Assessment

PROGRAMMING FOR ENGINEERS

By the end of this course you should be able to:

- Design software to meet functional requirements
- Choose appropriate algorithms and data-structures
- Use C++ to implement a functionally correct solution
- Get data in and out of programs
- Get \${TASK} done using computers for some \${TASK}

Qrt	Description	Wk	Starts	Туре
		1	2019-09-30	Egg-race
	1 21	2	2019-10-07	
	Imperative programs with	3	2019-10-14	Teaching
1	' '	4	2019-10-21	Teaching
	scalars, vectors, and structs.	5	2019-10-28	Teaching
	scalars, vectors, and structs.	6	2019-11-04	Teaching
		7	2019-11-11	Reading
		8	2019-11-18	Teaching
	Low-level aspects of	9	2019-11-25	
2	imperative programes	10	2019-12-02	Teaching
	imperative programes	11	2019-12-09	Teaching
		12	2019-12-16	
		13	2019-12-23	Holiday
		14	2019-12-30	Holidav
	High-level programming		2020-01-06	Teaching
3	riigii icvei programming	16	2020-01-13	Teaching
3		17	2020-01-20	Teaching
	methodologies and paradigms	18	2020-01-27	
	0 1 0	19	2020-02-03	Teaching
		20	2020-02-10	Reading
		21	2020-02-17	
	Design and delivery of	22	2020-02-24	
4	2 22.6. 2.12. 2.2.1.2.	23	2020-03-02	
	software solutions	24	2020-03-09	Teaching
	Software solutions	25	2020-03-16	Teaching
		26	2020-03-23	
		27	2020-03-30	
		28	2020-04-06	
		29	2020-04-13	Holiday
5	Final Assessment	30	2020-04-20	Exams

You are here

Qrt Description		Wk Starts Type		Туре	Assessment	
		1	2019-09-30			
	Imporative programs with	2	2019-10-07	Teaching		
	Imperative programs with	3	2019-10-14	Teaching		
1		4	2019-10-21	Teaching		
	scalars, vectors, and structs.	6	2019-10-28 2019-11-04			
			2015 11 0	Teaching	(5%) Submit exercise portfolio	
		_	2010 11 11	n	(5%) Submit exercise portiono	
		7	2019-11-11	Reading	(10%) One hour Wiseflow test	
					(10%) One hour Wiseflow test	
		8	2019-11-18	Teaching		
	Low-level aspects of	9	2019-11-25			
2	· ·	10	2019-12-02			
	imperative programes				(E0/) C	
		11	2019-12-09	Teaching	(5%) Submit exercise portfolio	
		12	2019-12-16	Holiday		
		13	2019-12-23			
		14	2019-12-30		4	
	High-level programming	15	2020-01-06	Teaching	(10%) One hour Wiseflow test	
3	Their level programming		2020-01-13			
	methodologies and paradigms	17	2020-01-20			
	methodologies and paradigms	18 19	2020-01-27 2020-02-03			
		17	2020 02 03	Teachine	(E0() C	
			2222 02 40	Reading	(5%) Submit exercise portfolio	
		20	2020-02-10		(400() 0))) (
					(10%) One hour Wiseflow test	
		21	2020-02-17	Teaching		
	Design and delivery of	22	2020-02-24			
4	Design and delivery of	23	2020-03-02	Teaching		
	software solutions	24	2020-03-09		(E0() C '' 'C	
	Software solutions	25	2020-03-16	Teaching	(5%) Submit portfolio	
		26	2020-03-23			
-)	27	2020-03-30			
-)	28	2020-04-06 2020-04-13			
		29	2020-04-13	ПОПИАУ	(50%) One-day pair project	
					(30/0) Offe-day pair project	
	Final Assessment	20	2020-04-20	F	implement and deliver	
	Final Assessment	30	2020-04-20	Exams	implement and deliver	
5					progs + tests meeting spec.	
)					progs rests meeting spec.	

Types of assessments

- Exercise portfolio (20%)
 - Simple exercises to ensure people keep up
 - Probably everyone gets close to 100%
- Mid-term/start-of-term assessments (30%)
 - Make sure you are taking onboard the knowledge
- Final assessment (50%)
 - Single one day piece of coursework
 - Can you create a working software solution?

Exact scheduling

- Post-Christmas test
 - Follows the format of mid-term:
 - Wiseflow, multiple choice, 12 questions, 50 minutes
 - Questions cover topics from this quarter
 - Similar level of difficulty/easiness to mid-term
 - Planned to be on morning of Monday 6th
 - Before the maths test on Wednesday 8th
 - Keeps all assessments before lectures start
- Final one day assessment
 - Likely to be Monday of the 2nd week
 - Just after exams week; just before project

Meta-learning

Why do we teach the way we teach?

Qrt Description		Wk Starts Type		Туре	Assessment	
		1	2019-09-30			
	Imporative programs with	2	2019-10-07	Teaching		
	Imperative programs with	3	2019-10-14	Teaching		
1		4	2019-10-21	Teaching		
	scalars, vectors, and structs.	6	2019-10-28 2019-11-04			
			2015 11 0	Teaching	(5%) Submit exercise portfolio	
		_	2010 11 11	n	(5%) Submit exercise portiono	
		7	2019-11-11	Reading	(10%) One hour Wiseflow test	
					(10%) One hour Wiseflow test	
		8	2019-11-18	Teaching		
	Low-level aspects of	9	2019-11-25			
2	· ·	10	2019-12-02			
	imperative programes				(E0/) C	
		11	2019-12-09	Teaching	(5%) Submit exercise portfolio	
		12	2019-12-16	Holiday		
		13	2019-12-23			
		14	2019-12-30		4	
	High-level programming	15	2020-01-06	Teaching	(10%) One hour Wiseflow test	
3	Their level programming		2020-01-13			
	methodologies and paradigms	17	2020-01-20			
	methodologies and paradigms	18 19	2020-01-27 2020-02-03			
		17	2020 02 03	Teachine	(E0() C	
			2222 02 40	Reading	(5%) Submit exercise portfolio	
		20	2020-02-10		(400() 0))) (
					(10%) One hour Wiseflow test	
		21	2020-02-17	Teaching		
	Design and delivery of	22	2020-02-24			
4	Design and delivery of	23	2020-03-02	Teaching		
	software solutions	24	2020-03-09		(E0() C '' 'C	
	Software solutions	25	2020-03-16	Teaching	(5%) Submit portfolio	
		26	2020-03-23			
-)	27	2020-03-30			
-)	28	2020-04-06 2020-04-13			
		29	2020-04-13	ПОПИАУ	(50%) One-day pair project	
					(30/0) Offe-day pair project	
	Final Assessment	20	2020-04-20	F	implement and deliver	
	Final Assessment	30	2020-04-20	Exams	implement and deliver	
5					progs + tests meeting spec.	
)					progs rests meeting spec.	

Why is everything so last minute?

- Everything gets done just in time
 - Lecture slides uploaded minutes before the lecture
 - Lab exercises uploaded just before the lab
 - Portfolio exercises being changed just before release
- Some things didn't appear as expected
 - e.g. source control has not appeared much

Is the course being written as we go?

The course is being *re-*written as we go

Open loop vs Closed loop

- We want to achieve certain objectives on this degree
 - Three years ago: objectives for the degree and course
 - Two years ago: objectives for each module
 - One year ago: detailed plan for each module
 - Content, structure, assessments, ...
 - Six months ago: full content for module
 - Lectures, exercises, labs, ...
- We have to guess how students will react
 - Learning is a complex subject
 - We might have designed it wrong
- Delivering exactly as planned would be open-loop

Open-loop control

Pros and cons of open-loop

- Positives: open-loop is efficient
 - Can decide everything ahead of time
 - Can parallelise the implementation
 - Can schedule work in-between other classes
 - No dependencies to slow things down
- Negatives: open-loop needs a very good model
 - Need to understand the "transfer function"
 - How will students respond to input?
 - Does new teaching method actually increase learning rate?
 - How quickly can students internalize input in this order?
 - Must ensure there are no known-unknowns
 - Does assessment timing X actually make things worse or better

Open-loop control

Pros and cons of closed-loop

- Positives: it is much more accurate
 - Far less likely to over-load or under-load
 - Much more likely to achieve the desired goals
 - Avoids over-corrections if goal will be missed
- Negatives: much more expensive
 - Have to feed back from output to input in time
 - Can't start creating the next input till previous output
 - Effort cannot be scheduled in advance
 - More difficult to finely tune the input

PROGRAMMING FOR ENGINEERS

By the end of this course you should be able to:

- Design software to meet functional requirements
- Choose appropriate algorithms and data-structures
- Use C++ to implement a functionally correct solution
- Get data in and out of programs
- Get \${TASK} done using computers for some \${TASK}

- Our objectives are clear and fixed. But:
 - We know this is ambitious in terms of content
 - We are using new techniques and methods
 - It isn't clear how students will react

Our approach: open + closed-loop¹

- Make an initial open-loop plan
 - Develop all the lectures, exercises, labs
 - Get them to the point that they could be delivered
- Every week Sahbi and I discuss the previous week
 - How were lectures, labs?
 - What parts were easy or hard?
 - What questions are being asked?
- Refine as we go in an open-loop way
 - Some lectures are almost exactly as planned
 - Other lectures completely re-written during the week
 - Most portfolio exercises written 6 months ago
 - Some exercises substituted one day before release

1 - Technically this is called "model-predictive control" in control-theory terms

The objective

We want you to solve problems using software

So the final assessment is:

Solve problems using software

We know exactly what those problems are already our job is to make sure you are prepared

Solving problems

So far you have done exercises

- Lab exercises are sub-tasks within programming
 - Solving a local problem
 - Often there is only loosely a real "problem"
- Portfolio exercises are mostly micro-tests
 - Any complexity is because you are still learning
 - Most should be relatively straightforward after TBL+labs
- Portfolio + lab are about learning
 - If they take longer, you need more time to *learn* the content

The final assessment is "real"

What you get:

- A specification for a particular problem domain
- A set of deliverables associated with that domain

What we are assessing:

- Can you create a solution to a meaningful problem?
- Do you know how to apply engineering techniques?
- Do you have enough coding ability to implement it?

There is *no* competition

- All assessment is against fixed criterion
 - There is no competitive aspect
 - No grading on the curve
 - You are not competing against other students
- This is *not* a zero-sum game
 - Everyone could do really well
 - Everyone could do really poorly
- Any moderation applies to the entire cohort
 - Only kicks in if the module is much too easy or hard
 - Standard formal process used for exams

Summative vs formative assessment

- Formative assessment:
 - Tells you how well you are learning
- Summative assessment
 - Tells others how well you learnt it : are you good at it?
- Portfolio: completely formative; work hard -> get marks
- MCQ Tests: mostly formative; study material -> do well
- Final coursework: mostly summative
 - Study alone will get mediocre marks
 - Study plus thinking gets ok marks
 - Study plus thinking plus ability gets good marks

Managing risk

- Software is broken into deliverables
 - Libraries, programs, source files, documentation
- We use this to manage assessment risk
 - You will be given a clear list of deliverables
 - These are similar to multiple question parts in an exam
- Designed to be independent
 - 1. Create a function that...
 - 2. Create a script that uses existing program to ...
 - 3. Create a test-case that...
 - 4. Write a program that...
 - 5. Add a feature to ...

How should we practice?

- Labs + portfolio are already preparing you
 - What we have done yet is bigger problems
- We have written three final assessments
 - Two will be released in Spring term for practise
 - One will be the final assessment
- But: they rely on things you haven't seen yet
 - Things like OOP are needed
 - Need tools that will be used for pair work

A question for you

- The coursework is done in pairs
 - Collaboration is an important skill
 - One person can't get enough done in one day
- You need to be assigned pairs ahead of time
 - You'll need to practice working with your partner
 - Pairs need to be known by Spring mid-term
- We have two choices for pair assignment
 - 1. Random assignment: fair and realistic
 - 2. Self assignment: often causes less friction
- Currently we are planning random
 - Does the cohort have strong opinions on this?

Practise problems

- We have a set of reduce problems to release at the end of term
 - You can look at them over Christmas; or not.
- These are *not* assessed in any way
 - Merely practise problems to try solving
- They are *not* complete assessments
 - But they allow you to apply current programming skills
 - They also model the types of activity needed

Colin and his records

SEE WHY AUDIO

DIGITAL AUDIO RESTORATION

Output Formats:

See Why Audio supplies finished projects in the following formats and media:

File format:

- WAV
- FLAC
- CDA (Standard or 'mastered' CD Audio)
- SHN (Lossless CD compression)
- AIFF (Native Apple format)
- extra MP3 or AAC as required. (Not suitable for mastering)
 All standard sample rates and bit depths.

Media:

- Data disc CD or DVD
- Audio Compact disc (standard or Industry Standard Full Redbook mastering, CD text, ISRC coding)
- DVD-Audio format high definition audio playback (Up to 192Khz/24 bit stereo however 96Khz/24bit is generally the best for vinyl).

Audio Restoration

Suitable Material

Formats

Rates

Contact

Audio Samples

Other Services

The problem

Example deliverables

- 1. Create a function that finds the difference between two samples
- 2. Write a C++ program to calculate a histogram of delayed samples
- 3. Write a C++ program to delete repeated audio samples in raw audio
- 4. Create a script that uses that program to remove repeats in flac files
- 5. Write a C++ program that applies a custom distance metric to detect repeats
- 6. Write a program that uses the inverse of numeric differentiation to estimate near-repeat frequency

Finishing off

- Portfolio
 - Sanity-test on Monday morning
 - Final due next Friday
- January test
 - Expected to be Monday morning on the 6th
- Example problems
 - Released today or tomorrow via blackboard

Have a good Christmas (or equivalent)