Deadlock Detection Algerithm				
	Allogation A B C	Request)	Available B B C	
Po	010	0 0 6	000	
٤,	200	202	Total	
P2	303	0 0 0	(ABC)
P3	2 / /	100	= (7 2	6)
- P4	002	002		
1. work = (0 0 0)				
Finish[i] = false, i=0,1,2,3,4				
2. Finish [0] = false; Requesto = (0 0 0) < (0 0 0) Finish [0] = true; work = work + allocations = (0 1 0) = (0 1 0)				
3. Finish [2] = false; request 2 1 work				
Finish[2]=toue(000) < (010)				
: work = work + allocation,				
= (0 (0) + (3 0 3) = (3 1 3)				
4. Finish[3] = false; requests & work				
Finish[3]=true; (100) < (313) = (313) + (211)				
= (5 2 4)				

5. Finish [1] = false; Request, & work (202) ((524) .. work = work + allocation, = (524)+(200) = (724) Finish[4] = false; Requesty & work Finish[4] = true; (0 0 2) < (2 2 4) - work = work + allocation + - (7 24)+(002) = (7 2 6) Hence, Finish [i] = tone; for all i, with the sequence, 2Po, P2, P3, P1, P4) Suppose P2 has an additional request for C. I -> (0 0 1) Request Allocation ABC 000 202 001 3 0 3 (A B C) P3 100 2 1 1 = (7 2 6) 0 0 2 0 0 2 1. work = (0 0 0) pequesto & work; work = work + allocations = (0 10) Now, none of prequesti & work . . Deadlock of Processes, P, Pz, P3 and P4.