Hypothesis Tests Under Separation

Reproduction tl;dr

The file install-packages.R (written dynamically below) will install all the packages I use for this project in the appropriate version. Please run if you want to use the same package versions as I did.

The file do-all.R reproduces all the tables and figures (though Table 3 requires a little editing to get the formatting right). The simulations run by R/O2b-sims-do-random.R and R/O2c-sims-summarize.R and take 1-2 days to complete. All other scripts run very quickly (i.e., seconds).

Overview

Separation commonly occurs in political science, usually when a binary ex- planatory variable perfectly predicts a binary outcome. In these situations, methodologists often recommend penalized maximum likelihood or Bayesian estimation. But researchers might struggle to identify an appropriate penalty or prior distribution. Fortunately, I show that researchers can easily test hy- potheses about the model coefficients with standard frequentist tools. While the popular Wald test produces misleading (even nonsensical) p-values under separation, I show that likelihood ratio tests and score tests behave in the usual manner. Therefore, researchers can produce meaningful p-values with standard frequentist tools under separation without the use of penalties or prior information.

The latest draft is here (conditionally accepted at *Political Analysis* pending their team's successful reproduction of my results).

Directory Structure

All the data and scripts necessary to reproduce these results are included in this repository.

I named files and directory so that their purpose can (hopefully) be understood from the name.

Raw Data

The project uses one data set from previous research. This data set is included in this repository as data/politics_and_need_rescale.csv.

• politics_and_need_rescaled.csv comes from Barrilleaux and Rainey (2014) and their replication files on Dataverse.

R Scripts

There are three categories of code

- 01-trinity-intuition.R reproduces Figure 1.
- 02*-sims-*.R together reproduce Table 1 and Figures 2-6. The * here represents a variable, as there are several scripts that perform the simulations. They should be run starting with 02b, then 02c, and so on. This quite a long time and the file progress.log contains updates on the progress so you can estimate time-to-completion. By default, 02b-sims-do-random.R uses all available cores (12 in

- my case). Change this on line 105 of O2b-sims-do-random.R if you need to do other things while this code runs.
- 03-br-fits.R computes the information necessary for Table 3. The LaTeX code requires a bit of post-processing, but the information is all printed by this script, as well as an "almost finished" LaTeX table that requires only minor modifications.

The script do-all.R removes all generated files, re-generates everything, and compiles the manuscript and computational companion.

Notable Output

- The file output/summarized-simulations.rds contains the power functions. This is the most important output from the simulations.
- The file output/all-generated-dgps-w-keep.rds contains all the generated DGPs and indicated which were discarded (as described in the paper) and which were kept.
- The directory output/scenario-sims/ contains all of the raw *p*-values for each hypothesis tests in the simulations. Each file is for a single DGP. (The script R/O2c-sims-summarize.R aggregates this many tests into power functions and creates output/summarized-simulations.rds).

Session Information

```
sessioninfo::session_info(info = "platform")
## - Session info -
   setting value
   version R version 4.3.1 (2023-06-16)
##
             macOS Ventura 13.4
             aarch64, darwin20
##
  system
##
  ui
             RStudio
   language (EN)
##
##
   collate en US.UTF-8
##
  ctype
             en_US.UTF-8
##
             America/New_York
  tz
             2023-08-31
##
   date
   rstudio 2023.06.1+524 Mountain Hydrangea (desktop)
             3.1.6.1 @ /usr/local/bin/ (via rmarkdown)
##
   pandoc
```

System Information

os info

```
##
##
##
##
##
                                                                                            "carlislerain
##
##
                                                                                            "carlislerain
# cpu info
benchmarkme::get_cpu()
## $vendor_id
## character(0)
##
## $model_name
## [1] "Apple M2 Max"
## $no_of_cores
## [1] 12
# ram info
ram_info <- system("sysctl hw.memsize", intern = TRUE)</pre>
print(ram_info)
## [1] "hw.memsize: 34359738368"
R Packages Used
library(tidyverse)
# Function to get package version
get_version <- function(package_names){</pre>
  sapply(package_names, function(pkg) as.character(packageVersion(pkg)))
}
dep <- renv::dependencies("R/") %>%
  bind_rows(renv::dependencies("README.Rmd")) %>%
  select(Package) %>%
  distinct() %>%
  arrange(Package) %>%
  mutate(Version = get_version(Package))
## Finding R package dependencies ... Done!
## Finding R package dependencies ... Done!
dep
##
           Package Version
## 1
               arm 1.13.1
## 2
       benchmarkme 1.0.8
## 3
             brglm 0.7.2
## 4
             broom
                    1.0.5
```

mach "arm

10

"ro

effective_u

##

5

6

7

doParallel 1.0.17

doRNG 1.8.6

dplyr 1.1.2

```
## 8
                    1.5.2
          foreach
## 9
                    0.2.6
            ggh4x
## 10
          ggrepel
                    0.9.3
## 11
       kableExtra
                    1.3.4
## 12
        latex2exp
                   0.9.6
## 13 modelsummary
                   1.4.1
## 14
          mvtnorm
                   1.2.2
## 15
                   1.1.3
        patchwork
## 16
        progress
                   1.2.2
## 17
                   1.0.2
             renv
## 18
        rmarkdown
                    2.24
                   1.2.1
## 19
           scales
## 20 sessioninfo
                   1.2.2
## 21
        tidyverse
                    2.0.0
```

Write Script to Install Packages and Versions

```
# Assuming df is your dataframe with columns Package and Version

# Create a new script file
script_file <- file("install-packages.R", "w")

# Write install.packages() commands for each package to the file
for (i in 1:nrow(dep)) {
   install_cmd <- sprintf("remotes::install_version('%s', version = '%s', repos = 'http://cran.us.r-proj
   cat(install_cmd, file = script_file, append = TRUE)
}

# Close the file
close(script_file)</pre>
```