QUESTION 1

Use the Matlab linprog function to plot the efficient frontier of the Ad Lib Marketing problem with the following data.

Exposure Statistics: Exposures in 1,000's per \$1,000 spent

Market Group	1	2	3	4	5	6	7
TVL	0	1	5	50	1	0	13
TVP	0	3	40	1	4	0	0
BLB	30	0	0	0	0	1	40
NEW	4	0	0	0	0	13	2
RAD	0	3	13	60	50	5	0

Minimum Exposures:

Market Group	1	2	3	4	5	6	7
Minimum Number of Exposures Needed (in 1,000's)	19	40	30	10	16	12	17

Saturation Level:

Market Group	1	2	3	4	5	6	7
Saturation Level of Exposures (in 1,000's)	120	90	60	35	100	45	30

Plot the efficient frontier for values of the advertising expenditure between 15 and 18 thousand dollars.

Within this range of advertising expenditure, give the value for which there is a corner point on the efficient frontier, to the nearest one decimal place.

Decision Variables:

TVL = [0, 1, 5, 50, 1, 0, 13]

TVP = [0, 3, 40, 1, 4, 0, 0]

BLB = [30, 0, 0, 0, 0, 1, 40]

NEW = [4, 0, 0, 0, 0, 13, 2]

RAD = [0, 3, 13, 60, 50, 5, 0]

Min Exposures = [19, 40, 30, 10, 16, 12, 17]

Saturation Level = [120, 90, 60, 35, 100, 45, 30]

 UX_i = number of useful excess exposures = min{saturation level, actual exposure} - min required

UX_i = min{Saturation Level_i, ?} – Min Exposures₁

 $UX_1 = min\{120, ?\} - 19 = 101$

 $UX_2 = min{90, ?} - 40 = 50$

 $UX_3 = min\{60, ?\} - 30 = 30$

 $UX_4 = min{35, ?} - 10 = 25$

 $UX_5 = min\{100, ?\} - 16 = 84$

 $UX_6 = min\{45, ?\} - 12 = 33$

 $UX_7 = min{30, ?} - 17 = 13$

Cost = total amount spent on advertising = 1:1 ratio to number of exposure

USEFULX = total useful exposures = sum of exposures for each exposure between inequality of 2^{nd} last and last row

Constraint Set 1: exposures in a market >= min required + useful excess exposure beyond min

```
Exposure<sub>i</sub> >= Min Exposures[i] + UX<sub>i</sub>

Constraint Set 2: useful excess exposure in a market <= saturation level – min required; useful excess exposure in a market <= UX<sub>i</sub> ??

UX<sub>1</sub> <= Saturation Level<sub>i</sub> – Min Exposure[i]
```

```
value=[];
for i = 15:0.01:18
b = -1*[19;40;30;10;16;12;17];
A = [[0 \ 0 \ -30 \ -4 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0];
  -1 -3 0 0 -3 0 1 0 0 0 0 0;
  -5 -40 0 0 -13 0 0 1 0 0 0 0;
  -50 -1 0 0 -60 0 0 0 1 0 0 0;
  -1 -4 0 0 -50 0 0 0 0 1 0 0;
  00-1-13-50000010;
  -13 0 -40 -2 0 0 0 0 0 0 0 1]];
Aeq = [ones(1,5), zeros(1,7)];
beq = i;
lb = zeros(12,1);
ub = [+Inf;+Inf;+Inf;+Inf;101;50;30;25;84;33;13];
f = [zeros(5,1);-1*ones(7,1)];
[x,fval] = linprog(f,A,b,Aeq,beq,lb,ub);
value = [value,-1*fval];
end
plot([15:0.01:18], value)
```