Database support for high throughput data analysis web site

BY:

Sajni Chowrira

ADVISORS:

Dr. Lawrence Hunter

Dr. Tzu L. Phang

Gene: Segment of a DNA that codes for a protein

How is protein formed?

- 1. DNA acts as a template to create the complementary RNA (messenger RNA) Transcription
- 2. RNA carries code for protein synthesis
- 3. Ribosomes (a cell organelle) read this code and use it to build the protein Translation

$DNA \rightarrow mRNA \rightarrow Protein$

- All human cells contain identical genetic material
- The same genes are not active in every cell
 - genes can turn on and off
- Studying gene expression helps
 - understand gene behavior in diseased cell
 - develop drugs to help cell function normally again

- Expression of a certain gene controls concentration of its corresponding mRNA
- Hence measuring mRNA concentration helps understand gene activity
- mRNA concentration can be measured using microarrays

Microarray

- also known as DNA chip or gene chip
- consists of a piece of glass or plastic
- single-stranded pieces of DNA are affixed in a microscopic array (probe)
- hundreds or thousands of identical DNA molecules are affixed at each point

- 1. Isolate the total mRNA molecules in normal and diseased cells
- 2. Label mRNA molecules by attaching a fluorescent dye one color for normal mRNA & another color for mRNA from diseased cell
- 3. Both extracts are washed over the microarray
- 4. mRNA binds to their complementary DNA sequences on the microarray (hybridization)

- 5. Wash away unhybridized material fluorescent tags left behind
- 6. Use a special scanner (with laser, camera, microscope) to scan the chip
- 7. Laser excites the fluorescent dyes
- 8. Microscope and camera work together to create a digital image of the array

- 9. A special program is used to measure the intensities of the cells
- 10. It also creates a table that contains the ratios of the intensities of the 2 colors for every spot on the array.

Microarray chip

- Increased fluorescence => cell recently transcribed
- Decreased fluorescence => cell ceased transcription
- intensity of the fluorescense
 - proportional to the number of copies of a particular mRNA that were present
 - indicates the activity or expression level of that gene.
- Arrays can paint a picture or "profile" of which genes in the genome are active in a particular cell type and under a particular condition.

INIA

- Integrated Neuroscience Initiative on Alcoholism
- website for the Neuroinformatics Core of INIA developed by members of the Department of Pharmacology, University of Colorado Health Sciences Center
- The goal of the neuroinformatics core is to create an integrated repository of neuroscience data, ranging from molecules to behavior, for collaborative research on alcoholism

INIA

General analysis flow for the INIA workbench

MGED Standards

Need to standardize the recording & reporting of microarray-based gene expression data

- A single microarray experiment can produce several million pieces of data
- gene expression data is very complex it cannot be interpreted without additional information about the conditions under which they were generated
 - biological material, experimental design, array composition and design, hybridization conditions

MGED Standards

- experiments use different platforms and designs, the results could differ
 - in units
 - in format

Microarray Gene Expression Data (MGED) Society has defined standards for microarray data annotation and exchange . Example: MIAME

MIAME

- Minimum Information About a Microarray Experiment
- outlines the minimum information that should be reported
- enable its unambiguous interpretation and reproduction of an experiment
- Requires 6 pieces of information to be described for any published microarray-based gene expression experiment

MIAME

- 1. Experimental design title, author information, contacting the author, a link to the online publication
- 2. Array design details of the manufacturer, platform type, surface and coating specifications of array
- 3. Samples (biological substance for which gene expression is being measured) source of the sample and how it was obtained, treatment information if the sample was treated before being used

MIAME

- 4. Hybridization conditions under which the hybridizations were carried out, instruments and procedures used and protocols used for the hybridization, blocking and washing.
- 5. Measurements This is where the results of the experiment are described
- 6. Normalization controls normalization algorithm and strategy used, steps involved in preparing the hybridization extract

Problems: Molecular Biology Experiments

- Produce large volume of data
- Data hard to interpret
- Data differ greatly
- Data relationships difficult to model
- New data types constantly evolving
- Analyses produce new data types
- Results are difficult to manage

Need database that handles all the above

Neocore XMS

- XML Information Management System
- Not a relational database
- Stores Information = Data + Context
- XML in XML out
- Stores hierarchical forms of data expressed in XML
- Information can be queried, modified and deleted

Neocore XMS

- Can be accessed through APIs like Java, C++, etc.,
- Self-constructing requires no design
- Query language subset of Xpath
- Self-constructing requires no design

User uploads data and meta data files

- -'.cel' file corresponding to experiment (data)
- -MIAME annotation information corresponding to the experiment (meta data)

Sample meta data

<Chip Description>C57 11012 line WT5</Chip Description>

<Electrophysiological data>EEG10</Electrophysiological data>

<Physiological data>Hormonal Response WT5

<Biochemical data>Phosphorylation</Biochemical data>

```
<Date_of_experiment>5/9/2001</Date_of_experiment>
<Phone>303-315-1064</Phone>
<E-mail>Sanjiv.Bhave@uchsc.edu</E-mail>
<Species>Mus musculus</Species>
<Gender>Male1</Gender>
<Age>10 weeks</Age>
<Genetic_background>WT littermate</Genetic_background>
<Organ>Brain</Organ>
<Manufacturer>Affymetrix</Manufacturer>
<Gene_Array_ID>MG U74Av2.0</Gene_Array_ID>
<RNA_extraction_method>Trizol followed by Rneasy mini kit</RNA_extraction_method>
<Amont_of_RNA_used_in_microgram>10 micorgram </Amont_of_RNA_used_in_microgram>
<Total_or_mRNA>Total RNA</Total_or_mRNA>
<cDNA_or_cRNA_preparation_methods_used>
<Phenotype data>Anxiety</Phenotype data>
```


The experiment id, the 2 binary files, the path to the location of the original data files and the corresponding MIAME addendum are submitted to the Java API.

Design & Implementation Data Encoding

- UTF-8 (Unicode Transformation Format –
 8) is the default encoding for XML
- Hence binary data to be stored in an XML document needs to be in a UTF-8 compliant character set
- Used a base-64 encoder to encode input data file

Design & Implementation Data Encoding

- Encoded data is larger in size
 - Base64 encoding divides three bytes of the binary data into four bytes of ASCII text
 - the size of the encoded data is about a third larger than the original
- Data may compressed before storage
 - GZIP compression utility provided by Java

Design & Implementation Data Loading

- XML document built by enclosing following in appropriate tags
 - Experiment Information
 - Encoded and zipped data
 - Meta data
- Document is loaded into NeoCore
- Document id is returned by NeoCore if transaction was successful

Design & Implementation Data Retrieval

- The submitter and other users are allowed to retrieve experiment information for further analysis or verification.
- The experiment and session identifier are passed to the XMS via the Java API.
- Before being retrieved, the binary files are decoded from base-64 format.
- The binary files and MIAME annotation information corresponding to the experiment are returned as XML documents.

Design & Implementation Data Retrieval

• The XML tags are removed and the resulting files are returned to the user.

References

- [1] "ArrayExpress Microarray Standards." April 20, 2004. European Bioinformatics Institute. April 24, 2004 http://www.ebi.ac.uk/arrayexpress/Standards/index.html
- [2] Brazma, Alvis, et al. "Minimum information about a microarray experiment (MIAME) toward standards for microarray data." Nature Genetics. Dec. 2001 Vol. 29: 365-71.
- [3] DeFrancesco, Laura. "MIAME begets MAGE." <u>The Scientist</u>. September 17, 2002. BioMed Central. April 24, 2004. http://www.biomedcentral.com/news/20020917/02/>
- [4] Direen, Harry. "Re: NeoCore Indexes." E-mail to Chowrira, Sajni. 10 May 2004.
- [5] Direen, Harry. XML for Information Processing. Xpriori, LLC.
- [6] "Information Management Solutions for eXtreme Productivity". 2004. Xpriori, LLC. March 10, 2004. http://www.xpriori.com/>
- [7] Kelley, Kevin. <u>Base64.java</u>. Vers. 1.3. 10 KB. September 22, 2000. Starlight Software Co. March 30, 2004 http://kevinkelley.mystarband.net/java/ Base64.java>

References

- [8] Knudsen, Steen. <u>A Biologists Guide to Analysis of DNA Microarray Data.</u>

 New York: John Wiley & Sons, Inc., 2002.
- [9] "MGED Mission Statement." September 26, 2003. European Bioinformatics Institute. April 24, 2004 http://www.mged.org/Mission/index.html
- [10] Morin, Randy. "How to Base64." Online article. 29 April 2004. http://www.kbcafe.com/articles/HowTo.Base64.pdf>
- [11] Ness, Scott A. "KUGR Microarrays and Genomic Facility." Keck-UMN Genomics Resource. 15 May 2004. http://hsc.unm.edu/som/micro/Genomics/ basics.html>
- [12] Phang, Tzulip, et al. "Interactive workbench for high-throughput molecular biological data exploration". Department of Pharmacology, University of Colorado Health Sciences Center. 2004.
- [13] Shi, Leming. "DNA Microarray (Genome Chip)." January 7, 2002. www.Gene-Chips.com. April 22, 2004 < http://www.gene-chips.com/ >
- [14] Spellman, Paul T., et al. "Design and inplementation of microarray gene expression markup language (MAGE-ML)." Genome Biology. 2002 Vol.3 No.9: research0046.1-0046.9.

References

- [15] NeoCore XMS: System Administration Guide. Xpriori, LLC. ____
- [16] NeoCore XMS: System Programming Guide: Xpriori, LLC. __
- [17] Tschabitscher, Heinz. "How Base64 Encoding Works." <u>About.Com</u>. 28 April 2004. http://email.about.com/library/misc/bl_base64_enc_table.htm

"Unified Information Management Using NeoCore® XMS." Xpriori, LLC. White paper. March 12, 2004 < http://www.xpriori.com/White_Paper-Unified_Information_Management.pdf>._