2022 年中国科学技术大学新生入学考试 数学试卷

院系 姓名 学号 总分	
----------------------------	--

说明: 试卷满分 100 分,考试时间 120 分钟.须写出必要的计算和证明过程.结果须化简.禁止使用手机、计算器等电子设备.

- 1. (10 分) 设 $\theta = 100^{\circ}$, 求 $P = (\sin \theta + \cos \theta)(1 4\sin \theta \cos \theta)$ 的值.
- 2. $(10 \, f)$ 袋中共有 m+n 个小球,m 个红球、n 个蓝球,除了颜色之外完全相同。每次从袋中随机取出一个小球,若为红球则放回袋中,若为蓝球则不放回,直至取出所有蓝球。求取球次数的数学期望。
- 3. (20 分) 设映射 $f: \mathbb{N} \to \mathbb{R}$ 满足

$$f(1) = 2$$
, $f(m+n) = \frac{1}{2}f(2n) + 2f(m) - f(m-n) - n$, $\forall m \ge n$.

求 f(2022) 的值.

- 4. (20 分) 设点 A 是圆 C_1 的圆心,线段 AB 是圆 C_2 的直径,圆 C_1 , C_2 相交于两点 E, F, 点 G 是线段 EF 的中点,点 H 是 G 关于 A 的对称点,线段 BH 是圆 C_3 的直径,圆 C_1 , C_3 相交于两点 P, Q. 证明:线段 PQ 是 C_1 的直径.
- 5. (20 分) 设 a, b, c 都是正数且 a + b + c = 1. 求

$$S = \frac{1}{a^2 + b^2} + \frac{1}{a^2 + c^2} + \frac{1}{b^2 + c^2}$$

的取值范围.

6. $(20 \, \mathcal{G})$ 设 $\alpha_1, \dots, \alpha_5$ 是 \mathbb{R}^3 中任意 5 个非零向量. 证明: 必存在非零向量 $\beta \in \mathbb{R}^3$,它与 $\alpha_1, \dots, \alpha_5$ 中至多一个向量的夹角是钝角.

试题解答和评分参考

1. $(10 \, \text{分})$ 设 $\theta = 100^{\circ}$, 求 $P = (\sin \theta + \cos \theta)(1 - 4\sin \theta \cos \theta)$ 的值.

解答.
$$P = \sin \theta + \cos \theta - 2(1 - \cos 2\theta) \cos \theta - 2\sin \theta (1 + \cos 2\theta) = -\sin \theta - \cos \theta + 2\cos \theta \cos 2\theta - 2\sin \theta \cos 2\theta = \cos 3\theta - \sin 3\theta = \cos 60^\circ + \sin 60^\circ = \frac{1 + \sqrt{3}}{2}.$$
 (10 分)

2. (10 分) 袋中共有 m+n 个小球, m 个红球、n 个蓝球, 除了颜色之外完全相同. 每次从袋 中随机取出一个小球,若为红球则放回袋中,若为蓝球则不放回,直至取出所有蓝球。求取 球次数的数学期望.

解答. 设
$$a_n$$
 是所求数学期望. $a_0 = 0$, $a_n = 1 + \frac{m}{m+n} a_n + \frac{n}{m+n} a_{n-1}$, $\forall n \ge 1$. (5 分)

由此可得,
$$a_n = \frac{m+n}{n} + a_{n-1} = \dots = n + m \sum_{k=1}^{n} \frac{1}{k}$$
. (5 分)

3. (20 分) 已知映射 $f: \mathbb{N} \to \mathbb{R}$ 满足 f(1) = 2, $f(m+n) = \frac{1}{2}f(2n) + 2f(m) - f(m-n) - n$, $\forall m \geqslant n$. 求 f(2022) 的值.

解答. 在题设中,令
$$m = n = 0$$
,得 $f(0) = 0$;令 $m = n = 1$,得 $f(2) = 6$. (5 分)

$$f(m+1) - f(m) = f(m) - f(m-1) + 2 = \dots = f(1) - f(0) + 2m = 2(m+1). \tag{5 \%}$$

$$f(2022) = 2(1+2+\dots+2022) = 2022 \times 2023 = 4090506. \tag{5 \%}$$

4. (20 分) 已知点 A 是圆 C_1 的圆心,线段 AB 是圆 C_2 的直径,圆 C_1,C_2 相交于两点 E,F, 点 G 是线段 EF 的中点, 点 H 是 G 关于 A 的对称点, 线段 BH 是圆 C_3 的直径, 圆 C_1, C_3 相交于两点 P,Q. 证明: 线段 PQ 是 C_1 的直径.

证明. 建立直角坐标系,设
$$A(0,0)$$
, $B(b,0)$, $C_1: x^2+y^2=1$, $C_2: x^2-bx+y^2=0$. (5 分)

联立
$$C_1, C_2$$
 方程,得 $G, H = (\pm \frac{1}{5}, 0)$,其中 $b > 1$. (5 分)

从而
$$C_3: (x-b)(x+\frac{1}{b})+y^2=0.$$
 (5 分)

联立
$$C_1, C_3$$
 方程,得 $P, Q = (0, \pm 1)$. 故 PQ 是 C_1 的直径. (5 分)

5. $(20\ eta)$ 设 a,b,c 都是正数且 a+b+c=1. 求 $S=\frac{1}{a^2+b^2}+\frac{1}{a^2+c^2}+\frac{1}{b^2+c^2}$ 的取值范围.

解答. 不妨设
$$a \geqslant b \geqslant c$$
. 取定 c , $S = \frac{1}{a^2 + b^2} + \frac{a^2 + b^2 + 2c^2}{a^2 b^2 + (a^2 + b^2)c^2 + c^4} = \frac{1}{(1 - c)^2 - 2ab} + \frac{(1 - c)^2 - 2(ab - c^2)}{(ab - c^2)^2 + c^2(1 - c)^2}$

可视为
$$x = ab - c^2$$
 的函数, $S = f(x) = \frac{1}{(1-c)^2 - 2c^2 - 2x} + \frac{(1-c)^2 - 2x}{x^2 + c^2(1-c)^2}$. (5 分出 $f'(x) = \frac{2}{(a^2 + b^2)^2} - \frac{2}{(a^2 + c^2)(b^2 + c^2)} - \frac{2x(a^2 + b^2 - 2c^2)}{[(a^2 + c^2)(b^2 + c^2)]^2} \le 0$, $0 < c \le \frac{1}{3}$, $(1-c)^2 + 4c^2 < 1$,

得
$$S \ge f(\frac{(1-c)^2}{4} - c^2) = \frac{2}{(1-c)^2} + \frac{8}{(1-c)^2 + 4c^2} > 2 + 8 = 10.$$
 (10 分) 当 $(a,b,c) \to (\frac{1}{2},\frac{1}{2},0)$ 时, $S \to 10$. 当 $(a,b,c) \to (1,0,0)$ 时, $S \to +\infty$.

由函数的连续性,
$$S$$
 的取值范围是 $(10, +\infty)$. (5 分)

6. $(20 \, f)$ 设 $\alpha_1, \dots, \alpha_5$ 是 \mathbb{R}^3 中任意 5 个非零向量. 证明: 必存在非零向量 $\beta \in \mathbb{R}^3$,它与 $\alpha_1, \dots, \alpha_5$ 中至多一个向量的夹角是钝角.

证明. 设 $\alpha_i = \overrightarrow{OA_i}$. 情形 1: O, A_1, \cdots, A_5 中存在四点共面 (此平面记作 π).

若 $O \notin \pi$, $A_1, \dots, A_4 \in \pi$, 则存在 π 的法向量 β, 它与 $\alpha_1, \dots, \alpha_4$ 的夹角都是锐角. (5 分) 若 $O, A_1, A_2, A_3 \in \pi$,则存在 π 的法向量 β ,它与 $\alpha_1, \alpha_2, \alpha_3$ 的夹角是直角,与 α_4 的夹角是 锐角或直角. (5 分)

情形 2: O, A_1, \dots, A_5 中任意三点不共线、任意四点不共面.

若 O 在四面体 $A_1A_2A_3A_4$ 外部,则可过 O 作平面 π ,使得 A_1, \dots, A_4 在 π 的同侧. 存在 π 的法向量 β ,它与 $\alpha_1, \dots, \alpha_4$ 的夹角都是锐角. (5分)

若 O 在 $A_1A_2A_3A_4$ 的内部,则无论 A_5 在 $A_1A_2A_3A_4$ 的内部或外部,O 必在 $A_1A_2A_3A_5$ 、 $A_1A_2A_4A_5$ 、 $A_1A_3A_4A_5$ 、 $A_2A_3A_4A_5$ 之一的外部. 同上,存在 β 满足题目要求. (5分)