ACH2053 – Introdução à Estatística (2024.1)

Segunda Prova – Junho/2024

Nome:	Nº USP:	

Explicitar o raciocínio na resolução; a mera apresentação das respostas não é digna de pontuação positiva

- -1) Frequência (em %):
- 100
- 97
- 93
- 90
- 87
- 8

83

80

77

73 70

1) Estudantes de uma certa disciplina estão interessados em estimar o comprimento médio de um dado tipo de rato. Com base nos estudos de anos anteriores, concordou-se que a distribuição dos comprimentos desses ratos (em centímetros) poderia ser aproximada por uma distribuição normal $N(\mu, 4^2)$. Conjecturou-se que μ também poderia ser uma variável aleatória seguindo uma distribuição normal $N(30.0, 2^2)$. Os estudantes conseguiram, contudo, medir os comprimentos de somente doze ratos; a média simples destes dados foi de 20.0cm.

a) [4.0 pontos] Determinar o intervalo de credibilidade (a,b) (cm) de sorte que μ possa estar nele com probabilidade 70%. Escolha este intervalo de sorte que a=20.5cm.

b) [3.0 pontos] Determinar qual deveria ser o número de ratos a ser medido para que a amplitude do intervalo de confiança fosse de, no máximo, $\Delta = 4.0 \, \text{cm}$; adotar o nível de significância como sendo 11%.

c) [3.0 pontos] Suponha que duas hipóteses tenham sido levantadas para o comprimento μ verdadeiro dos ratos, $H_0: \mu = 22.0$ cm e $H_1: \mu \neq 22.0$ cm. Determinar o p-valor correspondente a 20.0cm e decidir, com base nesta informação, acerca da rejeição (ou não) da hipótese nula se o nível de significância for 8% (aqui, o rato pode ter comprimento bem maior ou bem menor que o comprimento "usual"). Mencionar, também, o que ocorreria se o nível de significância for alterado para 10%.

1)a) Sabe-se que $X_1, \ldots, X_n \sim N(\mu, 4^2)$, com n = 12 e a média observada desses dados $\overline{x}_n = 20.0$ (cm). Ademais, de $\mu \sim N(30.0, 2^2)$, a distribuição a posteriori segue uma distribuição normal $N(\mu^*, (\sigma^*)^2)$, onde

$$\mu^* = \frac{30.0 \cdot 4^2 + 12 \cdot 20.0 \cdot 2^2}{4^2 + 12 \cdot 2^2} = 22.5 \text{(cm)} \qquad \text{e} \qquad (\sigma^*)^2 = \frac{4^2 \cdot 2^2}{4^2 + 12 \cdot 2^2} = 1 \text{(cm}^2).$$

Denotando por θ (comprimento do rato) uma variável aleatória tal que $\theta \sim N(\mu^*, (\sigma^*)^2)$, defina

$$Z := \frac{\theta - \mu^*}{\sigma^*} \sim N(0, 1^2).$$

Escolhendo o intervalo I=(a,b) de credibilidade a 70%, tem-se $P(a < \theta < b) = 70\%$ ou

$$P\left(\frac{a - \mu^*}{\sigma^*} < \frac{\theta - \mu^*}{\sigma^*} < \frac{b - \mu^*}{\sigma^*}\right) = P\left(\frac{a - \mu^*}{\sigma^*} < Z < \frac{b - \mu^*}{\sigma^*}\right) = 70\%.$$

Como a=22 (cm) (notar que $a-\mu^*<0$), e explorando a simetria da distribuição normal, tem-se

$$70\% = P\left(\frac{a-\mu^*}{\sigma^*} < Z < \frac{b-\mu^*}{\sigma^*}\right)$$

$$= P\left(\frac{a-\mu^*}{\sigma^*} < Z \le 0\right) + P\left(0 < Z < \frac{b-\mu^*}{\sigma^*}\right)$$

$$= P\left(0 \le Z < \left|\frac{a-\mu^*}{\sigma^*}\right|\right) + P\left(0 < Z < \frac{b-\mu^*}{\sigma^*}\right).$$

Como $\left| \frac{a - \mu^*}{\sigma^*} \right| = 2.00$, tem-se $P\left(0 \le Z < \left| \frac{a - \mu^*}{\sigma^*} \right| \right) = 0.47725$, donde se tem $P\left(0 < Z < \frac{b - \mu^*}{\sigma^*} \right) = 0.7 - 0.47725 = 0.22275$ e, portanto,

$$\frac{b-\mu^*}{\sigma^*} = 0.59,$$

donde se tem b = 23.09 (cm). O intervalo de credibilidade em questão (a uma probabilidade de 70%) é (20.50, 23.09) (cm).

b) O ponto de partida é a variável aleatória $\overline{X_n} \sim N(\mu, \sigma^2/n)$ da média de X_1, \dots, X_n . De sua padronização

$$Z_n := \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \sim N(0, 1^2),$$

deve-se encontrar $c,d \in \mathbb{R}$ tais que $P(c < Z_n < d) = 100\% - 11\% = 89\%$. Explorando a simetria da distribuição, deve-se ter d=-c=z tal que $P(-z < Z_n < z) = 89\%$ ou $P(0 \le Z_n < z) = 89\%/2 = 0.445$. Com isto, encontra-se $z \approx 1.60$. Como consequência, $Z_n = \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \in (-z,z)$ com probabilidade de 89% ou, equivalentemente,

$$\mu \in \left(\overline{X}_n - z \frac{\sigma}{\sqrt{n}}, \overline{X}_n + z \frac{\sigma}{\sqrt{n}}\right)$$
 com probabilidade de 89%.

A amplitude deste intervalo é de

$$\Delta = \left(\overline{X}_n + z \frac{\sigma}{\sqrt{n}}\right) - \left(\overline{X}_n - z \frac{\sigma}{\sqrt{n}}\right) = \frac{2z\sigma}{\sqrt{n}} \quad \text{ ou } \quad n = \left(\frac{2z\sigma}{\Delta}\right)^2,$$

que é o mesmo após levar em consideração as medidas. Para se ter $\Delta \leq 4$, tem-se, então,

$$n \ge \left(\frac{2 \cdot 1.60 \cdot 4}{4}\right)^2 = 10.24,$$

e requer-se, pelo menos, 11 medidas para satisfazer as condições desejadas.

c) O p-valor é a probabilidade de se observar, sob a hipótese nula, uma realização tão extrema, ou maior, quanto o observado. Logo, dada a hipótese nula $H_0: \mu = 22.0 \text{(cm)}$, o p-valor associado a 20.0 (cm) é

$$P\left(\overline{X}_n \le 20.0 | H_0 \text{ verdadeira}\right) = P\left(\frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \le \frac{20.0 - \mu}{\sigma/\sqrt{n}} \middle| \mu = 22\right) = P\left(Z_n \le \frac{20.0 - \mu}{\sigma/\sqrt{n}} \middle| \mu = 22\right),$$

onde

$$Z_n := \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \sim N(0, 1^2)$$

é a variável aleatória padronizada de \overline{X}_n . Substituindo os valores conhecidos ($\sigma = 4$ cm e n = 12) e explorando a simetria da distribuição normal, chega-se a

$$P(Z_n \le -\sqrt{3}|\mu = 22) = \frac{1}{2} - P(0 \le Z_n < \sqrt[8]{3} |\mu = 22) \approx 0.5 - 0.45818 = 0.04182 = 4.182\%,$$

que é o p-valor desejado.

Caso o nível de significância seja de 8%, a região crítica compreenderia os 4% mais compridos e menos compridos. Sendo o p-valor superior a 4%, a hipótese nula não seria rejeitada. Contudo, se o nível de significância for alterado para 10%, a região crítica compreenderia os 5% mais compridos e menos compridos, e o p-valor, sendo inferior a 5%, conduziria à rejeição da hipótese nula.

$$P(0 \le Z \le Z_c)$$
 $f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}.$

Z	0	1	2	3	4	5	6	7	8	9
0.0	0.00000	0.00399	0.00798	0.01197	0.01595	0.01994	0.02392	0.02790	0.03188	0.03586
0.1	0.03983	0.04380	0.04776	0.05172	0.05567	0.05962	0.06356	0.06749	0.07142	0.07535
0.2	0.07926	0.08317	0.08706	0.09095	0.09483	0.09871	0.10257	0.10642	0.11026	0.11409
0.3	0.11791	0.12172	0.12552	0.12930	0.13307	0.13683	0.14058	0.14431	0.14803	0.15173
0.4	0.15542	0.15910	0.16276	0.16640	0.17003	0.17364	0.17724	0.18082	0.18439	0.18793
0.5	0.19146	0.19497	0.19847	0.20194	0.20540	0.20884	0.21226	0.21566	0.21904	0.22240
0.6	0.22575	0.22907	0.23237	0.23565	0.23891	0.24215	0.24537	0.24857	0.25175	0.25490
0.7	0.25804	0.26115	0.26424	0.26730	0.27035	0.27337	0.27637	0.27935	0.28230	0.28524
0.8	0.28814	0.29103	0.29389	0.29673	0.29955	0.30234	0.30511	0.30785	0.31057	0.31327
0.9	0.31594	0.31859	0.32121	0.32381	0.32639	0.32894	0.33147	0.33398	0.33646	0.33891
1.0	0.34134	0.34375	0.34614	0.34849	0.35083	0.35314	0.35543	0.35769	0.35993	0.36214
1.1	0.36433	0.36650	0.36864	0.37076	0.37286	0.37493	0.37698	0.37900	0.38100	0.38298
1.2	0.38493	0.38686	0.38877	0.39065	0.39251	0.39435	0.39617	0.39796	0.39973	0.40147
1.3	0.40320	0.40490	0.40658	0.40824	0.40988	0.41149	0.41308	0.41466	0.41621	0.41774
1.4	0.41924	0.42073	0.42220	0.42364	0.42507	0.42647	0.42785	0.42922	0.43056	0.43189
1.5	0.43319	0.43448	0.43574	0.43699	0.43822	0.43943	0.44062	0.44179	0.44295	0.44408
1.6	0.44520	0.44630	0.44738	0.44845	0.44950	0.45053	0.45154	0.45254	0.45352	0.45449
1.7	0.45543	0.45637	0.45728	0.45818	0.45907	0.45994	0.46080	0.46164	0.46246	0.46327
1.8	0.46407	0.46485	0.46562	0.46638	0.46712	0.46784	0.46856	0.46926	0.46995	0.47062
1.9	0.47128	0.47193	0.47257	0.47320	0.47381	0.47441	0.47500	0.47558	0.47615	0.47670
2.0	0.47725	0.47778	0.47831	0.47882	0.47932	0.47982	0.48030	0.48077	0.48124	0.48169
2.1	0.48214	0.48257	0.48300	0.48341	0.48382	0.48422	0.48461	0.48500	0.48537	0.48574
2.2	0.48610	0.48645	0.48679	0.48713	0.48745	0.48778	0.48809	0.48840	0.48870	0.48899
2.3	0.48928	0.48956	0.48983	0.49010	0.49036	0.49061	0.49086	0.49111	0.49134	0.49158
2.4	0.49180	0.49202	0.49224	0.49245	0.49266	0.49286	0.49305	0.49324	0.49343	0.49361
2.5	0.49379	0.49396	0.49413	0.49430	0.49446	0.49461	0.49477	0.49492	0.49506	0.49520
2.6	0.49534	0.49547	0.49560	0.49573	0.49585	0.49598	0.49609	0.49621	0.49632	0.49643
2.7	0.49653	0.49664	0.49674	0.49683	0.49693	0.49702	0.49711	0.49720	0.49728	0.49736
2.8	0.49744	0.49752	0.49760	0.49767	0.49774	0.49781	0.49788	0.49795	0.49801	0.49807
2.9	0.49813	0.49819	0.49825	0.49831	0.49836	0.49841	0.49846	0.49851	0.49856	0.49861
3.0	0.49865	0.49869	0.49874	0.49878	0.49882	0.49886	0.49889	0.49893	0.49896	0.49900
3.1	0.49903	0.49906	0.49910	0.49913	0.49916	0.49918	0.49921	0.49924	0.49926	0.49929
3.2	0.49931	0.49934	0.49936	0.49938	0.49940	0.49942	0.49944	0.49946	0.49948	0.49950
3.3	0.49952	0.49953	0.49955	0.49957	0.49958	0.49960	0.49961	0.49962	0.49964	0.49965
3.4	0.49966	0.49968	0.49969	0.49970	0.49971	0.49972	0.49973	0.49974	0.49975	0.49976
3.5	0.49977	0.49978	0.49978	0.49979	0.49980	0.49981	0.49981	0.49982	0.49983	0.49983
3.6	0.49984	0.49985	0.49985	0.49986	0.49986	0.49987	0.49987	0.49988	0.49988	0.49989
3.7	0.49989	0.49990	0.49990	0.49990	0.49991	0.49991	0.49992	0.49992	0.49992	0.49992
3.8	0.49993	0.49993	0.49993	0.49994	0.49994	0.49994	0.49994	0.49995	0.49995	0.49995
3.9	0.49995	0.49995	0.49996	0.49996	0.49996	0.49996	0.49996	0.49996	0.49997	0.49997
4.0	0.49997	0.49997	0.49997	0.49997	0.49997	0.49997	0.49998	0.49998	0.49998	0.49998

$$X_1, \dots, X_n \sim N(\mu, \sigma^2)$$
 e $\mu \sim N(\mu_0, \sigma_0^2)$: $\mu | \{X_1 = x_1, \dots, X_n = x_n\} \sim N(\mu^*, (\sigma^*)^2)$

$$\mu^* = \frac{\mu_0 \sigma^2 + n\overline{x}_n \sigma_0^2}{\sigma^2 + n\sigma_0^2}$$
 e $(\sigma^*)^2 = \frac{\sigma^2 \sigma_0^2}{\sigma^2 + n\sigma_0^2}$

$$\sqrt{2} \approx 1.41$$
 $\sqrt{3} \approx 1.73$ $\sqrt{5} \approx 2.24$ $\sqrt{6} \approx 2.45$ $\sqrt{7} \approx 2.65$ $\sqrt{10} \approx 3.16$ $\sqrt{11} \approx 3.32$ $\sqrt{13} \approx 3.61$ $\sqrt{14} \approx 3.74$ $\sqrt{15} \approx 3.87$ $\sqrt{17} \approx 4.12$ $\sqrt{19} \approx 4.36$