

Práctica N°4

Ivan Fernando Mujica Mamani

Análisis Estadístico I

Maestría en Ciencia de Datos v.2

1. Ejercicio 1

Una industria algodonera, interesada en maximizar el rendimiento de la semilla de algodón, quiere comprobar si dicho rendimiento depende del tipo de fertilizante utilizado para tratar la planta. A su disposición tiene 5 tipos de fertilizantes. Como puede haber diferencia entre las parcelas, el experimentador decide efectuar un diseño en bloques aleatorizados. Para ello, divide el terreno en 4 bloques y cada bloque en 5 parcelas, fumigando dentro de cada bloque cada una de las parcelas con un fertilizante. Al recoger la cosecha se mide el rendimiento de la semilla, obteniéndose las siguientes observaciones:

	Bloques			
Fertilizante	Α	В	С	D
1	87	86	88	83
2	85	87	95	85
3	90	92	95	90
4	89	97	98	88
5	99	96	91	90

Se pide probar si el rendimiento de la semilla de algodón difiere significativamente dependiendo del tipo de fertilizante utilizado. Y si los bloques de terreno son significativamente distintos.

		1	2	3	4	5	Total	Promedio
	A	87	85	90	89	99	450	90
Blogues	В	86	87	92	97	96	458	91.6
Bloques	C	88	95	95	98	91	467	93.4
	D	83	85	90	88	90	436	87.2
Total		344	352	367	372	376	1811	362.2
				91.7			Media	
Promedio		86	88	5	93	94	Global	90.55

 $media\ global = \overline{y} = 90.55$

$(1_i - \overline{y})^2$	$(2_i - \overline{y})^2$	$(3_i - \overline{y})^2$	$(4_i - \overline{y})^2$	$(5_i - \overline{y})^2$	Total
12.6025	30.8025	0.3025	2.4025	71.4025	117.5125
20.7025	12.6025	2.1025	41.6025	29.7025	106.7125
6.5025	19.8025	19.8025	55.5025	0.2025	101.8125
57.0025	30.8025	0.3025	6.5025	0.3025	94.9125

La suma total de cuadrados es:

$$SST = 420.95$$

Calculamos la suma de los cuadrados debidos a los tratamientos, utilizando el promedio de los tratamientos menos la media global al cuadrado.

$$SSTR = 4 \times ((20.7025 + 6.5025 + 1.44 + 6.0025 + 11.9025)) = 186.2$$

Calculamos la suma de los cuadrados debidos a los bloques, utilizando el promedio de los bloques menos la media global al cuadrado

$$SSBL = 5 \times (0.3025 + 1.1025 + 11.2225 + 103.75) = 103.75$$

Calculamos la suma de cuadrados debidos al error

$$SSE = 420.95 - 186.2 - 103.75$$

Entonces tenemos que :

Suma de cuadrados	Grado de Libertad		Cuadrado Medio
186.2		4	46.6
103.75		3	34.6
131		12	10.9
420.95		19	22.2

Hallamos $f = 46.6/10.9 = 4.26 \rightarrow p = 0.0224$

Hallamos $f = 34.6/10.9 = 3.1679 \rightarrow p = 0.0638$

Concluimos que son diferentes entre tratamientos, pero no entre bloques.

2. Ejercicio 2

Un fabricante de calzado desea mejorar la calidad de las suelas, las cuales se pueden hacer con uno de los cuatro tipos de cuero A, B, C y D disponibles en el mercado. Para ello prueba los cueros con una máquina que hace pasar los zapatos por una superficie abrasiva; la suela de estos se desgasta al pasarla por dicha superficie.

Como criterio de desgaste se usa la pérdida de peso después de un número fijo de ciclos. Se prueban en orden aleatorio 24 zapatos, seis de cada tipo de cuero. Los datos (en miligramos) sobre el desgaste de cada tipo de cuero se muestra en la siguiente tabla

Tipo de Cuero	desgaste						Promedio
Α	264	260	258	241	262	255	256.7
В	208	220	216	200	213	206	210.5
С	220	219	263	225	230	228	230.8
D	217	226	215	227	220	222	220.7

Se pide:

A. Probar si los tratamientos son diferentes.

Realizamos los cálculos iniciales

Tipo de cuero		Desgaste						promedio
A	264	260	258	241	262	255	1540	256.667
В	208	220	216	200	213	206	1263	210.500
С	220	263	219	225	230	228	1385	230.833
D	517	226	215	224	220	222	1624	270.667
	Prom	edio t	otal				5812	242.167

	V	Suma	Varianza Muestral				
53.78	11.11	1.78	245.44	28.44	2.78	343.33	68.67
6.25	90.25	30.25	110.25	6.25	20.25	263.50	52.70
117.36	1034.69	140.03	34.03	0.69	8.03	1334.83	266.97
60680.11	1995.11	3098.78	2177.78	2567.11	2368.44	72887.33	14577.47

Calculamos la suma de cuadrados de tratamientos:

SCT= 1261.5+6016.6667+770.6666.7+4873.5=12922.333

Calculamos la suma de cuadrados de los errores:

SCE=343.333+263.5+1334.83+72887.3=74829

Suma de cuadrados	Grados d	e libertad Cuadro medio	
12922.3	33	3	4307.44
748	29	20	3741.45
87751.3	33	23	

Entonces decimos que

f=4307.44/3741.45=0.3528

Para la suma de cuadrados totales

$(1_i - \overline{y})^2$	Totales					
476.69	4 318.027778	250.6944444	1.3611111	393.36111	164.6944444	1604.8333
1167.36	1 491.361111	684.6944444	1778.0278	850.69444	1308.027778	6280.1667
491.3611	1 434.027778	536.6944444	294.69444	148.02778	200.6944444	2105.5
75533.36	1 261.361111	738.0277778	330.02778	491.36111	406.6944444	77760.833
				-	Total	87751.333

Entonces declaramos que los tratamientos son idénticos

B. Probar las comparaciones con Comparaciones de rangos múltiples.

Pruebas Multiples y prueba de Fisher

A vs B

Estadístico de Prueba

t=1.3072

p = 0.205948

t con n -k grados de libertad con alpha/2 de probabilidad: 2.085963447

t0=-2.086, t1=2.08596

No se rechaza Ho de que A y B sean en media iguales

C. Aplicar la prueba LSD (Diferencia mínima significativa).

A vs B

Diferencia absoluta = 46.16667

LSD = 73.66582

Rechazamos si la diferencia absoluta es mayor o igual a LSD, entonces no se rechaza.

D. aplicar el método de Tukey (HSD).

A vs B

Diferencia absoluta = 46.167

HSD = 57.93384

Rechazamos si la diferencia absoluta es mayor o igual a HSD, entonces no se rechaza

3. Ejercicio 6, página 554

Wageweb realiza estudios sobre datos salariales y presenta resúmenes de éstos en su sitio de la Red. Basándose en datos salariales desde el 1 de octubre de 2002 Wageweb publicó que el salario anual promedio de los vicepresidentes de ventas era \$142 111 con una gratificación anual promedio de \$15 432 (Wageweb.com, 13 de marzo de 2003). Suponga que los datos siguientes sean una muestra de salarios y bonos anuales de 10 vicepresidentes de ventas. Los datos se dan en miles de dólares.

Vicepresidente	Salario	Gratificación
1	135	12
2	115	14
3	146	16
4	167	19
5	165	22
6	176	24
7	98	7
8	136	17
9	163	18
10	119	11

A. Trace un diagrama de dispersión con estos datos tomando como variable independiente los salarios.

Aplicacion en R:

B. ¿Qué indica el diagrama de dispersión del inciso a) acerca de la relación entre salario y gratificación?

Gratificación o bonos anuales contra salario de vicepresidentes, se observa una aparente relación directa entre salarios y los bonos anuales.

C. Use el método de mínimos cuadrados para obtener la ecuación de regresión estimada.

1) Encontramos X*Y y X^2 , utilizando la siguiente tabla:

X	Υ	X-Y	X*X
135	12	1620	18225
115	14	1610	13225
146	16	2336	21316
167	19	3173	27889
165	22	3630	27225
176	24	4224	30976
98	7	686	9604
136	17	2312	18496
163	18	2934	26569
119	11	1309	14161

2) Encontramos la suma de cada columna

X	Υ	X-Y	X*X
135	12	1620	18225
115	14	1610	13225
146	16	2336	21316
167	19	3173	27889
165	22	3630	27225
176	24	4224	30976
98	7	686	9604
136	17	2312	18496
163	18	2934	26569
119	11	1309	14161
1420	160	23834	207686

3) Usamos la siguiente ecuación para encontrar a y b:

$$a = \frac{\sum Y * \sum X^2 - \iota \sum X * \sum XY}{n * \sum X^2 - (\sum X)^2} = \frac{160 * 207686 - 1420 * 23834}{10 * 207686 - 1420^2} = -10.164 \iota$$

$$b = \frac{n*\sum XY - \sum X*\sum Y}{n*\sum X^2 - (\sum X)^2} = \frac{10*23834 - 1420*160}{10*207686 - (1420)^2} = 0.184$$

4) Sustituimos a y b en la ecuación de la regresión:

```
y=a+b*x
y=-10.164+0.184*x
```

```
> mod <- lm(gratifi ~ salario, data=data)
> mod

Call:
lm(formula = gratifi ~ salario, data = data)

Coefficients:
(Intercept) salario
    -10.1641 0.1843
```

D. Dé una interpretación de la ecuación de regresión estimada.

La relación entre el salario recibido por los vicepresidentes y los bonos anuales es directa, a medida que aumenta el salario aumenta los bonos anuales.

Se osbserva que por cada unidad del salario correspondido al vicepresident los bonos anuales se incrementan en 0.18 \$us.

E. ¿Cuál será la gratificación de un vicepresidente que tenga un salario anual de \$120.000?

```
= 120*0.1843-10.1641
```

= 11.9 Mil \$.

4 . Ejercicio 9, página 556

Un gerente de ventas recolectó los datos siguientes sobre ventas anuales y años de experiencia

vendedor	Años de experiencia	Ventas anuales
1	1	80
2	3	97
3	4	92
4	4	102
5	6	103
6	8	111
7	10	119
8	10	123
9	11	117
10	13	136

A. Elabore un diagrama de dispersión con estos datos, en el que la variable independiente sean los años de experiencia.

Aplicación en R:

```
> # a)
> data <- data.frame(experi = c(1,3,4,4,6,8,10,10,11,13),
+ ventas = c(80,97,92,102,103,111,119,123,117,136))
> plot( data$experi, data$ventas, xlab = "X(experiencia)", ylab = "y(ventas)")
> |
```


- B. Dé la ecuación de regresión estimada que puede emplearse para predecir las ventas anuales cuando se conocen los años de experiencia.
- **1)**encontramos $X * Y y X^2$ para cada valor en la siguiente tabla.

X	Y	X*Y	X*X
1	80	80	1
3	97	291	9
4	92	368	16
4	102	408	16
6	103	618	36
8	111	888	64
10	119	1190	100
10	123	1230	100
11	117	1287	121
13	136	1768	169

2) Calculamos la sumatoria de cada columna.

X	Y	X*Y	X*X
1	80	80	1
3	97	291	9
4	92	368	16
4	102	408	16
6	103	618	36
8	111	888	64
10	119	1190	100
10	123	1230	100
11	117	1287	121
13	136	1768	169
70	1080	8128	632

3) Utilizamos la siguiente ecuación para encontrar los valores de a y b.

$$a = \frac{\sum Y * \sum X^2 - \sum X * \sum XY}{n * \sum X^2 - (\sum X)^2} = \frac{1080 * 632 - 70 * 8128}{10 * 632 - 70^2} = 80$$

$$b = \frac{n * \sum XY - \sum X * \sum Y}{n * \sum X^2 - (\sum X)^2} = \frac{10 * 8128 - 70 * 1080}{10 * 632 - (1420)^2} = 4$$

Aplicacion en R:

4) Sustituimos los valores de a y b en la ecuación de regresión.

```
y = a + b * xy = 80 + 4 * x
```

C. Use la ecuación de regresión estimada para pronosticar las ventas anuales de un vendedor de 9 años de experiencia.

Aplicacion en R:

```
> # y = 80 + 4 x
> y = 80 + 4*9
> y
[1] 116
> |
```

Las ventas anuales previstas son 116 mil \$ aproximados.

5. Ejercicio 20.

Consumer Reports publica pruebas y evaluaciones sobre televisores de alta definición. Para cada modelo se elaboró una evaluación general basada principalmente en la calidad de la imagen. Una evaluación más alta indica un mejor funcionamiento. En los datos siguientes se dan evaluación general y precio de televisores de plasma de 45 pulgadas (Consumer Reports, marzo 2006).

Marca	Precio	Puntuación en la valuación
dell	2800	62
Hisense	2800	53
Hitachi	2700	44
JVC	3500	50
LG	3300	54
Maxent	2000	39
Panasonic	4000	66
Phillips	3000	55
Proview	2500	34
Samsung	3000	39

A. Use estos datos para obtener una ecuación de regresión estimada que pueda emplearse para estimar la puntuación en la evaluación general de una televisión de 42 pulgadas dado el precio.

1) Encontramos X*Y, χ^2 utilizando la siguiente tabla

X	Y	X*Y	X*X
2800	62	173600	7840000
2800	53	148400	7840000
2700	44	118800	7290000
3500	50	175000	12250000
3300	54	178200	10890000
2000	39	78000	4000000
4000	66	264000	16000000
3000	55	165000	9000000
2500	34	85000	6250000
3000	39	117000	9000000

2) Encontramos las sumatorias de cada columna.

X	Y	X*Y	X*X
2800	62	173600	7840000
2800	53	148400	7840000
2700	44	118800	7290000
3500	50	175000	12250000
3300	54	178200	10890000
2000	39	78000	4000000
4000	66	264000	16000000
3000	55	165000	9000000
2500	34	85000	6250000
3000	39	117000	9000000
29600	496	1503000	90360000

3) Utilizamos la siguiente formula para hallar los valores de a y b.

$$a = \frac{\sum Y * \sum X^2 - \iota \sum X * \sum XY}{n * \sum X^2 - (\sum X)^2} = \frac{496 * 90360000 - 29600 * 1503000}{10 * 90630000 - 29600^2} = 12.017 \,\iota$$

$$b = \frac{n * \sum XY - \sum X * \sum Y}{n * \sum X^2 - (\sum X)^2} = \frac{10 * 1503000 - 29600 * 496}{10 * 90360000 - (29600)^2} = 0.013$$

4)

Sustituimos a y b en la ecuación de regresión:

y=a+b*x

y = 10.017 + 0.013 * x

Aplicacion en R:

```
"Proview", "Samsung"),
                       precio =c(2800, 2800, 2700, 3500, 3300, 2000,
                                 4000,3000,2500,3000),
                       puntc =c(62,53,44,50,54,39,66,55,34,39)
 plot( data$precio, data$puntc, xlab = "X(precio)", ylab = "y(puntuación)")
 (mod <- lm(puntc~precio, data=data))</pre>
lm(formula = puntc ~ precio, data = data)
Coefficients:
                   precio
(Intercept)
    12.0175
                  0.0127
> summary(mod)
Call:
lm(formula = puntc ~ precio, data = data)
Residuals:
    Min
             10 Median
                             30
                                     Max
                  0.836
                           4.468 14.431
-11.108 -5.417
Coefficients:
            Estimate Std. Error t value
(Intercept) 12.01749 14.90958
                                   0.806
precio
             0.01270
                         0.00496
                                   2.560
            Pr(>|t|)
(Intercept)
              0.4435
              0.0337 *
precio
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 8.216 on 8 degrees of freedom
Multiple R-squared: 0.4503, Adjusted R-squared: 0.3816
F-statistic: 6.553 on 1 and 8 DF, p-value: 0.03365
```

B. Calcule $\it r^2$. ¿Proporcionó un buen ajuste la ecuación de regresión estimada?

El modelo puede explica solo el 45% de la variación de la variable precio.

C. Estime la puntuación en la evaluación general de un televisor cuyo precio es \$3200.

```
> y <- 12.01749+0.01270*3200
> y
[1] 52.65749
> |
```

La puntuación estimada es de 52.7