Real Estate Modelling

AT 2023

Prof. Dr. Kathleen Kürschner Rauck

Tutorial 3: Regression I – Hedonic

Learning Outcomes	R Functions	Packages	Data
Be able to plot kernel density estimates	<pre>max(); density()</pre>		Lucas_County_data
	<pre>polygon()</pre>		
Know how to add a curve to a plot	<pre>curve(); dnorm()</pre>		
	mean(); sd()		
Be able to perform the Jarque-Bera test in R	<pre>jarque.bera.test()</pre>	tseries	
		quadprog	
Be able to run an OLS regression using R	lm()		
& assess regression output	<pre>summary()</pre>		
Be able to produce a two-way scatter plot	plot()		
& remove scientific notation from axes	options()		
& add a fitted regression line to the plot	abline()		
Understand/recap common functional forms			
Know how to include & interpret a quadratic	I()		
term in a linear regression model			
Be able to plot a non-linear fitted line	<pre>data.frame(); seq()</pre>		
& determine minimum/maximum point	min(); max()		
	<pre>nrow(); predict()</pre>		
	as.data.frame()		
	lines(); abs()		
Know how to interpret coefficient estimates	<pre>as.factor()</pre>		
for categorical variables	levels()		
Know how to produce contingency tables	table()		

Practical 1: Jarque-Bera Test

- a. Generate a variable for the age of buildings in the **Lucas_County_data**. Compute and plot the kernel density of variable *age*.
- b. Add the density function of the normal distribution to visually inspect if age is normally distributed.
- c. Run a Jarque-Bera test for normality of variable age.

Practical 2: The Vintage Effect in Real Estate

- a. Simple linear regression model: run an ordinary least squares (OLS) regression of the dependent variable, price, on one explanatory variable, age, and a constant term. Store the results from this regression in an R object, called **fit1**.
- b. Produce a scatter plot of *price* against *age*, which shows both the actual data points and the fitted line from the simple regression.
- c. Functional form: extend the model to allow for a potential non-linear relationship between the price and age of a house, including age and age squared as explanatory variables. Store the results from this regression in an R object, called **fit2**.
- d. Plot the regression results analogously to the ones in part b. Where is the tipping point?

Practical 3: Hedonic Regression Analysis

- a. Hedonic regression analysis involves a multitude of regressors. Add three further hedonic items to the model: the number of bed- and bathrooms (beds, baths) as well as information on wall material (wall).
- b. Which price would you predict for a ten year old, three bed-, two bathroom house with full brick exterior?
- c. Can we improve the prediction by adding the total living area (tla) to the model? Why is the effect of beds now negative?
- d. Which price would you predict for a ten year old, three bed-, two bathroom house with full brick exterior and a total living area of 130 square feet?