Markov Chains

Outline

- Stochastic Processes and Markov Property
- Markov Chains
- Chapman-Kolmogorov Equations
- Classification of States
- Invariant Measures, Time Averages, Limiting Probabilities

Stochastic Processes and Markov Property

- Stochastic Process
 - Discrete-time: $\{X_n : n \ge 0\}$, integer number n indexed random variables
 - Continuous-time: $\{X(t): t \ge 0\}$, real number t indexed random variables
 - Discrete state-space if each X_n or X(t) has a countable range
 - Continuous state-space if each X_n or X(t) has an uncountable range
 - Ex: Markov chains have discrete-time and discrete state-space
- Markov Property: Future conditioned on the present is in independent of the past

Markov Chains

- Markov Chain: Discrete time, discrete state space Markovian stochastic process.
 - Often described by its transition matrix P
- Ex: Moods (Cooperative, Judgmental, Oppositional) of a person as Markov chain
- Ex: A random walk process has state space of integers ..., -2, -1, 0, 1, 2, For a fixed probability $0 \le p \le 1$, the process either moves forward or backward:

-
$$P(X_{n+1} = i + 1 | X_n = i) = 1 - P(X_{n+1} = i - 1 | X_n = i)$$

The transition matrix has infinite dimensions and is sparse

		-2	-1	0	1	2	•••
			•••			•••	
-2		0	p		()	
-1	0	1-p	0	p		0	
0	()	1 - p	0	p	()
1		0		1-p	0	p	0
2		()		1 - p	0	
	•••	•••	•••	•••	•••		

du Page 4 ed Page 4

Chapman-Kolmogorov Equations

Probability of going from state x to state y in n steps

$$p_{x,y}^{< n>} = P(X_{k+n} = y | X_k = x)$$

 \bullet To go from x to y in n + m steps, go through state z in the nth step

$$p_{x,y}^{< n+m>} = \sum_{z \in \mathcal{X}} p_{x,z}^{< n>} p_{z,y}^{< m>}$$

Using transition matrices

$$P^{n+m} = P^n P^m$$

ed Page 5 e.~metin

Classification of States: Communication

- State y is accessible from state x if $p_{x,y}^{< n>} > 0$ for some n.
- Contrapositive: If state y is not accessible from x, then $p_{x,y}^{< n>} = 0$ for all n. P(Reaching y ever | Starting in x)= $\sum_{n=0}^{\infty} p_{x,y}^{< n>} = 0$
- \diamond States (x, y) communicate if y is accessible from x and x is accessible from y
- \bullet Ex: Communication is a relation on $(\mathbf{X} \times \mathbf{X})$. This relation is reflexive, symmetric and transitive. Hence, it is an equivalence relation.
- lackloss The communication relation splits $oldsymbol{\mathcal{X}}$ into equivalence classes: Each class includes the set of states that communicate with each other.
- ◆ Ex: The transition matrix below on the left creates classes {1,4}, {2}, {3,5}. We can define an aggregate state Markov chain whose states are these classes as below in the middle. The new chain is likely to end up in {1,4} below on the right.

	1	2	3	4	5
1				+	
2	+			+	
3	+	+			+
4	+				
5		+	+	+	

	1,4	2	3,5
1,4	+		
2	+		
3,5	+	+	+

Classification of States: Periodicity

Ex: The transition matrix below on the left creates classes {1,2,4} and {3,5}. These classes are not accessible from each other, so the chain decomposes into two chains, with transition matrices on the right.

.1 • 1 .							
n the right.		1	2	3	4	5	
	1		+		+		
	2	+					
	3					+	
	4		+				
	5			+			

	1	2	4
1		+	+
2	+		
4		+	

	3	5
3		+
5	+	

- An irreducible Markov chain has only one class of states. A reducible Markov chains as two examples above illustrate either eventually moves into a class or can be decomposed. In view of these, limiting probability of a state in an irreducible chain is considered. Irreducibility does not guarantee the presence of limiting probabilities.
- Ex: A Markov chain with two states $X = \{x, y\}$ such that $p_{x,y} = p_{y,x} = 1$. Starting in state x, we can ask for $p_{x,x}^{< n}$. This probability has a simple but periodic structure: It is 1 when n is even; 0 otherwise. The limit of $p_{x,x}^{< n}$ does not exist as n approached infinity.
- To talk about limiting probabilities, we need to rule out periodicity. Period d(x) of state x is the greatest common divisor (gcd) of all the integers in $\{n \ge 1: p_{x,x}^{< n} > 0\}$.

$$d(x) = gcd\{n \ge 1: p_{x,x}^{< n >} > 0\}.$$

Markov Chain Examples with Different Periods

2 States

3 States

4 States

Period $1 = \gcd\{1, 2, ...\}$

All possible transitions with 2 communicating states ⇒The same period

Many States

Period $2 = \gcd\{2,4,6...\}$

Period is a Class Property

n

m

- Period of any two states in the same class are the same.
 - For classes with two states only, see the last page
 - Consider classes with at least three states
 - Consider x, y such that $p_{x,y}^{< m} > 0$ and $p_{y,x}^{< n} > 0$ for some m and n.
 - \bullet Such m, n exist because x, y are in the same class
 - » Period of state x, $d(x) = \gcd\{s \ge 1: p_{x,x}^{\leqslant s} > 0\}$
 - By definition of m, n and for any s with $p_{x,x}^{\langle s \rangle} > 0$.
 - $p_{y,y}^{< n+m>} \ge p_{y,x}^{< n>} p_{x,y}^{< m>} > 0$ and $p_{y,y}^{< n+s+m>} \ge p_{y,x}^{< n>} p_{x,x}^{< s>} p_{x,y}^{< m>} > 0$
 - Such $s \ge 1$ exists because x communicates with another (third) state z in its class
 - » d(y) divides both n+m and n+s+m
 - » d(y) divides every s with $p_{x,x}^{\langle s \rangle} > 0$
 - \bullet d(y) divides gcd of such s
 - » Hence, d(y) divides d(x).
 - Repeat by changing the roles
 - $x \leftrightarrow y \Rightarrow d(y)$ divides d(x).
 - Periods d(x) and d(y) divide each other \Rightarrow they must be equal.

edu Page 9

Classification of States: Recurrence

- A state is called recurrent if the chain returns to the state in finite steps with probability 1.
 - The first time state visits state y after starting at state x is a random variable $\tau_{x,y}$:

$$\tau_{x,y} = \min\{n \ge 1: X_n = y \text{ and } X_0 = x\}$$

- This variable is also called the hitting time
- Recurrent state x iff $P(\tau_{x,x} < \infty) = 1$; Otherwise, transient state.
- A recurrent state has only finite value of hitting time.
- ♦ A positive recurrent state has $E(\tau_{x,x}) < \infty$. Positive recurrence \Rightarrow recurrence.
 - Ex: Heavy tail hitting time distributions, e.g., Pareto, can have infinite expected value.

• Ex: Starting with $X_0 = x$, let N_x be the number times the chain is in x:

$$N_x = 1_{X_0 = x} + 1_{X_1 = x} + 1_{X_2 = x} + \cdots$$

We have

$$E(N_x|X_0 = x) = E\left(\sum_{n=0}^{\infty} 1_{X_n = x} | X_0 = x\right) = \sum_{n=0}^{\infty} E(1_{X_n = x} | X_0 = x) = \sum_{n=0}^{\infty} p_{x,x}^{< n > n}$$

The last term is more operational as it is based on transition probabilities

du Page 10 ed Page 10

Recurrence Related Derivations

The expected value, of the number of times the chain is in x, $E(N_x|X_0 = x) = \sum_{n=0}^{\infty} p_{x,x}^{< n}$ can also be written as

$$E(N_x|X_0 = x) = \frac{1}{1 - P(\tau_{x,x} < \infty)}$$

Note that to be in state x at time $n \ge 1$, the chain must come to state x for the first time in time k for $k = 1 \dots n$. This probabilistic reasoning yields

$$p_{x,x}^{< n>} = \sum_{k=1}^{n} P(\tau_{x,x} = k) p_{x,x}^{< n-k>}$$

On the other hand,

$$\sum_{n=0}^{\infty} p_{x,x}^{< n>} - 1 = \sum_{n=1}^{\infty} p_{x,x}^{< n>} = \sum_{n=1}^{\infty} \sum_{k=1}^{n} P(\tau_{x,x} = k) p_{x,x}^{< n-k>}$$

$$= \sum_{n=0}^{\infty} \sum_{k=0}^{n} P(\tau_{x,x} = k) p_{x,x}^{< n-k>} = \sum_{k=0}^{\infty} P(\tau_{x,x} = k) \sum_{n=k}^{\infty} p_{x,x}^{< n-k>}$$

$$= \sum_{k=0}^{\infty} P(\tau_{x,x} = k) \sum_{n=0}^{\infty} p_{x,x}^{< n>} = P(\tau_{x,x} < \infty) \sum_{n=0}^{\infty} p_{x,x}^{< n>}$$

- Hence, $E(N_x|X_0 = x) = \sum_{n=0}^{\infty} p_{x,x}^{< n} = \frac{1}{1 P(\tau_{x,x} < \infty)}$.
- If $P(\tau_{x,x} < \infty) = 1$, the state x is recurrent and $E(N_x | X_0 = x) = \sum_{n=0}^{\infty} p_{x,x}^{< n} = \infty$.
- If $P(\tau_{x,x} < \infty) < 1$, the state x is transient and $E(N_x | X_0 = x) = \sum_{n=0}^{\infty} p_{x,x}^{< n} < \infty$.

Infinite Hitting Time

•
$$P(\tau_{x,x} < \infty) < 1 \Leftrightarrow P(\tau_{x,x} = \infty) > 0$$

•
$$P(\tau_{1,1} = \infty) = \frac{1}{2}$$
 and $P(\tau_{1,1} = 2) = \frac{1}{2}$

$$- N_1 = 1 \text{ wp } \frac{1}{2}, N_1 = 2 \text{ wp } \left(\frac{1}{2}\right)^2$$

$$- N_1 = k \operatorname{wp} \left(\frac{1}{2}\right)^k$$

•
$$E(N_1) = 2 = \frac{1}{1 - \frac{1}{2}} = \frac{1}{1 - P(\tau_{1,1} < \infty)}$$

$$-\lim_{n\to\infty} \sum_{k=0}^{n} P(\tau_{1,1} = k) = 0 + \frac{1}{2} + 0 + 0 + \dots = \frac{1}{2}$$

$$- P(\tau_{1,1} = \infty) + \lim_{n \to \infty} \sum_{k=0}^{n} P(\tau_{1,1} = k) = \frac{1}{2} + \frac{1}{2} = 1$$

Invariant Measures

- Invariant measure ρ , possibly infinite dimensional, column vector with $\rho \ge 0$ satisfying $\rho^T = \rho^T P$
 - Viewing transition matrix P as an operator, the invariant measure is the fixed point of the operator;
 successive applications of the operator does not move the invariant measure.
 - Invariant measure is not unique: ρ invariant $\Rightarrow 2\rho$ invariant
 - Towards uniqueness, normalize the invariant measure:
 - $\pi = \frac{\rho}{\rho^T \mathbf{1}}$ for $\rho^T \mathbf{1} < \infty$, where **1** is a column vector of ones.
 - Invariant probability measure π satisfies
 - » Invariance: $\pi^T = \pi^T P$
 - » Normalization: $\pi^T \mathbf{1} = 1$
 - » Nonnegativity: $\pi \ge 0$
- Ex: Consider a 4-state Markov Chain with

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

- This chain has invariant measures $\left[\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right]$, [1, 1, 1, 1], [2, 2, 2, 2] or [a, a, a, a] for $a \ge 0$
- Among these, the only invariant probability is $\left[\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right]$

ed Page 13

Invariant Measure and Time Averages

• Ex: Consider a 4-state Markov Chain with

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

- This chain has invariant measures $\left[\frac{2}{7}, \frac{2}{7}, \frac{1}{7}, \frac{2}{7}\right]$, [2, 2, 1, 2], [4, 4, 2, 4] or [2a, 2a, a, 2a] for $a \ge 0$
- Among these, the only invariant probability is $\left[\frac{2}{7}, \frac{2}{7}, \frac{1}{7}, \frac{2}{7}\right]$ as

$$\begin{bmatrix} \frac{2}{7}, \frac{2}{7}, \frac{1}{7}, \frac{2}{7} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{2}{7}, \frac{2}{7}, \frac{1}{7}, \frac{2}{7} \end{bmatrix}$$

- Consider two cycles, triangle and square, defined as
- Think of the Markov Chain as $\frac{1}{2}$ triangle + $\frac{1}{2}$ square.
- In the triangle, the chain takes 3 steps to come back.
- In the square, it takes 4 steps.
- In 7 steps, the chain returns to state 1 by visiting $\{1,2,4\}$ twice and $\{3\}$ once on average
- $\quad \mathrm{E}\big(\tau_{1,1}\big) = 3.5 = \frac{1}{2} \, 3 + \frac{1}{2} \, 4 \quad \text{and} \quad \mathrm{E}\big(\sum_{n=0}^{\tau_{1,1}} \mathbf{1}_{X_n=1} | X_0 = 1\big) = \mathrm{E}\big(\sum_{n=0}^{\tau_{1,1}} \mathbf{1}_{X_n=2} | X_0 = 1\big) = \mathrm{E}\big(\sum_{n=0}^{\tau_{1,1}} \mathbf{1}_{X_n=4} | X_0 = 1\big) = 1, \\ \text{whereas} \quad \mathrm{E}\big(\sum_{n=0}^{\tau_{1,1}} \mathbf{1}_{X_3=1} | X_0 = 1\big) = 0.5.$
- An invariant measure turns out to be the expected number of visits to a particular state: $\left[1, 1, \frac{1}{2}, 1\right]$
- The invariant probability is $\left[\frac{1}{3.5}, \frac{1}{3.5}, \frac{0.5}{3.5}, \frac{1}{3.5}\right] = \left[\frac{2}{7}, \frac{2}{7}, \frac{1}{7}, \frac{2}{7}\right]$

Invariant Measure, Time Average & Limiting Probability

- In the previous example, time averages are 1/3.5, 1/3.5, 1/7, 1/3.5 represent the percentage of time the chain stays in states 1, 2, 3, 4.
- ♦ In general, time average random variable is not over single cycle but over N steps for $N \to \infty$:

$$\lim_{N\to\infty}\frac{\sum_{n=0}^{N}1_{X_n=x}}{N}$$

- \diamond Consistency Result: An irreducible and positive recurrent Markov chain X_n has
 - The unique invariant probability π , and
 - Time average converges to this invariant probability almost surely $\frac{\sum_{n=0}^{N} 1_{X_n=x}}{N} [\to as] \pi_x$
- The consistency result implies that we do not have to separately search for invariance probability and time averages; it suffices to find one of these. But the result is not operational.
- ◆ Towards an operational method, let us introduce limiting probability

$$\pi_y = \lim_{n \to \infty} p_{x,y}^{< n >}$$

- \diamond Note the limiting probability is independent of the initial state x; possible only in an aperiodic chain
- lack Crude methodology: Keep multiplying the transition matrix by itself to obtain P^n until its rows converge to each other so that any one of the rows can be taken as the limiting probability.
- Issues with the crude methodology:
 - No assurance of convergence
 - No relation between limiting probability, time average and invariant measure

Main Result

d Page 15 e Page 15

Invariant Measure=Time Average=Limiting Probability

Main Result: For an irreducible Markov chain with a period of 1, if an invariant probability measure π exists, i.e., a solution to $\pi^T = \pi^T P$, $\pi^T \mathbf{1} = 1$, $\pi \ge 0$ then

- the Markov chain is positive recurrent,
- π is unique,
- π is also the limiting probability,
- for each state x, $\pi_x > 0$.
- Since irreducible & positive recurrent chains have time average $[\rightarrow as]$ invariant measure, π computed above is also the time average
- All we have to check is 1) irreducible, 2) aperiodic 3) solution to $\pi^T = \pi^T P$, $\pi^T \mathbf{1} = 1$, $\pi \ge 0$.
- The solution to $\pi^T = \pi^T P$, $\pi^T \mathbf{1} = 1$, $\pi \ge 0$ is $\mathbf{1}^T (I P + [])^{-1}$, where I is the identity matrix and [] is the matrix of ones, both of these matrices have the same size as the transition matrix P.
 - To obtain this, $\pi^T = \pi^T P$ implies $\pi^T (I P) = \mathbf{0}$.
 - Hence, $\pi^T(I P + ||) = \mathbf{0}^T + \pi^T \mathbf{1} = \mathbf{1}^T$, where **0** is the column vector of only 0s.
 - When the Markov chain is irreducible $(I P + \parallel)$ can be shown to have the inverse $(I P + \parallel)^{-1}$, so

$$\pi^T = \mathbf{1}^T (I - P + \|)^{-1}$$

ntdallas. or sallabtu /~metin

Limiting Probability Example

• Ex: Consider a 4-state Markov Chain with

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

- The chain is irreducible and aperiodic, main result applies

$$- (I - P + [])^{-1} = \frac{\begin{bmatrix} 6.5 & 3 & -2 & -4 \\ -3.5 & 7 & 0 & 0 \\ -1.5 & -5 & 8 & 2 \\ 2.5 & -1 & -4 & 6 \end{bmatrix}}{14}, \text{ in R "solve(IP1)"}$$

$$- \mathbf{1}^{T}(I - P + [])^{-1} = \left[\frac{4}{14}, \frac{4}{14}, \frac{2}{14}, \frac{4}{14}\right] = \left[\frac{2}{7}, \frac{2}{7}, \frac{1}{7}, \frac{2}{7}\right], \text{ in R "c(1,1,1,1) %*% solve(IP1)"}$$

- On the other hand, P^n rows convergence to $\left[\frac{4}{14}, \frac{4}{14}, \frac{2}{14}, \frac{4}{14}\right]$:

$$P^{15} = \frac{\begin{bmatrix} 3.9375 & 5.2500 & 1.7500 & 3.0625 \\ 3.0625 & 3.9375 & 2.6250 & 4.3750 \\ 3.5000 & 2.6250 & 2.6250 & 5.2500 \\ 5.2500 & 3.5000 & 1.3125 & 3.9375 \end{bmatrix}}{14}, \quad P^{30} = \frac{\begin{bmatrix} 3.84 & 4.05 & 2.10 & 4.01 \\ 4.02 & 3.84 & 2.02 & 4.12 \\ 4.18 & 3.86 & 1.91 & 4.05 \\ 4.05 & 4.18 & 1.93 & 3.84 \end{bmatrix}}{14} \text{ and } P^{60} = \frac{\begin{bmatrix} 4.00 & 4.00 & 2.00 & 4.00 \\ 4.00 & 4.00 & 2.00 & 4.00 \\ 4.00 & 4.00 & 2.00 & 4.00 \end{bmatrix}}{14}$$

Summary

- Stochastic Processes and Markov Property
- Markov Chains
- Chapman-Kolmogorov Equations
- Classification of States
- Invariant Measures, Time Averages, Limiting Probabilities