Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC2115 - Programación como Herramienta para la Ingeniería

Estructuras de datos

Profesor: Hans Löbel

Tipos de dato

• Tipos numéricos

Tipos textuales

• Tipos lógicos (booleanos)

Operadores

• Aritméticos (para ints y floats principalmente, pueden definirse para otros)

Comparación

Operadores

Lógicos (para bools)

Α	В	A AND B	A OR B	NOT A	
False	False	False	False	True	
False	True	False	True	True	
True	False	False	True	False	
True	True	True	True	False	

• Texto (para strs)

Repetición

Estructuras de datos

Son tipos de dato especializados, diseñados para agrupar, almacenar o acceder a la información de manera más eficiente que un tipo de dato básico (como int, float, etc). Algunos ejemplos son los siguientes:

- Clases
- Listas
- Tuplas
- Diccionarios
- Árboles

Listas

- Las listas son estructuras que guardan datos de forma ordenada.
- Son mutables (modificables).

Tuplas

- Similares a las listas, permiten manejar datos de forma ordenada.
- Al igual que las listas, se accede a los datos mediante índices basados en el orden que fueron ingresados.
- A diferencia de las listas, son inmutables.

400	20	1	4	10	11	12	500
0	1	2	3	4	5	6	7
1							

Índices

Diccionarios

- Permiten almacenar datos basados en una asociación de pares de elementos, a través de una relación llave-valor.
- Acceso a valores a través de la llave es instantáneo, no se necesita realizar una búsqueda (análogo a un índice).
- Se prefiere a una lista cuando el caso de uso más común no implica revisar todos los elementos, sino solo algunos fácilmente encontrables a través de la llave.

Árboles

Un breve y somero resumen

- Las estructuras de datos corresponden a un tipo de dato especializado, diseñado para agrupar, almacenar o acceder a la información de manera más eficiente que un tipo de dato básico.
- La elección adecuada de la estructura de datos es fundamental para el desarrollo de un buen programa y muchas veces es la única posibilidad para solucionar un problema de forma realista.
- Pero siempre es conveniente pensar primero en una solución básica a los problemas, y luego incorporar las estructuras donde corresponda.

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC2115 - Programación como Herramienta para la Ingeniería

Estructuras de datos

Profesor: Hans Löbel