

# RL Adventure

Distributional RL

이의령



- 1. Motivation
- 2. Distributional RL(C51) 설명
- 3. C51 Result
- 4. 코드 구현체 분석



# 1. Motivation

# **Motivation**







$$E[R(x)] = \frac{35}{36} \times 200 - \frac{1}{36} \times 1,800$$
$$= 144$$

# **Motivation**



$$R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^{T-t-1} R_T$$

# **Expected RL**



### 벨만 방정식

$$v(\mathcal{X}) = \mathbf{E} \left[ R_{t+1} + \gamma R_{t+2} + \cdots \mid S_t = \mathcal{X} \right]$$
$$= \mathbf{E} \left[ R_{t+1} + \gamma v(x) \mid S_t = \mathcal{X} \right]$$
$$= \mathbf{E} R(x) + \gamma \mathbf{E} v(x)$$

# **Expected RL**

#### Reward를 Random Variable 관점에서 바라보면...

- 가치함수는 discount된 미래 보상에 대한 기댓값을 리턴한다.
- 기댓값 = Scalar(o) / Distribution(x)
- 미래 보상 값들은 complex, Multimodal의 특성을 가진다.
- 기댓값은 각 보상들이 가지는 intrinsic(본질적인)한 특성을 담아내지 못한다.

$$E[R(x)] = \frac{35}{36} \times 200 - \frac{1}{36} \times 1,800$$
$$= 144$$

# **Expected RL**

#### Reward를 Random Variable 관점에서 바라보면...



이러한 Expected RL의 한계점을 보완책

-> A Distributional Perspective on RL (C51)

### Return을 Distribution으로 만들어

### Randomness한 특성과 정보를 최대한 반영해보자

$$V^{\pi} = E[Z^{\pi}(x)] = E[R(x)] + E[Z^{\pi}(X')]$$

# Return을 Distribution으로 만들어

## Randomness한 특성과 정보를 최대한 반영해보자

$$V^{\pi} = E[Z^{\pi}(x)] = E[R(x)] + E[Z^{\pi}(X')]$$

$$Z^{\pi}(x) = R(x) + Z^{\pi}(X')$$

#### A Distributional Perspective on Reinforcement Learning (C51)

https://arxiv.org/abs/1707.06887

- Expected RL → Distributional RL
- Return에 대한 Value Distribution을 만들자.
- C51 = Categorical / 이산형 분포
- 51개의 bin을 이용하여 분포를 만든다.

#### A Distributional Perspective on Reinforcement Learning (C51)

Distributional Bellman Equation

$$Z(x, a) \stackrel{D}{=} R(x, a) + \gamma Z(X', A')$$

Cf) Bellman Equation

$$Q(x,a) = R(x,a) + \gamma Q_{\pi}(x',a')$$

• Z(s,a)는 Distribution을 의미, 이를 이용하여 Distribution을 생성

$$Q(s,a) = E[Z(s,a)] = \sum_{i=1}^{N} p_i x_i$$









A Distributional Perspective on Reinforcement Learning (C51)

C51 = DQN + Projection Distribution (분포 만들기)

#### A Distributional Perspective on Reinforcement Learning (C51)

#### **Distributional DQN**

- 1. Return에 대한 Value Distribution(51개 bin)을 만든다.
- 2. 각 스텝마다 만든 Value Distribution 들간의 거리를 구한다.
  - → 논문에서 이론상 Wasserstein distance로 정의했지만 실험에서 KL-divergence로 계산
- 3. Cross entropy로 분포간의 Loss 계산

#### A Distributional Perspective on Reinforcement Learning (C51)

#### **Algorithm 1** Categorical Algorithm

```
input A transition x_t, a_t, r_t, x_{t+1}, \gamma_t \in [0, 1]
   Q(x_{t+1}, a) := \sum_{i} z_{i} p_{i}(x_{t+1}, a)
   a^* \leftarrow \arg\max_a Q(x_{t+1}, a)
   m_i = 0, \quad i \in 0, \dots, N-1
   for j \in {0, ..., N-1} do
       # Compute the projection of \hat{T}z_i onto the support \{z_i\}
       \hat{\mathcal{T}}z_j \leftarrow [r_t + \gamma_t z_j]_{V_{\text{max}}}^{V_{\text{MAX}}}
       b_i \leftarrow (\hat{\mathcal{T}}z_i - V_{\text{MIN}})/\Delta z \quad \# b_i \in [0, N-1]
       l \leftarrow |b_i|, u \leftarrow [b_i]
       # Distribute probability of \mathcal{T}z_i
       m_l \leftarrow m_l + p_i(x_{t+1}, a^*)(u - b_i)
       m_u \leftarrow m_u + p_i(x_{t+1}, a^*)(b_i - l)
   end for
output -\sum_i m_i \log p_i(x_t, a_t) # Cross-entropy loss
```

#### A Distributional Perspective on Reinforcement Learning (C51)

#### Algorithm 1 Categorical Algorithm

```
input A transition x_t, a_t, r_t, x_{t+1}, \gamma_t \in [0, 1]
   Q(x_{t+1}, a) := \sum_{i} z_{i} p_{i}(x_{t+1}, a)
   a^* \leftarrow \arg\max_a Q(x_{t+1}, a)
   m_i = 0, \quad i \in 0, \dots, N-1
   for j \in {0, ..., N-1} do
       # Compute the projection of \hat{T}z_i onto the support \{z_i\}
       \hat{\mathcal{T}}z_j \leftarrow [r_t + \gamma_t z_j]_{V_{\text{max}}}^{V_{\text{MAX}}}
       b_i \leftarrow (\hat{\mathcal{T}}z_i - V_{\text{MIN}})/\Delta z \quad \# b_i \in [0, N-1]
       l \leftarrow |b_i|, u \leftarrow \lceil b_i \rceil
       # Distribute probability of \mathcal{T}z_i
       m_l \leftarrow m_l + p_i(x_{t+1}, a^*)(u - b_i)
       m_u \leftarrow m_u + p_i(x_{t+1}, a^*)(b_i - l)
    end for
output -\sum_i m_i \log p_i(x_t, a_t) # Cross-entropy loss
```

Replay Buffer에서 Batch size만큼 추출

#### A Distributional Perspective on Reinforcement Learning (C51)

#### Algorithm 1 Categorical Algorithm

```
input A transition x_t, a_t, r_t, x_{t+1}, \gamma_t \in [0, 1]
    Q(x_{t+1}, a) := \sum_{i} z_{i} p_{i}(x_{t+1}, a)
   a^* \leftarrow \arg\max_a Q(x_{t+1}, a)
   m_i = 0, \quad i \in 0, \dots, N-1
   for j \in {0, ..., N-1} do
       # Compute the projection of \hat{T}z_i onto the support \{z_i\}
       \hat{\mathcal{T}}z_j \leftarrow [r_t + \gamma_t z_j]_{V_{\text{max}}}^{V_{\text{MAX}}}
       b_i \leftarrow (\hat{\mathcal{T}}z_i - V_{\text{MIN}})/\Delta z \quad \# b_i \in [0, N-1]
       l \leftarrow |b_i|, u \leftarrow [b_i]
       # Distribute probability of \mathcal{T}z_i
       m_l \leftarrow m_l + p_i(x_{t+1}, a^*)(u - b_i)
       m_u \leftarrow m_u + p_i(x_{t+1}, a^*)(b_i - l)
    end for
```

**output**  $-\sum_i m_i \log p_i(x_t, a_t)$  # Cross-entropy loss

Projection Distribution (분포 만들기)

#### A Distributional Perspective on Reinforcement Learning (C51)

#### Algorithm 1 Categorical Algorithm

```
input A transition x_t, a_t, r_t, x_{t+1}, \gamma_t \in [0, 1]
   Q(x_{t+1}, a) := \sum_{i} z_{i} p_{i}(x_{t+1}, a)
   a^* \leftarrow \arg\max_a Q(x_{t+1}, a)
   m_i = 0, \quad i \in 0, \dots, N-1
   for j \in {0, ..., N-1} do
       # Compute the projection of \hat{T}z_i onto the support \{z_i\}
      \hat{\mathcal{T}}z_j \leftarrow [r_t + \gamma_t z_j]_{V_{\text{MAX}}}^{V_{\text{MAX}}}
       b_i \leftarrow (\mathcal{I} z_i - V_{\text{MIN}})/\Delta z \quad \# b_i \in [0, N-1]
       l \leftarrow |b_i|, u \leftarrow \lceil b_i \rceil
       # Distribute probability of \mathcal{T}z_i
       m_l \leftarrow m_l + p_i(x_{t+1}, a^*)(u - b_i)
       m_u \leftarrow m_u + p_i(x_{t+1}, a^*)(b_i - l)
   end for
output -\sum_i m_i \log p_i(x_t, a_t) # Cross-entropy loss
```

Bellman distributional operator

$$V_{max} = 10$$

$$V_{mim} = -10$$



#### A Distributional Perspective on Reinforcement Learning (C51)

#### Algorithm 1 Categorical Algorithm

**output**  $-\sum_i m_i \log p_i(x_t, a_t)$  # Cross-entropy loss

```
input A transition x_t, a_t, r_t, x_{t+1}, \gamma_t \in [0, 1]
   Q(x_{t+1}, a) := \sum_{i} z_{i} p_{i}(x_{t+1}, a)
   a^* \leftarrow \arg\max_a Q(x_{t+1}, a)
   m_i = 0, \quad i \in 0, \dots, N-1
   for j \in {0, ..., N-1} do
      # Compute the projection of \hat{T}z_i onto the support \{z_i\}
      \hat{\mathcal{T}}z_j \leftarrow [r_t + \gamma_t z_j]_{V_{\text{max}}}^{V_{\text{MAX}}}
      b_i \leftarrow (\hat{\mathcal{T}}z_i - V_{\text{MIN}})/\Delta z \quad \# b_i \in [0, N-1]
      l \leftarrow |b_i|, u \leftarrow [b_i]
      # Distribute probability of \mathcal{T}z_i
                                                                              KL-divergence(cross entropy)로
      m_l \leftarrow m_l + p_i(x_{t+1}, a^*)(u - b_i)
      m_u \leftarrow m_u + p_i(x_{t+1}, a^*)(b_i - l)
                                                                                                    Loss 구하기
   end for
```

# **Performance**

#### A Distributional Perspective on Reinforcement Learning (C51)

#### Comparison

|                     | Mean | Median | > H.B. | > <b>DQN</b> |
|---------------------|------|--------|--------|--------------|
| DQN                 | 228% | 79%    | 24     | 0            |
| DDQN                | 307% | 118%   | 33     | 43           |
| DUEL.               | 373% | 151%   | 37     | 50           |
| PRIOR.              | 434% | 124%   | 39     | 48           |
| PR. DUEL.           | 592% | 172%   | 39     | 44           |
| C51                 | 701% | 178%   | 40     | 50           |
| UNREAL <sup>†</sup> | 880% | 250%   | _      | _            |

#### **Relative Performance**



3. 코드 구현체 분석



# 감사합니다.

» urleee@naver.com