Шаблон отчёта по лабораторной работе №8

Мугари Абдеррахим, НКАбд-03-22

Содержание

1	Цел	ь работы :	5								
2	Выполнение лабораторной работы :										
	2.1	Реализация переходов в NASM :	6								
	2.2	Изучение структуры файлы листинга:	14								
	2.3	Выводы по результатам выполнения заданий:	18								
3	Задание для самостоятельной работы :										
	3.1	Написание программы нахождения наименьшей из 3 целочислен-									
		ных переменных:	19								
	3.2	Написание программы, которая выполняет математическую опе-									
		рацию в зависимости от значения введенных переменных:	21								
	3.3	Выводы по результатам выполнения заданий:	22								
4	Выв	оды, согласованные с целью работы :	23								

Список иллюстраций

2.1	Ресунок 1.			•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•		6
2.2	Ресунок 2 .																														7
2.3	Ресунок 3.																														8
2.4	Ресунок 4.																														9
2.5	Ресунок 5.																														10
2.6	Ресунок 6.																														11
2.7	Ресунок 7.																														12
2.8	Ресунок 8.																														12
2.9	Ресунок 9.																														13
2.10	Ресунок 10																														14
	Ресунок 11																														15
2.12	Ресунок 12																														15
2.13	Ресунок 13	•	•	•					•		•	•	•	•		•			•	•	•	•	•	•	•	•		•		•	17
3.1	Ресунок 14																														20
3.2	Ресунок 15																														21
3.3	Ресунок 16																														21
3.4	Ресунок 17																														22

Список таблиц

1 Цель работы:

В восьмой лабораторной работе мы узнаем о команде условных и безусловных переходов, делая это, мы освоим использование переходов, а также познакомимся со структурой файла листинга.

2 Выполнение лабораторной работы:

2.1 Реализация переходов в NASM:

1. Здесь мы начали с создания, а затем переместились в восмой каталог лаборатории "~/work/arch-pc/lab08", после чего мы создали файл "lab8-1.asm". (рис. 2.1)

Рис. 2.1: Ресунок 1

2. После этого мы заполнили файл .asm кодом программы, отображающей значение регистра eax. (рис. 2.2)

```
\oplus
                amugari@fedora:~/work/arch-pc/lab08
                                                       Q
                                                                   ×
       /home/amugari/work/arch-pc/lab08/lab8-1.asm
                                                           Modified
%include 'in_out.asm'
  CTION .data
        'Сообщение № 1',0
        'Сообщение № 2',0
        'Сообщение № 3',0
  CTION .text
  OBAL _start
jmp _label2
mov
        eax, msgl
call
        sprintLF
        eax, msg2
mov
call
        sprintLF
        eax, msg3
mov
call
        sprintLF
        call quit
             ^O Write Out ^W Where Is
                                         ^K Cut
  Help
                                                       ^T Execute
   Exit
                Read File
                              Replace
                                                          Justify
                                            Paste
```

Рис. 2.2: Ресунок 2

• Затем мы скомпилировали файл, создали исполняемый файл и запустили программу, все это после перемещения файла **in_out.asm** в тот же каталог, где находится **lab8-1.asm**. (рис. 2.3)

```
amugari@fedora:~/work/arch-pc/lab08

[amugari@fedora lab08]$ nasm -f elf lab8-1.asm
[amugari@fedora lab08]$ ld -m elf_i386 -o lab8-1 lab8-1.o
[amugari@fedora lab08]$ ./lab8-1
Сообщение № 2
Сообщение № 3
[amugari@fedora lab08]$
```

Рис. 2.3: Ресунок 3

• После этого мы изменили код в листинге.(рис. 2.4)

Рис. 2.4: Ресунок 4

Затем мы снова скомпилировали файл и создали исполняемый файл. (рис.
 2.5)

```
⊕ amugari@fedora:~/work/arch-pc/lab08 Q ≡ ×

[amugari@fedora lab08]$ nasm -f elf lab8-1.asm
[amugari@fedora lab08]$ ld -m elf_i386 -o lab8-1 lab8-1.o
[amugari@fedora lab08]$ ./lab8-1 clear
Сообщение № 2
Сообщение № 1
[amugari@fedora lab08]$
```

Рис. 2.5: Ресунок 5

• Затем мы снова изменили код в листинге ,чтобы вывод программы был следующим:

```
user@dk4n31:~$ ./lab8-1
Сообщение № 3
Сообщение № 2
Сообщение № 1
user@dk4n31:~$
(рис. 2.6) (рис. 2.7)
```


Рис. 2.6: Ресунок 6

```
amugari@fedora:~/work/arch-pc/lab08

[amugari@fedora lab08]$ nasm -f elf lab8-1.asm
[amugari@fedora lab08]$ ld -m elf_i386 -o lab8-1 lab8-1.o
[amugari@fedora lab08]$ ./lab8-1 clear
Сообщение № 3
Сообщение № 2
Сообщение № 1
[amugari@fedora lab08]$
```

Рис. 2.7: Ресунок 7

3. После этого мы создали файл **lab8-2.asm**, в который мы добавим код нашей следующей программы (рис. 2.8)

Рис. 2.8: Ресунок 8

• После этого мы заполнили файл необходимым кодом для Программы, которая определяет и выводит на экран наибольшую из 3 целочисленных переменных: A,B и C (рис. 2.9)

```
⊕
                                                                                   Q
                                                                                        \equiv
                             mc [amugari@fedora]:~/work/arch-pc/lab08
                            /home/amugari/work/arch-pc/lab08/lab8-2.asm
 GNU nano 6.0
%include
                 'in_out.asm'
section .data
        msgl db 'Введите В: ',0h
        msg2 db "Наибольшее число: ",0h
        A dd '20'
        C dd '50'
section .bss
        max resb 10
                resb 10
        section .text
global _start
        moν
                eax,msg1
                sprint
        call
        mov
                ecx,B
                edx,10
        moν
        call
                sread
        mov
                eax,B
                atoi
        call
                [B],eax
        mov
                ecx,[A]
        mov
                [max],ecx
        mov
        cmp
                ecx,[C]
                check_B
        jg
                ecx,[C]
        mov
        mov
                [max],ecx
                eax,max
        mov
        call
                atoi
        mov
                [max],eax
        mov
                ecx,[max]
        cmp
                ecx,[B]
                fin
        jg
        mov
                ecx,[B]
                [max],ecx
        mov
                eax, msg2
        mov
        call
                sprint
        moν
                eax,[max]
                iprintLF
        call
        call
                quit
^G Help
                ^O Write Out
                                                                              ^C Location
                               ^W Where Is
                                               ^K Cut
                                                               ^T Execute
  Exit
                  Read File
                                  Replace
                                                  Paste
                                                                  Justify
                                                                                 Go To Line
```

Рис. 2.9: Ресунок 9

• мы скомпилировали файл, создали исполняемый файл и запустили его. (рис. 2.10)

```
\oplus
                               amugari@fedora:~/work/arch-pc/lab08
                                                                                  Q
                                                                                        \equiv
[amugari@fedora lab08]$ nasm -f elf lab8-2.asm
[amugari@fedora lab08]$ ld -m elf_i386 -o lab8-2 lab8-2.o
[amugari@fedora lab08]$ ./lab8-2
Введите В: 12
Наибольшее число: 50
[amugari@fedora lab08]$ ./lab8-2
Введите В: 51
Наибольшее число: 51
[amugari@fedora lab08]$ ./lab8-2
Введите В: 70
Наибольшее число: 70
[amugari@fedora lab08]$
```

Рис. 2.10: Ресунок 10

2.2 Изучение структуры файлы листинга:

1. Здесь и с помощью команды *nasm -f elf -l lab8-2.list lab8-2.asm* мы создали файл листинга файла **lab8-2.asm**, затем мы открыли файл с помощью **mcedit**.(рис. 2.11)

```
\oplus
                       amugari@fedora:~/work/arch-pc/lab08 — mcedit lab8-2.lst
                                                                                   Q
                    --] 0 L:[ 1+ 0
                                     1/223] *(0 /13223b) 0032 0x020
                                                                                           [*][X]
                                                   ->'in_out.asm'
   5 00000000 53
   6 00000001 89C3
  12 00000009 EBF8
  16 0000000D 5B
  17 0000000E C3
                                 <1> ; входные данные: mov eax,<message>
  25 00000010 51
  27 00000012 50
  31 0000001A 58
  33 0000001B 89C1
  34 0000001D BB01000000
  36 00000027 CD80
  40 0000002B 5A
                                                 edx
                3
Mark
                           4Replac
                                     5Copy 6Move 7Search 8Delete 9PullDn 10Quit
```

Рис. 2.11: Ресунок 11

2. мы выбрали эти три строки и пытаемся объяснить каждую из них

Рис. 2.12: Ресунок 12

- Здесь в 18-й строке мы переместили значение адреса переменной **B** в регистр **ecx**, после этого мы поместили значение **10** в регистре **edx**, который определяет размер переменной В с помощью подпрограммы **sread** и, наконец, мы вызвали подпрограмму **sread**
- 3. мы открыли программный файл lab 8-2.asm и удалили один операнд в любой инструкции с двумя операндами. Мы выбрали строку под номером 27.(рис. 2.13)

Рис. 2.13: Ресунок 13

• В результате изменений был изменен файл листинга, в котором мы получили ошибку, объясняющую отсутствующий операнд, и файлы не были созданы.

2.3 Выводы по результатам выполнения заданий:

• Во время лабораторной работы мы узнали, как выполнять условные и безусловные переходы, как читать файл листинга.

3 Задание для самостоятельной работы:

3.1 Написание программы нахождения наименьшей из 3 целочисленных переменных :

Мой вариант: 13

• Мой код : (рис. 3.1)

```
∄
                                                       amugari@fedora:~/work/arch-pc/lab08
GNU nano 6.0 /home/amugari/work/arch-pc/
%include 'in_out.asm'
section .data

msgl db 'My values : 84,32,77',0h
msg2 db "The smallest number is : ",0h
A dd '84'
B dd '32'
C dd '77'
section .bss

min resb 10
section .text
                                   /home/amugari/work/arch-pc/lab08/lab8-3.asm
                                   eax,msgl
sprintLF
                  mov
call
                                   ecx,[A]
[min],ecx
                  mov
mov
                  cmp
jl
                                   ecx,[B]
check_C
                                   ecx,[B]
[min],ecx
                 mov
mov
                                   eax,min
atoi
[min],eax
                  mov
call
mov
                 mov
call
mov
                                   atoi
[C],eax
                  mov
cmp
jl
                                   ecx,[min]
ecx,[C]
fin
                                   ecx,[C]
[min],ecx
                  mov
                                   eax, msg2
sprint
eax,[min]
iprintLF
                  mov
call
mov
call
call
                              ^O Write Out <sup>^</sup>W Where Is <sup>^</sup>K Cut
^R Read File <sup>^</sup>\ Replace <sup>^</sup>U Paste
                                                                                                                                                  ^C Location
^/ Go To Line
 ^G Help
^X Exit
```

Рис. 3.1: Ресунок 14

• Вывод кода :(рис. 3.2)

Рис. 3.2: Ресунок 15

3.2 Написание программы, которая выполняет математическую операцию в зависимости от значения введенных переменных :

• Мой код : (рис. 3.3)

Рис. 3.3: Ресунок 16

• Вывод кода :(рис. 3.4)

Рис. 3.4: Ресунок 17

3.3 Выводы по результатам выполнения заданий:

• В этой части мы смогли применить наш полученный навык понятным способом, заставив программу вычислять конечное значение в зависимости от значений введенных переменных с использованием условных переходов.

4 Выводы, согласованные с целью работы :

• В восьмой лаборатории мы в основном узнали, как использовать условные и безусловные переходы в NASM, как читать структуру файла листинга.