AP. PATERNO AP. MATERNO NOMBRE

FORMA P

ROL USM -

EL CERTAMEN CONSTA DE 8 PÁGINAS CON 20 PREGUNTAS EN TOTAL. TIEMPO: 105 MINUTOS

SIN CALCULADORA. SIN TELÉFONO CELULAR. SIN AUDÍFONOS

Para cálculos: Use $g \approx 10 \text{ [m/s}^2\text{]}$. Desprecie el roce del aire.

- **1.** El triángulo ABC de la figura es rectángulo y tiene altura h = 300[m]. Entonces, el trazo AD vale:
 - A) 500 [m]
 - B) 400 [m]
 - C) 240 [m]
 - D) 225 [m]
 - E) 180 [m]

2. El vector \vec{a} está representado en la figura adjunta. Entonces, un vector unitario en dirección de \vec{a} es:

B)
$$\frac{1}{\sqrt{2}}\hat{i} - \frac{1}{\sqrt{2}}\hat{j}$$

C)
$$-\frac{1}{\sqrt{2}}\hat{i} - \frac{1}{\sqrt{2}}\hat{j}$$

- D) $\hat{i} + \hat{j}$
- E) $\hat{i} \hat{j}$

y \overrightarrow{a} 0 x

- **3.** En la tabla adjunta se da el nivel del agua H en un estanque en función del tiempo. La rapidez media de cambio \overline{V}_H del nivel del agua en el intervalo entre 3[h] y 6[h] es igual a:
 - A) 0,6 [m/h]
 - B) 0,3 [m/h]
 - C) -0.3 [m/h]
 - D) -0.6 [m/h]
 - E) Ninguno de los anteriores.

t [h]	H [m]		
0	1,8		
3	4,5		
6	3,6		

4. Considere el vector $\vec{a} = 3\hat{i} + 4\hat{j}$. Entonces, el vector de magnitud 25 en dirección opuesta al vector \vec{a} es :

- A) $-\frac{3}{5}\hat{i} \frac{4}{5}\hat{j}$
- B) $15\hat{i} 20\hat{j}$
- C) $-15\hat{i} 20\hat{j}$
- D) $15\hat{i} + 20\hat{j}$
- E) $-15\hat{i} + 20\hat{j}$

5. Un vehículo se desplaza en línea recta, de forma que la componente v_x de su velocidad está representada en el gráfico adjunto. En t=0, la posición del vehículo era $x_0=4[m]$. Entonces, en el instante t=6[s], la posición del vehículo es :

- B) -4 [m]
- C) 0
- D) 16 [m]
- E) 60 [m]

6. En t = 0 se lanza una pelota desde el punto P. En la figura se muestran las sucesivas posiciones de la pelota a intervalos de 0,25[s], y la trayectoria curva descrita por ella.

En el instante t = 2 [s], el vector que mejor representa la velocidad instantánea de la pelota es:

- **7.** Desde una altura de 20 centímetros sobre el suelo, se deja caer un cuerpo partiendo del reposo. Utilizando el valor $g = 10[m/s^2]$ y despreciando el roce del aire, el tiempo que tarda el cuerpo en llegar al suelo es:
 - A) 0,2 [s]
 - B) 0,1 [s]
 - C) 0,04 [s]
 - D) 0,02 [s]
 - E) 2 [s]
- **8.** Dos cuerpos P y Q están originalmente en reposo y separados una distancia L. En cierto instante se ponen en movimiento simultáneamente en la dirección positiva del eje x, con aceleraciones constantes $a_P = 2[m/s^2]$ y $a_Q = 1[m/s^2]$. Si P alcanza a Q dos segundos después de haber partido, la distancia L que los separaba originalmente era:

- A) 1 [m]
- B) 2 [m]
- C) 3 [m]
- D) 4 [m]
- E) 6 [m]
- **9.** En el triángulo rectángulo ABC de la figura, el vértice C se desplaza con rapidez constante en la dirección indicada, avanzando L/2 en cada intervalo T. Los vértices A y B permanecen fijos. Entonces, la rapidez media de cambio \overline{V}_A del área del triángulo en el intervalo entre los instantes 0 y 3T es igual a :

- A) $-L^{2}/2T$
- B) $-L^{2}/3T$
- C) $+L^2/3T$
- D) $-L^{2}/6T$
- E) $+L^{2}/6T$
- **10.** Desde el suelo, se lanza una piedra verticalmente hacia arriba, de modo que después de 3,0[s] su velocidad tiene magnitud 10[m/s] y dirección vertical hacia abajo. Entonces, despreciando el roce del aire y utilizando el valor $g = 10[m/s^2]$, se puede afirmar que la magnitud de la velocidad con que fue lanzada la piedra es:
 - A) 80 [m/s]
 - B) 40 [m/s]
 - C) 30 [m/s]
 - D) 20 [m/s]
 - E) 10 [m/s]

11. El gráfico adjunto muestra la rapidez media de cambio \overline{V}_H del nivel del agua en un estanque, para los intervalos indicados. Se sabe que en t = 4[h] el nivel del agua es de 10[m]. Usando la informacion del gráfico, ¿cuál era el nivel del agua en t = 0[s]?

12. Los vectores fuerza \vec{F}_1 y \vec{F}_2 representados en la figura tienen magnitudes $\|\vec{F}_1\| = 10[N]$ y $\|\vec{F}_2\| = 16[N]$ respectivamente. Considere el vector fuerza \vec{F}_3 tal que la suma de los tres vectores es cero. Entonces, \vec{F}_3 es igual a:

A)
$$(8\hat{i} - 22\hat{j})[N]$$

B)
$$(8\hat{i} + 22\hat{j})[N]$$

C)
$$(-8\hat{i} - 22\hat{j})[N]$$

D)
$$(8\hat{i} - 10\hat{j})[N]$$

E)
$$(-8\hat{i} - 10\hat{j})[N]$$

13. La temperatura en el interior de un horno varía en función del tiempo, como se indica en el gráfico adjunto. De las siguientes afirmaciones:

- II. La rapidez *instantánea* de cambio V_T de la temperatura en t = 100[min] es 20[°C/min].
- III. La rapidez **media** de cambio \overline{V}_T de la temperatura en el intervalo entre 100 [min] y 300 [min] es $-10[^{\circ}C/min]$

14. Una partícula describe una circunferencia con rapidez constante. Considere el vector velocidad del cuerpo cuando pasa por el punto P, y cuando pasa por Q. Entonces, el vector cambio de velocidad $\Delta \vec{v} = \vec{v}_Q - \vec{v}_P$ está mejor representado por:

E) El vector $\Delta \vec{v}$ es cero

15. Un estanque cilíndrico de $0,12[m^2]$ de área basal contiene agua hasta un nivel H. Debido a la evaporación, el nivel H del agua baja 1[cm] cada hora. Entonces la rapidez media de cambio \overline{v}_{v} del volumen de agua en el estanque, es igual a:

A)
$$-3.3 \cdot 10^{-7}$$
 [m³/min]

B)
$$-2.0 \cdot 10^{-5}$$
 [m³/min]

C)
$$-3.0 \cdot 10^{-4}$$
 [m³/min]

D)
$$-2.0 \cdot 10^{-3}$$
 [m³/min]

E)
$$1.2 \cdot 10^{-3}$$
 [m³/min]

16. Un montacargas M *desciende* verticalmente con rapidez constante. En t=0 se desprende de su parte inferior un perno P. El gráfico que mejor representa la componente v_y del vector velocidad de cada cuerpo desde t=0 en adelante es:

- **17.** Se tienen dos vectores $\vec{a} = 9\hat{i} + \alpha \hat{j}$ y $\vec{b} = \alpha \hat{i} + 16\hat{j}$, siendo α es un escalar. Para que \vec{a} y \vec{b} sean paralelos (igual sentido y dirección), el escalar α debe ser igual a :
 - A) -12
 - B) -6
 - C) 6
 - D) 12
 - E) ninguno de los anteriores.

18. El gráfico muestra el comportamiento de la variable F en función del tiempo. El gráfico que mejor representa la rapidez media de cambio \overline{v}_F de la variable F para los intervalos indicados es :

19. La Tierra describe una órbita aproximadamente circunferencial con rapidez constante 6 [UA/año] en torno al Sol, siendo su período 1[año]. En cierto instante la Tierra pasa por el punto P, y medio período después, pasa por el punto Q.

El vector aceleración media $\vec{\overline{a}} = \frac{\Delta \vec{v}}{\Delta t}$, entre las posiciones P y Q antes mencionadas es:

- A) $-24 \hat{j} [UA/a\tilde{n}o^2]$
- B) $-3\hat{j}$ [UA/año²]
- C) 0
- D) 6 j [UA/año²]
- E) 24 j [UA/año²]

20. Una variable n varía con el tiempo según $n=n_0\cdot 2^{\left(\frac{t}{\tau}\right)}$, donde n_0 y τ son constantes. Entonces, la rapidez media de cambio \overline{V}_n de la variable n, en el intervalo entre t y $t+\Delta t$ puede expresarse como:

- $\text{A)} \ \ n_0 \cdot \frac{2^{\left(\frac{t}{\tau}\right)}}{\Delta t}$
- $\text{B) } n_0 \cdot \frac{2^{\left(\frac{t}{\tau}\right)}}{\tau}$
- $\text{C)} \ \ n_0 \cdot \frac{2^{\left(\frac{t}{\tau} 1\right)}}{\tau}$
- $\text{D)} \ \ n_0 \cdot \frac{2^{\left(\frac{\Delta t}{\tau}\right)}}{\Delta t}$
- $\text{E)} \ \ n_0 \cdot \frac{2^{\left(\frac{t+\Delta t}{\tau}\right)} \ 2^{\left(\frac{t}{\tau}\right)}}{\Delta t}$

CORRECTAS CERTAMEN 2 FIS 100 1^{ER} SEMESTRE 2007

FORMAS	Р	K	T	V
1	D	В	E	Α
2	В	D	С	Е
3	С	В	Α	D
4	С	В	Α	Е
5	С	Е	Α	D
6	D	D	D	D
7	Α	В	D	D
8	В	D	Α	С
9	D	В	С	E
10	D	В	Α	Е
11	E	В	Α	С
12	С	E	Α	В
13	E	С	С	E
14	D	D	D	D
15	В	D	В	D
16	В	В	В	В
17	D	С	Α	В
18	D	D	D	D
19	Α	С	В	В
20	E	E	E	E