1.	用列举法表示下列集合:				
	(1) 十二生肖名称的集合;				
	(2) 10 以内的素数组成的集合	à ;			
	(3) $\{y y = x^2 - 1, -1 < x < 0\}$	$\{3, x \in \mathbf{Z}\}.$			
2.	用描述法表示下列集合:				
	(1) 被 3 除余数等于 1 的整数	数的集合;			
	(2) 比 1 大又比 10 小的实数	组成的集合;			
	(3) 平面直角坐标系内横轴上	的点的坐标组成的集合.			
3.	下面写法正确的是().				
	, ,	D 1 = ((0.1))	C (0.1) = ((0.1))	D (0.1) = (0.1)	
	A. $0 \in \{(0,1)\}$	B. $1 \in \{(0,1)\}$	C. $(0,1) \in \{(0,1)\}$	D. $(0,1) \in \{0,1\}$	
4.	集合 $\{(x,y) xy\geq 0,\ x\in\mathbf{R},$	$y \in \mathbf{R}$ 是指 ().			
	A. 第一象限内的所有点		B. 第三象限内的所有点		
	C. 第一象限和第三象限内的	的所有点	D. 不在第二象限、第四象限[内的所有点	
5.	用适当的方法表示下列集合:				
	(1) 方程 $x^2 - 2 = 0$ 的实数解	军组成的集合 ;			
	(2) 两直线 $y = 2x + 1$ 和 $y =$	=x-2 的交点组成的集合	·.		
6.	已知集合 $A = \{2, (a+1)^2, a^2\}$	$a^2 + 3a + 3$, 且 $a \in A$, 求会	实数 a 的值.		
7.	指出下列各集合之间存在的美	关系:			
	(1) $A = \{x x^2 - 2x + 1 = 0\}$	$, B = \{x x^2 - 1 = 0\};$			
	(2) $A = \{1, 2, 4, 8\}, B = \{x x\}$	c是8的正约数}.			
8.	下列写法正确的是().				
	$A. \varnothing \subsetneq \{0\}$	B. $0 \subsetneq \varnothing$	C. $\emptyset \in \{0\}$	D. $0 \in \emptyset$	
9.	若集合 $A = \{x x = 2n + 1, x \in A \}$	$n \in \mathbf{Z}$ }, 集合 $B = \{x x =$	$4n-1, \ n \in \mathbf{Z}$ }, 则 A 、 B 的关	系是 ().	
	A. $A \subseteq B$	B. $A = B$	C. $A \subsetneq B$	D. $B \subsetneq A$	
10.	已知集合 $A = \{1\}$, 集合 $B = \{1\}$	$= \{x x^2 - 3x + a = 0\}, \text{ II.}$	$A \subsetneq B$, 求实数 a 的值.		
11.	已知集合 $A = \{x, y\}$, 集合 $B = \{2x, 2x^2\}$, 且 $A = B$, 求集合 A .				
12.	已知集合 $S = \{1, 2\}$, 集合 T	$ = \{x ax^2 - 3x + 2 = 0\},\$	且 $S = T$, 求实数 a 的值.		

13. 已知 a 是常数, 集合 $M = \{x|x^2 + x - 6 = 0\}$, 集合 $N = \{y|ay + 2 = 0\}$, 且 $N \subseteq M$, 求实数 a 的值.

15. 已知集合 $A = \{x | x \le 7\}$, 集合 $B = \{x | x < 2\}$, 集合 $C = \{x | x > 5\}$, 求 $A \cap B$, $A \cap C$, $A \cap (B \cap C)$.

14. 已知所有菱形组成的集合为 A, 所有矩形组成的集合为 B, 求 $A \cap B$.

- 16. 已知集合 $A = \{(x,y)|u = -x+1\}$, 集合 $B = \{(x,y)|y = x^2-1\}$, 求 $A \cap B$.
- 17. 已知集合 $A = \{x | x$ 是锐角三角形 $\}$, 集合 $B = \{x | x$ 是钝角三角形 $\}$, 求 $A \cap B$, $A \cup B$.
- 18. 已知集合 $A = \{x | x^2 + px + 15 = 0\}$, 集合 $B = \{x | x^2 5x + q = 0\}$, 且 $A \cap B = \{3\}$, 求 p、q 的值和 $A \cup B$.
- 19. 已知集合 $A = \{x | x \le 1\}$, 集合 $B = \{x | x \ge a\}$, 且 $A \cup B = \mathbb{R}$, 求 a 的取值范围.
- 20. 已知集合 $A = \{x | x$ 是平行四边形 $\}$, 集合 $U = \{x | x$ 是至少有一组对边平行的四边形 $\}$, 求 $\mathcal{C}_U A$.
- 21. 设 $U = \mathbf{R}$, 集合 $A = \{x | 4 x > 2x + 1\}$, 求 $\mathcal{C}_U A$.
- 22. 已知集合 $U = \{x | 0 < x \le 10, \ x \in \mathbb{N}\}$, 集合 $A = \{1, 2, 4, 5, 9\}$, 集合 $B = \{4, 6, 7, 8, 10\}$, 求 $C_U A$, $C_U B$, $C_U A \cup C_U B$, $C_U A \cap C_U B$, $C_U (A \cap B)$, $C_U (A \cup B)$, 并指出其中相等的集合.
- 23. 用 A、B 的运算式表示图中的阴影部分:

- 24. 已知集合 $A = \{1, 4, x\}$, 集合 $B = \{1, x^2\}$, 且 $A \cup B = A$, 求 x 的值及集合 A、B.
- 25. 已知集合 $A = \{x | -2 \le x \le 4\}$, 集合 $B = \{x | -3 < x < 2\}$, 集合 $C = \{x | -3 \le x < 0\}$, 求 $A \cup B$, $(A \cap B) \cup C$, $(A \cup C) \cap (B \cup C)$.
- 26. 已知集合 $U = \{x | x \ge 2\}$, 集合 $A = \{y | 3 \le y < 4\}$, 集合 $B = \{z | 2 \le z < 5\}$, 求 $\mathcal{C}_U A \cap B$, $\mathcal{C}_U B \cup A$.
- 27. 已知集合 $U = \{a, b, c, d, e, f\}$, 集合 $A = \{a, b, c, d\}$, $A \cap B = \{a\}$, $\mathcal{C}_U(A \cup B) = \{f\}$, 求集合 B.
- 28. 判断下列语句是否为命题, 并在相应的括号内填入"是"或"否".
 - (1) 正方形是四边形; ____
 - (2) 0 是自然数吗; ____
 - (3) 交集和并集;
 - (4) $3 < \pi$. ____
- 29. 判断下列命题的真假, 并在相应的括号内填入"真命题"或"假命题".
 - (1) 如果 a、b 都是奇数, 那么 a + b 是偶数; ____
 - (2) 一组对边平行且两对角线相等的四边形是平行四边形; ____
 - (3) 如果 |a| < 2, 那么 a < 2; _____
 - (4) 如果 $A \cap B = A$, 那么 $A \cup B = B$. ____

30.	0. 如果 a、b、c 为实数, 设 A: a = b = c = 0; B: a, b, c 至少AC; BC.(用符号 "⇒"、"⇐" 或 "⇔" 填空)	有一个为 $0; C: a^2 + \sqrt{b} +$	$ c = 0$, 那么 $A_{___}B$;			
31.	 已知命题 A: 如果 x < 3, 那么 x < 5; 命题 B: 如果 x ≥ 3 写各命题之间的关系: A 与 B 互为 命题, B 与 C 互为 					
32.	2. 写出命题 "在 $\triangle ABC$ 中, 如果 $\angle C > \angle B$, 那么 $AB > AC$	"的逆命题、否命题和逆否	命题, 并判断其真假.			
33.	$3.$ 写出命题 "如果 α , 那么 β " 的逆命题、否命题和逆否命题					
34.	4. 写出命题 "已知 a 、 b 、 c 是实数, 如果 $ac < 0$, 那么 $ax^2 +$ 逆否命题, 并判断其真假.	写出命题 "已知 a 、 b 、 c 是实数, 如果 $ac < 0$, 那么 $ax^2 + bx + c = 0 (a \neq 0)$ 有实数根"的逆命题. 否命题和 逆否命题, 并判断其真假.				
35.	5. 命题 "若 $x \neq 3$ 且 $x \neq 4$, 则 $x^2 - 7x + 12 \neq 0$ " 的逆否命是	ē是 ().				
	A. 若 $x^2 - 7x + 12 = 0$, 则 $x = 3$ 或 $x = 4$ B.	若 $x^2 - 7x + 12 = 0$, 则 $x_{\bar{7}}$	$\neq 3$ 或 $x \neq 4$			
	C. 若 $x^2 - 7x + 12 \neq 0$, 则 $x \neq 3$ 且 $x \neq 4$ D.	著 $x^2 - 7x + 12 = 0$, 则 $x =$	= 3 L x = 4			
36.	6. 如果命题 A 的逆命题是 B , 命题 A 的否命题是 C , 那么命	题 B 是命题 C 的 ().				
	A. 逆命题 B. 否命题	C. 逆否命题	D. 以上都不正确			
37.	 (元) (1) (1) (1) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	τ题 B: "△ABC 是直角三 ∫	角形"是否为等价命题,			
38.	8. 试判断命题 A: "三角形任意两边之和大于第三边"与命题价命题,并说明理由.	. 试判断命题 A: "三角形任意两边之和大于第三边"与命题 B: "三角形任意两边之差小于第三边"是否为等价命题,并说明理由.				
39.	9. 求证: 对角线不互相平分的四边形不是平行四边形.	. 求证: 对角线不互相平分的四边形不是平行四边形.				
40.	0. 判断下列命题的真假, 并在相应的横线上填入"真命题"或	"假命题".				
	(1) 若 $A \cap B \neq \emptyset$, $B \subsetneq C$, 则 $A \cap C \neq \emptyset$; (2) 方程 $(a+1)x + b = 0$ (a 、 $b \in \mathbf{R}$) 的解为 $x = -\frac{b}{a+1}$; (3) 若命题 α 、 β 、 γ 满足 $\alpha \Rightarrow \beta$, $\beta \Rightarrow \gamma$, $\gamma \Rightarrow \alpha$, 则 $\alpha \Leftrightarrow \gamma$					
41.	1. 若 α : $\{2\} \subsetneq B \subseteq \{2,3,4\}, \ \beta: B = \{2,4\}, \ \c M \ \c eta \ \c B$ 的推出	出关系是 ().				
	A. $\alpha \Rightarrow \beta$ B. $\beta \Rightarrow \alpha$	C. $\alpha \Leftrightarrow \beta$	D. $\alpha \not\Rightarrow \beta$ H. $\beta \not\Rightarrow \alpha$			
	(2) 由命题甲成立, 可推出命题乙不成立, 下列说法一定正确	角的是 ().				
	A. 命题甲不成立, 可推出命题乙成立 B.	命题甲不成立,可推出命题。	乙不成立			
	C. 命题乙成立, 可推出命题甲成立 D.	命题乙成立, 可推出命题甲	不成立			
42.	2. 已知一个命题的否命题是"两组对边分别相等的四边形是	平行四边形", 试写出原命题	的逆命题, 并判断原命			

原命题的真假.

44. 类比 $A \subseteq B \Leftrightarrow A \cap B = A$, 试再写出两个等价命题:							
$A \subseteq B \Leftrightarrow \underline{\hspace{1cm}};$							
$A \subseteq B \Leftrightarrow \underline{\hspace{1cm}}$.							
45. 下列各题中命题 P 是命题 Q 的什么条件?							
(1) P: 四边形的四条边相等, Q: 四边形是正方形;							
(2) $P: \triangle ABC \cong \triangle DEF, Q: \triangle ABC$ 的面积 = $\triangle DEF$ 的面积;							
(3) P: x 是 2 的倍数, Q: x 是 6 的倍数;							
(4) P: 两个三角形全等, Q: 两个三角形的两角和一边对应相等.							
46. 若 x 、 y 都是实数, 则 " $xy = 0$ " 是 " $x = 0$ " 的 条件.							
47. 若 x 、 y 、 z 都是实数, 则 " $x \cdot y = y \cdot z$ " 是 " $x = z$ " 的 条件.							
48. 若 x 、 y 、 z 都是实数, 则 " $\frac{x}{y} = \frac{y}{z}$ " 是 " $xz = y^2$ " 的 条件.							
49. 若 x 、 y 都是实数, 则 " $ x > y $ " 是 " $x > y > 0$ " 的 条件.							
50. 已知 l 、 m 、 n 都是自然数, " $l+m+n$ 为偶数" 是" l 、 m 、 n 都是偶数" 的什么条件? 为什么?							
51. 有下列四组命题: ① P : 集合 $A \subseteq B, B \subseteq C, C \subseteq A, Q$: 集合 $A = B = C$; ② P : $A \cap B = A \cap C, Q$:	B=C;						
③ $P: (x-2)(x-3) = 0, Q: \frac{x-2}{x-3} = 0;$ ④ $P:$ 抛物线 $y = ax^2 + bx + c(a \neq 0)$ 过原点, $Q: c = 0$. 其	中 P 是						
Q 的充要条件的有 ().							
A. ①、② B. ①、④ C. ②、③ D. ②、④							
52. 写出使实数 a、b 一正一负的充要条件.							
$53.$ 求证: 实数 a 、 b 均大于 0 的充要条件是 $\begin{cases} a+b>0, \\ ab>0. \end{cases}$							
54. 命题 " $x \in M$ 或 $x \in P$ " 是命题 " $x \in M \cap P$ " 的什么条件?							
55. 写出命题 " $x > 3$ " 的一个充分条件和一个必要条件.							
$56.$ 如果 α 是 β 的充分非必要条件, 那么 $\overline{\alpha}$ 是 $\overline{\beta}$ 的什么条件?							
57. 如果 A 是 B 的必要条件, C 是 B 的充分条件, A 是 C 的充分条件, 那么 B 、 C 分别是 A 的什么条件	件?						
58. 填空: 已知集合 $A = \{a a \ $ 具有性质 $p\}$, $B = \{b b \ $ 具有性质 $q\}$.							
(1) 若 $A \subseteq B$, 则 p 是 q 的 条件;							
(2) 若 A ⊇ B, 则 p 是 q 的 条件;							
(3) 若 $A = B$, 则 p 是 q 的 条件.							

- 59. 试用子集与推出关系来判断命题 A 是命题 B 的什么条件.
 - (1) A: 该平面图形是四边形, B: 该平面图形是梯形;
 - (2) A: x = 2, B: (x 5)(x 2) = 0;
 - (3) $A: x^2 = y^2, B: x = y;$
 - (4) $A: a = 2, B: a \le 2.$
- 60. 如果命题 p: m < -3, 命题 $q: 方程 x^2 x m = 0$ 无实数根, 那么 $p \neq q$ 的什么条件?
- 61. 已知命题 α : $2 \le x < 4$, 命题 β : $3m-1 \le x \le -m$, 且 α 是 β 的充分条件, 求实数 m 的取值范围.
- 62. 如果命题 $p: A \subseteq B$, 命题 $q: A \subsetneq B$, 那么 $p \neq Q$ 的什么条件?
- 63. 已知 a 为实数, 写出关于 x 的方程 $ax^2 + 2x + 1 = 0$ 至少有一个实数根的一个充要条件、一个充分条件、一 个必要条件.
- 64. 下列命题中正确的是().
 - A. 自然数集 N 中最小的数是 1

- B. 空集是任何集合的真子集
- C. 如果 $A \subseteq B$, 且 $A \neq B$, 那么 A 是 B 的真子集 D. $\{y|y=x+3, x \in \mathbb{N}\}$ 中的最小值是 4

65. 若 $A \cap B = A$, 则 ().

A.
$$C_B A \cup A = \emptyset$$

B.
$$C_B A \cap A = \emptyset$$

A.
$$C_B A \cup A = \emptyset$$
 B. $C_B A \cap A = \emptyset$ C. $C_B A \cup C_B B = \emptyset$ D. $C_B A \cap A = \emptyset$

D.
$$C_B A \cap A = \emptyset$$

66. 已知 I 是全集. 若 M、P、S 是 I 的 3 个子集,则图中阴影部分所表示的集合是 ().

A. $(M \cap P) \cap S$ B. $(M \cap P) \cup S$ C. $(M \cap P) \cap \mathcal{C}_I S$ D. $(M \cap P) \cup \mathcal{C}_I S$

- 67. 若命题 $p: x^2 5x + 6 = 0$, 命题 q: x = 2, 则 $p \neq q$ 的 条件。
- 68. 若 p: 四边形是正方形, q: 四边形的两条对角线互相垂直平分, 则 p 是 q 的 条件.
- 69. 若 p: 抛物线 $y = ax^2 + bx + c$ 过原点, q: c = 0, 则 p 是 q 的______ 条件.
- 70. 若 $p: a > b, q: a^2 > b^2, 则 p 是 q 的______条件.$
- 71. 若方程 $x^2 + px + 4 = 0$ 的解集为 A, 方程 $x^2 + x + q = 0$ 的解集为 B, 且 $A \cap B = \{4\}$, 则集合 $A \cup B$ 的所 有子集是 .
- 72. 对上海市某校学生进行调查, 结果如下: 成语同典拥有率为 84%, 古汉语词典拥有率为 78%. 同时拥有上述两 种词典的学生占全校学生的 66%, 求上述两种词典都没有的学生所占的比例.

- 73. 已知集合 $A = \{x \mid -2 < x \le 1\}$, 集合 $B = \{x \mid x \ge 1x < -2\}$, 求 $A \cup B$, $A \cap B$.
- 74. 已知集合 $A = \{x \mid -1 < x < 1$ 或 $x \ge 3\}$, 集合 $U = \{x \mid x \ge 2x < 1\}$, 求 $C_U A$.
- 75. 写出命题: 若 x > 1, 则 x > 0 的逆命题、否命题、逆否命题, 并指出哪些是真命题.
- 76. 已知集合 $A = \{x|x^2 + px + q = 0\}$, 集合 $B = \{x|x^2 x + r = 0\}$, 且 $A \cap B = \{-1\}$, $A \cup B = \{-1,2\}$, 求 p、 q、r 的值.
- 77. 已知全集 $U = \mathbb{R}$, 集合 $A = \{x | x \le a 1\}$, 集合 $B = \{x | x > a + 2\}$, 集合 $C = \{x | x < 0$ 或 $x \ge 4\}$. 若 $C_U(A \cup B) \subseteq C$, 求实数 a 的取值范围.
- 78. 若集合 $M = \{a | a = x + \sqrt{2}y, x, y \in \mathbf{Q}\}$, 则下列结论正确的是 ().

A. $M \subseteq \mathbf{Q}$

B. $M = \mathbf{Q}$

C. $M \supseteq \mathbf{Q}$

D. $M \subseteq \mathbf{Q}$

- 79. 若 A 是 B 的必要非充分条件, B 是 C 的充要条件, C 是 D 的必要非充分条件, 则 D 是 A 的_______ 条 件, $C \neq A$ 的 条件.
- 80. 已知全集 $U = \{x | x$ 为不大于 20 的素数 $\}$. 若 $A \cap C_U B = \{3, 5\}$, $C_U A \cap B = \{7, 19\}$, $C_U (A \cup B) = \{2, 17\}$, 则 $A = _____, B = _____.$
- 81. 已知集合 $P = \{x \mid -2 \le x \le 5\}$, 集合 $Q = \{x \mid k+1 \le x \le 2k-1\}$, 且 $Q \subseteq P$, 求实数 k 的取值范围.
- 82. 已知集合 $A = \{x | (a-1)x^2 + 3x 2 = 0\}$, 是否存在这样的实数 a, 使得集合 A 有且仅有两个子集? 若存在, 求出实数 a 的值及对应的两个子集; 若不存在. 请说明理由.
- 83. 解不等式: 2(x+1) 3(x-2) > 8.
- 84. 解不等式组: $\begin{cases} 3x 2(5 3x) > 8, \\ 2x \le 2(2x + 3). \end{cases}$
- 85. 判断下列语句是否正确, 并在相应的横线内填入"√"或"×".
 - (1) 若 ax > b, 则 $x > \frac{b}{a} (a \neq 0)$._____;
 - (2) 若 $a^2x > a^2y$, 则 x > y._____;
 - (3) **a**> b > 0, c > d > 0,**m**<math>**a**> <math>**b**.....;
 - (4) 若 a > b, 则 $a^2 > ab$.
- 86. 如果 $a^2 > b^2$, 那么下列不等式中正确的是 ().

A. a > 0 > b

B. a > b > 0

C. |a| > |b|

D. a > |b|

87. 如果 a < b < 0, 那么下列不等式中正确的是 ().

A. $\frac{-a}{-b} < 1$ B. $a^2 > ab$

C. $\frac{1}{h^2} < \frac{1}{a^2}$

D. $\frac{1}{a} < \frac{1}{b}$

88. 如果 a < 0 < b, 那么下列不等式中正确的是 ().

A.
$$\sqrt{-a} < \sqrt{b}$$
 B. $a^2 < b^2$

B.
$$a^2 < b^2$$

C.
$$a^3 < b^3$$

D.
$$ab > b^2$$

- 89. 证明: 如果 a > b, c < 0, 那么 (a b)c < 0.
- 90. 证明: 如果 a < b < 0, 那么 $0 > \frac{1}{a} > \frac{1}{b}$.
- 91. 用 ">" 或 "<" 号填空: 如果 a < b < 0, 那么

 - (1) $\sqrt[n]{-a}$ $\sqrt[n]{-b}(n \ge 2, n \in \mathbf{N}^*);$ (2) $\frac{1}{a^{2n}}$ $\frac{1}{b^{2n}}(n \in \mathbf{N}^*).$
- 92. 比较 x(x-y) 与 $y(x-y)(x \neq y)$ 的大小.
- 93. 比较 (3a+1)(a+1) 与 $2(a+1)^2-3$ 的大小.
- 94. 比较 (t+1)(t-5) 与 $(t-2)^2$ 的大小.
- 95. 已知 a > 2, 解关于 x 的方程 $ax + 4 < 2x + a^2$.
- 96. 已知 m < 1, 解关于 x 的方程 $mx + 1 < x + m^3$.
- 97. 已知 $p \neq q$, 解关于 x 的方程 $(p-q)x < p^2 q^2$.
- 98. 解关于 x 的方程 $mx + 4 < m^2 + 2x$.
- 99. 甲乙两个工厂今年的产值分别为 25000 万元、20000 万元. 如果甲工厂每年增加产值 500 万元, 乙工厂每年 增加产值 1000 万元, 那么几年后乙工厂的产值超过甲工厂的产值?
- 100. 如果 a > b, 那么 $\frac{1}{a} < \frac{1}{b}$ 成立的充要条件是______.
- 101. 解关于 x 的不等式: $a^2(x-1) > b^2(1+x) + 2ab$, 其中 a、 $b \in \mathbb{R}^+$.
- 102. 已知 x、 $y \in \mathbb{R}$, 比较 $x^2 + y^2 = 2(2x y) 5$ 的大小.
- 103. 解不等式: $2x^2 3x + 1 < 0$.
- 104. 解不等式: $(x+1)^2 6 > 0$.
- 105. 解不等式: x(x-1) < x(2x-3) + 1.
- 106. 解不等式: $-x^2 + 2x + 35 > 0$.
- 107. 解不等式: (x-2)(3-x) < 0.
- 108. 解不等式: $2x 1 \ge x^2$.
- 109. 解关于 x 的不等式: (x-a)(x-1) < 0(a > 1).
- 110. 解关于 x 的不等式: (x-a)(x-2a) < 0(a > 0).

111. 写出一个解集只含一个元素的一元二次不等式.

112. 解不等式组:
$$\begin{cases} 6 - x - x^2 \le 0, \\ x^2 + 3x - 4 < 0. \end{cases}$$

113. 解不等式组:
$$\begin{cases} 4x^2 - 27x + 18 > 0, \\ x^2 - 6x + 4 < 0. \end{cases}$$

- 114. 已知集合 $U = \mathbf{R}$, 且集合 $A = \{x|x^2 16 < 0\}$, 集合 $B = \{x|x^2 4x + 3 \ge 0\}$, 求:
 - (1) $A \cap B$;
 - (2) $A \cup B$;
 - (3) $C_U(A \cap B)$;
 - (4) $C_U A \cup C_U B$.
- 115. 已知不等式 $x^2 + ax + b < 0$ 的解集为 (-3, -1), 求实数 $a \cdot b$ 的值.
- 116. 已知关于 x 的二次方程 $2x^2 + ax + 1 = 0$ 无实数解, 求实数 a 的取值范围.
- 117. 已知 P(a,b) 为正比例函数 y=2x 的图像上的点, 且 P 与 B(2,-1) 之间的距离不超过 3, 求 a 的取值范围.
- 118. 某船从甲码头沿河顺流航行 75 千米到达乙码头, 停留 30 分钟后再逆流航行 126 千米到达丙码头. 如果水流的速度为每小时 4 千米, 该船要在 5 小时内完成航行任务, 那么船的速度每小时至少为多少千米?

119. 解不等式组:
$$\begin{cases} 3x^2 + x - 2 \ge 0, \\ 4x^2 - 15x + 9 > 0. \end{cases}$$

120. 已知关于
$$x$$
 的不等式组
$$\begin{cases} (2x-3)(3x+2) \leq 0, \\ x-a>0 \end{cases}$$
 无实数解, 求实数 a 的取值范围.

- 121. 当 k 取何值时, 关于 x 的不等式 $2kx^2 + kx \frac{3}{8} < 0$ 对于一切实数 x 都成立?
- 122. 已知关于 x 的不等式 $ax^2 + bx + c > 0$ 的解集是 $\{x|x>2$ 或 $x<\frac{1}{2}\}$, 求关于 x 的不等式 $ax^2 bx + c \le 0$ 的解集.
- 123. 某商品每件成本为 80 元, 售价为 100 元, 每天售出 100 件. 若售价降低 x 成 (1 成即 10%), 售出商品的数量 就增加 $\frac{8}{5}x$ 成. 若要求该商品一天的营业额至少为 10260 元, 且又不能亏本, 求 x 的取值范围.

124. 解不等式:
$$\frac{1}{x} < 1$$
.

125. 解不等式:
$$\frac{4x+3}{x-1} > 5$$
.

126. 解不等式:
$$\frac{2}{x} < \frac{2}{x-3}$$
.

127. 解不等式:
$$\frac{1}{x-4} \le 1 - \frac{x}{4-x}$$
.

- 128. 求当 k 为何值时, 关于 x 的方程 $\frac{4k-3x}{k+2} = 2x$ 的解分别是:

 - (2) 负数.
- 129. 解不等式: $|x^2 3| < 2$.
- 130. 解不等式: $\left|\frac{1}{2-x}\right| \geq 2$.
- 131. 解不等式: $|x^2 3x + 2| \le 0$.
- 132. 解不等式: $\left| \frac{x}{x+1} \right| > \frac{x}{x+1}$.
- 133. 解不等式: |x-3| < x-1.
- 134. 若 a < b < 0, 则不等式 $\frac{x+a}{x+b} > 0$ 的解集是_
- 135. 解不等式: $4 \le |x^2 4x| < 5$.
- 136. 解不等式: $\frac{1}{|x|} > x$.
- 137. 已知不等式 $|ax + 1| \le b$ 的解集是 [-1, 3], 求 $a \times b$ 的值.
- 138. 如果 a、 $b \in \mathbb{R}$, 且 ab > 0, 那么下列不等式中正确的是(

A.
$$a^2 + b^2 > 2ab$$

B.
$$a+b \ge 2\sqrt{ab}$$

A.
$$a^2 + b^2 > 2ab$$
 B. $a + b \ge 2\sqrt{ab}$ C. $\frac{1}{a} + \frac{1}{b} > \frac{2}{\sqrt{ab}}$ D. $\frac{b}{a} + \frac{a}{b} \ge 2$

D.
$$\frac{b}{a} + \frac{a}{b} \ge 2$$

- 139. 设 $ab \neq 0$, 利用基本不等式有如下证明: $\frac{b}{a} + \frac{a}{b} = \frac{b^2 + a^2}{ab} \geq \frac{2ab}{ab} = 2$. 试判断这个证明过程是否正确. 若正 确, 请说明每一步的依据; 若不正确, 请说明理由.
- 140. 已知 $a \cdot b \in \mathbf{R}$, 比较 $|a| + \frac{|b|}{2}$ 与 $\sqrt{2} \cdot \sqrt{|ab|}$ 的大小.
- 141. 已知 $0 < x < \frac{1}{2}$, 求当 x 取何值时, x(1-2x) 的值最大.
- 142. 已知 a > 0, 求证: $a + a^3 \ge 2a^2$.
- 143. 用一根长为 l 的铁丝制成一个矩形框架. 当长、宽分别为多少时, 框架的面积最大?
- 144. 已知 x、 $y \in \mathbb{R}^+$, 且 x + y = 1, 求当 x、y 分别取何值时, $\frac{1}{x} + \frac{1}{y}$ 的值最小.
- 145. 已知 x > -1, 求当 x 取何值时, $x + \frac{4}{x+1}$ 的值最小.
- 146. 已知 a+b=1, 求证: $a^2+b^2\geq \frac{1}{2}$.
- 147. 建造一个容积为 8 立方米、深为 2 米的长方形无盖水池. 如果池底和池壁的造价每平方米分别为 120 元和 80 元, 那么水池的最低造价是多少元?
- 148. $\Re iF$: $(ac+bd)^2 < (a^2+b^2)(c^2+d^2)$.

- 149. 已知 x > y, 求证: $x^3 y^3 > x^2y xy^2$
- 150. 已知实数 a > 3、求证: $\sqrt{a} \sqrt{a-1} < \sqrt{a-2} \sqrt{a-3}$.
- 151. 已知 a、b、c 是不全相等的整数, 求证: $(a^2+1)(b^2+1)(c^2+1) > 8abc$.
- 152. 设 a、b、 $c \in \mathbb{R}^+$,求证: $\frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c} \ge 6$.
- 153. 已知 a > 0, b > 0, 求证: $\frac{a}{\sqrt{b}} + \frac{b}{\sqrt{a}} \ge \sqrt{a} + \sqrt{b}$.
- 154. 求证: $\left| \frac{a^2 1}{a^2 + 1} \right| \le 1$.
- 155. 如果 $a \in \mathbb{R}$, 且 $a^2 + a < 0$, 那么 $a \cdot a^2 \cdot -a \cdot -a^2$ 的大小关系是 ().
- A. $-a < -a^2 < a < a^2$ B. $a < -a^2 < a^2 < -a$ C. $-a^2 < a < a^2 < -a$ D. $-a^2 < a < -a < a^2$

- 156. 不等式 $\frac{x^2}{x-1} \ge 0$ 的解是 ().
 - A. $(1, +\infty)$
- B. $[1 + \infty)$
- C. $(1, +\infty) \cup \{0\}$ D. $[1, +\infty) \cup \{0\}$

- 157. 不等式 1 + |x + 1| < 0 的解集是 ().
 - A. $(-\infty, -2)$ B. (-2, 0)
- C. R

D. \emptyset

- 158. 证明: 如果 a > b > 0, c > d > 0, 那么 $a^2c > b^2d$.
- 159. 证明: $a^2 + b^2 + 2 \ge 2(a+b)$.
- 160. 证明: 如果 a、b、c 都是正数, 那么 $(a+b)(b+c)(c+a) \ge 8abc$.
- 161. 解不等式: 2(x+1)(x+2) > (x+3)(x+4).
- 162. 解不等式: $-3x^25x 4 < 0$.
- 163. 解不等式: $4x^2 20x + 25 \le 0$.
- 164. 解不等式: $x^2 16x + 64 > 0$.
- 165. 解不等式组: $\begin{cases} x^2 16 < 0, \\ x^2 4x + 3 \ge 0. \end{cases}$
- 166. 解不等式组: $4 < x^2 x 2 < 10$.
- 167. 解不等式: $\left| \frac{3x-9}{2} \right| \le 6$.
- 168. 解不等式: 3 < |x-2| < 5.
- 169. 解不等式: $|\frac{1}{r}| < \frac{4}{5}$.

- 170. 下列四对不等式(组)中,哪几对具有相同的解集?
 - $(1) \ -\frac{1}{2}x^2 + 3x + \frac{27}{2} > 0 \ -\frac{1}{5} \ x^2 6x 27 > 0;$
 - (2) $4 < x^2 x + 2 < 10$ 与 $\begin{cases} x^2 x + 2 < 10, \\ x^2 x + 2 > 4; \end{cases}$ (3) |2x + 1| < 5 与 2x + 1 < 5 或 2x + 1 > -5;

 - (4) $\frac{x-1}{x+1} < 2 3 \times x 1 < 2(x+1)$.
- 171. 已知关于 x 的不等式 $2x^2 2(a-1)x + (a+3) > 0$ 的解集是 \mathbf{R} , 求实数 a 的取值范围
- 172. 已知函数 $y = (m-1)x^2 + (m-3)x + (m-1)$, m 取什么实数时, 函数图像与 x 轴
 - (1) 没有公共点?
 - (2) 只有一个公共点?
 - (3) 有两个不同的公共点?
- 173. 当 k 是什么实数时, 关于 x 的方程 2x + k(x+3) = 4 的解是正数?
- 174. 已知直角三角形的周长为 4, 求这个直角三角形面积的最大值, 并求此时各边的长.
- 175. 求证: $(\frac{a+b}{2})^2 \le \frac{a^2+b^2}{2}$.
- 176. 求不等式 $5 \le x^2 2x + 2 < 26$ 的正整数解.
- 177. 已知 x、 $y \in [a, b]$.
 - (1) 求 x + y 的范围;
 - (2) 若 x < y, 求 x y 的范围.
- 178. 当 k 为什么实数时,方程组 $\begin{cases} 3x-6y=1,\\ 5x-ky=2 \end{cases}$ 的解满足 x<0 且 y<0 的条件? $\begin{cases} 4x+3y=60,\\ kx+(k+2)y=60 \end{cases}$ 的解满足 x>y>0 的条件?
- 180. 已知 m < n, 试写出一个形如 $ax^2 + bx + c > 0$ 的一元二次不等式, 使它的解集分别为:
 - $(1) (-\infty, m) \cup (n, +\infty);$
 - (2) (m, n).
- 181. 下列各图像中, 哪些是函数的图像, 哪些不是函数的图像? 为什么?

182. 选择题: 下列各组函数 f(x) 与 g(x) 表示同一个函数的是 ()

A.
$$f(x) = \frac{x^2 - 1}{x + 1}$$
, $g(x) = x - 1$

B.
$$f(x) = |x|, g(x) = \begin{cases} x, & x \ge 0, \\ -x, & x < 0 \end{cases}$$

C.
$$f(x) = x^0$$
, $g(x) = 1$

D.
$$f(x) = (\sqrt{x})^2$$
, $g(x) = \sqrt{x^2}$

183. 求函数
$$y = \frac{1}{x^2 + 2x - 3}$$
 的定义域.

184. 求函数
$$y = \sqrt{4 - 3x - x^2}$$
 的定义域.

185. 求函数
$$y = \sqrt{x-2} + \sqrt{x+3}$$
 的定义域.

186. 求函数
$$y = \frac{1}{x+2} + \frac{1}{\sqrt{5-x}}$$
 的定义域.

187. 若
$$f(x) = x^2 + px + q$$
, 且 $f(1) = 0$, $f(2) = 0$, 求 $f(-1)$ 的值.

188. 观察下列各函数, 并写出他们的值域:

189. 某企业去年四个季度生产某种型号机器的数量 y(万台) 与季度的函数关系是:

x(季度)	1	2	3	4
y(万台)	10	12	14	16

试写出函数的定义域,并作出函数的图像.

190. 求函数
$$y = \frac{1}{|x+3|-1}$$
 的定义域.

191. 求函数 $y = \sqrt{(a-x)(x-1)}(x$ 为自变量) 的定义域.

192. 已知
$$f(x) = \begin{cases} 2x(3+x), & x \ge 0, \\ 2x(3-x), & x < 0. \end{cases}$$
 求 $f(2)$ 、 $f(-4)$ 、 $f(-a)$ 的值.

- 193. 试举出一个定义域为 [-2,2] 的函数例子.
- 194. 为分流短途乘客, 减缓轨道交通高峰压力, 上海地铁实行新的计费标准. 新标准的分段计程制度如下: 0-6 千米(含6千米)3元; 6-16千米(含16千米)4元; 16千米以上每6千米递增1元, 但总票价不超过8元.
 - (1) 试作出票价 y(元) 关于路程 x(千米) 的函数图像;
 - (2) 某人买了 5 元的车票, 他途经路程不能超过多少千米?
- 195. 试用解析式将圆的面积 S 表示成圆的周长 C 的函数.
- 196. 一个矩形的对角线长为 10 厘米, 试用解析式将它的一条边长 y(厘米) 表示成与这条边相邻的另一条边长 x(厘米) 的函数.
- 197. 已知上海到北京火车行驶路程为 1318 千米, 高速火车以每小时 300 千米的速度, 由上海开往北京. 试用解析式将行进中的火车到北京的路程 s(千米) 表示成行驶的时间 t(时) 的函数.
- 198. 某中学的高一学生进行野外生存训练, 从甲地步行到乙地. 已知甲乙两地相距 32 千米, 在前 3 小时内学生们每小时走 4 千米, 随后以每小时 5 千米的速度一直走到乙地. 设他们离开甲地的距离为 s(千米) 时, 所用的时间为 t(时), 试用解析式将 s(千米) 表示成 t(时) 的函数.
- 199. 某地区住宅电话费收取标准为:接通后 3 分钟内(含 3 分钟)收费 0.20元,以后每分钟(不足一分钟按一分钟计)收费 0.18元,如果一次通话 t分钟,写出通话费: y(元)关于通话时间 t(分)的函数关系式.
- 200. 某商场对顾客实行购物优惠活动, 规定一次购物总额:
 - (1) 如果不超过 500 元, 那么不予优惠;
 - (2) 如果超过 500 元但不超过 1000 元, 那么按标价给予 9 折优惠;
 - (3) 如果超过 1000 元, 那么其中的 1000 元按 (2) 给予优惠, 超过 1000 元的部分给予 7 折优惠. 设一次购物总额为 x 元, 优惠后实际付款额为 y 元, 试写出用 x(元) 表示少 y(元) 的函数关系式.
- 201. 已知等腰三角形的周长为 12 厘米, 试将该三角形的一条腰长 y(厘米) 表示成底边长 x(厘米) 的函数.
- 202. 某物流公司在上海、杭州各有库存的某种机器 12 台和 6 台, 现销售给 A 市 10 台、B 市 8 台. 已知上海调运一台机器到 A 市、B 市的运费分别为 400 元、800 元; 杭州调运一台机器到 A 市、B 市的运费分别为 300 元、500 元. 设从上海调往 A 市 x 台, 求总运费 W(元) 关于 x(台) 的函数关系式.
- 203. 某地区有一种上网服务项目, 收费方法为:每个月付 75 元, 一年中 1、2、7、8 月为无限时包月上网, 其余月份为每月 30 小时有限包月, 超过 30 小时部分按 0.05 元/分计费. 设上网时间为 t 小时, 每月上网的费用为 y 元.

- (1) 写出一年中 1、2、7、8 月中每个月上网费用: y(元) 关于上网时间 t(时) 的函数解析式;
- (2) 写出一年中除 $1 \times 2 \times 7 \times 8$ 月以外的每个月上网费用 (元) 关于上网时间 $y(\pi)$ 的函数解析式.
- 204. 如图, 在直角坐标系的第一象限内, $\triangle OAB$ 是边长为 2 的等边三角形, 设直线 $l: x = t(0 \le t \le 2)$ 截这个三 角形. 图中阴影部分的面积为 S, 求函数 S = f(t) 的解析式.

- 205. 已知函数 $f(x) = \sqrt{x+1} + \sqrt{1-x}$, 函数 $g(x) = \sqrt{2-x} \sqrt{1-x}$, 求函数 y = f(x) + g(x).
- 206. 已知函数 $f(x) = \frac{1}{x}$, 函数 $g(x) = x^2 x$, 求函数 $y = f(x) \cdot g(x)$.
- 207. 已知函数 $f(x) = 2x \frac{1}{x^2 1}$, 函数 $g(x) = \frac{1}{x^2 1} 1$.
 - (1) 求函数 y = f(x) + g(x);
 - (2) 画出函数 y = f(x) + g(x) 的图像.
- 208. 已知函数 $f(x) = x\sqrt{x-1}$, 函数 $g(x) = \sqrt{x-1}$, 设 $F(x) = f(x) \cdot g(x)$.
 - (1) 写出 F(x) 的解析式;
 - (2) 画出 F(x) 的图像.
- 209. 已知函数 $f(x) = x^2 + x + 1$, 求函数 y = g(x), 使 f(x) + g(x) = 2x + 4.
- 210. 已知函数 $f(x) = \frac{x^2 + 1}{x}$,函数 $g(x) = \frac{2x^2 + 1}{x}$,函数 $h(x) = x^2 + 1$,求 F(x) = f(x) g(x), $H(x) = \frac{f(x)}{h(x)}$.
- 211. 已知函数 $f(x) = \frac{x^2}{\sqrt{4-x^2}}$, 函数 $g(x) = \sqrt{4-x^2}$.

 - (1) 求函数 $y = f(x) \cdot g(x)$; (2) 作出函数 $F(x) = \begin{cases} f(x) \cdot g(x), & x \leq 0, \\ x, & 0 < x \leq 2 \end{cases}$ 的图像.
- 212. 已知函数 $f(x) = x^2, x \in (0,2)$, 函数 y = f(x) + g(x) 的图像如图所示, 写出函数 y = g(x) 的一个解析式.

- 213. 若函数 y = f(x) 的定义域为 R, 则 y = f(x) 为奇函数的充要条件为 ().
 - A. f(0) = 0

- B. 对任意 $x \in \mathbf{R}, f(x) = 0$
- C. 存在某个 $x_0 \in \mathbf{R}$, 使得 $f(x_0) + f(-x_0) = 0$
- D. 对任意的 $x \in \mathbf{R}$, f(x) + f(-x) = 0 都成立

- 214. 求证函数 $f(x) = x^{-3}$ 是奇函数.
- 215. 求证函数 $f(x) = \frac{x}{1 x^2}$ 是奇函数.
- 216. 判断函数 $f(x) = 2x + \sqrt[3]{x}$ 的奇偶性.
- 217. 判断函数 $f(x) = 2x^4 x^2$ 的奇偶性.
- 218. 判断函数 $f(x) = x^2 x$ 的奇偶性.
- 219. 判断函数 $f(x) = \frac{1-x}{1+x}$ 的奇偶性.
- 220. 已知函数 y = f(x) 的定义域为 $[0, +\infty)$. 如果对任意的 x > 0, 都有 f(x) < f(0), 那么函数 y = f(x) 有 $[0, +\infty)$ 上是否一定是减函数?
- 221. 求证: 函数 $f(x) = x \frac{1}{x}, x \in (-\infty, 0)$ 是增函数.
- 222. 判断函数 $f(x) = 2x + \frac{2}{x}, x \in [\frac{1}{2}, 3]$ 的单调性, 并求出它的单调区间.
- 223. 如果函数 $y = x^2 2mx + 1$ 在 $(-\infty, 2]$ 上是减函数, 那么实数 m 的取值范围是______.
- 224. 当函数 f(x) = 时, 函数 f(x) 同时满足条件: ① 函数 f(x) 不是偶函数; ② 在区间 $(-\infty, -1)$ 上是减函数; ③ 在区间 (0,1) 上是增函数 (写出一个你认为正确的函数解析式).
- 225. 求函数 $f(x) = x^2 4x 2$ 的最小值, 并求出取最值时相应的自变量 x 的值.
- 226. 求函数 $f(x) = 6x 3x^2$ 的最小值, 并求出取最值时相应的自变量 x 的值.
- 227. 求函数 $f(x) = -x^2 4x 3, x \in [-3,1]$ 的最小值, 并求出取最值时相应的自变量 x 的值.
- 228. 求函数 $f(x) = x^2 2x 3, x \in [-2, 0]$ 的最小值, 并求出取最值时相应的自变量 x 的值.
- 229. 已知 p、q 分别是函数 f(x) = -2x + 3 在 [-2,2] 上的最大值和最小值, 求函数 $g(x) = 2x^2 px + q$ 在 [-2,2] 上的最大值和最小值.
- 230. 求函数 $y = \frac{2}{x-1} (2 \le x \le 6)$ 的最大值与最小值.
- 231. 求函数 $f(x) = x^3 + x^2 + x 1$ 在区间 (0,1) 内的零点 (精确到 0.1).
- 232. 画出函数 $y = x^2 2|x|$ 的图像, 并写出它的定义域、奇偶性、单调区间、最小值.
- 233. 研究函数 $f(x) = \frac{1}{1+x^2}$ 的定义域、奇偶性、单调性、最大值.

- 234. 已知函数 f(x) = |x a|, 且 f(1) = 0.
 - (1) 求函数 y = f(x) 的解析式;
 - (2) 比较 f(2) 与 f(-3) 的大小.
- 235. 已知函数 $f(x) = x^2 + ax + 1, x \in [b, 2]$ 是偶函数, 求 a、b 的值.
- 236. 已知函数 f(x) 为偶函数, g(x) 为奇函数, 且 $f(x) + g(x) = x^2 + 2x + 3$, 求 y = f(x)、 y = g(x) 的解析式.
- 237. 已知 $a \neq 0$, 试讨论函数 $f(x) = \frac{a}{1-x^2}$ 在区间 (0,1) 上的单调性.
- 238. 已知 α, β 是方程 $4x^2 4mx + m + 2 = 0$ 的两个实数根, 当 m 为何值时, $\alpha^2 + \beta^2$ 有最小值? 并求出这个最小值.
- 239. 求函数 $y = x^2 4x + 1$ 在 $x \in [t, 4]$ 上的最小值和最大值, 其中 t < 4.
- 240. 已知集合 $A = \{x | 1 \le x \le 4\}$, $f(x) = x^2 + px + q$ 和 $g(x) = x + \frac{4}{x}$ 是定义在 A 上的函数, 且在 x_0 处同时取到最小值, 并满足 $f(x_0) = g(x_0)$, 求 f(x) 在 A 上的最大值.
- 241. 已知某气垫船的最大船速是 48 海里/时, 船每小时使用的燃料费用和船速的平方成正比, 若船速为 30 海里/时, 则船每小时的燃料费用为 600 元. 其余费用 (不论船速为多少) 都是每小时 864 元. 甲乙两地相距 100 海里, 船从甲地行驶到乙地.
 - (1) 试把船每小时使用的燃料费用 P(元) 表示成船速 v(海里/时) 的函数;
 - (2) 试把船从甲地到乙地所需的总费用 y 表示成船速 v(海里/时) 的函数;
 - (3) 当船速为每小时多少海里时, 船从甲地到乙地所需的总费用最少?
- 242. 已知函数 y = f(x), 定义 F(x) = f(x+1) f(x). 某公司每月最多生产 100 台报警系统装置, 生产 x 台 (x>0) 的收入函数为 $R(x) = 3000x 20x^2$ (单位: 元), 其成本函数为 G(x) = 5000x + 4000(单位: 元), 利润是收入与成本之差.
 - (1) 求利润函数 y = f(x) 及相应的 y = F(x);
 - (2) 利润函数 y = f(x) 与 y = F(x) 是否具有相等的最大值?
- 243. 求方程的近似解 $x^2 + 2 + \frac{1}{x} = 0$ (精确到 0.1).
- 244. 研究函数 $f(x) = x + \frac{a}{x}(a > 0)$ 的定义域、奇偶性、单调性.
- 245. 求函数 $y = \frac{1}{2-x} + \sqrt{x^2-1}$ 的定义域.
- 246. 判断函数 $f(x) = |\frac{1}{2}x 3| + |\frac{1}{2}x + 3|$ 的奇偶性.
- 247. 判断函数 $f(x) = x^3 + \frac{2}{x}$ 的奇偶性.
- 248. 判断函数 $f(x) = x^2, x \in (k, 2)$ 的奇偶性.
- 249. 已知 y = f(x) 是奇函数, 定义域为 \mathbf{R} , y = g(x) 是偶函数, 定义域为 D. 设 $F(x) = f(x) \cdot g(x)$, 判断 y = F(x) 奇偶性.

- 250. 已知函数 $f(x) = (m-1)x^2 + 3x + (2-n)$, 且此函数为奇函数, 求 m、n 的值.
- 251. 已知函数 f(x) = x, $g(x) = -\frac{4}{x}$, p(x) = f(x) g(x), 求 y = p(x) 的函数表达式, 并写出 y = p(x) 的单调递减区间.
- 252. 作出函数 $y = |x^2 4x|$ 的图像, 并指出其单调区间.
- 253. 作出函数 y = 2|x| 3 的图像, 并指出其单调区间.
- 254. 设函数 $f(x) = (a^2 + 4a 5)x^2 4(a 1)x + 3$ 的图像都在 x 轴的上方, 求实数 a 的取值范围.
- 255. 已知函数 $f(x) = x^2 + 10x a + 3$, 当 $x \in [-2, +\infty)$ 时, $f(x) \ge 0$ 恒成立, 求实数 a 的取值范围.
- 256. 设 α, β 是二次方程 $x^2 2kx + k + 20 = 0$ 的两个实数根, 当 k 为何值时, $(\alpha + 1)^2 + (\beta + 1)^2$ 有最小值?
- 257. 已知 $f(x) = x^2 + ax + 1$, 若对任意的实数 x, 均有 f(2+x) = f(2-x) 恒成立, 求实数 a 的值.
- 258. 已知二次函数 $f(x) = ax^2 2ax + 3 a(a > 0)$, 比较 f(-1) 和 f(2) 的大小.
- 259. 已知函数 $f(x) = -x^2 + 2ax + 1 a$ 在 [0,1] 上有最大值 2, 求实数 a 的值.
- 260. 已知 y = f(x) 是定义在 (-1,1) 上的奇函数, 在区间 [0,1) 上是减函数, 且 $f(1-a) + f(1-a^2) < 0$, 求实数 a 的取值范围.
- 261. 已知函数 $f(x) = 2 x^2$, 函数 g(x) = x, 定义函数 F(x) 如下: 当 $f(x) \ge g(x)$ 时, F(x) = g(x); 当 f(x) < g(x) 时, F(x) = f(x). 求 F(x) 的最大值.
- 262. 已知函数 y = f(x) 具有如下性质:
 - ① 定义在 R 上的偶函数; ② 在 $(-\infty,0)$ 上为增函数; ③ f(0) = 1; ④ f(-2) = -7; ⑤ 不是二次函数. 求 y = f(x) 的一个可能的解析式.
- 263. 打开水龙头, 让水匀速地注入一个杯子内, 随着时间的增加, 杯中水面的高度不断增加, 直至水满溢出. 在这个过程中, 杯中水面的高度 h 关于注水时间 t 的函数为 h = f(t).

(1) 如果甲杯、乙杯的形状分别如图所示, 那么下列草图中, 甲杯相应函数 h = f(t) 的图像是______, 乙杯相应函数 h = f(t) 的图像是______.(只有杯子的圆柱和圆锥形部分可以盛水)

(2) 下列是两个杯子相应函数 h = f(t) 的图像, 试说明这两个杯子形状有何差别.

264. 已知幂函数 f(x) 的图像经过 $(2, \frac{\sqrt{2}}{2})$, 试求出这个函数的解析式.

265. 幂函数 $y=x^s$ 与 $y=x^t$ 的图像在第一象限都通过定点_______,若它们在第一象限的部分关于直线 y=x 对称,则 s、t 应满足的条件是_______.

266. 研究幂函数 $f(x) = x^{\frac{2}{5}}$ 的定义域、奇偶性、单调性、值域.

267. 作函数 $y = \frac{|x|+1}{|x+1|}$ 的大致图像.

268. 已知函数 $f(x) = x^3 - 3x$.

(1) 试求函数 y = f(x) 的零点;

(2) 求证: 函数 $f(x) = x^3 - 3x$ 在 $[1, +\infty)$ 上是增函数;

(3) 是否存在自然数 n, 使 f(n) = 1000? 若存在, 求出一个满足条件的 n; 若不存在, 请问明理由.

269. 在下列函数中, 哪一个既是奇函数, 又在区间 $(+\infty,0)$ 内是减函数?

① $y = x^{\frac{1}{2}}$; ② $y = x^{\frac{1}{3}}$; ③ $y = x^{\frac{2}{3}}$; ④ $y = x^{-\frac{1}{3}}$.

270. 已知幂函数 f(x) 的定义域是 $(+\infty,0)\cup(0,+\infty)$,且它的图像关于 y 轴对称,写出一个满足要求的幂函数 f(x).

271. 已知函数 $f(x)=\frac{ax+1}{x+2},\ a\in \mathbf{Z}$. 是否存在整数 a, 使函数 f(x) 在 $x\in [-1,+\infty)$ 上递减, 并且 f(x) 不恒为负? 若存在, 找出一个满足条件的 a; 若不存在, 请说出理由.

272. 比较 30.8, 30.7 两个值的大小.

273. 比较 0.75^{0.1}, 0.75^{-0.1} 两个值的大小.

274. 设 $a^{2x} = 2$, 且 $a > 0$, $a \neq 1$, 求	$\frac{a^{3x} + a^{-3x}}{a^x + a^{-x}}$	的值.
--	---	-----

- 275. 已知 $f(x) = a \cdot b^x$, f(4) = 648, f(5) = 1944.
 - (1) 估算 f(4.5);
 - (2) 计算 f(4.5), 利用计算的结果评判你的估算.
- 276. 已知 $f(x) = 3^x$, $u, v \in \mathbf{R}$.
 - (1) 求证: 对任意的 u、v, 都有 $f(u) \cdot f(v) = f(u+v)$ 成立.
 - (2) 写出一个关于 $f(u) \div f(v)$ 类似上式的等式, 并证明你的结论.

277. 求证:
$$f(x) = \frac{a^x - a^{-x}}{2} (a > 0, a \neq 1)$$
 是奇函数.

278. 求证:
$$f(x) = \frac{(a^x - 1) \cdot x}{a^x + 1} (a > 0, a \neq 1)$$
 是偶函数.

279. 若指数函数 $y = a^x$ 是减函数,则下列不等式中,能够成立的是 ().

A.
$$a > 1$$

B.
$$a < 1$$

C.
$$a(a-1) < 0$$

D.
$$a(a-1) > 0$$

280. 若函数 $y=2^x-m$ 的图像不经过第二象限, 则 m 的取值范围是 ().

A.
$$m > 1$$

B.
$$m < 1$$

C.
$$m > -1$$

D.
$$m < -1$$

- 281. 某地区的中小学 2003 年、2004 年共购置电脑 100 台,为了加快中小学的电脑普及程度,准备新购置的电脑数按每两年递增 10% 的比例增长,从 2005 年至 2010 年,该地区中小学新购置的电脑总数是多少?
- 282. 已知集合 $M = \{y | y = 2^x, x \in \mathbf{R}\},$ 集合 $N = \{y | y = x^2, x \in \mathbf{R}\},$ 求 $M \cap N$.
- 283. 作函数 $y = 2^{|x|}$ 的大致图像.
- 284. 作函数 $y = 2^{-|x|}$ 的大致图像.
- 285. 判断并证明函数 $y = \frac{10^x 10^{-x}}{10^x + 10^{-x}}$ 的奇偶性.
- 286. 判断并证明函数 $y = x(\frac{1}{2^x 1} + \frac{1}{2})$ 的奇偶性.
- 287. 函数 $y = 4^x 2^{x+1} + 1(x < 0)$ 的值域是 ().

A.
$$[0, +\infty)$$

B.
$$(1, +\infty)$$

D.
$$(0,1]$$

288. 填写下表, 比较 f(x) = 3x 和 $g(x) = x^3$ 函数值递增的快慢.

x	f(x) = 3x	增加量	$g(x) = x^3$	增加量
		f(x) - f(x-1)		g(x) - g(x-1)
0		/		/
1				
2				
3				
4				
5				

- 289. 试比较 $f(x) = x^2$ 和 $g(x) = x^3$ 在 $x \in (0,1)$ 时, 函数值递增的快慢程度.
- 290. 试比较 $f(x) = x^2$ 和 g(x) = 2x 在 $x \in [0, +\infty)$ 时, 函数值递增的快慢程度.
- 291. A 国现有人口 3500 万, 年粮食产量 800 万吨. 根据历年的资料统计, A 国人口的平均年增长率为 2%, 每人平均每年消耗粮食 200 千克. 假定他们国家既不出口粮食, 也不进口粮食.
 - (1) 预测多少年后, A 国会出现粮食短缺的情况;
 - (2) 如果 A 国的粮食每年增产 10 万吨, 还会出现粮食短缺的情况吗? 如果会, 约在多少年以后?
 - (3) 如果从现在开始, A 国的粮食每年增产 10 万吨,同时将人口的年增长率控制在 1%,还会出现粮食短缺的情况吗?如果会,约在多少年以后?
- 292. 幂函数 y = f(x), 当 x = 2 时, y = 16.
 - (1) 求函数 f(x) 的解析式;
 - (2) 比较 f(2) 和 f(-3) 的大小.
- 293. (1) 若关于 x 的方程 $5^x = \frac{a+3}{5-a}$ 有负数根,则 a 的取值范围是_____.
- 294. 方程 $(\frac{1}{2})^x = x^{\frac{1}{2}}$ 的实数根个数为_____.
- 295. 设在海拔 x 米处的大气压强是 y 帕, y 与 x 之间的函数关系式是 $y = c \cdot e^{k\tau}$, 其中 c、k 是常量. 已知某地某天在海平面的大气压强为 1.01×10^5 帕, 1000 米高空的大气压强为 0.90×10^5 帕, 求 600 米高空的大气压强3. (结果保留 3 位有效数字)
- 296. 2005 年 1 月 6 日, 我国人口总数为 13 亿, 称该天为"中国人口 13 亿日", 如果 2005 年 1 月 6 日后我国人口的年自然增长率保持在 0.6%, 问到哪一年我国人口总数将超过 14 亿?
- 297. 当 x 充分大时, 试比较下列各函数: $y_1 = 10x, y_2 = 8x^2, y_3 = 4x^4, y_4 = 2 \times 3^x, y_5 = 5^x$ 值的大小. 你能从中归纳出一些规律性的结论吗?
- 298. 比较 a^2 和 a^a 两个值的大小 (其中 a > 0, 且 $a \neq 1$).
- 299. 比较 2^a 和 a^a 两个值的大小 (其中 a > 0, 且 $a \neq 1$).

- 300. 把物体放在温度为 θ_0° C 的空气中冷却, 若物体原来的温度是 θ_0° C($\theta_1 > \theta_0$), t 分钟后物体温度 θ_0° C 可由公式 $\theta = \theta_0 + (\theta_1 \theta_0)e^{-kt}$ 求得, 其中 k 是一个随着物体与空气的接触状况而定的常量, 现有 62°C 的物体, 放在 15° C 的空气中冷却 1 分钟以后物体的温度是 52° C, 求上式中 k 的值 (精确到 0.01). 开始冷却 2 分钟后物体 的温度是多少? 开始冷却 10 分钟后,物体的温度是多少? (精确到 1° C).
- 301. 若集合 $A = \{y|y = x^2 + 2c + 3\}$, 集合 $B = \{y|y = x + \frac{4}{x}\}$, 则 $A \cup B =$ ______.
- 302. 已知 $x, y \in \mathbb{R}$, 集合 $\alpha = \{(x, y) | xy \ge 0\}$, 集合 $\beta = \{(x, y) | |x + y| = |x| + |y|\}$, 用推出关系表示 α 与 β 的关系_______.
- 304. 已知函数 $f(x) = \begin{cases} -2^x 1, & x \le 0, \\ x = 0, & x \le 1, \end{cases}$ 若 $f(x_0) = 1$, 则 x_0 的值为______.
- 305. 下列图形中, 能作为某个函数的图像的只能是()

- 306. 若集合 $A = \{x|0.1 < \frac{1}{x} < 0.3, \ x \in \mathbf{N}\},$ 集合 $B = \{x||x| \le 5, \ x \in \mathbf{Z}\},$ 则 $A \cup B$ 中的元素个数是()
 - A. 11

B. 13

C. 15

D. 17

- 307. " $x \neq 1$ 且 $y \neq 2$ " 是 " $x + y \neq 3$ " 的 ().
 - A. 充分非必要条件

B. 必要非充分条件

C. 充要条件

- D. 既非充分又非必要条件
- 308. 点 $(\sqrt{2},2)$ 在幂函数 y=f(x) 的图像上, 点 $(-2,\frac{1}{4})$ 在幂函数 y=g(x) 的图像上. 当 x 为何值时, f(x)=g(x)?
- 309. 已知集合 $A = \{x | 3x^2 + x 2 \ge 0, \ x \in \mathbf{R}\},$ 集合 $B = \{x | \frac{4x 3}{x 3} > 0, \ x \in \mathbf{R}\},$ 求 $A \cap B$.
- 310. 已知函数 $f(x)=a^x(a>0, a\neq 1)$ 在区间 [1,2] 上的最大值比最小值大 $\frac{1}{4}$, 求实数 a 的值.
- 311. 已知集合 $A = (-2, -1) \cup (0, +\infty)$, 集合 $B = \{x | x^2 + ax + b \le 0\}$, 且 $A \cap B = (0, 2]$, $A \cup B = (-2, +\infty)$, 求实数 $a \setminus b$ 的信.
- 312. 已知关于 x 的不等式 $ax^2 + 3ax 2 < 0$ 的解集为 R, 求实数 a 的取值范围.
- 313. 某地区某日海拔高度与气温的对照表为:

高度 h(米)	0	500	1000	2000
气温 t(°C)	15.00	11.75	8.50	2.00

- (1) 根据表中 t 与 h 的对应关系, 写出 t 关于 h 的函数解析式;
- (2) 根据 (1) 的结论, 求海拔高度 1500 米处的气温.
- 314. 已知函数 $f(x) = ax^2 + \frac{b}{x^2}(a, b)$ 是正常数). (1) 列出所具有的基本性质, 并加以说明;
 - (2) 当 $a = \frac{1}{4}$, b = 4 时, 画出函数 y = f(x) 的简图.
- 315. 若 2x + y = 1, 求 $4^x + 2^y$ 的最小值.
- 316. 已知集合 $A = \{x | |x-a| < 2\}$, 集合 $B = \{x | \frac{2x-1}{x-2} < 1\}$, 且 $A \subseteq B$, 求实数 a 的取值范围.
- 317. 已知全集 $U = \mathbb{R}$, 集合 $A = \{x|x^2 + px + 12 = 0\}$, 集合 $B = \{x|x 5x q = 0\}$, 满足 $(C_U A) \cap B = \{2\}$. 求实数 $p \neq q$ 的值.
- 318. 试讨论函数 $f(x) = \frac{x}{1-x^2}$ 在区间 (-1,1) 上的单调性.
- 319. 甲乙两地的高速公路全长 166 千米, 在高速公路上最高行驶时速不得高于 120 千米/时, 假设汽车从甲地进入 该高速公路以不低于 70 千米/时的速度匀速行驶到乙地, 已知汽车每小时的运输成本 (以元为单位) 由可变 部分和固定部分组成: 可变部分与速度 v(千米/时) 的平方成正比, 比例系数为 0.02; 固定部分为 220 元.
 - (1) 把全程运输成本 $y(\overline{\tau})$ 表示为速度 $v(\overline{\tau})$ 的函数, 并指出这个函数的定义域;
 - (2) 汽车应以多大速度行驶才能使全程运输成本最小? 最小运输成本约为多少元?
- 320. 某居民小区供水站的蓄水池现有水 40 吨, 自来水厂每小时可向蓄水池中注水 8 吨, 同时蓄水池又向居民小区供水, t 小时内供水总量为 $32\sqrt{t}$ 吨. 现在开始向池中注水并同时向居民小区供水, 若蓄水池中存水量少于 10 吨, 就会出现供水紧张现象.
 - (1) 试建立蓄水池中存水量 S 与供水时间 t 之间的函数关系;
 - (2) 供水多少时间开始出现供水紧张? 这一天内供水紧张的有几小时?
- 321. 把下列指数式写成对数式:
 - (1) $10^{-2} = 0.01$:_____;
 - $(2) \left(\frac{1}{2}\right)^0 = 1:$ _____;
 - (3) $5^x = 6$:_____.
- 322. 把下列对数式写成指数式:
 - (1) $x = \log_{16} 32$:_____;
 - (2) $\log_{\pi} x = 4$:_____;
 - (3) $\log_x 9 = 2$:_____.
- 323. 求下列各式中的 x:
 - (1) $\log_{\frac{1}{2}} x = 3, x = \underline{\hspace{1cm}};$
 - (2) $\log_3 \frac{1}{27} = x, \ x = \underline{\hspace{1cm}};$
 - (3) $\log_{100} 1000 = x, x =$
 - (4) $\log_x 16 = 4$, x =_____.

- 324. 计算: $\log_5 5\sqrt{5} + \ln e$.
- 325. 计算: $\lg \sqrt{10} \lg 0.01$.
- 326. 计算: $\log_{12} 6 + \log_{12} 2$.
- 327. 计算: $\log_3 48 4 \log_3 2$.
- 328. 用 $\log_a M$ 、 $\log_a N$ 表示 $\log_a M N^2$.
- 329. 用 $\log_a M$ 、 $\log_a N$ 表示 $\log_a \frac{\sqrt{M}}{N}$.
- 330. 计算: $3^{\log_3 1} + \log_2 48 \log_2 3$.
- 331. 计算: $2\log_7 \frac{35}{9} + 4\log_7 3 + 2\log_7 \frac{1}{10} + \log_7 4$.
- 332. 计算: $\log_3 2 \times \log_5 3 \times \log_8 5$.
- 333. 计算: $(\log_4 3 + \log_8 3) \times \log_3 2$.
- 334. 计算: $\log_2 \frac{1}{49} \times \log_3 \frac{1}{16} \times \log_7 \frac{1}{27}$.
- 335. 计算: $\log_a b \cdot \log_b c \cdot \log_c a$.
- 336. 计算: $(\log_4 3 + \log_8 3)(\log_3 2 + \log_9 4)$.
- 337. 已知 $\log_3 2 = m$, 试用 m 表示 $\log_{32} 18$.
- 338. 已知 $\lg 2 = a$, $\lg 3 = b$.
 - (1) 求 lg 5;
 - (2) 求 $\log_2 3$;
 - (3) $\Re \log_{12} 25$.
- 339. 求出下列各式中 x 的取值范围: (a > 0 且 $a \neq 1)$
 - (1) $\log_a(x^2+1)$;
 - (2) $\log_a(x-2)$;
 - (3) $\log_a \frac{1}{x+2}$.
- 340. 在下列各式中的横线上填入适当的值, 使等式成立:
 - (1) \log_5 ___= 1;
 - (2) $2^{\log_3 1} = ___;$
 - $(3) (\frac{1}{5})^{\log_{0.2} 3} = _{\underline{}};$
 - (4) $\sqrt{3}^{\log_{\sqrt{3}}} = 7$.

- 341. 用 $\log_a x$ 、 $\log_a y$ 、 $\log_a (x+y)$ 、 $\log_a (x-y)$ 表示下列各式:
 - (1) $\log_a(x^2 y^2)$;
 - (2) $\log_4 \frac{x^3 y}{(x+y)^4}$;
 - (3) $\log_a(\frac{\sqrt{x}}{\sqrt{y}} \frac{\sqrt{y}}{\sqrt{x}}).$
- 342. 计算: log₂(log₂16).
- 343. 计算: $2^{\log_6 5} \times 3^{\log_6 5}$.
- 344. 计算: $\sqrt{\lg^2 5 2\lg 5 + 1}$.
- 345. 计算: $\lg^2 5 + \lg^2 \times \lg 50$.
- 346. 设 $56^a = 14$, 试用 a 表示 $\log_7 56$.
- 347. 已知 $5.4^x = 3$, $0.6^y = 3$, 求 $\frac{1}{x} \frac{1}{y}$ 的值.
- 348. 已知函数 $f(x) = x^2 4x 5, x \in [1,3]$, 判断其是否存在反函数. 若存在, 求出反函数; 若不存在, 说明理由.
- 349. 求函数 $y = -x^3$ 的反函数.
- 350. 求函数 $y \frac{x}{x+2}$ 的反函数.
- 351. 求函数 $y = x^2 + 1(x < 0)$ 的反函数.
- 352. 已知 $f(x) = 1 x^2(x < -1)$, 求 $f^{-1}(-3)$ 的值.
- 353. 已知函数 $y = \frac{a}{x+1}$ 的反函数的图像经过点 $(\frac{1}{2}, 1)$, 求实数 a 的值.
- 354. 已知函数 y=f(x) 的图像与函数 $y=\frac{x-1}{x+1}$ 的图像关于直线 y=x 对称, 求函数 y=f(x) 的解析式.
- 355. 判断题: (正确的在括号内用"✓"表示, 错误的用"×"表示) (1) 存在反函数的函数一定是单调函数.____;
 - (2) 偶函数存在反函数.____;
 - (3) 奇函数必存在反函数.____.
- 356. 一次函数 y = -x 的图像与它的反函数的图像重合. 试写出一个非一次函数的函数, 使它的图像与其反函数的图像重合.
- 357. 如果函数 y = f(x) 的图像过点 (0,1), 那么函数 $y = f^{-1}(x) + 2$ 的反函数的图像过点 (0,1).
 - A. (3,0)
- B. (0,3)
- C. (1, 2)
- D. (2,1)
- 358. 如果 $y = -\sqrt{1-x^2}$ 的反函数是 $y = -\sqrt{1-x^2}$, 那么原来的函数的定义域可以是 ().
 - A. $(0, +\infty)$
- B. [-1, 1]
- C. [-1, 0]
- D. [0,1]

359. 求函数 $y = \begin{cases} -\sqrt{x}, & 0 \le x \le 1, \\ x^2, & -1 \le x < 0 \end{cases}$ 的反函数.

- 360. 求函数 $y = \lg(x^2 3x + 2)$ 的定义域.
- 361. 求函数 $y = \frac{\sqrt{2x-1}}{\lg x}$ 的定义域.
- 362. 求函数 $y = \sqrt{\lg x} + \lg(5 2x)$ 的定义域.
- 363. 求函数 $y = 10^x + 1$ 的反函数.
- 364. 求函数 $y = \log_2(x+1)$ 的反函数.
- 365. 求函数 $y = \log_2 2x$ 的反函数.
- 366. 已知函数 $f(x) = a^x + b$ 的图像经过点 (1,7), 反函数 $f^{-1}(x)$ 的图像经过点 (4,0), 求函数 f(x) 的表达式.
- 367. 若 $\log_a 0.2 < \log_a 0.1$ 成立, 求 a 的取值范围.
- 368. 若 $\log_a \pi > \log_a e$ 成立, 求 a 的取值范围.
- 369. 若 log_a 3 < 0 成立, 求 a 的取值范围.
- 370. 已知 1 < x < 2, $a = 2^x$, $b = \log_{0.5} x$, $c = \sqrt{x}$, 比较 a、b、c 的大小, 并说明理由.
- 371. 声音强度 $D(\Im)$ 由公式 $D=10\lg(\frac{I}{10^{-16}})$ 给出, 其中 $I(W/cm^2)$ 为声音能量. 能量小于 $10^{-16}W/cm^2$ 时, 人听不见声音. 能量大于 60 分贝属于噪音, 其中 70 分贝开始损害听力神经, 90 分贝以上就会使听力受损, 而一般的人呆在 100 分贝 -120 分贝的空间内, 一分钟就会暂时性失聪.
 - (1) 求人低声说话 $I = 10^{-13} \text{W/cm}^2$ 的声音强度;
 - (2) 求噪音的能量范围;
 - (3) 当能量达到多少时, 人会暂时性失聪?
- 372. 判断函数 $y = \lg \frac{x+1}{x-1}$ 的奇偶性.
- 373. 设 a>0 且 $a\neq 1$, 比较 $\log_a 2a$ 与 $\log_a 3a$ 的大小.
- 374. 求证: $y = \lg(1 x)$ 在定义域上单调递减.
- 375. 求函数 $y = \log_{\frac{1}{k}}(x^2 6x + 10)$ 在区间 [1,2] 上的最大值.
- 376. 解方程 $2^{1-x} = \frac{1}{32}$.
- 377. 解方程 $3^{-x+2} = 9^x$.
- 378. 解方程 $4^{2x-1} = 1$.
- 379. 解方程 $0.38 \cdot 10^{x-3} = 0.5$ (精确到 0.01).
- 380. 解指数方程 $2^{x^2+3} = (\frac{1}{4})^{\frac{7}{2}}$.
- 381. 解指数方程 $9^x 8 \cdot 3^x 9 = 0$.

- 382. 已知关于 x 的方程 $2a^{2x-2} 7a^{x-1} + 3 = 0$ 有一个根是 x = 2, 求 a 的值并求方程的其余的根.
- $\frac{64}{125}$?
- 384. **解方程**: $9^x + 4^x = \frac{5}{9} \cdot 6^x$.
- 385. **解方程**: $4^x + 4^{-x} 6(2^x + 2^{-x}) + 10 = 0$.
- 386. 动物尸体内 ^{14}C 的含量每年衰减 0.012%, 设动物死亡的时刻 t=0 时, ^{14}C 含量为 100%.
 - (1) 写出 ^{14}C 含量 y 关于时间 t 的函数解析式;
 - (2) ¹⁴C 含量减少到 50% 需多少时间? (精确到 1 年)
- 387. 解方程 $\log_3(x-2) = 1$.
- 388. 解方程 $\log_2(x^2 3x) = 2$.
- 389. 解方程 $\log_2(\log_5 x) = 1$.
- 390. 解方程 $\log_5(x+1) \log_{\frac{1}{5}}(x-3) = 1$.
- 391. 解方程 $\log_2^2 x + 3\log_2 x + 2 = 0$.
- 392. 解方程 $\log_x(x^2 x) = \log_x 2$.
- 393. 解方程 $\log_{\frac{1}{2}}(9^{x-1}-5) = \log_{\frac{1}{2}}(3^{x-1}-2) 2.$
- 394. 解方程 $(\lg x)^2 \lg x^2 = 3$.
- 395. 解方程: $x^{\log_2 x} = 32x^4$.
- 396. 求方程 $\log_2(x+4) = (\frac{1}{3})^x$ 根的个数, 并说明理由.
- 397. 若 $x^5 = 3$, 则 $x = _____$; 若 $5^x = 3$, 则 $x = _____$.
- 398. 计算: $\log_2 36 2\log_2 3 =$ _____.
- 399. 若 $\log_a b \cdot \log_5 a = 3$, 则 b =_____.
- 400. 函数 $y = \log_2 x (x \ge 1)$ 的反函数是_____.
- 401. 若点 (1,7) 既在函数 $y = \sqrt{ax + b}$ 的图像上,又在其反函数的图像上,则数对 (a,b) 为______.
- 402. 若 $f(x) = 3^x + 5$, 则 $f^{-1}(x)$ 的定义域是 ().
 - A. $(0, +\infty)$
- B. $(5, +\infty)$
- C. $(8, +\infty)$
- D. $(-\infty, +\infty)$

- 403. 若 $\log_{18} 9 = a$, $18^b = 5$, 则 $\log_{36} 45$ 等于 ().
 - A. $\frac{a+b}{2+a}$
- $B. \ \frac{a+b}{2-a}$
- C. $\frac{a+b}{2a}$
- D. $\frac{a+b}{a^2}$

- 404. 已知函数 $f(x) = \frac{ax+1}{x-3}$ 的反函数是 f(x) 本身, 求实数 a 的值.
- 405. 作出函数 $y = \log_2(x-1)$ 的图像.
- 406. 作出函数 $y = |\log_2(x-1)|$ 的图像.
- 407. 已知 $\lg x + \lg y = 2$, 求 $\frac{1}{x} + \frac{1}{u}$ 的最小值.
- 408. 解方程: $4^x + 2^{x+1} = 80$.
- 409. 解方程: $\lg(2x+2) + \lg(15-x) = 1 + \lg 3$.
- 410. 已知函数 $f(x) = \log_a \frac{1+x}{1-x} (a > 0, a \neq 1)$. (1) 求 f(x) 的定义域;
 - (2) 判断 f(x) 的奇偶性, 并加以证明;
 - (3) 当 a > 1 时, 求使 f(x) > 0 的 x 的取值范围.
- 411. 如果光线每通过一块玻璃其强度要减少 10%, 求至少需要多少块这样的玻璃重叠起来, 才能使通过它们的光 线强度为原来的强度的 $\frac{1}{3}$ 以下?
- 412. 如果函数 $f(x) = \log_a(-x^2 + ax)$ 的定义域为 $(0, \frac{1}{2})$, 那么实数 a =______
- 413. 如果 $45^x = 3$, $45^y = 5$, 那么 2x + y =_____.
- 414. 若函数 y=f(x) 的图像与函数 $y=2^x-1$ 的图像关于直线 y=x 成轴对称图形, 则函数 y=f(x) 的解析式
- 415. 当 a > 1 时, 在同一坐标系中, 函数 $y = a^{-x}$ 与 $y = \log_a x$ 的图像是 (

- 416. 函数 $f(x) = 4 + \log_a(x-1)(a > 0a \neq 1)$ 的图像恒经过定点 P, 则点 P 的坐标是 ().
 - A. (1,4)

- C.(2,4)
- D. (4,2)

D.

- 417. 已知 0 < a < 1,化简 $\sqrt{\lg^2 a \lg \frac{a^2}{10}}$.
- 418. 已知 α 、 β 是方程 $\lg^2 x \lg x 2 = 0$ 的两根, 求 $\log_{\alpha} \beta + \log_{\beta} \alpha$ 的值.
- 419. 判断命题 "若函数 y=f(x) 与 $y=f^{-1}(x)$ 的图像有公共点, 则公共点必在直线 y=x 上"的真假, 并说明理 由.
- 420. 如果 ²³⁷U 在不断的裂变中, 每天所剩留质量与上一天剩留质量相比, 按同一比例减少, 经过 7 天裂变, 剩留 的质量是原来的 50%, 计算它经过多少天裂变, 剩留质量是原来的 10%.