Trigonometry Cram Sheet

October 27, 2015

Contents			4	Tables		6
1	Definition 1.1 Extensions to Angles > 90°	2 2			Exact Values of Trigonometric Functions	7
	1.2 The Unit Circle	2	5	Grap	hs	7
	1.3 Degrees and Radians	2		5.1 <i>i</i>	$y = \sin x \dots \dots \dots$	7
	1.4 Signs and Variations	2		-	$y = \cos x \dots \dots \dots$	7
2	Properties and General Forms	3		-	$y = \tan x$	7
	2.1 Properties	3			•	
	$2.1.1 \sin x \dots \dots \dots \dots$	3	6	Inver	se Trigonometric Functions	8
	$2.1.2 \cos x \dots \dots \dots \dots \dots \dots$	3		6.1 I	Principal Values	8
	$2.1.3 \tan x \dots \dots \dots \dots \dots$	3		6.2 I	Identities	8
	$2.1.4 \csc x \dots \dots \dots \dots$	3		6	3.2.1 Reciprocal Identities	8
	$2.1.5 \sec x \dots \dots \dots \dots$	3		ϵ	3.2.2 Parity Identities	8
	$2.1.6 \cot x \dots \dots \dots \dots$	3		e	3.2.3 Pythagorean Identities (sort of)	8
	2.2 General Forms of Trigonometric Functions	3			5.2.4 Sum and Difference	8
3	Identities	4				
	3.1 Basic Identities	4	7	Relat	tionships Between Sides and Angles	8
	3.1.1 Reciprocal Identities	4		7.1 I	Law of Sines	8
	3.1.2 Ratio Identities	4		7.2 I	Law of Cosines	8
	3.1.3 Pythagorean Identities	4		7.3 I	Law of Tangents	8
	3.1.4 Co-function Identities	4		7.4 I	Law of Cotangents	ç
	3.1.5 Parity Identities	4			Mollweide's Formula	6
	3.2 Sum and Difference	4			Stewart's Theorem	9
	3.3 Double Angle	4				
	3.4 Half Angle	4	8	Solvi	ng Triangles	9
	3.5 Multiple Angle	4		8.1	AAA Triangle	9
	3.6 Power Reduction	5		8.2 A	AAS/ASA Triangle	9
	3.7 Product to Sum	5 5			SAS Triangle	ç
	3.9 Other Related Identities	5 5			SSS Triangle	g
	3 10 Identities without Variables	5			SSA Triangle	10

1 Definition

Triangle ABC has a right angle at C and sides of length a, b, c. The trigonometric functions of angle A are defined as follows:

1.
$$\sin A = \frac{a}{c} = \frac{\text{opposite}}{\text{hypotenuse}}$$

2.
$$\cos A = \frac{b}{c} = \frac{\text{adjacent}}{\text{hypotenuse}}$$

3.
$$\tan A = \frac{a}{b} = \frac{\text{opposite}}{\text{adjacent}}$$

4.
$$\csc A = \frac{b}{a} = \frac{\text{hypotenuse}}{\text{opposite}}$$

5.
$$\sec A = \frac{c}{a} = \frac{\text{hypotenuse}}{\text{adjacent}}$$

6.
$$\cot A = \frac{b}{a} = \frac{\text{adjacent}}{\text{opposite}}$$

1.1 Extensions to Angles $> 90^{\circ}$

A point P in the Cartesian plane has coordinates (x,y), where x is considered as positive along OX and negative along OX', while y is considered as positive along OY' and negative along OY. The distance from origin O to point P is positive and denoted by $r = \sqrt{x^2 + y^2}$. The angle A described counterclockwise from OX is considered positive. If it is described clockwise from OX it is considered negative.

For an angle A in any quadrant, the trigonometric functions of A are defined as follows:

$$1. \sin A = \frac{y}{r}$$

$$2. \cos A = \frac{x}{r}$$

3.
$$\tan A = \frac{y}{x}$$

4.
$$\csc A = \frac{r}{y}$$

5.
$$\sec A = \frac{r}{x}$$

6.
$$\cot A = \frac{x}{y}$$

1.2 The Unit Circle

1.3 Degrees and Radians

A radian is that angle θ subtended at center O of a circle by an arc MN equal to the radius r. Since 2π radians = 360° we have:

 $1 \text{ radian} = 180^{\circ}/\pi = 57.29577951308232...^{\circ}$

 $1^{\circ} = \pi/180 \, \text{radians} = 0.017453292519943 \dots \, \text{radians}$

1.4 Signs and Variations

Quadrant	$\sin A$	$\cos A$	$\tan A$
I	+ (0,1)	+ (1,0)	$(0,\infty)$
II	+ (1,0)	(0,-1)	$(-\infty,0)$
III	(0,-1)	(-1,0)	$(0,\infty)$
IV	(-1,0)	+ (0,1)	$(-\infty,0)$

Quadrant	$\cot A$	$\sec A$	$\csc A$
I	$+$ $(\infty,0)$	$+$ $(1,\infty)$	$+$ $(\infty,1)$
II	$(0,-\infty)$	$ (\infty, -1)$	$+$ $(1,\infty)$
III	$+$ $(\infty,0)$	$(-1,\infty)$	$ (\infty, -1)$
IV	$(0,-\infty)$	$+$ $(\infty,1)$	$(-1,\infty)$

2 Properties and General Forms

2.1 Properties

2.1.1 $\sin x$

Domain: $\{x|x\in\mathbb{R}\}$ or $(-\infty,+\infty)$

Range: $\{y | -1 \le y \le 1\}$ or [-1, 1]

Period: 2π VA: none

x-intercepts: $k\pi$ where $k \in \mathbb{Z}$

 $\textbf{Parity:} \ \mathrm{odd}$

 $\mathbf{2.1.2} \quad \cos x$

Domain: $\{x|x\in\mathbb{R}\}$ or $(-\infty,+\infty)$

Range: $\{y | -1 \le y \le 1\}$ or [-1, 1]

Period: 2π

VA: none

x-intercepts: $\frac{\pi}{2} + k\pi$ where $k \in \mathbb{Z}$

Parity: even

2.1.3 tan *x*

Domain: $\left\{x \mid x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}\right\} \text{ or } \bigcup_{k \in \mathbb{Z}} \left(\frac{(k-1)\pi}{2}, \frac{(k+1)\pi}{2}\right)$

Range: $\{y|y\in\mathbb{R}\}$ or $(-\infty,+\infty)$

Period: π

VA: $x = \frac{\pi}{2} + k\pi$ where $k \in \mathbb{Z}$

x-intercepts: midway between asymptotes

Parity: odd

2.1.4 $\csc x$

Domain: $\{x | x \neq k\pi, k \in \mathbb{Z}\}$ or $\bigcup_{k \in \mathbb{Z}} (k\pi, (k+1)\pi)$

Range: $\{y|y \le 1 \cup y \ge 1\}$ or $(-\infty, -1] \cup [1, +\infty)$

Period: 2π

VA: $x = k\pi$ where $k \in \mathbb{Z}$

x-intercepts: none

Parity: odd

2.1.5 $\sec x$

Domain: $\left\{x|x\neq \frac{\pi}{2}+k\pi, k\in\mathbb{Z}\right\}$ or $\bigcup_{k\in\mathbb{Z}}\left(\frac{(k-1)\pi}{2}, \frac{(k+1)\pi}{2}\right)$

Range: $\{y|y \le 1 \cup y \ge 1\}$ or $(-\infty, -1] \cup [1, +\infty)$

Period: 2π

VA: $x = \frac{\pi}{2} + k\pi$ where $k \in \mathbb{Z}$

x-intercepts: none

Parity: even

2.1.6 $\cot x$

Domain: $\{x|x \neq k\pi, k \in \mathbb{Z}\}\ \text{or}\ \bigcup_{k \in \mathbb{Z}} (k\pi, (k+1)\pi)$

Range: $\{y|y\in\mathbb{R}\}$ or $(-\infty,+\infty)$

Period: π

VA: $x = k\pi$ where $k \in \mathbb{Z}$

x-intercepts: midway between asymptotes

Parity: odd

2.2 General Forms of Trigonometric Functions

Given some trigonometric function f(x), its general form is represented as y = Af(B(x - C)) + D, where its amplitude is |A|, its period is $\frac{2\pi}{|B|}$ or $\frac{\pi}{|B|}$ (for tangent and cotangent), its phase shift is C, and its vertical translation is D units upward (if D > 0) or D units downward (if D < 0). The maximum and minimum value for $\sin x$ and $\cos x$ is A + D and -A + D respectively.

3 Identities

3.1 Basic Identities

3.1.1 Reciprocal Identities

$$\csc \theta = \frac{1}{\sin \theta}; \ \sin \theta = \frac{1}{\csc \theta}$$

$$\sec \theta = \frac{1}{\cos \theta}; \cos \theta = \frac{1}{\sec \theta}$$

$$\cot \theta = \frac{1}{\tan \theta}; \ \tan \theta = \frac{1}{\cot \theta}$$

 $\sin\theta \csc\theta = \cos\theta \sec\theta = \tan\theta \cot\theta = 1$

3.1.2 Ratio Identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta}; \cos \theta = \frac{\sin \theta}{\tan \theta}; \sin \theta = \cos \theta \tan \theta$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}; \sin \theta = \frac{\cos \theta}{\cot \theta}; \cos \theta = \sin \theta \cot \theta$$

3.1.3 Pythagorean Identities

$$\sin^2 \theta + \cos^2 \theta = 1$$
; $\sin^2 \theta = 1 - \cos^2 \theta$; $\cos^2 \theta = 1 - \sin^2 \theta$

$$\tan^2 \theta + 1 = \sec^2 \theta$$
; $\tan^2 \theta = \sec^2 \theta - 1$; $\sec^2 \theta - \tan^2 \theta = 1$

$$\cot^2 \theta + 1 = \csc^2 \theta$$
: $\cot^2 \theta = \csc^2 \theta - 1$: $\csc^2 \theta - \cot^2 \theta = 1$

3.1.4 Co-function Identities

$$\sin\left(\frac{\pi}{2} - \theta\right) = -\sin\theta$$

$$\cos\left(\frac{\pi}{2} - \theta\right) = \cos\theta$$

$$\tan\left(\frac{\pi}{2} - \theta\right) = -\tan\theta$$

$$\csc\left(\frac{\pi}{2} - \theta\right) = -\csc\theta$$

$$\sec\left(\frac{\pi}{2} - \theta\right) = \sec\theta$$

$$\cot\left(\frac{\pi}{2} - \theta\right) = -\cot\theta$$

3.1.5 Parity Identities

$$\sin\left(-A\right) = -\sin A$$

$$\cos\left(-A\right) = \cos A$$

$$\tan\left(-A\right) = -\tan A$$

$$\csc\left(-A\right) = -\csc A$$

$$\sec(-A) = \sec A$$

$$\cot(-A) = -\cot A$$

3.2 Sum and Difference

$$\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta$$

$$\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta$$

$$\tan(\alpha \pm \beta) = \frac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha \tan\beta}$$

$$\cot(\alpha \pm \beta) = \frac{\cot\alpha \cot\beta \mp 1}{\cot\beta \pm \cot\alpha}$$

3.3 Double Angle

 $\sin 2\alpha = 2\sin \alpha \cos \alpha$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 1 - 2\sin^2 \alpha = 2\cos^2 \alpha - 1$$

$$\tan 2\alpha = \frac{2\tan\alpha}{1-\tan^2\alpha}$$

3.4 Half Angle

Let Q_n , where $n \in \{1, 2, 3, 4\}$, denote the set of all angles within the n^{th} quadrant of the Cartesian plane.

$$\sin\frac{\alpha}{2} = \begin{cases} \sqrt{\frac{1-\cos\alpha}{2}} & \frac{\alpha}{2} \in (\mathcal{Q}_1 \cup \mathcal{Q}_2) \\ -\sqrt{\frac{1-\cos\alpha}{2}} & \frac{\alpha}{2} \in (\mathcal{Q}_3 \cup \mathcal{Q}_4) \end{cases}$$

$$\cos\frac{\alpha}{2} = \begin{cases} \sqrt{\frac{1+\cos\alpha}{2}} & \frac{\alpha}{2} \in (\mathcal{Q}_1 \cup \mathcal{Q}_4) \\ -\sqrt{\frac{1+\cos\alpha}{2}} & \frac{\alpha}{2} \in (\mathcal{Q}_2 \cup \mathcal{Q}_3) \end{cases}$$

$$\tan \frac{\alpha}{2} = \frac{\sin \alpha}{1 + \cos \alpha} = \frac{1 - \cos \alpha}{\sin \alpha} = \csc \alpha - \cot \alpha$$

3.5 Multiple Angle

$$\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha$$

$$\cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha$$

$$\tan 3\alpha = \frac{3\tan \alpha - \tan^3 \alpha}{1 - 3\tan^2 \alpha}$$

 $\sin 4\alpha = 4\sin \alpha \cos \alpha - 8\sin^3 \alpha \cos \alpha$

$$\cos 4\alpha = 8\cos^4 \alpha - 8\cos^2 \alpha + 1$$

$$\tan 4\alpha = \frac{4\tan \alpha - 4\tan^3 \alpha}{1 - 6\tan^2 \alpha + \tan^4 \alpha}$$

$$\sin\left(n\alpha\right) = \sum_{i=0}^{n} \binom{n}{i} \cos^{i} \alpha \sin^{n-i} \alpha \sin\left(\frac{(n-i)\pi}{2}\right)$$

$$\cos\left(n\alpha\right) = \sum_{i=0}^{n} \binom{n}{i} \cos^{i}\alpha \sin^{n-i}\alpha \cos\left(\frac{(n-i)\pi}{2}\right)$$

3.6 Power Reduction

$$\sin^2\theta = \frac{1 - \cos 2\theta}{2}$$

$$\cos^2\theta = \frac{1 + \cos 2\theta}{2}$$

$$\tan^2 \theta = \frac{1 - \cos 2\theta}{1 + \cos 2\theta}$$

$$\sin^3 \theta = \frac{3\sin \theta - \sin 3\theta}{4}$$

$$\cos^3 \theta = \frac{3\cos\theta + \cos 3\theta}{4}$$

$$\sin^4 \theta = \frac{3 - 4\cos 2\theta + \cos 4\theta}{8}$$

$$\cos^4 \theta = \frac{3 + 4\cos 2\theta + \cos 4\theta}{8}$$

$$\sin^5 \theta = \frac{10\sin\theta - 5\sin 3\theta + \sin 5\theta}{16}$$

$$\cos^5 \theta = \frac{10\cos\theta + 5\cos 3\theta + \cos 5\theta}{16}$$

3.7 Product to Sum

$$\sin \alpha \cos \beta = \frac{1}{2} \left[\sin (\alpha + \beta) + \sin (\alpha - \beta) \right]$$

$$\cos \alpha \sin \beta = \frac{1}{2} \left[\sin \left(\alpha + \beta \right) - \sin \left(\alpha - \beta \right) \right]$$

$$\cos \alpha \cos \beta = \frac{1}{2} \left[\cos (\alpha + \beta) + \cos (\alpha - \beta) \right]$$

$$\sin \alpha \sin \beta = \frac{1}{2} [\cos (\alpha + \beta) - \cos (\alpha - \beta)]$$

3.8 Sum to Product

$$\sin\theta\pm\sin\varphi=2\sin\frac{\theta\pm\varphi}{2}\cos\frac{\theta\mp\varphi}{2}$$

$$\cos\theta + \cos\varphi = 2\cos\frac{\theta + \varphi}{2}\cos\frac{\theta - \varphi}{2}$$

$$\cos \theta - \cos \varphi = -2 \sin \frac{\theta + \varphi}{2} \sin \frac{\theta - \varphi}{2}$$

3.9 Other Related Identities

- If $x + y + z = \pi$, then $\sin 2x + \sin 2y + \sin 2z = 4 \sin x \sin y \sin z$.
- Triple Tangent Identity. If $x + y + z = \pi$, then $\tan x + \tan y + \tan z = \tan x \tan y \tan z$.
- Triple Cotangent Identity. If $x + y + z = \frac{\pi}{2}$, then $\cot x + \cot y + \cot z = \cot x \cot y \cot z$.
- Ptolemy's Theorem. If $w + x + y + z = \pi$, then $\sin(w+x)\sin(x+y) = \sin w \sin y + \sin x \sin z$.

- $\cot x \cot y + \cot y \cot z + \cot z \cot x = 1$
- $\tan x + \sec x = \tan\left(\frac{x}{2} + \frac{\pi}{4}\right)$
- $\sum_{i=0}^{n} \sin(\varphi + i\alpha) = \frac{\sin\frac{(n+1)\alpha}{2}\sin(\varphi + \frac{n\alpha}{2})}{\sin\frac{\alpha}{2}}$
- $\sum_{i=0}^{n} \cos(\varphi + i\alpha) = \frac{\sin\frac{(n+1)\alpha}{2}\cos(\varphi + \frac{n\alpha}{2})}{\sin\frac{\alpha}{2}}$
- $\bullet \sum_{n=1}^{\infty} \prod_{m=1}^{n} \cos \frac{m\pi}{2n+1} = 1$

3.10 Identities without Variables

- $\cos 20^{\circ} \cdot \cos 40^{\circ} \cdot \cos 80^{\circ} = \frac{1}{8}$
- $\sin 20^{\circ} \cdot \sin 40^{\circ} \cdot \sin 80^{\circ} = \frac{\sqrt{3}}{8}$
- $\cos 24^{\circ} + \cos 48^{\circ} + \cos 96^{\circ} + \cos 168^{\circ} = \frac{1}{2}$
- $\cos \frac{2\pi}{21} + \cos \left(2 \cdot \frac{2\pi}{21}\right) + \cos \left(4 \cdot \frac{2\pi}{21}\right) + \cos \left(5 \cdot \frac{2\pi}{21}\right) + \cos \left(8 \cdot \frac{2\pi}{21}\right) + \cos \left(10 \cdot \frac{2\pi}{21}\right) = \frac{1}{2}$
- $\cos \frac{\pi}{5} = \cos 36^{\circ} = \frac{1}{4}(\sqrt{5} + 1) = \frac{1}{2}\varphi$
- $\sin \frac{\pi}{10} = \sin 18^\circ = \frac{1}{4}(\sqrt{5} 1) = \frac{1}{2}\varphi^{-1}$
- $\sin^2 18^\circ + \sin^2 30^\circ = \sin^2 36^\circ$

4 Tables

4.1 Exact Values of Trigonometric Functions

A°	A rad	$\sin A$	$\cos A$	$\tan A$	$\cot A$	$\sec A$	$\csc A$
0°	0	0	1	0	∞	1	∞
15°	$\pi/12$	$\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	$\frac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)$	$2-\sqrt{3}$	$2+\sqrt{3}$	$\sqrt{6}-\sqrt{2}$	$\sqrt{6} + \sqrt{2}$
30°	$\pi/6$	$\frac{1}{2}$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{3}\sqrt{3}$	$\sqrt{3}$	$\frac{2}{3}\sqrt{3}$	2
45°	$\pi/4$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
60°	$\pi/3$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{1}{3}\sqrt{3}$	2	$\frac{2}{3}\sqrt{3}$
75°	$5\pi/12$	$\frac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)$	$\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	$2+\sqrt{3}$	$2-\sqrt{3}$	$\sqrt{6} + \sqrt{2}$	$\sqrt{6}-\sqrt{2}$
90°	$\pi/2$	1	0	$\pm\infty$	0	$\pm\infty$	1
105°	$7\pi/12$	$\frac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)$	$-\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	$-(2+\sqrt{3})$	$-\left(2-\sqrt{3}\right)$	$-\left(\sqrt{6}+\sqrt{2}\right)$	$\sqrt{6}-\sqrt{2}$
120°	$2\pi/3$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}$	$-\sqrt{3}$	$-\frac{1}{3}\sqrt{3}$	-2	$\frac{2}{3}\sqrt{3}$
135°	$3\pi/4$	$\frac{1}{2}\sqrt{2}$	$-\frac{1}{2}\sqrt{2}$	-1	-1	$-\sqrt{2}$	$\sqrt{2}$
150°	$5\pi/6$	$\frac{1}{2}$	$-\frac{1}{2}\sqrt{3}$	$-\frac{1}{3}\sqrt{3}$	$-\sqrt{3}$	$-\frac{2}{3}\sqrt{3}$	2
165°	$11\pi/12$	$\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	$-\frac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)$	$-(2-\sqrt{3})$	$-\left(2+\sqrt{3}\right)$	$-(\sqrt{6}-\sqrt{2})$	$\sqrt{6} + \sqrt{2}$
180°	π	0	-1	0	$\mp\infty$	-1	$\pm \infty$
195°	$13\pi/12$	$-\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	$-\frac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)$	$2-\sqrt{3}$	$2+\sqrt{3}$	$-(\sqrt{6}-\sqrt{2})$	$-(\sqrt{6}+\sqrt{2})$
210°	$7\pi/6$	$\frac{1}{2}$	$-\frac{1}{2}\sqrt{3}$	$\frac{1}{3}\sqrt{3}$	$\sqrt{3}$	$-\frac{2}{3}\sqrt{3}$	-2
225°	$5\pi/4$	$-\frac{1}{2}\sqrt{2}$	$-\frac{1}{2}\sqrt{2}$	1	1	$-\sqrt{2}$	$-\sqrt{2}$
240°	$4\pi/3$	$-\frac{1}{2}\sqrt{3}$	$-\frac{1}{2}$	$\sqrt{3}$	$\frac{1}{3}\sqrt{3}$	-2	$-\frac{2}{3}\sqrt{3}$
255°	$17\pi/12$	$-\frac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)$	$-\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	$2+\sqrt{3}$	$2-\sqrt{3}$	$-\left(\sqrt{6}+\sqrt{2}\right)$	$-(\sqrt{6}-\sqrt{2})$
270°	$3\pi/2$	-1	0	$\pm\infty$	0	$\mp\infty$	-1
285°	$19\pi/12$	$-\frac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)$	$\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	$-(2+\sqrt{3})$	$-\left(2-\sqrt{3}\right)$	$\sqrt{6} + \sqrt{2}$	$-(\sqrt{6}-\sqrt{2})$
300°	$5\pi/3$	$-\frac{1}{2}\sqrt{3}$	$\frac{1}{2}$	$-\sqrt{3}$	$-\frac{1}{3}\sqrt{3}$	2	$-\frac{2}{3}\sqrt{3}$
315°	$7\pi/4$	$-\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{2}$	-1	-1	$\sqrt{2}$	$-\sqrt{2}$
330°	$11\pi/6$	$-\frac{1}{2}$	$\frac{1}{2}\sqrt{3}$	$-\frac{1}{3}\sqrt{3}$	$-\sqrt{3}$	$\frac{2}{3}\sqrt{3}$	-2
345°	$23\pi/12$	$-\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	$\frac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)$	$-(2+\sqrt{3})$	$-(2+\sqrt{3})$	$\sqrt{6}-\sqrt{2}$	$-(\sqrt{6}+\sqrt{2})$
360°	2π	0	1	0	$\mp\infty$	1	$\mp\infty$

4.2 Relations Between Trig Functions

	$\sin \theta = u$	$\cos \theta = u$	$\tan \theta = u$	$\csc \theta = u$	$\sec \theta = u$	$\cot \theta = u$
$\sin \theta$	u	$\sqrt{1-u^2}$	$\frac{u}{\sqrt{1+u^2}}$	$\frac{1}{u}$	$\frac{\sqrt{u^2 - 1}}{u}$	$\frac{1}{\sqrt{1+u^2}}$
$\cos \theta$	$\sqrt{1-u^2}$	u	$\frac{1}{\sqrt{1+u^2}}$	$\frac{\sqrt{u^2 - 1}}{u}$	$\frac{1}{u}$	$\frac{u}{\sqrt{1+u^2}}$
$\tan \theta$	$\frac{u}{\sqrt{1-u^2}}$	$\frac{\sqrt{1-u^2}}{u}$	u	$\frac{1}{\sqrt{u^2 - 1}}$	$\sqrt{u^2-1}$	$\frac{1}{u}$
$\csc \theta$	$\frac{1}{u}$	$\frac{1}{\sqrt{1-u^2}}$	$\frac{\sqrt{1+u^2}}{u}$	u	$\frac{u}{\sqrt{u^2 - 1}}$	$\sqrt{1+u^2}$
$\sec \theta$	$\frac{1}{\sqrt{1-u^2}}$	$\frac{1}{u}$	$\sqrt{1+u^2}$	$\frac{u}{\sqrt{u^2 - 1}}$	u	$\frac{\sqrt{1+u^2}}{u}$
$\cot \theta$	$\frac{\sqrt{1-u^2}}{u}$	$\frac{u}{\sqrt{1-u^2}}$	$\frac{1}{u}$	$\sqrt{u^2-1}$	$\frac{1}{\sqrt{u^2 - 1}}$	u

5 Graphs

$5.1 \quad y = \sin x$

$5.2 \quad y = \cos x$

$5.3 \quad y = \tan x$

6 Inverse Trigonometric Functions

If $x = \sin y$, then $y = \sin^{-1} x$, i.e. the angle whose sine is x or inverse sine of x, is a multiple-valued function of x which is a collection of single-valued functions called *branches*. Similarly, the other inverse trigonometric functions are multiple-valued.

For many purposes, a particular branch is required. This is called the *principal branch* and the values for this branch are called *principal values*.

6.1 Principal Values

Principal values for $x \ge 0$	Principal values for $x < 0$
$0 \le \sin^{-1} x \le \frac{\pi}{2}$	$-\frac{\pi}{2} \le \sin^{-1} x < 0$
$0 \le \cos^{-1} x \le \frac{\pi}{2}$	$\frac{\pi}{2} < \cos^{-1} x \le \pi$
$0 \le \tan^{-1} x < \frac{\pi}{2}$	$-\frac{\pi}{2} < \tan^{-1} x < 0$
$0 < \cot^{-1} x \le \frac{\pi}{2}$	$\frac{\pi}{2} < \cot^{-1} x < \pi$
$0 \le \sec^{-1} x < \frac{\pi}{2}$	$\frac{\pi}{2} < \sec^{-1} x \le \pi$
$0 < \csc^{-1} x \le \frac{\pi}{2}$	$-\frac{\pi}{2} \le \csc^{-1} x < 0$

6.2 Identities

In all cases it is assumed that principal values are used.

6.2.1 Reciprocal Identities

$$\csc^{-1} x = \sin^{-1} \left(\frac{1}{x}\right)$$

$$\sec^{-1} x = \cos^{-1} \left(\frac{1}{x}\right)$$

$$\cot^{-1} x = \tan^{-1} \left(\frac{1}{x} \right)$$

6.2.2 Parity Identities

$$\sin^{-1}(-x) = -\sin^{-1}x$$

$$\cos^{-1}(-x) = \pi - \cos^{-1}x$$

$$\tan^{-1}(-x) = -\tan^{-1}x$$

$$\csc^{-1}(-x) = -\csc^{-1}x$$

$$\sec^{-1}(-x) = \pi - \sec^{-1}x$$

$$\cot^{-1}(-x) = \pi - \cot^{-1}x$$

6.2.3 Pythagorean Identities (sort of)

$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$$
$$\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$$
$$\sec^{-1} x + \csc^{-1} x = \frac{\pi}{2}$$

6.2.4 Sum and Difference

$$\sin^{-1}\alpha \pm \sin^{-1}\beta = \sin^{-1}\left(\alpha\sqrt{1-\beta^2} \pm \beta\sqrt{1-\alpha^2}\right)$$
$$\cos^{-1}\alpha \pm \cos^{-1}\beta = \cos^{-1}\left(\alpha\beta \mp \sqrt{(1-\alpha^2)(1-\beta^2)}\right)$$
$$\tan^{-1}\alpha \pm \tan^{-1}\beta = \tan^{-1}\left(\frac{\alpha \pm \beta}{1 \mp \alpha\beta}\right)$$

7 Relationships Between Sides and Angles

7.1 Law of Sines

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$

Extended Law of Sines

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R,$$

where R is the circumradius of the triangle.

7.2 Law of Cosines

$$\cos \alpha = \frac{b^2 + c^2 - a^2}{2bc}; \ a = \sqrt{b^2 + c^2 - 2bc\cos\alpha}$$
$$\cos \beta = \frac{a^2 + c^2 - b^2}{2ac}; \ b = \sqrt{a^2 + c^2 - 2ac\cos\beta}$$
$$\cos \gamma = \frac{a^2 + b^2 - c^2}{2ab}; \ c = \sqrt{a^2 + b^2 - 2ab\cos\gamma}$$

7.3 Law of Tangents

$$\frac{a-b}{a+b} = \frac{\tan\frac{1}{2}(\alpha-\beta)}{\tan\frac{1}{2}(\alpha+\beta)}$$

$$\frac{b-c}{b+c} = \frac{\tan\frac{1}{2}(\beta - \gamma)}{\tan\frac{1}{2}(\beta + \gamma)}$$

$$\frac{c-a}{c+a} = \frac{\tan\frac{1}{2}(\gamma - \alpha)}{\tan\frac{1}{2}(\gamma + \alpha)}$$

Law of Cotangents

Let s be the semi-perimeter, that is, $s = \frac{(a+b+c)}{2}$, and r be the radius of the inscribed circle, then

$$\frac{\cot\left(\frac{\alpha}{2}\right)}{s-a} = \frac{\cot\left(\frac{\beta}{2}\right)}{s-b} = \frac{\cot\left(\frac{\gamma}{2}\right)}{s-c} = \frac{1}{r}$$
 and furthermore that the inradius is given by $r=$

 $\sqrt{\frac{(s-a)(s-b)(s-c)}{s}}$.

Mollweide's Formula

Each of these identities uses all six parts of the triangle—the three angles and the lengths of the three sides.

$$\frac{a+b}{c} = \frac{\cos\left(\frac{\alpha-\beta}{2}\right)}{\sin\left(\frac{\gamma}{2}\right)}$$

$$\frac{a-b}{c} = \frac{\sin\left(\frac{\alpha-\beta}{2}\right)}{\cos\left(\frac{\gamma}{2}\right)}$$

Stewart's Theorem 7.6

Let D be a point in \overline{BC} of $\triangle ABC$. If |BD| = m, |CD| = n, and |AD| = d, then $b^2m + c^2n = a(d^2 + mn)$.

Solving Triangles 8

AAA Triangle

1. Write "no solution" as your answer.

8.2 AAS/ASA Triangle

- 1. Solve for the missing angle.
- 2. Use the Law of Sines twice for the other two sides.

SAS Triangle

- 1. Use the Law of Cosines for the other non-included angle.
- 2. Use the Law of Sines for the missing side.
- 3. Solve for the missing angle.

8.4 SSS Triangle

- 1. Use the Law of Cosines twice for the two angles.
- 2. Solve for the missing angle.

8.5 SSA Triangle

This is the ambiguous case. There could be either only one solution, two solutions, or even none at all.

When α is acute

0 < a < h	a = h	a > b	h < a < b
A R	b ha A B	b/h a A B	A Jaha B
0	1	1	2

When α is obtuse

$0 < a \le b$	a > b
0	1