

Distributed Operating Systems

Dr. Vivek Nallur (vivek.nallur@ucd.ie)

Technology Trends

	1981	2014	Factor
MIPS	1	106,924	100,000
Dollar per MIPS	\$100	\$0.003	3 x 10 ⁻⁵
#Address bits	16	64 128	4 8
Clock frequency	8Mhz	4.0Ghz	500
DRAM capacity	128Kb	16Gb	128000
Disk capacity	10Mb	2500Gb	250000
Net Bandwidth	9600b/s	10Gb/s	104 0000
Cores	1	8	8

Distributed Hardware

- How are computers interconnected?
 - via a bus-based
 - via a switch
- How are processors and memories interconnected?
 - Private
 - shared memory

Distributed Hardware

Bus-Based Technology

Distributed Hardware

Switch-Based Technology

The Network

- Definition
 - physical connection allowing two or more computers to communicate
- There are various factors that can be taken into account to interconnect nodes
 - physical
 - topology
 - protocol

The Network

- LAN (Local Area Networks)
 - provide connection between computers geographically very close (e.g. within a building)
- MAN (Metropolitan Area Networks)
 - used across cities
- WAN (Wide Area Networks)
 - used across countries

Network Topologies

- Fully-connected network
- Star network
- Hypercube network
- Mesh network
- Tree network
- Ring network
- Linear bus network
- Hybrid network

Fully Connected Network Topology

Common Bus Topology

Mesh Network Topology

Star Network Topology

Ring Network Topology

Messages

- At the low level, the network communication is done via messages
- Messages
 - is simply typed byte string exchanged between two levels of the system (e.g. OS to OS, application to application)
 - usually contains a header describing it, followed by the data
- How to interpret bytes of a message?
 - Is an agreement between communicating parties (The Protocol)

Messages

Destination address

Source address

Application ID

Message length

Header

Message Data

May contain a header and some data of another header of communication...

Checksum

Today's Distributed Systems

- Today, nearly all systems are distributed "in some way":
 - they use e-mail
 - they access files over the network
 - they access printers over the network
 - they are backed up over the network
 - they share other physical or logical resources
 - they co-operate with other people on other machines
 - they receive video, audio, sound, etc

DS Properties

Resource Sharing

• Hardware (printers, disks, tapes, etc.) and software (files, windows, databases, etc.)

Open System

can be adapted fairly easy (i.e. customized for specific needs)

Scalable

• To what extent can the system grow (number of nodes, accessibility, etc.)

DS Properties

Fault Tolerant

 having a lot of components is fine, but the effect of increased faults must be hidden

Transparent

• How visible is the distribution?

What Is a Distributed System?

Definition

- Distribution concerns processing, data and control
- DS -- Hardware
 - is a collection of independent computers interconnected by a network
- DS -- Software
 - is a distributed abstract machine or distributed resource manager

What is a DS?

- There are several levels of distribution.
- Earliest systems use simple explicit network programs
 - FTP: File Transfer Program
 - Telnet (rlogin): remote login program (virtual terminal)
 - Mail
 - RSH: remote shell -- remote job execution
- Each system is a complete independent system and has an access to the network

Why We Need DS?

- Communication
 - need to communicate
- Resource Sharing
 - need to share physical devices, information, etc.
- Distributed Applications
 - many applications are, by their nature, distributed (bank teller machines, airline reservations, ticket purchasing, etc.)
- Parallel & Distributed Programming
 - need to solve very large problems by co-operation of a large collection of small computers

DS Issues

- Transparency
- Scalability
- Reliability
- Security
- Performance
- Programming Models
- Communication Models

Transparency

- A true distributed system with high transparency
 - appears as a single system
 - different nodes are invisible
 - jobs will migrate automatically from one node to another
 - a job located in one node is able to use resources of another node

Transparency

- Location transparency
 - The user doesn't know where resources are located
- Migration transparency
 - the resources can migrate without changing their names
- Replication transparency
 - The user doesn't know how many job copies exist in the whole system
- Concurrency transparency
 - Different users can share resources automatically
- Parallelism transparency
 - Activities can happen in parallel without user intervention

Scalability

- Definition
 - A system is scalable if it can handle additional users and resources without loss of performance or increase of administrative complexity
- Three basic strategies
 - Replication
 - Distribution
 - Caching

Scalability

Replication

make copies of important resources and place them near their users

Distribution

 partition a large resource (e.g. database) into small parts and place them in different locations

Caching

- when you grab a resource, keep it in your own site for a while -- you may need it again shortly
- The biggest problem is to keep the global state consistent

Reliability

- Original goal of distributed systems
 - more reliable than single processor systems
 - if a node goes down another node takes over the job
- Availability
 - fraction of time that the system is usable
- Example
 - 4 file servers, each has a probability of 0.05 to go down
 - Probability[4 file systems down] = $0.05^4 = 0.00000625$
 - Probability[at least 1 server is available] = 0.99999375

Reliability

- Fault Tolerance
 - If a server crashed and quickly reboots. What happens?
 - Does the server crash bring users down with it?
 - The server has tables containing important information about ongoing activities, recovery will be difficult
- Distributed systems can be designed to mask failures
- Solutions are based on group of closely co-operating servers

Reliability

Failure Classification

- Crash failure: processor crashes (and reboots)
- Omission failure: loss of messages, ...
- Performance failure: overloaded operating system, network congestion
- Timing failure: fast or slow clock, response comes too early or too late
- Response failure: wrong response (2+2=5), message altered in the wire

Programming Models

- Message-Passing Model
 - processes communicate by exchanging messages
- Shared-Memory Model
 - processes communicate by reading and writing shared objects, queues, sets,

Parallel & Distributed Systems

Parallel System

 a collection of processing elements that can communicate and co-operate to solve large problems faster

Distributed System

 multiple autonomous nodes that do not share the main memory, but cooperate and communicate by sending messages over the network

Parallel & Distributed Systems

- Not (Parallel & Distributed)
 - independent PCs or workstations (not connected)
- Parallel & Not Distributed
 - vector machines, array processor architectures
 - shared-memory multiprocessor systems
 - Example : modern day GPU's
- Distributed & not Parallel
 - wide-area network (communication too slow)
 - distributed database system (airline reservation system)
- Parallel & Distributed
 - collection of workstations connected by a LAN
 - Example SETI Online, Rosetta@home, Folding@home

Advantages of DS

- Economics
 - $-\mu$ -processors offer better price/performance than mainframes
- Speed
 - DS may have more total computing power than mainframes
- Inherent Distribution
 - some applications involve spatially separated machines
- Reliability
 - if one machine crashes, the whole system can survive
- Incremental Growth
 - computing power can be added in small increments

Advantages of DS

- Data Sharing
 - Allow many users to access to a common database
- Device Sharing
 - Allow many users to share expensive peripherals
- Communication
 - Make user-to-user communication easier, (e.g. e-mail)
- Flexibility
 - Spread the workload over the available nodes

Disadvantages of DS

Software

- Little software exists for distributed systems
 - Cloud computing is changing this radically but for this course we will still consider direct software as limited

Networking

• The network can be saturated or can cause other problems

Security

Easy access to secret data

Next week

- End of lectures so next two weeks will be revision lectures on previous topics
- Quizzes We will make up for 'lost' quizzes
 - Week 13 → Processes (Quiz 3)
 - Week 14 → Process Synchronization (Quiz 4)
 - Week 15 → Quiz on all lectures!! Worth double marks!!

Finally:

- Best 8 quizzes (worst excluded) → 16%
- Week 15 quiz (all topics, double marks) → 4%