Solutions to exercises in Bart Jacobs's book "Introduction to Coalgebra: Towards Mathematics of States and Observation"

Ryan Tay

some date very far into the future, if ever

a work in progress... draft version 13 September 2025

These are my solutions to all the labelled exercises in Jacobs (2017). This document does not stand on its own; it is meant to supplement the book.

Contents

1	Motivation		
	1.1	Naturalness of Coalgebraic Representations	2
	1.2	The Power of Coinduction	4
	1.3	Generality of Temporal Logic of Coalgebras	14
	1.4	Abstractness of Coalgebraic Notions	14
2	Coa	algebras of Polynomial Functors	16
	2.1	Constructions on Sets	16
	2.2	Polynomial Functors and Their Coalgebras	17
	2.3	Final Coalgebras	18
	2.4	Algebras	19
	2.5	Adjunctions, Cofree Coalgebras, Behaviour-Realisation	20
3	Bisi	imulations	22
	3.1	Relation Lifting, Bisimulations and Congruences	22
	3.2	Properties of Bisimulations	22
	3.3	Bisimulations as Spans and Cospans	23
	3.4	Bisimulations and the Coinduction Proof Principle	23
	3.5	Process Semantics	24
Bi	bliog	graphy and References	25

1 Motivation

1.1 Naturalness of Coalgebraic Representations

Exercise 1.1.1

1. Prove that the composition operation; as defined for coalgebras $S \to \{\bot\} \cup S$ is associative, i.e. satisfies s_1 ; $(s_2; s_3) = (s_1; s_2)$; s_3 , for all statements $s_1, s_2, s_3 : S \to \{\bot\} \cup S$.

Define a statement skip: $S \to \{\bot\} \cup S$ which is a unit for composition; i.e. which satisfies $(\mathsf{skip}\,;\,s) = s = (s\,;\,\mathsf{skip}),$ for all $s\colon S \to \{\bot\} \cup S.$

2. Do the same for; defined on coalgebras $S \to \{\bot\} \cup S \cup (S \times E)$.

(In both cases, statements with an associative composition operation and a unit element form a monoid.)

Solution.

1. Recall that the composition operation; was defined as follows:

$$s; t := \lambda x \in S.$$

$$\begin{cases} \bot, & \text{if } s(x) = \bot, \\ t(x') & \text{if } s(x) = x' \in S, \end{cases}$$

for coalgebras $s, t: S \to \{\bot\} \cup S$. Fix any three coalgebras $s_1, s_2, s_3: S \to \{\bot\} \cup S$. Then

$$s_{1}; (s_{2}; s_{3}) = \lambda x \in S. \begin{cases} \bot, & \text{if } s_{1}(x) = \bot, \\ (s_{2}; s_{3})(x'), & \text{if } s_{1}(x) = x' \in S, \end{cases}$$

$$= \lambda x \in S. \begin{cases} \bot, & \text{if either } s_{1}(x) = \bot, \text{ or both } s_{1}(x) = x' \in S \text{ and } s_{2}(x') = \bot, \\ s_{3}(x''), & \text{if } s_{1}(x) = x' \in S \text{ and } s_{2}(x') = x'' \in S, \end{cases}$$

$$= \lambda x \in S. \begin{cases} \bot, & \text{if } (s_{1}; s_{2})(x) = \bot, \\ s_{3}(x''), & \text{if } (s_{1}; s_{2})(x) = x'' \in S, \end{cases}$$

$$= (s_{1}; s_{2}); s_{3}.$$

So the composition operation; is associative.

The coalgebra $\mathsf{skip} \colon S \to \{\bot\} \cup S$ defined by $\mathsf{skip}(x) \coloneqq x$, for all $x \in S$, satisfies $(\mathsf{skip} \, ; \, s) = s = (s \, ; \, \mathsf{skip})$ for all coalgebras $s \colon S \to \{\bot\} \cup S$.

2. Now we consider the composition operation; defined as follows:

$$s; t \coloneqq \lambda x \in S. \begin{cases} \bot, & \text{if } s(x) = \bot, \\ t(x'), & \text{if } s(x) = x' \in S, \\ (x', e), & \text{if } s(x) = (x', e) \in S \times E, \end{cases}$$

for coalgebras $s, t: S \to \{\bot\} \cup S \cup (S \times E)$. Fix any three coalgebras $s_1, s_2, s_3: \{\bot\} \cup S \cup (S \times E)$. Then

$$s_1; (s_2; s_3) = \lambda x \in S.$$

$$\begin{cases} \bot, & \text{if } s_1(x) = \bot, \\ (s_2; s_3)(x'), & \text{if } s_1(x) = x' \in S, \\ (x', e), & \text{if } s_1(x) = (x', e) \in S \times E, \end{cases}$$

$$= \lambda x \in S. \begin{cases} \bot, & \text{if either } s_1(x) = \bot, \text{ or both } s_1(x) = x' \in S \text{ and } s_2(x') = \bot, \\ s_3(x''), & \text{if } s_1(x) = x' \in S \text{ and } s_2(x') = x'' \in S, \\ (x'', e), & \text{if } s_1(x) = x' \in S \text{ and } s_2(x') = (x'', e) \in S \times E, \\ (x', e), & \text{if } s_1(x) = (x', e) \in S \times E, \end{cases}$$

$$= \lambda x \in S. \begin{cases} \bot, & \text{if } (s_1; s_2)(x) = \bot, \\ s_3(x''), & \text{if } (s_1; s_2)(x) = x'' \in S, \\ (x'', e), & \text{if } (s_1; s_2)(x) = (x'', e) \in S \times E, \end{cases}$$

$$= (s_1; s_2); s_3.$$

So this composition operation; is also associative.

Now define the coalgebra $\mathsf{skip} \colon S \to \{\bot\} \cup S \cup (S \times E)$ by $\mathsf{skip}(x) \coloneqq x$, for all $x \in S$. Then we have $(\mathsf{skip} \colon s) = s = (s \colon \mathsf{skip})$ for all coalgebras $s \colon S \to \{\bot\} \cup S \cup (S \times E)$.

Exercise 1.1.2

Define also a composition monoid (skip, ;) for coalgebras $S \to \mathcal{P}(S)$.

Solution. For coalgebras $s, t: S \to \mathcal{P}(S)$, define

$$s; t := \lambda x \in S. \left(\bigcup_{y \in s(x)} t(y) \right).$$

Then, for coalgebras $s_1, s_2, s_3 \colon S \to \mathcal{P}(S)$, we have

$$s_1; (s_2; s_3) = \lambda x \in S. \left(\bigcup_{y \in s_1(x)} (s_2; s_3)(y) \right)$$

$$= \lambda x \in S. \left(\bigcup_{y \in s_1(x)} \bigcup_{z \in s_2(y)} s_3(z) \right)$$

$$= \lambda x \in S. \left(\bigcup_{z \in (s_1; s_2)(x)} s_3(z) \right)$$

$$= (s_1; s_2); s_3.$$

Furthermore, defining skip: $S \to \mathcal{P}(S)$ by $\mathsf{skip}(x) \coloneqq \{x\}$ for all $x \in S$, we have

$$\begin{aligned} (\mathsf{skip}\,;\,s) &= \lambda x \in S. \left(\bigcup_{y \in \mathsf{skip}(x)} s(y) \right) \\ &= \lambda x \in S. \left(\bigcup_{y \in \{x\}} s(y) \right) \\ &= \lambda x \in S. s(x) \\ &= s \end{aligned}$$

and

$$(s ; \mathsf{skip}) = \lambda x \in S. \left(\bigcup_{y \in s(x)} \mathsf{skip}(y) \right)$$
$$= \lambda x \in S. \left(\bigcup_{y \in s(x)} \{y\} \right)$$
$$= \lambda x \in S.s(x)$$
$$= s.$$

1.2 The Power of Coinduction

Exercise 1.2.1

Compute the nextdec-behaviour of $\frac{1}{7} \in [0,1)$ as in Example 1.2.2.

Solution. We first recall all of the following functions.

1. The final coalgebra $\mathsf{next} \colon \{0,\dots,9\}^\infty \to \{\bot\} \cup \big(\{0,\dots,9\} \times \{0,\dots,9\}^\infty\big)$ is defined by

$$\mathsf{next}(\sigma) \coloneqq \begin{cases} \bot, & \text{if } \sigma \text{ is the empty sequence,} \\ (d,\sigma'), & \text{if } \sigma \text{ has head } d \in \{0,\dots,9\} \text{ and tail } \sigma' \in \{0,\dots,9\}^\infty, \text{ i.e. } \sigma = d \cdot \sigma', \end{cases}$$

for all (finite or infinite) sequences $\sigma \in \{0, \dots, 9\}^{\infty}$.

2. The coalgebra $\mathsf{nextdec} \colon [0,1) \to \{\bot\} \cup \big(\{0,\ldots,9\} \times [0,1)\big)$ is defined by

$$\mathsf{nextdec}(r) \coloneqq \begin{cases} \bot, & \text{if } r = 0, \\ (d, 10r - d), & \text{if } d \leq 10r < d + 1 \text{ and } d \in \{0, \dots, 9\}, \end{cases}$$

for all $r \in [0, 1)$.

3. The function beh_{\sf nextdec} \colon [0,1) \to \{0,\dots,9\}^\infty is the unique function making

$$\{\bot\} \cup \left(\{0,\ldots,9\} \times [0,1)\right) \xrightarrow{\mathrm{id}_{\{\bot\}} \cup \left(\mathrm{id}_{\{0,\ldots,9\}} \times \mathrm{beh}_{\mathsf{nextdec}}\right)} \\ = \left(1,1\right) \xrightarrow{\mathrm{loc}_{\{\bot\}} \cup \left(\mathrm{id}_{\{\bot\}} \cup \mathrm{id}_{\{\bot\}} \times \mathrm{beh}_{\mathsf{nextdec}}\right)} \\ = \left(1,1\right) \xrightarrow{\mathrm{loc}_{\{\bot\}} \cup \left(\mathrm{id}_{\{\bot\}} \cup \mathrm{id}_{\{\bot\}} \cup \mathrm{id$$

commute.

We wish to compute beh_{nextdec} $\left(\frac{1}{7}\right)$. We see that

$$\begin{split} \operatorname{beh_{nextdec}} \left(\frac{1}{7} \right) &= \operatorname{next}^{-1} \left(\left(\operatorname{id}_{\{\bot\}} \ \cup \ \left(\operatorname{id}_{\{0,\ldots,9\}} \times \operatorname{beh_{nextdec}} \right) \right) \left(\operatorname{nextdec} \left(\frac{1}{7} \right) \right) \right) \\ &= \operatorname{next}^{-1} \left(\left(\operatorname{id}_{\{\bot\}} \ \cup \ \left(\operatorname{id}_{\{0,\ldots,9\}} \times \operatorname{beh_{nextdec}} \right) \right) \left(\left(1, \, \frac{3}{7} \right) \right) \right) \end{split}$$

$$\begin{split} &= \mathsf{next}^{-1} \bigg(\left(1, \, \mathrm{beh}_{\mathsf{nextdec}} \bigg(\frac{3}{7} \bigg) \right) \bigg) \\ &= 1 \cdot \mathrm{beh}_{\mathsf{nextdec}} \bigg(\frac{3}{7} \bigg). \end{split}$$

Continuing in this fashion,

$$\begin{split} \operatorname{beh_{nextdec}}\left(\frac{1}{7}\right) &= 1 \cdot \operatorname{beh_{nextdec}}\left(\frac{3}{7}\right) \\ &= 1 \cdot \left(4 \cdot \operatorname{beh_{nextdec}}\left(\frac{2}{7}\right)\right) \\ &= 1 \cdot \left(4 \cdot \left(2 \cdot \operatorname{beh_{nextdec}}\left(\frac{6}{7}\right)\right)\right) \\ &= 1 \cdot \left(4 \cdot \left(2 \cdot \left(8 \cdot \operatorname{beh_{nextdec}}\left(\frac{4}{7}\right)\right)\right)\right) \\ &= 1 \cdot \left(4 \cdot \left(2 \cdot \left(8 \cdot \left(5 \cdot \operatorname{beh_{nextdec}}\left(\frac{5}{7}\right)\right)\right)\right)\right) \\ &= 1 \cdot \left(4 \cdot \left(2 \cdot \left(8 \cdot \left(5 \cdot \left(7 \cdot \operatorname{beh_{nextdec}}\left(\frac{1}{7}\right)\right)\right)\right)\right)\right). \end{split}$$

Therefore beh_{nextdec} $\left(\frac{1}{7}\right) = \langle 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, \dots \rangle$.

Exercise 1.2.2

Formulate appropriate rules for the function odds: $A^{\infty} \to A^{\infty}$ in analogy with the rules (1.7) for evens.

Solution. We recall that, for a sequence $\sigma := \langle a_0, a_1, a_2, a_3, \dots \rangle \in A^{\infty}$, the function odds satisfies odds $(\sigma) = \langle a_1, a_3, a_5, \dots \rangle$, and analogously if σ is a finite sequence. The rules we want odds to satisfy are:

$$\frac{\sigma \not\to}{\mathsf{odds}(\sigma) \not\to}$$

i.e. odds should send the empty sequence to the empty sequence;

$$\frac{\sigma \xrightarrow{a} \sigma' \qquad \sigma' \not\rightarrow}{\operatorname{odds}(\sigma) \not\rightarrow}$$

i.e. odds should send a singleton sequence $\langle a \rangle$ to the empty sequence; and

$$\frac{\sigma \xrightarrow{a} \sigma' \qquad \sigma' \xrightarrow{a'} \sigma''}{\operatorname{odds}(\sigma) \xrightarrow{a'} \operatorname{odds}(\sigma')}$$

i.e. if $\sigma = a \cdot a' \cdot \sigma' \in A^{\infty}$, where $a, a' \in A$, then $\mathsf{odds}(\sigma) = a' \cdot \mathsf{odds}(\sigma')$.

Exercise 1.2.3

Use coinduction to define the empty sequence $\langle \rangle \in A^{\infty}$ as a map $\{\bot\} \to A^{\infty}$.

Fix an element $a \in A$, and similarly define the infinite sequence $\overrightarrow{a} : \{\bot\} \to A^{\infty}$ consisting of only as.

Solution. We recall that the final coalgebra next: $A^{\infty} \to \{\bot\} \cup (A \times A^{\infty})$ is defined by

$$\mathsf{next}(\sigma) \coloneqq \begin{cases} \bot, & \text{if } \sigma \text{ is the empty sequence,} \\ (a,\sigma'), & \text{if } \sigma \text{ has head } a \in A \text{ and tail } \sigma' \in A^\infty, \text{ i.e. } \sigma = a \cdot \sigma', \end{cases}$$

for all (finite or infinite) sequences $\sigma \in A^{\infty}$.

For the coalgebra $\iota_1 \colon \{\bot\} \to \{\bot\} \cup (A \times \{\bot\})$ defined by $\iota_1(\bot) \coloneqq \bot$, the unique function beh $\iota_1 \colon \{\bot\} \to A^{\infty}$ making

commute satisfies beh_{ι_1}(\perp) = $\langle \rangle$.

For the coalgebra c_a : $\{\bot\} \to \{\bot\} \cup (A \times \{\bot\})$ defined by $c_a(\bot) := (a, \bot)$, the unique function beh_{ca}: $\{\bot\} \to A^{\infty}$ making

commute satisfies $beh_{c_a}(\bot) = \overrightarrow{a} = \langle a, a, a, \ldots \rangle$.

Exercise 1.2.4

Compute the outcome of merge($\langle a_0, a_1, a_2 \rangle, \langle b_0, b_1, b_2, b_3 \rangle$).

Solution. Recall that we defined the coalgebra $m: A^{\infty} \times A^{\infty} \to \{\bot\} \cup (A \times (A^{\infty} \times A^{\infty}))$ by

$$m(\sigma,\tau) \coloneqq \begin{cases} \bot, & \text{if } \sigma \not\to \text{ and } \tau \not\to, \\ (a,(\sigma,\tau')), & \text{if } \sigma \not\to \text{ and } \tau \xrightarrow{a} \tau', \\ (a,(\tau,\sigma')), & \text{if } \sigma \xrightarrow{a} \sigma', \end{cases}$$

for all $\sigma, \tau \in A^{\infty}$, and that merge: $A^{\infty} \times A^{\infty} \to A^{\infty}$ is the unique function making

commute. Then

$$\begin{split} \mathsf{merge}(\langle a_0, a_1, a_2 \rangle, \langle b_0, b_1, b_2, b_3 \rangle) &= \mathsf{next}^{-1} \Big(\big(\mathrm{id}_{\{\bot\}} \ \cup \ \big(\mathrm{id}_A \times \mathsf{merge} \big) \big) \big(m(\langle a_0, a_1, a_2 \rangle, \langle b_0, b_1, b_2, b_3 \rangle) \big) \Big) \\ &= \mathsf{next}^{-1} \Big(\big(\mathrm{id}_{\{\bot\}} \ \cup \ \big(\mathrm{id}_A \times \mathsf{merge} \big) \big) \big(\big(a_0, (\langle b_0, b_1, b_2, b_3 \rangle, \langle a_1, a_2 \rangle)) \big) \Big) \end{split}$$

$$\begin{split} &= \mathsf{next}^{-1} \Big(\big(a_0, \mathsf{merge}(\langle b_0, b_1, b_2, b_3 \rangle, \langle a_1, a_2 \rangle) \big) \Big) \\ &= a_0 \cdot \mathsf{merge}(\langle b_0, b_1, b_2, b_3 \rangle, \langle a_1, a_2 \rangle), \end{split}$$

and so on. Eventually, we obtain $\mathsf{merge}(\langle a_0, a_1, a_2 \rangle, \langle b_0, b_1, b_2, b_3 \rangle) = \langle a_0, b_0, a_1, b_1, a_2, b_2, b_3 \rangle.$

Exercise 1.2.5

Is the merge operation associative, i.e. is $merge(\sigma, merge(\tau, \rho))$ the same as $merge(merge(\sigma, \tau), \rho)$? Give a proof or a counterexample. Is there a neutral element for merge?

Solution. The merge operation is not associative:

$$\begin{aligned} \mathsf{merge}(\langle a \rangle, \mathsf{merge}(\langle b \rangle, \langle c \rangle) &= \mathsf{merge}(\langle a \rangle, \langle b, c \rangle) \\ &= \langle a, b, c \rangle, \end{aligned}$$

whereas

$$\begin{aligned} \mathsf{merge}(\mathsf{merge}(\langle a \rangle, \langle b \rangle), \langle c \rangle) &= \mathsf{merge}(\langle a, b \rangle, \langle c \rangle) \\ &= \langle a, c, b \rangle, \end{aligned}$$

for all $a, b, c \in A$.

The neutral element for merge is the empty sequence: for any $\sigma \in A^{\infty}$, we have $\mathsf{merge}(\sigma, \langle \rangle) = \mathsf{merge}(\langle \rangle, \sigma) = \sigma$.

Exercise 1.2.6

Show how to define an alternative merge function which alternatingly takes two elements from its argument sequences.

Solution. We will define a coalgebra $m_2: A^{\infty} \times A^{\infty} \to \{\bot\} \cup (A \times (A^{\infty} \times A^{\infty}))$ so that the desired merge function is the unique function $\operatorname{merge}_2: A^{\infty} \times A^{\infty} \to A^{\infty}$ making

commute. As a motivating example, the desired merge of two infinite streams $\langle a_0, a_1, \dots \rangle$ and $\langle b_0, b_1, \dots \rangle$ should be

$$\mathsf{merge}_2(\langle a_0, a_1, a_2, a_3, \dots \rangle, \langle b_0, b_1, b_2, b_3, \dots \rangle) = \langle a_0, a_1, b_0, b_1, a_2, a_3, b_2, b_3, \dots \rangle.$$

As the diagram above commutes, we would require

$$\mathsf{merge}_2 \big(m_2 (\langle a_0, a_1, a_2, a_3, \dots \rangle, \langle b_0, b_1, b_2, b_3, \dots \rangle) \big) = \big(a_0, \langle a_1, b_0, b_1, a_2, a_3, b_2, b_3, \dots \rangle \big)$$

and so m_2 should be defined to satisfy

$$m_2(\langle a_0, a_1, a_2, a_3, \dots \rangle, \langle b_0, b_1, b_2, b_3, \dots \rangle) = (a_0, (\langle a_1, b_0, a_3, b_2, \dots \rangle, \langle b_1, a_2, b_3, a_4, \dots))$$

Dealing with edge cases separately leads us to the following definition: we define the coalgebra $m_2: A^{\infty} \times A^{\infty} \to \{\bot\} \cup (A \times (A^{\infty} \times A^{\infty}))$ as follows.

1. The function m_2 sends the pair $(\langle \rangle, \langle \rangle)$ to \perp , i.e.

$$m_2(\langle \rangle, \langle \rangle) := \bot.$$

2. If $\tau \in A^{\infty}$ is a non-empty sequence, say $\tau \xrightarrow{a} \tau'$ for some $\tau' \in A^{\infty}$ and $a \in A$, then

$$m_2(\langle \rangle, \tau) := (a, (\langle \rangle, \tau')).$$

3. If $\sigma = \langle a \rangle$ for some $a \in A$, then

$$m_2(\langle a \rangle, \tau) \coloneqq (a, (\langle \rangle, \tau))$$

for all $\tau \in A^{\infty}$.

4. If $\sigma \in A^{\infty}$ has at least length 2, say $\sigma \xrightarrow{a} \sigma' \xrightarrow{a'} \sigma''$ for some $\sigma', \sigma'' \in A^{\infty}$ and $a, a' \in A$, then

$$m_2(\sigma,\tau) \coloneqq \Big(a, \big(\mathsf{merge}(\mathsf{odds}(\sigma), \mathsf{evens}(\tau)), \mathsf{merge}(\mathsf{odds}(\tau), \mathsf{evens}(\sigma''))\big)\Big)$$

for all $\tau \in A^{\infty}$.

Now let $\mathsf{merge}_2 \colon A^\infty \times A^\infty \to A^\infty$ be the unique function which makes

$$\{\bot\} \cup (A \times (A^{\infty} \times A^{\infty})) \xrightarrow{\operatorname{id}_{\{\bot\}}} \cup (\operatorname{id}_{A} \times \operatorname{merge}_{2}) \\ \downarrow \\ m_{2} \\ \downarrow \\ A^{\infty} \times A^{\infty} \xrightarrow{\exists !} \\ \operatorname{merge}_{2} \\ \longrightarrow A^{\infty}$$

commute. Fix any $\sigma, \tau \in A^{\infty}$. We argue by cases on (σ, τ) that this function merge_2 is the desired merge function.

- 1. If $\sigma = \tau = \langle \rangle$, then $\mathsf{merge}_2(\langle \rangle, \langle \rangle) = \langle \rangle$.
- 2. If $\sigma = \langle \rangle$ and τ is a non-empty sequence, say $\tau = a \cdot \tau'$ for some $a \in A$ and $\tau' \in A^{\infty}$, then

$$\operatorname{merge}_2(\langle \rangle, \tau) = a \cdot \operatorname{merge}_2(\langle \rangle, \tau').$$

Thus $\operatorname{merge}_2(\langle \rangle, \tau) = \tau$.

3. If $\sigma = \langle a \rangle$ for some $a \in A$, then

$$\mathsf{merge}_2(\langle a \rangle, \tau) = a \cdot \mathsf{merge}_2(\langle \rangle, \tau)$$
$$= a \cdot \tau$$

4. If $\sigma = a \cdot a' \cdot \sigma''$ for some $a, a' \in A$ and $\sigma'' \in A^{\infty}$, then

$$\begin{split} \mathsf{merge}_2(\sigma,\tau) &= a \cdot \mathsf{merge}_2\Big(\mathsf{merge}\big(\mathsf{odds}(\sigma),\mathsf{evens}(\tau)\big), \mathsf{merge}\big(\mathsf{odds}(\tau),\mathsf{evens}(\sigma'')\big)\Big) \\ &= a \cdot \mathsf{merge}_2\Big(\mathsf{merge}\big(a' \cdot \mathsf{odds}(\sigma''),\mathsf{evens}(\tau)\big), \mathsf{merge}\big(\mathsf{odds}(\tau),\mathsf{evens}(\sigma'')\big)\Big) \\ &= a \cdot a' \cdot \mathsf{merge}_2\Big(\mathsf{merge}\big(\mathsf{odds}(\mathsf{merge}(a' \cdot \mathsf{odds}(\sigma''),\mathsf{evens}(\tau))), \\ &= \mathsf{evens}(\mathsf{merge}(\mathsf{odds}(\tau),\mathsf{evens}(\sigma'')))\Big), \end{split}$$

$$\begin{split} \mathsf{merge}\big(\mathsf{odds}(\mathsf{merge}(\mathsf{odds}(\tau),\mathsf{evens}(\sigma''))),\\ \mathsf{odds}(\mathsf{merge}(\mathsf{evens}(\tau),\mathsf{odds}(\sigma'')))\big)\Big)\\ &= a \cdot a' \cdot \mathsf{merge}_2\Big(\mathsf{merge}\big(\mathsf{evens}(\tau),\mathsf{odds}(\tau)\big),\mathsf{merge}\big(\mathsf{evens}(\sigma''),\mathsf{odds}(\sigma'')\big)\Big)\\ &= a \cdot a' \cdot \mathsf{merge}_2(\tau,\sigma''), \end{split}$$

as desired.

Exercise 1.2.7

- 1. Define three functions $ex_i: A^{\infty} \to A^{\infty}$, for i = 0, 1, 2, which extract the elements at positions 3n + i.
- 2. Define merge3: $A^{\infty} \times A^{\infty} \times A^{\infty} \to A^{\infty}$ satisfying the equation merge3(ex₀(σ), ex₁(σ), ex₂(σ)) = σ , for all $\sigma \in A^{\infty}$.

Solution.

1. Define $c_0, c_1, c_2 \colon A^{\infty} \to \{\bot\} \cup (A \times A^{\infty})$ as follows:

$$c_{0}(\sigma) := \begin{cases} \bot, & \text{if } \sigma = \langle \rangle, \\ (a, \langle \rangle) & \text{if } \sigma = \langle a \rangle \text{ or } \sigma = \langle a, a' \rangle \text{ for some } a, a' \in A, \\ (a, \sigma'''), & \text{if } \sigma \xrightarrow{a} \sigma' \xrightarrow{a'} \sigma'' \xrightarrow{a''} \sigma''', \end{cases}$$

$$c_{1}(\sigma) := \begin{cases} \bot, & \text{if } \sigma = \langle \rangle \text{ or } \sigma = \langle a \rangle \text{ for some } a \in A, \\ (a', \langle \rangle) & \text{if } \sigma = \langle a, a' \rangle \text{ for some } a, a' \in A, \\ (a', \sigma'''), & \text{if } \sigma \xrightarrow{a} \sigma' \xrightarrow{a'} \sigma'' \xrightarrow{a''} \sigma''', \end{cases}$$

$$c_{2}(\sigma) := \begin{cases} \bot, & \text{if } \sigma = \langle \rangle, \text{ or } \sigma = \langle a \rangle, \text{ or } \sigma = \langle a, a' \rangle \text{ for some } a, a' \in A, \\ (a'', \sigma'''), & \text{if } \sigma \xrightarrow{a} \sigma' \xrightarrow{a'} \sigma'' \xrightarrow{a''} \sigma'''. \end{cases}$$

Then, for $i \in \{0, 1, 2\}$, the function $ex_i : A^{\infty} \to A^{\infty}$ is the unique function making

$$\{\bot\} \cup (A \times A^{\infty}) \xrightarrow{\operatorname{id}_{\{\bot\}} \cup (\operatorname{id}_{A} \times \operatorname{ex}_{i})} + \{\bot\} \cup (A \times A^{\infty})$$

$$c_{i} \qquad \qquad \cong \qquad \uparrow \\ next$$

$$A^{\infty} \xrightarrow{\exists !} \qquad \rightarrow A^{\infty}$$

commute.

2. Define the coalgebra $m_3: A^{\infty} \times A^{\infty} \times A^{\infty} \to \{\bot\} \cup (A \times (A^{\infty} \times A^{\infty} \times A^{\infty}))$ by

$$m_3(\sigma, \tau, \rho) := \begin{cases} \bot, & \text{if } \sigma = \tau = \rho = \langle \rangle, \\ \left(a, (\langle \rangle, \langle \rangle, \rho')\right), & \text{if } \sigma = \tau = \langle \rangle \text{ and } \rho \xrightarrow{a} \rho' \text{ for some } a \in A \text{ and } \rho' \in A^{\infty}, \\ \left(a, (\langle \rangle, \rho, \tau')\right), & \text{if } \sigma = \langle \rangle \text{ and } \tau \xrightarrow{a} \tau' \text{ for some } a \in A \text{ and } \tau' \in A^{\infty}, \\ \left(a, (\tau, \rho, \sigma')\right), & \text{if } \sigma \xrightarrow{a} \sigma' \text{ for some } a \in A \text{ and } \sigma' \in A^{\infty}. \end{cases}$$

Then we let merge3: $A^{\infty} \times A^{\infty} \times A^{\infty} \to A^{\infty}$ be the unique function making

$$\{\bot\} \cup (A \times (A^{\infty} \times A^{\infty} \times A^{\infty})) \xrightarrow{\operatorname{id}_{\{\bot\}}} \cup (\operatorname{id}_{A} \times \operatorname{merge3}) \\ \downarrow \\ m_{3} \qquad \qquad \cong \qquad \qquad \qquad \cong \\ n_{\text{ext}} \\ A^{\infty} \times A^{\infty} \times A^{\infty} \xrightarrow{\operatorname{merge3}} A^{\infty}$$

commute.

Let us prove that $\operatorname{merge3}(\operatorname{ex}_0(\sigma),\operatorname{ex}_1(\sigma),\operatorname{ex}_2(\sigma))=\sigma$ for all $\sigma\in A^\infty$, by coinduction. Consider the function $f\colon A^\infty\to A^\infty\times A^\infty\times A^\infty$ defined by $f(\sigma)\coloneqq \left(\operatorname{ex}_0(\sigma),\operatorname{ex}_1(\sigma),\operatorname{ex}_2(\sigma)\right)$ for all $\sigma\in A^\infty$. We wish to show that $\operatorname{merge3}\circ f=\operatorname{id}_{A^\infty}$.

Let us first show that the left square commutes. It certainly commutes when we chase the empty sequence: $(m_3 \circ f)(\langle \rangle) = \bot = ((\mathrm{id}_{\{\bot\}} \cup (\mathrm{id}_A \times f)) \circ \mathsf{next})(\langle \rangle)$. If $\sigma \in A^{\infty}$ is a non-empty sequence, say $\sigma \xrightarrow{a} \sigma'$ for some $a \in A$ and $\sigma' \in A^{\infty}$, then we have

$$(m_3 \circ f)(\sigma) = m_3(\mathsf{ex}_0(\sigma), \mathsf{ex}_1(\sigma), \mathsf{ex}_2(\sigma))$$

$$= (a, (\mathsf{ex}_1(\sigma), \mathsf{ex}_2(\sigma), \mathsf{ex}_0(\sigma')))$$

$$= (a, (\mathsf{ex}_0(\sigma'), \mathsf{ex}_1(\sigma'), \mathsf{ex}_2(\sigma')))$$

$$= ((\mathrm{id}_{\{\bot\}} \cup (\mathrm{id}_A \times f)) \circ \mathsf{next})(\sigma),$$

where the second-to-last equality can also be proven by coinduction. Therefore the outer square commutes, and so

$$\mathsf{next} \circ (\mathsf{merge3} \circ f) = \left(\left(\mathrm{id}_{\{\bot\}} \cup \left(\mathrm{id}_A \times \left(\mathsf{merge3} \circ f \right) \right) \right) \circ \mathsf{next}.$$

The finality of the coalgebra next: $A^{\infty} \to \{\bot\} \cup (A \times A^{\infty})$ now yields merge $3 \circ f = \mathrm{id}_{A^{\infty}}$.

Exercise 1.2.8

Consider the sequential composition function comp: $A^{\infty} \times A^{\infty} \to A^{\infty}$ for sequences, described by the three rules:

$$\begin{array}{c|c} \sigma \not \rightarrow & \tau \not \rightarrow \\ \hline \operatorname{comp}(\sigma,\tau) \not \rightarrow \\ \hline & & \\ \hline \sigma \not \rightarrow & \tau \xrightarrow{a} \tau' \\ \hline \operatorname{comp}(\sigma,\tau) \xrightarrow{a} \operatorname{comp}(\sigma,\tau') \\ \hline \end{array} \\ \cdot \\ \begin{array}{c|c} \sigma \not \rightarrow & \tau \xrightarrow{a} \tau' \\ \hline \operatorname{comp}(\sigma,\tau) \xrightarrow{a} \operatorname{comp}(\sigma,\tau') \\ \hline \end{array} .$$

- 1. Show by coinduction that the empty sequence $\langle \rangle = \mathsf{next}^{-1}(\bot) \in A^{\infty}$ is a unit element for comp, i.e. that $\mathsf{comp}(\langle \rangle, \sigma) = \sigma = \mathsf{comp}(\sigma, \langle \rangle)$.
- 2. Prove also by coinduction that comp is associative, and thus that sequences carry a monoid structure.

Solution.

1. Let $f: A^{\infty} \to A^{\infty}$ be defined by $f(\sigma) := \mathsf{comp}(\langle \rangle, \sigma)$. We will show that the diagram

$$\{\bot\} \cup (A \times A^{\infty}) \xrightarrow{\operatorname{id}_{\{\bot\}} \ \cup \ (\operatorname{id}_A \times f)} } \{\bot\} \cup (A \times A^{\infty})$$

$$\stackrel{\operatorname{next}}{\cong} \qquad \qquad \stackrel{\cong}{\cong} \operatorname{next}$$

$$A^{\infty} \xrightarrow{\qquad \qquad \qquad \qquad \qquad \qquad \qquad } A^{\infty}$$

commutes, which would yield $f = id_{A^{\infty}}$ by the finality of the coalgebra next.

First, we chase the empty sequence from the bottom left. We see that

$$\begin{aligned} (\mathsf{next} \circ f)(\langle \rangle) &= \mathsf{next}(\mathsf{comp}(\langle \rangle, \langle \rangle)) \\ &= \mathsf{next}(\langle \rangle) \\ &= \bot, \end{aligned}$$

the first rule for comp, and

$$((\mathrm{id}_{\{\bot\}} \cup (\mathrm{id}_A \times f)) \circ \mathsf{next}) (\langle \rangle) = (\mathrm{id}_{\{\bot\}} \cup (\mathrm{id}_A \times f)) (\bot)$$

$$= \bot$$

Now if $\sigma \in A^{\infty}$ is a non-empty sequence, say $\sigma \xrightarrow{a} \sigma'$ for some $a \in A$ and $\sigma' \in A^{\infty}$, we see that

$$\begin{split} (\mathsf{next} \circ f)(\sigma) &= \mathsf{next}(\mathsf{comp}(\langle \rangle, a \cdot \sigma')) \\ &= (a, \mathsf{comp}(\langle \rangle, \sigma')) \\ &= (a, f(\sigma')), \end{split}$$

by the second rule for comp and the definition of f, and

$$\begin{split} \big(\big(\mathrm{id}_{\{\bot\}} \cup (\mathrm{id}_A \times f) \big) \circ \mathsf{next} \big) (\sigma) &= \big(\big(\mathrm{id}_{\{\bot\}} \cup (\mathrm{id}_A \times f) \big) \big((a, \sigma') \big) \\ &= (a, f(\sigma')). \end{split}$$

Thus $\operatorname{next} \circ f = (\operatorname{id}_{\{\bot\}} \cup (\operatorname{id}_A \times f)) \circ \operatorname{next}$. This proves that $\operatorname{comp}(\langle \rangle, \sigma) = \sigma$ for all $\sigma \in A^{\infty}$.

We now show the other equality, that $\mathsf{comp}(\sigma, \langle \rangle) = \sigma$ for all $\sigma \in A^{\infty}$, we will show that the function $g \colon A^{\infty} \to A^{\infty}$ defined by $g(\sigma) \coloneqq \mathsf{comp}(\sigma, \langle \rangle)$ for all $\sigma \in A^{\infty}$ also satisfies

$$\mathsf{next} \circ g = \left(\mathrm{id}_{\{\bot\}} \cup (\mathrm{id}_A \times g) \right) \circ \mathsf{next}.$$

That $(\mathsf{next} \circ g)(\bot) = ((\mathrm{id}_{\{\bot\}} \cup (\mathrm{id}_A \times g)) \circ \mathsf{next})(\bot)$ is the same as with f. Now if $\sigma \in A^{\infty}$ is such that $\sigma \xrightarrow{a} \sigma'$ for some $a \in A$ and $\sigma' \in A^{\infty}$, we see that

$$(\mathsf{next} \circ g)(\sigma) = \mathsf{next}(\mathsf{comp}(a \cdot \sigma', \langle \rangle))$$

$$= (a, comp(\sigma', \langle \rangle))$$
$$= (a, g(\sigma')),$$

by the third rule for comp and the definition of g, and

$$((\mathrm{id}_{\{\bot\}} \cup (\mathrm{id}_A \times g)) \circ \mathsf{next})(\sigma) = ((\mathrm{id}_{\{\bot\}} \cup (\mathrm{id}_A \times g)))((a, \sigma'))$$
$$= (a, g(\sigma')).$$

Therefore $g = \mathrm{id}_{A^{\infty}}$, i.e. $\mathsf{comp}(\sigma, \langle \rangle) = \sigma$ for all $\sigma \in A^{\infty}$.

2. We will define a coalgebra $c: A^{\infty} \times A^{\infty} \times A^{\infty} \to \{\bot\} \cup (A \times (A^{\infty} \times A^{\infty} \times A^{\infty}))$ such that the functions $h, k: A^{\infty} \times A^{\infty} \times A^{\infty} \to A^{\infty}$ given by

$$h(\sigma, \tau, \rho) := \mathsf{comp}(\sigma, \mathsf{comp}(\tau, \rho))$$
 and $k(\sigma, \tau, \rho) := \mathsf{comp}(\mathsf{comp}(\sigma, \tau), \rho),$

for all $\sigma, \tau, \rho \in A^{\infty}$, are both coalgebra homomorphisms from c to next.

The finality of next would then yield h = k.

Define
$$c: A^{\infty} \times A^{\infty} \times A^{\infty} \to \{\bot\} \cup (A \times (A^{\infty} \times A^{\infty} \times A^{\infty}))$$
 by

$$c(\sigma,\tau,\rho) \coloneqq \begin{cases} \bot, & \text{if } \sigma = \tau = \rho = \langle \rangle, \\ \left(a,(\langle \rangle,\langle \rangle,\rho'), & \text{if } \sigma = \tau = \langle \rangle \text{ and } \rho = a \cdot \rho' \text{ for some } a \in A \text{ and } \rho' \in A^{\infty}, \\ \left(a,(\langle \rangle,\tau',\rho)\right), & \text{if } \sigma = \langle \rangle \text{ and } \tau = a \cdot \tau' \text{ for some } a \in A \text{ and } \tau' \in A^{\infty}, \\ \left(a,(\sigma',\tau,\rho)\right), & \text{if } \sigma = a \cdot \sigma' \text{ for some } a \in A \text{ and } \sigma' \in A^{\infty}. \end{cases}$$

Using the rules for comp, it is now elementary to check that h and k make their respective diagrams commute.

Exercise 1.2.9

Consider two sets A, B with a function $f: A \to B$ between them. Use finality to define a function $f^{\infty}: A^{\infty} \to B^{\infty}$ that applies f element-wise. Use uniqueness to show that this mapping $f \mapsto f^{\infty}$ is 'functorial' in the sense that $(\mathrm{id}_A)^{\infty} = \mathrm{id}_{A^{\infty}}$ and $(g \circ f)^{\infty} = g^{\infty} \circ f^{\infty}$.

Solution. For a (non-empty) set B, let $\mathsf{next}_B \colon B^\infty \to \{\bot\} \cup (B \times B^\infty)$ denote the final coalgebra defined by

$$\mathsf{next}(\sigma) \coloneqq \begin{cases} \bot, & \text{if } \sigma \text{ is the empty sequence,} \\ (b, \sigma'), & \text{if } \sigma \text{ has head } b \in B \text{ and tail } \sigma' \in B^\infty, \text{ i.e. } \sigma = b \cdot \sigma', \end{cases}$$

for all $\sigma \in B^{\infty}$. For a function $f: A \to B$, define a coalgebra $c_f: A^{\infty} \to \{\bot\} \cup (B \times A^{\infty})$ by

$$c_f(\sigma) \coloneqq \begin{cases} \bot, & \text{if } \sigma = \langle \rangle, \\ (f(a), \sigma'), & \text{if } \sigma = a \cdot \sigma' \text{ for some } a \in A \text{ and } \sigma' \in A^{\infty}, \end{cases}$$

for all $\sigma \in A^{\infty}$. Let $f^{\infty} : A^{\infty} \to B^{\infty}$ be the unique function making

$$\{\bot\} \cup (B \times A^{\infty}) \xrightarrow{\operatorname{id}_{\{\bot\}} \cup (\operatorname{id}_B \times f^{\infty})} \{\bot\} \cup (B \times B^{\infty})$$

$$\downarrow c_f \qquad \qquad \qquad \cong \qquad \uparrow \operatorname{next}_B$$

$$\downarrow A^{\infty} \xrightarrow{f^{\infty}} \qquad \qquad B^{\infty}$$

Then $f(\langle a_0, a_1, a_2, a_3, \ldots \rangle) = \langle f(a_0), f(a_1), f(a_2), f(a_3), \ldots \rangle$ for all $a_0, a_1, a_2, a_3, \ldots \in A$, and analogously for finite sequences.

We see that $c_{\mathrm{id}_A} = \mathsf{next}_A$. So $(\mathrm{id}_A)^{\infty} = \mathrm{id}_{A^{\infty}}$ by finality of next_A . Furthermore, for functions $f \colon A \to B$ and $g \colon B \to C$, we see that

$$\{\bot\} \cup (C \times A^{\infty}) \xrightarrow{\operatorname{id}_{\{\bot\}} \cup (\operatorname{id}_{C} \times f^{\infty})} \{\bot\} \cup (C \times B^{\infty})$$

$$\downarrow c_{g \circ f} \qquad \qquad \downarrow c_{g} \qquad$$

commutes. Consequently, the outer square in the diagram

$$\{\bot\} \cup (C \times A^{\infty}) \xrightarrow{\operatorname{id}_{\{\bot\}} \ \cup \ (\operatorname{id}_{C} \times f^{\infty})} \to \{\bot\} \cup (C \times B^{\infty}) \xrightarrow{\operatorname{id}_{\{\bot\}} \ \cup \ (\operatorname{id}_{C} \times g^{\infty})} \to \{\bot\} \cup (C \times C^{\infty})$$

$$\downarrow c_{g \circ f} \qquad \qquad \downarrow c_{g} \qquad \qquad \downarrow$$

commutes, i.e.

$$\mathsf{next}_C \circ (g^\infty \circ f^\infty) = \left(\mathrm{id}_{\{\bot\}} \cup \left(\mathrm{id}_C \times (g^\infty \circ f^\infty) \right) \right) \circ c_{g \circ f}.$$

The finality of next_C then yields $(g \circ f)^{\infty} = g^{\infty} \circ f^{\infty}$.

Exercise 1.2.10

Use finality to define a map st: $A^{\infty} \times B \to (A \times B)^{\infty}$ that maps a sequence $\sigma \in A^{\infty}$ and an element $b \in B$ to a new sequence in $(A \times B)^{\infty}$ by adding this b at every position in σ . (This is an example of a 'strength' map; see Exercise 2.5.4.

Solution. Define a coalgebra $c: A^{\infty} \times B \to \{\bot\} \cup ((A \times B) \times (A^{\infty} \times B))$ as follows:

$$c(\sigma,b) := \begin{cases} \bot, & \text{if } \sigma = \langle \rangle, \\ \big((a,b),(\sigma',b)\big), & \text{if } \sigma = a \cdot \sigma' \text{ for some } a \in A \text{ and } \sigma' \in A^{\infty}, \end{cases}$$

for all $\sigma \in A^{\infty}$ and $b \in B$. The unique function st: $A^{\infty} \times B \to (A \times B)^{\infty}$ making

commute will satisfy $\operatorname{st}(\langle a_0, a_1, a_2, \dots \rangle, b) = \langle (a_0, b), (a_1, b), (a_2, b), \dots \rangle$ for all $a_0, a_1, a_2, a_3, \dots \in A$ and $b \in B$, and analogously for finite sequences in A^{∞} .

1.3 Generality of Temporal Logic of Coalgebras

Exercise 1.3.1

? ?

Solution. #??

Exercise 1.3.2

#??

Solution. #??

Exercise 1.3.3

#??

Solution. #??

Exercise 1.3.4

#??

Solution. #??

Exercise 1.3.5

#??

Solution. #??

1.4 Abstractness of Coalgebraic Notions

Exercise 1.4.1

#??

Solution. #??

Exercise 1.4.2

#??

Solution. #??

Exercise 1.4.3

#??

Solution. #??	
Exercise 1.4.4 # ? ?	
Solution. #??	
Exercise 1.4.5 # ? ?	
Solution. #??	
Exercise 1.4.6 # ? ?	
$Solution. \ \#??$	

2 Coalgebras of Polynomial Functors

2.1 Constructions on Sets

2.1 Constructions on Sets	
Exercise 2.1.1 #??	
Solution. #??	
Exercise 2.1.2 #??	
Solution. #??	
Exercise 2.1.3 #??	
Solution. #??	
Exercise 2.1.4 #??	
$Solution. \ \#??$	
Exercise 2.1.5 #??	
$Solution. \ \#??$	
Exercise 2.1.6 #??	
Solution. #??	
Exercise 2.1.7 #??	
Solution. #??	
Exercise 2.1.8 #??	
Solution. #??	
Exercise 2.1.9 #??	
Solution. #??	
Exercise 2.1.10 #??	
Solution. #??	
Exercise 2.1.11 #??	

Solution. #??	
Exercise 2.1.12 #??	
$Solution. \ \#??$	
Exercise 2.1.13 #??	
Solution. #??	
Exercise 2.1.14 #??	
Solution. #??	
2.2 Polynomial Functors and Their Coalgebras	
Exercise 2.2.1 #??	
$Solution. \ \#??$	
Exercise 2.2.2 #??	
$Solution. \ \#??$	
Exercise 2.2.3 #??	
$Solution. \ \#??$	
Exercise 2.2.4 #??	
Solution. $\#??$	
Exercise 2.2.5 #??	
$Solution. \ \#??$	
Exercise 2.2.6 #??	
$Solution. \ \#??$	
Exercise 2.2.7 #??	
$Solution. \ \#??$	
Exercise 2.2.8 #??	

$Solution. \ \#??$	
Exercise 2.2.9 #??	
$Solution. \ \#??$	
Exercise 2.2.10 #??	
Solution. #??	
Exercise 2.2.11 #??	
$Solution. \ \#??$	
Exercise 2.2.12 #??	
$Solution. \ \#??$	
2.3 Final Coalgebras	
Exercise 2.3.1 #??	
Solution. #??	
Exercise 2.3.2 #??	
$Solution. \ \#??$	
Exercise 2.3.3 #??	
$Solution. \ \#??$	
Exercise 2.3.4 #??	
$Solution. \ \#??$	
Exercise 2.3.5 #??	
Solution. #??	
Exercise 2.3.6 #??	
$Solution. \ \#??$	
Exercise 2.3.7 #??	

$Solution. \ \#??$	
Exercise 2.3.8 #??	
$Solution. \ \#??$	
2.4 Algebras	
Exercise 2.4.1 #??	
$Solution. \ \#??$	
Exercise 2.4.2 #??	
$Solution. \ \#??$	
Exercise 2.4.3 #??	
$Solution. \ \#??$	
Exercise 2.4.4 #??	
$Solution. \ \#??$	
Exercise 2.4.5 #??	
$Solution. \ \#??$	
Exercise 2.4.6 #??	
$Solution. \ \#??$	
Exercise 2.4.7 #??	
$Solution. \ \#??$	
Exercise 2.4.8 #??	
$Solution. \ \#??$	
Exercise 2.4.9 #??	
$Solution. \ \#??$	
Exercise 2.4.10 #??	
Solution. #??	

2.5 Adjunctions, Cofree Coalgebras, Behaviour-Realisation Exercise 2.5.1 #?? Solution. #?? Exercise 2.5.2 #?? Solution. #??

Solution. #?? Exercise 2.5.4

? ?

This exercise describes 'strength' for endofunctors on **Sets**. In general, this is a useful notion in the theory of datatypes (Cockett and Spencer, 1992), (Cockett and Spencer, 1995) and of computations (Moggi, 1991); see Section 5.2 for a systemic description.

Let $F: \mathbf{Sets} \to \mathbf{Sets}$ be an arbitrary functor. Consider for sets X, Y the strength map

$$F(X) \times Y \xrightarrow{\operatorname{st}_{X,Y}} F(X \times Y)$$

$$(u,y) \longmapsto F(\lambda x \in X.(x,y))(u)$$

- 1. Prove that this yields a natural transformation $F(-)\times(-)\stackrel{\text{st}}{\Rightarrow} F((-)\times(-))$, where both the domain and codomain are functors $\mathbf{Sets}\times Sets \to \mathbf{Sets}$.
- 2. Describe this strength map for the list functor $(-)^*$ and for the powerset functor \mathcal{P} .

Solution. #??

Exercise 2.5.5

#??

Solution. #??

Exercise 2.5.6

#??

Solution. #??

Exercise 2.5.7

#??

Solution. #??

Exercise 2.5.8

#??

Solution. #??

Exercise 2.5.9 $\#$??
Solution. #??
Exercise 2.5.10 #??
Solution. #??
Exercise 2.5.11 #??
Solution. #??
Exercise 2.5.12 #??
Solution. $\#??$
Exercise 2.5.13 #??
Solution. $\#$??
Exercise 2.5.14 $\#$??
Solution. $\#$??
Exercise 2.5.15 #??
Solution. #??
Exercise 2.5.16 #??
Solution. $\#$??
Exercise 2.5.17 #??
Solution. #??

3 Bisimulations

3.1 Relation Lifting, Bisimulations and Congruences

-	
Exercise 3.1.1 #??	
Solution. #??	
Exercise 3.1.2 #??	
Solution. #??	
Exercise 3.1.3 #??	
Solution. #??	
Exercise 3.1.4 #??	
Solution. #??	
Exercise 3.1.5 #??	
Solution. #??	
Exercise 3.1.6 #??	
Solution. #??	
3.2 Properties of Bisimulations	
Exercise 3.2.1 #??	
Solution. #??	
Exercise 3.2.2 #??	
Solution. #??	
Exercise 3.2.3 #??	
Solution. #??	
Exercise 3.2.4 #??	
$Solution. \ \#??$	

Exercise 3.2.5 #??	
Solution. #??	
Exercise 3.2.6 #??	
Solution. #??	
Exercise 3.2.7 #??	
Solution. #??	
3.3 Bisimulations as Spans and Cospans	
Exercise 3.3.1 #??	
Solution. #??	
Exercise 3.3.2 #??	
Solution. #??	
Exercise 3.3.3 #??	
Solution. #??	
Exercise 3.3.4 #??	
Solution. #??	
3.4 Bisimulations and the Coinduction Proof Principle	
Exercise 3.4.1 #??	
Solution. #??	
Exercise 3.4.2 #??	
Solution. #??	
Exercise 3.4.3 #??	
Solution. #??	
Exercise 3.4.4 #??	

Solution. #??	
Exercise 3.4.5 #??	
Solution. #??	
Exercise 3.4.6 #??	
$Solution. \ \#??$	
Exercise 3.4.7 #??	
Solution. #??	
3.5 Process Semantics	
Exercise 3.5.1 #??	
Solution. #??	
Exercise 3.5.2 #??	
$Solution. \ \#??$	
Exercise 3.5.3 #??	
Solution. #??	
Exercise 3.5.4 #??	
Solution. #??	

Bibliography and References

- J. Robin B. Cockett and Dwight Spencer. Strong categorical datatypes I. In Robert A. G. Seely, editor, *International Meeting on Category Theory 1991*, volume 13, pages 141–169. Canadian Mathematical Society Proceedings, AMS, Montreal, 1992.
- J. Robin B. Cockett and Dwight Spencer. Strong categorical datatypes II: A term logic for categorical programming. *Theoretical Computer Science*, 139:69–113, 1995.

DOI: https://doi.org/10.1016/0304-3975(94)00099-5.

Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Observation. Cambridge University Press, 2017.

DOI: https://doi.org/10.1017/CB09781316823187.

Eugenio Moggi. Notions of computation and monads. *Information and Computation*, 93(1):55–92, 1991.

DOI: https://doi.org/10.1016/0890-5401(91)90052-4.