Multiplication

Multiplication

 Start with longmultiplication approach

Length of product is the sum of operand lengths

Multiplication of positive numbers

Combinational logic & Array Implementation

Multiplication of positive numbers

Sequential circuit binary multiplier-Register Configuration

Multiplication of positive numbers

Sequential circuit binary multiplier- Multiplication Example

Figure 6.18. The multiplication example from Figure 6.17 performed using carry-save addition.

Figure 6.19. Schematic representation of the carry-save addition operations in Figure 6.18.

Multiplication

Start with long-multiplication approach

Multiplication Hardware

Chapter 3 — Arithmetic for Computers — 9

Signed Multiplication

Signed Multiplication

 Considering 2's-complement signed operands, what will happen to (-13)×(+11) if following the same method of unsigned multiplication?

Figure 6.8. Sign extension of negative multiplicand.

Signed Multiplication

- For a negative multiplier, a straightforward solution is to form the 2's-complement of both the multiplier and the multiplicand and proceed as in the case of a positive multiplier.
- This is possible because complementation of both operands does not change the value or the sign of the product.
- A technique that works equally well for both negative and positive multipliers – Booth algorithm.

 Consider in a multiplication, the multiplier is positive 0011110, how many appropriately shifted versions of the multiplicand are added in a standard procedure?

 Since 0011110 = 0100000 – 0000010, if we use the expression to the right, what will happen?

 In general, in the Booth scheme, -1 times the shifted multiplicand is selected when moving from 0 to 1, and +1 times the shifted multiplicand is selected when moving from 1 to 0, as the multiplier is scanned from right to left.

Figure 6.10. Booth recoding of a multiplier.

Figure 6.11. Booth multiplication with a negative multiplier.

Multiplie	Version of multiplicand
Bit <i>i</i> Bit <i>i</i> -	selected by b it
0 0	0 ×M
0 1	+ 1 ×M
1 0	$-1 \gg M$
1 1	0 ×M

Figure 6.12. Booth multiplier recoding table.

- Best case a long string of 1's (skipping over 1s)
- Worst case 0's and 1's are alternating

Fast Multiplication

Bit-Pair Recoding of Multipliers

 Bit-pair recoding halves the maximum number of summands (versions of the multiplicand).

(a) Example of bit-pair recoding derived from Booth recoding

Bit-Pair Recoding of Multipliers

Multipli	er bit-pa	ir Multiplier bit on the rią	ght Multiplicand
<i>i</i> + 1	i	<i>i</i> –1	selected at positiør
0	0	0	$0 \times M$
0	0	1	+ 1 ×M
0	1	0	+ 1 ×M
0	1	1	+ 2 ×M
1	0	0	$-2 \times M$
1	0	1	$-1 \times M$
1	1	0	$-1 \times M$
1	1	1	$0 \times M$

(b) Table of multiplicand selection decisions

Bit-Pair Recoding of Multipliers

Figure 6.15. Multiplication requiring only n/2 summands.

(a) Manual multiplication algorithm

(b) Array implementation

CSA speeds up the addition process.

Figure 6.16. Ripple-carry and carry-save arrays for the multiplication operation $M \times Q = P$ for 4-bit operands.

- The delay through the carry-save array is somewhat less than delay through the ripple-carry array. This is because the S and C vector outputs from each row are produced in parallel in one full-adder delay.
- Consider the addition of many summands, we can:
- ➤ Group the summands in threes and perform carry-save addition on each of these groups in parallel to generate a set of S and C vectors in one full-adder delay
- ➤ Group all of the S and C vectors into threes, and perform carry-save addition on them, generating a further set of S and C vectors in one more full-adder delay
- Continue with this process until there are only two vectors remaining
- > They can be added in a RCA or CLA to produce the desired product

Figure 6.17. A multiplication example used to illustrate carry-save addition as shown in Figure 6.18.