

Understanding current text generation techniques

Sambuddha Roy

March 26, 2020

Sambuddha Roy, Microsoft, March 27, 2020 1/37

- Why inequalities?
- Used in: almost everywhere..

- Why inequalities?
- Used in: almost everywhere..
 - Approximation Algorithms

- Why inequalities?
- Used in: almost everywhere..
 - Approximation Algorithms
 - Optimization

- Why inequalities?
- Used in: almost everywhere..
 - Approximation Algorithms
 - Optimization

- Why inequalities?
- Used in: almost everywhere..
 - Approximation Algorithms
 - Optimization
 - (Can almost be called the backbone of mathematics..)

Inequality 2: Use blue fact

Facts

- $\blacktriangleright \sum_{v \in V} i(v) = |A|$
- ▶ Have: $\sum_{v \in V} d(v) \cdot \frac{i(v)}{d(v)} = |A|$
- ▶ Want to have: $\sum_{v \in V_1} d(v) \ge |A|/3$.

Inequality 2: Use blue fact

Facts

- $\blacktriangleright \sum_{v \in V} i(v) = |A|$
- ▶ Have: $\sum_{v \in V} d(v) \cdot \frac{i(v)}{d(v)} = |A|$
- ▶ Want to have: $\sum_{v \in V_1} d(v) \ge |A|/3$.
- ▶ Separate out the vertices as $v \in V_1$ and $v \in V \setminus V_1$.

Inequality 2: Use blue fact

Facts

- $\blacktriangleright \sum_{v \in V} i(v) = |A|$
- ▶ Have: $\sum_{v \in V} d(v) \cdot \frac{i(v)}{d(v)} = |A|$
- ▶ Want to have: $\sum_{v \in V_1} d(v) \ge |A|/3$.
- ▶ Separate out the vertices as $v \in V_1$ and $v \in V \setminus V_1$.
- ▶ For $v \in V \setminus V_1$, i(v)/d(v) < 1/3. For $v \in V_1$, $i(v)/d(v) \le 1$.
- ► $|A| = \sum_{v \in V} d(v) \cdot \frac{i(v)}{d(v)} \le \sum_{v \in V_1} d(v) + \sum_{v \in V \setminus V_1} d(v)/3$

THANK YOU