Ecuații de gradul al doilea

$$ax^{2} + bx + c = 0$$
, $a,b,c \in \mathbb{R}$, $a \neq 0$

1. Formule de rezolvare: $\Delta > 0$

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}, \ x_2 = \frac{-b - \sqrt{\Delta}}{2a}, \ \Delta = b^2 - 4ac; \text{ sau}$$

 $x_1 = \frac{-b' + \sqrt{\Delta'}}{a}, \ x_2 = \frac{-b' - \sqrt{\Delta'}}{a}, \ b = 2b', \ \Delta' = b'^2 - ac.$

Relații între coeficienți și rădăcini:

2. Formule utile în studiul ecuației de gradul al II-lea:
$$x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2 = S^2 - 2P$$
 $x_1^3 + x_2^3 = (x_1 + x_2)^3 - 3x_1x_2(x_1 + x_2) = S^3 - 2SP$ $x_1^4 + x_2^4 = (x_1 + x_2)^4 - 2x_1^2x_2^2 = S^4 - 4S^2P + 2P^2$

$$x_1 + x_2 = -\frac{b}{a}$$
$$x_1 \cdot x_2 = \frac{c}{a}$$

3. *Discuția naturii și semnul rădăcinilor* în funcție de semnele lui $\Delta = b^2 - 4ac$, $P = x_1x_2$, $S = x_1 + x_2$.

Δ	P	S	Natura și semnul rădăcinilor	
$\Delta < 0$	-	ı	Rãdãcini complexe: $x_{1,2} = \frac{-b \pm i\sqrt{-\Delta}}{2a}$	
$\Delta = 0$	1	-	Rãdãcini reale și egale $x_1 = x_2 = -\frac{b}{2a}$	
	P > 0	S > 0	Rãdãcini reale pozitive	
$\Delta > 0$	P > 0	S < 0	Rãdãcini reale negative	
$x_1 \neq x_2$	P < 0	S > 0	Rãdãcini reale și de semne contrare; cea pozitivã este	
			mai mare decât valoarea absoluta a celei negativi	
	P < 0	S < 0	Rãdãcini reale și de semne contrare; cea negativã este	
			mai mare în valoare absolutã.	

4. Semnul funcției $f: \mathbf{R} \rightarrow \mathbf{R}$, $f(x) = ax^2 + bx + c$, $a,b,c \in \mathbf{R}$

 $\Delta > 0$: $a \neq 0, x_1 < x_2$.

$$x$$
 $-\infty$ x_1 x_2 $+\infty$ $f(x)$ semnul lui a 0 semn contrar lui a 0 semnul lui a

$$\Delta = 0$$
 $x \to \infty$
 $f(x)$
 $x_1 = x_2 \to \infty$
 $f(x)$
 $x_1 = x_2$
 $f(x)$
 $x_1 = x_2$
 $f(x)$
 $f(x)$

$$\begin{array}{c|cc}
\Delta < 0 \\
x & -\infty \\
\hline
f(x) & \text{semnul lui a}
\end{array}$$

5. Graficul funcției $f: \mathbf{R} \to \mathbf{R}$, $f(x) = ax^2 + bx + c$, $a,b,c \in \mathbf{R}$ este o parabolă. Această funcție se poate scrie și sub forma $f(x) = a\left(x + \frac{b}{2a}\right)^2 + \frac{-\Delta}{4a}$, numită formă canonică.

- 1. Maximul sau minimul funcției de gradul al doilea
- 1. Dacã a > 0, funcția $f(x) = ax^2 + bx + c$ are un minim egal cu $\frac{-\Delta}{4a}$, minim ce se realizează pentru $x = \frac{-b}{2a}$
- 2. Dacă a < 0, funcția $f(x) = ax^2 + bx + c$ are un maxim egal cu $\frac{-\Delta}{4a}$, maxim ce se realizează pentru $x = \frac{-b}{2a}$
- 7. Intervale de monotonie pentru funcția de gradul al doilea

Teoremã. Fie funcția de gradul al doilea $f(x) = ax^2 + bx + c$, $a \ne 0$

- 1. Dacã a > 0, funcția f este strict descrescătoare pe intervalul $\left(-\infty, \frac{-b}{2a}\right]$ și strict crescătoare pe intervalul $\left[\frac{-b}{2a}, +\infty\right)$.
- 2. Dacã a < 0, funcția f este strict crescătoare pe intervalul $(-\infty, \frac{-b}{2a}]$ și strict descrescătoare pe intervalul $\left[\frac{-b}{2a}, +\infty\right)$.

Observație: Intervalele $(-\infty, \frac{-b}{2a}]$ și $\left[\frac{-b}{2a}, +\infty\right)$ se numesc <u>intervale de</u> <u>monotonie</u> ale funcției f.

Descompunerea trinomului $aX^2 + bX + c$, $a,b,c \in \mathbb{R}$, $a \ne 0$, x_1 şi x_2 fiind rãdãcinile trinomului.

- 1. $\Delta > 0$, $f(x) = a(X x_1)(X x_2)$;
- 2. $\Delta = 0$, $f(x) = a(X x_1)^2$;
- 3. $\Delta < 0$, f(x) este ireductibil pe **R**.

Scrierea ecuații de gradul al doilea când se cunosc suma și produsul rădăcinilor ei: $x^2 - Sx + P = 0$, cu $S = x_1 + x_2$ și $P = x_1x_2$.

Teoremã: Ecuațiile $ax^2 + bx + c = 0$ și $a'x^2 + b'x + c' = 0$, $\forall a,b,c,a',b',c' \in \mathbb{R}$, a,a' $\neq 0$, au cel puțin o rădăcină comună dacă și numai dacă:

$$(ac' - a'c)^2 - (ab' - a'b)(bc' - b'c) = 0$$

Condiții necesare și suficiente pentru ca numerele reale date α și β să fie în anumite relații cu rădăcinile x_1 și x_2 ale ecuației de gradul al doilea $f(x)=ax^2+bx+c$ a,b,c \in R, $a\neq$ 0, respectiv, pentru ca f(x) să păstreze un semn constant $\forall x,x\in$ R.

Nr.crt.	Relații între x_1, x_2, α și β	Condiții necesare și
117.076.	$Reia_i ii iiii'e \lambda_1, \lambda_2, \alpha_3 i \beta$	· · · · · · · · · · · · · · · · · · ·
- 1		suficiente
1	$\alpha < x_1 < \beta < x_2$ sau	$1. f(\alpha) f(\beta) < 0$
	$ x_1 < \alpha < x_2 < \beta $	
2		1. $\Delta = b^2 - 4ac = 0$
		2. $af(\alpha) > 0$
		3. $af(\beta) > 0$
	$\alpha < x_1 \le x_2 < \beta$	
		4. $\alpha < \frac{-b}{2a}$
		$\begin{bmatrix} z & 0 & -b \end{bmatrix}$
		5. $\beta > \frac{-b}{2a}$
		$1. af(\alpha) < 0$
3	$x_1 < \alpha < \beta < x_2$	2. $af(\beta) < 0$ ceea ce atrage
		dupã sine $\Delta > 0$
4	$x_1 < \alpha < x_2$	1. $af(\alpha) < 0$
		1. $\Delta = 0$
5	$\alpha < x_1 \le x_2$	2. $af(\alpha) > 0$
		$\begin{vmatrix} 2 & 0 \end{vmatrix} = -b$
		3. $\alpha < \frac{-b}{2a}$
		1. $\Delta = 0$
6	$x_1 \le x_2 < \alpha$	2. $af(\alpha) > 0$
		$\begin{vmatrix} 3 & -b \\ -b \end{vmatrix} \leq \alpha$
		3. $\frac{-b}{2a} < \alpha$

7	$f(x) = 0, \ \forall x \in \mathbb{R}$	1. $\Delta \leq 0$
		2. $a > 0$
8	$f(x) \le 0, \ \forall x \in \mathbb{R}$	1. Δ≤0
		2. $a < 0$

Probleme propuse

- 1. Să se calculeze $\frac{1}{x_1} + \frac{1}{x_2}$, știind că x_1 și x_2 sunt soluțiile ecuației $x^2 x 2 = 0$.
- 2. Să se calculeze suma soluțiilor întregi ale inecuației $x^2-5x+5 \le 1$.
- 3. Fie funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = mx^2 8x 3$, unde m este un număr real nenul. Să se determine m știind că valoarea maximă a funcției f este egală cu 5.
- 4. Fie funcțiile $f,g: \mathbf{R} \to \mathbf{R}$, $f(x) = x^2 x + 1$ și g(x) = x + 4. Să se calculeze coordonatele punctelor de intersecție ale graficelor funcțiilor f și g.
- 5. Să se calculeze $x_1+x_2+x_1x_2$ știind că x_1 și x_2 sunt soluțiile ecuației $x^2-2x-2=0$.
- 6. Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = mx^2 mx + 2$, $m \in \mathbf{R}^*$. Să se determine numărul real nenul m știind că valoarea minimă a funcției este egală cu 1.
- 7. Să se determine $m \in \mathbb{R}$, știind că $\{x \in \mathbb{R} | x^2 (m+2)x + m + 1 = 0\} = \{1\}$.
- 8. Se consideră funcția $f: \mathbf{R} \rightarrow \mathbf{R}$, f(x) = x2 25. Să se calculeze $f(-5): f(-4): \dots: f(0): \dots: f(4): f(5)$.
- 9. Se consideră funcțiile $f,g: \mathbf{R} \to \mathbf{R}$, $f(x) = 3x^2 3x + 1$ și g(x) = x 1. Să se determine soluțiile reale ale ecuației f(x) = -g(x).
- 10. Se consideră funcția $f: \mathbf{R} \rightarrow \mathbf{R}$, $f(x) = x^2 11x + 30$. Să se calculeze $f(0) \cdot f(1) \cdot ... \cdot f(6)$.
- 11. Fie funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^2 + 5x + m + 6$. Să se determine valorile numărului real m știind că $f(x) \ge 0$, pentru $\forall x \in \mathbf{R}$.
- 12. Să se determine o ecuație de gradul al II-lea ale cărei soluții x_1 și x_2 verifică simultan relațiile $x_1+x_2=1$ și $x_1x_2=-2$.
- 13. Se consideră funcția $f: \mathbf{R} \rightarrow \mathbf{R}$, $f(x) = x^2 3x + 2$. Să se calculeze $f(0): f(1): \dots : f(2008)$.
- 14. Să se determine o ecuație de gradul al II-lea ale cărei soluții x_1 și x_2 verifică simultan relațiile $x_1+x_2=2$ și $x_1x_2=-3$.
- 15. Să se calculeze distanța dintre punctele de intersecție ale reprezentării grafice a funcției $f: \mathbf{R} \to \mathbf{R}, f(x) = -x^2 + 2x + 8$, cu axa Ox.
- 16. Fie funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^2 8x + 7$. Să se calculeze distanța dintre punctele determinate de intersecția graficului funcției f cu axa Ox.
- 17. Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^2 6x + 5$. Să se determine punctul de intersecție al dreptei de ecuație y = -4 cu reprezentarea grafică a funcției f.
- 18. Să se demonstreze că ecuația $x^2-2x+1+a^2=0$ nu admite soluții reale, oricare ar fi $a \in \mathbb{R}^*$.
- 19. Să se determine valorile reale ale lui m , știind că valoarea minimă a funcției

$$f: \mathbf{R} \to \mathbf{R}, f(x) = x^2 - mx + m - 1$$
 este egală cu $-\frac{1}{4}$.

- 20. Să se determine $m \in \mathbb{R}$, știind că soluțiile x_1, x_2 ale ecuației $x^2 (2m+1)x + 3m = 0$ verifică relația $x_1 + x_2 + x_1x_2 = 11$.
- 21. Se consideră ecuația $x^2+3x-5=0$ cu soluțiile x_1 și x_2 . Să se calculeze $x_1^2+x_2^2$.
- 22. Să se arate că (x-1)(x-2) > x-3, oricare ar fi $x \in \mathbb{R}$.

- 23. Se consideră ecuația $x^2+mx+2=0$ cu soluțiile x_1 și x_2 . Să se determine valorile reale ale lui m pentru care $(x_1+x_2)^2-2x_1x_2=5$.
- 24. Să se determine funcția de gradul al doilea $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^2 (2m+1)x + 3$, $m \in \mathbf{R}$, al cărei grafic are abscisa vârfului egală cu $\frac{7}{2}$.
- 25. Să se rezolve inecuația $(2x-1)^2 \le 9$.
- 26. Să se demonstreze că parabola asociată funcției $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^2 2mx + m^2 + 1$ este situată deasupra axei Ox, oricare ar fi $m \in \mathbf{R}$.
- 27. Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^2 + mx + 2$. Să se determine numerele reale m pentru care minimul funcției f este egal cu $-\frac{1}{4}$.
- 28. Să se formeze o ecuație de gradul al doilea, știind că aceasta are soluțiile $x_1=2$ și $x_2=3$.
- 29. Să se rezolve sistemul de ecuații $\begin{cases} x + y 2 = 0 \\ x^2 2x + y = 0 \end{cases}$
- 30. Să se determine soluțiile reale ale inecuației $x^2-9 \le 0$.
- 31. Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^2 + 3$. Să se rezolve inecuația $f(x) \le 12$.
- 32. Să se determine coordonatele vârfului parabolei asociate funcției $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^2 + 4x 5$.
- 33. Se consideră ecuația $x^2-x+m=0$ cu soluțiile x_1 și x_2 . Să se determine numărul real m pentru care $\frac{1}{x_1+1}+\frac{1}{x_2+1}=-\frac{3}{4}$.
- 34. Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^2 3x + 1$. Să se determine numerele reale m pentru care punctul A(m,-1) aparține graficului funcției f.
- 35. Să se determine funcția de gradul al II-lea al cărei grafic conține punctele A(1;3), B(0;5) și C(-1;11).
- 36. Să se determine valorile reale ale parametrului m știind că soluțiile x_1 și x_2 ale ecuației $x^2+(m-1)x+3=0$ verifică egalitatea $x_1=3x_2$.
- 37. Să se determine $m \in \mathbb{R}^*$ astfel încât graficul funcției $f : \mathbb{R} \to \mathbb{R}$, $f(x) = mx^2 x + 1$ să conțină punctul A(2,3).
- 38. Să se determine valorile reale ale lui m știind că soluțiile x_1 și x_2 ale ecuației $x^2-(m^2+3)x+3=0$ verifică egalitatea $x_1+x_2+x_1x_2=7$.
- 39. Să se determine valorile reale ale parametrului m astfel încât ecuația $x^2+mx+9=0$ să admită două soluții egale.
- 40. Să se arate că soluțiile x_1 și x_2 ale ecuației $x^2-x-1=0$ verifică relația $x_1^2+x_2^2=x_1+x_2+2$.
- 41. Să se determine valorile reale ale numărului m știind că valoarea minimă a funcției $f: \mathbf{R} \rightarrow \mathbf{R}, f(x) = x^2 2mx + 3m$ este egală cu 2.
- 42. Să se determine valorile reale nenule ale lui m pentru care graficul funcției $f: \mathbf{R} \to \mathbf{R}, f(x) = mx^2 (m+1)x + 1$ este tangent axei Ox.
- 43. Să se determine numerele reale m știind că valoarea maximă a funcției $f: \mathbf{R} \rightarrow \mathbf{R}, f(x) = -x^2 + 2x m + 3$ este egală cu 10.

- 44. Să se determine valorile reale ale numărului m știind că soluțiile x_1 și x_2 ale ecuației $x^2-mx+m+2=0$ verifică egalitatea $2x_1x_2=x_1+x_2$.
- 45. Știind că x_1 și x_2 sunt soluțiile ecuației x^2 –2008x+1=0, să se calculeze

$$\frac{1}{x_1} + \frac{1}{x_2}$$

- 46. Să se determine valorile reale ale lui m, știind că soluțiile x_1 și x_2 ale ecuației $x^2-mx-m-6=0$ verifică relația $4(x_1+x_2)+x_1x_2=0$.
- 47. Să se determine m real astfel încât soluțiile x_1 și x_2 ale ecuației $x^2+2x+6m-1=0$ să verifice relatia $x_1+x_2=x_1x_2$.
- 48. Să se determine punctele de intersecție ale graficului funcției $f: \mathbf{R} \rightarrow \mathbf{R}$, $f(x) = x^2 1$ cu axele de coordonate.
- 49. Să se demonstreze că pentru orice $m \in \mathbb{R}$ ecuația $x^2 + mx m^2 1 = 0$ are două soluții reale distincte.
- 50. Să se determine valorile reale ale lui x pentru care $x(x-1) \le x+15$.
- 51. Să se determine valorile reale ale numărului m astfel încât reprezentarea grafică a funcției $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^2 (m-1)x m$ să fie tangentă la axa Ox.
- 52. Să se determine soluțiile reale ale inecuației $x^2-5x+6 \le 0$.
- 53. Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^2 ax + a$, unde $a \in \mathbf{R}$. Să se determine a astfel încât minimul funcției f să fie 1.
- 54. Să se arate că soluțiile x_1 și x_2 ale ecuației $x^2 (2m-3)x + m 1 = 0$ verifică egalitatea $x_1 + x_2 2x_1x_2 = -1$, $\forall m \in \mathbb{R}$.
- 55. Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^2 2x + 2$. Să se arate că vârful parabolei asociate funcției are cooordonatele egale.
- 56. Să se arate că mulțimea $\{x \in \mathbb{R} | x^2 (2m+1)x + m^2 + m = 0\}$ are două elemente, oricare ar fi $m \in \mathbb{R}$.
- 57. Să se formeze o ecuație de gradul al doilea, ale cărei soluții verifică relațiile $\begin{cases} x+y=11\\ xy=30 \end{cases}.$
- 58. Să se rezolve sistemul $\begin{cases} y = 2x 1 \\ y = x^2 3x + 5 \end{cases}$
- 59. Să se arate că, oricare ar fi $m \in \mathbb{R}$, parabola asociată funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 mx + m^2 + 1$ este situată deasupra axei Ox.
- 60. Să se determine valoarea parametrului real m, știind că soluțiile x_1 și x_2 ale ecuației $x^2-(m-1)x-m=0$ verifică relația $x_1+x_2=2(x_1x_2+4)$.
- 61. Să se rezolve sistemul $\begin{cases} x + y = 3 \\ x^2 + x = y \end{cases}$
- 62. Să se rezolve în mulțimea numerelor reale inecuația $(2x-1)(x+1) \le -x+11$.
- 63. Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = -x^2 + 4x + 6$. Să se arate că $f(x) \le f(2)$, oricare ar fi $x \in \mathbf{R}$.
- 64. Ecuația $x^2+px-p=0$, cu $p \in \mathbb{R}$, are soluțiile x_1 și x_2 . Să se verifice dacă expresia $x_1+x_2-x_1x_2$ este constantă.

- 65. Fie functia $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^2 (m+1)x + m$, cu $m \in \mathbf{R}$. Să se arate că solutiile x_1 si x_2 ale ecuatiei f(x)=0 verifică relatia $x_1+x_2-x_1x_2=1$.
- 66. Să se demonstreze că parabola asociată funcției $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^2 4x + 4$ este tangentă axei Ox.
- 67. Să se rezolve sistemul de ecuații $\begin{cases} x + y = -6 \\ xy = 8 \end{cases}$ 68. Să se rezolve sistemul de ecuații $\begin{cases} x + y = 5 \\ xy = 6 \end{cases}$
- 69. Se consideră ecuația de gradul al doilea $x^2-x+m=0$. Să se determine $m \in \mathbb{R}$ astfel încât ecuatia să admită solutii de semne contrare.
- 70. Să se arate că vârful parabolei asociate funcției $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^2 2x 3$ se află pe dreapta de ecuatie 3x+v+1=0.
- 71. Să se rezolve inecuatia $(x^2-1)(x+1)>0$.
- 72. Să se arate că produsul soluțiilor ecuației $mx^2-2008x-m=0$ este constant, oricare ar fi $m \in \mathbb{R}^*$.
- 73. Se consideră funcțiile $f_xg: \mathbf{R} \rightarrow \mathbf{R}$, $f(x) = 4x^2 4x + 1$, g(x) = 2x 1. Să se rezolve ecuatia f(x)+2g(x)=-1.
- 74. Se consideră funcția $f: \mathbf{R} \rightarrow \mathbf{R}$, $f(x) = x^2 3x + 2$. Să se calculeze produsul $f(-2)\cdot f(-1)\cdot f(0)\cdot f(1)\cdot f(2)$.
- 75. Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^2 + mx + 2$. Să se determine numărul real m astfel încât minimul funcției să fie egal cu −2.
- 76. Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^2 4x + 3$. Să se demonstreze că $f(x) \ge -1$, oricare ar fi numărul real x.
- 77. Să se determine numărul real m astfel încât soluțiile ecuației $x^2-mx-1=0$ să fie numere reale opuse.
- 78. Să se determine parametrul real m astfel încât solutiile ecuatiei $x^2-3x+m=0$ să fie inverse una alteia.
- 79. Să se determine $m \in \mathbb{R}^*$ astfel încât solutiile ecuatiei $x^2 3x + m = 0$ să aibă semne opuse.
- 80. Să se determine coordonatele vârfului parabolei asociate funcției $f: \mathbf{R} \rightarrow \mathbf{R}$. $f(x)=4x^2-12x+9$.