

Statistical Inference — Lab 3

Date of issue: 22. November 2018 Due Date: 6. December 2018, 6:00 pm

Family Name:

First Name:

Student ID:

Free adjustment of a height network

The scheme below illustrates the already-seen 5-point levelling network that will be constrained under the free network postulate, in order to determine the height of points P_A , P_1 , P_2 , P_3 and P_B , i.e.

$$H = [H_A, H_1, H_2, H_3, H_B]^{\mathsf{T}}.$$

The measured height differents are

$$h_{[m]} = [h_{1B}, h_{13}, h_{12}, h_{32}, h_{1A}]^{\mathsf{T}}$$

and can be found in lab 2.

- 1) Determine for this free adjustment :
 - a) the observation vector h,
 - b) the design matrix A, the constraint matrix D^{T} and the extended normal equation matrix N^* ,
 - c) the redundancy r = m (n d) and verify that we have $\operatorname{rk} \left[A^{\mathsf{T}} | D \right] = n$.
- 2) Then, using the following approximative height values

$$H_{[m]}^0 = [H_A^0, \, H_1^0, \, H_2^0, \, H_3^0, \, H_B^0]^\mathsf{T} \, = [100.96, \, 93.45, \, 107.76, \, 103.47, \, 100.72]^\mathsf{T} \, .$$

compute:

- a) the reduced observation vector $y_{[m]}$,
- b) the least-squares estimate $\hat{x}_{[cm]} = \Delta \hat{H}$ (without Lagrange multipliers)) and $\hat{H}_{[m]}$,
- c) the adjusted observation vector $\hat{h}_{[m]}$ and the estimated inconsistencies $\hat{e}_{[cm]}$,
- d) the square sum of inconsistencies $\Omega_{[cm^2]} = \hat{e}^{\mathsf{T}}\hat{e}$,
- e) the length of the vector $\hat{x}_{[cm]} = \Delta \hat{H}$, i.e. $||\hat{x}||_2 := \sqrt{\hat{x}^T \hat{x}}$.
- 3) Repeat the instructions of point 2 with the modified approximative height values

$$H_{[m]}^0 = [H_A^0, H_1^0, H_2^0, H_3^0, H_B^0]^\mathsf{T} = [101.00, 93.45 - 0.03 \, k, \, 107.75, \, 103.47, \, 100.47]^\mathsf{T}.$$

The parameter k corresponds to the last two digits of your student ID number.

- 4) Comment on the differences between the results obtained at point 2 and 3 with respect to :
 - a) the adjusted observations $\hat{h}_{[mm]}$,
 - b) the estimated inconsistencies $\hat{e}_{[mm]}$,
 - c) the adjusted heights $\hat{H}_{[cm]}$,
 - d) the square sum of inconsistencies $\Omega_{[mm^2]}$,
 - e) the length of the vector $\hat{x}_{[cm]} = \hat{\Delta H}$.
- 5) Explain the apparently "curious" values of \hat{e} in both cases.

Verify the correctness of your results with the help of the orthogonality check.