PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS - 1º PERÍODO -

FOLHA 07 - PROF. ALMEIDA

Determinar os limites:

1.
$$\lim_{x \to 2} (x^4 - x^2 + 1)$$
 13

2.
$$\lim_{x \to 1} (x^3 + x^2 + 5x + 1)$$
 8

3.
$$\lim_{x \to -2} \left(\frac{2x-1}{x+4} \right) - \frac{5}{2}$$

4.
$$\lim_{x \to 1} \frac{x^2 - 5x + 7}{x^2 + 3x + 1}$$
 $\frac{3}{5}$

$$5. \lim_{x \to 1} \frac{1}{x} \qquad -1$$

6.
$$\lim_{x \to 2} \frac{3x^2 - 7x + 2}{x^2 + 3}$$

7.
$$\lim_{x \to +\infty} (5x^2 - 2x + 3) + \infty$$

8.
$$\lim_{x \to +\infty} \left(-3x^3 + 2x^2 + x - 1 \right) - \infty$$

9.
$$\lim_{x \to -\infty} (x^4 + 2x^2 + 3) + \infty$$

10.
$$\lim_{x \to -\infty} (2x^3 - 5x^2 + x - 3) -\infty$$

11.
$$\lim_{x \to 3} \sqrt{x+1}$$
 2

12.
$$\lim_{x \to 3} \sqrt{\frac{3x}{x+6}}$$

13.
$$\lim_{x\to 1} \sqrt{x^2 + 2x + 1}$$

$$14. \lim_{x\to 2} \frac{x}{\sqrt{x+2}}$$
 1

15.
$$\lim_{x\to 2} \sqrt[3]{x^4 - 8}$$
 2

16.
$$\lim_{x \to \infty} \frac{3x^3 - 5x^2 + 2x + 1}{9x^3 - 5x^2 + x - 3} = \frac{1}{3}$$

17.
$$\lim_{x \to 4} \frac{x^2 - 16}{x^2 - 5x + 4}$$
 $\frac{8}{3}$

18.
$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - 3x + 2}$$
 -3

19.
$$\lim_{x \to -1} \frac{x^3 + 1}{x + 1}$$

20.
$$\lim_{x \to -\frac{1}{3}} \frac{3x+1}{9x^2-1}$$
 $-\frac{1}{2}$

21.
$$\lim_{x\to 2} \frac{x^2 - 3x + 2}{x^2 + x - 6}$$
 $\frac{1}{5}$

$$22. \lim_{x \to 1} \frac{x^3 - 3x + 2}{x^3 - 6x + 5}$$

23.
$$\lim_{x \to -1} \frac{x^3 + 4x^2 + 5x + 2}{x^2 - x - 2}$$
 0

24.
$$\lim_{x\to 5} \frac{x^2 - 3x - 10}{x^2 - 10x + 25}$$
 ∞

25.
$$\lim_{x \to 3} \frac{x^2 - 2x - 3}{x^2 - 6x + 9}$$
 ∞

26.
$$\lim_{x \to 1} \frac{x^3 - x^2 + 2x - 2}{x^2 - 1} = \frac{3}{2}$$

27.
$$\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x}$$
 1

28.
$$\lim_{x\to 0} \frac{(x+2)^3 - 8}{x}$$
 12

29.
$$\lim_{x \to 1} \frac{\sqrt{x-1}}{x^2 - 1}$$
 ∞

30.
$$\lim_{x \to 1} \frac{x+1-2\sqrt{x}}{(x-1)^2}$$
 $\frac{1}{4}$

31.
$$\lim_{x \to 4} \frac{x-4}{\sqrt{x^2-16}}$$
 0

32.
$$\lim_{x \to 0} \frac{x}{\sqrt{a + x} - \sqrt{a}}$$
 2 \sqrt{a}

33.
$$\lim_{x \to 0} \frac{x}{2 - \sqrt{4 - x}}$$
 4

$$34. \lim_{x \to 1} \frac{2 - \sqrt{3 + x}}{x - 1} \qquad -\frac{1}{4}$$

35.
$$\lim_{x \to \infty} \frac{3x^2 - x + 5}{2x^2 + 4x + 1}$$
 $\frac{3}{2}$

36.
$$\lim_{x\to\infty} \frac{2x^3 - 5x^2 + 3}{x^2 + 4x - 1} \quad \infty$$

37.
$$\lim_{x \to \infty} \frac{5x^3 + 2x + 1}{x + 7}$$
 ∞

38.
$$\lim_{x \to \infty} \frac{x^4 - 3x^2 + x - 2}{-x^2 + 5x + 1}$$
 -\infty

39.
$$\lim_{x \to \infty} \frac{2x^3 + 5x^2 - 8}{4x^5 - 8x + 7} = 0$$

$$40. \lim_{x \to 2} \frac{x+3+\frac{x+1}{x-2}}{1+\frac{x^2}{x-2}} \qquad \frac{3}{4}$$

41.
$$\lim_{x \to 3} \frac{x^2 + \frac{x+1}{x-3}}{2x+1+\frac{x^2}{x-3}}$$
 $\frac{4}{9}$

42.
$$\lim_{x \to 0} \frac{\frac{1}{x^2} + \frac{5}{x} - 3}{\frac{4}{x^2} - \frac{2}{x} + 8}$$
 $\frac{1}{4}$

43.
$$\lim_{x \to \infty} \left(\sqrt{x^2 + x + 1} - x \right) \quad \frac{1}{2}$$

44.
$$\lim_{x \to \infty} \left[\sqrt{x^2 - 4x + 7} - (x - 1) \right] - 1$$

$$45. \lim_{x \to \infty} \left(x - \sqrt{x^2 + 1} \right)$$

$$46. \lim_{n \to \infty} \left(\sqrt{n^2 - n} - n \right) \qquad -\frac{1}{2}$$

47.
$$\lim_{n \to \infty} n \left(\sqrt{n^2 + 1} - n \right) \qquad \frac{1}{2}$$

48.
$$\lim_{x \to \infty} \left(\sqrt{x^2 - 2x - 1} - \sqrt{x^2 - 7x + 3} \right)$$
 $\frac{5}{2}$

49.
$$\lim_{x \to \infty} \left(\sqrt{x+5} - \sqrt{x+2} \right) 0$$

$$\int 50. \lim_{x \to \infty} \left(\sqrt{x} - \sqrt[3]{x} \right) \quad \infty$$