BT, EIT, II, MT, WSW, BTC, FZT, LA, MB, MTR

Name, Vorname	Seminargr.	Studiengang	Matr. Nr.

Aufgabe	1	2	3a	3b	3c	4	5a	5b	5c	6	Σ
Soll Pkte.	6	6	3	3	4	6	4	3	5	10	50
Ist Pkte.											

Hinweis: Alle Antworten sind zu begründen, Rechenwege sind anzugeben.

Wiederholung der Fachprüfung Mathematik 1, 27.09.2021

Aufgabe 1:

Berechnen Sie alle komplexen Lösungen z der Gleichung

$$(z+2i)^3 = -8i$$

und geben Sie die Lösungen in algebraischer Form an.

Aufgabe 2:

Betrachten Sie die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = \begin{cases} \frac{x \cdot \cos(x-1) - x}{x^2 - 2x + 1} & : x \neq 1 \\ A & : x = 1, \end{cases}$$

wobei A ein reeller Parameter ist.

Wie muss A gewählt werden, damit f stetig in $x_0 = 1$ ist?

Aufgabe 3:

Betrachten Sie die rekursiv definierte Folge $(a_n)_{n\in\mathbb{N}}$ mit $a_1=1$ und $a_{n+1}=\sqrt{6+a_n}$ für $n\in\mathbb{N}$.

- (a) Zeigen Sie, dass die Folge monoton wachsend ist.
- (b) Zeigen Sie, dass die Folge nach oben beschränkt ist.
- (c) Ist die Folge konvergent? Falls ja, berechnen Sie $\lim_{n\to\infty} a_n$.

Aufgabe 4:

Berechnen Sie alle lokalen Extremstellen der Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = 2x^3 + 3x^2 - 36x + 4$ und ermitteln Sie den Typ der Extrema (Minimum/Maximum).

Aufgabe 5:

Betrachten Sie die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = x \cdot \cos(x) - \sin(x)$.

- (a) Bestimmen Sie das zweite Taylorpolynom von f an der Entwicklungsstelle $x_0 = 0$.
- (b) Geben Sie das zugehörige Restglied in der Form von Lagrange an.
- (c) Zeigen Sie, dass der Betrag des Approximationsfehlers höchstens $\frac{1}{16}$ beträgt, wenn man das zweite Taylorpolynom auf dem Intervall $\left[-\frac{1}{2},\frac{1}{2}\right]$ zur Approximation von f nutzt.

Aufgabe 6:

Berechnen Sie das unbestimmte Integral

$$\int \frac{5x^2 - 12x + 1}{x^3 - 3x^2 + 4} \ dx.$$

Nochmals der Hinweis: Verlangt wird der Rechenweg. Es genügt nicht, die Ergebnisse aus einem Nachschlagewerk abzuschreiben.