Find the volume of the tetrahed on formed by the plane 2x + 3y + z = 6 and the coordinate planes by....

 \bullet using the order dz dx dy

 \bullet using the order dx dz dy

Evaluate $\iiint_E xy \ dV$ where E is the region bounded by the paraboloids $z = x^2 + y^2$ and $z = 12 - 3x^2 - 3y^2$.

Section 15.8 Triple Integrals in Spherical Coordinates

In the spherical coordinate system, a point P is represented by an ordered triple (ρ, θ, ϕ) where ρ is the distance from the origin to P, θ is the angle made with the positive x-axis in the xy-plane, and ϕ is the angle between the positive z axis and the line segment OP. By convention, we choose $\rho \geq 0$ and $0 \leq \phi \leq \pi$.

The relationship between rectangular and spherical coordinates are

$$x = \rho \sin \phi \cos \theta$$

$$y = \rho \sin \phi \sin \theta$$

$$z = \rho \cos \phi$$

along with the fact that

$$\rho^2 = x^2 + y^2 + z^2$$

Examples:

• Convert $\left(4, \frac{\pi}{4}, \frac{\pi}{6}\right)$ from spherical to rectangular coordinates.

• Convert $(-1, \sqrt{3}, 2)$ from rectangular to spherical coordinates.

Write each Cartesian equation in spherical coordinates.

$$x^2 + y^2 + z^2 = 25$$
 (a sphere)

$$z = \sqrt{x^2 + y^2}$$
 (a cone)

When dealing with a spherical region, instead of chopping up the solid into boxes, we chop it up into spherical wedges.

While in Cartesian coordinates, $dV = dx \, dy \, dz$, in spherical coordinates $dV = \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$. So we must now multiply by this factor $\rho^2 \sin \phi$ when switching to spherical coordinates.

(Note: I will show why this is true in the next section when we discuss more general change of coordinates.)

$$\iiint_E f(x,y,z) dV = \iiint_E f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^2 \sin \phi d\rho d\phi d\theta$$

Evaluate $\iiint_E \sqrt{x^2+y^2+z^2}\ dV$ where E is the region between the spheres $x^2+y^2+z^2=1$ and $x^2+y^2+z^2=9$.

Evaluate $\iiint_E xz\ dV$ where E is the region bounded above by the sphere $x^2+y^2+z^2=4$ and below by the cone $z=\sqrt{x^2+y^2}$.

Evaluate $\int_{-3}^{3} \int_{0}^{\sqrt{9-x^2}} \int_{0}^{\sqrt{9-x^2-y^2}} z \ dz \ dy \ dx$ by converting to spherical coordinates.

Find the volume of the solid that lies within the sphere $x^2 + y^2 + z^2 = 4$, above the xy plane, and below the cone $z = \sqrt{3x^2 + 3y^2}$ in the first octant (i.e., where $x \ge 0$ and $y \ge 0$).