: Article on "ad hoc" at en.wikipedia.org

What is an Ad-Hoc Sensor Network?

- Independent nodes forming a distributed sensing network.
- Self-configuring
- No fixed infrastructure or topology
- Nodes contain
 - Battery
 - Radio
 - Sensors
 - Microprocessor
- Static nodes
- Low data rate
- QoS not important
- Existing solutions:
 - Berkley Smartdust
 - Crossbow Motes

Berkley Motes

AIMS Reef Monitoring Network

- Monitoring Stations
- Data collection
 - long-range radio links
 - manual visits.
- Replace with ad hoc sensor network.
- Reduce
 - power consumption
 - maintenance.

Image Source: "Sensor Networking the Great Barrier Reef", Kininmonth et al, AIMS Tsv QLD.

Multi-Hop Power Savings

$$A \xrightarrow{0.5d} C \xrightarrow{0.5d} B$$

$$P = 2k(0.5d)^2 = 0.5kd^2$$

A different scenario...

- Scenarios for existing technology:
 - Small geographical area.
 - Small hops (metres).
- Scenario for this network:
 - Very large geographical area.
 - Large hops (kilometres).
 - Remote locations.
- Similar applications:
 - Remote monitoring of water trough levels on a cattle property.

Requirements and Challenges

- Minimal power consumption
 - Maximise battery life
 - Minimise maintenance
- Robust
 - Varying link quality
 - Nodes crashes
 - Temporary partitions
- Scalable
 - Maintain performance in larger networks
 - Minimise cost-per-node.

Previous Work

- 2003 Mr Nigel Sim
 - Basic Hardware
 - Research efforts focused on simulation
- 2004 Mr Steven Sloots
 - New Hardware
 - Power Efficient Routing Protocol (DSR)

Project Scope for 2005

- Hardware improvements
- Addressing Protocol
- Wakeup protocol (if time allows)
- Larger scale testing

Addressing Protocol

- #1 priority is maximising energy efficiency
 - Control overhead
 - Addressing overhead
- General Goals for Addressing Protocols
 - Dynamic Configuration
 - Timely allocation of unique addresses
 - Robustness
 - Scalability

Addressing Techniques

Mitosis

- Nodes control address spaces
- Low overhead
- Robust
- Address depletion problem
 - Proactive vs Reactive

Other Techniques

- Duplicate Address Detection
- Leader Based

Wakeup Protocol

- Allows nodes to sleep
- Why sleep the nodes?
 - X2010
 - Rx 7mA (typ)
 - Tx 8mA (typ)
 - PIC 2.5mA (typ)
- Significant power savings

Wakeup Mechanisms

- Asynchronous wakeup
 - Individual overlapping wakeup schedules
 - Easy to implement
 - Robust

- Other techniques:
 - Scheduled Rendezvous
 - Out-band signalling

Hardware

- PIC 18C452
- X2010 Radio Transceiver
- AD8639 VGA
- Bypass Relay
- DS1302 Timekeeping Chip

Progress

Outcomes

- Minimum:
 - Dynamic Addressing Protocol Developed
 - Wakeup Protocol Developed
 - 2 communicating, functional nodes
- Expected:
 - Working Addressing Protocol Implemented
 - Working Wakeup Protocol Implemented
 - Testing with several (>2) nodes

Questions

If there are no stupid questions, then what kind of questions do stupid people ask?

Do they get smart just in time to ask questions?

Scott Adams (1957 -)