Andrew Gard - equitable.equations@gmail.com

Conditional distributions

Suppose we have two random variables X and Y with some joint probability distribution. The conditional distribution of X when Y = y (where y is a

specific value of Y) is just the corresponding single-variable probability distribution of X when Y is fixed at the specified value.

Suppose we have two random variables X and Y with some joint probability distribution. The **conditional distribution** of X when Y = y (where y is a specific value of Y) is just the corresponding single-variable probability distribution of X when Y is fixed at the specified value.

In this vid, we'll focus on the discrete case. The math is nearly identical for continuous random variables, with sums replaced by definite integrals.

If X and Y are discrete random variables with joint probability mass function f(x, y), then the conditional probability mass function of X given Y = y is

$$f(x,y)$$
, then the conditional probability mass function of X given $Y=y$
$$g(x \mid y) = \frac{f(x,y)}{f_Y(y)}$$

where $f_Y(y)$ is the marginal pmf of Y evaluated at Y = y. This is just P(Y = y).

If X and Y are discrete random variables with joint probability mass function f(x, y), then the conditional probability mass function of X given Y = y is

$$g(x \mid y) = \frac{f(x, y)}{f_{Y}(y)}$$

where $f_Y(y)$ is the marginal pmf of Y evaluated at Y = y. This is just P(Y = y).

Similarly, $h(y \mid x) = \frac{f(x, y)}{f_{V}(x)}$ is the conditional pmf of Y given X = x.

Example. Suppose the random variables X and Y have the following joint probability distribution. Compute $g(x \mid 3)$ and $h(y \mid 3)$.

f(x, y)	y					
X	1	2	3	4		
1	_	0.12	0.10	0.09		
2	-	0.18	0.07	-		
3	0.02	0.14	0.11	-		
4	0.05	0.12	-	-		

X	1	2	3	4
1	_	0.12	0.10	0.09
2	- 0.02 0.05	0.18	0.07	-
3	0.02	0.14	0.11	-
4	0.05	0.12	-	-

$$g(1|3) = \frac{f(1,3)}{f_Y(3)} = \frac{P(X=1 \text{ and } Y=3)}{P(Y=3)}$$

$$g(1|3) = \frac{f(1,3)}{f_Y(3)} = \frac{P(X = 1 \text{ and } Y = 3)}{P(Y = 3)}$$
$$= \frac{0.10}{(0.10 + 0.07 + 0.11)}$$

$$g(1|3) = \frac{f(1,3)}{f_Y(3)} = \frac{P(X = 1 \text{ and } Y = 3)}{P(Y = 3)}$$
$$= \frac{0.10}{(0.10 + 0.07 + 0.11)} = .357$$

Similarly, $P(X = 2 | Y = 3) = \frac{P(X = 2 \text{ and } Y = 3)}{P(Y = 3)}$

Similarly,

 $P(X = 2 \mid Y = 3) = \frac{P(X = 2 \text{ and } Y = 3)}{P(Y = 3)} = \frac{0.07}{(0.10 + 0.07 + 0.11)} = .250$

f(x, y)

$$P(Y=3)$$

$$P(X=2 \text{ and } Y=3)$$

$$P(X = 3 | Y = 3) = \frac{P(X = 2 \text{ and } Y = 3)}{P(Y = 3)}$$

imilarly,
$$P(X=2 \mid Y=3) = \frac{P(X=2 \text{ and } Y=3)}{P(Y=3)} = \frac{0.05 \cdot 0.12}{(0.1)}$$

$$P(X =$$

$$|Y = 3\rangle = \frac{P(X = 2 \text{ and } Y = 3)}{P(Y = 3)} = \frac{1}{(0.10)^{3/2}}$$

$$= \frac{P(X = 2 \text{ and } Y = 3)}{P(Y = 3)} = \frac{P(X = 2 \text{ and } Y = 3)}{(0.12)}$$

$$P(X = 2 | Y = 3) = \frac{P(X = 2 \text{ and } Y = 3)}{P(Y = 3)} = \frac{P(X = 2 \text{ and } Y = 3)}{P(X = 3 | Y = 3)} = \frac{P(X = 2 \text{ and } Y = 3)}{P(Y = 3)}$$

$$\frac{2 \text{ and } Y = 3}{P(Y = 3)} = \frac{0.10}{(0.10 - 10)}$$

$$=\frac{}{(0.10^{\circ})}$$

$$\overline{(0.10+0.07+0.11)} =$$

X	1	2	3	4
1	-	0.12	0.10	0.09
2	-	0.18	0.07	-
3	0.02	0.14	0.11	-
4	0.05	0.12	-	-

Overall, the conditional probability mass function for X when Y=3 is given by

X	1	2	3
$g(x \mid 3)$	35.7%	25.0%	39.3%

f(x,y)	У					
X	1	2	3	4		
1	_	0.12	0.10	0.09		
2	_	0.18	0.07	-		
3	0.02	0.14	0.11	-		
4	0.05	0.12	-	-		

Overall, the conditional probability mass function for X when Y=3 is given by

$$\begin{array}{c|ccccc}
x & 1 & 2 & 3 \\
\hline
g(x | 3) & 35.7\% & 25.0\% & 39.3\%
\end{array}$$

These probabilities sum to 100%. A conditional pmf is a pmf in its own right.

X	1	2	3	4
1	_	0.12	0.10	0.0
2	_	0.18	0.07	-
3	0.02	0.14	0.11	-
4	0.05	0.12	-	-
	1			

Let's do h(y | 3) a bit faster.

X	1	2	3	4
1	_	0.12	0.10	0.09
2	-	0.18	0.07	-
3	0.02 0.05	0.14	0.11	-
4	0.05	0.12	-	-
 				. (-)

Let's do $h(y \mid 3)$ a bit faster. We need to compute $f(3, y)/f_X(3)$ for y = 1, 2, and 3, which means looking at the X = 3 row of the table.

	X	1	2	3	4
		_			
	2	-	0.18	0.07	-
	3	0.02	0.14	0.11	-
	4	0.05	0.12	-	-
1 2 1 1/ 10) 1::	C . \A/				(2)

Let's do $h(y \mid 3)$ a bit faster. We need to compute $f(3, y)/f_X(3)$ for y = 1, 2, and 3, which means looking at the X = 3 row of the table. This row has total probability $f_X(3) = 0.02 + 0.14 + 0.11 = 0.27$.

X	1	2	3	4
1	-	0.12	0.10 0.07 0.11	0.09
2	-	0.18	0.07	-
3	0.02	0.14	0.11	-
4	0.05	0.12	-	-
- L(2) - L:L (L				

Let's do $h(y \mid 3)$ a bit faster. We need to compute $f(3, y)/f_X(3)$ for y = 1, 2, and 3, which means looking at the X = 3 row of the table. This row has total probability $f_X(3) = 0.02 + 0.14 + 0.11 = 0.27$.

, ,				
	У	1	2	3
	h(y 3)	0.02/0.27	0.14/0.27	0.11/0.27

	(x, y))	/	
	X	1	2	3	4
_	1	_	0.12	0.10	0.09
	2	-	0.18	0.07	-
	3	0.02	0.14	0.11	-
	4	0.05	0.12	-	-

Let's do $h(y \mid 3)$ a bit faster. We need to compute $f(3, y)/f_X(3)$ for y = 1, 2, and 3, which means looking at the X = 3 row of the table. This row has total probability $f_X(3) = 0.02 + 0.14 + 0.11 = 0.27$.

У	1	2	3
$h(y \mid 3)$	0.02/0.27	0.14/0.27	0.11/0.27
	7.4%	51.9%	40.7%

Conditional means, variances, and standard deviations are computed in the natural way.

Conditional means, variances, and standard deviations are computed in the natural way. Here are the formulas when Y = y is fixed and g(X|y) is the corresponding conditional probability mass function for X.

$$E(X|y) = \mu_{X|y} = \sum x g(x|y)$$

Conditional means, variances, and standard deviations are computed in the natural way. Here are the formulas when Y = y is fixed and g(X|y) is the corresponding conditional probability mass function for X.

natural way. Here are the formulas when
$$Y=y$$
 is fixed and $g(X|y)$ is the corresponding conditional probability mass function for X .
$$E(X|y) \ = \ \mu_{X|y} \ = \ \sum x \, g(x|y)$$

$$Var(X|y) = \frac{\rho x}{y} = \sum_{x} \left[x - \mu_{x|x} \right]^{2} g(x|y)$$

$$Var(X|y) = \sigma_{X|y}^2 = \sum_{x} [x - \mu_{X|y}]^2 g(x|y)$$

Conditional means, variances, and standard deviations are computed in the natural way. Here are the formulas when Y = y is fixed and g(X|y) is the corresponding conditional probability mass function for X.

natural way. Here are the formulas when
$$Y=y$$
 is fixed and $g(X|y)$ is the corresponding conditional probability mass function for X .
$$E(X|y) \ = \ \mu_{X|y} \ = \ \sum x \, g(x|y)$$

 $Var(X|y) = \sigma_{X|y}^2 = \sum [x - \mu_{X|y}]^2 g(x|y)$

 $= E(X^2|y) - [E(X|y)]^2$

Conditional means, variances, and standard deviations are computed in the natural way. Here are the formulas when Y = y is fixed and g(X|y) is the corresponding conditional probability mass function for X.

$$E(X|y) = \mu_{X|y} = \sum_{x} x g(x|y)$$
 $Var(X|y) = \sigma_{X|y}^{2} = \sum_{x} [x - \mu_{X|y}]^{2} g(x|y)$
 $= E(X^{2}|y) - [E(X|y)]^{2}$

These are just the regular single-variable formulas applied to the variable X once the value of Y has been fixed.

X	1	2	3	4
1	_	0.12	0.10	0.09
2	-	0.18	0.07	-
3	- 0.02 0.05	0.14	0.11	-
4	0.05	0.12	-	-

_	X	1	2	3	4
	1	_	0.12 0.18 0.14 0.12	0.10	0.09
	2	_	0.18	0.07	-
	3	0.02	0.14	0.11	-
	4	0.05	0.12	-	-
Let's compute the cond					

x | 1 | 2 | 3

X	1	2	3	
g(x 3)	.35.7%	25.0%	39.3%	

$$\begin{array}{c|ccccc} x & 1 & 2 & 3 \\ \hline g(x \mid 3) & .35.7\% & 25.0\% & 39.3\% \end{array}$$

$$\mu_{X|3} = (1)(0.357) + (2)(0.250) + (3)(0.393)$$

X	X	1	2	3	
g(x 3)	g(x 3)	.35.7%	25.0%	39.3%	

$$\mu_{X|3} = (1)(0.357) + (2)(0.250) + (3)(0.393) = 2.04$$

$$\begin{array}{c|ccccc} x & 1 & 2 & 3 \\ \hline g(x \mid 3) & .35.7\% & 25.0\% & 39.3\% \end{array}$$

$$\mu_{X|3} = (1)(0.357) + (2)(0.250) + (3)(0.393) = 2.04$$
 $\sigma_{X|3}^2 = \sum (x - 2.04)^2 g(x|3)$

$$\mu_{X|3} = (1)(0.357) + (2)(0.250) + (3)(0.393) = 2.04$$
 $\sigma_{X|3}^2 = \sum (x - 2.04)^2 g(x|3) = 0.75$