Test 1 MAS 416

SET B

NAME

Mark-10

ID:

1.By using elementary row operations, find the solutions if they exist for the following.

$$x+2 y+3z=14$$
, $3x+y+2z=11$, $2x+3y+z=11$

2. Find the rank of the following matrix by reducing to normal form

3.Examine the following system of vectors for linear dependence. IF dependent find the relation between them

$$X_1 = (3, 1, -4)$$
 $X_2 = (2, 2, -3)$, $X_3 = (0, -4, 1)$

Test 1 MAS 416

SET A

NAME

Mark-10

ID: 1

1.By using elementary row operations, find the solutions if they exist for the following.

$$2x + y + z = 8$$
, $-x + 2y + z = 4$, $3x + y - 4z = 0$

2. Find the rank of the following matrix by reducing to normal form

$$\begin{bmatrix}
1 & 0 & 2 & 1 \\
1 & 1 & -2 & 1 \\
1 & -1 & 4 & 1 \\
-2 & 2 & 8 & 0
\end{bmatrix}$$

3.Examine the following system of vectors for linear dependence. IF dependent find the relation between them

$$X_1 = (1, -1, 1)$$
 , $X_2 = (2, 1, 1)$, $X_3 = (3, 0, 2)$

Sef-A Test-2 $a^{5} + 7a^{2} - 3x + 8$ 1. Fund dy y = 2. If $u = fau' \left(\frac{x^3 + y^3}{\sqrt{x} + \sqrt{y}}\right)$ find The value of xou + you 3. of u = 81 m 1 sc find dy. 4. of y = a coslogol) + b Sim (logol)

Show that 22 yn+2 + (2n+1) 2 yn+1 + (n^2+1) $y_n=0$ 5) Frond the nit desiralise of costs

Sel-B Test-2 1. If u=t-consty/of find Dy

Find the nit derivative of single 3. If $u = 8im^{-1}Cx+y$ find the Value of $x \frac{\partial y}{\partial x} + y \frac{\partial y}{\partial y}$ $\int_{0}^{1} d^{2} = \int_{0}^{8} + 7 \int_{0}^{4} - 4 \int_{0}^{4} + 18$ 5. of y = cos(mlogol) show that sign+2 + (2n+1) or yn+1+ (m2+n2) yn=0 Magal

- 1. Stali green's theorem and evaluate $\int_{0}^{\infty} (x^{2} + xy) dx + (x^{2} + y^{2}) dy$ The colue c ii he square formed by The lines $y = \pm 1$, $x = \pm 1$
- 2. Fersid a cenit normal vector to the Surface $z^2 = x^2 + y^2$ at the point 3. Do. 11
- 3. Prove that

 (y²-z²+3xyz-2x) 1 + (3xz+2xy) 1

 + Bxy-2xz+2z) 1 1

 bolk solenordal
- 4. Suppose F(x, y,z) = x301+ y J+zk with lorce field. Find the work done by F along the like term (1,23 to C3,5,7; by F along the
- Shale Gauss's the creem of Drivergence.

 Cusing it evaluate

 Using it evaluate

 Of F. nds where F = 4221-41+42k1

 and S is the surface of the cube bounded

 and S is the surface of the cube bounded

 by $\alpha = 0$, $\alpha = 1$, $\gamma = 0$, $\gamma = 1$, $\gamma = 0$, $\gamma = 1$

SCI-B

- State Gaus Theorem of divergence. Curry at Find SIF. I'ds where and s is the scatce of the Sphere having Centre (3,-1,2) and vadius 3. Evaluate grad ϕ if $\phi = \log(x^2 + y^2 + z^2)$
- Prue Itali $(y^2-z^2+3xyz-2x)^2+(3xz+2xy)^2+$ $(3xy-2xz+2z)^2$ is conditional
- 4. If $\vec{A} = (3x^2 + 6y) \vec{\lambda} 14y \vec{\lambda} + 20x \vec{\lambda} \vec{k}$ evaluale $\vec{A} = \vec{A} \cdot \vec{A} \cdot \vec{k} + 20x \vec{\lambda} \cdot \vec{k}$ along the curve $\vec{C} = \vec{\lambda} \cdot \vec{k} \cdot \vec{k}$

