

Análisis Matemático A (para Ingeniería y Ciencias Exactas y Naturales) Práctica 2

Silvina Del Duca Andrés Juárez Melisa Proyetti Martino Silvia Vietri

Índice general

2.	LIN	IITE Y CONTINUIDAD DE FUNCIONES	2
	2.1.	Límites laterales	2
	2.2.	Límites en el infinito	4
	2.3.	Asíntotas horizontales, verticales y oblicuas	6
	2.4.	Límites especiales	7
	2.5.	Límites infinitos y en el infinito	7
	2.6.	Continuidad	8
	2.7.	Teorema de los valores intermedios o Teorema de Bolzano	9
	2.8.	Ejercicios de aplicación	10
	2.9.	Respuestas de la Práctica 2	11

Práctica 2

LIMITE Y CONTINUIDAD DE FUNCIONES

2.1. Límites laterales

Ejercicio 2.1. A partir de cada gráfica de la función, determinar:

$$\lim_{x \to a^+} f(x)$$

$$\lim_{x \to a^-} f(x)$$

$$\lim_{x \to a} f(x)$$

c.

b.

a.

Ejercicio 2.2. Dada la función g(x), cuya gráfica aparece a continuación, decidir cuáles de las siguientes afirmaciones son verdaderas y cuáles falsas.

a.
$$\lim_{x \to 1^+} g(x) = 1$$

h.
$$\lim_{x \to 0} g(x) = 1$$

b.
$$\lim_{x \to 1^{-}} g(x) = 1$$

i.
$$\lim_{x \to 1} g(x) = 1$$

c.
$$\lim_{x \to 0^{-}} g(x) = 1$$

$$j. \lim_{x \to 1} g(x) = 0$$

d.
$$\lim_{x \to 0^{-}} g(x) = 0$$

k.
$$\lim_{x \to 2^{-}} g(x) = 2$$

e.
$$\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{+}} g(x)$$

l.
$$\lim_{x \to -1^-} g(x)$$
 no existe

f.
$$\lim_{x\to 0} g(x)$$
 existe

m.
$$\lim_{x \to 2^+} g(x) = 0$$

$$g. \lim_{x \to 0} g(x) = 0$$

Ejercicio 2.3. Dadas las siguientes funciones, calcular los límites indicados.

a.
$$\lim_{x \to 3} f(x)$$
 si $f(x) = \begin{cases} 2x+3 & x \le 3 \\ x-1 & x > 3 \end{cases}$

b.
$$\lim_{x \to 2} f(x)$$
 si $f(x) = \begin{cases} x^2 & x \neq 2 \\ -1 & x = 2 \end{cases}$

c.
$$\lim_{x \to 1} f(x)$$
 si $f(x) = \begin{cases} -x & x < 1 \\ 3 & x = 1 \\ x & x > 1 \end{cases}$

d.
$$\lim_{x \to 1} f(x)$$
 y $\lim_{x \to 2^{-}} f(x)$ si $f(x) = \begin{cases} \sqrt{1 - x^{2}} & 0 \le x < 1 \\ 1 & 1 \le x < 2 \\ 2 & x = 2 \end{cases}$

Ejercicio 2.4. Calcular los límites laterales indicados, analizando previamente el dominio de la función.

a.
$$\lim_{x \to -2^-} \sqrt{\frac{x+2}{x+1}}$$
 y $\lim_{x \to -1^+} \sqrt{\frac{x+2}{x+1}}$

b.
$$\lim_{x \to 1^+} \sqrt{\frac{x-1}{x+2}}$$
 y $\lim_{x \to -2^-} \sqrt{\frac{x-1}{x+2}}$

b.
$$\lim_{x \to 1^{+}} \sqrt{\frac{x-1}{x+2}} \qquad y \qquad \lim_{x \to -2^{-}} \sqrt{\frac{x-1}{x+2}}$$
c.
$$\lim_{x \to -1^{-}} \left(\frac{x}{x+1}\right) \left(\frac{2x+5}{x^2+x}\right) \qquad y \qquad \lim_{x \to 0^{+}} \left(\frac{x}{x+1}\right) \left(\frac{2x+5}{x^2+x}\right)$$

d.
$$\lim_{s \to -3^+} \ln(s+3)$$

e.
$$\lim_{h\to 0^-} \frac{\sqrt{h^2+4h+5}-\sqrt{5}}{h}$$

Ejercicio 2.5. Dadas las siguientes funciones, identificar su dominio y calcular los límites indicados.

a.
$$\lim_{x \to -3} \frac{2x+1}{x+3}$$

b.
$$\lim_{h \to -3} \frac{5h^2}{h+3}$$
 g. $\lim_{x \to -3} \frac{2x^3 - 5}{(x+3)(x-1)^2}$ y $\lim_{x \to 1} \frac{2x^3 - 5}{(x+3)(x-1)^2}$

f. $\lim_{y \to 3} \frac{y^2 - 9}{y - 3}$

c.
$$\lim_{x\to 0} \frac{x+3}{x^2}$$
 h. $\lim_{x\to 0} \frac{x^4-3x^3+2x^2}{x^3+x^2}$

d.
$$\lim_{x\to 0} e^{\frac{x-1}{x}}$$
 i. $\lim_{x\to 0} \frac{x^4-16}{x^2+x-6}$

e.
$$\lim_{\theta \to \pi/4} \cos(\theta) - \sin(\theta)$$
 j. $\lim_{y \to 3} \frac{y^2 - y - 6}{\sqrt{y^2 + 7} - 4}$

Ejercicio 2.6. ¿Para qué valores de $a \in \mathbb{R}$ el $\lim_{x \to 0} \frac{\sqrt{x^2 + ax + 1} - 1}{x} = 2$?

Límites en el infinito 2.2.

Ejercicio 2.7. A partir de la gráfica de la función determinar, si existen, f(x) $y \lim_{x \to -\infty} f(x).$

b.

a.

c.

e.

d.

f.

Ejercicio 2.8. Calcular los límites indicados, para x tendiendo a infinito.

a.
$$\lim_{x \to +\infty} \left(\frac{2}{x} - 3 \right)$$

f.
$$\lim_{x \to -\infty} \frac{11x+2}{2x^3-1}$$

b.
$$\lim_{x \to -\infty} \left(-1 + \frac{5}{x}\right)$$

g.
$$\lim_{x \to +\infty} \frac{2x^2 - 3}{7x + 4}$$

c.
$$\lim_{x \to +\infty} x^5 - x^6 + \sqrt{x}$$

h.
$$\lim_{x \to +\infty} x - \sqrt{x^2 + 3}$$

d.
$$\lim_{x \to -\infty} (2x^7 - 3x^5 + 7)$$

i.
$$\lim_{x \to -\infty} \sqrt{x^2 - 2x + 3} + x$$

e.
$$\lim_{x \to +\infty} \frac{5x^2 + 8x - 3}{3x^2 + 2}$$

j.
$$\lim_{x \to +\infty} \frac{7^{x+1}+2}{7^x-3}$$

Ejercicio 2.9. Calcular, si es posible, los límites de las siguientes funciones cuando $x \to +\infty$ y cuando $x \to -\infty$.

a.
$$f(x) = \frac{3}{x^2+8} - 11$$

e.
$$f(x) = \ln(\frac{1}{x})$$

b.
$$f(x) = \sqrt{1 - x}$$

f.
$$f(x) = e^x - 3$$

c.
$$f(x) = \ln(x)$$

$$\sigma = f(r) - \ln(r^2 + 1)$$

d.
$$f(x) = e^{-x}$$

g.
$$f(x) = \ln(x^2 + 1)$$

Ejercicio 2.10. Hallar $a \ y \ b > 0$ tales que el $\lim_{x \to \infty} \left(\frac{\sqrt{ax^4 + bx^3}}{x} - x \right) = 4$.

Ejercicio 2.11. El $\lim_{x\to +\infty} \sqrt{x} \left(\sqrt{x+a} - \sqrt{x+3} \right) = a$. ¿Cuánto vale a?

2.3. Asíntotas horizontales, verticales y oblicuas

Ejercicio 2.12. Escribir, cuando existan, las ecuaciones de las asíntotas horizontales y/o verticales de las funciones cuyas gráficas se muestran en el Ejercicio 7 y de las que se muestran a continuación.

a.

c.

b.

Ejercicio 2.13. Hallar el dominio de las siguientes funciones y calcular los límites que permitan detectar, si las hay, asíntotas horizontales, verticales y oblicuas. Escribir las ecuaciones correspondientes y hacer un gráfico aproximado que refleje la información obtenida.

a.
$$f(x) = \frac{5x^2 + 8x - 3}{3x^2 + 2}$$

b.
$$f(h) = \frac{2h^2 - 3}{7h + 4}$$

c.
$$f(x) = \frac{2x+3x+1}{x-1}$$

d.
$$f(x) = -\frac{8}{x^2-4}$$

e.
$$f(x) = \left(\frac{3x+1}{2x+1}\right)^{\frac{2x+1}{x-3}}$$

f.
$$f(x) = 1 + e^{-x^2}$$

g.
$$f(h) = \frac{h}{e^h}$$

h.
$$f(x) = (2x^2 - x^3)^{1/3}$$

i.
$$f(x) = e^{\frac{3x+1}{x-4}}$$

j.
$$f(h) = \frac{h^3 - 3h^2 + 4}{h^2}$$

Ejercicio 2.14. Encontrar lo valores de $a\,y\,b$ tales que la recta y=2x+7 resulte una asíntota oblicua de la función $f(x)=\frac{ax^3+bx^2+1}{x^2+5}$, para $x\to-\infty$.

2.4. Límites especiales

Ejercicio 2.15. Sea $g: \mathbb{R} \longrightarrow \mathbb{R}$ una función tal que $3x^2 - \frac{2}{5}x^4 \leq g(x) \leq 3x^2$, para todo $x \in \mathbb{R}$. Calcular, si existe, $\lim_{x \to 0} \frac{g(x)}{x^2}$.

Ejercicio 2.16. Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ una función tal que $\frac{\sin(3x)}{x} \le f(x) \le \frac{\sqrt{x+9}-3}{x} + \frac{17}{6}$, para todo $x \in \mathbb{R}$. Calcular, si existe, $\lim_{x \to 0} f(x)$.

Ejercicio 2.17. Calcular los siguientes límites, que incluyen funciones trigonométricas.

a.
$$\lim_{x \to +\infty} \frac{x - \cos(x)}{x + \sin(x)}$$

b.
$$\lim_{x \to +\infty} \frac{\sin(2x)}{x}$$

c.
$$\lim_{\theta \to -\infty} \frac{\cos(\theta)}{3\theta}$$

d.
$$\lim_{x\to 0} x^4 \sin\left(\frac{1}{x}\right)$$

e.
$$\lim_{t \to -\infty} \frac{2 - t + \sin(t)}{t + \cos(t)}$$

f.
$$\lim_{r \to +\infty} \frac{r + \sin(r)}{2r + 7 - 5\sin(r)}$$

g.
$$\lim_{x \to 0} \left(\frac{\sin(x)}{x} + x \sin\left(\frac{1}{x}\right) \right)$$

h.
$$\lim_{x \to 0} \frac{\sin(5x)}{\sin(4x)}$$

i.
$$\lim_{x \to 0} \frac{\tan(3x)}{\sin(8x)}$$

j.
$$\lim_{x \to 1} \frac{\sin(x^2 + 2x - 3)}{x^2 + 2x - 3}$$

k.
$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2}$$

l.
$$\lim_{x \to 0} \frac{x \sin(x)}{1 - \cos(x)}$$

m.
$$\lim_{x \to 0} \frac{3x + 4\sin(2x)}{x^2 + 5\sin(x)}$$

n.
$$\lim_{x \to 1} \frac{1 + \cos(\pi x)}{\tan^2(\pi x)}$$

$$\tilde{n}$$
. $\lim_{x \to 1} \frac{\sin(\pi x)}{x-1}$

o.
$$\lim_{x\to 0} \sin(x) \left(\frac{1}{f(x)+5}\right)$$

donde $1 \le f(x) \le 4$, para todo $x \in \mathbb{R}$

2.5. Límites infinitos y en el infinito

Ejercicio 2.18. Calcular los siguientes límites:

a.
$$\lim_{x \to +\infty} \left(\frac{2x+4}{2x-1} \right)^{\frac{x+2}{x-1}}$$

b.
$$\lim_{x \to +\infty} \left(\frac{x+1}{2x-3} \right)^{\frac{x^2+2}{x-1}}$$

c.
$$\lim_{x \to +\infty} \left(1 + \frac{2}{x^2}\right)^{\frac{x^2}{4x+1}}$$

d.
$$\lim_{x\to 0} (1+6x)^{\frac{1}{x}}$$

e.
$$\lim_{x \to 0} (1 + \tan(x))^{\frac{1}{x}}$$

f.
$$\lim_{x \to 0^+} (1+x)^{\frac{1}{x^2}}$$

g.
$$\lim_{x\to 0^-} (1+x)^{\frac{1}{x^2}}$$

h.
$$\lim_{x \to 3} (x-2)^{\frac{x}{(x-3)^2}}$$

i.
$$\lim_{x \to +\infty} \left(\frac{4x+5}{2x-1} \right)^{\frac{3x^2+2}{x-10}}$$

j.
$$\lim_{x \to 1} \left(\frac{2x+3}{6x-1} \right)^{\frac{1}{x-1}}$$

k.
$$\lim_{x \to +\infty} \left(\frac{2x+3}{3x+6} \right)^{\frac{x^2+1}{x-4}}$$

$$\lim_{t \to 0} \frac{\ln(1+t)}{t}$$

Ejercicio 2.19. Indicar si las siguientes afirmaciones son Verdaderas o Falsas y justificar.

a.
$$\lim_{x\to 0} (1 + \cos(x))^{\frac{1}{x}} = e$$

b.
$$\lim_{x \to +\infty} \frac{\sin(x)}{x} = 1$$

c. Si
$$a=8$$
, el valor de $\lim_{x\to\infty} \left(\frac{4x^3-ax^2}{4x^3-1}\right)^{\frac{x^2+1}{x}}$ es e^{-2}

d.
$$\lim_{x \to 1} \frac{x^2 - 1}{\sqrt{x} - 1} + \frac{\sin(x - 1)}{x - 1} = 5$$

2.6. Continuidad

Ejercicio 2.20. Dadas las siguientes funciones, hallar los puntos de discontinuidad. Para cada punto de discontinuidad, clasificar justificando adecuadamente.

a.
$$f(x) = \frac{2x-2}{x^2-1}$$

b.
$$f(t) = \frac{2t - 2\cos(t)}{t^2}$$

c.
$$f(u) = \frac{u-2}{u^3 + u^2 - 6u}$$

d.
$$f(x) = \begin{cases} \frac{x^2 - 9}{2x - 6} & si \quad x < 3\\ 2 & si \quad x = 3\\ x & si \quad x > 3 \end{cases}$$

e.
$$f(x) = \begin{cases} \frac{\sqrt{x}-1}{3x-3} & si & x > 1\\ \frac{x^2-x}{4x-4} & si & x < 1 \end{cases}$$

f.
$$f(x) = \begin{cases} \frac{\sin(x^2)}{2x^2} & si \quad x \neq 0\\ \frac{1}{2} & si \quad x = 0 \end{cases}$$

g.
$$f(x) = \begin{cases} \left(\frac{x+3}{2x+2}\right)^{\frac{1}{x-1}} & si \quad x > 1\\ e^{-5x+5} & si \quad x \le 1 \end{cases}$$

Ejercicio 2.21. Para cada una de las siguientes funciones, indicar para qué valores de $a \in \mathbb{R}$ son continuas.

a.
$$f(x) = \begin{cases} \frac{x^2 - 4}{\sqrt{x - 2}} & si & x < 2\\ ax - 6 & si & x \ge 2 \end{cases}$$

b.
$$f(t) = \begin{cases} e^{at} & si & t \le 0 \\ t - 3a & si & t > 0 \end{cases}$$

c.
$$f(x) = \begin{cases} \frac{2x+4}{x+2} + a & si \quad x < -2\\ x^2 + 5a & si \quad x \ge -2 \end{cases}$$

d.
$$f(x) = \begin{cases} 3x+1 & si \quad x \le a \\ x+5 & si \quad x > a \end{cases}$$

e.
$$f(x) = \begin{cases} 7x \sin\left(\frac{1}{x}\right) & si \quad x \le 0\\ a+4 & si \quad x > 0 \end{cases}$$

f.
$$f(x) = \begin{cases} \frac{a\sin(x)}{8x} & si \quad x \neq 0\\ 9 & si \quad x = 0 \end{cases}$$

Ejercicio 2.22. Sabiendo que f es una función continua, indicar cuáles de las siguientes relaciones son correctas y justificarlo.

a.
$$f(4) = \lim_{x \to 4} f(x)$$

b.
$$\lim_{x \to 3} f(x) = \lim_{h \to 0} f(3+h)$$

c.
$$\lim_{x \to 2} f(x) = -3 \Leftrightarrow \lim_{x \to 2} (f(x) + 3) = 0$$

d.
$$\lim_{x\to 2} f(x) = \lim_{x\to 0} f(3+x)$$

2.7. Teorema de los valores intermedios o Teorema de Bolzano

Ejercicio 2.23. Dada la función $f(x) = x^3 - 2x^2 + 3$, demostrar que la ecuación f(x) = 2 tiene al menos una solución en el intervalo (-1, 2).

Ejercicio 2.24. (Optativo) Si f(x) es una función continua en [0,1] y cumple que 0 < f(x) < 1 en dicho intervalo, demostrar que existe un número $c \in (0,1)$ para el cual f(c) = c. (Sugerencia: utilizar la función g(x) = f(x) - x).

Ejercicio 2.25. Dadas las siguientes ecuaciones, demostrar que tienen alguna solución real.

a.
$$x\cos(\frac{x}{2}) + 15\sin(x) = 15$$

b.
$$x^3 - 3x + 40 = 0$$

c.
$$ln(x) = e^{-x}$$

Ejercicio 2.26. Encontrar dos intervalos disjuntos para los cuales la ecuación tiene una raíz: $2x^4 - 14x^2 + 14x - 1 = 0$.

Ejercicio 2.27. (Optativo)

a. Demostrar que cualquier ecuación polinómica de grado 5 tiene por lo menos una raíz real.

b. Si la ecuación es polinómica de grado par, ¿necesariamente tendrá alguna raíz real? Justificar.

Ejercicio 2.28. Sabiendo que la función $f(t) = \frac{at^5 + bt^3 - 4}{t+1}$ y f(5) = 12, demostrar que en algún punto del intervalo [0, 5], f(t) = 8.

Ejercicio 2.29. Dada la función $f(x) = \frac{x-1}{x(x+1)(x^2-9)}$, se podría adaptar el Teorema de Bolzano para probar que f tiene alguna raíz en el intervalo (0,3)?

Ejercicio 2.30. Hallar conjuntos de positividad y negatividad para cada una de las siguientes funciones:

a.
$$f(t) = \frac{t^2 + t - 6}{t + 1}$$

e.
$$f(x) = \frac{2\sin(x)}{5 + \cos(x)}$$

b.
$$f(x) = \frac{x^2 - 2x}{x^2 - 9}$$

f.
$$f(x) = \frac{e^{x-1}(x-4)}{x+2}$$

c.
$$f(x) = x^3(x-2)(x^2+16)$$

g.
$$f(u) = \frac{e^u - 1}{e^u}$$

d.
$$f(x) = \ln(x - 1)$$

2.8. Ejercicios de aplicación

Ejercicio 2.31. Encontrar una fórmula para una función f que satisfaga las condiciones siguientes:

$$\lim_{x \to \pm \infty} f(x) = 0; \quad \lim_{x \to 0} f(x) = -\infty;$$
$$\lim_{x \to 3^{-}} f(x) = \infty; \quad \lim_{x \to 3^{+}} f(x) = -\infty; \quad f(2) = 0$$

Hacer un gráfico aproximado de la función propuesta.

Ejercicio 2.32. (Optativo) Comparación de las magnitudes infinitesimales.

Supongamos que unas magnitudes infinitamente pequeñas α y β (infinitecimales), son funciones de un mismo argumento x y verifican:

$$\lim_{x \to a \circ \infty} \alpha(x) = 0 \qquad \qquad \lim_{x \to a \circ \infty} \beta(x) = 0$$

Si la razón $\frac{\beta}{\alpha}$ tiene la siguiente propiedad:

$$\lim_{x \to a \circ \infty} \frac{\beta}{\alpha} = A \neq 0 ,$$

se dice que las infinitesimales α y β son del mismo orden.

En cambio, si el límite anterior es cero, β se denomina infinitesimal de orden superior a α .

- a. Entre las infinitesimales (cuando $x \to 0$) siguientes: x^3 , $\sqrt{x(1-x)}$, $\sin(3x)$ y xe^{2x} , elegir las que son del mismo orden que la infinitesimal x;
- b. ¿Cuáles son las infinitesimales de orden superior a x?

Ejercicio 2.33. Un tanque contiene agua pura y se le arroja cierta sustancia química, tal que su concentración en dl, en tiempo t expresado en horas, está dada por la función $f(t) = \frac{2t}{10t+120}$ para t > 0. ¿Hay algún valor al que tiende la concentración de esta sustancia?

Respuestas de la Práctica 2 2.9.

Ejercicio 2. 1.

	$\lim_{x \to a^+} f(x)$	$\lim_{x \to a^{-}} f(x)$	$\lim_{x \to a} f(x)$
a	1	1	1
b	3	-2	no existe
С	0	3	no existe
d	4	-1	no existe

Ejercicio 2. 2.

f. V k.F a. F b. V g. V 1. V c. F h. F m. F d. V i. F e. V j. F

Ejercicio 2. 3. a. no existe

b. 4

c. no existe

d. no existe; 1

e. $\frac{2}{\sqrt{5}}$ Ejercicio 2. 4. a. $0 y + \infty$ c. $+\infty y 5$ b. $0 y + \infty$ $d. -\infty$

Ejercicio 2. 5. a. $Dom = R - \{-3\}$ y el límite es ∞ , puede ser positivo o negativo.

b. $Dom = R - \{-3\}$ y el límite es ∞ , puede ser positivo o negativo.

c. $Dom = R - \{0\}$ y el límite es $+\infty$

d. $Dom = R - \{0\}$ y el límite es $+\infty$ cuando x tiende a cero por izquierda y 0 cuando tiende por derecha

e. Dom = R y el límite es 0

f. $Dom = R - \{3\}$ y el límite es 6

g. $Dom = R - \{-3, 1\}$ y el límite cuando x tiende a -3 es ∞ , puede ser positivo o negativo. El limite cuando x tiende a 1 es $-\infty$.

h. $Dom = R - \{0, -1\}$ y el límite es 2

i. $Dom = R - \{-3, 2\}$ y el límite es $\frac{8}{3}$ j. $Dom = R - \{-3, 3\}$ y el límite es $\frac{20}{3}$

Ejercicio 2. 6. a=4

Ejercicio 2. 7. a. Ambos son cero

b. No existen

c. Ambos son 1

d. $+\infty$ y $-\infty$

e. No existen

f. $+\infty$ y $-\infty$

Ejercicio 2. 8. a. -3 $d.-\infty$ g. $+\infty$ e. $\frac{5}{3}$ b.-1h. 0 f. 0 c. $-\infty$ i. 1

j. 7

Ejercicio 2. 9.

	a	ŀ)	c		d
$\lim_{x \to +\infty} f(x)$	-11	no ex	xiste	$+\infty$		0
$\lim_{x \to -\infty} f(x)$	-11	+0	∞	no exis	ste	$+\infty$
	(е	f	g		
$\lim_{x \to +\infty} f(x)$	-(∞	$+\infty$	$+\infty$		
$\lim_{x \to -\infty} f(x)$	no e	xiste	-3	$+\infty$		

Ejercicio 2. 10. a = 1 y b = 8.

Ejercicio 2. 11. a = -3

Ejercicio 2. 12. 7.a.
$$x = -1$$
 e $y = 0$ 12.a. $y = 2$ 12.b. $x = -\frac{\pi}{2}$ 12.b. $x = -2$, $x = 2$ e $y = 0$ 12.c. $x = 0$ e $y = 1$ 12.c. $x = -0, 5$ 12.d. $x = 0$ por derecha 12.d. $x = 0$ por derecha e $y = 0$ cuando a tiene asíntotas do x tiende a $+\infty$

Ejercicio 2. 13.

	a.	b.	c.
Dominio	$(-\infty, +\infty)$	$(-\infty, -\frac{4}{7}) \cup (-\frac{4}{7}, +\infty)$	$(-\infty,1)\cup(1,+\infty)$
A.H.	$y = \frac{5}{3}$	no hay	y = 5
A.V.	no hay	$x = -\frac{4}{7}$	x = 1
A.O.	no hay	$y = \frac{2}{7}x - \frac{8}{49}$	no hay

	d	e.
Dominio	$(-\infty, -2) \cup (-2, 2) \cup (2, +\infty)$	$(-\infty, -\frac{1}{2}) \cup (-\frac{1}{3}, 3) \cup (3, +\infty)$
A.H.	y = 0	$y = \frac{9}{4}$
A.V.	x = -2 y x = 2	$x = -\frac{1}{3}$ y $x = 3$ ambos por derecha
A.O.	no hay	no hay

	f.	g.	h.
Dominio	$(-\infty, +\infty)$	$(-\infty, +\infty)$	$(-\infty, +\infty)$
A.H.	y = 1	$y = 0 \text{ con } x \to +\infty$	no hay
A.V.	no hay	no hay	no hay
A.O.	no hay	no hay	$y = -x + \frac{2}{3}$

	i.	j.
Dominio	$(-\infty,4)\cup(4,+\infty)$	$(-\infty,0)\cup(0,+\infty)$
A.H.	$y = e^3$	no hay
A.V.	x = 4	x = 0
A.O.	no hay	y = x - 3

Ejercicio 2. 14. a = 2 y b = 7

Ejercicio 2. 15. El límite es 3.

Ejercicio 2. 16. El límite es 3.

Ejercicio 2. 17.

Ejercicio 2. 18.

a. 1	e. <i>e</i>	i. ∞
b. 0	f. ∞	j. $e^{-\frac{4}{5}}$
c. 1	g. 0	k. 0
$d e^6$	h No existe el límite	1 1

Ejercicio 2. 19. a. F
 Respuesta correcta ∞

b. F Respuesta correcta 0

c. V d. V

Ejercicio 2. 20. a. x = 1 discontinuidad evitable y x = -1 discontinuidad esencial.

b. x = 0 discontinuidad esencial.

c. u = 0 y u = -3 discontinuidades esenciales; u = 2 discontinuidad evitable.

d. x = 3 discontinuidad evitable.

e. x = 1 discontinuidad esencial.

f. No hay discontinuidades.

g. x = 1 discontinuidad esencial.

Ejercicio 2. 21. a. a = 3

b.
$$a = -\frac{1}{3}$$

c. $a = -\frac{1}{2}$
d. $a = 2$
e. $a = -4$
f. $a = 72$

Ejercicio 2. 22. a. V

- b. V
- c. V
- d. F

Ejercicio 2. 23. Sea g(x) = f(x) - 2.

Si x = -1, entonces g(-1) = f(-1) - 2 = 0 - 2 < 0.

Si x = 2, entonces q(2) = f(2) - 2 = 3 - 2 > 0.

Por teorema del valor intermedio, existe $c \in (-1, 2)$ tal que g(c) = f(c) - 2 = 0. Despejando se obtiene que existe $c \in (-1, 2)$ tal que f(c) = 2.

Ejercicio 2. 24. Análogo al anterior.

Ejercicio 2. 25. Un vez determinado el intervalo, se resuelve como el ejercicio 2.23.

- a. Un intervalo puede ser $\left(0,\frac{\pi}{2}\right)$
- b. Un intervalo puede ser (-4, -3)
- c. Un intervalo puede ser (1,2)

Ejercicio 2. 26. Pueden ser (-5, -2) y (0, 1)

Ejercicio 2. 27. a. Usar el hecho de que las raices imaginarias aparecen de a pares. Si existe una raíz imaginaria entonces la conjugada tambien es raiz.

b. No. Por ejemplo el polinomio $p(x) = x^2 + x + 1$ no tiene raices reales.

Ejercicio 2. 28. Resolución similar a la del ejercicio 2.23.

Ejercicio 2. 29. Si.

Ejercicio 2. 30.

	Int. positividad	Int. Negatividad
a.	$(-3,-1)\cup(2,+\infty)$	$(-1,2)\cup(-\infty,-3)$
b.	$(-\infty, -3) \cup (0, 2) \cup (3, +\infty)$	$(-3,0) \cup (2,3)$
c.	$(-\infty,0)\cup(2,+\infty)$	(0, 2)
d.	$(2,+\infty)$	(1, 2)
e.	$\bigcup_{k \in Z} \left(2k\pi, (2k+1)\pi \right)$	$\bigcup_{k \in Z} ((2k+1)\pi, (2k+2)\pi)$
f.	$(-\infty, -2) \cup (4, +\infty)$	(-2,4)
g.	$(0, +\infty)$	$(-\infty,0)$

Ejercicio 2. 31. Varias opciones. Proponé tu respuesta en el foro correspondiente.

Ejercicio 2. 32. Los infinitesímales del mismo orden son: sin(3x) y xe^{2x} . La de orden superior x^3 .

Ejercicio 2. 33. 0,2 dl