Лабораторная работа №5

Модель эпидемии (SIR)

Кадирова М. Р.

РИДИМИРОНИ

Докладчик

- Кадирова Мехрубон Рахматжоновна
- студентка
- Российский университет дружбы народов
- 1032225537@pfur.ru
- https://github.com/KMehrubon /IM/

Цель работы

Построить модель SIR в *xcos* и OpenModelica.

Задание

- 1. Реализовать модель SIR в в *xcos*;
- 2. Реализовать модель SIR с помощью блока Modelica в в *xcos*;
 - 3. Реализовать модель SIR в OpenModelica;
- 4. Реализовать модель SIR с учётом процесса рождения / гибели особей в xcos (в том числе и с использованием блока Modelica), а также в OpenModelica;
 - 5. Построить графики эпидемического порога при различных значениях параметров модели (в частности изменяя параметр \$\mu\$);
 - 6. Сделать анализ полученных графиков в зависимости от выбранных значений параметров модели.

Выполнение лабораторной работы

```
$$
                     \begin{cases}
                \dot s = - \beta s(t)i(t); \\
            \dot i = \beta s(t)i(t) - \nu i(t);\\
                     \det r = \ln i(t),
                      \end{cases}
                           $$
где $\beta$ -- скорость заражения, $\nu$ -- скорость
                    выздоровления
```

Зафиксируем начальные данные: \$\beta = 1, \, \nu = 0,3, s(0) = 0,999, \, i(0) = 0,001, \, r(0) = 0.\$

Задание переменных окружения в хсоз

Модель SIR в xcos

▼	Ввод значений	+ ×
	Set Integral block parameters	
	Initial Condition	0.999
	With re-initialization (1:yes, 0:no)	0
	With saturation (1:yes, 0:no)	0
	Upper limit	1
	Lower limit	-1
		ОК Отменить

Задание начальных значений в блоках интегрирования

▼	Ввод значений	+ ×
	Set Integral block parameters	
	Initial Condition	.001
	With re-initialization (1:yes, 0:no)	0
	With saturation (1:yes, 0:no)	0
	Upper limit	1
	Lower limit	-1
		ОК Отменить

Задание начальных значений в блоках интегрирования

Параметры моделирования	
Конечное время интегрирования	3.0E01
Количество секунд в единице времени	0.0E00
Абсолютная погрешность интегрирования	1.0E-06
Относительная погрешность интегрирования	1.0E-06
Погрешность по времени	1.0E-10
Максимальный временной интервал интегрирования	1.0E05
Вид программы решения	Sundials/CVODE - BDF - NEWTON ▼
Максимальный размер шага (0 означает "без ограничения")	0
Установить контекст	
	ОК Отменить По умолчанию

Задание конечного времени интегрирования в хсоѕ

Модель SIR в xcos с применением блока Modelica

*	Ввод значений	+	×
	Set Modelica generic block pa	arameters	
	Input variables:	["beta";"nu"]	
	Input variables types:	["E";"E"]	
	Output variables:	["s";"i";"r"]	
	Output variables types:	["E";"E";"E"]	
	Parameters in Modelica:		
	Parameters properties:		
	Function name:	generic	
		ОК	ГЬ

Параметры блока Modelica для модели SIR

Параметры блока Modelica для модели SIR

Упражнение

```
parameter Real I 0 = 0.001;
 parameter Real R 0 = 0;
 parameter Real S 0 = 0.999;
 parameter Real beta = 1;
 parameter Real nu = 0.3;
 parameter Real mu = 0.5;
 Real s(start=S 0);
 Real i(start=1 0);
 Real r(start=R 0);
equation
 der(s)=-beta*s*i;
 der(i)=beta*s*i-nu*i;
 der(r)=nu*i;
```

Упражнение


```
$$
\begin{cases}
  \dot s = - \beta s(t)i(t) + \mu (N - s(t)); \\
  \dot i = \beta s(t)i(t) - \nu i(t) - \mu i(t);\\
  \dot r = \nu i(t) - \mu r(t),
  \end{cases}
$$
где $\mu$ — константа, которая равна
  коэффициенту смертности и рождаемости.
```


Модель SIR с учетом демографических процессов в хсоз

График модели SIR с учетом демографических процессов

Модель SIR с учетом демографических процессов в xcos с применением блока Modelica

Параметры блока Modelica для модели SIR с учетом демографических процессов

Параметры блока Modelica для модели SIR с учетом демографических процессов

График модели SIR с учетом демографических процессов

```
parameter Real I 0 = 0.001;
 parameter Real R 0 = 0;
 parameter Real S 0 = 0.999:
 parameter Real beta = 1;
 parameter Real nu = 0.3;
 parameter Real mu = 0.5;
 Real s(start=S 0);
 Real i(start=1 0);
 Real r(start=R 0);
equation
 der(s)=-beta*s*i + mu*i + mu*r;
 der(i)=beta*s*i-nu*i - mu*i;
 der(r)=nu*i - mu*r;
```


График модели SIR с учетом демографических процессов

График модели SIR с учетом демографических процессов

Выводы

В процессе выполнения данной лабораторной работы была построена модель SIR в *xcos* и OpenModelica.