Задача 9.

Нека $A = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\} \setminus \{0\}$. Нека R е релация над A, определена чрез:

 $xRy \Leftrightarrow (\exists p \in \mathbb{Q})[x = py \lor xy = p]$, такова p ще наричаме свидетел за това, че x е в релация с y. Покажете, че R е релация на еквивалентност над A.

Док-во:

- а) Рефлексивност. Нека $a \in A$. Тогава $1 \in \mathbb{Q}$ и $x=1.x \Rightarrow (\exists 1 \in \mathbb{Q})[\underbrace{x=1.x}_{true} \lor x.x=1]$, т.е. 1 е свидетел, че xRx.
- **б)** Симетричност. Нека xRy и $p \in Q$ е свидетел за това, т.е. x = py или xy = p. Ще намерим свидетел за yRx.

Ако
$$x = py$$
, то $y = \frac{1}{p}x$ (ако $p = 0$, то $x = 0 \in A$). Но $\frac{1}{p} \in \mathbb{Q}$ и така $q = \frac{1}{p}$ е свидетел за yRx , защото $y = qx \Rightarrow (y = qx \lor yx = q)$ е истина.

в) Транзитивност. Нека xRy, yRx и $p,q\in\mathbb{Q}$ са свидетели за тези релации съответно.

За да бъде R транзитивна трябва да е изпълнено:

$$\forall x \forall y \forall z (xRy \& yRz \Rightarrow xRz)$$
, r.e. $(x = py \lor xy = p)$ u $(y = qz \lor yz = q)$

Следователно имаме четири възможности за случването на xRy и yRz и при всяка една от тях трябва да проверим дали \exists свидетел за xRz, т.е. ще търсим такова $s \in \mathbb{Q}$, че $(x = sz \lor xz = s), s \in \mathbb{Q}$

(1)
$$x = py$$
 u $y = qz \implies x = py = p(qz) = (pq)z \implies s = pq \in Q$;

(2)
$$x = py$$
 if $yz = q \Rightarrow x \cdot y \cdot z = p \cdot y \cdot q \Rightarrow xz = pq = s \in \mathbb{Q} \Rightarrow s = pq$;

(3)
$$xy=p$$
 и $y=qz \Rightarrow xyzq=y$. $p\Rightarrow xz=\frac{p}{q}\in\mathbb{Q},\,q\neq0,\,s=\frac{p}{q}$ е свидетел за xRz .

$$(4)$$
 $xy=p$ и $yz=q$ \Rightarrow $y=\frac{q}{z},$ $xy=p$ \Leftrightarrow $x\cdot\frac{q}{z}=p$ \Rightarrow $x=\frac{p}{q}z,$ $q\neq0$ $\Rightarrow=\frac{p}{q}$ е свидетел.

Следователно релацията е транзитивна, но ние доказахме също, че е и рефлексивна и симетрична, от където следва че R е релация на еквивалентсност.