リサーチコネクト Re:Dive

-キャルちゃんの論文チェック、その裏側-

キャルちゃん 06/01/2023

自己紹介

- ・ キャルちゃん(とtwitterでは名乗らせていただいております)
- (量子)アニーリング,組合せ最適化,量子回路@Jij Inc.
- 大学院生時代
 - 磁気流体計算で銀河磁場の研究
 - スパコンで走らせるソフトウェアをC言語で開発
 - アウトリーチ活動
- 結婚を機に ユタ州に移住 (2020年8月~)
- : https://twitter.com/tweetnakasho
- website: https://github-nakasho.github.io

Outline

- キャルちゃんの論文チェック
- ArXivとは
- ・論文チェックの仕方
- 例を実演
- 論文を読んだ後は...
- 結言

キャルちゃんの論文チェック

キャルちゃんの論文チェックとは?

- astrophチェック: 宇宙物理系のarXiv新着論文チェック 毎日夜7時(日本時間では昼10時)ごろTwitter TLに流す
- ・ quantphチェック: 量子情報系のarXiv新着論文チェック 毎日昼過ぎ3時(日本時間では朝6時)ごろTwitter TLに流す

子育てに忙殺され現在は Astrophチェックはできてないわ

キャルちゃんの論文チェックのメリット

- どんな研究が世界で行われているかのキャッチアップ
- 世の中より先に知識を仕入れることができる
- Twitterでみんなから注目される (たまにプチバズする

キャルちゃんの論文チェックのデメリット

- 自分の時間が取られる(他にやりたいことがあるのに...
- ・ 正しく要約できているか不安になる(英語力とその分野の理解
- 純粋に日々続けるのが辛かったりする

ArXiv & la

チェックしているwebsite

アーカイブ: https://arxiv.org/

Quantum Physics (quant-ph new, recent, search)

- 世界中の人が査読済み論文や研究ノート・講義ノートを投稿している
- 査読というシステムがないので、信頼性は査読雑誌よりは低い?

ArXivの分類

- Physics

 (Astrophysics, Condensed Matter, General Relativity and Quantum
 Cosmology, High Energy Physics, Mathematical Physics, Nonlinear Science,
 Nuclear Physics, Physics, Quantum Physics)
- Mathematics
- Computer Science
- Quantitative Biology
- Statistics
- Electrical Engineering and System Science
- Economics

チェックしている場所

• アーカイブの"new"の部分

Physics

- Astrophysics (astro-ph new, recent, search)
- includes: Astrophysics of Galaxies: Cosmology and Nongalactic Astrophysics; Earth and Planetary Astrop
 Condensed Matter (cond-mat new recent, search)
- includes: Disordered Systems and Neural Networks; Materials Science; Mesoscale and Nanoscale Physics Superconductivity
- General Relativity and Quantum Cosmology (gr-qc new recent, search)
- High Energy Physics Experiment (hep-ex new recent, search)
- High Energy Physics Lattice (hep-lat new, recent_search)
- High Energy Physics Phenomenology (hep-ph new recent, search)
- High Energy Physics Theory (hep-th new recent, search)
- Mathematical Physics (math-ph new, recent, search)
- Nonlinear Sciences (nlin new recent, search)
- includes: Adaptation and Self-Organizing Systems; Cellular Automata and Lattice Gases; Chaotic Dynam
- Nuclear Experiment (nucl-ex new recent, search)
- Nuclear Theory (nucl-th new recent, search)
- Physics (physics new recent, search)
- includes: Accelerator Physics; Applied Physics; Atmospheric and Oceanic Physics; Atomic and Molecular Probability; Fluid Dynamics; General Physics; Geophysics; History and Philosophy of Physics; Instrumental
- · Quantum Physics (quant-ph new, recent, search)

Astrophysics

New submissions

Submissions received from Tue 15 Mar 22 to Wed 16 Mar 22, announced Thu, 17 Mar 22

- New submissions
- Cross-lists
- Replacements

[total of 101 entries: 1-101] [showing up to 2000 entries per page: fewer | more]

New submissions for Thu, 17 Mar 22

[1] arXiv:2203.08151 [pdf, other]

Magnetic Field Reversal around an Active Fast Radio Burst

S. Dai, Y. Feng, Y. P. Yang, Y. K. Zhang, D. Li, C. H. Niu, P. Wang, M. Y. Xue, B. Zhang, S. Burke-Cruces, G. Hobbs, C. C. Miao, J. R. Niu, M. D. Filipovic, S. Q. Zhu

Subjects: High Energy Astrophysical Phenomena (astro-ph.HE); Astrophysics of Galaxies (astro-ph.GA)

The environment of actively repeating fast radio bursts (FRBs) has been shown to be complex and varying second FRB source associated with a compact, persistent radio source (PRS). The main tracer of the magi and electron density, which does not allow a direct probe of the B-field configuration. Here we report dir changed from ~ 10000 rad m⁻² to ~ -16000 rad m⁻² between June 2021 and January 2022. Such extra B-field configuration in or around the FRB could be due to the vicinity of massive black holes, or a magn

[2] arXiv:2203.08152 [pdf, other]

CMB lensing power spectrum with next generation surveys

Louis Legrand, Julien Carron

Comments: Contribution to the 2022 Cosmology session of the 56th Rencontres de Moriond, 2 pages, 2 figures Subjects: Cosmology and Nongalactic Astrophysics (astro-ph.CO)

We introduce a new estimator of the CMB lensing power spectrum, together with its likelihood, based on standard quadratic estimator. Most importantly, it is unbiased towards the assumptions done on the noicompared to the quadratic estimator, while keeping numerical cost under control and being robust to er

[3] arXiv:2203.08153 [pdf, other]

NGC 1605 is not a binary cluster

Friedrich Anders, Alfred Castro-Ginard, Juan Casado, Carme Jordi, Lola Balaquer-Núñez

チェックしている場所

- New submissions: そのトピックスに沿った投稿論文
- Cross-lists: そのトピックスがメインではないが、サブとして入っている投稿論文 (例: メインはgr-qcだが、天体物理も絡むのでastro-phも入っているなど)
- Replacements: 以前に投稿されたものの再投稿

Astrophysics

New submissions

Submissions received from Tue 15 Mar 22 to Wed 16 Mar 22, announced Thu, 17 Mar 22

- New submissions
- Cross-lists
- Replacements

ArXivに掲載される本数

- Astroph: 平均50-70本 (多い日で100本越え)
 - -> その中から個人的に面白いと思ったものを5-8本くらい抽出
- Quantph: 平均20-40本 (多い日で60本くらい)
 - -> 同じく10-20本くらい抽出

論文チェックの仕方

1. Titleを読む

New submissions for Thu, 17 Mar 22

[1] arXiv:2203.08151 [pdf, other]

Magnetic Field Reversal around an Active Fast Radio Burst

S. Dai, Y. Feng, Y. P. Yang, Y. K. Zhang, D. Li, C. H. Niu, P. Wang, M. Y. Xue, B. Zhang, S. Burke-Spolaor, C. J. Law, R. S. Lynch, L. Connor, R. Anna-Thomas, L. Zhang, R. Duan, J. M. Yao, C. W. Tsai, W. W. Zhu, M. Cruces, G. Hobbs, C. C. Miao, J. R. Niu, M. D. Filipovic, S. Q. Zhu

Comments: Submitted

Subjects: High Energy Astrophysical Phenomena (astro-ph.HE); Astrophysics of Galaxies (astro-ph.GA)

The environment of actively repeating fast radio bursts (FRBs) has been shown to be complex and varying. The recently localized FRB 20190520B is extremely active, has the largest confirmed host dispersion measure, and is only the second FRB source associated with a compact, persistent radio source (PRS). The main tracer of the magneto-ionic environments is the rotation measure (RM), a path-integral of the line-of-sight component of magnetic field strength (B) and electron density, which does not allow a direct probe of the B-field configuration. Here we report direct evidence for a B-field reversal based on the observed sign change and extreme variation of FRB 20190520B's RM, which changed from ~ 10000 rad m⁻² to ~ -16000 rad m⁻² between June 2021 and January 2022. Such extreme RM reversal has never been observed before in any FRB nor in any astronomical object. The implied short-term change of the B-field configuration in or around the FRB could be due to the vicinity of massive black holes, or a magnetized companion star in binary systems, or a young supernova remnant along the line of sight.

[2] arXiv:2203.08152 [pdf, other]

CMB lensing power spectrum with next generation surveys

Louis Legrand, Julien Carron

Comments: Contribution to the 2022 Cosmology session of the 56th Rencontres de Moriond, 2 pages, 2 figures

Subjects: Cosmology and Nongalactic Astrophysics (astro-ph.CO)

We introduce a new estimator of the CMB lensing power spectrum, together with its likelihood, based on iterative lensing reconstruction. Despite the increased complexity of the lensing maps, this estimator shares similarities with the standard quadratic estimator. Most importantly, it is unbiased towards the assumptions done on the noise and cosmology for the lensing reconstruction. This new spectrum estimator can double the constraints on the lensing amplitude compared to the quadratic estimator, while keeping numerical cost under control and being robust to errors.

[3] arXiv:2203.08153 [pdf, other]

NGC 1605 is not a binary cluster

Friedrich Anders, Alfred Castro-Ginard, Juan Casado, Carme Jordi, Lola Balaguer-Núñez

Comments: Accepted by RNAAS. 2 pages, 1 figure. Online material here: this https URL

Subjects: Astrophysics of Galaxies (astro-ph.GA); Solar and Stellar Astrophysics (astro-ph.SR)

The open star cluster NGC 1605 has recently been reported to in fact consist of two clusters (one intermediate-aged and one old) that merged via a flyby capture. Here we show that Gaia data do not support this scenario. We also report the serendipitous discovery of a new open cluster, Can Batll\'o 1, with a similar age and distance.

[4] arXiv:2203.08155 [pdf, other]

Weak Mass Loss from the Red Supergiant Progenitor of the Type II SN 2021yja

Griffin Hosseinzadeh, Charles D. Kilpatrick, Yize Dong, David J. Sand, Jennifer E. Andrews, K. Azalee Bostroem, Daryl Janzen, Jacob E. Jencson, Michael Lundquist, Nicolás Meza, Jeniveve Pearson, Stefano Valenti, Samuel Wyatt, Jamison Burke, Daichi Hiramatsu, D. Andrew Howell, Curtis McCully, Megan Newsome, Estefania Padilla Gonzalez, Craig Pellegrino, Giacomo Terreran, Katie Auchettl, Kyle W. Davis, Ryan J. Foley, Hao-

2. Titleを読んで「面白そう」「自分に必要」と感じたら、abstractを読む (Titleだけで判断できなければabstractで判断しても良い)

New submissions for Thu, 17 Mar 22

[1] arXiv:2203.08151 [pdf, other]

Magnetic Field Reversal around an Active Fast Radio Burst

S. Dai, Y. Feng, Y. P. Yang, Y. K. Zhang, D. Li, C. H. Niu, P. Wang, M. Y. Xue, B. Zhang, S. Burke-Spolaor, C. J. Law, R. S. Lynch, L. Connor, R. Anna-Thomas, L. Zhang, R. Duan, J. M. Yao, C. W. Tsai, W. W. Zhu, M. Cruces, G. Hobbs, C. C. Miao, J. R. Niu, M. D. Filipovic, S. Q. Zhu

Comments: Submitted

Subjects: High Energy Astrophysical Phenomena (astro-ph.HE); Astrophysics of Galaxies (astro-ph.GA)

The environment of actively repeating fast radio bursts (FRBs) has been shown to be complex and varying. The recently localized FRB 20190520B is extremely active, has the largest confirmed host dispersion measure, and is only the second FRB source associated with a compact, persistent radio source (PRS). The main tracer of the magneto-ionic environments is the rotation measure (RM), a path-integral of the line-of-sight component of magnetic field strength (B) and electron density, which does not allow a direct probe of the B-field configuration. Here we report direct evidence for a B-field reversal based on the observed sign change and extreme variation of FRB 20190520B's RM, which changed from ~ 10000 rad m⁻² to ~ -16000 rad m⁻² between June 2021 and January 2022. Such extreme RM reversal has never been observed before in any FRB nor in any astronomical object. The implied short-term change of the B-field configuration in or around the FRB could be due to the vicinity of massive black holes, or a magnetized companion star in binary systems, or a young supernova remnant along the line of sight.

[2] arXiv:2203.08152 [pdf, other]

CMB lensing power spectrum with next generation surveys

Louis Legrand, Julien Carron

Comments: Contribution to the 2022 Cosmology session of the 56th Rencontres de Moriond, 2 pages, 2 figures Subjects: Cosmology and Nongalactic Astrophysics (astro-ph.CO)

We introduce a new estimator of the CMB lensing power spectrum, together with its likelihood, based on iterative lensing reconstruction. Despite the increased complexity of the lensing maps, this estimator shares similarities with the standard quadratic estimator. Most importantly, it is unbiased towards the assumptions done on the noise and cosmology for the lensing reconstruction. This new spectrum estimator can double the constraints on the lensing amplitude compared to the quadratic estimator, while keeping numerical cost under control and being robust to errors.

[3] arXiv:2203.08153 [pdf, other]

NGC 1605 is not a binary cluster

Friedrich Anders, Alfred Castro-Ginard, Juan Casado, Carme Jordi, Lola Balaguer-Núñez

Comments: Accepted by RNAAS. 2 pages, 1 figure. Online material here: this https URL

Subjects: Astrophysics of Galaxies (astro-ph.GA); Solar and Stellar Astrophysics (astro-ph.SR)

The open star cluster NGC 1605 has recently been reported to in fact consist of two clusters (one intermediate-aged and one old) that merged via a flyby capture. Here we show that Gaia data do not support this scenario. We also report the serendipitous discovery of a new open cluster, Can Batll\'o 1, with a similar age and distance.

3. 躊躇なくabstractをDeepLにぶち込む

日本語と英語を照らし合わせながら読む)

(論文のabstractは1000-1500字程度、DeepLは無料で5000字まで翻訳可能)

(DeepLの画面で見やすいように改行を入れると良い)

- 4. (Twitterなどに要約を掲載する場合)130字程度でその論文の主要な結果を綴る
- 5. 重要(そう)な図もスクリーンショットに撮り、4つまでを掲載する

* そもそもどれを読んで良いかわからなければ...

論文が掲載された雑誌・著者などで判断しても良い(非推奨…だが良く使う手)

Nature Astronomy: 14.4

Astrophysical Journal Letters (ApJL): 8.2

Astrophysical Journal (ApJ): 5.9

Astronomy & Astrophysics (A&A): 5.8

Monthly Notices of the Royal Astronomical Society (MNRAS): 5.3

Physical Review D: 5.3

Publications of the Astronomical Society of Japan (PASJ): 5.0

[8] arXiv:2203.08162 [pdf, other]

Using the Hills Mechanism to Generate Repeating Partial Tidal Di

M. Cufari. Eric R. Coughlin. C. J. Nixon

Comments: 6 pages, 1 figure, and 1 table. Resubmitted to ApJL following first referee report

Subjects: High Energy Astrophysical Phenomena (astro-ph.HE)

Periodic nuclear transients have been detected with increasing frequency, with one susource are generated by the repeated partial disruption of a star, but how the star was integrations to demonstrate that the Hills mechanism, where a binary system is destroid radius of one of the stars within the binary. Thus, Hills capture can produce stars on the ASASSN-14ko, but for periodic nuclear transients in general. We also show that the rain indicating that in this system there must be additional effects that contribute to the decobservable period decay rates in future events.

例を実演

The environment of actively repeating fast radio bursts (FRBs) has been shown to be complex and varying.

The recently localized FRB 20190520B is extremely active, has the largest confirmed host dispersion measure, and is only the second FRB source associated with a compact, persistent radio source (PRS).

The main tracer of the magneto-ionic environments is the rotation measure (RM), a path-integral of the line-of-sight component of magnetic field strength (B) and electron density, which does not allow a direct probe of the B-field configuration.

Here we report direct evidence for a B-field reversal based on the observed sign change and extreme variation of FRB 20190520B's RM, which changed from ~10000 rad

m-2 to ~ -16000 rad m-2 between June 2021 and January 2022.

Such extreme RM reversal has never been observed before in any FRB nor in any astronomical object.

The implied short-term change of the B-field configuration in or around the FRB could be due to the vicinity of massive black holes, or a magnetized companion star in binary systems, or a young supernova remnant along the line of sight.

The environment of actively repeating fast radio bursts (FRBs) has been shown to be complex and varying.

The recently localized FRB 20190520B is extremely active, has the largest confirmed host be second ERP source associated with a compact, persistent dispersi 一番言いたいのはココ radio sc easure (RM), a path-We report/find/show/propose/provide/demonstrate ... などは特に重要 and electron density,

which does not allow a direct probe of the B-field configuration.

integral

Here we report direct evidence for a B-field reversal based on the observed sign change and extreme variation of FRB 20190520B's RM, which changed from ~10000 rad m-2 to ~ -16000 rad m-2 between June 2021 and January 2022.

Such extreme RM reversal has never been observed before in any FRB nor in any astronomical object.

The implied short-term change of the B-field configuration in or around the FRB could be due to the vicinity of massive black holes, or a magnetized companion star in binary systems, or a young supernova remnant along the line of sight.

The environment of actively repeating fast radio bursts (FRBs) has been shown to be complex and varying.

The recently localized FRB 20190520B is extremely active, has the largest confirmed host dispersion measure, and is only the second FRB source associated with a compact, persistent radio source (PRS).

The main tracer of the magneto-ionic environments is the rotation measure (RM), a path-integral of the line-of-sight component of magnetic field strength (B) and electron density, which does not allow a direct probe of the B-field configuration.

Here we report direct evidence for a B-field reversal based on the observed sign change and extreme variation of FRB 20190520B's RM, which changed from ~ 10000 rad

m-2 to ~ -16000 rad m-2 between June 2 Such extreme RM reversal has never been cobject.

The implied short-term change of the B-fie the vicinity of massive black holes, or a mag

ここまでは研究の背景 これまででわかっていること、 これまでの研究の問題や未解決部分など

ny astronomical

RB could be due to

the vicinity of massive black holes, or a magnetized companion star in binary systems, or a young supernova remnant along the line of sight.

The environment of actively repeating fast radio bursts (FRBs) has been shown to be complex and varying.

The recently localized FRB 20190520B is extremely active, has the largest confirmed host dispersion measure, and is only the second FRB source associated with a compact, persistent radio source (PRS).

The main tracer of the magneto-ionic environments is the rotation measure (RM), a path-integral of the line-of-sight component of magnetic field strength (B) and electron density, which does not allow a direct probe of the B-field configuration.

Here we report direct evidence for a B-field reversal based on the observed sign change and extreme variation of FRB 20190520B's RM, 今回の発見から示唆されること rad m-2 to ~-16000 rad m-2 between June 20 将来的な発展性など

Such extreme RM reversal has never been deserved before in any rkb nor in any astronomical object.

The implied short-term change of the B-field configuration in or around the FRB could be due to the vicinity of massive black holes, or a magnetized companion star in binary systems, or a young supernova remnant along the line of sight.

The environment of actively repeating fast radio bursts (FRRs) has been shown to be complex

and varying.

The recently localized FRE dispersion measure, and radio source (PRS).

The main tracer of the ma integral of the line-of-sig which does not allow a dil Here we report direct evid extreme variation of FRB 2 m-2 to ~ -16000 rad m-1Such extreme RM reversal object.

The implied short-term cl the vicinity of massive bla young supernova remnant arong the mile

#キャルちゃんのastrophチェック

FRB 20190520BにおいてRM(Rotation Measure)を観測。 2021年6月から2022年1月の間に10000rad/m^2か ら-16000rad/m^2に大きく変化していることを発見。 FRB周辺での短期的な磁場の方向変化は大質量BHや連星 系伴星などが視線方向にあるため?

https://arxiv.org/abs/2203.08151

Magnetic Field Reversal around an Active Fast Ra... The environment of actively repeating fast radio bursts (FRBs) has been shown to be complex an...

est confirmed host a compact, persistent

Isure (RM), a pathnd electron density,

rved sign change and rad

or in any astronomical

d the FRB could be due to pinary systems, or a

論文を読んだ後は...

GitHubのリポジトリにissue登録

• Issueタイトルに読んだ論文のタイトルをそのままコピペ、内容部分に要約などをコピペするだけ。

GitHubのリポジトリにissue登録

ラベルをつけて「どのような論文か」を大別することができる

宇宙物理

量子情報

結言

- ・論文チェックは、その分野の良い勉強になる
- 英語が読めない -> 和訳や理解を助けるツールをバンバン使おう
- ・まずは一つ、興味があるものから読んでみると良いかも
- GitHubなどでどんな論文を読んだか管理すると、あとで見返すのがラク

躊躇なくご質問ください!

より細かいことや みんなの前で聞きづらいことなら お気軽にDMよ!