Unit 4: Signal Space Theory

EL-GY 6013: DIGITAL COMMUNICATIONS

PROF. SUNDEEP RANGAN

Learning Objectives

- ☐ Determine if a set is a vector space or not
- ☐ Find the dimension for a vector space or subspace. Find a basis
- ☐ Find a signal space for a set of signals.
 - Compute the degrees of freedom and rate for signal set in a signal space
 - Find the representation of a signal in signal space for a given basis
- ☐ Find the number of DoF per second of a band-limited signal
- ☐ Determine if vector or signals are orthogonal
- ☐ Find an orthonormal basis.
- □ Compute representations of signals in an orthonormal basis
- ☐ Find the energy per DoF in an orthonormal basis

Outline

- Motivation for the signal space model
 - □ Vector spaces, bases and dimension
 - □ Signal spaces, rate and degrees of freedom
 - □ Nyquist Theorem and degrees of freedom in band-limited signals
 - ☐ Inner products and orthogonality
 - □Orthonormal bases and energy per degree of freedom

Algorithmic Model of a Typical Transmitter

- □ Up to now, we have considered a standard transmitter with three steps
 - Symbol mapping
 - TX filtering
 - Upconversion

Abstract Signal Space Model of a Transmitter

- ☐ Maps bits to signals
- ☐ Signals belong to a vector space

Why Use the Signal Space Model?

- ☐ Analysis is not limited to a specific TX architecture
 - Applies to any communication system
- ☐ Describes fundamental parameters of the system
 - Rate and degrees of freedom
 - In next unit, we will also introduce a third parameter which is SNR
- ■Some calculations are easier in the transformed space
- ☐ Provides a geometric model to understand communication

Outline

- ☐ Motivation for the signal space model
- Vector spaces, bases and dimension
- ☐ Signal spaces, rate and degrees of freedom
- □ Nyquist Theorem and degrees of freedom in band-limited signals
- ☐ Inner products and orthogonality
- □Orthonormal bases and energy per degree of freedom

Vector Spaces

- lue Definition: A vector space over a field $\mathbb{F} = \mathbb{R}$ or \mathbb{C} :
- A set V with operations:
- ∘ Addition: $x, y \in V \Rightarrow x + y \in V$
- Scalar multiplication: $\alpha \in \mathbb{F}$, $x \in V \Rightarrow \alpha x \in V$
- \square We will use \mathbb{F} as a placeholder for the field
- □Commutative, associative, distributive relationships hold
- □ Vector subspace: Subset that is also a vector space.

Vector Space \mathbb{F}^N

- \square Set of n-dim vectors $\mathbf{x} = [x_1, ..., x_n]$
 - Each element $x_n \in \mathbb{F}$
 - Can be row or column vectors
 - Or just vectors
- ☐ Standard addition and scalar multiplication rules
- ☐ Make sure you know how to do these operations
 - \circ [1,2,3] + [3,4,5] = ...
 - \circ 2[1, -2,3] = ...
 - $[1+i,2-i]-[3+2i,4-6i]=\cdots$

Example Problem

- \square Which of the following are vector subspaces of \mathbb{F}^N
- $\Box V = \text{set of } x = [x_1, x_2, x_3] \text{ s.t } x_1 = 0$
- $\square V = \text{set of } x = [x_1, x_2, x_3] \text{ s.t } 2x_1 + 3x_2 = 0$
- $\square V = \text{set of } x = [x_1, x_2, x_3] \text{ s.t } 2x_1 + 3x_2 = 4$
- $\square V = \text{set of } x = [x_1, x_2, x_3] \text{ s.t } x_1 \ge 3x_2$
- $\square V = \text{set of } x = [x_1, x_2, x_3] \text{ s.t } x_1^* + 3x_2 = 0$
- Solutions on board

Vector Spaces of Functions

- □ In communications, we often need to consider vector spaces of functions
- \square Example: V = C[a, b]
 - Set of continuous functions on [a, b]
 - Each "vector" is a function f(t), $t \in [a, b]$
 - Can be complex or real-valued
- ■We can add and subtract functions as usual:
- □Ex: $f(t) = t^2$, $g(t) = t^3$
 - If h = 2f + 3g then $h(t) = 2t^2 + 3t^3$

Example Problem

- \square Which of the following are vector subspaces C[a, b]
- Set of differentiable functions
- \square Set of functions $f(t) \ge 0$
- ☐ Set of polynomial functions
- \square Fix g(t). Let V = set of functions f(t) with $\int g(t)f(t) = 0$
- Solutions on board

Linear Span

- \square Let V some vector space and $\{v_1, ..., v_d\} \subset V$
- \square A linear combination of $\{v_1, ..., v_d\}$ is a vector of the form:

$$\boldsymbol{w} = \alpha_1 \boldsymbol{v}_1 + \dots + \alpha_d \boldsymbol{v}_d, \qquad \alpha_i \in \mathbb{F}$$

□ Span: The set of all linear combinations of the vectors:

$$\mathrm{Span}\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_d\}=\{\alpha_1\boldsymbol{v}_1+\cdots+\alpha_d\boldsymbol{v}_d,\alpha_i\in\mathbb{F}\}\subseteq V$$

- \circ This is a vector subspace of V
- ullet $\{oldsymbol{v}_1, ..., oldsymbol{v}_d\}$ are said to span W if $W = \operatorname{Span}\{oldsymbol{v}_1, ..., oldsymbol{v}_d\}$
- \square Example: In $V = \mathbb{R}^3$, span $\{v_1, v_2\}$ is the plane that contains the two vectors

Linear Independence

 \square Vectors $\{v_1, ..., v_d\}$ are linearly independent if:

$$\alpha_1 \boldsymbol{v}_1 + \dots + \alpha_d \boldsymbol{v}_d = 0 \Rightarrow \alpha_i = 0 \text{ for all } i$$

- \circ Any non-zero combination of the vectors $oldsymbol{v}_j$ is non-zero.
- If vectors are not linearly independent, then they are linearly dependent
- \square Example: Consider case of two vectors $\{v_1, v_2\}$
 - ullet v_1 , v_2 are linearly dependent if and only if $v_1=eta v_2$ or $v_2=eta v_1$
 - That is, vectors are in the same direction

Basis and Dimension

- \Box Given vector space V
- \square Vectors $v_1, ..., v_n$ are a basis for V if
 - \circ $oldsymbol{v}_1$, ..., $oldsymbol{v}_n$ are linearly independent and span V
- \square This means that every $x \in V$ can be uniquely written as:

$$\mathbf{x} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_d \mathbf{v}_d$$

- \square Say $[\alpha_1, ..., \alpha_d]$ are the coordinates of x in the basis
- \square Dimension of V = n

Simple Vector Example

□ Vectors [1,2], [3,6] are linearly dependent since:

$$[3,6] = 3[1,2] \Rightarrow [3,6] - 3[1,2] = 0$$

- \square Vectors $v_1 = [1,0], v_2 = [2,3]$ are linearly independent:
 - \circ Why? Suppose that $\alpha_1 v_1 + \alpha_2 v_2 = 0$
 - Then: $\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 - \circ Matrix $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ is invertible. So this system of equations has a unique soln: $\begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 - Hence $v_1 = [1,0], v_2 = [2,3]$ are a basis.
- \square Write w = [5,6] as a linear combination of v_1, v_2 : Solve $\mathbf{w} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2$

☐ Performing these calculations for larger dimension matrices by hand is generally difficult

Standard Basis and Change of Basis

- \square Standard basis of \mathbb{F}^N : $e_1, ..., e_N$
 - $e_i = [0, ..., 0, 1, 0, ... 0]$. A "1" in position i
- \square Any vector $\mathbf{x} = [x_1, ..., x_N] = \sum_i x_i \mathbf{e}_i$
 - Hence $[x_1, ..., x_N]$ are the coordinates in the standard basis
- ☐ Change of basis:
 - \circ Suppose $v_1, ..., v_N$ is another basis
 - \circ Want to find coordinates $oldsymbol{x} = \sum_i lpha_i oldsymbol{v}_i$

Example

- □ Suppose $v_1 = [1,2], v_2 = [3,2]$
- $\Box x = [7,10]$ in the standard basis
- \square Find coefficients of x in v_1 , v_2 basis
- Solution:

$$\circ \ \mathsf{Solve} \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 7 \\ 10 \end{bmatrix}$$

$$\circ \ \operatorname{Get} \left[\begin{matrix} \alpha_1 \\ \alpha_2 \end{matrix} \right] = \left[\begin{matrix} 4 \\ 1 \end{matrix} \right]$$

Standard basis

Function Example

- □Consider $V = \text{set of continuous functions } f: [0,1] \to \mathbb{R}$
- \square Let $f_j(x) = x^j$, j = 0, ..., d for some d
- \square Then $f_i(x)$ are linearly independent.
 - \circ Why? Suppose that $g = \sum_i \alpha_i f_i = 0$
 - Then: $g(x) = \sum_i \alpha_i x^i = 0$ for all $x \in [0,1]$ (sometimes we say g(x) is identically zero)
 - But g(x) is a polynomial of degree d
 - A polynomial g(x) = 0 for all x if and only all the coefficients are zero (Follows from the fact that any non-zero polynomial of degree d has at most d real roots)
- \square Since we can make d arbitrarily large, V has infinite dimension
 - There are an arbitrary number of linearly independent vectors

Outline

- ☐ Motivation for the signal space model
- □ Vector spaces, bases and dimension
- Signal spaces, rate and degrees of freedom
- □ Nyquist Theorem and degrees of freedom in band-limited signals
- ☐ Inner products and orthogonality
- □Orthonormal bases and energy per degree of freedom

Abstract Transmitter and the Signal Set

- Abstract transmitter:
 - Input is a set of bits $(b_1, ..., b_K)$
 - Outputs one of a finite set of signals $s_1(t), ..., s_M(t)$
 - For now, we will consider only a finite set of bits
- \square In general there are $M=2^K$ possible output signals
- \square Definition: We call $S = \{s_1(t), ..., s_M(t)\}$ the signal set
 - We say $K = \log_2 M$ is the number of bits in $\mathcal S$
- ☐ This model is not specific to any architecture

Example

 \square Suppose we linearly map N QPSK symbols:

$$u(t) = \sum_{n=0}^{N-1} s[n]p(t - nT), \qquad s[n] = \pm A \pm jA$$

- \square There are K = 2N input bits
- ☐ There are $M = 2^{2N}$ output signals u(t)
- \square Each set of bits $b = (b_1, ..., b_K)$
 - Each bit pair (b_{2n+1}, b_{2n+2}) gets mapped to a symbol s[n]
 - We obtain $N = \frac{K}{2}$ symbols (s[0],...,s[N-1])
 - \circ Results in signal u(t) after linear modulation

Signal Space

- \square Consider a signal set $S = \{s_1(t), s_2(t), ..., s_M(t)\}$
 - Can be either a set of received signals or transmitted signals
 - Can be in discrete-time, analog baseband or analog RF
 - \circ For now, we consider only finite signal set, $M < \infty$
 - But signals $s_i(t)$ can be infinite in duration or finite
- \square A signal space for S is any vector space V that contains S
- \square Note: S is not itself a vector space
 - It is a discrete set
 - But, it is contained in a vector space.

Signal Space Bases

- \square Let $S = \{s_1(t), s_2(t), ..., s_M(t)\}$ be a signal set
- □ Suppose $S \subset V, V = \text{signal space containing } S$
- \square Since V is a vector space it has a basis: $\phi_1(t), ..., \phi_N(t)$
- □ Then, each signal $s_i(t)$ can be expanded as: $s_i(t) = \sum_{j=1}^{N} s_{ij} \phi_j(t)$
- The vector $\mathbf{s}_i = [s_{i1}, ..., s_{iM}]$ is the coordinate vector of $s_i(t)$ in the basis
 - \circ The components s_{ij} are the coordinates

Degrees of Freedom and Rate

- \square Let $S = \{s_1(t), s_2(t), ..., s_M(t)\}$ be a signal set
- ☐ Signal space theory has two key parameters
- □ Degrees of freedom:
 - The smallest dimension of a signal space V with $S \subset V$
 - If N=#degrees of freedom, then there are N basis vectors $\phi_1(t), ..., \phi_N(t)$ with

$$s_i(t) = \sum_{j=1}^{N} s_{ij} \phi_j(t)$$

 \square Rate: The rate of a signal set in a signal space V with dimension N is:

$$R = \frac{\text{bits}}{\text{DoF}} = \frac{\log_2(M)}{N}$$

• Represents the amount of information transmitted per DoF

Complex vs. Real DoF

- \square Often signals $s_i(t)$ or $s_i[n]$ are complex-valued
- ☐ Typically use a complex vector space
 - $\circ \ s_i(t) = \sum_{n=1}^N s_{in} \phi_n(t) \,,$
 - \circ Coordinates will be complex $s_{ij} \in \mathbb{C}$
 - We say there are *N* complex degrees of freedom
- \square Or, we can convert to a vector space over $\mathbb R$
 - \circ Define basis with 2N vectors: $\phi_1(t), ..., \phi_N(t)$ and $j\phi_1(t), ..., j\phi_N(t)$
 - Then, we can write:

$$s_i(t) = \sum_{n=1}^{N} a_{in}\phi_n(t) + b_{in}j\phi_n(t)$$

 \circ So, there are 2*N* real degrees of freedom

Example

- ☐ Consider the four functions shown to the right
- \square Find N = degrees of freedom of S
- \square Find a signal space V for S with dimension N
- \square Find a basis for V
- \square Find the coordinate vector of each $s_i(t)$ in the basis

Example Solution

- \square So, there are N=2 degrees of freedom
- $\square K = \log_2(4) = 2$ bits
- \square Rate $R = \frac{K}{N} = 1$ bit / DoF

$$s_3(t) = 3\phi_1(t) - 2\phi_2(t)$$

 $s_3 = [3, -2]$

$$s_4(t) = \phi_1(t) + \phi_2(t)$$

 $s_4 = [1,1]$

Visualizing the Coordinate Vectors

$$s_1(t) = 2\phi_1(t)$$

$$s_1 = [2,0]$$

$$s_2(t) = -2\phi_1(t)$$

 $s_2 = [-2,0]$

$$s_3(t) = 3\phi_1(t) - 2\phi_2(t)$$

 $s_3 = [3, -2]$

Signal Space View of Transmitter

- ☐ Signal space view
 - Input is a set of bits $(b_1, ..., b_K)$
 - Outputs one of a finite set of signals $s_1(t), ..., s_M(t)$
 - \circ Each output has a coordinate vector $s_1, ..., s_M \in \mathbb{F}^N$
- \square So, abstractly transmitter maps: $bits \mapsto vectors \ in \ \mathbb{F}^N$

Signal Space for Pulse Shaping

 \square Suppose that we transmit N symbols via linear modulation:

$$u(t) = \sum_{n=0}^{N-1} s[n]p(t - nT)$$

- □ Take basis: $\phi_n(t) = p(t nT), n = 0, ..., N 1$
- Then: $u(t) = \sum_{n=0}^{M-1} s[n]\phi_n(t)$
- \square So, u(t) are contained in a signal space with N (complex) degrees of freedom
- \square Coordinate of u(t) in basis are they symbols [s[0], ..., s[N-1]]

Example for 16-QAM

- Transmit: $u(t) = \sum_{n=0}^{M-1} s[n]p(t nT)$
- □Suppose each symbol is 16-QAM.
 - \circ $s[n] = a[n] + ib[n], a[n], b[n] \in \{-3, -1, 1, 3\}$
 - $\circ R_{mod} = 4$ bits per symbol
- □ Number of bits per signal: $K = R_{mod}N$
- \square Rate is $R = \frac{K}{N} = R_{mod}$ bits per DoF

Unique Decodability

 \square Suppose that we use linear modulation with functions $\phi_n(t)$

$$u(t) = \sum_{n=0}^{N-1} s[n]\phi_n(t)$$

- lacktriangle Definition: We say modulation is uniquely decodable if, for any u(t), we can uniquely determine s[n]
- ☐ Uniquely decodable is the minimum we can expect of a modulation scheme:
 - \circ If modulation is not uniquely decodable, there are at least two different s[n] that give rise to u(t)
 - \circ Hence, a receiver will not know which s[n] was transmitted
 - So, there is no hope of estimating the correct symbols reliability without further information
 - ...And we haven't even considered any impairments like noise

Unique Decodability and Degrees of Freedom

- □ Theorem: Consider linear modulation $u(t) = \sum_{n=0}^{N-1} s[n]\phi_n(t)$
 - \circ Then, modulation is uniquely decodable if and only if $\phi_n(t)$ are linearly independent
- ☐ Proof: This is an immediate consequence of linear independence
- □Implication:
 - Suppose we use linear modulation in a signal space where $u(t) \in V$
 - Suppose that V has N degrees of freedom
 - \circ Then, we can transmit at most N symbols unique
- ☐ Caveats:
 - Even though DoF limits number of symbols, it does not limit number of bits
 - We can transmit multiple bits per symbol.

Outline

- ☐ Motivation for the signal space model
- □ Vector spaces, bases and dimension
- ☐ Signal spaces, rate and degrees of freedom
- Nyquist Theorem and degrees of freedom in band-limited signals
 - □Inner products and orthogonality
 - □Orthonormal bases and energy per degree of freedom

Reconstructing a Signal from Samples

- \square Let x(t) be a continuous-time signal
- \square Suppose we are given samples x[n] = x(nT)
- ☐ Reconstruction problem:
 - Estimate x(t) from sample x[n]
- ☐ A classic problem in signal processing

36

Nyquist Theorem

- □ Suppose x(t) is band-limited: X(f) = 0 for $|f| > \frac{W}{2}$
 - $\circ \frac{W}{2}$ is the single-sided bandwidth
- \square We are given samples $x_d[n] = x(nT)$
- □ Nyquist theorem: If $W < \frac{1}{T}$ then, we can reconstruct x(t) by:

$$x(t) = \sum_{n = -\infty}^{\infty} x_d[n] \operatorname{sinc}\left(\frac{t - nT}{T}\right)$$

Nyquist Theorem Proof

☐ A simple picture proof in frequency-domain

FT X(f) of original bandlimited x(t)

DTFT
$$X_d(\Omega)$$
 of sampled signal $x_d[n] = x(nT)$ $f = \frac{W}{2}$ gets mapped to $\Omega_0 = \frac{WT}{2}(2\pi) < \pi$

FT of upsampled signal $x_{\delta}(t) = \sum_{n} x_{d}[n] \delta(t - nT)$

Nyquist Theorem Proof

From previous slide FT of upsampled signal $x_{\delta}(t) = \sum_{n} x_{d}[n] \delta(t - nT)$

Sinc filter
$$h(t) = sinc\left(\frac{t}{T}\right) \Rightarrow H(f) = TRect(fT)$$

FT of filtered upsampled signal:

$$X(f) = H(f)X_{\delta}(f) \Rightarrow x(t) = \sum_{n} x_{d}[n]sinc\left(\frac{t - nT}{T}\right)$$

Sinc Interpolation Visualized

☐ Sinc interpolation:

$$x(t) = \sum_{n = -\infty}^{\infty} x_d[n] \operatorname{sinc}\left(\frac{t - nT}{T}\right)$$

- \square Around each sample $x_d[n] = x(nT)$
 - Take a sinc function
 - \circ Shift to center at nT
 - Scale by x(nT)

DoF for Bandlimited Signals

- ☐ The following is an important consequence of Nyquist Theorem
- \Box Theorem (Loose non-rigorous statement): Suppose that V is a signal space such that:
 - ∘ s(t) is band-limited to $|f| < \frac{W}{2}$ for all s(t) ∈ V
 - $s(t) \approx 0$ for $|t| > \frac{L}{2}$ (i.e. time-limited to L seconds)

Then V has at most $\approx LW$ degrees of freedom

- ☐ Thus, DoF≈Bandwidth × Time
- \square We say there are W DoF per second
- ☐ This is non-rigorous statement
 - Rigorous statement would properly bound $s(t) \approx 0$ for $|t| > \frac{L}{2}$

"Proof" of DoF Statement

- \square If $s(t) \in V$ then
 - s(t) is band-limited to $|f| < \frac{W}{2}$; and
 - $s(t) \approx 0$ for $|t| > \frac{L}{2}$ (i.e. time-limited to L seconds)
- $\square \text{Since it is band-limited, } s(t) = \sum_{n=-\infty}^{\infty} s\left(\frac{n}{W}\right) \operatorname{sinc}(Wt n)$
- \square Since it is time-limited, $s\left(\frac{n}{W}\right) \approx 0$ for $\frac{|n|}{W} > \frac{L}{2}$
- \square Thus, $s(t) \approx \sum_{|n| < \frac{LW}{2}} s\left(\frac{n}{W}\right) \operatorname{sinc}(Wt n)$
- \square This summation has only LW terms
- \square So all signal can be expressed as span of LW terms

Example

- ■Suppose you download data
 - Download time is L = 10 seconds
 - \circ Bandwidth is W=20 MHz (a standard bandwidth for the largest single LTE channel)
 - Rate is 1.5 bits / DoF available
- ☐ How much do you download?
- Solution:
 - There are $N = LW = (10)(20)(10)^6 = 2(10)^8$ DoF
 - You can download $B = RN = (1.5)2(10)^8 = 300$ Mbits
 - This is 43.75 MB of data

Outline

- ☐ Motivation for the signal space model
- □ Vector spaces, bases and dimension
- ☐ Signal spaces, rate and degrees of freedom
- □ Nyquist Theorem and degrees of freedom in band-limited signals
- Inner products and orthogonality
- □Orthonormal bases and energy per degree of freedom

Inner Product in \mathbb{F}^n

- $\square \text{Inner product in } \mathbb{F}^n \colon \langle x, y \rangle \coloneqq \sum_{i=1}^n \bar{x}_i y_i$
 - \bar{x}_i = complex conjugate of x_i
 - Note: Some texts use $\langle x, y \rangle \coloneqq \sum_{i=1}^n x_i \bar{y}_i$
- \square If x and y are column vectors, then

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = [\bar{x}_1, \cdots, \bar{x}_n] \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \boldsymbol{x}^* \boldsymbol{y}$$

Examples:

•
$$x = [1,2]$$
 and $y = [3,4] \Rightarrow \langle x, y \rangle = 1(3) + 2(4) = 11$

•
$$x = [1 + 2i, 3 + 4i]$$
 and $y = [5,6 + 7i]$
 $\Rightarrow \langle x, y \rangle = (1 - 2i)5 + (3 - 4i)(6 + 7i) = 5 - 10i + 18 + 28 - 24i + 21i$

Inner Product on a General Vector Space

- \square Suppose V is a vector space over \mathbb{F}
- \square Definition: An inner product on V is a function $\langle x, y \rangle \mapsto \mathbb{F}$ such that:
 - Conjugate symmetry: $\langle x, y \rangle = \overline{\langle y, x \rangle}$
 - Linearity in the second argument: $\langle x, \alpha_1 y_1 + \alpha_2 y_2 \rangle = \alpha_1 \langle x, y_1 \rangle + \alpha_2 \langle x, y_2 \rangle$
 - \circ Positive definiteness: $\langle x, x \rangle \geq 0$ and $\langle x, x \rangle = 0 \Leftrightarrow x = 0$
- □ A vector space with an inner product is called an inner product space
- \square Regular inner product in \mathbb{F}^n satisfies the above properties
- ☐ Derived property: Conjugate linearity in the first argument:

$$\langle \alpha_1 \mathbf{x}_1 + \alpha_2 \underline{\mathbf{x}_2, \mathbf{y}} \rangle = \overline{\langle \mathbf{y}, \underline{\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2} \rangle} = \overline{\alpha_1} \overline{\langle \mathbf{y}, \mathbf{x}_1 \rangle} + \overline{\alpha_2} \overline{\langle \mathbf{y}, \mathbf{x}_2 \rangle} = \overline{\alpha_1} \langle \mathbf{x}_1, \mathbf{y} \rangle + \overline{\alpha_2} \langle \mathbf{x}_2, \mathbf{y} \rangle$$

Inner Product Geometry

- \square Any inner product induces a norm: $||x|| = \sqrt{\langle x, x \rangle}$
 - Note $\langle x, x \rangle \ge 0$ so the square root can be taken
 - Easy to verify that it is satisfies the required norm properties
- \square For $x \in \mathbb{F}^n$, this is the standard 2-norm: $||x||^2 = \langle x, x \rangle = \sum_i |x_i|^2$
- \square Triangle inequality: $||x + y|| \le ||x|| + ||y||$
- □ Cauchy-Schwartz inequality:

$$|\langle x, y \rangle| \le ||x|| ||y||$$

- \square Write: $\langle x, y \rangle = ||x|| ||y|| \cos(\theta)$
 - θ =angle between vectors
 - Represents "similarity" between vectors
 - For real vetors, $\mathbf{x}^{\mathrm{T}}\mathbf{y} = \langle x, y \rangle = ||x|| ||y|| \cos(\theta)$

Inner Products on Functions

- \square Let f(t), g(t) be two functions on [a, b]
 - Possibly complex-valued
- □ Define inner product: $\langle f, g \rangle = \int f(t)^* g(t) dt$
 - \circ Same as inner product in \mathbb{F}^n with sum replaced by integral
- □ Norm squared is the energy:
 - $\mathcal{E} = ||f||^2 = \int |f(t)|^2 dt$ Signal energy
- ☐ Parseval's theorem
 - $\circ \langle x(t), y(t) \rangle = \langle X(f), Y(f) \rangle$
 - $E_x = \langle x(t), y(t) \rangle = \langle X(f), Y(f) \rangle$
- ☐ The space $L_2[a,b]$ = set of f(t) with finite energy $||f||^2$

Example Problem

- \Box Let $f_i(t) = e^{-\alpha_i t}$, $t \ge 0$, i = 1, 2, ...
 - ∘ Assume $\alpha_i \ge 0$
- \square Find $\langle f_i, f_i \rangle$
- \Box Find $||f_i||$
- Solution:
 - $\langle f_i, f_j \rangle = \int_0^\infty f_i(t) f_j(t) dt = \int_0^\infty e^{-(\alpha_1 + \alpha_2)t} dt = \frac{1}{\alpha_1 + \alpha_2}$
 - $||f_i||^2 = \langle f_i, f_i \rangle = \frac{1}{2\alpha_i}$
 - $\circ \|f_i\| = \frac{1}{\sqrt{2\alpha_i}}$

Orthogonality

- \square Orthogonal vectors: $\langle x, y \rangle = 0$
 - Pythagoras Theorem: $||x + y||^2 = ||x||^2 + ||y||^2$
 - Write $x \perp y$.
- \square For $x, y \in \mathbb{F}^n$:
 - $x \perp y \Leftrightarrow x, y$ are right angles to one another
- \square If $f, g \in L_2[a, b]$, the signals are orthogonal if:
 - $\langle f, g \rangle = \int f(t)^* g(t) dt = 0$

- Pairwise orthogonal: $x_i \perp x_j$ when $i \neq j$
- Unit energy: $||x_i|| = 1$
- Could be a finite or infinite set

Examples of Orthogonal Vectors and Signals

- $\Box \ln V = \mathbb{R}^2$
 - x = [1,3], y = [-6,2]
 - $x^*y = (1)(-6) + 3(2) = 0$
- \square In $L_2[a,b]$: Any two signals f(t),g(t) that have non-overlapping support
- □Complex exponentials: $f_k(t) = e^{2\pi jkt/T}$ for $t \in [0, T]$
- $\Box \text{Sinc functions: } \phi_k(t) = \frac{1}{\sqrt{T}} sinc\left(\frac{t nT}{T}\right)$
 - We showed these are orthogonal last unit

Outline

- ☐ Motivation for the signal space model
- □ Vector spaces, bases and dimension
- ☐ Signal spaces, rate and degrees of freedom
- □ Nyquist Theorem and degrees of freedom in band-limited signals
- □Inner products and orthogonality
- Orthonormal bases and energy per degree of freedom

Orthonormal Basis

- \square Let V be any vector space
- \square Definition: A set v_1, v_2 ... is orthonormal if:
 - ||v|| = 1 for all n (all vectors have unit energy)
 - $\langle v_n, v_m \rangle = 0$ for all $n \neq m$ (different vectors are orthogonal)
- \square Orthonormal \Rightarrow linearly independent.
 - \circ Why? Suppose that $\sum_i \alpha_i oldsymbol{v}_i = 0$
 - \circ Multiplying by $m{v}_j^*$ we get $0=\sum_i lpha_i m{v}_j^* m{v}_i=lpha_j$ for all j (since $m{v}_j^* m{v}_i=\delta_i$

Called an orthonormal basis

Example

■Show the vectors are orthonormal:

$$v_1 = \frac{1}{\sqrt{11}} \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}, \quad v_2 = \frac{1}{\sqrt{6}} \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, \quad v_3 = \frac{1}{\sqrt{66}} \begin{bmatrix} -1 \\ -4 \\ 7 \end{bmatrix}$$

■ Solution:

$$v_1^T v_2 = \frac{1}{\sqrt{66}} (-3 + 2 + 1) = 0$$

$$v_1^T v_3 = \frac{1}{\sqrt{66(11)}} (-3 - 4 + 7) = 0$$

$$v_2^T v_3 = \frac{1}{\sqrt{66(6)}} (1 - 8 + 7) = 0$$

$$||v_1||^2 = \frac{1}{11}(9+1+1) = 1, ||v_2||^2 = \frac{1}{6}(1+4+1) = 1,$$

$$||v_3||^2 = \frac{1}{66}(1+16+49) = 1,$$

Unitary Matrices

- \square A matrix $U \in \mathbb{C}^{N \times N}$ is unitary if $U^*U = I$
 - U called orthogonal if it is real-valued (i.e. $U \in \mathbb{R}^{N \times N}$ and $U^T U = I$)
- $\square U$ is unitary/orthogonal if and only if one of the following equivalent properties are true:
 - $U^* = U^{-1}$
 - \circ The rows of U are an orthonormal set
 - \circ The columns of U are an orthonormal set
 - $||Ux||^2 = ||x||^2$ for all $x \in \mathbb{F}^N$
 - $\langle Ux, Uy \rangle = \langle x, y \rangle$ for all $x, y \in \mathbb{F}^N$

Proof of the Unitary Matrix Properties

- $\square U$ unitary $\iff U^{-1} = U^*$: Follows from the definition $UU^* = U^*U = I$
- $\square U$ unitary \Leftrightarrow columns of U are orthonormal
 - Write $U = [u_1, ..., u_N]$ where u_i is the *i*-th column
 - Then: $(U^*U)_{ij} = u_i^*u_j$
 - $\circ \text{ Since } U^*U = I, \ u_i^*u_j = \delta_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$
 - Hence: $u_i^*u_i = 0$ for $i \neq j$ and $||u_i||^2 = u_i^*u_i = 1$ for all i
- $\square U$ unitary \iff row of U are orthonormal. Same proof as previous but use $UU^* = I$
- $\Box U$ unitary $\Rightarrow ||Ux||^2 = ||x||^2 : ||Ux||^2 = x^*U^*Ux = x^*x = ||x||^2$

Coefficients in an Orthonormal Basis

- \square Let $v_1, ..., v_N \in \mathbb{F}^N$ be an orthonormal basis
- ullet Theorem: Given any $x \in \mathbb{F}^N$, $x = \sum_j z_j v_j$ where $z_j = \langle v_j, x \rangle$
- \square Consequence: Find coefficients of x in an orthonormal basis is easy
 - Just take inner products $z_i = \langle v_i, x \rangle$.
 - NO matrix inverse
- ☐ Proof of theorem
 - \circ Since $v_1, ..., v_N$ is orthonormal, $V = [v_1, ..., v_N]$ is unitary
 - Since $z_i = \langle \boldsymbol{v}_i, \boldsymbol{x} \rangle$ we can write $\boldsymbol{z} = \boldsymbol{V}^* \boldsymbol{x}$
 - \circ But then $\sum_j z_j v_j = Vz = VV^*x = x$

Orthogonal Matrix Transformations

Coefficient in standard basis

$$\mathbf{x} = [x_1, \dots, x_N]$$

Coefficients in orthonormal basis

$$\mathbf{z} = [z_1, \dots, z_N]$$

Example

□ Consider the orthonormal set from before:

$$v_1 = \frac{1}{\sqrt{11}} \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}, \ v_2 = \frac{1}{\sqrt{6}} \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, \ v_3 = \frac{1}{\sqrt{66}} \begin{bmatrix} -1 \\ -4 \\ 7 \end{bmatrix}$$

- Let $x = [0,1,2]^T$. Find the coefficient expansion in the orthonormal bases
- Solution:

$$z_1 = v_1^* x = \frac{1}{\sqrt{11}} (1+2) = \frac{3}{\sqrt{11}}$$

$$z_2 = v_2^* x = \frac{1}{\sqrt{6}} (2+2) = \frac{4}{\sqrt{6}}$$

$$z_3 = v_2^* x = \frac{1}{\sqrt{66}} (-4 + 14) = \frac{10}{\sqrt{66}}$$

• Then
$$x = z_1 v_1 + z_2 v_2 + z_3 v_3$$

Finding an orthonormal basis: Gram Schmidt

- \square Let v_1, \dots, v_K be linearly independent
- ☐ Conclusion: Every subspace has an orthonormal basis
- lacksquare Gram-Schmidt Procedure for finding $oldsymbol{u}_1,\ldots,oldsymbol{u}_K$

$$u_1 = v_1 / ||v_1||$$

$$w_2 = v_2 - \langle u_1, v_2 \rangle u_1, u_2 = w_2 / ||w_2||$$

0 ...

$$v \circ w_k = v_k - \sum_{i=1}^{k-1} \langle u_i, v_k \rangle u_i$$
 , $u_k = w_k / \|w_k\|$

0 ...

Gram Schmidt Example

$$\square v_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \ v_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

$$\Box u_1 = \frac{v_1}{\|v_1\|} = \frac{1}{\sqrt{10}} \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\square w_2 = v_2 - \langle u_1, v_1 \rangle u_1 = \begin{bmatrix} 2 \\ 2 \end{bmatrix} - \frac{1}{10} (6+2) \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} -2 \\ 6 \end{bmatrix}$$

$$\Box u_2 = \frac{1}{\sqrt{4+36}} \begin{bmatrix} -2 \\ 6 \end{bmatrix} = \frac{1}{\sqrt{40}} \begin{bmatrix} -2 \\ 6 \end{bmatrix} = \frac{1}{\sqrt{10}} \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

QR Factorization

- ☐ Gram-Schmidt is mostly done on a computer
- ☐ Use the QR factorization.
- □Given matrix $A = [a_1, ..., a_K], a_i \in \mathbb{F}^N$
 - Columns are the vectors that we want to apply the GS procedure to
- \square QR factorization: A = QR
 - $Q = [q_1, ..., q_K] \in \mathbb{F}^{N \times K}$, q_i orthonormal set from the GS procedure
 - $R = \text{lower triangular matrix has coefficients of vectors } a_i \text{ in terms of } q_i$:

$$\mathbf{a}_j = \sum_{i=1}^j \mathbf{q}_i R_{ij}$$

□ LU is another factorization

Orthonormal Basis of Functions

- □ Up to now, we have defined orthonormal bases for finite-dimensional spaces
- \square Let $\phi_k(t)$, k = 0,1,... be a set of functions in $L_2(a,b)$
 - Could be indexed from $k = \cdots, -1, 0, 1, \dots$ also
 - \circ (a,b) could be a bounded or infinite interval
- \square Definition: We say $\{\phi_k(t)\}$ is an orthonormal basis if:
 - $\phi_k(t)$, k = 0,1,... is an orthonormal set
 - For any $f(t) \in L_2(a,b)$

$$\lim_{k \to \infty} \left\| f - \sum_{j=0}^{k} \langle \phi_j, f \rangle \phi_j \right\| = 0$$

 \Box This means the approximation $f(t) \approx \sum_{j=0}^k \alpha_j \phi_j(t)$, $\alpha_j = \langle \phi_j, f \rangle$ is asymptotically exact

Common Orthonormal Sets and Bases

- $\Box \text{Set of complex exponentials } \phi_k(t) = \frac{1}{\sqrt{T}} e^{2\pi jkt/T}$
 - This is a basis of $L_2[0,T]$
- $\square \text{Set of sinc's: } \phi_k(t) = \frac{1}{\sqrt{T}} Sinc\left(\frac{t nT}{T}\right)$
 - \circ This is a basis of the set of signals band-limited to $|f| < \frac{1}{2T}$
- $\Box \text{Set of rectangles: } f_k(t) = \frac{1}{\sqrt{T}} Rect \left(\frac{t nT}{T} \right)$
 - This is an orthonormal set but not a basis

Energy and an Orthonormal Basis

- \square Suppose V is a signal space with N DoFs
- \square We can find an orthonormal basis $\phi_1(t)$, ..., $\phi_N(t)$
- \square Given any $s(t) \in V$, we can write $s(t) = \sum_{j=1}^{N} z_j \phi_j(t)$, $z_j = \langle \phi_j, s \rangle$
- \square Signal energy is $||s||^2 = \int |s(t)|^2 dt$
- **P**arseval's Theorem: $||s||^2 = ||z||^2 = \sum_{j=1}^{N} |z_j|^2$
- ☐ Proof: On board
- □ In an orthonormal basis, we can compute energy in the coefficients
 - \circ Call $\left|z_{j}\right|^{2}$ the energy in the j th degree of freedom

Example Problem

- \square Suppose that s(t) has a coefficient representation $s(t) = \sum z_j \phi_j(t)$ in an o.n. basis
- □ Suppose coefficients are $\mathbf{z} = [3 + i, 2 i, 1]\sqrt{A}$
- \square What is A if the signal energy is -150 dBmJ?
- Solution:
 - Signal energy is $||s||^2 = \int |s(t)|^2 dt = 10^{-15} \text{ mJ}$
 - By Parseval's theorem $||s||^2 = ||\mathbf{z}||^2 = \sum_{j=1}^N |z_j|^2 = A[(9+1)+(4+1)+1] = A(16)$
 - Hence $A = \frac{10^{-15}}{16} \, \text{mJ / DoF}$

