第一讲

1.

假设 P_n 是字母表符号串长度为 n 集合.

Basis: 当 n = 1 时, $P_1 = PS$, 显然 $|P_1| = |PS| = \aleph_0$.

I.H.: 设 i < n 时,大部分时候有 $|P_i| = \aleph_0$,将 P_2, P_3 等看作 \emptyset ,此时 $|P_i| = 0$.

I.S.:

情况 $\neg: P_n$ 的最外层联结词为 \neg

$$\therefore P_n = \{ (\neg A) | A \in P_{n-3} \}$$

由 I.H. 可得 $|P_n| = |P_{n-3}| = \aleph_0$

情况 *: P_n 的最外层联结词为 *, 其中 * $\in \{\land, \lor, \rightarrow\}$

$$P_n = \bigcup_{* \in \{\land,\lor,\to\}} \{(A*B) | A \in P_1, B \in P_{n-4}\} \cup \{(A*B) | A \in P_2, B \in P_{n-5}\} \cup \cdots \cup \{(A*B) | A \in P_{n-4}, B \in P_1\}$$

对于 P_n 被并起来的单个集合 $S_k = \{(A*B)|A\in P_k, B\in P_{n-k-3}\}$ 分析

由 I.H. 有
$$|P_k|=leph_0, |P_{n-k-3}|=leph_0,$$
 (部分 $|P_k|=0$)

$$\therefore |S_k| = \aleph_0 \times \aleph_0 = \aleph_0, \quad \text{(部分 } |S_k| = 0 \text{)}$$

$$egin{aligned} \therefore |P_n| &= 3 imes (|S_1| + |S_2| + \cdots + |S_{n-4}|) \ &= 3 imes (leph_0 + leph_0 + \cdots + leph_0) \ &= 3 imes (n-4-j) imes leph_0 \end{aligned}$$

其中 $j \geq 0$.

最终我们有:

$$\therefore PROP = P_1 \cup P_2 \cup \cdots$$

$$\therefore |PROP| = \aleph_0 \times \aleph_0 = \aleph_0$$

归纳完成, $|PROP| = \aleph_0$

2.

即证: 若 $A \in PROP$, 则 A 中所有左括号个数 L_A 等于右括号个数 R_A .

Basis: 当 $A\in PS$ 时, 左括号数 L_A 与右括号数 R_A 均为 0, 即 $L_A=R_A=0$.

I.H.: 设 A 为 B, C 时, 均有 $L_B = R_B$, $L_C = R_C$.

I.S.:

情况 $\neg: A$ 为 $(\neg B)$

那么我们有 $L_A = L_B + 1$, $R_A = R_B + 1$, 满足 $L_A = R_A$

情况 *: * $\in \{\land, \lor, \rightarrow\}$, A 为 (B*C)

那么我们有 $L_A=L_B+L_C+1, R_A=R_B+R_C+1$, 满足 $L_A=R_A$

归纳完成, 故命题中的左括号数等于右括号数.

3.

先证明部分定理:

双重否定律: $\neg(\neg A) \simeq A$

幂定律: $(A \lor A) \simeq A, (A \land A) \simeq A$

排中律: $\models \neg A \lor A, \models A \lor \neg A$

列真值表如下:

A	$\neg(\neg A)$	A ee A	$A \wedge A$	eg A ee A	$A \vee \neg A$
F	F	F	F	Т	Т
Т	Т	Т	Т	Т	Т

交換律: $(A \lor B) \simeq (B \lor A), (A \land B) \simeq (B \land A)$

列真值表如下:

Α	В	A ee B	$B \lor A$	$A \wedge B$	$B \wedge A$
F	F	F	F	F	F
F	Т	Т	Т	F	F

A	В	A ee B	$B \lor A$	$A \wedge B$	$B \wedge A$
Т	F	Т	Т	F	F
Т	Т	Т	Т	Т	Т

蕴涵等值式: $(A \rightarrow B) \simeq ((\neg A) \lor B)$

A	В	A o B	$(\neg A) \vee B$
F	F	Т	Т
F	Т	Т	Т
Т	F	F	F
Т	Т	Т	Т

德摩根律: $\neg(A \lor B) \simeq (\neg A) \land (\neg B), \neg(A \land B) \simeq (\neg A) \lor (\neg B)$

列真值表如下:

A	В	$\lnot (A \lor B)$	$(\neg A) \wedge (\neg B)$	$\lnot (A \land B)$	$(\neg A) \vee (\neg B)$
F	F	Т	Т	Т	Т
F	Т	F	F	Т	Т
Т	F	F	F	Т	Т
Т	Т	F	F	F	F

(a)

Α	A o A
F	Т
Т	Т

 $\therefore \models A \to A$

(b)

A	В	С	$egin{array}{c} A ightarrow \ B \end{array}$	$egin{array}{c} B ightarrow \ C \end{array}$	$(A o B) \wedge \ (B o C)$	$egin{array}{c} A ightarrow \ C \end{array}$	$((A o B)\wedge (B o C)) o (A o C)$
F	F	F	Т	Т	Т	Т	Т

A	В	С	$egin{array}{c} A ightarrow \ B \end{array}$	$egin{array}{c} B ightarrow \ C \end{array}$	$(A o B) \wedge \ (B o C)$	$egin{array}{c} A ightarrow \ C \end{array}$	$((A o B)\wedge (B o C)) o (A o C)$
F	F	Т	Т	Т	Т	Т	Т
F	Т	F	Т	F	F	Т	Т
F	Т	Т	Т	Т	Т	Т	Т
Т	F	F	F	Т	F	F	Т
Т	F	Т	F	Т	F	Т	Т
Т	Т	F	Т	F	F	F	Т
Т	Т	Т	Т	Т	Т	Т	Т

$$\therefore \models ((A \rightarrow B) \land (B \rightarrow C) \rightarrow (A \rightarrow C))$$

(c)

$$\simeq (A \wedge B) \vee (\neg A \vee \neg B)$$
 (双重否定律)

$$\simeq (A \land B) \lor \neg (A \land B)$$
 (德摩根律)

由排中律可知

$$\therefore \models \neg (A \land B) \rightarrow (\neg A \lor \neg B)$$

(d)

$$:: (\neg A \vee \neg B) \to \neg (A \wedge B) \simeq \neg (A \wedge B) \to (\neg A \vee \neg B)$$
 (德摩根律)

由(c)可知

$$\therefore \models (\neg A \lor \neg B) \to \neg (A \land B)$$

(e)

$$:: \neg(A \lor B) \to (\neg A \land \neg B)$$

$$\simeq \neg (\neg (A \lor B)) \lor (\neg A \land \neg B)$$
 (蕴涵等值式)

$$\simeq (A \lor B) \lor (\neg A \land \neg B)$$
 (双重否定律)

$$\simeq (A \lor B) \lor \neg (A \lor B)$$
 (德摩根律)

由排中律可知

$$\therefore \models \neg (A \lor B) \to (\neg A \land \neg B)$$

(f)

$$:: (\neg A \land \neg B) \to \neg (A \lor B) \simeq \neg (A \lor B) \to (\neg A \land \neg B)$$
 (德摩根律)

由 (e) 可知

$$\therefore \models (\neg A \land \neg B) \to \neg (A \lor B)$$

4.

(a)

$$\diamondsuit v(A) = T, v(B) = T, v(C) = T$$

得
$$\hat{v}((A \rightarrow B) \land C) = T$$

$$\therefore (A \to B) \land C$$
 可满足

(b)

$$\Leftrightarrow v(A) = T, v(B) = T, v(C) = T$$

得
$$\hat{v}((A o B) \wedge C) = T$$

$$\therefore (A \lor B) \to C$$
 可满足