We claim:

1	1.	A probe for use with an outer member having a wall defining an
2	interior bore,	the probe comprising:
3		an elongate body, defining a distal region, a distal end and a
4	proximal regi	on, adapted to be carried within the outer member interior bore;
5		an inflatable tissue coagulation body supported on the elongate
6	body distal re	egion; and
7		a control element defining a distal portion associated with the distal
8	end of the el	ongate body and a proximal portion extending along the exterior of
9	the elongate	body toward the proximal region of the elongate body.
1	2.	A probe as claimed in claim 1, wherein the elongate body
2	comprises a	catheter body.
1	3.	A probe as claimed in claim 1, wherein at least the distal region of
2	the elongate	body includes a flexible spline.
1	4.	A probe as claimed in claim 3, wherein the flexible spline includes a
2	hinge portior	1.
1	5.	A probe as claimed in claim 4, wherein the inflatable tissue
2	coagulation l	body is proximal to the hinge portion.
1	6.	A probe as claimed in claim 4, further comprising:
2		at least one sensing element;
3		wherein the inflatable tissue coagulation body is located one of
4	distal to and	proximal to the hinge portion and the at least one sensing element
5		e other of distal to and proximal to the hinge portion.
1	7.	A probe as claimed in claim 1, wherein the inflatable tissue

coagulation body comprises a half-balloon structure.

1	8. A probe as claimed in claim 1, wherein the inflatable tissue
2	coagulation body includes micropores.
1	9. A probe as claimed in claim 1, wherein the inflatable tissue
	coagulation body comprises a heated structure.
2	Coagulation body comprises a neated structure.
1	10. A probe as claimed in claim 1, wherein the control elemen
2	comprises a pull wire.
1	11. A probe, comprising:
2	an outer member defining a distal end and including a wall defining
3	an interior bore;
4	an elongate body carried within the outer member interior bore and
5	defining a distal region and a distal end operably connected to the distal end o
6	the outer member; and
7	an inflatable tissue coagulation body supported on the elongate
8	body distal region.
1	12. A probe as claimed in claim 11, wherein the wherein the elongate
2	body comprises a catheter body and the outer member comprises a sheath.
4	42 A proba as alaimed in claim 11 whorain at least the dictal region of
1	13. A probe as claimed in claim 11, wherein at least the distal region of
2	the elongate body includes a flexible spline.
1	14. A probe as claimed in claim 13, wherein the flexible spline includes
2	a hinge portion.
1	15. A probe as claimed in claim 14, wherein the inflatable tissue
2	coagulation body is proximal to the hinge portion.
4	40 A washe on plained in plaine 44 feether commissions.
1	16. A probe as claimed in claim 14, further comprising:
2	at least one sensing element:

3	wherein the inflatable tissue coagulation body is located one of
4	distal to and proximal to the hinge portion and the at least one sensing element
5	is located the other of distal to and proximal to the hinge portion.
1	17. A probe as claimed in claim 11, wherein the inflatable tissue
2	coagulation body comprises a half-balloon structure.
4	40. A washe as alsimond in claims 44 whomain the inflatable tipous
1	18. A probe as claimed in claim 11, wherein the inflatable tissue
2	coagulation body includes micropores.
1	19. A probe as claimed in claim 11, wherein the inflatable tissue
2	coagulation body comprises a heated structure.
~	coagaianon coa, compinee a measca es aciares
1	20. A probe as claimed in claim 11, wherein the outer member defines
2	a distal region and the distal region of the outer member includes a slot.
1	21. A probe for use with an outer member including a wall defining an
2 .	interior bore, the probe comprising:
3	a tissue coagulation body; and
4	an elongate body, defining a distal region that supports the tissue
5	coagulation body, adapted to be carried within the outer member interior bore
6	and extend outwardly from the interior bore such that the distal region forms a
7	loop, the elongate body including a hinge portion defining the apex of the loop
8	formed by distal region, the hinge portion having a flexibility that allows the apex
9	of the loop to be inserted into a pulmonary vein to such an extent that the tissue
10	coagulation body will be substantially aligned with the pulmonary vein ostium.
1	22. A probe as claimed in claim 21, wherein the elongate body defines
2	a distal end and a proximal region, the probe further comprising:
3	a control element defining a distal portion associated with the distal
4	end of the elongate body and a proximal portion extending along the exterior of

the elongate body toward the proximal region of the elongate body.

1	23. A probe as claimed in claim 21, wherein the loop defines a length
2	and a height and the flexibility of the hinge portion is such that the loop length
3	will be at least two times the loop height.
1	24. A probe as claimed in claim 21, wherein the elongate body
2	comprises a catheter body.
_	·
1	25. A probe as claimed in claim 21, wherein at least the distal region of
2	the elongate body includes a flexible spline and the hinge portion is formed in the
3	flexible spline.
1	26. A probe as claimed in claim 21, further comprising:
2	at least one sensing element;
3	wherein the tissue coagulation body is located on one side of the
4	hinge portion and the at least one sensing element is located the other side of
5	the hinge portion.
J	and minge perment
1	27. A probe as claimed in claim 21, wherein the tissue coagulation
2	body comprises an inflatable tissue coagulation body.
1.	28. A probe as claimed in claim 27, wherein the inflatable tissue
2	coagulation body comprises a half-balloon structure.
1	29. A probe as claimed in claim 27, wherein the inflatable tissue
2	coagulation body includes micropores.
1	30. A probe as claimed in claim 27, wherein the inflatable tissue
2	congulation hody comprises a heated structure

1	31. A method of forming a lesion in tissue associated with a body	
2	orifice, comprising the steps of:	
3	deploying a probe, including an elongate body having a distal	
4	portion and a tissue coagulation body supported on the distal portion, to a	
5	region adjacent to the body orifice;	
6	forming a loop defining an apex with the distal portion of the	
7	elongate body;	
8	inserting the apex of the loop into the orifice;	
9	contacting a portion of the tissue associated with the orifice with the	
10	tissue coagulation body while the loop is located at least partially within the	
11	orifice; and	
12	forming a lesion in the portion of the tissue associated with the	
13	orifice with the tissue coagulation body.	
1	32. A method as claimed in claim 31, further comprising the steps of:	
2	adjusting at least one of the loop and the tissue coagulation body	
3	such that the tissue coagulation body is taken out of contact with the portion of	
4	the tissue associated with the orifice;	
5	rotating the loop relative to the orifice;	
6	contacting a second portion of the tissue associated with the orifice	
7	with the tissue coagulation body while the loop is located at least partially within	
8	the orifice; and	
9	forming a lesion in the second portion of the tissue associated with	
10	the orifice with the tissue coagulation body.	
1	33. A method as claimed in claim 31, wherein the step of deploying a	
2	probe comprises deploying a probe including an inflatable tissue coagulation	
3	body and the step of contacting the tissue comprises inflating the tissue	

coagulation body.

1 34. A method as claimed in claim 31, wherein the step of deploying a probe comprises deploying a probe including a pull wire though an outer member and the step of forming a loop comprises urging the elongate body through the outer member while applying tension to the pull wire.

1

2

3

- 35. A method as claimed in claim 31, wherein the step of contacting a portion of the tissue comprises engaging tissue with respective portions of the loop located on opposite sides of the apex.
- 36. A method as claimed in claim 31, wherein the step of forming a lesion comprises transmitting energy to the tissue.