$\mbox{CSE}512$ Fall2019 - Machine Learning - Homework 5

November 19, 2019

Name: Anmol Shukla

Solar ID: 112551470

NetID: anmshukla

Email address: Anmol.shukla@stonybrook.edu

Names of people whom I have discussed the homework with:

• Abhiraj Smit - Asmit@cs.stonybrook.edu

Jan	Question 1					
4	i this to be so with all all studyless than					
1.	To Prove: N $\in Training = \frac{1}{N} \sum_{j=1}^{N} \delta(H(x^{i}) \neq y^{i}) \leq \frac{1}{N} \sum_{j=1}^{N} \exp(-f(x^{i})y^{j})$					
	The condition for error is: $H(xi) \neq yi$					
	where, $H(x^j) = sgn \left\{ \frac{T}{Z} x_t k_t(x) \right\} = sgn \left\{ f(x) \right\}$					
	i.e. H(xi) is the predicted label for ith data point And the actual label is yi f \{-1, 13}					
0	The two cases when an error can occur is:- When $H(xi)=1$ & $yi=-1$					
(1)	When $H(2)=1$ $2y=-1$					
	When $((z)) = 1$ $\therefore \text{ sgn } \{f(xi)\} = 1$ $\therefore f(xi) \ge 0$					
	: yà f(xi) < 0					
(2)	When $H(xi) = -1$ $yi = 1$ $8gn \{ f(xi) \} = -1$					
	$\lim_{x \to \infty} f(x^3) \neq 0$					
	$\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) < 0$					
	Cimilarly in case of no error yif (xi)>0					
	Olin Marie Control of the Control of					
	Etraining = $1 \ge 1$ if $H(x^{\delta}) \neq y^{\delta}$ $N = 1 = 1$ if $H(x^{\delta}) = y^{\delta}$					
	Fraining $N = 1 = 1 = 0$, if $H(x\dot{o}) = y\dot{o}$					
	N (Cai) ut (D					
	Scanned with $N \stackrel{f}{j=1} = 0$ if $f(x^{i})y^{i} < 0$					
63	CamScanner					

To Prove: N $\frac{1}{N} \sum_{j=1}^{N} \exp(-f(x^j)y^j) = \prod_{t=1}^{N} z_t$ $W_{\cdot}^{(t+1)} = \omega_{j}^{(t)} \exp(-\alpha_{t} y_{i} h_{t}(x_{i}))$ Z_{t} $t=1 \qquad \qquad t_{\pm}$ $W_{j}^{(2)} = \omega_{j}^{\perp} \exp(-\alpha_{j} y \sin h_{j}(x \sin h_{j}))$ t=2 $w^{(3)} = \omega^{(2)} \exp(-\alpha_2 y \delta h_2(xi))$ $W_{i}^{(3)} = \omega_{i}^{-1} e^{-\alpha_{i} y \delta h_{i}(x \delta)} \times \frac{\Xi_{2}}{\Xi_{2}} e^{-\alpha_{2} y \delta h_{2}(x \delta)} \left(\text{Substituting value } g \right)$ In general, we can write $\omega^{(t+1)}$ as: $w_{j}^{(t+1)} = w_{j}^{(1)} e^{-\alpha_{i} y \dot{\beta}} h_{i}(x \dot{\delta}) \times e^{-\alpha_{2} y \dot{\delta}} h_{2}(x \dot{\delta}) \times \dots \times e^{-\alpha_{4} y \dot{\delta}} h_{4}(x \dot{\delta})$ $Z_{j} = Z_{j} \times \dots \times e^{-\alpha_{2} y \dot{\delta}} h_{2}(x \dot{\delta}) \times \dots \times e^{-\alpha_{4} y \dot{\delta}} h_{4}(x \dot{\delta})$ Wittel) = Witt) (-yo Ext he(xd)) -(1 T Z_t Weights at any step + should sum upto 1 i.e. $\sum w_j(t) = 1$ i.e

A1
But we know that Z w.(++1) = 1
· · our previous equation can be willen as:
N (applying \(\tag{\text{on both sides}}
$ \begin{array}{cccc} $
Z _t
$\frac{1}{1} = \frac{1}{2} \sum_{i=1}^{N} \frac{1}{2} \left(x^{i} \right)$
$\begin{array}{c c} \hline N & J=1 & \overline{T} \\ \hline 11 & \overline{Z} \\ t=1 \end{array}$
T = 1 = 1 = 1 = 1 $t=1 + 1 = 1$ $t=1 + 1 = 1$
t=1 t N d=1
CS Scanned with Hence Proved CamScanner

3. (a)	$Z_t = (1 - \epsilon_t) e^{-\alpha_t} + \epsilon_t e^{\alpha_t}$						
	to minimize Zt, we'll differentiate w.r.t. «						
$\frac{dz_t}{dz_t} = -(1-\epsilon_t)e^{-\alpha_t} + \epsilon_t e^{\alpha_t} = 0$							
	£ -/e-4/2 +/E/C-4/2 +/E/CX/= 0 • E/CX+ = (1-E/2) e-x+						
	$\bullet \in_{t} C^{d^{t}} = (l - E_{t}) e^{-d_{t}}$						
	$e^{2\alpha_{\pm}} = 1 - \epsilon_{\pm}$						
	- Hall one t could be made shall						
	$e^{\alpha t} = 1 - \epsilon_t$						
for Z_t^{opt} we'll substitute							
	this value of α_t in Z_t						
$\frac{7}{2} e^{pt} = (1 - \epsilon_t) e^{-pt} \left(-\frac{1}{\epsilon_t} + \epsilon_t e^{-pt} \right) \left(-\frac{1}{\epsilon_t} + \epsilon_t e^{-pt} \right) \left(-\frac{1}{\epsilon_t} + \epsilon_t e^{-pt} \right)$ $= (1 - \epsilon_t) \left(-\frac{1}{\epsilon_t} + \epsilon_t + \epsilon_t \right) \left(-\frac{1}{\epsilon_t} + \epsilon_t e^{-pt} \right)$							
							$= \int \epsilon_{t} (1-\epsilon_{t}) + \int \epsilon_{t} (1-\epsilon_{t})$
							$Z_t^{opt} = 2 \int_{t}^{t} (1 - \epsilon_t)$
	Hence Proved						
	Scanned with						
CS	Scanned with CamScanner						

(b) Given: = ==================================
We already proved that $Z_{\xi} = Z_{\xi}^{0}pt = 2\sqrt{\varepsilon_{\xi}(1-\varepsilon_{\xi})}$
$\frac{1}{r_t} = 2 \left(\frac{1}{2} - r_t \right) \left(\frac{1}{2} + r_t \right) $
$= 2 \sqrt{\left(\frac{1}{2}\right)^2 - \Gamma_t^2}$
= 11-452 -0
We have also been given that -
$\log (1-x) \le +x \text{for } 0 \le x \le 1$ $(1-x) \le e^{-x}$
$\frac{(1-x)}{1-x} \leq e^{-x/2} - 2$
€, ≥0
$\frac{1-r_{t} \geq 0}{2} \qquad \qquad \gamma_{t}^{2} \geq 0$
$\frac{1}{1}$ $\frac{1}$
from eqn (1), (2) (3), (9)
$\frac{7}{t} \leq e^{-2C_t^2}$
T + T (-21/2)
t=1 t t=1
T Z1 \(\) \
t=1 t - (15 \ 2)
Scanned with $\exists TZ_{t} \leq e^{tz_{t}} t$
CS Scanned with CamScanner Dence Proved

(c) To prove: 2T.Y2
E = E C Training
we know that
$Y_{+} \geq Y + t, Y > 0$
$\gamma^2 \ge \gamma^2$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\frac{T}{\sum_{t=1}^{\infty} \left(\frac{t}{t}\right)^{2}} \geq T \int_{t}^{2} dt$
$t=1 t$ $-2 \sum_{t=1}^{\infty} t^{2} \leq -2TY^{2}$
toling exponent on both sides \[\begin{align*} \text{Training} & \text{Training} & \text{Training} & \text{Training} \\ \text{Combining the above 2eqn} & \text{Training} & \text{Training} & \text{Training} \\ \text{Training} & \text{Training} & \text{Training} & \text{Training} \end{align*}
$e^{-2\sum_{t=1}^{L}Y^{2}}$
we already Know that, ETraining = C = 2 Tr
·· (ombining the above 2egn > E < e
Scanned with Tincreases, Etraining decreases
CamScanner

2 Programming Question (clustering with K-means)

2.5.1

k	Sum of Squares	p1	p2	p3
2	$5.3676 \times 1.0e + 08$	79.815689	54.805460	67.310575
4	4.6111 x 1.0e+08	67.881215	86.832918	77.357066
6	4.3135 x 1.0e+08	55.176546	94.434978	74.805762

2.5.2

The number of iterations that k-means ran for k = 6 is 8.

2.5.3

Sum of squares versus k for k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

2.5.4

3 Programming Question (scene classification)

3.4.1

Please see the corresponding matlab file for HW5 BoW.learnDictionary().

3.4.2

The accuracy for 5-fold CV with default parameters = 15.64

3.4.3

After tuning:

$$C = 8192$$

$$\gamma = 8$$

Accuracy = 89.45

3.4.4

Please see the corresponding code in exponentialKernel.m file.

3.4.5

After tuning:

$$C = 2048$$

$$\gamma = 2$$

5-fold CV Accuracy = 94.01

3.4.6

Kaggle score = 0.80208