

Cross-frequency
power-power coupling analysis toolbox
(PowPowCAT)

Makoto Miyakoshi
Advanced Topics in The 30th EEGLAB workshop
June 15, 2021 12:00-12:45 pm

What's the difference?

How about this?

What is harmonics?

Virtual John Iversen's explanation

Double peaks does not guarantee cross-frequency coupling

Original signals

f (Hz)

10Hz

20Hz

X(t)

-3 0.4 0.4 0.1 0.1 0.2 0.3 0.5 0.1 0.5 0.2 0.3 Time (s) Time (s) Time (s) Power Spectrum of X(t) Power Spectrum of X(t) Power Spectrum of X(t) 10Hz+20Hz concatenated 10Hz 10Hz+20Hz mixed 1.2 20Hz $\frac{|P1(f)|^2}{9.0}$ 0.2 0.2 0.2 15 25 30 15 20 25 15 25

f (Hz)

Mixed signals

10Hz+20Hz mixed

X(t)

f (Hz)

Concatenated signals.

10Hz+20Hz concatenated

Why do I like power-power coupling?

List of cross-frequency relations 1

List of cross-frequency relations 2

Reasons to analyze EEG power rather than phase

 Phase is a noisy metric, has weird dependency on amplitude contrary to the intuition, etc.

Power metric has good biological evidence: population coding.

• 'PowPowCAT' is a good name which I must publish.

Why is harmonics important in EEG? 1

Power Spectral Density of averaged Steady-State Visual Evoked Potential (SSVEP) at Oz, O1, O2.

Regional cerebral blood flow (rCBF) measured with $\rm H_2^{15}O$ PET. Red, fundamental freq-weighted. Blue, first harmonics-weighted.

Why is harmonics important in EEG? 2

Wikipedia 'lateral geniculate nucleus'

On- and off-neuron responses recorded from cat lateral geniculate nucleus (LGN) during visual stimulation.

How to calculate power-power coupling

Comodulogram as spectral covariance

When X is the time-frequency decomposed single-channel/component power,

Comodulogram(X) =
$$\frac{\text{cov}(X,X)}{\sigma^2}$$

This calculation is the same as Pearson's correlation coefficient!

Demonstration of PowPowCAT

'stern_125.set' (tutorial dataset) IC scalp topos

'stern_125.set' Comodulogram

IC6 vs. IC8—What's the best description of the difference?

IC6 shows a nice second harmonics (r=0.356)

4TH harmonics captured!

How a muscle IC is nicely represented

Comodulogram helps classify the ICs

Comodulogram for IC classification

Clusters	Our Interpretation	Percentage of ICs in Each Class as Labeled by ICLabel							Total Number
		Brain	Muscle	Eye	Heart	Line Noise	Channel Noise	Other	of ICs
2	Brain	52.5	23.0	1.8	0.0	13.5	0.0	9.2	282
3	Brain	23.2	26.8	16.1	0.0	25.0	0.0	8.9	56
5	Brain	82.0	8.7	0.0	0.0	8.7	0.0	0.7	150
6	Muscle	10.4	83.1	0.0	0.0	2.6	0.0	3.9	77
7	Muscle	27.6	51.5	2.2	0.0	5.2	0.0	13.4	134
8	Muscle	3.3	53.3	26.7	0.0	10.0	0.0	6.7	30
1	Eye	3.2	0.0	83.9	0.0	6.5	0.0	6.5	31
4	Noise	16.7	20.0	56.7	0.0	3.3	3.3	0.0	30
	Total	42.5	31.4	8.6	0.0	10.1	0.1	7.2	790

'The diagonal line of comodulogram is the power spectral density (PSD). When used in machine learning, comodulogram could be more informative than PSD.'

Conclusion

- Cross-frequency power-power coupling plot is called comodulogram.
- Comodulogram is an extension of power spectral density (PSD) which tells us temporal correlations across time series of power fluctuations in different frequency bands.
- Comodulogram provides additional information about the independent components (ICs) that has been neglected but now proven to classify them.
- PowPowCAT has been available since 2017 to calculate the comodulogram.
 - Recently batch mode is supported upon request of Pål from Oslo.

Mini history of PowPowCAT

Nattapong Thammasan Visiting scholar at SCCN Jan-Mar 2017

- The prototype of PowPowCAT was developed as 're-inventing the wheel'.
 - in the final revision. PPC was ad hoc re-invented by MM to convince Michael that the 44-Hz peak in the PSD of his EEG data was not related to other brain signals.
- The original EEGLAB plugin was published on January 3, 2017.
- I continued to develop it during the 23rd EEGLAB workshop in January 2017 at Mysuru, India.
- Proposed to Nattapong from Osaka University as a 'souvenir project'.
 - E-mail discussion with György, Daniel, Dion, and Brendon.
 - First submitted in 2017 (rejected).
 - The second submission accepted in 2020.

Thank you for your attention

A mini review of the power-power coupling analysis by Nattapong Thammasan (University of Twente)

Neuroreport

Amplitude-envelope correlation (AEC) of <u>filtered</u> signals

Bruns et al., 2000

Int. J. Psychophysiol
Correlation between corre

Correlation between corresponding envelope segments

Bruns & Eckhorn, 2004

Bekisz & Wróbel, 1999

Cross-correlation function between envelopes of beta and gamma signals

Bruns et al., 2000

Bruns & Eckhorn, 2004

Pronounced task-related increase of gamma-delta envelope-to-signal correlation between superior and inferior occipital visual area → possibly reflecting a short-term memory encoding process

Jirsa & Müller, 2013

- Bruns & Eckhorn, Int. J. Psychophysiol, 2004
 - correlation between corresponding envelope segments was determined after subtracting the segments' means and correlation values were normalized to segment energies:

$$\rho_{XY,k}(t,f) = \frac{\sum_{\tau \in I_t} a'_{X,k}(\tau,f) \cdot a'_{Y,k}(\tau,f)}{\sqrt{E'_{X,k}(t,f) \cdot E'_{Y,k}(t,f)}},$$

where $a'_{X,k}(\tau,f) = a_{X,k}(\tau,f) - \overline{a_{X,k}}(t,f)$ ($\tau \in I_t$) denotes an envelope segment with its mean subtracted, and $E'_{X,k}(t,f) = \sum_{\tau \in I_t} a'_{X,k}(\tau,f)$ is the energy of that segment. Finally, correlation values were averaged across trials, using Fisher's Z transform $FZT(\rho) = \tanh^{-1}(\rho)$:

$$\rho_{XY}(t,f) = FZT^{-1} \left(\frac{1}{N} \sum_{k=1}^{N} FZT(\rho_{XY,k}(t,f)) \right).$$
 (8)

envelope-to-envelope correlation

