

Course of Numerical Methods for Engineering Lab 13

Luca Bonaventura, Tommaso Benacchio

MOX - Politecnico di Milano

PHYS-ENG, A.Y. 2020-21 9/12/2020

Topic of this session:

► Nonlinear least square problems

Nonlinear least square problem

Definition

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a vector field $x \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$, with m > n. The vector $x^* \in \mathbb{R}^n$ is called a solution of the nonlinear least square problem associated with f and b if it is such that

$$\|f(x^*) - b\|_2 = \min_{x \in R^n} \|f(x) - b\|_2 = \min_{x \in R^n} \phi(x).$$

Definition

(Gauss-Newton method) Let $\mathbf{x}^{(0)}$ an initial approximation for the minimum of ϕ . The Gauss-Newton method is defined by

$$\begin{array}{lcl} J_f{}^T(x^{(k)})J_f(x^{(k)})\boldsymbol{\delta} x^{(k)} & = & J_f{}^T(x^{(k)})(b-f(x^{(k)})) \\ x^{(k+1)} & = & x^{(k)}+\boldsymbol{\delta} x^{(k)} \quad k \geq 0. \end{array}$$

Levenberg-Marquardt method

Definition

Let $x^{(0)}$ an initial approximation for the minimum of ϕ and λ_0 an initial approximation for the damping term. The Levenberg-Marquardt method is defined by the following procedure:

• for $k \ge 0$, compute

$$\left[J_{f}^{T}(x^{(k)}) J_{f}(x^{(k)}) + \lambda_{k} I \right] \delta x^{(k)} = J_{f}^{T}(x^{(k)}) (b - f(x^{(k)}))$$

$$x^{(k+1)} = x^{(k)} + \delta x^{(k)}$$

- if $\phi(x^{(k+1)}) < \phi(x^{(k)})$, determine $\lambda_{k+1} \le \lambda_k$
- ▶ if $\phi(x^{(k+1)}) > \phi(x^{(k)})$, determine $\lambda_{k+1} > \lambda_k$ and repeat iteration k.

MATLAB/Octave:

options_lm = optimoptions(@lsqnonlin,'Algorithm','levenberg-marquardt');
x_lm = lsqnonlin(f(x)-b,x0,[],[],options_lm)

Trust region minimization method

Definition

Given initial estimate $\mathbf{x}^{(0)}, \Delta_0$ a trust region method to find a minimum of $\phi(\mathbf{x})$ builds a sequence of approximate objective functions $\phi_k(\mathbf{x})$, approximate minima $\mathbf{x}^{(k)}$ and of trust regions $\Omega_k = \{\mathbf{d} | \|\mathbf{d}\| \leq \Delta_k\}$ of radius Δ_k such that $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{d}^{(k)}$ and

$$\phi_k(\mathbf{x}^{(k)} + \mathbf{d}^{(k)}) = \min \{\phi_k(\mathbf{x}^{(k)} + \mathbf{d}) | \mathbf{d} \in \Omega_k)\}.$$

MATLAB/Octave:

 $x_base = lsqnonlin(f(x)-b,x0,[],[])$

Exercise 1

Consider the nonlinear function:

$$f(x,y) = 15 + x + 2y - \frac{80}{L_x^2} \left[\left(x - \frac{L_x}{2} \right)^2 + \left(y - \frac{L_y}{2} \right)^2 \right] + \frac{300}{L_y^4} \left[\left(x - \frac{L_x}{2} \right)^4 + \left(y - \frac{L_y}{2} \right)^4 \right]$$

in the domain $x,y \in [0,L_x] \times [0,Ly]$. For $L_x = L_y = 2$, initial guess x = 0.5, y = 0.5, and up to a 10^{-8} tolerance, find the global minimum of f:

- (a) Using the steepest descent method with fixed step length $\gamma = 0.001$;
- (b) Using the modified gradient method;
- (c) Using Newton's method with exact Jacobian.

Compare the number of iterations and time to convergence for the three cases. Experiment with different values of the tolerance and different initial guesses.

Exercise 2

Consider the nonlinear least square problem in which the data vector b contains the values of the function $h(z)=z^3+z^2-1$ sampled on a uniform mesh of step 0.01 on the interval [1,3] and to which a Gaussian noise of mean zero and standard deviation 0.5 has been added. Use as fitting function f(x) the vector field whose components are

$$f_i(x_1, x_2, x_3) = z_i^{x_1} + z_i^{x_2} + x_3,$$

where z_i denotes the i-th component of the vector $[1, 0.01, \dots, 3]^T$. Solve the problem:

- (a) with the MATLAB command lsqnonlin, using the default algorithm and $x_0 = [1, 1, 1]^T$;
- (b) with the MATLAB command lsqnonlin, using the Levenberg-Marquardt algorithm and the same x_0 ;
- (c) solving the nonlinear equation $g(x) = J_f^T(x)(f(x) b) = 0$ with the MATLAB command fsolve, $x_0 = [2.5, 1, 1]^T$ and a 10^{-8} tolerance on x.
- (d) solving the nonlinear equation $g(x) = J_f^T(x)(f(x) b) = 0$ with the Newton method with finite difference approximate Jacobian of g(x) with increment $\delta = 0.01$, a 10^{-8} tolerance, and $x_0 = [2.8, 1, 1]^T$.

In each case, display in a single plot the function h, the data vector b and the function $f(x_s)$ where x_s is the solution. Check what happens when $x_0 = [1, 1, 1]^T$ in points (c) and (d).

Exercise 3

Consider the nonlinear least square problem in which the data vector b contains the values of the function $h(z)=\cos{(\pi z)}-2\cos{(5\pi z)}+\cos{(6\pi z)}$ sampled on a uniform mesh of step 0.001 on the interval [0,2] and to which a Gaussian noise of mean zero and standard deviation 0.5 has been added. Use as fitting function f(x) the vector field whose components are

$$f_i(x_1, x_2, x_3, x_4, x_5, x_6) = x_1 \cos(x_2 \pi z_i) + x_3 \cos(x_4 \pi z_i) + x_5 \cos(x_6 \pi z_i),$$

where z_i denotes the i-th component of the vector $[0, 0.001, \dots, 2]^T$. Solve the problem:

- (a) with the MATLAB command lsqnonlin, using the default algorithm
- (b) with the MATLAB command lsqnonlin, using the Levenberg-Marquardt algorithm;
- (c) solving the nonlinear equation $J_f^T(x)(f(x)-b)=0$ with the MATLAB command fsolve, with a 10^{-8} tolerance on x;
- (d) solving the nonlinear equation $g(x) = J_f^T(x)(f(x) b) = 0$ with the Newton method with finite difference approximate Jacobian of g(x) with increment $\delta = 0.001$ and 10^{-8} tolerance.

In each case, use as initial guess the vector $[1,1,1,1,1,1]^T$. and display in a single plot the function h(z), the data vector b and the function $f(x_s)$ where x_s is the solution. Repeat the computation using as initial guesses the vectors $[1,1,1,1,1,5]^T$ and $[1,1,1,1,-1,5]^T$.

