ELK Stack - Análise de Dados Governamentais

Daniel Vitor Ferreira Silva¹, Rafael Souza Oliveira²

¹Instituto Federal de Goiás (IFG) Anápolis – GO – Brazil

Resumo. Desde 2012, com o início da vigência da Lei nº 12.527, os dados de gastos dos governos devem ser disponibilzados publicamente. Desde então, o problema deixou de ser o acesso a tais dados, mas sim como tratar, visualizar e interpretar esses dados de forma mais eficiente. Por isso, esse relatório faz uma apresentação educacional do chamado Elastic-Stack enquanto busca construir uma forma alternativa de fornecer visualização dos dados de gastos disponibilizados pelo governo. Além disso, também é objetivo deste ensinar ao leitor como reproduzir a construção de tal visualização.

1. Introdução

A Lei nº 12.527, sancionada em 18 de novembro de 2011, regulamenta o direito constitucional de acesso dos cidadãos às informações públicas e é aplicável aos três poderes da União, dos estados, do Distrito Federal e dos municípios. Esta Lei representou um importante passo para a consolidação do regime democrático brasileiro e para o fortalecimento das políticas de transparência pública.

Pensando nisso, este trabalho foi desenvolvido com o intuito de usar as ferramentas proporcionadas pelo chamado Elastic-Stack para criar uma visualização desses dados garantidos pela Lei de Acesso à Informação. Além disso, o principal objetivo aqui é apresentar as ferramentas e fornecer as informações necessárias para que qualquer pessoa interessada possa entender e replicar o processo de casa.

Por sua vez, o Elastic-Stack nada mais é que um conjunto de softwares que trabalham em conjunto, para em resumo: Obter dados em qualquer formato, fazer buscas e análises nesses dados e por fim, criar visualizações.

2. As Ferramentas

Nessa seção, discutiremos um pouco mais sobre os 3 pilares principais que compõem o Elastic-Stack ou ELK-Stack, sendo eles: Elasticsearch, Logstash, Kibana.

2.1. Elasticsearch

Trata-se do elemento central do nosso Stack. Ele permite armazenar, pesquisar e analisar grandes volumes de dados com rapidez e quase em tempo real, além de fornecer respostas em milissegundos. Ainda, o Elasticsearch é capaz de obter respostas de pesquisas de forma muito rápida porque, em vez de pesquisar o texto diretamente, ele pesquisa sobre um índice. Ele usa uma estrutura baseada em documentos em vez de tabelas e esquemas, como bancos de dados tradicionais.

A estrutura básica do Elasticsearch é composta por: Documentos, Índices, Nodes, Clusters e Shards. De forma resumida, Documentos são a unidade básica de informação

que pode ser indexada no Elasticsearch. Já os Índices são conjuntos de documentos que têm relação entre si. Um Node é uma instância do Elasticsearch, que armazena dados. Por sua vez, um Cluster é uma coleção de nós que se conectam juntos. Quando um nó é criado, por consequência, um cluster é criado. Por fim, o elasticsearch fornece a capacidade de subdividir o índice em várias partes; e essas partes são chamadas de Shards.

Figura 1. Simplificação de como o elasticsearch funciona.

2.2. Logstash

É uma ferramenta de coleta e tratamento de dados com recursos em tempo real, funcionando como uma espécie de pipeline de dados. Porém, para este artigo usamos apenas uma entrada de dados, a fim de facilitar a compreensão e reprodução do processo. O Logstash é dividido em Input, Filter e Output.

No input são passadas as informações de onde os nossos dados serão buscados por ele. No nosso caso, um único arquivo CSV. O filter é a parte responsável pelo tratamento dos dados, seja para fins de normalização ou de manipulação para conseguir apenas os dados que realmente interessam. Já o output é quem manda esses dados filtrados para o elastic e cria, no mesmo, um índice para eles.

2.3. Kibana

Por fim, temos o Kibana: Uma ferramenta de visualização e exploração de dados. Ele oferece recursos poderosos e fáceis de usar, como histogramas, gráficos de linhas, gráficos de pizza, mapas de calor e suporte geoespacial integrado. Além disso, ele, também, fornece uma estreita integração com o Elasticsearch, o que torna o Kibana a opção padrão para visualizar dados armazenados no mesmo.

A interface do Kibana permite que os usuários consultem dados nos índices do Elasticsearch e visualizem os resultados por meio de opções de gráficos padrão ou apps integrados como o Lens, o Canvas e o Maps. Ainda, os usuários podem escolher entre diferentes tipos de gráficos, alterar as agregações de números e filtrar para ver segmentos específicos de dados. Dessa forma, no trabalho proposto esta será a ferramenta usada para a criação de um Dashboard, composto de diversos desses elementos visuais que permitirão uma compreensão e análise mais profunda dos dados do governo.

Figura 2. Funcionamento do Logstash.

3. Os Dados

Uma implicação direta da Lei nº 12.527 foi a criação dos chamados Portais de Transparência. Que nada mais são do que os sites criados para disponibilizar para a população como o dinheiro público é gasto. Ao se explorar tais Portais, é possível encontrar os mais diversos tipos de dados que abrangem o escopo de gastos governamentais. Como por exemplo, Receitas, Despesas, Transferências, Folhas de Pagamento e entre outros.

Para esse projeto, foram utilizados como objeto para aplicação das ferramentas citadas até aqui, dados retirados do Portal da Transparência de Anápolis - GO. Mais especificamente, da folha de pagamentos dos funcionários municipais, referente a Maio de 2022. Tal folha de pagamento é disponibilizada pelo site como um extenso arquivo CSV, contendo os seguintes campos: Nome, Referência, Matrícula, Tipo de Folha, Proventos, Descontos, Líquido, Cargo, Vínculo, Data Admissão e Lotação. Ou seja, todos os dados necessários para identificar um servidor público, sua função, salário, entre outros. Porém, seja no formato de tabela ou de CSV, é difícil extrair algum conhecimento desses dados em seu estado bruto. Portanto, o objetivo buscado aqui foi de usar os softwares, e seus conceitos, introduzidos anteriormente, para se tratar e melhorar a visualização de tais dados. Assim, facilitando o processo de se adquirir informações relevantes através dos mesmos.

4. Replicando

Para se replicar o processo é necessário, baixar o repositório do projeto. Em seguida, deve-se executar o Logstash para buscar e carregar os dados do arquivo CSV. Para isso, entre na pasta 'logstash' e coloque o arquivo de dados dentro da pasta 'csv'. Caso queira fazer com um arquivo de dados diferente do usado neste trabalho, abra a pasta 'pipeline' dentro de 'logstash' e mude o nome caminho 'path' no arquivo para o nome do csv escolhido; em seguida, ajuste o campo 'filter' com os campos correspondentes aos do novo

CSV. Por fim, mude o nome do index na seção 'output'. Na sequência, rode o seguinte comando no terminal 'sudo docker-compose up -d''. Dessa forma, o projeto irá subir e será possível acessar a interface do KIbana no endereço 'localhost:5601'. O processo descrito anteriormente também está descrito no readme do projeto do projeto.

Uma vez dentro do Kibana pesquise por 'Dev Tools' e acesse o resultado. Essa página oferece um console que lhe permitirá executar consultas nos dados enviados para o Elastic, através de queries. Na raiz do projeto, na pasta 'logstash/queries-examples' estão alguns exemplos de consultas que podem ser executadas nesse terminal.

Seguindo, para a parte de visualização em si é preciso pesquisar por 'Data Views' e na tela correspondente criar um nova visualização. Para isso, basta dar um nome à visualização correspondente ao índice mostrado do lado direito. Depois, pesquisando por 'Dashboards' é possível criar suas próprias visualizações usando a interface totalmente visual do Kibana.

Na pasta '/dashboards' na raiz no projeto, se encontram as dashboards criadas para este trabalho. Para importá-las ao seu projeto, acesse 'Saved Objects' no Kibana, selecione 'Import' e arraste um dos arquivos da pasta citada para lá.

5. Visualização e Resultados

Caso obtenha sucesso seguindo os passos descritos na seção anterior, terá obtido um resultado parecido com os mostrados nas figura 3 e 8, abaixo.

Figura 3. Primeiro Dashboard.

A figura 3 apresenta um dashboard com vários elementos visuais exibidos de forma simultânea. Onde, todos passam informações parecidas e referentes à quantidade de funcionários por órgão, porém cada elemento agrega essa informação com seu próprio elemento visual. A seguir foi feita uma análise individual de cada um desses elementos.

Na figura 4, podemos ver os dados na forma de uma tabela com as seguintes informações: Quantidades de funcionários por órgão, média de salário por órgão e a soma de todos os salários daquele órgão. Na figura 5, tem-se, novamente, a quantidade

de servidores em cada órgão. Porém, agora de forma mais visual, usando um gráfico de barras. Enfim, na figura 6 apresenta-se uma distribuição percentual dos cargos dentro de cada órgão

Além disso, a interface do Kibana permite adicionar filtros à visualização, alterando os gráficos do dashboard em tempo real. Na figura 7, podemos ver o mesmo dashboard apresentado na figura 3, porém agora com filtros para mostrar somente os servidores da Educação, com o cargo de Auxiliar de Serviços de higiene e alimentação 40h.

Tabela de orgãos			
Orgãos ~	Quantidade de funcionários ∨	Média de gastos do orgão ∨	Total de gastos do orgão ∨
S. M. da Educação	36,010	3,772 R\$	135,847,412.2
S. M. de Saúde	22,120	3,256 R\$	72,028,063.6
S. M. de Integração Social, Espo	5,620	2,290 R\$	12,871,436.3
S. M. de Governo e Recursos Hu	3,050	2,395 R\$	7,305,195.6
S. M. de Obras e Serviços Urbar	2,510	2,905 R\$	7,291,076.6
S. M. de Meio Ambiente, Habita	2,230	2,999 R\$	6,687,852.2
S. M. da Economia	1,920	4,650 R\$	8,927,337.1
S. M. de Indústria, Comércio, En	1,660	2,327 R\$	3,862,921.2
S. M. de Comunicação, Eventos	620	2,974 R\$	1,843,571.4

Figura 4. Tabela de funcionários por Órgãos.

Figura 5. Gráfico de funcionários por Órgãos.

Na figura 8, tem-se o segundo dashboard confeccionado. Nele podemos observar o número total de funcionários da prefeitura de Anápolis. Além disso, analisando seus elementos visuais de forma independente, infere-se a quantidade de servidores por tipo de folha na figura 9. Ainda, a figura 10 apresenta quantidade funcionários separados pela data em que estes entraram para a prefeitura.

Figura 6. Gráfico de cargos por órgão.

Figura 7. Dashboard com filtros.

Figura 8. Segundo Dashboard.

Figura 9. Gráfico da quantidade de servidores por tipo de folha.

6. Conclusão

Contudo, pôde se observar que o Elastic-Stack se apresenta de fato como uma poderosa ferramenta de monitoramento e observação de dados. Especialmente quando comparado aos Portais de Transparência, proporcionando algumas vantagens com relação a esse, como a liberdade para escolha do intervalo de tempo para análise e a possibilidade de adição de filtros em tempo real. As diferentes visualizações disponibilizadas em conjunto, na forma de dashboard, permitem a gestores e usuários leigos a identificação rápida de informações de maior relevância, proporcionando efetivamente uma melhoria na transparência pública.

Referências

- Cristian Weiland, Diego Pasqualin, E. M. L. C. E. d. B. M. S. (2018). Integração e Análise das Despesas do Governo Federall. *SBC Anais do VI workshop de transparência em sistemas*.
- da Costa Leite, M. A. T. (2019). O uso da Stack ELK no Diagnóstico de Problemas em Sistemas SCADA em Produção. *Faculdade de Engenharia da Universidade do Porto FEUP*.
- de Siqueira, P. F. (2020). Sistema de monitoramento de arquivos de log de aplicação baseado na plataforma Elastic Stack. *Universidade Federal do Rio Grande do Norte UFRN*.

Figura 10. Funcionários por data de egresso.