MAT 3375 Regression Analysis

Chapter 1 Preliminaries

P. Boily (uOttawa)

Summer - 2023

Outline

- 1.1 Random Variables (p.3)
 - Expectation, Variance, and Covariance (p.4)
 - Important Distributions (p.13)
- 1.2 Multivariate Calculus (p.22)
- 1.3 Matrix Algebra (p.23)
- 1.4 Quadratic Forms (p.25)
 - Cochran's Theorem (p.29)
 - Important Quadratic Forms (p.30)
- 1.5 Optimization (p.32)

1 – Preliminaries

Regression analysis is not a very complicated discipline ... assuming that its pre-requisites are mastered well. In this course, it will be useful to be familiar with a number of notions relating to:

- random variables;
- multivariate calculus;
- linear algebra;
- quadratic forms, and
- optimization.

1.1 – Random Variables

A random experiment is a process (together with its sample space S) for which it is impossible to predict the outcome with certainty. The sample space S is the set of the random experiment's possible outcomes.

A random variable Y associated to this process is a function $Y: \mathcal{S} \to \mathbb{R}$. If the set $Y(\mathcal{S}) = \{Y(s) \mid s \in \mathcal{S}\}$ is **countable**, we say that Y is a **discrete** r.v.; if it is **uncountable**, we say that Y is a **continuous** r.v.

Each r.v. Y has a corresponding **probability function** f(Y), which specifies the **probabilities of the values taken by** Y.

 Y_1 and Y_2 are independent when their joint probability function $f(Y_1, Y_2)$ is the product of the individual probability functions $f(Y_1)f(Y_2)$.

1.1.1 – Expectation, Variance, and Covariance

The **expectation operator** $E\{\cdot\}$ is defined by

$$\mathbf{E}\left\{Y\right\} = \begin{cases} \sum_{Y(s)} Y(s) f(Y(s)), & \text{if } Y \text{ is discrete} \\ \int_{\mathbb{R}} Y f(Y) \, dy, & \text{if } Y \text{ is continuous} \end{cases}$$

The expectation $E\{Y\}$ is the **average value** that we would expect to observe if the experiment is repeated a large number of times.

The expectation is sometimes also called the **mean** of Y, denoted Y; it is thus a measure of Y's **centrality**.

The **variance operator** $\sigma^2\{\cdot\}$ is defined by

$$\sigma^{2} \{Y\} = E\{(Y - E\{Y\})^{2}\} = E\{Y^{2}\} - (E\{Y\})^{2}.$$

It is often denoted by Var(Y). It is a measure of Y's dispersion (large variances are associated with r.v. with heavy dispersion, and vice-versa).

The **covariance operator** $\sigma \{\cdot, \cdot\}$ is defined by

$$\sigma \{Y, W\} = E\{(Y - E\{Y\}) (W - E\{W\})\} = E\{YW\} - E\{Y\} E\{W\}.$$

It is often denoted by Cov(Y, W). It is a measure of the **strength of** the linear relationship between two r.v. (large covariance magnitudes are associated with linearity, but "large" is a relative concept).

The **standard deviation operator** $\sigma \{\cdot\}$ is defined by

$$\sigma\left\{Y\right\} = \sqrt{\sigma^2\left\{Y\right\}}.$$

It is always non-negative.

The **correlation operator** $\rho \{\cdot, \cdot\}$ is defined by

$$\rho\left\{Y,W\right\} = \frac{\sigma\left\{Y,W\right\}}{\sigma\left\{Y\right\}\sigma\left\{W\right\}},$$

assuming that $\sigma\{Y\} \sigma\{W\} \neq 0$.

When $\rho\{Y,W\} = 0$, we say that the r.v. are **uncorrelated**.

Properties of the Operators

Let Y, Y_i, W be r.v., and $a, b, c, a_i, b_i, c_i \in \mathbb{R}$, $i = 1, \ldots, n$. Then:

■ $E\{\cdot\}$ is **linear** on the space of r.v.: $E\{aY + b\} = aE\{Y\} + b$ and

$$E\left\{\sum_{i=1}^{n} a_i Y_i\right\} = \sum_{i=1}^{n} a_i E\left\{Y_i\right\}$$

$$\sigma^{2} \left\{ \sum_{i=1}^{n} a_{i} Y_{i} \right\} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} \sigma \left\{ Y_{i}, Y_{j} \right\} = \sum_{i=1}^{n} a_{i}^{2} \sigma^{2} \left\{ Y_{i} \right\} + \sum_{i \neq j} a_{i} a_{j} \sigma \left\{ Y_{i}, Y_{j} \right\}$$

- $\bullet \ \sigma\{Y,Y\} = \sigma^2\{Y\} \text{ and } \sigma\{Y,W\} = \sigma\{W,Y\}$
- $\{Y_i\}$ uncorrelated \Longrightarrow

$$\sigma \left\{ \sum_{i=1}^{n} a_{i} Y_{i}, \sum_{i=1}^{n} c_{i} Y_{i} \right\} = \sum_{i=1}^{n} a_{i} c_{i} \sigma^{2} \left\{ Y_{i} \right\}$$

- ullet σ $\{Y,W\}$ < 0 \iff observations of Y above \overline{Y} tend to accompany corresponding observations of W below \overline{W} , and vice-versa.
- ullet $\sigma\left\{Y,W\right\}>0 \iff$ observations of Y above \overline{Y} tend to accompany corresponding observations of W above \overline{W} , and vice-versa.

- $\sigma\{Y,W\}=0 \implies Y \text{ and } W \text{ are uncorrelated}$
- Y, W independent $\implies \rho \{Y, W\} = 0$ (uncorrelated)
- $\rho\{Y,W\}=0 \implies Y,W$ independent, however
- $|\rho\{Y,W\}| \le 1$ (consequence of the Cauchy-Schwartz inequality)
- $\blacksquare |\rho\{Y,W\}| = 1 \Longleftrightarrow Y = aW + b \text{ for some } a,b \in \mathbb{R},$

Random Vectors

If Y_1, \ldots, Y_n are random variables, then

$$\mathbf{Y} = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix}$$

is a random vector. The expectation of ${f Y}$ is

$$\operatorname{E}\left\{\mathbf{Y}\right\} = egin{pmatrix} \operatorname{E}\left\{Y_{1}\right\} \\ \vdots \\ \operatorname{E}\left\{Y_{n}\right\} \end{pmatrix}.$$

The components of Y need not all have identical distributions.

The variance-covariance matrix of Y is the symmetric matrix

$$\sigma^2 \left\{ \mathbf{Y} \right\} = (g_{i,j}), \quad \text{where } g_{i,j} = \begin{cases} \sigma^2 \left\{ Y_i \right\} & i = j \\ \sigma \left\{ Y_i, Y_j \right\} & i \neq j \end{cases}$$

or

$$\sigma^{2} \{ \mathbf{Y} \} = \begin{pmatrix} \sigma^{2} \{ Y_{1} \} & \cdots & \sigma \{ Y_{1}, Y_{n} \} \\ \vdots & \ddots & \vdots \\ \sigma \{ Y_{1}, Y_{n} \} & \cdots & \sigma^{2} \{ Y_{n} \} \end{pmatrix}$$

If the components of ${\bf Y}$ are **independent** and all have the **same variance** σ^2 , then

$$\sigma^2 \{ \mathbf{Y} \} = \sigma^2 \mathbf{I}_n.$$

In practice, we usually work with **samples** of the random variables. Let $\{(X_i, Y_i)\}_{i=1}^n$ be observed from the joint distribution of (X, Y):

- $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ and $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$, the **sample means**, are unbiased estimators of $E\{X\}$ and $E\{Y\}$, respectively;
- $s_X^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$ and $s_Y^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i \overline{Y})^2$, the sample variances, are unbiased estimators of $\sigma^2 \{X\}$ and $\sigma^2 \{Y\}$, respectively;
- $s_{XY}=\frac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X})(Y_i-\overline{Y})$, the **sample covariance**, is an unbiased estimator of $\sigma\{X,Y\}$.

1.1.2 – Important Distributions

The (cumulative) distribution function (c.d.f.) of any continuous random variable Y is defined by

$$F_Y(y) = P(Y \le y) = \int_{-\infty}^{y} f_Y(t) dt$$

viewed as a function of a real variable y. Alternatively, We can describe the **distribution** of Y via the following relationship between $f_Y(y)$ and $F_Y(y)$:

$$f_Y(y) = \frac{d}{dy} F_Y(y).$$

Probability Density Function

The **probability density function** (p.d.f.) of a continuous random variable Y is an **integrable** function $f_Y:Y(\mathcal{S})\to\mathbb{R}$ such that

- $f_Y(y) > 0$ for all $y \in Y(\mathcal{S})$ and $\lim_{y \to \pm \infty} f_Y(y) = 0$;
- $\int_{S} f_Y(y) \, dy = 1$;
- for any a, b,

$$P(a < Y < b) = P(a \le Y < b) = P(a < Y \le b) = P(a \le Y \le b)$$
$$= F_Y(b) - F_Y(a) = \int_a^b f(y) \, dy.$$

Normal distribution: the c.d.f. of the r.v. $Y \sim \mathcal{N}(\mu, \sigma^2)$ is

$$F_Y(y) = P(Y \le y) = \Phi(y),$$

with

$$f_Y(y) = \Phi'(y) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^2\right).$$

 χ^2 distribution: the p.d.f. of the r.v. $Y \sim \chi^2(\nu)$ is

$$f_Y(y;\nu) = \begin{cases} \frac{y^{\frac{\nu}{2}-1}e^{-\frac{y}{2}}}{2^{\frac{\nu}{2}}\Gamma\left(\frac{\nu}{2}\right)}, & y > 0; \\ 0, & \text{otherwise.} \end{cases}$$

where $\Gamma(\cdot)$ is the **Gamma function**.

If $U_i \sim \chi^2(\nu_i)$, i=1,2, and U_1,U_2 are independent, then

$$U = U_1 + U_2 \sim \chi^2(\nu_1) + \chi^2(\nu_2) = \chi^2(\nu_1 + \nu_2).$$

There is an important link between the standard normal distribution and the $\chi^2(1)$ distribution: if $Z \sim \mathcal{N}(0,1)$, then $Z^2 \sim \chi^2(1)$.

Student's distribution: if $Z \sim \mathcal{N}(0,1)$ and $U \sim \chi^2(\nu)$, Z,U independent:

$$t = \frac{Z}{\sqrt{U/\nu}} \sim t(\nu),$$

the Student T-distribution with ν degrees of freedom.

Fisher's distribution: if $U_i \sim \chi^2(\nu_i)$, i=1,2 and U_1,U_2 are independent:

$$F = rac{U_1/
u_1}{U_2/
u_2} \sim F(
u_1,
u_2),$$

the Fisher's distribution with ν_1 and ν_2 degrees of freedom.

Familiarize yourself with the c.d.f. tables and the corresponding R functions

- qt(), dt(), pt(), rt(), and
- qf(), df(), pf(), rf().

$$P(T \le t) = \int_{-\infty}^{t} \frac{\Gamma[(r+1)/2]}{\sqrt{\pi r} \Gamma(r/2) (1 + w^2/r)^{(r+1)/2}} dw$$
$$P(T \le -t) = 1 - P(T \le t)$$

	$P(T \le t)$										
	0.60	0.75	0.90	0.95	0.975	0.99	0.995				
r	$t_{0.40}(r)$	$t_{0.25}(r)$	$t_{0.10}(r)$	$t_{0.05}(r)$	$t_{0.025}(r)$	$t_{0.01}(r)$	$t_{0.005}(r)$				
1 2 3	0.325 0.289 0.277	1.000 0.816 0.765	3.078 1.886 1.638	6.314 2.920 2.353	12.706 4.303 3.182	31.821 6.965 4.541	63.657 9.925 5.841				

Table \	Table VII continued												
$P(F \le f) = \int_0^f \frac{\Gamma[(r_1 + r_2)/2](r_1/r_2)^{r_1/2} w^{r_1/2 - 1}}{\Gamma(r_1/2)\Gamma(r_2/2)(1 + r_1 w/r_2)^{(r_1 + r_2)/2}} dw$													
		Den.	Numerator Degrees of Freedom, r ₁										
α	$P(F \le f)$	d.f. r ₂	1	2	3	4	5	6	7	8	9	10	
0.05	0.95	1	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5	241.9	
0.025	0.975		647.79	799.50	864.16	899.58	921.85	937.11	948.22	956.66	963.28	968.63	
0.01	0.99		4052	4999.5	5403	5625	5764	5859	5928	5981	6022	6056	
0.05	0.95	2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	
0.025	0.975		38.51	39.00	39.17	39.25	39.30	39.33	39.36	39.37	39.39	39.40	
0.01	0.99		98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39	99.40	
0.05	0.95	3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	
0.025	0.975		17.44	16.04	15.44	15.10	14.88	14.73	14.62	14.54	14.47	14.42	
0.01	0.99		34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35	27.23	
0.05	0.95	4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	
0.025	0.975		12.22	10.65	9.98	9.60	9.36	9.20	9.07	8.98	8.90	8.84	
0.01	0.99		21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66	14.55	
0.05	0.95	5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	
0.025	0.975		10.01	8.43	7.76	7.39	7.15	6.98	6.85	6.76	6.68	6.62	
0.01	0.99		16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16	10.05	
0.05	0.95	6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	
0.025	0.975		8.81	7.26	6.60	6.23	5.99	5.82	5.70	5.60	5.52	5.46	
0.01	0.99		13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98	7.87	
0.05	0.95	7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	
0.025	0.975		8.07	6.54	5.89	5.52	5.29	5.12	4.99	4.90	4.82	4.76	
0.01	0.99		12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72	6.62	

Central Limit Theorem

Theorem: let X_1, \ldots, X_n be independent normal random variables with mean μ_1, \ldots, μ_n and standard deviations $\sigma_1, \ldots, \sigma_n$. Then

$$X_1 + \cdots + X_n \sim \mathcal{N}(\mu_1 + \cdots + \mu_n, \sigma_1^2 + \cdots + \sigma_n^2).$$

If $\mu_i \equiv \mu$ and $\sigma_i^2 \equiv \sigma$ for i = 1, ..., n, then $X_1 + \cdots + X_n \sim \mathcal{N}(n\mu, n\sigma^2)$.

Theorem: let X_1, \ldots, X_n be independent normal random variables with mean μ and standard deviation σ . Let \overline{X} be the sample mean. Then

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1).$$

Theorem: let X_1, \ldots, X_n be independent random variables with mean μ and standard deviation σ . Let \overline{X} be the sample mean. Then

$$Z_n = rac{\overline{X} - \mu}{\sigma/\sqrt{n}} o Z \sim \mathcal{N}(0, 1), \quad \text{as } n o \infty.$$

Theorem: let X_1, \ldots, X_n be independent normal random variables with mean μ and common variance. Let \overline{X} and s^2 be the sample mean and the sample variance, respectively. Then the random variable

$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1),$$

follows a Student t-distribution with $\nu=n-1$ degrees of freedom.

1.2 – Multivariate Calculus

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a **differentiable** function. If $\mathbf{Y} = (Y_1, \dots, Y_n)$, the **derivative** of f with respect to \mathbf{Y} is

$$\nabla_{\mathbf{Y}} f(\mathbf{Y}) = \begin{pmatrix} \frac{\partial f(\mathbf{Y})}{\partial Y_1} \\ \vdots \\ \frac{\partial f(\mathbf{Y})}{\partial Y_n} \end{pmatrix}.$$

The gradient is a **linear operator**:

$$\nabla_{\mathbf{Y}}(af + bg)(\mathbf{Y}) = a\nabla_{\mathbf{Y}}f(\mathbf{Y}) + b\nabla_{\mathbf{Y}}g(\mathbf{Y}).$$

If $f(\mathbf{Y}) \equiv a$, then $\nabla_{\mathbf{Y}} f(\mathbf{Y}) = \mathbf{0}$. If $f(\mathbf{Y}) = \mathbf{Y}^{\mathsf{T}} \mathbf{v}$, then $\nabla_{\mathbf{Y}} f(\mathbf{Y}) = \mathbf{v}$.

1.3 – Matrix Algebra

Let $A \in M_{m,n}(\mathbb{R})$ and Y be a random vector. Consider $\mathbf{W} = A\mathbf{Y}$. Then

$$\mathrm{E}\left\{\mathbf{W}\right\} = A\mathrm{E}\left\{\mathbf{Y}\right\} \quad \text{and} \quad \sigma^{2}\left\{\mathbf{W}\right\} = A\sigma^{2}\left\{\mathbf{Y}\right\}A^{\mathsf{T}}.$$

Furthermore, if $\mathbf{Y} \sim \mathcal{N}\left(\mathrm{E}\left\{\mathbf{Y}\right\}, \sigma^{2}\left\{\mathbf{Y}\right\}\right)$, then

$$\mathbf{W} \sim \mathcal{N}\left(\mathrm{E}\left\{\mathbf{W}\right\}, \sigma^{2}\left\{\mathbf{W}\right\}\right) = \mathcal{N}\left(A\mathrm{E}\left\{\mathbf{Y}\right\}, A\sigma^{2}\left\{\mathbf{Y}\right\}A^{\top}\right).$$

If
$$A \in M_{n,n}(\mathbb{R})$$
, the **trace** of A is $\operatorname{tr}(A) = \sum_{i=1}^n a_{ii} = a_{11} + a_{22} + \cdots + a_{nn}$.

The trace is a **linear operator**: tr(kA + B) = k tr A + tr B; we also have tr(AB) = tr(BA) (when the matrices are **compatible**).

The **transpose** of a matrix A, denoted by A^{\top} , is obtained by interchanging its **rows** and its **columns**, or simply by **reflecting** the matrix along its **primary diagonal**.

Properties: if $A \in M_{m,n}(\mathbb{R})$ and $k \in \mathbb{R}$, then

$$(A^{\top})^{\top} = A$$

$$\bullet$$
 $k^{\top} = k$

$$(kA + B)^{\top} = kA^{\top} + B^{\top}$$

$$(AB)^{\top} = B^{\top}A^{\top}$$

1.4 – Quadratic Forms

A symmetric quadratic form in Y_1, \ldots, Y_n is an expression of the form

$$Q_A(\mathbf{Y}) = \mathbf{Y}^{\mathsf{T}} A \mathbf{Y} = \sum_{i,j=1}^n a_{i,j} Y_i Y_j,$$

where A is an $n \times n$ symmetric matrix $(A^{\top} = A)$.

A number of important quantities in regression analysis can be expressed as symmetric quadratic forms.

The **degrees of freedom** for a symmetric quadratic form $Q_A(\mathbf{Y})$ can be obtained by computing the **rank** of the associated matrix A.

For example, the symmetric matrix associated with the symmetric quadratic form $Q_A(\mathbf{Y}) = 4Y_1^2 + 7Y_1Y_2 + 2Y_2^2$ is

$$A = \begin{pmatrix} 4 & 7/2 \\ 7/2 & 2 \end{pmatrix}$$
; Q_A has 2 degrees of freedom.

Theorem: let $Q_1, \ldots Q_K$ be symmetric quadratic forms of \mathbf{Y} with respective symmetric matrices A_1, \ldots, A_K . If $a_i \in \mathbb{R}$ for $i = 1, \ldots, K$, then

$$Q = a_1 Q_1 + \dots + a_K Q_K$$

is a symmetric quadratic form of ${f Y}$ with symmetric matrix

$$A = a_1 A_1 + \dots + a_K A_K.$$

For a general $n \times n$ matrix B, we have

$$\nabla_{\mathbf{Y}} (\mathbf{Y}^{\mathsf{T}} B \mathbf{Y}) = (B^{\mathsf{T}} + B) \mathbf{Y}.$$

Thus the gradient of a symmetric quadratic form $Q_A(\mathbf{Y})$ is

$$\nabla_{\mathbf{Y}}Q_A(\mathbf{Y}) = 2A\mathbf{Y}.$$

It can be shown that **every** expression of the form $\mathbf{Y}^T\!B\mathbf{Y}$ can be associated to a symmetric matrix A. So we assume every such form is symmetric.

The role played by quadratic forms in multi-variable calculus is analogous to the role played by $f(x) = ax^2$ in calculus.

The eigenvalues of an $n \times n$ matrix A are the roots of the characteristic polynomial $p_A(\lambda)$ of A: $p_A(\lambda) = \det(A - \lambda \mathbf{I}_n) = 0$.

There are n such (complex) roots, not necessarily distinct.

If λ is an eigenvalue of A, then there exists $\mathbf{v} \neq \mathbf{0}$ such that $A\mathbf{v} = \lambda \mathbf{v}$. If A is symmetric, all of its eigenvalues are **real**.

Consider a quadratic form $Q_A(\mathbf{Y})$, with eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$.

- If $\lambda_i > 0$ for all i, we say that $Q_A(\mathbf{Y})$ and A are **positive definite**;
- If $\lambda_i < 0$ for all i, we say that $Q_A(\mathbf{Y})$ and A are **negative definite**;
- If $\lambda_i \lambda_j < 0$ for some i, j, we say that $Q_A(\mathbf{Y})$ and A are **indefinite**.

1.4.1 – Cochran's Theorem

Let
$$\mathbf{Y} = (Y_1, \dots, Y_n) \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n)$$
.

Suppose that

$$\mathbf{Y}^{\mathsf{T}}\mathbf{Y} = Q_1(\mathbf{Y}) + \dots + Q_K(\mathbf{Y}),$$

where the Q_k are positive (semi-)definite quadratic forms with $r_k(= \operatorname{rank}(A_k))$ degrees of freedom, $k = 1, \ldots, K$.

If $r_1 + \cdots + r_K = n$, then $Q_1(\mathbf{Y}), \dots, Q_K(\mathbf{Y})$ are **independent** random variables and

$$\frac{Q_k(\mathbf{Y})}{\sigma^2} \sim \chi^2(r_k), \quad k = 1, \dots, K.$$

In particular, if K=2 and $r_1=r$, then $Q_2(\mathbf{Y})/\sigma^2 \sim \chi^2(n-r)$.

1.4.2 – Important Quadratic Forms

For any positive integer n, we define two **special matrices**:

$$\mathbf{J}_n = \mathbf{J} = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix} \quad \text{and} \quad \mathbf{1}_{n \times 1} = \mathbf{1}_n = \mathbf{1} = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}.$$

Note that $\mathbf{1}_n^{\top} \mathbf{1}_n = n$ and $\mathbf{1}_n \mathbf{1}_n^{\top} = \mathbf{J}_n$. Let $\mathbf{Y} = (Y_1, \dots, Y_n) \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n)$ be a random vector. What are the symmetric matrices associated with:

$$Q_A(\mathbf{Y}) = \sum_{i=1}^n Y_i^2$$
, $Q_B(\mathbf{Y}) = n\overline{Y}^2$, and $Q_C(\mathbf{Y}) = \sum_{i=1}^n (Y_i - \overline{Y})^2$?

We re-write the quadratic forms in Y to obtain (next page):

$$Q_A(\mathbf{Y}) = \mathbf{Y}^{\mathsf{T}} \mathbf{Y} = \mathbf{Y}^{\mathsf{T}} \mathbf{I}_n \mathbf{Y} \implies A = \mathbf{I}_n;$$

$$Q_B(\mathbf{Y}) = n \left(\frac{1}{n} \sum_{i=1}^n Y_i\right)^2 = \frac{1}{n} \sum_{i,j=1}^n Y_i Y_j = \frac{1}{n} \mathbf{Y}^\top \mathbf{1}_n \mathbf{1}_n^\top \mathbf{Y} \implies B = \frac{1}{n} \mathbf{J}_n;$$

$$Q_C(\mathbf{Y}) = \sum_{i=1}^n Y_i^2 - n\overline{Y}^2 = \mathbf{Y}^{\mathsf{T}} \mathbf{I}_n \mathbf{Y} - \frac{1}{n} \mathbf{Y}^{\mathsf{T}} \mathbf{J}_n \mathbf{Y} \implies C = \mathbf{I}_n - \frac{1}{n} \mathbf{J}_n.$$

Since $\operatorname{rank}(A) = n$, $\operatorname{rank}(B) = 1$, and $\operatorname{rank}(C) = n - 1$, Cochran's Theorem implies that $Q_B(\mathbf{Y})$, and $Q_C(\mathbf{Y})$ are **independent** r.v., and that

$$\frac{Q_A(\mathbf{Y})}{\sigma^2} = \frac{\mathbf{Y}^\top \mathbf{Y}}{\sigma^2} \sim \chi^2(n), \ \frac{Q_B(\mathbf{Y})}{\sigma^2} = \frac{n\overline{Y}^2}{\sigma^2} \sim \chi^2(1), \frac{Q_C(\mathbf{Y})}{\sigma^2} = \frac{\mathrm{SST}}{\sigma^2} \sim \chi^2(n-1).$$

1.5 – Optimization

Let A be a symmetric $n \times n$ matrix, $\mathbf{v} \in \mathbb{R}^n$, $c \in \mathbb{R}$. Consider the function

$$f(\mathbf{Y}) = \frac{1}{2}\mathbf{Y}^{\mathsf{T}}A\mathbf{Y} - \mathbf{Y}^{\mathsf{T}}\mathbf{v} + c.$$

Note that f is **differentiable**. The **critical points** of f satisfy

$$\nabla_{\mathbf{Y}} f(\mathbf{Y}) = A\mathbf{Y} - \mathbf{v} = \mathbf{0} \implies A\mathbf{Y} = \mathbf{v}.$$

If A is invertible $(\det(A) \neq 0)$, there is a unique critical point $\mathbf{Y}^* = A^{-1}\mathbf{v}$.

If A is singular $(\det(A) = 0)$, there is **no** critical point (if $\mathbf{v} \notin \mathbf{range}(A)$) or **infinitely many** critical points (if $\mathbf{v} \in \mathbf{range}(A)$).

When *A* is **invertible**:

- if A is **positive definite**, then f reaches its **global minimum** at $\mathbf{Y}^* = A^{-1}\mathbf{v}$;
- if A is **negative definite**, then f reaches its **global maximum** at $\mathbf{Y}^* = A^{-1}\mathbf{v}$;
- if A is **indefinite** (if A has positive **and** negative eigenvalues), then $\mathbf{Y}^* = A^{-1}\mathbf{v}$ is a **saddle point** for f.

If the eigenvalues can be **zero**, we replace "definite" by "semi-definite" throughout.