$$f(x) - f(x) = 5x + 9$$

$$f(x) = 2x + 9$$

 $f(7) = 2(7) + 9 = 23$
 $f(4) = 2(4) + 9 = 17$

2)
$$F(x) = 4x^2 - \lambda$$

 $F(3) =$

2)
$$F(x) = 4x^2 - \lambda$$

 $F(3) =$

$$f(x) = 4x^2 - 2$$

 $f(3) = 4(3^2) - 2 = 4(9) - 2 = 34$

$$\begin{array}{c|c}
7 & 3 \\
12 & M \\
M+12 & N
\end{array}$$

$$f(x) = \frac{5x-1}{2}$$

$$n = ?$$

3)
$$\frac{f(x)}{7} \frac{x}{3}$$
 $f(x) = \frac{5x-1}{2}$
 $f(m) = \frac{5m-1}{2} = 13$
 $f(n) = \frac{5n-1}{2} = m+12$
 $5m-1 = 24$
 $5m-25$
 $6m-35$
 $6m-35$
 $6m-35$
 $6m-35$
 $6m-35$
 $6m-35$
 $6m-35$
 $6m-35$
 $6m-35$
 $6m-1 = 34$

4)
$$f(x)=-2x^2+11$$
 if $f(x)=3$ x=?

4)
$$f(x)=-2x^{2}+11$$
 if $f(x)=3$ $x=?$

$$-\lambda \chi^{2}=-9$$

$$\chi^{2}=-4$$

$$\chi=\pm \lambda$$
4) $f(x)=-2x^{2}+11$

$$f(-4)=-2(16)+11=-32+11$$

$$f(-4)=-2(4)+11=-8+11$$

5)
$$f(x) = \frac{(x+1)^2}{2}$$
 $f(a) = 18$
 $b+a=?$

5)
$$f(x) = \frac{(x+1)^2}{2}$$
 $f(a) = 18$
 $f(a) = 18$ $f(9) = b$

$$\frac{(a+1)^2}{2} = 18$$

$$\frac{(9+1)^2}{2} = b$$

$$\frac{36 = (a+1)^2}{-6 = a+1}$$

$$\frac{100}{2} = b$$

$$\frac{100}{2} = b$$

$$\frac{100}{-7 = a}$$

$$\frac{100}{2} = b$$

$$\frac{100}{-7 = a}$$

$$\frac{100}{-7 =$$

6)
$$f(x-3)=x^2-6x+9$$
 $f(x)=?$

- A) x
- B) x 3
- $C) x^2$
- D) x^2-6x+6
- E) $x^2-6x+12$

6)
$$f(x-3)=x^2-6x+9$$
 $f(x)=?$

A) x

B) $x-3$

C) x^2

D) x^2-6x+6

E) $x^2-6x+12$

$$f(x-3)=(x-3)(x-3)$$

7)
$$f(x)=5x-1$$
 $f(4)+f(2)+1=?$

- A) f(2)
- B) f(4)
- C) f(5)
- D) f(6)
- E) f(8)

7)
$$f(x)=5x-1$$
 $f(4)+f(2)+1=?$
A) $f(2)$
B) $f(4)$
C) $f(5)$
D) $f(6)$
E) $f(8)$

$$20-1+10-1+1=29$$

$$29=5x-1$$

$$30=5x$$

$$x=6$$
D)

8)
$$f(x) = \frac{9x+1}{4} + \frac{-6x-7}{4}$$

 $x-f(x) =$

8)
$$f(x) = \frac{9x+1}{4} + \frac{-6x-7}{4}$$

 $x - f(x) = x - \frac{9x+1-6x-7}{4} + \frac{-6x-7}{4}$
 $= x - \frac{4x-6}{4} + \frac{6x-7}{4}$
 $= x - \frac{4x-6}{4} + \frac{6x-6}{4}$
 $= x - \frac{4x-6}{4} + \frac{6x-6}{4}$

9) r is a positive integer $f(r) = \begin{cases} r^2 \text{ when } r \text{ is prime} \\ r-1 \text{ when } r \text{ is not prime} \end{cases}$

if f(3)-f(4)=y, what is $2y^{-1}$

9) r is a positive integer

$$f(r) = \begin{cases} r^2 \text{ when } r \text{ is prime} \\ r-1 \text{ when } r \text{ is not prime} \end{cases} \qquad F(3) - F(4) = 7$$

if
$$f(3)-f(4)=y$$
, what is $2y^{-1}$

$$f(3) - f(4) = Y$$

$$3^{2} - (4 - 1) = Y$$

$$9 - 3 = Y$$

$$Y^{-1} = \frac{2}{Y} = \frac{2}{5} \left(-\frac{1}{3} \right)$$

10) Each of the following is within both the domain and range of $f(x) = \frac{1}{x^2-4}$ EXCEPT:

- A) 1
- B) 2
- C) 3
- **D)** 4
- E) 5

10) Each of the following is within both the domain and range of $f(x) = \frac{1}{x^2-4}$ EXCEPT:

- A) 1 XS4 = 154
- B) 2 X
- C) 3
- D) 4
- E) 5

 $\chi^{2}-4 \neq 0$ $\chi^{2}\neq 4$ $\chi \neq \pm 2$ Domain $f(\chi) \neq 0$ $\chi^{2} \geqslant 0 \leq \chi^{2}-4 \geqslant -4$ So all answers are in Range (+)

11)	X	-1	0	1	2	3
	f(x)	2	5	8	11	14

if f(x)=ax+b and satisfies the above table for the values of x shown, what is b-a?

$$f(x)=ax+b$$

 $f(1)=a+b=8$
 $f(0)=b=5$ = $a+5=8$
 $a=3$

if f(x)=ax+b and satisfies the above table for the values of x shown, what is b-a?

X	-1	0	1	2	3
f(x)	2	5	8	11	14