Springer Handbook of Robotics

Springer Handbooks provide a concise compilation of approved key information on methods of research, general principles, and functional relationships in physical and applied sciences. The world's leading experts in the fields of physics and engineering will be assigned by one or several renowned editors to write the chapters comprising each volume. The content is selected by these experts from Springer sources (books, journals, online content) and other systematic and approved recent publications of scientific and technical information.

The volumes are designed to be useful as readable desk reference book to give a fast and comprehensive overview and easy retrieval of essential reliable key information, including tables, graphs, and bibliographies. References to extensive sources are provided.

Han Springer Handbook

of Robotics

Bruno Siciliano, Oussama Khatib (Eds.)

2nd Edition With 1375 Figures and 109 Tables

Editors
Bruno Siciliano
University of Naples Federico II
Department of Electrical Engineering and Information Technology
Naples, Italy
siciliano@unina.it

Oussama Khatib Stanford University Department of Computer Science Artificial Intelligence Laboratory Stanford, USA khatib@cs.stanford.edu

ISBN: 978-3-319-32550-7
DOI 10.1007/978-3-319-32552-1
Library of Congress Control Number: 2016937424

© Springer-Verlag Berlin Heidelberg 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herin or for any errors or omissions that may have been made.

Production and typesetting: le-tex publishing services GmbH, Leipzig Handbook Coordination: Dr. J. Hinterberg, Dr. W. Skolaut, Heidelberg Typography and layout: schreiberVIS, Seeheim Illustrations: Hippmann GbR, Schwarzenbruck Cover design: eStudio Calamar Steinen, Barcelona Cover production: WMXDesign GmbH, Heidelberg Printing and binding: PHOENIX PRINT, Würzburg

Printed on acid free paper

This Springer imprint is published by Springer Nature The registered company is Springer-Verlag GmbH Berlin Heidelberg

Foreword

My first introduction to robotics came via a phone call in 1964. The caller was Fred Terman, the author of the world-famous *Radio Engineer's Handbook*, who was at the time Provost of Stanford University. Dr. Terman informed me that a computer science professor, John McCarthy, had just been awarded a large research grant, part of which required the development of computer-controlled manipulators. Someone had suggested to Terman that it would be prudent if the mathematically oriented McCarthy had some contact with mechanical designers. Since I was the only one on the Stanford faculty whose specialty was mechanism design, Terman decided to phone me, even though we had never met and I was a young assistant professor fresh out of graduate school with only 2 years at Stanford.

Dr. Terman's phone call led me to a close association with John McCarthy and the Stanford Artificial Intelligence Laboratory (SAIL) that he founded. Robotics became one of the pillars of my entire academic career, and I have maintained my interest in teaching and researching the subject through to the present day.

The modern history of robotic manipulation dates from the late 1940s when servoed arms were developed in connection with master–slave manipulator systems used to protect technicians handling nuclear materials. Developments in this area have continued to the present day. However, in the early 1960s there was very little academic or commercial activity in robotics. The first academic activity was the thesis of H. A. Ernst, in 1961, at MIT. He used a slave arm equipped with touch sensors, and ran it under computer control. The idea in his study was to use the information from the touch sensors to guide the arm.

This was followed by the SAIL project and a similar project started by Professor Marvin Minsky at MIT, which were the only sizeable academic ventures into robotics at that time. There were a few attempts at commercial manipulators, primarily in connection with part production in the automotive industry. In the USA there were two different manipulator designs that were being experimented with in the auto industry; one came from American Machine and Foundry (AMF) and the other from Unimation, Inc.

There were also a few mechanical devices developed as hand, leg, and arm prosthetics, and, a bit later, some exoskeletal devices to enhance human performance. In those days there were no microprocessors. So, these devices were either without computer control,

or tethered to a remote so-called minicomputer, or even a mainframe computer.

Initially, some in the computer science community felt that computers were powerful enough to control any mechanical device and make it perform satisfactorily. We quickly learned that this was not to be the case. We started on a twofold track. One was to develop particular devices for SAIL, so that hardware demonstrations and proof-of-concept systems were available for the fledgling robotics community to experiment with. The other track,

Bernard Roth Professor of Mechanical Engineering Stanford University

which was more or less moonlighted from the work at SAIL, was the development of a basic mechanical science of robotics. I had a strong feeling that a meaningful science could be developed, and that it would be best to think in terms of general concepts rather than concentrate exclusively on particular devices.

Fortuitously, it turned out that the two tracks supported each other very naturally and, most importantly, the right students were interested in doing their research in this area. Hardware developments proved to be specific examples of more general concepts, and the students were able to develop both the hardware and the theory.

Originally, we purchased an arm in order to get started quickly. A group at Rancho Los Amigos Hospital, in Los Angeles, was selling a tongue-switch-controlled motor-driven exoskeleton arm to assist patients without muscular control of their arms. We purchased one of these, and connected it to a time-shared PDP-6 computer. The device was named *Butterfingers*; it was our first experimental robot. Several films demonstrating visual feedback control, block stacking tasks, and obstacle avoidance were made with *Butterfingers* as the star performer.

The first manipulator that we designed on our own was known simply as the *Hydraulic Arm*. As its name implies, it was powered by hydraulics. The idea was to build a very fast arm. We designed special rotary actuators, and the arm worked well. It became the experimental platform for testing the first ever dynamic analysis and time-optimal control of a robotic arm. However, its use was limited since the design speeds were much faster than required due to the limitations

of the computational, planning, and sensing capabilities that were common at that time.

We made an attempt to develop a truly digital arm. This led to a snake-like structure named the *Orm* (the Norwegian word for snake.) The *Orm* had several stages, each with an array of inflatable pneumatic actuators that were either fully extended or fully contracted. The basic idea was that, even though only a finite number of positions in the workspace could be reached, these would be sufficient if there were a large number of positions. A small prototype proof-of-concept *Orm* was developed. It led to the realization that this type of arm would not really serve the SAIL community.

The first truly functional arm from our group was designed by Victor Scheinman, who was a graduate student at the time. It was the very successful *Stanford Arm*, of which over ten copies were made as research tools to be used in various university, government, and industrial laboratories. The arm had six independently driven joints; all driven by computer-controlled servoed, DC electric motors. One joint was telescoping (prismatic) and the other five were rotary (revolute).

Whereas the geometry of *Butterfingers* required an iterative solution of the inverse kinematics, the geometric configuration of the Stanford Arm was chosen so that the inverse kinematics could be programmed in any easy-to-use time-efficient closed form. Furthermore, the mechanical design was specifically made to be compatible with the limitations inherent in timeshare computer control. Various end-effectors could be attached to act as hands. On our version, the hand was in the form of a vise-grip jaw, with two sliding fingers driven by a servoed actuator (hence, a true seventh degree of freedom). It also had a specially designed six-axis wrist force sensor. Victor Scheinman went on to develop other important robots: the first was a small humanoid arm with six revolute joints. The original design was paid for by Marvin Minsky at the MIT AI Lab. Scheinman founded Vicarm, a small company, and produced copies of this arm and the Stanford Arm for other labs. Vicarm later became the West Coast Division of Unimation, Inc., where Scheinman designed the *PUMA* manipulator under General Motors sponsorship through Unimation. Later, for a company called Automatix, Scheinman developed the novel Robot World multirobot system. After Scheinman left Unimation, his colleagues Brian Carlisle and Bruce Shimano reorganized Unimation's West Coast Division into Adept, Inc., which to this day is the largest US manufacturer of assembly

Quickly, the modern trend of carefully detailed mechanical and electronic design, optimized software, and complete system integration became the norm; to this day, this combination represents the hallmark of most highly regarded robotic devices. This is the basic concept behind *mechatronic*, a word conied in Japan as a concatenation of the words mechanics and electronics. Mechatronics that relies on computation is the essence of the technology inherent in robotics as we know it today.

As robotics developed around the world, a large number of people started working on various aspects, and specific subspecialties developed. The first big division was between people working on manipulators and those working on vision systems. Early on, vision systems seemed to hold more promise than any other method for giving robots information about their environment.

The idea was to have a television camera capture pictures of objects in the environment, and then use algorithms that allowed the computer images of the pictures to be analyzed, so as to infer required information about location, orientation, and other properties of objects. The initial successes with image systems were in problems dealing with positioning blocks, solving object manipulation problems, and reading assembly drawings. It was felt that vision held potential for use in robotic systems in connection with factory automation and space exploration. This led to research into software that would allow vision systems to recognize machine parts (particularly partially occluded parts, as occurred in the so-called *bin-picking* problems) and ragged-shaped rocks.

After the ability to see and move objects became established, the next logical need had to do with planning a sequence of events to accomplish a complex task. This led to the development of planning as an important branch in robotics. Making fixed plans for a known fixed environment is relatively straightforward. However, in robotics, one of the challenges is to let the robot discover its environment, and to modify its actions when the environment changes unexpectedly due to errors or unplanned events. Some early landmark studies in this area were carried out using a vehicle named Shakey, which, starting in 1966, was developed by Charlie Rosen's group at the Stanford Research Institute (now called SRI). Shakey had a TV camera, a triangulating range finder, bump sensors, and was connected to DEC PDP-10 and PDP-15 computers via radio and video links.

Shakey was the first mobile robot to reason about its actions. It used programs that gave it the ability for independent perception, world modeling, and action generation. Low-level action routines took care of simple moving, turning, and route planning. Intermediatelevel actions combined the low-level ones in ways that accomplished more complex tasks. The highest level programs could make and execute plans to achieve high-level goals supplied by a user.

Vision is very useful for navigation, locating objects, and determining their relative positions and orientation. However, it is usually not sufficient for assembling parts or working with robots where there are environmental constraining forces. This led to the need to measure the forces and torques generated by the environment, on a robot, and to use these measurements to control the robot's actions. For many years, forcecontrolled manipulation became one of the main topics of study at SAIL, and several other labs around the world. The use of force control in industrial practice has always lagged the research developments in this area. This seems to be due to the fact that, while a high level of force control is very useful for general manipulation issues, specific problems in very restricted industrial environments can often be handled with limited, or no, force control.

In the 1970s, specialized areas of study such as walking machines, hands, automated vehicles, sensor integration, and design for hostile environments began to develop rapidly. Today there are a large number of different specialties studied under the heading of robotics. Some of these specialties are classical engineering subject areas within which results have been developed that have been particularized to the types of machines called robots. Examples here are kinematics, dynamics, controls, machine design, topology, and trajectory planning. Each of these subjects has a long history predating the study of robotics; yet each has been an area of in-depth robotics research in order to develop its special character in regard to robotic-type systems and applications. In doing this specialized development, researchers have enriched the classical subjects by increasing both their content and

At the same time that the theory was being developed, there was a parallel, although somewhat separate, growth of industrial robotics. Strong commercial development occurred in Japan and Europe, and there was also continued growth in the USA. Industrial associations were formed (the Japan Robot Association was formed in March 1971, and the Robotic Industries Association (RIA) was founded in 1974 in the USA) and trade shows, together with application-oriented technical sessions, were introduced and held on a regular basis. The most important were the International Symposium on Industrial Robots, the Conference on Industrial Robot Technology (now called the International Conference on Industrial Robot Technology), and the

RIA annual trade show, which is now called the International Robots and Vision Show and Conference.

The first regular series of conferences emphasizing research, rather than the industrial, aspects of robotics, was inaugurated in 1973. It was sponsored jointly by the International Center for Mechanical Sciences (CISM), based in Udine, Italy, and the International Federation for the Theory of Mechanisms and Machines (IFToMM). (Although IFToMM is still used, its meaning has been changed to the International Federation for the Promotion of Mechanism and Machine Science.) It was named the Symposium on Theory and Practice of Robots and Manipulators (RoManSy). Its trademark was an emphasis on the mechanical sciences and the active participation of researchers from Eastern and Western Europe as well as North America and Japan. It is still held biannually. On a personal note, it is at RoManSy where I first met each of the editors of this Handbook: Dr. Khatib in 1978 and Dr. Siciliano in 1984. They were both students: Bruno Siciliano had been working on his PhD for about one year, and Oussama Khatib had just completed his PhD research. In both cases, it was love at first sight!

RoManSy was quickly joined by a host of other new conferences and workshops; today there are a large number of research oriented robotics meetings that take place through the year in many countries. Currently, the largest conference is the International Conference on Robotics and Automation (ICRA), which regularly draws well over 1000 participants.

In the beginning of the 1980s, the first real text-book on robotic manipulation in the USA was written by Richard Lou Paul (Richard P. Paul, Robot Manipulators: Mathematics, Programming, and Control, The MIT Press, Cambridge, MA, 1981). It used the idea of taking classical subjects in mechanics and applying them to robotics. In addition there were several topics developed directly from his thesis research at SAIL. (In the book, many examples are based on Scheinman's Stanford Arm.) Paul's book was a landmark event in the USA; it created a pattern for several influential future textbooks and also encouraged the creation of specialized robotics courses at a host of colleges and universities.

At about this same time, new journals were created to deal primarily with research papers in the areas related to robotics. The *International Journal of Robotics Research* was founded in the spring of 1982, and three years later the *IEEE Journal of Robotics and Automation* (now the *IEEE Transactions on Robotics*) was founded.

As microprocessors became ubiquitous, the question of what is or is not a robot came more into

play. This issue has, in my mind, never been successfully resolved. I do not think a definition will ever be universally agreed upon. There are of course the science fiction creatures-from-outer-space varieties, and the robots of the theater, literature, and the movies. There are examples of imaginary robot-like beings that predate the industrial revolution, but how about more down-to-Earth robots? In my view the definition is essentially a moving target that changes its character with technological progress. For example, when it was first developed, a ship's gyro auto-compass was considered a robot. Today, it is not generally included when we list the robots in our world. It has been demoted and is now considered an automatic control device.

For many, the idea of a robot includes the concept of multifunctionality, meaning the device is designed and built with the ability to be easily adapted or reprogrammed to do different tasks. In theory this idea is valid, but in practice it turns out that most robotic devices are multifunctional in only a very limited arena. In industry it was quickly discovered that a specialized machine, in general, performs much better than a general purpose machine. Furthermore, when the volume of production is high enough, a specialized machine can cost less to manufacture than a generalized one. So, specialized robots were developed for painting, riveting, quasiplanar parts assembly, press loading, circuit board stuffing, etc. In some cases robots are used in such specialized ways that it becomes difficult to draw the line between a so-called robot and an adjustable piece of fixed automation. Much of this practical unfolding is contrary to the dream of the pioneers in robotics, who had hoped for the development of general purpose machines that would do everything, and hence sell in great enough volume to be relatively inexpensive.

My view is that the notion of a robot has to do with which activities are, at a given time, associated with people and which are associated with machines. If a machine suddenly becomes able to do what we normally associate with people, the machine can be upgraded in classification and classified as a robot. After a while, people get used to the activity being done by machines, and the devices get downgraded from *robot* to *machine*. Machines that do not have fixed bases, and those that have arm- or leg-like appendages have the advantage of being more likely called robots, but it is hard to think of a consistent set of criteria that fits all the current naming conventions.

In actuality any machines, including familiar household appliances, which have microprocessors directing their actions can be considered as robots. In addition to vacuum cleaners, there are washing machines, refrigerators, and dishwashers that could be easily marketed as robotic devices. There are of course a wide range of possibilities, including those machines that have sensory environmental feedback and decision-making capabilities. In actual practice, in devices considered to be robotic, the amount of sensory and decision making capability may vary from a great deal to none.

In recent decades the study of robotics has expanded from a discipline centered on the study of mechatronic devices to a much broader interdisciplinary subject. An example of this is the area called human-centered robotics. Here one deals with the interactions between humans and intelligent machines. This is a growing area where the study of the interactions between robots and humans has enlisted expertise from outside the classical robotics domain. Concepts such as emotions in both robots and people are being studied, and older areas such as human physiology and biology are being incorporated into the mainstream of robotics research. These activities enrich the field of robotics, as they introduce new engineering and science dimensions into the research discourse.

Originally, the nascent robotics community was focused on getting things to work. Many early devices were remarkable in that they worked at all, and little notice was taken of their limited performance. Today, we have sophisticated, reliable devices as part of the modern array of robotic systems. This progress is the result of the work of thousands of people throughout the world. A lot of this work took place in universities, government research laboratories, and companies. It is a tribute to the worldwide engineering and scientific community that it has been able to create the vast amount of information that is contained in the 64 chapters of this Handbook. Clearly these results did not arise by any central planning or by an overall orderly scheme. So the editors of this handbook were faced with the difficult task of organizing the material into a logical and coherent whole.

The editors have accomplished this by organizing the contributions into a three-layer structure. The first layer deals with the *foundations* of the subject. This layer consists of a single part of nine chapters in which the authors lay out the root subjects: kinematics, dynamics, control, mechanisms, architecture, programming, reasoning, and sensing. These are the basic technological building blocks for robotics study and development.

The second layer has four parts. The first of these deals with *robot structures*; these are the arms, legs, hands, and other parts that most robots are made up of. At first blush, the hardware of legs, arms, and hands may look quite different from each other, yet they share a common set of attributes that allows them to all be treated with the same, or closely related, aspects of the fundamentals described in the first layer.

IΧ

The second part of this layer deals with sensing and perception, which are basic abilities any truly autonomous robotic system must have. As was pointed out earlier, in practice, many so-called robotic devices have little of these abilities, but clearly the more advanced robots cannot exist without them, and the trend is very much toward incorporating such capabilities into robotic devices. The third part of this layer treats the subject areas associated with the technology of manipulation and the interfacing of devices. The fourth part of this layer is made up of eight chapters that treat mobile robots and various forms of distributed robotics.

The third layer consists of two separate parts (a total of 22 chapters) that deal with advanced applications at the forefront of today's research and development. There are two parts to this layer; one deals with *field* and service robots, and the other deals with humancentered and lifelike robots. To the uninitiated observer, these chapters are what advanced robotics is all about. However, it is important to realize that many of these extraordinary accomplishments would probably not exist without the previous developments introduced in the first two layers of this Handbook.

It is this intimate connection between theory and practice that has nurtured the growth of robotics and become a hallmark of modern robotics. These two complementary aspects have been a source of great personal satisfaction to those of us who have had the opportunity to both research and develop robotic devices. The contents of this Handbook admirably reflect this complementary aspect of the subject, and present a very useful bringing together of the vast accomplishments which have taken place in the last 50 years. Certainly, the contents of this Handbook will serve as a valuable tool and guide to those who will produce the even more capable and diverse next generations of robotic devices. The editors and authors have my congratulations and admiration.

Stanford, August 2007

Bernard Roth

Foreword

To open this Handbook and unfold the richness of its 64 chapters, we here attempt a brief personal overview to sketch the evolution of robotics in its many aspects, concepts, trends, and central issues.

The modern story of Robotics began about half a century ago with developments in two different directions.

First, let us acknowledge the domain of mechanical arms, ranging from teleoperated tasks on radiation-contaminated products to industrial arms, with the landmark machine UNIMATE – standing for uni(versal)mate. The industrial development of products, mostly around the six-degree-of-freedom serial links paradigm and active research and development, associating mechanical engineering to the control specialism, was the main driving force here. Of particular note nowadays is the successfully pursued effort to design novel application-optimized structures, using powerful sophisticated mathematical tools. In a similar way, an important issue concerns the design and the actual building of arms and hands in the context of human-friendly robots for tomorrow's cognitive robot.

Second, and less well recognized, we should acknowledge the stream of work concerned with themes in artificial intelligence. A landmark project in this area was the mobile robot *Shakey* developed at Stanford International. This work, which aimed to bring together computer science, artificial intelligence, and applied mathematics to develop intelligent machines, remained a secondary area for quite some time. During the 1980s, building strength from many study cases encompassing a spectacular spectrum ranging from rovers for extreme environments (planet exploration, Antarctica, etc.), to service robots (hospitals, museum guides, etc.), a broad research domain arose in which machines could claim the status of intelligent robots.

Hence robotics researches could bring together these two different branches, with intelligent robots categorized in a solely computational way as bounded rationality machines, expanding on the 1980s thirdgeneration robot definition:

(robot)... operating in the three-dimensional world as a machine endowed with the capacity to interpret and to reason about a task and about its execution, by intelligently relating perception to action.

The field of autonomous robots, a widely recognized test-bed, has recently benefited from salient contributions in robot planning using the results of algorithmic geometry as well as of a stochastic framework approach applied both to environmental modeling and robot localization problems (SLAM, simultaneous localization and modeling), and further from the development of decisional procedures via Bayesian estimation and decision approaches.

For the last decade of the millennium, robotics largely dealt with the intelligent robot paradigm, blending together robots and machineintelligence generic research within themes covering advanced sensing and perception, task reasoning and planning, operational and decisional

Georges Giralt Emeritus Research Director LAAS-CNRS Toulouse (deceased)

autonomy, functional integration architectures, intelligent human-machine interfaces, safety, and dependability

The second branch, for years referred to as nonmanufacturing robotics, concerns a wide spectrum of research-driven real-world cases pertaining to field, service, assistive, and, later, personal robotics. Here, machine intelligence is, in its various themes, the central research direction, enabling the robot to act:

- 1. As a human surrogate, in particular for intervention tasks in remote and/or hostile environments
- In close interaction with humans and operating in human environments in all applications encompassed by human-friendly robotics, also referred to as human-centered robotics
- 3. In tight synergy with the user, expanding from mechanical exoskeleton assistance, surgery, health care, and rehabilitation into human augmentation.

Consequently, at the turn of the millennium, robotics appears as a broad spectrum of research themes both supporting market products for well-engineered industrial workplaces, and a large number of domain-oriented application cases operating in hazardous and/or harsh environments (underwater robotics, rough-terrain rovers, health/rehabilitation care robotics, etc.) where robots exhibit meaningful levels of shared autonomy.

The evolution levels for robotics stress the role of theoretical aspects, moving from application domains to the technical and scientific area. The organization of this Handbook illustrates very well these different levels. Furthermore, it rightly considers, besides a body of software systems, front-line matters on physical appearance and novel appendages, including legs, arms, and hands design in the context of human-friendly robots for tomorrow's cognitive robot.

Forefront robotics in the first decade of the current millennium is making outstanding progress, compounding the strength of two general directions:

- Short/mid-term application-oriented study cases
- Mid/long-term generic situated research.

For completeness, we should mention the large number of peripheral, robotics-inspired subjects, quite often concerning entertainment, advertising, and sophisticated toys.

The salient field of human-friendly robotics encompasses several front-line application domains where the robots operate in a human environment and in close interaction with humans (entertainment and education, public-oriented services, assistive and personal robots, etc.), which introduces the critical issue of human-robot interaction.

Right at the core of the field, emerges the forefront topic of personal robots for which three general characteristics should be emphasized:

- 1. They may be operated by a nonprofessional user;
- 2. They may be designed to share high-level decision making with the human user;
- They may include a link to environment devices and machine appendages, remote systems, and operators; the shared decisional autonomy concept (coautonomy) implied here unfolds into a large set of cutting-edge research issues and ethical problems.

The concept of the personal robot, expanding to robot assistant and universal companion, is a truly great challenge for robotics as a scientific and technical field, offering the mid/long-term perspective of achieving a paramount societal and economical impact. This introduces, and questions, front-line topics encompassing cognitive aspects: user-tunable human-machine intel-

ligent interfaces, perception (scene analysis, category identification), open-ended learning (understanding the universe of action), skills acquisition, extensive robotworld data processing, decisional autonomy, and dependability (safety, reliability, communication, and operating robustness).

There is an obvious synergistic effort between the two aforementioned approaches, in spite of the necessary framework time differences. The scientific link not only brings together the problems and obtained results but also creates a synergistic exchange between the two sides and the benefits of technological progress.

Indeed, the corresponding research trends and application developments are supported by an explosive evolution of enabling technologies: computer processing power, telecommunications, networking, sensing devices, knowledge retrieval, new materials, micro- and nanotechnologies.

Today, looking to the mid- and long-term future, we are faced with very positive issues and perspectives but also having to respond to critical comments and looming dangers for machines that are in physical contact with the user and may also be capable of unwanted, unsafe behavior. Therefore, there is a clear need to include at the research level safety issues and the topic of multifaced dependability and the corresponding system constraints.

The *Handbook of Robotics* is an ambitious and timely endeavor. It summarizes a large number of problems, questions, and facets considered by 164 authors in 64 chapters. As such it not only provides an efficient display of basic topics and results obtained by researches around the world, but furthermore gives access to this variety of viewpoints and approaches to everyone. This is indeed an important tool for progress but, much more, is the central factor that will establish the two first decades of this millennium as the dawn of robotics, lifted to a scientific discipline at the core of machine intelligence.

Toulouse, December 2007

Georges Giralt

Foreword

The field of robotics was born in the middle of the last century when emerging computers were altering every field of science and engineering. Having gone through fast yet steady growth via a procession of stages from infancy, childhood, and adolescence to adulthood, robotics is now mature and is expected to enhance the quality of people's lives in society in the future.

In its infancy, the core of robotics consisted of pattern recognition, automatic control, and artificial intelligence. Taking on these new challenge, scientists and engineers in these fields gathered to investigate novel robotic sensors and actuators, planning and programming algorithms, and architectures to connect these components intelligently. In so doing, they created artifacts that could interact with humans in the real world. An integration of these early robotics studies yielded hand–eye systems, the test-bed of artificial intelligence research.

The playground for childhood robotics was the factory floor. Industrial robots were invented and introduced into the factory for automating spraying, spot welding, grinding, materials handling, and parts assembly. Machines with sensors and memories made the factory floor smarter, and its operations more flexible, reliable, and precise. Such robotic automation freed humans from heavy and tedious labor. The automobile, electric appliance, and semiconductor industries rapidly retooled their manufacturing lines into robot-integrated systems. In the late 1970s, the word *mechatronics*, originally coined by the Japanese, defined a new concept of machinery, one in which electronics was fused with mechanical systems, making a wide range of industrial products simpler, more functional, programmable, and intelligent. Robotics and mechatronics exerted an evolutionary impact on the design and operation of manufacturing processes as well as on manufactured products.

As robotics entered its adolescence, researchers were ambitious to explore new horizons. Kinematics, dynamics, and control system theory were refined and applied to real complex robot mechanisms. To plan and carry out real tasks, robots had to be made cognizant of their surroundings. Vision, the primary channel for external sensing, was exploited as the most general, effective, and efficient means for robots to understand their external situation. Advanced algorithms and powerful devices were developed to improve the speed and robustness of robot vision systems. Tactile and force sensing systems also needed to be developed for

robots to manipulate objects. Studies on modeling, planning, knowledge, reasoning, and memorization expanded their intelligent properties. Robotics became defined as the study of intelligent connection of sensing to actuation. This definition covered all aspects of robotics: three scientific cores and one synthetic approach to integrate them. Indeed, system integration became a key aspect of robotic engineering as it allows the creation of lifelike machines. The fun of creating such robots attracted many students to the robotics field.

Hirochika Inoue Professor Emeritus The University of Tokyo

In advancing robotics further, scientific interest was directed at understanding humans. Comparative studies of humans and robots led to new approaches in scientific modeling of human functions. Cognitive robotics, lifelike behavior, biologically inspired robots, and a psychophysiological approach to robotic machines culminated in expanding the horizons of robotic potential. Generally speaking, an immature field is sparse in scientific understanding. Robotics in the 1980s and 1990s was in such a youthful stage, attracting a great many inquisitive researchers to this new frontier. Their continuous explorations into new realms form the rich scientific contents of this comprehensive volume.

Further challenges, along with expertise acquired on the cutting edge of robotics, opened the way to real-world applications for mature robotics. The earlystage playground gave way to a workshop for industrial robotics. Medical robotics, robot surgery, and in vivo imaging save patients from pain while providing doctors with powerful tools for conducting operations. New robots in such areas as rehabilitation, health care, and welfare are expected to improve quality of life in an aging society. It is the destiny of robots to go everywhere, in the air, under water, and into space. They are expected to work hand in hand with humans in such areas as agriculture, forestry, mining, construction, and hazardous environments and rescue operations, and to find utility both in domestic work and in providing services in shops, stores, restaurants, and hospitals. In a myriad of ways, robotic devices are expected to support our daily lives. At this point, however, robot applications are largely limited to structured environments, where they are separated from humans for safety sake.

In the next stage, their environment will be expanded to an unstructured world, one in which humans, as service takers, will always live and work beside robots. Improved sensing, more intelligence, enhanced safety, and better human understanding will be needed to prepare robots to function in such an environment. Not only technical but also social matters must be considered in finding solutions to issues impeding this progress.

Since my initial research to make a robot turn a crank, four decades have passed. I feel both lucky and happy to have witnessed the growth of robotics from its early beginnings. To give birth to robotics, fundamental technologies were imported from other disciplines. Neither textbooks nor handbooks were available. To reach the present stage, a great many scientists and engineers have challenged new frontiers; advancing robotics, they have enriched this body of knowledge from a variety of perspectives. The fruits of their endeavors are compiled in this *Handbook of Robotics*. More than 100 of the world's leading experts have collaborated in producing this publication. Now, people who wish to commit themselves to robotics research can find a firm founda-

tion to build upon. This Handbook is sure to be used to further advance robotics science, reinforce engineering education, and systematically compile knowledge that will innovate both society and industry.

The roles of humans and robots in an aging society pose an important issue for scientists and engineers to consider. Can robotics contribute to securing peace, prosperity, and a greater quality of life? This is still an open question. However, recent advances in personal robots, robotic home appliances, and humanoids suggest a paradigm shift from the industrial to the service sector. To realize this, robotics must be addressed from such viewpoints as the working infrastructure within society, psychophysiology, law, economy, insurance, ethics, art, design, drama, and sports science. Future robotics should be studied as a subject that envelops both humanity and technology. This Handbook offers a selected technical foundation upon which to advance such newly emerging fields of robotics. I look forward to continuing progress adding page after page of robotbased prosperity to future society.

Tokyo, September 2007

Hirochika Inoue

Foreword

Robots have fascinated people for thousands of years. Those automatons that were built before the 20th century did not connect sensing to action but rather operated through human agency or as repetitive machines. However, by the 1920s electronics had gotten to the stage that the first true robots that sensed the world and acted in it appropriately could be built. By 1950 we started to see descriptions of real robots appearing in popular magazines. By the 1960s industrial robots came onto the scene. Commercial pressures made them less and less responsive to their environments but faster and faster in what they did in their carefully engineered world. Then in the mid 1970s in France, Japan, and the USA we started to see robots rising again in a handful of research laboratories, and now we have arrived at a world-wide frenzy in research and the beginnings of large-scale deployment of intelligent robots throughout our world. This Handbook brings together the current state of robotics research in one place. It ranges from the mechanism of robots through sensing and perceptual processing, intelligence, action, and many application areas.

I have been more than fortunate to have lived with this revolution in robotics research over the last 30 years. As a teenager in Australia I built robots inspired by the tortoises of Walter described in the Scientific American in 1949 and 1950. When I arrived in Silicon Valley in 1977, just as the revolution in the personalization of computation was really coming into being, I instead turned to the much more obscure world of robots. In 1979 I was able to assist Hans Moravec at the Stanford Artificial Intelligence Lab (SAIL) as he coaxed his robot *The Cart* to navigate 20 m in 6 hours. Just 26 years later, in 2005, at the same laboratory, SAIL, Sebastian Thrun and his team coaxed their robot to autonomously drive 200 000 m in 6 hours: four orders of magnitude improvement in a mere 26 years, which is slightly better than a doubling every 2 years. However, robots have not just improved in speed, they have also increased in number. When I arrived at SAIL in 1977 we knew of three mobile robots operating in the world. Recently a company that I founded manufactured its 3 000 000th mobile robot, and the pace is increasing. Other aspects of robots have had similarly spectacular advances, although it is harder to provide such crisp numeric characterizations. In recent years we have gone from robots being too unaware of their surroundings that it was unsafe for people to share their workspace to robots that people can work with in close contact, and from robots that were totally unaware of people to robots that pick up on natural social cues from facial expressions to prosody in people's voices. Recently robotics has crossed the divide between flesh and machines so that now we are seeing neurorobotics ranging from prosthetic robotic extensions to rehabilitative robots for the disabled. And very recently robotics has become a respected contributor to research in cognitive science and neuroscience.

The research results chronicled in this volume give the key ideas that have enabled these spectacular advances. The editors, the part editors,

Rodney Brooks Panasonic Professor of Robotics Massachusetts Institute of Technology

and all the contributors have done a stellar job in bring this knowledge together in one place. Their efforts have produced a work that will provide a basis for much further research and development. Thank you, and congratulations to all who have labored on this pivotal book.

Some of the future robotics research will be incremental in nature, taking the state of the art and improving upon it. Other parts of future research will be more revolutionary, based on ideas that are antithetical to some of the ideas and current state of the art presented in this book.

As you study this volume and look for places to contribute to research through your own talents and hard work I want to alert you to capabilities or aspirations that I believe will make robots even more useful, more productive, and more accepted. I describe these capabilities in terms of the age at which a child has equivalent capabilities:

- The object-recognition capabilities of a 2-year-old object.
- The language capabilities of a 4-year-old child
- The manual dexterity of a 6-year-old child
- The social understanding of an 8-year-old child.

Each of these is a very difficult goal. However even small amounts of progress towards any one of these goals will have immediate applications to robots out in the world. Good reading and best wishes as you contribute further to robotkind.

Cambridge, October 2007

Rodney Brooks

Preface to the Second Edition

The Springer Handbook of Robotics was a challenging six-year endeavour from 2002 to 2008. It mobilized a large number of active scientists and researchers to produce this unique comprehensive reference source combining basic and advanced developments. The handbook has been very successful and extremely well received in our community. New researchers have been attracted to robotics which in turn have contributed to further progress in this trans-disciplinary field.

The handbook soon established itself as a land-mark in robotics publishing and beyond. It has been the bestseller of all Springer engineering books during the last seven years, the number one in chapter downloads (nearly forty thousand a year), and the fourth most downloaded over all Springer books in 2011. In February 2009, the handbook was recognized as the Winner of the American Association of Publishers (AAP) PROSE Award for Excellence in Physical Sciences & Mathematics as well as the Award for Engineering & Technology.

The rapid growth of our field as well as the birth of new research areas motivated us in 2011 to start pursuing a second edition with the intent to provide not only an update but also an expansion of the handbook's contents. Our editorial board (with David Orin, Frank Park, Henrik Christensen, Makoto Kaneko, Raja Chatila, Alex Zelinsky, and Daniela Rus) has been enthusiastically engaged during the last four years to coordinate the contributions of the authors to the seven parts of the handbook in its three-layer structure. The contents have been restructured to achieve four main objectives: the enlargement of foundational topics for robotics, the enlightenment of design of various types of robotic systems, the extension of the treatment on robots moving in the environment, and the enrichment of advanced robotics applications. Most previous chapters have been revised, fifteen new chapters have been introduced on emerging topics, and a new generation of authors have joined the handbook's team. The contents were finalized by the spring of 2015 after extensive review and feedback, and the project was completed by the fall of 2015 - generating, by that time, a record of over 12000 additional emails in our folders to the 10000 of the first edition. The result is an impressive collection of 80 chapters over the 7 parts, contributed by 229 authors,

with more than $2300\,\mathrm{pages},\,1375\,\mathrm{illustrations}$ and $9411\,\mathrm{references}.$

One of the major additions of the second edition of the handbook is the inclusion of multimedia material. An editorial team has been established under the leadership of Torsten Kröger and the contributions of Gianluca Antonelli, Dongjun Lee, Dezhen Song and Stefano Stramigioli. With the commitment of such a group of energetic young scholars, the multimedia project has been pursued in parallel to the handbook project. The multimedia editorial team has selected for each chapter video contributions, from those suggested by the authors, based on their quality and relevance to the chapter's contents. In addition, the handbook editors have produced tutorial videos that can be accessed directly from each part of the handbook. An openly accessible multimedia website, http:// handbookofrobotics.org, has been established to host these videos with the sponsorship of IEEE Robotics and Automation Society and Google. The website has been conceived as a live dissemination project bringing the latest robotics contributions to the world community.

We are deeply grateful for the continuous commitment of our handbook extended team, particularly the newcomers to the project. We would like to express our gratitude and appreciation to Judith Hinterberg, Werner Skolaut and Thomas Ditzinger from Springer for their strong support, as well as to Anne Strohbach and the le-tex staff for their highly professional typesetting work in the production.

Eight years after the first appearance of the handbook, the second edition comes to light. Beyond its tutorial value for our community, it is our conviction that the handbook will continue to serve as a useful source to attract new researchers to robotics and inspire decades of vibrant progress in this fascinating field. The cooperative spirit inspiring our team since the inception of the first edition is amusingly illustrated in the video *The Handbook – A Short History* (VIDEO 844). The completion of the second edition has been inspired by that same spirit and the gradient has been kept :-) Our fellows in the robotics community are reminded now to ... keep the Hessian ;-)

January 2016 Bruno Siciliano Oussama Khatib

Naples Stanford

Preface to the Multimedia Extension

Scientific and technical advancements in the domain of robotics have accelerated significantly over the past decade. Since the inception of the Second Edition of the Springer Handbook of Robotics in 2011, the Editors Bruno Siciliano and Oussama Khatib decided to add multimedia content and appointed an editorial team: Gianluca Antonelli, Dongjun Lee, Dezhen Song, Stefano Stramigioli, and myself as the Multimedia Editor.

Over the five years of the project, everyone on the team worked with all of the 229 authors, the Part Editors, and the Editors. Besides communicating with all 80 Authors' teams and reviewing, selecting, and improving all video contributions, we also scanned all the videos published at robotics conferences organized by the IEEE Robotics and Automation Society since 1991. A total of more than 5500 e-mails were sent back and forth to coordinate the project and to ensure the quality of the content. We implemented a video management system that allows authors to upload videos, editors to review videos, and readers to access videos. Videos were selected with the goal of helping convey content to all readers of the Second Edition. They may be relevant from a technical, scientific, educational, or historical perspective. All chapter and part videos are publicly accessible and can be found at

http://handbookofrobotics.org

In addition to the videos referenced in the chapters, each of the seven parts is accompanied by a part video giving an overview of each part. The storyboards of these videos were created by the Part Editors and then professionally produced.

The video content provided in the Multimedia Extension makes understanding the written content easier and was designed to be a comprehensive addition to the Handbook. Concepts, methods, experiments, and applications described in the book were animated, visually illustrated, or paired with sound and narration – giving readers a further dimension to comprehend the written content of the book.

Coordinating the work with more than 200 contributors cannot just be done by a small team, and we are deeply grateful for the support of many people and organizations. Judith Hinterberg and Thomas Ditzinger from the Springer Team in Heidelberg helped us tremendously with professional support during the entire production phase. The app for smartphones and tablets was implemented by Rob Baldwin from Studio Orb and allows readers easy access to multimedia content. The IEEE Robotics and Automation Society granted permissions to use all videos that have been published in the proceedings of conferences sponsored by the society. Google and X supported us by donating funds for the implementation of the website backend.

Following the Editors' inspiration, let us keep working and communicating as one community – and let us keep the Hessian all together . . . !

March 2016 Torsten Kröger

Mountain View

Accessing Multimedia Contents

Multimedia contents are an integral part of the Second Edition of the Springer Handbook of Robotics. 69 chapters contain video icons like this one:

Each icon indicates a video ID that can be used to access individual videos in various simple and intuitive ways.

Using the Multimedia App

We recommend using the multimedia app for smartphone and tablet PCs. You can install the app on *iOS* and *Android* devices using the QR code below. The app allows you to simply scan the pages of the book and automatically play all videos on your device while reading the book.

Using the Website: http://handbookofrobotics.org

All chapter videos and part videos can be accessed directly from the website of the multimedia extension. Just enter a video ID in the search field in the top right corner of the website. You may also use the website to browse through chapter and part videos.

Using PDF Files

If you read an electronic copy of the Handbook, each video icon contains a hyper link. Just click on the link to watch the corresponding video.

Using QR Codes

Each chapter starts with a QR code that contains a link to all videos of the chapter. Part videos can be accessed through the QR code at the beginning of each part.

About the Editors

Bruno Siciliano received his Doctorate degree in Electronic Engineering from the University of Naples, Italy, in 1987. He is Professor of Control and Robotics at University of Naples Federico II. His research focuses on methodologies and technologies in industrial and service robotics including force and visual control, cooperative robots, human-robot interaction, and aerial manipulation. He has co-authored 6 books and over 300 journal papers, conference papers and book chapters. He has delivered over 20 keynote presentations and over 100 colloquia and seminars at institutions around the world. He is a Fellow of IEEE, ASME and IFAC. He is Co-Editor of the Springer Tracts in Advanced Robotics (STAR) series and the Springer Handbook of Robotics, which received the PROSE Award for Excellence in Physical Sciences & Mathematics and was also the winner in the category Engineering & Technology. He has served on the Editorial Boards of prestigious journals, as well as Chair or Co-Chair for numerous international conferences. Professor Siciliano is the Past-President of the IEEE Robotics and Automation Society (RAS). He has been the recipient of several awards, including the IEEE RAS George Saridis Leadership Award in Robotics and Automation and the IEEE RAS Distinguished Service Award.

Oussama Khatib received his Doctorate degree in Electrical Engineering from Sup'Aero, Toulouse, France, in 1980. He is Professor of Computer Science at Stanford University. His research focuses on methodologies and technologies in humancentered robotics including humanoid control architectures, human motion synthesis, interactive dynamic simulation, haptics, and human-friendly robot design. He has co-authored over 300 journal papers, conference papers and book chapters. He has delivered over 100 keynote presentations and several hundreds of colloquia and seminars at institutions around the world. He is a Fellow of IEEE. He is Co-Editor of the Springer Tracts in Advanced Robotics (STAR) series and the Springer Handbook of Robotics, which received the PROSE Award for Excellence in Physical Sciences & Mathematics and was also the winner in the category Engineering & Technology. He has served on the Editorial Boards of prestigious journals, as well as Chair or Co-Chair for numerous international conferences. Professor Khatib is the President of the International Foundation of Robotics Research. He has been the recipient of several awards, including the IEEE RAS Pioneer Award in Robotics and Automation, the IEEE RAS George Saridis Leadership Award in Robotics and Automation, the IEEE RAS Distinguished Service Award, and the Japan Robot Association (JARA) Award in Research and Development.

About the Part Editors

David E. Orin

The Ohio State University Department of Electrical and Computer Engineering Columbus, USA orin.1@osu.edu

Part A

David E. Orin received his PhD degree in Electrical Engineering from The Ohio State University in 1976. From 1976–1980, he taught at Case Western Reserve University. Since 1981, he has been at The Ohio State University, where he is currently a Professor Emeritus of Electrical and Computer Engineering. He was a sabbatical faculty at Sandia National Laboratories in 1996. His research interests center on humanoid and quadruped running and dynamic walking, dynamic maneuvers in legged locomotion, and robot dynamics. He has over 150 publications. His commitment to education has resulted in his receiving the Eta Kappa Nu Professor of the Year Award in the EE Department at OSU (1998–1999), and the MacQuigg Award for Outstanding Teaching in the College of Engineering (2003). He is a Fellow of the IEEE (1993) and was the President of the IEEE Robotics and Automation Society 2012–2013.

Frank C. Park

Seoul National University Mechanical and Aerospace Engineering Seoul, Korea fcp@snu.ac.kr

Part B

Frank Chongwoo Park received his BS in Electrical Engineering from MIT in 1985, and PhD in Applied Mathematics from Harvard University in 1991. From 1991 to 1995 he was Assistant Professor of Mechanical and Aerospace Engineering at the University of California, Irvine. Since 1995 he has been Professor of Mechanical and Aerospace Engineering at Seoul National University, Korea. His research interests are in robot mechanics, planning and control, vision and image processing. In 2007–2008 he was an IEEE Robotics and Automation Society (RAS) Distinguished Lecturer. He has served on the editorial boards of the Springer Handbook of Robotics and Springer Tracts in Advanced Robotics (STAR), Robotica, and the ASME Journal of Mechanisms and Robotics. He is a fellow of the IEEE, and EiC of the IEEE Transactions on Robotics.

Henrik I. Christensen

Georgia Institute of Technology Robotics and Intelligent Machines Atlanta, USA hic@cc.gatech.edu

Part C

Henrik I. Christensen is the KUKA Chair of Robotics and Director of Robotics at Georgia Institute of Technology, Atlanta, GA. He received MS and PhD degrees from Aalborg University in 1987 and 1990, respectively. He has held positions in Denmark, Sweden, and USA. He has published more than 300 contributions across vision, robotics, and AI. Results have been commercialized through major companies and 6 spin-off companies. He served as the founding coordinator of the European Robotics Research Network (EURON) and the US Robotics Virtual Organization. He was the editor of the US National Robotics Roadmap. He is a Fellow of the International Foundation of Robotics Research (IFRR), American Association of Advancement of Science (AAAS), and Institution of Electrical and Electronic Engineers (IEEE). He is an Editorial Board member of the Springer STAR series, and serves on the editorial board of several leading robotics journals.

Makoto Kaneko

Osaka University Department of Mechanical Engineering Suita, Japan mk@mech.eng.osaka-u.ac.jp

Part D

Makoto Kaneko received the MS and PhD degrees in Mechanical Engineering from Tokyo University in 1978 and 1981, respectively. From 1981 to 1990 he was Researcher at the Mechanical Engineering Laboratory, from 1990 to 1993 an Associate Professor at Kyushu Institute of Technology, from 1993 to 2006 Professor at Hiroshima University, and in 2006 became a Professor at Osaka University. His research interests include tactile-based active sensing, grasping strategy, hyper human technology and its application to medical diagnosis, and his work has received 17 awards. He is an Editorial Board member of the STAR series and has served as chair or co-chair for several international conferences. He is an IEEE Fellow. He has served the IEEE Robotics and Automation Society as a Vice-President for Member Activities and as a Technical Editor of the IEEE Transactions on Robotics and Automation.

Raja Chatila

University Pierre et Marie Curie Institute of Intelligent Systems and Robotics Paris, France raja.chatila@laas.fr

Part E

Raja Chatila, IEEE Fellow, is Director of Research at the French National Center of Scientific Research (CNRS), and Director of the Institute of Intelligent Systems and Robotics at Pierre and Marie Curie University in Paris. He is also Director of the Laboratory of Excellence SMART on human—machine interaction. He was Director of LAAS-CNRS, Toulouse France 2007–2010. His research covers aspects of robotics in navigation and SLAM, motion planning and control, cognitive and control architectures, human—robot interaction, and robot learning. He is author of over 140 publications. Current projects are Roboergosum on robot self-awareness and Spencer on human—robot interaction in populated environments. He is President of the IEEE Robotics and Automation Society for the term 2014—2015 and is member of the Ethics Committee on Research in Information Science and Technology of the Allistene. He received the IEEE Pioneer Award in Robotics and Automation and a Honorary Doctor of Örebro University (Sweden).

Alex Zelinsky

Department of Defence DST Group Headquarters Canberra, Australia alexzelinsky@yahoo.com

Part F

Dr. Alex Zelinsky is a research leader in mobile robotics, computer vision and human-machine interaction. Dr. Zelinsky is Australia's Chief Defence Scientist and Chief Executive of the Defence Science and Technology Organisation (DSTO). Before joining DSTO in March 2012, Dr. Zelinsky was Group Executive, Information and Communication Sciences and Technology at CSIRO. Prior to joining CSIRO in July 2004, Dr. Zelinsky was CEO of Seeing Machines, a company dedicated to the commercialization of computer vision systems. The technology commercialized by Seeing Machines was developed at the Australian National University, where Dr. Zelinsky was Professor from 1996 to 2000. In 1997 he founded the Field and Services Robotics conference series. Dr. Zelinsky's contributions have been recognized by the Australian Engineering Excellence Awards (1999, 2002), Technology Pioneer at the World Economic Forum (2002-2004) and IEEE Robotics & Automation Society Inaba Technical Award for Innovation Leading to Production (2010), Pearcey Medal (2013). Dr. Zelinsky is an elected Fellow of the Australian Academy of Technological Sciences and Engineering (2002) and an elected Fellow of the IEEE (2008) and an Honorary Fellow of Institution of Engineers Australia (2013).

Daniela Rus

Massachusetts Institute of Technology CSAIL Center for Robotics Cambridge, USA rus@csail.mit.edu

Part G

Daniela Rus is the Andrew and Erna Viterbi Professor of Electrical Engineering and Computer Science and Director of the Computer Science and Artificial Intelligence Laboratory (CSAIL) at MIT. Rus' research interests are in robotics, mobile computing, and data science. Rus is a Class of 2002 MacArthur Fellow, a fellow of ACM, AAAI and IEEE, and a member of the NAE. She earned her PhD in Computer Science from Cornell University. Prior to joining MIT, Rus was a Professor in the Computer Science Department at Dartmouth College.

About the Multimedia Editors

Torsten Kröger

Google Inc. Mountain View, CA 94043, USA t@kroe.org Torsten Kroeger is a roboticist at Google and a visiting researcher at Stanford University. He received his Master's degree in Electrical Engineering from TU Braunschweig, Germany, in 2002. From 2003 to 2009, he was a research assistant at Robotics Research Institute at TU Braunschweig, from which he received his Doctorate degree in Computer Science in 2009 (summa cum laude). In 2010, he joined the Stanford AI Laboratory, where he worked on instantaneous trajectory generation, autonomous hybrid switched-control of robots, and distributed real-time hard- and software systems. He is the founder of Reflexxes GmbH, a spin-off of TU Braunschweig working on the development of deterministic real-time motion generation algorithms. In 2014, Reflexxes has joined Google. Torsten is an editor or an associate editor of multiple IEEE conference proceedings, books, and book series. He received the IEEE RAS Early Career Award, the Heinrich Büssing Award, the GFFT Award, two fellowships of the German Research Association, and he was a finalist of the IEEE/IFR IERA Award and the euRobotics TechTransfer Award.

Gianluca Antonelli

University of Cassino and Southern Lazio Department of Electrical and Information Engineering Cassino, Italy antonelli@unicas.it Gianluca Antonelli is an Associate Professor at the University of Cassino and Southern Lazio. His research interests include marine and industrial robotics as well as multiagent systems identification. He has published 32 international journal papers and more than 90 conference papers and is author of the book *Underwater Robots*. He is chair of the IEEE RAS Chapter of the IEEE-Italy section.

Dongjun Lee

Seoul National University Department of Mechanical and Aerospace Engineering Seoul, Korea djlee@snu.ac.kr

Dr. Dongjun Lee currently directs the Interactive and Networked Robotics Lab (INRoL) at Seoul National University (SNU). He received the PhD degree from the University of Minnesota, and MS and BS degrees from KAIST. His main research interests are mechanics and control of robotic and mechatronic systems with emphasis on teleoperation, haptics, aerial robotics, and multi-robot systems.

Dezhen Song

Texas A&M University Department of Computer Science College Station, USA dzsong@cs.tamu.edu

Dezhen Song received the PhD degree in Engineering from the University of California, Berkeley, in 2004. Currently, he is an Associate Professor with Texas A&M University, College Station. His research area is networked robotics, computer vision, optimization, and stochastic modeling. Dr. Song received the Kayamori Best Paper Award of the 2005 IEEE ICRA (with J. Yi and S. Ding) and the NSF Faculty Early Career Development (CAREER) Award in 2007.

Stefano Stramigioli

University of Twente Control Laboratory, Faculty of Electrical Engineering, Mathematics & Computer Science 7500 AE, Enschede, The Netherlands s.stramigioli@utwente.nl

Stefano Stramigioli received the MSc in 1992 and the PhD in 1998. Between the two degrees he worked as a researcher at the University of Twente. Since 1998 he has been faculty member and he is currently full Professor of Advanced Robotics and chair holder of the Robotics and Mechatronics group at the University of Twente. He is an officer and Senior Member of IEEE. He has about 200 publications including 4 books, book chapters, journal and conference contributions. He is currently the Vice President for Member Activities of the IEEE Robotics and Automation Society. He has been an AdCom member for IEEE RAS. Stefano is a member of the ESA Topical Team on Dynamics of Prehension in Micro-gravity and its application to Robotics and Prosthetics.

List of Authors

Markus W. Achtelik

ETH Zurich
Autonomous Systems Laboratory
Leonhardstrasse 21
8092 Zurich, Switzerland
markus@achtelik.net

Alin Albu-Schäffer

DLR Institute of Robotics and Mechatronics Münchner Strasse 20 82230 Wessling, Germany alin.albu-schaeffer@dlr.de

Kostas Alexis

ETH Zurich Institute of Robotics and Intelligent Systems Tannenstrasse 3 8092 Zurich, Switzerland konstantinos.alexis@mavt.ethz.ch

Jorge Angeles

McGill University
Department of Mechanical Engineering and
Centre for Intelligent Machines
817 Sherbrooke Street West
Montreal, H3A 2K6, Canada
angeles@cim.mcgill.ca

Gianluca Antonelli

University of Cassino and Southern Lazio Department of Electrical and Information Engineering Via G. Di Biasio 43 03043 Cassino, Italy antonelli@unicas.it

Fumihito Arai

Nagoya University Department of Micro-Nano Systems Engineering Furo-cho, Chikusa-ku 464-8603 Nagoya, Japan arai@mech.nagoya-u.ac.jp

Michael A. Arbib

University of Southern California Computer Science, Neuroscience and ABLE Project Los Angeles, CA 90089-2520, USA arbib@usc.edu

J. Andrew Bagnell

Carnegie Mellon University Robotics Institute 5000 Forbes Avenue Pittsburgh, PA 15213, USA dbagnell@ri.cmu.edu

Randal W. Beard

Brigham Young University Electrical and Computer Engineering 459 Clyde Building Provo, UT 84602, USA beard@byu.edu

Michael Beetz

University Bremen
Institute for Artificial Intelligence
Am Fallturm 1
28359 Bremen, Germany
ai-office@cs.uni-bremen.de

George Bekey

University of Southern California Department of Computer Science 612 South Vis Belmonte Court Arroyo Grande, CA 93420, USA bekey@usc.edu

Maren Bennewitz

University of Bonn Institute for Computer Science VI Friedrich-Ebert-Allee 144 53113 Bonn, Germany maren@cs.uni-bonn.de

Massimo Bergamasco

Sant'Anna School of Advanced Studies Perceptual Robotics Laboratory Via Alamanni 13 56010 Pisa, Italy m.bergamasco@sssup.it

Marcel Bergerman

Carnegie Mellon University Robotics Institute 5000 Forbes Avenue Pittsburgh, PA 15213, USA marcel@cmu.edu

Antonio Bicchi

University of Pisa Interdepartmental Research Center "E. Piaggio" Largo Lucio Lazzarino 1 56122 Pisa, Italy bicchi@ing.unipi.it

Aude G. Billard

Swiss Federal Institute of Technology (EPFL) School of Engineering EPFL-STI-I2S-LASA, Station 9 1015 Lausanne, Switzerland aude.billard@epfl.ch

John Billingsley

University of Southern Queensland Faculty of Engineering and Surveying West Street Toowoomba, QLD 4350, Australia john.billingsley@usq.edu.au

Rainer Bischoff

KUKA Roboter GmbH Technology Development Zugspitzstrasse 140 86165 Augsburg, Germany rainer.bischoff@kuka.com

Thomas Bock

Technical University Munich Department of Architecture Arcisstrasse 21 80333 Munich, Germany thomas.bock@br2.ar.tum.de

Adrian Bonchis

CSIRO Department of Autonomous Systems 1 Technology Court Pullenvale, QLD 4069, Australia adrian.bonchis@csiro.au

Josh Bongard

University of Vermont Department of Computer Science 205 Farrell Hall Burlington, VT 05405, USA josh.bongard@uvm.edu

Wayne J. Book

Georgia Institute of Technology G. W. Woodruff School of Mechanical Engineering 771 Ferst Drive Atlanta, GA 30332-0405, USA wayne.book@me.gatech.edu

Cynthia Breazeal

MIT Media Lab Personal Robots Group 20 Ames Street Cambridge, MA 02139, USA cynthiab@media.mit.edu

Oliver Brock

Technical University Berlin Robotics and Biology Laboratory Marchstrasse 23 10587 Berlin, Germany oliver.brock@tu-berlin.de

Alberto Broggi

University of Parma Department of Information Technology Viale delle Scienze 181A 43100 Parma, Italy broggi@ce.unipr.it

Davide Brugali

University of Bergamo Department of Computer Science and Mathematics Viale Marconi 5 24044 Dalmine, Italy brugali@unibg.it

Heinrich Bülthoff

Max-Planck-Institute for Biological Cybernetics Human Perception, Cognition and Action Spemannstrasse 38 72076 Tübingen, Germany heinrich.buelthoff@tuebingen.mpg.de

Joel W. Burdick

California Institute of Technology Department of Mechanical Engineering 1200 East California Boulevard Pasadena, CA 9112, USA jwb@robotics.caltech.edu

Wolfram Burgard

University of Freiburg Institute of Computer Science Georges-Koehler-Allee 79 79110 Freiburg, Germany burgard@informatik.uni-freiburg.de

Fabrizio Caccavale

University of Basilicata School of Engineering Via dell'Ateneo Lucano 10 85100 Potenza, Italy fabrizio.caccavale@unibas.it

Sylvain Calinon

Idiap Research Institute Rue Marconi 19 1920 Martigny, Switzerland sylvain.calinon@idiap.ch

Raja Chatila

University Pierre et Marie Curie Institute of Intelligent Systems and Robotics 4 Place Jussieu 75005 Paris, France raja.chatila@isir.upmc.fr

François Chaumette

Inria/Irisa Lagadic Group 35042 Rennes, France francois.chaumette@inria.fr

I-Ming Chen

Nanyang Technological University School of Mechanical and Aerospace Engineering 50 Nanyang Avenue 639798 Singapore, Singapore michen@ntu.edu.sg

Stefano Chiaverini

University of Cassino and Southern Lazio Department of Electrical and Information Engineering Via G. Di Biasio 43 03043 Cassino, Italy chiaverini@unicas.it

Gregory S. Chirikjian

John Hopkins University Department of Mechanical Engineering 3400 North Charles Street Baltimore, MD 21218-2682, USA gchirik1@jhu.edu

Kyu-Jin Cho

Seoul National University **Biorobotics Laboratory** 1 Gwanak-ro, Gwanak-gu Seoul, 151-744, Korea kjcho@sun.ac.kr

Hyun-Taek Choi

Korea Research Institute of Ships & Ocean Engineering (KRISO) Ocean System Engineering Research Division 32 Yuseong-daero 1312 Beon-gil, Yuseong-gu Daejeon, 305-343, Korea htchoiphd@gmail.com

Nak-Young Chong

Japan Advanced Institute of Science and Technology Center for Intelligent Robotics 1-1 Asahidai, Nomi 923-1292 Ishikawa, Japan nakyoung@jaist.ac.jp

Howie Choset

Carnegie Mellon University **Robotics Institute** 5000 Forbes Avenue Pittsburgh, PA 15213, USA choset@cs.cmu.edu

Henrik I. Christensen

Georgia Institute of Technology **Robotics and Intelligent Machines** 801 Atlantic Drive NW Atlanta, GA 30332-0280, USA hic@cc.gatech.edu

Wendell H. Chun

University of Denver Department of Electrical and Computer Engineering 2135 East Wesley Avenue Denver, CO 80208, USA wendell.chun@du.edu

Wan Kyun Chung

POSTECH **Robotics Laboratory** KIRO 410, San 31, Hyojadong Pohang, 790-784, Korea wkchung@postech.ac.kr

Woojin Chung

Korea University Department of Mechanical Engineering Anam-dong, Sungbuk-ku Seoul, 136-701, Korea smartrobot@korea.ac.kr

Peter Corke

Queensland University of Technology Department of Electrical Engineering and Computer Science 2 George Street Brisbane, QLD 4001, Australia peter.corke@qut.edu.au

Elizabeth Croft

University of British Columbia Department of Mechanical Engineering 6250 Applied Science Lanve Vancouver, BC V6P 1K4, Canada elizabeth.croft@ubc.ca

Mark R. Cutkosky

Stanford University Department of Mechanical Engineering 450 Serra Mall Stanford, CA 94305, USA cutkosky@stanford.edu

Kostas Daniilidis

University of Pennsylvania Department of Computer and Information Science 3330 Walnut Street Philadelphia, PA 19104, USA kostas@upenn.edu

Paolo Dario

Sant'Anna School of Advanced Studies The BioRobotics Institute Piazza Martiri della Libertà 34 56127 Pisa, Italy paolo.dario@sssup.it

Kerstin Dautenhahn

University of Hertfordshire School of Computer Science College Lane Hatfield, AL10 9AB, UK k.dautenhahn@herts.ac.uk

Alessandro De Luca

Sapienza University of Rome Department of Computer, Control, and Management Engineering Via Ariosto 25 00185 Rome, Italy deluca@diag.uniroma1.it

Joris De Schutter

University of Leuven (KU Leuven) Department of Mechanical Engineering Celestijnenlaan 300 B-3001, Leuven-Heverlee, Belgium joris.deschutter@kuleuven.be

Rüdiger Dillmann

Karlsruhe Institute of Technology Institute for Technical Informatics Haid-und-Neu-Strasse 7 76131 Karlsruhe, Germany dillmann@ira.uka.de

Lixin Dong

Michigan State University Department of Electrical and Computer Engineering 428 South Shaw Lane East Lansing, MI 48824-1226, USA Idong@egr.msu.edu

Gregory Dudek

McGill University Department of Computer Science 3480 University Street Montreal, QC H3Y 3H4, Canada dudek@cim.mcgill.ca

Hugh Durrant-Whyte

University of Sydney Australian Centre for Field Robotics (ACFR) Sydney, NSW 2006, Australia hugh@acfr.usyd.edu.au

Roy Featherstone

The Australian National University **Department of Information Engineering RSISE Building 115** Canberra, ACT 0200, Australia roy.featherstone@anu.edu.au

Gabor Fichtinger

Queen's University School of Computing 25 Union Street Kingston, ON, K7L 2N8, Canada gabor@cs.queensu.ca

Paolo Fiorini

University of Verona Department of Computer Science Strada le Grazie 15 37134 Verona, Italy paolo.fiorini@univr.it

Paul Fitzpatrick

Italian Institute of Technology Robotics, Brain, and Cognitive Sciences Department Via Morengo 30 16163 Genoa, Italy paul.fitzpatrick@iit.it

Luke Fletcher

Boeing Research & Technology Australia Brisbane, QLD 4001, Australia luke.s.fletcher@gmail.com

Dario Floreano

Swiss Federal Institute of Technology (EPFL) Laboratory of Intelligent Systems LIS-IMT-STI, Station 9 1015 Lausanne, Switzerland dario.floreano@epfl.ch

Thor I. Fossen

Norwegian University of Science and Technology **Department of Engineering Cyberentics** 0.S. Bragstads plass 2D 7491 Trondheim, Norway fossen@ieee.org

Li-Chen Fu

National Taiwan University Department of Electrical Engineering No. 1, Sec. 4, Roosevelt Road 106 Taipei, Taiwan lichen@ntu.edu.tw

Maxime Gautier

University of Nantes IRCCyN, ECN 1 Rue de la Noë 44321 Nantes, France maxime.gautier@irccyn.ec-nantes.fr

Christos Georgoulas

Technical University Munich Department of Architecture Arcisstrasse 21 80333 Munich, Germany christos.georgoulas@br2.ar.tum.de

Martin A. Giese

University Clinic Tübingen Department for Cognitive Neurology Otfried-Müller-Strasse 25 72076 Tübingen, Germany martin.giese@uni-tuebingen.de

Ken Goldberg

University of California at Berkeley Department of Industrial Engineering and Operations Research 425 Sutardia Dai Hall Berkeley, CA 94720-1758, USA goldberg@ieor.berkeley.edu

Clément Gosselin

Laval University Department of Mechanical Engineering 1065 Avenue de la Médecine Quebec, QC G1K 7P4, Canada gosselin@gmc.ulaval.ca

Eugenio Guglielmelli

University Campus Bio-Medico of Rome Faculty Department of Engineering Via Alvaro del Portillo 21 00128 Rome, Italy e.guglielmelli@unicampus.it

Sami Haddadin

Leibniz University Hannover Electrical Engineering and Computer Science Appelstrasse 11 30167 Hannover, Germany sami.haddadin@irt.uni-hannover.de

Martin Hägele

Fraunhofer IPA **Robot Systems** Nobelstrasse 12 70569 Stuttgart, Germany mmh@ipa.fhg.de

Gregory D. Hager

Johns Hopkins University Department of Computer Science 3400 North Charles Street Baltimore, MD 21218, USA hager@cs.jhu.edu

William R. Hamel

University of Tennessee Mechanical, Aerospace, and Biomedical Engineering 414 Dougherty Engineering Building Knoxville, TN 37996-2210, USA whamel@utk.edu

Blake Hannaford

University of Washington Department of Electrical Engineering Seattle, WA 98195-2500, USA blake@ee.washington.edu

Kensuke Harada

National Institute of Advanced Industrial Science and Technology Intelligent Systems Research Institute Tsukuba Central 2, Umezono, 1-1-1 305-8568 Tsukuba, Japan kensuke.harada@aist.go.jp

Martial Hebert

Carnegie Mellon University The Robotics Institute 5000 Forbes Avenue Pittsburgh, PA 15213, USA hebert@ri.cmu.edu

Thomas C. Henderson

University of Utah School of Computing 50 South Central Campus Drive Salt Lake City, UT 84112, USA tch@cs.utah.edu

Eldert van Henten

Wageningen University Wageningen UR Greenhouse Horticulture Droevendaalsesteeg 4 6708 PB, Wageningen, The Netherlands eldert.vanhenten@wur.nl

Hugh Herr

MIT Media Lab 77 Massachusetts Avenue Cambridge, MA 02139-4307, USA hherr@media.mit.edu

Joachim Hertzberg

Osnabrück University Institute for Computer Science Albrechtstrasse 28 54076 Osnabrück, Germany joachim.hertzberg@uos.de

Gerd Hirzinger

German Aerospace Center (DLR) Institute of Robotics and Mechatronics Münchner Strasse 20 82230 Wessling, Germany gerd.hirzinger@dlr.de

John Hollerbach

University of Utah School of Computing 50 South Central Campus Drive Salt Lake City, UT 84112, USA jmh@cs.utah.ledu

Kaijen Hsiao

Robert Bosch LLC Research and Technology Center, Palo Alto 4005 Miranda Avenue Palo Alto, CA 94304, USA kaijenhsiao@gmail.com

Tian Huang

Tianjin University Department of Mechanical Engineering 92 Weijin Road, Naukai 300072 Tianjin, China tianhuang@tju.edu.cn

Christoph Hürzeler

Alstom Power Thermal Services Automation and Robotics R&D Brown Boveri Strasse 7 5401 Baden, Switzerland christoph.huerzeler@power.alstom.com

Phil Husbands

University of Sussex Department of Informatics Brighton, BN1 9QH, UK philh@sussex.ac.uk

Seth Hutchinson

University of Illinois Department of Electrical and Computer Engineering 1308 West Main Street Urbana-Champaign, IL 61801, USA seth@illinois.edu

Karl lagnemma

Massachusetts Institute of Technology Laboratory for Manufacturing and Productivity 77 Massachusetts Avenue Cambridge, MA 02139, USA kdi@mit.edu

Fumiya lida

University of Cambridge Department of Engineering Trumpington Street Cambridge, CB2 1PZ, UK fumiya.iida@eng.cam.ac.uk

Auke Jan ljspeert

Swiss Federal Institute of Technology (EPFL) School of Engineering MED 1, 1226, Station 9 1015 Lausanne, Switzerland auke.ijspeert@epfl.ch

Genya Ishigami

Keio University Department of Mechanical Engineering 3-14-1 Hiyoshi 223-8522 Yokohama, Japan ishigami@mech.keio.ac.jp

Michael Jenkin

York University Department of Electrical Engineering and **Computer Science** 4700 Keele Street Toronto, ON M3J 1P3, Canada jenkin@cse.yorku.ca

Shuuji Kajita

National Institute of Advanced Industrial Science and Technology (AIST) Intelligent Systems Research Institute 1-1-1 Umezono 305-8586 Tsukuba, Japan s.kajita@aist.go.jp

Takayuki Kanda

Advanced Telecommunications Research (ATR) Institute International Intelligent Robotics and Communication Laboratories 2-2-2 Hikaridai, Seikacho, Sorakugun 619-0288 Kyoto, Japan kanda@atr.jp

Makoto Kaneko

Osaka University **Department of Mechanical Engineering** 2-1 Yamadaoka 565-0871 Suita, Japan mk@mech.eng.osaka-u.ac.jp

Sung-Chul Kang

Korea Institute of Science and Technology Center for Bionics 39-1 Hawolgok-dong, Wolsong-gil 5 Seoul, Seongbuk-gu, Korea kasch@kist.re.kr

Imin Kao

Stony Brook University Department of Mechanical Engineering 167 Light Engineering Stony Brook, NY 11794-2300, USA imin.kao@stonybrook.edu

Lydia E. Kavraki

Rice University Department of Computer Science 6100 Main Street Houston, TX 77005, USA kavraki@rice.edu

Charles C. Kemp

Georgia Institute of Technology and Emory University 313 Ferst Drive Atlanta, GA 30332-0535, USA charlie.kemp@bme.gatech.edu

Wisama Khalil

University of Nantes IRCCyN, ECN 1 Rue de la Noë 44321 Nantes, France wisama.khalil@irccyn.ec-nantes.fr

Oussama Khatib

Stanford University Department of Computer Sciences, Artificial Intelligence Laboratory 450 Serra Mall Stanford, CA 94305, USA khatib@cs.stanford.edu

Lindsay Kleeman

Monash University Department of Electrical and Computer Systems Engineering Melbourne, VIC 3800, Australia kleeman@eng.monash.edu.au

Alexander Kleiner

Linköping University Department of Computer Science 58183 Linköping, Sweden alexander.kleiner@liu.se

Jens Kober

Delft University of Technology Delft Center for Systems and Control Mekelweg 2 2628 CD, Delft, The Netherlands j.kober@tudelft.nl

Kurt Konolige

Google, Inc. 1600 Amphitheatre Parkway Mountain View, CA 94043, USA konolige@gmail.com

David Kortenkamp

TRACLabs Inc 1012 Hercules Drive Houston, TX 77058, USA korten@traclabs.com

Kazuhiro Kosuge

Tohoku University System Robotics Laboratory Aoba 6-6-01, Aramaki 980-8579 Sendai, Japan kosuge@irs.mech.tohoku.ac.jp

Danica Kragic

Royal Institute of Technology (KTH) Centre for Autonomous Systems CSC-CAS/CVAP 10044 Stockholm, Sweden dani@kth.se

Torsten Kröger

Google Inc. 1600 Amphitheatre Parkway Mountain View, CA 94043, USA t@kroe.org

Roman Kuc

Yale University Department of Electrical Engineering 10 Hillhouse Avenue New Haven, CT 06520-8267, USA kuc@yale.edu

James Kuffner

Carnegie Mellon University The Robotics Institute 5000 Forbes Avenue Pittsburgh, PA 15213-3891, USA kuffner@cs.cmu.edu

Scott Kuindersma

Harvard University Maxwell-Dworkin 151, 33 Oxford Street Cambridge, MA 02138, USA scottk@seas.harvard.edu

Vijay Kumar

University of Pennsylvania Department of Mechanical Engineering and **Applied Mechanics** 220 South 33rd Street Philadelphia, PA 19104-6315, USA kumar@seas.upenn.edu

Steven M. LaValle

University of Illinois Department of Computer Science 201 North Goodwin Avenue, 3318 Siebel Center Urbana, IL 61801, USA lavalle@cs.uiuc.edu

Florant Lamiraux

LAAS-CNRS 7 Avenue du Colonel Roche 31077 Toulouse, France florent@laas.fr

Roberto Lampariello

German Aerospace Center (DLR) Institute of Robotics and Mechatronics Münchner Strasse 20 82234 Wessling, Germany roberto.lampariello@dlr.de

Christian Laugier

INRIA Grenoble Rhône-Alpes 655 Avenue de l'Europe 38334 Saint Ismier, France christian.laugier@inria.fr

Jean-Paul Laumond

LAAS-CNRS 7 Avenue du Colonel Roche 31077 Toulouse, France jpl@laas.fr

Daniel D. Lee

University of Pennsylvania Department of Electrical Systems Engineering 460 Levine, 200 South 33rd Street Philadelphia, PA 19104, USA ddlee@seas.upenn.edu

Dongjun Lee

Seoul National University Department of Mechanical and Aerospace Engineering 301 Engineering Building, Gwanak-ro 599, Gwanak-gu Seoul, 51-742, Korea djlee@snu.ac.kr

Roland Lenain

IRSTEA Department of Ecotechnology 9 Avenue Blaise Pascal - CS20085 63178 Aubiere, France roland.lenain@irstea.fr

David Lentink

Stanford University Department of Mechanical Engineering 416 Escondido Mall Stanford, CA 94305, USA dlentink@stanford.edu

John J. Leonard

Massachusetts Institute of Technology Department of Mechanical Engineering 5-214 77 Massachusetts Avenue Cambridge, MA 02139, USA jleonard@mit.edu

Aleš Leonardis

University of Birmingham Department of Computer Science Edgbaston Birmingham, B15 2TT, UK a.leonardis@cs.bham.ac.uk

Stefan Leutenegger

Imperial College London South Kensington Campus, Department of Computing London, SW7 2AZ, UK s.leutenegger@imperial.ac.uk

Kevin M. Lynch

Northwestern University Department of Mechanical Engineering 2145 Sheridan Road Evanston, IL 60208, USA kmlynch@northwestern.edu

Anthony A. Maciejewski

Colorado State University Department of Electrical and Computer Engineering Fort Collins, CO 80523-1373, USA aam@colostate.edu

Robert Mahony

Australian National University (ANU) Research School of Engineering 115 North Road Canberra, ACT 2601, Australia robert.mahony@anu.edu.au

Joshua A. Marshall

Queen's University The Robert M. Buchan Department of Mining 25 Union Street Kingston, ON K7L 3N6, Canada joshua.marshall@queensu.ca

Maja J. Matarić

University of Southern California Computer Science Department 3650 McClintock Avenue Los Angeles, CA 90089, USA mataric@usc.edu

Yoshio Matsumoto

National Institute of Advanced Industrial Science and Technology (AIST) Robot Innovation Research Center 1-1-1 Umezono 305-8568 Tsukuba, Japan yoshio.matsumoto@aist.go.jp

J. Michael McCarthy

University of California at Irvine Department of Mechanical Engineering 5200 Engineering Hall Irvine, CA 92697-3975, USA immccart@uci.edu

Claudio Melchiorri

University of Bologna Laboratory of Automation and Robotics Via Risorgimento 2 40136 Bologna, Italy claudio.melchiorri@unibo.it

Arianna Menciassi

Sant'Anna School of Advanced Studies The BioRobotics Institute Piazza Martiri della Libertà 34 56127 Pisa, Italy a.menciassi@sssup.it

Jean-Pierre Merlet

INRIA Sophia-Antipolis 2004 Route des Lucioles 06560 Sophia-Antipolis, France jean-pierre.merlet@sophia.inria.fr

Giorgio Metta

Italian Institute of Technology iCub Facility Via Morego 30 16163 Genoa, Italy giorgio.metta@iit.it

François Michaud

University of Sherbrooke Department of Electrical Engineering and **Computer Engineering** 2500 Boul. Université Sherbrooke, J1N4E5, Canada francois.michaud@usherbrooke.ca

David P. Miller

University of Oklahoma School of Aerospace and Mechanical Engineering 865 Asp Avenue Norman, OK 73019, USA dpmiller@ou.edu

Javier Minguez

University of Zaragoza **Department of Computer Science and Systems** Engineering C/María de Luna 1 50018 Zaragoza, Spain jminguez@unizar.es

Pascal Morin

University Pierre and Marie Curie Institute for Intelligent Systems and Robotics 4 Place Jussieu 75005 Paris, France morin@isir.upmc.fr

Mario E. Munich

iRobot Corp. 1055 East Colorado Boulevard, Suite 340 Pasadena, CA 91106, USA mariomu@ieee.org

Robin R. Murphy

Texas A&M University Department of Computer Science and Engineering 333 H.R. Bright Building College Station, TX 77843-3112, USA murphy@cse.tamu.edu

Bilge Mutlu

University of Wisconsin-Madison **Department of Computer Sciences** 1210 West Dayton Street Madison, WI 53706, USA bilge@cs.wisc.edu

Keiji Nagatani

Tohoku University Department of Aerospace Engineering, **Graduate School of Engineering** 6-6-01, Aramaki aza Aoba 980-8579 Sendai, Japan keiji@ieee.org

Daniele Nardi

Sapienza University of Rome Department of Computer, Control, and Management Engineering Via Ariosto 25 00185 Rome, Italy nardi@dis.uniroma1.it

Eduardo Nebot

University of Sydney Department of Aerospace, Mechanical and Mechatronic Engineering Sydney, NSW 2006, Australia eduardo.nebot@sydney.edu.au

Bradley J. Nelson

ETH Zurich Institute of Robotics and Intelligent Systems Tannenstrasse 3 8092 Zurich, Switzerland bnelson@ethz.ch

Duy Nguyen-Tuong

Robert Bosch GmbH Corporate Research Wernerstrasse 51 70469 Stuttgart, Germany duy@robot-learning.de

Monica Nicolescu

University of Nevada Department of Computer Science and Engineering 1664 North Virginia Street, MS 171 Reno, NV 8955, USA monica@unr.edu

Günter Niemeyer

Disney Research 1401 Flower Street Glendale, CA 91201-5020, USA qunter.niemeyer@email.disney.com

Klas Nilsson

Lund Institute of Technology Department of Computer Science 22100 Lund, Sweden klas.nilsson@cs.lth.se

Stefano Nolfi

National Research Council (CNR) Institute of Cognitive Sciences and Technologies Via S. Martino della Battaglia 44 00185 Rome, Italy stefano.nolfi@istc.cnr.it

Illah Nourbakhsh

Carnegie Mellon University **Robotics Institute** 500 Forbes Avenue Pittsburgh, PA 15213-3890, USA illah@andrew.cmu.edu

Andreas Nüchter

University of Würzburg Informatics VII - Robotics and Telematics Am Hubland 97074 Würzburg, Germany andreas@nuechti.de

Paul Y. Oh

University of Nevada Department of Mechanical Engineering 3141 Chestnut Street Las Vegas, PA 19104, USA paul@coe.drexel.edu

Yoshito Okada

Tohoku University Department of Aerospace Engineering, **Graduate School of Engineering** 6-6-01, Aramaki aza Aoba 980-8579 Sendai, Japan okada@rm.is.tohoku.ac.jp

Allison M. Okamura

Stanford University Department of Mechanical Engineering 416 Escondido Mall Stanford, CA 94305-2203, USA aokamura@stanford.edu

Fiorella Operto

Scuola di Robotica Piazza Monastero 4 16149 Genoa, Italy operto@scuoladirobotica.it

David E. Orin

The Ohio State University Department of Electrical and Computer Engineering 2015 Neil Avenue Columbus, OH 43210-1272, USA orin.1@osu.edu

Giuseppe Oriolo

University of Rome "La Sapienza" Department of Computer, Control, and Management Engineering Via Ariosto 25 00185 Rome, Italy oriolo@diag.uniroma1.it

Christian Ott

German Aerospace Center (DLR) Institute of Robotics and Mechatronics Münchner Strasse 20 82234 Wessling, Germany christian.ott@dlr.de

Ümit Özgüner

Ohio State University Department of Electrical and Computer Engineering 2015 Neil Avenue Columbus, OH 43210, USA umit@ee.eng.ohio-state.edu

Nikolaos Papanikolopoulos

University of Minnesota Department of Computer Science and Engineering 200 Union Street SE Minneapolis, MN 55455, USA npapas@cs.umn.edu

Frank C. Park

Seoul National University Mechanical and Aerospace Engineering Kwanak-ku, Shinlim-dong, San 56-1 Seoul, 151-742, Korea fcp@snu.ac.kr

Jaeheung Park

Seoul National University Department of Transdisciplinary Studies Gwanggyo-ro 145, Yeongtong-gu Suwon, Korea park73@snu.ac.kr

Lynne E. Parker

University of Tennessee Department of Electrical Engineering and Computer Science 1520 Middle Drive Knoxville, TN 37996, USA leparker@utk.edu

Federico Pecora

University of Örebro School of Science and Technology Fakultetsgatan 1 70182 Örebro, Sweden federico.pecora@oru.se

Jan Peters

Technical University Darmstadt Autonomous Systems Lab Hochschulstrasse 10 64289 Darmstadt, Germany mail@jan-peters.net

Anna Petrovskaya

Stanford University Department of Computer Science 353 Serra Mall Stanford, CA 94305, USA anya@cs.stanford.edu

J. Norberto Pires

University of Coimbra Department of Mechanical Engineering Palácio dos Grilos, Rua da Ilha 3000-214 Coimbra, Portugal norberto@uc.pt

Paolo Pirjanian

iRobot Corp. 8 Crosby Drive Bedford, MA 01730, USA paolo.pirjanian@gmail.com

Erwin Prassler

Bonn-Rhein-Sieg Univ. of Applied Sciences **Department of Computer Sciences** Grantham-Allee 20 53754 Sankt Augustin, Germany erwin.prassler@h-brs.de

Domenico Prattichizzo

University of Siena **Department of Information Engineering** Via Roma 56 53100 Siena, Italy prattichizzo@ing.unisi.it

Carsten Preusche

German Aerospace Center (DLR) Institute of Robotics and Mechatronics Münchner Strasse 20 82234 Wessling, Germany carsten.preusche@dlr.de

William Provancher

University of Utah Department of Mechanical Engineering 50 South Central Campus Drive Salt Lake City, UT 84112-9208, USA wil@mech.utah.edu

John Reid

John Deere Co. Moline Technology Innovation Center One John Deere Place Moline, IL 61265, USA reidjohnf@johndeere.com

David J. Reinkensmeyer

University of California at Irvine Mechanical and Aerospace Engineering and Anatomy and Neurobiology 4200 Engineering Gateway Irvine, CA 92697-3875, USA dreinken@uci.edu

Jonathan Roberts

Queensland University of Technology Department of Electrical Engineering and **Computer Science** 2 George Street Brisbane, QLD 4001, Australia jonathan.roberts@qut.edu.au

Nicholas Roy

Massachusetts Institute of Technology Department of Aeronautics and Astronautics 77 Massachusetts Avenue 33-315 Cambridge, MA 02139, USA nickroy@csail.mit.edu

Daniela Rus

Massachusetts Institute of Technology **CSAIL Center for Robotics** 32 Vassar Street Cambridge, MA 02139, USA rus@csail.mit.edu

Selma Šabanović

Indiana University Bloomington School of Informatics and Computing 919 East 10th Street Bloomington, IN 47408, USA selmas@indiana.edu

Kamel S. Saidi

National Institute of Standards and Technology **Building and Fire Research Laboratory** 100 Bureau Drive Gaitherbsurg, MD 20899-1070, USA kamel.saidi@nist.gov

Claude Samson

INRIA Sophia-Antipolis 2004 Route des Lucioles 06560 Sophia-Antipolis, France claude.samson@inria.fr

Brian Scassellati

Yale University Computer Science, Cognitive Science, and Mechanical Engineering 51 Prospect Street New Haven, CT 06520-8285, USA scaz@cs.yale.edu

Stefan Schaal

University of Southern California Depts. of Computer Science, Neuroscience, and **Biomedical Engineering** 3710 South McClintock Avenue Los Angeles, CA 90089-2905, USA sschaal@tuebingen.mpg.de

Steven Scheding

University of Sydney Rio Tinto Centre for Mine Automation Sydney, NSW 2006, Australia steven.scheding@sydney.edu.au

Victor Scheinman

Stanford University Department of Mechanical Engineering 440 Escondido Mall Stanford, CA 94305-3030, USA vds@stanford.edu

Bernt Schiele

Saarland University Department of Computer Science Campus E1 4 66123 Saarbrücken, Germany schiele@mpi-inf.mpg.de

James Schmiedeler

University of Notre Dame Department of Aerospace and Mechanical Engineering Notre Dame, IN 46556, USA schmiedeler.4@nd.edu

Bruno Siciliano

University of Naples Federico II Department of Electrical Engineering and Information Technology Via Claudio 21 80125 Naples, Italy bruno.siciliano@unina.it

Roland Siegwart

ETH Zurich Department of Mechanical Engineering Leonhardstrasse 21 8092 Zurich, Switzerland rsiegwart@ethz.ch

Reid Simmons

Carnegie Mellon University The Robotics Institute 5000 Forbes Avenue Pittsburgh, PA 15213, USA reids@cs.cmu.edu

Patrick van der Smagt

Technical University Munich Department of Computer Science, BRML Labs Arcisstrasse 21 80333 Munich, Germany smagt@brml.org

Dezhen Song

Texas A&M University Department of Computer Science 311B H.R. Bright Building College Station, TX 77843-3112, USA dzsong@cs.tamu.edu

Jae-Bok Song

Korea University Department of Mechanical Engineering Anam-ro 145, Seongbuk-gu Seoul, 136-713, Korea jbsong@korea.ac.kr

Cyrill Stachniss

University of Bonn Institute for Geodesy and Geoinformation Nussallee 15 53115 Bonn, Germany cyrill.stachniss@igg.uni-bonn.de

Michael Stark

Max Planck Institute of Informatics Department of Computer Vision and Multimodal Computing Campus E1 4 66123 Saarbrücken, Germany stark@mpi-inf.mpq.de

Amanda K. Stowers

Stanford University Department Mechanical Engineering 416 Escondido Mall Stanford, CA 94305-3030, USA astowers@stanford.edu

Stefano Stramigioli

University of Twente Faculty of Electrical Engineering, Mathematics & Computer Science, Control Laboratory 7500 AE, Enschede, The Netherlands s.stramigioli@utwente.nl

Gaurav S. Sukhatme

University of Southern California Department of Computer Science 3710 South McClintock Avenue Los Angeles, CA 90089-2905, USA gaurav@usc.edu

Satoshi Tadokoro

Tohoku University Graduate School of Information Sciences 6-6-01 Aramaki Aza Aoba, Aoba-ku 980-8579 Sendai, Japan tadokoro@rm.is.tohoku.ac.jp

Wataru Takano

University of Tokyo Department of Mechano-Informatics 7-3-1 Hongo, Bunkyo-ku 113-8656 Tokyo, Japan takano@ynl.t.u-tokyo.ac.jp

Russell H. Taylor

The Johns Hopkins University Department of Computer Science 3400 North Charles Street Baltimore, MD 21218, USA rht@jhu.edu

Russ Tedrake

Massachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory (CSAIL) The Stata Center, Vassar Street Cambridge, MA 02139, USA russt@csail.mit.edu

Sebastian Thrun

Udacity Inc. 2465 Latham Street, 3rd Floor Mountain View, CA 94040, USA info@udacity.com

Marc Toussaint

University of Stuttgart Machine Learning and Robotics Lab Universitätsstrasse 38 70569 Stuttgart, Germany marc.toussaint@ipvs.uni-stuttgart.de

James Trevelyan

The University of Western Australia School of Mechanical and Chemical Engineering 35 Stirling Highway Crawley, WA 6009, Australia james.trevelyan@uwa.edu.au

Jeffrey C. Trinkle

Rensselaer Polytechnic Institute Department of Computer Science 110 8th Street Troy, NY 12180-3590, USA trink@cs.rpi.edu

Masaru Uchiyama

Tohoku University **Graduate School of Engineering** 6-6-01 Aobayama 980-8579 Sendai, Japan uchiyama@space.mech.tohoku.ac.jp

H.F. Machiel Van der Loos

University of British Columbia Department of Mechanical Engineering 2054-6250 Applied Science Lane Vancouver, BC V6T 1Z4, Canada vdl@mech.ubc.ca

Manuela Veloso

Carnegie Mellon University Computer Science Department 5000 Forbes Avenue Pittsburgh, PA 15213, USA mmv@cs.cmu.edu

Gianmarco Veruggio

National Research Council (CNR) Institute of Electronics, Computer and Telecommunication Engineering Via De Marini 6 16149 Genoa, Italy gianmarco@veruggio.it

Luigi Villani

University of Naples Federico II Department of Electrical Engineering and Information Technology Via Claudio 21 80125 Naples, Italy luigi.villani@unina.it

Kenneth J. Waldron

University of Technology Sydney Centre of Mechatronics and Intelligent Systems City Campus, 15 Broadway Ultimo, NSW 2001, Australia kenneth.waldron@uts.edu.au

Ian D. Walker

Clemson University Department of Electrical and Computer Engineering 105 Riggs Hall Clemson, SC 29634, USA ianw@ces.clemson.edu

Christian Wallraven

Korea University Department of Brain and Cognitive Engineering, Cognitive Systems Lab Anam-Dong 5ga, Seongbuk-gu Seoul, 136-713, Korea wallraven@korea.ac.kr

Pierre-Brice Wieber

INRIA Grenoble Rhône-Alpes 655 Avenue de l'Europe 38334 Grenoble, France pierre-brice.wieber@inria.fr

Brian Wilcox

California Institute of Technology Jet Propulsion Laboratory 4800 Oak Ridge Grove Drive Pasadena, CA 91109, USA brian.h.wilcox@jpl.nasa.gov

Robert Wood

Harvard University School of Engineering and Applied Sciences 149 Maxwell-Dworkin Cambridge, MA 02138, USA rjwood@seas.harvard.edu

Jing Xiao

University of North Carolina Department of Computer Science **Woodward Hall** Charlotte, NC 28223, USA xiao@uncc.edu

Katsu Yamane

Disney Research 4720 Forbes Avenue, Suite 110 Pittsburgh, PA 15213, USA kyamane@disneyresearch.com

Mark Yim

University of Pennsylvania Department of Mechanical Engineering and **Applied Mechanics** 220 South 33rd Street Philadelphia, PA 19104, USA yim@seas.upenn.edu

Dana R. Yoerger

Woods Hole Oceanographic Institution Applied Ocean Physics & Engineering 266 Woods Hole Road Woods Hole, MA 02543-1050, USA dyoerger@whoi.edu

Kazuhito Yokoi

AIST Tsukuba Central 2 Intelligent Systems Research Institute 1-1-1 Umezono 305-8568 Tsukuba, Ibaraki, Japan kazuhito.yokoi@aist.go.jp

Fiichi Yoshida

National Institute of Advanced Industrial Science and Technology (AIST) CNRS-AIST Joint Robotics Laboratory, UMI3218/CRT 1-1-1 Umezono 305-8568 Tsukuba, Ibaraki, Japan e.yoshida@aist.go.jp

Kazuya Yoshida

Tohoku University Department of Aerospace Engineering Aoba 01 980-8579 Sendai, Japan yoshida@astro.mech.tohoku.ac.jp

Junku Yuh

Korea Institute of Science and Technology National Agenda Research Division Hwarangno 14-gil 5, Seongbuk-gu Seoul, 136-791, Korea yuh.junku@gmail.com

Alex Zelinsky

Department of Defence **DST Group Headquarters** 72-2-03, 24 Scherger Drive Canberra, ACT 2609, Australia alexzelinsky@yahoo.com

Contents

Lis	t of A	bbreviations	LXIII
1	1.1 1.2 1.3	A Brief History of Robotics The Robotics Community This Handbook. -References	1 1 3 4 5
Pa	rt A	Robotics Foundations	
2	Kineı	matics	
_		eth J. Waldron, James Schmiedeler	11
	2.1	Overview	12
	2.2	Position and Orientation Representation	12
	2.3	Joint Kinematics	21
	2.4	Geometric Representation	25
	2.5	Workspace	27
	2.6	Forward Kinematics	28
	2.7	Inverse Kinematics	29
	2.8	Forward Instantaneous Kinematics	31
	2.9	Inverse Instantaneous Kinematics	32
	2.10	Static Wrench Transmission	33
	2.11	Conclusions and Further Reading	33
	Refer	ences	33
3	Dyna	mics	
		eatherstone, David E. Orin	37
	3.1	Overview	38
	3.2	Spatial Vector Notation	39
	3.3	Canonical Equations	45
	3.4	Dynamic Models of Rigid-Body Systems	47
	3.5	Kinematic Trees	51
	3.6	Kinematic Loops	58
	3.7	Conclusions and Further Reading	61
	Refer	ences	63
4	Mech	nanism and Actuation	
	Victor	Scheinman, J. Michael McCarthy, Jae-Bok Song	67
	4.1	Overview	68
	4.2	System Features	68
	4.3	Kinematics and Kinetics	69
	4.4	Serial Robots	72
	4.5	Parallel Robots	73
	4.6	Mechanical Structure	75
	4.7	Joint Mechanisms	76

	8.11 Learning Control	190
	Video-References	191
	References	191
9	Force Control	
	Luigi Villani, Joris De Schutter	195
	9.1 Background	195
	9.2 Indirect Force Control	198
	9.3 Interaction Tasks	205
	9.4 Hybrid Force/Motion Control	211
		216
	Video-References	217
	References	218
10	Redundant Robots	
	Stefano Chiaverini, Giuseppe Oriolo, Anthony A. Maciejewski	221
	10.1 Overview	221
	10.2 Task-Oriented Kinematics	224
	10.3 Inverse Differential Kinematics	227
	10.4 Redundancy Resolution via Optimization	232
	10.5 Redundancy Resolution via Task Augmentation	233
	10.6 Second-Order Redundancy Resolution	236
	10.7 Cyclicity	237
	10.8 Fault Tolerance	237
	10.9 Conclusion and Further Reading	239
	Video-References	239
	References	240
	References	240
11	Robots with Flexible Elements	
	Alessandro De Luca, Wayne J. Book	243
	11.1 Robots with Flexible Joints	244
	11.2 Robots with Flexible Johns	263
	Video-References	279
	References	279
4.5	Debetic Costone Anality stone and December 1	
12	Robotic Systems Architectures and Programming	202
	David Kortenkamp, Reid Simmons, Davide Brugali	283
	12.1 Overview	283
	12.2 History	285
	12.3 Architectural Components	289
	12.4 Case Study – GRACE	296
	12.5 The Art of Robot Architectures	298
	12.6 Implementing Robotic Systems Architectures	299
	12.7 Conclusions and Further Reading	302
	Video-References	302
	References	302
		302
13	Behavior-Based Systems	
	François Michaud, Monica Nicolescu	307
	13.1 Robot Control Approaches	308
	13.2 Basic Principles of Behavior–Based Systems	310
	43.4 DUJIC FIIIICIDIES DI DEHAVIDI DASEU SYSLEIIIS	$ ^{1}$ U

13.3	Basis Behaviors	313
13.4	Representation in Behavior-Based Systems	313
13.5	Learning in Behavior-Based Systems	314
13.6	Applications and Continuing Work	318
13.7	Conclusions and Further Reading	322
Video	-References	322
	ences	323
	asoning Methods for Robotics	
Micho	nel Beetz, Raja Chatila, Joachim Hertzberg, Federico Pecora	329
14.1	Why Should a Robot Use Al-Type Reasoning?	330
14.2	Knowledge Representation and Processing	330
14.3	Reasoning and Decision Making	338
14.4	Plan-Based Robot Control	346
14.5	Conclusions and Further Reading	351
Video	-References	351
Refer	ences	352
	t Learning	
	eters, Daniel D. Lee, Jens Kober, Duy Nguyen-Tuong,	
	drew Bagnell, Stefan Schaal	357
15.1	What Is Robot Learning	358
15.2	Model Learning	360
15.3	Reinforcement Learning	372
15.4	Conclusions	385
Video	-References	386
Refer	ences	386
	p. 1	
Part B	Design	
16 Docie	en and Dorformanco Evaluation	
	gn and Performance Evaluation Angeles, Frank C. Park	399
16.1	The Robot Design Process	400
16.2	Workspace Criteria	401
16.3	•	401
	Dexterity Indices	403
16.4	Other Performance Indices	
16.5	Other Robot Types	411 416
16.6	• • • • • • • • • • • • • • • • • • • •	
кетег	ences	416
17 Limb	ed Systems	
	ii Kajita, Christian Ott	419
17.1	Design of Limbed Systems	420
17.2	Conceptual Design	420
17.3	Whole Design Process Example	423
17.4	Model Induced Design	427
17.4	Various Limbed Systems	434
17.5		
	Performance Indices	437
	-References	439
Keter	ences	440

18		el Mechanisms	
	Jean-I	Pierre Merlet, Clément Gosselin, Tian Huang	443
	18.1	Definitions	443
	18.2	Type Synthesis of Parallel Mechanisms	445
	18.3	Kinematics	446
	18.4	Velocity and Accuracy Analysis	447
	18.5	Singularity Analysis	448
	18.6	Workspace Analysis	450
	18.7	Static Analysis	451
	18.8	Dynamic Analysis	452
	18.9	Design	452
	18.10	Wire-Driven Parallel Robots	453
	18.11	Application Examples	455
	18.12	Conclusion and Further Reading	455
	Video-	-References	456
	Refere	nces	456
19	Robot	Hands	
	Claudi	o Melchiorri, Makoto Kaneko	463
	19.1	Basic Concepts	464
	19.2	Design of Robot Hands	465
	19.3	Technologies for Actuation and Sensing	470
	19.4	Modeling and Control of a Robot Hand	473
	19.5	Applications and Trends	477
	19.6	Conclusions and Further Reading	478
	Video-	-References	478
	Refere	nces	479
20	Snake	-Like and Continuum Robots	
		Walker, Howie Choset, Gregory S. Chirikjian	481
	20.1	Snake Robots – Short History	481
	20.2	Continuum Robots – Short History	485
	20.3	Snake-Like and Continuum Robot Modeling	487
	20.4	Modeling of Locomotion for Snake-Like	
		and Continuum Mechanisms	491
	20.5	Conclusion and Extensions to Related Areas	492
	Video-	-References	492
	Refere	nces	493
21	Actua	tors for Soft Robotics	
		bu-Schäffer, Antonio Bicchi	499
	21.1	Background	500
	21.2	Soft Robot Design	502
	21.3	Modeling Actuators for Soft Robotics	508
	21.4	Modeling Soft Robots	511
	21.5	Stiffness Estimation	513
	21.6	Cartesian Stiffness Control	515
	21.7	Periodic Motion Control	518
	21.8	Optimal Control of Soft Robots	521
	21.9	Conclusions and Open Problems	524

	26.5	Rotorcraft Modeling and Design	647
	26.6	Flapping Wing Modeling and Design	653
	26.7	System Integration and Realization	659
	26.8	Applications of Aerial Robots	662
	26.9	Conclusions and Further Reading	666
	Video	-References	666
	Refere	ences	667
27	Micro	-/Nanorobots	
- '		ey J. Nelson, Lixin Dong, Fumihito Arai	671
	27.1	Overview of Micro- and Nanorobotics	671
	27.2	Scaling	674
	27.3	Actuation at the Micro- and Nanoscales	675
	27.4	Imaging at the Micro- and Nanoscales	676
	27.5	Fabrication	678
	27.6	Microassembly	681
	27.7	Microrobotics	687
	27.8	Nanorobotics	692
	27.9	Conclusions	704
		-References	704
		ences	705
Da	-+ C	Consing and Desception	
Pa	11 (Sensing and Perception	
28	Force	and Tactile Sensing	
28		and Tactile Sensing R. Cutkosky, William Provancher	717
28			717 717
28	Mark	R. Cutkosky, William Provancher	
28	<i>Mark</i> 28.1	R. Cutkosky, William Provancher	717
28	<i>Mark</i> 28.1 28.2	R. Cutkosky, William Provancher Overview	717 718
28	Mark 28.1 28.2 28.3	R. Cutkosky, William Provancher Overview Sensor Types Tactile Information Processing	717 718 725
28	Mark 28.1 28.2 28.3 28.4 28.5	R. Cutkosky, William Provancher Overview Sensor Types Tactile Information Processing Integration Challenges	717 718 725 730
28	Mark 28.1 28.2 28.3 28.4 28.5 Video	R. Cutkosky, William Provancher. Overview Sensor Types Tactile Information Processing Integration Challenges Conclusions and Future Developments	717 718 725 730 731
	Mark 28.1 28.2 28.3 28.4 28.5 Video Refere	R. Cutkosky, William Provancher Overview Sensor Types Tactile Information Processing Integration Challenges Conclusions and Future Developments -References	717 718 725 730 731 731
	Mark 28.1 28.2 28.3 28.4 28.5 Video Refere	R. Cutkosky, William Provancher Overview Sensor Types Tactile Information Processing Integration Challenges Conclusions and Future Developments References Ences Tall Sensing, GPS and Odometry	717 718 725 730 731 731
	Mark 28.1 28.2 28.3 28.4 28.5 Video Refere Grego	R. Cutkosky, William Provancher Overview Sensor Types Tactile Information Processing Integration Challenges Conclusions and Future Developments -References ences al Sensing, GPS and Odometry ry Dudek, Michael Jenkin	717 718 725 730 731 731 731
	Mark 28.1 28.2 28.3 28.4 28.5 Video Refere Inerti Grego 29.1	R. Cutkosky, William Provancher Overview Sensor Types Tactile Information Processing Integration Challenges Conclusions and Future Developments -References ences Ital Sensing, GPS and Odometry ry Dudek, Michael Jenkin Odometry	717 718 725 730 731 731 737
	Mark 28.1 28.2 28.3 28.4 28.5 Video Refere Inerti Grego 29.1 29.2	R. Cutkosky, William Provancher Overview Sensor Types Tactile Information Processing Integration Challenges Conclusions and Future Developments -References Inces Inces In I Sensing, GPS and Odometry Ty Dudek, Michael Jenkin Odometry Gyroscopic Systems	717 718 725 730 731 731 731 737 737
	Mark 28.1 28.2 28.3 28.4 28.5 Video Refere Inerti Grego 29.1 29.2 29.3	R. Cutkosky, William Provancher Overview Sensor Types Tactile Information Processing Integration Challenges Conclusions and Future Developments -References Ences Tal Sensing, GPS and Odometry Try Dudek, Michael Jenkin Odometry Gyroscopic Systems Accelerometers	717 718 725 730 731 731 737 737 739 742
	Mark 28.1 28.2 28.3 28.4 28.5 Video Refere Inerti Grego 29.1 29.2 29.3 29.4	R. Cutkosky, William Provancher Overview Sensor Types Tactile Information Processing Integration Challenges Conclusions and Future Developments -References Ences Tal Sensing, GPS and Odometry Try Dudek, Michael Jenkin Odometry Gyroscopic Systems Accelerometers IMU Packages	717 718 725 730 731 731 737 737 737 742 743
	Mark 28.1 28.2 28.3 28.4 28.5 Video Refere Inerti Grego 29.1 29.2 29.3 29.4 29.5	R. Cutkosky, William Provancher Overview Sensor Types Tactile Information Processing Integration Challenges Conclusions and Future Developments References Ences Ial Sensing, GPS and Odometry Try Dudek, Michael Jenkin Odometry Gyroscopic Systems Accelerometers IMU Packages Satellite-Based Positioning (GPS and GNSS)	717 718 725 730 731 731 737 737 739 742 743
	Mark 28.1 28.2 28.3 28.4 28.5 Video Refere Inerti Grego 29.1 29.2 29.3 29.4 29.5 29.6	R. Cutkosky, William Provancher Overview Sensor Types Tactile Information Processing Integration Challenges Conclusions and Future Developments References Ences Ital Sensing, GPS and Odometry Try Dudek, Michael Jenkin Odometry Gyroscopic Systems Accelerometers IMU Packages Satellite-Based Positioning (GPS and GNSS) GPS-IMU Integration	717 718 725 730 731 731 737 737 739 742 743 744 749
	Mark 28.1 28.2 28.3 28.4 28.5 Video Refere 1nerti Grego 29.1 29.2 29.3 29.4 29.5 29.6 29.7	R. Cutkosky, William Provancher Overview Sensor Types Tactile Information Processing Integration Challenges Conclusions and Future Developments -References Integration, GPS and Odometry Try Dudek, Michael Jenkin Odometry Gyroscopic Systems Accelerometers IMU Packages Satellite-Based Positioning (GPS and GNSS) GPS-IMU Integration Further Reading	717 718 725 730 731 731 737 737 739 742 743 744 749 750
	Mark 28.1 28.2 28.3 28.4 28.5 Video Refere 1nerti Grego 29.1 29.2 29.3 29.4 29.5 29.6 29.7 29.8	R. Cutkosky, William Provancher Overview Sensor Types Tactile Information Processing Integration Challenges Conclusions and Future Developments -References Inces I	717 718 725 730 731 731 737 737 739 742 743 744 749 750
29	Mark 28.1 28.2 28.3 28.4 28.5 Video Refere 1nerti Grego 29.1 29.2 29.3 29.4 29.5 29.6 29.7 29.8 Refere	R. Cutkosky, William Provancher Overview Sensor Types Tactile Information Processing Integration Challenges Conclusions and Future Developments References Integration GPS and Odometry Ty Dudek, Michael Jenkin Odometry Gyroscopic Systems Accelerometers IMU Packages Satellite—Based Positioning (GPS and GNSS) GPS—IMU Integration Further Reading Currently Available Hardware	717 718 725 730 731 731 737 737 739 742 743 744 749 750
29	Mark 28.1 28.2 28.3 28.4 28.5 Video Refere 1nerti Grego 29.1 29.2 29.3 29.4 29.5 29.6 29.7 29.8 Refere Sonal	R. Cutkosky, William Provancher Overview Sensor Types Tactile Information Processing Integration Challenges Conclusions and Future Developments References Inces In	717 718 725 730 731 731 737 737 739 742 743 744 749 750 751
29	Mark 28.1 28.2 28.3 28.4 28.5 Video Refere 1nerti Grego 29.1 29.2 29.3 29.4 29.5 29.6 29.7 29.8 Refere Sonal Lindso	R. Cutkosky, William Provancher Overview Sensor Types Tactile Information Processing Integration Challenges Conclusions and Future Developments References Inces In	717 718 725 730 731 731 737 737 739 742 743 744 749 750 751
29	Mark 28.1 28.2 28.3 28.4 28.5 Video Refere Inerti Grego 29.1 29.2 29.3 29.4 29.5 29.6 29.7 29.8 Refere Sonal Lindso 30.1	R. Cutkosky, William Provancher Overview Sensor Types Tactile Information Processing Integration Challenges Conclusions and Future Developments References Inces In	717 718 725 730 731 731 737 737 739 742 743 744 750 750 751
29	Mark 28.1 28.2 28.3 28.4 28.5 Video Refere 1nerti Grego 29.1 29.2 29.3 29.4 29.5 29.6 29.7 29.8 Refere Sonal Lindso	R. Cutkosky, William Provancher Overview Sensor Types Tactile Information Processing Integration Challenges Conclusions and Future Developments References Inces In	717 718 725 730 731 731 737 737 739 742 743 744 749 750 751

	34.9	Eye-in-Hand and Eye-to-Hand Systems Controlled	
		in the Joint Space	860
	34.10	Under Actuated Robots	861
		Applications	863
	34.12	Conclusions	863
		-References	863
	Refere	nces	863
35	Multi	sensor Data Fusion	
	Hugh	Durrant-Whyte, Thomas C. Henderson	867
	35.1	Multisensor Data Fusion Methods	867
	35.2	Multisensor Fusion Architectures	880
	35.3	Applications	885
	35.4	Conclusions	889
	Video-	-References	889
	Refere	nces	890
D-	4. D	Manipulation and Interferen	
Ра	rt D	Manipulation and Interfaces	
36		n for Manipulation Tasks	007
		Kuffner, Jing Xiao	897
	36.1	Overview	898
	36.2	Task-Level Control	900
	36.3	Manipulation Planning	904
	36.4	Assembly Motion	911
	36.5	Unifying Feedback Control and Planning	918
	36.6	Conclusions and Further Reading	920
		-References	923 923
			923
37		ct Modeling and Manipulation (ao, Kevin M. Lynch, Joel W. Burdick	931
	37.1	Overview	931
	37.2	Kinematics of Rigid-Body Contact	932
	37.3	Forces and Friction	936
	37.4	Rigid-Body Mechanics with Friction	939
	37.5	Pushing Manipulation	942
	37.6	Contact Interfaces and Modeling	943
	37.7	Friction Limit Surface	946
	37.8	Contacts in Grasping and Fixture Designs	949
	37.9	Conclusions and Further Reading	950
		-References	951
		nces	951
20			
38	Grasp Dome	Ing nico Prattichizzo, Jeffrey C. Trinkle	955
	38.1	Models and Definitions	956
	38.2	Controllable Twists and Wrenches	961
	38.3	Compliant Grasps	965
	38.4	Restraint Analysis	967

	8.5 Examples	975
	8.6 Conclusion and Further Reading	985
	ideo-References	986
	eferences	986
		300
39	poperative Manipulation	
	abrizio Caccavale, Masaru Uchiyama	989
	9.1 Historical Overview	990
	9.2 Kinematics and Statics	991
	9.3 Cooperative Task Space	995
	9.4 Dynamics and Load Distribution	996
	9.5 Task-Space Analysis	998
	9.6 Control	999
	9.7 Conclusions and Further Reading	1003
	deo-References	1004
	eferences	1004
40	lobility and Manipulation	
	liver Brock, Jaeheung Park, Marc Toussaint	1007
	0.1 Grasping and Manipulation	1009
	0.2 Control	1013
	0.3 Motion Generation	1017
	0.4 Learning	1021
	0.5 Perception	1025
	0.6 Conclusions and Further Reading	1029
	deo-References	1029
	eferences	1030
1.1	ctive Manipulation for Perception	
41	nna Petrovskaya, Kaijen Hsiao	1037
	1.1 Perception via Manipulation	1037
	1.2 Object Localization	1038
	1.3 Learning About an Object	1049
	1.4 Recognition	1054
	1.5 Conclusions	1057
	ideo-References	1058
	eferences	1058
		1030
42	aptics	
	lake Hannaford, Allison M. Okamura	1063
	2.1 Overview	1064
	2.2 Haptic Device Design	1068
	2.3 Haptic Rendering	1071
	2.4 Control and Stability of Force Feedback Interfaces	1073
	2.5 Other Types of Haptic Interfaces	1075
	2.6 Conclusions and Further Reading	1079
	eferences	1079
43	elerobotics	400-
	ünter Niemeyer, Carsten Preusche, Stefano Stramigioli, Dongjun Lee	1085 1085

	43.2	Telerobotic Systems and Applications	1087
	43.3	Control Architectures	1090
	43.4	Bilateral Control and Force Feedback	1095
	43.5	Emerging Applications of Telerobotics	1101
	43.6	Conclusions and Further Reading	1104
	Video	-References	1104
	Refere	ences	1105
44		orked Robots	
		n Song, Ken Goldberg, Nak-Young Chong	1109
	44.1	Overview and Background	1109
	44.2	A Brief History	1110
	44.3	Communications and Networking	1112
	44.4	Properties of Networked Robots	1115
	44.5	Cloud Robotics	1121
	44.6	Conclusion and Future Directions	1125
		-References	1126
	Refere	ences	1126
Pa	rt E	Moving in the Environment	
45	World	d Modeling	
		am Burgard, Martial Hebert, Maren Bennewitz	1135
	45.1	Historical Overview	1136
	45.2	Models for Indoors and Structured Environments	1137
	45.3	World and Terrain Models for Natural Environments	1141
	45.4	Dynamic Environments	1149
	45.5	Summary and Further Reading	1149
	Video •	-References	1150
	Refere	ences	1150
46		Itaneous Localization and Mapping	
	Cyrill S	Stachniss, John J. Leonard, Sebastian Thrun	1153
	46.1	SLAM: Problem Definition	1154
	46.2	The Three Main SLAM Paradigms	1157
	46.3	Visual and RGB-D SLAM	1166
	46.4	Conclusion and Future Challenges	1169
		-References	1170
	Refere	ences	1171
		on Planning and Obstacle Avoidance	4477
		Minguez, Florant Lamiraux, Jean-Paul Laumond	1177
	47.1	Nonholonomic Mobile Robots: Where Motion Planning	1170
	67.2	Meets Control Theory	1178
	47.2	Kinematic Constraints and Controllability	1179
	47.3	Motion Planning and Small-Time Controllability	1180
	47.4	Local Steering Methods and Small-Time Controllability	1181
	47.5	Robots and Trailers	1184
	47.6	Approximate Methods	1186
	47.7	From Motion Planning to Obstacle Avoidance	1187

	47.8	Definition of Obstacle Avoidance	1187
	47.9	Obstacle Avoidance Techniques	1188
	47.10	Robot Shape, Kinematics, and Dynamics in Obstacle Avoidance	1194
	47.11	Integration Planning – Reaction	1196
	47.12	Conclusions, Future Directions, and Further Reading	1198
	Video-	-References	1199
	Refere	nces	1199
48	Mode	ling and Control of Legged Robots	
	Pierre-	-Brice Wieber, Russ Tedrake, Scott Kuindersma	1203
	48.1	A Brief History of Legged Robots	1204
	48.2	The Dynamics of Legged Locomotion	1204
	48.3	Stability Analysis – Not Falling Down	1209
	48.4	Generation of Dynamic Walking and Running Motions	1214
	48.5	Motion and Force Control	1222
	48.6	Towards More Efficient Walking	1225
	48.7	Different Contact Behaviors	1227
	48.8	Conclusion	1228
	Refere	nces	1228
49	Mode	ling and Control of Wheeled Mobile Robots	
	Claude	Samson, Pascal Morin, Roland Lenain	1235
	49.1	Background	1236
	49.2	Control Models	1238
	49.3	Adaptation of Control Methods for Holonomic Systems	1240
	49.4	Methods Specific to Nonholonomic Systems	1241
	49.5	Path Following in the Case of Nonideal Wheel-Ground Contact	1255
	49.6	Complementary Issues and Bibliographical Guide	1261
	Video-	-References	1263
	Refere	nces	1263
50		ling and Control of Robots on Rough Terrain	
	Keiji N	agatani, Genya Ishigami, Yoshito Okada	1267
	50.1	Overview	1268
	50.2	Modeling of Wheeled Robot in Rough Terrain	1270
	50.3	Control of Wheeled Robot in Rough Terrain	1274
	50.4	Modeling of Tracked Vehicle on Rough Terrain	1276
	50.5	Stability Analysis of Tracked Vehicles	1278
	50.6	Control of Tracked Vehicle on Rough Terrain	1279
	50.7	Summary	1281
		-References	1281
	Refere	nces	1282
51		ling and Control of Underwater Robots	
		ıca Antonelli, Thor I. Fossen, Dana R. Yoerger	1285
	51.1	The Expanding Role of Marine Robotics in Oceanic Engineering	1285
	51.2	Underwater Robotics	1287
	51.3	Applications	1302
	51.4	Conclusions and Further Reading	1303
		-References	1304
	Refere	nces	1304

52 M	odeling and	Control of Aerial Robots	
Ro	bert Mahony,	Randal W. Beard, Vijay Kumar	1307
52	2.1 Overview	<i>!</i>	1307
52	2 Modeling	g Aerial Robotic Vehicles	1309
52	3 Control		1316
52	.4 Trajectory	y Planning	1324
52	5 Estimatin	ng the Vehicle State	1328
52	.6 Conclusio	n	1330
Vi	deo-Reference	es	1331
Re	ferences		1331
53 M	ultiple Mobil	le Robot Systems	
		Daniela Rus, Gaurav S. Sukhatme	1335
			1336
		ures for Multirobot Systems	1337
		ication	1339
		ed Mobile Robots	1340
		obots	1351
		Robotics	1354
		neity	1357
		cation	1359
			1361
	U	000	
		Ons	1362
		ons and Further Reading	1366
		es	1366
RE	rierences		1367
D- "+	C Doboto	at Maul	
Part	r KODOLS	at Work	
54 In	dustrial Rob	otics	
M	artin Hägele, I	Klas Nilsson, J. Norberto Pires, Rainer Bischoff	1385
54	.1 Industria	I Robotics: The Main Driver for Robotics Research	
	and Appl	lication	1386
54	2 A Short H	listory of Industrial Robots	1386
54	.3 Industria	Robot Kinematics	1392
54	.4 Typical In	ndustrial Robot Applications	1393
5 <i>L</i>	.5 Safe Hum	nan-Robot Collaboration	1405
54		criptions – Teaching and Programming	1409
		ntegration	1414
54		and Long-Term Challenges	1416
		es	1418
			1418
EE Cr	aca Babatica	-	
	ace Robotics	, Brian Wilcox, Gerd Hirzinger, Roberto Lampariello	1423
		I Developments and Advances of Orbital Robotic Systems .	1424
		· · · · · · · · · · · · · · · · · · ·	
		I Developments and Advances of Surface Robotic Systems.	1430
		atical Modeling	1437
		rections of Orbital and Surface Robotic Systems	1452
55	5.5 Conclusio	ons and Further Reading	1457

	Video-References	1457
	References	1458
56	Robotics in Agriculture and Forestry	
	Marcel Bergerman, John Billingsley, John Reid, Eldert van Henten	1463
	56.1 Section Scope	1464
	56.2 Challenges and Opportunities	1465
	56.3 Case Studies	1467
	56.4 Conclusion	1487
	Video-References	1488
	References	1489
57	Robotics in Construction	
	Kamel S. Saidi, Thomas Bock, Christos Georgoulas	1493
	57.1 Overview	1494
	57.2 Offsite Applications of Robotics in Construction	1499
	57.3 Onsite Applications of Single Task Construction Robots	1504
	57.4 Integrated Robotized Construction Sites	1511
	57.5 Currently Unsolved Technical Problems	1514
	57.6 Future Directions	1516
	57.7 Conclusions and Further Reading	1516
	Video-References	1517
	References	1517
58	Robotics in Hazardous Applications	4 = 5 4
	James Trevelyan, William R. Hamel, Sung-Chul Kang	1521
	58.1 Operation in Hazardous Environments:	
	The Need for a Robotics Solution	1521
	58.2 Applications	1523
	58.3 Enabling Technologies	1537
	58.4 Conclusions and Further Reading	1544
	Video-References	1545
	References	1546
59	Robotics in Mining	4510
	Joshua A. Marshall, Adrian Bonchis, Eduardo Nebot, Steven Scheding	1549
	59.1 Modern Mining Practice	1550
	59.2 Surface Mining	1552
	59.3 Underground Mining	1562
	59.4 Challenges and Industry Acceptance	1568
	59.5 Challenges, Outlook, and Conclusion	1569
	Video-References	1571
	References	1572
	Disaster Debetics	
60	Disaster Robotics	4
	Robin R. Murphy, Satoshi Tadokoro, Alexander Kleiner	1577
	60.1 Overview	1578
	60.2 Disaster Characteristics and Impact on Robots	1581
	60.3 Robots Actually Used at Disasters	1582
	60.4 Robots at the Fukushima-Daiichi Nuclear Power Plant Accident	1588
	60.5 Lessons Learned, Challenges, and Novel Approaches	1591

	60.6	Evaluation	1598
	60.7	Conclusions and Further Reading	1600
	Video	-References	1601
	Refere	ences	1601
61	Poho	t Surveillance and Security	
01		ell H. Chun, Nikolaos Papanikolopoulos	1605
	61.1	Overview	1605
	61.2	Application Domains	1607
	61.3	Enabling Technologies	1608
	61.4	Active Research	1617
	61.5	Conclusion	1622
		-References	1623
	кетеге	ences	1623
62		igent Vehicles	
		o Broggi, Alex Zelinsky, Ümit Özgüner, Christian Laugier	1627
	62.1	The Motivation and Approaches to Intelligent Vehicles	1628
	62.2	Enabling Technologies	1632
	62.3	Road Scene Understanding	1635
	62.4	Advanced Driver Assistance	1639
	62.5	Driver Monitoring	1645
	62.6	Towards Fully Autonomous Vehicles	1647
	62.7	Future Trends and Prospects	1650
	62.8	Conclusions and Further Reading	1651
	Video	-References	1651
	Refere	ences	1652
63	Medi	cal Robotics and Computer-Integrated Surgery	
03		II H. Taylor, Arianna Menciassi, Gabor Fichtinger, Paolo Fiorini,	
		Dario	1657
	63.1	Core Concepts	1658
	63.2	Technology	1662
	63.3	Systems, Research Areas, and Applications	1667
	63.4	Conclusion and Future Directions	1675
		-References	1676
			1676
	Kelele	ences	1010
64		bilitation and Health Care Robotics	4.60
		lachiel Van der Loos, David J. Reinkensmeyer, Eugenio Guglielmelli .	1685
	64.1	Overview	1686
	64.2	Rehabilitation Therapy and Training Robots	1692
	64.3	Aids for People with Disabilities	1703
	64.4	Smart Prostheses and Orthoses	1711
	64.5	Augmentation for Diagnosis and Monitoring	1713
	64.6	Safety, Ethics, Access and Economics	1715
	64.7	Conclusions and Further Readings	1716
	Video	-References	1717
	Refere	ences	1718

65		estic Robotics	4 = 2 0
		Prassler, Mario E. Munich, Paolo Pirjanian, Kazuhiro Kosuge	1729
	65.1	Mobile Domestic Robotics	1730
	65.2	Enabling Technologies	1747
	65.3	Smart Homes	1754
		-References	1757
	Refer	ences	1757
66	Robo	tics Competitions and Challenges	
	Danie	ele Nardi, Jonathan Roberts, Manuela Veloso, Luke Fletcher	1759
	66.1	Introduction	1760
	66.2	Overview	1760
	66.3	Competitions Inspired by Human Competitions	1762
	66.4	Task-Oriented Competitions	1769
	66.5	Conclusion and Further Reading	1780
	Video	-References	1781
	Refer	ences	1781
Pa	rt G	Robots and Humans	
67		anoids	
		Fitzpatrick, Kensuke Harada, Charles C. Kemp, Yoshio Matsumoto,	
		nito Yokoi, Eiichi Yoshida	1789
	67.1	Why Humanoids?	1789
	67.2	History	1792
	67.3	What to Immitate?	1794
	67.4	Locomotion	1795
	67.5	Whole-Body Activities	1801
	67.6	Morphological Communication	1809
	67.7	Conclusions and Further Reading	1813
		-References	1813
	кетег	ences	1813
68		an Motion Reconstruction	4040
		Yamane, Wataru Takano	1819
	68.1		1819
	68.2 68.3	Models and Computations	1820
		0	1825
	68.4	Reconstruction for Robots	1829
		ences	1830 1831
	Keler	ences	1831
69		cal Human-Robot Interaction	465=
		Haddadin, Elizabeth Croft	1835
	69.1	Classification	1836
	69.2	Human Safety	1839
	69.3	Human-Friendly Robot Design	1847
	69.4	Control for Physical Interaction	1853
	69.5	Motion Planning for Human Environments	1859
	69.6	Interaction Planning	1862

	69.7 Conclusions and Challenges	1867 1868
	References	1869
70	Human-Robot Augmentation	
10	Massimo Bergamasco, Hugh Herr	1875
	70.1 Concept and Definitions	1876
	70.2 Upper Limb Wearable Systems	1877
	70.3 Lower Limb Wearable Systems	1882
	70.4 Whole Body Wearable Systems	1889
	70.5 Control of Human–Robot Augmentation Systems	1892
	70.6 Conclusions and Further Developments	1902
	Video-References	1902
	References	1902
71	Cognitive Human-Robot Interaction	
	Bilge Mutlu, Nicholas Roy, Selma Šabanović	1907
	71.1 Human Models of Interaction	1908
	71.2 Robot Models of Interaction	1914
	71.3 Models of Human–Robot Interaction	1916
	71.4 Conclusion and Further Reading	1927
	Video-References	1927
	References	1928
72	Social Robotics	1025
	Cynthia Breazeal, Kerstin Dautenhahn, Takayuki Kanda	1935
	72.1 Overview	1936
	72.2 Social Robot Embodiment	1936
	72.3 Social Robots and Social-Emotional Intelligence	1938
	72.4 Socio-Cognitive Skills	1941
	72.5 Human Social Responses to Social Robots	1944
	72.6 Social Robots and Communication Skills	1946
	72.7 Long-Term Interaction with Robot Companions	1950
	72.8 Tactile Interaction with Social Robots	1954
	72.9 Social Robots and Teamwork	1958
	72.10 Conclusion	1959
	72.11 Further Reading	1960
	Video-References	1960
	References	1961
7.	Carially Assisting Dalasting	
13	Socially Assistive Robotics	1073
	Maja J. Matarić, Brian Scassellati	1973 1973
	73.2 The Need for Socially Assistive Robotics	1974
	73.3 Advantages of Embodied Robots over Virtual Agents	1975
	73.4 Motivation, Autonomy, and Companionship	1977
	73.5 Influence and the Dynamics of Assistive Interaction	1978
	73.6 Personalization and Adaptation to Specific Needs and Abilities	1978
	73.7 Creating Long-Term Engagement and Behaviour Change	1979
	73.8 SAR for Autism Spectrum Disorder (ASD) Therapy	1980
	73.9 SAR Supporting Rehabilitation	1982

	73.10	SAR and Eldercare	1985
	73.11	SAR for Alzheimer's Dementia and Cognitive Rehabilitation	1986
		Ethical and Safety Considerations	1987
		nces	1988
74	Learn	ing from Humans	
		G. Billard, Sylvain Calinon, Rüdiger Dillmann	1995
	74.1	Learning of Robots	1995
	74.2	Key Issues When Learning from Human Demonstrations	1998
	74.3	Interfaces for Demonstration	2000
	74.4	Algorithms to Learn from Humans	2002
	74.5	Conclusions and Open Issues in Robot LfD	2008
	Video-	References	2009
	Refere	nces	2009
75	Biolog	gically Inspired Robotics	
		a lida, Auke Jan Ijspeert	2015
	75.1	General Background	2016
	75.2	Methodology	2017
	75.3	Case Studies	2021
	75.4	Landscape of Bio-Inspired Robotics Research and Challenges	2026
	75.5	Conclusion	2028
	Video-	References	2028
	Refere	nces	2029
76	Evolut	tionary Robotics	
		o Nolfi, Josh Bongard, Phil Husbands, Dario Floreano	2035
	76.1	Method	2036
	76.2	Et al. Cl	_000
		First Steps	2036
	76.3	Simulation and Reality	
	76.3 76.4		2036
		Simulation and Reality	2036 2040
	76.4	Simulation and Reality	2036 2040 2041
	76.4 76.5	Simulation and Reality Behavior as a Complex Adaptive System Evolving Bodies	2036 2040 2041 2044
	76.4 76.5 76.6	Simulation and Reality Behavior as a Complex Adaptive System Evolving Bodies Seeing the Light	2036 2040 2041 2044 2046
	76.4 76.5 76.6 76.7	Simulation and Reality Behavior as a Complex Adaptive System Evolving Bodies Seeing the Light Computational Neuroethology	2036 2040 2041 2044 2046 2049
	76.4 76.5 76.6 76.7 76.8 76.9 76.10	Simulation and Reality Behavior as a Complex Adaptive System Evolving Bodies Seeing the Light Computational Neuroethology Evolution and Learning Evolution of Social Behavior Evolutionary Hardware	2036 2040 2041 2044 2046 2049 2054
	76.4 76.5 76.6 76.7 76.8 76.9 76.10	Simulation and Reality Behavior as a Complex Adaptive System Evolving Bodies Seeing the Light Computational Neuroethology Evolution and Learning Evolution of Social Behavior	2036 2040 2041 2044 2046 2049 2054 2057
	76.4 76.5 76.6 76.7 76.8 76.9 76.10 76.11	Simulation and Reality Behavior as a Complex Adaptive System Evolving Bodies Seeing the Light Computational Neuroethology Evolution and Learning Evolution of Social Behavior Evolutionary Hardware	2036 2040 2041 2044 2046 2049 2054 2057 2060
	76.4 76.5 76.6 76.7 76.8 76.9 76.10 76.11 Video-	Simulation and Reality. Behavior as a Complex Adaptive System Evolving Bodies. Seeing the Light. Computational Neuroethology Evolution and Learning. Evolution of Social Behavior. Evolutionary Hardware Closing Remarks.	2036 2040 2041 2044 2046 2049 2054 2057 2060 2061
	76.4 76.5 76.6 76.7 76.8 76.9 76.10 76.11 Video-	Simulation and Reality. Behavior as a Complex Adaptive System Evolving Bodies. Seeing the Light Computational Neuroethology Evolution and Learning Evolution of Social Behavior. Evolutionary Hardware Closing Remarks References	2036 2040 2041 2044 2046 2049 2054 2057 2060 2061
77	76.4 76.5 76.6 76.7 76.8 76.9 76.10 76.11 Video- Refere	Simulation and Reality. Behavior as a Complex Adaptive System Evolving Bodies. Seeing the Light Computational Neuroethology Evolution and Learning Evolution of Social Behavior. Evolutionary Hardware Closing Remarks References	2036 2040 2041 2044 2046 2049 2054 2057 2060 2061
77	76.4 76.5 76.6 76.7 76.8 76.9 76.10 76.11 Video- Refere	Simulation and Reality. Behavior as a Complex Adaptive System Evolving Bodies. Seeing the Light. Computational Neuroethology Evolution and Learning. Evolution of Social Behavior. Evolutionary Hardware Closing Remarks. References nces	2036 2040 2041 2044 2046 2049 2054 2057 2060 2061
77	76.4 76.5 76.6 76.7 76.8 76.9 76.10 76.11 Video- Refere	Simulation and Reality. Behavior as a Complex Adaptive System Evolving Bodies. Seeing the Light Computational Neuroethology Evolution and Learning Evolution of Social Behavior. Evolutionary Hardware Closing Remarks References nces	2036 2040 2041 2044 2046 2054 2057 2060 2061 2062
77	76.4 76.5 76.6 76.7 76.8 76.9 76.10 Video- Refere	Simulation and Reality Behavior as a Complex Adaptive System Evolving Bodies Seeing the Light Computational Neuroethology Evolution and Learning Evolution of Social Behavior Evolutionary Hardware Closing Remarks References nces Probotics: From Vision to Action Evan der Smagt, Michael A. Arbib, Giorgio Metta	2036 2040 2041 2044 2046 2054 2057 2060 2061 2062
77	76.4 76.5 76.6 76.7 76.8 76.9 76.10 Video- Refere Neuro Patrick 77.1	Simulation and Reality. Behavior as a Complex Adaptive System Evolving Bodies. Seeing the Light Computational Neuroethology Evolution and Learning Evolution of Social Behavior. Evolutionary Hardware Closing Remarks References nces robotics: From Vision to Action a van der Smagt, Michael A. Arbib, Giorgio Metta Definitions and History	2036 2040 2041 2044 2046 2057 2060 2061 2062 2069 2070
77	76.4 76.5 76.6 76.7 76.8 76.9 76.10 Video- Refere Neuro Patrick 77.1 77.2	Simulation and Reality. Behavior as a Complex Adaptive System Evolving Bodies. Seeing the Light Computational Neuroethology Evolution and Learning Evolution of Social Behavior. Evolutionary Hardware Closing Remarks References nces robotics: From Vision to Action a van der Smagt, Michael A. Arbib, Giorgio Metta Definitions and History The Case for Vision	2036 2040 2041 2044 2046 2057 2057 2061 2061 2062 2069 2070 2071
77	76.4 76.5 76.6 76.7 76.8 76.9 76.10 Video- Refere Neuro Patrick 77.1 77.2 77.3	Simulation and Reality. Behavior as a Complex Adaptive System Evolving Bodies. Seeing the Light Computational Neuroethology Evolution and Learning. Evolution of Social Behavior. Evolutionary Hardware Closing Remarks References nces Probotics: From Vision to Action Evan der Smagt, Michael A. Arbib, Giorgio Metta Definitions and History The Case for Vision Vertebrate Motor Control	2036 2040 2041 2044 2046 2057 2052 2061 2061 2062 2070 2071 2075

78	Percei	otual Robotics	
		ch Bülthoff, Christian Wallraven, Martin A. Giese	2095
	78.1	Perceptual Mechanisms of Object Representations	2097
	78.2	Perceptual Mechanisms of Action Representation	2103
	78.3	Perceptual Validation of Robotics	2107
	78.4	Conclusion and Further Reading	2108
	Video-	References	2109
	Refere	nces	2109
79	Robot	ics for Education	
	David	P. Miller, Illah Nourbakhsh	2115
	79.1	The Role of Robots in Education	2116
	79.2	Educational Robot Tournaments	2117
	79.3	Education Robot Platforms	2120
	79.4	Education Robot Controllers and Programming Environments	2123
	79.5	Robotic Technologies for Student Learning	2127
	79.6	Educational Evaluation of Robot Programs	2129
	79.7	Conclusions and Further Reading	2131
	Video-	References	2131
	Refere	nces	2131
80	Roboe	ethics: Social and Ethical Implications	
	Gianm	arco Veruggio, Fiorella Operto, George Bekey	2135
	80.1	A Methodological Note	2137
	80.2	Specificity of Robotics	2138
	80.3	Cultural Differences in the Acceptance of Robots	2138
	80.4	Roboethics Foreshadowed in the Literature	2139
	80.5	And Expressed in Real Robotics	2139
	80.6	Ethics in Science and Technology	2140
	80.7	Ethical Issues in an ICT Society	2143
	80.8	Human Principles and Rights	2144
	80.9	Legal Issues in Robotics	2146
	80.10	Roboethics Taxonomy	2147
	80.11	Roboethics Enforced: From Ideals to Rules	2156
	80.12	Conclusions and Further Reading	2157
	Video-	References	2158
	Refere	nces	2159
Δc	knowl	edgements	2161
Ab	out th	e Authors	2163
	dex		2197

List of Abbreviations

Symbols		AHRS	attitude and heading reference system
		AHS	advanced highway system
k-NN	k-nearest neighbor	AI	artificial intelligence
0-D	zero-dimensional	AIAA	American Institute of Aeronautics and
1-D	one-dimensional		Astronautics
2-D	two-dimensional	AIM	assembly incidence matrix
2.5-D	two-and-a-half-dimensional	AIP	air-independent power
3-D	three-dimensional	AIP	anterior intraparietal sulcus
3-D-NDT	three-dimensional!normal distributions	AIP	anterior interparietal area
	transform	AIS	artificial intelligence system
4-D	four-dimensional	AIST	Institute of Advanced Industrial Science
6-D	six-dimensional		and Technology
6R	six-revolute	AIST	Japan National Institute of Advanced
7R	seven-revolute		Industrial Science and Technology
		AIST	National Institute of Advanced
A			Industrial Science and Technology
			(Japan)
A&F	agriculture and forestry	AIT	anterior inferotemporal cortex
AA	agonist–antagonist	ALEX	active leg exoskeleton
AAAI	American Association for Artificial	AM	actuator for manipulation
	Intelligence	AMASC	actuator with mechanically adjustable
AAAI	Association for the Advancement of		series compliance
	Artificial Intelligence	AMC	Association for Computing Machinery
AAL	ambient assisted living	AMD	autonomous!mental development
ABA	articulated-body algorithm	AMM	audio-motor map
ABF	artificial bacterial flagella	ANN	artificial neural network
ABRT	automated!bus rapid transit	AO	Arbeitsgemeinschaft für
ABS	acrylonitrile-butadiene-styrene		Ostheosynthesefragen
AC	aerodynamic center	AOA	angle of attack
AC	alternating current	AP	antipersonnel
ACARP	Australian Coal Association Research	APF	annealed particle filter
	Program	APG	adjustable pattern generator
ACBS	automatic!constructions building system	API	application programming interface
ACC	adaptive cruise control	APOC	allowing dynamic selection and changes
ACFV	autonomous!combat flying vehicle	AR	autoregressive
ACM	active chord mechanism	aRDnet	agile robot development network
ACM	active cord mechanism	ARM	Acorn RISC machine architecture
ACT	anatomically correct testbed	ARM	assistive!robot service manipulator
ADAS	advanced driving assistance system	ARX	auto regressive estimator
ADC	analog digital conveter	ASAP	adaptive sampling and prediction
ADCP	acoustic Doppler current profiler	ASCII	American standard code for information
ADL	activities for daily living	посп	interchange
ADSL	asymmetric digital subscriber line	ASD	autism spectrum disorder
AFC	alkaline fuel cell	ASIC	application-specific integrated circuit
		ASIC	application-specific feature transform
AFC AFM	armoured (or articulated) face conveyor	ASIMO	advanced step in innovative mobility
	atomic force microscope	ASIMO	amplitude shift keying
AFV	autonomous!flying vehicle	ASK ASL	autonomous systems laboratory
AGV	autonomous guided vehicle automated!guided vehicle		
AGV	automateu guideu venicie	ASM	advanced servomanipulator

ASN	active sensor network	C	
ASR	automatic!spoken-language recognition		
ASR	automatic!speech recognition	C	cylindrical joint
ASTRO	autonomous!space transport robotic	C/A	coarse-acquisition
	operations	C/S	client/server
ASV	adaptive suspension vehicle	CA	collision avoidance
ASyMTRe	automated!synthesis of multirobot task	CACC	cooperative adaptive cruise control
,	solutions through software	CAD	computer-aided drafting
	reconfiguration	CAD	computer-aided design
AT	anti-tank mine	CAE	computer-aided engineering
ATHLETE	all-terrain hex-legged extra-terrestrial	CALM	communication access for land mobiles
	explorer	CAM	computer-aided manufacturing
ATLANTIS	a three layer architecture for navigating	CAN	controller area network
	through intricate situations	CARD	computer-aided remote driving
ATLSS	advanced technology for large structural	CARE	coordination action for robotics in
	systems		Europe
ATR	automatic!target recognition	CASA	Civil Aviation Safety Authority
AuRA	autonomous robot architecture	CASALA	Centre for Affective Solutions for
AUV	autonomous underwater vehicle		Ambient Living Awareness
AUV	autonomous aquatic vehicle	CASPER	continuous activity scheduling,
AUVAC	Autonomous Undersea Vehicles		planning, execution and replanning
	Application Center	CAT	collision avoidance technology
AUVSI	Association for Unmanned Vehicle	CAT	computer-aided tomography
	Systems International	CB	computional brain
AV	anti-vehicle	CB	cluster bomb
11,		CBRNE	chemical, biological, nuclear,
В			radiological, or explosive
		CC	compression criterion
B/S	browser/server	CCD	charge-coupled device
B2B	business to business	CCD	charge-coupled detector
BCI	brain-computer interface	CCI	control command interpreter
BE	body extender	CCP	coverage configuration protocol
BEMT	blade element momentum theory	CCT	conservative congruence transformation
BEST	boosting!engineering science and	CCW	counterclockwise
	technology	CC&D	camouflage, concealment, and deception
BET	blade element theory	CD	collision detection
BFA	bending fluidic actuator	CD	committee draft
BFP	best-first-planner	CD	compact disc
BI	brain imaging	CDC	cardinal direction calculus
BIP	behavior-interaction-priority	CDOM	colored dissolved organic matter
BLE	broadcast of local eligibility	CE	computer ethic
BLEEX	Berkely exoskeleton	CEA	Commissariat à l'Énergie Atomique
BLUE	best linear unbiased estimator	CEA	Atomic Energy Commission
BML	behavior!mark-up language	CEBOT	cellular robotic system
BMS	battery management system	CEC	Congress on Evolutionary Computation
BN	Bayesian network	CEPE	Computer Ethics Philosophical Enquiry
BOM	bill of material	CES	Consumer Electronics Show
BOw	bag-of-word	CF	carbon fiber
BP	behavior primitive	CF	contact formation
BP	base plate	CF	climbing fiber
BRICS	best practice in robotics	CFD	computational fluid dynamics
BRT	bus rapid transit	CFRP	carbon fiber reinforced prepreg
BWSTT	body-weight supported treadmill	CFRP	carbon fiber reinforced plastic
	training	CG	center of gravity

CC	. 1.	CD	e a
CG	computer graphics	CP	continuous path
CGI	common gateway interface	CP	cerebral palsy
CHMM	coupled!hidden Markov model	CPG	central pattern generation
CHMM	continuous hidden Markov model	CPG	central pattern generator
CIC	computer integrated construction	CPS	cyber physical system
CIE	International Commission on	CPSR	Computer Professional for Social
	Illumination		Responsibility
CIP	Children's Innovation Project	CPU	central processing unit
CIRCA	cooperative intelligent real-time control	CRASAR	Center for Robot-Assisted Search and
	architecture		Rescue
CIS	computer-integrated surgery	CRBA	composite-rigid-body algorithm
CLARAty	coupled layered architecture for robot	CRF	conditional random field
02111111	autonomy	CRLB	Cramér–Rao lower bound
CLEaR	closed-loop execution and recovery	CSAIL	Computer Science and Artificial
CLIK	closed-loop inverse kinematics	COMIL	Intelligence Laboratory
CMAC	cerebellar model articulation controller	CSIRO	Commonwealth Scientific and Industrial
CMCs		CSIKO	
	ceramic matrix composite	CCMA	Research Organisation
CML	concurrent!mapping and localization	CSMA	carrier-sense multiple-access
CMM	coordinate measurement machine	CSP	constraint satisfaction problem
CMOMMT	cooperative multirobot observation of	CSSF	Canadian Scientific Submersile Facility
	multiple moving target	CT	computed tomography
CMOS	complementary	CTFM	continuous-transmission frequency
	metal-oxide-semiconductor		modulation
CMP	centroid moment pivot	CU	control unit
CMTE	Cooperative Research Centre for Mining	cv-SLAM	ceiling vision SLAM
	Technology and Equipment	CVD	chemical vapor deposition
CMU	Carnegie Mellon University	CVIS	cooperative vehicle infrastructure
CNC	computer numerical control		system
CNN	convolutional neural network	CVT	continuous variable transmission
CNN CNP		CVT CW	continuous variable transmission clockwise
	contract net protocol		
CNP	contract net protocol Centre National de la Recherche	CW	clockwise
CNP	contract net protocol	CW	clockwise
CNP CNRS	contract net protocol Centre National de la Recherche Scientifique carbon nanotube	CW CWS	clockwise
CNP CNRS CNT COCO	contract net protocol Centre National de la Recherche Scientifique carbon nanotube common objects in context	CW CWS	clockwise contact!wrench sum
CNP CNRS CNT COCO COG	contract net protocol Centre National de la Recherche Scientifique carbon nanotube common objects in context center of gravity	CW CWS	clockwise contact!wrench sum
CNP CNRS CNT COCO COG COM	contract net protocol Centre National de la Recherche Scientifique carbon nanotube common objects in context center of gravity center of mass	CW CWS D D D/A	clockwise contact!wrench sum distal digital-to-analog
CNP CNRS CNT COCO COG COM COMAN	contract net protocol Centre National de la Recherche Scientifique carbon nanotube common objects in context center of gravity center of mass compliant humanoid platform	CW CWS D D D/A DAC	clockwise contact!wrench sum distal digital-to-analog digital analog converter
CNP CNRS CNT COCO COG COM	contract net protocol Centre National de la Recherche Scientifique carbon nanotube common objects in context center of gravity center of mass compliant humanoid platform Commission mondiale d'éthique des	CW CWS D D D/A	distal digital-to-analog digital analog converter Defense Advanced Research Projects
CNP CNRS CNT COCO COG COM COMAN	contract net protocol Centre National de la Recherche Scientifique carbon nanotube common objects in context center of gravity center of mass compliant humanoid platform Commission mondiale d'éthique des connaissances scientifiques et des	CW CWS D D D/A DAC DARPA	distal digital-to-analog digital analog converter Defense Advanced Research Projects Agency
CNP CNRS CNT COCO COG COM COMAN COMEST	contract net protocol Centre National de la Recherche Scientifique carbon nanotube common objects in context center of gravity center of mass compliant humanoid platform Commission mondiale d'éthique des connaissances scientifiques et des technologies	CW CWS D D D/A DAC DARPA DARS	distal digital-to-analog digital analog converter Defense Advanced Research Projects Agency distributed!autonomous robotic systems
CNP CNRS CNT COCO COG COM COMAN COMEST	contract net protocol Centre National de la Recherche Scientifique carbon nanotube common objects in context center of gravity center of mass compliant humanoid platform Commission mondiale d'éthique des connaissances scientifiques et des technologies communication intelligence	CW CWS D D D/A DAC DARPA DARS DBN	distal digital-to-analog digital analog converter Defense Advanced Research Projects Agency distributed!autonomous robotic systems dynamic Bayesian network
CNP CNRS CNT COCO COG COM COMAN COMEST	contract net protocol Centre National de la Recherche Scientifique carbon nanotube common objects in context center of gravity center of mass compliant humanoid platform Commission mondiale d'éthique des connaissances scientifiques et des technologies communication intelligence Collaborative Observatory for Nature	CW CWS D D D/A DAC DARPA DARS DBN DBN	distal digital-to-analog digital analog converter Defense Advanced Research Projects Agency distributed!autonomous robotic systems dynamic Bayesian network deep belief network
CNP CNRS CNT COCO COG COM COMAN COMEST COMINT CONE	contract net protocol Centre National de la Recherche Scientifique carbon nanotube common objects in context center of gravity center of mass compliant humanoid platform Commission mondiale d'éthique des connaissances scientifiques et des technologies communication intelligence Collaborative Observatory for Nature Environments	CW CWS D D D/A DAC DARPA DARS DBN DBN DC	distal digital-to-analog digital analog converter Defense Advanced Research Projects Agency distributed!autonomous robotic systems dynamic Bayesian network deep belief network disconnected
CNP CNRS CNT COCO COG COM COMAN COMEST COMINT CONE COP	contract net protocol Centre National de la Recherche Scientifique carbon nanotube common objects in context center of gravity center of mass compliant humanoid platform Commission mondiale d'éthique des connaissances scientifiques et des technologies communication intelligence Collaborative Observatory for Nature Environments center of pressure	CW CWS D D D/A DAC DARPA DARS DBN DBN DC DC	distal digital-to-analog digital analog converter Defense Advanced Research Projects Agency distributed!autonomous robotic systems dynamic Bayesian network deep belief network disconnected direct current
CNP CNRS CNT COCO COG COM COMAN COMEST COMINT CONE COP CoP	contract net protocol Centre National de la Recherche Scientifique carbon nanotube common objects in context center of gravity center of mass compliant humanoid platform Commission mondiale d'éthique des connaissances scientifiques et des technologies communication intelligence Collaborative Observatory for Nature Environments center of pressure center of pressure	CW CWS D D D/A DAC DARPA DARS DBN DBN DC DC DC	distal digital-to-analog digital analog converter Defense Advanced Research Projects Agency distributed!autonomous robotic systems dynamic Bayesian network deep belief network disconnected direct current dynamic!constrained
CNP CNRS CNT COCO COG COM COMAN COMEST COMINT CONE COP COP COP	contract net protocol Centre National de la Recherche Scientifique carbon nanotube common objects in context center of gravity center of mass compliant humanoid platform Commission mondiale d'éthique des connaissances scientifiques et des technologies communication intelligence Collaborative Observatory for Nature Environments center of pressure center of pressure center of rotation	CW CWS D D D/A DAC DARPA DARS DBN DBN DC DC DC DC DCS	distal digital-to-analog digital analog converter Defense Advanced Research Projects Agency distributed!autonomous robotic systems dynamic Bayesian network deep belief network disconnected direct current dynamic!constrained dynamic covariance scaling
CNP CNRS CNT COCO COG COM COMAN COMEST COMINT CONE COP CoP	contract net protocol Centre National de la Recherche Scientifique carbon nanotube common objects in context center of gravity center of mass compliant humanoid platform Commission mondiale d'éthique des connaissances scientifiques et des technologies communication intelligence Collaborative Observatory for Nature Environments center of pressure center of pressure center of rotation common object request broker	CW CWS D D D/A DAC DARPA DARS DBN DBN DC DC DC DC DC DCS DCT	distal digital-to-analog digital analog converter Defense Advanced Research Projects Agency distributed!autonomous robotic systems dynamic Bayesian network deep belief network disconnected direct current dynamic!constrained dynamic covariance scaling discrete!cosine transform
CNP CNRS CNT COCO COG COM COMAN COMEST COMINT CONE COP COP COP COR COR CORBA	contract net protocol Centre National de la Recherche Scientifique carbon nanotube common objects in context center of gravity center of mass compliant humanoid platform Commission mondiale d'éthique des connaissances scientifiques et des technologies communication intelligence Collaborative Observatory for Nature Environments center of pressure center of pressure center of rotation common object request broker architecture	CW CWS D D D D/A DAC DARPA DARS DBN DBN DC DC DC DC DC DCS DCT DD	distal digital-to-analog digital analog converter Defense Advanced Research Projects Agency distributed!autonomous robotic systems dynamic Bayesian network deep belief network disconnected direct current dynamic!constrained dynamic covariance scaling discrete!cosine transform differentially driven
CNP CNRS CNT COCO COG COM COMAN COMEST COMINT CONE COP COP COP	contract net protocol Centre National de la Recherche Scientifique carbon nanotube common objects in context center of gravity center of mass compliant humanoid platform Commission mondiale d'éthique des connaissances scientifiques et des technologies communication intelligence Collaborative Observatory for Nature Environments center of pressure center of pressure center of rotation common object request broker architecture continuous operating reference station	CW CWS D D D D/A DAC DARPA DARS DBN DBN DC DC DC DC DC DCS DCT DD DDD	distal digital-to-analog digital analog converter Defense Advanced Research Projects Agency distributed!autonomous robotic systems dynamic Bayesian network deep belief network disconnected direct current dynamic!constrained dynamic covariance scaling discrete!cosine transform differentially driven dangerous, dirty, and dreary
CNP CNRS CNT COCO COG COM COMAN COMEST COMINT CONE COP COP COP COR COR CORBA	contract net protocol Centre National de la Recherche Scientifique carbon nanotube common objects in context center of gravity center of mass compliant humanoid platform Commission mondiale d'éthique des connaissances scientifiques et des technologies communication intelligence Collaborative Observatory for Nature Environments center of pressure center of pressure center of rotation common object request broker architecture continuous operating reference station cost!of transport	CW CWS D D D D/A DAC DARPA DARS DBN DBN DC DC DC DC DC DCS DCT DD DDD DDD DDF	distal digital-to-analog digital analog converter Defense Advanced Research Projects Agency distributed!autonomous robotic systems dynamic Bayesian network deep belief network disconnected direct current dynamic!constrained dynamic covariance scaling discrete!cosine transform differentially driven dangerous, dirty, and dreary decentralized data fusion
CNP CNRS CNT COCO COG COM COMAN COMEST COMINT CONE COP COP COP COR COR CORBA	contract net protocol Centre National de la Recherche Scientifique carbon nanotube common objects in context center of gravity center of mass compliant humanoid platform Commission mondiale d'éthique des connaissances scientifiques et des technologies communication intelligence Collaborative Observatory for Nature Environments center of pressure center of pressure center of rotation common object request broker architecture continuous operating reference station cost!of transport commercial off-the-shelf	CW CWS D D D D/A DAC DARPA DARS DBN DBN DC DC DC DC DC DCS DCT DD DDD	distal digital-to-analog digital analog converter Defense Advanced Research Projects Agency distributed!autonomous robotic systems dynamic Bayesian network deep belief network disconnected direct current dynamic!constrained dynamic covariance scaling discrete!cosine transform differentially driven dangerous, dirty, and dreary
CNP CNRS CNT COCO COG COM COMAN COMEST COMINT CONE COP COP COP COR COR CORBA CORS COT	contract net protocol Centre National de la Recherche Scientifique carbon nanotube common objects in context center of gravity center of mass compliant humanoid platform Commission mondiale d'éthique des connaissances scientifiques et des technologies communication intelligence Collaborative Observatory for Nature Environments center of pressure center of pressure center of rotation common object request broker architecture continuous operating reference station cost!of transport	CW CWS D D D D/A DAC DARS DBN DBN DC DC DC DC DC DCS DCT DD DDD D	distal digital-to-analog digital analog converter Defense Advanced Research Projects Agency distributed!autonomous robotic systems dynamic Bayesian network deep belief network disconnected direct current dynamic!constrained dynamic covariance scaling discrete!cosine transform differentially driven dangerous, dirty, and dreary decentralized data fusion
CNP CNRS CNT COCO COG COM COMAN COMEST COMINT CONE COP COP COR COR CORBA CORS COT COTS	contract net protocol Centre National de la Recherche Scientifique carbon nanotube common objects in context center of gravity center of mass compliant humanoid platform Commission mondiale d'éthique des connaissances scientifiques et des technologies communication intelligence Collaborative Observatory for Nature Environments center of pressure center of pressure center of rotation common object request broker architecture continuous operating reference station cost!of transport commercial off-the-shelf	CW CWS D D D/A DAC DARPA DARS DBN DBN DC DC DC DC DCS DCT DD DDD DDD	distal digital-to-analog digital analog converter Defense Advanced Research Projects Agency distributed!autonomous robotic systems dynamic Bayesian network deep belief network disconnected direct current dynamic!constrained dynamic covariance scaling discrete!cosine transform differentially driven dangerous, dirty, and dreary decentralized data fusion differential dynamic programming
CNP CNRS CNT COCO COG COM COMAN COMEST COMINT CONE COP COP COR COR CORS COT COTS COV	contract net protocol Centre National de la Recherche Scientifique carbon nanotube common objects in context center of gravity center of mass compliant humanoid platform Commission mondiale d'éthique des connaissances scientifiques et des technologies communication intelligence Collaborative Observatory for Nature Environments center of pressure center of pressure center of rotation common object request broker architecture continuous operating reference station cost!of transport commercial off-the-shelf characteristic output vector	CW CWS D D D D/A DAC DARPA DARS DBN DBN DC DC DC DC DC DCS DCT DD DDD D	distal digital-to-analog digital analog converter Defense Advanced Research Projects Agency distributed!autonomous robotic systems dynamic Bayesian network deep belief network disconnected direct current dynamic!constrained dynamic covariance scaling discrete!cosine transform differentially driven dangerous, dirty, and dreary decentralized data fusion differential dynamic programming data distribution service

DFA	design!for assembly	EDM	electrical discharge machining
DFRA	distributed field robot architecture	EE	end-effector
DFT	discrete Fourier transform	EEG	electroencephalography
DGPS	differential global positioning system	EGNOS	European Geostationary Navigation
DH	Denavit-Hartenberg		Overlay Service
DHMM	discrete!hidden Markov model	EHC	enhanced horizon control
DHS	US Department of Homeland Security	EHPA	exoskeleton!for human performance
DIRA	distributed!robot architecture		augmentation
DIST	Dipartmento di Informatica Sistemica e	EKF	extended Kalman filter
2101	Telematica	ELS	ethical, legal and societal
DL	description logic	EM	expectation maximization
DLR	Deutsches Zentrum für Luft- und	emf	electromotive force
DLK	Raumfahrt	EMG	electromyography
DLR	German Aerospace Center	EMIB	emotion, motivation and intentional
DLK DMFC	direct methanol fuel cell	EMID	behavior
		EMC	
DMP	dynamic movement primitive	EMS	electrical!master–slave manipulator
DNA	deoxyribonucleic acid	EO	electrooptical
DNF	dynamic!neural field	EO	elementary operator
DOD	Department of Defense	EOA	end of arm
DOF	degree of freedom	EOD	explosive!ordnance disposal
DOG	difference of Gaussian	EP	exploratory procedure
DOP	dilution of precision	EP	energy packet
DPLL	Davis-Putnam algorithm	EPFL	Ecole Polytechnique Fédérale de
DPM	deformable part model		Lausanne
DPN	dip-pen nanolithography	EPP	extended!physiological proprioception
DPSK	differential phase shift keying	EPS	expandable polystyrene
DRIE	deep reactive ion etching	ER	electrorheological
DSM	dynamic!state machine	ER	evolutionary!robotics
DSO	Defense Sciences Office	ERA	European robotic arm
DSP	digital signal processor	ERP	enterprise resource planning
DSRC	dedicated short-range communications	ERSP	evolution robotics software platform
DU	dynamic!unconstrained	ES	electrical!stimulation
DVL	Doppler velocity log	ESA	European Space Agency
DWA	dynamic window approach	ESC	electronic speed controller
DWDM	dense wave division multiplex	ESL	execution support language
D&D	deactivation and decommissioning	ESM	energy!stability margin
		ESM	electric support measure
E		ETL	Electro-Technical Laboratory
		ETS-VII	Engineering Test Satellite VII
e-beam	electron-beam	EU	European Union
EAP	electroactive polymer	EURON	European Robotics Research Network
EBA	energy bounding algorithm	EVA	extravehicular activity
EBA	extrastriate body part area	EVRYON	evolving morphologies for human-robot
EBID	electron-beam induced deposition		symbiotic interaction
EC	externally connected		
EC	exteroception		
ECAI	European Conference on Artificial	_ F	
	Intelligence		
ECD	eddy current damper	F5	frontal area 5
ECEF	earth-centred, earth-fixed	FAA	Federal Aviation Administration
ECER	European Conference on Educational	FAO	Food and Agriculture Organization
	Robotics	FARS	Fagg-Arbib-Rizzolatti-Sakata
ECG	electrocardiogram	FARSA	framework for autonomous robotics
ECU	electronics controller unit		simulation and analysis
			·

fastSLAM	fast simultaneous localization and	GBAS	ground based augmentation system
	mapping	GCDC	Grand Cooperative Driving Challenge
FB-EHPA	full-body EHPA	GCER	Global Conference on Educational
FCU	flight control-unit		Robotics
FD	friction damper	GCR	goal-contact relaxation
FDA	US Food and Drug Association	GCS	ground!control station
FDM	fused deposition modeling	GDP	gross!domestic product
FE	finite element	GenoM	generator of modules
FEA	finite element analysis	GEO	geostationary Earth orbit
FEM	finite element method	GF	grapple fixture
FESEM	field-emission SEM	GFRP	glass-fiber reinforced plastic
FF	fast forward	GI	gastrointestinal
FFI	Norwegian defense research	GIB	GPS intelligent buoys
	establishment	GICHD	Geneva International Centre for
FFT	fast Fourier transform		Humanitarian Demining
FIFO	first-in first-out	GID	geometric!intersection data
FIRA	Federation of International Robot-soccer	GIE	generalized-inertia ellipsoid
	Association	GIS	geographic information system
FIRRE	family of integrated rapid response	GJM	generalized!Jacobian matrix
	equipment	GLONASS	globalnaya navigatsionnaya
FIRST	For Inspiration and Recognition of		sputnikovaya sistema
	Science and Technology	GLS	global navigation satellite system
Fl-UAS	flapping wing unmanned aerial system	GMAW	gas-shielded metal arc welding
FLIR	forward!looking infrared	GMM	Gaussian mixture model
FMBT	feasible minimum buffering time	GMSK	Gaussian minimum shift keying
FMCW	frequency modulation continuous wave	GMTI	ground!moving target indicator
fMRI	functional!magnetic resonance imaging	GNC	guidance, navigation, and control
FMS	flexible!manufacturing system	GO	golgi!tendon organ
FNS	functional!neural stimulation	GP	Gaussian process
FOA	focus of attention	GPCA	generalized principal component
FOG	fiber-optic gyro		analysis
FOPEN	foliage penetration	GPRS	general!packet radio service
FOPL	first-order predicate logic	GPS	global positioning system
FOV	field of view	GPU	graphics processing unit
FP	fusion primitive	GRAB	guaranteed recursive adaptive bounding
FPGA	field-programmable gate array	GRACE	graduate robot attending conference
FR	false range	GraWoLF	gradient-based win or learn fast
FRI	foot rotation indicator	GSD	geon structural description
FRP	fiber-reinforced plastics	GSN	gait sensitivity norm
FRP	fiber-reinforced prepreg	GSP	Gough–Stewart platform
fs	force!sensor	GUI	graphical user interface
FSA	finite-state acceptor	GV	ground vehicle
FSK	frequency shift keying	GVA	
FSR		GZMP	gross!value added
	force sensing resistor	GZMF	generalized!ZMP
FSW	friction!stir welding fiber to the home	Н	
FTTH		_п	
FW	fixed-wing	11	1-11-1 1-1-4
G		H HAL	helical joint
			hybrid!assistive limb
CA	constitution al comittees	HAMMER	hierarchical!attentive multiple models
GA	genetic algorithm	II A CM	for execution and recognition
GAPPICS	goal as parallel programs	HASY	hand!arm system
GARNICS	gardening with a cognitive system	HBBA	hybrid behavior-based architecture
GAS	global asymptotic stability	HCI	human-computer interaction

HD	high definition	IARC	International Aerial Robotics
HD	haptic device	IAKC	Competition
HD-SDI	high-definition serial digital interface	IAS	intelligent!autonomous system
HDSL	high data rate digital subscriber line	IBVS	image-based visual servo control
HE	hand!exoskeleton	IC IC	integrated chip
HF	hard finger	IC IC	integrated crip
HF	histogram filter	ICA	independent!component analysis
HFAC	high frequency alternating current	ICA ICAPS	International Conference on Automated
нгас ННММ	hierarchical!hidden Markov model	ICAFS	Planning and Scheduling
HIC	head injury criterion	ICAR	International Conference on Advanced
HIII	Hybrid III dummy	ICAK	Robotics
HIP	haptic interaction point	ICBL	International Campaign to Ban
НЈВ	Hamilton–Jacobi–Bellman	ICDL	Landmines
НЛ НЛ	Hamilton–Jacobi–Isaac	ICC	instantaneous center of curvature
HMCS	human–machine!cooperative system	ICE ICE	internet communications engine
HMD	head-mounted display	ICE	iterative closest point
HMDS	hexamethyldisilazane	ICF ICR	instantaneous center of rotation
HMI	human–machine!interaction	ICRA	International Conference on Robotics
HMI	human-machine!interface	ICKA	and Automation
HMM	hidden Markov model	ICT	information!and communication
HO		ICI	technology
HOG	human operator histogram of oriented gradient	ID	inside diameter
HOG	histogram of oriented gradient	ID ID	identifier
HPC	high-performance computing	IDE	integrated!development environment
HRI	human–robot interaction	IDL	interface definition language
HRI/OS		IDL IE	information!ethics
	HRI operating system humanoid robotics project	IED	
HRP HRR	high resolution radar	IEEE	improvised explosive device Institute of Electrical and Electronics
HRTEM	high-resolution transmission electron	IEEE	
TRIENI	microscope	IEKF	Engineers iterated extended Kalman filter
HSGR	high safety goal	IETF	internet!engineering task force
HST	Hubble space telescope	IFA	Internationale Funk Ausstellung
HSTAMIDS	handheld standoff mine detection system	IFOG	interfacionale Funk Ausstehung
HSWR	high safety wide region	IFR	International Federation of Robotics
HTAS	high tech automotive system	IFREMER	Institut français de recherche pour
HTML	hypertext markup language	ITKEWIEK	l'exploitation de la mer
HTN	hierarchical task network	IFRR	International Foundation of Robotics
HTTP	hypertext transmission protocol	IITKK	Research
HW/SW	hardware/software	IFSAR	interferometric SAR
11 W/5 W	nardware/software	IHIP	internediate haptic interaction point
		IIR	infinite impulse response
1		IIS	Internet Information Services
- _		IIT	Istituto Italiano di Tecnologia
I/O	input/output	IJCAI	International Joint Conference on
I3CON	industrialized, integrated, intelligent,	IJCAI	Artificial Intelligence
130011	construction	IK	inverse kinematics
IA	interval algebra	ILLS	instrumented logical sensor system
IA	instantaneous!allocation	ILO	International Labor Organization
IAA	interaction!agent	ILQR	iterative linear quadratic regulator
IAB	International Association of Bioethics	ILQK IM	injury measure
IACAP	International Association for Computing	IMAV	International Micro Air Vehicles
inchi	and Philosophy	IMTS	intelligent!multimode transit system
IAD	interaural amplitude difference	IMU	inertial measurement unit
IAD	intelligent!assisting device	INS	inertial measurement unit
IAD	monigon: assisting utvice	1170	mertia navigation system

INS	inertial navigation system	JAEA	Japan Atomic Energy Agency
IO	input output	JAMSTEC	Japan Agency for Marine-Earth Science
IO	inferior olive	JA HVISTEE	and Technology
IOSS	input-output-to-state stability	JAMSTEC	Japan Marine Science and Technology
IP	internet protocol		Center
IP	interphalangeal	JAUS	joint architecture for unmanned systems
IPA	Institute for Manufacturing Engineering	JAXA	Japan Aerospace Exploration Agency
	and Automation	JDL	joint directors of laboratories
IPC	interprocess communication	JEM	Japan Experiment Module
IPC	international AI planning competition	JEMRMS	Japanese experiment module remote
IPMC	ionic polymer-metal composite		manipulator system
IPR	intellectual property right	JHU	Johns Hopkins University
IR	infrared	JND	just noticeable difference
IRB	Institutional Review Board	JPL	Jet Propulsion Laboratory
IREDES	International Rock Excavation Data	JPS	jigsaw positioning system
	Exchange Standard	JSC	Johnson Space Center
IRL	in real life	JSIM	joint-space inertia matrix
IRL	inverse!reinforcement learning	JSP	Java server pages
IRLS	iteratively reweighted least square		1 0
IRNSS	Indian regional navigational satellite	K	
	system		<u>.</u>
IROS	Intelligent Robots and Systems	KAIST	Korea Advanced Institute of Science
IS	importance sampling		and Technology
ISA	industrial standard architecture	KERS	kinetic energy recovery system
ISA	international standard atmosphere	KIPR	KISS Institute for Practical Robotics
ISAR	inverse SAR	KLD	Kullback-Leibler divergence
ISDN	integrated services digital network	KNN	k-nearest neighbor
ISE	international submarine engineering	KR	knowledge representation
ISER	International Symposium on	KRISO	Korea Research Institute of Ships and
	Experimental Robotics		Ocean Engineering
ISM	implicit shape model		
ISO	International Organization for	L	
	Standardization		
ISP	Internet service provider	L/D	lift-to-drag
ISR	intelligence, surveillance and	LAAS	Laboratory for Analysis and
	reconnaissance		Architecture of Systems
ISRR	International Symposium of Robotics	LADAR	laser radar
	Research	LAGR	learning!applied to ground robots
ISS	international space station	LARC	Lie algebra rank condition
ISS	input-to-state stability	LARS	Laparoscopic Assistant Robotic System
IST	Instituto Superior Técnico	LASC	Longwall Automation Steering
IST	Information Society Technologies		Committee
IT	intrinsic tactile	LBL	long-baseline system
IT	information!technology	LCAUV	long-range cruising AUV
IT	inferotemporal cortex	LCC	life-cycle-costing
ITD	interaural time difference	LCD	liquid-crystal display
IU	interaction!unit	LCM	light-weight communications and
IV	instrumental variable	I CD	marshalling
IvP	interval programming	LCP	linear complementarity problem
IWS	intelligent!wheelchair system	LCSP	linear constraint satisfaction program
IxTeT	indexed time table	LDA	latent Dirichlet allocation
1		LED	light-emitting diode
		LENAR	lower!extremity nonanthropomorphic
			robot

LEO	1 15 4 15	MDADG	19114 2
LEO	low!Earth orbit	MDARS	mobile!detection assessment and
LEV	leading edge vortex		response system
LfD	learning!from demonstration	MDL	minimum description length
LGN	lateral!geniculate nucleus	MDP	Markov decision process
LHD	load!haul-dump	ME	mechanical!engeneering
LIDAR	light detection and ranging	MEG	magnetoencephalography
LIGA	Lithographie, Galvanoumformung,	MEL	Mechanical Engineering Laboratory
	Abformung	MEMS	microelectromechanical system
LIP	linear inverted pendulum	MEP	motor!evoked potential
LIP	lateral!intraparietal sulcus	MESSIE	multi expert system for scene
LiPo	lithium polymer		interpretation and evaluation
LLC	locality constrained linear coding	MESUR	Mars environmental survey
LMedS	least median of squares	MF	mossy fiber
LMS	laser measurement system	MFI	micromechanical flying insect
LOG	Laplacian of Gaussian	MFSK	multiple FSK
LOPES	lower!extremity powered exoskeleton	MHS	International Symposium on Micro
LOS	line-of-sight		Mechatronics and Human Science
LP	linear program	MHT	multihypothesis tracking
LQG	linear quadratic Gaussian	MIA	mechanical impedance adjuster
LQR	linear quadratic regulator	MIME	mirror!image movement enhancer
LSS	logical sensor system	MIMICS	multimodal immersive motion
LSVM	latent support vector machine	WHITES	rehabilitation with interactive cognitive
LtA	lighter-than-air		system
LtA-UAS	lighter-than-air system	MIMO	multiple-input–multiple-output
LTL	linear temporal logic	MIP	medial intraparietal sulcus
LVDT	linear variable differential transformer	MIPS	microprocessor without interlocked
LWR	light-weight robot	WIII O	pipeline stages
LIVIC	nghi weight 1000t		processes
		MIR	mode identification and recovery
		MIR MIRO	mode identification and recovery
М		MIRO	middleware for robot
M		MIRO MIS	middleware for robot minimally invasive surgery
	Afghanistan Mine Action Center	MIRO MIS MIT	middleware for robot minimally invasive surgery Massachusetts Institute of Technology
MACA	Afghanistan Mine Action Center	MIRO MIS	middleware for robot minimally invasive surgery Massachusetts Institute of Technology Ministry of International Trade and
	mechanically adjustable compliance and	MIRO MIS MIT MITI	middleware for robot minimally invasive surgery Massachusetts Institute of Technology Ministry of International Trade and Industry
MACA	mechanically adjustable compliance and controllable equilibrium position	MIRO MIS MIT MITI	middleware for robot minimally invasive surgery Massachusetts Institute of Technology Ministry of International Trade and Industry multiple kernel learning
MACA MACCEPA	mechanically adjustable compliance and controllable equilibrium position actuator	MIRO MIS MIT MITI MKL ML	middleware for robot minimally invasive surgery Massachusetts Institute of Technology Ministry of International Trade and Industry multiple kernel learning machine!learning
MACA MACCEPA MAP	mechanically adjustable compliance and controllable equilibrium position actuator maximum a posteriori	MIRO MIS MIT MITI MKL ML ML	middleware for robot minimally invasive surgery Massachusetts Institute of Technology Ministry of International Trade and Industry multiple kernel learning machine!learning maximum likelihood estimate
MACA MACCEPA MAP MARS	mechanically adjustable compliance and controllable equilibrium position actuator maximum a posteriori multiappendage robotic system	MIRO MIS MIT MITI MKL ML MLE MLR	middleware for robot minimally invasive surgery Massachusetts Institute of Technology Ministry of International Trade and Industry multiple kernel learning machine!learning maximum likelihood estimate mesencephalic locomotor region
MACA MACCEPA MAP	mechanically adjustable compliance and controllable equilibrium position actuator maximum a posteriori multiappendage robotic system Zentrum für Marine	MIRO MIS MIT MITI MKL ML MLE MLR MLS	middleware for robot minimally invasive surgery Massachusetts Institute of Technology Ministry of International Trade and Industry multiple kernel learning machine!learning maximum likelihood estimate mesencephalic locomotor region multilevel surface map
MACA MACCEPA MAP MARS MARUM	mechanically adjustable compliance and controllable equilibrium position actuator maximum a posteriori multiappendage robotic system Zentrum für Marine Umweltwissenschaften	MIRO MIS MIT MITI MKL ML MLE MLR MLR MLS MMC	middleware for robot minimally invasive surgery Massachusetts Institute of Technology Ministry of International Trade and Industry multiple kernel learning machine!learning maximum likelihood estimate mesencephalic locomotor region multilevel surface map metal matrix composite
MACA MACCEPA MAP MARS	mechanically adjustable compliance and controllable equilibrium position actuator maximum a posteriori multiappendage robotic system Zentrum für Marine Umweltwissenschaften Marine Autonomous Systems	MIRO MIS MIT MITI MKL ML MLE MLR MLS MMC MMMS	middleware for robot minimally invasive surgery Massachusetts Institute of Technology Ministry of International Trade and Industry multiple kernel learning machine!learning maximum likelihood estimate mesencephalic locomotor region multilevel surface map metal matrix composite multiple master multiple-slave
MACA MACCEPA MAP MARS MARUM	mechanically adjustable compliance and controllable equilibrium position actuator maximum a posteriori multiappendage robotic system Zentrum für Marine Umweltwissenschaften Marine Autonomous Systems Engineering	MIRO MIS MIT MITI MKL ML MLE MLR MLR MLS MMC	middleware for robot minimally invasive surgery Massachusetts Institute of Technology Ministry of International Trade and Industry multiple kernel learning machine!learning maximum likelihood estimate mesencephalic locomotor region multilevel surface map metal matrix composite multiple master multiple-slave multiple model switching adaptive
MACA MACCEPA MAP MARS MARUM MASE	mechanically adjustable compliance and controllable equilibrium position actuator maximum a posteriori multiappendage robotic system Zentrum für Marine Umweltwissenschaften Marine Autonomous Systems Engineering measurement!and signatures intelligence	MIRO MIS MIT MITI MKL ML MLE MLR MLS MMC MMMS MMSAE	middleware for robot minimally invasive surgery Massachusetts Institute of Technology Ministry of International Trade and Industry multiple kernel learning machine!learning maximum likelihood estimate mesencephalic locomotor region multilevel surface map metal matrix composite multiple master multiple-slave multiple model switching adaptive estimator
MACA MACCEPA MAP MARS MARUM MASE MASINT MAV	mechanically adjustable compliance and controllable equilibrium position actuator maximum a posteriori multiappendage robotic system Zentrum für Marine Umweltwissenschaften Marine Autonomous Systems Engineering measurement!and signatures intelligence micro aerial vehicles	MIRO MIS MIT MITI MKL ML MLE MLR MLS MMC MMMS MMSAE	middleware for robot minimally invasive surgery Massachusetts Institute of Technology Ministry of International Trade and Industry multiple kernel learning machine!learning maximum likelihood estimate mesencephalic locomotor region multilevel surface map metal matrix composite multiple master multiple-slave multiple model switching adaptive estimator minimum mean-square error
MACA MACCEPA MAP MARS MARUM MASE MASINT MAV MAZE	mechanically adjustable compliance and controllable equilibrium position actuator maximum a posteriori multiappendage robotic system Zentrum für Marine Umweltwissenschaften Marine Autonomous Systems Engineering measurement!and signatures intelligence micro aerial vehicles Micro robot maze contest	MIRO MIS MIT MITI MKL ML MLE MLR MLS MMC MMMS MMSAE MMSE MMSS	middleware for robot minimally invasive surgery Massachusetts Institute of Technology Ministry of International Trade and Industry multiple kernel learning machine!learning maximum likelihood estimate mesencephalic locomotor region multilevel surface map metal matrix composite multiple master multiple-slave multiple model switching adaptive estimator minimum mean-square error multiple master single-slave
MACA MACCEPA MAP MARS MARUM MASE MASINT MAV MAZE MBA	mechanically adjustable compliance and controllable equilibrium position actuator maximum a posteriori multiappendage robotic system Zentrum für Marine Umweltwissenschaften Marine Autonomous Systems Engineering measurement!and signatures intelligence micro aerial vehicles Micro robot maze contest motivated behavioral architecture	MIRO MIS MIT MITI MKL ML MLE MLR MLS MMC MMMS MMSAE MMSAE	middleware for robot minimally invasive surgery Massachusetts Institute of Technology Ministry of International Trade and Industry multiple kernel learning machine!learning maximum likelihood estimate mesencephalic locomotor region multilevel surface map metal matrix composite multiple master multiple-slave multiple model switching adaptive estimator minimum mean-square error multiple master single-slave mirror!neuron system
MACA MACCEPA MAP MARS MARUM MASE MASINT MAV MAZE	mechanically adjustable compliance and controllable equilibrium position actuator maximum a posteriori multiappendage robotic system Zentrum für Marine Umweltwissenschaften Marine Autonomous Systems Engineering measurement!and signatures intelligence micro aerial vehicles Micro robot maze contest motivated behavioral architecture Monterey Bay Aquarium Research	MIRO MIS MIT MITI MKL ML MLE MLR MLS MMC MMMS MMSAE MMSE MMSS	middleware for robot minimally invasive surgery Massachusetts Institute of Technology Ministry of International Trade and Industry multiple kernel learning machine!learning maximum likelihood estimate mesencephalic locomotor region multilevel surface map metal matrix composite multiple master multiple-slave multiple model switching adaptive estimator minimum mean-square error multiple master single-slave mirror!neuron system metallo-organic chemical vapor
MACA MACCEPA MAP MARS MARUM MASE MASINT MAV MAZE MBA MBARI	mechanically adjustable compliance and controllable equilibrium position actuator maximum a posteriori multiappendage robotic system Zentrum für Marine Umweltwissenschaften Marine Autonomous Systems Engineering measurement!and signatures intelligence micro aerial vehicles Micro robot maze contest motivated behavioral architecture Monterey Bay Aquarium Research Institute	MIRO MIS MIT MITI MKL ML MLE MLR MLS MMC MMMS MMSAE MMSAE	middleware for robot minimally invasive surgery Massachusetts Institute of Technology Ministry of International Trade and Industry multiple kernel learning machine!learning maximum likelihood estimate mesencephalic locomotor region multilevel surface map metal matrix composite multiple master multiple-slave multiple model switching adaptive estimator minimum mean-square error multiple master single-slave mirror!neuron system metallo-organic chemical vapor deposition
MACA MACCEPA MAP MARS MARUM MASE MASINT MAV MAZE MBA MBARI MBE	mechanically adjustable compliance and controllable equilibrium position actuator maximum a posteriori multiappendage robotic system Zentrum für Marine Umweltwissenschaften Marine Autonomous Systems Engineering measurement!and signatures intelligence micro aerial vehicles Micro robot maze contest motivated behavioral architecture Monterey Bay Aquarium Research Institute molecular-beam epitaxy	MIRO MIS MIT MITI MKL ML MLE MLR MLS MMC MMMS MMS MMSAE	middleware for robot minimally invasive surgery Massachusetts Institute of Technology Ministry of International Trade and Industry multiple kernel learning machine!learning maximum likelihood estimate mesencephalic locomotor region multilevel surface map metal matrix composite multiple master multiple-slave multiple model switching adaptive estimator minimum mean-square error multiple master single-slave mirror!neuron system metallo-organic chemical vapor deposition multiple operator multiple robot
MACA MACCEPA MAP MARS MARUM MASE MASINT MAV MAZE MBA MBARI MBE MBS	mechanically adjustable compliance and controllable equilibrium position actuator maximum a posteriori multiappendage robotic system Zentrum für Marine Umweltwissenschaften Marine Autonomous Systems Engineering measurement!and signatures intelligence micro aerial vehicles Micro robot maze contest motivated behavioral architecture Monterey Bay Aquarium Research Institute molecular-beam epitaxy mobile!base system	MIRO MIS MIT MITI MKL ML MLE MLR MLS MMC MMMS MMSAE MMSAE MMSE MMSS MNS MOCVD MOMR MOOS	middleware for robot minimally invasive surgery Massachusetts Institute of Technology Ministry of International Trade and Industry multiple kernel learning machine!learning maximum likelihood estimate mesencephalic locomotor region multilevel surface map metal matrix composite multiple master multiple-slave multiple model switching adaptive estimator minimum mean-square error multiple master single-slave mirror!neuron system metallo-organic chemical vapor deposition multiple operator multiple robot mission oriented operating suite
MACA MACCEPA MAP MARS MARUM MASE MASINT MAV MAZE MBA MBARI MBE MBS MC	mechanically adjustable compliance and controllable equilibrium position actuator maximum a posteriori multiappendage robotic system Zentrum für Marine Umweltwissenschaften Marine Autonomous Systems Engineering measurement!and signatures intelligence micro aerial vehicles Micro robot maze contest motivated behavioral architecture Monterey Bay Aquarium Research Institute molecular-beam epitaxy mobile!base system Monte Carlo	MIRO MIS MIT MITI MKL ML MLE MLR MLS MMC MMMS MMSAE MMSAE MMSE MMSS MNS MOCVD MOMR MOOS MOOS	middleware for robot minimally invasive surgery Massachusetts Institute of Technology Ministry of International Trade and Industry multiple kernel learning machine!learning maximum likelihood estimate mesencephalic locomotor region multilevel surface map metal matrix composite multiple master multiple-slave multiple model switching adaptive estimator minimum mean-square error multiple master single-slave mirror!neuron system metallo-organic chemical vapor deposition multiple operator multiple robot mission oriented operating suite motion-oriented operating system
MACA MACCEPA MAP MARS MARUM MASE MASINT MAV MAZE MBA MBARI MBE MBS MC MCFC	mechanically adjustable compliance and controllable equilibrium position actuator maximum a posteriori multiappendage robotic system Zentrum für Marine Umweltwissenschaften Marine Autonomous Systems Engineering measurement!and signatures intelligence micro aerial vehicles Micro robot maze contest motivated behavioral architecture Monterey Bay Aquarium Research Institute molecular-beam epitaxy mobile!base system Monte Carlo molten carbonate fuel cell	MIRO MIS MIT MITI MKL ML MLE MLR MLS MMC MMMS MMSAE MMSAE MMSE MMSS MNS MOCVD MOMR MOOS MOOS MORO	middleware for robot minimally invasive surgery Massachusetts Institute of Technology Ministry of International Trade and Industry multiple kernel learning machine!learning maximum likelihood estimate mesencephalic locomotor region multilevel surface map metal matrix composite multiple master multiple-slave multiple model switching adaptive estimator minimum mean-square error multiple master single-slave mirror!neuron system metallo-organic chemical vapor deposition multiple operator multiple robot mission oriented operating suite motion-oriented operating system mobile robot
MACA MACCEPA MAP MARS MARUM MASE MASINT MAV MAZE MBA MBARI MBE MBS MC MCFC MCP	mechanically adjustable compliance and controllable equilibrium position actuator maximum a posteriori multiappendage robotic system Zentrum für Marine Umweltwissenschaften Marine Autonomous Systems Engineering measurement!and signatures intelligence micro aerial vehicles Micro robot maze contest motivated behavioral architecture Monterey Bay Aquarium Research Institute molecular-beam epitaxy mobile!base system Monte Carlo molten carbonate fuel cell magazining, cleaning, plotting	MIRO MIS MIT MITI MKL ML MLE MLR MLS MMC MMMS MMSAE MMSAE MMSE MMSS MNS MOCVD MOMR MOOS MOOS MOOS MOOS MOSR	middleware for robot minimally invasive surgery Massachusetts Institute of Technology Ministry of International Trade and Industry multiple kernel learning machine!learning maximum likelihood estimate mesencephalic locomotor region multilevel surface map metal matrix composite multiple master multiple-slave multiple model switching adaptive estimator minimum mean-square error multiple master single-slave mirror!neuron system metallo-organic chemical vapor deposition multiple operator multiple robot mission oriented operating suite motion-oriented operating system mobile robot multiple operator single robot
MACA MACCEPA MAP MARS MARUM MASE MASINT MAV MAZE MBA MBARI MBE MBS MC MCFC MCP MCP	mechanically adjustable compliance and controllable equilibrium position actuator maximum a posteriori multiappendage robotic system Zentrum für Marine Umweltwissenschaften Marine Autonomous Systems Engineering measurement!and signatures intelligence micro aerial vehicles Micro robot maze contest motivated behavioral architecture Monterey Bay Aquarium Research Institute molecular-beam epitaxy mobile!base system Monte Carlo molten carbonate fuel cell magazining, cleaning, plotting metacarpophalangeal	MIRO MIS MIT MITI MKL ML MLE MLR MLS MMC MMMS MMSAE MMSAE MMSE MMSS MOCVD MOMR MOOS MOOS MOOS MORO MOSR MP	middleware for robot minimally invasive surgery Massachusetts Institute of Technology Ministry of International Trade and Industry multiple kernel learning machine!learning maximum likelihood estimate mesencephalic locomotor region multilevel surface map metal matrix composite multiple master multiple-slave multiple model switching adaptive estimator minimum mean-square error multiple master single-slave mirror!neuron system metallo-organic chemical vapor deposition multiple operator multiple robot mission oriented operating suite motion-oriented operating system mobile robot multiple operator single robot multiple operator single robot moving plate
MACA MACCEPA MAP MARS MARUM MASE MASINT MAV MAZE MBA MBARI MBE MBS MC MCFC MCP	mechanically adjustable compliance and controllable equilibrium position actuator maximum a posteriori multiappendage robotic system Zentrum für Marine Umweltwissenschaften Marine Autonomous Systems Engineering measurement!and signatures intelligence micro aerial vehicles Micro robot maze contest motivated behavioral architecture Monterey Bay Aquarium Research Institute molecular-beam epitaxy mobile!base system Monte Carlo molten carbonate fuel cell magazining, cleaning, plotting	MIRO MIS MIT MITI MKL ML MLE MLR MLS MMC MMMS MMSAE MMSAE MMSE MMSS MNS MOCVD MOMR MOOS MOOS MOOS MOOS MOSR	middleware for robot minimally invasive surgery Massachusetts Institute of Technology Ministry of International Trade and Industry multiple kernel learning machine!learning maximum likelihood estimate mesencephalic locomotor region multilevel surface map metal matrix composite multiple master multiple-slave multiple model switching adaptive estimator minimum mean-square error multiple master single-slave mirror!neuron system metallo-organic chemical vapor deposition multiple operator multiple robot mission oriented operating suite motion-oriented operating system mobile robot multiple operator single robot

MPF	manifold particle filter	NIDRR	National Institute on Disability and
MPFIM	multiple!paired forward-inverse model		Rehabilitation Research
MPHE	multiphalanx hand exoskeleton	NiMH	nickel metal hydride battery
MPSK	Mary phase shift keying	NIMS	networked!infomechanical systems
MQAM	Mary quadrature amplitude modulation	NIOSH	United States National Institute for
MR	magnetorheological	1,10011	Occupational Safety and Health
MR	multiple reflection	NIRS	near infrared spectroscopy
MR	multirobot!task	NIST	National Institute of Standards and
MRAC	model reference adaptive control	14151	Technology
	•	NI IC	national livestock identification scheme
MRDS	Microsoft robotics developers studio	NLIS	
MRF	Markov random field	NLP	nonlinear!programming problem
MRHA	multiple!resource host architecture	NMEA	National Marine Electronics Association
MRI	magnetic resonance imaging	NMF	nonnegative matrix factorization
MRSR	Mars rover sample return	NMMI	natural machine motion initiative
MRTA	multirobot!task allocation	NMR	nuclear!magnetic resonance
MSAS	multifunctional satellite augmentation	NN	neural network
	system	NOAA	National Oceanic and Atmospheric
MSER	maximally stable extremal region		Administration
MSHA	US Mine Safety and Health	NOAH	navigation!and obstacle avoidance help
	Administration	NOC	National Oceanography Centre
MSK	minimum shift keying	NOTES	natural!orifice transluminal surgery
MSL	middle-size league	NPO	nonprofit organization
MSM	master-slave!manipulator	NPS	Naval Postgraduate School
MST	microsystem technology	NQE	national qualifying event
MT	momentum theory	NRI	national robotics initiative
MT	multitask	NRM	nanorobotic manipulator
			1
MT	medial temporal area	NRTK	network real-time kinematic
MTBF	mean time between failures	NTPP	nontangential proper part
MTI	moving target indicator	NTSC	National Television System Committee
MVERT	move value estimation for robot teams	NURBS	nonuniform rational B-spline
MWNT	multiwalled carbon nanotube	NUWC	Naval Undersea Warfare Center
			Division Newport
		NZDF	New Zealand Defence Force
<u>N</u>		_	
		0	
N&G	nursery and greenhouse		
NAP	nonaccidental property	OAA	open!agent architecture
NASA	National Aeronautics and Space Agency	OASIS	onboard autonomous science
NASDA	National Space Development Agency of		investigation system
	Japan	OAT	optimal arbitrary time-delay
NASREM	NASA/NBS standard reference model	OBU	on board unit
NBS	National Bureau of Standards	OC	optimal control
NC	numerical control	OCPP	optimal!coverage path planning
ND ND	nearness diagram navigation	OCR	OC robotics
NDDS	network data distribution service	OCT	optical!coherence tomography
NDGPS	nationwide different GPS system	OCU	operator control unit
NDI	nonlinear dynamic inversion	OD	outer diameter
NDT	normal distributions transform	ODE	ordinary differential equation
NEMO	network!mobility	ODE	open dynamics engine
NEMS	nanoelectromechanical system	ODI	ordinary differential inclusion
NEO	neodymium	OECD	Organization for Economic Cooperation
NERVE	New England Robotics Validation and		and Development
	Experimentation	OKR	optokinetic response
NESM	normalized ESM	OLP	offline programming
			- · · · · ·

OM	optical microscope	PDE	partial differential equation
OM	occupancy map	PDGF	power!data grapple fixture
ONR	US Office of Naval Research	PDMS	polydimethylsiloxane
OOF	out of field	PDOP	positional dilution of precision
OOTL	human!out of the loop control	PDT	proximity!detection technology
OPRoS	open platform for robotic service	PEAS	probing environment and adaptive
ORCA	open robot control architecture		sleeping protocol
ORCCAD	open robot controller computer aided	PEFC	polymer electrolyte fuel cell
	design	PEMFC	proton exchange membrane fuel cell
ORI	open!roboethics initiative	PerceptOR	perception!for off-road robotics
ORM	obstacle restriction method	PET	positron emission tomography
OROCOS	open robot control software	PF	particle filter
ORU	orbital replacement unit	PF	parallel!fiber
OS	operating system	PFC	prefrontal cortex
OSC	operational-space control	PFH	point feature histogram
OSIM	operational-space inertia matrix	PFM	potential field method
OSU	Ohio State University	PGM	probabilistic graphical model
OTH	over-the-horizon	PGRL	policy gradient!reinforcement learning
OUR-K	ontology based unified robot knowledge	pHRI	physical!human–robot interaction
OWL	web ontology language	PI	policy iteration
OxIM	Oxford intelligent machine	PI	possible!injury
	C	PI	propositional integral
P		PI	proportional-integral
		PIC	programmable!intelligent computer
P	prismatic joint	PID	proportional-integral-derivative
P&O	prosthetics!and orthotic	PIT	posterior!inferotemporal cortex
PA	point algebra	PKM	parallel kinematics machine
PACT	perception!for action control theory	PKM	parallel kinematic machine
PAD	pleasure arousal dominance	PL	power loading
PAFC	phosphoric acid fuel cell	PLC	programmable!logic controller
PAM	pneumatic artificial muscle	PLD	programmable!logic device
PaMini	pattern-based mixed-initiative	PLEXIL	plan execution interchange language
PANi	polyaniline	PLSA	probabilistic latent semantic analysis
PANTOMEC	pantograph mechanism driven	PLZT	lead lanthanum zirconate titanate
PAPA	privacy, accuracy, intellectual property,	PM	permanent magnet
	and access	PMC	polymer matrix composite
PAS	pseudo-amplitude scan	PMMA	polymethyl methacrylate
PAT	proximity!awareness technology	PneuNet	pneumatic network
PB	parametric!bias	PnP	prespective-n-point
PbD	programming!by demonstration	PNT	Petri net transducer
PBVS	pose-based visual servo control	PO	partially overlapping
PC	polycarbonate	PO	passivity observer
PC	personal computer	POE	local product-of-exponential
PC	principal contact	POI	point!of interest
PC	passivity controller	POM	•
PC PC			polyoxymethylene
	proprioception	POMDP	partially observable Markov decision
PC PCA	Purkinje cell	DOD	process
PCA	principal component analysis	POP	partial-order planning
PCI PCI-	peripheral component interconnect	PPS	precise positioning system
PCIe	peripheral component interconnect	PPy	polypyrrole
DCI	express	PR	positive photoresist
PCL	point cloud library	PRM	probabilistic roadmap
PCM	programmable!construction machine	PRM	probabilistic roadmap method
PD	proportional-derivative	PRN	pseudo-random noise

PRoP	personal roving presence	RC	robot!controller
ProVAR	professional vocational assistive robot	RCC	region connection calculus
PRS	procedural reasoning system	RCC	remote center of compliance
PS	power source	RCM	remote!center of motion
PSD	position sensing device	RCP	rover chassis prototype
PSD	position-sensitive-device	RCR	responsible conduct of research
PSK	phase shift keying	RCS	real-time control system
PSPM	passive set-position modulation	RCS	rig control system
PTAM	parallel tracking and mapping	RDT	rapidly exploring dense tree
PTU	pan–tilt unit	RECS	robotic!explosive charging system
PUMA	programmable!universal machine for	REINFORCE	reward increment = nonnegative factor
	assembly		× offset reinforcement × characteristic
PVA	position, velocity, and attitude		eligibility
PVC	polyvinyl chloride	RERC	Rehabilitation Engineering Research
PVD	physical vapor deposition		Center
PVDF	polyvinylidene fluoride	RF	radio frequency
PWM	pulse-width modulation	RFID	radio frequency identification
PwoF	point-contact-without-friction	RG	rate gyro
PZT	lead zirconate titanate	RGB-D	color camera with depth
		RGB-D	red green blue distance
Q		RGB-D	red-green-blue-depth
		RHIB	rigid!hull inflatable boat
QAM	quadrature amplitude modulation	RIE	reactive-ion etching
QD	quantum dot	RIG	rate-integrating gyro
QID	qualifier, inspection and demonstration	RISC	reduced instruction set computer
QOLT	quality!of life technology	RL	reinforcement learning
QOS	quality of service	RLG	ring laser gyroscope
QP	quadratic programming	RLG	random loop generator
QPSK	quadrature phase shift keying	RMC	resolved momentum control
QRIO	quest for curiosity	RMDP	relational Markov decision processes
QSC	quasistatic!constrained	RMMS	reconfigurable modular manipulator
QT	quasistatic telerobotics		system
QZSS	quasi-zenith satellite system	RMS	root mean square
		RNDF	route network definition file
R		RNEA	recursive Newton-Euler algorithm
		RNN	recurrent neural network
R	revolute joint	RNNPB	recurrent neural network with
R.U.R.	Rossum's Universal Robots		parametric bias
RA	rectangle algebra	RNS	reaction!null-space
RAC	Robotics and Automation Council	ROC	receiver operating curve
RAIM	receiver autonomous integrity monitor	ROC	remote!operations centre
RALF	robotic arm large and flexible	ROCCO	robot!construction system for computer
RALPH	rapidly adapting lane position handler		integrated construction
RAM	random!access memory	ROD	robot!oriented design
RAMS	robot-assisted microsurgery	ROKVISS	robotics component verification on ISS
RAMS	random!access memory system	ROKVISS	robotics!components verification on the
RANSAC	random sample consensus		ISS
RAP	reactive action package	ROM	run-of-mine
RAS	Robotics and Automation Society	ROM	read-only memory
RBC	recognition!by-component	ROMAN	Robot and Human Interactive
RBF	radial!basis function network		Communication
RBF	radial!basis function	ROS	robot operating system
RBT	robot!experiment	ROV	remotely operated vehicle
RC	radio control	ROV	remotely!operated underwater vehicle
			¥ .

RP	rapid prototyping	SCARA	selective compliance assembly robot
RP-VITA	remote presence virtual + independent	SCAKA	arm
KI-VIIA	telemedicine assistant	SCI	spinal cord!injury
RPC	remote procedure call	sci-fi	science fiction
RPI	Rensselaer Polytechnic Institute	SCM	smart composite microstructures
RPS	room positioning system	SCM	soil!contact model
RRSD	Robotics and Remote Systems Division	SD	standard deviation
RRT	rapidly exploring random tree	SDK	standard development kit
RS	Reeds and Shepp	SDK	software development kit
RSJ	Robotics Society of Japan	SDM	shape deposition manufacturing
RSS	Robotics Science and Systems	SDR	software!for distributed robotics
RSTA	reconnaissance, surveillance, and target	SDV	spatial dynamic voting
KSIA	acquisition	SEA	series elastic actuator
RSU	road!side unit	SEE	standard!end effector
RT	real-time	SELF	sensorized environment for life
RT RT		SEM	scanning electron microscope
RT	room temperature reaction!time	SEM	-
	4 Radio Technical Commission for	SF	single electron transistor soft finger
KICMS CIC			structure from motion
	Maritime Services Special Committee 104	SFM	
RTD		SFX SGAS	sensor fusion effect
RTI	resistance temperature devices real-time innovation	SGD	semiglobal asymptotic stability
			stochastic gradient descent
RTK rTMS	real-time kinematics	SGM	semiglobal!matching
	repetitive!TMS	SGUUB	semiglobal uniform ultimate boundedness
RTS	real-time system real-time toolkit	SIFT	scale-invariant feature transform
RTT			
RV	rotary vector	SIGINT	signal!intelligence
RVD	rendezvous/docking	SIR	sampling importance resampling
RW	rotary-wing real-world interface	SISO	single input single-output serial!kinematic machines
RWI		SKM	
RWS	robotic workstation	SLA	stereolithography
R&D	research and development	SLAM	simultaneous localization and mapping
R&D	research and development	SLICE	specification language for ICE
S		SLIP	spring loaded inverted pendulum
		SLRV	surveyor lunar rover vehicle
CA	-:	SLS	selective laser sintering
SA SA	simulated annealing	SM	static margin
	selective availability	SMA	shape memory alloy
SAFMC	Singapore Amazing Flying Machine	SMAS	solid material assembly system
CAT	Competition	SMC	sequential Monte Carlo
SAI	simulation!and active interfaces	SME	small!and medium enterprises
SAM	smoothing and mapping	SMMS	single-master multiple-slave
SAN	semiautonomous navigation	SMP	shape memory polymer
SAR	synthetic aperture radar	SMS	short message service
SAR	socially assistive robotics	SMSS	single-master single-slave
SARSA	state action-reward-state-action	SMT	satisfiabiliy modulo theory
SAS	synthetic aperture sonar	SMU	safe!motion unit
SAS	stability augmentation system	SNAME	society of naval architects and marine
SAT	International Conference on Theory and	CNION	engineer
CDAC	Applications of Satisfiability Testing	SNOM	scanning near-field optical microscopy
SBAS	satellite-based augmentation system	SNR	signal-to-noise ratio
SBL	short baseline	SNS	spallation neutron source
SBSS	space based space surveillance	SOFC	solid oxide fuel cell
SC	sparse coding	SOI	silicon-on-insulator

SOMA	stream-oriented messaging architecture	TCFFHRC	Trinity College's Firefighting Robot
SOMR	single operator multiple robot		Contest
SOS	save our souls	TCP	transfer control protocol
SOSR	single operator single robot	TCP	tool center point
SPA	sense-plan-act	TCP	transmission control protocol
SPaT	signal!phase and timing	TCSP	temporal constraint satisfaction problem
SPAWAR	Space and Naval Warfare Systems	tDCS	transcranial!direct current stimulation
	Center	TDL	task description language
SPC	self-posture changeability	TDT	tension-differential type
SPDM	special purpose dexterous manipulator	TECS	total energy control system
SPHE	single-phalanx hand exoskeleton	TEM	transmission electron microscope
SPL	single!port laparoscopy	tEODor	telerob explosive ordnance disposal and
SPL	standard!platform	tLODOI	observation robot
SPM		TED	
	scanning probe microscope	TFP	total!factor productivity
SPM	spatial pyramid matching	TL	temporal logic
SPMS	shearer position measurement system	TMM	transfer matrix method
SPS	standard position system	TMS	tether management system
SPU	spherical, prismatic, universal	TMS	transcranial!magnetic stimulation
SQP	sequential!quadratic programming	TNT	trinitrotoluene
SR	single-robot task	TOA	time of arrival
SRA	spatial!reasoning agent	TOF	time-of-flight
SRCC	spatial remote center compliance	ToF	time-of-flight
SRI	Stanford Research Institute	TORO	torque!controlled humanoid robot
SRMS	shuttle remote manipulator system	TPaD	tactile pattern display
SSA	sparse surface adjustment	TPBVP	two-point boundary value problem
SSC	smart soft composite	TPP	tangential proper part
SSL	small-size league	TRC	Transportation Research Center
SSRMS	space!station remote manipulator system	TRIC	task space retrieval using inverse
ST	single-task	1140	optimal control
STEM	science, technology, engineering and	TS	technical!specification
SILWI	mathematics	TSEE	teleoperated!small emplacement
STM	scanning tunneling microscope	ISEE	excavator
STP	simple temporal problem	TSP	
			telesensor programming
STriDER	self-excited tripodal dynamic	TTC	time-to-collision
O/TO	experimental robot	TUM	Technical University of Munich
STS	superior!temporal sulcus	TV	television
SUGV	small!unmanned ground vehicle		
SUN	scene understanding	U	
SURF	robust feature		
SVD	singular value decomposition	U	universal joint
SVM	support vector machine	UAS	unmanned aircraft system
SVR	support vector regression	UAS	unmanned!aerial system
SWNT	single-walled carbon nanotube	UAV	unmanned aerial vehicle
SWRI	Southwest Research Institute	UAV	fusing air vehicle
		UAV	fielded unmanned aerial vehicle
T		UB	University of Bologna
		UBC	University of British Columbia
T-REX	teleo-reactive executive	UBM	Universität der Bundeswehr Munich
TA	time-extended assignment	UCLA	University of California, Los Angeles
TAL	temporal action logic	UCO	uniformly completely observable
TAM	taxon!affordance model	UDP	user datagram protocol
TAP	test action pair	UDP	user data protocol
TBG	time-base generator	UGV	unmanned!ground vehicle
	technical committee		
TC	technical committee	UHD	ultrahigh definition

VRML

virtual reality modeling language

UHF	ultrahigh frequency	VS	visual servo
UHV	ultrahigh-vacuum	VS-Joint	variable stiffness joint
UKF	unscented Kalman filter	VSA	variable stiffness actuator
ULE	upper!limb exoskeleton	VTOL	vertical take-off and landing
UML	unified modeling language		C
UMV	unmanned marine vehicle	W	
UNESCO	United Nations Educational, Scientific		
	and Cultural Organization	W3C	WWW consortium
UPnP	universal plug and play	WAAS	wide-area augmentation system
URC	Ubiquitous Robotic Companion	WABIAN	Waseda bipedal humanoid
URL	uniform resource locator	WABOT	Waseda robot
USAR	urban!search and rescue	WAM	whole-arm manipulator
USB	universal!serial bus	WAN	wide-area network
USBL	ultrashort baseline	WASP	wireless!ad-hoc system for positioning
USBL	ultrashort-baseline	WAVE	wireless!access in vehicular
USC	University of Southern California		environments
USV	unmanned!surface vehicle	WCF	worst-case factor
UTC	universal coordinated time	WCR	worst-case range
UUB	uniform ultimate boundedness	WDVI	weighted!difference vegetation index
UUV	unmanned underwater vehicle	WG	world!graph
UV	ultraviolet	WGS	World Geodetic System
UVMS	underwater vehicle!manipulator system	WHOI	Woods Hole Oceanographic Institution
UWB	ultrawide band	WML	wireless markup language
UXO	unexploded ordnance	WMR	wheeled mobile robot
ONO	unexproded ordinance	WSN	wireless!sensor network
V		WTA	winner-take-all
		WTC	World Trade Center
V2V	vehicle-to-vehicle	WWW	world wide web
VAS	visual!analog scale		
VCR	video!cassette recorder	X	
vdW	van der Waals		
VE VE	virtual environment	XCOM	extrapolated center of mass
VFH	vector field histogram	XHTML	extensible hyper text markup language
VHF	very high frequency	XML	extensible markup language
VII	value iteration	xUCE	urban!challenge event
VIA	variable impedance actuator		
VIA	ventral intraparietal	Υ	
VM	virtual!manipulator		
VME	Versa Module Europa	YARP	yet another robot platform
VML	virtual object	-	
VO	velocity obstacle	Z	
VOC	visual object class		
VOR	visual object class vestibular-ocular reflex	ZMP	zero moment point
VOK VR	variable reluctance	ZOH	zero order hold
VRMI.	virtual reality modeling language	ZP	zona pellucida