TEORIA REGULACJI – EGZAMIN _ 2020

ke	ody prawidłowych odpowiedzi (A,B,C) należy zaznaczyć w formularzu interentowym i wysłać go w ciągu 30 minut
1.	Transmitancja obiektu ciągłego rzędu 2 ma biegun $s=2-3i$. Jaką pulsację mają oscylacje w jego odpowiedzi impulsowej SA) $arctg\frac{-3}{2}$ B) 2 C) 3 D) 5
2.	Transmitancja obiektu dyskretnego rzędu 2 ma biegun $z=2-3i$. Jaką pulsację mają oscylacje w jego odpowiedzi impulsowej? A) $arctg\frac{-3}{2}$ B) 2 C) 3 D) 5
3.	Obiekt o transmitancji $K(s)=\frac{5}{s+4}$ pobudzono sygnałem $u(t)=\sin 3t$. Jaką amplitudę w stanie ustalonym ma sinusoida na wyjściu? A) 1 B) 2 C) 3 D) 5
4.	Współczynnik wzmocnienia w stanie ustalonym obiektu o transmitancji $K(s)=\frac{6}{s(s+2)(s+3)}$ wynosi A) 1 B) 0 C) 6 D) nie istnieje
5.	Pulsacja rezonansowa obiektu o transmitancji $K(s)=\frac{1}{(s^2+1)(s+4)}$ wynosi A) $\frac{1}{4}$ B) 1 C) 4 D) 8
6.	Obiekt stabilny o odpowiedzi impulsowej $\{k_n\}=2,1,0,0,0,\dots$ pobudzono białym szumem o wariancji równej 1. Ile jest równa wariancja sygnału wyjściowego? A) 1 B) 2 C) 3 D) 5
7.	Splot sygnału ze skokiem jednostkowym daje nam A) ten sam sygnał B) sygnał scałkowany C) sygnał zróżniczkowany D) sygnał zdyskretyzowany
8.	Pochodna odpowiedzi skokowej UAR w chwili $t\to 0_+$ nazywa się A) przeregulowaniem B) czasem regulacji C) szybkością regulacji D) zapasem regulacji
9.	Który z obiektów jest liniowy A) $y(t)=2u(t)+1$ B) $y_n=\sum_{i=0}^5 \frac{u_{n-i}}{\sqrt{i}}$ C) $y(t)= u(t-\tau) $ D) $y(t)=u(t)u(t-1)$
10.	Niech $z=7i^i$. Ile wynosi $\arg z$? A) 0 B) i C) $\frac{\pi}{2}$ D) 1
11.	Współczynnik wzmocnienia w stanie ustalonym obiektu o transmitancji $K(z)=\frac{3}{z+\frac{1}{2}}$ ma wartość A) 6 B) 2 C) 3 D) 4
12.	Oryginał transformaty $\frac{z}{(z-3)^2}$ wynosi A) $3n+1$ B) $n3^n$ C) $D\left\{(n+1)3^n\right\}$ D) $D^2\left\{n3^{n+1}\right\}$
13.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
14.	Obiekt o transmitancji $K(z)=\frac{1}{z-1}$ pobudzono sygnałem $u_n=1_n$ przy zerowym warunku początkowym. Odpowiedź obiektu ma postać A) $1,1,1,1,1,\dots$ B) $0,1,2,3,4,5,\dots$ C) $1,2,3,4,5,\dots$ D) $1,4,9,16,25,\dots$
15.	Obiekt o transmitancji $K(z)=\frac{z-1}{z}$ pobudzono sygnałem $u_n=n$. Odpowiedź obiektu ma postać A) $0,1,2,3,4,\ldots$ B) $0,1,1,1,1,\ldots$ C) $1,0,0,0,0,\ldots$ D) $2,3,4,5,6,\ldots$
16.	Obiekt o transmitancji $K(s)=\frac{s}{2s^2+1}$ objęto pętlą ujemnego sprzężenia zwrotnego. Otrzymano układ A) stabilny oscylacyjny B) stabilny nieoscylacyjny C) niestabilny oscylacyjny D) niestabilny nieoscylacyjny
17.	Splot funkcji $\cos t$ z deltą Diraca $\delta(t)$ daje funkcję A) $\cos t$ B) $\sin(t)$ C) $-\sin t$ D) $-\cos t$
18.	Który obiekt ma oscylacje w odpowiedzi skokowej? A) $K(s)=\frac{1}{s-\sin 1}$ B) $K(s)=e^{-s}$ C) $K(s)=\frac{1}{(s+1)(s^2-2s+1)}$ D) $K(s)=\frac{1}{(s+1)(2s^2+s+1)}$
19.	Jaką wartość ma pochodna odpowiedzi skokowej obiektu o transmitancji $K(s)=\frac{1}{s^2+s+1}$ w chwili $t=0$? A) 0 B) 1 C) 2 D) 3
20.	Oryginał transformaty $\frac{e^{-s}}{s^2+1}$ ma postać A) $\sin t$ B) $\cos t$ C) $\sin (t-1)$ D) $\cos (t-1)$