Foundations of Computing Lecture 8

Arkady Yerukhimovich

February 9, 2023

Outline

Lecture 7 Review

Pushdown Automata

Lecture 7 Review

- Proving languages not regular
 - Using the pumping lemma
 - Using closure properties

Lecture 7 Review

- Proving languages not regular
 - Using the pumping lemma
 - Using closure properties

Today

Going beyond regular languages.

Outline

Lecture 7 Review

Pushdown Automata

Let's Add Some Storage

Recall:

- An NFA/DFA has no external storage
- Only memory must be encoded in the finite number of states
- Can only recognize regular languages

Let's Add Some Storage

Question

What kind of storage should we add?

Let's add a Stack for storage

Let's add a Stack for storage

A stack has the following operations:

push value - push a value onto the top of the stack

Let's add a Stack for storage

A stack has the following operations:

- push value push a value onto the top of the stack
- pop value pop the top item off the stack

Let's add a Stack for storage

A stack has the following operations:

- push value push a value onto the top of the stack
- pop value pop the top item off the stack
- ullet do nothing denoted as ϵ

Let's add a Stack for storage

A stack has the following operations:

- push value push a value onto the top of the stack
- pop value pop the top item off the stack
- ullet do nothing denoted as ϵ

A stack is a Last-In First-Out (LIFO) data structure, that can hold an infinite amount of information

Pushdown Automata (PDA)

A PDA consists of:

- An NFA for a control unit
- A Stack for storage

Pushdown Automata (PDA)

A PDA consists of:

- An NFA for a control unit
- A Stack for storage

Question

Is this any more powerful than an NFA?

Computing with a PDA

Computing with a PDA

At each step, a PDA can do the following

Read a symbol from the input tape

Computing with a PDA

- Read a symbol from the input tape
- Optionally, pop a value from the Stack

Computing with a PDA

- Read a symbol from the input tape
- Optionally, pop a value from the Stack
- Use the input symbol and the stack symbol to choose a next state

Computing with a PDA

- Read a symbol from the input tape
- Optionally, pop a value from the Stack
- Use the input symbol and the stack symbol to choose a next state
- Optionally, push a value onto the Stack

Computing with a PDA

At each step, a PDA can do the following

- Read a symbol from the input tape
- Optionally, pop a value from the Stack
- Use the input symbol and the stack symbol to choose a next state
- Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept state once all the input has been processed

Computing with a PDA

At each step, a PDA can do the following

- Read a symbol from the input tape
- Optionally, pop a value from the Stack
- Use the input symbol and the stack symbol to choose a next state
- Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept state once all the input has been processed

Observations:

Computing with a PDA

At each step, a PDA can do the following

- Read a symbol from the input tape
- Optionally, pop a value from the Stack
- Use the input symbol and the stack symbol to choose a next state
- Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept state once all the input has been processed

Observations:

ullet Since the control is an NFA, ϵ transitions are allowed

Computing with a PDA

At each step, a PDA can do the following

- Read a symbol from the input tape
- Optionally, pop a value from the Stack
- Use the input symbol and the stack symbol to choose a next state
- Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept state once all the input has been processed

Observations:

- ullet Since the control is an NFA, ϵ transitions are allowed
- A PDA may choose not to touch the stack in a particular step

Computing with a PDA

At each step, a PDA can do the following

- Read a symbol from the input tape
- Optionally, pop a value from the Stack
- Use the input symbol and the stack symbol to choose a next state
- Optionally, push a value onto the Stack

A PDA M accepts a string w if the NFA in the control stops in an accept state once all the input has been processed

Observations:

- \bullet Since the control is an NFA. ϵ transitions are allowed
- A PDA may choose not to touch the stack in a particular step
- Unlike the case for DFA/NFA, deterministic PDA's are not equal to non-deterministic ones. We will only study non-deterministic PDAs.

Consider the following PDA "Algorithm"

Read a symbol from the input

- Read a symbol from the input
- ② If it is a 0 and I have not seen any 1s, then push a 0 onto the stack

- Read a symbol from the input
- ② If it is a 0 and I have not seen any 1s, then push a 0 onto the stack
- If it is a 1, pop a value (a 0) from the stack

- Read a symbol from the input
- ② If it is a 0 and I have not seen any 1s, then push a 0 onto the stack
- If it is a 1, pop a value (a 0) from the stack
- Accept if and only if the stack becomes empty when we read the last character

- Read a symbol from the input
- ② If it is a 0 and I have not seen any 1s, then push a 0 onto the stack
- If it is a 1, pop a value (a 0) from the stack
- Accept if and only if the stack becomes empty when we read the last character
- Seject if any of the following happen:
 - the stack becomes empty and the input is not done or

- Read a symbol from the input
- ② If it is a 0 and I have not seen any 1s, then push a 0 onto the stack
- If it is a 1, pop a value (a 0) from the stack
- Accept if and only if the stack becomes empty when we read the last character
- Seject if any of the following happen:
 - the stack becomes empty and the input is not done or
 - there are still 0s left on the stack when the last input is read or

- Read a symbol from the input
- ② If it is a 0 and I have not seen any 1s, then push a 0 onto the stack
- If it is a 1, pop a value (a 0) from the stack
- Accept if and only if the stack becomes empty when we read the last character
- Seject if any of the following happen:
 - the stack becomes empty and the input is not done or
 - there are still 0s left on the stack when the last input is read or
 - there are any 0s after the first 1

Consider the following PDA "Algorithm"

- Read a symbol from the input
- ② If it is a 0 and I have not seen any 1s, then push a 0 onto the stack
- If it is a 1, pop a value (a 0) from the stack
- Accept if and only if the stack becomes empty when we read the last character
- Reject if any of the following happen:
 - the stack becomes empty and the input is not done or
 - there are still 0s left on the stack when the last input is read or
 - there are any 0s after the first 1

Question

What language does this recognize?

- Read a symbol from the input
- ② If it is a 0 and I have not seen any 1s, then push a 0 onto the stack
- If it is a 1, pop a value (a 0) from the stack
- Accept if and only if the stack becomes empty when we read the last character
- Reject if either
 - the stack becomes empty and the input is not done or
 - there are still 0s left on the stack when the last input is read or
 - there are any 0s after the first 1

Consider the following PDA "Algorithm"

- Read a symbol from the input
- ② If it is a 0 and I have not seen any 1s, then push a 0 onto the stack
- If it is a 1, pop a value (a 0) from the stack
- Accept if and only if the stack becomes empty when we read the last character
- Reject if either
 - the stack becomes empty and the input is not done or
 - there are still 0s left on the stack when the last input is read or
 - there are any 0s after the first 1

This recognizes

$$L = \{0^n 1^n \mid n \ge 0\}$$

Formal Definition of PDAs

A PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- Q set of state of the NFA
- Σ input alphabet
- Γ Stack alphabet
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \to P(Q \times \Gamma_{\epsilon})$ transition function
- $q_0 \in Q$ start state
- $F \subseteq Q$ accept states

Recall that $P(Q \times \Gamma_{\epsilon})$ is the power set of the set of pairs $\{(q \in Q, a \in \Gamma_{\epsilon})\}$

Computing with a PDA - Formal Notation

A PDA M accepts a string $w = w_1 w_2 \cdots w_m$ with $w_i \in \Sigma_{\epsilon}$ if there exist

- A sequence of states $q_0, q_1, \dots q_m \in Q$, and
- A sequence of strings $s_0, s_1, \ldots, s_m \in \Gamma^*$

that satisfy the following three conditions:

Computing with a PDA - Formal Notation

A PDA M accepts a string $w=w_1w_2\cdots w_m$ with $w_i\in\Sigma_\epsilon$ if there exist

- A sequence of states $q_0, q_1, \dots q_m \in Q$, and
- A sequence of strings $s_0, s_1, \ldots, s_m \in \Gamma^*$

that satisfy the following three conditions:

1 q_0 is the start state, and $s_0 = \epsilon$ M starts in the start state with an empty stack

Computing with a PDA – Formal Notation

A PDA M accepts a string $w=w_1w_2\cdots w_m$ with $w_i\in \Sigma_\epsilon$ if there exist

- A sequence of states $q_0, q_1, \dots q_m \in Q$, and
- A sequence of strings $s_0, s_1, \ldots, s_m \in \Gamma^*$

that satisfy the following three conditions:

- **1** q_0 is the start state, and $s_0 = \epsilon$ M starts in the start state with an empty stack
- ② For $i=0,\ldots,m-1$, $(q_{i+1},b)\in\delta(q_i,w_{i+1},a)$ where $s_i=at$ and $s_{i+1}=bt$ for some $a,b\in\Gamma_\epsilon$ and $t\in\Gamma^*$ there is a transition in δ s.t. M reads symbol w_{i+1} from the input, pops a from the stack, pushes b back on the stack and moves from q_i to q_{i+1}

Computing with a PDA – Formal Notation

A PDA M accepts a string $w=w_1w_2\cdots w_m$ with $w_i\in \Sigma_\epsilon$ if there exist

- A sequence of states $q_0, q_1, \dots q_m \in Q$, and
- A sequence of strings $s_0, s_1, \ldots, s_m \in \Gamma^*$

that satisfy the following three conditions:

- **1** q_0 is the start state, and $s_0 = \epsilon$ M starts in the start state with an empty stack
- ② For $i=0,\ldots,m-1$, $(q_{i+1},b)\in\delta(q_i,w_{i+1},a)$ where $s_i=at$ and $s_{i+1}=bt$ for some $a,b\in\Gamma_\epsilon$ and $t\in\Gamma^*$ there is a transition in δ s.t. M reads symbol w_{i+1} from the input, pops a from the stack, pushes b back on the stack and moves from q_i to q_{i+1}

Recall the PDA we described before:

- On input 0, push a 0 on the stack
- On input 1, pop a value from the stack
- If all 0s come before all 1s and the stack is empty when run out of inputs, accept

Recall the PDA we described before:

- On input 0, push a 0 on the stack
- On input 1, pop a value from the stack
- If all 0s come before all 1s and the stack is empty when run out of inputs, accept

Recall the PDA we described before:

- On input 0, push a 0 on the stack
- On input 1, pop a value from the stack
- If all 0s come before all 1s and the stack is empty when run out of inputs, accept

- $Q = \{q_0, q_1, q_2, q_3\}$
 - q₀ start state
 - q_1 seen only 0s
 - q_2 seen 0s followed by 1s
 - q₃ accept state

Recall the PDA we described before:

- On input 0, push a 0 on the stack
- On input 1, pop a value from the stack
- If all 0s come before all 1s and the stack is empty when run out of inputs, accept

- $Q = \{q_0, q_1, q_2, q_3\}$
 - q₀ start state
 - q_1 seen only 0s
 - q_2 seen 0s followed by 1s
 - q₃ accept state
- $\bullet \ \Sigma = \{0,1\}$

Recall the PDA we described before:

- On input 0, push a 0 on the stack
- On input 1, pop a value from the stack
- If all 0s come before all 1s and the stack is empty when run out of inputs, accept

- $Q = \{q_0, q_1, q_2, q_3\}$
 - q₀ start state
 - q_1 seen only 0s
 - q_2 seen 0s followed by 1s
 - q₃ accept state
- $\Sigma = \{0, 1\}$
- $\Gamma = \{0,\$\}$ \$ is a special symbol to indicate the stack is empty

Recall the PDA we described before:

- On input 0, push a 0 on the stack
- On input 1, pop a value from the stack
- If all 0s come before all 1s and the stack is empty when run out of inputs, accept

- $Q = \{q_0, q_1, q_2, q_3\}$
 - q₀ start state
 - q_1 seen only 0s
 - q_2 seen 0s followed by 1s
 - q₃ accept state
- $\Sigma = \{0, 1\}$
- $\Gamma = \{0,\$\}$ \$ is a special symbol to indicate the stack is empty
- $q_0 = q_0$

Recall the PDA we described before:

- On input 0, push a 0 on the stack
- On input 1, pop a value from the stack
- If all 0s come before all 1s and the stack is empty when run out of inputs, accept

- $Q = \{q_0, q_1, q_2, q_3\}$
 - q₀ start state
 - q_1 seen only 0s
 - q_2 seen 0s followed by 1s
 - q₃ accept state
- $\Sigma = \{0, 1\}$
- $\Gamma = \{0,\$\} \$$ is a special symbol to indicate the stack is empty
- $q_0 = q_0$
- $F = \{q_3\}$

Recall the PDA we described before:

- On input 0, push a 0 on the stack
- On input 1, pop a value from the stack
- If all 0s come before all 1s and the stack is empty when run out of inputs, accept

- $Q = \{q_0, q_1, q_2, q_3\}$
 - q₀ start state
 - q_1 seen only 0s
 - q_2 seen 0s followed by 1s
 - q₃ accept state
- $\Sigma = \{0, 1\}$
- $\Gamma = \{0,\$\} \$$ is a special symbol to indicate the stack is empty
- $q_0 = q_0$
- $F = \{q_3\}$

Transition Function

	Input:	0			1			ϵ		
	Stack:	0	\$	ϵ	0	\$	ϵ	0	\$	ϵ
Ī	q_0									$\{(q_1,\$)\}$
	q_1			$\{(q_1,0)\}$	$\{(q_2,\epsilon)\} \ \{(q_2,\epsilon)\}$					
	q_2				$\{(q_2,\epsilon)\}$				$\{(q_3,\epsilon)\}$	
	q 3									

Table: Transition Function δ

Empty cells correspond to output of \emptyset

Example PDA as a Graph

Exercise – Work in Groups

Show a PDA that recognizes the language

 $L = \{w \mid w \text{ has an equal number of 0s and 1s}\}$

- Describe a PDA algorithm for this language
- Write the states and transition function
- Oraw the PDA graph

Exercise – Work in Groups

Show a PDA that recognizes the language

 $L = \{w \mid w \text{ has an equal number of 0s and 1s}\}$

- Describe a PDA algorithm for this language
- Write the states and transition function
- Oraw the PDA graph

Solution:

- Push \$ on the stack
- If input is 0, pop value from the stack
 - If it's a 0 or \$ push it back on the stack and push another 0 on top
 - If it's a 1 pop it off the stack
- If input is 1, pop value from the stack
 - If it's a 1 or \$ push it back and push another 1 on top
 - If it's a 0 pop it off the stack
- When the input is done, if \$ is top of the stack, accept

Exercise – Work in Groups

