

Strategies for integrated management of computational biology models and associated simulations

Ron Henkel

Department of Systems Biology and Bioinformatics
The University of Rostock

Motivation

SBML Data from BioModels Database, CellML data from Tommy Yu

NoSQL Data Models

Taken from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.174.8830&rep=rep1&type=pdf

NoSQL Data Models

Taken from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.174.8830&rep=rep1&type=pdf

Available Data

Model and Simulation

- Constituent names
- XML encoded representation

Annotation & Ontologies

- Biochemical background
- Synonyms

A model's network

- Model structure
- Aggregation values
- Model related data

All Ontologies available in OWL can be added easily

19.09.2013

SML

Index

Index

Index

Index

Index

19.09.2013

12

19.09.2013

Preliminary Results

- Dataset 1:
 - curated models available in Biomodels DB
 - 841 exposed CellML Models from Physiome Model Repository
 - 38 SED-ML files (from our Cell-Cycle side project Uni Rostock)

- Webpage explaining the web service:
 - http://sems.uni-rostock.de/projects/morre/
- Pmr2 staging machine already implements the web service:
 - http://staging.physiomeproject.org/morre_pmr2_search
 - CellML only!

Preliminary Results

- Dataset 2:
 - 140.811 models from path2models project
- Database statistics:
 - 45,534,192 nodes
 - **31,784,961** properties

- 492,296,146 relationships
- 81GB database disk usage

- Currently no annotation index...
 - Downloading the content of 4,583,240 unique URIs is beyond the capability of my desktop or laptop machine

Models

SML

Links

Model related data

Models

SML

Links

Model related data

MATCH o:GOOntology RETURN count(o);

MATCH o:GOOntology WHERE o<-[:IS_ONTOLOGY_ENTRY]-() RETURN count(o);

MATCH o:GOOntology RETURN count(o);

==> 39787

MATCH o:GOOntology WHERE o<-[:IS_ONTOLOGY_ENTRY]-() RETURN count(o);

MATCH o:GOOntology RETURN count(o);

==> 39787

MATCH o:GOOntology WHERE o<-[:IS_ONTOLOGY_ENTRY]-() RETURN count(o);

==> 1097

Retrieve the three most used annotations:

MATCH r:RESOURCE, r-[rel:BELONGS_TO]->()

WITH r, count(rel) AS numOfRelations

ORDER BY numOfRelations DESC LIMIT 3

RETURN r.URI, numOfRelations;

Retrieve the three most used annotations:

MATCH r:RESOURCE, r-[rel:BELONGS_TO]->()
WITH r, count(rel) AS numOfRelations
ORDER BY numOfRelations DESC LIMIT 3
RETURN r.URI, numOfRelations;

r.URI	numOfRelations
urn:miriam:biomodels.sbo:SBO:0000009	1127
urn:miriam:biomodels.sbo:SBO:0000252	509
http://identifiers.org/obo.go/GO:0043241	484

Tools

- All java based:
 - Neo4J a graph database
 - Lucene an index and search tool
 - Jetty a web server
 - A parser for each format
 - CellML Api (java bindings)
 - jLibSBML
 - jSedML

Take Home Message

Models and related data grow in size and complexity

 Ranked retrieval is a necessary feature for model databases.

 Linking models, simulation and other model related data allows to query the spanned network

Thanks for your attention.

Questions?

ron.henkel@uni-rostock.de