

準仮想化ページフォルトを用いたポストコピー型 ライブマイグレーションの性能向上手法

広渕崇宏* 山幡為佐久** 伊藤智*

* 産業技術総合研究所

** VA Linux Systems Japan

コンピュータシステムシンポジウム2012 2012年12月6日

本スライドは2012年12月当時のものです。

その後、実装を改良し包括的な性能評価を行いました。下記の論文をご参照ください。 Qemu 2.5 + Linux Kernel 4.3以降においては、 ポストコピー型ライブマイグレーションの機能が標準的に組み込まれています。

Postcopy Live Migration with Guest-cooperative Page Faults,

Takahiro Hirofuchi, Isaku Yamahata, Satoshi Itoh,

IEICE Transactions on Information and Systems, pp.2159-2167, Vol.E98-D, No.12, IEICE, Dec 2015

DOI: 10.1587/transinf.2015PAP0011

PDF (Full Text)

背景

- プレコピー型ライブマイグレーション
 - 今日一般的に使用されている方式
 - メモリを宛先に転送してから実行ホストを切り替え
- ポストコピー型ライブマイグレーション
 - 実行ホストを切り替えてからメモリを転送
 - 短時間かつ必ず一定時間で移動が完了する
 - 積極的なサーバコンソリデーションで省エネ
 - ハードウェアメンテナンスを容易化
 - 「Yabusame」をQemu/KVM向けに開発中
 - でも、性能低下してしまう場合がある
 - VMが未転送のメモリページにアクセスすると、 ゲストOSを一時的に止めないといけない

本研究の貢献

- ポストコピー型ライブマイグレーションの性能 低下を緩和する手法を提案
 - VMが未転送のメモリページにアクセスしたら、ゲストOS全体を止めるのではなく、そのページにアクセスしたゲストOS上のプロセスのみ止め、他のプロセスの実行は継続する仕組み
- 評価の結果、性能低下の緩和効果が確認できた

発表のながれ

- ポストコピー型ライブマイグレーション
 - 動作原理
 - 本研究で取り組む課題
- 提案手法
 - 設計
 - 動作概要
 - 実装
- 評価
 - 評価実験
- 関連研究
- 開発状況
- まとめ

ポストコピー型の動作概要(1)

実行ホストを切り替えた後にメモリーをコピー

停止

1.移動元でVMを停止

- 2. レジスタとデバイス状態を 宛先にコピー
- 3. 宛先でVM実行を再開
- 4. 必要なメモリページを オンデマンドに取得

ポストコピー型の動作概要(2)

実行ホストを切り替えた後にメモリーをコピー

- 1.移動元でVMを停止
- 2. CPUレジスタとデバイス状態を宛先にコピー
- 3. 宛先でVM実行を再開
- 4. 必要なメモリページを オンデマンドに取得

CPUレジスタとデバイス状態をコピー VGAデバイス無しならたった256KB => ほぼ瞬間的な実行ホスト切り替えが可能

ポストコピー型の動作概要(3)

実行ホストを切り替えた後にメモリーをコピー

ポストコピー型の動作概要(4)

実行ホストを切り替えた後にメモリーをコピー

Qemu/KVMにおけるポストコピー型 ライブマイグレーションの実装(Yabusame)

オンデマンドなページ転送

3. ページ番号を移動元Qemuプロセスに通知

バックグラウンドでのページ転送

既存の性能低下緩和手法

バックグラウンドでのページ転送は、アクセス頻度が高いメモリ領域を 先に転送して、オンデマンドな転送の発生頻度を抑制する。

本研究で取り組む問題

- バックグラウンドでの転送(プレキャッシュ)は一定の効果があるものの、依然としてキャッシュミスによる性能低下の可能性が残る
 - メジャーフォルトの一回あたりの停止時間はごくわずか(GbEで数ms)だが、頻出すると大きく性能が低下する
 - キャッシュミスがある程度起きるのはしょうがないので、起きてしまったときに緩和できる方法を考える

提案手法

- オンデマンドなページ転送を、VMの実行に対して並行動作可能にすることで性能低下を抑制する
 - VMが未転送のメモリページにアクセスした場合には、ゲストOSに特殊な割り込みを投入し、ゲストOSを即座に再開する
 - ゲストOSのプロセススケジューラはカレントプロセスの実行の みを停止し、他のプロセスの実行は継続する
 - 転送が完了するまで当該プロセスの実行のみを遅延
- 新たに追加する割り込み
 - Page Not Present
 - ★ KVM: そのページは今から転送するからちょっと待って!
 - ゲストOSカーネル: それまで他のプロセス実行しよう。
 - Page Present
 - KVM: そのページの転送が完了したよ!
 - ゲストOSカーネル:そのページ待ちだったプロセス再開しよう。

実行例

(SystemTapによる分析)

仮想マシンを一切実行できない

100.0002 100.0004 100.0000

Time (s)

提案機構の動作概要

(Page Not Present割り込みの投入)

7. ページフォルトを起こしたプロセスをRUNキューから除外

提案機構の動作概要

(Page Present割り込みの投入)

実装

- KVMおよびLinuxが備えるAsynchronous Page Fault (APF)機能を拡張して実装
 - VMのメモリページがホストOS上でスワップアウトされていた時に、ページフォルト処理を非同期化する 仕組み
 - APFに対応したKVMドライバおよびゲストOSカーネルであれば、そのまま提案機構にも対応
 - 実はAPFの割り込み通知をそのまま流用
 - 提案機構ではUMEMドライバおよびデーモンを非同期処理に拡張

評価の前に… 提案機構の注意点

- ゲストOS上で複数のCPU待ちプロセスが存在しないと効果がない
- ページ転送処理を非同期化できるのは、VCPUスレッドがゲストOS 内を走行しているときに発生したページフォルトのみ
 - メインスレッドやディスクのI/Oスレッドは対象外
 - VCPUスレッドがゲストOS外でページにアクセスする処理(APICの処理等)は 対象外
- 転送待ち中のページに対して、再度ページフォルトが発生すると、 通常のページフォルト処理にフォールバックする
 - あるページの取得を複数のプロセスが待っている場合に発生

評価環境

- 物理ハードウェア
 - Intel Xeon E5620 x2 (EPTあり), 24GB RAM
 - マイグレーション用NIC: 10GbE (RTT 150us)
 - 負荷生成用NIC: GbE
- 仮想マシン
 - 1VCPU, 1GB RAM
- マイグレーション
 - メジャーフォルト発生ページの前後8ページを一度に転送
 - バックグラウンドの転送は無効

動作確認

- 単純なベンチーマークを準備
 - 4スレッドがそれぞれ200MBのメモリ領域を確保
 - 実行ホスト切り替え後、各スレッドがそれぞれメモリ領域の先頭から末尾まで順番にページアクセス
 - メモリスキャンの完了時間を計測

ベンチマーク結果

- 完了時間
 - 提案機構あり:9.8秒
 - 提案機構なし:17.6秒
- 単位実時間あたりのゲストOS実行時間
 - VMX Non Rootモードの走行時間
 - 提案機構あり:0.55
 - 提案機構なし: 0.38

SystemTapによる提案機構の動作解析

スレッド1がページ番号0x180dに対してページフォルトを発生した場合

ウェブサーバを用いた評価

- VM
 - Apacheプレフォーク(最大128プロセス)
 - 静的ウェブコンテンツ 100KB x 5000個
 - 計測開始前にすべてページキャッシュに載せる
- クライアント
 - HTTPクライアントを128スレッド
 - 各スレッドはランダムな順番でウェブコンテンツに アクセス
 - 各リクエストの応答時間を計測

リクエスト応答時間

提案機構によりHTTPリクエストの応答時間の悪化を緩和できた。

0

10

Time (s)

単位実時間に占めるゲストOS実行時間の割合

NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

転送待ち中のページに対して 再度ページフォルトが発生した回数

100msあたりの発生回数

関連研究(1)

- ダブルページング問題への対処手法
 - VMのメモリがホストOS上でスワップアウトされた時 にVMのページフォルト処理遅延が増加
 - ページフォルト処理の非同期化
 - IBM z/VMのPseudo-Page-Fault Interruption
 - Linux KVMのAPF
 - 提案機構は同様の仕組みをポストコピー型ライブマイグレーションにはじめて適用

関連研究(2)

- ポストコピー型の性能向上手法
 - SnowFlockとその後継の研究
 - ポストコピー型によるVMの高速クローン機構
 - malloc()を準仮想化
 - 移動先でmallocしたページは転送しない
 - ゲストページテーブルの解析
 - 関連性が高いページ群をまとめてプレキャッシュ
 - Lagar-Cavillaらのポストコピー型
 - ページフォルト発生前後のページからプレキャッシュ
 - 我々のポストコピー型でも実装済み
 - プレコピー型とポストコピー型のハイブリッド
 - プレコピー型を開始し、その後ポストコピー型へ移行
 - ポストコピー時のキャッシュミスを低減
 - 我々のポストコピー型でも実装済み(要評価)
 - RDMAの利用
 - メジャーフォルトの処理遅延を低減

Yabusame開発史(1)

- 2009年度はじめ頃
 - 最初のプロトタイプを作り始める
 - それ以前はディスクのポストコピー型を作っていた
- 2009年8月 SWoPP
 - Qemu/KVMに対するVM本体のポストコピー型を研究発表
 - その後、IC2009、ComSys09、CCGrid10等で発表
 - その後、応用事例の研究もいくつか発表した
- 2010年半ば頃
 - プロダクションレベルの実装を開発する話が持ち上がる

Yabusame開発史(2)

- 2011年初頭
 - 再実装を開始(VA Linuxに依頼)
- 2011年夏頃
 - 対外的に発表
 - KVM Forum 2011
 - Linux Plumbers 2011
- 2012年初頭
 - Yabusameのコードを公開
 - APFを実装
- 2012年秋
 - KVM Forum 2012
 - 実装を再度ブラッシュアップ
 - プレコピーとポストコピーのハイブリッドを実装

開発与太話

- Qemu/KVMにマージしたいがなかなか難しい
 - プレコピーの改良をまずはできる限り行うべき
 - もっとエンタープライズな環境で評価しないとダメ
 - 本当にそれが必要っていう理由付けが必要
 - IBMやRedhatのビジネス戦略にのせる必要
- とはいえ、パッチを当てればいつでも使える状態になっているので、まずは是非使ってみてください!
 - どんな場合もAISTでサポートします。
 - いろんな環境で評価して頂けるとうれしいです。
 - 使って論文を書いて頂けるのもうれしいです。

今後の課題

- エンタープライズ環境への対応
 - 10GbE∜Infiniband
 - RDMA化
 - など
- 産総研ではインターンを募集しています。
 - 上記ネタやその他Yabusameに関連する研究に取り 組める方。
 - あなたの卒論、修論、博論ネタとなるように、開発 だけではなく研究としてサポートします。
 - 結構な(?)バイト代払います。

まとめ

- ポストコピー型ライブマイグレーションの性能 低下を緩和する手法を提案
 - VMが未転送のメモリページにアクセスしたら、ゲストOS全体を止めるのではなく、そのページにアクセスしたゲストOS上のプロセスのみ止め、他のプロセスの実行は継続する仕組み
 - ページフォルトを準仮想化することで実現
 - 既存のQemu/KVMと親和性の高い実装
 - Linux 2.6.38以降のカーネルであれば、改変を施すことなく ゲストOSとして提案機構に対応
- 評価の結果、性能低下の緩和が確認できた。
- みんな遊んでみてね。(qemu) migrate -p …