Skriftlig eksamen i Dynamiske Modeller Sommeren 2016

VALGFAG

Onsdag den 24. august 2016

Dette sæt omfatter 3 sider med 4 opgaver ud over denne forside

Alle sædvanlige hjælpemidler må medbringes og anvendes, dog må man ikke medbringe eller anvende lommeregnere eller andre elektroniske hjælpemidler

Københavns Universitet. Økonomisk Institut

2. årsprøve 2016 S-2DM ex(ii) & rx

Skriftlig eksamen i Dynamiske Modeller

Onsdag den 24. august 2016

Opgavesæt bestående af 3 sider med i alt 4 opgaver.

Løsningstid: 3 timer

Alle sædvanlige hjælpemidler må benyttes, dog ikke medbragte lommeregnere eller nogen form for cas-værktøjer.

Opgave 1. Vi betragter tredjegradspolynomiet $P: \mathbf{C} \to \mathbf{C}$, som er givet ved forskriften

$$\forall z \in \mathbf{C} : P(z) = z^3 + 10z^2 + 29z + 20.$$

Desuden betragter vi differentialligningerne

(*)
$$\frac{d^3x}{dt^3} + 10\frac{d^2x}{dt^2} + 29\frac{dx}{dt} + 20x = 0,$$

og

- (1) Vis, at tallet z=-1 er rod i polynomiet P. Bestem dernæst samtlige rødder i polynomiet P.
- (2) Bestem den fuldstændige løsning til differentialligningen (*), og begrund, at (*) er globalt asymptotisk stabil.
- (3) Bestem den fuldstændige løsning til differentialligningen (**).

For ethvert $a \in \mathbf{R}$ betragter vi den homogene, lineære differentialligning

$$(***) \frac{d^3x}{dt^3} + 2a\frac{d^2x}{dt^2} + 3a\frac{dx}{dt} + x = 0,$$

- (4) Opstil Routh-Hurwitz matricen A_3 for differentialligningen (* * *), og bestem de $a \in \mathbf{R}$, for hvilke (* * *) er globalt asymptotisk stabil.
- **Opgave 2.** Vi betragter den korrespondance $F:[0,10]\to \mathbf{R},$ som er defineret ved forskriften

$$F(x) = \begin{cases} [0,1] \cup \{-1\}, & \text{for } 0 \le x < 5\\ [-5,5], & \text{for } 5 \le x < 10 \end{cases},$$

og den funktion $f:[0,10]\times \mathbb{R}\to \mathbb{R}$, der har forskriften

$$\forall (x, y) \in [0, 10[\times \mathbf{R} : f(x, y) = x^2 + x^4 y^2.$$

- (1) Vis, at F har afsluttet graf egenskaben.
- (2) Vis, at F ikke er nedad hemikontinuert.
- (3) Vis, at F er opad hemikontinuert.
- (4) Bestem mængden af fixpunkter for F, dvs. mængden

$$\mathcal{F} = \{ x \in [0, 10[\mid x \in F(x) \}.$$

(5) Bestem en forskrift for den maksimale værdifunktion $v_u = v_u(x)$, hvor

$$v_u(x) = \max\{f(x, y) \mid y \in F(x)\}.$$

(6) Bestem en forskrift for maksimumskorrespondancen $M_u = M_u(x)$, hvor

$$M_u(x) = \{ y \in F(x) \mid v_u(x) = f(x, y) \},$$

og godtgør, at M_u ikke har afsluttet graf egenskaben.

Opgave 3. Vi betragter den vektorfunktion $f: \mathbb{R}^2 \to \mathbb{R}^2$, som har forskriften

$$\forall (x_1, x_2) \in \mathbf{R}^2 : f(x_1, x_2) = (x_1^2 + x_2^2 + 5x_2, x_2 + (x_1 - 3)^2).$$

(1) Bestem fixpunkterne for vektorfunktionen f, dvs. de punkter $(x_1, x_2) \in \mathbb{R}^2$, hvor betingelsen

$$f(x_1, x_2) = (x_1, x_2)$$

er opfyldt.

(2) Bestem værdimængden for funktionen $\phi: \mathbf{R}^2 \to \mathbf{R}$, som er defineret ved forskriften

$$\forall (x_1, x_2) \in \mathbf{R}^2 : \phi(x_1, x_2) = ||f(x_1, x_2) - (x_1, x_2)||.$$

- (3) Bestem Jacobimatricen $Df(x_1, x_2)$ for vektorfunktionen f i et vilkårligt punkt $(x_1, x_2) \in \mathbf{R}^2$.
- (4) Godtgør, at Jacobimatricen Df(0,0) er regulær, og vis, at der findes åbne mængder V og W, så $(0,0) \in V$ og $f(0,0) \in W$, og sådan at vektorfunktionen f afbilder V bijektivt på W. Eller anderledes sagt: Vis, at der findes åbne omegne V og W af henholdsvis (0,0) og f(0,0), så restriktionen $f|_{V}$ af f til V er bijektiv og afbilder V på W.
- (5) Løs ligningen

$$y = f(0,0) + Df(0,0)x$$

med hensyn til $x = (x_1, x_2)$.

Opgave 4. Vi betragter den funktion $F: \mathbf{R}^2 \to \mathbf{R}$, der er defineret ved forskriften

$$\forall (x,y) \in \mathbf{R}^2 : F(x,y) = 4xe^{\frac{t}{2}} + t + y^2e^{\frac{t}{2}}.$$

Desuden betragter vi funktionalen

$$I(x) = \int_0^2 \left(4xe^{\frac{t}{2}} + t + \dot{x}^2 e^{\frac{t}{2}} \right) dt.$$

- (1) Vis, at funktionen F = F(x, y) er konveks på hele \mathbf{R}^2 .
- (2) Bestem den funktion $x^* = x^*(t)$, der minimerer funktionalen I(x), idet $x^*(0) = 0$ og $x^*(2) = 11$.