Course Code	Course Name	Credits
CSC802	Distributed Computing	04

Course objectives:

- 1. To provide students with contemporary knowledge in distributed systems
- 2. To equip students with skills to analyze and design distributed applications.
- 3. To provide master skills to measure the performance of distributed synchronization algorithms

Course outcomes: On successful completion of course learner will be able to:

- 1. Demonstrate knowledge of the basic elements and concepts related to distributed system technologies;
- 2. Illustrate the middleware technologies that support distributed applications such as RPC, RMI and Object based middleware.
- 3. Analyze the various techniques used for clock synchronization and mutual exclusion
- 4. Demonstrate the concepts of Resource and Process management and synchronization algorithms
- 5. Demonstrate the concepts of Consistency and Replication Management
- 6. Apply the knowledge of Distributed File System to analyze various file systems like NFS, AFS and the experience in building large-scale distributed applications.

Prerequisite: Java Programming, Operating Systems, Computer Networks

Module	Unit	Topics	Hrs.
No.	No.		06
1.0	Introduction to Distributed Systems		
	1.1	Characterization of Distributed Systems: Issues, Goals, and Types of distributed systems, Distributed System Models, Hardware concepts, Software Concept.	
	1.2	Middleware: Models of Middleware, Services offered by middleware, Client Server model.	
2.0	Comm	unication	10
	2.1	Layered Protocols, Interprocess communication (IPC): MPI, Remote Procedure Call (RPC), Remote Object Invocation, Remote Method Invocation (RMI)	
	2.2	Message Oriented Communication, Stream Oriented Communication, Group Communication	
3.0	Synch	ronization	10
	3.1	Clock Synchronization, Logical Clocks, Election Algorithms, Mutual Exclusion, Distributed Mutual Exclusion-Classification of mutual Exclusion Algorithm, Requirements of Mutual Exclusion Algorithms, Performance measure.	
	3.2	Non Token based Algorithms: Lamport Algorithm, Ricart–Agrawala's Algorithm, Maekawa's Algorithm	
	3.3	Token Based Algorithms: Suzuki-Kasami's Broardcast Algorithms, Singhal's Heurastic Algorithm, Raymond's Tree based Algorithm, Comparative Performance Analysis.	
4.0	Resour	ce and Process Management	06
	4.1	Desirable Features of global Scheduling algorithm, Task assignment approach, Load balancing approach, load sharing approach	
	4.2	Introduction to process management, process migration, Threads,	

		Virtualization, Clients, Servers, Code Migration	
5.0	Consi	stency, Replication and Fault Tolerance	08
	5.1	Introduction to replication and consistency, Data-Centric and Client-	
		Centric Consistency Models, Replica Management	
	5.2	Fault Tolerance: Introduction, Process resilience, Reliable client-server and	
		group communication, Recovery	
6.0	Distri	buted File Systems and Name Services	12
	6.1	Introduction and features of DFS, File models, File Accessing models,	
		File-Caching Schemes, File Replication, Case Study: Distributed File	
		Systems (DSF), Network File System (NFS), Andrew File System (AFS)	
	6.2	Introduction to Name services and Domain Name System, Directory	
		Services, Case Study: The Global Name Service, The X.500 Directory	
		Service	
	6.3	Designing Distributed Systems: Google Case Study	
		Total	52

Assessment:

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- a. Question paper will comprise of 6 questions, each carrying 20 marks.
- b. The students need to solve total 4 questions.
- c. Question No.1 will be compulsory and based on entire syllabus.
- d. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Text Books:

- 1. Andrew S. Tanenbaum and Maarten Van Steen, "Distributed Systems: Principles and Paradigms, 2nd edition, Pearson Education.
- 2. George Coulouris, Jean Dollimore, Tim Kindberg, , "Distributed Systems: Concepts and Design", 4th Edition, Pearson Education, 2005.

Reference Books:

- 1. A. S. Tanenbaum and M. V. Steen, "Distributed Systems: Principles and Paradigms", Second Edition, Prentice Hall, 2006.
- 2. M. L. Liu, "Distributed Computing Principles and Applications", Pearson Addison Wesley, 2004.

Lab Code	Lab Name	Credits
CSL802	Distributed Computing Lab	01

Lab Outcome:

- 1. Develop, test and debug RPC/RMI based client-server programs.
- 2. Implement the main underlying components of distributed systems (such as IPC, name resolution, file systems etc.)
- 3. Implement various techniques of synchronization.
- 4. Design and implement application programs on distributed systems.

Suggested List of Experiments:

Sr. No.	Title of Experiments
1	Client/server using RPC/RMI.
2	Implementation of multi tread application
3	Inter-process communication
4	Group Communication
5	Load Balancing Algorithm.
6	Name Resolution protocol.
7	Election Algorithm.
8	Clock Synchronization algorithms.
9	Mutual Exclusion Algorithm.
10	Deadlock management in Distributed systems
11	Distributed File System
12	CORBA

Term Work:

Laboratory work will be based on above syllabus with minimum 10 experiments to be incorporated.

TOTAL:	. (25) Marks.
Attendance (Theory + Practical)	(05) Marks
Assignments:	(05) Marks.
Laboratory work (experiments):	(15) Marks.

Oral exam will be based on the above and CSC802 syllabus.