Exercises 6.2.4 — Problem 10

Problem. If f is Riemann integrable on [a,b] and continuous at x_0 , prove that $F(x) = \int_a^x f(t)dt$ is differentiable at x_0 and $F'(x_0) = f(x_0)$. Show that if f has a jump discontinuity at x_0 , then F is not differentiable at x_0 .

Proof. To prove that F(x) is differentiable at x_0 , we must show that $\lim_{x\to x_0} \frac{F(x)-F(x_0)}{x-x_0}$ exists. Note that $\lim_{x\to x_0} \frac{F(x)-F(x_0)}{x-x_0} = \lim_{x\to x_0} \frac{\int_a^x f(t)dt-\int_a^{x_0} f(t)dt}{x-x_0} = \lim_{x\to x_0} \frac{\int_{x_0}^x f(t)dt}{x-x_0}$ by the quick proof in the previous problem. For the limit to exist, we must have the existence of both the right and left limit and the equality $\lim_{x\to x_0^-} \frac{\int_{x_0}^x f(t)dt}{x-x_0} = \lim_{x\to x_0^+} \frac{\int_{x_0}^x f(t)dt}{x-x_0}$.

Let $\Delta x = |x - x_0|, \ m = \inf_{y \in [x_0 - \Delta x, x_0]} f(y), \ \text{and} \ M = \sup_{y \in [x_0, x_0 + \Delta x]} f(y).$ Certainly we have $\lim_{x \to x_0^-} m(x - x_0) \le \lim_{x \to x_0^-} \int_{x_0}^x f(t) dt \ \text{for} \ x > x_0.$ Then, dividing by $x - x_0$ we get $\lim_{x \to x_0^-} m = m \le \lim_{x \to x_0^-} \frac{\int_{x_0}^x f(t) dt}{x - x_0}.$ Then for $x_0 > x$, we must have $\lim_{x \to x_0^+} \int_x^{x_0} f(t) dt \le \lim_{x \to x_0^+} M(x_0 - x).$ Dividing by $x_0 - x$, we have $\lim_{x \to x_0^+} \frac{\int_{x_0}^{x_0} f(t) dt}{x - x_0} \le \lim_{x \to x_0^+} M = M.$

So we have $m \leq \lim_{x \to x_0} \frac{\int_{x_0}^x f(t)dt}{x-x_0} \leq M$, but since f is continuous m,M can be made arbitrarily close with sufficiently small Δx so the limit exists because of the squeeze theorm. Further, the value to which m,M converge to is $\Delta x \to 0$ is $f(x_0)$, as desired.

Note that if f has a jump discontinuity at x_0 , we cannot use the squeeze theorem. In fact, the left limit would be bounded above by $\sup_{y \in [x_0 - \Delta x_0, x_0]} f(y)$ and the right limit would be bounded below by $\inf_{y \in [x_0, x_0 + \Delta x_0]} f(y)$. Since f has a jump discontinuity at x_0 we know that $\sup_{y \in [x_0 - \Delta x_0, x_0]} f(y) < \inf_{y \in [x_0, x_0 + \Delta x_0]} f(y)$. But then the left and right limit cannot by equal, so the limit does not exist.