Probability and Stochastic Processes Course Notes

Chia-Hao CHang, chchangkh@utexs.edu

Fall 2018

1 Algebra

Definition 1. A collection A of subsets of Ω is called an algebra if

Axiom 1.1. $\phi \in \mathcal{A}$.

Axiom 1.2 (Closed under Complement). If $A \in \mathcal{A}$, then $A^c \in \mathcal{A}$.

Axiom 1.3 (Finite Additivity). If $A_1, A_2 \in \mathcal{F}$, then $A_1 \bigcup A_2 \in \mathcal{A}$.

The last two properties of an **algebra** implies that an algebra is closed under finite intersection and union.

2 σ -algebra

Definition 2 (σ -algebra). A σ -algebra \mathcal{F} on Ω is a collection of subsets in Ω s.t.

Axiom 2.1. $\phi \in \mathcal{F}$.

Axiom 2.2 (Closed under Complement). If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$.

Axiom 2.3 (Countable Additivity). If
$$A_1, A_2, \dots \in \mathcal{F}$$
, then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$.

Note that Axiom 2.3 implies *finite Additivity* (which can be proved rigorously). Another note worthy thing is that this definition is similar to a **topology** defined on Ω .

Definition 3 (sub σ -algebra). A sub σ algebra, denoted by \mathcal{G} , is a collection of sets in Ω s.t.

Axiom 2.4. $\mathcal{G} \subset \mathcal{F}$

Axiom 2.5. \mathcal{G} is a σ -algebra.

3 Product Space on σ -algebra

Let $(\Omega_1, \mathcal{F}_1)$ be a σ -algebra \mathcal{F}_1 associated with Ω_1 and $(\Omega_2, \mathcal{F}_2)$ be a σ -algebra \mathcal{F}_2 associated with Ω_2 . We consider the following operations on \mathcal{F}_1 , \mathcal{F}_2 .

Definition 4 (Lifting). A lifting of \mathcal{F}_1 , denoted by $\tilde{\mathcal{F}}_1$, is defined as

$$\tilde{\mathcal{F}}_1 \triangleq \{A \times \Omega_2 : A \in \mathcal{F}_1\}$$

Clearly, an element in $\tilde{\mathcal{F}}$ is of the form $(A, B), A \subseteq \Omega_1$ and $B \subseteq \Omega_2$. That is, each element of $\tilde{\mathcal{F}}$ is a subset of the product space $\Omega_1 \times \Omega_2$, making $\tilde{\mathcal{F}}$ a collection of subsets in $\Omega_1 \times \Omega_2$.

Proposition 1. Any lifting $\tilde{\mathcal{F}}$ is a σ -algebra on the product space $\Omega_1 \times \Omega_2$.

Proof. Given $\Lambda \in \tilde{\mathcal{F}}$, say $\Lambda = (A, \Omega_2)$, where $A \subseteq \Omega_1$. $\Lambda^c = (A^c, \Omega_2) \cup (A, \Omega_2^c) = (A^c, \Omega_2) \cup (A, \phi) = (A^c, \Omega_2) \cup \phi = (A^c, \Omega_2) \in \tilde{\mathcal{F}}$ since \mathcal{F}_1 is a σ -algebra.

4 Borel σ -algebra

Definition 5 (Borel σ -algebra). A Borel σ – algebra is the smallest σ -algebra on Ω which contains all the open sets in Ω .

Definition 6 $(\sigma(\mathcal{H}))$. Let \mathcal{H} be a collection of subsets in Ω . A σ – algebra generated by \mathcal{H} , denoted by $\sigma(\mathcal{H})$, is the smallest σ -algebra that contains all the elements in \mathcal{H} (i.e. subsets of Ω). In a sense that it contains all the sets in \mathcal{H} , all the countable unions of \mathcal{H} and all the complement of sets in \mathcal{H} .

In other words, if \mathcal{C} is a σ -algebra that contains \mathcal{H} , then $\sigma(\mathcal{H}) \subseteq \mathcal{C}$, namely

$$\sigma(\mathcal{H}) = \bigcap_{\mathcal{C}\supseteq\mathcal{H}} \mathcal{C}, \quad \mathcal{C}: \sigma-algebra$$

Theorem 1 (Borel σ -algebra on \mathbb{R}). The **Borel** σ - **algebra** on \mathbb{R} , denoted by $\mathcal{B}(\mathbb{R})$ is the σ -algebra generated by the open sets in \mathbb{R} . That is, if \mathcal{O} is the collection of open sets in \mathbb{R} , then $\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{O})$.

The proof of Thm.1 is not presented in class. We shall take it as a ground truth.

5 Measurable Maps (Functions)

Definition 7 (Measurable Space). A measurable space on Ω is a pair (Ω, \mathcal{A}) such that \mathcal{A} is a σ -algebra on Ω .

It is clear that for any set Ω , there can be many measurable spaces associated with it since there may be different σ -algebra on Ω .

Definition 8 (Measurable Map). Given two measurable spaces (X, Σ) and (Y, \mathcal{T}) , a map $f: X \to Y$ is called a **Measurable Map** if for every measurable set in \mathcal{T} , its pre-image is also in Σ .

$$f^{-1}(B) = \{x \in X : f(x) \in B\} \in \Sigma, \forall B \in \mathcal{T}$$

If $f: X \to Y$ is a measurable map, we write $f: (X, \Sigma) \to (Y, \mathcal{T})$ to emphasize the choice of Σ and \mathcal{T} .

Definition 9 (Random Variable). A random variable X is a measurable map $X: \Omega \to \mathbb{R}$ between two measurable spaces (Ω, \mathcal{F}) and $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, where Ω is the sample space and \mathcal{F} is a σ -algebra on it. To be more precise, X is a random variable if

$$f^{-1}(B) = \{ \omega \in \Omega : f(\omega) \in B \} \in \mathcal{F}, \forall B \in \mathcal{B}(\mathbb{R})$$

From the above definition, it is clear that X might be a valid RV/mapping in one σ -algebra \mathcal{F} but invalid in another \mathcal{G} .

Appendix I: Topology

Given a set X and a collection \mathcal{T} of subsets in X, \mathcal{T} is called a topology on X if

a)
$$\phi \in \mathcal{T}$$

b) If $\forall i \in I, A_i \in \mathcal{T}, \bigcup_{i \in I} A_i \in \mathcal{T}$
c) If $A_i \in \mathcal{T}, i = 1, 2, \dots, n$, then $\bigcap_{i=1}^n A_i \in \mathcal{T}$

If \mathcal{T} is a topology on X, we call (X,\mathcal{T}) a topological space. A member in \mathcal{T} is called an *open set* in X. A subset of X is said to be closed if its complement is in \mathcal{T} . Hence, ϕ and X are both closed and open.