C477: Computational Optimisation Tutorial 2: Optimality Conditions

Exercise 1. Consider the problem,

$$\min_{\boldsymbol{x} \in \mathbb{R}^2} f(\boldsymbol{x})$$
s.t. $\boldsymbol{x} \in \Omega$,

where $f: \mathbb{R}^2 \to \mathbb{R}$ and $f \in \mathcal{C}^2$. For each of the four following specifications for Ω , \boldsymbol{x}^* and f, determine if the given point \boldsymbol{x}^* is: (i) definitely a local minimiser; (ii) definitely not a local minimiser, or (iii) possibly a local minimiser. Justify your answers.

Set:
$$\Omega = \{\boldsymbol{x} = [x_1, x_2]^\top \mid x_1 \ge 1\},$$
(a) Given point:
$$\boldsymbol{x}^* = [1, 2]^\top,$$
Gradient:
$$\nabla f(\boldsymbol{x}^*) = [1, 1]^\top.$$
Set:
$$\Omega = \{\boldsymbol{x} = [x_1, x_2]^\top \mid x_1 \ge 1, x_2 \ge 2\},$$
(b) Given point:
$$\boldsymbol{x}^* = [1, 2]^\top,$$
Gradient:
$$\nabla f(\boldsymbol{x}^*) = [1, 0]^\top.$$
Set:
$$\Omega = \{\boldsymbol{x} = [x_1, x_2]^\top \mid x_1 \ge 0, x_2 \ge 0\},$$
Given point:
$$\boldsymbol{x}^* = [1, 2]^\top,$$
Gradient:
$$\nabla f(\boldsymbol{x}^*) = [0, 0]^\top,$$
Hessian:
$$\nabla^2 f(\boldsymbol{x}^*) = \boldsymbol{I} \text{ (identity matrix)}.$$
Set:
$$\Omega = \{\boldsymbol{x} = [x_1, x_2]^\top \mid x_1 \ge 1, x_2 \ge 2\},$$
Given point:
$$\boldsymbol{x}^* = [1, 2]^\top,$$
(d) Gradient:
$$\nabla f(\boldsymbol{x}^*) = [1, 0]^\top,$$
Hessian:
$$\nabla^2 f(\boldsymbol{x}^*) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Exercise 2. Consider the following function $f : \to \mathbb{R}^2 \to \mathbb{R}$:

$$f(\boldsymbol{x}) = \boldsymbol{x}^{\top} \left[\begin{array}{cc} 2 & 5 \\ -1 & 1 \end{array} \right] \boldsymbol{x} + \boldsymbol{x}^{\top} \left[\begin{array}{c} 3 \\ 4 \end{array} \right] + 7$$

- (a) Find the directional derivative of f at $[0, 1]^{\top}$ in the direction $[1, 0]^{\top}$.
- (b) Find all the points that satisfy the first order necessary condition for f.
- (c) Does f have a minimiser? If it does, then find all minimiser(s); otherwise explain why it does not.

Exercise 3. Consider the problem,

$$\min - x_2^2$$
s.t. $|x_2| \le x_1^2$

$$x_1 > 0$$

- (a) Does the point $[x_1, x_2]^{\top} = \mathbf{0}$ satisfy the first order necessary condition for a minimiser? That is, if $f(\mathbf{x}) = -x_2^2$ is the objective function, is it true that $\mathbf{d}^{\top} \nabla f(\mathbf{x}) \geq 0$ for all feasible directions \mathbf{d} at $\mathbf{0}$?
- (b) Is the point $[x_1, x_2]^{\top} = \mathbf{0}$ a local minimiser, a strict local minimiser, a local maximiser, a strict local maximiser, or none of the above?

Exercise 4. Suppose that we are given n real numbers, x_1, \ldots, x_n . Find the number $\bar{x} \in \mathbb{R}$ such that the sum of the squared difference between \bar{x} and the numbers x_1, \ldots, x_n above is minimised (assuming that the solution $\bar{x} \in \mathbb{R}$ exists).

Exercise 5. Suppose that we are given p vectors, $\{x^{(1)}, \ldots, x^{(p)}\}$, where $x^{(i)} \in \mathbb{R}^n$, $i = 1, \ldots, p$. Find the vector $\bar{x} \in \mathbb{R}^n$ such that the average squared distance (2-norm) between \bar{x} and $x^{(1)}, \ldots, x^{(p)}$,

$$\frac{1}{p} \sum_{i=1}^{p} \|\bar{x} - x^{(i)}\|_{2}^{2},$$

is minimised. Use the SOSC to prove that the vector $\bar{\boldsymbol{x}}$ found above is a strict local minimiser.

3