SCSA Syllabus Points

- 1.3.1 use implication, converse, equivalence, negation, inverse, contrapositive
- 1.3.2 use proof by contradiction
- 2.3.1 prove simple results involving numbers
- 2.3.2 express rational numbers as terminating or eventually recurring decimals and vice versa
- 2.3.3 prove irrationality by contradiction for numbers such as root two

Cambridge 6A

Objectives

- To understand and use various methods of proof, including:
 - direct proof
 - proof by contrapositive
 - proof by contradiction.
- To write down the negation of a statement.
- To write and prove converse statements.
- To understand when mathematical statements are equivalent.
- To use the symbols for implication (⇒) and equivalence (⇔).
- To understand and use the quantifiers 'for all' and 'there exists'.
- To disprove statements using counterexamples.
- To understand and use the principle of mathematical induction.

Mathematics is special

- A mathematical proof is an argument that demonstrates the absolute truth of a statement
- One can only "prove" in Mathematics this certainty makes Mathematics different from other sciences
- In science, a theory is never proved true, instead, the aim is to prove that a theory is not true (falsification, ref. Karl Popper)
- Even if falsifying evidence is hard to find, this increases likelihood the theory is correct, but not a guarantee.

A proof should be

~ correct ~ clear

- simple ref. Occamé razor

Pythagoras' theorem

Take any triangle with side lengths a, b and c. If the angle between a and b is 90° , then

$$a^2 + b^2 = c^2$$

Proof Consider the two squares shown below.

also,
$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

The two squares each have the same total area. So subtracting four red triangles from each figure will leave the same area. Therefore $a^2 + b^2 = c^2$.

an elegant proof

Conditional statements

Consider the following sentence:

Statement If it is raining then the grass is wet.

This is called a **conditional statement** and has the form:

which is read 'P implies Q'. We call P the hypothesis and Q the conclusion.

Not all conditional statements will be true. For example, switching the hypothesis and the conclusion above gives:

Statement If the grass is wet then it is raining.

What else can cause the grass to be wet?

=> is implication

To give a **direct proof** of a conditional statement $P \Rightarrow Q$, we assume that the hypothesis P is true, and then show that the conclusion Q follows.

Example 1

Prove the following statements:

- **a** If a is odd and b is even, then a + b is odd.
- **b** If a is odd and b is odd, then ab is odd.

To give a **direct proof** of a conditional statement $P \Rightarrow Q$, we assume that the hypothesis P is true, and then show that the conclusion Q follows.

Example 1

Prove the following statements:

- **a** If a is odd and b is even, then a + b is odd.
- **b** If a is odd and b is odd, then ab is odd.

assume a is odd & b is even

since a is odd,
$$a = 2m + 1, \forall m \in \mathbb{Z}$$

since b is even, $b = 2n, \forall n \in \mathbb{Z}$

i. $a + b = (2m + 1) + 2n$

$$= 2m + 2n + 1$$

$$= 2(m + n) + 1$$

$$= 2k + 1 \quad \text{where } k = (m + n) \in \mathbb{Z}$$

hence $a + b$ is odd

ruse m&n as a &b may be different

To give a **direct proof** of a conditional statement $P \Rightarrow Q$, we assume that the hypothesis P is true, and then show that the conclusion Q follows.

Example 1

Prove the following statements:

- **a** If a is odd and b is even, then a + b is odd.
- **b** If a is odd and b is odd, then ab is odd.

To give a **direct proof** of a conditional statement $P \Rightarrow Q$, we assume that the hypothesis P is true, and then show that the conclusion Q follows.

Example 1

Prove the following statements:

- **a** If a is odd and b is even, then a + b is odd.
- **b** If a is odd and b is odd, then ab is odd.

assume both a and b are odd

thus
$$a = 2m + 1$$
 and $b = 2n + 1$ for some $m, n \in \mathbb{Z}$
 $\therefore ab = (2m+1)(2n+1)$

$$= 4mn + 2m + 2n + 1$$

$$= 2(2mn + m + n) + 1$$

$$= 2k + 1 \qquad \text{where } k = (2mn + m + n) \in \mathbb{Z}$$
hence ab is odd

Let $p, q \in \mathbb{Z}$ such that p is divisible by 5 and q is divisible by 3. Prove that pq is divisible by 15.

Let $p, q \in \mathbb{Z}$ such that p is divisible by 5 and q is divisible by 3. Prove that pq is divisible by 15.

Since
$$p$$
 is divisible by 5, $p = 5m$ for some $m \in \mathbb{Z}$
since q is divisible by 3, $q = 3n$ for some $n \in \mathbb{Z}$
thus $pq = (5m)(3n)$
 $= 15mn$ a multiple of 15...,
 pq is divisible by 15

Let x and y be positive real numbers. Prove that if x > y, then $x^2 > y^2$.

Let x and y be positive real numbers. Prove that if x > y, then $x^2 > y^2$.

assume x > y, meaning x - y > 0since x & y are positive, x + y > 0 $\therefore x^2 - y^2 = (x - y)(x + y) > 0$

Hence x2 > y2

easier to prove $x^2 - y^2 > 0$ due to D.O.T.S

 $\chi^2 - y^2$ is more versatile

Let *x* and *y* be any two positive real numbers. Prove that

$$\frac{x+y}{2} \ge \sqrt{xy}$$

Let x and y be any two positive real numbers. Prove that

$$\frac{x+y}{2} \ge \sqrt{xy}$$

mplies
$$\frac{x+y}{2} \ge \sqrt{xy}$$
 — assume this is true & hopefully end up with a correct $x+y \ge 2\sqrt{xy}$ statement!

 $(x+y)^2 \ge 4xy$ $true$
 $x^2 + 2xy + y^2 \ge 4xy$

$$\implies 3c^{2} - 23cy + y^{2} \ge 0$$

$$(x - y)^{2} \ge 0$$

Let x and y be any two positive real numbers. Prove that

$$\frac{x+y}{2} \ge \sqrt{xy}$$

Breaking a proof into cases

Sometimes it helps to break a problem up into different cases.

Example 5

Every person on an island is either a knight or a knave. Knights always tell the truth, and knaves always lie. Alice and Bob are residents on the island. Alice says: 'We are both knaves.' What are Alice and Bob?

Breaking a proof into cases

Which is impossible.

Alice spoke

Sometimes it helps to break a problem up into different cases.

Example 5

Every person on an island is either a knight or a knave. Knights always tell the truth, and knaves always lie. Alice and Bob are residents on the island. Alice says: 'We are both knaves.' What are Alice and Bob?

cant be
mixed as
this is
partially true

Suppose Alice is a knight

D Alice is telling the truth

D Alice & Bob are both knowes

D Alice is a knowe & a knight

Suppose Alice is a knave

=D Alice is lying

=D Alice & Bob are both not knaves

=D Bob is a Knight

i. Alice must be a knave & Bob a knight

Assigned Task

• Cambridge Specialist Maths:

• **Exercise 6A** (18 Qs)