

From RSA and EC to Post-Quantum

Frederic Detienne Distinguished Engineer

Cisco Webex App

Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated until February 24, 2023.

Agenda

- A Brief Introduction
- MODP: Multiplicative Group of Integers Modulo P
- ECC: Elliptic Curve Cryptography
- Enters The Quantum Computer
- Lattice Based Cryptography
- Conclusion and Recommendations

Today is a bout making math fun!

Introduction

Cryptographic Mechanisms

Encryption

Signatures

Data Authentication (HMAC)

Random Number Generation

Key Establishment

Hashing

Today - Suite B

Authenticated Encryption	AES-GCM
Authentication	HMAC-SHA-2
Key Establishment	ECDH
Digital Signatures	ECDSA
Hashing	SHA-2
Entropy	SP800-90
Protocols	TLSv1.2, IKEv2, IPsec, MACSec

Hashes and HMAC's Focus on SHA-2

What is a Cryptographic Hash Function

The Merkle-Damgård Construction

Symmetric Encryption Algorithms: One Time Pad & AES

One Time Pad

- A Pad is a truly random sequence of numbers
- Pad is used as encryption and decryption key through modular addition
- The Pad must be as long as the message
- The Pad must be used ONLY ONCE
- If used properly, this is the strongest possible encryption scheme

M	1	0	0	1	1	0	1	1	1	
Pad	0	1	1	0	0	0	1	0	1	
Cypher	1	1	1	1	1	0	0	1	0	

A One Time Pad (here using XOR)

One Time Pad - example

	Н	Ε	L	L	0	message
	7	4	11	11	14	
+	23	12	2	10	11	key
=	30	16	13	21	25	m + k
mod 26	4	16	13	21	25	(m+k) mod 26
	Е	Q	N	V	Z	ciphertext

	Е	Q	N	V	Z	ciphertext
	4	16	13	21	25	
-	23	12	2	10	11	key
=	-	4	11	11	14	c - k
	19					
mod 26	7	4	11	11	14	(c-k) mod 26
	Н	Е	L	L	0	message

Issue 1 – Key Length

	Н	Е	L	L	0	message
	7	4	11	11	14	
+	23	12	2	10	11	key
=	30	16	13	21	25	m + k
mod 26	4	16	13	21	25	(m+k) mod 26
	Ε	Q	N	٧	Z	ciphertext

Key must have the same size as message... Key exchange is a problem!

Use high quality Deterministic Random Bit Generator (DRBG)

Select Carefully... ©

Issue 2 - Key Re-use & Known Plain Text Attack

	Н	Е	L	L	0	message
	7	4	11	11	14	
+	23	12	2	10	11	key
=	30	16	13	21	25	m + k
mod 26	4	16	13	21	25	(m+k) mod 26
	Е	Q	N	V	Z	ciphertext

Assumption #1: Attacker knows some plain text (e.g. injection, guess,...)

Assumption #2: Attacker can wiretap ciphertext

	Н	Е	L	L	0	known message
	4	16	13	21	25	ciphertext
_	7	4	11	11	14	known message
=	-3	12	2	10	11	c - m
mod 26	23	12	2	10	11	(c - m) mod 26
=	KEY					

Conclusion: Attacker can compute the key easily

→ DO NOT REUSE KEY !!

Block Cipher Mode of Operation (ECB, CBC, counter)

AES GCM

Fed from Initialization Vector

One Time Pad Algorithm AES Based PRNG generate pad... Secure CTR DRBG

One Time Pad...

Counter 0

Eĸ

GF(2¹²⁸)

Polynomial $x^{128}+x^7+x^2+x+1$

GHASH(H, A, C) = X_{m+n+1}

u,v bits in A_m , P_n

 $X_i = \begin{cases} 0 & \text{for } i = 0 \\ (X_{i-1} \oplus A_i) \cdot H & \text{for } i = 1, \dots, m-1 \\ (X_{m-1} \oplus (A_m^* || 0^{128-v})) \cdot H & \text{for } i = m \\ (X_{i-1} \oplus C_{i-m}) \cdot H & \text{for } i = m+1, \dots, m+n-1 \\ (X_{m+n-1} \oplus (C_n^* || 0^{128-u})) \cdot H & \text{for } i = m+n \\ (X_{m+n} \oplus (\text{len}(A) || \text{len}(C))) \cdot H & \text{for } i = m+n+1 \end{cases}$

AES GCM in summary

- AES is more secure than 3DES
- AES-CTR CAN be much faster (implementation...)
- GMAC consumes less than SHA-2 (or even SHA-1)

Counter 1

 E_{κ}

Plaintext 1

Plaintext 2

Counter 2

MODP Multiplicative Group of Integers Modulo P

RSA

- Rivest, Shamir, Adleman (1977)
 - Patented but expired => no more royalty
- Public key cryptosystem
- Variable key length (usually 512-2048 bits)
- Based on the (current) difficulty of factoring very large numbers

Modular Arithmetic

Modulo is like a clock

0 1 2 3 4 5 6 7 8 9 10 11...

- $b^x \mod n = r$ also written as $b^x \equiv r \pmod{n}$
 - b is the base
 - x is the exponent
 - n is the modulus
 - r is the remainder
- Knowing b, x & n, it is very easy to compute r
- Knowing x, r & n, it is very difficult to compute $b = x\sqrt{r \mod n}$ aka the RSA problem
- Knowing b, r & n, it is very difficult to compute $x = log_b(r) \mod n$ aka the discrete log problem

unless there are trapdoors

Encryption with Modular Arithmetic

Alice

Must send a private message m

Takes n & e from Bob (we assume m < n) Computes $c = m^e \mod n$

Bob

Selects three numbers n, d & e n & e are public, d is secret e, d are chosen such as $ed \equiv 1 \mod n$

Computes $m' = c^d \mod n$

 $n' = c^d \mod n$ = $(m^e)^d \mod n$

= m^{ed} mod n

 $= m^1 \mod n$

= m

→ Bob has reversed the operation !!

→ Bob knows d but nobody else...

→ We have an encryption scheme

Signature with Modular Arithmetic

Alice

Takes n & e from Bob

Computes $m' = c^e \mod n$

- $m' = c^e \mod n$
 - $= (m^d)^e \mod n$
 - = m^{de} mod n
 - $= m^1 \mod n$
 - = m mod n
 - = m
- → Bob must have sent the c,m

To forge the signature, the attacker would need to compute $d = \log_e(m') \bmod n$

→ Discrete Logarithm Problem

Now how can we find such e, d and n?

Bob

Selects three numbers n, d & e n & e are public, d is secret e, d are chosen such as ed ≡ 1 mod n

Must send a signed message m

Computes $c = m^d \mod n$ (we assume m < n)

Regular Exponentiation - Dichotomy to reverse

MODP breaks dichotomy

RSA keys - finding e,d,n | $m^{ed} \equiv m \pmod{n}$

- Choose two distinct prime numbers p, q and hide them forever!
- $n = p.q \rightarrow n$ is hard to factor if p & q are very large
- $\varphi(n) = n (p + q 1)$
 - p & q are prime $\rightarrow \varphi(p)=p-1 \varphi(q)=q-1$
 - $\varphi(n) = \varphi(pq) = \varphi(p) \varphi(q) = (p-1)(q-1) = n-(p+q-1)$
- Final steps Luler theorem...
 - $1^k = 1 \rightarrow (m^{\varphi(n)})^k \equiv 1^k \pmod{n} \rightarrow m^{k\varphi(n)} \equiv 1 \pmod{n}$
 - $1m = m \rightarrow m m^{k\varphi(n)} \equiv m \pmod{n} \rightarrow m^{k\varphi(n)+1} \equiv m \pmod{n}$
 - we look for e,d,n such that $m^{ed} \equiv m^{k\phi(n)+1} \equiv m \pmod{n} \rightarrow ed = k \phi(n) + 1$
 - \Rightarrow d = $\frac{k \varphi(n)+1}{e} = \frac{k (n (p+q-1))+1}{e}$
- Select e, small integer and k such that GCD(d, $\varphi(n)$) = 1 (i.e. d & $\varphi(n)$ are co-prime)
 - **e** is usually 3 or 65537
 - adjust k to make d an integer

m - arbitrary message n - the modulus

e - the public key

d - the private key

DH -Diffie-Hellman

27

ECC Elliptic Curve Cryptography

What is an elliptic curve?

- A curve of general equation $v^2=x^3+ax+b$
 - It MUST be a smooth curve
 - Its discriminant MUST BE NON ZERO: $D = 4A^3 + 27B^2$
- The Elliptic Curve is the set of points
 - that satisfy the equation of the curve (ie. that "belong" to the curve)
 - Plus a special point at infinity that we call O (the letter O)

Elliptic Curve Addition

- Let P and Q be two points on the curve
- A line (P,Q) cuts the curve at a third point R
 If the line is parallel to the Y axis, this point is O
 If the line is tangent to the curve, the tangent point is counted twice
- The group operator + is defined such as
 P+Q+R = O; O is the identity
- The reflected point from R is P+Q

The scalar multiplication n*P

- Let's start with P+P = 2*P
- For drawing (P,P)
 - draw a tangent to the curve → R
 - (O,R) cuts in P+P=2P
- This is a scalar multiplication
 - One can derive 3P = 2P+P, 4P = 3P+P,...nP = (n-1)P+P

Fast Forward – the finite fields F_m & F₂^k

- Remember... modulo arithmetic
- Galois Field = Finite Field
- Let E be an elliptic curve defined over a finite field F_m (modulo m):
 - $E(Fm):\{\infty\} \cup \{(x,y) \text{ in } F_m x F_m \mid y^2 = x^3 + ax + b \text{ , a,b in } F_m \}$
 - E(F_m) is the set of points whose coordinates belong to F_mxF_m and satisfy the equation + point at infinity
 - The set along group operations (+, x) seen before form an Abelian Group under multiplication → a field.
 - · For cryptography, m should be a prime number

- Multiplication supposed to be more efficient → very important for ECDH and ECDS
- In this case, the Koblitz curve is used: $y^2 + xy = x^3 + ax^2 + 1$ where a=0 or a=1
- · For cryptography, k should be a prime number
- m should remain a prime it would be called a Mersenne Prime
- There is debate about the actual security and efficiency of these curves!
- The order of a group G is the cardinality of that group written ord(G) or |G|.
- The order of a point P in a group G is the value n such that n*P = O written ord(p) or |p|

Example Curve

Example on F₃₁ - Complexity Increases

The same on F_{127} – Complexity Further Increases

ECDH - Elliptic Curve Diffie-Hellman

Enters the Quantum Computer

Today's Cryptography Temporal Defense

TIME PROTECTS PUBLIC KEYS (Until Y2Q)

Shor's Factoring Algorithm

Problem: For a given "N" find a "p" between "1" and "N" that divides "N"

Shor's algo converts exponential complexity to polynomial complexity

 $\mathbf{x}^{\mathbf{N}} \rightarrow \mathbf{N}^{\mathbf{X}}$ where \mathbf{N} is the number of bits

BRKSEC-3129

Lattice Based Cryptography LBC, LWE, NTRU

Vectors

Commonly denoted \boldsymbol{v} or $\vec{\boldsymbol{v}}$ We will use \boldsymbol{v} or \boldsymbol{v}

$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \dots \\ a_n \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{bmatrix}$$

Operation	Formula	Result type
addition	$a+b = (a_1+b_1,,a_2+b_2)$	Vector
Scalar multiplication	$x.a = x.a_1 + + x.a_n$	Vector
Inner product	$a.b = a_1b_1 + + a_nb_n$	Scalar (number)

This is not a lattice

What is a Lattice?

- A periodic "grid" in \mathbb{Z}^m
- All integer linear combinatons of n basis vectors b₁, b₂, ..., b_n
- Basis B = $\{b_1, ..., b_m\}$
- Lattice $\mathcal{L} = \sum_{i=1}^m a_i \cdot \boldsymbol{b}_i$, $a_i \in \mathbb{Z}$

Good Basis, Bad Basis

 $B = \{b_1, b_2\}$: good basis

Short, almost perpendicular vectors

B= {b₁', b₂'}: bad basis Long, not very perpendicular vectors

cisco Live!

Not a basis

B= $\{b_1", b_2"\}$: not a basis The lattices do not overlap fully

Short Vectors is a Hard Problem

Given this base, what is the shortest possible non-trivial vector?

Surprise!

Closest Vector Problem is a Hard Problem

What is the closest lattice vector to y?

Babai's round-off algorithm:

$$\boldsymbol{v} = B. \left[B^{-1}. \, \boldsymbol{y} \right]$$

Theorem:

$$||v - y|| \le \frac{1}{2} \sum ||b_i||$$

In clear:

Better base → Closer vector

Short Integer Solution & Learning With Errors

SIS

$$Az = 0$$
 with 'short' $z \neq 0$

Average case SVP (Bounded Distance Decision)

$$\mathcal{L}^{\perp}(A) = \{ z \in \mathbb{Z}^m : A\mathbf{z} = 0 \}$$

LWE

$$(A, \boldsymbol{b}^t = \boldsymbol{s}^t A + \boldsymbol{e}^t)$$
 vs. (A, \boldsymbol{b}^t)

Average case BDD (Bounded Distance Decision)

$$\mathcal{L}(A) = \{ \mathbf{z}^t \equiv \mathbf{s}^t A \bmod q \}$$

These are other ways to define a lattice

Goldreich, Goldwasser, Halevi Cryptosystem

Alice

Must send a private message ${\bf m}$

Takes V' from Bob Computes I = m * V'Generates an error vector r (n) Computes c = I + r

Quantum secure ... but broken 😊

NIST Post Quantum Algorithm Selection

Selected Algorithms 2022

Type	Name	Math
Pub Key Encr and Key Exchange	CRYSTALS-KYBER	Lattice LWE (CVP)
Digital Signature	CRYSTAL-DILITHIUM	Lattice LWE (CVP)
Digital Signature	FALCON	Lattice NTRU(SVP) + FFT
Digital Signature	SPHINCS+	Stateless hash-based

In Summary

Main Public-Key Cryptographic Primitives

Business Outcome

- Crypto is not broken; it evolves and so do attackers.
- These are good news! The more research, the more insight.
- Lattice-based cryptography is Post-Quantum ready

Evolve your systems as new recommended algorithms are released!

A Short Bibliography

- NIST SP 800-90A: Recommendations for Random Number Generation Using Deterministic Random Bit Generators
- NIST SP 800-38D: Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC
- NIST SP 800-56A (R2): Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography (i.e. DH, ECDH + key derivation methods)
- NIST 800-131Ar1: Transitions: Recommendations fro Transitioning the Use of Cryptographic Algorithms and Key Lengths
- NIST FIPS 140-2: Security Requirements for Cryptographic Modules
- NIST FIPS 186-4: Digital Signature Standard (DSS) (DSA, RSA (PKCS#1), ECDSA,...)
- NIST FIPS 180-4: Secure Hash Standard (SHA-1, SHA-256,..., SHA-512)
- NIST Routines: https://www.nsa.gov/ia/_files/nist-routines.pdf (Curve P-192, P-224, P-256 etc.)
- Safe Curves: http://safecurves.cr.yp.to
- Transcript Collision Attacks: Breaking authentication in TLS, IKE and SSH: http://www.mitls.org/downloads/transcript-collisions.pdf
- Simons institute:
 - https://simons.berkeley.edu/workshops/schedule/10563
 - https://simons.berkeley.edu/workshops/lattices-2020-boot-camp

Complete your Session Survey

- Please complete your session survey after each session. Your feedback is important.
- Complete a minimum of 4 session surveys and the Overall Conference survey (open from Thursday) to receive your Cisco Live t-shirt.

https://www.ciscolive.com/emea/learn/sessions/session-catalog.html

Continue Your Education

Visit the Cisco Showcase for related demos.

Book your one-on-one Meet the Engineer meeting.

Attend any of the related sessions at the DevNet, Capture the Flag, and Walk-in Labs zones.

Visit the On-Demand Library for more sessions at <u>ciscolive.com/on-demand</u>.

Thank you

cisco live!

