Intermolecular Forces Worksheet

1)	Each of the following statements describes an intermolecular force. For each statement indicate if it describes London Forces (L), dipole forces (D) or hydrogen bonding (H).						
		Occurs in all molecul	es				
	is the strongest intermolecular force						
	occurs in polar molecules						
	occurs when a temporary dipole is formed						
	strength of the force depends on the size of the molecule (ie # of protons and electrons)						
	occurs in molecules where hydrogen is covalently bonded to O, N, or F						
2)	Rank the following from strongest to weakest:						
	i. ii. iii. iv. v.	Covalent Bond Dipole-dipole force Hydrogen bond Ionic Bond London Dispersion force	Weakest			Strongest	
3)	For each of the following pairs of compounds, identify which one would have the higher boiling point, giving a reason for your answer.						
		a) CS ₂ or SiH ₄		b) Cl ₂ or F ₂	c) CH ₄ or N	H_3	
		d) HI or KI		e) CHCl ₃ or CF ₄			
4)	Sugge	Suggest, with a reason, why the boiling point of Cl_2 is -35°C and the boiling point of C_4H_{10} is -0.50°C.					

5)	The industrial production of ammonia, NH_3 , from H_2 and N_2 is called the Haber process, named for Fritz Haber, the German chemist who developed it just before World War I. During the process, in a gaseous mixture of all three substances, NH_3 must be separated from H_2 and N_2 . This is done by cooling the gaseous mixture so as to condense only the NH3. This leaves the elemental nitrogen and hydrogen as gases to be recycled and produce more ammonia. Why does only the ammonia liquefy upon cooling, but not the H_2 or N_2 ?
6)	Rank the following from weakest intermolecular forces to strongest. Justify your answers. H ₂ Se, H ₂ S, H ₂ Po, H ₂ Te
7)	Surface tension is the ability of a fluid to act as a thin elastic membrane at its surface. Explain why non-polar molecules usually have much lower surface tension than polar ones.
8)	Ionic compounds such as NaCl have very high melting points because a great deal of energy is required to overcome the many attractive forces between the oppositely charged ions in an ionic crystal lattice. NaCl melts at 801°C, yet its ions will readily separate from each other at room temperature when the solid is added to water. Explain this by discussing the predominant force that allows an ionic compound to dissolve in water.