SEQUENCE LISTING

<110> Conaris Research Institute GmbH	
<120> Diagnostic Use of Polymorphisms in the Gene Coding for the TNF Receptor II and Method for Detecting Non-Responders to Anti-TNF-Therapy	
<130> K51347/8	
<140>	
<141>	
<160> 54	
<170> PatentIn Ver. 2:1	
<210> 1 ₁	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Forward Primer	
<400> 1	
cttccacgag gtgacatctc c	21
<210> 2	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Reverse Primer	
<400> 2	
gccctaatac agggccagc	19
<210> 3	
<211> 21	
<212> DNA	
<213> Artificial Sequence	

1

<223> Description of Artificial Sequence: Forward Primer

<220>

<400> 3	
ggacagattg cagctggaat g	21
<210> 4	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Reverse Primer	
verse besettperent of interferent bequence. Neverse iffinet	
<400> 4	
tagagccaga ccacctgggt	20
<210> 5	
ì	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
•	
<220>	
<223> Description of Artificial Sequence: Forward Primer	
<400> 5	
agcctggaca acatggcga	19
<210> 6	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
-	
<220>	
<223> Description of Artificial Sequence: Reverse Primer	
<400> 6	
ccctcgactg aaagcgaaag	20
	-
<210> 7	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
•	
<220×	
<220>	
<223> Description of Artificial Sequence: Forward Primer	

<100×		
<400>		
gaggc	gtgtc caaggcc	17
<210>	8	
<211>	17	
<212>		
\Z1J/	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Reverse Primer	
<400>	8	
acacao	gagtc accacct	17
J - J - J .		- '
1010	•	
<210>		
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Forward Primer	
12237	besoliption of Altificial bequence. Forward filmer	
<400×		
<400>		
atcaco	ccatg gcagaaccc	19
<210>	10	
<211>	14	
<212>	DNA	
	Artificial Sequence	
/2 T U /	VICTITCIAL peddelice	
<0.00s		
<220>		
<223>	Description of Artificial Sequence: Reverse Primer	
<400>	10	
tgccct	cacc cggc	14
<210>	11	
<211>	21	
<211> <212>	21 DNA	
<211> <212>	21	
<211> <212>	21 DNA	
<211> <212>	21 DNA	

4005 11	
<400> 11	
gactetggee ttgttteete a	21
<210> 12	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Reverse Primer	
<400> 12	
gggaagttgg aggcaggg	18
<210> 13	
i	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	•
<223> Description of Artificial Sequence: Forward Primer	
<400> 13	
tgaccgtttg cgccctc	17
2210 14	
<210> 14	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	•
<223> Description of Artificial Sequence: Reverse Primer	
<400> 14	
gtccccaagg acctgagcc	19
3	
(010) 15	
<210> 15	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Forward Primer	

	•	
<400> 15		
agacagaget cettggge	18	8
1010, 16		
<210> 16		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial	Sequence: Reverse Primer	
(223) bescription of Artificial	boquonoe, neverse rramer	
.400> 10		
<400> 16		_
gcagacagaa ggagtgaatg a	. 2	1
•		
<210> 1,7		
<211> 17		
<212> DNA		
<213> Artificial Sequence		
(213) Artificial Sequence		
<220>		
<223> Description of Artificial	Sequence: Forward Primer	
<400> 17		
tcctggcttg ctggctg	1	7
<210> 18		
<211> 17		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial	Sequence: Reverse Primer	
<400> 18		
gagggcagtg gagacac	1	7
/210> 10		
<210> 19		
<211> 17		
<212> DNA		
<213> Artificial Sequence		
<220>		
2223 Degarintion of Artificial	Sequence: Forward Primer	

4400, 10	
<400> 19	
gctgactgct ctcccct	17
<210> 20	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Reverse Primer	
<400> 20	
tgggaagaag caggtgtg	18
cyggaagaag caggegeg	10
·	
<210> 21	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<pre><223> Description of Artificial Sequence: Forward Primer</pre>	
Allow Dobotipoton of interference boquestor forward framer	
<400> 21	
gaatctgcat cttgggcagg	20
<210> 22	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Reverse Primer	
<400> 22	
gaggctgcgg ctgtgga	17
<210> 23	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
/510\ VICILICIAI pedreuce	
4000	
<220>	
<223> Description of Artificial Sequence: Forward Primer	

()

	į.
<400> 23	
cggtgtgggc tgtgtcgta	19
<210> 24	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Re	everse Primer
<400> 24	
cctacagggc tgccacctc	19
2010× 25	
<210> 25	
<211> 38	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: FA	AM Probe
•	
<400> 25	
acagatccag acaggttcag ttatgtgtct gagaagtt	38
acagatecay acaggeteag tratgrater gagaaget	30
<210> 26	
<211> 38	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: TE	ET Probe
•	
<400> 26	
acagatecag acagttteag ttatgtgtet gagaagtt	38
acayarecay acayrrroay reargryror yayaayrr	30
<210> 27	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Fo	orward Primer

<400> 27 gacaggttat ctccactctg caaa	24
	23
<210> 28	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Reverse	Primer
<400> 28	
caattcagaa tgcttagctt tttagc	26
<210> 29	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<pre><223> Description of Artificial Sequence: FAM Prob</pre>	oe .
<400> 29	
tgctgctgcc gctggtgaga cc	22
<210> 30	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: TET Prob	oe .
<400> 30	
aactgctgct gccactggtg agacc	25
<210> 31	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Forward	Primer

<400> 31 cttgggacgt cctggacaga c	21
<210> 32 <211> 17 <212> DNA	
<213> Artificial Sequence	
<220>	
<pre><223> Description of Artificial Sequence: Reverse Primer</pre>	
<400> 32 aaggtgcctc gcccacc	17
-	
<210> 33	
<211> 21 <212> DNA	
<213> Artificial Sequence	
<220>	•
<pre><223> Description of Artificial Sequence: FAM Probe</pre>	
<400> 33	
tgcagcaaat gctcgccggg t	21
<210> 34	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<pre><223> Description of Artificial Sequence: TET Probe</pre>	
<400> 34	
tgcagcaagt gctcgccggg	20
<210> 35	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<pre><220> <223> Description of Artificial Sequence: Forward Primer</pre>	

•	•	<400> 35	
		cagagaatac tatgaccaga cagctca	27
		<210> 36	
		<211> 16	
		<212> DNA	
		<213> Artificial Sequence	
		<220>	
		<223> Description of Artificial Sequence: Reverse Primer	
		<400> 36	
		gagtgcccc gtggct	16
-2, 83		<210> 37	
(C) 100	and a	<211> 26	
	vii	<212> DNA	
	ā	<213> Artificial Sequence	
	L	<220>	٠
	,	<223> Description of Artificial Sequence: FAM Probe	
	5	<400> 37	0.6
		aatgcaagca tggatgcagt ctgcac	26
	74 L4		
		<210> 38	
		<211> 26	
	<u> </u>	<211> 20 <212> DNA	
		<213> Artificial Sequence	
		(210) Midiliolar bodaction	
,		<220>	
		<pre><223> Description of Artificial Sequence: TET Probe</pre>	
		-	
		<400> 38	
		aatgcaagca gggatgcagt ctgcac	26
		<210> 39	
		<211> 20	
		<212> DNA	
		<213> Artificial Sequence	
		×220\	
		<220> <223> Description of Artificial Sequence: Forward Primer	
		72207 Description of Artificial Sequence, forward filmer	

#11.	
(: : :	
	4
	J.
	T
	<u> </u>
	4,1
	T
	=
	4
	ū
	ž

 $\langle \hat{a}^{\dagger} \rangle$

<400> 39 gctgtaacgt ggtggccatc	20
gaagaaaga ggagaaaa	
<210> 40	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Reverse Primer	
<400> 40	
ctgggttctg gagtt	15
<210> 41	ł
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: FAM Probe	
<400> 41	
agaggcagcg agttgtggaa agcctc	26
<210> 42	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: TET Probe	
<400> 42	
aggcagcggg ttgtggaaag cct	23
<210> 43	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<pre><223> Description of Artificial Sequence: Forward Primer</pre>	

•	<400> 43	
	accactagga ctctgaggct ctttc	25
	<210> 44	
	<211> 17	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: Reverse Primer	
	<400> 44	
	ccagccagec tteegag	17
Ç.	<210> 45	
	<211> 22	
ı.	<212> DNA	
19902176	<213> Artificial Sequence	
īŪ	<220>	•
jul L	<223> Description of Artificial Sequence: FAM Probe	
ir M	==	
u 1	<400> 45	
	cctctgctgc catggcgtgt cc	22
يويويون پوهونږ		
1200 1 12		
	<210> 46	
السمة السمية	<211> 23	
•	<212> DNA	
. •	<213> Artificial Sequence	
	<220>	,
	<223> Description of Artificial Sequence: TET Probe#	
	<400> 46	
	cctctgctgc catggtgtgt cct	23
	<210> 47	
	<211> 19	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: Forward Primer	

<400> 47

		ctgcaggcca agagcagag	19
		<210> 48	
		<211> 21	
		<212> DNA	
		<213> Artificial Sequence	
		<220>	
		<223> Description of Artificial Sequence: Reverse Primer	
		<400> 48	
		ggttttctgg aagccagagc t	21
		<210> 49	
		<211> 3683	
	Ō	<212> DNA	
		<213> Homo sapiens	
	TJ.	<220>	
	er i Prope	<221> CDS	
	T	<222> (90)(1475)	
	: 0	<220>	
		<pre><220> <221> mat_peptide</pre>	
	<u>k</u>	<222> (156)	
		<400> 49	
		gegagegeag eggageetgg agagaaggeg etgggetgeg agggegegag ggegegaggg	60
V.		cagggggcaa ccggaccccg cccgcaccc atg gcg ccc gtc gcc gtc tgg gcc	113
		Met Ala Pro Val Ala Val Trp Ala	•
		-20 -15	
		gcg ctg gcc gtc gga ctg gag ctc tgg gct gcg gcg cac gcc ttg ccc	161
		Ala Leu Ala Val Gly Leu Glu Leu Trp Ala Ala Ala His Ala Leu Pro	101
		-10	
		gee cag gtg gea ttt aca eee tae gee eeg gag eee ggg age aca tge	209
		Ala Gln Val Ala Phe Thr Pro Tyr Ala Pro Glu Pro Gly Ser Thr Cys	
		5 10 15	
		cgg ctc aga gaa tac tat gac cag aca gct cag atg tgc tgc agc aaa	257
		Arg Leu Arg Glu Tyr Tyr Asp Gln Thr Ala Gln Met Cys Cys Ser Lys	
		20 25 30	

(::

_	_	_			-		_		tgt Cys 45	_		-	-	305
		_	_	_		-	_		tac Tyr	-				353
									cgc Arg				-	401
							_		aac Asn				-	449
									cag Gln				-	497
						-			ttc Phe 125			-		545
									ccc Pro					593
			_			_	_		tgc Cys			_		641
									agc Ser				-	689
_		_				-	_	_	cca Pro	 _	_			737
	_		_		_				acg Thr 205				_	785
	_		-	-				_	ctc Leu	_			_	833

(÷ {

	gct Ala											881
	ggt Gly 245											929
_	atc Ile											977
	aag Lys											1025
	gag Glu											1073
	ctg Leu											1121
	cag Gln 325											1169
	gcc Ala											1217
	gtc Val											1265
							Ser				aca Thr	1313
			Ser			Asp				Phe	tcc Ser	1361
		Суѕ			Gln				Glu		ctg Leu	1409

ctg	ggg	agc	acc	gaa	gag	aag	ccc	ctg	ccc	ctt	gga	gtg	cct	gat	gct	1457
Leu	Gly	Ser	Thr	Glu	Glu	Lys	Pro	Leu	Pro	Leu	Gly	Val	Pro	Asp	Ala	
	420					425					430					

ggg atg aag ccc agt taa ccaggccggt gtgggctgtg tcgtagccaa 1505
Gly Met Lys Pro Ser
435 440

qqtqqqctqa gccctggcag gatgaccctg cgaaggggcc ctggtccttc caggccccca 1565 ccactaggae tetgaggete tttetgggee aagtteetet agtgeeetee acageegeag 1625 cctccctctg acctgcaggc caagagcaga ggcagcgagt tggggaaagc ctctgctgcc 1685 atggtgtgtc cctctcggaa ggctggctgg gcatggacgt tcggggcatg ctggggcaag 1745 tecetgacte tetgtgaeet geeegeeea getgeaeetg eeageetgge ttetggagee 1805 cttgggtttt ttgtttgttt gtttgtttgt ttgtttgttt ctccccctgg gctctgccca 1865 gctctggctt ccagaaaacc ccagcatcct tttctgcaga ggggctttct ggagaggagg 1925 gatgctgcct gagtcaccca tgaagacagg acagtgcttc agcctgaggc tgagactgcg 1985 ggatggtcct ggggctctgt gtagggagga ggtggcagcc ctgtagggaa cggggtcctt 2045 caagttagct caggaggctt ggaaagcatc acctcaggcc aggtgcagtg gctcacgcct 2105 atgateceag caetttggga ggetgaggeg ggtggateae etgaggttag gagttegaga 2165 ccagcctggc caacatggta aaaccccatc tctactaaaa atacagaaat tagccgggcg 2225 tggtggcggg cacctatagt cccagctact cagaagcctg aggctgggaa atcgtttgaa 2285 cccgggaagc ggaggttgca gggagccgag atcacgccac tgcactccag cctgggcgac 2345 agagcgagag tctgtctcaa aagaaaaaaa aaaaagcacc gcctccaaat gctaacttgt 2405 ccttttgtac catggtgtga aagtcagatg cccagagggc ccaggcaggc caccatattc 2465 agtgctgtgg cctgggcaag ataacgcact tctaactaga aatctgccaa ttttttaaaa 2525 aagtaagtac cactcaggcc aacaagccaa cgacaaagcc aaactctgcc agccacatcc 2585 aacccccac ctgccatttg caccctccgc cttcactccg gtgtgcctgc agccccgcgc 2645 ctccttcctt gctgtcctag gccacaccat ctcctttcag ggaatttcag gaactagaga 2705

tgactgagtc ctcgtagcca tctctctact cctacctcag cctagaccct cctcctcccc 2765 cagaggggtg ggttcctctt ccccactccc caccttcaat tcctgggccc caaacgggct 2825 gccctgccac tttggtacat ggccagtgtg atcccaagtg ccagtcttgt gtctgcgtct 2885 gtgttgcgtg tcgtgggtgt gtgtagccaa ggtcggtaag ttgaatggcc tgccttgaag 2945 ccactgaage tgggatteet ecceattaga gteageette ecceteecag ggeeagggee 3005 ctgcagaggg gaaaccagtg tagccttgcc cggattctgg gaggaagcag gttgaggggc 3065 tcctggaaag gctcagtctc aggagcatgg ggataaagga gaaggcatga aattgtctag 3125 cagagcaggg gcagggtgat aaattgttga taaattccac tggacttgag cttggcagct 3185 gaactattgg agggtgggag agcccagcca ttaccatgga gacaagaagg gttttccacc 3245 ctggaatcaa gatgtcagac tggctggctg cagtgacgtg cacctgtact caggaggctg 3305 aggggaggat cactggagcc caggagtttg aggctgcagc gagctatgat cgcgccacta 3365 cactccaqcc tgagcaacag agtgagaccc tgtctcttaa agaaaaaaaa agtcagactg 3425 ctgggactgg ccaggtttct gcccacattg gacccacatg aggacatgat ggagcgcacc 3485 tgccccctgg tggacagtcc tgggagaacc tcaggcttcc ttggcatcac agggcagagc 3545 cgggaagcga tgaatttgga gactctgtgg ggccttggtt cccttgtgtg tgtgtgttga 3605 tcccaagaca atgaaagttt gcactgtatg ctggacggca ttcctgctta tcaataaacc 3665 3683 tgtttgtttt aaaaaaaa

<210> 50

<211> 461

<212> PRT

<213> Homo sapiens

<400> 50

Met Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu Leu

1 5 10 15

Trp Ala Ala Ala His Ala Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr

20 25 30

Ala Pro Glu Pro Gly Ser Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln

35 40 45

Thr Ala Gln Met Cys Cys Ser Lys Cys Ser Pro Gly Gln His Ala Lys 55 Val Phe Cys Thr Lys Thr Ser Asp Thr Val Cys Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val Pro Glu Cys Leu Ser Cys 85 90 Gly Ser Arg Cys Ser Ser Asp Gln Val Glu Thr Gln Ala Cys Thr Arg 100 105 Glu Gln Asn Arg Ile Cys Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu 120 Ser Lys Gln Glu Gly Cys Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg 135 Pro Gly Phe Gly Val Ala Arg Pro Gly Thr Glu Thr Ser Asp Val Val 150 155 Cys Lys Pro Cys Ala Pro Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr 165 170 Asp Ile Cys Arg Pro His Gln Ile Cys Asn Val Val Ala Ile Pro Gly 185 Asn Ala Ser Met Asp Ala Val Cys Thr Ser Thr Ser Pro Thr Arg Ser 195 200 205 Met Ala Pro Gly Ala Val His Leu Pro Gln Pro Val Ser Thr Arg Ser 215 Gln His Thr Gln Pro Thr Pro Glu Pro Ser Thr Ala Pro Ser Thr Ser 230 235 Phe Leu Leu Pro Met Gly Pro Ser Pro Pro Ala Glu Gly Ser Thr Gly 245 250 Asp Phe Ala Leu Pro Val Gly Leu Ile Val Gly Val Thr Ala Leu Gly 265 Leu Leu Ile Ile Gly Val Val Asn Cys Val Ile Met Thr Gln Val Lys 280 Lys Lys Pro Leu Cys Leu Gln Arg Glu Ala Lys Val Pro His Leu Pro 295 Ala Asp Lys Ala Arg Gly Thr Gln Gly Pro Glu Gln Gln His Leu Leu 310 315 Ile Thr Ala Pro Ser Ser Ser Ser Ser Leu Glu Ser Ser Ala Ser 330 Ala Leu Asp Arg Ala Pro Thr Arg Asn Gln Pro Gln Ala Pro Gly 340 345 Val Glu Ala Ser Gly Ala Gly Glu Ala Arg Ala Ser Thr Gly Ser Ser 360 Asp Ser Ser Pro Gly Gly His Gly Thr Gln Val Asn Val Thr Cys Ile 370 375 Val Asn Val Cys Ser Ser Ser Asp His Ser Ser Gln Cys Ser Ser Gln 385 390 395 Ala Ser Ser Thr Met Gly Asp Thr Asp Ser Ser Pro Ser Glu Ser Pro 410 Lys Asp Glu Gln Val Pro Phe Ser Lys Glu Glu Cys Ala Phe Arg Ser 420 425

Gln Leu Glu Thr Pro Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys Pro
435
440
445

Leu Pro Leu Gly Val Pro Asp Ala Gly Met Lys Pro Ser
450
460

<210> 51
<211> 3683
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (90)..(1475)

<220>
<221> mat_peptide
<222> (156)

<400> 51

gcgagcgcag cggagcctgg agagaaggcg ctgggctgcg agggcgcgag ggcgcgaggg 60

cagggggcaa ccggaccccg cccgcaccc atg gcg ccc gtc gcc gtc tgg gcc 113

Met Ala Pro Val Ala Val Trp Ala

-20 -15

gcg ctg gcc gtc gga ctg gag ctc tgg gct gcg gcg cac gcc ttg ccc $\,$ 161 Ala Leu Ala Val Gly Leu Glu Leu Trp Ala Ala Ala His Ala Leu Pro $\,$ -1 $\,$ 1

gcc cag gtg gca ttt aca ccc tac gcc ccg gag ccc ggg agc aca tgc 209
Ala Gln Val Ala Phe Thr Pro Tyr Ala Pro Glu Pro Gly Ser Thr Cys
5 10 15

cgg ctc aga gaa tac tat gac cag aca gct cag atg tgc tgc agc aag 257
Arg Leu Arg Glu Tyr Tyr Asp Gln Thr Ala Gln Met Cys Cys Ser Lys
20 25 30

tgc tcg ccg ggc caa cat gca aaa gtc ttc tgt acc aag acc tcg gac 305 Cys Ser Pro Gly Gln His Ala Lys Val Phe Cys Thr Lys Thr Ser Asp 35 40 45 50

acc gtg tgt gac tcc tgt gag gac agc aca tac acc cag ctc tgg aac 353
Thr Val Cys Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu Trp Asn
55 60 65

tgg gtt ccc gag tgc ttg agc tgt ggc tcc cgc tgt agc tct gac cag 401

ccactaggac tetgaggete tttetgggee aagtteetet agtgeeetee acageegeag 1625 cetecetetg acetgeagge caagageaga ggeagegagt tggggaaage etetgetgee 1685 atggtgtgtc cctctcggaa ggctggctgg gcatggacgt tcggggcatg ctggggcaag 1745 tecetgaete tetgtgaeet geeegeeca getgeaeetg ceageetgge ttetggagee 1805 cttgggtttt ttgtttgttt gtttgtttgt ttgtttgttt ctccccctgg gctctgccca 1865 gctctggctt ccagaaaacc ccagcatcct tttctgcaga ggggctttct ggagaggagg 1925 gatgetgeet gagteaceea tgaagacagg acagtgette ageetgagge tgagactgeg 1985 ggatggtcct ggggctctgt gtagggagga ggtggcagcc ctgtagggaa cggggtcctt 2045 caagttaget caggaggett ggaaageate aceteaggee aggtgeagtg geteaegeet 2105 atgateceag eactitggga ggetgaggeg ggtggateae etgaggttag gagttegaga 2165 ccagcctggc caacatggta aaaccccatc tctactaaaa atacagaaat tagccgggcg 2225 tggtggcggg cacctatagt cccagctact cagaagcctg aggctgggaa atcgtttgaa 2285 cccgggaagc ggaggttgca gggagccgag atcacgccac tgcactccag cctgggcgac 2345 agagcgagag tetgteteaa aagaaaaaaa aaaaagcace geeteeaaat getaaettgt 2405 cettttgtac catggtgtga aagtcagatg cecagaggge ceaggcagge caccatatte 2465 agtgctgtgg cctgggcaag ataacgcact tctaactaga aatctgccaa ttttttaaaa 2525 aagtaagtac cactcaggcc aacaagccaa cgacaaagcc aaactctgcc agccacatcc 2585 aacccccac ctgccatttg caccctccgc cttcactccg gtgtgcctgc agccccqcqc 2645 ctccttcctt gctgtcctag gccacaccat ctcctttcag ggaatttcag gaactagaga 2705 tgactgagtc ctcgtagcca tctctctact cctacctcag cctagaccct cctcctcccc 2765 cagaggggtg ggttcctctt ccccactccc caccttcaat tcctgggccc caaacgggct 2825 gecetgeeae tttggtaeat ggeeagtgtg ateceaagtg ceagtettgt gtetgegtet 2885 gtgttgcgtg tcgtgggtgt gtgtagccaa ggtcggtaag ttgaatggcc tgccttgaag 2945 ccactgaage tgggatteet ecceattaga gteageette ecceteccag ggeeagggee 3005

ctgcagaggg gaaaccagtg tagcettgce eggattetgg gaggaagcag gttgagggge 3065
teetggaaag geteagtete aggageatgg ggataaagga gaaggeatga aattgtetag 3125
cagageaggg geagggtgat aaattgttga taaatteeae tggaettgag ettggeaget 3185
gaaetattgg agggtgggag ageeeageea ttaccatgga gacaagaagg gtttteeaee 3245
ctggaateaa gatgteagae tggetggetg eagtgaegtg eacetgtaet eaggaggetg 3305
aggggaggat eactggagee eaggagttg aggetgeage gagetatgat egegeeaeta 3365
caeteeagee tgageaacag agtgagaeee tgtetettaa agaaaaaaaa agteagaetg 3425
ctgggaetgg eeaggtteet geeeaeattg gaeeeacatg aggaeatgat ggagegeaee 3485
tgeeeeetgg tggaeagtee tgggagaaee teaggettee ttggeateae agggeagage 3545
egggaagega tgaatttgga gaetetgtgg ggeettggtt eeettgtgt tgtgtttga 3605
teeeaagaea atgaaagttt geaetgtatg etggaeggea tteetgetta teaataaace 3665
tgtttgtttt aaaaaaaaa

<210> 52

<211> 461

<212> PRT

<213> Homo sapiens

<400> 52

<210> 53

<211> 3683

<212> DNA

<213	3> Hc	omo s	sapie	ens												
<220 <221)> L> CI)S														
<222	2> (9	90)	. (147	75)												
<220>																
)> L> ma	at ne	ent i c	10												
	2> (1		эрстс													
	•	·														
)> 53															
gcgagcgcag cggagcctgg agagaaggcg ctgggctgcg agggcgcgag ggcgcgaggg (60	
cago	gggg	caa o	caaa	accc	ca co	caca	accc	ato	aca	ccc	atc	qcc	atc	taa	qcc	113
	,,,,,				,								Val			
					-					-20					-15	
	ctg -															161
Ala	Leu	Ala	Val	-10	Leu	Glu	Leu	Trp	A1a -5	Ата	Ala	HIS	A1a -1	Leu 1	Pro	
				10					3							
gcc	cag	gtg	gca	ttt	aca	ccc	tac	gcc	ccg	gag	ccc	ggg	agc	aca	tgc	209
Ala	Gln	Val	Ala	Phe	Thr	Pro	Tyr	Ala	Pro	Glu	Pro		Ser	Thr	Cys	•
		5					10					15				
caa	ctc	aαa	αаа	tac	tat	gac	caσ	aca	act	caq	atσ	tac	tac	agc	aaq	257
	Leu															
	20					25					30					
																205
	tcg Ser															305
35	ser	PIO	GIY	GTII	40	AIA	гуз	Val	rne	45	1111	цуз	1111	Ser	50	
	gtg															353
Thr	Val	Cys	Asp		Cys	Glu	Asp	Ser		Tyr	Thr	Gln	Leu		Asn	
				55					60					65		
taa	gtt	ccc	gag	tac	tta	agc	tat	aac	tcc	cgc	tgt	agc	tct	gac	cag	401
	Val															
			70					75					80			
												-+-	+~~		+~~	440
	gaa Glu															449
vai	GIU	85	GIII	ATA	Суз	1111	90	010	0111	71511	71119	95	O y O	1111	0,70	
	ccc															497
Arg	Pro	Gly	Trp	Tyr	Cys	Ala	Leu	Ser	Lys	Gln	Glu	Gly	Cys	Arg	Leu	

_							ggc Gly			545
							tgt Cys			593
							agg Arg			641
							agg Arg			689
							ggg Gly 190			737
							cag Gln			785
							cca Pro			833
							ctt Leu			881
	-						ata Ile			929
							ttg Leu 270			977
_	_						gcc Ala			1025
			His			Ala	ccg Pro			1073

ı																
-		-												ccc Pro		1121
														ggg Gly		1169
														cat His		1217
	_	_												tct Ser		1265
														gac Asp 385		1313
_		_												ttc Phe		1361
_		_												acc Thr		1409
_		_		_										gat Asp		1457
			ccc Pro			cca	ggcc	ggt	gtgg	gctg	tg t	cgta	gcca	a		1505
ggt	gggc	tga	gccc	tggc	ag g	atga	ccct	g cg	aagg	ggcc	ctg	gtcc	ttc	cagg	ccccca	1565
cca	ctag	gac	tctg	aggc	tc t	ttct	gggc	c aa	gttc	ctct	agt	gccc	tcc	acag	ccgcag	1625
cct	ccct	ctg	acct	gcag	gc c	aaga	gcag	a gg	cagc	gagt	tgg	ggaa	agc	ctct	gctgcc	1685
atg	gtgt	gtc	cctc	tcgg	aa g	gctg	gctg	g gc	atgg	acgt	tcg	gggc	atg	ctgg	ggcaag	1745
tcc	ctga	ctc	tctg	tgac	ct g	cccc	gccc	a gc	tgca	cctg	сса	gcct	ggc	ttct	ggagcc	1805
ctt	gggt	ttt	ttgt	ttgt	tt g	tttg	tttg	t tt	gttt	gttt	ctc	cccc	tgg	gctc	tgccca	1865

gctctggctt ccagaaaacc ccagcatcct tttctgcaga ggggctttct ggagaggagg 1925 gatgctgcct gagtcaccca tgaagacagg acagtgcttc agcctgaggc tgagactgcg 1985 ggatggtcct ggggctctgt gtagggagga ggtggcagcc ctgtagggaa cggggtcctt 2045 caagttaget caggaggett ggaaagcate aceteaggee aggtgeagtg geteaegeet 2105 atgateceag eactttggga ggetgaggeg ggtggateae etgaggttag gagttegaga 2165 ccagcctggc caacatggta aaaccccatc tctactaaaa atacagaaat tagccgggcg 2225 tggtggcggg cacctatagt cccagctact cagaagcctg aggctgggaa atcgtttgaa 2285 cccgggaagc ggaggttgca gggagccgag atcacgccac tgcactccag cctgggcgac 2345 agagcgagag tetgteteaa aagaaaaaaa aaaaageace geeteeaaat getaaettgt 2405 ccttttgtac catggtgtga aagtcagatg cccagagggc ccaggcaggc caccatattc 2465 agtgctgtgg cctgggcaag ataacgcact tctaactaga aatctgccaa ttttttaaaa 2525 aagtaagtac cactcaggcc aacaagccaa cgacaaagcc aaactctgcc agccacatcc 2585 aacccccac ctgccatttg caccctccgc cttcactccg gtgtgcctgc agccccgcgc 2645 ctecttectt getgteetag gecacaccat etecttteag ggaattteag gaactagaga 2705 tgactgagtc ctcgtagcca tctctctact cctacctcag cctagaccct cctcctcccc 2765 cagaggggtg ggttcctctt ccccactccc caccttcaat tcctgggccc caaacgggct 2825 geoetgecae tttggtaeat ggeeagtgtg ateceaagtg eeagtettgt gtetgegtet 2885 gtgttgcgtg tcgtgggtgt gtgtagccaa ggtcggtaag ttgaatggcc tgccttgaag 2945 ccactgaage tgggatteet ecceattaga gteageette ecceteecag ggeeagggee 3005 ctgcagaggg gaaaccagtg tagccttgcc cggattctgg gaggaagcag gttgaggggc 3065 teetggaaag geteagtete aggageatgg ggataaagga gaaggeatga aattgtetag 3125 cagagcaggg gcagggtgat aaattgttga taaattccac tggacttgag cttggcagct 3185 gaactattgg agggtgggag agcccagcca ttaccatgga gacaagaagg gttttccacc 3245 ctggaatcaa gatgtcagac tggctggctg cagtgacgtg cacctgtact caggaggctg 3305

<210> 54 <211> 461 <212> PRT

<213> Homo sapiens

<400> 54

Met Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu Leu 10 Trp Ala Ala Ala His Ala Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr 25 Ala Pro Glu Pro Gly Ser Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln Thr Ala Gln Met Cys Cys Ser Lys Cys Ser Pro Gly Gln His Ala Lys 55 Val Phe Cys Thr Lys Thr Ser Asp Thr Val Cys Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val Pro Glu Cys Leu Ser Cys 85 90 Gly Ser Arg Cys Ser Ser Asp Gln Val Glu Thr Gln Ala Cys Thr Arg 110 Glu Gln Asn Arg Ile Cys Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu 120 Ser Lys Gln Glu Gly Cys Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg 135 Pro Gly Phe Gly Val Ala Arg Pro Gly Thr Glu Thr Ser Asp Val Val 145 150 155 Cys Lys Pro Cys Ala Pro Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr 165 170 Asp Ile Cys Arg Pro His Gln Ile Cys Asn Val Val Ala Ile Pro Gly 185 Asn Ala Ser Arg Asp Ala Val Cys Thr Ser Thr Ser Pro Thr Arg Ser 195

