TEST REPORT

Reference No. : WTN16S0754892-1E

FCC ID..... : 2AFOYL654UCNN

Applicant: Le Shi Zhi Xin Electronic Technology (Tian jin) Limited

Address 201-427 2F B1 District, Anime building, No. 126 Anime Middle Road,

Eco-city Tianjin, China

Manufacturer: TPV Technology (Qingdao) Co.,Ltd

City, Shandong Province, China(PRC)

Product Name: LED TV

Model No. L654UCNN

Brand LeEco

Standards FCC CFR47 Part 15 C Section 15.247:2015

Date of Receipt sample..... : Jul. 04, 2016

Date of Test.....: Jul. 05 - 20, 2016

Date of Issue : Jul. 21, 2016

Test Result Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company.

The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Approved by:

Zero Zhou / Test Engineer

Philo Zhong /

Reference No.: WTN16S0754892-1E Page 2 of 76

2 Test Summary

Test Items	Test Requirement	Result
Conducted Emissions	15.207(a)	PASS
	15.247	
Radiated Emissions	15.205(a)	PASS
	15.209(a)	
6dB Bandwidth	15.247(a)(2)	PASS
Maximum Peak Output Power	15.247(b)(3),(4)	PASS
Power Spectral Density	15.247(e)	PASS
Band Edge	15.247(d)	PASS
Antenna Requirement	15.203	PASS
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS

3 Contents

		Page
	VER PAGE	
	ST SUMMARY	
CO	NTENTS	3
GEI	NERAL INFORMATION	
4.1	GENERAL DESCRIPTION OF E.U.T.	
4.2	DETAILS OF E.U.T.	
4.3	CHANNEL LIST	
4.4 4.5	TEST MODE TEST FACILITY	
	UIPMENT USED DURING TEST	
5.1	EQUIPMENTS LIST	
5.2	DESCRIPTION OF SUPPORT UNITS	
5.3	MEASUREMENT UNCERTAINTY	
5.4		
CO	NDUCTED EMISSION	
6.1		
6.2 6.3	EUT SETUP MEASUREMENT DESCRIPTION	
6.4		
	DIATED EMISSIONS	
7.1	EUT OPERATION	
7.2	TEST SETUP	
7.3	SPECTRUM ANALYZER SETUP	
7.4	TEST PROCEDURE	
7.5	CORRECTED AMPLITUDE & MARGIN CALCULATION	
7.6	SUMMARY OF TEST RESULTS	
	TEST PRODUCE	
8.1	TEST RESULT	
	B BANDWIDTH MEASUREMENT	
	Test Procedure:	
	TEST RESULT:	
MA	XIMUM PEAK OUTPUT POWER	52
10.1	Test Procedure:	52
10.2	2 Test Result:	52
PO	WER SPECTRAL DENSITY	63
11.1	Test Procedure:	63
11.2	2 Test Result:	63
AN	TENNA REQUIREMENT	74
RF	EXPOSURE	75
13.1		
13.2		75 76
111	1 DOCE TO ALCOHOLOGO DE LA CONTRA LA	//

Reference No.: WTN16S0754892-1E Page 4 of 76

4 General Information

4.1 General Description of E.U.T.

Product Name: LED TV

Model No.: L654UCNN

Model Description: N/A

Operation Frequency: IEEE 802.11b/g/n(HT20):2412MHz ~ 2462MHz

IEEE 802.11a/ n(HT20/40)/ac(HT20/40/80): 5150MHz to 5250MHz IEEE 802.11a/ n(HT20/40)/ac(HT20/40/80): 5725MHz to 5850MHz

BT: 2402-2480MHz

SRD: 2403-2480MHz

Type of modulation: IEEE 802.11b DSSS(CCK/QPSK/BPSK)

IEEE 802.11g OFDM(BPSK/QPSK/16QAM/64QAM)
IEEE 802.11n OFDM(BPSK/QPSK/16QAM/64QAM)
IEEE for 802.11a: OFDM(BPSK/QPSK/16QAM/64QAM)
IEEE for 802.11n: OFDM(BPSK/QPSK/16QAM/64QAM)

IEEE for 802.11ac : OFDM (BPSK/QPSK/16QAM/64QAM/256QAM)

BT: GFSK,PI/4-DQPSK,8DPSK

SRD: GFSK

The Lowest Oscillator: 32.768KHz

Antenna installation: internal permanent antenna

Antenna Gain: ANT 0

2.4GHz WIFI:3.2 dBi 5.2GHz WIFI:2.8 dBi 5.8GHz WIFI:4.5 dBi

ANT 1

2.4GHz WIFI:3.2 dBi 5.2GHz WIFI:3.3 dBi 5.8GHz WIFI:3.4 dBi

ANT 2

2.4GHz BT:3.2 dBi

ANT 3

2.4GHz SRD:3.2 dBi

4.2 Details of E.U.T.

Technical Data: AC 120V~60Hz, 185W

4.3 Channel List

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
No.	(MHz)	No.	(MHz)	No.	(MHz)	No.	(MHz)
1	2412	2	2417	3	2422	4	2427
5	2432	6	2437	7	2442	8	2447
9	2452	10	2457	11	2462	12	-

Reference No.: WTN16S0754892-1E Page 5 of 76

4.4 Test Mode

Test Mode Description:

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product. Transmitting duty cycle is no less 98%.

The software is installed in operation system, named "RFTestTool.apk", Version 1,date 20160518.

Table 1 Tests Carried Out Under FCC part 15.247

Test Items	Mode	Data Rate	Channel	TX/RX
	802.11b	11 Mbps	1/6/11	TX
Maximum Peak Output Power	802.11g	54 Mbps	1/6/11	TX
	802.11n HT20	108 Mbps	1/6/11	TX
	802.11b	11 Mbps	1/6/11	TX
Power Spectral Density	802.11g	54 Mbps	1/6/11	TX
	802.11n HT20	108 Mbps	1/6/11	TX
	802.11b	11 Mbps	1/11	TX
Band Edge	802.11g	54 Mbps	1/11	TX
	802.11n HT20	108 Mbps	1/11	TX
	802.11b	11 Mbps	1/6/11	TX
Transmitter Spurious Emissions	802.11g	54 Mbps	1/6/11	TX
	802.11n HT20	108 Mbps	1/6/11	TX

Table 2 Tests Carried Out Under FCC part 15.207 & FCC part 15.209

Test Item	Test Mode
Conduction Emission, 0.15MHz to 30MHz	Communication

Reference No.: WTN16S0754892-1E Page 6 of 76

4.5 Test Facility

The test facility has a test site registered with the following organizations:

IC – Registration No.: 7760A-1

Waltek Services(Shenzhen) Co., Ltd. Has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration number 7760A-1,July 12, 2012.

FCC Test Site 1# Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

• FCC Test Site 2#— Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

5 Equipment Used during Test

5.1 Equipments List

Condu	cted Emissions Test S					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	100947	Sep.14,2015	Sep.13,2016
2.	LISN	R&S	ENV216	101215	Sep.14,2015	Sep.13,2016
3.	•		TYPE16(3.5M)	-	Sep.14,2015	Sep.13,2016
Condu	cted Emissions Test S	Site 2#				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	101155	Sep.14,2015	Sep.13,2016
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	Sep.14,2015	Sep.13,2016
3. Limiter		York	MTS-IMP-136	261115-001- 0024	Sep.14,2015	Sep.13,2016
4. Cable		LARGE	RF300	-	Sep.14,2015	Sep.13,2016
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions Test site	1#		
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	EMC Analyzer	Agilent	E7405A	MY45114943	Sep.14,2015	Sep.13,2016
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Sep.14,2015	Sep.13,2016
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Sep.14,2015	Sep.13,2016
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.14,2015	Sep.13,2016
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Sep.14,2015	Sep.13,2016
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	Sep.14,2015	Sep.13,2016
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Sep.14,2015	Sep.13,2016
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	Sep.14,2015	Sep.13,2016
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions Test site	2#		
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date
1	Test Receiver	R&S	ESCI	101296	Sep.14,2015	Sep.13,2016
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Sep.14,2015	Sep.13,2016
3	Amplifier	Compliance pirection systems inc	PAP-0203	22024	Sep.14,2015	Sep.13,2016
4	Cable	HUBER+SUHNER	CBL2	525178	Sep.14,2015	Sep.13,2016

Item			Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	Sep.14,2015	Sep.13,2016
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	Sep.14,2015	Sep.13,2016
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	Sep.14,2015	Sep.13,2016

5.2 Description of Support Units

Equipment	Manufacturer	Model No.	Series No.
1	1	1	1

5.3 Measurement Uncertainty

Parameter	Uncertainty		
Radio Frequency	± 1 x 10 ⁻⁶		
RF Power	± 1.0 dB		
RF Power Density	± 2.2 dB		
De dieta de Occasiona Francisco de de	± 5.03 dB (30M~1000MHz)		
Radiated Spurious Emissions test	± 5.47 dB (1000M~25000MHz)		
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)		

5.4 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTN16S0754892-1E Page 9 of 76

6 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB_µV between 0.15MHz & 0.5MHz

 $56~dB\mu V$ between 0.5MHz & 5MHz $60~dB\mu V$ between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

6.1 E.U.T. Operation

Operating Environment:

Temperature: 21.5 °C
Humidity: 51.9 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

6.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

6.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

6.4 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Live line:

Reference No.: WTN16S0754892-1E Page 11 of 76

Neutral line:

Reference No.: WTN16S0754892-1E Page 12 of 76

7 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

I imit

LIIIIII.	LIIIIL							
_	Field Stre	ngth	Field Strength Limit at 3m Measurement Dist					
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m				
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80				
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40				
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40				
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾				
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾				
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾				
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾				

7.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C Humidity: 52.1 % RH

Atmospheric Pressure:

101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10: 2013.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Reference No.: WTN16S0754892-1E Page 14 of 76

The test setup for emission measurement above 1 GHz.

7.3 Spectrum Analyzer Setup

Sweep Speed	. Auto
IF Bandwidth	.10kHz
Video Bandwidth	.10kHz
Resolution Bandwidth	.10kHz
z	
Sweep Speed	. Auto
Detector	.PK
Resolution Bandwidth	.100kHz
Video Bandwidth	.300kHz
Sweep Speed	. Auto
Detector	.PK
Resolution Bandwidth	.1MHz
Video Bandwidth	.3MHz
Detector	.Ave.
Resolution Bandwidth	.1MHz
Video Bandwidth	.10Hz
	Sweep Speed

Reference No.: WTN16S0754892-1E Page 15 of 76

7.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane for below 1GHz and 1.5m for above 1GHz.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level

- EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting the eut in X axis.so the worst data were shown as follow.
- 8. A 2.4GHz high -pass filter is used druing radiated emissions above 1GHz measurement.

7.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

7.6 Summary of Test Results

Test Frequency: 32.768kHz~30MHz

Frequency (MHz)	Measurement results		Detector	Correct factor	Extrapolation factor	Measurement results (calculated)	Limits	Margin
(IVITIZ)	dΒμV	@3m	PK/QP	dB/m	dB	dBµV/m @30m	dBµV/m @30m	dB
25.479	25.	.14	QP	20.55 40.00 5.69		29.54	-23.85	

Test Frequency : 30MHz ~ 18GHz

Fraguera	Receiver	Datastar	Turn	RX An	tenna	Corrected	Carrantad	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		Д	NT0 11b:	Low Cha	nnel 24	12MHz			
223.45	42.26	QP	34	1.0	Н	-11.62	30.64	46.00	-15.36
223.45	36.00	QP	184	2.0	V	-11.62	24.38	46.00	-21.62
4824.00	49.93	PK	327	1.4	V	-1.06	48.87	74.00	-25.13
4824.00	44.56	Ave	327	1.4	V	-1.06	43.50	54.00	-10.50
7236.00	39.63	PK	124	1.0	Н	1.33	40.96	74.00	-33.04
7236.00	43.12	Ave	124	1.0	Н	1.33	44.45	54.00	-9.55
2328.82	45.71	PK	190	1.6	V	-13.19	32.52	74.00	-41.48
2328.82	38.21	Ave	190	1.6	V	-13.19	25.02	54.00	-28.98
2371.85	44.32	PK	51	1.6	Н	-13.14	31.18	74.00	-42.82
2371.85	37.32	Ave	51	1.6	Н	-13.14	24.18	54.00	-29.82
2483.98	43.32	PK	136	2.0	V	-13.08	30.24	74.00	-43.76
2483.98	36.53	Ave	136	2.0	V	-13.08	23.45	54.00	-30.55

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	0	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		AN.	NT0 11b: ľ	Middle Ch	nannel 2	2437MHz			
223.45	40.96	QP	265	1.0	Н	-11.62	29.34	46.00	-16.66
223.45	36.54	QP	128	1.5	V	-11.62	24.92	46.00	-21.08
4874.00	51.03	PK	297	1.0	V	-0.62	50.41	74.00	-23.59
4874.00	46.01	Ave	297	1.0	V	-0.62	45.39	54.00	-8.61
7311.00	39.88	PK	5	1.7	Н	2.21	42.09	74.00	-31.91
7311.00	42.95	Ave	5	1.7	Н	2.21	45.16	54.00	-8.84
2310.02	46.00	PK	98	1.6	V	-13.19	32.81	74.00	-41.19
2310.02	39.16	Ave	98	1.6	V	-13.19	25.97	54.00	-28.03
2383.03	42.95	PK	256	1.2	Н	-13.14	29.81	74.00	-44.19
2383.03	37.91	Ave	256	1.2	Н	-13.14	24.77	54.00	-29.23
2497.24	43.81	PK	329	1.5	V	-13.08	30.73	74.00	-43.27
2497.24	36.61	Ave	329	1.5	V	-13.08	23.53	54.00	-30.47

	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		A	NT0 11b:	High Ch	annel 2	462MHz			
223.45	40.67	QP	222	1.2	Н	-11.62	29.05	46.00	-16.95
223.45	35.08	QP	24	1.2	V	-11.62	23.46	46.00	-22.54
4924.00	52.21	PK	112	1.5	V	-0.24	51.97	74.00	-22.03
4924.00	46.11	Ave	112	1.5	V	-0.24	45.87	54.00	-8.13
7386.00	39.67	PK	154	1.7	Н	2.84	42.51	74.00	-31.49
7386.00	42.35	Ave	154	1.7	Н	2.84	45.19	54.00	-8.81
2333.14	45.89	PK	139	1.2	V	-13.19	32.70	74.00	-41.30
2333.14	39.21	Ave	139	1.2	V	-13.19	26.02	54.00	-27.98
2369.21	43.94	PK	69	1.3	Н	-13.14	30.80	74.00	-43.20
2369.21	37.49	Ave	69	1.3	Н	-13.14	24.35	54.00	-29.65
2486.41	42.87	PK	329	1.7	V	-13.08	29.79	74.00	-44.21
2486.41	38.88	Ave	329	1.7	V	-13.08	25.80	54.00	-28.20

F	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		Д	NT1 11b:	Low Cha	nnel 24	12MHz			
223.45	40.94	QP	348	1.5	Н	-11.62	29.32	46.00	-16.68
223.45	36.12	QP	289	1.7	V	-11.62	24.50	46.00	-21.50
4824.00	49.11	PK	346	1.5	V	-1.06	48.05	74.00	-25.95
4824.00	43.26	Ave	346	1.5	V	-1.06	42.20	54.00	-11.80
7236.00	40.45	PK	47	1.1	Н	1.33	41.78	74.00	-32.22
7236.00	43.21	Ave	47	1.1	Н	1.33	44.54	54.00	-9.46
2344.42	46.99	PK	109	1.4	V	-13.19	33.80	74.00	-40.20
2344.42	38.56	Ave	109	1.4	V	-13.19	25.37	54.00	-28.63
2365.57	43.63	PK	225	1.6	Н	-13.14	30.49	74.00	-43.51
2365.57	38.15	Ave	225	1.6	Н	-13.14	25.01	54.00	-28.99
2488.07	42.32	PK	177	2.0	V	-13.08	29.24	74.00	-44.76
2488.07	38.96	Ave	177	2.0	V	-13.08	25.88	54.00	-28.12

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	0	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		AN.	NT1 11b: ľ	Middle Ch	nannel 2	2437MHz			
223.45	41.44	QP	116	1.9	Н	-11.62	29.82	46.00	-16.18
223.45	35.76	QP	246	1.2	V	-11.62	24.14	46.00	-21.86
4874.00	48.04	PK	234	1.2	V	-0.62	47.42	74.00	-26.58
4874.00	43.90	Ave	234	1.2	V	-0.62	43.28	54.00	-10.72
7311.00	39.96	PK	20	2.0	Н	2.21	42.17	74.00	-31.83
7311.00	43.40	Ave	20	2.0	Н	2.21	45.61	54.00	-8.39
2345.16	46.19	PK	157	1.1	V	-13.19	33.00	74.00	-41.00
2345.16	38.50	Ave	157	1.1	V	-13.19	25.31	54.00	-28.69
2361.55	43.60	PK	86	1.8	Н	-13.14	30.46	74.00	-43.54
2361.55	37.01	Ave	86	1.8	Н	-13.14	23.87	54.00	-30.13
2486.34	44.33	PK	184	1.3	V	-13.08	31.25	74.00	-42.75
2486.34	37.97	Ave	184	1.3	V	-13.08	24.89	54.00	-29.11

	Receiver	Datastan	Turn	RX An	tenna	Corrected	Carrantad	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		А	NT1 11b:	High Ch	annel 2	462MHz			
223.45	40.65	QP	300	1.6	Н	-11.62	29.03	46.00	-16.97
223.45	35.92	QP	33	1.8	V	-11.62	24.30	46.00	-21.70
4924.00	49.07	PK	355	1.6	V	-0.24	48.83	74.00	-25.17
4924.00	44.83	Ave	355	1.6	V	-0.24	44.59	54.00	-9.41
7386.00	39.41	PK	242	1.8	Н	2.84	42.25	74.00	-31.75
7386.00	42.46	Ave	242	1.8	Н	2.84	45.30	54.00	-8.70
2333.15	46.31	PK	342	1.5	V	-13.19	33.12	74.00	-40.88
2333.15	37.92	Ave	342	1.5	V	-13.19	24.73	54.00	-29.27
2357.38	43.27	PK	151	1.1	Н	-13.14	30.13	74.00	-43.87
2357.38	36.73	Ave	151	1.1	Н	-13.14	23.59	54.00	-30.41
2486.44	42.03	PK	192	1.4	V	-13.08	28.95	74.00	-45.05
2486.44	38.71	Ave	192	1.4	V	-13.08	25.63	54.00	-28.37

	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		A	NT0 11g:	Low Cha	annel 24	12MHz			
223.45	39.62	QP	269	1.1	Н	-11.62	28.00	46.00	-18.00
223.45	34.43	QP	47	1.7	V	-11.62	22.81	46.00	-23.19
4824.00	53.62	PK	89	1.8	V	-1.06	52.56	74.00	-21.44
4824.00	44.76	Ave	89	1.8	V	-1.06	43.70	54.00	-10.30
7236.00	39.19	PK	122	1.5	Н	1.33	40.52	74.00	-33.48
7236.00	41.33	Ave	122	1.5	Н	1.33	42.66	54.00	-11.34
2337.37	45.51	PK	247	1.2	V	-13.19	32.32	74.00	-41.68
2337.37	38.94	Ave	247	1.2	V	-13.19	25.75	54.00	-28.25
2387.06	43.70	PK	193	1.7	Н	-13.14	30.56	74.00	-43.44
2387.06	37.33	Ave	193	1.7	Н	-13.14	24.19	54.00	-29.81
2494.73	43.09	PK	229	1.4	V	-13.08	30.01	74.00	-43.99
2494.73	37.81	Ave	229	1.4	V	-13.08	24.73	54.00	-29.27

F	Receiver	D 4 4	Turn	RX An	tenna	Corrected		FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		1A	NT0 11g: I	Middle Ch	nannel 2	2437MHz			
223.45	40.55	QP	42	1.7	Н	-11.62	28.93	46.00	-17.07
223.45	33.17	QP	248	1.9	V	-11.62	21.55	46.00	-24.45
4874.00	53.72	PK	301	1.1	V	-0.62	53.10	74.00	-20.90
4874.00	44.31	Ave	301	1.1	V	-0.62	43.69	54.00	-10.31
7311.00	37.83	PK	264	1.7	Н	2.21	40.04	74.00	-33.96
7311.00	41.82	Ave	264	1.7	Н	2.21	44.03	54.00	-9.97
2327.98	45.34	PK	169	2.0	V	-13.19	32.15	74.00	-41.85
2327.98	38.43	Ave	169	2.0	V	-13.19	25.24	54.00	-28.76
2353.71	42.24	PK	199	1.7	Н	-13.14	29.10	74.00	-44.90
2353.71	37.93	Ave	199	1.7	Н	-13.14	24.79	54.00	-29.21
2488.24	43.10	PK	285	1.6	V	-13.08	30.02	74.00	-43.98
2488.24	38.67	Ave	285	1.6	V	-13.08	25.59	54.00	-28.41

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	0	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		Α	NT0 11g:	High Cha	annel 24	l62MHz			
223.45	41.07	QP	219	1.7	Н	-11.62	29.45	46.00	-16.55
223.45	32.64	QP	47	1.7	V	-11.62	21.02	46.00	-24.98
4924.00	53.43	PK	132	1.2	V	-0.24	53.19	74.00	-20.81
4924.00	45.37	Ave	132	1.2	V	-0.24	45.13	54.00	-8.87
7386.00	36.99	PK	205	1.7	Н	2.84	39.83	74.00	-34.17
7386.00	41.40	Ave	205	1.7	Н	2.84	44.24	54.00	-9.76
2331.75	46.48	PK	1	1.3	V	-13.19	33.29	74.00	-40.71
2331.75	37.74	Ave	1	1.3	V	-13.19	24.55	54.00	-29.45
2385.86	44.02	PK	352	1.9	Н	-13.14	30.88	74.00	-43.12
2385.86	38.10	Ave	352	1.9	Н	-13.14	24.96	54.00	-29.04
2484.32	44.04	PK	355	1.5	V	-13.08	30.96	74.00	-43.04
2484.32	38.07	Ave	355	1.5	V	-13.08	24.99	54.00	-29.01

_	Receiver	D 1 1	Turn	RX An	tenna	Corrected		FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		A	NT1 11g:	Low Cha	annel 24	12MHz			
223.45	39.29	QP	310	1.8	Н	-11.62	27.67	46.00	-18.33
223.45	36.57	QP	75	1.1	V	-11.62	24.95	46.00	-21.05
4824.00	49.08	PK	306	2.0	V	-1.06	48.02	74.00	-25.98
4824.00	44.18	Ave	306	2.0	V	-1.06	43.12	54.00	-10.88
7236.00	39.90	PK	306	1.5	Н	1.33	41.23	74.00	-32.77
7236.00	41.55	Ave	306	1.5	Н	1.33	42.88	54.00	-11.12
2329.56	46.52	PK	157	2.0	V	-13.19	33.33	74.00	-40.67
2329.56	37.56	Ave	157	2.0	V	-13.19	24.37	54.00	-29.63
2386.55	42.47	PK	345	1.1	Н	-13.14	29.33	74.00	-44.67
2386.55	36.89	Ave	345	1.1	Н	-13.14	23.75	54.00	-30.25
2494.39	43.21	PK	184	1.5	V	-13.08	30.13	74.00	-43.87
2494.39	36.88	Ave	184	1.5	V	-13.08	23.80	54.00	-30.20

	Receiver	Datastas	Turn	RX An	tenna	Corrected	0	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		AN	NT1 11g: I	Middle Ch	nannel 2	2437MHz			
223.45	39.45	QP	193	1.7	Н	-11.62	27.83	46.00	-18.17
223.45	35.24	QP	174	1.0	V	-11.62	23.62	46.00	-22.38
4874.00	49.24	PK	331	1.1	V	-0.62	48.62	74.00	-25.38
4874.00	45.11	Ave	331	1.1	V	-0.62	44.49	54.00	-9.51
7311.00	38.82	PK	340	1.3	Н	2.21	41.03	74.00	-32.97
7311.00	41.29	Ave	340	1.3	Н	2.21	43.50	54.00	-10.50
2313.83	46.20	PK	198	1.6	V	-13.19	33.01	74.00	-40.99
2313.83	39.66	Ave	198	1.6	V	-13.19	26.47	54.00	-27.53
2364.64	43.66	PK	27	1.6	Н	-13.14	30.52	74.00	-43.48
2364.64	38.76	Ave	27	1.6	Н	-13.14	25.62	54.00	-28.38
2484.24	43.87	PK	99	1.5	V	-13.08	30.79	74.00	-43.21
2484.24	38.79	Ave	99	1.5	V	-13.08	25.71	54.00	-28.29

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	0	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		Α	NT1 11g:	High Cha	annel 24	162MHz			
223.45	39.48	QP	114	1.7	Н	-11.62	27.86	46.00	-18.14
223.45	35.09	QP	351	1.9	V	-11.62	23.47	46.00	-22.53
4924.00	48.23	PK	98	1.9	V	-0.24	47.99	74.00	-26.01
4924.00	44.82	Ave	98	1.9	V	-0.24	44.58	54.00	-9.42
7386.00	39.12	PK	179	1.1	Н	2.84	41.96	74.00	-32.04
7386.00	41.28	Ave	179	1.1	Н	2.84	44.12	54.00	-9.88
2326.69	46.29	PK	168	1.2	V	-13.19	33.10	74.00	-40.90
2326.69	38.86	Ave	168	1.2	V	-13.19	25.67	54.00	-28.33
2388.21	43.43	PK	163	1.0	Н	-13.14	30.29	74.00	-43.71
2388.21	38.44	Ave	163	1.0	Н	-13.14	25.30	54.00	-28.70
2488.31	44.80	PK	272	1.4	V	-13.08	31.72	74.00	-42.28
2488.31	37.83	Ave	272	1.4	V	-13.08	24.75	54.00	-29.25

Frequency	Receiver Reading	1)otoctor	Turn table Angle	RX Antenna		Corrected	O	FCC Part 15.247/209/205	
				Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
ANT0+ANT1 n20: Low Channel 2412MHz									
223.45	38.96	QP	11	1.2	Н	-11.62	27.34	46.00	-18.66
223.45	34.54	QP	253	1.6	V	-11.62	22.92	46.00	-23.08
4824.00	48.82	PK	54	1.5	V	-1.06	47.76	74.00	-26.24
4824.00	43.49	Ave	54	1.5	V	-1.06	42.43	54.00	-11.57
7236.00	39.96	PK	2	1.7	Н	1.33	41.29	74.00	-32.71
7236.00	42.32	Ave	2	1.7	Н	1.33	43.65	54.00	-10.35
2347.85	46.44	PK	187	1.6	V	-13.19	33.25	74.00	-40.75
2347.85	38.85	Ave	187	1.6	V	-13.19	25.66	54.00	-28.34
2368.12	42.54	PK	296	1.3	Н	-13.14	29.40	74.00	-44.60
2368.12	38.09	Ave	296	1.3	Н	-13.14	24.95	54.00	-29.05
2493.19	43.40	PK	195	1.4	V	-13.08	30.32	74.00	-43.68
2493.19	37.55	Ave	195	1.4	V	-13.08	24.47	54.00	-29.53

Frequency	Receiver	1)otoctor	Turn table Angle	RX Antenna		Corrected	Carrantad	FCC Part 15.247/209/205	
	Reading			Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
ANT0+ANT1 n20: Middle Channel 2437MHz									
223.45	40.29	QP	113	1.9	Н	-11.62	28.67	46.00	-17.33
223.45	35.81	QP	23	1.3	V	-11.62	24.19	46.00	-21.81
4874.00	49.32	PK	157	1.9	V	-0.62	48.70	74.00	-25.30
4874.00	42.50	Ave	157	1.9	V	-0.62	41.88	54.00	-12.12
7311.00	41.38	PK	148	1.7	Н	2.21	43.59	74.00	-30.41
7311.00	43.38	Ave	148	1.7	Н	2.21	45.59	54.00	-8.41
2312.25	45.41	PK	219	1.7	V	-13.19	32.22	74.00	-41.78
2312.25	38.36	Ave	219	1.7	V	-13.19	25.17	54.00	-28.83
2380.67	44.70	PK	142	1.9	Н	-13.14	31.56	74.00	-42.44
2380.67	38.09	Ave	142	1.9	Н	-13.14	24.95	54.00	-29.05
2492.18	43.43	PK	209	1.9	V	-13.08	30.35	74.00	-43.65
2492.18	36.09	Ave	209	1.9	V	-13.08	23.01	54.00	-30.99

Frequency	Receiver Reading	1)otoctor	Turn table Angle	RX Antenna		Corrected	0	FCC Part 15.247/209/205	
				Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
ANT0+ANT1 n20: High Channel 2462MHz									
223.45	39.78	QP	253	2.0	Н	-11.62	28.16	46.00	-17.84
223.45	34.46	QP	74	1.9	V	-11.62	22.84	46.00	-23.16
4924.00	49.13	PK	256	2.0	V	-0.24	48.89	74.00	-25.11
4924.00	42.29	Ave	256	2.0	V	-0.24	42.05	54.00	-11.95
7386.00	41.86	PK	165	1.2	Н	2.84	44.70	74.00	-29.30
7386.00	43.63	Ave	165	1.2	Н	2.84	46.47	54.00	-7.53
2333.95	45.69	PK	283	2.0	V	-13.19	32.50	74.00	-41.50
2333.95	37.12	Ave	283	2.0	V	-13.19	23.93	54.00	-30.07
2368.56	42.49	PK	98	1.3	Н	-13.14	29.35	74.00	-44.65
2368.56	38.32	Ave	98	1.3	Н	-13.14	25.18	54.00	-28.82
2487.96	42.99	PK	273	1.9	V	-13.08	29.91	74.00	-44.09
2487.96	37.36	Ave	273	1.9	V	-13.08	24.28	54.00	-29.72

Frequency	Receiver	1)AtActor	Turn table Angle	RX Antenna		Corrected	Carra ata d	FCC Part 15.247/209/205	
	Reading			Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
ANT0+ANT1 n40: Low Channel 2422MHz									
223.45	40.97	QP	41	2.0	Н	-11.62	29.35	46.00	-16.65
223.45	35.78	QP	336	1.3	V	-11.62	24.16	46.00	-21.84
4844.00	47.37	PK	2	1.2	V	-1.06	46.31	74.00	-27.69
4844.00	41.17	Ave	2	1.2	V	-1.06	40.11	54.00	-13.89
7266.00	40.47	PK	108	1.5	Н	1.33	41.80	74.00	-32.20
7266.00	42.47	Ave	108	1.5	Н	1.33	43.80	54.00	-10.20
2323.09	45.50	PK	217	1.6	V	-13.19	32.31	74.00	-41.69
2323.09	39.98	Ave	217	1.6	V	-13.19	26.79	54.00	-27.21
2352.82	43.05	PK	111	1.5	Н	-13.14	29.91	74.00	-44.09
2352.82	37.72	Ave	111	1.5	Н	-13.14	24.58	54.00	-29.42
2495.26	42.08	PK	249	1.2	V	-13.08	29.00	74.00	-45.00
2495.26	38.32	Ave	249	1.2	V	-13.08	25.24	54.00	-28.76

Frequency	Receiver	1)Atactor	Turn table Angle	RX Antenna		Corrected	0	FCC Part 15.247/209/205	
	Reading			Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
ANT0+ANT1 n40: Middle Channel 2437MHz									
223.45	40.04	QP	25	1.7	Н	-11.62	28.42	46.00	-17.58
223.45	34.81	QP	257	1.3	V	-11.62	23.19	46.00	-22.81
4874.00	46.99	PK	141	1.1	V	-0.62	46.37	74.00	-27.63
4874.00	40.35	Ave	141	1.1	V	-0.62	39.73	54.00	-14.27
7311.00	40.28	PK	109	1.4	Н	2.21	42.49	74.00	-31.51
7311.00	43.09	Ave	109	1.4	Н	2.21	45.30	54.00	-8.70
2349.35	45.57	PK	126	1.2	V	-13.19	32.38	74.00	-41.62
2349.35	38.57	Ave	126	1.2	V	-13.19	25.38	54.00	-28.62
2388.52	42.19	PK	2	1.7	Н	-13.14	29.05	74.00	-44.95
2388.52	36.27	Ave	2	1.7	Н	-13.14	23.13	54.00	-30.87
2490.04	44.84	PK	222	1.3	V	-13.08	31.76	74.00	-42.24
2490.04	36.05	Ave	222	1.3	V	-13.08	22.97	54.00	-31.03

Frequency	Receiver	1)otoctor	Turn table Angle	RX Antenna		Corrected		FCC Part 15.247/209/205		
	Reading			Height	Polar	Factor	Corrected Amplitude	Limit	Margin	
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
	ANT0+ANT1 n40: High Channel 2452MHz									
223.45	39.15	QP	9	1.5	Н	-11.62	27.53	46.00	-18.47	
223.45	35.11	QP	30	1.4	V	-11.62	23.49	46.00	-22.51	
4904.00	47.07	PK	252	1.6	V	-0.24	46.83	74.00	-27.17	
4904.00	40.55	Ave	252	1.6	V	-0.24	40.31	54.00	-13.69	
7356.00	39.93	PK	287	1.5	Н	2.84	42.77	74.00	-31.23	
7356.00	43.37	Ave	287	1.5	Н	2.84	46.21	54.00	-7.79	
2314.28	45.73	PK	196	1.2	V	-13.19	32.54	74.00	-41.46	
2314.28	39.74	Ave	196	1.2	V	-13.19	26.55	54.00	-27.45	
2358.63	43.76	PK	71	1.2	Н	-13.14	30.62	74.00	-43.38	
2358.63	36.50	Ave	71	1.2	Н	-13.14	23.36	54.00	-30.64	
2487.41	44.78	PK	289	1.7	V	-13.08	31.70	74.00	-42.30	
2487.41	36.40	Ave	289	1.7	V	-13.08	23.32	54.00	-30.68	

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTN16S0754892-1E Page 34 of 76

8 Band Edge Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB558074 D01 DTS Meas Guidance v03r05

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Mode: Transmitting

8.1 Test Produce

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

8.2 Test Result

Test result plots shown as follows:

ANT1 TX 11b: Band edge-left side

ANT1 TX 11b: Band edge-right side

Reference No.: WTN16S0754892-1E Page 41 of 76

9 6 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB558074 D01 DTS Meas Guidance v03r05

9.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

9.2 Test Result:

A > 1 T	Operation	Bandwidth (MHz)			
ANT	mode	Low	Middle	High	
ANT0	11b	9.054	9.054	9.054	
	11g	16.417	16.417	16.417	
	11n HT20	17.623	17.623	17.623	
ANT1	11b	9.054	9.102	9.054	
	11g	16.417	16.417	16.417	
	11n HT20	17.624	17.623	17.623	

Reference No.: WTN16S0754892-1E Page 52 of 76

10 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB558074 D01 DTS Meas Guidance v03r05

10.1 Test Procedure:

KDB558074 D01 DTS Meas Guidance v03r05 section 9.1.2

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 1 MHz. VBW = 3 MHz. Sweep = auto; Detector Function = Peak, Set the span to fully encompass the DTS bandwidth.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

10.2 Test Result:

Operation		Maximum Peak Output Power (dBm)			
mode	ANT	Low	Middle	High	
11b	ANT0	9.48	9.17	9.11	
	ANT1	9.09	9.24	9.45	
11g	ANT0	9.34	9.01	9.13	
	ANT1	9.27	9.39	9.10	
11n HT20	ANT0	9.23	9.11	9.27	
	ANT1	9.10	9.41	9.33	
	ANT0+ANT1	12.18	12.27	12.31	
Limit					
1W/30dBm					

Reference No.: WTN16S0754892-1E Page 63 of 76

11 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB558074 D01 DTS Meas Guidance v03r05

11.1 Test Procedure:

KDB558074 D01 DTS Meas Guidance v03r05 section 10.2

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

11.2 Test Result:

Operation		Maximum Peak Output Power (dBm per 3kHz)			
mode	ANT	Low	Middle	High	
11b	ANT0	-16.28	-16.37	-16.59	
	ANT1	-14.84	-16.13	-16.3	
11g	ANT0	-23.4	-24.67	-24.79	
	ANT1	-24.71	-23.75	-24.23	
11n HT20	ANT0	-24.45	-26.1	-24.82	
	ANT1	-24.93	-24.43	-24.69	
	ANT0+ANT1	-21.67	-22.17	-21.74	
Limit					
(8 dBm per 3kHz)					

12 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

This device uses of two antennas that uses a specified coupling to the intentional radiator. Antenna connectors complied with the requirement.

Reference No.: WTN16S0754892-1E Page 75 of 76

13 RF Exposure

Test Requirement: FCC Part 1.1307 Evaluation Method: FCC Part 2.1091

13.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

13.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

Reference No.: WTN16S0754892-1E Page 76 of 76

13.3 MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: $Pd (W/m^2) = \frac{E^2}{377}$

E = Electric field (V/m)

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$\textit{Pd} = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

Directional gain (dBi)	Directional gain (numeric)	Max. Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (mW/cm2)	Limit of Power Density (mW/cm2)
3.20	2.089	12.31	17.02	0.007075	1

^{*}Directional gain = G_{ANT} = 3.2dBi

=====End of Report=====