V - Dérivations Stratégie

Lors du calcul des dérivées, il est important d'appliquer une stratégie de calculs pour reconnaître la formule à utiliser. Nous présentons et illustrons ces règles ci-dessous, de la plus élémentaire à la plus élaborée. Plutôt que d'écrire « La dérivée de la fonction $f(x) = \cdots$ est la fonction $f'(x) = \cdots$ », nous adopterons la notation **non standard** $f(x) \rightsquigarrow f'(x)$.

I - Fonctions élémentaires

Exemple 2

À Savoir

 $\begin{array}{ccc} \text{fonction} & \leadsto & \text{d\'eriv\'ee} \\ \ln(x) & \leadsto & \frac{1}{x} \end{array}$

À Savoir

 $\begin{array}{ccc} \text{fonction} & \leadsto & \text{dérivée} \\ e^{ax} & \leadsto & a e^{ax} \end{array}$

Exemple 3

 $e^x \longrightarrow e^x$ $e^{3x} \longrightarrow 3e^{3x}$

II - Fonctions composées

À Savoir

 $\begin{array}{ccc} \text{fonction} & \leadsto & \text{d\'eriv\'ee} \\ \lambda u(x) & \leadsto & \lambda u'(x) \end{array}$

Exemple 4

$$\begin{array}{ccc} \frac{1}{3}x^2 & \rightsquigarrow & \frac{1}{3} \times 2x = \frac{2x}{3} \\ 3x^{1/2} & \rightsquigarrow & 3 \times \frac{1}{2\sqrt{x}} = \frac{3}{2\sqrt{x}} \end{array}$$

À Savoir

fonction \leadsto dérivée $u(x) + v(x) \implies u'(x) + v'(x)$

Exemple 5

$$\begin{array}{ccc} x^4 + x^5 & \rightsquigarrow & 4x^3 + 5x^4 \\ \mathrm{e}^{3x} + \frac{1}{x} & \rightsquigarrow & 3\,\mathrm{e}^{3x} - \frac{1}{x^2} \end{array}$$

À Savoir

fonction \rightsquigarrow dérivée $\lambda u(x) + \mu v(x) \qquad \rightsquigarrow \qquad \lambda u'(x) + \mu v'(x)$

Exemple 6

$$3x - 2x^7$$
 \longrightarrow $3 - 2 \times 7x^6 = 3 - 14x^6$
 $\frac{e^{3x}}{3} + \frac{2}{x}$ \longrightarrow $\frac{1}{3} \times 3 e^{3x} + 2 \times \left(-\frac{1}{x^2}\right) = e^{3x} - \frac{2}{x^2}$

À Savoir

fonction \leadsto dérivée $u^n(x) \leadsto nu'(x)u^{n-1}(x)$

Exemple 7

$$(x+2)^{2} = (x+2)^{2} \qquad \Rightarrow \qquad 2 \times 1 \times (x+2)^{2-1} = 2(x+2)$$

$$\frac{1}{(x+3)^{4}} = (x+3)^{-4} \qquad \Rightarrow \qquad -4 \times 1 \times (x+3)^{-4-1} = -\frac{4}{(x+3)^{5}}$$

$$(x^{2}+3)^{4} \qquad \Rightarrow \qquad 4 \times 2x \times (x^{2}+3)^{4-1} = 8x(x^{2}+3)^{3}$$

$$\frac{1}{(x^{2}+3)^{4}} = (x^{2}+3)^{-4} \qquad \Rightarrow \qquad -4 \times (2x) \times (x^{2}+3)^{-4-1} = -\frac{8x}{(x^{2}+3)^{5}}$$

$$(x^{3}+e^{2x})^{3} \qquad \Rightarrow \qquad 3 \times (3x^{2}+2e^{2x})(x^{3}+e^{2x})^{2}$$

$$(x^{3}+e^{3x})^{5} \qquad \Rightarrow \qquad 5(3x^{2}+3e^{3x})(x^{3}+e^{3x})^{4}$$

À Savoir

 $\begin{array}{lll} \text{fonction} & \leadsto & \text{d\'eriv\'ee} \\ \ln |u(x)| & \leadsto & \frac{u'(x)}{u(x)} \end{array}$

Exemple 8

22

$$\ln|x+12| \qquad \rightsquigarrow \qquad \frac{1}{x+12}
\ln(x^2 + e^{3x}) \qquad \rightsquigarrow \qquad \frac{2x+3e^{3x}}{x^2+e^{3x}}
\ln(3x^2 + e^{2x}) \qquad \rightsquigarrow \qquad \frac{3\times 2x+2e^{2x}}{3x^2+e^{2x}} = 2\frac{3x+e^{2x}}{3x^2+e^{2x}}$$

À Savoir

fonction \leadsto dérivée $e^{u(x)}$ \leadsto $u'(x) e^{u(x)}$

ECT 2

Exemple 9

$$e^{x+12} \qquad \rightsquigarrow \qquad \underbrace{1}_{u'(x)} \times e^{x+12} = e^{x+12}$$

$$e^{x^2 + e^{3x}} \qquad \rightsquigarrow \qquad \underbrace{\left(2x + 3e^{3x}\right)}_{u'(x)} e^{x^2 + e^{3x}}$$

$$e^{3x^2 + e^{2x}} \longrightarrow \underbrace{(3 \times 2x + 2e^{2x})}_{u'(x)} e^{3x^2 + e^{2x}} = 2(3x + e^{2x})e^{3x^2 + e^{2x}}$$

À Savoir

fonction
$$\leadsto$$
 dérivée $u(x) \times v(x) \qquad \leadsto \qquad u'(x) \times v(x) + u(x) \times v'(x)$

Exemple 10

$$\underbrace{(x+1)}_{u(x)}\underbrace{e^{2x}}_{v(x)} \qquad \qquad \underbrace{1}_{u'(x)}\underbrace{\times e^{2x}}_{v(x)} + \underbrace{(x+1)}_{u(x)}\underbrace{2e^{2x}}_{v'(x)} = (2x+3)e^{2x}$$

$$\underbrace{(x+1)}_{u(x)}\underbrace{\ln|x|}_{v(x)} \qquad \qquad \underbrace{1}_{u'(x)}\underbrace{\times \ln|x|}_{v(x)} + \underbrace{(x+1)}_{u(x)}\underbrace{\frac{1}{x}}_{v'(x)} = \ln|x| + \underbrace{\frac{x+1}{x}}_{u(x)}$$

$$\underbrace{(x^2+1)}_{u(x)}\underbrace{e^{3x+4}}_{v(x)} \qquad \qquad \underbrace{2x}_{u'(x)}\underbrace{e^{3x+4}}_{v(x)} + \underbrace{(x^2+1)}_{u(x)}\underbrace{3e^{3x+4}}_{v'(x)} = (3x^2+2x+3)e^{3x+4}$$

À Savoir

fonction
$$\leadsto$$
 dérivée
$$\int_a^x f(t) dt \qquad \leadsto \qquad f(x)$$

Exemple 11

$$\int_{3}^{x} \frac{e^{t}}{t^{4}} dt \qquad \qquad \sim \qquad \frac{e^{x}}{x^{4}}$$

$$\int_{1}^{x} \frac{\ln(t)}{1+t^{5}} dt \qquad \sim \qquad \frac{\ln(x)}{1+x^{5}}$$

III - Exercices

Exercice 1. Dériver les fonctions suivantes. La lettre e désigne le réel $\exp(1)$.

1.
$$f(x) = 3$$
.

2.
$$f(x) = e$$
.

3.
$$f(x) = x^{10}$$
.

4.
$$f(x) = x^{3/4}$$
.

5.
$$f(x) = \frac{1}{x^5}$$
.

6.
$$f(x) = \sqrt{x}$$
.

7.
$$f(x) = \ln |x|$$
.

8.
$$f(x) = e^x$$

9.
$$f(x) = \frac{1}{x}$$

10.
$$f(x) = \ln |2x|$$

11.
$$f(x) = e^{5x}$$
.

Exercice 2. Dériver les fonctions suivantes. La lettre e désigne le réel $\exp(1)$.

1.
$$f(x) = 4x + 3$$
.

23

2.
$$f(x) = 2x^2 + x^5$$
.

1.
$$f(x) = 4x + 3$$
. $2\sqrt{x}$.
2. $f(x) = 2x^2 + x^5$. 4. $f(x) = (2x)^3$.
3. $f(x) = 3e^x + \frac{4}{5}\ln(x) +$ 5. $f(x) = 3e^{2x} - (4x)^4$.

$$2\sqrt{x}$$

4.
$$f(x) = (2x)^3$$

5.
$$f(x) = 3e^{2x} - (4x)^4$$
.