Список вопросов к экзамену по курсу «Механика деформируемого твердого тела»

Теоретические вопросы:

- 1. Потенциал удельной энергии упругих деформации.
- 2. Закон Гука для анизотропного и ортотропных материалов.
- 3. Закон Гука для трансверсально изотропного и изотропного материалов.
- 4. Закон Гука для волокнистых композитов и многослойных волокнистых композитов при плоском напряжённом состоянии.
- 5. Порядок решения задачи определения напряжений и деформаций в монослоях многослойной конструкции.
- 6. Критерий прочности максимальных напряжений (деформаций).
- 7. Критерий прочности Хашина-Ротема.
- 8. Критерий прочности Цая-Ву.
- 9. Критерий прочности Мизеса-Хилла.
- 10. Критерий прочности Хубера-Мизеса.
- 11. Механизмы разрушения однонаправленных композитов.

- 12. Микромеханический подход к изучению свойств материалов.
- 13. Макромеханический подход к изучению свойств материалов.
- 14. Критерий начала разрушения. Общий вид записи критерия прочности по теории разрушения. Поверхность предельного состояния.
- 15. Технические параметры упругости материала и компоненты матриц жёсткости и упругой податливости.

Задачи:

- Определить матрицу жёсткости многослойного материала по известным свойствам материала монослоёв и схеме армирования.
 Напряжённое состояние плоское, монослои выполнены из одинакового материала с техническими параметрами упругости E₁ = 7,5 МПа, E₂ = 7,5 МПа, v₁₂ = 0,5, G₁₂ = 5 МПа, схема армирования [0°/90°].
- 2. Определить матрицу упругой податливости по известной матрице жёсткости.

Напряжённое состояние материала плоское. Матрица жёсткости имеет

вид [C] =
$$\begin{bmatrix} 10 & 4 & 0 \\ 4 & 12,5 & 0 \\ 0 & 0 & 5 \end{bmatrix}.$$

3. Выразить напряжения во втором монослое пакета через напряжения первого монослоя и известные схему армирования и упругие характеристики монослоёв.

Схема армирования $[0^0/90^0]$, материал монослоёв одинаковый с техническими параметрами упругости $E_1=9$ МПа, $E_2=9$ МПа, $v_{12}=0.5$, $G_{12}=3$ МПа. Вектора напряжений монослоёв определены в системах координат монослоёв.

4. Построить поверхность предельного состояния материала по критерию Хубера-Мизеса при известных результатах испытаний.

Материал начинает разрушаться при $\sigma_{33} = \tau_{12} = \tau_{13} = \tau_{23} = 0$ МПа, $\sigma_{11} = 9$ МПа, $\sigma_{22} = 9$ МПа. Изобразить геометрическое место точек предельного состояния материала при $\sigma_{33} = \tau_{12} = \tau_{13} = \tau_{23} = 0$ МПа.

5. Построить поверхность предельного состояния материала по критерию Мизеса-Хилла при известных результатах испытаний.

Материал начинает разрушаться при

A)
$$\sigma_{33} = \tau_{12} = \tau_{13} = \tau_{23} = 0$$
 M Π a, $\sigma_{11} = \sigma_{22} = 10$ M Π a;

b)
$$\sigma_{11} = \tau_{12} = \tau_{13} = \tau_{23} = 0$$
 ΜΠa, $\sigma_{33} = \sigma_{22} = 10$ ΜΠa;

B)
$$\sigma_{22} = \tau_{12} = \tau_{13} = \tau_{23} = 0$$
 M Π a, $\sigma_{11} = \sigma_{33} = 10$ M Π a.

Изобразить геометрическое место точек предельного состояния материала при $\sigma_{33} = \tau_{12} = \tau_{13} = \tau_{23} = 0$ МПа.

6. Построить поверхность предельного состояния материала по критерию максимальных напряжений при известных результатах испытаний.

Материал начинает разрушаться при

A)
$$\tau_{12} = \tau_{13} = \tau_{23} = 0$$
 M Π a, $\sigma_{11} = 30$ M Π a, $\sigma_{22} = 10$ M Π a, $\sigma_{33} = 10$ M Π a;

$$\sigma$$
 δ) τ 12 = τ 13 = τ 23 = 0 MΠa, σ 11 = 5 MΠa, σ 22 = 20 MΠa, σ 33 = 10 MΠa;

B)
$$\tau_{12} = \tau_{13} = \tau_{23} = 0$$
 M Π a, $\sigma_{11} = 10$ M Π a, $\sigma_{22} = 15$ M Π a, $\sigma_{33} = 10$ M Π a;

Γ)
$$\tau_{12} = \tau_{13} = \tau_{23} = 0$$
 ΜΠa, $\sigma_{11} = -60$ ΜΠa, $\sigma_{22} = 10$ ΜΠa, $\sigma_{33} = -5$ ΜΠa;

Д)
$$\tau_{12} = \tau_{13} = \tau_{23} = 0$$
 МПа, $\sigma_{11} = -30$ МПа, $\sigma_{22} = -20$ МПа, $\sigma_{33} = -5$ МПа;

E)
$$\tau_{12} = \tau_{13} = \tau_{23} = 0$$
 M Π a, $\sigma_{11} = -40$ M Π a, $\sigma_{22} = -15$ M Π a, $\sigma_{33} = -5$ M Π a.

Изобразить геометрическое место точек предельного состояния материала при $au_{12} = au_{13} = au_{23} = 0$ МПа.

7. Построить поверхность предельного состояния материала по критерию Цая-Ву при известных результатах испытаний.

Материал в условиях плоского напряжённого состояния начинает разрушаться при

A)
$$\tau_{12} = 5$$
 M Π a, $\sigma_{11} = 10$ M Π a, $\sigma_{22} = 0$ M Π a;

Б)
$$\tau_{12} = 5$$
 МПа, $\sigma_{11} = -5$ МПа, $\sigma_{22} = 0$ МПа;

B)
$$\tau_{12} = 5$$
 M Π a, $\sigma_{11} = 0$ M Π a, $\sigma_{22} = 5$ M Π a;

Γ)
$$\tau_{12}$$
 = 5 MΠa, σ_{11} = 0 MΠa, σ_{22} = -5 MΠa;

Д)
$$\tau_{12} = -5\sqrt{2}$$
 МПа, $\sigma_{11} = 0$ МПа, $\sigma_{22} = 0$ МПа;

E) Любой точке на поверхности предельного состояния с координатами $(\sigma_{11}, \sigma_{22}, \tau_{12})$ соответствует точка $(\sigma_{11}, -\sigma_{22}, \tau_{12})$.

Изобразить геометрическое место точек предельного состояния материала при τ_{12} = 0 МПа.

8. Построить поверхность предельного состояния материала по критерию Хашина-Ротема при известных результатах испытаний.

Материал в условиях плоского напряжённого состояния начинает разрушаться при

- A) $\tau_{12} = 5 \text{ M}\Pi a$, $\sigma_{11} = 5 \text{ M}\Pi a$, $\sigma_{22} = 0 \text{ M}\Pi a$;
- Б) $\tau_{12} = 0$ МПа, $\sigma_{11} = -5$ МПа, $\sigma_{22} = 10$ МПа;
- B) $\tau_{12} = 0$ M Π a, $\sigma_{11} = 0$ M Π a, $\sigma_{22} = -5$ M Π a;
- Γ) $\tau_{12} = 0$ ΜΠa, $\sigma_{11} = 20$ ΜΠa, $\sigma_{22} = 0$ ΜΠa;
- Д) $\tau_{12} = 0$ МПа, $\sigma_{11} = -10$ МПа, $\sigma_{22} = 0$ МПа;

Изобразить геометрическое место точек предельного состояния материала при $\sigma_{22} = 0$ МПа.

9. Определить вид матрицы жёсткости материала по его изображению. Системы координат $X_1X_2X_3$ и $X_2X_3X_1$.

10. Определить упругие характеристики материала по результатам испытаний трубчатого образца на растяжение и кручение.

В рабочей области образца со схемой армирования [±ф] диаметр средний 60 мм, толщина 2 мм. При осевой растягивающей силе 100 кН и крутящем моменте 50 Нм тензометр в осевом направлении показывает линейные деформации 0,001, а тензометр в окружном направлении показывает 0,0001.

11. Определить упругие характеристики материала по результатам испытаний пластинчатого образца на сжатие и нагрев.

В рабочей области образца шириной 20 мм и толщиной 2 мм при сжатии силой 100 кН тензометр в осевом направлении показывает линейные деформации 0,001, а тензометр в поперечном направлении показывает деформации 0,0001. При нагреве на 100 К тензометр в осевом направлении показывает линейные деформации 0,001, а тензометр в поперечном направлении показывает деформации 0,0001.