GDR and ASF Winter School on Distributed Systems and Networks

Hardware accelerators for virtualization

PhD Student - **Stella Bitchebe** Supervisor - **Pr Alain Tchana** Research team - **SCALE I3S**

Agenda

- Context
- State of the art
- Problem Statement
- Contribution
- Evaluation
- Conclusion

Context

- Resources management and energy saving (vm consolidation)
- Scalability and easy deployment of applications
- Maintenance (vm migration) and fault tolerance
- etc.

Classic virtualization architecture

Root context Role

- VM management
- I/O drivers
- Monitoring tools
- etc.

Hypervisor Role

- Scheduler
- Memory allocator
- Interrupt manager
- etc.

Virtualization side effects

Limits of classical architecture

- Hypervisor intervention (cpu time consumed by context switches)
- Interference between VMs (pollution, e.g. cache pollution)
- Hardware abstraction from the VM (VMs are black boxes)
- etc.

VT-d / VT-x

Promising approaches: Hardware Assisted Virtualization

- **SRIOV** CAT
- **APICV**
- etc.

State of the art

Limits of virtualization with hypervisor inside the hardware : rigidity of hypervisor

- In case of security issues (Meltdown & Spectre)
- In case of hypervisor updates (requires to change the hardware)
- Does not support Over Provisioning → PhD project
- etc.

Importance of over provisioning

- Workloads are not static
- Cloud users overestimate resources
- New workloads: Faas
- Cloud provider competition for costs reducing
- New hardware feature to facilitate overcommitment (e.g. PML)

Contribution

The goal of my thesis:

(Re)design hardware features and software supports (when needed) to improve overcommitment of:

CPU

Memory (first step)

Without impacting VMs perf.

Memory overcommitment

- 1. Working Set Size (WSS) estimation: determine the effective needs of the VMs
- 2. VM memory balancing

Existing methods: all software based \rightarrow induce overheads

- Geiger [xxx'10]
- Exclusive cache [xxx'10]
- VMWare [xxx'10]
- etc.

Our solution: WSS estimation method based on Intel PML (hardware feature introduced in 2016 by Intel in collaboration with VMWare)

Intel Page Modification Logging (PML)

Description:

 Allows hypervisor to monitor the guest-physical pages modified by the VM

Aim:

Facilitate working set statistics during VM operations

Limits:

- Impact on VMs (VMExits)
- Overhead (CPU time used)

PRL (Page Reference Logging)

- a new PML design that we propose
- Adresses PML limits

Page Reference Logging (PRL), the new design that we propose.

Implementation and Evaluation methodology

- 1. Implementation and Evaluation frameworks
 - a. Gem5, a computer architecture simulator
 - b. FPGA boards [may be]
 - c. Xen and KVM virtualization systems
- 2. Benchmarks
 - a. SPEC benchmarks, CloudSuite, BigBench
- 3. Metrics
 - a. Performance impact on VMs (#VMEXITs)
 - b. Resource gain
 - c. Energy gain (number of active servers, electricity consumption)
 - d. Resource consumption (by our solution): #CPU and #memory
- 4. Comparison with state-of-the-art solutions
 - a. see the previous slide

GDR and ASF Winter School on Distributed Systems and Networks

Hardware accelerators for virtualization

Questions?