Topologies

```
HTTP/1.1 200 OK
Content-Type: application/json
Date: Thu, 10 Jul 2025 08:26:00 GMT
Server: EduAPI/3.0

{
    "code": "ELEE1157",
    "name": "Network Routing Management",
    "credits": 15,
    "module_leader": "Seb Blair BEng(H) PGCAP MIET MIHEEM FHEA"
}
```


What is Network Topology

• Network topology is the **description** of the arrangement of nodes (e.g. networking switches and routers) and connections in a network.

• Network topologies outline how devices are connected together and how data is transmitted from one node to another.

• The configuration, or topology, of a network is key to determining its performance. Network topology is the way a network is arranged, including the **physical** or **logical** description of how links and nodes are set up to relate to each other.

Logical Network Topology

- Logical network topology is a higher-level idea of how the network is set up, including which nodes connect to each other and in which ways, as well as how data is transmitted through the network.
- Logical network topology includes any virtual and cloud resources.
- A logical network topology is a conceptual representation of how devices operate at particular layers of abstraction.

Physical Network Topology

- The physical network topology refers to the actual connections (wires, cables, etc.) of how the network is arranged.
- Setup, maintenance, and provisioning tasks require insight into the physical network.
- A physical topology details how devices are physically connected

Types of Network Topology

• Building a local area network (LAN) topology can be make-or-break for your business, as you want to set up a resilient, secure, and easy-to-maintain topology.

• A network topology map is a map that allows an administrator to see the physical network layout of connected devices

• There are many different types of **basic** network topologies that networks are built on today and in the past:

• Bus

• Tree

• Ring

• Mesh

• Star

• Hybrid

Bus Topology

Bus topology is a network type where every device is connected to a single cable that runs from one end of the network to the other. This type of network topology is often referred to as line topology.

Advantages

• Simple layout, single cable, cost effective

Disadvantages

• Single point of failure, cost lot of time to fix as whole cable needs replacing, high network traffic would decrease network performance.

Half-duplex -> data can only be transmitted
one way at a time

Ring Topology

In networks with **ring** topology, computers are connected to each other in a circular format. Every device in the network will have **two** neighbours and no more or no less. Was used more often in the past than present day.

Advantages

• the risk of packet collisions is very low due to the use of token-based protocols, which only allow one station to transmit data at a given time, data can move through network nodes at high speeds

Disadvantages

 failure of one node can take the entire network out of operation, raised scalability concerns (more devices longer to transmit)

half-duplex but can also be made full-duplex (Dual Ring Topology)

Star Topology

A star topology is a topology where every node in the network is connected to one central **switch**. The relationship between these elements is that the central network hub is a **server** and other devices are treated as **clients**

The devices are usually configured in primary-secondary relationship.

Advantages

 can manage the entire network from one location, can add new computers without having to take the network offline, simple to set up and manage

Disadvantages

• if the central switch goes down then the entire network will go down, performance of the network is also tied to the central node's configurations and performance

Tree Topology

A tree topology network is a structure that is shaped like a tree with its many branches, they have a root node that is connected to another node hierarchy, parent-child. Tree topology needs to have three levels to the hierarchy to be classified this way, and this form is used withing WANs.

The devices are usually configured in primary-secondary relationship.

Advantages

• used is to extend bus and star topologies, room for growth, systematically search for issues throughout each branch of the tree.

Disadvantages

• If the root node fails then all of its subtrees become partitioned, he more nodes you add, the more difficult it becomes to manage, more cables, more complex

Mesh Topology

A mesh topology is a **point-to-point** connection where nodes are interconnected. In this form of topology, data is transmitted via two methods: **routing** and **flooding**.

Routing is the shortest path, and flooding is data is sent to everyone, ergo no routing logic.

Partial Mesh, most nodes are interconnected but there are a few that may have extra two or three connected nodes.

Full Mesh, every node is connected to every node

Links required per node N-1 & Links for fully connected network $L_N=rac{N(N-1)}{2}$

Advantages

• Extremely resistant to failure due to the amount of possible paths, no single point of failure

Disadvantages

• Requires an immense amount of time to configure, lots of wiring, costly

Hybrid topology

Composed of two or more different topologies and are most-commonly encountered in larger enterprises. A mixed bag of capabilities and vulnerabilities.

Advantages

• Flexible, incorporate multiple typologies, very scalable

Disadvantages

 Complex, each sub typology is managed independently of the whole, can be costly to set up, tough job to manage

