Visualization

- Illustrative Visualization (Questions)

J.-Prof. Dr. habil. Lawonn

• What is P?

$$P = I - nn^T$$

- What is P?
- P is an operator that projects every point on the tangent plane defined by the normal n

• Calculate the projection operator with $n=(2,1,3)^T$

• Calculate the projection operator with $n=(2,1,3)^T$ $P=I-nn^T$

• Calculate the projection operator with $n=(2,1,3)^T$ $P=I-nn^T$

$$||n|| = \sqrt{2^2 + 1^2 + 3^2} = \sqrt{14}$$

$$n_0 = \frac{1}{\sqrt{14}} \begin{pmatrix} 2\\1\\3 \end{pmatrix}$$

• Calculate the projection operator with n=(2,1,3) $P = I - nn^T$

$$n_0 = \frac{1}{\sqrt{14}} \begin{pmatrix} 2\\1\\3 \end{pmatrix} \qquad P = \begin{pmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 2/\sqrt{14}\\1/\sqrt{14}\\3/\sqrt{14} \end{pmatrix} \begin{pmatrix} 2/\sqrt{14} & 1/\sqrt{14} & 3/\sqrt{14} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 4/14 & 2/14 & 6/14\\2/14 & 1/14 & 3/14\\6/14 & 3/14 & 9/14 \end{pmatrix}$$

$$= \begin{pmatrix} 10/14 & -2/14 & -6/14\\-2/14 & 13/14 & -3/14\\-6/14 & -3/14 & 5/14 \end{pmatrix}$$

• Calculate the projection operator with n=(2,1,3) $P = I = nn^T$

$$P = I - nn^T$$

$$n_0 = \frac{1}{\sqrt{14}} \begin{pmatrix} 2\\1\\3 \end{pmatrix} \qquad P = \begin{pmatrix} 5/7 & -1/7 & -3/7\\-1/7 & 13/14 & -3/14\\-3/7 & -3/14 & 5/14 \end{pmatrix}$$

$$G = \begin{pmatrix} 4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$G = \begin{pmatrix} 4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$G = \begin{pmatrix} 2 & 2 & 1 \\ 1 & -2 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

$$G = \begin{pmatrix} 2 & 2 & 1 \\ 1 & -2 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

$$T = trace(G) = \kappa_1 + \kappa_2$$

$$F = |G|_F = \sqrt{\kappa_1^2 + \kappa_2^2}$$

$$G = \begin{pmatrix} 2 & 2 & 1 \\ 1 & -2 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
$$T = 2 + (-2) + 1 = 1$$

$$G = egin{pmatrix} 2 & 2 & 1 \ \hline 1 & -2 & 0 \ \hline 0 & 1 & 1 \end{pmatrix}$$

$$F = \sqrt{2^2 + 2^2 + 1^2 + 1^2 + (-2)^2 + 0^2 + 0^2 + 1^2 + 1^2} = 4$$

$$G = \begin{pmatrix} 2 & 2 & 1 \\ 1 & -2 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

$$T = 1$$

$$F = 4$$

$$\kappa_{1/2} = \frac{T \pm \sqrt{2F^2 - T^2}}{2} \\
= \frac{1 \pm \sqrt{2 \cdot 4^2 - 1^2}}{2} \\
= \frac{1 \pm \sqrt{31}}{2}$$

Determine the covariant derivative.

$$f(x,y) = 2 + x^{2} - y$$
$$v(x,y) = \begin{pmatrix} -x \\ 0 \end{pmatrix}$$
$$D_{v(x,y)} f(x,y)$$

Determine the covariant derivative.

$$f(x,y) = 2 + x^{2} - y$$

$$v(x,y) = \begin{pmatrix} -x \\ 0 \end{pmatrix}$$

$$D_{v(x,y)}f(x,y) = \langle \nabla f(x,y), v(x,y) \rangle$$

$$= \langle \begin{pmatrix} 2x \\ -1 \end{pmatrix}, \begin{pmatrix} -x \\ 0 \end{pmatrix} \rangle$$

Determine the covariant derivative.

$$f(x,y) = 2 + x^{2} - y$$

$$v(x,y) = \begin{pmatrix} -x \\ 0 \end{pmatrix}$$

$$D_{v(x,y)}f(x,y) = \langle \nabla f(x,y), v(x,y) \rangle$$

$$= \langle \begin{pmatrix} 2x \\ -1 \end{pmatrix}, \begin{pmatrix} -x \\ 0 \end{pmatrix} \rangle$$

$$= -2x^{2}$$

• What is the covariant derivative of a scalar field along isolines?

• What is the covariant derivative of a scalar field along isolines?

0

Feature Lines

• Compare two feature line techniques (of your choice) according to the order of derivatives, view-dependencies, and features.

Feature Lines

• Compare two feature line techniques (of your choice) according to the order of derivatives, view-dependencies, and features.

Name	Order	View-dep	Sharp Edges	Round Edges	Bumps (s.w.)	Bumps (top)	Contour	Deformation
Contours	1	yes	⊠	×	×	\boxtimes	\square	Ø
Crease Lines	1	no	Ø		\boxtimes	\boxtimes	×	Ø
Ridges & Valleys	3	no	Ø	Ø	\boxtimes	Ø		
Suggestive Contours	2	yes	\boxtimes		Ø	Ø		Ø
Apparent Ridges	3	yes	Ø	Ø	Ø	Ø		
Photic Extremum Lines	3	yes	Ø	⊠		\square	Ø	Ø
Demarcating Curves	3	no		⊠		Ø		
Laplacian Lines	3	yes	Ø			Ø		⊠