Redes Neurais Artificiais

Perceptron

INFORMAÇÃO,

TECNOLOGIA

& INOVAÇÃO

A primeira rede neural descrita algoritmicamente

 Criado por Frank Rosenblatt, um psicólogo, e inspirou engenheiros, físicos e matemáticos a estudarem redes neurais

 O modelo proposto por Rosenblatt em 1958 como publicado em seu artigo, é válido até hoje

- A forma mais simples de um rede neural utilizada para classificar padrões ditos linearmente separáveis
- Consiste de um único neurônio com pesos sinápticos ajustáveis e bias
- Rosenblatt desenvolveu o algoritmo para ajustar os parâmetros livres
- Rosenblatt provou que se os exemplos utilizados no treino pertencerem a classes linearmente separáveis, o algoritmo converge, posicionando um hiperplano entre as duas classes

 O Perceptron de Rosenblatt utiliza o modelo de neurônio de McCulloch-Pitts

 O Perceptron de Rosenblatt utiliza o modelo de neurônio de McCulloch-Pitts

- \square Os pesos sinápticos são denotados por W_1 , W_2 , ..., W_m
- \blacksquare As entradas são denotadas por X_1 , X_2 , ..., X_m
- O bias é denotado por *b*

$$v = \sum_{i=1}^{m} w_i x_i + b$$

- □ O objetivo do Perceptron é classificar corretamente um conjunto de exemplos denotados por x_1 , x_2 , ..., x_m em uma de umas classes \mathscr{C}_1 ou \mathscr{C}_2
- O ponto representado por X₁, X₂, ..., X_m é classificado como C₁ se a saída y for +1 e como C₂ se a saída y for -1. Há duas regiões separadas por um hiperplano:

$$\sum_{i=1}^{m} w_i x_i + b = 0$$

Ilustração de um hiperplano (linha reta) como fronteira de decisão para um problema de classificação com duas dimensões e duas classes
x21

 Os pesos sinápticos são ajustados em um processo iterativo utilizando o algoritmo de convergência do Perceptron

- \square O bias b(n) é tratado como um peso associado a uma entrada +1
- □ Vetor de entrada: $\mathbf{x}(n) = [+1, x_1(n), x_2(n), \dots, x_m(n)]^T$
- □ Vetor de pesos: $\mathbf{w}(n) = [b, w_1(n), w_2(n), \dots, w_m(n)]^T$

Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.

Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.

- \qed O bias b (n) lpha tratado como um peso associado a uma entrada + 1
- □ Vetor de entrada: $\mathbf{x}(n) = [+1, x_1(n), x_2(n), \dots, x_m(n)]^T$
- □ Vetor de pesos: $\mathbf{w}(n) = [b, w_1(n), w_2(n), \dots, w_m(n)]^T$

$$v(n) = \sum_{i=0}^{m} w_i(n) x_i(n) = \mathbf{w}^{T}(n) \mathbf{x}(n)$$

Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.

- $\mathbf{w}^T \mathbf{x} = 0$ define um hiperplano de separação
- $\mathbf{w}^T\mathbf{x} > 0$ para todo vetor \mathbf{x} pertencente à classe \mathscr{C}_1
- $\mathbf{w}^T\mathbf{x} \leq 0$ para todo vetor \mathbf{x} pertencente à classe \mathscr{C}_2

Se o n-ésimo vetor x (n) é corretamente classificado pelo vetor w(n) na n-ésima iteração do algoritmo, nenhuma correção é feita no vetor de pesos

```
\mathbf{v}(n+1) = \mathbf{w}(n) se \mathbf{w}^T\mathbf{x}(n) > 0 e \mathbf{x}(n) pertence a classe \mathcal{C}_1
```

$$\mathbf{w}(n+1) = \mathbf{w}(n) \text{ se } \mathbf{w}^T \mathbf{x}(n) \leq 0 \text{ e } \mathbf{x}(n) \text{ pertence a classe } \mathcal{C}_2$$

Caso contrário, o vetor de pesos é atualizado

- $\mathbf{w}(n+1) = \mathbf{w}(n) \eta(n)\mathbf{x}(n)$ se $\mathbf{w}^{T}(n)\mathbf{x}(n) > 0$ e $\mathbf{x}(n)$ pertence a classe \mathscr{C}_{2}
- $\mathbf{w}(n+1) = \mathbf{w}(n) + \eta(n)\mathbf{x}(n)$ se $\mathbf{w}^{T}(n)\mathbf{x}(n) \le 0$ e $\mathbf{x}(n)$ pertence a classe \mathscr{C}_{1}
- $\neg \eta(n)$ é a taxa de aprendizado que controla o ajuste dos pesos

fine A saída do neurônio é computada utilizando a função sinal $sgn(\cdot)$

$$sgn(v) = \begin{cases} +1 \text{ se } v > 0\\ -1 \text{ se } v < 0 \end{cases}$$

 \square Expressamos a saída y(n) de maneira compacta:

$$y(n) = sgn[\mathbf{w}^{T}(n)\mathbf{x}(n)]$$

TABLE 1.1 Summary of the Perceptron Convergence Algorithm

Variables and Parameters:

```
\mathbf{x}(n) = (m+1)-by-1 input vector

= [+1, x_1(n), x_2(n), ..., x_m(n)]^T

\mathbf{w}(n) = (m+1)-by-1 weight vector

= [b, w_1(n), w_2(n), ..., w_m(n)]^T

b = \text{bias}

y(n) = \text{actual response (quantized)}

d(n) = \text{desired response}

\eta = \text{learning-rate parameter, a positive constant less than unity}
```

- 1. Initialization. Set $\mathbf{w}(0) = \mathbf{0}$. Then perform the following computations for time-step n = 1, 2, ...
- 2. Activation. At time-step n, activate the perceptron by applying continuous-valued input vector $\mathbf{x}(n)$ and desired response d(n).
- 3. Computation of Actual Response. Compute the actual response of the perceptron as

$$y(n) = \operatorname{sgn}[\mathbf{w}^{T}(n)\mathbf{x}(n)]$$

where $sgn(\cdot)$ is the signum function.

4. Adaptation of Weight Vector. Update the weight vector of the perceptron to obtain

$$\mathbf{w}(n+1) = \mathbf{w}(n) + \eta[d(n) - y(n)]\mathbf{x}(n)$$

where

$$d(n) = \begin{cases} +1 & \text{if } \mathbf{x}(n) \text{ belongs to class } \mathcal{C}_1 \\ -1 & \text{if } \mathbf{x}(n) \text{ belongs to class } \mathcal{C}_2 \end{cases}$$

5. Continuation. Increment time step n by one and go back to step 2.

No algoritmo de convergência, foi utilizada também a resposta desejada d(n) para cada exemplo:

$$d(n) = \begin{cases} +1 \text{ se } \mathbf{x}(n) \text{ pertence à classe } \mathscr{C}_1 \\ -1 \text{ se } \mathbf{x}(n) \text{ pertence à classe } \mathscr{C}_2 \end{cases}$$

A adaptação dos pesos ocorre de maneira elegante:

$$\mathbf{w}(n+1) = \mathbf{w}(n) + \eta [d(n) - y(n)] \mathbf{x}(n)$$

- lacksquare η : taxa de aprendizado
- $\square d(n) y(n)$: sinal de erro

 Os pesos são corrigidos de acordo com o valor do produto interno w^T (n) x (n)

 Se o produto interno, na iteração n, tiver um sinal errado, os pesos devem ser ajustados para classificar o exemplo corretamente na iteração n+1

Como chegamos nisso?

$$E^{2} = \left(d(n) - y(n)\right)^{2} = \left(d(n) - \mathbf{W}^{T}(n)\mathbf{X}(n)\right)^{2}$$
Derivada negativa

Derivada positiva

Aumentar w

Diminuir w

Como chegamos nisso?

□ Gradiente Descendente: $w_i(n+1) = w_i(n) - \eta \frac{dE^2}{dw_i}$

$$\frac{dE^2}{dw_i} = \frac{d\left(d(n) - y(n)\right)^2}{dw_i(n)} = 2 \times \left(d(n) - \mathbf{w}^T(n)\mathbf{x}(n)\right) \times -x_i$$

Exemplo

Dado	X1	X2	x 3	Classe
E1	0	0	1	-1
E2	1	0	0	1

Exemplo

Dado	x1	x2	х3	Classe
E1	0	0	1	-1
E2	1	0	0	1

Aprendizado supervisionado

$$f(X) = \begin{cases} 1 & se \quad X \ge 0 \\ -1 & se \quad X < 0 \end{cases}$$

Primeira Época

$$X = (-1 * 0,5) + (0 * 0,4) + (0 * -0,5) + (1 * 0,6) = 0,1$$

$$f(0,1) = 1$$

$$e = -1 - 1 = -2$$

$$X = (-1 * 1,3) + (1 * 0,4) + (0 * -0,5) + (0 * -0,2) = -0,9$$

$$f(-0,9) = -1$$

$$e = 1 - (-1) = 2$$

Segunda Época

$$X = (-1 * 0,5) + (0 * 1,2) + (0 * -0,5) + (1 * -0,2) = -0,7$$

$$f(-0,7) = -1$$

$$e = -1 - (-1) = 0$$

Segunda Época

$$X = (-1 * 0,5) + (1 * 1,2) + (0 * -0,5) + (0 * -0,2) = 0,7$$

$$f(0,7) = 1$$

$$e = 1 - 1 = 0$$

Rede final

Não ocorreram erros durante a última época.

Dado	X1	X2	х3	Classe
E1	1	1	1	Ś
E2	1	1	0	Ś
E3	0	1	1	ś

$$X = (-1 * 0,5) + (1 * 1,2) + (1 * -0,5) + (0 * -0,2) = 0,2$$

$$f(0,2) = 1$$

$$X = (-1 * 0,5) + (0 * 1,2) + (1 * -0,5) + (1 * -0,2) = -1,2$$

$$f(-1,2) = -1$$

Dado	X1	X2	х3	Classe
E1	1	1	1	1
E2	1	1	0	1
E3	0	1	1	-1

Perguntas?

