MODELADO Y SIMULACION TRABAJOS PRÁCTICOS PARTE I (métodos numéricos)

Búsqueda Binaria de raíces (Bisección)

- 1. Para cada una de las funciones halle un intervalo [a,b] De manera que f(a)y f(b) tengan signo contrario.
- a) $f(x)=e^{x}-2-x$
- b) $f(x)=\cos(x)+x$
- c) $f(x) = \ln(x) 5 x$
- d) $f(x) = x^2 10x + 23$
- 2. Sea $f(x) = 3(x+1)\left(x-\frac{1}{2}\right)(x-1)$ aplique el método de búsqueda binaria de raíces en los siguientes intervalos:
- a) [-1, 1.5]
- b) [-1.25, 2.5]
- 3. Aplique el método de bisección para encontrar una solución aproximada con tolerancia de 10^{-3} , para las siguientes funciones en sus intervalos:
- a) $\sqrt{x} \cos(x) = 0$, para $0 \le x \le 1$
- b) $x 2^{-x} = 0$, para $0 \le x \le 1$
- c) $e^x x^2 + 3x 2 = 0$. para $0 \le x \le 1$
- d) $2x \cos(x) (x+1)^2 = 0$, para $-3 \le x \le -2$, para $-1 \le x \le 0$
- e) $x \cos(x) 2x^2 + 3x 1 = 0$, para $0.2 \le x \le 0.3$, para $1.2 \le x \le 1.3$
- 4. Aplique el método de bisección para encontrar todas las raíces del polinomio dentro de 10^{-2} , para $x^4 2x^3 4x^2 + 4x + 4$, en:
- a) [-2, -1]
- b) [0,2]
- c) [2,3]
- d) [-1, 0]

5 sea $f(x) = (x+2)(x+1)(x-1)^3(x-2)$, ¿a cuál cero la función converge, estudie los siguientes intervalos:

- a) [-3, 2.5]
- b) [-2.5, 3]
- c) [-1.75, 1.5]
- d) [-1.5, 1.75]

Use el método del punto fijo para

1.
$$f(x) = 2e^{x^2} - 5x$$
, $x^* \in [0, 1]$, $x_0 = 0$

2.
$$f(x) = \cos(x), x^* \in [1, 2], x_0 = 1$$

3.
$$f(x) = e^{-x} - x$$
, $x^* \in [0, 1]$, $x_0 = 0$

4.
$$f(x) = x^3 - x - 1$$
, $x^* \in [1, 2]$, $x_0 = 1$

5.
$$f(x) = \pi + 0.5 \sin(\frac{x}{2}) - x$$
, $x^* \in [0, 2\pi]$, $x_0 = 0$

6. Use manejo algebraico para demostrar que las siguientes funciones tienen un punto fijo en p, exactamente cuando f(p) = 0, donde $f(x) = x^4 + 2x^2 - x - 3$:

a.
$$g(x) = (3 + x - 2x^2)^{\frac{1}{4}}$$

b.
$$g(x) = \left(\frac{x+3-x^4}{2}\right)^{\frac{1}{2}}$$

7. Demuestre que la función iterativa
$$g(x) = 2^{-x}$$
 tiene un punto fijo en $\left[\frac{1}{3}, 1\right]$

8. Use el método de punto fijo para convertir la expresión
$$\sqrt{3}$$
, con exactitud de 10^{-4}

9. ¿En qué intervalo [a,b] convergerá la iteración del punto fijo con exactitud de 10^{-3} ? Para $x=\frac{5}{x^2}+2$

10. Hallar el intervalo [a, b] donde
$$g(x) = \sqrt{\frac{e^x}{3}}$$
, tenga un punto fijo.

Método de Aceleración Aitken

1.
$$f(x) = \frac{\pi}{2}x^2 - x - 2$$
, $x_0 = 1.4$ (halle $g(x)$)

2.
$$f(x) = \cos(x) - x$$
, $x_0 = 0.5$ (halle $g(x)$)

3.
$$g(x) = \sqrt[3]{3x^2 - 4x + 1}$$
, $x_0 = 0.3$

4.
$$g(x) = e^{-x}$$
, $x_0 = 1$

5.
$$g(x) = \sqrt{3x - 2}$$
, $x_0 = 2$

6.
$$g(x) = Ln(x+1), x_0 = 0.5$$

7.
$$g(x) = 1 - x^3$$
, $x_0 = 0.5$

8.
$$g(x) = \frac{1}{2}(x^2 - 3), x_0 = 0.5$$

9.
$$g(x) = \frac{\sin(x) + 5}{x^2}$$
, $x_0 = 2$

10.
$$g(x) = x^2$$
, $x_0 = 0.4$, $x_0 = 0.9$, $x_0 = 1.5$

11.
$$g(x) = \frac{3}{2}x + \frac{1}{x^2}$$
, $x_0 = 0.25$

Newton-Raphson

1.
$$f(x) = (x-1)^2$$
, $x_0 = 0$

2.
$$f(x) = x^3 - 2x - 5$$
, $x_0 = 1.5$

3.
$$f(x) = x^5 - x - 1$$
, $x0 = 1$

4. Aproximar $6\sqrt{2}$ (con precisión de 8 cifras)

5.
$$f(x) = e^x + x^2 - 4$$
, $x_0 = 0.5$

6.
$$f(x) = x^2 - 3x - 4$$
, $x_0 = 8$

7.
$$f(x) = \ln(x) - 1$$
, $x_0 = 2$

8.
$$f(x) = x^4 - 16$$
, $x_0 = 2$

9.
$$f(x) = x^3 - 2x + 1$$
, $x_0 = -1.5$

10.
$$f(x) = e^{3x} - 4$$
, $x_0 = 0$

11.
$$f(x) = x^2 - 2x + 1$$
, $x_0 = 0$

12.
$$(x) = xe^{-x}, x_0 = -1$$

Polinomios interpolantes y derivación numérica

Para los siguientes construir un polinomio interpolante de Lagrange, para los casos donde haya una función a la que comparar calculo los errores globales y locales, y grafique la función y su polinomio interpolante:

- 1. Hallar el polinomio que pasa por los puntos (1,1), (2,4), (3,9)
- 2. Reconstruir la función que pasa por los puntos (0,1), (1,3), (2,2), (3,5)
- 3. Dado el siguiente el siguiente conjunto de puntos, hallar el valor de (b): x = [0,1,2,3,4], y = [1,2,b,2,3]
- 4. Hallar el polinomio interpolante de Lagrange para: x = [0,1,2,3,4], f(x) = [1,2,0,2,3]
- 5. Hallar el polinomio interpolante de Lagrange para: [0,1,2], y = [1,3,0]
- 6. Hallar el polinomio de segundo grado que pase por: x = [1,2,3], y = [10,15,80]
- 7. Construir un polinomio con los datos: x = [2,4,5], f(x) = [5,6,3]
- 8. Construir un polinomio que interpole: x = [-2,0,2], f(x) = [0,1,0]
- 9. Aproximar f(x) = sin(x), con, $x \in [0, \pi]$, use un polinomio de Lagrange de 2 grado
- 10. Construir el polinomio interpolante de Lagrange para: x = [0,1,2], f(x) = [1,2,7]
- 11. Usar los nodos $x_0 = 2, x_1 = 2.5, x_2 = 4.5$, para construir el polinomio interpolante de Lagrange que aproxime $f(x) = \frac{1}{x}$
- 12. Sea $f(x) = 2\sin\left(\frac{\pi x}{6}\right)$, use los nodos $x_0 = 1, x_1 = 2, x_2 = 3$, use interpolación de Lagrange de grado 2 para aproximar:
- a) f(4)
- b) f(1.5)
- 13. Use los siguientes nodos $x_0 = 0$, $x_1 = 0.6$, $x_2 = 0.9$, construir que aproxime f(0.45)
- a) $f(x) = \cos(x)$

b)
$$f(x) = \sqrt{x+1}$$

c)
$$f(x) = ln(x + 1)$$

Diferencia Finitas

- 1. Use diferencias finitas centrales para hallar la derivada aproximada de $f(x) = \sin(x)$, en cada punto de x = [0, 0.1, 0.2, 0.3, 0.4, 0.5], con h = 0.1
- 2. Hallar la derivada de $f(x) = e^x$ en cada punto x = [0, 0.1, 0.2, 0.3, 0.4, 0.5], con h = 0.1
- 3. Sea $f(x) = x^3 x$, calcular la derivada primera y segunda en x = 1, con h = 0.1
- 4. Sea $f(x) = e^x \sin(x)$,
- a) Halle f'(1) usando diferencias finitas centrales y un paso de $\,h=0.01\,$
- b) Halle el error absoluto
- c) Halle f''(1) usando diferencia finitas centrales
- 5. Comparar la aproximación por diferencias finitas de segundo orden exactas hacia adelante, atrás y centrales de $f(x) = e^{-2x} x$, para x = 2

6 calcule la velocidad y la aceleración en cada punto usando el método de diferencias finitas centrales salvo en los extremos donde pueda usar progresiva o regresiva. Completar la tabla de valores

t(seg)	0	1	2	3	4	5	6	7	8
x(m)	0	1.5	4	7.5	12	17.5	24	31.5	40
v(m/s)									
$a(m/s^2)$									

7. Igual al anterior

t(seg)	0	2	4.2	6	8	10	12	14	16
x(m)	0	0.7	1.8	3.4	5.1	6.3	7.3	8.0	8.4
v(m/s)									
$a(m/s^2)$									

Analice el comportamiento de la velocidad y la aceleración

Integracion Numérica Reglas de Newton Cotes

1. Sea
$$\int_0^{\frac{\pi}{2}} (6 + 3\cos(x)) dx$$
:

- a) Use la regla del trapecio para aproximar la solucion con n=2, n=4
- b) Use la regla de Simpson (1/3) con n=4
- c) Use la regla de Simpson (3/8) con n = 3, y = 6

$$2. \quad \operatorname{Sea} \int_{1}^{2} \left(x + \frac{2}{x} \right)^{3} dx$$

- a) Use la solucion analitica para calcular los errores ralativos porcentuales para la regla del trapacio.
- 3. Sea $\int_{-3}^{3} (4x-3)^3 dx$
- a) Integre de forma analitica y use la regla de Simpson con n=3, y n=6 para comparar la aproximación (use 3/8)
- 4. Sea $\int_0^3 (x^2 e^x) dx$:
- a) Integre de forma analítica y numerica, emplee la regla del trapecio con n=4
- b) Use la regla de Simpson (1/3) con n=4
- c) Calcules los errores de truncamiento
- 5. Sea $\int_0^4 (1 e^{-2x}) dx$:
- a) Integre con la regla del trapecio con n=4
- b) Integre usando la regla de Simpdon (1/3) con n=4
- 6. Sea $\int_0^{\pi} (\sin(x)) dx$
- a) Integre con la regla del trapecio con n = 10
- b) Integre usando la regla de Simpdon (1/3) con n=4
- 7. Sea $\int_0^1 e^{x^2} dx$
- a) Integre con la regla de Simpson (1/3) con, n = 4, n = 10
- b) Integre usando la regla del rectángulo con n=5
- 8. Sea $\int_{0}^{2} x^{2} dx$
- a) Integre con la regla del rectangulo punto medio con, n=4
- 9. Sea $\int_0^2 \sqrt[4]{1+x^2} dx$

- a) Integre usando la regla del rectángulo izquierdo con, n = 8
- 10. Sea $\int_{1}^{6} \frac{x^2}{6} dx$
- a) Integre usando la regla del trapecio con, n=5
- 11. Sea $\int_{-1}^{1} e^{x^4} dx$
- a) Integre usando la regla del trapecio con, n=5
- 12. Sea $\int_{1}^{2} \frac{1}{x^{2}} dx$
 - a) Integre usando la regla del trapecio con, n = 5

Ejercicios de Montecarlo

- 1. Cree un modelo matemático que aproxime π usando un código para generar n=10000 números aleatorios para simular un modelo Montecarlo. (muestreo por rechazo), puntos de éxito dentro de un cuadrado de lado 2.
- 2. Use Estimación por muestreo aleatorio (Random Sampling Estimation), para aproximar la integral; $I = \int_0^1 e^{-x^2} dx$ con un intervalo de confianza del 99,7% y un máximo de error de $\frac{1}{100}$.
- 3. Estimar la integral $I = \int_2^5 Ln(x) dx$, usando Montecarlo con un intervalo de confianza del 95% y un error máximo permitido de 0,01.
- 4. Estimar $I = \int_1^4 \sqrt{x} \, dx$, con una muestra de n = 5000.
 - a) Calcule la desviación y error estándar.
 - b) Calcule el intervalo de confianza para 99%, use $z_{0.05} = 2,576$.
- 5. Estimar la integral, $\int_0^{\pi} \sin x \, dx$, usando Montecarlo con una muestra uniforme de n = 10000, y un intervalo de confianza del 95%.
- 6. Estimar la integral doble $I = \int_0^2 \int_1^3 e^{x+y} dy dx$, usando Montecarlo con una muestra de n = 50000 y un intervalo de confianza del 90%.
- 7. Estimar la integral doble $I = \int_0^1 \int_0^1 x^2 + y^2 dy dx$, usando Montecarlo con n = 100000 y un intervalo de confianza del 95%.

- 8. Estimar la integral $I = \int_0^1 \frac{1}{x^2+1} dx$, usando una muestra de n = 5000, calculo los intervalos de confianza para 95%.
- 9. Estimar $I = \int_0^{\pi} \frac{\sin x}{x} dx$, use una muestra de n = 10000, intervalo de confianza 95%.
- 10. Use un método grafico para modelar el rechazo por muestreo para Montecarlo que permita aproximar el área contenida en las curvas: $f(x) = x^2$, $g(x) = \sqrt{x}$, en el intervalo $x \in [0,1]$.

Ecuaciones Diferenciales Métodos Runge Kutta

Dadas las siguientes ecuaciones diferenciales de valores iniciales:

- a) resolver analíticamente si es posible.
- b) Simular la solución exacta usando un código Python
- c) Simular las soluciones aproximadas por los métodos de Euler, Heun y runge Kutta 4. Y compararlas con la solución particular exacta (presentar tabla resumen de las iteraciones y gráficos)
- d) Dibujar los campos directores (use el método de las isoclinas)

Ecuación Diferencial		Condiciones Iniciales	Intervalo	Paso
1.	$\frac{dy}{dt} = y + t^2$	y ₍₀₎ =1	$0 \le t \le 1$	h = 0.1
2.	$\frac{dy}{dt} = y\sin(t)$	y ₍₀₎ =2	$0 \le t \le \pi$	$h = \pi/10$
3.	$\frac{dy}{dt} = 2t + 3y$	y ₍₀₎ =0	$0 \le t \le 1$	h = 0.2
4.	$\frac{dy}{dt} = t - y^2$	y ₍₀₎ =1	$0 \le t \le 2$	h = 0.2
5.	$\frac{dy}{dt} = e^{-t} - y$	y ₍₀₎ =0	$0 \le t \le 1$	h = 0.1
6.	$\frac{dy}{dt} = \frac{1}{1+t^2} - y$	y ₍₀₎ =1	$0 \le t \le 2$	h = 0.5
7.	$\frac{dy}{dx} = \frac{x^2 - 1}{y^2}$	y ₍₀₎ =2	$0 \le x \le 2$	h = 0.5
8.	$\frac{dy}{dt} = y - t^2 + 1$	y ₍₀₎ =0.5	$0 \le t \le 1$	h = 0.2

9.
$$\frac{dy}{dx} = y + x$$
 $y_{(0)}=1$ $0 \le x \le 1$ $h = 0.2$

10. $\frac{dy}{dx} = y - x$ $y_{(0)}=0.5$ $y_{(1)}$ $h = 0.1$

11. $\frac{dy}{dx} = 0.1\sqrt{y} + 0.4x^2$ $y_{(2)}=2$ $y_{(2.5)}$ $n = 10$

12. $\frac{dy}{dx} = 0.4xy$ $y_{(1)}=1$ $y_{(2)}$ $h = 0.1$

A continuación, se presentan algunas ecuaciones diferenciales ordinarias de valor inicial:

- a) Resolver analíticamente
- b) Dibujar sus campos directores
- c) Resolver usando el modelo de Runge kutta4 (presente los cálculos para cada pendiente y todas las iteraciones.

Ecuad	ción Diferencial	Condiciones Iniciales	Intervalo	Paso
1.	$\frac{dy}{dx} = xy$	<i>y</i> ₍₁₎ =1	$1 \le x \le 1.2$	h = 0.1
2.	$\frac{dy}{dx} = 2xy$	y ₍₁₎ =1	$1 \le x \le 1.5$	h = 0.1
3.	$\frac{dy}{dx} = 2x\sqrt{y}$	y ₍₁₎ =3	$1 \le x \le 1.2$	h = 0.1

PARTE 2 (SISTEMAS DINÁMICOS) Sistemas Autónomos

Dadas las siguientes ecuaciones diferenciales:

- e) Resolver analíticamente si es posible.
- f) Calcular puntos de equilibrio
- g) Dibujar su diagrama de fase
- h) Gráfico de soluciones

1.
$$\frac{dx}{dt} = 2x$$
, $x \ge 0$
2. $\frac{dx}{dt} = x^2 - 4$
3. $\frac{dx}{dt} = 3x - x^2$
10. $\frac{dy}{dt} = 3y(y - 2)$
11. $\frac{dy}{dt} = y^2 - 4y - 12$

$$4. \ \frac{dy}{dx} = 3y - 9$$

5.
$$\frac{dy}{dx} = 4 - 2y$$

$$6. \ \frac{dy}{dx} = 3 - 2y$$

7.
$$\frac{dy}{dx} = y^2 - 6y + 5$$

$$8. \ \dot{x} = \sin(x)$$

12.
$$\frac{dy}{dt} = y^2 - y$$

13.
$$\frac{dy}{dx} = (y-1)^2$$

14.
$$\frac{dy}{dx} = y(y+1)(y-2)$$

$$15. \ \frac{dy}{dx} = y + 2$$

$$16.\frac{dy}{dx} = y(4 - y)$$

Bifurcaciones

Dado los siguientes sistemas unidimensionales:

- i) Encontrar los puntos fijos
- j) Determinar la estabilidad lineal en función del parámetro
- k) Identificar el valor donde ocurre la bifurcación y clasificarla
- l) Dibujar el diagrama de bifurcación (use un código phyton)

1.
$$\dot{x} = r + x^2$$

2.
$$\dot{x} = rx - x^2$$

3.
$$\dot{x} = rx - x^3$$

4.
$$\dot{x} = r + 3x - x^3$$

5.
$$\dot{x} = r - e^{x}$$

6.
$$\dot{x} = r - x^2$$

$$7. \ \dot{x} = rx + x^3$$

8.
$$\dot{x} = x^3 - rx$$

9.
$$\dot{x} = (r-1) - (x-1)^2$$

10.
$$\dot{x} = (r-2)x - x^2$$

11.
$$\dot{x} = (r-3)x - x^3$$

12.
$$\dot{x} = r - (x - 2)^2$$

13.
$$\dot{x} = (r-1)(x-1) - (x-1)^2$$

$$14. \ \dot{x} = rx\left(1 - \frac{x}{k}\right) - h$$

Variables ejercicio 14:

x = Tamaño de la poblacion (peces en in lago)

r = tasa de crecimiento intrinseca

 $k = Capacidad\ de\ carga\ del\ ecosistema$

 $h = tasa \ de \ cosecha(pesca)$

Sistemas dinámicos lineales 2D

Dadas los siguientes sistemas dimanamos:

m) Resolver analíticamente si es posible.

Calcular puntos de equilibrio

Calcular los autovalores y autovalores asociados

Dibujar su diagrama de fase manualmente

Graficar de soluciones (use algún software para simular el campo vectorial y algunas soluciones).

1.
$$\begin{cases} \dot{x} = x \\ \dot{y} = y \end{cases}$$

11.
$$\begin{cases} \dot{x} = x - 2y \\ \dot{y} = x + y \end{cases}$$

21.
$$\begin{cases} \dot{x} = y \\ \dot{y} = 6x + y \end{cases}$$

$$2. \begin{cases} \dot{x} = -y \\ \dot{y} = x \end{cases}$$

12.
$$\begin{cases} \dot{x} = x - y \\ \dot{y} = 3x + 3y \end{cases}$$

12.
$$\begin{cases} \dot{x} = x - y \\ \dot{y} = 3x + 3y \end{cases}$$
 22.
$$\begin{cases} \dot{x} = 2x - 2y \\ \dot{y} = 4x - 2y \end{cases}$$

3.
$$\begin{cases} \dot{x} = x \\ \dot{y} = -y \end{cases}$$

13.
$$\begin{cases} \dot{x} = -4x + 3y \\ \dot{y} = -6x + 5y \end{cases}$$
 23.
$$\begin{cases} \dot{x} = x + 2y \\ \dot{y} = 2x + y \end{cases}$$

23.
$$\begin{cases} \dot{x} = x + 2y \\ \dot{y} = 2x + y \end{cases}$$

$$4. \begin{cases} \dot{x} = y - x \\ \dot{y} = -y - x \end{cases}$$

14.
$$\begin{cases} \dot{x} = 6x - y \\ \dot{y} = 5x + 4y \end{cases}$$

$$24. \begin{cases} \dot{x} = 2x + 3y \\ \dot{y} = 2x + y \end{cases}$$

5.
$$\begin{cases} \dot{x} = x + y \\ \dot{y} = x + y \end{cases}$$

15.
$$\begin{cases} \dot{x} = x + 2y \\ \dot{y} = 2x - 4y \end{cases}$$

25.
$$\begin{cases} \dot{x} = -3x - 4y \\ \dot{y} = 2x + y \end{cases}$$

$$6. \begin{cases} \dot{x} = -y \\ \dot{y} = x \end{cases}$$

16.
$$\begin{cases} \dot{x} = 2x - 5y \\ \dot{y} = 4x - 2y \end{cases}$$

26.
$$\begin{cases} \dot{x} = 3x - y \\ \dot{y} = 9x - 3y \end{cases}$$

7.
$$\begin{cases} \dot{x} = 2y \\ \dot{y} = 2x \end{cases}$$

17.
$$\begin{cases} \dot{x} = -5x + 2y \\ \dot{y} = -10x + 3y \end{cases}$$
 27.
$$\begin{cases} \dot{x} = -2x + y \\ \dot{y} = x - 2y \end{cases}$$

$$27. \begin{cases} \dot{x} = -2x + y \\ \dot{y} = x - 2y \end{cases}$$

8.
$$\begin{cases} \dot{x} = -y + x \\ \dot{y} = x + y \end{cases}$$

18.
$$\begin{cases} \dot{x} = -2x + 3y \\ \dot{y} = -6x + 4y \end{cases}$$
 28.
$$\begin{cases} \dot{x} = x + 3y \\ \dot{y} = x - y \end{cases}$$

28.
$$\begin{cases} \dot{x} = x + 3y \\ \dot{y} = x - y \end{cases}$$

9.
$$\begin{cases} \dot{x} = x - 2y \\ \dot{y} = -2x + y \end{cases}$$

19.
$$\begin{cases} \dot{x} = 5x - 4y \\ \dot{y} = x + y \end{cases}$$

29.
$$\dot{X} = \begin{pmatrix} a & -2 \\ 2 & 1 \end{pmatrix} X$$

$$10. \begin{cases} \dot{x} = x + 2y \\ \dot{y} = 3y + 4x \end{cases}$$

$$20. \begin{cases} \dot{x} = 3x + y \\ \dot{y} = x + 3y \end{cases}$$

29. Hallar $a \in R$, tal que:

a). El sistema tenga un equilibrio silla-nodo

b) Nodo estable

c) Espiral

Sistemas lineales no homogéneos: preservación o ruptura de comportamientos

- a) Resolver si es posible analíticamente
- b) Hallar autovalores y autovectores
- c) Solución general del sistema en forma matricial
- d) Análisis del cambio o preservación de la dinámica al introducir la perturbación f(t)
- e) Resolver el sistema usando los métodos de coeficientes indeterminados o variación de parámetros
- f) Simular con un software la dinámica de cada sistema

1.
$$\dot{X} = \begin{pmatrix} 0 & -1 \\ -9 & 0 \end{pmatrix} X + \begin{pmatrix} 1 \\ 9 \end{pmatrix}$$

6.
$$\dot{X} = \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix} X + \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$

2.
$$\dot{X} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} -5 \\ -7 \end{pmatrix}$$

7.
$$\dot{X} = \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix} X + \begin{pmatrix} \cos t \\ 0 \end{pmatrix}$$

3.
$$\dot{X} = \begin{pmatrix} 4 & -1 \\ 2 & 1 \end{pmatrix} X + \begin{pmatrix} 0 \\ -6 \end{pmatrix}$$

8.
$$\dot{X} = \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix} X + \begin{pmatrix} e^t \\ 0 \end{pmatrix}$$

4.
$$\dot{X} = \begin{pmatrix} -2 & 1\\ 1 & -2 \end{pmatrix} X + \begin{pmatrix} 3\\ 2 \end{pmatrix}$$

9.
$$\dot{X} = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix} X + \begin{pmatrix} e^t \\ 0 \end{pmatrix}$$

5.
$$\dot{X} = \begin{pmatrix} -1 & 2 \\ -1 & 1 \end{pmatrix} X + \begin{pmatrix} -8 \\ 3 \end{pmatrix}$$

10.
$$\dot{X} = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix} X + \begin{pmatrix} t \\ -t \end{pmatrix}$$

Identificar cuales dinámicas cambian bruscamente si comportamiento con la función forzada f(t).

Conversión de un sistema (EDO) de orden superior a un sistema de primer orden

a.
$$\ddot{y} - 4y = 2$$

b.
$$\ddot{v} + 2\dot{v} - 3v = 6$$

Deducir un algoritmo que permita realizar la transformación para este tipo de ecuación diferenciales de segundo orden:

$$\ddot{y} + a_1 \dot{y} + a_0 y = f(t)$$

$$\frac{\overrightarrow{dx}}{dt} = \begin{pmatrix} 0 & 1 \\ -a_0 & -a_1 \end{pmatrix} \vec{x} + f(t)$$

Sistemas dinámicos no lineales

Dadas los siguientes sistemas dimanamos

- a) Calcular puntos de equilibrio
- b) Linealizar el sistema en los puntos críticos
- c) Calcular los autovalores y autovectores asociados si son hiperbólicos (Hartman-Grobman), simular las trayectorias similares lineales.
- d) Analizar los puntos no hiperbólicos si es el caso (coordenadas polares o Lyapunov)
- e) Dibujar su diagrama de fase manualmente
- f) Graficar (use algún software para simular el campo vectorial y algunas soluciones).

1.
$$\begin{cases} \dot{x} = y \\ \dot{y} = x(3 - x) \end{cases}$$

11.
$$\begin{cases} \dot{x} = -x + xy \\ \dot{y} = -2x + xy \end{cases}$$

$$2. \begin{cases} \dot{x} = y \\ \dot{y} = x^3 - x \end{cases}$$

12.
$$\begin{cases} \dot{x} = x^2 + y^2 - 2 \\ \dot{y} = x^2 - y^2 \end{cases}$$

3.
$$\begin{cases} \dot{x} = y - x \\ \dot{y} = x^2 - 1 \end{cases}$$

13.
$$\begin{cases} \dot{x} = 14x - 0.5x^2 - xy \\ \dot{y} = 16y - 0.5y^2 - xy \end{cases}$$

4.
$$\begin{cases} \dot{x} = xy \\ \dot{y} = x^2 + y^2 - 1 \end{cases}$$

14.
$$\begin{cases} \dot{x} = x(3-x) - 2xy \\ \dot{y} = y(2-y) - xy \end{cases}$$

5.
$$\begin{cases} \dot{x} = y - x(\mu - x^2 - y^2) \\ \dot{y} = -x + y(\mu - x^2 - y^2) \end{cases}$$

15.
$$\begin{cases} \dot{x} = x(1-x) - xy \\ \dot{y} = -y + xy \end{cases}$$

6.
$$\begin{cases} \dot{x} = -x + y - x(x^2 + y^2) \\ \dot{y} = -x - y - y(x^2 + y^2) \end{cases}$$

16.
$$\begin{cases} \dot{x} = y \\ \dot{y} = -x + y(1 - x^2) \end{cases}$$

7.
$$\begin{cases} \dot{x} = x(1 - x^2 - y^2) - y \\ \dot{y} = y(1 - x^2 - y^2) + x \end{cases}$$

17.
$$\begin{cases} \dot{x} = x + y^2 \\ \dot{y} = -y \end{cases}$$

8.
$$\begin{cases} \dot{x} = x(2 - x - y) \\ \dot{y} = y(3 - 2x - y) \end{cases}$$

18.
$$\begin{cases} \dot{x} = y \\ \dot{y} = -\sin y \end{cases}$$

9.
$$\begin{cases} \dot{x} = x^2 - y + 1 \\ \dot{y} = x(y+3) \end{cases}$$

19.
$$\begin{cases} \dot{x} = -2x - 3xy \\ \dot{y} = 3y - y^2 \end{cases}$$

10.
$$\begin{cases} \dot{x} = -y - x(x^2 + y^2) \\ \dot{y} = x - y(x^2 + y^2) \end{cases}$$

20.
$$\begin{cases} \dot{x} = 2x - y + 2xy + 3(x^2 - y^2) \\ \dot{y} = x - 3y + xy - 3(x^2 - y^2) \end{cases}$$

21.
$$\begin{cases} \dot{x} = x^2 - y^2 - 1 \\ \dot{y} = 2y \end{cases}$$

26.
$$\begin{cases} \dot{x} = -x - y + xy^3 \\ \dot{y} = x - y + y^3 \end{cases}$$

22.
$$\begin{cases} \dot{x} = y - x^2 + 2 \\ \dot{y} = x^2 - xy \end{cases}$$

27.
$$\begin{cases} \dot{x} = x^3 + y^2 - 1 \\ \dot{y} = x^2 - y^2 \end{cases}$$

23.
$$\begin{cases} \dot{x} = x(3-x) - 2xy \\ \dot{y} = xy + (x-3) \end{cases}$$

28.
$$\begin{cases} \dot{x} = x(1 - y^2) \\ \dot{y} = y(x^2 - 1) \end{cases}$$

24.
$$\begin{cases} \dot{x} = ax + bxy \\ \dot{y} = -cy + dxy \end{cases}$$

$$29. \begin{cases} \dot{x} = x^3 - y \\ \dot{y} = y - x \end{cases}$$

25.
$$\begin{cases} \dot{x} = y - x^2 \\ \dot{y} = 1 - y \end{cases}$$

Aplicaciones

1. Analice el modelo de romance entre Romeo y Julieta dado por el sistema

$$\begin{cases} \dot{R} = aR + bJ \\ \dot{J} = bR + aJ \end{cases}$$

 $a<0,\,b>0,$ a ambos le va a atraer que el otro demuestre interés, donde a=cautela, y b=responsividad

2. Analizar el sistema depredador/presa

$$\begin{cases} \dot{x} = (a - by)x \\ \dot{y} = (dx - c)y \end{cases}$$

- 3. Oscilador armónico simple: $\dot{x}=y$, $\dot{y}=-x$, demuestre que es conservativo y halle la función de energía de Hamilton.
- 4. Demostrar que el siguiente sistema se conserva la energía y simular el sistema con un software

$$\begin{cases} \dot{x} = y \\ \dot{y} = -x - x^3 \end{cases}$$

5. Halle la función de Hamilton de:

$$\begin{cases} \dot{x} = y^3 \\ \dot{y} = -x \end{cases}$$

6. Halla la función de Hamilton si existe para el siguiente sistema, sino demostrar que el sistema pierde o gana energía.

$$\begin{cases} \dot{x} = y \\ \dot{y} = -x - y \end{cases}$$

7. Potencial de doble pozo simular la dinámica del sistema y graficar, demuestra que el sistema es conservativo

$$\begin{cases} \dot{x} = y \\ \dot{y} = x - x^3 \end{cases}$$

8. Analizar el siguiente sistema conservativo no línea, demostrar que no pierde energía y halla la función de energía Hamiltoniana correspondiente

$$\begin{cases} \dot{x} = y(1 + x^2) \\ \dot{y} = -x(1 + y^2) \end{cases}$$

Parametrización y Estructura Orbital

- 1. $\dot{x} = -x$, $\dot{y} = -y$ (parametrízalo con respecto al tiempo)
- 2. $\dot{x} = x, \dot{y} = x + y$ (solución temporal)
- 3. $\dot{x} = y$, $\dot{y} = -x$ (curvas de nivel)
- 4. $\dot{x} = x^2$, $\dot{y} = -y$ (eliminación del parámetro) $\frac{dy}{dx}$
- 5. $\dot{x} = y, \dot{y} = -\sin(x)$, (conservativo)
- 6. $\dot{x} = x + t$, $\dot{y} = -y + \cos(t)$, (no autónomo)
- 7. $\dot{x} = -x + t^2$, $\dot{y} = y + \sin(t)$ (no autónomo)
- 8. $\dot{x} = x, \dot{y} = xy$, derivada $\frac{dy}{dx}$
- 9. $\dot{x} = y$, $\dot{y} = -x + \sin(t)$ (sistema forzado no autonomo)
- 10. $\dot{x} = -y + ax(x^2 + y^2), \dot{y} = x + ay(x^2 + y^2)$, analice y use coordenadas polares
- 11. Analice y simule el siguiente sistema $\dot{x} = y$, $\dot{y} = 2y + y^2$
- 12. Determinar la estructura orbital para los siguientes sistemas:
 - a) $\dot{x} = x + \mu y$, $\dot{y} = \mu x y$
 - b) $\dot{x} = -x, \dot{y} = -2y$, condición inicial $(x_0, y_0) = (1,1)$
 - c) $\dot{x} = x$, $\dot{y} = 2y$, condición inicial $(x_0, y_0) = (1,1)$
 - d) $\dot{x} = -x y, \dot{y} = x y$
 - e) $\dot{x} = -y, \dot{y} = x$
 - f) $\dot{x} = x(1-y), \dot{y} = y(x-1)$
 - g) $\dot{x} = y + x(1 x^2 y^2), \dot{y} = -x + y(1 x^2 y^2)$
 - h) $\dot{x} = x(1-x^2-y^2), \dot{y} = y(1-x^2-y^2)$

Ejercicios Adicionales

Analizar los sistemas con bifurcación: Grafique con un software y compare sus cálculos y análisis manuales

Unidimensionales

a)
$$\dot{x} = \mu + x - x^3$$

b)
$$\dot{x} = \mu - 2x^2$$

c)
$$\dot{x} = \mu x^2 - x^3$$

d)
$$\dot{x} = \mu + 2x^2$$

e)
$$\dot{x} = \mu x^2 - 2\mu x + 1$$

f)
$$\dot{x} = \mu x + x^3 - x^5$$

g)
$$\dot{x} = 1 + \mu x - x^3$$

Sistemas 2d

1.
$$\dot{x} = x + y - \mu$$
, $\dot{y} = 2x + 2y + 1 - \mu$,

- a). Analizar su estructura orbital, demostrar que hay una bifurcación en $\mu=-1$, y que el sistema tiene una línea de puntos de equilibrios sobre la recta x+y=-1
- b). Demostrar que las soluciones se comportan como: $X(t) = c_1 \binom{1}{-1} + c_2 \binom{1}{2} e^{3t}$

2.
$$\dot{x} = \mu x + \mu y + 1$$
, $\dot{y} = x + y - \mu$

3.
$$\dot{x} = y + 2$$
, $\dot{y} = x - y - \mu$

4.
$$\dot{x} = x + \mu y$$
, $\dot{y} = \mu x - y$

5.
$$\dot{x} = \mu x - x^2, \ \dot{y} = -y$$

Modelos de combate

- a) Explicar el signo de cado de los coeficientes positivos a,b en el modelo lanchesteriano de combate de dos fuerzas convencionales x e y, y analizar su dinámica (en el primer cuadrante), determinando la ecuación de las orbitas para cada X_0 . Rehacer, ahora considerando una tasa de refuerzo constante para cada fuerza α,β . $\dot{x}=-ay$, $\dot{y}=-bx$.
- b) Si en el modelo lanchesteriano la fuerza x es no convencional, analizar su dinamica (en el primer cuadrante), determinando la ecuacion de las orbitas para cada X_0 . Rehacer, ahora considerando una tasa de refuerzo constante α , β para cada fuerza. $\dot{x}=\alpha xy$, $\dot{y}=bx$
- c) Interpretar los coeficientes positivos ab, cd y analizar la dinamica del sistema de Lotka-Volterra en espacios limitados de recursos sin interacciones intra-especies, especificando hipótesis sobre el depredador y la presa consistentes con el modelo y resolverlo. Analizar las modificaciones introducidas por una intervencion externa de tasa constante. $\dot{x}=(a-by)x,\ \dot{y}=-(d-cx)y$
- d) Interpretar los coeficientes positivos ab cd, α, β y analizar la dinamica del sistema de Lotka-Volterra en espacios limitados de recursos con interaciones intra-especies (conviene considerar dos casos distintos, segun que las nulclinas se intersequen o no en el primer cuadrante: en el primer caso se tendra una extincion del depredador con una estabilizacion de la presa en a , mientras que en el segundo una estabilizacion asintotica en la interseccion, para cualquier condicion inicial en el primer cuadrante). $\dot{x}=(a-by-,\alpha x)x,\ \dot{y}=-(d-cx-\beta y)y$
- e) El principio de exclusión competitiva afirma que si dos especies similares xy compiten en un espacio que puede albergar más miembros de x que de y, entonces y termina extinguiendose y todo el espacio saturado de x. Probarlo interpretando el siguiente sistema con a > b. $\dot{x} = (a x y)x$, $\dot{y} = (b x y)y$

f) Un modelo epidemiológico de propagación de una enfermedad que identifica con x a la población contagiosa (tasa de infección constante r > 0) y con y a la contagiada, tomando como constante $\gamma > 0$ la tasa de retiro se representa por el siguiete sistema. Probar que existe un umbral epidemiológico $\rho = \frac{\gamma}{r}$, que siempre quedan sin contraer la enfermedad algunos individuos $\dot{x} = -rxy$, $\dot{y} = rxy - \gamma y$

Sistemas conservativos

Probar que es un centro o una silla

a)
$$\dot{x} = x - 2xy$$
, $\dot{y} = x - y + y^2$

b)
$$\dot{x} = 2xy$$
, $\dot{y} = 1 + 3x^2 - y^2$

Sistema de orden 2 (analizar el sistema transformar a un sistema 2d)

a)
$$\ddot{x} + 2\dot{x} + 2x = 0$$
 $x(0) = 1, \dot{x}(0) = 0$

b)
$$\ddot{x} + 2\dot{x} + x = 0, x(0) = 1, \dot{x}(0) = 0$$

Sistemas no homogéneos resolver para condiciones iniciales

a)
$$\dot{x} = 2x - y + 1$$
, $\dot{y} = -x + 2y - 5$, $X(0) = \binom{2}{3}$
b) $\dot{x} = -x + 4y - 2$, $\dot{y} = x - y - 1$, $X(0) = \binom{3}{1}$

b)
$$\dot{x} = -x + 4y - 2$$
, $\dot{y} = x - y - 1$, $X(0) = \binom{3}{1}$

Conjuntos limites unidimensionales

En cada uno de los siguientes casos, efectuar un análisis cualitativo completo, incluyendo consideraciones acerca de los conjuntos límite.

a)
$$\dot{x} = x^2 - x - 2$$

b)
$$\dot{x} = x^3 - 4x^2 + 4x$$

c)
$$\dot{x} = x - x^3$$

d)
$$\dot{x} = x^4 - x^2$$

e)
$$\dot{x} = -x^4 + x^2$$