EDA Time Series

```
1 # Install Pandas Data Reader
In [2]:
         2 !pip install pandas-datareader
        Collecting pandas-datareader
          Downloading pandas_datareader-0.10.0-py3-none-any.whl (109 kB)
             ------ 109.5/109.5 kB 3.2 MB/s eta 0:00:00
        Requirement already satisfied: requests>=2.19.0 in c:\users\abhin\anaconda3\lib\site-packages
        (from pandas-datareader) (2.28.1)
        Requirement already satisfied: pandas>=0.23 in c:\users\abhin\anaconda3\lib\site-packages (from
        pandas-datareader) (1.4.4)
        Requirement already satisfied: lxml in c:\users\abhin\anaconda3\lib\site-packages (from pandas-
        datareader) (4.9.1)
        Requirement already satisfied: numpy>=1.18.5 in c:\users\abhin\anaconda3\lib\site-packages (fro
        m pandas>=0.23->pandas-datareader) (1.21.5)
        Requirement already satisfied: python-dateutil>=2.8.1 in c:\users\abhin\anaconda3\lib\site-pack
        ages (from pandas>=0.23->pandas-datareader) (2.8.2)
        Requirement already satisfied: pytz>=2020.1 in c:\users\abhin\anaconda3\lib\site-packages (from
        pandas>=0.23->pandas-datareader) (2022.1)
        Requirement already satisfied: certifi>=2017.4.17 in c:\users\abhin\anaconda3\lib\site-packages
        (from requests>=2.19.0->pandas-datareader) (2022.9.14)
        Requirement already satisfied: charset-normalizer<3,>=2 in c:\users\abhin\anaconda3\lib\site-pa
        ckages (from requests>=2.19.0->pandas-datareader) (2.0.4)
        Requirement already satisfied: idna<4,>=2.5 in c:\users\abhin\anaconda3\lib\site-packages (from
        requests>=2.19.0->pandas-datareader) (3.3)
        Requirement already satisfied: urllib3<1.27,>=1.21.1 in c:\users\abhin\anaconda3\lib\site-packa
        ges (from requests>=2.19.0->pandas-datareader) (1.26.11)
        Requirement already satisfied: six>=1.5 in c:\users\abhin\anaconda3\lib\site-packages (from pyt
        hon-dateutil>=2.8.1->pandas>=0.23->pandas-datareader) (1.16.0)
        Installing collected packages: pandas-datareader
        Successfully installed pandas-datareader-0.10.0
```

In [22]: 1 !pip install --upgrade pandas-datareader

```
Requirement already satisfied: pandas>=0.23 in c:\users\abhin\anaconda3\lib\site-packages (from pandas-datareader) (1.4.4)

Requirement already satisfied: requests>=2.19.0 in c:\users\abhin\anaconda3\lib\site-packages (from pandas-datareader) (2.28.1)

Requirement already satisfied: lxml in c:\users\abhin\anaconda3\lib\site-packages (from pandas-datareader) (4.9.1)

Requirement already satisfied: numpy>=1.18.5 in c:\users\abhin\anaconda3\lib\site-packages (from pandas>=0.23->pandas-datareader) (1.21.5)

Requirement already satisfied: python-dateutil>=2.8.1 in c:\users\abhin\anaconda3\lib\site-pack
```

Requirement already satisfied: python-dateutil>=2.8.1 in c:\users\abhin\anaconda3\lib\site-packages (from pandas>=0.23->pandas-datareader) (2.8.2)

Requirement already satisfied: pandas-datareader in c:\users\abhin\anaconda3\lib\site-packages

Requirement already satisfied: pytz>=2020.1 in c:\users\abhin\anaconda3\lib\site-packages (from pandas>=0.23->pandas-datareader) (2022.1)

Requirement already satisfied: certifi>=2017.4.17 in c:\users\abhin\anaconda3\lib\site-packages (from requests>=2.19.0->pandas-datareader) (2022.9.14)

Requirement already satisfied: charset-normalizer<3,>=2 in c:\users\abhin\anaconda3\lib\site-pa ckages (from requests>=2.19.0->pandas-datareader) (2.0.4)

Requirement already satisfied: idna<4,>=2.5 in c:\users\abhin\anaconda3\lib\site-packages (from requests>=2.19.0->pandas-datareader) (3.3)

Requirement already satisfied: urllib3<1.27,>=1.21.1 in c:\users\abhin\anaconda3\lib\site-packa ges (from requests>=2.19.0->pandas-datareader) (1.26.11)

Requirement already satisfied: six>=1.5 in c:\users\abhin\anaconda3\lib\site-packages (from pyt hon-dateutil>=2.8.1->pandas>=0.23->pandas-datareader) (1.16.0)

(0.10.0)

```
In [2]:
          1 pip install yfinance
        Collecting yfinance
          Downloading yfinance-0.2.18-py2.py3-none-any.whl (60 kB)
             ----- 60.3/60.3 kB 1.6 MB/s eta 0:00:00
        Collecting frozendict>=2.3.4
          Downloading frozendict-2.3.8-cp39-cp39-win_amd64.whl (35 kB)
        Collecting multitasking>=0.0.7
          Downloading multitasking-0.0.11-py3-none-any.whl (8.5 kB)
        Requirement already satisfied: beautifulsoup4>=4.11.1 in c:\users\abhin\anaconda3\lib\site-pack
        ages (from yfinance) (4.11.1)
        Collecting pytz>=2022.5
          Using cached pytz-2023.3-py2.py3-none-any.whl (502 kB)
        Requirement already satisfied: requests>=2.26 in c:\users\abhin\anaconda3\lib\site-packages (fr
        om yfinance) (2.28.1)
        Collecting html5lib>=1.1
          Using cached html5lib-1.1-py2.py3-none-any.whl (112 kB)
        Requirement already satisfied: appdirs>=1.4.4 in c:\users\abhin\anaconda3\lib\site-packages (fr
        om yfinance) (1.4.4)
        Requirement already satisfied: lxml>=4.9.1 in c:\users\abhin\anaconda3\lib\site-packages (from
        yfinance) (4.9.1)
        Requirement already satisfied: cryptography>=3.3.2 in c:\users\abhin\anaconda3\lib\site-package
        s (from yfinance) (37.0.1)
        Requirement already satisfied: numpy>=1.16.5 in c:\users\abhin\anaconda3\lib\site-packages (fro
        m yfinance) (1.21.5)
        Requirement already satisfied: pandas>=1.3.0 in c:\users\abhin\anaconda3\lib\site-packages (fro
        m yfinance) (1.4.4)
        Requirement already satisfied: soupsieve>1.2 in c:\users\abhin\anaconda3\lib\site-packages (fro
        m beautifulsoup4>=4.11.1->yfinance) (2.3.1)
        Requirement already satisfied: cffi>=1.12 in c:\users\abhin\anaconda3\lib\site-packages (from c
        ryptography>=3.3.2->yfinance) (1.15.1)
        Requirement already satisfied: six>=1.9 in c:\users\abhin\anaconda3\lib\site-packages (from htm
        l5lib>=1.1->vfinance) (1.16.0)
        Requirement already satisfied: webencodings in c:\users\abhin\anaconda3\lib\site-packages (from
        html5lib>=1.1->yfinance) (0.5.1)
        Requirement already satisfied: python-dateutil>=2.8.1 in c:\users\abhin\anaconda3\lib\site-pack
        ages (from pandas>=1.3.0->yfinance) (2.8.2)
        Requirement already satisfied: charset-normalizer<3,>=2 in c:\users\abhin\anaconda3\lib\site-pa
        ckages (from requests>=2.26->yfinance) (2.0.4)
        Requirement already satisfied: certifi>=2017.4.17 in c:\users\abhin\anaconda3\lib\site-packages
        (from requests>=2.26->yfinance) (2022.9.14)
        Requirement already satisfied: idna<4,>=2.5 in c:\users\abhin\anaconda3\lib\site-packages (from
        requests>=2.26->yfinance) (3.3)
        Requirement already satisfied: urllib3<1.27,>=1.21.1 in c:\users\abhin\anaconda3\lib\site-packa
        ges (from requests>=2.26->yfinance) (1.26.11)
        Requirement already satisfied: pycparser in c:\users\abhin\anaconda3\lib\site-packages (from cf
        fi>=1.12->cryptography>=3.3.2->yfinance) (2.21)
        Installing collected packages: pytz, multitasking, html5lib, frozendict, yfinance
          Attempting uninstall: pytz
            Found existing installation: pytz 2022.1
            Uninstalling pytz-2022.1:
              Successfully uninstalled pytz-2022.1
        Successfully installed frozendict-2.3.8 html5lib-1.1 multitasking-0.0.11 pytz-2023.3 yfinance-
        Note: you may need to restart the kernel to use updated packages.
```

ERROR: pip's dependency resolver does not currently take into account all the packages that are

conda-repo-cli 1.0.20 requires clyent==1.2.1, but you have clyent 1.2.2 which is incompatible. conda-repo-cli 1.0.20 requires nbformat==5.4.0, but you have nbformat 5.5.0 which is incompatib

installed. This behaviour is the source of the following dependency conflicts.

localhost:8888/notebooks/EDA Time Series Krish sir day 1.ipynb

le.

In [12]: 1 data.head()

Out[12]:

	Open	High	Low	Close	Adj Close	Volume
Date						
2017-01-03	14.324000	14.688667	14.064000	14.466000	14.466000	88849500
2017-01-04	14.316667	15.200000	14.287333	15.132667	15.132667	168202500
2017-01-05	15.094667	15.165333	14.796667	15.116667	15.116667	88675500
2017-01-06	15.128667	15.354000	15.030000	15.267333	15.267333	82918500
2017-01-09	15.264667	15.461333	15.200000	15.418667	15.418667	59692500

In [17]: 1 data['High'].plot(figsize=(20,10))

Out[17]: <AxesSubplot:xlabel='Date'>

Out[18]: <AxesSubplot:xlabel='Date'>

Out[27]: <AxesSubplot:xlabel='Date'>

In [30]: 1 data.iloc[:4]

Out[30]:

	Open	High	Low	Close	Adj Close	Volume
Date						
2017-01-03	14.324000	14.688667	14.064000	14.466000	14.466000	88849500
2017-01-04	14.316667	15.200000	14.287333	15.132667	15.132667	168202500
2017-01-05	15.094667	15.165333	14.796667	15.116667	15.116667	88675500
2017-01-06	15.128667	15.354000	15.030000	15.267333	15.267333	82918500

```
In [31]:
             index=data.loc['2020-01-01':'2021-09-01'].index
              share_open=data.loc['2020-01-01':'2021-09-01']['Open']
In [32]:
              share open
Out[32]: Date
         2020-01-02
                        28.299999
         2020-01-03
                        29.366667
         2020-01-06
                        29.364668
         2020-01-07
                        30.760000
         2020-01-08
                        31.580000
         2021-08-26
                       236.103333
         2021-08-27
                       235.000000
         2021-08-30
                       238.240005
         2021-08-31
                       244.333328
         2021-09-01
                       244.693329
         Name: Open, Length: 421, dtype: float64
             import matplotlib.pyplot as plt
In [33]:
             %matplotlib inline
In [37]:
           1 figure,axis=plt.subplots()
           2 # To prevent overlapping we use autoformating inbuilt function
           3 figure.autofmt_xdate()
           4 | axis.plot(index, share_open)
Out[37]: [<matplotlib.lines.Line2D at 0x1bad28ab0d0>]
           300
          250
          200
           150
           100
            50
In [38]:
             # Datetime index
```

```
In [40]:
              data.head()
Out[40]:
                                  High
                                                     Close Adj Close
                        Open
                                            Low
                                                                       Volume
               Date
           2017-01-03 14.324000 14.688667 14.064000
                                                14.466000 14.466000
                                                                     88849500
           2017-01-04 14.316667 15.200000
                                       14.287333
                                                 15.132667 15.132667
                                                                    168202500
           2017-01-05 15.094667 15.165333 14.796667
                                                 15.116667 15.116667
                                                                     88675500
           2017-01-06 15.128667 15.354000 15.030000
                                                15.267333 15.267333
                                                                     82918500
           2017-01-09 15.264667 15.461333 15.200000 15.418667 15.418667
                                                                     59692500
In [42]:
           1 data.info() #datetime is not being displayed as in datetime format
          <class 'pandas.core.frame.DataFrame'>
          DatetimeIndex: 1592 entries, 2017-01-03 to 2023-05-01
          Data columns (total 6 columns):
           #
               Column
                           Non-Null Count
                                            Dtype
           0
               0pen
                           1592 non-null
                                            float64
           1
               High
                           1592 non-null
                                            float64
           2
               Low
                           1592 non-null
                                            float64
           3
               Close
                           1592 non-null
                                            float64
               Adj Close 1592 non-null
                                            float64
                           1592 non-null
           5
               Volume
                                            int64
          dtypes: float64(5), int64(1)
          memory usage: 151.6 KB
In [43]:
              data=data.reset_index()
In [44]:
              data.head()
Out[44]:
                           Open
                                                       Close Adj Close
                                                                          Volume
                  Date
                                     High
                                               Low
                                                                        88849500
           0 2017-01-03 14.324000 14.688667 14.064000 14.466000
                                                             14.466000
             2017-01-04 14.316667 15.200000
                                         14.287333
                                                    15.132667
                                                             15.132667
                                                                       168202500
           2 2017-01-05 15.094667 15.165333 14.796667
                                                    15.116667
                                                                        88675500
                                                             15.116667
           3 2017-01-06 15.128667 15.354000 15.030000 15.267333 15.267333
                                                                        82918500
           4 2017-01-09 15.264667 15.461333 15.200000 15.418667 15.418667
                                                                        59692500
In [46]:
              data.info() # datetime is being displayed as a seperate datatype
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 1592 entries, 0 to 1591
          Data columns (total 7 columns):
                           Non-Null Count Dtype
           #
               Column
                           _____
           0
                                            datetime64[ns]
               Date
                           1592 non-null
                           1592 non-null
           1
               0pen
                                            float64
           2
               High
                           1592 non-null
                                            float64
           3
               Low
                           1592 non-null
                                            float64
                           1592 non-null
                                            float64
           4
               Close
           5
               Adj Close 1592 non-null
                                            float64
               Volume
                           1592 non-null
                                            int64
          dtypes: datetime64[ns](1), float64(5), int64(1)
          memory usage: 87.2 KB
```

```
In [57]:    1    data=data.set_index('Date')
In [58]:    1    # Datetime
    2    from datetime import datetime
In [59]:    1    datetime.now()
Out[59]: datetime.datetime(2023, 5, 2, 12, 54, 46, 639789)
```

Time Resampling

```
In [60]:
               data.head()
Out[60]:
                                                       Close Adj Close
                         Open
                                    High
                                                                          Volume
                                              Low
                Date
           2017-01-03 14.324000 14.688667
                                         14.064000 14.466000 14.466000
                                                                        88849500
           2017-01-04 14.316667 15.200000 14.287333 15.132667 15.132667
                                                                       168202500
           2017-01-05 15.094667 15.165333 14.796667
                                                   15.116667
                                                             15.116667
                                                                        88675500
           2017-01-06 15.128667 15.354000 15.030000 15.267333 15.267333
                                                                        82918500
           2017-01-09 15.264667 15.461333 15.200000 15.418667 15.418667
                                                                        59692500
            1 # to get the minimum of each column in the particular year that to on the last date of that |
In [61]:
               data.resample(rule='A').min()
```

Out[61]:

	Open	High	Low	Close	Adj Close	Volume
Date						
2017-12-31	14.316667	14.688667	14.064000	14.466000	14.466000	32800500
2018-12-31	16.851999	17.355333	16.306000	16.704000	16.704000	46210500
2019-12-31	12.073333	12.445333	11.799333	11.931333	11.931333	36984000
2020-12-31	24.980000	26,990667	23.367332	24.081333	24.081333	52073100
2021-12-31	184.183334	188.736664	179.830002	187.666672	187.666672	29401800
2022-12-31	110.349998	116.269997	108.239998	109.099998	109.099998	41864700
2023-12-31	103.000000	111.750000	101.809998	108.099998	108.099998	92067000

Out[62]:

	Open	High	Low	Close	Adj Close	Volume
Date						
2017-12-31	25.779333	25.974001	25.290001	25.666668	25.666668	296871000
2018-12-31	25.000000	25.830667	24.474667	25.304667	25.304667	504745500
2019-12-31	29.000000	29.020666	28.423332	28.729334	28.729334	450091500
2020-12-31	233,330002	239.573334	230.373337	235,223328	235,223328	914082000
2021-12-31	411.470001	414.496674	405.666656	409.970001	409.970001	268189500
2022-12-31	396.516663	402.666656	378.679993	399.926666	399.926666	221923300
2023-12-31	211.759995	217.649994	206.110001	214.240005	214.240005	306590600

Out[63]: <AxesSubplot:xlabel='Date'>

In [64]:

to get the maximum of each column in the particular Quater that to on the last date of that data.resample(rule='QS').max()

Out[64]:

	Open	High	Low	Close	Adj Close	Volume
Date						
2017-01-01	18.687332	19,159332	18.573999	18.732000	18.732000	223728000
2017-04-01	25.779333	25.799334	25.290001	25.563334	25.563334	258921000
2017-07-01	25.350000	25.974001	25.178667	25.666668	25.666668	289867500
2017-10-01	23.798668	24.200001	23.608667	23.976667	23.976667	296871000
2018-01-01	24.000000	24.033333	23.490667	23.827999	23.827999	315021000
2018-04-01	24.344000	24.915333	23.633333	24.722000	24.722000	335211000
2018-07-01	24.606001	25.830667	24.474667	25.304667	25.304667	504745500
2018-10-01	25.000000	25.299334	24.450001	25.119333	25.119333	411382500
2019-01-01	23.080667	23.466667	22.943333	23.153999	23.153999	362262000
2019-04-01	19.219999	19.744667	19.144667	19.454000	19.454000	398206500
2019-07-01	17.278000	17.738001	17.210667	17.658667	17.658667	336274500
2019-10-01	29.000000	29.020666	28.423332	28.729334	28.729334	450091500
2020-01-01	61.566666	64.599335	60.068001	61.161331	61.161331	914082000
2020-04-01	67.518669	72.512665	66.915337	71.987335	71.987335	487977000
2020-07-01	167.380005	167.496674	156.836670	166.106674	166.106674	584781000
2020-10-01	233.330002	239.573334	230.373337	235.223328	235.223328	666378600
2021-01-01	297.126678	300.133331	290.533325	294.363342	294.363342	268189500
2021-04-01	256.899994	260.263336	244.203339	254.106674	254.106674	147052200
2021-07-01	262.399994	266.333344	258.333344	263.786682	263.786682	100847400
2021-10-01	411.470001	414.496674	405.666656	409.970001	409.970001	188556300
2022-01-01	396.516663	402.666656	378.679993	399.926666	399.926666	151565700
2022-04-01	378.766663	384.290009	362.433319	381.816681	381.816681	144973200
2022-07-01	311.666656	314.666656	305.579987	309.320007	309.320007	142032300
2022-10-01	254.500000	257.500000	242.009995	249.440002	249.440002	221923300
2023-01-01	211.759995	217.649994	206.110001	214.240005	214.240005	306590600
2023-04-01	199.910004	202.690002	192.199997	194.770004	194.770004	210970800

```
In [65]: 1 data.resample(rule='QS').max()['High'].plot()
```

Out[65]: <AxesSubplot:xlabel='Date'>

Out[66]:

		Open	High	Low	Close	Adj Close	Volume
	Date						
-	2017-12-29	25.779333	25.974001	25.290001	25.666668	25.666668	296871000
:	2018-12-31	25.000000	25.830667	24.474667	25.304667	25.304667	504745500
:	2019-12-31	29.000000	29.020666	28.423332	28.729334	28.729334	450091500
:	2020-12-31	233.330002	239.573334	230.373337	235.223328	235.223328	914082000
:	2021-12-31	411.470001	414.496674	405.666656	409.970001	409.970001	268189500
:	2022-12-30	396.516663	402.666656	378.679993	399.926666	399.926666	221923300
:	2023-12-29	211.759995	217.649994	206.110001	214.240005	214.240005	306590600

Out[69]:

	Open	High	Low	Close	Adj Close	Volume
Date						
2017-01-02	18.687332	19.159332	18.573999	18.732000	18.732000	223728000
2017-04-03	25.779333	25.799334	25.290001	25.563334	25.563334	258921000
2017-07-03	25.350000	25.974001	25.178667	25.666668	25.666668	289867500
2017-10-02	23.798668	24.200001	23.608667	23.976667	23.976667	296871000
2018-01-01	24.000000	24.033333	23.490667	23.827999	23.827999	315021000
2018-04-02	24.344000	24.915333	23.633333	24.722000	24.722000	335211000
2018-07-02	24.606001	25.830667	24.474667	25.304667	25.304667	504745500
2018-10-01	25.000000	25.299334	24.450001	25.119333	25.119333	411382500
2019-01-01	23.080667	23.466667	22.943333	23.153999	23.153999	362262000
2019-04-01	19.219999	19.744667	19.144667	19.454000	19.454000	398206500
2019-07-01	17.278000	17.738001	17.210667	17.658667	17.658667	336274500
2019-10-01	29.000000	29.020666	28.423332	28.729334	28.729334	450091500
2020-01-01	61.566666	64.599335	60.068001	61.161331	61.161331	914082000
2020-04-01	67.518669	72.512665	66.915337	71.987335	71.987335	487977000
2020-07-01	167.380005	167.496674	156.836670	166.106674	166.106674	584781000
2020-10-01	233.330002	239.573334	230.373337	235.223328	235.223328	666378600
2021-01-01	297.126678	300.133331	290.533325	294.363342	294.363342	268189500
2021-04-01	256.899994	260.263336	244.203339	254.106674	254.106674	147052200
2021-07-01	262.399994	266.333344	258.333344	263.786682	263.786682	100847400
2021-10-01	411.470001	414.496674	405.666656	409.970001	409.970001	188556300
2022-01-03	396.516663	402.666656	378.679993	399.926666	399.926666	151565700
2022-04-01	378.766663	384.290009	362.433319	381.816681	381.816681	144973200
2022-07-01	311.666656	314.666656	305.579987	309.320007	309.320007	142032300
2022-10-03	254.500000	257.500000	242.009995	249.440002	249.440002	221923300
2023-01-02	211.759995	217.649994	206.110001	214.240005	214.240005	306590600
2023-04-03	199.910004	202.690002	192.199997	194.770004	194.770004	210970800

Visualization

```
In [72]: 1 data['Open'].resample(rule='BA').mean().plot(kind='bar')
```

Out[72]: <AxesSubplot:xlabel='Date'>

In []: 1

```
In [77]: 1 data['Open'].resample(rule='BA').mean().plot(kind='pie')
```

Out[77]: <AxesSubplot:ylabel='Open'>


```
In [78]: 1 # Rule 'M' is used for the montly data
2 data['Open'].resample(rule='M').mean().plot(kind='bar',figsize=(15,6))
```

Out[78]: <AxesSubplot:xlabel='Date'>

Rolling and Expanding

```
In [ ]:
           1 # Rolling is used to get down the columns and getting the mean for the next 'n' columns
              # Rolling window is used for the moving average
In [80]:
              data['Open'].rolling(5).mean().head(10)
Out[80]: Date
          2017-01-03
                               NaN
          2017-01-04
                               NaN
          2017-01-05
                               NaN
          2017-01-06
                               NaN
                         14.825734
          2017-01-09
          2017-01-10
                         15.054267
          2017-01-11
                         15.245200
          2017-01-12
                         15.280400
          2017-01-13
                         15.321333
          2017-01-17
                         15,424400
          Name: Open, dtype: float64
In [81]:
              data['High'].rolling(10).mean().head(20)
Out[81]: Date
          2017-01-03
                               NaN
          2017-01-04
                               NaN
          2017-01-05
                               NaN
          2017-01-06
                               NaN
          2017-01-09
                               NaN
          2017-01-10
                               NaN
          2017-01-11
                               NaN
          2017-01-12
                               NaN
          2017-01-13
                               NaN
                         15.390200
          2017-01-17
          2017-01-18
                         15.519400
          2017-01-19
                         15.657267
                         15.780733
          2017-01-20
          2017-01-23
                         15.917933
          2017-01-24
                         16.070467
          2017-01-25
                         16.246867
          2017-01-26
                         16.418600
          2017-01-27
                         16.567267
          2017-01-30
                         16.683533
          2017-01-31
                         16.789734
          Name: High, dtype: float64
              data['Open: 30 days rolling']=data['Open'].rolling(30).mean()
In [82]:
In [83]:
              data.head()
Out[83]:
                        Open
                                  High
                                             Low
                                                     Close Adj Close
                                                                       Volume Open: 30 days rolling
               Date
           2017-01-03 14.324000 14.688667
                                        14.064000
                                                 14.466000 14.466000
                                                                     88849500
                                                                                            NaN
           2017-01-04 14.316667 15.200000 14.287333 15.132667 15.132667
                                                                     168202500
                                                                                            NaN
           2017-01-05 15.094667 15.165333 14.796667
                                                                     88675500
                                                                                            NaN
                                                 15.116667 15.116667
           2017-01-06 15.128667 15.354000 15.030000
                                                 15.267333 15.267333
                                                                     82918500
                                                                                            NaN
           2017-01-09 15.264667 15.461333 15.200000 15.418667 15.418667
                                                                      59692500
                                                                                            NaN
```

```
In [85]: 1 data[['Open','Open: 30 days rolling']].plot(figsize=(15,6))
2 # we can see that smoothing has been done
```

Out[85]: <AxesSubplot:xlabel='Date'>

