

 ${
m vt}2017$

Inga hjälpmedel tillåtna.

Minst 8 poäng ger godkänt.

Godkänd KS nr n medför godkänd uppgift n vid tentor till (men inte med) nästa ordinarie tenta (högst ett år), n = 1, ..., 5.

13–15 poäng ger ett ytterligare bonuspoäng till tentamen.

Uppgifterna 3)-5) kräver väl motiverade lösningar för full poäng. Uppgifterna står inte säkert i svårighetsordning.

Spara alltid återlämnade skrivningar till slutet av kursen!

Skriv dina lösningar och svar på samma blad som uppgifterna; använd baksidan om det behövs.

1) (För varje delfråga ger rätt svar $\frac{1}{2}$ p, inget svar 0p, fel svar $-\frac{1}{2}$ p. Totalpoängen på uppgiften rundas av uppåt till närmaste icke-negativa heltal.)

Kryssa för om påståendena a)-f) är sanna eller falska (eller avstå)!

		\mathbf{sant}	falskt
a)	En graf på 10 noder kan inte ha mer än 45 kanter.		
b)	Det finns en graf vars noder har grader 1, 2, 2, 3, 3 respektive 4.		
c)	Varje träd med 10 noder har 9 kanter.		
d)	Om en graf är Hamiltonsk då är den planär.		
e)	En Eulerväg i en graf måste passera varje nod precis en gång.		
f)	Det finns inga planära grafer på 6 noder som har 14 kanter.		

poäng uppg.1	

Namn	poäng uppg.2

2a) (1p) En graf G har 30 noder, 24 kanter och inga cykler. Hur många sammanhängande komponenter har G? (Det räcker att ange rätt svar.)

b) (1p) Hur många olika spännande träd har den kompletta bipartita grafen $K_{2,2}$?

(Det räcker att ange rätt svar.)

c) (1p) En graf har 7 noder och 8 kanter, och sex av de sju noderna har grad
2. Vilken grad har den återstående noden?
(Det räcker att ange rätt svar.)

Namn	poäng uppg.3

3) (3p) En bipartit graf G=(V,E) har bipartition $V=X\cup Y$, dvs det finns inga kanter mellan två noder i X, och inga kanter mellan två noder i Y. X består av 16 noder, samtliga av grad 5. Grafen har |V|=26 noder totalt, och samtliga noder i Y har grad δ . Bestäm δ .

OBS. En komplett lösning med fullständiga motiveringar skall ges.

Namn	poäng uppg.4

4) (3p)

- (a) Rita en graf Gmed 5 noder och 7 kanter sådan att Ghar en Eulerväg men ingen Eulerkrets.
- (b) Rita en graf med 4 kanter som har en Hamiltonstig.
- (c) Rita en sammanhängande graf G som inte har någon Eulerväg eller Hamiltonstig, men som har en cykel.

Namn	poäng uppg.5

 $\bf 5)$ (3p) En planär graf Ghar två sammanhängande komponenter. Totalt har grafen 100 noder och 150 kanter. Bestäm de möjliga antalen områden (inklusive ytterområdet) det kan finnas i en plan ritning av grafen.

OBS. En komplett lösning med fullständiga motiveringar skall ges.