复变函数

一. 填空(每题 4 分, 共 20 分).

 $\frac{1. (1+i)^i}{} = \underline{\qquad}$

- 2. $\oint_C |z| \bar{z} dz = _____$, 其中 C 为上半单位圆与线段 $-1 \le x \le 1$, y = 0 组成的正向 闭曲线。
 - 3. 设 C 为正向圆周 |z|=3, 则 $\oint_C [\sin z + \frac{e^z}{(z-\pi i)^5}] dz = _____.$
 - 4. 设 $f(z) = c^x [x \cos y y \sin y + i(x \sin y + y \cos y))]$, 则 f'(z) =____
 - 5. $\operatorname{Res}[\sin z \cos^2 z, \infty] =$ _____.

二. 选择(每题 4 分, 共 20 分).

- 1. 设 $f(z) = |z|^2$, 则
 - A. f(z)在复平面上无穷可导 B. f(z)在复平面上处处可导
 - C. f(z)仅在z=0处可导
- D. f(z)仅在z=0处解析
- 2. 设 $f(z) = \frac{e^z}{\cos z}$ 的泰勒展开式为 $\sum_{n=0}^{\infty} C_n z^n$, 则 $\sum_{n=0}^{\infty} C_n z^n$ 的收敛半径 R 为
 - $A. \pi$
- B. $\pi/2$ C. 1
- 3. 映射 $\omega = \frac{3z-i}{z+i}$ 在 $z_0 = 2i$ 处的旋转角为

A. 0 B.
$$\pi/2$$
 C. π D. $-\pi/2$

- 4. 设 z = 0 为 $f(z) = \frac{1}{z^3 \sin^3 z}$ 的 m 级极点,则 m =______
 - A. 1
- $B. 3 \qquad C. 9 \qquad D. 5$

5. Res $[(1-e^{2z})/z^4, 0]$ 为

A. 0 B.
$$-4/3$$
 C. $4/3$ D. 1

- 三. (10 分) 已知 $f(z) = \mu(x,y) + i\nu(x,y)$ 解析,且 $\mu \nu = x^2 y^2$,求 f(z)。
- 四. (10 分) 将 $f(z) = \frac{1}{z^2(z-i)}$ 在 |z-i| > 1 内展成罗朗级数。
- 五. (10 分) 求函数 $f(z) = \frac{\sin z z}{z^3}$ 在扩充复平面上所有奇点,并确定其类型。(对于极点, 指出其级)
 - 六. (10 分) 计算积分 $\oint_C \frac{z}{(1+z^2)e^{1/z}}dz$, 其中 $C:\ |z|=2$, 正向。七. (10 分) 计算定积分 $\int_0^{+\infty} \frac{1}{1+x^4}dx$ 。
- 八. (10~
 m A) 求将 |z|>1 割去虚轴上的由 i 到 ∞ 后剩余区域映成单位圆内部的一个映 射。