

Kutay Sezginel, Paul Boone, Christopher E. Wilmer

www.wilmerlab.com

Dept. of Chemical & Petroleum Engineering University of Pittsburgh

Talk Outline

- A recent (small) materials discovery problem:
 - Simulating hypothetical "MOF" structures
- A much bigger materials discovery problem
- Our vision for the tools needed for solving it

Applications of MOFs

- Better natural gas fuel tanks
- CO₂ capture
- Hydrogen storage
- Oxygen storage
- Gas masks
- Gas sensors
- Etc.

Explosion of papers on MOFs

MOF design, circa 2000

- 1. Draw proposed MOF structure on napkin (or whiteboard)
- 2. Create actual MOF structure in the chemistry lab

Step 3. Predict properties using molecular simulations

Predictions can be pretty accurate!

A glaring inefficiency...

No tools for drawing MOFs on a computer!

- State of the art was napkins and whiteboards
- Existing chemical drawing/building programs were slow, impractical; typical MOFs had 1000s of atoms, 3d structures, etc.
- No automation capability
- Bottleneck meant experimentalists were always leading and computationalists following

Generating Hypothetical MOFs

Benefits of having a tool for exploring hypothetical MOFs

Generating hypothetical MOFs is a small dent in a much bigger materials discovery problem

CADnano A CAD tool for DNA origami-based structures

CADnano A CAD tool for DNA origami-based structures

"For small systems humans have been able to manually construct trial molecular configurations...

...however, for systems involving thousands of atoms creating trial configurations is much more challenging."

The Need for New Tools for Materials Discovery

(need better "drawing" tools for molecular systems)

Existing chemical drawing tools are very limited for generating complex molecular systems

Microsoft Paint

Internal Combustion Engine

My (abbreviated) wish list of features for a molecular CAD program:

- Handle hundreds of thousands of atoms
- Easily fill any "standard" geometric volume (sphere, cylinder, tetrahedron, etc.) with a predefined pattern/motif
- Provide standard CAD geometry building tools (extrusion, lathing, arrays)
- Boolean operations on structures (union, intersection, diff.)
- Smart geometry modifiers (scaling, shearing, twisting, etc.)
- (all) Point group symmetry constraints available when building 0-d structures
- (all) Space group symmetry constrains for building periodic structures
- Building larger structures from smaller structures
- Generating trial trajectories with inverse kinematics