CLAIMS

1. A compound having the formula:

wherein A is a C_{1-6} saturated or C_{2-6} unsaturated hydrocarbon skeleton, said skeleton being unsubstituted or having between 1 and 10 substituents, inclusive, independently selected from cyano, halo, azido, oxo, and Q_1 ;

each Q_1 is independently selected from OR_1 , SR_1 , SO_2R_1 , OSO_2R_1 , NR_2R_1 , $NR_2(CO)R_1$, NR

each of R_1 , R_2 , R_4 , R_5 , and R_6 is independently selected from H, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} hydroxyalkyl, C_{1-6} aminoalkyl, C_{6-10} aryl, C_{6-10} haloaryl, C_{6-10} hydroxyaryl, C_{1-3} alkoxy- C_6 aryl, C_{6-10} aryl- C_{1-6} alkyl- C_{1-6} alkyl- C_{6-10} haloaryl, C_{1-6} alkyl- C_{6-10} haloaryl, C_{1-6} alkyl- C_{1-6} alkyl, C_{1-6} alkyl, C_{2-9} heterocyclic radical- C_{1-6} alkyl, C_{2-9} heteroaryl, and C_{2-9} heteroaryl- C_{1-6} alkyl;

each of D and D' is independently selected from R_3 and OR_3 , wherein R_3 is H, C_{1-3} alkyl, or C_{1-3} haloalkyl;

n is 0 or 1;

20 E is R_5 or OR_5 ;

10

15

G is O, S, CH₂, or NR₆;

each of J and J' is independently H, C_{1-6} alkoxy, or C_{1-6} alkyl; or J and J' taken together are =CH₂ or -O-(straight or branched C_{1-5} alkylene)-O-;

Q is C_{1-3} alkyl;

T is ethylene or ethenylene, optionally substituted with (CO)OR₇, where R₇ is H or C₁₋₆ alkyl;

each of U and U' is independently H, C_{1-6} alkoxy, or C_{1-6} alkyl; or U and U' taken together are =CH₂ or -O-(straight or branched C_{1-5} alkylene)-O-;

X is H or C_{1-6} alkoxy;

each of Y and Y' is independently H or C_{1.6} alkoxy; or Y and Y' taken together are =O,

10 = CH_2 , or -O-(straight or branched C_{1-5} alkylene)-O-; and

each of Z and Z' is independently H or C_{1-6} alkoxy; or Z and Z' taken together are =0,

= CH_2 , or -O-(straight or branched C_{1-5} alkylene)-O-;

or a pharmaceutically acceptable salt thereof.

15 2. The compound of claim 1, wherein n is 0.

25

- 3. The compound of claim 1, wherein each of D and D' is independently selected from R_3 , C_{1-3} alkoxy, and C_{1-3} haloalkyloxy.
- 4. The compound of claim 1, wherein R_5 is selected from H, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} hydroxyalkyl, C_{1-6} aminoalkyl, C_{6-10} aryl, C_{6-10} haloaryl, C_{6-10} hydroxyaryl, C_{1-3} alkoxy- C_6 aryl, C_{6-10} aryl- C_{1-6} alkyl, C_{1-6} alkyl- C_{6-10} aryl, C_{6-10} haloaryl- C_{1-6} alkyl, C_{1-6} alkyl- C_{6-10} haloaryl, (C_{1-3} alkoxy- C_6 aryl)- C_{1-3} alkyl, C_{2-9} heterocyclic radical, C_{2-9} heterocyclic radical- C_{1-6} alkyl, C_{2-9} heteroaryl, and C_{2-9} heteroaryl- C_{1-6} alkyl.

5. The compound of claim 1, wherein A comprises a C_{1-6} saturated or C_{2-6} unsaturated hydrocarbon skeleton, said skeleton having at least one substituent selected from cyano, halo, azido, oxo, and Q_1 ;

```
each Q<sub>1</sub> is independently selected from OR<sub>1</sub>, SR<sub>1</sub>, SO<sub>2</sub>R<sub>1</sub>, OSO<sub>2</sub>R<sub>1</sub>, NR<sub>2</sub>R<sub>1</sub>, NR<sub>2</sub>(CO)R<sub>1</sub>,
        and O(CO)NR_2R_1;
                  n is 0;
                  G is O;
 5
                  J and J' taken together are =CH_2;
                  Q is methyl;
                  T is ethylene;
                  U and U' taken together are =CH_2;
                  X is H;
                  each of Y and Y' is H; and
10
                  Z and Z' taken together are =0 or =CH_2.
                  The compound of claim 1, wherein each Q<sub>1</sub> is independently selected from OR<sub>1</sub>, SR<sub>1</sub>,
        6.
        SO_2R_1, OSO_2R_1, NH(CO)R_1, NH(CO)(CO)R_1, and O(CO)NHR_1;
                  each R<sub>1</sub> is independently selected from C<sub>1-6</sub> alkyl, C<sub>1-6</sub> haloalkyl, C<sub>6</sub> aryl, C<sub>6</sub> haloaryl, C<sub>1-3</sub>
15
        alkoxy-C_6 aryl, C_6 aryl-C_{1-3} alkyl, C_{1-3} alkyl-C_6 aryl, C_6 haloaryl-C_{1-3} alkyl, C_{1-3} alkyl-C_6 haloaryl,
        (C_{1-3} \text{ alkoxy-} C_6 \text{ aryl}) - C_{1-3} \text{ alkyl}, C_{2-9} \text{ heterocyclic radical}, C_{2-9} \text{ heteroaryl}, \text{ and } C_{2-9} \text{ heteroaryl-} C_{1-6} 
        alkyl;
                  one of D and D' is methyl or methoxy, and the other is H;
                  n is 0;
20
                  G is O;
                  J and J' taken together are =CH_2;
                  Q is methyl;
                  T is ethylene;
                  U and U' taken together are =CH_2;
25
                  X is H;
                  each of Y and Y' is H; and
                  Z and Z' taken together are =0.
```

- 7. The compound of claim 6, wherein A has at least one substituent selected from hydroxyl, amino, azido, halo, and oxo.
- 5 8. The compound of claim 7, wherein A comprises a saturated hydrocarbon skeleton having at least one substituent selected from hydroxyl, amino and azido.
 - 9. The compound of claim 8, wherein A has at least two substituents independently selected from hydroxyl, amino, and azido.
 - 10. The compound of claim 8, wherein A has at least two substituents independently selected from hydroxyl and amino.
- 11. The compound of claim 8, wherein A has at least one hydroxyl substituent and at least one amino substituent.
 - 12. The compound of claim 8, wherein A has at least two hydroxyl substituents.

10

20

25

- 13. The compound of claim 8, wherein A comprises a C_{2-4} hydrocarbon skeleton.
- 14. The compound of claim 8, wherein A comprises a C₃ hydrocarbon skeleton.
- 15. The compound of claim 13, wherein A has an (S)-hydroxyl on the carbon atom alpha to the carbon atom linking A to the ring containing G.
- 16. The compound of claim 6, wherein A comprises a C_{1-6} saturated hydrocarbon skeleton having at least one substituent selected from hydroxyl and cyano.

ì

- 17. The compound of claim 6, wherein Q_1 is independently selected from OR_1 , SR_1 , SO_2R_1 , and OSO_2R_1 where each R_1 is independently selected from C_{1-6} alkyl, C_{1-6} haloalkyl, C_6 aryl, C_6 haloaryl, C_{1-3} alkoxy- C_6 aryl, C_6 aryl- C_{1-3} alkyl, C_{1-3} alkyl- C_6 haloaryl, and $(C_{1-3}$ alkoxy- C_6 aryl)- C_{1-3} alkyl.
- 18. The compound of the following structure

5

15

20

10 19. The compound of the following structure

and pharmaceutically acceptable salts thereof.

- 20. A method for identifying an agent that induces a sustained mitotic block in a cell after transient exposure of said cell to said agent, said method comprising the steps of:
- (a) incubating a first cell sample with a predetermined concentration of a test compound

137

for a time interval between that sufficient to empty the G₁ population and that equivalent to one cell cycle;

- (b) substantially separating said test compound from said first cell sample;
- (c) incubating said first sample in media free of said test compound for a time interval sufficient to allow at least 80% of the cells released from the mitotic block induced by a highly reversible mitotic inhibitor to complete mitosis and return to the G₁ phase; and
- (d) measuring the percentage of transiently-exposed cells from step (c) that have completed mitosis and returned to the G₁ phase.
 - 21. The method of claim 20, further comprising the steps of:
- (e) incubating a second sample of cells with a concentration of said test compound less than or equal to that used in step (a) for a time interval between that sufficient to empty the G₁ population and that equivalent to one cell cycle;
- (f) measuring the percentage of cells from step (e) that have completed mitosis and have returned to the G_1 phase; and
 - (g) determining the relative reversibility of said test compound by relating the measurement of step (d) and the measurement of step (f).

5

10

#9

/40