$$\bullet \ \mathsf{H} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

H matrice kxn

Trouver y tels que

- * Hy =m
- * distance de Hamming (x,y) est la plus faible possible (dans le corps F^2)
- => Hy=m il y a 2^{n-k} y possibles (projection, de y sur l'espace engendré par H de dimension k)
- => Pour trouver y qui est le plus proche de x on construit un treillis

• H=
$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} \qquad x = (1 \ 1 \ 0 \ 0) \\ m = (1 \ 1 \ 1)$$

• Une modification naïve conduirait à $d_h(x,y) = 3$

•
$$H = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$
 => $H = [h1 \ h2 \ h3 \ h4]$; $x = (1100)$
• $s0 = 0$ 0 $si \ y1 = 0$ 0 $s1 = s0 \oplus (y1 \times h1)$ $d_h(y_1, x_1) = 1$
• $si \ y1 = 1$
• 0 0 $s1 = s0 \oplus (y1 \times h1)$ $d_h(y_1, x_1) = 0$

$$\tilde{h} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \quad \text{pour n=6 w=3}$$

$$H = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ & & 1 & 0 & 1 \end{bmatrix}$$

$$X = 0 0 1 1 0 1$$

Rejet des chemins convergent vers un même état et présentant une plus grande distance de Hamming

Si m=[1 0] seulement on a deux choix pour Y:

Rejet des chemins convergent vers un même état et présentant une plus grande distance de Hamming

$$Y = 0 0 1$$

Si m=[1 0] seulement on a deux choix pour Y avec distance de Hamming = 1

Rejet des chemins convergent vers un même état et présentant une plus grande distance de Hamming