Mata Kuliah: Sistem Digital

Aljabar Boolean

About...

- Didefinisikan sebagai himpunan unsur, himpunan operator, dan sejumlah aksioma yang tidak perlu dibuktikan
- Dikembangkan oleh George Bool (1854) dan dilanjutkan oleh C.E. Shannon (1939)
- Memperkenalkan dua nilai boolean (disebut juga aljabar switch) yang dipakai luas di teknologi elektronika dan komputer

Definisi Aljabar Boolean

Simbol	keterangan	Contoh
=	Relasi ekuivalen yang memenuhi prinsip substitusi	a=b
+	Operator OR	a+b
•	Operator AND	a.a
	Operator NOOT	ā

Sifat-Sifat

- Closure pada operasi dot(.) dan plus (+)
- Elemen identitas = dot(1) ;plus(0)
- Komutatif terhadap operasi dot dan plus
- Distributif

```
dot \rightarrow plus : a.(b+c)=(a.b)+(a.c) plus \rightarrow dot : a+(b.c)=(a+b).(a.c)
```

- Untuk setiap unsur x terdapat x' (x=1;x'=0)
- Minimal terdapat dua unsur x dan y (x ≠ y)

Prinsip Dualisme

jika dalam suatu ekspresi dilakukan pertukaran operator AND dengan OR atau sebaliknya, dan diikuti dengan pertukaran nilai 0 dengan 1 atau sebaliknya, maka kedua ekspresi itu benar

$$1 + 0 = 1$$
; $0 \cdot 1 = 0$
 $x + 1 = 1$; $x \cdot 0 = 0$

Postulat Aljabar Boolean

- 1. Bersifat Clossure
- 2. x + 0 = x; $x \cdot 1 = x$ (identitas)
- 3. x + y = y + x; $x \cdot y = y \cdot x$ (komutatif)
- 4. $x \cdot (y + z) = x \cdot y + x \cdot z$; $x + (y \cdot z) = (x + y) \cdot (x + z)$ (distributif)
- 5. x + x' = 1; $x \cdot x' = 0$ (inverse)

Teorema 1:

$x + x = x dan x \cdot x = x$

Teorema 2:

$$x + 1 = 1 dan x . 0 = 0$$

$$x + 1 = 1$$
 $x \cdot 0 = 0$
 $x + 1 = 1 \cdot (x + 1)$
 $= (x + x) \cdot (x +$

Teorema 3 :

$$(x')' = x$$

P5 tentang komplemen Unsur; x' adalah komplemen x; dan (x')' adalah komplemen dari x'; dengan demikian (x')' = x

Teorema 4:

x+(y+z)=(x+y)+z x.(y.z)=(x.y)z

X	у	Z	x+(y+z)	(x+y)+z	x.(y.z)	(x.y).z
0	0	0	0	0	0	0
0	0	1	1		0	0
0	1	0	1	Aidik	0	0
0	1	1	1	16tha.	0	0
1	0	0	1		0	0
1	0	1	1	1	0	0
1	1	0	1	1	0	0
1	1	1	1	1	1	1

Teorema 5:
$$(x+y)' = x'.y'; (x.y)' = x'+y'$$

X	у	x'	y'	(x+y)'	x'.y'	(x.y)'	x'+y'
0	0	1	1	1		1	1
0	1	1	0	0	1.9.164	1	1
1	0	0	1	0	6113nv	1	1
1	1	0	0	0	10	0	0

Teorema ini dikenal juga dengan

Teorema de Morgan

Teorema 6:

x+x.y=x dan x.(x+y)=x

Teorema ini dikenal juga dengan

Teorema Absorsi

Fungsi Boolean

- Terbentuk dari:
 - gabungan variabel biner
 - operator OR atau AND
- Fungsi boolean mempunyai makna bila bernilai 1
- Nilai fungsi boolean tergantung dari nilai variabel biner dan operator penyusun
- Cara paling cepat mencari nilai fungsi adalah dengan TABEL KEBENARAN

Uji Nyali...!!!

- Carilah nilai x,y,z untuk agar fungsi-fungsi berikut bernilai 1
 - -F1 = xyz'
 - F2 = x+y'z
 - F3 = xy' + x'y
 - -F4 = x'y'z+x'yz+xy'
- Lakukan uji coba dengan menggunakan software EWB dan tulis hasil uji coba pada tabel kebenaran!

F1 = xyz'

X	y z		z'	xyz'
0	0	0	1	0
(ECIMPII		1	<u> </u>	0
(ESIMPU Fungsi F1:	LAN: =xyz' bern	ilai 1 jika		0
=1,y=1, z		,		0
1	0	6	1	0
1	0	1	0	0
1	1	0	1	1
1	1	1	0	0

F2 = x+y'z

X	у	Z	y'	y'z	x+y'z
0	0	0	1	0	0
0	0	1	1	1	1
		2		0	0
	KESIMI	PULAN :		0	0
1	0	0	1	0	1
1	0	1	1	1	1
1	1	0	0	0	1
1	1	1	0	0	1

$$F3 = xy' + x'y$$

X	у	Z	x'	y'	xy'	x'y	F3		
0	0	0	1	1	0	0	0		
0	0	1	1	1	0	0	0		
0	1	0	1	0	0	1	1		
0	1	1	1	0	0	1	1		
1	0	0	0	1	1	0	1		
1	0	1	0	1	1	0	1		
1	1	0	0						
1	1	1	0		KESIMPULAN?				

F4 = x'y'z+x'yz+xy'

X	у	Z	x'	y'	x'y'z	x'yz	xy'	F4		
0	0	0	1	1	0	0	0	0		
0	0	1	1	1	1	0	0	1		
0	1	0	1	0	0	0	0	0		
0	1	1	1	0	0	1	0	1		
1	0	0	0	1	0	0	1	1		
1	0	1	0	1	0	0	1	1		
1	1	0								
1	1	1				0				

Manipulasi Aljabar Fungsi

- Suatu fungsi boolean sering tersusun dari literal (variabel penyusun) yang berulang, sehingga fungsi menjadi kompleks dan mahal
- Dengan postulat dan teorema, fungsi tersebut dapat direduksi sehingga jumlah literal minimum tanpa merubah nilai fungsi

Contoh

F1 =
$$x + x'y$$

= $(x + x') (x + y)$
= $1.(x + y)$
= $x + y$

Uji dengan EWB!!!

X	У	x'	x'y	x+x'y
0	0	1	0	0
0	1	1	0	1
1	0	0	1	1
1	1	0	0	1

Х	у	x+y
0	0	0
0	1	1
1	0	1
1	1	1

Contoh

$$F2 = x \cdot (x' + y)$$
= x \cdot x' + x \cdot y
= 0 + x \cdot y
= x \cdot y

Uji dengan EWB!!!

X	У	x'	x'+y	x.(x'+y)
0	0	1	1	0
0	1	1	1	0
1	0	0	0	0
1	1	0	1	1

X	у	x.y
0	0	0
0	1	0
1	0	0
1	1	1

berapa?

F3 = xy + x'z + yz

F3 =
$$x.y+x'.z+y.z$$

= $x.y+x'.z+y.z.(x+x')$
= $x.y+x'.z+x.y.z+x'.y.z$
= $x.y.(1+z)+x'z(1+y)$
= $x.y.1+x'z.1$
= $xy + x'z$

xy+x'z+yz = xy+x'z; benarkah?

X	У	Z	x'	ху	x'z	yz	xy+x'z+yz	xy+x'z
0	0	0	1	0	0	0		
0	0	1	1	0	1	0		
0	1	0	1	0	0	0		
0	1	1	1	0	1	1		
1	0	0	0	0	0	0		
1	0	1	0	0	0	0		
1	1	0	P	1	0	<u>-</u> 9.		
Y		1		nga	a H			

catatan

Tak jarang dalam penyederhanaan fungsi boolean kita memerlukan Komplemen dari fungsi.

Untuk menentukan komplemen suatu fungsi, digunakan <u>teori</u>
<u>De Morgan</u> yang dikembangkan Menjadi banyak variabel.

Caranya:

ikat sejumlah variabel menjadi satu variabel sehingga terbentuk sistem dua variabel yangmemenuhi teorema De Morgan

Carilah komplemen:

$$F=(A+B+C)$$

Tentukan Komplemen Fungsi

F1 = x'yz'+x'y'z

$$F2 = x(y'z'+yz)$$

F1' =
$$(x'yz'+x'y'z)'$$

= $(x'yz')'.(x'y'z)'$
= $(x+y'+z).(x+y+z')$
F2' = $x'+(y'z'+yz)'$
= $x'+(y'z').(yz)'$

tips

Komplemen fungsi boolean yang lebih komplek dapat dilakukan dengan prinsip dualisme (mengganti operator AND dengan OR atau sebaliknya, kemudian komplemenkan masing-masing literalnya

F1 = x'yz'+x'y'z

Dual F1 ---->
$$(x'+y+z').(x'+y'+z)$$

Kompl tiap literal--->
$$(x+y'+z).(x+y+z')$$

$$F2 = x(y'z'+yz)$$

Dual F2 ---->
$$x+(y'+z').(y+z)$$

Kompl tiap literal--->
$$x'+(y+z).(y'+z')$$

Bentuk Standar vs Kanonik

Bentuk Standar	Bentuk Kanonik
Penulisan fungsi bolean dengan bentuk bebas tanpa pola tertentu	Fungsi Boolean yang dinyatakan dalam bentuk jumlah minterm atau perkalian maxterm
Mudah dalam penulisan namun sukar dimanipulasi	Lebih mudah dimanipulasi karena sudah punya pola baku

Bentuk Minterm 2 variabel

 Jika ada 2 variabel x dan y dikombinasikan dengan operator AND, maka akan diperoleh 4 kemungkinan kombinasi yaitu:

x'y' x'y xy' xy

Tabel minterm 2 literal				
x y term simbol				
0	0	x'y'	m_0	
0	1	x'y	m ₁	
1	0	xy'	m ₂	
1	1	ху	m_3	

Bentuk minterm 3 variabel

 Jika 3 variabel x, y dan z dikombinasikan dengan operator AND, maka akan diperoleh 8 kemungkinan kombinasi yaitu:

x'y'z'xy'z'xy'zxy'zxyz'xyz'xyz

Tabel Minterm 3 literal

X	у	Z	term	simbol
0	0	0	x'y'z'	m_0
0	0	1	x'y'z	m ₁
0	1	0	x'y'z x'yz'	m ₂
0	1	1	x'yz	m ₃
1	0	0	xy'z'	m ₄
1	0	1	x'yz xy'z' xy'z	m ₅
1	1	0	xyz'	m ₆
1	1	1	XYZ	m ₇

Bentuk Maxterm 2 variabel

 Jika ada 2 variabel x dan y dikombinasikan dengan operator OR, maka akan diperoleh 4 kemungkinan kombinasi yaitu:

x'+y'	x'+y
x+y'	x+y

Tabel maxterm 2 literal				
X	у	term	simbol	
0	0	x'+y'	M_3	
0	1	x'+y	M ₂	
1	0	x+y'	M ₁	
1	1	Х+у	M _o	

Bentuk maxterm 3 variabel

 Jika 3 variabel x, y dan z dikombinasikan dengan operator OR, maka akan diperoleh 8 kemungkinan kombinasi yaitu:

Tabel Maxterm 3 literal

X	у	Z	term	simbol
0	0	0	x'+y'+z'	M_7
0	0	1	x'+y'+z	M_6
0	1	0	x'+y+z'	M_5
0	1	1	x'+y+z	M_4
1	0	0	x+y'+z'	M_3
1	0	1	x+y'+z	M ₂
1	1	0	x+y+z'	M ₁
1	1	1	x+y+z	M _o

Fungsi Boolean dalam minterm

- Suatu fungsi boolean dapat dinyatakan dalam bentuk minterm dengan memilih nilai fungsi 1 dalam tabel minterm
- Fungsi tersebut selanjutnya ditulis termnya/simbolnya dalam bentuk penjumlahan berulang
- Komplemen fungsi adalah term yang tidak termasuk dalam penjumlahan berulang

X	у	Z	term	simbol	F	
0	0	0	x'y'z'	m_{0}	1	
0	0	1	x'y'z	m ₁	1	
0	1	0	x'yz'	m ₂	0	
0	1	1	x'yz	m_3	0	
1	0	0	xy'z'	m ₄	0	
1	0	1	xy'z	m ₅	1	
1	1	0	xyz'	m ₆	1	
1	1	1	xyz	m ₇	0	

Dengan melihat nilai fungsi = 1, maka fungsi kanonik dapat ditulis :

$$F = (x'y'z') + (x'y'z) + (xy'z) + (xyz');$$
 ----->bentuk term

$$F = m_0 + m_1 + m_5 + m_6$$
; ----->bentuk simbol

$$F = \Sigma(0,1,5,6)$$
 -----> bentuk simbol penjumlahan berulang

$$F' = \Sigma(0,1,5,6)$$
 -----> komplemen

Fungsi Boolean dalam maxterm

- Suatu fungsi boolean dapat dinyatakan dalam bentuk minterm dengan memilih nilai fungsi 1 dalam tabel maxterm
- Fungsi tersebut selanjutnya ditulis termnya/simbolnya dalam bentuk perkalian berulang
- Komplemen fungsi adalah term yang tidak termasuk dalam penjumlahan berulang

X	у	Z	term	simbol	F	
0	0	0	x'+y'+z'	M ₇	0	
0	0	1	x'+y'+z	M_6	1	
0	1	0	x'+y+z'	M ₅	0	
0	1	1	x'+y+z	M_4	0	
1	0	0	x+y'+z'	M_3	1	
1	0	1	x+y'+z	M ₂	0	
1	1	0	x+y+z'	M ₁	0	
1	1	1	x+y+z	M _o	1	

Dengan melihat nilai fungsi = 1, maka fungsi kanonik dapat ditulis :

$$F = (x'+y'+z) \cdot (x+y'+z') \cdot (x+y+z);$$
 ----->bentuk term

$$F = M_6 + M_3 + M_0$$
; ----->bentuk simbol

$$F = \Pi(0,3,6)$$
 -----> bentuk simbol perkalian berulang

$$F' = \Pi(1,2,4,5,7)$$
 -----> komplemen

Kendalanya...

F(A,B,C) = A+B'C

Bentuk kanonik punya Pola yang tetap (minterm & maxterm)

F(A,B,C) = m1+m4+m5+m6+m7

KONVERSI DARI BENTUK STANDAR KE BENTUK KANONIK

Bentuk Standar -> Minterm

- Kembangkan sebuah literal secara distributif operasi dot to plus sebanyak literal yang menyusun fungsi tersebut
- Faktor distributif yang digunakan adalah (x+x') yang selalu bernilai 1
- Untuk mempertegas jumlah literal, dalam setiap fungsi harus ditulis lengkap literal penyusunnya

exp : $F(x,y,z) \rightarrow$ fungsi F dengan 3 literal

Ubah F(A,B,C) = A+B'C ke minterm

Term A dikembangkan menjadi minterm 3 literal

- = A (B+B')(C+C')
- = (AB+AB')(C+C')
- =AB(C+C')+AB'(C+C')
- = ABC+ABC'+AB'C+AB'C'
- = AB'C' + AB'C + ABC' + ABC

Term B'C dikembangkan menjadi minterm 3 literal

- = B'C.(A+A')
- = AB'C + A'B'C
- = A'B'C+AB'C

Selanjutnya, kedua literal tersebut digabungkan. Minterm diurut mulai indeks yang kecil ke besar, jika ada minterm sama maka ditulis satu saja.

$$F(A,B,C) = A'B'C+AB'C'+AB'C+ABC'+ABC'$$

$$= m_1 + m_4 + m_5 + m_6 + m_7$$

$$= \Sigma (1, 4, 5, 6, 7)$$

Bentuk Standar -> Maxterm

- Kembangkan sebuah literal secara distributif operasi plus to dot sebanyak literal yang menyusun fungsi tersebut
- Faktor distributif yang digunakan adalah (x.x') yang selalu bernilai 0
- Untuk mempertegas jumlah literal, dalam setiap fungsi harus ditulis lengkap literal penyusunnya

exp: $F(x,y,z) \rightarrow$ fungsi F dengan 3 literal

Ubah F(x,y,x) = xy+x'z ke maxterm

F(x,y,z) = xy+x'z dikembangkan dengan distributif plus to dot

$$= xy + x'z$$

$$= (xy+x').(xy+z)$$

$$= (x'+xy).(z+xy)$$

$$= (x'+x).(x'+y).(z+x).(z+y) -----> x'+x = 1$$

$$= (x'+y).(z+x).(z+y) -----> \text{terbentuk 3 term}$$

Tiap term dikembangkan menjadi 3 literal dengan distributif plus to dot

$$(x'+y) = (x'+y)+z.z' = (x'+y+z).(x'+y+z')$$

 $(z+x) = (z+x)+y.y' = (z+x+y).(z+x+y') = (x+y+z).(x+y'+z)$
 $(z+y) = (z+y)+x.x' = (z+y+x).(z+y+x') = (x+y+z).(x'+y+z)$

Selanjutnya, kedua literal tersebut digabungkan. Minterm diurut mulai indeks yang kecil ke besar, jika ada maxterm sama maka ditulis satu saja.

$$F(A,B,C) = (x+y+z) \cdot (x+y'+z) \cdot (x'+y+z) \cdot (x'+y+z')$$

$$= M_0 + M_2 + M_4 + M_5$$

$$= \Pi (0, 2, 4, 5)$$

Tugas Kelompok