Lecture Mobile Interaction

Baptiste Caramiaux Eric Lecolinet

Fat finger problem

Direct => occlusion

Direct + Absolute => lack of precision

- => targets should be **large** (>= 9.2mm [Parhi 06])
- => can be improved with better **technology** [Holz 10]

Eric Lecolinet - Télécom ParisTech - CNRS LTCI

Other Strategies

Fingerprints: [Holz et al. 10]

better touch model => better accuracy

Back-of-device touch input: NanoTouch [Baudisch et al. 09]

NailDisplay [Su et al. 13]

Gestures: Escape [Yatani et al. 08]

directional gestures select small targets

Hover Cursor: [Osberg et al. 15]

hover sensing over a touchscreen

Pre-Touch Sensing for Mobile Interaction

Ken Hinckley, Seongkook Heo, Michel Pahud, Christian Holz, Hrvoje Benko, Abigail Sellen, Richard Banks, Kenton P O'Hara, Gavin Smyth, William Buxton https://www.youtube.com/watch?v=Y4KQVNpWu-s

Figure 7. Our calm web browser reveals interactive affordances in a nuanced way that feathers off with the finger contours.

Gestures = a large resource deposit

Morphology

- Dimensionality (2D, 3D)
- Multitouch
- Shape
- Kinematics, temporal patterns
- Bumps
- With or without friction
- Pressure / pseudo-pressure
- etc.

Gestures = a large resource deposit

Frame of reference

- 2D gestures:
 - movements on the device
- 3D gestures
 - movements around the device
 - movements of the thevice

o on the screeno on the sides/back/bezels..

o 3 translations

Wavelet menus

[Bailly et al. 10]

- novice mode: **inverted** rings
- expert mode: superimposed marks

Using curvature

Leaf menus [Roudaut et al. 09]

novice mode

expert mode

Drawing & symbols

Gesture Avatar [Lu & Li 11],

- the user can draw a letter or the shape of a widget
- less errors than Shift, faster for small targets (1mm)

Augmented Letters [Roy et al. 13]

symbols + Marking menus

Using the shape or kinematics

Rubbing gestures [Olwal et al. 08]

- to-and-fro diagonal gestures
- act as delimiters

MicroRolls [Roudaut et al. 09]

rolling gestures of the thumb

Flick /Swipe

Rubbing

MicroRolls

MicroRolls [Roudaut et al. 09]

- do not conflict with ordinary gestures
- zero tangential velocity (no friction)

Multitouch: which fingers?

Hardware based

vision-based, fingerprints [Holz et al. 10]

Sofware based

- Lift-and-stroke [Lepinski et al. 10]
- Multitouch finger registration [Au and Tai 10]
- Multi-finger Chords [Wagner et al. 14]

Multi-finger Pie Menu [Banovic et al. 11]

Multitouch: ways of touching

FingerSense (Queexo)

TouchTools [Harrison et al. 14]

whiteboard eraser, marker, tape measure, rubber eraser, camera, mouse, magnifying glass.

28

Two-handed

BiTouch / BiPad [Wagner et al. 12]

- two-handed interaction
- special zones
- taps, chords, gestures

Figure 2. Five spontaneous holds (portrait orientation).

Eric Lecolinet - Télécom ParisTech - CNRS LTCI

3D gestures

SHRIMP [Wang et al. 10]

tilting the phone to disambiguate

TimeTilt [Roudaut et al. 09]

tilt the phone to navigate between apps

Extending the device

- Input

BezelTap https://www.youtube.com/watch?v=cwWJXU0AHdg

Bending the tablet

Gummi [Schwesig et al. 04]

PaperPhone [Lahey et al. 11]

Clavier projeté (Lumio) 37

Output: Tactile feedback and Shape changing

TeslaTouch [Bau et al. 10]

Haptic Edge [Jang et al. 16]

Morphees [Roudaut et al. 13]

TeslaTouch (Bau et al, Disney)

Shapes and emotions [Strohmeier et al. 16]

Haptic Edge Display for Mobile Tactile Interaction

Sungjune Jang, Lawrence H Kim, Kesler Tanner, Hiroshi Ishii, Sean Follmer https://www.youtube.com/watch?v=R1InHeWsSMU

Sungjune Jang et al., CHI, 2016 (accepted)

Gestures on the body

Skinput [Harrison et al. 10]

Skintrack [Zhang et al. 16]

iSkin [Weigel et al. 15]

Body-centric Design Space [Wagner et al. 13]

Eric Lecolinet - Télécom ParisTech - CNRS LTCI

iSkin https://www.youtube.com/watch?v=Y4KQVNpWu-s

Mobile Augmented Reality

Here service

Toolkits: Layar, Wikitude, etc.

iOS App Metro Paris

Google Goggles

49

AR glasses

Google Glass

www.immersion.fr

Thad Starner
Eric Lecolinet - Télécom ParisTech – CNRS LTCI

Head-Mounted displays

Eyeglasses

Contact lenses

Virtual Retinal display

Picoprojectors

SixthSense [Mistry, Maes 2009]

Foldable interactive displays [Lee et al. 2008]

Eric Lecolinet - Télécom ParisTech - CNRS LTCI

PenLight [Song et al. 2009]