Claims

- [c1]

 1.A method for forming an elongated fused quartz article comprising the steps of:

 a)feeding a generally quartz (SiO 2) material into a furnace;

 b)fusing the quartz (SiO 2) material in a melting zone of the furnace under a gas atmosphere comprising a molecular deuterium (D 2) gas;

 c)drawing the article from the furnace; and d)optionally, baking the article in a gas atmosphere comprising a deuterium gas.
- [c2] 2.The method of claim 1 further comprising the step of heat treating the article drawn from the furnace in a substantially hydrogen-free gas atmosphere or vacuum.
- [c3] 3.The method of claim 1 wherein the gas atmosphere of steps b) or d) further comprises an inert gas or a mixture of inert gases.
 - 4. The method of claim 3 wherein the D $_2$ gas and inert gas or mixture of inert gases are present in a volume ratio of about 20% D $_2$ and about 10% inert gas or mixture of inert gases.
- [c5] 5.The method of claim 3 wherein the D 2 gas and inert gas or mixture of inert gases are present in a volume ratio of about 90% D 2 and about 10% inert gas or mixture of inert gases.
- [c6] 6. The method of claim 3 wherein the dew point of the gas atmosphere of step b) is about -30 °C. to about 80 °C.
- [c7] 7.The method of claim 3 wherein the dew point of the gas atmosphere of step b) is about -20 °C. to about 10 °C.
- [c8] 8. The method of claim 1 being a continuous process.
- [c9] 9. The method of claim 1 wherein the article is a deposition tube.
- [c10] 10. The method of claim 1 wherein the article is a sleeve tube.

[c4]

	[c11]	11. The method of claim 9 wherein the deposition tube has a hydrogen content
		of about $5x10^{-11}$ mol/g to about $5x10^{-8}$ mol/g.
	[c12]	12. The method of claim 1 wherein the baking is carried out at a temperature of
		about 200 ° C. to about 1500 ° C.
	[c13]	13.A method for forming an elongated fused quartz article comprising the steps of:
		a)pretreating a generally quartz (SiO $_{2}$) material in a gas atmosphere
		comprising a molecular deuterium (D) gas;
		b) feeding the pretreated quartz (SiO $_2$) material into a furnace;
		c)fusing the pretreated quartz (SiO $_{2}$) material in a melting zone of the furnace
		under a gas atmosphere comprising a molecular deuterium (D $_{ m 2}$) gas or a
		substantially hydrogen-free gas;
		d)drawing the fused SiO material article from the furnace to form the article;
		and
		e)heat treating the drawn article in a substantially hydrogen-free gas
		atmosphere or vacuum.
	[c14]	14.The method of claim 13 being a continuous process.
,	[c15]	15. The method of claim 13 wherein the article is a deposition tube.
	[c16]	16. The method of claim 13 wherein the article is a sleeve tube.
	[c17]	17.The method of claim 13 further comprising the step of :
		e)baking the fused SiO $_2$ article in a gas atmosphere comprising a deuterium
		gas.
	[c18]	18.A method for forming a fused quartz article comprising the steps of:
		a)providing a generally quartz (SiO 2) material; and
		b)fusing the quartz (SiO 2) material in a gas atmosphere comprising a
		molecular deuterium (D $_2$) gas to form the quartz article.
	[c] 9]	19.The method of claim 18 wherein the gas atmosphere further comprises an

inert gas or a mixture of inert gases.

- [c20] 20.The method of claim 18 further comprising the step of:
 c)heat treating the fused SiO 2 article in a substantially hydrogen-free gas atmosphere.
- [c21] 21.The method of claim 20 wherein the heat treating is carried out at about 200 ° C. to about 1500 ° C.
- [c22] 22. The method of claim 18 wherein the article is a deposition tube.
- [c23] The method of claim 18 wherein the article is a sleeve tube.