

- beamforming
- source localization
- self-localization
- Vhat abouts
 - Is speech separation easier with echoes than without
 - Full RIR vs a few early reflections?

Echoes Help Indoor Processing

- beamforming
- source localization
- self-localization

What about speech separation ?

Echoes Help Indoor Processing

- beamforming
- source localization
- self-localization

What about speech separation?

1. Is speech separation easier with echoes than without?

Echoes Help Indoor Processing

- beamforming
- source localization
- self-localization

What about speech separation ?

- 1. Is speech separation easier with echoes than without ?
- 2. Full RIR vs a few early reflections?

What is this talk about?

- 1. Assume knowledge of a few (1-6) early echoes
- 2. Plug in multichannel NMF ¹
- 3. Three baseline scenarios
 - Anechoic conditions
 - Learn transfer functions
 - Ignore reverberation (i.e. consider 0 echoes)
- 4. Numerical Experiments

¹Ozerov & Févotte, 2010

Outline

1. Approximate Propagation Model

2. NMF Algorithms

3. Results from Numerical Experiments

Full Image Microphone Model

$$h_{jm}(t) = \sum_{k=0}^{K} \alpha_{jm}^k \delta(t - t_{jm}^k) + \epsilon_{jm}(t)$$

$$h_{jm}(t) = \sum_{k=0}^{K} \alpha_{jm}^{k} \delta(t - t_{jm}^{k}) + \epsilon_{jm}(t) \qquad \mathbf{1}$$

Non-negative Spectrogram Source Model

Multiplicative Updates View (Lee & Seung 2001)

Source signal's magnitude spectrogram decomposes non-negatively

$$|\mathbf{X}_j| = \mathbf{D}_j \mathbf{Z}_j$$

Expectation Minimization View (Ozerov & Févote 2010)

Source signal's variance spectrogram decomposes non-negatively

$$X_j[f,n] \sim \mathcal{CN}(0,(\mathbf{D}_j\mathbf{Z}_j)_{fn})$$

Multiplicative Updates - NMF

Microphone magnitude spectrogram model

$$\hat{\mathbf{V}}_m = \sum_j \operatorname{diag}(|H_{mj}|) \mathbf{D}_j \mathbf{Z}_j$$

Minimize Itakura-Saito divergence

$$C_{\mathsf{MU}}(\mathbf{Z}_j) = \sum_{mfn} d_{\mathsf{IS}}(V_m[f,n] \,|\, \hat{V}_m[f,n]) + \gamma \sum_j \|\mathbf{Z}_j\|_1,$$

- Efficient multiplicative update rules (Ozerov & Févotte 2010)
- Regularization needed for large number of latent variables

Multiplicative Updates - NMF

Microphone magnitude spectrogram model

$$\hat{\mathbf{V}}_m = \sum_j \operatorname{diag}(|H_{mj}|) \mathbf{D}_j \mathbf{Z}_j$$

Minimize Itakura-Saito divergence

$$C_{\mathsf{MU}}(\mathbf{Z}_j) = \sum_{mfn} d_{\mathsf{IS}}(V_m[f,n] \,|\, \hat{V}_m[f,n]) + \gamma \sum_j \|\mathbf{Z}_j\|_1,$$

- Efficient multiplicative update rules (Ozerov & Févotte 2010)
- Regularization needed for large number of latent variables

Multiplicative Updates - NMF

Microphone magnitude spectrogram model

$$\hat{\mathbf{V}}_m = \sum_j \operatorname{diag}(|H_{mj}|) \mathbf{D}_j \mathbf{Z}_j$$

Minimize Itakura-Saito divergence

$$C_{\mathsf{MU}}(\mathbf{Z}_j) = \sum_{mfn} d_{\mathsf{IS}}(V_m[f,n] \,|\, \hat{V}_m[f,n]) + \gamma \sum_j \|\mathbf{Z}_j\|_1,$$

- Efficient multiplicative update rules (Ozerov & Févotte 2010)
- Regularization needed for large number of latent variables

Expectation Maximization - NMF

Probabilistic Model

Source are complex Gaussian with low-rank spectrogram

$$X_j[f,n] \sim \mathcal{CN}(0, (\mathbf{D}_j \mathbf{Z}_j)_{fn})$$

Microphone signals have variance

$$\boldsymbol{\Sigma}_{\mathbf{y}}[f,n] = \widehat{\mathbf{H}}[f]\,\boldsymbol{\Sigma}_{\mathbf{x}}[f,n]\,\widehat{\mathbf{H}}^{H}[f] + \boldsymbol{\Sigma}_{\mathbf{b}}[f,n],$$

Minimize Negative Log-likelihood

$$C_{\mathsf{EM}}(\mathbf{Z}_j) = \sum_{fn} \operatorname{trace}\left(\mathbf{y}[f, n]\mathbf{y}[f, n]^H \mathbf{\Sigma}_{\mathbf{y}}^{-1}[f, n]\right) + \log \det \mathbf{\Sigma}_{\mathbf{y}}[f, n]$$

Efficiently minimized by Expectation-Minimization algorithm (Ozerov & Févotte 2010)

ç

Pre-trained Dictionaries

Speaker Dependent

Universal

Remarks on Using a Universal Dictionary

Remark 1: Anechoic separation with MU-NMF Anechoic separation cannot work!

$$\mathbf{V}_m = \sum_j \mathbf{D}_j \mathbf{Z}_j \quad o \quad \mathbf{V}_m = \sum_j \mathbf{D} \mathbf{Z}_j = \mathbf{D} \sum \mathbf{Z}_j$$

Remark 2: EM-NMF with Universal Dictionary

- Unclear how to enforce sparsity in EM (to us)
- Left for future work

Experimental Setup

MU-NMF – Speaker Dependent

EM-NMF – Speaker Dependent

MU-NMF - Universal

Conclusion

- Single echo improves performance
- Enables universal dictionary
- First few echoes most important

- Compare to BSS
- Include (deeply) learnt models
- Underdetermined case

Conclusion

- Single echo improves performance
- Enables universal dictionary
- First few echoes most important

- Compare to BSS
- Include (deeply) learnt models
- Underdetermined case

Conclusion

- Single echo improves performance
- Enables universal dictionary
- First few echoes most important

- Compare to BSS
- Include (deeply) learnt models
- Underdetermined case

Conclusion

- Single echo improves performance
- Enables universal dictionary
- First few echoes most important

- Compare to BSS
- Include (deeply) learnt models
- Underdetermined case

Conclusion

- Single echo improves performance
- Enables universal dictionary
- First few echoes most important

- Compare to BSS
- Include (deeply) learnt models
- Underdetermined case

Conclusion

- Single echo improves performance
- Enables universal dictionary
- First few echoes most important

- Compare to BSS
- Include (deeply) learnt models
- Underdetermined case

Conclusion

- Single echo improves performance
- Enables universal dictionary
- First few echoes most important

Future Work

- Compare to BSS
- Include (deeply) learnt models
- Underdetermined case

Thank you! Questions?

Numerical Experiments Results

