

Kako se lepijo površine med seboj?

s povečanjem stične površine

površina Post-it lepila

Kako se lepijo površine med seboj?

s povečanjem stične površine

okončina gecka

Kako se lepijo površine med seboj?

preko izločanja smol, sladkorjev, ...

okončina muhe

Osnovne sile

V molekularnem svetu prevladujejo interakcije na osnovi **elektrostatskih sil**.

Elektroni: nosilci elektrostatskih interakcij

• Elektroni imajo negativen naboj.

 So zelo lahki delci, zato so porazdeljeni okoli mnogo težjih jeder s pozitivnim nabojem. Elektroni tvorijo elektronske oblake/orbitale.

 V molekuli dveh različnih atomov prevzame eno jedro v povprečju več elektronov kot drugo. Razmakneta se težišči negativnega in pozitivnega naboja. Nastane fiksen električni dipol.

• Težišča nabojev se razmaknejo tudi pod vplivom zunanjih električnih polj. Tako nastanejo *inducirani električni dipoli*, njihova jakost je odvisna od polarizabilnosti molekule (α).

Kako daleč sežejo interakcije?

• Električna (Coulombova) interakcija med dvema nabojema

$$W \propto e_1 e_2 \frac{1}{r}$$

• Električna interakcija med nabojem in dipolom

$$W \propto e_1 u_2 \frac{\cos(\varphi)}{r^2}$$
$$u_2 = e_2 d$$

Kako daleč sežejo interakcije?

• Električna interakcija med dvema dipoloma

$$W \propto u_1 u_2 \frac{\cos \dots}{r^3}$$

Van der Waalsove interakcije

• Dipolne interakcije na osnovi polariziranih elektronskih oblakov

Dva dipola

$$W \propto -\frac{u_1^2 u_2^2}{r^6 kT}$$

• Dipol + induciran dipol

$$W \propto -\frac{u_1^2 \alpha}{r^6}$$

• Dva inducirana dipola

$$\alpha$$
 γ α

$$W \propto -\frac{\alpha^2}{r^6}$$

• Ne pozabimo vedno prisotnega odboja pri majhnih razdaljah (*izključitveno načelo*: dva elektrona ne moreta biti na istem mestu ob istem času)

Kvantno-mehanske interakcije

Interakcije na osnovi *elektronskih parov*, v katerem se dva elektrona nahajata z različnimi lastnostmi (spinom).

• Kovalentna in koordinativna vez co-valence; atoma si delita elektronski par

hemoglobin

Kvantno-mehanske interakcije

Interakcije na osnovi *elektronskih parov*, v katerem se dva elektrona nahajata z različnimi lastnostmi (spinom).

• Kovalentna in koordinativna vez co-valence; atoma si delita elektronski par

Vodikova vez

- H tvori vez med dvema paroma elektronov
- pogoj za to je elektronegativnost donorja protona
- struktura proteinov, DNA, polisaharidov, ...

Kako močne so posamezne vezi?

• V molekularnem svetu primerjamo energije interakcij s termično energijo:

pri
$$T = 310 \text{ K } (37^{\circ}\text{C}) \text{ je } kT = 0.0267 \text{ eV}$$

interakcija	energija		razmerje proti kT
	kJ/mol	eV	kT
kovalentna	200–900	2–9	80–350
ionska	400–800	4–8	150–300
van der Waalsova	2-velika	0.02-velika	1–veliko
vodikova	5–25	0.05–0.25	2–10

Agregacija proteinov v fibrile

Množica
patofizioloških problemov
povezanih z agregacijo

Vdor ogljikove nanocevke v membrano

Množica novih nanomaterialov z nepredvidljivimi vplivi

"Raztapljanje" polimernega nanodelca v membrani

Hidrofobna "interakcija" <u>sestavi</u>

Van der Waalsove interakcije <u>agregirajo</u>

Vodikove vezi stabilizirajo

Ioni v raztopini <u>senčijo</u> interakcije dolgega dosega

Ionske in dipolne interakcije prestrukturirajo

Fluktuacijske sile <u>razmikajo</u>

Mikroskopija na atomsko silo (AFM) - slepi s paličico vidi

Kakšne so sile vezi med proteini in v proteinih?

Optična pinceta - slap nas ne pusti iz stržena

Kako vlečejo molekularni motorji?

miozin, aktin, ATP

