Market Design: Lecture 2

NICOLE IMMORLICA, NORTHWESTERN UNIVERSITY

Recap

- 3. b) Structure, polytopes: integrality of stable matching polytope, applications
- 4. a) Incentives: dominant strategies

Outline

- 4. b) Incentives: complete information Nash equilibria, incomplete information
- 5. Many-to-one markets: responsive preferences, substitutable preferences

Part 4: Incentives.

M-Optimal Mechanisms

Theorem [Dubins-Freedman '81, Roth '82]. In any M-optimal mechanism, truth-telling is a dominant strategy for men.

In fact, it is group-strategyproof for men.

Blocking Lemma

Blocking Lemma. Let μ be any IR matching with respect to preferences P and let M' be all men that prefer μ to μ^M . Then if M' is non-empty, there is a blocking pair (m, w) for μ such that m is in M-M' and w is in μ (M').

Blocking Lemma

Given M' prefer μ to μ^{M} , find blocking pair (m, w) for μ with m in M – M' and w in μ (M').

- $\mu(M') \neq \mu^{M}(M')$: let w be in $\mu(M') \mu^{M}(M')$
 - suppose $w = \mu(m')$ and note m' in $\mu(M')$ so $w >_{m'} \mu^{M}(m')$
 - since μ^{M} stable, $m = \mu^{M}(w) >_{w} m'$
 - m is not in M' since w is not in $\mu^{M}(M')$
 - hence $w >_m \mu(m)$

Blocking Lemma

- $\mu(M') = \mu^M(M') = W'$: let w be last woman in W' to receive a proposal from acceptable man in M' in DA
 - all women in W' have rejected acceptable offers from men in M' (namely their match in μ)
 - thus w is engaged with some m when she gets proposal
 - note m is not in M' since otherwise he'd propose to someone else in W' contradicting assumption
 - also note by property of DA, $w >_m \mu^M(m)$, and since m is not in M', $\mu^M(m) >_m \mu(m)$, so $w >_m \mu(m)$
 - since w has previously rejected μ (w), must be m >_w μ (w)

Coalition-Proofness

Theorem. Let P be the true preferences and P' differ from P in that some coalition C of men and women misstate their preferences. Then there is no matching μ , stable for P', which is preferred to *every* stable matching under P by all members of C.

(So men-proposing DA group-strategyproof for men.)

Coalition-Proofness

Prf. Suppose M' U W' benefit by reporting P'.

- resulting matching μ is IR under true prefs P
- clearly, μ not stable under P and
 - $-\mu(m) >_m \mu^M(m)$ for all m in M'
 - $-\mu(w) >_{w} \mu^{W}(w)$ for all w in W'
- say M' non-empty and apply blocking lemma to get (m, w) who both prefer μ^M to μ
- note m not in M', so P'(m) = P(m) (similarly w) and so (m, w) also block under altered prefs

Nash Equilibria

All stable matchings are outcomes at a NE.

Theorem. Let μ be stable for (M, W, P) and construct Q in which men report truthfully and each woman reports $\mu(w)$ as her preference list. Then Q is a NE of the men-proposing DA alg.

Stable µ are Outcome of NE

Prf. Note outcome of Q is μ .

- By previous results, men can't manipulate.
- Suppose w has deviation Q'_w matching her to $m = \mu'(w) >_w \mu(w)$. Will find blocking pair for μ' .
- Consider $w^* = \mu(m)$ and note that both $w^* >_m w$ and $m >_{w^*} w^*$ (as μ is stable).
- Since under Q' only acceptable man for w^* is m, w^* is single in μ' .
- Therefore, (m, w*) block μ' w.r.t. Q'

Nash Equilibria

All equilibrium outcomes are stable.

Theorem. Suppose in reported prefs Q each man states his true preferences and the women play an equilibrium of men-proposing DA. Then corresponding matching μ is stable w.r.t true preferences.

Outcome of NE are Stable μ

Prf. Say μ blocked by (m, w) under true prefs P.

- Since $w >_m \mu(w)$ in P and hence Q, m must have proposed to w and been rejected.
- Consider deviation Q'_{w} in which w lists m first and then the remaining prefs as in Q.
- Then DA runs same until m proposes to w, at which point she accepts and remains with him.
- Thus Q'_w profitable for w, so Q not equilibrium.

- Types drawn according to common prior
- Agents submit ordinal preferences
- Almost exclusively negative results
 - No mech whose equilibria are always stable
 - M-opt stable mech can be manipulated by coalitions of men
- ... because of distributions over matchings

$$P(m_1) = \begin{cases} a. w_1, w_2 & \text{prob. 1-q} \\ b. w_1 & \text{prob. q} \end{cases} P(w_1) = \begin{cases} a. m_2, m_1 & \text{prob. 1-q} \\ b. m_2 & \text{prob. q} \end{cases}$$

$$P(m_2) = w_2, w_1 \qquad P(w_2) = m_1, m_2$$

Potential stable matchings:

- μ = {(m₁, w₁), (m₂, w₂)}, \nearrow Mech(P^{aa}) selects, say, μ w/prob. > ½ • v= {(m₁, w₂), (m₂, w₁)},
- $\lambda = \{(m_1), (m_2, w_2), (w_1)\}$

Stable(P^{aa})= { μ , ν }, Stable(P^{ab})= { ν }, Stable(P^{ba})= { μ }, Stable(P^{bb})= { λ }

$$P(m_{1}) = \begin{cases} a. w_{1}, w_{2} & \text{prob. 1-q} \\ b. w_{1} & \text{prob. q} \end{cases} \qquad P(w_{1}) = \begin{cases} a. m_{2}, m_{1} & \text{prob. 1-q} \\ b. m_{2} & \text{prob. q} \end{cases}$$

$$P(m_{2}) = w_{2}, w_{1} \qquad P(w_{2}) = m_{1}, m_{2}$$

Potential stable matchings:

- μ = {(m₁, w₁), (m₂, w₂)}, \nearrow Mech(P^{aa}) selects, say, μ w/prob. > ½ • ν = {(m₁, w₂), (m₂, w₁)},
- $\lambda = \{(m_1), (m_2, w_2), (w_1)\}$

In state P^{aa} , w_2 profits by reporting $P'(w_2) = m_1$. This occurs with probability $(1-q)^2$, so beneficial for q small enough.

- By revelation principle, no mechanism implements stable outcomes.
- Some large market results

Question. Is there some restricted set of priors for which we can implement stable outcomes?

Part 5: Many-to-One Markets.

Many-to-One Markets

- Colleges $C = \{c_1, ..., c_n\}$
- Quotas $q = \{q_1, ..., q_n\}$
- Students $S = \{s_1, ..., s_p\}$
- Preferences
 - P(s_i) ordered list of colleges
 - P*(c_i) ordered list of subsets of students

College Preferences

How are colleges' preferences over sets related to preferences over individual students?

- pref over students: $P(c) = s_1, s_2, s_3, s_4$
- pref over subsets:
 - $-P^*(c) = \{s_1, s_2\}, \{s_1, s_3\}, \{s_1, s_4\}, \{s_2, s_3\}, \{s_2, s_4\}, \{s_3, s_4\}$
 - $-P^*(c) = \{s_1, s_2\}, \{s_1, s_3\}, \{s_2, s_3\}, \{s_1, s_4\}, \{s_2, s_4\}, \{s_3, s_4\}$
 - $-P^*(c) \neq \{s_1, s_3\}, \{s_1, s_2\}, \{s_2, s_3\}, \{s_1, s_4\}, \{s_2, s_4\}, \{s_3, s_4\}$

College Preferences

Responsive prefs: for any subset T of students with $|T| < q_c$ and students s, s' not in T,

- T U {s} >_c T U {s'} if and only if s >_c s'
- T U {s} >_c T if and only if s is acceptable to c

Potentially many preferences are responsive to same individual ordering.

Stable Matchings

- matching μ maps S U C to S U C s.t.
 - $-\mu(s)$ is an element of C U $\{s\}$
 - $-\mu(c)$ is a subset of S U $\{c\}$ of cardinality q_c
 - $-\mu(s) = c$ if and only if s is in $\mu(c)$
- individually rational if assignments acceptable
- blocked by a pair (c, s) if µ(s) ≠ c and
 - $-c >_s \mu(c)$ and $s >_c t$ for some t in $\mu(c)$
- pairwise stable if IR and unblocked by pairs

Group Stability

- matching μ blocked by coalition A of S U C if exists another matching v such that for all s, c
 - -v(s) is in A
 - $-v(s)>_s \mu(s)$
 - t in v(c) implies t in A or t in μ (c)
 - $-v(c)>_{c}\mu(c)$
- group stable if not blocked by any coalition

Group vs Pairwise Stability

Lemma. When preferences are responsive, a matching μ is group stable iff it's pairwise stable.

Prf. Pairwise instability implies group instability.

- Suppose μ blocked by A, ν
- Consider s, c such that s is in $\{v(c) \mu(c)\}$
- Responsiveness implies that for some such s there exists a t in $\{\mu(c) \nu(c)\}$ s.t. s > t
- (s, c) block μ

Group vs Pairwise Stability

Lemma. When preferences are responsive, a matching μ is group stable iff it's pairwise stable.

Implications: if preferences are responsive,

- don't need prefs over sets to find stable matchings
- set of stable matchings not sensitive to prefs over sets (so long as responsive to same P)

Existence

Related one-to-one market:

- q_c copies of each college c each with pref P(c)
- for each s, update P(s) to replace c with its copies in top-down order (strict prefs)

Lemma. Matching stable iff corresponding matching in related one-to-one market stable.

So stable matchings exist (and "DA" works).

What Results Carry Over?

- Optimal stable matchings, lattice structure:
 - S-optimal matchings exist
 - C-optimal?Not even clear c can compare μ and ν!
- Incentives:
 - in student-proposing DA, truth-telling is a dominant strategy for students
 - college-proposing DA?Colleges create "coalitions."

Optimality

Theorem. College-proposing DA in related one-to-one market gives each college c top q_c achievable students.

College-optimal stable matchings exist.

Optimality

However, C-optimal need not be Pareto optimal:

$$P(s_1) = c_3, c_1, c_2$$
 $P(c_1) = s_1, s_2, s_3, s_4$
 $P(s_2) = c_2, c_1, c_3$ $P(c_2) = s_1, s_2, s_3, s_4$
 $P(s_3) = c_1, c_3, c_2$ $P(c_3) = s_3, s_1, s_2, s_4$
 $P(s_4) = c_1, c_2, c_3$ $q_1 = 2, q_2 = q_3 = 1$

- stable matching μ gives c₁ students s₃, s₄.
- matching $\mu' = \{(c_1, s_2, s_4), (c_2, s_1), (c_3, s_3)\}$ strictly preferred by every college to μ .

Incentives

Theorem. There is no stable matching mech. in which truthtelling is dominant strat. for colleges.

$$P(s_1) = c_3, c_1, c_2$$
 $P(c_1) = s_1, s_2, s_3, s_4$
 $P(s_2) = c_2, c_1, c_3$ $P(c_2) = s_1, s_2, s_3, s_4$
 $P(s_3) = c_1, c_3, c_2$ $P(c_3) = s_3, s_1, s_2, s_4$
 $P(s_4) = c_1, c_2, c_3$ $q_1 = 2, q_2 = q_3 = 1$

- only stable $\mu = \{(c_1, s_3, s_4), (c_2, s_2), (c_3, s_4)\}$
- if c_1 states $P'(c_1) = s_1$, s_4 , c_1 , then only stable $v = \{(c_1, s_1, s_4), (c_2, s_2), (c_3, s_3)\}$

Equilibria

No dominant strat for colleges makes it hard to select among NE for college-proposing, but...

Theorem. Even for student-proposing DA when students use dominant strategies, there are equilibria which are not stable w.r.t. true prefs.

In fact, any IR μ is an equilibrium outcome.

Comparing Matchings

Can colleges compare stable matchings? Example: students ranked by score on exam.

- for any stable matchings μ and ν, no two entering classes have same average score
- in fact, if $\mu(c) >_c v(c)$, then for *every* pair of s in $\mu(c)$ - $\nu(c)$, t in $\nu(c)$, score of s \geq score of t!

Comparing Matchings

Theorem. For college c and any stable μ and ν , if there are students s in $\mu(c^i)$, t in $\nu(c^i)$ s.t. $s >_c t$, then for all j, $\mu(c^j) \ge_c \nu(c^j)$.

Prf. Assume position c^i of college c, $\mu(c^i) >_c v(c^i)$ and show for all j > i, $\mu(c^j) >_c v(c^j)$.

Implications

- If c indifferent between μ and ν , then $\mu(c)=\nu(c)$
- If $\mu(c) = \{s_1, s_4\}$, $\nu(c) = \{s_2, s_3\}$, not both stable
- If $\mu(c) = \{s_1, s_3\}$, $\nu(c) = \{s_1, s_4\}$, not both stable

Also implies existence of lattice structure, etc.

Rural Hospitals

Corollary. If college has vacant positions in some stable matching, then it gets the same set of students in every stable matching.

Prf. Recall if c^i of college c, $\mu(c^i) >_c v(c^i)$ then for all j > i, $\mu(c^j) >_c v(c^j)$.

- positions filled in order of preference
- so for vacant positions (high j), $\mu(c^j) =_c v(c^j)$
- but if there's a difference in set of students, then $\mu(c^i) >_c \nu(c^i)$ or $\nu(c^i) >_c \mu(c^i)$ for some i