Chapter 1. Preference and Choice

Xiaoxiao Hu

September 2, 2019

1.A. Introduction

Two approaches to modeling individual choice behavior:

- Preference-based Approach: preference as primative (rationality axioms) ⇒ consequences on choices
- Choice-based Approach: choice behavior as primative (axioms on behavior)

1.B. Preference Relations

X: Set of Alternatives.

ullet For example, if Alice just graduated from Wuhan University majoring in economics, then her set of alternatives is: $X=\{ {
m go \ to \ graduate \ school \ and \ study \ economics, \ go \ to \ a \ Big-4 \ firm, \ go \ to \ work \ for \ the \ government, \ ..., \ run \ a \ small \ business \}.$

We use capital letters (like X and B) for a set of alternatives, small letters (like x and y) for a specific choice alternative.

Defining Preference Relations

Denote by \succsim the preference relation defined on the set X, allowing the comparison of any x and y in X.

- $x \gtrsim y$: pronounced as "x is preferred to y" or "x is at least as good as y." The first usage is more common.
- Strict preference \succ : $x \succ y \iff x \succsim y$ but not $y \succsim x$ (i.e., $y \not\succsim x$) ("x is strictly preferred to y.")
- Indifference \sim : $x \sim y \iff x \succsim y$ and $y \succsim x$ ("x is indifferent to y.")

Not all preference relations make sense.

For example, consider Alice's preference:

- "Hot and Dry Noodles" \succ "Doupi" (dòu pí)
- "Doupi" > "Xiaolongbao" (xiăo lóng bāo)
- ullet "Xiaolongbao" \succsim "Hot and Dry Noodles"

Alice must have a hard time choosing her breakfast from $X = \{ \mbox{Hot and Dry Noodles, Doupi, Xiaolongbao} \}.$

Definition 1.B.1 (Rational preference). The preference relation \succeq is **rational** if it possesses these two properties:

- (i) Completeness: $\forall x,y \in X$, $x \succsim y$ or $y \succsim x$. (rules out $x \not\succsim y$ and $y \not\succsim x$)
- (ii) Transitivity: $\forall x,y,z\in X$, if $x\succsim y$ and $y\succsim z$, then $x\succsim z$.

Question. In the example above, which property does Alice's preference relation violate?

Question. In the example above, which property does Alice's preference relation violate?

Answer: Transitivity.

The first two bullet points

- "Hot and Dry Noodles" > "Doupi" (dòu pí)
- "Doupi" > "Xiaolongbao" (xião lóng bāo)

implies "Hot and Dry Noodles" > "Xiaolongbao"

which contradicts "Xiaolongbao" \(\subseteq \text{"Hot and Dry Noodles" } \) 8

Implications of Rational Preference on \succ and \sim

The following propositions follow from the definition of *rational* preference.

Proposition 1.B.1. *If* \succeq *is rational, then:*

- (i) \succ is both irreflexive ($x \succ x$ never holds) and transitive.
- (ii) \sim is reflexive $(x \sim x)$, transitive and symmetric (if $x \sim y$, then $y \sim x$).
- (iii) if $x \succ y \succsim z$, then $x \succ z$. (slightly stronger than transitivity in (i))

Definition 1.B.2. A function $u:X\to\mathbb{R}$ is a utility function representing preference relation \succsim if

$$x \gtrsim y \iff u(x) \ge u(y) \text{ for all } x, y \in X.$$
 (1)

The utility function is nothing but assigning each choice x with a number u(x). Obviously, the function u satisfying Condition (1) is not unique.

Example. $u(x) \ge u(y) \iff \alpha u(x) \ge \alpha u(y)$ for all $\alpha > 0$.

Exercise. Show that if $f: \mathbb{R} \to \mathbb{R}$ is a **strictly increasing** function and $u: X \to \mathbb{R}$ is a utility function representing preference relation \succsim , then the function $v: X \to \mathbb{R}$ defined by v(x) = f(u(x)) is also a utility function representing preference relation \succsim .

Question. When can a preference relation be represented

by a utility function?

Question. When can a preference relation be represented by a utility function?

Answer: Only if the preference relation is rational. See the next proposition.

Proposition 1.B.2. If the preference relation \succeq can be represented by a utility function (i.e. $\exists u(\cdot) \text{ s.t. } u(x) \geq u(y)$ iff $x \succeq y$), then \succeq is rational (i.e. complete & transitive).

Question. If \succsim is rational, does there exist a utility func-

tion u representing \gtrsim ?

Question. If \succsim is rational, does there exist a utility function u representing \succsim ?

Answer: Not always. Rationality is just a necessary condition for the existence of a utility representation, but not sufficient. See the counterexample below.

Lexicographic Preference

Definition (Lexicographic Preference). Let $X=\mathbb{R}^2$. The preference relation \succsim is a *lexicographic preference* if for all $x,y\in X$, $x\succsim y$ whenever (i) $x_1>y_1$ or (ii) $x_1=y_1$ and $x_2\ge y_2$.

Claim. The lexicographic preference on \mathbb{R}^2 do *not* have a utility representation.

Example of Lexicographic Preference

Alice is considering buying a new phone. The relevant attributes include brand name, price, CPU, and so on. For simplicity, suppose Alice only cares about the brand (Apple or Huawei) and price. Alice is a Apple fan and strictly prefers an iPhone to a Huawei Phone regardless of the price. For Alice,

$$(\mathsf{Apple}, 5000) \succ (\mathsf{Apple}, 8000) \succ (\mathsf{Huawei}, 5000).$$

Remark. If X is **finite** and \succsim is a rational preference relation on X, then there is a utility function $u:X\to R$ that represents \succsim .

1.C. Choice Rules

A *choice structure* $(\mathcal{B}, C(\cdot))$ consists of two ingredients:

- (i) $\mathscr B$ is a family (a set) of nonempty subsets of X: that is, every $B\in\mathscr B$ is a set $B\subset X$.
 - ullet In consumer theory, B are budget sets.
 - ullet needs NOT to include all possible subsets of X.
- (ii) $C(\cdot)$ is a choice rule that assigns a nonempty subset of chosen elements $C(B) \subset B$ for every $B \in \mathcal{B}$.
 - ullet C(B) is a set of acceptable alternatives.

Choice Rules

Example 1.C.1. $X = \{x, y, z\}, \mathscr{B} = \{\{x, y\}, \{x, y, z\}\}$

Choice Structure 1 $(\mathcal{B}, C_1(\cdot))$:

$$C_1(\{x,y\}) = \{x\}, C_1(\{x,y,z\}) = \{x\}$$

Choice Structure 2 $(\mathcal{B}, C_2(\cdot))$:

$$C_2(\{x,y\}) = \{x\}, C_2(\{x,y,z\}) = \{x,y\}$$

Under $(\mathcal{B}, C_2(\cdot))$, y is acceptable only if z is available.

Choice Rules

You might find the choice structure 2 unreasonable.

Consider the following conversation.

Waiter: Coffee or Tea? Customer: Coffee, please.

Waiter: Sure. Oh sorry, actually we also serve coke. Do

you want some coke?

Customer: Since coke is available, I'd prefer tea rather than

coffee.

Weak Axiom of Revealed Preference (W.A.R.P)

Definition 1.C.1. The choice structure $(\mathcal{B}, C(\cdot))$ satisfies the weak axiom of revealed preference (W.A.R.P) if the following property holds:

If for some $B\in \mathscr{B}$ with $x,y\in B$ we have $x\in C(B)$, then for any $B'\in \mathscr{B}$ with $x,y\in B'$ and $y\in C(B')$, we must also have $x\in C(B')$.

Weak Axiom of Revealed Preference (W.A.R.P)

In the last example, $(\mathcal{B}, C_2(\cdot))$ violates W.A.R.P since $y \in C_2(\{x,y,z\})$, $x,y \in \{x,y\}$, $x \in C_2(\{x,y\})$ but $y \notin C_2(\{x,y\})$.

[Think of $\{x,y,z\}$ as B and $\{x,y\}$ as B' in Definition 1.C.1.]

IDEA: Agent's choice between \boldsymbol{x} and \boldsymbol{y} should not be affected by irrelevant options/alternatives.

Revealed Preference: Preference inferred from/ revealed through Choice

Definition 1.C.2. Given a choice structure $(\mathcal{B}, C(\cdot))$, the revealed preference relation \succsim^* is defined by

$$x \succsim^* y \iff \exists B \in \mathscr{B} \text{ s.t. } x,y \in B \text{ and } x \in C(B).$$

 $x \succsim^* y$ reads "x is revealed at least as good as y"

Revealed Preference

- $x \succ^* y$: $\exists B \in \mathcal{B} \text{ s.t. } x,y \in B \text{ and } x \in C(B), \text{ and } y \notin C(B). \text{ (}$ "x is revealed preferred to y")
- \succsim^* needs not to be complete or transitive.
- ullet "Revealed preference" is defined reference to B. (Compare with "preference")
- Restatement of W.A.R.P: If $x \succsim^* y$, then $y \not\succ^* x$.

Revealed Preference

Example 1.C.2. Recall Example 1.C.1.

 $(\mathscr{B}, C_1(\cdot))$: $x \succ^* y$ and $x \succ^* y$, $x \succ^* z$

 $(\mathscr{B},C_2(\cdot))\colon\thinspace x\succ^* y \text{ and } y\succsim^* x \implies \text{contradicts W.A.R.P}$

Useful alternative statements of W.A.R.P

Restatement of W.A.R.P 1. $x, y \in B$, $x \in C(B)$, $y \in C(B')$ & $x \notin C(B')$, then $x \notin B'$.

Proof. Proof by contradiction. If $x \in B'$ & $y \in C(B')$, W.A.R.P $\implies x \in C(B')$.

Restatement of W.A.R.P 2. Suppose that $B, B' \in \mathcal{B}$, that $x,y \in B$, and that $x,y \in B'$. Then if $x \in C(B)$ and $y \in C(B')$, we must have $\{x,y\} \subset C(B)$ and $\{x,y\} \subset C(B')$.

The proof is left as an exercise.

1.D. Relationship between Preference Relations & Choice Rules

More precisely, we want to know the relationship between rational preference and W.A.R.P.

- (i) Does Rational Preference imply W.A.R.P?
- (ii) Does W.A.R.P imply Rational Preference?

1.D. Relationship between Preference Relations & Choice Rules

More precisely, we want to know the relationship between rational preference and W.A.R.P.

- (i) Does Rational Preference imply W.A.R.P? (Yes)
- (ii) Does W.A.R.P imply Rational Preference? (Maybe)

Consider rational preference \succeq on X.

Define: $C^*(B, \succeq) = \{x \in B : x \succeq y \text{ for every } y \in B\}$

- Elements of $C^*(B, \succsim)$ are DM's most preferred alternatives in B.
- Assumption: $C^*(B, \succeq)$ is nonempty for all $B \in \mathcal{B}$.

Remark. If X is **finite**, then any rational preference relation generates a nonempty choice rule.

The proof is left as an exercise.

We say that the preference \succsim *generates* the choice structure $(\mathscr{B}, C^*(\cdot, \succsim)).$

Proposition 1.D.1. Suppose \succeq is a rational preference relation. Then the choice structure generated by \succeq , $(\mathscr{B}, C^*(\cdot, \succeq))$ satisfies W.A.R.P.

Definition 1.D.1. Given a choice structure $(\mathcal{B}, C(\cdot))$, we say that the rational preference relation \succsim rationalizes $C(\cdot)$ relative to \mathcal{B} if $C(B) = C^*(B, \succsim)$ for all $B \in \mathcal{B}$, that is, if \succsim generates the choice structure $(\mathcal{B}, C(\cdot))$.

- If a rational preference relation rationalizes the choice rule, we can interpret the DM's choices as if she were a preference maximizer.
- 2. In general, there may be more than one rationalizing preference relation \succsim for a given choice structure $(\mathscr{B}, C(\cdot))$.

Example.
$$X = \{x, y\}, \mathcal{B} = \{\{x\}, \{y\}\},\$$

 $C(\{x\}) = \{x\}, C(\{y\}) = \{y\}.$

Example 1.D.1. $X = \{x, y, z\}$,

$$\mathscr{B} = \{\{x, y\}, \{y, z\}, \{x, z\}\}^{1},$$

$$C(\{x,y\}) = \{x\}, C(\{y,z\}) = \{y\}, C(\{x,z\}) = \{z\}.$$

This choice structure satisfies the W.A.R.P.

However, it cannot be rationalized by a rational preference.

Remark. W.A.R.P is defined by \mathscr{B} . And the choice is not challenged by having to choose from $\{x,y,z\}$.

 $^{{}^{1}\{}x,y,z\}$ is not empirically relevant.

Proposition 1.D.2. If $(\mathcal{B}, C(\cdot))$ is a choice structure such that

- (i) the W.A.R.P is satisfied, $[x \succsim^* y$, then $y \not\succ^* x]$
- (ii) $\mathscr B$ includes all subsets of X of up to three elements, then \exists rational \succsim that rationalizes $C(\cdot)$ relative to $\mathscr B$, i.e.,

$$C(B) = C^*(B, \succeq), \forall B \in \mathscr{B}.$$

Furthermore, this rational preference relation is unique.

Summary of Chapter 1

- Preference relation \succeq is binary relation on choice set X.
- ullet is rational if Completeness & Transitivity.
- Choice function $C(\cdot)$ is defined on \mathscr{B} , NOT on X. (Assumptions: W.A.R.P & $C(\cdot) \neq \varnothing$)
- Rational Preference implies W.A.R.P.

But for W.A.R.P to imply Rational Preference, it requires $C(\cdot) \neq \emptyset$ and that $\mathscr B$ includes all 2 & 3-element subsets of X.