Assignment 15: LR Parsing

Date: 2024. 12. 13 Student ID: 201924451

Name: 김태훈

다음 문법에 대해 물음에 답하여라.

$$S \rightarrow (S) S$$

 $S \rightarrow \epsilon$

(1) 모든 비단말 기호에 대해 FIRST 집합과 FOLLOW 집합을 구하라.

A. FIRST 집합 FIRST(S) = { (, ε)

B. FOLLOW 집합

S는 시작기호이므로 FOLLOW(S) = {\$} 또한 S → (S) S 에 의해 FOLLOW(S) = {}}

따라서

 $FOLLOW(S) = \{ \}$

(2) 이 문법을 확장하면 다음 생성규칙을 추가해야 한다. [1]

 $S' \rightarrow S$

확장된 문법에 대해 표준 LR(0) 모음(canonical LR(0) collection)을 구하라.

A. LR(0) items

$$S' \rightarrow S : [S' \rightarrow \bullet S], [S' \rightarrow S \bullet]$$

$$S \rightarrow (S)S: [S \rightarrow \bullet(S)S], [S \rightarrow (\bullet S)S], [S \rightarrow (S\bullet)S], [S \rightarrow (S)\bullet S], [S \rightarrow (S)S\bullet]$$

 $S \rightarrow \epsilon : [S \rightarrow \bullet]$

B. 표준 LR(0) 모음 구하기

$$\begin{split} S_0: \mathit{CLOSURE}([S' \rightarrow \bullet \ S]) &= ([S' \rightarrow \bullet \ S], [S \rightarrow \bullet \ (S)S], [S \rightarrow \bullet \]) \\ \mathit{GOTO}(S_0, S) &= S_1 = \mathit{CLOSURE}([S' \rightarrow S \bullet]) = ([S' \rightarrow S \bullet]) \\ \mathit{GOTO}(S_0, ()) &= S_2 = \mathit{CLOSURE}([S \rightarrow (\bullet \ S)S]) = ([S \rightarrow (\bullet \ S)S], [S \rightarrow \bullet \ (S)S], [S \rightarrow \bullet \]) \\ \mathit{GOTO}(S_2, S) &= S_3 = \mathit{CLOSURE}([S \rightarrow (S \bullet)S]) = ([S \rightarrow (S \bullet)S]) \\ \mathit{GOTO}(S_2, ()) &= S_2 = \mathit{CLOSURE}([S \rightarrow (S \bullet)S]) \end{split}$$

$$\begin{split} &GOTO(S_3,) \) = S_4 = CLOSURE([S \rightarrow (S) \ \bullet \ S]) = ([S \rightarrow (S) \ \bullet \ S], [S \rightarrow \bullet \ (S)S], [S \rightarrow \bullet \]) \\ &GOTO(S_4,S) = S_5 = CLOSURE([S \rightarrow (S)S \ \bullet \]) = ([S \rightarrow (S)S \ \bullet \]) \\ &GOTO(S_4,() = S_2 = CLOSURE([S \rightarrow (\bullet \ S)S]) \end{split}$$

(3) SLR(1) 구문분석 표를 작성하라.[1]

- 1) $GOTO(S_0, S) = S_1 = CLOSURE([S' \rightarrow S \bullet]) = ([S' \rightarrow S \bullet])$ 이므로 $action(1,\$) \leftarrow accept$
- 2) $GOTO(S_0, S) = S_1$, $GOTO(S_0, () = S_2$ 이므로 $goto(0,S) \leftarrow 1$, $action(0, () \leftarrow shift 2)$
- 3) $GOTO(S_2,S) = S_3$, $GOTO(S_2, () = S_2$ 이므로 $goto(2,S) \leftarrow 3$, $action(2, () \leftarrow shift 2)$
- 4) $GOTO(S_3,)) = S_4$ 이므로 action(3,) \leftarrow shift 4
- 5) $GOTO(S_4,S) = S_5, GOTO(S_4,(\cdot) = S_2$ 이므로 goto(4, S) \leftarrow 5, action(4, () \leftarrow shift 2
- 6) $S_5 = CLOSURE([S \rightarrow (S)S \bullet]) = ([S \rightarrow (S)S \bullet])$ 이고, FOLLOW(S) = {), \$} 이므로 action(5,)) \leftarrow reduce S \rightarrow (S) S, action(5,\$) \leftarrow reduce S \rightarrow (S) S
- 7) $[S \rightarrow \bullet]$ 가 S_0 , S_2 , S_4 에 있고 FOLLOW(S) = {), \$} 이므로 action(0,)), action(0,\$), action(2,\$), action(2,\$), action(4,\$) \leftarrow reduce S \rightarrow ϵ

	action			goto
	()	\$	S
0	shift 2	reduce $S \rightarrow \epsilon$	reduce $S \rightarrow \epsilon$	1
1			accept	
2	shift 2	reduce $S \rightarrow \epsilon$	reduce $S \rightarrow \epsilon$	3
3		shift 4		
4	shift 2	reduce $S \rightarrow \epsilon$	reduce $S \rightarrow \epsilon$	5
5	reduce $S \rightarrow (S) S$		reduce $S \rightarrow (S) S$	

<표1: SLR(1) 구문분석표>

(4) 작성한 구문분석 표에 따라 문장 ()()를 구문분석하고 우파스를 구하라.

No.	Stack	Input	Action
1	S_0	()()\$	shift 2
2	$S_0(S_2)$)()\$	reduce $S \rightarrow \epsilon$
3	$S_0(S_2SS_3$)()\$	shift 4
4	$S_0(S_2SS_3)S_4$	()\$	shift 2
5	$S_0(S_2SS_3)S_4(S_2$)\$	reduce $S \rightarrow \epsilon$
6	$S_0(S_2SS_3)S_4(S_2SS_3$)\$	shift 4
7	$S_0(S_2SS_3)S_4(S_2SS_3)S_4$	\$	reduce $S \rightarrow \epsilon$
8	$S_0(S_2SS_3)S_4(S_2SS_3)S_4SS_5$	\$	reduce $S \rightarrow (S) S$
9	$S_0(S_2SS_3)S_4SS_5$	\$	reduce $S \rightarrow (S) S$
10	S_0SS_1	\$	accept

<표2: ()() 문장 구문 분석>

우파스는 다음과 같다(reduce action의 역순).

 $S \rightarrow (S) S$

 $S \rightarrow (S) S$

 $S \rightarrow \epsilon$

 $S \, \to \, \epsilon$

 $S \, \to \, \epsilon$

위 우파스를 이용하면 아래와 같이 rightmost derivation할 수 있다.

S

 \Rightarrow (S) S (S \rightarrow (S) S)

 \Rightarrow (S) (S) S (S \rightarrow (S) S)

 \Rightarrow (S) (S) \qquad S \rightarrow ϵ

 \Rightarrow (S) () S \rightarrow ϵ

 \Rightarrow ()() S \rightarrow ϵ

References

[1] Alfred V. Aho 외. "컴파일러: 원리 기법 도구". 2판. 유원희 등역. 교보문고. 2009