CS 512, Spring 2014

Assignment 2

Shan Sikdar

Due Monday January 27th

1 Problem 1

Algebraic Structure: $\tau = (T, Lt, \mathbb{N}, Rt, height)$. Define the size operation $||: \tau \to \mathbb{N}$ and the height operation height: $\tau \to \mathbb{N}$ in the style of the definitions for the operations Node Lt, and Rt. If $t \in T$ is represented graphically by a finite binary tree, then |t| should return should return the total number of leaf nodes in t + the total number of internal nodes in t, and the hieght(t) should return the length of the longest path in t.

(1)
$$|t| = \begin{cases} |t_1| + |t_2|, & \text{if } t = < t_1 \ t_2 > . \\ 1, & \text{otherwise} \end{cases}$$

(2)
$$height(x) = \begin{cases} max(|t_1| + |t_2|) + 1, & \text{if } t = < t_1 \ t_2 > . \\ 0, & \text{otherwise} \end{cases}$$

2 Problem 2

Algebraic Structure: $A = (\mathbb{N} - 0, lcm, gcd, \leq)$ where for all $m, n \in \mathbb{N} - 0$, we have that: $m \leq n$ iff "m divides n".

- (a) Show that A is a lattice, where lcm playes the role of \vee and gcd plays the role of \wedge .
- (b) Is A a distributive lattice? Justify your answer carefully, based on the distributivity axioms that A must satisfy.
- (a)

Need to Show:

(1) Show (A, \leq) is a poset.

For all $a, b, c \in \mathbb{N} - 0$

reflexive: "a divides a" therefore $a \leq a$

anit-symmetric:

Assume $a \leq b$ and $b \leq a$. Then "a divides b" and "b divides a". ??

transitive:

Assume $a \leq b$ and $b \leq c$. Then "a divides b" and 'b divdes c".

If "a divides b" then b must be some multiple of a ($b = m \cdot a, m \in \mathbb{N} - 0$).

If "b divides c" then c must be some multiple of b ($c = n \cdot b, m \in \mathbb{N} - 0$).

So $c = n \cdot b = n \cdot (m \cdot a)$ where $m, n \in \mathbb{N} - 0$

But then c is some multiple of a. So "a divides c".

Therefore $a \leq c$.

- (2) For all $m,n\in A$ the least upper bound of a and b in the ordering \unlhd exists, is unique m and is the result of the operation $m\vee n$
- (3) For all $m, n \in A$ the greatest lower bound of m and n in the ordering \leq exists, is unique m and is the result of the operation $m \wedge n$

3 Problem 3: Excercise 1.5.3 parts (a),(b),(c)

(a) Show that $\{\neg, \land\}, \{\neg, \rightarrow\}, \{\rightarrow, \bot\}$ are adequate sets of connectives for propositional logic.

(a1)
$$\{\neg, \wedge\}$$
:

If I can show that there is an expression that is equivalent to $p \lor q$, then this will also show that there exists an equivelent for \to Since from the example we know $p \to q \equiv \neg p \lor q$.