Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 5: Richiami di algebra lineare

Corso di Laurea Magistrale in Ingegneria Meccatronica

A.A. 2021-2022

Nella scorsa lezione

- ▶ Traiettorie di stato di un sistema

- ▶ Punti di equilibrio di un sistema (con e senza ingressi)

- ▶ Stabilità semplice e asintotica di un equilibrio
- ▶ Linearizzazione di sistemi non lineari (con e senza ingressi)

In questa lezione

▶ Fatti base su vettori e trasformazioni lineari

▶ Fatti base su matrici

Vettori e basi in \mathbb{R}^n

$$V = (\mathbb{R}^n, \mathbb{R}, +, \cdot)$$

1. L'insieme (di vettori) \mathbb{R}^n con campo (di scalari) \mathbb{R} dotato delle consuete operazioni di somma tra vettori e prodotto di vettore per scalare, è uno spazio vettoriale.

2. I vettori $v_1,\ldots,v_k\in\mathbb{R}^n$ sono detti linearmente indipendenti (dipendenti) se

$$\alpha_1 v_1 + \cdots + \alpha_k v_k = 0, \ \alpha_i \in \mathbb{R} \implies (\not\Rightarrow) \ \alpha_1 = \cdots = \alpha_k = 0.$$

3. I vettori $v_1, \ldots, v_k \in \mathbb{R}^n$ formano una base \mathcal{B} di uno spazio vettoriale $\mathcal{V} \subseteq \mathbb{R}^n$ se:

(i) generano
$$\mathcal{V}$$
: $\forall v \in \mathcal{V}$, $\exists \alpha_i \in \mathbb{R}$ t.c. $v = \alpha_1 v_1 + \dots + \alpha_k v_k$ (span $\{v_1, \dots, v_k\} = \mathcal{V}$)

(ii) sono linearmente indipendenti

G. Baggio

Esempio: (in)dipendenza lineare

$$v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$, $v_3 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$, v_1 , v_2 , v_3 linearmente indipendenti?

Esempio: (in)dipendenza lineare

$$v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$, $v_3 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$, v_1 , v_2 , v_3 linearmente indipendenti?

$$\begin{cases} \alpha_1 + \alpha_2 = 0 \\ \alpha_1 - \alpha_2 + \alpha_3 = 0 \\ \alpha_1 + \alpha_2 - \alpha_3 = 0 \end{cases} \implies \alpha_1 = \alpha_2 = \alpha_3 = 0 \implies v_1, v_2, v_3 \text{ lin. indip.} \checkmark$$

note

G. Baggio

Lez. 5: Richiami di algebra lineare

Esempio: basi

$$v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$, $v_3 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$, base di $\mathcal{V} = \operatorname{span}\{v_1, v_2, v_3\}$?

Esempio: basi

$$v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$, $v_3 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$, base di $\mathcal{V} = \operatorname{span}\{v_1, v_2, v_3\}$?

$$\mathcal{B} = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ -2 \\ 0 \end{bmatrix} \right\} \quad (\mathbf{N.B.} \text{ scelta generatori della base non unica!})$$

Lez. 5: Richiami di algebra lineare

Trasformazioni lineari

1. Una trasformazione $f: \mathbb{R}^m \to \mathbb{R}^n$ si dice lineare se

(i)
$$f(v_1 + v_2) = f(v_1) + f(v_2), \quad \forall v_1, v_2 \in \mathbb{R}^m$$

(ii)
$$f(\alpha v) = \alpha f(v)$$
, $\forall v \in \mathbb{R}^m$, $\forall \alpha \in \mathbb{R}$

2. Una trasformazione lineare $f: \mathbb{R}^m \to \mathbb{R}^n$ è univocamente individuata dalla sua restrizione ai vettori di una qualsiasi base \mathcal{B} di \mathbb{R}^m .

Trasformazioni lineari e rappresentazione matriciale

1. Fissata una base \mathcal{B}_1 di \mathbb{R}^m e una base \mathcal{B}_2 di \mathbb{R}^n è possibile rappresentare una trasformazione lineare $f: \mathbb{R}^m \to \mathbb{R}^n$ con una matrice $F \in \mathbb{R}^{n \times m}$ che descrive come le coordinate (rispetto a \mathcal{B}_1) di vettori di \mathbb{R}^m vengono mappate da f in coordinate di vettori (rispetto a \mathcal{B}_2) di \mathbb{R}^n .

2. Fissata una base \mathcal{B} di \mathbb{R}^n , sia $F \in \mathbb{R}^{n \times n}$ la matrice che rappresenta la trasformazione lineare $f: \mathbb{R}^n \to \mathbb{R}^n$. Sia $T \in \mathbb{R}^{n \times n}$ la matrice di cambio di base da \mathcal{B} di \mathbb{R}^n ad una "nuova" base \mathcal{B}' di \mathbb{R}^n . La matrice che rappresenta f nella nuova base è

$$F'=T^{-1}FT.$$
 \longrightarrow operatione di cambio base

G. Baggio

In questa lezione

▶ Fatti base su vettori e trasformazioni lineari

▶ Fatti base su matrici

1. Sia $F \in \mathbb{R}^{n \times m}$

nucleo di
$$F=\ker F\triangleq \{v\in\mathbb{R}^m:Fv=0\}$$
 immagine di $F=\operatorname{im} F\triangleq \{w\in\mathbb{R}^n:w=Fv,\exists v\in\mathbb{R}^m\}$ rango di $F=\operatorname{rank} F\triangleq \#$ righe (o colonne) lin. indipendenti di $F=\dim\operatorname{im} F$

1. Sia $F \in \mathbb{R}^{n \times m}$

nucleo di
$$F=\ker F\triangleq \{v\in\mathbb{R}^m:Fv=0\}$$
 immagine di $F=\operatorname{im} F\triangleq \{w\in\mathbb{R}^n:w=Fv,\exists v\in\mathbb{R}^m\}$ rango di $F=\operatorname{rank} F\triangleq \#$ righe (o colonne) lin. indipendenti di $F=\dim\operatorname{im} F$

2. Sia $F \in \mathbb{R}^{n \times n}$, un vettore $v \in \mathbb{C}^n$ tale che $Fv = \lambda v$, $\lambda \in \mathbb{C}$, è detto autovettore di F corrispondente all'autovalore λ .

1. Sia $F \in \mathbb{R}^{n \times m}$

nucleo di
$$F=\ker F\triangleq \{v\in\mathbb{R}^m:Fv=0\}$$
 immagine di $F=\operatorname{im} F\triangleq \{w\in\mathbb{R}^n:w=Fv,\exists v\in\mathbb{R}^m\}$ rango di $F=\operatorname{rank} F\triangleq \#$ righe (o colonne) lin. indipendenti di $F=\dim F$

- **2.** Sia $F \in \mathbb{R}^{n \times n}$, un vettore $v \in \mathbb{C}^n$ tale che $Fv = \lambda v$, $\lambda \in \mathbb{C}$, è detto autovettore di F corrispondente all'autovalore λ .
- **3.** Gli autovalori $\{\lambda_i\}_{i=1}^k$ di $F \in \mathbb{R}^{n \times n}$ sono le radici del polinomio caratteristico $\downarrow \uparrow \downarrow \uparrow (F \lambda I) = (-1)^m \det (\lambda I F)$ $\Delta_F(\lambda) = \det(\lambda I F) = (\lambda \lambda_1)^{\nu_1} (\lambda \lambda_2)^{\nu_2} \cdots (\lambda \lambda_k)^{\nu_k},$

dove ν_i è la molteplicità algebrica dell'autovalore λ_i .

4. Ogni autovettore v relativo all'autovalore λ_i di $F \in \mathbb{R}^{n \times n}$ soddisfa

$$(\lambda_i I - F)v = 0.$$
 $v \in \text{Ker}(\lambda_i I - F)$ outomertio relativo all'autovalore λ_i

4. Ogni autovettore v relativo all'autovalore λ_i di $F \in \mathbb{R}^{n \times n}$ soddisfa

$$(\lambda_i I - F)v = 0.$$

5. La molteplicità geometrica g_i dell'autovalore λ_i di $F \in \mathbb{R}^{n \times n}$ è il numero massimo di autovettori linearmente independenti associati a λ_i e coincide con

$$g_i = \dim \ker(\lambda_i I - F) = n - \operatorname{rank}(\lambda_i I - F).$$
 $(1 \le g_i \le \nu_i)$

dim ker $A + \dim \operatorname{im} A = n$ $A \in \mathbb{R}^{n \times n}$

4. Ogni autovettore v relativo all'autovalore λ_i di $F \in \mathbb{R}^{n \times n}$ soddisfa

$$(\lambda_i I - F)v = 0.$$

5. La molteplicità geometrica g_i dell'autovalore λ_i di $F \in \mathbb{R}^{n \times n}$ è il numero massimo di autovettori linearmente independenti associati a λ_i e coincide con

$$g_i = \dim \ker(\lambda_i I - F) = n - \operatorname{rank}(\lambda_i I - F).$$
 $(1 \le g_i \le \nu_i)$

6. Se $\nu_i = g_i$ per ogni autovalore λ_i di $F \in \mathbb{R}^{n \times n}$ allora F è diagonalizzabile, cioè, esiste una matrice di cambio di base $T \in \mathbb{R}^{n \times n}$ tale che

$$F_D riangleq T^{-1}FT$$
 è diagonale. Tha come colonne $F_D riangleq T^{-1}FT$ è diagonale. The come colonne ha sulla diagonale gli curbo valori di F

Lez. 5: Richiami di algebra lineare 7 Marzo 2022

G. Baggio

Esempio: rango, nucleo, immagine

$$F = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 4 & 0 \\ 1 & 0 & 3 \end{bmatrix}, \quad \text{ker } F? \text{ im } F? \text{ rank } F?$$

Esempio: rango, nucleo, immagine

$$F = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 4 & 0 \\ 1 & 0 & 3 \end{bmatrix}, \quad \text{ker } F? \text{ im } F? \text{ rank } F?$$

$$\ker F = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 1/2 \\ -1/3 \end{bmatrix} \right\}, \quad \operatorname{im} F = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix} \right\}, \quad \operatorname{rank} F = 2$$

note

G. Baggio

Lez. 5: Richiami di algebra lineare

Esempio: autovalori/autovettori, diagonalizzazione

$$F = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
, F diagonalizzabile? Se sì, calcolare T .

Esempio: autovalori/autovettori, diagonalizzazione

$$F = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
, F diagonalizzabile? Se sì, calcolare T .

$$\lambda_1=i,\ \nu_1=1,\ g_1=1,\ \lambda_2=-i,\ \nu_2=1,\ g_2=1\implies F$$
 diagonalizzabile \checkmark

$$T = \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix} \implies F_D = T^{-1}FT = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$$

G. Baggio

Esempi: diagonalizzabilità

$$\mathbf{1.} \ F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$2. F = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$3. F = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Esempi: diagonalizzabilità

1.
$$F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \implies \lambda_1 = 1$$
, $\nu_1 = 2$, $g_1 = 2 \implies \nu_1 = g_1$ diagonalizzabile \checkmark

2.
$$F = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \implies \lambda_1 = 2, \ \nu_1 = 1, \ g_1 = 1, \ \lambda_2 = 0, \ \nu_2 = 1, \ g_2 = 1$$

$$\implies \nu_i = g_i \text{ diagonalizzabile } \checkmark$$

3.
$$F = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \implies \lambda_1 = 1, \ \nu_1 = 2, \ g_1 = 1 \implies \nu_1 > g_1 \ \text{non diagonalizzabile!}$$

G. Baggio

Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 5: Richiami di algebra lineare

Corso di Laurea Magistrale in Ingegneria Meccatronica

A.A. 2021-2022

⊠ baggio@dei.unipd.it

$$v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \ v_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \ v_3 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, \quad v_1, \ v_2, \ v_3 \ \text{linearmente indipendenti?}$$

	C 4 7		- آ 1		0]
۲, =	'	V2 =	-1	√ ₂ =	1	
1	1	ı	1	3	-1	
	L 1]		- 1 1			

G. Baggio Lez. 5: Richiami di algebra lineare 7 Marzo 2022

$$\frac{d_{1} V_{1} + d_{1} V_{2} + d_{3} V_{3} = 0}{d_{1} - d_{2} + d_{3} = 0} = \begin{cases}
\frac{d_{1} + d_{2} = 0}{d_{1} - d_{2} + d_{3} = 0} & \frac{d_{1} = -d_{2}}{d_{2} + d_{3} = 0} \\
\frac{d_{1} + d_{2} - d_{3} = 0}{d_{2} + d_{3} = 0} & \frac{d_{1} = \frac{1}{2} d_{3} = 0}{d_{3} = 0}
\end{cases}$$

$$\Rightarrow$$
 union solutione $\alpha_1 = \alpha_2 = \alpha_3 = 0$

1)
$$V_3 = \frac{3}{2} V_1 + \frac{1}{2} V_2 = \begin{bmatrix} 3/2 \\ 3/2 \end{bmatrix} + \begin{bmatrix} 1/2 \\ -1/2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix} = 5 \text{ poin } \{V_1, V_2\}$$

2) Metodo sistematico: Procedimento di eliminatione Gaussiana

$$A = \begin{bmatrix} v_1^T \\ v_2^T \end{bmatrix} \longrightarrow \text{perhave } A \text{ in forma a scala tramife trasf. elementari:}$$

- 1) H; (r): somma a riga i riga j moltiplicata per r
- 2) Hij: scombiana le righe i,j
- 3) Hii(r): moltiplica la riga i per r

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 2 & 1 & 2 \end{bmatrix} \xrightarrow{H_{21}(-1)} \begin{bmatrix} 1 & 1 & 1 \\ 0 & -2 & 0 \\ 2 & 1 & 2 \end{bmatrix} \xrightarrow{H_{31}(-2)} \begin{bmatrix} 1 & 1 & 1 \\ \hline{0} & | -2 & 0 \\ 0 & -1 & 0 \end{bmatrix}$$

$$\begin{array}{c|c} H_{22}(-\frac{1}{2}) & 1 & 1 \\ \hline 0 & -2 & 0 \\ 0 & 0 & 0 \end{array}$$

$$\longrightarrow \mathcal{F} = \operatorname{spon} \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ -2 \\ 0 \end{bmatrix} \right\}$$

Esempio: rango, nucleo, immagine
$$F = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 4 & 0 \\ 1 & 0 & 3 \end{bmatrix}, \quad \ker F? \operatorname{im} F? \operatorname{rank} F?$$

$$F = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 4 & 0 \\ 1 & 0 & 3 \end{bmatrix}$$

G. Baggio Ler. S. Richtami di algoba Tinsave

1) Ker
$$\neq 7$$
 $V = \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix}$

$$\begin{bmatrix} 1 & -2 & 0 \\ -2 & 4 & 0 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} v_1 - 2v_2 = 0 & \begin{cases} v_2 = v_1/2 & \begin{cases} x \\ -2v_1 + 4v_2 = 0 \end{cases} \\ v_1 + 3v_3 = 0 & \begin{cases} x_2 = v_1/2 & \begin{cases} x \\ -2x_1 + 2v_2 = 0 \end{cases} \end{cases} & \begin{cases} x \\ -2x_1 + 2v_2 = 0 \end{cases} \end{cases}$$

$$\rightarrow$$
 Ker $F = span \left\{ \begin{bmatrix} 1\\1/2\\-1/3 \end{bmatrix} \right\}$

2) im F?

in
$$F = spon \left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} -2 \\ 4 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \end{bmatrix} \right\}$$

$$V_2 = -2V_1 + \frac{1}{3}V_3$$

$$F^{7} = \begin{bmatrix} 1 - 2 & 1 \\ -2 & 4 & 0 \\ 0 & 0 & 3 \end{bmatrix} \xrightarrow{H_{21}(2)} \begin{bmatrix} 1 & -2 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 3 \end{bmatrix} \xrightarrow{H_{32}(-3/2)} \begin{bmatrix} 1 & -2 & 1 \\ \hline 0 & 0 & 2 \\ \hline 0 & 0 & 0 \end{bmatrix}$$

im
$$F = spon \left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} \right\}$$

T= [1 1] -> combio base che diagonalizza F
$T^{-1}FT = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$

1)
$$F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \longrightarrow \lambda_1 = 1$$
 $V_1 = 2$ $y_1 = 2$ $y_2 = 2$ $y_3 = 2$ $y_4 = 2$ F diagonalitzability

2)
$$F = \begin{bmatrix} 1 & 1 \\ 1 & 7 \end{bmatrix}$$
 $\longrightarrow \Delta_{F}(\lambda) = \det(\lambda I - F) = \det[\lambda - 1 & \lambda - 1]$

$$= (\lambda - 1)^{2} - 1 = \lambda^{2} - 2\lambda + 1 - 1$$

$$= \lambda(\lambda - 2)$$

F diagonaliz.
$$\lambda_1 = 0$$
 $\nu_1 = 1 = g_1$
 $\lambda_2 = 2$ $\nu_2 = 1 = g_2$

$$3) F = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

$$\Delta_{F}(\lambda) = \det(\lambda I - F) = \det[\lambda - 1] = (\lambda - 1)^{2}$$
 $\lambda_{1} = 1$ $\nu_{1} = 2$

$$g_1 = 2 - \operatorname{romk}(\lambda_1 I - F) = 2 - \operatorname{romk}[0] = 1 < V_1$$