NCERT Question 11.9.3.9

EE23BTECH11019 - Faisal Imtiyaz *

Question: Find the sum to indicated number of Since $\delta(n)$ is zero for n > 0, thus: terms in the geometric progression:

 $1, -a, a^2, -a^3, ...n$ terms (if $a \neq -1$).

 $y(n) = \frac{1 - (-a)^n}{1 - (-a)} \tag{14}$

Solution:

Input Parameters Values Description (15)

Input Par	ameters	Values	Description
<i>x</i> (0)		1	First term
r		(-a)	Common ratio
x(n)		$(-a)^n u(n)$	General term
TABLE 1			

GIVEN INPUTS

GIVEN INPUT

From Table 1,

$$X(z) = \frac{1}{1 + az^{-1}} \tag{1}$$

$$y(n) = \sum_{k=0}^{n} (-a)^k = \sum_{k=-\infty}^{n} (-a)^k u(k)$$
 (2)

$$y(n) = (-a)^n u(n) * u(n)$$
 (3)

$$\implies Y(z) = X(z) \cdot U(z)$$
 (4)

$$Y(z) = \frac{1}{1 + az^{-1}} \cdot \frac{1}{1 - z^{-1}}$$
 (5)

$$\implies Y(z) = \frac{z^2}{(z+a)(z-1)} \tag{6}$$

Using Z transform pairs to find the inverse Z-transform:

$$Y(z) = \frac{z^2}{a+1} \left[\frac{1}{z-1} - \frac{1}{z+a} \right]$$

$$= \frac{1}{a+1} \left[\frac{z^2-1}{z-1} + \frac{1}{z-1} - \frac{z^2-a^2}{z+a} - \frac{a^2}{z+a} \right]$$
(8)

$$= \frac{1}{a+1} \left[(z-1) + \frac{1}{z-1} - (z-a) - \frac{a^2}{z+a} \right]$$
(9)

$$=1 + \frac{1}{a+1} \left[\frac{1}{z-1} - \frac{a^2}{z+a} \right] \tag{10}$$

$$y(n) = \delta(n) + \frac{1}{a+1} \left[1 - a^2 \cdot (-a)^n \right]$$
 (11)

$$y(n) = \delta(n) + \frac{1 - (-a)^n}{1 - (-a)}$$
 (12)

(13)