Planification d'actions

Philippe Morignot pmorignot@yahoo.fr

Plan du cours

- Définition
- Modèle et Langages
- Exemple
- Algorithmes: espace des états, espace des plans, plan de graphe, par SAT, par PPC, par algorithmes évolutionnaires, HTN.

2

Enoncé

« Etant donnés des actions génériques possibles, un état et des buts, trouver une séquence d'actions instantiées, menant l'état initial à un état (final) Etat **Buts** contenant les buts. »

- « Planification d'actions » / « synthèse de plan » / « génération de plans d'actions » : activité de construction d'un plan.
- « Planificateur » / « planificateur de tâches » / « planificateur d'actions » : programme informatique qui résout ce problème.
 - Différent de « planificateur de chemin » en Robotique.

 b_1

 b_2

 b_1

Un planificateur d'actions

Difficulté

- Domaine du grutier :
 - 1 grue, a lieux, b camions, c piles de containeurs, d containeurs.

- Si a = 5, b = 3, c = 3, d = 100, alors $\sim 10^{277}$ états.
- La planification classique est NP.
- On ne peut pas expliciter tous les états.

Hypothèses

- Hyp. 1 : l'agent est la seule cause de changement dans l'environnement.
 - Pas d'autre agent, artificiel ou humain.
- <u>Hyp. 2</u>: *l'environnement est totalement observable, l'agent en a une connaissance parfaite.*
 - L'agent ne raisonne (e.g., planifie) pas sur des choses qu'il ne connait pas.
- Hyp. 3 : *l'environnement est statique*.
 - Même si l'environnement peut avoir des lois de comportements, il ne bouge pas spontanément.
- Hyp. 4 : le nombre d'objets considérés est fini.
 - Logique des propositions.

Planning Domain Definition Language (PDDL) (1 / 2)

- Langage de représentation pour définir :
 - un domaine : opérateurs
 - un problème : état et buts.
- Un opérateur est composé de :
 - Pré-conditions: termes qui doivent être vrai pour que l'action puisse s'exécuter.
 - Effets / post-conditions: termes que l'exécution de l'action change par rapport à l'état entrant (liste d'ajouts ADD-LIST / de retraits DELETE-LIST).
 - Une post-condition peut être positive ou négative.
- Un terme peut être parfois vrai, parfois faux, suivant l'instant où on le considère dans le plan.
 - Connecteur « not ». Ex. : (not (SUR SOURIS TAPIS))
 - « Fluent » (littéral). Ex. : (SUR SOURIS TAPIS)

PDDL : exemple de domaine Le monde des cubes

- Et la table ? Et le bras ? Et si plusieurs bras ? Et si les cubes sont colorés ? Ou avec une encoche ? Ou de dimensions variables ?
- Conditionnelles ? Quantification universelle ?

PDDL: représentation

- Problème de la qualification : en pratique, on ne peut pas lister toutes les pré-conditions dans un opérateur.
- Problème de la ramification : en pratique, on ne peut pas lister toutes les post-conditions dans un opérateur.
- Exemple : opérateur « Démarrer une voiture »
 - Pré-conditions : clé-dans-le-barillet ET clé-tournée
 - Post-conditions : moteur-tourne

Planning Domain Definition Language (PDDL) (2 / 2)

- <u>Résolution du problème du cadre</u>: lors de l'exécution d'un opérateur, ce qui n'est pas explicitement changé par une post-condition est considéré comme inchangé.
- Hypothèse du monde clos : dans un état, un terme qui n'est pas mentionné est considéré comme étant faux.
 - Par opposition à l'hypothèse du monde ouvert (ontologies) : dans un état, ce qui n'est pas mentionné est considéré comme étant inconnu.

STRIPS et ADL

(STanford Research Institute Planning System) (Action Description Language)

Littéraux positifs seulement dans les états : Riche ∧ Célèbre	Littéraux positifs et négatifs dans les états : ¬ Riche ∧ ¬ Célèbre
Hypothèse du monde fermé	Hypothèse du monde ouvert.
Effet P ∧ ¬ Q signifie ajoute P et détruit Q	Effet P ∧ ¬ Q signifie ajoute P et ¬ Q et détruit ¬ P et Q
Propositions seulement dans les buts	Variables quantifiées dans les buts :
Riche ∧ Célèbre	$\exists x$, AT(Avion1, x) \land AT(Avion2, x)
Les buts sont des conjonctions : Riche ∧ Célèbre	Les buts sont des conjonctions et disjonctions : ¬ Pauvre ∧ (Riche ∨ intelligent)
Les effets sont des conjonctions	Effets conditionnels : QUAND P : E
Pas d'égalité	Egalité (x = y) prédéfinie
Pas de types	Les variables peuvent etre typees

PDDL : exemple de problème

```
(define (problem blocks-24-1)
       (:domain blocks)
       (:objects X W V U T S R Q P O N M L K J I H G F E D C A B)
       (:init
                 (CLEAR K) (CLEAR I) (ONTABLE C) (ONTABLE O)
                 (ON K F) (ON F T) (ON T B) (ON B G) (ON G R)
                 (ON R M) (ON M E) (ON E J) (ON J V) (ON V N)
                 (ON N U) (ON U H) (ON H C) (ON I A) (ON A P)
                 (ON P Q) (ON Q D) (ON D W) (ON W X) (ON X S)
                 (ON S L) (ON L O) (HANDEMPTY))
       (:goal (and
                 (ON L C) (ON C P) (ON P Q) (ON Q M) (ON M B)
                 (ON B G) (ON G F) (ON F K) (ON K E) (ON E R)
                 (ON R A) (ON A W) (ON W T) (ON T N) (ON N J)
                 (ON J U) (ON U S) (ON S D) (ON D H) (ON H V)
                 (ON V O) (ON O I) (ON I X))))
```

L'anomalie de Gerald Jay Sussman (1/16)

L'anomalie de Gerald Jay Sussman

L'anomalie de Gerald Jay Sussman (2/16)

15

L'anomalie de Gerald Jay Sussman (3/16)

L'anomalie de Gerald Jay Sussman (4/16)

L'anomalie de Gerald Jay Sussman (5/16)

L'anomalie de Gerald Jay Sussman (6/16)

L'anomalie de Gerald Jay Sussman (7/16)

L'anomalie de Gerald Jay Sussman (8/16)

L'anomalie de Gerald Jay Sussman (9/16)

L'anomalie de Gerald Jay Sussman (10/16)

L'anomalie de Gerald Jay Sussman (11/16)

L'anomalie de Gerald Jay Sussman (12/16)

L'anomalie de Gerald Jay Sussman (13/16)

L'anomalie de Gerald Jay Sussman (14/16)

L'anomalie de Gerald Jay Sussman (15/16)

L'anomalie de Gerald Jay Sussman (16/16)

L'anomalie de Gerald Jay Sussman : solution

Algorithme dans un espace d'états : Recherche avant (1 / 2)

- Un état S_i = un état de l'environnement.
 - $-S_0$ = état initial = f_1 , ..., f_n .
 - Exemple: une configuration de cubes.
- $Successeurs(S_i) = les N$ nouveaux états $\{S_{i+1}, ..., S_{i+N}\}$ atteignables par un opérateur applicable en chaînage avant à S_i :
 - -Toutes les préconditions sont présentes dans S_i ; ajouter les effets positifs à S_i et retrancher les effets négatifs de S_i pour obtenir S_{i+i} .
- bool Solution(S_i) ssi S_i contient les buts b_1 , ..., b_l .
- Algorithme : tout algorithme de recherche dans un espace d'états (par ex., A*).

Algorithmes dans un espace d'états : Recherche avant (2 / 2)

Algorithme dans un espace d'états : Recherche arrière (1 / 2)

- Un état S_i = un état de l'environnement.
 - $S_0 = les buts = b_1, ..., b_l$
- Prédécesseurs $(S_i) = N$ nouveaux états $\{S_{i+1}, ..., S_{i+N}\}$ obtenus en appliquant un opérateur en chainage arrière à S_i .
 - Un opérateur est applicable ssi il possède une postcondition qui s'unifie avec un terme de S_i .
 - -Ajouter les préconditions à S_i pour obtenir S_{i+i} .
- bool Solution(S_i) ssi S_i contient les littéraux f_1 , ..., f_n .
- Algorithme : tout algorithme de recherche dans un espace d'états (par ex., A*).

Algorithme dans un espace d'états : Recherche arrière (2 / 2)

Algorithmes dans un espace d'états : Heuristiques

- Une fonction heuristique = une estimation de la distance à la solution + admissibilité.
- Trouver une bonne heuristique est difficile.
- Utiliser un problème relaxé : le coût optimal pour le problème relaxé est une heuristique du problème général.
 - Problème relaxé : Ne pas considérer les pré-conditions ; ne pas considérer les post-conditions négatives.
 - Exemple: buts = A ∧ B ∧ C Act(X, Eff.: A ∧ P) Act(Y, Eff.: B ∧ C ∧ Q) Act(Z, Eff.: B ∧ P ∧ Q) Les actions X et Y suffisent (interaction positive), donc coût de 2. Mieux que la résolution indépendante des 3 buts (coût 3).

Algorithme dans un espace de plans partiels (1 / 2)

- Plan = (Descriptions T, Opérateurs Op, OrdrePartiel O, Unification U).
- Définitions :
 - Conflit : une post-condition qui peut détruire un lien causal (menace).
 - Satisfaire une pré-condition p: faire qu'il y ait un opérateur (ou pseudo opérateur initial) avant p, dont une post-condition q s'unifie avec p.
- PLANIFICATEUR(**T**, **Op.**, **O**, **U**):

TANTQUE conflit | | au moins 1 pré-condition non satisfaite

- 1. Résoudre les conflits ;
- 2. Choisir une pré-condition **p** non satisfaite ;
- 3. Satisfaire **p**:
 - Ajouter à *U* une contrainte d'unification / de non-unification;
 - Ajouter à *O* une contrainte de précédence ;
 - Ajouter à **Op** un opérateur de **T** partiellement instantié.

Planificateur dans l'espace des plans partiels (2 / 2)

- Un état = un plan partiellement ordonné et partiellement instantié.
- PLANIFICATEUR(T, Op., O, U):

Algorithme de recherche dans un espace d'états (par ex., A*) :

- Un état = un plan partiel (*T*, *Op.*, *O*, *U*).
- Un successeur = obtenu par résolution de conflit, ou satisfaction d'une pré-condition.
 - Ajout d'une contrainte d'unification / non-unification à U
 - Ajout d'une contrainte de précédence à O
 - Ajout d'un opérateur de *T* à *Op*
- Une fonction solution = aucun conflit && toutes les pré-conditions sont satisfaites.
- Heuristique : nombre de préconditions non satisfaites, nombre de conflits

Plan de graphe (1 / 4)

- Niveaux avec mutex (relations d'exclusions mutuelles) : un niveau n'est pas un état.
- Plan de graphe avant, et recherche arrière.

Plan de graphe (2 / 4)

- Structure de données :
 - Plan de graphe = termes et opérateurs en niveaux alternés
 - No-op
- Algorithme GRAPHLAN(S_0 , Buts, T)
 - A. Poser le niveau initial égal à S_0
 - B. TANT QUE (!plan-solution $| | S_i != S_{i-1} |$
 - 1. SI les buts sont dans le dernier niveau et ne sont pas mutex ALORS rechercher un plan-solution depuis le dernier niveau en arrière. SI un tel plan-solution est trouvé, ALORS SUCCES.
 - 2. Expansion du plan de graphe sur 1 niveau
 - a) Développer toutes les actions possibles
 - b) Relations *mutex*

Plan de graphe (3 / 4)

- Relations d'exclusion mutuelle (*mutex*) entre opérateurs :
 - Effets inconsistants : un opérateur possède un effet qui nie un effet d'un autre opérateur.
 - Interférence : un effet d'un opérateur est la négation d'une précondition d'un autre opérateur.
 - Besoins en compétition : une précondition d'un opérateur est mutex avec une précondition d'un autre opérateur.
- Mutex entre littéraux de même niveau :
 - L'un est la négation de l'autre.
 - Toute paire d'action possible, qui les établit, est mutex.

40

Plan de graphe (4 / 4)

- Recherche en arrière d'un plan-solution dans le plan de graphe :
 - Une recherche dans un espace d'états (ou CSP dynamique).
 - Etat initia = niveau S_n avec les buts
 - <u>Prédécesseurs</u> = choisir un sous-ensemble d'actions dans A_{i-1} sans conflit qui satisfasse les buts de S_i .
 - But = arriver à S_0 avec tous les buts satisfaits.

Plan de graphe Exemple (1 / 2)

- <u>Etat initial</u>: avoir(Gateau)
- <u>Buts</u>: avoir(Gateau) ∧ mangé(Gateau)
- Action mange(Gateau)

Pré-conditions : avoir(Gateau)

Post-conditions : ¬ avoir(Gateau) ∧ mangé(Gateau)

Action cuisine(Gateau)

Pré-conditions : ¬ avoir(Gateau)

Post-conditions: avoir(Gateau)

Plan de graphe Exemple (2 / 2)

Plan de graphe Terminaison

- Le nombre de littéraux par niveau s'accroit de façon monotone.
- Le nombre d'actions par niveau s'accroit de façon monotone.
- Le nombre de mutex par niveau décroit de façon monotone.
- <u>Conclusion</u>: éventuellement retrouver le même niveau deux fois ...

Planificateurs par solver SAT (1 / 4)

• Solvers SAT (rappel) :

- Problème de la <u>sat</u>isfiabilité d'une formule logique : « Trouver la valeur de vérité de chaque proposition qui, ensemble, satisfont une formule logique donnée ».
- Exemple de formule : $(p \land q) \lor (r \land \neg s \land t) \lor (u \land v \land \neg w)$
- Logique des propositions.
- 3SAT est le 1^{er} problème prouvé NP-complet (1971).
- Conférence Internationale SAT : http://www.satisfiability.org/
- Applications: preuves de la correction de circuits intégrés dans un chip, preuve de non risque d'accident dans le programme qui pilote une ligne de métro (par ex., ligne 1 du métro parisien),

Planificateurs par solver SAT (2 / 4)

• En logique des propositions, essayer de prouver la formule :

etat-initial \land tous-les-plans-possibles \land buts

- Principe de l'algorithme :
 - 1. n = 1 // Longueur du plan-solution.
 - 2. Transformer le problème de longueur *n* en une formule en logique des propositions.
 - 3. Utiliser un solveur SAT pour essayer de prouver la formule. Si prouvé, ALORS extraire le plan-solution de la formule ET SUCCES.
 - 4. SI le solveur SAT échoue, ALORS incrémenter *n*, ALLER-EN 2.

Planificateurs par solver SAT (3 / 4)

- Dans le monde des cubes, pour l'anomalie de Gerald Sussman :
 - <u>Buts</u>: on(A,B)@T ∧ on(B,C)@T
 - Etat initial: clear(C)@0 ∧ on(C,A)@0 ∧ clear(B)@0
 (∧ ¬ on(A,C)@0 ∧ ¬ on(A,B)@0 ∧ ¬ on(B,C)@0 ∧ ¬ on(B,A)@0
 ∧ ¬ on(C, B)@0 ∧ ¬ clear(A)@0) // hypothèse du monde fermé
 - Une proposition par opérateur instantié :
 - $\forall x, \forall y, \forall z, \forall t:$ on(x,y)@t \land clear(x)@t \land clear(z)@t \land puton(x,y,z)@t \Rightrightarrow clear(y)@t+1 \land on(x,z)@t+1
 - Axiomes sur les préconditions :
 - $\forall x, \forall y, \forall z, \forall t$: puton $(x, y, z)@t \Rightarrow on(x,y)@t \land clear(x)@t \land clear(z)@t$
 - Un seul opérateur à la fois (contraintes d'état) :
 - $\forall x, \forall y, \forall y', \forall z, \forall z', \forall t / y <> y' \land z <> z'$: $\neg (puton(x, y, z)@t \land puton(x, y', z')@t)$

Planificateurs par solver SAT (4 / 4)

• Complexité de cet encodage : T x |Act| x |O|^P avec :

```
    T = taille limite du plan
    |Act| = nombre d'opérateurs
    |O| = nombre d'objets
    P = arité maximum d'un opérateur
```

• <u>Séparation des symboles</u>: certains symboles séparés seront inutiles dans les axiomes

```
puton1(A) = cube qui est bougé
puton2(B) = cube destination
puton3(C) = cube du dessous
```

• Exemple : contrainte d'état :

```
puton1(A)@t \land (puton2(B)@t \land \neg puton2(C)@t \lor puton2(C)@t \land \neg puton2(B)@t)
```

Complexité de ce 2^e encodage : T x |Act| x |O|

Planificateurs par PPC (1 / 3)

• <u>Programmation par contraintes (rappel)</u>: variables, domaines, contraintes + retour-arrière, consistance d'arc.

• Principe :

- 1. Estimer heuristiquement la longueur *n* du plan-solution
- 2. Transformer le problème de planification en un CSP
- 3. Résoudre cette formulation avec un solver de CSP
- 4. SI le solver de CSP échoue, ALORS incrémenter *n*, GOTO 2.

• Exemples :

- IxTeT du LAAS à Toulouse [Laborie 95].
 http://spiderman-2.laas.fr/RIA/IxTeT/ixtet-planner.html
- Constraint Programming Temporal planner (CPT) de l'ONERA Toulouse [Vidal 06].

http://v.vidal.free.fr/onera/#cpt

Planificateurs par PPC (2 / 3)

- Canonicité : un opérateur instantié apparait au plus une fois.
- Pseudo opérateurs : Start (sans pré-condition) et End (sans post-condition).
- Heuristique pour estimer la durée B du plan-solution.
- Puisqu'un plan-solution est linéaire, numéroter les instants.
- Actions duratives.
- Déclarer des contraintes redondantes
- Variables du CSP :
 - Date de début de l'opérateur o : T(o) ∈ [0; B [
 - Support de la précondition p dans l'opérateur o : S(p, o) ∈ O(p)
 - Date de début du $S(\mathbf{p}, \mathbf{o})$: $T(\mathbf{p}, \mathbf{o})$ ∈ [0; \mathbf{B} [
 - InPlan(o) ∈ {0, 1} indique la présence de l'opérateur o dans le plan InPlan(Start) = 1, InPlan(End) = 1.

Planificateurs par PPC (3 / 3) Contraintes

- Bornes: $T(Start) + dist(Start, o) \le T(o)$ $T(o) + dur(o) + dist(o, End) \le T(End)$
- Contraintes de support :

$$S(\boldsymbol{p}, \boldsymbol{o}) = \boldsymbol{o'} \implies T(\boldsymbol{p}, \boldsymbol{o}) = T(\boldsymbol{o'})$$

 $\min_{\boldsymbol{o'} \text{ in } S(\boldsymbol{p}, \boldsymbol{o})} (T(\boldsymbol{o'})) \leq T(\boldsymbol{p}, \boldsymbol{o}) \leq \max_{\boldsymbol{o'} \text{ in } S(\boldsymbol{p}, \boldsymbol{o})} (T(\boldsymbol{o'}))$

 <u>Préconditions</u>: Les supports o' de la précondition p de o doivent précéder o selon dist(o', o)

```
T(o) \ge \min_{o' \in D(S(p, o))} (T(o') + dur(o') + dist(o', o))

T(o) \ge T(p, o) + \min_{o' \in D(S(p, o))} (dur(o') + dist(o', o))

T(o') + dur(o') + dist(o', o) > T(o) \Rightarrow S(p, o) \ne o'
```

<u>Liens causaux</u>: Pour toute précondition p de o et pour tout o' qui détruit p, o' est avant S(p, o) ou suit o

$$T(o') + dur(o') + \min_{o'' \in D(S(p, o))} (dist(o', o'')) \le T(p, o) \lor T(o) + dur(o) + dist(o, o') \le T(o')$$

• Mutex: si les opérateurs o et o' sont mutex, pas de parallélisme $T(o) + dur(o) + dist(o, o') \le T(o') \lor T(o') + dur(o') + dist(o', o) \le T(o)$

Planificateurs par algorithmes évolutionnaires (1 / 3)

Algorithmes évolutionnaires (rappels) :

- Un individu est représenté par un chromosome (une séquence de gènes).
- Opérateurs de croisement entre 2 chromosomes et de mutation d'un chromosome.
- Fonction d'adaptation à l'environnement.
- Emergence d'une solution après N générations de la population d'individus.

Encodage :

- Un plan partiel séquentiel est un individu, un gène est un opérateur instantié.
- Fonction d'adaptation = nombre de « bugs » dans l'individu-plan.

Planificateurs par algorithmes évolutionnaires (2 / 3)

$$C = (a_i, (p_{i,j}, o_j)_{j \in Param(i)})_{i \in [1,N]} \quad \text{where } \begin{cases} a_i : \text{index of } i \text{- th action} \\ p_{i,j} : \text{index of } j \text{- th parameter in } i \text{- th action} \\ o_j : \text{index of } j \text{- th object in the parameter list} \end{cases}$$

Planificateurs par algorithmes évolutionnaires : mutation (3 / 3)

- Ajout aléatoire de gène :
- Retrait aléatoire de gène :
- Permutation aléatoire de deux gènes
- Remplacement d'un gène :
- Mutations heuristiques :
 - Retrait d'un gène conflictuel :
 - Retrait d'un gène dupliqué :

Réseaux de tâches hiérarchiques (1 / 2)

- Un opérateur se décompose en d'autres opérateurs (décomposition d'actions).
 - Connaissance supplémentaire.
 - Bibliothèque de plans.
 - Décomposition potentiellement récursive :
 marcher → faire-un-pas PUIS marcher
- Planifier à un niveau de détails donné, se préoccuper des détails ensuite. Ne pas planifier d'entrée de jeu au plus grand niveau de détail, comme tous les autres planificateurs.
 - Diminuer la complexité.
- Algorithme : cas particulier des planificateurs dans l'espace des plans partiels : la fonction *Successeur()* contient en plus le fait de décomposer une action.

Réseaux de tâches hiérarchiques (2 / 2)

Planification & Exécution

Références

- 1. Stuart Russell, Peter Norvig. *Artificial Intelligence: A Modern Approach*. Prentice Hall, 2010, 3rd edition. Chapitre 11.
- 2. Malik Ghallab, Dana Nau, Paolo Traverso. *Automated Planning: Theory and Practice*. Morgan Kaufmann, San Mateo, CA, May 04, 635 pages.
- 3. Tutorials et cours sur le web (e.g., Joerg Hoffmann).

Conclusion

- La planification d'actions consiste à trouver une séquence d'opérateurs instantiés (un plan) menant un état initial à des buts.
 - Difficile parce que interaction entre sous buts.
- Les opérateurs sont exprimés en STRIPS / ADL / PDDL.
- Plusieurs types d'algorithmes pour construire un planificateur d'actions :
 - Dans l'espace des états (progression, régression).
 - Dans l'espace des plans partiels.
 - Plan de graphe.
 - Basé sur l'utilisation d'un solver SAT.
 - Basé sur la programmation par contraintes.
 - Basé sur les algorithmes évolutionnaires.
 - Réseaux de tâches hiérarchiques.
- <u>Non vus</u>: planification probabiliste, planification conditionnelle, PERT, planification par logique modale (Patrick Doherty), FF et successeurs (Joerg Hoffmann).