Assignment Project Exam Help Admeeun Sewagents

Reminder: pset5 self-grading form and pset6 out, due Today 11/19 11:59pm Boston Time Assignment Project Exam Help

Class challenge out Today (will discuss in class)
 Add WeChat powcoder

Assignment Project Exam Help Add WeChat powcoder

Assignment Froject Examples pised https://powcdeteaching

Add WeChat powcoder

Slides credit: Jerry Zhu, Aarti Singh

Assignment Project Exam Help Supervised Learning

Feature Space \mathcal{X}

Label Space \mathcal{Y}

Goal: Construct a predictor $f: \mathcal{X} \to \mathcal{Y}$ to minimize Assignment Project Exam Help

 $R(f) \equiv \mathbb{E}_{XY} [loss(Y, f(X))]$ https://powcoder.com

Optimal predictor (Bayes P(X)) We find a top P(X), so instead learn a good prediction rule from training data $\{(X_i,Y_i)\}_{i=1}^n \overset{\text{iid}}{\sim} P_{XY}(\text{unknown})$

Training data \square Learning algorithm \square Prediction rule $\{(X_i,Y_i)\}_{i=1}^n$

Labeled

Assignment Project Exam Help Labeled and Unlabeled data

"Crystal" "Needle" "Empty"

Assignment Project Exam Help

"0" "1" "2" ...

Add WeChat powcoder

Human expert/

Special equipment/

Experiment

"Sports"

"News"

"Science"

. .

Unlabeled data, X_i

Labeled data, Y_i

Cheap and abundant!

Expensive and scarce!

Assignment Project Exam Help Free-of-cost labels?

Luis von Ahn: Games with a purpose (ReCaptcha)

Assignment Project Exam Help Semi-Supervised learning

Training data \square Learning algorithm \square Prediction rule $\{(X_i,Y_i)\}_{i=1}^n$ Assignment Project Exam Help $\widehat{f}_{n,m}$

Supervised learning (SL) https://powcoder.com

Labeled data $\{X_i, Y_i\}_{i=1}^{M}$ WeChat powcoder

"Crystal"

 X_i

 Y_i

Semi-Supervised learning (SSL)

Labeled data $\{X_i, Y_i\}_{i=1}^n$ and Unlabeled data $\{X_i\}_{i=1}^m$

Goal: Learn a better prediction rule than based on labeled data alone.

Assignment Project Exam Help Semi-Supervised learning in Humans

Cognitive science

Assignment Project Exam Help Computational model of how humans learn from labeled and unlabeled data.

https://powcoder.com

- https://powcoder.com
 concept learning in children: x=animal, y=concept (e.g., dog)
- Daddy points to a brown Win Chatnes we oder!"
- Children also observe animals by themselves

Assignment Project Exam Help Can unlabeled data help?

- Positive labeled data
- Negative labeled data
- Unlabeled data

Assume each class is a coherent group (e.g. Gaussian)

Then unlabeled data can help identify the boundary more accurately.

Assignment Project Exam Help Can unlabeled data help?

Unlabeled Images

Labels "0" "1" "2" ...

This embedding can be done by manifold learning algorithms, e.g. tSNE

"Similar" data points have "similar" labels

Assignment Project Exam Help Add WeChat powcoder

Assignment Project Exam Help Algorithms

https://powcoder.com

Add WeChat powcoder Learning

Slides credit: Jerry Zhu, Aarti Singh

Assignment Project Exam Help Some SSL Algorithms

- Self-Training
- Generative Anethiodemintule models Exam Help
- Graph-based methods://powcoder.com
- Co-Training
 Add WeChat powcoder
- Semi-supervised SVM
- Many others

Assignment Project Exam Help Add Wellat Poweoder

- instance \mathbf{x} , label y
- learner $f: \mathcal{A}$ Assignment Project Exam Help
- labeled data $(X_l, Y_l)_{t \overline{p}s} = \{(X_l, Y_l)_{t \overline{p}s}\}$
- unlabeled data $X_u = \{\mathbf{x}_{l+1:l+u}\}$, available during training. Usually $l \ll u$. Let n = l + dd WeChat powcoder
- test data $\{(x_{n+1...}, y_{n+1...})\}$, not available during training

Assignment Project Exam Help Add Welf-training

Our first SSL algorithm:

```
Input: labeled data \{(\mathbf{x}_i, y_i)\}_{i=1}^l unlabeled data \{\mathbf{x}_i\}_{j=l+1}^{l+u}.

1. Initially, let L = \{(\mathbf{x}_i, y_i)\}_{i=1}^l and U = \{\mathbf{x}_j\}_{j=l+1}^{l+u}.

2. Repeat: https://powcoder.com

3. Train f from L using supervised learning.

4. Apply f to the unitable learning.

5. Remove a subset S from U; add \{(\mathbf{x}, f(\mathbf{x})) | \mathbf{x} \in S\} to L.
```

Self-training is a wrapper method

- ullet the choice of learner for f in step 3 is left completely open
- good for many real world tasks like natural language processing
- but mistake by f can reinforce itself

Assignment Project Exam Help Self-training Example

Propagating 1-NN

Input: labeled data $\{(\mathbf{x}_i, y_i)\}_{i=1}^l$, unlabeled data $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$, distance function $d(\mathbf{x}_i, y_i)\}_{i=1}^l$ and $d(\mathbf{x}_i, y_i)\}_{i=1}^l$ and $d(\mathbf{x}_i, y_i)\}_{i=1}^l$. Initially, let $d(\mathbf{x}_i, y_i)\}_{i=1}^l$ and $d(\mathbf{x}_i, y_i)\}_{i=1}^l$

- 2. Repeat until Aiden Chat powcoder
- 3. Select $\mathbf{x} = \operatorname{argmin}_{\mathbf{x} \in U} \min_{\mathbf{x}' \in L} d(\mathbf{x}, \mathbf{x}')$.
- 4. Set $f(\mathbf{x})$ to the label of \mathbf{x} 's nearest instance in L. Break ties randomly.
- 5. Remove \mathbf{x} from U; add $(\mathbf{x}, f(\mathbf{x}))$ to L.

PropagatiAgsighmentsProjecthExamrHelpit works

Propagating Assignment Project Examp Helpdoesn't

Assignment Project Exam Help Related: Cluster and Label

```
Input: (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_l, y_l), \mathbf{x}_{l+1}, \dots, \mathbf{x}_{l+u}, a clustering algorithm \mathcal{L}. Project Example palgorithm \mathcal{L}
```

- 1. Cluster $\mathbf{x}_1, \ldots, \mathbf{x}_{l+u}$ using \mathcal{A} .
- 2. For each cluster, leth the the day elections in it:
- 3. Learn a supervised predictor from S: $f_S = \mathcal{L}(S)$.
- 4. Apply f_S to all unlabeded Wsearbestipowiscoder.

Output: labels on unlabeled data y_{l+1}, \ldots, y_{l+u} .

But again: **SSL** sensitive to assumptions—in this case, that the clusters coincide with decision boundaries. If this assumption is incorrect, the results can be poor.

Assignment Project Exam Help Add Wechar powered.

Assumptions

- feature split $x = [x^{(1)}; x^{(2)}]$ exists
- $x^{(1)}$ or $x^{(2)}$ alarsignment Project Exam Hespier

https://powcoder.com

Add WeChat powcoder view

Assignment Project Exam Help

Coatraining Algorithm

Co-training (Blum & Mitchell, 1998) (Mitchell, 1999) assumes that

- (i) features can be split into two sets;
- (ii) each sub-feature set is sufficient to train a good classifier.

Assignment Project Exam Help

- Initially two separate classifiers are trained with the labeled data, on the two sub-featuletters: represtive ther.com
- Each classifier the describes the diplowed deta, and 'teaches' the other classifier with the few unlabeled examples (and the predicted labels) they feel most confident.
- Each classifier is retrained with the additional training examples given by the other classifier, and the process repeats.

Assignment Project Exam Help

Co-training Algorithm

Blum & Mitchell'98

Input: labeled data $\{(\mathbf{x}_i, y_i)\}_{i=1}^l$, unlabeled data $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$ each instance has two views $x_i = \begin{bmatrix} x_i^{(1)} & x_i^{(2)} \end{bmatrix}$ and a learning speed k.

- 1. let $L_1 = L_2 = \{(xhttps://pow.coder.com$
- Repeat until unlabeled data is used up:

 Train view-1 $f^{(1)}$ from L_1 , view-2 $f^{(2)}$ from L_2 . 3.
- Classify unlabeled data with $f^{(1)}$ and $f^{(2)}$ separately. 4.
- Add $f^{(1)}$'s top k most-confident predictions $(\mathbf{x}, f^{(1)}(\mathbf{x}))$ to L_2 . 5. Add $f^{(2)}$'s top k most-confident predictions $(\mathbf{x}, f^{(2)}(\mathbf{x}))$ to L_1 . Remove these from the unlabeled data.

Assignment Project Exam Help Semi-Supervised Learning

- Generative methods
- Graph-based methods

Assignment Project Exam Help

Co-Training

https://powcoder.com

Semi-Supervised SVMs

Add WeChat powcoder

Many other methods

SSL algorithms can use unlabeled data to help improve prediction accuracy if data satisfies appropriate assumptions

Assignment Project Exam Help Add WeChat powcoder

Practical Advice for Applying ML

Machine learning system design; feature engineering; feature pre-processing learning with large dates for the processing of the system of the

https://powcoder.com

Add WeChat powcoder