Apprentissage automatique (Machine Learning)

ProgFest 2022

Maxence Larose

7 mars 2022

 Disponibilités de très grands jeux de données (big data)

- Disponibilités de très grands jeux de données (big data)
- Augmentation de la capacité de calcul (GPU)

- Disponibilités de très grands jeux de données (big data)
- Augmentation de la capacité de calcul (GPU)
- Nouveaux modèles d'apprentissage très flexibles

- Disponibilités de très grands jeux de données (big data)
- Augmentation de la capacité de calcul (GPU)
- Nouveaux modèles d'apprentissage très flexibles

Ceci explique l'avènement de l'apprentissage profond. On discutera plutôt ici de l'apprentissage automatique. C'est quoi la différence entre les deux?

Terminologie

INTELLIGENCE ARTIFICIELLE

Un programme qui peut raisonner, agir et s'adapter

APPRENTISSAGE AUTOMATIQUE

Algorithmes qui utilise des méthodes statistiques pour s'améliorer à partir de l'expérience sur des données

APPRENTISSAGE PROFOND

Réseaux neuronaux multicouches qui apprennent à partir de grandes quantités de données

Définition de l'apprentissage automatique

- L'apprentissage automatique consiste à utiliser des ordinateurs pour optimiser un modèle de traitement de l'information selon certains critères de performance à partir d'observations, que ce soit des données-exemples ou des expériences passées.
 - Quand on parle de modèle, on parle d'un objet approximant une fonction complexe f(x). On cherche donc une fonction $h(x) \approx f(x)$.

Définition de l'apprentissage automatique

- L'apprentissage automatique consiste à utiliser des ordinateurs pour optimiser un modèle de traitement de l'information selon certains critères de performance à partir d'observations, que ce soit des données-exemples ou des expériences passées.
 - Quand on parle de modèle, on parle d'un objet approximant une fonction complexe f(x). On cherche donc une fonction $h(x) \approx f(x)$.
- Lorsque l'on connaît le bon modèle de traitement à utiliser, il n'est pas nécessaire de faire de l'apprentissage...

Définition de l'apprentissage automatique

- L'apprentissage automatique consiste à utiliser des ordinateurs pour optimiser un modèle de traitement de l'information selon certains critères de performance à partir d'observations, que ce soit des données-exemples ou des expériences passées.
 - Quand on parle de modèle, on parle d'un objet approximant une fonction complexe f(x). On cherche donc une fonction $h(x) \approx f(x)$.
- Lorsque l'on connaît le bon modèle de traitement à utiliser, il n'est pas nécessaire de faire de l'apprentissage...
- Exemples où l'apprentissage automatique est utile :
 - On n'a pas d'expertise sur le problème (ex. robot navigant sur Mars)
 - On a une expertise, mais on ne sait pas comment l'expliquer (ex. reconnaissance d'objets)
 - Les solutions doivent être personnalisées (ex. biométrie)

Programmation traditionnelle vs. Apprentissage automatique

Exemple

Types d'apprentissage

Apprentissage par renforcement

But: Apprendre une politique, une séquences d'actions, pour maximiser les récompenses obtenues pendant un épisode.

Apprentissage par renforcement : Exemple

Apprentissage supervisé

But : Apprendre une projection entre des observations X en entrée et des valeurs associées Y en sortie.

Modélisation mathématique :

$$y = h_{\theta}(x)$$

où $h(\cdot)$ est une fonction générale du modèle et θ sont les paramètres du modèle.

Apprentissage supervisé : Schéma

Apprentissage supervisé : Classification et régression

Apprentissage non supervisé

But : Découvrir des régularités dans des observations X sans étiquette Y.

Apprentissage non supervisé : Application au clustering

Apprentissage supervisé vs. non supervisé

Algorithmes

- K plus proche voisin
- Arbre de décision
- Processus Gaussien
- Machine à vecteurs de support
- Réseau de neurones

K - Plus proches voisins

$$c_i = \mathsf{max}_c\{ Count(\mathcal{C}) \}$$
 $\mathcal{C} = \mathsf{argmin}_c^k \{ d(x_i, x_j) \} \quad \forall j \neq i$

Arbre de décision

- Séparation hiérarchique (récursive) de l'espace d'entrée.
- Chaque nœud de l'arbre est un test sur valeur avec issues discrète.
- Effectue une division de plus en plus fine de l'espace d'entrée

Réseau de neurones

$$h_{\theta}(x) = \sigma \left(\sum_{i=1}^{d} \theta_i x_i + b \right)$$

Optimisation

Objectif: Optimiser une fonction $h_{\theta}(x)$ qui approxime une fonction complexe inconnue f(x). Ce sont les paramètres θ qui sont optimisés lors de l'apprentissage.

L'erreur empirique $J_{\theta}(\mathcal{X})$ correspond à la moyenne de la perte calculée à chaque point avec une fonction de perte choisie $\mathcal{L}(y,\hat{y})$ où \hat{y} est la prédiction donnée par notre fonction $h_{\theta}(x)$ et $\mathcal{X} = \{x_i, y_i\}_{i=1}^N$.

Fonction de perte

Objectif : Elle sert à connaître la performance du modèle pour une certaine entrée x.

$$J_{ heta}(\mathcal{X}) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(y_i, \hat{y}_i)$$

• Erreur absolue : $\mathcal{L}(y_i, \hat{y}_i) = |y_i - \hat{y}_i| \rightarrow \text{régression}$

Fonction de perte

Objectif : Elle sert à connaître la performance du modèle pour une certaine entrée x.

$$J_{ heta}(\mathcal{X}) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(y_i, \hat{y}_i)$$

- Erreur absolue : $\mathcal{L}(y_i, \hat{y}_i) = |y_i \hat{y}_i| \rightarrow \text{régression}$
- Erreur quadratique : $\mathcal{L}(y_i, \hat{y}_i) = (y_i \hat{y}_i)^2 \rightarrow \text{régression}$

Fonction de perte

Objectif : Elle sert à connaître la performance du modèle pour une certaine entrée x.

$$J_{ heta}(\mathcal{X}) = rac{1}{N} \sum_{i=1}^{N} \mathcal{L}(y_i, \hat{y}_i)$$

- Erreur absolue : $\mathcal{L}(y_i, \hat{y}_i) = |y_i \hat{y}_i| \rightarrow \text{régression}$
- Erreur quadratique : $\mathcal{L}(y_i, \hat{y}_i) = (y_i \hat{y}_i)^2 \rightarrow \text{régression}$
- Entropie croisée : $\mathcal{L}(y_i, \hat{y}_i) = -\sum_{c=1}^M y_c \log(\hat{y}_c) \rightarrow \text{classification}$

Comment minimiser l'erreur empirique?

Il existe plusieurs méthodes pour minimiser l'erreur empirique :

- Maximum de vraisemblance
- Descente du gradient
- Programmation quadratique
- ..

Descente du gradient

Gradient :
$$\nabla J_{\theta}(\mathcal{X}) = \left[\frac{\partial J}{\partial \theta_1} \dots \frac{\partial J}{\partial \theta_d}\right]$$

Incrémentation : $\theta = \theta - \eta \nabla J_{\theta}(\mathcal{X})$

Solution : $\theta^* = \operatorname{argmin}_{\forall \theta_i} J_{\theta}(\mathcal{X})$

Jeu d'entraînement, de validation et de test

Pour estimer l'erreur de généralisation, on doit utiliser des données non vues durant l'entraînement. Approche classique, partitionner le jeu d'exemples (Entraînement (60%), validation (20%), test (20%)).

Évaluation

Il existe différents types d'erreur et le contexte du problème détermine lesquelles doivent être contrôlées.

		Predicted condition	
	Total population = P + N	Positive (PP)	Negative (PN)
condition	Positive (P)	True positive (TP),	False negative (FN), type II error, miss, underestimation
Actual	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection

Généralisation

Sous-apprentissage et sur-apprentissage

Régularisation

But : Introduire une pénalité dans la fonction optimisée afin de minimiser la complexité du modèle et ainsi combattre le sur-apprentissage.

Forme courante:

$$J_{ heta}(\mathcal{X}) = rac{1}{N} \sum_{i=1}^{N} \mathcal{L}(y_i, \hat{y}_i) + \lambda \mathcal{C}(heta)$$

où λ est la pondération relative entre l'erreur empirique J et la complexité $C(\theta)$.

Exemples courants de complexité $C(\theta)$:

- Nombre de paramètres utilisés
- Norme des valeurs de paramètres

Exemple de programmation scikit-learn : Classification

Exemple de classification du jeu de données Iris avec un K - plus proche voisin. Voir le jupyter notebook : "".

Conclusion

- Il est possible d'approximer des fonctions complexes avec des modèles simples.
- Les paramètres des modèles doivent être optimisés en minimisant l'erreur empirique sur un jeu de validation, par exemple en utilisant une descente de gradient.
- Le module scikit-learn offre une approche facile et rapide.
- L'apprentissage profond est basé sur le perceptron.