9. SPUR GEAR DESIGN

GEAR: It's a toothed wheel used for transmission of power from one shaft to another.

TOOTH	In the direction of axis of wheel	SPUR GEAR	
DIRECTION	Tooth is inclined with the axis of wheel	HELICAL GEAR	

Gear Pair is made of GEAR and PINION.

$$m = \frac{d_p}{Z_p} = \frac{d_g}{Z_g}$$

$$d = \frac{d_p + d_g}{2} = \frac{m(Z_p + Z_g)}{2}$$

$$m = \text{Module of Gear,}$$

$$d = \text{Centre to centre Distance}$$
between two gears,
$$d_p = \text{Pinion Diameter (PCD),}$$

$$d_g = \text{Gear Diameter (PCD),}$$

ASSUMPTIONS IN WILFRED LEWIS EQUATION:

- 1. At any point of time there will be only one pair of teeth in contact.
- 2. The tangential load (F_t) is distributed uniformly throughout the width.
- 3. The effect of radial load is neglected.
- 4. Consider Tooth as Beam of uniform strength.
- 5. Stress concentration effects are neglected.

Circular Pitch
$$(p_c) = \pi m$$

$$M_{max} = F_t h$$

$$\sigma_{max} = \left(\frac{M_{max}}{I}\right) y_{max} = \frac{6 F_t h}{b t^2}$$

$$F_t = \sigma_{max} p_c b y = \sigma_{max} m b Y$$

$$y = \frac{t^2}{6 h p_c} \text{ and } Y = \frac{t^2}{6 h m}$$

$$Y = \pi y$$

Lewis Factor depends on No. of tooth and profile of teeth.

Y IS CLOSER OR GREATER THAN 0.3

 F_t = Uniform Tangential load, σ_{max} = Maximum bending Stress, M_{max} = Maximum bending moment,

h = Depth of teeth base,

t = Thickness of teeth base,

b =Width of teeth base,

Y = Modified Lewis Form factor,

y = Lewis Form factor,

EQUIVALENT LOAD ON TEETH:

$2\pi N T$	C_s is used to incorporate	T = Mean Torque $= F r$
$Power P = \frac{2NV}{60}$	Fluctuation of power	N = Mean Speed,
If $C_v \leq 1$,	transmission.	F = Mean Tangential Load,
$T_{max} = \frac{C_s T}{C_{max}}$ And $F_{eq} = \frac{C_s F}{C_{max}}$	C_v is used to incorporate	$T_{max} = Maximum Torque,$
$r_{max} = \frac{1}{C_v} Hu r_{eq} = \frac{1}{C_v}$	Impact Load Due to power	C_s = Service Factor,
If $C_v > 1$,	transmission	C_v = Velocity Factor,
$T_{max} = C_s C_v T And F_{eq} = C_s C_v F$		F_{eq} = The Max. Tangential Load,

DESIGN CONDITION:

$\sigma_{max} = \sigma_{yt} / FOS And F_{eq} = F$	σ_{max} = Maximum bending Stress,
$\frac{C_S \dot{F}}{C_v} = \frac{\sigma_{yt}}{FOS} m b Y$	σ_{yt} = Yield Strength of material,
C_v FOS	

WEAR STRENGTH (HERTZ THEORY):

Pitting: Surface Fatigue Failure due to repetitive loads.

Failure Condition: $\sigma_c > \sigma_e$	K = Load Stress Factor,
$F_w = K d_p b Q$	E_p = Young's Modulus of Pinion,
$K = \frac{\sigma_e^2 \sin \emptyset}{1.4} \left[\frac{1}{E_p} + \frac{1}{E_q} \right]$	E_g = Young's Modulus of Gear,
$K = \frac{1.4}{1.4} \left \frac{E_p}{E_p} + \frac{E_q}{E_q} \right $	Q = Ratio Factor,
$2\frac{Z}{Q}$	σ_c = Contact Stress,
$Q = \frac{2\mathbb{Z}_g}{\mathbb{Z}_g - \mathbb{Z}_p}, for External Gear$	σ_e = Surface Endurance Strength of tooth material,
$\frac{2Z_p}{2Z_g} \text{for Intermal Course}$	F_w = Wear Strength = Maximum tangential load that can
$Q = \frac{Z Z_g}{Z_g - Z_p}, for Internal Gear$	be applied to avoid pitting failure,
$\mathbf{z}_g - \mathbf{z}_p$	\emptyset = Pressure Angle,