CS301 Theory of Computation

o Let $\mathcal{A} = (Q, s, \delta, F)$ be a DFA and y be a string accepted by \mathcal{A} with $|y| \ge |Q|$.

• Let $\mathscr{A} = (Q, s, \delta, F)$ be a DFA and y be a string accepted by \mathscr{A} with $|y| \ge |Q|$. $\implies \exists \text{ loop in the path for } y \text{ in } \mathscr{A}.$

o Let $\mathcal{A} = (Q, s, \delta, F)$ be a DFA and y be a string accepted by \mathcal{A} with $|y| \ge |Q|$.

 \implies 3 loop in the path for y in \mathscr{A} .

where, uvw = y

o Let $\mathcal{A} = (Q, s, \delta, F)$ be a DFA and y be a string accepted by \mathcal{A} with $|y| \ge |Q|$.

 \implies 3 loop in the path for y in \mathscr{A} .

$$\implies uv^iw \in L(\mathcal{A}), \forall i \in \mathbb{N}_0.$$

o Let $\mathcal{A} = (Q, s, \delta, F)$ be a DFA and y be a string accepted by \mathcal{A} with $|y| \ge |Q|$.

 \implies 3 loop in the path for y in \mathscr{A} .

where, uvw = y

$$\implies uv^iw \in L(\mathcal{A}), \forall i \in \mathbb{N}_0.$$

See that when i = 0, $uv^0w = uw \in L(\mathcal{A})$

o Let $\mathcal{A} = (Q, s, \delta, F)$ be a DFA and y be a string accepted by \mathcal{A} with $|y| \ge |Q|$.

 \implies 3 loop in the path for y in \mathscr{A} .

where, uvw = y

$$\implies uv^iw \in L(\mathcal{A}), \forall i \in \mathbb{N}_0.$$

See that when i = 1, $uv^1w = uvw \in L(\mathcal{A})$

o Let $\mathcal{A} = (Q, s, \delta, F)$ be a DFA and y be a string accepted by \mathcal{A} with $|y| \ge |Q|$.

 \implies 3 loop in the path for y in \mathscr{A} .

$$\implies uv^iw \in L(\mathcal{A}), \forall i \in \mathbb{N}_0.$$

Pumping lemma: If L is a regular language over an alphabet set Σ , then:

 $\exists k \in \mathbb{N}, (\forall x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } |y| \ge k,$

 $\left[\exists u, v, w \in \Sigma^* \mid y = uvw, v \neq \epsilon; (\forall i \in \mathbb{N}_0, xuv^i wz \in L)\right]\right)$

o Let $\mathcal{A} = (Q, s, \delta, F)$ be a DFA and y be a string accepted by \mathcal{A} with $|y| \ge |Q|$.

 \implies 3 loop in the path for y in \mathscr{A} .

$$\implies uv^iw \in L(\mathcal{A}), \forall i \in \mathbb{N}_0.$$

Pumping lemma: If L is a regular language over an alphabet set Σ , then:

 $\exists k \in \mathbb{N}, (\forall x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } |y| \ge k,$

 $\left[\exists u, v, w \in \Sigma^* \mid y = uvw, v \neq \epsilon; (\forall i \in \mathbb{N}_0, xuv^i wz \in L)\right]\right)$

$$y = uvw.$$

o Let $\mathcal{A} = (Q, s, \delta, F)$ be a DFA and y be a string accepted by \mathcal{A} with $|y| \ge |Q|$.

 \implies 3 loop in the path for y in \mathscr{A} .

$$\implies uv^iw \in L(\mathcal{A}), \forall i \in \mathbb{N}_0.$$

Pumping lemma: If L is a regular language over an alphabet set Σ , then:

$$\exists k \in \mathbb{N}. \ | \forall x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } | y | \geq k.$$

$$\left[\exists u, v, w \in \Sigma^* \mid y = uvw, v \neq \epsilon\right] \left(\forall i \in \mathbb{N}_0 \ xuv^iwz \in L\right)\right]$$

Definitions of bound variables: k, x, y, z, u, v, w, i. y = uvw.

o Let $\mathcal{A} = (Q, s, \delta, F)$ be a DFA and y be a string accepted by \mathcal{A} with $|y| \ge |Q|$.

 \implies 3 loop in the path for y in \mathscr{A} .

$$\implies uv^iw \in L(\mathcal{A}), \forall i \in \mathbb{N}_0.$$

Pumping lemma: If L is a regular language over an alphabet set Σ , then:

$$\exists k \in \mathbb{N}. \ | \forall x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } [y] \ge k$$

$$\left[\exists u, v, w \in \Sigma^* \mid y = uvw, v \neq \epsilon\right] \left(\forall i \in \mathbb{N}_0 | xuv^i wz \in L\right)\right]$$

Definitions of bound variables: k, x, y, z, u, v, w, i. y = uvw.

Using bound variables: k, x, y, z, u, v, w, i in a formula

o Let $\mathcal{A} = (Q, s, \delta, F)$ be a DFA and y be a string accepted by \mathcal{A} with $|y| \ge |Q|$.

 \implies 3 loop in the path for y in \mathscr{A} .

$$\implies uv^iw \in L(\mathcal{A}), \forall i \in \mathbb{N}_0.$$

Pumping lemma: If L is a regular language over an alphabet set Σ , then:

$$\exists k \in \mathbb{N}. \ | \forall x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } | y | \geq k$$

$$\exists u, v, w \in \Sigma^* \mid y = uvw, v \neq \epsilon \quad (\forall i \in \mathbb{N}_0 \mid xuv^i wz \in L)])$$

Using bound variables: k, x, y, z, u, v, w, i in a formula

o Let $\mathcal{A} = (Q, s, \delta, F)$ be a DFA and y be a string accepted by \mathcal{A} with $|y| \ge |Q|$.

 \implies 3 loop in the path for y in \mathscr{A} .

$$\implies uv^iw \in L(\mathcal{A}), \forall i \in \mathbb{N}_0.$$

Pumping lemma: If L is a regular language over an alphabet set Σ , then:

$$\exists k \in \mathbb{N}, \left(\forall x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } |y| \ge k, \right. \\ \left[\exists u, v, w \in \Sigma^* \mid y = uvw, v \ne \varepsilon; \left(\forall i \in \mathbb{N}_0, xuv^i wz \in L \right) \right] \right)$$

This is a *necessary condition* for regularity.

o Let $\mathcal{A} = (Q, s, \delta, F)$ be a DFA and y be a string accepted by \mathcal{A} with $|y| \ge |Q|$.

 \implies 3 loop in the path for y in \mathscr{A} .

$$\implies uv^iw \in L(\mathcal{A}), \forall i \in \mathbb{N}_0.$$

Pumping lemma: If L is a regular language over an alphabet set Σ , then:

$$\exists k \in \mathbb{N}, \left(\forall x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } |y| \ge k, \right. \\ \left[\exists u, v, w \in \Sigma^* \mid y = uvw, v \ne \varepsilon; \left(\forall i \in \mathbb{N}_0, xuv^i wz \in L \right) \right] \right)$$

- o This is a *necessary condition* for regularity.
- o If a given language fails to satisfy this condition, then the language is non-regular.

o Let $\mathcal{A} = (Q, s, \delta, F)$ be a DFA and y be a string accepted by \mathcal{A} with $|y| \ge |Q|$.

 \implies 3 loop in the path for y in \mathscr{A} .

$$\implies uv^iw \in L(\mathcal{A}), \forall i \in \mathbb{N}_0.$$

Pumping lemma: If L is a regular language over an alphabet set Σ , then:

$$\exists k \in \mathbb{N}, \left(\forall x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } |y| \ge k, \right. \\ \left[\exists u, v, w \in \Sigma^* \mid y = uvw, v \ne \varepsilon; \left(\forall i \in \mathbb{N}_0, xuv^i wz \in L \right) \right] \right)$$

- o This is a *necessary condition* for regularity.
- o If a given language fails to satisfy this condition, then the language is non-regular.
- o Hence, pumping lemma can be used to prove non-regularity.

o Is the predicate: $\forall n \in \mathbb{N}_0, n-1 \in \mathbb{N}_0$ a true predicate?

- o Is the predicate: $\forall n \in \mathbb{N}_0, n-1 \in \mathbb{N}_0$ a true predicate?
- o No.

- o Is the predicate: $\forall n \in \mathbb{N}_0, n-1 \in \mathbb{N}_0$ a true predicate?
- o No.
- o How can be prove that this predicate is false?

- o Is the predicate: $\forall n \in \mathbb{N}_0, n-1 \in \mathbb{N}_0$ a true predicate?
- o No.
- o How can be prove that this predicate is false?
- o Prove that the negation of the predicate is true.

- o Is the predicate: $\forall n \in \mathbb{N}_0, n-1 \in \mathbb{N}_0$ a true predicate?
- o No.
- o How can be prove that this predicate is false?
- o Prove that the negation of the predicate is true.

$$\neg(\forall n \in \mathbb{N}_0, n-1 \in \mathbb{N}_0) = ?$$

- o Is the predicate: $\forall n \in \mathbb{N}_0, n-1 \in \mathbb{N}_0$ a true predicate?
- o No.
- o How can be prove that this predicate is false?
- o Prove that the negation of the predicate is true.

$$\neg (\forall n \in \mathbb{N}_0, n-1 \in \mathbb{N}_0) = ?$$

- o Is the predicate: $\forall n \in \mathbb{N}_0, n-1 \in \mathbb{N}_0$ a true predicate?
- o No.
- o How can be prove that this predicate is false?
- o Prove that the negation of the predicate is true.

$$\neg(\forall n \in \mathbb{N}_0, n-1 \in \mathbb{N}_0) = \exists n \in \mathbb{N}_0, n-1 \notin \mathbb{N}_0$$

- o Is the predicate: $\forall n \in \mathbb{N}_0, n-1 \in \mathbb{N}_0$ a true predicate?
- o No.
- o How can be prove that this predicate is false?
- o Prove that the negation of the predicate is true.

$$\neg(\forall n \in \mathbb{N}_0, n-1 \in \mathbb{N}_0) = \exists n \in \mathbb{N}_0, n-1 \notin \mathbb{N}_0$$
$$\neg(\forall n \in \mathbb{N}_0) = \exists n \in \mathbb{N}_0$$

- o Is the predicate: $\forall n \in \mathbb{N}_0, n-1 \in \mathbb{N}_0$ a true predicate?
- o No.
- o How can be prove that this predicate is false?
- o Prove that the negation of the predicate is true.

$$\neg(\forall n \in \mathbb{N}_0, n-1 \in \mathbb{N}_0) = \exists n \in \mathbb{N}_0, n-1 \notin \mathbb{N}_0$$
$$\neg(\forall n \in \mathbb{N}_0) = \exists n \in \mathbb{N}_0$$
$$\neg(n-1 \in \mathbb{N}_0) = n-1 \notin \mathbb{N}_0$$

- o Is the predicate: $\forall n \in \mathbb{N}_0, n-1 \in \mathbb{N}_0$ a true predicate?
- o No.
- o How can be prove that this predicate is false?
- o Prove that the negation of the predicate is true.

$$\neg(\forall n \in \mathbb{N}_0, n-1 \in \mathbb{N}_0) = \exists n \in \mathbb{N}_0, n-1 \notin \mathbb{N}_0$$

- o Is the predicate: $\forall n \in \mathbb{N}_0, n-1 \in \mathbb{N}_0$ a true predicate?
- o No.
- o How can be prove that this predicate is false?
- o Prove that the negation of the predicate is true.

$$\neg(\forall n \in \mathbb{N}_0, n-1 \in \mathbb{N}_0) = \left(\exists n \in \mathbb{N}_0, n-1 \notin \mathbb{N}_0\right)$$

- o Is the predicate: $\forall n \in \mathbb{N}_0, n-1 \in \mathbb{N}_0$ a true predicate?
- o No.
- o How can be prove that this predicate is false?
- o Prove that the negation of the predicate is true.

$$\neg(\forall n \in \mathbb{N}_0, n-1 \in \mathbb{N}_0) = \boxed{\exists n \in \mathbb{N}_0, n-1 \notin \mathbb{N}_0}$$
substitute $n = 0, n-1 = -1 \notin \mathbb{N}_0$

- o Is the predicate: $\forall n \in \mathbb{N}_0, n-1 \in \mathbb{N}_0$ a true predicate?
- o No.
- o How can be prove that this predicate is false?
- o Prove that the negation of the predicate is true.

$$\neg(\forall n \in \mathbb{N}_0, n-1 \in \mathbb{N}_0) = \boxed{\exists n \in \mathbb{N}_0, n-1 \notin \mathbb{N}_0}$$
substitute $n = 0, n-1 = -1 \notin \mathbb{N}_0$

- o Is the predicate: $\forall n \in \mathbb{N}_0, n-1 \in \mathbb{N}_0$ a true predicate?
- o No.
- o How can be prove that this predicate is false?
- o Prove that the negation of the predicate is true.

$$\neg(\forall n \in \mathbb{N}_0, n-1 \in \mathbb{N}_0) = \exists n \in \mathbb{N}_0, n-1 \notin \mathbb{N}_0$$
substitute $n = 0, n-1 = -1 \notin \mathbb{N}_0$

o
$$\neg \forall x, \varphi(x) = \exists x, \neg \varphi(x)$$

- o Is the predicate: $\forall n \in \mathbb{N}_0, n-1 \in \mathbb{N}_0$ a true predicate?
- o No.
- o How can be prove that this predicate is false?
- o Prove that the negation of the predicate is true.

$$\neg(\forall n \in \mathbb{N}_0, n-1 \in \mathbb{N}_0) = \exists n \in \mathbb{N}_0, n-1 \notin \mathbb{N}_0$$
substitute $n = 0, n-1 = -1 \notin \mathbb{N}_0$

o
$$\neg \forall x, \varphi(x) = \exists x, \neg \varphi(x)$$

$$\circ \neg \exists x, \varphi(x) = \forall x, \neg \varphi(x)$$

Pumping lemma: If L is a regular language over an alphabet set Σ , then:

 $\exists k \in \mathbb{N}, (\forall x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } |y| \ge k,$

 $\left[\exists u, v, w \in \Sigma^* \mid y = uvw, v \neq \epsilon; (\forall i \in \mathbb{N}_0, xuv^i wz \in L)\right]\right)$

Pumping lemma: If L is a regular language over an alphabet set Σ , then:

 $\exists k \in \mathbb{N}, (\forall x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } |y| \ge k,$

 $\left[\exists u, v, w \in \Sigma^* \mid y = uvw, v \neq \epsilon; (\forall i \in \mathbb{N}_0, xuv^i wz \in L)\right]\right)$

Negation of Pumping lemma: If L is a regular language over an alphabet set Σ , then:

 $\forall k \in \mathbb{N}, (\exists x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } |y| \ge k,$

 $\left[\forall u,v,w\in\Sigma^*\mid y=uvw,v\neq\epsilon;(\exists i\in\mathbb{N}_0,xuv^iwz\not\in L)\right]\right)$

Pumping lemma: If L is a regular language over an alphabet set Σ , then:

$$\exists k \in \mathbb{N}, (\forall x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } |y| \ge k,$$

$$\left[\exists u, v, w \in \Sigma^* \mid y = uvw, v \neq \epsilon; (\forall i \in \mathbb{N}_0, xuv^i wz \in L)\right]\right)$$

Negation of Pumping lemma: If L is a regular language over an alphabet set Σ , then:

$$\forall k \in \mathbb{N}. (\exists x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } |y| \ge k,$$

$$\left[\forall u, v, w \in \Sigma^* \mid y = uvw, v \neq \epsilon; (\exists i \in \mathbb{N}_0, xuv^i wz \notin L)\right]\right)$$

Pumping lemma: If L is a regular language over an alphabet set Σ , then:

 $\exists k \in \mathbb{N}, \ (\forall x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } |y| \ge k,$

 $\left[\exists u, v, w \in \Sigma^* \mid y = uvw, v \neq \epsilon; (\forall i \in \mathbb{N}_0, xuv^i wz \in L)\right]\right)$

Negation of Pumping lemma: If L is a regular language over an alphabet set Σ , then:

 $\forall k \in \mathbb{N}, (\exists x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } |y| \ge k,$

 $\left[\forall u, v, w \in \Sigma^* \mid y = uvw, v \neq \epsilon; (\exists i \in \mathbb{N}_0, xuv^i wz \notin L) \right] \right)$

Pumping lemma: If L is a regular language over an alphabet set Σ , then:

 $\exists k \in \mathbb{N}, (\forall x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } |y| \ge k,$

$$\left[\exists u, v, w \in \Sigma^* \mid y = uvw, v \neq \epsilon; (\forall i \in \mathbb{N}_0, xuv^i wz \in L)\right]\right)$$

Negation of Pumping lemma: If L is a regular language over an alphabet set Σ , then:

 $\forall k \in \mathbb{N}, (\exists x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } |y| \ge k,$

$$\left[\forall u, v, w \in \Sigma^* \mid y = uvw, v \neq \epsilon; (\exists i \in \mathbb{N}_0, xuv^i wz \notin L) \right] \right)$$

Pumping lemma: If L is a regular language over an alphabet set Σ , then:

 $\exists k \in \mathbb{N}, (\forall x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } |y| \ge k,$

 $\left[\exists u, v, w \in \Sigma^* \mid y = uvw, v \neq \epsilon; (\forall i \in \mathbb{N}_0, xuv^i wz \in L)\right]\right)$

Negation of Pumping lemma: If L is a regular language over an alphabet set Σ , then:

 $\forall k \in \mathbb{N}, (\exists x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } |y| \ge k,$

 $\left[\forall u, v, w \in \Sigma^* \mid y = uvw, v \neq \epsilon; \left(\exists i \in \mathbb{N}_0, xuv^i wz \notin L \right) \right] \right)$

Pumping lemma: If L is a regular language over an alphabet set Σ , then:

 $\exists k \in \mathbb{N}, (\forall x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } |y| \ge k,$

 $\left[\exists u, v, w \in \Sigma^* \mid y = uvw, v \neq \epsilon; (\forall i \in \mathbb{N}_0, xuv^i wz \in L)\right]\right)$

Negation of Pumping lemma: If L is a regular language over an alphabet set Σ , then:

 $\forall k \in \mathbb{N}, (\exists x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } |y| \ge k,$

 $\left[\forall u, v, w \in \Sigma^* \mid y = uvw, v \neq \epsilon; (\exists i \in \mathbb{N}_0, xuv^i wz \notin L)\right]\right)$

Pumping lemma: If L is a regular language over an alphabet set Σ , then:

 $\exists k \in \mathbb{N}, (\forall x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } |y| \ge k,$

 $\left[\exists u, v, w \in \Sigma^* \mid y = uvw, v \neq \epsilon; (\forall i \in \mathbb{N}_0, xuv^i wz \in L)\right]\right)$

Negation of Pumping lemma: If L is a regular language over an alphabet set Σ , then:

 $\forall k \in \mathbb{N}, \left(\exists x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } |y| \ge k, \right.$ $\left[\forall u, v, w \in \Sigma^* \mid y = uvw, v \ne \varepsilon; (\exists i \in \mathbb{N}_0, xuv^i wz \notin L) \right] \right)$

o If a given language fails to satisfy the pumping lemma condition, then the language is non-regular.

Pumping lemma: If L is a regular language over an alphabet set Σ , then:

 $\exists k \in \mathbb{N}, \left(\forall x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } |y| \ge k, \right.$ $\left[\exists u, v, w \in \Sigma^* \mid y = uvw, v \ne \epsilon; \left(\forall i \in \mathbb{N}_0, xuv^i wz \in L \right) \right] \right)$

Negation of Pumping lemma: If L is a regular language over an alphabet set Σ , then:

```
\forall k \in \mathbb{N}, \left(\exists x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } |y| \ge k, \right.\left[\forall u, v, w \in \Sigma^* \mid y = uvw, v \ne \epsilon; (\exists i \in \mathbb{N}_0, xuv^i wz \notin L)\right]\right)
```

- o If a given language fails to satisfy the pumping lemma condition, then the language is non-regular.
- o Equivalently, if a given language satisfies the negation of the pumping lemma condition, then the language is non-regular.

Negation of Pumping lemma: If L is a regular language over an alphabet set Σ , then:

$$\forall k \in \mathbb{N}, (\exists x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } |y| \ge k,$$

$$\left[\forall u, v, w \in \Sigma^* \mid y = uvw, v \neq \epsilon; (\exists i \in \mathbb{N}_0, xuv^i wz \notin L) \right] \right)$$

Negation of Pumping lemma: If L is a regular language over an alphabet set Σ , then:

 $\forall k \in \mathbb{N}. \ (\exists x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } |y| \ge k.$

 $\left[\forall u, v, w \in \Sigma^* \mid y = uvw, v \neq \epsilon \right] \left(\exists i \in \mathbb{N}_0, xuv^i wz \notin L \right) \right]$

Negation of Pumping lemma: If L is a regular language over an alphabet set Σ , then: $\forall k \in \mathbb{N}$. $(\exists x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } |y| \ge k)$ $(\exists i \in \mathbb{N}_0, xuv^i wz \notin L)$

	A play in G_L		
Step	Demon	You	
1	Provides a $k \in \mathbb{N}$		
2		Choose $xyz \in L$ with $ y \ge k$	
3	Choose $u, v, w \in \Sigma^* \mid y = uvw, v \neq \epsilon$		
4		Choose $i \in \mathbb{N}_0$	

```
Negation of Pumping lemma: If L is a regular language over an alphabet set \Sigma, then: \forall k \in \mathbb{N}. (\exists x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } |y| \ge k) (\exists i \in \mathbb{N}_0, xuv^i wz \notin L)
```

	A play in G_L		
Step	Demon	You	
1	Provides a $k \in \mathbb{N}$		
2		Choose $xyz \in L$ with $ y \ge k$	
3	Choose $u, v, w \in \Sigma^* \mid y = uvw, v \neq \epsilon$		
4		Choose $i \in \mathbb{N}_0$	

You win the play if $xuv^iwz \notin L$. Otherwise, the Demon wins.

```
Negation of Pumping lemma: If L is a regular language over an alphabet set \Sigma, then: \forall k \in \mathbb{N} (\exists x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } |y| \ge k) (\exists i \in \mathbb{N}_0, xuv^i wz \notin L)
```

	A play in G_L		
Step	Demon	You	
1	Provides a $k \in \mathbb{N}$		
2		Choose $xyz \in L$ with $ y \ge k$	
3	Choose $u, v, w \in \Sigma^* \mid y = uvw, v \neq \epsilon$		
4		Choose $i \in \mathbb{N}_0$	

You win the play if $xuv^iwz \not\in L$. Otherwise, the Demon wins.

o If L is regular, then Demon has a winning strategy in G_L .

```
Negation of Pumping lemma: If L is a regular language over an alphabet set \Sigma, then: \forall k \in \mathbb{N} (\exists x, y, z \in \Sigma^* \text{ with } xyz \in L \text{ and } |y| \ge k) (\forall u, v, w \in \Sigma^* | y = uvw, v \ne \epsilon) (\exists i \in \mathbb{N}_0, xuv^i wz \notin L))
```

	A play in G_L		
Step	Demon	You	
1	Provides a $k \in \mathbb{N}$		
2		Choose $xyz \in L$ with $ y \ge k$	
3	Choose $u, v, w \in \Sigma^* \mid y = uvw, v \neq \epsilon$		
4		Choose $i \in \mathbb{N}_0$	

You win the play if $xuv^iwz \not\in L$. Otherwise, the Demon wins.

- o If L is regular, then Demon has a winning strategy in G_L .
- o Equivalently, if you have a winning strategy in G_L , then L is non-regular.

	${f A}$ play in G_L		
Step	Demon	You	
1			
2			
3			
4			

	A play in G_L		
Step	Demon	You	
1	Provides a k as $m \in \mathbb{N}$		
2			
3			
4			

	A play in G_L		
Step	Demon	You	
1	Provides a k as $m \in \mathbb{N}$		
2		Choose $x = \epsilon, y = a^m, z = b^m$	
3			
4			

	A play in G_L		
Step	Demon	You	
1	Provides a k as $m \in \mathbb{N}$		
2		Choose $x = \epsilon, y = a^m, z = b^m$	
3	Choose $u = a^{n_1}$, $v = a^{n_2}$, $w = a^{n_3}$ with $n_2 \neq 0$		
4			

	A play in G_L		
Step	D	emon	You
1	Provides a k as m		
2			Choose $x = \epsilon, y = a^m, z = b^m$
3	Choose $u = a^{n_1}, v =$	$= a^{n_2}, w = a^{n_3} \text{ with } n_2 \neq 0$	
4			

$$m = n_1 + n_2 + n_3$$

	A play in G_L		
Step	Demon	You	
1	Provides a k as $m \in \mathbb{N}$		
2		Choose $x = \epsilon, y = a^m, z = b^m$	
3	Choose $u = a^{n_1}$, $v = a^{n_2}$, $w = a^{n_3}$ with $n_2 \neq 0$		
4		Choose $i = 0$	

	A play in G_L		
Step	Demon	You	
1	Provides a k as $m \in \mathbb{N}$		
2		Choose $x = \epsilon, y = a^m, z = b^m$	
3	Choose $u = a^{n_1}$, $v = a^{n_2}$, $w = a^{n_3}$ with $n_2 \neq 0$		
4		Choose $i = 0$	

Now, $xuv^iwz = ?$

	A play in G_L		
Step	Demon	You	
1	Provides a k as $m \in \mathbb{N}$		
2		Choose $x = \epsilon, y = a^m, z = b^m$	
3	Choose $u = a^{n_1}$, $v = a^{n_2}$, $w = a^{n_3}$ with $n_2 \neq 0$		
4		Choose $i = 0$	

Now, $xuv^iwz = \epsilon \cdot a^{n_1} \cdot \epsilon \cdot a^{n_3} \cdot b^m$

	A play in G_L				
Step	Demon	You			
1	Provides a k as $m \in \mathbb{N}$				
2		Choose $x = \epsilon, y = a^m, z = b^m$			
3	Choose $u = a^{n_1}$, $v = a^{n_2}$, $w = a^{n_3}$ with $n_2 \neq 0$				
4		Choose $i = 0$			

Now, $xuv^iwz = \epsilon \cdot a^{n_1} \cdot \epsilon \cdot a^{n_3} \cdot b^m = a^{n_1+n_3}b^m$

	A play in G_L				
Step	Demon	You			
1	Provides a k as $m \in \mathbb{N}$				
2		Choose $x = \epsilon, y = a^m, z = b^m$			
3	Choose $u = a^{n_1}$, $v = a^{n_2}$, $w = a^{n_3}$ with $n_2 \neq 0$				
4		Choose $i = 0$			

Now, $xuv^iwz = \epsilon \cdot a^{n_1} \cdot \epsilon \cdot a^{n_3} \cdot b^m = a^{n_1+n_3}b^m = a^{m-n_2}b^m$

	A play in G_L				
Step	Demon	You			
1	Provides a k as $m \in \mathbb{N}$				
2		Choose $x = \epsilon, y = a^m, z = b^m$			
3	Choose $u = a^{n_1}$, $v = a^{n_2}$, $w = a^{n_3}$ with $n_2 \neq 0$				
4		Choose $i = 0$			

Now, $xuv^iwz = \epsilon \cdot a^{n_1} \cdot \epsilon \cdot a^{n_3} \cdot b^m = a^{n_1+n_3}b^m = a^{m-n_2}b^m \notin L$

	A play in G_L				
Step	Demon	You			
1	Provides a k as $m \in \mathbb{N}$				
2		Choose $x = \epsilon, y = a^m, z = b^m$			
3	Choose $u = a^{n_1}$, $v = a^{n_2}$, $w = a^{n_3}$ with $n_2 \neq 0$				
4		Choose $i = 0$			

Now, $xuv^iwz = \epsilon \cdot a^{n_1} \cdot \epsilon \cdot a^{n_3} \cdot b^m = a^{n_1+n_3}b^m = a^{m-n_2}b^m \notin L$

So, you win and hence, L is non-regular.

Pumping lemma is not a sufficient condition for regularity

o \exists non-regular languages for which Demon has a winning strategy in G_L .

Pumping lemma is not a sufficient condition for regularity

- o \exists non-regular languages for which Demon has a winning strategy in G_L .
 - Optional Exercise: Find such a non-regular language.

Assignment

o Prove that the following languages are non-regular.

$$(1) L = \{a^{2^n} \mid n \ge 0\}.$$

(2)
$$L = \{a^{n!} \mid n \ge 0\}.$$

- (3) $L = \{a^p \mid p \text{ is a prime number}\}.$
- (4) $L = \{x \in \{a, b\}^* \mid \#_a(x) = \#_b(x)\}.$