- i) The value of x that satisfies f(x) = 0 is called the
 - a) root of an equation f(x) = 0
 - b) root of a function f(x)
 - c) zero of equation f(x) = 0
 - d) none of these.
- ii) Given $A = \begin{pmatrix} 6 & 2 & 3 & 9 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 4 & 5 \\ 0 & 0 & 0 & 6 \end{pmatrix}$, then A is a

matrix.

- a) diagonal
- b) identity
- c) lower triangular
- d) upper triangular.

33505

[Turn over

- iii) To differential ordinary $3\frac{dy}{dx} + 5y^2 = \sin x, y(0) = 5$ by Euler's method, you need to rewrite the equation as
 - a) $\frac{dy}{dx} = \sin x 5y^2, y(0) = 5$
 - b) $\frac{dy}{dx} = \frac{1}{3} (\sin x 5y^2), y(0) = 5$
 - c) $\frac{dy}{dx} = \frac{1}{3} \left(-\cos x \frac{5y^2}{3} \right), y(0) = 5$
 - $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{3}\sin x, y(0) = 5.$
- f(x) is a polynomial of degree 3 if iv)
 - $\Delta^3 f(x) = 0$ a)
- $\Delta^3 f(x) = \text{constant}$
- $\Delta f(x) = \text{constant}$
- d) $F^3 f(x) = \text{constant}$.
- The equation AX = B has unique solution if
 - $Rank(A) \neq Rank(A, B)$ a)
 - Rank(A) < Rank(A, B)b)
 - Rank (A) = Rank (AB) = Number of unknowns c)
 - Rank (A) = Rank (AB) \neq Number of unknowns. d)
- An approximate polynomial passes through (n + 1)vi) data points, the degree of the polynomial is
 - a) n+1

n or less

- d) n+1 or less.
- If the interval of differencing is unity and $f(x) = ax^2$ (a is a constant), which one of the following choices is wrong?
 - $\Delta f(x) = a(2x+1)$ b) $\Delta^2 f(x) = 2a$
 - $\Delta^3 f(x) = 2$ c)
- d) $\Delta^4 f(x) = 0$.

33505

3.4

CS/B.Tech (EE)/SEM-3/CS-312/2009-10

```
viii) Output of the following programme code:
    main ()
    {
        int i;
        for (i=1;1<=2;i++)
           printf ("%d\n",i);
           if (i==1)
           continue;
           printf("ELECTRICAL \n");
        printf("ENGINEERING");
    }
         2 1 ELECTRICAL ENGINEERING
     a)
          1 2 ELECTRICAL ENGINEERING
     b)
         ELECTRICAL ENGINEERING
     c)
         none of these.
     d)
    The condition of convergence of Newton-Raphson
ix)
     method when applied to an equation f(x) = 0 in an
     interval is
          f'(x) \neq 0
     a)
        |f'(x)|<1
        |f(x)f''(x)|<[f'(x)]^2
```

3505

3

 $\left[f''(x)\right]^2 > \left|f(x).f'(x)\right|.$

[Turn over

CS/B.Tech (EE)/SEM-3/CS-312/2009-10

x) The error in Simpson's one third rule is of

- a) $O(h^2)$
- b) $O(h^3)$
- c) $O(h^4)$
- d) $O(h^5)$.

xi) DDL stands for

- a) Data Defined Language
- b) Data Dictionary Language
- c) Data Definition Language
- d) Dictionary Defined Lanuage.

xii) For n = 1, Lagrange's interpolation formula becomes

- a) an equation of a straight line
- b) an equation of a parabola
- c) an equation of a hyperbola
- d) none of these.

xiii) The polynomial function f(x) constructed from the data f(3) = -1, f(4) = 5, f(5) = 15 is

a)
$$2x^2 + 8x + 5$$

b)
$$x^2 - 8x - 5$$

c)
$$x^2 + 8x + 5$$

d)
$$2x^2 - 8x + 5$$
.

33505

 $3 \times 5 = 15$

GROUP - B (Short Answer Type Questions)

Answer any three of the following.

- 2. Define absolute error and relative error. Prove that the relative error of a product of several approximate non-zero numbers does not exceed the sum of the relative errors of the numbers.
- 3. Explain secant method briefly with a diagram and arrive at the secant formula.
- 4. Solve the equation $x^3-2x-5=0$ with $2 \le x \le 3$ using Regula-Falsi (false position) method. Continue up to 3 successive approximations.
- 5. Construct Lagrange's interpolation polynomial for the function $y = \sin(\pi x)$, choosing the points $X_0 = 0$, $x_1 = \frac{1}{6}$, $x_2 = \frac{1}{2}$.
- 6. Solve the following equations using Gauss-Seidel Method:

$$2x_1 + 2x_2 = 1$$

$$x_1 + 2x_2 + x_3 = 2$$

$$x_2 + x_3 = 4$$

Start with the initial approximated values of $x_1 = 1$, $x_2 = 2$ and $x_3 = 1$ and continue up to 3 successive approximations.

33505

5

[Turn over

CS/B.Tech (EE)/SEM-3/CS-312/2009-10

GROUP – C (Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

7. a) Explain LU decomposition method for solving linear equation. Calculate L and U for the given set of equations:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$

b) Solve the following equation using LU decomposition method:

$$3x_1 + 2x_2 + x_3 = 10$$

$$2x_1 + 3x_2 + 2x_3 = 14$$

$$x_1 + 2x_2 + 3x_3 = 14$$

3 + 3 + 9

- 8. a) Explain bisection method (halving method). What is the convergence criterion for bisection method?
 - b) Solve $x^2-4x-10=0$ using bisection method in the range [-1,-2] continued up to 6th approximation.

$$3 + 3 + 9$$

33505

- 9. a) Arrive at Newton's forward interpolation formula.
 - b) Consider the table below:

x	1	2	3	4	5	6	7	8	9	10
y	2	6	12	20	30	42	56	72	90	110

Evaluate y, when x = 8.4 using Newton's forward interpolation formula.

- c) Define dividend difference expression with two and three arguments. 5+6+4
- 10. a) Arrive at the formula for basic Trapezoidal rule.
 - b) Using basic Trapezoidal rule, arrive at Composite Trapezoidal rule.
 - c) Calculate the integral $\int_{-1}^{+1} e^x dx$ using composite trapezoidal rule for

i) n = 2 and

ii)
$$n = 4$$
.

5 + 4 + 6

- 11. a) Using Taylor's series, solve the differential equation $dy/dx = x^2 + y^2$ for x = 0.25 and x = 0.5.
 - b) Arrive at Euler's formula as numerical solution of ordinary differential equation.
 - c) Using Euler's formula, solve dy/dx = 2x + 3, subject to the initial condition y = 1 at x = 1 for value of x changing from 1 to 1.5 in an interval of 0.1. Calculate y_1, y_2, y_3 and y_4 .

33505

7