静磁场

1. 静磁场的方程

[**磁场的矢势**] $\int_s \vec{B} \cdot d\vec{S} = \oint_L \vec{A} \cdot d\vec{l}$, 微分形式 $\vec{B} = \vec{\nabla} \times \vec{A}$.

[矢势的任意性] $\vec{\nabla} \times \vec{A} = \vec{\nabla} \times (\vec{A} + \vec{\nabla} \psi)$.

[矢势规范条件]

库伦规范: $\vec{\nabla} \cdot \vec{A} = 0$;

伦敦规范: $\vec{\nabla} \cdot \vec{A} = 0$, $\vec{e}_n \cdot \vec{A}|_s = 0$;

洛仑兹规范: $\vec{\nabla} \cdot \vec{A} + \frac{1}{c} \frac{\partial \psi}{\partial t} = 0.$

[矢势的微分方程] $\vec{\nabla}^2 \vec{A} = -\mu \vec{J}$.

由
$$\vec{B} = \mu \vec{H}$$
 和 $\vec{B} = \vec{\nabla} \times \vec{A}$,得 $\vec{\nabla} \times (\vec{\nabla} \times \vec{A}) = \mu \vec{\nabla} \times \vec{H} = \mu \vec{J}$

由库伦规范 $\vec{\nabla} \cdot \vec{J} = 0$, 得 $\vec{\nabla}^2 \vec{A} = -\mu_0 \vec{J}$

$$\vec{A}$$
 的每个分量都有 $\vec{\nabla}^2 A_i = -\mu J_i$, $(i = 1, 2, 3)$, 有特解 $\vec{A}(\vec{x}) = \frac{\mu}{4\pi} \int_V \frac{\vec{J}(\vec{x}')}{r} dV'$ 即 $\vec{B} = \frac{\mu}{4\pi} \int_V \frac{\vec{J}(\vec{x}') \times \vec{r}}{r^3} dV'$

[矢势的边值关系]

$$\begin{cases} \vec{e}_n \cdot (\vec{\nabla} \times \vec{A}_2 - \vec{\nabla} \times \vec{A}_1) = 0 \\ \vec{e}_n \times (\vec{\nabla} \times \frac{\vec{A}_2}{\mu_2} - \vec{\nabla} \times \frac{\vec{A}_1}{\mu_1}) = \vec{\alpha} \end{cases} \Leftrightarrow \begin{cases} A_{2t} = A_{1t} \\ A_{2n} = A_{1n} \end{cases} \Leftrightarrow \vec{A}_2 = \vec{A}_1$$

[**引人磁标势的条件**] 区域内的任何回路都不被自由电流所链环,即该区域是没有自由电流分布的单连通区域.

[磁标势] $\vec{H} = -\vec{\nabla}\varphi_m$.

[磁标势法与静电场公式对比]

1

[磁多极矩]

 $\vec{A}^{(0)} = 0$, 不含磁单极项;

$$\vec{A}^{(1)} = \frac{\mu_0}{4\pi} \frac{\vec{m} \times \vec{R}}{R^3}.$$

[磁矩] $\vec{m} = I\Delta \vec{S} = \frac{I}{2} \oint_L \vec{x}' \times d\vec{l}' = \frac{1}{2} \int_V \vec{x}' \times \vec{J}(\vec{x}') dV'$.

[磁偶极矩的矢势推导]

$$\vec{A}^{(1)} = -\frac{\mu_0}{4\pi} \int_V \vec{J}(\vec{x}') \vec{x}' \cdot \vec{\nabla} \frac{1}{R} dV' = \frac{\mu_0}{4\pi} \int_V \vec{J}(\vec{x}') \vec{x}' \cdot \frac{\vec{R}}{R^3} dV'$$

因为 R 与积分无关, 恒定电流具有连续性, 且积分路径有 $d\vec{x}' = d\vec{l}'$

所以
$$\vec{A}^{(1)} = \frac{\mu_0 I}{4\pi R^3} \oint_L \vec{x}' \cdot \vec{R} d\vec{l}'$$

因为全微分的闭合曲线积分与路径无关, $\oint_L d[(\vec{x'}\cdot\vec{R})\vec{x'}] = \oint_L (\vec{x'}\cdot\vec{R})d\vec{l'} + \oint_L (d\vec{l'}\cdot\vec{R})\vec{x'} = 0$

所以
$$\oint_L \vec{x}' \cdot \vec{R} d\vec{l}' = -\oint_L d\vec{l}' \cdot \vec{R} \vec{x}'$$

$$\mathbb{EP} \oint_L \vec{x}' \cdot \vec{R} d\vec{l}' = \frac{1}{2} \oint_L \left(\vec{x}' \cdot \vec{R} d\vec{l}' - d\vec{l}' \cdot \vec{R} \vec{x}' \right) = \frac{1}{2} \oint_L \vec{R} \times (d\vec{l}' \times \vec{x}')$$

得到
$$\vec{A}^{(1)} = \frac{\mu_0}{4\pi R^3} \frac{I}{2} \oint_L (\vec{x}' \times d\vec{l}') \times \vec{R}$$

因为
$$\frac{1}{2} \oint_L (\vec{x}' \times d\vec{l}') = \vec{S}$$

所以
$$\frac{I}{2} \phi_{I}(\vec{x}' \times d\vec{l}') = \vec{m}$$

$$\exists \vec{A}^{(1)} = \frac{\mu_0}{4\pi} \frac{\vec{m} \times \vec{R}}{R^3}$$

[磁偶极矩的磁场推导]

$$\vec{B}^{(1)} = \vec{\nabla} \times \vec{A}^{(1)} = \frac{\mu_0}{4\pi} \vec{\nabla} \times (\vec{m} \times \frac{\vec{R}}{R^3}) = -\frac{\mu_0}{4\pi} (\vec{m} \cdot \vec{\nabla}) \frac{\vec{R}}{R^3}$$
由 $\vec{m} \times (\vec{\nabla} \times \frac{\vec{R}}{R^3}) = \vec{\nabla} (\vec{m} \cdot \frac{\vec{R}}{R^3}) - (\vec{m} \cdot \vec{\nabla}) \frac{\vec{R}}{R^3} = 0$
得 $\vec{B}^{(1)} = -\frac{\mu_0}{4\pi} \vec{\nabla} (\vec{m} \cdot \frac{\vec{R}}{R^3}) = -\mu_0 \vec{\nabla} \frac{\vec{m} \cdot \vec{R}}{4\pi R^3}$
由 $\vec{H} = -\vec{\nabla} \varphi_m, \vec{B} = \mu_0 \vec{H}$
得 $\vec{B}^{(1)} = -\mu_0 \vec{\nabla} \varphi_m, \varphi_m = \frac{\vec{m} \cdot \vec{R}}{4\pi R^3}$

2. 静磁场的能量

[静磁场的能量] $W = \frac{1}{2} \int_V \vec{B} \cdot \vec{H} dV$, $W = \frac{1}{2} \int_V \vec{A} \cdot \vec{J} dV$.

[电流在外场中的能量] $W = \frac{1}{2} \int_{V} \vec{J} \cdot \vec{A}_{e} dV$.

[小区域电流在外场中的能量] $W = \frac{1}{2} \left(I \oint_L \vec{A_e} \cdot d\vec{l} + I_e \oint_L \vec{A} \cdot d\vec{l} \right) = \frac{1}{2} \left(I \Phi_e + I_e \Phi \right).$

增量 $\delta W = \frac{1}{2} \left(I \delta \Phi_e + I_e \delta \Phi \right)$.

[磁偶极子的势函数] $U=-W=-\int \vec{J}\cdot\vec{A_e}dV=-I\oint_{\bf r}\vec{A_e}\cdot d\vec{l}=-I\oint_{\bf r}\vec{B}\cdot d\vec{S}=-\vec{m}\cdot\vec{B}.$

[磁偶极子在外场受力] $\vec{F} = -\vec{\nabla}U = \vec{\nabla}(\vec{m} \cdot \vec{B}_e) = \vec{m} \times (\vec{\nabla} \times \vec{B}_e) + \vec{m} \cdot \vec{\nabla} \vec{B}_e.$

当外场电流不在 \vec{m} 的区域内时, $\vec{\nabla} \times \vec{B}_e = \vec{0}$, 则 $\vec{F} = \vec{m} \cdot \vec{\nabla} \vec{B}_e$.

[磁偶极子在外场中所受力矩] $\vec{L} = \vec{m} \times \vec{B}_e$.

3. 超导体的电磁性质

[阿哈罗诺夫-玻姆效应 (A-B 效应) 结论] 磁场的物理效应不能完全用 \vec{B} 描述.

[超导体的基本性质]

- (1). **超导电性**: 当材料温度低于临界温度 T_c 时, 材料的电阻突然消失;
- (2). **临界磁场**: 当材料处在超过临界磁场 \vec{H}_c 的磁场中时, 材料由超导态转变为正常态;
- а. 第一类超导体: 只有一个临界磁场, 当外场低于 $\vec{H_c}$ 时材料为超导态, 当外场 $\vec{H} \geq \vec{H_c}$ 时材料为正常态;
- b. 第二类超导体: 有两个临界磁场, 当外场低于 \vec{H}_{c1} 时材料为超导态; 当外场 $\vec{H}_{c1} < \vec{H} < \vec{H}_{c2}$ 时磁场以量子化磁通线形式进入材料内, 磁通线穿过的细长区域为正常态, 其余区域为超导态; 当外场大于 \vec{H}_{c2} 时材料为正常态;
- (3). **迈斯纳效应 (抗磁性)**: 随着进入超导体内部深度的增加, 磁场迅速衰减, 磁场主要存在于超导体表面一定厚度的薄层内.
- a. 理想迈斯纳态: 对于宏观超导体, 可以将磁场进入超导体的深度看为趋于 0, 则近似认为超导体内部磁感应强度 $\vec{B} = \vec{0}$, 超导体具有完全抗磁性, 称为理想迈斯纳态:
 - b. 一般迈斯纳态: 不能理想化的超导体状态则为一般迈斯纳效应;
- (4). **临界电流**: 当材料内部电流达到临界电流 I_c 时, 电流产生的磁场超过临界磁场, 超导体转变为正常态:
- (5). **磁通量子化**: 对于第一类复连通超导体, 以及单连通或复连通的第二类超导体, 磁通量只能是基本值 $\Phi_0 = \frac{h}{2e} = 2.07 \times 10^{-15} Wb$ 的整数倍. Φ_0 为磁通量子, h 为普朗克常量, e 为电子电荷量.

[伦敦唯象理论]

伦敦第一方程 $\frac{\partial \vec{J}_s}{\partial t} = \alpha \vec{E}, \ \alpha = \frac{n_s e^2}{m};$

伦敦第二方程 $\vec{\nabla} \times \vec{J}_s = -\alpha \vec{B}$;

超导体内超导电流与矢势关系 $\vec{J}_s(\vec{x}) = -\alpha \vec{A}(\vec{x})$.

[**皮帕德非局域修正的原因**] 由于超导电流以库珀对为单元凝聚为量子态,不同点上的超导电子相互关联,使超导电流与电磁场的相互作用不再是局域的.