Introduction to Statistics Theory (Fall 2018)

Midterm 1

Name:	
-------	--

Results you may use directly:

- If $Y \sim \text{Poisson}(\lambda)$, then $\mathbb{E}Y = \text{var}(Y) = \lambda$.
- If $Y \sim Gamma(\alpha, \beta)$ with $f(y) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$, then $\mathbb{E}(Y) = \alpha/\beta$, $var(Y) = \alpha/\beta^2$ and $cY \sim Gamma(\alpha, \beta/c)$.
- If $Y \sim \mathcal{X}_{\nu}^2$, then $Y \sim Gamma(\nu/2, 1/2)$.
- 1. If Y_1, Y_2, \ldots, Y_n are iid from a Poisson distribution with parameter $0 < \lambda < \infty$, suppose we have a statistic $\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$.
 - (a) Find the mean and variance of \bar{Y} . (10 pt)
- (b) When n is large, can we use central limit theorem to approximate the distribution of \bar{Y} ? Why or why not? (5 pt)
 - (c) When n is large, construct an approximate two-sided 95% confidence interval for λ . (5 pt)

(9)
$$\angle \overline{Y} = \angle \overline{Y} = \lambda$$

 $\overline{Y} = \frac{\overline{Y} = \lambda}{n} = \frac{\lambda}{n}$

(b) Since
$$Y_1 - Y_n$$
 are ind and $\chi < \infty$.

 $\sqrt{n} = \frac{\overline{Y} - \chi}{\sqrt{\chi}} = \frac{\overline{Y} - \chi}{\sqrt{\chi}} = \frac{1}{\sqrt{\chi}} = \frac{\chi} = \frac{1}{\sqrt{\chi}} = \frac{1}{\sqrt{\chi}} = \frac{1}{\sqrt{\chi}} = \frac{1}{\sqrt{\chi}$

(c) At large
$$n$$
 \sqrt{N}
 \sqrt{N}
 \sqrt{N}

As we don't know \sqrt{N} , we use \sqrt{N} as an extrage therefore an approximate 95% confidence interval N
 \sqrt{N}
 \sqrt{N}

2. If Y_1, Y_2, \ldots, Y_n are iid from a certain distribution with mean μ and variance σ^2 , assuming an even sample size n = 2k, consider an estimator

$$\hat{\sigma}^2 = \frac{1}{k} \sum_{i=1}^k (y_{2i} - y_{2i-1})^2$$

- (a) Find $\mathbb{E}\hat{\sigma}^2$. (10 pt)
- (b) Find an unbiased estimator for σ^2 by multiplying a constant to $\hat{\sigma}^2$ (i.e. in the form of $c\hat{\sigma}^2$, find c). (5 pt)

(a)
$$E(\chi_{2i} - \chi_{2i-1})^2$$

= $E(\chi_{2i} - \chi_{2i-1})^2$
= $E(\chi_{2i} - \chi_{2i-1})^2$
Since $E(\chi_{2i})^2 = E(\chi_{2i-1})^2 = 6^2 + M^2$
due to ild, $E(\chi_{2i})^2 = E(\chi_{2i})^2 = M^2$
 $\Rightarrow E(\chi_{2i} - \chi_{2i-1})^2 = 26^2$
 $\Rightarrow E(\chi_{2i} - \chi_{2i-1})^2 = 26^2$
 $\Rightarrow E(\chi_{2i} - \chi_{2i-1})^2 = 26^2$

(b).
$$\mathbb{Z} \neq \hat{G}^2 = \hat{G}^2.$$

$$\Rightarrow C = \frac{1}{2}.$$

3. If $Y_1, Y_2, \dots, Y_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$, assume that μ is known and we are estimating σ^2 . Consider two estimators

$$W_1 = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \mu)^2$$

$$W_2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

- (a) Find the distribution for W_1 . You may state the related theorem without proving it. (10 pt)
- (b) Find the distribution for W_2 . You may state the related theorem without proving it. (10 pt)
- (b) Find the relative efficiency $R.E.(W_1, W_2)$. (5 pt)

(c) some
$$\frac{\sqrt{1-M}}{6} N N(0,1)$$

$$\frac{N(\sqrt{1-M})^2}{6^2} N X_n \qquad \text{equivalent to Canna}(\frac{n}{2},\frac{1}{2})$$

$$\Rightarrow W_1 = \frac{6^2}{n} \cdot \frac{n}{2} \frac{(n-h)^2}{6^2} N \text{ Garna}(\frac{n}{2},\frac{n}{26^2})$$

(b). W_2 is the sample varience for an ind normal propulation

$$\Rightarrow \frac{(n-1)W_2}{6^2} N X_n^2 - \frac{n}{26^2}$$

$$\Rightarrow W_2 \sim \text{ Game}(\frac{n-1}{2},\frac{n-1}{26^2})$$

(c) $Var(W_1) = \frac{n}{26^2} = \frac{n}{26^2}$

$$Var(W_2) = \frac{n}{26^2} = \frac{n}{26^2}$$

$$\Rightarrow R.E.(W_1,W_2) = 3 \frac{Var(W_2)}{(Var(W_1))} = \frac{n}{n-1}$$