BLATT 10

Dozent: PD Dr. Markus Junker

Assistent: Andreas Claessens

(19.12.2016)

Anmerkung: Zur Induktion über den Aufbau von Formeln reicht es, im Induktionsschritt die Quantoren \land, \neg, \exists zu berücksichtigen, da diese ein vollständiges Junktoren-Quantoren-System bilden (da, wie in der Vorlesung noch gezeigt wird, $\forall v_i \phi \sim \neg \exists v_i \neg \phi$).

Aufgabe 1

Sei \mathfrak{L} eine Sprache und $\mathfrak{M}_1, \mathfrak{M}_2$ zwei \mathfrak{L} -Strukturen und $\alpha: \mathfrak{M}_1 \to \mathfrak{M}_2$ ein Isomorphismus. Sei B_1 die Menge der Belegungen mit Werten in \mathfrak{M}_1 und B_2 die Menge der Belegungen mit Werten in \mathfrak{M}_2 . Für jedes $\beta_1 \in B_1$ gibt es dann genau ein $\beta_2 \in B_2$ mit

$$\beta_2 = \alpha \circ \beta_1$$
; d.h. $\beta_2(v_i) = \alpha(\beta_1(v_i))$ für alle $i \in \mathbb{N}$

Ebenso finden wir für jedes $\beta_2 \in B_2$ ein Urbild (d.h. α induziert eine Bijektion zwischen B_1 und B_2).

(a) Sei τ ein \mathfrak{L} -Term und $\beta \in B_1$. Zeigen Sie durch Induktion über den Aufbau von Termen, dass

$$\alpha(\tau^{\mathfrak{M}_1}[\beta]) = \tau^{\mathfrak{M}_2}[\alpha \circ \beta]$$

(b) Zeigen Sie durch Induktion über den Formelaufbau, dass für alle \mathfrak{L} -Formeln ϕ und alle Belegungen $\beta \in B_1$ gilt, dass

$$\mathfrak{M}_1 \models \phi[\beta] \quad \Leftrightarrow \quad \mathfrak{M}_2 \models \phi[\alpha \circ \beta]$$

Aufgabe 2

Sei \mathfrak{L} eine Sprache, \mathfrak{M} eine \mathfrak{L} -Struktur und \mathfrak{U} eine Unterstruktur von \mathfrak{M} . Da $U \subseteq M$ ist jede Belegung mit Werten in \mathfrak{U} auch eine Belegung mit Werten in \mathfrak{M} .

(a) Sei τ ein \mathfrak{L} -Term und β eine Belegung mit Werten in \mathfrak{U} . Zeigen Sie durch Induktion über den Aufbau von Termen, dass

$$\tau^{\mathfrak{M}}[\beta] = \tau^{\mathfrak{U}}[\beta] \in \mathfrak{U}$$

(b) Sei ψ eine einfache Formel, d.h. es kommen keine Quantoren in ihr vor, und sei β eine Belegung mit Werten in $\mathfrak U$. Zeigen Sie über den Aufbau von Formeln, dass

$$\mathfrak{M}\models\psi[\beta] \iff \mathfrak{U}\models\psi[\beta]$$

(c) Sei ϕ eine universelle Aussage, d.h. ϕ ist eine Aussage der Form $\forall v_{i_1} \dots \forall v_{i_k} \psi$ mit einfachem ψ . Zeigen Sie, dass

$$\mathfrak{M} \models \phi \Rightarrow \mathfrak{U} \models \phi$$

Aufgabe 3

Sei \mathfrak{L} eine Sprache und $\mathfrak{M}_1, \mathfrak{M}_2$ zwei \mathfrak{L} -Strukturen. Wir definieren die Struktur $\mathfrak{M}_1 \times \mathfrak{M}_2$ wie folgt:

• Das Universum ist $M_1 \times M_2$ (die Elemente sind dann (m^1, m^2) , mit $m^1 \in M_1$ und $m^2 \in M_2$).

Dozent: PD Dr. Markus Junker

Assistent: Andreas Claessens

• Für Funktionszeichen f_i gilt

$$f_j^{\mathfrak{M}_1 \times \mathfrak{M}_2}((m_1^1, m_1^2), \dots, (m_n^1, m_n^2)) := (f_j^{\mathfrak{M}_1}(m_1^1, \dots, m_n^1), f_j^{\mathfrak{M}_2}(m_1^2, \dots, m_n^2))$$

 \bullet Die Interpretation der Relationszeichen R_j werden wie folgt definiert:

$$R_j^{\mathfrak{M}_1 \times \mathfrak{M}_2} := \left\{ \left. \left((m_1^1, m_1^2), \dots, (m_n^1, m_n^2) \right) \in (M_1 \times M_2)^n \mid (m_1^1, \dots, m_n^1) \in R_j^{\mathfrak{M}_1} \right. \right. \\ \left. \text{und } (m_1^2, \dots, m_n^2) \in R_j^{\mathfrak{M}_2} \right\}$$

Die Belegungen aus $\mathfrak{M}_1 \times \mathfrak{M}_2$ sind genau die Abbildungen $v_i \mapsto (\beta_1(v_i), \beta_2(v_i))$, wobei β_1 eine Belegung aus \mathfrak{M}_1 und β_2 eine Belegung aus \mathfrak{M}_2 ist. Daher notieren wir die Belegungen von $\mathfrak{M}_1 \times \mathfrak{M}_2$ als $\beta_1 \times \beta_2$.

(a) Sei ϕ eine atomare \mathfrak{L} -Formel und $\beta_1 \times \beta_2$ eine Belegung aus $\mathfrak{M}_1 \times \mathfrak{M}_2$. Zeigen Sie, dass

$$\mathfrak{M}_1 \times \mathfrak{M}_2 \models \phi[\beta_1 \times \beta_2] \quad \Leftrightarrow \quad \mathfrak{M}_1 \models \phi[\beta_1] \text{ und } \mathfrak{M}_2 \models \phi[\beta_2]$$

(b) Seien ϕ_1, \ldots, ϕ_n atomare Formeln, in denen nur die Aussagenvariablen v_0, \ldots, v_n vorkommen und sei

$$\psi = \exists v_0 \dots \exists v_n (\neg \phi_1 \lor \dots \lor \neg \phi_n)$$

Zeigen Sie, dass

$$\mathfrak{M}_1 \models \psi \text{ und } \mathfrak{M}_2 \models \psi \Leftrightarrow \mathfrak{M}_1 \times \mathfrak{M}_2 \models \psi$$

Aufgabe 4

Sei $\mathfrak{L} = \{P\}$, wobei P ein einstelliges Relationszeichen ist. Zeigen oder widerlegen Sie die Allgemeingültigkeit folgender \mathfrak{L} -Formeln:

- (a) $(\forall v_0 \forall v_1 (Pv_0 \land Pv_1) \leftrightarrow (\forall v_0 Pv_0 \land \forall v_1 Pv_1))$
- (b) $(\forall v_0 \forall v_1 (Pv_0 \lor Pv_1) \leftrightarrow (\forall v_0 Pv_0 \lor \forall v_1 Pv_1))$
- $(c) \quad (\exists v_0 \exists v_1 (Pv_0 \land Pv_1) \leftrightarrow (\exists v_0 Pv_0 \land \exists v_1 Pv_1))$
- (d) $(\exists v_0 \exists v_1 (Pv_0 \lor Pv_1) \leftrightarrow (\exists v_0 Pv_0 \lor \exists v_1 Pv_1))$

Abgabe bis Montag 09.01.2017, 10 Uhr, im Briefkasten in Gebäude 51 (siehe Briefkastenaufschrift) Auf die Abgaben gehören die Namen der Abgebenden und die Gruppennummer!!!