TdII 2021 - secondo compito

pubblicato: 23 Marzo 2021; scadenza consegna: 25 Marzo 2021, ore 08:00

I problemi contrassegnati con (*) sono per la lode.

- 1. La probabilità di laurearsi di uno studente è 0.6. Calcola la probabilità che, su 5 studenti:
 - (a) nessuno riesca a laurearsi;
 - (b) uno solo riesca a laurearsi;
 - (c) almeno uno riesca a laurearsi.
- 2. La probabilità che un iscritto passi il test pratico per la patente è, ad ogni tentativo, pari a 0.7. Qual è la probabilità che un iscritto passi finalmente il test pratico al quarto tentativo?
- 3. Sia *X* la variabile casuale continua con pdf $f(x) = Cx^3$ definita nell'intervallo $[0, \frac{1}{2}]$.
 - (a) Determina il valore di C.
 - (b) Considerato il valore di C ottenuto in a), calcola $\mathbb{P}\{\frac{1}{3} \le X \le 1\}$. (Attenzione!)
 - (c) Calcola $\mathbb{E}[X^2]$ e Var(X).
- 4. Sia X una variabile casuale distribuita uniformemente sull'intervallo [0,2]. Calcola:
 - (a) la pdf di e^X ;
 - (b) $\mathbb{E}[e^X]$ e $Var[e^X]$.
- 5. Sia X una variabile casuale con distribuzione normale $\mathcal{N}(3,9)$, e sia Y=aX+b. Determina i valori di a e b tali che Y abbia distribuzione $\mathcal{N}(0,1)$.
- 6. Un autobus passa ogni 15 minuti dalle 8:00 in poi. Calcola la probabilità di aspettarlo meno di 5 minuti e più di 10 minuti arrivando tra le 8:00 e le 8:30, assumendo che il tempo di arrivo alla fermata abbia distribuzione uniforme.

- 7. Dalle statistiche di accesso al pronto soccorso del Desert Samaritan Hospital di Mesa, Arizona, emerge che, a partire dalle 18.00, il tempo che trascorre fino all'arrivo del primo paziente ha distribuzione esponenziale di parametro $\lambda=6.9$, con il tempo misurato in ore (quindi, per esempio, le ore 19.00 corrispondono a 1, le ore 18.30 a $\frac{1}{2}$ ecc.). Calcola:
 - (a) la probabilità che, a partire dalle 18.00, il primo paziente arrivi prima delle 18:15;
 - (b) la probabilità che il primo paziente arrivi prima delle 18.45, sapendo che non è arrivato prima delle 18.15.
- 8. (*) Sia *X* una variabile casuale geometrica. Dimostra che $Var(X) = (1 p)/p^2$.
- 9. (*) Sia X una variabile casuale di Poisson. Dimostra che $Var(X) = \lambda$. [Suggerimento: $i^2 = i(i-1) + i$]
- 10. (*) In una comunità, il 20% di famiglie non ha figli, il 50% ha un figlio, e il 30% ha due figli. Supponiamo che ogni figlio abbia la stessa probabilità, indipendentemente, di essere maschio o femmina. Siano M e F le variabili casuali che rappresentano rispettivamente il numero di maschi e di femmine in una famiglia estratta a caso. Calcola la probabilità congiunta di M e F.

[Suggerimento: sia N la variabile casuale che rappresenta il numero di figli in una famiglia estratta a caso. $\mathbb{P}(F = j \mid N = n) = \dots$?]