Floating Point

汪之立

课本章节

- ▶ 引言 浮点数的应用场景和规范历史
- ▶ 二进制小数 就是把进制变为2,换汤不换药
- ▶ IEEE浮点标准 本节重心
 - ·编码格式和取值
 - ·边界值
 - ·整数转浮点的细节
- ▶ 舍入 向偶数 (最接近值) 舍入和其他舍入方式
- ▶ 浮点运算 次重点
 - ·满足和不满足的运算性质
 - ·特殊值的运算细节
 - ·加法乘法实现
- ► C中浮点数转换的规则

目录

- ▶ IEEE浮点标准
 - 举例
 - 标准
 - 极限值
 - Utils
- ▶ 浮点运算运算性质
 - 运算律
 - 特殊值
- ▶ 舍入 &C中浮点数转换的规则中的特殊点

IEEE浮点标准 举个栗子

将下列单精度浮点数转换为整数

规格化的值

0x1EE1F0

IEEE浮点标准 反过来捏

将下列数转换为单精度浮点数

IEEE浮点标准 条规表述

IEEE754标准

单精度(float) 32位浮点数

1: 8: 23

双精度(double) 64位浮点数

1: 11: 52

S: 符号(sign),决定正负

E(exp): 阶码(exponent),表述权值

M(frac): 尾数(significand),具体数据的值

IEEE浮点标准 条规表述

计算公式: (-1)s * 2E * M

分类(按阶码位): 非规格化, 特殊值和规格化

阶码部分有k位,尾数部分有n位,那么我们定义bias = $2^{k-1} - 1$ $f = 0. f_{w-1} f_{w-2} \dots f_0$, $e = e_{k-1} e_{k-2} \dots e_0$

32位为127 64位为1023

- ①阶码部分全为0, 非规格化的值, E=1-bias, M = f
- ②阶码部分全为1,特殊值 尾数部分全为0,则为inf(∞),按符号位决定+∞或-∞; 尾数部分不全为0,则结果称为NaN值;
- ③阶码部分不全为1或0,规格化的值,E=e-bias,M=1+f;

32位为 - 126~ + 127 64位为 - 1022~ + 1023

IEEE浮点标准 极限值

描述	exp	frac	单精质	度	双精度		
			值	十进制	值	十进制	
0	00 00	0 · · · 00	0	0.0	0	0.0	
最小非规格化数	00 · · · 00	0 · · · 01	$2^{-23} \times 2^{-126}$	1.4×10^{-45}	$2^{-52} \times 2^{-1022}$	4.9×10^{-32}	
最大非规格化数	00 · · · 00	1 · · · 11	$(1-\varepsilon)\times 2^{-126}$	1.2×10^{-38}	$(1-\varepsilon)\times 2^{-1022}$	2.2×10^{-300}	
最小规格化数	00 01	0 · · · 00	1×2^{-126}	1.2×10^{-38}	1 ×2 ⁻¹⁰²²	2.2×10^{-30}	
1	01 · · · 11	0 · · · 00	1×2^{0}	1.0	1 × 2 ⁰	1.0	
最大规格化数	11 · · · 10	1 · · · 11	$(2-\varepsilon) \times 2^{127}$	3.4×10^{38}	$(2-\varepsilon) \times 2^{1023}$	1.8×10^{308}	

图 2-36 非负浮点数的示例

• +0.0:全零

+1: 0 01...1 00...0

IEEE浮点标准 极限值

k位阶码,n位小数(由于正负对称,仅考虑正数)

- 最小非规格化值 00...000...01 $V = 2^{2-2^{k-1}} * 2^{-n}$
- 最大非规格化值 00...001...11 $V = 2^{2-2^{k-1}} * (1-2^{-n})$
- 最小规格化值 00...010...00 $V = 2^{2-2^{k-1}} * 1$
- 最大规格化值 01...101...11 $V = 2^{-1+2^{k-1}} * (2-2^{-n})$
- 非规格化值范围 $[-2^{2-2^{k-1}}*(1-2^{-n}),2^{2-2^{k-1}}*(1-2^{-n})]$
- 规格化范围 $[-2^{-1+2^{k-1}}*(2-2^{-n}),-2^{2-2^{k-1}},] \cup [2^{2-2^{k-1}},2^{-1+2^{k-1}}*(2-2^{-n})]$

IEEE浮点标准 何为"逐渐溢出"

规格化的值两端疏,中间密 非规格化的值为等差数列 公差为 $2^{2-2^{k-1}}*2^{-n}$

非规格化绝对值最大值到规格化绝对值最小值之间的差值为公差

$$2^{2-2^{k-1}} * (1-2^{-n}) <-> 2^{2-2^{k-1}} * 1$$

IEEE浮点标准 浮点数比较

描述	位表示	指数			小数		值		
		e	E	2^E	f	M	$2^E \times M$	V	十进制
0	0 0000 000	0	-6	1 64	0 8	08	<u>0</u> 512	0	0.0
最小的非规格化数	0 0000 001	0	-6	$\frac{1}{64}$			1 512	1 512	0.001953
	0 0000 010	0	-6	1 64	1 8 2 8 3 8	1 8 2 8 3 8	2 512	$\frac{1}{256}$	0.003906
	0 0000 011	0	-6	1 64	38	$\frac{3}{8}$	3 512	$\frac{3}{512}$	0.005859
最大的非规格化数	0 0000 111	0	-6	1 64	7/8	78	7 512	7 512	0.013672
最小的规格化数	0 0001 000	1	-6	1 64	0 8	8	8 512	$\frac{1}{64}$	0.015625
	0 0001 001	1	-6	1/64	$\frac{1}{8}$	8 9 8	9 512	$\frac{9}{512}$	0.017578
	0 0110 110	6	-1	$\frac{1}{2}$	68	14 8	14 16	7 8	0.875
	0 0110 111	6	- 1	$\frac{1}{2}$	6 7 8	15 8		$\frac{15}{16}$	0.9375
1	0 0111 000	7	0	1	08	8	15 16 8 8 9	1	1.0
	0 0111 001	7	0	1	1 8 2 8	98	9 8	9 8	1.125
	0 0111 010	7	0	1	2/8	10 8	10 8	<u>5</u>	1.25
	0 1110 110	14	7	128	<u>6</u> 8	14 8	1792 8	224	224.0
最大的规格化数	0 1110 111	14	7	128	7/8	15 8	1920 8	240	240.0
无穷大	0 1111 000		7	_	_	_	-	00	_

图 2-35 8 位浮点格式的非负值示例(k=4 的阶码位的和 n=3 的小数位。偏置量是 7)

按同位的整数来排序 ->整数原码

正数升序, 负数降序

浮点运算运算性质

- ▶▶▶正常运算性质的产生都要求参与是数而不是NaN
- ▶加法
 - 交換律 √ x + y == y + x
 - 结合率 × x + (y + z)? (x + y) + z 反例: 舍入/溢出
 - 单调性 √ ∀数x,a,b, 若a>=b, 则有 a + x >= b + x

▶ 乘法

- 交換律 √ x * y == y * x
- 结合率 × x*(y*z)? (x*y)*z 反例: 舍入/溢出
- 分配率 × x*(y+z)? x*y+x*z 反例: 溢出
- 单调性 √ ∀数x,a,b, 若a>=b且c>=0, 则有 a * x >= b * x 若a>=b且c>=0, 则有 a * x >= b * x
- 平方非负 √ ∀数x, x * x >= 0

浮点运算运算性质 特殊值处理

NaN

- ∀数x, NaN + x = NaN
- $(+\infty) + (-\infty) = NaN$
- $\sqrt{-1}$ = NaN
- $\infty * 0 = NaN$
- (C) $0.0/0.0 \rightarrow NaN$

Inf

- $1/(-0.0) = -\infty$ $1/(+0.0) = +\infty$
- 运算越界溢出产生

浮点运算运算性质 牛刀小试

- D 2.对于 float 类型变量 a, b, c 下列说法正确的是:
 - A. 若 a > b, 则 a + c > b + c
 - B. 若 a == b, 则 a + c == b + c
 - C. 若 a + b + c == 0.0, 则 c + b + a == 0.0
 - D. 若 a + b == 0.0,则 b + a == 0.0

向偶舍入中的误差

最小不能被float精确表示的整数值?

->超出23位的尾数

 $1.0000\ 0000\ 0000\ 0000\ 0000\ 0001 * 2^{24}$

如果有a > b, 则一定有 a + 1 > b + 1? ->a,b相对于1来说太小了,被忽略 a = 2b = 2 * 2^{2-2^{k-1}} * 2⁻ⁿ

向偶舍入中的误差

A 4. 给定一个实数,会因为该实数表示成单精度浮点数而发生误差。不考虑 NaN 和 Inf 的情况, 该绝对误差的最大值为

A. 2^{103}

B. 2^{104}

 $C. 2^{230}$

D. 2^{231}

C中浮点数转换

int -> double 一定可以精确表示

int-> float 可能需要进行舍入操作

x ? (int)(float)x

floar/double -> int 向0取整

出现溢出:整数不确定 (integer indefinite)

C称为undefined behavior

Thanks

Litchi-w