# Differentialgleichungen

Eine gewöhnliche Differentialgleichung ist eine Gleichung, welche nur nach einer Variable abgeleitet wird:

$$rac{\partial y}{\partial t} = f(t,y(t))$$

Im oben Beispiel ist es eine gewöhnliche Differentialgleichung 1. Ordnung, da nur einmal Abgeleitet wurde.

Genereller ausgedrückt, folgendes ist eine gewöhnliche Differentialgleichung n-ter Ordnung:

$$y^{(n)}(x) = f(x,y(x),y'(x),\dots,y^{(n-1)}(x))$$

Eine allgemeine Lösung für eine Differentialgleichung n-ter Ordnung hat n unabhängige Parameter (von den Integrationskonstanten).

Differentialgleichungen, welche die folgende Form haben

$$\frac{\partial n}{\partial t} = -\lambda n$$

haben die Lösung n(t):

$$n(t) = n_0 e^{-\lambda t}$$

## Anfangswertproblem

Bei einem Anfangswertproblem wird, zusätzlich zu der Gleichung, den Funktionswert bei  $x_0$ , wie auch den Wert für jede benützte Ableitung bei dem selben Wert  $x_0$ .

Als Beispiel für folgende Funktion s wird  $C_1$  und  $C_2$  benötigt, damit ein Resultat berechnet werden kann. Es wird also s(t=0) und s'(t=0) benötigt, um das Anfangswertproblem zu lösen.

$$s'' = g$$
  $s(t) = rac{1}{2}gt^2 + C_1t + C_2$   $s(t=0) = C_2$   $s'(t=0) = v(t=0) = C_1$ 

# Richtungsfelder



Ein Richtungsfeld stellt die Steigung als Pfeile dar. Dafür wurde in diesem Beispiel alle y' für alle Punkte berechnet und eingezeichnet.

# Eulerverfahren

## Klassisch



Um eine Lösung für eine Differentialgleichung mit einem Richtungsfeld zu finden, kann eine Schrittweite h definiert werden. Jeder Punkt  $(x_i,y_i)$  soll nun den Pfeilen im Feld folgen. Dies kann folgendermassen für eine Differentialgleichung y'=f(x,y) erledigt werden:

$$egin{aligned} x_{i+1} &= x_i + h \ y_{i+1} &= y_i + y' \cdot h \ &= y_i + f(x_i, y_i) \cdot h \end{aligned}$$

Zusätzlich wird auch noch ein Startpunkt  $(x_0, y_0)$  benötigt.

## Mittelpunkt



Im Vergleich zum Eulerverfahren, wo die Steigung beim Punkt  $(x_i,y_i)$  berechnet wird, wird beim Mittelpunkt-Verfahren die Steigung bei  $(x_i+\frac{h}{2},y_i+\frac{h}{2})$  berechnet.

Dafür muss aber der Punkt  $(x_i + \frac{h}{2}, y_i + \frac{h}{2})$  zuerst berechnet werden. Daher ergibt sich folgendes:

$$egin{aligned} x_{h/2} &= x_i + rac{h}{2} \ y_{h/2} &= y_i + rac{h}{2} \cdot f(x_i, y_i) \end{aligned}$$

$$egin{aligned} x_{i+1} &= x_i + h \ y_{i+1} &= y_i + f(x_{h/2}, y_{h/2}) \cdot h \end{aligned}$$

#### Modifiziert



Beim modifizierten Verfahren wird zuerst die Steigung bei  $(x_i, y_i)$  und bei  $(x_{i+1}, y_{i+1})$  berechnet. Danach wird der nächste Punkt mit dem Mittel zwischen den beiden Steigungen den nächsten Punkt berechnet.

Algorithmus: Modifiziertes Euler-Verfahren für y' = f(x,y) mit  $y(a) = y_0$ .

Führe das klassische Euler-Verfahren durch und speichere die erste Tangengentsteigung in der Variable k1:

$$x_{i+1} = x_i + h$$

$$y_{i+1}^{Euler} = y_i + h \cdot f(x_i, y_i)$$

$$k_1 = f(x_i, y_i)$$

• Berechne die zweite Tangentensteigung am Punkt  $(x_{i+1}, y_{i+1}^{Euler})$  und speichere sie in  $k_2$ :

$$k_2 = f(x_{i+1}, y_{i+1}^{Euler})$$

**9** Bilde den Durchschnitt der Steigungen  $(k_1 + k_2)/2$  und mache einen Schritt h ausgehend vom ursprünglichen Punkt  $(x_i, y_i)$  zur Berechnung der Näherung  $(x_{i+1}, y_{i+1})$ :

$$x_{i+1} = x_i + h$$
  
$$y_{i+1} = y_i + h \cdot \frac{(k_1 + k_2)}{2}$$

#### **Fehler**

Der lokaler Fehler ist definiert als:

$$\varphi(x_i,h):=y(x_{i+1})-y_{i+1}$$

Wenn der lokaler Fehler folgendermassen schreiben kann, dann hat es die Konsistenzordnung p:

$$\varphi(x_i,h) \leq C \cdot h^{p+1}$$

Ebenfalls gibt es ein **globalen** Fehler, welcher definiert ist als:

$$y(x_n) - y_n$$

Wenn der globalen Fehler folgendermassen schreiben kann, dann hat es folgende Konvergenzordnung p:

$$|y(x_n)-y_n| \leq C \cdot h^p$$

Wie auch an den Formeln von der Konsistenzordnung und Konvergenzordnung zu sehen ist, hängt dieser Fehler von der Schrittweite h ab.



Es ist interesant ein Verfahren mit der Konvergenzordnung  $p \geq 1$  und h < 1, da dann  $C \cdot h^p$  gegen 0 strebt.

Für das Eulerverfahren gilt folgenden lokalen Fehler:

$$arphi(x_n,h) = rac{h^2}{2}y''(z) \qquad ext{, wobei } z \in [x_n,x_n+h]$$

Das Mittelpunkt und modifizierte Eulerverfahren haben eine Konsistenz- und Konvergenzordnung p=2.

In der folgenden Abbildung ist der lokale Fehler für diverse Verfahren auf einem log-log Plot:



# Runge-Kutta Verfahren



Im Runge-Kutta-Verfahren wird zuerst die Steigung  $k_1$  bei  $x_i$  berechnet, dann  $k_2$  in der Mitte zwischen  $x_i$  und  $x_{i+1}$ ,  $k_3$  ist ebenfalls beim Mittelpunkt, aber mit der Steigung  $k_2$ . Zuletzt wird  $k_4$  am Punkt  $x_{i+1}$  berechnet.

#### Algorithmus: klassisches vierstufiges Runge-Kutta Verfahren [1]

• Gegeben sei für  $x \in [a, b]$  das Anfangswertproblem

$$y' = f(x, y)$$
 mit  $y(a) = y_0$ .

Das klassische Runge-Kutta zur numerischen Lösung lautet

$$k_{1} = f(x_{i}, y_{i})$$

$$k_{2} = f(x_{i} + \frac{h}{2}, y_{i} + \frac{h}{2}k_{1})$$

$$k_{3} = f(x_{i} + \frac{h}{2}, y_{i} + \frac{h}{2}k_{2})$$

$$k_{4} = f(x_{i} + h, y_{i} + hk_{3})$$

$$x_{i+1} = x_{i} + h$$

$$y_{i+1} = y_{i} + h \cdot \frac{1}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4})$$

wobei 
$$x_0=a,\,x_i=a+ih$$
 für  $i=0,...,n-1$   $(n\in\mathbb{N})$  und  $h=rac{b-a}{n}$  .

Die Konsistenz- und Konvergenzordnung von Runge-Kutta ist p=4.

## Allgemeines s-stufiges Runge-Kutta-Verfahren

Das allgemeine s-stufige Runge-Kutta-Verfahren:

$$k_n=f\left(x_i+c_nh,y+h\sum_{m=1}^{n-1}a_{nm}k_m
ight) \qquad ext{für } n=1,\dots,s$$
 $y_{i+1}=y_i+h\sum_{n=1}^{s}b_nk_n$ 

Dabei ist  $s \in \mathbb{N}$  die Stufenzahl und  $a_{nm}$ ,  $b_n$  und  $c_n$  sind Konstante.

• Euler-Verfahren: 
$$s=1$$

• Mittelpunkt-Verfahren: 
$$s=2$$

• Modifiziertes Euler-Verfahren: s=2

• Klassisches Runge-Kutta Verfahren: s=4

## Differentialgleichung-System

Um ein Differentialgleichung-System zu lösen, kann y(x) als vektorwertige Funktion geschrieben werden.

Das Euler-Verfahren kann folgendermassen für Vektoren angepasst werden:

$$egin{aligned} x_{i+1} &= x_i + h \ & ec{y}_{i+1} &= ec{y}_i + ec{f}(x_i, y_i) \cdot h \end{aligned}$$

Oben ist es mit dem klassischen Eulerverfahren beschrieben. Dies kann aber mit allen Eulerverfahren gelöst werden.

## Beispiel

Das folgende Beispiel kommt aus dem nächsten Unterkapitel "Differentialgleichung k-ter Ordnung zu DGL-System".

$$egin{aligned} z_1' &= z_2 \ z_2' &= z_3 \ z_3' &= 10e^{-x} - 5z_3 - 8z_2 - 6z_3 \end{aligned}$$

Zu dem gelten folgende Anfangswerte:

$$ec{z}(0) = egin{pmatrix} 2 \ 0 \ 0 \end{pmatrix}$$

Nun kommen die Iterationen:

• i = 0: für den ersten Schritt erhalten wir

$$f(x_0, \mathbf{z}^{(0)}) = \begin{pmatrix} z_2^{(0)} \\ z_3^{(0)} \\ 10e^{-x_0} - 5z_3^{(0)} - 8z_2^{(0)} - 6z_1^{(0)} \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 10e^{-0} - 5 \cdot 0 - 8 \cdot 0 - 6 \cdot 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -2 \end{pmatrix}$$

$$\mathbf{z}^{(1)} = \mathbf{z}^{(0)} + h \cdot \mathbf{f}(x_0, \mathbf{z}^{(0)}) = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} + 0.5 \cdot \begin{pmatrix} 0 \\ 0 \\ -2 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$$

$$x_1 = x_0 + h = 0.5$$

• i = 1: für den zweiten Schritt erhalten wir

$$f(x_{1},z^{(1)}) = \begin{pmatrix} z_{2}^{(1)} \\ z_{3}^{(1)} \\ 10e^{-x_{1}} - 5z_{3}^{(1)} - 8z_{2}^{(1)} - 6z_{1}^{(1)} \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ -1 \\ 10e^{-0.5} - 5 \cdot (-1) - 8 \cdot 0 - 6 \cdot 2 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ -0.9347 \end{pmatrix}$$

$$z^{(2)} = z^{(1)} + h \cdot f(x_{1},z^{(1)}) = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix} + 0.5 \cdot \begin{pmatrix} 0 \\ -1 \\ -0.9347 \end{pmatrix}$$

$$= \begin{pmatrix} 2 \\ -0.5 \\ -1.4673 \end{pmatrix}$$

$$x_{2} = x_{1} + h = 1.0$$

#### Differentialgleichung k-ter Ordnung zu DGL-System

Um eine Differentialgleichung mit Ableitungen höher als erster Ableitungen zu lösen gibt es einen Trick:

$$y''' + 5y'' + 8y' + 6y = 10e^{-x}$$

1. Nachh der höchsten Ableitung umformen:

$$y''' = 10e^{-x} - 5y'' - 8y' - 6y$$

2. Alle Ableitungen von y tiefer als die höchste Ableitungen durch  $z_i$  ersetzen:

$$z_1 = y, z_2 = y', z_3 = y''$$

3. Und in der Gleichung einsetzen

$$y''' = 10e^{-x} - 5y'' - 8y' - 6y \Rightarrow z_3' = y''' = 10e^{-x} - 5z_3 - 8z_2 - 6z_3$$

4. Es sind nun drei Gleichungen:

$$egin{aligned} z_1' &= y' = z_2 \ z_2' &= y'' = z_3 \ z_3' &= 10e^{-x} - 5z_3 - 8z_2 - 6z_3 \end{aligned}$$

5. In diesem Fall können sie auch vektoriel geschrieben werden:

$$egin{pmatrix} z_2 \ z_3 \ 10e^{-x} - 5z_3 - 8z_2 - 6z_3 \end{pmatrix} = egin{pmatrix} z_1' \ z_2' \ z_3' \end{pmatrix}$$

Mit der Start-Bedingungen: 
$$\vec{z}(0) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

#### Stabilität

Wie stabil eine Lösung einer DGL ist hängt von dem benutzten Verfahren, der Schrittbreite und dem spezifischen Anfangsproblem ab.

## Definition 8.6: Stabilitätsfunktion / Stabilitätsintervall

• Kann bei der Anwendung eines Verfahrens auf die DGL  $y' = -\alpha y$  die numerische Lösung in der Form

$$y_{i+1} = g(h\alpha) \cdot y_i$$

geschrieben werden, so nennt man g(z) die Stabilitätsfunktion des Verfahrens (mit  $z = h\alpha$ ).

• Das offene Intervall  $z \in (0, \alpha)$ , in dem |g(z)| < 1 gilt, bezeichnet man als das Stabilitätsintervall des Verfahrens.

# Interpolation

Gegeben sind n+1 Stützpunkte/Wertpaare  $(x_i,y_i)$ , wobei  $x_i \neq x_i$  für  $i \neq j$  gelten muss. Gesucht ist nun eine stetige Funktion g mit der Eigenschaft  $g(x_i)=y_i$  für alle  $i=0,\ldots,n$ 

#### **Polynominterpolation**

Wenn n+1 Stützpunkte gegen sind, kann das Polynom

$$P_n(x) = a_0 + a_1x + a_2 + x^2 + \dots + a_nx^n$$

Wenn x ein Vektor ist, kann auch eine Vandermonde-Matrix gebildet werden:

$$egin{aligned} a_0 + a_1 x_0 + a_2 + x_0^2 + \ldots + a_n x_0^n \ a_0 + a_1 x_1 + a_2 + x_1^2 + \ldots + a_n x_1^n \ & \cdots \ a_0 + a_1 x_n + a_2 + x_n^2 + \ldots + a_n x_n^n \ egin{aligned} \left( egin{aligned} 1 & x_0 & x_0^2 & \ldots & x_0^n \ 1 & x_1 & x_1^2 & \ldots & x_1^n \ & & \ddots & & \\ 1 & x_n & x_n^2 & \ldots & x_n^n \end{matrix} 
ight) \cdot egin{aligned} a_0 \ a_1 \ \ldots \ a_n \end{pmatrix} = egin{aligned} y_0 \ y_1 \ \ldots \ y_n \end{pmatrix} \end{aligned}$$

Diese Rechnung ist allerdings oft schlecht Konditioniert und wird für n>20 Stützpunkte instabil. Ein möglichen Ersatz ist das Lagrange Polynom

#### Lagrange Interpolation

Das Lagrange Polynom kann für n Stützpunkte berechnet werden und ergibt ein Polynom mit dem Rang n-1.

$$P_n(x) = \sum_{i=0}^n I_i(x) y_i$$

$$I_i(x) = \prod_{\substack{j=0 \ i 
eq i}}^n rac{x-x_j}{x_i-x_j}$$

Der maximale absoluten Fehler der dabei entstehen kann ist:

$$|f(x) - P_n(x)| \leq rac{|(x-x_0)(x-x_1)\dots(x-x_n)|}{(n+1)!} \cdot (\max_{x0 \leq \xi \leq x_n} |f^{(x+1)}(\xi)|)$$

Als Bemerkung  $f^{(x+1)}$  ist die (x+1)-te Ableitung

Da für die Fehlerberechnung die eigentliche Funktion f benötigt wird, ist dies recht nutzlos.

# **Spline Interpolation**



Es wird für jedes Intervall  $[x_i,x_{i+1}]$  (für  $i=0,1,2,\ldots,n-1$ ) wird ein Polynom  $s_i$  angesetzt. Das Polynom muss folgende Gleichungen erfüllen:

- ullet Es muss durch alle Punkte im Intervall  $[x_i,x_{i+1}]$  gehen  $s_i(x_i)=y,s_i(x_{i+1})=y_{i+1},\ldots$
- ullet Der Übergang zwischen den Polynomen muss stetig sein $s_i(x_{i+1}) = s_{i+1}(x_{i+1})$
- ullet Es darf kein Knick beinhalten $s_i'(x_{i+1}) = s_{i+1}'(x_{i+1})$
- ullet Die Krümmung von zwei Splines soll auch gleich sein $s_i''(x_{i+1}) = s_{i+1}''(x_{i+1})$



Um die Spline von oben zu berechnen, können nun folgende Polynome definiert werden:

$$egin{aligned} S_0 &= a_0 + b_0(x-x_0) + c_0(x-x_0)^2 + d_0(x-x_0)^3 & ,x \in [x_0,x_1] \ S_1 &= a_1 + b_1(x-x_1) + c_1(x-x_1)^2 + d_1(x-x_1)^3 & ,x \in [x_1,x_2] \ S_2 &= a_2 + b_2(x-x_2) + c_2(x-x_2)^2 + d_2(x-x_2)^3 & ,x \in [x_2,x_3] \end{aligned}$$

Aus diesen können nun folgendes Gleichungssytem aufgestellt werden:

$$egin{aligned} S_0(x_0) &= y_0 \ S_1(x_1) &= y_1 \ S_2(x_2) &= y_2 \ S_2(x_3) &= y_3 \end{aligned} \ egin{aligned} S_0(x_1) &= S_1(x_1) \ S_1(x_2) &= S_2(x_2) \end{aligned} \ egin{aligned} S_0'(x_1) &= S_1'(x_1) \ S_1'(x_2) &= S_2'(x_2) \end{aligned} \ egin{aligned} S_0''(x_1) &= S_1''(x_1) \ S_1'(0,x_2) &= S_2''(x_2) \end{aligned}$$

Dies sind aber "nur" 10 Gleichungen, nicht die benötigten 12. Daher gibt es noch zusätzliche Bediungen:

- natürliche kubische Splinefunktion  $S_0''(x_0) = 0, S_2(x_3)'' = 0$
- ullet peridodische kubische Splinefunktion $S_0'(x0)=S_2'(x_3), S_0''(x0)=S_2''(x_3)$
- ullet kubische Spliefunktion (mit not-a-knot Bedinungen) $S_0'''(x_1)=S_1'''(x_1), S_1'''(x_2)=S_2'''(x_2)$

## Algorithmus

Für n+1 Stützpunkte werden n Gleichungen nach der Form  $S_i=a_i+b_i(x-x_i)+c_i(x-x_i)^2+d_i(x-x_i)^3, x\in[x_i,x_{i+1}]$  gesucht. Dafür kann folgender Algorithmus für jedes  $S_i$  angewendet werden:

1. Wenn die natürliche kubische Splinefunktion gesucht ist, wird c auf 0 gesetzt damit die zweite Ableitung 0 ergibt

$$c_0=0,c_n=0$$

2. Für jedes Polynom  $S_i$ 

a. 
$$a_i = y_i$$

b. Die Breite des Intervalles

$$h_i = x_{i+1} - x_i$$

- 3.  $c_i$  bestimmen
- 4.  $b_i$  und  $d_i$  für jedes  $S_i$  bestimmen

a. 
$$b_i=rac{y_{i+1}-y_i}{h_i}-rac{h_i}{3}(c_{i+1}+2c_i)$$

b. 
$$d_i=rac{1}{3h_i}(c_{i+1}-c_i)$$

Für das Beispiel . . .:

| i     | 0 | 1 | 2 | 3 |
|-------|---|---|---|---|
| $x_i$ | 0 | 1 | 2 | 3 |
| $y_i$ | 2 | 1 | 2 | 2 |
| $a_i$ | 2 | 1 | 2 | - |
| $h_i$ | 1 | 1 | 1 | - |
| $c_i$ | 0 | ? | ? | 0 |

Um  $c_1$  und  $c_2$  zu finden kann folgendes Gleichungssystem gelöst werden:

$$A=egin{pmatrix} 2(h_0+g_1) & h_1 \ h_1 & 2(h_1+h_2) \end{pmatrix} \ A \cdot egin{pmatrix} c_1 \ c_2 \end{pmatrix} = ()$$

## Lineare Ausgleichunsrechnung

Es wird eine Funktion gesucht, in der Form:

$$f(x) = \lambda_1 f_1(x) + \ldots + \lambda_m f_m(x)$$

Ein mögliches Beispiel wäre: 
$$f(x) = \lambda_1 \cdot \underbrace{1}_{f_1(x)} + \lambda_2 \cdot \underbrace{x}_{f_2(x)} + \lambda_3 \cdot \underbrace{x^2}_{f_3(x)}$$

Um nun die  $\lambda$ s zu finden, damit f(x) Datenpunkte nachgeht, muss der Fehler E(f) zu den Datenpunkten minimieren:

$$|E(f) = w \cdot ||y_f - (x)||_2^2 = \sum_{i=1}^n w_i \cdot (y_i - f(x_i))^2$$

Mit w kann ein Punkt stärker oder schwächer gewichtet werden

Um dies zu minimieren, wird die Ableitung von E(f)=0 gesetzt:

$$0 \stackrel{!}{=} \sum_{i=1}^{n} (y_{i} - (ax_{i} + b)) \cdot (x_{i}) = \sum_{i=1}^{n} (x_{i}y_{i} - ax_{i}^{2} - bx_{i})$$

$$= \sum_{i=1}^{n} x_{i}y_{i} - \sum_{i=1}^{n} ax_{i}^{2} - \sum_{i=1}^{n} bx_{i} = \sum_{i=1}^{n} x_{i}y_{i} - a\sum_{i=1}^{n} x_{i}^{2} - b\sum_{i=1}^{n} x_{i}$$

$$0 \stackrel{!}{=} \sum_{i=1}^{n} (y_{i} - (ax_{i} + b)) = \sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} ax_{i} - \sum_{i=1}^{n} b$$

$$= \sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} ax_{i} - \sum_{i=1}^{n} b = \sum_{i=1}^{n} y_{i} - a\sum_{i=1}^{n} x_{i} - b\sum_{i=1}^{n} 1$$

Aus dem folgt:

$$a \sum_{i=1}^{n} x_i^2 + b \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i y_i$$
$$a \sum_{i=1}^{n} x_i + b \sum_{i=1}^{n} 1 = \sum_{i=1}^{n} y_i$$

$$\begin{pmatrix} \sum_{i=1}^{n} x_i^2 & \sum_{i=1}^{n} x_i \\ \sum_{i=1}^{n} x_i & n \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{n} x_i y_i \\ \sum_{i=1}^{n} y_i \end{pmatrix}$$

Dies funktioniert allerdings nur für eine Gerade. Die selbe Methode kann aber auch für höhere Polynomen verwendet werden:

$$|E(f) = ||ec{y} - f(ec{x})||_2^2 = \sum_{i=1}^n (y_i - f(x_i))^2 = \sum_{i=1}^n \left(y_i - \sum_{j=1}^m \lambda_j f_j(x_i)
ight)^2 = ||ec{y} - A\lambda||_2^2$$

Mit folgender Matrix A:

$$\mathbf{A} = \begin{pmatrix} f_{1}(x_{1}) & f_{2}(x_{1}) & \cdots & f_{m}(x_{1}) \\ f_{1}(x_{2}) & f_{2}(x_{2}) & \cdots & f_{m}(x_{2}) \\ \vdots & \vdots & \vdots & \vdots \\ f_{1}(x_{n}) & f_{2}(x_{n}) & \cdots & f_{m}(x_{n}) \end{pmatrix}, \ \mathbf{y} = \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{pmatrix}, \ \lambda = \begin{pmatrix} \lambda_{1} \\ \lambda_{2} \\ \vdots \\ \lambda_{m} \end{pmatrix}$$

Die Gleichung E(f)=0 hat nur im Spezialfall eine Lösung, wenn m=n und wenn die Funktion f durch alle Punkte geht.

#### Normalgleichungen

Um E(f) zu minimieren muss die erste Ableitung von E'(f)=0 sein. Daher muss E(f) nach jedem  $\lambda$  abgeleitet werden:

$$rac{\partial E(f)(\lambda_1,\ldots,\lambda_m)}{\partial \lambda_j}=0, j=0,\ldots,m$$

Dies nennt sich eine Normalgleichung und lässt sich als  $A^TA\lambda=A^Ty$ .

A ist oft schlecht konditioniert und die Lösung sollte daher mit dem QR-Verfahren gelöst werden.

#### Linearisieren

Falls eine f Funktion auf den ersten Blick nicht linear erscheint, kann sie eventuell linearisiert werden.

Z.B. die Funktion  $ae^{bx}$  kann mit  $\log_e$  linearisiert werden.

$$\ln f(x) = \ln \left(ae^{bx}\right) = \ln(a) + b \cdot \ln\left(e^{x}\right) = \ln(a) \cdot \underbrace{1}_{f_{1}(x)} + b \cdot \underbrace{x}_{f_{2}(x)}$$

$$\mathbf{A}^{T}\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} 5 & 10 \\ 10 & 30 \end{pmatrix}$$

$$\mathbf{A}^{T} \cdot \widetilde{\mathbf{y}} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} \ln 3 \\ \ln 1 \\ \ln 0.5 \\ \ln 0.2 \\ \ln 0.05 \end{pmatrix} = \begin{pmatrix} -4.1997 \\ -18.1975 \end{pmatrix}$$

$$\mathbf{A}^{T}\mathbf{A}\lambda = \mathbf{A}^{T}\widetilde{\mathbf{y}} \Rightarrow \lambda = \begin{pmatrix} \ln a \\ b \end{pmatrix} = \begin{pmatrix} 1.11968... \\ -0.97981... \end{pmatrix}$$

$$\Rightarrow f(x) = e^{\ln a} \cdot e^{bx} = 3.06388... \cdot e^{-0.97981...x}$$

#### Nicht-Lineare Ausgleichsrechnung

$$f(\lambda_1,\lambda_2,\ldots,\lambda_m,x)=\!\!\ldots$$

Das allgemeine Ausgleichsproblem besteht darin folgendes  ${\it E}$  zu minimieren:

$$E(f) = \sum_{i=1}^{n} (y_{i} - f_{p}(\lambda_{1}, \lambda_{2}, ..., \lambda_{m}, x_{i}))^{2} = \| \begin{pmatrix} y_{1} - f_{p}(\lambda_{1}, \lambda_{2}, ..., \lambda_{m}, x_{1}) \\ y_{2} - f_{p}(\lambda_{1}, \lambda_{2}, ..., \lambda_{m}, x_{2}) \\ \vdots \\ y_{n} - f_{p}(\lambda_{1}, \lambda_{2}, ..., \lambda_{m}, x_{n}) \end{pmatrix} \|_{2}^{2}$$

$$= \| y - f(\lambda) \|_{2}^{2}$$

Die Ableitung von E wird auf E'(f)=0 gesetzt. Dafür kann das Gauss-Newton-Verfahren.

#### **Gauss-Newton-Verfahren**

Das Quadratmittelproblem ist es einen Vektor  $x\in\mathbb{R}^m$  zu finden, welcher die Fehlerfunktional  $E:\mathbb{R}^m\to\mathbb{R}:=||g(x)||_2^2$  minimiert. E gehört zur Funktion  $g:\mathbb{R}^m\to\mathbb{R}^n$ 

g wird nun definiert als  $g(\lambda) := y - f(\lambda)$ .

Um nun für eine nicht lineare Funktionen f eine Lösung zu finden, muss f linearisiert werden:

$$g(\lambda) \approx g(\lambda_0) + Dg(\lambda_0) \cdot (\lambda - \lambda_0)$$

$$Dg(x) = egin{pmatrix} rac{\partial g_1}{\partial x_1}(ec{x}) & rac{\partial g_1}{\partial x_2}(ec{x}) & \dots & rac{\partial g_1}{\partial x_n}(ec{x}) \ rac{\partial g_2}{\partial x_1}(ec{x}) & rac{\partial g_2}{\partial x_2}(ec{x}) & \dots & rac{\partial g_2}{\partial x_n}(ec{x}) \ rac{\partial g_m}{\partial x_1}(ec{x}) & rac{\partial g_m}{\partial x_2}(ec{x}) & \dots & rac{\partial g_m}{\partial x_n}(ec{x}) \end{pmatrix}$$

E kann nun folgendermassen definiert werden:

$$ilde{E}(\lambda) = ||\underbrace{g(\lambda_k)}_{ ilde{y}} + \underbrace{Dg(\lambda_k)}_{- ilde{A}} \cdot \underbrace{(\lambda - \lambda_k)}_{\delta}||_2^2$$

Wobei  $k = 0, 1, \dots$  ist.

Dies kann nun wie eine lineare Gleichung gelöst werden:

$$Dg(\lambda_k)^T Dg(\lambda_k) \delta_k = -Dg(\lambda_k)^T \cdot g(\lambda_k)$$

Oder mit dem QR-Verfahren:

$$egin{aligned} Dg(\lambda_k) &= Q_k R_k \ R_k \lambda_k &= -Q_k^T g(\lambda_k) \end{aligned}$$

Für jedes k wird nun  $ilde{E}$  minimiert, bzw. die obere Gleichung aufgelöst.

Das nächste  $\lambda$  kann wie folgt ausgerechnet wird:

$$\lambda_{k+1} = \lambda_k + \delta_k$$

## Gedämpftes Gauss-Newton-Verfahren

Das gedämpte Gauss-Netwon-Verfahren funktioniert gleich, wie das "normale" Verfahren, nur das  $\delta_k$  verkleinert wird.

Um das  $\delta_k$  für die nächste Iteration zu finden, soll folgende für folgende Formel das minimale  $p\in 0,1,\ldots,p_{max}$  gefunden werden

$$||g\left(\lambda_k+rac{\delta_k}{2^p}
ight)||_2^2<||g(\lambda_k)||_2^2$$

 $\lambda_{k+1}$  wird nun folgendermassen berechnet:

$$\lambda_{k+1} = \lambda_k + rac{\delta_k}{2^p}$$

Falls kein minimales p gefunden werden kann, wird mit p = 0 gerechnet.

# Nichtlineare Gleichungssysteme

#### **Multivariate Funktionen**

#### Skalarwertige Funktion

Eine Funktion, welche mehrere x-Werte nimmt und ein y-Wert zurück gibt.

$$f:\mathbb{R}^n o\mathbb{R} \ y=f(x_1,x_2,\ldots,x_n)$$

#### Vektorwertige Funktion

Eine Funktion, welche mehrere x-Werte nimmt und mehrere y-Werte zurück gegeben

$$f: \mathbb{R}^n o \mathbb{R}^m \ (y_1, y_2, \ldots, y_m) = f(x_1, x_2, \ldots, x_n)$$

## **Explizite und implizite Funktionen**

**Explizite Funktionen** haben die folgende Form:  $y=f(x_1,x_2,\ldots,x_n)$ 

**Implizite Funktionen** haben die folgende Form:  $F(x_1,x_2,\ldots,x_n,y)=0$ 

## **Partielle Ableitung**

Um die Funktion  $z=f(x,y)=2x^2+5y$  abzuleiten, kann nach x und y separat abgeleitet werden:

$$ext{nach } x: rac{\partial f}{\partial x} = 4x + 0$$
  $ext{nach } y: rac{\partial f}{\partial y} = 0 + 5$ 

Diese Ableitung kann folgendermassen visualisiert werden:



# Jacobi-Matrix

Für die Funktion 
$$f:\mathbb{R}^n o\mathbb{R}^m$$
 mit  $ec{y}=f(ec{x})=egin{pmatrix} y_1=f_1(ec{x})\ y_2=f_2(ec{x})\ &\ddots\ y_m=f_m(ec{x}) \end{pmatrix}$  und

 $ec{x} = (x_1, x_2, \dots, x_n)^T$  ist die Jacobi-Matrix das folgende:

$$Df(x) = egin{pmatrix} rac{\partial f_1}{\partial x_1}(ec{x}) & rac{\partial f_1}{\partial x_2}(ec{x}) & \dots & rac{\partial f_1}{\partial x_n}(ec{x}) \ rac{\partial f_2}{\partial x_1}(ec{x}) & rac{\partial f_2}{\partial x_2}(ec{x}) & \dots & rac{\partial f_2}{\partial x_n}(ec{x}) \ rac{\partial f_m}{\partial x_1}(ec{x}) & rac{\partial f_m}{\partial x_2}(ec{x}) & \dots & rac{\partial f_m}{\partial x_n}(ec{x}) \end{pmatrix}$$

In dieser Matrix ist in einer Reihe alle möglichen partiellen Ableitungen für  $f_1(ec{x})$ 

## Linearisierung

Eine Approximation für y=f(x) kann mit  $f(x) pprox f(x_0) + f'(x-x_0)$ .

Dasselbe kann auch für eine multivariante Funktion mithilfe der Jacobi-Matrix getan werden:  $g(\vec{x}) = f(\vec{x_0}) + Df(\vec{x_0}) \cdot (\vec{x} - \vec{x_0})$ 

 $(Df(\vec{x})$  ist die Jacobi-Matrix)

Nach dem Linearisieren wird ein nichtlineare Funktion lineare und kann mit bekannten Verfahren gelöst werde

#### **Newton-Verfahre**

Das Newton-Verfahren erwartet, dass  $f(ec{x}_n) = ec{0}$  gilt.

$$ec{x}_{n+1} = ec{x}_n - (Df(ec{x}_n))^{-1} \cdot f(ec{x}_n)$$

Um nicht die Jacobi-Matrix invertieren zu müssen, kann folgender Trick angewendet werden:

$$ec{\delta}_n := -(Df(ec{x}_n))^{-1} \cdot f(ec{x}_n)$$

Dies kann in folgendes Umgewandlet werden:

$$Df(ec{x}_n)\cdotec{\delta}x_n=-f(ec{x}_n)$$

Die Gleichung  $Df(\vec{x}_n)\cdot\vec{\delta}x_n=-f(\vec{x}_n)$  ist ein lineares Gleichungssystem, welches relativ einfach gelöst werden kann. Danach kann  $\vec{\delta}_n$  anstelle von  $-(Df(\vec{x}_n))^{-1}\cdot f(\vec{x}_n)$  verwendet werden:  $\vec{x}_{n+1}=\vec{x}_n+\vec{\delta}_n$ 

Das Newton-Verfahren konvergiert quadratisch für nah genug an einer Nullstelle  $\overline{x}$  liegende Startwerte, wenn  $Df(\overline{x})$  regulär und f dreimal stetig differenzierbar ist.

Für eine Nichtreguläre Matrix A gilt  $\det(A) 
eq 0$ 

Mögliche Abbruchskriterien sind:

- $\bullet$   $n > n_{max}$
- $||\vec{x}_{n+1} \vec{x}_n|| \leq ||\vec{x}_{n+1}|| \cdot \varepsilon$
- $||\vec{x}_{n+1} \vec{x}_n|| \le \varepsilon$
- $||f(\vec{x}_{n+1})|| \leq \varepsilon$ \$

#### Vereinfachtes Newton-Verfahren

Beim regulären Newton-Verfahren muss bei jeden Iterationsschritt die Jacobi-Matrix  $Df(\vec{x})$  neuberechnen. Beim vereinfachten Newton-Verfahren wird  $Df(\vec{x})$  nur für den Startvektor berechnet.

$$egin{aligned} ec{x}_{n+1} &= ec{x}_n - (Df(ec{x}_0))^{-1} \cdot f(ec{x}_n) \ Df(ec{x}_0) \cdot ec{\delta} x_n &= -f(ec{x}_n) \end{aligned}$$

Wegen dieser Vereinfachung kovergiert das Verfahren nur noch linear gegen die Nullstelle, wenn  $Df(\overline{x})$  nicht regulär ist.

## Gedämptes Newton-Verfahren

Wenn  $Df(ec x_n)$  schlecht konvergiert, dann kann nicht generell erwartet werden, dass  $ec x_{n+1}=ec x_n+ec\delta_n$  nicht gilt.



Für das gedämpfte Newton-Verfahren werden folgende Schritte angewendet:

- 1. Berechne  $\delta_n$  mit  $Df(ec{x}_n)\delta_n = -f(ec{x}_n)$  ausgerechnet
- 2. Finde das minimale  $k \in \{0,1,\dots\}$  für das gilt:  $||f(\vec{x}_n+rac{ec{\delta}_n}{2^k})||_2 < ||f(\vec{x}_n)||_2$
- 3. Wenn kein k gefunden wird, soll mit k=0 weiter gerechnet werden
- 4. Nun soll die Iterationsgleichung  $ec{x}_{n+1}=ec{x}_n+rac{ec{\delta}_n}{2^k}$  verwendet werden# Numerische Itegration

# **Rechteck- & Trapezregel**



Die folgenden formel ziehen ein Rechteck, bzw. Trapez über das ganze Integral.

Das Integral

$$\int_{a}^{b} f(x) \mathrm{d}x$$

kann folgendermassen approximiert werden

$$Rf = f\left(rac{a+b}{2}
ight)\cdot (b-a)$$
  $Tf = rac{f(a)+f(b)}{2}\cdot (b-a)$ 

(Rf = Rechtecksregel, Tf = Trapezregel)

Für die summierte Rechteck- & Trapezregel wird das Integral in kleinere Schritte mit der breite h unterteilt.

$$Rf(h) = h \cdot \sum_{i=0}^{n-1} f(x_i + rac{h}{2})$$
  $Tf(h) = h \cdot \left(rac{f(a) + f(b)}{2} + \sum_{i=1}^{n-1} f(x_i)
ight)$  wobei  $ext{gilt} x_i = a + i \cdot h$   $h = rac{b-a}{n}$ 



#### **Simpsonregel**



Für das lösen eines Segments müssen folgende Formel ausgerechnet werden. Dabei wird das Polynom  $p(x) = \alpha + \beta(x-a) + \gamma(x-a)(x-b)$  verwendet.

$$\alpha = f(a)$$

$$\beta = \frac{f(b) - f(a)}{b - a}$$

$$\gamma = \frac{f(\frac{b+a}{2}) - f(a) - \frac{f(b) - f(a)}{b - a} \cdot (\frac{b-a}{2})}{-(\frac{b-a}{2})^2} = \frac{f(a) - 2f(\frac{b+a}{2}) + f(b)}{2(\frac{b-a}{2})^2}.$$

Da f(x) pprox p(x) gilt, kann das Polynom integriert werden:

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} p(x)dx = \frac{b-a}{6} \left( f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)$$

Die Regel oben haben nur ein Segment benutzt. Wie aber auch bei der Rechtecks- und Trapezregel, kann auch hier die summierte Simpsonregel verwendet werden.

$$Sf(h) = rac{h}{3} \Biggl( rac{1}{2} f(a) + \sum_{i=1}^{n-1} f(x_i) + 2 \sum_{i=1}^n f \left( rac{x_{i-1} + x_i}{2} 
ight) + rac{1}{2} f(b) \Biggr)$$

Die Simpsonsregel kann auch mit dem Rechtecks- und Trapezregel berechnet werden:

$$Sf(h)=rac{1}{3}(Tf(h)+2Rf(h))$$

## Fehlerabschätzung

$$\left| \int_{a}^{b} f(x) dx - Rf(h) \right| \leq \frac{h^{2}}{24} (b - a) \cdot \max_{x \in [a, b]} |f''(x)|$$

$$\left| \int_{a}^{b} f(x) dx - Tf(h) \right| \leq \frac{h^{2}}{12} (b - a) \cdot \max_{x \in [a, b]} |f''(x)|$$

$$\left| \int_{a}^{b} f(x) dx - Sf(h) \right| \leq \frac{h^{4}}{2880} (b - a) \cdot \max_{x \in [a, b]} |f^{(4)}(x)|$$

#### **Gaussformel**

Die folgenden Formel bestimmen das Integral zwischen a und b, wenn es n Stützpunkte gibt. Dabei müssen die Stützpunkte nicht äquidistant sein.

Satz 7.2 [1]: Gauss Formeln für n=1, 2, 3:

• Die Gauss Formeln für 
$$n = 1$$
, 2, 3 für  $\int_{a}^{b} f(x) dx \approx \frac{b-a}{2} \sum_{i=1}^{n} a_{i} f(x_{i})$  lauten:  
•  $n = 1$ :  $G_{1} f = (b-a) \cdot f(\frac{b+a}{2})$   
•  $n = 2$ :  $G_{2} f = \frac{b-a}{2} \left[ f\left(-\frac{1}{\sqrt{3}} \cdot \frac{b-a}{2} + \frac{b+a}{2}\right) + f\left(\frac{1}{\sqrt{3}} \cdot \frac{b-a}{2} + \frac{b+a}{2}\right) \right]$   
•  $n = 3$ :  $G_{3} f = \frac{b-a}{2} \left[ \frac{5}{9} \cdot f\left(-\sqrt{0.6} \cdot \frac{b-a}{2} + \frac{b+a}{2}\right) + \frac{8}{9} \cdot f\left(\frac{b+a}{2}\right) \right]$   
 $+ \frac{b-a}{2} \left[ \frac{5}{9} \cdot f\left(\sqrt{0.6} \cdot \frac{b-a}{2} + \frac{b+a}{2}\right) \right]$ 

## **Romberg Extrapolation**

#### Satz 7.3 [1]: Romberg-Extrapolation

• Für die summierte Trapezregel Tf(h) zur näherungsweisen Berechnung von  $I(f) = \int_a^b f(x) \, dx$  gilt: Sei  $T_{j0} = Tf\left(\frac{b-a}{2^j}\right)$  für j=0,1,...,m. Dann sind durch die Rekursion

$$T_{jk} = \frac{4^k \cdot T_{j+1,k-1} - T_{j,k-1}}{4^k - 1}$$

für k=1,2,...,m und j=0,1,...,m-k Näherungen der Fehlerordnung 2k+2 gegeben. Diese Methode heisst **Romberg-Extrapolation**. Die verwendete Schrittweitenfolge  $h_j=\frac{b-a}{2^j}$  heisst auch Romberg-Folge.

Die Rekursion wird ausgerechnet bis k=0 wird, da dann die Formel  $T_{j0}=Tf\left(rac{b-a}{2^j}
ight)$ 

Da die Werte von f(...) immer in  $T_{j0}$  wiederverwendet werden, kann dies mit der folgenden Formel vereinfacht werden:

$$T_{j0} = rac{1}{2} T_{j-1,0} + h_j \sum_{i=1}^{n_{j-1}} f(a + (2i-1)h_j)$$

Die zweite Spalte  $T_{j1}$  kann mit der Simpson-Regel berechnet werden:

Die folgende Graphik zeigt die oben abgebildete Rekursion:

$$T_{j0}$$
  $T_{j1}$   $T_{j2}$   $T_{j3}$ 
 $T_{00}$ 
 $T_{01} = \frac{4T_{10} - T_{00}}{3}$ 
 $T_{10}$   $T_{02} = \frac{16T_{11} - T_{01}}{15}$ 
 $T_{11} = \frac{4T_{20} - T_{10}}{3}$ 
 $T_{12} = \frac{16T_{21} - T_{11}}{15}$ 
 $T_{21} = \frac{4T_{30} - T_{20}}{3}$ 

Die folgenden zwei Graphen zeigen  $T_{00}$  und  $T_{10}$ . Wenn j um  ${\bf 1}$  höher wird, wird die X-Achse halbiert. Dasselbe gilt für  $T_{30}$  und  $T_{40}$ 

