

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Zastosowanie uczenia maszynowego do wykrycia metody kompresji stratnej sygnału audio

Szymon Mikulicz

Data: 27.06.2019 r.

Kompresja stratna audio

Model Psychoakustyczny

- » Algorytm dobierający parametry analizy sygnału oraz jego kwantyzacji w sposób jak najmniej zauważalny dla ludzkiego ucha
- » Wyznaczany eksperymentalnie na podstawie testów odsłuchowych i wiedzy z zakresu psychoakustyki

STFT

- » Algorytm pozwalający na analizę sygnału pod względem zarówno czasu jak I częstotliwości poprzez stosowanie transformaty Fouriera na kolejnych fragmentach sygnału
- » Fragmenty sygnału mnożone są przez tzw. okno w celu zniwelowania efektów brzegowych

0

3

Kompresja stratna audio

Dane

- » 8192 STFT z 30-tosekundowych fragmentów sygnałów audio (muzyki)
- » Parametry STFT: długość okna 512, skok 256, okno hanninga
- » 75% przeznaczone na dane treningowe, 25% przeznaczone na dane testowe
- » Każdy z fragmentów został poddany kompresji MP3 128kbps, 192kbps, 320kbps lub nie został

^{Асн} Wykorzystane oprogramowanie

- » Język programowania Julia
- » Biblioteka do uczenia maszynowego: Knet (Koç University deep learning framework)

- » Język dynamiczny wysokiego poziomu
- » Zaprojektowany do wysokowydajnościowych obliczeń numerycznych
- » Wykorzystuje JIT (Just-In-Time Compilation) do uzyskania przewagi wydajnościowej nad głównymi rywalami (Python, R, GNU Octave)

Biblioteka Knet

- » Pozwala prosto projektować warstwy sieci jako struktury dzięki wbudowanym funkcjom do przetwarzania tensorów
- » Posiada zaimplementowane funkcje optymizujące

Architektura sieci

STFT

Conv (3,3) 16

Pool (2,2) max

reLU

Conv (3,3) 16

Pool (2,2) max

reLU

Conv (3,3) 16

Pool (2,2) max

reLU

Flatten

Dropout 20%

FC 256

reLU

Dropout 20%

FC 256

reLU

Dropout 20%

FC 4

www.agh.edu.pl

Trening

- » Trening odbywał się na CPU
- » Każda epoka trwała ok. 2h 45min

Wynik treningu

Kategoria	Brak kompresji	MP3 320kbps	MP3 192kbps	MP3 128kbps	Wszystko
Zgodność	96,3%	93,4%	88,7%	88.3%	91,7%

Zastosowanie uczenia maszynowego do wykrycia metody kompresji stratnej sygnału audio

https://github.com/Ashymad/IOLA

Dziękuję za uwagę

Bibliografia:

- (1) Marina Bosi i Richard E. Goldberg: *Introduction to Digital Audio Coding and Standards*, Norwell, MA, USA: Kluwer Academic Publishers, 2002, isbn: 1402073577
- (2) Bongjun Kim: "Lossy Audio Compression Identification", w: 2018 26th European Signal Processing Conference (EUSIPCO), 2018, s. 2459-2463
- (3) Romain Hennequin, Jimena Royo-Letelier i Manuel Moussallam: "Codec independent lossy audio compression detection", w: 2017 *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2017, s. 726–730