The OpenBiomechanics Project

The Open Source Initiative for Anonymized, Elite-Level Athletic Motion Capture Data

Kyle W Wasserberger^{1,†}, Anthony C Brady¹, and Kyle J Boddy¹

 $^{1} \rm{Research}$ & Development; Driveline Baseball $^{\dagger} \rm{Corresponding}$ author: kyle.wasserberger@drivelinebaseball.com

Keywords: open access, baseball, pitching

1 Abstract

10 11 Interest in quantifying human movement, particularly in elite sport, increases with each passing year. However, analysis of sport biomechanics data has traditionally been restricted to academic laboratories and professional sport organizations. Public sport biomechanics resources would democratize access to human movement data and accelerate progress and innovation for the sport biomechanics field as a whole. In this paper, we introduce *The OpenBiomechanics Project*, an initiative started by *Driveline Baseball Research & Development* to provide free, elite-level, research grade motion capture data to the general public for independent individual exploration and analysis. We begin by providing raw and processed data from a sample of 100 baseball pitchers. We then discuss future directions within baseball, expansion to other sports and athletic movements, and outline supporting documentation and additional resources.

₂ 1 Introduction

Open access resources exist in other biomechanics sub disciplines [1,2].

14 2 Data collection

Data collection took place at Driveline Baseball in Kent, Washington, USA as part of each athlete's motion capture assessment. After a standardized warm up consisting of static and dynamic stretching, resistance band exercises, and preparatory throwing drills, we applied between 45 and 48 reflective markers directly to the athlete's skin over relevant bony landmarks (Table ??). We then allowed athletes to complete a final warm up consisting of preparatory throws from the pitching mound. Once the athlete indicated they felt ready to throw with game-like effort, we recorded up to five fastball pitches from a pitching mound at a regulation distance (18.4 m).

Although athletes were cued to throw at the provided strike zone, we did not require athletes to throw
a strike for a trial to be considered valid. We considered a trial valid if all reflective markers remained affixed
to the athlete throughout the pitching motion. A radar gun positioned behind home plate measured pitch
velocity to the nearest tenth of a mile per hour which we recorded and paired with each motion capture trial.

During each athlete's assessment, fourteen cameras (Prime 17W; Optitrack/NaturalPoint Inc.,
Corvallis, OR, USA) recorded marker positions at 360 Hz while three force plates embedded in a custom
concrete mound (1 x FP4080-15-TM-2000, 2 x FP9090-15-TM-2000; Bertec Corp., Columbus, OH, USA)
collected ground reaction force data at 1,080 Hz. Marker and ground reaction force data were synchronized
and recorded using Motive Optitrack software.

3 Data processing

We exported pitching trials that met validity criteria as C3D files.

4 How to Use

34 ...

35	4.1	Terms of Use
36		
37	4.2	Naming Conventions
38		
39	4.3	Fileshare and GitHub Repository
40	•••	
41	4.4	Citing and Contributing
42	•••	
43	5	Future Directions
44	•••	
45	6	Additional Resources
46		

References

- ⁴⁸ [1] Camargo, J., Ramanathan, A., Flanagan, W., and Young, A. A comprehensive, open-source dataset of lower limb biomechanics in multiple conditions of stairs, ramps, and level-ground ambulation and transitions. *Journal of Biomechanics*, 119:110320, 2021.
- [2] Erdemir, A. Open knee: open source modeling and simulation in knee biomechanics. *The journal of knee surgery*, 29(02):107–116, 2016.

Description	Rigid Body	Abbreviation	
Seventh cervical vertebr	Thorax	C7	
Jugular not	Thorax	CLAV	
Left ankle lateral malleo	Left shank, left foot	LANK	
Left anterior superior iliac spi	Pelvis	LASI	
Left scapular inferior an	Thorax	$LBAK^{a}$	
Left, poster	Head	LBHD	
Left lateral humeral epicondy	Left upper arm, left forearm	LELB	
Left, anter	Head	LFHD	
Third metacarpophalangeal joint	Left hand	LFIN	
Left forea	Left forearm	LFRM	
Left forea: He	Left foot	LHEE	
Left iliac cr	Pelvis	$\mathrm{LIC^{a}}$	
Left lateral femoral cond	Left thigh, left shank	LKNE	
Left ankle medial malleol	Left shank, left foot	LMANK	
Left medial humeral epicond	Left upper arm, left forearm	LMELB	
Left medial femoral cond	Left thigh, left shank	LMKNE	
Left posterior superior iliac spi	Pelvis	LPSI	
Left acromial plate	Left upper arm	LSHO	
Left thi	Left thigh	LTHI	
Left sha	Left shank	LTIB	
Left second metatarsophalangeal joint	Left foot	LTOE	
Left upper a	Left upper arm	LUPA	
Left radial style	Left forearm, left hand	LWRA	
Left ulnar style	Left forearm, left hand	LWRB	
Right ankle lateral malleol	Right shank, right foot	RANK	
Right anterior superior iliac spi	Pelvis	RASI	
Right scapular inferior an	Thorax	RBAK	
Right, poster	Head	RBHD	
Right lateral humeral epicond	Right upper arm, right forearm	RELB	
Right, anter	Head	RFHD	
Third metacarpophalangeal joint	Right hand	RFIN	
Right forea	Right forearm	RFRM	
Right h	Right foot	RHEE	
Right iliac cre	Pelvis	RIC ^a	
Right lateral femoral cond	Right thigh, right shank	RKNE	
Right ankle medial malleol		RMANK	
S	Right shank, right foot		
Right medial humeral epicondy	Right upper arm, right forearm	RMELB	
Right medial femoral condy	Right thigh, right shank	RMKNE	
Right posterior superior iliac spi	Pelvis	RPSI	
Right acromial plate	Right upper arm	RSHO	
Right thi	Right thigh	RTHI	
Right sha	Right shank	RTIB	
Right second metatarsophalangeal jo	Right foot	RTOE	
Right upper a	Right upper arm	RUPA	
Right radial style	Right forearm, right hand	RWRA	
Right ulnar style	Right forearm, right hand	RWRB	
Xiphoid Proce	Thorax	STRN	
Tenth thoracic vertebr	Thorax	T10	