Object Tracking in Videos Supplementary Information

Supplementary Info

Here we introduce the details of the Lucas-Kanade Tracker and the Matthews-Baker Tracker algorithms. You may refer to this material for the assignment.

Lucas-Kanade Tracker

A Lucas Kanade tracker uses a warp function $\mathbf{W}(\mathbf{x}; \mathbf{p})$ to align an image \mathbf{I} to a template \mathbf{T} . The optimal parameters \mathbf{p}^* of the warp $\mathbf{W}(\mathbf{x}; \mathbf{p})$ are found by minimizing loss \mathcal{L} . The loss \mathcal{L} is the pixel-wise sum of square difference between the warped image $\mathbf{I}(\mathbf{W}(\mathbf{x}; \mathbf{p}))$ and template \mathbf{T} , refer eq 1 and 2.

Note: We denote pixel locations by \mathbf{x} , so $\mathbf{I}(\mathbf{x})$ is the pixel value (eg. rgb) at location \mathbf{x} in image \mathbf{I} . For simplicity, \mathbf{I} and \mathbf{T} are treated as column vectors instead of a matrix (like linearized matrices!). $\mathbf{W}(\mathbf{x}; \mathbf{p})$ is the point obtained by warping \mathbf{x} . $\mathbf{I}(\mathbf{W}(\mathbf{x}; \mathbf{p}))$ is the pixel value (eg. rgb) after warping.

$$\mathcal{L} = \sum_{\mathbf{x}} \left[\mathbf{T} \left(\mathbf{x} \right) - \mathbf{I} \left(\mathbf{W} \left(\mathbf{x}; \mathbf{p} \right) \right) \right]^{2} \tag{1}$$

$$\mathbf{p}^* = \operatorname*{argmin}_{\mathbf{p}} \mathcal{L} \tag{2}$$

In general, this is a difficult non-linear optimization of \mathcal{L} in \mathbf{p} for even simple warps like *affine warps*, but the Lucas-Kanade tracker circumvents this by using a key idea - **forward additive alignment**. The idea assumes we already have a very close estimate \mathbf{p}_0 of the correct warp \mathbf{p}^* , then we can assume that a small linear change $\Delta \mathbf{p}$ is enough to get the best alignment i.e. $\mathbf{p}^* = \mathbf{p}_0 + \Delta \mathbf{p}$. This is the forward additive form of the warp. The loss \mathcal{L} can then be written as:

$$\mathcal{L} = \sum_{\mathbf{x}} \left[\mathbf{T} \left(\mathbf{x} \right) - I \left(\mathbf{W} \left(\mathbf{x}; \mathbf{p}_0 + \Delta \mathbf{p} \right) \right) \right]^2$$
 (3)

$$\Delta \mathbf{p}^* = \operatorname*{argmin}_{\Delta \mathbf{p}} \mathcal{L} \tag{4}$$

$$\mathbf{p}^* = \mathbf{p}_0 + \Delta \mathbf{p}^* \tag{5}$$

Expanding this to the first order with Taylor Series:

$$\mathcal{L} \approx \sum_{\mathbf{x}} \left[\mathbf{T}(\mathbf{x}) - \mathbf{I}(\mathbf{W}(\mathbf{x}; \mathbf{p}_0)) - \nabla \mathbf{I}(\mathbf{x}) \frac{\partial \mathbf{W}}{\partial \mathbf{p}_0} \Delta \mathbf{p} \right]^2$$
 (6)

Here the Jacobian of $\mathbf{I}(\mathbf{x})$, $\nabla \mathbf{I}(\mathbf{x}) = \begin{bmatrix} \frac{\partial \mathbf{I}(\mathbf{x})}{\partial u} \frac{\partial \mathbf{I}(\mathbf{x})}{\partial v} \end{bmatrix}$, is the vector containing the horizontal and vertical gradient at pixel location \mathbf{x} . Rearranging the Taylor expansion, it can be rewritten as a typical least squares approximation $\Delta \mathbf{p}^* = \underset{\Delta \mathbf{p}}{\operatorname{argmin}} ||A\Delta \mathbf{p} - b||^2$, note we pull out a negative sign thanks to the squaring,

$$\Delta \mathbf{p}^* = \underset{\Delta \mathbf{p}}{\operatorname{argmin}} \sum_{\mathbf{x}} \left[\nabla \mathbf{I} \frac{\partial \mathbf{W}}{\partial \mathbf{p}_0} \Delta \mathbf{p} - \left\{ \mathbf{T} \left(\mathbf{x} \right) - \mathbf{I} \left(\mathbf{W} \left(\mathbf{x}; \mathbf{p}_0 \right) \right) \right\} \right]^2$$
 (7)

This can be solved with $\Delta \mathbf{p}^* = (A^T A)^{-1} A^T b$ where $A^T A$ is the Hessian **H**:

$$(A^{T}A) = \mathbf{H} = \sum_{\mathbf{x}} \left[\nabla \mathbf{I} \frac{\partial \mathbf{W}}{\partial \mathbf{p}_{0}} \right]^{T} \left[\nabla \mathbf{I} \frac{\partial \mathbf{W}}{\partial \mathbf{p}_{0}} \right]$$
(8)

$$A = \left[\nabla \mathbf{I} \frac{\partial \mathbf{W}}{\partial \mathbf{p}_0} \right] \tag{9}$$

$$b = \mathbf{T}(\mathbf{x}) - \mathbf{I}(\mathbf{W}(\mathbf{x}; \mathbf{p}_0))$$
(10)

Once $\Delta \mathbf{p}^*$ is computed, the best estimate warp \mathbf{p}^* can be estimated using eq 5. However, in practice, our initial estimate \mathbf{p}_0 can be well off the optimal \mathbf{p}^* , thus violating the **forward additive alignment** assumption. As a fix, we perform the optimization \mathcal{L} in an iterative fashion using an error threshold ϵ as described in algorithm 2 from [?].

Algorithm 1 The Lucas-Kanade Algorithm

- $(0) \mathbf{p} \leftarrow \mathbf{p}_0$
- (1) Iterate until $||\Delta \mathbf{p}|| \leq \epsilon$:
- (2) Warp I with W(x; p) to compute I(W(x; p))
- (3) Compute the error image $\mathbf{E}(\mathbf{x}) = \mathbf{T}(\mathbf{x}) \mathbf{I}(\mathbf{W}(\mathbf{x}; \mathbf{p}))$
- (4) Warp the gradient $\nabla \mathbf{I}$ with $\mathbf{W}(\mathbf{x}; \mathbf{p})$
- (5) Evaluate the Jacobian $\frac{\partial \mathbf{W}}{\partial \mathbf{p}}$ at $(\mathbf{x}; \mathbf{p})$
- (6) Compute the steepest descent image $\nabla I \frac{\partial W}{\partial p}$
- (7) Compute the Hessian matrix $\mathbf{H} = \sum_{\mathbf{x}} \left[\nabla \mathbf{I} \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^T \left[\nabla \mathbf{I} \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]$
- (8) Compute $\Delta \mathbf{p} = \mathbf{H}^{-1} \sum_{\mathbf{x}} \left[\nabla \mathbf{I} \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^T \mathbf{E}(\mathbf{x})$
- (9) Update the parameters $\mathbf{p} \leftarrow \mathbf{p} + \Delta \mathbf{p}$

Matthews-Baker Tracker

While the Lucas-Kanade tracker works very well, it is computationally expensive due to the computation of the Hessian and Jacobian for each frame of the video. The Matthews-Baker tracker is similar to the Lucas-Kanade tracker, but requires less computation, as the Hessian and Jacobian are only computed once for the video. The Matthews-Baker tracker replaces **the forward additive alignment** idea of the Lucas-Kanade tracker by the **inverse compositional alignment**. It assumes that the warp $\mathbf{W}(\mathbf{x}; \mathbf{p})$ is an invertible function. Since the affine warps used by the Lucas-Kanade tracker are indeed invertible (why?, think!), we can use the Matthews-Baker tracker instead of a Lucas-Kanade tracker.

The key to the efficiency is switching the role of the image \mathbf{I} and the template \mathbf{T} in the algorithm. In contrast to the Lucas-Kanade tracker (warp image \mathbf{I} to template T), the Matthews-Baker tracker warps the template \mathbf{T} to the image \mathbf{I} . This key difference leads to the computational gains because unlike the image \mathbf{I} which changes with each frame of the video, the template \mathbf{T} remains fixed throughout the video. If we can write the Hessian and Jacobian involved in the optimization of \mathcal{L} in terms of the template T

instead of image I, then we only need to compute them once at the start of the tracking.

Here is the inverse compositional form of the Matthew-Baker tracker given without the proof of equivalence to the forward additive form of the Lucas-Kanade tracker. Please refer [?] for the proof. Given an initial estimate \mathbf{p}_0 , we want to find the $\Delta \mathbf{p}^*$ to minimize \mathcal{L} as follows,

$$\mathcal{L} = \sum_{\mathbf{x}} \left[\mathbf{T} \left(\mathbf{W} \left(\mathbf{x}; \Delta \mathbf{p} \right) \right) - \mathbf{I} \left(\mathbf{W} \left(\mathbf{x}; \mathbf{p}_0 \right) \right) \right]^2$$
(11)

$$\Delta \mathbf{p}^* = \operatorname*{argmin}_{\Delta \mathbf{p}} \mathcal{L} \tag{12}$$

This completes our role switch of the template \mathbf{T} and the image \mathbf{I} , please note that $\Delta \mathbf{p}$ are the parameters of the warp \mathbf{W} applied to \mathbf{T} and \mathbf{p}_0 are the parameters of the warp \mathbf{W} applied to \mathbf{I} .

Another key difference of Matthews-Baker tracker to the Lucas-Kanade tracker is - how do we combine the two warps $\mathbf{W}(\mathbf{x}; \mathbf{p}_0)$ and $\mathbf{W}(\mathbf{x}; \Delta \mathbf{p})$? In the Lucas-Kanade tracker we combined the two warps by simply adding parameter \mathbf{p}_0 to another parameter $\Delta \mathbf{p}$, and produce a new warp $\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta \mathbf{p})$. Specifically, $\mathbf{p}^* = \mathbf{p}_0 + \Delta \mathbf{p}^*$, $\mathbf{W}(\mathbf{x}; \mathbf{p}^*) = \mathbf{W}(\mathbf{x}; \mathbf{p}_0) + \mathbf{W}(\mathbf{x}; \Delta \mathbf{p}^*)$. In Matthews-Baker tracker, we use another way of combination through composition as follows,

$$\mathbf{W}(\mathbf{x}; \mathbf{p}^*) = \mathbf{W}(\mathbf{x}; \mathbf{p}_0) \circ \mathbf{W}(\mathbf{x}; \Delta \mathbf{p}^*)^{-1}$$
(13)

If we are using *affine warps*, then the warps can be implemented as matrix multiplication, then we can simplify eq 13 as follows

$$\mathbf{W}(\mathbf{x}; \mathbf{p}^*) = \mathbf{W}(\mathbf{W}(\mathbf{x}; \Delta \mathbf{p}^*)^{-1}; \mathbf{p}_0)$$
$$\mathbf{W}(\mathbf{x}; \mathbf{p}^*) = \mathbf{W}(\mathbf{p}_0) \mathbf{W}(\Delta \mathbf{p}^*)^{-1} \mathbf{x}$$

Let us simplify \mathcal{L} as before using first order linear approximation of $\mathbf{T}(\mathbf{W}(\mathbf{x};\Delta\mathbf{p}))$. Please note, for tracking a template \mathbf{T} , the summation over \mathbf{x} is performed only over the pixels lying inside \mathbf{T} .

$$\mathcal{L} \approx \sum_{\mathbf{x}} \left[\mathbf{T}(\mathbf{x}) + \nabla \mathbf{T}(\mathbf{x}) \frac{\partial \mathbf{W}}{\partial \mathbf{p}_0} \Delta \mathbf{p} - \mathbf{I}(\mathbf{W}(\mathbf{x}; \mathbf{p}_0)) \right]^2$$
(14)

where $\nabla \mathbf{T}(\mathbf{x}) = \left[\frac{\partial \mathbf{T}(\mathbf{x})}{\partial u} \frac{\partial \mathbf{T}(\mathbf{x})}{\partial v}\right]$.

We now proceed to find a closed form solution to $\Delta \mathbf{p}^*$ by equating the derivative $\frac{\partial \mathcal{L}}{\partial \Delta \mathbf{p}}$ to zero.

$$\frac{\partial \mathcal{L}}{\partial \Delta \mathbf{p}} = 2 \sum_{\mathbf{x}} \left[\nabla \mathbf{T} \frac{\partial \mathbf{W}}{\partial \mathbf{p}_0} \right]^T \left[\mathbf{T} \left(\mathbf{x} \right) + \nabla \mathbf{T} \left(\mathbf{x} \right) \frac{\partial \mathbf{W}}{\partial \mathbf{p}_0} \Delta \mathbf{p} - \mathbf{I} \left(\mathbf{W} \left(\mathbf{x}; \mathbf{p}_0 \right) \right) \right]$$
(15)

Setting to zero, switching from summation to vector notation and solving for $\Delta \mathbf{p}$ we get

$$\Delta \mathbf{p} = \mathbf{H}^{-1} \mathbf{J}^T \left[\mathbf{I}(\mathbf{W}(\mathbf{x}; \mathbf{p}_0)) - \mathbf{T} \right]$$
(16)

where **J** is the Jacobian of $\mathbf{T}(\mathbf{W}(\mathbf{x}; \Delta \mathbf{p}))$, $\mathbf{J} = \nabla \mathbf{T} \frac{\partial \mathbf{W}}{\partial \mathbf{p}_0}$, **H** is the approximated Hessian $\mathbf{H} = \mathbf{J}^T \mathbf{J}$ and $\mathbf{I}(\mathbf{W}(\mathbf{x}; \mathbf{p}_0))$ is the warped image. Note that for a given template, the Jacobian \mathbf{J} and Hessian \mathbf{H} are independent of \mathbf{p}_0 . This means they only need to be computed once and then they can be reused during the entire tracking sequence.

Once $\Delta \mathbf{p}^*$ has been solved for, it needs to be inverted and composed with \mathbf{p}_0 to get the new warp parameters for the next iteration.

$$\mathbf{W}(\mathbf{x}; \mathbf{p}_0) \leftarrow \mathbf{W}(\mathbf{x}; \mathbf{p}_0) \circ \mathbf{W}(\mathbf{x}; \Delta \mathbf{p}^*)^{-1}$$
(17)

The next iteration solves Equation 16 starting with the new value of \mathbf{p}_0 . Possible termination criteria include the absolute value of $\Delta \mathbf{p}^*$ falling below some value or running for some fixed number of iterations.

Algorithm 2 The Matthews-Baker Algorithm

- $(0) \mathbf{p} \leftarrow \mathbf{p}_0$
- (1) Pre-compute
- Evaluate the gradient of $\nabla \mathbf{T}$ of the template $\mathbf{T}(\mathbf{x})$ (1)
- Evaluate the Jacobian $\frac{\partial \mathbf{W}}{\partial \mathbf{p}}$ at $(\mathbf{x}; \mathbf{0})$ (2)
- Compute the steepest descent images $\nabla \mathbf{T} \frac{\partial \mathbf{W}}{\partial \mathbf{p}}$ (3)
- Compute the Hessian matrix using $\mathbf{J} = \nabla \mathbf{T} \frac{\partial \mathbf{W}}{\partial \mathbf{p}}, \mathbf{H} = \mathbf{J}^T \mathbf{J}$ (4)
- (5)
- (6) Iterate until $||\Delta \mathbf{p}|| \leq \epsilon$:
- Warp I with W(x; p) to compute I(W(x; p))(7)
- Compute the error image $\mathbf{E}(\mathbf{x}) = \mathbf{I}(\mathbf{W}(\mathbf{x}; \mathbf{p})) \mathbf{T}(\mathbf{x})$ (8)
- Compute $\Delta \mathbf{p} = \mathbf{H}^{-1} \sum_{\mathbf{x}} \left[\nabla \mathbf{T} \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^T \mathbf{E}(\mathbf{x})$ (9)
- (10)Update the parameters $\mathbf{p} \leftarrow \mathbf{p} \circ (\Delta \mathbf{p})^{-1}$