IN THE CLAIMS

Claims 1-17 (Cancelled)

18. (Currently Amended) A system for electrically isolating a cardiac chamber, comprising: a resonant circuit having a resonant frequency, said resonant circuit being constructed and dimensional adapted for introduction into an operative position in a pulmonary vein of a subject proximate an ostium of said pulmonary vein;

a catheter adapted to carry said resonant circuit into said operative position in said pulmonary vein;

a stent dimensioned for circumferential engagement with an inner wall of said pulmonary vein to define a circumferential region of contact between said stent and said pulmonary vein, wherein a principal axis of said stent is substantially aligned coaxially with said pulmonary vein, said resonant circuit being incorporated in said stent; and

a generator disposed external to said subject for generating an electromagnetic field that has a frequency substantially equal to said resonant frequency of said resonant circuit, said electromagnetic field operatively including said resonant circuit and causing said resonant circuit to re-radiate electromagnetic energy so as to ablate intramural target tissue in said pulmonary vein; and

a sensor system to position and orient said stent in said pulmonary vein proximate the ostium of the pulmonary vein so that when the target tissue of the pulmonary vein has been ablated, a coronary chamber communicating with the pulmonary vein at said ostium will be electrically isolated from the pulmonary vein.

- 19. (Original) The system according to claim 18, further comprising a sensor for monitoring electrophysiologic cardiac properties of said subject for determining if a predefined end point has been reached.
- 20. (Currently Amended) The system according to claim 19, wherein said predefined end point comprises confirmation of a conduction block of electrical conductivity at said target tissue.
- 21. (Currently Amended) The system according to claim 18, further comprising:
 a plurality of capacitors in said resonant circuit; and
 a control circuit for automatically selecting one of said capacitors responsively to a frequency
 of said electromagnetic field to so as to conform said resonant frequency of said resonant
 circuit with said frequency of said electromagnetic field.
- 22. (Original) The system according to claim 18, wherein said stent is constructed of an alloy having a shape memory.
- 23. (Original) The system according to claim 18, wherein said stent is constructed of a biodegradable material.
- 24. (Original) The system according to claim 18, further comprising:
 a localizing subsystem for tracking a position and orientation of said catheter, comprising:
 a plurality of localizing field generators disposed external to said subject;

a position sensor on said catheter that is responsive to localizing electromagnetic fields produced by said localizing field generators; and a receiver responsive to an output of said position sensor.

- 25. (New) The system according to claim 18 wherein said stent and said resonant circuit form a body in the shape of a ring oriented in a plane extending radially of the axis of the pulmonary vein.
- 26. (New) The system according to claim 25 wherein said ring comprises a capacitor core and an inductor coil wound around said capacitor core.
- 27. (New) The system according to claim 26 wherein said capacitor core has a slit.
- 28, (New) The system according to claim 25 wherein said stent is positioned in facing relative to the ostium of the pulmonary vein.
- 29. (New) The system according to claim 28 wherein the position of the stent relative to said ostium is such that the target tissue is ablated near said ostium to block electrical conductivity of said tissue and thereby counteract arrhythmia in the heart chamber.