

Circuit Theory and Electronics Fundamentals

Lecture 10: Filter Circuits

- Solving any order circuits (continued from last lesson)
- Introduction to filters and an example filter
- Ideal transformer models (they have not been forgotten!)
- Filter qualitative and quantitative analyses
- Filter transfer function in various RLC configurations
- Second order Bode plots

Any order circuits general

solution

Nodal analysis:

$$\begin{bmatrix} \frac{1}{sL} + sC + G_2 & -G_2 \\ -G_2 & G_1 + G_2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{vmatrix} \frac{1}{sL} + sC + G_2 & -G_2 \\ -G_2 & G_1 + G_2 \end{vmatrix} = 0$$

$$\begin{vmatrix} \frac{1}{sL} + sC + G_2 & -G_2 \\ -G_2 & G_1 + G_2 \end{vmatrix} = 0$$

$$(\frac{1}{sL} + sC + G_2)(G_1 + G_2) - G_2^2 = 0$$

$$\begin{bmatrix} \frac{1}{s_1 L} + s_1 C + G_2 & -G_2 \\ -G_2 & G_1 + G_2 \end{bmatrix} \begin{bmatrix} p_1 \\ q_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{s_2L} + s_2C + G_2 & -G_2 \\ -G_2 & G_1 + G_2 \end{bmatrix} \begin{bmatrix} p_2 \\ q_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 Eigen vector \mathbf{E}_2
$$\mathbf{E}_1 = \mathbf{E}_2 = \mathbf{E}$$

Second order RLC circuit

Characteristic equation: assume 2 real roots s₁

and
$$s_2$$

Eigen vector
$$\mathbf{E}_1 \longrightarrow q_1 = \frac{R_1}{R_1 + R_2} p_1$$

$$E_1 = E_2 = E_2$$

$$q_1 = \frac{R_1}{R_1 + R_2} p_1$$

General solution:

$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 1 \\ R_1 \\ R_1 + R_2 \end{bmatrix} \left(A e^{s_1 t} + B e^{s_2 t} \right)$$

Any order circuits <u>particular</u>

solution

Solve for A and B

$$\begin{bmatrix} v_1(0) \\ v_2(0) \end{bmatrix} = E(Ae^{s_1t} + Be^{s_2t})$$

$$v_1(0) = v_c(0)$$

$$v_2(0) = \frac{R_1}{R_1 + R_2} v_c(0)$$
Same equation, can't solve!

Second order RLC circuit

Need to take into account i, (0)

$$i_{L}(t) = i_{C}(t) + i_{R}(t) \qquad KCL$$

$$i_{C}(t) = C \frac{dv_{C}}{dt} = C \frac{dv_{1}}{dt} = C (As_{1}e^{s_{1}t} + Bs_{2}e^{s_{2}t})$$

$$i_{R}(t) = \frac{v_{C}}{R_{1} + R_{2}} = \frac{Ae^{s_{1}t} + Be^{s_{2}t}}{R_{1} + R_{2}}$$

$$\begin{cases} i_{L}(0) = C(AS_{1} + BS_{2}) + \frac{A + B}{R_{1} + R_{2}} \\ v_{C}(0) = A + B \end{cases}$$

Now we have two independent equations to compute A and B!

What are filters?

- Filters are circuits that modify the frequency spectrum of an input signal
- Filters are used for
 - Removing the DC component
 - DC component may be bad for transmission for example
 - Removing high frequency (HF) components
 - · HF components may be just noise with no info or energy content
 - Isolating the DC component
 - To stabilise a voltage or current source for example
 - Equalising a signal
 - Amplify some frequencies and attenuate others to adapt to an irregular physical channel
 - Many applications

Passive filters

- Filters filters that have passive components: R, L,
 C and transformers
- In this course we consider passive filters that have
 - One input voltage or current independent source
 - One output voltage or current
 - Any number of resistors
 - 2 complex impedance components
 - 2 capacitive components
 - 2 inductive components
 - 1 capacitive component and 1 inductive component

Example filter system

Ideal transformer models

Filter qualitative analysis

- For low frequency the inductor impedance (j ω L) is low (short-circuit), and v_o is small low frequencies are blocked
- For high frequency the capacitor impedance (1/j ω C) is low (short-circuit), and v_o is small high frequencies are also blocked
- For intermediate frequencies, the LC parallel has non-zero impedance Z, and $\tilde{V}_o = Z \tilde{I}_s$ will also be non-zero

Filter quantitative analysis

$$\frac{\widetilde{V}_o}{\widetilde{I}_s} = \frac{j \omega L}{1 - \omega^2 LC}$$
 Frequency response = Equivalent impedance

$$\omega = \frac{1}{\sqrt{LC}} \Rightarrow Z = \infty \Rightarrow \widetilde{V}_o = \infty!!$$

Resonant frequency

- For low frequency v_o is small (L is short-circuit) low frequencies are blocked
- For high frequency v_o is small (C is short-circuit) high frequencies are also blocked
- For intermediate frequencies, v_o is non-zero (Z is non-zero)
- For the resonant frequency the voltage magnitude is infinite (V=ZI, with Z large)!!
- Why? Because the swing is pushed by the source at its natural frequency!!

TÉCNICO Filter graphical analysis

Frequency response

$$\frac{\widetilde{V}_o}{\widetilde{I}_s} = \frac{j \omega L}{1 - \omega^2 LC}$$

Very <u>selective</u> Band-Pass Filter

Load resistor effect

Frequency response

$$\frac{\widetilde{V}_{o}}{\widetilde{I}_{s}} = \frac{1}{\frac{1}{R_{L}} + \frac{1}{j \omega L} + j \omega C}$$

Band-Pass Filter

Swap input current source

with voltage input source

Swap R with L

Low-Pass Filter

Swap L with C

High-Pass Filter

Bode plots for the LC bandpass filter

$$T(s) = \frac{V_o(s)}{I_s(s)} = \frac{1}{C} \frac{s}{s^2 + \frac{1}{LC}}$$

$$s = 0 \qquad \qquad \underbrace{Zero: \text{ root of T(s)}}_{\text{numerator}}$$

$$s = \pm \frac{j}{\sqrt{LC}} \qquad \qquad \underbrace{Pole: \text{ root of T(s)}}_{\text{denominator}}$$

$$|s| = \frac{1}{\sqrt{LC}} \qquad \qquad \text{Pole frequency is the modulus}$$

- Each Zero adds 20dB/dec to |T|_{dB} slope
- Each Pole adds -20dB/dec to |T|_{dB} slope
- Each Zero adds 45°/dec to the T phase slope in the zero's +/- 1 decade interval
- Each Pole adds -45°/dec to the T phase slope in the pole's +/- 1 decade interval
- Effects are cumulative!

Bode plots for the RLC bandpass filter

$$T(s)\frac{V_o(s)}{I_s(s)} = \frac{1}{C} \frac{s}{s^2 + \frac{1}{RC}s + 1}$$

Transfer Function:

- Zero at origin
- Two real negative Poles

Conclusion

- Solving any order circuits (continued from last lesson)
- Introduction to filters and example filter
- Ideal transformer models (they have not been forgotten!)
- Filter qualitative and quantitative analyses
- Filter transfer function in various RLC configurations
- Second order Bode plots