Алгоритм Евклида

Поиск наибольшего общего делителя (НОД)

Алгоритм Евклида используется для нахождения НОД двух целых чисел (a) и (b), где

$$(0 < b \le a)$$

Алгоритм Евклида

Пошаговое описание

1. Инициализация:

• Задаем начальные значения:

$$r_0 \leftarrow a, \quad r_1 \leftarrow b$$

2. Деление с остатком:

• Находим остаток от деления:

 r_{i-1} на r_i . Обозначим этот остаток как r_{i+1} .

Алгоритм Евклида

3. Проверка на завершение:

- Если (r_{i+1} = 0), то (d ← r_i), где (d) это НОД двух чисел (а) и (b).
- ∘ Если (r_{i+1} ≠ 0), увеличиваем (i) на 1 и повторяем шаг 2.

4. Результат:

• После завершения алгоритма (d) содержит НОД чисел (a) и (b).

Бинарный алгоритм Евклида

Бинарный алгоритм Евклида — улучшенная версия, которая быстрее выполняется на компьютерах благодаря операциям сдвига для работы с двоичными числами.

Бинарный алгоритм Евклида

Пошаговое описание

1. Инициализация множителя:

 Устанавливаем (g ← 1). Этот множитель (g) будет использоваться для хранения общего множителя 2, если оба числа (a) и (b) четные.

2. Удаление общих множителей 2:

∘ Пока (а) и (b) четные, делим их на 2 и умножаем (g) на 2:

$$a \leftarrow \frac{a}{b}$$
 $b \leftarrow \frac{b}{a}$ $a \leftarrow 2a$

3. Инициализация переменных:

 \circ Устанавливаем (u \leftarrow a) и (v \leftarrow b).

4. Основной цикл:

- Пока (и ≠ 0), выполняем:
 - Если (u) четное: (u ← u / 2)
 - Если (v) четное: (v ← v / 2)
 - Если (u ≥ v): (u ← u v); иначе (v ← v u)

Бинарный алгоритм ЕвклидаРезультат

5. Вычисление НОД:

Когда (u = 0), устанавливаем (d \leftarrow g \times v). Это и будет НОД чисел (a) и (b).

6. Итог:

 Итоговое значение (d) является наибольшим общим делителем чисел (a) и (b).

Расширенный алгоритм Евклида

Поиск НОД и линейных коэффициентов

Расширенный алгоритм Евклид находит НОД чисел (a), (b), а также целые числа (x) и (y), такие что:

$$ax + by = d$$

Расширенный алгоритм Евклида

Пошаговое описание

1. Инициализация:

$$r_0 \leftarrow a, \quad r_1 \leftarrow b, \quad x_0 \leftarrow 1, \quad x_1 \leftarrow 0, \quad y_0 \leftarrow 0, \quad y_1 \leftarrow 1, \quad i \leftarrow 1$$

2. Деление с остатком:

$$r_{i-1} = q_i \cdot r_i + r_{i+1}$$

3. Проверка на завершение:

 \circ Если (r_{i+1} = 0), то:

$$d \leftarrow r_i, \quad x \leftarrow x_i, \quad y \leftarrow y_i$$

• Иначе обновляем коэффициенты и возвращаемся к шагу 2.

4. Результат:

• После завершения алгоритма:

$$ax + by = d$$

Улучшенная версия для линейного представления

Расширенный бинарный алгоритм Евклида позволяет находить НОД и коэффициенты (x) и (y) для линейного представления (ах + by = d).

Пошаговое описание

1. Инициализация множителя:

$$g \leftarrow 1$$

2. Удаление общих множителей 2:

$$a\leftarrow rac{a}{2}, \quad b\leftarrow rac{b}{2}, \quad g\leftarrow 2g$$

Основной цикл

3. Начальные значения:

$$u\leftarrow a, \quad v\leftarrow b, \quad A\leftarrow 1, \quad B\leftarrow 0, \quad C\leftarrow 0, \quad D\leftarrow 1$$

4. Основной цикл:

- ∘ Пока (u \neq v), выполняем:
 - Если (u) четное, делим (u) и обновляем (A), (B).
 - Если (v) четное, делим (v) и обновляем (C), (D).

Вывод результата

5. Результат:

• Устанавливаем:

$$d \leftarrow g \times v, \quad x \leftarrow C, \quad y \leftarrow D$$

∘ Итоговое значение (d), (x), и (y) такое, что:

$$ax + by = d$$

Заключение

Алгоритмы Евклида и их расширенные версии эффективны для нахождения НОД и линейных комбинаций. Бинарные алгоритмы оптимизированы для вычислений на компьютере благодаря использованию двоичных операций.