Cavallaro, Jeffery Math 231a Homework #8

4-1. Let $\mathcal H$ be a vector space over $\mathbb C$ equipped with an inner product $\langle \cdot \, , \cdot \rangle$.

Prove: Cauchy-Schwarz

Lemma

The inner product is conjugate-linear in its second argument.

Proof

Assume $f, g \in \mathcal{H}$ and $\lambda \in \mathbb{C}$.

$$\langle f,\lambda g\rangle = \overline{\langle \lambda g,f\rangle} = \overline{\lambda \langle g,f\rangle} = \bar{\lambda}\,\overline{\langle g,f\rangle} = \bar{\lambda}\,\langle f,g\rangle$$

Proof

Assume $f, g \in \mathcal{H}$ and $\lambda \in \mathbb{C}$.

$$\begin{split} \langle f + \lambda g, f + \lambda g \rangle &= \langle f, f \rangle + \langle f, \lambda g \rangle + \langle \lambda g, f \rangle + \langle \lambda g, \lambda g \rangle \\ &= \|f\|^2 + \bar{\lambda} \langle f, g \rangle + \lambda \langle g, f \rangle + \lambda \bar{\lambda} \|g\|^2 \\ &= \|f\|^2 + \bar{\lambda} \langle f, g \rangle + \lambda \langle g, f \rangle + |\lambda|^2 \|g\|^2 \\ &> 0 \end{split}$$

Now, let $\lambda = -\frac{\langle f, g \rangle}{\|g\|^2} \in \mathbb{C}$:

$$0 \leq \|f\|^{2} - \frac{\overline{\langle f, g \rangle}}{\|g\|^{2}} \langle f, g \rangle - \frac{\langle f, g \rangle}{\|g\|^{2}} \langle g, f \rangle + \frac{|\langle f, g \rangle|^{2}}{\|g\|^{4}} \|g\|^{2}$$

$$= \|f\|^{2} - \frac{\overline{\langle f, g \rangle}}{\|g\|^{2}} \langle f, g \rangle - \frac{\langle f, g \rangle}{\|g\|^{2}} \overline{\langle f, g \rangle} + \frac{|\langle f, g \rangle|^{2}}{\|g\|^{2}}$$

$$= \|f\|^{2} - \frac{|\langle f, g \rangle|^{2}}{\|g\|^{2}} - \frac{|\langle f, g \rangle|^{2}}{\|g\|^{2}} + \frac{|\langle f, g \rangle|^{2}}{\|g\|^{2}}$$

$$= \|f\|^{2} - \frac{|\langle f, g \rangle|^{2}}{\|g\|^{2}}$$

$$= \|f\|^{2} - \frac{|\langle f, g \rangle|^{2}}{\|g\|^{2}}$$

and then:

$$||f||^{2} - \frac{|\langle f, g \rangle|^{2}}{||g||^{2}} \geq 0$$

$$||f||^{2}||g||^{2} - |\langle f, g \rangle|^{2} \geq 0$$

$$||f||^{2}||g||^{2} \geq |\langle f, g \rangle|^{2}$$

$$\therefore |\langle f, g \rangle| \leq ||f||||g||$$

Prove: The triangle inequality

Proof

Assume $f, g \in \mathcal{H}$

$$\begin{split} \|f+g\|^2 &= \langle f+g, f+g \rangle \\ &= \langle f, f \rangle + \langle f, g \rangle + \langle g, f \rangle + \langle g, g \rangle \\ &= \|f\|^2 + \langle f, g \rangle + \langle g, f \rangle + \|g\|^2 \\ &\leq \|f\|^2 + \|f\| \|g\| + \|g\| \|f\| + \|g\|^2 \\ &= \|f\|^2 + 2\|f\| \|g\| + \|g\|^2 \\ &= (\|f\| + \|g\|)^2 \end{split}$$

$$||f + g|| \le ||f|| + ||g||$$

4-2. Prove: $\forall f,g \in \mathcal{H}, |\langle f,g \rangle| = ||f|| ||g||$ and $g \neq 0 \implies f = cg$ for some scalar c.

Lemma

$$f \perp g \implies \forall c \in \mathbb{C}, f \perp cg$$

Proof

Assume
$$f \perp g$$

 $\langle f, g \rangle = 0$
 $\langle f, cg \rangle = \bar{c} \langle f, g \rangle = \bar{c} \cdot 0 = 0$
 $\therefore f \perp cg$

Proof

Assume $f,g\in\mathcal{H}$ such that $g\neq 0$ and $|\langle f,g\rangle|=\|f\|\|g\|$ Let $h=f-\frac{\langle f,g\rangle}{\|g\|^2}g$

$$\langle h, g \rangle = \langle f - \frac{\langle f, g \rangle}{\|g\|^2} g, g \rangle$$

$$= \langle f, g \rangle - \frac{\langle f, g \rangle}{\|g\|^2} \langle g, g \rangle$$

$$= \langle f, g \rangle - \frac{\langle f, g \rangle}{\|g\|^2} \|g\|^2$$

$$= \langle f, g \rangle - \langle f, g \rangle$$

$$= 0$$

So
$$h \perp g$$
, and thus $h \perp \frac{\langle f, g \rangle}{\|g\|^2} g$

$$f = h + \frac{\langle f, g \rangle}{\|g\|^2} g$$

$$\|f\|^2 = \|h + \frac{\langle f, g \rangle}{\|g\|^2} g\|^2$$

$$= \|h\|^2 + \|\frac{\langle f, g \rangle}{\|g\|^2} g\|^2$$

$$= \|h\|^2 + \frac{|\langle f, g \rangle|^2}{\|g\|^4} \|g\|^2$$

$$= \|h\|^2 + \frac{|\langle f, g \rangle|^2}{\|g\|^2}$$

$$\|f\|^2 = \|h\|^2 + \|f\|^2$$

$$\|h\|^2 = 0$$

Thus
$$h=0$$
. Letting $c=\frac{\langle f,g\rangle}{\|g\|^2}$ we get the result: $0=f-cg$.: $f=cg$

8-4: Prove: $\ell^2(\mathbb{Z})$ is complete and separable.

Assume
$$(u_n)_{n=1}^{\infty}$$
 is Cauchy in $\|\cdot\|$, where $u_n=(\ldots,u_{n,-2},u_{n,-1},u_{n,0},u_{n,1},u_{n,2},\ldots)$.
Claim 1: $\forall k\in\mathbb{Z},(u_{n,k})$ is Cauchy in $|\cdot|$

Proof

ABC:
$$\exists k, (u_{n,k})$$
 is not Cauchy in $|\cdot|$ $\exists \epsilon_0 > 0, \forall N \in \mathbb{N}, \exists n, m > N, |u_{n,k} - u_{m,k}| \geq \epsilon_0$ Assume $0 < \epsilon < \epsilon_0^2$ Assume $N \in \mathbb{N}$, thus selecting an $n, m > N$. $||u_n - u_m|| < \epsilon$

However:

$$||u_{n} - u_{m}|| = \sum_{j=-\infty}^{\infty} |u_{n,j} - u_{m,j}|^{2}$$

$$= |u_{n,k} - u_{m,k}|^{2} + \sum_{j \neq k} |u_{n,j} - u_{m,j}|^{2}$$

$$\geq \epsilon_{0}^{2} + \sum_{j \neq k} |u_{n,j} - u_{m,j}|^{2}$$

$$\geq \epsilon + \sum_{j \neq k} |u_{n,j} - u_{m,j}|^2$$

 $\geq \epsilon$

Contradiction!

$$\therefore \forall k \in \mathbb{Z}, (u_{n,k}) \text{ is Cauchy in } |\cdot|$$

And since \mathbb{C} is complete,

$$\forall k \in \mathbb{Z}, u_{n,k} \to u_k \in \mathbb{C} \text{ as } n \to \infty, \text{ meaning}$$

 $u_n \to u \text{ where } u = (\dots, u_{-2}, u_{-1}, u_0, u_1, u_2, \dots)$

Claim 2: $u \in \ell^2(\mathbb{Z})$

Proof

Assume
$$\epsilon>0$$
 $\exists N, \forall k, n>N \implies |u_k-u_{n,k}|<\frac{\epsilon}{2N+1}$ Assume $n>N$

$$\sum_{k=-N}^{N} |u_k|^2 = \sum_{k=-N}^{N} |u_k - u_{n,k} + u_{n,k}|^2$$

$$\leq \sum_{k=-N}^{N} |u_k - u_{n,k}| + \sum_{k=-N}^{N} |u_{n,k}|^2$$

But $u_n \in \ell^2(\mathbb{Z})$, so $\sum_{k=-N}^N |u_{n,k}|^2 \leq \sum_{k=-\infty}^\infty |u_{n,k}|^2 = M < \infty$. So:

$$\sum_{k=-N}^{N} |u_k|^2 \leq \sum_{k=-N}^{N} |u_k - u_{n,k}| + M$$

$$= \sum_{k=-N}^{N} \frac{\epsilon}{2N+1} + M$$

$$= \sum_{k=-N}^{N} \frac{\epsilon}{2N+1} + M$$

$$= (2N+1) \left(\frac{\epsilon}{2N+1}\right) + M$$

$$= \epsilon + M$$

$$< \infty$$

Thus, letting
$$k \to \infty$$
, $\sum_{k=-\infty}^{\infty} |u_k|^2 < \infty$. $\therefore u \in \ell^2(\mathbb{Z})$.

Claim 3: $u_n \to u$ in $\|\cdot\|$

Proof

Assume
$$\epsilon > 0$$
 $\exists N, n, m > N \Longrightarrow \|u_n - u_m\| \le \epsilon$ As $m \to \infty, u_m \to u$ and so: $\|u_n - u\| \le \epsilon$ $\therefore u_n \to u$ in $\|\cdot\|$

Claim 4: $\ell^2(\mathbb{Z})$ is separable.

Define $e_i \in \ell^2(\mathbb{Z})$ such that $e_{ij} = \delta_{ij}$. Note that $e_i \in \ell^2(\mathbb{Z})$ because $\|e_i\| = \sum_{k=-\infty}^\infty |e_{i,k}|^2 = 1$. Clearly, $\bigcup_i e_i$ is a countable subset of $\ell^2(\mathbb{Z})$. Assume u is a linear combination of some finite subset of $\bigcup_i e_i$. Let $N \in \mathbb{N}$ such that $\forall \, |k| \geq N, u_k = 0$.

$$\sum_{k=-\infty}^{\infty} |u_k|^2 \le \sum_{k=-N}^{N} |u_k|^2 < \infty$$

since it is a finite sum.

So $u \in \ell^2(\mathbb{Z})$.

Assume $\epsilon > 0$

Let $v = u + \frac{\epsilon}{2} e_N$.

Since $\ell^2(\mathbb{Z})$ is a vector space, $v \in \ell^2(\mathbb{Z})$ as well, and:

$$||u - v|| = ||\frac{\epsilon}{2}e_N|| = \frac{\epsilon}{2}||e_N|| = \frac{\epsilon}{2} \cdot 1 = \frac{\epsilon}{2} < \epsilon$$

 $\therefore \bigcup_i e_i$ is dense in $\ell^2(\mathbb{Z})$ and thus $\ell^2(\mathbb{Z})$ is separable.