Financial Econometrics Linear State Space Models

In Choi

Sogang University

November 2, 2022

Linear state space models

The model and assumptions

Model

Observation equation:

$$y_t = Z_t \alpha_t + \varepsilon_t, \ \varepsilon_t \sim N(0, H_t), (t = 1, ..., n)$$

Transition equation :

$$\alpha_{t+1} = T_t \alpha_t + R_t \eta_t, \ \eta_t \sim N(0, Q_t),$$

 $\alpha_1 \sim N(a_1, P_1),$

where y_t is a $p \times 1$ vector of observations called the **observation** vector and α_t is an unobserved $m \times 1$ vector called the **state vector**.

Linear state space models

The model and assumptions

Assumptions

- The matrices Z_t , T_t , R_t , H_t and Q_t are known; a_1 and P_1 are also known.
- The error terms ε_t and η_t are serially independent and independent of each other at all time points.
- α_1 is independent of $\{\varepsilon_t\}$ and $\{\eta_t\}$.

Local level model

Model

$$y_t = \alpha_t + \varepsilon_t, \ \varepsilon_t \sim N(0, \sigma_{\varepsilon}^2),$$

$$\alpha_{t+1} = \alpha_t + \eta_t, \ \eta_t \sim N(0, \sigma_{\eta}^2),$$

$$\alpha_1 \sim N(a_1, P_1),$$

where ε_t 's and η_t 's are all mutually independent and are independent of α_1 .

- If $\sigma_{\eta}^2 > 0$, y_t is the sum of a **random walk** and a noise term.
- If $\sigma_{\eta}^2 = 0$, $\alpha_{t+1} = \alpha_t = ... = \alpha_1$. Thus, y_t is the sum of a **constant** and a noise term.

Local linear trend model

Model

$$\begin{array}{rcl} y_t & = & \mu_t + \varepsilon_t, \; \varepsilon_t \sim N(0, \sigma_\varepsilon^2), \\ \mu_{t+1} & = & \mu_t + \nu_t + \eta_t, \; \eta_t \sim N(0, \sigma_\eta^2), \\ \nu_{t+1} & = & \nu_t + \varsigma_t, \; \varsigma_t \sim N(0, \sigma_\varsigma^2), \; (\varsigma: \; \text{sigma}) \\ \alpha_1 & \sim & N(a_1, P_1). \end{array}$$

• This can be written in state space form as

$$\begin{array}{rcl} y_t & = & (1 \ 0) \left(\begin{array}{c} \mu_t \\ \nu_t \end{array} \right) + \varepsilon_t, \\ \left(\begin{array}{c} \mu_{t+1} \\ \nu_{t+1} \end{array} \right) & = & \left[\begin{array}{c} 1 & 1 \\ 0 & 1 \end{array} \right] \left(\begin{array}{c} \mu_t \\ \nu_t \end{array} \right) + \left(\begin{array}{c} \eta_t \\ \varsigma_t \end{array} \right). \end{array}$$

Local linear trend model

- If $\sigma_{\eta}^2 = \sigma_{\varsigma}^2 = 0$, $\nu_{t+1} = \nu_t$ and $\mu_{t+1} = \mu_t + \nu_t$. Thus, $\nu_{t+1} = \nu_t = \dots = \nu_1$ and $\mu_{t+1} = \mu_t + \nu_1 = \mu_1 + t\nu_1$. So the model reduces to the **deterministic linear trend** plus noise model.
- If $\sigma_{\eta}^2=0$ and $\sigma_{\varsigma}^2>0$, ν_{t+1} is a random walk and μ_{t+1} is the sum of the ramdom walk. Thus, the model becomes the **integrated random** walk.
- If $\sigma_{\eta}^2>0$ and $\sigma_{\varsigma}^2=0$, $\mu_{t+1}=\mu_t+\nu_1+\eta_t$. So the model becomes the **deterministic linear trend** plus **random walk** model.

Seasonal model

Model (local linear trend + seasonality)

$$y_t = \mu_t + \gamma_t + \varepsilon_t, \ \varepsilon_t \sim N(0, \sigma_{\varepsilon}^2),$$

$$\mu_{t+1} = \mu_t + \nu_t + \eta_t, \ \eta_t \sim N(0, \sigma_{\eta}^2),$$

$$\nu_{t+1} = \nu_t + \varsigma_t, \ \varsigma_t \sim N(0, \sigma_{\varsigma}^2)$$

Seasonal model

Models for seasonality (s:# of seasons)

$$\begin{array}{lll} (i) \; \gamma_{t+1} & = & -\sum_{j=1}^{s-1} \gamma_{t+1-j}; \\ \\ (ii) \; \gamma_{t+1} & = & -\sum_{j=1}^{s-1} \gamma_{t+1-j} + \omega_t, \; \omega_t \sim \textit{N}(0,\sigma_\omega^2); \\ \\ (iii) \; \gamma_{j,t+1} & = & \gamma_{j,t} + \omega_{jt}, \; t = (i-1)s+j, (i=1,2,...; \; j=1,...,s) \\ \\ \text{with} \; \sum_{j=1}^{s} \gamma_{j,t} & = & 0 \; \text{for any} \; t. \; \text{(quasi-random walk)} \end{array}$$

Seasonal model

• For (ii), take the state vector as

$$\alpha_t = (\mu_t, \nu_t, \gamma_t, ..., \gamma_{t-s+2})'$$

and define the system matrices accordingly.

ARMA and ARIMA models

 ARMA(2,1) model Transition equation

$$\begin{bmatrix} y_{t+1} \\ \phi_2 y_t + \theta_1 \zeta_{t+1} \end{bmatrix} = \begin{bmatrix} \phi_1 & 1 \\ \phi_2 & 0 \end{bmatrix} \begin{bmatrix} y_t \\ \phi_2 y_{t-1} + \theta_1 \zeta_t \end{bmatrix} + \begin{pmatrix} 1 \\ \theta_1 \end{pmatrix} \zeta_{t+1}$$

$$(\zeta : \mathsf{zeta})$$

Observational equation

$$y_t = (1 \ 0)\alpha_t$$

ARMA and ARIMA models

• ARIMA(2,1,1) model

$$\begin{array}{rcl} \alpha_t & = & \left[\begin{array}{c} y_{t-1} \\ y_t^* \\ \phi_2 y_{t-1}^* + \theta_1 \zeta_t \end{array} \right], \ y_t^* = \Delta y_t \\ y_t & = & \left(1 \ 1 \ 0 \right) \alpha_t \text{ : identity relation} \\ \alpha_{t+1} & = & \left[\begin{array}{ccc} 1 & 1 & 0 \\ 0 & \phi_1 & 1 \\ 0 & \phi_2 & 0 \end{array} \right] \alpha_t + \left(\begin{array}{c} 0 \\ 1 \\ \theta_1 \end{array} \right) \zeta_{t+1} \end{array}$$

ARMA and ARIMA models

ARIMA(2,1,1) model
 The third equation means

$$\begin{array}{rcl} y_t &=& y_{t-1}+\Delta y_t = y_t \ : \mbox{identity relation} \\ \Delta y_{t+1} &=& \phi_1 \Delta y_t + \phi_2 \Delta y_{t-1} + \theta_1 \zeta_t + \zeta_{t+1} \\ \phi_2 \Delta y_t + \theta_1 \zeta_{t+1} &=& \phi_2 \Delta y_t + \theta_1 \zeta_{t+1} : \mbox{ identity relation} \end{array}$$

Model

$$y_{t} = s_{t} + x_{t}$$

$$s_{t} = \beta s_{t-\tau} + e_{t}, e_{t} \sim iid (0, \sigma_{e}^{2})$$

$$x_{t} = \sum_{k=1}^{p} \phi_{k} x_{t-k} + u_{t} + \sum_{l=1}^{q} \theta_{l} u_{t-l}, u_{t} \sim iid (0, \sigma_{u}^{2})$$
(1)

• The transition equation for the seasonal component is written as

$$\xi_{t+1} = V\xi_t + Ee_{t+1}, \tag{2}$$

where

$$\boldsymbol{\xi}_t = \left(\begin{array}{c} s_t \\ \boldsymbol{\beta} \begin{bmatrix} s_{t- au+1} \\ \vdots \\ s_{t-1} \end{array} \right), \ \ V_i = \begin{bmatrix} oldsymbol{0}_{ au-1} & I_{ au-1} \\ oldsymbol{eta} & oldsymbol{0}_{ au-1}' \end{bmatrix}, \ \ \boldsymbol{E} = \left(\begin{array}{c} oldsymbol{1} \\ oldsymbol{0}_{ au-1} \end{array} \right),$$

Seasonal ARMA

The transition equation for the random component is

$$\varsigma_{t+1} = W\varsigma_t + Uu_{t+1},\tag{3}$$

where

$$\varsigma_{t} = \begin{bmatrix} x_{t} \\ \phi_{2}x_{t-1} + \dots + \phi_{r}x_{t-r+1} + \theta_{1}u_{t} + \dots + \theta_{r-1}u_{t-r+2} \\ \phi_{3}x_{t-1} + \dots + \phi_{r}x_{t-r+2} + \theta_{2}u_{t} + \dots + \theta_{r-1}u_{t-r+2} \\ \vdots \\ \phi_{r}x_{t-1} + \theta_{r-1}u_{t} \end{bmatrix},$$

$$W = \left[egin{array}{ccc} \phi_1 & & & \ dots & I_{r-1} \ \phi_{r-1} & \phi_r & \mathbf{0}_{r-1}' \end{array}
ight], \ \ U_i = \left(egin{array}{ccc} 1 \ heta_1 \ dots \ heta_{r-1} \end{array}
ight),$$

and $r = \max(p, q+1)$. In the special case r=1, $W=\phi_1$ and U=1.

Let

$$\alpha_{t} = \begin{bmatrix} \xi'_{t} & \zeta'_{t} \end{bmatrix}',$$

$$T = \begin{bmatrix} V & \mathbf{0}_{\tau \times r} \\ \mathbf{0}_{r \times \tau} & W \end{bmatrix},$$

$$\eta_{t} = \begin{pmatrix} e_{t+1} \\ u_{t+1} \end{pmatrix}, R = \begin{bmatrix} 1 & 0 \\ \mathbf{0}_{\tau-1} & \mathbf{0}_{\tau-1} \\ \mathbf{0}_{r} & U \end{bmatrix}.$$

Seasonal ARMA

 Putting (2) and (3) together, we may write model (1) in state space form as

$$\begin{array}{rcl} \mathbf{y}_t &=& Z\alpha_t, \ Z = [1 \ \mathbf{0}_{\tau-1}' \ 1 \ \mathbf{0}_{r-1}'], \\ \\ \alpha_{t+1} &=& T\alpha_t + R\eta_t, \ \eta_t \sim \textit{iid} \ (\mathbf{0}_2, Q), \ Q = \left[\begin{array}{cc} \sigma_e^2 & \mathbf{0} \\ \mathbf{0} & \sigma_u^2 \end{array} \right]. \end{array}$$

Advantages of the state space approach

The different components that make up the series, (e.g., trend, seasonal, cycle and calendar variations, explanatory variables and interventions) are modelled separately before being put together in the state space model. The investigator can identify each component separately using the state space approach.

Derivation of the Kalman filter

• Assume that a_1 and P_1 are known. Let $Y_t = (y_1, ..., y_{t-1})'$. Our objective is to obtain

$$\begin{array}{rcl} a_{t|t} & = & E(\alpha_t \mid Y_t), P_{t|t} = Var(\alpha_t \mid Y_t) \\ a_{t+1} & = & E(\alpha_{t+1} \mid Y_t), P_{t+1} = Var(\alpha_{t+1} \mid Y_t). \end{array}$$

Assume

$$\alpha_t \mid Y_t \sim N(a_{t|t}, P_{t|t})$$

and

$$\alpha_{t+1} \mid Y_t \sim N(a_{t+1}, P_{t+1}).$$

• Starting with $N(a_t, P_t)$, we calculate $a_{t|t}$, a_{t+1} , $P_{t|t}$ and P_{t+1} from a_t and P_t recursively.

Let

$$v_t = y_t - E(y_t \mid Y_{t-1}) = y_t - Z_t a_t$$
 (4)

(one-step ahead forecast error of y_t given Y_{t-1}).

• Since $E(v_t \mid Y_{t-1}) = E(y_t - Z_t a_t \mid Y_{t-1}) = E(Z_t \alpha_t + \varepsilon_t - Z_t a_t \mid Y_{t-1}) = 0$. We have for j = 1, ..., t-1

$$E(v_t) = 0
Cov(y_j, v_t) = EE(y_j v_t | Y_{t-1})
= E\{y_j E(v_t | Y_{t-1})\}
= 0.$$

Derivation of the Kalman filter

Step 1

• When Y_{t-1} and v_t are fixed, then Y_t is fixed and vice versa.¹ Thus,

$$a_{t|t} = E(\alpha_t \mid Y_t) = E(\alpha_t \mid Y_{t-1}, v_t),$$

 $a_{t+1} = E(\alpha_{t+1} \mid Y_t) = E(\alpha_{t+1} \mid Y_{t-1}, v_t)$

Lemma 1 Suppose that

$$\left(\begin{array}{c} x\\ y \end{array}\right) \sim N\left(\left(\begin{array}{c} \mu_x\\ \mu_y \end{array}\right), \left(\begin{array}{cc} \Sigma_{xx} & \Sigma_{xy}\\ \Sigma'_{xy} & \Sigma_{yy} \end{array}\right)\right).$$

Then,

$$x \mid y \sim N\left(\mu_x + \Sigma_{xy}\Sigma_{yy}^{-1}(y - \mu_y), \Sigma_{xx} - \Sigma_{xy}\Sigma_{yy}^{-1}\Sigma_{xy}'\right).$$

• Apply Lemma 1 to the conditional joint distribution of α_t and v_t given Y_{t-1} . Taking x and y in Lemma 1 as α_t and v_t , we obtain

$$\begin{aligned} a_{t|t} &= E(\alpha_t \mid Y_t) = E(\alpha_t \mid Y_{t-1}, v_t) \\ &= E(\alpha_t \mid Y_{t-1}) + Cov(\alpha_t, v_t \mid Y_{t-1}) Var(v_t \mid Y_{t-1})^{-1} v_t. \end{aligned}$$

Derivation of the Kalman filter

Step 1

But

$$\begin{aligned} \textit{Cov}(\alpha_t, v_t & \mid & Y_{t-1}) = E\left(\alpha_t(Z_t\alpha_t + \varepsilon_t - Z_ta_t)' \mid Y_{t-1}\right) \\ &= & E\left(\alpha_t(\alpha_t - a_t)'Z_t' \mid Y_{t-1}\right) \\ &= & P_tZ_t'\left(\text{Recall } P_t = \textit{Var}(\alpha_t \mid Y_{t-1})\right) \end{aligned}$$

and

$$Var(v_{t} \mid Y_{t-1}) = Var(Z_{t}\alpha_{t} + \varepsilon_{t} - Z_{t}a_{t} \mid Y_{t-1})$$

$$= Z_{t}P_{t}Z'_{t} + H_{t}$$

$$= F_{t}, \text{ say.}$$
(5)

Thus

$$a_{t|t} = a_t + P_t Z_t' F_t^{-1} v_t. (6)$$

Step 1

Using Lemma 1, we obtain

$$P_{t|t} = Var(\alpha_{t} \mid Y_{t}) = Var(\alpha_{t} \mid Y_{t-1}, v_{t})$$

$$= Var(\alpha_{t} \mid Y_{t-1})$$

$$-Cov(\alpha_{t}, v_{t} \mid Y_{t-1})Var(v_{t} \mid Y_{t-1})^{-1}Cov(\alpha_{t}, v_{t} \mid Y_{t-1})'$$

$$= P_{t} - P_{t}Z'_{t}F_{t}^{-1}Z_{t}P'_{t}.$$
(7)

• Relations (6) and (7) are called the **updating step** of the Kalman filter.

Derivation of the Kalman filter

Step 2

• Now develop recursion for α_{t+1} and P_{t+1} .

$$a_{t+1} = E(T_t \alpha_t + R_t \eta_t \mid Y_t) = T_t a_{t|t}$$
 (8)

$$P_{t+1} = Var(T_t\alpha_t + R_t\eta_t | Y_t)$$

$$= T_tVar(\alpha_t | Y_t)T'_t + R_tQ_tR'_t$$

$$= T_tP_{t|t}T'_t + R_tQ_tR'_t$$
(9)

Substituting (6) into (8) gives

$$a_{t+1} = T_t(a_t + P_t Z_t' F_t^{-1} v_t)$$

= $T_t a_t + K_t v_t$, (10)

where $K_t = T_t P_t Z_t' F_t^{-1}$ (called the **Kalman gain**).

Derivation of the Kalman filter

Step 2

• Substituting (7) into (9) gives

$$P_{t+1} = T_t (P_t - P_t Z_t' F_t^{-1} Z_t P_t') T_t' + R_t Q_t R_t'$$

= $T_t P_t (T_t - K_t Z_t)' + R_t Q_t R_t'$ (11)

Summary

Summary

$$v_{t} = y_{t} - Z_{t}a_{t}, F_{t} = Z_{t}P_{t}Z'_{t} + H_{t},$$

$$a_{t|t} = a_{t} + P_{t}Z'_{t}F_{t}^{-1}v_{t}, P_{t|t} = P_{t} - P_{t}Z'_{t}F_{t}^{-1}Z_{t}P'_{t},$$

$$a_{t+1} = T_{t}a_{t} + K_{t}v_{t}, P_{t+1} = T_{t}P_{t}(T_{t} - K_{t}Z_{t})' + R_{t}Q_{t}R'_{t}.$$

 Although the results are obtained under the assumption of normality, they have a wider validity in the sense of minimum variance linear unbiased estimation when the variables involved are not normally distributed. (Use Lemma 2 in Section 3 of DK.)

Derivation of the Kalman filter

Recursive relation for state estimation error

• Define the **state estimation error** as

$$x_t = \alpha_t - a_t$$
 with $Var(x_t) = P_t$.

• The one-step ahead forecast error v_t (called also **innovation**) can be written as

$$v_{t} = y_{t} - E(y_{t} \mid Y_{t-1}) = y_{t} - Z_{t}a_{t}$$

$$= Z_{t}\alpha_{t} + \varepsilon_{t} - Z_{t}a_{t}$$

$$= Z_{t}x_{t} + \varepsilon_{t}.$$
(12)

Derivation of the Kalman filter

Recursive relation for state estimation error

• Thus, the recursive relation for state esimation error is given as

$$\begin{aligned}
x_{t+1} &= \alpha_{t+1} - a_{t+1} \\
&= T_t \alpha_t + R_t \eta_t - T_t a_t - K_t v_t \\
&= T_t x_t + R_t \eta_t - K_t Z_t x_t - K_t \varepsilon_t \\
&= L_t x_t + R_t \eta_t - K_t \varepsilon_t, \ (L_t = T_t - K_t Z_t),
\end{aligned} (13)$$

where the second equality employs relation (10).

State smoothing

• The objective of **state smoothing**Derive the conditional density of α_t given the entire series $y_1, ..., y_n$.

- The operation of calculating $\hat{\alpha}_t = E(\alpha_t \mid Y_n)$ is called **state** smoothing.
- Let $v_{t:n} = (v'_t, ..., v'_n)'$. Y_n is fixed when Y_{t-1} and $v_{t:n}$ are fixed. Calculate the conditional mean of α_t given Y_{t-1} and $v_{t:n}$. Using Lemma 1, we obtain

$$\hat{\alpha}_{t} = E(\alpha_{t} \mid Y_{n}) = E(\alpha_{t} \mid Y_{t-1}, v_{t:n})$$

$$= a_{t} + \sum_{j=t}^{n} Cov(\alpha_{t}, v_{j} \mid Y_{t-1}) F_{j}^{-1} v_{j}, \qquad (14)$$

where $F_i = Var(v_i \mid Y_{t-1})$.

• Relations (12) and (13) provide

$$Cov(\alpha_{t}, v_{j} | Y_{t-1}) = E(\alpha_{t}v'_{j} | Y_{t-1})$$

$$= E[\alpha_{t}(Z_{j}x_{j} + \varepsilon_{j})' | Y_{t-1}]$$

$$= E(\alpha_{t}x'_{j} | Y_{t-1}) Z'_{j}, j = t, ..., n.$$
(15)

• Moreover, (recall $x_{t+1} = L_t x_t + R_t \eta_{+} - K_t \varepsilon_t$)

$$E(\alpha_{t}x'_{t} | Y_{t-1}) = E(\alpha_{t}(\alpha_{t} - a_{t})' | Y_{t-1}) = P_{t},$$

$$E(\alpha_{t}x'_{t+1} | Y_{t-1}) = E[\alpha_{t}(L_{t}x_{t} + R_{t}\eta_{t} - K_{t}\varepsilon_{t})' | Y_{t-1}] = P_{t}L'_{t},$$

$$E(\alpha_{t}x'_{t+2} | Y_{t-1}) = P_{t}L'_{t}L'_{t+1}$$

$$\vdots$$

$$E(\alpha_{t}x'_{n} | Y_{t-1}) = P_{t}L'_{t}...L'_{n-1}.$$
(16)

Smoothed state vector

• When t = n, $L'_t...L'_{n-1} = I_m$. When t = n-1, $L'_t...L'_{n-1} = L'_{n-1}$.

Smoothed state vector

• Substituting (15) and (16) into (14), we have

$$\hat{\alpha}_t = a_t + P_t r_{t-1}, \tag{17}$$

where $r_{n-1} = Z'_n F_n^{-1} v_n$ and

$$r_{t-1} = Z_t' F_t^{-1} v_t + L_t' Z_{t+1}' F_{t+1}^{-1} v_{t+1} + \dots + L_t' L_{t+1}' \dots L_{n-1}' Z_n' F_n^{-1} v_n$$
(18)

for t = 1, ..., n - 1 and $r_n = 0$.

 \bullet $\{r_t\}$ satisfies the backward recursion

$$r_{t-1} = Z_t' F_t^{-1} v_t + L_t' r_t, \ t = n, ..., 1$$
 (19)

with $r_n = 0$.

Smoothed state variance matrix

• Applying Lemma 1 to the conditional joint distribution of α_t and $v_{t:n}$ given Y_{t-1} and using (15) and (16), we have

$$\begin{aligned} V_t &= Var(\alpha_t \mid Y_{t-1}, v_{t:n}) = P_t \\ -\sum_{j=t}^n Cov(\alpha_t, v_j \mid Y_{t-1}) F_j^{-1} Cov(\alpha_t, v_j \mid Y_{t-1})' \\ &= P_t - P_t N_{t-1} P_t, \end{aligned}$$

where

$$N_{t-1} = Z'_t F_t^{-1} Z_t + L'_t Z'_{t+1} F_{t+1}^{-1} Z_{t+1} L_t + \dots + L'_t L'_{t+1} \dots L'_{n-1} Z'_n F_n^{-1} Z_n L_{n-1} \dots L_t.$$

State smoothing

Smoothed state variance matrix

ullet The sequence $\{N_t\}$ satisfies the recursion

$$N_{t-1} = Z'_t F_t^{-1} Z_t + L'_t N_t L_t, \ t = n, ..., 1$$

with $N_n = 0$.

Summary

$$r_{t-1} = Z'_t F_t^{-1} v_t + L'_t r_t, \ N_{t-1} = Z'_t F_t^{-1} Z_t + L'_t N_t L_t,$$

$$\hat{\alpha}_t = a_t + P_t r_{t-1}, \ V_t = P_t - P_t N_{t-1} P_t.$$

for t = n, ..., 1 with $r_n = 0$ and $N_n = 0$.

Missing observations

- Suppose that $y_{\tau}, ..., y_{\tau^*}$ are missing.
- ullet For $t= au,..., au^*-1$, we have (note: use the fact $Y_t=Y_{ au-1}$)

$$\begin{array}{lll} a_{t|t} & = & E(\alpha_t \mid Y_t) = E(\alpha_t \mid Y_{t-1}) = a_t, \\ P_{t|t} & = & Var(\alpha_t \mid Y_t) = Var(\alpha_t \mid Y_{t-1}) = P_t \\ a_{t+1} & = & E(\alpha_{t+1} \mid Y_t) = E(T_t\alpha_t + R_t\eta_t \mid Y_{t-1}) = T_ta_t, \\ P_{t+1} & = & Var(\alpha_{t+1} \mid Y_t) = Var(T_t\alpha_t + R_t\eta_t \mid Y_{t-1}) \\ & = & T_tP_{\tau-1}T_t' + R_tQ_tR_t'. \end{array}$$

• That is, put $Z_t = 0$ for $t = \tau, ..., \tau^* - 1$ in applying the Kalman filter and smoother.

Forecasting

- The minimum mean square error forecast of y_{n+j} (j = 1, ..., J) given Y_n is the conditional mean $\bar{y}_{n+j} = E(y_{n+j} \mid Y_n)$.
- For j = 1,

$$\bar{y}_{n+1} = Z_{n+1}E(\alpha_{n+1} \mid Y_n) = Z_{n+1}a_{n+1}$$

and

$$\bar{F}_{n+1} = Z_{n+1}P_{n+1}Z'_{n+1} + H_{n+1}.$$

Note that a_{n+1} and P_{n+1} can be calculated using the Kalman filter.

Forecasting

• For j = 2, ..., n,

$$\bar{y}_{n+j} = Z_{n+j}E(\alpha_{n+j} \mid Y_n) = Z_{n+j}\bar{a}_{n+j}$$

with

$$\bar{F}_{n+1} = Z_{n+j}\bar{P}_{n+j}Z'_{n+j} + H_{n+j}.$$

• The recursive relation for \bar{a}_{n+j} is

$$\bar{\mathbf{a}}_{n+j+1} = T_{n+j}\bar{\mathbf{a}}_{n+j}$$

for j = 1, ..., J - 1 with $\bar{a}_{n+1} = a_{n+1}$.

Forecasting

Also

$$\bar{P}_{n+j+1} = T_{n+j}\bar{P}_{n+j}T'_{n+j} + R_{n+j}Q_{n+j}R'_{n+j}$$

with $\bar{P}_{n+1} = P_{n+1}$.

• These show that the recursions for \bar{a}_{n+j} and \bar{P}_{n+j+1} are the same as recursion for a_{n+j} and P_{n+j} of the Kalman filter provided that we take $Z_{n+j}=0$ for j=1,...,J-1.

A general model for initial state vectors

- We develop methods of starting up the series when a_1 and P_1 are unknown; the process is called **initialisation**.
- ullet A general model for the initial state vector α_1

$$lpha_1 = a + A\delta + R_0\eta_0, \ \eta_0 \sim N(0, Q_0)$$
 $a : m \times 1 \ (known, usually zero vector)$
 $A : m \times q, \ \delta : q \times 1 \ (unknown), \ R_0 : m \times (m-q)$

- The objective of this representation is to separate out α_1 into a constant part a, a nonstationary part $A\delta$ and a stationary part $R_0\eta_0$.
- ullet The diffuse initialization (introduced later) is used for δ only.

A general model for initial state vectors

• In most cases, the columns of A and R_0 are taken from those of I_m , and $A'R_0=0$. In some cases, $R_0=0$ and $A=I_m$.

A general model for initial state vectors

Example

Consider

$$\begin{array}{rcl} y_t & = & \mu_t + \rho_t + \varepsilon_t, \; \varepsilon_t \sim N(0, \sigma_{\varepsilon}^2), \\ \mu_{t+1} & = & \mu_t + \nu_t + \xi_t, \; \xi_t \sim N(0, \sigma_{\xi}^2), \\ \nu_{t+1} & = & \nu_t + \xi_t, \; \xi_t \sim N(0, \sigma_{\xi}^2), \\ \rho_{t+1} & = & \phi \rho_t + \tau_t, \; \tau_t \sim n(0, \sigma_{\tau}^2), \\ |\phi| & < & 1. \end{array}$$

A general model for initial state vectors

Example

(Continued) In state-space format, this is

$$y_t = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \begin{pmatrix} \mu_t \\ \nu_t \\ \rho_t \end{pmatrix} + \varepsilon_t,$$

$$\begin{pmatrix} \mu_{t+1} \\ \nu_{t+1} \\ \rho_{t+1} \end{pmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \phi \end{bmatrix} \begin{pmatrix} \mu_t \\ \nu_t \\ \rho_t \end{pmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} \xi_t \\ \zeta_t \\ \tau_t \end{pmatrix}.$$

A general model for initial state vectors

Example

(Continued) Thus

$$\begin{array}{lll} \mathbf{a} & = & \left(\begin{array}{c} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{array} \right), \ A = \left[\begin{array}{c} \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \end{array} \right], \ \delta = \left(\begin{array}{c} \mu_1 \\ \nu_1 \end{array} \right), \ R_0 = \left(\begin{array}{c} \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \end{array} \right), \\ \eta_0 & = & \rho_1, \ Q_0 = \sigma_\tau^2/(1-\phi^2). \\ \mathrm{Note} & : & \left(\begin{array}{c} \mu_1 \\ \nu_1 \\ \rho_1 \end{array} \right) = \left[\begin{array}{c} \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \end{array} \right] \left(\begin{array}{c} \mu_1 \\ \nu_1 \end{array} \right) + \left(\begin{array}{c} \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \end{array} \right) \rho_1. \end{array}$$

A general model for initial state vectors

Example

Consider

$$y_t = \mu_t + \varepsilon_t, \varepsilon_t \sim N(0, \sigma_{\varepsilon}^2),$$

$$\mu_{t+1} = \mu_t + \nu_t + \xi_t, \xi_t \sim N(0, \sigma_{\xi}^2),$$

$$\nu_{t+1} = \nu_t + \zeta_t, \zeta_t \sim N(0, \sigma_{\xi}^2).$$

$$\begin{array}{lll} \mathbf{a} & = & \left(\begin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array} \right), \ A = \left[\begin{array}{c} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{array} \right], \ \delta = \left(\begin{array}{c} \mu_1 \\ \nu_1 \end{array} \right), \ R_0 \eta_0 = \left(\begin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array} \right). \end{array}$$
 Note:
$$\left(\begin{array}{c} \mu_1 \\ \nu_1 \end{array} \right) = \left[\begin{array}{c} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{array} \right] \left(\begin{array}{c} \mu_1 \\ \nu_1 \end{array} \right).$$

4 D > 4 A > 4 B > 4 B > B 90 0

The exact initial Kalman filtering

Assume

$$\delta \sim N(0, \kappa I_q)$$
.

Consider the initial condition

$$a_1 = a$$

$$P_1 = \kappa P_{\infty} + P_{*}$$
 (20)

where $P_{\infty}=AA'$ (from $A\delta$) and $P_*=R_0Q_0R_0'$ (from $R_0\eta_0$). P_{∞} is a diagonal matrix with q diagonal elements equal to one and the others equal to zero.

• We will let $\kappa \to \infty$ at a later stage (diffuse initialization). The Kalman filter that we derive as $\kappa \to \infty$ is called the exact initial Kalman filter.

The exact initial Kalman filtering

• Analogously to (20), we have

$$P_t = \kappa P_{\infty,t} + P_{*,t}. \tag{21}$$

- It will be shown that $P_{\infty,t}=0$ for t>d (a positive integer), so that the usual Kalman filter applies without change for $t=d+1,\ldots,n$ with $P_t=P_{*,t}$.
- When all initial state elements have a known joint distribution or are fixed and known, $P_{\infty} = 0$ and therefore d = 0.

The exact initial Kalman filtering

• Under (21), we have

$$F_t (= Z_t P_t Z'_t + H_t) = \kappa F_{\infty,t} + F_{*,t},$$

 $M_t (= P_t Z'_t) = \kappa M_{\infty,t} + M_{*,t},$

where

$$F_{\infty,t} = Z_t P_{\infty,t} Z'_t, F_{*,t} = Z_t P_{*,t} Z'_t + H_t, M_{\infty,t} = P_{\infty,t} Z'_t, M_{*,t} = P_{*,t} Z'_t.$$

The exact initial Kalman filtering

• Assume F_t is nonsingular. Write (cf. Koopman, S. J. (1997). Exact initial Kalman filtering and smoothing for nonstationary time series models. Journal of the American Statistical Association, 92(440), 1630-1638.)

$$F_t^{-1} = F_t^{(0)} + \kappa^{-1} F_t^{(1)} + \kappa^{-2} F_t^{(2)} + O(\kappa^{-3}).$$

Then

$$\begin{split} I_p &= (\kappa F_{\infty,t} + F_{*,t}) \\ &\times \left(F_t^{(0)} + \kappa^{-1} F_t^{(1)} + \kappa^{-2} F_t^{(2)} + \ldots \right). \end{split}$$

• On equating coefficients of κ^j for j=1,0,-1, we obtain

$$F_{\infty,t}F_t^{(0)} = 0 \ (j=1); \ F_{\infty,t}F_t^{(1)} + F_{*,t}F_t^{(0)} = I_p \ (j=0)$$

$$F_{*,t}F_t^{(1)} + F_{\infty,t}F_t^{(2)} = 0 \ (j=-1).$$

The exact initial Kalman filtering

• Assume $F_{\infty,t}$ is nonsingular. Then,

$$F_{t}^{(0)} = 0,$$

$$F_{t}^{(1)} = F_{\infty,t}^{-1},$$

$$F_{t}^{(2)} = -F_{\infty,t}^{-1} F_{*,t} F_{t}^{(1)}.$$

The exact initial Kalman filtering

• For $K_t = T_t M_t F_t^{-1}$ and $L_t = T_t - K_t Z_t$, we have

$$K_t = T_t \left(\kappa M_{\infty,t} + M_{*,t} \right) \left(\kappa^{-1} F_t^{(1)} + \kappa^{-2} F_t^{(2)} + \dots \right),$$
 (22)

which gives

$$K_t = K_t^{(0)} + \kappa^{-1} K_t^{(1)} + O(\kappa^{-2}), \ L_t = L_t^{(0)} + \kappa^{-1} L_t^{(1)} + O(\kappa^{-2}),$$

where

$$K_t^{(0)} = T_t M_{\infty,t} F_t^{(1)}, \ K_t^{(1)} = T_t M_{*,t} F_t^{(1)} + T_t M_{\infty,t} F_t^{(2)}$$

$$L_t^{(0)} = T_t - K_t^{(0)} Z_t, \ L_t^{(1)} = -K_t^{(1)} Z_t.$$

The exact initial Kalman filtering

• Using the Kalman filter and (22), we obtain

$$a_t = a_t^{(0)} + \kappa^{-1} a_t^{(1)} + O(\kappa^{-2}),$$

where $a_1^{(0)} = a$ and $a_1^{(1)} = 0$, and

$$v_t = v_t^{(0)} + \kappa^{-1} v_t^{(1)} + O(\kappa^{-2}),$$

where $v_t^{(0)} = y_t - Z_t a_t^{(0)}$ and $v_t^{(1)} = -Z_t a_t^{(1)}$.

The exact initial Kalman filtering

• The updating equation for a_{t+1} can now be expressed as

$$\begin{array}{lcl} a_{t+1} & = & T_t \left(a_t^{(0)} + \kappa^{-1} a_t^{(1)} + O(\kappa^{-2}) \right) \\ & & + \left(K_t^{(0)} + \kappa^{-1} K_t^{(1)} + O(\kappa^{-2}) \right) \left(v_t^{(0)} + \kappa^{-1} v_t^{(1)} + O(\kappa^{-2}) \right), \end{array}$$

which becomes as $\kappa \to \infty$

$$a_{t+1}^{(0)} = T_t a_t^{(0)} + K_t^{(0)} v_t^{(0)}$$
 (23)

with $a_1^{(0)} = a$.

The exact initial Kalman filtering

• The updating equation for P_{t+1} is

$$P_{t+1} = T_t P_t (T_t - K_t Z_t)' + R_t Q_t R_t'$$

$$= T_t (\kappa P_{\infty,t} + P_{*,t})$$

$$\times \left(L_t^{(0)} + \kappa^{-1} L_t^{(1)} + O(\kappa^{-2}) \right)' + R_t Q_t R_t'$$

which becomes as $\kappa \to \infty$

$$P_{\infty,t+1} = T_t P_{\infty,t} L_t^{(0)'}, (P_{\infty,1} = AA')$$

$$P_{*,t+1} = T_t P_{\infty,t} L_t^{(1)'} + T_t P_{*,t} L_t^{(0)'} + R_t Q_t R_t', (P_{*,1} = R_0 Q_0 R_0').$$
(24)

The exact initial Kalman filtering

- Equations (23) and (24) constitute the Kalman filter.
- See DK for the case $F_{\infty,t}=0$.
- For t > d, $P_{\infty,t} = 0$. Thus, the usual Kalman filter can be used for t > d. (See DK and Koopman (1997)).

The exact initial Kalman filtering

Example

Consider

$$y_t = \alpha_t + \varepsilon_t, \varepsilon_t \sim N(0, \sigma_{\varepsilon}^2),$$

$$\alpha_{t+1} = \alpha_t + \eta_t, \eta_t \sim N(0, \sigma_{\eta}^2),$$

for which

$$a=0,\ A=1,\ \delta\sim N(0,\kappa),\ R_0\eta_0=\left(egin{array}{c} 0 \ 0 \end{array}
ight).$$

The exact initial Kalman filtering

Example

(Continued) Since

$$a_1^{(0)}=0,\ v_1^{(0)}=y_1,\ M_{\infty,1}=P_{\infty,1}=1,\ F_1^{(1)}=F_{\infty,1}^{-1}=P_{\infty,1}^{-1}=1,\ K_1^{(0)}=M_{\infty,1}F_1^{(1)}=1,$$

we have
$$extbf{ extit{a}}_2^{(0)} = extbf{ extit{a}}_1^{(0)} - extbf{ extit{K}}_1^{(0)} extbf{ extit{v}}_1^{(0)} = extit{ extit{y}}_1.$$
 In addition,

$$M_{*,1} = P_{*,1} = 0,$$

$$F_1^{(1)} = 1, F_1^{(2)} = -F_{*,1} = -\sigma_{\varepsilon}^2$$

$$L_1^{(1)} = -K_1^{(1)} = -\left(M_{*,1}F_1^{(1)} + M_{\infty,1}F_1^{(2)}\right) = \sigma_{\varepsilon}^2$$

$$L_1^{(0)} = 1 - K_1^{(0)} = 0,$$

The exact initial Kalman filtering

Example

(Continued) which give

$$P_{\infty,2} = P_{\infty,1}L_1^{(0)} = 0,$$

$$P_{*,2} = P_{\infty,1}L_1^{(1)} + P_{*,1}L_1^{(0)} + \sigma_{\eta}^2 = \sigma_{\varepsilon}^2 + \sigma_{\eta}^2.$$

Thus, the usual Kalman filter can be used for t = 2, 3, ...

Maximum likelihood estimation

• Assume $N(a_1, P_1)$ for the initial variable α_1 , where a_1 and P_1 are known. The log-likelihood function is

$$\log L(Y_n) = \sum_{t=1}^n \log p(y_t \mid Y_{t-1})$$

$$= c - \frac{1}{2} \sum_{t=1}^n (\ln |F_t| + v_t' F_t^{-1} v_t).$$

The MLE of the unknown parameters are obtained by maximizing this function.