⑩日本国特許庁(JP)

⑩特許出願公開

⑩公開特許公報(A)

昭54—119336

(f) Int. Cl.² B 22 D 37/00 B 22 D 11/14

識別記号 〇日本分類 11 C 1

11 C 1 7225—4 11 B 091 6769—4 匈公開 昭和54年(1979)9月17日

庁内整理番号 7225-4E 6769-4E

発明の数 1 審査請求 未請求

(全 5 頁)

❷溶鋼通路のスラグ検知装置

②特 願 昭53-27009

❷出 願 昭53(1978)3月8日

⑫発 明 者 児玉正範

倉敷市田之上字高後1060の5

同 山崎順次郎

倉敷市鶴の浦2の3

同 川上正修

東京都板橋区中台町1の54の16

⑫発 明 者 田口勝美

東京都板橋区板橋4の28の1

切出 願 人 川崎製鉄株式会社

神戸市葺合区北本町通1丁目1

番28号:

同 原電子測器株式会社

東京都板橋区桜川一丁目5番7

무

四代 理 人 弁理士 鵜沼辰之 外2名

明 細 書

1. 発明の名称

岩鍋通路のスラグ検知装置

2. 特許請求の範囲

(1) 励磁コイルにより密鋼中に誘起される渦電 流の変化を利用して、密鋼通路中のスラグを検出 する密鋼通路のスラグ検知装置において、励磁コイルに定電流の交流を印加すると共に、検知コイ ルに誘起される信号電圧を負荷電流を流さない様 に検出するようにしたことを特象とする密鋼通路

3. 発明の詳細な説明

本発明は、励磁コイルにより影倒中に誘起される過電流の変化を利用して、密側通路中のスラグを検出する影倒通路のスラグ検知装置に係り、特に、器鋼の絡込み終了時近くに取鍋等から流出する密側とスラグとを判別してスラグの自動検知を行なうに好適な、路鋼過路のスラグ検知装置に関する。

一般に、取鍋等から衡型に器鋼を注入する場合

に、スラグの混入を防止する必要があるが、特に 鶴込み終了時においては、取鍋内にスラグのみが 幾存するため、とれらが衡型に住入されないよう に極力注意しなければならない。一方、連続鋳造 における介在物は、特に最近のように銅槌が拡大 されるにつれ重要な問題になつてきている。例え は、石油、天然ガス等のラインペイブ材において との要求度が高く。数 am の非金属介在物が **吊接性を阻害し、品質欠陥となり、素材段階で** UT欠陥が発生したりしている。これらの頻程の 符徴は、アルミニウム啓融量が大であるという点 にあり、アルミニウム特有の大気酸化がアルミナ ラスォーとなり、側の清浄度を落とすことにな る。とのため、最近の連続鋳造設備においては、 **鋳込み中の空気酸化による辞鋼汚染を防止し、品** 質向上を計る目的で、取鍋とメンディッシュの間 に侵潰ノメルを使う無酸化酶込み方式が採用され ている。しかし、との長貴ノ火ルを使り往入法に おいては、帝興を大気から隔絶する密閉型の取締 を用いているため、帝綱を往入する状態を作業者

特別昭54-119336(2)

が外部から観察することができない。 従つてて きない が できない。 従つて できない できない を 大気に さらし、 内眼で スラグの流出 を 確認し ない 限り、 大 と の スラグが キンディッシュ に 流出 して しまうと で の が あるとい う 問 虹が あつ た。 この よう 在 物 の の ると、 没 資ノ ズルを 使つ て 非 全 場介 在 物 の の 流入を防止する目的が 逆効果 に なつて しまう。

ど大きくないため、例定手段の精度を維持するのが困難であるという問題があつた。即ち、高温状態にかける密網とスラグの導電率の差は、10⁴程度の差があり顕著であるが、これをコイルのインダクキンスの差だけで取り出すと、10⁻¹程度の差しかなく、検出するのが困難である。

る検出方法では、コイルのQ値(インピーダンス)を 頑装 倒定する方式をとつているために、コイルの 選送トリフトの影響をまともに受け、 そのまいては実用化するのは困難である。

また、前記3者に共通する欠点として、

を回避するには割定中に刻々と変化する基準常点を目視によって常時追跡し、調整補正を行か方方はなならない。また、(3) 検出コイルの冷力方法の力法の方法が最大の方法が最大の方法が、不考えられるが、高温、単元の政策を引き起こすの数等の災害等を引き起こすので、実用的には望ましくない、等の欠点を有する。

本・発明は、前紀従来の欠点を解析するべくなされたもので、周囲温度の影響を受けることなく、 安定したスラグ検知が可能な審網通路のスラグ検 知袋艦を提供することを目的とする。

本発明は、励磁コイルにより密備中に誘起される動電流の変化を利用して、密調通路中のスラグ検知装置にかいて、励磁コイルに定電流の交流を印加すると共に、検知コイルに誘起される借号電圧を負荷電流を達成ないように検出するようにして、前記目的を達成したものである。

特問昭54 - 119336(3)

以下図面を参照して、本発明の実施例を詳細に 説明する。本実施例は、第1図に示すでとく、辞 銅10及びスラグ12が収容される取鍋14と、 放取鍋14の底面に配設されたシリンダ15によ り開閉される、例えばメーレット方式の開閉機構 を有する帝銅流制御ゲート16と、該쯈銅流制御 ゲート16及び、例えば、グラファイト等で形成 された役徴ノメル18を介して裕興が注入される タンデイツシユ20と、該タンデイツシユ20底 面に配設されたモールドノメル22を介して流入 される帝剣を鋳込むモールド24とを備えた従来 の連続鈎造設備に使用されるもので、前記浸漬! メル18に挟着される、ブローブコイル30と、 放プロープコイル30を必要に応じて水平動させ る水平駆動機構る2と、ブローブコイル30内の 励磁コイルに信号電圧を印加すると共に、同じく プロープコイル30内の検知コイルに誘起される

前記プローブコイル30代は、第2図及び第3

図に示すどとく、それぞれ対になつた励磁コイル 40 Aと検知コイル 42 A及び励磁コイル 40 B と検知コイル42Bが、C字型フレーム44の先 朔近傍に、各対の磁束中心が、密鋼流下方向にオ フセット状態となるよう、2対枢着されている。 各対においては、その励磁コイルと検知コイルの 磁束中心が一致するようにされ、密銅旋下方向と いずれも垂直方向になるようにされている。C字。 型フレーム44は、例えばオーステナイト系ステ ンレス鋼材等の金属から形成されており、その中 央部にフレームの支持移動用レパー 4 6 が固定さ れている。とのレパー46は、前記水平駆動機構 32に連結され、C字型フレーム44を水平方向 に移動する。C 字型フレーム 4 4 の内周面及び外 周面には、セラミンクファイベー等の耐熱性と断 1/00/ 熱作用を持つた無機質断熱材 🕶 で包囲されてか 2※ジ り、また、その内盤には、更に、ペースト状の断 信号電圧を処理する信号回路34とから構成される;熱材50が塗布されている。とのペースト状断熱 材 5 0 は、フレーム内壁から検知コイル巻線表面 までの中間におけるフレーム側からの 2 次的熱放

射を減少防止している。また、ペースト状断熱材 5 8 と検知コイル42間の空間には、互いに電気 的伝導を有しないように、相互の重複接触面箇所 に無機質材を用いて絶縁された類目状金属 5 2 が / ・略 7 6 を構成する抵抗器、 8 6 、 8 8 は、同じく 複数個ジグザグ状に配置されている。との類目状!「可変抵抗器である。 食属 5 2 のフレーム内壁と対向する面は、 鏡面的 に熱親を反射させ得るようにされている。 C 字型 フレーム44には、また、冷却用の窒素ガス供給 **臂 5 4 及び排出臂 5 6 が接続されている。**

前記水平駅動機構32は、レバー46の後端に 形成されたラックギャ60と、数ラックギャ60 と物合するピニオンギャ62と、舷ピニオンギャ 62を回転駆動するモータ64とから構成される。

前記信号処理回路34は、第4図に示すどとく、 交流電源70と、直列接税された励磁コイル 40人 ・40gに流れる電流を定電流化するための定電流 駆動出力増幅器72と、検知コイル42A、42B にそれぞれ接続された、入力インピーダンスがほ **ば無限大の増幅器74A、14Bと、増収器74A、** 7.4.8 出力 ☆ 差動 増幅 するためのブリッジ回路

76と、該ブリッジ回路76出力を増幅する増幅 器「8と、飲増幅器「8出力を出力信号化する検 放蜀80とからなる。82、84は、プリッジ回

以下作用を規明する。まず鶴込み中間時点にお いては、水平駆動機構32のモーメ64により、 C 字型フレーム 4 4 を後退させておき、ブローブ コイル30が長費ノズル18の熱影響を受けない 、 ようにしておく。鶴込み終了時点が近づいた場合 には、水平駆動機構 3 2 によりプロープコイル 3 0 を前進させ、浸漬ノメル1 8 中の召銷10 と、 励磁コイル40A、40B、検知コイル42A、 ・42 Bとの相対位置関係が、第2図に示すよりな 正対位置になるようにする。との状態で励磁コイ ル40A、40Bを、信号処理回路34の交流電 原70及び定電流駆動出力増幅器72により励磁 すると、浸漬ノメル18中の容鋼に一定の掲電流・ が発生し、放爲電流によつて決まる一定量の信号 電圧が検知コイル42A、428に誘起される。

特開昭54 -- 119336(4)

浸渍ノズル18中の密朔10がスラグ12に微電流ノズル18中の密朔10がスラグ12に過電流 重が変化するため、検知コイル42A、428に 重が変化するため、検知コイル42A、428に 毎の変化するため、検知コイル42人、化セッリ ではいまりを観点である。 の変化ないないのででは、少り検 ではいまりを動増幅され、検波器をのででは、少り検 ではいる。 ではいまりを変化が、大変では、 を変化する。 の変化が、大変では、 を変化が、 を変化が、

本実施例においては、助磁コイル定電洗の交流を印加すると共化、検知コイルに誘起される信号電圧を、入力抵抗がほぼ無限大の増幅器を用いて負荷電流を流さないように検出するようにしたので、励磁コイルのಷ度変化によるインビーダンス変化があつても、磁界発生用の電流が一定に保た

れるため、密領或いはスラク内に発生される供称は、一定となる。また、負荷即ら密領やスラク等高電流損失に差を生ずるような条件変化があつても発生する世界を一定に保つことができる。更に、検出コイルに誘起された電圧は、負荷電流が低いため、温度によるコイルの抵抗変化の影響を受けずに取り出すことができ、従つて、温度影響が極めて少ない。

又、本実施例においては、励磁コイルを面列接続して、単一の定電流交流電源装置により駆動するようにしているため、経済的である。なお、必ずしもすべての励磁コイルを単一の定電流交流電源装置で駆動する必要はなく、それぞれのコイルにそれぞれ定電流交流電源装置を設置することもの論可能である。

更に、本実施例においては、励磁コイル及び検知コイルを、共に、放射熱を遮断するための網目状金銭が装入され、内部を冷却用ガス体または被化ガスが流過するようにされた、 C 字型状フレーム内に収納するようにしたので、冷却媒体として

危険な水を使用する必要がなく、かつ高い冷却効果を得ることが可能である。即ち、液化ガス化よる放射熱の反射・吸収作用によらないガス体をキャリアーとした熱交換冷却吸収の不十分さが、網目状金属により十分補われるため、ガス体による簡便な、且つ、より安全な冷却が可能である

なお前記実施例においては、検知コイル及び励低コイルが 2 対使用され差動接続されているため、密銅通路中のスラグ検知を確実に行なうことが可能である。

以上説明した通り、本発明は、励田コイルにより紹開中に誘起される渦電流の変化を利用して、岩鋼通路中のスラグを検出する溶鋼通路の交流を開始を置けまって、励田コイルに誘起される信息で加すると共に、検知コイルに誘起されるように検出するように検出するように、関田の変化を通過である。

4. 図面の簡単な説明

第1図は、本発明に係る溶解過路のスラグ検知 要量の実施例を連続鋳造設備にセットした状態を示す一部断面図を含む斜視図、第2図はスラグ検知用プローズコイルを浸憶ノズルへ装着した状態を示す、第1図のⅡーⅡ 繋に沿う断面図、第3図は、同じく側面図、第4図は、前記実施例における信号処理回路を示すプロック線図である。

. 10…溶鋼、

12…スラグ、

1 4 … 取鍋、

1-8…長後ノメル、

2.0 … タンデイッシュ、 2.4 …モールド、

30…ブローブコイル、32…水平駆動機模、

3 4 … 信号処理问路、

4 0 1 . 4 0 B … 励磁コイル、

42 A、42 B…検知コイル、

4.4 … C 字型フレーム、 7.0 … 交流言葉、

7.2 …定官流駆動出力增幅器、

7.4、7.8…増収器、 7.6 … ブリッジ回路; :8.0 … 検波器。

> 代理人 鵜 沼 辰 之 (ほか3名)

THIS PAGE BLAMK WEPTO,