Introdução a Análise de Sobrevivência 1º Semestre/2024

3^a Lista de Exercícios

1. Em um estudo com pacientes com mieloma múltiplo, pacientes foram tratados com tramento padrão e os tempos de sobrevivência dos 25 pacientes, contados a partir do início do tratmanto, estão disponíveis na tabela a seguir (tempos censurados à direita são denotados por um sinal "+"). Suponha que deseja-se fazer um estudo para comparar o tratamento padrão com um novo tratamento. Esse novo estudo terá um período de acompanhamento total igual a 4 anos e meio e espera-se que a mortalidade inicial seja reduzida e, após um ano e meio de tratamento, ainda se tenha em torno de 65% de pacientes vivos.

Tempo de sobrevivência, em meses												
0,3	5,9	20,8	$28,0^{+}$	1,7	$73,6^{+}$	7,2	2,1	6,4	2,5	2,3	0,3	$\overline{0,4}$
$65,4^{+}$	$64,9^{+}$	0,6	23,0	$42,6^{+}$	$48,0^{+}$	6,9	2,1	$43,6^{+}$	42,6	$12,0^{+}$	0,8	

- (a) Obtenha o tamanho da amostra necessário se o recrutamento for feito por um período de 2 anos e, nos próximos dois anos e meio, for feito apenas o acompanhamento desses pacientes. Considere 5% e 8% de nível de significância do teste e poder igual a 80%, 85% e 90%.
- (b) Repita o item (a) assumindo que o recrutamento poderá ser feito ao longo dos 4 anos e meio. Compare com os resultados do item (a).
- 2. Suponha que o tempo até a morte tem distribuição log-logística com parâmetros λ e α . Baseado na seguinte amostra, construa a função de verossimilhança.

Dados: 0, 5; 1; 0, 75; 0, 25-; 1, 25-, em que — indica censura à esquerda.

- 3. Suponha que o tempo de vida T tenha distribuição exponencial com parâmetro λ e que o tempo de censura tenha também distribuição exponencial com parâmetro θ . Sejam $Z = \min(T, C)$ e $\delta = I(T \leq C)$. Assuma ainda que T e C sejam independentes.
 - (a) Obtenha $P(\delta = 1)$.

- (b) Encontre a distribuição de Z.
- (c) Mostre que Z e δ são independentes.
- (d) Seja $(Z_1, \delta_1), \ldots, (Z_n, \delta_n)$ uma amostra aleatória de (Z, δ) . Obtenha o estimador de máxima verossimilhança de λ , seu valor esperado e sua variância.
- 4. Os dados mostrados a seguir representam o tempo até a ruptura de um tipo de isolante elétrico sujeito a uma tensão de estresse de 35 Kvolts. O teste consistiu em deixar 25 destes isolantes funcionando até que 15 deles falhassem, obtendo-se os seguintes resultados (em minutos):

0,19	0,78	0,96	1,31	2,78	3,16	4,67	4,85
6,50	7,35	8,27	12,07	$32,\!52$	33,91	36,71	

- (a) Identifique o tipo de censura.
- (b) Ajuste os modelos exponencial, Weibull, log-normal e log-logística aos dados. Escolha o melhor ajuste e, a partir dele, responda os itens seguintes.
- (c) Obtenha uma estimativa para o tempo mediano de vida deste tipo de isolante elétrico funcionando a 35 Kvolts.
- (d) Obtenha uma estimativa para o tempo médio de vida destes isolantes funcionando a 35 Kvolts.
- (e) O tempo necessário para 20% dos isolantes estarem fora de operação.