

Alexey Chervonenkis, Vladimir Vapnik

LOSS FUNCTIONS

Training Loss

$$\mathcal{L}_n(\theta) = \frac{1}{n} \sum_{\text{data}(x,y)} \text{Loss}(y(\theta^{\mathsf{T}}x))$$

Zero-One Loss

$$Loss_{01}(z) = [[z \le 0]]$$

Hinge Loss

$$Loss_H(z) = max\{1 - z, 0\}$$
 CONVEX!

Penalize large mistakes more. Penalize near-mistakes, i.e. $0 \le z \le 1$.

HINGE LOSS

Find θ that minimizes

$$\mathcal{L}_n(\theta) = \frac{1}{n} \sum_{(x,y) \in \mathcal{S}_n} \text{Loss}_{H}(z)$$
$$= \frac{1}{n} \sum_{(x,y) \in \mathcal{S}_n} \max\{1 - y(\theta^{\top} x), 0\}$$

Gradient

$$\nabla_{\mathbf{z}} \mathsf{Loss}_{\mathsf{H}}(z) = \left\{ \begin{array}{cc} 0 & \text{if } z > 1, \\ -1 & \text{otherwise.} \end{array} \right.$$

$$V_{\theta} \text{Loss}_{H} (y(\theta^{T}x)) = \begin{cases} 0 & \text{if } y(\theta^{T}x) > 1, \\ -yx & \text{otherwise.} \end{cases}$$

CONSTRAINED OPTIMIZATION

Want to minimize some function f(x), but there are some *constraints* on the values of x.

Method 1 (Dual Problem)

Solve a *dual optimization problem* where the constraints are nicer, and where it is easier to implement gradient descent.

Method 2 (Exact Solution)

Solve the Lagrangian system of equations.

EQUALITY CONSTRAINTS

Problem.

minimize f(x)subject to $h_1(x) = 0, ..., h_l(x) = 0$

Lagrangian.

$$L(x,\lambda) = f(x) + \lambda_1 h_1(x) + \dots + \lambda_l h_l(x)$$

Example.

minimize
$$f(x) = n_1 \log x_1 + \dots + n_d \log x_d$$

subject to $h(x) = x_1 + \dots + x_d - 1 = 0$
 $L(x, \lambda) = n_1 \log x_1 + \dots + n_d \log x_d + \lambda(x_1 + \dots + x_d - 1)$

TWO-PLAYER GAME

$$L(x,\lambda) = f(x) + \lambda_1 h_1(x) + \dots + \lambda_l h_l(x)$$

Rules.

- You get to choose the value of x. Your goal is to minimize $L(x, \lambda)$.
- Your adversary gets to choose the value of λ . His goal is to maximize $L(x, \lambda)$.

PRIMAL GAME

$$L(x,\lambda) = f(x) + \lambda_1 h_1(x) + \dots + \lambda_l h_l(x)$$

Primal Game. You go first.

Your Strategy.

- Ensure that $h_1(x) = 0, ..., h_l(x) = 0$.
- Find x that minimizes f(x).

Final Score. $p^* = \min_{x} \max_{\lambda} L(x, \lambda)$

The optimal x^* , λ^* are saddle points of $L(x, \lambda)$.

DUAL GAME

$$L(x,\lambda) = f(x) + \lambda_1 h_1(x) + \dots + \lambda_l h_l(x)$$

Dual Game. You go second.

Adversary's Strategy.

- For each λ , compute $\ell(\lambda) = \min_{x} L(x, \lambda)$
- Find λ that maximizes $\ell(\lambda)$.

Final Score.
$$d^* = \max_{\lambda} \min_{x} L(x, \lambda)$$

MAX-MIN INEQUALITY

$$p^* = \min_{x} \max_{\lambda} L(x, \lambda)$$

Dual.

$$d^* = \max_{\lambda} \min_{x} L(x, \lambda)$$

"you do better if you have the last say"

$$p^* = \min_{x} \max_{\lambda} L(x, \lambda)$$

$$\geq \max_{\lambda} \min_{x} L(x, \lambda) = d^*$$

If $p^* = d^*$, we can solve the primal by solving the dual.

Challenge. Can you prove $p^* \ge d^*$? (*not in syllabus)

MAX-MIN INEQUALITY

Example.

	x = 1	x = 2
$\lambda = 1$	1	4
$\lambda = 2$	3	2

Primal.
$$p^* = \min_{x} \max_{\lambda} L(x, \lambda) = 3$$

Dual.
$$d^* = \max_{\lambda} \min_{x} L(x, \lambda) = 2$$

EXACT SOLUTION

Problem.

minimize
$$f(x)$$

subject to $h_1(x) = 0, ..., h_l(x) = 0$

Lagrange multipliers.

1. Write down the Lagrangian.

$$L(x,\lambda) = f(x) + \lambda_1 h_1(x) + \dots + \lambda_l h_l(x)$$

2. Solve for critical points x, λ .

$$\nabla_{x}L(x,\lambda) = 0, \quad h_{1}(x) = 0, \dots, h_{l}(x) = 0$$

3. Pick critical point which gives global minimum.

EXAMPLE

minimize
$$f(x) = n_1 \log x_1 + \dots + n_d \log x_d$$

subject to $h(x) = x_1 + \dots + x_d - 1 = 0$

Lagrangian

$$L(x,\lambda) = n_1 \log x_1 + \dots + n_d \log x_d + \lambda(x_1 + \dots + x_d - 1)$$

Critical points

$$0 = x_1 + \dots + x_d - 1$$

$$0 = n_i/x_i + \lambda$$

$$(-\lambda) = n_1 + \dots + n_d$$

$$x_i = n_i/(-\lambda)$$

INEQUALITY CONSTRAINTS (PRIMAL-DUAL)

Primal Problem.

minimize f(x)subject to $g_1(x) \le 0, ..., g_m(x) \le 0$

Lagrangian.

$$L(x,\alpha) = f(x) + \alpha_1 g_1(x) + \dots + \alpha_m g_m(x)$$

Dual Problem.

maximize $\ell(\alpha)$ where $\ell(\alpha)=\min_{x\in\mathbb{R}^d}L(x,\alpha)$ subject to $\alpha_1\geq 0,\ldots,\alpha_m\geq 0$

Box constraints are easier to work with!

INEQUALITY CONSTRAINTS (EXACT SOLN)

minimize
$$f(x)$$

subject to $g_1(x) \le 0, ..., g_m(x) \le 0$

Lagrangian.

$$L(x,\alpha) = f(x) + \alpha_1 g_1(x) + \dots + \alpha_m g_m(x)$$

Solve for x, α satisfying

- 1. $\nabla_{x}L(x,\alpha)=0$
- 2. $g_1(x) \le 0, ..., g_m(x) \le 0$
- 3. $\alpha_1 \ge 0, ..., \alpha_m \ge 0$
- 4. $\alpha_1 g_1(x) = 0, \dots, \alpha_m g_m(x) = 0$ Complementary

Karush-Kuhn-Tucker (KKT) Conditions

Slackness

5 min break

COMPUTING THE MARGIN

COMPUTING THE MARGIN

MAXIMUM MARGIN

Unfortunately, this only applies to data that is linearly separable.

Our goal is to

maximize $1/\|\theta\|$

subject to $y(\theta^{T}x + \theta_0) \ge 1$ for all data (x, y)

Or equivalently,

minimize $\frac{1}{2} \|\theta\|^2$

subject to $y(\theta^{T}x + \theta_0) \ge 1$ for all data (x, y)

LAGRANGIAN

minimize $\frac{1}{2} \|\theta\|^2$ subject to $y(\theta^{\top}x) \ge 1$ for all data (x,y) $\boxed{ \text{Drop } \theta_0 \text{ for now} }$

Lagrangian.
$$L(\theta, \alpha) = \frac{1}{2} \|\theta\|^2 + \sum_{(x,y)} \alpha_{x,y} (1 - y(\theta^T x))$$

To find $\ell(\alpha) = \min_{\theta} L(\theta, \alpha)$, we solve

$$0 = \nabla_{\theta} L(\theta, \alpha) = \theta - \sum_{(x,y)} \alpha_{x,y} yx$$

to get $\theta = \sum_{(x,y)} \alpha_{x,y} yx$. Substituting into $L(\theta, \alpha)$ gives

$$\ell(\alpha) = \sum_{(x,y)} \alpha_{x,y} \, -\frac{1}{2} \sum_{(x,y)} \sum_{(x',y')} \alpha_{x,y} \, \alpha_{x',y'} y y' (x^{\mathsf{T}} x').$$

PRIMAL-DUAL

It can be shown that the primal and dual problems are equivalent (strong duality).

Primal.

minimize
$$\frac{1}{2} \|\theta\|^2$$

subject to
$$y(\theta^T x) \ge 1$$
 for all data (x, y)

Dual.

maximize
$$\sum_{(x,y)} \alpha_{x,y} - \frac{1}{2} \sum_{(x,y)} \sum_{(x',y')} \alpha_{x,y} \alpha_{x',y'} yy'(x^{\mathsf{T}}x')$$
 subject to $\alpha_{x,y} \ge 0$ for all (x,y)

After solving the dual to get the optimal $\alpha_{x,y}$'s, we obtain the optimal θ using $\theta = \sum_{(x,y)} \alpha_{x,y} yx$.

SUPPORT VECTORS

Complementary Slackness.

$$\hat{\alpha}_{x,y} > 0$$
:

$$y(\hat{\theta}^{\mathsf{T}}x) = 1$$

Support Vectors

$$\hat{\alpha}_{x,y} = 0$$
:

$$y(\hat{\theta}^{\mathsf{T}}x) > 1$$

Non-Support Vectors

Sparsity

Since very few data points are support vectors, most of the $\hat{\alpha}_{x,y}$ will be zero.

KERNEL TRICK

Learning.

$$\ell(\alpha) = \sum_{(x,y)} \alpha_{x,y} - \frac{1}{2} \sum_{(x,y)} \sum_{(x',y')} \alpha_{x,y} \alpha_{x',y'} yy' (x^{\mathsf{T}}x')$$

Prediction.

$$h(x; \theta) = \operatorname{sign}(\theta^{\mathsf{T}} x) = \operatorname{sign}\left(\sum_{(x',y')} \alpha_{x',y'} y'(x^{\mathsf{T}} x')\right)$$

For the dual, we don't need the feature vectors x, x'. Knowing just the dot products (x^Tx') is enough.

Recall that (x^Tx') is a measure of similarity between x and x'. This similarity function is also called a *kernel*.

SVM WITH OFFSET

Primal.

minimize
$$\frac{1}{2} \|\theta\|^2$$

subject to $y(\theta^T x + \theta_0) \ge 1$ for all data (x, y)

Dual.

maximize
$$\sum_{(x,y)} \alpha_{x,y} - \frac{1}{2} \sum_{(x,y)} \sum_{(x',y')} \alpha_{x,y} \alpha_{x',y'} y y' (x^{\mathsf{T}} x')$$
 subject to
$$\alpha_{x,y} \ge 0 \text{ for all } (x,y)$$

$$\sum_{(x,y)} \alpha_{x,y} y = 0$$

Parameters.
$$\hat{\theta} = \sum_{(x,y)} \alpha_{x,y} yx$$
 $\hat{\theta}_0 = y - \hat{\theta}^{\mathsf{T}} x$ where (x,y) is a support vector

Primal.

minimize
$$\frac{\lambda}{2} \|\theta\|^2 + \frac{1}{n} \sum_{(x,y)} \xi_{x,y}$$

subject to
$$y(\theta^\top x + \theta_0) \ge 1 - \xi_{x,y} \qquad \text{for all data } (x,y)$$

$$\xi_{x,y} \ge 0 \qquad \qquad \text{for all data } (x,y)$$

Slack variables allow constraints to be violated for a cost.

Equivalent Primal.

minimize
$$\frac{\lambda}{2} \|\theta\|^2 + \frac{1}{n} \sum_{(x,y)} \text{Loss}_{H} (y(\theta^{T}x + \theta_0))$$

Linearly Separable.

Not Linearly Separable.

Dual.

maximize
$$\sum_{(x,y)} \alpha_{x,y} - \frac{1}{2} \sum_{(x,y)} \sum_{(x',y')} \alpha_{x,y} \alpha_{x',y'} y y' (x^{\mathsf{T}} x')$$
 subject to
$$1/\lambda \ge \alpha_{x,y} \ge 0 \text{ for all } (x,y)$$

$$\sum_{(x,y)} \alpha_{x,y} y = 0$$

Putting limits on what the adversary can do.

There are many efficient solvers for quadratic problems with box constraints.

