SESSION 13 DATA VISUALIZATION 1

R FOR SOCIAL DATA SCIENCE

JEFFREY ZIEGLER, PHD

ASSISTANT PROFESSOR IN POLITICAL SCIENCE & DATA SCIENCE TRINITY COLLEGE DUBLIN

FALL 2022

ROAD MAP FOR TODAY

Last week:

- Data input and output
- Data frames and alternatives
- 'tidyverse' packages
- Working with tabular data
- Summary statistics

This time:

- Effectively tell a story with visuals
- Plotting in base R

PRINCIPALS OF "GOOD" DATA VIS - TUFTE

- "Show" data
- Think about substance rather than about methodology, graphic design, technology, etc.
- Avoid distorting data
- Present many numbers (info) in a small space
- Make large data sets coherent
- Encourage eye to compare different pieces of data
- Reveal data at several levels of detail
- Integrate statistical and verbal descriptions of a data set

SCATTERPLOTS

Scatter plot can be created using plot(x, y)

```
# Plot with main and axis titles
# Change point shape (pch = 19) and remove frame
plot(inc_local$presvote, inc_local$voteshare,
    main = "Presidential v Congressional vote within district",
    xlab = "Presidential vote share", ylab = "Congressional vote
    share", pch = 19, frame = F)
```


SCATTERPLOTS

- lm() can be used to fit linear models between y and x
- Regression line can be added on the plot using abline(), which takes output of lm() as an argument

```
abline(lm(voteshare ~ presvote, data = inc_local), col = "red")
```


SCATTERPLOTS

- Can also add a smoothing line using loess()
- lines(lowess(inc_local\$presvote, inc_local\$voteshare), col = "blue")

SCATTERPLOTS OF MANY VARIABLES

■ Can produce a matrix of scatter plots with pairs()

```
my_cols <- c("red", "blue")
pairs(inc_local[,15:ncol(inc_local)], pch = 19, cex = 0.15,
col = my_cols[as.factor(inc_local$south)],
lower.panel=NULL)</pre>
```


HISTOGRAMS

Summarize distribution of variable as count

```
hist(inc_local$difflog , main = "", xlab = " 1 hi
    Difference in candidate spending")
```

hist(inc_local\$difflog, main = "", xlab = "
 Difference in candidate spending",
 breaks=50)

DENSITY PLOT

Summarize distribution of variable as proportion

BAR CHART

Summarize count or proportion that you've already calculated

BOX PLOT

Summarize distribution (mean, quartiles, outliers) of variable by group

LINE CHART

Type: character indicating type of plotting

- "p" for points
- "l" for lines
- "b" for both points and lines
- "c" for empty points joined by lines
- "o" for overplotted points and lines
- "s" and "S" for stair steps
- "n" does not produce any points or lines
- lty: line types
 - Line types can either be specified as
 - Integer (0=blank, 1=solid (default), 2=dashed, 3=dotted, 4=dotdash, 5=longdash, 6=twodash), or
 - Character strings "blank", "solid", "dashed", "dotted", "dotdash", "longdash", or "twodash"

11 | 19

LINE CHART

```
south_year_avg <- inc_local %%
group_by(south, year) %%
summarize(avg = mean(difflog))

plot(south_year_avg[1:10,]$vear, south_year_avg[1:10,]$avg, type = "b", frame = F, pch =
20, xlab = "Year", ylab = "Average difference in spending in North")</pre>
```


LINE CHART

SEGMENTS

```
plot(o, o, col = "white", xlab = "", ylab = "")
segments(xo = - 1, yo = - 0.5, x1 = 0.5, y1 = 0)
```


X AND Y AXES

my_new\$x

15

PLOT LABELS

```
1 text(my_new$x, 2, my_new$x2,
2 cex=0.65, pos=1,col="black")
```


SAVE PLOTS

There are two ways to think about saving your plots:

- If you're working in RMarkdown, just "knit" your file and your plots will show up as part of your HTML, Word, or PDF document
- If need to save an individual plot for some other purpose (e.g. putting it in a report created in Latex, Powerpoint, Word), use pdf() and dev.off() functions

```
pdf("../graphics/histogram.pdf")
hist(inc_local$difflog, main = "", xlab = "Difference in candidate spending")
dev.off()
```

TUTORIAL - PLOTTING GROUPS DIFFERENCES

We're interested in whether women promote different policies than men?

- Load in this dataset on drinking water facilities and a randomized policy experiment in India, where since the mid-1990s, 13 of village council heads have been randomly reserved for women
- Estimate the effect of the reservation policy on the number of new or repaired drinking water facilities in the villages
 - ► Hint: t.test(y x, alternative="two.sided")
- Effectively plot this difference

OVERVIEW

This time:

■ Plotting in base R

Next time:

■ Plotting in ggplot