HYBRID MODEL FOR LASSITUDE DETECTION SYSTEM IN DRIVERS USING DEEP LEARNING AND AUTOMATIC BRAKING SYSTEM SYSTEM AND LI-FI COMMUNICATION SYSTEM

PROJECT GUIDE: ER. BRAMH PRAKASH DWIVEDI

TEAM MEMBERS:

MAYANK PANDEY MIMANSA TRIPATHI

OM MISHRA

(1812231073) (1812231074) (1812231086)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGINEERING AND MANAGEMENT (SRMCEM), LUCKNOW

INTRODUCTION

□Lassitude refers to a condition of low alertness and cognitive impairment. Exorbitant brain pursuit and stimulation can make a person feel cognitively worn out, and this feeling is analogous to physical fatigue.

□People may lose their attention due to lassitude, and this may cause severe injuries analogous to accident caused while driving vehicle.

AIM

The aim of the project is Real time lassitude detection in drivers for giving better approach to reduce accidents with the use of deep learning and Li-Fi communication.

PROJECT OBJECTIVES

\square MODULE 1:

- 1.1 Preprocessing the eye data acquired from MRL eye dataset for training and testing.
- 1.2 Training and performance analysis of the acquired data by using different CNN architecture (Vgg-16, inceptionV3, MobileNetV2). □ MODULE 2:

Real time detection for capturing most relevant visual trait from the cropped Region Of Interest (ROI) using Haar- Cascade Classifier.

\square MODULE 3:

Implementation of hardware(vehicle) prototype with Automatic Braking System.

MODULE 4:

Developing transmitter receiver circuit on the front-end and back-end of vehicle prototype respectively for data transmission through LI-FI Communication System.

BLOCK DIAGRAM

COMPARISON OF CLASSIFIERS

CNN CLASSIFIER	ACCURACY	LOSS	
INCEPTION V3	95.12	12.09	
MOBILENETV2	91.89	18.23	
VGG-16	89.68	22.67	

REFERENCES

- I. A. Altameem, A. Kumar, R. C. Poonia, S. Kumar and A. K. J. Saudagar, "Early Identification and Detection of Driver Drowsiness by Hybrid Machine Learning," *IEEE Access*, vol. 9, pp. 162805-162819, November 2021.
- II. R. Tamanani, R. Muresan and A. Al-Dweik, "Estimation of Driver Vigilance Status Using Real-Time Facial Expression and Deep Learning," *IEEE Sensors Letters*, vol. 5, no. 5, pp. 1-4, May 2021.
- III. P. Krishnan, "Design of Collision Detection System for Smart Car Using Li-Fi and Ultrasonic Sensor," *IEEE Transactions on Vehicular Technology*, vol. 67, no. 12, pp. 11420-11426, December 2018.

PERFORMANCE ANALYSIS OF INCEPTION V3 ARCHITECTURE

MODEL CHECKPOINTS

checkpoint monitor='val_loss', save_best_only=True verbose=3
earlystop monitor = 'val_loss', patience=7, verbose = 3,
restore_best_weights=True
learning_rate monitor = 'val_loss', patience=3,verbose=3
callbacks checkpoint, early stop, learning rate
epoch 20 (randomly chosen)

SOFTWARE IMPLEMENTATION

☐ Score will increase to 25 and buzzer will beep.

HARDWARE IMPLEMENTATION

CONCLUSION

- •The proposed system is used to avoid various road accidents caused by lassitude.
- Using CNN architecture with transfer learning gave higher accuracy of 95.12.
- •This model achieves highly accurate and reliable detection of lassitude and also preventing the accident by applying automatic brakes and sending warning signal to vehicle behind it.