1. Постановка задачи и построение математической модели

1.1. Постановка задачи на содержательном уровне

Рассмотрим систему массового обслуживания следующего вида (Рис. 1).

Рис. 1. Структурная схема системы обслуживания

Пусть в систему с одним обслуживающим устройством поступают потоки Π_1 , Π_2 , Π_3 и Π_4 . Требования по потоку Π_j становятся в соответствующую очередь O_j неограниченной вместимостью, $j \in \{1,2,3,4\}$. Для $j \in \{1,2,3\}$ дисциплина очереди O_j , поддерживаемая устройством δ_j , имеет тип FIFO (First In First Out). Таким образом, для обслуживания из соответствующей очереди выбирается то требование, которое пришло раньше. Дисциплина очереди O_4 будет описана ниже. Входные потоки Π_1 и Π_2 формируются внешней средой, которая, будем предполагать, имеет только одно состояние, то есть вероятностная структура потоков не меняется с течением времени. Требования потоков Π_1 и Π_3 формируют независимые между собой неординарные пуассоновские потоки, то есть стационарные, без последействия и ординарные потоки групп требований. Интенсивности соответствующих простейших потоков для Π_1 и Π_3 будем обозначать λ_1 и λ_3 , а распределение числа заявок в группе по потоку Π_j будем описывать производящей функцией

$$f_j(z) = \sum_{\nu=1}^{\infty} p_{\nu}^{(j)} z^{\nu} \tag{1}$$

для $|z|<(1+\varepsilon), \varepsilon>0$ и $p_{\nu}^{(j)}>0$. Величина $p_{\nu}^{(j)}$ определяет вероятность того, что по потоку Π_j число требований в группе равно $\nu, j \in \{1,3\}$. Обслуженные требования потока Π_1 поступают на повторное обслуживание, формируя при этом поток Π_4 (т.е. $\Pi_1^{\rm Bbix}=\Pi_4$). Далее, каждое требование из очереди O_4 с вероятностью p_r и независимо от других завершает обслуживание и отправляется в очередь O_2 потока Π_2 , где r — номер состояния обслуживающего устройства на соответствующем такте обслуживания ($\Pi_4^{\rm Bbix}=\Pi_2$). С вероятностью $1-p_r$ требование очереди O_4 остается в ней до следующего такта. Потоки Π_2 и Π_3 являются конфликтными, что означает запрет на одновременное обслуживание требований этих потоков и, следовательно, исследование системы не может быть сведено к задаче с меньшим числом потоков.

В каждый момент времени обслуживающее устройство находится в одном из конечного множества состояний $\Gamma = \left\{\Gamma^{(1)}, \Gamma^{(2)}, \ldots, \Gamma^{(n)}\right\}$. В каждом состоянии $\Gamma^{(r)}$ обслуживающее устройство находится в течение времени $T^{(r)}$. Множество Γ представим в виде суммы четырех непересекающихся подмножеств: $\Gamma = \Gamma^{\rm I} + \Gamma^{\rm III} + \Gamma^{\rm III} + \Gamma^{\rm IV}$, — которые определим ниже.

В состоянии $\Gamma^{(r)} \in \Gamma^{I}$ обслуживаются только требования из очередей O_1, O_2 и O_4 .

В состоянии $\Gamma^{(r)} \in \Gamma^{\rm II}$ обслуживаются только требования из очередей O_2 и O_4 . В состоянии $\Gamma^{(r)} \in \Gamma^{\rm III}$ обслуживаются только требования из очередей O_1 , O_3 и O_4 .

В состоянии $\Gamma^{(r)}\in\Gamma^{\mathrm{IV}}$ обслуживаются только требования из очередей O_3 и $O_4.$

Поскольку законы распределения выходных потоков, как правило, имеют сложный вид и часто не поддаются аналитическому выражению, вместо них будем использовать потоки насыщения $\Pi_i^{\mathrm{Hac}},\ j\in$ $\{1,2,3,4\}$. Потоки насыщения $\Pi_j^{\text{\tiny Hac}},\ j\in\{1,2,3,4\}$, представляют собой виртуальные выходные потоки при условии максимального использования ресурсов обслуживающего устройства, а для $j \in \{1, 2, 3\}$ еще и при условии максимальной загрузки соответствующих очередей. Пусть

$${}^{1}\Gamma = \Gamma^{I} \bigcup \Gamma^{III}, \quad {}^{2}\Gamma = \Gamma^{I} \bigcup \Gamma^{II}, \quad {}^{3}\Gamma = \Gamma^{III} \bigcup \Gamma^{IV}.$$
 (2)

Тогда поток насыщения Π_i^{hac} , $j \in \{1,2,3\}$, будет содержать неслучайное число $\ell_{r,j}$ требований, обслуженных в течение времени $T^{(r)}$, если $\Gamma^{(r)} \in {}^{j}\Gamma$, и будет содержать 0 требований в противном случае: $\Gamma^{(r)} \notin {}^{j}\Gamma, j \in \{1,2,3\}$. При условии, что в очереди O_4 находится $x \in Z_+$ требований, поток насыщения $\Pi_4^{\text{\tiny Hac}}$ определим как поток, содержащий все x требований.

Для исследования системы обслуживания в данной работе будет использоваться так называемый кибернетический подход. В соответствии с этим подходом наблюдение за системой осуществляется в дискретные моменты времени $\tau_0 = 0, \ \tau_1, \ \dots$, совпадающие с моментами переключения состояния обслуживающего устройства. Будем считать, что функция перехода из состояния Γ_i в момент τ_i в состояние Γ_{i+1} в момент au_{i+1} известна и задается функцией $\Gamma_{i+1} = h(\Gamma_i, x_i)$ от предыдущего состояния Γ_i и величины x_i очереди O_3 в момент au_i . Таким образом, обслуживающее устройство, в зависимости от объема очереди O_3 , может переходить в разные состояния. Общая структура рассматриваемых графов переходов между состояниями будет описана ниже.

1.2. Свойства условных распределений

Все рассматриваемые в этой работе случайные элементы определяются на общем вероятностном пространстве (Ω, \mathcal{F}, P) элементарных исходов $\omega \in \Omega$ с вероятностной мерой $P(A), A \in \mathcal{F}$ на σ -алгебре \mathcal{F} . Положим моменты наблюдения за системой

Введем следующие случайные величины и элементы, $j \in \{1, 2, 3, 4\}$:

- количество $\varkappa_{j,i} \in Z_+$ требований в очереди O_j в момент времени τ_i ;
- ullet состояние обслуживающего устройства $\Gamma_i \in \Gamma = \left\{\Gamma^{(1)}, \Gamma^{(2)}, \dots, \Gamma^{(n)}\right\}$ в течение $(au_{i-1}; au_i];$
- количество $\eta_{j,i}$ требований, поступивших в очередь O_j по потоку Π_j в течение $(\tau_i; \tau_{i+1}];$
- количество $\xi_{j,i}$ требований по потоку насыщения Π_j^{sat} в течение $(\tau_i; \tau_{i+1}]$;
- ullet количество $ar{\xi}_{i,i}$ реально обслуженных требований по потоку Π_j .

Тогда для $j \in \{1, 2, 3, 4\}$ имеем

$$\Gamma_{i+1} = h(\Gamma_i, \varkappa_{3,i}), \quad \varkappa_{j,i+1} = \max\left\{0, \varkappa_{j,i} + \eta_{j,i} - \xi_{j,i}\right\}, \quad \overline{\xi}_{j,i} = \min\left\{\xi_{j,i}, \varkappa_{j,i} + \eta_{j,i}\right\}$$
(3)

И

$$\eta_{2,i} = \overline{\xi}_{4,i}, \quad \eta_{4,i} = \overline{\xi}_{1,i}.$$
(4)

Также для определения длительности T_i состояния обслуживающего устройства в течение $(\tau_{i-1}; \tau_i]$, удобно ввести функцию $h_T(\cdot,\cdot)$:

$$T_{i+1} = h_T(\Gamma_i, \varkappa_{3,i}) = T^{(r')}, \quad \text{где } \Gamma^{(r')} = h(\Gamma_i, \varkappa_{3,i}).$$
 (5)

Обозначим через $\varphi_i(x,t), j \in \{1,3\}$, условную вероятность того, что за время t>0 по потоку Π_i поступит ровно $b \in \mathbb{Z}_+$ требований:

$$P\left(\left\{\omega \colon \eta_{j,i} = b\right\} \middle| \left\{\omega \colon \Gamma_i = \Gamma^{(r)}, \varkappa_{3,i} = x\right\}\right) = \varphi_j(b, h_T(\Gamma^{(r)}, x)). \tag{6}$$

Учитывая закон распределения процесса Пуассона и количества требований в пачках, величины $\varphi_i(x,t)$ могут быть найдены из соотношений

$$\sum_{x=0}^{\infty} z^x \varphi_j(x,t) = \exp\left\{\lambda_j t \left(\sum_{b=1}^{\infty} z^b \pi(b,j) - 1\right)\right\}.$$
 (7)

Для потоков насыщения имеем следующие соотношения:

$$P\left(\xi_{j,i} = 0 \middle| \Gamma_i = \Gamma^{(r)}, \varkappa_{3,i} = x\right) = 1, \quad \Gamma_{i+1} \notin {}^{j}\Gamma, \tag{8}$$

$$P\left(\xi_{j,i} = l_{r',j} \middle| \Gamma_i = \Gamma^{(r)}, \varkappa_{3,i} = x\right) = 1, \quad \Gamma_{i+1} = \Gamma^{(r')} \in {}^{j}\Gamma, \tag{9}$$

где $j \in \{1, 2, 3\}, x \in \mathbb{Z}_+$.

Введем для $0 < u \leqslant 1$ и $0 \leqslant k \leqslant x$ величину

$$\psi(k, x, u) = C_x^k u^k (1 - u)^{x - k}. \tag{10}$$

Поскольку требования из очереди O_4 независимо друг от друга с вероятностью p_r на выходе системы (т.е. в результате обслуживания) поступают в очередь O_2 , то количество требований в выходном потоке Π_4^{out} определяется по биномиальному закону распределения:

$$P\left(\overline{\xi}_{4,i} = b \middle| \Gamma_i = \Gamma^{(r)}, \varkappa_{4,i} = x, \varkappa_{3,i} = \tilde{x}\right) = \psi\left(b, x, p_{r'}\right), \quad \Gamma_{i+1} = \Gamma^{(r')}, \quad 0 \leqslant b \leqslant x. \tag{11}$$

Введем следующие события:

$$A_i(r; x_1; x_2; x_3; x_4) = \left\{ \Gamma_i = \Gamma^{(r)}, \varkappa_{3,i} = x_3 \right\} \bigcap \left\{ \varkappa_{1,i} = x_1, \varkappa_{2,i} = x_2, \varkappa_{4,i} = x_4 \right\}$$
(12)

$$B_i(b_1; b_2; b_3; y_1; y_2; y_3) = \{ \eta_{1,i} = b_1, \eta_{2,i} = b_2, \eta_{3,i} = b_3, \xi_{1,i} = y_1, \xi_{2,i} = y_2, \xi_{3,i} = y_3 \}$$

$$(13)$$

В соответствии с описанной структурой системы, количество требований пришедших по потокам Π_1 , Π_2 , Π_3 , Π_4 , Π_1^{Hac} , Π_2^{Hac} и Π_3^{Hac} за (i+1)-ый такт зависит лишь от состояния обслуживающего устройства и размера очереди O_3 в момент τ_i . Поэтому условные распределения рассматриваемых в системе потоков, учитывая все «прошлое» системы можно расписать следующим образом:

$$P\left(B_{i}\left(b_{1};b_{2};b_{3};y_{1};y_{2};y_{3}\right)\middle|\bigcap_{t=0}^{i}A_{t}\left(r_{t};x_{1,t};x_{2,t};x_{3,t};x_{4,t}\right)\right) =$$

$$=P\left(\eta_{1,i}=b_{1},\eta_{2,i}=b_{2},\eta_{3,i}=b_{3},\xi_{1,i}=y_{1},\xi_{2,i}=y_{2},\xi_{3,i}=y_{3}\middle|\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{3,i}=x_{3,i}\right) =$$

$$=P\left(\eta_{1,i}=b_{1}\middle|\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{3,i}=x_{3,i}\right)\times P\left(\eta_{2,i}=b_{2}\middle|\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{3,i}=x_{3,i}\right)\times$$

$$P\left(\eta_{3,i}=b_{3}\middle|\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{3,i}=x_{3,i}\right)\times P\left(\xi_{1,i}=y_{1}\middle|\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{3,i}=x_{3,i}\right)\times$$

$$P\left(\xi_{2,i}=y_{2}\middle|\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{3,i}=x_{3,i}\right)\times P\left(\xi_{3,i}=y_{3}\middle|\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{3,i}=x_{3,i}\right)$$

$$(14)$$

Сформулируем и докажем теорему о марковости последовательности $\{(\Gamma_i, \varkappa_{1,i}, \varkappa_{2,i}, \varkappa_{3,i}, \varkappa_{4,i}), i \geqslant 0\}$:

Теорема 1.1. При заданном распределении начального вектора $\left(\Gamma_0,\varkappa_{1,0},\varkappa_{2,0},\varkappa_{3,0},\varkappa_{4,0}\right)$ последовательность $\left\{\left(\Gamma_i,\varkappa_{1,i},\varkappa_{2,i},\varkappa_{3,i},\varkappa_{4,i}\right),i\geqslant 0\right\}$ является цепью Маркова.

Доказательство. Для доказательства достаточно показать, что

$$P\left(A_{i+1}\left(r;x_{1};x_{2};x_{3};x_{4}\right)\middle|\bigcap_{t=0}^{i}A_{t}\left(r_{t};x_{1,t};x_{2,t};x_{3,t};x_{4,t}\right)\right) = P\left(A_{i+1}\left(r;x_{1};x_{2};x_{3};x_{4}\right)\middle|A_{i}\left(r_{i};x_{1,i};x_{2,i};x_{3,i};x_{4,i}\right)\right)$$
(15)

Распишем сначала левую часть равенства (15). Учитывая то, что сумма непересекающихся событий $B_i(b_1;b_2;b_3;y_1;y_2;y_3)$ есть достоверное событие, $\bigcup_{b,y} B_i(b_1;b_2;b_3;y_1;y_2;y_3) = \Omega$ получим

$$P\left(A_{i+1}\left(r;x_{1};x_{2};x_{3};x_{4}\right)\middle|\bigcap_{t=0}^{i}A_{t}\left(r_{t};x_{1,t};x_{2,t};x_{3,t};x_{4,t}\right)\right) =$$

$$= \sum_{b,y}P\left(A_{i+1}\left(r;x_{1};x_{2};x_{3};x_{4}\right)\bigcap_{B_{i}}B_{i}\left(b_{1};b_{2};b_{3};y_{1};y_{2};y_{3}\right)\middle|\bigcap_{t=0}^{i}A_{t}\left(r_{t};x_{1,t};x_{2,t};x_{3,t};x_{4,t}\right)\right) =$$

$$= \sum_{b,y}P\left(B_{i}\left(b_{1};b_{2};b_{3};y_{1};y_{2};y_{3}\right)\middle|\bigcap_{t=0}^{i}A_{t}\left(r_{t};x_{1,t};x_{2,t};x_{3,t};x_{4,t}\right)\right) \times$$

$$\times P\left(A_{i+1}\left(r;x_{1};x_{2};x_{3};x_{4}\right)\middle|\bigcap_{t=0}^{i}A_{t}\left(r_{t};x_{1,t};x_{2,t};x_{3,t};x_{4,t}\right)\bigcap_{B_{i}}B_{i}\left(b_{1};b_{3};b_{3};y_{1};y_{2};y_{3}\right)\right) \quad (16)$$

Беря во внимание (3) и (4), найдем второй множитель:

$$\begin{split} P\left(A_{i+1}\left(r;x_{1};x_{2};x_{3};x_{4}\right)\middle|\bigcap_{t=0}^{i}A_{t}\left(r_{t};x_{1,t};x_{2,t};x_{3,t};x_{4,t}\right)\bigcap B_{i}\left(b_{1};b_{2};b_{3};y_{1};y_{2};y_{3}\right)\right) = \\ &= P\left(\Gamma_{i+1} = \Gamma^{(r)},\varkappa_{1,i+1} = x_{1},\varkappa_{2,i+1} = x_{2},\varkappa_{3,i+1} = x_{3},\varkappa_{4,i+1} = x_{4}\middle|\bigcap_{t=0}^{i-1}A_{t}\left(r_{t};x_{1,t};x_{2,t};x_{3,t};x_{4,t}\right)\bigcap \right) \\ &\qquad \bigcap\left\{\Gamma_{i} = \Gamma^{(r_{i})},\varkappa_{1,i} = x_{1,i},\varkappa_{2,i} = x_{2,i},\varkappa_{3,i} = x_{3,i},\varkappa_{4,i} = x_{4,i}\right\}\bigcap \right. \\ &\qquad \bigcap\left\{\eta_{1,i} = b_{1},\eta_{2,i} = b_{2},\eta_{3,i} = b_{3},\xi_{1,i} = y_{1},\xi_{2,i} = y_{2},\xi_{3,i} = y_{3}\right\}\right) = \\ &\qquad = P\left(h\left(\Gamma^{(r_{i})},x_{3,i}\right) = \Gamma^{(r)},\max\left\{0,x_{1,i}+b_{1}-y_{1}\right\} = x_{1},\right. \\ &\qquad \max\left\{0,x_{4,i}+\min\left\{y_{1},x_{1,i}+b_{1}\right\}-y_{3}\right\} = x_{4},\max\left\{0,x_{2,i}+b_{2}-y_{2}\right\} = x_{2},\right. \\ &\qquad \max\left\{0,x_{3,i}+b_{3}-y_{2}\right\} = x_{3},\left|\bigcap_{t=0}^{i-1}A_{t}\left(r_{t};x_{1,t};x_{2,t};x_{3,t};x_{4,t}\right)\bigcap \right. \\ &\qquad \bigcap\left\{\Gamma_{i} = \Gamma^{(r_{i})},\varkappa_{1,i} = x_{1,i},\varkappa_{2,i} = x_{2,i},\varkappa_{3,i} = x_{3,i},\varkappa_{4,i} = x_{4,i}\right\}\bigcap \right. \\ &\qquad \bigcap\left\{\eta_{1,i} = b_{1},\eta_{2,i} = b_{2},\eta_{3,i} = b_{3},\xi_{1,i} = y_{1},\xi_{2,i} = y_{2},\xi_{3,i} = y_{3}\right\}\right) = \\ &\qquad = P\left(h\left(\Gamma^{(r_{i})},x_{3,i}\right) = \Gamma^{(r)},\max\left\{0,x_{1,i}+b_{1}-y_{1}\right\} = x_{1},\right. \\ &\qquad \max\left\{0,x_{4,i}+\min\left\{y_{1},x_{1,i}+b_{1}\right\}-y_{3}\right\} = x_{4},\max\left\{0,x_{2,i}+b_{2}-y_{2}\right\} = x_{2},\right. \\ &\qquad \qquad \max\left\{0,x_{4,i}+\min\left\{y_{1},x_{1,i}+b_{1}\right\}-y_{3}\right\} = x_{4},\max\left\{0,x_{2,i}+b_{2}-y_{2}\right\} = x_{2},\right. \\ &\qquad \qquad \qquad \left\{0,x_{4,i}+\min\left\{y_{1},x_{1,i}+b_{1}\right\}-y_{3}\right\} = x_{4},\max\left\{0,x_{2,i}+b_{2}-y_{2}\right\} = x_{2},\right. \\ &\qquad \qquad \qquad \left\{0,x_{4,i}+\min\left\{y_{1},x_{1,i}+b_{1}\right\}-y_{3}\right\} = x_{4},\max\left\{0,x_{2,i}+b_{2}-y_{2}\right\} = x_{2},\right. \\ &\qquad \qquad \qquad \left\{0,x_{4,i}+\min\left\{y_{1},x_{1,i}+b_{1}\right\}-y_{3}\right\} = x_{4},\max\left\{0,x_{2,i}+b_{2}-y_{2}\right\} = x_{2},\right. \\ &\qquad \qquad \qquad \left\{0,x_{4,i}+\min\left\{y_{1},x_{1,i}+b_{1}\right\}-y_{3}\right\} = x_{4},\max\left\{0,x_{2,i}+b_{2}-y_{2}\right\} = x_{3},\right. \\ &\qquad \qquad \qquad \left\{0,x_{4,i}+\min\left\{y_{1},x_{1,i}+b_{1}\right\}-y_{3}\right\} = x_{4},\max\left\{0,x_{2,i}+b_{2}-y_{2}\right\} = x_{2},\right. \\ &\qquad \qquad \qquad \qquad \left\{0,x_{4,i}+\min\left\{y_{1},x_{4,i}+b_{1}\right\}-y_{4}\right\} = x_{4},\max\left\{0,x_{4,i}+b_{4}\right\} - y_{4}\right\} = x_{4},\left.1\right\}$$

где последнее равенство верно, поскольку оставшаяся под знаком вероятности величина уже не является случайной. Из (14), (16) и (17) получаем выражение для левой части равенства (15):

$$P\left(A_{i+1}\left(r;x_{1};x_{2};x_{3};x_{4}\right)\middle|\bigcap_{t=0}^{i}A_{t}\left(r_{t};x_{1,t};x_{2,t};x_{3,t};x_{4,t}\right)\right) =$$

$$=\sum_{b,y}P\left(\eta_{1,i}=b_{1},\eta_{2,i}=b_{2},\eta_{3,i}=b_{3},\xi_{1,i}=y_{1},\xi_{2,i}=y_{2},\xi_{3,i}=y_{3}\middle|\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{3,i}=x_{3,i}\right)\times$$

$$\times P\left(h\left(\Gamma^{(r_{i})},x_{3,i}\right)=\Gamma^{(r)},\max\left\{0,x_{1,i}+b_{1}-y_{1}\right\}=x_{1},\right.$$

$$\max\left\{0,x_{4,i}+\min\left\{y_{1},x_{1,i}+b_{1}\right\}-y_{3}\right\}=x_{4},\max\left\{0,x_{2,i}+b_{2}-y_{2}\right\}=x_{2},$$

$$\max\left\{0,x_{3,i}+b_{2}-y_{2}\right\}=x_{3}\right) \quad (18)$$

Заметим, что в наших рассуждениях мы нигде не использовали информацию о событиях

 $\bigcap_{t=0}^{i-1} A_t \left(r_t; x_{1,t}; x_{2,t}; x_{3,t}; x_{4,t} \right)$, поэтому рассуждения для правой части (15) будут аналогичными:

$$\begin{split} P\left(A_{i+1}\left(r;x_{1};x_{2};x_{3};x_{4}\right)\middle|A_{i}\left(r_{i};x_{1,i};x_{2,i};x_{3,i};x_{4,i}\right)\right) &=\\ &=\sum_{b,y}P\left(B_{i}\left(b_{1};b_{2};b_{3};y_{1};y_{2};y_{3}\right)\middle|A_{i}\left(r_{i};x_{1,i};x_{2,i};x_{3,i};x_{4,i}\right)\right)\times\\ &\times P\left(A_{i+1}\left(r;x_{1};x_{2};x_{3};x_{4}\right)\middle|A_{i}\left(r_{i};x_{1,i};x_{2,i};x_{3,i};x_{4,i}\right)\bigcap B_{i}\left(b_{1};b_{2};b_{3};y_{1};y_{2};y_{3}\right)\right) &=\\ &=\sum_{b,y}P\left(\eta_{1,i}=b_{1},\eta_{2,i}=b_{2},\eta_{3,i}=b_{3},\xi_{1,i}=y_{1},\xi_{2,i}=y_{2},\xi_{3,i}=y_{3}\middle|\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{3,i}=x_{3,i}\right)\times\\ &\times P\left(\Gamma_{i+1}=\Gamma^{(r)},\varkappa_{1,i+1}=x_{1},\varkappa_{2,i+1}=x_{2},\varkappa_{3,i+1}=x_{3},\varkappa_{4,i+1}=x_{4}\middle|\right.\\ &\left.\left.\left\{\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{1,i}=x_{1,i},\varkappa_{2,i}=x_{2,i},\varkappa_{3,i}=x_{3,i},\varkappa_{4,i}=x_{4,i}\right\}\bigcap\right.\right.\\ &\left.\left.\left\{\eta_{1,i}=b_{1},\eta_{2,i}=b_{2},\eta_{3,i}=b_{3},\xi_{1,i}=y_{1},\xi_{2,i}=y_{2},\xi_{2,i}=y_{2},\xi_{3,i}=y_{3}\right\}\right)=\\ \end{split}$$

откуда опять в силу (3) и (4) получаем

$$\begin{split} &= \sum_{b,y} P\left(\left. \eta_{1,i} = b_1, \eta_{2,i} = b_2, \eta_{3,i} = b_3, \xi_{1,i} = y_1, \xi_{2,i} = y_2, \xi_{3,i} = y_3 \right| \Gamma_i = \Gamma^{(r_i)}, \varkappa_{3,i} = x_{3,i} \right) \times \\ &\qquad \qquad \times P\left(h\left(\Gamma^{(r_i)}, x_{3,i}\right) = \Gamma^{(r)}, \max\left\{0, x_{1,i} + b_1 - y_1\right\} = x_1, \right. \\ &\qquad \qquad \left. \max\left\{0, x_{4,i} + \min\left\{y_1, x_{1,i} + b_1\right\} - y_3\right\} = x_4, \max\left\{0, x_{2,i} + b_2 - y_2\right\} = x_2, \\ &\qquad \qquad \qquad \left. \max\left\{0, x_{3,i} + b_2 - y_2\right\} = x_3\right). \end{split}$$

Таким образом, выражения для левой и правой частей (15) совпадают, следовательно равенство верно и последовательность $\left\{ \left(\Gamma_i, \varkappa_{1,i}, \varkappa_{2,i}, \varkappa_{3,i}, \varkappa_{4,i} \right), i \geqslant 0 \right\}$ является цепью Маркова.