Nonlinear System Theory Homework 4

Due date: 4/7/2023

1. Consider the system

$$\dot{x}_1 = -x_1
\dot{x}_2 = (x_1 x_2 - 1) x_2^3 + (x_1 x_2 - 1 + x_1^2) x_2$$

- (a) Show that x = 0 is the unique equilibrium point.
- (b) Show, by using linearization, that x = 0 is asymptotically stable.
- (c) Show that $\Gamma = \{x \in \mathbb{R}^2 | x_1 x_2 \ge 2\}$ is a positively invariant set.
- (d) Is x = 0 globally asymptotically stable?
- 2. Let α be a class \mathcal{K} function on [0, a). Show that

$$\alpha(r_1 + r_2) \le \alpha(2r_1) + \alpha(2r_2), \quad \forall r_1, r_2 \in [0, a/2)$$

3. Consider the system

$$\dot{x} = -a(I + S(x) + xx^T)x$$

where $x \in \mathbf{R}^n$, a > 0 is a constant, I is the $n \times n$ identity matrix, and S(x) is a state-dependent skew symmetric matrix, i.e. $v^T S(x) v = 0$ for all $v, x \in \mathbf{R}^n$. Show that x = 0 is globally asymptotically stable.

4. Consider the following system

$$\dot{x}_1 = k_1(\sin t)x_2 - k_2x_1^3
\dot{x}_2 = -k_1(\sin t)x_1 - k_2x_2^3$$

where $k_1, k_2 > 0$.

- (a) Show that the linearized system around x = 0 is NOT exponentially stable.
- (b) Show that x = 0 is a uniformly asymptotically stable equilibrium point.

5. Consider the following system:

$$\dot{x}_1 = -x_1 + x_2$$

 $\dot{x}_2 = -\sin x_1 - x_2 + g(t)$

for $||x|| < \frac{\pi}{4}$, where $x = [x_1, x_2]^T$ and $|g(t)| < k < \frac{\pi}{6}$ for some positive constant k. Define $V(x) = 1 - \cos x_1 + \frac{1}{2}x_2^2$ to be a Lyapunov function candidate.

- (a) Find class K functions α_1 and α_2 such that $\alpha_1(||x||) \leq V(x) \leq \alpha_2(||x||)$.
- (b) Show that the system is ultimately bounded and find an ultimate bound.

 Remark: Please give the numerical value of the ultimate bound. Since the answer is not unique, please illustrate how you choose the value.