Table 1: Decision Making

Reward

Next Node *

 $[expect \times$

value expl

Value Function

 $Q- = \frac{expect - true}{expect}$

 $value_exp = \frac{e^{Q_i}}{\sum_{j=1}^{k} e^{Q_j}}$

 $Q^{new}(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha.[r_t +$

	$Q = (O_1, O_2) - Q(O_1, O_2) + O(O_1)$		
rl	$\gamma.\max_{a}Q(s_{t+1},a)-Q(s_{t},a_{t})]^{**}$	$r_t = log(expect -$	-
	$value_exp = \frac{e^{Q_i}}{\sum_{j=1}^{k} e^{Q_j}}$	true)***	value_exp]
	$Q^{new}(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha.[r_t +$		
	$\gamma. \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t)]$	$r_t = log(expect-true)$	[value_exp]
	$value_exp = \frac{e^{Q_i} * expect_i}{\sum_{j=1}^{k} e^{Q_j} * expect_j}$		
	$Q^{new}(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha.[r_t +$	$r_t = true$	[expect+
rl_true	$\gamma. \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t)]$		
	value exp = $\frac{e^{Q_i}}{}$		$\max_{\mathcal{N}}(value_exp)^{***}$
	$value_exp = \frac{e^{Q_i}}{\sum_{j=1}^{k} e^{Q_j}}$		varue_exp)]
temporal difference			
$Q^{new}(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{ ext{old value}} + \underbrace{lpha}_{ ext{learning rate}} \cdot \underbrace{\left(\underbrace{r_t}_{ ext{reward}} + \underbrace{\gamma}_{ ext{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{ ext{old value}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}} ight)}_{ ext{old value}}$			
* Choosing neighbour with maximum value of – .Epsilon-greedy with ϵ = 0.1			
** For this simulation, $\alpha = 0.1$, $\gamma = 0.95$			
*** If $expect = true, r_t = 0$			
**** (expected idleness + max(value_exp of next neighbours))			
Table 2: Estimating Idleness			
Types	Expression		
sim	AGENT MODEL		
	Expected idleness = Time elapsed since last visit of that bot to that node		
avg	OBSERVATION MODEL 1		
	Expected Idleness = Average of all true idleness		
	observed on the previous visits $\frac{1}{2} = \frac{1}{2} \sum_{n=1}^{n-1} t_n y_n$		
	$expect_n = \frac{1}{n-1} * \sum_{j=1}^{n-1} true_j$		

OBSERVATION MODEL 2
Expected Idleness = Simple Exponential Smoothing (SES) of all

true idleness observed on previous visits $expect_n = \alpha true_{n-1} + \alpha (1-\alpha) true_{n-2} + \alpha (1-\alpha)^2 true_{n-3}...$

ses*

Types

sim

 $[\]alpha = 0.9$