Package 'prob.4.2.comp.stats'

July 25, 2021

Title Solution for Problem 4.2 in Computation Statistics by Givens

Version 1.0.0.0

Description Implements EM point estimator and its covariance estimator for problem 4.2 in Computation Statistics by Givens.

License GPL (>= 3) Encoding UTF-8 LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.1.9001

R topics documented:

	em.counts_to_responses	
	em.cov.bs	2
	em.cov.info	1
	em.estimator	0
	em.loglike	4
	em.observed_info	4
	em.pdf	4
	em.responses_to_counts	4
Index		(

em.counts_to_responses

Convert counts to individual responses

Description

There are many ways to represent the same data. In problem 4.2, the data is given in the form of counts. This is the inverse of em.counts_to_responses, e.g.,

```
xs <- em.counts_to_responses(counts)
em.responses_to_counts(xs) == counts
em.counts_to_responses(em.responses_to_counts(xs)) == xs.</pre>
```

em.cov.bs

Usage

```
em.counts_to_responses(counts)
```

Arguments

counts count data

Value

the count data converted to response data, say counts = (379,299,...), then 379 responded 0 encounters, 299 responded 1 encounter, ...

Examples

```
# let counts be the count data counts[j] # denotes number of respondents with j risky sexual encounters. x \leftarrow em.counts\_to\_responses(counts) x[k] # denotes the response of the i-th person
```

em.cov.bs

Bootstrap covariance estimator of EM point estimator

Description

Bootstrap covariance estimator of EM point estimator

Usage

```
em.cov.bs(
   theta.em,
   counts,
   m = 10000,
   em.eps = 1e-06,
   bs.eps = 1e-04,
   debug = F
)
```

Arguments

theta.em	An EM point estimator of theta given observed counts
counts	observed count data (n0,n1,,n16)
m	maximum bootstrap replicates
em.eps	EM algorithm epsilon stopping condition

bs.eps Bootstrap covariance epsilon stopping condition

debug whether to print out debugging info while running

em.cov.info 3

em.cov.info	Covariance matrix of EM point estimator based on the observed information matrix

Description

Covariance matrix of EM point estimator based on the observed information matrix

Usage

```
em.cov.info(theta.em, counts)
```

Arguments

theta.em An EM point estimator of theta given observed responses

data Observed sample of responses

em.estimator	EM algorithm

Description

EM algorithm estimator for problem 4.2

Usage

```
em.estimator(theta, counts, eps = 1e-06, debug = T)
```

Arguments

theta	a starting guess	for theta = $($	alpha.t	oeta.mu.la	ambda)

counts observed count data (n0,n1,...,n16)

eps stopping condition

debug whether to print out debugging info while running

4 em.observed_info

em.loglike

log-likelihood function for problem 4.2

Description

log-likelihood function for problem 4.2

Usage

```
em.loglike(theta, data)
```

Arguments

theta evaluated at theta = (alpha,beta,mu,lambda)

data observed response data

 $em.observed_info$

Observed information of EM point estimator based on an observed

sample

Description

Observed information of EM point estimator based on an observed sample

Usage

```
em.observed_info(theta.em, data)
```

Arguments

theta.em An EM point estimator of theta given observed counts

data Observed sample of responses

em.pdf 5

 ${\tt em.pdf}$

probability density function (pdf) for problem 4.2

Description

probability density function (pdf) for problem 4.2

Usage

```
em.pdf(x, theta)
```

Arguments

x density evaluated at x given index theta

theta index of indexed family of density functions, theta = (alpha,beta,mu,lambda)

em.responses_to_counts

Convert individual response data to count data

Description

This is the inverse of em.counts_to_responses, e.g., em.responses_to_counts(em.counts_to_responses(counts)) == counts and em.counts_to_responses(em.responses_to_counts(data)) == data.

Usage

```
em.responses_to_counts(data)
```

Arguments

data

response data

Value

response data converted to count data

Index

```
* EM
    em.cov.bs, 2
    em.estimator, 3
* algorithm
    em.cov.bs, 2
    em.estimator, 3
* counts
    em.counts_to_responses, 1
    em.responses_to_counts, 5
* covariance
    em.cov.info, 3
* density
    em.pdf, 5
* estimator
    em.cov.info, 3
* information
    em.observed_info, 4
* log-likehood
    em.loglike, 4
* multinomial
    em.counts_to_responses, 1
    em.responses_to_counts, 5
* observed
    em.observed_info, 4
* responses
    em.counts_to_responses, 1
    em.responses_to_counts, 5
em.counts_to_responses, 1
em.cov.bs, 2
em.cov.info, 3
em.estimator, 3
em.loglike,4
\verb"em.observed_info, 4"
em.pdf, 5
em.responses_to_counts, 5
```