From Regular Expression to NFA

Thompson's Construction

- Thompson's construction is a technique for constructing a NFA from a regular expression.
- There are a few simple rules that can be combined to produce a NFA from any arbitrary regular expression.

• For ε, construct the NFA:

• For **a**, construct the NFA:

Suppose N(s) and N(t) are NFAs for regular expressions s and t, respectively. For the regular expression s | t, construct the NFA:

 Suppose N(s) and N(t) are NFAs for regular expressions s and t, respectively. For the regular expression st, construct the NFA:

 Suppose N(s) is the NFA for regular expression s. For the regular expression s*, construct the NFA:

An example

- To demonstrate, let's find an NFA for the regular expression (a|b)*aa.
- First, the NFA for a|b is

Example, continued

Now, we draw the NFA for (a|b)*:

Example, continued

• The NFA for aa:

End of example

 Putting this all together, we get the NFA for (a|b)*aa:

What now?

- We know how to produce an NFA that recognizes a string represented by a regular expression.
- Problem: it is difficult to write a program to implement an NFA
- Solution: transform the NFA into a DFA that recognizes the same language
- Next step: From NFA to DFA