Examen diagnóstico

- 1. Considere la integral $\int_0^1 (f(x))^2 dx = 0$ donde $f:[0,1] \to \mathbb{R}$ es continua. Demuestre que f(x) es idénticamente nula.
- 2. Demuestre que la ecuación $x^5 + 10x + 3 = 0$ tiene exactamente una raíz (en los números reales).
- 3. Responda los siguientes incisos. Justifique su respuesta con detalle.
 - (a) Sea n un número natural. Calcule $\int_{-n}^{n} x dx$.
 - (b) ¿Existe $\int_{-\infty}^{\infty} x dx$?
- 4. Sea $e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)$ la base canónica en espacio vectorial \mathbb{R}^3 . Escriba la matriz asociada a la transformación "rotación alrededor del eje que corresponde al vector e_3 por $\frac{\pi}{2}$ radianes en el sentido de las agujas del reloj". Exprésela usando la base canónica y justifique.
- 5. Considere una función lineal $T: \mathbb{R}^n \to \mathbb{R}^m$ tal que dim $\ker T = 2$ y dim $T(\mathbb{R}^n) = m 1$. Determine todos los posibles valores de $n, m \in \mathbb{N}$. ($\ker T \subset \mathbb{R}^n$ es el conjunto de los vectores $\vec{v} \in \mathbb{R}^n$ tales que $T\vec{v} = \vec{0}$.)
- 6. Sea V un espacio vectorial sobre un campo F. Dado $S \subseteq V$, por $\langle S \rangle$ denotamos al mínimo subespacio vectorial de V que contiene a S.
 - (a) Demuestre que para cualesquiera $S, Z \subseteq V$, se tiene que $\langle S \cap Z \rangle \subseteq \langle S \rangle \cap \langle Z \rangle$.
 - (b) Dé un ejemplo donde $\langle S \cap Z \rangle = \langle S \rangle \cap \langle Z \rangle$ y uno en el que $\langle S \cap Z \rangle \neq \langle S \rangle \cap \langle Z \rangle$.
- 7. Sea V un espacio vectorial sobre los reales. Demuestre que para cualesquiera $u, v \in V$ distintos, el conjunto $\{u, v\}$ es linealmente independiente si y sólo si el conjunto $\{u+v, u-v\}$ es linealmente independiente.
- 8. Responda los siguientes incisos. Justifique su respuesta con detalle.
 - (a) Sea $f: \mathbb{R} \to \mathbb{R}$ impar y derivable en todo punto. Demuestre que para todo b > 0, existe $c \in (-b, b)$ tal que $f'(c) = \frac{f(b)}{b}$. (f es una función impar si f(-x) = -f(x) para todo $x \in \mathbb{R}$).
 - (b) Sea $f: \mathbb{R} \to \mathbb{R}$ derivable en todo punto. Demuestre que si $f'(x) \neq 1$ para todo $x \in \mathbb{R}$, entonces f no puede tener 2 puntos fijos (un número a es un punto fijo de f si f(a) = a).
- 9. ¿Para qué valores a y b el sistema de ecuaciones

$$\begin{cases} x+z=a\\ -ax+(a+1)y+z=-b\\ -y+z=b \end{cases}$$

tiene una única solución?

ablaPara qué valores a y b el sistema tiene una infinidad de soluciones? Escriba el conjunto de soluciones en este caso.

10. Considere una función continua $f:[0,\infty)\to (0,\infty)$. Demuestre que si $\inf\{f(t):t\geq 0\}=0$, entonces existe una sucesión no acotada, t_k tal que $f(t_k)$ tiende a 0 cuando $k\to\infty$.

1