目录

— 、	问题重述	1
	1.1 问题背景	1
	1.2 问题概述	1
二、	模型假设	1
三、	符号说明	2
四、	问题一模型的建立与求解	2
	4.1 问题描述与分析	2
	4.2 模型的建立	2
	4.2.1 灰度预测 GM(1,1)	2
五、	问题二模型的建立与求解	3
	5.1 问题描述与分析	3
	5.2 模型的建立	3
	5.3 模型的求解	3
六、	灵敏度分析	3
七、	模型的评价	3
	7.1 模型的优点	3
	7.2 模型的缺点	3
	7.3 模型改进	3
附录	A 模型的代码实现	5
	A.1 数据可视化-python 源代码	5

一、问题重述

1.1 问题背景

在物资调运过程中,完成指定点的调运任务是最基本的要求,在完成基本的任务之外,往往有更高的追求,比如如何使总运费最省?怎样才能使得运输时间最短?如何选择运输路径使得运输总距离最短等等。这些更高的追求往往是企业期望达到的目标,为了解决这些类似问题,有必要对物资调运的过程进行数学模型的建立,以期通过模型来理解和分析物资调运的过程,并为其找到解决的方法。现以具体的食品调运案例进行分析研究。

某食品公司有 19 个食品销售点,销售点的地理坐标和每天的需求量见附件。每天凌晨都要从仓库(第 20 号站点)出发将食品运至每个销售点,运送物品后最终返回仓库。现有运送食品的运输车,每台车每日工作 4 小时,运输车重载运费 2 元/吨公里,并且假定街道方向均平行于坐标轴,任意两站点间都可以通过一次拐弯到达。

1.2 问题概述

围绕相关附件和条件要求,研究食品运输车在各仓库间的调度方案,依次提出以下问题:

问题一: 若只有一辆载重 100 吨的大型运输车,运输车平均速度为 40 公里 / 小时,每个销售点需要用 20 分钟的时间下货,空载费用 0.6 元/公里。它送完所有食品并回到仓库,求最少需要时间及其对应的总距离,总运费。

问题二:有一种小型运输车,运输车平均速度为50公里/小时,每个销售点需要用5分钟的时间下货,载重为6吨,空载费用0.4元/公里;要使它们送完所有食品并回到仓库,运输车应如何调度使总体调度效率最高?

问题三:如果有载重量为4吨、6吨两种运输车,空载费用分别为0.2、0.4元/公里,其他条件均相同,又如何安排车辆数和调度方案。

二、模型假设

- (1) 为保证预测结果精确性,假设题目所给出数据真实可信。
- (2) 假设重点防控的区域和人群中,发病、死亡人数的增长率比其基数更加重要

三、符号说明

符号	说明	
$X^{(i)}$	人数时间序列	
a	发展灰度	
u	内生控制灰度	

四、问题一模型的建立与求解

4.1 问题描述与分析

其思维流程图如图 1 所示:

图 1 问题一思维流程图

4.2 模型的建立

4.2.1 灰度预测 GM(1,1)

设 2004-2016 年总发病人数为时间序列:

$$X^{(0)} = [x^{(0)}(1), x^{(0)}(2), \cdots, x^{(0)}(13)]$$

其误差状态区间如表 1 所示:

表 1 发病人数状态区间划分

状态	E_1	E_2	E_3
残差区间	[-66389, -22130]	(-22130, 22130]	(22130, 66389]

五、问题二模型的建立与求解

- 5.1 问题描述与分析
- 5.2 模型的建立
- 5.3 模型的求解

六、灵敏度分析

七、模型的评价

7.1 模型的优点

- (1) 利用马尔可夫模型改进后的灰度预测值与实际值拟合度更高,波动性保持一致,预测的效果更好。
- (2) 针对支持向量回归参数选取,利用灰色关联度筛选合适指标,相较于主观选取指标具有客观性、严谨性。

7.2 模型的缺点

问题一、二中的灰色预测模型只能做短期预测,并不适用于长期预测。

7.3 模型改进

可以通过序列最小优化算法 (Sequential Minimal Optimization,SMO) 作为样本的训练算法,进而建立序列最小优化支持向量回归模型,从而减小算法复杂度,提高算法的求解速度。

参考文献

- [1] 张斯嘉, 郭建胜, 钟夫, 等. 基于蝙蝠算法的多目标战备物资调运决策优化 [J]. 火力与指挥控制, 2016, 41(1): 58-61.
- [2] 李健, 张文文, 白晓昀, 等. 基于系统动力学的应急物资调运速度影响因素研究 [J]. 系统工程理论与实践, 2015, 35(3): 661-670.
- [3] Wang J, Ersoy O K, He M, et al. Multi-offspring genetic algorithm and its application to the traveling salesman problem[J]. Applied Soft Computing, 2016, 43: 415-423.
- [4] 陶丽华, 马振楠, 史朋涛, 等. 基于 TSP 问题的动态蚁群遗传算法 [J]. 机械设计与制造, 2019 (12): 39.

附录 A 模型的代码实现

A.1 数据可视化-python 源代码

```
_xtick_labels = ["{}年".format(int(i)) for i in x]
plt.xticks(x, _xtick_labels, fontproperties=my_font)
# plt.yticks(range(0, 9))

# 绘制网格
plt.grid(alpha=0.3, linestyle="--") # alpha为透明度 0-1
plt.title("三种重点检测职业分析图", fontproperties=my_font)
plt.xlabel("年份", fontproperties=my_font)
plt.ylabel("患病人数", fontproperties=my_font)
# 标注图例
plt.legend(prop=my_font, loc=0)
plt.show()
```