APPENDIX: STRUCTURE OF 2-ISOGENY AND 3-ISOGENY GRAPHS IN SMALL CHARACTERISTIC

TAHA HEDAYAT, SARAH ARPIN, AND RENATE SCHEIDLER

We provide descriptions of the spine for the primes p=2,3,5,7,11,13, which are exceptions to our structure theorems. We also provide a description of the 2-isogeny graphs over \mathbb{F}_p . These small primes yield special cases in our structure theorems due to the collision of exceptional j-invariants over \mathbb{F}_p .

Furthermore, we provide descriptions for a subset of the special-case primes for the 3-isogeny graph structure theorems: namely $\mathcal{P}_3 = \{5,7,11,13,17,19,23,29,31,41,47,59,61,71,79,89,101,13\}$ For missing entries in this file, we refer the reader to Graph_Viz.ipynb.

0.1. p = 2. There is a unique supersingular j-invariant over $\overline{\mathbb{F}}_2$, namely j = 0. Let $E: y^2 + y = x^3$ denote a representative of this isomorphism class. The size of the automorphism group of E is 24.

Since E is supersingular, $E[2] = \mathcal{O}_E$, so there are no degree-2 isogenies of E and the isogeny graph $\mathcal{G}_2(\overline{\mathbb{F}}_2)$ consists of a single vertex and no edges.

The 3-torsion points of E are all defined over \mathbb{F}_{2^2} and since there is a single vertex in the graph, these four edges are all loops.

0.2. p = 3. There is a unique supersingular j-invariant over $\overline{\mathbb{F}}_3$, namely j = 0. Let $E: y^2 = x^3 + x$ denote a representative of this isomorphism class. The size of the automorphism group of E is 12.

The 2-torsion points of E are all defined over \mathbb{F}_{3^2} and since there is a single vertex in the graph, these three edges are all loops.

Since E is supersingular, $E[3] = \mathcal{O}_E$, so there are no degree-3 isogenies of E and the isogeny graph $\mathcal{G}_3(\overline{\mathbb{F}}_3)$ consists of a single vertex and no edges.

0.3. p = 5. The $\mathcal{G}_{\ell}(\mathbb{F}_5)$ vertices:

- \bullet There are 2 isomorphism classes of Elliptic Curves, both of which have j-invariant 0
- Choose $E_0: y^2 = x^3 + 1$ as the representative of an isomorphism class of elliptic curves with j-invariant 0.

- Choose $E_0^t: y^2 = x^3 + 2$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 0.
- all of the 2-torsion points of the vertices are defined over \mathbb{F}_{5^2} .
- all of the 3-torsion points of the vertices are defined over \mathbb{F}_{5^2}

The $\mathcal{G}_2(\mathbb{F}_5)$ edges:

- There is one outgoing 2-isogeny of E_0 , namely the isogeny $\phi_0: E_0 \to E_0^t$ generated by the 2-torsion point (4,0) in E_0 .
- There is one outgoing 2-isogeny of E_0^t , namely the isogeny $\phi_0^t: E_0^t \to E_0$ generated by the 2-torsion point (2,0) in E_0^2 .

The $\mathcal{G}_3(\mathbb{F}_5)$ edges:

Let z_2 be a number such that $[\mathbb{F}_5(z_2):\mathbb{F}_5]=2$.

- There are two outgoing 3-isogenies of E_0 , namely the isogenies
 - $-\psi_{0,1}: E_0 \to E_0^t$, generated by the 3-torsion point (0,1) in E_0
 - $-\psi_{0,2}: E_0 \to E_0^t$, generated by the 3-torsion point $(1, z_2 + 2)$ in E_0
- there are two outgoing 3-isogenies of E_0^t , namely the isogenies
 - $-\psi_{0,1}^t: E_0^t \to E_0$, generated by the 3-torsion point $(0, z_2 + 2)$ in E_0^t . $-\psi_{0,2}^t: E_0^t \to E_0$, generated by the 3-torsion point (3,2) in E_0^t .

How the vertices of $\mathcal{G}_{\ell}(\mathbb{F}_5)$ change when going to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_5)$:

• E_0 and E_0^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 0, denoted [0].

How the edges of $\mathcal{G}_2(\mathbb{F}_5)$ change when going to $\mathcal{G}_2(\overline{\mathbb{F}}_5)$:

- ϕ_0 and ϕ_0^t become equivalent isogenies and hence become one edge of the
- [0] attains two new isogeny equivalence classes of the form ([0], [0]).

How the edges of $\mathcal{G}_3(\mathbb{F}_5)$ change when going to $\mathcal{G}_3(\overline{\mathbb{F}}_5)$:

- $\psi_{0,1}$ and $\psi_{0,1}^t$ become equivalent isogenies and hence become one edge of the form ([0], [0])
- $\psi_{0,2}$ and $\psi_{0,2}^t$ become equivalent isogenies and hence become one edge of the form ([0], [0])
- [0] attains two new isogeny equivalence classes of the form ([0], [0]).

The $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_5)$ vertices:

- There is one supersingular isomorphism class of elliptic curves, namely j =
- $E_0: y^2 = x^3 + 1$ is a representative of the isomorphism class j = 0

The $\mathcal{G}_2(\overline{\mathbb{F}}_5)$ edges:

• The isomorphism class [0] has three loops.

The $\mathcal{G}_3(\overline{\mathbb{F}}_5)$ edges:

• The isomorphism class [0] has four loops.

0.4. p=7. The $\mathcal{G}_{\ell}(\mathbb{F}_7)$ vertices:

- There are 2 isomorphism classes of Elliptic Curves, both of which have
- Choose $E_6: y^2 = x^3 + x$ as the representative of an isomorphism class of elliptic curves with j-invariant 6.

- Choose $E_6^t: y^2 = x^3 + 3x$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 6.
- all of the 2-torsion points of the vertices are defined over \mathbb{F}_{7^2} .
- all of the 3-torsion points of the vertices are defined over \mathbb{F}_{7^4}

The $\mathcal{G}_2(\mathbb{F}_7)$ edges:

- There is one outgoing 2-isogeny of E_6 , namely the isogeny $\phi_6: E_6 \to E_6^t$ generated by the 2-torsion point (0,0) in E_6 .
- There are three outgoing 2-isogeny of E_6^t , namely the isogenies
 - $-\phi_{6,1}^t: E_6^t \to E_6$ generated by the 2-torsion point (0,0) in E_6^2 .
 - $-\phi_{6,2}^{t'}: E_6^t \to E_6^t$ generated by the 2-torsion point (2,0) in E_6^2 .
 - $-\phi_{6,3}^t: E_6^t \to E_6^t$ generated by the 2-torsion point (5,0) in E_6^2 .

The $\mathcal{G}_3(\mathbb{F}_7)$ edges:

- There are no outgoing 3-isogenies of E_6 in this graph.
- There are no outgoing 3-isogenies of E_6^t in this graph.

How the vertices of $\mathcal{G}_{\ell}(\mathbb{F}_7)$ change when going to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_7)$:

• E_6 and E_6^t become isomorphic to each other to make the equivalence class of isogenies with *j*-invariant 6, denoted [6].

How the edges of $\mathcal{G}_2(\mathbb{F}_7)$ change when going to $\mathcal{G}_2(\overline{\mathbb{F}}_7)$:

- ϕ_6 and $\phi_{6,1}^t$ become equivalent isogenies and hence become one edge of the form ([6], [6]).
- $\phi_{6,2}^t$ does not become equivalent to any other isogenies.
- $\phi_{6,3}^t$ does not become equivalent to any other isogenies.
- No new isogenies are added to the graph.

How the edges of $\mathcal{G}_3(\mathbb{F}_7)$ change when going to $\mathcal{G}_3(\overline{\mathbb{F}}_7)$:

• [6] attains four new isogeny equivalence classes of the form ([6], [6]).

The $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_7)$ vertices:

- There is one supersingular isomorphism class of elliptic curves, namely j=6.
- $E_6: y^2 = x^3 + x$ is a representative of the isomorphism class j = 6

The $\mathcal{G}_2(\overline{\mathbb{F}}_7)$ edges:

• The isomorphism class [6] has three loops.

The $\mathcal{G}_3(\overline{\mathbb{F}}_7)$ edges:

• The isomorphism class [6] has four loops.

0.5. p = 11. The $\mathcal{G}_{\ell}(\mathbb{F}_{11})$ vertices:

- There are four isomorphism classes of elliptic curves
- Two of the isomorphism classes of elliptic curves have j-invariant 0.
- \bullet The other Two isomorphism classes of elliptic curves have j-invariant 1.
- Choose $E_0: y^2 = x^3 + 1$ as the representative of an isomorphism class of elliptic curves with j-invariant 0.
- Choose $E_0^t: y^2 = x^3 + 7$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 0.
- Choose $E_1: y^2 = x^3 + x$ as the representative of an isomorphism class of elliptic curves with j-invariant 1.

- Choose $E_1^t: y^2 = x^3 + 7x$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 1.
- all of the 2-torsion points of the vertices are defined over \mathbb{F}_{11^2} .
- all of the 3-torsion points of the vertices are defined over \mathbb{F}_{11^2}

The $\mathcal{G}_2(\mathbb{F}_{11})$ edges:

- There is one outgoing 2-isogeny of E_0 , namely the isogeny $\phi_0: E_0 \to E_1^t$ generated by the 2-torsion point (10,0) in E_0 .
- There is one outgoing 2-isogeny of E_0^t , namely the isogeny $\phi_0^t: E_0^t \to E_1^t$ generated by the 2-torsion point (5,0) in E_0^t .
- There is one outgoing 2-isogeny of E_1 , namely the isogeny $\phi_1: E_1 \to E_1^t$ generated by the 2-torsion point (0,0) in E_1 .
- There are three outgoing 2-isogeny of E_1^t , namely the isogenies
 - $-\phi_{1,1}^t: E_1^t \to E_1$ generated by the 2-torsion point (0,0) in E_1^2 .
 - $-\phi_{1,2}^t: E_1^t \to E_0$ generated by the 2-torsion point (2,0) in E_1^2 .
 - $-\phi_{1.3}^t: E_1^t \to E_1^t$ generated by the 2-torsion point (8,0) in E_1^2 .

The $\mathcal{G}_3(\mathbb{F}_{11})$ edges:

Let z_2 be a number such that $[\mathbb{F}_{11}(z_2) : \mathbb{F}_{11}] = 2$.

- There are two outgoing 3-isogeny of E_0 , namely the isogenies
 - $-\psi_{0,1}: E_0 \to E_0^t$ generated by the 3-torsion point (0,1) in E_0 .
 - $-\psi_{0,2}: E_0 \to E_1$ generated by the 3-torsion point $(6,2z_2+7)$ in E_0 .
- There are two outgoing 3-isogeny of E_0^t , namely the isogenies
 - $-\psi_{0,1}^t: E_0^t \to E_0$ generated by the 3-torsion point $(0,5z_2+1)$ in E_0^t . $-\psi_{0,2}^t: E_0^t \to E_1$ generated by the 3-torsion point (4,2) in E_0^t .
- There are two outgoing 3-isogeny of E_1 , namely the isogenies
 - $-\psi_{1,1}: E_1 \to E_0$ generated by the 3-torsion point (5,3) in E_1 .
 - $-\psi_{1,2}: E_1 \to E_0^t$ generated by the 3-torsion point $(6, z_2 + 9)$ in E_1 .
- There are two outgoing 3-isogeny of E_1^t , namely the isogenies
 - $-\psi_{1,1}^t: E_1^t \to E_1^t$ generated by the 3-torsion point (3,2) in E_1^t .
 - $-\psi_{12}^t: E_1^t \to E_1^t$ generated by the 3-torsion point $(8,3z_2+5)$ in E_1^t .

How the vertices of $\mathcal{G}_{\ell}(\mathbb{F}_{11})$ change when going to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{11})$:

- E_0 and E_0^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 0, denoted [0].
- E_1 and E_1^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 1, denoted [1].

How the edges of $\mathcal{G}_2(\mathbb{F}_{11})$ change when going to $\mathcal{G}_2(\overline{\mathbb{F}}_{11})$:

- ϕ_0 and ϕ_0^t become equivalent isogenies and hence become one edge of the form ([0], [1]).
- ϕ_1 and $\phi_{1,1}^t$ become equivalent isogenies and hence become one edge of the form ([1],[1]).
- $\phi_{1,2}^t$ does not become equivalent to any other isogenies.
- $\phi_{1,3}^t$ does not become equivalent to any other isogenies.
- Two new isogeny equivalence classes are added to this graph of the form ([0],[1]).

How the edges of $\mathcal{G}_3(\mathbb{F}_{11})$ change when going to $\mathcal{G}_3(\overline{\mathbb{F}}_{11})$:

- $\psi_{0,1}$ and $\psi_{0,1}^t$ become equivalent isogenies and hence become one edge of the form ([0], [0]).
- $\psi_{0,2}$ and $\psi_{0,2}^t$ become equivalent isogenies and hence become one edge of the form ([0], [1]).
- $\psi_{1,1}$ does not become equivalent to any other isogenies.
- $\psi_{1,2}$ does not become equivalent to any other isogenies.
- $\psi_{1,1}^t$ does not become equivalent to any other isogenies.
- $\psi_{1,2}^t$ does not become equivalent to any other isogenies.
- Two new isogeny equivalence classes are added to this graph of the form ([0],[1]).

The $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{11})$ vertices:

- There are 2 supersingular isomorphism class of elliptic curves, namely j=0 and j=1.
- $E_0: y^2 = x^3 + 1$ is a representative of the isomorphism class j = 0
- $E_1: y^2 = x^3 + x$ is a representative of the isomorphism class j = 1.

The $\mathcal{G}_2(\overline{\mathbb{F}}_{11})$ edges:

- There are three edges of the form ([0], [1]).
- There are two edges of the form ([1], [0]).
- There is one edges of the form ([1], [1]).

The $\mathcal{G}_3(\overline{\mathbb{F}}_{11})$ edges:

- There is one edge of the form ([0], [0]).
- There are three edges of the form ([0], [1]).
- There are two edges of the form ([1], [0]).
- There are two edges of the form ([1], [1]).

0.6. p = 13. The $\mathcal{G}_{\ell}(\mathbb{F}_{13})$ vertices:

- There are two isomorphism classes of elliptic curves, both of which have *j*-invariant 5.
- Choose $E_5: y^2 = x^3 + x + 4$ as the representative of an isomorphism class of elliptic curves with j-invariant 5.
- Choose $E_5^t: y^2 = x^3 + 10x + 7$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 5.
- all of the 2-torsion points of the vertices are defined over \mathbb{F}_{13^2} .
- all of the 3-torsion points of the vertices are defined over \mathbb{F}_{13^4}

The $\mathcal{G}_2(\mathbb{F}_{13})$ edges:

- There is one outgoing 2-isogeny of E_5 , namely the isogeny $\phi_5: E_5 \to E_5^t$ generated by the 2-torsion point (10,0) in E_5 .
- There is one outgoing 2-isogeny of E_5^t , namely the isogeny $\phi_5^t: E_5^t \to E_5$ generated by the 2-torsion point (7,0) in E_5^t .

The $\mathcal{G}_3(\mathbb{F}_{13})$ edges:

• There are no isogenies in this graph

How the vertices of $\mathcal{G}_{\ell}(\mathbb{F}_{13})$ change when going to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{13})$:

• E_5 and E_5^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 5, denoted [5].

How the edges of $\mathcal{G}_2(\mathbb{F}_{13})$ change when going to $\mathcal{G}_2(\overline{\mathbb{F}}_{13})$:

- ϕ_5 and ϕ_5^t become equivalent isogenies and hence become one edge of the form ([5], [5]).
- Two new isogeny equivalence classes are added to this graph of the form ([5], [5]).

How the edges of $\mathcal{G}_3(\mathbb{F}_{13})$ change when going to $\mathcal{G}_3(\overline{\mathbb{F}}_{13})$:

• Four new isogeny equivalence classes are added to this graph of the form

The $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{13})$ vertices:

- There is one supersingular isomorphism class of elliptic curves, namely j=5
- $E_5: y^2 = x^3 + x + 4$ is a representative of the isomorphism class j = 5

The $\mathcal{G}_2(\overline{\mathbb{F}}_{13})$ edges:

• There are three edges of the form ([5], [5]).

The $\mathcal{G}_3(\overline{\mathbb{F}}_{13})$ edges:

• There are four edges of the form ([5], [5]).

0.7. p = 17. The $\mathcal{G}_{\ell}(\mathbb{F}_{17})$ vertices:

- There are four isomorphism classes of elliptic curves
- Two of the isomorphism classes of elliptic curves have *j*-invariant 0.
- The other two isomorphism classes of elliptic curves have *j*-invariant 8.
- Choose $E_0: y^2 = x^3 + 1$ as the representative of an isomorphism class of elliptic curves with j-invariant 0.
- Choose $E_0^t: y^2 = x^3 + 6$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 0.
- Choose $E_8: y^2 = x^3 + 4x + 9$ as the representative of an isomorphism class of elliptic curves with j-invariant 8.
- Choose $E_8^t: y^2 = x^3 + 15x + 3$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 8.
- all of the 3-torsion points of the vertices are defined over \mathbb{F}_{17^2}

The $\mathcal{G}_3(\mathbb{F}_{17})$ edges:

Let z_2 be a number such that $[\mathbb{F}_{17}(z_2) : \mathbb{F}_{17}] = 2$.

- There are two outgoing 3-isogeny of E_0 , namely the isogenies
 - $-\phi_{0,1}: E_0 \to E_0^t$ generated by the 3-torsion point (0,1) in E_0 .
 - $-\phi_{0,2}: E_0 \to E_8$ generated by the 3-torsion point $(4,7z_2+5)$ in E_0 .
- There are two outgoing 3-isogeny of E_0^t , namely the isogenies
 - $-\phi_{0,1}^t: E_0^t \to E_0$ generated by the 3-torsion point $(0, 2z_2 + 16)$ in E_0^t . $-\phi_{0,2}^t: E_0^t \to E_8^t$ generated by the 3-torsion point (3,4) in E_0^t .
- There are two outgoing 3-isogeny of E_8 , namely the isogenies
 - $-\phi_{8,1}: E_8 \to E_8^t$ generated by the 3-torsion point $(1,7z_2+5)$ in E_8 .
 - $-\phi_{8,2}: E_8 \to E_0$ generated by the 3-torsion point (14, 2) in E_8 .
- There are two outgoing 3-isogeny of E_8^t , namely the isogenies
 - $-\phi_{8,1}^t: E_8^t \to E_0^t$ generated by the 3-torsion point $(2, 4z_2 + 15)$ in E_8^t . $-\phi_{8,2}^t: E_8^t \to E_8$ generated by the 3-torsion point (5,4) in E_8^t .

How the vertices of $\mathcal{G}_{\ell}(\mathbb{F}_{17})$ change when going to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{17})$:

• E_0 and E_0^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 0, denoted [0].

• E_8 and E_8^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 8, denoted [8].

How the edges of $\mathcal{G}_3(\mathbb{F}_{17})$ change when going to $\mathcal{G}_3(\overline{\mathbb{F}}_{17})$:

- $\phi_{0,1}$ and $\phi_{0,1}^t$ become equivalent isogenies and hence become one edge of the form ([0], [0]).
- $\phi_{0,2}$ and $\phi_{0,2}^t$ become equivalent isogenies and hence become one edge of the form ([0], [8]).
- $\phi_{8,1}$ and $\phi_{8,2}^t$ become equivalent isogenies and hence become one edge of the form ([8], [8]).
- $\phi_{8,2}$ and $\phi_{8,1}^t$ become equivalent isogenies and hence become one edge of the form ([8], [0]).
- Two new isogeny equivalence classes are added to this graph of the form ([0], [8]).
- Two new isogeny equivalence classes are added to this graph of the form ([8], [8]).

The $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{17})$ vertices:

- There are 2 supersingular isomorphism class of elliptic curves, namely j=0 and j=8.
- $E_0: y^2 = x^3 + 1$ is a representative of the isomorphism class j = 0
- $E_1: y^2 = x^3 + 4x + 9$ is a representative of the isomorphism class j = 8.

The $\mathcal{G}_3(\overline{\mathbb{F}}_{17})$ edges:

- There is one edge of the form ([0], [0]).
- There are three edges of the form ([0], [8]).
- There is one edge of the form ([8], [0]).
- There are three edges of the form ([8], [8]).

0.8. p = 19. The $\mathcal{G}_{\ell}(\mathbb{F}_{19})$ vertices:

- There are four isomorphism classes of elliptic curves
- Two of the isomorphism classes of elliptic curves have j-invariant 7.
- The other two isomorphism classes of elliptic curves have j-invariant 18.
- Choose $E_7: y^2 = x^3 + 3x + 16$ as the representative of an isomorphism class of elliptic curves with j-invariant 7.
- Choose $E_7^t: y^2 = x^3 + 12x + 14$ as the representative of the isomorphism class of the twists elliptic curves with *j*-invariant 7.
- Choose $E_{18}: y^2 = x^3 + x$ as the representative of an isomorphism class of elliptic curves with j-invariant 18.
- Choose $E_{18}^t: y^2 = x^3 + 8x$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 18.
- all of the 3-torsion points of the vertices are defined over \mathbb{F}_{19^4}

The $\mathcal{G}_3(\mathbb{F}_{19})$ edges:

• There are no edges in this graph

How the vertices of $\mathcal{G}_{\ell}(\mathbb{F}_{19})$ change when going to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{19})$:

- E_7 and E_7^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 7, denoted [7].
- E_{18} and E_{18}^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 18, denoted [18].

How the edges of $\mathcal{G}_3(\mathbb{F}_{19})$ change when going to $\mathcal{G}_3(\overline{\mathbb{F}}_{19})$:

- Four new isogeny equivalence classes are added to this graph of the form ([18], [7]).
- Two new isogeny equivalence classes are added to this graph of the form ([7], [18]).
- Two new isogeny equivalence classes are added to this graph of the form ([7], [7]).

The $\mathcal{G}_{\ell}(\mathbb{F}_{19})$ vertices:

- There are 2 supersingular isomorphism class of elliptic curves, namely j = 7 and j = 18.
- $E_7: y^2 = x^3 + 3x + 16$ is a representative of the isomorphism class j = 7
- $E_{18}: y^2 = x^3 + x$ is a representative of the isomorphism class j = 18.

The $\mathcal{G}_3(\overline{\mathbb{F}}_{19})$ edges:

- There are four edges of the form ([18], [7]).
- There are two edge of the form ([7], [18]).
- There are two edges of the form ([7], [7]).

0.9. p = 23. The $\mathcal{G}_{\ell}(\mathbb{F}_{23})$ vertices:

- There are six isomorphism classes of elliptic curves
- Two of the isomorphism classes of elliptic curves have *j*-invariant 0.
- Two of the isomorphism classes of elliptic curves have *j*-invariant 3.
- The last two isomorphism classes of elliptic curves have *j*-invariant 19.
- Choose $E_0: y^2 = x^3 + 1$ as the representative of an isomorphism class of elliptic curves with j-invariant 0.
- Choose $E_0^t: y^2 = x^3 + 20$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 0.
- Choose $E_3: \bar{y}^2 = x^3 + x$ as the representative of an isomorphism class of elliptic curves with j-invariant 3.
- Choose $E_3^t: y^2 = x^3 + 17x$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 3.
- Choose $E_{19}: y^2 = x^3 + 8x + 1$ as the representative of an isomorphism class of elliptic curves with j-invariant 19.
- Choose $E_{19}^t: y^2 = x^3 + 2x + 20$ as the representative of the isomorphism class of the twists elliptic curves with *j*-invariant 19.
- all of the 3-torsion points of the vertices are defined over \mathbb{F}_{23^2}

The $\mathcal{G}_3(\mathbb{F}_{23})$ edges:

Let z_2 be a number such that $[\mathbb{F}_{23}(z_2) : \mathbb{F}_{23}] = 2$.

- There are two outgoing 3-isogeny of E_0 , namely the isogenies
 - $-\phi_{0,1}: E_0 \to E_0^t$ generated by the 3-torsion point (0,1) in E_0 .
 - $-\phi_{0,2}: E_0 \to E_3$ generated by the 3-torsion point $(20,8z_2+15)$ in E_0 .
- There are two outgoing 3-isogeny of E_0^t , namely the isogenies
 - $-\phi_{0,1}^t: E_0^t \to E_0$ generated by the 3-torsion point $(0,8z_2+15)$ in E_0^t .
 - $-\phi_{0,2}^t: E_0^t \to E_3$ generated by the 3-torsion point (13,3) in E_0^t .
- There are two outgoing 3-isogeny of E_3 , namely the isogenies
 - $-\phi_{3,1}: E_3 \to E_0^t$ generated by the 3-torsion point $(5, 5z_2 + 18)$ in E_3 .
 - $-\phi_{3,2}: E_3 \to E_0$ generated by the 3-torsion point (18,10) in E_3 .
- There are two outgoing 3-isogeny of E_3^t , namely the isogenies

- $-\phi_{3,1}^t: E_3^t \to E_{19}^t$ generated by the 3-torsion point (1,8) in E_3^t . $-\phi_{3,2}^t: E_3^t \to E_{19}$ generated by the 3-torsion point $(22,4z_2+19)$ in E_3^t .
- There are two outgoing 3-isogeny of E_{19} , namely the isogenies
 - $-\phi_{19,1}: E_{19} \to E_3^t$ generated by the 3-torsion point (16,4) in E_{19} .
 - $-\phi_{19,2}: E_{19} \to E_{19}^t$ generated by the 3-torsion point $(20, z_2 + 22)$ in E_{19} .
- There are two outgoing 3-isogeny of E_{19}^t , namely the isogenies
 - $-\phi_{19,1}^t: E_{19}^t \to E_{19}$ generated by the 3-torsion point (13,9) in E_{19}^t .
 - $-\phi_{19,2}^{t-1}:E_{19}^t\to E_3^t$ generated by the 3-torsion point $(15,9z_2+19)$ in $E_{19}^t.$

How the vertices of $\mathcal{G}_{\ell}(\mathbb{F}_{23})$ change when going to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{23})$:

- E_0 and E_0^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 0, denoted [0].
- E_3 and E_3^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 3, denoted [3].
- E_{19} and E_{19}^t become isomorphic to each other to make the equivalence class of isogenies with *j*-invariant 19, denoted [19].

How the edges of $\mathcal{G}_3(\mathbb{F}_{23})$ change when going to $\mathcal{G}_3(\overline{\mathbb{F}}_{23})$:

- $\phi_{0,1}$ and $\phi_{0,1}^t$ become equivalent isogenies and hence become one edge of the form ([0], [0]).
- $\phi_{0,2}$ and $\phi_{0,2}^t$ become equivalent isogenies and hence become one edge of the form ([0], [3]).
- $\phi_{19,1}$ and $\phi_{19,2}^t$ become equivalent isogenies and hence become one edge of the form ([19], [3]).
- $\phi_{19,2}$ and $\phi_{19,1}^t$ become equivalent isogenies and hence become one edge of the form ([19], [19]).
- $\phi_{3,1}$ does not become equivalent to any other isogenies.
- $\phi_{3,2}$ does not become equivalent to any other isogenies.
- $\phi_{3,1}^t$ does not become equivalent to any other isogenies.
- $\phi_{3,2}^t$ does not become equivalent to any other isogenies.
- two new isogeny equivalence classes are added to this graph of the form ([0], [3]).
- two new isogeny equivalence classes are added to this graph of the form ([19], [19]).

The $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{23})$ vertices:

- There are 3 supersingular isomorphism class of elliptic curves, namely j=0, j=3, and j=19.
- $E_0: y^2 = x^3 + 1$ is a representative of the isomorphism class j = 0
- $E_3: y^2 = x^3 + x$ is a representative of the isomorphism class j = 3
- $E_{19}: y^2 = x^3 + 8x + 1$ is a representative of the isomorphism class j = 19.

The $\mathcal{G}_3(\overline{\mathbb{F}}_{23})$ edges:

- There are three edges of the form ([19], [19]).
- There is one edge of the form ([19], [3]).
- There are two edge of the form ([3], [19]).
- There are two edges of the form ([3], [0]).
- There are three edges of the form ([0], [3]).
- There is one edge of the form ([0], [0]).

0.10. p=29. The $\mathcal{G}_{\ell}(\mathbb{F}_{29})$ vertices:

- There are six isomorphism classes of elliptic curves
- Two of the isomorphism classes of elliptic curves have *i*-invariant 0.
- Two of the isomorphism classes of elliptic curves have j-invariant 2.
- The last two isomorphism classes of elliptic curves have *j*-invariant 25.
- Choose $E_0: y^2 = x^3 + 1$ as the representative of an isomorphism class of elliptic curves with j-invariant 0.
- Choose $E_0^t: y^2 = x^3 + 11$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 0.
- Choose $E_2: y^2 = x^3 + 3x + 28$ as the representative of an isomorphism class of elliptic curves with j-invariant 2.
- Choose $E_2^t: y^2 = x^3 + 8x + 11$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 2.
- Choose $E_{25}: y^2 = x^3 + 9x + 19$ as the representative of an isomorphism class of elliptic curves with j-invariant 25.
- Choose $E_{25}^{t}: y^2 = x^3 + 20x + 4$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 25.
- all of the 3-torsion points of the vertices are defined over \mathbb{F}_{29^2}

The $\mathcal{G}_3(\mathbb{F}_{29})$ edges:

Let z_2 be a number such that $[\mathbb{F}_{29}(z_2) : \mathbb{F}_{29}] = 2$.

- There are two outgoing 3-isogeny of E_0 , namely the isogenies
 - $-\phi_{0,1}: E_0 \to E_0^t$ generated by the 3-torsion point (0,1) in E_0 .
 - $-\phi_{0,2}: E_0 \to E_{25}$ generated by the 3-torsion point $(20, z_2 + 12)$ in E_0 .
- \bullet There are two outgoing 3-isogeny of $E_0^t,$ namely the isogenies
 - $-\phi_{0,1}^t: E_0^t \to E_0$ generated by the 3-torsion point $(0,8z_2+9)$ in E_0^t . $-\phi_{0,2}^t: E_0^t \to E_{25}^t$ generated by the 3-torsion point (10,5) in E_0^t .
- There are two outgoing 3-isogeny of E_2 , namely the isogenies
 - $-\phi_{2,1}: E_2 \to E_{25}^t$ generated by the 3-torsion point $(1, 12z_2 + 28)$ in E_2 . $-\phi_{2,2}: E_2 \to E_2^t$ generated by the 3-torsion point (2, 10) in E_2 .
- There are two outgoing 3-isogeny of E_2^t , namely the isogenies
 - $-\phi_{2,1}^t: E_2^t \to E_{25}$ generated by the 3-torsion point (14,5) in E_2^t .
 - $-\phi_{2,2}^{t'}: E_2^t \to E_2$ generated by the 3-torsion point $(28, 3z_2 + 7)$ in E_2^t .
- There are two outgoing 3-isogeny of E_{25} , namely the isogenies
 - $-\phi_{25,1}: E_{25} \to E_0$ generated by the 3-torsion point (8,9) in E_{25} .
 - $-\phi_{25,2}: E_{25} \to E_2^t$ generated by the 3-torsion point $(20, 14z_2 + 23)$ in
- There are two outgoing 3-isogeny of E_{25}^t , namely the isogenies
 - $-\phi_{25,1}^t: E_{25}^t \to E_0^t$ generated by the 3-torsion point (8,3) in E_{25}^t .
 - $-\phi_{25,2}^{t}: \tilde{E}_{25}^{t} \to \tilde{E}_{2}$ generated by the 3-torsion point $(9,11z_2+16)$ in

How the vertices of $\mathcal{G}_{\ell}(\mathbb{F}_{29})$ change when going to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{29})$:

- E_0 and E_0^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 0, denoted [0].
- E_2 and E_2^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 2, denoted [2].
- E_{25} and E_{25}^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 25, denoted [25].

How the edges of $\mathcal{G}_3(\mathbb{F}_{29})$ change when going to $\mathcal{G}_3(\overline{\mathbb{F}}_{29})$:

- $\phi_{0,1}$ and $\phi_{0,1}^t$ become equivalent isogenies and hence become one edge of the form ([0], [0]).
- $\phi_{0,2}$ and $\phi_{0,2}^t$ become equivalent isogenies and hence become one edge of the form ([0], [25]).
- $\phi_{2,1}$ and $\phi_{2,2}^t$ become equivalent isogenies and hence become one edge of the form ([2], [25]).
- $\phi_{2,2}$ and $\phi_{2,1}^t$ become equivalent isogenies and hence become one edge of the form ([2], [2]).
- $\phi_{25,1}$ and $\phi_{25,2}^t$ become equivalent isogenies and hence become one edge of the form ([25], [0]).
- $\phi_{25,2}$ and $\phi_{25,1}^t$ become equivalent isogenies and hence become one edge of the form ([25], [2]).
- Two new isogeny equivalence classes are added to this graph of the form ([0], [25]).
- Two new isogeny equivalence classes are added to this graph of the form ([19], [19]).
- Two new isogeny equivalence classes are added to this graph of the form ([2], [2]).

The $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{29})$ vertices:

- There are 3 supersingular isomorphism class of elliptic curves, namely j=0, j=2, and j=125.
- $E_0: y^2 = x^3 + 1$ is a representative of the isomorphism class j = 0
- $E_3: y^2 = x^3 + 3x + 28$ is a representative of the isomorphism class j=2
- $E_{19}: y^2 = x^3 + 9x + 19$ is a representative of the isomorphism class j = 25.

The $\mathcal{G}_3(\overline{\mathbb{F}}_{29})$ edges:

- There are three edges of the form ([2], [2]).
- There is one edge of the form ([2], [25]).
- There are two edge of the form ([25], [25]).
- There is one edge of the form ([25], [0]).
- There are three edges of the form ([0], [25]).
- There is one edge of the form ([0], [0]).

0.11. p = 31. The $\mathcal{G}_{\ell}(\mathbb{F}_{31})$ vertices:

- There are six isomorphism classes of elliptic curves
- Two of the isomorphism classes of elliptic curves have *j*-invariant 2.
- Another two isomorphism classes of elliptic curves have j-invariant 4.
- The last two isomorphism classes of elliptic curves have *j*-invariant 23.
- Choose $E_2: y^2 = x^3 + 2x + 3$ as the representative of an isomorphism class of elliptic curves with j-invariant 2.
- Choose $E_2^t: y^2 = x^3 + 16x + 19$ as the representative of the isomorphism class of the twists elliptic curves with *j*-invariant 2.
- Choose $E_4: y^2 = x^3 + 11x + 26$ as the representative of an isomorphism class of elliptic curves with *j*-invariant 4.
- Choose $E_4^t: y^2 = x^3 + 22x + 18$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 4.

- Choose $E_{23}: y^2 = x^3 + x$ as the representative of an isomorphism class of elliptic curves with j-invariant 23.
- Choose $E_{23}^t: y^2 = x^3 + 13x$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 23.
- all of the 3-torsion points of the vertices are defined over \mathbb{F}_{31^4}

The $\mathcal{G}_3(\mathbb{F}_{31})$ edges:

• There are no edges in this graph

How the vertices of $\mathcal{G}_{\ell}(\mathbb{F}_{31})$ change when going to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{31})$:

- E_2 and E_2^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 2, denoted [2].
- E_2 and E_2^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 2, denoted [2].
- E_{23} and E_{23}^t become isomorphic to each other to make the equivalence class of isogenies with *j*-invariant 23, denoted [23].

How the edges of $\mathcal{G}_3(\mathbb{F}_{31})$ change when going to $\mathcal{G}_3(\overline{\mathbb{F}}_{31})$:

- Four new isogeny equivalence classes are added to this graph of the form ([23], [4]).
- Two new isogeny equivalence classes are added to this graph of the form ([4], [23]).
- Two new isogeny equivalence classes are added to this graph of the form ([4], [2]).
- Two new isogeny equivalence classes are added to this graph of the form ([2], [4]).
- Two new isogeny equivalence classes are added to this graph of the form ([2],[2]).

The $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{31})$ vertices:

- There are 3 supersingular isomorphism class of elliptic curves, namely j = 2, j = 4, and j = 23.
- $E_2: y^2 = x^3 + 2x + 3$ is a representative of the isomorphism class j=2
- $E_4: y^2 = x^3 + 11x + 26$ is a representative of the isomorphism class j = 4
- $E_{23}: y^2 = x^3 + x$ is a representative of the isomorphism class j = 23.

The $\mathcal{G}_3(\overline{\mathbb{F}}_{31})$ edges:

- There are four edges of the form ([23], [4]).
- There are two edges of the form ([4], [23]).
- There are two edges of the form ([4], [2]).
- There are two edges of the form ([2], [4]).
- There are two edges of the form ([2], [2]).

0.12. p = 41. The $\mathcal{G}_{\ell}(\mathbb{F}_{41})$ vertices:

- There are 8 isomorphism classes of Elliptic Curves
- 2 of the isomorphism classes of Elliptic Curves have j-invariant 0
- 2 of the isomorphism classes of Elliptic Curves have j-invariant 3
- 2 of the isomorphism classes of Elliptic Curves have j-invariant 28
- 2 of the isomorphism classes of Elliptic Curves have j-invariant 32

Namely we have the following Elliptic Curves representing isomorphism classes:

- Choose $E_{(0,1)}: y^2 = x^3 + 1$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 0
- Choose $E_{(0,2)}: y^2 = x^3 + 19$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 0
- Choose $E_{(3,1)}: y^2 = x^3 + 27x + 28$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 3
- Choose $E_{(3,2)}: y^2=x^3+28x+40$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 3
- Choose $E_{(28,1)}: y^2 = x^3 + 38x + 38$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 28
- Choose $E_{(28,2)}: y^2 = x^3 + 17x + 37$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 28
- Choose $E_{(32,1)}: y^2 = x^3 + 5x + 32$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 32
- Choose $E_{(32,2)}: \hat{y^2} = x^3 + 37x + 27$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 32
- all the 3-torsion points of the elliptic curves are defined over F_{n^2} .

The $\mathcal{G}_3(\mathbb{F}_{41})$ edges:

• $E_{0,1}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,0,1}$ generated by the 3-torsion point(s) [(0 : 1 : 1), (0 : 40 : 1)], and has codomain $E_{0,2}$

 $\phi_{1,0,1}$ generated by the 3-torsion point(s) [(16 : 3*z + 16 : 1), (16 : 38*z + 25 : 1)], and has codomain $E_{28,1}$

• $E_{0,2}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,0,2}$ generated by the 3-torsion point(s) [(0 : 4*z + 35 : 1), (0 : 37*z + 6 : 1)], and has codomain $E_{0,1}$

 $\phi_{1,0,2}$ generated by the 3-torsion point(s) [(29 : 4 : 1), (29 : 37 : 1)], and has codomain $E_{28,2}$

• $E_{3,1}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,3,1}$ generated by the 3-torsion point(s) [(10 : z + 19 : 1), (10 : 40*z + 22 : 1)], and has codomain $E_{32,2}$

 $\phi_{1,3,1}$ generated by the 3-torsion point(s) [(19 : 15 : 1), (19 : 26 : 1)], and has codomain $E_{3,2}$

• $E_{3,2}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,3,2}$ generated by the 3-torsion point(s) [(19:16:1), (19:25:1)], and has codomain $E_{32,1}$

 $\phi_{1,3,2}$ generated by the 3-torsion point(s) [(32 : 18*z + 14 : 1), (32 : 23*z + 27 : 1)], and has codomain $E_{3,1}$

• $E_{28,1}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,28,1}$ generated by the 3-torsion point(s) [(13 : 8 : 1), (13 : 33 : 1)], and has codomain $E_{0,1}$

 $\phi_{1,28,1}$ generated by the 3-torsion point(s) [(37 : z + 19 : 1), (37 : 40*z + 22 : 1)], and has codomain $E_{32,1}$

• $E_{28,2}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,28,2}$ generated by the 3-torsion point(s) [(28 : 13 : 1), (28 : 28 : 1)], and has codomain $E_{32,2}$

 $\phi_{1,28,2}$ generated by the 3-torsion point(s) [(32 : 16*z + 17 : 1), (32 : 25*z + 24 : 1)], and has codomain $E_{0,2}$

• $E_{32,1}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,32,1}$ generated by the 3-torsion point(s) [(3 : 19 : 1), (3 : 22 : 1)], and has codomain $E_{28,1}$

 $\phi_{1,32,1}$ generated by the 3-torsion point(s) [(33 : 17*z + 36 : 1), (33 : 24*z + 5 : 1)], and has codomain $E_{3,2}$

• $E_{32,2}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,32,2}$ generated by the 3-torsion point(s) [(13 : 3 : 1), (13 : 38 : 1)], and has codomain $E_{3,1}$

 $\phi_{1,32,2}$ generated by the 3-torsion point(s) [(31 : 2*z + 38 : 1), (31 : 39*z + 3 : 1)], and has codomain $E_{28,2}$

How the vertices of $\mathcal{G}_{\ell}(\mathbb{F}_{41})$ change when going to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{41})$:

All twists $E_{j,1}$, $E_{j,2}$ become isomorphic to each other to make the equivalence class denoted by their common j-invariant.

How the edges of $\mathcal{G}_3(\mathbb{F}_{41})$ change when going to $\mathcal{G}_3(\overline{\mathbb{F}}_{41})$:

- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([0], [0]): $\phi_{0,0,1} \ \phi_{0,0,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([0], [28]): $\phi_{1,0,1} \ \phi_{1,0,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([3], [32]): $\phi_{0,3,1} \ \phi_{0,3,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([3], [3]): $\phi_{1,3,1} \ \phi_{1,3,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([28], [0]): $\phi_{0,28,1} \ \phi_{1,28,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([28], [32]): $\phi_{1,28,1} \ \phi_{0,28,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([32], [28]): $\phi_{0,32,1} \ \phi_{1,32,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([32], [3]): $\phi_{1,32,1} \ \phi_{0,32,2}$

The $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{41})$ vertices:

The $\mathcal{G}_3(\overline{\mathbb{F}}_{41})$ edges:

0.13. p=47. Let \mathbb{F}_{47^2} be generated by z with minimal polynomial $x^2+45x+5$. The $\mathcal{G}_{\ell}(\mathbb{F}_{47})$ vertices:

- There are 10 isomorphism classes of Elliptic Curves
- 2 of the isomorphism classes of Elliptic Curves have *j*-invariant 0
- 2 of the isomorphism classes of Elliptic Curves have *j*-invariant 9
- 2 of the isomorphism classes of Elliptic Curves have j-invariant 10

- 2 of the isomorphism classes of Elliptic Curves have *j*-invariant 36
- 2 of the isomorphism classes of Elliptic Curves have j-invariant 44

Namely we have the following Elliptic Curves representing isomorphism classes:

- Choose $E_{0,1}: y^2 = x^3 + 1$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 0
- Choose $E_{0,2}: y^2 = x^3 + 39$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 0
- Choose $E_{9,1}: y^2 = x^3 + 24x + 38$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 9
- Choose $E_{9,2}: y^2 = x^3 + 12x + 4$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 9
- Choose $E_{10,1}: y^2 = x^3 + 28x + 16$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 10
- Choose $E_{10,2}: y^2 = x^3 + 2x + 44$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 10
- Choose $E_{36,1}: y^2 = x^3 + x$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 36
- Choose $E_{36,2}: y^2=x^3+41x$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 36
- Choose $E_{44,1}: y^2 = x^3 + 25x + 8$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 44
- Choose $E_{44,2}: y^2 = x^3 + 16x + 15$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 44
- all the 3-torsion points of the elliptic curves are defined over F_{n^2} .

The $\mathcal{G}_3(\mathbb{F}_{47})$ edges:

• $E_{0,1}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,0,1}$ generated by the 3-torsion point(s) [(0 : 1 : 1), (0 : 46 : 1)], and has codomain $E_{0,2}$

 $\phi_{1,0,1}$ generated by the 3-torsion point(s) [(29 : 6*z + 41 : 1), (29 : 41*z + 6 : 1)], and has codomain $E_{9,2}$

• $E_{0,2}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,0,2}$ generated by the 3-torsion point(s) [(0 : 8*z + 39 : 1), (0 : 39*z + 8 : 1)], and has codomain $E_{0,1}$

 $\phi_{1,0,2}$ generated by the 3-torsion point(s) [(27 : 4 : 1), (27 : 43 : 1)], and has codomain $E_{9,1}$

• $E_{9,1}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,9,1}$ generated by the 3-torsion point(s) [(27 : 21 : 1), (27 : 26 : 1)], and has codomain $E_{36,1}$

 $\phi_{1,9,1}$ generated by the 3-torsion point(s) [(31 : 10*z + 37 : 1), (31 : 37*z + 10 : 1)], and has codomain $E_{0,2}$

• $E_{9,2}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,9,2}$ generated by the 3-torsion point(s) [(17 : 19 : 1), (17 : 28 : 1)], and has codomain $E_{0,1}$

 $\phi_{1,9,2}$ generated by the 3-torsion point(s) [(33 : 10*z + 37 : 1), (33 : 37*z + 10 : 1)], and has codomain $E_{36,1}$

• $E_{10,1}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,10,1}$ generated by the 3-torsion point(s) [(5 : 23*z + 24 : 1), (5 : 24*z + 23 : 1)], and has codomain $E_{44,1}$

 $\phi_{1,10,1}$ generated by the 3-torsion point(s) [(25 : 19 : 1), (25 : 28 : 1)], and has codomain $E_{36,2}$

• $E_{10,2}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,10,2}$ generated by the 3-torsion point(s) [(17 : 13 : 1), (17 : 34 : 1)], and has codomain $E_{44,2}$

 $\phi_{1,10,2}$ generated by the 3-torsion point(s) [(38 : 6*z + 41 : 1), (38 : 41*z + 6 : 1)], and has codomain $E_{36,2}$

• $E_{36,1}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,36,1}$ generated by the 3-torsion point(s) [(17 : 18 : 1), (17 : 29 : 1)], and has codomain $E_{9,2}$

 $\phi_{1,36,1}$ generated by the 3-torsion point(s) [(30 : 9*z + 38 : 1), (30 : 38*z + 9 : 1)], and has codomain $E_{9,1}$

• $E_{36,2}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,36,2}$ generated by the 3-torsion point(s) [(17 : 8 : 1), (17 : 39 : 1)], and has codomain $E_{10,2}$

 $\phi_{1,36,2}$ generated by the 3-torsion point(s) [(30 : 4*z + 43 : 1), (30 : 43*z + 4 : 1)], and has codomain $E_{10,1}$

• $E_{44,1}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,44,1}$ generated by the 3-torsion point(s) [(1 : 9 : 1), (1 : 38 : 1)], and has codomain $E_{10,1}$

 $\phi_{1,44,1}$ generated by the 3-torsion point(s) [(19 : 16*z + 31 : 1), (19 : 31*z + 16 : 1)], and has codomain $E_{44,2}$

• $E_{44,2}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,44,2}$ generated by the 3-torsion point(s) [(28 : 15 : 1), (28 : 32 : 1)], and has codomain $E_{44,1}$

 $\phi_{1,44,2}$ generated by the 3-torsion point(s) [(46 : 19*z + 28 : 1), (46 : 28*z + 19 : 1)], and has codomain $E_{10,2}$

How the vertices of $\mathcal{G}_{\ell}(\mathbb{F}_{47})$ change when going to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{47})$:

All twists $E_{j,1}$, $E_{j,2}$ become isomorphic to each other to make the equivalence class denoted by their common j-invariant.

How the edges of $\mathcal{G}_3(\mathbb{F}_{47})$ change when going to $\mathcal{G}_3(\overline{\mathbb{F}}_{47})$:

- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([0], [0]): $\phi_{0,0,1} \ \phi_{0,0,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([0], [9]): $\phi_{1,0,1} \ \phi_{1,0,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([9], [36]): $\phi_{0,9,1} \ \phi_{1,9,2}$

- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([9], [0]): $\phi_{1,9,1} \ \phi_{0,9,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([10], [44]): $\phi_{0,10,1} \ \phi_{0,10,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([10], [36]): $\phi_{1,10,1} \ \phi_{1,10,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([36], [9]): $\phi_{0,36,1}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([36], [9]): $\phi_{1,36,1}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([36], [10]): $\phi_{0.36.2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([36], [10]): $\phi_{1,36,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([44], [10]): $\phi_{0.44.1} \ \phi_{1.44.2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([44], [44]): $\phi_{1,44,1} \ \phi_{0,44,2}$

The $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{47})$ vertices:

The $\mathcal{G}_3(\overline{\mathbb{F}}_{47})$ edges:

0.14. p = 59. The $\mathcal{G}_{\ell}(\mathbb{F}_{59})$ vertices:

•

- There are 12 isomorphism classes of Elliptic Curves
- 2 of the isomorphism classes of Elliptic Curves have *j*-invariant 0
- 2 of the isomorphism classes of Elliptic Curves have *j*-invariant 15
- 2 of the isomorphism classes of Elliptic Curves have j-invariant 17
- 2 of the isomorphism classes of Elliptic Curves have j-invariant 28
- ullet 2 of the isomorphism classes of Elliptic Curves have j-invariant 47
- 2 of the isomorphism classes of Elliptic Curves have *j*-invariant 48

Namely we have the following Elliptic Curves representing isomorphism classes:

- Choose $E_{0,1}: y^2 = x^3 + 1$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 0
- Choose $E_{0,2}: y^2 = x^3 + 24$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 0
- Choose $E_{15,1}: y^2 = x^3 + 31x + 57$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 15
- Choose $E_{15,2}: y^2 = x^3 + 58x + 58$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 15
- Choose $E_{17,1}:y^2=x^3+x$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 17
- Choose $E_{17,2}: y^2 = x^3 + 55x$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 17
- Choose $E_{28,1}: y^2=x^3+20x+9$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 28
- Choose $E_{28,2}: y^2=x^3+21x+13$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 28

- Choose $E_{47,1}: y^2 = x^3 + 18x + 6$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 47
- Choose $E_{47,2}: y^2 = x^3 + 47x + 3$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 47
- Choose $E_{48,1}: y^2 = x^3 + 20x + 20$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 48
- Choose $E_{48,2}: y^2 = x^3 + 19x + 24$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 48
- all the 3-torsion points of the elliptic curves are defined over F_{n^2} .

The $\mathcal{G}_3(\mathbb{F}_{59})$ edges:

• $E_{0,1}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representatives:

 $\phi_{0,0,1}$ generated by the 3-torsion point(s) [(0 : 1 : 1), (0 : 58 : 1)], and has codomain $E_{0,2}$;

 $\phi_{1,0,1}$ generated by the 3-torsion point(s) [(31 : 26*z + 46 : 1), (31 : 33*z + 13 : 1)], and has codomain $E_{48,1}$

• $E_{0,2}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representatives:

 $\phi_{0,0,2}$ generated by the 3-torsion point(s) [(0 : 11*z + 24 : 1), (0 : 48*z + 35 : 1)], and has codomain $E_{0,1}$;

 $\phi_{1,0,2}$ generated by the 3-torsion point(s) [(9 : 1 : 1), (9 : 58 : 1)], and has codomain $E_{48,2}$

• $E_{15,1}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representatives:

 $\phi_{0,15,1}$ generated by the 3-torsion point(s) [(40 : 12*z + 53 : 1), (40 : 47*z + 6 : 1)], and has codomain $E_{17,2}$;

 $\phi_{1,15,1}$ generated by the 3-torsion point(s) [(51 : 8 : 1), (51 : 51 : 1)], and has codomain $E_{15,2}$

• $E_{15,2}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representatives:

 $\phi_{0,15,2}$ generated by the 3-torsion point(s) [(37 : 23*z + 18 : 1), (37 : 36*z + 41 : 1)], and has codomain $E_{15,1}$;

 $\phi_{1,15,2}$ generated by the 3-torsion point(s) [(51 : 6 : 1), (51 : 53 : 1)], and has codomain $E_{17,2}$

• $E_{17,1}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representatives:

 $\phi_{0,17,1}$ generated by the 3-torsion point(s) [(12 : 18 : 1), (12 : 41 : 1)], and has codomain $E_{47,2}$;

 $\phi_{1,17,1}$ generated by the 3-torsion point(s) [(47 : 5*z + 27 : 1), (47 : 54*z + 32 : 1)], and has codomain $E_{47,1}$

• $E_{17,2}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representatives:

 $\phi_{0,17,2}$ generated by the 3-torsion point(s) [(17 : 19 : 1), (17 : 40 : 1)], and has codomain $E_{15,1}$;

 $\phi_{1,17,2}$ generated by the 3-torsion point(s) [(42 : 2*z + 58 : 1), (42 : 57*z + 1 : 1)], and has codomain $E_{15,2}$

• $E_{28,1}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representatives:

```
\phi_{0,28,1} generated by the 3-torsion point(s) [(5 : 23 : 1), (5 : 36 : 1)], and has codomain E_{47,1};
```

- $\phi_{1,28,1}$ generated by the 3-torsion point(s) [(13 : 7*z + 26 : 1), (13 : 52*z + 33 : 1)], and has codomain $E_{48,2}$
- $E_{28,2}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representatives:
 - $\phi_{0,28,2}$ generated by the 3-torsion point(s) [(25 : 28 : 1), (25 : 31 : 1)], and has codomain $E_{48,1}$;
 - $\phi_{1,28,2}$ generated by the 3-torsion point(s) [(55 : 2*z + 58 : 1), (55 : 57*z + 1 : 1)], and has codomain $E_{47,2}$
- $E_{47,1}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representatives:
 - $\phi_{0,47,1}$ generated by the 3-torsion point(s) [(19 : 3 : 1), (19 : 56 : 1)], and has codomain $E_{17,1}$;
 - $\phi_{1,47,1}$ generated by the 3-torsion point(s) [(38 : 12*z + 53 : 1), (38 : 47*z + 6 : 1)], and has codomain $E_{28,1}$
- $E_{47,2}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representatives:
 - $\phi_{0,47,2}$ generated by the 3-torsion point(s) [(15 : 9 : 1), (15 : 50 : 1)], and has codomain $E_{28,2}$;
 - $\phi_{1,47,2}$ generated by the 3-torsion point(s) [(37 : 24*z + 47 : 1), (37 : 35*z + 12 : 1)], and has codomain $E_{17,1}$
- $E_{48,1}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representatives:
 - $\phi_{0,48,1}$ generated by the 3-torsion point(s) [(17:9:1), (17:50:1)], and has codomain $E_{0,1}$;
 - $\phi_{1,48,1}$ generated by the 3-torsion point(s) [(34 : 10*z + 54 : 1), (34 : 49*z + 5 : 1)], and has codomain $E_{28,2}$
- $E_{48,2}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representatives:
 - $\phi_{0,48,2}$ generated by the 3-torsion point(s) [(15 : 12 : 1), (15 : 47 : 1)], and has codomain $E_{28,1}$;
 - $\phi_{1,48,2}$ generated by the 3-torsion point(s) [(37 : 9*z + 25 : 1), (37 : 50*z + 34 : 1)], and has codomain $E_{0,2}$

How the vertices of $\mathcal{G}_{\ell}(\mathbb{F}_{59})$ change when going to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{59})$:

All twists $E_{j,1}$, $E_{j,2}$ become isomorphic to each other to make the equivalence class denoted by their common j-invariant.

How the edges of $\mathcal{G}_3(\mathbb{F}_{59})$ change when going to $\mathcal{G}_3(\mathbb{F}_{59})$:

- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([0], [0]): $\phi_{0,0,1} \ \phi_{0,0,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([0], [48]): $\phi_{1,0,1} \ \phi_{1,0,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([15], [17]): $\phi_{0,15,1}$ $\phi_{1,15,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([15], [15]): $\phi_{1,15,1}$ $\phi_{0,15,2}$

- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([17], [47]): $\phi_{0.17.1}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([17], [47]): $\phi_{1.17.1}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([17], [15]): $\phi_{0.17.2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([17], [15]): $\phi_{1,17,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([28], [47]): $\phi_{0,28,1} \ \phi_{1,28,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([28], [48]): $\phi_{1,28,1} \ \phi_{0,28,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([47], [17]): $\phi_{0,47,1} \ \phi_{1,47,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([47], [28]): $\phi_{1,47,1} \ \phi_{0,47,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([48], [0]): $\phi_{0.48.1} \ \phi_{1.48.2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([48], [28]): $\phi_{1,48,1} \ \phi_{0,48,2}$

The $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{59})$ vertices:

The $\mathcal{G}_3(\overline{\mathbb{F}}_{59})$ edges:

0.15. p = 61. Let \mathbb{F}_{61^4} be generated by z with minimal polynomial $x^4 + 3 * x^2 + 40 * x + 2$.

The $\mathcal{G}_{\ell}(\mathbb{F}_{61})$ vertices:

- There are 6 isomorphism classes of Elliptic Curves
- 2 of the isomorphism classes of Elliptic Curves have *j*-invariant 9
- 2 of the isomorphism classes of Elliptic Curves have j-invariant 41
- 2 of the isomorphism classes of Elliptic Curves have *j*-invariant 50

Namely we have the following Elliptic Curves representing isomorphism classes:

- Choose $E_{9,1}: y^2 = x^3 + 53x + 18$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 9
- Choose $E_{9,2}: y^2 = x^3 + 8x + 46$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 9
- Choose $E_{41,1}: y^2 = x^3 + 40x + 11$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 41
- Choose $E_{41,2}: y^2 = x^3 + 17x + 27$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 41
- Choose $E_{50,1}: y^2 = x^3 + 14x + 36$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 50
- Choose $E_{50,2}: y^2 = x^3 + 9x + 17$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 50
- all the 3-torsion points of the elliptic curves are defined over F_{p^4} .

The $\mathcal{G}_3(\mathbb{F}_{61})$ edges:

•

How the vertices of $\mathcal{G}_{\ell}(\mathbb{F}_{61})$ change when going to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{61})$:

All twists $E_{j,1}$, $E_{j,2}$ become isomorphic to each other to make the equivalence class denoted by their common j-invariant.

How the edges of $\mathcal{G}_3(\mathbb{F}_{61})$ change when going to $\mathcal{G}_3(\overline{\mathbb{F}}_{61})$:

•

The $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{61})$ vertices:

The $\mathcal{G}_3(\overline{\mathbb{F}}_{61})$ edges:

0.16. p = 71. Let \mathbb{F}_{71^2} be generated by z with minimal polynomial $x^2 + 69 * x + 7$. The $\mathcal{G}_{\ell}(\mathbb{F}_{71})$ vertices:

- There are 14 isomorphism classes of Elliptic Curves
- 2 of the isomorphism classes of Elliptic Curves have j-invariant 0
- 2 of the isomorphism classes of Elliptic Curves have j-invariant 17
- ullet 2 of the isomorphism classes of Elliptic Curves have j-invariant 24
- $\bullet\,$ 2 of the isomorphism classes of Elliptic Curves have j-invariant 40
- \bullet 2 of the isomorphism classes of Elliptic Curves have j-invariant 41
- ullet 2 of the isomorphism classes of Elliptic Curves have j-invariant 48
- 2 of the isomorphism classes of Elliptic Curves have j-invariant 66

Namely we have the following Elliptic Curves representing isomorphism classes:

- Choose $E_{0,1}: y^2 = x^3 + 1$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 0
- Choose $E_{0,2}: y^2 = x^3 + 17$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 0
- Choose $E_{17,1}:y^2=x^3+2x+38$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 17
- Choose $E_{17,2}: y^2 = x^3 + 38x + 31$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 17
- Choose $E_{24,1}: y^2=x^3+x$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 24
- Choose $E_{24,2}: y^2=x^3+55x$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 24
- Choose $E_{40,1}: y^2 = x^3 + 68x + 39$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 40
- Choose $E_{40,2}: y^2 = x^3 + 59x + 43$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 40
- Choose $E_{41,1}: y^2 = x^3 + 39x + 16$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 41
- Choose $E_{41,2}: y^2 = x^3 + 31x + 28$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 41
- Choose $E_{48,1}: y^2 = x^3 + 23x + 13$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 48
- Choose $E_{48,2}: y^2 = x^3 + 28x + 64$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 48
- Choose $E_{66,1}: y^2 = x^3 + 62x + 32$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 66
- Choose $E_{66,2}:y^2=x^3+56x+42$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 66
- all the 3-torsion points of the elliptic curves are defined over F_{p^2} .

The $\mathcal{G}_3(\mathbb{F}_{71})$ edges:

E_{0,1} has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,0,1}$ generated by the 3-torsion point(s) [(0 : 1 : 1), (0 : 70 : 1)], and has codomain $E_{0,2}$

 $\phi_{1,0,1}$ generated by the 3-torsion point(s) [(13 : 6*z + 65 : 1), (13 : 65*z + 6 : 1)], and has codomain $E_{41,1}$

• $E_{0,2}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representatives:

 $\phi_{0,0,2}$ generated by the 3-torsion point(s) [(0 : 28*z + 43 : 1), (0 : 43*z + 28 : 1)], and has codomain $E_{0,1}$,

 $\phi_{1,0,2}$ generated by the 3-torsion point(s) [(1 : 14 : 1), (1 : 57 : 1)], and has codomain $E_{41,2}$

• $E_{17,1}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representatives:

 $\phi_{0,17,1}$ generated by the 3-torsion point(s) [(43 : 18 : 1), (43 : 53 : 1)], and has codomain $E_{48,1}$,

 $\phi_{1,17,1}$ generated by the 3-torsion point(s) [(44 : 10*z + 61 : 1), (44 : 61*z + 10 : 1)], and has codomain $E_{40,2}$

• $E_{17,2}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representatives:

 $\phi_{0,17,2}$ generated by the 3-torsion point(s) [(16 : 13 : 1), (16 : 58 : 1)], and has codomain $E_{40,1}$,

 $\phi_{1,17,2}$ generated by the 3-torsion point(s) [(35 : 11*z + 60 : 1), (35 : 60*z + 11 : 1)], and has codomain $E_{48,2}$

• $E_{24,1}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representatives:

 $\phi_{0,24,1}$ generated by the 3-torsion point(s) [(2:9:1), (2:62:1)], and has codomain $E_{66,2}$,

 $\phi_{1,24,1}$ generated by the 3-torsion point(s) [(69 : 7*z + 64 : 1), (69 : 64*z + 7 : 1)], and has codomain $E_{66,1}$

• $E_{24,2}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representatives:

 $\phi_{0,24,2}$ generated by the 3-torsion point(s) [(5 : 20 : 1), (5 : 51 : 1)], and has codomain $E_{48,2}$,

 $\phi_{1,24,2}$ generated by the 3-torsion point(s) [(66 : 16*z + 55 : 1), (66 : 55*z + 16 : 1)], and has codomain $E_{48,1}$

• $E_{40,1}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representatives:

 $\phi_{0,40,1}$ generated by the 3-torsion point(s) [(4:34:1), (4:37:1)], and has codomain $E_{40,2}$,

 $\phi_{1,40,1}$ generated by the 3-torsion point(s) [(21 : 22*z + 49 : 1), (21 : 49*z + 22 : 1)], and has codomain $E_{17,2}$

• $E_{40,2}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representatives:

 $\phi_{0,40,2}$ generated by the 3-torsion point(s) [(8 : 33 : 1), (8 : 38 : 1)], and has codomain $E_{17,1}$,

```
\phi_{1,40,2} generated by the 3-torsion point(s) [(59 : 27*z + 44 : 1), (59 : 44*z + 27 : 1)], and has codomain E_{40,1}
```

• $E_{41,1}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representatives:

 $\phi_{0,41,1}$ generated by the 3-torsion point(s) [(40 : 16 : 1), (40 : 55 : 1)], and has codomain $E_{0,1}$,

 $\phi_{1,41,1}$ generated by the 3-torsion point(s) [(41 : 32*z + 39 : 1), (41 : 39*z + 32 : 1)], and has codomain $E_{66,2}$

• $E_{41,2}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representatives:

 $\phi_{0,41,2}$ generated by the 3-torsion point(s) [(11 : 12*z + 59 : 1), (11 : 59*z + 12 : 1)], and has codomain $E_{0,2}$,

 $\phi_{1,41,2}$ generated by the 3-torsion point(s) [(45 : 2 : 1), (45 : 69 : 1)], and has codomain $E_{66,1}$

• $E_{48,1}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representatives:

 $\phi_{0,48,1}$ generated by the 3-torsion point(s) [(29 : 19 : 1), (29 : 52 : 1)], and has codomain $E_{24,2}$,

 $\phi_{1,48,1}$ generated by the 3-torsion point(s) [(56 : 31*z + 40 : 1), (56 : 40*z + 31 : 1)], and has codomain $E_{17,1}$

• $E_{48,2}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representatives:

 $\phi_{0,48,2}$ generated by the 3-torsion point(s) [(21 : 3*z + 68 : 1), (21 : 68*z + 3 : 1)], and has codomain $E_{24,2}$,

 $\phi_{1,48,2}$ generated by the 3-torsion point(s) [(43 : 8 : 1), (43 : 63 : 1)], and has codomain $E_{17,2}$

• $E_{66,1}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representatives:

 $\phi_{0,66,1}$ generated by the 3-torsion point(s) [(25 : 5 : 1), (25 : 66 : 1)], and has codomain $E_{24,1}$,

 $\phi_{1,66,1}$ generated by the 3-torsion point(s) [(39 : 15*z + 56 : 1), (39 : 56*z + 15 : 1)], and has codomain $E_{41,2}$

• $E_{66,2}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representatives:

 $\phi_{0,66,2}$ generated by the 3-torsion point(s) [(48 : 32 : 1), (48 : 39 : 1)], and has codomain $E_{41,1}$,

 $\phi_{1,66,2}$ generated by the 3-torsion point(s) [(69 : 14*z + 57 : 1), (69 : 57*z + 14 : 1)], and has codomain $E_{24,1}$

How the vertices of $\mathcal{G}_{\ell}(\mathbb{F}_{71})$ change when going to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{71})$:

All twists $E_{j,1}$, $E_{j,2}$ become isomorphic to each other to make the equivalence class denoted by their common j-invariant.

How the edges of $\mathcal{G}_3(\mathbb{F}_{71})$ change when going to $\mathcal{G}_3(\mathbb{F}_{71})$:

- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([0], [0]): $\phi_{0,0,1} \ \phi_{0,0,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([0], [41]): $\phi_{1,0,1}, \phi_{1,0,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([17], [48]): $\phi_{0.17.1} \ \phi_{1.17.2}$

- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([17], [40]): $\phi_{1,17,1} \ \phi_{0,17,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([24], [66]): $\phi_{0.24.1}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([24], [66]): $\phi_{1.24.1}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([24], [48]): $\phi_{0,24,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([24], [48]): $\phi_{1,24,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([40], [40]): $\phi_{0,40,1} \ \phi_{1,40,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([40], [17]): $\phi_{1,40,1} \ \phi_{0,40,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([41], [0]): $\phi_{0,41,1} \ \phi_{0,41,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([41], [66]): $\phi_{1,41,1}$ $\phi_{1,41,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([48], [24]): $\phi_{0,48,1} \ \phi_{0,48,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([48], [17]): $\phi_{1,48,1} \ \phi_{1,48,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([66], [24]): $\phi_{0,66,1} \ \phi_{1,66,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([66], [41]): $\phi_{1.66.1} \ \phi_{0.66.2}$

The $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{71})$ vertices:

The $\mathcal{G}_3(\overline{\mathbb{F}}_{71})$ edges:

0.17. p = 89. The $\mathcal{G}_{\ell}(\mathbb{F}_{89})$ vertices:

- There are 12 isomorphism classes of Elliptic Curves
- 2 of the isomorphism classes of Elliptic Curves have j-invariant 0
- 2 of the isomorphism classes of Elliptic Curves have *j*-invariant 6
- 2 of the isomorphism classes of Elliptic Curves have *j*-invariant 7
- 2 of the isomorphism classes of Elliptic Curves have j-invariant 13
- 2 of the isomorphism classes of Elliptic Curves have j-invariant 52
- 2 of the isomorphism classes of Elliptic Curves have j-invariant 66

Namely we have the following Elliptic Curves representing isomorphism classes:

- Choose $E_{0,1}: y^2=x^3+1$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 0
- Choose $E_{0,2}: y^2 = x^3 + 56$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 0
- Choose $E_{6,1}: y^2 = x^3 + 24x + 38$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 6
- Choose $E_{6,2}: y^2=x^3+51x+85$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 6

- Choose $E_{7,1}: y^2 = x^3 + 7x + 38$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 7
- Choose $E_{7,2}: y^2 = x^3 + 63x + 47$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 7
- Choose $E_{13,1}: y^2 = x^3 + 46x + 65$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 13
- Choose $E_{13,2}: y^2 = x^3 + 38x + 87$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 13
- Choose $E_{52,1}: y^2 = x^3 + 63x + 7$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 52
- Choose $E_{52,2}: y^2 = x^3 + 33x + 11$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 52
- Choose $E_{66,1}: y^2 = x^3 + 43x + 60$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 66
- Choose $E_{66,2}: y^2 = x^3 + 13x + 72$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 66
- all the 3-torsion points of the elliptic curves are defined over F_{p^2} .

The $\mathcal{G}_3(\mathbb{F}_{89})$ edges:

• $E_{0,1}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,0,1}$ generated by the 3-torsion point(s) [(0 : 1 : 1), (0 : 88 : 1)], and has codomain $E_{0,2}$

 $\phi_{1,0,1}$ generated by the 3-torsion point(s) [(11 : 12*z + 47 : 1), (11 : 77*z + 42 : 1)], and has codomain $E_{52,1}$

• $E_{0,2}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,0,2}$ generated by the 3-torsion point(s) [(0 : 31*z + 25 : 1), (0 : 58*z + 64 : 1)], and has codomain $E_{0,1}$

 $\phi_{1,0,2}$ generated by the 3-torsion point(s) [(26 : 30 : 1), (26 : 59 : 1)], and has codomain $E_{52,2}$

• $E_{6,1}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,6,1}$ generated by the 3-torsion point(s) [(68 : 25*z + 46 : 1), (68 : 64*z + 43 : 1)], and has codomain $E_{52,2}$

 $\phi_{1,6,1}$ generated by the 3-torsion point(s) [(77 : 43 : 1), (77 : 46 : 1)], and has codomain $E_{13,1}$

• $E_{6,2}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,6,2}$ generated by the 3-torsion point(s) [(6 : 42 : 1), (6 : 47 : 1)], and has codomain $E_{52,1}$

 $\phi_{1,6,2}$ generated by the 3-torsion point(s) [(67 : 25*z + 46 : 1), (67 : 64*z + 43 : 1)], and has codomain $E_{13,2}$

• $E_{7,1}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,7,1}$ generated by the 3-torsion point(s) [(19 : 34 : 1), (19 : 55 : 1)], and has codomain $E_{66,2}$

 $\phi_{1,7,1}$ generated by the 3-torsion point(s) [(69 : 12*z + 47 : 1), (69 : 77*z + 42 : 1)], and has codomain $E_{13,1}$

E_{7,2} has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,7,2}$ generated by the 3-torsion point(s) [(29 : 39 : 1), (29 : 50 : 1)], and has codomain $E_{13,2}$

 $\phi_{1,7,2}$ generated by the 3-torsion point(s) [(57 : 36*z + 52 : 1), (57 : 53*z + 37 : 1)], and has codomain $E_{66,1}$

• $E_{13,1}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,13,1}$ generated by the 3-torsion point(s) [(56 : 41 : 1), (56 : 48 : 1)], and has codomain $E_{7,1}$

 $\phi_{1,13,1}$ generated by the 3-torsion point(s) [(84 : 6*z + 68 : 1), (84 : 83*z + 21 : 1)], and has codomain $E_{6,1}$

• $E_{13,2}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,13,2}$ generated by the 3-torsion point(s) [(40 : 29*z + 32 : 1), (40 : 60*z + 57 : 1)], and has codomain $E_{7,2}$

 $\phi_{1,13,2}$ generated by the 3-torsion point(s) [(60 : 36 : 1), (60 : 53 : 1)], and has codomain $E_{6,2}$

• $E_{52,1}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,52,1}$ generated by the 3-torsion point(s) [(18 : 5*z + 27 : 1), (18 : 84*z + 62 : 1)], and has codomain $E_{6,2}$

 $\phi_{1,52,1}$ generated by the 3-torsion point(s) [(41 : 20 : 1), (41 : 69 : 1)], and has codomain $E_{0,1}$

• $E_{52,2}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,52,2}$ generated by the 3-torsion point(s) [(34 : 5*z + 27 : 1), (34 : 84*z + 62 : 1)], and has codomain $E_{0,2}$

 $\phi_{1,52,2}$ generated by the 3-torsion point(s) [(54 : 6 : 1), (54 : 83 : 1)], and has codomain $E_{6,1}$

• $E_{66,1}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,66,1}$ generated by the 3-torsion point(s) [(9: 44*z + 24: 1), (9: 45*z + 65: 1)], and has codomain $E_{66,2}$

 $\phi_{1,66,1}$ generated by the 3-torsion point(s) [(56 : 23 : 1), (56 : 66 : 1)], and has codomain $E_{7,2}$

• $E_{66,2}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,66,2}$ generated by the 3-torsion point(s) [(21 : 33*z + 18 : 1), (21 : 56*z + 71 : 1)], and has codomain $E_{7,1}$

 $\phi_{1,66,2}$ generated by the 3-torsion point(s) [(59 : 19 : 1), (59 : 70 : 1)], and has codomain $E_{66,1}$

How the vertices of $\mathcal{G}_{\ell}(\mathbb{F}_{89})$ change when going to $\mathcal{G}_{\ell}(\mathbb{F}_{89})$:

All twists $E_{j,1}$, $E_{j,2}$ become isomorphic to each other to make the equivalence class denoted by their common j-invariant.

How the edges of $\mathcal{G}_3(\mathbb{F}_{89})$ change when going to $\mathcal{G}_3(\overline{\mathbb{F}}_{89})$:

•

- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([0], [0]): $\phi_{0,0,1} \ \phi_{0,0,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([0], [52]): $\phi_{1,0,1} \ \phi_{1,0,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([6], [52]): $\phi_{0,6,1} \ \phi_{0,6,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([6], [13]): $\phi_{1,6,1} \ \phi_{1,6,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([7], [66]): $\phi_{0,7,1} \ \phi_{1,7,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([7], [13]): $\phi_{1,7,1} \ \phi_{0,7,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([13], [7]): $\phi_{0,13,1} \ \phi_{0,13,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([13], [6]): $\phi_{1,13,1} \ \phi_{1,13,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([52], [6]): $\phi_{0,52,1} \ \phi_{1,52,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([52], [0]): $\phi_{1,52,1} \ \phi_{0,52,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([66], [66]): $\phi_{0.66.1} \ \phi_{1.66.2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([66], [7]): $\phi_{1,66,1} \ \phi_{0,66,2}$

The $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{89})$ vertices: The $\mathcal{G}_{3}(\overline{\mathbb{F}}_{89})$ edges:

0.18. p = 101. Let \mathbb{F}_{101^2} be generatex by z with minimal polynomial $x^2 + 97 * x + 2$. The $\mathcal{G}_{\ell}(\mathbb{F}_{101})$ vertices:

- There are 14 isomorphism classes of Elliptic Curves
- 2 of the isomorphism classes of Elliptic Curves have j-invariant 0
- 2 of the isomorphism classes of Elliptic Curves have j-invariant 3
- 2 of the isomorphism classes of Elliptic Curves have j-invariant 21
- 2 of the isomorphism classes of Elliptic Curves have *j*-invariant 57
- 2 of the isomorphism classes of Elliptic Curves have j-invariant 59
- 2 of the isomorphism classes of Elliptic Curves have j-invariant 64
- 2 of the isomorphism classes of Elliptic Curves have j-invariant 66

Namely we have the following Elliptic Curves representing isomorphism classes:

- Choose $E_{0,1}: y^2=x^3+1$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 0
- Choose $E_{0,2}: y^2 = x^3 + 93$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 0
- Choose $E_{3,1}: y^2 = x^3 + 72x + 20$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 3
- Choose $E_{3,2}: y^2=x^3+66x+83$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 3

- Choose $E_{21,1}: y^2 = x^3 + 77x + 42$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 21
- Choose $E_{21,2}: y^2 = x^3 + 58x + 70$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 21
- Choose $E_{57,1}: y^2 = x^3 + 12x + 65$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 57
- Choose $E_{57,2}: y^2 = x^3 + 3x + 46$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 57
- Choose $E_{59,1}: y^2 = x^3 + 89x + 20$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 59
- Choose $E_{59,2}: y^2 = x^3 + 66x + 3$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 59
- Choose $E_{64,1}: y^2 = x^3 + 25x + 8$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 64
- Choose $E_{64,2}: y^2=x^3+4x+31$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 64
- Choose $E_{66,1}: y^2 = x^3 + 18x + 54$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 66
- Choose $E_{66,2}: y^2 = x^3 + 10x + 55$ is a representative of one of the isomorphism class of elliptic curves that have j-invariant 66
- all the 3-torsion points of the elliptic curves are defined over F_{p^2} .

The $\mathcal{G}_3(\mathbb{F}_{101})$ edges:

• $E_{0,1}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,0,1}$ generated by the 3-torsion point(s) [(0 : 1 : 1), (0 : 100 : 1)], and has codomain $E_{0,2}$

 $\phi_{1,0,1}$ generated by the 3-torsion point(s) [(31 : 7*z + 87 : 1), (31 : 94*z + 14 : 1)], and has codomain $E_{64,1}$

• $E_{0,2}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,0,2}$ generated by the 3-torsion point(s) [(0 : 20*z + 61 : 1), (0 : 81*z + 40 : 1)], and has codomain $E_{0,1}$

 $\phi_{1,0,2}$ generated by the 3-torsion point(s) [(39 : 23 : 1), (39 : 78 : 1)], and has codomain $E_{64,2}$

E_{3,1} has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,3,1}$ generated by the 3-torsion point(s) [(65 : 38*z + 25 : 1), (65 : 63*z + 76 : 1)], and has codomain $E_{64,2}$

 $\phi_{1,3,1}$ generated by the 3-torsion point(s) [(89 : 16 : 1), (89 : 85 : 1)], and has codomain $E_{21,1}$

• $E_{3,2}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,3,2}$ generated by the 3-torsion point(s) [(28 : 42 : 1), (28 : 59 : 1)], and has codomain $E_{64,1}$

 $\phi_{1,3,2}$ generated by the 3-torsion point(s) [(43 : 39*z + 23 : 1), (43 : 62*z + 78 : 1)], and has codomain $E_{21,2}$

• $E_{21,1}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

```
\phi_{0.21.1} generated by the 3-torsion point(s) [(21: 39*z + 23: 1), (21:
  62*z + 78 : 1, and has codomain E_{3.1}
     \phi_{1,21,1} generated by the 3-torsion point(s) [(51:13:1), (51:88:1)],
  and has codomain E_{59,1}
• E_{21,2} has 2 outgoing equivalence class of isogenies, namely the isogeny
  equivalence class with representative
     \phi_{0.21.2} generated by the 3-torsion point(s) [(31: 15*z + 71: 1), (31:
  86*z + 30:1, and has codomain E_{59,2}
     \phi_{1,21,2} generated by the 3-torsion point(s) [(90 : 11 : 1), (90 : 90 : 1)],
  and has codomain E_{3,2}
• E_{57,1} has 2 outgoing equivalence class of isogenies, namely the isogeny
  equivalence class with representative
     \phi_{0.57.1} generated by the 3-torsion point(s) [(46:36:1), (46:65:1)],
  and has codomain E_{66,1}
     \phi_{1,57,1} generated by the 3-torsion point(s) [(88: 13*z + 75: 1), (88:
  88*z + 26:1)], and has codomain E_{59,1}
• E_{57,2} has 2 outgoing equivalence class of isogenies, namely the isogeny
  equivalence class with representative
     \phi_{0.57.2} generated by the 3-torsion point(s) [(23 : 9*z + 83 : 1), (23 :
  92*z + 18 : 1, and has codomain E_{66.2}
     \phi_{1.57.2} generated by the 3-torsion point(s) [(44 : 44 : 1), (44 : 57 : 1)],
  and has codomain E_{59.2}
• E_{59,1} has 2 outgoing equivalence class of isogenies, namely the isogeny
  equivalence class with representative
     \phi_{0.59,1} generated by the 3-torsion point(s) [(26 : 35 : 1), (26 : 66 : 1)],
  and has codomain E_{57.1}
     \phi_{1.59,1} generated by the 3-torsion point(s) [(82 : 49*z + 3 : 1), (82 :
  52*z + 98 : 1, and has codomain E_{21,1}
• E_{59,2} has 2 outgoing equivalence class of isogenies, namely the isogeny
  equivalence class with representative
     \phi_{0.59,2} generated by the 3-torsion point(s) [(25 : 16*z + 69 : 1), (25 :
  85*z + 32:1, and has codomain E_{57.2}
     \phi_{1,59,2} generated by the 3-torsion point(s) [(40: 36: 1), (40: 65: 1)],
  and has codomain E_{21,2}
• E_{64,1} has 2 outgoing equivalence class of isogenies, namely the isogeny
  equivalence class with representative
     \phi_{0.64,1} generated by the 3-torsion point(s) [(12:4:1), (12:97:1)],
  and has codomain E_{0,1}
     \phi_{1,64,1} generated by the 3-torsion point(s) [(17: 42*z + 17: 1), (17:
  59*z + 84:1], and has codomain E_{3,2}
• E_{64.2} has 2 outgoing equivalence class of isogenies, namely the isogeny
  equivalence class with representative
     \phi_{0.64.2} generated by the 3-torsion point(s) [(74:6:1), (74:95:1)],
  and has codomain E_{3,1}
     \phi_{1.64,2} generated by the 3-torsion point(s) [(76: 43*z + 15: 1), (76:
  58*z + 86:1], and has codomain E_{0.2}
```

• $E_{66.1}$ has 2 outgoing equivalence class of isogenies, namely the isogeny

equivalence class with representative

 $\phi_{0,66,1}$ generated by the 3-torsion point(s) [(26 : 25 : 1), (26 : 76 : 1)], and has codomain $E_{66,2}$

 $\phi_{1,66,1}$ generated by the 3-torsion point(s) [(78 : 7*z + 87 : 1), (78 : 94*z + 14 : 1)], and has codomain $E_{57,1}$

• $E_{66,2}$ has 2 outgoing equivalence class of isogenies, namely the isogeny equivalence class with representative

 $\phi_{0,66,2}$ generated by the 3-torsion point(s) [(14 : 45*z + 11 : 1), (14 : 56*z + 90 : 1)], and has codomain $E_{66,1}$

 $\phi_{1,66,2}$ generated by the 3-torsion point(s) [(42 : 5 : 1), (42 : 96 : 1)], and has codomain $E_{57,2}$

How the vertices of $\mathcal{G}_{\ell}(\mathbb{F}_{101})$ change when going to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{101})$:

All twists $E_{j,1}$, $E_{j,2}$ become isomorphic to each other to make the equivalence class denoted by their common j-invariant.

How the edges of $\mathcal{G}_3(\mathbb{F}_{101})$ change when going to $\mathcal{G}_3(\overline{\mathbb{F}}_{101})$:

- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([0], [0]): $\phi_{0,0,1} \ \phi_{0,0,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([0], [64]): $\phi_{1,0,1} \ \phi_{1,0,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([3], [64]): $\phi_{0,3,1} \ \phi_{0,3,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([3], [21]): $\phi_{1,3,1} \ \phi_{1,3,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([21], [3]): $\phi_{0,21,1} \ \phi_{1,21,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([21], [59]): $\phi_{1,21,1} \ \phi_{0,21,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([57], [66]): $\phi_{0,57,1}$ $\phi_{0,57,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([57], [59]): $\phi_{1,57,1} \ \phi_{1,57,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([59], [57]): $\phi_{0.59.1} \ \phi_{0.59.2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([59], [21]): $\phi_{1,59,1}$ $\phi_{1,59,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([64], [0]): $\phi_{0,64,1} \ \phi_{1,64,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([64], [3]): $\phi_{1,64,1} \ \phi_{0,64,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([66], [66]): $\phi_{0.66,1} \ \phi_{0.66,2}$
- The following \mathbb{F}_p isogenies become equivalent to the $\overline{\mathbb{F}}_p$ isogeny ([66], [57]): $\phi_{1,66,1} \ \phi_{1,66,2}$

The $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{101})$ vertices:

The $\mathcal{G}_3(\overline{\mathbb{F}}_{101})$ edges:

0.19. p = 139. The $\mathcal{G}_{\ell}(\mathbb{F}_{139})$ vertices:

The $\mathcal{G}_3(\mathbb{F}_{139})$ edges:

How the vertices of $\mathcal{G}_{\ell}(\mathbb{F}_{139})$ change when going to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{139})$:

How the edges of $\mathcal{G}_3(\mathbb{F}_{139})$ change when going to $\mathcal{G}_3(\overline{\mathbb{F}}_{139})$:

The $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{139})$ vertices:

The $\mathcal{G}_3(\overline{\mathbb{F}}_{139})$ edges:

0.20. p = 151. The $\mathcal{G}_{\ell}(\mathbb{F}_{151})$ vertices:

The $\mathcal{G}_3(\mathbb{F}_{151})$ edges:

How the vertices of $\mathcal{G}_{\ell}(\mathbb{F}_{151})$ change when going to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{151})$:

All twists $E_{j,1}$, $E_{j,2}$ become isomorphic to each other to make the equivalence class denoted by their common j-invariant.

How the edges of $\mathcal{G}_3(\mathbb{F}_{151})$ change when going to $\mathcal{G}_3(\overline{\mathbb{F}}_{151})$:

The $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{151})$ vertices:

The $\mathcal{G}_3(\overline{\mathbb{F}}_{151})$ edges:

0.21. p = 199. The $\mathcal{G}_{\ell}(\mathbb{F}_{199})$ vertices:

The $\mathcal{G}_3(\mathbb{F}_{199})$ edges:

How the vertices of $\mathcal{G}_{\ell}(\mathbb{F}_{199})$ change when going to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{199})$:

All twists $E_{j,1}$, $E_{j,2}$ become isomorphic to each other to make the equivalence class denoted by their common j-invariant.

How the edges of $\mathcal{G}_3(\mathbb{F}_{199})$ change when going to $\mathcal{G}_3(\overline{\mathbb{F}}_{199})$:

The $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{199})$ vertices:

The $\mathcal{G}_3(\overline{\mathbb{F}}_{199})$ edges:

0.22. p = 271. The $\mathcal{G}_{\ell}(\mathbb{F}_{271})$ vertices:

The $\mathcal{G}_3(\mathbb{F}_{271})$ edges:

How the vertices of $\mathcal{G}_{\ell}(\mathbb{F}_{271})$ change when going to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{271})$:

All twists $E_{j,1}$, $E_{j,2}$ become isomorphic to each other to make the equivalence class denoted by their common j-invariant.

How the edges of $\mathcal{G}_3(\mathbb{F}_{271})$ change when going to $\mathcal{G}_3(\overline{\mathbb{F}}_{271})$:

The $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{271})$ vertices:

The $\mathcal{G}_3(\overline{\mathbb{F}}_{271})$ edges:

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF CALGARY, 2500 UNIVERSITY DRIVE NW, CALGARY, AB T2N 1N4, CANADA

Email address: taha.hedayat@ucalgary.ca

Virginia Tech Department of Mathematics, 225 Stanger Street, Blacksburg, VA $24061\,$

Email address: sarpin@vt.edu

Department of Mathematics and Statistics, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada

Email address: rscheidl@ucalgary.ca