

<u>Syllabus</u>

Discussion

Course

Progress

<u>Help</u> sandipan_dey ~

Questions on Graphs and Paths

5/5 points	(ungraded)
------------	------------

1. A graph is composed of two key elements. What are they?

A set of circles and a set of lines
A set of vertices and a set of edges
O Pairs of vertices
✓
2. Edges in graphs and in digraphs are different. What do they respectively correspond to?
2. Edges in graphs and in digraphs are different. What do they respectively correspond to? Couples/Pairs

Explanation

In graphs, there is no difference between the edge from u to v and that from v to u; we therefore use pairs to represent edges. In digraphs, there can be an edge from u to v even if there is no edge from v to v. So, we use couples instead of pairs.

3. Consider the vertex sequence $\{v_1,v_2\},\{v_2,v_4\},\{v_4,v_6\}$ in a complete graph with vertices $V=\{v_1,v_2,v_3,v_4,v_5,v_6\}$. Which of the following statements is true?

Explanation

It is not a cycle because the extremities (v_1 and v_6) are not identical. It is not a walk because a walk is a sequence of vertices, not a sequence of edges. It is a path, obtained from the vertex sequence v_1, v_2, v_4, v_6 .

4. Consider $V=\{v_1,v_2,v_3,v_4\}$. For which following values of E is G=(V,E) a tree (two correct answers)?

$$\checkmark \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_4\}\}$$

$$igcup \{\{v_1,v_2\},\{v_3,v_4\}\}$$

Explanation

Case 1 is not a tree because there is a cycle: $\{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_4\}, \{v_1, v_4\}$. Case 3 is not a tree because the graph is not connected; there is no path between vertices v_1 and v_3 , for example. Case 2 and Case 4 are trees because they do not contain a cycle and are connected.

5. What is the size of a complete graph with an order of n? $\bigcap 2^n$ $\bigcirc n^2$ $igorup n\left(n-1
ight)/2$ **Explanation** To identify an edge, you need to choose two vertices among the n ones. So, the number of edges is $\binom{n}{2}=n\left(n-1
ight)/2$. Note that, for a digraph, the number of edges would be n^2 . Submit **1** Answers are displayed within the problem < Previous Next > © All Rights Reserved

edX

<u>About</u>

<u>Affiliates</u>

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

Donate

© 2020 edX Inc. All rights reserved. 深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>