EXPERIMENT No. 6

Study of Absorption of Carbon dioxide in an Agitated Contactor

Objective:

- (1) To find out the mass transfer co-efficient K_La for absorption of carbon dioxide in water in an agitated contactor.
- (2) To observe the effect of speed of agitator on K_La

Theory:

The absorption rate of carbon dioxide in a agitated tank can be given as

$$V\frac{dC_L}{dt} = K_L a(C^* - C_L)$$

Where.

V = volume of liquid, cm³

C_L= concentration of carbon dioxide in the liquid at time t, gmol/cm³

C* = solubility of carbon dioxide in pure water at the temperature of the Experiments

On integration of the above equation at t=0, $C_L=0$ and at t=t, $C_L=C_L$ and rearranging,

$$K_L a = rac{V}{t} \ln \left[rac{C^*}{C^* - C_L}
ight]$$
 in cm³/min if t in min

 $C^* = 3.3639 \text{ x } 10^{-5} \text{ gmol/cm}^3 \text{ at } 25^{\circ}\text{C} \text{ at 1 atm}$

Apparatus:

- (1) One baffled reaction vessel fitted with agitator and gas-purging tube.
- (2) Tachometer
- (3) CO₂ Cylinder and Air compressor
- (4) Stopwatch

Chemicals:

- (1) N/20 Ba(OH)₂ Solution
- (2) N/50 Succinic Acid Solution
- (3) Phenolphthalein indicator

Procedure:

- (1) Rotameters for CO₂ and air are first calibrated.
- (2) At a constant stirrer speed and temperature, CO₂ is absorbed in one liter of water in the agitated contactor for a definite period of time (less than 3 min). The concentration of CO₂ should not be more than 15%. The solution is collected and analyzed by titration.
- (3) Repeated the experiment for three RPM.
- (4) Calculate K_La for these different RPMs and show the plot.

Fig.1 Calibration of air-rotameter

Fig.2 Calibration of CO2 -rotameter