Lecture 14

Time Series Analysis

DSA 8020 Statistical Methods II April 12-16, 2021

Notes

Whitney Huang Clemson University

Agenda

- Time Series Data
- Peatures of Times Series
- Means & Autocovariances
- 4 Autoregressive Moving Average (ARMA) Models
- 6 A Case Study

Level of Lake Huron 1875-1972

Annual measurements of the level of Lake Huron in feet. [Source: Brockwell & Davis, 1991]

Time Series Analysis
CLEMS N
Time Series Data

Notes			

Notes			

Mauna Loa Atmospheric CO_2 Concentration

Monthly atmospheric concentrations of CO_2 at the Mauna Loa Observatory [Source: Keeling & Whorf, Scripps Institution of Oceanography (SIO)]

Notes			

US Unemployment Rate 1948 Jan. - 2020 Oct.

Ν	otes

Time Series Data & Models

- A time series is a set of observations made sequentially in time
- Time series analysis is the area of statistics which deals with the analysis of dependency between different observations in time series data
- A time series model is a probabilistic model that describes ways that the series data $\{y_t\}$ could have been generated
- ullet More specifically, a time series model is usually a probability model for $\{Y_t:t\in T\}$, a collection of random variables indexed in time

Time Series Analysis					
CLEMS N					
Time Series Data					

Notes			

Some Objectives of Time Series Analysis

- Find a statistical model that adequately explains the dependence observed in a time series
- To conduct statistical inferences, e.g., Is there evidence of a decreasing trend in the Lake Huron depths?
- To forecast future values of the time series based on those we have already observed

Notes			

Features of Times Series

Trends

- ullet One can think of trend, μ_t as continuous changes, usually in the mean, over longer time scales
- Usually the form of the trend is unknown and needs to be estimated. When the trend is removed, we obtain a detrended series

Seasonal or periodic components

- A seasonal component s_t constantly repeats itself in time, i.e., $s_t = s_{t+kd}$
- \bullet We need to estimate the form and/or the period d of the seasonal component to deseasonalize the series

• The "noise" process

- The noise process, η_t , is the component that is neither trend nor seasonality
- We will focus on finding plausible (typically stationary) statistical models for this process

Notes

Combining Trend, Seasonality, and Noise Together

There are two commonly used approaches

• Additive model:

$$y_t = \mu_t + s_t + \eta_t$$

• Multiplicative model:

$$y_t = \mu_t s_t \eta_t$$

If all $\{y_t\}$ are positive then we obtain the additive model by taking logarithms:

$$\log y_t = \log \mu_t + \log s_t + \log \eta_t$$

Time Series Analysis
CLEMS N
Features of Times Series

Notes			

Mean and Autocovariance

• The mean function of $\{Y_t\}$ is

$$\mu_t = \mathrm{E}[Y_t], \quad t \in T$$

ullet The autocovariance function of $\{Y_t\}$ is

$$\gamma(t, t') = \text{Cov}(Y_t, Y_{t'}) = \text{E}[(Y_t - \mu_t)(Y_{t'} - \mu_{t'})], \quad t, t' \in T$$

When t=t' we obtain $\gamma(t,t')=\mathrm{Cov}(Y_t,Y_t)=\mathrm{Var}(Y_t)=\sigma_t^2,$ the variance function of Y_t

Time Series Analysis CLEMS IN IVERSIT Time Series Data Features of Times

Notes

Means & Autocovariances

Autoregressive Moving Average

A Case Study

14.10

Autocorrelation Function

The autocorrelation function (ACF) of $\{Y_t\}$ is

$$\rho(t,t') = \operatorname{Corr}(Y_t,Y_{t'}) = \frac{\gamma(t,t')}{\sqrt{\gamma(t,t)\gamma(t',t')}}$$

It measures the strength of linear association between Y_t and Y_{t^\prime}

Properties:

- $0 -1 \le \rho(t, t') \le 1, \quad t, t' \in T$

ime Series Data

eans &

Autoregressive Moving Average (ARMA) Models A Case Study

....

Notes

Notes

Stationary Processes

We will still try to keep our models for $\{\eta_t\}$ as simple as possible by assuming stationarity, meaning that some characteristic of $\{\eta_t\}$ does not depend on the time points, only on the "time lag" between time points:

- $\bullet \ \mathrm{E}[\eta_t] = 0, \quad \forall t \in T$
- \Rightarrow autocorrelation function (ACF):

$$\rho(h) = \frac{\gamma(h)}{\gamma(0)}$$

Ti	m Ar	e S nal	er ysi	ies s	;	
	E.	M	S	r	9	١

Time Series Data Features of Times

leans &

Autoregressive Moving Average

A Case Study

140103			

Autoregressive Moving Average (ARMA) Models

Let $\{Z_t\}$ be independent and identical random variables that follow $\mathrm{N}(0,\sigma^2)$

• Moving Average Processes (MA(q)): $\eta_t = Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2} \cdots + \theta_q Z_{t-q}$

• Autoregressive Processes (AR(p)): $\eta_t = \phi_1 \eta_{t-1} + \phi_2 \eta_{t-2} + \dots + \phi_p \eta_{t-p} + Z_t$

Time Series Analysis

14 13

Autocorrelation Plot

Notes

Notes

Notes

Lake Huron Case Study

Source: https://www.worldatlas.com/articles/what-states-border-lake-huron.html

- Detrending
- Model fitting and selection
- Forecasting

Time Series
Analysis

DLEMS

Time Series Data Features of Times Series Means & Autocovariances Autoregressive

A Case Study

14.15

Annual Measurements of the Level of Lake Huron

There seems to be a decreasing trend \Rightarrow need to estimate the trend to get the detrended series

Time Series Analysis
CLEMS N
A Case Study

Notes

Plots of the Trend and Residuals

where we assume $\mu_t = \alpha + \beta t$, i.e., a linear trend in time

Notes			

ACF and PACF Plots

- \bullet Tapering pattern in ACF \Rightarrow need to include AR terms
- • Significant PACF values at the first 2 lags \Rightarrow a AR(2) may be appropriate

Analysis
CLEMS N
A Case Study

N	otes			
_				

Assessing Normality Assumption for η_t

Time Series Analysis CLEMS Time Series Data Features of Times Series Means & Autocovariances Autoregressive Moving Average (ARMA) Models A Case Study

Notes

Fitting AR(2)

Notes			

Model Selection

data: ar2.resids X-squared = 0.029966, df = 1, p-value = 0.8626

We can conduct model selection by using, for example, $\ensuremath{\mathsf{AIC}}$

```
> ar1.model <- arima(deTrend, order = c(1, 0, 0))
> ar2.model <- arima(deTrend, order = c(2, 0, 0))
> arma21.model <- arima(deTrend, order = c(2, 0, 1))
> AIC(ar1.model); AIC(ar2.model); AIC(arma21.model)
[1] 216.5835
[1] 210.5032
[1] 212.1784
```

Time Series Analysis
CLEMS N
A Case Study

Notes			

Fitting AR(2) + a Linear Trend

> library(forecast)
> (fit <- Arima(LakeHuron, order = c(2, 0, 0), include.drift = T))
Series: LakeHuron
ARIMA(2,0,0) with drift

sigma^2 estimated as 0.476: log likelihood=-101.2 AIC=212.4 AICc=213.05 BIC=225.32

Notes	

10-Year-Ahead Forecasts

Notes

Notes			