TRIGONOMETRY Chapter 22

FUNCIONES TRIGONOMÉTRICAS
INVERSAS

MOTIVATING STRATEGY

En el diseño de carreteras y ferrocarriles, las curvas tienen un peralte (inclinación) para producir una fuerza centrípeta que proporcione seguridad.

El ángulo θ óptimo, se calcula

así:

$$\theta = \arctan\left(\frac{V^2}{R \cdot g}\right)$$

Donde V es la velocidad promedio del vehículo, R es el radio de la curva y g es la aceleración de la gravedad.

Pregunta:

¿ Cuál es el ángulo θ óptimo del peralte, para una velocidad promedio de 20 m/s, radio de curvatura de 120 m y g = 10 m/s² ?

Rpta:

18° 30'

FUNCIONES TRIGONOMÉTRICAS INVERSAS

Se lee: Notación:

arc sen(x) arco seno de x

arc cos(x) arco coseno de x

arc tan(x) arco tangente de x

arc cot(x) arco cotangente de x

arc sec(x) arco secante de x

arc csc(x) arco cosecante de x

PROPIEDAD FUNDAMENTAL:

$$FT(\theta) = N \Leftrightarrow \theta = arcFT(N)$$

Ejemplos:

• Si
$$sen \alpha = \frac{1}{3} \implies \alpha = arc sen \left(\frac{1}{3}\right)$$

• Si
$$\cos \beta = \frac{2}{5} \implies \beta = \arccos \left(\frac{2}{5}\right)$$

• Si
$$tan\theta = 1 \Rightarrow \theta = arc tan(1) = \frac{\pi}{4}$$

HELICO | THEORY

Cuadro resumen de las funciones trigonométricas inversas

Función Inversa	Dominio	Rango
y = arc senx	$-1 \le x \le 1$	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
$y = \arccos x$	$-1 \le x \le 1$	$0 \le y \le \pi$
$y = \arctan x$	$x \in \mathbb{R}$	$-\frac{\pi}{2} < y < \frac{\pi}{2}$
$y = \operatorname{arc} \cot x$	$x \in \mathbb{R}$	$0 < y < \pi$
$y = \operatorname{arc} \operatorname{sec} x$	$x \le -1 \lor x \ge 1$	$0 \le y \le \pi \; ; y \ne \frac{\pi}{2}$
$y = \operatorname{arc} \operatorname{csc} x$	$x \le -1 \lor x \ge 1$	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}; y \ne 0$

Ejemplos:

•
$$\theta = \arcsin\left(\frac{1}{2}\right) \Rightarrow \sin\theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{6}$$

Porque:
$$-1 \le \frac{1}{2} \le 1$$

$$-\frac{\pi}{2} \le \theta = \frac{\pi}{6} \le \frac{\pi}{2}$$

•
$$\varphi = \operatorname{arc} \operatorname{cot}(-\sqrt{3}) \Rightarrow \operatorname{cot} \varphi = -\sqrt{3}$$

$$\Rightarrow \varphi = \frac{5\pi}{6}$$

Porque:
$$-\sqrt{3} \in \mathbb{R}$$

$$0<\theta=\frac{5\pi}{6}<\pi$$

HELICO | THEORY

Propiedades fundamentales

$$\theta = \arcsin k \leftrightarrow \sin \theta = k \wedge \theta \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$$

$$\theta = \arccos k \leftrightarrow \cos \theta = k \land \theta \in [0; \pi]$$

$$\theta = \arctan k \leftrightarrow \tan \theta = k \wedge \theta \in \left\langle -\frac{\pi}{2}; \frac{\pi}{2} \right\rangle$$

$$\theta = \operatorname{arc} \cot k \leftrightarrow \cot \theta = k \land \theta \in \langle 0; \pi \rangle$$

$$\theta = \operatorname{arc} \sec k \leftrightarrow \sec \theta = k \wedge \theta \in [0; \pi] - \left\{ \frac{\pi}{2} \right\}$$

$$\theta = \operatorname{arc} \operatorname{csc} k \leftrightarrow \operatorname{csc} \theta = k \land \theta \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right] - \{0\}$$

Teoremas:

$$arc sen(x) + arc cos(x) = \frac{\pi}{2} ; x \in [-1; 1]$$

$$arc tan(x) + arc cot(x) = \frac{\pi}{2}$$
; $x \in R$

$$\operatorname{arc} \operatorname{sec}(x) + \operatorname{arc} \operatorname{csc}(x) = \frac{\pi}{2} \; ; \; x \in R - \langle -1 \; ; 1 \rangle$$

Ejemplos:

•
$$arc sen\left(\frac{1}{3}\right) + arc cos\left(\frac{1}{3}\right) = \frac{\pi}{2}$$

•
$$arc tan(4) + arc cot(4) = \frac{\pi}{2}$$

1) Función Arcoseno:

- Dominio: $-1 \le x \le 1$
- Rango: $-\frac{\pi}{2} \le \arcsin(x) \le \frac{\pi}{2}$

2) Función Arcocoseno:

- Dominio: $-1 \le x \le 1$
- Rango: $0 \le arc \cos(x) \le \pi$

Escriba verdadero (V) o falso (F), según corresponda:

a)
$$\operatorname{arc\,sen}\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4} \dots$$
 b) $\operatorname{arc\,sen}\left(\frac{1}{2}\right) = \frac{\pi}{6} \dots$

b) arc sen
$$\left(\frac{1}{2}\right) = \frac{\pi}{6}$$

c)
$$\operatorname{arc} \tan(\sqrt{3}) = \frac{\pi}{3} \dots$$

a)
$$\operatorname{arcsen}\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4} \iff \operatorname{sen}\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$
 (V)

b)
$$\arcsin\left(\frac{1}{2}\right) = \frac{\pi}{6} \iff \operatorname{sen}\left(\frac{\pi}{6}\right) = \frac{1}{2}$$
 (V)

Halle el valor de M = arc tan(1) + arc sen $(\frac{1}{2})$

Sea:
$$M = \arctan(1) + \arcsin(\frac{1}{2})$$

•
$$\alpha = \arctan(1) \Rightarrow \tan \alpha = 1 \Rightarrow \alpha = \frac{\pi}{4}$$
 | Luego: $M = \alpha + \theta$

•
$$\theta = \arcsin\left(\frac{1}{2}\right) \implies \sin\theta = \frac{1}{2} \implies \theta = \frac{\pi}{6}$$

Luego:
$$M = \alpha + \theta$$

$$M=\frac{\pi}{4}+\frac{\pi}{6}$$

$$M = \frac{5\pi}{12}$$

Halle el valor de
$$T = sen \left[arc cos \left(\frac{\sqrt{2}}{2} \right) \right] + cos \left[arc tan(1) \right]$$

$$T = sen \left[arc \cos \left(\frac{\sqrt{2}}{2} \right) \right] + cos \left[arc \tan(1) \right]$$

$$T = sen \alpha + cos \theta$$

•
$$\alpha = \arccos\left(\frac{\sqrt{2}}{2}\right) \Rightarrow \cos\alpha = \frac{\sqrt{2}}{2} \Rightarrow \alpha = \frac{\pi}{4}$$

$$T = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}$$

•
$$\theta = \arctan(1) \Rightarrow \tan\theta = 1 \Rightarrow \theta = \frac{\pi}{4}$$

$$T = sen \alpha + cos \theta$$

$$T = sen\left(\frac{\pi}{4}\right) + cos\left(\frac{\pi}{4}\right)$$

$$T = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}$$

$$T = \sqrt{2}$$

Halle el valor de E = $\sqrt{13}$ sen[arc tan($\frac{2}{3}$)] + $\sqrt{5}$ cos[arc tan(2)]

E =
$$\sqrt{13}$$
 sen[arc tan($\frac{2}{3}$)] + $\sqrt{5}$ cos[arc tan(2)]

$$\tan \alpha = \frac{2}{3} = \frac{\text{co}}{\text{cA}}$$

$$\tan\theta = \frac{2}{1} = \frac{\cos}{\cos\theta}$$

Luego:
$$E = \sqrt{13} \operatorname{sen}\alpha + \sqrt{5} \cos\theta = \sqrt{13} \left(\frac{2}{\sqrt{13}}\right) + \sqrt{5} \left(\frac{1}{\sqrt{5}}\right)$$

$$E = 3$$

Halle el valor de x de la siguiente igualdad :

$$3 \operatorname{arc senx} + 2 \operatorname{arc cosx} = \frac{7\pi}{6}$$

Resolución

Dato:

$$3 \operatorname{arc senx} + 2 \operatorname{arc cosx} = \frac{7\pi}{6}$$

Conviene agrupar así: arc senx + 2 (arc senx + arc cosx) =
$$\frac{7\pi}{6}$$

Según teorema:

$$\frac{\pi}{2}$$

$$=\frac{7\pi}{6}$$

Luego:
$$\arcsin x + \pi = \frac{7\pi}{6} \implies \arcsin x = \frac{\pi}{6} \implies x = \operatorname{sen}\left(\frac{\pi}{6}\right)$$

$$x = \frac{1}{2}$$

El joven Pedro recibía de su padre la propina diaria de $5 \tan \left[\frac{\pi}{4} + \operatorname{arc} \cot(2) \right]$ soles.

Por sus malas calificaciones escolares, ahora su propina diaria es de $20 \, \mathrm{sen} \left[\, 2 \, \mathrm{arc} \, \tan \left(\frac{1}{3} \, \right) \right]$ soles. ¿Cuánto es la disminución de su propina diaria?

Sea:
$$\alpha = \operatorname{arc} \cot(2)$$

$$\cot \alpha = \frac{2}{1} = \frac{CA}{CO}$$

Sea:
$$\theta = \arctan\left(\frac{1}{3}\right)$$

$$\tan\theta = \frac{1}{3} = \frac{\cos}{\cos\theta}$$

Resolución

Propina inicial =
$$5 \tan \left[\frac{\pi}{4} + \alpha \right]$$
 soles = $5 \left(\frac{\tan \frac{\pi}{4} + \tan \alpha}{1 - \tan \frac{\pi}{4} \cdot \tan \alpha} \right)$ soles

Propina inicial =
$$5\left(\frac{1+\frac{1}{2}}{1-1\cdot\frac{1}{2}}\right)$$
 soles = $5\left(\frac{\frac{3}{2}}{\frac{1}{2}}\right)$ soles = $5\left(\frac{3}{2}\right)$ sole

Propina final = $20 \operatorname{sen}(2\theta) \operatorname{soles} = 20 (2 \operatorname{sen}\theta \cdot \cos\theta) \operatorname{soles}$

Propina final =
$$40\left(\frac{1}{\sqrt{10}}\right)\left(\frac{3}{\sqrt{10}}\right)$$
 soles = $40\left(\frac{3}{10}\right)$ soles = 12 soles

Luego: 15 soles – 12 soles = 3 soles

La propina diaria de Pedro disminuyó en 3 soles .

Un arqueólogo descubrió el santuario de una determinada cultura, tal como muestra la figura; por lo cual le pidió a un matemático hallar el dominio de la función que representa el borde de la pared lateral : f(x) = arc sen(x + 2) ¿ Cuál es el dominio de la función ?

Resolución

Recordar:

Función Inversa	Dominio	Rango
y = arc sen x	$-1 \le x \le 1$	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

$$f(x) = arc sen(x + 2)$$

$$\Rightarrow -1 \le x + 2 \le 1$$

$$\Rightarrow -1 - 2 \le x + 2 - 2 \le 1 - 2$$

$$\Rightarrow -3 \le x \le -1$$

$$Dom(f) = [-3; -1]$$

