Nearest Neighbour Algorithms

Christos Dimitrakakis

September 19, 2025

Outline

Introduction

The hidden secret of machine learning

The algorithm

k Nearest NeighboursExtensions and parameters

Activities

Introduction

The hidden secret of machine learning

The algorithm

k Nearest NeighboursExtensions and parameters

Activities

Fill-in class data

Figure: Spreadsheet link

- $ightharpoonup x_t \in \mathcal{X}$, the input variables (or features)
- ▶ Usually $\mathcal{X} = \mathbb{R}^n$: the n-dimensional Euclidean space

- $ightharpoonup x_t \in \mathcal{X}$, the input variables (or features)
- Usually $\mathcal{X} = \mathbb{R}^n$: the n-dimensional Euclidean space

Unsupervised learning:

- ▶ Training examples $(x_1, ... x_T)$,
- ▶ Predict x_t for t > T.

- $ightharpoonup x_t \in \mathcal{X}$, the input variables (or features)
- Usually $\mathcal{X} = \mathbb{R}^n$: the n-dimensional Euclidean space

Unsupervised learning:

- ▶ Training examples $(x_1, ... x_T)$,
- ▶ Predict x_t for t > T.

Supervised learning:

- ▶ Given labelled training examples $(x_1, y_1), ...(x_T, y_T)$
- ▶ $y_t \in \mathcal{Y}$, the output variables (or labels)
- For new x_t , t > T, predict y_t .

- $ightharpoonup x_t \in \mathcal{X}$, the input variables (or features)
- Usually $\mathcal{X} = \mathbb{R}^n$: the n-dimensional Euclidean space

Unsupervised learning:

- ▶ Training examples $(x_1, ... x_T)$,
- ▶ Predict x_t for t > T.

Supervised learning:

- ▶ Given labelled training examples $(x_1, y_1), ...(x_T, y_T)$
- \triangleright $y_t \in \mathcal{Y}$, the output variables (or labels)
- For new x_t , t > T, predict y_t .

Classification vs Regression

- ▶ Classification: $\mathcal{Y} = \{1, ..., m\}$ are discrete labels
- ▶ Regression: $\mathcal{Y} = \mathbb{R}^m$ are continuous values

5 / 18

The kNN algorithm idea

- Assume an unknown example is similar to its neighbours
- Smoothness allows us to make predictions

Discriminatory analysis-nonparametric discrimination: consistency properties, Evelyn Fix and Joseph L. Hodges Jr, 1951.

Figure: Evelyn Fix

Figure: Joseph Hodges

Performance of KNN on image classification

- Really simple!
- Can outperform really complex models!

The algorithm

Introduction

The hidden secret of machine learning

The algorithm

k Nearest NeighboursExtensions and parameters

Activities

The Nearest Neighbour algorithm

Pseudocode

- ▶ Input: Data $(x_t, y_t)_{t=1}^T$, test point x, distance d
- $ightharpoonup t^* = \arg\min_t d(x_t, x) / \text{How do we implement this?}$
- ▶ Return $\hat{y}_t = y_{t^*}$

Classification

$$\hat{y}_t \in [m] \equiv \{1,\ldots,m\}$$

Regression

$$\hat{y}_t \in \mathbb{R}^m$$

The k-Nearest Neighbour algorithm

Pseudocode

- ▶ Input: Data $(x_t, y_t)_{t=1}^T$, test point x, distance d, neighbours k
- ▶ Calculate $h_t = d(x_t, x)$ for all t.
- ▶ Get sorted indices $s = \operatorname{argsort}(h)$ so that $d(x_{s_i}, x) \leq d(x_{s_{i+1}}, x)$ for all i. (How?)
- ightharpoonup Return $\sum_{i=1}^{k} y_{s_i}/k$.

Classification

- lt is not convenient to work with discrete labels.
- \blacktriangleright We use a one-hot encoding $(0,\ldots,0,1,0,\ldots,0)$.
- ▶ $y_t \in \{0,1\}^m$ with $||y_t||_1 = 1$, so that the class of the t-th example is j iff $y_{t,j} = 1$.

Regression

 $y_t \in \mathbb{R}^m$, so we need do nothing

Making a decision

kNN: A model of the conditional distribution P(y|x)

- \triangleright Given features x, we get a vector

The optimal decision rule π derived from kNN

- ▶ Classification decision $a_t \sim \pi(a|x_t)$
- $ightharpoonup a_t \in \mathcal{A}$ but $\mathcal{A} \neq \mathcal{Y}$, e.g. can include "Do not Know", or "Alert" etc.
- ► Actual label y_t
- \triangleright $U(a_t, y_t)$: utility function depending on the application.

Decision rule maximising accuracy

 $ightharpoonup a_t = \arg\max_i \hat{\mathbb{P}}(y = i|x).$

The number of neighbours

k = 1

- How does it perform on the training data?
- How might it perform on unseen data?

k = T

- ▶ How does it perform on the training data?
- How might it perform on unseen data?

Distance function

For data in \mathbb{R}^n , p-norm

$$d(x,y) = ||x-y||_p$$

Scaled norms

When features having varying scales:

$$d(x,y) = \|Sx - Sy\|_p$$

Or pre-scale the data

Complex data

- Manifold distances
- Graph distance

Distances

A distance $d(\cdot, \cdot)$:

- ldentity d(x,x) = 0.
- ▶ Positivity d(x, y) > 0 if $x \neq y$.
- ightharpoonup Symmetry d(y,x)=d(x,y).
- ▶ Triangle inequality d(x, y) < d(x, z) + d(z, y).

For data in \mathbb{R}^n , p-norm

$$d(x,y) = \|x - y\|_{p}$$

Norms;

A norm $\|\cdot\|$

- ightharpoonup Zero element ||0|| = 0.
- ▶ Homogeneity ||cx|| = c||x|| for any scalar a.
- ► Triangle inequality $||x + y|| \le ||x|| + ||y||$.

\$p\$-norm

$$||z||_p = \left(\sum_i z_i^p\right)^{1/p}$$

Neighbourhood calculation

If we have T datapoints

Sort and top K.

ightharpoonup Requires $O(T \ln T)$ time

Use the Cover-Tree or KD-Tree algorithm

- ► Requires *O*(*cK* In *T*) time.
- c depends on the data distribution.

Activities

Introduction

The hidden secret of machine learning

The algorithm

k Nearest NeighboursExtensions and parameters

Activities

KNN activity

- ► Implement nearest neighbours
- ./src/KNearestNeighbours/NearestNeighbourClassifier.py
 - ▶ Introduction to scikitlearn nearest neighbours
 - ► Introduction to generalisation errors