实验报告 Lab 2

姓名: 王钦 学号: 13349112

A first look at the captured trace

1. Client IP: 192.168.1.102, Client Port: 1161

5.297341	192.168.1	128.119.24	HTTP			1	04 PC	ST	/ether	eal-l	.abs/lab3	3–1–re	ply.	htm H
•			Wire	shark	分组 199	· tcp-	etherea	al-tra	ace-1					
▼ Transmi	ssion Control P	rotocol, Src	Port:	1161	(1161),	Dst	Port:	80	(80),	Seq:	164041,	Ack:	1, l	_en:
Source Port: 1161 (1161) Destination Port: 80 (80)														
.297341	192.168.1	128.119.24	HTTP			10	94 PO	ST ,	/ether	eal-la	abs/lab3	-1-rep	oly.h	tm HTT
			Wires	hark ·	分组 199 ·	tcp-e	therea	l-tra	ce-1				• • • • •	
	e: 192.168.1.10			15 12										

2. IP address of gaia.cs.umass.edu: 128.119.245.12 ,Port:

```
.297341 192.168.1.... 128.119.24... HTTP 104 POST /ethereal-labs/lab3-1-reply.htm HTTP/1

Wireshark · 分组 199 · tcp-ethereal-trace-1

Source: 192.168.1.102 (192.168.1.102)
Destination: 128.119.245.12 (128.119.245.12)
```

```
5.297341 192.168.1.... 128.119.24... HTTP 104 POST /ethereal-labs/lab3-1-reply.htm №

Wireshark・分组 199 · tcp-ethereal-trace-1

▼ Transmission Control Protocol, Src Port: 1161 (1161), Dst Port: 80 (80), Seq: 164041, Ack: 1, Len: Source Port: 1161 (1161)

Destination Port: 80 (80)
```

3. I use wget to download alice.txt and upload.And my computer client IP: 192.168.41.115,Souce Port: 52685

Tcp Basics

4. Sequence Number is: 0, In flags of identifies note the Syn is set, ackledgment is not-set (note: I am not use the tcp-ethereal-trace-1 in wireshark-traces.zip)

5. Sequence Number is: 0.ACKnowledgement number is 1.Determine this value by last TCP SYN segment: ACKnowledgement value= initiate sequence number of the TCP SYN segment+1 .In flags of identifies note the Syn is set,ackledgment is set

```
74 80→52685 [SYN, ACK] Seq=0 Ack=1
128.119.245.12
                  192,168,41,115 TCP
192.1(
                                    Wireshark · 分组 4 · wireshark_pcapng_en0_20150421120
192.16
192.10
             Acknowledgment number: 1
                                        (relative ack number)
192.16
             Header Length: 40 bytes
192.16
           ▼ .... 0000 0001 0010 = Flags: 0x012 (SYN, ACK)
128.11
                000. .... = Reserved: Not set
192.10
128.1
                ...0 .... = Nonce: Not set
128.1:
                .... 0... = Congestion Window Reduced (CWR): Not set
192.16
                .... .0.. .... = ECN-Echo: Not set
                192.10
192.16
ire (59
              .... .0.. = Reset: Not set

▼ .... .1. = Syn: Set
```

6. The sequence number of the TCP segment containing the HTTP POST command: 1.

```
192.168.41.115
                             128.119.245.12 TCP
                                                                                643 [TCP segment of a reassembled PDU]
                               Wireshark · 分组 6 · wireshark_pcapng_en0_20150421120935_L2JoLP
 [TCP Segment Len: 577]
Sequence number: 1
                            (relative sequence number)
[Next sequence number: 578
                                        (relative sequence number)]
 e4 d3 32 6e 4e f2 84 38 35 68 46 ea 08 00 45 00 02 75 e4 e0 40 00 40 06 f4 02 c0 a8 29 73 80 77 f5 0c cd cd 00 50 c8 98 7c dd ad 2e ee 27 80 18
                                                                      ..2nN..8 5hF...E.
                                                                      .u..@.@. ....)s.w
                                                                     .....P... |.....'..
 10 09 ac a8 00 00 01 01
                                  08 0a 1a ca 77 58 b6 76
                                                                    E.POST / wireshar
k-labs/l ah3-1-re
ply.htm HTTP/1.1
.Host: gaia.cs.
 77 69 72 65 73 68 61 72
61 62 33 2d 31 2d 72 65
                                  48 54 54 50 2f 31 2e 31
                                  67 61 69 61 2e 63 73 2e
75 0d 0a 43 6f 6e 74 65
                                                                     umass.ed u..Conte
```

7. The first six [No, sequence number] see below chart

No. Sequence number 6 1 7 578 8 715 9 2143 11 3571 14 4999

The first Six [No, time segment send, time ACK segment received, RTT] see below chart

No.	Time send.	Time ACK received	RTT(seconds)
6	2.355753000	2.661392000	0.3056390
7	2.364271000	2.661392000	0.2971210
8	2.365312000	2.662281000	0.2969690
9	2.365313000	2.662288000	0.296975
11	2.661491000	2.905288000	0.243797
14	2.662481000	2.917857000	0.255376

Determine the formula:

EstimatedRTT = 0.875 * EstimatedRTT + 0.125 * SampleRTT.

The first six [No, EstimatedRTT] see below chart

No. EstimatedRTT(seconds)
6 0.3056390
7 0.30457425
8 0.297102
9 0.29696975
11 0.29032775
14 0.245244375

Snapshot:

8. The length of first TCP package is 577 bytes, The 5 rest is 1428 bytes

```
3 2,002812
                   192.168.41.115
                                    128.119.245.12
                                                    TCP
                                                                         78 [TCP Retransmission] 52685→
                                                                         74 80-52685 [SYN, ACK] Seq=0 A
66 52685-80 [ACK] Seq=1 Ack=1
4 2.354304
                   128.119.245.12
                                    192.168.41.115
                                                    TCP
                                                    TCP
5 2.354410
                   192.168.41.115
                                    128.119.245.12
                                    128.119.245.12
6 2.355753
                   192.168.41.115
                                                    TCP
                                                                        643 [TCP segment of a reassembl
                   102 160 /1 115
                                  7 2.364271
8 2.
9 2.3
10 2.6
                  Length: 10
11 2.6
                  Timestamp value: 449476440
12 2.6
                  Timestamp echo reply: 3061204471
13 2.6
           ▼ [SEQ/ACK analysis]
14 2.6
               [iRTT: 0.351598000 seconds]
                [Bytes in flight: 577]
   0.
             TCP segment data (577 bytes)
   . 00
8 2.365312
                                                                       1494 [TCP segment of a reassembl
                   192.168.41.115 128.119.245.12 TCP
                           Wireshark · 分组 8 · wireshark_pcapng_en0_20150421120935_L2JoLP
           Timestamp echo reply: 3061204471
     [SEQ/ACK analysis]
        [iRTT: 0.351598000 seconds]
        [Bytes in flight: 2142]
      TCP segment data (1428 bytes)
```

9. The minimum amount of available buffer space: 14480.No, sender is never throttled due to lacking of receiver buffer

10. Yes, there has some retransmitted segment. I check it by Statistics->TCP Stream Graph->Time/Sequene Graph. And I find some decrease.

11. Amount data doesn't first is 137, subsequence are 1428, There cases in below table.

No.	Acknowledged sequence number	Acknowledged data
8	578	137
10	715	1428
12	2143	1428
13	3571	1428
22	4999	1428
25	7855	1428
30	9283	1428

12. The first segment size when start transmit data, sequence is 1 mean 1 byte. And the last sequence is | 164091|, we conclude follow figures

amount data =
$$164091 - 1 = 16490$$
 bytes amount time = $4.836206 - 2.355753 = 2.480453$ sec

$$throughput = \frac{amount \; data}{amount \; time} = \frac{164090}{2.480453} = 66153.23894466052 \, bytes/s$$

13. At point A the begin of slow start ,point B is end of slow start then TCP use additive-Increase approach because the <code>CongWin</code> reaches <code>Threshold</code>. So point B is the begin of congestion avoidance take over. Until at point C sender had received three duplicate ACKs, TCP use multiplicative decrease, <code>Threshold</code> is set to one half of the current <code>ConWin</code>. So point D is the end of congestion avoidance phase, then <code>CongWin</code> will ramps up linearly.

From below figure we can see after three duplicate ACKs, maybe the seq 56407 is lost, then client send a fast retransmission. And TCP use multiplicative decrease approach.

```
78 [TCP Dup ACK 107#1] 80-52685 [ACK] Seq=1 Ack=56407 Win=42240 |
78 [TCP Dup ACK 107#2] 80-52685 [ACK] Seq=1 Ack=56407 Win=42240 |
78 [TCP Dup ACK 107#2] 80-52685 [ACK] Seq=1 Ack=56407 Win=42240 |
1494 [TCP Fast Retransmission] [TCP segment of a reassembled PDU]
86 [TCP Dup ACK 107#4] 80-52685 [ACK] Seq=1 Ack=56407 Win=42240 |
1494 [TCP Out-0f-Order] [TCP segment of a reassembled PDU]
86 [TCP Dup ACK 107#5] 80-52685 [ACK] Seq=1 Ack=56407 Win=42240 |
1494 [TCP Out-0f-Order] [TCP segment of a reassembled PDU]
86 [TCP Dup ACK 107#5] 80-52685 [ACK] Seq=1 Ack=56407 Win=42240 |
1494 [TCP Out-0f-Order] [TCP segment of a reassembled PDU]
86 [TCP Dup ACK 107#6] 80-52685 [ACK] Seq=1 Ack=56407 Win=42240 |
1494 [TCP Out-0f-Order] [TCP segment of a reassembled PDU]
86 [TCP Dup ACK 107#7] 80-52685 [ACK] Seq=1 Ack=56407 Win=42240 |
```

14. At point A the begin of slow start ,point B is end of slow start then TCP use additive-Increase approach because the <code>CongWin</code> reaches <code>Threshold</code>. So point B is the begin of congestion avoidance take over. Until at point C sender had received three duplicate ACKs, TCP use multiplicative decrease, <code>Threshold</code> is set to one half of the current <code>ConWin</code>. So point D is the end of congestion avoidance phase, then <code>CongWin</code> will ramps up linearly.

From below figure we can see after three duplicate ACKs, maybe the seq 56407 is lost, then client send a fast retransmission. And TCP use multiplicative decrease approach.

```
78 [TCP Dup ACK 107#1] 80-52685 [ACK] Seq=1 Ack=56407 Win=42240 |
78 [TCP Dup ACK 107#2] 80-52685 [ACK] Seq=1 Ack=56407 Win=42240 |
78 [TCP Dup ACK 107#3] 80-52685 [ACK] Seq=1 Ack=56407 Win=42240 |
78 [TCP Dup ACK 107#3] 80-52685 [ACK] Seq=1 Ack=56407 Win=42240 |
1494 [TCP Fast Retransmission] [TCP segment of a reassembled PDU]
86 [TCP Dup ACK 107#4] 80-52685 [ACK] Seq=1 Ack=56407 Win=42240 |
1494 [TCP Out-Of-Order] [TCP segment of a reassembled PDU]
86 [TCP Dup ACK 107#5] 80-52685 [ACK] Seq=1 Ack=56407 Win=42240 |
1494 [TCP Out-Of-Order] [TCP segment of a reassembled PDU]
86 [TCP Dup ACK 107#6] 80-52685 [ACK] Seq=1 Ack=56407 Win=42240 |
1494 [TCP Out-Of-Order] [TCP segment of a reassembled PDU]
86 [TCP Dup ACK 107#7] 80-52685 [ACK] Seq=1 Ack=56407 Win=42240 |
```