IM-SRG++ 0

Generated by Doxygen 1.8.13

Contents

1	C++	RG++: an implementation of in-Medium Similarity Renormalization Group for nuclei, written in	1
2	Code	e Structure/Flow	3
	2.1	Read in arguments and input files	3
	2.2	prepare model space	4
	2.3	prepare operator	4
	2.4	prepare interaction	4
	2.5	prepare Hartree-Fock basis	5
	2.6	prepare Hamiltonian	5
	2.7	calculate operators	5
	2.8	IMSRG solve	5
	2.9	VS-IMSRG solve	6
	2.10	Write output	7
3	Nam	espace Index	9
	3.1	Namespace List	9
4	Hiera	archical Index	11
	4.1	Class Hierarchy	11
5	Clas	s Index	13
	5.1	Class List	13

ii CONTENTS

6	Nam	espace	Documer	tation	15
	6.1	imsrg_	util Names	pace Reference	15
		6.1.1	Detailed	Description	17
		6.1.2	Function	Documentation	17
			6.1.2.1	AllowedGamowTeller_Op()	17
			6.1.2.2	Calculate_p1p2()	17
			6.1.2.3	Calculate_r1r2()	17
			6.1.2.4	Calculate_r1xp2()	18
			6.1.2.5	CPrbmeGen()	18
			6.1.2.6	E0Op()	18
			6.1.2.7	ElectricMultipoleOp()	18
			6.1.2.8	Embed1BodyIn2Body()	18
			6.1.2.9	GetEmbeddedTBME()	19
			6.1.2.10	HCM_Op()	19
			6.1.2.11	IntrinsicElectricMultipoleOp()	19
			6.1.2.12	M0nu_TBME_Op()	19
			6.1.2.13	MagneticMultipoleOp_pn()	19
			6.1.2.14	NeutronElectricMultipoleOp()	20
			6.1.2.15	R2_1body_Op()	20
			6.1.2.16	R2_2body_Op()	20
			6.1.2.17	R2CM_Op()	20
			6.1.2.18	RadialIntegral()	20
			6.1.2.19	Rp2_corrected_Op()	21
			6.1.2.20	RSquaredOp()	21
			6.1.2.21	TalmiB()	21
			6.1.2.22	Talmil()	21
			6.1.2.23	TCM_Op()	22
			6.1.2.24	Trel_Masscorrection_Op()	22
			6.1.2.25	Trel_Op()	22

CONTENTS

7	Clas	ass Documentation 2				
	7.1	imsrg_	util::FBCIntegrandPa	arameters Struct Reference	23	
	7.2	Generator Class Reference				
	7.3	HartreeFock Class Reference			24	
		7.3.1	Member Function D	Documentation	26	
			7.3.1.1 BuildMor	nopoleV()	26	
			7.3.1.2 BuildMor	nopoleV3()	26	
			7.3.1.3 CalcEHF	:()	27	
			7.3.1.4 CheckCo	onvergence()	27	
			7.3.1.5 Diagonal	ize()	27	
			7.3.1.6 FillLowes	stOrbits()	27	
			7.3.1.7 GetNorm	nalOrderedH()	28	
			7.3.1.8 GetOme	ga()	28	
			7.3.1.9 PrintEHF	- 0	28	
			7.3.1.10 PrintSPE	E()	28	
			7.3.1.11 Reorder0	Coefficients()	29	
			7.3.1.12 Solve() .		29	
			7.3.1.13 Transform	mToHFBasis()	29	
			7.3.1.14 UpdateD	ensityMatrix()	29	
			7.3.1.15 UpdateF	0	30	
			7.3.1.16 Vmon3H	ash()	30	
		7.3.2	Member Data Docu	umentation	30	
			7.3.2.1 energies		30	
	7.4	std::ha	sh< javier_state_t >	Struct Template Reference	31	
	7.5	IMSRO	Profiler Class Refere	ence	31	
		7.5.1	Detailed Description	n	31	
		7.5.2	Member Function D	Documentation	31	
			7.5.2.1 CheckMe	em()	32	
	7.6	IMSRO	Solver Class Refere	nce	32	
		7.6.1	Member Function D	Documentation	34	

iv CONTENTS

		7.6.1.1	Transform_Partial()		34
7.7	javier_	state_t Str	ruct Reference		34
7.8	Ket Class Reference				
7.9	Models	Space Clas	ss Reference		35
	7.9.1	Member	Function Documentation		38
		7.9.1.1	Get0hwSpace()		38
		7.9.1.2	PreCalculateSixJ()		38
	7.9.2	Member	Data Documentation		38
		7.9.2.1	ValenceSpaces		39
7.10	IMSR	Solver::Ol	DE_Monitor Class Reference		39
7.11	Operat	or Class R	Reference		40
	7.11.1	Detailed	Description		43
	7.11.2	Member	Function Documentation		43
		7.11.2.1	BCH_Product()		43
		7.11.2.2	BCH_Transform()		44
		7.11.2.3	Brueckner_BCH_Transform()		44
		7.11.2.4	comm110ss()		44
		7.11.2.5	comm111ss()		44
		7.11.2.6	comm121ss()		45
		7.11.2.7	comm122ss()		45
		7.11.2.8	comm220ss()		45
		7.11.2.9	comm221ss()		45
		7.11.2.10	O comm222_phss()		46
		7.11.2.11	1 comm222_phst()		46
		7.11.2.12	2 comm222_pp_hh_221ss()		46
		7.11.2.13	3 comm222_pp_hhss()		47
		7.11.2.14	4 CommutatorScalarScalar()		47
		7.11.2.15	5 CommutatorScalarTensor()		47
		7.11.2.16	6 DoNormalOrdering2()		47
		7.11.2.17	7 DoNormalOrdering3()		47

CONTENTS

		7.11.2.18	DoPandyaTransformation_SingleChannel()	48
		7.11.2.19	DoTensorPandyaTransformation()	48
		7.11.2.20	EraseOneBody()	48
		7.11.2.21	GetMP2_Energy()	48
		7.11.2.22	GetMP3_Energy()	48
		7.11.2.23	MP1_Eval()	49
		7.11.2.24	Norm()	49
		7.11.2.25	Standard_BCH_Transform()	49
		7.11.2.26	Truncate()	49
		7.11.2.27	UndoNormalOrdering()	49
	7.11.3	Friends A	and Related Function Documentation	50
		7.11.3.1	Commutator	50
7.12	Orbit C	lass Refer	ence	50
7.13	Parame	eters Class	Reference	50
	7.13.1	Member I	Data Documentation	51
		7.13.1.1	double_par	51
		7.13.1.2	int_par	51
		7.13.1.3	string_par	52
		7.13.1.4	vec_par	52
7.14	ReadW	/rite Class	Reference	52
	7.14.1	Member I	Function Documentation	54
		7.14.1.1	Count_Darmstadt_3body_to_read()	54
		7.14.1.2	GetHDF5Basis()	55
		7.14.1.3	Read3bodyHDF5()	55
		7.14.1.4	Read_Darmstadt_3body()	55
		7.14.1.5	ReadBareTBME_Darmstadt_from_stream()	55
		7.14.1.6	ReadBareTBME_Navratil()	56
		7.14.1.7	Store_Darmstadt_3body()	56
		7.14.1.8	WriteNuShellX_intfile()	56
		7.14.1.9	WriteOneBody_Oslo()	56

vi CONTENTS

7.15 ThreeBodyME Class Reference					
7.15.1 Detailed Description	58				
7.15.2 Member Function Documentation	58				
7.15.2.1 AccessME()	58				
7.15.2.2 GetME()	58				
7.15.2.3 GetME_pn()	59				
7.15.2.4 KeyHash()	59				
7.15.2.5 SetME()	59				
7.15.2.6 SortOrbits()	60				
7.16 TwoBodyChannel Class Reference	60				
7.17 TwoBodyChannel_CC Class Reference	61				
7.18 TwoBodyME Class Reference	62				
7.18.1 Detailed Description	64				
7.18.2 Member Function Documentation	64				
7.18.2.1 Erase()	64				
7.18.2.2 GetTBMEmonopole()	64				
7.18.2.3 Set_pn_TBME_from_iso()	65				
7.19 boost::numeric::odeint::vector_space_norm_inf< deque< Operator > > Struct Template Reference	65				
7.20 VectorStream Class Reference	65				
7.20.1 Detailed Description	66				

Index

67

IMSRG++: an implementation of In-Medium Similarity Renormalization Group for nuclei, written in C++

The in-medium similarity renormalization group (IM-SRG) is an ab initio method for solving many-body quantum systems. It has been thus far predominantly used in nuclear physics. For a review, see H. Hergert et al, Physics Reports 216, 165 (2016) doi: 10.1016/j.phys rep.2015.12.007, and references therein.

The main idea behind the IM-SRG is to obtain a unitary transformation U which transforms the Hamiltonian into a form which makes it easier to solve. This can either be by decoupling a single reference state from all other states, or by decoupling a valence space and diagonalizing within that space. We may parameterize the unitary transformation as the exponential of an anti-hermitian generator Ω so that the transformed Hamiltonian is

$$H' = UHU^{\dagger} = e^{\Omega}He^{-\Omega}$$

This code contains a number of classes which may be used in the various specific schemes for implementing the above transformation. A subset of these classes are exposed as python classes, enabling rapid development of implementation schemes. The code and its documentation are very much a work in progress, so if you have any questions, or if you discover any bugs, please contact Ragnar Stroberg at sstroberg <at> triumf.ca.

2	IMSRG++: an implementation of In-Medium Similarity Renormalization Group for nuclei, written in C++

Code Structure/Flow

Written by Y.-H. Song.

Basic code structure and flow for rough idea. Because it is up to my understanding, there can be error and will be changes according to my understanding.

2.1 Read in arguments and input files

· Default parameters, and everything passed by command line args.

```
2bme
                             : none
3bme
                             : none
LECs
                            : EM2.0 2.0
basis
core_generator
                            : atan
custom_valence_space
denominator_delta_orbit : none
flowfile
fmt2
                            : me2j
fmt3
                            : me3j
goose_tank
                            : false
intfile
                            : default
                            : magnus
method
nucleon_mass_correction : false
occ_file
                             : none
reference
                            : default
scratch
use_brueckner_bch : false
valence_file_format : nushellx
valence_generator : shell-model-atan
valence_space
write_omega
                            : false
BetaCM
denominator_delta
                            : 0.2
domega
                            : 0.5
ds_0
dsmax
                            : 0.5
                            : 1e-06
eta_criterion
                            : 20
hwBetaCM
                             : -1
```

4 Code Structure/Flow

```
ode_tolerance
                                1e-06
omega_norm_max
                                0.25
                              : 200
smax
                              : -1
Α
                              : 12
e3max
emax
                             : 12
file2e1max
                              : 24
file2e2max
                                10
file21max
file3e1max
                                12
                             : 24
file3e2max
file3e3max
                             : 12
1max3
                             : -1
                                -1
nsteps
Operators
OperatorsFromFile
SPWF
```

· set ReadWrite class 'rw'

2.2 prepare model space

- · set valence space
- · set ModelSpace class 'modelspace'
 - set 'reference'
 - initialize occ from file
 - set nsteps , SetHbarOmega, SetTargetMass, SetE3max,SetLmax3

2.3 prepare operator

- · define Operator class Hbare from modelspace and particle rank
- · Hbare.SetHermitian()
- Hbare.SetGooseTank

2.4 prepare interaction

- · read two-body matrix elements in various formats
 - me2j
 - navratil
 - oslo
 - oakridge has 'bin' or 'ascii' mode
 - takayuki
 - nushellx
- Except 'nushellx' format case, add Trel operator to Hbare.
- add nucleon mass correction in Trel
- read Darmssdt 3-body interaction if particle rank >=3.
- add a Lawson term,(betaCM term)

2.5 prepare Hartree-Fock basis

- · declare HartreeFock class 'hf' from Hbare
- hf.solve()

2.6 prepare Hamiltonian

- · declare operator 'HNO' from Hbare
- do normal ordering to HNO. hf.GetNormalOrderedH() or Hbare.DoNormalOrdering()
- SPWF:? set radial points, Rmax, spwf indices, PSI and so on ?
- · add betaCM term to HNO.
- · estimate ground state energy by HF or MBPT3.

2.7 calculate operators

This part is not clear how to understand. At least, I suppose it is to define observales to be calculated.

there are loops in 'opnames', 'opsfromfile', 'ops' and so on.

```
for (auto& opname : opnames)
{
   ops.emplace_back( imsrg_util::OperatorFromString(modelspace,opname) );
}
```

- If method is 'HF', print output and ends the code.
- If method is 'FCI', print outputs in nushellx format such as '.int','.sp','.op'. But what is exactly the output here?

2.8 IMSRG solve

This part semes to be the main IMSRG.

declare IMSRGSolver class imsrgsolver(HNO)

```
IMSRGSolver imsrgsolver(HNO);
imsrgsolver.SetReadWrite(rw);
imsrgsolver.SetEtaCriterion(eta_criterion);
bool brueckner_restart = false;
```

• setup solver according to method. ('NSmagnus', 'brueckner' etc.) and solve.

6 Code Structure/Flow

```
imsrgsolver.SetMethod(method);
imsrgsolver.SetHin(HNO);
imsrgsolver.SetSmax(smax);
imsrgsolver.SetFlowFile(flowfile);
imsrgsolver.SetDs(ds_0);
imsrgsolver.SetDsmax(dsmax);
imsrgsolver.SetDenominatorDelta(denominator_delta);
imsrgsolver.SetdOmega(domega);
imsrgsolver.SetOmegaNormMax(omega_norm_max);
imsrgsolver.SetODETolerance(ode_tolerance);
...
imsrgsolver.SetGenerator(core_generator);
...
imsrgsolver.Solve();
```

- · if method is 'magnus', increase smax
- if 'brueckner restart', change HNO and solve again (imsrgsolver.Solve())
- I don't see no clear separation between IMSRG and VS-IMSRG. But, I suppose 'nsetps >1' seems to be related with VS-IMSRG.

```
if (nsteps > 1) // two-step decoupling, do core first
{...
  imsrgsolver.SetSmax(smax);
  imsrgsolver.Solve();
}
```

· Transform all operators in 'magnus' method.

2.9 VS-IMSRG solve

· re-normal order wrt the core

```
// If we're_doing_targeted/ensemble_normal_ordering
......//_we_now_re-normal_order_wrt_to_the_core
.....//_and_do_any_remaining_flow.
...../ModelSpace_ms2 (modelspace);
......if_ (_renormal_order_)
......if_ (_renormal_order_)
......if_ (_renormal_order_);
......if_ (_renormal_order_);
.......if_ (_renormal_order_);
......if_ (_renormal_order_);
......if_ (_renormal_order_);
......if_ (_renormal_order_);
......if_ (_renormal_order_);
......if_ (_renormal_order_);
......if_ (_renormal_order_);
.......ms2.SetReference (ms2.core); _//_change_the_reference
......lf_ NO. = _HNO. UndoNormalOrdering();
......if_ NO. = _HNO. DoNormalOrdering();
......if_ NO. = _HNO. DoNormalOrdering();
......if_ imsrgsolver.SetHin(HNO);
......imsrgsolver.SetEtaCriterion(1e-4);
......imsrgsolver.Solve();
......imsrgsolver.Solve();
```

· do similar to operators

2.10 Write output 7

2.10 Write output

- write shell model interaction file
- or write single reference result

8 Code Structure/Flow

Namespace Index

3.1	N	ame	spa	ce L	_ist
VI I		MIII	opu	00 -	-106

Here is	s a list of	all documented	namespaces with	brief	descriptions
---------	-------------	----------------	-----------------	-------	--------------

imsrg_ut	il			
	Imsra	util namespace	Used to define some helpful functions	15

10 Namespace Index

Hierarchical Index

4.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

imsrg_util::FBCIntegrandParameters	3
Generator	3
HartreeFock	4
$std::hash < javier_state_t > \dots \dots 3$	1
IMSRGProfiler	1
IMSRGSolver	2
javier_state_t	4
Ket	4
ModelSpace	5
IMSRGSolver::ODE_Monitor	9
Operator	.0
Orbit	0
Parameters	0
ReadWrite	2
ThreeBodyME	7
TwoBodyChannel	0
TwoBodyChannel_CC	1
TwoBodyME	2
boost::numeric::odeint::vector_space_norm_inf< deque< Operator >> 6	5
VectorStream 6	5

12 Hierarchical Index

Class Index

5.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

imsrg_util::FBCIntegrandParameters	2
Generator	2
HartreeFock	24
std::hash< javier_state_t >	11
IMSRGProfiler	11
IMSRGSolver	12
javier_state_t	34
Ket 3	,4
ModelSpace	5
IMSRGSolver::ODE_Monitor	9
Operator	(
Orbit	C
Parameters	C
ReadWrite 5	2
ThreeBodyME	7
TwoBodyChannel	C
TwoBodyChannel_CC	1
TwoBodyME	2
boost::numeric::odeint::vector_space_norm_inf< deque< Operator >> 6	55
VectorStream	: [

14 Class Index

Namespace Documentation

6.1 imsrg_util Namespace Reference

imsrg_util namespace. Used to define some helpful functions.

Classes

struct FBCIntegrandParameters

Functions

- std::vector< string > split_string (string s, string delimiter)
- Operator OperatorFromString (ModelSpace &modelspace, string opname)
- Operator **NumberOp** (ModelSpace &modelspace, int n, int I, int j2, int tz2)
- Operator NumberOpAlin (ModelSpace &modelspace, int I, int j2, int tz2)
- double **HO_density** (int n, int l, double hw, double r)
- double HO Radial psi (int n, int l, double hw, double r)
- vector< double > GetOccupationsHF (HartreeFock &hf)
- vector< double > GetOccupations (HartreeFock &hf, IMSRGSolver &imsrgsolver)
- vector< double > GetDensity (vector< double > &occupation, vector< double > &R, vector< int > &orbits,
 ModelSpace &modelspace)
- Operator Single_Ref_1B_Density_Matrix (ModelSpace &modelspace)
- double **Get_Charge_Density** (Operator &DM, double r)
- Operator KineticEnergy_Op (ModelSpace &modelspace)
- Operator Trel_Op (ModelSpace &modelspace)
- Operator TCM_Op (ModelSpace &modelspace)
- double Calculate p1p2 (ModelSpace &modelspace, Ket &bra, Ket &ket, int J)
- Operator Trel Masscorrection Op (ModelSpace &modelspace)
- void Calculate_p1p2_all (Operator &OpIn)
- Operator R2CM_Op (ModelSpace &modelspace)
- Operator Rp2_corrected_Op (ModelSpace &modelspace, int A, int Z)
- Operator Rn2_corrected_Op (ModelSpace &modelspace, int A, int Z)
- Operator Rm2_corrected_Op (ModelSpace &modelspace, int A, int Z)
- double Calculate_r1r2 (ModelSpace &modelspace, Ket &bra, Ket &ket, int J)
- Operator HCM Op (ModelSpace &modelspace)
- Operator RSquaredOp (ModelSpace &modelspace)

- Operator R2_p1_Op (ModelSpace &modelspace)
- Operator R2 1body Op (ModelSpace &modelspace, string option)
- Operator R2_p2_Op (ModelSpace &modelspace)
- Operator R2_2body_Op (ModelSpace &modelspace, string option)
- Operator ProtonDensityAtR (ModelSpace &modelspace, double R)
- Operator NeutronDensityAtR (ModelSpace &modelspace, double R)
- Operator RpSpinOrbitCorrection (ModelSpace &modelspace)
- Operator E0Op (ModelSpace &modelspace)
- double **FBCIntegrand** (double x, void *p)
- Operator FourierBesselCoeff (ModelSpace &modelspace, int nu, double R, vector < index t > index list)
- Operator Isospin2_Op (ModelSpace &modelspace)

Returns the T^2 operator.

- Operator ElectricMultipoleOp (ModelSpace &modelspace, int L)
- Operator NeutronElectricMultipoleOp (ModelSpace &modelspace, int L)
- Operator MagneticMultipoleOp (ModelSpace &modelspace, int L)

Returns a reduced magnetic multipole operator with units μ_N fm $^{\lambda-1}$.

- Operator MagneticMultipoleOp pn (ModelSpace &modelspace, int L, string pn)
- Operator IntrinsicElectricMultipoleOp (ModelSpace &modelspace, int L)
- double RadialIntegral (int na, int la, int nb, int lb, int L)
- double RadialIntegral RpowK (int na, int la, int nb, int lb, int k)
- double Talmil (int p, double k)
- double TalmiB (int na, int la, int nb, int lb, int p)
- Operator AllowedFermi Op (ModelSpace &modelspace)
- Operator AllowedGamowTeller Op (ModelSpace &modelspace)
- Operator Sigma Op (ModelSpace &modelspace)

Pauli spin operator

 $\langle f \| \sigma \| i \rangle$

• Operator Sigma_Op_pn (ModelSpace &modelspace, string pn)

Pauli spin operator

 $\langle f \| \sigma \| i \rangle$

- void Reduce (Operator &X)
- void UnReduce (Operator &X)
- · void SplitUp (Operator &OpIn, Operator &OpLow, Operator &OpHi, int ecut)
- Operator RadialOverlap (ModelSpace &modelspace)
- Operator LdotS_Op (ModelSpace &modelspace)
- Operator LCM_Op (ModelSpace &modelspace)
- Operator QdotQ_Op (ModelSpace &modelspace)
- double Calculate_r1xp2 (ModelSpace &modelspace, Ket &bra, Ket &ket, int Jab, int Jcd)
- Operator M0nu_TBME_Op (ModelSpace &modelspace, int Nquad, string src)
- double CPrbmeGen (ModelSpace &modelspace, double rho, double x, int n, int l, int np, int lp, int mm, double pp)
- Operator L2rel_Op (ModelSpace &modelspace)
- Operator EKKShift (Operator &Hin, int Nlower, int Nupper)
- map< index_t, double > GetSecondOrderOccupations (Operator &H, int emax)
- void Embed1BodyIn2Body (Operator &op1, int A)
- double GetEmbeddedTBME (Operator &op1, index_t i, index_t j, index_t k, index_t l, int Jbra, int Jket, int Lambda)
- double FCcoefIntegrand (double r, void *params)
- double FrequencyConversionCoeff (int n1, int l1, double hw1, int n2, int l2, double hw2)
- void CommutatorTest (Operator &X, Operator &Y)
- Operator PSquaredOp (ModelSpace &modelspace)
- double cpNorm (int a, int b)
- template<typename T >

T VectorUnion (const T &v1)

• template<typename T , typename... Args>

T VectorUnion (const T &v1, const T &v2, Args... args)

6.1.1 Detailed Description

imsrg util namespace. Used to define some helpful functions.

6.1.2 Function Documentation

6.1.2.1 AllowedGamowTeller_Op()

Note that there is a literature convention to include the 1/sqrt(Lambda) factor in the reduced matrix element rather than in the expression involving the sum over one-body densities (see footnote on pg 165 of Suhonen). I do not follow this convention, and instead produce the reduced matrix element

$$\langle f \| \sigma \tau_{\pm} \| i \rangle$$

6.1.2.2 Calculate_p1p2()

This returns the antisymmetrized J-coupled two body matrix element of $\vec{p_1} \cdot \vec{p_2}/(m)$. The formula is

$$\begin{split} \frac{1}{m} \left\langle ab \right| \vec{p_1} \cdot \vec{p_2} \left| cd \right\rangle_J &= \frac{1}{\sqrt{(1+\delta_{ab})(1+\delta_{cd})}} & \sum_{LS} \begin{bmatrix} \ell_a & s_a & j_a \\ \ell_b & s_b & j_b \\ L & S & J \end{bmatrix} \begin{bmatrix} \ell_c & s_c & j_c \\ \ell_d & s_d & j_d \\ L & S & J \end{bmatrix} \\ & \times \sum_{\substack{N_{ab}N_{cd}\Lambda \\ n_{ab}n_{cd}\lambda}} \mathcal{A}_{abcd}^{\lambda S} \times \left\langle N_{ab}\Lambda n_{ab}\lambda | n_a\ell_a n_b\ell_b \right\rangle_L & \left\langle N_{cd}\Lambda n_{cd}\lambda | n_c\ell_c n_d\ell_d \right\rangle_L \\ & \times \left(\left\langle N_{ab}\Lambda | t_{cm} | N_{cd}\Lambda \right\rangle - \left\langle n_{ab}\lambda | t_{rel} | n_{cd}\lambda \right\rangle \right) \end{split}$$

The antisymmetrization factor $\mathcal{A}^{\lambda S}_{abcd}$ ensures that the relative wave function is antisymmetrized. It is given by $\mathcal{A}^{\lambda S}_{abcd}=|t_{za}+t_{zc}|+|t_{za}+t_{zd}|\,(-1)^{\lambda+S+|T_z|}$.

The center-of-mass and relative kinetic energies can be found by the same equation as used in the one-body piece of TCM_Op()

6.1.2.3 Calculate_r1r2()

Returns the normalized, anti-symmetrized, J-coupled, two-body matrix element of $\vec{r}_1 \cdot \vec{r}_2$. Calculational details are similar to Calculate_p1p2().

6.1.2.4 Calculate_r1xp2()

Returns the normalized, anti-symmetrized, J-coupled, two-body matrix element of $\frac{m\omega^2}{\hbar\omega}\vec{r}_1\cdot\vec{r}_2$. Calculational details are similar to Calculate_p1p2().

6.1.2.5 CPrbmeGen()

testing... mm = 0.2.4 pp = 0.a.2a

6.1.2.6 E0Op()

Returns

$$r_e^2 = \sum_i e_i r_i^2$$

6.1.2.7 ElectricMultipoleOp()

Returns a reduced electric multipole operator with units e fm $^{\lambda}$ See Suhonen eq. (6.23)

6.1.2.8 Embed1BodyIn2Body()

Embeds the one-body operator of op1 in the two-body part, using mass number A in the embedding. Note that the embedded operator is added to the two-body part, rather than overwriting. The one-body part is left as-is.

6.1.2.9 GetEmbeddedTBME()

Returns a normalized TBME formed by embedding the one body part of op1 in a two body operator. Assumes A=2 in the formula. For other values of A, divide by (A-1).

6.1.2.10 HCM_Op()

Center of mass Hamiltonian

$$\begin{split} H_{CM} &= T_{CM} + \frac{1}{2}Am\omega^2R^2 \\ &= T_{CM} + \frac{1}{2b^2}AR^2\hbar\omega \end{split}$$

6.1.2.11 IntrinsicElectricMultipoleOp()

Returns a reduced electric multipole operator with units e fm $^{\lambda}$ See Suhonen eq. (6.23)

6.1.2.12 M0nu_TBME_Op()

This is the M^{0} TBME from Equation (1) of [PRC 87, 064315 (2013)] it was coded up by me, ie) Charlie Payne (CP) from my thesis, I employed Equations:

6.1.2.13 MagneticMultipoleOp_pn()

Returns a reduced magnetic multipole operator with units μ_N fm $^{\lambda-1}$ This version allows for the selection of just proton or just neutron contributions, or both. See Suhonen eq. (6.24)

6.1.2.14 NeutronElectricMultipoleOp()

Returns a reduced electric multipole operator with units e fm $^{\lambda}$ See Suhonen eq. (6.23)

6.1.2.15 R2_1body_Op()

One-body part of the proton charge radius operator. Returns

$$\hat{R}_{p1}^2 = \sum_i e_i r_i^2$$

6.1.2.16 R2_2body_Op()

Two-body part of the proton charge radius operator. Returns

$$\hat{R}_{p2}^2 = \sum_{i \neq j} e_i \vec{r_i} \cdot \vec{r_j}$$

evaluated in the oscillator basis.

6.1.2.17 R2CM_Op()

Returns

$$R_{CM}^{2} = \left(\frac{1}{A} \sum_{i} \vec{r_{i}}\right)^{2} = \frac{1}{A^{2}} \left(\sum_{i} r_{i}^{2} + 2 \sum_{i < j} \vec{r_{i}} \cdot \vec{r_{j}}\right)$$

evaluated in the oscillator basis.

6.1.2.18 RadialIntegral()

```
double imsrg_util::RadialIntegral (
    int na,
    int la,
    int nb,
    int lb,
    int L)
```

Evaluate the radial integral

$$\tilde{\mathcal{R}}_{ab}^{\lambda} = \int_{0}^{\infty} dx \tilde{g}_{n_a \ell_a}(x) x^{\lambda + 2} \tilde{g}_{n_b \ell_b}(x)$$

where $\tilde{g}(x)$ is the radial part of the harmonic oscillator wave function with unit oscillator length b=1 and x=r/b. To obtain the radial integral for some other oscillator length, multiply by b^{λ} . This implementation uses eq (6.41) from Suhonen. Note this is only valid for $\ell_a+\ell_b+\lambda$ = even. If $\ell_a+\ell_b+\lambda$ is odd, RadialIntegral_RpowK() is called.

6.1.2.19 Rp2_corrected_Op()

Returns

$$R_p^2 = \frac{1}{Z} \sum_p \left(\vec{r}_p - \vec{R}_{CM} \right)^2 = R_{CM}^2 + \frac{A-2}{AZ} \sum_p r_p^2 - \frac{4}{AZ} \sum_{i < j} \vec{r}_i \cdot \vec{r}_j$$

evaluated in the oscillator basis.

6.1.2.20 RSquaredOp()

Returns

$$r^2 = \sum_i r_i^2$$

6.1.2.21 TalmiB()

```
double imsrg_util::TalmiB (
    int na,
    int la,
    int nb,
    int lb,
    int p)
```

Calculate B coefficient for Talmi integral. Formula given in Brody and Moshinsky "Tables of Transformation Brackets for Nuclear Shell-Model Calculations"

6.1.2.22 Talmil()

```
double imsrg_util::TalmiI (
    int p,
    double k )
```

General Talmi integral for a potential r**k 1/gamma(p+3/2) * 2*INT dr r**2 r**k exp(-r**2/b**2) This is valid for (2p+3+k) > 0. The Gamma function diverges for non-positive integers.

6.1.2.23 TCM_Op()

Center of mass kinetic energy, including the hw/A factor

$$T = \frac{\hbar\omega}{A} \sum_{ij} t_{ij} a_i^\dagger a_j + \frac{\hbar\omega}{A} \frac{1}{4} \sum_{ijkl} t_{ijkl} a_i^\dagger a_j^\dagger a_l a_k$$

with a one-body piece

$$t_{ij} = \frac{1}{\hbar\omega} \langle i|T_{12}|j\rangle = \frac{1}{2} (2n_i + \ell_i + 3/2)\delta_{ij} + \frac{1}{2} \sqrt{n_j(n_j + \ell_j + \frac{1}{2})} \delta_{n_i, n_j - 1} \delta_{k_i k_j}$$

where k labels all quantum numbers other than n and a two-body piece

$$t_{ijkl} = \frac{1}{\hbar\omega} \left\langle ij|(T_{12}^{CM} - T_{12}^{rel})|kl\right\rangle$$

6.1.2.24 Trel_Masscorrection_Op()

Correction to Trel due to the proton-neutron mass differences

$$T_{rel} = T - T_{CM}$$

$$\delta T = \sum_{i} \frac{p_i^2}{2m} \left(\frac{m - m_i}{m_i} \right)$$

$$\delta T_{CM} = \left(\frac{Am}{Zm_n + Nm_n}\right) \frac{1}{2mA} P_{CM}^2$$

6.1.2.25 Trel_Op()

Relative kinetic energy, including the hw/A factor

$$T_{rel} = T - T_{CM}$$

Class Documentation

7.1 imsrg_util::FBCIntegrandParameters Struct Reference

Public Attributes

- int **n**
- int I
- · double hw

The documentation for this struct was generated from the following file:

• imsrg_util.cc

7.2 Generator Class Reference

Public Member Functions

- void SetType (std::string g)
- std::string **GetType** ()
- void Update (Operator *H, Operator *Eta)
- void AddToEta (Operator *H, Operator *Eta)
- void SetDenominatorCutoff (double c)
- void **SetDenominatorDelta** (double d)
- void SetDenominatorDeltaIndex (int i)
- void **SetDenominatorDeltaOrbit** (std::string orb)
- void ConstructGenerator_Wegner ()
- void ConstructGenerator_White ()
- void ConstructGenerator Atan ()
- void ConstructGenerator_ImaginaryTime ()

Imaginary time generator.

- void ConstructGenerator_ShellModel ()
- void ConstructGenerator_ShellModel_Atan ()
- void ConstructGenerator_ShellModel_ImaginaryTime ()
- void ConstructGenerator ShellModel Atan NpNh ()
- void ConstructGenerator_HartreeFock ()
- void ConstructGenerator_1PA ()
- double Get1bDenominator (int i, int j)
- · double Get2bDenominator (int ch, int ibra, int iket)

24 Class Documentation

Public Attributes

- std::string generator_type
- Operator * H
- Operator * Eta
- ModelSpace * modelspace
- · double denominator_cutoff
- · double denominator_delta
- · int denominator_delta_index

The documentation for this class was generated from the following files:

- · Generator.hh
- · Generator.cc

7.3 HartreeFock Class Reference

Public Member Functions

· HartreeFock (Operator &hbare)

Constructor.

• void BuildMonopoleV ()

Only the monopole part of V is needed, so construct it.

void BuildMonopoleV3 ()

Only the monopole part of V3 is needed.

• void Diagonalize ()

Diagonalize the Fock matrix.

• void UpdateF ()

Update the Fock matrix with the new transformation coefficients C.

void UpdateDensityMatrix ()

Update the density matrix with the new coefficients C.

void FillLowestOrbits ()

Get new occupations based on the current single-particle energies.

• void UpdateReference ()

If we got new occupations in FillLowestOrbits, then we should update the hole states in the reference.

bool CheckConvergence ()

Compare the current energies with those from the previous iteration.

• void Solve ()

Diagonalize and UpdateF until convergence.

• void CalcEHF ()

Evaluate the Hartree Fock energy.

• void PrintEHF ()

Print out the Hartree Fock energy.

• void ReorderCoefficients ()

Reorder the coefficients in C to eliminate phases etc.

Operator TransformToHFBasis (Operator &OpIn)

Transform an operator from oscillator basis to HF basis.

Operator GetNormalOrderedH ()

Return the Hamiltonian in the HF basis at the normal-ordered 2body level.

• Operator GetNormalOrderedH (arma::mat &Cin)

Return the Hamiltonian in the HF basis at the normal-ordered 2body level.

• Operator GetOmega ()

Return a generator of the Hartree Fock transformation.

- Operator GetHbare ()
- void PrintSPE ()

Getter function for Hbare.

void PrintSPEandWF ()

Print out the single-particle energies and wave functions.

void FreeVmon ()

Free up the memory used to store Vmon3.

void GetRadialWF (index_t index, std::vector< double > &R, std::vector< double > &PSI)

Return the radial wave function of an orbit in the HF basis.

double GetRadialWF_r (index_t index, double R)

Return the radial wave function of an orbit in the HF basis.

- void FreezeOccupations ()
- void UnFreezeOccupations ()
- uint64_t Vmon3Hash (uint64_t a, uint64_t b, uint64_t c, uint64_t d, uint64_t e, uint64_t f)
- void Vmon3UnHash (uint64_t key, int &a, int &b, int &c, int &d, int &e, int &f)

Take a hashed key and extract the six orbit indices that went into it.

Public Attributes

· Operator & Hbare

Input bare Hamiltonian.

ModelSpace * modelspace

Model Space of the Hamiltonian.

· arma::mat C

transformation coefficients, 1st index is ho basis, 2nd = HF basis

· arma::mat rho

density matrix rho_ij

arma::mat KE

kinetic energy

arma::mat Vij

1 body piece of 2 body potential

arma::mat V3ij

1 body piece of 3 body potential

arma::mat F

Fock matrix.

• std::array< std::array< arma::mat, 2 >, 3 > Vmon

Monopole 2-body interaction.

std::array< std::array< arma::mat, 2 >, 3 > Vmon exch

Monopole 2-body interaction.

· arma::uvec holeorbs

list of hole orbits for generating density matrix

- arma::rowvec hole_occ
- · arma::vec energies

occupations of hole orbits

· arma::vec prev_energies

SPE's from last iteration.

26 Class Documentation

· double tolerance

tolerance for convergence

· double EHF

Hartree-Fock energy (Normal-ordered 0-body term)

· double e1hf

One-body contribution to EHF.

double e2hf

Two-body contribution to EHF.

· double e3hf

Three-body contribution to EHF.

· int iterations

iterations used in Solve()

- std::vector< uint64_t > Vmon3_keys
- std::vector< double > Vmon3
- · IMSRGProfiler profiler

Profiler for timing, etc.

• std::deque< double > convergence_ediff

Save last few convergence checks for diagnostics.

• std::deque< double > convergence EHF

Save last few convergence checks for diagnostics.

· bool freeze_occupations

7.3.1 Member Function Documentation

7.3.1.1 BuildMonopoleV()

```
void HartreeFock::BuildMonopoleV ( )
```

Only the monopole part of V is needed, so construct it.

Construct an unnormalized two-body monopole interaction

$$\langle ab|\bar{V}^{(2)}|cd\rangle = \sqrt{(1+\delta_{ab})(1+\delta_{cd})} \sum_{J} (2J+1)\langle ab|V^{(2)}|cd\rangle_{J}$$

This method utilizes the operator method TwoBodyME::GetTBMEmonopole()

7.3.1.2 BuildMonopoleV3()

```
void HartreeFock::BuildMonopoleV3 ( )
```

Only the monopole part of V3 is needed.

Construct an unnormalized three-body monopole interaction

$$\langle iab|\bar{V}^{(3)}|jcd\rangle = \sum_{J,J_{12}} \sum_{Tt_{12}} (2J+1)(2T+1)\langle (ia)J_{12}t_{12};bJT|V^{(3)}|(jc)J_{12}t_{12};dJT\rangle$$

7.3.1.3 CalcEHF()

```
void HartreeFock::CalcEHF ( )
```

Evaluate the Hartree Fock energy.

Calculate the HF energy.

$$E_{HF} = \sum_{\alpha} t_{\alpha\alpha} + \frac{1}{2} \sum_{\alpha\beta} V_{\alpha\beta\alpha\beta} + \frac{1}{6} \sum_{\alpha\beta\gamma} V_{\alpha\beta\gamma\alpha\beta\gamma}$$
$$= \sum_{ij} (2j_i + 1) \rho_{ij} (t_{ij} + \frac{1}{2} \tilde{V}_{ij}^{(2)} + \frac{1}{6} \tilde{V}_{ij}^{(3)})$$

Where the matrices

$$\tilde{V}_{ij}^{(2)} = \sum_{ab} \rho_{ab} \bar{V}_{iajb}^{(2)}
\tilde{V}_{ij}^{(3)} = \sum_{abcd} \rho_{ab} \rho_{cd} \bar{V}_{iacjbd}^{(3)}$$

have already been calculated by UpdateF().

7.3.1.4 CheckConvergence()

```
bool HartreeFock::CheckConvergence ( )
```

Compare the current energies with those from the previous iteration.

Check for convergence using difference in s.p. energies between iterations. Converged when

$$\delta_e \equiv \sqrt{\sum_i (e_i^{(n)} - e_i^{(n-1)})^2} < \text{tolerance}$$

where $e_i^{(n)}$ is the ith eigenvalue of the Fock matrix after n iterations.

7.3.1.5 Diagonalize()

```
void HartreeFock::Diagonalize ( )
```

Diagonalize the Fock matrix.

[See Suhonen eq. 4.85] Diagonalize the fock matrix < a|F|b> and put the eigenvectors in $C(i,\alpha)=< i|\alpha>$ and eigenvalues in the vector energies. Save the last vector of energies to check for convergence. Submatrices corresponding to different channels are diagonalized independently. This guarantees that J,Tz, and π remain good.

7.3.1.6 FillLowestOrbits()

```
void HartreeFock::FillLowestOrbits ( )
```

Get new occupations based on the current single-particle energies.

Get new occupation numbers by filling the orbits in order of their single-particle energies. The last proton/neutron orbit can have a fractional filling, corresponding to ensemble normal ordering.

28 Class Documentation

7.3.1.7 GetNormalOrderedH()

```
Operator HartreeFock::GetNormalOrderedH ( )
```

Return the Hamiltonian in the HF basis at the normal-ordered 2body level.

Returns the normal-ordered Hamiltonian in the Hartree-Fock basis, neglecting the residual 3-body piece.

$$E_0 = E_{HF}$$

$$f = C^{\dagger}FC$$

$$\Gamma = D^{\dagger} \left(V^{(2)} + V^{(3\to 2)} \right) D$$

$$V_{ijkl}^{(2\to 3)J} \equiv \frac{1}{\sqrt{(1+\delta_{ij})(1+\delta_{kl})}} \sum_{ab} \sum_{J_2} (2J_3+1)\rho_{ab} V_{ijaklb}^{JJJ_3}$$

Where F is the Fock matrix obtained in UpdateF() and the matrix D is the same as the one defined in Transform \leftarrow ToHFBasis().

7.3.1.8 GetOmega()

```
Operator HartreeFock::GetOmega ( )
```

Return a generator of the Hartree Fock transformation.

Get the one-body generator corresponding to the transformation to the HF basis. Since the unitary transformation for HF is given by the $U_{HF}=C^{\dagger}$ matrix, we have $e^{-\Omega}=C\Rightarrow\Omega=-\log(C)$. The log is evaluated by diagonalizing the one-body submatrix and taking the log of the diagonal entries. This is much slower than the other methods, but it might be useful.

7.3.1.9 PrintEHF()

```
void HartreeFock::PrintEHF ( )
```

Print out the Hartree Fock energy.

Print out the Hartree Fock energy, and the 1-, 2-, and 3-body contributions to it.

7.3.1.10 PrintSPE()

```
void HartreeFock::PrintSPE ( )
```

Getter function for Hbare.

Print out the single-particle energies

7.3.1.11 ReorderCoefficients()

```
void HartreeFock::ReorderCoefficients ( )
```

Reorder the coefficients in C to eliminate phases etc.

Eigenvectors/values come out of the diagonalization energy-ordered. We want them ordered corresponding to the input ordering, i.e. we want the l,j,tz sub-blockes of the matrix C to be energy-ordered and positive along the diagonal. For a 3x3 matrix this would be something like (this needs to be updated)

$$\begin{pmatrix} -0.8 & 0.2 & -0.6 \\ -0.3 & 0.3 & 0.9 \\ 0.2 & 0.9 & -0.4 \end{pmatrix} \rightarrow \begin{pmatrix} 0.8 & -0.6 & 0.2 \\ 0.3 & 0.9 & 0.3 \\ -0.2 & -0.4 & 0.9 \end{pmatrix}$$

7.3.1.12 Solve()

```
void HartreeFock::Solve ( )
```

Diagonalize and UpdateF until convergence.

Diagonalize and update the Fock matrix until convergence. Then, call ReorderCoefficients() to make sure the index ordering and phases are preserved in the transformation from the original basis to the Hatree-Fock basis.

7.3.1.13 TransformToHFBasis()

Transform an operator from oscillator basis to HF basis.

Takes in an operator expressed in the basis of the original Hamiltonian, and returns that operator in the Hartree-Fock basis.

$$t_{HF} = C^{\dagger} t_{HO} C$$
$$V_{HF}^{J} = D^{\dagger} V_{HO}^{J} D$$

The matrix D is defined as

$$D_{ab\alpha\beta} \equiv \sqrt{\frac{1+\delta_{ab}}{1+\delta_{\alpha\beta}}} C_{a\alpha} C_{b\beta}$$

The factor in the square root is due to the fact that we're using normalized TBME's. Since only kets with $a \le b$ are stored, we can use the antisymmetry of the TBME's and define

$$D(J)_{ab\alpha\beta} \equiv \sqrt{\frac{1+\delta_{ab}}{1+\delta_{\alpha\beta}}} \left(C_{a\alpha}C_{b\beta} - (1-\delta_{ab})(-1)^{j_a+j_b-J}C_{b\alpha}C_{a\beta} \right)$$

7.3.1.14 UpdateDensityMatrix()

```
void HartreeFock::UpdateDensityMatrix ( )
```

Update the density matrix with the new coefficients C.

one-body density matrix $< i|\rho|j> = \sum_{\beta} n_{\beta} < i|\beta> < \beta|j>$ where n_{β} ensures that beta runs over HF orbits in the core (i.e. below the fermi surface)

7.3.1.15 UpdateF()

```
void HartreeFock::UpdateF ( )
```

Update the Fock matrix with the new transformation coefficients C.

[See Suhonen eq 4.85]

$$F_{ij} = t_{ij} + \frac{1}{2j_i + 1} \sum_{ab} \rho_{ab} \bar{V}_{iajb}^{(2)} + \frac{1}{2(2j_i + 1)} \sum_{abcd} \rho_{ab} \rho_{cd} \bar{V}_{iacjbd}^{(3)}$$

- ullet F is the Fock matrix, to be diagonalized
- t is the kinetic energy
- ρ is the density matrix defined in UpdateDensityMatrix()
- $\bar{V}^{(2)}$ is the monopole component of the 2-body interaction defined in BuildMonopoleV().
- $\bar{V}^{(3)}$ is the monopole component of the 3-body interaction devined in BuildMonopoleV3().

7.3.1.16 Vmon3Hash()

Hashing function for rolling six orbit indices into a single long unsigned int. Each orbit gets 10 bits.

7.3.2 Member Data Documentation

7.3.2.1 energies

```
arma::vec HartreeFock::energies
```

occupations of hole orbits

vector of single particle energies

The documentation for this class was generated from the following files:

- · HartreeFock.hh
- · HartreeFock.cc

7.4 std::hash< javier_state_t > Struct Template Reference

Public Member Functions

• size_t operator() (const javier_state_t &st) const

The documentation for this struct was generated from the following file:

· ReadWrite.cc

7.5 IMSRGProfiler Class Reference

```
#include <IMSRGProfiler.hh>
```

Public Member Functions

- std::map< std::string, size t > CheckMem ()
- std::map< std::string, float > **GetTimes** ()
- · void PrintTimes ()
- void PrintCounters ()
- void PrintMemory ()
- void PrintAll ()
- size_t MaxMemUsage ()

Static Public Attributes

- static std::map< std::string, double > timer
 For keeping timing information for various method calls.
- static std::map< std::string, int > counter
- static float start_time = -1

7.5.1 Detailed Description

Profiling class with all static data members. This is for keeping track of timing and memory usage, etc. IMSRG← Profiler methods should probably not be called inside parallel blocks.

7.5.2 Member Function Documentation

7.5.2.1 CheckMem()

```
std::map< std::string, size_t > IMSRGProfiler::CheckMem ( )
```

Check how much memory is being used.

The documentation for this class was generated from the following files:

- · IMSRGProfiler.hh
- · IMSRGProfiler.cc

7.6 IMSRGSolver Class Reference

Classes

· class ODE Monitor

Public Member Functions

- IMSRGSolver (Operator &H in)
- void NewOmega ()
- void SetHin (Operator &H in)
- void SetReadWrite (ReadWrite &r)
- · void Reset ()
- void AddOperator (Operator &Op)
- void UpdateEta ()
- void SetMethod (string m)
- · void Solve ()
- void Solve_magnus_euler ()
- void Solve_magnus_modified_euler ()
- Operator Transform (Operator &OpIn)

```
Returns e^{Omega}\mathcal{O}e^{-Omega}.
```

- Operator Transform (Operator &&OpIn)
- Operator InverseTransform (Operator &OpIn)

```
Returns e^{-Omega}\mathcal{O}e^{Omega}.
```

- Operator GetOmega (int i)
- void SetOmega (size t i, Operator &om)
- size_t GetOmegaSize ()
- int GetNOmegaWritten ()
- Operator Transform_Partial (Operator &OpIn, int n)
- Operator Transform_Partial (Operator &&OpIn, int n)
- void SetFlowFile (string s)
- void SetDs (double d)
- · void SetDsmax (double d)
- void **SetdOmega** (double d)
- void SetSmax (double d)
- · void SetGenerator (string g)
- void SetOmegaNormMax (double x)
- void **SetODETolerance** (float x)
- void SetEtaCriterion (float x)
- void SetMagnusAdaptive (bool b)

- int GetSystemDimension ()
- Operator & GetH_s ()
- Operator & GetEta ()
- Generator & GetGenerator ()
- void UpdateOmega ()
- · void UpdateH ()
- void WriteFlowStatus (ostream &)
- void WriteFlowStatusHeader (ostream &)
- void WriteFlowStatus (string)
- void WriteFlowStatusHeader (string)
- void SetDenominatorCutoff (double c)
- void **SetDenominatorDelta** (double d)
- · void SetDenominatorDeltaIndex (int i)
- · void SetDenominatorDeltaOrbit (string o)
- void CleanupScratch ()
- void operator() (const deque < Operator > &x, deque < Operator > &dxdt, const double t)
- void Solve_ode ()
- void Solve_ode_adaptive ()
- void Solve_ode_magnus ()

Public Attributes

- ModelSpace * modelspace
- · ReadWrite * rw
- Operator * H_0
- deque< Operator > FlowingOps
- Operator H_saved
- · Operator Eta
- deque< Operator > Omega
- Generator generator
- · int istep
- double s
- · double ds
- double ds max
- double smax
- double norm_domega
- double omega_norm_max
- double eta_criterion
- · string method
- · string flowfile
- IMSRGProfiler profiler
- int n_omega_written
- int max_omega_written
- · bool magnus adaptive
- ODE_Monitor ode_monitor
- vector< double > times
- vector< double > E0
- vector< double > eta1
- vector< double > eta2
- string ode_mode
- float ode_e_abs
- float ode_e_rel

7.6.1 Member Function Documentation

7.6.1.1 Transform_Partial()

Returns $e^\Omega \mathcal{O} e^{-\Omega}$ for the Ω_i s with index greater than or equal to n.

The documentation for this class was generated from the following files:

- · IMSRGSolver.hh
- IMSRGSolver.cc

7.7 javier_state_t Struct Reference

Public Member Functions

• javier_state_t (int e12_in, int n_in, int N_in, int J_in, int S_in, int L_in, int lam_in, int LAM_in, int T_in, int Tz_in)

Public Attributes

- int **e12**
- int **n**
- int **N**
- int **J**
- int S
- int L
- int lam
- int LAM
- int **T**
- int Tz

The documentation for this struct was generated from the following file:

· ReadWrite.cc

7.8 Ket Class Reference

Public Member Functions

- Ket (Orbit &op, Orbit &oq)
- int **Phase** (int J)
- int delta_pq () const

Public Attributes

- Orbit * op
- Orbit * oq
- int p

int q

The documentation for this class was generated from the following files:

- · ModelSpace.hh
- · ModelSpace.cc

7.9 ModelSpace Class Reference

Public Member Functions

- ModelSpace (const ModelSpace &)
- ModelSpace (ModelSpace &&)
- ModelSpace (int emax, std::vector < std::string > hole_list, std::vector < std::string > valence_list)
- ModelSpace (int emax, std::vector < std::string > hole_list, std::vector < std::string > core_list, std::vector < std::string > valence_list)
- ModelSpace (int emax, std::string reference, std::string valence)
- ModelSpace (int emax, std::string reference)
- ModelSpace operator= (const ModelSpace &)
- ModelSpace operator= (ModelSpace &&)
- void Init (int emax, std::string reference, std::string valence)
- void Init (int emax, std::map< index_t, double > hole_list, std::string valence)
- void Init (int emax, std::map< index_t, double > hole_list, std::vector< index_t > core_list, std::vector< index_t > valence_list)
- void Init (int emax, std::vector< std::string > hole_list, std::vector< std::string > core_list, std::vector< std::string > valence list)
- void Init_occ_from_file (int emax, std::string valence, std::string occ_file)
- std::map< index_t, double > GetOrbitsAZ (int A, int Z)
- void GetAZfromString (std::string str, int &A, int &Z)
- $std::vector < index_t >$ String2Index (std::vector < std::string > vs)
- std::string Index2String (index_t ind)
- void Get0hwSpace (int Aref, int Zref, std::vector< index_t > &core_list, std::vector< index_t > &valence_list)
- void ParseCommaSeparatedValenceSpace (std::string valence, std::vector< index_t > &core_list, std
 ::vector< index_t > &valence_list)
- void SetupKets ()
- void AddOrbit (Orbit orb)
- void AddOrbit (int n, int l, int j2, int tz2, double occ, int io)
- Orbit & GetOrbit (int i)
- · Ket & GetKet (int i) const
- Ket & GetKet (int p, int q) const
- int GetOrbitIndex (int n, int I, int j2, int tz2) const
- · int GetKetIndex (int p, int q) const
- int GetKetIndex (Ket *ket) const
- int GetNumberOrbits () const
- int GetNumberKets () const
- void SetHbarOmega (double hw)
- void SetTargetMass (int A)

- void SetTargetZ (int Z)
- · double GetHbarOmega () const
- int GetTargetMass () const
- int GetTargetZ () const
- int GetAref () const
- · int GetZref () const
- int GetNumberTwoBodyChannels () const
- TwoBodyChannel & GetTwoBodyChannel (int ch) const
- TwoBodyChannel_CC & GetTwoBodyChannel_CC (int ch) const
- int GetTwoBodyJmax () const
- int GetThreeBodyJmax () const
- void SetReference (std::vector< index_t >)
- void SetReference (std::map< index_t, double >)
- void SetReference (std::string)
- int GetEmax ()
- · int GetE2max ()
- int GetE3max ()
- int GetLmax2 ()
- int GetLmax3 ()
- · void SetEmax (int e)
- · void SetE2max (int e)
- void SetE3max (int e)
- void SetLmax2 (int I)
- void SetLmax3 (int I)
- double GetSixJ (double j1, double j2, double j3, double J1, double J2, double J3)
- double **GetNineJ** (double j1, double j2, double j3, double j4, double j5, double j6, double j7, double j8, double j9)
- double **GetMoshinsky** (int N, int Lam, int n, int lam, int n1, int l1, int n2, int l2, int L)
- bool SixJ_is_empty ()
- int GetOrbitIndex (std::string)
- int GetTwoBodyChannelIndex (int j, int p, int t)
- int phase (int x)
- int phase (double x)
- int Index1 (int n, int l, int j2, int tz2) const
- int Index2 (int p, int q) const
- void PreCalculateMoshinsky ()
- · void PreCalculateSixJ ()
- void ClearVectors ()
- void ResetFirstPass ()
- void CalculatePandyaLookup (int rank_J, int rank_T, int parity)
- std::map< std::array< int, 2 >, std::array< std::vector< int >, 2 > > & GetPandyaLookup (int rank_J, int rank_T, int parity)
- uint64_t SixJHash (double j1, double j2, double j3, double J1, double J2, double J3)
- void **SixJUnHash** (uint64_t key, uint64_t &j1, uint64_t &j2, uint64_t &j3, uint64_t &J1, uint64_t &J2, uint64_t &J3)
- uint64_t **MoshinskyHash** (uint64_t N, uint64_t Lam, uint64_t n, uint64_t lam, uint64_t n1, uint64_t l1, uint64 t n2, uint64 t l2, uint64 t L)
- void **MoshinskyUnHash** (uint64_t key, uint64_t &N, uint64_t &Lam, uint64_t &n, uint64_t &lam, uint64_t &n1, uint64_t &l1, uint64_t &n2, uint64_t &l2, uint64_t &L)

Public Attributes

- std::vector< index t > holes
- std::vector< index t > particles
- std::vector< index t > core
- std::vector< index t > valence
- std::vector< index t > qspace
- std::vector< index_t > proton_orbits
- std::vector< index_t > neutron_orbits
- std::vector< index_t > KetIndex_pp
- std::vector< index_t > KetIndex_ph
- std::vector< index_t > KetIndex_hh
- std::vector< index_t > KetIndex_cc
- std::vector< index_t > KetIndex_vc
- std::vector< index_t > KetIndex_qc
- std::vector< index_t > $KetIndex_vv$
- std::vector< index_t > KetIndex_qv
- $std::vector < index_t > KetIndex_qq$
- std::vector< double > Ket_occ_hh
- std::vector< double > Ket_unocc_hh
- std::vector< double > Ket_occ_ph
- std::vector< double > Ket_unocc_ph
- std::array< std::array< std::unordered_map< index_t, index_t >, 3 >, 3 > MonopoleKets
- · int Emax
- · int E2max
- int E3max
- · int Lmax2
- · int Lmax3
- · int OneBodyJmax
- int TwoBodyJmax
- int ThreeBodyJmax
- std::map < std::array < int, 3 >, $std::vector < index_t >$ > OneBodyChannels
- std::vector< unsigned int > SortedTwoBodyChannels
- std::vector< unsigned int > SortedTwoBodyChannels_CC
- int norbits
- · double hbar_omega
- int target mass
- int target Z
- · int Aref
- int Zref
- int nTwoBodyChannels
- std::vector < Orbit > Orbits
- std::vector< Ket > Kets
- std::vector< TwoBodyChannel > TwoBodyChannels
- std::vector< TwoBodyChannel_CC > TwoBodyChannels_CC
- std::map< std::array< int, 2 >, std::array< std::vector< int >, 2 > > >
 PandyaLookup
- bool sixj_has_been_precalculated
- bool moshinsky_has_been_precalculated
- · bool scalar transform first pass
- std::vector< bool > tensor_transform_first_pass
- IMSRGProfiler profiler

Static Public Attributes

- static std::map< std::string, std::vector< std::string > > ValenceSpaces
- static std::unordered_map< uint64_t, double > SixJList
- static std::unordered_map< uint64_t, double > NineJList
- static std::unordered map< uint64 t, double > MoshList

7.9.1 Member Function Documentation

7.9.1.1 Get0hwSpace()

```
void ModelSpace::GetOhwSpace (
    int Aref,
    int Zref,
    std::vector< index_t > & core_list,
    std::vector< index_t > & valence_list )
```

Find the valence space of one single major oscillator shell each for protons and neutrons (not necessarily the same shell for both) which contains the naive shell-model ground state of the reference. For example, if we want to treat C20, with 6 protons and 14 neutrons, we take the 0p shell for protons and 1s0d shell for neutrons.

7.9.1.2 PreCalculateSixJ()

```
void ModelSpace::PreCalculateSixJ ( )
```

Loop over all the 6j symbols that we expect to encounter, and store them in a hash table. Calculate all symbols

$$\{ja \ jb \ J1jc \ jd \ J2\}$$

and

$$\{J1 \quad J2 \quad J3ja \quad jb \quad jc\}$$

where ja,jb,jc are half-integer and J1,J2,J3 are integer. ja,jb,jc run from 1/2 to emax+1/2, while jd runs higher since the 3N recoupling requires it to go up to e(emax+1/2). I haven't yet bothered using the symmetry properties of the 6j symbol.

7.9.2 Member Data Documentation

7.9.2.1 ValenceSpaces

```
std::map< std::string, std::vector< std::string > > ModelSpace::ValenceSpaces [static]
```

Initial value:

The documentation for this class was generated from the following files:

- · ModelSpace.hh
- · ModelSpace.cc

7.10 IMSRGSolver::ODE Monitor Class Reference

Public Member Functions

- ODE_Monitor (IMSRGSolver &solver)
- void **operator()** (const deque< Operator > &x, double t)
- · void report ()

Public Attributes

- IMSRGSolver & imsrgsolver
- vector< double > & times
- vector< double > & E0
- vector< double > & eta1
- vector< double > & eta2

The documentation for this class was generated from the following file:

· IMSRGSolver.hh

7.11 Operator Class Reference

```
#include <Operator.hh>
```

Public Member Functions

• Operator ()

Default constructor.

Operator (ModelSpace &)

Construct a 2-body scalar operator.

- Operator (ModelSpace &, int Jrank, int Trank, int Parity, int part_rank)
- Operator (const Operator &rhs)

Copy constructor.

- Operator (Operator &&)
- Operator & operator= (const Operator &rhs)
- Operator & operator+= (const Operator &rhs)
- Operator operator+ (const Operator &rhs) const
- Operator & operator+= (const double &rhs)
- Operator operator+ (const double &rhs) const
- Operator & operator== (const Operator &rhs)
- Operator operator- (const Operator &rhs) const
- Operator operator- () const
- Operator & operator-= (const double &rhs)
- Operator operator- (const double &rhs) const
- Operator & operator*= (const double rhs)
- Operator operator* (const double rhs) const
- Operator & operator/= (const double rhs)
- Operator operator/ (const double rhs) const
- Operator & operator= (Operator &&rhs)
- Operator & TempOp (size_t n)

Static scratch space for calculations.

- double GetOneBody (int i, int j)
- void SetOneBody (int i, int j, double val)
- int GetTwoBodyDimension (int ch_bra, int ch_ket)
- double GetTwoBody (int ch_bra, int ch_ket, int i, int j)
- void SetTwoBody (int J1, int p1, int T1, int J2, int p2, int T2, int i, int j, int k, int l, double v)
- void SetE3max (int e)
- int GetE3max ()
- ModelSpace * GetModelSpace ()
- void SetModelSpace (ModelSpace &ms)
- · void Erase ()

Set all matrix elements to zero.

- void EraseZeroBody ()
- void EraseOneBody ()

set zero-body term to zero

void EraseTwoBody ()

set all two-body terms to zero

• void EraseThreeBody ()

set all two-body terms to zero

- void SetHermitian ()
- void SetAntiHermitian ()
- void SetNonHermitian ()

- · bool IsHermitian () const
- · bool IsAntiHermitian () const
- · bool IsNonHermitian () const
- · int GetParticleRank () const
- · int GetJRank () const
- · int GetTRank () const
- int GetParity () const
- void SetParticleRank (int pr)
- void MakeReduced ()
- void MakeNotReduced ()
- void ChangeNormalization (double coeff)
- void MakeNormalized ()
- void MakeUnNormalized ()
- void ScaleZeroBody (double x)
- void ScaleOneBody (double x)
- void **ScaleTwoBody** (double x)
- · void Symmetrize ()

Copy the upper-half triangle to the lower-half triangle for each matrix.

void AntiSymmetrize ()

Copy the upper-half triangle to the lower-half triangle with a minus sign.

- void SetUpOneBodyChannels ()
- · size t Size ()
- void WriteBinary (std::ofstream &ofs)
- void ReadBinary (std::ifstream &ifs)
- Operator DoNormalOrdering ()

Calls DoNormalOrdering2() or DoNormalOrdering3(), depending on the rank of the operator.

· Operator DoNormalOrdering2 ()

Returns the normal ordered two-body operator.

• Operator DoNormalOrdering3 ()

Returns the normal ordered three-body operator.

Operator UndoNormalOrdering () const

Returns the operator normal-ordered wrt the vacuum.

• Operator Truncate (ModelSpace &ms_new)

Returns the operator trunacted to the new model space.

- void SetToCommutator (const Operator &X, const Operator &Y)
- void CommutatorScalarScalar (const Operator &X, const Operator &Y)
- void CommutatorScalarTensor (const Operator &X, const Operator &Y)
- Operator BCH_Product (Operator &)
- Operator BCH_Transform (const Operator &)
- Operator Standard_BCH_Transform (const Operator &)
- Operator Brueckner_BCH_Transform (const Operator &)
- void CalculateKineticEnergy ()
- void Eye ()

set to identity operator - unused

- double GetMP2_Energy ()
- double GetMP3_Energy ()
- double MP1_Eval (Operator &)
- void PrintTimes ()
- double Norm () const
- double OneBodyNorm () const
- double TwoBodyNorm () const
- double Trace (int Atrace, int Ztrace) const
- void ScaleFermiDirac (Operator &H, double T, double Efermi)

- · void PrintOneBody () const
- · void PrintTwoBody (int ch) const
- std::deque< arma::mat > InitializePandya (size_t nch, std::string orientation)
- void **DoPandyaTransformation** (std::deque< arma::mat > &, std::string orientation) const
- · void DoPandyaTransformation_SingleChannel (arma::mat &X, int ch_cc, std::string orientation) const
- void AddInversePandyaTransformation (const std::deque < arma::mat > &)
- void AddInversePandyaTransformation_SingleChannel (arma::mat &Z, int ch_cc)
- void comm110ss (const Operator &X, const Operator &Y)
- void comm220ss (const Operator &X, const Operator &Y)
- void comm111ss (const Operator &X, const Operator &Y)
- void comm121ss (const Operator &X, const Operator &Y)
- void comm221ss (const Operator &X, const Operator &Y)
- void comm122ss (const Operator &X, const Operator &Y)
- void comm222_pp_hhss (const Operator &X, const Operator &Y)
- void comm222 phss (const Operator &X, const Operator &Y)
- void comm222 pp hh 221ss (const Operator &X, const Operator &Y)
- void GooseTankUpdate (const Operator &Omega, const Operator &Nested)
- void ConstructScalarMpp_Mhh (const Operator &X, const Operator &Y, TwoBodyME &Mpp, TwoBodyME &Mhh) const
- void ConstructScalarMpp_Mhh_GooseTank (const Operator &X, const Operator &Y, TwoBodyME &Mpp, TwoBodyME &Mhh) const
- void DoTensorPandyaTransformation (std::map< std::array< index t, 2 >, arma::mat > &) const
- void DoTensorPandyaTransformation SingleChannel (arma::mat &X, int ch bra cc, int ch ket cc) const
- void AddInverseTensorPandyaTransformation_SingleChannel (arma::mat &Zbar, int ch_bra_cc, int ch
 _ket_cc)
- void comm111st (const Operator &X, const Operator &Y)
- void comm121st (const Operator &X, const Operator &Y)
- void comm122st (const Operator &X, const Operator &Y)
- void comm222_pp_hh_221st (const Operator &X, const Operator &Y)
- void comm222_phst (const Operator &X, const Operator &Y)

Static Public Member Functions

- static void Set_BCH_Transform_Threshold (double x)
- static void Set BCH Product Threshold (double x)
- · static void SetUseBruecknerBCH (bool tf)
- static void SetUseGooseTank (bool tf)

Public Attributes

ModelSpace * modelspace

Pointer to the associated modelspace.

· double ZeroBody

The zero body piece of the operator.

· arma::mat OneBody

The one body piece of the operator, stored in a single NxN armadillo matrix, where N is the number of single-particle orbits.

TwoBodyME TwoBody

The two body piece of the operator.

ThreeBodyME ThreeBody

The three body piece of the operator.

• int rank_J

Spherical tensor rank of the operator.

· int rank T

Isotensor rank of the operator.

· int parity

Parity of the operator, 0=even 1=odd.

· int particle rank

Maximum particle rank. Should be 2 or 3.

• int E2max

For two-body matrix elements, $e_i + e_j \leq \textit{E2max}$.

int F3max

For three-body matrix elements, $e_i + e_j + e_k \le \textit{E3max}$.

- bool hermitian
- · bool antihermitian
- int nChannels

Number of two-body channels J, π, T_z associated with the model space.

- std::map< std::array< int, 3 >, std::vector< index t >> OneBodyChannels
- IMSRGProfiler profiler

Static Public Attributes

- static double bch_transform_threshold = 1e-9
- static double bch_product_threshold = 1e-4
- static bool use_brueckner_bch = false
- static bool use goose tank correction = false
- static bool use_goose_tank_correction_titus = false

Friends

Operator Commutator (const Operator &X, const Operator &Y)

7.11.1 Detailed Description

The Operator class provides a generic operator up to three-body, scalar or tensor. The class contains lots of methods and overloaded operators so that the resulting code that uses the operators can look as close as possible to the math that is written down.

7.11.2 Member Function Documentation

7.11.2.1 BCH_Product()

X.BCH_Product(Y) returns Z such that $e^Z=e^Xe^Y$ by employing the <code>Baker-Campbell-Hausdorff</code> formula

$$Z = X + Y + \frac{1}{2}[X, Y] + \frac{1}{12}([X, [X, Y]] + [Y, [Y, X]]) + \dots$$

7.11.2.2 BCH_Transform()

```
Operator Operator::BCH_Transform (

const Operator & Omega)
```

Calculates the kinetic energy operator in the harmonic oscillator basis.

$$t_{ab} = \frac{1}{2}\hbar\omega\delta_{\ell_a\ell_b}\delta_{j_aj_b}\delta_{t_{za}t_{zb}} \left\{ \begin{array}{l} 2n_a + \ell_a + \frac{3}{2} & : n_a = n_b \\ \sqrt{n_a(n_a + \ell_a + \frac{1}{2})} & : n_a = n_b + 1 \end{array} \right.$$

X.BCH_Transform(Y) returns $Z=e^YXe^{-Y}$. We use the Baker-Campbell-Hausdorff formula

$$Z = X + [Y, X] + \frac{1}{2!}[Y, [Y, X]] + \frac{1}{3!}[Y, [Y, [Y, X]]] + \dots$$

with all commutators truncated at the two-body level.

7.11.2.3 Brueckner_BCH_Transform()

Variation of the BCH transformation procedure requested by a one Dr. T.D. Morris

$$e^{\Omega_1 + \Omega_2} X e^{-\Omega_1 - \Omega_2} \rightarrow e^{\Omega_2} e^{\Omega_1} X e^{-\Omega_1} e^{-\Omega_2}$$

7.11.2.4 comm110ss()

```
void Operator::comm110ss (  {\rm const\ Operator\ \&\ } X,   {\rm const\ Operator\ \&\ } Y\ )
```

$$[X_{1}, Y_{(1)}]_{(0)} = \sum_{a} n_a (2j_a + 1) \left(X_{(1)} Y_{(1)} - Y_{(1)} X_{(1)} \right)_{aa}$$

7.11.2.5 comm111ss()

$$[X_{(1)}, Y_{(1)}]_{(1)} = X_{(1)}Y_{(1)} - Y_{(1)}X_{(1)}$$

7.11.2.6 comm121ss()

Returns $[X_{(1)}, Y_{(2)}] - [Y_{(1)}, X_{(2)}]$, where

$$[X_{(1)}, Y_{(2)}]_{ij} = \frac{1}{2j_i + 1} \sum_{ab} (n_a \bar{n}_b) \sum_{J} (2J + 1) (X_{ab} Y_{biaj}^J - X_{ba} Y_{aibj}^J)$$

7.11.2.7 comm122ss()

Returns $[X_{(1)}, Y_{(2)}]_{(2)} - [Y_{(1)}, X_{(2)}]_{(2)}$, where

$$[X_{(1)}, Y_{(2)}]_{ijkl}^{J} = \sum_{a} (X_{ia} Y_{ajkl}^{J} + X_{ja} Y_{iakl}^{J} - X_{ak} Y_{ijal}^{J} - X_{al} Y_{ijka}^{J})$$

here, all TBME are unnormalized, i.e. they should have a tilde.

7.11.2.8 comm220ss()

$$[X_{(2)}, Y_{(2)}]_{(0)} = \frac{1}{2} \sum_{J} (2J+1) \sum_{abcd} (n_a n_b \bar{n}_c \bar{n}_d) \tilde{X}_{abcd}^J \tilde{Y}_{cdab}^J$$

may be rewritten as

$$[X_{(2)},Y_{(2)}]_{(0)}=2\sum_{J}(2J+1)Tr(X^{J}_{hh'pp'}Y^{J}_{pp'hh'})$$

where we obtain a factor of four from converting two unrestricted sums to restricted sums, i.e. $\sum_{ab} \to \sum_{a \le b}$, and using the normalized TBME.

7.11.2.9 comm221ss()

$$[X_{(2)}, Y_{(2)}]_{ij} = \frac{1}{2(2j_i + 1)} \sum_{J} (2J + 1) \sum_{abc} (\bar{n}_a \bar{n}_b n_c + n_a n_b \bar{n}_c) (X_{ciab}^J Y_{abcj}^J - Y_{ciab}^J X_{abcj}^J)$$

This may be rewritten as

$$[X_{(2)}, Y_{(2)}]_{ij} = \frac{1}{2j_i + 1} \sum_{c} \sum_{J} (2J + 1) \left(n_c \mathcal{M}_{pp,icjc}^J + \bar{n}_c \mathcal{M}_{hh,icjc}^J \right)$$

With the intermediate matrix

$$\mathcal{M}_{pp}^{J} \equiv \frac{1}{2} (X^{J} \mathcal{P}_{pp} Y^{J} - Y^{J} \mathcal{P}_{pp} X^{J})$$

and likewise for \mathcal{M}_{hh}^{J}

7.11.2.10 comm222_phss()

Calculates the part of $[X_{(2)},Y_{(2)}]_{ijkl}$ which involves ph intermediate states, here indicated by Z^J_{ijkl}

$$Z_{ijkl}^{J} = \sum_{ab} (n_a \bar{n}_b - \bar{n}_a n_b) \sum_{I'} (2J' + 1) \left[\left\{ \begin{array}{ccc} j_i & j_j & J \\ j_k & j_l & J' \end{array} \right\} \left(\bar{X}_{i\bar{l}a\bar{b}}^{J'} \bar{Y}_{a\bar{b}k\bar{j}}^{J'} - \bar{Y}_{i\bar{l}a\bar{b}}^{J'} \bar{X}_{a\bar{b}k\bar{j}}^{J'} \right) - (-1)^{j_i + j_j - J} \left\{ \begin{array}{ccc} j_j & j_i & J \\ j_k & j_l & J' \end{array} \right\} \left(\bar{X}_{j\bar{l}a\bar{b}}^{J'} \bar{Y}_{a\bar{b}k\bar{j}}^{J'} - \bar{Y}_{i\bar{l}a\bar{b}}^{J'} \bar{X}_{a\bar{b}k\bar{j}}^{J'} \right) - (-1)^{j_i + j_j - J} \left\{ \begin{array}{ccc} j_j & j_i & J \\ j_k & j_l & J' \end{array} \right\} \left(\bar{X}_{j\bar{l}a\bar{b}}^{J'} \bar{Y}_{a\bar{b}k\bar{j}}^{J'} - \bar{Y}_{i\bar{l}a\bar{b}}^{J'} \bar{X}_{a\bar{b}k\bar{j}}^{J'} \right) - (-1)^{j_i + j_j - J} \left\{ \begin{array}{ccc} j_j & j_i & J \\ j_k & j_l & J' \end{array} \right\} \left(\bar{X}_{j\bar{l}a\bar{b}}^{J'} \bar{Y}_{a\bar{b}k\bar{j}}^{J'} - \bar{Y}_{i\bar{l}a\bar{b}}^{J'} \bar{X}_{a\bar{b}k\bar{j}}^{J'} - \bar{Y}_{i\bar{l}a\bar{b}}^{J'} \bar{X}_{a\bar{b}k\bar{j}}^{J'} \right) - (-1)^{j_i + j_j - J} \left\{ \begin{array}{ccc} j_j & j_i & J \\ j_k & j_l & J' \end{array} \right\} \left(\bar{X}_{j\bar{l}a\bar{b}}^{J'} \bar{Y}_{a\bar{b}k\bar{j}}^{J'} - \bar{Y}_{i\bar{l}a\bar{b}}^{J'} \bar{X}_{a\bar{b}k\bar{j}}^{J'} - \bar{Y}_{i\bar{l}a\bar{b}}^{J'} \bar{X}_{a\bar{l}a\bar{b}}^{J'} - \bar{Y$$

This is implemented by defining an intermediate matrix

$$\bar{Z}^{J}_{i\bar{l}k\bar{j}} \equiv \sum_{ab} (n_a \bar{n}_b) \left[\left(\bar{X}^{J'}_{i\bar{l}a\bar{b}} \bar{Y}^{J'}_{a\bar{b}k\bar{j}} - \bar{Y}^{J'}_{i\bar{l}a\bar{b}} \bar{X}^{J'}_{a\bar{b}k\bar{j}} \right) - \left(\bar{X}^{J'}_{i\bar{l}b\bar{a}} \bar{Y}^{J'}_{b\bar{a}k\bar{j}} - \bar{Y}^{J'}_{i\bar{l}b\bar{a}} \bar{X}^{J'}_{b\bar{a}k\bar{j}} \right) \right]$$

The Pandya-transformed matrix elements are obtained with DoPandyaTransformation(). The matrices $\bar{X}_{i\bar{l}a\bar{b}}^{J'}\bar{Y}_{a\bar{b}k\bar{j}}^{J'}$ and $\bar{Y}_{i\bar{l}a\bar{b}}^{J'}\bar{X}_{a\bar{b}k\bar{j}}^{J'}$ are related by a Hermitian conjugation, which saves two matrix multiplications. The commutator is then given by

$$Z^{J}_{ijkl} = \sum_{I'} (2J'+1) \left[\left\{ \begin{array}{ccc} j_{i} & j_{j} & J \\ j_{k} & j_{l} & J' \end{array} \right\} \bar{Z}^{J'}_{i\bar{l}k\bar{j}} - (-1)^{j_{i}+j_{j}-J} \left\{ \begin{array}{ccc} j_{j} & j_{i} & J \\ j_{k} & j_{l} & J' \end{array} \right\} \bar{Z}^{J'}_{j\bar{l}k\bar{i}} \right]$$

7.11.2.11 comm222 phst()

Calculates the part of $[X_{(2)}, \mathbb{Y}^{\Lambda}_{(2)}]_{ijkl}$ which involves ph intermediate states, here indicated by $\mathbb{Z}^{J_1J_2\Lambda}_{ijkl}$

$$\mathbb{Z}_{ijkl}^{J_1J_2\Lambda} = \sum_{abJ_3J_4} (n_a - n_b) \hat{J}_1 \hat{J}_2 \hat{J}_3 \hat{J}_4 \left[\left\{ \begin{array}{ccc} j_i & j_l & J_3 \\ j_j & j_k & J_4 \\ J_1 & J_2 & \Lambda \end{array} \right\} \left(\bar{X}_{i\bar{l}a\bar{b}}^{J3} \bar{\mathbb{Y}}_{a\bar{b}k\bar{j}}^{J3J_4\Lambda} - \bar{\mathbb{Y}}_{i\bar{l}a\bar{b}}^{J3J_4\Lambda} \bar{X}_{a\bar{b}k\bar{j}}^{J_4} \right) - (-1)^{j_i + j_j - J_1} \left\{ \begin{array}{ccc} j_j & j_l & J_3 \\ j_i & j_k & J_4 \\ J_1 & J_2 & \Lambda \end{array} \right\} \left(\bar{X}_{i\bar{l}a\bar{b}}^{J3} \bar{\mathbb{Y}}_{a\bar{b}k\bar{j}}^{J3J_4\Lambda} - \bar{\mathbb{Y}}_{i\bar{l}a\bar{b}}^{J3J_4\Lambda} \bar{X}_{a\bar{b}k\bar{j}}^{J4} \right) - (-1)^{j_i + j_j - J_1} \left\{ \begin{array}{ccc} j_j & j_l & J_3 \\ j_i & j_k & J_4 \\ J_1 & J_2 & \Lambda \end{array} \right\} \left(\bar{X}_{i\bar{l}a\bar{b}}^{J3J_4\Lambda} \bar{X}_{a\bar{b}k\bar{j}}^{J3J_4\Lambda} - \bar{\mathbb{Y}}_{i\bar{l}a\bar{b}}^{J3J_4\Lambda} \bar{X}_{a\bar{b}k\bar{j}}^{J4} \right) - (-1)^{j_i + j_j - J_1} \left\{ \begin{array}{ccc} j_j & j_l & J_3 \\ j_i & j_k & J_4 \\ J_1 & J_2 & \Lambda \end{array} \right\} \left(\bar{X}_{i\bar{l}a\bar{b}}^{J3J_4\Lambda} \bar{X}_{a\bar{b}k\bar{j}}^{J3J_4\Lambda} - \bar{\mathbb{Y}}_{i\bar{l}a\bar{b}}^{J3J_4\Lambda} - \bar{\mathbb{Y}}_{i\bar{l}a\bar{b}}^{J3J_4\Lambda} \bar{X}_{a\bar{b}k\bar{j}}^{J3J_4\Lambda} - \bar{\mathbb{Y}}_{i\bar{l}a\bar{b}}^{J3J_4\Lambda} \bar{X}_{a\bar{b}k\bar{j}}^{J3J_4\Lambda} - \bar{\mathbb{Y}}_{i\bar{l}a\bar{b}}^{J3J_4\Lambda} \bar{X}_{a\bar{b}k\bar{j}}^{J3J_4\Lambda} - \bar{\mathbb{Y}}_{i\bar{l}a\bar{b}}^{J3J_4\Lambda} \bar{X}_{a\bar{b}\bar{b}\bar{b}}^{J3J_4\Lambda} - \bar{\mathbb{Y}}_{i$$

This is implemented by defining an intermediate matrix

$$\bar{\mathbb{Z}}_{i\bar{l}k\bar{j}}^{J_3J_4\Lambda} \equiv \sum_{ab} (n_a\bar{n}_b) \left[\left(\bar{X}_{i\bar{l}a\bar{b}}^{J3} \bar{\mathbb{Y}}_{a\bar{b}k\bar{j}}^{J_3J_4\Lambda} - \bar{\mathbb{Y}}_{i\bar{l}a\bar{b}}^{J_3J_4\Lambda} \bar{X}_{a\bar{b}k\bar{j}}^{J_4} \right) - \left(\bar{X}_{i\bar{l}b\bar{a}}^{J3} \bar{\mathbb{Y}}_{b\bar{a}k\bar{j}}^{J_3J_4\Lambda} - \bar{\mathbb{Y}}_{i\bar{l}b\bar{a}}^{J_3J_4\Lambda} \bar{X}_{b\bar{a}k\bar{j}}^{J_4} \right) \right]$$

The Pandya-transformed matrix elements are obtained with DoTensorPandyaTransformation(). The matrices $\bar{X}_{iar{l}aar{b}}^{J_3}\bar{\mathbb{Y}}_{aar{b}kar{j}}^{J_3J_4\Lambda}$ and $\bar{\mathbb{Y}}_{iar{l}aar{b}}^{J_4J_3\Lambda}\bar{X}_{aar{b}kar{j}}^{J_3}$ are related by a Hermitian conjugation, which saves two matrix multiplications, provided we take into account the phase $(-1)^{J_3-J_4}$ from conjugating the spherical tensor. The commutator is then given by

$$\mathbb{Z}_{ijkl}^{J_1J_2\Lambda} = \sum_{J_3J_4} \hat{J}_1 \hat{J}_2 \hat{J}_3 \hat{J}_4 \begin{bmatrix} \begin{cases} j_i & j_l & J_3 \\ j_j & j_k & J_4 \\ J_1 & J_2 & \Lambda \end{cases} } \bar{\mathbb{Z}}_{i\bar{l}k\bar{j}}^{J_3J_4\Lambda} - (-1)^{j_i+j_j-J} \begin{cases} j_j & j_l & J_3 \\ j_i & j_k & J_4 \\ J_1 & J_2 & \Lambda \end{cases} } \bar{\mathbb{Z}}_{j\bar{l}k\bar{i}}^{J_3J_4\Lambda}$$

7.11.2.12 comm222_pp_hh_221ss()

Since comm222_pp_hhss() and comm221ss() both require the construction of the intermediate matrices \mathcal{M}_{pp} and \mathcal{M}_{hh} , we can combine them and only calculate the intermediates once.

7.11.2.13 comm222_pp_hhss()

Calculates the part of the commutator $[X_{(2)},Y_{(2)}]_{(2)}$ which involves particle-particle or hole-hole intermediate states.

$$[X_{(2)}, Y_{(2)}]_{ijkl}^{J} = \frac{1}{2} \sum_{ab} (\bar{n}_a \bar{n}_b - n_a n_b) (X_{ijab}^{J} Y_{ablk}^{J} - Y_{ijab}^{J} X_{abkl}^{J})$$

This may be written as

$$[X_{(2)}, Y_{(2)}]^J = \mathcal{M}_{pp}^J - \mathcal{M}_{hh}^J$$

With the intermediate matrices

$$\mathcal{M}_{pp}^{J} \equiv \frac{1}{2} (X^{J} \mathcal{P}_{pp} Y^{J} - Y^{J} \mathcal{P}_{pp} X^{J})$$

and likewise for \mathcal{M}_{hh}^{J} .

7.11.2.14 CommutatorScalarScalar()

Commutator where X and Y are scalar operators. Should be called through Commutator()

7.11.2.15 CommutatorScalarTensor()

Commutator [X,Y] where X is a scalar operator and Y is a tensor operator. Should be called through Commutator()

7.11.2.16 DoNormalOrdering2()

```
Operator Operator::DoNormalOrdering2 ( )
```

Returns the normal ordered two-body operator.

Normal ordering of a 2body operator set up for scalar or tensor operators, but the tensor part hasn't been tested

7.11.2.17 DoNormalOrdering3()

```
Operator Operator::DoNormalOrdering3 ( )
```

Returns the normal ordered three-body operator.

Normal ordering of a three body operator. Start by generating the normal ordered two body piece, then use Do⊷ NormalOrdering2() to get the rest. (Note that there are some numerical factors). The normal ordered two body piece is

$$\Gamma^{J}_{ijkl} = V^{J}_{ijkl} + \sum_{a} n_a \sum_{K} \frac{2K+1}{2J+1} V^{(3)JJK}_{ijakla}$$

Right now, this is only set up for scalar operators, but I don't anticipate handling 3body tensor operators in the near future.

7.11.2.18 DoPandyaTransformation_SingleChannel()

The scalar Pandya transformation is defined as

$$\bar{X}_{i\bar{j}k\bar{l}}^{J} = -\sum_{I'} (2J'+1) \left\{ \begin{array}{ccc} j_i & j_j & J \\ j_k & j_l & J' \end{array} \right\} X_{ilkj}^{J}$$

where the overbar indicates time-reversed orbits.

7.11.2.19 DoTensorPandyaTransformation()

```
void Operator::DoTensorPandyaTransformation ( std::map < std::array < index\_t, \ 2 >, \ arma::mat > \& \ ) \ const
```

The scalar Pandya transformation is defined as

$$\bar{X}_{i\bar{j}k\bar{l}}^{J} = -\sum_{I'} (2J'+1) \left\{ \begin{array}{ccc} j_i & j_j & J \\ j_k & j_l & J' \end{array} \right\} X_{ilkj}^{J}$$

where the overbar indicates time-reversed orbits. This function is designed for use with comm222_phss() and so it takes in two arrays of matrices, one for hp terms and one for ph terms.

7.11.2.20 EraseOneBody()

```
void Operator::EraseOneBody ( )
```

set zero-body term to zero

set all one-body terms to zero

7.11.2.21 GetMP2_Energy()

```
double Operator::GetMP2_Energy ( )
```

Calculate the second-order perturbation theory correction to the energy

$$E^{(2)} = \sum_{ia} (2j_a + 1) \frac{|f_{ia}|^2}{f_{aa} - f_{ii}} + \sum_{i \le j//a \le b} \sum_{J} (2J + 1) \frac{|\Gamma_{ijab}^J|^2}{f_{aa} + f_{bb} - f_{ii} - f_{jj}}$$

7.11.2.22 GetMP3_Energy()

```
double Operator::GetMP3_Energy ( )
```

Calculate the third order perturbation correction to energy

$$\frac{1}{8} \sum_{abijpq} \sum_{J} (2J+1) \frac{\Gamma^{J}_{abij} \Gamma^{J}_{ijpq} \Gamma^{J}_{pqab}}{(f_a+f_b-f_p-f_q)(f_a+f_b-f_i-f_j)} + \sum_{abcijk} \sum_{J} (2J+1)^2 \frac{\bar{\Gamma}^{J}_{a\bar{i}j\bar{b}} \bar{\Gamma}^{J}_{j\bar{b}k\bar{c}} \bar{\Gamma}^{J}_{k\bar{c}a\bar{i}}}{(f_a+f_b-f_i-f_j)(f_a+f_c-f_i-f_k)}$$

7.11.2.23 MP1_Eval()

Evaluate first order perturbative correction to the operator's ground-state expectation value. A HF basis is assumed.

$$\mathcal{O}^{(1)} = 2 \sum_{abij} \frac{H_{abij} \mathcal{O}_{ijab}}{\Delta_{abij}}$$

7.11.2.24 Norm()

```
double Operator::Norm ( ) const
```

Obtain the Frobenius norm of the operator, which here is defined as

$$||X|| = \sqrt{||X_{(1)}||^2 + ||X_{(2)}||^2}$$

and

$$||X_{(1)}||^2 = \sum_{ij} X_{ij}^2$$

7.11.2.25 Standard_BCH_Transform()

X.BCH_Transform(Y) returns $Z=e^YXe^{-Y}$. We use the Baker-Campbell-Hausdorff formula

$$Z = X + [Y, X] + \frac{1}{2!}[Y, [Y, X]] + \frac{1}{3!}[Y, [Y, [Y, X]]] + \dots$$

with all commutators truncated at the two-body level.

7.11.2.26 Truncate()

Returns the operator trunacted to the new model space.

Truncate an operator to a smaller emax A corresponding ModelSpace object must be created at the appropriate scope. That's why the new operator is passed as a

7.11.2.27 UndoNormalOrdering()

```
Operator Operator::UndoNormalOrdering ( ) const
```

Returns the operator normal-ordered wrt the vacuum.

Convert to a basis normal ordered wrt the vacuum. This doesn't handle 3-body terms. In that case, the 2-body piece is unchanged.

7.11.3 Friends And Related Function Documentation

7.11.3.1 Commutator

```
Operator Commutator (  {\rm const\ Operator\ \&\ } X,   {\rm const\ Operator\ \&\ } Y\ ) \quad [{\rm friend}] Returns Z=[X,Y]
```

The documentation for this class was generated from the following files:

- · Operator.hh
- · Operator.cc

7.12 Orbit Class Reference

Public Member Functions

- Orbit (int n, int l, int j, int t, double occ, int cvq, int index)
- Orbit (const Orbit &)

Public Attributes

- int **n**
- int I
- int **j2**
- int tz2
- · double occ
- int cvq
- int index

The documentation for this class was generated from the following files:

- · ModelSpace.hh
- · ModelSpace.cc

7.13 Parameters Class Reference

Public Member Functions

- Parameters (int, char **)
- void ParseCommandLineArgs (int, char **)
- void PrintOptions ()
- string **s** (string)
- double d (string)
- int i (string)
- vector< string $> \mathbf{v}$ (string)
- string **DefaultFlowFile** ()
- string **DefaultIntFile** ()

Public Attributes

• bool help_mode

Static Public Attributes

- static map< string, string > string_par
- static map< string, double > double_par
- static map< string, int > int_par
- static map< string, vector< string >> vec_par

7.13.1 Member Data Documentation

7.13.1.1 double_par

```
map< string, double > Parameters::double_par [static]
```

Initial value:

7.13.1.2 int_par

```
map< string, int > Parameters::int_par [static]
```

Initial value:

7.13.1.3 string_par

```
map< string, string > Parameters::string_par [static]
```

Initial value:

7.13.1.4 vec_par

```
map< string, vector< string > > Parameters::vec_par [static]
```

Initial value:

```
= {
    {"Operators", {} },
    {"OperatorsFromFile", {} },
    {"SPWF",{} },
}
```

The documentation for this class was generated from the following file:

· Parameters.hh

7.14 ReadWrite Class Reference

Public Member Functions

- void ReadSettingsFile (std::string filename)
- void ReadTBME_Oslo (std::string filename, Operator &Hbare)

Read two-body matrix elements from an Oslo-formatted file.

- void ReadTBME_OakRidge (std::string spname, std::string tbmename, Operator &Hbare, std::string format)

 Read two-body matrix elements from an Oslo-formatted file, as obtained from Gaute Hagen.
- void ReadBareTBME_Jason (std::string filename, Operator &Hbare)

- void ReadBareTBME_Navratil (std::string filename, Operator &Hbare)
- void ReadBareTBME_Navratil_from_stream (std::istream &infile, Operator &Hbare)
- void ReadBareTBME_Darmstadt (std::string filename, Operator &Hbare, int E1max, int E2max, int Imax)

Decide if the file is gzipped or ascii, create a stream, then call ReadBareTBME_Darmstadt_from_stream().

- template<class T >
 - void ReadBareTBME_Darmstadt_from_stream (T &infile, Operator &Hbare, int E1max, int E2max, int Imax)
- void Read Darmstadt 3body (std::string filename, Operator &Hbare, int E1max, int E2max, int E3max)
- size_t Count_Darmstadt_3body_to_read (Operator &Hbare, int E1max, int E2max, int E3max, std::vector< int > &orbits remap, std::vector< size t > &nread list)
- template<class T >
 - void Read_Darmstadt_3body_from_stream (T &infile, Operator &Hbare, int E1max, int E2max, int E3max)
- void Store_Darmstadt_3body (const std::vector< float > &ThreeBME, const std::vector< size_t > &nread←
 _list, const std::vector< int > &orbits_remap, Operator &Hbare, int E1max, int E2max, int E3max)
- void GetHDF5Basis (ModelSpace *modelspace, std::string filename, std::vector < std::array < int, 5 >> &Basis)
- void Read3bodyHDF5 (std::string filename, Operator &op)
- void Read3bodyHDF5_new (std::string filename, Operator &op)
- void ReadOperator_Nathan (std::string filename1b, std::string filename2b, Operator &op)
- void ReadTensorOperator_Nathan (std::string filename1b, std::string filename2b, Operator &op)
- void Read2bCurrent Navratil (std::string filename, Operator &Op)
- void Write_me2j (std::string filename, Operator &op, int emax, int e2max, int lmax)
- void Write me3i (std::string filename, Operator &op, int E1max, int E2max, int E3max)
- void WriteTBME_Navratil (std::string filename, Operator &Hbare)
- void WriteNuShellX_sps (Operator &op, std::string filename)

Write the valence model space to a NuShellX *.sp file.

- void WriteNuShellX int (Operator &op., std::string filename)
- void WriteNuShellX op (Operator &op, std::string filename)
- void ReadNuShellX_int (Operator &op, std::string filename)
- void ReadNuShellX int iso (Operator &op, std::string filename)
- void ReadNuShellX_sp (ModelSpace &ms, std::string filename)
- void WriteNuShellX intfile (Operator &op, std::string filename, std::string mode)
- void WriteAntoine_int (Operator &op, std::string filename)

This now appears to be working properly.

• void WriteAntoine_input (Operator &op, std::string filename, int A, int Z)

Generate an input file for antoine, which may be edited afterwards if need be.

void WriteOperator (Operator &op, std::string filename)

Write an operator to a plain-text file.

void WriteOperatorHuman (Operator &op, std::string filename)

Write an operator to a plain-text file.

void ReadOperator (Operator &op, std::string filename)

Read an operator from a plain-text file.

void ReadOperatorHuman (Operator &op, std::string filename)

Read an operator from a plain-text file.

void CompareOperators (Operator &op1, Operator &op2, std::string filename)

Write an operator to a plain-text file.

- void ReadOneBody_Takayuki (std::string filename, Operator &Hbare)
- void ReadTwoBody_Takayuki (std::string filename, Operator &Hbare)
- void WriteOneBody_Takayuki (std::string filename, Operator &Hbare)
- void WriteTwoBody_Takayuki (std::string filename, Operator &Hbare)
- void WriteTensorOneBody (std::string filename, Operator &H, std::string opname)
- void WriteTensorTwoBody (std::string filename, Operator &H, std::string opname)
- void WriteOneBody Simple (std::string filename, Operator &Hbare)
- void WriteOneBody_Oslo (std::string filename, Operator &Hbare)

- void WriteTwoBody_Oslo (std::string filename, Operator &Hbare)
 Read two-body matrix elements from an Oslo-formatted file.
- void ReadTwoBodyEngel (std::string filename, Operator &Op)
- void ReadTwoBodyEngel_from_stream (std::istream &infile, Operator &Op)
- void ReadRelCMOpFromJavier (std::string statefile, std::string MEfile, Operator &Op)
- void SetLECs (double c1, double c3, double c4, double cD, double cE)
- std::array< double, 5 > **GetLECs** ()
- void SetLECs preset (std::string)
- void SetCoMCorr (bool b)
- void SetScratchDir (std::string d)
- std::string GetScratchDir ()
- · int GetAref ()
- · int GetZref ()
- void SetAref (int a)
- void SetZref (int z)
- void Set3NFormat (std::string fmt)
- bool InGoodState ()

Public Attributes

- std::map< std::string, std::string > InputParameters
- · bool doCoM corr
- · bool goodstate
- std::array< double, 5 > LECs
- std::string scratch_dir
- std::string File2N
- · std::string File3N
- std::string format3N
- · int Aref
- int Zref

7.14.1 Member Function Documentation

7.14.1.1 Count_Darmstadt_3body_to_read()

Read me3j format three-body matrix elements. Pass in E1max, E2max, E3max for the file, so that it can be properly interpreted. The modelspace truncation doesn't need to coincide with the file truncation. For example, you could have an emax=10 modelspace and read from an emax=14 file, and the matrix elements with emax>10 would be ignored.

7.14.1.2 GetHDF5Basis()

Read three-body basis from HDF5 formatted file. This routine was ported to C++ from a C routine by Heiko Hergert, with as little modification as possible.

7.14.1.3 Read3bodyHDF5()

Read three-body matrix elements from HDF5 formatted file. This routine was ported to C++ from a C routine by Heiko Hergert, with as little modification as possible.

7.14.1.4 Read_Darmstadt_3body()

```
void ReadWrite::Read_Darmstadt_3body (
    std::string filename,
    Operator & Hbare,
    int E1max,
    int E2max,
    int E3max )
```

Decide the file format from the extension – .me3j (Darmstadt group format, human-readable), .gz (gzipped me3j, less storage), .bin (me3j converted to binary, faster to read), .h5 (HDF5 format). Default is to assume .me3j. For the first three, the file is converted to a stream and sent to ReadDarmstadt_3body_from_stream(). For the HDF5 format, a separate function is called: Read3bodyHDF5().

7.14.1.5 ReadBareTBME_Darmstadt_from_stream()

Read TBME's from a file formatted by the Darmstadt group. The file contains just the matrix elements, and the corresponding quantum numbers are inferred. This means that the model space of the file must also be specified. emax refers to the maximum single-particle oscillator shell. Emax refers to the maximum of the sum of two single particles. Imax refers to the maximum single-particle ℓ . If Emax is not specified, it should be 2 \times emax. If Imax is not specified, it should be emax. Also note that the matrix elements are given in un-normalized form, i.e. they are just the M scheme matrix elements multiplied by Clebsch-Gordan coefficients for JT coupling.

7.14.1.6 ReadBareTBME_Navratil()

Read two body matrix elements from file formatted for Petr Navratil's no-core shell model code. These are given as normalized, JT coupled matix elements. Matrix elements corresponding to orbits outside the modelspace are ignored.

7.14.1.7 Store_Darmstadt_3body()

Read me3j format three-body matrix elements. Pass in E1max, E2max, E3max for the file, so that it can be properly interpreted. The modelspace truncation doesn't need to coincide with the file truncation. For example, you could have an emax=10 modelspace and read from an emax=14 file, and the matrix elements with emax>10 would be ignored.

7.14.1.8 WriteNuShellX_intfile()

Write the valence space part of the interaction to a NuShellX *.int file. Note that for operators other than the Hamiltonian NuShellX assumes identical orbits for protons and neutrons, so that the pnpn interaction should be equal to the pnnp interaction. This is only approximately true for interactions generated with IMSRG, so some averaging is required.

7.14.1.9 WriteOneBody_Oslo()

Switching order here to make EKK work with the MBPT code

The documentation for this class was generated from the following files:

- · ReadWrite.hh
- · ReadWrite.cc

7.15 ThreeBodyME Class Reference

#include <ThreeBodyME.hh>

Public Member Functions

- ThreeBodyME (ModelSpace *)
- ThreeBodyME (ModelSpace *ms, int e3max)
- size_t KeyHash (size_t, size_t, size_t, size_t, size_t, size_t) const
- void Allocate ()
- void SetModelSpace (ModelSpace *ms)
- std::vector< std::pair< size_t, double > > AccessME (int Jab_in, int Jde_in, int J2, int tab_in, int tde_in, int T2, int i, int j, int k, int l, int m, int n) const
- ThreeBME_type **AddToME** (int Jab_in, int Jde_in, int J2, int tab_in, int tde_in, int T2, int i, int j, int k, int l, int m, int n, ThreeBME_type V)
- void SetME (int Jab_in, int Jde_in, int J2, int tab_in, int tde_in, int T2, int i, int j, int k, int l, int m, int n, ThreeBME_type V)
- ThreeBME_type GetME (int Jab_in, int Jde_in, int J2, int tab_in, int tde_in, int T2, int i, int j, int k, int l, int m, int n) const
- ThreeBME_type GetME_pn (int Jab_in, int Jde_in, int J2, int i, int j, int k, int l, int m, int n) const
- int SortOrbits (int a_in, int b_in, int c_in, int &a, int &b, int &c) const
- double RecouplingCoefficient (int recoupling_case, double ja, double jb, double jc, int Jab_in, int Jab, int J)
 const

Coefficients for recoupling three body matrix elements.

- void **SetE3max** (int e)
- int GetE3max ()
- void Erase ()
- · void Deallocate ()

Free up the memory used for the matrix elements.

- size t size ()
- void WriteBinary (std::ofstream &)
- void ReadBinary (std::ifstream &)

Public Attributes

- ModelSpace * modelspace
- std::vector< ThreeBME_type > MatEI
- std::unordered_map< size_t, size_t > OrbitIndexHash
- int E3max
- size_t total_dimension

Static Public Attributes

- static const int ABC = 0
- static const int BCA = 1
- static const int CAB = 2
- static const int ACB = 3
- static const int BAC = 4
- static const int CBA = 5

7.15.1 Detailed Description

The three-body piece of an operator, stored in nested vectors. The 3BMEs are stored in unnormalized JT coupled form $\langle (abJ_{ab}t_{ab})c|V|(deJ_{de}t_{de})f\rangle_{JT}$. To minimize the number of stored matrix elements, only elements with $a\geq b\geq c, a\geq d\geq e\geq f$ are stored. The other combinations are obtained on the fly by GetME(). The storage format is MatEl[{a,b,c,d,e,f,J,Jab,Jde}][T_index] = $\langle (abJ_{ab}t_{ab})c|V|(deJ_{de}t_{de})f\rangle_{JT}$.

7.15.2 Member Function Documentation

7.15.2.1 AccessME()

```
std::vector< std::pair< size_t, double > > ThreeBodyME::AccessME (
    int Jab_in,
    int Jde_in,
    int J2,
    int tab_in,
    int tde_in,
    int T2,
    int a_in,
    int b_in,
    int c_in,
    int d_in,
    int d_in,
    int d_in,
    int e_in,
    int e_in,
    int f_in ) const
```

Since the code for setting or getting matrix elements is almost identical, do all the work here to pull out a list of indices and coefficients which are needed for setting or getting.

7.15.2.2 GetME()

```
ThreeBME_type ThreeBodyME::GetME (

int Jab_in,
int Jde_in,
int J2,
int tab_in,
int tde_in,
int T2,
int a_in,
int b_in,
int c_in,
int d_in,
int e_in,
int e_in,
int f_in ) const
```

Get three body matrix element in isospin formalism $V_{abcdef}^{J_{ab}J_{de}Jt_{ab}t_{de}T}$ (which is how they're stored). The elements are stored with the following restrictions: $a \geq b \geq c, d \geq e \geq f, a \geq d$. If a = d then $b \geq e$, and if b = e then $c \geq f$. Other orderings are obtained by recoupling on the fly.

7.15.2.3 GetME_pn()

```
ThreeBME_type ThreeBodyME::GetME_pn (
    int Jab_in,
    int Jde_in,
    int J2,
    int a,
    int b,
    int c,
    int d,
    int e,
    int f) const
```

Get three body matrix element in proton-neutron formalism.

$$V_{abcdef}^{(pn)} = \sum_{t_{ab}t_{de}T} < t_{a}t_{b}|t_{ab}> < t_{d}t_{e}|t_{de}> < t_{ab}t_{c}|T> < t_{de}t_{f}|T> V_{abcdef}^{t_{ab}t_{de}T}$$

7.15.2.4 KeyHash()

Hash function to map six indices to a single long unsigned int. Each index gets 10 bits, for a maximum of 1024 indices. If we have good isospin, this means we're ok up to emax=43.

7.15.2.5 SetME()

```
void ThreeBodyME::SetME (
    int Jab_in,
    int Jde_in,
    int J2,
    int tab_in,
    int tde_in,
    int T2,
    int a_in,
    int b_in,
    int c_in,
    int d_in,
    int e_in,
    int f_in,
    ThreeBME_type V )
```

Set a three body matrix element. Since only a subset of orbit orderings are stored, we need to recouple if the input ordering is different.

7.15.2.6 SortOrbits()

```
int ThreeBodyME::SortOrbits (
    int a_in,
    int b_in,
    int c_in,
    int & a,
    int & b,
    int & c ) const
```

Rearrange orbits (abc) so that a>=b>=c and return an int which reflects the required reshuffling

```
• 0: (abc)_in -> (abc)
```

- 1: (bca)_in -> (abc)
- 2: (cab)_in -> (abc)
- 3: (acb)_in -> (abc) odd permutation
- 4: (bac)_in -> (abc) odd permutation
- 5: (cba)_in -> (abc) odd permutation

The documentation for this class was generated from the following files:

- · ThreeBodyME.hh
- · ThreeBodyME.cc

7.16 TwoBodyChannel Class Reference

Inheritance diagram for TwoBodyChannel:

Public Member Functions

- TwoBodyChannel (int j, int p, int t, ModelSpace *ms)
- TwoBodyChannel (int N, ModelSpace *ms)
- void Initialize (int N, ModelSpace *ms)
- int GetNumberKets () const
- int GetLocalIndex (int ketindex) const
- int GetLocalIndex (int p, int q) const
- int GetKetIndex (int i) const
- · const Ket & GetKet (int i) const
- Ket & GetKet (int i)
- arma::uvec GetKetIndexFromList (std::vector< index_t > &vec_in)
- const arma::uvec & GetKetIndex_pp () const

- · const arma::uvec & GetKetIndex_hh () const
- · const arma::uvec & GetKetIndex_ph () const
- · const arma::uvec & GetKetIndex_cc () const
- · const arma::uvec & GetKetIndex_vc () const
- const arma::uvec & GetKetIndex_qc () const
- · const arma::uvec & GetKetIndex_vv () const
- const arma::uvec & GetKetIndex_qv () const
- const arma::uvec & GetKetIndex_qq () const
- virtual bool CheckChannel_ket (Orbit *op, Orbit *oq) const
- · bool CheckChannel_ket (Ket &ket) const

Public Attributes

- int J
- · int parity
- int Tz
- arma::uvec KetIndex pp
- · arma::uvec KetIndex_hh
- · arma::uvec KetIndex_ph
- · arma::uvec KetIndex cc
- arma::uvec KetIndex_vc
- arma::uvec KetIndex_qc
- arma::uvec KetIndex_vv
- arma::uvec KetIndex_qv
- arma::uvec KetIndex_qq
- arma::vec Ket_occ_hh
- · arma::vec Ket_unocc_hh
- arma::vec Ket_occ_ph
- arma::vec Ket_unocc_ph
- ModelSpace * modelspace
- · int NumberKets
- std::vector< int > KetList
- std::vector < int > KetMap

The documentation for this class was generated from the following files:

- · ModelSpace.hh
- ModelSpace.cc

7.17 TwoBodyChannel_CC Class Reference

Inheritance diagram for TwoBodyChannel_CC:

Public Member Functions

- TwoBodyChannel_CC (int j, int p, int t, ModelSpace *ms)
- TwoBodyChannel_CC (int N, ModelSpace *ms)
- bool CheckChannel_ket (Orbit *op, Orbit *oq) const

Additional Inherited Members

The documentation for this class was generated from the following files:

- · ModelSpace.hh
- · ModelSpace.cc

7.18 TwoBodyME Class Reference

```
#include < Two Body ME.hh>
```

Public Member Functions

- TwoBodyME (ModelSpace *)
- TwoBodyME (TwoBodyME ph &)
- TwoBodyME (ModelSpace *ms, int rankJ, int rankT, int parity)
- TwoBodyME & operator*= (const double)
- TwoBodyME & operator+= (const TwoBodyME &)
- TwoBodyME & operator-= (const TwoBodyME &)
- · void Allocate ()
- bool IsHermitian ()
- bool IsAntiHermitian ()
- bool IsNonHermitian ()
- · void SetHermitian ()
- void SetAntiHermitian ()
- void SetNonHermitian ()
- arma::mat & GetMatrix (int chbra, int chket)
- arma::mat & GetMatrix (int ch)
- arma::mat & GetMatrix (std::array< int, 2 > a)
- · const arma::mat & GetMatrix (int chbra, int chket) const
- · const arma::mat & GetMatrix (int ch) const
- double GetTBME (int ch bra, int ch ket, int a, int b, int c, int d) const

This returns the matrix element times a factor $\sqrt{(1+\delta_{ij})(1+\delta_{kl})}$.

double GetTBME_norm (int ch_bra, int ch_ket, int a, int b, int c, int d) const
 This returns the normalized matrix element.

- void **SetTBME** (int ch bra, int ch ket, int a, int b, int c, int d, double tbme)
- void **AddToTBME** (int ch_bra, int ch_ket, int a, int b, int c, int d, double tbme)
- double GetTBME (int ch_bra, int ch_ket, Ket &bra, Ket &ket) const
- void **SetTBME** (int ch_bra, int ch_ket, Ket &bra, Ket &ket, double tbme)
- void AddToTBME (int ch bra, int ch ket, Ket &bra, Ket &ket, double tbme)
- double GetTBME_norm (int ch_bra, int ch_ket, int ibra, int iket) const
- · void SetTBME (int ch bra, int ch ket, int ibra, int iket, double tbme)
- void AddToTBME (int ch_bra, int ch_ket, int ibra, int iket, double tbme)

- double **GetTBME** (int j_bra, int p_bra, int t_bra, int j_ket, int p_ket, int t_ket, Ket &bra, Ket &ket) const
- void **SetTBME** (int j_bra, int p_bra, int t_bra, int j_ket, int p_ket, int t_ket, Ket &bra, Ket &ket, double tbme)
- void AddToTBME (int j bra, int p bra, int t bra, int j ket, int p ket, int t ket, Ket &bra, Ket &ket, double tbme)
- double GetTBME (int j_bra, int p_bra, int t_bra, int j_ket, int p_ket, int t_ket, int a, int b, int c, int d) const
- void **SetTBME** (int j_bra, int p_bra, int t_bra, int j_ket, int p_ket, int t_ket, int a, int b, int c, int d, double tbme)
- void AddToTBME (int j_bra, int p_bra, int t_bra, int j_ket, int p_ket, int t_ket, int a, int b, int c, int d, double tbme)
- · double GetTBME_J (int j bra, int j ket, int a, int b, int c, int d) const
- void **SetTBME J** (int j bra, int j ket, int a, int b, int c, int d, double tbme)
- void AddToTBME_J (int j_bra, int j_ket, int a, int b, int c, int d, double tbme)
- double GetTBME J norm (int j bra, int j ket, int a, int b, int c, int d) const
- double GetTBME (int ch, int a, int b, int c, int d) const
- double GetTBME_norm (int ch, int a, int b, int c, int d) const
- void **SetTBME** (int ch. int a. int b. int c. int d. double tbme)
- void **AddToTBME** (int ch, int a, int b, int c, int d, double tbme)
- · double GetTBME (int ch, Ket &bra, Ket &ket) const
- · double GetTBME_norm (int ch, Ket &bra, Ket &ket) const
- void **SetTBME** (int ch, Ket &bra, Ket &ket, double tbme)
- void AddToTBME (int ch, Ket &bra, Ket &ket, double tbme)
- double GetTBME_norm (int ch, int ibra, int iket) const
- void SetTBME (int ch, int ibra, int iket, double tbme)
- void AddToTBME (int ch, int ibra, int iket, double tbme)
- double GetTBME (int j, int p, int t, Ket &bra, Ket &ket) const
- · void SetTBME (int j, int p, int t, Ket &bra, Ket &ket, double tbme)
- void **AddToTBME** (int j, int p, int t, Ket &bra, Ket &ket, double tbme)
- double **GetTBME** (int j, int p, int t, int a, int b, int c, int d) const
- double **GetTBME_norm** (int j, int p, int t, int a, int b, int c, int d) const
- void **SetTBME** (int j, int p, int t, int a, int b, int c, int d, double tbme)
- void **AddToTBME** (int j, int p, int t, int a, int b, int c, int d, double tbme)
- double GetTBME_J (int j, int a, int b, int c, int d) const
- void **SetTBME J** (int j, int a, int b, int c, int d, double tbme)
- void AddToTBME_J (int j, int a, int b, int c, int d, double tbme)
- double **GetTBME J_norm** (int j, int a, int b, int c, int d) const
- void Set_pn_TBME_from_iso (int j, int T, int tz, int a, int b, int c, int d, double tbme)
- double **Get iso TBME from pn** (int j, int T, int tz, int a, int b, int c, int d)
- double GetTBMEmonopole (int a, int b, int c, int d) const
- double GetTBMEmonopole_norm (int a, int b, int c, int d) const
- double GetTBMEmonopole (Ket &bra, Ket &ket) const
- · void Erase ()

Take a matrix element expressed in relative/CM frame, and add it to the lab frame TBME.

- void Scale (double)
- · double Norm () const
- void Symmetrize ()
- void AntiSymmetrize ()
- · void Eye ()
- void PrintMatrix (int chbra, int chket) const
- int Dimension ()
- int size ()
- void WriteBinary (std::ofstream &)
- void ReadBinary (std::ifstream &)

Public Attributes

- ModelSpace * modelspace
- std::map< std::array< int, 2 >, arma::mat > MatEl
- · int nChannels
- · bool hermitian
- · bool antihermitian
- · int rank J
- · int rank T
- · int parity

7.18.1 Detailed Description

The two-body piece of the operator, stored in a vector of maps of of armadillo matrices. The index of the vector indicates the J-coupled two-body channel of the ket state, while the map key is the two-body channel of the bra state. This is done to allow for tensor operators which connect different two-body channels without having to store all possible combinations. In the case of a scalar operator, there is only one map key for the bra state, corresponding to that of the ket state. The normalized J-coupled TBME's are stored in the matrices. However, when the TBME's are accessed by GetTBME(), they are returned as $\tilde{\Gamma}_{ijkl} \equiv \sqrt{(1+\delta_{ij})(1+\delta_{kl})}\Gamma_{ijkl}$ because the flow equations are derived in terms of $\tilde{\Gamma}$. For efficiency, only matrix elements with $i \leq j$ and $k \leq l$ are stored. When performing sums that can be cast as matrix multiplication, we have something of the form

$$\tilde{Z}_{ijkl} \sim \frac{1}{2} \sum_{ab} \tilde{X}_{ijab} \tilde{Y}_{abkl}$$

which may be rewritten as a restricted sum, or matrix multiplication

$$Z_{ijkl} \sim \sum_{a \le b} X_{ijab} Y_{abkl} = (X \cdot Y)_{ijkl}$$

7.18.2 Member Function Documentation

7.18.2.1 Erase()

```
void TwoBodyME::Erase ( )
```

Take a matrix element expressed in relative/CM frame, and add it to the lab frame TBME.

For a given ket expressed in relative/CM coordinates, return the indices of all the lab frame kets with non-zero overlap, as well as the overlap

7.18.2.2 GetTBMEmonopole()

Returns an unnormalized monopole-like (angle-averaged) term

$$\bar{V}_{ijkl} = \sqrt{(1+\delta_{ij})(1+\delta_{kl})} \frac{\sum_{J} (2J+1)V_{ijkl}^{J}}{(2j_i+1)(2j_j+1)}$$

7.18.2.3 Set_pn_TBME_from_iso()

```
void TwoBodyME::Set_pn_TBME_from_iso (
    int j,
    int T,
    int tz,
    int a,
    int b,
    int c,
    int d,
    double tbme )
```

Useful for reading in files in isospin formalism

$$\langle ab|V|cd\rangle_{pnpn} = \frac{\sqrt{(1+\delta_{ab})(1+\delta_{cd})}}{2} \left(\langle ab|V|cd\rangle_{10} + \langle ab|V|cd\rangle_{00}\right)$$

$$\langle ab|V|cd\rangle_{pnnp} = \frac{\sqrt{(1+\delta_{ab})(1+\delta_{cd})}}{2}\left(\langle ab|V|cd\rangle_{10} - \langle ab|V|cd\rangle_{00}\right)$$

The documentation for this class was generated from the following files:

- · TwoBodyME.hh
- TwoBodyME.cc

7.19 boost::numeric::odeint::vector_space_norm_inf< deque< Operator >> Struct Template Reference

Public Types

typedef double result_type

Public Member Functions

double operator() (const deque< Operator > &X)

The documentation for this struct was generated from the following file:

• IMSRGSolver.cc

7.20 VectorStream Class Reference

#include <ReadWrite.hh>

Public Member Functions

- VectorStream (std::vector< float > &v)
- VectorStream & operator>> (float &x)
- bool good ()
- void **getline** (char[], int)
- void read (char *buf, size_t len)

7.20.1 Detailed Description

Wrapper class so we can treat a std::vector of floats like a stream, using the extraction operator >>. This is used for the binary version of ReadWrite::Read_Darmstadt_3body_from_stream().

The documentation for this class was generated from the following file:

• ReadWrite.hh

Index

AccessME	comm222_pp_hhss
ThreeBodyME, 58	Operator, 46
AllowedGamowTeller_Op	Commutator
imsrg_util, 17	Operator, 50
	CommutatorScalarScalar
BCH_Product	Operator, 47
Operator, 43	CommutatorScalarTensor
BCH_Transform	Operator, 47
Operator, 43	Count_Darmstadt_3body_to_read
boost::numeric::odeint::vector_space_norm_inf<	ReadWrite, 54
deque < Operator > >, 65	
Brueckner_BCH_Transform	Diagonalize
Operator, 44	HartreeFock, 27
BuildMonopoleV3	DoNormalOrdering2
HartreeFock, 26	Operator, 47
BuildMonopoleV	DoNormalOrdering3
HartreeFock, 26	Operator, 47
001 0	DoPandyaTransformation_SingleChanne
CPrbmeGen	Operator, 47
imsrg_util, 18	DoTensorPandyaTransformation
CalcEHF	Operator, 48
HartreeFock, 26	double_par
Calculate_p1p2	Parameters, 51
imsrg_util, 17	
Calculate_r1r2	E0Op
imsrg_util, 17	imsrg_util, 18
Calculate_r1xp2	ElectricMultipoleOp
imsrg_util, 17	imsrg_util, 18
CheckConvergence	Embed1BodyIn2Body
HartreeFock, 27	imsrg_util, 18
CheckMem	energies
IMSRGProfiler, 31	HartreeFock, 30
comm110ss	Erase
Operator, 44	TwoBodyME, 64
comm111ss	EraseOneBody
Operator, 44	Operator, 48
comm121ss	
Operator, 44	FillLowestOrbits
comm122ss	HartreeFock, 27
Operator, 45	
comm220ss	Generator, 23
Operator, 45	Get0hwSpace
comm221ss	ModelSpace, 38
Operator, 45	GetEmbeddedTBME
comm222_phss	imsrg_util, 18
Operator, 45	GetHDF5Basis
comm222_phst	ReadWrite, 54
Operator, 46	GetME_pn
comm222_pp_hh_221ss	ThreeBodyME, 58
Operator, 46	GetMP2_Energy

68 INDEX

	T011 0 01
Operator, 48	TCM_Op, 21
GetMP3_Energy	TalmiB, 21
Operator, 48	Talmil, 21
GetME	Trel_Masscorrection_Op, 22
ThreeBodyME, 58	Trel_Op, 22
GetNormalOrderedH	imsrg_util::FBCIntegrandParameters, 23
HartreeFock, 27	int_par
GetOmega	Parameters, 51
HartreeFock, 28	IntrinsicElectricMultipoleOp
GetTBMEmonopole	imsrg_util, 19
TwoBodyME, 64	5 /
, , -	javier state t, 34
HCM_Op	, = = -/
imsrg_util, 19	Ket, 34
HartreeFock, 24	KeyHash
BuildMonopoleV3, 26	ThreeBodyME, 59
BuildMonopoleV, 26	 ,
CalcEHF, 26	M0nu_TBME_Op
CheckConvergence, 27	imsrg_util, 19
Diagonalize, 27	MP1 Eval
energies, 30	Operator, 48
_	MagneticMultipoleOp_pn
FillLowestOrbits, 27	
GetNormalOrderedH, 27	imsrg_util, 19
GetOmega, 28	ModelSpace, 35
PrintEHF, 28	Get0hwSpace, 38
PrintSPE, 28	PreCalculateSixJ, 38
ReorderCoefficients, 28	ValenceSpaces, 38
Solve, 29	
TransformToHFBasis, 29	NeutronElectricMultipoleOp
UpdateDensityMatrix, 29	imsrg_util, 19
UpdateF, 29	Norm
Vmon3Hash, 30	Operator, 49
,	•
	•
IMSRGProfiler, 31	Operator, 40
	BCH_Product, 43
IMSRGProfiler, 31	·
IMSRGProfiler, 31 CheckMem, 31	BCH_Product, 43
IMSRGProfiler, 31 CheckMem, 31 IMSRGSolver, 32	BCH_Product, 43 BCH_Transform, 43
IMSRGProfiler, 31 CheckMem, 31 IMSRGSolver, 32 Transform_Partial, 34	BCH_Product, 43 BCH_Transform, 43 Brueckner_BCH_Transform, 44
IMSRGProfiler, 31 CheckMem, 31 IMSRGSolver, 32 Transform_Partial, 34 IMSRGSolver::ODE_Monitor, 39	BCH_Product, 43 BCH_Transform, 43 Brueckner_BCH_Transform, 44 comm110ss, 44
IMSRGProfiler, 31 CheckMem, 31 IMSRGSolver, 32 Transform_Partial, 34 IMSRGSolver::ODE_Monitor, 39 imsrg_util, 15 AllowedGamowTeller_Op, 17	BCH_Product, 43 BCH_Transform, 43 Brueckner_BCH_Transform, 44 comm110ss, 44 comm111ss, 44
IMSRGProfiler, 31 CheckMem, 31 IMSRGSolver, 32 Transform_Partial, 34 IMSRGSolver::ODE_Monitor, 39 imsrg_util, 15 AllowedGamowTeller_Op, 17 CPrbmeGen, 18	BCH_Product, 43 BCH_Transform, 43 Brueckner_BCH_Transform, 44 comm110ss, 44 comm111ss, 44 comm121ss, 44
IMSRGProfiler, 31 CheckMem, 31 IMSRGSolver, 32 Transform_Partial, 34 IMSRGSolver::ODE_Monitor, 39 imsrg_util, 15 AllowedGamowTeller_Op, 17 CPrbmeGen, 18 Calculate_p1p2, 17	BCH_Product, 43 BCH_Transform, 43 Brueckner_BCH_Transform, 44 comm110ss, 44 comm111ss, 44 comm121ss, 44 comm122ss, 45 comm220ss, 45
IMSRGProfiler, 31 CheckMem, 31 IMSRGSolver, 32 Transform_Partial, 34 IMSRGSolver::ODE_Monitor, 39 imsrg_util, 15 AllowedGamowTeller_Op, 17 CPrbmeGen, 18 Calculate_p1p2, 17 Calculate_r1r2, 17	BCH_Product, 43 BCH_Transform, 43 Brueckner_BCH_Transform, 44 comm110ss, 44 comm111ss, 44 comm121ss, 44 comm122ss, 45 comm220ss, 45 comm221ss, 45
IMSRGProfiler, 31 CheckMem, 31 IMSRGSolver, 32 Transform_Partial, 34 IMSRGSolver::ODE_Monitor, 39 imsrg_util, 15 AllowedGamowTeller_Op, 17 CPrbmeGen, 18 Calculate_p1p2, 17 Calculate_r1r2, 17 Calculate_r1xp2, 17	BCH_Product, 43 BCH_Transform, 43 Brueckner_BCH_Transform, 44 comm110ss, 44 comm111ss, 44 comm121ss, 44 comm122ss, 45 comm220ss, 45 comm221ss, 45 comm221ss, 45
IMSRGProfiler, 31 CheckMem, 31 IMSRGSolver, 32 Transform_Partial, 34 IMSRGSolver::ODE_Monitor, 39 imsrg_util, 15 AllowedGamowTeller_Op, 17 CPrbmeGen, 18 Calculate_p1p2, 17 Calculate_r1r2, 17 Calculate_r1xp2, 17 E0Op, 18	BCH_Product, 43 BCH_Transform, 43 Brueckner_BCH_Transform, 44 comm110ss, 44 comm111ss, 44 comm121ss, 44 comm122ss, 45 comm220ss, 45 comm221ss, 45 comm221phss, 45 comm222_phss, 45 comm222_phst, 46
IMSRGProfiler, 31 CheckMem, 31 IMSRGSolver, 32 Transform_Partial, 34 IMSRGSolver::ODE_Monitor, 39 imsrg_util, 15 AllowedGamowTeller_Op, 17 CPrbmeGen, 18 Calculate_p1p2, 17 Calculate_r1r2, 17 Calculate_r1r2, 17 E0Op, 18 ElectricMultipoleOp, 18	BCH_Product, 43 BCH_Transform, 43 Brueckner_BCH_Transform, 44 comm110ss, 44 comm121ss, 44 comm122ss, 45 comm220ss, 45 comm221ss, 45 comm222_phss, 45 comm222_phst, 46 comm222_pp_hh_221ss, 46
IMSRGProfiler, 31 CheckMem, 31 IMSRGSolver, 32 Transform_Partial, 34 IMSRGSolver::ODE_Monitor, 39 imsrg_util, 15 AllowedGamowTeller_Op, 17 CPrbmeGen, 18 Calculate_p1p2, 17 Calculate_r1r2, 17 Calculate_r1xp2, 17 E0Op, 18 ElectricMultipoleOp, 18 Embed1BodyIn2Body, 18	BCH_Product, 43 BCH_Transform, 43 Brueckner_BCH_Transform, 44 comm110ss, 44 comm121ss, 44 comm122ss, 45 comm220ss, 45 comm221ss, 45 comm222_phss, 45 comm222_phst, 46 comm222_pp_hh_221ss, 46 comm222_pp_hhss, 46
IMSRGProfiler, 31 CheckMem, 31 IMSRGSolver, 32 Transform_Partial, 34 IMSRGSolver::ODE_Monitor, 39 imsrg_util, 15 AllowedGamowTeller_Op, 17 CPrbmeGen, 18 Calculate_p1p2, 17 Calculate_r1r2, 17 Calculate_r1xp2, 17 E0Op, 18 ElectricMultipoleOp, 18 Embed1Bodyln2Body, 18 GetEmbeddedTBME, 18	BCH_Product, 43 BCH_Transform, 43 Brueckner_BCH_Transform, 44 comm110ss, 44 comm111ss, 44 comm121ss, 44 comm122ss, 45 comm220ss, 45 comm221ss, 45 comm222_phss, 45 comm222_phst, 46 comm222_pp_hh_221ss, 46 comm222_pp_hhss, 46 Commutator, 50
IMSRGProfiler, 31 CheckMem, 31 IMSRGSolver, 32 Transform_Partial, 34 IMSRGSolver::ODE_Monitor, 39 imsrg_util, 15 AllowedGamowTeller_Op, 17 CPrbmeGen, 18 Calculate_p1p2, 17 Calculate_r1r2, 17 Calculate_r1xp2, 17 E0Op, 18 ElectricMultipoleOp, 18 Embed1Bodyln2Body, 18 GetEmbeddedTBME, 18 HCM_Op, 19	BCH_Product, 43 BCH_Transform, 43 Brueckner_BCH_Transform, 44 comm110ss, 44 comm111ss, 44 comm121ss, 44 comm122ss, 45 comm220ss, 45 comm221ss, 45 comm222_phss, 45 comm222_phst, 46 comm222_pp_hh_221ss, 46 comm222_pp_hhss, 46 Commutator, 50 CommutatorScalarScalar, 47
IMSRGProfiler, 31 CheckMem, 31 IMSRGSolver, 32 Transform_Partial, 34 IMSRGSolver::ODE_Monitor, 39 imsrg_util, 15 AllowedGamowTeller_Op, 17 CPrbmeGen, 18 Calculate_p1p2, 17 Calculate_r1r2, 17 Calculate_r1r2, 17 Calculate_r1xp2, 17 E0Op, 18 ElectricMultipoleOp, 18 Embed1BodyIn2Body, 18 GetEmbeddedTBME, 18 HCM_Op, 19 IntrinsicElectricMultipoleOp, 19	BCH_Product, 43 BCH_Transform, 43 Brueckner_BCH_Transform, 44 comm110ss, 44 comm111ss, 44 comm121ss, 44 comm22ss, 45 comm220ss, 45 comm221ss, 45 comm222_phss, 45 comm222_phst, 46 comm222_pp_hh_221ss, 46 comm222_pp_hhss, 46 Commutator, 50 CommutatorScalarScalar, 47 CommutatorScalarTensor, 47
IMSRGProfiler, 31 CheckMem, 31 IMSRGSolver, 32 Transform_Partial, 34 IMSRGSolver::ODE_Monitor, 39 imsrg_util, 15 AllowedGamowTeller_Op, 17 CPrbmeGen, 18 Calculate_p1p2, 17 Calculate_r1r2, 17 Calculate_r1xp2, 17 E0Op, 18 ElectricMultipoleOp, 18 Embed1BodyIn2Body, 18 GetEmbeddedTBME, 18 HCM_Op, 19 IntrinsicElectricMultipoleOp, 19 M0nu_TBME_Op, 19	BCH_Product, 43 BCH_Transform, 43 Brueckner_BCH_Transform, 44 comm110ss, 44 comm111ss, 44 comm121ss, 44 comm22ss, 45 comm220ss, 45 comm221ss, 45 comm222_phss, 45 comm222_phst, 46 comm222_pp_hh_221ss, 46 comm222_pp_hhss, 46 Commutator, 50 CommutatorScalarScalar, 47 CommutatorScalarTensor, 47 DoNormalOrdering2, 47
IMSRGProfiler, 31 CheckMem, 31 IMSRGSolver, 32 Transform_Partial, 34 IMSRGSolver::ODE_Monitor, 39 imsrg_util, 15 AllowedGamowTeller_Op, 17 CPrbmeGen, 18 Calculate_p1p2, 17 Calculate_r1r2, 17 Calculate_r1r2, 17 Calculate_r1xp2, 17 E0Op, 18 ElectricMultipoleOp, 18 Embed1BodyIn2Body, 18 GetEmbeddedTBME, 18 HCM_Op, 19 IntrinsicElectricMultipoleOp, 19 M0nu_TBME_Op, 19 MagneticMultipoleOp_pn, 19	BCH_Product, 43 BCH_Transform, 43 Brueckner_BCH_Transform, 44 comm110ss, 44 comm111ss, 44 comm121ss, 44 comm22ss, 45 comm220ss, 45 comm221ss, 45 comm222_phss, 45 comm222_phst, 46 comm222_pp_hh_221ss, 46 comm222_pp_hhss, 46 Commutator, 50 CommutatorScalarScalar, 47 CommutatorScalarTensor, 47 DoNormalOrdering2, 47 DoNormalOrdering3, 47
IMSRGProfiler, 31 CheckMem, 31 IMSRGSolver, 32 Transform_Partial, 34 IMSRGSolver::ODE_Monitor, 39 imsrg_util, 15 AllowedGamowTeller_Op, 17 CPrbmeGen, 18 Calculate_p1p2, 17 Calculate_r1r2, 17 Calculate_r1xp2, 17 E0Op, 18 ElectricMultipoleOp, 18 Embed1Bodyln2Body, 18 GetEmbeddedTBME, 18 HCM_Op, 19 IntrinsicElectricMultipoleOp, 19 M0nu_TBME_Op, 19 MagneticMultipoleOp_pn, 19 NeutronElectricMultipoleOp, 19	BCH_Product, 43 BCH_Transform, 43 Brueckner_BCH_Transform, 44 comm110ss, 44 comm111ss, 44 comm121ss, 44 comm22ss, 45 comm220ss, 45 comm221ss, 45 comm222_phss, 45 comm222_phst, 46 comm222_pp_hh_221ss, 46 comm222_pp_hhss, 46 Commutator, 50 CommutatorScalarScalar, 47 CommutatorScalarTensor, 47 DoNormalOrdering2, 47 DoNormalOrdering3, 47 DoPandyaTransformation_SingleChannel, 47
IMSRGProfiler, 31 CheckMem, 31 IMSRGSolver, 32 Transform_Partial, 34 IMSRGSolver::ODE_Monitor, 39 imsrg_util, 15 AllowedGamowTeller_Op, 17 CPrbmeGen, 18 Calculate_p1p2, 17 Calculate_r1r2, 17 Calculate_r1xp2, 17 E0Op, 18 ElectricMultipoleOp, 18 Embed1Bodyln2Body, 18 GetEmbeddedTBME, 18 HCM_Op, 19 IntrinsicElectricMultipoleOp, 19 Monu_TBME_Op, 19 MagneticMultipoleOp_pn, 19 NeutronElectricMultipoleOp, 19 R2_1body_Op, 20	BCH_Product, 43 BCH_Transform, 43 Brueckner_BCH_Transform, 44 comm110ss, 44 comm111ss, 44 comm121ss, 44 comm22ss, 45 comm220ss, 45 comm221ss, 45 comm222_phss, 45 comm222_phst, 46 comm222_pp_hh_221ss, 46 comm222_pp_hhss, 46 Commutator, 50 CommutatorScalarScalar, 47 CommutatorScalarTensor, 47 DoNormalOrdering2, 47 DoPandyaTransformation_SingleChannel, 47 DoTensorPandyaTransformation, 48
IMSRGProfiler, 31 CheckMem, 31 IMSRGSolver, 32 Transform_Partial, 34 IMSRGSolver::ODE_Monitor, 39 imsrg_util, 15 AllowedGamowTeller_Op, 17 CPrbmeGen, 18 Calculate_p1p2, 17 Calculate_r1r2, 17 Calculate_r1xp2, 17 E0Op, 18 ElectricMultipoleOp, 18 Embed1Bodyln2Body, 18 GetEmbeddedTBME, 18 HCM_Op, 19 IntrinsicElectricMultipoleOp, 19 Monu_TBME_Op, 19 MagneticMultipoleOp_pn, 19 NeutronElectricMultipoleOp, 19 R2_1body_Op, 20 R2_2body_Op, 20	BCH_Product, 43 BCH_Transform, 43 Brueckner_BCH_Transform, 44 comm110ss, 44 comm111ss, 44 comm121ss, 44 comm220ss, 45 comm220ss, 45 comm221ss, 45 comm222_phss, 45 comm222_phst, 46 comm222_pp_hh_221ss, 46 comm222_pp_hhss, 46 Commutator, 50 CommutatorScalarScalar, 47 CommutatorScalarTensor, 47 DoNormalOrdering2, 47 DoNormalOrdering3, 47 DoPandyaTransformation_SingleChannel, 47 DoTensorPandyaTransformation, 48 EraseOneBody, 48
IMSRGProfiler, 31 CheckMem, 31 IMSRGSolver, 32 Transform_Partial, 34 IMSRGSolver::ODE_Monitor, 39 imsrg_util, 15 AllowedGamowTeller_Op, 17 CPrbmeGen, 18 Calculate_p1p2, 17 Calculate_r1r2, 17 Calculate_r1xp2, 17 E0Op, 18 ElectricMultipoleOp, 18 Embed1Bodyln2Body, 18 GetEmbeddedTBME, 18 HCM_Op, 19 IntrinsicElectricMultipoleOp, 19 Monu_TBME_Op, 19 MagneticMultipoleOp_pn, 19 NeutronElectricMultipoleOp, 19 R2_1body_Op, 20	BCH_Product, 43 BCH_Transform, 43 Brueckner_BCH_Transform, 44 comm110ss, 44 comm111ss, 44 comm121ss, 44 comm22ss, 45 comm220ss, 45 comm221ss, 45 comm222_phss, 45 comm222_phst, 46 comm222_pp_hh_221ss, 46 comm222_pp_hhss, 46 Commutator, 50 CommutatorScalarScalar, 47 CommutatorScalarTensor, 47 DoNormalOrdering2, 47 DoPandyaTransformation_SingleChannel, 47 DoTensorPandyaTransformation, 48
IMSRGProfiler, 31 CheckMem, 31 IMSRGSolver, 32 Transform_Partial, 34 IMSRGSolver::ODE_Monitor, 39 imsrg_util, 15 AllowedGamowTeller_Op, 17 CPrbmeGen, 18 Calculate_p1p2, 17 Calculate_r1r2, 17 Calculate_r1xp2, 17 E0Op, 18 ElectricMultipoleOp, 18 Embed1Bodyln2Body, 18 GetEmbeddedTBME, 18 HCM_Op, 19 IntrinsicElectricMultipoleOp, 19 Monu_TBME_Op, 19 MagneticMultipoleOp_pn, 19 NeutronElectricMultipoleOp, 19 R2_1body_Op, 20 R2_2body_Op, 20	BCH_Product, 43 BCH_Transform, 43 Brueckner_BCH_Transform, 44 comm110ss, 44 comm111ss, 44 comm121ss, 44 comm22ss, 45 comm220ss, 45 comm221ss, 45 comm222_phss, 45 comm222_phst, 46 comm222_pp_hh_221ss, 46 comm222_pp_hhss, 46 Commutator, 50 CommutatorScalarScalar, 47 CommutatorScalarTensor, 47 DoNormalOrdering2, 47 DoNormalOrdering3, 47 DoPandyaTransformation_SingleChannel, 47 DoTensorPandyaTransformation, 48 EraseOneBody, 48
IMSRGProfiler, 31 CheckMem, 31 IMSRGSolver, 32 Transform_Partial, 34 IMSRGSolver::ODE_Monitor, 39 imsrg_util, 15 AllowedGamowTeller_Op, 17 CPrbmeGen, 18 Calculate_p1p2, 17 Calculate_r1r2, 17 Calculate_r1xp2, 17 E0Op, 18 ElectricMultipoleOp, 18 Embed1BodyIn2Body, 18 GetEmbeddedTBME, 18 HCM_Op, 19 IntrinsicElectricMultipoleOp, 19 M0nu_TBME_Op, 19 MagneticMultipoleOp_pn, 19 NeutronElectricMultipoleOp, 19 R2_1body_Op, 20 R2_2body_Op, 20 R2CM_Op, 20	BCH_Product, 43 BCH_Transform, 43 Brueckner_BCH_Transform, 44 comm110ss, 44 comm111ss, 44 comm121ss, 44 comm22ss, 45 comm220ss, 45 comm221ss, 45 comm222_phss, 45 comm222_phst, 46 comm222_pp_hh_221ss, 46 comm222_pp_hhss, 46 Commutator, 50 CommutatorScalarScalar, 47 CommutatorScalarTensor, 47 DoNormalOrdering2, 47 DoNormalOrdering3, 47 DoPandyaTransformation_SingleChannel, 47 DoTensorPandyaTransformation, 48 EraseOneBody, 48 GetMP2_Energy, 48
IMSRGProfiler, 31 CheckMem, 31 IMSRGSolver, 32 Transform_Partial, 34 IMSRGSolver::ODE_Monitor, 39 imsrg_util, 15 AllowedGamowTeller_Op, 17 CPrbmeGen, 18 Calculate_p1p2, 17 Calculate_r1r2, 17 Calculate_r1xp2, 17 E0Op, 18 ElectricMultipoleOp, 18 Embed1BodyIn2Body, 18 GetEmbeddedTBME, 18 HCM_Op, 19 IntrinsicElectricMultipoleOp, 19 M0nu_TBME_Op, 19 MagneticMultipoleOp_pn, 19 NeutronElectricMultipoleOp, 19 R2_1body_Op, 20 R2_2body_Op, 20 R2CM_Op, 20 RSquaredOp, 21	BCH_Product, 43 BCH_Transform, 43 Brueckner_BCH_Transform, 44 comm110ss, 44 comm111ss, 44 comm121ss, 44 comm22ss, 45 comm220ss, 45 comm221ss, 45 comm222_phss, 45 comm222_phst, 46 comm222_pp_hh_221ss, 46 comm222_pp_hhss, 46 Commutator, 50 CommutatorScalarScalar, 47 CommutatorScalarTensor, 47 DoNormalOrdering2, 47 DoNormalOrdering3, 47 DoPandyaTransformation_SingleChannel, 47 DoTensorPandyaTransformation, 48 EraseOneBody, 48 GetMP2_Energy, 48 GetMP3_Energy, 48

INDEX 69

Standard_BCH_Transform, 49 Truncate, 49	Operator, 49 std::hash< javier_state_t >, 31
UndoNormalOrdering, 49	Store_Darmstadt_3body
Orbit, 50	ReadWrite, 56
Parameters, 50	string_par Parameters, 51
double_par, 51	raidilleleis, 31
int_par, 51	TCM_Op
string_par, 51	imsrg_util, 21
vec_par, 52	TalmiB
PreCalculateSixJ	imsrg_util, 21
ModelSpace, 38	Talmil
PrintEHF	imsrg_util, 21
HartreeFock, 28	ThreeBodyME, 57
PrintSPE	AccessME, 58
HartreeFock, 28	GetME_pn, 58
	GetME, 58
R2_1body_Op	KeyHash, 59
imsrg_util, 20	SetME, 59
R2_2body_Op	SortOrbits, 59
imsrg_util, 20	Transform_Partial
R2CM_Op	IMSRGSolver, 34
imsrg_util, 20	TransformToHFBasis
RSquaredOp	HartreeFock, 29
imsrg_util, 21 RadialIntegral	Trel_Masscorrection_Op
imsrg_util, 20	imsrg_util, 22
Read3bodyHDF5	Trel_Op imsrg_util, 22
ReadWrite, 55	Truncate
Read_Darmstadt_3body	Operator, 49
ReadWrite, 55	TwoBodyChannel, 60
ReadBareTBME_Darmstadt_from_stream	TwoBodyChannel_CC, 61
ReadWrite, 55	TwoBodyME, 62
ReadBareTBME Navratil	Erase, 64
ReadWrite, 55	GetTBMEmonopole, 64
ReadWrite, 52	Set_pn_TBME_from_iso, 64
Count_Darmstadt_3body_to_read, 54	
GetHDF5Basis, 54	UndoNormalOrdering
Read3bodyHDF5, 55	Operator, 49
Read_Darmstadt_3body, 55	UpdateDensityMatrix
ReadBareTBME_Darmstadt_from_stream, 55	HartreeFock, 29
ReadBareTBME_Navratil, 55	UpdateF
Store_Darmstadt_3body, 56	HartreeFock, 29
WriteNuShellX_intfile, 56	ValenceSpaces
WriteOneBody_Oslo, 56	ModelSpace, 38
ReorderCoefficients	vec par
HartreeFock, 28	Parameters, 52
Rp2_corrected_Op	VectorStream, 65
imsrg_util, 20	Vmon3Hash
Set_pn_TBME_from_iso	HartreeFock, 30
TwoBodyME, 64	,
SetME	WriteNuShellX_intfile
ThreeBodyME, 59	ReadWrite, 56
Solve	WriteOneBody_Oslo
HartreeFock, 29	ReadWrite, 56
SortOrbits	
ThreeBodyME, 59	
Standard BCH Transform	