

Time Series and Sequence Learning

Lecture 5b - Structural Time-Series, Modelling the Seasonality

Johan Alenlöv, Linköping University

Structural time series:
$$y_t = \mu_t + \gamma_t + \varepsilon_t$$

Structural time series:
$$y_t = \mu_t + \gamma_t + \varepsilon_t$$

Consider the seasonal component γ_t .

1

Structural time series: $y_t = \mu_t + \gamma_t + \varepsilon_t$

Consider the seasonal component γ_t .

In practice we allow for small devictors or charges to the seasonal pattern

Model:
$$\sum_{j=0}^{S-1} x_{t-j} = \omega_t$$
, $\omega_t \sim D(0, o_u^2)$

$$\Rightarrow x_t + \sum_{j=1}^{S-1} \omega_t \Rightarrow x_t = -\sum_{j=1}^{S-1} x_{t-j} + \omega_t$$

$$All(S-1)$$

3

Seasonal component model:

$$\gamma_t = -\sum_{j=1}^{s-1} \gamma_{t-j} + \omega_t, \qquad \qquad \omega_t \sim \mathcal{N}(0, \sigma_\omega^2).$$

Seasonal component model:

$$\gamma_t = -\sum_{i=1}^{s-1} \gamma_{t-j} + \omega_t, \qquad \qquad \omega_t \sim \mathcal{N}(0, \sigma_\omega^2).$$

Matrix form: By defining the state vector

$$\alpha_t = \begin{bmatrix} \gamma_t & \gamma_{t-1} & \cdots & \gamma_{t-s+2} \end{bmatrix}^\mathsf{T}$$

we can write this as

$$\alpha_{t} = \begin{bmatrix} -1 & -1 & \cdots & -1 & -1 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix} \alpha_{t-1} + \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \omega_{t}$$

$$\gamma_{t} = \begin{bmatrix} 1 & 0 & 0 & \vdots & 0 \end{bmatrix} \alpha_{t},$$

A general state space model

Def. A Linear Gaussian State-Space (LGSS) model is given by:

$$egin{aligned} lpha_t &= T lpha_{t-1} + R \eta_t, & \eta_t \sim \mathcal{N}(0, Q), \ y_t &= Z lpha_t + arepsilon_t & arepsilon_t \sim \mathcal{N}(0, \sigma_\epsilon^2), \end{aligned}$$

and initial distribution $\alpha_1 \sim \mathcal{N}(a_1, P_1)$.

Structural time series - block matrix model

A general structural time series model

$$y_t = \mu_t + \gamma_t + \varepsilon_t$$

can be written in state space form using block matrices.

State vector:

$$\alpha_t = \begin{bmatrix} \mu_t & \mu_{t-1} & \cdots & \mu_{t-k+1} & \gamma_t & \gamma_{t-1} & \cdots & \gamma_{t-s+2} \end{bmatrix}^\mathsf{T}$$

State space model:

$$\begin{split} \alpha_t &= \begin{bmatrix} T_{[\mu]} & \\ & T_{[\gamma]} \end{bmatrix} \alpha_{t-1} + \begin{bmatrix} R_{[\mu]} & \\ & R_{[\gamma]} \end{bmatrix} \eta_t, & \eta_t \sim \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_\zeta^2 & 0 \\ 0 & \sigma_\omega^2 \end{bmatrix} \right), \\ y_t &= \begin{bmatrix} Z_{[\mu]} & Z_{[\gamma]} \end{bmatrix} \alpha_t + \varepsilon_t, & \varepsilon_t \sim \mathcal{N}(0, \sigma_\varepsilon^2). \end{split}$$