COE 115

Lecture 2

Microcontroller (μ C) vs. Microprocessor (μ P)

- μC intended as a single chip solution, μP requires external support chips (memory, interface)
- μC has on-chip non-volatile memory for program storage, μP does not.
- μC has more interface functions on-chip (serial interfaces, analog-to-digital conversion, timers, etc.) than μP
- General purpose μP are typically higher performance
- (clock speed, data width, instruction set, cache) than μCs
- Division between μP and μC becoming increasingly blurred

16 Bit Pic Microcontroller Overview

16-bit PIC family	Shared Features	Distinctive Featu	ıres	Memory
PIC24F	same core instruction set, same peripheral set, flash program memory, same development tools, universal bit manipulation, single-cycle multiply, 32/16 and 16/16 divide support, optimised for C language, nanoWatt technology.	low cost, low power, 16MIPS at 3.3V, 2.0V to 3.6V operation, Packages from 28 to 100 pi	ins.	to 256K program, to 16K data.
PIC24H		40MIPS at 3.3V, DMA, dual-port RAM, 3.0V to 3.6V operation, Packages from 18 to 100 pins, compatible pinouts with PIC24F.		to 256K program, to 16K data.
dsPIC30F		30MIPS at 3.3V, 2.5V to 5.5V operation, Packages from 18 to 80 pins.	DSP Engine added to PIC24 CPU, with DSP	to 144K program, to 8K data, data EEPROM.
dsPIC33F		40MIPS at 3.3V, 3.0V to 3.6V operation, Packages from 18 to 100 pins, compatible pinouts with dsPIC30F.	instructions added to instruction set.	to 256K program, to 30K data.

Microchip PIC24 Family μC

Features	Comments
Instruction width	24 bits
On-chip program memory (non-volatile, electrically erasable)	PIC24HJ32GP202 has 32Ki bytes/11264 instructions, architecture supports 24Mibytes/4Mi instructions)
On-chip Random Access Memory (RAM), volatile)	PIC24HJ32GP202 has 2048 bytes, architecture supports up 65536 bytes
Clock speed	DC to 80 MHz
16-bit Architecture	General purpose registers, 71 instructions not including addressing mode variants
On-chip modules	Async serial IO, I2C, SPI, A/D, three 16- bit timers, one 8-bit timer, comparator

The PIC24F family

The PIC24F family

The PIC24FJ64GA004 peripherals block diagram

PIC24 Core (Simplified Block Diagram)

ALU (Arithmetic Logic Unit) is 16 bits wide, can accept as operands working registers or data memory.

17 x 17 Multiplier not shown

Registers or bits shadowed for PUSH.s and POP.s instructions.

PIC24 Memory Organization

- Program Memory and Data Memory
- Program Memory
 - non-volatile (contents are retained when power is lost).
 - Stores instructions, 24 bits wide (3 bytes)
 - Architecture can support 4M instructions
 - PIC24HJ32GP202 program memory supports 1164
- Data Memory
 - File registers
 - Maximum size of 65536 x 8
 - volatile (contents are lost when power is lost).

Program Memory

PC is 23 bits wide, but instructions start on even word boundaries (the PC least significant bit is always 0), so the PC can address 4 Mi instructions.

Locations 0x000000- 0x0001FF reserved, User program starts at location 0x000200.

Program Memory and

Interrupt Vectors

Interrupt Vector 53 00007Eh Interrupt Vector 54 000080h — — — Interrupt Vector 116 0000FCh		
Reserved Oscillator Fail Trap Vector Address Error Trap Vector Stack Error Trap Vector Math Error Trap Vector Reserved Reserved Reserved Interrupt Vector 0 Interrupt Vector 1 ————————————————————————————————————	Reset – Gotto Instruction	000000h
Oscillator Fail Trap Vector Address Error Trap Vector Stack Error Trap Vector Math Error Trap Vector Reserved Reserved Interrupt Vector 0 Interrupt Vector 1 ————————————————————————————————————	Reset – Gotto Address	000002h
Address Error Trap Vector Stack Error Trap Vector Math Error Trap Vector Reserved Reserved Reserved Interrupt Vector 0 Interrupt Vector 1 ————————————————————————————————————	Reserved	000004h
Stack Error Trap Vector Math Error Trap Vector Reserved Reserved Interrupt Vector 0 Interrupt Vector 1 — Interrupt Vector 52 Interrupt Vector 53 Interrupt Vector 54 Interrupt Vector 54	Oscillator Fail Trap Vector	
Math Error Trap Vector Reserved Reserved Interrupt Vector 0 Interrupt Vector 1 ————————————————————————————————————	Address Error Trap Vector	
Reserved Reserved	Stack Error Trap Vector	
Reserved	Math Error Trap Vector	
Reserved	Reserved	
Interrupt Vector 0	Reserved	
Interrupt Vector 1 ————————————————————————————————————	Reserved	
	Interrupt Vector 0	000014h
Interrupt Vector 53 00007Eh Interrupt Vector 54 000080h — — — Interrupt Vector 116 0000FCh	Interrupt Vector 1	
Interrupt Vector 53 00007Eh Interrupt Vector 54 000080h — — — Interrupt Vector 116 0000FCh	_	
Interrupt Vector 53 00007Eh Interrupt Vector 54 000080h — — — Interrupt Vector 116 0000FCh	_	
Interrupt Vector 53 00007Eh Interrupt Vector 54 000080h — — — Interrupt Vector 116 0000FCh	_	
Interrupt Vector 54 000080h — — — — — — — — — — — — — — — — — — —	Interrupt Vector 52	00007Ch
— — — — — — — — — — — — — — — — — — —	Interrupt Vector 53	00007Eh
•	Interrupt Vector 54	000080h
•	_	
•	_	
•	_	
Interrupt Vector 117 0000FEh	Interrupt Vector 116	0000FCh
	Interrupt Vector 117	0000FEh

Program Memory PIC24FJ64GA004

Interrupt Vector Table

Data Memory

- Note 1: Data memory areas are not shown to scale.
 - 2: Upper memory limit for PIC24FJ16GAXXX devices is 17FFh.

Data Memory Organization for PIC24HJ32GP202

- 32 KB program memory
- 2 KB RAM

Clock Sources

Power Supply

Supply Voltage	Minimum (operating frequency restricted)	Maximum	Absolute Maximum
V_{DDCORE} with respect to V_{SS}	2.0V	2.75V	3.0V
V_{DD} with respect to V_{SS}	the higher of: 2.0V, or V _{DDCORE}	3.6V	4.0V

Power Supply Voltages

Regulator Enabled (DISVREG tied to Vss):

Regulator Disabled (DISVREG tied to VDD):

Power Supply Modes

Regulator Disabled (VDD tied to VDDCORE):

PIC24 Pins and Ports

PIC 24 Peripherals

Peripheral	Brief description
Timer 1	16-bit timer with connections for external crystal (SOSCO/1). Built-in digital comparator and period register allow easy set up of periodic interrupts.
Timer 2/3	Can be configured as a single 32-bit timer, or as two 16-bit timers, both options with built-in comparator and period register.
Timer 4/5	As Timer 2/3.
Input Capture	Captures a Timer value (Timer 2 or 3) at instant of selected edge applied to input pin. Input can be optionally divided by 4 or 16. Captured values can be held in a 4-level FIFO buffer.
Output Compare	Generates an output pulse when the value of a selected Timer is equal to a compare register, with added option of interrupt on compare match.

PIC 24 Peripherals

Peripheral	Brief description
Serial Peripheral Interface (SPI)	Operates in 8-bit or 16-bit mode (both receive and transmit), with 8-level receive and transmit buffers.
I ² C	I ² C module with independent Master and Slave logic, supporting 100kHz and 400kHz bit rates.
UART	8 or 9-bit UART, with 4-level receive and transmit buffers, and support for LIN and IrDA.
Parallel Master Port/ Parallel Slave Port	Highly configurable 8-bit i/o parallel port with up to 16 bits of address, suitable for interfacing with conventional addressed parallel buses, configurable also as slave port.
Real Time Clock and Calendar	Calendar and clock with 1 second resolution, suitable for timing over long durations, optimised for low power applications.
ADC	10-bit ADC, with up to 16 analog inputs, and up to 500Ksamples per second, 16 word results buffer.
Comparator	Highly configurable analogue comparators, with a scalable voltage reference.

PIC 24 Summary

- Harvard RISC
- 16 working registers
- 16 bit registers
- Remappable pins
- Power supply options and Clock options

Data Memory

Special Function Registers

Special Function Registers (SFR)

- addressed like normal data memory locations but have specified functionality tied to hardware subsystems in the processor.
- SFRs by name (W0, T3CON, STATUS, etc) instead of by address.

SFRs in the PIC24 μC

 used as control registers and data registers for processor subsystems (like the serial interface, or the analog- to-digital converter).

SFRs address range

- 0x0000 to 0x07FE in data memory.
- datasheet for a complete list of SFRs.

Other locations in data memory that are not SFRs

- used for storage of temporary data; they are not used by the processor subsystems.
- These are sometimes referred to as GPRs (general purpose registers).
- MPLAB refers to these locations as file registers.

8-Bit, 16-Bit, 32-Bit Data

Data width

• 8 bits (byte), 16 bits (2 bytes), and 32 bits (4 bytes) in size

Size	Unsigned Range
8-bits	0 to 28-1 (0 to 255, 0 to 0xFF)
16-bit	0 to 216-1 (0 to 65536, 0 to 0xFFFF)
32-bit	to 232-1 (0 to 4,294,967,295), 0 to 0xFFFFFFF)

Storing Multi Byte Values in Memory

- 16-bit and 32-bit values
 - stored in memory from least significant byte to most significant byte,
 - in increasing memory locations (little endian order).

Assume the 16-bit value 0x8B1A stored at location 0x1000

Assume the 32-bit value 0xF19025AC stored at location 0x1002

Memory shown as 8 bits wide

Memory shown as 16 bits wide

The LSB of a 16-bit or 32-bit value must begin at an even address (be word aligned).

Data Transfer Instruction

Copies data from Source (src) location to Destination (dst) Location

$$(src) \rightarrow dst '()' read as 'contents of'$$

- This operation uses two operands.
- The method by which an operand ADDRESS is specified is called the addressing mode.
- There are many different addressing modes for the PIC24.
- We will use a very limited number of addressing modes in our initial examples.

Data Transfer Instruction Summary

Dest Source	Memory	Register direct	Register indirect
Literal	X	$MOV\{.B\}$ #lit8/16, Wnd $lit \rightarrow Wnd$	X
Memory		MOV f_{ALL} , Wnd MOV{.B} f, {WREG} $(f_{\{ALL\}}) \rightarrow Wnd/WREG$	X
11)	, ALL	$MOV\{.B\}$ Wso, Wdo $(Wso) \rightarrow Wdo$	$MOV\{.B\}$ Wso, [Wdo] $(Wso) \rightarrow (Wdo)$
Register indirect	X	$MOV\{.B\}$ [Wso], Wdo $((Wso)) \rightarrow Wdo$	$MOV\{.B\}$ [Wso], [Wdo] $((Wso)) \rightarrow (Wdo)$

Key: MOV{.B} #lit8/16, Wnd PIC24 assembly $lit \rightarrow Wnd$ Data transfer

Yellow shows varying forms of the same instruction

f: near memory (0...8095)

 f_{ALL} : all of memory (0...65534)

Wso, Wsd, Wn

MOV Wso, Wdo

Symbols used in opcode descriptions

Field	Description
Wnd	One of 16 destination working registers ∈ {W0W15}
Wns	One of 16 source working registers ∈ {W0W15}
WREG	W0 (working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈
	{ Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wd	Destination W register ∈
	{ Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈
	{ Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd],
Wn	One of 16 working registers ∈ {W0W15}
Wb	Base W register ∈ {W0W15}

MOV{.B} Wso, Wdo Instruction

"Copy contents of Wso register to Wdo register" General form:

```
mov\{.b\} Wso, Wdo (Wso) \rightarrow Wdo
```

- Wso is one of the 16 working registers W0 through W15 ('s' indicates Wso is an operand source register for the operation).
- Wdo is one of the 16 working registers W0 through W15 ('d' indicates Wdo is an operand destination register for the operation).

```
mov W3, W5 (W3) \rightarrow W5 (word operation)
mov.b W3, W5 (W3.LSB) \rightarrow W5.LSB (byte operation)
```

- Contents of working register W3 copied to working register W5.
- This can either be a word or byte operation. The term 'copy' is used here instead of 'move' to emphasize that Wso is left unaffected by the operation.
- The addressing mode used for both the source and destination operands is called *register direct*. The *mov* instruction supports other addressing modes which are not shown.

MOV{.B} Wso, Wdo Instruction Execution

MOV Wso, Wdo Instruction Format

```
BBBB BBBB BBBB BBBB BBBB
                                 2222 1111 1111 1100 0000 0000
(a)
                                 3210 9876 5432 1098 7654 3210
                                 0111 1www wBhh hddd dggg ssss
mov{.b} Wso, Wdo
                                 wwww = base register (Wb) for indirect offset
(Wso) \rightarrow Wdo (reg. direct)
                                         addressing mode [Wso/Wdo + Wb]; otherwise 0
(indirect addressing modes not shown)
                                 B = 0 for word, 1 for byte
                                 hhh = Wdo addressing mode (Register direct = 000)
                                 dddd = Wdo \text{ register number } (0 \text{ to } 15)
                                 qqq = Wso addressing mode (Register direct = 000)
                                 ssss = Wso  register number (0 to 15)
(b) Assembly:
                            Machine Code:
   mov W3,W5
                             0x780283
 Machine Code = 011\overline{1} 1000 0000 0010 1000 0011 = 0x780283
        B = \text{word mode} = 0
                                                sss = 0011 (register number is 3)
                     ddd = 0101 (register number is 5)
ggg, hhh, wwww fields are all 0 because indirect addressing is not used
(c) mov.b W3,W5 0x784283 Byte mode, only difference is B = 1
```

MOV Wns, f Instruction

"Copy content of Wns register to data memory location f". General form:

MOV Wns,f

 $(Wns) \rightarrow f$

f is a location in data memory, Wns is one of the 16 working registers W0 through W15 ('s' indicates Wns is an operand source register for the operation)

MOV W3, 0x1000

 $(W3) \rightarrow 0x1000$

Contents of register W3 copied to data memory location 0x1000. This instruction supports only WORD operations:

The source operand uses *register direct addressing*, while the destination operand uses *file register* addressing.

File registers is how microchip refers to data memory.

MOV Wns, f Instruction Execution

MOV Wns, f Instruction Format

```
BBBB BBBB BBBB BBBB BBBB
(a)
                     2222 1111 1111 1100 0000 0000
  mov Wns, f
                     3210 9876 5432 1098 7654 3210
                     1000 1fff ffff ffff ffff ssss
  (Wns) \rightarrow f
                     f \dots f = upper 15 bits of 16-bit address (lower bit assumed = 0)
                     ssss = Wns register number (0 to 15)
(b) Assembly:
                            Machine Code:
   mov W3,0x1002
                            0x888013
 Machine Code = 1000 1 000 1000 0000 0001 0011 = 0x888013
 f \dots f = 0001\ 0000\ 0000\ 001 \ 0
                                             ssss = 0011 (register number is 3)
     (upper 15-bits of 0x1002)
```

MOV f, Wnd Instruction

"Copy contents of data memory location f to register Wnd". General form:

$$(f) \rightarrow Wnd$$

f is a memory location in data memory, Wnd is one of the 16 working registers W0 through W15 ('d' indicates Wnd is an operand destination register for the operation).

$$(0x1000) \rightarrow W3$$

Contents of data memory location 0x1000 copied to W3.

() is read as "Contents of".

This instruction form only supports a word operation.

MOV f, Wnd Instruction Execution

Execute: mov 0x1002,W3

Instruction Format

- Instructions format (machine code) are presented informally
- More details in Programmers reference manual

MOV.{B} WREG f, Wnd Instruction

"Copy content of WREG (default working register) to data memory location f". **General form:**

 $MOV\{.B\}WREG, f(WREG) \rightarrow f$

This instruction provides upward compatibility with earlier PIC µC. WREG is register W0, and f is a location within the first 8192 bytes of data memory (near data memory)

MOV WREG, 0x1000 (W0) $\rightarrow 0x1000$

Contents of register W0 copied to data memory location 0x1000.

Can be used for either WORD or BYTE operations:

MOV WREG, 0x1000 word operation

MOV.B WREG, 0x1001

lower 8-bits of W0 copied to 0x1001

Word copy must be to even (word-aligned) location.

Note: The previously covered *MOV Wns, f* instruction cannot be used for byte operations!

MOV.{B} WREGf, Wnd Instruction Execution

A byte copy operation is shown.

MOV.{B} WREGf, Wnd Instruction Format

 $mov{.b}$ WREG, f

 $(WREG) \rightarrow f$

BBBB BBBB BBBB BBBB BBBB

2222 1111 1111 1100 0000 0000

3210 9876 5432 1098 7654 3210

1011 0111 1B1f ffff ffff ffff

 $f \dots f = 13$ -bit address (first 8192 bytes of data memory)

 $\mathbf{B} = 0$ for word, 1 for byte

Assembly:

mov WREG, 0x1000 mov.b WREG, 0x1000

mov.b WREG, 0x1001

Machine Code:

0xB7B000 (B bit = 0 since word operation)

0xB7F000 (B bit = 1 since byte operation)

0xB7F001 (bytes can be written to odd addresses)

MOV {.B} *f* {,*WREG*} Instruction

"Copy contents of data memory location f to WREG (default working register).
 General form:

MOV{.B}
$$f$$
, WREG $(f) \rightarrow$ WREG MOV{.B} f $(f) \rightarrow f$

This instruction provides upward compatibility with earlier PIC μ C. WREG is register W0, and f is a location within the first 8192 bytes of data memory (*near* data memory) Can be used for either WORD or BYTE operations:

MOV 0x1000, WREG word operation

MOV.B 0x1001, WREG only lower 8-bits of W0 are affected.

MOV 0x1000 Copies contents of 0x1000 back to itself, will

see usefulness of this later

Word copy must be from even (word-aligned) data memory location.

Note: The MOV f, Wnd instruction cannot be used for byte operations!

MOV {.B} f {,WREG} Instruction Format

 $mov{.b}$ f, {WREG}

 $(f) \rightarrow destination$

Destination is either *f* or WREG.

Assembly:

mov 0x1000,WREG

mov.b 0x1000

BBBB BBBB BBBB BBBB BBBB

2222 1111 1111 1100 0000 0000

3210 9876 5432 1098 7654 3210

1011 1111 1BDf ffff ffff ffff

f..f = 13-bit address (first 8192 bytes of data memory)

B = '0' for word, '1' for byte

D = destination = '0' for WREG, '1' for f

Machine Code:

0xBF9000 (B bit = 0 since word operation,

D bit = 0 since WREG destination)

0xBFF000 (B bit = 1 since byte operation,

D bit = 1 since f destination)

MOV {.B} f {,WREG} Instruction Execution

mov.b 0x1001,WREG Execute: W0 = 0x64(8B) (modified) W0 = 0x64DELocation Location Contents Contents copied unaffected 0x10000x(8B)1A 0x10000x8B1A 0x10020x25AC 0x10020x25AC 0xFB90 0x10040xFB90 0x10040x10060x9ED7 0x10060x9ED7 Before After

Move a literal into a working Register

 Moves a literal into a working register. The '#' indicates the numeric value is a literal, and NOT a memory address.

General form:

MOV #lit16, Wnd lit16 \rightarrow Wnd (word operation)

MOV.B #lit8, Wnd lit8 \rightarrow Wnd.lsb (byte operation)

The source operand in these examples use the *immediate* addressing mode.

Examples:

MOV #0x1000, W2 $0x1000 \rightarrow W2$

MOV.B #0xAB, W3 $0xAB \rightarrow W3.lsb$

More on Literals

Observe that the following two instructions are very different!

MOV #0x1000, W2

after execution, W2=0x1000

MOV 0x1000,W2

after execution, W2 = (0x1000), the contents of memory location 0x1000

MOV Literal Execution

MOV Literal Instruction Formats

```
mov #lit16, Wn #lit16 \rightarrow Wn
mov.b #lit8, Wn #lit8 \rightarrow Wn
```

#lit16: 16-bit literal #lit8: 8-bit literal

Assembly: Machine Code: mov #0x1000, W2 0x210002 mov.b #0xF2, W7 0xB3CF2 7

Observe that the literal is encoded directly in the instruction machine code.