Zadanie 2 – neurónové siete a regresory

Neurónky

Agenda:

- 1. Príprava množín
- 2. Architektúra
- 3. Trénovací proces
- 4. Vyhodnotenie úspešnosti
- 5. Sanity checks

Príprava množín

- Normalizácia
 - Min/max, standardization, L2 normalization
- Príprava/určenie tried
- Rozdelenie na trénovaciu/validačnú/testovaciu
 - Čím viac na trénovanie, tým lepšie
 - Napr. 70/15/15 (80/10/10)
- Vyrovnaný počet trénovacích vzoriek na triedu

Architektúra

- Počet vrstiev
- Počet neurónov vo vrstvách
- Aktivačná funkcia
- Kriteriálna funkcia
- Solver

Architektúra – počet vrstiev/neurónov

- Vstupná vrstva daná veľkosťou jednej vzorky zo vstupu
- Ak nie je lin. separovateľný -> skryté vrstvy nevieme naisto :(rôzne prístupy:
 - 1. Čím hlbšie tým lepšie (ale hlboké siete sa ťažko trénujú a sú pomalé)
 - 2. Počet neurónov medzi veľkosťou vstupu a výstupu
 - Vzťah medzi počtom vstupných vzoriek a trénovateľnými parametrami -> 10 stupňov voľnosti (ak mám 300 vzoriek môžem trénovať 30 váh)
- Výstupná vrstva jeden neurón (regresia) al. daná počtom kategórii (ak softmax)

Architektúra - akt./krit. funkcia

- Aktivačná funkcia lineárna/nelineárna
 - Sigmoid, logaritmická -> vanishing gradient, nie centrovaná na nule, pomalá konvergencia
 - Tanh -> vanishing gradient, je centrovaná na nule
 - ReLU -> mrtve neuróny
- Kriteriálna funkcia podľa typu problému, pre klasif. tried obvykle používame softmax

Sigmoid

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

Hyperbolic Tangent

$$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

Rectified Linear

$$\phi(z) = \begin{cases} 0 & \text{if } z < 0 \\ z & \text{if } z \ge 0 \end{cases}$$

▶ Architektúra – solver

- Vyberáme spôsob úpravy váh a veľkosť parametra rýchlosti učenia
 - Gradientný zostup
 - Stochastický gradientný zostup
 - ADAM
 - Adagrad
- Výber rýchlosti učenia

▶ Trénovací proces

- Prečo má moja sieť zlé výsledky:
 - Zlá architektúra
 - Pretrénovanie
 - Podtrénovanie
 - Zlý parameter rýchlosti učenia
 - ..

▶ Trénovací proces - pre-/podtrénovanie

! Sledujem kriteriálnu funkciu na validačnej množine!

▶ Trénovací proces - pre-/podtrénovanie

Pretrénovanie:

- Regularizácia
- Viac trénovacích dát
- Menšia sieť
- Early stopping
- Menej príznakov

Podtrénovanie:

- Zastavovacia podmienka
- Iný model
- Viac príznakov
- Väčšia sieť

Trénovací proces – parameter rýchlosti učenia

▶ Techniky vyhodnotenia siete

- 1. Sledovanie vývoja krit. funkcie
- 2. Celková úspešnosť
- 3. Confusion matrix

Sanity checks

1. V prvom kroku je hodnota kriteriálnej funkcie približne rovnaká, ako by mala byť pri náhodnom inicializovaní.

```
- sofmax \sim -ln(1/6) = 1.79
```

- 2. Zvyšovanie regularizácie by malo zvýšiť hodnotu kriteriálnej funkcie.
 - ... regularizácia pri d'alšom zadaní
- Na maličkej podmožine trénovacej množiny viete sieť pretrénovať.
 - viete dosiahnuť hodnotu krit. f. rovnú (blízku) nule.

Regresory

Regresory

- Neurónová sieť
- RBF sieť
- Podporné vektory

▶ RBF siet

Output y

Linear weights

Radial basis functions

Weights

Input x

$$\phi(r)=\expig(-r^2/2\sigma^2ig)$$

Podporné vektory

- Vstup: označené body v priestore
- Výstup: hyperroviny oddeľujúce triedy (klasifikácia) / približnú funkciu (regresia)

- Margin
- Outliers
- Nelineárne hyperroviny

Zdroje obrázkov:

- Margin
- Outliers
- Nelineárne hyperroviny

- Margin
- Outliers
- Nelineárne hyperroviny

- Margin
- Outliers
- Nelineárne hyperroviny

▶ Podporné vektory - hyperparametre

- Druh kernelu
- Hyperparameter C
- Hyperparameter gamma
- Hyperparameter stupeň

Linear Kernel

C hyperparameter

Polynomial Kernel

C plus gamma, degree and coefficient hyperparameters

RBF Kernel

C plus gamma hyperparameter

▶ Podporné vektory - hyperparametre

- Druh kernelu
- Hyperparameter C
- Hyperparameter gamma
- Hyperparameter stupeň

▶ Podporné vektory - hyperparametre

- Druh kernelu
- Hyperparameter C
- Hyperparameter gamma
- Hyperparameter stupeň

Podporné vektory + regresia

 Regresia – zmena iba v kriteriálnej funkcii -> teraz chcem mať body čo najbližšie ku nájdeným vektorom

Vyhodnocovanie regresie

- Štatisticky
 - Mean squared error

- R2
$$\hat{R}^2 = 1 - rac{\sum_{i=1}^n \left(Y_i - \hat{Y}_i\right)^2}{\sum_{i=1}^n \left(Y_i - ar{Y}\right)^2}$$

- Grafom
 - Residual plot

Priestor na otázky