Project (#1): Aircraft Performance and Airloading Due Date: Upload zip folder to TED by 11:58 PM, Friday March 13, 2020

Files in your MATLAB Folder:

Download from TED: SE160A_1_AirLoads_Input.xlsx Download from TED: SE160A_1_AirLoads_Output.xlsx

Download from TED: SE160A_1_AirLoads.p

Download from TED: createFigure.m Download from TED: deleteFigure.m

Your created (m) file: For Undergraduate Students: [SE160A_1_LastName_FirstName.m]

For Graduate Students: [SE260A_1_LastName_FirstName.m]

Problem Answers are saved in a (pdf):

For Undergraduate Students: [SE160A_1_LastName_FirstName.pdf]
For Graduate Students: [SE260A_1_LastName_FirstName.pdf]

Upload your (m) file and (pdf) file into a (zip) folder of the same name:

For Undergraduate Students: [SE160A_1_LastName_FirstName.zip]
For Graduate Students: [SE260A_1 LastName FirstName.zip]

In order to perform a structural analysis on an aircraft wing one first needs to calculate the aircraft center of gravity (CG) location, then determine the V-n diagram, followed by the calculation of the resultant wing lift (L),

drag (D), and moment (M). Finally, these resultant loads are used to determine the distributed lift (l), drag (d), and moment along the wing span. These distributed loads are determined along the aircraft wing quarter-chord (c/4) and presented in both the aerodynamic coordinated frame and the structural coordinate frame.

Part (1): Aircraft Weight and Center of Gravity

The aircraft weight (W) and longitudinal center of gravity (X_{CG}) is calculated using the component weights and station location. These components include (1) empty aircraft including all fluids (hydraulics, oil) except fuel, (2) fuel weight (3) Pilot, co-pilot, and passenger weights, and (4) luggage weights. We wish to examine eight different aircraft configurations, where we calculate the total aircraft weight and CG location for each case. These eight cases are plotted with (X_{CG}) on the x-axis $W = \sum_{i=1}^{n} W_i \quad x_c = \frac{1}{W} \left(\sum_{i=1}^{n} W_i x_i \right)$ and (W) on the y-axis.

				Aircraft Co	nfiguration			
Description	1	2	3	4	5	6	7	8
Aircraft (empty + oil, etc)	х	х	X	х	х	X	х	х
Fuel (40 gallons max)					х	x	х	х
Pilot	х	х	X	х	х	х	х	х
Co-Pilot (front passenger)			X	х			х	X
Rear passenger				х				х
luggage (in cockpit)		х	X	х		X	х	х
luggage (in fuselage)			X	х			х	х

Part (2): V-n Diagram and Gust Diamond

Maneuvering events can put large loads on an aircraft, launch vehicle, and satellite structure. These maneuvers can be classified as "n" (or more commonly called "g") loading, where every molecule of mass is effectively scaled by a factor of "n" during the maneuver. Typical maneuvers include pull-down, pull-up, push-down, and

steady level turn. Regulatory agencies and airplane companies use the V-n diagram to set the maximum load factors for different classes of aircraft traveling at different speeds. These diagrams are developed assuming the aircraft is traveling in still air, where a gust diagram can be added to the V-n diagram to account for severe updrafts and downdrafts. This gust diagram is overlaid onto the standard V-n diagram assuming that the pilot is flying the aircraft at (n=1) when the gust is encountered. In this section, you will use the maximum aircraft weight from section (A) to calculate the critical speeds and load factors at sea level and flight altitude. The air density at flight altitude is determined using standard air modeling equations (see Appendix 1). Finally, the V-n Diagram and overlaid gust diamond are plotted using sea level aircraft speeds.

Part (3): Normal Flight (n=1) Loads at Altitude

Using the aircraft geometric and aerodynamic definition, the wing loads and required thrust (T) and horsepower (hp) can easily be determined for four different normal (n=1) flight conditions (stall, stall with flaps, cruise, and dive. Begin by using the air density at altitude to calculate the air loads at altitude. Then calculate the required horsepower (at altitude) using the required thrust (equal to total aircraft drag) and aircraft velocity. The equation is presented in Appendix 2, where the propeller efficiency is used to account propeller losses. The required horsepower at sea level is also calculated where it is recognized internal combustion engines are less efficient as the air density decreases. Thus one needs a more powerful engine at sea level to account for losses at higher altitudes. Finally, the aircraft angle of attack is determined using the lift coefficient and lift curve slope, where these forces can be transformed from the aerodynamic reference frame to the structural reference frame.

Part (4): Maneuvering Sea Level Loads at Critical V-n Corners and Gust Diamond

Repeat part (3) for the four corners of the V-n diagram and the gust diamond at a sea level altitude.

Part (5): Distributed Loads at PHAA

The distributed lift (1), drag (d), and moment (m) loads are determined at sea level for one specific point on the V-n diagram (PHAA). This distribution is developed using the reader procedures. The results will be presented in six plots over the entire wing span (-b/2 < x < b/2). These six plots include (1) aircraft weight distribution (wing areal weight multiplied by wing chord), (2) wing distributed lift along the quarter-chord using Shrenk's approximation, (3) wing distributed drag acting along the quarter chord with a varying drag function, (4) wing distributed moment, (5) wing distributed loads acting at the quarter-chord pointing in the structural normal direction, and (6) wing distributed loads acting at the quarter-chord pointing in the structural chordwise direction.

Figure: Geometry definition of main wing. Defined as (%) of span or chord.

INPUT (See Excel Input File for format restrictions)

Title Title of project

W, x The weight (W) and fuselage station locations (x) for the complete aircraft and added

weights (crew, fuel, and payload). This is typical information that a pilot must collect

and calculate before each flight

S, $dC_L/d\alpha$ Aircraft Definition

V, n, K_g Aircraft Performance Definition

h, *T* Altitude and Air Temperature (used to calculate air density at altitude)

* Aircraft geometry and aerodynamic definition

OUTPUT (See Excel Input File for format restrictions)

Student Name, ID Name of Student and Student UCSD ID number

Title Title of project
Input echo Echo all input data

 W_i , x_i Weight (W) and the center of gravity location (x) of 8 different aircraft configurations V, N Flight speeds at sea level and flight density and load factor (N) for the critical locations

on the V-n Diagram

* Aircraft loads, required thrust, and horsepower for normal flight loads (n=1) at sea

level, normal loads (n-1) at altitude, and the V-n diagram and gust diamond at sea

level.

Plots:

- (1) Weight versus center of gravity envelope
- (2) V-n Diagram and overlaid Gust Diamond
- (3) Wing weight distribution versus wing span (-b/2 < x < b/2)
- (4) Wing lift distribution at (c/4) versus wing span (-b/2 < x < b/2)
- (5) Wing drag distribution at (c/4) versus wing span (-b/2 < x < b/2)
- (6) Wing moment distribution versus wing span (-b/2 < x < b/2)
- (7) Wing load distribution normal to wing chord at (c/4) versus wing span (-b/2 < x < b/2)
- (8) Wing load distribution in the chord direction at (c/4) versus wing span (-b/2 < x < b/2)

ANALYTICAL STUDIES

Use your MATLAB code to answer question and submit using pdf file. Use the provided experimental Cessna 172x aircraft input file for all questions.

- 1) For the provided aircraft input file (Experimental Cessna 172x), calculate the aircraft weight and cg location for the 8 different flight conditions. Plot and compare to the Cessna limits. Which configurations (if any) fall outside the acceptance envelope?
- 2) Plot the *V-n* Diagram and Gust Diagram for the Cessna 172x configuration.
- 3) Consider a fully fueled aircraft with a 170 lb pilot and along with 50 lbs of cockpit luggage in the cockpit. Calculate the required horsepower and normal wing resultant for the following flight conditions:
- Maximum structural cruise speed (n=1) at sea level (h = 0 ft) and (T = $70 \, {}^{\circ}\text{F}$)
- Maximum structural cruise speed (n=1) at sea level (h = 5000 ft) and (T = $60 \, ^{\circ}\text{F}$)
- Maximum structural cruise speed (n=1) at sea level (h = 10,000 ft) and (T = 40 °F)
- Maximum structural cruise speed (n=1) at sea level (h = 20,000 ft) and (T = 0 °F)

Appendix 1: Atmospheric Properties

There are a wide variety of atmospheric models for predicting the density of air. These models can depend upon altitude, temperature, dew point, and other variables. Most models are very complex. In this class we will use the perfect gas law to calculate the air density as a function of altitude (h ft) and temperature (T_a oF) only. This model has been shown to be very accurate for altitudes up to 36,000 feet.

The standard temperature $(T_{as} {}^{\circ}R)$ and pressure $(p_{as} ft/sec^2)$ at altitude (h) are given by:

$$T_{as} (^{\circ}R) = T_{o} (^{\circ}R) - \left(0.00356616 \left(\frac{^{\circ}R}{ft}\right)\right) \left(h(ft)\right)$$

$$p_{as}$$
 (lb/ft²) = 2116.22 $\left(\frac{T_{as}}{T_o} {\binom{{}^o}{R}}\right)^{5.255912}$

The resulting standard air density (ρ_a) and speed of sound (M_a) at altitude are found to be:

$$\rho_{a} = \frac{p_{as}}{RT_{a}} \rightarrow \rho_{a} \left(\frac{lb - \sec^{2}}{ft^{4}} \right) = \frac{\left(p_{as} \text{ lb/ ft}^{2} \right)}{\left(1716.5488 \frac{ft^{2}}{\sec^{2} - {}^{o} R} \right) \left(T_{a} ({}^{o}F) + 459.67 \right)}$$

$$M_a = \sqrt{1.4RT_a} \rightarrow M_a \left(ft / \sec \right) = \sqrt{1.4 \left(1716.5488 \frac{ft^2}{\sec^2 - {}^o R} \right) \left(T_a ({}^o F) + 459.67 \right)}$$

Standard Properties of Air at Sea Level:

Temperature (T_0): 59 °F = 518.67 °R

Pressure (p_0) : $14.696 \, lb/in^2 = 2116.224 \, lb/ft^2$

Density (ρ_0) : $0.0764746 \ lb/ft^3 = 0.00237691 \ lb-sec^2/ft^4$

Speed of Sound, Mach = 1 (M) 1116.45 ft/sec = 761.21 mph

Constants:

Temperature (Rankine): $T({}^{\circ}F) + 459.67$ Gravity (g): $32.174 \, ft/sec^2$ Molar Mass of Air: $28.9644 \, lb/lb_{mole}$

Specific Gas Constant (*R*): $1545.31 \ lb-ft/lb_{mole} R = 1716.5488 \ ft^2/sec^2 R$

Example: Calculate the air density (ρ_a) and speed of sound (M_a) at an altitude of (h = 10,000 feet) and temperature of $(T_a = 30 \text{ }^{\circ}F)$. Repeat for a warm day $(T_a = 80 \text{ }^{\circ}F)$.

Calculate the standard temperature (T_{as}) and pressure (p_{as}) at (h = 10,000 ft):

$$T_{as} = 483.01 \, ^{o}R \, p_{as} = 1455.33 \, lb \, / \, ft^{2}$$

Calculate the air density (ρ_a) and mach speed (M_a) at the two temperatures:

$$T_a = 30^{\circ} F$$
 $\rho_a = 0.001731 \ lb - \sec^2 / ft^4$ $M_a = 1084.79 \ ft/sec$ $T_a = 80^{\circ} F$ $\rho_a = 0.001571 \ lb - \sec^2 / ft^4$ $M_a = 1138.82 \ ft/sec$

Appendix 2: Other Required Equations

True Air Speed: Actual aircraft speed at altitude: [$V_{altitude} = V_{SeaLevel} \sqrt{\frac{\rho_{SeaLevel}}{\rho_{altitude}}}$]

Required horsepower at altitude (1
$$hp = 550$$
 lbf -foot/sec) [$hp = \frac{T(V_{altitude})}{(\eta/100)}$]

For normally aspirated engines (non turbocharged, non supercharged) there is a horsepower drop with increasing altitude due to the reduction in air density. Thus, you need a larger horsepower at sea level.

$$[hp_{SeaLevel} = hp_{altitude} \left(\frac{\rho_{altitude}}{\rho_{SeaLevel}} \right) - \frac{1 - \left(\frac{\rho_{altitude}}{\rho_{SeaLevel}} \right)}{7.55}$$

APPENDIX 3: Normalization of distributed load functions

As you have seen, we can describe the variation of aircraft loads on a wing by applying a distributed load function, such as (for drag) to find the load per unit span-length as a function of *x*:

$$d(x) = qC_D c_o \left(1 - \frac{2x}{b} (1 - \lambda) \right) f(x)$$

where q is the dynamic pressure $0.5\rho v^2$, C_D is the drag coefficient, c_o is the chord length at the wing root, b is the wingspan (wingtip to wingtip), λ is the taper ratio, and f(x) represents the distribution in drag for a uniform chord length, and is given by (for example):

$$f(x) = d_o + \sum_{i=1}^{\infty} d_i \left(\frac{2x}{b}\right)^i$$

The function

$$c_o \left(1 - \frac{2x}{b} (1 - \lambda) \right)$$

represents the span-wise variation in the chord length.

When we integrate the load function d(x) over the full length of the wingspan, we should recover the total drag on the wing:

$$2\int_{0}^{b/2} d(x) dx = D_{wings}$$

So, if you are given a known total wing drag D_{wings} and a load function such as:

$$f(x) = d_o + d_{10} \left(\frac{2x}{b}\right)^{10}$$

then in order to find the distributed drag function d(x), you must integrate the known functions over the domain:

$$\begin{split} D_{wings} &= 2qC_D c_o \int_0^{b/2} \left(1 - \frac{2x}{b} (1 - \lambda)\right) \left(d_o + d_{10} \left(\frac{2x}{b}\right)^{10}\right) dx \\ &= 2qC_D c_o \int_0^{b/2} \left[d_o + d_{10} \left(\frac{2x}{b}\right)^{10} - d_o (1 - \lambda) \frac{2x}{b} - d_{10} (1 - \lambda) \left(\frac{2x}{b}\right)^{11}\right] dx \\ &= 2qC_D c_o \left[d_o x + \frac{d_{10} 2^{10}}{b^{10}} \frac{x^{11}}{11} - d_o (1 - \lambda) \frac{x^2}{b} - \frac{d_{10} (1 - \lambda) 2^{11}}{b^{11}} \frac{x^{12}}{12}\right]_0^{b/2} \\ &= 2qC_D c_o \left[\left(\frac{d_o b}{2}\right) + \left(\frac{d_{10} b}{22}\right) - \left(d_o (1 - \lambda) \frac{b}{4}\right) - \left(\frac{d_{10} (1 - \lambda) b}{24}\right)\right] \\ &= 2qC_D c_o \left[d_o \left(\frac{b}{4}\right) (1 + \lambda) + d_{10} \left(\frac{b}{264}\right) (1 + 11\lambda)\right] \\ &= qC_D c_o b \left[\left(\frac{d_o}{2}\right) (1 + \lambda) + \left(\frac{d_{10}}{132}\right) (1 + 11\lambda)\right] \\ \hline D_{wings} &= \frac{qC_D c_o b}{132} \left[66d_o (1 + \lambda) + d_{10} (1 + 11\lambda)\right] \end{split}$$

Solving for qC_Dc_o , we get

$$qC_{D}c_{o} = \frac{132D_{wings}}{b[66d_{o}(1+\lambda) + d_{10}(1+11\lambda)]}$$

Then plugging this (and our function f(x)) back to our first equation, we get our final distributed drag function expressed in terms of the total drag, the wing span, the wing taper, and the drag function:

$$d(x) = \frac{132D_{wings}}{b[66d_o(1+\lambda) + d_{10}(1+11\lambda)]} \left(1 - \frac{2x}{b}(1-\lambda)\right) \left(d_o + d_{10}\left(\frac{2x}{b}\right)^{10}\right)$$

г.				_						.,		
1	В	С	D	E	F	G	Н	I	J	K	L	M N
H	3.7.4	TI AD Duni	and (#1) Airmonaft Boufour		d AinT anda							
2	MA	I LAB Proje	ect (#1) - Aircraft Perfori	nance an	a AirLoaas							
3	SE-16	60A Aerospace S	Structural Mechanics, University	of California	, San Diego (Cop	yright J.B. Kos	matka, 2020)					
5		Version:	Winter, 2020 (v1)									
6		***************************************	10(1)									
7		Project Title:										
8		2,000 11001										
9		Variable	Description	Value	Units						Units Re	eference
10		ilnput	Input Units	1	1 = US, 2 = SI						US	SI
11		iOutput	Output Units	1	1 = US, 2 = SI					Power	Нр	Watts
12		топерис	output omis	-	1 00,2 0.					Speed (V)	ft/sec	m/sec
	х	Port 1:	Aircraft Aerodynamic Definition							Mass	lb-sec ² /inch	
13 14		Part 1:	Aircraft Aerodynamic Definition			1					lb lb	kg N
_		Mandala.	D	V-1	1114					Force		
15		Variable	Description	Value	Units					Length	inch, feet	m
16		dC _L /da	Lift Curve Slope	0.0836	1/degree					Temperature	oF	оC
17		a _o	Zero Lift Angle	-3	degree							
18		C _{L-max} (+)	Max Lift at Stall (+)	1.338	1							
19		a _{stall} (+)	Stall Angle (+)	13	degree							
20		C _{L-max} (-)	Max Lift at Stall (-)	-1.338	1							
21		a _{stall} (-)	Stall Angle (-)	-19	degree							
22		C mo	Wing Moment Coefficient	-0.045	1							
23		C DoA	Parasitic Drag - Fuselage	0.024	1							
24		C DoA	Parasitic Drag - Wing	0.008	1							
25	+-		Induced Drag Coefficient	0.008	1							
-	\vdash	C DiW			1							
26	\vdash	d ₀	Spanwise drag amplification	1	1						 	
27	-	d ₁₀	Spanwise drag amplification	0.2	1							
28	\vdash	Hp	Maximum Motor Power	200	Hp or Watts							
29	1	η	Propeller Efficiency	85	%							
30	v	Dort 2	Aircraft Performance of Standard	Sea Lovel							1	L
32	Х	rart 2:	Note: Based upon maximum aircraft		calculated	rea (see hele)					1	F
33	-		Note: Based upon maximum aircraf	r weignt and	carcurated WING at	ca (see nelow)						
34		Flaps - Stowed										
35		Variable	Description	Value	Units							
36	+-	Variable	Stall Speed	62								
			<u> </u>		ft/sec or m/sec							
37	-	V _{NO}	Max Structural Cruise Speed	150	ft/sec or m/sec							
38		V _{NE}	Dive Speed - Never Exceed	210	ft/sec or m/sec							
39		n _p	Max Positive Load Factor	3.8	1							
40		n _n	Max Negative Load Factor	-1.52	1							
41		$(0 < V < V_C)$	Gust Updraft	50	ft/sec or m/sec							
42		$(V_C < V < V_D)$	Gust Updraft	25	ft/sec or m/sec							
43			Gust Downdraft	-50	ft/sec or m/sec							
44			Gust Downdraft	-25	ft/sec or m/sec							
45	-	K _g	Gust Alleviation Factor	1	1							
46		g	Gust Alleviation ratto	-	-							
46		Flaps - Extended	(60 degrees)									
48		Variable	Description Description	Value	Units							
49		$V_{s\theta}$	Stall Speed	56	ft/sec or m/sec							
50	\vdash			100								
		V _{FE}	Maximum Speed		ft/sec or m/sec							
51	\vdash	n pf	Positive Load Factor	2	1							
52	-	n _{nf}	Negative Load Factor	-1.3	1							
53	_	B : 6	Aircraft Min 1 T-''	afinit'-	l				L		1	
54	Х	Part 3:	Aircraft Wing and Tail Geometry D	erinition	I	1			ı	ı	1	
55		Main Wing Defin	ition									
56	1			Value	lle***							
57	\vdash	Variable	Description	Value	Units							
58	\vdash	W _w	Wing Weight (total)	250	lb (or N)							
59	\vdash	b	Span (tip to tip)	36	inch or m							
60		<i>b</i> _f	Fuselage Width (% of span)	10	%							
61		b as	Aileron Span Length (% of span)	45	%							
62		b ac	Aileron Chord Length (% of chord)	20	%							
63	\vdash	b_{fs}	Flap Span Length (% of span)	45	%							
64		b fc	Flap Chord Length (% of chord)	20	%							
65		C_R	Chord - Root	4.83	inch or m							
66		C_T	Chord - Tip	4.83	inch or m							
67		α_R	Incidence Angle - Root	4.83	degrees							
68		α_R	Incidence Angle - Tip	4.83	degrees							
69		ΔX_{w4}	Wing (C/4) Station	46	inch or m							
70												
71			izer Definition (Assume NACA-0012 a									
72		Variable	Description	Value	Units							
73	$oxed{\Box}$	b_h	Span	36	inch or m							
74		C_{rh}	Chord - Root	4.83	inch or m							
75		C th	Chord - Tip	4.83	inch or m		-					
76		∆ X _{h4}	Horizontal Stabilizer (C/4) Station	46	inch or m							
77												
78		Vertical Stabilize	r Definition (Assume NACA-0012 airfo	oil)								
79		Variable	Description	Value	Units							
80		<i>b</i> _v	Span	36	inch or m							
81		C rv	Chord - Root	4.83	inch or m							
82		Ctv	Chord - Tip	4.83	inch or m							
					-							

т.	- 1	_	_	-									Taile'
А	В	C	D	E	F	G	Н	ı	J	K	L	М	ΝO
83		∆Xv ₄	Verical Stabilizer (C/4) Station	46	inch or m								
84													
85													П
86	Х	Part 4:	Aircraft Weight and Balance		,	,			,	,			
87													
88								Aircraft Con	figuration				1
89		Station (inch)	Description	Weight (lb)	1	2	3	4	5	6	7	8	П
90		39.61	Aircraft (empty + oil, etc)	1454	Х	Х	Х	Х	Х	Х	Х	Х	
91		48	Fuel (40 gallons max)	240					х	х	Х	х	П
92		37	Pilot	170	Х	Х	Х	Х	Х	х	Х	х	П
93		37	Co-Pilot (front passenger)	170			Х	Х			Х	х	П
94		73	Rear passenger	170				Х				х	П
95		95	luggage (in cockpit)	96		Х	Х	Х		х	Х	х	П
96		123	luggage (in fuselage)	0			Х	Х			Х	Х	П
97													T
98	Х	Part 5:	Aircraft Local Environment	•			,				,		
99													
100		Variable	Description	Value	Units								П
101		h	Altimeter - Altitude (h) above SL	10000	feet or m								П
102		T	Temperature	30	°F or °C								П
103													
104													
105	_	END OF FILE		-				_					

1 17	A B	С	D	E	F	G	Н	1	ı	К		М	N O
1	4 Б	C	D	E	Г	G	П	'	J	N.	L	IVI	INIC
\vdash	МА	TI AR Proi	ect (#1) - Aircraft Performo	nee and	AirI oads								
2	_					ht I B . K	l 2020						+
3	3E-16	oua Aerospace	Structural Analysis, University of Cal	ijornia, San	Diego (Copyrig	nt J.B. Kosmai	ka, 2020,						
5		Version:	Winter, 2020 (v1)										
6													
7		Student Name:											
9		Student ID:		ı									
-		Dunion Title											-
10		Project Title:		l									-
12	INPLIT	T ECHO:			I.	l .		1		1	1		
13								1		1			
14		Variable	Description	Value	Units						Units Re	ference	
15		iInput	Input Units	1	1 = US, 2 = SI						US	SI	
16		iOutput	Output Units	1	1 = US, 2 = SI					Power	Нр	Watts	
17										Speed (V)	ft/sec	m/sec	
18	Х	Part 1:	Aircraft Aerodynamic Definition							Mass	lb-sec ² /inch	kg	
19										Force	lb	N	
20		Variable	Description	Value	Units					Length	inch, feet	m	
21		dC _L /da	Lift Curve Slope	0.0836	1/degree					Temperature	oF	оС	
22		a _o	Zero Lift Angle	-3	degree								1
23		-	Max Lift at Stall (+)	1.338	1								\perp
24			Stall Angle (+)	13	degree								\perp
25		C _{L-max} (-)	Max Lift at Stall (-)	-1.338	1								\perp
26		a _{stall} (-)	Stall Angle (-)	-19	degree								\perp
27		C mo	Wing Moment Coefficient	-0.045	1								+
28		C DoA	Parasitic Drag - Fuselage	0.024	1								
29		C DoW	Parasitic Drag - Wing	0.008	1								
30		C _{DiW}	Induced Drag Coefficient	0.0358	1								
31		d ₀	Spanwise drag amplification	1	1								_
32		d ₁₀	Spanwise drag amplification	0.2	1								
33 34		Hp	Maximum Motor Power Propeller Efficiency	1 85	Hp %								+-
35		η	Properler Efficiency	0.5	70								+-
36	Х	Part 2:	Aircraft Performance at Standard Sea	Level	1	I				1	1		
37			Note: Based upon maximum aircraft w		culated wing area	(see below)				1			
38			•										
39		Flaps - Stowed											
40		Variable	Description	Value	Units								
41		V_{s1}											
42			Stall Speed	62	ft/sec								
43		$V_{ m NO}$	Max Structural Cruise Speed	150	ft/sec								
44			Max Structural Cruise Speed Dive Speed - Never Exceed	150 210									
45		$V_{ m NO}$	Max Structural Cruise Speed Dive Speed - Never Exceed Max Positive Load Factor	150 210 3.8	ft/sec								
		V _{NO} V _{NE} n _p n _n	Max Structural Cruise Speed Dive Speed - Never Exceed Max Positive Load Factor Max Negative Load Factor	150 210 3.8 -1.52	ft/sec ft/sec 1								
46		V_{NO} V_{NE} n_{p} n_{n} $(0 < V < V_{C})$	Max Structural Cruise Speed Dive Speed - Never Exceed Max Positive Load Factor Max Negative Load Factor Gust Updraft	150 210 3.8 -1.52 50	ft/sec ft/sec 1 1 ft/sec								
46 47		$\begin{array}{c} V_{\rm NO} \\ V_{\rm NE} \\ n_{\rm p} \\ n_{\rm n} \\ (0 < {\rm V} < {\rm V}_{\rm C}) \\ ({\rm V}_{\rm C} < {\rm V} < {\rm V}_{\rm D}) \end{array}$	Max Structural Cruise Speed Dive Speed - Never Exceed Max Positive Load Factor Max Negative Load Factor Gust Updraft Gust Updraft	150 210 3.8 -1.52 50 25	ft/sec ft/sec 1 ft/sec ft/sec ft/sec								
46 47 48		$\begin{array}{c} V_{NO} \\ \hline V_{NE} \\ \hline n_p \\ \hline n_n \\ (0 < V < V_C) \\ (V_C < V < V_D) \\ (0 < V < V_C) \end{array}$	Max Structural Cruise Speed Dive Speed - Never Exceed Max Positive Load Factor Max Negative Load Factor Gust Updraft Gust Updraft Gust Downdraft	150 210 3.8 -1.52 50 25 -50	ft/sec ft/sec 1 ft/sec ft/sec ft/sec ft/sec								
46 47 48 49		$\begin{array}{c} V_{NO} \\ \hline V_{NE} \\ \hline n_p \\ \hline n_n \\ (0 < V < V_C) \\ (V_C < V < V_D) \\ (0 < V < V_C) \\ (V_C < V < V_D) \\ \end{array}$	Max Structural Cruise Speed Dive Speed - Never Exceed Max Positive Load Factor Max Negative Load Factor Gust Updraft Gust Updraft Gust Downdraft Gust Downdraft	150 210 3.8 -1.52 50 25 -50 -25	ft/sec ft/sec 1 ft/sec ft/sec ft/sec								
46 47 48 49 50		$\begin{array}{c} V_{NO} \\ \hline V_{NE} \\ \hline n_p \\ \hline n_n \\ (0 < V < V_C) \\ (V_C < V < V_D) \\ (0 < V < V_C) \end{array}$	Max Structural Cruise Speed Dive Speed - Never Exceed Max Positive Load Factor Max Negative Load Factor Gust Updraft Gust Updraft Gust Downdraft	150 210 3.8 -1.52 50 25 -50	ft/sec ft/sec 1 ft/sec ft/sec ft/sec ft/sec								
46 47 48 49 50 51		$\begin{array}{c} V_{\rm NO} \\ V_{\rm NE} \\ \hline n_{\rm p} \\ n_{\rm n} \\ (0 < {\rm V} < {\rm V_C}) \\ ({\rm V_C} < {\rm V} < {\rm V_D}) \\ (0 < {\rm V} < {\rm V_C}) \\ ({\rm V_C} < {\rm V} < {\rm V_D}) \\ K_{\rm g} \end{array}$	Max Structural Cruise Speed Dive Speed - Never Exceed Max Positive Load Factor Max Negative Load Factor Gust Updraft Gust Updraft Gust Downdraft Gust Downdraft Gust Alleviation Factor	150 210 3.8 -1.52 50 25 -50 -25	ft/sec ft/sec 1 ft/sec ft/sec ft/sec ft/sec								
46 47 48 49 50 51 52		$\begin{array}{c} V_{\rm NO} \\ V_{\rm NE} \\ \hline n_{\rm p} \\ n_{\rm n} \\ (0 < {\rm V} < {\rm V_{\rm C}}) \\ ({\rm V_{\rm C}} < {\rm V} < {\rm V_{\rm D}}) \\ (0 < {\rm V} < {\rm V_{\rm C}}) \\ ({\rm V_{\rm C}} < {\rm V} < {\rm V_{\rm D}}) \\ K_{\rm g} \\ \\ \hline {\rm Flaps - Extende} \end{array}$	Max Structural Cruise Speed Dive Speed - Never Exceed Max Positive Load Factor Max Negative Load Factor Gust Updraft Gust Updraft Gust Downdraft Gust Downdraft Gust Alleviation Factor	150 210 3.8 -1.52 50 25 -50 -25 1	ft/sec ft/sec 1 1 ft/sec ft/sec ft/sec 1								
46 47 48 49 50 51 52 53		$\begin{array}{c} V_{NO} \\ V_{NE} \\ n_p \\ n_n \\ (0 < V < V_C) \\ (V_C < V < V_D) \\ (0 < V < V_C) \\ (V_C < V < V_D) \\ K_g \\ \end{array}$ Flaps - Extender	Max Structural Cruise Speed Dive Speed - Never Exceed Max Positive Load Factor Max Negative Load Factor Gust Updraft Gust Updraft Gust Downdraft Gust Downdraft Gust Alleviation Factor d (60 degrees) Description	150 210 3.8 -1.52 50 25 -50 -25 1	ft/sec ft/sec 1 ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec Units								
46 47 48 49 50 51 52 53 54		$\begin{array}{c} V_{\rm NO} \\ V_{\rm NE} \\ n_{\rm p} \\ n_{\rm n} \\ (0 < {\rm V} < {\rm V_C}) \\ ({\rm V_C} < {\rm V} < {\rm V_D}) \\ (0 < {\rm V} < {\rm V_C}) \\ ({\rm V_C} < {\rm V} < {\rm V_D}) \\ K_{\rm g} \\ \\ \text{Flaps - Extende} \\ V_{\rm ariable} \\ V_{\rm s0} \end{array}$	Max Structural Cruise Speed Dive Speed - Never Exceed Max Positive Load Factor Max Negative Load Factor Gust Updraft Gust Updraft Gust Downdraft Gust Downdraft Gust Alleviation Factor d (60 degrees) Description Stall Speed	150 210 3.8 -1.52 50 25 -50 -25 1	ft/sec ft/sec 1 ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec								
46 47 48 49 50 51 52 53 54 55		$\begin{array}{c} V_{\rm NO} \\ V_{\rm NE} \\ n_{\rm p} \\ n_{\rm n} \\ (0 < {\rm V} < {\rm V_C}) \\ ({\rm V_C} < {\rm V} < {\rm V_D}) \\ (0 < {\rm V} < {\rm V_C}) \\ ({\rm V_C} < {\rm V} < {\rm V_D}) \\ K_{\rm g} \\ \\ \text{Flaps - Extende} \\ V_{ariable} \\ V_{s\theta} \\ V_{FE} \end{array}$	Max Structural Cruise Speed Dive Speed - Never Exceed Max Positive Load Factor Max Negative Load Factor Gust Updraft Gust Updraft Gust Downdraft Gust Downdraft Gust Alleviation Factor d (60 degrees) Description Stall Speed Maximum Speed	150 210 3.8 -1.52 50 25 -50 -25 1 Value 56 100	ft/sec ft/sec 1 ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec Units								
46 47 48 49 50 51 52 53 54 55 56		$\begin{array}{c} V_{\rm NO} \\ V_{\rm NE} \\ n_{\rm p} \\ n_{\rm n} \\ (0 < {\rm V} < {\rm V_C}) \\ ({\rm V_C} < {\rm V} < {\rm V_D}) \\ (0 < {\rm V} < {\rm V_C}) \\ ({\rm V_C} < {\rm V} < {\rm V_D}) \\ K_{\rm g} \\ \\ \text{Flaps - Extende} \\ V_{\rm s0} \\ V_{\rm FE} \\ n_{\it pf} \end{array}$	Max Structural Cruise Speed Dive Speed - Never Exceed Max Positive Load Factor Max Negative Load Factor Gust Updraft Gust Updraft Gust Downdraft Gust Downdraft Gust Alleviation Factor d (60 degrees) Description Stall Speed Maximum Speed Positive Load Factor	150 210 3.8 -1.52 50 25 -50 -25 1 Value 56 100 2	ft/sec ft/sec 1 ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec								
46 47 48 49 50 51 52 53 54 55 56		$\begin{array}{c} V_{\rm NO} \\ V_{\rm NE} \\ n_{\rm p} \\ n_{\rm n} \\ (0 < {\rm V} < {\rm V_C}) \\ ({\rm V_C} < {\rm V} < {\rm V_D}) \\ (0 < {\rm V} < {\rm V_C}) \\ ({\rm V_C} < {\rm V} < {\rm V_D}) \\ K_{\rm g} \\ \\ \text{Flaps - Extende} \\ V_{ariable} \\ V_{s\theta} \\ V_{FE} \end{array}$	Max Structural Cruise Speed Dive Speed - Never Exceed Max Positive Load Factor Max Negative Load Factor Gust Updraft Gust Updraft Gust Downdraft Gust Downdraft Gust Alleviation Factor d (60 degrees) Description Stall Speed Maximum Speed	150 210 3.8 -1.52 50 25 -50 -25 1 Value 56 100	ft/sec ft/sec 1 ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec 1 Units ft/sec ft/sec								
46 47 48 49 50 51 52 53 54 55 56 57	X	$\begin{array}{c} V_{\rm NO} \\ V_{\rm NE} \\ n_{\rm p} \\ n_{\rm n} \\ (0 < {\rm V} < {\rm V_{\rm C}}) \\ ({\rm V_{\rm C}} < {\rm V} < {\rm V_{\rm D}}) \\ (0 < {\rm V} < {\rm V_{\rm C}}) \\ ({\rm V_{\rm C}} < {\rm V} < {\rm V_{\rm D}}) \\ K_{\rm g} \\ \\ \text{Flaps - Extende} \\ V_{s0} \\ V_{FE} \\ n_{pf} \\ n_{nf} \end{array}$	Max Structural Cruise Speed Dive Speed - Never Exceed Max Positive Load Factor Max Negative Load Factor Gust Updraft Gust Updraft Gust Downdraft Gust Downdraft Gust Alleviation Factor d (60 degrees) Description Stall Speed Maximum Speed Positive Load Factor	150 210 3.8 -1.52 50 25 -50 -25 1 Value 56 100 2 -1.3	ft/sec ft/sec 1 ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec 1 Units ft/sec ft/sec								
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	X	$\begin{array}{c} V_{\rm NO} \\ V_{\rm NE} \\ n_{\rm p} \\ n_{\rm n} \\ (0 < {\rm V} < {\rm V_{\rm C}}) \\ ({\rm V_{\rm C}} < {\rm V} < {\rm V_{\rm D}}) \\ (0 < {\rm V} < {\rm V_{\rm C}}) \\ ({\rm V_{\rm C}} < {\rm V} < {\rm V_{\rm D}}) \\ K_{\rm g} \\ \\ \text{Flaps - Extende} \\ V_{s0} \\ V_{FE} \\ n_{pf} \\ n_{nf} \end{array}$	Max Structural Cruise Speed Dive Speed - Never Exceed Max Positive Load Factor Max Negative Load Factor Gust Updraft Gust Updraft Gust Downdraft Gust Downdraft Gust Alleviation Factor d (60 degrees) Description Stall Speed Maximum Speed Positive Load Factor	150 210 3.8 -1.52 50 25 -50 -25 1 Value 56 100 2 -1.3	ft/sec ft/sec 1 ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec 1 Units ft/sec ft/sec								
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61	X	$\begin{array}{c} V_{\text{NO}} \\ V_{\text{NE}} \\ n_{\text{p}} \\ n_{\text{n}} \\ (0 < \text{V} < \text{V}_{\text{C}}) \\ (\text{V}_{\text{C}} < \text{V} < \text{V}_{\text{D}}) \\ (0 < \text{V} < \text{V}_{\text{C}}) \\ (\text{V}_{\text{C}} < \text{V} < \text{V}_{\text{D}}) \\ K_{\text{g}} \\ \end{array}$ $\begin{array}{c} \text{Flaps - Extende} \\ \text{Variable} \\ V_{s0} \\ V_{FE} \\ n_{pf} \\ n_{nf} \\ \end{array}$ $\begin{array}{c} \text{Part 3:} \end{array}$	Max Structural Cruise Speed Dive Speed - Never Exceed Max Positive Load Factor Max Negative Load Factor Gust Updraft Gust Updraft Gust Downdraft Gust Downdraft Gust Alleviation Factor d (60 degrees) Description Stall Speed Maximum Speed Positive Load Factor Aircraft Wing and Tail Geometry Defin	150 210 3.8 -1.52 50 25 -50 -25 1 Value 56 100 2 -1.3	ft/sec ft/sec 1 ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec 1 Units ft/sec ft/sec								
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62	X	$\begin{array}{c} V_{\text{NO}} \\ V_{\text{NE}} \\ n_{\text{p}} \\ n_{\text{n}} \\ (0 < \text{V} < \text{V}_{\text{C}}) \\ (\text{V}_{\text{C}} < \text{V} < \text{V}_{\text{D}}) \\ (0 < \text{V} < \text{V}_{\text{C}}) \\ (\text{V}_{\text{C}} < \text{V} < \text{V}_{\text{D}}) \\ K_{\text{g}} \\ \end{array}$ $\begin{array}{c} \text{Flaps - Extende} \\ \text{Variable} \\ V_{s\theta} \\ V_{FE} \\ n_{pf} \\ n_{nf} \\ \end{array}$ $\begin{array}{c} \text{Part 3:} \\ \\ \text{Main Wing Defi} \\ \\ \text{Variable} \\ \end{array}$	Max Structural Cruise Speed Dive Speed - Never Exceed Max Positive Load Factor Max Negative Load Factor Gust Updraft Gust Updraft Gust Downdraft Gust Downdraft Gust Alleviation Factor d (60 degrees) Description Stall Speed Maximum Speed Positive Load Factor Aircraft Wing and Tail Geometry Definition Description	150 210 3.8 -1.52 50 25 -50 -25 1 Value 56 100 2 -1.3	ft/sec ft/sec 1 ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec 1 Units ft/sec ft/sec 1 Units								
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63	X	$\begin{array}{c} V_{\text{NO}} \\ V_{\text{NE}} \\ n_{\text{p}} \\ n_{\text{n}} \\ (0 < \text{V} < \text{V}_{\text{C}}) \\ (\text{V}_{\text{C}} < \text{V} < \text{V}_{\text{D}}) \\ (0 < \text{V} < \text{V}_{\text{C}}) \\ (\text{V}_{\text{C}} < \text{V} < \text{V}_{\text{D}}) \\ K_{\text{g}} \\ \end{array}$ $Flaps - \text{Extende} \\ \text{Variable} \\ V_{s\theta} \\ V_{FE} \\ n_{pf} \\ n_{nf} \\ \\ \text{Part 3:} \\ \\ \text{Main Wing Defi} \\ V_{\text{w}} \\ \end{array}$	Max Structural Cruise Speed Dive Speed - Never Exceed Max Positive Load Factor Max Negative Load Factor Gust Updraft Gust Updraft Gust Downdraft Gust Downdraft Gust Alleviation Factor d (60 degrees) Description Stall Speed Maximum Speed Positive Load Factor Aircraft Wing and Tail Geometry Definition Description Wing Weight (total)	150 210 3.8 -1.52 50 25 -50 -25 1 Value 56 100 2 -1.3 nition	ft/sec ft/sec 1 ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec 1 Units ft/sec ft/sec 1 Units ft/sec								
46 47 48 49 50 51 52 53 54 55 66 67 58 69 60 61 62 63 64	X	$\begin{array}{c} V_{\rm NO} \\ V_{\rm NE} \\ n_{\rm p} \\ n_{\rm n} \\ (0 < {\rm V} < {\rm V_C}) \\ ({\rm V_C} < {\rm V} < {\rm V_D}) \\ (0 < {\rm V} < {\rm V_C}) \\ ({\rm V_C} < {\rm V} < {\rm V_D}) \\ K_{\rm g} \\ \end{array}$ Flaps - Extended Variable $\begin{array}{c} V_{s0} \\ V_{FE} \\ n_{pf} \\ n_{nf} \\ \end{array}$ Part 3:	Max Structural Cruise Speed Dive Speed - Never Exceed Max Positive Load Factor Max Negative Load Factor Gust Updraft Gust Updraft Gust Downdraft Gust Downdraft Gust Alleviation Factor d (60 degrees) Description Stall Speed Maximum Speed Positive Load Factor Aircraft Wing and Tail Geometry Definition Description Wing Weight (total) Span (tip to tip)	150 210 3.8 -1.52 50 25 -50 -25 1 Value 56 100 2 -1.3 mition Value 250 36	ft/sec ft/sec 1 ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec 1 Units ft/sec ft/sec 1 Units ft/sec								
46 47 48 49 50 51 52 53 54 55 66 67 58 69 60 61 62 63 64 65	X	$\begin{array}{c} V_{NO} \\ V_{NE} \\ \hline n_p \\ n_n \\ (0 < V < V_C) \\ (V_C < V < V_D) \\ (0 < V < V_C) \\ (V_C < V < V_D) \\ K_g \\ \hline \\ Flaps - Extender \\ Variable \\ V_{s0} \\ V_{FE} \\ n_{pf} \\ n_{nf} \\ \hline \\ Part 3: \\ \\ Main Wing Defi \\ Variable \\ V_w \\ b \\ b_{fs} \\ \end{array}$	Max Structural Cruise Speed Dive Speed - Never Exceed Max Positive Load Factor Max Negative Load Factor Gust Updraft Gust Downdraft Gust Downdraft Gust Alleviation Factor d (60 degrees) Description Stall Speed Maximum Speed Positive Load Factor Negative Load Factor Aircraft Wing and Tail Geometry Definition Description Wing Weight (total) Span (tip to tip) Fuselage Width (% of span)	150 210 3.8 -1.52 50 25 -50 -25 1 Value 56 100 2 -1.3 nition Value 250 36 20	ft/sec ft/sec 1 ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec 1 Units ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec								
46 47 48 49 50 51 52 53 54 55 56 57 58 99 60 61 62 63 64 65 66 66	X	$\begin{array}{c} V_{NO} \\ V_{NE} \\ \hline n_p \\ n_n \\ (0 < V < V_C) \\ (V_C < V < V_D) \\ (0 < V < V_C) \\ (V_C < V < V_D) \\ K_g \\ \hline \\ Flaps - Extended \\ Variable \\ V_{s0} \\ V_{FE} \\ n_{nf} \\ \hline \\ Part 3: \\ \hline \\ Main Wing Defi \\ Variable \\ W_w \\ b \\ b_{fs} \\ b_{as} \\ \end{array}$	Max Structural Cruise Speed Dive Speed - Never Exceed Max Positive Load Factor Max Negative Load Factor Gust Updraft Gust Downdraft Gust Downdraft Gust Downdraft Gust Alleviation Factor d (60 degrees) Description Stall Speed Maximum Speed Positive Load Factor Aircraft Wing and Tail Geometry Definition Description Wing Weight (total) Span (tip to tip) Fuselage Width (% of span) Aileron Span Length (% of span)	150 210 3.8 -1.52 50 25 -50 -25 1 Value 56 100 2 -1.3 whition Value 250 36 20 40	ft/sec ft/sec 1 ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec 1 Units ft/sec ft/sec 1 Units ft/sec ft/sec 1 ft/sec								
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 66 66 67	X	$\begin{array}{c} V_{NO} \\ V_{NE} \\ \\ n_p \\ n_n \\ (0 < V < V_C) \\ (V_C < V < V_D) \\ (0 < V < V_C) \\ (V_C < V < V_D) \\ \\ K_g \\ \\ Flaps - Extende \\ Variable \\ V_{SO} \\ V_{FE} \\ n_{pf} \\ n_{nf} \\ \\ \\ Part 3: \\ \\ Main Wing Defi \\ Variable \\ W_w \\ b \\ b_{as} \\ b_{ac} \\ \end{array}$	Max Structural Cruise Speed Dive Speed - Never Exceed Max Positive Load Factor Max Negative Load Factor Gust Updraft Gust Downdraft Gust Downdraft Gust Downdraft Gust Alleviation Factor d (60 degrees) Description Stall Speed Maximum Speed Positive Load Factor Negative Load Factor Aircraft Wing and Tail Geometry Definition Description Wing Weight (total) Span (tip to tip) Fuselage Width (% of span) Aileron Chord Length (% of chord)	150 210 3.8 -1.52 50 25 -50 -25 1 Value 56 100 2 -1.3 nition Value 250 36 20 40 20	ft/sec ft/sec 1 ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec 1 Units ft/sec 1 Units ft/sec ft/sec 1 % % % %								
46 47 48 49 50 51 52 53 54 55 56 65 60 61 62 66 66 67 68	X	$\begin{array}{c} V_{NO} \\ V_{NE} \\ \\ n_p \\ n_n \\ (0 < V < V_C) \\ (V_C < V < V_D) \\ (0 < V < V_C) \\ (V_C < V < V_D) \\ \\ K_g \\ \\ Flaps - Extende \\ Variable \\ V_{SO} \\ V_{FE} \\ n_{pf} \\ n_{nf} \\ \\ \end{array}$ $\begin{array}{c} Part 3: \\ Main Wing Defi \\ Variable \\ W_w \\ b \\ b \\ as \\ b_{ac} \\ b_{fs} \\ \end{array}$	Max Structural Cruise Speed Dive Speed - Never Exceed Max Positive Load Factor Max Negative Load Factor Gust Updraft Gust Downdraft Gust Downdraft Gust Alleviation Factor d (60 degrees) Description Stall Speed Maximum Speed Positive Load Factor Aircraft Wing and Tail Geometry Definition Description Wing Weight (total) Span (tip to tip) Fuselage Width (% of span) Aileron Chord Length (% of chord) Flap Span Length (% of span)	150 210 3.8 -1.52 50 25 -50 -25 1 Value 56 100 2 -1.3 nition Value 250 36 20 40 20 40	ft/sec ft/sec 1 1 ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec 1 Units ft/sec ft/sec 1 Units ft/sec ft/sec 1 % % % % %								
46 47 48 49 50 51 52 53 54 55 56 60 61 62 63 66 66 67 68 69	X	$\begin{array}{c} V_{NO} \\ V_{NE} \\ n_p \\ n_n \\ (0 < V < V_C) \\ (V_C < V < V_D) \\ (0 < V < V_C) \\ (V_C < V < V_D) \\ K_g \\ \\ \hline Flaps - Extender \\ Variable \\ V_{SO} \\ V_{FE} \\ n_{pf} \\ n_{nf} \\ \\ \hline Part 3: \\ \\ Main Wing Defi \\ V_{w} \\ b \\ b \\ b_{fs} \\ b_{ac} \\ b_{fs} \\ b_{fc} \\ \end{array}$	Max Structural Cruise Speed Dive Speed - Never Exceed Max Positive Load Factor Max Negative Load Factor Gust Updraft Gust Updraft Gust Downdraft Gust Downdraft Gust Alleviation Factor d (60 degrees) Description Stall Speed Maximum Speed Positive Load Factor Aircraft Wing and Tail Geometry Definition Description Wing Weight (total) Span (tip to tip) Fuselage Width (% of span) Aileron Chord Length (% of chord) Flap Chord Length (% of chord)	150 210 3.8 -1.52 50 25 -50 -25 1 Value 56 100 2 -1.3 ition Value 250 36 20 40 20 40 20	ft/sec ft/sec 1 1 ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec 1 Units ft/sec ft/sec 1 Units ft/sec ft/sec 1 % % % % % %								
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70	X	$\begin{array}{c} V_{NO} \\ V_{NE} \\ n_p \\ n_n \\ (0 < V < V_C) \\ (V_C < V < V_D) \\ (0 < V < V_C) \\ (V_C < V < V_D) \\ K_g \\ \\ \hline Flaps - Extender \\ Variable \\ V_{SO} \\ V_{FE} \\ n_{pf} \\ n_{nf} \\ \\ \hline Part 3: \\ \\ Main Wing Defi \\ Variable \\ W_w \\ b \\ b \\ b_{1s} \\ b_{as} \\ b_{ac} \\ b_{fs} \\ b_{fc} \\ C_R \\ \end{array}$	Max Structural Cruise Speed Dive Speed - Never Exceed Max Positive Load Factor Max Negative Load Factor Gust Updraft Gust Updraft Gust Downdraft Gust Downdraft Gust Alleviation Factor d (60 degrees) Description Stall Speed Maximum Speed Positive Load Factor Aircraft Wing and Tail Geometry Definition Description Wing Weight (total) Span (tip to tip) Fuselage Width (% of span) Aileron Chord Length (% of chord) Flap Chord Length (% of chord) Chord - Root	150 210 3.8 -1.52 50 25 -50 -25 1 Value 56 100 2 -1.3 ition Value 250 36 20 40 20 40 20 4.83	ft/sec ft/sec 1 1 ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec 1 Units ft/sec ft/sec 1 Units ft/sec ft/sec 1 Units ft/sec ft/sec inch								
46 47 48 49 50 51 52 56 57 58 59 60 61 62 66 67 68 69 70 71	X	$\begin{array}{c} V_{\rm NO} \\ V_{\rm NE} \\ n_{\rm p} \\ n_{\rm n} \\ (0 < {\rm V} < {\rm V_C}) \\ ({\rm V_C} < {\rm V} < {\rm V_D}) \\ (0 < {\rm V} < {\rm V_C}) \\ ({\rm V_C} < {\rm V} < {\rm V_D}) \\ K_{\rm g} \\ \end{array}$ Flaps - Extended Variable $\begin{array}{c} V_{s0} \\ V_{FE} \\ n_{pf} \\ n_{nf} \\ \end{array}$ Part 3: $\begin{array}{c} {\rm Main\ Wing\ Defi} \\ V_{\rm w} \\ b \\ b_{\rm fs} \\ b_{\rm as} \\ b_{\rm ac} \\ b_{\rm fs} \\ b_{\rm fc} \\ C_{R} \\ C_{T} \end{array}$	Max Structural Cruise Speed Dive Speed - Never Exceed Max Positive Load Factor Max Negative Load Factor Gust Updraft Gust Updraft Gust Downdraft Gust Downdraft Gust Alleviation Factor d (60 degrees) Description Stall Speed Maximum Speed Positive Load Factor Aircraft Wing and Tail Geometry Definition Description Wing Weight (total) Span (tip to tip) Fuselage Width (% of span) Aileron Span Length (% of span) Flap Chord Length (% of chord) Flap Chord Length (% of chord) Chord - Root Chord - Tip	150 210 3.8 -1.52 50 25 -50 -25 1 Value 56 100 2 -1.3 hition Value 250 36 20 40 20 40 20 4.83 4.83	ft/sec ft/sec 1 1 ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec 1 Units ft/sec ft/sec 1 Units ft/sec ft/sec 1 units ft/sec ft/sec ft/sec ft/sec								
46 47 48 49 50 51 52 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72	X	$\begin{array}{c} V_{\text{NO}} \\ V_{\text{NE}} \\ n_{\text{p}} \\ n_{\text{n}} \\ (0 < \text{V} < \text{V}_{\text{C}}) \\ (\text{V}_{\text{C}} < \text{V} < \text{V}_{\text{D}}) \\ (0 < \text{V} < \text{V}_{\text{C}}) \\ (\text{V}_{\text{C}} < \text{V} < \text{V}_{\text{D}}) \\ K_{\text{g}} \\ \end{array}$ $\begin{array}{c} \text{Flaps - Extende} \\ V_{\text{stable}} \\ $	Max Structural Cruise Speed Dive Speed - Never Exceed Max Positive Load Factor Max Negative Load Factor Gust Updraft Gust Updraft Gust Downdraft Gust Downdraft Gust Alleviation Factor d (60 degrees) Description Stall Speed Maximum Speed Positive Load Factor Aircraft Wing and Tail Geometry Definition Description Wing Weight (total) Span (tip to tip) Fuselage Width (% of span) Aileron Span Length (% of span) Flap Chord Length (% of chord) Flap Chord Length (% of chord) Chord - Root Chord - Tip Incidence Angle - Root	150 210 3.8 -1.52 50 25 -50 -25 1 Value 56 100 2 -1.3 hition Value 250 36 20 40 20 40 20 4.83 4.83 4.83	ft/sec ft/sec 1 ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec 1 Units ft/sec ft/sec 1 Units ft/sec ft/sec 1 ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec								
46 47 48 49 50 51 52 56 57 58 59 60 61 62 63 66 67 68 69 71 71 72 73	X	$\begin{array}{c} V_{NO} \\ V_{NE} \\ \\ n_p \\ n_n \\ (0 < V < V_C) \\ (V_C < V < V_D) \\ (0 < V < V_C) \\ (V_C < V < V_D) \\ \\ K_g \\ \\ Flaps - Extended \\ Variable \\ V_{s0} \\ V_{FE} \\ n_{nf} \\ \\ n_{nf} \\ \end{array}$ $\begin{array}{c} Part 3: \\ Main Wing Defi \\ Variable \\ V_{s0} \\ V_{FE} \\ n_{pf} \\ n_{nf} \\ \\ D_{s0} \\ D_{$	Max Structural Cruise Speed Dive Speed - Never Exceed Max Positive Load Factor Max Negative Load Factor Gust Updraft Gust Downdraft Gust Downdraft Gust Downdraft Gust Alleviation Factor d (60 degrees) Description Stall Speed Maximum Speed Positive Load Factor Negative Load Factor Aircraft Wing and Tail Geometry Definition Description wing Weight (total) Span (tip to tip) Fuselage Width (% of span) Aileron Span Length (% of span) Aileron Chord Length (% of chord) Flap Chord Length (% of chord) Chord - Root Chord - Tip Incidence Angle - Root Incidence Angle - Tip	150 210 3.8 -1.52 50 25 -50 -25 1 Value 56 100 2 -1.3 hition Value 250 36 20 40 20 40 20 40 20 4.83 4.83 4.83	ft/sec ft/sec 1 1 ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec 1 Units ft/sec ft/sec ft/sec ft/sec dt/sec ft/sec ft/s								
46 47 48 49 50 51 52 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72	X	$\begin{array}{c} V_{\text{NO}} \\ V_{\text{NE}} \\ n_{\text{p}} \\ n_{\text{n}} \\ (0 < \text{V} < \text{V}_{\text{C}}) \\ (\text{V}_{\text{C}} < \text{V} < \text{V}_{\text{D}}) \\ (0 < \text{V} < \text{V}_{\text{C}}) \\ (\text{V}_{\text{C}} < \text{V} < \text{V}_{\text{D}}) \\ K_{\text{g}} \\ \end{array}$ $\begin{array}{c} \text{Flaps - Extende} \\ V_{\text{stable}} \\ $	Max Structural Cruise Speed Dive Speed - Never Exceed Max Positive Load Factor Max Negative Load Factor Gust Updraft Gust Updraft Gust Downdraft Gust Downdraft Gust Alleviation Factor d (60 degrees) Description Stall Speed Maximum Speed Positive Load Factor Aircraft Wing and Tail Geometry Definition Description Wing Weight (total) Span (tip to tip) Fuselage Width (% of span) Aileron Span Length (% of span) Flap Chord Length (% of chord) Flap Chord Length (% of chord) Chord - Root Chord - Tip Incidence Angle - Root	150 210 3.8 -1.52 50 25 -50 -25 1 Value 56 100 2 -1.3 hition Value 250 36 20 40 20 40 20 4.83 4.83 4.83	ft/sec ft/sec 1 ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec 1 Units ft/sec ft/sec 1 Units ft/sec ft/sec 1 ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec ft/sec								

	_	_	1 -			_			 	.,			1
7.C	В	C	D D	E	F	G	Н	ı	J	K	L	М	N O
76			ilizer Definition (Assume NACA-0012 airf										
77		Variable	Description	Value	Units								
78		b_h	Span	80	inch								
79		C_{rh}	Chord - Root	50	inch								
80		C _{th}	Chord - Tip	50	inch								
81		ΔX_{h4}	Horizontal Stabilizer (C/4) Station	120	inch								+-
		1 h4	nonzontai Stabilizer (C/4) Station	120									+
82													
83			er Definition (Assume NACA-0012 airfoil										
84		Variable	Description	Value	Units								
85		<i>b</i> ,	Span	50	inch								
86		C_{rv}	Chord - Root	40	inch								
87		C tv	Chord - Tip	40	inch								
88		∆Xv ₄	Verical Stabilizer (C/4) Station	120	inch								
89		2.1.7 4	verteur stabilizer (e/4/ station	120	c.i								_
90				1									
91	Χ	Part 4:	Aircraft Weight and Balance									l	
92													
93								Aircraft Config	uration				
94	LΠ	Station (inch)	Description	Weight (lb)	1	2	3	4	5	6	7	8	1
95		39.61	Aircraft (empty + oil, etc)	1454	Х	Х	х	Х	Х	Х	х	Х	
96		48	Fuel (40 gallons max)	240					х	Х	х	Х	
97		37	Pilot	170	х	х	х	х	X	X	х	X	
98		37	Co-Pilot (front passenger)	170			x	X			Х	X	
99		73	Rear passenger	170				X			•	X	
100		95	luggage (in cockpit)	96		Х	Х	X		Х	Х	X	
101		123	luggage (in fuselage)	0		^	X	X		^	X	X	
_	-	123	inpage (iii iusciage)	U			^	^			^	^	4
102	,,		Almonto I and Employed	L	1								
103	Х	Part 5:	Aircraft Local Environment		1	ı	r	ı				ı	
104													
105		Variable	Description	Value	Units								
106	\Box	h	Altimeter - Altitude (h) above SL	10000	feet								\perp
107		T	Temperature	30	°F								
108							+						
109							+						
110	OUTP	IIT·		1									
111		J		1		ĺ		ĺ					
112		DART 1.	Aircraft Weight and Center of Gravity	Distribution									
_		PARII.	All craft weight and center of Gravity		1	ĺ	1	ĺ			1	l	
113													
													_
114							_	Aircraft Config					
115		Station (inch)	Description	Weight (lb)	1	2	3	4	5	6	7	8	
115 116		39.61	Aircraft (empty + oil, etc)	1454	1 X	2 X	3 X		5 X	Х	Х	Х	
115 116 117		39.61 48	Aircraft (empty + oil, etc) Fuel (40 gallons max)	1454 240	Х	Х	Х	4 X	5 X X	X X	X X	X X	
115 116 117 118		39.61 48 37	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot	1454 240 170			X	4 X	5 X	Х	X X X	X X X	
115 116 117		39.61 48 37 37	Aircraft (empty + oil, etc) Fuel (40 gallons max)	1454 240 170 170	Х	Х	Х	4 X X	5 X X	X X	X X	X X X	
115 116 117 118 119 120		39.61 48 37 37 73	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger	1454 240 170 170 170	Х	Х	X	4 X X X X	5 X X	X X	X X X	X X X X	
115 116 117 118 119		39.61 48 37 37	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger)	1454 240 170 170	Х	Х	X	4 X X	5 X X	X X	X X X	X X X	
115 116 117 118 119 120		39.61 48 37 37 73	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger	1454 240 170 170 170	Х	X X	X X X	4 X X X X	5 X X	x x x	X X X	X X X X	
115 116 117 118 119 120 121		39.61 48 37 37 73 95	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit)	1454 240 170 170 170 96	Х	X X	X X X	4 X X X X X	5 X X	x x x	X X X X	X X X X X	
115 116 117 118 119 120 121 122		39.61 48 37 37 73 95	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage)	1454 240 170 170 170 96	X	X X	X X X	4 X X X X X	5 X X	x x x	X X X X	X X X X X	
115 116 117 118 119 120 121 122 123		39.61 48 37 37 73 95	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage)	1454 240 170 170 170 96 0	X X 1624	X X	X X X	4 X X X X X X X X X X X X X X X X X X X	5 X X X	X X X	X X X X	X X X X X X	
115 116 117 118 119 120 121 122 123 124 125		39.61 48 37 37 73 95	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage) Aircraf	1454 240 170 170 170 96 0	X X 1624	X X X 1720	X X X X X X X X X	4 X X X X X X X X X X X X X X X X X X X	5 X X X X	x x x	x x x x x	X X X X X X	
115 116 117 118 119 120 121 122 123 124 125 126		39.61 48 37 37 73 95	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage) Aircraf	1454 240 170 170 170 96 0	X X 1624	X X X 1720	X X X X X X X X X	4 X X X X X X X X X X X X X X X X X X X	5 X X X X	x x x	x x x x x	X X X X X X	
115 116 117 118 119 120 121 122 123 124 125 126		39.61 48 37 37 73 95 123	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage) Aircraf	1454 240 170 170 170 96 0	X X 1624	X X X 1720	X X X X X X X X X	4 X X X X X X X X X X X X X X X X X X X	5 X X X X	x x x	x x x x x	X X X X X X	
115 116 117 118 119 120 121 122 123 124 125 126 127		39.61 48 37 37 73 95 123	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage) Aircraft Aircraft CG Lo	1454 240 170 170 170 96 0	X X 1624	X X X 1720	X X X X X X X X X	4 X X X X X X X X X X X X X X X X X X X	5 X X X X	x x x	x x x x x	X X X X X X	
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129		39.61 48 37 37 73 95 123	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage) Aircraft Aircraft CG Lo	1454 240 170 170 170 96 0	X X 1624	X X X 1720	X X X X X X X X X	4 X X X X X X X X X X X X X X X X X X X	5 X X X X	x x x	x x x x x	X X X X X X	
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130		39.61 48 37 37 73 95 123	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage) Aircraft Aircraft CG Lo	1454 240 170 170 170 96 0	X X 1624	X X X 1720	X X X X X X X X X	4 X X X X X X X X X X X X X X X X X X X	5 X X X X	x x x	x x x x x	X X X X X X	0 — — —
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131		39.61 48 37 37 73 95 123	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage) Aircraft Aircraft CG Lo	1454 240 170 170 170 96 0	X X 1624	X X X 1720	X X X X X 1890 41.954	4 X X X X X X X X X X X X X X X X X X X	5 X X X X	x x x	x x x x x	X X X X X X	0 — — —
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132		39.61 48 37 73 95 123	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage) Aircraft Aircraft CG Lo	1454 240 170 170 170 96 0	X X 1624	X X X 1720	X X X X X 1890 41.954	4 X X X X X X X X X X X X X X X X X X X	5 X X X X	x x x	x x x x x	X X X X X X	0 — — —
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132		39.61 48 37 73 95 123	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage) Aircraft Aircraft CG Lo	1454 240 170 170 170 96 0	X X 1624	X X X 1720	X X X X X 1890 41.954	4 X X X X X X X X X X X X X X X X X X X	5 X X X X	x x x	x x x x x	X X X X X X	0 — — —
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133		39.61 48 37 73 95 123	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage) Aircraft Aircraft CG Lo	1454 240 170 170 170 96 0	X X 1624	X X X 1720	X X X X X 1890 41.954	4 X X X X X X X 44.516	5 X X X X	x x x	x x x x x	X X X X X X	0 — — —
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135		39.61 48 37 73 95 123	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage) Aircraft Aircraft CG Lo	1454 240 170 170 170 96 0	X X 1624	X X X 1720	X X X X X 1890 41.954	4 X X X X X X X 44.516	5 X X X X	x x x	x x x x x	X X X X X X	0 — — —
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136		39.61 48 37 73 95 123	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage) Aircraft Aircraft CG Lo	1454 240 170 170 170 96 0	X X 1624	X X X 1720	X X X X X 1890 41.954	4 X X X X X X X 44.516	5 X X X X	x x x	x x x x x	X X X X X X	0 — — —
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137		39.61 48 37 73 95 123	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage) Aircraft Aircraft CG Lo	1454 240 170 170 170 96 0	X X 1624	X X X 1720	X X X X X 1890 41.954	4 X X X X X X X 44.516	5 X X X X	x x x	x x x x x	X X X X X X	0 — — —
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138		39.61 48 37 73 95 123	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage) Aircraft Aircraft CG Lo	1454 240 170 170 170 96 0	X X 1624	X X X 1720	X X X X X 1890 41.954	4 X X X X X X X 44.516	5 X X X X	x x x	x x x x x	X X X X X X	0 — — —
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 131 132 133 134 135 136 137 138		39.61 48 37 73 95 123	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage) Aircraft CG Lo 2300 2200 2100 2100 2100 2100	1454 240 170 170 170 96 0	X X 1624	X X X 1720	X X X X X 1890 41.954	4 X X X X X X X 44.516	5 X X X X	x x x	x x x x x	X X X X X X	<u> </u>
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 138 139 140		39.61 48 37 73 95 123	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage) Aircraft CG Lo	1454 240 170 170 170 96 0	X X 1624 39.337	X X X 1720 42.444	X X X X X 1890 41.954	4 X X X X X X X 44.516	5 X X X X	X X X X 1960 43.124	x x x x x	X X X X X X	
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 131 132 133 134 135 136 137 138		39.61 48 37 73 95 123	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage) Aircraft CG Lo 2300 2200 2100 2100 2100 2100	1454 240 170 170 170 96 0	X X 1624 39.337	X X X 1720	X X X X X 1890 41.954	4 X X X X X X X 44.516	5 X X X 1864 40.452	X X X X 1960 43.124	X X X X X 2130 42.635	X X X X X X	<u> </u>
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 141		39.61 48 37 73 95 123	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage) Aircraft CG Lo 2300 2200 2100 2100 2100 2100	1454 240 170 170 170 96 0	X X 1624 39.337	X X X 1720 42.444	X X X X X 1890 41.954	4 X X X X X X X 44.516	5 X X X 1864 40.452	X X X X 1960 43.124	X X X X X 2130 42.635	X X X X X X	<u> </u>
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 141		39.61 48 37 73 95 123	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage) Aircraft CG Lo 2300 2200 2100 2100 2100 2100	1454 240 170 170 170 96 0	X X 1624 39.337	X X X 1720 42.444	X X X X X 1890 41.954	4 X X X X X X X 44.516	5 X X X 1864 40.452	X X X X 1960 43.124	X X X X X 2130 42.635	X X X X X X	0 — — —
115 116 117 118 119 120 121 122 123 124 125 126 127 128 130 131 132 133 134 135 136 137 138 139 140		39.61 48 37 73 95 123	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage) Aircraft CG Lo 2300 2100 2100 1100 1100 1100 1100 1100	1454 240 170 170 170 96 0 t Weight (lb) cation (inch)	X X 1624 39.337	X X X 1720 42.444	X X X X X 1890 41.954	4 X X X X X X X 44.516	5 X X X 1864 40.452	X X X X 1960 43.124	X X X X X 2130 42.635	X X X X X X	<u> </u>
115 116 117 118 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141		39.61 48 37 73 95 123	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage) Aircraft CG Lo 2300 2200 2100 2100 2100 2100	1454 240 170 170 170 96 0 t Weight (lb) cation (inch)	X X 1624 39.337	X X X 1720 42.444	X X X X X 1890 41.954	4 X X X X X X X 44.516	5 X X X 1864 40.452	X X X X 1960 43.124	X X X X X 2130 42.635	X X X X X X	0 — — —
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142		39.61 48 37 73 95 123	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage) Aircraft CG Lo 2200 2200 2100 2100 2100 2100 2100 210	1454 240 170 170 170 96 0 t Weight (lb) cation (inch)	X X 1624 39.337	X X X 1720 42.444	X X X X X 1890 41.954	4 X X X X X X X 44.516	5 X X X 1864 40.452	X X X X 1960 43.124	X X X X X 2130 42.635	X X X X X X	0 — — —
115 116 117 118 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146		39.61 48 37 73 95 123	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage) Aircraft Aircraft CG Lo	1454 240 170 170 96 0 t Weight (lb) cation (inch)	X X 1624 39.337 × 1 × Units	X X X 1720 42.444	X X X X X 1890 41.954	4 X X X X X X X 44.516	5 X X X 1864 40.452	X X X X 1960 43.124	X X X X X 2130 42.635	X X X X X X	0 — — —
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 144 145 146 147		39.61 48 37 73 95 123	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage) Aircraft CG Lo 2200 2200 2100 2100 2100 2100 2100 210	1454 240 170 170 170 96 0 t Weight (lb) cation (inch)	X X 1624 39.337 × 1 × Units	X X X 1720 42.444	X X X X X 1890 41.954	4 X X X X X X X 44.516	5 X X X 1864 40.452	X X X X 1960 43.124	X X X X X 2130 42.635	X X X X X X	0 — — —
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 145 146 147 148		39.61 48 37 73 95 123	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage) Aircraft Aircraft CG Lo	1454 240 170 170 96 0 t Weight (lb) cation (inch)	X X 1624 39.337 V tt Units Ib-sec²/ft⁴	X X X 1720 42.444	X X X X X 1890 41.954	4 X X X X X X X 44.516	5 X X X 1864 40.452	X X X X 1960 43.124	X X X X X 2130 42.635	X X X X X X	0 — — —
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 137 138 139 140 141 142 143 144 145 146 147 148 149		39.61 48 37 73 95 123	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage) Aircraft CG Lo 2300 2100 2100 2100 2100 2100 2100 2100	1454 240 170 170 170 96 0 t Weight (lb) cation (inch) wimum weight Value 0.0017314	X X 1624 39.337 4.1 × Units Ib-sec²/ft⁴ Sea Level	X X X 1720 42.444 at Alt	X X X X 1890 41.954	4 X X X X X X X 44.516	5 X X X 1864 40.452	X X X X 1960 43.124	X X X X X 2130 42.635	X X X X X X	<u> </u>
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 137 138 139 140 141 142 143 144 145 146 147 147 148 149 150		39.61 48 37 73 95 123	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage) Aircraft CG Lo 2200 2100 2100 2100 2100 2100 2100 210	1454 240 170 170 170 96 0 t Weight (lb) cation (inch) ** ** ** Value 0.0017314 ** V (mph)	x x 1624 39.337 41 × Units Ib-sec²/ft⁴ Sea Level n	X X X 1720 42.444 at Alt V (mph)	X X X X X 1890 41.954	4 X X X X X X X 44.516	5 X X X 1864 40.452	X X X X 1960 43.124	X X X X X 2130 42.635	X X X X X X	0
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 148 149 150 150 160 160 160 160 160 160 160 160 160 16		39.61 48 37 73 95 123	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage) Aircraft CG Lo 2300 2100 2100 2100 2100 2100 2100 2100	1454 240 170 170 170 96 0 t Weight (lb) cation (inch) wimum weight Value 0.0017314	x x 1624 39.337 41 × Units Ib-sec²/ft⁴ Sea Level n	X X X 1720 42.444 at Alt	X X X X 1890 41.954	4 X X X X X X X 44.516	5 X X X 1864 40.452	X X X X 1960 43.124	X X X X X 2130 42.635	X X X X X X	0
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 137 138 139 140 141 142 143 144 145 146 147 147 148 149 150		39.61 48 37 73 95 123	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage) Aircraft CG Lo 2200 2100 2100 2100 2100 2100 2100 210	1454 240 170 170 170 96 0 t Weight (lb) cation (inch) ** ** ** Value 0.0017314 ** V (mph)	x x 1624 39.337 41 × Units Ib-sec²/ft⁴ Sea Level n	X X X 1720 42.444 at Alt V (mph)	X X X X X 1890 41.954	4 X X X X X X X 44.516	5 X X X 1864 40.452	X X X X 1960 43.124	X X X X X 2130 42.635	X X X X X X	0
115 116 117 118 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 150 150 150 160 160 160 160 160 160 160 16		39.61 48 37 73 95 123	Aircraft (empty + oil, etc) Fuel (40 gallons max) Pilot Co-Pilot (front passenger) Rear passenger luggage (in cockpit) luggage (in fuselage) Aircraft CG Lo 2300 2100 2100 2100 2100 2100 2100 2100	1454 240 170 170 170 96 0 t Weight (lb) cation (inch) ** ** ** Value 0.0017314 ** V (mph)	x	X X X 1720 42.444 at Alt V (mph) 65.61	X X X X 1890 41.954	4 X X X X X X X 44.516	5 X X X 1864 40.452	X X X X 1960 43.124	X X X X X 2130 42.635	X X X X X X	0 — — —

