Examen la Algebră II, 24 iunie 2022, seria 10.

La fiecare dintre subiectele 1, 2, 3, 4 se acordă un punctaj între 1 şi 10. Punctajul fiecărui subpunct este indicat la început, între paranteze. Nota lucrării este media notelor celor 4 subiecte.

Timp de lucru: 3 ore

- **1.** (i) (**2p**) Fie R un inel comutativ. Un element $x \in R$ se numește nilpotent dacă există $n \in \mathbb{N}^*$ cu $x^n = 0$. Să se arate că dacă $a, b \in R$ și $a^2 = b^2 = 0$, atunci a + b este nilpotent.
- (ii) (2p) Să se determine elementele nilpotente din \mathbb{Z}_{24} .
- (iii) (2p) Să se determine numărul polinoamelor de grad 2 din $\mathbb{Z}_{24}[X]$ care sunt elemente nilpotente în inelul $\mathbb{Z}_{24}[X]$.
- (iv) (3p) Să se determine c
mmdc al polinoamelor $f = X^4 + X^2 + \hat{1}$ și $g = X^3 + \hat{1}$ în $\mathbb{Z}_2[X]$.
- **2.** (i) (**3p**) Dacă x_1, x_2, x_3 sunt rădăcinile complexe ale ecuației $x^3 + x^2 + 2x + 1 = 0$, să se calculeze $x_1^2 + x_2^2 + x_3^2$ și $x_1^6 + x_2^6 + x_3^6$. (ii) (**6p**) Fie $f = (X_1^2 + X_2X_3)(X_2^2 + X_1X_3)(X_3^2 + X_1X_2) \in \mathbb{Q}[X_1, X_2, X_3]$. Să se arate că f
- (ii) (6p) Fie $f = (X_1^2 + X_2X_3)(X_2^2 + X_1X_3)(X_3^2 + X_1X_2) \in \mathbb{Q}[X_1, X_2, X_3]$. Să se arate că f este polinom simetric, să se scrie f ca polinom de polinoame simetrice fundamentale și să se determine toate tripletele (a_1, a_2, a_3) de numere întregi pentru care $f(a_1, a_2, a_3) = 1$.
- **3.** (i) (**3p**) Să se arate că există izomorfisme de inele $\frac{\mathbb{Q}[X]}{(X+2)} \simeq \mathbb{Q}$ și $\frac{\mathbb{Q}[X]}{(X^2+2X)} \simeq \mathbb{Q} \times \mathbb{Q}$. Este (X^2+2X) ideal maximal în $\mathbb{Q}[X]$?
- (ii) (2p) Fie I idealul generat de X și J idealul generat de X+2 în $\mathbb{Z}[X]$. Să se arate că $I+J\neq\mathbb{Z}[X]$ și că IJ este idealul generat de X^2+2X .
- (iii) (**2p**) Să se arate că inelul factor $\frac{\mathbb{Z}[X]}{(X^2+2X)}$ nu este domeniu de integritate.
- (iv) (**2p**) Să se determine elementele idempotente din inelul $\frac{\mathbb{Z}[X]}{(X^2+2X)}$ şi să se arate că acest inel nu este izomorf cu $\mathbb{Z} \times \mathbb{Z}$.
- **4.** Fie polinoamele $f = X^4 + 2X^3 + 5X^2 X + 2$ şi $g = X^3 + 2X^2 + 2X + 2$ din $\mathbb{Q}[X]$.
- (i) (2p) Să se determine câtul și restul împărțirii lui f la g.
- (ii) $(\mathbf{1p})$ Să se arate că g este ireductibil în $\mathbb{Q}[X]$.
- (iii) (1p) Să se arate că f nu are rădăcini raționale.
- (iv) (2p) Să se arate că f este ireductibil în $\mathbb{Q}[X]$.
- (v) (1**p**) Să se determine c.m.m.d.c al polinoamelor f și g în $\mathbb{Q}[X]$.
- (vi) (2p) Să se arate că f şi g nu sunt ireductibile în $\mathbb{R}[X]$ şi să se calculeze cmmdc al lor în $\mathbb{R}[X]$.