E-8	192 02
* key points from leeture	8.2 , 8.3 8.5 , 8.6
a discrete - avont autom	8.5,8.6
discrete-event systems	
o model and analyze	
model and areay	
deterministic /nondeterministic automater	
deallock, livelock, blocking	
· Sefety	
* extra notes	
odefinition A=(Q, E, S, 90, Qm)	(
· E* denotes all finite ethings of almost	(
E*denotes all finite strings of element E={a,d}, E*= {2,a,d,aa,ad,da	(100
$9=S(90,S), S \in E^*$ state reached the string S	
the string s	ofter executing
	in wh
elanguage L, a set of finite strings. L	, SE*
· Concatenation of 11, 12	
language generated by A	
L(A) = { SEE*: S(90, S) is	0.0
· language marked by A	defined;
John Started by A	v .
Im(A) = { SEE* : S(90,S) E	Qn}
· equivalent Automata	
As equivalent to Az if $Z(A_1) = Z(A_2)$	
$\frac{1}{2(A_i)} = L(A_2)$	
$Lm(A_i) = L_R$	$n(A_2)$

- · deadlack:

 unmarked states can be reached and, no further event can
 be executed
- · livelock

 a subset of unmarked states can be readed, but no transition is going out from the subset.
- · prefix-closure of Im(A)

Lm(A) = (SEE*: JS'EE*, SS'ELm(A)) Lm(A) = IM(A) EL(A)

- e blocking A automaton's blocking if Im(A) is a strict subset of L(A).

 Nonblocking if Im(A) = L(A)
 - onondeterministic S: QXEUSE} →2Q 90 is a set
- automaton with smallest number of states that mark a language
 equivalent states
 - Lm(A(x)) = Lm(A(y)), A(x) the same automaton as A with initial state x
 - make sure reachable states aviod bad states

Ex.8.2

extra notes

(a) model the vending machine using a discrete-event system A=(Q, E, S, 90, Qm) P6 0+18

analyze:

Soda: \$0.45

accepts: \$0.10 (dime) \$0.25 (quarter)

socia dispensed only if \$0.45 is inserted

otherwise: no soda, no return change

States: Q = {0,10,25,35,45,20,30,40, []} overflow

event: E= { D, Q }

initial state: 90 = 0, marked state/final state 9m = 45transition map: S(0,D)=10, S(0,Q)=25

S(10.D)=20, S(10,Q)=35, S(25,D)=35 S(25, (3)=1 S(200) -20 S(200) - 40


```
Ex 8.3
extra notes
(a) discribe tormally the DES
              A= (Q, E, S, go, Qm)
Owlere: states Q= 191,92)
           events == {0,1}
          transition S: S(g_1,0)=g_2, S(g_2,1)=g_1
           initial state 90, marked state 92
(b) marked language Im(A)
                                            Pil of 18
      olf: Im (A) = { SEE*: S(90, S) EQm}
                    the set of finite strings that of events
            that drive the system to marked states) one of the
    generated language L(A)
```

def: L(A) = { SEE*: S(90,5) @ is defined}

(the set of finite string of events that drives the system starting from one of the initial state)

In our case $L(A) = \{ 0 (10)^*, (01)^* \}$ ends in 9 $Lm(A) = \{ 0 (10)^* \}$ $Lm(A) = \{ 0 (10)^* \}$

Ex. 85

extra notes

typo in the diagram, S(h, 0) = g

(not bi-directional)

·given a discrete-event system
determine the minimum state automator

Ex 8.6
· Construct equivalent DFA from an NFA (not in the)
Subset Construction (ecture)
 critical points final states = all those with a member of F
So([91,9k],a) = $\bigvee_{i=1}^{k} S_N(9i,a)$
i=1
extra notes:
not taught in the leeture
· Construct DFA from NFA
· equivalent language
Given the nondeterministic automaton
A=({90.91}, {0,1}, S, 90, {91})
where S(90,0)={90,91}, S(90,1)={91}
$S(9,0) = S(9,1) = \{90,9\}$
O Prob: Construct a deterministic automa
Prob: construct a deterministic automaton A', which accepts the same $Lm(A)$.
Idea: build/treat /90,9i) as a new states
Nomely, build Q' as fall subsets of Q
Q'= { [90], [9,], [90,9,]} tames, symbols
initial state [90]. final state [9,], [90,9,]
events 20,1 Y

transitions S'([90], 0) = [90,91] S'([90], 1) = [91] S'([91], 0) = S([91], 1) = [90,91] $S'([90,91], 0) = S(90,0) \cup S(91,0)$ $= \{ 90,91 \} = [90,91]$ $S'([90,91], 1) = S(90,1) \cup S(91,1)$ $= \{ 91 \} \cup \{ 91,90 \} = \{ 90,91 \} = [90,91]$ original automaton A

