

Simulation numérique directe de la combustion turbulente

Adrien Guilbaud

23 septembre 2016

Maître de stage Mme. Isabelle D'AST

Enseignant responsable M. Samuel THIBAULT

- Introduction
 - Présentation du Cerfacs
 - Mécanique des fluides numérique
 - Simulation de la turbulence
- Présentation du stage
 - NTMIX_CHEMKIN
 - Objectifs
- Parallélisation de NTMIX
 - Décomposition de domaine
 - Communications
- 4 Etude des performances
 - Scalabilité forte
- 6 Conclusion

- Centre de recherche en calcul scientifique
- Actionnaires : Airbus Group, Cnes, EDF, Météo France, Onera, Safran et Total
- Résolution de problèmes scientifiques par la résolution numérique liés :
 - au climat
 - à l'aéronautique
 - au spatial
 - à l'environnement
- Équipe CSG + équipe CFD

Mécanique des fluides

Étude du comportement des fluides lorsqu'ils sont en mouvement

- Résolution d'équations aux dérivées partielles
 - Fluides parfaits : Euler
 - Fluides newtoniens : Navier-Stokes (prix du millénaire)
- Mécanique des fluides numérique ⇒ discrétisation de l'espace

Mécanique des fluides

Étude du comportement des fluides lorsqu'ils sont en mouvement

- Résolution d'équations aux dérivées partielles
 - Fluides parfaits : Euler
 - Fluides newtoniens : Navier-Stokes (prix du millénaire)
- Mécanique des fluides numérique ⇒ discrétisation de l'espace

Écoulement turbulent \Rightarrow apparition de tourbillons instables

- DNS: Direct Numerical Simulation
- LES: Large Eddy Simulation

- Introduction
 - Présentation du Cerfacs
 - Mécanique des fluides numérique
 - Simulation de la turbulence
- 2 Présentation du stage
 - NTMIX_CHEMKIN
 - Objectifs
- Parallélisation de NTMIX
 - Décomposition de domaine
 - Communications
- 4 Etude des performances
 - Scalabilité forte
- Conclusion

NTMIX_CHEMKIN: solveur implicite d'écoulements réactifs

- bidimensionnel
- approche DNS
- résolution des équation de Navier-Stokes
- maillage structuré
- discrétisation temporelle (Runge-Kutta)

Utilité:

- Intérêt en recherche fondamentale
- Permet de développer des modèles de turbulence

Objectif

Développer une version 3D et parallèle de NTMIX

- Modernisation du code
- Développement de la version tridimensionnelle
- Parallélisation la version 3D
- Étude des performances

- Introduction
 - Présentation du Cerfacs
 - Mécanique des fluides numérique
 - Simulation de la turbulence
- Présentation du stage
 - NTMIX_CHEMKIN
 - Objectifs
- Parallélisation de NTMIX
 - Décomposition de domaine
 - Communications
- 4 Etude des performances
 - Scalabilité forte
- 6 Conclusion

Objectif

Exécuter NTMIX sur de grands maillages ($\approx 10^9$ points)

Objectif

Exécuter NTMIX sur de grands maillages ($\approx 10^9$ points)

Limitations matérielles

• Mémoire globale nécessaire :

$$10^9 pts \times (5 + 300) \times 8o \approx 2.2 \text{ To}$$

Temps de calcul :

$$10^{9} pts \times (4 \times 10^{-6}) s/p \times 10000 it \approx 463 \text{ jours}$$

- Décomposition du domaine
 - Division de la mémoire
 - Division de la charge de calcul
- MPI (Message Passing Interface)
- Topologie cartésienne

<u>Pr</u>oblème

Problème

$$3\left(\frac{\partial u}{\partial x}\right)_{i-1}+9\underbrace{\left(\frac{\partial u}{\partial x}\right)_{i}}_{i}+3\left(\frac{\partial u}{\partial x}\right)_{i+1}=\frac{1}{h}\left(\frac{1}{4}(u_{i+2}-u_{i-2})+7(u_{i+1}-u_{i-1})\right)$$

	u_{i-3}	u_{i-2}	u_{i-1}	ui	u_{i+1}	u_{i+2}	u_{i+3}	
	$\frac{\partial u}{\partial x}_{i-3}$	$\frac{\partial u}{\partial x}_{i-2}$	$\frac{\partial u}{\partial x}_{i-1}$	<u>∂u</u> ∂x i	$\frac{\partial u}{\partial x}_{i+1}$	$\frac{\partial u}{\partial x}_{i+2}$	$\frac{\partial u}{\partial x}$ i+3	

Problème

$$3\left(\frac{\partial u}{\partial x}\right)_{i-1} + 9\left(\frac{\partial u}{\partial x}\right)_{\underline{i}} + 3\left(\frac{\partial u}{\partial x}\right)_{\underline{i+1}} = \frac{1}{h}\left(\frac{1}{4}\left(\underline{u_{i+2}} - \underline{u_{i-2}}\right) + 7\left(\underline{u_{i+1}} - \underline{u_{i-1}}\right)\right)$$

 u _{i-3}	u_{i-2}	u_{i-1}	ui	u_{i+1}	u_{i+2}	u_{i+3}	
 $\frac{\partial u}{\partial x}_{i-3}$	$\frac{\partial u}{\partial x}i-2$	$\frac{\partial u}{\partial x}i-1$	<u>∂u</u> ∂x i	$\frac{\partial u}{\partial x}_{i+1}$	$\frac{\partial u}{\partial x}_{i+2}$	$\frac{\partial u}{\partial x}$ i+3	

Problème

$$3\underline{\left(\frac{\partial u}{\partial x}\right)_{i-1}} + 9\underline{\left(\frac{\partial u}{\partial x}\right)_{i}} + 3\underline{\left(\frac{\partial u}{\partial x}\right)_{i+1}} = \frac{1}{h}\left(\frac{1}{4}(\underline{u_{i+2}} - \underline{u_{i-2}}) + 7(\underline{u_{i+1}} - \underline{u_{i-1}})\right)$$

	u_{i-3}	u_{i-2}	u_{i-1}	иi	u_{i+1}	u_{i+2}	u_{i+3}	
	$\frac{\partial u}{\partial x}i-3$	$\frac{\partial u}{\partial x}i-2$	$\frac{\partial u}{\partial x}_{i-1}$	<u>∂u</u> ∂x i	$\frac{\partial u}{\partial x}$ i+1	$\frac{\partial u}{\partial x}_{i+2}$	$\frac{\partial u}{\partial x}$ i+3	

Recouvrement de domaines

Recouvrement de domaines

Recouvrement de domaines

- La taille du recouvrement dépend de l'ordre du schéma
- NTMIX ⇒ schéma d'ordre élevé

Traitement des bordures internes

- Traitement des bordures des sous-domaines?
- Utilisation d'un schéma décentré
- Réduction de l'influence des bordures internes

■ Non-initialisé■ A envoyer☑ Reçu

Synchronisation

■ Non-initialisé■ A envoyer☑ Reçu

Communications sur y

Non-initialisé A envoyer
Reçu

État après les communications

■ Non-initialisé■ A envoyer☑ Reçu

Bilan

- Schémas moins précis sur les frontières
- 1 communication des points de recouvrement/itération de Runge-Kutta
- Couplage faible
- Duplication du calcul des points de recouvrement

- Introduction
 - Présentation du Cerfacs
 - Mécanique des fluides numérique
 - Simulation de la turbulence
- 2 Présentation du stage
 - NTMIX_CHEMKIN
 - Objectifs
- Parallélisation de NTMIX
 - Décomposition de domaine
 - Communications
- Etude des performances
 - Scalabilité forte
- Conclusion

Scalabilité forte :

- domaine global de 400³
- augmentation progressive du nombre de nœuds

Speedup:

$$S=\frac{t_1}{t_n}$$

• Intel Haswell bi-socket, 12 coeurs 2.5GHz

• Intel Haswell bi-socket, 12 coeurs 2.5GHz

- Introduction
 - Présentation du Cerfacs
 - Mécanique des fluides numérique
 - Simulation de la turbulence
- Présentation du stage
 - NTMIX_CHEMKIN
 - Objectifs
- Parallélisation de NTMIX
 - Décomposition de domaine
 - Communications
- 4 Etude des performances
 - Scalabilité forte
- 6 Conclusion

- Version tridimensionnelle de NTMIX
- Version parallèle
- Améliorations encore possibles
 - ullet Version hybride OpenMP + MPI

Introduction
Présentation du stage
Parallélisation de NTMIX
Etude des performances
Conclusion

Merci