Project #4: Stresses around wellbores and fractures

For this project you will have to download and install the software FreeFEM++ (http://www.freefem.org/). FreeFEM++ help will be given in class and by the TA. You will also need to run Matlab, Python or equivalent software.

1) Wellbore problem

Consider a 2D problem of a circular cavity subjected to far field effective stresses σ_{xx} = 12 MPa and σ_{yy} = 3 MPa. The diameter of the cavity is 0.2 m. Rock properties: E = 10 GPa, ν = 0.20, unconfined compression strength UCS = 30 MPa, tensile strength Ts = 2 MPa.

- a. Using Kirsch equations compute (and plot) σ_{rr} , $\sigma_{\theta\theta}$ and $\sigma_{r\theta}$ for a domain x = [-1m, +1m], and y = [-1m, +1m]. You may define a polar grid for (r,θ) . How far does the presence of the wellbore influence stresses?
- b. Using Kirsch equations compute (and plot) stresses in a line $\{x = [0.1m, 1m], y=0m\}$ and $\{x = 0m, y=[0.1m, 1m]\}$.
- c. Using Kirsch equations compute (and plot) σ_{rr} and $\sigma_{\theta\theta}$ for r=0.1m. Is there any section of the rock in shear or tensile failure? Where?
- d. Use FreeFEM++ to solve the same problem (σ_{xx} , σ_{yy} and σ_{xy}) assuming a domain size 2m by 2m. Compute σ_{xx} and σ_{yy} for the same lines as in point "b", and compare with Kirsch analytical solution. Repeat the process for a domain size 0.5m by 0.5m. Are there any differences? Why?
- e. Plot the displacement field.
- f. EXTRA: compute principal stresses within FreeFEM++ and plot σ_{rr} and $\sigma_{\theta\theta}$.

2) Fracture problem

Consider a 2D problem of an elliptical fracture (half-length c = 10m, $w_0 = 0.1$ m). Set the fracture through an elliptical equation (major axis in direction y) at the center of a domain: x = [-50m, 50m] and y = [-50m, 50m]. All other boundaries will have zero displacement. Rock properties: E = 30 GPa, v = 0.20.

- a. Use FreeFEM++ to solve for σ_{xx} , σ_{yy} and σ_{xy} imposing a fracture pressure p = 10 MPa. Plot results.
- b. Plot stress perpendicular to the fracture direction σ_{xx} at the middle of the fracture $\{x=0, y=[w_0/2, 50m]\}$. How far does the influence of the fracture go?
- c. Plot x-displacements at the face of the fracture. Compare with analytical equation.
- d. Plot σ_{xx} along line {x=0, y=[w₀/2, 50m]} and compare with analytical solution
- e. EXTRA: compare FreeFEM++ solution to analytical solution by Sneddon and Elliot, 1946.

(1) Width of an elliptical crack

Griffith crack problem

Boundary conditions

- Linear elastic and homogeneous solid
- - σ_{vv} : tension for x>c; σ_{vv} =-p₀ at 1.15c

(2) Stress Intensity Factor at Fracture Tip

Griffith crack problem

$$\sigma_{yy}(x,0) = p_0[x/(x^2-c^2)^{1/2}-1]$$

• $\sigma_{vv} \rightarrow \infty$ at x=c!

A more convenient amount to compare is the stress intensity factor

$$K_I = \lim_{r \to 0^+} \left[2\pi \ r^{1/2} \sigma_{yy} (x = c + r, y = 0) \right]$$

Constant pressure crack:

$$K_I = p_0 \left(\pi c\right)^{1/2}$$

If K_I > K_{IC} (Fracture Toughness) → Fracture propagates