CO2015

Field Effect Transistor

Field-Effect Transistor (FET)

JFET

JFET Operations

- G and S always in reversed-bias:
 - V_{GS} is negative: Depletion area is increased
 → Resistance between D and S is increased
 - V_{GS} is increased (to Zero): Depletion area is decreased → Resistance between D and S is decreased
- G and S is in forward-bias:
 - JFET likes a <u>resistor</u>

JFET Operations

JFET Characteristics

• JFET n-channel has three operation modes when $V_{DS} > 0$

A. $V_{GS} = 0$, JFET is in saturation, $I_D = Max$

B. V_{GS} < 0, JFET is in linear status, $I_{D}\downarrow$

C. $V_{CS} = -V_{Off}$, JFET is OFF, $I_D = 0$

JFET Saturation Mode

- $V_{GS} = 0V$, V_{DD} is increased slowly
 - Linear region A-B: $V_{DS} = RI_{D}$
 - Saturation region B-C: I_D is constant
 - Pinch off region due to the increase of depletion area.

Cut-off State

- Reversed-bias: $0 < V_{GS} < V_{GS(off)}$
 - Depletion area is increased → closer to Pinch-off state

JFET Characteristic

JFET Transfer Curve

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

JFET vs. BJT

$$JFET BJT$$

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P}\right)^2 \Leftrightarrow I_C = \beta I_B$$

$$I_D = I_S \Leftrightarrow I_C \cong I_E$$

$$I_G \cong 0 \text{ A} \Leftrightarrow V_{BE} \cong 0.7 \text{ V}$$

JFET normal state

Determine depletion area in follows:

Answer

- First figure: Forward-bias → depletion area is wider
- Second figure: Inverse-bias → depletion area is narrower

Determine JFET pins

 Determine the correct type (p-channel or n-channel) of the following JFETs and its state (ON or OFF)

Answer

 Determine the LED status (ON or OFF) regarding each position of switch.

Answer

- ON State: $V_{GS} = OV$ (Saturation mode)
- Next: OFF state: Inversed-bias with very negative V_{GS}

- Determine V_{DS}
- Determine V_s

Answer

$$V_{DS} = V_{DD} - I_D R_D - I_S R_S$$

Exercise

Determine

Exercise

Determine

Determine V_{GS} and I_D

Answer

- Determine the Load line
 - $I_D = 0$ $V_{GS} = -I_D R_S = (0)(470 \Omega) = 0 V$
 - $I_D = I_{DSS}$

$$V_{\text{GS}} = -I_{\text{D}}R_{\text{S}} = -(10 \text{ mA})(470 \Omega) = -4.7 \text{ V}$$

- $I_D = 5.07 \text{ mA}$
- $V_{CS} = -2.3V$

 $I_{\rm D}$ (mA)

Home Work

- Determine V_{GS} and V_{DS} for the given JFET, where
 - $I_{DSS} = 5 \text{mA} \text{ and } V_{GS(off)} = -4 V$

D-MOSFET

D-MOSFET Operations (N type)

D-MOSFET Operations (P type)

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

E-MOSFET

E-MOSFET Operations

E-MOSFET Transfer Curve

To determine I_D given V_{GS}:

$$I_D = k(V_{GS} - V_T)^2$$

Where:

V_T = threshold voltage or voltage at which the MOSFET turns on

k, a constant, can be determined by using values at a specific point and the formula:

$$k = \frac{I_{D(ON)}}{(V_{GS(ON)} - VT)^2}$$

V_{DSsat} can be calculated by:

$$V_{Dsat} = V_{GS} - V_{T}$$

- Determine k, I_D , V_{GS} and V_{DS} for given E-MOSFET where
 - $V_{GS(on)} = 4V$ and $I_{D(on)} = 200mA$
 - $V_{GS(th)} = 2V (=V_T)$
- Hint:

To determine I_D given V_{GS}:

$$I_{D} = k(V_{GS} - V_{T})^{2}$$

k, a constant, can be determined by using values at a specific point and the formula:

$$k = \frac{I_{D(ON)}}{(V_{GS(ON)} - VT)^2}$$

Answer

$$K = \frac{I_{\text{D(on)}}}{(V_{\text{GS}} - V_{\text{GS(th)}})^2} = \frac{200 \text{ mA}}{(4 \text{ V} - 2 \text{ V})^2} = \frac{200 \text{ mA}}{4 \text{ V}^2} = 50 \text{ mA/V}^2$$

$$V_{\text{GS}} = \left(\frac{R_2}{R_1 + R_2}\right) V_{\text{DD}} = \left(\frac{15 \,\text{k}\Omega}{115 \,\text{k}\Omega}\right) 24 \,\text{V} = 3.13 \,\text{V}$$

$$I_{\rm D} = K(V_{\rm GS} - V_{\rm GS(th)})^2 = (50 \text{ mA/V}^2)(3.13 \text{ V} - 2 \text{ V})^2$$

= $(50 \text{ mA/V}^2)(1.13 \text{ V})^2 = 63.8 \text{ mA}$

$$V_{\rm DS} = V_{\rm DD} - I_{\rm D}R_{\rm D} = 24 \text{ V} - (63.8 \text{ mA})(200 \Omega) = 11.2 \text{ V}$$

E-MOSFET Datasheet

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Drain-Gate Voltage	V_{DG}	30	Vdc
Gate-Source Voltage*	V _{GS}	30	Vdc
Drain Current	I_D	30	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	300 1.7	mW mW/°C
Junction Temperature Range	T _J	175	*C
Storage Temperature Range	T _{stg}	-65 to +175	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Drain-Source Breakdown Voltage $(I_D = 10 \mu A, V_{GS} = 0)$	$V_{(BR)DSX}$	25	-	Vdc
Zero-Gate-Voltage Drain Current $(V_{DS} = 10 \text{ V}, V_{GS} = 0) \text{ T}_{A} = 25^{\circ}\text{C}$ $T_{A} = 150^{\circ}\text{C}$	I _{DSS}		10 10	пAdc µAdc
Gate Reverse Current $(V_{GS} = \pm 15 \text{ Vdc}, V_{DS} = 0)$	I_{GSS}		± 10	pAdc

ON CHARACTERISTICS

Gate Threshold Voltage $(V_{DS} = 10 \text{ V}, I_D = 10 \mu\text{A})$	V _{GS(Th)}	1.0	5	Vdc
Drain-Source On-Voltage $(I_D = 2.0 \text{ mA}, V_{GS} = 10 \text{V})$	V _{DS(on)}		1.0	V
On-State Drain Current $(V_{GS} = 10 \text{ V}, V_{DS} = 10 \text{ V})$	I _{D(on)}	3.0	-	mAdc

²N4351
MOSFET
SWITCHING

3 Drain

2
Gate

1 Source

N-CHANNEL – ENHANCEMENT

^{*} Transient potentials of ± 75 Volt will not cause gate-oxide failure.

JFET Bias

MOSFET Bias

MOSFET Operation Status

MOSFET type	$V_{GS} > 0$	$V_{GS} = 0$	$V_{GS} < 0$
N-Channel D-MOSFET	ON	ON	OFF
N-Channel E-MOSFET	ON	OFF	OFF
P-Channel D-MOSFET	OFF	ON	ON
P-Channel E-MOSFET	OFF	OFF	ON

 Determine the correct type (p-channel or n-channel, D-type or E-type) of the following MOSFETs

Answer

Reference

