Predicate Logic

Fariba Sadri

Example: MSc regulations

➤ Passing the exams and the project implies passing the MSc.

You do not pass the MSc and you do not get a certificate if you do not pass the exams or you do not pass the project. Let us take the following propositions for formulating the MSc regulations:

pe: pass exams

pp: pass project

pm: pass MSc

gc: get certificate

In propositional logic:

$$pe \land pp \rightarrow pm$$

$$\neg pe \lor \neg pp \rightarrow \neg pm \land \neg gc$$

Not expressive enough if we want to consider individual students, to check who has passed the MSc, and who has not, for example.

Example

John:

passes the project but not the exams

Mary:

passes the exams passes the project

Who passes the MSc?

Example

For all individuals X:

$$(pe(X) \land pp(X) \rightarrow pm(X))$$

For all individuals X:

$$(\neg pe(X) \lor \neg pp(X) \rightarrow \\ \neg pm(X) \land \neg gc(X))$$

Increase the expressive power of the Propositional Logic language by adding:

- Predicates: that take arguments (extending propositions)
- Parameters: as arguments of the predicates
- Variables: as arguments of the predicates
- Quantification

More formal expression of the MSc regulations

$$\forall X (pe(X) \land pp(X) \rightarrow pm(X))$$

$$\forall X(\neg pe(X) \lor \neg pp(X) \rightarrow \\ \neg pm(X) \land \neg gc(X))$$

∀: Universal Quantifier

Now given:

pe(mary)

pp(mary)

Using $\forall X (pe(X) \land pp(X) \rightarrow pm(\overline{X}))$

With instance X=mary, i.e.

 $pe(mary) \land pp(mary) \rightarrow pm(mary)$

We can conclude:

pm(mary)

Also given:

pp(john)

¬pe(john)

Using

$$\forall X(\neg pe(X) \lor \neg pp(X) \rightarrow \neg pm(X) \land \neg gc(X))$$

With instance X=john, i.e.

$$\neg pe(john) \lor \neg pp(john) \rightarrow$$

 $\neg pm(john) \land \neg gc(john)$

We can conclude:

 $\neg pm(john) \land \neg gc(john)$

Another example

Every student has a tutor.

for all X

(if X is a student then

there is a Y such that Y is tutor of X)

 $\forall X (student(X) \rightarrow \exists Y tutor(Y,X))$

∃: Existential Quantifier

The Predicate Logic Language Alphabet:

- Logical connectives (same as propositional logic): \land , \lor , \neg , \rightarrow , \leftrightarrow
- Predicate symbols (as opposed to propositional symbols):a set of symbols each with an associated arity>=0.
- A set of constant symbols.
 E.g. mary, john, 101, 10a, peter_jones
- Quantifiers \forall , \exists
- A set of variable symbols. E.g. X, Y, X1, YZ.

Arity

In the previous examples:

Predicate Symbol	<u>Arity</u>
student	1
tutor	2
pm	1
pp	1

A predicate symbol with

arity = 0 is called a **nullary predicate** (it is a proposition),

arity = 1 is called a unary predicate,

arity = 2 is called a binary predicate.

A predicate symbol with arity=n (usually n>2) is called an **n-ary** predicate.

Definition:

A Term is any constant or variable symbol.

Syntax of a grammatically correct sentence (wff) in predicate logic

- $p(t_1,...,t_n)$ is a wff if p is an n-ary predicate symbol and the t_i are terms.
- If W, W1, and W2 are wffs then so are the following:

$$\neg W \qquad W1 \land W2 \qquad W1 \lor W2$$

$$W1 \rightarrow W2 \qquad W1 \leftrightarrow W2$$

$$\forall X(W) \qquad \exists X(W)$$

where X is a variable symbol.

• There are no other wffs.

From the description above you can see that propositional logic is a special case of predicate logic.

Predicate Logic: the predicates are n-ary, n≥0, and we have terms and quantifiers

Propositional Logic: all the predicates are nullary

Convention used in most places in these notes:

- Predicate and constant symbols start with lower case letters.
- Variable symbols start with upper case letters.

Examples

The following are wffs:

- 1. \neg married(john)
- 2. ∀X(alive(X) ∧ adult_human(X) ∧
 ¬ married(X) →
 single(X) ∨ divorced(X) ∨ widowed(X))

3. $\exists X (bird(X) \land \neg fly(X))$

The following are not wffs:

 $4. \neg X$

5. $single(X) \rightarrow \forall Y$

6. $\forall \exists X \text{ (bird}(X) \rightarrow \text{feathered}(X))$

Exercise which of the following are wffs?

- 1. $\forall X p(X)$
- 2. $\forall X p(Y)$
- 3. $\forall X \exists Y p(Y)$
- 4. q(X,Y,Z)
- 5. $p(a) \rightarrow \exists q(a,X,b)$
- 6. $p(a) \vee p(a,b)$

- 7. $\neg \neg \forall X r(X)$
- 8. $\exists X \exists Y p(X,Y)$
- 9. $\exists X, Y p(X,Y)$
- 10. $\forall X (\neg \exists Y)$
- 11. $\forall x (\neg \exists Y p(x,Y))$

Exercise

Formalise the following in predicate logic using the following predicates (with their more or less obvious meaning):

lecTheatre/1, office/1, contains/2, lecturer/1, has/2, same/2, phd/1, supervises/2, happy/1, completePhd/1.

- 1. 311 is a lecture theatre and 447 is an office.
- 2. Every lecture theatre contains a projector.
- 3. Every office contains a telephone and either a desktop or a laptop computer.
- 4. Every lecturer has at least one office.
- 5. No lecturer has more than one office.

- 6. No lecturers share offices with anyone.
- 7. Some lecturers supervise PhD students and some do not.
- 8. Each PhD student has an office, but all PhD students share their office with at least one other PhD student.

- 9. A lecturer is happy if the PhD students he/she supervises successfully complete their PhD.
- 10. Not all PhD students complete their PhD.

Note:

3X p(X) states that there is at least one X such that p is true of X.

E.g. $\exists X \text{ father}(X, john)$

says John has **at least** one father (assuming father(X,Y) is to be read as X is father of Y).

Exercise

Assuming a predicate same(X, Y) that expresses that X and Y are the same individual, express the statement that John has exactly one father. You may also assume a binary predicate "father" as above.