- We are going to use "limma" as a tool to contrast expression profiles between conditions.
- Limma needs a matrix of gene counts with genes in rows and samples in columns and a table describing the conditions of each sample.
- We will use the Gene quantification level. In the transcript quantification level, the variables are not independent for the statistical analysis.
- We will get the counts matrix from the salmon quantification steps.
- Limma requieres de Counts (NumReads).
- As we have a collection of salmon outputs and we need a matrix of counts, we will process this collection to produce a matrix.

Gene Level Quantification

1	2	3	4	5
Name	Length	EffectiveLength	TPM	NumReads
ENSMUSG00000096768	1405.7	909.741	45.1347	1048.45
ENSMUSG00000095366	653.069	401.597	10.4436	107.093
ENSMUSG00000099399	444.5	195	0	0
ENSMUSG00000096178	844	594	0	0
ENSMUSG00000102011	437	188	0	0
ENSMUSG00000100608	931	681	0	0
ENSMUSG00000101402	967.5	718	0	0
ENSMUSG00000100492	963.5	714	0	0
ENSMUSG00000100067	967	717.5	0	0
ENSMUSG00000101984	802.5	553	0	0
ENSMUSG00000099649	397	148	0	0
ENSMUSG00000100440	968	718.5	0	0
ENSMUSG00000100930	2167	1917	0	0

Process the Slamon Gene Counts Collection with the following tools to obtain a matrix of counts.

Cut: cut the 1st and 5th column

We will get the first column with the gene identifiers and the fifth column with the counts

Column Join on Collections

By indicating not to copy column names, it will add the sample name to the column

Repeat this steps for the other set if you have splitted your reads into two sets

limma: contrast between RNASeq samples

- Limma can be used either to contrast quantifications produced by microarrays or by RNA-Seq.
- In order to normalize and transform the RNASeq data for the limma model we need to apply the voom transformation.

- Limma also needs the experiment design: a table with the definition of which condition is each sample.
- Also the contrasts to perform.
 - We can provide this information in the form or by files

limma: contrast between RNASeq samples

You can provide to limma a mapping table to associate the gene IDs to their names

With the contrast information is the same, we can provide it manually or with a file

If we say no file, we will provide the contrast we want manually. We can add more contrasts if we want

limma: contrast between RNASeq samples

- We can configure some aspects of the analysis:
- Usually is better to reduce our genes of interest to a list that is robustly expressed.
 Otherwise we will have many low expressed genes adding noise without biologial relevance.
- A standard to filter genes is to select those with at least 1 count per million reads sequenced in at least half of the samples of the experiment.

 Also we can configure how the adjusted pvalue is calculated and add some filtering parameters for the plots

limma: contrast between RNASeq samples

- We can configure the outputs we want limma to provide us.
- Set everything on to explore later the results

- Limma will produce several outputs depending on our selection.
 - **Library Information**: Severa stats about each sample
 - Rscript: The R script used in galaxy to perform this analysis
 - Normalised Counts: Normalised to log2(CPMs+0.5)
 - Filtered Counts: Raw Counts with only the genes filtered considering de CPMs
 >=1 in at least 3 samples
 - Report: A Web page with access to all plots and stats of the analysis#
 - **DE Tables**: A collection or list of tables of the different contrasts perform.

RNA-Seq Analysis: Functional Analysis

- In a functional analysis we evaluate which cellular functions are mainly in our experiment.
- Cellular functions are categories in which genes are classified.
- The main functional classification of genes is the one provided by the Gene Ontology Consortium. The categories are classified also in three main groups: Biological Processes, Molecular Functions and Cellular localization.
- We will test whether there is any functional category which is enrich in genes that we have identified as significantly changed.
- We would say a functional category is affected in our experiment if a significant number of genes (more than expected by chance) in that category are changed in our experiment.
- There are many tools and web sites that provides this type of analysis.
- We will use GOst, a simple tool to provide Functional enrichments.
- GOst needs a list of genes separated by spaces like:
 - "Myc Notch1 Gbx3 sHh Tgfb Myh7 ..."
- We will need to process our DE Table from limma to get a list like that one.

RNA-Seq Analysis: Filter Results

Filter: DE genes

- First we are going to get our set of differentially expressed genes
- Among the results from limma there is a collection of datasets that contains DE Tables (Differentially Expressed Tables). This table contains the differentially expression test for all the genes in our experiment.
- We need to filter this table by its adj.P.val column and select only those genes with values below 0.05 and a logFC over 1 or below -1

Cut: The 2nd column with the gene names

RNA-Seq Analysis: Functional Analysis

Replace: parts of text

 With this tool we can replace the "newline" symbol of a text file (defined as \mathbb{\mathbb{n}} in regular expression format) by a space:

· We should obtain something like this:

1
Gene.name Rho Gnat1 Gnb1 Nrl Slc24a1 Pde6b Kcnj14 Cngb1 Opn1sw Reep6 Samd11 Esrrb Glb1l2 Ccdc136

RNA-Seq Analysis: Functional Analysis

gProfiler GOSt: performs functional enrichment analysis of gene lists

The graphical output. It is interactive and very intuitive.

RNA-Seq Analysis: Heatmap Visualisation

- We are going to generate a clustered Heatmap with the filtered genes using the Galaxy visualisation tools.
- We need the table of Normalised Counts, but ony with the data from the filtered genes.

Cut: cut the 1st column from filtered DE Table

Column Join on datatsets: join filtered gene IDs with the Normalised Counts Table

RNA-Seq Analysis: Heatmap Visualisation

Cut: cut out the 1st and 2nd column with the ensembl IDs and leave the Gene name column

Melt: transform the matrix into a 3 column table format

This is the matrix format. Genes in rows and samples in columns

This is the three column format

1	2	3
Gene.name	variable	value
Rho	wildtype_rep1	15.0269132037375
Gnat1	wildtype_rep1	13.5552440611003
Gnb1	wildtype_rep1	12.3227246290013
Nrl	wildtype_rep1	10.4463455756131
Pde6b	wildtype_rep1	10.948750281503
Slc24a1	wildtype_rep1	10.6361734902942
Ccdc136	wildtype_rep1	7.26316558207711
Kcnj14	wildtype_rep1	8.78548357670807
Opn1sw	wildtype_rep1	8.84642925368084
Glb1l2	wildtype_rep1	8.16224881015989
Cngb1	wildtype_rep1	9.87753629384738

RNA-Seq Analysis: Heatmap Visualisation

Visualization: Select Create Visualization from Visualize menu

Cluster Heatmap: Select Cluster Heatmap Plot

Save it to your visualizations.

Save it to your visualizations.

Finally click on this icon to select the settings