Previously in Molecularity...

The Octet "Rule"

- Atoms form chemical bonds by sharing electrons
- Atoms tend to gain, loose, or share electrons to have 8 valence electrons
- Theory predates quantum mechanics
- Generally accurate for s- and p-block.
- Totally fails for d-block (see 18 e- rule)
 and totally fails for f-block (crazytown)

Exam need more examples ass

- Some easy ones:
 - Difluorodichloromethane (which is a CFC by the way) CCI₂F₂
 - Phosphine (PH₃)
- Organic molecules including ethene, C₂H₄, formaldehyde CH₂O, formic acid HCOOH (both oxygens connect to carbon), and ethanol C₂H₅OH (H₃C–CH₂OH)
- More challenging ones involving ions... we'll only get partway...
 - Perchlorate anion [ClO₄]
 - Chlorate anion [ClO₃]-
 - Ammonium cation [NH₄]+

Notable s- and p-block exceptions

- Hydrogen 1s¹ and helium 1s² follow a *duet* rule (n = 1 can only hold two electrons)
- Alkali earths and the boron family sometimes do their own thing Example: magnesium hydride (MgH₂)
 Example: boron trifluoride (BF₃)
- Molecules with an odd total of valence electrons (one atom will end up with an odd count, duh!)
 Example: nitrogen monoxide
- Hypervalent molecules or expanded octets:
 large atoms in the 3p, 4p, ... block

Example: carbon dioxide, CO2

- Sum valence e⁻ including overall charge.
 (This determines total # of bonds and lone pairs)
- Arrange around a central atom...
 - 1. Greatest bonding capacity
 - 2. Lowest electronegativity
- Draw single bonds to central atom
- Complete octets around periphery
- Fix central atom octet by converting peripheral lone pairs to bonds as needed
- Determine resonance / formal charge

Example: carbon dioxide, CO2

- Sum valence e⁻ including overall charge.
 (This determines total # of bonds and lone pairs)
- Arrange around a central atom...
 - 1. Greatest bonding capacity
 - 2. Lowest electronegativity
- Draw single bonds to central atom
- Complete octets around periphery
- Fix central atom octet by converting peripheral lone pairs to bonds as needed
- Determine resonance / formal charge

$$: O \equiv C - \ddot{O}:$$

VS

$$\vdots \circ = \circ = \circ$$

VS

$$\ddot{\circ}$$
 — C \equiv 0:

Formal charge: which is "right"?

- Compare number of electrons around an atom relative to the valence electrons
 - Add up number of lone pair electrons
 - Only count one e

 from a bond
- Electron deficient: positive formal charge Electron rich: negative formal charge
- Choose dot structure with formal charges closest to zero!

$$: O \equiv C - \ddot{O}:$$

VS

$$\dot{O} = C = \dot{O}$$

VS

$$\ddot{\circ}$$
 — C \equiv 0:

FC: Can only count one e-from a bond

$$(0) \neq C + (0) \qquad (0) \neq C + (0)$$

$$FC = \begin{pmatrix} \text{number of } \\ \text{valence e}^- \end{pmatrix} - \begin{bmatrix} \text{number of } \\ \text{unshared e}^- \end{bmatrix} + \frac{1}{2} \quad \text{number of e}^- \\ \text{in bonding pairs} \end{bmatrix}$$

Formal charge: which is "right"?

- Compare number of electrons around an atom relative to the valence electrons
 - Add up number of lone pair electrons
 - Only count one e

 from a bond
- Electron deficient: positive formal charge Electron rich: negative formal charge
- Choose dot structure with formal charges closest to zero!

$$: O \equiv C - \ddot{O}:$$

$$VS$$

$$C = C$$

$$VS$$

$$VS$$

$$\ddot{\circ}$$
 – C \equiv 0:

Formal charge examples

- Cyanide ion, (CN)-
- Hydrogen cyanide, HCN
- Hydrogen isocyanide, HNC

HCN and HNC both exist, but one is much more common. Why?

Nitrate anion, [NO3]-

- Sum valence e⁻ incl. charge (of ions), determine # of bonds and lone pairs
- Arrange around a central atom...
 - 1. Greatest bonding capacity
 - 2. Lowest electronegativity
- Draw single bonds to central atom
- Complete octets around periphery
- Fix central atom octet by converting peripheral lone pairs to bonds as needed
- Determine resonance / formal charge

Nitrate anion, [NO₃]-

What are the charges on each atom in each structure?

What might the "average" charge look like in reality?

Bisulfate anion, [HSO₄]-

- Sum valence e⁻ incl. charge (of ions), determine # of bonds and lone pairs
- Arrange around a central atom...
 - 1. Greatest bonding capacity
 - 2. Lowest electronegativity
- Draw single bonds to central atom
- Complete octets around periphery
- Fix central atom octet by converting peripheral lone pairs to bonds as needed
- Determine resonance / formal charge

