Proofs for Inscribed Angles

 ${\it Proofs.}$

In the figure below, \overline{AB} is a diameter of a circle with center P. Natalia is trying to prove that $\angle B$ is a right angle.

Natalia draws \overline{PB} and marks the diagram to show segments that she knows to be congruent because each one is a \overline{radius} of the circle.

Author(s): Brad Findell

Natalia sees that $\triangle APB$ and $\triangle BPC$ are isosceles triangles, so she marks the figure to show congruent angles.

In order to do some algebra with these congruent angles, Natalia labels their measures x and y, as shown in the following picture:

She writes an equation for the sum of the angles of $\triangle ABC$:

$$\boxed{x + (x+y) + y} = 180^{\circ}$$

Since $m \angle B = \boxed{x+y}$, she concludes that $m \angle B = 90^{\circ}$.