FOGLIO DI ESERCIZI 3

ANCORA TOPOLOGIA ED ANALISI COMPLESSA...

Esercizio 1 (Il rivestimento universale). Data una superficie Σ , vogliamo costruire esplicitamente un rivestimento universale per Σ . Fissiamo quindi $x_0 \in \Sigma$ e definiamo

$$\widetilde{\Sigma} = \{ \gamma : [0,1] \to \Sigma \mid \gamma(0) = x_0 \} / \sim$$

dove \sim è la relazione di omotopia tra cammini ad estremi fissati. Definiamo inoltre la proiezione $\pi: \widetilde{\Sigma} \to \Sigma$ mediante $\pi[\gamma] = \gamma(1)$.

• Mostrare che gli insiemi della forma

$$(\gamma, U) = \{ [\gamma \cdot \gamma'] : \gamma' \text{ è contenuto in } U \},$$

dove U è un aperto semplicemente connesso di Σ , formano una base per una topologia su $\widetilde{\Sigma}$.

- Mostrare che la proiezione π è continua.
- Mostrare che se $U \subset \Sigma$ è semplicemente connesso e $x \in U$, allora $\pi^{-1}(U)$ è l'unione disgiunta degli insiemi (γ, U) , al variare di $[\gamma]$ tra le classi di omotopia di cammini tra x_0 e x.
- Mostrare che la restrizione di π a ciascun (γ, U) è un omeomorfismo su U.
- Dedurre che $\pi:\widetilde{\Sigma}\to\Sigma$ è un rivestimento.
- Mostrare che $\widetilde{\Sigma}$ è semplicemente connesso.
- Mostrare, usando il teorema di sollevamento, che se $p:M\to \Sigma$ è un rivestimento e M è semplicemente connesso, allora esiste un omeomorfismo $\varphi:M\to\widetilde{\Sigma}$ tale che $\pi\circ\varphi=p$.

Esercizio 2 (Trasformazioni di deck). Lo scopo di questo esercizio è capire come l'isomorfismo di gruppi tra $\pi_1(\Sigma)$ e $\operatorname{Aut}(\pi:\widetilde{\Sigma}\to\Sigma)$ dipende dalla scelta del punto base x_0 e da una sua preimmagine \widetilde{x}_0 . Definiamo allora

$$F_{\widetilde{x}_0}: \operatorname{Aut}(\widetilde{\Sigma}, \pi) \to \pi_1(\Sigma, x_0)$$

che associa a $g \in \operatorname{Aut}(\widetilde{\Sigma},\pi)$ la classe di omotopia del cammino $\pi \circ \gamma$, dove $\gamma:[0,1] \to \widetilde{\Sigma}$, $\gamma(0) = \widetilde{x}_0$, $\gamma(1) = g(\widetilde{x}_0)$.

- Mostrare che, dati $\widetilde{x}_0, \widetilde{y}_0 \in \widetilde{\Sigma}$, la composizione $F = F_{\widetilde{y}_0} \circ F_{\widetilde{x}_0}^{-1}$ è della forma $F[\alpha] = [\eta^{-1} \cdot \alpha \cdot \eta]$, per η un cammino che connette $x_0 = \pi(\widetilde{x}_0)$ a $y_0 = \pi(\widetilde{y}_0)$.
- Dedurre che, se $\pi(\widetilde{x}_0) = \pi(\widetilde{x}'_0) = x_0$, allora la composizione $F = F_{\widetilde{x}'_0} \circ F_{\widetilde{x}_0}^{-1}$ è un automorfismo interno di $\pi_1(\Sigma, x_0)$.

(Suggerimento: sono permessi, anzi suggeriti, i disegni.)

Esercizio 3 (Gruppo fondamentale delle superfici chiuse orientabili). Mostrare che il gruppo fondamentale della superficie chiusa, connessa, orientabile S_g di genere g>0 è isomorfo a

$$\langle A_1, B_1, \dots, A_g, B_g | A_1 B_1 A_1^{-1} B_1^{-1} \cdots A_g B_g A_g^{-1} B_g^{-1} = 1 \rangle$$
.

(Suggerimento: è permesso usare il teorema di Van Kampen.)

Esercizio 4 (Gruppi di automorfismi). Consideriamo l'applicazione $\Phi: \mathrm{GL}(2,\mathbb{C}) \to \mathrm{Bihol}(\mathbb{C}\mathrm{P}^1)$ che associa alla matrice

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

con $ad - bc \neq 0$, la funzione olomorfa

$$(1) z \mapsto \frac{az+b}{cz+d}$$

di $\mathbb{C}P^1$ in se stesso.

- Mostrare che Φ è un omomorfismo di gruppi.
- Usando ora che i biolomorfismi di $\mathbb{C}\mathrm{P}^1$ sono tutti della forma (1) con $a,b,c,d\in\mathbb{C}$ e $ad-bc\neq 0$, mostrare che Φ induce un isomorfismo di gruppi tra $\mathrm{PGL}(2,\mathbb{C})$ e $\mathrm{Bihol}(\mathbb{C}\mathrm{P}^1)$.
- Usando che i biolomorfismi di \mathbb{H} sono tutti della forma (1) con $a,b,c,d\in\mathbb{R}$ e ad-bc>0, mostrare che Φ induce un isomorfismo di gruppi tra $\mathrm{PSL}(2,\mathbb{R})$ e $\mathrm{Bihol}(\mathbb{H})$.

Esercizio 5 (Cerchi generalizzati). Si definisce "cerchio generalizzato" in \mathbb{C} un sottoinsieme che sia un cerchio o una retta. In questo esercizio vogliamo mostrare che le trasformazioni di Möbius preservano i cerchi generalizzati.

ullet Mostrare che i cerchi generalizzati in $\mathbb C$ sono precisamente i sottoinsiemi definiti da:

$$\alpha z\overline{z} + \beta z + \overline{\beta}\overline{z} + \gamma = 0$$

con
$$\alpha, \gamma \in \mathbb{R}$$
, $\beta \in \mathbb{C}$ e $\alpha \gamma < |\beta|^2$.

 Mostrare che ogni trasformazione di Möbius si ottiene come composizione di trasformazioni della forma

$$f(z) = \frac{1}{z} \qquad \mathrm{e} \qquad g(z) = az + b \ \mathrm{per} \ a \in \mathbb{C}^*, b \in \mathbb{C} \ .$$

(Suggerimento: in effetti basta comporne tre.)

- Mostrare che ogni trasformazione di Möbius manda cerchi generalizzati in cerchi generalizzati. (Suggerimento: basta mostrarlo per le trasformazioni della forma sopra.)
- ullet Quando succede che f manda un cerchio in una retta?

Vale il seguente teorema (non banale!) di "uniformizzazione" degli anelli.

Teorema. Data una superficie di Riemann Σ omeomorfa ad un anello, Σ è biolomorfa ad esattamente una delle seguenti superfici di Riemann:

- Il piano puntato $\mathbb{C}^* = \mathbb{C} \setminus \{0\};$
- Il disco puntato $\mathbb{D}^* = \mathbb{D} \setminus \{0\};$
- L'anello $\mathbb{A}_{\rho} = \{z \in \mathbb{C} : \rho < |z| < 1\}$, per qualche $\rho \in (0,1)$.

Esercizio 6 (Strutture conformi sugli anelli). In questo esercizio vogliamo capire meglio il teorema di uniformizzazione degli anelli.

- Mostrare che, se $f:\mathbb{C}^*\to\mathbb{D}^*$ è olomorfa, allora f si estende ad una funzione olomorfa limitata su \mathbb{C} .
- Mostrare che \mathbb{C}^* e \mathbb{D}^* non sono biolomorfi. (Ricordarsi il teorema di Liouville!)
- Costruire un diffeomorfismo tra \mathbb{C}^* e \mathbb{D}^* , e un diffeomorfismo tra \mathbb{C}^* e \mathbb{A}_{ρ} per $\rho \in (0,1)$, e verificare che i diffeomorfismi costruiti non sono olomorfi. (Suggerimento: è comodo usare coordinate polari.)

Vediamo ora di individuare il rivestimento universale delle superfici di Riemann omeomorfe ad un anello, come nel teorema.

- Mostrare che la mappa $z\mapsto e^z$ definisce un biolomorfismo tra il quoziente di $\mathbb C$ per il gruppo generato da $z\mapsto z+2\pi i$, e $\mathbb C^*$.
- \bullet Mostrare che la mappa $z\mapsto e^{iz}$ definisce un biolomorfismo tra il quoziente di

$$\mathbb{H} = \{ z \in \mathbb{C} : \Im(z) > 0 \}$$

per il gruppo generato da $z\mapsto z+2\pi$, e \mathbb{D}^* , e tra il quoziente di una "striscia"

$$\{z \in \mathbb{C} : 0 < \Im(z) < -\log \rho\}$$

 $e \mathbb{A}_{\rho}$.

• Dedurre che il rivestimento universale di \mathbb{C}^* è biolomorfo a \mathbb{C} , e che il rivestimento universale di \mathbb{D}^* ed \mathbb{A}_{ρ} è biolomorfo a \mathbb{H} . (Suggerimento: usare l'esercizio 3 del foglio esercizi 2.)