Claim Listing:

The updated claim listing below will replace all prior versions and listings of claims in the application.

1. (Previously presented) A compound of formula (XII)

wherein R⁷ is H, alkyl, heteroalkyl, aryl, or -CH₂-C₆H₄OR¹⁴;

R⁸ is H, alkyl, heteroalkyl, or aryl;

R⁹ is H, alkyl, heteroalkyl, aryl, or -C₆H₄OR¹⁵;

 R^{10} is -H, -CH₃, or -CH(CH₃)₂; and

R¹¹, R¹⁴, and R¹⁵ are each independently a protecting group that is removable by an enzyme;

wherein the enzyme is an esterase or phosphatase; with the proviso that R¹¹, R¹⁴, and R¹⁵ are not all acetyl groups.

2. (Original) The compound of claim 1, wherein $R^7 \text{ is -CH}_2\text{-C}_6H_5, \text{ naphthyl, -CH}_2\text{-C}_6H_4OH, -CH}_2\text{-C}_6H_4F, \text{ or -CH}_2\text{-C}_6H_4OR^{14};}$

 R^8 is $-CH_2C_6H_5$, $-CH_2C_6H_{11}$, $-CH_2C_5H_9$, or $-(CH_2)_3NHC(=NH)NH_2$; and R^9 is phenyl, indolyl, $-C_6H_4OH$, $-C_6H_4NH_2$, $-C_6H_4F$, or $-C_6H_4OR^{15}$.

- 3. (Previously presented) The compound of claim 1, wherein -OR¹¹, -OR¹⁴, and -OR¹⁵ are each independently esters.
 - (Original) The compound of claim 1, wherein
 R¹¹ is acetyl; and

R¹⁴ and R¹⁵ are independently butyryl, acetoxymethyl, propanoyloxymethyl, butyryloxymethyl, or pivaloyloxymethyl.

5. (Original) The compound of claim 1, wherein

R¹¹ is butyryl, acetoxymethyl, propanoyloxymethyl, butyryloxymethyl, or pivaloyloxymethyl; and

R¹⁴ and R¹⁵ are independently acetyl, butyryl, acetoxymethyl, propanoyloxymethyl, butyryloxymethyl, or pivaloyloxymethyl.

6. (Previously presented) A compound of formula (XII)

$$R^{10}$$
 R^{10}
 R

wherein R⁷ is H, alkyl, heteroalkyl, aryl, or -CH₂-C₆H₄OR¹⁴;

R⁸ is H, alkyl, heteroalkyl, or aryl;

R⁹ is H, alkyl, heteroalkyl, aryl, or -C₆H₄OR¹⁵;

 R^{10} is -H, -CH₃, or -CH(CH₃)₂; and

R¹¹, R¹⁴, and R¹⁵ are each independently a protecting group that is removable by an enzyme;

wherein the enzyme is an esterase or phosphatase; and wherein the concentration of the compound in a mixture comprising F12 medium and 10% fetal bovine serum at 22°C is reduced by less than 50% after 45 minutes.

7. (Original) The compound of claim 6, wherein $R^7 \text{ is -CH}_2\text{-}C_6H_5, \text{ naphthyl, -CH}_2\text{-}C_6H_4OH, -CH}_2\text{-}C_6H_4F, \text{ or -CH}_2\text{-}C_6H_4OR^{14};}$

 R^8 is $-CH_2C_6H_5$, $-CH_2C_6H_{11}$, $-CH_2C_5H_9$, or $-(CH_2)_3NHC(=NH)NH_2$; and R^9 is phenyl, indolyl, $-C_6H_4OH$, $-C_6H_4NH_2$, $-C_6H_4F$, or $-C_6H_4OR^{15}$.

8. (Previously Presented) The compound of claim 6, wherein -OR¹¹, -OR¹⁴, and -OR¹⁵ are each independently esters.

- 9. (Original) The compound of claim 6, wherein R¹¹, R¹⁴, and R¹⁵ are independently acetyl, butyryl, acetoxymethyl, propanoyloxymethyl, butyryloxymethyl, or pivaloyloxymethyl.
 - 10. (Previously presented) A compound of formula (XII)

R⁸ is H, alkyl, heteroalkyl, or aryl;

R⁹ is H, alkyl, heteroalkyl, aryl, or -C₆H₄OR¹⁵;

 R^{10} is -H, -CH₃, or -CH(CH₃)₂; and

R¹¹, R¹⁴, and R¹⁵ are each independently a protecting group that is removable by an enzyme;

wherein the enzyme is an esterase or phosphatase; and
wherein the removal of at least one protecting group that is removable
by the enzyme provides a parent compound; and

wherein the time necessary for the concentration of the compound in a mixture comprising F12 medium and 10% fetal bovine serum at 22°C to be reduced by 50% is greater than the time necessary for the concentration of the parent compound in a mixture comprising F12 medium and 10% fetal bovine serum at 22°C to be reduced by 50%.

11. (Previously presented) The compound of claim 10, wherein the removal of at least two protecting groups that are removable by the enzyme provides the parent compound.

- 12. (Previously presented) The compound of claim 10, wherein the removal of all protecting groups that are removable by the enzyme provides the parent compound.
- 13. (Original) The compound of claim 10, wherein $R^7 \text{ is -CH}_2\text{-}C_6H_5, \text{ naphthyl, -CH}_2\text{-}C_6H_4OH, -CH}_2\text{-}C_6H_4F, \text{ or -CH}_2\text{-}C_6H_4OR^{14};}$ $R^8 \text{ is -CH}_2C_6H_5, \text{-CH}_2C_6H_{11}, \text{-CH}_2C_5H_9, \text{ or -(CH}_2)_3NHC(=NH)NH}_2; \text{ and } R^9 \text{ is phenyl, indolyl, -C}_6H_4OH, -C}_6H_4NH}_2, \text{-C}_6H_4F, \text{ or -C}_6H_4OR^{15}.}$
- 14. (Previously presented) The compound of claim 10, wherein -OR¹¹, -OR¹⁴, and -OR¹⁵ are each independently esters.
- 15. (Original) The compound claim 10, wherein R¹¹, R¹⁴, and R¹⁵ are independently acetyl, butyryl, acetoxymethyl, propanoyloxymethyl, butyryloxymethyl, or pivaloyloxymethyl.
 - 16. (Previously presented) A compound of formula (XIII) or (XIV)

$$R^{11}O$$
 R^{7}
 R^{13}
 R^{12}
 R^{12}
 $R^{11}O$
 R^{7}
 R^{8}
 R^{13}
 R^{12}
 R^{12}
 R^{13}

$$\mathbb{R}^{11}$$
 \mathbb{R}^{7} \mathbb{R}^{8} \mathbb{R}^{12} \mathbb{R}^{12} \mathbb{R}^{12} \mathbb{R}^{13}

R⁸ is H, alkyl, heteroalkyl, or aryl;

R¹² and R¹³ are independently -H, -OH, alkyl, heteroalkyl, aryl, or -OR¹⁶; n is 0, 1, or 2; and

R¹¹, R¹⁴, and R¹⁶ are each independently a protecting group that is removable by an enzyme;

wherein the enzyme is an esterase or phosphatase.

17. (Original) The compound of claim 16, wherein $R^7 \text{ is -CH}_2\text{-}C_6H_5, \text{ naphthyl, -CH}_2\text{-}C_6H_4OH, -CH}_2\text{-}C_6H_4F, \text{ or -CH}_2\text{-}C_6H_4OR^{14}; \text{ and} \\ R^8 \text{ is -CH}_2C_6H_5, -CH_2C_6H_{11}, -CH_2C_5H_9, \text{ or -(CH}_2)_3NHC(=NH)NH}_2.$

- 18. (Previously presented) The compound of claim 16, wherein -OR¹¹, -OR¹⁴, and -OR¹⁵ are each independently esters.
- 19. (Original) The compound of claim 16, wherein R¹¹, R¹⁴, and R¹⁶ are independently acetyl, butyryl, acetoxymethyl, propanoyloxymethyl, butyryloxymethyl, or pivaloyloxymethyl.
 - 20. (Original) The compound of claim 16, wherein n is 1.
 - 21. (Original) A composition, comprising: the compound of claim 1 in solution.

- 22. (Original) The composition of claim 21, wherein the solution is an aqueous solution.
- 23. (Original) The composition of claim 21, wherein the solution comprises DMSO or alcohol.
 - 24. (Original) A composition, comprising: the compound of claim 6, in solution.
- 25. (Original) The composition of claim 24, wherein the solution is an aqueous solution.
- 26. (Original) The composition of claim 24, wherein the solution comprises DMSO or alcohol.
 - 27. (Original) A composition, comprising: the compound of claim 10, in solution.
- 28. (Original) The composition of claim 27, wherein the solution is an aqueous solution.
- 29. (Original) The composition of claim 27, wherein the solution comprises DMSO or alcohol.
 - 30. (Original) A composition, comprising: the compound of claim 16, in solution.
- 31. (Original) The composition of claim 30, wherein the solution is an aqueous solution.
- 32. (Original) The composition of claim 30, wherein the solution comprises DMSO or alcohol.
- 33. (Previously presented) A protected luminophore, which is a protected coelenterazine that includes an imidazolone oxygen protected with a protecting group that is removable by an enzyme;

wherein the protecting group together with the imidazolone oxygen to which it is attached, form an ester or an ether;

wherein subsequent removal of said protecting group provides a parent coelenterazine; and

wherein the time necessary for the concentration of the protected coelenterazine in a mixture comprising F12 medium and 10% fetal bovine serum at 22°C to be reduced by 50% is greater than the time necessary for the concentration of the parent coelenterazine in a mixture comprising F12 medium and 10% fetal bovine serum at 22°C to be reduced by 50%.

34.-38. (Canceled)

39. (Withdrawn) A method of measuring the enzymatic activity of a luminogenic protein comprising:

contacting a luminogenic protein, a deprotecting enzyme, and a protected luminophore in solution to form a composition; and detecting light produced from the composition.

- 40. (Withdrawn) The method of claim 39, wherein the luminogenic protein is *Renilla* luciferase.
- 41. (Withdrawn) The method of claim 39, wherein the protected luminophore is a compound of formula (XII)

$$R^{10}$$
 R^{10}
 R

wherein R⁷ is H, alkyl, heteroalkyl, aryl, or -CH₂-C₆H₄OR¹⁴;

R⁸ is H, alkyl, heteroalkyl, or aryl;

R⁹ is H, alkyl, heteroalkyl, aryl, or -C₆H₄OR¹⁵;

 R^{10} is -H, -CH₃, or -CH(CH₃)₂; and

 R^{11} , R^{14} , and R^{15} are each independently a protecting group that is removable by an enzyme.

- $\begin{array}{lll} & \mbox{42.} & \mbox{(Withdrawn) The method of claim 41, wherein} \\ & \mbox{R^7 is $-CH_2$-C_6H_5, naphthyl, $-CH_2$-C_6H_4$OH, $-CH_2$-C_6H_4$F, or $-CH_2$-C_6H_4$OR14; \\ & \mbox{$R^8$ is $-CH_2$C$_6$H$_5, $-CH_2$C$_6$H$_{11}, $-CH_2$C$_5$H$_9, or $-(CH_2)$_3$NHC(=NH)NH$_2; and R^9 is phenyl, indolyl, $-C$_6H_4$OH, $-C$_6H_4NH_2, $-C$_6H_4$F, or $-C$_6H_4$OR15. \\ \end{array}$
- 43. (Withdrawn) The method of claim 41, wherein -OR¹¹, -OR¹⁴, and -OR¹⁵ are each independently esters.
- 44. (Withdrawn) The method of claim 41, wherein R¹¹, R¹⁴, and R¹⁵ are independently acetyl, butyryl, acetoxymethyl, propanoyloxymethyl, butyryloxymethyl, or pivaloyloxymethyl.
- 45. (Withdrawn) The method of claim 39, wherein the protected luminophore is a compound of formula (XIII) or (XIV)

$$R^{11}O$$
 R^{7}
 R^{13}
 R^{12}
 R^{12}
 $R^{11}O$
 R^{7}
 R^{8}
 R^{13}
 R^{12}
 R^{13}

$$R^{11}O$$
 R^{7}
 R^{13}
 R^{12}
 R^{12}
 R^{13}
 R^{13}
 R^{12}
 R^{13}

R⁸ is H, alkyl, heteroalkyl, or aryl;

 R^{12} and R^{13} are independently -H, -OH, alkyl, heteroalkyl, aryl, or -OR 16 ; n is 0, 1, or 2; and

 $\mathsf{R}^{11},\,\mathsf{R}^{14},\,\mathsf{and}\,\,\mathsf{R}^{16}$ are each independently a protecting group that is removable by an enzyme.

 $46. \qquad \text{(Withdrawn) The method of claim 45, wherein} \\ R^7 \text{ is -CH}_2\text{-C}_6\text{H}_5, \text{ naphthyl, -CH}_2\text{-C}_6\text{H}_4\text{OH, -CH}_2\text{-C}_6\text{H}_4\text{F, or -CH}_2\text{-}} \\ C_6\text{H}_4\text{OR}^{14}; \text{ and} \\ R^8 \text{ is -CH}_2\text{C}_6\text{H}_5, \text{-CH}_2\text{C}_6\text{H}_{11}, \text{-CH}_2\text{C}_5\text{H}_9, \text{ or -(CH}_2)}_3\text{NHC}(=\text{NH})\text{NH}_2.} \\$

- 47. (Withdrawn) The method of claim 45, wherein -OR¹¹, -OR¹⁴, and -OR¹⁵ are each independently esters.
- 48. (Withdrawn) The method of claim 45, wherein R¹¹, R¹⁴, and R¹⁶ are independently acetyl, butyryl, acetoxymethyl, propanoyloxymethyl, butyryloxymethyl, or pivaloyloxymethyl.
 - 49. (Withdrawn) The method of claim 45, wherein n is 1.
- 50. (Withdrawn) The method of claim 39, wherein the composition comprises a cell.

- 51. (Withdrawn) The method of claim 39, wherein the composition comprises a cell which contains the deprotecting enzyme.
- 52. (Withdrawn) The method of claim 51, wherein detecting light produced from the composition indicates the location of the deprotecting enzyme in a cell.
- 53. (Withdrawn) The method of claim 39, wherein the composition comprises a cell lysate.
- 54. (Withdrawn) The method of claim 39, wherein the deprotecting enzyme is an esterase.
- 55. (Withdrawn) The method of claim 39, wherein the solution is an aqueous solution.
- 56. (Withdrawn) The method of claim 39, wherein the solution comprises DMSO.
- 57. (Withdrawn) The method of claim 39, wherein the protected luminophore is a protected coelenterazine;

wherein the enol group has been converted to an ester or an ether comprising a protecting group that is removable by an enzyme.

- 58.-62. (Canceled)
- 63. (Withdrawn-Previously presented) The method of claim 62, wherein the protected luminophore is a protected coelenterazine;

wherein the enol group has been converted to an ester or an ether comprising an group that is removable by the non-luminogenic enzyme.

64. (Withdrawn) The method of claim 62, wherein the protected luminophore is a compound of formula (XII).

R⁸ is H, alkyl, heteroalkyl, or aryl;

 R^9 is H, alkyl, heteroalkyl, aryl, or $-C_6H_4OR^{15}$;

 R^{10} is -H, -CH₃, or -CH(CH₃)₂; and

R¹¹, R¹⁴, and R¹⁵ are each independently a protecting group that is removable by an enzyme that are removable by the non-luminogenic enzyme.

65. (Withdrawn) The method of claim 62, wherein the protected luminophore is a compound of formula (XIII) or (XIV)

$$R^{11}O$$
 R^{7}
 R^{13}
 R^{12}
 R^{12}
 R^{13}
 R^{13}
 R^{12}
 R^{13}
 R^{13}
 R^{13}

$$R^{11}O$$
 R^{7}
 R^{13}
 R^{12}
 R^{12}
 R^{13}
 R^{12}
 R^{13}

R⁸ is H, alkyl, heteroalkyl, or aryl;

 R^{12} and R^{13} are independently -H, -OH, alkyl, heteroalkyl, aryl, or -OR 16 ; n is 0, 1, or 2; and

R¹¹, R¹⁴, and R¹⁶ are each independently protecting groups that are removable by the non-luminogenic enzyme.

66.-67. (Canceled)

- 68. (Previously presented) The compound of claim 1, wherein R¹¹, R¹⁴, and R¹⁵ are independently selected from the group consisting of an alkyl group containing from 1-20 carbon atoms and a heteroalkyl group containing from 1-20 carbon atoms.
- 69. (Previously presented) The compound of claim 1, wherein R¹¹, R¹⁴, and R¹⁵ are independently selected from the group consisting of an alkyl group containing from 1-15 carbon atoms and a heteroalkyl group containing from 1-15 carbon atoms.
- 70. (Previously presented) The compound of claim 1, wherein R¹¹, R¹⁴, and R¹⁵ are independently a heteroalkyl group containing from 1-20 carbon atoms, and wherein -OR¹¹, -OR¹⁴, and -OR¹⁵ are each independently an ester group or an ether group.
 - 71. (Previously presented) The compound of claim 10, wherein

- R¹¹, R¹⁴, and R¹⁵ are independently selected from the group consisting of an alkyl group containing from 1-20 carbon atoms and a heteroalkyl group containing from 1-20 carbon atoms.
- 72. (Previously presented) The compound of claim 10, wherein R¹¹, R¹⁴, and R¹⁵ are independently a heteroalkyl group containing from 1-20 carbon atoms, and wherein -OR¹¹, -OR¹⁴, and -OR¹⁵ are each independently an ester group or an ether group.
- 73. (Previously presented) The compound of claim 16, wherein R¹¹, R¹⁴, and R¹⁶ are independently selected from the group consisting of an alkyl group containing from 1-20 carbon atoms and a heteroalkyl group containing from 1-20 carbon atoms.
- 74. (Previously presented) The compound of claim 16, wherein R¹¹, R¹⁴, and R¹⁶ are independently a heteroalkyl group containing from 1-20 carbon atoms, and wherein -OR¹¹, -OR¹⁴, and -OR¹⁵ are each independently an ester group or an ether group.
- 75. (Withdrawn) The method of claim 41, wherein R¹¹, R¹⁴, and R¹⁵ are independently selected from the group consisting of an alkyl group containing from 1-20 carbon atoms and a heteroalkyl group containing from 1-20 carbon atoms.
- 76. (Withdrawn) The method of claim 41, wherein R¹¹, R¹⁴, and R¹⁵ are independently a heteroalkyl group containing from 1-20 carbon atoms, and comprising at least one of an ester group and an ether group.
- 77. (Withdrawn) The method of claim 45, wherein R¹¹, R¹⁴, and R¹⁶ are independently selected from the group consisting of an alkyl group containing from 1-20 carbon atoms and a heteroalkyl group containing from 1-20 carbon atoms.
 - 78. (Withdrawn) The method of claim 45, wherein

- R¹¹, R¹⁴, and R¹⁶ are independently a heteroalkyl group containing from 1-20 carbon atoms, and comprising at least one of an ester group and an ether group.
- 79. (Previously presented) The compound of claim 1, wherein the enzyme is selected from the group consisting of hydrolases, esterases; phosphatases, phosphodiesterases, glycosidases and proteases.
- 80. (Previously presented) The compound of claim 1, wherein the protecting group is selected from the group consisting of ester, ether, phosphoryl and glucosyl.
- 81. (Previously presented) The compound of claim 5, wherein $R^7 \text{ is -CH}_2\text{-C}_6H_5, \text{ naphthyl, -CH}_2\text{-C}_6H_4\text{OH, -CH}_2\text{-C}_6H_4\text{F, or -CH}_2\text{-}} \\ C_6H_4\text{OR}^{14}; \\ R^8 \text{ is -CH}_2\text{C}_6H_5, \text{-CH}_2\text{C}_6H_{11}, \text{-CH}_2\text{C}_5H_9, \text{ or -(CH}_2)_3\text{NHC}(=\text{NH})\text{NH}_2; \text{ and }} \\ R^9 \text{ is -C}_6H_4\text{OR}^{15}.$
 - 82. (Previously presented) The compound of claim 1 of the formula:

83. (Previously presented) The compound of claim 5, of the formula:

84. (Previously presented) A compound of the formula:

where R^{11} , and R^{15} are independently a heteroalkyl group containing from 1-20 carbon atoms, and wherein -OR¹¹, and -OR¹⁵ are each independently an ester group or an ether group.

- 85. (Previously presented) The compound of claim 84, wherein R¹¹ and R¹⁵ are each independently selected from the group consisting of acetyl, butyryl, acetoxymethyl, propanoyloxymethyl, butyryloxymethyl, pivaloyloxymethyl and t-butyryl.
 - 86. (Previously presented) A compound of formula (XII)

$$R^{10}$$
 R^{10}
 R

R⁸ is H, alkyl, heteroalkyl, or aryl;

R⁹ is H, alkyl, heteroalkyl, aryl, or -C₆H₄OR¹⁵;

 R^{10} is -H, -CH₃, or -CH(CH₃)₂; and

R¹¹, R¹⁴, and R¹⁵ are each independently selected from the group consisting of acetyl, butyryl, acetoxymethyl, propanoyloxymethyl, butyryloxymethyl, pivaloyloxymethyl and t-butyryl;

with the proviso that R¹¹, R¹⁴, and R¹⁵ are not all acetyl.

- 87. (Previously presented) The compound of claim 86, wherein R¹¹ is acetyl; and R¹⁴ and R¹⁵ are independently butyryl, acetoxymethyl, propanoyloxymethyl, butyryloxymethyl, or pivaloyloxymethyl.
- 88. (Previously presented) The compound of claim 86, wherein R¹¹ is butyryl, acetoxymethyl, propanoyloxymethyl, butyryloxymethyl, or pivaloyloxymethyl; and

R¹⁴ and R¹⁵ are independently acetyl, butyryl, acetoxymethyl, propanoyloxymethyl, butyryloxymethyl, or pivaloyloxymethyl.

89. (Previously presented) The compound of claim 86, wherein $R^7 \text{ is -CH}_2\text{-}C_6H_5, \text{ naphthyl, -CH}_2\text{-}C_6H_4OH, -CH}_2\text{-}C_6H_4F, \text{ or -CH}_2\text{-}C_6H_4OR^{14};}$ $R^8 \text{ is -CH}_2C_6H_5, -CH_2C_6H_{11}, -CH_2C_5H_9, \text{ or -(CH}_2)_3NHC(=NH)NH}_2; \text{ and } R^8 \text{ is -CH}_2C_6H_5, -CH}_2C_6H_{11}, -CH}_2C_5H_9, \text{ or -(CH}_2)_3NHC(=NH)NH}_2; \text{ and } R^8 \text{ is -CH}_2C_6H_5, -CH}_2C_6H_{11}, -CH}_2C_5H_9, \text{ or -(CH}_2)_3NHC(=NH)NH}_2; \text{ and } R^8 \text{ is -CH}_2C_6H_5, -CH}_2C_6H_{11}, -CH}_2C_5H_9, \text{ or -(CH}_2)_3NHC(=NH)NH}_2; \text{ and } R^8 \text{ is -CH}_2C_6H_5, -CH}_2C_6H_{11}, -CH}_2C_5H_9, \text{ or -(CH}_2)_3NHC(=NH)NH}_2; \text{ and } R^8 \text{ is -CH}_2C_6H_5, -CH}_2C_6H_{11}, -CH}_2C_5H_9, \text{ or -(CH}_2)_3NHC(=NH)NH}_2; \text{ and } R^8 \text{ is -CH}_2C_6H_5, -CH}_2C_6H_{11}, -CH}_2C_5H_9, \text{ or -(CH}_2)_3NHC(=NH)NH}_2; \text{ and } R^8 \text{ is -CH}_2C_6H_5, -CH}_2$

 R^9 is phenyl, indolyl, $-C_6H_4OH$, $-C_6H_4NH_2$, $-C_6H_4F$, or $-C_6H_4OR^{15}$.

90. (Previously presented) A compound of formula (XIII) or (XIV)

$$R^{11}O$$
 $R^{11}O$
 R^{13}
 R^{12}
 $R^{11}O$
 $R^{11}O$
 R^{7}
 $R^{11}O$
 R^{7}
 $R^{11}O$
 R^{7}
 R^{12}
 R^{12}
 R^{12}
 R^{13}
 R^{12}
 R^{13}
 R^{13}
 R^{12}
 R^{13}
 R^{14}
 R^{15}
 R^{15}

wherein R^7 is H, alkyl, heteroalkyl, aryl, or -CH₂-C₆H₄OR¹⁴;

R⁸ is H, alkyl, heteroalkyl, or aryl;

R¹² and R¹³ are independently -H, -OH, alkyl, heteroalkyl, aryl, or -OR¹⁶; n is 0, 1, or 2; and

R¹¹, R¹⁴, and R¹⁶ are each independently acetyl, butyryl, acetoxymethyl, propanoyloxymethyl, butyryloxymethyl, or pivaloyloxymethyl.