Grade comp.

- 3x take home assignment. (15 %) each, (45% total)

 E. Final exam (55%)
- No mave-up assignments
- No extensions (except for documented reasons)
- not be graded)

Monday / wednesday: 1 - 2pm (OFFice hours)

RB 2015

Important topics:

- Differentiation:
 - · Basic derivatives of

 x^n , 5nx, cosx, e^x , lnx

· Rules of derivation:

linearity: dx (f(x) + cg(x))

= f'(x) + cq'(x), c = constan+

Product: (f(x)-g(x))'

= 5(x) q'(x) + 5'(x) g(x)

Chain rule: $[f(g(x))]' = f'(g(x)) \cdot g'(x)$

quotient rule: $\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x)g(x) - g'(x)f'(x)}{g(x)^2}$

- Integration:

- · Basic integrals of xr, sinx, cosx, ex, hx
- · Rules of integration: linearity: $\int [S(x) + cg(x)] dx$ = $\int S(x) dx + c \int g(x) dx$

Substitution

y = g(x), then dy = g'(x)dx, and $\int f(y)dy = \int f(g(x)g'(x))dx$ don't Forget this

Integration by parts: $\int [f'(x)g(x) + f(x)g'(x)] dx = f(x)g(x) + constant$ $[\int uv' dx = uv - \int u'v dx]$

- Theck out Paul's notes / khan academy for more help.
 - Textbook is not required
 - Both sections will cover the same material
 - Lab sessions utilized to cover additional examples.

JAN 9/19

Inner Product

You already saw inner product with vectors $V = (V_1, ..., V_R) = U = (U_1, ..., U_R)$ $V \cdot U = V_1 U_1 + V_2 U_2 + ... + V_R U_R$ (standard Euclidean Inner Product)

Functions can be considered as "infinite vectors". $f: [0, 1] \longrightarrow \mathbb{R}$ (Function) can be considered

as "infinite vector" whose "components" are its

values f(x), $x \in [0, 1]$

. Inner product can be extended to functions .

Given Functions $f, g: D \rightarrow \mathbb{R}$ $|f \cdot g| = \int_{\mathcal{D}} f(x) g(x) dx$ Inner product between f, g

For J.g to move sense, J and g must have the same domain. (Just live in the case: V-W NEEDS U and V to have the same number of components)

Ex
$$f(x) = x$$
, $g(x) = x^2 + 1$
domain $[0, 1]$. Find $f \cdot g$
 $f \cdot g = \int_0^1 f(x) \cdot g(x) dx$
 $f \cdot g = \int_0^1 x^3 + x dx$
 $f \cdot g = \int_0^1 x^3 + x dx$
 $f \cdot g = \int_0^1 x^3 + x dx$
 $f \cdot g = \int_0^1 x^3 + x dx$
 $f \cdot g = \int_0^1 x^3 + x dx$
 $f \cdot g = \int_0^1 x^3 + x dx$
 $f \cdot g = \int_0^1 x^3 + x dx$
 $f \cdot g = \int_0^1 x^3 + x dx$
 $f \cdot g = \int_0^1 x^3 + x dx$
 $f \cdot g = \int_0^1 x^3 + x dx$
 $f \cdot g = \int_0^1 x^3 + x dx$
 $f \cdot g = \int_0^1 x^3 + x dx$
 $f \cdot g = \int_0^1 x^3 + x dx$
 $f \cdot g = \int_0^1 x^3 + x dx$
 $f \cdot g = \int_0^1 x^3 + x dx$

Ex J(x) = x, $g(x) = x^2$, domain [-1, 1]

Find $J \cdot g$ $J \cdot g = J_0 J(x) \cdot g(x) dx$ = $J'_1 X^2 dx \rightarrow [x''/4]'_1$ -> $J'_4 - J'_4 = 0$ orthogonal

2 functions $J \cdot g = 0$ orthogonal when $J \cdot g = 0$ From previous example: J(x) = x, $g(x) = x^2$ are

orthogonal on $J \cdot g = 0$ But the same functions $J(x) = x \cdot g(x) = x^2$ are $J \cdot g = J'_0 x^2 dx = J'_4 \neq 0$ Orthogonality depends on the domain

| Ex | f(x) = cosx, $g(x) = sin^2x$, domain [0, π] | Are f, g orthogonal? $f \cdot g = \int_{-\infty}^{\pi} f(x) g(x) dx$ $= \int_{-\infty}^{\pi} cosx sin^2x dx = \frac{sin^3x}{3} |_{-\infty}^{\pi} = 0$ $f \downarrow g$ (f and a are orthogonal)

• A set of functions $\{f_1, f_2, \dots, f_n, \dots g\}$ is an "orthogonal set " if all of its functions are mutually orthogonal $f_{R} \perp f_{S}$ whenever $f_{R} \neq g$

[Ex] Given the Function set $\{Sin(nx): n=1, 2, 3, ...\}$ Check if it is an orthogonal set Take 2 arbitrary functions

```
Sin(nx), Sin(mx)

and check if they are orthogonal

= \int_{\infty}^{\infty} \sin(nx) \sin(mx) dx \qquad n \neq m

= \int_{\infty}^{\infty} \sin(nx) \sin(mx) dx \qquad n \neq m

= \cos(nx - mx) = \cos(nx) \cos(mx) + \sin(nx) \sin(mx)

= \cos(nx - mx) = \cos(nx) \cos(mx) + \sin(nx) \sin(mx)

= \cos(nx - mx) = \cos(nx) \cos(mx) + \sin(nx) \sin(mx)

= \cos(nx - mx) = \cos(nx) \cos(nx) + \sin(nx) \sin(mx)

= \cos(nx - mx) = \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos(nx + mx)

= \cos(nx - mx) - \cos
```

Ex is $\{ \cos(nx) : n = 1, 2, 3, ... \}$ an orthogonal set? domain [0, πi]

Take 2 arbitrary elements $\cos(nx)$, $\cos(mx)$, $n \neq m$ Inner Product $\int_{0}^{\pi} \cos(nx) \cos(mx) dx$ $\cos(nx) \cos(mx) = \frac{\cos(nx-mx) + \cos(nx+mx)}{2}$ $= \int_{0}^{\pi} \frac{1}{2} (\cos[(n-m)x] + \cos[(n+m)x]) dx$ $= \frac{1}{2} \left[\frac{\sin[(n-m)x]}{n-m} + \frac{\sin[(n+m)x]}{n+m} \right]_{0}^{\pi} = 0$ $\Rightarrow \cos(nx) + \cos(mx)$ whenever $n \neq m$ is orthogonal set

• Weighted orthogonality: 5.9 are orthogonal on domain D with respect to a weight Function ω if: $\int_{P} f(x)g(x)\omega(x) dx = 0$

Ex. Show f(x) = 1, g(x) = 1-x are orthogonal on domain $[0, +\infty]$ with weight Function $w(x) = e^{-x}$

Have to check. $\int_{\infty}^{\infty} f(x)g(x)w(x)dx = 0$: $\int_{\infty}^{+\infty} f(x)g(x)w(x)dx$ $= \int_{\infty}^{+\infty} 1 \cdot (1-x) \cdot e^{-x} dx = \int_{\infty}^{+\infty} (e^{-x} - xe^{-x}) dx$ $= \int_{\infty}^{+\infty} e^{-x} dx - \int_{\infty}^{+\infty} xe^{-x} dx$ $= \int_{\infty}^{+\infty} e^{-x} dx - \left[-xe^{-x} \right]_{\infty}^{+\infty} + \int_{\infty}^{+\infty} e^{-x} dx = 0$ obtained From integration by parts.

Norm

vector v * (v, ..., V,) has norm

· A Function 5: D - IR has norm

$$||f|| = \sqrt{f \cdot f} = \sqrt{\int_0^x \int_0^x (x)^2 dx}$$

Again... Norm depends on the domain.

Ex.] Find the norm of $f(x) = \sin(x)$ on $[\emptyset, \pi]$ $||f|| = \sqrt{\int_0^{\pi} \sin^2 x \, dx} = \sqrt{\int_0^{\pi} \frac{1-\cos(2x)}{2} \, dx}$

$$Cos(2x) = Cos^2 x - sin^2 x$$

 $1 = \cos^2 x + \sin^2 x$

$$\Rightarrow \sin^2 x = 1 - \cos(2x) = \sqrt{\frac{\pi}{2}} - \sin(2x) \sqrt{\frac{\pi}{6}} = \sqrt{\frac{\pi}{2}}$$

o An arthogonal set (of Functions) is "complete"; fithe only continuous Function orthogonal to all Functions in the set is 3(x) = 0