Построим полином без свободного члена $S_n(x)$ степени n, не превосходящий по модули единицу на промежутке [0,1], и достигающий её в n точках. Пусть $T_n(x)$ — многочлен Чебышёва степени n. Тогда по свойствам многочленов Чебышёва T_n не превосходит по модулю единицу на промежутке [-1,1] и достигает её в n+1 точках, в том числе в точках -1 и 1. Известно, что корни T_n имеют следующий вид

$$x_i = \cos\left(\frac{\pi(i+1/2)}{n}\right), \quad i = 0, \dots, n-1.$$

Если мы возьмём самый маленький корень $x_{\min} = -\cos\frac{\pi}{2n}$ и положим $\widehat{S}_n(x) = T_n(x+x_{\min})$, то \widehat{S}_n будет являться полиномом степени n с нулевым свободным членом, так как $\widehat{S}_n(0) = 0$ по построению. При этом $\left|\widehat{S}_n(x)\right| \leqslant 1$ для x на промежутке $[0,1+\cos\left(\frac{\pi}{2n}\right)]$, при этом в этом промежутке абсолютная величина достигает единицы n раз в силу того, что левый край не равен 1.

Для того, чтобы привести промежуток к виду [0,1] достаточно добавить множитель $1+\cos\frac{\pi}{2n}$ к x в левой части определения $\widehat{S_n}$. После этого получается многочлен, удовлетворяющий всем требуемым свойствам

$$S_n(x) = T_n \left(x \left(1 + \cos \frac{\pi}{2n} \right) - \cos \frac{\pi}{2n} \right).$$

Для более общего случая в виде промежутка [0,d] требуемый многочлен (обозначим его S_n^d) можно выразить из $S_n(x)$ как $S_n^d(x) = S_n\left(\frac{x}{d}\right)$.

Исходя из данного построения и известных экстремальных точек многочлена Чебышёва, можно легко выразить экстремальные точки S_n . Обозначим их как $s_{i,n}$, тогда

$$s_{i,n} = \frac{\cos\frac{(n-i)\pi}{n} + \cos\frac{\pi}{2n}}{1 + \cos\frac{\pi}{2n}}, \quad i = 1, \dots, n$$

при этом

$$0 < s_{1,n} < \ldots < s_{n,n}$$

И

$$S_n(s_{i,n}) = (-1)^{n+i}, \quad i = 1, \dots, n$$

Построим базисные полиномы Лагранжа степени n без нулевого члена по точкам $\{s_{i,n}\}_{i=1}^n$

$$L_{i}(x) = \frac{x \prod_{l=1}^{n} (x - s_{l,n})}{s_{i,n} \prod_{l \neq i}^{n} (s_{i,n} - s_{l,n})}$$

Так как теорема 4 о весах оптимального плана в случае полиномиальной модели работает для любых промежутков, то для нахождения весов можно использовать её.

$$\omega_i = \frac{|L_i'(z)|}{\sum_{j=1}^n |L_j'(z)|}$$

В силу свойств многочленов Чебышёва $S_n(x)$ и $-S_n(x)$ — единственные многочлены степени n без нулевого члена, которые удовлетворяют свойствам 1-2 теоремы Элвинга, поэтому осталось проверить для только свойство 3. Для этого введем обозначения $F = \left(s_{j,n}^i\right)_{i,j=1}^n$, $h = \sum_{j=1}^n \left|L_j'(z)\right|$ и $\beta = (|L_i'(z)| (-1)^{i+n})_{i=1}^n$. Так как $s_{j,n}$ при $i=1,\ldots,n$ являются экстремальными точками многочлена S_n и при этом $S_n(s_{j,n}) = (-1)^{j+n}$, то выполнение равенства

$$f'(z) = hF\beta \tag{1}$$

при $\omega_i \geqslant 0, i=1,\ldots,n$ и $\sum_{i=1}^n \omega_i = 1$ эквивалентно выполнению условия 3 теоремы Элвинга для нахождения оптимального плана оценки производной в точке z.

Так как равенство $F^{-1}F = I_n$, где I_n — единичная матрица размера n, можно переписать, как систему равенств

$$e_i^{\mathsf{T}} F^{-1} f(s_{j,n}) = \delta_{ij}, \quad i, j = 1, \dots, n,$$
 (2)

где δ_{ij} — дельта Кронекера, а e_i — i—ый единичный вектор. Поскольку в левой части равенств (2) содержатся многочлены без нулевого коэффициента степени не больше n вычисленные в точках $s_{j,n},\ j=1,\ldots,n,$ а для каждого i существует только одно j, такое, что $\delta_{ij}\neq 0$, то они определяют все базисные многочлены Лагранжа без нулевого члена степени n вычисленные в точках $s_{j,n},\ j=1,\ldots,n,$ таким образом

$$e_i^{\mathsf{T}} F^{-1} f(z) = L_i(z), \quad i, j = 1, \dots, n.$$
 (3)

Если в предыдущем выражении вычислить производную по z и переписать полученное выражение в векторной форме получим

$$f'(z) = F(L'_1(z), \dots, L'_n(z))^{\top}.$$
 (4)

Приравняв правые части (5) и (1) и домножив равенство на F^{-1} слева, получаем, что

$$h\beta = (L'_1(z), \dots, L'_n(z))^\top, \tag{5}$$

что с учетом введенных ранее обозначений влечет, что $\mathrm{sign}(L_i'(z)) = \mathrm{sign}((-1)^{i+n}),$ $i=1,\ldots,n$ или, вспомнив, что экстремальным многочленом также может быть -S(x), $\mathrm{sign}(L_i'(z)) = \mathrm{sign}((-1)^{i+n+1}), \ i=1,\ldots,n.$

Таким образом для того, чтобы доказать, что оптимальный план находится в точках $(s_{i,n})_{i=1}^n$, $i=1,\ldots,n$ с указными ранее весами, осталось доказать равенство знаков $L_i'(z)$ и $\pm S_n(s_{i,n})$. Но так как знаки экстремальных точек многочлена S_n чередуются, достаточно показать при каких z выражения $(-1)^i L_i'(z)$ для имеет одинаковый знак для $i=1,\ldots,n$.

Обозначим корни многочлена L'_i как $u_{i,1}, \ldots, u_{i,n-1}, i = 1, \ldots, n$. Так как для L_i и L_j выполняются требования леммы 2 для любых i и j таких что i < j, то последовательно применяя ее для всех базисных многочленов получаем, что

$$u_{n,1} < u_{n-1,1} < \dots < u_{1,1} < u_{n,2} < u_{n-1,2} < \dots < u_{1,2} < \dots < u_{1,n-1}.$$
 (6)

Можно видеть, что, так как все узловые точки больше нуля, знак многочлена $L_i(z)$ при $z \to -\infty$ будет равен $(-1)^{n+i+1}$. В то же время знак $L_i'(z)$ будет противоположным $L_i(z)$ так как меняется четность многочлена и при этом не меняется знак при старшем коэффициенте, то есть $\mathrm{sign}(L_i'(z)) = \mathrm{sign}((-1)^{n+i})$ при $z \to -\infty$. И, следовательно, $\mathrm{sign}((-1)^i L_i'(z)) = \mathrm{sign}((-1)^{n+2i}) = \mathrm{sign}((-1)^n)$ при $z \to -\infty$, то есть $\mathrm{sign}((-1)^i L_i'(z))$ не зависит от i и имеет постоянный знак для любых i, что означает, что при $z \in (-\infty, u_{n,1})$ третье условие теоремы Элвинга выполняется и план является оптимальным.

Осталось изучить как ведут себя знаки $\operatorname{sign}((-1)^i L_i'(z))$ на остальных промежутках. На промежутках $[u_{j,1}, u_{j,n-1}]$ каждый базисный многочлен меняет свой знак ровно 1 раз и на этих промежутках знаки производных не совпадают со знаками экстремального многочлена, а на промежутках $(u_{j,n-1}, u_{j-1,1})$ нет ни одного корня и поэтому $\operatorname{sign}((-1)^i L_i'(z)) = \operatorname{sign}((-1)^{n+j}$ при $z \in (u_{j,n-1}, u_{j-1,1})$, что также подтверждает третье условие теоремы Элвинга и показывает, что показанный план оптимален для $j=1,\ldots n-1$.

На промежутке $(-\infty, u_{1,n-1})$ каждый базисный многочлен поменял свой знак одинаковое количество раз, а так как при $z \to -\infty$ условие выполнялось, то при $z \in (u_{1,n-1}, +\infty)$ план также является оптимальным.