Problem1

(a) we have:

$$(-1)2-(0)4=-2$$

$$(0)2 - (0)4 = 0$$

$$(-1)2 - (-1)4 = -2$$

$$(-1)2-(0)4=-2$$

$$(1)2 - (2)4 = -6$$

$$(1)2 - (3)4 = -10$$

So,
$$S_{2,-4} = \{..., -10, -6, -2, 0, 2, ...\} = Z$$

(b) we have:

$$(-1)$$
 12 + (-1) 18 = -30

$$(-1)$$
 12 + (0) 18 = -12

$$(0)12 + (-1)18 = -18$$

$$(0)12 + (0)18 = 0$$

$$(0)12 + (1)18 = 18$$

$$(1)12 + (-1)18 = -6$$

So,
$$S_{12,18} = \{..., -30, -12, -18, 0, 18, ...\} = 3Z$$

(c) (i) for d|n, d|x and d|y, so d|(mx+my) for any integers m, n.

So, if a \in S_{x,y}, d|a. Therefore, S_{x,y} \subseteq {n : n \in Z and d|n}.

The proof is complete.

(ii) because $z \in S_{x,y,}$ and from (i), we have that $Sx,y \subseteq \{n : n \in Z \text{ and } d|n\}$, so d|z, so that z = kd, $k \ge 1$. z is positive number in Sx,y, d is also positive, and $k \ge 1$, so $z = kd \ge d$.

The proof is complete.

(d) (i) because $z \in S_{x,y}$, so z = mx + ny for some $m, n \in \mathbb{Z}$.

Suppose z|w, and $w \in Z$, so w = kz.

Then we have $w = (km)x + (kn)y \in S_{x,y}$.

Let w1 = (1)x + (0)y, and w2 = (0)x + (1)y, so w1, w2 both elements of $S_{x,y}$. Then we have z|w1 and z|w1.

Therefore z|x and z|y.

(ii) from (i), we have that z|x and z|y, so z is a common divisor of x and y. $d = \gcd(x, y)$, so d is the greatest common divisor of x and y. Therefore, $z \le d$.

The proof is complete.

Problem2

(a) Since gcd(x,y) = 1,

From Bézout's Identity, we have that mx + ny = gcd(x,y) = 1, for some integer m, n. So there exists $w \in [0,y) \cap N$, make wx + ny = 1.

So we have : wx-1 = -ny, therefore, y|(wx-1), so that there is at least one $w \in [0,y) \cap N$ such that $wx \xrightarrow{mod y} 1$.

The proof is complete.

(b) If gcd(x,y) = 1, mx+ny = 1.

Multiply this by k on both side: Mkx + nky = k.

Since y|kx and y|nky, so that y|(mkx + nky)

Therefore, y|k.

The proof is complete.

(c) From (a) we have that:

there exists a we[0,y) \cap N such that wx $\frac{mod y}{}$ 1.

wx
$$\frac{\frac{mod y}{}}{}$$
 1 if and only if wx%y = 1%y = 1

if $w \in [0,y)$, then $wx \in [0,yx)$, so there is at most one w such that wx%y = 1.

Therefore, there is at most one we[0,y) \cap N such that wx $\stackrel{mod y}{----}$ 1. The proof is complete.

Problem3

We have that: for all m, $n \in N_{>0}$ with $n \le m$, so $(m\%n) \in [0,m-n]$.

When (m%n) = 0:

$$\frac{3}{2}$$
 (n + (m%n)) = $\frac{3}{2}$ n

To prove $\frac{3}{2}$ (n + (m%n)) < m+n, is to prove: $\frac{3}{2}$ n < m+n.

we adjust the inequality, is to prove: $\frac{1}{2}$ n < m. And always n \leq m, so the inequality holds.

When (m%n) = m-n:

$$\frac{3}{2}$$
 (n + (m%n)) = $\frac{3}{2}$ m

To prove $\frac{3}{2}$ (n + (m%n)) < m+n, is to prove: $\frac{3}{2}$ m <m+n. we adjust the inequality, is to prove: m<2n while (m%n) \in [0,m-n], it also have: (m%n) \in [0,n] so (m-n) < n, m<2n. so the inequality holds. The proof is complete.

Problem4

(a)
$$A \oplus A = (A \setminus A) \cup (A \setminus A)$$
 (Definition)

= $(A \cap A^{C}) \cup (A \cap A^{C})$ (Definition)

 $=\Phi \cup \Phi$ (Complementation)

=Ф

(b)
$$A \cup U = A \cup (A^c \cap U)$$
 (Identity)

= $(A \cap U) \cup (A^{C} \cap U)$ (Identity)

 $=U \cap (A \cup A^C)$ (Distribution)

=UNU

=U

(c)
$$A \oplus B = (A-B) \cup (B-A)$$
 (Definition)

 $=(A \cap B^C) \cup (B \cap A^C)$ (Definition)

 $=((A \cap B^{c}) \cup B) \cap ((A \cap B^{c}) \cup A^{c})$ (Distribution)

= $((A \cup B) \cap (B^C \cup B)) \cap ((A \cup A^C) \cap (A^C \cup B^C))$ (Distribution)

= $((A \cup B) \cap U) \cap (U \cap (A^{C} \cup B^{C}))$ (Complementation)

 $=(A \cup B) \cap (A^C \cup B^C)$ (Identity)

(d)
$$(A \cup B)^C$$

Let $x \in (A \cup B)^C$:

 \Rightarrow x \in A^C and x \in B^C

 $\Rightarrow x \in (A^C \cap B^C)$

 \Rightarrow $(A \cup B)^C = A^C \cap B^C$

Problem5

$$\Sigma^* = \{\lambda, 0, 1, 00, 11, 01, 10, 000, 111, ...\}$$

(a) False

Let
$$X = \{0\}, Y = \{1\},$$

$$(X \cup Y)^* = {\lambda, 0, 1, 00, 11, 01, 10, 000, 111, ...}$$

$$X^* = {\lambda, 0, 00, 000, ...}$$

$$Y^* = {\lambda, 1, 11, 111,...}$$

$$X^* \cup Y = \{\lambda,\,0,\,1,\,00,\,11,\,000,\,111,\,0000,\,1111,....\}^*$$

There are no elements that combine 0 and 1 in $X^* \cup Y$, therefore,

...

false.

- (b) True
- (c) False

Let
$$X = \{0\}$$

$$X^* = {\lambda, 0, 00, 000, ...}$$

$$X(X^*) = \{0, 00, 000, 0000,\}$$

There is no λ in $X(X^*)$. Therefore false.

Problem6

(a) List all possible functions $f : \{a, b, c\} \rightarrow \{0, 1\}$:

1.
$$f(a) = 0$$
, $f(b) = 0$, $f(c) = 0$

2.
$$f(a) = 0$$
, $f(b) = 0$, $f(c) = 1$

3.
$$f(a) = 0$$
, $f(b) = 1$, $f(c) = 0$

4.
$$f(a) = 0$$
, $f(b) = 1$, $f(c) = 1$

5.
$$f(a) = 1$$
, $f(b) = 0$, $f(c) = 0$

6.
$$f(a) = 1$$
, $f(b) = 0$, $f(c) = 1$

7.
$$f(a) = 1$$
, $f(b) = 1$, $f(c) = 0$

8.
$$f(a) = 1$$
, $f(b) = 1$, $f(c) = 1$

(b) $pow({a, b, c}) = {\Phi, {a}, {b}, {c}, {a.b}, {a,c}, {b,c}, {a,b,c}}$

$$|pow({a, b, c})| = 8$$

The cardinality of pow({a, b, c}) is equal to the number of function a.

(c) For each $\{w \in \{0,1\}^*: length(w) = 3\}$, there exists a function a to associate an element with w.

Problem7

Let
$$f \in (A^B)^C$$
, $g \in A^{BXC}$

Define
$$\varphi: (A^B)^C \to A^{BXC}$$
,

$$\varphi(f)(b)(c) = f(b)(c)$$

Define
$$\omega: A^{BXC} \rightarrow (A^B)^C$$

$$\omega(g)(b)(c) = g(b,c)$$

Therefore, there is a bijection between (AB)C and ABXC

The proof is complete.

Problem8

(a)
$$(R1; R2); R3 = R1; (R2; R3)$$
 True

Let R1 =
$$\{(a, b)\}$$
, R2 = $\{(b, c)\}$, R3 = $\{(c, d)\}$

$$(R1; R2) = \{(a, c)\}, (R1; R2); R3 = \{(c, d)\}$$

$$(R2; R3) = \{(b, d)\}, R1; (R2; R3) = \{(c, d)\}$$

There is always a same element that both in the two binary relation R1, R2, and in R2, R3, so (R1; R2); R3 = R1;(R2; R3).

(b) I; R1 = R1; I = R1 where I = $\{(x, x) : x \in S\}$ True

Let
$$I = \{(x, x)\}, R1 = \{(a, b)\}$$

If I; R1, then a = x, and I; R1 = {(x, b)}

If R1; I, then b = x, and R1; $I = \{(a, x)\} = \{(x, x)\}$

So I; R1 =
$$\{(x, b)\}$$
 = $\{(x, x)\}$

Therefore true.

(c) $(R1 \cup R2)$; $R3 = (R1; R3) \cup (R2; R3)$ True

If (R1 \cup R2); R3, then there must have an element b with a binary relation (a, b) \in R1 \cup R2,

And there must have a same element b with another binary

relation (b, c) \in R3.

However, if $(a, b) \in R1$ but $\notin R2$,

$$(R1 \cup R2); R3 = R1; R3, R2; R3 = {\Phi},$$

So (R1
$$\cup$$
 R2); R3 = (R1; R3) \cup (R2; R3) always holds

(d)
$$R1;(R2 \cap R3) = (R1; R2) \cap (R1; R3)$$
 False

Let
$$R1 = \{(0, 0), (0, 1)\}, R2 = \{(0, 0), (1, 1)\}, R3 = \{(1, 0), (1, 1)\}$$

R2
$$\cap$$
 R3 ={(1, 1)}, then:

$$R1;(R2 \cap R3) = \{(0,1)\}$$

$$(R1; R2) \cap (R1; R3) = \{(0, 0), (0, 1)\} \cap \{(0, 0), (0, 1)\} = \{(0, 0), (0, 1)\}$$

So that R1;(R2
$$\cap$$
 R3) \neq (R1; R2) \cap (R1; R3)

Therefore false.