Contenido del curso

APRENDIZAJE AUTOMATICO

DEEP LEARNING

Fase de Preparación de los Datos

- La información almacenada siempre tiene
 - Datos faltantes
 - Valores extremos
 - Inconsistencias
 - Ruido
- □ Tareas a realizar
 - □ Limpieza (ej: resolver outliers e inconsistencias)
 - Transformación (ej:discretización)

Limpieza de los datos

- En primer lugar, debe tenerse en cuenta que hay distintos tipos de variables o atributos.
- ✓ Para cada tipo se deberá realizar un análisis de sus valores.
 - Luego, se procederá a limpiarlos
 - Eliminando los valores con ruido
 - Determinando qué hacer con los valores faltantes.
 - Eliminando inconsistencias

Limpieza - Variables con ruido

- Las variables con ruido tendrán valores que caen fuera del rango de sus valores esperados llamados outliers.
- □ Por qué se originan?
 - Error humano en la carga de datos (ej: una persona puede aparecer con una altura de 5 metros).
 - Determinados cambios operacionales no han sido registrados en el proceso.

Es preciso analizar los metadatos

Limpieza - Valores faltantes

- Qué hacer con los valores nulos?
 - □ Ignorar la tupla.
 - Rellenar la tupla manualmente.
 - Usar una constante global para rellenar el valor nulo.
 - Utilizar el valor de la media u otra medida de centralidad para rellenar el valor.
 - Utilizar el valor de la media u otra medida de centralidad de los objetos que pertenecen la misma clase.
 - Utilizar alguna técnica de Aprendizaje Automático para calcular el valor más probable.

Ejemplo

- Se dispone de la siguiente información de los premios de la Academia otorgados a los mejores actores y actrices desde 1928 hasta 2020.
 - Año en que fue otorgado el premio
 - Datos del actor que lo recibió: Nombre, edad, sexo
 - Datos de la película: Título, género, duración, rating, cantidad de nominaciones que recibió, mes de estreno, sinopsis

Premios2020.csv

Ejercicio

El archivo Premios 2020.csv contiene 186 premios otorgados

Year	Age	Actor	Sex	Film	nominati	rating	duration	genre1	genre2	release	synopsis
1928	44	Emil Jannings	Μ	The Last Command	2	8	88	Drama	History	April	A former Imperial Russian gener
1928	22	Laura Gainor (aka Janet G	F	Sunrise	5	7.8	110	Drama	Romance		A street cleaner saves a young w
1929	37	Mary Pickford	F	Coquette	1	7.3	76	Drama	Romance	April	A flirtatious southern belle is co
		***		***				•••	•••		
		***		***			•••	•••			
2019	45	Joaquin Phoenix	Μ	Joker	11	8.5	122	Drama	Thriller	October	Arthur Fleck loves to make peop
2020	63	Frances McDormand	F	Nomadland	6	7.4	108	Drama		September	Nomadland es una película estac
2020	83	Anthony Hopkins	М	The father	6	8.3	97	Drama		January	Anthony tiene casi 83 años. Vive

- □ ¿Cuántos atributos tiene la tabla?
- □ ¿De qué tipo es cada uno de ellos?

Faltantes.ipynb

Premios 2020.csv

```
Year
import pandas as pd
                                                 Age
import numpy as np
import os
                                                 Actor
import chardet
                                                 Sex
                                                 Film
os.chdir('../Datos//')
                                                 nominations
nomArch = 'Premios2020.csv'
                                                 rating
with open(nomArch, 'rb') as f:
                                                 duration
    result = chardet.detect(f.read())
                                                 genre1
df= pd.read_csv(nomArch, encoding=result['encodgenre2')
                                                                 37
                                                 release
print(df.isnull().sum())
                                                 synopsis
```

Reemplazando los valores faltantes

```
import pandas as pd
import numpy as np
df= pd.read csv('../Datos/Premios2020.csv', encoding='ISO-8859-1')
values = {'nominations': df['nominations'].min(), 'rating': 5}
df3 = df.fillna(value=values)
#-- reemplaza todos los nan con 0
df4 = df.replace(np.nan, 0)
```

Faltantes.ipynb

Reemplazando los valores faltantes

```
import pandas as pd
import numpy as np

df= pd.read_csv('../Datos/Premios2020.csv',encoding='ISO-8859-1')

#crea una copia de df

df5 = pd.DataFrame(df)

modaGen = df5['genre2'].mode()

df5['genre2'] = df5['genre2'].replace(np.nan, modaGen[0])
```

Faltantes.ipynb

Atributo GENRE1 - Reducción de valores

```
import pandas as pd
                                                Modifica_atrib.ipynb
import numpy as np
df= pd.read csv('../Datos/Premios2020.csv',encoding='ISO-8859-1')
opciones = pd.value counts(df['genre1'])
                                                           91
                                              Drama
print(opciones)
                                              Biography
                                                           41
                                                           25
                                              Comedy
                                              Crime
                                                           16
                                              Adventure
                                              Action
```

Romance

Mystery

Thriller

Reemplazar por "OTRA"

Atributo GENRE1 - Reducción de valores

```
import pandas as pd
                                                Modifica_atrib.ipynb
import numpy as np
df= pd.read csv('../Datos/Premios2020.csv',encoding='ISO-8859-1')
opciones = pd.value counts(df['genre1'])
print(opciones)
# Reemplazando valores
df['genre1'] = df['genre1'].replace(['Adventure','Action', \
               'Romance', 'Thriller', 'Mystery'], 'Otra')
# revisar cómo quedó
                                                             91
                                                 Drama
opciones2 = pd.value counts(df['genre1'])
                                                 Biography
                                                             41
print(opciones2)
                                                 Comedy
                                                             25
                                                 Crime
                                                             16
                                                             13
                                                 Otra
```

Ejemplo de creación de atributos

Atributo derivado	Fórmula
Indice de obesidad	Altura ² / peso
Hombre familiar	Casado, varón e (hijos > 0)
Síntomas SARS	3-de-5 (fiebre alta, vómitos, tos, diarrea, dolor de cabeza)
Riesgo de póliza	X-de-N (edad<25, varón, años que conduce<2, vehículo deportivo)
Beneficios Brutos	Ingresos – Gastos
Beneficios netos	Ingresos — Gastos — Impuestos
Desplazamiento	Pasajeros * kilómetro
Duración media	Segundos de llamada / número de llamadas
Densidad	Población / Area
Retardo compra	Fecha compra — Fecha campaña

Generando un atributo nuevo

- □ Genere un nuevo atributo
 largaDuracion cuyo valor será "Sl" si la película tiene una duración superior a 2 horas y "NO" en caso contrario.
- Grafique este nuevo atributo utilizando un diagrama de barras.

Generando un atributo nuevo

```
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
df= pd.read csv('../Datos/Premios2020.csv',encoding='ISO-8859-1')
LD = ['NO'] * len(df)
for i in range(len(df)):
    if df['duration'][i] > 120:
        LD[i] = 'SI'
# Agregando un atributo al DataFrame
df = df.assign( largaDuracion = LD )
print('Atributo largaDuracion')
print(pd.value counts(df['largaDuracion']))
```

Modifica_atrib.ipynb

Transformación de atributos

□ DISCRETIZACION ←

 Algunos algoritmos de minería de datos sólo operan con atributos cualitativos. La discretización convierte los atributos numéricos en ordinales.

NUMERIZACION

Es el proceso contrario a la discretización. Convierte atributos cualitativos en numéricos.

NORMALIZACION

Permite expresar los valores de los atributos sin utilizar las unidades de medida originales facilitando su comparación y uso conjunto.

Discretización

- Convierte un valor numérico en un nominal ordenado (que representa un intervalo o "bin")
- □ **Ejemplo:** Podemos transformar
 - □ la edad de la persona en categorías: [0,12] niño, (12-21) joven, [21,65] adulto y >65 anciano.
 - La calificación de un alumno en: [4,10] aprobado o [0,4) desaprobado

Discretización

- Puede discretizarse en un número fijo de intervalos. El ancho del intervalo se calcula
 - Dividiendo el rango en partes iguales
 - Dividiendo la cantidad de ejemplos en partes iguales (igual frecuencia)
 - Indicando los límites de cada intervalo en forma manual.

Averigüe por otras variantes de discretización

- El objetivo es dividir el rango del atributo (intervalo entre el máximo y el mínimo) en una cierta cantidad k de partes iguales.
- Los valores comprendidos en una misma parte serán asociados al mismo valor ordinal.
- □ Ejemplo: k=4

- Ejemplo: Discretizar el atributo DURATION en 4 intervalos de igual longitud
 - DURATION toma valores entre 69 y 238 minutos. Si dividimos el rango en 4 partes iguales, cada una tendría una longitud de (238-69)/4 = 42.25

 Ejemplo: Discretizar el atributo DURATION en 4 intervalos de igual longitud

Valor	Intervalo	Frecuencia
Rango1	[-∞ - 111.25]	77
Rango2	(111.25 - 153.5]	92
Rango3	(153.5 – 195.75]	15
Rango4	(195.75 - ∞]	2

DURATION discretizado en 4 intervalos por rango

```
import pandas as pd
import numpy as np
df= pd.read csv('../Datos/Premios2020.csv',encoding='ISO-8859-1')
etiq = ["bajo","medio","alto", "muy alto"]
# Discretización por RANGO
columna = pd.cut(df["duration"],bins=len(etiq),labels=etiq)
df['duration2'] = pd.Series.to frame(columna)
print(pd.value counts(df['duration2']))
```

Discretizacion.ipynb

DURATION discretizado en 4 intervalos de igual longitud

- El objetivo es dividir los valores del atributo numérico en k partes con la misma cantidad de valores en cada una de ellas.
- El atributo debe tener al menos k valores diferentes.
- Si hay valores numéricos repetidos los valores ordinales no tendrán la misma frecuencia.

Ejemplo: Discretizar el atributo DURATION en 4 intervalos de igual frecuencia

 DURATION tiene 186 valores entre 69 y 238 minutos. Luego de ordenar los valores, los dividimos en k partes con igual cantidad de elementos

Cada intervalo tiene N/K = 186/4 = 46.5 elementos

- Ejemplo: Discretizar el atributo DURATION en 4 intervalos de igual frecuencia
 - DURATION tiene 186 valores entre 69 y 238 minutos. Luego de ordenar los valores, los dividimos en k partes con igual cantidad de elementos

Ejemplo: Discretizar el atributo DURATION en 4 intervalos de igual frecuencia

 DURATION tiene 186 valores entre 69 y 238 minutos. Luego de ordenar los valores, los dividimos en k partes con igual cantidad de elementos

Ejemplo: Discretizar el atributo DURATION en 4 intervalos de igual frecuencia

 DURATION tiene 186 valores entre 69 y 238 minutos. Luego de ordenar los valores, los dividimos en k partes con igual cantidad de elementos

Ejemplo: Discretizar el atributo DURATION en 4 intervalos de igual frecuencia

 DURATION tiene 186 valores entre 69 y 238 minutos. Luego de ordenar los valores, los dividimos en k partes con igual cantidad de elementos

□ Ejemplo: Discretizar el atributo DURATION en 4 intervalos de igual frecuencia

69	•	•	104	105	105	•••	116	116	•••	129	129	129	•••	238
1	• •	•	46	47 !	48	•••	93	94	• • •	139	140	141	•••	186
	(−∞; 105]			(10)5; 116	5]	(116; 129]			·	(129; +∞)			

Valor	Intervalo	Frecuencia
range1	[-∞ - 105]	53
range2	(105 - 116]	47
range3	(116 - 129]	45
range4	(129 - ∞]	41

DURATION discretizado en 4 intervalos por frecuencia

```
import pandas as pd
import numpy as np
df= pd.read csv('../Datos/Premios2020.csv',encoding='ISO-8859-1')
etiq = ["bajo","medio","alto","muy alto"]
# Discretización por FRECUENCIA
columna = pd.qcut(df["duration"], q=len(etiq), labels=etiq)
df['duration2'] = pd.Series.to frame(columna)
print(pd.value counts(df['duration2']))
```

Discretizacion.ipynb

□ DURATION discretizado en 4 intervalos de igual frecuencia

Discretización especificada por el usuario

- □ Si DURATION <= 100, BREVE
- □ Si (DURATION> 100) y (DURATION<=136), NORMAL
- □ Si (DURATION>136), LARGA

Discretización especificada por el usuario

```
import pandas as pd
import numpy as np
df= pd.read csv('../Datos/Premios2020.csv',encoding='ISO-8859-1')
# Discretización indicada por el usuario
etiq = ["breve", "normal", "larga"]
valores = [-math.inf, 100, 136, math.inf]
columna = pd.cut(df["duration"],bins=valores,labels=etiq)
df['duration2'] = pd.Series.to frame(columna)
print(pd.value counts(df['duration2']))
```

Discretizacion.ipynb

Transformación de atributos

DISCRETIZACION

Algunos algoritmos de minería de datos sólo operan con atributos cualitativos. La discretización convierte los atributos numéricos en ordinales.

NUMERIZACION

Es el proceso contrario a la discretización. Convierte atributos cualitativos en numéricos.

NORMALIZACION

Permite expresar los valores de los atributos sin utilizar las unidades de medida originales facilitando su comparación y uso conjunto.

Numerización

- En ocasiones los atributos nominales u ordinales deben convertirse en números.
- Para los nominales suele utilizarse una representación binaria y para los ordinales suele utilizarse una representación entera.
- Es importante considerar que si se numeran en forma correlativa los valores de un atributo nominal se agrega un orden que originalmente no está presente en la información disponible.

Premios2020.csv

Ejemplo

El archivo Premios 2020.csv contiene 186 premios otorgados

_	_		4		4	_					4
Year	Age	Actor	Sex	Film	nominat	rating	duration	genre1	genre2	release	synopsis
1928	44	Emil Jannings	M	The Last Command	2	8	88	Drama	History	April	A former Imperial Russian gener
1928	22	Laura Gainor (aka Janet G	_ F)	Sunrise	5	7.8	110	Drama	Romance		A street cleaner saves a young w
1929	37	Mary Pickford	F	Coquette	1	7.3	76	Drama	Romance	April	A flirtatious southern belle is co
						•••	•••	•••	•••		
								•••	•••		
2019	45	Joaquin Phoenix	M	Joker	11	8.5	122	Drama	Thriller	October	Arthur Fleck loves to make peop
2020	63	Frances McDormand	F	Nomadland	6	7.4	108	Drama		September	Nomadland es una película esta
2020	83	Anthony Hopkins	M	The father	6	8.3	97	Drama		January	Anthony tiene casi 83 años. Vive
-			-	+	+				+ +		4

Para las variables ordinales podemos utilizar la numerización de entero único

Numerización – representación entera

```
import pandas as pd
import numpy as np
df= pd.read csv('../Datos/Premios2020.csv',encoding='ISO-8859-1')
moda = df['release'].mode()
df['release'] = df['release'].replace([np.nan], moda)
print(pd.value counts(df['release']))
mapeo = {"release": {"January":1, "February":2, "March":3,"April":4,
                "May":5, "June":6, "July":7, "August":8, "September":9,
                     "October":10, "November":11, "December":12}}
df.replace(mapeo, inplace=True)
print(df['release'].describe())
```

Numerización Binaria (dummy)

- La numerización binaria reemplaza al atributo nominal por tantos atributos numéricos binarios como valores distintos pueda tomar.
- Las denominaciones de estos nuevos atributos surgen de igualar el nombre original con cada uno de los posibles valores.
- Para un mismo ejemplo sólo uno de estos nuevos atributos tendrá valor
 1 y el resto 0.

Premios2020.csv

Ejemplo

El archivo Premios 2020.csv contiene 186 premios otorgados

Year	Age	Actor	Sex	Film	nominati	rating	duration	genre1	genre2	release	synopsis
1928	44	Emil Jannings	М	The Last Command	2	8	88	Drama	History	April	A former Imperial Russian gener
1928	22	Laura Gainor (aka Janet G	F	Sunrise	5	7.8	110	Drama	Romance		A street cleaner saves a young w
1929	37	Mary Pickford	F	Coquette	1	7.3	76	Drama	Romance	April	A flirtatious southern belle is co
		***				•••	•••		•••		
		***			•••		•••	•••	•••		
2019	45	Joaquin Phoenix	М	Joker	11	8.5	122	Drama	Thriller	October	Arthur Fleck loves to make peop
2020	63	Frances McDormand	F	Nomadland	6	7.4	108	Drama		September	Nomadland es una película estad
2020	83	Anthony Hopkins	М	The father	6	8.3	97	Drama		January	Anthony tiene casi 83 años. Vive

Las variables nominales deben numerizarse utilizando una representación binaria

Numerización binaria

```
import pandas as pd
import numpy as np
df= pd.read csv('../Datos/Premios2020.csv', encoding='ISO-8859-1')
# atributo sexo con codificación binaria
NuevasColumnas = pd.get dummies(df['Sex'], prefix= 'Sex')
# Agregamos las nuevas columnas al DataFrame
df = pd.concat([NuevasColumnas, df], axis=1)
# Borramos la columna anterior
df.drop('Sex',axis=1, inplace=True)
```

Numerización Binaria de SEX

Row No.	Sex = M	Sex = F	Year	Age	Actor	Film	nominatio
1	1	0	1928	44	Emil Jannings	The Last Co	2
2	0	1	1928	22	Laura Gainor	Sunrise	5
3	1	0	1929	38	Warner Baxter	In Old Arizona	5
4	0	1	1929	37	Mary Pickford	Coquette	2
5	1	0	1930	62	George Arliss	Disraeli	3
6	0	1	1930	30	Norma Shear	The Divorcee	4
7	1	0	1931	53	Lionel Barry	A Free Soul	3
8	0	1	1931	62	Marie Dressler	Min and Bill	2
9	1	0	1932	41	W. Beery(47)/	The Champ/	4
10	0	1	1932	32	Helen Haves	Sin of Madelon	2

Ejemplo

DRUG5.CSV

□ Se dispone de información de pacientes afectados de rinitis alérgica:

- Age: Edad
- **Sex**: Sexo
- **BP**: Presión sanguínea.
- □ Cholesterol: Nivel de colesterol.

- Na: Nivel de sodio en la sangre.
- **K**: Nivel de potasio en la sangre.
- Drug: fármaco suministrado (opciones DrugA, DrugB, DrugC, DrugX, DrugY)

 Se busca predecir si el tipo de fármaco que se debe administrar a un paciente afectado de rinitis alérgica es el habitual (DrugY) o no.

Drug5.csv - Numerización

□ Drug5.csv contiene 200 muestras de pacientes atendidos previamente

Nro.	Age	Sex	ВР	Colesterol	Na	K	Drug
1	23	F	HIGH	HIGH	0,792535	0,031258	drugY
2	47	M	LOW	HIGH	0,739309	0,056468	drugC
3	47	M	LOW	HIGH	0,697269	0,068944	drugC
4	28	F	NORMAL	HIGH	0,563682	0,072289	drugX
5	61	F	LOW	HIGH	0,559294	0,030998	drugY
•••	•••	•••	•••		•••	•••	•••
	•••	•••	•••				
•••	•••	•••	•••		•••	•••	•••
197	16	M	LOW	HIGH	0,743021	0,061886	drugC
198	52	M	NORMAL	HIGH	0,549945	0,055581	drugX
199	23	M	NORMAL	NORMAL	0,78452	0,055959	drugX
200	40	F	LOW	NORMAL	0,683503	0,060226	drugX

Transformación de atributos

DISCRETIZACION

Algunos algoritmos de minería de datos sólo operan con atributos cualitativos. La discretización convierte los atributos numéricos en ordinales.

NUMERIZACION

Es el proceso contrario a la discretización. Convierte atributos cualitativos en numéricos.

■ NORMALIZACION ←

Permite expresar los valores de los atributos sin utilizar las unidades de medida originales facilitando su comparación y uso conjunto.

Normalización

- □ Se aplica según el modelo que se va a construir.
- La más común es la normalización lineal uniforme

$$X' = \frac{X - X_{min}}{X_{max} - X_{min}}$$

- Es muy sensible a valores fuera de rango (outliers).
- \square Si se recortan los extremos se obtiene valor negativos y/o mayores a 1.

Normalización Lineal Uniforme

```
import pandas as pd
import numpy as np

df= pd.read_csv('.../Datos/Premios2020.csv', encoding='ISO-8859-1')

# -- Escala los valores entre 0 y 1 --
mini = df['Age'].min()
maxi = df['Age'].max()
df['AgeLineal']= (df['Age']-mini)/(maxi-mini)
```

Normalizacion.ipynb

Normalización

 Existen otras transformaciones. Por ejemplo, si los datos tienen distribución normal se pueden tipificar

$$X' = \frac{X - media(X)}{desviacion(X)}$$

 De esta forma los datos se distribuyen normalmente alrededor de 0 con desviación 1.

Normalización usando media y desvio

```
import pandas as pd
import numpy as np

df= pd.read_csv('../Datos/Premios2020.csv', encoding='ISO-8859-1')

# -- Estandarización --
media = df['Age'].mean()
desvio = df['Age'].std()
df['AgeNorm']= (df['Age']-media)/desvio
```

Normalizacion.ipynb

Normalización del atributo AGE

plt.figure()
df[['Age','AgeLineal','AgeNorm']].hist()

Normalizacion.ipynb

X

$$X' = \frac{X - mi}{max(X) - mi}$$

$$X' = \frac{X - media(X)}{desvio(X)}$$

Normalización del atributo AGE

```
mini = df['Age'].min()
maxi = df['Age'].max()
df['AgeLineal']= (df['Age']-mini)/(maxi-mini)
media = df['Age'].mean()
desvio = df['Age'].std()
```

df['AgeNorm']= (df['Age']-media)/desvio

	Age	AgeLineal	AgeNorm
count	186.0000	186.0000	186.0000
mean	40.3656	0.3123	-0.0000
std	11.4371	0.1845	1.0000
min	21.0000	0.0000	-1.6932
25%	32.2500	0.1815	-0.7096
50 %	38.0000	0.2742	-0.2068
75 %	45.7500	0.3992	0.4708
max	83.0000	1.0000	3.7277

round(df[['Age', 'AgeLineal', 'AgeNorm']].describe(),4)

Comparación de atributos numéricos

Valores originales

	Year	Age	nominations	rating	duration
0	1928	44	2.0	8.0	88
1	1928	22	5.0	7.8	110
2	1929	37	1.0	7.3	76
3	1929	38	5.0	5.8	95
4	1930	62	3.0	6.5	90
•••	•••	•••	•••	•••	•••
181	2018	44	10.0	7.5	119
182	2019	50	2.0	6.8	118
183	2019	45	11.0	8.5	122
184	2020	63	6.0	7.4	108
185	2020	83	6.0	8.3	97

Comparación de atributos numéricos

□ Valores normalizados linealmente entre 0 y 1

	Year	Age	nominations	rating	duration
0	0.000	0.371	0.083	0.647	0.112
1	0.000	0.016	0.333	0.588	0.243
2	0.011	0.258	0.000	0.441	0.041
3	0.011	0.274	0.333	0.000	0.154
4	0.022	0.661	0.167	0.206	0.124
•••	•••	•••	•••	•••	•••
181	0.978	0.371	0.750	0.500	0.296
182	0.989	0.468	0.083	0.294	0.290
183	0.989	0.387	0.833	0.794	0.314
184	1.000	0.677	0.417	0.471	0.231
185	1.000	1.000	0.417	0.735	0.166

Comparación de atributos numéricos

Valores normalizados utilizando media y desvío

	Year	Age	nominations	rating	duration
0	-1.709	0.318	-1.433	0.622	-1.302
1	-1.709	-1.606	-0.423	0.242	-0.386
2	-1.672	-0.294	-1 <i>.</i> 769	-0.710	-1.802
3	-1.672	-0.207	-0.423	-3.567	-1.010
4	-1.635	1.892	-1.096	-2.234	-1.219
•••	•••	•••	•••	•••	•••
181	1.635	0.318	1.259	-0.330	-0.011
182	1.672	0.842	-1.433	-1.663	-0.052
183	1.672	0.405	1.595	1.574	0.114
184	1.709	1.979	-0.087	-0.520	-0.469
185	1.709	3.728	-0.087	1.194	-0.927

Semillas.ipynb

Semillas de trigo

- El archivo SEMILLAS.csv contiene información de granos que pertenecen a tres variedades diferentes de trigo: Kama, Rosa y Canadiense.
 - □ área A,
 - perímetro P,
 - \square compacidad $C = 4 * pi * A / P ^ 2,$
 - longitud del núcleo,
 - ancho del núcleo,
 - coeficiente de asimetría
 - longitud del surco del núcleo

Resumen

PREPARACION DE LOS DATOS

- Completar datos faltantes
- Generación de características o atributos nuevos
- Reducción de valores en atributos cualitativos
- Transformaciones
 - Discretización por rango, por frecuencia e indicada por el usuario
 - Numerización: codificación entera y codificación binaria
 - Normalización: Lineal y Estandarización