

4th Year IT-IS-SW

MANET VS VANET (Lecture 9)

MANETS Characteristics

- · Peer-to-peer and multi-hop transmission techniques
- No infrastructure and no base station
- Dynamic topologies
 - ✓ Network changes randomly based on MS movement
 - √ Routing challenges
- Bandwidth-constrained and variable capacity links
 - ✓ Lower capacity and bandwidth than cellular
 - ✓ More affected with noise, interference and fading
- Energy-constrained operation
 - ✓ All MS in MANET may rely on batteries
 - ✓ Need for design optimization of energy consumption
- · Limited security
 - ✓ Spoofing, eavesdropping and denial of service threats increased in MANET than wireline networks

· Challenges

- ✓ Routing
- √ Heterogenous nodes
- √ Time delay
- ✓ Consume power
- ✓ Symmetric (uplink one way) Vs Asymmetric link (uplink)
 - downlink)

MANET Applications

- Defense applications
- Crisis-management applications
- · Telemedicine
- · Education via the Internet
- VANETs

MANET Routing Goals

- Route computation must be distributed, because centralized routing in a dynamic network is impossible
- As few nodes as possible must be involved in route computation
- Each node must care only about the routes to its destination
- Stale routes <u>must be either avoided or detected</u> and eliminated quickly
- · Broadcasts must be avoided as much as possible
- Backup routes

VANETs (Vehicular Ad-hoc Networks)

- MANETs whose nodes are vehicles
- · Goals are
 - ✓ Reduce accidents, congestion
 - ✓ Provide essential information
 - ✓ Increase mobility of humans and goods
 - ✓ Improve driving comfort

Type of transmission

- Direct or single hop Transmission
 - > Used in cellular network
 - > Need strong power but decrease delay

- (a) Direct transmission
- Multi-hop Transmission
 - > Each hop like as router of pervious hop
 - > Need power less than direct but increase delay

(b) Multi-hop transmission

Routing

- > Find a path between two nodes through intermediate nodes
- > Routing finds the "optimal" path

Routing Process =

- Route Discovery
 - Find a route of potential routes between a source and a destination
- Route Selection
 - Pick the optimal path from set of routes that satisfies a given performance criteria
- Route Representation & Data Forwarding
 - Store route and perform data transfer

Classification of MANET Routing Protocols

MANETs Routing Schemes

Proactive

(Table-Driven)

Reactive

(On-Demand)

Hybrid

DSDV

Distance Vector Routing

DSR

AODV

ZRP

Proactive Routing Schemes	Reactive Routing Schemes		
Evaluate continuously the routes within the network	Invoke route determination procedure only on demand		
when a packet needs to be forwarded, route is already known and can be immediately used	when a route is needed, global search procedure is initiated		
Exchange routing information	Discovery terminates when route is discovered or no route is found Use route request and route replay in search procedure		
outing table	route is discovered or no route i found Use route request and route		
petween nodes and store in	route is discovered or no route i found Use route request and route		

(DSR)

(DSDV)

Creating Routing Table

Δ			B			С		
	Next	Metric	Dest.	Next	Metric	Dest.	Next	Metric
Dest.	Mexi			A	1	A	8	2
A	A	0			0	В	В	1
В	В	1	В	В			C	0
C	В	2	С	С	1	С		

<u>Destination Sequenced Distance Vector Routing (DSDV)</u> - <u>Proactive Scheme</u>

- · Each node maintains routing table
 - Table stores route to every possible destination +
 number of hops to destination (metrics) + next node to
 reach destination + sequence number
- Each node periodically sends its routing table to its direct neighbors
 - Node receives information from its neighbors, updates routing table
- If destination has multiple route entries, entry with most recent sequence # is used

Dynamic Source Routing (DSR) - Reactive Scheme

- Each node maintains a cache
 - Maintain source routes and update if new routes are discovered
- When node has message to send, it uses cache
 - If there is a route to destination, use it
 - Else, initiate route discovery broadcast route request packet (src_addr, dst_addr, ID)
- Node receiving route request packet and check its cache
 - If no route is found, it appends its address to route request packet and sends it to neighbors
- Route record has information about all hops taken to destination
- If destination is receiver, it sends route record in a route reply packet

Example if S need to send packet to D

Solution

Routing Metrics

- · Number of hops
- Distance
- Delay
- · Packet loss rate
- Energy consumption

VANETs Routing Schemes

VANET Routing Schemes

Position-based Unicast

Geocast

Broadcast

Non-Delay Tolerant **Delay** Tolerant

IVG

DV-CAST

GSR

VADD

Position-based Unicast Routing Operations

Location Service (RLS)

Forwarding strategy (Greedy)

1. Reactive Location Service (RLS)

- ✓ A node querying the geographical position of a certain node issues a location query packet,
- ✓ Packet floods network until it reaches destination or TTL expires
- √ When destination receive query packet, it creates a location replay packet with querying node ID and location

2. Greedy Forwarding

✓ When an intermediate node receives a packet, it forwards the packet to a neighbor lying in the general direction of the recipient.

Non-Delay Tolerant Position-based Routing

- · deliver packets as soon as possible
- · works best in city environments where high traffic and there's plenty of nodes
- · Example: Geographic Source Routing (GSR)

Steps of Geographic Source Routing (GSR)

- · Use street map to compute path to destination in terms of junctions (intersections)
- Sender uses RLS to get destination's position
- · Node computes path to destination using streets map and Dijkstra's shortest path algorithm

- 11
- Sender computes a sequence of junctions on the path that the packet has to traverse in order to reach the destination
- Sequence of junctions is either put into the packet header

Forwarding a packet between two successive junctions is done
 by greedy forwarding

GSR Problem

 If the connectivity between vehicles is low many packets could be dropped