

Welcome to:

CSCI3150 Intro. to Operating Systems

Lecturer and Tutors

Lecturer: Dr. Zili SHAO

Office: SHB 909

Telephone No.: 39434258 Email: zilishao@cuhk.edu.hk

Homepage: http://www.cse.cuhk.edu.hk/~shao/

Consultation time: Upon request

Tutors	Email
Zelin DU	1155187968@link.cuhk.edu.hk
Zizhan Chen	chenzz@cse.cuhk.edu.hk
Kai ZHANG	kaizhang@link.cuhk.edu.hk
Jin XUE	jinxue@cse.cuhk.edu.hk
Yaotian CUI	1155187956@link.cuhk.edu.hk

About me

- Research
 - Big data systems
 - Storage systems
 - Embedded systems and software

http://www.cse.cuhk.edu.hk/~shao/

- I love and enjoy computer system research
 - Join my group if you have interests

About the course

- Course website
 - https://blackboard.cuhk.edu.hk
- Textbook: Operating Systems: Three Easy Pieces
 - A free online OS book
 - http://pages.cs.wisc.edu/~remzi/OSTEP/
 - Authors: Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau
- Reference book: Operating System Concepts, 2018
 - http://codex.cs.yale.edu/avi/os-book/OS10/index.html
 - Authors: Avi Silberschatz, Peter Baer Galvin, and Greg Gagne

More References

- Introduction to Computing Systems: From Bits and Gates to C and Beyond, Authors: Yale N. Patt and Sanjay J. Patel
- A Computer Organization Course from Colorado State University

The textbook covers this material in a bottom-up fashion so we will cover the chapters in a different order. See the **Progress** page for more information.

Graded activities will occur each week.

Beginning Linux Programming, 4th Edition, 2007, Authors: Neil Matthew and Richard Stones

Topics Covered

- Focus
 - User-level programming (System calls)
 - File system
 - Process management
 - Memory management
 - Concurrency
- Others (briefly introduced with the above)
 - Protection and security
 - Design/implementation methodology
 - Performance evaluation

Background required

- Basic knowledge
 - Data structures
 - Programming in C
- Linux System
 - Log into a Linux system;
 - Create files using one editor;
 - Basic commands for files/directories;
 - Compile C programs
- Linux Basic: https://cuhk-systemgroup.github.io/

Tutorial: http://pages.cs.wisc.edu/~remzi/OSTEP/lab-tutorial.pdf

Linux Environment

- The first step to succeed for this course have a good Linux environment controlled by yourself
- You are required to follow the tutorial below to create a Linux environment running on VM based on VirtualBox at your own computer (Windows/OS X)

https://cuhk-systemgroup.github.io/

The VM image can be downloaded from the link:

https://www.cse.cuhk.edu.hk/~shao/zili_files/csci3150/3150_XUbuntu.ova

A lab in Week 2 will be provided to help you on this (Labs will start from Week 2)

The Course Organization (Bottom-up)

Teaching Plan

Sept. 5 -	Sept. 10
Sept. 11 -	Sept. 17
Sept. 18 -	Sept. 24
Sept. 25 -	Oct. 1
Oct. 2 -	Oct. 8
Oct. 9 -	Oct. 15
Oct. 16 -	Oct. 22
Oct. 23 -	Oct. 29
Oct. 30 -	Nov. 5
Nov. 6 -	Nov. 12
Nov. 13 -	Nov. 19
Nov. 20 -	Nov. 26

Nov. 27 - Dec. 3

L	Week	Lecture 1 (Tuesday)	Lecture 2 (Wednesday)	Lab (Thursday)
	1	Introduction; Overview	System Calls	
	2	System Calls	System Calls	VM, Compile, Make & Run
	3	System Calls (HW #1)	System Calls	C Review (structure, memory, file IO)
	4	System Calls/File Systems	File Systems	File Systems – Superblock (Lab)
	5	Holiday	File Systems	File Systems – inode (Lab)
	6	File Systems (HW #2)	File Systems (Project)	File Systems - inode/Directory (Tutorial)
Γ	7	Process/CPU Scheduling	Process/CPU Scheduling	CPU Scheduling (Tutorial)
Г	8	Process/CPU Scheduling (HW #3)	Process/CPU Scheduling	CPU Scheduling (Lab)
Г	9	Memory	Memory	Memory (Tutorial)
Г	10	Memory (HW #4)	Memory	Memory (Lab)
Γ	11	Concurrency	Concurrency	Concurrency (Lab) - Pthread
Γ	12	Concurrency	Concurrency	Congregation (Class Suspended)
ſ	13	Concurrency	Concurrency	Concurrency (Lab)- Conditional Variable

Assessment (Total: 110)

Continuous assessment:			609
	Labs (around 4; programming related; simple)	5%	
	Four Assignments	40%	
	Assignment 1 (10%) - Simple Shell (Program, Group)		
	Assignment 2 (10%) - File system (Paper)		
	Assignment 3 (10%) - MLFQ Scheduling (Paper)		
	Assignment 4 (10%) - Memory management (Paper)		
	Project (File System, Program)	<i>15%</i>	

Bonus 10%

- ▶ Bonus Programming Assignment 1 (5%) MLFQ Scheduling
- ▶ Bonus Programming Assignment 2 (5%) Memory management

Late submission policy: 20% deduction per day (1 minute or 23 hours no difference)

We only grade based on what you submit in the Blackboard.

Final Exam: 40%

Plagiarism & Absence

- All assignments (except Assignment one) need to be done individually
 - Discussion is encouraged but you need to implement them yourself
 - It is your responsibility to protect your code (e.g. private github)

Plagiarism

- Plagiarism check will be conducted extensively for fairness and good culture
- Processing
 - ▶ Rule 1: First incident, the score of that whole assignment will be 0 for all involved persons (i.e. both solution providers and cheaters)
 - ▶ Rule 2: Repeat incident, follow Rule 1, and the case (i.e. all students involved) will be reported to the department

Absence

- Class attendance is extremely important
 - ▶ One class focus: Help on the assignments
- For the final exam, the makeup one will be much much much more difficult