FEUILLE D'EXERCICES ET DE QUESTIONS DE COURS POUR LA SEMAINE 1 DE KHÔLLES DE MATHÉMATIQUES

AMAR AHMANE

Questions de cours.

- Q1. Rappeler la définition d'idéal d'un anneau et décrire les idéaux de Z.
- Q2. Définition et propriétés de base de l'indicatrice d'Euler.
- Q3. Générateurs de $\mathbf{Z}/n\mathbf{Z}$.

Exercices à proposer.

- Exo 1. (a) Soit G un groupe et $x \in G$ un élément d'ordre fini n. Si $d \ge 1$, montrer que l'ordre de x^d est $n/(n \wedge d)$.

 Indication si blocage: raisonner par équivalence en partant de $x^{kn} = e$
 - (b) Soit G un groupe d'ordre 2p où $p \geqslant 3$ est un nombre premier. Montrer que G admet un élément d'ordre p.

 Indication si blocage : si l'élève commence par considérer le cas où G n'a que des éléments d'ordre 2 autre que le neutre, recommander de définir une structure de \mathbb{F}_2 -ev sur G
- Exo 2. Soit G un groupe fini et $f:G\to G$ un morphisme. Montrer que

$$\operatorname{im} f = \ker f \iff \operatorname{im} f^2 = \ker f^2$$

Indication si blocage : regarder la relation d'équivalence $x \sim y \iff f(x) = f(y)$

- Exo 3. Soit k un corps et G un sous-groupe fini de k^{\times} .
 - (a) Montrer que si $d \ge 1$ est un entier, alors dans k^{\times} , il y a soit 0 soit $\varphi(d)$ éléments d'ordre d.

 Indication si blocage : considérer le polynôme $X^d 1 \in k[X]$
 - (b) En déduire que G est cyclique. Indication : on pourra utiliser que $\sum_{d|n} \varphi(d) = n$. Indication si blocage : supposer que non et montrer que $\varphi(n) = 0$
- Exo 4. Montrer que le centre de \mathfrak{S}_n est trivial dès que $n \geqslant 3$.

 Indication si blocage : que donne la conjugaison par σ du cycle $(a_1 \cdots a_p)$?
- Exo 5. Déterminer les automorphismes de corps de \mathbf{R} . Indication si blocage : montrer que $f(x) \ge 0$ dès que $x \ge 0$