Конспект по матанализу I семестр, часть 2 Факультет математики и компьютерных наук, СПбГУ (лекции Кислякова Сергея Витальевича)

Тамарин Вячеслав

2 января 2020 г.

Оглавление

ОГЛАВЛЕНИЕ 4

Глава 1

Непрерывные функции

1.1 Непрерывность в точке

Designation. $f: A \to \mathbb{R}, x_0 \in A$

Def 1. Функция f называется **непрерывной в точке** x_0 , если

для любой окрестности U точки $f(x_0)$ существует окрестность точки x_0 такая, что $f(V \cap A) \subset U$.

или

$$\forall \varepsilon > 0 \ \exists \delta > 0: \ (|x - x_0| < \delta \quad x \in A \Longrightarrow |f(x) - f(x_0)| < \varepsilon). \tag{1.1}$$

Note. Если $x_0 \in A'$, то условие 1.1 эквивалентно тому, что

$$\exists \lim_{x \to x_0} f(x) = f(x_0).$$

Note. Если точка x_0 является изолированной для A, то f непрерывна в x_0 .

1.2 Свойства непрерывных функций

1.2.1 Теорема об алгебраических операциях

Theorem 1 (об алгебраических операциях с непрерывными функциями). *Пусть* $f: A \to \mathbb{R}, \ g: A \to \mathbb{R}, \ x_0 \in A, \ \alpha, \beta \in \mathbb{R}.$

- Если f и g непрерывны в точке x_0 , то $\alpha g + \beta f$ непрерывна в точке x_0 .
- ullet Если f и g непрерывны в точке x_0 и $g(x_0) \neq 0$, то $rac{g}{f}$ непрерывна в точке x_0 .

Доказательство. Если x_0 — изолированная, утверждение верно, иначе повторяем доказательства свойств пределов в точке.

1.2.2 Теорема о композиции

Theorem 2 (о композиции). $f:A\to\mathbb{R},\ g:B\to\mathbb{R},\ f(A)\subseteq,\ x_0\in A$. Пусть f непрерывна в точке $x_0,\ g$ непрерывна в точке $f(x_0)=y_0$. Тогда $g\circ f$ непрерывна в точке x_0 .

Доказательство. Обозначим $z_0 = g(y_0) = (g \circ f)(x_0)$. Пусть U — окрестность точки z_0 . Тогда

$$\exists$$
 окрестность $V \ni y_0 : g(V \cap B) \subset U$.

Так как f непрерывна в точке x_0 :

$$\exists$$
 окрестность $W \ni x_0 : f(W \cap A) \subset V$.

Тогда

$$(g \circ f)(W \cap A) \subset g(U \cap B).$$

1.2.3 Теорема о пределе последовательности

Theorem 3. $f: A \to \mathbb{R}, A \subset \mathbb{R}, x_0 \in A$. Следующие условия эквивалентны:

- 1. f непрерывна в точке x_0
- 2. \forall последовательности $\{x_n\} \in A, \ x_n \to x_0 : f(x_n) \to f(x_0)$

Доказательство.

$1 \Longrightarrow 2$

 $\overline{\Pi_{yC}}$ ть W — окрестность точки $f(x_0)$. Так как f непрерывна,

$$\exists$$
 окрестность $V \ni x_0 : f(x) \in W \quad \forall x \in V \cap A$.

Так как $x_n \to x_0$:

$$\exists N \in \mathbb{N} \ \forall n > N : x_n \in V \Longrightarrow f(x_n) \in W.$$

$$2 \Longrightarrow 1$$

Пусть f не непрерывна в точке x_0 , есть

$$\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x \in A : |x - x_0| < \delta \land |f(x) - f(x_0)| \geqslant \varepsilon.$$

Рассмотрим $\delta_n = \frac{1}{n}$.

$$\exists x_n \in A : |x_n - x_0| < \frac{1}{n} \land |f(x_n) - f(x_0)| \geqslant \varepsilon.$$

Тогда

$$0 < |x_n - x_0| < \frac{1}{n} \Longrightarrow x_n \to x_0.$$

Из этого следует, что $f(x_n) \to f(x_0)$. Противоречие.

1.3 Непрерывность на множестве

Def 2. Говорят, что функция f, заданная на множестве A, **непрерывна на некотором подмножестве** $A_1 \subset A$, если она непрерывна в каждой точке множества A_1 .

ГЛАВА 1. НЕПРЕРЫВНЫЕ ФУНКЦИИ

1.3.1 Теоремы Вейерштрасса

Theorem 4 (Первая теорема Вейершрасса). Пусть f задана и непрерывна на замкнутом и ограниченном множестве A. Тогда функция f ограничена на A.

Доказательство. От противного. Пусть f не ограничена на A. Тогда

$$\forall n \in \mathbb{N} \ \exists x_n \in A : |f(x_n)| > n.$$

 $\{x_n\}$ — ограниченная последовательность. По теореме о компактности существует подпоследовательность $x_{n_j} \to x$. Так как A замкнуто, $x \in A$. Следовательно, $f(x_n) \to f(x)$. Противоречие.

Theorem 5 (Вторая теорема Вейерштрасса). $f: A \to \mathbb{R}$ — непрерывная на замкнутом и ограниченном множестве A функция. Если существуют конечные

$$M = \sup_{x \in A} f(x), \quad m = \inf_{x \in A} f(x),$$

mo

$$\exists y, z \in A : f(y) = M, \quad f(z) = m.$$

Доказательство.

Для M:

$$\forall n \in \mathbb{N} \ \exists x_n \in A : M \geqslant f(x_n) > M - \frac{1}{n}.$$

По теореме о компактности существует подпоследовательность $x_{n_i} \to x$. Так как A замкнуто, $x \in A$.

$$f(x_{n_j}) \to f(x) \land f(x_{n_j}) \to M \Longrightarrow M = f(x).$$

Значит, M достигается.

• Для m: совершенно аналогично.

1.3.2 Теорема о промежуточном значении

Designation. «
$$u$$
 между r и s » :=
$$\begin{cases} u \in [r,s] & r \leqslant s \\ u \in [s,r] & r > s \end{cases}$$

Theorem 6 (о промежуточном значении). Пусть f задана и непрерывна на отрезке $\langle \alpha, \beta \rangle$. Пусть $a, b \in \langle \alpha, \beta \rangle$, v находится между f(a) и f(b). Тогда существует x между a и b такой, что f(x) = v.

Доказательство. Если a = b, утверждение очевидно. Не умаляя общности, предположим, что a < b. Будем считать, что $v \neq f(a) \land v \neq f(b)$.

Пусть нет точки $x_0: f(x_0)=v$. Обозначим I=[a,b]. Пусть $egin{array}{c} X=\{x\in I\mid f(x)\leqslant v\} \\ Y=\{x\in I\mid f(x)\geqslant v\} \end{array}$. Докажем, что X и Y замкнуты.

ГЛАВА 1. НЕПРЕРЫВНЫЕ ФУНКЦИИ

1. X замкнуто:

 x_0 — предельная точка. Следовательно, $\exists x_n \in X : x_n \to x_0, \ (x_n \neq x_0)$. Тогда $f(x_n) \to f(x_0)$.

$$f(x_n) \leqslant v \Longrightarrow f(x) \leqslant v.$$

2. Аналогично Y замкнуто.

Следовательно, $X \cap Y \neq \emptyset$.

Theorem 7. Пусть f задана и непрерывна на отрезке $\langle a,b \rangle$. Следующие условия эквивалентны:

- 1. f инъекция (то есть $x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)$)
- 2. f-строго монотонная

Доказательство.

 $2 \Longrightarrow 1$ Очевидно.

 $\boxed{1 \Longrightarrow 2}$ Пусть f не строго монотонна. Тогда $\exists x_1 < x_2 < x_3 \in \langle \alpha, \beta \rangle$:

$$\begin{cases} f(x_1) < f(x_2) \land f(x_2) > f(x_3) \\ f(x_1) > f(x_3) \land f(x_2) < f(x_3) \end{cases}$$

Тогда $\exists x_1' \neq x_2'$, но $f(x_1') = f(x_2')$. Противоречие.

Theorem 8. Пусть q задана на отрезке и возрастает (убывает). Тогда q непрерывна тогда и только тогда, когда образ функции есть отрезок (возможно бесконечный).

Statement. Если f непрерывна, задана на отрезке и интективна, то f^{-1} тоже задана на отрезке и непрерывна.

Степени с рациональным показателем

$$m \in \mathbb{Z}, \ f(x) = x^m, \ x > 0.$$
 $x^0 \equiv 1, \quad x > 0.$ x^m строго возрастает, если m

 x^m строго возрастает, если m>0

 x^m строго убывает, если m < 0

 $x^m\stackrel{\mathrm{def}}{=}=\frac{1}{x^{-m}}$ $f(x)=x^m$ — непрерывная функция. Обратная функция $g(y)=f^{-1}(y)$ — корень m-й степени из y>0.

Def 3.
$$x > 0, \ r \in \mathbb{Q}, \ r = \frac{p}{q}$$
 $x^r = \sqrt[q]{x^p} - x$ в рациональной степени.

Note. $x \mapsto x^r$ — непрерывное отображение.

Lemma. Результат не зависит от представления r в виде дроби.

Property.

1.
$$x^{r_1} \cdot x^{r_2} = x^{r_1+r_2}$$

2.
$$(x^{r_1})^{r_2} = x^{r_1 r_2}$$

3.
$$x^r \cdot y^r = (xy)^r$$

1.5 Равномерная непрерывность

 $\mathbf{Def}\ 4.\ A\subset\mathbb{R},\ f:A\to\mathbb{R}.$ Говорят, что f равномерно непрерывна на A, если

$$(|x - x_0| < \delta \land x \in A) \Longrightarrow |f(x_0) - f(x_0)| < \varepsilon$$

или

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in A : (|x - y| < \delta |f(x) - f(y)| < \varepsilon).$$

Ex. f(x) = x, $A = \mathbb{R}$.

$$\forall \varepsilon > 0 \ |x-y| < \varepsilon \Longrightarrow |f(x)-f(y)| \Longrightarrow f$$
 равномерно непрерывна.

Ex. $f(x) = x^2$, $A \subset \mathbb{R}$

$$|x^2 - y^2| < \varepsilon \iff |x - y||x + y|C\varepsilon \implies f$$
 не равномерно непрерывно.

Ех. $h(x) = \sqrt{x}$ — равномерно непрерывна.

$$\left|\sqrt{x} - \sqrt{y}\right| = \frac{|x - y|}{\sqrt{x} + \sqrt{y}}.$$

1.5.1 Теорема Кантора

Theorem 9 (Кантор). Пусть A замкнутое ограниченное множество. $f: A \to \mathbb{R}$ — непрерывная функция. Тогда f равномерно непрерывна.

$$\exists \varepsilon > 0 \ \delta > 0 \ \exists x_1', x_2'' \in A : |x_1' - x_2''| < \delta \land |f(x_1') - f(x_2'')| \geqslant \varepsilon.$$

Рассмотрим $\delta = \frac{1}{n}$.

$$\exists x_n', x_n'' \in A : |x_n' - x_n''| < \delta \land |f(x_n') - f(x_n'')| \geqslant \varepsilon.$$

Получили две последовательности $\{x_n'\}$ и $\{x_n''\}$. Обе замкнуты и ограничены, тогда по теореме о компактности $\exists x_{n_i}' \to x_0 \in A$.

$$x''_{n_j} = x'_{n_j} + (x''_{n_j} - x'_{n_j}) \to x_0 + 0.$$

Посмотрим на значения в точках последовательностей:

$$|f(x_n') - f(x_n'')| \geqslant \varepsilon.$$

Но каждое из значений стремится к $f(x_0)$, значит разность должна стремиться к нулю. Противоречие. \Box

Глава 2

Дифференцирование

2.1 Определения

Designation. $f: \langle a, b \rangle \to \mathbb{R}, \ x_0, x \in \langle a, b \rangle$

Def 5. Функция f называется дифференцируемой в точке x_0 , если

$$f(x) - f(x_0) = l(x - x_0) + o_{x \to x_0}(x - x_0),$$

где $l(t)=kt,\;k\in\mathbb{R}$ — дифференциал f в точке x_0 (также обозначается $d_{fx_0}(t)$ или $df(x_0,t)$). Другая запись:

$$f(x) = f(x_0) + k(x - x_0) + o_{x \to x_0}(x - x_0).$$

Def 6. Если f дифференцируема в точке x_0 , **производная** f в точке x_0 определяется так:

$$f'(x_0) \stackrel{\text{def}}{=} \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

Property.

- 1. Если f дифференцируема в точке x_0 , то k единственное.
- 2. Если f дифференцируема в точке x_0 , то f непрерывна в точке x_0 .
- 3. f дифференцируема в точке x_0 тогда и только тогда, когда

$$\exists \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = k, \ df_{x_0}(t) = kt.$$

Доказательство.

$$\lim_{x \to x_0} \frac{f(x) = f(x_0)}{x - x_0} = k \Longrightarrow \frac{f(x) - f(x_0)}{x - x_0} = k + O(1), \ x \to x_0.$$

$$f(x) - f(x_0) = k(x - x_0) + o_{x \to x_0}(1)(x - x_0) =$$

= $k(x - x_0) + o_{x \to x_0}(x - x_0)$

4. f дифференцируема в точке x_0 тогда и только тогда, когда существует β , заданная в окрестности $V \ni x$:

(a) β непрерывна в точке x_0

(b)
$$f(x) - f(x_0) = \beta(x) \cdot (x - x_0)$$
 $\forall x \in V$

$$\beta(x) = \begin{bmatrix} \frac{f(x) - f(x_0)}{x - x_0} & x \neq x_0\\ \lim_{y \to x_0} \frac{f(y) - f(x_0)}{y - x_0} & x = x_0 \end{bmatrix}$$

 $\iff \beta(x) = \beta(x_0) + o_{x \to x_0}(1)$ Подставим

$$f(x) - \underbrace{\beta(x_0)}_{k}(x - x_0) + o_{x \to x_0}(1)(x - x_0).$$

Получили определение.

2.2 Правила дифференцирования

- 0. Никогда не дифференцируй при людях!
- 1. f(x) = ax + b дифференцируема и $\forall x_0 : f'(x_0) = a$
- 2. Если f, g дифференцируемы в точке $x_0, f \cdot g$ тоже дифференцируема в точке x_0 и $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$
- 3. Если f дифференцируема в точке x_0 и $f(x_0) \neq 0$, то 1/f дифференцируема в точке x_0 и

$$\left(\frac{1}{f}\right)'(x_0) = -\frac{f'(x_0)}{f^2(x_0)}.$$

4. Если f,g дифференцируемы в x_0 и $g(x_0) \neq 0$, то $\frac{f}{g}$ дифференцируема в x_0 и

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}.$$

5. Если $f:\langle a,b\rangle\to\mathbb{R},\ g:\langle c,d\rangle,\ x_0\in\langle c,d\rangle,\ g(x_0)\in\langle a,b\rangle$ и f дифференцируема в точке $g(x_0),\ g$ дифференцируема в точке x_0 , то $f\circ g$ дифференцируема в точке x_0 и

$$(f \circ g)'(x_0) = f'(g(x_0)) \cdot g'(x_0).$$

6. Производная обратной функции. $f:(a,b)\to\mathbb{R}$ непрерывна и инъективна. Пусть $x_0\in(a,b),\ \exists f'(x_0)\neq 0$, обозначим $g=f^{-1}$ — обратное отображение, $y_0=f(x_0)$. Тогда g дифференцируема в точке y_0 и

$$g'(y_0) = \frac{1}{f'(g(y_0))} = \frac{1}{f'(x_0)}.$$

ГЛАВА 2. ДИФФЕРЕНЦИРОВАНИЕ

7. $m\in\mathbb{N},\ g(x)=x^{\frac{1}{m}}$. Если $x_0>0,$ то g дифференцируема в точке x_0 и

$$g'(x_0) = \frac{1}{f'\left(x^{\frac{1}{m}}\right)} = \frac{1}{m\left(x^{\frac{1}{m}}\right)^{m-1}} = \frac{1}{m} \cdot x^{\frac{1}{m}-1}.$$

8. $x_0 > 0, \ \alpha = \frac{l}{k} > 0. \ \varphi(x) = x^{\alpha} = \left(x^{\frac{1}{k}}\right)^l$. Тогда φ дифференцируема в точке x_0 и

$$\varphi'(x) = l\left(x^{\frac{1}{k}}\right) \cdot \frac{1}{k} x^{\frac{1}{k} - 1} = \frac{l}{k} x^{\frac{l}{k} - 1}.$$

Аналогично для $\alpha < 0$.

9. Тайная таблице еще не пройденных функций:

Функция	Производная
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
tg x	$\frac{1}{\cos x}$
$\exp x$	$\exp x$
$\ln x$	$\ln x$

2.3 Производная возрастающей функции

Def 7. Пусть $f: I = \langle a, b \rangle \to \mathbb{R}, \in \langle a, b \rangle$. Говорят, что f возрастает в точке x_0 , если \exists окрестность $U \ni x_0$:

$$\begin{cases} f(y) \leqslant f(x_0) & y \in U \cap I \land y \leqslant x_0 \\ f(y) \geqslant f(x_0) & y \in U \cap I \land y \geqslant x_0 \end{cases}$$

Note. Аналогично можно дать определение убывания в точке и строгие формы, заменив знаки на строгие.

Theorem 10. Пусть в условии определения f возрастает в точке x_0 .

- 1. Ecsu $\exists f'(x), f'(x_0) \geqslant 0$
- 2. Пусть $\exists f'(x_0) > 0$, тогда f строго возрастает в точке x_0

Доказательство.

1.

$$\underbrace{\frac{f(x) - f(x_0)}{x - x_0}}_{\geqslant 0 \ \forall x \geqslant x_0} \to f'(x_0) \Longrightarrow f'(x_0) \geqslant 0.$$

2.
$$f(x) - f(x_0) = f'(x_0)(x - x_0) + \underbrace{o(x - x_0)}_{\gamma(x)}$$

$$\forall \varepsilon > 0 \ \exists \delta > 0 : (|x - x_0| < \delta \Longrightarrow |\gamma(x)| \leqslant \varepsilon |x - x_0|.$$

 $0 < \varepsilon < f(x_0)$. Разберем пару случаев:

(a)
$$x > x_0$$
.

$$f(x) - f(x_0) = f'(x_0)(x - x_0) + \gamma(x) \ge (f(x) - \varepsilon)(x - x_0) > 0.$$

(b)
$$x < x_0$$
.

$$f(x) - f(x_0) \le f'(x_0)(x - x_0) + \varepsilon(x - x_0) = (f'(x_0) - \varepsilon)(x - x_0) > 0.$$

Def 8. $I = (\alpha, \beta), \ x \in I$. Говорят, что f имеет **монотонный максимум**, если

$$\exists \delta > 0 : f(x_0) \geqslant f(y) \quad \forall y \in I \land |x_0 - y| < \delta.$$

Note. Аналогично можно определить локальный минимум и строгие формы, заменив нестрогий знак на строгий.

Note. Локальный максимум и минимум — локальные экстремумы.

Theorem 11. $x_0 \in (\alpha, \beta)$ — точка локального экстремума для $f:(\alpha, \beta) \to \mathbb{R}$. Если $\exists f'(x_0),$ то $f'(x_0) = 0$.

Доказательство. Пусть x_0 локальный максимум. Тогда $f \upharpoonright_{(\alpha,x_0]}$ — возрастает в точке $x_0 \Longrightarrow f'(x_0) \geqslant 0$. Также $f \upharpoonright_{[x_0,\beta)}$ — убывает в точке $x_0 \Longrightarrow f'(x_0) \leqslant 0$.

Для других случаев полностью аналогично.

2.4 Формулы Коши и Лагранжа

- 2.5 Правило Лопиталя
- 2.6 Формула Тейлора
- 2.7 Достаточное условие экстремума
- 2.8 Сходимость последовательностей

Theorem 12. $f_n, f: A \to \mathbb{R}, f_n \to f$ Следующие условия эквивалентны:

- 1. $\exists M : |f_n(x)| \leqslant M \quad \forall n, x \longrightarrow |f(x)| \leqslant M$
- 2. f ограничена: $|f(n)| \leq M \forall x \to \exists N \exists A$: $|f_n(x)| \leq A \quad \forall n \leq N \forall x$

Доказательство. Очевидно

Theorem 13.
$$f_n \rightrightarrows f, g_n \rightrightarrows g$$
 на A . Пусть $\exists M : \forall x \in A \ \forall n | f_n(x) | \leqslant M$. Тогда $f_n g_n \rightrightarrows fg$

Доказательство.

$$|f(x)g(x) - f_n(x)g_n(x)| \le |f(x)||g(x) - g_n(x)| + |g_n(x)||f(x) - f_n(x)| \le M|g(x) - f_n(x)| + |f(x) - f_n(x)|$$

Theorem 14 (Критерий Коши для равномерной сходимости). Пусть f_n — последовательность функций на множестве A. Она равномерно сходится тогда и только тогда, когда

$$\forall \varepsilon > 0 \ \exists N \ \forall k, j > N \ \forall x : |f_k(x) - f_j(x)| < \varepsilon.$$

Доказательство. Необходимость.

Пусть $f_n \Rightarrow f$, $\varepsilon > 0$ найдем $N : \forall n > N \quad |f_n(x) - f(x)| < \varepsilon \forall x \in A$.

$$\forall k, l > N \quad |(f_k(x) - f_l(x))| \leq |f_k(x) - f(x)| + |f(x) - f_l(x)| < 2\varepsilon \forall x \in A.$$

Достаточность.

Пусть ?? выполнено. $x \in A$ - фиксировано. Тогда $\{f_n(x)\}_{n \in \mathbb{N}}$ есть последовательность Коши (см ??). Следовательно,

$$\forall x \exists \lim_{n \to \infty} f_n(x) \stackrel{def}{=} f(x).$$

 $\varepsilon>0$. Нашли $N:|f_k(x)-f_j(x)|<\varepsilon\quad \forall x\in A \forall k,j>N$ Зафиксируем k,x, перейдем к пределу по j:

$$|f_n(x) - f(x)| < \varepsilon.$$

Что верно для $\forall x \in A, \forall k > N$.

Ех. Функция на \mathbb{R} , непрерывная всюду, но не дифференцируемая на в одной точке.

(Вейерштрасс):
$$f(x) = \sum_{j=1}^{\infty} b^{j} \cos l^{j} \pi x$$
, $|b| < 1$.

Theorem 15 (Вейерштрасс). Пусть $f_n - \phi$ ункция на множестве A.

$$\forall x: |f_n(x)| \leqslant a_n$$
, где ряд $\sum a_n$ сходится.

Тогда $\sum_{0}^{\infty} f_n(x)$ сходится равномерно.

Note. Из этой теоремы следует, что функция из примера непрерывна.

Доказательство. Рассмотрим $\varepsilon > 0$. Найдем $N : \sum_{n=k+1}^l a_n < \varepsilon \quad \forall k, l > N$.

$$S_j(x) = \sum_{n=0}^{j} f_n(x).$$

$$|S_j(x) - S_k(x)| = |f_{k+1} \dots + f_k(x)| \le |f_{k+1}(x)| + \dots + |f_l(x)| \le a_{k+1} + \dots + a_l < \varepsilon.$$

Ех (Ван дер Варден). $f_1(x) = |x|, |x| < \frac{1}{2}$; продолжим с периодом 1. $f_n = \frac{1}{4^{n-1}} f(4^{n-1}x, g(x)) = \sum_{n=1}^{\infty} f_n$ непрерывна, но нигде не дифференцируема, так как:

$$|f_n(x)| \leqslant \frac{1}{2 \cdot 4^{n-1}}.$$

ГЛАВА 2. ДИФФЕРЕНЦИРОВАНИЕ

Рис. 2.1: График функции Ван дер Вардена

$$h \neq 0, \ h_k = \pm \frac{1}{4^{n-1}}: \quad \frac{g(x+h) - g(x)}{h} = \sum_{j=1}^{\infty} (f_j(x+h_k) - f_j(x))h_k = \sum_{j=1}^{k-1} \frac{f_j(x+h_k) - f_j(x)}{h_k}.$$

Будем выбирать знак в h_k (\pm), чтобы во всех слагаемых значение лежал в одинаковых частях графика. Тогда при четном j значение будет разных знаков.

Designation. Ряд из функций $\sum_{n=1}^{\infty} h_n(x)$ сходится обозначает, что функции $S_j(x) = h_1(x) \dots h_j(x)$ сходятся в соответствующем смысле.

Ex.
$$f_n(x) = \sqrt{x^2 + \frac{1}{n}} \to |x|$$

$$\sqrt{x^2 + \frac{1}{n}} - |x| = \frac{x^2 + \frac{1}{n} - x^2}{\sqrt{x^2 + \frac{t}{n} + |x|}} = \frac{1}{n} \cdot \frac{1}{\sqrt{x^2 + \frac{1}{n} + |x|}} \leqslant \frac{1}{n}, \quad \text{ при } |x \geqslant 1|.$$

Theorem 16. $f_n, f, g_n : \langle a, b \rangle \to \mathbb{R}$ Предположим, что $f_n \to f$ поточечно. f_n дифференцируемы u $f_n \rightrightarrows g$ равномерно. Тогда f дифференцируемая на $\langle a, b \rangle$ u f' = g.

Доказательство. Запишем определение равномерной сходимости:

$$\forall eps > 0 \exists N : k, l > N \rightarrow \forall x \in \langle a, b \rangle : |f_k(x)' - f_l(x)'| < \varepsilon.$$

$$u_{k,l} - f_k(x) - f_l(x).$$

Теперь рассмотрим для $xy \in \langle a, b \rangle$:

$$\frac{u_{k,l}(x) - u_{k,l}(y)}{x - 1} = u'k, l(c), \quad c$$
 между $x, y...$

$$\forall x, y \in \langle a, b \rangle : \left| \frac{u_{k,l}(x) - u_{k,l}(y)}{x - y} \right| < \varepsilon \iff \forall x \in \langle a, b \rangle, \forall k, l > N :$$

$$\left| \frac{f_k(x) - f_k(y)}{x - y} - \frac{f_l(x) - f_l(y)}{x - y} \right\rangle | < \varepsilon$$

ГЛАВА 2. ДИФФЕРЕНЦИРОВАНИЕ

2.9. ПЕРВООБРАЗНЫЕ 17

Фиксируем $k, l \to \infty$.

$$\left| \frac{f_k(x) - f_k(y)}{x - y} - \frac{f(x) - f(y)}{x - 1} \right| < \varepsilon, \quad \forall x, y \in \langle a, b \rangle.$$

Оценим разность. Зафикируем x.

$$\exists \delta > 0 : |x - y| < \delta \land x \neq y \to \left| \frac{f_k(x) - f_k(y)}{x - y} f'_k(x) \right| < \varepsilon.$$

Объединяем неравенства: для данных k, x:

$$|y-x| < \delta, y \neq x \rightarrow |f'_k(x) - \frac{f(x) - f(y)}{x - y}| \leqslant 2\varepsilon.$$

Следовательно,

$$|x-y| < \delta \to |g(x) - \frac{f(x) - f(y)}{x - y}| \le 3\varepsilon.$$

2.9 Первообразные

Пусть все происходит на $\langle a,b \rangle$. $g:\langle a,b \rangle \to \mathbb{R}$

Def 9. Говорят, что f есть первообразная для g, если f дифференцируема на $\langle a,b\rangle y$ и f'=g всюду.

Theorem 17 (Ньютон, Лейбниц). *Если д непрерывна, то у нее есть первообразная.*

Note. К этой теореме мы еще вернемся.

Statement. Если f'=g, то (f+c)'=g для любой константы c.

Theorem 18. Если f_1, f_2 — первообразные для g, то $f_1 - f_2 = const$

Функция	Первообразная
x^{α}	$\frac{x^{\alpha+1}}{\alpha+1}, \ \alpha \neq -1$
$\frac{1}{x}$	$\log x + c, \ \alpha \neq -1$
$\sin x$	$-\cos x + c$
$\cos x$	$\sin x + c$
$\frac{1}{x^2+1}$	$\arctan x + c$
e^x	$e^x + c$

Designation. Пишут:

$$f = \int g$$
 или $f(x) = \int g(x)dx$.

Statement. $\int f'(x) \cdot g' = f \circ g \pm C$

Def 10. Линейная функция — это функция вида $\varphi(h) = ch$.

Линейная форма: $\langle a,b \rangle$; Φ — отображение отрезка $\langle a,b \rangle$ в множество линейных функций. $x \in \langle a,b \rangle, \Phi(x)$ — линейная функция.

$$\Phi(x)(h) = c(x)h.$$

Def 11 (дифференциал). f дифференцируема на $\langle a,b \rangle$

$$df(u,h) = f'(u)h = df.$$

Ех. $x:\langle a,b\rangle \to \langle a,b\rangle$ — тождественная. dx(u,h)=h

Statement. $\Phi = c \cdot dx$, $\partial e c - hekas функция на <math>\langle a, b \rangle$

$$f' = g$$
$$df = f'dx = gdx$$

Задача первообразной: дана линейная форма arphi=gdx ; найти функцию f:df=arphi

Statement.

$$d(f \circ g) = (f' \circ g) \cdot g : dx = f' \circ gdg.$$

 $\mathbf{E}\mathbf{x}$.

$$\int \sqrt{1-x^2} dx, \quad x \in (-1,1).$$

Сделаем замену $x = \sin t$, пусть $t \in [-\pi, \pi]$

$$\int \sqrt{1 - \sin^2(t)} \cos t dt = \int \cos^2(t) dt =$$

$$\int \frac{1 + \cos 2t}{2} dt = \frac{1}{2} \int ((1 + \cos 2t) dt =$$

$$\frac{1}{2} (t + \frac{1}{2} \int \cos t d(2t)) = \frac{1}{2} (t + \frac{\sin 2t}{2})$$

Тогда $\int \sqrt{1-x^2} dx = \frac{1}{2}(\arcsin x + \frac{\sin 2 \arcsin x}{2})$

Statement (Формула интегрирования по частям). (fg)' = f'g + fg' Перепишем:

$$d(fg) = gdf + fdg.$$

$$gdf = -fdy + d(fg).$$

$$\int gdf = fg - \int fdg.$$

Ex.

$$\int \log x dx = x \log x - \int x d \log x = x \log x - \int 1 dx = x \log x - x + C.$$

 $\mathbf{E}\mathbf{x}$.

$$\int e^x \sin x dx = \int \sin x de^x = \sin x e^x - \int \cos x e^x dx.$$
$$= \sin x e^x - \int x \cos x de^x = \sin x e^x - \cos x e^x - \int \sin x e^x dx.$$

Теперь решим уравнение и получим:

$$\int e^x \sin x dx = \frac{e^x \sin x - e^x \cos x}{2} + c.$$

ГЛАВА 2. ДИФФЕРЕНЦИРОВАНИЕ

2.10 Интеграл

Def 12. A — множество произвольной природы. $\Phi: A \to \mathbb{R}$. Φ — функционал на A.

Def 13. Интеграл — функционал на множестве функций, заданных на отрезке [a,b]. $f \mapsto \Phi(f)$

$$\Phi(f+g) = \Phi(f) + \Phi(g).$$

$$\Phi(\alpha f) = \alpha \Phi.$$

$$f \geqslant 0 \Longrightarrow \Phi(f) \geqslant 0.$$

$$\langle c, d \rangle \subset \langle a, b \rangle, f = \Phi(\chi) \langle c, d \rangle = d - c.$$

Statement. Каким должен быть интеграл?

- 1. Φ ункционал, заданный на каких-то функциях сопоставляет число $(f \mapsto I(\alpha))$
- 2. $I(\alpha f + \beta g) = \alpha I(f) = I(\beta)$ (Линейность)
- 3. $f \leqslant g \Longrightarrow I(f) \leqslant I(g)$
- 4. $\langle a, b \rangle : I(\chi_{\langle a, b \rangle}) = b a$

Def 14. Разбиение — ступенчатая функция на отрезке $\langle a,b\rangle$, $a,b\in\mathbb{R}$:

$$\langle a, b \rangle = \bigcup_{i=1}^{n} \langle \alpha_i, \beta_i \rangle, \quad \langle \alpha_i, \beta_i \rangle \cap \langle \alpha_j, \beta_j \rangle \neq \varnothing.$$

Def 15. g на $\langle a,b\rangle$ — ступенчатая, если при $i\neq j$ она постоянна на отрезках какого-то разиения нашего отрезка $\langle a,b\rangle$

Теперь можно зажать функцию между ступенчатыми. В этом состоит идея Дарбу.

2.10.1 Интеграл Дарбу

Def 16. J — конечный интервал, если его разбиение — это набор интервалов $\{J_k\}_{k=1}^N$, такой что J_k $cap J_s = \varnothing, \ k \neq s, \bigcup_{k=1}^N J_k = J_i$. (ДОпускаются одноточечные и пустые множества.)

Def 17. Длина интервала $\langle a,b \rangle$ — это b-a Обозначается |J|=b-a, $|\varnothing|=0$

Lemma. Если
$$\{J_k\}_{k=1}^N$$
 — разбиение J , то $|J| = \sum_{k=1}^N |J_k|$

Def 18. e — множетсво, f — ограниченная функция на . Колебание f на e :

$$esc_e(f) = \sup_{x,y \in e} |f(x) - f(y)| =$$

$$= \sup_{y} \left(\sup_{x} (f(x) - f(y)) \right) = \sup_{x} \left(\sup_{y} (f(x) - f(y)) \right) =$$

$$= \sup_{x \in e} f(x) + \sup_{y \in e} (-f(x) = \sup_{x \in e} f(x) - \inf_{y \in e} f(y).$$

Рис. 2.2: График функции

Пока предполагаем, что f ограничена. Просуммируем отрезки $J_1, \dots J_N$ из разбиения отрезка J.

$$\sum_{k=1}^{N} |J_k| \inf_{x \in J_k} f(x) \underline{S}.$$

— нижняя сумма Дарбу для f и разбиения $J_1 \dots J_N$

$$\sum_{k=1}^{N} |J_k| \sup_{x \in J_k} f(x) = \overline{S}.$$

— верхняя сумма Дарбу для f и разбиения $J_1 \dots J_N$

Designation. A — множество всех нижних сумм Дарбу для f по всевозможным разбиениям J_i B — множество всех верхних сумм Дарбу для f по всевозможным разбиениям J_i

Statement. Пусть $\{A,B\}$ — щель. Тогда

$$\underline{I}(f) = \sup A, \quad \overline{I}(f) = \inf(B).$$

Все числа, лежащие в этой щели — это $[\underline{I}(f),\overline{I}(f)]$ (верхний и нижний интегралы Римана-Дарбу от f)

Statement. $\{A, B\}$ – щель.

Доказательство. ε — разбиение отрезка J_i . $\underline{S}_{\mathcal{E}}(f)$, $\overline{S}_{\mathcal{E}}(f)$ — верхняя и нижняя сумма Дарбу. Очевидно, что $\underline{S}_{\mathcal{E}}(f) \leqslant \overline{S}(f)$

 \mathcal{E}, \mathcal{F} — разбиение $J_i : \mathcal{F}$ — измельчение \mathcal{E} , если $\forall a \in \mathcal{F} \exists b \in \mathcal{E} : a < b$.

Lemma. Если \mathcal{F} — измельчение для \mathcal{E} , то

$$\underline{S}_{\mathcal{F}}(f) \geqslant \underline{S}_{\mathcal{E}}, \quad \overline{S}_{\mathcal{F}} \leqslant \overline{S}_{\mathcal{E}}.$$

Lemma. Рассмотрим $\mathcal{E}_1, \mathcal{E}_2$ — разбиения отрезка J_i . Тогда у них есть общее измельчение. (Можем взять пересечение всех отрезков из первого и из второго)

Пусть $\mathcal{E}_1, \mathcal{E}_2$ — разбиения. \mathcal{F} — общее измельчение.

$$\underline{S}_{\mathcal{E}_1}(f) \leqslant \underline{S}_{\mathcal{F}}(f) \leqslant \overline{S}_{\mathcal{F}} \leqslant \overline{S}_{\mathcal{E}_2}.$$

Следовательно, $\{A, B\}$ — щель.

Note. Определенные величины $\overline{I}(f), \underline{I}(f)$ законны.

 ${f Def 19.}\,\,f$ называется интегрируемой по Риману, если $\overline{I}(f)=\underline{I}(f)$

$\mathbf{E}\mathbf{x}$.

Все ступенчатые функции интегрируемы по Риману. φ — ступенчатая функция на J, Существует разбиение \underline{S} отрезка на J. $\mathcal{E} = \{e_1, \dots e_k\} : \varphi(x) = \sum i = 1^k c_i \chi_{e_i}$

$$\underline{S}_{\mathcal{E}}(\varphi) = \sum_{i=1}^{k} |e_i| c_i \overline{S}_{\mathcal{E}}(\varphi) = \sum_{i=1}^{k} |e_i| c_i$$

Тогда $\underline{I}(\varphi) - \overline{I}\varphi = I(\varphi) = \sum_{i=1}^k |e_i|c_i$

Theorem 19. Если J — замкнутый отрезок (J = [a,b]), f — непрерывная функция на J, то f интегрируема по Риману.

Note. Пусть J — произвольный отрезок, f — ограниченная функция на J, \mathcal{E} — разбиение отрезка J на непустое отрезки $\mathcal{E} = \{e_1, \dots e_k\}$. Тогда

$$\overline{S}_{\mathcal{E}}(f) - \underline{(S)}_{\mathcal{E}}(f) = \sum_{i=1}^{k} |e_i| \sup_{e_i} f - \sum_{i=1}^{k} |e_i| \inf_{e_i} f =$$

$$= \sum_{i=1}^{k} |e_i| \left(\sup_{e_i} f - \inf_{e_i} f \right) = \sum_{i=1}^{k} |e_i| \operatorname{osc}_{e_i} f$$

Note. f интегрируема по Риману \iff щель (A, B) — узкая \iff

$$\forall \varepsilon > 0 \ \exists \mathcal{E}_1, \mathcal{E}_2$$
 — разбиения отрезка $J : \overline{S}_{\mathcal{E}_2}(f) - \underline{(S)}_{\mathcal{E}_1}(f) < \varepsilon$.

В данный обозначениях измельчения можно считать, что $\mathcal{E}_1 = \mathcal{E}_2 \; / / \;$ возможно, здесь должно быть что-то другое

Theorem 20 (Критерий интегрируемости по Риману). f интегрируема по Риману на J тогда и только тогда, когда $\forall \varepsilon > 0 \; \exists \; pasбиение \; e_1, \ldots, e_k \; Ompeska \; J, \; makoe \; что$

$$\sum_{i=1}^{k} |e_k| \operatorname{osc}_{e_k} f < \varepsilon. \tag{2.1}$$

Доказательство. Проверим, что f удовлетворяет условию $\ref{eq:constraint} f$ равномерно непрерывна по теореме Кантора g:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \Big(x, y \in [a, b] \land |x - y| < \delta \Longrightarrow |f(x) - f(y)| < \varepsilon \Big).$$

Пусть $e_1, \dots e_k$ — столь мелкое разбиение отрезка [a,b], что $\forall i: |e_i| < \delta$. Тогда $\forall i: \csc_{e_i} f \leqslant \varepsilon$.

$$\sum_{i=1}^{k} |e_i| \operatorname{osc}_{e_i} f \leqslant \varepsilon \sum_{i=1}^{k} |e_i| = \varepsilon (b-a).$$

Property. 1. f непрерывна на $\langle a,b\rangle \Rightarrow f$ интегрируема.

2. Σ — разбиение,

$$\overline{S}_{\Omega}(-f) = -\underline{S}_{\Omega}(f).$$

3. Если $\alpha > 0$,

$$\bar{S}_{\Sigma}(\alpha f) = \alpha \bar{S}_{\Sigma}(f).$$

Аналогично с нижней суммой.

- 4. Если f интегрируема $u \alpha \in \mathbb{R}$, то αf интегрируема $u I(\alpha f) = \alpha I(f)$
- 5. $f,g:\langle a,b\rangle\to\mathbb{R}$ ограничены. Σ разбиение.

$$\overline{S}_{\Sigma}(f+g) \leqslant \overline{iS}_{\Sigma}(f) + \overline{S}_{\Sigma}(g).$$

6.

$$\underline{S}_{\Sigma}(f+g) \geqslant \underline{S}_{\Sigma}(f) + \underline{S}_{\Sigma}(g).$$

7. Если f,g интегрируемы на $\langle a,b \rangle$, то f+g интегрируема u

$$I(f+g) = I(f) + I(g).$$

Можно рассмотреть общее подразбиение и применить критерий интегрируемости и прошлым свойством. Для второго утверждения: просто записываем неравенство.

8. f,g интегрируемы, $\alpha,\beta\in\mathbb{R}$. Тогда $\alpha f+\beta g$ интегрируема u

$$I(\alpha f + \beta q) = \alpha I(f) + \beta I(q).$$

- 9. Монотонность. $f \geqslant 0$, f интегрируема по Дарбу. Тогда, $I(f) \geqslant 0$.
- 10. f,g интегрируемы на $\langle a,b\rangle$. Тогда $f\cdot g$ интегрируема.

Доказательство.

$$\exists C, D \in \mathbb{R} : |f| \leqslant C, |g| \leqslant D \text{ Ha } \langle a, b \rangle.$$

Пусть J — отрезок. Оценим осцилляцию.

$$\begin{aligned} \forall x, y \in J : |f(x)g(x) - f(y)g(y)| &= |f(x)g(x) - f(x)g(y)| + |f(x)g(y) - f(y)g(x)| = \\ &\leqslant |f(x)g(x) - f(x)g(y)| + |f(x)g(y) - f(y)g(y)| = \\ &= |f(x)| \cdot |g(x) - g(y)| + |g(x)| \cdot |f(x) - f(y)| \leqslant \\ &\leqslant C \cdot \operatorname{osc}_J g + D \cdot \operatorname{osc}_J f. \end{aligned}$$

f,g интегрируемы, тогда $\forall \varepsilon \exists \Sigma : \overline{S}_{\Sigma}(f) \leqslant \underline{S}_{\Sigma}(f) + \varepsilon \wedge \overline{S}_{\Sigma}(g) \leqslant \underline{S}_{\Sigma}(g) + \varepsilon$.

Получаем

$$\sum_{J \in \Sigma} |J| \operatorname{osc}_J f \leqslant \varepsilon$$
$$\sum_{J \in \Sigma} |J| \operatorname{osc}_J g \leqslant \varepsilon$$

Тогда $\forall J \in \Sigma : \operatorname{osc}_J(fg) \leqslant C \cdot \operatorname{osc}_J g + D \cdot \operatorname{osc}_J f$.

Следовательно,

$$\sum_{J \in \Sigma} |J| \cdot \operatorname{osc}_J fg \leqslant C \cdot \sum_J |J| \cdot \operatorname{osc}_J g + D \cdot \sum_J |J| \cdot \operatorname{osc}_J f \leqslant (C + D) \varepsilon.$$

11. f интегрируема на $\langle a,b \rangle$. $J \subset \langle a,b \rangle$. Тогда $f \cdot \chi_J$ интегрируема. $(\chi_J$ равна единице на J и нулю на остальных точках)

 $Ecnu\ J = \{c\},\ mo\ I(f\chi_J) = 0.$

12. J_1,J_2- два подотрезка, такие что $J_1\cup J_2=J\wedge J\cap J_2=\varnothing$. Тогда

$$I(f\chi_{J_1\cup J_2}) = I(f\chi_{J_1}) + I(f\chi_{J_2}).$$

13. Основная оценка интеграла. f интегрируема на $\langle a,b \rangle$. $|f| \leqslant M$ на $[c,d] \subset \langle a,b \rangle$

$$\left| \int_{c}^{d} f \right| \leqslant M(d-c).$$

Designation. $I(f\chi_J)$ не зависит от того, вклочает ли J концы.

$$\int_{c}^{d} f = \int_{c}^{d} f(x) dx \stackrel{def}{=} I(f\chi_{\langle c,d\rangle}).$$

Designation. Если d < c:

$$\int_{c}^{d} f = -\int_{d}^{c} f.$$

Statement. f интегрируема на $\langle a, b \rangle$.

$$\int_{c}^{e} f = \int_{c}^{d} f + \int_{d}^{e} f.$$

ГЛАВА 2. ДИФФЕРЕНЦИРОВАНИЕ

2.10.2 Связь интеграла и производящей

 $f:\langle a,b\rangle \to \mathbb{R},\, F:\langle a,b\rangle \to \mathbb{R}$ — первообразная функция f, если F дифференцируема и F'=f.

Theorem 21 (Ньютон-Лейбниц). Пусть f интегрируема по Риману на $\langle a,b \rangle$ и непрерына в точке $t \in \langle a,b \rangle$. Пусть $t_0 \in \langle a,b \rangle$: $F(s) = \int_{t_0}^s f$. Тогда F дифференцируема в точке tu F'(t) = f(t).

Доказательство. $x \neq t$.

$$\left| \frac{F(x) - f(t)}{x - t} - f(t) \right| = \left| \frac{\int_{t_0}^x f = \int_{t_0}^t f}{x - t} \right| = \left| \frac{\int_t^x}{x - t} - f(t) \right| = \frac{1}{|x - t|} \left| \int_t^x f(s) - f(t) ds \right| \leqslant \sup_{s \in [t, x]} |f(s) = f(t)|.$$

f непрерывна в t. Тогда $\forall \varepsilon > 0$ $\exists \delta$. Если $|s-t| < \delta, \, |f(t)-f(s)| < \varepsilon$

$$|x-t| < \delta \Longrightarrow \forall s \in [t,x] : |s-t| < \varepsilon \to |f(s)-f(t)| < \varepsilon.$$

Тогда

$$\sup s \in [t, x]|f(x) - f(t)| \leqslant \varepsilon.$$

А значит

$$\lim_{x \to t} \left| \frac{F(x) - f(t)}{x - t} - f(t) \right| = 0 \Longrightarrow F'(t) = f(t).$$

Corollary. Если f дифференцируема на $\langle a,b\rangle$, то $\forall t_0\in[a,b]:F$ —первообразная f.

Corollary (Формула Ньютона-Лейбница). f непрерывна на [a,b], F —первообразная f. Тогда

$$\int_{a}^{b} f = F(b) - F(a).$$

Def 20. $f \in C^k\langle a,b\rangle$, $k \in \mathbb{N} \cap \{0,\infty\}$, если $f,f',\ldots f^{(k)}$ непрерывны.

Theorem 22. Ecau $f, g \leqslant C^1(a, b)$, mo

$$\int_b^a fg' = f \cdot g \mid_a^b - \int_a^b f'g,$$

 $e\partial e \Phi \mid_a^b = \Phi(b) - \Phi(a)$

2.10.3 Формула интегрирования по частям

 $f,g:[a,b]\to\mathbb{R},\,f,g$ непрерывны на [a,b] и f,g,f',g' непрерывны. Тогда

$$(fg)' = f'g + g'f.$$

ГЛАВА 2. ДИФФЕРЕНЦИРОВАНИЕ

Пусть Φ — первообразная для f'g. Запишем первообразную для fg'

$$\Psi(x) = \int_a^x f(t)g'(x)dt = f(x)g(x) - \Phi(x) + c.$$

$$\Phi(x) = f(x)g(x) \int_{a}^{x} f(t)g'(t)dt + c.$$

Обозначим $u|_y^x = u(x) - u(y)$.

$$\Phi(x) - \Phi(y) = fg|_y^x - \int_y^x f(t)g'(t)dt.$$

Получаем

$$\int_{y}^{x} f'(t)g(t)dt = fg|_{y}^{x} - \int f(t)g'(t)dt.$$

Theorem 23. $f_n, f - 3a \partial a н ы н a \langle a, b \rangle; n \in \mathbb{N}$ Пусть

- 1. все f_n интегрируемы по Риману на $\langle a,b \rangle$
- 2. $f_n \Longrightarrow f$. Тогда f интегрируема по Риману

$$\int_{a}^{b} f_{n}(x)dx \to \int_{a}^{b} f(x)dx.$$

Доказательство.

Lemma. E — множество, u, v — вещественные функции на E. $|u(x) - v(x)| \le \lambda \ \forall E$. Тогда $|\operatorname{osc}_E(u) - \operatorname{osc}_E(v)| \le 2\lambda$

$$\varepsilon > 0 : \exists n : |f_n(x) - f(x)| \le \varepsilon \ \forall x \in \langle a, b \rangle.$$
$$|\operatorname{osc}_{\langle a, b \rangle} - \operatorname{osc}_{\langle a, b \rangle(f)}| \le 2\varepsilon.$$

 $\exists \{I_1, \dots I_N\}$ — отрезки $\langle a, b \rangle$:

$$\sum_{j=1}^{N} |I_j| \operatorname{osc}_{I_j} < \varepsilon.$$

$$\sum_{j=1}^{N} |I_j| \operatorname{osc}_{I_j}(f) \leqslant \varepsilon + \sum_{j=1}^{N} |I_j| (2\varepsilon) = \varepsilon (2(b-a)+1).$$

Следовательно, f интегрируема.

$$\left| \int_{a}^{b} f_{n}(x) dx - \int_{a}^{b} f(x) dx \right| = \left| \int_{a}^{b} f_{1}(x) - f(x) dx \right| \leqslant \varepsilon(b - a).$$

$$\varepsilon > 0 \ \exists M : \forall n \geqslant M \ \forall x \in \langle a, b \rangle : |f_{n}(x) - f(x)| \leqslant \varepsilon.$$

Тем самым получили последнее неравенство в прошлой строке.

Statement. Ecnu f unmerpupyema no Pumany na $\langle a,b\rangle$, mo |f| mose unmerpupyema u

$$\left| \int_{a}^{b} f(x) dx \right| \leqslant \int_{a}^{b} |f(x)| dx.$$

ГЛАВА 2. ДИФФЕРЕНЦИРОВАНИЕ

2.11 Логарифм и экспонента

Пусть функция l удовлетворяет соотношению

$$l(xy) = l(x) + l(y),$$

и ноль лежит в ее области определения.

$$l(0) = l(0, a) = l(0) + l(a) \Longrightarrow l(0) = 0.$$

Будем искать l, заданную на \mathbb{R}_+ .

$$l(x^2) = l((-x)^2).$$

$$2l(x) = 2l(-x).$$

То есть

$$l(x) = l(|x|).$$

Def 21. Логарифм — строго монотонная функция, заданная на \mathbb{R}_+ , такая что

$$f(xy) = l(x) + l(y) \quad x, y > 0.$$

Statement. Для $n \in \mathbb{N}$:

$$l(x^n) = n \cdot l(x),$$

$$l(x^{\frac{1}{n}}) = \frac{1}{n}l(x).$$

$$l(1) = l(1^2) = 2l(1) \Longrightarrow l(1) = 0.$$

Statement. Ecnu l — логарифм, $c \neq 0$, то cl — тоже логарифм.

Lemma. Если l — логарифм, то l непрерывна на всей области определения.

Доказательство. Пусть l — логарифм. Считаем, что fстрого возрастает.

$$t = \lim_{x \to 1+0} f(x).$$

Покажем, что t = l(1) = 0. Пусть t > 0.

$$l((1+x)^2) = 1l(1+x).$$

При xto1+ получаем, что t=0. Если $x\to 1-$, получаем тое самое. Значит l непрерывна в 1. И равна нулю в этой точке.

Lemma. Если l — логарифм, то функция l дифференцируема.

Доказательство.

$$\Phi(x) - \int_{1}^{x} l(t)dt \quad x \in (0, +\infty).$$

Ф дифференцируема.

$$\Phi(2x) = \int_{1}^{2x} l(t)dt = \int_{1}^{x} l(t)dt + \int_{x}^{2x} l(t)dt = \Phi(x) = x \int_{x}^{2x} l(x \cdot \frac{t}{x})d(\frac{t}{x}) = \Phi(x) + x \int_{1}^{2} l(x \cdot y)dy = \Phi(x) + x l(x) + x \int_{1}^{2} l(y)dy$$

 $l(x) = \frac{\Phi(2x) - \Phi(x)}{x} - C$. А Φ дифференцируема, следовательно, f тоже дифференцируема.

Theorem 24 (Производная логарифма).

l(xy) = l(x) + l(y). Зафиксируем у и возъмем производную:

$$yl'(xy) = l'(x)$$
 $x, y \in \mathbb{R}_+$.

$$l'(x) = \frac{C}{x}, \quad C = l'(y).$$

Theorem 25. Если l логарифм, то

$$\exists C \neq 0 : l(x) = C \int_{1}^{x} \frac{dt}{t}.$$

Доказательство. Только что доказали.

Theorem 26. $\Phi(x)=\int_1^x \frac{C}{t}dt$ — логарифм. Cама $l(x)=C\cdot\int_1^x \frac{dt}{t}$

Theorem 27. Ecau $C \neq 0$, mo

$$\varphi(x) = C \int_1^x \frac{dt}{t} - ecm \nu$$
 логарифм.

Доказательство. Достаточно доказать теорему для C=1.

$$\varphi(x) = \int_{1}^{x}, \quad x > 0.$$

Если $x_1 > x$,

$$\varphi(x_1) - \varphi(x) = \int_1^{x_1} \frac{dt}{t} \geqslant \frac{1}{x_1} (x_1 - x) > 0.$$

Следовательно, φ строго возрастает.

Проверим:

$$\varphi(xy) = \varphi(x) + \varphi(y).$$

$$\in t_1^x \frac{dt}{t} + \int_x^y \frac{dt}{t} = \varphi(x) + \frac{1}{x} \int_x^{xy} \frac{d(\frac{t}{x})}{t} \frac{t}{x}.$$

$$\varphi(x) + \int_1^y \frac{d\mu}{\mu} = \varphi(x) - \varphi(y).$$

Designation. Натуральный логарифм –

$$\int_{1}^{x} \frac{dt}{t} = \log t.$$

Property. $(\log x)' = \frac{1}{x}$

$$\frac{\log(x+1) - \log 1}{x} \xrightarrow{x} x \xrightarrow{to} 0 \log'(1) = 1.$$
$$\frac{\log(1+x)}{x} \to 1, \quad x \to 0.$$

ГЛАВА 2. ДИФФЕРЕНЦИРОВАНИЕ

Statement. Образ функции log есть все вещественные числа.

Доказательство. При $x_1 > x$, $\log(x_1) - \log(x) > \frac{x_1 - x}{x_1}$. Рассмотрим $x_1 = 2^{n+1}, x = 2^n$:

$$\log 2^{n+1} - \log 2^n \geqslant \frac{2^n}{2^{n+1}} \geqslant \frac{1}{2}.$$

Тогда $\lim_{x\to\infty} \log x = +\infty$.

Def 22 (Обратная функция к логарифму). У функции log есть обратная функция, называющаяся экспонентой:

$$\exp: \mathbb{R} \to \mathbb{R}^+$$
.

Property. 1. exp cmporo возрастает

2.

$$\lim_{x \to +\infty} \exp = +\infty.$$

3.

$$\lim_{x\to -\infty} \exp = 0.$$

4.

$$\log 1 = 0 \Leftrightarrow \exp 0 = 1.$$

5.

$$\exp x \exp y = \exp(x + y).$$

Statement. Экспонента дифференцируема:

$$\exp'(x) = \frac{1}{\log'(\exp x)} = \exp x.$$

Statement.

$$f(x) = \sum_{j=0}^{n} \frac{f^{(j)}j!}{x}^{j} + \frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1} \quad c \text{ между } 0 \text{ } u \text{ } x.$$

 Π усть f имеет производную любого порядка

$$f(x) = \sum_{j=0}^{n} \frac{f^{(j)}(x_0)}{j!} (x - x_0)^j + \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{(n+1)}.$$

Pяд Tейлора для f в окрестности точки x :

$$\sum_{j=0}^{\infty} = \frac{f^{(j)}(x_0)}{j!} (x - x_0)^j.$$

Theorem 28. Ряд Тейлора для экспоненты, $x_0 = 0$:

$$\exp(x) = \sum_{j=0}^{\infty} \frac{x^j}{j!}.$$

Для любого x этот ряд cxodumcs κ epx(x), cxodumocmb равномерна на каждом конечном отрезке.

Доказательство.

$$\left| \exp x - \sum_{j=0}^{n} \frac{x^{j}}{j!} \right| = \frac{\exp c}{(n+1)!} |x|^{n+1}, \quad c$$
 между 0 и x .

Выберем R > 0, пусть $|x| \leq R$ Применим:

$$\leqslant \exp\frac{R^{n+1}}{(n+1)!}.$$

Проверим, что полученное выражена стремиться к нулю.

Lemma. Пусть $a_0,a_1,a_2\ldots$ — положительные числа u $\exists N:a_j<\eta<1$ $\forall j>N$. Тогда $a_0a_1\ldots a_j\to 0$ $j\to\infty$

Corollary. Если $a_j\geqslant 0,\ a_j\to 0,\ {
m to}\ a_0\dots a_j\to 0$

По лемме $\frac{R}{1} \cdot \frac{R}{2} \dots \frac{R}{n+1}$ стремиться к нулю. Доказали равномерную сходимость.

Note.

$$\exp 1 = \sum_{n=0}^{\infty} n! = e.$$

Corollary (быстрый рост экспоненты).

$$\forall n \in \mathbb{N} : \lim_{x \to \infty} \frac{x^n}{\exp x} = 0.$$

Доказательство.

$$\exp x = \sum_{k=0}^{\infty} \frac{x^k}{k!} \geqslant \frac{x^{n+1}}{(n+1)!}.$$
$$\frac{x^n}{\exp x} \leqslant (n+1)! \frac{1}{x} \longrightarrow 0 \qquad x \to \infty.$$

Note.

$$\exp(-x) = \frac{1}{\exp x}.$$
$$\lim_{x \to -\infty} x^n \exp(-x) = 0.$$

Corollary.

$$\frac{\log x}{x^k} \overset{x \to +\infty}{\longrightarrow} 0 \qquad k \in \mathbb{N}.$$

 $\mathbf{E}\mathbf{x}$ (Полезный пример).

$$g(x) = \begin{cases} 0 & x = 0 \\ \exp\left(-\frac{1}{x^2}\right) & x \neq 0 \end{cases}.$$

g непрерывна на \mathbb{R} .

Если $x \neq 0$,

$$g'(x) = \exp\left(-\frac{1}{x^2}\right) \left(2\frac{1}{x^3}\right).$$
$$\lim_{x \to 0} g'(x) = 0.$$

ГЛАВА 2. ДИФФЕРЕНЦИРОВАНИЕ

g дифференцируема а нуле и g'(0) = 0.

$$g^{(j)}(x) = \exp\left(-\frac{1}{x^2}\right) p_j\left(\frac{1}{x}\right), \quad p_j - \text{полином}.$$

Значит, g бесконечно дифференцируемая функция и $g^{(j)}(0) = 0$.

Напишем полином Тейлора:

$$T_n(x) = \sum_{j=0}^n \frac{g^{(j)}(0)}{j!} x^j \cong 0.$$

Hулевой, но не сходится к q.

$$h(x) = \begin{cases} g(x) & x \geqslant 0 \\ 0 & x \leqslant 0 \end{cases}.$$

h — бесконечно дифференцируема.

$$u(x) = h(x - a)h(b - x), \quad a < b.$$

Corollary. Пусть $I = (a, b), \ a < b$. Существует бесконечно дифференцируемая функция u:

$$u(x) > 0$$
 $x \in (a, b)$
 $u(x) = 0$ $x \notin (a, b)$

Designation. l— логарифм.

$$\exists! a \in (0, +\infty) : l(a) = 1.$$

тТакое число называется основанием логарифма l.

 $Note. \ l = log.$ Тогда основание равно e.

Designation (общий случай).

$$\exists C \neq 0 : l(x) = C \log x.$$

a — ан для l.

$$1 = l(x) = C \log a \implies C = \frac{1}{\log a}.$$

Обозначим логарифм с основанием а так

$$\log_a x = \frac{\log x}{\log a}.$$

Designation. Степень с произвольным показателем:

$$u > 0 \land v \in \mathbb{R} : u^v \stackrel{\text{def}}{=} \exp(v \log u).$$

Note. Натуральная степень: $\exp(n \log u) = \exp(\underbrace{\log u \dots \log u}_{n}) = u^{n}$

Целая отрицательная степень: $\exp(-k\log u) = \frac{u}{\exp(k\log u)} = \frac{1}{u^k}$

Рациональная степень: $v = \frac{a}{p}, \quad a \in \mathbb{Z}, p \in \mathbb{N}$

$$u^v = \exp \frac{a \log u}{p} = \sqrt[p]{\exp a \log u} = \sqrt[p]{u^a}.$$

Property.

- 1. $u^{v_1+v_2} = \exp((v_1+v_2)\log u) = \exp v_1 \exp u \cdot \exp v_2 \log u = u^{v_1}u^{v_2}$
- 2. $(u_1u_2)^v = u_1^v u_2^v$
- 3. $(u^{v_1})^{v_2} = \exp v_2 \log u^{v_1} = \exp(v_2 v_2 \log u) = u^{v_1 v_2}$

ГЛАВА 2. ДИФФЕРЕНЦИРОВАНИЕ

2.11.1 Показательная функция

Def 23. Показательная функция $f(x) = a^x$.

Property. $f'(x) = (\exp(x \log a))' = \exp(x \log a) = \log a \cdot a^x$

Property. $\exp x = e^x = \exp(x \log e) = \exp x$

Def 24. Пусть $\neq 1$.

$$a^x = y : \exp x \log a \Leftrightarrow x = \frac{\log y}{\log a} = \log_a y.$$

2.11.2 Степенная функция

 ${f Def}$ 25. Степенная функция $g(x)=x^b,\quad x\in(0,+\infty),\ b\in\mathbb{R}$.

Statement.

$$g'(x) = (\exp b \log x)' = (\exp b \log x) \cdot \frac{b}{x} = x^b \frac{1}{x} b = b \cdot x^{b-1}.$$

Statement. Ecnu a > 1, mo $\forall b \in \mathbb{R} : x^b = o(a^x, x \to \infty)$

Доказательство.

$$\frac{x^b}{a^x} = \frac{\exp b \log x}{\exp x \log a} = e^{blogx - xloga}.$$

А логарифм растет медленнее линейной функции, тогда полученное выражение стремится к нолю при $x \to \infty$.

Practice.

 $\forall \beta : \log u = o(x^{\beta})$

 $\forall \alpha : \lim_{x \to 0} x^{\alpha} \log x = 0$

Statement. Ранее доказали, что

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!} + \ldots$$

сходится при любых х. Экспонента равномерна на любом конечном отрезка.

Pяд для e^x по степеням $(x-x_0)$:

$$e^{x} = e^{x_0} \cdot e^{x - x_0} = e^{x_0} \sum_{n=0}^{\infty} \frac{(x - x_0)^n}{n!} = \sum_{n=1}^{\infty} \frac{e^{x_0}}{n!} (x - x_0)$$
 (2.2)

Экспонента раскладывается в ряд Тейлора в центром в любой точка. Такое свойство называется "аналитичность"

Ех. $f(x) = \sum_{n=1}^{\infty} 2^n \cos n^2 x$ — непрерывная, ряд сходится равномерно по теореме Вейерштрасса)

$$|2^n \cos n^2 x| \leqslant 2^n.$$

Возьмем производную: $f'(x) = \sum_{n=1}^{\infty} 2^{-n} n^2 (-\sin n^2 x)$ сходится равномерно. Дальше будет происходить тоже самое при взятии производной. Значит, она дифференцируема бесконечное число раз. $f \in C^{\infty}(\mathbb{R})$

Тогда можем записать ряд Тейлора в нуле:

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(2k)}}{(2k)!} x^{2k}$$
 (2.3)

Этот ряд вообще не сходится! Докажем это:

$$f^{(2k)}(0) = \sum_{n=1}^{\infty} 2^{-n} n^{4k} (-1)^k.$$

Statement. В ?? общий член стремиться к нулю, если |x| > 0.

Доказательство.

$$\frac{|f^{(2k)}(0)|}{(2k)!}x^{2k}\geqslant \frac{2^{-n}n^{4k}}{(2k)!}x^{2k}\geqslant \frac{2^{-n}n^{4k}}{(2k)^{2k}}x^{2k}.$$

Подставим n=2k:

$$\left(\frac{|x|n^2}{2k}\right)^{2k} 2^{-n} = (2kx)^{2k} 2^{-2k} = (k|x|)^{2k}.$$

А это стремиться к нулю.

2.11.3 Разложение Тейлора для логарифма

Theorem 29 (разложение Тейлора для $\log(1+x)$ центром в 0).

$$f(x) = \log(1+x), f'(x) = (1+x)^{-1}, f^{(2)} = -(1+x)^{-2}, f^{(3)} = 2(1+x)^{-3} \dots$$

$$f^{(n)} = (-1)^{n+1} \cdot 1 \cdot 2 \cdot \dots \cdot (n-1)(1+x)^{-n}.$$

Запишем локальную формулу Тейлора:

$$\log(1+x) = \sum_{n=0}^{n} \frac{\log^{(n)} 1}{n!} x^n + \frac{\log^{k+1} (1+c)}{(k+1)!} x^{k+1}.$$

$$\log(1+x) = \sum_{n=1}^{k} (-1)^{n+1} \frac{x^n}{n} + \frac{(-1)^{k+1}}{k+1} \cdot \frac{1}{(1+c)^{k+1}} x^{k+1}.$$

Tог ∂a

$$\log(1+x) \sim x$$
, $\log(1+x) = x - \frac{x^2}{2} + O(x^3)$.

Statement. $e^x = \lim_{n\to 0} (1+ux)^{\frac{1}{n}}$

Доказательство. $(1+ux)^{\frac{1}{n}}=e^{\frac{1}{n}\log(1+ux)}$

$$\frac{1}{n}\log(1+ux) = x + O(u) \longleftarrow x, \quad b \to 0.$$

$$\log(1 + ux) = ux + O(n^2).$$

$$e = \lim_{n \to 0} (1+x)^{\frac{1}{n}}.$$

Statement. Ракскладывается ли логарифм ряд Тейлора:

$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n} \tag{2.4}$$

Посмотрим на модуль:

$$\frac{1}{n}|x|^n \longleftrightarrow +\infty, \quad |x| > 1.$$

Тогда имеет смысл рассматривать только $x \in (-1, 1]$.

Theorem 30. $x \in (-1,1]$. Тогда ряд ?? равномерно сходится равномерно на любом (r,1], r > -1.

Доказательство. 1. $x \in [0, 1]$.

$$\left| \log(1+x) - \sum_{n=1}^{k} \frac{(-1)^{n+1}}{n} x^n \right| \leqslant \frac{1}{k+1} x^{k+1} \left(\frac{1}{1+c} \right)^{k+1} \leqslant \frac{1}{k+1} x^{k+1} \leqslant \frac{1}{k+1}, \quad c \in lra$$
 (2.5)

В частности, $\log 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$

 $2. -1 < x \le 0$

$$\left|\log(1+x) - \sum_{n=1}^{k} \frac{(-1)^{n+1}}{n} x^{n}\right| \leqslant \frac{1}{k+1} |x|^{k+1} \left(\frac{1}{1+c}\right)^{k+1} \leqslant \frac{1}{k+1} |x|^{k+1} \leqslant \left(\frac{1}{1-|x|}\right)^{k+1} = \frac{1}{k+1} \left(\frac{|x|}{1-|x|}\right)^{k+1} \tag{2.6}$$

Удачным случаем ?? будет $\frac{|x|}{1-|x|} < 1 \Leftrightarrow |x| \leqslant \frac{1}{2}, \ x \in (-\frac{1}{2},0]$. Чтобы разобраться с оставшимися вариантами, воспользуемся формулой: $(1-x)(1+x+\ldots+x^n)=1-x^{n+1}$. Подставим x=-x:

$$1 - x + x^{2} - x^{3} + \dots + (-1)^{n} x^{n} = \frac{1}{1+x} + (-1)^{n} \frac{x^{n+1}}{1+x}.$$

Проинтегрируем:

$$\int_0^t \sum_{k=0}^{n-1} (-1)^k x^k dt = \int_0^t \frac{1}{1+x} - (-1)^n \frac{x^n}{1+x}.$$

$$\log(1+t) = \sum_{k=0}^n \frac{(-1)^{k-1}}{k} t^k + (-1)^{n+1} \int_0^t \frac{x^n}{1+x} dx - 1 < t \le 0, t < x \le 0.$$

$$\int_0^t \frac{x^n}{1+x} dx \le \int_0^t (\frac{|x|^n}{1-|x|} dx \le \frac{1}{1-|t|} \int_t^0 |x|^n dx = \frac{1}{1-|t|} \frac{1}{n+1} |t|^{n+1}.$$

Это выражение стремится к нулю при $n \to \infty, \ t > -1,$ если $t \in (-1,0], |t| \leqslant r < 1,$ равномерно сходится. Удачный случай: $\leqslant \frac{1}{1+|t|} \frac{1}{n+1} |t|^n \leqslant \frac{1}{1-r} \frac{1}{n} r^n$.

Note. Логарифм — аналитическая функция.

Доказательство. Выберем $\left|1-\frac{x}{x_0}\right|<1$.

$$\log x - \log x_0 = \log \frac{x}{x_0} = \log(1 - (1 - \frac{x}{x_0})) = \sum_{n=1}^{\infty} \frac{1}{n} (-1)^{n+1} (\frac{x}{x_0} - 1)^n.$$

$$\log x = \log x_0 + \sum_{n=1}^{\infty} \frac{1}{n} (-1)^n \frac{1}{x_0} (x - x_0)^n.$$

А это ряд Тейлора.

2.11.4 Формула Ньютона-Лейбница для большей производной. Еще один подход к формуле Тейлора

f имеет n+1 производную на отрезке $I, t, a \in I$.

$$f(t) - f(a) = \int_{a}^{t} f'(x)d(x - t) = f'(x)(x - t) \Big|_{x=a}^{x=t} - \int_{a}^{t} f''(x)(x - t)dx =$$
$$= f'(a)(t - a) + \int_{a}^{t} f''(x)(t - x)dx.$$

То есть:

$$f(t) = f(a) + f'(a)(t - a) + \int_{a}^{t} f''(x)(t - x)dx.$$

И так далее

Theorem 31. f имеет n+1 производную на отрезке I, $t,a \in I$.

$$f(t) = \sum_{j=0}^{n} \frac{1}{j!} f^{(j)}(a)(t-a)^{j} + \frac{1}{n!} \int_{a}^{t} f^{(n+1)}(z)(t-x)^{n+1} dx.$$

Ex. $x \rightsquigarrow u$, x = a(1-u) + tu $u \in [0,1]$, dx = (t-a)du

$$t - x = t - a(1 - u) - tu =$$

$$= t - a + au - tu =$$

$$= t - a + u(t - a) =$$

$$= (t - a)(1 - u)$$

$$r_n(a,t) = \frac{1}{n!} \int_0^1 f^{(n+1)}(a(1-u) + tu)(t-a)^n (1-u)^n (t-a)^n du.$$

Если a=0:

$$f(x) = (1+x)^m, \quad m \in \mathbb{R}$$

$$f'(x) = m(1+x)^{m-1}$$

$$f''(x) = m(m-1)(1+x)^{m-1}$$

$$\vdots$$

$$f^{(k)}(x) = m(m-1)\dots(m-k-1)(1+x)^{m-k}$$

Designation.

$$\binom{m}{k} = \frac{m(m-1)\dots(m-k+1)}{k!}.$$

|x| < 1

$$(1+t)^m = 1 + \binom{m}{1}t + \binom{m}{2}t^2 + \ldots + \binom{m}{n}t^n + \frac{t^{n+1}}{n!}\int_0^1 m(m-1)\ldots(m-n)(1+tu)^{m-n+1}(1-u)^n du.$$

Theorem 32 (Ряд Ньютона). *Ряд*

$$1 + \sum_{k=1}^{\infty} \binom{m}{k} t^k$$

cxodumcs κ $(1+t)^m$, npu |t| < 1

Доказательство. $R_n(t) = \frac{t^{n+1}}{n!} \int_0^1 m(m-1) \dots (m-n) (1+tu)^{m-n+1} (1-u)^n du$. $0 \le t < 1$.

$$|R_n(t)| \le |t|^{n+1} \left| {m-1 \choose n} \right| |m| \int_0^1 \left| \frac{(1-u)^n}{(1+tu)^{n-m+1}} du \right|.$$

Theorem 33. $R_n(t) \to 0$ npu |t| < 1, u cxodumcs paвномерно $npu |t| < \phi < 1$.

Доказательство. Пусть $\int_0^1 \left| \frac{(1-u)^n}{(1+tu)^{n-m+1}} du \right| = I$

1. Сначала $0 \le t_0$:

$$I \leqslant \int_0^1 (1-u)^n du = \frac{1}{n+1} \longleftarrow 0.$$

$$|R_n(t)| \leqslant t^{n+1} \left| \binom{m-1}{n} \right| \frac{m}{n+1} = a_n(t).$$

Тогда

$$\frac{a_{n+1}(t)}{a_n(t)} = \frac{n+1}{n+2} \frac{|m-n-1|}{n+2} t.$$

 $t<1,\ t+arepsilon<1,$ следовательно, рано или поздно $rac{a_{n+1}(t)}{a_n(t)(t)}< t+arepsilon$

2. Следующий случай -1 < t < 0 Подынтегральное выражение:

$$\left|\frac{1-u}{1+tu}\right|^n \left|\frac{1}{1+tu}\right|^{m-1}.$$

$$1 + |t| \geqslant |1 + tu| \geqslant 1 - |t||u|$$
.

Первый множитель:

$$\left| \frac{1-u}{1+tu} \right| \leqslant \frac{1-u}{1-|t|u} = \frac{1-|t|u+u(|t|-1)}{1-|t|u} = 1 - \left(n \frac{1-|t|}{1-|t|u} \right).$$

Это не превосходит 1 - n(1 - |t|).

Второй множитель:

(a) $m \leqslant 1$

$$\left|\frac{1}{1+tu}\right|^{-m+1}\leqslant \left(\frac{1}{1-|t|u}\right)^{-m+1}\leqslant \left(\frac{1}{1-|t|}\right)^{-m+1}.$$

(b) m > 1

$$|1 + tu|^{m-1} \le (1 + |t|).$$

ГЛАВА 2. ДИФФЕРЕНЦИРОВАНИЕ

Обозначим полученную оценку $C_m(t)$.

$$I \leqslant C_m(t) \int_0^1 (1 - n(1 - |t|)) du = C_m(t) \left(-\frac{1}{1 - |t|} \right) \frac{1}{n+1} (1 - n(1 - |t|))^{n+1} \Big|_{n=0}^{n=1} =$$

$$= C_m(t) \frac{1}{1 - |t|} \frac{1}{n+1} (1 - |t|^{n+1}) \leqslant C_m(t) \frac{1}{n+1}.$$

Получили

$$R_n(t) \leqslant |t|^{n+1} \left| {m-1 \choose n} \right| |m| \frac{1}{n+1} \bar{C}_m(t) = \sigma_n(t).$$

Хотим доказать, что это стремиться к нулю.

$$\frac{\sigma_{n+1}(t)}{\sigma_n(t)} = \frac{n+1}{n+2}|t| \left| \frac{m-n+1}{n+2} \right| \longleftarrow |t|, \qquad n \to \infty.$$

$$\exists k_0 : n > k_0 \quad \frac{\sigma_{n+1}(t)}{\sigma_n(t)} \leqslant \rho \quad \sigma_n(t) \leqslant A\rho^{n-1}, \quad |t| \leqslant \rho < 1.$$

Доказали сходимость.

 $x, x_0 > 0$

$$x^{m} = x_{0}^{m} \left(\frac{x}{x_{0}}\right)^{m} = x_{0}^{m} (1 - (1 - \frac{x}{x_{0}}))^{m} =$$

$$= x - \left(1 + \sum_{n=1}^{\infty} {m \choose n} (-1)^{n} \left(1_{\frac{x}{x_{0}}}\right)^{m} = x_{0}^{m} + \sum_{n=1}^{\infty} {m \choose n} (x - x_{0})^{m}.$$

Значит ряд Тейлора аналитичен.

Theorem 34 (Формула Тейлора с остатком в интегральной форме). Если f дифференцируема n+1 раз на отрезке с концами a,t:

$$f(x) = f(a) + \frac{f'(a)}{1!}(t-a) + \dots + \frac{f^{(n)}(a)}{n!} + \underbrace{\frac{1}{n!} \int_0^t f^{(n+1)}(x)(t-a)^n dx}_{R_n(t,a)}$$
(2.7)

Statement. Если f дифференцируема n+1 раз:

$$\exists c \text{ между } a \text{ } u \text{ } t : R_n(t,a) = \frac{(t-a)^{n+1}}{(n+1)!} f^{(n+1)}(c) \tag{2.8}$$

Note. Если $f \in C^{(n+1)}$, то ?? можно вывести из ??.

Theorem 35 (о среднем). $\varphi, \psi - \phi y$ нкции на $[c,d], \varphi$ непрерывна, ψ - интегрируема по Риману и не меняет знака. Тогда

$$\exists \psi \in [c,d] : \int_{c}^{d} \varphi(x)\psi(x)dx = \varphi(\psi) \int_{c}^{d} \varphi(x)dx.$$

Доказательство. Можно считать, что $\psi\geqslant 0$. Пусть $m=\min_{x\in[c,d]}\varphi(x),\quad M=\max_{x\in[c,d]}\varphi(x)$

$$m \int_{c}^{d} \varphi(x) dx \leqslant \int_{c}^{d} \varphi(x) \psi(x) x \leqslant M \int_{x}^{d} \varphi(x) dx.$$
$$m \psi(x) \leqslant \varphi(x) \psi(x) \leqslant M \psi(x).$$

Если $\int_{c}^{d} \psi(x) dx = 0$, теорема верна. Предположим, что этот интеграл не равен нулю.

$$m \leqslant \frac{\int_{c}^{d} \varphi(x)\psi(x)dx}{\int_{c}^{d} \psi(x)dx} \leqslant M.$$

Следовательно,

$$\exists \ \zeta \in [c,d] : \psi(\zeta) = \frac{\int_c^d \varphi(x)\psi(x)dx}{\int_c^d \psi(x)dx}.$$

Statement (оценка остатка).

$$\varphi(x) = f^{(n+1)}(x), \psi(x) = (t-x)^n.$$

$$\exists \zeta : R_n(t,a) = \frac{1}{n!} f^{(n+1)}(\zeta) \int_a^t (t-x)^n dx.$$

$$f^{(n+1)}(\zeta) \frac{1}{(n+1)!} \left[-(t-x)^{n+1} \Big|_{x=a}^{x=t} \right] = f^{(n+1)}(\zeta) \frac{1}{(n+1)!} (t-a)^{n+1}.$$

2.12 Дифференциальные уравнения

$$\Phi\left(f'(t), f(t), t\right) = 0.$$

Theorem 36. Пусть f — непрерывная дифференцируемая функция на (a,b). Следующие условия эквивалентны:

1.
$$f'(t) = cf(t) \quad \forall t \in (a, b)$$

2.
$$\exists A: f(t) = Ae^{ct}$$

 \mathcal{A} оказательство. $2 \Longrightarrow 1$ — очевидно

$$1 \Longrightarrow 2$$

$$g(t) = f'(t)e^{-ct}.$$

$$g'(t) = f'(t)e^{-ct} + f(t)(-ce^{-ct}) = cf(t)e^{-ct} - cf(t)e^{-ct} = 0.$$

Тогда $g(t) \equiv A \in R$.

П