Funkcie

Educat - vzdelávacie centrum

22. marca 2024

1 Teória k funkciám

Definícia 1 (Funkcia reálnej premennej). Funkciou reálnej premennej na množine $A \subseteq \mathbb{R}$ sa nazýva predpis, ktorým je každému prvku množiny A priradené práve jedno reálne číslo, ktoré nazývame funkčnou hodnotou].

Definícia 2 (Definičný obor). Množina $A \subseteq \mathbb{R}$, ktorej prvkom funkcia priradzuje ich funkčné hodnoty, sa nazýva definičný obor funkcie f a značí sa D(f).

Definícia 3 (Obor hodnôt). Množina $Y \subseteq R$, ktorej prvky sú priradené funkciou f jej definičnému oboru, sa nazýva obor hodnôt a značí sa H(f).

1.1 Spôsoby určenia funkcie

Funkciu reálnej premennej vieme graficky zobraziť v pravouhlej sradnicovej sústave. Jednotlivé body [x,y] v rovine pritom spĺňajú podmienku, že y=f(x). Takéto zobrazenie sa potom nazýva grafom funkcie f. Samotnú funkciu potom vieme určiť nasledovnými spôsobmi.

1. predpisom, napr.
$$f: y = 3x - 5$$
 alebo iný zápis je $f(x) = -6x + 11$

- 3. tabuľkou Napr.:

 x
 1
 2
 3
 4

 y
 2
 4
 8
 16
- 4. slovným opisom . Napr.: Funkcia f priraďuje každému prirodzenému číslu jeho dvojnásobok.
- 5. grafom. Napr:

1.2 Vlastnosti funkcií

Definícia 4 (Párnosť funkcie). Funkcia f sa nazýva párnou, ak $\forall x, -x \in D(f): f(x) = f(-x)$.

Graf párnej funkcie je symetrický (dá sa zrkadlovo preklopiť) podľa y-ovej osi.

Definícia 5 (Nepárnosť funkcie). Funkcia f sa nazýva nepárnou ak $\forall x, -x \in D(f): f(x) = -f(-x)$.

Graf nepárnej funkcie je symetrický podľa počiatku súradnicovej sústavy.

Definícia 6. Funkcia f je na množine $M \subseteq D(f)$

- 1. $\lceil \text{rastúca} \rceil$ ak $\forall x_1, x_2 \in M : x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$
- 2. klesajúca ak $\forall x_1, x_2 \in M : x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$
- 3. neklesajúca ak $\forall x_1, x_2 \in M : x_1 \leq x_2 \Rightarrow f(x_1) \leq f(x_2)$
- 4. nerastúca ak $\forall x_1, x_2 \in M : x_1 \leq x_2 \Rightarrow f(x_1) \leq f(x_2)$

Ak je funkcia rastúca/klesajúca/neklesajúca/nerastúca na celom jej definičnom obore, tak skrátene hovoríme, že je rastúca/klesajúca/neklesajúca/nerastúca.

Definícia 7 (Monotónnosť). Ak je funkcia na celom definičnom obore iba rastúca, klesajúca, nelesajúca alebo nerastúca, tak ju nazývame monotónnou

Definícia 8 (Rýdza monotónnosť). Ak je funkcia na celom definičnom obore iba rastúca alebo iba klesajúca, tak ju nazývame rýdzo monotónnou.

Definícia 9 (Prostosť). Funkcia, sa nazýva prostá ak $\forall x_1, x_2 \in D(f) : x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$.

Ak je funkcia rýdzo monotónna, tak je prostá. ! Naopak ale veta neplatí!

Definícia 10 (Ohraničenosť). Funkcia f sa nazýva

- 1. zhora ohraničená ak $\exists h \in \mathbb{R} : \forall y \in H(f) \ y \leq h$
- 3. ohraničená ak je ohraničená zdola aj zhora.

Definícia 11 (Inverzná funkcia). Ak je f prostá funkcia, tak k nej existuje práve jedna funkcia, označme ju f^{-1} , ktorá je určená takto:

- 1. jej definičný obor je H(f), teda $D(f^{-1}) = H(f)$,
- 2. $H(f^{-1}) = D(f)$

Takáto funkcia sa nazýva inverznou funkciou k funkcii f.

Z týchto dvoch vlastností vyplýva, že graf prostej funkcie je súmerný podľa osi y=x s jej inverziou.

Definícia 12 (Periodická funkcia). Funkcia f sa nazýva periodická funkcia práve vtedy, keď existuje $\exists p > 0 : \forall k \in \mathbb{Z}$:

- 1. $ak \ x \in D(f) \Rightarrow x + kp \in D(f)$,
- $2. \ f(x+kp) = f(x)$

Číslo p potom nazývame periódou funkcie f.

1.3 Extrémy funkcií

Definícia 13 (Maximum). Hovoríme, že funkcia f má v bode $a \in M \subseteq D(f)$ maximum na množine M práve vtedy, keď pre všetky $x \in M$ platí $f(x) \leq f(a)$.

Definícia 14 (Minimum). Hovoríme, že funkcia f má v bode $a \in M \subseteq D(f)$ minimum na množine M práve vtedy, keď pre všetky $x \in M$ platí $f(x) \ge f(a)$.

Definícia 15 (Ostré maximum). Hovoríme, že funkcia f má v bode $a \in M \subseteq D(f)$ ostré maximum na množine M práve vtedy, keď pre všetky $x \in M$ platí $f(x) \leq f(a)$.

Definícia 16 (Ostré minimum). Hovoríme, že funkcia f má v bode $a \in M \subseteq D(f)$ ostré minimum na množine M práve vtedy, keď pre všetky $x \in M$ platí f(x) > f(a).

2 Cvičenia k funkciám

https://gymmoldava.sk/ICV/CELYWEB/indexICV.php?show=funkcie

2.1 Rozhodovačka

Pre jednotlivé predpisy urči, či predstavujú funkciu, alebo nie.

1.
$$f = \{[-1, 2], [0, 0], [1, 2], [2, 3]\}$$

$$2. \ g = \{[-1,0],[0,-1],[-1,1],[1,-1]\}$$

- 5. j:
- 6. k:

