# E5EC 与 CP1H 无协议通信

- 一、实验设备: E5EC-QR2ASM-808、CP1H-X40DR-A、CP1W-CIF11
- 二、实验目的: 熟悉 PLC TXD/RXD 指令,通过 PLC 读取温控器当前温度值,写入设定温度值
- 三、硬件接线: 将温控器的 485 端子与 CP1H 上串行通信板 CP1W-CIF11 连接。



### 四、实验步骤:

温控器侧设置



- 1、短按空白键 1s 以内进入调整菜单,按循环键找到 CMWT,将 CMWT 设置为 ON
- 2、长按空白键 3s 以上进入初始设定菜单,再短按一下空白键,进入通讯设定 菜单

通讯菜单设置内容如下:

| 项目       | 符号   | 设定内容                         | 设定值                          |
|----------|------|------------------------------|------------------------------|
| 协议选择     | PSEL | CompoWay/F/Modbus            | [WF/Mod                      |
| 通信单位编号   | U-Nā | 0 ~ 99                       | 0、1 ~ 99                     |
| 通信波特率    | 6PS  | 9.6/19.2/38. 4/57.6 (kbit/s) | 9.6/19.2 /38.4/57.6 (kbit/s) |
| 通信数据位*   | LEN  | 7/8 (位)                      | 7/8 (位)                      |
| 通信终止位*   | Shīt | 1/2                          | 1/2                          |
| 通信奇偶校验   | PREY | 无、偶数、奇数                      | Nane/Even/add                |
| 发送数据等待时间 | SdWE | 0 ~ 99                       | 0 ~ 99(ms),                  |
|          | 30%  |                              | 默认值: 20                      |

#### 上表中的阴影部分为默认值。

\* 协议选择为 Modbus 时,通信数据位固定为 8 位; 奇偶校验设定为偶数 / 奇数时,通信终止位固定为 1 位、无奇偶 校验时固定为2位,不显示项目。

协议选择(PSEL):Mod

通信单位编号(U-N0):1

通信波特率(bPS): 9600

通信数据位(Len): 8

通信终止位(SbIt): 1

通信奇偶校验(PRtY): EVEN

发送数据等待时间(SdWt):20ms(默认值)

### PLC 侧设置

1、DIP 开关 4、5 号拨到 OFF

⑦拨动开关



| No. | 设定  | 设定内容            | 用途                         | 初始值 |
|-----|-----|-----------------|----------------------------|-----|
| SW1 | ON  | 不可写入用户存储器(注)    | 在需要防止由外围工具 (CX-Programmer) | OFF |
|     | OFF | 可写入用户存储器        | 导致的不慎改写程序的情况下使用。           |     |
| SW2 | ON  | 电源为 ON 时, 执行从存储 | 在电源为 ON 时,可将保存在存储盒内的程      | OFF |
| l . |     | 盒的自动传送          | 序、数据内存、参数向 CPU 单元展开。       |     |
|     | OFF | 不执行             |                            |     |
| SW3 | _   | 未使用             | _                          | OFF |
| SW4 | ON  | 在用工具总线的情况下使     | 需要通过工具总线来使用选件板槽位1上         | OFF |
|     |     | 用               | 安装的串行通信选件板时置于 ON。          |     |
|     | OFF | 根据 PLC 系统设定     |                            |     |
| SW5 | ON  | 在用工具总线的情况下使     | 需要通过工具总线来使用选件板槽位 2 上       | OFF |
|     |     | 用               | 安装的串行通信选件板时置于 ON。          |     |
|     | OFF | 根据 PLC 系统设定     |                            |     |
| SW6 | ON  | A395.12 为 ON    | 在不使用输入单元而用户需要使某种条件         | OFF |
|     |     |                 | 成立时,将该SW6置于ON或OFF,在程       |     |
|     | OFF | A395.12 为 OFF   | 序上应用 A395.12。              |     |

## 2、CP1W-CIF11 背后的拨动开关如下:



#### ●RS-422A/485 端子台



端子台的螺钉请用 0.28N·m (2.5Lb In.)扭 矩安装。

CP1W-CIF11 管脚定义如下:

#### ●工作设定用拨动开关



| 引脚<br>No. |     | 设定内容           |                  |  |
|-----------|-----|----------------|------------------|--|
| 1         | ON  | 有(两端)          | 终端电阻有无的选择        |  |
|           | OFF | 无              |                  |  |
| 2         | ON  | 2线式            | 2线式/4线式的选择(注1)   |  |
|           | OFF | 4 线式           |                  |  |
| 3         | ON  | 2 线式           | 2线式/4线式的选择(注1)   |  |
|           | OFF | 4 线式           |                  |  |
| 4         | _   | _              | 空置               |  |
| 5         | ON  | 有 RS 控制        | 选择 RD 的 RS 控制的有无 |  |
|           | OFF | 无 RS 控制 (平时接收) | (注2)             |  |
| 6         | ON  | 有 RS 控制        | 选择 SD 的 RS 控制的有无 |  |
|           | OFF | 无 RS 控制 (平时发送) | (注3)             |  |

- 注 1. 引脚 No.2 及 3 请都设定为 ON(2 线式)或 OFF(4 线式)。
- 注 2. 在需要禁止回送的情况下,将引脚 No.5 设定为「有 RS 控制」(ON)。
- 注 3. 用 4 线式布线进行 1:N 连接时,在连接到 N 侧的设备的情况下,将引脚 No. 6 设定为「有 RS 控制」(ON)。

在2线式布线进行连接的情况下,将引脚 No.6设定为「有 RS 控制」(ON)。

本次实验中将拨码: 2,3,5,6 拨到 0N

#### 3、PLC 软件设置:

文件新建,设备类型选择 CP1H, CPU 型号选择 XA,网络类型 USB



本实验中使用串口1,设置如下:



将设置传入 PLC, 然后断电上电

# 4、温控器 MODBUS 指令针

# 读指令帧

# 读出变量(多个)

以下指令帧设置必要的数据后,读出变量区域。

#### 指令帧



| 数据名称   | 说明                                              |  |  |
|--------|-------------------------------------------------|--|--|
| 从站地址   | 请指定E5□C的 "单位编号"。                                |  |  |
|        | 能以16进制格式设定H'01~H'63(1~99)。                      |  |  |
| 功能代码   | 变量区域读出的功能代码为 H'03。                              |  |  |
| 读出开始地址 | 请指定要读出的参数地址。                                    |  |  |
|        | 地址请参照 □ "第 5 章 通信数据 Modbus"。                    |  |  |
| 元素数量   | 4字节模式                                           |  |  |
|        | 请指定要读出的参数数量×2作为元素数量。                            |  |  |
|        | 指定范围为 H'0002 ~ H'006A(2 ~ 106)。                 |  |  |
|        | 设定为 H'006A 时,可读出 53 个参数。                        |  |  |
|        | 例)参数数量为第2项时,设定为H'0004。                          |  |  |
|        | 2字节模式                                           |  |  |
|        | 请指定要读出的参数数量作为元素数量。                              |  |  |
|        | 指定范围为 H'0001 ~ H'006A(1 ~ 106)。                 |  |  |
|        | 设定为 H'006A 时,可读出 106 个参数。                       |  |  |
|        | 例)参数数量为第2项时,设定为H'0002。                          |  |  |
| CRC-16 | 根据自从站地址到数据末尾的值算出的校验码。                           |  |  |
|        | 计算方法请参照 🎞 "4-1-1 指令帧 ● CRC-16 的计算示例" (4-3 页 ) 。 |  |  |

# 读取的响应帧

# 响应帧



| 数据名称   | 说明                                              |  |  |
|--------|-------------------------------------------------|--|--|
| 从站地址   | 直接使用指令帧中的值。                                     |  |  |
| 功能代码   | 接收了信号的功能代码。                                     |  |  |
|        | 但异常时的响应帧是将 "H'80" 加在接收了信号的功能代码上的值,表示异常响         |  |  |
|        | 应。                                              |  |  |
|        | 例)接收功能代码 = H'03                                 |  |  |
|        | 异常时回应响应帧内的功能代码 = H'83                           |  |  |
| 字节计数   | 读出数据的字节数。                                       |  |  |
| 读出数据   | 读出的参数的值。                                        |  |  |
| CRC-16 | 根据自从站地址到数据末尾的值算出的校验码。                           |  |  |
|        | 计算方法请参照 ① "4-1-1 指令帧 ● CRC-16 的计算示例 ] (4-3 页 )。 |  |  |

## 响应代码

| 功能代码 | 错误<br>代码 | 错误名称   | 原因           |
|------|----------|--------|--------------|
| H'83 | H'02     | 变量地址错误 | 读出开始地址异常。    |
|      | H'03     | 变量数据   | 元素数量超过了指定范围。 |
|      |          | 错误     |              |
| H'03 | -        | 正常结束   | 无异常。         |

# 写入指令针

# 写入变量(多个)

以下指令帧设置必要的数据后,写入变量区域。

#### 指令帧



| 数据名称   | 说明                                            |
|--------|-----------------------------------------------|
| 从站地址   | 请指定E5□C的 "单位编号"。                              |
|        | 能以16进制格式设定H'01~H'63(1~99)。                    |
| 功能代码   | 变量区域写入的功能代码为 H'10。                            |
| 写人开始地址 | 请指定要写人的参数地址。                                  |
|        | 地址请参照 □ "第 5 章 通信数据 Modbus"。                  |
| 元素数量   | 4字节模式                                         |
|        | 请指定要写人的参数数量×2作为元素数量。                          |
|        | 指定范围为 H'0002 ~ H'0068(2 ~ 104)。               |
|        | 设定为 H'0068 时,可写人 52 个参数。                      |
|        | 例)参数数量为第2项时,设定为H'0004。                        |
|        | 2字节模式                                         |
|        | 请指定要写人的参数数量作为元素数量。                            |
|        | 指定范围为 H'0001 ~ H'0068(1 ~ 104)。               |
|        | 设定为 H'0068 时,可写人 104 个参数。                     |
|        | 例)参数数量为第2项时,设定为H'0002。                        |
| 字节计数   | 请指定写人数据的字节数。                                  |
| CRC-16 | 根据自从站地址到数据末尾的值算出的校验码。                         |
|        | 计算方法请参照 🎞 "4-1-1 指令帧 ● CRC-16 的计算示例」(4-3 页 )。 |

## 写入的响应帧

## 响应帧

| 从站地址 | 功能代码 | 写入开始地址 | 元素数量 | CRC-16 |  |
|------|------|--------|------|--------|--|
|      | H'10 | ı      |      |        |  |
| 1    | 1    | 2      | 2    | 2字节    |  |

| 数据名称   | 说明                                               |  |  |
|--------|--------------------------------------------------|--|--|
| 从站地址   | 直接使用指令帧中的值。                                      |  |  |
| 功能代码   | 接收了信号的功能代码。                                      |  |  |
|        | 但异常时的响应帧是将 "H'80" 加在接收了信号的功能代码上的值,表              |  |  |
|        | 示异常响应。                                           |  |  |
|        | 例)接收功能代码 = H'10                                  |  |  |
|        | 异常时回应响应帧内的功能代码 = H'90                            |  |  |
| 写人开始地址 | 经接收处理的写人开始地址。                                    |  |  |
| 元素数量   | 经接收处理的元素数量。                                      |  |  |
| CRC-16 | 根据自从站地址到数据末尾的值算出的校验码。                            |  |  |
|        | 计算方法请参照 🎞 " 4-1-1 指令帧 ● CRC-16 的计算示例" (4-3 页 ) 。 |  |  |

#### 响应代码

| 功能代码 | 错误代码 | 错误名称   | 原因                   |
|------|------|--------|----------------------|
| H'90 | H'02 | 变量地址错误 | 写人开始地址异常。            |
|      | H'03 | 变量数据错误 | ■ 元素数量与数据数量不一致。      |
|      |      |        | ■ 元素数量×2与字节计数不一致。    |
|      |      |        | ■ 写人数据不在设定范围内。       |
|      | H'04 | 动作错误   | 不是可写人的动作状况。写人数据的设定内  |
|      |      |        | 容为当前的动作模式所不允许。       |
|      |      |        | ■ 通信写人 OFF(禁止)。      |
|      |      |        | ■ 已从设定区域0写人至设定区域1的设定 |
|      |      |        | 项目。                  |
|      |      |        | ■ 已从非保护菜单写人至保护设定项目。  |
|      |      |        | ■ AT 实行中。            |
| H'10 | -    | 正常结束   | 无异常。                 |

## 5、CP1H 无协议指令

串行端口发送 TXD

#### 符号



S: 发送数据开头CH编号

C: 控制数据

N: 发送字节数0000~0100Hex

(0~256)

#### 操作数说明



## 相关特殊辅助继电器

| 名称         | 地址          | 内容          |
|------------|-------------|-------------|
| 串行端口 1 发送准 | A392.13     | 在无协议模式中当为发  |
| 备标志        | (CP1H, CP1L | 送可能时为1(ON)。 |
|            | M)          |             |
|            | A392.05     |             |
|            | (CP1L L)    |             |
| 串行端口 2 发送准 | A392.05     |             |
| 备标志        |             |             |

## 串行端口接收 RXD

# 符号



D: 接收数据保存开头CH编号

C: 控制数据

N: 保存字节数 0000~0100Hex

(0~256)

#### 操作数说明



1 Hex: 串行端口1

(安装选配件插槽1的串行通信选配件板)

2 Hex: 串行端口2

(安装选配件插槽2的串行通信选配件板)

#### 相关特殊辅助继电器

| 名称                                         | 地址                                                             | 内容                                                                                                                                  |
|--------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 串行端口1<br>接收完成标志<br>串行端口2<br>接收完成标志         | A392.14<br>(CP1H, CP1L<br>M)<br>A392.06<br>(CP1L L)<br>A392.06 | 在无协议模式中接收结束时为 1<br>(ON)。<br>接收字节数指定时:接收指定字节<br>数时 ON<br>结束代码指定时:在结束代码接收<br>或 256 字节接收中为 ON                                          |
| 串行端口1<br>接收超限<br>标志<br>串行端口2<br>接收超限<br>标志 | A392.15<br>(CP1H, CP1L<br>M)<br>A392.07<br>(CP1L L)<br>A392.07 | 在无协议模式中超越接收数据量进行接收时为1(ON)。接收字节数指定时:接收结束后在执行RXD指令之前,进行数据接收时为ON结束代码指定时:结束代码接收后在执行RXD指令之前,进行数据接收时为ON结束代码未接收时、256字节接收后、第257字节不为结束代码时为ON |
| 串行端口1<br>接收计数器<br>串行端口2<br>接收计数器           | A394 CH<br>(CP1H, CP1L<br>M)<br>A393 CH<br>(CP1L L)<br>A393 CH | 无协议模式时,对接收数据的字节数用 16 进制数来表示。                                                                                                        |
| 串行端口1端口再<br>起动标志<br>串行端口2端口再<br>起动标志       | A526.01<br>(CP1H, CP1L<br>M)<br>A526.00<br>(CP1L L)<br>A526.00 | 将这个标志设为 ON 时对串行端口进行初期化。接收结束标志和接收超限标志为 OFF,接收计数器为 0。还有接收缓冲器也被清除。处理结束后这个标志在系统中变为 OFF。                                                 |

#### 6、实验程序

读温控器的值:读到当前温度值十六进制:1C,转换为十进制:25℃





#### 五、实验总结:

在实验过程中注意

- 1、接收字节数的设置要与响应指令帧所占字节数相同
- 2、如果温控器调整菜单中 cmwt 通讯写入要设置为 0N
- 3、所写的校验需要对应,通过 commix 软件调试