

Apr 19, 2022

Onepot-seq

Dongju Shin¹, JungWon Choi¹, Ji Hyun Lee^{2,3}, Duhee Bang¹

¹Department of Chemistry, Yonsei University, Seoul, Korea.;

²Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, Korea;

³Department of Biomedical Science and Technology, Kyung Hee University, Seoul, Korea

Yonsei synbio

JungWon Choi

Onepot-seq protocol follows steps below:

- 1. Cells and beads preparation
- 2. Scatteration of beads and cells in well
- 3. Cell lysis and beads isolation
- 4. cDNA synthesis
- 5. cDNA Library amplification
- 6. NGS preparation

Dongju Shin, JungWon Choi, Ji Hyun Lee, Duhee Bang 2022. Onepot-seq. **protocols.io**

https://protocols.io/view/onepot-seq-b5u3q6yn

_____ protocol,

Mar 03, 2022

Apr 19, 2022

59003

Onepot-seq is single cell RNA sequencing(scRNA-seq) experiment method.

The main idea of Onepot-seq is to do single cell experiment in continuous medium without compartmentalization.

Therefore, we focus on temperature control and not disturbing the solutions due to transient mRNA localization.

Onepot-seq protocol follows steps below:

- 1. Cells and beads preparation
- 2. Scatteration of beads and cells in well
- 3. Cell lysis and beads isolation
- 4. cDNA synthesis
- 5. cDNA Library amplification
- 6. NGS preparation

From the 4th step onwards, since it is a process of dealing with beads, it basically follows the Dropseq protocol (Macosko et al., 2015) and there are some modifications.

Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA (2015). Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets.. Cell.

https://doi.org/10.1016/j.cell.2015.05.002

- Poly T beads (Chemgene, MACOSKO-2011-10(V+))
- PBSB: PBS supplemented with 0.1% BSA
- incubation buffer: 6% FicoII PM-400, 20mM EDTA, 0.2M Tris pH 7.5

Α	В			
1ml of Incubation buffer composition				
H20	460 μl			
20% Ficoll PM-400 (GE	300 μΙ			
healthcare)				
500mM EDTA (Life	40 μΙ			
Technologies)				
1M Tris pH 7.5 (Sigma)	200 μΙ			
Total	1000 μΙ			

- Lysis buffer: 1:1 mixture of incubation buffer and 20% Sarkosyl

- 6X SSC

- TE-SDS: TE buffer + 0.5% SDS

- TE-TW: TE buffer + 0.01% Tween-20

- 10mM Tris pH8.0

- DNase free Water (DW)

- Reverse Transcription mix (RT mix)

Α	В		
RT mix composition			
H20	80 µl		
Maxima 5X RT buffer	40 μΙ		
20% FicoII PM-400	40 μΙ		
10mM dNTPs	20 μΙ		
100uM TSO	5 μΙ		
RNase inhibitor	5 μΙ		
Maxima H- RTase	10 μΙ		
Total	200 μΙ		

- Exonuclease I mix (Exo I mix)

Α	В	
Exonuclease mix composition		
10X Exolbuffer	20 μΙ	
H20	170 μΙ	
Exol	10 μΙ	
Total	200 μΙ	

- AMPure XP beads

Cells and beads preparation

- 1 Suspend cells in PBS (1,000 cells/μl of concentration is recommended)
- 2 Wash Poly T beads 3 times with **□1 mL** PBSB (PBSB: PBS supplemented with 0.1% BSA)
- 3 Suspend beads in incubation buffer (20,000 beads in $\blacksquare 100 \, \mu L$ incubation buffer)

	(incubation buffer: 6% Ficoll PM-400, 20mM EDTA, 0.2M Tris pH 7.5)	
Scatte	ration of beads and cells in well (* Do experiments in 4C room)	
4	Add incubation buffer to 12 well plate	
5	Add 1,000 cells (suspended in PBS) to incubation buffer, let the sum of solution volume by $\ \ \ \ \ \ \ \ \ $	е
	5.1 If you are testing more than 1,000 cells, increase the number of wells or increase the area of the wells according to cells and beads number.	
6	Add 20,000 beads (suspended in □100 µL incubation buffer)	
7	Gently pipette ■1 mL incubation buffer to spread the beads and cells evenly	
8	Wait © 00:15:00 to sink the cells and beads down to the bottom (Depending on the cell type, it may take more time to sink)	15m
Call ly	sic and heads isolation (* Do experiments in 40 room)	
	sis and beads isolation (* Do experiments in 4C room)	
9	Gently stack up $\blacksquare 200~\mu L$ of lysis buffer on top of incubation buffer (* avoid the beads being affected by current flow)	
10	Incubate for © 00:15:00	15m
11	Quickly disrupt 1.2ml of solutions with T mL of 6X SSC	
12	Quickly transfer 2.2ml of solutions to 30 mL of 6X SSC (in 50 ml falcon tube)	

- 12.1 If multiple wells or larger area wells are used to increase the number of cells, collect beads corresponding to 5,000 cells in one falcon tube.
 (RT mix is effective up to 5,000 cells)
- 13 Pipette 4~5 times to avoid mRNA cross contamination

1m

- 14 Centrifuge beads (1000 X g / © 00:01:00)

 After centrifugation, discard supernatant
- 15 Add **□1 mL** of 6X SSC
- 16 Transfer beads to 1.5ml tube
- 17 Wash beads 3 times with 11 mL 6X SSC
- 18 Wash beads with $\sim 300 \, \mu L$ of 5X RT buffer

cDNA synthesis (* similar with Drop-seq protocols)

2h

19 Add **⊒200 µL** Reverse Transcription mix (RT mix)

Α	В
RT mix composition	
H20	80 µl
Maxima 5X RT buffer	40 μΙ
20% FicoII PM-400	40 μΙ
10mM dNTPs	20 μΙ
100uM TSO	5 μΙ
RNase inhibitor	5 μΙ
Maxima H- RTase	10 μΙ
Total	200 μΙ

20 Incubate for **© 00:30:00** at **§ Room temperature** using rotator

30m

1h 30m

- 21 Incubate for © 01:30:00 at & 42 °C using rotator
- 22 Wash the beads once with **1 mL** TE-SDS
- 23 Wash the beads twice with 11 mL TE-TW
- Wash the beads once with 11 mL of [M]10 millimolar (mM) Tris pH8.0
- 25 Add $\mathbf{200} \, \mu \mathbf{L}$ of Exonuclease I mix (Exo I mix)

Α	В	
Exonuclease mix composition		
10X Exolbuffer	20 μΙ	
H20	170 μΙ	
Exol	10 μΙ	
Total	200 μΙ	

26 Incubate for ○ 00:45:00 at ₹37 °C using rotat	26 Inc	cubate for	© 00:45:00	at	8 37 °C	using rotate
---	--------	------------	-------------------	----	---------	--------------

45m

- 27 Wash the beads once with 11 mL TE-SDS
- 28 Wash the beads twice with $\blacksquare 1$ mL TE-TW
- 29 Wash the beads twice with □1 mL DW

cDNA Library amplification (* similar with Drop-seq protocols)

2h

- Resuspend beads with DW (2,000-2,500 beads in 10 μL of DW)
- 31 Aliquot **10 μL** beads containing solutions to 8-strip tube
- 32 Add polymerase and PCR primer to each tube 1 reaction of PCR mix composition follows below:

Α	В		
cDNA amplification PCR composition			
DW	14.6 μΙ		
beads in DW	10 μΙ		
SMART PCR Primer (100uM)	0.4 μΙ		
2X KAPA	25 μΙ		
Total	50 μΙ		

(50µL PCR reaction for 100~125 cells / 2,000~2,500 beads)

33 Run PCR following the protocol below:

Α	В
	95C 3min
Denature	98C 20 sec
Annealing	65C 45 sec
Elongation	72C 3 min
	4 cycles
Denature	98C 20 sec
Annealing	67C 20 sec
Elongation	72C 3 min
	9 cycles
Final extension	72C 5 min
Hold	4C forever

- 34 Collect PCR cDNA library solutions to 1.5ml tube
- 35 0.6X Ampure bead purification elute cDNA library into **□20 µL** DW

NGS library preparation

36 For NGS library prep, follow the Nextera XT DNA Library Preparation Kit (#FC-131-1024) manufacturer's instructions.