Bonus explicatii

a) Functia frepcomgen(m,n)

- se genereaza pi (suma lor este egala cu 1), in program notat cu X[i]
- se genereaza qj (suma lor este egala cu 1), in program notat cu Y[j]
- se genereaza $\pi i j = p i * q j$ (suma lor este egala cu 1), in program notat cu XY[i,j]
- in acest moment avem repartitia comuna a v.a. X si Y astfel incat X si Y sunt independente
- scot o linie I fie aceasta π Ij=0 (putem afla oricand valorile pentru π Ij din diferenta dintre qj si $\Sigma \pi x$ j unde $x = \{1,2,...,I-1,I+1,...,m\}$ cand cunoastem toate πx j)
- pentru fiecare linie $x = \{1,2,...,I-1,I+1,....,m\}$ scot valoarea $\pi xJ=0$ unde J e random (putem afla oricand valorile pentru πxJ din diferenta dintre px si $\Sigma \pi xy$ unde $y = \{1,2,...,J-1,J+1,....,n\}$ cand cunoastem toate πxy)
- in acest moment avem o repartitie incompleta pentru X si Y v.a. independente
- acum avem de ales daca lasam X si Y independente sau nu (ceva = 0 daca da, 1 daca nu)
- daca nu le lasam independente atunci modificam K numere $\pi i j$ (unde K,i,j sunt random) cu o valoare random care apartine $(0,\pi i j)$
- eliminam o celula I din pI=0 deoarece o putem calcula ca fiind 1- Σ px unde x = {1,2,...,I-1,I+1,...,m}
- eliminam o celula J din qJ=0 deoarece o putem calcula ca fiind 1- Σ qy unde y = {1,2,...,J-1,J+1,...,n}
- se genereaza matricea ans care reprezinta repartitia cu tot cu pi si qj care se salveaza in fisierul "test.txt", unde:
 - o ans[i,j]= π ij pentru i<=m,j<=n
 - o ans[i,n+1]=pi pentru i<=m
 - o ans[m+1,j]=qj pentru $j \le n$
 - \circ ans[m+1,n+1]=1

b) Functia fcomplrepcom()

- se rezolva repartitia generata la cerinta a)
- pornim invers generarii pentru a completa repartitia
- completam o celula goala I unde pI=0 (echivalent cu celula ans[I,n+1]) o putem calcula ca fiind 1- Σ px unde x = {1,2,...,I-1,I+1,...,m}
- completam o celula goala J unde qJ=0 (echivalent cu celula ans[m+1,J]) o putem calcula ca fiind 1- Σ qy unde y = {1,2,...,J-1,J+1,...,n}
- completam pe fiecare linie I daca are doar o celula ans[I,y]=0 valoarea este pI- Σ ans[I,z] unde z = {1,2,...,y-1,y+1,...,n}
- completam pe fiecare coloana J daca are doar o celula ans[x,J]=0 valoarea este qJ- Σ ans[w,J] unde w = {1,2,...,x-1,x+1,...,m}
- dupa efectuarea acestor pasi avem repartitia rezolvata complet
- furnizez rezultatul in fisierul "rezolvare.txt"

- c) Explicatii cerinta rezolvare functia cerintaC()
 - 1) Cov(5X,-3Y)
 - Cov(5X, -3Y) = -15*Cov(X, Y)
 - calcular covarianta ca fiind Cov(X,Y) = E(X*Y) E(X)*E(Y)
 - calculam E(X*Y),E(X) si E(Y)
 - 2) P(0 < X < 3/Y > 2)
 - $P(0 < X < 3/Y > 2) = \Sigma ans[i,j]$ unde i<3 sau j>2
 - 3) P(X>6,Y<7)
 - $P(0 \le X \le 3/Y \ge 2) = \Sigma ans[i,j]$ unde $i \ge 6$ si $j \le 7$
- d) Explicatii cerinta:
 - 1) Functia fverind()
 - verific daca ans[i,j] = ans[m+1,j] * ans[i,n+1] pentru toti $i \le m$ si $j \le n$
 - daca toate sunt egale atunci X si Y sunt independente
 - altfel sunt dependente (testez egalitatea cu o marja de eroare de 0.000001)
 - 2) Functia fvernecor()
 - calculez cov(X,Y) si testez cu o eroare de 0.000001 daca este egala cu 0

Observatii:

- m si n se seteaza la randul 273 in Bonus.r la apelul functiei frepcomgen(m,n)
- se ruleaza tot codul iar in consola avem rezolvarile pentru fiecare cerinta in parte explicit