Statically versus Dynamically Typed Languages

Static versus Dynamic

- static: before program execution
- dynamic: during program execution (that is, at run-time)

Statically Typed Languages

A static semantics is provided: rules for checking before execution that

- operators/statements are used with consistent types of values
- variables are declared and used consistently with their declaration
- pros: early error detection, efficiency

Dynamically Typed Languages

Type checks are performed only at run-time

- no static semantics is defined
- inconsistent uses of values generate dynamic errors
- pros: simplicity, expressive power

Examples

Syntax error

```
x = ; // Syntax error in most languages: illegal start of expression
```

Static type error

```
int x=0; // Java, statically typed language if (y<0) x=3; else x="three"; // Static error: incompatible types, String cannot be converted to int
```

Dynamic error

```
x=null;
if(y<0) y=1; else y=x.value;
// Dynamic error if y>=0:
// in Java: Exception in thread "main" java.lang.NullPointerException
// in JavaScript (dynamic language): cannot read property 'value' of
    null
```

Static and dynamic errors

Remark

- static type errors
 - detected before execution
 - only in statically typed languages
- dynamic errors
 - detected during execution
 - in all languages

Syntax versus semantics

Few examples

Syntax

Definition of alphabet

A finite non-empty set of symbols A

Examples

 $A_1 = \{0,\,1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9\} \ A_2 = \{0,\,1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9,\,a,\,b,\,c,\,d,\,e,\,f\}$

Definition of string

A string over an alphabet A is a sequence $u:[1..n] \rightarrow A$

- [1..n] is the interval of natural numbers i such that $1 \le i \le n$
- u is a total function
- n is the length of u: length(u) = n

Syntactic notion of program

A program is a string over an alphabet A

DIBRIS

Example of strings

Empty string

- empty string u : [1..0] → A
- remark: $[1..0] = \emptyset$, no numbers i such that $1 \le i \le 0$
- there exists a unique empty string, that is, the function $u:\emptyset\to A$
- standard notations for the empty string: ϵ or λ or Λ

A non empty string

Let us consider $A=\{a,\ldots,z\}\cup\{\mathbb{A},\ldots,\mathbb{Z}\}$ (alphabet of lowercase and uppercase English letters)

The function $u:[1..4] \rightarrow A$ s.t.

- u(1) =₩
- *u*(2) = ○
- u(3) = r
- u(4) = d

More concrete representation: "Word"

Example of strings

A string of length 1

Let us consider $A = \{a, ..., z\} \cup \{A, ..., Z\}$

The function $u:[1..1] \rightarrow A$ s.t. u(1) = s

More concrete representation: "s"

Remark: "s" and s are different: "s" is a string, s is an alphabet symbol

String concatenation

Definition

- $length(u \cdot v) = length(u) + length(v)$
- for all $i \in [1..length(u) + length(v)]$ $(u \cdot v)(i) = \text{if } i <= length(u) \text{ then } u(i) \text{ else } v(i - length(u))$

Monoids and strings

- concatenation is associative, but not commutative
- the empty string is the identity element

Iteration of concatenation

 u^n defined by induction on n (natural number):

- $u^0 = \epsilon$ (the empty string)
- $\bullet u^{n+1} = u \cdot u^n$

Intuition: u^n is u concatenated with itself n times

Standard sets of strings

Definition of A^n , A^+ and A^*

Let A be an alphabet

- A^n = the set of all strings over A of length n
- A^+ = the set of all strings over A of length greater than 0
- A* = the set of all strings over A

Provable facts

- $\bullet \ A^0 = \{\epsilon\}$
- $A^+ = \bigcup_{n>0} A^n$
- $\bullet \ A^* = \bigcup_{n \geq 0} A^n = A^0 \cup A^+$

DIBRIS

Formal language: syntactic notion of language

Definition

A language L over an alphabet A is a subset of A*

Example

The set Id of all identifiers

- $A = \{a, ..., z\} \cup \{A, ..., z\} \cup \{0, ..., 9\}$ (definition of the alphabet)
- $\mathit{Id} = \{$ "a", "b", ..., "a0", "a1", ... $\}$ (definition of the language)

Problem

Is it possible to define *L* in a finite way?

Solution: define *L* as the composition of simpler languages

Operators to compose languages

- union: $L_1 \cup L_2$
- concatenation: $L_1 \cdot L_2 = \{u \cdot w \mid u \in L_1, w \in L_2\}$

Intuition

Union

 $L = L_1 \cup L_2$: any string of L is a string of L_1 or a string of L_2

Example:

$$\textit{Lett} = \{ \texttt{"a"}, \ldots, \texttt{"z"} \} \cup \{ \texttt{"A"}, \ldots, \texttt{"Z"} \}$$

Concatenation

 $L = L_1 \cdot L_2$: any string of L is a string of L_1 followed by a string of L_2

Examples:

- $Id = Lett \cdot A^*$ with $A = \{a, ..., z\} \cup \{A, ..., z\} \cup \{0, ..., 9\}$