The table below shows utility patents granted for a specific year.

	Corporation	Government	SUM
United States	0.50	0.07	0.57
Foreign	0.40	0.03	0.43
SUM	0.9	0.1	1

Select one patent at random.

1.	What	is	the	probability	that	it	is	a	foreign	patent?
----	------	----	-----	-------------	------	----	----	---	---------	---------

(a) 0.40

2. What is the probability that the patent was issued to a government, given that it was a U.S. patent?

(b) 0.07

$$P(Gov|US) = \frac{P(Gov \& US)}{P(US)} = \frac{0.07}{0.5}$$

3. What is the probability that the patent was a U.S. patent, given that was issued to a government?

(d) 0.70
$$P(US|GoV) = \frac{P(GoV \&US)}{P(GoV)} = \frac{0.07}{0.1}$$

4. What is the probability that the patent was a U.S. patent or a patent issued to a government?

(b) 0.67

ent issued to a government?

(d)
$$0.07$$
 P(US or GoV) = P(US) + P(GoV)-P(US and GoV)

= 0.57 + 0.07

5. In a jar there are 8 blue, 5 yellow and 3 red marbles. If two marbles are selected one at a time without replacement, what is the probability to select two blue marbles?

(a) 0.50

(d) 0.97
$$\frac{8}{16} \times \frac{7}{15} = 0.23$$

6. In a jar there are 8 blue, 5 yellow and 3 red marbles. If two marbles are selected one at a time with replacement, what is the probability to select 2 blue marbles?

(d)
$$0.97$$
 $\frac{8}{16} \times \frac{8}{16} = 0.25$

7. An event A occurs with probability 0.3. Event B occurs with probability 0.5. If A and B are mutually since PCARB)= exclusive, then $\mathbb{P}(A \text{ or } B) = \mathbb{P}(A) + \mathbb{P}(B) = 0.8$

(c) 0.20

(d) Not enough info to compute.

80 students in a school cafeteria were asked if they favored a ban on smoking in the cafeteria. The results of the survey are shown below

Students	Favor	Oppose	No opinion	SUM	
Freshman	15	27	8	50	
Sophomore	23	5	2	3 0	
SUM	38	32	10	80	

If a student is selected at random:

8. What is the probability that the student is a freshman and in favor?

(a) 15

(b) 0.1875

(c) 0.475

(d) 0.625

				P(Oppose Fresh)=
9. What is the p	probability that given	that a student is a fresh	ıman, he or she oppos	es the ban? =P(Oppose&Fresh)_
(a) 0.54	(b) 0.84	(c) 0.3375	(d) 0.625	PCFlesh)
10. X and Y are	e two random variables	s such that $\mathbb{E}(X) = 3$ as	nd $\mathbb{E}(Y) = -2$. Comp	ute $\mathbb{E}(Y - 2X) = \mathbb{E}(Y) - 2\mathbb{E}(X)$
(a) 4	(b) -6	(c) 8	(d)-8	= -2-2-3
11. X and Y at $Var(Y-2X)=$	var(y) + 4 Var(x)	andom variables such to $1 + 4 \times 4$	Var(X) = 4, Var(X)	ar(Y) = 1 Compute
(a) 17	(b) -15	(c) 9	(d) -7	
Consider the following	lowing pdf table:			
	Probab	0 1 2 bility 0.06 0.7 0.2	3 4 0.03 x	
12. Compute the	e value of x . $\bigcirc \cdot \bigcirc$	6+0.7+0.2+0.03	+x=1 => x=	10.0
(a) 1	(b) 0.99	(c)0.01	(d) We do not h	ave enough info.
13. Compute the	e probability that X is	at most 2. P(x 2)	= P(X=0) + P(X=0)	=1) + P(x=2) = 0.06+0.7+0.2
(a) 0.96	(b) 0.76	(c) 0.20	(d) 1	=0.96
14. A multiple cl How many point equally likely to b	s should I deduct if yo	ssible answers. If you clu choose a wrong answe		
(a) 2/3	(b) 1/2	(c) 1/4	(d) 0	Prob 1/4 3/4
15. (I) If two even (II) An event a	ats are dependent, they rand its complement can	nust have the same proba	ability of occuring.F	$E(X)=0 \Rightarrow 2.\frac{1}{4}-2.\frac{3}{4}=0$
(a) Both (I) ar (c) Only (II) is	nd (II) are True. s True.	(b) Only (I) is Tr (d) Both (I) and	rue. (II) are False.	fair? (Each answer is $ \begin{array}{c cccc} \lambda & 2 & -\infty \\ \hline Rob & 1/4 & 3/4 \\ \hline E(X)=0 => 2.\frac{1}{4} - 2.\frac{3}{4} = 0 \\ x=\frac{2}{3} \end{array} $
(> An ever	it A and its ce	implement Ac	Cannot occu	
at the	same time.			
E.g.	A= {rain} -e	$A^{c} = \{ no \text{ rain} \}$	} ·	
C> If two	events are de	pendent we j	rust know the	et l
P(AIB)	FP(A). They	pendent we j	the same	molsability.