Quiz 3

(P&q) & M P > a LHS | RHS | LHS => RHS 1) 5321 E TTTT T FFF F TTF T F F F TFF FT \$ T T T FTT T FTF T FFT T T FFF

No, this is not a valid implication because for values pF, qF, arT the implication is false

2) prove by verbal argument that $P\Lambda(q \oplus r) \Rightarrow (P\Lambda q) \vee (P\Lambda r)$

If we begin we the assumption $p \land (q \oplus r)$, then distribute $\land (and)$ for $\oplus (xov)$, we are left $w \mid (p \land q) \oplus (p \land r)$. We may then substitute θ for $(\land \neg)$ resulting in $(\not p \land \neg q) \lor (\neg (p \land r))$, Then by applying Demorgans law $(p \land r)$ we are left with,

(p Λq) ($\neg p \vee \neg r$), then distributing over the proposition again, ($q \vee (\neg p \wedge \neg r)$), simplifying to, $q \vee (\neg p \wedge \neg r)$. This is equivelent to the statement, ($p \wedge q$) $\vee (p \wedge r)$, meaning the implication is true.

Reversal

and detected the state of the s

Assuming (p 1 a) v (p 1 r), considering p 1 q is equivelent to p 1 (q 0 r) and, we can see that both p 1 (q 0 r) are results of (p 1 q 0 v (p 1 r) => p 1 (q 0 r). We can then state that they are logically equivelent.

3) are these two sets equal or not equal: 0, 203 no, O represents an empty set containing no elements, compared to £03 which is a set containing an CMPty set.

4) prove $\sum_{i=1}^{n} (2i-1) = n^2$ via Induction,

Basis Step $(Z(\Phi)-1)=1^2$ A) The value 1 should be used to prove the basis step.

b) that the base cases are equivelent

Inductive Step n+1, prook

 $(n+1)^2 = (n^2 + n + n + 1) = 2n + 1 + n^2$ (2(n+1)-1) + E(2i-1) $(2n+2-1) + n^2$ we can see $2n+1+n^2$ that both the LHS and RHS

c) $\sum_{i=1}^{K} (2i-1) = K^2 + \sum_{i=1}^{K+1} (2i-1) = (K+1)^2$

D) The proof has been confimed seeing as both the basis steps result in 0, and the K > K+1.