Financial Mathematics

MATH 5870/6870¹ Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on

Auburn University
Auburn AL

¹Based on Robert L. McDonald's *Derivatives Markets*. 3rd Ed. Pearson. 2013.

Chapter 11. Binomial Option Pricing: Selected Topics

Chapter 11. Binomial Option Pricing: Selected Topics

§ 11.1 Understanding Early Exercise

§ 11.2 Understanding risk-neutral pricing

§ 11.3 The Binomial tree and lognormality

§ 11.4 Problems

Chapter 11. Binomial Option Pricing: Selected Topics

§ 11.1 Understanding Early Exercise

§ 11.2 Understanding risk-neutral pricing

§ 11.3 The Binomial tree and lognormality

§ 11.4 Problems

Options may be rationally exercised prior to expiration

By exercising, the option holder

- Receives the stock and thus receives dividends
- ▶ Pays the strike price prior to expiration (this has an interest cost)
- ► Loses the insurance implicit in the call against the possibility that the stock price will be less than the strike price at expiration

1

If volatility is zero, the value of insurance is zero. Then, it is optimal to defer exercise as long as interest savings on the strike exceed dividends lost

$$rK > \delta S$$

Ш

It is optimal to exercise
$$\iff$$
 $S > \frac{rK}{\delta}$

E.g. When $r = \delta$ and $\sigma = 0$, any in-the-money option should be exercised immediately.

When volatility is positive, the implicit insurance has value that varies with time to expiration.

5

FIGURE 11.1

Early-exercise boundaries for volatilities of 10%, 30%, and 50% for a 5-year American call option. In all cases, K = \$100, r = 5%, and $\delta = 5\%$.

FIGURE 11.2

Early-exercise boundaries for volatilities of 10%, 30%, and 50% for a 5-year American put option. In all cases, K = \$100, r = 5%, and $\delta = 5\%$.

