

S2-20_DSECFZC415
Classification and Prediction

Pilani | Dubai | Goa | Hyderabad

- The slides presented here are obtained from the authors of the books and from various other contributors. I hereby acknowledge all the contributors for their material and inputs.
- I have added and modified a few slides to suit the requirements of the course.

Model Evaluation and Selection

Model Evaluation and Selection

Evaluation metrics: How can we measure accuracy? Other metrics to consider?

Use **validation test set** of class-labeled tuples instead of training set when assessing accuracy

Methods for estimating a classifier's accuracy:

- Holdout method, random subsampling
- Cross-validation
- Bootstrap

Comparing classifiers:

Cost-benefit analysis and ROC Curves

Classifier Evaluation Metrics: Confusion Matrix

Confusion Matrix:

Given m classes, an entry, $CM_{i,j}$ in a confusion matrix indicates # of tuples in class i that were labeled by the classifier as class j

May have extra rows/columns to provide totals

Predicted class ->	C ₁	¬ C ₁
Actual class [↓]		
C ₁	True Positives (TP)	False Negatives (FN)
¬ C ₁	False Positives (FP)	True Negatives (TN)

Classifier Evaluation Metrics: Confusion Matrix

Example of Confusion Matrix:

Predicted class ->	buy_computer =	buy_computer =	Total
	yes	no	
Actual class ↓			
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

lead

Classifier Evaluation Metrics: Accuracy, Error Rate, Sensitivity and Specificity

Classifier Accuracy, or recognition rate: percentage of test set tuples that are correctly classified

$$Accuracy = (TP + TN)/AII$$

Error rate: 1 - accuracy, or

Error rate = (FP + FN)/All

A\P	С	¬C	
С	TP	FN	Р
¬C	FP	TN	N
	P'	N'	All

Class Imbalance Problem:

- One class may be rare, e.g. fraud, or HIV-positive
- Significant majority of the negative class and minority of the positive class
- Sensitivity: True Positive recognition rate
 - Sensitivity = TP/P
- Specificity: True Negative recognition rate
 - Specificity = TN/N

Precision: exactness – what % of tuples that the classifier labeled as positive are actually positive $\frac{TP}{T}$

Recall: completeness – what % of positive tuples did the classifier label as positive?

Perfect score is 1.0

Inverse relationship between precision & recall

F measure $(F_1 \text{ or } F\text{-score})$: harmonic mean of precision and recall,

$$F = \frac{2 \times precision \times recall}{precision + recall}$$

 $F_{\mathcal{B}}$: weighted measure of precision and recall

assigns ß times as much weight to recall as to precision

$$F_{\beta} = \frac{(1+\beta^2) \times precision \times recall}{\beta^2 \times precision + recall}$$

Classifier Evaluation Metrics: Example

Precision = 90/230 = 39.13%

$$Recall = 90/300 = 30.00\%$$

Actual Class\Predicted class	cancer = yes	cancer = no	Total	Recognition(%)
cancer = yes	90	210	300	30.00 (sensitivity
cancer = no	140	9560	9700	98.56 (specificity)
Total	230	9770	10000	96.40 (accuracy)

Evaluating Classifier Accuracy: Holdout & Cross-Validation Methods

Holdout method

- Given data is randomly partitioned into two independent sets
 - Training set (e.g., 2/3) for model construction
 - Test set (e.g., 1/3) for accuracy estimation
- Random sampling: a variation of holdout
 - Repeat holdout k times, accuracy = avg. of the accuracies obtained

Cross-validation (k-fold, where k = 10 is most popular)

- Randomly partition the data into k mutually exclusive subsets, each approximately equal size
- At i-th iteration, use D_i as test set and others as training set
- Leave-one-out: k folds where k = # of tuples, for small sized data
- *Stratified cross-validation*: folds are stratified so that class dist. in each fold is approx. the same as that in the initial data

Evaluating Classifier Accuracy: Bootstrap

Bootstrap

- Works well with small data sets
- Samples the given training tuples uniformly with replacement
 - i.e., each time a tuple is selected, it is equally likely to be selected again and re-added to the training set

Several bootstrap methods, and a common one is .632 boostrap

- A data set with d tuples is sampled d times, with replacement, resulting in a training set of d samples. The data tuples that did not make it into the training set end up forming the test set. About 63.2% of the original data end up in the bootstrap, and the remaining 36.8% form the test set (since $(1 1/d)^d \approx e^{-1} = 0.368$)
- Repeat the sampling procedure k times, overall accuracy of the model:

$$Acc(M) = \frac{1}{k} \sum_{i=1}^{k} (0.632 \times Acc(M_i)_{test_set} + 0.368 \times Acc(M_i)_{train_set})$$

Model Selection: ROC Curves

- ROC (Receiver Operating Characteristics) curves: for visual comparison of classification models
- Originated from signal detection theory
- Shows the trade-off between the true positive rate and the false positive rate
- The area under the ROC curve is a measure of the accuracy of the model
- Rank the test tuples in decreasing order: the one that is most likely to belong to the positive class appears at the top of the list
- The closer to the diagonal line (i.e., the closer the area is to 0.5), the less accurate is the model

- Vertical axis represents the true positive rate
- Horizontal axis rep. the false positive rate
- The plot also shows a diagonal line
- A model with perfect accuracy will have an area of 1.0

Prediction

Prediction vs. Classification

- How is (Numerical) prediction similar to classification?
 - construct a model
 - use model to predict continuous or ordered value for a given input
- Difference between Prediction and classification
 - Classification refers to predict categorical class label
 - Prediction models continuous-valued functions
- Major method for prediction: regression
 - model the relationship between one or more independent or predictor variables and a dependent or response variable
- Profit, sales, mortgage rates, house values, square footage, temperature, or distance could all be predicted using regression techniques. For example, a regression model could be used to predict the value of a house based on location, number of rooms, lot size, and other factors.

Regression for Prediction

- A regression task begins with a data set in which the target values are known, e.g.
 - A regression model that predicts house values could be developed based on observed data for many houses over a period of time.
 - The data might track the age of the house, square footage, number of rooms, taxes, school district, proximity to shopping centers, and so on.
 - House value would be the target, the other attributes would be the predictors, and the data for each house would constitute a case.
- In the model build (training) process, a regression algorithm estimates the value of the target as a function of the predictors for each case in the build data.
 - These relationships between predictors and target are summarized in a model, which can then be applied to a different data set in which the target values are unknown

Prediction Techniques

- Regression analysis
 - Linear and multiple regression
 - Non-linear regression
 - Other regression methods:
 - Log-linear models,
 - Regression trees
 - •etc.

Regression Analysis

- Regression analysis seeks to determine the values of parameters for a function that cause the function to best fit a set of data observations that you provide.
- The following equation expresses these relationships in symbols.

$$y = F(x,w) + e$$

• Regression is the process of estimating the value of a continuous target (y) as a function (F) of one or more predictors (x1, x2, ..., xn), a set of parameters (w1, w2, ..., wn), and a measure of error (e).

Regression Analysis

In the equation

$$y = F(x,w) + e$$

- The predictors(x1, x2, ..., xn) can be understood as independent variables
- The target (y) is the dependent variable.
- The error (e), also called the residual, is the difference between the expected and predicted value of the dependent variable.
- The regression parameters are also known as regression coefficients.
- The process of training a regression model involves finding the parameter values that minimize a measure of the error, for example, the sum of squared errors.

Simple Linear Regression

• <u>Simple Linear regression</u>: involves a response variable y and a single predictor variable x

$$y = W_0 + W_1 x$$

where w_0 (y-intercept) and w_1 (slope) are regression coefficients

• Method of least squares: estimates the best-fitting straight line

$$W_{1} = \frac{\sum_{i=1}^{|D|} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{|D|} (x_{i} - \overline{x})^{2}}$$

$$W_{\scriptscriptstyle 0} = \overline{y} - W_{\scriptscriptstyle 1} \overline{x}$$

Linear Regression With a Single Predictor

Multiple Linear Regression

Multiple linear regression: involves more than one predictor variable

- Training data is of the form $(\mathbf{X_1}, \mathbf{y_1}), (\mathbf{X_2}, \mathbf{y_2}), \dots, (\mathbf{X_{|D|}}, \mathbf{y_{|D|}})$
- e.g. For 2-D data, we may have:

$$y = w_0 + w_1 x_1 + w_2 x_2$$

- Solvable by extension of least square method or using SAS, S-Plus
- Many nonlinear functions can be transformed into the above

Nonlinear Regression

- Often the relationship between x and y cannot be approximated with a straight line. In this case, a nonlinear regression technique may be used. Alternatively, th data could be preprocessed to make the relationship linear.
- Nonlinear regression models define y as function of x using an equation that is more complicated than the linear regression equation

Nonlinear Regression

- Some nonlinear models can be modeled by a polynomial function
- A polynomial regression model can be transformed into linear regression model. For example,

•
$$y = w0 + w1 x + w2 x^2 + w3 x^3$$

- convertible to linear with new variables: $x^2 = x^2$, $x^3 = x^3$
 - y = w0 + w1 x + w2 x2 + w3 x3
- Other functions, such as power function, can also be transformed to linear model
- Some models are intractable nonlinear (e.g., sum of exponential terms)
 - possible to obtain least square estimates through extensive calculation on more complex formulae

Regression Trees and Model Trees

- Regression tree: proposed in CART system (Breiman et al. 1984)
 - CART: Classification And Regression Trees
 - Each leaf stores a continuous-valued prediction
 - It is the average value of the predicted attribute for the training tuples that reach the leaf
- Model tree: proposed by Quinlan (1992)
 - Each leaf holds a regression model—a multivariate linear equation for the predicted attribute
 - A more general case than regression tree
- Regression and model trees tend to be more accurate than linear regression when the data are not represented well by a simple linear model

Prescribed Text Books

	Author(s), Title, Edition, Publishing House
T1	Tan P. N., Steinbach M & Kumar V. "Introduction to Data Mining" Pearson Education
T2	Data Mining: Concepts and Techniques, Third Edition by Jiawei Han, Micheline Kamber and Jian Pei Morgan Kaufmann Publishers
R2	Principles of Data Mining, Second Edition by Max Bramer Springer © 2013
R1	Predictive Analytics and Data Mining: Concepts and Practice with RapidMiner by Vijay Kotu and Bala Deshpande Morgan Kaufmann Publishers

Simple Linear Regression Example

X	У
Area (in sq. m)	Rent (in 000s of Rupees)
172	42
150	35
181	46
174	40
194	50

Can we predict rent for a house of 160 sq. m. in the locality?