Vector
$$\underline{V} = \begin{pmatrix} V_1 \\ V_2 \\ \vdots \\ V_N \end{pmatrix} \in \mathbb{R}^N$$

Matrix
$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1N} \\ A_{21} & A_{22} & \cdots & \vdots \\ A_{M1} & A_{MN} \end{bmatrix} \in \mathbb{R}^{M \times N}$$

Matrix multiplication = WX

$$\frac{1}{\lambda} = \sum_{k=1}^{\infty} M_{k} \times k$$

Z = UY = 'UW X

Not true if nonlinear:
$$Z = f(U_X), y = f(W_X)$$

$$= f(U_f(W_X)) \neq f(U_WX)$$

Re<<115

Linear independence, vank, null Spaces, spans, bases.

Eigandecomposition:

AGIR, AY maps V to a new vector in IR

Square matrix AGR has exervalue ZEC if

A y = > y, y & C is associated eigenvector.

 $\begin{bmatrix} E \times 1 : \\ A = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} & A \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 5 \end{pmatrix} = 5 \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \lambda = 5 \\ A \begin{pmatrix} 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \end{pmatrix} & \lambda_z = 1 \\ x$

Ex2: $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

 $A\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -x_2 \\ x_1 \end{pmatrix}$ $A = \begin{pmatrix} 1 \\ 1 \end{pmatrix} = -i \begin{pmatrix} 1 \\ i \end{pmatrix}$ $A = -i \begin{pmatrix} 1 \\ i \end{pmatrix}$

 $y_{1} = \begin{pmatrix} 1 \\ -i \end{pmatrix}$ $\lambda_{2} = i$

Complex exervalues -> rotation. Come in conjugate
pairs >= x+13;

If e-vals, all distinct, e-vocs, form bossis of IR.

(defective e-vals -> generalized c-vocs). Can represent any $X = \sum_{i=1}^{n} W_i V_i$ $A \times = \sum_{i=1}^{N} w_i A y_i = \sum_{i=1}^{N} w_i \left(\lambda y_i \right)$ W can be thought of as eigenvector representation of x (change of basis) $x = V_{W}$ $V = \begin{pmatrix} \sqrt{1} & \sqrt{2}N \\ \sqrt{1} & \sqrt{2}N \end{pmatrix}$ $\forall \overline{X} = \forall \overline{X} = \sqrt{\overline{X}} = \sqrt{\overline{X}$ Holds for all w: AV= VI) A = V I V I diagonal, zation'

Linear stability:

Rate network $\frac{d\mathbf{r}(t)}{dt} \cdot \mathbf{r}(t) = -\mathbf{r} + \mathbf{W} \cdot \mathbf{r} = (-\mathbf{I} + \mathbf{W}) \cdot \mathbf{r}$ If A has e-vals. A, ... > wand e-vecs. $\underline{\vee}_{1}$. $\underline{\vee}_{N}$, then $\Gamma(t) = \sum_{i=1}^{N} W_i(t) Y_i$ $\dot{\Gamma}(t) = \sum_{i=1}^{N} \dot{w}_{i}(t) \, \underline{v}_{i} = A_{\Gamma}(t) = \sum_{i=1}^{N} w_{i}(t) \, \lambda_{i} \, \underline{v}_{i}$

Satisfied if, $\forall i$, $W_i(t) = \lambda_i W_i(t)$ Vi: Mode of Pop. activity W;(t): time-dependent strength of it mode $w_i(t) = w_i(0) e^{\lambda_i t}$ $\lambda = \alpha + \omega i, \quad \alpha = \text{Re}[\lambda], \quad \omega = \text{Im}[\lambda]$ $e^{\lambda t} = e^{(\alpha + \omega i)t} = e^{\alpha t} = e^{\alpha t}$ exp. srowth/ oscillations decay

 $\alpha < 0$: exp. decay $\alpha > 0$: exp growth $\alpha = 0$: neither $\alpha \neq 0$: oscillations

As to on mode with largest Re[] dominates

Classification of fixed ptx.
$$\dot{r} = Ar + I$$

$$= A(c + b) \quad b = A^{T}I$$

Let $c + b \Rightarrow r$, then Fixed pt: $r = -b$
 $\dot{r} = Ar$, $f(x - d)$ pt. at Q .

Stable fixed pt: All $Re[\lambda_{i}] < 0$.

As $t \rightarrow a$, $r \rightarrow Q$

Vi Vi

Unstable fixed pt: Any $Re[\lambda_{i}] > 0$

"saddle point"

Linearization of nonlinear systems:

$$\Gamma = \begin{cases}
\Gamma_1 \\
\Gamma_2 \\
\Gamma_3
\end{cases} = f_1(r_1, r_2)$$

$$\Gamma_4 = f_1(r_1, r_3)$$
Partial derivative
$$\frac{\partial f_1}{\partial r_1} = \lim_{\Delta r_1 \to 0} f_1(r_1, r_3)$$

$$\int arbital derivative
$$\frac{\partial f_1}{\partial r_1} = \lim_{\Delta r_2 \to 0} f_1(r_1, r_3)$$

$$\int arbital derivative
$$\int f_1(r_1, r_3)$$

$$\int f_2(r_1, r_3)$$

$$\int f_3(r_1, r_$$$$$$

Suppose $f(r_0) = 0$ (fixed pt.), $\{\lambda_i^* = eig(J(r_0))\}$ If $Re[\lambda_i] < 0$ $\forall i, r_0$ is stable.

If $Re[\lambda_i] > 0$ for any i, unstable

If $Re[\lambda_i] < 0$, cannot conclude stability.