Accuracy is not the only Metric that matters

Estimating the Energy Consumption of Deep Learning Models

Johannes Getzner, Bertrand Charpentier*, Stephan Günnemann

We release...

- a modular data-collection process and a first dataset on the energy consumption of various architectures and layer types.
- a set of energy predictors for different layer types as a simple **energy estimation baseline** for multiple DL architectures.
- an analysis of the **predictive capabilities of various features sets**, providing key insights into the energy behavior of various DL components.

Motivation

Deep Neural Networks consume astronomical amounts of power, thus incurring a large carbon footprint.

- Training & inference require power-hungry hardware, and the electricity often comes from non-renewable sources.
- Measures such as FLOPs may not accurately represent a model's real running costs.
- Evaluating the cost of a model is generally difficult without running it, especially concerning **environmental impact**.

Data Collection Process

- 8 different layer types have been implemented so far, and we collected approximately 1000 data points on the energy consumption of each one.
- Due to the modular implementation, more layer types can be easily be added in the future.

Energy Prediction Architecture

We provide energy consumption estimates based only on an architecture's configuration.

- Enables the approximation of the energy consumption without running the model.
- Promotes the consideration of **ecological footprint** and the running costs of models, ultimately **raising environmental awareness.**

Energy Prediction Models

Each layer type has a set of **parameters** that can be used to fit the energy estimation model.

Parameters/Features overview

layer	parameters	energy contribution in VGG13
Conv	kernel-size, image-size, in-channels, out- channels, padding, stride	88.42%
MaxPooling	kernel-size, image-size, in-channels, stride	9.14%
Linear	input-size, output-size	1.18%
Activations (ReLU, TanH, Sigmoid, Softmax)	input-size	1.19%
	+ batch-size, log-transformed parameters, MAC count	

- As no high-order dependencies were found, polynomial/linear regression models were chosen to keep the framework lightweight.
- Each model was evaluated concerning its average cross-validation MSE and R² score.

Results

The models achieved an excellent performance on the prediction of a random layer's energy consumption.

Layer Energy Predictors

Layer Lifergy Fredictors					
layer	regression model type	chosen features	R ² score on test set		
			random layer configs	configs from e.g., VGG 11	
Conv	Linear	MAC count	0.9977	0.314	
MaxPooling	Polynomial ²	all	0.9995	0.559	
Linear	Linear	MAC count	0.9992	0.997	
ReLU	Polynomial ²	MAC count	0.9812	-21.51	
TanH	Polynomial ²	batch-size, input-size	generalization to layers from real architectures is difficult		
Sigmoid	Polynomial ²	batch-size, input-size			
Softmax	Polynomial ²	batch-size, input-size			

 \mathbb{R}^2 score of 0.352 for the total architecture energy predictions of AlexNet and VGG11/13/16.

- Together the models overestimated the total energy consumption slightly.
- The largest contribution to the error comes from the Conv layer.
- More energy-expensive/larger architectures suffer from greater overestimation.

*corresponding author