Cracking the Code: Machine Learning and Medical Diagnosis

Darin Tsui*

February 27th, 2023

University of California, San Diego

* Department of Bioengineering

Machine Learning

The capability of a machine to imitate intelligent human behavior

Machine Learning

The capability of a machine to imitate intelligent human behavior

Machine Learning Classification

Intuition

Dividing data by a "decision boundary"

A hyperplane in \mathbb{R}^2 is a line

Implementation/Coding

Python packages

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import ruptures as rpt
import scipy.optimize as scp
from sklearn.preprocessing import StandardScaler
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
from sklearn.model_selection import train_test_split
from sklearn.utils import shuffle
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn import svm
```

Machine Learning in a Nutshell

- 1. Raw data
- 2. Feature Extraction
- 3. Training
- 4. Testing

Today: Machine Learning in MRI imaging

https://github.com/darintsui/PTMRI_Imaging

1. Raw Data

PTMRI_Imaging / no / 10 no.jpg

2. Feature Extraction

For each training image:

- Assign a label value (0 for no tumor, 1 for tumor)
- Get the RGB values of each pixel
- Resize images to be 128x128 pixels (ensures feature space is equal)
- 49152 features for each image
 - (128*128 pixels)* 3 RGB values = 49152 features

3. Train - K-Nearest-Neighbors

Method: Assigns to the majority vote of the k nearest neighbors

- Supervised machine learning algorithm
- One of the simplest machine learning algorithms

- 1. Calculate the Euclidean distance between all points
- 2. Take the nearest N neighbors
- 3. Pick a class by majority vote

4. Test - K-Nearest-Neighbors

Method:

- 1. Perform KNN on training data
- 2. Test model accuracy on testing data
- 3. Test a bunch of "neighbors" to find the optimal number
 - a. In this instance: all odd numbers from 1 to 101
 - b. Odd numbers are used to ensure no ties happen

So... what's next?

KNN was discovered in 1951, how does machine learning look now?

- In theory: grounded in mathematics, linear algebra, and probability
- In practice: much more difficult to understand and interpret

Two discoveries that drive modern-day machine learning

1941: Start of Neural Networks

- Biology-propelled ML

1988: Boosting

- Al automatically extracts features

Machine learning in MedTech

REVIEW PAPER

Author Information ⊗

Artificial Intelligence in Surgery: Promises and Perils

Hashimoto, Daniel A. MD, MS*; Rosman, Guy PhD†; Rus, Daniela PhD†; Meireles, Ozanan R. MD, FACS*

Annals of Surgery 268(1):p 70-76, July 2018. | DOI: 10.1097/SLA.0000000000002693

Metrics

Review

Show more V

Neuroscience-Inspired Artificial Intelligence

<u>Demis Hassabis</u> ¹² A ⋈, <u>Dharshan Kumaran</u> ¹³, <u>Christopher Summerfield</u> ¹⁴, <u>Matthew Botvinick</u> ¹²

Artificial intelligence biosensors: Challenges and prospects

Xiaofeng Jin ^a, Conghui Liu ^a, Tailin Xu ^{a b} ♀ ☒, Lei Su ^a, Xueji Zhang ^{a b} ☒

Show more V

Review | Published: 04 September 2018

Machine learning: applications of artificial intelligence to imaging and diagnosis

James A. Nichols, Hsien W. Herbert Chan & Matthew A. B. Baker □

Biophysical Reviews 11, 111–118 (2019) Cite this article

4715 Accesses | 131 Citations | 6 Altmetric | Metrics

How to get involved?

I'm BENG: BENG (mechanical engineering track), but I do primarily machine learning research

- Research!!
 - Hands-on experience with minimal prereqs
- Classes
 - COGS 18 (Introduction to Python)
 - COGS 108 (Data Science in Practice)
 - COGS 118a and 118b (Introduction to Machine Learning)
- Projects
 - Kaggle

Thank you!

dtsui@ucsd.edu

