



|   |   |   |   |   | • |   |
|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |
|   | • |   | • |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   | • |   | • |   |   |   |
|   | • | • |   | • |   | • |
|   |   |   |   | • |   |   |
|   |   |   | • |   |   |   |
|   |   |   | • |   |   |   |
|   |   |   |   |   |   |   |
|   |   | • |   |   |   |   |
|   |   |   |   |   |   |   |
| • |   |   |   | • |   |   |
|   |   | • |   |   |   | • |
|   |   | • |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   | • |   |   | • |   |
|   | • |   |   | • |   |   |













#### **Optimization**

- $n_{instance} = n_{points\_in\_frustum}$  Update each instance's
  - transformations and colors whenever frustum moves

## Reducing Draw Calls - InstancedMesh

→ Frustum testing with ~1M points?

Performance is poor because of:

Too many objects



· Unnecessary geometry complexity

Update each instance's

### whenever frustum moves

### transformations and colors

# $n_{instance} = n_{points\_in\_frustum}$

# ~1M points?

# Frustum testing with

## Reducing Frustum Testing - Octree





|   |   |   |   |   | • |   |
|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |
|   | • |   | • |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
| • |   |   | • |   |   |   |
|   |   |   |   |   |   | • |
|   | • | • |   | • |   |   |
|   |   |   |   |   |   |   |
|   |   |   | • |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   | • |   |   |   |   |
|   |   |   |   |   |   |   |
| • |   |   |   | • |   |   |
|   |   |   |   |   |   | • |
|   |   | • |   |   |   |   |
|   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |
|   | • | • |   | • | • |   |

