

Fórmulas en una línea

```
Se utiliza el ambiente matemático: 
\begin{math}
```

- - -

\end{math}

Una notación más corta: \(... \)

Otra notación aún más corta: \$... \$

2

EN LATEX:

\documentclass{article}
\begin{document}
La variable \$x\$, y la formula \(y = m x + c \).

\end{document}

Salida:

La variable x, y la formula y = mx + c.

EJEMPLOS

EN LATEX:

\documentclass{article}
\begin{document}
El elemento \$i\$ del vector \$\vec{a}\$ tiene el valor
de

2i para $i = 1 \cdot 1$

\end{document}

Salida:

El elemento i del vector \vec{a} tiene el valor de 2i para $i = 1 \dots m$.

Ambiente displaymath

Ambiente displaymath

línea sin enumerar

Despliega las fórmulas en una sola Despliega las fórmulas en una sola línea enumerada

\begin{displaymath}

\end{displaymath}

\begin{equation}

\end{equation}

Una notación más corta : \[... \]

EJEMPLOS

EN LATEX:

\documentclass{article}

\begin{document} La funcion

\begin{displaymath}

$$f(x) = 4x + 1$$

\end{displaymath}

es lineal

\end{document}

Salida:

La funcion

$$f(x) = 4x + 1$$

es lineal

EJEMPLOS

EN LATEX:

\documentclass{article}

\begin{document}
La funcion

\begin{equation}

$$f(x) = 4x + 1$$

\end{equation}

es lineal

\end{document}

Salida:

La funcion

$$f(x) = 4x + 1$$

(1)

es lineal

Subíndices

Creados utilizando el comando: \sb{subindice}

Notación corta: _{subindice}

EJEMPLOS

EN LATEX:

\documentclass{article}

\begin{document} \$a\sb{0}\$ o \$a_{0}\$ o \$a_0\$

\end{document}

$$a_0 \circ a_0 \circ a_0$$

Superíndices

Creados utilizando el comando: \sp{superindice}

Notación corta: ^{superindice}

EJEMPLOS

EN LATEX:

\documentclass{article}

\begin{document} \$x\sp{2}\$ o \$x^{2}\$ o \$x^2\$

\end{document}

$$x^{2} \circ x^{2} \circ x^{2}$$

Superíndices y superíndices

Pueden combinarse

EJEMPLOS

EN LATEX:

\documentclass{article}

\begin{document} \$a_0^2\$

\end{document}

Salida:

$$a_{0}^{2}$$

EJEMPLOS

EN LATEX:

\documentclass{article}

\begin{document}
Una funcion cuadratica:

$$[f(x) = a_0 + a_1 x + a_2 x^2]$$

\end{document}

Salida:

Una funcion cuadratica:

$$f(x) = a_0 + a_1 x + a_2 x^2$$

EJEMPLOS

EN LATEX:

\documentclass{article}

\begin{document}
Compare \$a_b^c\$ con \$a_{b^c}\$.

\end{document}

Salida:

Compare $a_b^c \operatorname{con} a_{b^c}$.

Fracciones

Se producen utilizando:

\frac{numerador} {denominador}

Raíces

Se producen utilizando:

\sqrt[n]{expresion}

EN LATEX:

\documentclass{article}

\begin{document} \begin{displaymath}

 $f(x_1, x_2) = x_1^2 + e^{x_2} + \frac{3}{a}}{1+ \sqrt{x_2}}$

\end{displaymath}

\end{document}

$$f(x_1, x_2) = x_1^2 + e^{x_2} + \frac{\sqrt[3]{a}}{1 + \sqrt{x_2}}$$

\arccos	\arcsin	\arctan	\arg	\cos	\cosh
\cot	\coth	\csc	\deg	\det	\dim
\exp	\gcd	\hom	\inf	\ker	\lg
\lim	\liminf	\limsup	\ln	\log	\max
\min	\Pr	\sec	\sin	\sinh	\sup
\tan	\tanh				

Comandos en azul indican que pueden tener un límite especidficado con el comando _

EN LATEX:

\documentclass{article}

\begin{document} \begin{displaymath}

 $\operatorname{lexp}(ix) = \operatorname{len}(x) + \operatorname{ilcos}(x)$

\end{displaymath}

\end{document}

Salida:

$$\exp(ix) = \sin(x) + i\cos(x)$$

16

EJEMPLOS

EN LATEX:

\documentclass{article}

\begin{document} \begin{displaymath}

\lim_{x \rightarrow 0} f(x)

\end{displaymath}

\end{document}

$$\lim_{x \to 0} f(x)$$

\alpha	α	\beta	β	\gamma	γ
\delta	δ	\epsilon	ϵ	$\vert varepsilon$	ε
\zeta	ζ	\eta	η	\theta	θ
\vartheta	ϑ	\iota	ι	\kappa	κ
\lambda	λ	\mu	μ	\nu	ν
\xi	ξ	\pi	π	\varpi	$\overline{\omega}$
\rho	ρ	\varrho	ϱ	\sigma	σ
\varsigma	ς	\tau	τ	\upsilon	v
\phi	ϕ	\varphi	φ	\chi	χ
\psi	ψ	\omega	ω		

\Gamma	Γ	\Delta	Δ	\Theta	Θ
\Lambda	Λ	\Xi	Ξ	\Pi	Π
\Sigma	Σ	\Upsilon	Υ	\Phi	Φ
\Psi	Ψ	\Omega	Ω		

\bigcap	\cap	\cap	\bigcup	U	U	\bigodot	\odot	\odot
\bigotimes	\otimes	\otimes	\bigoplus	\oplus	\oplus	\bigsqcup	\sqcup	
\biguplus	\forall	\forall	\bigvee	V	\bigvee	\bigwedge	\wedge	\wedge
\coprod	П	\coprod	\int	\int	\int	\oint	∮	∮
\prod	Π	Π	\sum	\sum	\sum_{i}			v

Estos simbolos tienen diferente tamaño dependiendo si se está en modo displaymath o en modo math

EN LATEX:

\documentclass{article}

\begin{document} \begin{displaymath}

$$f(x) = \sum_{i=0}^{n}$$

\alpha_i x^i

\end{displaymath}

\end{document}

Salida:

$$f(x) = \sum_{i=0}^{n} \alpha_i x^i$$

EN LATEX:

\documentclass{article}

\begin{document}
En texto:

\begin{math}

 $f(x) = \sum_{i=0}^n$

\alpha_i x^i

\end{math}

\end{document}

En texto:
$$f(x) = \sum_{i=0}^{n} \alpha_i x^i$$

Colocando paréntesis en un objeto grande en el modo matemático, tales como fracciones, no se ve bien del todo

EJEMPLO

EN LATEX:

\documentclass{article}

\begin{document} \begin{displaymath}

 $(\frac{1}{1+x})$

\end{displaymath}

\end{document}

Salida:

$$\left(\frac{1}{1+x}\right)$$

23

Para lo anterior, es mejor utilizar los comandos:

\leftdelimitador y \rightdelimitador

Siempre se debe tener un comando \left y un comando \right, aunque los delimitadores utilizados pueden ser diferentes

24

DELIMITADORES

Maestría en Sistemas Interactivos Centrados en el Usuario

EJEMPL OS

EN LATEX:

\documentclass{article}

\begin{document} \begin{displaymath}

\left(

\frac{1}{1+x}

\right)

\end{displaymath}

\end{document}

Salida:

$$\left(\frac{1}{1+x}\right)$$

EJEMPLOS

EN LATEX:

\documentclass{article}

\begin{document} \begin{displaymath}

\left\lfloor

\frac{1}{1+x}

\right)

\end{displaymath}

\end{document}

$$\left\lfloor \frac{1}{1+x} \right)$$

ARREGLOS

- Los arreglos pueden ser creados utilizando el ambiente array.
- Deben estar en modo matemático
- Los elementos son arreglados en filas y columnas para formar estructuras matemáticas como matrices

28

EJEMPLOS

EN LATEX: \documentclass{article} \begin{document} \begin{displaymath} \begin{array}{cc} 0 & 1 \\ 2 & 3 \end{array} \end{displaymath} \end{document}

Salida:

29

0 - 1

 2 3


```
EN LATEX:
\documentclass{article}
\begin{document}
   \begin{displaymath}
  \left(
  \begin{array}{cc}
          0 & 1 \\
          2 & 3
  \end{array}
  \right)
  \end{displaymath}
\end{document}
```

$$\begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix}$$

EJEMPLOS

EN LATEX:

\documentclass{article}

\begin{document} \begin{displaymath}

\left[

\begin{array}{cc}

0 & 1 \\

2 & 3

\end{array}

\right\}

\end{displaymath}

\end{document}

Los delimitadores no es necesario que tengan correspondencia

Salida:

31

$$\left[\begin{array}{cc} 0 & 1 \\ 2 & 3 \end{array}\right]$$

EJEMPLO UTILIZANDO DELIMITADOR INVISIBLE

EN LATEX:

\documentclass{article}

\begin{document} \begin{displaymath}

f(x) =

\left \{

\begin{array}{cl}

0 & x \leq 0 \\

1 & x > 0

\end{array}

\right .

\end{displaymath}

\end{document}

$$f(x) = \begin{cases} 0 & x \le 0 \\ 1 & x > 0 \end{cases}$$

Los ambientes displaymath y equation solo permiten una línea de expresiones matemáticas

El ambiente eqnarray permite alinear múltiples ecuaciones

Este ambiente tiene 3 columnas:

- 1. Alineación a la derecha
- 2.Centrado
- 3. Alineación a la izquierda

Cada línea es enumerada en el ambiente eqnarray.

El ambiente eqnarray* es sin numerar.

Para suprimir la línea de numeración en eqnarray, use el comando \nonumber en la línea apropiada.

EN LATEX:

\documentclass{article}

\begin{document} **\begin{eqnarray}**

 $\ln(f(x)) &= & x^2 + \frac{1}{x+3}$

 $f(x) &= & \exp \left(\frac{x^2}{2} \right)$

+ \frac{1}{x+3} \right)

\end{eqnarray}

\end{document}

Salida:

$$\ln(f(x)) = x^2 + \frac{1}{x+3}$$

$$f(x) = \exp\left(x^2 + \frac{1}{x+3}\right)$$

(2)

34

EJ FM PLC

FNY ATEX I'V ASEIT III UIUI IIII E A

\documentclass{article}

\begin{document} \begin{eqnarray}

 $\ln(f(x)) &= & x^2 + \frac{1}{x+3} \ln x^2 + \frac{1}{x+3}$

 $f(x) &= & \exp \left(x^2 \right)$

+ \frac{1}{x+3} \right)

\end{eqnarray}

\end{document}

Salida:

$$\ln(f(x)) = x^2 + \frac{1}{x+3}$$

$$f(x) = \exp\left(x^2 + \frac{1}{x+3}\right)$$

(1)

Se asigna una etiqueta de texto usando: \label{cadena}

Ejemplo:

\section{Introduccion}
\label{intro}

Ejemplo:

\begin{equation}
E = mc^2
\label{eqn:einstein}
\end{equation}

Para referirse al objeto se utiliza: ~\ref{cadena}.

Para referirse a la página que el objeto está usando, se utiliza: \pageref{cadena}

EN LATEX:

\documentclass{article}

\begin{document} \section{Introduccion}

\label{sec:intro}

\ldots Ver seccion ~\ref{sec:intro} para una breve introduccion.

\end{document}

Salida:

1 Introduccion

... Ver seccion 1 para una breve introduccion.

EN LATEX: \documentclass{article} \begin{document} Ver subseccion ~\ref{sec:ex} para ejemplos. \subsection{Ejemplos} \label{sec:ex}. \end{document}

Salida:

Ver subseccion 0.1 para ejemplos.

0.1 Ejemplos

EN LATEX:

\documentclass{article}

\begin{document}

Ver apendices ~\ref{apd:tablas} de tablas \ldots

\appendix

\section{Tablas}\label{apd:tablas}

\end{document}

Salida:

Ver apendice A de tablas . . .

39

A Tablas

EN LATEX:

\documentclass{article}

\begin{document}

\begin{equation} \label{eqn:Emc}

 $E = mc^2$

\end{equation} \ldots

Ver ecuacion ~\ref{eqn:Emc} en la pagina~\pageref{eqn:Emc}.

\end{document}

Salida:

$$E = mc^2 (1)$$

... Ver ecuacion 1 en la pagina 1.

40