METODY NUMERYCZNE - LABORATORIUM

Zadanie 1- Metody rozwiązywania równań nieliniowych

Opis rozwiązania

Zadanie polegało na zaimplementowaniu i porównaniu ze sobą dwóch metod rozwiązywania (znajdowania miejsca zerowego) równań nieliniowych – metoda bisekcji oraz metoda falsi.

Metoda bisekcji

Dla wybranego przez użytkownika przedziału [a, b] algorytm metody bisekcji posiada następujące kroki:

- 1. Sprawdzenie czy f(a)f(b) < 0
- 2. Określenie warunku zatrzymania
 - a. spełnienie warunku nałożonego na dokładność $|x_i x_{i-1}| < \epsilon$
 - b. osiągnięcie zadanej liczby iteracji
- 3. Znalezienie środka przedziału $x_0 = \frac{a+b}{2}$
- 4. Wybranie nowego przedziału spełniającego warunek z kroku 1
- 5. Powrót do kroku 3 do momentu spełnienia warunku zatrzymania

Metoda falsi

Dla wybranego przez użytkownika przedziału [a,b] algorytm metody falsi posiada następujące kroki:

- 1. Sprawdzenie czy f(a)f(b) < 0
- 2. Określenie warunku zatrzymania
 - a. spełnienie warunku nałożonego na dokładność $|x_i x_{i-1}| < \epsilon$
 - b. osiągnięcie zadanej liczby iteracji
- 3. Znalezienie punktu przecięcia się cięciwy łączącej punkty a i b z osią OX $x_0 = a \frac{f(a)}{f(b) f(a)}(b a)$
- 4. Wybranie nowego przedziału spełniającego warunek z kroku 1
- 5. Powrót do kroku 3 do momentu spełnienia warunku zatrzymania

Wyniki

Funkcja	a	b	E	Zadana liczba iteracji	$\mathbf{x_0}$				
					Metoda bisekcji		Metoda falsi		Rzeczywist
					Wynik	Liczba iteracji	Wynik	Liczba iteracji	a wartość
$x^3 - 2x^2 - 5x + 6$	1,5	4,0	0,001		3,000244140625	11	2,9990018144862574	11	3,0
				50	3,0000000000000013	50	3,0	47	
$\sin\left(2x-\frac{1}{2}\right)$	-1,2	1,8	0,0001		0,25001220703125004	14	0,2499856343254204	6	0,25
				50	0,250000000000000002	50	0,25	8	
2 ^(x-2) – 4	0	6,0	0,0001		3,99993896484375	15	3.999819877475282	17	4,0
				100	4,0	52	4,0	61	
sin (2π ^x)	0,75	1,2	0,0001		0,99993896484375	12	0,999999079581477	5	1,0
				50	1,00000000000000000	50	1,0	50	

$$f(x) = \sin\left(2x - \frac{1}{2}\right)$$

Zadany epsilon

Zadana liczba iteracji

$$f(x) = 2^{(x-2)} - 4$$

Zadany epsilon

Zadana liczba iteracji

 $f(x) = \sin\left(2\pi^x\right)$

Zadany epsilon

Zadana liczba iteracji

Wnioski

- Obie metody wyznaczają miejsca zerowe równe lub bliskie rzeczywistym
- Algorytmy obu metod są łatwe w implementacji
- Porównując wszystkie zbadane przypadki dla różnych funkcji metoda falsi osiąga założoną dokładność w mniejszej liczbie iteracji a jej wyniki są częściej bliższe rzeczywistym
- Dokładność wyników zależy od odpowiednie dobranych parametrów: przedział początkowy, epsilon, liczba iteracji