```
In [1]: import numpy as np
import pandas as pd
df=pd.read_csv("/content/insurance_premium.csv")
df
```

Out[1]:

	age	sex	bmi	children	smoker	region	expenses
0	19	female	27.9	0	yes	southwest	16884.92
1	18	male	33.8	1	no	southeast	1725.55
2	28	male	33.0	3	no	southeast	4449.46
3	33	male	22.7	0	no	northwest	21984.47
4	32	male	28.9	0	no	northwest	3866.86
1333	50	male	31.0	3	no	northwest	10600.55
1334	18	female	31.9	0	no	northeast	2205.98
1335	18	female	36.9	0	no	southeast	1629.83
1336	21	female	25.8	0	no	southwest	2007.95
1337	61	female	29.1	0	yes	northwest	29141.36

1338 rows × 7 columns

In [2]: df.shape

Out[2]: (1338, 7)

In [3]: df.size

Out[3]: 9366

In [4]: df.head()

Out[4]:

	age	sex	bmi	children	smoker	region	expenses
0	19	female	27.9	0	yes	southwest	16884.92
1	18	male	33.8	1	no	southeast	1725.55
2	28	male	33.0	3	no	southeast	4449.46
3	33	male	22.7	0	no	northwest	21984.47
4	32	male	28.9	0	no	northwest	3866.86

In [5]: df.tail()

Out[5]:

	age	sex	bmi	children	smoker	region	expenses
1333	50	male	31.0	3	no	northwest	10600.55
1334	18	female	31.9	0	no	northeast	2205.98
1335	18	female	36.9	0	no	southeast	1629.83
1336	21	female	25.8	0	no	southwest	2007.95
1337	61	female	29.1	0	ves	northwest	29141.36

```
In [6]: df.columns
 Out[6]: Index(['age', 'sex', 'bmi', 'children', 'smoker', 'region', 'expenses'], dt
         ype='object')
 In [7]: df.dtypes
 Out[7]: age
                        int64
                       object
         sex
                      float64
         bmi
         children
                        int64
         smoker
                       object
         region
                      object
                      float64
         expenses
         dtype: object
 In [8]: df.isna().sum()
 Out[8]: age
                      0
         sex
                      0
         bmi
                      0
         children
                      0
         smoker
                      0
         region
                      0
         expenses
                      0
         dtype: int64
In [19]: # USING SEABORN TO VISUALIZE
         import seaborn as sns
         sns.countplot('sex',data=df)
```

/usr/local/lib/python3.8/dist-packages/seaborn/_decorators.py:36: FutureWar ning: Pass the following variable as a keyword arg: x. From version 0.12, t he only valid positional argument will be `data`, and passing other argumen ts without an explicit keyword will result in an error or misinterpretatio n.

warnings.warn(

Out[19]: <matplotlib.axes. subplots.AxesSubplot at 0x7fbf8a6692e0>

Out[35]: <seaborn.axisgrid.PairGrid at 0x7fbf880573a0>

In [36]: sns.countplot('smoker',data=df)

/usr/local/lib/python3.8/dist-packages/seaborn/_decorators.py:36: FutureWar ning: Pass the following variable as a keyword arg: x. From version 0.12, t he only valid positional argument will be `data`, and passing other argumen ts without an explicit keyword will result in an error or misinterpretatio n.

warnings.warn(

Out[36]: <matplotlib.axes._subplots.AxesSubplot at 0x7fbf85a62b80>

Out[37]: <seaborn.axisgrid.PairGrid at 0x7fbf85a0c550>

In [21]: sns.countplot('region',data=df)

/usr/local/lib/python3.8/dist-packages/seaborn/_decorators.py:36: FutureWar ning: Pass the following variable as a keyword arg: x. From version 0.12, t he only valid positional argument will be `data`, and passing other argumen ts without an explicit keyword will result in an error or misinterpretatio n.

warnings.warn(

Out[21]: <matplotlib.axes. subplots.AxesSubplot at 0x7fbf8c69cc70>

Out[38]: <seaborn.axisgrid.PairGrid at 0x7fbf8548ac10>

In [23]: # CONVERTING THE COLUMNS WITH STRING AS NUMERICAL VALUES
 dummyl=pd.get_dummies(df[['sex','region','smoker']],drop_first=True)
 dummyl

Out[23]:

	sex_male	region_northwest	region_southeast	region_southwest	smoker_yes
0	0	0	0	1	1
1	1	0	1	0	0
2	1	0	1	0	0
3	1	1	0	0	0
4	1	1	0	0	0
1333	1	1	0	0	0
1334	0	0	0	0	0
1335	0	0	1	0	0
1336	0	0	0	1	0
1337	0	1	0	0	1

1338 rows × 5 columns

In [25]: df1=pd.concat([df,dummy1],axis=1)
 df1

Out[25]:

		age	sex	bmi	children	smoker	region	expenses	sex_male	region_northwest	region_so
<u> </u>	0	19	female	27.9	0	yes	southwest	16884.92	0	0	
	1	18	male	33.8	1	no	southeast	1725.55	1	0	
	2	28	male	33.0	3	no	southeast	4449.46	1	0	
	3	33	male	22.7	0	no	northwest	21984.47	1	1	
	4	32	male	28.9	0	no	northwest	3866.86	1	1	
1:	333	50	male	31.0	3	no	northwest	10600.55	1	1	
1:	334	18	female	31.9	0	no	northeast	2205.98	0	0	
1:	335	18	female	36.9	0	no	southeast	1629.83	0	0	
1:	336	21	female	25.8	0	no	southwest	2007.95	0	0	
1	337	61	female	29.1	0	yes	northwest	29141.36	0	1	

1338 rows × 12 columns

In [26]: # DROP UNWANTED COLUMNS
 dfl=dfl.drop(['sex','smoker','region'],axis=1)
 dfl

Out[26]:

	age	bmi	children	expenses	sex_male	region_northwest	region_southeast	region_southwest
0	19	27.9	0	16884.92	0	0	0	1
1	18	33.8	1	1725.55	1	0	1	0
2	28	33.0	3	4449.46	1	0	1	0
3	33	22.7	0	21984.47	1	1	0	0
4	32	28.9	0	3866.86	1	1	0	0
1333	50	31.0	3	10600.55	1	1	0	0
1334	18	31.9	0	2205.98	0	0	0	0
1335	18	36.9	0	1629.83	0	0	1	0
1336	21	25.8	0	2007.95	0	0	0	1
1337	61	29.1	0	29141.36	0	1	0	0

1338 rows × 9 columns

```
In [29]: df1.dtypes
Out[29]: age
                                  int64
          bmi
                                float64
          children
                                  int64
          expenses
                                float64
          sex male
                                  uint8
          region northwest
                                  uint8
          region southeast
                                  uint8
          region southwest
                                  uint8
          smoker_yes
dtype: object
                                  uint8
In [31]: df1.isna().sum()
Out[31]: age
                               0
                               0
          bmi
          children
                               0
          expenses
                               0
          sex male
                               0
          region_northwest
                               0
          region southeast
                               0
          region southwest
                               0
          smoker yes
                               0
          dtype: int64
In [33]: sns.heatmap(df1.corr())
```

Out[33]: <matplotlib.axes._subplots.AxesSubplot at 0x7fbf89b1c730>


```
In [44]: # SEPERATING INPUT X AND OUTPUT Y
    x=df1.drop(['expenses'],axis=1)
    y=df1['expenses']
```

```
In [55]: sns.regplot(x=df['age'],y=y,color='red')
```

Out[55]: <matplotlib.axes._subplots.AxesSubplot at 0x7fbf83dbb640>


```
In [56]: sns.regplot(x=df['children'],y=y,color='green')
```

Out[56]: <matplotlib.axes._subplots.AxesSubplot at 0x7fbf83d27460>

In [47]: sns.regplot(x=df['bmi'],y=y)

Out[47]: <matplotlib.axes._subplots.AxesSubplot at 0x7fbf84959b80>


```
In [49]: # MODEL CREATION
         from sklearn.linear model import LinearRegression
         model=LinearRegression()
         model.fit(x_train,y_train)
         y pred=model.predict(x test)
In [50]: # CALCULATE SLOPE:COEFFICIENT AND CONSTANT:INTERCEPT
         print("SLOPE IS:",model.coef_)
         list(zip(x,model.coef_))
         SLOPE IS: [ 261.28251281 348.96600937 424.41067944
                                                                   104.99524716
           -486.46995207 -970.61815579 -925.06307896 23627.8945956 ]
('children', 424.41067943856666),
          ('sex male', 104.99524716230803),
          ('region_northwest', -486.4699520736093),
          ('region_southeast', -970.6181557875361), ('region_southwest', -925.063078956111),
          ('smoker_yes', 23627.894595596354)]
In [51]: print("CONSTANT IS:", model.intercept )
         CONSTANT IS: -12376.785237284628
In [52]: # DATAFRAME HAVING ACTUAL VALUE AND PREDICTED VALUE
         df2=pd.DataFrame({'ACTUAL_VALUE':y_test,'PREDICTED_VALUE':y_pred})
         df2
```

Out[52]:

	ACTUAL_VALUE	PREDICTED_VALUE
764	9095.07	9023.692634
887	5272.18	7011.895553
890	29330.98	36873.905878
1293	9301.89	9502.394126
259	33750.29	26966.018096
701	9541.70	16286.121022
672	4399.73	6528.052794
1163	2200.83	2167.141458
1103	11363.28	14509.650536
1295	1964.78	130.460073

402 rows × 2 columns

In [54]: ## PERFORMANCE MEASUREMENT

from sklearn.metrics import mean_absolute_error,mean_absolute_percentage_e
rror,mean_squared_error,r2_score
print("ERROR IS:",mean_absolute_error(y_test,y_pred))
print("PERCENTAGE ERROR:",mean_absolute_percentage_error(y_test,y_pred))
print("SQUARED ERROR:",mean_squared_error(y_test,y_pred))
print("ROOT MEAN SQUARED ERROR:",np.sqrt(mean_squared_error(y_test,y_pred)))
print("R2_SCORE:",r2_score(y_test,y_pred))

ERROR IS: 4144.88640999345

PERCENTAGE ERROR: 0.4358069585830062 SQUARED ERROR: 33777093.10084606 ROOT SQUARED ERROR: 5811.806354382952

R2_SCORE: 0.7696351080608885