We study configuration varieties parametrizing plane pictures \mathbf{P} of a given graph G, with vertices v and edges e represented respectively by points $\mathbf{P}(v) \in \mathbb{P}^2$ and lines $\mathbf{P}(e)$ connecting them in pairs. Three such varieties naturally arise: the picture space $\mathcal{X}(G)$ of all pictures of G; the picture variety $\mathcal{V}(G)$, an irreducible component of $\mathcal{X}(G)$; and the slope variety $\mathcal{S}(G)$, essentially the projection of $\mathcal{V}(G)$ on coordinates m_e giving the slopes of the lines $\mathbf{P}(e)$. In practice, we most often work with affine open subvarieties $\tilde{\mathcal{X}}(G)$, $\tilde{\mathcal{Y}}(G)$, $\tilde{\mathcal{S}}(G)$, in which the points $\mathbf{P}(v)$ lie in an affine plane and the lines $\mathbf{P}(e)$ are nonvertical.

We prove that the algebraic dependence matroid of the slopes is in fact the generic rigidity matroid $\mathcal{M}(G)$ studied by Laman et. al. [2], [1]. For each set of edges forming a circuit in $\mathcal{M}(G)$, we give an explicit determinantal formula for the polynomial relation among the corresponding slopes m_e . This polynomial enumerates decompositions of the given circuit into complementary spanning trees. We prove that precisely these "tree polynomials" cut out $\mathcal{V}(G)$ in $\mathcal{X}(G)$ set-theoretically. We also show how the full component structure of $\mathcal{X}(G)$ can be economically described in terms of the rigidity matroid, and show that when $\mathcal{X}(G) = \mathcal{V}(G)$, this variety has Cohen-Macaulay singularities.

We study intensively the case that G is the complete graph K_n . Describing $S(K_n)$ corresponds to the classical problem of determining all relations among the slopes of the $\binom{n}{2}$ lines connecting n general points in the plane. We prove that the tree polynomials form a Gröbner basis for the affine variety $\tilde{S}(K_n)$ (with respect to a particular term order). Moreover, the facets of the associated Stanley-Reisner simplicial complex $\Delta(n)$ can be described explicitly in terms of the combinatorics of decreasing planar trees. Using this description, we prove that $\Delta(n)$ is shellable, implying that $S(K_n)$ is Cohen-Macaulay for all n. Moreover, the Hilbert series of $\tilde{S}(K_n)$ appears to have a combinatorial interpretation in terms of perfect matchings.

References

- [1] J. Graver, B. Servatius, and H. Servatius. Combinatorial Rigidity. Amer. Math. Soc., 1993.
- [2] G. Laman. On graphs and rigidity of plane skeletal structures. J. Eng. Math, 4:331-340, 1970.