PARTE A

1. Il limite

$$\lim_{k \to +\infty} \frac{\int_0^{+\infty} e^{-x/k} dx}{k}$$

vale

A: N.E. B: N.A. C: $+\infty$ D: 1 E: 0

2. Data $f(x) = x^{(\log(x))}$. Allora f'(e) è uguale a

A: $3e^3$ B: e^2 C: N.A.

 $D: \log(2e)$ E: 1

3. La serie numerica

$$\sum_{n=1}^{\infty} \frac{n + \log(n^3)}{n^3 + \log(n^\alpha)}$$

converge per $\alpha \geq 0$ tale che

A: $0 \le \alpha \le 3$ B: N.A. C: $\alpha > 1$ D: $\alpha \ge 3$ E: $1 < \alpha < 2$

4. Dire quanto vale il seguente integrale

$$\int_{\pi/4}^{\pi/2} \frac{\cos x}{\sin x} \, dx$$

A: $\log(\pi)$ B: N.A. C: $\log(\frac{\sqrt{3}}{2})$ D: 1 E: $\log(\frac{\sqrt{2}}{2})$

5. Per $m \in \mathbb{R}^+$, la retta tangente al grafico di $f(x) = \sqrt{m+x^2}$ in $x_0 = 0$ vale

A:
$$y(x) = 1 + mx$$
 B: N.A. C: $y(x) = \sqrt{m}$ D: $y(x) = -\frac{(\pi m)^2}{4}$ E: $y(x) = -\frac{1}{2}(1 + \tan^2(m))x^2$

6. L'integrale

$$\int_{-1}^{\infty} e^{-|x|} dx$$

vale

A: 0 B: N.E. C: $2 - \frac{1}{e}$ D: N.A. E: e

7. Il numero di elementi dell'intersezione tra gli insiemi nel piano complesso $A=\{z\in\mathbb{C}\ :\ |z-1|=1\}$ e $B=\{z\in\mathbb{C}\ :\ z=t+it,\ t\in\mathbb{R}\}$ è

A: 2 B: ∞ C: 0 D: 1 E: N.A.

8. Calcolare inf, sup, min e max dell'insieme $\{1/x^3, x>0\}$

A: N.A. B: (0, 1, N.E., 1) C: $(0, +\infty, N.E, N.E.)$ D: (0, N.E., 0, N.E.) E: (0, 0, N.E., N.E.)

9. Il numero di soluzioni reali dell'equazione $x^3 - 2x^2 = -x - 1$ è

A: 1 B: 0 C: 3 D: N.A. E: 2

10. Il limite

$$\lim_{x \to +\infty} x(e^{\frac{x}{x-1}} - e)$$

vale

A: N.E. B: e

C: -e D: $\frac{e}{2}$ E: 0

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

18 luglio 2017

(Cognome)										_	(Nome)								_	(Numero di matricola)												

ABCDE

0	\bigcirc	\bigcirc		\bigcirc	
0	\bigcirc		\bigcirc	\bigcirc	
0	•	0	\bigcirc	\bigcirc	
0	•	\bigcirc	\bigcirc	\bigcirc	_
0	\bigcirc	•	\bigcirc	\bigcirc	_
0	\bigcirc	•	\bigcirc	\bigcirc	
•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
0	\bigcirc	•	\bigcirc	\bigcirc	_
•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
0	•	0	\bigcirc	\bigcirc	

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

18 luglio 2017

PARTE B

1. Si studi la funzione

$$f(x) = \frac{\sqrt{x}}{1 + |\sin(x)|},$$

Soluzione: La funzione è definita e continua per $x \ge 0$, dato che è rapporto di funzioni continue e il denominatore non si annulla mai, visto che $1 + |\sin(x)| \ge 1$.

Si vede immediatamente che f(0) = 0 e f(x) > 0 per x > 0. Dato che il denominatore è limitato, si vede altrettanto facilmente che $\lim_{x\to\infty} f(x) = +\infty$.

Possiamo scrivere

$$f(x) = \begin{cases} \frac{\sqrt{x}}{1 + \sin(x)} & \text{per } x \in [2k\pi, (2k+1)\pi] \quad k \in \mathbb{N} \\ \\ \frac{\sqrt{x}}{1 - \sin(x)} & \text{per } x \in [(2k+1)\pi, (2k+2)\pi] \quad k \in \mathbb{N}, \end{cases}$$

I punti in cui potrebbe non essere derivabile sono x=0 (per la presenza di \sqrt{x}) e $x=k\pi$ con $k\in\mathbb{N}$, per la presenza del termine $|\sin(x)|$.

Se vogliamo calcolare la derivata prima, abbiamo

$$f'(x) = \begin{cases} \frac{\sin(x) - 2x\cos(x) + 1}{2\sqrt{x}(\sin(x) + 1)^2} & \text{per } x \in]2k\pi, (2k+1)\pi[& k \in \mathbb{N} \\ \frac{-\sin(x) + 2x\cos(x) + 1}{2\sqrt{x}(\sin(x) - 1)^2} & \text{per } x \in](2k+1)\pi, (2k+2)\pi[& k \in \mathbb{N}, \end{cases}$$

Da cui si ricava che

$$\lim_{x \to 0^+} f'(x) = +\infty \qquad \lim_{x \to k\pi^+} f'(x) \neq \lim_{x \to k\pi^-} f'(x)$$

e quindi la funzione non risulta derivabile per $x = k\pi$, $k \in \mathbb{N} \cup \{0\}$.

Abbiamo infatti che $\lim_{x\to k\pi}\sin(x)=0$ e che, per $k=1,2,\ldots$

$$\lim_{x \to k\pi^{-}} \cos(x) \operatorname{sgn}(\sin(x)) = -1$$

$$\lim_{x \to k\pi^+} \cos(x) \operatorname{sgn}(\sin(x)) = +1$$

quindi abbiamo

$$\lim_{x \to 0^+} f'(x) > 0 \qquad \lim_{x \to k\pi^-} f'(x) > 0 \qquad \lim_{x \to k\pi^+} f'(x) < 0$$

che può dare una prima informazione (parziale) delle zone di crescenza e decrescenza della funzione. In particolare c'e' almeno un punto a derivata nulla in ogni intervallo $]k\pi, (k+1)\pi[$, per $k \geq 1$, che è un punto di minimo locale.

Figura 1: Grafico approssimativo di f(x)

2. Si consideri l'equazione differenziale

$$y(x)'' - \alpha^2 y(x) = e^x.$$

Si trovi la soluzione generale dell'equazione al variare del parametro $\alpha \geq 0$. Soluzione: Partiamo dall'equazione dell'omogenea. L'equazione associata è $\lambda^2 - \alpha^2 = 0$, che per $\alpha \neq 0$ ammette due soluzioni distinte $\lambda = \pm \alpha$, mentre per $\alpha = 0$ siamo in un caso di risonanza con due soluzioni coincidenti $\lambda = 0$. La soluzione generale dell'omogenea è quindi

$$y_0 = \left\{ \begin{array}{ll} Ae^{\alpha x} + Be^{-\alpha x} & \quad \alpha \neq 0; \\ A + Bx & \quad \alpha = 0. \end{array} \right.$$

Per la soluzione particolare, per $\alpha \neq 1$ non c'è risonanza con la soluzione omogenea, quindi in questo caso partiamo con una soluzione particolare del tipo $y_1 = ce^x$ e determiniamo c. Si ha

$$y_1'' - \alpha^2 y_1 = c(1 - \alpha^2)e^x$$

quindi $c = \frac{1}{1-\alpha^2}$, e la soluzione particolare è $y_1 = \frac{1}{1-\alpha^2}e^x$.

Per $\alpha = 1$ proviamo con $y_1(x) = cxe^x$, ottenendo

$$y_1'' - y_1 = c(2+x)e^x - cxe^x = 2ce^x$$

e quindi c=1/2 e $y_1=\frac{1}{2}xe^x$. In definitva otteniamo che la soluzione generale dell'equazione differenziale è

$$y(x) = \begin{cases} Ae^{\alpha x} + Be^{-\alpha x} + \frac{1}{1-\alpha^2}e^x & \alpha \neq 0, 1; \\ A + Bx + e^x & \alpha = 0; \\ Ae^x + Be^{-x} + \frac{1}{2}xe^x & \alpha \neq 1. \end{cases}$$

3. Trovare per quali parametri $a \in \mathbb{R}, \, b \neq 0$ risulta convergente la seguente serie:

$$\sum_{n=1}^{\infty} \frac{n\sin(1/n) - a}{2^{bn}}$$

Soluzione: Il numeratore è sempre limitato, per ogni valore di a, dato che $\lim_{n\to\infty} n\sin(1/n) = 1$, quindi definitivamente

$$|n\sin(1/n) - a| < 2 + |a|$$
.

Se b > 0, per il criterio del confronto

$$\left| \frac{n \sin(1/n) - a}{2^{bn}} \right| \le \frac{2 + |a|}{(2^b)^n}$$

e il termine a destra è il termine generico di una serie geometrica di ragione $\frac{1}{2^b} < 1$, e quindi converge.

Se $a \neq 1$ Se b < 0 il numeratore converge a un valore non nulla, mentre il denominatore è numero che tende a zero al crescere di n, quindi il termine generale della serie non è infinitesimo, e la serie non converge.

Se a=1 il numeratore tende a zero, ma usando lo sviluppo di Taylor si può facilmente dimostrare che

$$|n\sin(1/n) - a| = O(1/n^2)$$

e dato che il denominatore di annulla in maniera esponenziale si ha

$$\lim_{n\to +\infty} \left| \frac{n \sin(1/n) - a}{2^{bn}} \right| = +\infty,$$

e di nuovo la condizione necessaria per la convegenza viene violata.

Riassumendo si ha che per $a\in\mathbb{R},b>0$ la serie converge, mentre per $a\in\mathbb{R},b<0$ la serie non converge

4. Si determini se esistono numeri naturali $N_0 \ge 0$ tali che la seguente serie sia convergente

$$\sum_{n=N_0}^{\infty} \int_{n}^{n+1} \frac{1 + |\log(|t)|}{\sqrt{t}(t-1)} dt$$

Soluzione: Per n=1 il termine della serie è

$$\int_1^2 \frac{1 + |\log(t)|}{\sqrt{t}(t-1)} dt$$

ma vicino ad 1 abbiamo $\frac{1+|\log(t)|}{\sqrt{t}(t-1)}\sim\frac{1}{t-1}$ che non è integrabile, quindi il termine n=1 non è ben definito, di conseguenza $N_0=1$ va scartato.

Se proviamo $N_0 = 2$ abbiamo

$$\sum_{n=2}^{\infty} \int_{n}^{n+1} \frac{1 + |\log(t)|}{\sqrt{t(t-1)}} dt = \int_{2}^{+\infty} \frac{1 + |\log(t)|}{\sqrt{t(t-1)}} dt$$

e dato che il denominatore non si annulla in $[2,+\infty[$ la convergenza della serie equivale alla convergenza dell'integrale a destra. Poiché il logaritmo cresce meno di qualsiasi potenza, possiamo scegliere $1<\alpha<3/2$ tale che, per t molto grande, $\frac{1+|\log(t)|}{\sqrt{t}(t-1)}<\frac{1}{t^{\alpha}}$, che ci garantisce che l'integrale sia convergente.

Quindi scegliendo qualsiasi $N_0 \ge 2$ la serie risulta convergente.