1 Find the normalization factor A, assuming that the network has a power law degree distribution with $2 < \gamma < 3$, with minimum degree k_min and maximum degree k max.

From the textbook, we know that

$$C = \frac{1 - \gamma}{k_{max}^{1 - \gamma} - k_{min}^{1 - \gamma}}$$

Also applying the normalization condition to q_k, and substituting p_k into the equation, we obtain

$$\int_{k_{min}}^{k_{max}} AkCk^{-\gamma}dk = 1$$

$$AC \int_{k_{min}}^{k_{max}} k^{1-\gamma}dk = 1$$

$$AC \left(\frac{k_{max}^{2-\gamma} - k_{min}^{2-\gamma}}{2-\gamma}\right) = 1$$

$$AC \int_{k_{min}}^{k_{max}} k^{1-\gamma}dk = 1$$

Solve for A, making sure to substitute the C value and simplify

$$A = \frac{(2-\gamma)(k_{max}^{1-\gamma} - k_{min}^{1-\gamma})}{(1-\gamma)(k_{max}^{2-\gamma} - k_{min}^{2-\gamma})}$$

2 In the configuration model q_k is also the probability that a randomly chosen node has a neighbor with degree k. What is the average degree of the neighbors of a randomly chosen node?

We want to find the average, or expected, value of k in respect to q_k. We denote this k as <k_q> and substitute the values for q_k and then p_k in the continuous expectation formula

$$< k_q > = \int_{k_{min}}^{k_{max}} kAkCk^{-\gamma}dk$$

$$< k_q > = AC \int_{k_{min}}^{k_{max}} k^{2-\gamma}dk$$

Substitute in the values for A and for C and solve the integral

$$\langle k_q \rangle = \frac{(2-\gamma)(k_{max}^{3-\gamma} - k_{min}^{3-\gamma})}{(3-\gamma)(k_{max}^{2-\gamma} - k_{min}^{2-\gamma})}$$

3 Calculate the average degree of the neighbors of a randomly chosen node in a network with $N = 10^4$, \gamma= 2.3, k_min= 1 and k_max= 1000. Compare the result with the average degree of the network, $\langle k \rangle$.

Substitute the given values into the equation for <k_q>

61.23431879119234

Use the textbook equation and substitute the value for C to find the equation for <k>

$$< k > = \frac{1 - \gamma}{k_{max}^{1 - \gamma} - k_{min}^{1 - \gamma}} \cdot \frac{(k_{max}^{2 - \gamma} - k_{min}^{2 - \gamma})}{(2 - \gamma)}$$

Substitute the given values into the equation for <k>

3.78827590390276