Positive Properties of Context-Free languages

Union

Context-free languages are closed under: Union

$$L_1$$
 is context free
$$L_1 \cup L_2$$

$$L_2$$
 is context free is context-free

Example

Language

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$L_2 = \{ww^R\}$$

$$S_2 \rightarrow aS_2a \mid bS_2b \mid \lambda$$

Union

$$L = \{a^n b^n\} \cup \{ww^R\}$$

$$S \rightarrow S_1 \mid S_2$$

Concatenation

Context-free languages are closed under: Concatenation

 L_1 is context free L_1L_2 L_2 is context free is context-free

Example

Language

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$L_2 = \{ww^R\}$$

$$S_2 \rightarrow aS_2a \mid bS_2b \mid \lambda$$

Concatenation

$$L = \{a^n b^n\} \{ww^R\}$$

$$S \rightarrow S_1 S_2$$

Star Operation

Context-free languages are closed under: Star-operation

L is context free $\stackrel{*}{\Longrightarrow}$ L^* is context-free

Example

Language

Grammar

$$L = \{a^n b^n\}$$

$$S \rightarrow aSb \mid \lambda$$

Star Operation

$$L = \{a^n b^n\}^*$$

$$S_1 \rightarrow SS_1 \mid \lambda$$

Negative Properties of Context-Free Languages

Intersection

Context-free languages are <u>not</u> closed under:

intersection

 L_1 is context free $L_1 \cap L_2$ L_2 is context free $\underbrace{ \text{not necessarily context-free} }$

Example

$$L_1 = \{a^n b^n c^m\}$$

$$L_2 = \{a^n b^m c^m\}$$

Context-free:

$$S \rightarrow AC$$

$$S \rightarrow AB$$

$$A \rightarrow aAb \mid \lambda$$

$$A \rightarrow aA \mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

$$B \rightarrow bBc \mid \lambda$$

Intersection

$$L_1 \cap L_2 = \{a^n b^n c^n\}$$
 NOT context-free

Complement

Context-free languages are <u>not</u> closed under:

complement

L is context free $\longrightarrow L$

not necessarily
context-free

Example

$$L_1 = \{a^n b^n c^m\}$$

$$L_2 = \{a^n b^m c^m\}$$

Context-free:

$$S \rightarrow AC$$

$$S \rightarrow AB$$

$$A \rightarrow aAb \mid \lambda$$

$$A \rightarrow aA \mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

$$B \rightarrow bBc \mid \lambda$$

Complement

$$\overline{L_1 \cup L_2} = L_1 \cap L_2 = \{a^n b^n c^n\}$$

NOT context-free

* Exception >>
The intersection of
a context-free language and
a regular language
is a context-free language

 L_1 context free $L_1 \cap L_2$ L_2 regular context-free

Example:

context-free

$$L_1 = \{w_1w_2 : |w_1| = |w_2|, w_1 \in \{a,b\}^*, w_2 \in \{c,d\}^*\}$$

NPDA M_1

regular
$$L_2 = \{a, c\}^*$$

DFA M_2

context-free

Automaton for:
$$L_1 \cap L_2 = \{a^n c^n : n \ge 0\}$$

NPDA M

An Application of Regular Closure

Prove that:
$$L = \{a^n b^n : n \neq 100, n \geq 0\}$$

is context-free

$$\{a^nb^n:n\geq 0\}$$
 is context-free

We also know:

$$L_1 = \{a^{100}b^{100}\}$$
 is regular
$$\overline{L_1} = \{(a+b)^*\} - \{a^{100}b^{100}\}$$
 is regular

$$\{a^nb^n\}$$

$$\overline{L_1} = \{(a+b)^*\} - \{a^{100}b^{100}\}$$

context-free

regular

(regular closure) $\{a^nb^n\}\cap L_1$ context-free

$$\{a^n b^n\} \cap \overline{L_1} = \{a^n b^n: n \neq 100, n \geq 0\} = L$$

is context-free

Another Application of Regular Closure

Prove that:
$$L = \{w: n_a = n_b = n_c\}$$

is not context-free

If
$$L = \{w: n_a = n_b = n_c\}$$
 is context-free

(regular closure)

Then
$$L \cap \{a*b*c*\} = \{a^nb^nc^n\}$$
 context-free regular context-free **Impossible!!!**

Therefore, L is not context free

The Pumping Lemma for Context-Free Languages

Derivation tree of string W

Possible derivations:

 $A \Rightarrow vAy$

 $A \Longrightarrow x$

$$S \Longrightarrow uAz$$

$$A \Rightarrow vAy$$

$$A \Longrightarrow x$$

$$* * UAz \Rightarrow uxz$$

$$uv^0xy^0z$$

$$S \Rightarrow uAz$$

$$A \Rightarrow vAy$$

$$A \Longrightarrow x$$

$$*$$
 $S \Rightarrow uAz \Rightarrow uvAyz \Rightarrow uvxyz$

The original
$$w = uv^1xy^1z$$

$$S \Longrightarrow uAz$$

$$A \Rightarrow vAy$$

$$A \Rightarrow x$$

$$S \Longrightarrow uAz \Longrightarrow uvAyz \Longrightarrow uvvAyyz \Longrightarrow uvvxyyz$$

$$uv^2xy^2z$$

$$S \Longrightarrow uAz \qquad \qquad * \qquad * \qquad A \Longrightarrow x$$

$$S \stackrel{*}{\Rightarrow} uAz \stackrel{*}{\Rightarrow} uvAyz \stackrel{*}{\Rightarrow} uvvAyyz \stackrel{*}{\Rightarrow} \dots$$

$$\stackrel{*}{\Rightarrow} uvvV \cdot \cdot \cdot vAy \cdot \cdot \cdot \cdot yyyz \stackrel{*}{\Rightarrow} \dots$$

$$\stackrel{*}{\Rightarrow} uvvV \cdot \cdot \cdot vXy \cdot \cdot \cdot \cdot yyyz$$

$$uv^ixy^iz$$

Therefore, any string of the form

$$uv^i xy^i z$$
 $i \ge 0$

is generated by the grammar G

Observation: $|vxy| \leq m$

m is the number of states in PDA

Observation: $|vy| \ge 1$

Since repetitions are done on both v and $y_{_{2}}$

The Pumping Lemma:

For infinite context-free language L there exists an integer m such that

for any string $w \in L$, $|w| \ge m$

we can write w = uvxyz

with lengths $|vxy| \le m$ and $|vy| \ge 1$

and it must be:

 $uv^i x y^i z \in L$, for all $i \ge 0$

Applications of The Pumping Lemma

Non-context free languages

$$\{a^nb^nc^n: n \ge 0\}$$

$$\{a^nb^n: n \ge 0\}$$

Theorem: The language

$$L = \{a^n b^n c^n : n \ge 0\}$$

is **not** context free

Proof: Use the Pumping Lemma for context-free languages

$$L = \{a^n b^n c^n : n \ge 0\}$$

Assume for contradiction that L is context-free

Pick any string $w \in L$ with length $|w| \ge m$

We pick:
$$w = a^m b^m c^m$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

We can write:
$$w = uvxyz$$

with lengths
$$|vxy| \le m$$
 and $|vy| \ge 1$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Pumping Lemma says:

$$uv^i x y^i z \in L$$
 for all $i \ge 0$

We examine <u>all</u> the possible locations of string vxy in w

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 1: vxy is within a^m

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 1: Repeating
$$v$$
 and y

$$k \ge 1$$

$$m+k$$
 m

aaaaaaaaaaaa bbb...bbb ccc...ccc

$$u v^2 x y^2$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 1: From Pumping Lemma: $uv^2xy^2z \in L$ $k \ge 1$

However:
$$uv^2xy^2z = a^{m+k}b^mc^m \notin L$$

Contradiction!!!

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 2: vxy is within b^m

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 2: Similar analysis with case 1

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 3:
$$vxy$$
 is within c^m

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 3: Similar analysis with case 1

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 4: vxy overlaps a^m and b^m

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: Possibility 1: v contains only a y contains only b

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: Possibility 1:
$$v$$
 contains only a
 $k_1 + k_2 \ge 1$
 y contains only b
 $m + k_1$
 $m + k_2$
 m
 $aaa...aaaaaaaa bbbbbbbb...bbb ccc...ccc$
 u
 $v^2 x v^2$
 z

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: From Pumping Lemma: $uv^2xy^2z \in L$ $k_1 + k_2 \ge 1$

However:
$$uv^2xy^2z = a^{m+k_1}b^{m+k_2}c^m \notin L$$

Contradiction!!!

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: Possibility 2: v contains a and b y contains only b

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad | v$$

$$|vxy| \le m$$
 $|vy| \ge 1$

Case 4: From Pumping Lemma: $uv^2xy^2z \in L$

However:

$$k_1 + k_2 + k \ge 1$$

$$uv^2xy^2z = a^mb^{k_1}a^{k_2}b^{m+k}c^m \notin L$$

Contradiction!!!

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: Possibility 3: v contains only a y contains a and b

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: Possibility 3:
$$v$$
 contains only a y contains a and b

Similar analysis with Possibility 2

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 5:
$$vxy$$
 overlaps b^m and c^m

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 5: Similar analysis with case 4

There are no other cases to consider

(since $|vxy| \le m$, string vxy cannot

overlap a^m , b^m and c^m at the same time)

In all cases we obtained a contradiction

Therefore: The original assumption that

$$L = \{a^n b^n c^n : n \ge 0\}$$

is context-free must be wrong

Conclusion: L is not context-free

The Pumping Lemma:

For infinite context-free language L

there exists an integer m such that

for any string
$$w \in L$$
, $|w| \ge m$

we can write w = uvxyz

with lengths $|vxy| \le m$ and $|vy| \ge 1$

and it must be:

$$uv^i x y^i z \in L$$
, for all $i \ge 0$

Non-context free languages

$$\{a^n b^n c^n : n \ge 0\}$$
 $\{vv: v \in \{a, b\}^*\}$

Context-free languages

$$\{a^n b^n : n \ge 0\}$$
 $\{ww^R : w \in \{a, b\}^*\}$

Theorem: The language

$$L = \{vv : v \in \{a,b\}^*\}$$

is **not** context free

Proof: Use the Pumping Lemma for context-free languages

$$L = \{vv : v \in \{a,b\}^*\}$$

Assume for contradiction that L is context-free

Pick any string of L with length at least m

we pick:
$$a^m b^m a^m b^m \in L$$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

We examine <u>all</u> the possible locations of string vxy in $a^mb^ma^mb^m$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 1: vxy is within the first a^m

$$v = a^{k_1} \qquad y = a^{k_2} \qquad k_1 + k_2 \ge 1$$

$$L = \{vv : v \in \{a, b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 1: vxy is within the first a^m

$$v = a^{k_1} \qquad y = a^{k_2} \qquad k_1 + k_2 \ge 1$$

$$L = \{vv : v \in \{a, b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 1: vxy is within the first a^m

$$a^{m+k_1+k_2}b^ma^mb^m = uv^2xy^2z \notin L$$

Contradiction!!! Since $k_1 + k_2 \ge 1$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 2:
$$v$$
 is in the first a^m y is in the first b^m

$$v = a^{k_1}$$
 $y = b^{k_2}$ $k_1 + k_2 \ge 1$

$$L = \{vv : v \in \{a, b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 2:
$$v$$
 is in the first a^m y is in the first b^m

$$v = a^{k_1}$$
 $y = b^{k_2}$ $k_1 + k_2 \ge 1$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 2: v is in the first a^m y is in the first b^m

$$a^{m+k_1}b^{m+k_2}a^mb^m = uv^2xy^2z \notin L$$

Contradiction!!! Since $k_1 + k_2 \ge 1$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 3:
$$v$$
 overlaps the first $a^m b^m$ y is in the first b^m

$$v = a^{k_1} b^{k_2}$$
 $y = b^{k_3}$ $k_1, k_2 \ge 1$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 3:
$$v$$
 overlaps the first $a^m b^m$ y is in the first b^m

$$v = a^{k_1} b^{k_2} \qquad y = b^{k_3} \qquad k_1, k_2 \ge 1$$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 3: v overlaps the first $a^m b^m$ y is in the first b^m

$$a^m b^{k_2} a^{k_1} b^{m+k_3} a^m b^m = uv^2 xy^2 z \notin L$$

Contradiction!!!

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 4:
$$v$$
 in the first a^m
 y Overlaps the first a^mb^m

Analysis is similar to case 3

$$vxy$$
 is within $a^mb^ma^mb^m$

or

$$a^m b^m a^m b^m$$

$$a^m b^m a^m b^m$$

Analysis is similar to case 1:

$$a^mb^ma^mb^m$$

$$vxy$$
 overlaps $a^mb^ma^mb^m$

or

$$a^m b^m a^m b^m$$

Analysis is similar to cases 2,3,4:

$$a^m b^m a^m b^m$$

There are no other cases to consider

Since $|vxy| \le m$, it is impossible vxy to overlap:

 $a^m b^m a^m b^m$

nor

 $a^m b^m a^m b^m$

nor

 $a^m b^m a^m b^m$

In all cases we obtained a contradiction

Therefore: The original assumption that

$$L = \{vv : v \in \{a,b\}^*\}$$

is context-free must be wrong

Conclusion: L is not context-free

Theorem: The language

$$L = \{a^{n^2}b^n : n \ge 0\}$$

is **not** context free

Proof: Use the Pumping Lemma for context-free languages

$$L = \{a^{n^2}b^n : n \ge 0\}$$

Assume for contradiction that L is context-free

Pick any string of L with length at least m

we pick:
$$a^{m^2}b^m \in L$$

$$L = \{a^{n^2}b^n : n \ge 0\}$$

We can write:
$$a^{m^2}b^m = uvxyz$$
 with lengths $|vxy| \le m$ and $|vy| \ge 1$

Pumping Lemma says:

$$uv^i x y^i z \in L$$
 for all $i \ge 0$

We examine all the possible locations of string vxy in $a^{m^2}b^m$

$$L = \{a^{n^2}b^n : n \ge 0\}$$

$$a^{m^2}b^m = uvxyz$$

$$|vxy| \le m \quad |vy| \ge 1$$

Most complicated case: v is in a^m y is in b^m

$$v = a^{k_1} \qquad y = b^{k_2} \qquad 1 \le k_1 + k_2 \le m$$

$$L = \{a^{n^2}b^n : n \ge 0\}$$

$$a^{m^2}b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Most complicated sub-case: $k_1 \neq 0$ and $k_2 \neq 0$

$$v = a^{k_1} \qquad y = b^{k_2} \qquad 1 \le k_1 + k_2 \le m$$

$$L = \{a^{n^2}b^n : n \ge 0\}$$

$$a^{m^2}b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Most complicated sub-case: $k_1 \neq 0$ and $k_2 \neq 0$

$$v = a^{k_1}$$
 $y = b^{k_2}$ $1 \le k_1 + k_2 \le m$

$$\frac{m^2 - k_1}{a \dots a b \dots b}$$

$$\frac{a \dots a b \dots b}{v^0 x y^0 z}$$

$$L = \{a^{n^2}b^n : n \ge 0\}$$

$$a^{m^2}b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Most complicated sub-case: $k_1 \neq 0$ and $k_2 \neq 0$

$$v = a^{k_1} \qquad y = b^{k_2} \qquad 1 \le k_1 + k_2 \le m$$

$$a^{m^2 - k_1} b^{m - k_2} = u v^0 x y^0 z$$

Question:
$$m^2 - k_1 = (m - k_2)^2$$
?

$$k_1 \neq 0 \text{ and } k_2 \neq 0 \qquad 1 \leq k_1 + k_2 \leq m$$

$$1 \le k_1 + k_2 \le m$$

$$(m-k_2)^2 \le (m-1)^2$$

 $\le m^2 - 2m + 1$
 $< m^2 - k_1$

$$m^2 - k_1 \neq (m - k_2)^2$$

$$L = \{a^{n^2}b^n : n \ge 0\}$$

$$a^{m^2}b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$m^{2} - k_{1} \neq (m - k_{2})^{2}$$

$$\downarrow \qquad \qquad \downarrow$$

$$a^{m^{2} - k_{1}} b^{m - k_{2}} = uv^{0} xy^{0} z \neq L$$

Contradiction!!!

After examining all cases, we will obtain a contradiction

Therefore: The original assumption that

$$L = \{a^{n^2}b^n : n \ge 0\}$$

is context-free must be wrong

Conclusion: L is not context-free