MATH 142A: Introduction to Analysis

www.math.ucsd.edu/~ynemish/teaching/142a

Today: Limit theorems for sequences > Q&A: January 15, 20

Next: Ross § 9

Week 2:

homework 1 (due Friday, January 15)

Last time

Def 7.1. A sequence (5n) of real numbers is said to converge

to the real number s if

$$\lim_{n\to\infty} S_n = S$$
, $S_n \to S$, $n\to\infty$

Let
$$pe \mathbb{Z}$$
. Then $lim n^p = \begin{cases} 0, p < 0 \\ 1, p = 0 \end{cases}$ (a) $\frac{1}{n^q}$, $q > 0$ (b) diverges, $p > 0$ (c)

$$\lim_{n \to \infty} \frac{5n^4 - n - 10}{7n^4 - n^2} = \frac{5}{7}$$

Convergent sequences are bounded	
Def (Bounded sequence).	
A sequence (Sn) is said to be if	,
the set & Sn: ne M} is bounded (i.e.,	
Thm 9.1	
Let (Sn) be convergent. Then	
Proof Let s= limsn, se R. Then by Def. 7.	
By the triangle inequality,	
therefore $\forall n > N$	
Take M= Then	

Multiplying covergent	sequence t	y a s	calar			
Thm 9.2		0.				10
Let (Sn) be	convergent	Kim Sn =	= S ∈ IR	, and	let 1	KEIR.
Then	(i.e.)		
Proof. If k=0, then		and	thus			
Suppose k = 0.	{					
	}					
$\lim_{n\to\infty} S_n = S_n = S_n$						
Then $\forall n > N$						
Example lim 10 =						
• A KER						

Limit of a sum Thm 9.3 Let (sn) and (tn) be two convergent sequences. If lim sn = s and lim tn = t, they Proof Fix E>O. lim Sn = S =)

$$\lim_{N\to\infty} Sn = S = 0$$

$$\lim_{N\to\infty} In = I = 0$$

Example $\lim_{n\to\infty} \left(5 - \frac{1}{n^2} - \frac{10}{n^2}\right) =$

Limit of a product

Thm 9.4 Let (sn) and (tn) be convergent, lim sn = seIR, lim tn = teIR.

Then

Proof Fix Eso.

Example $\lim_{n\to\infty} \left(5 - \frac{1}{n^3} - \frac{10}{n^4} \right) \left(7 - \frac{1}{n^2} \right) =$

Thm 9.5 Let (sn) be a convergent sequence, lim sn=s n-xx Such that Proof Fix \$>0.
such that Then
Proof Fix E>O. (
Proof Fix E>O.
11001

Thm 9.6. Let (Sn) (tn) be two convergent sequences, lim Sn = S, lim tn = t, Vne N Snto, Sto. Then Proof

Limit of a fraction of two convergent sequences

$$\lim_{n \to \infty} \frac{5n^4 - n - 10}{7n^4 - n^2} = \frac{5}{7}$$

3)
$$\lim_{n\to\infty} \frac{5n^5 - n - 10}{7n^4 - n^2} =$$