POWERED BY Dialog

COPPER ALLOY FOR ELECTRONIC EQUIPMENT EXCELLENT IN PLATING ADHESION AND SOLDER JOINABILITY AND ITS PRODUCTION

Publication Number: 08-209270 (JP 8209270 A), August 13, 1996

Inventors:

- ASAI MASATO
- OYAMA YOSHIMASA
- SHINOZAKI SHIGEO
- SHIGA SHOJI

Applicants

• FURUKAWA ELECTRIC CO LTD THE (A Japanese Company or Corporation), JP (Japan)

Application Number: 07-284590 (JP 95284590), October 05, 1995

International Class (IPC Edition 6):

- C22C-009/06
- C22F-001/08
- H01L-023/48
- H01L-023/50

JAPIO Class:

- 12.3 (METALS--- Alloys)
- 12.2 (METALS--- Metallurgy & Heat Treating)
- 42.1 (ELECTRONICS--- Electronic Components)
- 42.2 (ELECTRONICS--- Solid State Components)

Abstract:

PURPOSE: To produce a copper alloy for electronic equipment excellent in plating adhesion and solder joinability by preparing a copper alloy in which each content of Ni, Ti, Sn, Mn, Zn, O(sub 2) or the like and the dimension of precipitates are specified.

CONSTITUTION: An alloy ingot having a composition containing Ni and Ti in the range of, by weight, 0.1 to <3.0% Ni and 0.1 to 1.0% Ti so as to satisfy <4 Ni/Ti, furthermore containing 0.1 to 6.0% Sn and total 0.005 to 3.0% of one or more kinds among Mn, Mg, mish metal, B, Sb, Te and Zr, moreover containing total <=3.0% of one or more kinds of Z and Al, and the balance Cu with inevitable impurities is subjected to homogenizing treatment at 750 to 960 deg.C for 0.5 to 15hr. Next, it is subjected to hot rolling at 700 to 920 deg.C and is immediately cooled to prepare a copper alloy in which the content of O(sub 2) is regulated to <=20ppm and the dimension of precipitates is regulated to <=5.mu.m. Thus, the copper alloy for electronic equipment excellent in electrical conductivity, strength, bending formability or the like can be obtained

JAPIO

© 2005 Japan Patent Information Organization. All rights reserved. Dialog® File Number 347 Accession Number 5253770

http://toolkit.dialog.com/intranet/cgi/present?STYLE=1360084482&PRESENT=DB=347,AN=5253770,F... 9/27/2005

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-209270

(43)公開日 平成8年(1996)8月13日

(51) Int.Cl. ⁶	識別記号 庁内整理番号	FΙ	技術表示箇所
C 2 2 C 9/06		.•	
C 2 2 F 1/08	P		
H01L 23/48	v		
23/50	V	:	
		審查請:	求 有 発明の数2 FD (全 5 頁)
(21)出願番号	特願平7-284590	(71)出願人 (000005290
(62)分割の表示	特顧昭61-156095の分割	ī	古河電気工業株式会社
(22)出顧日	昭和61年(1986)7月4日	3	東京都千代田区丸の内2丁目6番1号
		(72)発明者 社	浅井 真人
		ŧ	栃木県日光市清滝町500番地 古河電気工
		3	業株式会社日光電気精銅所内
		(72)発明者	大山 好正
		t t	场木県日光市清滝町500番地 古河電気工
		. 3	業株式会社日光電気精頻所内
		(72)発明者 🥻	葉崎 重雄
		★	栃木県日光市清滝町500番地 古河電気工
		3	案株式会社日光電気精銅所内
			弁理士 箕浦 清
		•	最終頁に続く

(54) 【発明の名称】 メッキ密着性及びハンダ接合性に優れた電子機器用銅合金とその製造法

(57)【要約】

【課題】 電子機器用銅合金として、従来の42合金に比べてはるかに優れた導電性を有し、他の特性については該42合金と同等の性能を有する銅合金の開発。

【解決手段】 Ni 0.1wt%以上 3.0wt%未満、Ti 0.1~ 1.0wt%の範囲内でNiとTiをNi/Tiが4未満となるように含み、かつSn 0.1~ 6.0wt%とMn, Mg, ミッシュメタル (MM), B, Sb, Te, Zrの何れか1種又は2種以上を合計 0.005~ 3.0wt%を含み、さらにZn, Alの何れか1種又は2種を合計 3.0wt%以下含み、さらにO₂ 含有量を 20ppm以下、析出物寸法を5μm以下とし、残部Cuと不可避的不純物からなるメッキ密着性及びハンダ接合性に優れた電子機器用銅合金。

【特許請求の範囲】

【請求項1】 Ni 0.1wt%以上 3.0wt%未満、Ti 0.1~ 1.0wt%の範囲内でNiとTiをNi/Tiが4未満となるように含み、かつSn 0.1~ 6.0wt%とMn, Mg, ミッシュメタル(MM), B, Sb, Te, Zrの何れか1種又は2種以上を合計 0.005~ 3.0wt%を含み、さらにZn, Alの何れか1種又は2種を合計 3.0wt%以下含み、さらにO2含有量を 20ppm以下、析出物寸法を5μm以下とし、残部Cuと不可避的不純物からなるメッキ密着性及びハンダ接合性に優れた電子機器用飼合金。

【請求項2】 Ni 0.1wt%以上 3.0wt%未満、Ti 0.1~ 1.0wt%の範囲内でNiとTiをNi/Tiが4未満となるように含み、かつSn 0.1~ 6.0wt%とMn, Mg, ミッシュメタル (MM), B, Sb, Te, Zrの何れか1種又は2種以上を合計 0.005~ 3.0wt%を含み、さらにZn, A1の何れか1種又は2種を合計 3.0wt%以下含み、残部Cuと不可避的不純物からなる合金鋳塊を、750~ 960℃で 0.5~15時間均質化処理した後、700~ 920℃の温度で熱間圧延を施し、しかる後直ちに冷却することを特徴とするメッキ密着性及びハング接合性に優れた電子機器用銅合金の製造法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は強度が高く、導電性 及び耐熱性が優れ、かつ加工性やメッキ密着性が良好 で、ハンダとの界面強度の経時劣化を起さない電子機器 用銅合金とその製造法に関するものである。

[0002]

【従来の技術】一般に半導体機器、例えば半導体素子用リードフレームには、下記の特性が要求されている。
(1) 強度が高く、耐熱性が良いこと、(2) 放熱性、即ち熱伝導性・電気伝導性が高いこと、(3) フレーム形成後の曲げ成型性が良いこと、(4) メッキ密着性及び樹脂とのモールド性が良いこと、(5) ハンダとの接合部の経時劣化が無いこと、このようなリードフレームには主として42合金(Fe−42wt%Ni)が用いられている。この合金は引張強さ63kg/mm²、耐熱性670℃(30分間の加熱により初期強度の70%の強度になる温度)の優れた特性を示すが、導電率は3%IACS程度と劣るものである

【0003】近年半導体素子は集積度の増大及び小型化と同時に高信頼性が求められるようになり、半導体素子の形態も従来のDIP型ICからチップキャリヤー型やPGA型へと変化しつつある。このため半導体素子用のリードフレームも薄肉、小型化され、同時に42合金を上回る特性が要求されるようになった。即ち薄肉化による構成部品の強度低下を防ぐための強度向上と、集積度の増大による放熱性の向上のために熱伝導性と同一特性である導電率の向上、更に優れた耐熱性と、半導体のフレ

ーム上への固定、及び半導体からリードフレームの足の 部分の配線へのボンディング前処理としてリードフレー ム表面へのメッキ性とメッキ密着性、封止樹脂とのモー ルド性の向上、更には信頼性の問題としてフレームと基 板との接合におけるハンダ接合強度の経時劣化が無いこ とが望まれている。

[0004]

【発明が解決しようとする課題】上記42合金は導電率が3%IACSと低く、放熱性が劣る欠点があり、これに代えて銅合金を用いれば導電率を50~30%IACSと飛躍的に向上させることができるも、他の特性について42合金と同等の性能を得ることは極めて困難であった。

[0005]

【課題を解決するための手段】本発明はこれに鑑み種々検討の結果、42合金よりはるかに優れた導電率を示し、その他の特性についても、42合金とほぼ同等の特性を示す半導体機器用銅合金とその製造法を開発したものである。

【0006】即ち本発明合金は、Ni 0.1wt%以上 3.0 wt%未満、T i $0.1\sim1.0$ wt%の範囲内でN i $\geq T$ i $\approx N$ i $\neq T$ i $\approx N$ i $\neq T$ i $\approx N$ i $\approx i i $\approx N$ i

【0007】また本発明製造法は、Ni 0.1%以上 3.0%未満、Ti 0.1~1.0%の範囲内でNiとTiをNi/Tiが4未満となるように含み、かつSn 0.1~6.0%とMn, Mg, ミッシュメタル (MM), B, Sb, Te, Zrの何れか1種又は2種以上を合計 0.005~3.0%を含み、さらにZn, Alの何れか1種又は2種を合計 3.0%以下含み、残部Cuと不可避的不純物からなる合金鋳塊を、750~960℃で 0.5~15時間均質化処理した後、700~920℃の温度で熱間圧延を施し、しかる後直ちに冷却することを特徴とするものである。

【0008】本発明において合金組成を上記の如く限定 したのは次の理由によるものである。

【Q009】NiとTiの添加は、その相乗効果により強度及び導電率を向上させるためであり、その含有量をNi 0.1%以上3.0%未満、Ti 0.1~1.0%と限定したのは、何れも下限未満では特性の向上が見られず、上限を越えると鋳造性、加工性及び曲げ成型性を著しく低下し、合金の製造を困難にするためである。またNiとTiをNi/Tiが4未満となるように限定したのは、優れた強度と高い導電率を得るためで、Ni/Tiが4以上になると強度は向上するも導電率の低下が著しくなるためであり、望ましくはNi/Tiは2程度とするこ

とが好ましい。

【0010】Snの添加は更に強度を高めると共に曲げ成型性を向上し、更に熱間圧延条件(開始温度,終了温度,冷却速度等)による特性のパラツキを抑制するためで、その含有量を0.1~6.0%と限定したのは、下限未満では効果が乏しく、上限を越えると導電性の低下が著しくなるばかりか加工性が低下し、合金の製造を困難にするためである。

【0011】Mn, Mg, MM, B, Sb, Te, Zrの何れか1種又は2種以上の添加は、何れも脱酸効果により鋳造性を向上させると共に熱間圧延性、特に熱間圧延前の均質化処理時の再熱割れや圧延時の割れを防止し、更にハンダとの接合界面の強化によりハンダ接合強度の経時劣化を抑制するためである。しかしてその合計含有量を0.005~3.0%と限定したのは、下限未満では効果が乏しく、上限を越えると鋳造性を悪化させるばかりか、メッキ密着性や曲げ成型性を悪化させるためである。

【0012】 Zn, Alの何れか1種又は2種は、更に強度を向上せしめると共にハンダ接合強度の経時劣化を防止するためで、その合計含有量を3.0%以下と限定したのは上限を越えるとメッキ密着性や導電率を低下するためである。

【0014】本発明製造法は上記組成範囲の合金を半連続又は連続鋳造により鋳塊とし、これを 750~ 960℃で 0.5~15時間均質化処理し、続いて 700~ 920℃から熱間圧延を施し、しかる後直ちに冷却するもので、本発明合金に用いられるTiは活性に富んでおり、酸化され易く、大気中では酸化物となり易く、スラグを発生して成分不良の原因を作る。しかしながらAェやN₂等の非酸化性雰囲気中で溶解鋳造を行う事により前配欠点をカバーする事が可能となり、生産性の点で大いなる向上が計れる。更に半連続又は連続鋳造における冷却速度は 100℃/sec以上が望ましく、それ未満では構成元素による析出物が生じてしまい、熱間圧延前の均質化処理時に粗大化を示し、その後の特性や製造法に悪影響を及ぼす。

【0015】また熱間圧延前の均質化処理を 750~ 960 ℃で 0.5~15時間としたのは、それぞれ下限未満では均 質化の効果が見られず、上限を越えると再熱割れや生産コストを悪化させる。均質化処理としては 830~ 950℃で1~8時間が望ましい。均質化処理後の熱間圧延開始温度を 700~ 920℃としたのは、この範囲外では熱延割れを生じ易いためである。熱間圧延開始温度としては 820~ 900℃とすることが望ましい。尚熱間圧延後の冷却はSn添加の効果により、どのような冷却速度で行ってもかまわないが、1000℃/min以上とすることが望ましい。また本発明製造法としては、熱間加工後に冷間加工と 400~ 800℃で10秒~ 360分間の焼鈍を繰返し、最終的に 200~ 500℃の調質焼鈍やテンションレベラー等を組み合わせることによってより優れた特性を得ることができる。

[0016]

【実施例】雰囲気溶解炉を用い、Arガス中で表1に示す組成の銅合金を溶解・鋳造し、厚さ50mm、幅120mmの 鋳塊を得た。これを面削し、850℃で3時間均質化処理 した後、830℃で熱間圧延し、これを水冷して厚さ10mm の板とした。これ等の板について冷間圧延と中間焼鈍

(表 1 中No. 1~10は 570℃で1 時間、No. 11は 700℃で1 時間)を繰返し行ない、最終加工率40%で厚さ0. 25 mmの板に仕上げ、 300℃で 0.5時間の調質焼鈍を施した後、試験片を切り出して引張強さ,曲げ成型性(R/t),メッキ密着性,モールド性(酸化膜剥離性),ハング接合強度を調べた。これ等の結果を表 2 に示す。

【0017】引張強さはJIS-Z2241 に基づき、導電率は JIS-H0505 に基づき測定した。曲げ成型性 (R/t) は JIS-Z2248 のブロック法に基づいて試験を行ない試験片 表面に割れを生じさせる最少曲げ半径 (R) を試験片の 厚さ (t) で割った値で示した。

【0018】メッキ密着性は30×30mmの試験片について、表面清浄後、Agメッキを行ない、これを大気中で加熱し、その後のメッキ表面の脹れを観察し、550℃で5分間加熱で脹れの見られないものを○印、脹れの見られるものを×印で示した。

【0019】また酸化膜剥離性は10×50mmの試験片について、表面清浄化処理後、大気中420℃で1分間加熱した後、セロテープによる剥離試験を行ない、ほとんど剥離が見られないものを○印、全面に剥離が認められるものを×印で示した。

【0020】ハンダ接合強度については5×50mmの試験 片について、同形状の無酸素板と60/40共晶ハンダによ り接合し、150℃に500 時間の加熱加速試験を施した 後、引張試験を行ない、その強度が加速試験前の80%以 上のものを○印、50~80%のものを△印、それ以下を× 印で表わした。

[0021]

【表1】

合金別版		合 金 粗 成					N. 1. (T. 1	析出物寸法	
		N i (%)	T i (%)	Sn (%)	その他的	O2 (918)	Cu	NI/TI	(µm)
本発明合金	1	1.1	0. 44	0. 6	Mg0.02 ZnQ2	ş	跠	2. \$	0.5
"	2	1.1	0. 44	0.1	Mn0.03 B0.02 A1 1.2	1		2. 5	0. 3
,,	အ	1. 1	0. 44	0. 1	Sb0. 998 ZrQ 01 A1 0.08	1	ע	2. 5	1. 8
比較合金	4	0. 8	0. 02	2, 2	Mn0. 02 Zn0.3	11	"	40	1. 3
н	5	1. 3	1. 55	2, 5	C o 0. 13	6	4	0. 8	2. 1
"	6	1, 1	0, 44	1. 5	Mg0. 012	1	,,	9. 1	0. 5
ı,	7	1.1	9. 44	7. 4	Te0.03 Al 0.1 2 n 0.2	11	"	2. \$	0. 8
″	8	1, 1	1, 44	0. 6	A 1 3.8 Co 0.1	1	"	25	0.8
~	9	1. 1	1. 44	0. 6	Mn 0. 04 B0. 01	71	υ	25	1. 2
"	10	1.1	1. 4	0.8	S b 0. 02	5	U	2. 5	120
従来合金	11	4	2合金					_	_

[0022]

1表	21

合 金 別	No.	引張強さ	淮 鷹 忠	R/t	ハンダ接合	メッキ	酸化膜
		(kg/nn²)	(%IACS)		敦 度	密着性	測能性
本発明合金	1	63	69	1. 2	0	0	0
"	2	51	66	1. 2	0	0	0
"	3	63	66	1. 2	0	0	0
比較合金	4	51	30	1. 2	×	0	0
"	5	_	_	_	. —		-
"	6	65	22	2.6	×	×	×
"	7	-	_	-		-	-
11	8	84	5	3.6	Δ	×	×
19	9	65	66	1. 2	Δ	×	0
If	10	51	60	1. 6	Δ	. ×	0
従来合金	11	63	3	1. 2	0	0	0

【0023】表1及び表2から明らかなように、本発明合金No.1~3は何れも従来合金である42合金(No.1)と比較し、同等の強度と、はるかに優れた導電性を有することが判る。これに対しTi含有量が少ない比較合金No.4では強度及び導電性の向上が劣り、Ti含有量の多い比較合金No.5では熱間加工が困難であった。またNi含有量の多い比較合金No.6では導電性の改善が認められないばかりか、メッキ密着性やモールド性が劣る。またSn含有量の多い比較合金No.7では、比較合金No.5と同様熱間圧延が困難であった。更にその他

の元素含有量が多い比較合金No. 8 では導電性が劣るばかりか、メッキ密着性や曲げ成型性が劣る。またO₂量の多い比較合金No. 9 及び析出粒径の大きい比較合金No. 10ではメッキ密着性やハンダ接合性が劣る。

[0024]

【発明の効果】このように本発明によれば、導電性、強度、曲げ成型性、ハンダ接合性に優れた銅合金を提供し得るもので、リードフレーム等の半導体機器材料として使用し、その薄肉化、小型化を可能にする等工業上顕著な効果を奏するものである。

フロントページの続き

(72)発明者 志賀 章二

栃木県日光市清滝町500番地 古河電気工 業株式会社日光電気精銅所内