Idea del Clasificador con Naïve Bayes

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

Plan de Ataque

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

$$P(Walks \mid X) v.s. P(Drives \mid X)$$

#1. P(Camina)

$$P(Walks) = \frac{Number\ of\ Walkers}{Total\ Observations}$$

$$P(Walks) = \frac{10}{30}$$

Machine Learning A-Z

#2. P(X)

$$P(X) = \frac{Number\ of\ Similar\ Observations}{Total\ Observations}$$

$$P(X) = \frac{4}{30}$$

Machine Learning A-Z

#3. P(XICamina)

$$Number of Similar$$

$$Observations$$

$$P(X | Walks) = \frac{Among those who Walk}{Total number of Walkers}$$

$$P(X | Walks) = \frac{3}{10}$$

Edad

Paso 1 – Listo.

Paso 2 - Listo.

$$P(Walks \mid X) v.s. P(Drives \mid X)$$

 $0.75 \ v.s. \ 0.25$

0.75 > 0.25

