

Contenido

Breve historia del Algebra de Boole

Postulados y Teoremas

Circuitos lógicos básicos

Método de minimización gráfica Ejercicios

Muestra de texto de pie de página

BREVE HISTORIA DEL ALGEBRA DE BOOLE

¿Qué es el Álgebra de Boole?

Es un sistema matemático desarrollado por **George Boole** en el siglo XIX.

G. Boole y su obra "<u>An Investigation of the Laws of Thought</u>" (1854) introdujo este sistema de lógica matemática.

Se basa en la **teoría de conjuntos.**

¿Para qué sirve el algebra de Boole?

Boole creó un marco formal para representar proposiciones lógicas mediante símbolos y operaciones como "AND," "OR," y "NOT." El álgebra de Boole es fundamental para simplificar y resolver problemas en sistemas digitales. Su aplicación abarca desde la representación de circuitos lógicos hasta la programación de computadoras.

Conectiva	Nombre Lógico	Símbolo	
No	Negación	¬, ∼, '	
Υ	Conjunción	\wedge	
0	Disyunción Inclusiva	V	
0 0	Disyunción Exclusiva	$\underline{\vee}$	
Si entonces	Implicación o Condicional	\rightarrow	
Si y solo si	Doble Implicación o Bicondicional	\leftrightarrow	
Si y solo si Doble Implicación o Bicondicional		\leftrightarrow	

Contribución y relación con Boole

- Claude Shannon, ingeniero electrónico y matemático estadounidense, desempeñó un papel crucial en la aplicación práctica del álgebra de Boole.
- Setenta años después de la muerte de George Boole, en 1938, Shannon encontró en su trabajo una base para aplicaciones en el mundo real.
- Shannon demostró cómo el álgebra booleana optimizaba el diseño de sistemas electromecánicos de relés, utilizados en conmutadores telefónicos.
- En esencia, Shannon aplicó las ideas de Boole para construir los circuitos de los ordenadores modernos.
- George Boole sentó las bases teóricas con su álgebra, y Claude Shannon llevó esas ideas a la práctica, allanando el camino para la revolución digital actual.

CONCEPTOS FUNDAMENTALES

Variables Binarias y Operadores básicos usados

O Se definen las variables usadas para los procesos y diseños utilizadas en el álgebra de Boole (0 y 1).

o Incluye sus símbolos, expresiones matemáticas y tablas de verdad.

Operadores Lógicos Básicos

POSTULADOS DEL ALGEBRA DE BOOLE

P1. Ley de identidad.

Existen elementos identidad (0 para la operación "+" y 1 para la operación "
") de forma que para cualquier elemento x, se cumple :

$$x+0=x$$
 $x \cdot 1=x$

P2. Ley conmutativa.

Para cualesquiera dos elementos **x** e **y**, se cumple :

$$x+y=y+x$$
 $x \bullet y=y \bullet x$

P3 . Ley distributiva.

Dados tres elementos x, y, z se cumple:

$$x+(y\bullet z)=(x+y)\bullet (x+z)$$
 $x\bullet (y+z)=x\bullet y+x\bullet z$

$$x \bullet (y+z)=x \bullet y + x \bullet z$$

P4. Ley del complemento.

Para todo elemento **x** existe un complemento **x** tal que:

$$x+x'=1$$

$$x+x'=1 \qquad x \bullet x'=0$$

COMPROBAR LOS POSTULADOS POR MEDIO DE COMPUERTAS

2. A B C D E 28. A B C D E 3. A B C D E 29. A B C D E 4. (A) (B) (C) (D) (E) 30. ABCDE 5. A B C D E 31. (A) (B) (C) (D) (E) 6. ABCDE 32. (A) (B) (C) (D) (E) 7. ABCDE 33. A B C D E 8. A B C D E 34. (A) (B) (C) (D) (E) 9. A B C O E 35. A B C D E 10. A B C D E 36. A B C D E 11. (A) (B) (C) (D) (E) 37. (A) (B) (C) (D) (E) 12. (A) (B) (C) (D) (E) 38. (A) (B) (C) (D) (E) 13. A B C D E 39. (A) (B) (C) (D) (E) 14. A B C D E 40. (A) (B) (C) (D) (E) 15. A B C D E 41. (A) (B) (C) (D) (E) 16. (A) (B) (C) (D) (E) 42. A B C D E 17. (A) (B) (C) (D) (E) 43. (A) (B) (C) (D) (E) 18. A B C D E 44. A B C D E 19. A B C D E 45. A B C D E 20. A B C D E 46. A B C D C 21. (A) (B) (C) (D) (E) 47. ABOO 22. (A) (B) (C) (D) (E) 48. A B C D 23. (A) (B) (C) (D) (E) 49. (A) (B) (C) (D) 00000

A partir de los 4 postulados es posible probar una serie de propiedades.

```
T1. Ley de idempotencia: x + x = x x \cdot x = x

T2. Ley de unicidad del complemento: el elemento \overline{x} del postulado cuarto es único.

T3. Ley de los elementos dominantes: x + 1 = 1 x \cdot 0 = 0

T4. Ley involutiva: (\overline{x}) = x

T5. Ley de absorción: x + x \cdot y = x x \cdot (x + y) = x

T6. Ley del consenso: x + \overline{x} \cdot y = x + y x \cdot (\overline{x} + y) = x \cdot y

T7. Ley asociativa: x \cdot (y \cdot z) = (x \cdot y) \cdot z x + (y + z) = (x + y) + z

T8. Ley de De Morgan: x \cdot y = x + y x \cdot (x + y) = x \cdot y

T9. Ley de De Morgan generalizada: x \cdot y + x \cdot z + y \cdot z = x \cdot y + x \cdot z

T10. Ley del consenso generalizado: x \cdot y + x \cdot z + y \cdot z = x \cdot y + x \cdot z

x \cdot y + x \cdot z + y \cdot z = x \cdot y + x \cdot z

(x + y) \cdot (x + z) \cdot (y + z) = (x + y) \cdot (x + z)
```

Funciones de conmutación

Una función de tres variables f(x, y, z) se puede definir de la siguiente forma:

$$f(0,0,0) = 0$$
, $f(0,0,1) = 1$, $f(0,1,0) = 0$, $f(0,1,1) = 1$, $f(1,0,0) = 0$, $f(1,0,1) = 0$, $f(1,1,0) = 1$, $f(1,1,1) = 1$

NOTA. No todas las combinaciones de las variables deben de especificarse, decimos entonces que la función es <u>incompleta</u> o que está <u>incompletamente especificada</u>. Cuando esto sucede, por ejemplo, en la combinación (x0,y0,z0) lo simbolizamos de la siguiente forma :

 $f(x0,y0,z0) = d \circ f(x0,y0,z0) = -$, donde los símbolos "-" y "d" (don't care) son llamadas indeterminados .

REPRESENTACIÓN DE FUNCIONES

- Tablas de verdad.
- Mapa de Karnaugh.
- Expresiones o fórmulas.

TABLA DE VERDAD

хуz	f
000	1
001	0
010	1
011	0
100	0
101	0
110	1
111	1

M. DE KARNAUGHT

c d	00	01	11	10
00	0	0	0	0
01	1	1	0	0
11	0	0	1	1
10	0	1	1	1
	f			

Formas canónicas

EXPRESIONES O FÓRMULAS

minitérminos

$$f(a, b, c, d) = \overline{a} \, \overline{b} \, \overline{c} \, d + \overline{a} \, b \, \overline{c} \, d + \overline{a} \, b \, c \, \overline{d} + a \, \overline{b} \, c \, \overline{d} + a \, \overline{b} \, c \, \overline{d} + a \, b \, c \, \overline{d$$

maxitérminos

$$f(a, b, c, d) = (a + b + c + d) (a + b + \overline{c} + d) (a + b + \overline{c} + \overline{d}) (a + \overline{b} + c + d)$$

$$(a + \overline{b} + \overline{c} + \overline{d}) (\overline{a} + b + c + d) (\overline{a} + b + c + \overline{d}) (\overline{a} + \overline{b} + c + d) (\overline{a} + \overline{b} + c + \overline{d}) =$$

$$= M_0 M_2 M_3 M_4 M_7 M_8 M_9 M_{12} M_{13} = \Pi (0, 2, 3, 4, 7, 8, 9, 12, 13).$$