Chapter 1

Universality of single-particle scattering

1.1 Finite truncation

I think I should include theorem 1 here (maybe)

Theorem 1. Let \widehat{G} be an (N+m)-vertex graph. Let G be the graph obtained from \widetilde{G} by attaching semi-infinite paths to the first N of its vertices, and let S be the corresponding S-matrix. Let H_G be the quantum walk Hamiltonian of equation [CITE: correct equation]. Let $k \in (-\pi, 0)$, $M, L \in \mathbb{N}$, $j \in [N]$, and

$$|\psi^{j}(0)\rangle = \frac{1}{\sqrt{L}} \sum_{x=M+1}^{M4L} e^{-ikx} |x,j\rangle.$$
 (1.1)

Let c_0 be a constant independent of L. Then, for all $0 \le t \le c_0 L$,

$$\left\| e^{-iH_G t} | \psi^j(0) \rangle - | \alpha^j(t) \rangle \right\| = \mathcal{O}(L^{-1/4}) \tag{1.2}$$

where

$$|\alpha^{j}(t)\rangle = \frac{1}{\sqrt{L}}e^{-2it\cos k}\sum_{x=1}^{\infty}\sum_{q=1}^{N}(\delta_{qj}e^{-ikx}R(x-\lfloor 2t\sin k\rfloor) + S_{qj}(k)e^{ikx}R(-x-\lfloor 2t\sin k\rfloor))|x,q\rangle$$

$$(1.3)$$

with

$$R(l) = \begin{cases} 1 & if \ l - M \in [L] \\ 0 & otherwise. \end{cases}$$
 (1.4)

n this section we prove Theorem ??. The proof is based on (and follows closely) the calculation from the appendix of reference [?].

Recall from (??) that the scattering eigenstates of $H_G^{(1)}$ have the form

$$\langle x, q | \mathrm{sc}_j(k) \rangle = e^{-ikx} \delta_{qj} + e^{ikx} S_{qj}(k)$$

for each $k \in (-\pi, 0)$.

Before delving into the proof, we first establish that the state $|\alpha^j(t)\rangle$ is approximately normalized. This state is not normalized at all times t. However, $\langle \alpha^j(t) | \alpha^j(t) \rangle = 1 + \mathcal{O}(L^{-1})$, as we now show:

$$\langle \alpha^{j}(t) | \alpha^{j}(t) \rangle = \frac{1}{L} \sum_{x=1}^{\infty} \left| e^{-ikx} R(x - \lfloor 2t \sin k \rfloor) + S_{jj}(k) e^{ikx} R(-x - \lfloor 2t \sin k \rfloor) \right|^{2}$$

$$+ \frac{1}{L} \sum_{q \neq j} \sum_{x=1}^{\infty} \left| S_{qj}(k) \right|^{2} R(-x - \lfloor 2t \sin k \rfloor)$$

$$= \frac{1}{L} \sum_{x=1}^{\infty} \left[R(x - \lfloor 2t \sin k \rfloor) + R(-x - \lfloor 2t \sin k \rfloor) \right]$$

$$+ \frac{1}{L} \sum_{x=1}^{\infty} \left(e^{-2ikx} S_{jj}^{*}(k) + e^{2ikx} S_{jj}(k) \right) R(x - \lfloor 2t \sin k \rfloor) R(-x - \lfloor 2t \sin k \rfloor)$$

$$= 1 + \frac{1}{L} \sum_{x=1}^{\infty} \left(e^{-2ikx} S_{jj}^{*}(k) + e^{2ikx} S_{jj}(k) \right) R(x - \lfloor 2t \sin k \rfloor) R(-x - \lfloor 2t \sin k \rfloor) + \mathcal{O}(L^{-1})$$

where we have used unitarity of S in the second step. When it is nonzero, the second term can be written as

$$\frac{1}{L} \sum_{x=1}^{b} \left(e^{-2ikx} S_{jj}^{*}(k) + e^{2ikx} S_{jj}(k) \right)$$

where b is the maximum positive integer such that $\{-b,b\} \subset \{M+1+\lfloor 2t\sin k\rfloor,\ldots,M+L+\lfloor 2t\sin k\rfloor\}$. Performing the sums, we get

$$\left| \frac{1}{L} \sum_{x=1}^{b} \left(e^{-2ikx} S_{jj}^{*}(k) + e^{2ikx} S_{jj}(k) \right) \right| = \frac{1}{L} \left| S_{jj}^{*}(k) e^{-2ik} \frac{e^{-2ikb} - 1}{e^{-2ik} - 1} + S_{jj}(k) e^{2ik} \frac{e^{2ikb} - 1}{e^{2ik} - 1} \right|$$

$$\leq \frac{2}{L|\sin k|}.$$

Thus we have $\langle \alpha^j(t) | \alpha^j(t) \rangle = 1 + \mathcal{O}(L^{-1}).$

Proof of Theorem ??. Define

$$|\psi^j(t)\rangle = e^{-iH_G^{(1)}t}|\psi^j(0)\rangle$$

and write

$$|\psi^j(t)\rangle = |w^j(t)\rangle + |v^j(t)\rangle$$

where

$$|w^{j}(t)\rangle = \int_{-\epsilon}^{\epsilon} \frac{d\phi}{2\pi} e^{-2it\cos(k+\phi)} \sum_{q=1}^{N} |\operatorname{sc}_{q}(k+\phi)\rangle \langle \operatorname{sc}_{q}(k+\phi)|\psi^{j}(0)\rangle$$

and $\langle w^j(t)|v^j(t)\rangle=0$. We take $\epsilon=\frac{|\sin k|}{2\sqrt{L}}$. Now

$$\langle \operatorname{sc}_{q}(k+\phi)|\psi^{j}(0)\rangle = \frac{1}{\sqrt{L}} \sum_{r=M+1}^{M+L} \left(e^{i\phi x} \delta_{qj} + e^{-i(2k+\phi)x} S_{qj}^{*}(k+\phi)\right),$$

SO

$$|w^{j}(t)\rangle = |w_{A}^{j}(t)\rangle + \sum_{q=1}^{N} |w_{B}^{q,j}(t)\rangle$$

where

$$|w_A^j(t)\rangle = \int_{-\epsilon}^{\epsilon} \frac{d\phi}{2\pi} e^{-2it\cos(k+\phi)} f(\phi) |\operatorname{sc}_j(k+\phi)\rangle$$
$$|w_B^{q,j}(t)\rangle = \int_{-\epsilon}^{\epsilon} \frac{d\phi}{2\pi} e^{-2it\cos(k+\phi)} g_{qj}(\phi) |\operatorname{sc}_q(k+\phi)\rangle$$

with

$$f(\phi) = \frac{1}{\sqrt{L}} \sum_{x=M+1}^{M+L} e^{i\phi x}$$
$$g_{qj}(\phi) = \frac{1}{\sqrt{L}} \sum_{x=M+1}^{M+L} e^{-i(2k+\phi)x} S_{qj}^*(k+\phi).$$

We will see that $|\psi^j(t)\rangle \approx |w^j(t)\rangle \approx |w^j_A(t)\rangle \approx |\alpha^j(t)\rangle$. Now

$$\langle w_A^j(t)|w_A^j(t)\rangle = \int_{-\epsilon}^{\epsilon} \frac{d\phi}{2\pi} \left|f(\phi)\right|^2 = \frac{1}{L} \int_{-\epsilon}^{\epsilon} \frac{d\phi}{2\pi} \frac{\sin^2(\frac{1}{2}L\phi)}{\sin^2(\frac{1}{2}\phi)}$$

but

$$\frac{1}{L} \int_{-\pi}^{\pi} \frac{d\phi}{2\pi} \frac{\sin^2(\frac{1}{2}L\phi)}{\sin^2(\frac{1}{2}\phi)} = 1$$

and

$$\frac{1}{L} \left(\int_{\epsilon}^{\pi} + \int_{-\pi}^{-\epsilon} \right) \frac{d\phi}{2\pi} \frac{\sin^2(\frac{1}{2}L\phi)}{\sin^2(\frac{1}{2}\phi)} = \frac{2}{L} \int_{\epsilon}^{\pi} \frac{d\phi}{2\pi} \frac{\sin^2(\frac{1}{2}L\phi)}{\sin^2(\frac{1}{2}\phi)}$$

$$\leq \frac{2}{L} \int_{\epsilon}^{\pi} \frac{d\phi}{2\pi} \frac{\pi^2}{\phi^2}$$

$$\leq \frac{\pi}{L\epsilon}.$$
(1.5)

Therefore

$$1 \ge \langle w_A^j(t)|w_A^j(t)\rangle \ge 1 - \frac{\pi}{L\epsilon}.$$

Similarly,

$$\langle w_B^{qj}(t)|w_B^{qj}(t)\rangle = \int_{-\epsilon}^{\epsilon} \frac{d\phi}{2\pi} \frac{|S_{qj}(k+\phi)|^2}{L} \frac{\sin^2(\frac{1}{2}L(2k+\phi))}{\sin^2(\frac{1}{2}(2k+\phi))},$$

and, using the unitarity of S,

$$\begin{split} \sum_{q=1}^{N} \langle w_B^{qj}(t) | w_B^{qj}(t) \rangle &= \frac{1}{L} \int_{-\epsilon}^{\epsilon} \frac{d\phi}{2\pi} \frac{\sin^2(\frac{1}{2}L(2k+\phi))}{\sin^2(\frac{1}{2}(2k+\phi))} \\ &\leq \frac{1}{L} \int_{-\epsilon}^{\epsilon} \frac{d\phi}{2\pi} \frac{1}{\sin^2(\frac{1}{2}(2k+\phi))}. \end{split}$$

Now $|\sin(k + \phi/2) - \sin k| \le |\phi|/2$ (by the mean value theorem). So

$$\sin^2\left(k + \frac{\phi}{2}\right) \ge \left(\left|\sin k\right| - \left|\frac{\phi}{2}\right|\right)^2.$$

Since $\epsilon = \frac{|\sin k|}{2\sqrt{L}} < |\sin k|$ we then have

$$\sum_{q=1}^{N} \langle w_B^{qj}(t) | w_B^{qj}(t) \rangle \le \frac{1}{L} \int_{-\epsilon}^{\epsilon} \frac{d\phi}{2\pi} \frac{4}{\sin^2 k}$$
$$= \frac{4\epsilon}{\pi L \sin^2 k}.$$

Hence

$$\begin{split} \langle w^j(t)|w^j(t)\rangle &\geq \langle w_A^j(t)|w_A^j(t)\rangle - 2\left|\sum_{q=1}^N \langle w_A^j(t)|w_B^{qj}(t)\rangle\right| \\ &\geq 1 - \frac{\pi}{L\epsilon} - 2\left\|\sum_{q=1}^n |w_B^{qj}(t)\rangle\right\| \\ &\geq 1 - \frac{\pi}{L\epsilon} - 2\sum_{q=1}^n \left\||w_B^{qj}(t)\rangle\right\| \\ &\geq 1 - \frac{\pi}{L\epsilon} - 4\sqrt{\frac{\epsilon N}{\pi L \sin^2 k}}, \end{split}$$

SO

$$\langle v^j(t)|v^j(t)\rangle \le \frac{\pi}{L\epsilon} + 4\sqrt{\frac{\epsilon N}{\pi L \sin^2 k}}$$

since $\langle v^j(t)|v^j(t)\rangle + \langle w^j(t)|w^j(t)\rangle = 1$. Thus

$$\||\psi^{j}(t)\rangle - |w_{A}^{j}(t)\rangle\| = \||v^{j}(t)\rangle + \sum_{q=1}^{N} |w_{B}^{qj}(t)\rangle\|$$

$$\leq \left(\frac{\pi}{L\epsilon} + 4\sqrt{\frac{\epsilon N}{\pi L \sin^{2} k}}\right)^{\frac{1}{2}} + 2\sqrt{\frac{\epsilon N}{\pi L \sin^{2} k}}.$$

With our choice $\epsilon = \frac{|\sin k|}{2\sqrt{L}}$, we have $|||\psi^j(t)\rangle - |w_A^j(t)\rangle|| = \mathcal{O}(L^{-1/4})$. We now show that

$$\left\| |w_A^j(t)\rangle - |\alpha^j(t)\rangle \right\| = \mathcal{O}(L^{-1/8}). \tag{1.6}$$

Letting

$$P = \sum_{q=1}^{N} \sum_{x=1}^{\infty} |x, q\rangle \langle x, q|$$

be the projector onto the semi-infinite paths, to show equation (1.6) it is sufficient to show that

$$||P|w_A^j(t)\rangle - |\alpha^j(t)\rangle|| = \mathcal{O}(L^{-1/4})$$
(1.7)

since this implies that

$$||P|w_A^j(t)\rangle|| = |||\alpha^j(t)\rangle|| + \mathcal{O}(L^{-1/4})$$
$$= 1 + \mathcal{O}(L^{-1/4})$$

and hence

$$\|(1-P)|w_A^j(t)\rangle\|^2 = \||w_A^j(t)\rangle\|^2 - \|P|w_A^j(t)\rangle\|^2$$

$$\leq 1 - (1 + \emptyset(L^{-1/4}))$$

$$= \emptyset(L^{-1/4}). \tag{1.8}$$

From the above formula we now see that inequality (1.7) implies (1.6).

Noting that

$$\frac{1}{\sqrt{L}}R(l) = \int_{-\pi}^{\pi} \frac{d\phi}{2\pi} e^{-i\phi l} f(\phi),$$

we write

$$\langle x, q | \alpha^{j}(t) \rangle = e^{-2it \cos k} \left(\delta_{qj} e^{-ikx} \int_{-\pi}^{\pi} \frac{d\phi}{2\pi} e^{-i\phi(x - \lfloor 2t \sin k \rfloor)} f(\phi) + S_{qj}(k) e^{ikx} \int_{-\pi}^{\pi} \frac{d\phi}{2\pi} e^{-i\phi(-x - \lfloor 2t \sin k \rfloor)} f(\phi) \right). \tag{1.9}$$

On the other hand,

$$\langle x, q | w_A^j(t) \rangle = \int_{-\epsilon}^{\epsilon} \frac{d\phi}{2\pi} e^{-2it\cos(k+\phi)} f(\phi) \left(e^{-i(k+\phi)x} \delta_{qj} + e^{i(k+\phi)x} S_{qj}(k+\phi) \right). \tag{1.10}$$

Using equations (1.9) and (1.10) we can write

$$P|w_A^j(t)\rangle = |\alpha^j(t)\rangle + \sum_{i=1}^7 |c_i^j(t)\rangle$$

where
$$P|c_i^j(t)\rangle = |c_i^j(t)\rangle$$
 and
$$\langle x, q|c_1^j(t)\rangle = \delta_{qj}e^{-2it\cos k}e^{-ikx}\int_{-\pi}^{\pi}\frac{d\phi}{2\pi}e^{-i\phi x}f(\phi)\left(e^{2it\phi\sin k} - e^{i\phi\lfloor 2t\sin k\rfloor}\right)$$

$$\langle x, q|c_2^j(t)\rangle = S_{qj}(k)e^{-2it\cos k}e^{ikx}\int_{-\pi}^{\pi}\frac{d\phi}{2\pi}e^{i\phi x}f(\phi)\left(e^{2it\phi\sin k} - e^{i\phi\lfloor 2t\sin k\rfloor}\right)$$

$$\langle x, q|c_3^j(t)\rangle = -\delta_{qj}e^{-2it\cos k}e^{-ikx}\left(\int_{\epsilon}^{\pi} + \int_{-\pi}^{-\epsilon}\right)\frac{d\phi}{2\pi}e^{-i\phi x}f(\phi)e^{2it\phi\sin k}$$

$$\langle x, q|c_3^j(t)\rangle = -S_{qj}(k)e^{-2it\cos k}e^{ikx}\left(\int_{\epsilon}^{\pi} + \int_{-\pi}^{-\epsilon}\right)\frac{d\phi}{2\pi}e^{i\phi x}f(\phi)e^{2it\phi\sin k}$$

$$\langle x, q|c_3^j(t)\rangle = \delta_{qj}e^{-ikx}\int_{-\epsilon}^{\epsilon}\frac{d\phi}{2\pi}e^{-i\phi x}f(\phi)\left(e^{-2it\cos(k+\phi)} - e^{-2it\cos k+2it\phi\sin k}\right)$$

$$\langle x, q|c_5^j(t)\rangle = \delta_{qj}e^{-ikx}\int_{-\epsilon}^{\epsilon}\frac{d\phi}{2\pi}e^{i\phi x}f(\phi)\left(e^{-2it\cos(k+\phi)} - e^{-2it\cos k+2it\phi\sin k}\right)$$

$$\langle x, q|c_7^j(t)\rangle = e^{ikx}\int_{-\epsilon}^{\epsilon}\frac{d\phi}{2\pi}e^{i\phi x}e^{-2it\cos(k+\phi)}f(\phi)\left(S_{qj}(k+\phi) - S_{qj}(k)\right).$$

We now bound the norm of each of these states:

$$\langle c_1^j(t)|c_1^j(t)\rangle = \sum_{q=1}^N \sum_{x=1}^\infty \left| \delta_{qj} e^{-2it\cos k} e^{-ikx} \int_{-\pi}^{\pi} \frac{d\phi}{2\pi} e^{-i\phi x} f(\phi) \left(e^{2it\phi\sin k} - e^{i\phi\lfloor 2t\sin k\rfloor} \right) \right|^2$$

$$\leq \sum_{q=1}^N \sum_{x=-\infty}^\infty \left| \delta_{qj} e^{-2it\cos k} e^{-ikx} \int_{-\pi}^{\pi} \frac{d\phi}{2\pi} e^{-i\phi x} f(\phi) \left(e^{2it\phi\sin k} - e^{i\phi\lfloor 2t\sin k\rfloor} \right) \right|^2$$

$$= \int_{-\pi}^{\pi} \frac{d\phi}{2\pi} |f(\phi)|^2 \left| e^{2it\phi\sin k} - e^{i\phi\lfloor 2t\sin k\rfloor} \right|^2$$

$$\leq \int_{-\pi}^{\pi} \frac{d\phi}{2\pi} |f(\phi)|^2 \left(2t\phi\sin k - \lfloor 2t\sin k\rfloor \phi \right)^2$$

$$\leq \int_{-\pi}^{\pi} \frac{d\phi}{2\pi} |f(\phi)|^2 \phi^2$$

where we have used the facts that $|e^{is}-1|^2 \le s^2$ for $s \in \mathbb{R}$ and $|2t\sin k - \lfloor 2t\sin k \rfloor| < 1$. In the above we performed the sum over x using the identity

$$\sum_{x=-\infty}^{\infty} e^{i(\phi-\tilde{\phi})x} = 2\pi\delta(\phi-\tilde{\phi}) \text{ for } \phi, \tilde{\phi} \in (-\pi,\pi).$$

We use this fact repeatedly in the following calculations. Continuing, we get

$$\langle c_1^j(t)|c_1^j(t)\rangle \le \frac{1}{L} \int_{-\pi}^{\pi} \frac{d\phi}{2\pi} \frac{\sin^2(\frac{1}{2}L\phi)}{\sin^2(\frac{1}{2}\phi)} \phi^2$$
$$\le \frac{1}{L} \int_{-\pi}^{\pi} \frac{d\phi}{2\pi} \frac{1}{\sin^2(\frac{1}{2}\phi)} \phi^2$$
$$\le \frac{\pi^2}{L}$$

using the fact that $\sin^2(\phi/2) \ge \phi^2/\pi^2$ for $\phi \in [-\pi, \pi]$. Similarly we bound $\langle c_2^j(t)|c_2^j(t)\rangle \le \pi^2/L$.

Using equation (1.5) we get

$$\langle c_3^j(t)|c_3^j(t)\rangle \le \left(\int_{\epsilon}^{\pi} + \int_{-\pi}^{-\epsilon}\right) \frac{d\phi}{2\pi} |f(\phi)|^2$$

$$\le \frac{\pi}{L\epsilon}$$

and similarly for $\langle c_4^j(t)|c_4^j(t)\rangle$. Next, we have

$$\langle c_5^j(t)|c_5^j(t)\rangle \leq \int_{-\epsilon}^{\epsilon} \frac{d\phi}{2\pi} |f(\phi)|^2 \left|e^{-2it\cos(k+\phi)} - e^{-2it\cos k + 2it\phi\sin k}\right|^2$$

$$\leq \int_{-\epsilon}^{\epsilon} \frac{d\phi}{2\pi} |f(\phi)|^2 \left(2t\cos(k+\phi) - 2t\cos k + 2t\phi\sin k\right)^2$$

$$= \int_{-\epsilon}^{\epsilon} \frac{d\phi}{2\pi} |f(\phi)|^2 \left(2t\cos k \left(\cos\phi - 1\right) + 2t\sin k \left(\phi - \sin\phi\right)\right)^2$$

$$\leq \int_{-\epsilon}^{\epsilon} \frac{d\phi}{2\pi} |f(\phi)|^2 4t^2\phi^4$$

$$= \frac{4t^2}{L} \int_{-\epsilon}^{\epsilon} \frac{d\phi}{2\pi} \frac{\sin^2(\frac{1}{2}L\phi)}{\sin^2(\frac{1}{2}\phi)} \phi^4$$

$$\leq \frac{4t^2}{L} \int_{-\epsilon}^{\epsilon} \frac{d\phi}{2\pi} \pi^2 \phi^2$$

$$= \frac{4\pi}{3L} t^2 \epsilon^3$$

and we have the same bound for $|c_6^j(t)\rangle$. Finally,

$$\langle c_7^j(t)|c_7^j(t)\rangle \le \int_{-\epsilon}^{\epsilon} \frac{d\phi}{2\pi} |f(\phi)|^2 \sum_{q=1}^N |S_{qj}(k+\phi) - S_{qj}(k)|^2.$$

Now, for each $q \in \{1, \dots, N\}$,

$$|S_{qj}(k+\phi) - S_{qj}(k)| \le \Gamma|\phi|$$

where the Lipschitz constant

$$\Gamma = \max_{q,j \in \{1,\dots,N\}} \max_{k' \in [-\pi,\pi]} \left| \frac{d}{dk'} S_{qj}(k') \right|$$

is well defined since each matrix element $S_{qj}(k')$ is a bounded rational function of $e^{ik'}$, as

can be seen from equation (??). Hence

$$\langle c_7^j(t)|c_7^j(t)\rangle \leq \int_{-\epsilon}^{\epsilon} \frac{d\phi}{2\pi} |f(\phi)|^2 N\Gamma^2 \phi^2$$

$$= \frac{N\Gamma^2}{L} \int_{-\epsilon}^{\epsilon} \frac{d\phi}{2\pi} \frac{\sin^2(\frac{1}{2}L\phi)}{\sin^2(\frac{1}{2}\phi)} \phi^2$$

$$\leq \frac{N\Gamma^2}{L} \int_{-\epsilon}^{\epsilon} \frac{d\phi}{2\pi} \pi^2$$

$$= N\Gamma^2 \frac{\pi\epsilon}{L}.$$

Now using the bounds on the norms of each of these states we get

$$||P|w_A^j(t)\rangle - |\alpha^j(t)\rangle|| \le 2\frac{\pi}{\sqrt{L}} + 2\sqrt{\frac{\pi}{L\epsilon}} + 2\sqrt{\frac{4\pi}{3L}t^2\epsilon^3} + \sqrt{N\Gamma^2\frac{\pi\epsilon}{L}}$$
$$= \mathcal{O}(L^{-1/4})$$

using the choice $\epsilon = \frac{|\sin p|}{2\sqrt{L}}$ and the fact that $t = \mathcal{O}(L)$.

Note that this analysis assumes that $N = \emptyset(1)$, which is the case in our applications of Theorem ??.

1.2 Using scattering for simple computation

1.3 Encoded two-qubit gates

1.4 Single-qubit blocks

1.5 Combining blocks

It might be worthwhile to include a new proof of universal computation of single-particle scattering in this model.