Convex functions and Conjugate sets

Ковалев Алексей

Convex functions

1. $f(x) = x^d, x \in \mathbb{R}_+$

d	выпуклая	вогнутая	строго выпуклая	μ-сильно выпуклая
-2	да	нет	да	нет
-1	да	нет	да	нет
0	да	да	нет	нет
0.5	нет	да	нет	нет
1	да	да	нет	нет
$\in (1;2)$	да	нет	да	нет
2	да	нет	да	да, $\mu = 2$
> 2	да	нет	да	нет

- Проверим на выпуклость: $f''(x) = d(d-1)x^{d-2} \geqslant 0 \iff d(d-1) \geqslant 0 \iff d \in \mathbb{R} \setminus (0;1).$
- Проверим на вогнутость: $f''(x) = d(d-1)x^{d-2} \leqslant 0 \iff d(d-1) \leqslant 0 \iff d \in [0;1].$
- Проверим на строгую выпуклость: $f''(x) = d(d-1)x^{d-2} > 0 \iff d \in \mathbb{R} \setminus [0;1].$
- Проверим на сильную выпуклость: $f''(x) = d(d-1)x^{d-2} \geqslant \mu$. Это неравенство не может быть выполнено при d < 2, так как при этом $x^{d-2} \longrightarrow 0$ при $x \longrightarrow \infty$. При d = 2 под условие подходит $\mu = 2$. При d > 2 неравенство не выполняется, так как в точке x = 0 оно имеет вид $0 \geqslant \mu$.

2.

$$f(x) = -\sum_{k=1}^{n} x_k \log x_k,$$

где $\mathrm{dom}\, f = \{x \in \mathbb{R}^n_{++}: \ \|x\|_1 = 1\}.$ Ясно, что $\mathrm{dom}\, f$ – выпуклое множество.

Рассмотрим $g = \sum_{k=1}^{n} x_k \log x_k$, определенную на \mathbb{R}^n_{++} . Воспользуемся дифференциальным критерием строгой выпуклости 2 порядка.

$$\nabla^2 g(x) = \operatorname{diag}\left(\frac{1}{x_1}, \dots, \frac{1}{x_n}\right) \succ 0,$$

так как $\forall x \in \mathbb{R}^n_{++}, \, \forall y \in \mathbb{R}^n, \, y \neq 0 \ y^\top \nabla^2 g(x) y = \sum\limits_{k=1}^n \frac{y_k^2}{x_k} > 0.$ Значит g строго выпукла на \mathbb{R}^n_{++} .

Если функция строго выпулка на некотором выпуклом множестве X, то она строго выпукла и на его выпуклом подмножестве $Y \subset X$. Значит g строго выпукла на $\mathrm{dom}\, f$, причем $-g|_{\mathrm{dom}\, f} = f$, значит f строго вогнута на $\mathrm{dom}\, f$.

3.
$$f: \mathbb{R}^n_{++} \to \mathbb{R}, f(x) = -\prod_{i=1}^n x_i^{\alpha_i}, \mathbf{1}^\top \alpha = 1, \alpha \succeq 0.$$

To be done...

4. $P = \text{conv}\{v_1, v_2, \dots, v_k\}, f: P \to \mathbb{R}$ – выпуклая.

Для любой точки $x=\sum\limits_{n=1}^k \theta_n v_n\in P$, где $\sum\limits_{n=1}^k \theta_n=1,\ \theta_n\geqslant 0$ выполняется неравенство Йенсена (в таком виде его можно получить применив k-1 раз определение выпуклой функции), то есть

$$f\left(\sum_{n=1}^{k} \theta_n v_n\right) \leqslant \sum_{n=1}^{k} \theta_n f(v_n)$$

Пусть $\underset{n=1,\ldots,k}{\arg\max} f(v_n) = i$, то есть среди v_n максимум достигается на вершине v_i (возможно и на других, в таком случае выберем одну произвольную). Тогда

$$f\left(\sum_{n=1}^{k} \theta_n v_n\right) \leqslant \sum_{n=1}^{k} \theta_n f(v_n) \leqslant \sum_{n=1}^{k} \theta_n f(v_i) = f(v_i)$$

Иными словами $\sup_{x \in P} f(x) \leqslant f(v_i)$, причем очевидно, что на v_i он достигается. Значит $\sup_{x \in P} f(x) = \max_{n=1,\dots,k} f(v_k)$.

5.

(a) f является μ -сильно выпуклой $\iff \exists \mu > 0: \ \forall x_1, \, x_2 \in S, \, \forall \lambda \in [0;1]$

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2) - \mu \lambda (1 - \lambda) \|x_1 - x_2\|^2$$

(b) f является μ -сильно выпуклой $\iff \exists \mu > 0: f(x) - \mu \|x\|^2$ является выпуклой.

To be done...

Conjugate sets

- **1.** $\mathbb{A}_n = \{A : A \in \mathbb{R}^{n \times n}, A^{\top} = -A\}.$
 - Пусть $X \in \mathbb{A}_n^*$. Тогда $\forall A \in \mathbb{A}_n \ \langle A, X \rangle \geqslant 1$. То есть $\langle A, X \rangle$ tr $A^\top X = -\operatorname{tr} AX \geqslant -1$. Рассмотрим A, такую что $A_{ij} = q, \ A_{ji} = -q, \ a$ все остальные элементы нули. Тогда $\operatorname{tr} AX = qX_{ji} qX_{ij} \leqslant 1$. То есть при q > 0 имеем $X_{ji} \leqslant X_{ij} + \frac{1}{|q|}$, а при q < 0 имеем $X_{ji} \geqslant X_{ij} \frac{1}{|q|}$. В силу произвольности q это значит, что $X_{ij} = X_{ji}$. Значит $\mathbb{A}_n^* \subset \mathbb{S}_n$.
 - Пусть $X \in \mathbb{S}_n$, $A \in \mathbb{A}_n$. \mathbb{A}_n образует линейное пространство с базисом из матриц E_{ij} , $i \neq j$, где $E_{ij} = -E_{ji} = 1$. Тогда $\langle A, X \rangle = \operatorname{tr} A^{\top} X = -\operatorname{tr} A X = \sum_{1 \leq i < j \leq n} q_{ij} \operatorname{tr} E_{ij} X = \sum_{1 \leq i < j \leq n} q_{ij} (X_{ji} X_{ij}) = 0 \geqslant -1$.

Значит $\mathbb{A}_n^* = \mathbb{S}_n$.

2. $S = \left\{ x \in \mathbb{R}^2 : x_1 + x_2 \geqslant 0, -\frac{1}{2}x_1 + x_2 \geqslant 0, 2x_1 + x_2 \geqslant -1, -2x_1 + x_2 \geqslant -3 \right\}.$

Ясно, что S — замкнутое множество, выпуклое множество (как надграфик выпуклой функции, полученной как максимум линейных), $0 \in S$. Значит $S^{**} = \overline{\text{conv}(S \cup \{0\})} = S$. Так как S^* всегда замкнуто и содержит 0, то $S^{***} = S^*$. Остается лишь найти само S^* .

Представим S в виде S = conv((0, 0), (-1, 1), (2, 1)) + cone((1, 2), (-1, 2)). Это абсолютно очевидно геометрически, но можно показать и непосредственно (но я этого делать не буду, потому что лень). Тогда согласно теореме о сопряженном к многограннику множеству

$$S^* = \{ p \in \mathbb{R}^2 : -p_1 + p_2 \geqslant -1, \, 2p_1 + p_2 \geqslant -1, \, p_1 + 2p_2 \geqslant 0, \, -p_1 + 2p_2 \geqslant 0 \}.$$

Рис. 1: Множество S

Рис. 2: Множество S^*

3. $B_p=\{x\in\mathbb{R}^n: \|x\|_p\leqslant 1\}, \, \frac{1}{p^*}+\frac{1}{p}=1.$ В любой норме единичный шар является замкнутым, выпуклым и содержит 0, значит $B_p^{**}=B_p$. Тогда если $B_{p^*}=B_p^*$, то и $B_{p^*}^*=B_p^{**}=B_p$.

• Пусть $y \in B_{p^*}, x \in B_p$. Воспользуемся неравенство Гельдера

$$|\langle x, y \rangle| = \left| \sum_{k=1}^{n} x_k y_k \right| \le \sum_{k=1}^{n} |x_k y_k| \le ||x||_p ||y||_{p^*} \le 1.$$

Значит $\langle x, y \rangle \geqslant -1, y \in B_p^*$ и $B_{p^*} \subset B_p^*$.

 $\bullet\,$ To be done...