AD-A279 934

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

S DTIC ELECTE JUN 07 1994 G

94-16925

ACOUSTIC POSITIONING OF THE NPS AUTONOMOUS UNDERWATER VEHICLE (AUV II) DURING HOVER CONDITIONS

by

Kevin A. Torsiello

DTIC QUALITY INSPECTED &

March 1994

Thesis Advisor:

Anthony J. Healey

Approved for public release; distribution is unlimited

94 6 6 041

Unc	125	ifi	ed		 	

SECURITY CLASSIFICATION OF THE		CUMENTA	TION PACE	Form Approved OMB No. 0704-0188		
REPORT DOCUMENTAT			16 RESTRICTIVE MARKINGS			
UNCLASSIFIED						
2a. SECURITY CLASSIFICATION AUTHORITY			3. DISTRIBUTION /AVAILABILITY OF REPORT	F		
2h DECLASSIFICATION/DOWNGRAD	ING SCHEDULE		Approved for public release; di	stribution is unlimited		
4. PERFORMING ORGANIZATION REI	PORT NUMBER(S)		5. MONITORING ORGANIZATION REPORT NUMB	5. MONITORING ORGANIZATION REPORT NUMBER(S)		
64. NAME OF PERFORMING ORGANIZ	ATION	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONITORING ORGANIZATION			
Naval Postgraduate Sc	hool	34	Naval Postgraduate School			
6c. ADDRESS (City, State, and ZIP Code)		-	7b. ADDRESS (City, State, and ZIP Code)			
Monterey, CA 93943-			Monterey, CA 93943-5000			
8a NAME OF FUNDING/SPONSORING ORGANIZATION		8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION	N NUMBER		
Sc. ADDRESS (City, State, and ZIP Code)	· · · · · · · · · · · · · · · · · · ·		10. SOURCE OF FUNDING NUMBERS			
			PROGRAM PROJECT TASK ELEMENT NO NO NO	WORK UNIT ACCESSION NO.		
11. TITLE (Include Security Classification)			······································		
		E NPS AUTO	NOMOUS UNDERWATER VEH	ICLE (AUV II)		
DURING HOVER CO						
12 PERSONAL AUTHOR(S)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ONOD. IDOM II				
Kevin A. Torsiello						
13a TYPE OF REPORT	13b. TIME COVERE	D	14 DATE OF REPORT (Year, Month, Day) 15	. PAGE COUNT		
Engineer's Thesis FROM 3/93 to 3/94			1994 March	131		
16. SUPPLEMENTARY NOTATION	<u> </u>					
The views expressed in the Department of Def			uthor and do not reflect the official	policy or position of		
17. COSATI CODES	ense of the O		i. Continue on reverse if necessary and identify by block number	n		
FIELD GROUP	SUB-GROUP		,,,,,			
		Autonomous	Underwater Vehicle, Acoustic Dy	namic Positioning,		
		Marine Vehic	cle Dynamics, Proportional Derivat	tive Control		
10 ARSTRACT (Contin	WA OR FOLIATE		nd identify by block number)			
19. ABSTRACT (COILLI	ine on reverse	in necessary ar	id identify by block fidiliber)			
			ironment, relative to a local statio			
many planned mission	s for the Na	val Postgradua	te School's Autonomous Underwa	ater Vehicle (AUV II)		
project, such as botton	n surveying a	nd mine hunting	g. The AUV II can achieve this ab	ility through the use of		
its sensors along with		•				
			a free directional gyro and indepe	ndent self-soner which		
	•		-	Aldent Seit-Sonat Willeli		
provide acoustic positi	_		-			
4			ernal subsystems of the AUV II, ar			
,	_	•	ering experiments. Commanded r	notions of yaw, lateral		
and longitudinal position	and longitudinal positioning during hover conditions are studied.					
20 DISTRIBUTION/AVAILABILITY OF	FABSTRACT		21 ABSTRACT SECURITY CLASSIFICATION	<u> </u>		
X UNCLASSIFIED/UNLIMITED	SAME AS RPT.	DTIC USERS	Unclassified			
22a NAME OF RESPONSIBLE INDIVID			22b. TELEPHONE (Include Area Code)	22c. OFFICE SYMBOL		
Anthony J. Healey	-		408-656-3381	ME/HY		
				A SEIFICATION OF THE BACE		

S/N 0102-LF-014-6603

Unclassified

ACOUSTIC POSITIONING OF THE NPS AUTONOMOUS UNDERWATER VEHICLE (AUV II) DURING HOVER CONDITIONS

by

Kevin A. Torsiello Lieutenant, United States Navy B. S., University of Connecticut, 1983

Submitted in partial fulfillment of the requirements for the degrees of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING and MECHANICAL ENGINEER

from the

NAVAL POSTGRADUATE SCHOOL

March, 1994

Author:	Simbo finites viva
	Kevin A. Torsiello
Approved by:	Antheren
	Anthony J. Healey, Thesis Advisor
	Matthe Killel
•	Matthew D. Kelleher, Chairman,
	Department of Mechanical Engineering
	Trohank & State
	Richard S. Elster
	Dean of Instruction

ABSTRACT

The ability to take position, in a dynamic environment, relative to a local stationary object, is vital to many planned missions for the Naval Postgraduate School's Autonomous Underwater Vehicle (AUV II) project, such as bottom surveying and mine hunting. The AUV II can achieve this ability through the use of its sensors, along with stern propulsion motors and tunnel thrusters.

The sensors employed by the AUV II include a free directional gyro and independent self-sonar which provide acoustic positioning data without the aid of a transponder net.

Described in this thesis are the details of the internal subsystems of the AUV II, and an examination of its positioning ability through the analysis of maneuvering experiments. Commanded motions of yaw, lateral and longitudinal positioning during hover conditions are studied.

Accesio	n For]		
NTIS		d			
DTIC			1		
Urianno			1		
Justific	ation		-		
By Dist ib	By				
A	vailabilit	y Codes			
Dist	Avail a Spe				
A-1					

TABLE OF CONTENTS

I.	INT	ROI	DUCTION	1
	A.	BA	ACKGROUND	1
	B.	SC	OPE OF THESIS	2
II.	AU	V II	CONFIGURATION	4
	A.	SE	ENSORS	7
		1.	Environment Sensors (Sonar Equipment)	7
			a. Profiling Sonar (Tritech ST-1000)	9
			b. Scanning Sonar (Tritech ST-725)	10
			c. Depth Sonar (Datasonics PSA-900)	10
		2.	Vehicle Sensors	10
			a. Gyroscopes	11
			b. Depth Cell (PSI-Tronix)	12
			c. Vehicle Speed Sensor (Turbo-Probe)	13
			d. Motor RPM Indicator (Hewlett-Packard)	13
	B	GE	SPAC M68020/30 COMPUTER SYSTEM	14
	•	1.	- GESMPU-20 Micro Processor Unit	15
		2.	GESMFI-1 Multi-Function Interface	15
		3.	GESSIO-1B Serial Input/Output	16
		4.	GESPIA-3A Peripheral Interface Adapter	16
	•	5.	GESADA-1 AND GESADA-2 Analog/Digital Interfaces	16
		6.	GESDAC-2B Digital/Analog Converter	
		7.	·	
	G.	PR	OPULSION/MANEUVERING EQUIPMENT	

		1.	Control Surfaces	18
		2.	Stern Propulsion.	18
		3.	Thrusters	19
	D.	EL	ECTRICAL POWER EQUIPMENT	20
		1.	24 Volt Battery Packs (Panasonic)	21
		2.	ACON Power Supplies	21
		3.	Calex Power Supplies	22
		4.	CRYDOM Relays	22
		5 .	Servo Amplifiers (Advanced Motion Controls)	23
		6.	Synchro to Digital (S/D) Converter	23
		7 .	Inverter (Motor Inhibitor)	23
III.	EX	PEI	RIMENTAL APPARATUS AND PROCEDURE	24
	A.	EQ	UIPMENT PREPARATION	24
		1.	AUV II Vehicle	24
		2.	Lab and Test Facility	25
		3.	Computer Software	26
	B.	EX	PERIMENTAL APPARATUS	26
	C.	EX	PERIMENTAL PROCEDURE	31
		1.	Rate Gyro Calibration	31
		2.	Yaw Positioning Experiment	37
		3.	Lateral Positioning Experiment	40
		4.	Longitudinal Positioning Experiment	42
IV.	EX	PER	IMENTAL RESULTS	47
	A.	YAY	W POSITIONING EXPERIMENT	47
	B.	LA	TERAL POSITIONING EXPERIMENT	53

C.	LON	GITUDINAL POSITIONING EXPERIMENT	61
D.	THE	ORETICAL MODEL	72
	1. T	heoretical Model Development	72
	2. E	Stimation of the Hydrodynamic Coefficients	75
	3. 1	heoretical Model Results	78
v. sui	MMAR	Y	83
A.	CON	CLUSIONS	83
B.	RECO	OMMENDATIONS FOR FURTHER STUDY	85
APPEN	DIX A	AUV II CONFIGURATION BLOCK DIAGRAM	87
APPEN	DIX B	AUV II WIRING LIST	89
APPEN	DIX C	CENTER OF GRAVITY CALCULATION	103
APPEN	DIX D	CENTER OF BUOYANCY CALCULATION	105
APPEN	DIX E	FREE GYRO/SYNCHRO BOARD WIRING	
		DIAGRAM	107
APPEN	DIX F	KALMAN FILTER SUBPROGRAM	109
APPEN	DIX G	AUV SIMULATION MODEL	112
LIST OF	REFE	RENCES	116
INITIAL	DIST	RIBUTION LIST	117

LIST OF TABLES

TABLE 3.1	YAW RATE CALIBRATION: SCALE AND BIAS			
	FACTORS	39		
TABLE 3.2	LATERAL AND LONGITUDINAL POSITIONING			
	EXPERIMENTS: TEST CONDITIONS	43		
TABLE 4.1	AUV MODEL: SYMBOLS AND VARIABLES	73		
TABLE 4.2	AUV II HYDRODYNAMIC COEFFICIENTS: HOVER			
	CONDITIONS	77		

LIST OF FIGURES

Figure 2.1	AUV II	5
Figure 2.2	AUV II Configuration	6
Figure 2.3	Sensor Location (Nosepiece Section)	8
Figure 3.1	Experimental Set-up	27
Figure 3.2	AUV II and Test Tank	29
Figure 3.3	AUV II and PC Workstation	30
Figure 3.4	Right-Hand Global and Body Fixed Coordinate Systems	32
Figure 3.5	Yaw Rate Calibration/Yaw Positioning Experiment	34
Figure 3.6	Yaw Rate Calibration: 180 Degree Test (3 Trials)	36
Figure 3.7	Yaw Rate Calibration: 30 Degree Test	38
Figure 3.8	Lateral Positioning Experiment	41
Figure 3.9	Longitudinal Positioning Experiment	44
Figure 4.1	Yaw Position Experiment: 90 Degree Test	49
Figure 4.2	Yaw Position Experiment: 90, 180, 360 Degree Tests	50
Figure 4.3	Yaw Position Experiment: 360 Degree Test, with	
	Disturbances	52
Figure 4.4	Lateral Position Experiment: Test 1	54
Figure 4.5	Lateral Position Experiment: Test 1 (Thruster Voltage/Yaw	
	Position)	55
Figure 4.6	Lateral Position Experiment: Test 2	57
Figure 4.7	Lateral Position Experiment: Test 3	58
Figure 4.8	Lateral Position Experiment: Test 4	59

Figure 4.9	Lateral Position Experiment: Test 5	60
Figure 4.10	Longitudinal Position Experiment: Test 1	62
Figure 4.10	Longitudinal Position Experiment: Test 1 (continued)	63
Figure 4.11	Longitudinal Position Experiment: Test 2	65
Figure 4.12	Longitudinal Position Experiment: Test 3	66
Figure 4.13	Longitudinal Position Experiment: Test 4	67
Figure 4.14	Longitudinal Position Experiment: Test 5	68
Figure 4.15	Longitudinal Position Experiment: Test 6	69
Figure 4.16	Longitudinal Position Experiment: Test 7	71
Figure 4.17	AUV Model: Yaw Position Experiment	79
Figure 4.18	AUV Model: Lateral Position Experiment (Test 3)	80
Figure 4.19	AUV Model: Longitudinal Position Experiment (Test 7)	82

ACKNOWLEDGMENTS

I would like to express my most sincere gratitude to the following people:

LCDR Craig Bateman, LCDR Mary Zurowski, LT Barb Shea and CPT Pat Kanewski, for among many things, your friendship and help with preparing the lab and test facility.

LCDR Dave Gordon, for your help with the word processing.

Charles Crow, Jim Selby, Mardo Blanco, Tom McCord and Glenda Coleman, Mechanical Engineering Department, Naval Postgraduate School, for your outstanding technical skills and material assistance.

Jim Scofield and Tom Christian, Mechanical Engineering Department, Naval Postgraduate School, for your expertise and many hours of dedication to this project.

Dr. Anthony Healey, my thesis advisor, and Dave Marco, Mechanical Engineering Department, Naval Postgraduate School, for your patience, time, inspiration, friendship and generous assistance in helping me complete this thesis.

The Naval Postgraduate School, Direct Research Fund, for the financial support of this project.

Prof. Charles N. Calvano, CAPT, USN (Ret), Walter A. Ericson, CAPT, USN (Ret), Richard E. Pearsall, CAPT, USN (Ret) and David E. Woodbury, CAPT, USN (Ret), for your help and guidance, and to the United States Navy,

especially the Engineering Duty Community, for providing me with this, among many career opportunities.

And most importantly, to my parents, for a lifetime of support and encouragement.

Thank you. Thank you very much.

L INTRODUCTION

This chapter provides a discussion of the background information and outlines of the scope of study for this thesis.

A. BACKGROUND

The applications of Remotely Operated Vehicles (ROVs) and Autonomous Underwater Vehicles (AUVs) are subjects of increasing widespread interest by both civilian and military organizations.

The operation of ROVs is traditionally accomplished by the use of a physical tether, through which electrical power, control and sensory data are transferred between the vehicle and a surface ship. An ROV therefore, is under the continuous control of a human operator (pilot), and is dependent on and tethered to the host platform.

An AUV on the contrary, operates independently of any physical or electrical tether, and requires little to no intervention from an outside activity. This level of autonomous operation permits a greater scope of mission capabilities, and as such, is the subject of numerous research projects encompassed in the Autonomous Underwater Vehicle project at the Naval Postgraduate School, in Monterey, California, at the Monterey Bay Aquarium Research Institute, MIT Sea Grant, Charles Stark Drake Laboratories, Woods Hole Oceanographic Institute, Florida Atlantic University and the Naval Undersea Warfare Center, Newport, Rhode Island, amongst others.

Future missions planned for the AUV project include environmental surveying, search and mine hunting missions. Vital to the accomplishment of these types of missions, is the capability for the vehicle to position itself in the vicinity of a stationary object or change its position with respect to an object, within a dynamic environment.

The ability to accurately maneuver itself, at relatively high speeds, within a confined environment, has been demonstrated by the second generation design of the NPS AUV (AUV II) (Warner, 1991). The ability to achieve accurate dynamic positioning, during hover conditions, based on the vehicle's own acoustic data input, has been made possible, only recently, through several configuration changes to the AUV II. These configuration changes include the addition of a high frequency profiling self-sonar, and horizontal and vertical tunnel thrusters.

The profiling sonar installed in the AUV II, provides acoustic environmental and positioning data without the use of external signals or transponder networks. The performance of the sonar has been tested and verified by previous experimentation (Ingold, 1991).

The design and performance testing of the tunnel thrusters have been verified and documented by Good (1989), Cody (1992) and Brown (1993).

B. SCOPE OF THESIS

The objective of this thesis is to experimentally examine the capability of the NPS AUV II to achieve accurate acoustic positioning, during hover conditions. It is the contention of this work that both lateral and longitudinal position of the vehicle can be maintained using high frequency onboard sonar returns without the use of a transponder net. Furthermore, that without ocean current disturbances, the precision of the positioning is limited only by the precision of the sonar and the threshold of operation of the propulsors, and stable motion is achievable.

Chapter II provides documentation of the major design and configuration changes incorporated into the AUV, which provide the capability for the vehicle to accomplish the hover positioning experiments.

Chapter III includes a description of the test facility, laboratory and equipment set-up used for the experiments. The procedures for the positioning experiments are also discussed.

The results of the positioning experiments are provided in Chapter IV, along with the development of a theoretical model and its comparison to the experimental data.

A summary of conclusions and recommendations for further study is discussed in Chapter V.

II. AUV II CONFIGURATION

Since the time of its original design (Good, 1989) and successful waterborne demonstration (Warner, 1991), several design and configuration concepts have been the subject of research surrounding the AUV project at NPS, resulting in numerous published theses. The result thus far has produced the current configuration of the AUV II, pictured in Figure 2.1.

This chapter provides a description of the major equipment groups which comprise the current configuration of the AUV. Each section discusses the nominal operating characteristics and ratings as applicable, and refers to figures within the text, or diagrams and the wiring list which are included in the appendices. The following equipment groups are discussed:

- 1. Sensors (Environment and Vehicle).
- 2. GESPAC M68020/30 Computer System.
- 3. Propulsion and Maneuvering Equipment.
- 4. Electrical Power Equipment.

A simplified block diagram of these major equipment groups is provided in Appendix A. This diagram shows the basic system power paths and the computer data transfer paths between the components.

The wiring list for the AUV II is provided in Appendix B.

Figure 2.2 shows the placement of the major equipment components in the AUV. As discussed in Good (1989), the propulsion and maneuvering equipment (control fins, tunnel thrusters and stern propulsion motors) is

Figure 2.1 AUV II

Figure 2.2 AUV II Configuration

arranged in the vehicle, to achieve the most efficient maneuvering capabilities. The remainder of the equipment is located to achieve the most favorable volume and weight distribution, and to minimize the length of the wire runs. The batteries therefore, are centrally located in order to keep the center of gravity close to the center of the vehicle body. The computer is located at the center of the vehicle body, with the served equipment located as close as possible to the computer.

Calculations of the centers of gravity and buoyancy are provided in Appendices C and D.

A. SENSORS

The sensor systems incorporated into the AUV II provide the necessary input data, for both environment conditions and vehicle motion, to achieve autonomous vehicle operation and control.

1. Environment Sensors (Sonar Equipment)

The sonar suite consists of three types of sonar transducers with primary functions being horizontal environmental surveying (profiling), target imaging (scanning) and bottom surveying (depth measuring). The three types of sonar used for these functions, are respectively; the Tritech ST-1000 and ST-725 sonar and the Datasonics PSA-900 altimeter. Placement of the transducers, in the (flooded) nosepiece section of the AUV is shown in Figure 2.3.

Figure 2.3 Sensor Location (Nosepiece Section)

a. Profiling Sonar (Tritech ST-1000)

The profiler is the model ST-1000 sonar, manufactured by Tritech International, Ltd. This unit is a compact system, operated by a PC compatible computer and is integrated with the ST-725 scanning sonar.

The ST-1000 sonar head operates at a frequency of 1250 kilohertz (1000 kilohertz, nominal), with a one degree conical beam. It requires 24 to 28 volts (DC) power at 800 miliamps, and can be operated at depths up to 4900 feet, over eight selectible ranges between three and 160 feet.

The ST-1000 can be operated in two modes; Sector Profiling or Sector Sonar Scanning. The Profiling mode provides 360 degree coverage, where the delay time to the first echo is sensed and returned to the device serial port connector. The Scanning mode is continuous, and can be used for horizontal sector scan, or for vertical left or right side direction coverage. In this mode, the intensity of the returning echoes are sensed as a function of delay time and returned to the device serial port connector as a string of values, one in each of 64 range pixels. At larger total ranges, full range is divided into 128 range pixels. For the shorter ranges, a sonar pixel will be 9.3 centimeters long by 1.8 degrees wide. Intensities are scaled from one to 15, where 15 represents the highest strength.

The ST-1000 sonar head is mounted vertically, in the AUV, protruding through the bottom of the nosepiece.

b. Scanning Sonar (Tritoch ST-725)

The scanning sonar is the ST-725, also manufactured by Tritech. It operates at a frequency of 725 kilohertz with a one degree by 24 degree fan beam.

The ST-725 sonar head is mounted aft of the ST-1000, but protruding through the top of the nosepiece.

c. Depth Sonar (Datasonics PSA-900)

The depth sonar is the Model PSA-900 Sonar Altimeter, manufactured by Datasonics, Inc. It is microprocessor controlled.

The Datasonics operates at a frequency of 210 kilohertz, with a ten degree conical beam. It requires 15 to 28 volts (DC) at 100 miliamps and can be operated at depths up to 6500 feet, at ranges up to 90 feet.

The Datasonics transducer is installed as described in Good (1989), with a plastic cone, mounted in the nosepiece. Only one Datasonics transducer is used here, as opposed to the original configuration, and it is mounted facing downward, aimed through the bottom of the nosepiece.

2. Vehicle Sensors

The vehicle sensor components provide the input data for the position and motion of the AUV.

a. Gyroecopes

Three types of gyros were used to measure the vehicle's angular position and roll, pitch and yaw rates. All three types are manufactured by Humphrey, Inc.

(1) Free Gyro. The free gyro measures the yaw angle of the vehicle. The Model FG23-7102-1 is a two-degree-of-freedom unit which references its own case frame.

Its inner and outer gimbals have 360 degree and negative to positive 85 degree motion, which require 26 volts (AC), 400 Hertz input. The pickoff is an outer gimbal syncro control transmitter which outputs 11.8 volts (AC). The gimbals have a remote caging/uncaging device which requires 28 volts (DC) input.

The gyro motor requires 115 volts (AC), 400 Hertz, and spins at approximately 24,000 revolutions per minute. The Model PS27-0101-1 power supply provides the 400 Hertz (26 and 115 volts (AC)) input to the gyro.

The free gyro is located aft in the midbody section of the AUV. The wiring diagram for the free gyro is provided in Appendix C.

(2) Vertical Gyro. The vertical gyro measures the pitch and roll angles of the vehicle. The Model VG34-0301-2 is a two-degree-of-freedom unit with both axes slaved to local gravity.

It's inner and outer gimbals have 360 degree (roll) and negative to positive 80 degree (pitch) motion. The pickoff is a plastic

potentiometer, which outputs negative ten to positive ten volts (DC). Required input is 28 volts (DC).

The vertical gyro is located forward in the midbody section of the AUV. Since the vehicle body is rigid, gyro placement was a matter of arrangement rather than a matter of required location within the body.

(3) Rate Gyros. The rate gyros measure the roll, pitch and yaw rates of the vehicle. Each component of the Model RG02-2324-1 has single-degree-of-freedom motion along its designated axis, and is torsion spring mounted to produce gimbal displacements proportional to angular rate inputs.

Required input is 28 volts (DC). The pickoffs are resistance potentiometers which produce output voltages of negative ten to positive ten volts (DC). Maximum rates are 360, 90 and 90 degrees per second for roll, pitch and yaw.

The rate gyros are located forward in the midbody section of the AUV.

b. Depth Cell (PSI-Tronix)

Vehicle depth is measured using a differential pressure transducer manufactured by PSI-Tronix, Inc.

The PWC series (S11-131) is a strain gage based transducer which operates from zero to 15 pounds per square inch (depth to approximately 34 feet), referenced to one atmosphere. It requires 12 to 18 volts (DC) supply and outputs zero to ten volts (DC).

The probe for the depth cell is located in the nosepiece section of the vehicle in the aft bulkhead, in order to permit contact with the water at the vehicle's depth, with minimal flow.

c. Vehicle Speed Sensor (Turbo-Probe)

The vehicle speed through the water is measured by a Turbo-Probe turbine flow meter, manufactured by Flow Technology, Inc.

The transducer is an axial rotor element, mounted at the end of a strut. The strut houses an electromagnetic pickoff assembly which generates electrical pulses of a frequency proportional to the rotor speed and flow velocity. The flow meter has an operating range of one tenth to six feet per second.

The flow meter is used in conjunction with the LFA-307 Range Extending Amplifier, also manufactured by Flow Technology. This amplifier is used for signal conditioning to insure good linearity at low flow velocities.

The flow meter is mounted in the nosepiece section of the AUV with the rotor element protruding through the bottom of the nosepiece.

d. Motor RPM Indicator (Hewlett-Packard)

Hewlett-Packard Model HEDS-5000 series optical encoders are used to measure motor speed.

These encoders are configured with a lensed LED source, an integrated circuit (IC) with detectors and output circuitry, and a code wheel which rotates between the emitter and detector IC. Rotation of the code wheel generates a pulsed input which the IC circuitry processes to produce a digital

pulsed output. Rotation speed is measured in terms of the pulse count per unit time, or the time width of successive pulses. The encoders require a supply voltage of one half to seven volts (DC) input and operate up to 30,000 revolutions per minute.

Each thruster and stern propulsion motor is configured with an encoder attached to its shaft.

B. GESPAC M68020/30 COMPUTER SYSTEM

The function of providing real time control of the AUV II is accomplished through the use the GESPAC M68020/30 series computer system and various input/output control cards.

The OS-9 Operating System is used in the GESPAC. It provides real time, multi-tasking capability. C language is the source code. It is independent from the input/output devices.

The software package PC Bridge (trademark of GESPAC, Inc.), is used to communicate between the GESPAC and an external IBM PC for the purposes of file transfer. As the processor system is an embedded real time processor, it operates on a single board without the benefit of an associated hard disc for storage of memory modules. Only operating system modules are "burned" into EPROM, thus run modules that form the vehicle control functions at run time must be loaded from an external computer into the embedded processor.

The major components of the embedded computer system are positioned in a twelve card cage, located in the midbody section of the vehicle. Communication with the GESPAC is accomplished through an RS-232 serial

communications port, located on the top of the vehicle, through a watertight connector and a sufficiently long, lightweight watertight cable.

The following sections give a brief description of the major components of this system. The paths for data input/output between the components are shown in the block diagram of Appendix A.

1. GESMPU-20 Micro Processor Unit

The GESMPU-20 module uses a 32 bit 68020 microprocessor built into a single board. The microprocessor uses a non-multiplexed G96 bus with 32 bits of address and 32 bits of data. The board runs at 25 megahertz and has an associated two megabytes of CMOS Dynamic RAM, on an adjacent card. Its power requirement is positive five volts (DC).

The GESMPU-20, through its device drivers and execution level real time control software, compiled into executable modules, controls all computer functions in the AUV.

2. GESMFI-1 Multi-Function Interface

The GESMFI-1 is a universal interface module with two RS-232 serial ports, two, eight-bit parallel ports and three 16-bit timers. The module runs with either one megahertz or two megahertz synchronous timing and has 50 bytes of CMOS RAM. The power requirements are positive five and negative to positive 12 volts (DC).

The GESMFI-1 interfaces with the 14-bit Synchro to Digital converter, which operates on the data from the free gyro. The MFI card

provides the embedded processor with a digital data value of zero to 16384 (2¹⁴), corresponding to one revolution (360 degrees) of the yaw angle gyro.

3. GESSIO-1B Serial Input/Output

The GESSIO-1B dual interface module provides two RS-232 capable asynchronous serial ports. The power requirements are positive five and negative to positive 12 volts (DC).

The GESSIO-1B provides the interface for the ST-725 and ST-1000 sonar transducers.

4. GESPIA-3A Peripheral Interface Adapter

The GESPIA-3A has two parallel 16-bit input/output ports and four 16-bit timers. The power requirement is positive five volts (DC).

This module provides the interface for the free gyro cage/uncage command and status signals. It also provides an input for the Datasonics sonar transducer, the CRYDOM relays and the Calex power supplies. It controls the Transistor-Transistor Logic (TTL) which provides the switching signals for the relay/power supply system.

5. GESADA-1 AND GESADA-2 Analog/Digital Interfaces

The GESADA-1 and GESADA-2 modules provide analog to digital (A/D) and digital to analog (D/A) functions. The GESADA-1 module has a 16 channel, ten-bit A/D input section and a four channel, ten-bit D/A output section. The GESADA-2 module has a 16 channel, ten-bit A/D input section. Both modules require positive five and negative to positive 12 volts (DC).

The GESADA-1 module interfaces the outputs from the Diagnostics module. The GESADA-2 module interfaces the inputs from the vertical and rate gyros, the depth cell and the Datasonics transducer.

6. GESDAC-2B Digital/Analog Converter

The GESDAC-2B module provides an 8 channel, 12-bit D/A output. Its power requirement is positive five volts (DC).

This module interfaces the inputs to the propulsion and thruster motor servo amps.

7. GESTIM-1A Multiple Timer Modules

The GESTIM-1A modules provide the System Timing Control (STC) functions. Each module has five, 16-bit channels and a real time clock/calendar function. The power requirement is positive five volts (DC).

Five GESTIM-1A timing modules are used in the AUV which coordinate the signals between the tachometer sources (thruster and stern propulsion motor speed indicators, flow meter and control surface servo motors).

C. PROPULSION/MANEUVERING EQUIPMENT

The propulsion and maneuvering systems are comprised of three groups of equipment; control surfaces, stern propulsion and thrusters.

1. Control Surfaces

The development of the design of the control surfaces is presented in Good (1989). The shape used for the AUV II application is the NACA 0015 foil section.

Two cruciform arrangements of control surfaces are used; one arrangement forward and one aft, on the midbody section of the AUV. This arrangement provides highly efficient maneuvering capability in both the horizontal and vertical planes as evidenced by previous waterborne testing of the AUV (Healey and Marco, 1992).

The control surfaces are positioned through the use of radio controlled aircraft servo motors. Airtronics Model 94510 servos are installed, one for each control surface. These motors have a maximum torque rating of 110 ounces-inches (6.875 pound-inches), and a response time of one half second for a zero to 90 degree movement.

2. Stern Propulsion

The AUV II is configured with a conventional twin screw propulsion system. Detailed development of the design is provided in Good (1989).

A commercially purchased running gear hardware kit, manufactured by Gato/Balao, Inc., is installed. The kit consists of two brass propellers, stainless steel shafts and three inch brass stuffing tubes. Two, four blade, four inch diameter propellers are installed, each capable of providing approximately five pounds of thrust at full load (Saunders, 1990, Coty, 1992).

Electric DC servo motors are used for the stern propulsion units. The PITMO DC Model 14202 series motor, manufactured by Pittman, Inc., has a stall torque of 106 ounce-inches, a no load speed of 3820 revolutions per minute and a peak power draw of 333 Watts. Operating at 24 volts (DC), the motor has a no load current rating of 0.230 amps.

3. Thrusters

The AUV II is configured with four tunnel thrusters which provide the capability for slow speed maneuvering, hovering and station keeping. The thrusters are mounted in pairs, one mounted horizontally, one vertically; each pair is mounted forward and aft, in the midbody section of the AUV.

Each thruster assembly consisted of a DC servo motor, a reduction gear and housing assembly, a propeller assembly and thruster tunnels.

The servo motors used for the thrusters are the same as those used for the stern propulsion units described above; PITMO DC Model 14202 series.

The reduction gear is a single stage, single reduction spur gear configuration. The pinion and gear are made of Delrin (trademark of Winfred M. Berg Company). Both the pinion and gear have a pitch of 24 teeth per inch. The pinion has 45 teeth and a pitch diameter of 1.875 inches, and the gear has 90 teeth and a pitch diameter of 3.750 inches. The resulting reduction ratio provided is two to one. The gear is configured as a ring gear and is fitted around the propeller and hub assembly. The reduction gears are assembled into an aluminum housing to which the thruster servo motors are mounted. (Cody, 1992)

The propeller and hub assembly is made of brass. The propeller is three inches in diameter, and has four blades mounted at 45 degrees. The blade angle is constant along its length, and the blade has zero camber which permits equal thrust in both forward and reverse directions of rotation. The propeller and hub assembly is mounted on a stainless steel shaft and the thrust/journal bearings are made of Teflon. (Cody, 1992)

Aluminum struts, mounted in the thruster tunnels, support the propeller shaft, oriented axially in the thruster housing. The tunnels have an inside diameter of three inches, and are mounted in two sections on either side of the thruster housings, placing the thruster housings at the midpoints of the tunnels. The horizontal tunnels are 16.5 inches and the vertical tunnels are ten inches in length, corresponding to the width and height of the AUV.

The modeling and performance analysis of the thruster assemblies have been the subject of several theses, including Good (1989), Cody (1992) nd Brown (1993).

D. ELECTRICAL POWER EQUIPMENT

The objective of the original design considerations for the power requirements of the AUV II was to provide adequate energy onboard which would support all vehicle functions for at least an hour of completely autonomous operation. The installed electrical system provides enough power to run the vehicle's onboard computer, sonar and electronics systems in addition to power for mobility.

This section describes the major components of the electrical power system.

1. 24 Volt Battery Packs (Panasonic)

Two 24 volt (DC) battery packs provide the main power source for the AUV. Each battery pack is made up of two, 12 volt (DC) Panasonic Model LCL12V38P rechargeable, sealed lead-acid batteries connected in series. The batteries weigh 31.5 pounds, and have nominal capacities of 34.0 amp-hours (ten hour rate) and 38.0 amp-hours (20 hour rate).

The series battery packs provide 24 volts (DC) power to the following equipment:

- 1. Rate gyros.
- 2. Vertical gyro.
- 3. 400 Hertz power supply for the free gyro.
- 4. ACON computer power supplies.
- 5. CRYDOM relays.
- 6. Calex power supplies.
- 7. Six, PMW servo amplifiers (thruster and stern propulsion motors).
- 8. Tachometer sources (thruster and stern propulsion motor speed indicators, Turbo-probe).

The battery packs are located in the midbody section of the AUV, one forward and one aft of the GESPAC computer cage.

2. ACON Power Supplies

Two ACON Model R100T2405-12TS inverter/power supplies are installed to provide power to the computer systems. The two power supplies

are independent and provide positive five and negative to positive 12 volts (DC).

The power supplies are mounted in the midbody section above the forward battery pack.

3. Calex Power Supplies

The Calex Models 12S15, 48S15 and 12S5 power supplies provide positive five and negative to positive 15 volts (DC) for the following equipment:

- 1. Reference source for the rate gyros and vertical gyro (+/-15 volts (DC)).
- 2. Datasonics sonar (+15 volts (DC)).
- 3. Depth cell (+15 volts (DC)).
- 4. GESTIM-1A timer cards (+15 volts (DC)).
- 5. Control surface servo motors (+5 volts (DC)).
- 6. CRYDOM relays (+5 volts (DC)).

The power supplies are mounted in the midbody section above the forward battery pack.

4. CRYDOM Relays

The CRYDOM Model 6300 relays provide the voltage switching using TTL logic input from the GESPIA-3A modules. Power is supplied to the following components:

- 1. Tritech sonar (ST-1000 and ST-725) (+24 volts (DC)).
- 2. Cage/uncage voltage for the free gyro (ground path).

5. Servo Amplifiers (Advanced Motion Controls)

Motor speed for the thruster and stern propulsion motors is controlled through the use of Advanced Motion Controls PWM Model 30AD8DD servo amplifiers. One amplifier is used for each motor. The PWM servo amplifier uses a zero to ten volt control signal to modulate the pulse width of a 24 volt, five to 45 kilohertz (load dependent) output signal to the motor. Direction of the motor is controlled by changing the polarity of the control signal.

The servo amplifiers are located in the midbody section of the AUV, mounted on the port and starboard bulkheads.

6. Synchro to Digital (S/D) Converter

The Synchro to Digital Converter is a 14-bit device designed at the Naval Postgraduate School. It uses an Analog Devices card which converts the phase components of the free gyro output signal to digital data.

The S/D converter is located in the midbody section and is mounted on the aft end of the GESPAC computer card cage. The wiring diagram for the S/D converter/free gyro is provided in Appendix C.

7. Inverter (Motor Inhibitor)

A signal inverter is installed between the GESPIA-3A module and the servo amps to prevent energizing the thruster or stern propulsion motors during computer system start-ups.

The inverter is located in the midbody section and is mounted above the aft battery pack.

III. EXPERIMENTAL APPARATUS AND PROCEDURE

This chapter provides a description of the equipment and procedures used to conduct the hover positioning experiments for the AUV II.

Background information is discussed concerning the preparation of the AUV II vehicle, the lab and support facilities and the test equipment, followed by an outline of the procedures used for the experiments and data collection.

A. EQUIPMENT PREPARATION

The equipment used for the hover positioning experiments are categorized into three groups; the AUV II vehicle, the test facility and the programmed software code.

1. AUV II Vehicle

Over the course of the thirty months since the vehicle completed its last waterborne tests, numerous configuration changes have been incorporated into the AUV, the results of which were presented in Chapter II. Many man-hours were consumed, involving the expertise of the Mechanical Engineering Department machine shop personnel, electronics technicians, staff, ... and a few students.

New equipment groups installed in the AUV include sonar, gyros, power supplies, speed sensors and computer systems, however, the equipment which provide the means to accomplish the objective of this thesis are the thrusters. The location of the horizontal thrusters, forward and aft of the

vehicle's center of gravity permit rotation and lateral translation, while the vehicle is hovering.

The final design concept for the thrusters was completed and a prototype assembly was manufactured and satisfactorily tested (Cody, 1992). The three remaining thruster assemblies were then constructed and the four units installed in the AUV.

2. Lab and Test Facility

The test facility for the AUV project is located in building 230 of the Naval Postgraduate School Annex. The facility houses a 18,000 gallon capacity test tank which measures 20 by 20 by 6 feet. Other equipment include a filtration and recirculation system, hoist, catwalk and external computers.

The external computers include an IBM PC clone 486 with a VGA graphics monitor, a clone 286 PC and the GESPAC Development System, which is a replication of the in-vehicle system with a hard drive, C code cross-compiler and PC Bridge software for transferring compiled modules of code to and from the vehicle.

In preparation for the hovering experiments the interior of the tank was painted with white epoxy, and a 2.5 foot square grid pattern was laid out along the bottom and sides of the tank. This permitted good visibility of the vehicle, and provided a reference for vehicle pre-positioning and motion observation, during testing. A catwalk was installed across the top of the tank for vehicle launch and recovery, and experiment observation.

3. Computer Software

In order to support the basic operating functions of the AUV in addition to executing the positioning experiments, numerous software programs were written and installed in the onboard GESPAC and external control computer systems. The development of the software programs is the subject of a doctoral dissertation, currently in progress by David B. Marco.

Some of the AUV operations supported by the software include the following:

- 1. AUV system start-up.
- 2. Free gyro caging/uncaging.
- 3. Gyro zeroing functions.
- 4. Sonar operations.
- 5. Sensor data input functions (A/D).
- 6. Command positions for motion experiments.
- 7. Control law functions for each operating mode of behavior.
- 8. Command data output functions (D/A).
- 9. Data storage for analyses.

It should be noted that independent software modules for debugging subsystem operations are not only desirable, but essential to the calibration and verification of vehicle functions.

B. EXPERIMENTAL APPARATUS

The equipment arrangement for the hovering motion experiments is shown in Figure 3.1.

Test Tank (20' x 20' x 6')

Figure 3.1 Experimental Set-up

For the purposes of conducting these experiments, an electronic tether was attached to the onboard GESPAC computer via the RS-232 connection. This provided a direct path for file and data exchange between the GESPAC computer and the external PC workstation running PC Bridge software.

The vehicle is lifted into the test tank via the hoist, and positioned for the start of each experiment by observers on the catwalk. The observers remain stationed on the catwalk throughout the tests to recover the vehicle or prevent damage should an equipment casualty occur.

The vehicle is operated externally through the PC workstation, however the serial link is used only for file and data transfer. Motion commands are built into the run program through screen entry, but once entered, the vehicle is completely independent of any further commands for the operation. Data files recorded for each experiment are down-loaded to the PC workstation.

The AUV II vehicle, test tank and PC workstation are pictured in Figures 3.2 and 3.3.

Figure 3.2 AUV II and Test Tank

Figure 3.3 AUV II and PC Workstation

C. EXPERIMENTAL PROCEDURE

This section describes the procedures used to calibrate the test equipment and outlines the three types of hover positioning experiments, including data collection.

1. Rate Gyro Calibration

Calibration of the rate gyro was required due to a new power supply being used for its input. The new power supply also produced a change in the range of output voltages from the gyro.

It was anticipated that both a scale factor and a bias error would be electronically introduced into the gyro output.

An additional bias error was expected as a result of the zeroing procedure to be used at the start of the experiments. During this procedure, the vehicle is held as motionless as possible in the tank. As the experiment starts, before any control motion begins, a segment of the run code reads the sensors, taking initial position readings of the vehicle relative to the environment. Average values of positions and rates are calculated and used as zero points for the following test rate and position measurements. Unless the vehicle is perfectly motionless (which is impossible in this test facility), there will be some rate bias introduced, however it was expected that this would be small.

Referencing the right-hand global and body fixed coordinate systems, as shown in Figure 3.4, the scale factor (SF) and bias factor (BF) errors are modeled by the following equation:

Figure 3.4 Right-Hand Global and Body Fixed Coordinate Systems

$$\mathbf{r}_{\text{exper}} = \left(\mathbf{D} \big[\Psi_{\text{exper}} \big] - \mathbf{B} \mathbf{F} \right) + \mathbf{S} \mathbf{F}$$

where it was considered that the precision of the heading gyro (drift rate less than six degrees per hour) was such that

$$D[\Psi_{\rm exper}] = r_{\rm true}$$

The experimental yaw rate can then be corrected by the following equation:

$$r_{tree} = r_{exper} \times SF + BF$$

The true yaw rate could then be found by correlating the experimental yaw rate data to the derivative of the yaw position data using a first order least squares fit.

Since the vehicle, when placed in the tank, essentially behaved as an ideal rate table, it was decided to use the vehicle's own motion under a yaw position command to calibrate the rate gyro. This motion is shown in Figure 3.5. Inputs from the free gyro were used to determine the vehicle's yaw position.

The control laws for the yaw position commands were derived on the basis that the commanded moment is directly proportional to the differential thrust between the forward and aft lateral thrusters, where the thrusters are used in opposite directions. Additionally, the thruster force is proportional to the square of the applied motor voltage (using the absolute value to account for direction).

Figure 3.5 Yaw Rate Calibration/Yaw Positioning Experiment

$$\begin{split} M_{\rm som} & \ll \left(F_{\rm Ped \, Threat} - F_{\rm Aft \, Threat}\right) \\ F_{\rm Ped \, Threat} & \ll V_{\rm Threat} \left|V_{\rm Threat}\right| \end{split}$$

However, in order to keep the control effort linear, the position commands were generated using proportional derivative control laws for the thruster voltages. Based on the equations above, the control laws for the forward and aft thruster voltages are as follows:

$$\begin{split} V_{\text{Pwd Threst}} &= -K_{\Psi} \big(\Psi - \Psi_{\text{essm}} \big) - K_{\tau} \big(r \cdot r_{\text{essm}} \big) \\ V_{\text{AR Threst}} &= K_{\Psi} \big(\Psi - \Psi_{\text{essm}} \big) + K_{\tau} \big(r \cdot r_{\text{essm}} \big) \\ K_{\tau} &= K_{\Psi} \times T_{d\Psi} \end{split}$$

The control law gains were selected heuristically, estimating that a full voltage control effort (24 volts) would be used for a yaw position error of $\pi/8$ (22.5 degrees), with a nominal time constant of one second. These estimates resulted in the following control law gains for yaw positioning:

$$K_{\psi} = 60$$

$$T_{\phi\psi} = 1$$

The position commands were given for yaw angles of (negative) 30, 60, 90, 180 and 360 degrees (relative to a starting position). Three trials were completed for each commanded position angle.

The data recorded included yaw position, yaw rate and forward and aft thruster voltage inputs as functions of time. Figure 3.6 presents the yaw position versus time and the yaw rate versus time curves for the three, 180

Figure 3.6 Yaw Rate Calibration: 180 Degree Test (3 Trials)

degree tests. (Note that the yaw rate curve is uncorrected.) It is shown in this figure that good repeatability was achieved.

A first order, least squares fit was used to obtain the scale factor and bias factor between the measured yaw rate data and the derivative of the yaw position data. Starting with the first 30 degree test, a scale factor of 3.2709, and a bias factor of 0.0043 were obtained. Figure 3.7 presents these results. This figure shows that an accurate fit was obtained.

For comparison, the measured yaw position data was compared to the integral of the corrected yaw rate data. These results are also presented in Figure 3.7. Fairly good agreement was achieved.

Using the same procedure, the scale and bias factors were obtained for the remaining tests. The results are presented in Table 3.1. From the results, it was observed that the scale factor varied slightly, however a nominal value of 3.00 would not produce a great error in any of the tests. The variation in the bias was small and appeared to be random.

Based on these results, it was felt that the yaw position data was more reliable and all subsequent yaw rate data would be corrected using the same procedure.

2. Yaw Positioning Experiment

As discussed in the previous section, the yaw positioning experiment was used for the rate gyro calibration.

Inputs from the free gyro were used to determine the vehicle's yaw position. The position commands were given for yaw angles of (negative) 30,

Figure 3.7 Yaw Rate Calibration: 30 Degree Test

TABLE 3.1 YAW RATE CALIBRATION: SCALE AND BIAS FACTORS

TEST	TRIAL	SCALE FACTOR (SF)	BIAS FACTOR (BF)
30 DEGREE	1	3.2709	0.0043
	2	3.2980	0.0055
	3	3.2662	0.0017
60 DEGREE	1	3.0059	0.0013
	2	3.0257	-0.0011
	3	3.0209	0.0025
90 DEGREE	1	2.9529	0.0004
	2	2.9699	-0.0034
	3	2.9375	0.0010
180 DEGREE	1	2.8387	0.0031
	2	2.8592	0.0008
	3	2.8799	0.0010
360 DEGREE	1	2.8208	0.0015
	2	2.8727	0.0004
	3	2.8470	0.0046

60, 90, 180 and 360 degrees, using a proportional derivative control law. The data obtained for the calibration tests was used to analyze the yaw positioning capability of the AUV.

3. Lateral Positioning Experiment

The motion for the lateral positioning experiment is shown in Figure 3.8. In addition to inputs from the free gyro, inputs from the profiling sonar were used to determine the vehicle's lateral position with respect to the tank wall.

The control laws for the lateral positioning commands incorporated the combined behavior modes of yaw and lateral motion. For the yaw motion, the control effort is generated in the same way as discussed for the yaw positioning experiment. For the lateral motion however, the forward and aft lateral thrusters are used in the same direction.

$$\begin{split} F_{Pwd \ Thrust \ (Lat)} &= F_{Aft \ Thrust \ (Lat)} \\ &F_{Thrust} & \ll V_{Thrust} \left| V_{Thrust} \right| \end{split}$$

Therefore, for a linear control effort, accounting for both behavior modes, the lateral position commands for the thruster voltages are given using the following proportional derivative control laws:

$$\begin{split} V_{\text{Pwd Threst}} &= -K_{\psi} \big(\Psi - \Psi_{\text{com}} \big) - K_{\tau} \big(r - r_{\text{com}} \big) - K_{\gamma} \big(Y - Y_{\text{com}} \big) - K_{\nu} \big(\dot{Y} - \dot{Y}_{\text{com}} \big) \\ V_{\text{AR Threst}} &= K_{\psi} \big(\Psi - \Psi_{\text{com}} \big) + K_{\tau} \big(r - r_{\text{com}} \big) - K_{\gamma} \big(Y - Y_{\text{com}} \big) - K_{\nu} \big(\dot{Y} - \dot{Y}_{\text{com}} \big) \\ K_{\tau} &= K_{\psi} \times T_{d\psi} \\ K_{\nu} &= K_{\gamma} \times T_{d\gamma} \end{split}$$

Figure 3.8 Lateral Positioning Experiment

Table 3.2 lists the test conditions for the lateral positioning experiment. The control law gains were varied in order to examine the coupling effects between the lateral and yaw motions. The effects of changes in the range of motion were examined by varying the initial and commanded positions to cover small and large changes in position. A commanded yaw position of zero degrees was given for all tests.

Data collected included range (global Y direction) to the wall, sway velocity, yaw position, yaw rate, and forward and aft thruster voltage as functions of time.

The sway velocity data was obtained by extracting an estimate of the derivative of the lateral range data from the sonar, using a Kalman filter subprogram. The smooth velocity estimate was used for the velocity error feedback. The filter also provided a smooth position estimate which was used for the position error feedback. The subprogram for the Kalman filter, in C source code, is provide in Appendix F.

4. Longitudinal Positioning Experiment

The motion for the longitudinal positioning experiment is shown in Figure 3.9. In addition to inputs from the free gyro, inputs from the profiling sonar were used to determine the vehicle's position with respect to the tank wall, ahead.

The control laws for the longitudinal positioning commands account for the behavior modes of yaw and longitudinal motion, however these modes are controlled separately through use of the thrusters and the stern propulsion

TABLE 8.2 LATERAL AND LONGITUDINAL POSITIONING EXPERIMENTS: TEST CONDITIONS

LATER	AL POS	BITIO	NING E	XPERIM	ENT: T	EST CON	DITION	5
TEST	Ky	Ydy	Kpsi	Tdpsi	Yinit	Ycom	PSIco	.
1	7	2	60	1	5.0	3.5	0.0	
2	10	3	80	1	9.4	4.0	0.0	
3	12	3	80	1	9.0	4.0	0.0	
4	12	3	60	1	9.0	3.0	0.0	
5	10	3	80	1	16.0	4.0	0.0	
LONGI	TUDIN	L PO	SITION	ING EX	PERIMEN'	r: Tes	T COND	TIONS
TEST	Sonai Gain	R Kx	Tdx	Kpsi	Tdpsi	Xinit	Xcom	PSIcom
1	13	10	3	60	1	12.0	7.5	0.0
2	13	10	3	60	1	12.0	5.0	0.0
3	9	10	3	60	1	12.0	5.0	0.0
4	5	10	3	60	1	12.0	5.0	0.0
5	5	10	3	60	1	11.6	5.0	0.0
6	5	10	4	60	1	7.0	2.5	0.0
7	5	10	4	60	1	12.0	3.0	0.0

Figure 3.9 Longitudinal Positioning Experiment

motors. Similar to the thrusters for lateral motion, the stern propulsion motors are used in the same direction.

$$F_{\text{Prop}} \propto V_{\text{Prop}} |V_{\text{Prop}}|$$

Therefore, a linear control effort is achieved, by generating the longitudinal position commands using the following proportional derivative control law for the stern propulsion motor voltages:

$$V_{Stern Prop} = K_{X}(X - X_{com}) + K_{u}(\dot{X} - \dot{X}_{com})$$
$$K_{u} = K_{X} \times T_{dX}$$

In addition, as for the yaw positioning experiment, position commands for thruster voltages were given using the following control laws:

$$\begin{split} V_{\text{Pwd Thrust}} &= -K_{\Psi} \big(\Psi - \Psi_{\text{com}} \big) - K_{r} \big(r - r_{\text{com}} \big) \\ V_{\text{Aft Thrust}} &= K_{\Psi} \big(\Psi - \Psi_{\text{com}} \big) + K_{r} \big(r - r_{\text{com}} \big) \\ K_{r} &= K_{\Psi} \times T_{\text{d}\Psi} \end{split}$$

Table 3.2 lists the test conditions for the longitudinal positioning experiment. The sonar gains were varied in order to examine the effects on the stability of the position data. The sonar gains shown are equivalent to the percentages of the total transmission power of the transducer. The thruster voltage control law gains for yaw position were set at 60 and one (proportional and derivative, respectively), and a commanded position of zero degrees was given.

The lateral and yaw motion coupling effects were examined along with the effects of changes in the range of motion. Data collected included range (global X direction) to the wall, surge velocity, yaw position, yaw rate, and forward and aft thruster, as well as stern propulsion motor voltages as functions of time.

The surge velocity data was obtained, similarly to the lateral positioning experiment, through the use of the Kalman filter subprogram.

IV. EXPERIMENTAL RESULTS

The purpose of this chapter is to document trends in the experimental data collected for the AUV positioning experiments. Each type of motion studied (yaw, lateral and longitudinal), is addressed separately, and specific observations are made with respect to the dynamics of the motion, ability to achieve the commanded final position, commanded thruster and stern propulsion voltages and where applicable, the effects of changes in control law gains, sonar gains and the range of motion.

The results of the positioning experiments are then compared to a theoretical model.

A. YAW POSITIONING EXPERIMENT

As described in Chapter III, yaw positioning experiments were used for the rate gyro calibration. Inputs from the free gyro were used to determine the vehicle's yaw position. Position commands were given using proportional derivative control laws, for thruster voltages. The position commands were given for yaw angles of (negative) 30, 60, 90, 180 and 360 degrees (relative to a starting position).

The data obtained for the calibration tests was used to analyze the yaw positioning capability of the AUV. The data recorded included yaw position, yaw rate and forward and aft thruster voltage inputs as functions of time.

Figure 4.1 shows the yaw position, yaw rate and thruster voltages for the 90 degree test. The yaw position curve shows the motion response expected from a proportional derivative control law. During the initial stage of motion, the vehicle did not quite reach a constant turning rate as seen by an inflection point at approximately six seconds. With a steady state error band of approximately seven degrees, a single overshoot is observed due to inertial forces initially dominating the motion. Drag forces, proportional to the square of the yaw rate then became dominant, and the motion of the vehicle was heavily damped to an accurate steady state position.

The yaw rate curve shows consistent results with peak turning rates occurring at approximately six and 13.5 seconds.

The thruster voltage curve shows the forward and aft thrusters were employed in equal and opposite directions. Also note that saturation had occurred until approximately six seconds, which as previously mentioned, was not long enough to reach a constant turning rate.

The effects of the magnitude of the commanded turn are shown in Figure 4.2. The yaw position curves show that the vehicle had reached a constant, peak turning rate at approximately seven seconds, for the 180 and 360 degree tests. Consistent dynamic results are shown with single overshoots followed by heavily damped approaches to accurate steady state positions.

The yaw rate curves show the constant turning rates for the 180 and 360 degree tests. The differences in the values of the rates is due to experimental repeatability. The average peak turning rate was observed to be approximately 16.0 degrees per second.

Figure 4.1 Yaw Position Experiment: 90 Degree Test

Figure 4.2 Yaw Position Experiment: 90, 180 and 360 Degree Tests

While the error is small, the final steady state yaw position was not exact in all cases. As discussed in Cody (1992), a small voltage threshold exists for the thruster motors, due to mechanical friction in the motor and reduction gear housing (stiction), which prevents very small corrections in position. This condition, to varying extents exists in all of the thruster assemblies as well as the stern propulsion assemblies.

The thruster voltage curves show the different time periods of saturation for the three tests. The differences in the peak voltages are due to the differences in the combined effects of the position error and the turning rate from which the proportional derivative control law determines the control effort. As previously mentioned, the final steady state voltage was not always zero volts due to thruster stiction.

The vehicle's ability to recover a commanded position, given a disturbance is shown in Figure 4.3. Once the vehicle reached the commanded position, it was given two manual disturbances in the direction of the overshoot. In both cases, the commanded position was quickly recovered. The thruster curve shows that saturation occurred for both recovery efforts.

Figure 4.8 Yaw Position Experiment: 360 Degree Test, with Disturbances

B. LATERAL POSITIONING EXPERIMENT

The procedure for the lateral positioning experiment was described in Chapter III. Inputs from the free gyro and the profiling sonar were used to determine the vehicle's lateral position with respect to the tank wall. Position commands for the thruster voltages were given using proportional derivative control laws.

The test conditions for the lateral positioning experiment are shown in Table 3.2. The data collected included range (global Y direction) to the wall, sway velocity, yaw position, yaw rate, and forward and aft thruster voltage as functions of time.

Figure 4.4 shows the results for Test 1. The range curve shows a single overshoot approach to an accurate steady state commanded position for a modest positioning command as expected for the proportional derivative control. Consistent with the results for the yaw positioning experiment, error in the final steady state position achieved is due to thruster stiction. A noticeable amount of noise is present in the range signal and is emphasized in the velocity curve.

The yaw position curve shows very small deviations from the commanded zero degree position. For clarity, the negative value of the forward thruster voltage was plotted for the thruster voltage curve. Neither thruster reached saturation for this small range of motion, however the relative dominance of the yaw position error to the control effort can be seen in the difference between the voltage curves. This difference is shown in Figure 4.5, where the yaw position curve is also plotted for comparison.

Figure 4.4 Lateral Position Experiment: Test 1

Figure 4.5 Lateral Position Experiment: Test 1
(Thruster Voltage /Yaw Position)

For Test 2, a greater range of motion was commanded, and the control law gains were increased. The yaw position curve of Figure 4.6 shows the characteristic approach to the commanded position with slightly less noise, until 70 seconds where the sonar return went unstable. This instability at close range, was attributed to a high sonar gain. The effects of reducing the sonar gains were examined during the longitudinal positioning experiment.

With the increased control law gains, coupling of the two motion control modes of yaw and sway was emphasized, as shown by the yaw position curve. Proportional derivative control does not compensate for this effect, and the result was a disturbance effect created by one mode working against the other.

The thruster voltage curve shows that both thrusters reached saturation.

The aft thruster was reduced sooner due to the decrease in yaw position caused by the smaller horizontal cross-section area of the vehicle's stern.

Further increase of the lateral position control law gains showed little reduction in the response time to achieve the commanded position in Test 3, however the yaw position was stabilized as shown in Figure 4.7.

Test 4 demonstrated that a softer vehicle response, in yaw position, resulted from reducing the yaw position control gains, as shown in Figure 4.8. In this test, greater sway induced yaw motion was developed.

A greater range of motion was attempted for Test 5, and as Figure 4.9 shows, the thrusters were saturated for a greater period of time resulting in reduced vehicle control in yaw position.

Figure 4.6 Lateral Position Experiment: Test 2

Figure 4.7 Lateral Position Experiment: Test 3

Figure 4.8 Lateral Position Experiment: Test 4

Figure 4.9 Lateral Position Experiment: Test 5

C. LONGITUDINAL POSITIONING EXPERIMENT

Chapter III described the procedure for the longitudinal positioning experiment. Inputs from the free gyro and the profiling sonar were used to determine the vehicle's longitudinal position with respect to the tank wall. Position commands for the stern propulsion and thruster voltages were given using proportional derivative control laws.

The test conditions for the longitudinal positioning experiment are shown in Table 3.2. The data collected included range (global X direction) to the wall, surge velocity, yaw position, yaw rate, forward and aft thruster voltage and stern propulsion motor voltage as functions of time.

The dynamic characteristics of the motion for Test 1 were consistent with the proportional derivative control as shown in Figure 4.10. A single overshoot was observed, with a highly damped approach to the commanded steady state position. The stiction effects were observed in the stern propulsion assemblies, which resulted in a small steady state position error in the longitudinal position.

The velocity curve reflects a greater amount of signal noise as the sonar reaches a position closer to the wall.

The yaw position curve reflects the motion induced by the stern propulsion motors operating independently with different levels of stiction.

The thruster voltage curve shows that small thruster control efforts were generated to correct the yaw motion. Although identical voltage signals were generated for both stern propulsion motors, the negative value of the right propulsion motor was plotted for clarity. Saturation was observed for both

Figure 4.10 Longitudinal Position Experiment: Test 1

Figure 4.10 Longitudinal Position Experiment: Test 1 (continued)

motors followed by direction reversals to achieve the commanded steady state position.

For Test 2, a final commanded position closer to the tank wall (5.0 feet) was attempted. As shown in Figure 4.11, the stern propulsion motors were saturated for a greater period of time and a higher surge velocity was reached which resulted in greater, reversing effort.

Additionally, as the sonar spent a greater amount of time in closer proximity to the wall, the range input became unstable. This effect produced a greater amount of noise in the lateral range and surge velocity plot.

The same commanded position was attempted for Test 3, however a lower sonar gain was used (9 vice 13). Figure 4.12 shows that the same motion resulted with less noise produced in the range and velocity signals.

For Test 4, the sonar gain was reduced further (to 5), however very little improvements in the motion or the noise levels were observed, as shown in Figure 4.13.

Figure 4.14, for Test 5 demonstrates the repeatability with the same results as Test 4.

A very aggressive approach to the wall was attempted for Test 6 using a commanded position of 2.5 feet. Figure 4.15 shows that frequent voltage adjustments were generated to the stern propulsion motors which resulted in slight oscillations in longitudinal position and velocity as the vehicle approached the steady state position.

Figure 4.11 Longitudinal Position Experiment: Test 2

Figure 4.12 Longitudinal Position Experiment: Test 3

Figure 4.18 Longitudinal Position Experiment: Test 4

Figure 4.14 Longitudinal Position Experiment: Test 5

Figure 4.15 Longitudinal Position Experiment: Test 6

The largest range of motion (12.0 to 3.0 feet) was demonstrated for Test 7.

Figure 4.16 shows a very good approach to the commanded steady state longitudina' position without the oscillations observed for Test 4.

Figure 4.16 Longitudinal Position Experiment: Test 7

D. THEORETICAL MODEL

This section presents a theoretical model for the horizontal plane maneuvering of the AUV, during hover conditions. The development of the model is discussed in this section along with the results, which compare the actual motions of the AUV II, determined experimentally, with those predicted by the model.

1. Theoretical Model Development

The purpose of developing this theoretical model of the AUV, is to provide the capability to predict its motion under various maneuvering conditions. These results provide the basis for the development of a model based control system, whereby the predicted vehicle positions, velocities and accelerations during a particular maneuver are compared to the actual vehicle motions to produce an error signal which is then used to generate a corrective control signal. The model so developed is particular to the NPS AUV II vehicle although its structure may be generalized to other vehicles if specific coefficient values for those other vehicles were determined.

For the development of the AUV model, the simplified case of horizontal plane maneuvering is considered. Table 4.1 lists the symbols and variables used in the model development. The variables used are referenced to the global and body fixed coordinate systems of Figure 3.4. Only those variables applicable to two-dimensional, horizontal plane motion are shown. A dot over a variable indicates the time derivative of that variable.

In the case of horizontal plane maneuvering, the assumption was made that the center of mass of the vehicle is below its body fixed origin (so

TABLE 4.1 AUV MODEL: SYMBOLS AND VARIABLES

Symbol/Variable	Description			
X,Y	Distance along global coordinate axis			
x,y /	Distance along body fixed coordinate axis			
u,v	Velocity component (surge, sway) along body fixed coordinate (x, y) axis			
T	Angular velocity component (yaw rate) about body fixed coordinate (z) axis			
X_, Y_	Force component along body fixed coordinate axis			
N_	Moment component about body fixed coordinate (z) axis			
Ψ	Yaw angle			
m	Mass of AUV II			
Izz	Moment of inertia about the body fixed coordinate (z) axis			
F_	External force applied to the vehicle			
M_	External moment applied to the vehicle			
Subscripts				
f	External force or moment component due to net hydrodynamic loads on the vehicle			
uu , vv , rr	Hydrodynamic force or moment component due to square law drag			
ů, v ,ř	Hydrodynamic force or moment component due to added mass			
Prop	Stern propulsion motor			
Thrust	Thruster			

that z_G is positive), while x_G and y_G are zero. Additionally, it was assumed that the inertial properties of the AUV are symmetric. Therefore, the motions of interest involve only the variables u, v and r (surge, sway and angular yaw velocities).

The equations of motion for the AUV were then written as follows:

$$m\dot{u} = mvr + X_{f}$$

$$m\dot{v} = -mur + Y_{f}$$

$$I_{xx}\dot{r} = N_{f}$$

$$\dot{\Psi} = r$$

$$\dot{X} = u\cos\Psi - v\sin\Psi$$

$$\dot{Y} = u\sin\Psi + v\cos\Psi$$

In the above equations, X_f , Y_f and N_f are changes in hydrodynamic forces on the vehicle body resulting from propulsor action and vehicle motion. They arise from hydrodynamic lift, drag and added mass origins. It was further assumed that for hover conditions, lift forces arising from small angles of drift, were minimal. The forces acting on the vehicle were then limited to added mass effects, drag and the maneuvering forces generated by the thrusters and stern propulsion motors.

The drag forces were modeled as being proportional to the square of the velocity using the absolute value to account for direction. Using dimensional hydrodynamic coefficients, the external force and moment equations were assumed to be simplified to the following expressions:

$$\begin{split} X_f &= X_a \dot{u} + X_{uu} u |u| + F_{Prop} \\ Y_f &= Y_* \dot{v} + Y_t \dot{r} + Y_{uv} v |v| + Y_{uv} r |r| + F_{Thrust} \\ N_f &= N_t \dot{r} + N_* \dot{v} + N_{uv} r |r| + N_{uv} v |v| + M_{Thrust} \end{split}$$

Substituting these expressions in to the equations of motion resulted in the following:

$$\begin{split} m\dot{u} &= mvr + X_{\dot{u}}\dot{u} + X_{uu}|u| + F_{Prop} \\ m\dot{v} &= -mur + Y_{\dot{v}}\dot{v} + Y_{\dot{r}}\dot{r} + Y_{uv}v|v| + Y_{rr}r|r| + F_{Thrust} \\ I_{zz}\dot{r} &= N_{\dot{r}}\dot{r} + N_{\dot{v}}\dot{v} + N_{rr}r|r| + N_{vv}v|v| + M_{Thrust} \\ \dot{\Psi} &= r \\ \dot{X} &= u\cos\Psi - v\sin\Psi \\ \dot{Y} &= u\sin\Psi + v\cos\Psi \end{split}$$

Unlike standard maneuvering equations of motion, the square law drag terms do not nondimensionalize into a set of constant coefficient ordinary differential equations with definable stability limits independent of nominal forward speed.

2. Estimation of the Hydrodynamic Coefficients

Relatively accurate values for certain hydrodynamic coefficients $(X_*, X_*, Y_*, Y_*, N_*, and N_*)$ in the equations of motion have been developed and experimentally verified by Warner (1991), however these hydrodynamic coefficients were determined at much higher vehicle velocities than that which would occur during hover positioning. Additionally, no previous estimates were available for the remaining hydrodynamic coefficients for the square law drag $(Y_*, Y_*, N_*, N_*, N_*)$ and N_* .

To determine estimates of the hydrodynamic coefficients, comparisons between the theoretical model and the experimental data were made.

A computer program using Euler integration methods was written using the equations of motion to simulate the motion of the AUV in the horizontal plane. The code for the MATLAB (trademark of Math Works, Inc.) program is provided in Appendix G. As a starting point, the hydrodynamic coefficients determined by Warner (1991) were used. In addition, the hydrodynamic coefficients for the linear drag were used as first estimates for the square law drag hydrodynamic coefficients.

The program was run for each of the three positioning experiments, comparing the results for one particular test, from each experiment. The coefficients were adjusted so as to achieve the best agreement between the model and the experimental data, with the hydrodynamic coefficients common for all three types of positioning experiments. The hydrodynamic coefficients were adjusted to one significant digit. Table 4.2 lists the initial and final values for the hydrodynamic coefficients.

A large difference was noted between the initial and final values for X_{uu}. The initial value was derived for the case where the vehicle was moving at a nominal steady state, average speed of 1.5 feet per second (Warner, 1991). Under these conditions, the stern propulsion motors are operating with a thrust reduction effect due to the forward motion of the vehicle. This thrust reduction can be modeled, similarly to drag, by a square law force as follows:

TABLE 4.2 AUV II HYDRODYNAMIC COEFFICIENTS: HOVER CONDITIONS

HYDROYNAMIC	INITIAL	PINAL
COBPFICIENTS	VALUE	VALUE
Xuu	-0.4024	-3.0
Xudct	-0.00282*377.67	-0.06*377.67
Yvv	-0.10700*51.72	-0.5*51.72
Yrr	0.01187*377.67	0.01187*377.67
Yvdot	-0.03430*377.67	-0.04*377.67
Yrdot	-0.00178*2756.81	-0.00178*2756.81
Nvv	-0.00769*377.67	-0.00769*377.67
Nrr	-0.00390*2756.81	-0.04*2756.81
Nvdot	-0.00178*2756.81	-0.001*2756.81
Nrdot	-0.00047*20137.50	-0.002*20137.50

$$\mathbf{F}_{\mathsf{Pero}} = \mathbf{F}_{\bullet} + \mathbf{X}_{\mathsf{Bodnet}} \mathbf{u} |\mathbf{u}|$$

where F_o is the nominal static force of the stern propulsion motor equal to five pounds (Saunders, 1990).

The final value of X_{uu} from Table 4.2 can be considered to be representative of the combined effects of drag and thrust reduction such that (to one decimal place):

$$X_{uu \, (Pinal)} \approx X_{uu \, (Drag)} + X_{uu \, (Raduct)}$$

$$X_{uu \, (Drag)} = -0.4$$

$$X_{uu \, (Raduct)} = -2.6$$

These results predict a steady state speed for the vehicle, at maximum voltage, of 1.3 feet per second.

3. Theoretical Model Results

Comparison between the experimental data and that predicted by the theoretical model, for the yaw positioning experiment is shown in Figure 4.17. The results for a 90 degree test are shown. The yaw position curve shows that less overshoot is predicted by the model than that measured experimentally, however the vehicle approached the final commanded position with less oscillation. Similar dynamic characteristics are seen in the yaw rate and thruster voltage curves.

The results for the lateral positioning experiment are shown in Figure 4.18. A comparison of Test 3 (see Table 3.2) is shown. The lateral position curve shows similar dynamic characteristics between the model and the

Figure 4.17 AUV Model: Yaw Position Experiment

Figure 4.18 AUV Model: Lateral Position Experiment (Test 3)

experimental data, however the model reached a peak velocity, of smaller magnitude, sooner than the vehicle.

Similar dynamic characteristics are shown in the yaw position curve for the lateral positioning experiment as were observed for the yaw positioning experiment. The model shows less overshoot and a more oscillatory approach to the final commanded position than the data. The difference in the steady state positions, due to the stiction in the vehicle's thrusters is also shown. Similar features are shown in the thruster voltage curve.

Figure 4.19 shows the results for the longitudinal positioning experiment comparison. The comparison was made for Test 7 (see Table 3.2). Very good agreement is shown between the model and the data for the longitudinal range and surge velocity curves. The model shows the same overshoot as the data with only a slightly oscillatory approach to the final commanded position. A slight difference in peak value and time of occurrence is shown in the velocity curve. The same characteristics are shown in the stern propulsion voltage curve.

The stiction in the thrusters and stern propulsion motors is shown in the difference between the yaw position curves for the model and the data.

Figure 4.19 AUV Model: Longitudinal Position Experiment (Test 7)

V. SUMMARY

This chapter documents generalized conclusions of the results presented in Chapter IV. Specific comments regarding the level of success in meeting the objectives of this study are included. Recommendations for areas of further study, related to the concepts discussed in this thesis are made.

A. CONCLUSIONS

Through the course of this study, the ability to achieve accurate acoustic positioning capabilities of the NPS Autonomous Underwater Vehicle (AUV II) under hover conditions was demonstrated.

Use of an independent self-sonar which provided environmental imaging data without the aid of a transponder, along with the inputs from a free directional gyro system provided adequate data from which to base vehicle positioning commands.

Execution of the maneuvering commands through the use of stern propulsion motors and lateral tunnel thrusters, proved vital in achieving the ability to accurately position the vehicle, based on sensor data inputs.

The results of the yaw positioning experiment showed that an accurate final commanded angular position can be achieved using the yaw position inputs from the free directional gyro system and maneuvering commands executed by the thrusters.

Accurate lateral and longitudinal positioning, in the vicinity of a local target, was achieved through the combined input data from the gyro and the sonar systems, and the combined maneuvering efforts of the stern propulsion motors and the thrusters. The stability of the positioning data relative to the target, however was dependent on the gain of the sonar. Overdriving the sonar transducer resulted in unstable positioning data. This indicates that in future missions, an automatic "sonar supervisor" must be included in the control software.

The proportional derivative control law employed to generate the maneuvering commands produced the expected vehicle motion dynamics. The ability to change the dynamic motion characteristics (overshoot and oscillation), was achieved by adjusting the control law gains.

In the cases where the control effort was governed by a combination of position errors (yaw position and range) as seen in the lateral and longitudinal positioning experiments, the stability of the positioning ability was dependent on the coupling effects of the two directions of motion. The motion became particularly unstable in the situations where the position errors resulted in saturation of the thrusters.

Motor stiction affected the error in the final commanded positions, in all of the positioning experiments. The level of stiction in the thrusters limited the ability to achieve the final commanded yaw position and lateral race in both the yaw and lateral positioning experiments. The experimental results showed that the level of stiction was not identical for both thrusters, nor was it the same for either direction for one thruster.

The motor stiction effects were wereened in the case of the longitudinal positioning experiment where the stern propulsion motors generated a yaw moment on the vehicle, which was below the threshold of the lateral thruster response.

The results of the theoretical model provided adequate data to support a model based control effort, however, several effects which were beyond the scope of this study, were not included. Some of which include the following:

- 1. Motor stiction, as previously discussed.
- 2. Changes in thruster and stern propulsion force effects due to changes in the velocity of the vehicle.
- 3. Changes in effects of the hydrodynamic coefficients due to changes in vehicle velocity.

B. RECOMMENDATIONS FOR FURTHER STUDY

This thesis examined the first experiments conducted to study the ability of the NPS AUV II to achieve acoustic dynamic positioning during hover conditions. As a result, several related areas require further research.

Proportional derivative control laws were used to generate the positioning commands for the AUV with favorable results, however optimization of the control law gains is still required. In addition, other types of control methods which may be incorporated, should be studied. In particular, sliding mode control, using model based command generators, should be examined for its suitability to support dynamic positioning behaviors without driving thrusters into asturated conditions.

Further work is required in the area of modeling the motion of the AUV during hover conditions. Certain areas of concern, such as thruster and stern propulsion motor thrust effectiveness and hydrodynamic forces require further research if generalizations of the model were to be pursued.

Experiments should be conducted, to verify higher levels of autonomous operation by examining more complex motion behaviors, including longer missions, combining motions commanded in sequence or simultaneously, using either timed based or sensory data based inputs as the basis for the selection of behaviors.

Using sonar to identify objects of interest within the field of view should be integrated into the capabilities of the robot submarine, although delays in the availability of position related information are likely to cause positional motion instability. A study and development of model based predictor/corrector control is likely to be a requirement for maintaining stable combined motion.

Investigations of disturbance response in the presence of water current could and should be conducted.

APPENDIX A AUV II CONFIGURATION BLOCK DIAGRAM

A simplified block diagram of the major equipment groups is provided on the following page. This diagram shows the basic system power paths and the computer data transfer paths between the components.

APPENDIX B AUV II WIRING LIST

The wiring list for the current configuration of the AUV II is presented on the following pages.

For each item shown, the type of signal carried or channel is listed along with the terminal pin assignment, color, voltage rating and description.

Further wiring details can be found in the manufacturer's technical manual for the individual component.

WERRING LIST FOR AUN 01/12/94 \GUATTRO\HIREAUN

ITEN	SIG NAME/CHAM	TERM	COLDA	TYPE	TO/FROM
DATT FUB, COMPUTER/MINUS (P8	PGS NES	BLK	PON 24V9C SNS	CIRC BRKER, PT. As GMB/REF BUSS
BATT, AFT, EVACE/PROPS AND THRUSTERS		POS NEG	WHT BLK	PON SAVOC	CIRC BRKER, PT. Co BMS/REF BUBS
RELAY, MAIN POWER		PT A, MGT PT B PT C, HGT	MAT RED RED MAT MAT	POW BAVOC POW BAVOC POW BAVOC POW BAVOC	COMP/AM CIRC BRKR TERM A, POWR THRUMULL FUSE BLOCK 1, (TH A1) FUSE BLK 1, AMAL/COMP SYRO/SCREW CIRC BRKR
		PT B ACTUAT + ACTUAT -	RED MHT ORG ORG/GRM	POW 24VDC POW 24VDC CNTL 24VDC GND	TERM C, POWR THRUMULL FUSE BLK 3, SERVG AMP TERM B1, POW THRUMULL GMD/REF BUSS
CIRC BRKR, ANALOG P.S. AND COMPUTERS		PT Ao 30 AMP	WHT WHT	POW 24VDC POW 24VDC	ANAL/COMP BATT TERM A, MASTER RELAY
CIRC BAKR, SERVO AMPS		PT Co PT Co 30 AMP	UHT UHT UHT	POW 24VDC POW 24VDC POW 24VDC	GYRO/SCREW BATT GYRO CIRC BRKER TERM C, MASTER RELAY
CIRC BRKR, SYROS		HOT 8 AMP	WHT WHT	POW 24VDC POW 24VDC	PT Co (on SERVO CIR BRKR) FUSE BLK 2, GYROS
AMALOG PON SUPPLY BOARS	AMALOG DIG GNO A/9 GNO A/9 GNO A/9 GNO A/9 GNO 15 POU CHTEL 5 POU CHTEL POU SUPPLY POU RETURN +5 POU +5 +15 +15 -15 POU +10 +10 -10 POU -10	AN/BIG SHO A/B SHO, P3 A/B SHO, P3 A/B SHO, P3 A/B SHO, P2 A/B SHO, P2 P2-1 P1-3 P1-2 P1-1 P4 P4 P4 P5 P5 P5 P7 P7 P7 P8	GREY GREY SLX	GNB/REF GNB/REF GNB/REF GNB/REF GNB/REF GNB/REF TTL CHTRL TTL CHTRL 24 VBC POW RTM +5 VBC POW 91AGNOSTICS +15 VBC POW 91AG 91AG -15 VBC POW 91AG 91AG -15 VBC POW 91AG -15 VBC REF +16 VBC REF 91AG -10 VBC REF 91AG -10 VBC REF	CELESCO DEPTH CELL BOARD T15 DATASONICS SONAR BOARD T2 ICU-2A BRKBUT (ABC-1 SL5) T P2 ICU-2A BRKBUT (ABC-2 SL 6) T P2 SERVO FIN CONNECTION ACON P.S. (BOTH), CON CONN24 VBC GNB BUSS PIA-3A BRKBUT T35 PIA-3A BRKBUT T37 NASTER RELAY TERM B AMALOS -24 VBC GNB BUSS FIN SERVO CONNECTOR ICU-2A BRKBUT (ABC-1), T2 DATASONICS SONAR BOARD T3 CELESCO DEPTH CELL, T13 ICU-2A BRKBUT (ABC-1), T0 CELESCO DEPTH CELL T12 ICU-2A BRKBUT (ABC-1), T1 RATE GYROS TERM F VERT BYROS TERM E & J ICU-2A BRKBUT (ABC-1), T3 RATE SYROS TERM E & L VERT BYROS TERM E

FB CARE FB UNCARE TRITECH SOMAR FB CARE RELAY FB UNCARE RELAY TRITECH SOMAR RELAY	-10 RELAYED PON RELAYED PON RELAYED PON RELAY CHTRL TTL RELAY CHTRL TTL RELAY CHTRL TTL	P10-2	ORG/BLK BLK MNT MNT GRM/MNT GRM/BLK GRM	BIAG -24 VDC RTN -24 VDC RTN 24 VDC TTL CNTRL TTL CNTRL TTL CNTRL	ICU-2A BRKBUT (ABC-1), T4 F6 BB25 T12 F6 BB25 T11 TRITECH COMM PIN 3 PIA-3A BRKBUT T50 PIA-3A BRKBUT T48 PIA-3A BRKBUT T46
TRANSPORT PLUG TO SPIN BYROS, COMM TO THOMANALL INGIDE/OUTSIDE	ORG RED UNT BLK GRN, BAT GNB BUS UNT/BLK, SYROS		RED GRG UHT UHT/BLK BLU BLK	GMB POW, 24V	SPIN GYROS JUMPED TO E
RUN PLUG FOR NORMAL OPERAT MASTER RELAY SOLOMOID 24VDC POU INSIDE/OUTSIDE	ION ORG RED WHT BLK GRN, BAT GND BUS WHT/BLK, GYROS		RED ORG WHT WHT/BLK BLU BLK	CNTL 24VDC POW 24VDC SND POW, 24V	CLOSE MASTER RELAY JUMPED TO B1 SPIN GYROS JUMPED TO E
THRUNULL, POMER, AUV INSIBE PIGTAIL TO INSIBE COMMECTIONS	DRG REB MHT BLK GRN WHT/BLK	B1 Ai C A E F	ORG RED RED RED BLK BLK	CNTL 24V9C POW 24VBC CHG SYRO BA CHG COMP BA SND POW RTM	PT B1, MASTER RELAY FUSE BLOCK 1, 1 AMP TERM C, MASTER RELAY TERM A, MASTER RELAY GND/REF BUSS GYRO FUSE BLK 2
UMBILICAL/BENCH BOX THRU-HULL OUTSIDE PIGTAIL TO UMBILICAL	RED ORG WAT WHT/BLK BLU BLK	B1 A1 C A E	RED ORS WHT GRM BLU BLK	ENTL 24VDC POW 24VDC CHARGE BATT CHARGE BATT GND POW RET	TOGGLE SN., CONN A1 1 AMP FUSE/SWITCH 5 AMP FUSE, RED RECPT 5 AMP FUSE, RED RECPT BLK BAMAMA RECEPT.(2) SN. TOGGLE, CONN E
FUSE BLOCK 1, FUD		IN 5 AMP 0-1 AMP 10 AMP IN 1 AMP	MAT MAT MAT MAT RED RED	PON 24VDC PON 24VDC PON 24VDC PON 24VDC PON 24VDC PON 24VDC	TERM B, MASTER RELAY ANALOG P.S. TURBO PROBE ACON P.S.(2) OS9, DOS PT A, MASTER RELAY PT A1, POWER THRUMULL
FS BLOCK 2, AFT, SYRO		1N 5 AMP 2 AMP 2 AMP RET RET RET	WHT RED RED RED BLK BLK BLK BLK	POW 24VBC POW 24VBC POW 24VBC POW RTW POW RTW POW RTW POW RTW	GYRO CIRC BRKR RATE GYROS (3) VERTICAL GYROS (2) FREE GYRO POW INVERT. RATE GYROS (3) VERT GYROS (2) FREE GYRO POW INVERT. TERM F, POW THRUMALL

Commence of the second of the

FS BLOCK 3, SERVO MIP		POW SUPPLY	WAT	POU 24VDC	TERM D, MASTER RELAY
to armin a) action may	THR	5 AMPS	WHT	POW 24VDC	FOR/VERT THR SERVO T4
	THE	5 MPS	WIT	PON 24VEC	FOR/HOR THR SERVO TA
	THR	5 AMPS	WHT	POW 24VDC	AFT/VERT THE SERVO TA
	THR	5 APS	MAT	PDW 24VBC	AFT/HOR THR SERVO T4
	PROP	10 MPS	WIT	PON SAVOC	STED MAIN SERVO TA
	PROP	10 MPS	WHT	POW 24V9C	PORT MAIN SERVO TA
FREE GYNG (UN)CAGE		5 AMPS	RED	POW 24V9C	FREE SYRO TERM 14
and/her mass		NISS	BLK	GND/REF	ANALOG P.S.ANAL GNG
		DUSS	BLK	POW RTN	TRITEK PROF. SOMAR
		BUSS	BLK	POW RTN	TRITEK SCAN SONAR
		105 5	BLK	POW RTN	ACON P.S. (COMPUTERS)
		NUSS	BLK	END	COMP./AMALOG BATT.,-
		Buss	BLK	GND	GYRO/NOTOR BATT.,-
		DUSS	BLK	POW RTN	TERM E, POW THRUMULL
		Buss	DRG/GRN	POW RTM	ACTUAT-, MASTER RELAY
		DUSS	BLK	POW RTN	AMALOG P.S.,24V RET
		BUSS	BLK	POW RTN	SERVO AMPS, FUSE BLK3
OS9 ACOM P.S. INVERTER	CNR	•	Na u	SOU STN	CHR /BEE BURG
UST MEUN F.S. INVENIER	SND Pow	3 5	BLK	POW RTN	GND/REF BUSS
	SENS	8	WHT Blk	POW 24VDC SENS	FUSE BLK 1 JUMPED TO 9 & 13
	JEND	D		SND/REF	POW RTW RPM SENSORS
	GND	9	BLK BLK-WHT	GND/REF	OS9 COMPUTER GND
	UND	7	BLK	SND/REF	JUMPED TO 8 & 13
	GND	13	BLK	COMM/REF	ANAL P.S., ANAL GND
	unu		BLK	5ND/REF	JUMPED TO B & 9
	PBN	10	WHT	POW +5VDC	OS9 COMPUTER
	· ••	••	WHT	PON	JUMPED TO 11
	PON	11	RED	PON +5VDC	RPH SENSORS
		-	WHT	SENS	JUMPED TO 10
	PON	12	WHT	POW -12VBC	OS9 -12VDC SUPPLY
	POW	14	WHT	POW +12VDC	OS9 +12VDC SUPPLY
OS9 COMPUTER		GND	BLK-MHT	SNB/REF	TERM 9, OS9 ACON P.S.
		+5VDC	WHT	POW +5VDC	TERM 10, DS9 ACON
		+12400	WHT	POW +12VBC	TERM 14, 059 ACON
		-12VDC	WHT	POW -12VDC	TERM 12, OS9 ACON
857 COMPUTER BOARDS		RIBBON	GRY	CMTRL, I/O	BREAK OUT BOARDS (4)
DOS ACOM P.S. INVENTER		3	Ba y	POW RTN	CND/DEC MICE
and mean rate inventer		3 5	BLK Wit	ruw Kin	SND/REF BUSS
		5 8	BEK .	SENS	JUMPED TO 9 & 13
		•	BLK	SIB/REF	JUMPED TO 8 & 13
		13	BLK	DIED/REF	JUMPED TO 8 & 9
		10	WHT	POW	JUMPED TO 11
		ii	WIT	SENS	JUMPED TO 10
		12			
		13			
		14			
BOS COMPUTER					
SERVO AND PORT MAIN SCIEN		1 -11	SL K	PON RTN	PORT MAIN MOTOR, BLK
		2 +#	MAT	var pou	PORT MAIN MOTOR, RED

SERVO AMP STOS MAIN SCREW	3 PON BNB 4 HI VOLT COME 2 COME 4 COME 5 COME 5 COME 11	DLX UMT OREY RED OREY VIOL DLU	POW RTW POW 24VDC SIS SMD + REF IN - REF CURR MON INVID	FUSE BLOCK 3 FUSE BLOCK 3 JUMPED TO PIN 5 BAC-20 BKOUT SL11 T30 BAC-20 BKOUT SL11 T27 ICU-2A,SL 6, T 00 PIA-3A, SL 4, T 26
	2 +M 3 POM GNB 4 MI VOLT CONN 2 CONN 4 CONN 5 CONN B CONN 11	BLK WAT BLK WAT GREY DRANG GREY BLU VIOL	POW RTN VAR POW POW ATM POW 24VDC SIG SND + REF IN - REF CURR HON INHIBIT	STBB MAIN MOTOR, BLK STBD MAIN MOTOR, RED FUSE BLOCK 3 FUSE BLOCK 3 JUMPED TO PIN 5 BAC-2B BKOUT SL11 T32 BAC-2B BKOUT SL11 T29 ICU-2A, SL 6, T 1 PIA-3A, SL 4, T 24
SERVO FOR/VERT THRUSTER	1 -M 2 +M 3 POH GND 4 HI VOLT CONN 2 CONN 4 CONN 5 CONN 8 CONN 11	BLK MMT BLK MHT GREY BLU GREY YEL BRN	PON RTN VAR PON PON 24V5C SIG GNS + REF IN - REF CURR MON INHIBIT	FOR/VERT THRUSTER, BLK FOR/VERT THRUSTER, RED FUSE BLOCK 3 FUSE BLOCK 3 JUMPED TO PIN 5 DAC-28 BKOUT SL11 T34 DAC-28 BKOUT SL11 T31 ICU-2A, SL 6, T 3 PIA-3A, SL 4, T 22
SERVO FOR/HOR THRUSTER	1 -H 2 +M 3 POW GND 4 HI VOLT COWN 2 COWN 4 COWN 5 COWN B COWN 11	BLK WHT BLK GREY BLK GREY WHT YEL	POW RTN VAR POW POW RTN POW 24VDC SIG GND +REF IN -REF CURR MON INHIBIT	FOR/HOR THRUSTER, BLK FOR/HOR THRUSTER, RED FUSE BLOCK 3 FUSE BLOCK 3 JUMPED TO PIN 5 DAC-2B BKOUT SL11 T36 DAC-2B BKOUT SL11 T33 ICU-2A, SL 6, T 4 PIA-3A, SL 6, T 20
SERVO AFT/VERT THRUSTER	1 -M 2 +M 3 POW GND 4 MI VOLT COMM 2 COMM 4 COMM 5 COMM 8 COMM 11	BLK WHT BLK WHT GREY YEL BREY BLU GRN	PGW RTN VAR PGW PGW RTN PGW 24VBC SIG GMD +REF IN -REF CURR MGM INHIBIT	AFT/VERT THRUSTER, BLK AFT/VERT THRUSTER, RED FUSE BLOCK 3 FUSE BLOCK 3 JUMPED TO PIN 5 BAC-2B BKOUT SL11 T38 BAC-2B BKOUT SL11 T35 ICU-2A, SL 6, T 5 PIA-3A, SL 4, T 18
SERVE AFTANSA THRUSTER	1 -R 2 +H 3 POW GMB 4 HI VOLT COMM 2 COMM 4 COMM 5 COMM 8 COMM 11	BLK MAT BLK MAT BREY MAT BREY BRB DRG	POW RTN VAR POW POW RTN POW 24VBC SIG GND +REF IN -REF CURR MON INHIBIT	AFT/NOR THRUSTER, BLK AFT/HOR THRUSTER, RED FUSE BLOCK 3 FUSE BLOCK 3 JUMPED TO PIN 5 DAC-2B BKOUT SL11 T40 DAC-2B BKOUT SL11 T37 ICU-2A, SL 6, T 6 PIA-3A, SL 4, T 16
PAGP, STB MAIN SCREW	NEB BLK NPH OND NPH 3 CHA	MAT BLK BRS	VAR POW POW RTN GIG/REF TACH	STB MAIN SERVO, +H STB MAIN SERVO, -H OS9 ACON P.S., T B TIM-1A, SL 7, T 3

	APH 4 Vec	REB	PON SVOC	069 ACSM P.S., T 11
PROP. PORT HAZIN SCREW	RED	MAT	VAR PON	PORT MAIN SERVE, +H
	BLK	BLK	POW RTN	PORT MAIN SERVO, -H
	APH OND	BLK	BMB/REF	DS9 ACOM P.S., T 8
	APIS 3 CMA	YEL	TACH	TIM-1A, SL 7, T 6
	APH 4 Vec	RED	PON SUC	089 ACON P.S., T 11
THEWETER, FOR/VENT	RED	WIT	VAR PON	FOR/VERT SERVO, +H
	BLK	BLK	POW RTN	FOR/VERT SERVO, -N
	RPH END	BLK	GNG/REF	DS9 ACOM P.S., T 8
	APH 3 CHA	GRM/BLK	TACH	TIM-1A, SL B, T 9
	RPH 4 Vcc	RED	POW 5VOC	059 ACON P.S., T 11
THRUSTER, FOR/HOR	SEE	FOR/VERT		400 14 M 6 T 14
	RPH 3 CHA	VIOL	TACH	TIN-1A, SL B, T 10
THRUSTER, AFT/VERT	SEE	FOR/VERT		
	RPM 3 CHA	BLU/WHT	TACH	TIM-1A, SL B, T 7
THRUSTER, AFT/HOR	SEE	FOR/VERT		
	RPH 3 CHA	WHT/BLK	TACH	TIM-1A, SL B, T B
FIN SERVO COM BOARD	SUPPLY	RED	PDW 5 VDC	AMALOG P.S., 5 VDC
	DUT	RED	PON SVDC	FIN SERVOS (8), T 3
	OUT	RED	5 VDC	FIN SIGNAL PULL-UP BOARD
	RET	BLK	GND	ANALOG P.S., GND/REF
	RET	BLK	GND	FIN SERVOS (B), T 2
	REF	SREY	GND/REF	TIM BRKOUT, T23 and T24
	,			,
FIN SIGNAL BOARD	SUPPLY	RED	POW SVDC	FIN SERVO 5 VDC POW CONN
inject 5VDC	DUT	WHT	5 VDC	TIM BRKOUT, Tii
•		WHT	5 VDC	TIN BRKOUT, T12
		WHT	5 VDC	TIM BRKGUT, T13
		WHT	5 VDC	TIN BRKOUT, T14
		WHT	5 VDC	TIN BRKOUT, T17
		WHT	5 VBC	TIM BRKOUT, TIB
		WHT	5 VDC	TIN BRKOUT, T19
		WHT	5 VDC	TIM BRKOUT, T20
70M P86 1965		\$4 W 11575	212	
FIN, FOR/TOP	1	FK-AIOT	\$16	TIN-1A BRKOUT TII
	2	BLK	SND/REF	FIN SERVO BOARD, GND
•	3	RED	PON 5 V9C	FIN SERVO BOARD, PON
FIR, FOR/STDD	i	DLK-ORS	SIG	TIN-1A BRKOUT T14
	Ž	SLK	SMD/REF	FIN SERVO BOARD, GND
	3	RED	PON 5 VBC	FIN SERVO BOARD, PON
	•	*		vin daily parale, rea
FIN, FOR/PORT	1	BLK-RED	S16	TIN-1A BRKOUT T13
	5	BLK	GND/REF	FIN SERVO DOARD, 6MD
	3	RED	POW 5 VDC	FIN SERVO BOARD, POW
FIN, FOR/SOT	1	BLK-YEL	S16	TIN-1A BRKOUT T12
ram) rum/##1	2	MK.	OND/REF	FIN SERVO DOARD, SND
	3	RED	PON 5 VOC	FIN SERVO BOARD, POU
	J	RED	rum J YVL	TIN BERTU SMMU, TUR
F3N, NF3/10P	1	N.K-WIT	518	TIH-1A BRKOUT T17

		3	BLX REB	BNB/REF POW 5 VDC	FIN SERVO BOARD, SND FIN SERVO BOARD, POW
FIN, AFT/STED		i e 3	BLK-GRM BLK RED	SIG OND/REF POW 5 VDC	TIN-1A BRKOUT TOO FIN SERVO BOARD, GNB FIN SERVO BOARD, POW
F1M, AFT/FORT		i 2 3	BLK-GRG BLK RED	SIG SNB/REF PON 5 VDC	TIM-1A DAKBUT T19 FIN SERVO DOARD, SND FIN SERVO BOARD, PON
FIN, AFT/BGT		1 2 3	BLK-BRN BLK RED	SIG GND/REF POW 5 VDC	TIN-1A BRKOUT T18 FIN SERVO BOARD, GNB FIN SERVO BOARD, PON
GYRO, PITCH RATE	P.S. REF P.S. + BC SIGNAL + SIGREF SIG +REF	A B D E F	BLK RED BAN GRN UHT	GND/REF 24 VDC ANALOG SIG -10 VDC REF +10 VDC REF	· · · · ·
GYRO, ROLL RATE	P.S. REF P.S. + DC SIGNAL + SIGREF SIG +REF	A B B E F	BLK RED BLK GRN WHT		FUSE BLOCK 2, GND FUSE BLOCK 2, COMMON 5 AMP FUSE ICU-2A BRKDUT (ABC-2), T9 ANALOG P.S. BOARD, T P8 ANALOG P.S. BOARD, T P7
GYRO, YAM RATE	P.S. REF P.S. + DC SIGNAL + SIGREF SIG +REF	A B D E F	BLK RED WHT GRN WHT	GNB/REF 24 VBC AMALOG SIG -10 VBC REF +10 VBC REF	FUSE BLOCK 2, SND FUSE BLOCK 2, COMMON 5 AMP FUSE ICU-2A BRKOUT (ADC-2), T10 AMALOS P.S. BOARD, T P8 AMALOS P.S. BOARD, T P7
GYRS, VERTICAL PITCH & ROLL AMBLE	P.S. + DC P.S. REF ENECT CUTOUT ENECT CUTOUT SIG. + REF, GNG SIG REF, YEL SIG REF, BLU SIG REF, BLK PITCH ANGLE, SIG ROLL ANGLE, SIG	J H L F	REB BLK INT GRM GRG/REB GRG/REB GRG/REB GRG/BLK GRG/BLK BRN VIOL	24 VDC GNB/REF CNTRL CNTRL +10 VBC REF +10 VBC REF -10 VBC REF -10 VBC REF AMALDG SIG AMALDG SIG	FUSE BLOCK 2, COMMON 2 AMP FUSE FUSE BLOCK 2, GMB JUMPED TO D JUMPED TO C AMALOS P.S. BOARD, T P7 SAME WIRE, T P7 AMALOS P.S. BOARD, T P8 SAME WIRE, T P8 ICU-2A BRKOUT (ABC-2), T11 ICU-2A BRKOUT (ABC-2), T12
SYNG, FREE, P.S. HIVENTER	AC QUITPUT AC CUMMON AC QUITPUT BC INPUT	1A 2B 3C 45	MED UNT BLK MED twist pai	PON 115VAC AC BNB/REF PSN 26VAC IPPON 12VBC	F8 98 25 COMM., T4 F6 98 25 COMM., T7 F6 99 25 COMM., T6 GYRO FUSE BOX (RED POW), F92

THE TAXABLE PROPERTY OF THE PR

	•	3C 9M9	SE UF	BLK	DC GND/REF	SYRO FUSE DOX BLK via Thru-Hu F-E
			•			
	SYNG, FREE & 25 cour	SO AC COMM/REF S2	1 2	RED OGB/GRM	\$16 \$3 010/NEF \$ 2	SYNCHRO P1:1 T5 SYNCHRO P1:1 T3
		AC PON	3	MAT	AC COMM PON 115 VAC	P.S. T28, SYNCHRO P1:1 T2 P.S. T1
		no conn AC POU	5	BLK	PON 26 VAC	P.S. T3C, SYNCHRO Pl:1 Ti
i in the second			7	WKT	AC COMM	JUMPED TO T3
		UNICAGE INDICATE	9	GRN MAT/REB	TTL LO TRUE DIG GND	PIA-3A DRKOUT T23 PIA-3A DRKOUT T3
		UNCAGE (HOT)	10 11	WHT	PGW	JUNPED TO TO UNCAGE RELAY VIA AMAL BRD PO TO
		CAGE (MBT) RO COTTR	12 13	BLK	PON	CAGE RELAY via ANAL BRD P9 T3
		PON FOR (UN)CABE CAGE INDICATE		RED WHT	POW 24 VDC TTL LO TRUE	SERVO AMP FUSE BLOCK, 5 AMP, FB3 PIA-3A BRKOUT T26
			16	UHT	LIT EN INDE	JUNPED TO T14
		no conn S1	17 18	GRN	S16 S1	SYNCHRO P1:1 T4
		no conn	19			
	GYRD, FREE, SYNCHRO	OUTPUT	RIPBON	GRY	DIG/AMAL	HED 34 COMN TO MFI-1 SL 12
	RESOLVER BOARD NOTE-takes power from	DUTPUT SEE SCHEM P1:1/J 1:1	1	BLK	IP REF HI	
	computer, not gyro		3	UHT Org/Grn	IP REF LO S2	
			4 5	GRN RED	S1 S3	
			•		50	
	THRUMULL #2, RS232 TELE CABLE COLORS		MH 7 GRN	grn Org	RIBBON Ribbon	059 MFI-1 SL12 T1 059 MFI-1 SL12 T3
			BLK	BRN	RIBBLN	0S9 MFI-1 SL12 T5
			YEL Red	GRN Dre	ribbon Ribbon	DOS MFI-1 SL T1 DOS MFI-1 SL T3
			BLU	BRN	RIBBON	DOS MFI-1 SL TS
	THRMANLL 01, RS232 FORMARS		UNIT GRN	GRN DRG	RIBBON RIB BO N	
	CS TBO USES		BLK	BRN	R1 38 0M	
			WED YEL	grn Org	risson Risson	
	e e e e e e e e e e e e e e e e e e e			BRM	RIBBON	
	TRITEK PROFILER SOMA	BATA GUT	A	RED	RS 232	FLYING COMM
	FLYING COMM + 10 PIN BULKH COLORS	BATA IN DC PON	9	GRN MIT	RS 232 + 24 VDC	1
	THE PART SERVICE STREETS	OND/REF ANALOG DUT	Ď	BLK	ONO/REF AMALOS DC	•
		HOUSING EARTH	NO CONN	ORS	mmaso ut	

TRITER SCHOOLER SOME FLYSHE COM + 10 PIN SMLAN COLORS	BATA OUT BATA IN BC PON GND/REF ANALOS BUT NOUSING EARTH	A B C B E NO COMM	RED/BLK GRM/BLK MHT/BLK BLU DRG/BLK	RS 232 RS 232 + 24 VDC GND/REF AMALOG DC	FLYING COMM
FLYING BUTBOARD COMM. TRITECH PROFILER	BATA BUT BATA IN BC PON BNB/REF AMALOG BUT	A B C D E	REB/4 SRN/3 MIT/1 BLK/2 ORS/5	RS 232 OUT RS 232 IN +24 VBC BMB/REF AMALOG DC	PIN 4, UNT INBOARD WIRE PIN 3, SRN INB PIN 1, UNT INB PIN 2, BLK & SRY INB NO COMM
FLYING OUTBOARD CONN. TRITECH SCANNER	BATA DUT DATA IN DC PON SND/REF ANALOG OUT	A B C D E	RED/BLK/8 GRN/BLK/9 MHT/BLK/7 BLU/6 ORG/BLK/10	RS 232 OUT RS 232 IN +24 VDC GND/REF AMALOG DC	PIN 8, RED IMBOARD WIRE PIN 9, BLK INB PIN 7, WHT INB PIN 6, BLK & GREY INB NO CONN
FORWARD 10 PIN THRU-HULL INSOARD CONN. (TRITECH SOWARS)	DC POW POW GND DATA IN DATA OUT ANALOG SIG POW GND DC POW DATA OUT DATA OUT DATA OUT DATA IN ANALOG SIG	1/C 2/D 2/D 3/B 4/A 5/E 6/D 7/C 8/A 9/B 10/E	WHT BLK GRY GRN WHT NO CONN BLK GRY WHT RED BLK NO CONN	+24 VDC GND/REF RS 232 RS 232 GND/REF GND/REF + 24 VDC RS 232 RS 232	ANALOG P.S. T P9-1 -24 VDC GND BUSS SIO-1B CARD, PIN 13, PROF PORT SIO-1B CARD, PIN 3, FROF PORT SIO-1B CARD, PIN 5, PROF PORT COMMONED TO PIN 2 SIO-1B, PIN 13, SCAN PORT COMMONED TO PIN 1 SIO-1B CARD, PIN 5, SCAN PORT SIO-1B CARD, PIN 3, SCAN PORT
FORMARD 4 PIN THRU-HULL OUTBRD via FLYING COMM (A.B.C.B)		1 (C) 2 (B) 3 (D) 4 (A)	NHT BLK SRN RED	SIG + GND/REF GND/REF SIG +	TURBO PRODE PULSE + (RED) DATASONICS SONAR REF (BLK) TURBO PROBE REF (BLK) DATASONIC SONAR SIG + (RED)
FORWARD 4 PIN THRU-HULL INDOARD		1 (C) 2 (B) 3 (D) 4 (A)	MHT BLK GRN RED	SIS + SMD/REF SMD/REF SIG +	T PROBE CIRCUIT BOARD TS BATASONICS CIRCUIT BOARD INPUT TI T PROBE CIRCUIT BOARD TO BATASONICS CIRCUIT BOARD INPUT TA
DATASONICS SOMAR TRANSD. (FLYING COUN)	SIG+ SIG REF	A B	RED DLK	SIG + SIG REF	TO 4-PIN BULKHEAD CONN TO 4-PIN BULKHEAD CONN
SATASSNICS SOME BOARD THERMISTER	IMPUT COMM. IMPUT COMM. THERM IMPUT THERM IMPUT 12 PIN	1	RED BLK RED GRN BLU/BLK	SIS + SIG REF	SONAR SIG, via FNARD BULH CONN P4 SONAR SIG, via FNARD BULH CONN P2 THERMISTER THERMISTER EXT. KEY INPUT

		2 3 4 5 6 7 8	BLK RED/INIT BLK BLK/INIT-RED NG CONN NG CONN NG CONN NG CONN	PON BITS PON 15 VOC AMAL BITS NO COMM	AMALOS P.S. 809 AMALOS P.S. +15 VDC SUPPLY JUNED TO TE ERROR SIG
		10 11 12	NS COM WIT/BLX-RED NG COM	SIG +	ICU-2A SAKSUT T13
SEPTH CELL SOARS BEPTH CELL TRANSS					
TURBO PROBE DOARD	POW GNB/REF S16 OUT S16 IN S16 REF	1 2 3 4 5 6	NO COMP MHT BLK MHT MHT GRM	PON 24 VDC GNB/REF PULSE SIG SIG + IMP - SIG IMP REF	FUGE BLK 1 (MASTER RELAY) GMR REF BUSS TIM BRKOUT T4 PROBE via 4 PIN THR-H T1 + RED (C) PROBE via 4 PIN THR-H T3 + BLK (D)
TURBO PRODE TRANSD	SIG + SIG REF	NHT IN AUV GRN IN AUV	RED (C) BLK (D)	+ SIG SIG REF	TURBO P CARD via FLY CONN + 4 PIN TURBO P CARD via FLY CONN + 4 PIN
GPS RECEIVER OPS DIFF. RECEIVER OPS ANTENNA					
TIN-1A slet 7 610 MEX (A9,8,3) INCL. BAKBUT (IMPUT)	10 gate 1 8 gate 2 6 gate 3 4 gate 4 3 gate 5	6 3 4	YELL ORG WIT	RPM SIG RPM SIG RPM SIG	PT SCREW RPM T3 STBD SCREW RPM T3 TURBO PROBE T4
	3 gate 5 19 606 20 908 1,2 +15 V9C	2 23 24	GRY GRY RED-CRG	GRED SIND POW	FIN SERVO BOARD, GND FIN SERVO BOARD, SND TERM O SL 5 BRKBUT
TIM-1A slot 8 A20 HE3 (A9,8,4) THCL. BOKUNT (INDUT)	10 gate 1 8 gate 2 6 gate 3 4 gate 4 3 gate 5	9 10 7 8 5	ORN/BLK Viol Blu/unit unit/blk	RPH sig RPH sig RPH sig RPH sig	F.V. THR RPM T3 F.H. THR RPM T3 A.V. THR RPM T3 A.H. THR RPM T3
	17 018 20 010 1,2 +15 VBC	23 24	BRY BRY RED-ORS	OND OND POU	FIN SERVO BOARD, OND FIN SERVO BOARD, OND TERM O SL 5 BRKOUT

	,				
TIN-1A SLET T	7 out 1	11	AIGT	CHTRL	FND TOP FIN, T 1
640 NET (A9,8,5)	5 out 2	12	AET	CNTRL	FWB BOT FIN, T 1
MCL. BROKET (BIFFUT)	9 out 3	14 13	ers rea	CHTAL	FND STOD FIN, T 1 FND PORT FIN, T 1
5 VSC 1M3ECT18M	11 001 1	17,18,17,20	ÚNT	5 VIC	FIN SERVO INJECTION BOARD
	13 out 5	16			
	17 SNC1 19 SND	15 23	SRY	200	FIN SERVO DOARD, GNA
	20 (10)	24	SRY	SIG	FIN SERVO BOARD, GND
	1,2 +12 VDC		NED-ORS	POW	TERM O SL 5 BAKDUT
TIN-1A SLOT 10	7 . out 1	17	WHT	CNTRL	Aft. FIM, Top
600 NET (A9,8,6)	5 out 2	18	BRN	CNTRL	Aft. FIN, Bettoe
INCL. INKENT	9 out 3	20	GAN	CNTRL	Aft.Fin, STBD
(OUTPUT) 5 VBC INSECTION	11 out 4	19 17,18,19,20	ORG: Wht	CNTRL 5 VDC	Aft.Fin, Port FIN SERVO INJECTION BOARD
a tac substitut	13 out 5	55	wi+1	J 786	I'M SERVE INSECTION BURNS
	15 Fout	21			
	19 SND	53		SND/REF	INTERN GND + FIN SERVO BOARD GND
	50 CMD	24 25	GRY	GND/REF GND/REF	INTERN GND + FIN SERVO BOARD GND JUMPED TO T23
		59 52	GRY	GMD/REF	JUMPED TO T24
	1,2 +12VDC		RED-ORG	PON	TERM O SL 5 BRKDUT
			e e		
DAC-2B SLOT 11	1	· 27	GREY	SND/REF	PORT S SERV T5
40 MEX (A5)	5	30	RED	Ch.1	PORT S SERV 14
INCL BAKDUT	3	29	SREY	GND/REF	STBD S SERV T5
AMALOG SIG. BUT	5	32 31	ORG GREY	Ch.2 ∴ €F	STBD S SERV T4 F V TH SERV T5
		34	DLUE	CH	F V TH SERV TA
	7	33	GREY	GND/REF	F H TH SERV T5
	8	36 35	BLK	Ch.4	F H TH SERV T4
	9 10	35 38	Gr ey	GNB/REF CH.4	A V TH SERV TS A V TH SERV T4
	ii	37	GREY	SMB/REF	A H TH SERV TS
	12	40	WIT	Ch.6	A H TH SERV TA
	13	39		ONB/REF	
	14 15	42 41		Ch.7 SNB/REF	
•	16	44		Ch.8	
	17 +15 V9C	43		+15 DC PWR	Internal BC-BC Pwr
	18 +15 VBC	46		+15 DC PMR	• •
	19 -15 VDC 20 -15 VDC	45 48		-15 BC PWR -15 BC PWR	• • •
	64 -17 4 2 6	70		-14 MV FRR	
ABC-2 (ICU-26) SLT 6	CURRENT HON	0	VIOL	ANAL. SIG	PORT SCREW SERVO A TB
20 NEX (84)	CUMPENT HEN	š	DLU	AMAL. SIS	STBD SCREW SERVO A TB
INCL SHICKET	2		Viči	AMAI 010	E II TH CERNS AND TO
male invers	CHRENT NON	3	AET AET	anal. Sig anal. Sig	F V TH SERVO AMP TB F H TH SERVO AMP TB
		5	SLU	ANAL. SIS	A V TH SERVO AMP TB
	CURRENT NON	6		AMAL. SIS	A V TH SERVO AMP TO
DEPTH SIGNAL	REPTH	7	YEL	AMAL. SIS	BEPTH CELL CARD TIO

RATE SYRG RATE SYRG RATE SYRG VERTICAL SYRG SORMA	PITCH RATE ROLL RATE YAN RATE PITCH AMBLE ROLL AMBLE BATASONICS TRIT PROF? TRIT SCANNER? AMAL/DIS	8 9 10 11 12 13 14 15 P2	BRO-BLU BLK-BLU BRN VIOL WIT/BLK/RED BREY	AMAL. SIG AMAL. SIG AMAL. SIG AMAL. SIG AMAL. SIG AMAL. SIG	Ptch Rate Syro, PIN B Rell Rate Syro, PIN B Yaw Rate Syro, PIN B Ptch Ang. Syro, PIN F Rell Ang. Syro, PIN K BATAS SGMAR CARB, T11 AM/BIG GNB AMAL P.S.
ABC-1 (ICU-2A), SL 5 10 HET, AMALOG P.S. INCL. BRADUT BIAGNOSTICS	+15 VBC SUPPLY -15 VBC SUPPLY +5 VBC SUPPLY +10 VBC SUPPLY -10VBC SUPPLY	0 0 1 2 3 4 5 6 7 8 9	RED/UNIT RED/ORG RED/BLK RED ORG/RED ORG/BLK	AMAL BIAGN POW +15VBC AMAL BIAGN AMAL BIAGN AMAL BIAGN AMAL DIAGN	+ 15V TERM AMAL. P.S. TIM CARBS PIN 1,2 (4) - 15V TERM AMAL P.S. + 5V TERM AMAL P.S. + 10V TERM AMAL P.S. - 10V TERM AMAL P.S.
		P2	GREY	GND/REF	AN/DIG GHD ANAL P.S.
PIA-3A, BO HEI, SL 4 TTL IMPUTS P2 VIAI INCL. BRKGUT	1 +12 not conf 2 -12 not conf 3 +5 4 +5 5 GNB 6 GNB 7 CB2 8 CA2 9 CB1 10 CA1 11 PB7 12 PA7 13 P96 14 PA6 15 P95 16 PA5 17 P94 18 PAA 19 P83 20 PA3 21 P92	02 01 04 03 03 06 05 08 07 10 09 12 11 14 13 16 15 18 17 20	WHT/RED WHT	+ SVDC DIG GND DIG GND	TO SERVO AMP INVERTOR CHIP FROM FR GYRO PIN 9 TO SERVO AMP INVERTOR CHIP
FB UNICAGE IMPICATE FB CHBE IMPICATE	22 PA2 23 PB1 24 PA1 25 PB0 26 PAG	22 21 24 23 26	grn uht	TTL LO/TRUE	FREE BY 9825, PIN 8 FREE GR 0825, PIN 15

P14-26 coe't, slet 4 TR, SUIPURS P2 VIAG INC. MANNET	1 +12 2 -12 3 +5 4 +6 5 000 6 000 7 CDE	Not conn Not conn 28 27 30 29			
	8 CA21 9 CB1 10 CA1	31 3A 33			
P.S. M/BFF	11 P97 12 PA7 +/- 13 P96	34	wht	TTL NI/TRU	AMAL P.S. T PE-1
P.S. MI/SFF	14 PA6 + 1 15 PB5		uht/brn	TTL MI/TRU	AMAL P.S. T P1-3
THRUSTER SERVO INHIBIT	16 PAS A.M		uht-39	TTL INIT NI	INVERTER BOARS T 8
THRUSTER SERVO INHIBIT	18 PA4 A.V		unt-41	TTL INIT NI	INVERTER BRD T 6
THRUSTER SERVO INHIBIT TRITEC SOMAR OM/OFF THRUSTER SERVO INHIBIT FREE GYRO SCREH SERVO INHIBIT FREE GYRO SCREH SERVO INHIBIT	20 PA3 F.I 21 PB2 Tri 22 PA2 F.V 23 PB1 Unc 24 PA1 St1 25 PB0 Ca1 26 PA0 Por	itech 46 J.Thr 45 Lage 48 Screw 47	wht-43 green wht-45 grn/blk wht-47 grn/wht wht-49	TTL INIT HI TTL LO/TRU	INV BRD T 45 AMAL P.S. P10-1 INV BRD T 2 AMAL P.S. P10-2 INV BRD T 17 AMAL P.S. P10-3 INV BRD T 15

TTL INVERTER FOR PIA-3A TTL SUTPUTS TO SERVO AMPS

A.H. THR INNIB	T 3 9	8-12	DRG	TTL LO/TRU	A.H.TH SERVO AMP T-11
A.V. THE INHIB	T41	6-14	grn	TTL LO/TRU	A.V.TH SERVO AMP T-11
F.H. THR IMMID	T43	4-16	YEL	TTL LO/TRU	F.H.TH SERVO AMP T-11
F.V. THR IMMID	T45	2-18	brn	TTL LO/TRU	F.V.TH SERVO AMP T-11
STB SCREW INNIB	T47	17-3	VIOL	TTL LO/TRU	STB SCRW SERV AMP T11
PRT SCREW INHIB	T49	15-5	BLUE	TTL LO/TRU	PT SCRW SERVO AMP T11
+5VBC PAR, BAKBUT	Ti	1,10,19	WHT	PWR	PIA-3A BRKOUT TI
SND, PIA BOXOUT	T3	20	WHT	DIG GND	PIA-3A BAKOUT T3

NFI-1 address 700 bex slot (A9,8,7) slot 12 NB BAKBUT, DIRECT FLAT RIBBON COMM. ASSIGN ON 34 PIN COMM. ON MFI-1 BOARD FROM SYNCHRO BENGD. All signals te/from P2 to Syncro to Digital Board from 36

144.7	arithmera se	/// TE TE TO D	THE T W	en niåt sat	20012 1122
PE	Function	Signal	P2	Function	Signal
1	+12	•	2	-12	-
3	45		4	+5	
5	506		6	848	
7	CDS		8	CA2	
9	CD1		10	CAI	
11	PB7	Mot Inhibit	12	PA7	Bit 7
13	P94	Busy	14	PAS	Dit 6
15	P95	Bit 13	16	PAS	Bit 5
17	P95	Bit 12	18	PM	Bit 4
19	793	Dit 11	20	PM3	Dit 3
Zi	792	Bit 10	22	ME	Dit 2
23	P91	Dit 7	24	PAI	Dit 1
25	750	Dit 8	24	PAO	Dit 0
77		ties	25	· · · ·	tion
29	Time But		36	Tierr Se	

26 * Soit HC 26 * Soite HC 28 * Cate2 HC

WTI-1 con't, slot 12 ETR 16 pin com.	916 SE	PIN 1 PIN 2	219-CAN	940)	THRU-HULL 02, UNIT
MY MEŽE CHIN. MI SKENT, BIRECT COM	TID NC	PIN 3 PIN 4	RIB-GRS	COMS	THRU-HULL 62, SRM
	RID BTR	PIN 5 PIN 6	RID-BRM	CBNH	THRU-HULL 82, BLK
	RTS BCD	PIN 7 PIN 8			
	CTS NC	PIN 9 PIN 10			
8ESS10-13 39M9	DATA IN	PIN 3	RIBBON, ORG	RS 232	10 PIN FWARD THRU-HULL CONN, PIN 3
RS232, TRITECH PROFILER	DATA OUT BNB/REF	PIN 5 PIN 13	rib, grn Rib, org	RS 232 RS 232	10 PIN FWARD THRU-HULL CONN, PIN 4 10 PIN FWARD THRU-HULL CONN, PIN 2
RS 232, TRITECH SCAMER	DATA IN BATA OUT	PIN 3 PIN 5	RIB, ORG RIB, SRN	RS 232 RS 232	10 PIN FHARD THRU-HULL CONN. PIN 9
	GNO/REF	PIN 13	RIB, OR6	RS 232	10 PIN FWARD THRU-HULL COMM, PIN 8 10 PIN FWARD THRU-HULL COMM, PIN 6

APPENDEX C CENTER OF GRAVITY CALCULATION

The calculation of the center of gravity for the AUV is provided on the following page.

For each item shown, the location of its individual center of gravity, relative to the X and Y datum, is listed, along with its weight and first moments in the X and Y directions. The location of the center of gravity is shown at the bottom of the page.

BUOYANCY TEST \$2/84/94

ITEM	Xin	Vin	M+(16)	M×	Mv
FWD VERT THRUSTER ASSY					
FWD HORIZ. THRUSTER ASSY					
AFT VERT. THRUSTER ASSY					42.5
AFT HORIZ THRUSTER ASSY					35.8
MASTER RELAY	10.0	11.0	ø.5	5.Ø	5.5
BATT. COMPUTER, ANALOG, 2 FWD					
BATT. MOTORS, SONAR, 2 AFT			54.0		410.4
BILGE PLATER, 2 FWD	9.5	8.0	3.2	30.4	25.6
BILGE PLATES, 2 FWD BILGE PLATES, 2 MID BILGE PLATES, 2 AFT	31.3	7.8		123.4	3Ø.8
BILGE PLATES, 2 AFT	50.0	7.6		125.Ø	
HULL 8 SERVOS, MPROP, 4 PLATES	33.3	7.9	150.6	5007.4	1189.7
NOSE, EMPTY LESS 1LB BUOY.	-7.5	8.0	1.3	-9.8	10.4
FINS, 8, META CENTER AT CG	31.3	7.8	5.1	-9.8 159.4	39.8
THRUSTER P.S., 4 Midship	31.3	A a	A 4	POO. O	51.2
MAIN PROP P.S., 2 fwd	14.5	8.ø	3.2	46.4	25.6
MAIN PROP P.S., 2 fwd COMPUTER/ANALOG P.S. (2)	21.0	8.0		88.2	33.6
VERT. GYRO W/BRACKET	14.0	13.0	2.0	88.2 28.0 50.7 159.3	26.0
VERT. GYRO w/BRACKET RATE GYRO(%) FREE GYRO + MOUNT INVERTER FOR F. GYRO	13.0	3.0	3.9	50.7	11.7
FREE GYRO + MOUNT	49.0	2.3	3.3	159.3	7.5
INVERTER FOR F. GYRO	47.5	12.8	1.4	66.5	17.9
NUT PLATE	33.Ø	7.8	4.5	148.5	35.1
NUT PLATE OS 9 CAGE (right) OS 9 CARDS (0.4516 x) 12	31.3	5.0	4.2	129.7	2Ø.8
OS 9 CARDS (Ø.451b x) 12	31.3	5.0	5.4	168.8	27.0
486 CAGE (left) -lead	31.3	10.0	3.6	114.1	
486 CARDS (Ø.451b x) 3 -lead	31.3	10.0	1.4	42.2	13.5
RIBBON CABLE INTERFACE (4)					
TURBO-PROBE INCL. MOUNT	-2.0	4.0	3.4	-6.8	13.6
WIRING, MISC.	31.3	7.8	3.0	93.8	23.4
DIFF. GPS REC.+ANT. (Ø.9LBS)				0.0	
GPS RECEIVER				Ø.Ø	ø.ø
GPS ANTENNA + MOUNT TOPSIDE THRU-HULLS T725 SCANNING SONAR	10.5	4.5	1.0	10.5	4.5
TOPSIDE THRU-HULLS	14.0	8.0	3.0	42.Ø	24.0
T725 SCANNING SONAR	-8.Ø	10.0	2.6	-20.8	26.0
T1000 PROFILING SONAR	-5.0	10.0	2.6	-13.Ø	2 6. Ø
TRITECH SONAR MOUNT, WIRES					
DATASONICS SONAR + MOUNT, WIRE					14.4
BUDYANCY, SONARS	-6.0	9.5	-2.0	12.0	-19.0
BUOYANCY, SUPP'S, T PROBE	-4.0			2.4	-4.8
TRIM LEAD by F.GYRO INV.	51.0	12.8	4.5	229.5	57.6
TRIM LEAD, aft	63.Ø				49.0
TRIM LEAD, aft of computers	38.0				69.4
TRIM LEAD	51.0				2Ø.Ø
TRIM LEAD, fwd of computers	24.5				28.6
TRIM LEAD, tweak	38.0				2.9
TIVALLE BEETERS & STORES OF THE	JUIN	0.0	ו0	19.9	- · · /

TOTALS 1bs-TOT 388.5 12155.2 3Ø1Ø.7

C.G., X,Y INCHES FROM DATUM EST. RESERVE BUOYANCY (FRESH) - LBS.

Ø.5

31.29 7.75

NOTE: X DATUM IS FORWARD OUTER HULL EDGE, POSITIVE AFT Y DATUM IS INNER STBD HULL SIDE, POSITIVE TO PORT DRY C.G.(in) X,Y 31.25, 7.75

APPENDEX D CENTER OF BUOYANCY CALCULATION

The calculation of the center of buoyancy for the AUV is provided on the following page.

For each item shown, the location of its individual center of gravity, relative to the X, Y and Z datum, is listed, along with its weight and first mement in the Z direction. The location of the center of buoyancy is shown at the bottom of the page.

ITEM	Y i ~	Yin	7:-	Wt(1b)	Mz
FWD VERT THRUSTER ASSY	14.01	10.0	4.0	= a	
FWD HORIZ. THRUSTER ASSY	6.3	7.0	4.8	5.5	
AFT VERT. THRUSTER ASSY	48.Ø	8.5	4.8 4.8 4.8	5.Ø	23 8
AFT HORIZ THRUSTER ASSY	56.0		4.8	5.5	26.1
MASTER RELAY	10.0	11.0	1.0	0.5	0.5
NUT PLATE	33.0		9.5	4.5	42.8
GPS RECEIVER	0.0	0.0	Ø.Ø	Ø.Ø	0.0
GPS ANTENNA, MOUNT, WIRING	10.5	4.5	13.0	1.0	13.0
BATT. COMPUTER, ANALOG, 2 FWD	20.5			54.0	189.0
BATT. MOTORS, SONAR, 2 AFT			3.5		189.0
BILGE PLATES, 2 FWD	9.5	8.0	0.4	3.2	1.3
BILGE PLATES, 2 MID	31.3	7.8	Ø.4	4.0	1.6
BILGE PLATES, 2 AFT		7.6	Ø.4	2.5	1.0
HULL 8 SERVOS, MPROP, 4 PLATES				15Ø.6	
NOSE, EMPTY, less 1 lb. buoy					
FINS, 8, META CENTER AT CG					
THRUSTER P.S., 4 midship	31.3	ម.∅	4.5	6.4	
MAIN PROP P.S., 2 fwd					
COMPUTER/ANALOG P.S. (2)					
VERT. GYRO W/BRACKET	14.0	13.0	3.0	5.0	6.9
RATE GYRD(s)				3.9	
	49.0		4.0		13.0
				1.4	
			10.0	3.0	30.0
OS 9 CAGE (right)		5.0	5.5		
	31.3		5.5		
486 CAGE (left) 486 CARDS (0.4 lb x) 3	31.3	10.0 10.0		1.4	20.1 7.4
			7.0		
WIRING, MISC.	41.Ø		8.Ø		24.0
TURBO-PROBE INCL. MOUNT	-2.Ø	7.8 4.0	4.0		13.6
DATASONICS SONAR, MOUNT, WIRES		4.Ø	2.5	2.4	13.0 6.0
T725 SCANNING SONAR	-8.Ø		55	2.6	14.3
T1000 PROFILING SONAR	-5.Ø		5.5 5.5	2.6	14.3
TRITECH SONAR MOUNT, WIRES	-7.0	10.0	5.5	3.0	
BUDYANCY, SONARS	-6.0	9.5	5.5	-2.Ø	
BUDYANCY, SUPP'S, T-PROBE		8.0			
					Ø.ø
TRIM LEAD, by fr gyro inv	51.0	12.8	1.0	4.5	
TRIM LEAD, AFT	63.Ø	8.3	3.Ø		
TRIM LEAD, aft of computer	38.0	7.8	2.5	7.2	18.0
TRIM LEAD, by fr gyro	51.0	4.0	1.0	5.0	5.Ø
TRIM LEAD, forw of computer					
TRIM LEAD, tweak				ø.3	
-					

TOTALS | 1651.8

BG=CTR-BUOYz - CGz, INCHES RESERVE BUOYANCY (FRESH) LBS.-est.

Ø.5

0.50

NOTE: X DATUM IS FORWARD OUTER HULL EDGE, POSITIVE AFT Y DATUM IS INNER STBD HULL SIDE, POSITIVE TO PORT Z DATUM IS INNER HULL BOTTOM, POSITIVE UP CTR-BUDY(in) X,Y,Z 31.25, 7.75, 4.75

APPENDEX R FREE GYROSYNCHRO BOARD WIRING DIAGRAM

The wiring diagram for the free directional gyro and the synchro to digital converter is provided on the following page.

APPENDEX F RALMAN FILTER SUPPROGRAM

The subprogram for the Kalman filter, in C source code, is provided on the fellowing pages. Velocity and acceleration data is obtained by extracting an estimate of the derivative, and second derivative, of sonar range data using the subprogram. The filter also provides a smooth position estimate.

```
/* RALMAM PILTER FOR SOMAR RANGE*/
Welman(yk, mk_0, mk_1, mk_2)
   double yk, *xk 0, *xk 1, *xk 2;
ł
   double xk1 0,xk1_1,xk1_2;
   double phiI[3][3],h[3],b[3],lk[3],res,q,rv;
   b[0] - 0.0;
   b[1] - 0.0;
   b[2] - 1.0;
                              0.005
   /* phii - [1.0
                      0.1
               0.0
                      1.0
                                0.1
               0.0
                                1.01 */
                      0.0
   \phi_{11}[0][0] = 1.0;
   phii[0][1] - 0.1:
   phii(0)(2) = 0.005;
   phii[1][0] = 0.0;
   phii[1][1] = 1.0;
   phii[1][2] = 0.1;
   phii[2][0] = 0.0;
   phii[2][1] = 0.0;
   phii[2][2] = 1.0;
   rv = 0.1;
   q = 0.01;
   /*thres = 2.0: Global Now */
   /* h = [1 0 0]; */
   a[0] = 1.0;
   h[1] = 0.0;
   b[2] = 0.0;
   if(kal init == 1)
      *xk_0 = yk;
*xk_1 = 0.0;
      *xk^2 = 0.0;
      /* xk1=xk; */
      xk1 0 = *xk 0;
xk1 1 = *xk 1;
xk1 2 = *xk 2;
   /* set lk = const. */
   1k[0] - 0.2544;
   1k[1] = 0.3727;
   1k[2] - 0.2731;
```

THE REPORT OF THE PARTY OF THE

```
/* xkl(:,i)=phii*xk(:,i); */
xkl 0 = phii[0][0]*(*xk_0) + phii[0][1]*(*xk_1) + phii[0][2]*(*xk_2);
xkl_1 = phii[1][0]*(*xk_0) + phii[1][1]*(*xk_1) + phii[1][2]*(*xk_2);
xkl_2 = phii[2][0]*(*xk_0) + phii[2][1]*(*xk_1) + phii[2][2]*(*xk_2);

/* res=(yk(i)-h*xkl(:,i)); */
res = yk - (h[0]*xkl_0 + h[1]*xkl_1 + h[2]*xkl_2);

/* Set res = 0.0 if larger than threshold */
if(fabs(res) > thres)
{
    res = 0.0;
}

/*xk(:,i+1)=xkl(:,i) + lk*res; */
*xk_0 = xkl_0 + lk[0]*res;
*xk_1 = xkl_1 + lk[1]*res;
*xk_2 = xkl_2 + lk[2]*res;
```

APPENDIX G AUV SIMULATION MODEL

The program, in MATLAB source code, which simulates the AUV maneuvering in a horizontal plane is provided on the following pages.

```
AUV SIMPLATION NODEL: NAMEUVERING IN BORIZONTAL PLANS
clear:
LOAD DATA PRON TEST
load ser1256;
lead
      d1256;
s - ser1256;
       41256;
h -
M2 -
         100
         0.1;
dt -
t = \{0:dt:dt*NP\};
DERIV OF YAN;
hd(1) = (h(2,2)-h(1,2))/0.1;
for I = 2:NP,
        hd(I) = (h(I+1,2)-h(I-1,2))/0.2;
end:
FIND SCALE AND BIAS
        = h(1:NP,3)';
hr
P
         = polyfit(hr,hd,1);
INIT CONDS
Xs(1)
              0.0;
         .
         = s(1,3);
Ys(1)
              0.0;
u(1)
         -
v(1)
              0.0;
         -
r(1)
         - h(1,3);
rdot
              0.0:
Ydots(1) -
              0.0;
Xdot(1) -
              0.0;
               pi;
                                % for RW, FW, GF = pi;
GP
PSI(1)
         = GF+h(1,2);
POSITION ORDERS
PSIcon
         .
              GF*180/pi-0.0;
                                % give PSIcom in degrees
Xcom
              0.0;
YCOM
         •
              4.0:
CONTROL LAW GAINS
M
            -1.0;
         •
                                & for RW.
                                              RW = -1.0;
                                               PW = -1.0;
PW
             1.0;
                                 & for FW.
Rosi
            80.0;
Tår
            1.0;
            Kpsi*Tdr:
KE
                                % for YAW, LAT test, Kx = 0.0;
Ex
             0.0;
Tdx
             3.0;
Eu
         - Kx+Tdx;
Ky
         o 12.0;
                                 % for YAW, LONG test, Ky = 0.0;
Iga
```

The second secon

3.0;

- Ky+Tdy;

·#2

AND THE RESIDENCE OF THE PROPERTY OF THE PROPE

KY

.

.

```
ANY DIMENSIONS
             24.0:
1007
              5.0;
              2.0;
27
             13.52:
23.0/12.0:
DF 
Xq.
              0.125/12.0;
28
              3.0:
X(1)
             Xs(1)-xs*cos(PSI(1));
Y(1)
             Ys(1)-xs*sia(PSI(1));
Ydot(1) -
             Ydots(1)-xs*r(1);
HYDRODYNAMIC COSPFS:
      - -3.0;
Xuu
         - -0.06*377.67;
Xudot
         - -0.5*51.72;
IVV
           0.01187+377.67;
Yrr
         •
Yvdot
         - -0.04*377.67:
         - -0.00178*2756.81;
Yrdot
         - -0.00769*377.67;
MYV
         - -0.04*2756.81;
Mrr
         - -0.001*2756.81;
Nydot
IssNrdot = 45.0-(-0.002*20137.50);
for I = 1:NP.
CALCULATE VOLTAGES
        VFTH(I) = -(Kpsi*(PSI(I)-PSIcom*pi/180)+Kr*r(I)...
                    +RW*(Ky*(Ys(I)-Ycom)+Kv*Ydot(I)));
                if VFTH(I) > NMV, VFTH(I) = NMV; end;
                if VFTH(I) < -NMV, VFTH(I) = -NMV; end;
        VATH(I) = (Rpsi*(PSI(I)-PSIcon*pi/180)+Rr*r(I)...
                    -RW*(Ky*(Ys(I)-Ycom)+Kv*Ydot(I)));
                if VATH(I) > NMV, VATH(I) = NMV; end;
                if VATH(I) < -MMV, VATH(I) = -MMV; end;
               = -FW*(Xx*(Xs(I)-Xcom)+Xu*Xdot(I));
        VLS(I)
                if VLS(I) > MHV, VLS(I) = MHV; end;
                if VLS(I) \leftarrow -MMV, VLS(I) = -MMV; end;
                = -FW*(Rx*(Xs(I)-Xcom)+Ru*Xdot(I));
        VRS(I)
                if VRS(I) > NWV, VRS(I) = NWV; end;
                if VRS(I) \leftarrow -NNV, VRS(I) = -NNV; end;
CALCULATE FORCES
        PFTE(I) = TF/(NNV^2) + VFTE(I) + abs(VFTE(I));
        FATE(I) = TF/(MKV^2)*VATE(I)*abs(VATE(I));
        PTTH(I) = PPTH(I) + PATH(I);
        MTH(I) = (PPTH(I)-PATH(I))*DF;
        PLS(I) = MSP/(MNV^2)*VLS(I)*abs(VLS(I));
        PRS(I) = MSF/(MMV^2) * VRS(I) * abs(VRS(I));
```

The state of the s

```
EQUATIONS OF NOTION
        udot = (m*v(I)*r(I)+Xuu*u(I)*abs(u(I))...
                +FLS(I)+FRS(I))/(m-Xudot);
        vdot = (Yvv*v(I)*abs(v(I))+Yrr*r(I)*abs(r(I))-m*u(I)*r(I)...
                +Yrdot*rdot+FTTH(I))/(m-Yvdot);
        rdot = (Nvdot*vdot+Nvv*v(I)*abs(v(I))+Nrr*r(I)*abs(r(I))...
                +MTH(I))/(IssMrdot);
        Xdot(I+1) = u(I)*cos(PSI(I))-v(I)*sin(PSI(I));
        Ydot(I+1) = u(I)*sin(PSI(I))+v(I)*cos(PSI(I));
        Ydots(I+1) = Ydot(I+1) + xs*r(I);
EULER INTEGRATION
               = u(I)+udot*dt;
        u(I+1)
                 = v(I)+vdot*dt;
        v(I+1)
        r(I+1)
                 = r(I)+rdot*dt;
        PSI(I+1) = PSI(I)+r(I)+dt;
        X(I+1)
               = X(I)+Xdot(I+1)*dt;
        Y(I+1)
                 = Y(I)+Ydot(I+1)*dt;
        Xs(I+1) = X(I+1)+xs*cos(PSI(I+1));
        Ys(I+1) = Y(I+1)+xs*sin(PSI(I+1));
end
```

The state of the s

LIST OF DEFENCES

- Brown, J. P., "Four Quadrant Dynamic Model of the AUV II Thruster," Master's Thesis, Neval Postgraduate School, Menterey, California, September 1968.
- Cody, S. E., "An Experimental Study of the Response of Small Tunnel Thrusters to Triangular and Square Wave Inputs," Master's Thesis, Naval Postgraduate School, Monterey, California, December 1992.
- Good, M. R., "Design and Construction of a Second Generation Autonomous Underwater Vehicle," Master's Thesis, Naval Postgraduate School, Monterey, California, December 1989.
- Healey, A. J., Marco, D. B., "Experimental Verification of Mission Planning by Autonomous Mission Execution and Data Visualization using the NPS AUV II," Proceedings of the IEEE Oceanic Engineering Society Symposium on Autonomous Underwater Vehicles, AUV-92 Washington, D. C., June 1992.
- Ingold, B. W., "Key Feature Identification from Image Profile Segments using a High Frequency Sonar," Master's Thesis, Naval Postgraduate School, Monterey, California, December 1992.
- Marco, D. B., Doctoral Dissertation, Naval Postgraduate School, Monterey, California, forthcoming.
- Sounders, T. E., "Performance of Small Thrusters and Propulsion Systems," Master's Thesis, Naval Postgraduate School, Monterey, California, March 1980.
- Warner, D. C., "Design, Simulation and Experimental Verification of a Computer Model and Enhanced Position Estimator for the NPS AUV II," Master's Thesis, Neval Postgraduate School, Monterey, California, December 1991.

INITIAL DISTRIBUTION LIST

1.	Defence Technical Information Center	2
	Cameron Station	
	Alexandria, VA 22304-6145	
2.	Library, Code 52	2
	Naval Postgraduste School	
	Monterey, CA 93943-5002	
3.	Chairman, Code ME/KK	1
	Department of Mechanical Engineering	
	Naval Postgraduete School	
	Monterey, CA 93943-5000	
4.	Dr. Anthony J. Healey, Code ME/HY	1
	Department of Mechanical Engineering	
	Naval Postgraduate School	
	Monterey, CA 93943-5000	
5.	Naval Engineering Curricular Office, Code 34	1
	Naval Postgraduete School	٠.
	Monterey, CA 93943-5000	
6.	Denald P. Brutzman, LCDR, USN, Code OR/BR	1
	Department of Operations Research	
	Naval Postgraduete School	
	Monterey, CA 93948-5000	
7 .	Mr. Chris O'Donnel	1
	Commander, Naval Explosive Ordinance Disposal	
	Technology Division	
	Indian Head, MD 20640-5070	

8.	Charles N. Calvano, CAPT, USN (Ret), Code ME/CA	
	Department of Mechanical Engineering	
	Naval Postgraduate School	
	Monterey, CA 93943-5000	
9.	Walter A. Ericson, CAPT, USN (Ret)	1
	9960 Cummins Place	
	San Diego, CA 92131	
10.	Richard E. Pearsall, CAPT, USN (Ret)	1
	1228 Sotheby Court	
	Virginia Beach, VA 23464	
11.	David E. Woodbury, CAPT, USN (Ret)	1
	7126 Red Horse Tavern Lane	
	Springfield, VA 22153	
12.	Kevin A. Torsiello, LT, USN	1
	Operations Department, Code 300	
	Norfolk Naval Shipyard	
	Portamouth VA 23709-5000	