法律声明

□ 本课件包括:演示文稿,示例,代码,题库,视频和声音等,小象学院拥有完全知识产权的权利;只限于善意学习者在本课程使用,不得在课程范围外向任何第三方散播。任何其他人或机构不得盗版、复制、仿造其中的创意,我们将保留一切通过法律手段追究违反者的权利。

- □ 课程详情请咨询
 - 微信公众号: 大数据分析挖掘
 - 新浪微博: ChinaHadoop

零基础Python入门

--梁斌

第七讲

判断密码强弱 6.0

案例描述

- 密码强度:是指一个密码对抗猜测或时暴力破解的有效程度;一般是指一个未授权的访问者得到正确密码的平均尝试次数
- 强密码可以降低安全漏洞的整体风险
- 简易版(常用)规则:
 - 1. 密码长度至少8位, 2. 密码含有数字, 3. 密码含有字母
- 2.0增加功能:限制密码设置次数;循环的终止
- 3.0增加功能:保存设置的密码及其对应的强度到文件中
- 4.0增加功能:读取保存的密码
- 5.0增加功能:将相关方法封装成一个整体:面向对象编程
- 6.0增加功能:将文件操作封装到一个类中

面向对象的特点

- 封装
 - 将数据及相关操作打包在一起
 - 支持代码复用
- 继承
 - 子类(subclass)借用父类(superclass)的行为
 - 避免重复操作,提升代码复用程度
 - 定义 class ClassName(SuperClassName)
- 多态
 - 在不同情况下用一个函数名启用不同方法
 - 灵活性

课后练习

- 加入更复杂的密码设置规则:
- 1. 同时包含大小写字母
- 2. 必须包含特殊符号,如:+,-,*,等

第七讲 小结

Next?

- 随机数的生成
- 数据可视化
- 科学计算入门

疑问

□问题答疑: http://www.xxwenda.com/

■可邀请老师或者其他人回答问题

小象问答邀请 @Robin_TY 回答问题

联系我们

小象学院: 互联网新技术在线教育领航者

- 微信公众号: 小象

- 新浪微博: ChinaHadoop

