

The listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) Benzodiazepine derivative A
benzodiazepine compound of formula I:

in which

the dashed lines indicate the possible presence of a double bond;

R₁ represents optionally halogenated (C₁-C₁₈)alkyl, optionally halogenated (C₁-C₁₈)alkoxy, halogen, nitro, hydroxyl or (C₆-C₁₈)aryl, which is optionally (optionally substituted with optionally halogenated (C₁-C₁₀)alkyl, optionally halogenated (C₁-C₁₂)alkoxy, halogen, nitro or hydroxyl hydroxyl);

n represents 0, 1, 2, 3 or 4;

R₂ and R₃ represent, independently of each other, hydrogen; optionally halogenated (C₁-C₁₈)alkyl; (C₁-C₁₈)alkoxy; (C₆-C₁₈)aryl; (C₆-C₁₈)aryl(C₁-C₁₂)alkyl; heteroaryl; heteroaryl(C₁-C₁₂)alkyl; (C₆-C₁₈)aryloxy; (C₆-C₁₈)aryl(C₁-C₁₂)alkoxy; heteroaryloxy; or heteroaryl(C₁-C₁₂)alkoxy; in which the aryl and heteroaryl portions of these radicals are optionally substituted with halogen, optionally halogenated (C₁-C₁₂)alkoxy, optionally halogenated (C₁-C₁₂)alkyl, nitro or and hydroxyl;

R₄ represents hydrogen, (C₁-C₁₈)alkyl or (C₆-C₁₈)aryl, the said aryl group optionally being substituted with halogen, optionally halogenated (C₁-C₁₂)alkoxy, optionally halogenated

~~(C₁-C₁₂)alkyl, nitro or hydroxyl,~~

X represents S, O or -NT in which T represents a hydrogen atom, ~~(C₁-C₁₂)alkyl, (C₆-C₁₈)aryl, (C₆-C₁₈)aryl(C₁-C₁₂)alkyl or (C₆-C₁₈)arylcarbonyl;~~

~~R₅ represents (C₁-C₁₈)alkyl; hydroxy(C₁-C₁₈)alkyl; (C₆-C₁₈)aryl(C₁-C₁₂)alkyl; (C₃-C₁₂)cycloalkyl(C₁-C₁₂)alkyl; (C₅-C₁₂)cycloalkenyl(C₁-C₁₂)alkyl; heteroaryl(C₁-C₁₂)alkyl optionally substituted with one or more substituents S_U as defined below; (C₃-C₁₂)cycloalkyl optionally substituted with exo and optionally fused to (C₆-C₁₈)aryl, the assembly optionally being substituted with one or more substituents S_U as defined below; a group -CH₂-CR_a=CR_bR_e (in which R_a, R_b and R_e are chosen, independently, from (C₁-C₁₈)alkyl, (C₂-C₁₈)alkenyl, hydrogen and (C₆-C₁₈)aryl); a group -CHA-CO-Z (in which Z represents optionally halogenated (C₁-C₁₈)alkyl; optionally halogenated (C₁-C₁₈)alkoxy; (C₃-C₁₂)cycloalkyl; (C₃-C₁₂)cycloalkyl optionally substituted with exo and optionally fused to (C₆-C₁₈)aryl; (C₆-C₁₈)aryl(C₁-C₁₂)alkyl; (C₆-C₁₈)aryl(C₁-C₁₂)alkoxycarbonylamino(C₁-C₁₂)alkyl in which alkyl is optionally substituted with (C₁-C₁₂)alkoxycarbonyl(C₁-C₁₂)alkyl; (C₁-C₁₂)alkoxycarbonyl; (C₁-C₁₂)alkoxycarbonyl(C₁-C₁₂)alkyl; (C₆-C₁₀)aryl; (C₆-C₁₈)aryl fused to an unsaturated heterocycle optionally substituted with exo; or heteroaryl; the aryl, heterocyclic, cycloalkyl and heteroaryl portions of these radicals optionally being substituted with halogen; hydroxyl; optionally halogenated (C₁-C₁₂)alkyl; optionally halogenated (C₁-C₁₂)alkoxy; nitro; cyano; (C₁-C₁₂)alkylenedioxy; (C₁-C₁₂)alkylene; carboxy(C₁-C₁₂)alkyl; (C₂-C₁₂)alkenyloxy; optionally halogenated (C₁-C₁₂)alkylsulphonyloxy; cyano(C₁-C₁₂)-alkyl; Cy-alk-NH-SO₂-Ar in which alk represents (C₁-C₁₂)alkyl, Cy represents (C₃-C₁₂)cycloalkyl optionally substituted with one or more substituents S_U as defined below and Ar represents (C₆-C₁₈)aryl optionally substituted with one or more~~

~~substituents Su as defined below; alk Cy in which alk and Cy are as defined above; (C_1-C_{12})alkoxycarbonyl (C_1-C_{12})alkoxy; (C_1-C_{12})alkoxycarbonyl (C_1-C_{12})alkyl; saturated heterocycle optionally substituted with one or more substituents Su as defined below; (C_1-C_{12})alkylcarbonyloxy; (C_1-C_{12})alkylcarbonylamino; optionally halogenated (C_1-C_{12})alkylthio; (C_1-C_{12})alkylcarbonyloxy (C_1-C_{12})alkoxy; a~~

~~group of formula:~~

~~in which p = 0, 1, 2, 3 or 4 and in which St is (C_6-C_{18})aryl optionally substituted with one or more substituents Su as defined below; (C_1-C_{12})alkoxycarbonyl; (C_6-C_{18})arylthio optionally substituted with one or more substituents Su as defined below; (C_3-C_{12})cycloalkyl optionally substituted with one or more substituents Su as defined below; Cy CO O alk in which alk and Cy are as defined above; alk Cy alk' NH CO alk" in which alk and Cy are as defined above, alk' and alk" represent, independently of each other, (C_1-C_{12})alkyl; NR^o CO alk' Het in which alk' is as defined above, R^o represents H or (C_1-C_{12})alkyl and Het represents heteroaryl optionally substituted with one or more substituents Su as defined below; di(C_1-C_{12})alkoxyporphoryl (C_1-C_{12})alkyl; or (C_6-C_{18})aryl optionally substituted with one or more substituents Su as defined below; (C_6-C_{18})aryloxy optionally substituted with one or more substituents Su as defined below; (C_6-C_{18})aryl fused to an unsaturated heterocycle optionally substituted on the heterocycle portion with exo, the assembly optionally being substituted with one or more substituents Su as defined below; (C_6-C_{18})aryl (C_1-C_{12})alkoxy optionally substituted with one or more substituents Su as defined below; (C_6-C_{18})arylsulphonyl optionally substituted with one or more substituents Su as defined below; (C_6-C_{18})aryl (C_1-C_{12})alkyl in~~

~~which aryl is optionally substituted with one or more substituents Su as defined below; (C_6 - C_{18})arylearbonyl optionally substituted with one or more substituents Su as defined below; and~~

~~A represents a hydrogen atom, a (C_6 - C_{18})aryl group optionally substituted with one or more substituents Su or (C_1 - C_{12})alkyl;~~

~~or alternatively~~

~~R₄ and R₅ together form a group -CR₆=CR₇- in which CR₆ is linked to X; and in which:~~

R₆ represents a hydrogen atom; (C_1 - C_{18})alkyl; (C_3 - C_{12})cycloalkyl; (C_6 - C_{18})aryl; carboxy(C_1 - C_{12})alkyl; (C_1 - C_{12})alkoxycarbonyl(C_1 - C_{12})alkyl; heteroaryl; (C_6 - C_{18})aryl(C_1 - C_{12})alkyl; or and heteroaryl(C_1 - C_{12})alkyl; in which the aryl and heteroaryl portions of these radicals are optionally substituted with (C_1 - C_{12})alkyl, (C_1 - C_{12})alkoxy, hydroxyl, nitro, halogen or di(C_1 - C_{12})alkoxy-phosphoryl(C_1 - C_{12})alkyl;

R₇ represents a hydrogen atom; hydroxyl; di(C_1 - C_{12})alkylamino(C_1 - C_{12})alkyl; optionally halogenated (C_1 - C_{18})alkyl; carboxyl; carboxy(C_1 - C_{12})alkyl optionally substituted with amino; (C_1 - C_{12})alkoxycarbonyl; (C_6 - C_{18})aryl; heteroaryl; (C_6 - C_{18})aryl(C_1 - C_{12})alkyl; or heteroaryl(C_1 - C_{12})alkyl; (C_6 - C_{18})aryl fused to an unsaturated heterocycle, optionally substituted on the heterocycle portion with oxo; or (C_3 - C_{12})cycloalkyl; in which the aryl, heterocycle, cycloalkyl and heteroaryl portions of these radicals are optionally substituted with halogen; hydroxyl; hydroxy(C_1 - C_{12})alkoxy; optionally halogenated (C_1 - C_{12})alkyl; optionally halogenated (C_1 - C_{12})alkoxy; carboxyl; (C_1 - C_{12})alkoxycarbonyl; nitro; cyano; cyano(C_1 - C_{18})alkyl; (C_1 - C_{18})alkylcarbonyloxy; (C_2 - C_{12})alkylene; (C_1 - C_{12})alkylenedioxy; (C_1 - C_{12})alkylthio; (C_6 - C_{18})arylthio optionally substituted with one or more substituents Su as

~~defined above~~; di(C₁-C₁₂)alkylamino; a group of formula:

in which p = 0, 1, 2, 3 or 4 and in which St represents (C₆-C₁₈)aryl; -alk-Cy-NH-SO₂-Ar in which alk represents (C₁-C₁₂)alkyl, Cy represents (C₃-C₁₂)cycloalkyl optionally substituted with one or more substituents Su ~~as defined below~~ and Ar represents (C₆-C₁₈)aryl optionally substituted with one or more substituents Su ~~as defined below~~; -Cy-alk-NH-SO₂-Ar ~~in which Cy, alk and Ar are as defined above~~; -alk-Cy ~~in which alk and Cy are as defined above~~; -alk-Cy-alk'-NH-CO-alk" in which alk and Cy are ~~as defined above~~ and alk' and alk" represent, independently, (C₁-C₁₂)alkyl; di(C₁-C₁₂)alkoxyphosphoryl(C₁-C₁₂)alkyl; (C₆-C₁₈)aryl optionally substituted with one or more substituents Su ~~as defined below~~; (C₆-C₁₈)aryloxy optionally substituted with one or more substituents Su ~~as defined below~~; (C₆-C₁₈)arylcarbonyl optionally substituted with one or more substituents Su ~~as defined below~~; (C₆-C₁₈)arylsulphonyl optionally substituted with one or more substituents Su ~~as defined below~~; (C₆-C₁₈)aryl(C₁-C₁₂)alkoxy in which the aryl portion is optionally substituted with one or more substituents Su ~~as defined below~~; saturated heterocycle optionally substituted with one or more substituents Su ~~as defined below~~; (C₆-C₁₈)aryl(C₁-C₁₂)alkyl optionally substituted with one or more substituents Su ~~as defined below~~;

Su is chosen from hydroxyl, halogen, cyano, nitro, optionally halogenated (C₁-C₁₂)alkyl or and optionally halogenated (C₁-C₁₂)alkoxy;

or alternatively R₆ and R₇ together form a C₃-C₁₂ alkylene chain optionally interrupted with a nitrogen atom which is optionally substituted with (C₁-C₁₂)alkyl or

(C₆-C₁₈)aryl or (C₆-C₁₈)aryl(C₁-C₁₂)alkyl, the ring formed by CR₆=CR₇ optionally being fused to (C₆-C₁₈)aryl, the (the aryl portions of these radicals optionally being substituted with halogen, nitro, hydroxyl, optionally halogenated (C₁-C₁₂)alkyl or optionally halogenated (C₁-C₁₂)alkoxy); or a and the pharmaceutically acceptable salts salt thereof with an acid or base acids or bases, wherein the compounds having the following substituents ~~it~~ being understood that the compounds correspond to one of the definitions (a) to (e) below are excluded: ~~from the context of the invention:~~ (a) X = S; n = 0; R₂ represents methyl and R₃ represents a hydrogen atom; and R₄ and R₅ together form a group -CR₆=CR₇- in which CR₆ is linked to X, R₆ and R₇ together form a -(CH₂)₃- or -(CH₂)₄- chain or alternatively R₆ represents a hydrogen atom or a propyl group and R₇ is a phenyl group optionally substituted with -OCH₃ or a hydroxyl group; (b) n = 0 or 2; X = S; R₂ = R₃ = R₄ = H; R₅ = CH₃; (c) n = 0; R₂ = H; R₃ = C₆H₅; R₄ = H or CH₃; X = S; R₅ = CH₃; (d) n = 0 or 1; R₂ = optionally substituted phenyl; R₃ = R₄ = H; X = NT; T = H or CH₃; R₅ represents optionally substituted benzyl, CH₃ or phenethyl; (e) n = 0; R₂ = R₃ = R₄ = H; X = NH; R₅ represents benzyl, phenethyl, hydroxyethyl or 3,4-dimethoxyphenethyl.

2. (Currently Amended) Compound A compound according to Claim 1, wherein characterized in that X represents -NT in which T is as defined in Claim 1 and R₄ and R₅ together form -CR₆=CR₇.

3. (Currently Amended) Compound A compound according to Claim 1, wherein characterized in that R₃ represents a hydrogen atom.

4. (Currently Amended) Compound A compound

according to Claim 1, wherein characterized in that R₂ represents a hydrogen atom or a (C₆-C₁₀)aryl group optionally substituted with halogen, (C₁-C₆)alkoxy, optionally halogenated (C₁-C₆)alkyl, nitro or hydroxyl.

5. (Currently Amended) Compound A compound
according to Claim 1, wherein characterized in that n is 0 or 1 and R₁ represents a halogen atom.

6. (Currently Amended) Compound A compound
according to Claim 1, wherein characterized in that
X represents S;
~~R₄ represents a hydrogen atom;~~
~~R₅ represents (C₁-C₆)alkyl; hydroxy(C₁-C₆)alkyl;~~
~~(C₆-C₁₀)aryl(C₁-C₆)alkyl; (C₅-C₈)cycloalkenyl(C₁-C₆)alkyl; or~~
~~isoxazolyl(C₁-C₆)alkyl~~ optionally substituted with one or more (C₁-C₆)alkyls; -CH₂-CR_a=CR_bR_c in which R_a is a hydrogen atom, (C₁-C₆)alkyl or (C₆-C₁₀)aryl, R_b is (C₁-C₆)alkyl or a hydrogen atom and R_c represents a hydrogen atom or (C₂-C₁₀)alkenyl; a group -CH₂-CO-Z in which Z represents (C₁-C₁₀)alkyl, (C₆-C₁₀)aryl(C₁-C₆)alkyl, 5- or 6-membered heteroaryl or (C₆-C₁₀)aryl optionally fused to a 5- to 7-membered aromatic or unsaturated heterocycle; the aryl and heteroaryl portions of these radicals optionally being substituted with halogen, hydroxyl, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, nitro or (C₆-C₁₀)aryl (optionally substituted with halogen, optionally halogenated (C₁-C₆)alkyl, optionally halogenated (C₁-C₆)alkoxy or nitro);
~~or alternatively R₄ and R₅ together form a group~~
~~-CR₆=CR₇-~~ in which
R₆ represents a hydrogen atom, (C₁-C₆)alkyl, (C₆-C₁₀)aryl (optionally substituted with halogen, hydroxyl, nitro, (C₁-C₆)alkyl or (C₁-C₆)alkoxy), carboxy(C₁-C₆)alkyl, or (C₁-C₆)alkoxycarbonyl(C₁-C₆)alkyl, or (C₆-C₁₀)aryl, that is optionally substituted with halogen, hydroxyl, nitro,

(C₁-C₆) alkyl or (C₁-C₆) alkoxy; and

R₇ represents a hydrogen atom; hydroxyl; di(C₁-C₆) alkylamino(C₁-C₆) alkyl; (C₁-C₁₀) alkyl; (C₁-C₆) alkoxy carbonyl; (C₆-C₁₀) aryl; heteroaryl; (C₆-C₁₀) aryl(C₁-C₆) alkyl; the aryl and heteroaryl portions of these radicals optionally being substituted with (C₁-C₆) alkoxy carbonyl, halogen, hydroxyl, (C₁-C₆) alkyl, (C₆-C₁₀) aryl, which (C₆-C₁₀) aryl (this radical is optionally being substituted with halogen, optionally halogenated (C₁-C₆) alkyl, (C₁-C₆) alkoxy or nitro) ~~or (C₆-C₁₀) aryl fused to a 5 to 7 membered aromatic or unsaturated heterocycle comprising one, two or three endocyclic hetero atoms chosen from O, N and S; or alternatively R₆ and R₇ together form an alkylene chain interrupted with a nitrogen atom optionally substituted with (C₆-C₁₀) aryl(C₁-C₆) alkyl in which the aryl portion is optionally substituted with halogen, optionally halogenated (C₁-C₆) alkyl, (C₁-C₆) alkoxy, hydroxyl or nitro.~~

7. (Currently Amended) Compound A compound according to Claim 1, wherein characterized in that X represents -NT; and R₄ and R₅ together form a group -CR₆=CR₇- in which R₆ represents a hydrogen atom and R₇ represents hydroxyl or (C₆-C₁₀) aryl optionally substituted with halogen, nitro, hydroxyl, optionally halogenated (C₁-C₆) alkyl or (C₁-C₆) alkoxy.

8. (Currently Amended) Compound according to Claim 1, which is chosen from:

3-(biphenyl-4-yl)-5,6-dihydrothiazolo[2,3-b]-1,3-benzodiazepine;

3-(2-furyl)-5,6-dihydrothiazolo[2,3-b]-1,3-benzodiazepine;

3-[4-(ethoxycarbonyl)phenyl]-5,6-dihydrothiazolo-[2,3-b]-1,3-benzodiazepine;

1-(2-furyl)-2-(4,5-dihydro-3H-1,3-benzodiazepine-2-

ylsulphamyl)ethanone;

1-(biphenyl-4-yl)-2-(4,5-dihydro-3H-1,3-benzodiazepine-2-ylsulphamyl)ethanone;

3-(biphenyl-3-yl)-5,6-dihydrothiazolo[2,3-b]-1,3-benzodiazepine;

1-(3,4-dihydroxyphenyl)-2-(4,5-dihydro-3H-1,3-benzodiazepine-2-ylsulphamyl)ethanone;

3-(3,4-dihydroxyphenyl)-5,6-dihydrothiazolo[2,3-b]-1,3-benzodiazepine; or and

3-(biphenyl-4-yl)-7-chloro-5,6-dihydrothiazolo[2,3-b]-1,3-benzodiazepine.

9-11. (Cancelled)

12. (Currently Amended) Process A process for preparing a compound ~~compounds~~ of formula I according to Claim 1, in which X represents S and R₄ and R₅ together form a group -CR₆=CR₇-, comprising reacting the reaction of a thione of formula IIa:

in which n, R₁, R₂ and R₃ are as defined in Claim 1, with an α-halo ketone of formula IVb:

in which R₆ and R₇ are as defined in Claim 1, and Hal³ represents a halogen atom,

in a C₂-C₆ aliphatic carboxylic acid, at a temperature of between 90 to and 130°C.

13. (Currently Amended) ~~Process A process~~ according to Claim 12, ~~wherein characterized in that~~ the aliphatic carboxylic acid is acetic acid.

14. (Currently Amended) ~~Process A process~~ according to Claim 12, ~~wherein characterized in that~~ the temperature is maintained at between 100 to and 125°C.

15. (Currently Amended) ~~Process A process~~ for preparing a compound compounds of formula I according to Claim 1, in which X represents -NH, R₄ and R₅ together form a group -CR₆=CR₇- and R₇ is not hydroxyl, comprising reacting the reaction of a sulphide of formula V:

in which n, R₁, R₂ and R₃ are as defined in Claim 1, R₄ and R₅ together form a -CR₆=CR₇- group and alk represents (C₁-C₆)alkyl, with a protected compound derivative of the ketone of formula VI:

in which the carbonyl group is protected with a protecting group that is labile in an acidic medium, R₆ and R₇ being as defined in Claim 1, followed by treatment of the resulting compound with an acid.

16. (Currently Amended) Process A process for preparing a compound ~~compounds~~ of formula I according to Claim 1, in which X represents -NT in which T is not a hydrogen atom, ~~R₄ and R₅ together form a group CR₆=CR₇~~, and R₇ represents hydroxyl, comprising reacting the reaction of a sulphide of formula V:

in which n, R₁, R₂ and R₃ are as defined in Claim 1, and alk represents (C₁-C₆)alkyl,
with a compound derivative of formula VIII:

in which T and R₆ are as defined in Claim 1 and Y is a leaving group, at a temperature of between 50 to and 150°C and preferably at a temperature of between 60 and 100°C.

17. (Currently Amended) Process A process according to Claim 15, further also comprising reacting the reaction of the compound obtained by carrying out the process of Claim 15, with a halogenated reagent of formula Hal-T in which T represents (C_1-C_6) alkyl, (C_6-C_{10}) aryl or (C_6-C_{10}) aryl (C_1-C_6) alkyl and Hal is a halogen atom, in the presence of a base, so as to synthesize a the corresponding compound of formula I in which T represents (C_1-C_6) alkyl, (C_6-C_{10}) aryl or (C_6-C_{10}) aryl (C_1-C_6) alkyl.

18. (Currently Amended)

Pharmaceutical A

pharmaceutical composition containing an effective amount of at least one comprising a compound of formula (I) according to Claim 1, in combination with at least one and a pharmaceutically acceptable vehicle.

19. (Currently Amended)

Use of a compound of

formula I according to Claim 1, for the preparation of a medicinal product for preventing or A method for treating dyslipidaemia, atherosclerosis or and diabetes or and its complications thereof, comprising administering to a patient in need thereof an effective amount of a compound according to claim 1.

20. (Cancelled)

21. (New)

A method for treating dyslipidaemia, atherosclerosis or diabetes, comprising administering to a patient in need thereof an effective amount of a compound according to claim 1.

22. (New)

A process according to claim 16,

wherein the reaction is at a temperature of 60 to 100°C.

23. (New)

A compound which is

3-(biphenyl-4-yl)-5,6-dihydrothiazolo[2,3-b]-1,3-benzodiazepine;

3-(2-furyl)-5,6-dihydrothiazolo[2,3-b]-1,3-benzodiazepine;

3-[4-(ethoxycarbonyl)phenyl]-5,6-dihydrothiazolo-[2,3-b]-1,3-benzodiazepine;

1-(2-furyl)-2-(4,5-dihydro-3H-1,3-benzodiazepine-2-ylsulphamyl)ethanone;

1-(biphenyl-4-yl)-2-(4,5-dihydro-3H-1,3-benzo-

diazepine-2-ylsulphamyl)ethanone;
3-(biphenyl-3-yl)-5,6-dihydrothiazolo[2,3-b]-1,3-benzodiazepine;
1-(3,4-dihydroxyphenyl)-2-(4,5-dihydro-3H-1,3-benzodiazepine-2-ylsulphamyl)ethanone;
3-(3,4-dihydroxyphenyl)-5,6-dihydrothiazolo[2,3-b]-1,3-benzodiazepine; or
3-(biphenyl-4-yl)-7-chloro-5,6-dihydrothiazolo[2,3-b]-1,3-benzodiazepine.

24. (New) A method for treating dyslipidaemia, atherosclerosis or diabetes, comprising administering to a patient in need thereof an effective amount of a compound according to claim 23.

25. (New) A compound according to Claim 6, wherein R₆ represents a hydrogen atom, (C₁-C₆)alkyl, carboxy(C₁-C₆)alkyl, or (C₁-C₆)alkoxycarbonyl(C₁-C₆)alkyl.