FINM3123 Introduction to Econometrics

Course Introduction

FINM3123 Introduction to Econometrics

- Lectures
 - Tuesday, 15:00-15:50, T4-503
 - Thursday, 16:00-17:50, T7-407
- Instructor
 - Dr Sherry Zhou; Office: T3-502-R5; Tel.: 3620619; Email: sherryzhou@uic.edu.cn
- TA
 - Mr Mingxu Li; Email: limingxu@uic.edu.cn

Office Hours

- Tuesday 14:00-15:50, 16:00-17:50
- Wednesday 14:00-17:50
- Thursday 10:00-11:50, 14:00-15:50

Course Objectives

- Give students a basic understanding of econometrics and regression analysis.
- Emphasis will be placed on the classical linear regression model, least squares estimation, hypothesis testing, and model building, and application to practical economic problems on forecasting and analysis.
- Train students to use computer statistical software, especially R.

Course Content

- Introduction to Econometrics
- The Bivariate Regression Model: Estimation and Properties
- Inference in the Bivariate Regression Model
- Extensions of the Bivariate Regression Model
- Multiple Regression Analysis
- Regression on Dummy Variables
- Multicollinearity
- Heteroscedasticity

Course Grading

Tasks	Assessment Details	Weighting
Class	To engage students to think critically about theories and	
Participation	their application to real-life issues.	10%
In-class Exercises	To test students understanding of basic concepts and	
	models taught in class.	30%
Written	To test students' ability to apply models to explain and	
Assignments	solve economic problems.	20%
Final Exam	To see how far students have achieved their intended leaning outcomes especially in the knowledge domain. Students will need to have a thorough understanding of econometrical knowledge to be able to apply them correctly in different contexts.	40%

Class Participation

- Factors include
 - Attendance
 - Attendance checking through iSpace
 - Participation in class discussions

In-class Exercises

- Mid-term test (15%) and Quizzes (15%)
 - Multiple choices, Work-out problems
 - No coding questions
 - Closed book; Closed notes; No formula sheet provided
 - Normally no make-up quiz or mid-term test will be given
 - Dates will be informed in advance
 - Mid-term test: Chapters 1-7
 - Quizzes: About one quiz for each two chapters; normally two quizzes in total.

Written Assignments

- Group project (20%)
 - Report + Presentation
 - At most three students per group
 - Computer programming involved. Any software is fine.
 - Computer output must be submitted. Output should be concise and necessary
 - Each group only needs one submission of a report. Please list your group members (name and ID) on the front page.
 - Submission through Turnitin on iSpace
 - Points will be deducted for late submission (5% deduction for each hour late)
 - Due date of report: 11:59pm on 15 December 2024
 - Tentative presentation date: last week of the semester

Textbook

- Wooldridge, J.M., Introductory
 Econometrics: A Modern Approach,
 5th Ed., Cengage Learning, 2012
- Textbook is not compulsory.

Chapter 1 Introduction: Nature of Econometrics and Economic Data

What is econometrics?

- Econometrics = use of statistical methods to analyze economic data
- Econometricians typically analyze *nonexperimental* data
 - Nonexperimental data are not accumulated through controlled experiments on individuals, firms, or segments of the economy.
 - **Experimental data** are often collected in laboratory environments in the natural sciences, but they are much more difficult to obtain in the social sciences.

Steps in econometric analysis

- 1) Economic model (this step is often skipped)
- 2) Econometric model

Economic models

- Maybe micro- or macromodels
- Often use optimizing behaviour, equilibrium modeling, ...
- Establish relationships between economic variables
- Examples: demand equations, pricing equations, ...

- Economic model of crime (Becker (1968))
 - Derives equation for criminal activity based on utility maximization

- Functional form of relationship not specified
- Equation could have been postulated without economic modeling

- Model of job training and worker productivity
 - What is effect of additional training on worker productivity?
 - Formal economic theory not really needed to derive equation:

• Other factors may be relevant, but the above equation captures the essence of the problem.

- Econometric model of criminal activity
 - The functional form has to be specified
 - Variables may have to be approximated by other quantities

Econometric model of job training and worker productivity

- Most of econometrics deals with the specification of the error u
- Econometric models may be used for hypothesis testing
 - For example, the parameter β_3 represents effect of training on wage
 - How large is this effect? Is it different from zero?

- Econometric analysis requires data
- Different kinds of economic data sets
 - Cross-sectional data
 - Time series data
 - Pooled cross sections
 - Panel/Longitudinal data
- Econometric methods depend on the nature of the data used
 - Use of inappropriate methods may lead to misleading results

Cross-sectional data sets

- Sample of individuals, households, firms, cities, states, countries, or other units of interest at a given point of time/in a given period
- Cross-sectional observations are more or less independent
- For example, pure random sampling from a population
- Sometimes pure random sampling is violated, e.g. units refuse to respond in surveys, or if sampling is characterized by clustering
- Cross-sectional data typically encountered in applied microeconomics

Cross-sectional data set on wages and other characteristics

TABLE 1.1	A Cross-Section	al Data Set on	Wages and Oth	er Individual Ch	aracteristics	
obsno	wage	educ	exper	female	married	
1	3.10	11	2	1	0	
2	3.24	12	22	1	1	Indicator variable
3	3.00	11	2	0	0	(1=yes, 0=no)
4	6.00	8	44	0	1	
5	5.30	12	7	0	1	
· K						
. \						, 2013
	•		•	•		Learning,
525	11.56	16	5	0	1	Cengage L
526	3.50	14	5	1	0	© Ceni
Ol	servation nur	nber	Hourly wa	ige		

• Cross-sectional data on growth rates and country characteristics

TABLE 1.2	A Data Set on Econom	nic Growth I	Rates and Country Charac	teristics
obsno	country	gpcrgdp	govcons60	second60
1	Argentina	0.89	9	32
2	Austria	3.32	16	50
3	Belgium	2.56	13	69
4	Bolivia	1.24	18	12)
		1.	1	*
	·	/		
•		•	/ .	
61	Zimbabwe	2.30	17	6
	Growth rate o per capita GD		Government consumtion as percentage of GDP	n Adult : educa

Time series data

- Observations of a variable or several variables over time
- For example, stock prices, money supply, consumer price index, gross domestic product, annual homicide rates, automobile sales, ...
- Time series observations are typically serially correlated
- Ordering of observations conveys important information
- Data frequency: daily, weekly, monthly, quarterly, annually, ...
- Typical features of time series: trends and seasonality
- Typical applications: applied macroeconomics and finance

• Time series data on minimum wages and related variables

TABLE 1.3	Minimum Wa	ge, Unemploym	ent, and Relate	d Data for Puer	to Rico
obsno	year	avgmin	avgcov	prunemp	prgnp
1	1950	0.20	20.1	15.4	878.7
2	1951	0.21	20.7	16.0	925.0
3	1952	0.23	22.6	14.8	1015.9
•	•		1.	1	7.
•	. /	•			
37	1986	3.35	58.1	18.9	4281.6
38	1987	3.35	58.2	16.8	4496.7
verage minim rage for given		verage overage rate		Unemploy rate	/ment (

Pooled cross sections

- Two or more cross sections are combined in one data set
- Cross sections are drawn independently of each other
- Pooled cross sections often used to evaluate policy changes
- Example:
 - Evaluate effect of change in property taxes on house prices
 - Random sample of house prices for the year 1993
 - A new random sample of house prices for the year 1995
 - Compare before/after (1993: before reform, 1995: after reform)

Pooled cross sections on housing prices

Panel or longitudinal data

- The same cross-sectional units are followed over time
- Panel data have a cross-sectional and a time series dimension
- Panel data can be used to account for time-invariant unobservables
- Panel data can be used to model lagged responses
- Example:
 - City crime statistics; each city is observed in two years
 - Time-invariant unobserved city characteristics may be modeled
 - Effect of police on crime rates may exhibit time lag

• Two-year panel data on city crime statistics

Causality and the notion of ceteris paribus

Definition of causal effect of x on y:

"How does variable y change if variable x is changed but all other relevant factors are held constant"

- Most economic questions are ceteris paribus questions
- It is important to define which causal effect one is interested in
- It is useful to describe how an experiment would have to be designed to infer the causal effect in question

Causal effect of fertilizer on crop yield

- "By how much will the production of soybeans increase if one increases the amount of fertilizer applied to the ground"
- Implicit assumption: all other factors that influence crop yield such as quality of land, rainfall, presence of parasites etc. are held fixed

- Choose several one-acre plots of land; randomly assign different amounts of fertilizer to the different plots; compare yields
- Experiment works because amount of fertilizer applied is unrelated to other factors influencing crop yields

Measuring the return to education

- "If a person is chosen from the population and given another year of education, by how much will his or her wage increase? "
- Implicit assumption: all other factors that influence wages such as experience, family background, intelligence etc. are held fixed

- Choose a group of people; randomly assign different amounts of eduction to them (infeasible!); compare wage outcomes
- Problem without random assignment: amount of education is related to other factors that influence wages (e.g. intelligence)

Effect of law enforcement on city crime level

- "If a city is randomly chosen and given ten additional police officers, by how much would its crime rate fall? "
- Alternatively: "If two cities are the same in all respects, except that city A has ten more police officers, by how much would the two cities crime rates differ?"

- Randomly assign number of police officers to a large number of cities
- In reality, number of police officers will be determined by crime rate (simultaneous determination of crime and number of police)

Effect of the minimum wage on unemployment

• "By how much (if at all) will unemployment increase if the minimum wage is increased by a certain amount (holding other things fixed)? "

- Government randomly chooses minimum wage each year and observes unemployment outcomes
- Experiment will work because level of minimum wage is unrelated to other factors determining unemployment
- In reality, the level of the minimum wage will depend on political and economic factors that also influence unemployment

Summary

Four types of data

- Cross-sectional data; Time series data; Pooled cross sections; Panel data
- A data set that consists of a sample of individuals, households, firms, cities, states, countries, or a variety of other units, taken at a given point in time, is called a(n) data set.

Causality

- The notion of ceteris paribus means _______
- True or False: A variable has a causal effect on another variable if both variables increase or decrease simultaneously.