Exercice 01:

Une entreprise dispose de trois entrepôts dont les capacités sont respectivement: 3000, 4000, 8000. L'entreprise voudrait expédier sa marchandise vers 4 destinations dons les demandes sont respectivement: 1000, 900, 1700, 1300.

Le graphe suivant représente les quantités à transporter de chaque entrepôt vers chaque destination de façon à satisfaire au maximum la demande totale.

Déterminer les quantités à transporter de chaque entrepôt vers chaque destination de façon à satisfaire au maximum la demande totale.

Exercice 02:

Déterminer le flot maximum à travers les réseaux représentés par les graphes suivants:

Exercice 03:

Le graphe suivant présente le plan interne d'un parking où le sommet s représente l'entré de parking et le sommet p la sortie de parking, tous les véhicules se dirigent vers la sortie en empruntant des voies à sens unique suivant le schéma suivant:

Le tableau suivant donne la capacité des voies (en véhicules par heure) et les flux de voitures observés un soir entre 16h et 17h.

Voie	Capacité	Flux réel
s-A	30	11
s-B	25	25
s-C	20	15
А-Е	15	11
В-Е	23	15
B-D	10	10
C-D	15	15
D-E	14	14
D-P	30	11
E-P	40	40

- 1) Est-ce que ce flot est compatible avec les contraintes de capacité et obéit-il à la loi de Kirchhoff sur les nœuds (sommets)?
- 2) Ce flot est-il complet?
- 3) Si le flux partant de s à A augmente de 1, est ce que la loi de Kirchhoff sera toujours vérifiée? Discuter.