Find a Gene Project (BGGN 213)

Akshara Balachandra, A11933675

May 15, 2019

Question 1: Name of the protein

Name: Sonic Hedgehog protein isoform 1 preprotein (SHH)

Accession: NP_000184.1 Species: Homo sapiens

Question 2: BLAST search

Method: TBLASTN search against Xenopus ESTs

Database: Expressed sequence tags (est)

Organism: Xenopus (Taxid: 8353)

Alignment details

Chosen match: Accession BX704643.1, a 874bp clone from Xenopus tropicalis.

>BX704643.1 BX704643 XGC-tadpole Xenopus tropicalis cDNA clone TTpA011g13 5', mRNA sequence

cDNA clone TTpA011g13, mRNA sequence.

Length: 874

Score Expect Method Identities 387 bits(994) 3e-132 Compositional matrix adjust. 197/285(69%)

Positives Gaps Frame 220/285(77%) 23/285(8%) +2

Query Sbjct	68 41	RNSERFKELTPNYNPDIIFKDEENTGADRLMTQRCKDKLNALAISVMNQWPGVKLRVTEG RNS+RFKELTPNYNPDIIFKDEENTGADRLMTQRCKDKLNALAISVMNQWPGVKLRVTEG RNSDRFKELTPNYNPDIIFKDEENTGADRLMTQRCKDKLNALAISVMNQWPGVKLRVTEG	127 220
bbjet	71	TOTAL NEED TO THE PETER TO A PETE	220
Query	128	${\tt WDEDGHHSEESLHYEGRAVDITTSDRDRSKYGMLARLAVEAGFDWVYYESKAHIHCSVKA}$	187
		WDEDGHHSEESLHYEGRAVDITTSDRDRSKYGMLARLAVEAGFDWVY+ESKAHIHCSVKA	
Sbjct	221	WDEDGHHSEESLHYEGRAVDITTSDRDRSKYGMLARLAVEAGFDWVYFESKAHIHCSVKA	400
Query	188	${\tt ENSVAAKSGGCFPGSATVHLEQGGTKLVKDLSPGDRVLAADDQGRLLYSDFLTFLDRDDG}$	247
		ENSVAAKSGGCFPGSA V +E GGTK V++L PGDRVL++D QG L+YSDFL F+D++	
Sbjct	401	${\tt ENSVAAKSGGCFPGSARVMVEPGGTKAVRELRPGDRVLSSDPQGNLIYSDFLLFIDKEHD}$	580

Figure 1: BLAST parameters

Figure 2: BLAST search results

BX704643 XGC-tadpole Xenopus tropicalis cDNA clone TTpA011g13 5', mRNA sequence

Sequence ID: BX704643.1 Length: 874 Number of Matches: 2

Range	1: 41	L to 826 GenBank Graphics		▼ Next Match ▲ Previous Match		
Score		Expect Method Identities Po	sitives		Gaps	Frame
387 b	its(99	 3e-132 Compositional matrix adjust. 197/285(69%) 23 	20/285(77	%)	23/285(8%)	+2
Query	68	RNSERFKELTPNYNPDIIFKDEENTGADRLMTQRCKDKLNALAISVMNQWPG RNS+RFKELTPNYNPDIIFKDEENTGADRLMTORCKDKLNALAISVMNOWPG		127		
Sbjct	41	RNSDRFKELTPNYNPDIIFKDEENTGADRLMTQRCKDKLNALAISVMNQWPG		220		
Query	128	WDEDGHHSEESLHYEGRAVDITTSDRDRSKYGMLARLAVEAGFDWVYYESKAI WDEDGHHSEESLHYEGRAVDITTSDRDRSKYGMLARLAVEAGFDWVY+ESKAI		187		
Sbjct	221			400		
Query	188	ENSVAAKSGGCFPGSATVHLEQGGTKLVKDLSPGDRVLAADDQGRLLYSDFL ENSVAAKSGGCFPGSA V +E GGTK V++L PGDRVL++D OG L+YSDFL		247		
Sbjct	401			580		
Query	248	AKKVFYVIETREPRERLLLTAAHLLFVAPHNDSATXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXRALFAS +++FAS	307		
Sbjct	581	VKKLYYVIQTSQTRIRMTAAHLLFVAQSNGTGS	-FKSVFAS	700		
Query	308	RVRPGQRVYVVAERDGDRRLLPAAVHSVTLSEEAAGAYAPLTAQG 352 VRPG +Y R D L A V V L EE G + P G				
Sbjct	701	NVRPGDVIYSADRRDMTLREAMVEKVDL-EEDIGGFCPRNCPG 826				

Figure 3: Alignment details

Question 3: Novel Protein Information

Chosen Sequence:

>Xenopus tropicalis protein (from BLAST result)
RNSDRFKELTPNYNPDIIFKDEENTGADRLMTQRCKDKLNALAISVMNQWPGVKLRVTEG
WDEDGHHSEESLHYEGRAVDITTSDRDRSKYGMLARLAVEAGFDWVYFESKAHIHCSVKA
ENSVAAKSGGCFPGSARVMVEPGGTKAVRELRPGDRVLSSDPQGNLIYSDFLLFIDKEHD
VKKLYYVIQTSQTRIRMTAAHLLFVAQSNGTGSFKSVFASNVRPGDVIYSADRRDMTLRE
AMVEKVDLEEDIGGFCPRNCPG

Name: Xenopus sonic hedgehog

Species: Xenopus (Silurana) tropicalis (Common name: western clawed frog, Taxid: 8364)

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Amphibia; Batrachia; Anura; Pipoidea;

Pipidae; Xenopodinae; Xenopus; Silurana

Question 4: Proof that gene/protein are novel

A BLASTP search against the NR database yielded a top hit to a protein from *Xenopus tropicalis* with 100% coverage and 97.71% identity. The alignment details are given in the screenshots below.

Figure 4: BLASTP parameters

Figure 5: BLASTP results page

▲ Download **∨** GenPept Graphics

PREDICTED: sonic hedgehog protein [Xenopus tropicalis]

Sequence ID: XP 017950257.1 Length: 416 Number of Matches: 1

Range	1: 68	3 to 329 <u>G</u>	enPept Graphics			,	▼ Next Match
Score		Expect	Method		Identities	Positives	Gaps
533 b	its(13	73) 0.0	Compositional r	matrix adjust.	256/262(98%)	256/262(97	%) 0/262(0%
Query	1		LTPNYNPDIIFKDEE LTPNYNPDIIFKDEE				60
Sbjct	68		LTPNYNPDIIFKDEE				127
Query	61		EESLHYEGRAVDITT EESLHYEGRAVDITT				120
Sbjct	128		EESLHYEGRAVDITT				187
uery	121		GGCFPGSARVMVEPG GGCFPGSARVMVEPG				180
Sbjct	188		GGCFPGSARVMVEPG		•		247
uery	181		QTSQTRIRMTAAHLL OTSOTRIRMTAAHLL				240
Sbjct	248		QTSQTRIRMTAAHLL				307
Query	241	AMVEKVDLE AMVEKVDLE	EEDIGGFCPRNCPG	262			
Sbjct	308	AMVEKVDLE	EEDIGAFAPVTAQG	329			

Figure 6: Alignment for top result

Question 5: Multiple sequence alignment

Relabeled sequences for alignment

>Xenopus_sonic_hedgehog (from BLAST result)
RNSDRFKELTPNYNPDIIFKDEENTGADRLMTQRCKDKLNALAISVMNQWPGVKLRVTEG
WDEDGHHSEESLHYEGRAVDITTSDRDRSKYGMLARLAVEAGFDWVYFESKAHIHCSVKA
ENSVAAKSGGCFPGSARVMVEPGGTKAVRELRPGDRVLSSDPQGNLIYSDFLLFIDKEHD
VKKLYYVIQTSQTRIRMTAAHLLFVAQSNGTGSFKSVFASNVRPGDVIYSADRRDMTLRE
AMVEKVDLEEDIGGFCPRNCPG

>Human |Sonic hedgehog protein (NP_000184.1) [Homo sapiens]
MLLLARCLLLVLVSSLLVCSGLACGPGRGFGKRRHPKKLTPLAYKQFIPNVAEKTLGASGRYEGKISRNS
ERFKELTPNYNPDIIFKDEENTGADRLMTQRCKDKLNALAISVMNQWPGVKLRVTEGWDEDGHHSEESLH
YEGRAVDITTSDRDRSKYGMLARLAVEAGFDWVYYESKAHIHCSVKAENSVAAKSGGCFPGSATVHLEQG
GTKLVKDLSPGDRVLAADDQGRLLYSDFLTFLDRDDGAKKVFYVIETREPRERLLLTAAHLLFVAPHNDS
ATGEPEASSGSGPPSGGALGPRALFASRVRPGQRVYVVAERDGDRRLLPAAVHSVTLSEEAAGAYAPLTA
QGTILINRVLASCYAVIEEHSWAHRAFAPFRLAHALLAALAPARTDRGGDSGGGDRGGGGGRVALTAPGA
ADAPGAGATAGIHWYSQLLYQIGTWLLDSEALHPLGMAVKSS

>Mexican_walking_fish |sonic hedgehog [Ambystoma mexicanum] ARX70249.1 MGEMRLLLRRLLLGTLVWALLVPSGLTCGPGRGIGKRRQPKKLTPLAYKQFIPNVAEKTLGASGRYEGKI TRNSDRFKELTPNYNPDIIFKDEENTGADRLMTQRCKDKLNALAISVMNQWPGVKLRVTEGWDEDGHHSE ESLHYEGRAVDITTSDRDRSKYGMLARLAVEAGFDWVYFESKAHIHCSVKAENSVAAKSGGCFPASAKVT LEHGVTRPVKDLRPGDRVLAADGQGRLVYS DFLMFLDKEEAVTKVFYVIETERPRQRLRLTAAHLLFAA RHPANSSSSTGFQSIFASRVRPGHRVLTVDQEGRGLQEATVTRVYLEEGAGAYAPVTSHGTVVIDKVLAS CYAVIEEHSWAHWAFAPLRLGYGILSIFSPQDYSPHSPPAPSQKEGVHWYSEILYHIGTWVLHSDTIHPW GMAAKSS

>Iberian_newt |sonic hedgehog-related protein [Pleurodeles walt1]
MGEMILLRRDLLGGFISTLLVPLGLGCGPGRGIGQRRRPQKLTPLAYKQFIPNVSEKTLGASGRYEVKITRNSERFQELT
PNYNPDIIFKVEENTGADRLMTQRCKDKLNSLAISVMNQWPGVKLRVTEGWDEDGHHSEESLHYEGRAVDITTSDRDRSK
YGMLARLAVEAGFDWVYFESKAHIHCSVKAENSVAVKSGGCFPGSATVTLEQGVRIPVKGLKPGNRVLAVDVEGRLIYSD
FLLFMDEEETARKVFYVIETSLPRERLRLTAAHLLFVAQEHPGNASAGNFRSKFGHRRFRSMFASSVRPGHRVLTEDREG
RGLREATVDRVYLEEATGAYAPVTAHGTVVIDRVLASCYAVIEEHSWAHWAFAPLRVGFGILSFFSPQDYSSHSPPAPSQ
AEGVHWYSEILYRIGTWVLQADTIHPLGMAAKSS

>African_clawed_frog |sonic hedgehog protein-like|XP_018124514.1 [Xenopus laevis]
MSVATGILLLGFTCSLLIPPGLSCGPGRGIGKRRHPKKLTPLVYKQFIPNVAEKTLGASGRYEGKIASNSDRFKELTPNY
NPDIVFKDEENTGADRLMTQRCKDKLNALAISVMNQWPGVKLRVTEGWDEDGHHLEESLHYEGRAVDITTSDRDRSKYGM
LARLAVEAGFDWVYYESKAHIHCSVKAENSVAAKSGGCFPAGAEVMVELGGTKAVKDLRPGDRVLSSDAQGNLLYSDFLL
FIDQQHDVKKLFYVIETSHPRRRIRLTAAHLLFVAQVNGSRSFKSVFASSIQPGDIIYSADPRAMALNEVKVEKVGLEED
TGAYAPLTAHGTLVIDQVLSSCYALIEEHTWAHLAFAPLRFGLSLSPYLFPKDSSPSPQSHHQLDSSPSPQSHHQPEGIH
WYSQLLYQLGTWLLDSNSLHPLGMATKSS

>Burmese_python |sonic hedgehog protein|XP_007433256.1 [Python bivittatus]
MLLRRRSGLLPLCLGALFLSAGLACGPGRGFGKRRHPKKLTPLAYKQFIPNVAEKTLGASGRYEGKISRNSERFKELTPN
YNPDIIFKDEENTGADRLMTQRCKDKLNALAISVMNQWPGVKLRVTEGWDEDGHHSEESLHYEGRAVDITTSDRDRSKYG
MLARLAVEAGFDWVYYESKAHIHCSVKAENSVAAKSGGCFPGSAWVNLEEGGTKLVKDLRPGDRVLAADVHGQLFYSEFL
AFLDREDPPVHKLFYVIETQRPQTRLLLTAAHLLFVAPPQNHSHSQPQPIFASRVQPGQQVYVLGQGGQTLLQAAVHSVS
LQEEASGAYAPLTAQGTILINQVLASCYAVIEEHSWAHWAFAPFRMAHAVLAMLDPEGLSSPLLFPAAAPEESSSLAGVH
WYSRLLYHIGRWILDSETMHPLGMAS

>Tiger_snake |sonic hedgehog protein |XP_026536709.1 [Notechis scutatus]
MLLLRRTGLLPLCLGALFLSAGLACGPGRGFGKRRHPKKLTPLAYKQFIPNVAEKTLGASGRYEGKITRNSERFKELTPN
YNPDIIFKDEENTGADRLMTQRCKDKLNALAISVMNQWPGVKLRVTEGWDEDGHHSEESLHYEGRAVDITTSDRDRSKYG
MLARLAVEAGFDWVYYESKAHIHCSVKAENSVAAKSGGCFPGSAWVNLEGGGTKLVKDLHPGDRVLAADVHGQLFYSEFL
AFLDREEPPVHKLFYVIETQTPQARLLLTAAHLLFVAPPHNHSHSQPQPIFASRVQPGQHVYVLAQGGQTLLPAAVHSVS
LKEEASGAYAPLTAQGTILINQVLASCYAVIEEHSWAHWAFAPFRIAHAALAVLNLEGLSSPLLFPAAVPEEGASLAGVH
WYSRLLYYIGRWILGSEMMHPLGMAS

Alignment

Using local MUSCLE (v3.8) program with bio3d seqaln(). The fasta output was converted to CLUSTALW format using seaview.

CLUSTAL multiple sequence alignment by MUSCLE (3.8)

Iberian_newt
Mexican_walking_fish
African_clawed_frog
Xenopus_sonic_hedgehog
Burmese_python
Tiger_snake
Human

-MGEMILLRRDLLGGF-ISTLLVPLGLGCGPGRGIGQRRRPQKLTPLAYKQFIPNVSEKT
MGEMRLLRRLLLGTL-VWALLVPSGLTCGPGRGIGKRRQPKKLTPLAYKQFIPNVAEKT
----MSVATGILLLGF-TCSLLIPPGLSCGPGRGIGKRRHPKKLTPLVYKQFIPNVAEKT
-----MLLRRSGLLPLCLGALFLSAGLACGPGRGFGKRRHPKKLTPLAYKQFIPNVAEKT
-----MLLRRTGLLPLCLGALFLSAGLACGPGRGFGKRRHPKKLTPLAYKQFIPNVAEKT
------MLLLRCLLVL-VSSLLVCSGLACGPGRGFGKRRHPKKLTPLAYKQFIPNVAEKT

Iberian_newt
Mexican_walking_fish
African_clawed_frog
Xenopus_sonic_hedgehog
Burmese_python
Tiger_snake

LGASGRYEVKITRNSERFQELTPNYNPDIIFKVEENTGADRLMTQRCKDKLNSLAISVMN LGASGRYEGKITRNSDRFKELTPNYNPDIIFKDEENTGADRLMTQRCKDKLNALAISVMN LGASGRYEGKIASNSDRFKELTPNYNPDIVFKDEENTGADRLMTQRCKDKLNALAISVMN -------RNSDRFKELTPNYNPDIIFKDEENTGADRLMTQRCKDKLNALAISVMN LGASGRYEGKISRNSERFKELTPNYNPDIIFKDEENTGADRLMTQRCKDKLNALAISVMN LGASGRYEGKITRNSERFKELTPNYNPDIIFKDEENTGADRLMTQRCKDKLNALAISVMN Human

Iberian_newt
Mexican_walking_fish
African_clawed_frog
Xenopus_sonic_hedgehog
Burmese_python
Tiger_snake
Human

QWPGVKLRVTEGWDEDGHHSEESLHYEGRAVDITTSDRDRSKYGMLARLAVEAGFDWVYF QWPGVKLRVTEGWDEDGHHSEESLHYEGRAVDITTSDRDRSKYGMLARLAVEAGFDWVYF QWPGVKLRVTEGWDEDGHHLEESLHYEGRAVDITTSDRDRSKYGMLARLAVEAGFDWVYY QWPGVKLRVTEGWDEDGHHSEESLHYEGRAVDITTSDRDRSKYGMLARLAVEAGFDWVYY QWPGVKLRVTEGWDEDGHHSEESLHYEGRAVDITTSDRDRSKYGMLARLAVEAGFDWVYY QWPGVKLRVTEGWDEDGHHSEESLHYEGRAVDITTSDRDRSKYGMLARLAVEAGFDWVYY

Iberian_newt
Mexican_walking_fish
African_clawed_frog
Xenopus_sonic_hedgehog
Burmese_python
Tiger_snake
Human

ESKAHIHCSVKAENSVAVKSGGCFPGSATVTLEQGVRIPVKGLKPGNRVLAVDVEGRLIY ESKAHIHCSVKAENSVAAKSGGCFPASAKVTLEHGVTRPVKDLRPGDRVLAADGQGRLVY ESKAHIHCSVKAENSVAAKSGGCFPAGAEVMVELGGTKAVKDLRPGDRVLSSDAQGNLLY ESKAHIHCSVKAENSVAAKSGGCFPGSARVMVEPGGTKAVRELRPGDRVLSSDPQGNLIY ESKAHIHCSVKAENSVAAKSGGCFPGSAWVNLEEGGTKLVKDLRPGDRVLAADVHGQLFY ESKAHIHCSVKAENSVAAKSGGCFPGSAWVNLEGGGTKLVKDLHPGDRVLAADVHGQLFY

Iberian_newt
Mexican_walking_fish
African_clawed_frog
Xenopus_sonic_hedgehog
Burmese_python
Tiger_snake
Human

SDFLLFMDEEE-TARKVFYVIETSLPRERLRLTAAHLLFVAQEHPGNASAGNFRSKFGHR SDFLMFLDKEE-AVTKVFYVIETERPRQRLRLTAAHLLFAAR-HPANSSSST------SDFLLFIDQQH-DVKKLFYVIETSHPRRRIRLTAAHLLFVAQ----VNGSRS------SDFLLFIDKEH-DVKKLYYVIQTS--QTRIRMTAAHLLFVAQ----SNGTGS------SEFLAFLDREDPPVHKLFYVIETQRPQTRLLLTAAHLLFVAP--PQNHSHSQ-----SEFLAFLDREEPPVHKLFYVIETQTPQARLLLTAAHLLFVAP--PHNHSHSQ-----SDFLTFLDRDD-GAKKVFYVIETREPRERLLLTAAHLLFVAP--HNDSATGEPEASSGSG

Iberian_newt
Mexican_walking_fish
African_clawed_frog
Xenopus_sonic_hedgehog
Burmese_python
Tiger_snake
Human

-----RFRSMFASSVRPGHRVLTEDR--EGRGLREATVDRVYL-EEATGAYAPVTAHG
------GFQSIFASRVRPGHRVLTVDQ--EGRGLQEATVTRVYL-EEGAGAYAPVTSHG
------FKSVFASSIQPGDIIYSADP--RAMALNEVKVEKVGL-EEDTGAYAPLTAHG
-----FKSVFASNVRPGDVIYSADR--RDMTLREAMVEKVDL-EEDIGGFCPRNCPG
------PQPIFASRVQPGQQVYVLGQ--GGQTLLQAAVHSVSLQEEASGAYAPLTAQG
------PQPIFASRVQPGQHVYVLAQ--GGQTLLPAAVHSVSLKEEASGAYAPLTAQG
PPSGGALGPRALFASRVRPGQRVYVVAERDGDRRLLPAAVHSVTLSEEAAGAYAPLTAQG

Iberian_newt
Mexican_walking_fish
African_clawed_frog
Xenopus_sonic_hedgehog
Burmese_python
Tiger_snake
Human

Iberian_newt
Mexican_walking_fish
African_clawed_frog
Xenopus_sonic_hedgehog
Burmese_python
Tiger_snake

---DYSSHSPPAPS-QAEGVHWYSEILYRIGTWVLQADTIHPLGMAAKSS
---DYSPHSPPAPS-QKEGVHWYSEILYHIGTWVLHSDTIHPWGMAAKSS
HHQLDSSPSPQSHH-QPEGIHWYSQLLYQLGTWLLDSNSLHPLGMATKSS
------SPLLFPAAAPEESS-SLAGVHWYSRLLYHIGRWILDSETMHPLGMAS--SPLLFPAAVPEEGA-SLAGVHWYSRLLYYIGRWILGSEMMHPLGMAS---

Question 6: Phylogenetic tree

I used the simple phylogeny tool from EBI with the following parameters:

• Tree format: nj

Distance correction: FalseExcludes Gaps: False

• Clustering Methods: Neighbor-joining

• Percent identity matrix: False

The resulting tree is this.

Figure 7: Phylogenetic tree derived from the sequence alignments in the previous section

Question 7: Heatmap of aligned sequences

Figure 8: Heatmap derived from the sequence alignments.

Question 8: Protein Database Search

Consensus sequence:

Table 1: Similar atomic resolution structures from PDB to the consensus sequence generated from alignments requiring at least 50% sequence identity threshold.

ID	Name	Technique	Resolution	Source	Evalue	Identity
6DMY	Sonic Hedgehog protein	Electron microscopy	3.6	Homo sapiens	3.98e-124	98.286
1VHH	SONIC HEDGEHOG	X-ray diffraction	1.7	Mus musculus	1.79e-116	99.383
3K7G	Indian Hedgehog protein	X-ray diffraction	1.5	Homo sapiens	7.96e-113	88.136

Question 9: Molecular figure

Figure 9: VMD rendering of 3K7G Indian Hedgehog protein from Homo sapiens

The Indian Hedgehog protein is very likely to have similar structural motifs as and functions to Xenopus sonic hedgehog, since this protein has 88.14% identity to the consensus sequence. Sequence similarity above 80% is considered very similar.

Question 10: CHEMBL Assays