

Announcement

Assignment 1 due is midnight September 23

Recap: Image Classification

Recognition of visual concepts on an image

Is there a bicycle? Is there a person? Is there a car?

Yes Yes

Semantic segmentation

- Recognition of visual concepts on an image
- Recognition and pixel-level localization of visual concepts on an image

Semantic segmentation

- Training data
 - Each image in training set is associated with pixel-level class labels
 - How can we learn to generate per-pixel class label given these training data?

Problems

Hand-designed representation

Remember this guy?

- Large search space for labeling
 - N: number of pixels
 - C: number of classes
 - Total C^N possible labeling

Example: search space on small image

 $N = 32 \times 32 = 1024$

C = 20

Size of possible label combinations:

20¹⁰²⁴

Accumulated dataset importance

Semantic segmentation with CNN

- Early approaches
 - Region-based proposal + classification

Semantic segmentation with CNN

- Early approaches
 - Region-based proposal + classification
- Limitations?

Semantic segmentation with CNN

- Early approaches
 - Region-based proposal + classification
- Limitations?
 - The segmentation performance is determined by region-proposal accuracy
 - The models often employ separate classifier + feature extractor,
 which can be improved by end-to-end training
 - → How can we design an *end-to-end*, *pixel-level prediction* network?

Revisit: convnet for image classification

- Combination of convolutional + fully connected layers
 - Convolutional layers: operation is based on filtering.
 It takes an input in *arbitrary size*,
 - and the produce outputs preserving spatial information.
 - Fully-connected layers: operation is based on matrix multiplication.
 It takes a input in *fixed size*, and produce fixed-sized output vector.

Interpreting fully-connected layers by 1x1 convolution.

Fully connected layer as convolution

1. Pre-train a **CNN** for classification

Score map

- 1. Pre-train a **CNN** for classification
- 2. Convert **CNN** to **FCN**
- 3. Apply **FCN** to a larger image
- 4. Get the final label map by taking per-pixel argmax over classes

Fully Convolutional Network (FCN)

- End-to-end CNN architecture for semantic segmentation
- Interpretation of fully-connected layers to convolutional layers

Fully Convolutional Network (FCN)

Limitations in FCN

- Low resolution score map
 - \circ 500x500 input image → 10x10 score map
 - May lost many detailed shape
- Fixed receptive field
 - Cannot handle objects in various size

Limitations in FCN

Misprediction due to the fixed receptive field size

Lost in detailed shape

How to improve semantic segmentation

Atrous convolution

Encoder & decoder networks

• Encoder:

- <u>Compress</u> the information in the original data (e.g. CNN for image classification)
- Abstract the original information in data and extract higher-order information

Decoder:

- <u>Reconstruct</u> the information from the representation (e.g. DCNN)
- Extract original information in data lost during the encoding process

Deconvolution for upsampling

Convolution

[downsampling]

Deconvolution (transposed convolution) [upsampling]

Skip connection for capturing detailed shapes

Unet

Skip connection:

Deliver fine details of input image to higher layers by concatenating features

Encoder-decoder network with skip-connection

Encoding:

- Downsampling to lower resolution
- Abstract from low pixels to higher semantics

Decoding:

- Upsampling to higher resolution
- Reconstruct shape information

What is this upsampling?

Deconvolution network

• Encoder-decoder network with **shared pooling switches**

Operations in deconvolution network

 Unpooling Increase the resolution using pooling switches

Deconvolution
 Reconstruct the shapes
 missing in unpooling

Comparisons to FCN

Replacing the upsampling by learninable parameters

 \rightarrow trainable upsampling!

Visualization of deconvolution network

Coarse activation map obtained from the output of the encoder network

Visualization of deconvolution network

Unpooling:

- Double the resolution
- sparse activation with reconstructed shape information

Visualization of deconvolution network

Deconvolution:

- Densify the activation from the sparse unpooled feature map
- Reconstruct more detailed shapes

Visualization of deconvolution network

2nd Unpooling

Visualization of deconvolution network

Comparisons to FCN

Noh et al., learning deconvolution network for semantic segmentation, In ICCV, 2015

Comparisons to FCN

Summary: encoder-decoder network

Encoder-decoder network

- Reconstruct spatial information lost in encoding network
- Three approaches
 - Skip connection
 - Deconvolution for learnable upsampling
 - Using pooling switch to reconstruct spatial information
- Encoder-decoder is a popular architecture outside the segmentation domain too! (also appears in following lectures)

How to improve semantic segmentation

Encoder-decoder network

Field-of-View (FoV) in segmentation

Receptive field / FoV

Field-of-View (FoV) in segmentation

Too small FoV

- Increase ambiguity of classification due to local observations
- Cannot consider the rich context around the objects

Increasing FoV

- Increase subsampling ratio
 - Lose spatial information

- Increase the convolutional filter size
 - o Increase the parameters of the model
 - Increase the computational cost / prone to overfitting

7x7

Atrous convolution

- Convolution with holes
- Increase the FoV using the same parameters

Figure source: Morales et al., Automatic Segmentation of Mauritia flexuosa in Unmanned Aerial Vehicle (UAV) Imagery Using Deep Learning

46

Atrous convolution

- Convolution with holes
- Increase the FoV using the same parameters

DeepLab: FCN with atrous convolution

(a) Going deeper without atrous convolution.

(b) Going deeper with atrous convolution. Atrous convolution with rate > 1 is applied after block3 when $output_stride = 16$.

DeepLab: FCN with atrous convolution

MSC	COCO	Aug	LargeFOV	ASPP	CRF	mIOU
-						68.72
\checkmark						71.27
\checkmark	✓					73.28
\checkmark	\checkmark	✓				74.87
\checkmark	✓	\checkmark	✓			75.54
√	✓	\checkmark		✓		76.35
\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	77.69