Отчёт по работе №23

Изучение электропроводности и определение удельного сопротивления полупроводников

Карташов Констанин Б04-005

I Экспериментальная часть

і Установка

Рис. 1: Принципиальная схема двухзоднового метода измерения удельного сопротивления полупроводникового образца.

В данной работе для измерения удельного сопротивления используется двухзодновый метод, так как у нас образец правильной геометрической формы (цилиндр). Принципиальная схема метода приведена на рис. 1.

На торцевые части полупроводникового образца наносятся токовые металлические контакты и образец зажимают между двумя токопроводящими электродами (1,4). К шлифованной боковой поверхности образца прижимают два зонда (2,3) на расстоянии L один от другого.

В данной работе напряжение между двумя зондами измеряется компенсационным методом, ток через цепь измеряется амперметром.

іі Измерения

№ изм.	1	2	3	4	5	6	7	8	9	10	11
U, мВ	12.3	12.0	11.8	11.7	11.5	11.1	9.9	9.7	9.1	8.7	8.7
№ изм.	12	13	14	15	16	17	18	19	20	21	22
U, мВ	7.8	7.4	7.4	7.1	6.5	6.6	5.6	6.0	5.2	2.9	3.5

Таблица 1: Таблица измеренных данных

Рис. 2: График зависимости $U_x(\Delta l)$ с проведённой наилучшей прямой.

Измерения будем проводить при постоянном токе I=100 мА. Посте каждого измерения будем сближать зонды на 0.5 мм, $\Delta L=-0.5$ мм, значит полное изменение расстояния между зондами будет равно $\Delta l=(n-1)\Delta L$, где n – номер измерения, измеренные данные приведены в табл. 1. Таким образом найдём зависимость $U_x=U_x(\Delta l)$. Теоретическая завимисость должна иметь вид:

$$U_x = IR_x = I\left(R_0 + \frac{\rho}{S}\Delta l\right) = U_0 + 4\frac{I\rho}{\pi d^2}\Delta l,\tag{1}$$

где ρ – удельное сопротивление образца, S – площадь сечения, d – диаметр.

ііі Нахождение удельного сопротивления

Построим график полученной зависимости $U_x(\Delta l)$. Основываясь на зависимости (1), построим на графике наилучшую прямую y=ax+b по МНК. Полученное значение $a=0.84\pm0.03$ В/м. Найдём удельное сопротивление:

$$4\frac{I\rho}{\pi d^2} = a \quad \Rightarrow \quad \rho = \frac{\pi a d^2}{4I} = \frac{\pi \cdot (0.84 \pm 0.03) \text{B/m} \cdot (6\text{MM})^2}{4 \cdot 100\text{MA}} = (2.4 \pm 0.1) \cdot 10^{-4} \text{OM·M.} \quad (2)$$

II Выводы

- 1. Получили зависимость напряжения от расстояния между зондами. Полученное соотношение хорошо ложится на прямую, что соответствен теории. При этом существуют небольшие неровности, которые могут объяснятся неровностями на поверхности образца.
- 2. Получили удельное сопротивление образца $\rho=(2.4\pm0.1)\cdot 10^{-4}{\rm Om\cdot m}$. Это удельное сопротивление лежит в пределах сопротивлений полупроводников.