Table S1Summary of Participant and Study Characteristics

Study	Number, gender, grade	Design	Dependent variable
1. Alghamdi et al. (2020)	n = 3; 3 M; 5 th (3); 2 Black, 1 Asian	MP	Percentage accuracy on the word problem solving test (multiplication and division of whole numbers)
2. Bundock et al. (2021)	n = 2; 1 M, 1 F; 9 th (2); NR	MP	Mathematics scores on a ROC problem solving assessment; each ROC assessment was scored for both mathematics and writing
3. Edwards et al. (2020)	n = 5; 2 M, 3 F; 11th (5); NR	MP	Percentage of steps completed correctly on math word problems (percent-cost)
4. Freeman- Green et al. (2015)	n = 6; 6 M; 8th (6); 5 White, 1 Black/Asian	MP	Number correct on the use of the SOLVE Strategy; number correct on word problems probes (whole numbers, decimals)
5. Jitendra et al. (1999)	n = 4; 2 M, 2 F; 6th (1), 7th (3); 1 Black/White, 3 White	MB	Percentage correct operations and computations for one-step and two-step word problems (addition and subtraction of whole numbers)
6. Jitendra et al. (2002)	n = 4; 2 M, 2 F; 8th (4); 1 Black/White, 3 White	MP	Number correct of word problems (one- step multiplication and division of whole numbers and fractions)
7. Jitendra & Hoff (1996)	n = 3; 1 M, 2 F; 3rd (2), 4th (1); 3 White	MP	Percentage of math word problems completed correctly (addition and subtraction of whole numbers)
8. Liu & Xin (2017)	n = 3; 2 M, 1 F; 4th (3); 1 Black/White, 2 White	MB	Correct number of points for correctly solving problems on the criterion test and its alternate forms; correct number of points for quality self-explanation on the criterion test and its alternative forms (multiplication and division of whole numbers)
9. Maccini & Hughes (2000)	n = 6; 2 M, 4 F; 9th (3), 10th (2), 12th (1); 1 Black/White, 5 White	MP	Percentage correct on problem solution; percentage correct on problem representation (addition, subtraction, multiplication, and division of integers)
10. Maccini & Ruhl (2000)	n = 3; 3 M; 8th (3); 1 Black, 2 White	MP	Percent correct on problem solution; percent correct on problem representation (subtraction of integers)
11. Marsh & Cooke (1996)	n = 3; 3 M; 3rd (3); NR	MB	Number of correct student responses on 10-item word problem probes (addition, subtraction, multiplication, and division of whole numbers)
12. Montague (1992)	n = 3; 1 M, 2 F; 6th (1), 7th (1), 8th	MB	Number of correct responses on mathematical problem solving tests

Study	Number, gender, grade	Design	Dependent variable
	(1); 1 Black, 1 Hispanic, 1 White		(addition, subtraction, multiplication, and division of whole numbers or decimals)
13. Montague & Bos (1986)	n = 6; 5 M, 1 F; 10th (2), 11th (3), 12th (1); NR	MB	Number of correct responses on verbal math problem solving tests (addition, subtraction, multiplication, division of whole numbers)
14. Peltier et al. (2020)	n = 3; 2 M, 1 F; 4th (2), 5th (1); 1 Black, 2 Black/Asian/White	MP	Correct percentage on mathematical problem solving (addition and subtraction of whole numbers and fractions with the same denominator)
15. Peltier et al. (2021)	n = 5; 4 M, 1 F; 5th (5); 2 White, 1 Hispanic, 1 Black/Asian/White , 1 Hispanic/Asian	MP	Correct percentage on mathematical problem solving (addition and subtraction of whole numbers and fractions with the same denominator)
16. Satsangi et al. (2020)	n = 3; 3 M; 9th (1), 10th (2); 2 Black/White, 1 Hispanic	MP	Percentage of correctly solved geometry word problems accessed via a tablet
17. Scheuermann et al. (2009)	n = 14; 10 M, 4 F; 6th (4), 7th (4), 8th (6); 2 Black, 12 White	MP	Percentage of points on the word problem test (one-variable equation)
18. Sharp & Dennis (2017)	n = 3; 1 M, 2 F; 4th (3); 3 Hispanic	MP	Percentage correct scores on curriculum- based assessment probes of fraction word problems
19. Shin & Bryant (2017)	n = 3; 2 M, 1 F; 6th (1), 7th (1), 8th (1); 1 Black, 1 Black/White, 1 Hispanic/White	MP	Percentage of correct word problem solving problems with fractions and multiplication
20. van Garderen (2007)	n = 3; 2 M, 1 F; 8th (3); 1 Hispanic, 1 Black/White, 1 White	MP	Percentage of word problems solved correctly
21. Yang & Xin (2022)	n = 3; 1 M, 2 F; 7th (3); 1 White, 2 Black/White	MP	Percent correct for multiplicative compare word problem solving and problem posing

Table S2Summary of Word Problem Measures

Study	Maintenance	Complexity		
		Single Type	Combined Type	Generalization
1. Alghamd i et al. (2020)	Yes	NR	A total of 18 points were possible in each testing session across nine word problems	NR
2. Bundock et al. (2021)	Yes	Two questions on finding slope of graphed lines, 2 constant ROC word problems, and one variable ROC word problem	NR	NR
3. Edwards et al. (2020)	Not included (one-time)	30 percent-cost word problems (included items on sale, the sale price, and the percent the item was on sale for)	NR	NR
4. Freeman- Green et al. (2015)	Yes	NR	Varying problem types (e.g., joining, separating, multiplying, comparing); 10 points per probe	Another math topics from math class (i.e., inequalities)
5. Jitendra et al. (1999)	Yes	Addition and subtraction word problems presented in commercial basal mathematics programs (change, group, or compare)	Addition and subtraction word problems presented in commercial basal mathematics programs (change, group, and compare)	More complex word problems (two-step)
6. Jitendra et al. (2002)	Yes	Six one-step multiplication and division word problems involving two different problem types (i.e., vary or multiplicative comparison)	Six one-step multiplication and division word problems involving two different problem types (i.e., vary and multiplicative comparison)	Not included (no raw data)
7. Jitendra	Yes	Addition and subtraction word problems	Addition and subtraction word problems presented in	NR

Study Maintenance Complexity				
		Single Type	Combined Type	Generalization
& Hoff (1996)		presented in commercial basal mathematics programs (change, group, or compare)	commercial basal mathematics programs (change, group, and compare)	
8. Liu & Xin (2017)	Yes	NR	Researcher-developed criterion; six one-step equal group problems, two for each of three variations	More complicated two-step word problems
9. Maccini & Hughes (2000)	Not included (one-time)	Addition, subtraction, multiplication, or division of integers	NR	One near- and one far-transfer measure.
10. Maccini & Ruhl (2000)	Not included (one-time)	Subtraction of integers	NR	One near transfer and one far transfer measure of five problems
11. Marsh & Cooke (1996)	NR	10 items, including whole number addition, subtraction, multiplication, and division	NR	NR
12. Montagu e (1992)	Yes (included Subject 1 to 3; called temporal generation)	NR	Each test contained 3 one-step, 4 two-step, and 3 three-step problems requiring the four basic operations and whole numbers or decimals.	NR
13. Montagu e & Bos (1986)	Yes (S2, S4, and S5)	NR	Ten two-step problems (any combination of the four basic mathematical operations, that is, addition, subtraction, multiplication, and division of whole numbers)	Not included (one-time)
14. Peltier et al. (2020)	Yes	Each probe contained three- word problems fitting the target schema (e.g., part- part-whole, compare, change)	Combined schema probes included three- word problems; each word problem required multiple steps with two schema types embedded; mixed	Part-part-whole with three parts, change with two change amounts, and compare with three quantities

Study	Maintenance		Complexity	
		Single Type	Combined Type	Generalization
			schemas contained one	
			problem per schema	
			structure (i.e., part- part-whole, change,	
			compare).	
15.	Not included	Each probe	Contained three word	Part-part-whole
Peltier et	(one-time)	contained three	problems; each word	with three parts,
al. (2021)		word problems	problem contained two	change with two
, , ,		with the unknown	schema types and	change amounts,
		quantity randomly	required multiple steps	and compare with
		assigned (e.g.,	to solve	three quantities
		part-part-whole,		
		compare, change)		
16.	Yes	NR	Area of a square solve	NR
Satsangi			for perimeter, the	
et al.			perimeter of a square	
(2020)			solve for area, the width and area of a	
			rectangle solve for the	
			length of a side, and	
			the length and area of	
			a rectangle solve for	
			the perimeter	
17.	Yes	Each containing 10	NR	Problems that
Scheuer		one-variable word		students had not
mann et		problems;		been taught to
al. (2009)		randomly		solve (the
		allocating the critical elements		uninstructed
				problems), written in a familiar
		(i.e., names, units, values) within a		format
		set of structured		Torritat
		word problems;		
		the problems were		
		written in a		
		familiar format		
18. Sharp	Yes	NR	Each probe involving	The tests contained
& Dennis			five word problems:	two items of each
(2017)			(a) compare two	type: compare
			fractions with	fractions with
			common numerators, (b) compare three	common
			fractions with	numerators, compare fractions
			common numerators,	with benchmark-
			(c) compare three	of-one, order
	i	1		
			fractions using the	fractions with
			fractions using the benchmark-of-one, (d)	common

Study	Maintenance	Complexity		
		Single Type	Combined Type	Generalization
			with common numerators, and (e) order three fractions using a benchmark-of- one.	order fractions with benchmark-of-one.
19. Shin & Bryant (2017)	NR	NR	Five questions, involving combination, partition, and multiplicative comparison types	NR
20. van Garderen (2007)	Yes	Eight one-step word problems (for Phase 2); eight two-step word problems (for Phase 3)	A mixture of eight one- and two-step word problems (for baseline, probe, and maintenance conditions)	Eight "nonroutine" or complex, authentic real-world word problems randomly selected from 13 Word problems used in a study by van Garderen and Montague (2003)
21. Yang & Xin (2022)	NR	NR	Researcher-developed criterion word problem solving test; Six one-step multiplicative compare word problems	Six two-step word problems taken from STAAR database, involving the operation of multiplication division, multiplication multiplication, division division, and division multiplication.

Note. CAI = computer-assisted instruction; CMSI = cognitive and metacognitive strategy instruction; CRA-I = integrated sequence of concrete-representational-abstract; CSA = concrete-semiconcrete-abstract teaching sequence; CSI = cognitive strategy instruction; EI = explicit instruction; F = female; M = male; MB = multiple baseline; MP = multiple probe; MSI = metacognitive strategy instruction; NR = not reported; POD✓ = Propose, Outline, Defend, Check.; ROC = rate of change; SBI = schema-based instruction; SBSI = schema-based strategy instruction; SE = special education teacher; STAAR = State of Texas Assessments of Academic Readiness; STAR = search the problem, translate the problem into a schematic diagram, answer the problem, and review the solution.

Figure S1
Literature Search Procedures

Note. SCD = single-case design.

We conducted the same electronic database search through Education Resources Information Center (ERIC; n = 189), PsycINFO (n = 183), and Academic Search Complete (n = 228) with wildcard search terms of "(learning disab* OR dyslexi* OR dyscal* OR math* disab*) AND (word problem* OR problem solving*)." This search resulted in 600 articles initially. Excluding 213 duplicates (196 removed automatically and 17 removed manually), we evaluated 387 full-text articles for eligibility based on the above inclusion criteria. Four articles were included in the current study, and 383 articles were removed due to not targeting students with learning disabilities (n = 108), not including word problem instruction as the independent variable (n = 126), not measuring word problem solving as the dependent variable (n = 45), and not employing multiple-baseline or multiple-probe single-case designs (n = 104).

Appendix A

- *Alghamdi, A., Jitendra, A. K., & Lein, A. E. (2020). Teaching students with mathematics disabilities to solve multiplication and division word problems: The role of schema-based instruction. *ZDM Mathematics Education*, *52*, 125–137. https://doi.org/10.1007/s11858-019-01078-0
- *Bundock, K., Hawken, L. S., Kiuhara, S. A., O'Keeffe, B. V., O'Neill, R. E., & Cummings, M. B. (2021). Teaching rate of change and problem solving to high school students with high incidence disabilities at tier 3. *Learning Disability Quarterly*, 44(1), 35–49. https://doi.org/10.1177/0731948719887341
- *Edwards, S. E., Kellems, R. O., Gibb, G. S., Ashbaker, B. Y., Osborne, K., & Wheatley, A. W. (2020). Using video prompting to teach mathematics to adolescent students with LD. *Technology and Disability*, 32(4), 229–241. https://doi.org/10.3233/TAD-200298
- *Freeman-Green, S. M., O'Brien, C., Wood, C. L., & Hitt, S. B. (2015). Effects of the SOLVE strategy on the mathematical problem solving skills of secondary students with learning disabilities. *Learning Disabilities Research & Practice*, 30(2), 76–90. https://doi.org/10.1111/ldrp.12054
- *Jitendra, A., DiPipi, C. M., & Perron-Jones, N. (2002). An exploratory study of schema-based word-problem–solving instruction for middle school students with learning disabilities: An emphasis on conceptual and procedural understanding. *The Journal of Special Education*, 36(1), 23–38. https://doi.org/10.1177/00224669020360010301
- *Jitendra, A. K., & Hoff, K. (1996). The effects of schema-based instruction on the mathematical word-problem-solving performance of students with learning disabilities. *Journal of Learning Disabilities*, 29(4), 422–431. https://doi.org/10.1177/002221949602900410

- *Jitendra, A. K., Hoff, K., & Beck, M. M. (1999). Teaching middle school students with learning disabilities to solve word problems using a schema-based approach.

 *Remedial and Special Education, 20(1), 50–64.

 https://doi.org/10.1177/074193259902000108
- *Liu, J., & Xin, Y. P. (2017). The effect of eliciting repair of mathematics explanations of students with learning disabilities. *Learning Disability Quarterly*, 40(3), 132–145. https://doi.org/10.1177/0731948716657496
- *Maccini, P., & Hughes, C. A. (2000). Effects of a problem-solving strategy on the introductory algebra performance of secondary students with learning disabilities.

 *Learning Disabilities Research & Practice, 15(1), 10–21.

 https://doi.org/10.1207/SLDRP1501_2
- *Maccini, P., & Ruhl, K. L. (2000). Effects of a graduated instructional sequence on the algebraic subtraction of integers by secondary students with learning disabilities. *Education and Treatment of Children*, 23(4), 465–489.
- *Marsh, L. G., & Cooke, N. L. (1996). The effects of using manipulatives in teaching math problem solving to students with learning disabilities. *Learning Disabilities Research* & *Practice*, 11(1), 58–65.
- *Montague, M. (1992). The effects of cognitive and metacognitive strategy instruction on the mathematical problem solving of middle school students with learning disabilities.

 *Journal of Learning Disabilities, 25(4), 230–248.

 https://doi.org/10.1177/002221949202500404
- *Montague, M., & Bos, C. S. (1986). The effect of cognitive strategy training on verbal math problem solving performance of learning disabled adolescents. *Journal of Learning Disabilities*, 19(1), 26–33. https://doi.org/10.1177/002221948601900107
- *Peltier, C., Sinclair, T. E., Pulos, J. M., & Suk, A. (2020). Effects of schema-based

- instruction on immediate, generalized, and combined structured word problems. *The Journal of Special Education*, *54*(2), 101–112. https://doi.org/10.1177/0022466919883397
- *Peltier, C., Lingo, M. E., Autry, F., Deardorff, M. E., & Palacios, M. (2021). Schema-based instruction implemented under routine conditions. *Journal of Applied School Psychology*, *37*(3), 246–267. https://doi.org/10.1080/15377903.2020.1821273
- *Satsangi, R., Hammer, R., & Bouck, E. C. (2020). Using video modeling to teach geometry word problems: A strategy for students with learning disabilities. *Remedial and Special Education*, 41(5), 309–320. https://doi.org/10.1177/0741932518824974
- *Scheuermann, A. M., Deshler, D. D., & Schumaker, J. B. (2009). The effects of the explicit inquiry routine on the performance of students with learning disabilities on one-variable equations. *Learning Disability Quarterly*, 32(2), 103–120. https://doi.org/10.2307/27740360
- *Sharp, E., & Dennis, M. S. (2017). Model drawing strategy for fraction word problem solving of fourth-grade students with learning disabilities. *Remedial and Special Education*, 38(3), 181–192. https://doi.org/10.1177/0741932516678823
- *Shin, M., & Bryant, D. P. (2017). Improving the fraction word problem solving of students with mathematics learning disabilities: Interactive computer application. *Remedial and Special Education*, 38(2), 76–86. https://doi.org/10.1177/0741932516669052
- *van Garderen, D. (2007). Teaching students with LD to use diagrams to solve mathematical word problems. *Journal of Learning Disabilities*, 40(6), 540–553. https://doi.org/10.1177/00222194070400060501
- *Yang, X., & Xin, Y. P. (2022). Teaching problem posing to students with learning disabilities. *Learning Disability Quarterly*, 45(4), 280–293. https://doi.org/10.1177/0731948721993117