	DATE
ŀ	Given k1 and k2 are 2 Keenel functions. i.e. they are Symmetric and are positive definite in nature Since they are PSD, they solve the property of
	uTCu>0 where v∈Rn & Cis a matrix with
	We prove that $u^T \in u \geq 0$ $Cij = K_1(x_i, x_j) + x_1, x \in S$ If $x_1, x_2 \dots x_n \in S(Sample Space)$ $\forall x_1, x_n \in S$
<u>a)</u>	a) To Prove whether $K(x,z) = K_1(x,z) + K_2(x,z)$ is a valid kernel
	Proof: WKE UERO
, ,	$k_1(x,z) = \text{keinel fn} \Rightarrow u^T C u > 0 \text{ for } C_{ij} = k_1(x_i,x_j)$ $k_2(x_j,z) \Rightarrow u^T D u > 0 \text{ for } d_{ij} = k_2(x_i,x_j)$
	To Prove
	$k(x, y) \Rightarrow u^T = u \ge 0$ for $e_{ij} = k(x_i, x_j)$ Proof:
	$K(x,z) \Rightarrow u^{T} \in U$ $\Rightarrow u^{T}(C+D) u [:: os E = D+C(k=k,+k_{2})]$
	⇒ uTCU+UTDU we already know that uTCu >0 and uTDu≥0
	from definition $ (x,z) = k_1(x,z) + k_2(x,z) $ is a valid keenel
6)	b) $K(x,z) = k_1(x,z) \cdot k_2(x,z)$ is valid or not from before
	$k(x, z) = u^{T} E u^{T}$
	= 55 uiujeij = 5 uiuj[cij.dij]
	One property of PSD is that the matrix can be written as C = ATA for any matrix (as 62 xt) and
	D = BTB [C=UNUT (Diagonalized) simplified to ATA] Similarly to Dalso
	$cij = a_i^T a_j = \sum_{k=1}^{\infty} a_i a_{jk}$ $dij = b_i^T a_i^T = \sum_{k=1}^{\infty} b_i b_i^T b_i^T$ $classmate$ PAGE
IA.	

	DATE
	As we have already proved that $K_1(x,z) + K_2(x,z)$; $K_1(x,z) + K_2(x,z)$; $K_1(x,z) + K_2(x,z)$; $K_1(x,z) + K_2(x,z)$ are all valid kernels $K(x,z) = \exp(K_1(x,z))$ is also a valid kernel fn.
<u>e</u>)	To check whether $k(x,z) = \exp(-\frac{ x-z ^2}{5^2})$ is valid or not
	we can expand $\exp(-\frac{115c-211z^2}{r^2})$ as
	$\exp\left(-\frac{ x ^2}{T^2}\right) = \exp\left(-\frac{ x ^2}{T^2}\right) \cdot \exp\left(-\frac{ z ^2}{T^2}\right).$ $\exp\left(x \cdot z\right) \times \exp\left(x \cdot z\right)$ $= \exp\left(x \cdot z\right)$ $= \exp\left(x \cdot z\right)$ $= \exp\left(x \cdot z\right)$
	This is just a kernel for multiplied by a constant function of on its individual variables $\Rightarrow k(x,z) = \frac{1}{\sqrt{2}} \exp(-\frac{1}{2}x^2) \text{ is a kernel for } \frac{1}{\sqrt{2}}$