Midterm Exam Review

Sravani Vadlamani

Midterm Exam

- In Class on Thursday, March 3, 2022
- Please bring your computer as the exam is on canvas
- Do not forget your calculator

Supervised vs Unsupervised Learning

- Supervised Learning
 - Predict or estimate an output based on one or more inputs
 - Linear regression, logistic regression, boosting, support vector machines
- Unsupervised Learning
 - Learn relationships and structure from data with inputs but no outputs
 - Cluster Analysis

Input vs Output Variables

- Input Variables
 - Independent variables, predictors features
- Output Variables
 - Response or dependent variable
- We believe there is a relationship between Y and at least one of the X's. We model the relation as

$$Y_i = f(X_i) + \varepsilon$$

- Where ${\it f}$ is an unknown function and ε is a random error with mean zero
- Parametric vs Non-Parametric Approaches

Flexible Models Vs Overfitting

- The more flexible the model, the more realistic it is. However, more flexible models have the disadvantage of requiring a greater number of parameters to be estimated and they are also more susceptible to overfitting.
- Overfitting is a phenomenon where a model closely matches the training data such that it captures too much of the noise or error in the data. This results in a model that fits the training data very well but does not make good predictions under test or in general.

Prediction Accuracy vs Model Interpretability

- Non-linear regression methods are more flexible and can potentially provide more accurate estimates.
- Why not just use a more flexible method if it is more realistic?
- A simple method such as linear regression produces a model which is much easier to interpret (the Inference part is better). For example, in a linear model, βj is the average increase in Y for a one unit increase in Xj holding all other variables constant.
- Even if you are only interested in prediction, so the first reason is not relevant, it is often possible to get more accurate predictions with a simple, instead of a complicated, model. This seems counter intuitive but has to do with the fact that it is harder to fit a more flexible model.

Prediction Accuracy vs Model Interpretability

Regression vs Classification

• When are both methods used?

Quality of Fit for Regression

- To evaluate the performance of a model, it is necessary to quantify how close the predicted responses are to the observed/actual data
- One common measure of accuracy in regression method is the mean squared error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

• Where, $\widehat{y_i}$ is the predicted responses

Bias Variance Tradeoff

- Choice of learning method is governed by two competing factors bias and variance
- Bias refers to the error introduced by modeling a usually extremely complicated problem using a simple problem
- For example a linear regression model assumes a linear relation between Y and X which may be unlikely in real life thus introducing some bias
- More flexible (or complex) models have less bias

Bias is the error introduced to a complicated problem when modeled with a simple model

Bias Variance Tradeoff

- Variance refers to the amount by which f would change if it were estimated with a different training set
- The more flexible a method is, greater is its variance

- In general, as the flexibility of the statistical method increases, its variance increases and bias decreases
- The relationship between bias, variance, and test set mean squared error is referred to as the bias-variance trade-off. It is called a trade-off because it is a challenge to find a model that has both a low variance and a low squared bias.

Bias Variance Tradeoff

- For any given $x = x_{0}$, the expected test mean squared error can be decomposed into the sum of the following three quantities:
 - Variance of f(x₀)
 - Squared bias of f(x₀)
 - Variance of the error term (ε)

Expected Test MSE =
$$E(Y - f(x_0))^2 = Bias^2 + Var + \underbrace{\sigma^2}_{\text{Irreducible Error}}$$

 To minimize the expected test error, it's necessary to choose a method that achieves both low variance and low bias. It can be seen that the expected test mean squared error can never be less than, the irreducible error.

Linear Algebra Basics

- Matrices
 - Row and Column Vectors
 - Transpose
 - Symmetric Matrix
 - Diagonal Matrix
 - Matrix Addition/Subtraction
 - Matrix Multiplication
 - Hilbert Matrix
 - Trace of a square matrix sum of diagonals

Linear Regression

- Simple and Multiple Linear Regression
- Parameter estimation using least squares
- Forward vs backward variable selection
- Quantitative and Qualitative predictors
- Model Fit
 - Residual Standard Error
 - R-square proportion of variance explained by the model

Linear Regression

- Issues
 - Non-linearity (if present transform predictor variables)
 - Correlation of error terms
 - Homoscedasticity violation (transform the response variable)
 - Outliers
 - Multicollinearity (VIF) Variance Inflation Factor

Classification Techniques

- Logistic regression
- Linear Discriminant Analysis
- Quadratic Discriminant Analysis
- Naïve Bayes
- K-nearest neighbors
- Generalized additive models
- Decision Trees, Random forests, Boosting
- Support Vector Machines

Logistic Regression

 We use a logistic function to model p(x) such that the output is always between 0 and 1 for all values of X

$$p(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

The above equation can be rewritten as

$$\frac{p(x)}{1-p(x)} = e^{\beta_0 + \beta_1 x}$$

Logistic Regression Parameter Interpretation

- In linear regression, β_1 gives the average change in Y associated with a one-unit increase in X
- In logistic regression, a one-unit change in X yields a β_1 change in the log-odds
 - This is equivalent to multiplying the odds by e^{eta_1}
- If β_1 is positive, increasing X will increase p(x)
- If β_1 is negative, increasing X will decrease p(x)
- The rate of change in p(x) per unit change in X depends on the value of X

Estimating Parameters

- The coefficients β_0 and β_1 must be estimated based on the training
- Logistic regression uses maximum likelihood to estimate β_0 and β_1 such that the predicted probability is as close to the observed classes using the following likelihood function

$$l(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i':y_{i'}=0} (1 - p(x_i))$$

• The estimates β_0 and β_1 maximize the above function

Logistic Regression vs LDA

- In logistic regression we model the conditional distribution of the response variable, given the predictor(s) X i.e., $Pr(Y=k \mid X=x)$
- In LDA we model the distribution of the predictors separately in each of the response classes Y (Pr(X|Y=k) and then use Bayes theorem to invert the probabilities to estimate the conditional distribution.
- Reasons to prefer LDA over Logistic regression
 - Parameter estimates from logistic regression are surprisingly unstable when there is a substantial separation between classes. Discriminant analysis approaches do not have this issue
 - Logistic regression estimates are less accurate when the predictors are approximately normally distributed, and the sample size (n) is small

LDA with One Predictor - Summary

• In summary, LDA assumes that the observations from each class follow a normal distribution with a class specific mean vector and constant variance across the classes to build a Bayes' theorem-based classifier.

Multiple Predictor LDA

- Assumes $X = (X_1, X_2,X_p)$ follows a multivariate normal or multivariate Gaussian distribution with a class-specific mean vector and a common covariance matrix.
- Multivariate normal distribution implies that each predictor follows a one-dimensional normal distribution with some correlation between the predictors. The bell shape of the normal distribution will be distorted if the predictors are highly correlated.

Quadratic Discriminant Analysis

- An alternative approach to LDA
- Same assumptions as LDA regarding the observations from each class following a Gaussian/Normal distribution.
- Difference is in the covariance estimation
 - QDA assumes each class has its own covariance matrix.
- This results in assuming that an observation from the k th class follows a distribution of the form $X \sim N(\mu_k, \Sigma_k)$ where Σ_k is the covariance matrix for k th class

Comparison of Methods

- Generally, LDA is better than QDA if there are relatively few training observations and so reducing variance is relevant.
- If the training set is very large that the variance of classifier is not an issue or if the assumption of common covariance matrix is unrealistic, QDA can be a better choice.
- LDA and logistic regression work well when the decision boundary is linear
- QDA gives better results when the decision boundary is moderately nonlinear
- K-nearest neighbors (KNN) is a non-parametric approach and outperforms LDA and logistic regression when the decision-boundary is highly nonlinear

Metrics

	Condition Positive	Condition Negative
Test Positive	True Positive	False Positive (Type I Error)
Test Negative	False Negative (Type II Error)	True Negative

• Sensitivity =Recall =
$$P(Test + | Condition +) = \frac{TP}{TP + FN}$$

• Specificity =
$$P(Test - | Condition -) = \frac{TN}{FP+TN}$$

• False Negative Rate
$$(\beta) = P(Test - | Condition +) = \frac{FN}{TP + FN}$$

• False Positive Rate (
$$\alpha$$
) = $P(Test + | Condition -) = \frac{FP}{FP + TN}$

• Precision =
$$\frac{TP}{TP+FP}$$

- Sensitivity = 1 False Negative Rate = Power
- Specificity = 1 False Positive Rate

• F1 Score =
$$\frac{2*Precision*Recall}{Precision+Recall}$$

• Accuracy =
$$\frac{Correct\ Predictions}{Total\ Predictions}$$

Metrics

- Accuracy
 - % of correct predictions
 - One value for the entire model
- Prediction
 - Exactness of the model
 - Each class/label has a value
- Recall
 - Completeness of model
 - Correctly detected over total observations
 - Each class/label has a value
- F1 Score
 - Combines precision and recall (Harmonic mean of precision & recall)
 - Each class/label has a value

ROC Curves

- A curve for simultaneously displaying the positive and negative error types for various thresholds
- ROC stands for "Receiver Operating Characteristics" and derives its name from communications theory (historical)
- The x-axis is False Positive Rate (=1-sensitivity)
- The y-axis is True Positive Rate (= specificity)
- Overall performance is given by the Area Under the Curve, denoted as AUC.
- Larger the AUC, better the classifier i.e., the curve is closer to the top left corner

Linear Model Selection

- Best subset selection
- Stepwise selection
- Model selection criteria
 - Cp, AIC, BIC (lower the better)
 - Adjusted R-square (higher the better)
- Shrinkage methods
 - Ridge Regression (I-2 norm)
 - Lasso Regression (I-1 norm)

Resampling Techniques

- Validation Set Approach
- LOOCV
- K-fold
- Bootstrapping