Inhalt Reelle Folgen, Konvergenz reeller Folgen, Beispiele, Sätze über Konvergenz reeller Folgen, Reihen, absolut konvergente Reihen

1 Reelle Folgen

Sei a_1, a_2, a_3, \ldots eine Folge reeller Zahlen, d.h. jedem $n \in \mathbb{N}$ ist eine reelle Zahl a_n zugeordnet; Schreibweise für die Folge: $(a_n)_{n \in \mathbb{N}}$ oder $(a_n)_{n \geq 1}$ oder einfach (a_n) .

Zum Beispiel kann die Folge $1, 3, 5, 7, \ldots$ der ungeraden Zahlen geschrieben werden als $(2n-1)_{n\in\mathbb{N}}$, die Folge $1, 4, 9, 16, \ldots$ der Quadratzahlen als $(n^2)_{n\in\mathbb{N}}$.

Man betrachtet auch Folgen, bei denen die Indizes nicht bei 1 beginnen, sondern etwa bei 0 oder bei irgendeinem festen $k \in \mathbb{Z}$.

Bei einer reellen Folge $(a_n)_{n\geq k}$ ist jeder ganzen Zahl $n\geq k$ eine reelle Zahl a_n zugeordnet. Die Folge $(a_n)_{n\geq k}$ ist also nichts anderes als die Abbildung $f:\{n\in\mathbb{Z}\mid n\geq k\}\to\mathbb{R}$ mit $f(n)=a_n$.

Bemerkung Eine Folge $(a_n)_{n\geq k}$ ist etwas anderes als die Menge $\{a_n \mid n\geq k\}$ der Folgenglieder, es kommt zusätzlich auf die Reihenfolge der a_n an.

2 Konvergenz reeller Folgen

Motivation Gegeben sei die Folge der Dezimalbrüche einer reellen Zahl a, etwa von $a = \pi$, also

$$\pi_0 = 3, \ \pi_1 = 3, 1, \ \pi_2 = 3, 14, \ \pi_3 = 3, 141, \ \pi_4 = 3, 1415, \ \pi_5 = 3, 14159, \ \dots$$

Man wird sagen, daß diese Folge $(\pi_n)_{n\in\mathbb{N}}$ gegen π "konvergiert". Genauer gilt:

Verlangt jemand einen Näherungswert für π mit einem Fehler $\leq \varepsilon = 10^{-3}$, so wählt man etwa $\pi_3 = 3,141$ und hat dann $0 \leq \pi - \pi_3 = 0,00059... \leq 10^{-3} = \varepsilon$. Für alle $n \geq 3$ gilt dann auch $\pi - \pi_n \leq \pi - \pi_3 \leq \varepsilon$ (wegen $\pi_3 \leq \pi_n$).

Soll der Fehler $< \varepsilon$ (für ein vorgegebenes $\varepsilon > 0$) sein, so bestimme man ein (von ε abhängiges) $n_{\varepsilon} \in \mathbb{N}$ mit $10^{-n_{\varepsilon}} < \varepsilon$, dann gilt $0 \le \pi - \pi_{n_{\varepsilon}} \le 10^{-n_{\varepsilon}} < \varepsilon$, d. h. $\pi_{n_{\varepsilon}}$ approximiert π mit einem Fehler $< \varepsilon$. Für alle $n \ge n_{\varepsilon}$ gilt dann auch $0 \le \pi - \pi_n < \varepsilon$.

Definition Eine reelle Folge $(a_n)_{n\geq k}$ konvergiert gegen $a\in\mathbb{R}$, falls es zu jedem $\varepsilon>0$ einen (von ε abhängigen) Index $n_{\varepsilon}\in\mathbb{Z}$, $n_{\varepsilon}\geq k$ gibt, so daß für alle $n\geq n_{\varepsilon}$ gilt: $|a_n-a|<\varepsilon$.

Wir schreiben dann $a_n \to a$ für $n \to \infty$ oder $\lim_{n \to \infty} a_n = a$.

In diesem Fall heißt a Grenzwert oder Limes der Folge (a_n) .

Die Folge (a_n) heißt konvergent, falls (a_n) einen Grenzwert besitzt.

Bemerkung Eine Folge (a_n) hat höchstens einen Grenzwert, d. h. konvergiert (a_n) gegen $a \in \mathbb{R}$ und gegen $b \in \mathbb{R}$, so gilt a = b.

Beweis: (a_n) konvergiere gegen a und gegen b. Annahme: $a \neq b$, also |a - b| > 0. Es sei $\varepsilon := \frac{1}{2}|a - b|$. Da (a_n) gegen a konvergiert, gibt es ein n_1 mit $|a_n - a| < \varepsilon$ für alle $n \geq n_1$. Da (a_n) gegen b konvergiert, gibt es ein n_2 mit $|a_n - b| < \varepsilon$ für alle $n \geq n_2$. Wir wählen ein $n \geq \max(n_1, n_2)$. Mit der Dreiecksungleichung folgt dann

$$|a-b| = |(a-a_n) + (a_n-b)| \le |a-a_n| + |a_n-b| < \varepsilon + \varepsilon = |a-b|,$$

also |a-b| < |a-b|, Widerspruch! Also war die Annahme $a \neq b$ falsch.

3 Beispiele

a) $\lim_{n\to\infty}\frac{1}{n}=0$.

Beweis: Sei $\varepsilon > 0$ vorgegeben. Nach dem Satz von Archimedes gibt es eine natürliche Zahl $n_{\varepsilon} > \frac{1}{\varepsilon}$, also $\frac{1}{n_{\varepsilon}} < \varepsilon$. Für alle $n \ge n_{\varepsilon}$ gilt dann $|\frac{1}{n} - 0| = \frac{1}{n} \le \frac{1}{n_{\varepsilon}} < \varepsilon$.

b) Sei $q \in \mathbb{R}$ mit |q| > 1. Dann gilt $\lim_{n \to \infty} \frac{1}{q^n} = 0$.

Beweis: Sei $\varepsilon > 0$ vorgegeben. Wir möchten $\left| \frac{1}{q^n} \right| = \frac{1}{|q|^n} < \varepsilon$ für $n \ge n_{\varepsilon}$ erreichen, also $|q|^n > \frac{1}{\varepsilon}$. Nach der Bernoullischen Ungleichung gilt

$$|q|^n = (1 + (|q| - 1))^n \ge 1 + n(|q| - 1) > n(|q| - 1).$$

Für $n > \frac{1}{\varepsilon(|q|-1)}$ gilt also $|q|^n > \frac{1}{\varepsilon}$. Wir wählen also ein $n_{\varepsilon} > \frac{1}{\varepsilon(|q|-1)}$. Für alle $n \geq n_{\varepsilon}$ gilt dann $|q|^n > n(|q|-1) \geq n_{\varepsilon}(|q|-1) > \frac{1}{\varepsilon}$.

c) Sei $x \in \mathbb{R}$ mit |x| < 1. Dann gilt $\lim_{n \to \infty} x^n = 0$.

Beweis: Für x=0 ist die Behauptung klar. Sei jetzt $x\neq 0$ und $q:=\frac{1}{x}$. Dann ist |q|>1, also $\lim_{n\to\infty}x^n=\lim_{n\to\infty}\frac{1}{q^n}=0$ nach b).

d) Sei (π_n) die Folge der Dezimalbrüche von π , s. Seite 1. Dann gilt $\lim_{n\to\infty} \pi_n = \pi$. Beweis: Sei $\varepsilon > 0$. Wegen $\lim_{n\to\infty} 10^{-n} = 0$ nach b) existiert ein n_ε mit $10^{-n} < \varepsilon$ für alle $n \ge n_\varepsilon$. Für alle $n \ge n_\varepsilon$ gilt dann $|\pi_n - \pi| = \pi - \pi_n \le 10^{-n} < \varepsilon$.

4 Sätze über Konvergenz reeller Folgen

Definitionen (a_n) sei eine beliebige (nicht unbedingt konvergente) reelle Folge.

 (a_n) heißt nach oben beschränkt, falls es ein $K \in \mathbb{R}$ gibt mit $a_n \leq K$ für alle $n \in \mathbb{N}$.

 (a_n) heißt nach unten beschränkt, falls es ein $L \in \mathbb{R}$ gibt mit $L \leq a_n$ für alle $n \in \mathbb{N}$.

 (a_n) heißt beschränkt, falls (a_n) nach oben und nach unten beschränkt ist.

Bemerkung (a_n) ist beschränkt \iff Es gibt ein $C \in \mathbb{R}$ mit $|a_n| \leq C$ für alle $n \in \mathbb{N}$.

Satz 1 Jede konvergente reelle Folge ist beschränkt.

Beweis: (a_n) konvergiere gegen a. Zu $\varepsilon := 1$ gibt es dann ein n_1 mit $|a_n - a| < 1$ für alle $n \ge n_1$. Für alle $n \ge n_1$ gilt dann $|a_n| \le |a_n - a| + |a| \le 1 + |a|$. Es sei $C := \max(1 + |a|, |a_1|, \dots, |a_{n_1-1}|)$. Dann gilt $|a_n| \le C$ für alle $n \in \mathbb{N}$, denn für $n \ge n_1$ gilt $|a_n| \le 1 + |a| \le C$, und für die restlichen a_1, \dots, a_{n_1-1} gilt $|a_i| \le C$ nach Definition von C.

Rechenregeln für konvergente Folgen

- (a_n) konvergiere a, (b_n) konvergiere gegen b. Sei $c \in \mathbb{R}$ beliebig. Dann gilt:
- (i) $(a_n + b_n)$ konvergiert gegen a + b.
- (ii) (ca_n) konvergiert gegen ca.
- (iii) $(a_n b_n)$ konvergiert gegen ab.
- (iv) Falls alle $b_n \neq 0$ sind und $b \neq 0$ ist, dann konvergiert $(\frac{a_n}{b_n})$ gegen $\frac{a}{b}$.

Beweis zu (i): Sei $\varepsilon > 0$. Da (a_n) gegen a, (b_n) gegen b konvergiert, gibt es n_1, n_2 mit $|a_n - a| < \frac{\varepsilon}{2}$ für alle $n \ge n_1$ und $|b_n - b| < \frac{\varepsilon}{2}$ für alle $n \ge n_2$. Es sei $n_{\varepsilon} := \max(n_1, n_2)$. Für alle $n \ge n_{\varepsilon}$ gilt dann (nach der Dreiecksungleichung)

$$|(a_n+b_n)-(a+b)| \le |a_n-a|+|b_n-b| < \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon.$$

2

(ii) ist ähnlich leicht zu zeigen.

Beweis zu (iii): Nach Satz 1 sind beide Folgen beschränkt, es gibt also A, B > 0 mit $|a_n| \le A$, $|b_n| \le B$ für alle $n \in \mathbb{N}$. Wegen $a_n b_n - ab = a_n (b_n - b) + a_n b - ab$ gilt

$$|a_n b_n - ab| \le |a_n| \cdot |b_n - b| + |a_n b - ab| \le A \cdot |b_n - b| + |a_n b - ab|.$$

Sei nun $\varepsilon > 0$. Wegen $b_n \to b$ für $n \to \infty$ gibt es ein n_1 mit $|b_n - b| < \frac{\varepsilon}{2A}$ für alle $n \ge n_1$. Nach (ii) konvergiert $(a_n b)$ gegen ab, also existiert ein n_2 mit $|a_n b - ab| < \frac{\varepsilon}{2}$ für alle $n \ge n_2$. Sei $n_{\varepsilon} := \max(n_1, n_2)$. Für alle $n \ge n_{\varepsilon}$ gilt dann

$$|a_n b_n - ab| < A \cdot \frac{\varepsilon}{2A} + \frac{\varepsilon}{2} = \varepsilon.$$

(iv) beweisen wir jetzt nicht (ist ähnlich wie (iii), nur etwas schwieriger).

Satz 2 Die Folge (a_n) konvergiere gegen a, die Folge (b_n) gegen b. Für alle $n \in \mathbb{N}$ gelte $a_n \leq b_n$. Dann folgt $a \leq b$.

Beweis: Sei $c_n := b_n - a_n$. Dann konvergiert (c_n) gegen c := b - a (nach Rechenregel (i)). Annahme: a > b, also c < 0. Da (c_n) gegen c konvergiert, gibt es zu $\varepsilon := \frac{|c|}{2}$ ein n_ε mit $|c_n - c| < \frac{|c|}{2}$, also $-\frac{|c|}{2} < c_n - c < \frac{|c|}{2}$ für alle $n \ge n_\varepsilon$. Für $n \ge n_\varepsilon$ folgt

$$c_n < c + \frac{|c|}{2} = c + \frac{-c}{2} = \frac{c}{2} < 0.$$

Das ist ein Widerspruch zu $c_n \geq 0$ für alle $n \in \mathbb{N}$.

Bemerkung Für konvergente Folgen $(a_n), (b_n)$ folgt aus $a_n < b_n$ für alle $n \in \mathbb{N}$ im allgemeinen $nicht \lim_{n\to\infty} a_n < \lim_{n\to\infty} b_n$, z. B. gilt $0 < \frac{1}{n}$ für alle $n \in \mathbb{N}$, aber $\lim_{n\to\infty} 0 = 0 = \lim_{n\to\infty} \frac{1}{n}$.

Monotone Folgen

Eine Folge (a_n) heißt monoton wachsend, falls $a_{n+1} \geq a_n$ für alle n gilt.

Eine Folge (a_n) heißt monoton fallend, falls $a_{n+1} \leq a_n$ für alle n gilt.

Gilt $a_{n+1} > a_n$ (bzw. $a_{n+1} < a_n$) für alle n, so heißt (a_n) streng monoton wachsend (bzw. streng monoton fallend).

Satz 3 Jede monoton wachsende, nach oben beschränkte Folge (a_n) konvergiert, und zwar gegen $\sup\{a_n \mid n \in \mathbb{N}\}$.

Analog gilt: Jede monoton fallende, nach unten beschränkte Folge (a_n) konvergiert gegen $\inf\{a_n \mid n \in \mathbb{N}\}.$

Beweis (für monoton wachsende Folgen): Es ist $\{a_n \mid n \in \mathbb{N}\}$ nach oben beschränkt, also existiert $a := \sup\{a_n \mid n \in \mathbb{N}\}$. Zunächst gilt $a_n \leq a$ für alle $n \in \mathbb{N}$. Sei $\varepsilon > 0$ vorgegeben. Wegen $a - \varepsilon < a$ ist $a - \varepsilon$ keine obere Schranke von $\{a_n \mid n \in \mathbb{N}\}$, also existiert ein $n_{\varepsilon} \in \mathbb{N}$ mit $a - \varepsilon < a_{n_{\varepsilon}}$. Da (a_n) monoton wachsend ist, folgt $a - \varepsilon < a_{n_{\varepsilon}} \leq a_n \leq a$ für alle $n \geq n_{\varepsilon}$, also $-\varepsilon < a_n - a \leq 0 < \varepsilon$ und damit $|a_n - a| < \varepsilon$ für alle $n \geq n_{\varepsilon}$.

Cauchy-Folgen

Problem: Wie erkennt man Konvergenz einer Folge, ohne den Grenzwert zu kennen? Konvergiert (a_n) gegen a, so wird $|a_n - a_m| = |(a_n - a) + (a - a_m)| \le |a_n - a| + |a_m - a|$ klein für genügend große n, m. Dies motiviert die folgende Definition.

Definition Eine Folge (a_n) heißt Cauchy-Folge, falls es zu jedem $\varepsilon > 0$ ein $n_0 \in \mathbb{N}$ gibt mit $|a_n - a_m| < \varepsilon$ für alle $n, m \ge n_0$.

Satz 4 (Cauchy-Kriterium)

Für jede Folge (a_n) gilt: (a_n) konvergiert \iff (a_n) ist Cauchy-Folge.

Beweis zu " \Rightarrow ": (a_n) konvergiere gegen a. Sei $\varepsilon>0$ gegeben. Es gibt ein n_0 mit $|a_n-a|<\frac{\varepsilon}{2}$ für alle $n\geq n_0$. Für alle $n,m\geq n_0$ gilt dann $|a_n-a_m|=|(a_n-a)+(a-a_m)|\leq |a_n-a|+|a_m-a|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$. Also ist (a_n) eine Cauchy-Folge. Der Beweis zu " \Leftarrow " ist schwieriger; es geht Satz 3 ein.

5 Reihen

Sei $(a_j)_{j\geq 0}$ eine Folge reeller Zahlen. Unter der unendlichen Reihe $\sum_{j=0}^{\infty} a_j$ versteht man die Folge $(s_n)_{n\geq 0}$, wobei $s_n:=\sum_{j=0}^n a_j$ für $n\geq 0$ die n-te Partialsumme der Reihe ist.

Die Reihe $\sum_{j=0}^{\infty} a_j$ heißt konvergent, falls die Folge (s_n) der Partialsummen konvergiert; man setzt dann $\sum_{j=0}^{\infty} a_j := \lim_{n \to \infty} s_n$.

Aus dem Cauchy-Kriterium (Satz 4, angewandt auf (s_n)) erhält man leicht:

Satz 5 (Cauchy-Kriterium für Reihen)

 $\sum_{j=0}^{\infty} a_j \text{ konvergiert genau dann, wenn die Folge } (s_n) \text{ der Partialsummen eine Cauchy-Folge}$ $ist, d. h. zu \text{ jedem } \varepsilon > 0 \text{ existiert ein } n_0 \in \mathbb{N} \text{ mit } |\sum_{j=m+1}^n a_j| < \varepsilon \text{ für alle } n > m \ge n_0.$

Beispiele

a) Geometrische Reihe: Für |x| < 1 konvergiert $\sum_{j=0}^{\infty} x^j$, und zwar ist $\sum_{j=0}^{\infty} x^j = \frac{1}{1-x}$. Beweis: Für $n \in \mathbb{N}^0$ ist $s_n = \sum_{j=0}^n x^j = \frac{1-x^{n+1}}{1-x} = \frac{1}{1-x} - \frac{x^{n+1}}{1-x}$. Wegen |x| < 1 gilt $x^{n+1} \to 0$ für $n \to \infty$, also $\frac{x^{n+1}}{1-x} \to 0$ für $n \to \infty$. Damit ist $\sum_{j=0}^{\infty} x^j = \lim_{n \to \infty} s_n = \frac{1}{1-x}$.

b)
$$\sum_{i=1}^{\infty} \frac{1}{j(j+1)} = 1$$
.

Beweis: Wegen $\frac{1}{j(j+1)} = \frac{1}{j} - \frac{1}{j+1}$ gilt $\sum_{j=1}^{n} \frac{1}{j(j+1)} = \sum_{j=1}^{n} \left(\frac{1}{j} - \frac{1}{j+1}\right) = 1 - \frac{1}{n+1} \to 1$ für $n \to \infty$.

c) Folgerung $\sum_{j=1}^{\infty} \frac{1}{j^2}$ konvergiert.

Beweis mit dem Cauchy-Kriterium (Satz 5): $\sum_{j=m+1}^{n} \frac{1}{j^2} \leq \sum_{j=m+1}^{n} \frac{1}{j(j-1)} = \sum_{j=m}^{n-1} \frac{1}{j(j+1)} \text{ wird}$ $< \varepsilon \text{ für genügend große } m, n, \text{ da } \sum_{j=1}^{\infty} \frac{1}{j(j+1)} \text{ nach b) konvergiert.}$

d) $\sum_{i=1}^{\infty} \frac{1}{i}$ ist *divergent*, d. h. nicht konvergent.

Beweis: Wäre $\sum_{j=1}^{\infty} \frac{1}{j}$ konvergent, so gäbe es zu $\varepsilon := \frac{1}{2}$ ein n_0 mit $\sum_{j=m+1}^{n} \frac{1}{j} < \frac{1}{2}$ für alle

4

 $n > m \ge n_0$. Für $m := n_0 + 1$ und n := 2m wäre insbesondere $\sum_{i=m+1}^{2m} \frac{1}{i} < \frac{1}{2}$. Es ist aber

$$\sum_{j=m+1}^{2m} \frac{1}{j} = \frac{1}{m+1} + \dots + \frac{1}{2m} \ge \frac{1}{2m} + \dots + \frac{1}{2m} = m\frac{1}{2m} = \frac{1}{2},$$

Widerspruch!

Lemma Konvergiert die Reihe $\sum\limits_{j=0}^{\infty}a_j$, so konvergiert die Folge (a_j) gegen 0. Beweis: Sei $\varepsilon>0$. Nach dem Cauchy-Kriterium für Reihen (Satz 5) gibt es ein n_0 mit $|\sum\limits_{j=m+1}^{n}a_j|<\varepsilon$ für alle $n>m\geq n_0$. Für alle $m\geq n_0$ und n:=m+1 ist inbesondere $|a_{m+1}|<\varepsilon$. Also ist $|a_j|<\varepsilon$ für alle $j\geq n_0+1$. Damit konvergiert (a_j) gegen 0.

Beispiel: Für $|x| \ge 1$ divergiert $\sum_{i=0}^{\infty} x^i$ (denn für $|x| \ge 1$ konvergiert (x^i) nicht gegen (x^i)

Rechenregeln für konvergente Reihen

Konvergieren die Reihen $\sum_{j=0}^{\infty} a_j$ und $\sum_{j=0}^{\infty} b_j$, und sind $a, b \in \mathbb{R}$, so konvergiert auch die

Reihe
$$\sum_{j=0}^{\infty} (aa_j + bb_j)$$
, und es gilt $\sum_{j=0}^{\infty} (aa_j + bb_j) = a \cdot \sum_{j=0}^{\infty} a_j + b \cdot \sum_{j=0}^{\infty} b_j$.

Beweis: Für die Partialsummen $s_n = \sum_{j=0}^n a_j$ und $t_n = \sum_{j=0}^n b_j$ gilt $\sum_{j=0}^n (aa_j + bb_j) = as_n + bt_n$. Die Behauptung folgt also aus den Rechenregeln für Folgen.

Absolut konvergente Reihen

Eine Reihe $\sum_{j=0}^{\infty} a_j$ heißt absolut konvergent, falls die Reihe $\sum_{j=0}^{\infty} |a_j|$ konvergiert.

Lemma Aus der absoluten Konvergenz einer Reihe folgt die Konvergenz der Reihe.

Beweis mit dem Cauchy-Kriterium für Reihen (Satz 5): Sei $\sum_{i=0}^{\infty} |a_i|$ konvergent. Ist $\varepsilon > 0$ gegeben, so existiert ein n_0 mit $\sum_{j=m+1}^n |a_j| < \varepsilon$ für alle $n > m \ge n_0$. Für alle $n > m \ge n_0$ gilt dann auch $|\sum_{j=m+1}^n a_j| \leq \sum_{j=m+1}^n |a_j| < \varepsilon$. Nach dem Cauchy-Kriterium ist also $\sum_{j=n}^\infty a_j$

Satz 6 (Majoranten-Kriterium für absolute Konvergenz)

Seien (a_n) und (b_n) Folgen, es gebe ein k mit $|a_n| \leq b_n$ für allé $n \geq k$. Dann gilt: Ist $\sum_{j=0}^{\infty} b_j$ konvergent, so ist $\sum_{j=0}^{\infty} a_j$ absolut konvergent, also insbesondere konvergent. (Die Reihe $\sum b_j$ heißt *Majorante* von $\sum a_j$.)

Beweis: Sei $\varepsilon > 0$. Da $\sum_{i=0}^{\infty} b_j$ konvergiert, gibt es ein n_0 mit $\sum_{i=m+1}^{n} b_i < \varepsilon$ für alle n > 0 $m \geq n_0$. Für alle $n > m \geq \max(n_0, k)$ gilt dann $\sum_{i=m+1}^n |a_i| \leq \sum_{i=m+1}^n b_i < \varepsilon$. Nach dem Cauchy-Kriterium (Satz 5) ist also $\sum_{i=0}^{\infty} |a_j|$ konvergent.

Satz 7 (Quotienten-Kriterium für absolute Konvergenz)

Es gebe ein $q \in \mathbb{R}$ mit $0 \le q < 1$ und $|a_{j+1}| \le q|a_j|$ für alle $j \in \mathbb{N}^0$. Dann ist die Reihe $\sum_{j=0}^{\infty} a_j$ absolut konvergent.

Beweis: Aus $|a_{j+1}| \leq q|a_j|$ folgt (durch Induktion) $|a_j| \leq q^j |a_0|$ für alle $j \in \mathbb{N}^0$. Die Reihe $\sum_{j=0}^{\infty} |a_0| q^j = |a_0| \cdot \sum_{j=0}^{\infty} q^j$ ist (als geometrische Reihe) konvergent. Nach dem Majoranten-Kriterium (Satz 6) ist also $\sum_{j=0}^{\infty} a_j$ absolut konvergent.