Get happy with your SAD

Andy Rominger nature.berkeley.edu/~rominger

11 August 2016 • ESA, Ft. Lauderdale

Misconceptions/dos-don'ts

But whys

Misconceptions/dos-don'ts

But whys

Misconceptions/dos-don'ts

But whys

Misconceptions/dos-don'ts

But whys

- Yes
- SAD still pervasive and unexplained

Misconceptions/dos-don'ts

But whys

- Yes
- SAD still pervasive and unexplained
- Disillusion from poor methods

Misconceptions/dos-don'ts

But whys

- Yes
- SAD still pervasive and unexplained
- Disillusion from poor methods
- Best practices are universal

Misconceptions/dos-don'ts

But whys

- Yes
- SAD still pervasive and unexplained
- Disillusion from poor methods
- Best practices are universal
- Need better trait theory

Misconceptions/dos-don'ts

But whys

- Relationships of SADs
- Subsampling
- Binning is bad
- Likelihood is good

Misconceptions/dos-don'ts

- Relationships of SADs
- Subsampling
- Binning is bad
- Likelihood is good

But whys

Seeking generality

Relationships of SADs

broken stick

log-normal

negative binomial

Poisson

Poisson log-normal

neutral ZSM

Fisher log-series

power law

Latent distribution

Latent distribution

Poisson sampling

Poisson log-normal

negative binomial

Latent distribution

Poisson sampling

Latent abundance

Poisson log-normal

negative binomial

More sampling theories: Green & Plotkin (2007) Ecol. Lett.; Conlisk et al. (2010) Oikos

More sampling theories: Green & Plotkin (2007) Ecol. Lett.; Conlisk et al. (2010) Oikos

The veil-line is a fallacy

we don't sample species

we sample individuals

Poisson sampling changes mean but not parametric form

Logseries PoisLogNorm BrokenStick TruncNegBin

simulate true distribution

for each, fit all models

Sampling proportion

_

Logseries PoisLogNorm BrokenStick TruncNegBin

Different parameterizations

Evaluating model fit

Giving one model wins, how good is it really?

Evaluating model fit

Binning is bad

Nekola, et al. (2008) Folia Geobotanica

Don't bin!

Evaluating model fit

Evaluating model fit

logLik = -109.0252

logLik = -392.3673

RAD mean squared error

CDF mean squared error

Likelihood is good

Seeking generality

Pois loglognorm series

neg binom

Predicted by: environment? landuse? evolutionary history?

Predicted by: environment? landuse? evolutionary history? Why Gamma?

Thanks!

J. Harte

y'all

C. Merow

Thanks!

J. Harte

y'all

C. Merow

github.com/ajrominger/pika

Questions?

nature.berkeley.edu/~rominger github.com/ajrominger/pika

data from Breeding Bird Survey