UART (Universal Asynchronous Receiver Transmitter)

SERIAL PORT

Serial Communication

www.electricaltechnology.org

Parallel Communication

Synchronous:

Asynchronous – Start & Stop Bit

Asynchronous – Start & Stop Bit

- Asynchronous serial communication is widely used for character-oriented transmissions
 - Each character is placed in between start and stop bits, this is called framing.
 - The start bit is always one bit, but the stop bit can be one or two bits
 - The start bit is always a 0 (low) and the stop bit(s) is 1 (high)
- Synchronous serial communication is widely used for block-oriented transmissions

UART - Serial port block diagram

- During Transmission, the character(A) is placed in the SBUF(transmit), then parallel data is converted to serial, start bit/stop bit added and then sent through TxD pin assigned with a baud rate.
- During Receiving, the character is received via RxD pin, start/stop bit is removed, the serial data is converted to parallel and placed in receive buffer(SBUF) assigned with a baud rate.

Three Special function registers (SFRs) are used for serial communication.

□ SBUF:

- Two dedicated, 8 bit registers to hold the data
- Transmit (writing the data into SBUF)
- Receive (reading the data)

SCON:

Controls the data communication

PCON:

Controls the data transfer rates(bps)

Pin RxD (P3.0) & Pin TxD (P3.1) are used for data transfer

Registers related to Serial Communication

- 1. SBUF Register
- 2. SCON register
- 3. PCON Register

SBUF Register

- SBUF is an 8-bit register used solely for serial communication.
- For a byte data to be transferred via the TxD line, it must be placed in the SBUF register.
- The moment a byte is written into SBUF, it is framed with the start and stop bits and transferred serially via the TxD line.
- SBUF holds the byte of data when it is received by 8051 RXD line.
- When the bits are received serially via RxD, the 8051
 deframes it by eliminating the stop and start bits, making a
 byte out of the data received, and then placing it in SBUF.

SCON (Serial control) register

SM0 (SCON.7) : Mode specifier

SM1 (SCON.6) : Mode specifier

SM2 (SCON.5): Multi-processor communication enable

REN (SCON.4): Receive enable (This bit must be set to receive characters)

TB8 (SCON.3): Programmable error check bit during Transmit (optional)

RB8 (SCON.2): Programmable error check bit during receive (optional)

TI (SCON.1): Transmit flag (Set when a byte has been transmitted)

RI (SCON.0): Receive flag (Set when a byte has been received)

Modes of operation

SM0	SM1	MODE	Operation	Baud rate
0	0	0	shift register	Fixed (xtal/12)
				(Synchronous)
0	1	1	8 bit UART	Variable (timer1)
1	0	2	9 bit UART	Fixed (xtal/32 or xtal/64)
1	1	3	9 bit UART	Variable (timer1)

SERIAL COMMUNICA-TION PROGRAMMING (cont')

With XTAL = 11.0592 MHz, find the TH1 value needed to have the following baud rates. (a) 9600 (b) 2400 (c) 1200

Solution:

The machine cycle frequency of 8051 = 11.0592 / 12 = 921.6 kHz, and 921.6 kHz / 32 = 28,800 Hz is frequency by UART to timer 1 to set baud rate.

(a)
$$28,800 / 3 = 9600$$
 where $-3 = FD$ (hex) is loaded into TH1

(b)
$$28,800 / 12 = 2400$$
 where $-12 = F4$ (hex) is loaded into TH1

(c)
$$28,800 / 24 = 1200$$
 where $-24 = E8$ (hex) is loaded into TH1

Notice that dividing 1/12 of the crystal frequency by 32 is the default value upon activation of the 8051 RESET pin.

TF is set to 1 every 12 ticks, so it functions as a frequency divider

Doubling Baud Rate

- There are two ways to increase the baud rate of data transfer
 - 1. By using a higher frequency crystal
 - 2. By changing a bit in the PCON register
- PCON register is an 8-bit register.

- When 8051 is powered up, **SMOD** is zero.
- We can set it to high by software and thereby double the baud rate.

Doubling Baud Rate (cont...)

Baud Rate comparison for SMOD=0 and SMOD=1

TH1	(Decimal)	(Hex)	SMOD=0	SMOD=1
	-3	FD	9600	19200
	-6	FA	4800	9600
	-12	F4	2400	4800
	-24	E8	1200	2400