神奈川大学 江上教授 (一社)宇宙エレベーター協会 様

秘密情報

高性能CNTご紹介 (MEIJO eDIPS)

2021年 3月 4日 株式会社 大阪ソータ 事業開発本部

会社案内

会社プロフィール (2020年3月末現在)

社 名	株式会社 大阪	仮ソーダ OSAKA SODA CO., LTD.	
本 社	大阪市西区阿波座1-12-18		
代表者	代表取締役 社長執行役員 寺田 健志		
創立	1915年(大正4年)10月26日		
資本金	15,870百万円		
	基礎化学品	かせいソーダ、塩酸、液化塩素、塩素ガス、次亜塩素酸ソーダ 亜塩素酸ソーダ、塩素酸ソーダ、かせいカリ、水素ガス エピクロルヒドリン、アリルクロライド、塗料原料、接着剤原料 など	
事業内容	機能化学品	アリルエーテル類、エピクロルヒドリンゴム、アクリルゴム、ダップ樹脂 ノンフタレート型アリル樹脂、省エネタイヤ用改質剤、医薬品精製材料、 カラム・装置等分析機器、レンズ材料、感光性樹脂、カラーレジスト、 電極、医薬品原薬・中間体、光学活性体、グラスファイバー、 資源リサイクル など	
	住宅設備ほか	ダップ加工材、住宅関連製品、健康食品、化学製品の輸送・貯蔵 化学プラント、環境保全設備建設 など	
グループ会社	16社		
従業員数	連結 974名(単体 601名)		
証券コード	4046 (東証第一部)		
単元株式数	100株		

当社グループのネットワーク (2019年3月末現在)

DAISO Fine Chem USA, Inc.

大阪ソーダの事業の特長

自社生産のAC・EPを原料にグローバルニッチ製品を展開 原料からの一貫生産が事業の強み

> 基礎化学品 競争力の源泉 グローバルニッチトップのポジションを追求

AC=アリルクロライド、EP=エピクロルヒドリン

国内外で高いシェアを有する製品群

紫外線硬化インキ 航空宇宙用電子材料

エピクロルヒドリンゴム

自動車用 耐熱・耐油ホース OA機器用ゴムロール

アリルエーテル類

炭素繊維の補強 半導体、プリント基板 高級金属用塗料

液体クロマトグラフィー 用シリカゲル

精密分析機器 医薬品精製

動物系酵素抽出による医薬品製造

各種医薬品原薬 中間体

省エネタイヤ用改質剤 (カブラス)

低燃費タイヤ

鋼板めつき用電極

家電製品の筐体などの 薄型鋼板めっき

エピクロルヒドリン

半導体、積層板 防錆塗料

亜塩素酸ソーダ

繊維などの漂白

大阪ソーダ「ものづくり」100年の歴史

基礎化学品から機能化学品へ さらにヘルスケア分野で独創的なものづくりを展開

ヘルスケア分野に進出

機能化学品で事業を拡大

基礎化学品で創業

水道水の滅菌

1913年 国内初の電解法の 「かせいソーダ」 の製造方法を確立

電子部品

1962年 合成樹脂 の製造を開始

燃料ホース、タイヤ

1971年 AC・EPの一貫 生産体制を確立

1992年 医薬品精製材料 の製造を開始

1999年 医薬品原薬・中間体 の製造を開始

> 2020/3月期 売上高 1,054億円

1915創立

1960年代

1970年代

1980年代

1990年代

2000年代

2010 ~

現在

研究開発

研究開発体制

拠点:総合研究開発センター

重点領域 の強化

基盤技術 の深化

- ◆ヘルスケア
 - -高薬理活性対応実験室
- ◆エネルギー・環境
 - -電池関連実験室
- ◆ 電子材料
 - -ポリマー合成・評価

- ◆ 有機合成技術
 - -合成検討設備の集約
- ◆ 高分子合成技術
 - -重合設備の配置
- ◆ 生産技術
 - -プロセス検証設備の集約

大阪ソーダの機能性製品・新規開発品と用途可能性

高機能性樹脂

③ インキ・塗料向け 高密着性 低分子量ポリエステル

(プラスチック・金属基材への高密着性)

1,2DAP, isoDAP, RADPAR

耐トラッキング性 →モーター・コネクタ等 相溶性、速乾性→インキ添加剤

高機能性モノマー

④ ジアリルエステルモノマー DAPモノマー, isoDAPモノマー DAFモノマー, DAMモノマー (光・熱反応性)

重台

⑤,⑥ アリルモノマー「ネオアリル」シリーズ G, E-10, T-20,P-30M, E-20G (均一架橋、カップリング反応) **赤:新規開発品**①~⑯: リーフレットNo.

青:製品

② 表面処理用デュアルサイト型シランカップリング剤

(分散性付与→高屈折率化)

高機能性ゴム

⑤ It°クロロとト゛リンコ゛ム「It°クロマー, It°オン」 (耐油性、ガスバリア性→燃料ホース類など)

⑤ アクリルコ、ム「ラクレスター」(耐熱性、耐油性→ターホ、ホース類など)

応用

め 水系バインダー

(高結着性、低抵抗、スラリー安定性)

応用

(Liイオン伝導性、ゲル化・フィルム加工)

蓄電デバイス材料

有機 合成 無機 合成 技術 電気 化学

電子部品材料

⑧高純度Iポキシ樹脂LX-01,LX-02F (低八口、接着性、封止性付与)

9 静電制御エラストマー

(導電性、透明性→誤作動防止、加飾フィルムなど)

⑩ 銀ナノ粒子(低温焼結性→半導体接合など)

無機系新規材料

反応

⑪ 高品質 C N T(高導電性→導電シート,フィルム, ヤーン, 分散液)

② 選択的金属イオン吸着剤 (選択的金属吸着、脱離再生も可)

(rev.4) Jul. 2020

高性能CNTご紹介 (MEIJO eDIPS)

カーボンナノチューブ(CNT)の一般特性

- 炭素原子だけで構成される筒状のナノ材料
- 軽量、高強度であり、電気や熱の伝導率が高い
- エネルギー、エレクトロニクス、マテリアルなど様々な用途へ展開

特徴	単層 C N T	多層CNT	特徴
形態	チューブ状の凝集体		粉末、綿状、凝集体
直径(nm)	1~3	10~200	
長さ	数µm~		
密度(g/cm3)	1~2		重量はアルミの半分
比抵抗(Ω・cm)	4×10⁻6∼	4×10⁻⁴∼	金、銅と同程度
熱伝導率(W/(m・k))	>2,000	>2,000	銅の5倍以上
引張強度(GPa)	150	95	鋼鉄の20倍以上
弾性率(TPa)	3.4	1.3	

名城大学発のベンチャー企業「名城ナノカーボン」 との共同開発で高性能単層CNT(MEIJO eDIPS)の 量産化検討に着手(2017年~)

技術導入(高性能CNT製造)とビジネス展開

MEIJO eDIPSの電子顕微鏡写真

SEM

MEIJO eDIPS

TEM

MEIJO eDIPSの特徴

圧倒的な導電性

導電性は

- **他の炭素系材料に対し、100~1, 000倍**
- 各社の単層CNTに対し、10~ 100倍

MEIJO eDIPS の応用展開

- 圧倒的な導電性を有するから実現できる性能
- 分散夜化で用途(塗工液, フィルム, 樹脂・ゴムへの添加、線材など)が広がる!

14

CNT Yarn, Tape

300μmΦ

1,000μmΦ

1cm width

5cm width

CNT Yarn, Tape

- 導電性・機械強度・熱伝導性を兼ね備えた、金属を代替する軽量素材
- 用途可能性

(Yarn) モーター用コイル, WHなどの用途で軽量化、微細配線材料など

(Tape) 同軸ケーブル用電磁波シールド、フレキシブル電極など

CNT Yarnの参考物性値

Properties	Data
Conductivity Range	4 – 6 MS/m
Density	700 – 1,300 kg/m3
Tensile Strength	400 – 1,000 Mpa
Thermal Conductivity	300 – 600 W/(m K)
Available Diameter	20 – 1,000 μm
Available Length	1 – 100 m

CNTコーティング

- コーティングで透明導電フィルムの作製が可能
- ITO代替として使用可能
- フレキシブルデバイスへの展開
- レアメタルの供給不安の解消

透明導電フィルム(水分散液を使用)

<CNTコーティングフィルムデータ>

塗布した分散液		CNTコーティングフィルム		
溶剤	CNT濃度	抵抗値	透過率	
水	0.05%	$2\times10^2\Omega/\text{sq}$.	82%	
水	0.2%	$2\times10^{-3}\Omega\cdot\text{cm}$	-	

※ベースフィルムの全光線透過率92%

CNTの微量添加で性能発揮

- 他の炭素材料に比べ、樹脂への微量添加で低抵抗化を実現
- 添加量を抑えられるため、透明性(視認性)、加飾性を付与できる
- 熱可塑性樹脂、熱硬化樹脂などへの展開も開発中

(例)エポキシ樹脂へ添加、熱硬化物の抵抗比較

【新製品】タックシート

- 当社の「CNT分散技術」とサカセ化学工業の「配合・成形技術」の融合
- CNTの微量添加により 透明性・制電性・粘着・低アウトガス を同時に実現

制電性 表面抵抗値:10°Ω/□

製品を着脱するときの静電気によるダメージを軽減

透明性

光が透過するので、バックライトを使用して、搭載品のエッジ観察が容易

粘着性

粘着力と弾力で衝撃を緩和し搭載品を安全に保護・保持 低アウトガス性

シロキサン含有量の少ないクリーンな素材

製品サイズ: 200×200×0.5mm 粘着力:20 (低粘着) /50 (高粘着)

バックライト照射時のイメージ

2021年1月25日より、受注開始

製品・開発品ラインナップ

■ MEIJO eDIPSシリーズ

品名	中心直径	炭素純度	形状
EC1.5	1-2nm	90%	
EC1.5-P	1-2nm	98%	繊維状
EC2.0	2-3nm	90%	平线市任1人
EC2.0-P(標準品)	2-3nm	98%	

※直径・直径分布・層数の異なる開発品もございます

■ 【開発品】MEIJO eDIPS 分散液

分散溶媒	CNT濃度	提供可能な量
水		
N-メチルピロリドン(NMP)		
イソプロピルアルコール(IPA)	\sim 0.2wt%	\sim 250mL
フタル酸エステル		
エポキシ樹脂		

- 量産化を計画中
- ご要望の形態(分散液、コンパウンドなど)への加工も承ります

(お問合せ先)

事業開発本部 三木

TEL: 06-6409-0810, FAX: 06-6409-0794

E-mail: ymiki@osaka-soda.co.jp