Analysis of reduced-SHAvite-3-256 v2

Marine Minier¹, María Naya-Plasencia², Thomas Peyrin³

¹Université de Lyon, INRIA, INSA Lyon, France

²FHNW, Switzerland

³Nanyang Technological University, Singapore

FSE 2011

- Introduction
- The SHAvite-3-256 Hash Function
- Rebound and Super-Sbox Analysis of SHAvite-3-256
- Chosen-Related-Salt Distinguishers
 - 7-round Distinguisher with 2⁷ computations
 - 8-round Distinguisher with 2²⁵ computations
- Conclusion

Hash functions and the SHA3 competition

- ▶ Due to attacks against MD5 and the SHA family, NIST launched the SHA-3 competition. Among the phase 2 finalists: SHAvite-3
- ▶ Previous analysis on SHAvite-3-512 [Gauravaram et al. 10]: chosen-counter chosen-salt preimage attack on the full compression function
- ► In this talk, we give a first analysis SHAvite-3-256 which is an AES-based proposal
- Our analysis is based on
 - rebound attack
 - Super-Sbox cryptanalysis
 - chosen related salt

- ► SHAvite-3-256 = 256-bit version of SHAvite-3
 - based on the HAIFA framework [Biham Dunkelman 06]
 - The message M is padded and split into 512-bit message blocks $M_0 \| M_1 \| \dots \| M_{\ell-1}$
 - ullet compression function $C_{256}=256 ext{-bit}$ internal state

$$egin{aligned} h_0 &= IV \ h_i &= C_{256}(h_{i-1}, M_{i-1}, salt, cnt) \ hash &= trunc_n(h_i) \end{aligned}$$

 $ightharpoonup C_{256}$ consists of a 256-bit block cipher E^{256} used in classical Davies-Meyer mode

$$h_i = C_{256}(h_{i-1}, M_{i-1}, salt, cnt) = h_{i-1} \oplus E_{M_{i-1} \parallel salt \parallel cnt}^{256}(h_{i-1})$$

The block cipher E^{256}

- ▶ 12 rounds of a Feistel scheme
- ▶ $h_{i-1} = (A_0, B_0)$, the *i*th round (i = 0, ..., 11) is:

- ► AESr is unkeyed AES round: SubBytes SB, ShiftRows ShR and MixColumns MC
- ▶ k_i^0 , k_i^1 and k_i^2 are 128-bit local keys generated by the message expansion

The message expansion of C_{256} : key schedule of E^{256}

- ► Inputs:
 - M_i : 16 32-bit words $(m_0, m_1, \dots, m_{15})$
 - salt: 8 32-bit words $(s_0, s_1, ..., s_7)$
 - cnt: 2 32-bit words (cnt₀, cnt₁)
- Outputs:
 - 36 128-bit subkeys k_i^j used at round i
 - k_0^0 , k_0^1 , k_0^2 and k_1^0 initialized with the m_i
- ▶ Process (4 times):
 - 4 parallel AES rounds (key first)
 - 2 linear layers L_1 and L_2

Super-Sbox Analysis of SHAvite-3-256 (1/2)

The cryptanalyst tool 1: the truncated differential path: the trail $D \mapsto 1 \mapsto C \mapsto F$ happens with probability 2^{-24}

Super-Sbox Analysis of SHAvite-3-256 (1/2)

The cryptanalyst tool 1: the truncated differential path: the trail $D\mapsto 1\mapsto C\mapsto F$ happens with probability 2^{-24}

The cryptanalyst tool 2: the freedom degrees and the Super-Sbox

- ▶ **Rebound attack** on 2 AES rounds: local meet-in-the-middle-like technique: the freedom degrees are consumed in the middle part of the differential
- ► **Super-Sbox** on 3 AES rounds:
 - Complexity: $\max\{2^{32}, k\}$ computations; 2^{32} memory
 - For k solutions
- Both methods find in average one solution for one operation

Super-Sbox Analysis of SHAvite-3-256 (2/2)

► 7-round distinguisher in 2⁴⁸ computations and 2³² memory (v.s. 2⁶⁴ computations for the ideal case)

- ▶ 1st and 6th rounds: 2^{-48} to find a valid pair when Δ is fixed
- ▶ Middle part (3d and 4th rounds): Fix Δ then using Super-Sbox, find 2^{32} valid 128-bit pair for the 4th round, do the same for the 3d round

Chosen-Related-Salt Distinguishers

7-round Distinguisher with 2^7 computations (1/2)

- Principle: up to initial transform $\Delta_1 = \Delta(s_0, s_1, s_2, s_3) = \Delta(m_0, m_1, m_2, m_3) = \Delta(m_8, m_9, m_{10}, m_{11})$
- Cancel the subkeys in round 2,3 and 4
- Distinguisher: find a valid pair that verifies the path for the rounds 5, 6 and 7
- ▶ begin at round 5 by fixing the differences Δ_2 and Δ_3

- ▶ 5th round: try 2^6 $B_4 \oplus k_4^0$ column by column to find a match. It will fix k_4^1
- ▶ 6th round: Do the same with $B_5 \oplus k_5^0$ and k_5^1
- ▶ Final step: Fix Δ_1 and k_5^0 to fix all the other values
 - ► **Total cost:** $2 \times 2^6 = 2^7$ operations

8-round Distinguisher with 2^{25} computations (1/2)

- Add a 8th round by canceling the differences in round 7
- ▶ Do Round 5 and 6 as previously: Δ_2 , Δ_3 , $B_4 \oplus k_4^0$, k_4^1 , $B_5 \oplus k_5^0$ and k_5^1 are fixed
- ▶ Start by fixing the differences in the 7th round column by column:

Relations between the values:

$$(B_6)^i \implies (A_5)^i = (B_4)^i \implies (k_4^0)^i (k_4^0)^i \implies (k_5^0)^{i+1} \implies (k_6^1)^{i+1} (k_4^0)^2 \implies (k_5^0)^3 \implies (k_6^1)^3 = (k_5^0)^3 \oplus (k_6^1)^0$$

8-round Distinguisher with 2^{25} computations (2/2)

Overall Complexity: 2^{25} computations Requirements for verifying the path: $\Delta(k_6^0)^i$ compatible with $\Delta(X)^i$ and $MC(\Delta(X)^i) \oplus \Delta(k_6^1)^i$ compatible with Δk_6^2

► Test 2^{24} values for the 2nd diagonal $(B_6*)^1$, 2^{13} makes the path possible

Chosen-Related-Salt Dist.

- Do the same for the 3rd diagonal. 2^{12} values of $(B_6*)^1$ and $(B_6*)^2$ together are valid
- For each solution, find the 2^{20} values of $(B_6*)^3$ and $(B_6*)^0$ compatible
- ► Test the linear relation between $(k_6^1)^0$ and $(k_6^1)^3$

Conclusion

- ► First analysis of SHAvite-3-256 v2: Super-Sbox cryptanalysis and the rebound attacks are efficient
- ▶ 7 and 8-round distinguishers have been implemented
- ▶ But SHAvite-3-256 has 12 rounds, so a sufficient security margin. Maybe better paths in the key schedule

Table: Summary of results for the SHAvite-3-256 compression function

rounds	computational complexity	memory requirements	type
6	280	2 ³²	free-start collision
7	2 ⁴⁸	2^{32}	distinguisher
7	2 ⁷	2 ⁷	chosen-related-salt distinguisher
7	2 ²⁵	2 ¹⁴	chosen-related-salt free-start near-collision
7	2 ⁹⁶	2 ³²	chosen-related-salt semi-free-start collision
8	2^{25}	2^{14}	chosen-related-salt distinguisher

Thanks for your attention!

