This week on the problem set you will get practice applying and understanding Green's theorem and Stokes' theorem.

Homework: The homework will be due on Tuesday 3 December. It will consist of questions:

*Numbers in parentheses indicate the question has been taken from the textbook:

J. Rogawski, C. Adams, *Calculus, Multivariable*, 3rd Ed., W. H. Freeman & Company, and refer to the section and question number in the textbook.

- 1. (Section 18.1) 3, 7, 8, 9, 12, 19, 20, 21, 23, 24 25, 29, 36^* , 41, 45. (Use the following translations $4^{\text{th}} \mapsto 3^{\text{rd}}$ editions: $7 \mapsto 5$, $8 \mapsto 6$, $9 \mapsto 7$, $12 \mapsto 10$, $19 \mapsto 15$, $20 \mapsto 16$, $21 \mapsto 17$, $23 \mapsto 19$, $24 \mapsto 20$, $25 \mapsto 21$, $29 \mapsto 25$, $36 \mapsto 32$, $41 \mapsto 37$, $45 \mapsto 41$ otherwise the questions are the same).
- 2. (Section 18.2) 5, 8, 9, 18, 19. (Use the following translations $4^{\rm th} \mapsto 3^{\rm rd}$ editions: $18 \mapsto 16$, $19 \mapsto 17$, otherwise the questions are the same).
- 3. (18.1.24) Find a parametrisation of the lemniscate $(x^2 + y^2)^2 = xy$ (see Figure 23) by using t = y/x as a parameter (See Exercise 23). Then use Green's theorem to find the area of one loop of the lemniscate.
- 4. (18.1.36) Green's Theorem leads to a convenient formula for the area of a polygon.
 - (a) Let \mathcal{C} be the line segment joining (x_1, y_1) to (x_2, y_2) . Show that

$$\frac{1}{2} \int_{\mathcal{C}} \langle -y, x \rangle \cdot d\mathbf{r} = \frac{1}{2} (x_1 y_2 - x_2 y_1).$$

(b) Prove that the area of the polygon with vertices $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ is equal to

$$\frac{1}{2} \sum_{i=1}^{n} (x_i y_{i+1} - x_{i+1} y_i)$$

where $(x_{n+1}, y_{n+1}) = (x_1, y_1)$.

- 5. (18.2.19) Let I be the flux of $\mathbf{F} = \langle e^y, 2xe^{x^2}, z^2 \rangle$ through the upper hemisphere S of the unit sphere.
 - (a) Let $\mathbf{G} = \langle e^y, 2xe^{x^2}, 0 \rangle$. Find a vector field **A** such that $\operatorname{curl}(\mathbf{A}) = \mathbf{G}$.
 - (b) Use Stokes' Theorem to show that the flux of **G** through \mathcal{S} is zero. *Hint:* Calculate the circulation of **A** around $\partial \mathcal{S}$.
 - (c) Calculate I. Hint: Use (b) to show that I is equal to the flux of $(0,0,z^2)$ through S.

^{*}The questions marked with an asterisk are more difficult or are of a form that would not appear on an exam. Nonetheless they are worth thinking about as they often test understanding at a deeper conceptual level.