

Bab 3 Regular Expressions

September 2021

Definitions

Equivalence to Finite Automata

Informatika

Chomsky Hierarchy

Grammar	Languages	Automaton	
Type-0	Recursively enumerable	Turing machine	recurs
Type-1	Context- sensitive	Linear-bounded non- deterministic Turing machine	cor
Type-2	Context-free	Non-deterministic pushdown automaton	
Type-3	Regular	Finite state automaton	Chor

recursively enumerable

context-sensitive

context-free

regular

Chomsky Hierarchy

Regular expression

RE's: Introduction

- Regular expressions are an algebraic way to describe languages.
- They describe exactly the regular languages.
- If E is a regular expression, then L(E) is the language it defines.
- We'll describe RE's and their languages recursively.

Examples: RE's

- $L(01+0) = \{01, 0\}.$
- $L(0(1+0)) = \{01, 00\}.$
 - Note order of precedence of operators.
- $L(0^*) = \{ \epsilon, 0, 00, 000, \dots \}.$
- $L((0+10)^*(\varepsilon+1)) = all strings of 0's and 1's without two consecutive 1's.$

RE's: Definition

- Basis 1: If a is any symbol, then a is a RE, and L(a) = {a}.
 - Note: {a} is the language containing one string, and that string is of length 1.
- Basis 2: ε is a RE, and L(ε) = {ε}.
- Basis 3: \emptyset is a RE, and L(\emptyset) = \emptyset .

RE's: Definition – (2)

- Induction 1: If E_1 and E_2 are regular expressions, then E_1+E_2 is a regular expression, and $L(E_1+E_2) = L(E_1) \cup L(E_2)$.
- Induction 2: If E_1 and E_2 are regular expressions, then E_1E_2 is a regular expression, and $L(E_1E_2) = L(E_1)L(E_2)$.

Concatenation: the set of strings wx such that w Is in $L(E_1)$ and x is in $L(E_2)$.

RE's: Definition – (3)

 Induction 3: If E is a RE, then E* is a RE, and L(E*) = (L(E))*.

Closure, or "Kleene closure" = set of strings $w_1w_2...w_n$, for some $n \ge 0$, where each w_i is in L(E).

Note: when n=0, the string is ϵ .

Precedence of Operators

- Parentheses may be used wherever needed to influence the grouping of operators.
- Order of precedence is * (highest), then concatenation, then + (lowest).

Contoh-contoh RE

- all strings that begin with a and end with b
 a (a + b)* b
- all non empty strings of even length (aa + ab + ba + bb)⁺
- all strings with at least one a
 (a + b)* a (a + b)*
- all strings with at least two a's
 (a + b)* a (a + b)*

All strings with at least two b's.

$$(a + b)^* b (a + b)^* b (a + b)^*$$

All strings with exactly two b's.

All strings with at least one a and at least one b.

$$(a + b)^* (ab + ba) (a + b)^*$$

All strings which end in a double letter (two a's or two b's).

$$(a + b)^* (aa + bb)$$

Latihan

- The set of strings over alphabet {a,b} containing at least one a and at least one b
- The set of strings of a and b whose 4th symbol from the right end is a
- The set of strings of a and b with at most one pair of consecutive a

Equivalence of RE's and Automata

- We need to show that for every RE, there is an automaton that accepts the same language.
 - Pick the most powerful automaton type: the ϵ -NFA.
- And we need to show that for every automaton, there is a RE defining its language.
 - Pick the most restrictive type: the DFA.

Converting a RE to an ϵ -NFA

- Proof is an induction on the number of operators (+, concatenation, *) in the RE.
- We always construct an automaton of a special form (next slide).

Form of ∈-NFA's Constructed

RE to ε-NFA: Basis

• Symbol a:

RE to ϵ -NFA: Induction 1 – Union

For $E_1 \cup E_2$

RE to ∈-NFA: Induction 2 – Concatenation

For E_1E_2

RE to ϵ -NFA: Induction 3 – Closure

For E*

Contoh RE –NFA epsilon

We convert (0+1)*1(0+1)

DFA-to-RE

- A strange sort of induction.
- States of the DFA are assumed to be 1,2,...,n.
- We construct RE's for the labels of restricted sets of paths.
 - Basis: single arcs or no arc at all.
 - Induction: paths that are allowed to traverse next state in order.

k-Paths

- A k-path is a path through the graph of the DFA that goes though no intermediate state numbered higher than k.
- Endpoints are not restricted; they can be any state.

Example: k-Paths

0-paths from 2 to 3: RE for labels = $\mathbf{0}$.

1-paths from 2 to 3: RE for labels = $\mathbf{0}+\mathbf{11}$.

2-paths from 2 to 3: RE for labels = (10)*0+1(01)*1

3-paths from 2 to 3: RE for labels = ??

k-Path Induction

- Let R_{ij}^k be the regular expression for the set of labels of k-paths from state i to state j.
- Basis: k=0. R_{ii}⁰ = sum of labels of arc from i to j.
 - ∅ if no such arc.
 - But add ϵ if i=j.

Example: Basis

•
$$R_{11}^0 = \emptyset + \varepsilon = \varepsilon$$
.

k-Path Inductive Case

A k-path from i to j either:

- 1. Never goes through state k, or
- 2. Goes through k one or more times.

$$R_{ij}^{k} = R_{ij}^{k-1} + R_{ik}^{k-1}(R_{kk}^{k-1})^* R_{kj}^{k-1}$$
.

Goes from

Doesn't go i to k the through k first time

Zero or more times from k to k

Illustration of Induction

Final Step

- The RE with the same language as the DFA is the sum (union) of R_{ii}ⁿ, where:
 - n is the number of states; i.e., paths are unconstrained.
 - 2. i is the start state.
 - j is one of the final states.

Example

- $R_{23}^3 = R_{23}^2 + R_{23}^2(R_{33}^2) R_{33}^2 = R_{23}^2(R_{33}^2)$
- $R_{23}^2 = (10)*0+1(01)*1$
- $R_{33}^2 = 0(01)*(1+00) + 1(10)*(0+11)$
- $R_{23}^3 = [(10)*0+1(01)*1][(0(01)*(1+00) + 1(10)*(0+11))]*$

Let's find R for A, where $L(A) = \{x \circ y : x \in \{1\}^* \text{ and } y \in \{0,1\}^*\}$

$R_{11}^{(0)}$	$\epsilon+1$
$R_{12}^{(0)}$	0
$R_{21}^{(0)}$	Ø
$R_{22}^{(0)}$	$\epsilon + 0 + 1$

$$R_{ij}^{(1)} = R_{ij}^{(0)} + R_{i1}^{(0)} (R_{11}^{(0)})^* R_{1j}^{(0)}$$

	By direct substitution	Simplified
$R_{11}^{(1)}$	$\epsilon + 1 + (\epsilon + 1)(\epsilon + 1)^*(\epsilon + 1)$	1*
$R_{12}^{(1)}$	$0+(\epsilon+1)(\epsilon+1)^*0$	1*0
$R_{21}^{(1)}$	$\emptyset + \emptyset(\epsilon + 1)^*(\epsilon + 1)$	Ø
$R_{22}^{(1)}$	$\epsilon + 0 + 1 + \emptyset(\epsilon + 1)*0$	$\epsilon+0+1$

	Simplified
$R_{11}^{(1)}$	1*
$R_{12}^{(1)}$	1*0
$R_{21}^{(1)}$	Ø
$R_{22}^{(1)}$	$\epsilon + 0 + 1$

$$R_{ij}^{(2)} = R_{ij}^{(1)} + R_{i2}^{(1)} (R_{22}^{(1)})^* R_{2j}^{(1)}$$

_		By direct substitution	
l	$R_{11}^{(2)}$	$1^*+1^*0(\epsilon+0+1)^*\emptyset$	
l	$R_{12}^{(2)}$	$1*0 + 1*0(\epsilon + 0 + 1)*(\epsilon + 0 + 1)$	
l	$R_{21}^{(2)}$	$\emptyset + (\epsilon + 0 + 1)(\epsilon + 0 + 1)^*\emptyset$	
1	$R_{22}^{(2)}$	$\epsilon + 0 + 1 + (\epsilon + 0 + 1)(\epsilon + 0 + 1)^*(\epsilon + 0 + 1)$	

By direct substitution

$$\begin{array}{|c|c|c|c|}\hline R_{11}^{(2)} & 1^* + 1^*0(\epsilon + 0 + 1)^*\emptyset \\ R_{12}^{(2)} & 1^*0 + 1^*0(\epsilon + 0 + 1)^*(\epsilon + 0 + 1) \\ R_{21}^{(2)} & \emptyset + (\epsilon + 0 + 1)(\epsilon + 0 + 1)^*\emptyset \\ R_{22}^{(2)} & \epsilon + 0 + 1 + (\epsilon + 0 + 1)(\epsilon + 0 + 1)^*(\epsilon + 0 + 1) \end{array}$$

	Simplified	
$R_{11}^{(2)}$	1*	
$R_{12}^{(2)}$	1*0(0+1)*	
$R_{21}^{(2)}$	Ø	
$R_{22}^{(2)}$	$(0+1)^*$	

The final regex for A is

$$R_{12}^{(2)} = 1*0(0+1)*$$

Observations

There are n^3 expressions $R_{ij}^{(k)}$

Each inductive step grows the expression 4-fold

$$R_{ij}^{(n)}$$
 could have size $\mathbf{4}^n$

For all $\{i,j\}\subseteq\{1,\ldots,n\}$, $R_{ij}^{(k)}$ uses $R_{kk}^{(k-1)}$ so we have to write n^2 times the regex $R_{kk}^{(k-1)}$

We need a more efficient approach: the state elimination technique

The state elimination technique

Let's label the edges with regex's instead of symbols

Now, let's eliminate state s.

For each accepting state q eliminate from the original automaton all states exept q_0 and q.

that corresponds to the regex $E_q = (R + SU^*T)^*SU^*$

or with A_q looking like

corresponding to the regex $E_q = R^*$

• The final expression is

$$\bigoplus_{q \in F} E_q$$

Example: \mathcal{A} , where $L(\mathcal{A}) = \{W : w = x1b, \text{ or } w = x1bc, x \in \{0,1\}^*, \{b,c\} \subseteq \{0,1\}\}$

We turn this into an automaton with regex labels

Let's eliminate state B

Then we eliminate state C and obtain \mathcal{A}_D

Start
$$1(0+1)(0+1)$$

with regex (0+1)*1(0+1)(0+1)

From

we can eliminate D to obtain \mathcal{A}_C

with regex (0+1)*1(0+1)

The final expression is the sum of the previous two regex's:

$$(0+1)^*1(0+1)(0+1) + (0+1)^*1(0+1)$$

	0	1
$\rightarrow *p$	s	p
q	p	s
r	r	q
s	q	r

(1+(0((0+10*1)1)*(0+10*1)0))*

P→s→p: 0 ((0+10*1)1)* (0+10*1)0

Summary

 Each of the three types of automata (DFA, NFA, ε-NFA) we discussed, and regular expressions as well, define exactly the same set of languages: the regular languages.

Algebraic Laws for RE's

- Union and concatenation behave sort of like addition and multiplication.
 - + is commutative and associative; concatenation is associative.
 - Concatenation distributes over +.
 - Exception: Concatenation is not commutative.

Identities and Annihilators

- \varnothing is the identity for +.
 - $R + \emptyset = R$.
- ε is the identity for concatenation.
 - $\epsilon R = R\epsilon = R$.
- \emptyset is the annihilator for concatenation.
 - $\cdot \varnothing R = R\varnothing = \varnothing.$

Union is commutative.

$$\bullet \ (L \cup M) \cup N = L \cup (M \cup N).$$

Union is associative.

•
$$(LM)N = L(MN)$$
.

Concatenation is associative

Note: Concatenation is not commutative, *i.e.*, there are L and M such that $LM \neq ML$.

$$\bullet \ \emptyset \cup L = L \cup \emptyset = L.$$

 \emptyset is *identity* for union.

•
$$\{\epsilon\}L = L\{\epsilon\} = L$$
.

 $\{\epsilon\}$ is *left* and *right identity* for concatenation.

•
$$\emptyset L = L\emptyset = \emptyset$$
.

Ø is *left* and *right annihilator* for concatenation.

Concatenation is left distributive over union.

$$\bullet \ (M \cup N)L = ML \cup NL.$$

Concatenation is right distributive over union.

$$\bullet$$
 $L \cup L = L$.

Union is idempotent.

•
$$\emptyset^* = \{\epsilon\}, \{\epsilon\}^* = \{\epsilon\}.$$

•
$$L^+ = LL^* = L^*L$$
, $L^* = L^+ \cup \{\epsilon\}$

• $(L^*)^* = L^*$. Closure is idempotent