

Zukunft in Bewegung

Software Architektur

Architektur- und Entwurfsmuster der Softwaretechnik

Prof. Dr. Bernd Hafenrichter

Architektur- und Entwurfsmuster der Softwaretechnik

Definition Software-Architektur

Definition:

A software architecture provides a model of a whole software system that is composed of internal behavioral units (i.e. components) and their interaction, at a certain level of abstraction. All postulated requirements that are relevant to the later construction of the system have to be incorporated in this model.

Die 4+1 Sichten der Softwarearchitektur

Es gibt keine allgemeine "Architekturdarstellung".

Es müssen verschiedene Sichten (eines Systems) zu einer Gesamtarchitektur vereinigt werden

Architektur- und Entwurfsmuster der Softwaretechnik

Bestandteile der 4+1 Sichten

Struktursicht Sicht

 Fokus: Beschreibt die statische Struktur der Software in Form von Subsystemen und Komponenten

Grobe Komponentenarchitektur

Komponentenarchitektur Detaillierte Komponentenarchitektur

Architektur- und Entwurfsmuster der Softwaretechnik

Bestandteile der 4+1 Sichten

Struktursicht Sicht

- Fokus: Beschreibt die statische Struktur der Software in Form von Subsystemen und Komponenten (Zerlegung auf oberster Ebene)
- Verwendungszweck:
 - Requirement Allocation
 - Arbeitsorganisation
 - Kostenplanung und –kontrolle
 - Profjektfortschritt
 - Wiederverwendung
 - Portabilität
 - Sicherheit

Bestandteile der 4+1 Sichten

Logische Sicht

- Fokus: Darstellung eines Implementierungsmodells.
 Ausgangspunkt ist ein Domänenmodell welches um Designaspekte und Komponenten erweitert wird.
- Primäres Ziel:
 - Bereitstellung der funktionalen Anforderungen
 - Bereitstellung von Dienstleistungen (Services) welche das System für den Benutzer erbringen soll
- Hauptzweck:
 - Verfeinerung des Analysemodells in Form eines "Design"-Klassendiagramms
- Zielgruppe: Entwicklung

Architektur- und Entwurfsmuster der Softwaretechnik

Bestandteile der 4+1 Sichten

Logische Sicht

class Implementation «interface» PhoneImpl dialNumber(String) : void getContacts(): List<Contact getContacts(): List<Contacts «instantiate» KonfigurationManageer Photo instance: KonfigurationManage content: byte [1.. getBluetooth(): void «instantiate» getPhone(): Phone getRepository(): Repository «ForeignKey» «interface» Repository Bluetooth geburtstag: Date clearAll(): void getPhoto(int) : Photo name: String «instantiate» getContacts() : List<Contact> photoID: int isConnected(): boolean etContact(List<Contact>): voi vomame: String RepositoryImpl SynchronizerIm BluetoothImpl contacts: List<Contacts Entry «instantiate» getContacts(): List<Contacts clearAll(): void nummer: String description(): String getPhoto(int) : Photo getContacts(): List<Contact> type: NumberType name(): String isConnected() : boolean setContact(List<Contact>): void

Produktmodell

Implementierungsmodell

Bestandteile der 4+1 Sichten

Physikalische Sicht

• Fokus: Zuordnung der Software auf die physische Hardware sowie Verteilung (= Distributed System)

Bestandteile der 4+1 Sichten

Physikalische Sicht

- Fokus: Zuordnung der Software auf die physische Hardware sowie Verteilung (= Distributed System
- Sicherstellung der nichtfunktionalen Anforderungen
 - availability
 - reliability (fault-tolerance)
 - performance (throughput)
 - scalability

Bestandteile der 4+1 Sichten

Physikalische Sicht

- Betrachtete Elemente:
 - Netzwerk
 - Kommunikation
 - Verarbeitungsknoten
 - Verteilung der Subsysteme/Komponente auf verschieden Knoten
- Zielgruppe: Entwicklung/Wartung/Betrieb
- Artefakte: Deployment-/Verteilungsdiagramme

Bestandteile der 4+1 Sichten

Physikalische Sicht

UML-Deploymentdiagramme können für die Dokumentation der Physischen Struktur verwendet werden

Bestandteile der 4+1 Sichten

Ablauf Sicht

- Fokus: Abbildung des Produktmodells auf ein Verarbeitungsmodell. Behandlung von Nebenläufigkeit und Synchronisation
- Betrachtete Elemente:
 - Teilmenge der nicht-funktionalen Anforderungen
 - performance
 - availability
 - Nebenläufigkeit
 - Prozesse
 - Koordination/Synchronisation
- Zielgruppe: Entwicklung/Wartung

Bestandteile der 4+1 Sichten

Ablauf Sicht – Statische Sicht

- Stellt alle an der Verarbeitung beteiligten Klassen dar.
- Ergänzt um die Stereotypen process und thread

Bestandteile der 4+1 Sichten

Ablauf Sicht – Dynamische Sicht

• Stellt die Verarbeitung einer Anfrage auf Basis des statischem Modells dar

Architektur- und Entwurfsmuster der Softwaretechnik

Bestandteile der 4+1 Sichten

Szenarien

Fokus: Entwicklung & Qualitätssicherung der erstellten Architektur

Definition:

- Ein Szenario ist eine Instanz eines allgemeinen Use-Cases
- Ein Szenario ist eine Abstraktion der relevanten Anforderungen

Anwendung:

- Als Treiber um die verschiedene Architekturelemente während des Designs zu ermitteln
- Als Werkzeug der Qualitätssicherung und Visualisierung
- Kriterium f
 ür Architekturbewertung (Auswahl alternativer Muster

Architektur- und Entwurfsmuster der Softwaretechnik

4+1 Sichten – Iteratives Design der Architektur

Start der Architekturentwicklung

- A small number of the scenarios are chosen for an iteration based on risk and criticality. Scenarios may be synthesized to abstract a number of user requirements.
- A strawman architecture is put in place. The scenarios are then "scripted" in order to identify major abstractions (classes, mechanisms, processes, subsystems) as indicated by Rubin and Goldberg6 — decomposed in sequences of pairs (object, operation).
- The architectural elements discovered are laid out on the 4 blueprints: logical, process, development, and physical.
- This architecture is then implemented, tested, measured, and this analysis may detect some flaws or potential enhancement.
- Lessons learned are captured.

Architektur- und Entwurfsmuster der Softwaretechnik

4+1 Sichten – Iteratives Design der Architektur

Iterative Weiterentwicklung der Architektur

- reassessing the risks,
- extending the palette of scenarios to consider
- selecting a few additional scenarios that will allow risk mitigation or greater architecture coverage
 - Try to script those scenarios in the preliminary architecture
 - discover additional architectural elements, or sometimes significant architectura changes that need to occur to accommodate these scenarios
 - update the 4 main blueprints: logical, process, development, physical
 - revise the existing scenarios based on the changes
 - upgrade the implementation (the architectural prototype) to support the new extended set of scenario.
 - Test. Measure under load, in real target environment if possible.
 - All five blueprints are then reviewed to detect potential for simplification, reuse, commonality.
 - Design guidelines and rationale are updated.
 - Capture the lessons learned.