2019 高考试题(全国卷 III) 理科数学

一、选择题: (本大题共 12个小题, 每小题 5 分, 满分 60 分, 在每小题给出的四个选项中, 只 有一项是符合题目要求的)

- 1. 设集合 $A = \{-1, 0, 1, 2\}$, $B = \{x \mid x^2 \leq 1\}$, 则 $A \cap B =$
 - A. $\{-1, 0, 1\}$ B. $\{0, 1\}$
- $C. \{-1, 1\}$
- D. $\{0, 1, 2\}$

- 2. 若 z(1+i) = 2i,则 z =
 - A. -1 i B. -1 + i
- C. 1 i
- D. 1 + i
- 3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大 名著,某中学为了解本校学生阅读四大名著的情况,随机调查了 100 位学生,其中阅读过《西 游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》 且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比 值的估计值为
- A. 0.5
- B. 0.6

C. 0.7

D. 0.8

- 4. $(1+2x^2)(1+x)^4$ 的展开式中 x^3 的系数为
 - A. 12

B. 16

C. 20

- D. 24
- 5. 已知各项为正数的等比数列 $\{a_n\}$ 的前 4 项和为 15,且 $a_5 = 3a_3 + 4a_1$,则 $a_3 =$
 - A. 16

B. 8

C. 4

- D. 2
- 6. 已知曲线 $y = ae^x + x \ln x$ 在点 (1, ae) 处的切线方程为 y = 2x + b,则

- A. a = e, b = -1 B. a = e, b = 1 C. $a = e^{-1}, b = 1$ D. $a = e^{-1}, b = -1$
- 7. 函数 $y = \frac{2x^3}{2x + 2^{-x}}$ 在 [-6,6] 的图像大致为

- B. B. C. $\frac{8^{1}y}{O \ 4 \ x}$ D. $\frac{8^{1}y}{O \ 4 \ x}$
- 8. 如图,点 N 为正方形 ABCD 的中心, $\triangle ECD$ 为正三角形, 平面 $ECD \perp$ 平面 ABCD, M 是线段 ED 的中点,则
 - A. BM = EN, 且直线 BM, EN 是相交直线
 - B. $BM \neq EN$, 且直线 BM, EN 是相交直线
 - C. BM = EN, 且直线 BM, EN 是异面直线
 - D. $BM \neq EN$, 且直线 BM, EN 是异面直线

9. 执行右边的程序框图,如果输入的 ε 为 0.01,则输出的 s的值等于

- B. $2-\frac{1}{25}$
- C. $2-\frac{1}{26}$
- D. $2 \frac{1}{27}$

- 10. 双曲线 $C: \frac{x^2}{4} \frac{y^2}{2} = 1$ 的右焦点为 F, 点 P 在 C 的一条渐近线上,O 为坐标原点,若 |PO| = |PF|, $\cup PFO$ 的面积为

 - A. $\frac{3\sqrt{2}}{4}$ B. $\frac{3\sqrt{2}}{2}$ C. $2\sqrt{2}$
- D. $3\sqrt{2}$
- 11. 设 f(x) 是定义在 \mathbf{R} 的偶函数,且在 $(0,+\infty)$ 单调递减,则
 - A. $f(\log_3 \frac{1}{4}) > f(2^{-\frac{3}{2}}) > f(2^{-\frac{2}{3}})$ B. $f(\log_3 \frac{1}{4}) > f(2^{-\frac{2}{3}}) > f(2^{-\frac{3}{2}})$ C. $f(2^{-\frac{3}{2}}) > f(2^{-\frac{2}{3}}) > f(\log_3 \frac{1}{4})$ D. $f(2^{-\frac{2}{3}}) > f(\log_3 \frac{1}{4})$
- 12. 设函数 $f(x) = \sin\left(\omega x + \frac{\pi}{5}\right)$ ($\omega > 0$),已知 f(x) 在 $[0, 2\pi]$ 有且仅有 5 个零点. 下述四个结论:
 - ① f(x) 在 $(0,2\pi)$ 有且仅有 3 个极大值点 ② f(x) 在 $(0,2\pi)$ 有且仅有 2 个极小值点
 - ③ f(x) 在 $\left(0, \frac{\pi}{10}\right)$ 单调递增 ④ ω 的取值范围是 $\left[\frac{12}{5}, \frac{29}{10}\right]$
- A. ① ④ B. ② ③ C. ① ② ③ D. ① ③ ④

- 二、填空题: (共4个小题, 每小题5分, 满分20分)
- 13. 已知 \boldsymbol{a} , \boldsymbol{b} 为单位向量,且 $\boldsymbol{a} \cdot \boldsymbol{b} = 0$,若 $\boldsymbol{c} = 2\boldsymbol{a} \sqrt{5}\boldsymbol{b}$,则 $\cos\langle \boldsymbol{a}, \boldsymbol{c} \rangle =$
- 14. 记 S_n 为等差数列 $\{a_n\}$ 的前 n 项和. 若 $a_1 \neq 0$, $a_2 = 3a_1$, 则 $\frac{S_{10}}{S_5} = \underline{\hspace{1cm}}$.