หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

โจทย์ชุดที่สามสิบสี่ วันพุธที่ 15 กันยายน พ.ศ. 2564 จำนวน 3 ข้อ

ที่	เนื้อหา	โจทย์
1.	Sweep line algorithm จำนวน 3 ข้อ	1. ปืนใหญ่แห่งป้อมปราการ (Cannons at the Fort)
		2. ถอดรหัสหีบสมบัติ (Chest Treasure)
		3. นมโรงเรียนบูด (48_Milk spoiled)

1. เรื่อง Sliding Window algorithm จำนวน 3 ข้อ

1. ปืนใหญ่แห่งป้อมปราการ (Cannons at the Fort)

-ที่มา: ข้อสอบโอลิมปิกวิชาการระดับชาติครั้งที่ 11 ณ ศูนย์ สอวน. ม.สงขลานครินทร์ วิทยาเขตตรัง

ชายแดนฝั่งตะวันออกของบุหงาตันหยงนครติดกับชายทะเล ดังนั้นเพื่อป้องกันการรุกรานจากข้าศึกท่านแม่ทัพประจำ กองทัพทหารปืนใหญ่แห่งบุหงาตันหยงนครจึงวางแผนจัดกำลังพลทหารปืนใหญ่ประจำบนป้อมปราการ และนำปืนใหญ่จำนวน N กระบอก (1 <= N <= 1,000,000) มาติดตั้งในร่องกำแพงของป้อมปราการ ซึ่งมีจำนวนทั้งหมด 10,000,000 ร่อง แต่ละร่องห่างกัน 1 เมตร เรียงลำดับในแนวเส้นตรง และสามารถติดตั้งปืนใหญ่ได้มากที่สุดหนึ่งกระบอกต่อหนึ่งร่องกำแพงเท่านั้น เรียกแทนตำแหน่ง ร่องกำแพงว่าร่องกำแพงที่ 0, 1, 2, ..., 9,999,999 ตามลำดับ

นอกจากนี้ เพื่อเป็นการอำนวยความสะดวกให้พลทหารในการขนถ่ายกระสุนปืนใหาไปยังปืนใหญ่แต่ละกระบอก ท่านแม่ ทัพจึงวางแผนติดตั้งจุดลำเลียงกระสุนปืนใหญ่อีก M จุด (1 <= M <= 1,000) ตรงกับตำแหน่งของร่องกำแพงด้วย และแต่ละร่อง กำแพงสามารถติดตั้งจุดลำเลียงกระสุนปืนใหญ่ได้มากที่สุดหนึ่งจุดเท่านั้น ทั้งนี้มีความเป็นไปได้ที่จะติดตั้งปืนใหญ่และจุดลำเลียง กระสุนปืนใหญ่ที่ตำแหน่งร่องกำแพงเดียวกัน จุดลำเลียงกระสุนปืนใหญ่แต่ละจุดจะมีรางลำเลียงกระสุนความยาว L * 2 เมตรเพื่อ ใช้ลำเลียงกระสุนปืนใหญ่ไปทางซ้ายและขวาด้านละ L เมตร (1 <= L <= 500,000) ดังนั้นหากมีจุดลำเลียงกระสุนปืนใหญ่ที่ร่อง กำแพงที่ m จะสามารถลำเลียงกระสุนปืนใหญ่ไปยังปืนใหญ่ทั้งหมดที่ถูกติดตั้งในตำแหน่งร่องกำแพงที่ m - L ถึงตำแหน่งร่อง กำแพงที่ m + L และอาจจะมีปืนใหญ่บางกระบอกที่มีรางลำเลียงกระสุนปืนใหญ่ผ่านมากกว่าหนึ่งราง

ท่านแม่ทัพได้ตัดสินใจจัดวางปืนใหญ่ N กระบอก และวางแผนการจัดวางจุดลำเลียงกระสุนปืนใหญ่ไว้ K รูปแบบ (1 <= K <= 400) ในแต่ละรูปแบบมีจุดลำเลียงกระสุนปืนใหญ่ M จุดที่แตกต่างกันไป จากตัวอย่างที่ 1 ปืนใหญ่จำนวนสามกระบอกถูกติดตั้ง บนร่องกำแพงของป้อมปราการ และจุดลำเลียงกระสุนปืนใหญ่อยู่ที่ร่องกำแพงตำแหน่งที่สอง โดยรางลำเลียงกระสุนปืนใหญ่ใน ตัวอย่างนี้จะผ่านปืนใหญ่ทั้งหมดจำนวนสองกระบอก ดังรูป

โจทย์พี่พีทมีลิขสิทธิ์ ห้ามนำส่วนหนึ่งส่วนใดไปดัดแปลง หรือ ใช้งานต่อ โดยเด็ดขาด หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

ตัวอย่างที่ 1 ตัวอย่างการติดตั้งปืนใหญ่สามกระบอก (N = 3) จุดลำเลียงกระสุนปืนใหญ่หนึ่งจุด (M = 1) และรางลำเลียง กระสุนปืนใหญ่ความยาวสี่เมตร (L * 2 = 4) โดยมีแผนการจัดวางจุดลำเลียงกระสุนปืนใหญ่รูปแบบเดียว (K = 1)

ท่านแม่ทัพต้องการทราบว่าจำนวนปืนใหญ่ทั้งหมดที่รางลำเลียงกระสุนปืนใหญ่ผ่าน สำหรับแผนการจัดวางแต่ละรูปแบบมี จำนวนเท่าไร

<u>งานของคุณ</u>

จงเขียนโปรแกรมคอมพิวเตอร์ที่มีประสิทธิภาพ เพื่อหาจำนวนปืนใหญ่ทั้งหมดที่มีรางลำเลียงกระสุนปืนใหญ่ผ่านสำหรับ แผนการจัดวางแต่ละรูปแบบ

<u>ข้อมูลนำเข้า</u>

จำนวน K + 2 บรรทัด

บรรทัดแรก มีจำนวนเต็มสี่จำนวน ประกอบด้วย N ระบุจำนวนปืนใหญ่ที่ถูกติดตั้ง M ระบุจำนวนจุดลำเลียงกระสุนปืน ใหญ่ K ระบุจำนวนรูปแบบของแผนการจัดวางจุดลำเลียงกระสุนปืนใหญ่ และ L ระบุความยาวครึ่งหนึ่งของรางลำเลียงกระสุนปืน ใหญ่ในหน่วยเมตร โดยแต่ละจำนวนถูกคั่นด้วยช่องว่างหนึ่งช่อง กำหนดให้ 1 <= N <= 1,000,000 และ 1 <= M <= 1,000 และ 1 <= L <= 500,000

บรรทัดที่ 2 มีจำนวนเต็ม N จำนวน แต่ละจำนวนคือ ni ซึ่งระบุตำแหน่งติดตั้งปืนใหญ่กระบอกที่ i เรียงลำดับตำแหน่งจาก น้อยไปมาก กำหนดให้ 0 <= ni <= 9,999,999 และ 1 <= i <= N

บรรทัดที่ 3 ถึง K+2 แต่ละบรรทัดมีจำนวนเต็ม M จำนวน แต่ละจำนวนคือ m_j ซึ่งระบุตำแหน่งจัดวางจุดลำเลียงกระสุน ปืนใหญ่ที่ j ในแผนการจัดวางแต่ละรูปแบบ เรียงลำดับตำแหน่งจากน้อยไปหามาก กำหนดให้ $0 <= m_j <= 9,999,999$ และ 1 <= j <= M

<u>ข้อมูลส่งออก</u>

หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

มี K บรรทัด แต่ละบรรทัดแสดงจำนวนปืนใหญ่ทั้งหมดที่มีรางลำเลียงกระสุนปืนใหญ่ผ่าน สำหรับแผนการจัดวางแต่ละรูปแบบ

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
3 2 4 100	2
100 300 500	1
200 1000	3
199 1000	0
200 600	
1000 1001	

+++++++++++++++++

___ 2. ถอดรหัสหีบสมบัติ (Chest Treasure)

-ที่มา: ข้อสอบโอลิมปิกวิชาการระดับชาติครั้งที่ 10 ณ ศูนย์ สอวน. ม.อุบลราชธานี

หลังจากที่ ดร. เค ได้หีบสมบัติของชนเผ่าต๋อย เขาก็พบว่ากลไกในการเปิดหีบสมบัติจะต้องนำกลุ่มตัวเลขที่ถูกจารึกบนหีบ สมบัติมาใช้ถอดรหัสของแถวลำดับ (array) ของจำนวนเต็มที่มีความยาว n เพื่อใช้ในการเปิดหีบ

ช่วงแรกการถอดรหัสจะต้องมีการ<u>คำนวณ m รอบ</u>โดยใช้กลุ่มตัวเลขบนหีบสมบัติ ซึ่งมีลักษณะเป็นตารางที่มี 4 คอลัมน์ (ดังตัวอย่างในตารางที่ 1)

- -คอลัมน์ที่ 1 เป็นลำดับขั้นในการคำนวณการถอดรหัสรอบที่ i เมื่อ 1 <= i <= m
- -คอลัมน์ที่ 2 เป็นจำนวนเต็ม x_i เมื่อ 2 <= x_i <= 10 ทั้งนี้ x_i เป็นค่าตัวคูณ ที่ต้องใช้ในการถอดรหัสรอบที่ i
- -คอลัมน์ที่ 3 และ 4 เป็นจำนวนเต็ม s_i และ t_i ตามลำดับ เมื่อ 0 <= s_i <= t_i <= n-1

ขั้นตอนการถอดรหัสในช่วงแรกจะต้องนำ x_i มาคูณค่าที่ปรากฏในแถวลำดับ ตั้งแต่ตำแหน่งที่ s_i ไปจนถึงตำแหน่งที่ t_i ของ แถวลำดับในรอบที่ i-1 และค่าในแถวลำดับรอบที่ i0 เป็น i1 ทุกตำแหน่ง

ช่วงที่สองของการถอดรหัส สำหรับแต่ละตำแหน่งที่ j ของแถวลำดับในรอบสุดท้ายที่ได้จากการคำนวณในช่วงแรก เมื่อ 0 <= j <= n-1 ให้ทำการคำนวณหา c_j ซึ่งเป็นจำนวนตัวประกอบทั้งหมด ของค่าที่ปรากฏอยู่ในแถวลำดับตำแหน่งนั้น

สำหรับรหัสที่ใช้ในการเปิดหีบสมบัติจะเป็นตัวเลข 2 จำนวน คือ ค่า c_j ที่มากที่สุด และจำนวนตำแหน่งของแถวลำดับที่มี จำนวนตัวประกอบเท่ากับค่า c_j นั้น

ตัวอย่างเช่น กำหนดให้ n มีค่าเป็น 10 และ กลุ่มตัวเลขที่ถูกจารึกบนหีบสมบัติเป็นดังตารางที่ 1 ตารางที่ 1 แสดงตัวอย่างกลุ่มตัวเลขที่ใช้ในการคำนวณ m=5 เพื่อถอดรหัสช่วงแรก

i	×i	Si	t _i
1	3	0	4
2	2	2	3
3	5	4	7
4	6	7	9
5	2	3	3

หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

ตารางที่ 2 แสดงการถอดรหัสช่วงแรก

รอบ	รอบ ค่าที่ปรากฏในแถวลำดับ ณ ตำแหน่ง j ที่					น ตำ	แหน่ง	jΫ	l	คำอธิบาย	
ที่	0	1	2	3	4	5	6	7	8	9	ผาคอกาย
0	1	1	1	1	1	1	1	1	1	1	เริ่มต้น
1	3	3	3	3	3	1	1	1	1	1	นำ 3 ไปคูณค่าที่ปรากฏในแถวลำดับ ตั้งแต่ตำแหน่งที่ 0 ถึงตำแหน่งที่ 4
2	3	3	6	6	3	1	1	1	1	1	นำ 2 ไปคูณค่าที่ปรากฏในแถวลำดับ ตั้งแต่ตำแหน่งที่ 2 ถึงตำแหน่งที่ 3
3	3	3	6	6	15	5	5	5	1	1	นำ 5 ไปคูณค่าที่ปรากฏในแถวลำดับ ตั้งแต่ตำแหน่งที่ 4 ถึงตำแหน่งที่ 7
4	3	3	6	6	15	5	5	30	6	6	યું અ
5	3	3	6	12	15	5	5	30	6	6	นำ 2 ไปคูณค่าที่ปรากฏในแถวลำดับ ตั้งแต่ตำแหน่งที่ 3 ถึงตำแหน่งที่ 3

ตารางที่ 3 แสดงการถอดรหัสช่วงที่สอง

ตำแหน่ง j ที่	0	1	2	3	4	5	6	7	8	9
ค่าในแถวลำดับรอบที่ m=5	3	3	6	12	15	5	5	30	6	6
	1	1	1	1	1	1	1	1	1	1
	3	3	2	2	3	5	5	2	2	2
			3	3	5			3	3	3
ตัวประกอบทั้งหมดของค่า			6	4	15			5	6	6
ในแถวลำดับตำแหน่งที่ j				6				6		
				12				10		
								15		
								30		
จำนวนตัวประกอบ	2	2	4	6	4	2	2	8	4	4

จากตารางที่ 3 จะได้ค่า c₇=8 ซึ่งเป็นจำนวนที่มากที่สุดซึ่งปรากฏเพียงตำแหน่งเดียว ดังนั้นรหัสที่จะใช้ในการเปิดหีบสมบัติ จึงเป็น 8 1

เพื่อเป็นการประหยัดทั้งเวลาและพลังงานของ ดร.เค จึงขอให้ผู้รู้วัยเยาว์ที่มารวมตัวกันในการแข่งขันคอมพิวเตอร์โอลิมปิก ระดับชาติ ครั้งที่ 10 ณ มหาวิทยาลัยอุบลราชธานี เขียนโปรแกรมคอมพิวเตอร์เพื่อหารหัสในการเปิดหีบสมบัตินี้

<u>งานของคุณ</u>

้ จงเขียนโปรแกรมหารหัสในการเปิดหีบสมบัตินี้

<u>ข้อมูลนำเข้า</u>

มีจำนวน m+1 บรรทัด ดังนี้

บรรทัดแรก ประกอบด้วยจำนวนเต็ม m และ n ซึ่งแต่ละจำนวนถูกคั่นด้วยช่องว่างหนึ่งช่อง แสดงจำนวนรอบในการ คำนวณเพื่อถอดรหัสในช่วงแรก และ ความยาวของแถวลำดับ ตามลำดับ เมื่อ 2 <= m <= 200,000 และ 10 <= n <= 200.000.000

บรรทัดที่ 2 ถึงบรรทัดที่ m+1 แสดงข้อมูลจากกลุ่มตัวเลขบนหีบสมบัติรอบที่ i เมื่อ 1 <= i <= m โดยแต่ละบรรทัด ประกอบด้วยจำนวนเต็มบวก 3 จำนวน ซึ่งแต่ละจำนวนถูกคั่นด้วยช่องว่างจำนวนหนึ่งช่อง โดย จำนวนแรก แทน x_i , จำนวนที่สอง แทน s_i และ จำนวนที่สาม แทน t_i ตามลำดับ โดยที่ $2 <= x_i <= 10$ และ $0 <= s_i <= t_i <= n-1$

<u>ข้อมูลส่งออก</u>

หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

บรรทัดเดียว ซึ่งประกอบด้วยจำนวนเต็มสองจำนวนคั่นด้วยช่องว่างหนึ่งช่อง ได้แก่ ค่า c_j ที่มากที่สุด และ จำนวนตำแหน่ง ของแถวลำดับที่มีจำนวนตัวประกอบเท่ากับค่า c_j นั้น ตามลำดับ

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
5 10	8 1
3 0 4	
2 2 3	
5 4 7	
6 7 9	
2 3 3	
8 10	16 5
4 0 3	
3 3 6	
5 4 6	
2 4 6	
10 0 1	
9 5 6	
7 0 3	
2 3 4	

++++++++++++++++

3. นมโรงเรียนบูด (48_Milk spoiled)

เหตุการณ์นมโรงเรียนบูดเป็นเหตุการณ์ที่เกิดขึ้นบ่อยในประเทศไทย ซึ่งทางโรงเรียนควรตระหนักถึงวิธีการเก็บรักษานม โรงเรียนให้เกิดความอร่อยสูงที่สุด โดยค่าความอร่อยของนมแต่ละกล่องจะขึ้นอยู่กับอุณหภูมิของตู้เก็บ

นมกล่องที่ i จะมีอุณหภูมิที่เหมาะสมอยู่ระหว่าง Ai ถึง Bi องศา ถ้าอุณหภูมิของตู้เก็บเย็นเกินไป (T < Ai) ค่าความอร่อย ของนมจะเท่ากับ X ถ้าอุณหภูมิของตู้เก็บเหมาะสม (Ai <= T <= Bi) ค่าความอร่อยของนมจะเท่ากับ Y และ ถ้าอุณหภูมิของตู้เก็บ ร้อนเกินไป (T > Bi) ค่าความอร่อยของนมจะเท่ากับ Z ซึ่ง Y > X, Z เสมอ

โรงเรียนมีตู้เก็บนมโรงเรียนที่จะต้องตั้งอุณหภูมีเก็บค่าเดียวเท่านั้น

โจทย์พี่พีทมีลิขสิทธิ์ ห้ามนำส่วนหนึ่งส่วนใดไปดัดแปลง หรือ ใช้งานต่อ โดยเด็ดขาด หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

<u>งานของคูณ</u>

จงเขียนโปรแกรมเพื่อหาว่าเราควรจะตั้งอุณหภูมิอย่างไร เพื่อให้ได้ค่าความอร่อยของนมโรงเรียนรวมทุกกล่องแล้วมีค่าสูง ที่สุด?

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก Q แทนจำนวนคำถาม โดยที่ Q ไม่เกิน 10 ในแต่ละคำถาม

บรรทัดแรก รับจำนวนเต็มบวก N X Y Z แทนจำนวนกล่องนม และ ค่าความอร่อยของนมที่อุณหภูมิต่าง ๆ โดยที่ N ไม่ เกิน 1,000,000 และ 1 <= X, Z <= Y <= 1,000

อีก N บรรทัดถัดมา รับค่า Ai Bi ตามลำดับ โดยที่ 0 < Ai <= Bi < 1,000,000,000 30% ของชุดข้อมูลทดสอบจะมีค่า Ai และ Bi ไม่เกิน 1,000 และ N <= 1,000

<u>ข้อมูลส่งออก</u>

มีทั้งสิ้น Q บรรทัด แต่ละบรรทัดให้แสดงค่าความอร่อยรวมของนมทั้ง N กล่องที่มากที่สุดเท่าที่จะเป็นไปได้

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
1	31
4 7 9 6	
5 8	
3 4	
13 20	
7 10	

คำอธิบายตัวอย่างที่ 1

เมื่อตั้งอุณหภูมิตู้เก็บเป็น 7 หรือ 8 องศา นมกล่องที่ 1 และ กล่องที่ 4 จะอยู่ในอุณหภูมิที่เหมาะสม ส่วนกล่องที่ 3 ร้อน เกินไป และ กล่องที่ 2 เย็นเกินไป ทำให้ได้ค่าความอร่อยรวมทั้งหมด 9+9+7+6 = 31

+++++++++++++++++