МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

Кафедра радиотехники и систем управления

Усилитель на биполярных транзисторах

Лабораторная работа
по курсам:
Линейные методы в радиотехнике
Аналоговая электроника
Электронные методы физических исследований
Основы радиотехники
Радиоэлектроника
Радиотехника и схемотехника
Введение в электронику

Составители: Е. В. Воронов, А. Л. Ларин

МОСКВА МФТИ 2015

УДК 621.396.6

Усилитель на биполярных транзисторах. Лабораторная работа по курсам: Линейные методы в радиотехнике, Аналоговая электроника, Электронные методы физических исследований, Основы радиотехники, Радиоэлектроника. Радиотехника и схемотехника, Введение в электронику. / сост.:

Е. В. Воронов, А. Л. Ларин. – М.: МФТИ, 2015. – 32 с.

- © Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Московский физико-технический институт (государственный университет)», 2015
- © Воронов Е. В., Ларин А. Л., составление, 2015

СОДЕРЖАНИЕ

Принцип действия усилителя	4
Характеристики транзистора	
Режим транзистора по постоянному току	6
Усиление переменного сигнала	9
Максимальный неискаженный сигнал на выходе	9
Параметры усилителя для малых входных сигналов	11
Эквивалентные схемы транзисторов	12
Входное сопротивление	15
Выходное сопротивление	16
Коэффициенты усиления напряжения	17
Стабилизированный усилитель с $C_3 = 0$	
Частотная характеристика усилителя	19
Усиление в области нижних частот	
Усиление в области верхних частот	20
Переходная характеристика усилителя	22
Переходная характеристика дифференцирующей цепи	23
Переходная характеристика интегрирующей цепи	24
Примеры	24
Задание	25
Нестабилизированный усилитель	26
Стабилизированный усилитель	27
Двухкаскадный усилитель	
Рекомендации по выполнению задания	
Литература	32

Принцип действия усилителя

Усиление электрических сигналов чаще всего осуществляется с использованием следующей основной идеи.

Берут элемент, выходным током которого можно управлять, подавая соответствующее напряжение на управляющий вход. В данном случае речь идет о биполярном транзисторе, коллекторный ток которого $i_{\rm K}$ зависит от напряжения $u_{\rm E9}$ между базой и эмиттером. Последовательно с таким управляемым элементом включают резистор нагрузки, в данном случае — $R_{\rm K}$, и замыкают цепь, содержащую управляемый элемент и нагрузку через источник питания $U_{\rm II}$, благодаря которому и возникает ток $i_{\rm K}$ в этой цепи (рис. 1). Если в некоторых пределах имеет место пропорциональность между изменением тока $\Delta i_{\rm K}$ и изменением управляющего напряжения $\Delta u_{\rm E9}$, то приращение напряжения на нагрузке $\Delta u_{\rm R_K}$ также пропорционально переменному входному сигналу $u_{\rm BX} = \Delta u_{\rm E9}$ и при надлежащем выборе сопротивления $R_{\rm K}$ может быть больше по абсолютной величине, чем $u_{\rm BX}$.

Рис. 1. Схема, поясняющая принцип действия усилителя Рис транзистор

Рис. 2. Усилитель с включением транзистора по схеме с общим эмиттером

C точки зрения величины переменного сигнала безразлично, что именно считать переменным сигналом $u_{\text{вых}}$: приращение напряжения на нагрузке или изменение напряжения между выводом коллектора транзистора и общей шиной, называемой «землей», так как потенциал верхнего вывода резистора $R_{\rm K}$ остается неизменным по отношению к общей шине и равным $U_{\rm H}$, не зависящим от входного сигнала $u_{\rm BX}$.

В усилителе, показанном на рис. 2, транзистор включен *по схеме с общим эмиттер* является выводом транзистора, общим для входной и выходной цепей. В схеме на рис. 2 $e_{\rm u}$ – ЭДС источника сигна-

ла, а $R_{\rm H}$ — его выходное сопротивление. Входное и выходное напряжения $u_{\rm BX}$ и $u_{\rm BbX}$ измеряются относительно эмиттера.

Свойства усилителя в значительной степени определяются свойствами транзистора, которые можно проиллюстрировать двумя семействами характеристик.

Характеристики транзистора

 $Bxo\partial ho \check{u}$ характеристикой транзистора называется зависимость базового тока $i_{\rm b}$ от напряжения между базой и эмиттером $u_{\rm b3}$ (рис. 3). Ток базы практически экспоненциально зависит от напряжения между базой и эмиттером, поэтому линейная зависимость $\Delta i_{\rm b}$ от $u_{\rm b3}$ возможна лишь при малом изменении $u_{\rm b3}$. Строго говоря, ток базы зависит от напряжения между коллектором и эмиттером $U_{\rm K3}$, но при $U_{\rm K3} \ge 0,5$ В эта зависимость является довольно слабой.

Рис. 3. Входная характеристика транзистора

Рис. 4. Семейство выходных характеристик транзистора

Bыходными характеристиками транзистора называется семейство зависимостей коллекторного тока $i_{\rm K}$ от коллекторного напряжения $u_{\rm K}$. Параметром этого семейства является базовый ток $I_{\rm B}$ (рис. 4). Существует область малых значений $u_{\rm K}$, при которых ток коллектора $i_{\rm K}$ практически не зависит от величины тока базы $I_{\rm B}$, начиная с определенного значения этого тока. Говорят, что при этом транзистор находится в насыщении. Транзистор не должен попадать в режим насыщения, когда требуется усилить сигнал без искажений. При $I_{\rm B}=0$ в коллекторной цепи течет небольшой по величине ток $I_{\rm K}$ 90, обусловленный тепловым движением носителей заряда в полупроводнике; этот ток слабо зависит от напряжения $u_{\rm K}$ 9 и экспоненциально зависит от температуры.

Усредненные для данного типа транзисторов входные и выходные характеристики приводятся в справочниках.

Режим транзистора по постоянному току

Для работы транзистора в качестве усилительного элемента необходимо в отсутствие переменного сигнала на входе обеспечить протекание определенного постоянного тока коллектора $I_{\rm K}$ и наличие некоторого постоянного напряжения между коллектором и эмиттером $U_{\rm K3}$. Точка на входных и выходных характеристиках, соответствующая этому состоянию транзистора, называется рабочей точкой. При протекании в коллекторной цепи тока $i_{\rm K}$ напряжение $u_{\rm K3}$ определяется из соотношения

$$u_{K\ni} = U_{\Pi} - i_{K} R_{K}$$
,

которое является уравнением прямой в координатах u_{K3} , i_{K} . Эта прямая называется линией нагрузки по постоянному току.

При известном токе базы легко найти положение рабочей точки на коллекторных характеристиках. Для этого необходимо графически решить систему уравнений:

$$\begin{cases} i_{K} = F(u_{K\ni}, I_{E}) \\ u_{K\ni} = U_{\Pi} - i_{K}R_{K}, \end{cases}$$

как это показано на рис. 5: рабочей точкой является точка пересечения линии нагрузки по постоянному току с соответствующей зависимостью из семейства коллекторных характеристик $F(u_{K\mathfrak{I}},I_{\mathfrak{b}})$.

Рис. 5. Построения на выходных характеристиках для определения положения рабочей точки

Часто режим по постоянному току задается требуемым значением тока коллектора $I_{\rm K}$, который связан с током базы $I_{\rm B}$ соотношением

$$I_{\rm K} = h_{219} I_{\rm B} + I_{{\rm K}90} ,$$

где h_{219} – коэффициент усиления тока для постоянных составляющих $i_{\rm K}$ и $i_{\rm B}$; $h_{219}\gg 1$. Пренебрегая током $I_{\rm K90}$, можно найти ток базы, соответствующий выбранной рабочей точке:

$$I_{\rm E} = I_{\rm K} / h_{219}$$
.

Чтобы получить требуемый ток базы, необходимо выбрать сопротивление резистора $R_{\rm B}$ равным

$$R_{\rm B} = h_{219} \frac{U_{\Pi} - U_{\rm B9}}{I_{V}},$$

где

$$U_{\rm E9} = \begin{cases} 0.2...0.3 \; {\rm B} \; {\rm для} \; {\rm германиевого} \; {\rm транзисторa} \\ 0.6...0.7 \; {\rm B} \; {\rm для} \; {\rm кремниевого} \; {\rm транзисторa}. \end{cases}$$

При $U_{\Pi} \gg U_{\text{БЭ}}$ пользуются соотношением

$$R_{\rm E} \approx h_{219} \frac{U_{\rm II}}{I_{\rm K}} \,.$$

Одним из недостатков схемы усилителя, приведенной на рис. 2, является сильная зависимость положения рабочей точки от параметра транзистора h_{213} . Этот недостаток практически отсутствует в схеме стабилизированного усилителя, приведенной на рис. 6а, при соответствующем выборе сопротивлений резисторов R_1 , R_2 , R_3 , которыми и определяется режим транзистора по постоянному току. При известных значениях R_1 , R_2 , R_3 режим транзистора находят, применяя *теорему об эквивалентном генераторе* (см. [2], с. 51).

Согласно этой теореме делитель в цепи базы, включенный между шиной коллекторного питания $+U_{\Pi}$ и землей, можно заменить источником постоянного напряжения с ЭДС $E_{\rm B}$ и выходным сопротивлением $R_{\rm B}$:

$$E_{\rm B} = U_{\rm II} \cdot \frac{R_2}{R_1 + R_2} \,, \; R_{\cal B} = R_1 \, \big\| \, R_2 = \frac{R_1 R_2}{R_1 + R_2} \,,$$

где $R_1||R_2$ — сопротивление параллельно соединенных R_1 и R_2 (рис. 6б). Уравнение Кирхгофа для контура в цепи базы имеет вид:

$$E_{\rm B} = I_{\rm B} R_{\rm B} + U_{\rm BB} + I_{\rm B} R_{\rm B} .$$

Рис. 6. Стабилизированный усилитель (a) и результат преобразования схемы стабилизированного усилителя по постоянному току с использованием теоремы об эквивалентном генераторе (б)

Учитывая, что $I_{\Im} = I_{\mathrm{K}} + I_{\mathrm{B}} = (h_{21\Im} + 1) \cdot I_{\mathrm{B}}$, получим:

$$\begin{split} I_{\rm E} &= \left(E_{\rm E} - U_{\rm E9}\right) \middle/ \left[R_{\rm E} + \left(h_{219} + 1\right)R_{\rm 9}\right], \\ I_{\rm K} &\approx I_{\rm 9} = \left(h_{219} + 1\right)I_{\rm E} = \left(h_{219} + 1\right) \cdot \frac{E_{\rm E} - U_{\rm E9}}{R_{\rm E} + (h_{219} + 1)R_{\rm 9}}. \end{split}$$

Если $R_{\rm E} \ll (h_{\rm 213}+1)R_{\rm 3}$, то ток $I_{\rm K}$ и напряжение $U_{\rm K3}$ слабо зависят от коэффициента усиления транзистора по току $h_{\rm 213}$, при этом

$$I_{\rm K} \approx (E_{\rm B} - U_{\rm BG})/R_{\rm B}$$
.

В сопоставлении со стабилизированным усилителем исходную схему без делителя в цепи базы и резистора в цепи эмиттера (рис. 2) называют нестабилизированным усилителем.

Усиление переменного сигнала

В стабилизированном усилителе с конденсатором C_3 (рис. 6а, $C_3 \to \infty$) эмиттер транзистора замкнут накоротко на землю по переменному току. Такой усилитель с точки зрения усиления переменного сигнала во многом сходен с нестабилизированным усилителем (рис. 2). Поэтому ниже, рассматривая их характеристики, мы будем называть обе схемы усилителем с заземленным по переменному току эмиттером транзистора.

Возможно использование стабилизированного усилителя и без конденсатора C_3 ($C_3 = 0$). Характеристики этой схемы необходимо рассматривать отдельно.

При изучении свойств усилителей часто предполагается, что роль переменного входного сигнала $u_{\rm BX}$ играет малое по величине синусоидальное напряжение.

Максимальный неискаженный сигнал на выходе

Построения на коллекторных характеристиках транзистора позволяют получить наглядное представление о состоянии транзистора и значениях токов и напряжений в схеме в различные моменты времени при подаче на вход переменного сигнала $u_{\rm RX}$.

В том случае, когда к выходу усилителя не подключена внешняя нагрузка (рис. 2), линия нагрузки, построенная для постоянного тока (рис. 5), является также линией нагрузки по переменному току.

Если к выходу усилителя через разделительный конденсатор $C_{\rm p}$ подключена внешняя нагрузка $R_{\rm H}$, как показано на рис. 7, $1/(\omega C_{\rm p}) \ll R_{\rm K} + R_{\rm H}$, то линия нагрузки по переменному току задается уравнением

$$\Delta u_{\mathrm{K}\ni} = \Delta i_{\mathrm{K}} \cdot (R_{\mathrm{K}} \| R_{\mathrm{H}})$$

или

$$u_{K\ni} = U_{K\ni} - (i_K - I_K) \cdot R_H^*,$$

где $U_{\rm K\Im}=U_\Pi-I_{\rm K}\cdot R_{\rm K}$ и $I_{\rm K}$ – постоянные составляющие напряжения $u_{\rm K\Im}$ и тока $i_{\rm K}$, а $R_{\rm H}^*=R_{\rm K}\,\|R_{\rm H}=R_{\rm K}\,R_{\rm H}/\big(R_{\rm K}+R_{\rm H}\big)$ – нагрузка в коллекторной цепи по переменному току. В этом случае линией нагрузки по переменному

току является прямая, проходящая через рабочую точку под углом к оси абсцисс, тангенс которого равен $\left(R_{\scriptscriptstyle \rm H}^*\right)^{-1}$ (рис. 8).

Рис. 7. Усилитель с внешней нагрузкой $R_{\rm H}$

В случае стабилизированного усилителя с $C_{\mathfrak{I}} \to \infty$ справедливы построения на коллекторных характеристиках, аналогичные представленным на рис. 8 для нестабилизированного усилителя с внешней нагрузкой. При этом угол наклона линии нагрузки по постоянному току определяется сопротивлением $R_{\mathrm{K}} + R_{\mathfrak{I}}$, а угол наклона линии нагрузки по переменному току — сопротивлением резистора R_{K} .

Рис. 8. Построение линии нагрузки по переменному току при наличии внешней нагрузки $R_{\scriptscriptstyle \rm H}$

Проведение линии нагрузки по переменному току дает возможность оценить максимальный неискаженный сигнал, который может быть получен на выходе. В схемах с заземленным по переменному току эмиттером транзистора амплитуда максимального неискаженного сигнала

 $U_{\text{вых} \square m \square \text{макс}}$ не может превышать меньшего из значений $U_1,\ U_2$ (см. рис. 5, 8).

У стабилизированного усилителя с $C_9=0$ линия нагрузки по переменному току совпадает с линией нагрузки по постоянному току. В этом случае при определении максимального неискаженного сигнала на выходе необходимо принять во внимание, что $u_{\text{вых}}$ не совпадает с Δu_{K3} , а является его частью: $u_{\text{вых}} = \Delta u_{\text{K3}} \cdot R_{\text{K}} / (R_{\text{K}} + R_{\text{B}})$ (см. [2], с. 107).

Параметры усилителя для малых входных сигналов

Свойства усилителя, характеризующие его способность усиливать переменный сигнал, принято выражать с помощью следующих параметров (рис. 9):

$$\begin{split} R_{\text{BX}} &= U_{\text{BX}} \: / \: I_{\text{BX}} \: - \text{входное сопротивление,} \\ R_{\text{BыX}} &= U_{\text{ВыХ}_XX} \: / \: I_{\text{ВыХ}_K3} \: - \text{выходное сопротивление,} \\ U_{\text{ВыХ}_XX} &- \text{напряжение на выходе при } R_{\text{H}} \to \infty, \\ I_{\text{ВыX}_K3} &- \text{выходной ток при } R_{\text{H}} = 0, \\ K_{u} &= U_{\text{ВыX}} \: / U_{\text{BX}} \\ K_{e} &= U_{\text{ВыX}} \: / U_{\text{BX}} \\ \end{pmatrix} \: \text{- коэффициенты усиления напряжения,} \end{split}$$

где U, ${\cal E}$, I — действующие или амплитудные значения перемен-ных составляющих соответствующих напряжений и токов.

Рис. 9. К определению входного и выходного сопротивлений усилителя и коэффициентов усиления напряжения

Из-за наличия конденсаторов в схеме усилителя и из-за инерционности процессов, происходящих в транзисторе, поведение усилителя зависит от частоты усиливаемого гармонического сигнала, а между напряжениями и токами в схеме имеются сдвиги по фазе. Поэтому, строго говоря, входные и выходные сопротивления и коэффициенты усиления напряжения, определенные как отношения соответствующих синусоидальных

напряжений и токов в комплексной записи, также являются комплексными величинами.

В частности, модуль коэффициента усиления K_e зависит от частоты ω так, как это показано на рис. 10.

Рис. 10. Общий вид амплитудно-частотной характеристики резисторного усилителя (логарифмический масштаб по оси частот)

Резисторные усилители, то есть усилитель нагрузка в коллекторной цепи которого образована резисторами, может иметь верхнюю граничную частоту $\omega_{\rm B}$ на несколько порядков выше нижней граничной частоты $\omega_{\rm H}$. В этом случае существует протяженная область средних частот, в пределах которой коэффициент K_e остается практически постоянным.

В области средних частот входное и выходное сопротивления и коэффициенты усиления напряжения являются действительными величинами и не зависят от частоты ω . Ниже именно об этих значениях пойдет речь при определении $R_{\rm BX}$, $R_{\rm Bыx}$, K_u и K_e .

Эквивалентные схемы транзисторов

Когда усиливаемый переменный сигнал достаточно мал, связь между приращениями токов и напряжений в схеме усилителя является линейной. Чтобы установить эту связь, считают, что режим транзистора по постоянному току задан, и рассматривают только переменные составляющие токов и напряжений. При этом удобно представить транзистор в виде относительно простой электрической схемы, выражающей соотношения между малыми приращениями токов и напряжений. Такая схема называется эквивалентной.

Одним из вариантов представления транзистора является физическая эквивалентная схема, приведенная на рис. 11, описание которой можно найти в [2–5]. В этой схеме

- r_{616} объемное сопротивление базы; у маломощных транзисторов r_{616} = 50...100 Ом;
- r_{619} сопротивление, отражающее свойства открытого p—n-перехода база—эмиттер:

$$r_{619} = (h_{219} + 1) \cdot r_9, r_9 = \frac{U_T}{I_9}, U_T = \frac{kT}{q};$$

здесь r_3 — дифференциальное сопротивление эмиттерного перехода,

 U_T — температурный (тепловой) потенциал, $U_T \approx 25 \text{ мB}$ при комнатной температуре,

k – постоянная Больцмана,

T — абсолютная температура,

q – заряд электрона,

 h_{213} — коэффициент усиления тока для переменных составляющих

$$h_{212} = \Delta I_{\rm K} / \Delta I_{\rm B} \approx h_{213}$$
;

 $r_{61\mathrm{k}}, r_{\mathrm{k}_9}$ — сопротивления, отражающие эффекты, связанные с изменением ширины базы при изменении напряжения между коллектором и эмиттером, которое приводит к зависимости i_K от u_K9 при

$$I_{\rm B}$$
= const: $r_{\rm 61_K} = (h_{21_3} + 1) \cdot r_{\rm K3}$;

$$S$$
 – крутизна транзистора: $S = \frac{h_{213}}{h_{213} + 1} \cdot \frac{1}{r_3} \approx \frac{1}{r_3}$;

 C_{613} , C_{61k} — емкости эмиттерного и коллекторного переходов:

$$C_{619} = aI_{9}, \ C_{61\kappa} \approx \frac{b}{\sqrt{|U_{KS}|}},$$
где a и b – постоянные

соответствующей размерности.

Другим распространенным вариантом представления транзистора является эквивалентная схема с *h*-параметрами, приведенная на рис. 12.

Рис. 12. Эквивалентная схема транзистора с h - параметрами

Выбирая в качестве независимых переменных ток i_6 и напряжение u_{κ_3} , имеем

$$u_{69} = h_{119} \cdot i_6 + h_{129} \cdot u_{\kappa 9},$$

$$i_{\kappa} = h_{219} \cdot i_6 + h_{229} \cdot u_{\kappa 9}.$$

Каждый из *h*-параметров имеет определенный физический смысл:

 h_{11_3} — входное сопротивление транзистора при коротком замыкании на выходе ($u_{\kappa_3} = 0$);

 h_{123} — коэффициент обратной связи (передачи напряжения с выхода на вход) при разомкнутом входе ($i_6 = 0$);

 h_{21} — коэффициент передачи тока при коротком замыкании на выходе ($u_{\kappa 2} = 0$);

 h_{223} — выходная проводимость (величина, обратная выходному сопротивлению) при разомкнутом входе (i_6 = 0).

В общем случае h-параметры являются комплексными величинами, отражая, как и емкости C_{613} и $C_{61\kappa}$ в физической эквивалентной схеме, инерционность процессов, происходящих в транзисторе. Однако в области средних частот можно пренебречь влиянием C_{613} и $C_{61\kappa}$. В этом случае h-параметры являются действительными величинами, которые следующим образом связаны с параметрами физической эквивалентной схемы:

$$\begin{split} h_{11_{9}} &= r_{616} + \left(r_{61_{9}} \left\| r_{61_{K}} \right) \approx r_{616} + r_{61_{9}}, \\ h_{12_{9}} &= \frac{r_{61_{9}}}{r_{61_{9}} + r_{61_{K}}} \approx \frac{r_{61_{9}}}{r_{61_{K}}}, \\ h_{21_{9}} &= S \cdot r_{61_{9}}, \\ h_{22_{9}} &\approx \frac{S \cdot r_{61_{9}}}{r_{61_{K}}} + \frac{1}{r_{_{K9}}} \approx \frac{2}{r_{_{K9}}}. \end{split}$$

Параметры обеих эквивалентных схем транзистора зависят от режима по постоянному току.

Входное сопротивление

Из эквивалентной схемы усилителя (рис. 13) видно, что входное сопротивление усилителя (сопротивление между точками I и 0) определяется не только свойствами транзистора, но и сопротивлениями внешних резисторов $R_{\rm E}$, $R_{\rm K}$ и $R_{\rm u}$.

Различают входное сопротивление транзистора $R_{\rm вx_тp}$ и входное сопротивление усилителя $R_{\rm sx}$.

Рис. 13. Эквивалентная схема усилителя с заземленным по переменному току эмиттером транзистора для средних частот (в случае стабилизированного усилителя $R_{\rm b} = R_1 \, \| \, R_2)$

Из уравнений Кирхгофа следует, что *входное сопротивление транзистора* равно:

$$R_{\text{bx_Tp}} = \frac{U_{\text{bx}}}{I_{\text{6}}} = h_{\text{113}} - \frac{h_{\text{123}} \cdot h_{\text{213}}}{h_{\text{223}} + (R_{\text{H}}^*)^{-1}}.$$

Часто транзисторы работают в режиме, близком к режиму короткого замыкания (это происходит, когда $R_{\scriptscriptstyle \rm H}^* \ll R_{\scriptscriptstyle \rm Bых\ тp}$; см. ниже). В этом случае

выражение для $R_{\text{вх_тр}}$ можно упростить и принять в качестве оценки, что $R_{\text{вх_тр}} \approx h_{119}$. Входное сопротивление транзистора непосредственно зависит от режима транзистора по постоянному току, поскольку дифференциальное сопротивление эмиттерного перехода r_9 обратно пропорционально эмиттерному току I_9 .

Bxoдное сопротивление усилителя $R_{\rm BX}$ представляет собой сопротивление параллельно включенных входного сопротивления транзистора $R_{\rm BX-TD}$ и резистора $R_{\rm B}$:

$$R_{\text{BX}} \approx R_{\text{B}} \| h_{119} = \frac{R_{\text{B}} \cdot h_{119}}{R_{\text{B}} + h_{119}}.$$

Выходное сопротивление

В соответствии с теоремой об эквивалентном генераторе выходная цепь всякого четырехполюсника, в частности, выходная цепь транзисторного усилителя может быть представлена в виде источника ЭДС $\mathcal{E}_{\text{вых}}$ и выходного сопротивления $R_{\text{вых}}$:

$$\mathcal{E}_{\scriptscriptstyle \mathrm{BbIX}} = U_{\scriptscriptstyle \mathrm{BbIX} \ \scriptscriptstyle \mathrm{XX}}, \; R_{\scriptscriptstyle \mathrm{BbIX}} = U_{\scriptscriptstyle \mathrm{BbIX} \ \scriptscriptstyle \mathrm{XX}} \left/ I_{\scriptscriptstyle \mathrm{BbIX} \ \scriptscriptstyle \mathrm{K3}} \right..$$

Следует различать выходное сопротивление транзистора $R_{{\scriptscriptstyle \mathrm{BbIX_TP}}}$ и выходное сопротивление усилителя $R_{{\scriptscriptstyle \mathrm{BbIX}}}$.

Выходное сопротивление транзистора определяется как отношение выходного напряжения при $R_{\rm K} \! \to \! \infty$ и $R_{\rm H} \! \to \! \infty$ к выход-ному току при $R_{\rm K} \! = \! 0$. Из эквивалентной схемы (рис. 13) следует, что

$$(R_{\text{вых_тр}})^{-1} = h_{223} - \frac{h_{123} \cdot h_{213}}{h_{113} + R_{\text{u}}^*};$$

$$(R_{\text{вых_тр}})^{-1} = \begin{cases} h_{223} & \text{при } R_{\text{u}}^* \to \infty \\ h_{223}/2 & \text{при } R_{\text{u}}^* = 0, \text{ если } r_{616} & \text{пренебрежимо мало,} \end{cases}$$

где $R_{_{\rm H}}^* = R_{_{\rm H}} \| R_{_{\rm B}} -$ выходное сопротивление эквивалентного источника сигнала, действующего во входной цепи.

Если
$$h_{129} \rightarrow 0$$
 и $h_{229} \rightarrow 0$, то $R_{\scriptscriptstyle \mathrm{BMX-TD}} \rightarrow \infty$.

Выходное сопротивление усилителя равно сопротивлению параллельно включенных выходного сопротивления транзистора и резистора $R_{\rm K}$:

$$R_{\text{\tiny Bbix}} = \frac{R_{\text{\tiny Bbix_Tp}} \cdot R_{\text{\tiny K}}}{R_{\text{\tiny Bbix_Tp}} + R_{\text{\tiny K}}} \,. \label{eq:Rbbix}$$

Если $R_{\text{вых тр}} \rightarrow \infty$, то $R_{\text{вых}} = R_{\text{K}}$.

Коэффициенты усиления напряжения

Коэффициенты усиления K_u и K_e связаны соотношением

$$K_e = \frac{U_{\text{\tiny BbIX}}}{\mathcal{E}_{\text{\tiny H}}} = \frac{U_{\text{\tiny BbIX}}}{U_{\text{\tiny BX}}} \cdot \frac{U_{\text{\tiny BX}}}{\mathcal{E}_{\text{\tiny H}}} = K_u \cdot \frac{U_{\text{\tiny BX}}}{\mathcal{E}_{\text{\tiny H}}} \; .$$

Если известны сопротивление источника сигнала $R_{\rm u}$ и входное сопротивление усилителя $R_{\rm Bx}$, то

$$K_e = \frac{R_{_{\rm BX}}}{R_{_{\rm H}} + R_{_{\rm BX}}} \cdot K_u \,.$$

Рассчитаем коэффициент усиления K_u , воспользовавшись эквивалентной схемой, приведенной на рис. 13:

$$\begin{split} u_{\scriptscriptstyle \mathrm{BMX}} &= -i_{\mathrm{K}} \cdot R_{\scriptscriptstyle \mathrm{H}}^* = -h_{\scriptscriptstyle 213} i_{\scriptscriptstyle 6} \, \frac{R_{\scriptscriptstyle \mathrm{H}}^*}{1 + R_{\scriptscriptstyle \mathrm{H}}^* \cdot h_{\scriptscriptstyle 223}}, \\ i_{\scriptscriptstyle 6} &= \frac{u_{\scriptscriptstyle \mathrm{BX}} - h_{\scriptscriptstyle 123} u_{\scriptscriptstyle \mathrm{BMX}}}{h_{\scriptscriptstyle 113}}, \\ u_{\scriptscriptstyle \mathrm{BMX}} &= -\frac{(u_{\scriptscriptstyle \mathrm{BX}} - h_{\scriptscriptstyle 123} u_{\scriptscriptstyle \mathrm{BMX}}) \cdot h_{\scriptscriptstyle 213} \cdot R_{\scriptscriptstyle \mathrm{H}}^*}{h_{\scriptscriptstyle 113} \cdot (1 + R_{\scriptscriptstyle \mathrm{H}}^* \cdot h_{\scriptscriptstyle 223})}. \end{split}$$

Из последнего уравнения следует:

$$K_u = \frac{U_{\text{\tiny BMX}}}{U_{\text{\tiny BX}}} = -\frac{h_{213} \cdot R_{\text{\tiny H}}^*}{h_{112} + (h_{113} h_{223} - h_{123} h_{213}) R_{\text{\tiny H}}^*} \approx -\frac{h_{213} \cdot R_{\text{\tiny H}}^*}{h_{112} (1 + h_{223} R_{\text{\tiny H}}^* / 2)};$$

приближенное равенство в последнем соотношении справедливо при $r_{616} \ll r_{613}$. Если $R_{_{\rm H}}^* \ll (h_{223})^{-1}$, то

$$K_u = \frac{U_{\text{\tiny BMX}}}{U_{\text{\tiny BX}}} = \frac{-I_{\text{\tiny K}} \cdot R_{\text{\tiny H}}^*}{I_{\text{\tiny 6}} \cdot R_{\text{\tiny BX}}} \approx -h_{213} \, \frac{R_{\text{\tiny H}}^*}{h_{112}} \, .$$

При $r_{616} \ll r_{619}$ имеем: $K_u \approx -S \cdot R_{\rm H}^* \approx -R_{\rm H}^*/r_{\rm g}$.

Стабилизированный усилитель с $C_3 = 0$

На рис. 14 приведена эквивалентная схема стабилизированного усилителя с $C_9 = 0$ для средних частот (см. рис. 6а).

Рис. 14. Эквивалентная схема стабилизированного усилителя с C_3 = 0 для средних частот (R_6 = $R_1 \| R_2$)

В отношении транзистора предполагается, что $h_{123} = 0$ и $h_{223} = 0$. Из эквивалентной схемы следует:

$$\begin{split} R_{\text{BX}} &= R_{\text{B}} \left\| \left[h_{119} + \left(h_{219} + 1 \right) R_{9} \right], \ R_{\text{B}} = R_{1} \left\| R_{2}, \right. \\ K_{u} &= -\frac{h_{219} R_{\text{K}}}{h_{119} + \left(h_{219} + 1 \right) R_{9}}. \end{split}$$

Если $r_{616} \ll r_{619}$, то $h_{119} \approx \left(h_{219} + 1\right) r_{9}$ и

$$K_u \approx -\frac{R_{\rm K}}{R_{\rm P} + r_{\rm P}}$$
.

В частности, $K_u \approx R_{\rm K}/R_{\rm B}$ при $r_{\rm B} \ll R_{\rm B}$.

Частотная характеристика усилителя

Усиление в области нижних частот

На рис. 15а приведена эквивалентная схема усилителя в области нижних частот, из которой следует, что коэффициент K_u , равный по определению $\tilde{U}_{\text{вых}}/\tilde{U}_{\text{вх}}$, не зависит от частоты сигнала; здесь, на рис. 15 и далее $\tilde{U}, \, \tilde{\mathcal{E}}, \, \tilde{I}\, -$ синусоидальные напряжения и токи в комплексной записи. От частоты зависит $\tilde{U}_{\text{вх}}$, поскольку входная цепь представляет собой дифференцирующую цепь (рис. 15б):

$$\tilde{U}_{\rm BX} = \frac{R_{\rm BX}}{R_{\rm H} + 1/(j\omega C_{\rm B}) + R_{\rm BX}} \cdot \tilde{\mathcal{E}}_{\rm H}.$$

$$\tilde{\mathcal{E}}_{\rm H} = \frac{R_{\rm BX}}{R_{\rm BX}} \cdot \tilde{\mathcal{E}}_{\rm H}.$$

$$\tilde{\mathcal{E}}_{\rm H} = \frac{R_{\rm BX}}{R_{\rm BX}} \cdot \tilde{\mathcal{E}}_{\rm H}.$$

$$\tilde{\mathcal{E}}_{\rm H} = \frac{R_{\rm BX}}{\tilde{\mathcal{E}}_{\rm H}} \cdot \tilde{\mathcal{E}}_{\rm H}.$$

$$\tilde{\mathcal{E}}_{\rm H} = \frac{R_{\rm BX}}{\tilde{\mathcal{E}}_{\rm H}} \cdot \tilde{\mathcal{E}}_{\rm H}.$$

$$\tilde{\mathcal{E}}_{\rm H} = \frac{R_{\rm BX}}{\tilde{\mathcal{E}}_{\rm H}} \cdot \tilde{\mathcal{E}}_{\rm H}.$$

Рис. 15. Упрощенная эквивалентная схема усилителя с заземленным по переменному току эмиттером транзистора (а) и эквивалентная схема входной цепи (б) в области нижних частот

Полагая, аналогично тому, как это было раньше, что \tilde{K}_e равно $\tilde{U}_{\text{вых}}/\tilde{\mathcal{E}}_{\text{н}}$, получим:

$$\begin{split} \tilde{K}_{e} &= \frac{R_{_{\mathrm{BX}}}}{R_{_{\mathrm{H}}} + 1/\left(j\omega C_{_{\mathrm{B}}}\right) + R_{_{\mathrm{BX}}}} \cdot K_{u} = \\ &= \frac{1}{1 + 1/\left[j\omega C_{_{\mathrm{B}}}(R_{_{\mathrm{H}}} + R_{_{\mathrm{BX}}})\right]} \cdot \frac{R_{_{\mathrm{BX}}}}{R_{_{\mathrm{H}}} + R_{_{\mathrm{BX}}}} \cdot K_{u} = \\ &= \frac{1}{1 + 1/\left[j\omega C_{_{\mathrm{B}}}(R_{_{\mathrm{H}}} + R_{_{\mathrm{BX}}})\right]} \cdot K_{e0}, \end{split}$$

где $K_{e0} = K_u R_{\rm BX} / (R_{\rm H} + R_{\rm BX})$ — значение коэффициента усиления K_e на средних частотах.

Частота $\omega_{\rm H}$, на которой модуль коэффициента усиления $K_e(j\omega)$ в $\sqrt{2}$ раз меньше величины K_{e0} , называется *нижней граничной частотой*. Для определения $\omega_{\rm H}$ необходимо решить относительно частоты ω уравнение

$$\left| \frac{1}{1 + 1/[j\omega C_{\rm B}(R_{\rm H} + R_{\rm BX})]} \right| = \frac{1}{\sqrt{2}} ,$$

откуда следует, что

$$\omega_{\scriptscriptstyle \mathrm{H}} = 1 / \left[C_{\scriptscriptstyle \mathrm{E}} \left(R_{\scriptscriptstyle \mathrm{H}} + R_{\scriptscriptstyle \mathrm{BX}} \right) \right] = 1 / \tau_{\scriptscriptstyle \mathrm{H}} ,$$

где $\tau_{\rm H}$ – постоянная времени входной цепи.

В стабилизированном усилителе с конденсатором в цепи эмиттера на поведении коэффициента усиления \tilde{K}_e в области нижних частот может сказаться конечное значение емкости C_{\Im} . Если влияние C_{\Im} оказывается преобладающим в таком диапазоне частот ω , где величина $1/(\omega C_{\Xi})$ остается пренебрежимо малой по сравнению с $R_{\tt H}+R_{\tt BX}$, и если $K_u\big|_{C_{\Im}\to\infty}\approx -R_{\tt H}^*/R_{\Im}$ много меньше по модулю, чем $K_u\big|_{C_{\Im}\to\infty}\approx -h_{21_{\Im}}\cdot R_{\tt H}^*/h_{11_{\Im}}$, то

$$\omega_{\text{H}} \approx \frac{1}{\left(\frac{R_{\text{H}}^* + h_{119}}{h_{219} + 1} \middle\| R_{9}\right) \cdot C_{9}},$$

где $\frac{R_{\text{и}}^* + h_{11_9}}{h_{21_9} + 1}$ — выходное сопротивление транзистора со стороны эмитте-

ра (см. [2], с. 113 и далее), $R_{\rm u}^* = R_{\rm u} \| R_{\rm l} \| R_{\rm 2}$. Если при пере-ходе из области средних частот в область нижних частот влияние $C_{\rm b}$ и $C_{\rm 3}$ начинает проявляться одновременно, то нижняя граничная частота оказывается большей, чем те значения, которые определяются постоянными времени базовой цепи и эмиттерной цепи порознь.

В случае стабилизированного усилителя с $C_{\Im}=0$ справедлива эквивалентная схема входной цепи, приведенная на рис. 156, с $R_{\rm BX}=R_1\left\|R_2\left\|\left[h_{11_3}+\left(h_{21_3}+1\right)R_{\Im}\right]\right.$

Усиление в области верхних частот

Для нахождения верхней граничной частоты $\omega_{\rm B}$, то есть частоты, на которой модуль коэффициента усиления $K_e(j\omega)$ при увеличении частоты падает в $\sqrt{2}$ раз по сравнению со значением этого коэффициента на средних частотах, обратимся к эквивалентной схеме усилителя с использованием физической эквивалентной схемы транзистора (рис. 16а). На этой схеме отсутствуют резисторы $r_{\rm 61k}$ и $r_{\rm k3}$, сопротивления которых, по предположению, велики по сравнению с величинами $1/(\omega C_{\rm 61k})$ и $R_{\rm K}$ соответственно.

Схему, приведенную на рис. 16а, можно заменить более простой эквивалентной схемой, показанной на рис. 16б.

Рис. 16. Эквивалентная схема усилителя с заземленным по переменному току эмиттером в области верхних частот: (а) исходная схема; (б) схема, получающаяся в результате преобразования $C_{61\kappa}$ в C

Источник сигнала в цепи базы и делитель, состоящий из $R_{\rm H}$ и $R_{\rm B}$, преобразованы по теореме об эквивалентном генераторе в источник сигна-ла с ЭДС $\tilde{\mathcal{E}}_{\rm H}^* = \tilde{\mathcal{E}}_{\rm H} \cdot R_{\rm B}/(R_{\rm H} + R_{\rm B})$ и выходным сопротивлением $R_{\rm H}^* = R_{\rm H} \| R_{\rm B}$. Емкость конденсатора $C_{\rm 61k}$ учтена путем включения емкости C параллельно емкости $C_{\rm 61s}$. Такая замена оказывается справедливой, если величина C выбирается из условия, что ток, протекающий через емкость $C_{\rm 61k}$ в схеме на рис. 16а, равен току, протекающему через емкость C в схеме на рис. 16б, и много меньше тока $S | \tilde{U}_{\rm 61s} |$. Из этого условия получаем:

$$j\omega C_{61\kappa} \left(1 + SR_{\scriptscriptstyle H}^*\right) \cdot \tilde{U}_{61\flat} = j\omega C \cdot \tilde{U}_{61\flat};$$

следовательно,

$$C = C_{61\kappa} \left(1 + SR_{\scriptscriptstyle \rm H}^* \right).$$

Если
$$r_{616} \ll r_{619}$$
, то $C = C_{61\kappa} (1 + |K_u|)$.

Входная цепь на рис. 16б является интегрирующей цепью. С учетом этого нетрудно найти верхнюю граничную частоту $\omega_{\rm B}$. Для этого надо найти частоту, на которой напряжение $\left|\tilde{U}_{619}\right|$ падает в $\sqrt{2}$ раз по сравнению с величиной $\left|\tilde{U}_{619}\right|$ на средних частотах. Указанное изменение происходит на частоте ω , для которой выполняется условие:

$$\left| \frac{1}{j\omega(C_{619} + C)} \right| = \left(R_{\text{H}}^* + r_{616} \right) \| r_{619} ,$$

откуда

$$\omega_{_{\rm B}} = 1 \! \Big/ \tau_{_{\rm B}} = 1 \! \Big/ \! \Big\{ \! \big(C_{619} + C \big) \! \Big[\Big(R_{_{\rm H}}^* + r_{616} \Big) \Big\| r_{619} \Big] \! \Big\} \, .$$

При переходе от схемы стабилизированного усилителя с конденсатором C_3 в цепи эмиттера ($C_3 \to \infty$) к схеме без конденсатора ($C_3 = 0$) верхняя граничная частота увеличивается; при выполнении определенных условий верхняя граничная частота может увеличиться во столько раз, во сколько уменьшается коэффициент усиления K_u на средних частотах (см. [2], с. 128 и далее).

Переходная характеристика усилителя

Кроме частотной характеристики свойства усилителя можно описать с помощью переходной характеристики.

Переходная характеристика h(t) – это реакция усилителя на единичный скачок $\sigma(t)$ (рис. 17).

Как было показано выше при анализе частотной характеристики, частотно-зависимые цепи усилителя представляют собой дифференцирующую и интегрирующую цепи. Если $\tau_{_{\rm H}}\gg\tau_{_{\rm B}}$, то переходную характеристику можно найти, объединяя переходные характеристики дифференцирующей и интегрирующей цепей, которые, в свою очередь, могут быть найдены независимо.

Рис. 17. К определению переходной характеристики усилителя.

Переходная характеристика дифференцирующей цепи

На рис. 18а приведена схема дифференцирующей цепи. Входное напряжение равно сумме напряжений на конденсаторе и резисторе:

$$u_{\rm BX} = \frac{1}{C_1} \int i dt + i R_1.$$

Дифференцируя и заменяя ток i величиной $u_{\scriptscriptstyle \mathrm{BMX}}/R_{\scriptscriptstyle \mathrm{I}}$, получим:

$$\frac{\mathrm{d}u_{\text{\tiny BbIX}}}{\mathrm{d}t} + \frac{1}{\tau_{\text{\tiny H}}} \cdot u_{\text{\tiny BbIX}} = \frac{\mathrm{d}u_{\text{\tiny BX}}}{\mathrm{d}t} \,,$$

где $\tau_{\scriptscriptstyle H} = R_1 C_1$.

При
$$t$$
 > 0 имеем: $u_{\text{вх}}\!\!=U_0,\, \frac{\mathrm{d}u_{\text{вх}}}{\mathrm{d}t}=0$, поэтому
$$u_{\text{вых}}=U_0\cdot\mathrm{e}^{-t/\tau_{\text{H}}}\,.$$

Рис. 18. Схема дифференцирующей цепи (а) и временные диаграммы (б, в), иллюстрирующие ее переходную характеристику

Рис. 19. Схема интегрирующей цепи (а) и временные диаграммы (б, в), иллюстрирующие ее переходную характеристику

На рис. 18в показан вид переходной характеристики дифференцирующей цепи.

Переходная характеристика интегрирующей цепи

Поскольку $u_{\rm BX} = u_{C_2} + u_{R_2}$ (рис. 19а), выходное напряжение интегрирующей цепи равно разности между входным напряжением и выходным напряжением дифференцирующей цепи:

$$u_{{\scriptscriptstyle \mathrm{B}\mathrm{b}\mathrm{I}\mathrm{X}}_{_{}\mathrm{U}.\mathrm{I}\mathrm{I}.}}=u_{{\scriptscriptstyle \mathrm{B}\mathrm{X}}}-u_{{\scriptscriptstyle \mathrm{B}\mathrm{b}\mathrm{I}\mathrm{X}}_{_{}\mathrm{I}.\mathrm{I}\mathrm{I}.}}$$
 .

Следовательно, в данном случае $u_{\scriptscriptstyle \mathrm{BMX}} = U_0 \left(1 - \mathrm{e}^{-t/\tau_{\scriptscriptstyle \mathrm{B}}} \right)$, где $\tau_{\scriptscriptstyle \mathrm{B}} = R_2 C_2$.

Примеры

На практике дифференцирующая и интегрирующая цепи чаще всего встречаются в виде, указанном на рис. 20. Нетрудно убедиться, что схема на рис. 20а ведет себя как дифференцирующая цепь с постоянной време-

ни $(R_1 + R_2)C$, а схема на рис. 20б – как интегрирующая цепь с постоянной времени $(R_1 \| R_2)C$.

Рис. 20. Примеры дифференцирующей (а) и интегрирующей (б) цепей

Эти схемы отличаются от схем на рис. 18а и 19а тем, что в области средних частот, где наличием конденсатора C можно пренебречь, коэффициент передачи $U_{\rm вых}/U_{\rm вx}$ равен $K_0=R_2/(R_1+R_2)$. Из этого следует, что у переходных характе-ристик скачок на выходе дифференцирующей цепи (рис. 20а) и асимптотическое значение на выходе интегрирующей цепи (рис. 20б) равны K_0U_0 , где U_0 – величина скачка на входе.

Задание

Для заданных преподавателем значений $R_{\rm K}$, $\hat{I}_{\rm K}$, $C_{\rm B}$ при $U_{\rm H}$ = 10 В рассчитать, собрать и исследовать указанные ниже схемы, измеряя каждый раз следующую совокупность параметров:

$$U_{_{\mathrm{BMX}\ \mathrm{MAKC}}},\,K_{u},\,K_{e},\,R_{_{\mathrm{BX}}},f_{_{\mathrm{H}}},f_{_{\mathrm{B}}},$$

где $U_{{\scriptscriptstyle {
m BЫX_Makc}}}$ — действующее значение максимального неискаженного сигнала

Прежде чем приступить к выполнению задания, ознакомьтесь с заданием в полном объеме и с рекомендациями по его выполнению (стр. 28-30).

Нестабилизированный усилитель

1. В схеме, указанной на рисунке, установить такое $R_{\rm E}=\hat{R}_{\rm E}$, чтобы ток $I_{\rm K}$ равнялся заданному значению $\hat{I}_{\rm K}$. Измерить $U_{\rm K9}$ и $U_{\rm E9}$. Найти $h_{\rm 219}$.

Рисунок к n. 1 задания \rightarrow

2. Для нестабилизированного усилителя с $R_{_{
m H}}\!pprox\!R_{_{
m K}}$ определить

$$U_{_{\mathrm{BMX\ MAKC}}},\,K_{u},\,K_{e},\,R_{_{\mathrm{BX}}},f_{_{\mathrm{H}}},f_{_{\mathrm{B}}}$$
 :

- а) при $R_{\scriptscriptstyle \mathrm{B}}$, равном найденному в п. 1 значению $\hat{R}_{\scriptscriptstyle \mathrm{K}}$;
- б) при приблизительно вдвое большем значении $\,R_{\scriptscriptstyle
 m B}\,$.

 $Рисунок \ \kappa \ n. \ 2$ задания ightarrow

3. Определить

 $U_{{\scriptscriptstyle
m BЫX_MAKC}},~K_u,~K_e,~R_{{\scriptscriptstyle
m BX}},f_{{\scriptscriptstyle
m H}},f_{{\scriptscriptstyle
m B}}$ нестабилизированного усилителя с внешней нагрузкой $R_{{\scriptscriptstyle
m H}} pprox R_{{\scriptscriptstyle
m K}}$ при $R_{{\scriptscriptstyle
m B}} = \hat{R}_{{\scriptscriptstyle
m B}}^{}$ и $C_{{\scriptscriptstyle
m P}} \geq 100$ мкФ.

Рисунок к n. 3 задания →

Стабилизированный усилитель

4. В схеме, указанной на рисунке, выбрать $R_9 = (0,2...0,3) \cdot R_{\rm K}, R_2 \approx (1...3) R_{\rm K}$. Найти R_1 из условия получения заданного тока коллектора $\hat{I}_{\rm K}$ (см. стр. 8,9). Измерить $U_{\rm B}, U_{\rm B}, U_{\rm K}$ относительно земли.

Pисунок к n. 4 задания \rightarrow

5. Для схемы стабилизированного усилителя с $C_{9} \ge 100$ мкФ измерить $U_{\text{вых_макс}},~K_{u},~K_{e},~R_{\text{вх}},f_{\text{H}},f_{\text{B}}$ при $R_{\text{H}} \approx R_{\text{K}}.$

 $Pисунок \ \kappa \ n. \ 5$ задания ightarrow

6. Подать на вход усилителя, собранного при выполнении предыдущего пункта задания, прямоугольные колебания с периодом T и осуществить с помощью осциллографа наблюдение формы выходного сигнала:

а) при
$$T \approx (10...20) \cdot [1/(2\pi f_{_{\rm H}})],$$

б) при $T \approx (10...20) \cdot [1/(2\pi f_{_{\rm B}})].$

По осциллограммам определить постоянные времени $\tau_{\scriptscriptstyle H}$ и $\tau_{\scriptscriptstyle B}$.

7. Определить

 $U_{{
m BЫX_MAKC}},~K_u,~K_e,~R_{{
m BX}},f_{{
m H}},f_{{
m B}}$ стабилизированного усилителя без $C_{
m 3}$ $(C_{
m 3}=0).$

Рисунок к п. 7 задания →

Двухкаскадный усилитель

8. Используя результаты предыдущих измерений, определить *пу- тем расчета*, какими параметрами $U_{\text{вых_макс}}$, K_u , K_e , $R_{\text{вх}}$, $f_{\text{н}}$, $f_{\text{в}}$ обладал бы двухкаскадный усилитель, образованный последовательным включением двух схем из числа исследованных экспериментально (без $R_{\text{и}}$ между каскадами).

Рекомендации по выполнению задания

а) В схеме, указанной на рисунке к п. 1 задания, выбрать $R_{\rm b} \approx 200 \cdot R_{\rm K}$ и измерить $U_{\rm E3}$, $U_{\rm K3}$. Если $U_{\rm K3}$ не принадлежит интервалу (2...8) В, то изменить $R_{\rm b}$ и повторить измерение $U_{\rm K3}$. Определить

$$I_{\rm B} = (U_{\rm \Pi} - U_{\rm E9})/R_{\rm B}, \ I_{\rm K} = (U_{\rm \Pi} - U_{\rm K9})/R_{\rm K}, \ h_{219} = I_{\rm K}/I_{\rm B}$$

и, зная теперь h_{213} , найти \hat{R}_{B} , обеспечивающее требуемое значение \hat{I}_{K} :

$$\hat{R}_{\mathrm{B}} = h_{21\Im} \left(U_{\mathrm{\Pi}} - U_{\mathrm{B}\Im} \right) / \hat{I}_{\mathrm{K}} .$$

- б) Измерение $U_{\text{вых_макс}}$, K_{u} , K_{e} , $R_{\text{вх}}$, $f_{\text{н}}$, $f_{\text{в}}$ производится при подаче на вход усилителя синусоидального сигнала \mathcal{E}_{u} .
- в) Измерение $U_{\text{вых_макс}}$, K_u , K_e , $R_{\text{вх}}$ производится в области средних частот (единицы, десятки к Γ ц).

- г) Величина $U_{{\scriptscriptstyle {\rm BЫX_MAKC}}}$ определяется в случае, когда выходной сигнал, наблюдаемый с помощью осциллографа, является возможно бо́льшим по величине, но еще не имеет ограничений снизу или сверху.
- д) Измерение K_u , K_e , $R_{\rm BX}$, $f_{\rm H}$, $f_{\rm B}$ необходимо производить при величине выходного сигнала, в 2...4 раза меньшей $U_{\rm вых_макс}$, чтобы усилитель заведомо вел себя как линейная система.
- е) Для определения K_u , K_e , $R_{\rm BX}$ в один прием с помощью осциллографа измеряют $\mathcal{E}_{_{\rm H}}$, $U_{_{\rm BX}}$ и $U_{_{\rm BMX}}$. Согласно определению

$$K_e = U_{\text{BMX}}/\mathcal{E}_{\text{\tiny M}}$$
, $K_u = U_{\text{\tiny BMX}}/U_{\text{\tiny BX}}$, $R_{\text{\tiny BX}} = U_{\text{\tiny BX}}/I_{\text{\tiny BX}} = U_{\text{\tiny BX}} \cdot R_{\text{\tiny M}}/(\mathcal{E}_{\text{\tiny M}} - U_{\text{\tiny BX}})$.

- ж) Для определения $f_{\rm H}$ достаточно зафиксировать уменьшение величины выходного напряжения в $\sqrt{2}\,$ раз при переходе из области средних частот в область нижних частот при условии, что величина сигнала $\mathcal{E}_{\rm H}$, подаваемого от генератора, остается постоянной. Аналогично поступают при измерении $f_{\rm R}$.
- 3) В качестве $C_{\rm p}$ и $C_{\rm 3}$ следует использовать электролитические конденсаторы емкостью 100 мкФ или более, соблюдая полярность их включения, указанную на схемах.
- и) По мере выполнения задания появляется возможность заранее оценивать предстоящие измерения с учетом результатов, полученных ранее:
 - $-U_{\text{вых макс}}$ определяется режимом по постоянному току;
- из измерений в пп. 2а и 26, полагая r_{616} не зависящим от режима транзистора по постоянному току и пренебрегая $r_{61\mathrm{K}}$ и r_{K9} , можно найти r_{616} , а также h_{219} и r_{619} при $I_{\mathrm{K}}=\hat{I}_{\mathrm{K}}$;
- из измерений в пп. 2а и 3 можно определит C_{619} и C_{61K} , используя найденные ранее другие параметры транзистора;
- приступая к исследованию стабилизированного усилителя, можно предсказать результаты измерений $U_{\rm BЫX_MAKC}$, K_u , K_e , $R_{\rm BX}$, $f_{\rm H}$ и $f_{\rm B}$ путем расчета по приближенным формулам;

полезно сравнить полученные экспериментально значения параметров физической эквивалентной схемы транзистора со значениями, указанными в справочнике для транзисторов данного типа; в частности, интересно найти, исходя из экспериментальных данных, значения граничных частот транзистора

$$f_{h_{219}} = \frac{1}{2\pi r_{612} C_{612}}$$
 или $f_T = h_{219} f_{h_{219}}$

и также сравнить их со значениями, приведенными в справочнике.

- к) При решении теоретической задачи в п. 8 задания следует воспользоваться сведениями о свойствах многокаскадных усилителей из учебных пособий [2–5].
- делесообразно время от времени убеждаться в правильности своих действий, показывая преподавателю промежуточные результаты измерений и расчетов.
- м) При выполнении работы результаты измерений по постоянному току и результаты расчетов должны найти отражение в рабочих записях, сопровождающих рисунки с изображением исследуемых схем, а измеренные значения $U_{{\scriptscriptstyle \rm Bыx_Makc}},\,K_u,\,K_e,\,R_{{\scriptscriptstyle \rm Bx}},f_{{\scriptscriptstyle \rm H}},f_{{\scriptscriptstyle \rm B}},$ кроме того, представить в рабочей тетради в виде таблицы, образец которой приведен на с. 30.

Упражнение 8:	Упражнение 7:	Упражнение 6: СЭ [мкФ] =	Упражнение 5: СЭ [мкФ] =	72 [KOM] =	7.7 [KOM] =	Упражнение 4:	Упражнение 3: Ср [мкФ] =	Упражнение 26:	Упражнение 2а:			
Двухкаскадный усилитель		тв [мкс] =		(명] = (명] 명) =	CK [B] =		R _B [KOM] = R _H [KOM] =	<i>R</i> Б [кОм] = <i>U</i> кЭ [В] =	<i>R</i> Б [кОм] = <i>U</i> кЭ [В] =		Упражнение 1:	Исходные данные
Z.											R6 [KOM] =	Rk [kOm] =
										U _{вых_макс} [В])M] =)M] =
										B] <i>Ku</i>	<i>U</i> кэ [В] =	/K [MA] =
										Κe	<i>U</i> 6∋ [B] =	СБ [мкФ] =
										R _{BX} [кOм]		
		1/(2πτн) [Гц] =								机厂们	h213 =	<i>U</i> Π = 10 B
		1/(2πτ+) [Гц] = 1/(2πτε) [кгц] =								fв [кГц]		

Схему двухкаскадного усилителя привести в рабочей тетради.

ЛИТЕРАТУРА

- 1. *Баскаков С. И.* Радиотехнические цепи и сигналы. М.: Высшая школа, 2005.
- 2. Воронов Е. В., Ларин А. Л. Усиление электрических сигналов. М.: МФТИ, 1994.
- 3. Джонс М. Х. Электроника практический курс. М.: Техносфера, 2-е издание, 2006.
- 4. Ларин А. Л. Аналоговая электроника, 2-е издание. М.: МФТИ, 2013.
 - 5. Манаев Е. И. Основы радиоэлектроники. М.: Либроком, 2012.
- 6. Озерский Ю. П. Радиотехнические цепи и сигналы. М.: МФТИ, 2007.
- 7. Титце У., Шенк К. Полупроводниковая схемотехника. В 2-х т. М.: Додэка, 2008.

Учебное издание

Усилитель на биполярных транзисторах

Лабораторная работа по курсам:

Линейные методы в радиотехнике
Аналоговая электроника
Электронные методы физических исследований
Основы радиотехники
Радиоэлектроника
Радиотехника и схемотехника
Введение в электронику

Составители: Воронов Евгений Валентинович, Ларин Анатолий Леонидович

Редактор И. А. Волкова. Корректор Н. Е. Кобзева

Подписано в печать 15.04.2015 Формат $60\times84^{1}/_{16}$. Усл. печ. л. 2,0. Уч.-изд. л. 1,9. Тираж 600 экз. Заказ № 159.

Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Московский физико-технический институт (государственный университет)» 141700, Московская обл., г. Долгопрудный, Институтский пер., 9 Тел. (495) 408-5822, e-mail: rio@mail.mipt.ru

Отдел оперативной полиграфии "Физтех-полиграф" 141700, Московская обл., г. Долгопрудный, Институтский пер., 9 Тел. (495) 408-8430, e-mail: polygraph@mail.mipt.ru