CHAPITRE OS3 – DOCUMENTS Systèmes optiques : cas des lentilles

FIGURE 1 : Projection sur un écran

FIGURE 2 : Les aventures de Tintin – L'étoile mystérieuse (Hergé)

FIGURE 3 : Constitution d'une lentille

FIGURE 4: Lentilles convergentes et divergentes

FIGURE 5 : Espaces objets et images d'une lentille

FIGURE 6 : Diamètre angulaire apparent α

FIGURE 7: Foyers secondaires images

FIGURE 8: Foyers secondaires objets

FIGURE 11 : Modèle optique de l'œil

Élément optique	Fonction	Caractéristiques
Objectif: dioptre sphérique: cornée + lentille biconvexe: cristallin	Formation de l'image	Système convergent déformable de vergence environ $+20 \delta$ $(f' \approx 50 \text{ mm})$ donnant une image renversée. Le cristallin sépare l'humeur aqueuse de l'humeur vitrée $(n=1,336)$
Diaphragme : pupille + iris	Réglage de la quantité de lumière entrant dans l'œil	L'iris agit sur la pupille par des muscles circulaires et longitudinaux (par réflexes inconscients).
Obturateur : paupière	Réglage de la durée d'admission de la lumière	L'ouverture et la fermeture de la paupière sont déclenchées par un réflexe.
Récepteur de lumière : rétine	Impression de l'image	Au niveau de la tache jaune, la rétine est constituée de nombreuses cellules sensibles à la lumière, de l'ordre du µm (cônes sensibles à la couleur: vision diurne; bâtonnets: vision nocturne)
Nerf optique	Perception de l'image	Il transmet l'information (liée à l'image) à la zone du cerveau qui traite l'image (en l'inversant).

FIGURE 10 : Équivalences entre l'œil et l'appareil photographique

FIGURE 12: Phénomène d'accommodation

	Punctum Proximum (PP)	Punctum Remotum (PR)
Définition		
Ordre de grandeur		
Accommodation ou pas ?		

FIGURE 13: Plage d'accommodation

FIGURE 14: Champs de vision selon les défauts de l'œil

Exercice d'application 1 : retour à la problématique 1

Avec un projecteur, on souhaite obtenir une image réelle sur l'écran d'un objet réel (diapositive ou matrice).

- 1. Quelle doit-être la nature de la lentille?
- 2. Déterminer la condition sur la distance D (fixée) entre objet et écran pour que l'image soit nette.
- 3. Déterminer la condition sur la position x de la lentille par rapport à l'objet pour que l'image soit <u>la plus grande possible</u>.

Exercice d'application 2

- 1. Jusqu'à quelle distance peut-on distinguer deux points A et B séparés de la distance AB = 1 mm?
- 2. Quel est la taille du plus petit objet perceptible à l'œil nu ?

Exercice d'application 3

On considère une lunette astronomique, comportant un objectif constitué d'une lentille mince convergente L_1 de centre O_1 et de focale $f'_1 = \overline{O_1 F'_1} > 0$ et un oculaire constitué d'une lentille mince convergente L_2 de centre O_2 et de focale $f'_2 = \overline{O_2 F'_2} > 0$. Ces deux lentilles ont même axe.

On souhaite observer la planète Mars à travers la lunette, en formant un système afocal.

- 1. Quelle est la conséquence sur la position relative des lentilles ?
- 2. Faire un schéma sur papier millimétré en prenant $f'_1 = 5f'_2$ et représenter l'image intermédiaire notée A'B'.
- 3. On veut photographier la planète. Où faut-il placer le capteur CCD?

On note α ' le diamètre angulaire de la planète vue à travers la lunette et α le diamètre angulaire de la planète vue à l'œil nu.

- 4. L'image finale est-elle droite ou renversée ?
- 5. Exprimer le grossissement G de la lunette.

Exercice d'application 4 : Lunette commerciale

La lunette astronomique Mizar 70/900 est une lunette avec un objectif de 70 mm de diamètre et de focale 900 mm. Deux oculaires sont fournis : 25 mm et 9 mm. Calculer les grossissements de cette lunette.