Levantamento de Requisitos Projeto do Sistema de Gerenciamento de Alimentação da Hestia

utbots

29 de abril de 2025

Sumário

1	Introdução		
2	Prir	meira etapa - (RoboCup 2025)	2
	2.1	Objetivos	2
	2.2	Requisitos Funcionais	
		2.2.1 Necessários	
		2.2.2 Ideais	
	2.3	Requisitos Não Funcionais	
	2.4	Restrições	
	2.5	Interfaces Esperadas	4
	2.6	Diagrama de Blocos do Sistema	4
	2.7	Tabela de Especificações Iniciais	4
3	Seg	unda Etapa - (CBR 2025)	4
	3.1	Objetivos	4
4	Ter	ceira Etapa - (Longo Prazo)	5
_		Objetivos	

1 Introdução

Este documento tem como objetivo descrever os requisitos do projeto do sistema de monitoramento e gerenciamento de alimentação da Hestia. O desenvolvimento deste projeto será dividido em três etapas, cada qual com seus prazos e objetivos.

A primeira etapa será dedicada a montar um primeiro sistema de alimentação capaz de suprir as necessidades do robô dentro do contexto da RoboCup 2025. Já a segunda etapa tem como objetivo conceber de um sistema mais robusto e completo para ser utilizado na CBR 2025. Por último, temos os objetivos a longo prazo, em que o foco será refinar as funcionalidades desenvolvidas anteriormente e elaborar um sistema de gerenciamento de baterias e energia.

2 Primeira etapa - (RoboCup 2025)

2.1 Objetivos

• Necessário:

- Implementar um sistema para possibilitar o chaveamento de células individuais por um switch manual.
- Implementar um sistema no qual todas as baterias são ligadas em paralelo
- Implementar um sistema de monitoramento visual de tensão e corrente das baterias

• Ideal:

- Desenvolver um sistema básico de monitoramento de tensão, corrente e temperatura das baterias.
- Implementar comunicação inicial com o sistema principal (uRos)
- Implementar um sistema de proteção contra curto-circuito e sobrecarga.
- Desenvolver uma case para as baterias e suas placas de circuito.
- Confeccionar as placas de circuito impresso através do processo de corrosão.

2.2 Requisitos Funcionais

2.2.1 Necessários

ID	Descrição	
RF01	O sistema deve suportar pelo menos 4 baterias de lítio em paralelo.	
RF02	O sistema deve mostrar a corrente de uma bateria individual.	
RF03	O sistema deve mostrar a tensão de uma bateria individual.	
RF04	O sistema deve permitir o desligamento manual de uma bateria via uma	
	chave no circuito.	
RF05	O sistema deve ser capaz de fornecer corrente o suficiente para o funci-	
	onamento do robô	
RF06	O sistema deve fornecer ao robô uma autonomia mínima de 30 min ao	
	robô	
RF07	O sistema deve caber dentro do robô	

2.2.2 Ideais

ID	Descrição	
RF02	O sistema deve medir a corrente de uma bateria individual.	
RF03	O sistema deve medir a tensão de uma bateria individual.	
RF04	O sistema deve medir a temperatura de uma bateria individual.	
RF06 O sistema deve comunicar as leituras ao controlador do robô vi		
	ou CAN.	
RF07	O sistema deve possuir um sistema de proteção contra curto-circuito e	
	sobrecarga.	
RF08	O sistema deve possuir um sistema de proteção contra picos de corrente	
	e corrente reversa.	
RF11	O sistema deve permitir realizar a troca de baterias sem que seja ne-	
	cessário mexer na fiação	

2.3 Requisitos Não Funcionais

ID	Descrição	
RNF01	Of firmware deve ser escrito em C ou C++ com suporte a atualizaçã	
	futura.	
RNF02	Os esquemáticos devem ser feitos no software KiCad.	

2.4 Restrições

 O sistema deve ocupar espaço máximo de 100x80 mm (temporário depois colocar mais).

2.5 Interfaces Esperadas

- Comunicação via UART, I2C ou CAN.
- Interface visual (opcional) via display OLED I2C.
- Entrada de alimentação dedicada de 5V para o microcontrolador.

2.6 Diagrama de Blocos do Sistema

2.7 Tabela de Especificações Iniciais

Parâmetro	Valor
Número de baterias	Ao menos 4
Tensão nominal por bate-	36V
ria	
Tensão total máxima	36V
Microcontrolador	ESP32
Sensor de corrente	(colocar CI) ou similar
Sensores de temperatura	(colocar CI) ou similares

3 Segunda Etapa - (CBR 2025)

3.1 Objetivos

- Implementar sistema de chaveamento por software.
- Adicionar um sistema de monitoramento de carga das baterias.
- Confeccionar as placas de circuito impresso fabricadas por uma empresa terceira.
- Desenvolver um sistema terceiro para carregar as baterias de maneira eficiente.

4 Terceira Etapa - (Longo Prazo)

4.1 Objetivos

- Otimizar o consumo de energia do sistema.
- Refinar o sistema de modo geral.
- Implementar um gerenciamento inteligente das baterias.
- Projetar e construir uma nova bateria