Теория вероятностей и математическая статистика

С. М. Ананьевский *

27 сентября 2016 г.

Содержание

1	Условные вероятности	2
2	Формула полной вероятности. Формула Байеса	2
3	Независимые события. Пример Бернштейна	3
4	Независимые испытания Бернулли. Формулы Бернулли	5
5	Предельные теоремы в схеме испытаний Бернулли	6

^{*}Конспект подготовлен студентом Яскевичем С. В.

1 Условные вероятности

Пусть у нас есть вероятностное пространство $(\Omega, \mathfrak{F}, P)$ и два случайных события $A, B \in \mathfrak{F}$, причём будем считать, что $P(B) \neq 0$.

Определение 1.1. Условной вероятностью события A при условии события B называется число $P(A/B) = \frac{P(A \cap B)}{P(B)}$ (иногда обозначается $P_B(A)$).

Пример 1.2. Если у нас есть игральный кубик, то вероятность выпадения нечётной грани при условии, что количество очков не превосходит 3, равна

Теорема 1.3 (Свойства условной вероятности). *Условная вероятность является вероятностью*.

Доказательство. Проверим аксиомы вероятности:

- 1. $P_B(A) = \frac{P(A \cap B)}{P(B)}$. Так как числитель и знаменатель неотрицательны, то и дробь не отрицательна.
- 2. $P_B(\Omega) = \frac{P(\Omega \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1$
- 3. Пусть $A_1,A_2\ldots,\in\mathfrak{F};\ A_\mathfrak{i}\cap A_\mathfrak{j}=\varnothing$ (при $\mathfrak{i}\neq\mathfrak{j}$). Тогда:

$$\begin{split} P_B(\bigcup_i A_i) &= \frac{P(\bigcup_i B \cap A_i)}{P(B)} = \frac{\sum_i P(B \cap A_i)}{P(B)} = \\ &= \sum_i \frac{P(B \cap A_i)}{P(B)} = \sum_i P_B(A_i) \end{split}$$

Следствие 1.4. Все свойства вероятности для условной вероятности выполнены.

2 Формула полной вероятности. Формула Байеса

Определение 2.1. Пусть $A_1, A_2 \ldots$, $\in \mathfrak{F}; \ A_i \cap A_j = \varnothing \ (при \ i \neq j), \ \bigcup_i A_i = \Omega.$ Тогда $A_1, A_2 \ldots$ — полная система событий.

Теорема 2.2 (Формула полной вероятности). Пусть $A_1, A_2 \ldots -$ полная система событий и $\forall i \ P(A_i) > 0$. Тогда вероятность любого случайного события $B \in \mathfrak{F}$ можно вычислить по формуле:

$$P(B) = \sum_{i} P(B/A_{i}) \cdot P(A_{i})$$

Доказательство.

$$\begin{split} P(B) &= P(B \cap \Omega) = P(B \cap (\bigcup_{i} A_{i})) = P(\bigcup_{i} (B \cap A_{i})) = \sum_{i} P(B \cap A_{i}) = \sum_{i} \frac{P(B \cap A_{i}) \cdot P(A_{i})}{P(A_{i})} = \\ &= \sum_{i} P(B/A_{i}) \cdot P(A_{i}) \end{split}$$

Теорема 2.3 (Вайеса). Пусть $A_1, A_2 \ldots -$ полная система событий, $\forall i \ P(A_i) > 0$, P(B) > 0. Тогда $\forall k \geqslant 1 \ P(A_k/B) = \frac{P(B/A_k) \cdot P(A_k)}{\sum\limits_{i} P(B/A_i) \cdot P(A_i)}$

Доказательство. Правая часть равна:

$$\frac{P(B/A_k) \cdot P(A_k)}{P(B)} = \frac{P(B \cap A_k) \cdot P(A_k)}{P(A_k) \cdot P(B)} = \frac{P(B \cap A_k)}{P(B)} = P(A_k/B)$$

Примеры 2.4. 1. Пусть с завода №1 поставлено 5 ящиков деталей, с завода №2 — 3 ящика, а с завода №3 — 2 ящика. Предположим также, что завод №1 допускает 2% брака, завод №2 — 5% брака, а завод №3 — 10%. Какова вероятность выбрать хорошую деталь? Какова вероятность того, что деталь изготовлена на заводе №1 при условии, что она хорошая?

Ящики считаем одинаковыми. Рассмотрим события C_1 , C_2 , C_3 , где C_i означает выбрать ящик с завода \mathbb{N}^i , и событие B, означающее выбор хорошей детали. Ясно, что C_1 , C_2 , C_3 — полная система событий. Чтобы вычислить вероятность события B, можно воспользоваться формулой полной вероятности:

$$P(B) = \sum_{i=1}^{3} P(B/C_i) \cdot P(C_i) = 0.98 \cdot 0.5 + 0.95 \cdot 0.3 + 0.9 \cdot 0.2$$

Чтобы ответить на второй вопрос, мы можем воспользоваться формулой Байеса:

$$P(C_1/B) = \frac{0.98 \cdot 0.5}{0.98 \cdot 0.5 + 0.95 \cdot 0.3 + 0.9 \cdot 0.2}$$

2. Представим, что у нас имеется ящик с шестью белыми и четырьмя чёрными шариками. Сначала мы потеряли один шарик из этого ящика (какой — неизвестно), а затем из оставшихся мы вытащили два шарика. Какова вероятность вытащить два белых шарика? Какова вероятность того, что был потерян чёрный шар, при условии, что мы вытащили два белых шара?

Введём два события, описывающие первый этап эксперимента: C_6 , C_4 — потеря белого и чёрного шаров соответственно. C_6 , C_4 — полная система событий. Пусть В означает "вытащить два белых шарика".

$$\begin{split} P(B) = P(B/C_6) \cdot P(C_6) + P(B/C_{\text{\tiny q}}) \cdot P(C_{\text{\tiny q}}) &= \frac{C_5^2}{C_9^2} \cdot \frac{6}{10} + \frac{C_6^2}{C_9^2} \cdot \frac{4}{10} \\ P(C_{\text{\tiny q}}/B) &= \frac{C_6^2 \cdot 4}{C_5^2 \cdot 6 + C_6^2 \cdot 4} \end{split}$$

3 Независимые события. Пример Бернштейна

Важно: нельзя путать понятия независимости событий и несовместности.

Пусть имеется эксперимент, описываемый с помощью вероятностного пространства $(\Omega, \mathfrak{F}, \mathsf{P})$, и даны случайные события $\mathsf{A}, \mathsf{B} \in \mathfrak{F}$.

Независимость событий можно было бы рассматривать как выполнение равенств

$$P(A/B) = P(A/\overline{B}) = P(A).$$

Однако здесь нарушена симметрия - логично, что если событие A независимо от B, то и обратное тоже верно — B независимо от A.

Определение 3.1. А и В независимы, если $P(A \cap B) = P(A)P(B)$.

Таким образом, если P(B) > 0, то независимость A и B равносильна P(A/B) = P(A).

Предложение 3.2 (Свойства независимых событий). 1. A, B независимы \iff A, \overline{B} независимы \iff \overline{A} , B независимы.

- 2. $\forall A \in \mathfrak{F} \ A \ u \ \Omega$ независимы.
- 3. $\forall A \in \mathfrak{F} \ A \ u \varnothing$ независимы.

Доказательство.

$$P(A) = P(A \cap \Omega) = P(A \cap (B \cup \overline{B})) = P((A \cap B) \cup (A \cap \overline{B}))$$
$$P(A)(1 - P(B)) = P(A)P(B) = P(A \cap \overline{B})$$

Упражнение 3.3. Пусть A u B независимы, A u C независимы. Верно Λu , что A u B \cup C независимы? Верно Λu , что A u B \cap C независимы?

Можем ли мы определить понятие независимости для числа событий, большего 2? Для событий A_1, A_2, \ldots, A_n мы можем выделить попарную независимость:

$$\forall i \neq j \quad A_i, A_j$$
 независимы.

Или же независимость в совокупности (совместную): A_1, \ldots, A_n независимы в совокупности, если:

- 1. $\forall i \neq j \ A_i, A_i$ независимы;
- 2. $\forall i_1 < i_2 < i_3 s \ P(\bigcap_{j=1}^3 A_{ij}) = \prod_{j=1}^3 P(A_{ij})$
- 3. $P(\bigcap_{j=1}^n A_{\mathfrak{i}\mathfrak{j}}) = \prod_{j=1}^n P(A_{\mathfrak{i}\mathfrak{j}})$ и так далее.

Это равносильно:

$$\forall 2 \leqslant k \leqslant n \quad \forall i_1 < i_2 < \ldots < i_k \quad P(\bigcap_{j=1}^k A_{ij}) = \prod_{j=1}^k P(A_{ij})$$

Пример 3.4 (Берштейна). Рассмотрим эксперимент: будем подбрасывать тетраэдр с белой, синей, красной и разноцветной (бело-сине-красной) гранями. Введём три события:

 $B = \{$ внизу присутствует белый цвет $\}$

 $C = \{$ внизу присутствует синий цвет $\}$

 $K = \{$ внизу присутствует красный цвет $\}$

Проверим, что эти события попарно независимы. Верно ли, что $P(B \cap C) = P(B)P(C)$? Очевидно, что да. Значит, попарная независимость есть. Проверим теперь совместную независимость:

$$P(\mathrm{B}\cap\mathrm{C}\cap\mathrm{K}) = \frac{1}{4} \neq \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = P(\mathrm{B})P(\mathrm{C})P(\mathrm{K})$$

Это доказывает, что попарная независимость и совместная независимость неравносильны.

4 Независимые испытания Бернулли. Формулы Бернулли

Пусть у нас есть вероятностное пространство $(\Omega, \mathfrak{F}, P)$. Рассмотрим набор случайных событий $\mathfrak{A}=(A_1,\dots,A_n)$, причём A_1,\dots,A_n — полная системы событий. Определим испытание A_1,\dots,A_m как набор событий, являющийся полной системой событий.

Определение 4.1. Испытания A_1, \ldots, A_m будем называть *независимыми*, если для любого набора $A_{1i_1}, A_{2i_2}, \ldots, A_{mi_m}$ составляющие его события являются совместно независимыми.

Пример 4.2. Представим, что мы одновременно подбрасываем монетку и кубик. Каким будет вероятностное пространство? $\Omega = \{O1, O2, \dots, O6, P1, \dots, P6\}$ Зададим испытании $A_1 = \{A_{11}, A_{12}\}$, где $A_{11} = \{$ на монете $O\}$, $A_{12} = \{$ на монете $P\}$; $A_2 = \{A_{21}, \dots, A_{26}\}$, где $A_{2i} = \{$ на кубике цифра $i\}$.

$$P(A_{11} \cap P(A_{23}) = \frac{1}{12}, \quad P(A_{11}) = \frac{1}{2} \quad P(A_{23}) = \frac{1}{2}$$

Испытаниями Бернулли называются набор из n независимых испытаний с двумя исходами в каждом из них, условно называемыми успехом и неудачей, и с постоянной вероятностью успеха во всех испытаниях. Будем обозначать такой набор $(y_1, y_2, H_3, \dots, y_n)$, а вероятность успеха $P(y_k) = p$.

Пусть $A = \{$ в n испытаниях Бернулли успех произошёл ровно k раз $\}$. Какова вероятность A? Заметим, что $A = (\underbrace{yy \dots y}_{k}\underbrace{HH \dots H}) \cup (\underbrace{yy \dots yy}_{k-1}\underbrace{HyHH \dots H}) \cup \dots$

$$P(yy \dots yHH \dots H) = P(y_1 \cap y_2 \cap \dots \cap y_k \cap H_{k+1} \cap \dots \cap H_n) = p^k (1-p)^{n-k}$$

Ясно, что вероятность любой цепочки, содержащей k успехов и n-k неудач, равна $p^k(1-p)^{n-k}$

Получаем, что в нашем примере $P(A) = C_n^k p^k (1-p)^{n-k} = P_n(k)$ — эта формула носит имя Бернулли.

- 2. $P_n(0) = (1-p)^n$
- 3. $P_n(xoms\ бы\ oduh\ ycnex) = 1 P_n(0) = 1 (1-p)^n$

Пример 4.4. Пусть мы подбрасываем монету 10 раз. Какова вероятность того, что все десять раз выпал орёл? По формуле Бернулли:

$$P_{10}(10) = (\frac{1}{2})^{10} = \frac{1}{1024}$$

А вероятность того, что орёл выпал ровно пять раз, равна

$$P_{10}(5) = C_{10}^5(\frac{1}{2})^5(\frac{1}{2})^5 = \frac{252}{1024}$$

Возникает вопрос, каково наиболее вероятное число выпадений орла? $P_{10}(k) = C_{10}^k(12)^{10}$, и ясно, что максимум достигается при k=5

Обобщим последний вопрос примера. Пусть имеется п испытаний Бернулли. Вероятность успеха в каждом испытании равна р. Чему равно наиболее вероятное число появления успехов?

Рассмотрим неравенство:

$$P_n(k) < P_n(k+1)$$

Его можно переписать:

$$\begin{split} &C_n^k p^k (1-p)^{n-k} < C_n^{+1-1} p^{k+1} (1-p)^{n-k-1} \\ &\frac{n!}{k!(n-k)!} p^k (1-p)^{n-k} < \frac{n!}{(k+1)!(n-k-1)!} p^{k+1} (1-p)^{n-k-1} \end{split}$$

Полученное равносильно:

$$(k+1)(1-p) < p(n-k)$$

$$k < (n+1)p-1$$

Если мы теперь посмотрим на обратное неравенство $P_n(k) > P_n(k+1)$, то увидим, что оно равносильно k > (n+1)p-1.

Рассмотрим два случая:

- 1. $(n+1)p \notin \mathbb{Z}$. Обозначим за k_n^* наиболее вероятное число успехов в n испытаниях. Тогда $k_n^* = [(n+1)p]$
- 2. $(n+1)p\in\mathbb{Z}$. В этому случае $k_n^{*_1}=(n+1)p-1$ и $k_n^{*_2}=(n+1)p$ наиболее вероятные числа успехов.

Пример 4.5. Пусть $p=\frac{1}{2},\ n=10.$ Тогда $k_{10}^*=5.$ Если же n=11, то $k_{11}^{*1}=5$ и $k_{11}^{*2}=6,$ так как $C_{11}^5=C_{11}^6.$

5 Предельные теоремы в схеме испытаний Бернулли

Представим, что мы подбрасываем монету 10000 раз. Ясно, что наиболее вероятное число выпадений орла равна 5000. Чему же равна вероятность такого исхода?

 $P_{10000}(5000) = C_{10000}^{5000}(\frac{1}{2})^{10000}$. Мы хотели бы оценить это число.

Рассмотрим функции:

$$\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}, \quad \Phi(x) = \int_{-\infty}^{x} \varphi(t)dt$$

Ясно, что $\varphi(x)$ — чётная, а $\Phi(-x) = 1 - \Phi(x)$.

Пусть п — число испытаний, k — число успехов, р — вероятность успеха, q = 1 — р. Введём обозначение: $x_{n,k}=\frac{k-np}{\sqrt{np\,q}}.$

Теорема 5.1 (Локальная теорема Муавра-Лапласа). Справедливо следующее соотношение:

$$\frac{P_n(k)}{\frac{1}{\sqrt{npq}}\cdot\frac{1}{\sqrt{2\pi}}\cdot e^{-\frac{x_{n,k}^2}{2}}}\xrightarrow[n\to\infty]{} \text{ равномерно по всем } k: \quad |x_{n,k}|\leqslant Cn^{\frac{1}{6}-\epsilon} \quad \forall C>0, \; \epsilon>0$$

Таким образом, $P_n(k) \approx \frac{1}{\sqrt{npq}} \phi(x_{n,k})$.

Лемма 5.2 (Формула Стирлинга).

$$n! = n^n e^{-n} \sqrt{2\pi n} \cdot (1 + o(1)) \, (n \to \infty)$$

Лемма 5.3.

$$\ln(1+x)=x-rac{x^2}{2}+ heta x^3$$
 , , $\operatorname{\it cde}\,| heta|\leqslant 3\quad orall |x|<rac{1}{2}$

Доказательство теоремы. По формуле Вернулли:

$$P_n(k) = \frac{n!}{k!(n-k)!} p^k q^{n-k} = \frac{n^n e^{-n} \sqrt{2\pi n} (1+o(1))}{k^k e^{-k} \sqrt{2\pi k} (1+o(1)) (n-k)^{n-k} e^{-n+k} \sqrt{2\pi (n-k)} (1+o(1))}$$

Ho это верно при $b \to \infty$, $k \to \infty$, $n-k \to \infty$.

$$k = np + x_{n,k} \sqrt{npq} \xrightarrow[n \to \infty]{} \infty$$

$$n - k = nq - x_{n,k} \sqrt{npq} \xrightarrow[n \to \infty]{} \infty$$

Продолжая вычисления:

$$P_n(k) = (\frac{k}{np})^{-k - \frac{1}{2}} (\frac{n-k}{nq})^{-n+k - \frac{1}{2}} \frac{1}{\sqrt{npq}} \frac{1}{\sqrt{2\pi}} (1 + o(1))$$

Пусть $\sqrt{npq}P_n(k) = T_{n,k}$. Тогда:

$$\begin{split} T_{n,k} &= (\frac{k}{np})^{-k-\frac{1}{2}} (\frac{n-k}{nq})^{-n+k-\frac{1}{2}} \frac{1}{\sqrt{2\pi}} (1+o(1)) \\ \ln T_{n,k} &= (-k-\frac{1}{2}) \ln \frac{k}{np} + (-n+k-\frac{1}{2}) \ln \frac{n-k}{nq} = \ln \frac{1}{\sqrt{2\pi}} + o(1) \end{split}$$

С учётом

$$\frac{k}{np} = 1 + x\sqrt{\frac{q}{np}}$$
$$\frac{n-k}{nq} = 1 - x\sqrt{\frac{p}{nq}}$$

Применив лемму 5.3, получим:

$$\begin{split} \ln \mathsf{T}_{n,k} &= (-np - x\sqrt{npq} - \frac{1}{2})(x\sqrt{\frac{q}{np}} - \frac{x^2}{2}\frac{q}{np} + \theta_1\frac{x^3q\sqrt{q}}{np\sqrt{np}}) + \\ &+ (-np + x\sqrt{npq} - \frac{1}{2})(-x\sqrt{\frac{p}{nq}} - \frac{x^2p}{2nq} + \theta_2x^3\frac{p}{nq}\frac{\sqrt{p}}{\sqrt{nq}}) + \ln\frac{1}{\sqrt{2\pi}} + o(1) = \\ &= -x\sqrt{npq} + \frac{x^2}{2}q + o(1) - x^2q + x\sqrt{npq} + \frac{x^2}{2}p - x^2p + \ln\frac{1}{\sqrt{2\pi}} = \\ &= -\frac{x^2}{2} + \ln\frac{1}{\sqrt{2\pi}} + o(1) \end{split}$$

Тогда само $T_{n,k}$ равно:

$$T_{n,k} = e^{-\frac{x^2}{2}} \frac{1}{\sqrt{2\pi}} e^{o(1)}$$

Отсюда:

$$P_{n}(k) = \frac{1}{\sqrt{npq}} \frac{1}{\sqrt{2\pi}} e^{-\frac{x_{n,k}^{2}}{2}} e^{o(1)}$$

Теорема доказана.

Попробуем ответить на вопрос: как найти $P_n(\alpha < \text{число успехов} < b)$ при $\alpha < b$ и больших n? Применение локальной теоремы Муавра-Лапласа может давать слишком высокие погрешности, поэтому необходимо использовать иное решение.

Теорема 5.4 (Интегральная теорема Муавра-Лапласа). Пусть р — вероятность успеха, 0 . Тогда:

$$\sup_{\alpha < b} \left| P_n(\alpha < \textit{\textit{uucno ycnexoe}} < b) - \int\limits_{\frac{\alpha - np}{\sqrt{npq}}}^{\frac{b - np}{\sqrt{npq}}} \phi(t) \, dt \right| \xrightarrow[n \to \infty]{} 0$$

Мы докажем эту теорему позже — как частный случай более общей теоремы.

Следствие 5.5.

$$\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = 1$$

Доказательство. Примем $a=-\infty$, $b=+\infty$.

Если мы возьмём функцию $\Phi(\mathbf{x})=\frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{\mathbf{x}}e^{-\frac{\mathbf{t}^2}{2}}\,\mathrm{d}t$, то теорему можно сформулировать так:

$$P_{n}(a < ext{число успехов} < b) pprox \Phiigg(rac{b-np}{\sqrt{npq}}igg) - \Phiigg(rac{a-np}{\sqrt{npq}}igg)$$

Пример 5.6. Подсчитаем вероятность того, что при подбрасывании монетки 10000 раз «орёл» выпадет 5000 раз. Для этого применим локальную теорему Муавра-Лапласа.

$$P_{10000}(5000) \approx \frac{1}{\sqrt{10000 \cdot \frac{1}{2} \cdot \frac{1}{2}}} \phi(0) = \frac{1}{50} \cdot 0.39894$$

Если мы захотим подсчитать вероятность того, что «орёл» выпадет как минимум 4900 раз и как максимум 5100, то необходимо будет применить интегральную теорему:

$$P_{10000}(4900 <$$
число успехов $< 5100) \approx \dots$

Теорема 5.7 (Пуассона). Вудем рассматривать схему серий испытаний Бернулли. Допустим, первая серия состоит из одного испытания такого, что $p_1 = P_1(y)$. Вторая серия состоит из двух испытаний и $p_2 = P_1(y)$. n-я серия испытаний состоит из $p_1 = p_2(y)$. (Здесь $p_1(y)$) — вероятность успеха в одном испытании для каждой серии соответственно.) Пусть также $p_1 = \lambda > 0$. Тогда:

$$P_n(k) \xrightarrow[n \to \infty]{} \frac{\lambda^k}{k!} e^{-\lambda}$$

Доказательство.

$$\begin{split} P_{n}(k) &= C_{n}^{k} p_{n}^{k} (1 - p_{n})^{n - k} = \frac{n!}{k! (n - k)!} p_{n}^{k} (1 - p_{n})^{n - k} = \\ &= \frac{1}{k!} \frac{n(n - 1) \dots (n - k + 1)}{n^{k}} n^{k} p_{n}^{k} (1 - p_{n})^{n} (1 - p_{n})^{-k} = \\ &= \frac{\lambda^{k}}{k!} \underbrace{(1 - \frac{1}{n}) \dots (1 - \frac{k - 1}{n})}_{\rightarrow 1} \cdot \underbrace{(1 - \frac{\lambda}{n})^{n}}_{\rightarrow e^{-\lambda}} \cdot \underbrace{(1 - \frac{\lambda}{n})^{-k}}_{\rightarrow 1} \end{split}$$