

# **Advanced Image Processing**

**Lesson 4: Mesh processing** 



Speaker: Alice OTHMANI, PhD Associate professor at UPEC



- Geometry processing involves working with a shape.
- Shape is a basic property of most objects.
- The shape can live in a space of arbitrary dimensions.



A mesh of the famous Stanford bunny. Shapes are usually represented as a mesh, a collection of polygons that delineate the contours of the shape.



 3D scanning is the process of analyzing a real-world object or environment to collect data on its shape and possibly its appearance (e.g. colour).

The collected data can then be used to construct digital **3D** models.







- The purpose of a 3D scanner is usually to create a 3D model.
- This 3D model consists of a **point cloud** of geometric samples on the surface of the subject.
- These points can then be used to extrapolate the shape of the subject (a process called reconstruction).



# Range Scanners













# **Range Scanners**







# Tomography











- A shape can be instantiated through one of three methods:
   a model, a mathematical representation, or a scan.
- After a shape is born, it can be analyzed and edited repeatedly in a cycle.
- Editing may involve denoising, deforming, or performing rigid transformations.







# **Geometry Capture and representation**

Geometry processing is about the Creation & manipulation of 3D geometry



"SFMedu: A Structure from Motion System for Education", Jianxiong Xiao http://3dvision.princeton.edu/courses/SFMedu/





### **Geometry Capture and representation**

**ICCV 2017** 

# BodyFusion

Real-time Capture of Human Motion and Surface Geometry
Using a Single Depth Camera

Tao Yu<sup>12</sup> Kaiwen Guo<sup>2</sup>, Feng Xu<sup>2</sup>, Yuan Dong<sup>2</sup>, Zhaoqi Su<sup>2</sup>, Jianhui Zhao<sup>1</sup>, Jianguo Li<sup>3</sup>, Qionghai Dai<sup>2</sup>, Yebin Liu<sup>2</sup>

Beihang University, Beijing, China<sup>1</sup> Tsinghua University, Beijing, China<sup>2</sup> Intel Labs China, Beijing, China<sup>3</sup>

A novel real-time motion tracking and fusion method called BodyFusion that reconstructs non-rigid surface motions of human performers using a single consumer-level depth camera.



### **Geometry representations: Meshes**

Focus on discrete (polygonal mesh) models

Typically triangular

- Why?
  - Simplicity ease of description & transfer
  - Base data for rendering software/hardware
  - Input to most simulation/analysis tools
  - Output of most acquisition tools (CT, MRI, laser, etc..)







# Applications

3D Shape Capture for Heritage Preservation



Industrial design and manufacturing









# **Applications**

### Science and education









Art and design











# **Applications**

# **Medical Imaging**













#### What is a Mesh?

- A Mesh is a pair (P,K), where P is a set of point positions  $P = \{p_i \in R^3 \mid 1 \le i \le n\}$  and K is an abstract simplicial complex which contains all topological information.
- K is a set of subsets of  $\{1, \ldots, N\}$ :

• Vertices 
$$v = \{i\} \in V$$

• Edges 
$$e = \{i, j\} \in E$$





#### What is a Mesh?

- Each edge must belong to at least one face, i.e.  $v = \{j\} \in V \text{ iff } \exists e = \{i, j\} \in E$
- Each vertex must belong to at least one edge, i.e.  $e = \{j,k\} \in E \text{ iff } \exists f = \{i_1,\cdots,j,k,\cdots,i_{n_f}\} \in F$
- An edge is a boundary edge if it only belongs to one face



#### What is a Mesh?

- A mesh is a manifold if
  - Every edge is adjacent to one (boundary) or two faces
  - For every vertex, its adjacent polygons form a disk (internal vertex) or a half-disk (boundary vertex)



Manifold



Non-manifold

- A mesh is a polyhedron if
  - It is a manifold mesh and it is closed (no boundary)
  - Every vertex belongs to a cyclically ordered set of faces (local shape is a disk)



#### **Orientation of Faces**

- Each face can be assigned an orientation by defining the ordering of its vertices
- Orientation can be clockwise or counter-clockwise.





The orientation determines the normal direction of face.
 Usually counterclockwise order is the "front" side.

#### **Euler Formula**

 The relation between the number of vertices, edges, and faces.

$$V-E+F=2$$

# where

V: number of vertices

E: number of edges

F: number of faces



#### **Euler Formula**



# Tetrahedron

- V = 4
- E = 6
- F = 4
- -4-6+4=2



# Cube

- V = 8
- E = 12
- F = 6



# Octahedron

- V = 6
- E = 12
- F = 8
- 6 -12 + 8 = 2





$$V = 8$$
  
 $E = 12 + 1 = 13$   
 $F = 6 + 1 = 7$   
 $8 - 13 + 7 = 2$ 

# Mesh processing pipeline











Scan

Reconstruct

Clean

Remesh



### **Traditional Mesh Representation**





(appearance attributes: normals, colors, textures, ...)



#### **Traditional Mesh Representation**

```
v -6.4796930e-002 1.5210615e-001 -3.6185520e-002
v -6.4400320e-002 1.5834400e-001 -5.4256370e-002
v -6.6178120e-002 1.4218350e-001 -9.3766300e-003
v -6.7751430e-002 1.4605207e-001 -2.3333300e-002
v -6.4731580e-002 1.5410067e-001 -4.0464820e-002
v -2.4265590e-002 1.5687690e-001 -7.8509300e-003
v -1.5723180e-002 1.6312344e-001 -1.6396570e-002
v -7.0887660e-002 1.4404618e-001 -1.4908480e-002
v -4.4341830e-002 1.5113809e-001 -5.6859800e-003
v -6.2896810e-002 1.4694778e-001 -1.3098620e-002
v -6.3755400e-002 1.4428875e-001 -1.1395730e-002
v -6.8214560e-002 1.4390932e-001 -1.4984170e-002
v -5.0271440e-002 1.4336563e-001 1.5153000e-003
v -2.8535590e-002 1.6208479e-001 -1.4786030e-002
v -6.5810700e-002 1.4359119e-001 -1.2585380e-002
v -5.6179200e-002 1.3774406e-001 -4.0674300e-003
v -6.8866880e-002 1.4723338e-001 -2.8739870e-002
v -6.0965420e-002 1.7002113e-001 -6.0839390e-002
v -1.3895490e-002 1.6787168e-001 -2.1897230e-002
v -6.9413000e-002 1.5121847e-001 -4.4538540e-002
v -5.5039800e-002 5.7309700e-002 1.6990900e-002
f 1069 1647 1578
f 1058 909 939
f 421 1176 238
f 1055 1101 1042
f 238 1059 1126
f 1254 30 1261
f 1065 1071 1
f 1037 1130 1120
f 1570 2381 1585
f 2434 2502 2473
f 1632 1654 1646
f 1144 1166 669
f 1202 1440 305
```

# Exemple of mesh file with the format OBJ





### **Progressive Mesh**

- New representation of triangular meshes.
- Simplify meshes through sequence of edge collapse transformations.
- Record the sequence of inverse transformations (vertex splits).
- It is necessary to undertake as many simplifications as needed to achieve the minimal model.
- hierarchical structure which helps to create a model in the chosen level of detail.

Hoppe, Progressive mesh, Siggraph 96 Hoppe, View-dependent Refinement of Progressive Meshes, Siggraph 97

### **Progressive Mesh**

# Edge collapse

This simplistic operation - ecol takes two connected vertices and replaces them with a single vertex. Two triangles {vs, vt, vl} and {vt, vs, vr} which were connected by the edge are also removed during this operation.

# Vertex split

Vertex split (vsplit) is the inverse operation to the edge collapse that divides the vertex into two new vertexes. Therefore, a new edge {vt, vs} and two new triangles {vs, vt, vl} and {vt, vs, vr} arise.





# **Progressive Mesh Representation**







M<sub>0</sub> ←

 $M^1$ 

 $\longleftrightarrow$ 

 $M^{175}$ 

 $\longleftrightarrow$ 

Mn

base mesh

Original mesh





UNIVERSITÉ PARIS-EST CRÉTEIL VAL DE MARNE

### **Simplification: Edge Collapse**

Idea: apply a sequence of edge collapses:





# **Simplification: Edge Collapse**





# **Reconstruction: Vertex Split**





# **Reconstruction: Vertex Split**





# Mesh smoothing (Fairing, Filtering, denoising)

Input: Noisy mesh (scanned or other)

Output: Smooth mesh

How: Filter out high frequency noise











# **Smoothing by Filtering**

# **Fourier Transform**



Slides by Levy et al., SigAsia Course 2009





# **Smoothing by Filtering**

# **Fourier Transform**



Slides by Levy et al., SigAsia Course 2009



# **Smoothing by Filtering**



Slides by Levy et al., SigAsia Course 2009





# An easier problem: How to smooth a curve?



$$(\mathbf{p}_{i-1} + \mathbf{p}_{i+1})/2 - \mathbf{p}_{i}$$

$$L(\mathbf{p}_{i}) = \frac{1}{2} (\mathbf{p}_{i+1} - \mathbf{p}_{i}) + \frac{1}{2} (\mathbf{p}_{i-1} - \mathbf{p}_{i})$$





### **Laplacian Smoothing on Meshes**

# An easier problem: How to smooth a curve?



Finite difference
discretization of second
derivative
= Laplace operator in
one dimension







### **Laplacian Smoothing on Meshes**

# Algorithm:

Repeat for *m* iterations (for non boundary points):

$$\mathbf{p}_i \leftarrow \mathbf{p}_i + \lambda L(\mathbf{p}_i)$$

For which 
$$\lambda$$
?  $0 < \lambda < 1$ 

Closed curve converges to? Single point





### **Laplacian Smoothing on Meshes**

- Keep boundary vertices fixed
- Move each internal vertex to the barycenter of its neighbors











### Laplacian Smoothing problem: Shrinkage

Repeated iterations of Laplacian smoothing shrinks the mesh







### **Taubin Smoothing**

# Iterate:

$$\mathbf{p}_i \leftarrow \mathbf{p}_i + \lambda \Delta \mathbf{p}_i$$
 Shrink  $\mathbf{p}_i \leftarrow \mathbf{p}_i + \mu \Delta \mathbf{p}_i$  Inflate with  $\lambda > 0$  and  $\mu < 0$ 



From Taubin, Siggraph 1995



### **Mesh Simplification**





### **Application - Mesh compression**





12964 faces 
→ 1000 faces

### **Mesh Subdivision**





### **Mesh Deformation**



# Remeshing



### **Mesh Analysis**



Matching



Orientation/View Selection



Segmentation





### Resources

# OpenMesh:

OpenMesh web page

**OpenMesh documentation** 

# Mesh manipulation:

**MeshLab** 

**Graphite** 

### Models:

**AIM@SHAPE Repository** 

Princeton Segmentation Database (82M)

# Library

**CGAL** 

**PCL** 





### References

### Book

"Polygon Mesh Processing" by Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, Bruno Levy

### Eurographics 2008 course notes

"Geometric Modeling Based on Polygonal Meshes" by Mario Botsch, Mark Pauly, Leif Kobbelt, Pierre Alliez, Bruno Levy, Stephan Bischoff, Christian Rössl

### Tutorials and papers

"Polygonal Mesh –Data Structure and Processing" by Chiew-Lan Tai



### Play with 3D mesh

- Download Meshlab <a href="http://www.meshlab.net/#download">http://www.meshlab.net/#download</a>
- Download Meshes from learning platform
- Fun begin, play with meshes !!





# Thank you for your attention

