Rayanna Harduarsingh

October 14th, 2020

IST 687

Module 8 Notes

Chapter 16/Module 8: Linear Models

- key aims of data science is to find relationships between sets of data
- Prediction models are created from a statistical analysis process that analyze data in which
 the user supplies and then calculates a set of numerical coefficients that help us with
 prediction.
- Linear Modeling (or linear regression) used for prediction
 - A line displaying a set of data points that represents the connection between an independent variable and a dependent variable.

- This uses the best fitting line method.
- Shows how the relationship between an input (independent) variable on the horizontal X-axis relates to the output (dependent) values on the Y-axis.
- The output variable is dependent (is a function of) the independent variable."
- "Correlation does not mean causation."

TABLE 16.1			
	oilChanges	repairs	miles An
1	3	300	20100
2	5	300	23200
3	2	500	19200
4	3	400	22100
5	1	700	18400
6	4	420	23400
7	6	100	17900
8	4	290	19900
9	3	475	20100
10	2	620	24100
11	0	600	18200
12	10	0	19600
13	7	200	20800
14	8	50	19700

• Independent: Miles and oilChanges

- •These variables stand alone and isn't influenced by the other variables.
- Dependent: Repairs
- •Repairs are measured & affected by the Miles and oil changes variables. Hence, this is the variable we're trying to predict.

R Code

- Showing the plot of points:
 - > plot(oil\$oilChanges, oil\$repairs)
- Building a linear model:
 - > model1 <- lm(formula=repairs ~ oilChanges, data=oil)
 - The lm() command places its output in a data structure.
 - The squiggly line [~], which is called a tilde character, is part of the syntax
 that tells lm() which independent and dependent variables to include in the
 model.
- Linear model using the number of oilChanges to predict totalCost and plots the results:
 - > oil\$oilChangeCost <- oil\$oilChanges * 350
 - > oil\$totalCost <- oil\$oilChangeCost + oil\$repairs
 - > m <- lm(formula=totalCost ~ oilChanges, data=oil)
 - > plot(oil\$oilChanges, oil\$totalCost)
 - > abline(m)

 Analysis shows that we shouldn't do any oil changes.

R Functions Used in This Chapter

abline() Plots a best-fitting line on top of a scatter plot.

lm() Stands for linear models and, for this chapter, multiple regression.

predict() Uses a model to predict a variable (output).

plot() Is a general purpose graphing function that has many uses in R.

ggplot() Uses geom_point and stat_smooth.

View() Shows a dataframe in an easy-to-read format.

Question: How did you come up with the 350 number in this command below?

> oil\$oilChangeCost <- oil\$oilChanges * 350