The Street Score project: Scope for Improvement?

Knowledge Lab Team Presentation

Nandana Sengupta

June 29, 2016

The Street Score project: Scope for Improvement?

Knowledge Lab Team Presentation

Nandana Sengupta

June 29, 2016

The Street Score Project

- MIT Media Lab Project
- Generating database of visual perceptions of safety/uniqueness etc

- Participants shown random pairs of images
- ► Main application: ranking of neighborhoods/ cities.
- Cities in dataset: Boston, NYC, Linz, Salzburg
- Number of images: 4109, Number of participants: 7872, Number of comparisons: 208738.

Limitations

- ► Google Street View represents the way cities look from a car
- Early mornings less traffic, people, shops closed
- Not taking advantage of similarity in images or participants
- ► Sparsity of win-loss matrix, multiple images at the same location
- Prediction accuracy
- ► We focused on a single city Boston
 - ▶ 1237 images from 635 unique locations
 - Less sparse than overall matrix but still not enough observations for consistent ranking
 - Multiple images at the exact location

Feature Extraction

- Visual Feature Extraction
 - MIT's Places CNN (Convolution Neural Networks)
 - ▶ Deep Learning Software, open source
 - Scene Recognition: 205 scene categories eg, residential, highway, apartments etc.
 - User Input: Raw Image
- ► Demographic Feature Extraction
 - ▶ US Census Data and American Community Survey Database
 - Demographic characteristics by region, eg, average income, educational levels, racial distribution etc
 - User Input: Latitude and Longitude

Feature Extraction using Deep Learning Software

Top 3 Predictors: (office building, apartment building, hospital)

Top 3 Predictors:(yard, residential neighborhood, driveway)

Feature Extraction: distribution across physical area

Feature Extraction: distribution across physical area

Clustering?

- ▶ Divided Boston images into 100 clusters (k-means clustering)
- ► Features for each cluster: weighted average of member images

