CSC 348 – Homework #5

Astrid Augusta Yu

May 13, 2020

Contents

1 Questions 1
2 Scratch Work 8

1 Questions

1.

Theorem 1. For all $n \in \mathbb{Z}^+$, 133 divides $11^{n+1} + 12^{2n-1}$

Proof. Let the sequence $a_n = 11^{n+1} + 12^{2n-1}$. We will first rewrite it recursively.

Base case.

$$a_1 = 11^{1+1} + 12^{2 \cdot 1 - 1}$$

$$= 11^2 + 12^1$$

$$= 133$$
(1)

Recursive step. We can derive the recursive step by transforming $a_{n+1} - a_n$ using the explicit definition of a_n .

$$a_{n+1} - a_n = 11^{n+2} + 12^{2n+1} - \left(11^{n+1} + 12^{2n-1}\right)$$

$$= 11 \cdot 11^{n+1} + 144 \cdot 12^{2n-1} - 11^{n+1} - 12^{2n-1}$$

$$= (11 - 1) \cdot 11^{n+1} + (144 - 1) \cdot 12^{2n-1}$$

$$= 10 \cdot 11^{n+1} + 143 \cdot 12^{2n-1}$$
(2)

We can further rearrange the equation like so:

$$a_{n+1} = a_n + 10 \cdot 11^{n+1} + 143 \cdot 12^{2n-1}$$

$$= a_n + 10 \cdot 11^{n+1} + 10 \cdot 12^{2n-1} + 133 \cdot 12^{2n-1}$$

$$= a_n + 10 \cdot (11^{n+1} + 12^{2n-1}) + 133 \cdot 12^{2n-1}$$
(3)

We can substitute the explicit definition of a_n into (3) like so:

$$a_{n+1} = a_n + 10a_n + 133 \cdot 12^{2n-1}$$

= 11a_n + 133 \cdot 12^{2n-1} (4)

Thus, we have our recursive definition of a_n :

$$a_1 = 133$$

$$a_{n+1} = 11a_n + 133 \cdot 12^{2n-1}$$
(5)

Now, we will use this to prove $133 \mid a_n$ by induction.

Base case. Consider when n = 1. By (5), $a_1 = 133$. Thus, $133 \mid a_1$ is equivalent to $133 \mid 133$, which is obviously true.

Inductive hypothesis. Consider when n = k. Suppose that $133 \mid a_k$. This implies that there exists some $i \in \mathbb{Z}$ such that $a_k = 133i$.

Inductive step. Consider when n = k + 1. By (5):

$$a_{k+1} = 11a_k + 133 \cdot 12^{2k-1} \tag{6}$$

By the inductive hypothesis, we can substitute $a_k = 133i$ in and rearrange:

$$a_{k+1} = 11 \cdot (133i) + 133 \cdot 12^{2k-1}$$

= 133 \cdot (11 \cdot i + 12^{2k-1}) (7)

Let $j = 11 \cdot i + 12^{2k-1}$. Then, $a_{k+1} = 133j$. Therefore, $133 \mid a_{k+1}$.

Thus, by the principle of mathematical induction, 133 | a_n , and 133 | $11^{n+1} + 12^{2n-1}$.

d(^_^)>

2.

Theorem 2. For all $n \in \mathbb{N}^+$ there exists $a \in \mathbb{N}_{odd}^+$ and $b \in \mathbb{N}$ such that $n = a \cdot 2^b$.

Proof. Base case. Consider n = 1. Select a = 1 and b = 0:

$$n = 1 = a \cdot 2^b = 1 \cdot 2^0 = 1 \tag{8}$$

Thus, the theorem applies for n = 1.

Additionally, consider n = 2. Select a = 1 and b = 1:

$$n = 2 = a \cdot 2^b = 1 \cdot 2^1 = 2 \tag{9}$$

Thus, the theorem applies for n=2.

Inductive hypothesis. Suppose that for all $1 \leq n < k$, there exists $a_n \in \mathbb{N}_{odd}^+$ and $b_n \in \mathbb{N}$ such that

$$n = a_n \cdot 2^{b_n} \tag{10}$$

Inductive step. Consider n = k.

Case 1. Consider the case when k is even. Let $i \in \mathbb{Z}$ such that k = 2i.

Since i < k, by the induction hypothesis, there exists some $2j + 1 \in \mathbb{N}_{odd}^+$ and $c \in \mathbb{N}$ such that

$$i = (2j+1) \cdot 2^c \tag{11}$$

Multiplying both sides by 2 yields a definition for k:

$$2i = k = 2 \cdot (2j+1) \cdot 2^{c}$$

$$= (2j+1) \cdot 2^{c+1}$$
(12)

Suppose a = 2j + 1 and b = c + 1. Therefore,

$$k = a \cdot 2^b \tag{13}$$

Thus, for all $n \in \mathbb{N}^+_{even}$ there exists $a \in \mathbb{N}^+_{odd}$ and $b \in \mathbb{N}$ such that $n = a \cdot 2^b$.

Case 2. Consider the case when k is odd.

$$k = k \cdot 1 = k \cdot 2^0 \tag{14}$$

Let a = k and b = 0. Thus,

$$k = a \cdot 2^b \tag{15}$$

Thus, for all $n \in \mathbb{N}_{odd}^+$ there exists $a \in \mathbb{N}_{odd}^+$ and $b \in \mathbb{N}$ such that $n = a \cdot 2^b$.

Since Case 1 and Case 2 are true, this covers all the cases for $n \in \mathbb{N}^+$.

Therefore, by the principle of strong mathematical induction, for all $n \in \mathbb{N}^+$ there exists $a \in \mathbb{N}_{odd}^+$ and $b \in \mathbb{N}$ such that $n = a \cdot 2^b$.

d(^_^)>

3.

Theorem 3. Let f_n be the nth Fibonacci number. For all $n \in \mathbb{Z}^+$, $\sum_{i=1}^n f_i^2 = f_n f_{n+1}$

Proof. Base case. Consider n = 1.

$$\sum_{i=1}^{1} f_i^2 = f_1^2 = 1^2 = 1 \tag{16}$$

$$f_1 f_2 = 1 \cdot 1 = 1 \tag{17}$$

Therefore, $\sum_{i=1}^{n} f_i^2 = f_n f_{n+1}$ for n = 1.

Inductive hypothesis. Suppose that for some $k \in \mathbb{Z}^+$,

$$\sum_{i=1}^{k} f_i^2 = f_k f_{k+1} \tag{18}$$

Inductive step. Consider the case when n = k + 1.

$$\sum_{i=1}^{k+1} f_i^2 = f_{k+1}^2 + \sum_{i=1}^{k} f_i^2 \tag{19}$$

By the inductive hypothesis, this expression is equivalent to

$$f_{k+1}^2 + f_k f_{k+1} = f_{k+1} \left(f_{k+1} + f_k \right) \tag{20}$$

By definition of the Fibonacci sequence, $f_{k+1} + f_k = f_{k+2}$. Substituting into the equation:

$$f_{k+1}f_{k+2} = f_{(k+1)}f_{(k+1)+1}$$
(21)

Therefore, for all $n \in \mathbb{Z}^+$, $\sum_{i=1}^n f_i^2 = f_n f_{n+1}$.

d(^_^)>

4.

Theorem 4. Let f_n be the nth Fibonacci number. For all $n \in \mathbb{Z}^+$, $\sum_{i=1}^n f_{2i-1} = f_{2n}$.

Proof. Base case. Consider n = 1.

$$\sum_{i=1}^{1} f_{2i-1} = f_{2\cdot 1-1} = f_1 = 1 \tag{22}$$

$$f_{2\cdot 1} = f_2 = 1 \tag{23}$$

Therefore, $n \in \mathbb{Z}^+$, $\sum_{i=1}^n f_{2i-1} = f_{2n}$ for n = 1.

Inductive hypothesis. Suppose that for some $k \in \mathbb{Z}^+$,

$$\sum_{i=1}^{k} f_{2i-1} = f_{2k} \tag{24}$$

Inductive step. Consider the case when n = k + 1.

$$\sum_{i=1}^{k+1} f_{2i-1} = f_{2(k+1)-1} + \sum_{i=1}^{k} f_{2i-1}$$

$$= f_{2k+1} + \sum_{i=1}^{k} f_{2i-1}$$
(25)

By the inductive hypothesis, this expression is equivalent to

$$f_{2k+1} + f_{2k} \tag{26}$$

By definition of the Fibonacci sequence, $f_{2k+1} + f_{2k} = f_{2k+2}$. Substituting into the equation:

$$f_{2k+2} = f_{2(k+1)} (27)$$

Therefore, for all $n \in \mathbb{Z}^+$, $\sum_{i=1}^n f_{2i-1} = f_{2n}$.

d(^_^)>

- 5. For each of the following definitions of a_n , show $(a_n)_{n=0}^3$
 - (a) (1, -2, 4, -8)
 - (b) (3, 3, 3, 3)
 - (c) (8, 11, 23, 71)
 - (d) (2,0,8,0)
- 6. For each of the following definitions of a_n , show $\sum_{n=0}^3 a_n$
 - (a) -5
 - (b) 12
 - (c) 113
 - (d) 10
- 7. Consider the sequence $a_i = i^2$.
 - (a) $(a_i)_{i=0}^3 = (0, 1, 4, 9)$
 - (b) $\sum_{i=0}^{3} a_i = (0, 1, 5, 14)$
 - (c) $s = (a_i)_{i=0}^n$ is a n+1 element sequence that looks like

$$(0,1,4,9,\ldots,(n-3)^2,(n-2)^2,(n-1)^2,n^2)$$

Assuming s is 1-indexed, the jth element of s is $(j-1)^2$.

- 8. $(a_n)_{n=0}^4 = (0, 2, 5, 33, 8589934593)$
- 9. (a)

Basis step
$$a_0 = 0$$

Recursive step $a_n = a_{n-1} + 2$ (28)

(b)

Basis step
$$a_0 = 1$$

Recursive step $a_n = a_{n-1} + 2$ (29)

(c) Basis step
$$1 \in S$$
 Recursive step $x \in S \to 3x \in S$ (30)

Basis step
$$a_1 = 6$$

Recursive step $a_n = a_{n-1} + 6$ (31)

(b)

Basis step
$$a_1 = 3$$

Recursive step $a_n = a_{n-1} + 2$ (32)

(c)

Basis step
$$a_1 = 10$$

Recursive step $a_n = 10a_{n-1}$ (33)

(d)

Basis step
$$a_1 = 5$$

Recursive step $a_n = a_{n-1}$ (34)

11. (a) Step 0: $\{(0,0)\}$

Step 1: $\{(0,0),(2,3),(3,2)\}$

Step 2: $\{(0,0),(2,3),(3,2),(4,6),(5,5),(6,4)\}$

Step 3: $\{(0,0),(2,3),(3,2),(4,6),(5,5),(6,4),(6,9),(7,8),(8,7),(9,6)\}$

(b)

$$S = \{(x, y) \in \mathbb{N}^2 \mid a, b \in \mathbb{N} \land x = 3a + 2b \land y = 2a + 3b\}$$

(c)

Theorem 5. If $(a,b) \in S$ then $5 \mid (a+b)$.

Proof. Base case. Suppose (a,b)=(0,0). Thus, $5\mid (0+0)\equiv 5\mid 0$, which is true because everything divides 0.

Inductive hypothesis. Suppose $(a, b) \in S$ and $5 \mid (a + b)$.

It follows that for some $i \in \mathbb{Z}$,

$$5i = a + b \tag{35}$$

Inductive step. By the inductive hypothesis $(a, b) \in S$.

Therefore, it follows that $(a+3,b+2), (a+2,b+3) \in S$. WLOG, consider the case for $(a+3,b+2) \in S$.

$$(a+3) + (b+2) = a+b+5$$

By the inductive hypothesis, this expression is equal to

$$5i + 5 = 5(i + 1)$$

Let j = i + 1. Thus,

$$(a+3) + (b+2) = 5i$$

By definition of divides, $5 \mid [(a+3)+(b+2)]$.

Therefore, by the principle of mathematical induction, for all $(a,b) \in S$, $5 \mid (a+b)$.

