

Artificial Intelligence for Financial Inclusion.

Alternative Data and Risk Prediction.

Graph Databases: A key to addressing Financial Services challenges.

I - Introduction, Definitions

- Credit Scoring
 - Traditional methods
 - Credit Bureau
 - Alternative Data
 - Unbanked population
 - Smartphone and Social Networks : A gold mine?

II - Methods

- Payment Default (PD) & Risk Prediction
- Algorithms selection overview:
 - Naive
 - SVM
 - Random Forest
 - Extreme and Light Gradient Boosting
 - Deep Learning

App I: Why and When XGB is better than DP

III - Graph Database - Neo4J

- Introduction
 - Difference with other databases?
 - Why is it useful?
- Neo4j
 - Structure
 - Cypher language
 - Graph Algorithms
- Graph DB at Carbon

IV - Carbon use cases

@ Carbon

- How is CARBON using ML for credit scoring and risk prediction
 - DataRobot
 - CARBON ML Architecture & Pipelines overview
- Al Bias vs Human Logical Error
- Conclusion

Credit Scoring - Traditional methods

Credit Scoring - Traditional methods

Alternative Data

Unbanked population

Tactical Reach Index: Unbanked Populations v Mobile Ownership

Number of people with a phone who outnumber those with a bank account

Smartphone and Social Networks : A gold mine?

Smartphone and Social Networks : A gold mine?

Methods

- Payment Default (PD) & Risk Prediction
- Algorithms selection overview

		Impact					
		Negligible	Minor	Moderate	Significant	Severe	
— Likelihood ——	Very Likely	Low Med	Medium	Med Hi	High	High	
	Likely	Low	Low Med	Medium	Med Hi	High	
	Possible	Low	Low Med	Medium	Med Hi	Med Hi	
	Unlikely	Low	Low Med	Low Med	Medium	Med Hi	
	Very Unlikely	Low	Low	Low Med	Medium	Medium	

Naive Bayes

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

SVM (Support Vector Machines)

Random Forest

Extreme and Light Gradient Boosting

Deep Learning

Why and When XGB is better than

Graph Databases

A key to addressing Financial Services challenges.

Types of databases

Document

Graph

Key-Value

Wide-column

NO GOOD, NO BAD

Example: Library

NoSQL / Document	SQL / Wide-column	Key-Value	Graph
Book content	Author/Publisher/Da te	Book availability	Book usage

Why Graph DB?

Focus on communities and not individuals.

Behaviour is highly influenced by the community.

Understanding the customers:

Do they know each other? → Fraud detection

Should they know each other? \rightarrow Recommendation / Marketing

Neo4j

Neo4j

Cypher

```
//data stored with this direction
CREATE (e:Employee) - [:WORKS_AT] -> (c:Company)
```


Cypher

```
//data stored with this direction
CREATE (e:Employee {name:'Jacobo'})-[:WORKS_AT]->(c:Company {name:'Carbon'})
```


Cypher

```
//retrieve names of Carbon employees
MATCH (e:Employee)-[:WORKS_AT]->(c:Company {name:'Carbon'})
RETURN e.name
```


Example: bank transfers

```
MATCH p = (c:client)-->(:bank_account)<--(c2:client)
WHERE c<>c2
RETURN p
```


Graph Algorithms

Community detection

Centrality: PageRank

Centrality: Betweenness

Graph DB at Carbon

Marketing campaigns

Fraud prevention

Carbon use cases

1. How are we using Machine Learning at CARBON for credit scoring and risk prediction?

DataRobot

Pipelines Architecture

Why is automation essential ?

7,344 GB ?

US poverty interactive map. Click image to explore it

Planes that returned from missions

Thank You