Première – Chapitre 07

SUITES

$$\lim_{n \to +\infty} \left(1 + \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \dots + \frac{1}{3^n} \right) = ?$$

Table des matières

G	énéralités sur les suites	2
1)	Notion de suite	2
2)	Modes de génération d'une suite	2
3)	Suite, tableur et algorithme	
4)	Algorithme de seuil	
	ens de variations d'une suite	/
1)	Définition	7
2)	Comment étudier le sens de variation d'une suite	
III _{St}	uites arithmétiques	6
1)	Définition	6
2)	Formule explicite	
3)	Méthode pour montrer qu'une suite est arithmétique	
4)	Méthode pour montrer qu'une suite n'est pas arithmétique	
5)	Sens de variation d'une suite arithmétique	
IV _{S1}	uites géométriques	7
1)	Définition	7
2)	Formule explicite	
3)	Méthode pour montrer qu'une suite est géométrique	
4)	Méthode pour montrer qu'une suite n'est pas géométrique	
5)	Sens de variation d'une suite géométrique de raison strictement positive	
, ,		
V C	ompléments sur les suites	E
1)	Somme de termes	Ć
2)	V:	11

Dans tout le chapitre, on définira les suites par défaut sur l'ensemble \mathbb{N} . Tous les résultats (sauf précision contraire) restent valables si la suite n'est définie qu'à partir d'un certain rang.

I Généralités sur les suites

1) Notion de suite

DÉFINITION

On appelle suite u de nombre réels toute fonction définie sur l'ensemble \mathbb{N} des entiers naturels.

L'image par u d'un entier naturel n est un réel noté u_n , et se lit « u indice n ».

On dit que u_n est le **terme** général de la suite u, n est un **indice** ou un **rang**.

REMARQUES

- La suite u est aussi notée $(u_n)_{n\in\mathbb{N}}$ ou plus simplement (u_n) , à ne pas confondre avec le terme général $u_n: u_n$ est un réel, (u_n) est une suite. (Faire l'analogie avec f et f(x).)
- Dans un repère, une représentation graphique possible de la suite u est l'ensemble des points M_n de coordonnées $(n; u_n)$ avec $n \in \mathbb{N}$. On verra plus tard une autre représentation graphique possible d'une suite.

2) Modes de génération d'une suite

Une suite peut être définie de plusieurs façons différentes :

a) au moyen d'une formule explicite

On définit le terme général u_n en fonction de n.

EXEMPLE

Soit u la suite définie, pour tout entier naturel n, par $u_n = n^2 + 2n + 3$. Alors pour tout entier naturel n, $u_n = f(n)$ avec $f: x \mapsto x^2 + 2x + 3$. On a ainsi $u_0 = f(0) = 3$ etc...

Avantages:

- Lorsqu'une suite est définie de **manière explicite**, on peut calculer directement n'importe quel terme de la suite, sans avoir à connaître les termes précédents.
- Son étude est proche de celle d'une fonction. En effet, il suffit, dans l'exemple ci-dessus, d'étudier la fonction f définie sur $[0; +\infty[$ par $f(x) = x^2 + 2x + 3.$

Problème:

Dans la plupart des modélisations à l'aide de suites (évolution d'une population par exemple), les suites ne sont pas définies de façon explicite mais...

b) au moyen d'une relation de récurrence

On définit la suite (u_n) par son premier terme et une relation permettant de calculer un terme à partir du terme précédent (généralement u_{n+1} en fonction de u_n).

EXEMPLE

Soit u la suite définie par $u_0 = 1$ et pour tout entier naturel n par la relation $u_{n+1} = 3u_n + 1$. On obtient alors $u_1 = 3u_0 + 1 = 3 \times 1 + 1 = 4$, $u_2 = \dots$ etc.

Problème de ce mode de génération :

Pour calculer un terme, il faut connaître le précédent, et par suite (ahah), il faut donc connaître tous les termes précédents. Par exemple dans l'exemple précédent, pour calculer u_{17} , il faut effectuer le calcul : $u_{17} = 3u_{16} + 1$, et il faut donc calculer $u_{16} = 3u_{15} + 1$, etc etc...

L'un des buts principaux de ce chapitre va être de concevoir des méthodes permettant de passer d'une formule de récurrente (peu pratique dans les calculs mais très répandue) à sa forme explicite (pratique pour les calculs et l'étude de la suite).

REMARQUE

Il est aussi possible de définir une suite à partir de plusieurs premiers termes et d'une relation de récurrence exprimant un terme en fonction de **plusieurs** termes précédents.

Par exemple, la suite de Fibonnaci, définie sur \mathbb{N} par $u_0 = 1$, $u_1 = 1$ et pour tout entier naturel n, $u_{n+2} = u_{n+1} + u_n$.

c) par un autre moyen...

Il existe enfin des suites dont les termes ne suivent pas une logique particulière : par exemple la suite des moyennes de Maths d'une classe, la suite des décimales de π , ou une suite de nombres générés aléatoirement etc.

3) Suite, tableur et algorithme

On peut calculer les premiers termes d'une suite à l'aide d'un tableur, ou d'un algorithme. Par exemple, en reprenant la suite (u_n) définie sur \mathbb{N} par $u_0 = 1$ et pour tout entier naturel n par $u_n = 3u_n + 1$, on peut procéder ainsi :

Tableur:

	A	В
1	0	1
2	=A1+1	=3*B1+1
3	=A $2+1$	=3*B2+1
4	recopier vers le bas	recopier vers le bas

Programme en Python (qui renvoie les termes de la suite de u_0 à u_n , soit les n+1 premiers termes)

```
1 def suite01(n):
2     u=1
3     l=[u]
4     for i in range(1,n+1):
5         u=3*u+1
6         l.append(u)
7     return 1
```

REMARQUE

On peut aussi utiliser for i in range(n) à la place de for i in range(1,n+1). Dans les deux cas, la boucle for s'exécute bien n fois, mais il faut bien contrôler la valeur prise par i, notamment si la variable n apparait dans la relation de récurrence.

```
Pour rappel: for i in range(1,n+1) = « pour i allant de 1 à n » for i in range(n) = « pour i allant de 0 à n-1 »
```

EXERCICE

Soit (u_n) la suite définie sur $u_0 = 2$ et, pour tout entier naturel n, par $u_{n+1} = 2u_n + n - 5$. Déterminer les 5 premiers termes de la suite (u_n) :

- a) à la main;
- **b)** à l'aide d'un tableur;
- c) à l'aide d'un programme écrit en langage Python.

4) Algorithme de seuil

DÉFINITION

Un algorithme de seuil, pour une suite, est un algorithme qui renvoie le plus petit rang de la suite pour lequel une condition définie est réalisée.

EXEMPLE

Soit (u_n) la suite définie sur \mathbb{N} par $u_0 = 2$ et, pour tout entier naturel n, $u_{n+1} = 1,05u_n + 1$.

- 1. Écrire, en langage Python, un algorithme qui renvoie le plus petit entier naturel n tel que $u_n > 10^3$.
- 2. Programmer cet algorithme sur la calculatrice. Quelle est la valeur de n retournée?

Il Sens de variations d'une suite

1) Définition

DÉFINITION

Soit u une suite définie sur \mathbb{N} .

On dit que la suite u est croissante lorsque pour tout entier naturel $n, u_n \leq u_{n+1}$.

On dit que la suite u est décroissante lorsque pour tout entier naturel $n, u_n \ge u_{n+1}$.

REMARQUE

On définit de même une suite strictement croissante ou strictement décroissante en utilisant une inégalité stricte (< ou >).

2) Comment étudier le sens de variation d'une suite

Soit u une suite définie sur \mathbb{N} . Pour étudier le sens de variation de la suite u, on peut procéder à plusieurs méthodes :

a) 1ère méthode : étude du signe de la différence u_{n+1} – u_n

PROPRIÉTÉ

Soit u une suite définie sur \mathbb{N} .

Si pour tout entier naturel n, $u_{n+1} - u_n \ge 0$, alors la suite u est croissante.

Si pour tout entier naturel $n, u_{n+1} - u_n \le 0$, alors la suite u est décroissante.

REMARQUE

Il faut étudier le signe de u_{n+1} – u_n pour tout entier naturel n (c'est-à-dire sans chercher à remplacer n par un entier au choix !!). Ce n'est pas parce que $u_1 - u_0 > 0$ et que $u_2 - u_1 > 0$ (etc) que l'on peut conclure que cela va rester vrai pour tous les entiers naturels n et que u est croissante!

EXEMPLES

- Déterminer le sens de variation de la suite (u_n) définie sur \mathbb{N} par $u_n = 3n + 5$.
- Déterminer le sens de variation de la suite (v_n) définie sur \mathbb{N} par $v_0 = 2$ et, pour tout entier naturel n, par $v_{n+1} = v_n + 4n + 6$.
- Déterminer le sens de variation de la suite (w_n) définie sur \mathbb{N} par $w_n = n^2 6n 7$.

b) 2e méthode : étude du sens de variation d'une fonction

PROPRIÉTÉ

Soit u une suite définie sur \mathbb{N} définie de manière explicite sous la forme $u_n = f(n)$, avec f une fonction définie sur $[0; +\infty[$.

Si la fonction f est croissante sur $[0; +\infty[$, alors la suite u est croissante.

Si la fonction f est décroissante sur $[0; +\infty[$, alors la suite u est décroissante.

DEMONSTRATION

Pour tout entier naturel n, n < n + 1. Or f est croissante sur $[0; +\infty[$.

Donc $f(n) \leq f(n+1)$, soit $u_n \leq u_{n+1}$, donc u est croissante. (Même démo pour u décroissante)

EXEMPLE

Déterminer le sens de variations de la suite u définie sur \mathbb{N} par $u_n = \frac{1}{n+1}$.

c) 3^e méthode : comparaison de $\frac{u_{n+1}}{u_n}$ à 1

PROPRIÉTÉ

Soit u une suite définie sur \mathbb{N} à termes strictement positifs.

 $\frac{u_{n+1}}{2} > 1$, alors la suite u est strictement croissante. Si pour tout entier naturel n,

 $\frac{u_n}{u_{n+1}}$ < 1, alors la suite u est strictement décroissante. Si pour tout entier naturel n,

Si pour tout entier naturel n, $\frac{u_n}{u_{n+1}} = 1$, alors la suite u est constante.

DÉMONSTRATION

$$\frac{u_{n+1}}{u_n} \geqslant 1 \iff u_{n+1} \geqslant u_n \text{ car } u_n > 0.$$

EXEMPLE

Déterminer le sens de variations de la suite u définie sur \mathbb{N} par $u_n = \frac{5}{2^n}$.

III Suites arithmétiques

1) Définition

DÉFINITION

Soit u une suite définie sur \mathbb{N} .

On dit que u est une suite arithmétique de raison r si et seulement si il existe un réel r tel que pour tout entier naturel n:

$$u_{n+1} = u_n + r$$

EXEMPLE

Soit u la suite arithmétique de raison 2 et de premier terme $u_0 = 0$.

Ainsi, pour tout entier naturel n, $u_{n+1} = u_n + 2$. Calculer les premiers termes.

2) Formule explicite

PROPRIÉTÉ

Soit u une suite arithmétique de raison $r \in \mathbb{R}$, définie sur \mathbb{N} .

Alors pour tous entiers naturels n et p, on a :

$$u_n = u_p + (n - p)r$$

En particulier, si u est définie à partir du rang 0, on a :

$$u_n = u_0 + nr$$

DÉMONSTRATION

Démonstration dans le cas où n > p:

Faire un schéma...

EXEMPLE

Soit u la suite arithmétique de raison r=3 définie sur \mathbb{N} et telle que $u_{10}=2$. Calculer u_{17} .

3) Méthode pour montrer qu'une suite est arithmétique

PROPRIÉTÉ

Pour montrer qu'une suite u est arithmétique, on calcule, **pour tout entier naturel** n, la différence $u_{n+1} - u_n$ et on montre que cette différence est égal à un réel constant.

La suite u est alors arithmétique de raison ce réel.

REMARQUE

Ce n'est pas parce que l'on montre que $u_1 - u_0 = u_2 - u_1$ que l'on peut conclure que cela marche pour tout entier naturel n et que la suite est arithmétique! Il faut effectuer le calcul pour tout n, donc avec la variable n.

EXEMPLE

Montrer que la suite u définie sur \mathbb{N} par $u_n = 3-5n$ est arithmétique et préciser sa raison et son premier terme.

4) Méthode pour montrer qu'une suite n'est pas arithmétique

PROPRIÉTÉ

Pour montrer qu'une suite u n'est pas arithmétique, on utilise un **contre-exemple** :

Par exemple, on calcule les trois premiers termes de la suite (ou trois termes consécutifs quelconques), et on montre que leur différence n'est pas constante.

EXEMPLE

Montrer que la suite u définie sur \mathbb{N} par $u_n = n^2$ n'est pas arithmétique.

5) Sens de variation d'une suite arithmétique

PROPRIÉTÉ

Soit u une suite arithmétique de raison $r \in \mathbb{R}$, définie sur \mathbb{N} .

Si r > 0, alors la suite u est strictement croissante.

Si r < 0, alors la suite u est strictement décroissante.

Si r = 0, alors la suite u est constante.

DÉMONSTRATION

Si u est arithmétique de raison r, alors $u_{n+1} = u_n + r$, d'où $r = u_{n+1} - u_n$.

Or on a vu que le signe de u_{n+1} – u_n donnait les variations de u, d'où le résultat.

IV Suites géométriques

1) Définition

DÉFINITION

Soit u une suite définie sur \mathbb{N} . On dit que u est une suite géométrique de raison q si et seulement si il existe un réel q non nul tel que pour tout entier naturel n:

$$u_{n+1} = q \times u_n$$

EXEMPLE

Soit u la suite géométrique de raison 5 définie sur \mathbb{N} et telle que $u_0 = 2$.

Alors pour tout entier naturel n, $u_{n+1} = 5u_n$. Calculer les premiers termes.

2) Formule explicite

PROPRIÉTÉ

Soit u une suite géométrique de raison $q \in \mathbb{R}$, définie sur \mathbb{N} . Alors pour tous entiers naturels n et p, on a :

$$u_n = u_p \times q^{n-p}$$

En particulier, si u est définie à partir du rang 0, on a :

$$u_n = u_0 \times q^n$$

DÉMONSTRATION

Démonstration dans le cas où n > p:

Faire un schéma...

EXEMPLE

Soit u la suite géométrique de raison $r = \frac{1}{2}$ définie sur \mathbb{N} et telle que $u_6 = 5$. Calculer u_{11} .

3) Méthode pour montrer qu'une suite est géométrique

PROPRIÉTÉ

Pour montrer qu'une suite u est géométrique, on exprime, **pour tout entier naturel** n, u_{n+1} en fonction de u_n en montrant qu'il existe un réel q tel que $u_{n+1} = q \times u_n$.

La suite u est alors géométrique de raison ce réel.

REMARQUE

- C'est la **seule** et **unique** méthode valable et correcte! On ne peut pas essayer de montrer que le rapport $\frac{u_{n+1}}{u_n}$ est constant car son étude implique de démontrer au préalable que u_n ne s'annule pas (long et contraignant).
- Ce n'est pas parce que l'on montre que $\frac{u_1}{u_0} = \frac{u_2}{u_1}$ que l'on peut conclure que cela marche pour **tout** entier naturel n et que la suite est géométrique!

EXEMPLE

Montrer que la suite u définie sur \mathbb{N} par $u_n = \frac{2^n}{3}$ est géométrique et préciser sa raison et son premier terme.

4) Méthode pour montrer qu'une suite n'est pas géométrique

PROPRIÉTÉ

Pour montrer qu'une suite u n'est pas géométrique, on utilise un **contre-exemple** :

Par exemple, on calcule les trois premiers termes de la suite (ou trois termes consécutifs quelconques), et on montre que leur quotient n'est pas constant.

EXEMPLE

Montrer que la suite u définie sur \mathbb{N} par $u_n = 4n^2 - 1$ n'est pas géométrique.

5) Sens de variation d'une suite géométrique de raison strictement positive

THÉORÈME

Soit u une suite définie sur N, géométrique de raison q > 0 et de premier terme u_0 .

Si $u_0 > 0$:

Si q > 1, alors u est strictement croissante.

Si q = 1, alors u est constante.

Si 0 < q < 1, alors u est strictement décroissante.

Si $u_0 < 0$:

Si q > 1, alors u est strictement décroissante.

Si q = 1, alors u est constante.

Si 0 < q < 1, alors u est strictement croissante.

Si $u_0 = 0$, alors la suite u est constante à zéro.

V Compléments sur les suites

1) Somme de termes

a) Somme des entiers de 1 à n

PROPRIÉTÉ

Pour tout entier naturel n non nul, on a :

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

DÉMONSTRATION

Soit S = 1 + 2 + ... + n. On a :

S = 1 + 2 + ... + (n - 1) + n que l'on peut écrire en inversant l'ordre des termes :

 $S = n + (n-1) + \dots + 2 + 1.$

Par somme de ces deux égalités terme à terme, on obtient :

2S = (1+n) + (2+n-1) + ... + (n-1+2) + (n+1)

donc
$$2S = (n+1) + (n+1) + \dots + (n+1) = n(n+1) = \frac{n(n+1)}{2}$$

EXEMPLES

- Calculer $S_1 = 1 + 2 + 3 + ... + 100 (= 5050)$
- Calculer $S_2 = 13 + 14 + ... + 25 (= 247)$
- Soit (u_n) la suite arithmétique de raison r=3 et de premier terme $u_0=4$. Calculer $u_0+u_1+\ldots+u_{10}$ (=209)

REMARQUE

On peut noter $1 + 2 + ... + n = \sum_{i=1}^{n} i$ (ou avec n'importe qu'elle autre lettre que i).

EXERCICE

Écrire avec le symbole \sum les sommes suivantes :

- $S_1 = 4 + 5 + \dots + 12$ $S_2 = 1 + 4 + 9 + 16 + \dots + 81$ $S_3 = 2 + 4 + 6 + \dots + 60$ $S_4 = 1 + 3 + 5 + \dots + 35$

b) Somme des puissances successives d'un réel

PROPRIÉTÉ

Soit q un réel différent de 1. Alors pour tout entier naturel n, on a :

$$1 + q + q^2 + q^3 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}$$

DÉMONSTRATION

Soit $S=1+q+q^2+\ldots+q^{n-1}+q^n$. Alors $qS=q+q^2+q^3+\ldots+q^n+q^{n+1}$

Donc par différence de ces deux égalités, on obtient :

 $S - Sq = 1 - q^{n+1}$, donc $(1 - q)S = 1 - q^{n+1}$, donc on a bien $S = \frac{1 - q^{n+1}}{1 - q}$ (car $q \neq 1$)

REMARQUES

- Si q = 1, alors $1 + q + q^2 + ... + q^n = 1 + 1 + 1 + ... + 1 = (n + 1) \times 1 = n + 1$
- On peut écrire $1 + q + q^2 + ... + q^n = \sum_{i=0}^{n} q^i$.

EXEMPLES

- Calculer pour tout entier naturel n la somme $1+2+2^2+\ldots+2^n$.
- \bullet Soit (u_n) la suite géométrique de raison $q=\frac{1}{3}$ et de premier terme $u_0=2$. Calculer $u_0+u_1+\ldots+u_{10}$.

2) Variations et représentations graphiques

a) Suite arithmétique

Variation absolue:

Soit u une suite arithmétique de raison r, définie sur \mathbb{N} .

Alors pour tout entier naturel n, on a vu que $u_{n+1} = u_n + r$, soit $u_{n+1} - u_n = r$.

On dit que la variation absolue de la suite u est constante (et égale à r).

Évolution linéaire :

Soit u une suite arithmétique.

Tous les points de la représentation graphique de la suite u sont alignés.

On dit que l'évolution de la suite u est linéaire.

b) Suite géométrique

Variation relative:

Soit u une suite géométrique de raison q à termes tous non nuls.

Alors
$$\frac{u_{n+1} - u_n}{u_n} = \frac{qu_n - u_n}{u_n} = \frac{u_n(q-1)}{u_n} = q - 1.$$

On remarque que ce rapport est constant. On dit que le rapport $\frac{u_{n+1} - u_n}{u_n}$ est appelée la **variation relative** de la suite u.

Évolution exponentielle :

Soit u une suite géométrique.

Tous les points de la représentation graphique de la suite u sont sur une courbe représentant une fonction ayant une « vitesse de (dé)croissance » élevée.

On dit que u suit une **évolution exponentielle**.