

FIG. 2

	_	-																_						_	_	_			
Other SEQ ID NO.	1	7	т	4	*\	9	7	00	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
	×	×	×				×					×	×	×	×	×	×												
Clade E	×																×			×	×		×		×				
Clade D	×	×	×				×	×	×			×	×	×	×	×	×		×						×				
Clade C	×		×									×	×	×		×			×			×							
Clade B	×	×	×	×	×	×	×			×	×	×	×	×	×	×	×		×			×		×		×	×		×
Clade A	×	×	×					×				×	×	×		×	×	×	×				×					×	
Number of Approximate Isolates Position in with Exact LAI AA sequence	gp120 - 120	gag - 215	gag - 100	RT - 354	nef - 170	nef - 170	gp120 - 30	gp120 - 452	gp120 - 20	RT - 480	gag - 263	gp120 - 420	gp120 - 420	gp120 - 215	gp120 - 446	gp120 - 215	gp120 - 420	gp120 - 275	gp41 - 175	gp120 - 215	gp120 -330	i.	gp41 - 90		gp120 - 275	gp120 - 420	gp120 - 320	•	gp41 - 270
Number of Isolates with Exact AA sequence	159	36	18	17	17	16	10	>10	>10	×10	79	185	150	109	101	101	75	42	19	15	15	13	12	12	11	<10		<10	<10
Protein	Env	Gag	Gag	RT	Nef	Nef	Env	Env	Env	RT	Gag	Env	Env	Env	Env	Env	Env	Tat	Env	Env	Env	Env	Env						
B27 Fold Increase (less than 1.3 not reported)	-										3.61		1.74													1.53	1.78		3.27
A2 Fold Increase (less than 1.3 not reported)	1.33	1.35				2.7	1.33		1.63	1.54				1.45															
AZ EBP BZ7 EBP	. %00.0	0.00%	0.00%	0.00%	0.00%	0.01%	0.00%	0.00%	0.00%	0.00%	14.22%	%80'66	99.52%	55.61%	62.11%	98.22%	91.33%	82.77%	89.06%	67.49%	56.14%	75.36%	61.09%	67.49%	59.28%	76.92%	56.93%	78.95%	29.80%
A2 EBP	55.68%	66.42%	62.00%	57.03%	72.52%	87.51%	76.69%	25.68%	90.92%	97.47%	0.00%	0.00%	0.00%	0.20%	0.01%	0.00%	0.00%	%00.0	0.05%	0.01%	%00.0	0.07%	%00.0		%00.0	%00.0	%00.0		0.01%
Sequence	KLTPLCVTLN	AEWDRVHPV	SLFNTVATL	ELHPDKWTV	GMDDPEREVL	GMDDPEKEVL	HLWRWGTMLL	LLLTRDGGVN	HLWKWSTMLL	ILKEPVHGV	KRWIILGLNK	CRIKQIIN	CRIKQIINMW	VSFEPIPIHF	RCSSNITGL	VSFEPIPIHY	CRIKQIVNM	IRSENITION	IRIFIMIV	ISFDPIPIHY	YRTGDIIG	IRIGPGQTFY	GCSGKIIC	RRRAPQDS	IRSENITON	CRIKQFIN	KRISIGPGR	CCOOTECL	GRRGWEILKY

FIG. 3

Project Outline

Include CTL epitope in regional HIV-1 vaccine

He gives gave, gave, gave and man and gall and gall gave, gave, gave, gave, gave, gave, gave, gave, and gave, gave

Methods: HLA allele selection

HLA-A2 and -A11, -B7 and -B35 were selected for this pilot project due their prevalence of the HLA alleles in the Indian population....

FIG. 6

EpiMatrix Predictions and Binding Results: B 7 6 out of 7, and control peptide

T	Ē											-	_		
	50mg														
l	Cr.	2.4	0	,	<u>ლ</u>	•	<u>'</u>	α	?	2.7	. ,	اري دي		2.7	
۱	E E	7	c	Ą	-	•	_	•	•	N	1 +	N	•	7	
	g fo														
ļ	I) av	_	L												
	m/gr														
	200	335.6		8.1.8	181.5		160.5	2010	o O	373.8)	7	:	378.4	
	MFI (33	00	γ	<u>~</u>	,	<u> </u>	Š	1	37	5	č	•	37	ļ
	seg. Used gene strain start-stop % conserved CTL predicted EBF avg MFI (200ug/ml) avg fold incr. (20ug/m														
	EBP	Г	-												
	ted	8%	3	<u></u>	17%	;	18%	6	8	70%	?	%	?	26%	ļ
	edic	8	ľ	V	•		-	•	4	c	1	C	4	N	
	r pr	\vdash	┞		····	_	_			_					-
	CT	>	L												_
	rvec														
	onse	75	ľ	00	9		20	ì	Ξ	0	3	400	3	100	
	3 %														
	stop	2			2	•	4		-					22	
	start	183-192		61-70	181-490	:	375-384		182-191	00	0-10	70 30	Z0-07	786-876	
	iin	7	T		7 2	:	_								-
	stra	FNV DID757		POL Solnd5	ENV DID747		ENV DID760	1	ENV DiD747		ENV DID/4/	1		Aprilog Inda	
	9119	Ž		ŏ	Ž	<u>.</u>	<u> </u>		_ ≥	_	<u>~</u>	3	Ź	_ _	3
	-	-	\dagger	<u></u>		_			ш				_		-
	Jsed	PPNININTEKSI		FAL	THOOPING	֡֝֝֝֝֝֝֝֡֝֝֝֝֡֝֝֝֡֝֝֡֝֝֡֝֝֡֡֝֡֝֡֡֝֝֡֝֡֝֡	GLL		Ę	į	KPCVKLTPLC TPCVKLTPLC		GPKVKGWPL!		ב ב
	ea.	ŀ		NPYNTPIFAL	0	3	TCKSNITGLL	:	KPVVSTQLL		Z		2 2 2 2 3	אין אוני	אווי
	Ľ	<u> </u>		ΔN	0	<u> </u>	T X	_	<u>Х</u>		N N	-	<u>5</u>	20	
	<u>_</u>	Į	2	AL.	! =	ו	-	į	_4		_	į	7	7	ŗ
	pentide	T N		TPIF	. 6	3	NITO.)	STO		Y	(Š	2	7
	٩	DENININITEKSI		NPYNTPIFAL	. 1	コーニッグくはこくと	TCKSNITGLI	2	KPVVSTOLL		KPC/KLTPL		GPKVKQWPL		1 PGINAREL
	-	Ţ				_							_		
B7	nonfide &		-	65	•	4	ĸ	>							
	٤														

FIG. 7

EpiMatrix Predictions and Binding Results: B 35
7 out of 7 ... and control peptide

B37										
4 - 4 - 5 - 5	ı	Lead Head	gene strain	strain	start-stop	% conserved	CTL	predicted EBI	avg MFI (200ug/ml)	start-stop % conserved CTL predicted EBP avg MFI (200ug/ml) avg fold incr. (20ug/ml
pepride *	hebring						Ī	, 0,	0.43	4.
,	TVI DVGDAYE	TVI DVGDAYF TVLDVGDAYF	POL Solnd4	Solnd4	114-123	100	>	4%	47.9	2
	VONAL POOR	EDDE! WMGVE	POI Solnd4	Solnd4	231-239	100		% 6	48.7	1.6
0) (780	59.3	1.7
^	VPVKLKPGM	VPVKLKPGMD	전	POL Solnd4	15-24	3		2 1) (
~	CPKVTFDPI	CPKVTFDPIP	ENS	ENV DID760	144-153	23		%/	35.0	7.
•		- IOTOVVON) N	ENIV DIDZAZ	182-191	7.1		%6	40.5	4.1
-	ארעעטו ערר	ואין אין אין אין	<u> </u>		104-101			7407	£2.4	1.7
	KPCVKLTPL	KPCVKLTPLC	S S S	ENV DID747	51-60	3		8	7.	: ;
	ופאייאפט	T IGWOXVXGD	POL	POL Solnd4	25-34	100		11%	41.2	4.
			<u> </u>	POI Solnd4	278-287	100		2%	40.7	1.3
	THEINARGE	וייסוווייי	3							

FIG. 8

EpiMatrix Predictions and Binding Results: A 2 3 out of 7 ... and control peptide

A 2										
# CF 27 - 0 -	apitalo	son lland	gene	strain	start-stop	% conserved	CTL	predicted EBP	avg MFI (200ug/ml)	gene strain start-stop % conserved CTL predicted EBP avg MFI (200ug/ml) avg fold incr. (20ug/ml)
peptide #		nogo thee					:	7000	4604.2	4.6
13	II KEPVHGV ILKEPVHGVY	ILKEPVHGVY	POL Solnd4	Solnd4	316-325	80	-	80%	1004.4	2.
2 3	ATABOTA IO	VINSUASION (TIMENSIATIVE)	POI Solnd4	Solnd4	252-261	100		87%	1368.1	4.
<u>*</u>				70070	77.00	7.0		%P8	1716.9	ø; <u>r</u>
15	NEWTVYYGV INEWTVYYGV	NLWTVY'GV	EN <	ENV GrD1024 32-41	32-4	5		2		*
4	OMHEDVISI	OMHEDVISLW	EN	ENV DiD747	37-46	9		78%	1413.1	4.
2			3	Speleo	710 000	8		%62	889.0	6:0
17	KEELKEHLL	KIEELKEHLL		FOL SOINGS	717-007	3				*
78	DMVNOMHEDV	DMVNOMHEDV DMVNOMHEDV		ENV DID747	33-42	64		%//	7.1.57	5
: \$	VIVENCE VEXERS/TV	CI KKKKSVTV	Č	Solnd4	106-115	100		76%	1088.4	-:-
<u> </u>	GLANANOVIV	GENNINGER) (. 5	0,000	6		700%	1048.1	1.0
8	ELHPDKWTV	ELHPDKWTV ELHPDKWTVQ	POL ISOING	Solna4	Z40-Z48	8		27.7		

FIG. 9

EpiMatrix Predictions and Binding Results: A 11 4 out of 7 ... and control peptide

LL			1000		atart-aton	% conserved	E	predicted EBF	avg MFI (200ug/ml)	etart.eton % conserved CTL predicted EBP avg MFI (200ug/ml) avg fold incr. (20ug/ml)
	peptide	sed. Oseu	gene and	.	Joseph Street				2 640	3.4
IYOF	IYOFPFKNLK	IYQEPFKNLK	POL Solnd4		348-357	100	>	%)	6.110	1.0
	/TEDDIDIH/	VTEDDIDIHY	FNE	FNV DID760	147-156	53		22%	190.0	6.0
<u> </u>			<u> </u>	7777	174-183	59		44%	733.4	3.3
<u> </u>	TVQCIHGIK	125010001			201-1-1-1	8 8		7407	187.8	60
N P	NTPIFALKKK	NTPIFALKKK	<u> </u>	Solud5	64-73	ဂ္ဂ		44.70	0.7	
<u>-</u>	I VDEREI NK	LVDFRELNKR	POL	Solnd4	81-90	100		47%	755.2	\$ 1
(CXVXGCUVCG	<u>C</u>	Solnd4	21-30	100		25%	193.8	0.7
5 !	WIDGE INVE			Solnda	100-109	100		62%	309.6	1.4
<u> </u>	GIPHPAGLNN		2 6		000 000	2 5		63%	920.6	4.1
L	PCKKIOK	FITEDXXIOX FITEDXXIOX	POL Solnd	Solnd4	727-330	201		2/20		

FIG. 10

Methods: T2 Binding Assay

TAP deficient cells. The stabilized MHC-peptide complex is detected Allele matched peptides stabilize MHC molecules on the surface of using Ab to the MHC and fluorescence labeled secondary Ab.,

Clustering of putative MHC ligands in env

