Midterm test: simulation of experimental apparatus response

Shahram Rahatlou

Computing Methods in Physics http://www.romal.infn.it/people/rahatlou/cmp/

Anno Accademico 2018/19

Two body decay of a particle

- Particle of mass m₀ and 3-momentum p₀ in the laboratory frame decays into 2 particles of mass m₁ and m₂
 - mass and momentum in GeV units
 - Use $m_0 = 5.3 \text{ GeV}$
 - momentum p_0 along z axis with $|p_0| = 4$ GeV
 - $m_1 = 0.5 \text{ GeV}$, $m_2 = 0.13 \text{ GeV}$

Two particles decay back-to-back in centre of mass frame and then boosted along z axis to laboratory frame

Experimental setup

- Assume decay happens before the detectors
- Passage through each detector modifies the 4-momentum of the particle
 - 1st detector modifies the direction of particles (scattering)
 - 2nd detector modifies (reduces) the energy of the particle (energy loss)

Modelling of Detector Response

- Each detector causes variation in the 4-momentum of incoming particles
 - particle comes into the detector with 4-momentum **p**_{in}
 - particle leaves detector with 4-momentum **pout**
- Use simple Gaussian model to describe the response of each detector
 - direction and/or direction (angles) of particles smeared
 - parameters of smearing (width of Gaussian) are properties of each detector
 - parameters can be configured by user

Scattering

- Modify only the direction of the particle
 - we assume both θ and φ of the momentum are modified by $\Delta\theta$

 Extract Δθ from a Gaussian distribution with mean μ and width σ

mean
$$\mu$$
 and width σ – use μ = 0 and width $\sigma = \frac{p_{max}}{p_{in}} \Delta \theta_{max}$

- $p_{max}=3.5$ GeV, p_{in} is the incoming momentum and $\Delta\theta_{max}=0.01$ rad

- Note that particles with lower momentum have a higher probability of being deflected
- \triangleright Parameters p_{max} and $\Delta\theta_{max}$ must be configurable

Energy loss

The 2nd detector can only modify (decrease) the momentum of the incoming particle

- \triangleright The momentum variation is given by $p_{out} = p_{in} \Delta P$
- Also in this case ΔP has a Gaussian distribution with
 - mean $\mu = a \cdot p_{in}$
 - width $\sigma = b \cdot p_{in}$

with a = 0.1 and b = 0.02

- Note that the particle can only loose energy so pout < pin
 </p>
- Parameters a and b must be configurable

Test Program

- Generate 10000 decays
 - generate decay products in centre of mass and boost to lab frame
 - make sure you conserve energy and momentum correctly
 - Use the <u>TLorentzVector class</u> of ROOT to handle energy and momentum and boost
- Simulate passage of particles through 3 detectors causing only scattering
 - After each detector compute the invariant mass m_{inv} of the two particles
 - Reminder: $m_{inv} = \sqrt{E_{tot}^2 p_{tot}^2}$ $p_{tot} = p_1 + p_2$
- Simulate passage of particles through one detector causing energy loss
 - compute invariant mass minv of the two particles
 - compute the response $r_j=E_j^f/E_j^i$ for the two particles where E^f is the final energy after all 4 detectors and E^i is the initial energy after decay
- Plot distribution of the the invariant mass after each detector in a TCanvas with 4 pads and store output as invmass.pdf
- Plot distribution of r₁ and r₂ and plot them in a TCanvas with 2 pads and save the output as response.pdf
- To compile and link the executable I must be able to do
 - g++ -o /tmp/simu simulation.cc Generator.cc Detector.cc ScatteringDetector.cc EnergyLossDetector.cc

Test evaluation

- The following classes are required
 - class Generator to simulate TwoBodyDecay
 - Base class **Detector** and two polymorphic derived classes **ScatteringDet** and **EnergyLossDet**
 - proper choice of interface and data members will be subject of evaluation
- ▶ Write an application simulation.cc to handle
 - generation of 10000 decays
 - creation of detectors
 - computation of invariant mass and response
 - filling of histograms
 - saving plots in pdf
- A total of maximum 11 files can be provided for evaluation
 - 4 .cc and 4 .h files for Generator, Detector, ScatteringDet and EnergyLossDet
 - 1 file for simulation.cc
 - 2 pdf files invmass.pdf and response.pdf
- You can archive them as a single zip file or provide individual files

Submitting your test

- - Log into https://mail.uniroma1.it with your Sapienza credentials
 - visit https://goo.gl/forms/8kquclSvkpEmpVa83

- Sapienza credentials are necessary to submit your test
- You can submit only once
 - no possibility of changing or modifying your files after submission
- Submission will be open until Thursday 17:00 (Rome time)