Apunte Único: Álgebra Lineal Computacional - Práctica 4

Por alumnos de ALC Facultad de Ciencias Exactas y Naturales UBA

última actualización 19/05/25 @ 13:11

Choose your destiny:

(click click 🖶 en el ejercicio para saltar)

- Notas teóricas
- © Ejercicios de la guía:

1.	4.	7.	10.	13.	16.	19.	22.
2.	5.	8.	11.	14.	17.	20.	23.
3.	6.	9.	12.	15.	18.	21.	??.

- Ejercicios de Parciales
 - **♦**1. **♦**2. **♦**3. **♦**??.

Esta Guía 4 que tenés se actualizó por última vez: 19/05/25 @ 13:11

Escaneá el QR para bajarte (quizás) una versión más nueva:

El resto de las guías repo en github para descargar las guías con los últimos updates.

Si querés mandar un ejercicio o avisar de algún error, lo más fácil es por Telegram <a>.

Notas teóricas:

18

Ejercicios de la guía:

Ejercicio 1. Calcular el polinomio característico, los autovalores y los autovectores de la matriz A en cada uno de los siguientes casos (analizar por separado los casos $K = \mathbb{R}$ y $K = \mathbb{C}$):

(a)
$$A = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}$$
 (c) $A = \begin{pmatrix} 3 & 1 & 0 \\ -4 & -1 & 0 \\ 4 & -8 & -2 \end{pmatrix}$ (e) $A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$

(b)
$$A = \begin{pmatrix} 0 & 2 & 1 \\ -2 & 0 & 2 \\ -1 & -2 & 0 \end{pmatrix}$$
 (d) $A = \begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}$ (f) $A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

(a) Ecuación característica, a polinomio característico:

$$(A - \lambda I)v_{\lambda} = 0 \Leftrightarrow \begin{vmatrix} -\lambda & a \\ -a & -\lambda \end{vmatrix} = 0 \Leftrightarrow (\lambda^2 + a^2) = 0 \Leftrightarrow \begin{cases} \lambda = -ia & \text{con } v_{\lambda = -ia} = (1, -i) \\ \lambda = ia & \text{con } v_{\lambda = ia} = (1, i) \end{cases}$$

Quedaría algo así diagonalizada:

$$A = \underbrace{\begin{pmatrix} 1 & 1 \\ -i & i \end{pmatrix}}_{C} \underbrace{\begin{pmatrix} -ia & 0 \\ 0 & ia \end{pmatrix}}_{D} \underbrace{\begin{pmatrix} \frac{1}{2} & \frac{i}{2} \\ \frac{1}{2} & -\frac{i}{2} \end{pmatrix}}_{C^{-1}}$$

(b) ... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram 🤣, o mejor aún si querés subirlo en IAT_EX→ una *pull request* al 😯.

(C) ... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram ②, o mejor aún si querés subirlo en IAT_EX→ una pull request al ③.

(d) Ecuación característica, a polinomio característico:

$$(A - \lambda I)v_{\lambda} = 0 \Leftrightarrow \begin{vmatrix} a - \lambda & 1 & 1 \\ 1 & a - \lambda & 1 \\ 1 & 1 & a - \lambda \end{vmatrix} = 0 \Leftrightarrow (a - \lambda)^{3} - 3(a - \lambda) + 2 = 0$$

Que lindo ejercicio 😉.

Si hago $x = (a - \lambda)$ entonces \star^1 :

$$x^{3} - 3x + 2 = (x - 1)^{2}(x + 2) = 0 \Leftrightarrow ((a - \lambda) - 1)^{2}((a - \lambda) + 2) = 0$$

Por lo tanto:

$$\Leftrightarrow \begin{cases} \lambda_1 = a - 1 & \text{con} & E_{\lambda = a - 1} = \langle (-1, 1, 0), (-1, 0, 1) \rangle \\ \lambda_2 = a + 2 & \text{con} & E_{\lambda = a + 2} = \langle (1, 1, 1) \rangle \end{cases}$$

Quedaría algo así diagonalizada:

$$A = \underbrace{\left(\begin{array}{ccc} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{array} \right)}_{C} \underbrace{\left(\begin{array}{ccc} a-1 & 0 & 0 \\ 0 & a-1 & 0 \\ 0 & 0 & a+2 \end{array} \right)}_{D} \underbrace{\left(\begin{array}{ccc} -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{array} \right)}_{C^{-1}}_{C}$$

(e) ... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en LATEX \rightarrow una pull request al \bigcirc

(f) ... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc

Ejercicio 2. Para cada una de la matrices A del ejercicio anterior, sea $f: K^n \to K^n$ la transformación lineal tal que $[f]_{EE} = A$. Decidir si es posible encontrar una base B de K^n tal que $[f]_{EE}$ sea diagonal. En caso afirmativo, calcular C_{BE} .

Sea $A \in K^{n \times n}$ criterios para saber si una matriz es diagonalizable:

A es diagonalizable \Leftrightarrow tiene n autovectores linealmente independientes.

A es diagonalizable si es semejante a una matriz diagonal.

A es diagonalizable si $mg(\lambda_i) = ma(\lambda_i)$ para cada λ_i de A.

🖭... hay que hacerlo! 🙃

Si querés mandá la solución o al grupo de Telegram $\overline{ f Q }$, o mejor aún si querés subirlo en IAT $_{
m E}$ Xo una pull request al f Q

Ejercicio 3. Considerar la sucesión de Fibonacci, dada por la recursión:

$$\begin{cases}
F_0 = 0, \\
F_1 = 1, \\
F_{n+1} = F_n + F_{n-1}
\end{cases}$$

- (a) Hallar una matriz A tal que $\begin{pmatrix} F_n \\ F_{n+1} \end{pmatrix} = A \begin{pmatrix} F_{n-1} \\ F_n \end{pmatrix}$. Mostrar que $\begin{pmatrix} F_n \\ F_{n+1} \end{pmatrix} = A^n \begin{pmatrix} F_0 \\ F_1 \end{pmatrix}$
- (b) Diagonalizar A.
- (c) Dar una fórmula cerrada para F_n .
- (a) Quiero una matriz $A \in \mathbb{R}^{2 \times 2}$ tal que:

$$\begin{pmatrix} F_n \\ F_{n+1} \end{pmatrix} = A \begin{pmatrix} F_{n-1} \\ F_n \end{pmatrix} \Leftrightarrow \begin{pmatrix} F_n \\ F_{n+1} \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} F_{n-1} \\ F_n \end{pmatrix} \Leftrightarrow \begin{cases} aF_{n+1} + bF_n = F_n \\ cF_{n-1} + dF_n = F_{n+1} \stackrel{!}{=} F_n + F_{n-1} \end{cases}$$

Resolviendo ese sistemita:

$$A = \left(\begin{array}{cc} 0 & 1\\ 1 & 1 \end{array}\right)$$

Para mostrar lo que sigue, inducción. Quiero mostrar la siguiente proposición:

$$p(n): A^n \left(\begin{array}{c} F_0 \\ F_1 \end{array} \right) = \left(\begin{array}{c} F_n \\ F_{n+1} \end{array} \right) \quad \text{con} \quad A = \left(\begin{array}{c} 0 & 1 \\ 1 & 1 \end{array} \right)$$

Caso base:

$$p(1):A^1\left(\begin{array}{c}F_0\\F_1\end{array}\right)=\left(\begin{array}{c}0&1\\1&1\end{array}\right)\left(\begin{array}{c}F_0\\F_1\end{array}\right)=\left(\begin{array}{c}0+F_1\\F_0+F_1\end{array}\right)\stackrel{\mathrm{def}}{=}\left(\begin{array}{c}F_1\\F_2\end{array}\right)$$

Es así que la proposición p(1) resultó verdadera.

Paso inductivo:

Asumo que para algún $k \in \mathbb{N}$ la proposición:

$$p(k): \underbrace{A^{k} \begin{pmatrix} F_{0} \\ F_{1} \end{pmatrix} = \begin{pmatrix} F_{k} \\ F_{k+1} \end{pmatrix}}_{\text{hipótesis inductiva}}$$

es verdadera. Entonces quiero ver ahora que la proposición:

$$p(k+1): A^{k+1} \left(\begin{array}{c} F_0 \\ F_1 \end{array} \right) = \left(\begin{array}{c} F_{k+1} \\ F_{k+1+1} \end{array} \right) = \left(\begin{array}{c} F_{k+1} \\ F_{k+2} \end{array} \right)$$

también lo sea.

$$A^{k+1} \left(\begin{array}{c} F_0 \\ F_1 \end{array} \right) = A \cdot A^k \left(\begin{array}{c} F_0 \\ F_1 \end{array} \right) \overset{\mathbf{HI}}{=} A \cdot \left(\begin{array}{c} F_k \\ F_{k+1} \end{array} \right) = \left(\begin{array}{c} F_{k+1} \\ F_k + F_{k+1} \end{array} \right) \overset{\mathrm{def}}{=} \left(\begin{array}{c} F_{k+1} \\ F_{k+2} \end{array} \right)$$

Tuqui, también resulta ser verdadera.

Es así que p(1), p(k) y p(k+1) resultaron verdaderas y por el principio de inducción la proposición p(n)también lo será $\forall n \in \mathbb{N}$.

(b) Ecuación característica a polinomio característico:

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \xrightarrow{\text{ecuación} \atop \text{característica}} (A - \lambda I) v_{\lambda} = 0 \xrightarrow{\text{polinomio} \atop \text{característico}} \begin{vmatrix} -\lambda & 1 \\ 1 & 1 - \lambda \end{vmatrix} = \lambda^2 - \lambda - 1 = 0 \Leftrightarrow \begin{cases} \lambda_1 = \frac{1 + \sqrt{5}}{2} = \varphi \\ \lambda_2 = \frac{1 - \sqrt{5}}{2} = -\frac{1}{\varphi} \end{cases}$$

Esa notación se complementa con:

$$\left\{ \begin{array}{c} \frac{1}{\varphi} = \varphi - 1 \end{array} \right.$$

Diagonalizar esta matriz tiene un montón de droga:

$$\left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right) \left(\begin{array}{c} 1 \\ \varphi \end{array}\right) \stackrel{!}{=} \varphi \left(\begin{array}{c} 1 \\ \varphi \end{array}\right) \qquad \text{y} \qquad \left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right) \left(\begin{array}{c} 1 \\ -\frac{1}{\varphi} \end{array}\right) \stackrel{!}{=} -\frac{1}{\varphi} \left(\begin{array}{c} 1 \\ -\frac{1}{\varphi} \end{array}\right)$$

No sé si están bien las cuentas, pero, a veces es mejor ni preguntar. Beware A.

$$A = \begin{pmatrix} 1 & 1 \\ \varphi & -\frac{1}{\varphi} \end{pmatrix} \begin{pmatrix} \varphi & 0 \\ 0 & -\frac{1}{\varphi} \end{pmatrix} \begin{pmatrix} \frac{1}{1+\varphi^2} & \frac{\varphi}{1+\varphi^2} \\ \frac{\varphi^2}{1+\varphi^2} & -\frac{\varphi}{1+\varphi^2} \end{pmatrix}$$

(c) Viene por acá esto? CONSULTAR

$$F_{\mathbf{n}} = \left(\begin{array}{cc} 1 & 1 \\ \varphi & -\frac{1}{\varphi} \end{array} \right) \left(\begin{array}{cc} \varphi^{\mathbf{n}} & 0 \\ 0 & (-\frac{1}{\varphi})^{\mathbf{n}} \end{array} \right) \left(\begin{array}{cc} \frac{1}{1+\varphi^2} & \frac{\varphi}{1+\varphi^2} \\ \frac{\varphi^2}{1+\varphi^2} & -\frac{\varphi}{1+\varphi^2} \end{array} \right) \left(\begin{array}{cc} F_0 \\ F_1 \end{array} \right)$$

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

🎖 naD GarRaz 🞧

Ejercicio 4. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en LATEX \rightarrow una pull request al \bigcirc

Ejercicio 5. Sea $A \in K^{n \times n}$. Probar que A y A^t tienen los mismos autovalores. Dar un ejemplo en el que los autovectores sean distintos.

Demostracion:

Por propiedades del determinante sabemos que:

$$\det(A) = \det(A^t)$$

Sabemos que los autovalores λ son los que tienen la siguiente propiedad:

$$\det(A - \lambda I) = 0$$

Usando la propiedad del determinante, tenemos que:

$$\det(A - \lambda I) = \det((A - \lambda I)^t)$$

Y, como sabemos que λ es un autovalor de A

$$0 = \underbrace{\det(A - \lambda I)}_{\chi_A(\lambda)} = \underbrace{\det((A - \lambda I)^t)}_{\chi_{A^t}(\lambda)} \Leftrightarrow \chi_A(\lambda) = \chi_{A^t}(\lambda) = 0$$

Probando así que tienen los mismos autovalores, dado que los *polinomios característicos de ambas expresiones* son iguales

Hay un ejemplo donde lo sean? No acabo de mostrar que eso no sucede 🖨 CONSUltar

Ejercicio 6. Sea $A \in \mathbb{C}^{n \times n}$ y λ un autovalor de A. Probar que:

- (a) Si A es triangular, sus autovalores son los elementos de la diagonal.
- (b) λ^k es autovalor de A^k , con el mismo autovector.
- (c) $\lambda + \mu$ es autovalor de $A + \mu I$, con el mismo autovector.
- (d) Si p es un polinomio, $p(\lambda)$ es autovalor de p(A).
- (a) Sea A triangular

Voy a usar el lema:

Si A triangular, entonces su determinante es la multiplicación de su diagonal.

A demostrarlo!!

Caso base:

Matriz 2 × 2: (la 1 × 1 es trivial, no es divertido)
$$\begin{pmatrix} a & c_{12} \\ c_{21} & b \end{pmatrix}$$
 con $c_{12} = 0$ (o excluyente) $c_{21} = 0$

Supongamos que $c_{12} = 0$, entonces $\det(M) = a \cdot b - 0 \cdot c_{21} \implies a \cdot b$ cumpliendo así el caso base. El otro caso es análogo.

Paso inductivo:

Asumo que

$$p(h): \forall M \in K^{h \times h}: \det(M) = \prod_{i=1}^{h} m_{ii}$$

es verdadera para algún $h \in \mathbb{N}$, entonces quiero probar que:

$$p(h+1): \forall M \in K^{(h+1)\times(h+1)}: \underline{\det(M) = \prod_{i=1}^{h+1} m_{ii}}$$

hipótesis inductiva

también sea verdadera.

Voy a hacerlo en el caso en que sea triangular inferior, en el otro caso queda de la misma forma.

$$A = \begin{pmatrix} a_{11} & 0 & \cdots & 0 & 0 \\ a_{21} & a_{22} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{h1} & a_{h2} & \cdots & a_{hh} & 0 \\ a_{(h+1)1} & a_{(h+1)2} & \cdots & a_{(h+1)(h)} & a_{(h+1)(h+1)} \end{pmatrix}$$

Calculo el determinate. Lo voy a hacer desde la última columna.

$$\det(A) = 0 + 0 + \dots + 0 + a_{(n+1)(n+1)} \cdot \begin{vmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{h1} & a_{h2} & \dots & a_{hh} \end{vmatrix} \stackrel{\text{HI}}{=} a_{(h+1)(h+1)} \prod_{i=1}^{h} a_{ii} = \prod_{i=1}^{h+1} a_{ii}$$

El lema queda probado. El caso donde es triangular superior es lo mismo, solo se hace usando la fila y no la columna.

Ahora volviendo con la demostración del ejercicio.

$$(A - \lambda I) = \begin{pmatrix} a_{11} - \lambda & 0 & \cdots & 0 \\ a_{21} & a_{22} - \lambda & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{pmatrix}$$

Por lema y recordando que A es triangular por lo que la resta de A con una matriz diagonal seguirá siéndolo:

$$\det(A - \lambda I) = \prod_{i=1}^{n} (a_{ii} - \lambda)$$

jTa rahh!, los a_{ii} son autovalores de $A \quad \forall i \leq n$.

(b) Supongo que λ es autovalor de A.

Demostracion por inducción:

Caso base:

$$p(1): A^1 v = \lambda^1 v$$

Es verdadera por simple definción de autovalor.

Paso inductivo: Asumo como verdadera la proposición:

$$p(k): A^k v = \lambda^k v$$
 con el autovector de $Av = \lambda v$

para algún $k \in \mathbb{N}$, entonces quiero probar que:

$$p(k+1): A^{k+1}v = A^{k+1}v$$

también lo sea.

$$A^{k+1}v = A \cdot A^k v \stackrel{\text{HI}}{=} A \cdot \lambda^k v \stackrel{!}{=} \lambda^{k+1} v$$

Fin

(c) Sea λ autovalor de A con su autovector correspondiente v . Sea μ un número.

Tenemos que por definición:

$$Av = \lambda v$$

Veamos

$$(A + \mu I)v = Av + \mu Iv \stackrel{\text{def}}{=} \lambda v + \mu Iv = \lambda v + \mu v = (\lambda + \mu)v$$

Fin.

(d) Sea p un polinomio, λ un autovalor con v autovector asociado de A

Demostración por inducción en el grado del polinomio p_n . Quiero probar que:

$$p(n): p(\lambda)$$
 es autovalor de $p(A)$

Caso base:

$$p(\operatorname{gr}(p)=1): p_1(\lambda)$$
 es autovalor de $p_1(A)=a_1A+a_0A_0$

Y de lo que vio en el ítem (c):

$$p_1(A)\mathbf{v} = a_1A\mathbf{v} + a_0I_n\mathbf{v} \Leftrightarrow \underbrace{(a_1A + a_0I_n)}_{p(A)}\mathbf{v} = \underbrace{(a_1\lambda + a_0)}_{p(\lambda)}\mathbf{v}$$

Por lo cual la proposición p(gr(p) = 1) resultó verdadera.

Paso inductivo:

Asumo como verdadera la proposición:

$$p(\operatorname{gr}(p) = k) : p_k(\lambda)$$
 es autovalor de $p_k(A) = \sum_{i=0}^k a_i A^i$ hipótesis inductiva

para algún $ken \mathbb{N}$. Entonces quiero probar que

$$p(\operatorname{gr}(p) = k+1) : p_{k+1}(\lambda)$$
 es autovalor de $p_k(A) = \sum_{i=0}^{k+1} a_i A^i$

Veamos un polinomio de grado k + 1:

$$p_{k+1}(X) = \sum_{i=0}^{k+1} a_i \cdot X^i = a_{k+1}X^{k+1} + \sum_{i=0}^{k} a_i \cdot X^i$$

Evalúo en A y multiplico por v autovector de A:

$$p_{k+1}(A)v = a_{k+1}A^{k+1}v + \sum_{i=0}^{k} a_i \cdot A^i v \underset{\text{(b)}}{\overset{\text{HI}}{=}} a_{k+1}\lambda^{k+1}v + \sum_{i=0}^{k} a_i \cdot \lambda^i v = \underbrace{\sum_{i=0}^{k+1} a_i \cdot \lambda^i}_{p(k+1)(\lambda)}v$$

Concluyendo así que

$$p_{k+1}(A)v \stackrel{!!}{=} p_{k+1}(\lambda)v$$

Entonces, probé que es verdadera la proposición.

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 Iñaki Frutos 😯

Ejercicio 7. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATeX \rightarrow una pull request al \bigcirc

Ejercicio 8. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc

Ejercicio 9. O... hay que hacerlo! Si querés mandá la solución o al grupo de Telegram $rac{1}{2}$, o mejor aún si querés subirlo en IATEXo una pull request al $rac{1}{2}$ Ejercicio 10. S... hay que hacerlo! Si querés mandá la solución → al grupo de Telegram ②, o mejor aún si querés subirlo en IATEX→ una pull request al ◘. Ejercicio 11. S... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram , o mejor aún si querés subirlo en IATEX→ una pull request al .

Ejercicio 12. O... hay que hacerlo! Si querés mandá la solución → al grupo de Telegram ②, o mejor aún si querés subirlo en IATEX→ una pull request al ◘.

Ejercicio 13. O... hay que hacerlo! Si querés mandá la solución o al grupo de Telegram $rac{ extstyle d}{ extstyle d}$, o mejor aún si querés subirlo en IATEXo una pull request al $rac{ extstyle d}{ extstyle d}$.

Ejercicio 14. O... hay que hacerlo! Si querés mandá la solución → al grupo de Telegram ②, o mejor aún si querés subirlo en IATEX→ una pull request al ◘.

Ejercicio 15. S... hay que hacerlo! Si querés mandá la solución → al grupo de Telegram ②, o mejor aún si querés subirlo en IATEX→ una pull request al ◘.

```
Ejercicio 16. O... hay que hacerlo!
Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc, o mejor aún si querés subirlo en IATEX\rightarrow una pull request al \bigcirc.
```

Ejercicio 17. O... hay que hacerlo! Si querés mandá la solución → al grupo de Telegram ②, o mejor aún si querés subirlo en IATEX→ una pull request al ◘.

```
Ejercicio 18. O... hay que hacerlo!
Si querés mandá la solución → al grupo de Telegram , o mejor aún si querés subirlo en IATEX→ una pull request al
```

Ejercicio 19. O... hay que hacerlo! Si querés mandá la solución → al grupo de Telegram , o mejor aún si querés subirlo en IATEX→ una pull request al

Ejercicio 20. O... hay que hacerlo! Si querés mandá la solución → al grupo de Telegram , o mejor aún si querés subirlo en IATEX→ una pull request al Ejercicio 21. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en LATEX \rightarrow una pull request al \bigcirc .

Ejercicio 22. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 23. O... hay que hacerlo! 😚

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IAT $_{\rm E}$ X \rightarrow una pull request al \bigcirc .

Liercicios de parciales:

- **♦1.** Sea $A = \begin{pmatrix} r & s & t \\ -12 & 6 & 16 \\ 0 & 0 & 2 \end{pmatrix}$ ∈ $\mathbb{R}^{3\times3}$ una matriz tal que v = (1, 2, 0), w = (2, 6, 0) y u = (-2, -2, -1) son autovectores de A.
 - a) Probar que A es diagonalizable.
 - b) Calcular los autovalores de A y determinar r, s y t.
 - a) Es diagonalizable porque estamos en $reales^{3\times3}$ y hay una base de dimensión 3 de autovectores:

$$B = \{(1, 2, 0), (2, 6, 0), (-2, -2, -1)\},\$$

son autovectores de A.

b) Los autovectores, son vectores que cumplen la ecuación característica:

$$A \cdot v_{\lambda} = \lambda \cdot v_{\lambda}$$

Es solo cuestión de pedirle a los autovectores del enunciado que cumplan esa ecuación y despejar.

$$A \cdot \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} = \lambda \cdot \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \xrightarrow{\text{de las cuentas}} \left\{ \begin{array}{c} r \stackrel{=}{=} & -2s \\ \lambda & = & 0 \end{array} \right.$$

Siguiente autovector:

$$A \cdot \begin{pmatrix} 2 \\ 6 \\ 0 \end{pmatrix} = \lambda \cdot \begin{pmatrix} 2 \\ 6 \\ 0 \end{pmatrix} \xrightarrow{\text{de las cuentas}} \begin{cases} s = 1 \implies r \stackrel{\bigstar^1}{=} -2 \\ \lambda = 2 \end{cases}$$

Siguiente y último autovector

$$A \cdot \begin{pmatrix} -2 \\ -2 \\ -1 \end{pmatrix} = \lambda \cdot \begin{pmatrix} -2 \\ -2 \\ -1 \end{pmatrix} \xrightarrow{\text{de las cuentas}} \begin{cases} t = 6 \\ \lambda = 2 \end{cases}$$

Listo hay subespacios para justificar aún más la diagonabilidad de la matriz:

$$E_{\lambda=0} = \langle 1, 2, 0 \rangle$$
 y $E_{\lambda=2} = \langle (-2, -2, -1), (2, 6, 0) \rangle$

La multiplicidad geométrica es igual a la multiplicidad aritmética:

$$mg_A(\lambda = 2) = ma_A(\lambda = 2) = 2$$
 y $mg_A(\lambda = 0) = ma_A(\lambda = 0) = 1$

La matriz en forma diagonal:

$$\begin{pmatrix} -2 & 1 & 6 \\ -12 & 6 & 16 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 2 \\ 2 & -2 & 6 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & -2 & 2 \\ 2 & -2 & 6 \\ 0 & -1 & 0 \end{pmatrix}^{-1}$$

Dale las gracias y un poco de amor ♥ a los que contribuyeron! Gracias por tu aporte:
8 naD GarRaz •

22.

a) Sea $A \in \mathbb{R}^{n \times n}$. Probar que si A es inversible y diagonalizable, entonces A^{-1} y $A^k - kI_n$ son diagonalizables para cualquier $k \in \mathbb{N}$.

b) Sea
$$J = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$
.

- i) Probar que J es una matriz diagonalizable.
- ii) Calcular $J^5 5I_3$.
- a) Truquito destacable: $I_n = PP^1$ para luego sacar factor común al calcular $A^k kI_n$ Por otro lado, la inversibilidad de una matriz diagonalizable asegura que los autovalores son distintos de cero:

$$|A| = |PDP^{-1}| = |P||D||P^{-1}| \stackrel{!}{=} |D| = \prod_{i=1}^{n} \lambda_i$$

Las matrices inversibles tienen $det(A) \neq 0$.

b) i) Se calculan los autovectores y autovalores:

$$E_{\lambda=2} = \{(1,0,1), (-1,1,0)\} \quad \text{y} \quad E_{\lambda=4} = \{(0,1,1)\} \implies P = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

Te debo la inversa por *pajilla*.

ii) Sale combinando lo que se usó hasta ahora.

♦3. Dadas las matrices $A, B \in \mathbb{C}^{n \times n}$ y un vector $v \in \mathbb{C}^n$, para cada una de las siguientes afirmaciones, determinar su validez. En caso de ser falsas, dar un contraejemplo, y en caso de ser verdaderas demostrarlas:

- (a) Si v es un autovector de A, y A es inversible, entonces v es un autovector de A^{-1} .
- (b) Si A y B son diagonalizables, A + B también lo es.
- (c) Si A y B son diagonalizables, entonces AB es diagonalizable.
- (d) Si A o B es inversible y AB es diagonalizable entonces BA también es diagonalizables.

A

Ejercicio de demostraciones. Dependiendo las horas que dormiste la noche anterior esto puede salir enseguida o en horas. La matriz que uso en los contraejemplos suele ser un *caballito de batalla* para estos problemas, guardátela.

(a) Si v es un autovector y además $\exists A^{-1}$ entonces:

$$Av = \lambda v \stackrel{!}{\Leftrightarrow} A^{-1}Av = \lambda A^{-1}v \stackrel{!}{\Leftrightarrow} A^{-1}v = \frac{1}{\lambda}v$$

Por lo tanto:

resultó verdadera

(b) Si las matrices son diagonalizables, ¿La suma también lo es?:

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \mathbf{y} \quad B = \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix}$$

Esas matrices son diagonalizables, porque cada una tiene todos sus autovalores distintos.

$$A + B = \left(\begin{array}{cc} 0 & 1\\ 0 & 0 \end{array}\right)$$

Matriz que no es diagonalizable, ya que tiene a 0 como un autovalor doble, pero el autoespacio asociado es de dimensión 1:

$$\chi(\lambda) = \lambda^2 = 0$$
, luego $E_{\lambda=0} = \{(1,0)\}$

Por lo tanto:

resultó falsa

(c) Si las matrices son diagonalizables, ¿El producto también lo es?:

$$A = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \quad \mathbf{y} \quad B = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}$$

Esas matrices son diagonalizables, porque cada una tiene todos sus autovalores distintos.

$$AB = \left(\begin{array}{cc} 0 & 1\\ 0 & 0 \end{array}\right)$$

Matriz que no es diagonalizable, ya que tiene a 0 como un autovalor doble, pero el autoespacio asociado es de dimensión 1:

$$\chi(\lambda) = \lambda^2 = 0$$
, luego $E_{\lambda=0} = \{(1,0)\}$

Por lo tanto:

resultó falsa

(d) Alguna de las dos matrices es inversible y AB es diagonalizable, entonces ξBA es diagonalizable también? Supongo que $\exists A^{-1}$:

$$AB = CDC^{-1} \xleftarrow{\rightarrow \times A^{-1}} A^{-1}ABA = A^{-1}CDC^{-1}A \Leftrightarrow BA = A^{-1}CD(A^{-1}C)^{-1} \xleftarrow{P = A^{-1}C} BA = PDP^{-1}ABA = A^{-1}CD(A^{-1}C)^{-1} \xrightarrow{P = A^{-1}C} ABA = A^{-1}CD(A^{-1}C)^{-1} \xrightarrow{P = A^{$$

La expresión de BA resultó diagonalizable. La demostración con B diagonal es análoga. Por lo tanto:

resultó verdadera