- ◆两周一次实验
- ◆两周一次作业(偶尔是1周)和之前作业讲解

第二讲 典型组合逻辑部件

- ◆译码器和编码器
- ◆多路选择器和多路分配器
- **◆半加器和全加器**

2 典型组合逻辑部件

- ◆大型的复杂数字系统通常采用层次化、模块化方式构建
- ◆数字系统由基本组合逻辑元件和时序逻辑元件相互连接而构建
- ◆组合逻辑元件的基本功能有译码、选择、比较、运算、缓存并传送等
- ◆可用不同方法描述和说明组合电路的功能或行为
 - 真值表:可使用只读存储器 (ROM) 来实现,但效率较低
 - 两级逻辑表达式:可采用分立SSI门电路来实现
 - 直观功能表述:用提供单一功能的逻辑构件来实现,如译码器、 编码器、加法器、比较器等

- ◆译码器 (decoder): 一种多输入、多输出的组合电路。
 - 电路功能反映输入编码与输出编码之间的映射关系
 - 最简单的译码器输入和输出关系是: 若输入的二进制编码值是
 - x,则第x条输出线为1,其余输出全为0
 - 可以通过使能端EN来控制

■ n-2ⁿ译码器

○ 输入: n位二进制编码

○ 输出: 2ⁿ中取1码

■ 例如:

○ 2-4译码器

○ 3-8译码器

○ 4-16译码器

例1: 2-4译码器芯片74X139

- ◆输出端高电平有效,表示选中 对应输入信号的最小项
- ◆通过使能端EN (Enable) 禁 止或实现相应的功能
- ◆EN=0时, 输出为全0

x表示该输入任意,即任意值

如, $Y2=EN\cdot A1\cdot \overline{A0}=EN\cdot m_2$

例2: 3-8译码器电路

I ₀ I ₁ I ₂	<i>O</i> ₀	01	<i>O</i> ₂	<i>O</i> ₃	<i>O</i> 4	<i>O</i> 5	<i>O</i> ₆	<i>O</i> 7
0 0 0	1	0	0	0	0	0	0	0
0 0 1	0	1	0	0	0	0	0	0
0 1 0	0	0	1	0	0	0	0	0
0 1 1	0	0	0	1	0	0	0	0
1 0 0	0	0	0	0	1	0	0	0
1 0 1	0	0	0	0	0	1	0	0
1 1 0	0	0	0	0	0	0	1	0
1 1 1	0	0	0	0	0	0	0	1

输入从高到低位: I0, I1, I2 谁是最高位, 谁是最低位, 不能弄错

输出:

O0有效,代表输入为0... O7有效,代表输入为7

2.1 译码器 (了解即可)

例2: 3-8译码器芯片 74X138

- ◆输出端低电平有效(加O,变量名中加 L),对应输入信号的最大项
- ◆有3个使能控制端

G1、G2A L、G2B L

74 系列是德州仪器公司生产的中小规模集成电路芯片

2.1 译码器 (了解即可)

74X138的功能表

		Inputs							Out	puts			2
G1	G2A_L	G2B_L	С	В	Α	Y7_L	Y6_L	Y5_L	Y4_L	Y3_L	Y2_L	Y1_L	Y0_L
0	Х	Х	X	X	Х	1	1	1	1	1	1	1	1
X	1	X	X	X	X	1	1	1	1	1	1	1	1
X	X	1	X	X	X	1	1	1	1	1	1	1	1
1	0	0	0	0	0	1	1	1	1	1	1	1	0
1	0	0	0	0	1	1	1	1	1	1	1	0	1
1	0	0	0	1	0	1	1	1	1.	1.	0	1	1
1	0	0	0	1	1	1	1	1	1	0	1	1	1
1	0	0	1	0	0	D #	1	1	0	1 1 1	1	1	1
1	0	0	1	0		M_6	1	0	1	1	1	1	1
1	0	0	1	1	0	1	0	1	1	1	1	1	1
1	0	0	1	1	1	0	1	1	1	1	1	1	1

 $EN=\overline{G1}+G2A_L+G2B_L$

例: Y6_L=EN+ \overline{C} + \overline{B} +A

2.1 译码器 (了解即可)

例2: 七段显示译码器(数码管)

每段是一个LED (发光二极管), 通过控制其亮和灭,可得到数字 或字母等符号的形状

共阳极,输入为低电平二极管导通; 共阴极,输入为高电平二极管导通。

◆输入信号: 4位二进制编码

◆输出: 七段码 (的驱动信号) a ~ g 假设共阴极,即 1-亮; 0-灭

◆七段数字 显示译码 器真值表 ——a-g这 七个信号 各自对应 的七张真 值表合并 得到右表

> 从高到低位: A3A2A1A0

	А3	A2	A1	A0	a	b	С	d	е	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	0	0	1	1
A	1	0	1	0	1	1	1	0	1	1	1
b	1	0	1	1	0	0	1	1	1	1	1
C	1	1	0	0	1	0	0	1	1	1	0
d	1	1	0	1	0	1	1	1	1	0	1
E	1	1	1	0	1	0	0	1	1	1	1
F	1	1	1	1	1	0	0	0	1	1	1

◆根据显示需要,考虑是否使用A~F输入信号 以下是输出信号a的卡诺图

A~F输入信号作为无关项 (最终输入不应该出现A-F)

 $a=A3+A1+A2A0+\overline{A2} \ \overline{A0}$ $a=A3+A1+A2\odot A0$

A~F输入信号作为有效项

A1A0 A3A2	00	01	11	10
00	1	0	1	1
01	0	1	1	1
11	0	1	1	1
10	1	1	0	1

$$a=A2A0+\overline{A2} \overline{A0} + A1 \cdot \overline{A0} + \overline{A3} \cdot A1 + A3 \cdot \overline{A2} \cdot \overline{A1}$$

2.1 编码器

◆编码器encoder:译码器的反函数电路 即输出是输入信号的二进制编码

- 最常见是2ⁿ-n编码器,也称为 二进制编码器。
 - 。 2n个输入端
 - o n个输出端
- 分类:
 - 互斥(唯一输入)编码器
 - **优先级编码器**

2.1 互斥编码器

◆3 位二进制编码器 (8-3 编码器)

I0, I1... I7分别代表输入值为0~7 编码结果从高到低位: O0, O1, O2

·输入I₀~I₇是一组互斥变量,每次只有一个输入端I_i为1, 其余都为0,输出为i的二进制编码。

	<i>O</i> 0	<i>O</i> 1	02
I ₀	0	0	0
<i>I</i> 1	0	0	1
<i>I</i> 2	0	1	0
<i>I</i> 3	0	1	1.
<i>I</i> 4	1	0	0
<i>I</i> 5	1	0	1
<i>I</i> 6	1	1	0
I6 I7	1	1	1

a) 编码器符号

b) 编码器真值表 (相当于三个真值表)

c) 编码器电路图 (三个电路图的合体)

2.1 优先权编码器

◆3 位优先权编码器

编码结果从高到低位: O0, O1, O2

- ·多个输入可同时为1,但只对优先级最高的输入进行编码输出
- •假定优先级顺序为I0 > I1 > I2 > I3 > I4 > I5 > I6 > I7, 则:

I ₀	I ₁ ·	I2	I3	<i>I</i> 4	I5	<i>I</i> 6	<i>I</i> 7		<i>O</i> 0	01	<i>O</i> 2·
1	Х	х	х	Х	Х	Х	х	1	0	0	0
0	1	х	х	х	Х	X	Х		0	0	1
0	0	1	х	х	Х	X	х		0	1	0
0	0	0	1	X	Х	X	х		0	1	1
0	0	0	0	1	Х	Х	Х		1	0	0
0	0	0	0	0	1	Х	х		1	0	1
0	0	0	0	0	0	1	х		1	1	0
0	0	0	0	0	0	0	1		1	1	1
Τ											

优先权编码器逻辑电路图

2.2 多路选择器

- ◆2-<mark>路选择器</mark>有两个输入端和一个输出端,有一个控制端,用于控制 选择哪一路输出
- ◆在计算机中, 2-路选择器的每个输入、输出端通常都有n位

2-路选择器符号

一位2-路选择器逻辑电路

2.2 多路选择器

◆4-路选择器

◆一位4-路选择器的实现

两级门电路

多层次级联

真值表

S0 S1	F
0 - 0	A
0 - 1	В
1. 0.	C
1 1	D

三态门电路

2.2 多路选择器的应用

- ◆可以基于多路选择器实现组合逻辑电路的功能
- ◆例1:基于多路选择器实现某组合逻辑电路的功能(可用如下 真值表描述)

A	В	F
0	0 ·	0
0	1	1
1	0	1
1	1	0

真值表

用一个4-路选择器实现

用一个2-路选择器 和一个非门实现

2.2 多路分配器

- ◆多路分配器 (demultiplexer) : 把唯一的输入信号发送到多个输出端中的一个。从哪一个输出端送出输入信号,取决于控制端。 简写为DMUX或DEMUX
- **◆4-路分配器的符号和真值表**

四路分配器的符号

四路分配器真值表

S0 S1	D0	D1	D2	D3
0 0	D	0	0	0 ·
0 1	0	D	0	0
1 0	0	0	D	0
1 1	0	0	0	D

2.2 多路选择器和多路分配器

◆多路分配器常与多路选择器联用,以实现多通道数据的分时传送。

2.3 半加器

◆半加器 (Half Adder, 简称HA): 仅考虑加数和被加数,不考虑低位来的进位

辅	入	辅	计出
被加	加 数	和数	进 位
_ A	В	5	CO
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$S = \overline{A}B + A\overline{B} = A \oplus B$$

$$CO = A \cdot B$$

2.3 全加器

◆全加器 (Full Adder, 简称FA)

输入为加数、被加数和低位进位Cin,输出为和F、进位Cout

真值表

A	В	Cin	F	Cout
0	0	0	0	0 -
0	0	1	1	0.
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

 $F=A\oplus B\oplus Cin$ Cout= $A\bullet B+A\bullet Cin+B\bullet Cin$

全加器逻辑电路图

第三讲 组合逻辑部件时序分析

- **◆传输延迟和最小延迟**
- ◆竞争冒险

3 组合逻辑电路时序分析

- ◆信号通过连线和电路元件时会有一定时间的延迟 (Delay)
- ◆电路的延迟取决于电路内部的设计及外部特性,影响因素包括但不限于:
 - 连线的长短、元件的数量
 - 电路制造工艺、工作电压
 - 环境噪声、温度等外在条件
 - 高低电平的转换过渡时间

因此,任何组合逻辑电路从输入信号的改变,到随之引起的输出信号的改变,都有一定时间的延迟

- ◆ 通常用<mark>时序图</mark>反映电路的延迟
 - 下降沿延迟t_{pHL}: 输入变化引起相应输出从高到低变化的时间
 - ·上升沿延迟tplH:输入变化引起相应输出从低到高变化的时间
- ◆逻辑门电路具有最大延迟和最小延迟时序特征
- ◆通常取信号转换时间中间点来测量延迟时间

反相器电路的时序图反映了其电路延迟情况

◆组合逻辑电路的时序特征主要包括传输延迟 (propagation delay) 和最小延迟 (contamination delay)

· 传输延迟Tpd: 从输入端的变化开始到<mark>所有</mark>输出端得到最终稳定的信号所需的最长时间

•最小延迟Tcd:从输入端的变化开始到任何一个输出开始发生改变所需的最短时间

组合逻辑电路C的传输延迟 T_{pd} 和最小延迟 T_{cd}

- ◆关键路径: 一个组合逻辑电路在输入和输出之间经过的最长路径
 - 传输延迟就是关键路径上所有元件的传输延迟之和
 - 最小延迟就是最短路径上所有元件的最小延迟之和

例: 假定所有逻辑门电路的传输延迟和最小延迟分别为90ps和60ps, 计算下图中组合逻辑电路的传输延迟和最小延迟。

关键路径由哪些结点和逻辑门组成? 最短路径呢?

- ◆关键路径:一个组合逻辑电路在输入和输出之间经过的最长路径
 - 传输延迟就是关键路径上所有元件的传输延迟之和
 - 最小延迟就是最短路径上所有元件的最小延迟之和

例: 假定所有逻辑门电路的传输延迟和最小延迟分别为90ps和60ps, 计算下图中组合逻辑电路的传输延迟和最小延迟。

传输延迟 T_{pd} 为3级门传播延迟之和,即90psx3=270ps最小延迟 T_{cd} 为2级门最小延迟之和,即60psx2=120ps

3.2 竞争冒险

- ◆如果存在某个输入信号经过两条 或两条以上的路径作用到输出端, 由于各路径延迟不同,因而该输 入信号对输出端会发生先后不同 的影响,该现象称为竞争 (race)
- ◆由于竞争的存在,在输入信号变化的瞬间,输出端可能会出现不正确的尖峰信号,这种信号称为毛刺(glitch)
- ◆出现毛刺的电路称为存在冒险 (hazard) 或竞争冒险
- ◆可通过低通滤波或增加冗余项来 修改逻辑设计等方式避免毛刺

第3章总结

- ◆数字逻辑电路由若干元件(可以是一个电路)和若干结点互连而成
- ◆组合逻辑电路的输出值仅依赖于当前输入值
- ◆组合逻辑电路可以是两级电路或多级电路,两级电路的传输时间短, 但占用集成电路物理空间更多,需进行时空权衡
- ◆组合逻辑电路设计:功能分析-列表-化简-逻辑表达式-画图-评价
- ◆ 无关项指输出取值可任意的项,真值表中用d表示,可用于化简
- **◆非法值**指同时被高、低电平驱动的输出结点的值。
- ◆高阻态是三态门输出结点的一种非正常逻辑态,相当于"断开"
- ◆典型组合逻辑部件:译码/编码器、多路选择/分配器、半加/全加器
- ◆传输延迟: 关键路径上所有元件的传输延迟之和
- ◆最小延迟:最短路径上所有元件的最小延迟之和
- ◆竞争、冒险、毛刺:不同路径延迟作用在同一输出端而引起

作业: 习题3、4、6、7、9、11。提交截止日期: 10月16日(周日)