Random Fourier Series Features

Defense "Expert Lab on Robot Learning"

Motivation Outline

Motivation

Methodology

Evaluation

Conclusion

(Deep) neural networks dominate AI

- (Deep) neural networks dominate Al
 - extremely expressive
 - great predictive power

- (Deep) neural networks dominate AI
 - extremely expressive
 - great predictive power
 - lack uncertainty estimation

- (Deep) neural networks dominate AI
 - extremely expressive
 - great predictive power
 - lack uncertainty estimation
- Lead to the development of Bayesian neural networks

- (Deep) neural networks dominate AI
 - extremely expressive
 - great predictive power
 - lack uncertainty estimation
- Lead to the development of Bayesian neural networks
 - intractable exact inference
 - complicated training
 - ...

Gaussian Processes (GPs)

■ GPs are still the go-to model for reliable uncertainty quantification

Gaussian Processes (GPs)

- GPs are still the go-to model for reliable uncertainty quantification
- but performance highly depends on the kernel choice...
 - tackled by kernel learning

Gaussian Processes (GPs)

- GPs are still the go-to model for reliable uncertainty quantification
- but performance highly depends on the kernel choice...
 - tackled by kernel learning
- exact inference complexity is cubic w.r.t. number of data points
 - prohibits online use of GPs

Methodology Outline

Motivation

Methodology

Evaluation

Conclusion

$$\mathbf{z}_{\omega}(\mathbf{x}) = \begin{bmatrix} \cos(\langle \omega | \mathbf{x} \rangle) \\ \sin(\langle \omega | \mathbf{x} \rangle) \end{bmatrix}$$

- resort to "classical" Bayesian regression
- explicit posterior over the weights

$$\mathbf{z}_{\omega}(\mathbf{x}) = \begin{bmatrix} \cos(\langle \omega | \mathbf{x} \rangle) \\ \sin(\langle \omega | \mathbf{x} \rangle) \end{bmatrix}$$

- resort to "classical" Bayesian regression
- explicit posterior over the weights
- **approximate every stationary kernel** $k(\cdot)$:

$$k(\mathbf{x} - \mathbf{y}) = \mathbb{E}_{\boldsymbol{\omega} \sim p(\cdot)} \big[\langle \mathbf{z}_{\boldsymbol{\omega}}(\mathbf{x}) | \mathbf{z}_{\boldsymbol{\omega}}(\mathbf{y}) \rangle \big] \approx \frac{1}{N} \sum_{i=1}^{N} \langle \mathbf{z}_{\boldsymbol{\omega}_i}(\mathbf{x}) | \mathbf{z}_{\boldsymbol{\omega}_i}(\mathbf{y}) \rangle \,, \quad \boldsymbol{\omega}_i \sim p(\cdot)$$

Approximating the Squared Exponential

For the SE kernel: tractable Fourier transform

Approximating the Squared Exponential

For the SE kernel: tractable Fourier transform

$$egin{aligned} k_{ ext{SE}}(\pmb{x}-\pmb{y}) &= \expig\{-\langle \pmb{x}-\pmb{y}|\pmb{x}-\pmb{y}
angle/2\,ig\} \ p(\omega) &= ig(\mathcal{F}k_{ ext{SE}}ig)(\omega) &= \mathcal{N}(\omega\,|\,\mathbf{0}, \mathbf{I}) \end{aligned}$$

For the SE kernel: tractable Fourier transform

$$egin{aligned} k_{\mathrm{SE}}(\pmb{x}-\pmb{y}) &= \expig\{-\langle \pmb{x}-\pmb{y}|\pmb{x}-\pmb{y}
angle/2ig\} \ p(\omega) &= ig(\mathcal{F}k_{\mathrm{SE}}ig)(\omega) &= \mathcal{N}(\omega\,|\,\mathbf{0},\mathbf{I}) \end{aligned}$$

$$\begin{split} \mathbb{E}\big[\langle \mathbf{z}_{\boldsymbol{\omega}}(\mathbf{x})|\mathbf{z}_{\boldsymbol{\omega}}(\mathbf{y})\rangle\big] &= \mathbb{E}\left[\left\langle \begin{bmatrix} \cos(\langle \boldsymbol{\omega}|\mathbf{x}\rangle) \\ \sin(\langle \boldsymbol{\omega}|\mathbf{x}\rangle) \end{bmatrix} \middle| \begin{bmatrix} \cos(\langle \boldsymbol{\omega}|\mathbf{y}\rangle) \\ \sin(\langle \boldsymbol{\omega}|\mathbf{y}\rangle) \end{bmatrix} \right\rangle \right] \\ &= \mathbb{E}\big[\cos(\langle \boldsymbol{\omega}|\mathbf{x}\rangle)\cos(\langle \boldsymbol{\omega}|\mathbf{y}\rangle) + \sin(\langle \boldsymbol{\omega}|\mathbf{x}\rangle)\sin(\langle \boldsymbol{\omega}|\mathbf{y}\rangle) \big] \\ &= \mathbb{E}\big[\cos(\langle \boldsymbol{\omega}|\mathbf{x}-\mathbf{y}\rangle)\big] = \text{Re}\big(\mathbb{E}\big[\exp\{i\langle \boldsymbol{\omega}|\mathbf{x}-\mathbf{y}\rangle\}\big]\big) \\ &= \text{Re}\big(\big(\mathcal{F}^{-1}\boldsymbol{p}\big)(\mathbf{x}-\mathbf{y})\big) = \text{Re}\big(k_{\text{SE}}(\mathbf{x}-\mathbf{y})\big) = k_{\text{SE}}(\mathbf{x}-\mathbf{y}) \end{split}$$

For the SE kernel: tractable Fourier transform

$$egin{aligned} k_{\mathrm{SE}}(\pmb{x}-\pmb{y}) &= \expig\{-\langle \pmb{x}-\pmb{y}|\pmb{x}-\pmb{y}
angle/2ig\} \ p(\omega) &= ig(\mathcal{F}k_{\mathrm{SE}}ig)(\omega) &= \mathcal{N}(\omega\,|\,\mathbf{0},\mathbf{I}) \end{aligned}$$

$$\begin{split} \mathbb{E}\big[\langle \mathbf{z}_{\boldsymbol{\omega}}(\mathbf{x})|\mathbf{z}_{\boldsymbol{\omega}}(\mathbf{y})\rangle\big] &= \mathbb{E}\bigg[\bigg\langle \begin{bmatrix} \cos(\langle \boldsymbol{\omega}|\mathbf{x}\rangle) \\ \sin(\langle \boldsymbol{\omega}|\mathbf{x}\rangle) \end{bmatrix} \bigg| \begin{bmatrix} \cos(\langle \boldsymbol{\omega}|\mathbf{y}\rangle) \\ \sin(\langle \boldsymbol{\omega}|\mathbf{y}\rangle) \end{bmatrix} \bigg\rangle \\ &= \mathbb{E}\big[\cos(\langle \boldsymbol{\omega}|\mathbf{x}\rangle)\cos(\langle \boldsymbol{\omega}|\mathbf{y}\rangle) + \sin(\langle \boldsymbol{\omega}|\mathbf{x}\rangle)\sin(\langle \boldsymbol{\omega}|\mathbf{y}\rangle) \big] \\ &= \mathbb{E}\big[\cos(\langle \boldsymbol{\omega}|\mathbf{x}-\mathbf{y}\rangle)\big] = \text{Re}\big(\mathbb{E}\big[\exp\{i\langle \boldsymbol{\omega}|\mathbf{x}-\mathbf{y}\rangle\}\big]\big) \\ &= \text{Re}\big(\big(\mathcal{F}^{-1}p\big)(\mathbf{x}-\mathbf{y})\big) = \text{Re}\big(k_{\text{SE}}(\mathbf{x}-\mathbf{y})\big) = k_{\text{SE}}(\mathbf{x}-\mathbf{y}) \end{split}$$

SE kernel is extremely smooth (Stein, 1999)

Random Fourier Series Features

We extend random Fourier features:

similar to the sine-cosine formulation of Fourier series

Sine-Cosine Formulation

$$\widehat{f}_{K}(x) = \frac{a_{0}}{2} + \sum_{k=1}^{K} a_{k} \cos\left(\pi \widetilde{T}^{-1} k x\right) + b_{k} \sin\left(\pi \widetilde{T}^{-1} k x\right)$$

EvaluationOutline

Motivation

Methodology

Evaluation

Conclusion

Hypothesis

Central Hypothesis

Random Fourier series features outperform random Fourier features.

Evaluation

- Datasets:
 - Synthetic Data (Cosine, Heaviside, Heavi-Cosine, Gap-Cosine)
 - UCI (Boston, Concrete, Power, Yacht, Energy, Kin8nm, Naval, Protein, Wine)
 - Cartpole

Evaluation

- Datasets:
 - Synthetic Data (Cosine, Heaviside, Heavi-Cosine, Gap-Cosine)
 - UCI (Boston, Concrete, Power, Yacht, Energy, Kin8nm, Naval, Protein, Wine)
 - Cartpole
- Different RFSF Initializations:
 - Random
 - ReLU
 - Single Harmonic (SH)

How the Kernel Learns

Prior Covariance; Step 0

1.0

-0.8

-0.6

-0.4

-2

-4

-0.2

-0.0

-0.0

RFFs on Gap-Cosine

Results on the Synthetic Data

Quantified Results

Synthetic Data Sets and Cartpole

	Data Set						
	N	1odel	Cosine	Heaviside	Heavi-Cosine	Gap-Cosine	Cartpole
Log-Lik.	RFSF	Random ReLU SH	2.43 2.34 2.37	0.11 0.80 0.21	-1.66 -0.90 -1.23	1.27 1.50 1.52	-9.88±1.86 -12.30±2.31 -9.73±2.10
2	GP	SE RFF	2.44	0.73 0.73	0.77 0.78	2.58 2.59	-3.21 ± 1.64 -7.38 ± 1.94

Quantified Results UCI Data Sets

			Data Set					
	Mo	odel	Boston	Concrete	Power	Yacht		
	RFSF	Random	-2.40±0.05	-2.94±0.05	-2.78±0.01	-0.80±0.02		
		ReLU	-2.39±0.05	-2.93±0.04	-2.80±0.01	-0.86 ± 0.02		
Log-Lik.		SH	-2.44±0.06	-2.94 ± 0.05	-2.78±0.01	-0.83±0.02		
	GP	SE	-2.38 ± 0.05	-2.98 ± 0.06	-2.82 ± 0.01	-0.80±0.02		
		RFF	-2.40±0.06	-3.01 ± 0.05	-2.84 ± 0.01	-0.80±0.02		
	GBLL ¹	Leaky ReLU	-2.90±0.05	-3.09 ± 0.03	-2.77 ± 0.01	-1.67 ± 0.11		
		Tanh	-3.06±0.03	-3.21 ± 0.03	-2.83 ± 0.01	-0.70±0.10		
	Ensemble ¹	Leaky ReLU	-2.48±0.09	-3.04±0.08	-2.70±0.01	-0.35±0.07		
		Tanh	-2.48±0.08	-3.03±0.07	-2.72 ± 0.01	-0.03±0.05		
	MAP ¹	Leaky ReLU	-2.60+0.07	-3.04+0.04	-2.77+0.01	-5.14+1.62		
		Tanh	-2.59+0.06	-3.11+0.04	-2.76+0.01	-1.77 + 0.53		

¹Results taken from Watson et al. (2021), "Latent Derivative Bayesian Last Layer Networks."

ConclusionOutline

Motivation

Methodology

Evaluation

Conclusion

Conclusion

Central Hypothesis

Random Fourier series features outperform random Fourier features.

Conclusion

Central Hypothesis

Random Fourier series features outperform random Fourier features.

we compared to RFFs, SE, and BNN methods

Conclusion

Central Hypothesis

Random Fourier series features outperform random Fourier features.

- we compared to RFFs, SE, and BNN methods
- advantage of RFSFs is not consistent
- no performance gain
- also true for the SH initialization

Future Work

- theoretical analysis what RFSFs approximate
- better understanding of the half-period initialization

Methodology Outline

Methodology

Evaluation

Hyper-Parameter Optimization

- Hyper-Parameters
 - **a**_{1:K} (sine coefficients)
 - **□ b**_{1:K} (cosine coefficients)
 - Λ (length-scales)
 - \bullet \tilde{T} (half-period)
 - σ_n^2 (aleatoric noise variance)
- maximization of the marginal log-likelihood
- using the empirical Bayes approximation

$$egin{aligned} oldsymbol{z}_{oldsymbol{\omega}}(oldsymbol{x}) &= \sum_{k=1}^K oldsymbol{z}_{oldsymbol{\omega}}^{(k)}(oldsymbol{x}), \ oldsymbol{z}_{oldsymbol{\omega}}^{(k)}(oldsymbol{x}) &= egin{bmatrix} a_k \cos\left(\pi\widetilde{T}^{-1}k\left\langle \omega | \Lambda^{-1} | oldsymbol{x}
ight
angle \\ b_k \sin\left(\pi\widetilde{T}^{-1}k\left\langle \omega | \Lambda^{-1} | oldsymbol{x}
ight
angle \end{pmatrix} \end{bmatrix} \end{aligned}$$

EvaluationOutline

Methodology

Evaluation

Quantified Results UCI Data Sets; Cont.

	1			Data Set					
	Model		Energy	Kin8nm	Naval	Protein	Wine		
	RFSF	Random	-0.70±0.02	0.68±0.05	-78.19 ± 69.72	-2.94± 0.03	-0.11±0.07		
꾶		ReLU	-0.74±0.02	0.97 ± 0.03	-172.57 ± 104.83	-629.05±384.60	-0.11±0.06		
급		SH	-0.74±0.02	0.52 ± 0.07	-62.69 ± 55.40	-2.96 ± 0.03	0.01±0.06		
Log-Lik.	GP	SE	-0.68±0.02	-0.22 ± 0.24	6.91 ± 0.15	-2.89 ± 0.00	-0.84±0.05		
		RFF	-0.69±0.02	0.75±0.04	-1941.56 ± 248.64	-2.90 ± 0.00	-0.89 ± 0.04		