Mirésatanä 2 데이터시트

아이즌 Z. 스치 @ Lofanfashasch 1013193

April 13, 2023

Contents

1	부품	설계	2
	1.1	ArithmetricLogicBit	2
	1.2	ArithmetricLogic	3
	1.3	Shiftre	6
	1.4	OpCodeToFlags	8

1 부품 설계

1.1 ArithmetricLogicBit

ArithmetricLogicBit는 논리곱과 배타적 논리합, 전가산 결과를 출력하는 ArithmetricLogic의 구성 부품이다.

ArithmetricLogicBit는 A, B, C_i, N, X 의 입력 핀과 C_o, O 의 출력 핀을 가지고 있고, 각각은 다음을 의미한다.

- A A. 연산의 첫 번째 인자가 될 비트
- *B* B. 연산의 두 번째 인자가 될 비트
- ullet C_i Carry In. 이전 가산기에서 발생한 올림 비트
- N aNd enable. O가 $A \lor B$ 를 출력하게 만드는 비트
- X Xor enable. O가 AB를 출력하게 만드는 비트
- C_o Carry Out. 가산 연산 중 발생한 올림 비트
- *O* Output. 연산의 결과

ArithmetricLogicBit의 진리표는 표 1과 같이 주어진다.

A	B	C_i	N	X	C_o	O
\overline{A}	B	C_i	0	0	$AB + BC_i + C_iA$	$A \oplus B \oplus C_i$
A	B	C_i	0	1	0	$A \oplus B$
A	B	C_i	1	0	0	AB

표 1: ArithmetricLogicBit의 진리표

그림 1은 ArithmetricLogicBit의 회로도이다.

그림 1: ArithmetricLogicBit의 회로도

1.2 ArithmetricLogic

ArithmetricLogic은 8비트 정수의 산술 연산과 논리 연산을 수행하는 부품이다. ArithmetricLogic은 $A, B, I_A, I_B, I_O, B_e, N, X, C_i$ 의 입력 핀과 O, C_o 의 출력 핀을 가지고 있다. 각각은 다음을 의미한다.

- A A. 연산의 첫 번째 인자가 될 수
- B B. 연산의 두 번째 인자가 될 수
- I_A Invert A. A의 결과를 반전하여 연산을 진행한다.
- I_B Invert B. ¬B를 내부 두 번째 인자 입력에 논리합한다.
- I_O Invert O. O의 결과를 반전하여 출력한다.
- B_e B Enable. B를 내부 두 번째 인자 입력에 논리합한다.
- N aNd enable. 두 수의 논리곱을 O에 출력한다.
- X Xor enable. 두 수의 배타적 논리합을 O에 출력한다.
- ullet C_i Carry In. 가산 연산에 반영할 올림 비트
- O Output. 연산의 결과
- C_o Carry Out. 가산 연산에서 발생한 올림 비트

ArithmetricLogic은 입력되는 옵션에 따라 두 인자 A, B에 대한 $A, \neg A, A+1, A-1, A+B, A-B, \neg A, B-A, A \lor B, \neg (A \lor B), A \land B, \neg (A \land B), A \lor B, \neg (A \lor B)$ 등을 계산할 수 있다.

ArithmetricLogic은 표 2와 같은 진리표를 가진다. 논리합(\lor)과 산술합(+) 연산에 주의해야 한다.

그림 2은 ArithmetricLogic의 회로도이다.

A	B	I_A	I_B	I_O	B_e	N	X	C_i	$\mid O$	C_i
\overline{A}	B	0	0	0	0	-	-	0	A	0
A	B	0	0	0	0	-	-	1	A+1	$\forall A$
A	B	0	0	0	1	0	0	0	A+B	-
A	B	0	0	0	1	0	0	1	A+B+1	-
A	B	0	0	0	1	0	1	0	$A \veebar B$	0
A	B	0	0	0	1	1	0	0	$A \wedge B$	0
A	B	0	0	1	0	-	-	0	$\neg A$	0
A	B	0	0	1	1	0	1	0	$\neg (A \veebar B)$	0
A	B	0	0	1	1	1	0	0	$\neg (A \land B)$	0
A	B	0	1	0	0	0	0	0	A-B-1	A > B
A	B	0	1	0	0	0	0	1	A-B	$A \ge B$
A	B	0	1	0	1	0	0	0	A-1	$\exists A$
A	B	0	1	1	0	0	0	0	B-A	A > B
A	B	0	1	1	0	0	0	1	B-A-1	$A \ge B$
A	B	1	0	0	0	0	0	0	$\neg A$	0
A	B	1	0	0	0	0	0	1	-A	$\forall A$
A	B	1	0	0	1	0	0	0	B-A-1	-
A	B	1	0	0	1	0	0	1	B-A	-
A	B	1	1	0	0	0	0	0	A-B-2	-
A	B	1	1	0	0	0	0	1	A-B-1	-
A	B	1	1	0	0	1	0	0	$\neg (A \lor B)$	-
A	B	1	1	0	1	0	0	0	-A-2	$\neg \forall A$
A	B	1	1	0	1	0	0	1	-A-1	1
A	B	1	1	1	0	1	0	0	$A \lor B$	0

 $\ensuremath{\Xi}$ 2: Arithmetric Logic

그림 2: ArithmetricLogic의 회로도

1.3 Shiftre

Shiftre는 입력된 값에 대한 1회 좌측 · 우측 시프트 연산 결과를 출력하는 부품이다. Shiftre는 I, S, R, L의 입력 핀과 O, O_l, O_r 의 출력 핀을 가지고 있다. 각각은 다음을 의미한다.

- I Input. 시프트 연산을 수행할 정수
- E Enable. 시프트 연산 수행의 여부. 0으로 설정된 경우에는 연산을 수행하지 않고, 1로 설정된 경우에는 연산을 수행한다.
- R Right. 시프트 방향을 오른쪽으로 설정한다. 0으로 설정된 경우에는 왼쪽 시프트를 수행한다.
- L Logical. 오른쪽 시프트를 수행하는 경우에, 논리적 시프트와 산술적 시프트 중에서 선택한다. 0으로 설정된 경우에는 산술적 시프트를 수행하고, 1로 설정된 경우에는 논리적 시프트를 수행한다.
- *O* Output. 시프트 결과
- O_l Overflow Left. 왼쪽 시프트 수행 중에 오버플로우가 발생함
- O_r Overflow Right. 오른쪽 시프트 수행 중에 오버플로우가 발생함 그림 3은 Shiftre의 회로도이다.

그림 3: Shiftre의 회로도

O_c	연산자	I_A	I_B	I_O	B_e	N	X	C_i	E	R	L
0	A	0	0	0	0	-	-	0	0	-	-
1	NOT	1	0	0	0	-	-	0	0	-	-
2	NEG	1	0	0	0	-	-	1	0	-	-
3	SHL	0	0	0	0	-	-	0	1	0	-
4	INC	0	0	0	0	-	-	1	0	-	-
5	DEC	0	1	0	1	0	0	0	0	-	-
6	ADD	0	0	0	1	0	0	0	0	-	-
7	SUB	0	1	0	0	0	0	1	0	-	-
8	XOR	0	0	0	1	0	1	0	0	-	-
9	XNOR	0	0	1	1	0	1	0	0	-	-
Α	AND	0	0	0	1	1	0	0	0	-	-
В	NAND	0	0	1	1	1	0	0	0	-	-
C	OR	1	1	1	0	1	0	0	0	-	-
D	NOR	1	1	0	0	1	0	0	0	-	-
E	ASR	0	0	0	0	-	-	0	1	1	0
F	ASR	0	0	0	0	-	-	0	1	1	1

표 3: OpCodeToFlags의 진리표

1.4 OpCodeToFlags

OpCodeToFlags는 4비트 연산자 코드를 ArithmetricLogic 플래그로 변환해주는 부품이다.

OpCodeToFlags는 O_c 의 입력 핀과 I_A , I_B , I_O , B_e , N, X, C_i , E, R, L 출력 핀을 가지고 있다. I_A , I_B , I_O , B_e , N, X, C_i 는 ArithmetricLogic에 입력되는 핀이고 E, R, L는 Shiftre에 입력되는 핀이다.

OpCodeToFlags의 진리표는 표 3과 같다.

그림 4: OpCodeToFlags의 회로도