Sprawozdanie z realizacji zadań 1-3

Jan Ryszkiewicz

December 30, 2024

Zadanie 1: The Power of Two Choices / balanced allocation

Testowałem dwa przypadki:

- (a) Dla każdej kuli wybieramy niezależnie i jednostajnie losowo jedna z n urn, w której umieszczamy kule.
- (b) Dla każdej kuli wybieramy niezależnie i jednostajnie losowo dwie urny, a kule umieszczamy w najmniej zapełnionej z wybranych urn.

Po przeprowadzeniu symulacji dla $n \in \{10000, 20000, \dots, 1000000\}$ oraz obliczeniu średniego maksymalnego zapełnienia $L_n^{(d)}$ dla obu przypadków (gdzie d=1 i d=2), uzyskano wyniki, które zaprezentowano na wykresach (exc1/plots/*).

Dodatkowo, wykresy przedstawiaja funkcje Ł(n) podzielona przez:

- $f_1(n) = \frac{\ln n}{\ln \ln n}$
- $f_2(n) = \frac{\ln \ln n}{\ln 2}$

Na podstawie wykresów stwierdzono, że rozkład wyników dla przypadku drugiego jest skoncentrowany wokół wartości średniej,

jednak w przypadku d=1rozkład jest bardziej cha
otyczny, co sugeruje wieksze zróżnicowanie wyników.

Asymptotycznie wartości $L_n^{(d)}$ przybliżaja sie do wartości $\frac{\ln n}{\ln \ln n}$ dla d=1 oraz $\frac{\ln \ln n}{\ln 2}$ dla d=2.

Zadanie 2: Sortowanie przez wstawianie losowych danych

W zadaniu 2 zaimplementowaliśmy algorytm sortowania przez wstawianie (INSERTIONSORT) i przeprowadziliśmy

eksperymenty dla $n \in \{100, 200, \dots, 10000\}$ oraz k = 50powtórzeń dla każdego n

Dla każdego eksperymentu zebrano dane dotyczace liczby wykonanych porównań oraz przestawień kluczy.

Na podstawie zebranych danych przedstawiono wykresy (exc2/plots/*).

Z wykresów wynika, że liczba porównań rośnie niemal kwadratowo w zależności od n.

natomiast liczba przestawień rośnie w sposób bardziej liniowy. Wartości ilorazów $\frac{cmp(n)}{n}$ oraz $\frac{cmp(n)}{n^2}$

wskazuja na kwadratowa złożoność czasowa algorytmu w przypadku sortowania przez wstawianie.

Zadanie 3: Uproszczony model komunikacji z zakłóceniami

W zadaniu 3 przeprowadzono symulacje w celu eksperymentalnego zbadania minimalnej liczby rund T_n potrzebnej do rozesłania informacji w sieci o topologii gwiazdy z zakłóceniami. Eksperymenty przeprowadzono dla p=0.5 oraz p=0.1.

Na podstawie uzyskanych wyników przedstawiono wykresy liczby rund potrzebnych do rozesłania informacji (exc3/plots/*).

Z wykresów wynika, że liczba rund potrzebnych do rozesłania informacji rośnie wraz z n, ale dla mniejszego prawdopodobieństwa p liczba rund rośnie szybciej.

Potwierdza to, że mniejsze prawdopodobieństwo odbioru informacji wydłuża czas potrzebny do jej rozesłania w sieci.