Secondo parziale di Geometria e Algebra (Meccanica) 16-12-2013-A

- 1) a) Trovare l'equazione del cilindro L che proietta la curva $\mathcal{C} \equiv \left\{ \begin{array}{l} x^2 + 2y^2 5 = 0 \\ z = 1 \end{array} \right.$ parallelamente alla retta $r \equiv \left\{ \begin{array}{l} x = 3z + 2 \\ y = -2z + 5 \end{array} \right.$
 - b) Classificare il cilindro L.
- 2) Sia $A=\begin{pmatrix}3&0&0\\\beta&-1&0\\2&8&\alpha\end{pmatrix}$. a) Trovare gli eventuali valori di $\alpha,\beta\in\mathbf{R}$ per i quali A è diagonalizzabile.

 - b) Determinare $\alpha, \beta \in \mathbf{R}$ in modo che A sia invertibile e risulti $\det(A^{-1}) = \frac{1}{3} \operatorname{tr}(A)$.
- 3) Sia T il tensore (simmetrico) in \mathbb{R}^3 così definito:

$$T((x, y, z)) = (-14x + 4z, -15y, 4x + z)$$

e sia A la matrice ad esso associata rispetto alla base canonica di \mathbb{R}^3 .

- a) Diagonalizzare A con una matrice ortogonale U.
- b) Determinare la decomposizione spettrale di T.
- c) Trovare $\alpha \in \mathbf{R}$ in modo che T sia ortogonale a $\mathbf{v} \otimes \mathbf{w}$ con $\mathbf{v} = (0, 1, 1)$ e $\mathbf{w} = (3, 1, \alpha)$.
- 4) Trovare il tensore T in \mathbb{R}^2 sapendo che T((1,2))=(1,-1) e che (1,3) è un autovettore di T associato all'autovalore $\lambda = -2$.

N.B. Tutti i passaggi devono essere opportunamente giustificati.