RESERVE COPT.

PATENT SPECIFICATION

No. 19299 / 37. Application Date: May 2, 1936.

476.376

(Patent of Addition to No. 474,614: Convention Date (Austria) May 3, 1935.)

Complete Specification Accepted: Dec. 2, 1937.

Divided out of No. 474,614, under which a Specification was laid open to inspection under the provisions of Section 91 (4) (a) of the Patents and Designs Acts, 1907 to 1932, on Nov. 4, 1936.

COMPLETE SPECIFICATION

Method of Producing Therapeutically and Disinfectantly Active Substances

We, SYNGALA FABRIC FÜR CHEMISCH-SYNTHETISCHE UND GALENISCHE ARZNEI-MUTTEL GESELLSCHAFT M.B.H., a Limited MITTEL USSELLSCHAFT M.B.H., a Limited Liability Company incorporated under the 5 laws of Austria, of 22, Seebockgasse, Vienna XVII. and Dr. Farry Ersci, an Austrian Citizen, of 38, Wahringerstrasse, Vienna XVIII, Austrie, do hereby declare the nature of this invention and 10 in what manner the same is to be performed, to be particularly described and ascertained in and by the following statement:-

This invention relates to an improve-15 ment in or modification of the invention claimed in Specification No. 12517 of 1936 (Serial No. 474,614) which covers a method of producing gold and silver-containing substances of active therapeutic, disinfectant, and/or sterilising properties, according to which compounds yielding silver ions and gold ions are caused to react conjointly, in an aqueous or other suitable liquid medium in the 25 presence of alkaline substances with compounds of metals which are capable of existing in a plurality of valencies, a compound of a metal in a lower valency, present as a cation, being employed.

The present invention differs from this method in that substances containing metallic gold and silver are produced by a method which does not involve co-

deposition of the gold and silver.
It has already been proposed for sterilising and/or disinfecting purposes. to employ metals or metallic compounds, or mixtures thereof, also with the use of carrier substances, thereby as a rule 40 utilising the oligodynamic effect observable in connection with metals.

The present invention provides a method of producing substances of active therapeutic, disinfectant, and/or sterilising 45 properties, and containing highly active metallic gold and silver, together with substances of an oxidising action. The invention further covers a method of

uniformly impregnating a large variety of carrier substances with highly active substances containing metallic gold and silver, in a very simple and economical

It is already known to mix gold salt solutions with solutions of metal salts such as manganese, nickel, cobalt and iron salts, with the addition of an alkali to promote reaction and to obtain precipitaiion .

It has already been proposed to produce 60 therapeutic or disinfectant substances by causing a compound producing silver ions to react with a compound of a metal which is capable of existing in a plurality of valencies, and which is present in a lower valency, in an alkaline medium. In contrast to these known products the sub-stances produced by the present process have an increased activity so that the content of active metals can be reduced whilst 70 the activity remains the same,

According to the present invention a method of producing substances of active therapeutic, disinfectant, and/or sterilising properties, is characterised in that 75 highly active gold-containing substances. which are formed by causing compounds yielding gold ions to react in the presence of an alkaline medium with compounds of metals which are capable of existing in of metals which ere capable of exhaling an a plurality of valencies, a compound of a metal in a lower valency being employed, are added to or have added thereto highly active oligodynamic substances containing metallic silver.

Suitable alkaline substances for use in the reaction are, for example alkalies, alkali carbonates, and organic bases, as also the oxides, hydroxides, and alkaline salts of the metallic compounds used for 90 the conversion reaction. Examples of suitable metallic compounds are manganous, cobaltons, nickelous, ferrous, and cerous salts on the one hand, and gold salts such as gold chloride, chlorauric 95 acid, and the like on the other hand.

When these substances are reacted in an alkaline medium there result bulky but readily filterable and easily washed precipitates consisting of extremely finely 5 divided gold and the higher valency oxides or hydroxides of the multivalent

metals used.

The conversion reaction proceeds for example, according to the following equation: -2 Au. - 3 Mn . + 12 OH = 2 Au + 3 MnO₂ + 6 H₂O.

Auriferous substances obtained in this way have an eminently activating effect on the properties of highly active oligo-15 dynamic substances containing metallic silver, and thus, in addition to many economic advantages, possess very con-siderable therapeutic advantages over known gold preparations. Thus, for 20 example, when the reaction product from

manganous salt, gold chloride, and alkali, is added to highly active oligodynamic substances containing metallic silver, the activity of these latter is increased to a 25 far greater extent than by means of a

mixture of manganese dioxide and gold produced in any other manner, substances containing gold and silver produced in accordance with the present invention, 30 and containing gold in a quantity amounting to 10% of the quantity of argentiferous substance present, are of far greater efficacy than products equally

rich in silver but lacking the addition of 35 the gold-containing substance.

The precipitation of gold should take place in the absence of compounds capable of forming soluble complex salts with the said metallic compounds capable 40 of existing in a plurality of valencies. Very special advantages are afforded

by a form of the method according to the invention which consists in directly but independently depositing the gold and 45 silver-containing substances on to various kinds of carrier material in the course of the formation of these substances. For this purpose the impregnating of the

carriers, for example surgical dressing 50 material, is carried out in such a manner that the carriers are brought in contact with compounds yielding gold ions, and with a compound of a metal which is

capable of existing in a plurality of 55 valencies, but which is present in a lower valency as cation, and either previously or thereafter treated with substances of alkaline reaction or solutions thereof. Before or after this treatment the carriers 60 are impregnated with highly active silver-

containing substances, which are applied in analogous manner to the gold-containing components.

As carriers there may serve, for instance 65 for the production of antiseptic and even

permanently sterile surgical dressing material, fibrous matter of all kinds, such as textile fibres, cotton, and fabrics; further, there can also be employed as carrier material substances such as animal charcoal, silica gels, bole, and other pulverulent substances which are inoccuous for the purpose in view and which can also themselves serve as suppliers of hydroxyl ions. This can be 75 effected either by pretreating the carrier with substances of alkaline reaction or by using such substances as are themselves of sufficiently alkaline reaction such as alkaline earth carbonates, oxides such as MgO, ZnO, and others. In all these cases it is sufficient to treat the carriers with a solution of the starting materials and subsequently to wash out any excess of these substances. It is also of course 85 possible to employ as carriers substances (such as animal charcoal) which themselves have therapeutical properties In the majority of cases the gold con-

tent should only amount to a fraction of 90 the silver content of the product.

In many cases it is advantageous to cause the appropriate substances for forming the gold and silver-containing components to react independently in the 95 presence of protective colloids, for example albuminous bodies, vegetable munilages, lecithins, and the like. In this manner colloidal solutions or extremely fine suspensions of the reaction products 100 can be produced, which have proved to be effective for example as activators or for the treatment of various infectious diseases such as for instance gonorrhoea.

In applying the method according to 105 the invention for the impregnating of carrier substances the quantity of the gold and higher valency metal oxides, can be accurately predetermined, in a simple manner, merely by suitable proportioning 110 of the alkaline substance used. For example a carrier, such as fibrous material, may be previously impregnated with a measured quantity of alkali. If this fibre material be then reacted for 115 example, with a solution of a mixture containing gold chloride in excess and manganese sulphate there becomes deposited on the fibrous material only that quantity of gold and manganese 120 dioxide which is equivalent to the quantity of alkali used. A predetermined quantity of silver is precipitated in an analogous manner on the carrier before or after the deposition of the gold. The pro- 125 portions of the individual components, and the order in which they are used, can be varied to suit the purpose for which

the product is to be used.

476,376

3

EXAMPLES.

(1) A solution of 8.25 grammes of chlorauric acid and 8.6 grammes of manganese nitrate hydrate in 200 ccs. of 5 water is admixed with caustic soda solution in excess. The resulting precipitate is filtered under suction, repeatedly washed with water, and dried. This precipitate is a black powder of the 10 following composition:—2.Au.3MnO.s. in which the gold is present with the quadrivalent manganese oxide in a state

of perfectly homogeneous distribution. The product thus obtained is intimately 15 mixed with a highly active finely powdered substance containing metallic silver, preferably produced by the action of compounds producing silver ions on a compound of a metal capable of existing

20 in a number of valencies and as a compound in a lower valency in an alkaline medium, whilst of the suriferous substance there is used 1/10 of the quantity of the argentiferous substance used.

(2) 75 grammes of gause is slowly dipped into a solution of 0.83 gramme of chlorauric acid and 0.86 gramme of manganese nitrate in 400 ccs. of water. The expressed gauze is then dipped in a 30 4% caustic soda solution, and washed out. The gause is then immersed in a solution

of 1.7 grammes of silver nitrate and 1.45 grammes of manganese nitrate hydrate in 500 ccs, of water, expressed, once more 85 bathed in lye, washed and dried. (3) 200 grammes of gauze is dipped in

a solution of 6.4 grammes of silver nitrate and 5.8 grammes of manganese nitrate hydrate in a litre of water. The gauze, to after having been squeezed out, is immersed in a 4% NaOH bath, washed, and dried. The gauze is then introduced into a solution of 0.83 gramme of chlorauric acid and 0.86 gramme of manganese 45 nitrate hydrate in a litre of water,

expressed, once more immersed in the lye

bath, washed, and dried.
(4) There is first prepared a protective colloidal solution, for example by intro-50 ducing into 500 cm3 of boiling distilled water, 40 g. of gum acacia or another vegetable adhesive and stirring this mixture until a solution is formed and the solution has cooled. Thereupon the solu-55 tion thus obtained is diluted to 1400 cm2 and there are added thereto 16 g. of sodium hydroxide dissolved in 100 cm3 distilled water. Into this solution there is allowed to flow in small proportions and

60 whilst constantly stirring, a mixture of 32 g, silver nitrate and 27 g, manganese nitrate containing the water of crystallisation (Mn(NO3), 6H2O) dissolved in 300 cm3. Subsequently there is added to this as reaction mixture, in which decomposition

has already taken place between silver nitrate, manganese nitrate and lye, a solution of 0.25 g. yellow gold chloride (HAuCl₄ AH₂O) and 0.26 g, manganese nitrate dissolved in 100 cm⁸ distilled 70 water. The gold chloride and manganese nitrate last added also react with the soda lye still present in slight excess. The new complete colloid solution of the reaction product is diluted to 2100 em" with distilled water and dialysed in an electrodialysing apparatus or in a parchment tube until the neutral salts resulting from the decomposition are removed. The resulting reaction product constitutes a highly active and very resistant colloid

solution. In connection with the quantities of the separate initial substances referred to in this example there have been used 85 stoichiometric proportions, that is to say the quantity of soda lye added to the protecting colloid solution is such that it is sufficient both for the decomposition of the silver nitrate as also for the decomposition of the gold salt. An excess of soda lye is not disadvantageous as it can be removed easily by the subsequent dialysis. The sequence of the two decompositions described may also be modified, for example the decomposition of the gold salt may be effected first and then that of the silver salt: both may also be carried out in separate solutions which are then mixed together.

Having now particularly described and ascertained the nature of our said inventien and in what manner the same is to be performed, we declare that what we claim

A method of producing substances

of active therapeutic, disinfectant, and/or sterilising properties, characterised in that highly active gold-containing substances, which are formed by causing com- 110 pounds yielding gold ions to react in the presence of an alkaline medium with compounds of metals which are capable of existing in a plurality of valencies, a compound of a metal in a lower valency 115 being employed, are added to or have added thereto highly active oligodynamic substances containing metallic silver.

2. A method according to claim 1, characterised in that as silver-containing 120 substances, there are used substances obtained by the reaction of compounds yielding silver ions with compounds of metal capable of existing in a plurality of valencies, in an alkaline medium, a 125 compound of a metal in a lower valency

being used.
3. A method according to claim 2 characterised in that the compounds yielding gold ions and silver ions, are 130 independently reacted with the further reaction compounds in the presence of carrier substances, there being effected firstly either the precipitation of the gold-5 containing substances on the carrier sub-

stance or the silver-containing substances.

4. A method according to claim 3, characterised by the employment as the said carrier substances of substances 10 which are themselves of sufficiently

10 which are themselves of sufficiently alkaline reaction, such as for example metal oxides, carbonates and the like or by the impregnation of inert carriers with substances of alkaline reaction.

5 5. A method according to claim 2, characterised by the fact that the chemical conversion for forming the gold and silver-containing components is

caused to proceed in the presence of protection colloids (such as for example 20 albuminous bodies, vegetable mucilage, and the like)

and the like).

6. The method of producing the gold and silver-containing substances of active therapeutic, disinfectant and/or sterilis- 25 ing properties, substantially as described with reference to the examples given.

7. Gold and silver-containing substances of active therapeutic, disinfectant, and/or sterilising properties, whenever 30 produced by the method according to any of the preceding closer.

of the preceding claims.

Dated this 30th day of April, 1986.

HY. FAIRBEOTHER,
Chartered Patent Agent,
30 & 32, Ludgate Hill, London, E.C.4.

Leamington Spa: Printed for His Majesty's Stationery Office, by the Courier Press .-- 1938.