In [1]: import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression,LogisticRegression,Lasso,Rid;
from sklearn.model_selection import train_test_split

In [2]: df=pd.read_csv("stations.csv")
df

Out[2]:

	id	name	address	lon	lat	elevation
0	28079004	Pza. de España	Plaza de España	-3.712247	40.423853	635
1	28079008	Escuelas Aguirre	Entre C/ Alcalá y C/ O' Donell	-3.682319	40.421564	670
2	28079011	Avda. Ramón y Cajal	Avda. Ramón y Cajal esq. C/ Príncipe de Vergara	-3.677356	40.451475	708
3	28079016	Arturo Soria	C/ Arturo Soria esq. C/ Vizconde de los Asilos	-3.639233	40.440047	693
4	28079017	Villaverde	C/. Juan Peñalver	-3.713322	40.347139	604
5	28079018	Farolillo	Calle Farolillo - C/Ervigio	-3.731853	40.394781	630
6	28079024	Casa de Campo	Casa de Campo (Terminal del Teleférico)	-3.747347	40.419356	642
7	28079027	Barajas Pueblo	C/. Júpiter, 21 (Barajas)	-3.580031	40.476928	621
8	28079035	Pza. del Carmen	Plaza del Carmen esq. Tres Cruces.	-3.703172	40.419208	659
9	28079036	Moratalaz	Avd. Moratalaz esq. Camino de los Vinateros	-3.645306	40.407947	685
10	28079038	Cuatro Caminos	Avda. Pablo Iglesias esq. C/ Marqués de Lema	-3.707128	40.445544	698
11	28079039	Barrio del Pilar	Avd. Betanzos esq. C/ Monforte de Lemos	-3.711542	40.478228	674
12	28079040	Vallecas	C/ Arroyo del Olivar esq. C/ Río Grande.	-3.651522	40.388153	677
13	28079047	Mendez Alvaro	C/ Juan de Mariana / Pza. Amanecer Mendez Alvaro	-3.686825	40.398114	599
14	28079048	Castellana	C/ Jose Gutierrez Abascal	-3.690367	40.439897	676
15	28079049	Parque del Retiro	Paseo Venezuela- Casa de Vacas	-3.682583	40.414444	662
16	28079050	Plaza Castilla	Plaza Castilla (Canal)	-3.688769	40.465572	728
17	28079054	Ensanche de Vallecas	Avda La Gavia / Avda. Las Suertes	-3.612117	40.372933	627
18	28079055	Urb. Embajada	C/ Riaño (Barajas)	-3.580747	40.462531	618
19	28079056	Pza. Fernández Ladreda	Pza. Fernández Ladreda - Avda. Oporto	-3.718728	40.384964	604
20	28079057	Sanchinarro	C/ Princesa de Eboli esq C/ Maria Tudor	-3.660503	40.494208	700
21	28079058	El Pardo	Avda. La Guardia	-3.774611	40.518058	615
22	28079059	Juan Carlos I	Parque Juan Carlos I (frente oficinas mantenim	-3.609072	40.465250	660
23	28079060	Tres Olivos	Plaza Tres Olivos	-3.689761	40.500589	715

```
In [3]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 24 entries, 0 to 23
Data columns (total 6 columns):
```

#	Column	Non	-Null Coun	t Dtype
0	id	24 1	non-null	int64
1	name	24 1	non-null	object
2	address	24 (non-null	object
3	lon	24 1	non-null	float64
4	lat	24 1	non-null	float64
5	elevation	24	non-null	int64
4+,,,,	oc. £100+64	(2)	in+64(2)	object(2)

dtypes: float64(2), int64(2), object(2)

memory usage: 1.2+ KB

In [4]: df1=df.dropna()
 df1

Out[4]:

	id	name	address	lon	lat	elevation
0	28079004	Pza. de España	Plaza de España	-3.712247	40.423853	635
1	28079008	Escuelas Aguirre	Entre C/ Alcalá y C/ O' Donell	-3.682319	40.421564	670
2	28079011	Avda. Ramón y Cajal	Avda. Ramón y Cajal esq. C/ Príncipe de Vergara	-3.677356	40.451475	708
3	28079016	Arturo Soria	C/ Arturo Soria esq. C/ Vizconde de los Asilos	-3.639233	40.440047	693
4	28079017	Villaverde	C/. Juan Peñalver	-3.713322	40.347139	604
5	28079018	Farolillo	Calle Farolillo - C/Ervigio	-3.731853	40.394781	630
6	28079024	Casa de Campo	Casa de Campo (Terminal del Teleférico)	-3.747347	40.419356	642
7	28079027	Barajas Pueblo	C/. Júpiter, 21 (Barajas)	-3.580031	40.476928	621
8	28079035	Pza. del Carmen	Plaza del Carmen esq. Tres Cruces.	-3.703172	40.419208	659
9	28079036	Moratalaz	Avd. Moratalaz esq. Camino de los Vinateros	-3.645306	40.407947	685
10	28079038	Cuatro Caminos	Avda. Pablo Iglesias esq. C/ Marqués de Lema	-3.707128	40.445544	698
11	28079039	Barrio del Pilar	Avd. Betanzos esq. C/ Monforte de Lemos	-3.711542	40.478228	674
12	28079040	Vallecas	C/ Arroyo del Olivar esq. C/ Río Grande.	-3.651522	40.388153	677
13	28079047	Mendez Alvaro	C/ Juan de Mariana / Pza. Amanecer Mendez Alvaro	-3.686825	40.398114	599
14	28079048	Castellana	C/ Jose Gutierrez Abascal	-3.690367	40.439897	676
15	28079049	Parque del Retiro	Paseo Venezuela- Casa de Vacas	-3.682583	40.414444	662
16	28079050	Plaza Castilla	Plaza Castilla (Canal)	-3.688769	40.465572	728
17	28079054	Ensanche de Vallecas	Avda La Gavia / Avda. Las Suertes	-3.612117	40.372933	627
18	28079055	Urb. Embajada	C/ Riaño (Barajas)	-3.580747	40.462531	618
19	28079056	Pza. Fernández Ladreda	Pza. Fernández Ladreda - Avda. Oporto	-3.718728	40.384964	604
20	28079057	Sanchinarro	C/ Princesa de Eboli esq C/ Maria Tudor	-3.660503	40.494208	700
21	28079058	El Pardo	Avda. La Guardia	-3.774611	40.518058	615
22	28079059	Juan Carlos I	Parque Juan Carlos I (frente oficinas mantenim	-3.609072	40.465250	660
23	28079060	Tres Olivos	Plaza Tres Olivos	-3.689761	40.500589	715

```
In [5]: df1=df1.drop(["name","address"],axis=1)
```

In [6]: df1.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 24 entries, 0 to 23
Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype	
0	id	24 non-null	int64	
1	lon	24 non-null	float64	
2	lat	24 non-null	float64	
3	elevation	24 non-null	int64	
dtypes: $float64(2)$, $int64(2)$				

dtypes: float64(2), int64(2)
memory usage: 960.0 bytes

In [7]: sns.heatmap(df1.corr())

Out[7]: <AxesSubplot:>

In [8]: plt.plot(df1["lat"],df1["elevation"],"o")

Out[8]: [<matplotlib.lines.Line2D at 0x2a1362e2fd0>]


```
In [9]: x=df1.drop(["elevation"],axis=1)
    y=df1["elevation"]
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

LinearRegression

```
In [10]: li=LinearRegression()
          li.fit(x_train,y_train)
Out[10]: LinearRegression()
          prediction=li.predict(x_test)
In [11]:
          plt.scatter(y_test,prediction)
Out[11]: <matplotlib.collections.PathCollection at 0x2a1369f0820>
           740
           730
           720
           710
           700
           690
           680
           670
                        640
                                660
                                               700
                620
                                       680
                                                       720
```

```
In [12]: lis=li.score(x_test,y_test)
```

```
In [13]: df1["lat"].value_counts()
Out[13]: 40.423853
                       1
         40.462531
                       1
          40.347139
                       1
          40.518058
                       1
          40.419356
                       1
          40.388153
                       1
         40.445544
                       1
         40.398114
                       1
         40.414444
                       1
          40.384964
                       1
          40.451475
         40.372933
                       1
         40.465572
                       1
         40.394781
                       1
         40.421564
                       1
          40.407947
                       1
          40.478228
                       1
          40.476928
         40.465250
                       1
         40.494208
                       1
         40.439897
                       1
         40.419208
                       1
          40.440047
                       1
          40.500589
                       1
          Name: lat, dtype: int64
In [14]: | df1.loc[df1["lat"]<40.44,"lat"]=1</pre>
         df1.loc[df1["lat"]>1.40,"lat"]=2
         df1["lat"].value_counts()
Out[14]: 1.0
                 13
          2.0
                 11
          Name: lat, dtype: int64
```

Lasso

```
In [15]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
Out[15]: Lasso(alpha=5)
```

```
In [16]: prediction1=la.predict(x_test)
    plt.scatter(y_test,prediction1)
```

Out[16]: <matplotlib.collections.PathCollection at 0x2a136a69250>


```
In [17]: las=la.score(x_test,y_test)
```

Ridge

```
In [18]: rr=Ridge(alpha=1)
rr.fit(x_train,y_train)
```

Out[18]: Ridge(alpha=1)

```
In [19]: prediction2=rr.predict(x_test)
   plt.scatter(y_test,prediction2)
```

Out[19]: <matplotlib.collections.PathCollection at 0x2a136abe8b0>


```
In [20]: rrs=rr.score(x_test,y_test)
```

Elastic Net

```
In [21]: en=ElasticNet()
    en.fit(x_train,y_train)

Out[21]: ElasticNet()

In [22]: prediction2=rr.predict(x_test)
    plt.scatter(y_test,prediction2)

Out[22]: <matplotlib.collections.PathCollection at 0x2a136a157c0>
```



```
In [23]: ens=en.score(x_test,y_test)
```

LogisticRegression

```
In [26]: lo=LogisticRegression()
lo.fit(x_train,y_train)

Out[26]: LogisticRegression()

In [27]: prediction3=lo.predict(x_test)
   plt.scatter(y_test,prediction3)

Out[27]: <matplotlib.collections.PathCollection at 0x2a136b5a1f0>
```



```
In [28]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [29]: from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import GridSearchCV

In [30]: g1={"lat":{"Low":0,"High":1}}
    df1=df1.replace(g1)

In [31]: x=df1.drop(["lat"],axis=1)
    y=df1["lat"]
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

In [32]: rfc=RandomForestClassifier()
    rfc.fit(x_train,y_train)

Out[32]: RandomForestClassifier()
```

```
In [33]:
        parameter={
            'max_depth':[1,2,4,5,6],
            'min samples_leaf':[5,10,15,20,25],
            'n estimators':[10,20,30,40,50]
In [34]: grid search=GridSearchCV(estimator=rfc,param grid=parameter,cv=2,scoring="accu
        grid_search.fit(x_train,y_train)
Out[34]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                    param_grid={'max_depth': [1, 2, 4, 5, 6],
                               'min samples leaf': [5, 10, 15, 20, 25],
                               'n_estimators': [10, 20, 30, 40, 50]},
                    scoring='accuracy')
In [35]: rfcs=grid_search.best_score_
In [36]: | rfc_best=grid_search.best_estimator_
In [37]: | from sklearn.tree import plot_tree
        plt.figure(figsize=(80,40))
        plot tree(rfc best.estimators [5],feature names=x.columns,class names=['Yes',"|
Out[37]: [Text(2232.0, 1630.8000000000000, 'elevation <= 660.5\ngini = 0.469\nsamples
        = 10\nvalue = [10, 6]\nclass = Yes'),
         Text(1116.0, 543.59999999999, 'gini = 0.444\nsamples = 5\nvalue = [6, 3]\n
        class = Yes'),
         lass = Yes')]
                              elevation \leq 660.5
                                   gini = 0.469
                                  samples = 10
                                 value = [10, 6]
                                    class = Yes
                 gini = 0.444
                                                     gini = 0.49
```

Best Model is Random Forest

samples = 5

value = [6, 3]class = Yes samples = 5 value = [4, 3]

class = Yes

In []: