Síntese de Voz em Tempo Real

Eduardo Tenório embat@cin.ufpe.br embatbr@gmail.com

Produz voz humana artificialmente

- Produz voz humana artificialmente
- Síntese de Voz → Síntese de Voz via Texto (TTS)

- Produz voz humana artificialmente
- Síntese de Voz → Síntese de Voz via Texto (TTS)
- Onde usar?

- Produz voz humana artificialmente
- Síntese de Voz → Síntese de Voz via Texto (TTS)
- Onde usar?
 - Leitura de tela para cegos

- Produz voz humana artificialmente
- Síntese de Voz → Síntese de Voz via Texto (TTS)
- Onde usar?
 - Leitura de tela para cegos
 - Pessoas com problemas de fala (Hawking)

- Produz voz humana artificialmente
- Síntese de Voz → Síntese de Voz via Texto (TTS)
- Onde usar?
 - Leitura de tela para cegos
 - Pessoas com problemas de fala (Hawking)
 - Interface humano-máquina (Google Glass, Siri...)

- Produz voz humana artificialmente
- Síntese de Voz → Síntese de Voz via Texto (TTS)
- Onde usar?
 - Leitura de tela para cegos
 - Pessoas com problemas de fala (Hawking)
 - Interface humano-máquina (Google Glass, Siri...)

- Produz voz humana artificialmente
- Síntese de Voz → Síntese de Voz via Texto (TTS)
- Onde usar?
 - Leitura de tela para cegos
 - Pessoas com problemas de fala (Hawking)
 - Interface humano-máquina (Google Glass, Siri...)

- Atores virtuais
- [more options]

- Produz voz humana artificialmente
- Síntese de Voz → Síntese de Voz via Texto (TTS)
- Onde usar?
 - Leitura de tela para cegos
 - Pessoas com problemas de fala (Hawking)
 - Interface humano-máquina (Google Glass, Siri...)

- Atores virtuais
- [more options]
- Síntese de Voz via Interface Cerebral (recente)

- Um sistema TTS simula parte da speech chain:
 - Codificação da linguagem
 - Controles neuro-musculares
 - Trato vocal

Motor TTS:

Entrada: Texto

Saída: Voz

- Motor TTS:
 - Entrada: Texto
 - Saída: Voz
- Trabalha com:
 - Pronúncia do texto
 - Estrutura sintática
 - Semântica e ambiguidade

- Document Structure Detection:
 - Listas vs. texto corrente
 - Fim de frase
 - Fim de parágrafo
 - Pontuação
 - "This is Dr. Frankenstein."

- Text Normalization:
 - "I live on Bourbon St. in St. Louis"
 - "\$10"
 - "4:20"
 - "06/06/2014"
 - "She worked for DEC"
 - "I read Foucault"

- Linguistic Analysis:
 - Part of speech (POS): substantivo, verbo, etc.
 - Pausa entre frases
 - Ênfase nas palavras certas
 - Tipo da fala: raivoso, emotivo, relaxado, etc.
 - Um parser linguístico é muito lento

- Homograph Disambiguation:
 - Pronúncia correta de homografos
 - Checar o contexto
 - "an absent boy" vs. "do you choose to absent yourself?"
 - Isso já é Processamento de Linguagem Natural!

- Grapheme-to-Phoneme Conversion:
 - Converte o texto para tagged phone.
 - Uso de dicionário de pronúncia
 - Cada palavra é procurada independentemente
 - Regras de conversão para as exceções

- Pitch & Duration Attachment:
 - Provê ao sintetizador um conjunto de sinais de controle (sequência de sons, durações, pitch)
 - Sequência de sons deriva da ordem das palavras
 - Durações e pitch podem ser gerados baseados em regras próprias
 - Estresse, pausas e etc. tornam a voz mais natural

Voice Rendering:

- Voice Rendering:
 - Rule-based systems
 - Data-driven systems

- Voice Rendering:
 - Rule-based systems
 - Baseiam-se em modelos físicos
 - Data-driven systems

- Voice Rendering:
 - Rule-based systems
 - Baseiam-se em modelos físicos
 - Voz gerada from scratch
 - Data-driven systems

- Voice Rendering:
 - Rule-based systems
 - Baseiam-se em modelos físicos
 - Voz gerada from scratch
 - Útil para sistemas simples
 - Data-driven systems

- Voice Rendering:
 - Rule-based systems
 - Baseiam-se em modelos físicos
 - Voz gerada from scratch
 - Útil para sistemas simples
 - Data-driven systems
 - Necessita de uma base de dados

- Voice Rendering:
 - Rule-based systems
 - Baseiam-se em modelos físicos
 - Voz gerada from scratch
 - Útil para sistemas simples
 - Data-driven systems
 - Necessita de uma base de dados
 - Abordagem dominante

- Três grandes grupos:
 - Formants Synthesis
 - Articulatory Synthesis
 - Contatenative Synthesis

• Formants:

- Formants:
 - Picos no espectro da frequência

- Formants:
 - Picos no espectro da frequência
 - Função do trato vocal simulada satisfatoriamente

Formants:

- Picos no espectro da frequência
- Função do trato vocal simulada satisfatoriamente
- Frequências de ressonância do sistema

Articulatory:

- Articulatory:
 - Modelagem direta de todo o sistema vocal

- Articulatory:
 - Modelagem direta de todo o sistema vocal
 - Voz de alta qualidade

- Articulatory:
 - Modelagem direta de todo o sistema vocal
 - Voz de alta qualidade
 - Um dos métodos mais difíceis de implementar

- Articulatory:
 - Modelagem direta de todo o sistema vocal
 - Voz de alta qualidade
 - Um dos métodos mais difíceis de implementar
 - Difícil adquirir dados para criar o modelo

- Articulatory:
 - Modelagem direta de todo o sistema vocal
 - Voz de alta qualidade
 - Um dos métodos mais difíceis de implementar
 - Difícil adquirir dados para criar o modelo
 - Trade-off acurácia/implementação

- Articulatory:
 - Modelagem direta de todo o sistema vocal
 - Voz de alta qualidade
 - Um dos métodos mais difíceis de implementar
 - Difícil adquirir dados para criar o modelo
 - Trade-off acurácia/implementação
 - Piores resultados

Articulatory:

- Modelagem direta de todo o sistema vocal
- Voz de alta qualidade
- Um dos métodos mais difíceis de implementar
- Difícil adquirir dados para criar o modelo
- Trade-off acurácia/implementação
- Piores resultados
- Silver bullet da síntese de voz (se for criado um modelo satisfatório)

Concatenative:

- Concatenative:
 - Concatena unidades de voz pré-gravadas

- Concatenative:
 - Concatena unidades de voz pré-gravadas
 - Unidades podem ser palavras, sílabas, semisilábas, fonemas, difonemas...

- Concatenative:
 - Concatena unidades de voz pré-gravadas
 - Unidades podem ser palavras, sílabas, semisilábas, fonemas, difonemas...
 - Unidades mais longas:

- Concatenative:
 - Concatena unidades de voz pré-gravadas
 - Unidades podem ser palavras, sílabas, semisilábas, fonemas, difonemas...
 - Unidades mais longas:
 - Mais natural

- Concatenative:
 - Concatena unidades de voz pré-gravadas
 - Unidades podem ser palavras, sílabas, semisilábas, fonemas, difonemas...
 - Unidades mais longas:
 - Mais natural
 - Menos pontos de concatenação

- Concatenative:
 - Concatena unidades de voz pré-gravadas
 - Unidades podem ser palavras, sílabas, semisilábas, fonemas, difonemas...
 - Unidades mais longas:
 - Mais natural
 - Menos pontos de concatenação
 - Necessita de mais memória

- Concatenative:
 - Concatena unidades de voz pré-gravadas
 - Unidades podem ser palavras, sílabas, semisilábas, fonemas, difonemas...
 - Unidades mais longas:
 - Mais natural
 - Menos pontos de concatenação
 - Necessita de mais memória
 - Tende a ser impraticável

- Concatenative:
 - Unidades mais curtas:

- Concatenative:
 - Unidades mais curtas:
 - Menos natural

- Concatenative:
 - Unidades mais curtas:
 - Menos natural
 - Mais pontos de concatenação

- Concatenative:
 - Unidades mais curtas:
 - Menos natural
 - Mais pontos de concatenação
 - Necessita de menos memória

- Concatenative:
 - Unidades mais curtas:
 - Menos natural
 - Mais pontos de concatenação
 - Necessita de menos memória
 - Coleta de amostras e técnicas de rotulação mais complexas

- Concatenative:
 - Unidades mais curtas:
 - Menos natural
 - Mais pontos de concatenação
 - Necessita de menos memória
 - Coleta de amostras e técnicas de rotulação mais complexas
 - Difonemas são as unidades mais usadas:

- Concatenative:
 - Unidades mais curtas:
 - Menos natural
 - Mais pontos de concatenação
 - Necessita de menos memória
 - Coleta de amostras e técnicas de rotulação mais complexas
 - Difonemas são as unidades mais usadas:
 - Transição mais suave entre fonemas

- Concatenative:
 - Unidades mais curtas:
 - Menos natural
 - Mais pontos de concatenação
 - Necessita de menos memória
 - Coleta de amostras e técnicas de rotulação mais complexas
 - Difonemas são as unidades mais usadas:
 - Transição mais suave entre fonemas
 - Da metade do 1º à metade do 2º fonema

- Concatenative:
 - O espectrograma de baixo não é uma superposição do de cima

- Concatenative:
 - Unit Selection é o estado-da-arte:

- Concatenative:
 - Unit Selection é o estado-da-arte:
 - Escolhe entre múltiplas instâncias

- Concatenative:
 - Unit Selection é o estado-da-arte:
 - Escolhe entre múltiplas instâncias
 - A instância que melhor casa com o target é escolhida (menos modificações)

• Unit Selection:

Figure 1. Unit Selection Costs

- Unit Selection:
 - Minimizar target cost: estimativa da incompatibilidade entre uma unidade e o target

Figure 1. Unit Selection Costs

- Unit Selection:
 - Minimizar target cost: estimativa da incompatibilidade entre uma unidade e o target
 - Minimizar join cost: estimativa da incompatibilidade acústica com o fonema anterior

Figure 1. Unit Selection Costs

- Unit Selection:
 - Unidades consecutivas possuem join cost zero (concatenação natural)
 - O unit selection é a tarefa de determinar a sequência cujo custo total é o menor

$$C^{t}(t_{i}, u_{i}) = \sum_{j=1}^{p} w_{j}^{t} C_{j}^{t}(t_{i}, u_{i})$$

$$C^{c}(u_{i-1}, u_{i}) = \sum_{j=1}^{q} w_{j}^{c} C_{j}^{c}(u_{i-1}, u_{i})$$

$$C(t_{1}^{n}, u_{1}^{n}) = \sum_{i=1}^{n} C^{t}(t_{i}, u_{i}) + \sum_{i=2}^{n} C^{c}(u_{i-1}, u_{i}) + C^{c}(S, u_{1}) + C^{c}(u_{n}, S)$$
[3]

- Unit Selection:
 - Ou, selecionar o melhor caminho (*Viterbi search*)

Figure 1: For half-phones in the word "two", a search finds the lowest cost path, selecting one candidate unit from each column for synthesis.

Back to the formants...

- Back to the formants...
- Técnica recente (2004)

- Back to the formants...
- Técnica recente (2004)
- Spikes inseridos na região responsável pelos articuladores da fala

- Back to the formants...
- Técnica recente (2004)
- Spikes inseridos na região responsável pelos articuladores da fala
- Estima o primeiro e o segundo formantes

- Back to the formants...
- Técnica recente (2004)
- Spikes inseridos na região responsável pelos articuladores da fala
- Estima o primeiro e o segundo formantes
- Delay de 50 ms do neurônio até a fala

- Back to the formants...
- Técnica recente (2004)
- Spikes inseridos na região responsável pelos articuladores da fala
- Estima o primeiro e o segundo formantes
- Delay de 50 ms do neurônio até a fala
 - Respeita o deadline (200 ms)

- Back to the formants...
- Técnica recente (2004)
- Spikes inseridos na região responsável pelos articuladores da fala
- Estima o primeiro e o segundo formantes
- Delay de 50 ms do neurônio até a fala
 - Respeita o deadline (200 ms)
- Eficácia de 70%

- Back to the formants...
- Técnica recente (2004)
- Spikes inseridos na região responsável pelos articuladores da fala
- Estima o primeiro e o segundo formantes
- Delay de 50 ms do neurônio até a fala
 - Respeita o deadline (200 ms)
- Eficácia de 70%
- Difícil gerar fonemas mais complexos

Brain-Machine Interface

- Back to the formants...
- Técnica recente (2004)
- Spikes inseridos na região responsável pelos articuladores da fala
- Estima o primeiro e o segundo formantes
- Delay de 50 ms do neurônio até a fala
 - Respeita o deadline (200 ms)
- Eficácia de 70%
- Difícil gerar fonemas mais complexos (s**t)

Exemplos

- Klatt Synthesizer (1980)
 - Formant
- VocaliD
 - Concatenative
- CW Speak (codewelt.com/proj/speak)
- IBM ViaVoice
- Cepstral (www.cepstral.com/en/demos)
- AT&T Natural Voices (www2.research.att.com/~ttsweb/tts/demo.php)
- Além dos produtos Apple...

Claro!

- Claro!
- Deve responder sem muito atraso

- Claro!
- Deve responder sem muito atraso
- Ordem e Velocidade da fala importam:

- Claro!
- Deve responder sem muito atraso
- Ordem e Velocidade da fala importam:
 - Fonemas fora de ordem → fala sem sentido

- Claro!
- Deve responder sem muito atraso
- Ordem e Velocidade da fala importam:
 - Fonemas fora de ordem → fala sem sentido
 - Velocidade inconstante → prejuízo ao ouvinte

- Claro!
- Deve responder sem muito atraso
- Ordem e Velocidade da fala importam:
 - Fonemas fora de ordem → fala sem sentido
 - Velocidade inconstante → prejuízo ao ouvinte
 - Deadline hard ou firm

- Claro!
- Deve responder sem muito atraso
- Ordem e Velocidade da fala importam:
 - Fonemas fora de ordem → fala sem sentido
 - Velocidade inconstante → prejuízo ao ouvinte
 - Deadline hard ou firm
- Mais por causa da evolução dos computadores:

- Claro!
- Deve responder sem muito atraso
- Ordem e Velocidade da fala importam:
 - Fonemas fora de ordem → fala sem sentido
 - Velocidade inconstante → prejuízo ao ouvinte
 - Deadline hard ou firm
- Mais por causa da evolução dos computadores:
 - O sinal da fala é lento

- Claro!
- Deve responder sem muito atraso
- Ordem e Velocidade da fala importam:
 - Fonemas fora de ordem → fala sem sentido
 - Velocidade inconstante → prejuízo ao ouvinte
 - Deadline hard ou firm
- Mais por causa da evolução dos computadores:
 - O sinal da fala é lento
 - Não precisa de tantas técnicas sofisticadas...

Também pode ser embarcado (not so good):

- Também pode ser embarcado (not so good):
 - DSPs são usados para sistemas específicos

- Também pode ser embarcado (not so good):
 - DSPs são usados para sistemas específicos
 - Baixa potência

- Também pode ser embarcado (not so good):
 - DSPs são usados para sistemas específicos
 - Baixa potência
 - Concatenative é possível (sem Unit Selection)

- Também pode ser embarcado (not so good):
 - DSPs são usados para sistemas específicos
 - Baixa potência
 - Concatenative é possível (sem Unit Selection)
 - TD-PSOLA

- Também pode ser embarcado (not so good):
 - DSPs são usados para sistemas específicos
 - Baixa potência
 - Concatenative é possível (sem Unit Selection)
 - TD-PSOLA
 - Database comprimido

Thanks