随机微分方程作业

姓名: 李新鹏 学号:202318000206005

设 (Ω, \mathcal{F}, P) 是一个概率空间, $\{\mathcal{F}_t, t \geq 0\}$ 是 \mathcal{F} 的一族子 σ 代数, $X = \{X_t, t \geq 0\}$ 是 (Ω, \mathcal{F}, P) 上的随机 过程。

- (1) **停时的理解**:停时是一个随机变量 $\tau:\Omega\to[0,\infty)$,满足对任意 $t\geq0$,事件 $\{\tau\leq t\}\in\mathcal{F}_t$ 。例如,布朗运 动首次击中某点的时间是停时。
- (2) 马氏过程的理解: 马氏过程要求未来状态的条件分布仅依赖于当前状态, 与过去无关。在数学上表示为对 s < t,有

$$P(X_t \in A \mid \mathcal{F}_s) = P(X_t \in A \mid X_s)$$
 a.s.

例如, 布朗运动是马氏过程。

(3) **例子**: 考虑 Barlow 的二维扩散过程例子。该过程在平面上的扩散系数在垂直线 x=0 处不连续: 当从左 侧 x < 0 接近时,水平扩散系数为 σ_1 ; 当从右侧 x > 0 接近时,水平扩散系数为 σ_2 。状态空间仅记录位 置(x,y),而未记录到达方向。这一过程是马氏的,因为当前位置唯一决定了扩散系数。然而,当停时 τ 为首次到达 x=0 的时间时,未来行为依赖于进入方向(左或右),而状态 (0,y) 本身无法提供这一信息, 导致强马氏性不成立。因此,该过程是马氏过程但不是强马氏过程。

- (1) **布朗运动的定义**: 一维 \mathcal{F}_t -布朗运动 $(W_t)_{t>0}$ 满足:
 - $W_0 = 0$;
 - 轨道是连续的;
 - 对 s < t, 增量 $W_t W_s$ 独立于 \mathcal{F}_s , 且服从 N(0, t s) 的正态分布。
- (2) 证明 W_t 是鞅: 对 $s \leq t$,

$$\mathbb{E}[W_t \mid \mathcal{F}_s] = \mathbb{E}[W_s + (W_t - W_s) \mid \mathcal{F}_s] = W_s + \mathbb{E}[W_t - W_s] = W_s.$$

故 W_t 是 \mathcal{F}_t -鞅。

(3) **证明** (B_t) **的性质**: 首先 $B_0 = 0$ 且 B_t 轨道连续。其次由布朗运动的独立增量性, $B_t = W_{t+r} - W_r$ 的增 量独立于 $\mathcal{F}_r = \mathcal{G}_0$ 。且 $B_t - B_s = W_{t+r} - W_{s+r}$ 独立于 \mathcal{G}_s ,服从 N(0, t-s)。故 (B_t) 是 \mathcal{G}_t -布朗运动。

三,

(1) **下鞅证明**: 由 Jensen 不等式, $|W_t|$ 是下鞅。又因 $e^{\lambda x}$ 为凸增函数, 故 $X_t = e^{\lambda |W_t|}$ 也是下鞅。

(2) 概率不等式: 应用 Doob 极大不等式于 $X_t = e^{\lambda W_t}$, 取 $\lambda = x/t$, 得

$$P\left(\sup_{0\leq s\leq t}|W_s|>x\right)=P\left(\sup_{0\leq s\leq t}|X_s|>e^{\frac{x^2}{t}}\right)\leq 2e^{-\frac{x^2}{2t}}.$$

(3) 概率不等式: 由 Burkholder-Davis-Gundy 不等式, 存在常数 c 使得

$$\mathbb{E}[\sup_{0 \le s \le t} |x_s|^2] \le c \mathbb{E}[\int_0^t \sigma_s^2 ds] \le 4ct.$$

从而知 x_t 的指数是连续鞅,再由指数鞅不等式易得

$$P\left(\sup_{0 \le s \le t} |x_s| > x\right) \le 2e^{-\frac{x^2}{8t}}.$$

(4) 指数可积性:

给定随机过程 $x_t = \int_0^t \sigma_s \, dW_s$,其中 $1/2 \le |\sigma_s| \le 2$ 。其二次变差为:

$$\langle x \rangle_t = \int_0^t \sigma_s^2 \, ds \quad \Longrightarrow \quad \frac{1}{4} t \le \langle x \rangle_t \le 4t.$$

由 Dambis-Dubins-Schwarz 定理,存在标准布朗运动 $\{B_s\}_{s\geq 0}$,使得:

$$x_t = B_{\langle x \rangle_t}.$$

则停时 $\tau_1 = \inf\{t > 0 : |x_t| > 1\}$,对应的布朗运动满足:

$$|x_{\tau_1}| = |B_{\langle x \rangle_{\tau_1}}| = 1.$$

根据二次变差的下界 $\langle x \rangle_{\tau_1} \geq \frac{1}{4}\tau_1$, 可知:

$$\tau_1' \le \langle x \rangle_{\tau_1} \le 4\tau_1,$$

其中 $\tau'_1 = \inf\{s : |B_s| \ge 1\}$ 为标准布朗运动首次到达 1 的时间。 而对于标准布朗运动,其首次通过时间 τ'_1 的矩生成函数满足:

$$\mathbb{E}\left[e^{\mu\tau_1'}\right]<\infty\quad \text{当且仅当}\quad \mu<\frac{\pi^2}{8}.$$

结合 $\tau_1' \leq 4\tau_1$, 可得:

$$\mathbb{E}\left[e^{\mu\tau_1}\right] \le \mathbb{E}\left[e^{4\mu\tau_1'}\right].$$

因此, 当 $4\mu < \frac{\pi^2}{8}$ 即 $\mu < \frac{\pi^2}{32}$ 时, 有:

$$\mathbb{E}\left[e^{\mu\tau_1}\right] \le \mathbb{E}\left[e^{\frac{\pi^2}{8}\tau_1'}\right] < \infty.$$

(5) 高维推广:各分量独立,二次变差被控制,因此可推广到高维情形。

四、

记 $g_t = -\dot{h}_t$, 由 Girsanov 定理知

$$X_t = W_t - \int_0^t g_s \, ds$$

在 ℚ 下是标准布朗运动,其中

$$\log \frac{d\mathbb{Q}}{d\mathbb{P}} = \int_0^t g_s \, dW_s - \frac{1}{2} \int_0^t g_s^2 \, ds,$$

从而知

$$\int_0^t g_s \, dX_s = \int_0^t g_s \, dW_s - \int_0^t g_s^2 \, ds,$$

两边在 ℚ 下取期望得

$$\mathbb{E}_{\mathbb{Q}}\left[\int_{0}^{t} g_{s} dW_{s}\right] = \int_{0}^{t} g_{s}^{2} ds$$

因此我们有

$$H(Q|P) = \mathbb{E}_{\mathbb{Q}}[\log \frac{d\mathbb{Q}}{d\mathbb{P}}] = \mathbb{E}_{\mathbb{Q}}[\int_{0}^{t} g_{s} dW_{s}] - \frac{1}{2} \int_{0}^{t} g_{s}^{2} ds = \frac{1}{2} \int_{0}^{t} g_{s}^{2} ds = \frac{1}{2} \int_{0}^{t} \dot{h}_{s}^{2} ds.$$

Ŧi.、

若解u存在,则由调和函数性质,

$$u(0) = \mathbb{E}_0[u(W_{\tau_D})]$$

表示从原点出发的布朗运动先击中原点的概率。但在 $d \ge 2$ 时,原点为极点,布朗运动几乎不击中原点,因此 u(0) = 0。这与 u(0) = 1 矛盾,故解不存在。

六、

定义扩散过程 X_t ,满足随机微分方程:

$$dX_t = \sigma(X_t)dW_t + b(X_t)dt,$$

其中 σ 满足 $\sigma\sigma^{\top} = (a_{ij}), b = (b_1, \dots, b_d).$

对 u 沿扩散过程应用 Itô 公式:

$$du(X_t) = (a_{ij}(X_t)\partial_{ij}u(X_t) + b_i(X_t)\partial_iu(X_t)) dt + \partial_iu(X_t)\sigma_{ik}(X_t)dW_t^k.$$

由 $Lu \ge 0$ 得

$$du(X_t) \ge \partial_i u(X_t) \sigma_{ik}(X_t) dW_t^k$$
.

两边取期望得

$$\mathbb{E}[u(X_t)] \ge u(x_0).$$

假设 u 在 $x_0 \in D$ 处取得最大值。若 u 非常数,则存在邻域 $B_{\epsilon}(x_0)$ 使得 $u(x) \leq u(x_0)$ 。由 Support 定理, 扩散路径可无限接近确定性轨迹,因此有:

$$\mathbb{E}[u(X_t)] \le u(x_0),$$

故 u 在 x_0 邻域内必为常数。

定义集合 $S = \{x \in D \mid u(x) = u(x_0)\}$ 。由于:

- *S* 非空 (含 *x*₀) 且闭 (*u* 连续),
- S 为开集 (局部恒等性),

由 D 的连通性得 S = D, 即 u 为全局常数。

因此若 u 不恒为常数,则其最大值只能出现在边界 ∂D 。

七、

考虑最优值函数 $u(t,x)=\inf_{\alpha\in\mathcal{A}}J(t,x;\alpha)$ 。根据动态规划原理,对任意 h>0 满足 $t+h\leq T$,有:

$$u(t,x) = \inf_{\alpha \in A} \mathbb{E}_{t,x} \left[u(t+h, X_{t+h}^{\alpha}) \right].$$

由于 $dX_t^{\alpha} = \sigma(X_t^{\alpha}, \alpha_t)dW_t$, 协方差矩阵为 $d\langle X^i, X^j \rangle_t = \sigma_{ik}\sigma_{jk}dt$, 由伊藤公式得:

$$du = \partial_t u \, dt + \nabla u \cdot \sigma dW_t + \frac{1}{2} \sigma_{ik} \sigma_{jk} \partial_{ij}^2 u \, dt.$$

在区间 [t, t+h] 上积分后取期望:

$$\mathbb{E}_{t,x}\left[u(t+h,X_{t+h}^{\alpha})\right] - u(t,x) = \mathbb{E}_{t,x}\left[\int_{t}^{t+h} \left(\partial_{t}u + \frac{1}{2}\sigma_{ik}\sigma_{jk}\partial_{ij}^{2}u\right)ds\right].$$

由动态规划原理, 当 $h \rightarrow 0$ 时:

$$u(t,x) = \inf_{\alpha \in \mathcal{A}} \left\{ u(t,x) + \mathbb{E}_{t,x} \left[\int_{t}^{t+h} \left(\partial_{t} u + \frac{1}{2} \sigma_{ik} \sigma_{jk} \partial_{ij}^{2} u \right) ds \right] \right\} + o(h).$$

两边消去 u(t,x) 并除以 h, 取极限得:

$$0 = \inf_{\alpha \in \mathcal{A}} \left\{ \partial_t u + \frac{1}{2} \sigma_{ik} \sigma_{jk} \partial_{ij}^2 u \right\}.$$

由此得到 Hamilton-Jacobi-Bellman 方程:

$$\begin{cases} \partial_t u + \frac{1}{2} \inf_{\alpha \in A} \left\{ \sigma_{ik}(x, \alpha) \sigma_{jk}(x, \alpha) \partial_{ij}^2 u \right\} = 0, \\ u(T, x) = g(x). \end{cases}$$

其中,对重复指标 k 求和,且边界条件由 $J(T,x;\alpha) = g(x)$ 直接给出。