WINTER CONFERENCE IN STATISTICS BAYESIAN MACHINE LEARNING

TOPIC MODELS FOR TEXT

MATTIAS VILLANI

DEPARTMENT OF STATISTICS
STOCKHOLM UNIVERSITY
AND
DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
LINKÖPING UNIVERSITY

OVERVIEW

- Textual data
- **■** Dirichlet distribution
- **Topic models**
- **Application**: Finding software bugs from textual bug reports.

TEXT IS DATA

- **Digitalization**: text is becoming an important data source.
- The web, PDF documents (legal, political, medical, etc)
- Unstructured (not tables), but structured (by the rules of language).
- Big data. 100K, 1M, 1B documents in a data set.
- Lots of pre-processing to get the data in usable form for statistical analysis.

TEXT APPLICATIONS

- Language models (predict the next word on smartphone)
- Machine translation (Google translate)
- Document classification (Shakespeare? Spam and blog filters. harmful EULA? pos/neg financial statement?)
- Information retrival (Google search)
- **Sentiment analysis** (positive/negative sentiment in tweets)
- Part-of-speech tagging (predict grammatical category)
- Prediction models based on text.
 - Predicting financial turbulence from economic press.
 - Finding bugs from bug reports

DIRICHLET DISTRIBUTION

- Density over the **unit simplex** $0 \le \theta_k \le 1$, $\sum_{k=1}^K \theta_k = 1$.
- \blacksquare $(\theta_1,...,\theta_K) \sim \text{Dirichlet}(\alpha_1,...,\alpha_K)$ with density

$$p(\theta_1,...,\theta_K) \propto \prod_{k=1}^K \theta_k^{\alpha_k-1}$$

- Generalizes the Beta(α_1, α_2) distribution to the case K > 2.
- Conjugate prior for Multinomial data

$$p(y_1,...,y_k|\theta) \propto \prod_{k=1}^K \theta_k^{y_k}$$

■ Prior-to-Posterior updating

Model: $\mathbf{y} = (y_1, ..., y_K) \sim \text{Multin}(n; \theta_1, ..., \theta_K)$

Prior: $\theta = (\theta_1, ..., \theta_K) \sim \text{Dirichlet}(\alpha_1, ..., \alpha_K)$

Posterior: $\theta | \mathbf{y} \sim \text{Dirichlet}(\alpha_1 + y_1, ..., \alpha_K + y_K)$

DIRICHLET DISTRIBUTION

MIXTURE OF UNIGRAMS

■ Let $\phi_1, \phi_2, ..., \phi_K$ be distributions over the vocabulary. **Topics**.

Topic	Word distr.	probability	dna	gene	data	distribution
1	ϕ_1	0.5	0.1	0.0	0.2	0.2
2	ϕ_2	0.0	0.5	0.4	0.1	0.0

- For each document d = 1, ..., D:
 - 1. Draw a **topic** z_d from a **topic distribution** $\theta = (\theta_1, ..., \theta_K)$.
 - 2. Given topic z_d , draw words from a word distribution ϕ_{z_d} .

- Each document belong to exactly one topic.
- **Topic models** are **mixed-membership models**.

GENERATING A CORPUS FROM A TOPIC MODEL

- Assume that we have:
 - · A fixed vocabulary V
 - D documents
 - · N words in each document
 - K topics
- 1. **For each topic** (k = 1, ..., K):
 - a. Draw a distribution over the words $\phi_k \sim Dir(\eta, \eta, ..., \eta)$
- 2. For each document (d = 1, ..., D):
 - a. Draw a vector of topic proportions $\theta_d \sim Dir(\alpha_1, ..., \alpha_K)$
 - b. **For each word** (i = 1, ..., N):
 - i. Draw a topic assignment $z_{di} \sim Multinomial(\theta_d)$
 - ii. Draw a word $w_{di} \sim Multinomial(\phi_{z_{di}})$

EXAMPLE - SIMULATION FROM TWO TOPICS

Topic	Word distr.	probability	dna	gene	data	distribution
1	ϕ_1	0.5	0.1	0.0	0.2	0.2
2	ϕ_2	0.0	0.5	0.4	0.1	0.0

Doc 1	$\theta_1 = (0.2, 0.8)$			
	Word 1:	Topic=2	Word='gene'	
	Word 2:	Topic=2	Word='gene'	
	Word 3:	Topic=1	Word='data'	

Doc 2	$\theta_2 = (0.9, 0.1)$		
	Word 1:	Topic=1	Word='probability'
	Word 2:	Topic=1	Word='data'
	Word 3:	Topic=1	Word='probability'

Doc 3	$\theta_2 = (0.5, 0.5)$				
		•		•	

EXAMPLE FROM SCIENCE (BLEI, REVIEW PAPER)

Figure 2. Real inference with LDA. We fit a 100-topic LDA model to 17,000 articles from the journal Science. At left are the inferred topic proportions for the example article in Figure 1. At right are the top 15 most frequent words from the most frequent topics found in this article.

"Genetics"	"Evolution"	"Disease"
human	evolution	disease
genome	evolutionary	host
dna	species	bacteria
genetic	organisms	diseases
genes	life	resistance
sequence	origin	bacterial
gene	biology	new
molecular	groups	strains
sequencing	phylogenetic	control
map	Living	infectious
information	diversity	malaria
genetics	group	parasite
mapping	new	parasites
project	two	united
sequences	common	tuberculosis

19

"Computers" computer models

> information data computers system

network systems model parallel methods networks

software

new simulations

GIBBS SAMPLER

Posterior distribution

$$p(\mathbf{z}, \Theta, \Phi | \mathbf{w}) \propto p(\mathbf{z}, \Theta, \Phi | \mathbf{w}) \cdot p(\mathbf{z}, \Theta, \Phi)$$

■ Integrating out (collapsing) Θ and Φ:

$$p(\mathbf{z}|\mathbf{w}) = \int \int p(\mathbf{z}, \Theta, \Phi|\mathbf{w}) \cdot p(\mathbf{z}, \Theta, \Phi) d\Phi d\Theta$$

will result in the following **Gibbs sampler** for the z's

$$p(z_{di} = k | w_{di} = w, \mathbf{z}_{-di}) = \underbrace{\frac{n_{k,w}^{-di} + \beta}{n_{k,\cdot}^{-di} + V\beta}}_{type-topic} \cdot \underbrace{(n_{k,d}^{-di} + \alpha)}_{topic-doc} \cdot \underbrace{(n_{k,d}^{-di} + \alpha$$

- The rows of $\Phi | \mathbf{z}$ and $\Theta | \mathbf{z}$ are Dirichlet.
- Learned topic proportions θ_d are summaries of document content. Useful as covariates in regression/classification.

SPEEDING UP GIBBS SAMPLING FOR TOPIC MODELS

- **Gibbs sampling** from $p(z_{di} = k|w_{di} = w, \mathbf{z}_{-di})$ is **slow** since it runs serially over all tokens in the corpus.
- Example: PubMed abstracts. 10% of the data: **78.5M tokens** from **820K docs**.
- Big data lesson: with a huge number of parameters, everything matters (log(x) is costly ...).
- Needed: Efficient data structures, sparsity, efficient search, efficient sort etc.
- See my previous student Måns Magnusson's PhD thesis.

TOPIC MODEL AS BUILDING BLOCK IN OTHER MODELS

- Predicting the location of bugs in computer code. Ericsson.
- Prediction machine: **Bug report** \Rightarrow Pr(**location of bug**)
- New **multi-class** model for high-dimensional data.
- Diagonal Orthant Multinomial Probit. No reference class.
- **DOLDA** Diagonal Orthant Latent Dirichlet Allocation
- Interpretable predictions via semantical topics and aggressive horseshoe regularization.

Predicting bug location from bug reports

EXAMPLE DATA

Dataset	No. Bug reports	No. classes	Vocabulary size
Mozilla	15,000	118	3505
Eclipse	15,000	49	3367
Telecom	9,778	26	5286

14 | 19

TOPICS ϕ_k

Automatically summarize a bug report by topics.

Topic	Topic label	Top 10 words in topic
11	HTTP	proxy server http network connec-
		tion request connect error www
		host
27	Layout	div style px background color bor-
		der css width height element html
28	Connection	http cache accept en public local-
	Headers	host gmt max modified alive
55	Search	search google bar results box type
		find engine enter text
82	Scrolling	scroll page scrolling mouse scroll-
		bar bar left bottom click content

15 | 19

Topic proportions θ_d

IDEAL: FEW TOPICS FOR EACH COMPONENT

■ Horseshoe regularization prior for the $\beta_{topic, class}$:

INTERPRETABLE PREDICTIONS

■ DOLDA - Diagonal Orthant Latent Dirichlet Allocation. Supervised LDA. Topics are directly related to components.

■ System:

- I am very certain that component UI contains the bug
- **because** report talks a lot about Uldesign and Scroll and very little about NetConnect.
- Sending the bug report to the UI-team.

■ System:

- I am **very uncertain** where the bug is
- **because** bug report contains a jumble of topics.
- Don't trust me. Please ask human.

INTERPRETABLE PREDICTION WITHOUT LOSS OF ACCURACY

Dataset	Dataset	DOLDA	StackingLDA
	Dataset		
Mozilla	118	45%	39%
Eclipse	49	61%	55%
Telecom	26	71%	75%