Previsão de Churn de clientes em empresa de Telecom

Diego Martins Faria

Cientista de dados

Introdução ao problema

O que é churn?

Churn é o evento em que o cliente encerra a relação ativa com a empresa. Em outras palavras, churn é quando se perde o cliente.

Por que é um problema crítico para o negócio?

Porque o churn impacta a receita futura da empresa, custo de aquisição(trazer clientes novos é mais caro que manter os atuais), impacta a imagem da marca, já que cliente insatisfeito fala mal. Enfim, impacta a saúde da empresa como um todo

Objetivo do projeto:

Desenvolver um modelo de machine learning capaz de prever clientes com maior chance de cancelamento

Objetivos

Detectar padrões que indiquem churn

Ajudar time de marketing a agir preventivamente

• Reduzir a taxa de cancelamento de clientes

Conhecendo os dados

Dicionário de dados

Variável	Descrição		
customerID	Identificador único do cliente	Categórica	
gender	Gênero do cliente (Female/Male)	Categórica	
SeniorCitizen	Indica se o cliente é idoso (1) ou não (0)	Numérica	
Partner	Indica se o cliente possui parceiro(a) (Yes/No)	Categórica	
Dependents	Indica se o cliente possui dependentes (Yes/No)	Categórica	
tenure	Meses de permanência do cliente	Numérica	
PhoneService	Indica se o cliente possui serviço telefônico (Yes/No)	Categórica	
MultipleLines	Indica se o cliente possui múltiplas linhas telefônicas	Categórica	
InternetService	Tipo de serviço de internet (DSL/Fiber optic/No)	Categórica	
OnlineSecurity	Indica se o cliente possui segurança online (Yes/No/No internet service)	Categórica	
OnlineBackup	Indica se o cliente possui backup online (Yes/No/No internet service)	Categórica	
DeviceProtection	Indica se o cliente possui proteção de dispositivo (Yes/No/No internet service)	Categórica	
TechSupport	Indica se o cliente possui suporte técnico (Yes/No/No internet service)	Categórica	
StreamingTV	Indica se o cliente possui serviço de streaming de TV (Yes/No/No internet service)	Categórica	
StreamingMovies	Indica se o cliente possui serviço de streaming de filmes (Yes/No/No internet service)	Categórica	
Contract	Tipo de contrato do cliente (Month-to-month/One year/Two year)	Categórica	
PaperlessBilling	Indica se o cliente utiliza faturamento sem papel (Yes/No)	Categórica	
PaymentMethod	Método de pagamento do cliente	Categórica	
MonthlyCharges	Valor cobrado mensalmente do cliente	Numérica	
TotalCharges	Valor total cobrado do cliente	Numérica	
Churn	Indica se o cliente deixou a empresa (Yes/No)	Categórica	

• O dataset tem 7043 linhas e 21 colunas

Análise Exploratória (EDA)

Yes

Churn

40

20

No

Relação entre PaymentMethod e Churn

Churn

No.

Análise Exploratória

Observamos nos gráficos anteriores que:

- Clientes com cobranças mensais mais altas, tendem a churn
- Métodos de pagamento eletrônicos têm mais churn se comparados com cobranças automáticas
- Clientes novos tendem a churn

Pré-processamento

- Retirei a coluna 'customerID' por não representar nenhum dado importante para o modelo
- Fiz o encoding das variáveis categóricas

Separação dos Dados

- Fiz a separação em treino, teste e validação, ficando:
 - Treinamento: (4500, 40), Validação: (1125, 40), Teste: (1407, 40)

 Identifiquei também que havia desbalanceamento nos dados, o que poderia influenciar nosso modelo.

Modelo Base

Random Forest Classifier

• Principais métricas:

O Acurácia: 79%

• Recall da classe 1 (churn): 48%

Classification Report

		precision	recall	f1-score	support
	0	0.82	0.90	0.86	822
	1	0.64	0.48	0.55	303
accui	racy			0.79	1125
macro	avg	0.73	0.69	0.70	1125
weighted	avg	0.77	0.79	0.78	1125

• Limitações:

- Baixo recall
- Classes desbalanceadas

Estratégias para Melhorar

- Ajustei o hiperparâmetro class_weight do modelo, mas não obtive resultados significativos
- Fiz ajustes com threshold, sem resultados significativos

- Solução:
 - Usar outro modelo (XGBoost), por ser mais robusto a classes desbalanceadas

Resultados Finais com XGBoost

• Principais métricas:

o Acurácia: 75%

• Recall da classe 1 (churn): 84%

Classification	Report
----------------	--------

	precision	recall	f1-score	support
Θ	0.93	0.72	0.81	822
1	0.53	0.84	0.65	303
accuracy			0.75	1125
macro avg	0.73	0.78	0.73	1125
weighted avg	0.82	0.75	0.77	1125

Preferimos maximizar o recall para evitar churns não detectados

Conclusões

- Modelo alcançou bom desempenho para detectar clientes em risco
- Business value: ação preventiva para retenção de clientes
- Recomendações para o time:
 - Focar em clientes com alto risco
 - Melhorar canais de comunicação para clientes insatisfeitos

Próximos Passos

- Colocar modelo em produção
- Monitoramento contínuo do desempenho
- Integração com times de marketing e atendimento

Obrigado!

LinkedIn: https://www.linkedin.com/in/diego-martins-faria/

Github: https://github.com/diegomartf