Purdue University School of Nuclear Engineering Nuclear Thermal-Hydraulics Labora

NUCL 355 - Nuclear Thermal-Hydraulics Laboratory Spring

Prelab HW 9: Air-Water Two-Phase Flow Patterns in Vertical Pipe

Consider a two-phase air-water flow in a vertical pipe of 5.04 cm (two inch) diameter.

- (1) Using the homogeneous equilibrium model first calculate the total pressure drop in the pipe for a length of 2 m. for the following air and water flow rates given as volumetric flow rate
- (2) Then plot the total pressure drop as a function of flow quality.

Assume 1 atmospheric pressure condition and room temperature for properties of air and water.

Air inlet flow rate	Water inlet flow
(m^3/s)	arte (m³/s)
1.0 x10 ⁻³	0.2 x10 ⁻³
1.0 x10 ⁻³	0.4 x10 ⁻³
1.0 x10 ⁻³	0.8 x10 ⁻³
1.0 x10 ⁻³	2.0 x10 ⁻³
2.0 x10 ⁻³	0.2 x10 ⁻³
2.0 x10 ⁻³	0.4 x10 ⁻³
2.0 x10 ⁻³	0.8 x10 ⁻³
2.0 x10 ⁻³	2.0 x10 ⁻³
10 x10 ⁻³	0.2 x10 ⁻³
10 x10 ⁻³	0.4 x10 ⁻³
10 x10 ⁻³	0.8 x10 ⁻³
10 x10 ⁻³	2.0 x10 ⁻³