

DeepLab

Semantic Image Segmentation with Deep Convolutional Nets

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, Alan L. Yuille

Semantic Segmentation Task

per-pixel class labels

The Big Picture

* MS COCO dataset was also used for training

Outline

- Recap: Convolutional networks for semantic segmentation pros and cons
 - Focus on representing spatial info
- Trick #1: dilated convolutions
 - Widen receptive field effectively
 - Avoid spatial resolution coarsening
- Trick #2: conditional random field for segmentation post-processing
 - Extra smoothing for better local consistency
 - Align segment boundaries with sharp changes in the image

Recap: Deep Convolutional Nets for Classification

Only need to reason about the image as a whole!

Success factors:

- Wide receptive field → global information
- Spatial invariance

Recap: Deep Convolutional Nets for Segmentation?

Only need to reason about the image as a whole Need to reason about individual pixels!

Success factors?

- Wide receptive field → still great!
- Spatial invariance → now bad
 - Need to preserve spatial info!

Recap: Segmentation-Specific Challenges

- Want both wide receptive field and high spatial resolution
- Standard way to grow receptive field add strided convolution and pooling layers:

convolution, stride 2

max pooling, stride 2

Strided layers decrease spatial resolution

Recap: Possible Compromise - Learn to Upsample

- "Deconvolutional networks"
 - Convolution/pooling blocks to very coarse resolution (e.g. 1/32 of original)
 - Classify coarse cells
 - Upsample to original resolution
 - Maybe learn the upsampling parameters
- Can be made to work very well

Outline

- Recap: Convolutional networks for semantic segmentation pros and cons
 - Focus on representing spatial info
- Trick #1: dilated convolutions
 - Widen receptive field effectively
 - Avoid spatial resolution coarsening
- Trick #2: conditional random field for segmentation post-processing
 - Extra smoothing for better local consistency
 - Align segment boundaries with sharp changes in the image

Receptive Field Factors

Preserving resolution - convolution-only net

- Remove pooling
- Convolution stride = 1
- Large convolution kernel to increase receptive field

Trick #1 - Dilated convolution

- Large, but **sparse** convolution kernel
- Kernel rate step between nonzeros
 - Computation complexity ~ number of nonzeros

Classification → Segmentation with Dilated Convolutions

• Start with a convnet for classification (e.g. VGG-16)

Classification → Segmentation with Dilated Convolutions

• Start with a convnet for classification (e.g. VGG-16)

Classification → Segmentation with Dilated Convolutions

- Fully connected stages → *replace* by convolutions with 1x1 spatial kernel
- Last several convolution+pooling blocks → *replace* by dilated convolutions, stride 1, no pooling
 - Preserves spatial dimensions
- Bilinear upsampling in the end to original resolution
 - Relatively small upsampling factor, not much need for learned upsampling schemes

Outline

- Recap: Convolutional networks for semantic segmentation pros and cons
 - Focus on representing spatial info
- Trick #1: dilated convolutions
 - Widen receptive field effectively
 - Avoid spatial resolution coarsening
- Trick #2: conditional random field for segmentation post-processing
 - Extra smoothing for better local consistency
 - Align segment boundaries with sharp changes in the image

Why Postprocessing?

- Convnet does not (explicitly) encode common sense segmentation properties:
 - Nearby pixels are likely to have the same class (smoothness)
 - Segment boundaries typically correspond to sharp color changes in image
- Postprocessing: tweak convnet segmentation to explicitly enforce **smoothness** and segment **edge alignment with** the **underlying image**.

Recap: Conditional Random Fields

 Represent (unnormalized) high-dimensional probability distribution as a product of low-dimensional potentials:

- Potentials exist only over variables directly connected by graph edges
- Edges indicate *direct* dependencies
- Exponentially fewer parameters: $D^4 \Rightarrow 4D + 4D^2$ in above example
- Exact inference (e.g. $P(x_1)$, argmax $P(x_1)$) still intractable
 - o Approximate iterative methods often work well in practice

CRF Potentials: Potts Model

$$\begin{split} \mathsf{P}(\mathsf{x}_1\mathsf{x}_2\mathsf{x}_3\mathsf{x}_4) & \curvearrowright \prod_{\mathsf{i}} \psi_{\mathsf{i}}(\mathsf{x}_{\mathsf{i}}) \prod_{\mathsf{i}\mathsf{j} \in \mathsf{G}} \psi_{\mathsf{i}\mathsf{j}}(\mathsf{x}_{\mathsf{i}}\mathsf{x}_{\mathsf{j}}) \\ & \qquad \qquad \mathsf{single-pixel} \\ & \qquad \mathsf{class beliefs} \\ & \qquad \mathsf{from convnet} \end{split} \quad \text{smoothness + segment edge alignment} \\ & \qquad \mathsf{with in-image edges} \end{split}$$

Difference between pixels colors.

Pixels with similar colors influence each other more.

Encodes segment edge alignment with in-image edges.

Potts model:
$$\psi_{ij}(x_ix_j) = \exp[-\frac{1}{2}(x_i \neq x_j)] - \exp[-\frac{1}{2}(x_i$$

Inference (super high level)

- Fully connected graph: an edge for every pair of pixels
- Potts model: $\psi(x_i x_j) = \exp[-I(x_i \neq x_j)] \cdot \exp(-a^2|p_i p_j|^2 b^2|C_i C_j|^2)]$ Looks like a Gaussian...
- X_1 Ψ Ψ Y_2 Y_3
- Approximate inference update is a convolution with Gaussian kernel in (coordinates x colors x beliefs) space [see paper]
 - Kernel size == full image size!

Full-size Gaussian kernel convolution

Inference (super high level)

- Approximate inference update is a convolution with Gaussian kernel in (coordinates x colors x beliefs) space [see paper]
- Exact update is still too expensive: each pixel depends on the whole image
 - O(|pixels|²) complexity ■
- But Gaussian kernel admits an efficient approximation!
 - Ignore pixels more than ~1/a in distance away
 - 95% of Gaussian probability mass is within 2 standard deviations
 - Subsample the rest at rate C/a (enough by the <u>sampling theorem</u>)

- O(1) per pixel update complexity regardless of Potts model parameters a, b
- O(|pixels|) whole image update complexity

Inference (super high level)

- Potts model: $\psi(x_i x_j) = \exp[-I(x_i \neq x_j)] \cdot \exp(-a^2|p_i p_j|^2 b^2|C_i C_j|^2)]$
- Constant-time per-pixel inference with subsampling and truncated Gaussian convolution

Truncated Gaussian kernel convolution

Conclusions

- Typical convnets discard most spatial information about the image
 - Great for classification, but problematic for segmentation
- **Dilated convolutions** help achieve a wide receptive field
 - without coarsening spatial resolution
 - efficiently both computationally and statistically
- A template for adapting any classification convnet for segmentation
 - Fully connected layers → 1x1 convolutions
 - Last several conv+pool blocks → dilated convolutions with stride 1
 - Examples used: VGG-16, ResNet-101
- Conditional random field for segmentation post-processing
 - Extra smoothing for better local consistency
 - Align segment boundaries with sharp changes in the image
 - Efficient approximate inference as convolutions in [coordinates x color] space

Links

Paper: https://arxiv.org/abs/1606.00915

Code: https://bitbucket.org/aquariusjay/deeplab-public-ver2

Thank you!

deepsystems.io

inbox@deepsystems.ru

Our team is looking for business partners to make exciting deep learning solutions.