Quiz, 5 questions

Congratulations! You passed!

Next Item

1/1 point

1.

In this assessment, you will be tested on all of the different topics you have in covered this module. Good luck!

A ship travels with velocity given by $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, with current flowing in the direction given by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ with respect to some co-ordinate axes.

What is the velocity of the ship in the direction of the current?

 $\begin{bmatrix} 3/2 \\ 3/2 \end{bmatrix}$

Correct

This is the vector projection of the velocity of the ship onto the velocity of the current.

- $\begin{bmatrix}
 2/3 \\
 2/3
 \end{bmatrix}$
- $\begin{bmatrix} 2/3 \\ 3/2 \end{bmatrix}$
- $\begin{bmatrix} 3/2 \\ 2/3 \end{bmatrix}$

Vector operations assessment values, shall travels with velocity given by $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$, with wind blowing in the direction given by $\begin{bmatrix} 3 \\ -4 \end{bmatrix}$ with respectively.

some co-ordinate axes.

What is the size of the velocity of the ball in the direction of the wind?

$$-\frac{2}{5}$$

$$\frac{2}{5}$$

Correct

This is the scalar projection of the velocity of the ball onto the velocity of the wind.

Given vectors $\mathbf{v} = \begin{bmatrix} -4 \\ -3 \\ 8 \end{bmatrix}$, $\mathbf{b_1} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\mathbf{b_2} = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$ and $\mathbf{b_3} = \begin{bmatrix} -3 \\ -6 \\ 5 \end{bmatrix}$ all written in the standard basis,

what is \mathbf{v} in the basis defined by $\mathbf{b_1}$, $\mathbf{b_2}$ and $\mathbf{b_3}$? You are given that $\mathbf{b_1}$, $\mathbf{b_2}$ and $\mathbf{b_3}$ are all pairwise orthogonal to each other.

$$egin{bmatrix} 1 \ 1 \ 1 \end{bmatrix}$$

Correct

This is a change of basis in 3 dimensions.

$$\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

point

Are the following vectors linearly independent?

$$\mathbf{a} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 3 \\ -4 \\ 5 \end{bmatrix}$ and $\mathbf{c} = \begin{bmatrix} 1 \\ -8 \\ 7 \end{bmatrix}$.

Yes

Correct

One can be written as a linear combination of the other two.

point

5.

At 12:00 pm, a spaceship is at position $\begin{bmatrix} 3 \\ 2 \\ 4 \end{bmatrix} km$ away from the origin with respect to some 3 dimensional co

ordinate system. The ship is travelling with velocity $egin{bmatrix} -1 \ 2 \ -3 \end{bmatrix} km/h$ What is the location of the spaceship after 2

hours have passed?

$$\begin{bmatrix} -2 \\ 4 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 6 \\ -2 \end{bmatrix}$$

 \bigcirc

