Designing Parallel Programming APIs for Heterogenous Hardware on top of Managed Runtime Environments

Juan Fumero

Research Fellow & Intel Innovator

X @snatverk

MANCHESTER 1824

The University of Manchester

La Laguna, Tenerife 13th March 2024

Outline

- 1. Motivation
- 2. Overview of Modern Parallel Programming Models
- 3. TornadoVM API for GPU/FPGA programming
- 4. New Proposal for future TornadoVM API
- 5. Conclusions

Disclaimer

This presentation shows a set of thoughts/ideas collected during my short experience in parallel computing. Summary of discussions with many people including (our team, Oracle, Intel oneAPI/Intel Level-Zero teams, Aparapi founder)

This is not intended to be a tutorial and/or a complete guide.

We show a proposal that may (or may not) be fully integrated into the TornadoVM parallel programming framework

Who am I?

Dr. Juan Fumero

Research Fellow @ University of Manchester

Architect and Developer of TornadoVM oneAPI **Intel Innovator**

- oneAPI Lang SIG
- one API Hardware SIG one

juan.fumero@manchester.ac.uk ☑
@snatverk 🗶

Former Member of:

PhD: Java, JIT Compilers for GPUs

Oracle Labs

Truffle and FastR Team

Intel CilkPlus
Vectorization
Techniques for Root
and GeantV

Motivation

Why Managed Runtime Systems (MRS)? Why Java?

Java and MRS are one of the most popular [1]

- Java is the "king" in the Enterprise [2]
- Java is safe language and recommended by the NSA [3]

- [1] https://spectrum.ieee.org/the-top-programming-languages-2023
- [2] https://programmers.io/blog/why-java-is-king-in-enterprise-software/
- [3] https://media.defense.gov/2023/Apr/27/2003210083/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY_V1.1.PDF

But, what if?

Hardware Characteristics and Parallelism

CPUs

Optimized for Latency

GPUs

throughput

FPGAs

Optimized for **Latency** and throughput

- Task Parallelism
- Data Parallelism
- Pipeline Parallelism

Hardware Characteristics and Parallelism

CPUs

Optimized for **Latency**

- Task Parallelism
- Data Parallelism
- Pipeline Parallelism

GPUs

Optimized for **throughput**

More efficient for

FPGAs

Optimized for Latency and throughput

What are we looking for?

Looking for ...

How to express parallelism from high-level PL?

How to exploit different types of parallelism?

How to use memory efficiently?

How to dynamically launch new code?

How to express common patterns?

Opportunities for optimisation at the high-level. Should they be exposed?

Desired Properties of a Parallel API

Performance Portability

Productivity Easy to adopt

Extensions of properties described in: "Structured Parallel Programming. Michael McCool, Arch Robison, James Reinders"

Approaches - Classification

Explicit Parallel & Low-level Programming Models:

- E.g., CUDA, OpenCL

Directive-based **low**-level Heterogeneous Programming

- E.g, OpenACC, OpenMP > 4, OmpSs, PGI, HMPP, hiCUDA

Directive-based & high-level Heterogeneous Programming

- E.g., Copperhead, Numba JIT

Explicit Parallel PL:

- E.g., IBM Lime, Halide

Functional Parallel Programming Languages

- E.g., NVIDIA Nova, Futhark, Lift, etc

Java based:

- E.g., Sumatra, Aparapi, IBM J9, Marawacc, TornadoVM

OpenCL & CUDA

```
int main() {
    openclInitialization();
    hostDataInitialization(elements);
    allocateBuffersOnGPU();
    clEnqueueWriteBuffer(queue, data, ...);
    clEnqueueNDRangeKernel(queue, kernel, ...)
    clEnqueueReadBuffer(queue, data, ...);
}
```

Host Code

Image from "Introduction to OpenCL Programming – AMD 2010

OpenCL & CUDA

- Compute Kernels are expressed using Kernel Parallelism It scales really well
- Very Low-Level Control In fact: from the OpenCL Standard

"The target of OpenCL is expert programmers wanting to write portable yet efficient code. [...] Therefore, OpenCL provides a low-level hardware abstraction plus a framework to support programming, and many details of the underlying hardware are exposed."

- High-Performance
- Difficult to adopt
- Error-prune (separation of kernel and host code)
- Not very productive
- Code is portable, but performance is hard to make it portable

OpenCL & CUDA: Dynamic Parallelism

Parent-Child Launch Nesting

Image from NVIDIA docs

Annotation based (OpenACC, OpenMP)

```
#pragma omp target data map(to:a[0:n], b[0:n]) map(from:c[0:n])

{
    #pragma omp target teams distribute parallel for
    for (int i = 0; i < N; i++) {
        c[i] = a[i] * b[i];
}

- Loop Parallelism
- Easy To Adopt
- NOT Easy to learn
- Not performance portable
- Productive</pre>
```


Explosion of Annotations

OmpSs

```
#pragma omp target device(opencl) implements(matrix multiply)
#pragma omp task in([BS]a,[BS]b) inout([BS]c)
 kernel void matrix multiply opencl(float a[BS][BS], float b[BS][BS], float c[BS][BS]);
#pragma omp target device(fpga,smp) copy deps num instances(3)
#pragma omp task in([BS]a,[BS]b) inout([BS]c)
void matrix multiply(float a[BS][BS], float b[BS][BS], float c[BS][BS]) {
#pragma HLS inline
#pragma HLS array partition variable=a block factor=BS/2 dim=2
#pragma HLS array partition variable=b block factor=BS/2 dim=1
  for (int ia = 0; ia < BS; ++ia)
     for (int ib = 0; ib < BS; ++ib) {
       #pragma HLS PIPELINE II=1
       float sum = 0;
                                                        Heterogeneous Computing Architectures
       for (int id = 0; id < BS; ++id)
                                                        Challenges and Vision
          sum += a[ia][id] * b[id][ib];
                                                        Edited by: Olivier Terzo, Karim
       c[ia][ib] += sum;
                                                        Diemame, Alberto Scionti, Clara Pezuela
```


Explosion of Annotations

OmpSs

```
#pragma omp target device(opencl) implements(matrix multiply)
#pragma omp task in([BS]a,[BS]b) inout([BS]c)
 kernel void matrix multiply opencl(float a[BS][BS], float b[BS][BS], float c[BS][BS]);
#pragma omp target device(fpga,smp) copy deps num instances(3)
#pragma omp task in([BS]a,[BS]b) inout([BS]c)
void matrix multiply(float a[BS][BS], float b[BS][BS], float c[BS][BS]) {
                                                                          We want to avoid many
#pragma HLS inline
#pragma HLS array partition variable=a block factor=BS/2 dim=2
                                                                          annotations
#pragma HLS array partition variable=b block factor=BS/2 dim=1
  for (int ia = 0; ia < BS; ++ia)
     for (int ib = 0; ib < BS; ++ib) {
       #pragma HLS PIPELINE II=1
       float sum = 0;
                                                        Heterogeneous Computing Architectures
       for (int id = 0; id < BS; ++id)
                                                        Challenges and Vision
          sum += a[ia][id] * b[id][ib];
                                                        Edited by: Olivier Terzo, Karim
       c[ia][ib] += sum;
                                                        Diemame, Alberto Scionti, Clara Pezuela
```

Single Source Property - E.g., SYCL and Intel oneAPI


```
#include <CL/sycl.hpp>
#include <array>
#include <iostream>
using namespace sycl;
int main() {
 constexpr int size=16;
 std::array<int, size> data;
 // Create queue on implementation-chosen default device
 queue Q;
                                                                 -Host
 // Create buffer using host allocated "data" array
                                                                  code
 buffer B { data };
 Q.submit([&](handler& h) {
    accessor A{B, h};
   h.parallel_for(size , [=] (auto& idx)
                                                                 Device
                                                                 code
       });
   });
 // Obtain access to buffer on the host
                                                                  Host
 // Will wait for device kernel to execute to generate data
 host accessor A{B};
                                                                  code
 for (int i = 0; i < size; i++)
   std::cout << "data[" << i << "] = " << A[i] << "\n";
 return 0:
```

Code from "Data Parallel C++ Mastering DPC++ for Programming of Heterogeneous Systems using C++ and SYCL. Reinders", J., Ashbaugh, B., Brodman, J., Kinsner, M., Pennycook, J., Tian, X.

SYCL: Standard for heterogeneous compute on top of OpenCL (and CUDA).

- * Uses a single source property (We want this)
- * Use of lambdas
- * Good performance (kernel parallelism)
- * Hard to tune (ranges and local work groups)
- * Increase productivity
- * Not easy to adopt* (requires extensive knowledge)
 - Explicit use of queues

Algorithmic Skeletons and Parallel Patterns

NOVA - Data Parallel Language

```
(let(inc(lambda(x:int):int(+x1)))
in(inc(+ab)))
```


Alexander Collins, Dominik Grewe, Vinod Grover, Sean Lee, and Adriana Susnea. 2014. NOVA: A Functional Language for Data Parallelism. In Proceedings of ACM SIGPLAN International Workshop on Libraries, Languages, and Compilers for Array Programming (ARRAY'14).

- Skeletons are easy to understand, but it might be difficult to adopt if the code requires too many changes, or it is a new language
- High-performance from high-level lang. Is hard to achieve
- More productive approaches

JPAI – Java Parallel Array Interface

Juan Fumero, Toomas Remmelg, Michel Steuwer, and Christophe Dubach. Runtime Code Generation and Data Management for Heterogeneous Computing in Java (PPPJ15)

Delite

Arvind K. Sujeeth, Kevin J. Brown, Hyoukjoong Lee, Tiark Rompf, Hassan Chafi, Martin Odersky, and Kunle Olukotun. 2014. Delite: A Compiler Architecture for Performance-Oriented Embedded Domain-Specific Languages. ACM Trans. Embed. Comput. Syst.

GPU Functional
Programming on top of
Scala

Expression Rewriting - E.g., Lift

(b) Low-level expression derived using rewrite rules and search.

```
int4 mul3(int4 x) { return x * 3; }
kernel vectorScal(global int* in,out, int len){
for (int i=get_group_id; i < len/1024;
    i+=get_num_groups) {
    global int* grp_in = in+(i*1024);
    global int* grp_out = out+(i*1024);
    for (int j=get_local_id; j < 1024/4;
        j+=get_local_size) {
    global int4* in_vec4 = (int4*)grp_in+(j*4);
    global int4* out_vec4=(int4*)grp_out+(j*4);
    *out_vec4 = mul3(*in_vec4);
} }
}</pre>
```

- Ahead of time compiler that rewrites the input expressions using its own API rules as an intermediate language
- High-Performance
- Productive & Portable
- New Language, hard to adopt
- Google FASTEST Matrix Multiplication Alg. uses a variation of this technique

Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach. 2015. Generating performance portable code using rewrite rules: from high-level functional expressions to high-performance OpenCL code. ICFP 2015.

Discovering faster matrix multiplication algorithms with reinforcement learning

Libraries

PyTorch, Tensorflow, Etc.

Just libraries -> high performance at the cost of vendor lock-in

And, in the Java world...

Sumatra & IBM J9:

- Using the Java Stream API for offloading code into the GPU
- Not high-portability
- Not very productive (due to hard adoption)
- Very limited

Aparapi

- Not that easy to adopt from the Java community
- High-performance
- Very verbose
- Not composable at the method-level
- Low-tune available from Java

Marawacc:

- Hard to adopt (many code changes)
- High Performance
- Very limited **but function first, data last!**

Juan Fumero, Toomas Remmelg, Michel Steuwer, and Christophe Dubach. 2015. Runtime Code Generation and Data Management for Heterogeneous Computing in Java

Parallel API Design Summary of Nice-to-have features

Property	Present?
Single Source Property	
Three types of Parallelism	
Loop Parallelism and Kernel Parallelism	
Easy Access for Experts and Non- Experts	
Use of Lambdas	
Expression Rewritting	
Support for Skeletons	
Dynamic Parallelism	
Reusability of Libraries	

Different components of the TornadoVM's User API

a) How to represent parallelism within functions/methods?

- A.1: Java annotations for expressing parallelism (@Parallel, @Reduce) for Non-Experts
- A.2: Kernel API for GPU experts (use of **kernel context** object)
- b) How to define which methods to accelerate?

Build a Task-Graph API to define data In/Out and the code to be accelerated

c) How to explore different optimizations?

Build an **Execution Plan** to define different optimizations

Tornado API - example Java sequential code for MxM

Tornado API - example using the Loop Parallel API


```
class Compute {
  public static void mxm(Matrix2DFloat A, Matrix2DFloat B,
                          Matrix2DFloat C, final int size) {
    for (@Parallel int \ = 0; i < size; i++) {</pre>
        for (@Parallel int j = 0; j < size; j++) {</pre>
           float sum = 0.0f;
           for (int k = 0; k < size; k++) {</pre>
              sum += A.get(i, k) * B.get(k, j);
           C.set(i, j, sum);
```

Device

Code

We add the parallel annotation as a hint for the compiler

We only have 2 annotations:

@Parallel
@Reduce

Tornado API - example using the **Kernel API**

Kernel-Context accesses thread ids, local memory and barriers

It needs a **Grid of Threads** to be passed during the kernel launch

Tornado API - example

How to identify which methods to accelerate? --> TaskGraph

```
TaskGraph taskGraph = new TaskGraph("s0")
    .transferToDevice(DataTransferMode.EVERY_EXECUTION , matrixA, matrixB)
    .task("t0", Compute::mxm, matrixA, matrixB, matrixC, size)
    .transferToHost(DataTransferMode.EVERY_EXECUTION, matrixC);
Host Code
(Runs on CPU)
```

Task-Graph is a new Tornado object exposed to developers to define :

- a) The code to be accelerated (which Java methods?)
- b) The data (Input/Output) and how data should be streamed

Adding Execution Plans

How to explore different optimizations? --> ExecutionPlan

Optional High-Level Optimization Pipelines:

- Enable/Disable Profiler
- Enable Warmup
- Enable Dynamic Reconfiguration
- Enable Batch Processing
- Enable Thread Scheduler (no need for recompilation for different grids schedulers)

But, why not just using the Kernel API?

Running Matrix Multiplication - O(n3) -

- JDK 17.0.1
- Peak performance
- Intel CPU **i7-12700K**
- Matrix Size: 1Kx1K

Why not just using the Kernel API?

Why not just using the Kernel API?

Why not just using the Kernel API?

Loop Parallel API transform the code to sequential to parallel.

Running with TornadoVM on NVIDIA RTX 3070

TornadoVM Performance for MxM

Key messages:

- 1) Unless you are an expert on the parallel architecture and the parallel programming model, a smart compiler can do a better job sometimes
- 2) Low-level programming might be faster, but that's not the way Java developers program. Thus, we need to high-level APIs

Parallel API Design

Property	Present?	We haven't
Single Source Property		discussed it in
Three types of Parallelism		→ detail, but it is
Loop Parallelism and Kernel Parallelism		supported
Easy Access for Experts and Non-Experts	?.——	Hard to
Use of Lambdas		Measure
Expression Rewriting		Yes, automatic
Support for Skeletons		reductions
Dynamic Parallelism		
Reusability of Libraries		
		1

Cool, but what about libraries?

Options for Parallel Compute on GPUs from Managed Runtime Systems

Pre-built-Libraries (e.g, oneMKL, cuDNN, etc)

Use **vendor** optimized libraries
Not easily portable
Usually very fast and high performance

Full JIT Compiler (e.g., current TornadoVM)

Flexible, Portable, Reusable Lower Performance

Proposal: Hybrid API

Pre-built-Libraries (e.g, oneMKL, cuDNN, etc)

Full JIT Compiler (e.g., current TornadoVM)

But, what if we combine both?

Proposal: Hybrid API

Extension of the TornadoVM APIs for allowing JIT + Library

Calls within the same Engine

Hybrid API

Extension of the TornadoVM APIs for allowing JIT + Library
Calls within the same Engine

```
TaskGraph tg = new TaskGraph("compute")
  .transferToDevice(. . .)
   .task ("gemm", MyJavaCompute:sgemm, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
  .transfe ToHost(. . .);
                                                    public static void sgemm(....) {
                   Points to Existing
                                                     for (@Parallel) {
                       Java Code
                                                           for (@Parallel) {
                     annotated with
                       @Parallel
                        @Reduce
```

Hybrid API

Example: Invoking SGEMM for Intel oneMKL (oneAPI toolkit)

```
TaskGraph tg = new TaskGraph("compute")
    .transferToDevice( . . . )

.libraryTask ("gemm", OneMKL:sgemm, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
    .transferToHost( . . .);
```

Points to a Proxy Class that gives you access to Intel oneMKL

Hybrid API: So, what is the deal?

Going Hybrid: JIT + Library Tasks

Uses: Deep Learning, AI, Math Library, Data Bases, etc.

```
TaskGraph tg = new TaskGraph("compute")
   .taskGraph.transferToDevice(DataTransferMode.FIRST_EXECUTION, data)

.task("prep", MyJavaPrepClass::dataInitOnGPU, data) // FULL JIT (Java->Accelerator)

.libraryTask("gemm", CuDNN::cudnnActivationForward, alpha, data, beta, output) //call to native
CuDNN

.task("postProcessing", MyOtherJavaClass::post, output) // FULL JIT (Java->Accelerator)

.transferToHost(DataTransferMode.EVERY_EXECUTION, output);
```

We have prototypes for one MKL and cuDNN

What about performance? Running SGEMM from oneMKL

Running on Intel i9-10885H Processors:

- Intel UHD Graphics 630

TornadoVM 0.15.2-dev

Intel Runtime: 21.38.21026

The Higher, the better. Performance vs single-threaded Java

What about performance? Running SGEMM from oneMKL

Running on Intel i9-10885H Processors:

- Intel UHD Graphics 630

TornadoVM 0.15.2-dev

Intel Runtime: 21.38.21026

The Higher, the better. Performance vs single-threaded Java

Do-While Pattern

```
TaskGraph graph = new TaskGraph("compute-graph")
   .transferToDevice(DataTransferMode.EVERY_EXECUTION, a, b)
   .task("ll", MyClass::computeKernelParallelism, context, a, b, c)
   .task("hl", MyClass::computeLoopParallelism, c, d)
   .transferToHost(DataTransferMode.EVERY_EXECUTION, c,
d);
while(condition) {
   ts.execute(grid);
}
```

- * This code is valid but it transfers data back and forth until condition is reached
- * No possible way to iterate in one task, rather than the whole task-schedule

Do-While Pattern at the task-level

```
TaskGraph graph = new TaskGraph("compute-graph")
   .transferToDevice(DataTransferMode.EVERY_EXECUTION, a, b)
   .task("ll", MyClass::computeKernelParallelism, context, a, b, c)
   .task("hl", MyClass::computeLoopParallelism, c, d)
   .transferToHost(DataTransferMode.EVERY_EXECUTION, c,
d);
while(condition) {
   ts.execute(grid);
}
Two possible solutions:
```

Variables using U-Shared Memory


```
// JNI Code
// Save back and forth for JNI
while (condition) {
  clEnqueueNDRange(...)
}
```

Warning: Not tested yet

```
// Generated Kernel
__kernel generared (...) {
  compute(...)
  syncDevice()
  if (!condition)
  child_kernel- generated(N-Threads);
}
```


Do-While Pattern at the Execution Plan

executionPlan.executeUntil(condition);

Supporting Dynamic Parallelism within TornadoVM

Supporting Dynamic Parallelism within TornadoVM

```
public void dynamicParallelism(double[] input, float[] output,
                                          TornadoVMContext c) {
    compute ...
                                                                               Parent-Child Launch Nesting
                                                              Time -
    if (context.threadIdx == 0) {
                                                                      CPU Thread
        context.launch( (a, b) -> {
                                                                                                       Grid A Complete
                                                              Grid A Launch
             child_kernel_code ...
                                                                             Grid A Threads
                                                          Grid A - Parent
                                                                          Grid B Launch
                                                                                                 Grid B Complete
                                                                       Grid B - Child
                                                                                         Grid B Threads -
                                                        Image from NVIDIA docs
```


Pushing for a more functional style

```
TaskGraph graph = new TaskGraph("functional")
     .trasferToDevice(a, b)
     .map("map01", (x, y, z) -> { code }, a, b, c, context)
     .filter("filter1", (c) -> { idx = ... }, c, context)
     .reduce("reduce1", (x, y) -> x + y, a, c, context)
     .transferToHost(c);
```

Let's talk about memory:

In Java, and MRS, we need to design memory management VERY carefully

What about memory?

On-Heap Data Structures (TornadoVM's current approach)

- Memory reserved in the Java Heap
- Device Buffer Malloc (e.g., GPU)
- 3. Data Transfer (host->device)
- 4. Kernel Execution
- 5. Data Transfer (device -> host)

Good Luck with the GC to not move pointers

Besides, we have experimented with other ideas such as:

Unified Shared Memory Java Heap

Unified Shared Memory: Friend or Foe? Juan Fumero, Florin Blanaru, Athanasios Stratikopoulos, Steve Dohrmann, Sandhya Viswanathan, Christos Kotselidis. *MPLR23*

Off-heap Data Structures (e.g., Using Direct Memory or **Panama APIs**)

https://link.springer.com/book/9783031495588

Conclusions

Designing parallel APIs is not a trivial task, and it is all about trade-offs:

- What are we gaining?
- What are we losing?
- What can we do better?

The University of Manchester

Thank you so much for your attention

- Partially supported by the Horizon Europe AERO 101092850
- Partially supported by Intel Grant

Special thanks to:

- * Christos Kotselidis (Manchester TornadoVM)
- * Thanos Stratikopoulos (Manchester Tornado VM)
- * Gary Frost (Aparapi co-founder, Senior Java Architect, Oracle)
- * Peng Tu (Intel oneAPI)
- * Steve Dohrmann (Intel Senior OpenJDK Architect)
- * Sandhya Viswanathan (Intel Senior OpenJDK Architect)

Juan Fumero

<juan.fumero@manchester.ac.uk>