TD5: Application linéaires et matrice

2020/2021

E3FI Semestre 2

1 Matrice associée à une application linéaire

Soient E et F deux K-espaces vectoriels de dimension finie. Soient p la dimension de E et $B = (e_1, ..., e_p)$ une base de E. Soient n la dimension de F et $B' = (f_1, ..., f_n)$ une base de F. Soit enfin $f: E \to F$ une application linéaire.

Définition 1. La matrice de l'application linéaire f par rapport aux bases B et B' est la matrice $(a_{i,j}) \in M_{n,p}(\mathcal{K})$ dont la j-ème colonne est constituée par les coordonnées du vecteur $f(e_j)$ dans la base $B' = (f_1, f_2, ..., f_n)$:

$$\begin{array}{ccc}
f(e_1) & f(e_p) \\
\downarrow & \downarrow \\
\left(\begin{array}{ccc}
a_{1,1} & \dots & a_{1,p} \\
\vdots & & \vdots \\
a_{n,1} & \dots & a_{n,p}
\end{array}\right) & \leftarrow f_1 \\
\leftarrow f_n$$

En termes plus simples : c'est la matrice dont les vecteurs colonnes sont l'image par f des vecteurs de la base de départ B , exprimée dans la base d'arrivée B' . On note cette matrice $Mat_{B,B'}(f)$.

Remarque 1. — La taille de la matrice $Mat_{B,B'}(f)$ dépend uniquement de la dimension de E et de celle de F

— Les coefficients de la matrice dépendent du choix de la base B de E et de la base B' de F.

Exemple 1. Soit f l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^2 définie par : $f(x_1, x_2, x_3) = (x_1 + x_2 - x_3, x_1 - 2x_2 + 3x_3)$. Il est utile d'identifier les vecteurs lignes et colonnes, ainsi f peut être

vue comme l'application :
$$f: \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \longleftrightarrow \begin{pmatrix} x_1 + x_2 - x_3 \\ x_1 - 2x_2 + 3x_3 \end{pmatrix}$$
 Soient $B = (e_1, e_2, e_3)$ la base

canonique de \mathbb{R}^3 et $B' = (f_1, f_2)$ la base canonique de \mathbb{R}^2 . Donnons la matrice de f dans les bases B et B'. On a $f(e_1) = f(1,0,0) = (1,1) = f_1 + f_2$ la première colone de $Mat_{B,B'}(f)$ est donc $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ De même on a $f(e_2) = f(0,1,0) = (1,-2) = f_1 - 2f_2$ et $f(e_3) = f(0,0,1) = (-1,3) = -f_1 + 3f_2$ on a donc la deuxième et la troisième colone, on en déduit :

$$Mat(B,B')(f) = \left(\begin{array}{ccc} 1 & 1 & -1 \\ 1 & -2 & 3 \end{array}\right)$$

On va maintenant changer la base de l'esapce de départ et celle de l'espace d'arriver. Soient les vecteurs :

$$\epsilon_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \epsilon_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \epsilon_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \phi_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \phi_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

On montre que $B_0(\epsilon_1, \epsilon_2, \epsilon_3)$ est une base de \mathbb{R}^3 et que $B_0' = (\phi_1, \phi_2)$ est une base de \mathbb{R}^2 . Nous allons a présent déterminer la matrice de f dans las base B_0 et B_0' on $a: f(\epsilon_1) = f(1, 1, 0) = (2, -1) = 3\phi_1 - \phi_2$, $f(\epsilon_2) = f(1, 0, 1) = (0, 4) = -4\phi_1 + 4\phi_2$ et $f(\epsilon_3) = f(0, 1, 1) = (0, 1) = -\phi_1 + \phi_2$, on a donc:

$$Mat_{B_0,B_0'} \left(\begin{array}{ccc} 3 & -4 & -1 \\ -1 & 4 & 1 \end{array} \right)$$

On constate bien que la matrice dépend du choix de la base.

2 Exercices

Exercice 1. (i) On considère l'application linéaire :

$$f: \mathbb{R}^4 \to \mathbb{R}^2$$
 tel que $f: (x_1, x_2, x_3, x_4) \to (x_1 + x_2 + x_3 + x_4, x_1 + 2x_2 + 3x_3 + 4x_4)$.

- (ii) Quelle est la matrice de f dans les bases canoniques de \mathbb{R}^2 et \mathbb{R}^4 ?
- (iii) Déterminer le noyau de f. L'application linéaire f est-elle injective?
- (iv) Quelle est l'image de f? L'application f est-elle surjective?
- (v) Soit y_1, y_2 deux réels, préciser un vecteur \vec{u} de \mathbb{R}^4 tel que $f(u) = (y_1, y_2)$.

Exercice 2. Soit $u : \mathbb{R}^p \to \mathbb{R}^q$, une application linéaire, $e = (e_1, e_2, ..., e_p)$ la base canonique de \mathbb{R}^p et $f = (f_1, ..., f_q)$ la base canonique de \mathbb{R}^q .

Dans cette partie, on suppose que p = 3 et q = 2.

Et de plus :
$$u(e_1) = f_1 + 2f_2$$
, $u(e_2) = 2f_1 - f_2$ et $u(e_3) = -f_1 + f_2$

- (i) Déterminer l'image du vecteur $\vec{x} = (x_1, x_2, x_3)$ par u
- (ii) Déterminer la matrice u de la base e dans la base f.
- (iii) Déterminer le noyeau et l'image de u.

A présent, on suppose que p = 3, q = 3 et e = f. Et de plus : $u(e_1) = 3e_1 + 2e_2 + 2e_3$, $u(e_2) = 2e_1 + 3e_2 + 2e_3$ et $u(e_3) = 2e_1 + 2e_2 + 3e_3$

- (i) Déterminer l'image d'un vecteur $\vec{x} = (x_1, x_2, x_3)$ par u.
- (ii) Déterminer la matrice de u de la base e dans la e.
- (iii) Déterminer le noyeau et l'iamge de u.

Exercice 3. Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice par rapport à la base canonique

$$(e_1, e_2, e_3) \text{ est } A = \begin{pmatrix} 15 & -11 & 5 \\ 20 & -15 & 8 \\ 8 & -7 & 6 \end{pmatrix}$$

Montrer que les vecteurs $e'_1 = 2e_1 + 3e_2 + e_3$, $e'_2 = 3e_1 + 4e_2 + e_3$ et $e'_3 = e_1 + 2e_2 + 2e_3$ forment une base de \mathbb{R}^3 et calculer la matrice de f dans cette base.

Exercice 4. Soit $f: \mathbb{R}^4 \to \mathbb{R}^3$ l'application linéaire dont la matrice dans les base canonique de

$$\mathbb{R}^4 \ et \ \mathbb{R}^3 \ est \ A = \left(\begin{array}{cccc} 1 & 2 & 1 & 3 \\ 1 & 1 & 2 & 1 \\ 1 & -2 & 5 & -11 \end{array}\right)$$

- (i) Déterminer une base du noyeau de f.
- (ii) Déterminer une base de l'image de f. Donner le rang de A.

Exercice 5. On considère l'application $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ définie par $f(x_1, x_2, x_3, x_4) = (x_1 + x_2 + x_3 + x_4, 2x_1 + x_2 - x_3 + x_4, x_1 - x_2 + x_3 - x_4)$

- (i) Quelle est la matrice de A dans ces bases canoniques? Préciser $f(e_1), f(e_2), f(e_3), f(e_4)$.
- (ii) Donner une base échelonnée de $Vect(f(e_1), f(e_2), f(e_3), f(e_4))$ par rapport à la base B'.
- (iii) En déduire la dimension de l'image de f, la surjectivité de f et la dimension du noyeau de f.
- (iv) Déterminer une base du noyeau de f

Exercice 6. Diagonalisation de matrices: Soient E et F deux espaces vectoriels de \mathbb{R}^3 . Soient $\mathcal{E} = (e_1, e_2, e_3)$ et $\mathcal{F} = (f_1, f_2, f_3)$ deux bases respectivement de E et F, où :

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad f_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad f_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \quad f_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

 $On\ notera$

$$\mathrm{Id} : \mathbb{R}^3 \to \mathbb{R}^3 : \left(\begin{array}{c} x \\ y \\ z \end{array}\right) \mapsto \left(\begin{array}{c} x \\ y \\ z \end{array}\right)$$

- (i) $Calculer \operatorname{mat}_{\mathcal{F},\mathcal{E}}(\operatorname{Id}).$
- (ii) Calculer $\max_{\mathcal{E},\mathcal{F}}(\mathrm{Id})$ de deux manières différentes.
- (iii) Soit

$$\operatorname{mat}_{\mathcal{E},\mathcal{E}}(f) = \begin{pmatrix} -1 & 1 & 1\\ 1 & -1 & 1\\ 1 & 1 & -1 \end{pmatrix}$$

- (a) Pour tout vecteur $(x, y, z) \in \mathbb{R}^3$, que vaut f(x, y, z)?
- (b) Inverser $mat_{\mathcal{E},\mathcal{E}}(f)$?
- (c) Calculer $mat_{\mathcal{F},\mathcal{F}}(f)$ de deux manières différentes.