

**MONROE**

**simplified  
methods  
for  
extracting  
roots**



**MONROE** 

MONROE INTERNATIONAL, INC. • A DIVISION OF LITTON INDUSTRIES • ORANGE, NEW JERSEY • SALES AND SERVICE THROUGHOUT THE WORLD

COPYRIGHT 1959©  
ALL RIGHTS RESERVED

## TABLE OF CONTENTS

|                                                |       |
|------------------------------------------------|-------|
| Introduction .....                             | 2     |
| Monroe Method for Extracting Square Roots..... | 3     |
| Instructions .....                             | 3     |
| Machine Method .....                           | 3     |
| Pointing off Decimals in Square Roots.....     | 3     |
| Examples — Square Root Extraction.....         | 4-5   |
| Square Root Table.....                         | 6-7   |
| Extraction of Cube Roots—Introduction.....     | 8     |
| Monroe Method for Cube Root Extraction .....   | 9     |
| Examples — Cube Root Extraction.....           | 10-11 |
| Cube Root Table.....                           | 12    |
| Extension of Accuracy with Example.....        | 13    |
| Extraction of Higher Roots.....                | 14    |
| Example — Higher Root Extraction .....         | 16    |
| Table of Approximations for Higher Roots.....  | 17    |



## introduction

This book has been prepared by Monroe to simplify the extraction of roots. Credit for its completion is given to Norman Wyman Storer, Department of Physics and Astronomy, The University of Kansas for his Table of Factors for the Extraction of Square Roots. George E. Reynolds, Electromagnetic Radiation Laboratory, Air Force Cambridge Research Center developed the Five-Place Cube Root Table reproduced herein.

## SIMPLIFIED MONROE TABLE OF DIVIDING FACTORS FOR SQUARE ROOTS

The simplified Monroe table of dividing factors for square roots gives accuracy to five significant figures, with an error less than 5 in the sixth figure.

### instructions

To find  $\sqrt{N}$ , first determine N' as follows:

1. For N between 1 and 100 inclusive, take  $N' = N$ .
2. For N less than 1 or greater than 100, move the decimal point to the right or left in steps of two digits to arrive at N' between 1 and 100.

Find the two consecutive values in the n' column between which N' lies, and select the values of A and D between the two selected n' values.

### Monroe method

1. Set N' on the extreme left of the keyboard and enter as a dividend.
2. Set A on the extreme left of the keyboard and add.
3. Set D on the extreme left of the keyboard and divide.

The result in the upper dials of the Monroe after the decimal point is inserted is the square root with an error less than 5 in the sixth digit.

### pointing off decimals in roots

If N is greater than 1, start at the decimal point and working to the left, set off N into groups of two digits each. The number of such two digit groups to the left of the decimal point will be the number of digits to the left of the decimal point in the root. If the extreme left-hand group consists of only one figure, it should be counted as though a complete group.

If N is less than 1, start at the decimal point and working to the right, set off the zeros preceding the first significant figure into groups of two zeros each. The number of such groups will be the number of zeros that should follow the decimal point and precede the first significant figure in the root. If the last right-hand group consists of only one zero, it should NOT be counted as a group.

### EXAMPLE I

Evaluate  $\sqrt{6942.3214}$

Determine  $N' = 69.423214$ ,  $A = 69889$  and  $D = 1672$ .

1. Set 69423214 on the extreme left of the keyboard and enter in the lower dials as a dividend.
2. Set 69889 on the extreme left of the keyboard and add.
3. Set 1672 on the extreme left of the keyboard and divide.

Read in the upper dials 833207 and round off to 83321. Proper insertion of the decimal point gives the root, 83.321. The decimal point in the root is found by setting off the whole number 6942 into groups of two digits each, 69'42. Since there are two groups, there are according to the rule two whole number digits in the root, thus 83.321.

### EXAMPLE II

Evaluate  $\sqrt{0.000003912}$

Determine  $N' = 3.912$ ,  $A = 3863$  and  $D = 3931$ .

1. Set 3912 on the extreme left of the keyboard and enter in the lower dials as a dividend.
2. Set 3863 on the extreme left of the keyboard and add.
3. Set 3931 on the extreme left of the keyboard and divide.

Read in the upper dials 197786 and round off to 19779. Proper insertion of the decimal point gives the root 0.0019779. The decimal point is found by counting the number of full pairs of zeros to the immediate right of the decimal point in 0.000003912. Since there are two such pairs of zeros (disregard the fifth zero) two zeros should follow the decimal point and precede the first significant figure of the root, thus 0.0019779.

### EXAMPLE III

Evaluate  $\sqrt{730.6789}$

Root required to ten significant figures.

A Monroe model with ten columns on the keyboard is required to secure the root to ten significant figures.

Following the same procedure as in Examples 1 and 2, find  $\sqrt{730.6789} = 27.0310$ , a result with an error less than 5 in the sixth place. Up to this point a Monroe with an eight column keyboard can be used. To secure the root to ten significant figures and using a ten column model, proceed from this point as follows:

1. Divide 7306789 by 27031 to obtain a ten place answer 2703114572, disregarding decimal points.
2. Average 2703114572 with our first approximation, 270310, i.e., add 2703114572 and 270310 with the left-hand digits aligned, to obtain 5406214572, and divide this figure by 2 to obtain the ten place result 2703107286. When the decimal is pointed off, we obtain 27.03107286, the result with a maximum possible error of 1 in the tenth place.

Following this method an eight-column Monroe can be used to find the root to eight places.

# S Q U A R E   R O O T   T A B L E

| n'    | A    | D    | n'    | A     | D    |
|-------|------|------|-------|-------|------|
| 1.000 | 102  | 202  | 6.29  | 6383  | 5053 |
| 1.045 | 1067 | 2066 | 6.49  | 6579  | 513  |
| 1.09  | 1114 | 2111 | 6.69  | 6791  | 5212 |
| 1.14  | 1162 | 2156 | 6.905 | 7017  | 5298 |
| 1.19  | 1211 | 2201 | 7.132 | 7244  | 5383 |
| 1.24  | 126  | 2245 | 7.35  | 745   | 5459 |
| 1.28  | 1303 | 2283 | 7.56  | 7681  | 5543 |
| 1.327 | 1356 | 2329 | 7.80  | 7924  | 563  |
| 1.385 | 1416 | 238  | 8.05  | 8168  | 5716 |
| 1.45  | 1481 | 2434 | 8.285 | 8404  | 5798 |
| 1.515 | 1545 | 2486 | 8.53  | 8661  | 5886 |
| 1.575 | 1609 | 2537 | 8.795 | 8922  | 5974 |
| 1.645 | 1677 | 259  | 9.00  | 9102  | 6034 |
| 1.705 | 1741 | 2639 | 9.24  | 9345  | 6114 |
| 1.777 | 1817 | 2696 | 9.485 | 9619  | 6203 |
| 1.855 | 1896 | 2754 | 9.77  | 9894  | 6291 |
| 1.94  | 1974 | 281  | 10.0  | 1009  | 6353 |
| 2.01  | 2042 | 2858 | 10.2  | 1032  | 6425 |
| 2.08  | 2114 | 2908 | 10.45 | 1053  | 649  |
| 2.16  | 2177 | 2951 | 10.6  | 1066  | 653  |
| 2.222 | 2259 | 3006 | 10.8  | 1086  | 6591 |
| 2.29  | 2327 | 3051 | 11.0  | 11122 | 667  |
| 2.38  | 2421 | 3112 | 11.2  | 1136  | 6741 |
| 2.47  | 252  | 3175 | 11.5  | 1157  | 6803 |
| 2.57  | 2621 | 3238 | 11.7  | 1183  | 6879 |
| 2.676 | 2729 | 3304 | 11.9  | 1202  | 6934 |
| 2.78  | 2829 | 3364 | 12.1  | 1218  | 698  |
| 2.885 | 2936 | 3427 | 12.3  | 1245  | 7057 |
| 2.99  | 3038 | 3486 | 12.5  | 1262  | 7105 |
| 3.09  | 3154 | 3552 | 12.75 | 1287  | 7175 |
| 3.22  | 3285 | 3625 | 12.9  | 1305  | 7225 |
| 3.352 | 3404 | 369  | 13.2  | 13286 | 729  |
| 3.457 | 3523 | 3754 | 13.4  | 1352  | 7354 |
| 3.59  | 3648 | 382  | 13.7  | 1379  | 7427 |
| 3.71  | 3777 | 3887 | 13.9  | 1401  | 7486 |
| 3.80  | 3863 | 3931 | 14.1  | 1419  | 7534 |
| 3.94  | 3996 | 3998 | 14.3  | 1436  | 7579 |
| 4.05  | 4056 | 4028 | 14.5  | 146   | 7642 |
| 4.13  | 4188 | 4093 | 14.7  | 1488  | 7715 |
| 4.26  | 432  | 4157 | 15.08 | 1528  | 7818 |
| 4.40  | 4471 | 4229 | 15.45 | 1563  | 7907 |
| 4.54  | 4618 | 4298 | 15.8  | 1596  | 799  |
| 4.705 | 4785 | 4375 | 16.0  | 1616  | 804  |
| 4.87  | 4946 | 4448 | 16.35 | 1652  | 8129 |
| 5.035 | 513  | 453  | 16.7  | 169   | 8222 |
| 5.225 | 5306 | 4607 | 17.1  | 1721  | 8297 |
| 5.39  | 5459 | 4673 | 17.35 | 1756  | 8381 |
| 5.56  | 565  | 4754 | 17.75 | 1788  | 8457 |
| 5.74  | 5832 | 483  | 18.05 | 1819  | 853  |
| 5.93  | 6017 | 4906 | 18.4  | 1858  | 8621 |
| 6.12  | 62   | 498  | 18.8  | 1897  | 8711 |
| 6.29  |      |      | 19.2  |       |      |

| n | A | D |
|---|---|---|
|---|---|---|

|       |       |       |
|-------|-------|-------|
| 19.2  | 1932  | 8791  |
| 19.55 | 1978  | 8895  |
| 20.0  | 2016  | 898   |
| 20.3  | 2043  | 904   |
| 20.65 | 2088  | 9139  |
| 21.0  | 211   | 9187  |
| 21.3  | 2152  | 9278  |
| 21.7  | 2186  | 9351  |
| 22.1  | 2233  | 9451  |
| 22.5  | 227   | 9529  |
| 22.95 | 2316  | 9625  |
| 23.3  | 2343  | 9681  |
| 23.6  | 2379  | 9755  |
| 24.0  | 2427  | 9853  |
| 24.55 | 248   | 996   |
| 25.0  | 252   | 1004  |
| 25.5  | 2574  | 10147 |
| 26.0  | 2626  | 10249 |
| 26.55 | 26832 | 1036  |
| 27.1  | 2741  | 10471 |
| 27.72 | 27984 | 1058  |
| 28.25 | 2851  | 10679 |
| 28.8  | 29052 | 1078  |
| 29.3  | 2955  | 10872 |
| 29.8  | 3003  | 1096  |
| 30.2  | 3047  | 1104  |
| 30.8  | 31136 | 1116  |
| 31.45 | 31753 | 1127  |
| 32.05 | 3237  | 11379 |
| 32.7  | 33062 | 115   |
| 33.44 | 33698 | 1161  |
| 33.9  | 34222 | 117   |
| 34.6  | 3491  | 11817 |
| 35.2  | 35402 | 119   |
| 35.78 | 3606  | 1201  |
| 36.3  | 36602 | 121   |
| 37.0  | 37271 | 1221  |
| 37.5  | 37822 | 123   |
| 38.2  | 38502 | 1241  |
| 38.8  | 39062 | 125   |
| 39.4  | 3974  | 12608 |
| 40.0  | 40322 | 127   |
| 40.7  | 4103  | 12811 |
| 41.45 | 41796 | 1293  |
| 42.1  | 4251  | 1304  |
| 42.9  | 4323  | 1315  |
| 43.7  | 4389  | 1325  |
| 44.3  | 44689 | 1337  |
| 45.0  | 4536  | 1347  |
| 45.7  | 4609  | 13578 |
| 46.5  | 46922 | 137   |
| 47.35 |       |       |

| n | A | D |
|---|---|---|
|---|---|---|

|       |       |       |
|-------|-------|-------|
| 47.35 | 47679 | 1381  |
| 48.0  | 48302 | 139   |
| 48.75 | 4914  | 1402  |
| 49.5  | 4985  | 14121 |
| 50.35 | 5073  | 14245 |
| 51.1  | 5148  | 1435  |
| 51.8  | 522   | 1445  |
| 52.7  | 5318  | 14585 |
| 53.6  | 54022 | 147   |
| 54.5  | 54908 | 1482  |
| 55.2  | 55502 | 149   |
| 56.0  | 564   | 1502  |
| 56.83 | 5738  | 1515  |
| 57.9  | 5843  | 15288 |
| 59.0  | 59444 | 1542  |
| 59.85 | 6038  | 15541 |
| 60.95 | 61465 | 1568  |
| 62.0  | 6252  | 15814 |
| 63.1  | 636   | 1595  |
| 64.0  | 644   | 1605  |
| 65.0  | 6548  | 16184 |
| 66.0  | 66585 | 1632  |
| 67.2  | 6765  | 1645  |
| 68.25 | 6879  | 16588 |
| 69.3  | 69889 | 1672  |
| 70.4  | 7098  | 1685  |
| 71.4  | 7191  | 1696  |
| 72.5  | 73102 | 171   |
| 73.73 | 7439  | 1725  |
| 75.0  | 7549  | 17377 |
| 76.0  | 76562 | 175   |
| 77.2  | 7788  | 1765  |
| 78.5  | 79032 | 1778  |
| 79.5  | 80102 | 179   |
| 80.6  | 8109  | 1801  |
| 81.6  | 8221  | 18134 |
| 82.8  | 8321  | 18244 |
| 83.7  | 8418  | 1835  |
| 84.6  | 851   | 1845  |
| 85.5  | 8584  | 1853  |
| 86.4  | 8689  | 18643 |
| 87.4  | 8789  | 1875  |
| 88.3  | 8883  | 1885  |
| 89.4  | 8968  | 1894  |
| 90.0  | 9044  | 1902  |
| 91.0  | 9168  | 1915  |
| 92.1  | 9264  | 1925  |
| 93.3  | 9406  | 19397 |
| 94.6  | 9516  | 1951  |
| 95.75 | 9653  | 1965  |
| 97.1  | 9792  | 19791 |
| 98.6  | 994   | 1994  |
| 100.0 |       |       |

## **INTRODUCTION TO EXTRACTION OF CUBE ROOTS**

The simplicity of this new method for extracting cube roots on Monroe 8N-213 and other models, with the aid of a brief table, is such that it can be mastered easily. The use of this table is advantageous in that it reduces laborious and complicated calculations to a simple process of multiplication and division, and provides accuracy of five significant places.

Following the five-place cube root table is a method of extending any cube root to an accuracy of ten significant places.

## Monroe method

### PROGRAM

Decimals:

Upper dials 5 Tab at 6

Keyboard 5 Auto. KB Clear to the right

Lower dials 10

- Step 1.** Adjust the decimal point in the number whose cube root is desired so that there are three whole number places. Enter the adjusted number as a dividend.
- Step 2.** Divide by the number, in the column of approximations in the table, which is nearest to the adjusted number, but not greater than it.
- Step 3.** Select the multiplier in line with the approximation used corresponding to the range of the column which will contain the original number. If the original number is not contained in one of the given ranges, then shift the decimal point, either left or right, three places at a time until the number does fall within one of the ranges. Clear the keyboard and enter the proper multiplier.
- Step 4.** Copy the quotient (of which the first and second digits are always one and zero, respectively) from the upper dials to the keyboard, changing the second digit (zero) to a five and then multiply.
- Step 5.** Change the first and second digits of the keyboard quantity (one and five, respectively) to a three and zero, respectively. Divide, and the quotient is the desired cube root. If any shifting of the decimal point took place in step 3 to determine the proper multiplier, the decimal point in the result must be moved one place in the opposite direction of each three-place shift.  
In some cases there may be an error of one unit in the fifth significant place due to round-off of the final result.

**EXAMPLE I**Find the  $\sqrt[3]{27.634}$ **PROGRAM**

Decimals:

Upper dials 5      Tab at 6  
Keyboard 5      Auto. KB Clear to the right  
Lower dials 10**Step 1.** Enter the dividend 276.34.**Step 2.** Divide by 260. Result in the upper dials 1.06284.**Step 3.** Clear the keyboard and select the proper multiplier.**Step 4.** Multiply 5.9250 by 1.56284. Result in the lower dials is 9.259827.**Step 5.** Divide by 3.06284. Result in the upper dials is 3.02328.

$$\sqrt[3]{27.634} = 3.0233$$

**EXAMPLE II**Find the  $\sqrt[3]{168498}$ .**PROGRAM**

Decimals:

Upper dials 5      Tab at 6  
Keyboard 5      Auto. KB Clear to the right  
Lower dials 10**Step 1.** Enter the dividend 168.498.**Step 2.** Divide by 162. Result in the upper dials is 1.04011.**Step 3.** Clear the keyboard and select the proper multiplier.**Step 4.** Multiply 10.9028 by 1.54011. Result in the lower dials is 16.791511308.**Step 5.** Divide by 3.04011. Result in the upper dials is 5.52332.

Because of the necessary one three-place shift to the left in step 3, the decimal point in the result must be moved one place to the right.

$$\sqrt[3]{168498} = 55.233$$

### EXAMPLE III

Find the  $\sqrt[3]{.00000489}$

#### PROGRAM

Decimals:

Upper dials 5      Tab at 6  
Keyboard 5      Auto KB Clear to the right  
Lower dials 10

- Step 1. Enter the dividend 489.
- Step 2. Divide by 464. Result in the upper dials is 1.05387.
- Step 3. Clear the keyboard and select the proper multiplier.
- Step 4. Multiply 3.3359 by 1.05387. Result in the lower dials is 5.183554933.
- Step 5. Divide by 3.05387. Result in the upper dials is 1.69737.

Because of the necessary two three-place shifts to the right in step 3, the decimal point in the result must be moved two places to the left.

$$\sqrt[3]{.00000489} = .016974$$

FIVE-PLACE CUBE ROOT TABLE

| APPROXIMATIONS TO THE<br>NUMBER WHOSE CUBE ROOT<br>IS DESIRED |         | Multipliers |             |
|---------------------------------------------------------------|---------|-------------|-------------|
|                                                               | 1 to 10 | 10 to 100   | 100 to 1000 |
| 100                                                           | 2.0000  | 4.3089      | 9.2832      |
| 107                                                           | 2.0457  | 4.4072      | 9.4950      |
| 115                                                           | 2.0954  | 4.5144      | 9.7259      |
| 123                                                           | 2.1429  | 4.6168      | 9.9464      |
| 132                                                           | 2.1940  | 4.7267      | 10.1833     |
| 141                                                           | 2.2427  | 4.8318      | 10.4097     |
| 151                                                           | 2.2946  | 4.9434      | 10.6502     |
| 162                                                           | 2.3490  | 5.0606      | 10.9028     |
| 173                                                           | 2.4010  | 5.1727      | 11.1442     |
| 185                                                           | 2.4553  | 5.2896      | 11.3961     |
| 198                                                           | 2.5115  | 5.4107      | 11.6570     |
| 212                                                           | 2.5693  | 5.5354      | 11.9255     |
| 227                                                           | 2.6285  | 5.6629      | 12.2004     |
| 243                                                           | 2.6889  | 5.7930      | 12.4806     |
| 260                                                           | 2.7502  | 5.9250      | 12.7651     |
| 278                                                           | 2.8122  | 6.0587      | 13.0531     |
| 297                                                           | 2.8749  | 6.1937      | 13.3439     |
| 317                                                           | 2.9380  | 6.3297      | 13.6370     |
| 338                                                           | 3.0015  | 6.4665      | 13.9317     |
| 360                                                           | 3.0653  | 6.6039      | 14.2276     |
| 384                                                           | 3.1319  | 6.7475      | 14.5370     |
| 409                                                           | 3.1985  | 6.8909      | 14.8459     |
| 436                                                           | 3.2674  | 7.0393      | 15.1656     |
| 464                                                           | 3.3359  | 7.1869      | 15.4836     |
| 494                                                           | 3.4063  | 7.3385      | 15.8103     |
| 526                                                           | 3.4783  | 7.4937      | 16.1446     |
| 560                                                           | 3.5517  | 7.6518      | 16.4852     |
| 595                                                           | 3.6242  | 7.8080      | 16.8217     |
| 632                                                           | 3.6978  | 7.9666      | 17.1634     |
| 672                                                           | 3.7742  | 8.1312      | 17.5181     |
| 714                                                           | 3.8512  | 8.2972      | 17.8757     |
| 758                                                           | 3.9288  | 8.4643      | 18.2356     |
| 805                                                           | 4.0084  | 8.6357      | 18.6050     |
| 854                                                           | 4.0881  | 8.8075      | 18.9751     |
| 906                                                           | 4.1694  | 8.9827      | 19.3527     |
| 961                                                           | 4.2522  | 9.1609      | 19.7366     |

## EXTENSION OF ACCURACY

Any cube root may be extended to ten significant places if so desired.

A handy reference during the solution of an extension would be to set up this table on paper:

N = The original number whose cube root was desired.

X<sup>2</sup> = Determined in step 1 of the extension.

X = The cube root of N that is to be extended.

### PROGRAM

Decimals:      No tab  
None            Repeat on

All numbers are entered on the left of the keyboard.

Step 1. Square X and copy the result to the table.

Step 2. Enter the dividend N.

Step 3. Divide by X<sup>2</sup>.

Step 4. Enter the upper dial number as a dividend.

Step 5. Multiply accumulatively 2 by X.

Step 6. Divide by 3.

The upper dials contain the cube root extended to ten significant places. Place the decimal point as it appears in the original X.

## EXAMPLE OF EXTENSION OF ACCURACY

Extend the accuracy of the cube root of Example 2 to ten significant places.

Table: N = 168498.

X<sup>2</sup> = 3050684289

X = 55.233

### PROGRAM

Decimals:      No tab  
None            Repeat on

All numbers are entered on the left of the keyboard.

Step 1. Square 55233. Copy lower dials to the table.

Step 2. Enter the dividend 168498.

Step 3. Divide by 3050684289. Result in the upper dials is 55232854.

Step 4. Enter the dividend 55232854.

Step 5. Multiply accumulatively 2 by 55233. Result in the lower dials is 165698854.

Step 6. Divide by 3. Result in the upper dials is 5523295133.

$\sqrt[3]{168498} = 55.233 = 55.23295133$  (extended to ten significant places)

## **EXTRACTION OF HIGHER ROOTS**

### **outline of method**

In starting the extraction of a higher root refer to the table of approximations to determine the initial approximation. Reading down in the desired root column find the range that contains the number whose root is wanted. In line with this range in the extreme left column is the initial approximation.

The machine operations consist of using this initial approximation in the formula given below to calculate a second approximation. The second approximation is then substituted in the same formula to obtain a third approximation. This process is repeated until two approximations coincide. The last approximation will be the correct root of the number.

If the number whose root is desired lies outside the range of any root column of the table, a guess must be made to be used as the initial approximation. Also in the case of very high numbers the decimal setup must be changed to allow proper entrance and transfer of numbers.

If the root of a decimal number is sought, the decimal point must be shifted according to the desired root, i.e., for the 6th root of a decimal number, the point must be shifted 6 places at a time to the right until the number falls into a range of the desired root column. The decimal point in the final root must be shifted to the left one place for each six-place shift.

### **general formula**

A = approximation

B = the base number whose root is to be found

n = the desired root

$$\frac{A^n(n-1) + B}{An-1}$$

---

$$n$$

## **USING AN 8N-218**

### **PROGRAM**

Decimals:

Upper dials 5 Tab at 6

Keyboard 5 Slide at 5

Lower dials 10 Auto KB Clear to the right

- Step 1.** The initial approximation is raised to the nth power. Set the initial approximation on the keyboard and square it. Then transfer and multiply by the number on the keyboard n-2 times.
- Step 2.** Return Auto KB Clear to the left; lock the upper dials; place the lever in Non Entry position and clear the keyboard.
- Step 3.** Transfer and multiply by n-1.
- Step 4.** Add B to the number in the lower dials.
- Step 5.** Unlock the upper dials and place the lever in Entry position.
- Step 6.** Copy the number from the right upper dials to the keyboard and divide.
- Step 7.** Enter the number in the right upper dials as a dividend. Divide by n.

The result in the right upper dials is the next approximation of the base number. Repeat this cycle of seven steps, each time using the new approximation until two approximations coincide. The final root will be correct to five decimal places.

### EXAMPLE

Find the  $\sqrt[5]{1425.75}$

The initial approximation from the table is 4.25.

#### PROGRAM

Decimals:

Upper dials 5 Tab at 6

Keyboard 5 Slide at 5

Lower dials 10 Auto KB Clear to the right,

**Step 1.** Square 4.25. Transfer and multiply three times ( $n-2=3$ ). Result in the lower dials is 1386.57899; upper dials 326.25388.

**Step 2.** Return Auto KB Clear to the left; lock the upper dials; place the lever in Non Entry position and clear the keyboard.

**Step 3.** Transfer and multiply by 4 ( $n-1$ ). Result in the lower dials is 5546.31596.

**Step 4.** Add 1425.75 to the lower dials.

**Step 5.** Unlock the upper dials and place the lever in Entry position.

**Step 6.** Copy 326.25388 from the right upper dials to the keyboard and divide.

**Step 7.** Enter 21.37006 from the upper right dials as a dividend. Divide by 5 ( $n$ ).

Result in the upper dials is 4.27401 (second approximation of the 5th root of 1425.75).

**Step 8.** Repeat steps 1 through 7 using the second approximation 4.27401 to determine the third approximation of the 5th root of 1425.75.

Result in the upper dials is 4.27374  
(third approximation).

**Step 9.** Repeat steps 1 through 7 using the third approximation 4.27374 to determine the fourth approximation of the 5th root of 1425.75.

Result in the upper dials is 4.27374  
(fourth approximation).

The fourth approximation, 4.27374, coincides with the third approximation, thereby automatically proving that the third approximation is the 5th root of 1425.75.

$$\sqrt[5]{1425.75} = 4.27374$$

TABLE OF APPROXIMATIONS FOR HIGHER ROOTS

| Initial Approximation | 4th Root   | 5th Root    | 6th Root    | 7th Root    | 8th Root    | 9th Root    | 10th Root   |
|-----------------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|
| RANGES                |            |             |             |             |             |             |             |
| 1.25                  | 0.4        | 0.5         | 0.7         | 0.9         | 0.13        | 0.18        | 0.24        |
| 1.50                  | 4.7        | 5.11        | 7.18        | 9.30        | 13.49       | 18.79       | 24.128      |
| 1.75                  | 7.12       | 11.23       | 18.44       | 30.82       | 49.153      | 79.286      | 128.537     |
| 2.00                  | 12.20      | 23.43       | 44.92       | 82.196      | 153.416     | 286.884     | 537.1878    |
| 2.25                  | 20.32      | 43.76       | 92.180      | 196.426     | 416.1012    | 884.2404    | 1878.5710   |
| 2.50                  | 32.48      | 76.125      | 180.327     | 426.859     | 1012.2254   | 2404.5918   | 5710.15534  |
| 2.75                  | 48.68      | 125.196     | 327.565     | 859.1624    | 2254.4668   | 5918.13420  | 15534.38581 |
| 3.00                  | 68.95      | 196.298     | 565.931     | 1624.2910   | 4668.9095   | 13420.28422 | 38581.90900 |
| 3.25                  | 95.130     | 298.438     | 931.1478    | 2910.4988   | 9095.16834  | 28422.56815 |             |
| 3.50                  | 130.173    | 438.626     | 1478.2269   | 4988.8225   | 16834.29817 | 56815.97800 |             |
| 3.75                  | 173.226    | 626.874     | 2269.3386   | 82225.13119 | 29817.50836 |             |             |
| 4.00                  | 226.290    | 874.1194    | 3386.4927   | 13119.20322 | 50836.93900 |             |             |
| 4.25                  | 290.366    | 1194.1603   | 4927.7910   | 20322.30679 |             |             |             |
| 4.50                  | 366.458    | 1603.2116   | 7012.9787   | 30679.45267 |             |             |             |
| 4.75                  | 458.565    | 2116.2753   | 9787.13423  | 45267.65437 |             |             |             |
| 5.00                  | 565.690    | 2753.3536   | 13423.18120 | 65437.97700 |             |             |             |
| 5.25                  | 690.835    | 3536.4486   | 18120.24114 |             |             |             |             |
| 5.50                  | 835.1001   | 4486.5631   | 24114.31676 |             |             |             |             |
| 5.75                  | 1001.1191  | 5631.6999   | 31676.41119 |             |             |             |             |
| 6.00                  | 1191.1407  | 6999.8621   | 41119.52800 |             |             |             |             |
| 6.25                  | 1407.1652  | 8621.10529  | 52800.67125 |             |             |             |             |
| 6.50                  | 1652.1926  | 10529.12762 | 67125.84550 |             |             |             |             |
| 6.75                  | 1926.2234  | 12762.15359 | 84550.99500 |             |             |             |             |
| 7.00                  | 2234.2577  | 15359.18362 |             |             |             |             |             |
| 7.25                  | 2577.2958  | 18362.21818 |             |             |             |             |             |
| 7.50                  | 2958.3380  | 21818.25775 |             |             |             |             |             |
| 7.75                  | 3380.3846  | 25775.30287 |             |             |             |             |             |
| 8.00                  | 3846.4358  | 30287.35409 |             |             |             |             |             |
| 8.25                  | 4358.4920  | 35409.41203 |             |             |             |             |             |
| 8.50                  | 4920.5534  | 41203.47730 |             |             |             |             |             |
| 8.75                  | 5534.6204  | 47730.55061 |             |             |             |             |             |
| 9.00                  | 6204.6933  | 55061.63265 |             |             |             |             |             |
| 9.25                  | 6933.7725  | 63265.72420 |             |             |             |             |             |
| 9.50                  | 7725.8582  | 72420.82605 |             |             |             |             |             |
| 9.75                  | 8582.12000 | 82605.99400 |             |             |             |             |             |

MONROE



1191-S  
PRINTED  
IN  
U.S.A.