Utilisation de la constante d'Euler

 Ω Comment la constante d'Euler permet de calculer certaines sommes dépendant de la série harmonique (de manière plus ou moins directe).

Remarque sur le corrigé. Tous ces exercices utilisent le fait que la suite $(u_n)_{n\geqslant 1}$ définie par :

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad u_n = \sum_{k=1}^n \frac{1}{k} - \ln(n)$$

converge, vers une limite notée γ (c'est la constante d'Euler-Mascheroni). Il est bien sûr avisé de savoir comment démontrer cela, sinon ces exercices n'ont pas un grand intérêt.

Exercice 1. Calculer:
$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n^2} \frac{1}{k} - 2 \sum_{k=1}^{n} \frac{1}{k} \right)$$
.

 \rightarrow page 8

Exercice 2. Calculer:
$$\sum_{k=1}^{+\infty} \frac{24}{(2k+1)(k+4)k}$$
.

 \rightarrow page 8

Exercice 3. Calculer:
$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n^4} \frac{1}{k} - 4 \sum_{k=1}^{n} \frac{1}{k} \right)$$
.

 \rightarrow page 9

Exercice 4. Calculer:
$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n^{28}} \frac{1}{k} - 28 \sum_{k=1}^{n} \frac{1}{k} \right).$$

 \rightarrow page 9

Exercice 5. Calculer:
$$\lim_{n \to +\infty} \sum_{k=n}^{2n} \frac{1}{k}$$
.

 \rightarrow page 9

Exercice 6. Calculer:
$$\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n^3}^{n^4} \frac{1}{k}$$
.

 \rightarrow page 10

Exercice 7. Calculer:
$$\lim_{n\to+\infty} \sum_{k=4n}^{5n} \frac{1}{k}$$
.

 \rightarrow page 10

Exercice 8. Calculer:
$$\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n}^{n^2} \frac{1}{k}$$
.

 \rightarrow page 10

Exercice 9. Calculer:
$$\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n^2}^{n^3} \frac{1}{k}$$
.

 \rightarrow page 11

Exercice 10. Calculer:
$$\lim_{n\to+\infty} \frac{1}{\ln(n)} \sum_{k=n^2}^{n^{14}} \frac{1}{k}$$
.

 \rightarrow page 11

Exercice 11. Calculer:
$$\sum_{k=1}^{+\infty} \frac{44 k + 5}{(2 k + 5)(k + 2)k}$$
.

Exercice 12. Calculer: $\lim_{n \to +\infty} \left(\sum_{k=1}^{n^3} \frac{1}{k} - 3 \sum_{k=1}^{n} \frac{1}{k} \right)$.

 \rightarrow page 12

Exercice 13. Calculer: $\lim_{n\to+\infty} \left(\sum_{k=1}^{n^2} \frac{1}{k} - 2 \sum_{k=1}^{n} \frac{1}{k} \right)$.

 \rightarrow page 13

Exercice 14. Calculer: $\lim_{n \to +\infty} \left(\sum_{k=1}^{n^{26}} \frac{1}{k} - 26 \sum_{k=1}^{n} \frac{1}{k} \right)$.

 \rightarrow page 13

Exercice 15. Calculer: $\lim_{n \to +\infty} \sum_{k=2n}^{4n} \frac{1}{k}$.

 \rightarrow page 13

Exercice 16. Calculer: $\lim_{n \to +\infty} \left(\sum_{k=1}^{n^{27}} \frac{1}{k} - 27 \sum_{k=1}^{n} \frac{1}{k} \right).$

 \rightarrow page 14

Exercice 17. Calculer: $\sum_{k=1}^{+\infty} \frac{5}{(2k+3)(k+1)k}$.

 \rightarrow page 14

Exercice 18. Calculer: $\lim_{n\to+\infty} \frac{1}{\ln(n)} \sum_{k=n^2}^{n^8} \frac{1}{k}$.

 \rightarrow page 15

Exercice 19. Calculer: $\lim_{n\to+\infty} \frac{1}{\ln(n)} \sum_{k=n^2}^{n^3} \frac{1}{k}$.

 \rightarrow page 15

Exercice 20. Calculer: $\lim_{n\to+\infty}\sum_{k=n}^{12n}\frac{1}{k}$.

 \rightarrow page 16

Exercice 21. Calculer: $\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n}^{n^4} \frac{1}{k}$.

 \rightarrow page 16

Exercice 22. Calculer: $\lim_{n \to +\infty} \sum_{k=n}^{2n} \frac{1}{k}$.

 \rightarrow page 16

Exercice 23. Calculer: $\sum_{k=1}^{+\infty} \frac{5}{(2k+1)(k+2)}$.

 \rightarrow page 16

Exercice 24. Calculer: $\lim_{n\to+\infty} \sum_{k=n}^{6n} \frac{1}{k}$.

 \rightarrow page 17

Exercice 25. Calculer: $\lim_{n\to+\infty} \frac{1}{\ln(n)} \sum_{k=n^2}^{n^3} \frac{1}{k}$.

 \rightarrow page 18

Exercice 26. Calculer: $\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n}^{n^{232}} \frac{1}{k}$.

Exercice 27. Calculer:
$$\sum_{k=1}^{+\infty} \frac{k+3}{(2k+3)(k+5)k}$$
.

 \rightarrow page 18

Exercice 28. Calculer:
$$\sum_{k=1}^{+\infty} \frac{9}{(2k+1)(k+8)}$$
.

 \rightarrow page 19

Exercice 29. Calculer:
$$\sum_{k=1}^{+\infty} \frac{k+2}{(2k+1)(k+3)k}$$
.

 \rightarrow page 20

Exercice 30. Calculer:
$$\lim_{n \to +\infty} \sum_{k=n}^{5n} \frac{1}{k}$$
.

 \rightarrow page 21

Exercice 31. Calculer:
$$\lim_{n\to+\infty} \sum_{k=3}^{20} \frac{1}{k}$$
.

 \rightarrow page 22

Exercice 32. Calculer:
$$\sum_{k=1}^{+\infty} \frac{k+1}{(2k+1)(k+2)k}$$
.

 \rightarrow page 22

Exercice 33. Calculer:
$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n^{37}} \frac{1}{k} - 37 \sum_{k=1}^{n} \frac{1}{k} \right).$$

 \rightarrow page 23

Exercice 34. Calculer:
$$\lim_{n\to+\infty} \frac{1}{\ln(n)} \sum_{k=n}^{n^2} \frac{1}{k}$$
.

 \rightarrow page 23

Exercice 35. Calculer:
$$\sum_{k=1}^{+\infty} \frac{2k+2}{(2k+1)(k+10)k}$$
.

 \rightarrow page 23

Exercice 36. Calculer:
$$\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n}^{n^{2001}} \frac{1}{k}$$
.

 \rightarrow page 24

Exercice 37. Calculer:
$$\lim_{n\to+\infty} \left(\sum_{k=1}^{n^2} \frac{1}{k} - 2 \sum_{k=1}^{n} \frac{1}{k} \right)$$
.

 \rightarrow page 25

Exercice 38. Calculer:
$$\lim_{n\to+\infty} \left(\sum_{k=1}^{n^2} \frac{1}{k} - 2 \sum_{k=1}^{n} \frac{1}{k} \right)$$
.

 \rightarrow page 25

Exercice 39. Calculer:
$$\sum_{k=1}^{+\infty} \frac{6}{(2k+1)(k+2)}$$
.

 \rightarrow page 25

Exercice 40. Calculer:
$$\lim_{n\to+\infty} \left(\sum_{k=1}^{n^3} \frac{1}{k} - 3 \sum_{k=1}^n \frac{1}{k} \right)$$
.

 \rightarrow page 26

Exercice 41. Calculer:
$$\sum_{k=1}^{+\infty} \frac{1}{(2k+1)(k+2)}$$
.

Exercice 42. Calculer: $\sum_{k=1}^{+\infty} \frac{1}{(2k+3)(k+1)}$.

 \rightarrow page 27

Exercice 43. Calculer: $\lim_{n \to +\infty} \sum_{k=n}^{2n} \frac{1}{k}$.

 \rightarrow page 28

Exercice 44. Calculer: $\lim_{n \to +\infty} \left(\sum_{k=1}^{n^9} \frac{1}{k} - 9 \sum_{k=1}^{n} \frac{1}{k} \right)$.

 \rightarrow page 29

Exercice 45. Calculer: $\lim_{n\to+\infty} \frac{1}{\ln(n)} \sum_{k=n^2}^{n^4} \frac{1}{k}$.

 \rightarrow page 29

Exercice 46. Calculer: $\lim_{n \to +\infty} \left(\sum_{k=1}^{n^{25}} \frac{1}{k} - 25 \sum_{k=1}^{n} \frac{1}{k} \right)$.

 \rightarrow page 29

Exercice 47. Calculer: $\lim_{n \to +\infty} \sum_{k=3}^{4n} \frac{1}{k}$.

 \rightarrow page 30

Exercice 48. Calculer: $\sum_{k=1}^{+\infty} \frac{5 k + 1}{(2 k + 1)(k + 1)k}$.

 \rightarrow page 30

Exercice 49. Calculer: $\lim_{n \to +\infty} \left(\sum_{k=1}^{n^{54}} \frac{1}{k} - 54 \sum_{k=1}^{n} \frac{1}{k} \right)$.

 \rightarrow page 31

Exercice 50. Calculer: $\sum_{k=1}^{+\infty} \frac{6}{(2k+1)(k+4)k}$.

 \rightarrow page 31

Exercice 51. Calculer: $\lim_{n \to +\infty} \sum_{k=n}^{3n} \frac{1}{k}$.

 \rightarrow page 32

Exercice 52. Calculer: $\sum_{k=1}^{+\infty} \frac{10 k + 1}{(2 k + 1)(k + 1)k}$.

 \rightarrow page 32

Exercice 53. Calculer: $\lim_{n \to +\infty} \sum_{k=n}^{2n} \frac{1}{k}$.

 \rightarrow page 33

Exercice 54. Calculer: $\lim_{n\to+\infty} \frac{1}{\ln(n)} \sum_{k=n^2}^{n^3} \frac{1}{k}$.

 \rightarrow page 33

Exercice 55. Calculer: $\lim_{n\to+\infty} \left(\sum_{k=1}^{n^5} \frac{1}{k} - 5 \sum_{k=1}^{n} \frac{1}{k} \right)$.

 \rightarrow page 34

Exercice 56. Calculer: $\lim_{n\to+\infty} \left(\sum_{k=1}^{n^4} \frac{1}{k} - 4 \sum_{k=1}^n \frac{1}{k} \right)$.

Exercice 57. Calculer:
$$\sum_{k=1}^{+\infty} \frac{k+2}{(2k+5)(k+4)k}$$
.

 \rightarrow page 34

Exercice 58. Calculer:
$$\lim_{n\to+\infty}\sum_{k=n}^{6n}\frac{1}{k}$$
.

 \rightarrow page 35

Exercice 59. Calculer:
$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n^{30}} \frac{1}{k} - 30 \sum_{k=1}^{n} \frac{1}{k} \right)$$
.

 \rightarrow page 36

Exercice 60. Calculer:
$$\lim_{n\to+\infty} \left(\sum_{k=1}^{n^5} \frac{1}{k} - 5 \sum_{k=1}^{n} \frac{1}{k} \right)$$
.

 \rightarrow page 36

Exercice 61. Calculer:
$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n^{19}} \frac{1}{k} - 19 \sum_{k=1}^{n} \frac{1}{k} \right)$$
.

 \rightarrow page 36

Exercice 62. Calculer:
$$\sum_{k=1}^{+\infty} \frac{1}{(2k+1)(k+17)k}$$
.

 \rightarrow page 37

Exercice 63. Calculer:
$$\lim_{n\to+\infty} \frac{1}{\ln(n)} \sum_{k=n}^{n^5} \frac{1}{k}$$
.

 \rightarrow page 37

Exercice 64. Calculer:
$$\lim_{n\to+\infty} \left(\sum_{k=1}^{n^5} \frac{1}{k} - 5 \sum_{k=1}^{n} \frac{1}{k} \right)$$
.

 \rightarrow page 38

Exercice 65. Calculer:
$$\sum_{k=1}^{+\infty} \frac{1}{(2k+1)(k+3)k}$$
.

 \rightarrow page 38

Exercice 66. Calculer:
$$\sum_{k=1}^{+\infty} \frac{1}{(2k+3)(k+1)}$$
.

 \rightarrow page 39

Exercice 67. Calculer:
$$\sum_{k=1}^{+\infty} \frac{1}{(2k+3)k}.$$

 \rightarrow page 40

Exercice 68. Calculer:
$$\sum_{k=1}^{+\infty} \frac{1}{(2k+1)k}.$$

 \rightarrow page 41

Exercice 69. Calculer:
$$\lim_{n\to+\infty} \frac{1}{\ln(n)} \sum_{k=n}^{n^{21}} \frac{1}{k}$$
.

 \rightarrow page 42

Exercice 70. Calculer:
$$\sum_{k=1}^{+\infty} \frac{3}{(2k+1)(k+14)k}$$
.

 \rightarrow page 42

Exercice 71. Calculer:
$$\sum_{k=1}^{+\infty} \frac{1}{(2k+1)k}.$$

Exercice 72. Calculer: $\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n}^{n^3} \frac{1}{k}$.

 \rightarrow page 44

Exercice 73. Calculer: $\lim_{n \to +\infty} \sum_{k=n}^{3n} \frac{1}{k}$.

 \rightarrow page 44

Exercice 74. Calculer: $\lim_{n\to+\infty} \sum_{k=3}^{22n} \frac{1}{k}$.

 \rightarrow page 44

Exercice 75. Calculer: $\sum_{k=1}^{+\infty} \frac{k+1}{(2k+1)(k+4)k}$.

 \rightarrow page 45

Exercice 76. Calculer: $\lim_{n \to +\infty} \sum_{k=2}^{3n} \frac{1}{k}$.

 \rightarrow page 45

Exercice 77. Calculer: $\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n}^{n^2} \frac{1}{k}$.

 \rightarrow page 46

Exercice 78. Calculer: $\sum_{k=1}^{+\infty} \frac{7}{(2k+1)(k+1)}$.

 \rightarrow page 46

Exercice 79. Calculer: $\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n}^{n^2} \frac{1}{k}$.

 \rightarrow page 47

Exercice 80. Calculer: $\lim_{n\to+\infty} \sum_{k=0}^{5n} \frac{1}{k}$.

 \rightarrow page 47

Exercice 81. Calculer: $\sum_{k=1}^{+\infty} \frac{7}{(2k+3)(k+1)}$.

 \rightarrow page 48

Exercice 82. Calculer: $\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n}^{n^2} \frac{1}{k}$.

 \rightarrow page 49

Exercice 83. Calculer: $\lim_{n \to +\infty} \sum_{k=n}^{51n} \frac{1}{k}$.

 \rightarrow page 49

Exercice 84. Calculer: $\sum_{k=1}^{+\infty} \frac{k+6}{(2k+7)(k+1)k}$.

 \rightarrow page 49

Exercice 85. Calculer: $\lim_{n\to+\infty} \left(\sum_{k=1}^{n^4} \frac{1}{k} - 4 \sum_{k=1}^{n} \frac{1}{k} \right)$.

 \rightarrow page 50

Exercice 86. Calculer: $\lim_{n\to+\infty} \left(\sum_{k=1}^{n^2} \frac{1}{k} - 2 \sum_{k=1}^{n} \frac{1}{k} \right)$.

Exercice 87. Calculer: $\lim_{n \to +\infty} \sum_{k=n}^{11n} \frac{1}{k}$.

 \rightarrow page 51

Exercice 88. Calculer: $\lim_{n\to+\infty} \sum_{k=2n}^{7n} \frac{1}{k}$.

 \rightarrow page 51

Exercice 89. Calculer: $\lim_{n\to+\infty} \left(\sum_{k=1}^{n^2} \frac{1}{k} - 2 \sum_{k=1}^{n} \frac{1}{k} \right)$.

 \rightarrow page 52

Exercice 90. Calculer: $\lim_{n \to +\infty} \sum_{k=n}^{88n} \frac{1}{k}$.

 \rightarrow page 52

Exercice 91. Calculer: $\lim_{n\to+\infty} \frac{1}{\ln(n)} \sum_{k=n}^{n^{345}} \frac{1}{k}$.

 \rightarrow page 52

Exercice 92. Calculer: $\lim_{n\to+\infty} \frac{1}{\ln(n)} \sum_{k=n^2}^{n^{551}} \frac{1}{k}$.

 \rightarrow page 52

Exercice 93. Calculer: $\lim_{n\to+\infty}\frac{1}{\ln(n)}\sum_{k=n}^{n^{92}}\frac{1}{k}$.

 \rightarrow page 53

Exercice 94. Calculer: $\sum_{k=1}^{+\infty} \frac{3}{(2k+1)(k+1)k}$.

 \rightarrow page 53

Exercice 95. Calculer: $\lim_{n\to+\infty} \frac{1}{\ln(n)} \sum_{k=n}^{n^{13}} \frac{1}{k}$.

 \rightarrow page 54

Exercice 96. Calculer: $\sum_{k=1}^{+\infty} \frac{k+1}{(2k+1)(k+141)k}$.

 \rightarrow page 54

Exercice 97. Calculer: $\lim_{n\to+\infty} \left(\sum_{k=1}^{n^{15}} \frac{1}{k} - 15 \sum_{k=1}^{n} \frac{1}{k}\right)$.

 \rightarrow page 55

Exercice 98. Calculer: $\sum_{k=1}^{+\infty} \frac{4k+1}{(2k+3)(k+1)k}$.

 \rightarrow page 56

Exercice 99. Calculer: $\lim_{n \to +\infty} \left(\sum_{k=1}^{n^{17}} \frac{1}{k} - 17 \sum_{k=1}^{n} \frac{1}{k} \right).$

 \rightarrow page 57

Exercice 100. Calculer: $\lim_{n\to+\infty} \frac{1}{\ln(n)} \sum_{k=-n^3}^{n^5} \frac{1}{k}$.

Corrigé 1. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 1

$$\sum_{k=1}^{n^2} \frac{1}{k} - 2\sum_{k=1}^{n} \frac{1}{k} = u_{n^2} + \ln(n^2) - 2(u_n + \ln(n))$$
$$= u_{n^2} - 2u_n + 2\ln(n) - 2\ln(n)$$
$$= u_{n^2} - 2u_n.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n\to+\infty}\left(\sum_{k=1}^{n^2}\frac{1}{k}-2\sum_{k=1}^n\frac{1}{k}\right)=\gamma-2\gamma=-\gamma,$$

d'où le résultat.

Corrigé 2. Soit n au voisinage de $+\infty$. Une décomposition en éléments simples donne :

 \leftarrow page 1

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{24}{(2k+1)(k+4)k} = \frac{6}{k} + \frac{6}{7(k+4)} - \frac{96}{7(2k+1)}.$$

Donc:

$$\sum_{k=1}^{n} \frac{24}{(2k+1)(k+4)k} = 6\sum_{k=1}^{n} \frac{1}{k} + \frac{6}{7}\sum_{k=1}^{n} \frac{1}{k+4} - \frac{96}{7}\sum_{k=1}^{n} \frac{1}{2k+1}.$$

Or:

$$\sum_{k=1}^{n} \frac{1}{2k+1} = \sum_{\substack{k=1 \ k \text{ impair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\substack{k=1 \ k \text{ pair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\ell=1}^{n} \frac{1}{2\ell} - 1$$

$$= u_{2n+1} + \ln(2n+1) - \frac{1}{2} (u_n + \ln(n)) - 1,$$

et:

$$\sum_{k=1}^{n} \frac{1}{k+4} = \sum_{k=5}^{n+4} \frac{1}{k}$$

$$= \sum_{k=1}^{n+4} \frac{1}{k} - \sum_{k=1}^{4} \frac{1}{k}$$

$$= u_{n+4} + \ln(n+4) - \frac{25}{12},$$

ce dont on déduit:

$$\sum_{k=1}^{n} \frac{24}{(2k+1)(k+4)k} = 6\left(u_n + \ln\left(n\right)\right) + \frac{6}{7}\left(u_{n+4} + \ln\left(n+4\right) - \frac{25}{12}\right) + \frac{96}{7}\left(u_{2n+1} + \ln(2n+1) - \frac{1}{2}\left(u_n + \ln(n)\right) - 1\right)$$

$$= 6u_n + \frac{6}{7}u_{n+4} - \frac{96}{7}u_{2n+1} + \frac{48}{7}u_n + \frac{167}{14} + \ln\left(\frac{(n+4)^{\frac{6}{7}}n^{\frac{90}{7}}}{(2n+1)^{\frac{96}{7}}}\right).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{24}{(2k+1)(k+4)k} = 6\gamma + \frac{6}{7}\gamma - \frac{96}{7}\gamma + \frac{48}{7}\gamma + \frac{167}{14} + \ln\left(\frac{1}{16384} \cdot 2^{\frac{2}{7}}\right)$$

$$= \ln\left(\frac{1}{16384} \cdot 2^{\frac{2}{7}}\right) + \frac{167}{14},$$

d'où le résultat.

Corrigé 3. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 1

$$\sum_{k=1}^{n^4} \frac{1}{k} - 4 \sum_{k=1}^{n} \frac{1}{k} = u_{n^4} + \ln(n^4) - 4(u_n + \ln(n))$$
$$= u_{n^4} - 4u_n + 4\ln(n) - 4\ln(n)$$
$$= u_{n^4} - 4u_n.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n\to +\infty} \left(\sum_{k=1}^{n^4} \frac{1}{k} - 4\sum_{k=1}^n \frac{1}{k}\right) = \gamma - 4\gamma = -3\gamma,$$

d'où le résultat.

Corrigé 4. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 1

$$\sum_{k=1}^{n^{28}} \frac{1}{k} - 28 \sum_{k=1}^{n} \frac{1}{k} = u_{n^{28}} + \ln(n^{28}) - 28(u_n + \ln(n))$$
$$= u_{n^{28}} - 28u_n + 28\ln(n) - 28\ln(n)$$
$$= u_{n^{28}} - 28u_n.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n^{28}} \frac{1}{k} - 28 \sum_{k=1}^{n} \frac{1}{k} \right) = \gamma - 28\gamma = -27 \gamma,$$

d'où le résultat.

Corrigé 5. Soit n au voisinage de $+\infty$. On a:

← page 1

$$\sum_{k=n}^{2n} \frac{1}{k} = \sum_{k=1}^{2n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k}$$
$$= u_{2n} + \ln(2n) - u_n - \ln(n)$$
$$= u_{2n} - u_n + \ln(2).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=n}^{2n} \frac{1}{k} = \gamma - \gamma + \ln(2) = \ln(2),$$

d'où le résultat.

Corrigé 6. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 1

$$\frac{1}{\ln(n)} \sum_{k=n^3}^{n^4} \frac{1}{k} = \frac{1}{\ln(n)} \left(\sum_{k=1}^{n^4} \frac{1}{k} - \sum_{k=1}^{n^3} \frac{1}{k} \right)$$

$$= \frac{u_{n^4} + \ln(n^4) - u_{n^3} - \ln(n^3)}{\ln(n)}$$

$$= \frac{u_{n^4} - u_{n^3}}{\ln(n)} + \underbrace{\frac{4\ln(n) - 3\ln(n)}{\ln(n)}}_{=1}.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également, tandis que le logarithme tend vers $+\infty$. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n^3}^{n^4} \frac{1}{k} = 1,$$

d'où le résultat.

Corrigé 7. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 1

$$\sum_{k=4n}^{5n} \frac{1}{k} = \sum_{k=1}^{5n} \frac{1}{k} - \sum_{k=1}^{4n} \frac{1}{k}$$

$$= u_{5n} + \ln(5n) - u_{4n} - \ln(4n)$$

$$= u_{5n} - u_{4n} + \ln\left(\frac{5}{4}\right).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=4n}^{5n} \frac{1}{k} = \gamma - \gamma + \ln\left(\frac{5}{4}\right) = \ln\left(\frac{5}{4}\right),$$

d'où le résultat.

Corrigé 8. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 1

$$\frac{1}{\ln(n)} \sum_{k=n}^{n^2} \frac{1}{k} = \frac{1}{\ln(n)} \left(\sum_{k=1}^{n^2} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k} \right)$$

$$= \frac{u_{n^2} + \ln(n^2) - u_n - \ln(n)}{\ln(n)}$$

$$= \frac{u_{n^2} - u_n}{\ln(n)} + \underbrace{\frac{2\ln(n) - \ln(n)}{\ln(n)}}_{=1}.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également, tandis que le logarithme tend vers $+\infty$. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n}^{n^2} \frac{1}{k} = 1,$$

d'où le résultat.

Corrigé 9. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 1

$$\frac{1}{\ln(n)} \sum_{k=n^2}^{n^3} \frac{1}{k} = \frac{1}{\ln(n)} \left(\sum_{k=1}^{n^3} \frac{1}{k} - \sum_{k=1}^{n^2} \frac{1}{k} \right)$$

$$= \frac{u_{n^3} + \ln(n^3) - u_{n^2} - \ln(n^2)}{\ln(n)}$$

$$= \frac{u_{n^3} - u_{n^2}}{\ln(n)} + \underbrace{\frac{3\ln(n) - 2\ln(n)}{\ln(n)}}_{-1}.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également, tandis que le logarithme tend vers $+\infty$. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n^2}^{n^3} \frac{1}{k} = 1,$$

d'où le résultat.

Corrigé 10. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 1

$$\frac{1}{\ln(n)} \sum_{k=n^2}^{n^{14}} \frac{1}{k} = \frac{1}{\ln(n)} \left(\sum_{k=1}^{n^{14}} \frac{1}{k} - \sum_{k=1}^{n^2} \frac{1}{k} \right)$$

$$= \frac{u_{n^{14}} + \ln(n^{14}) - u_{n^2} - \ln(n^2)}{\ln(n)}$$

$$= \frac{u_{n^{14}} - u_{n^2}}{\ln(n)} + \underbrace{\frac{14 \ln(n) - 2 \ln(n)}{\ln(n)}}_{-12}.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également, tandis que le logarithme tend vers $+\infty$. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n^2}^{n^{14}} \frac{1}{k} = 12,$$

d'où le résultat.

Corrigé 11. Soit n au voisinage de $+\infty$. Une décomposition en éléments simples donne :

 \leftarrow page 1

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{44 \, k + 5}{(2 \, k + 5)(k + 2)k} = \frac{1}{2 \, k} + \frac{83}{2 \, (k + 2)} - \frac{84}{2 \, k + 5}.$$

$$\sum_{k=1}^{n} \frac{44 \, k + 5}{(2 \, k + 5)(k + 2)k} = \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k} + \frac{83}{2} \sum_{k=1}^{n} \frac{1}{k + 2} - 84 \sum_{k=1}^{n} \frac{1}{2 \, k + 5}.$$

$$\sum_{k=1}^{n} \frac{1}{2k+5} = \sum_{k=3}^{n+2} \frac{1}{2k+1}$$

$$= \sum_{k=1}^{n+2} \frac{1}{2k+1} - \sum_{k=1}^{2} \frac{1}{2k+1}$$

$$= \sum_{k=1}^{2n+5} \frac{1}{k} - \frac{23}{15}$$

$$= \sum_{k=1}^{2n+5} \frac{1}{k} - \sum_{k=1}^{2n+5} \frac{1}{k} - \frac{23}{15}$$

$$= \sum_{k=1}^{2n+5} \frac{1}{k} - \sum_{\ell=1}^{2n+5} \frac{1}{2\ell} - \frac{23}{15}$$

$$= u_{2n+5} + \ln(2n+5) - \frac{1}{2} (u_{n+2} + \ln(n+2)) - \frac{23}{15},$$

et:

$$\sum_{k=1}^{n} \frac{1}{k+2} = \sum_{k=3}^{n+2} \frac{1}{k}$$

$$= \sum_{k=1}^{n+2} \frac{1}{k} - \sum_{k=1}^{2} \frac{1}{k}$$

$$= u_{n+2} + \ln(n+2) - \frac{3}{2},$$

ce dont on déduit:

$$\sum_{k=1}^{n} \frac{44 k + 5}{(2 k + 5)(k + 2)k} = \frac{1}{2} (u_n + \ln(n)) + \frac{83}{2} \left(u_{n+2} + \ln(n+2) - \frac{3}{2} \right) +$$

$$-84 \left(u_{2n+5} + \ln(2 n + 5) - \frac{1}{2} (u_{n+2} + \ln(n+2)) - \frac{23}{15} \right)$$

$$= \frac{1}{2} u_n + \frac{83}{2} u_{n+2} - 84 u_{2n+5} + 42 u_{n+2} + \frac{1331}{20} + \ln\left(\frac{(n+2)^{\frac{167}{2}} \sqrt{n}}{(2 n + 5)^{84}} \right).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{44 \, k + 5}{(2 \, k + 5)(k + 2)k} = \frac{1}{2} \gamma + \frac{83}{2} \gamma - 84 \gamma + 42 \gamma + \frac{1331}{20} + \ln \left(\frac{1}{19342813113834066795298816} \right)$$

$$= \ln \left(\frac{1}{19342813113834066795298816} \right) + \frac{1331}{20},$$

d'où le résultat.

Corrigé 12. Soit n au voisinage de $+\infty$. On a:

$$\sum_{k=1}^{n^3} \frac{1}{k} - 3\sum_{k=1}^{n} \frac{1}{k} = u_{n^3} + \ln\left(n^3\right) - 3\left(u_n + \ln(n)\right)$$
$$= u_{n^3} - 3u_n + 3\ln(n) - 3\ln(n)$$
$$= u_{n^3} - 3u_n.$$

 \leftarrow page 2

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n^3} \frac{1}{k} - 3 \sum_{k=1}^{n} \frac{1}{k} \right) = \gamma - 3\gamma = -2\gamma,$$

d'où le résultat.

Corrigé 13. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 2

$$\sum_{k=1}^{n^2} \frac{1}{k} - 2\sum_{k=1}^{n} \frac{1}{k} = u_{n^2} + \ln(n^2) - 2(u_n + \ln(n))$$
$$= u_{n^2} - 2u_n + 2\ln(n) - 2\ln(n)$$
$$= u_{n^2} - 2u_n.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n^2} \frac{1}{k} - 2 \sum_{k=1}^{n} \frac{1}{k} \right) = \gamma - 2\gamma = -\gamma,$$

d'où le résultat.

Corrigé 14. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 2

$$\sum_{k=1}^{n^{26}} \frac{1}{k} - 26 \sum_{k=1}^{n} \frac{1}{k} = u_{n^{26}} + \ln(n^{26}) - 26(u_n + \ln(n))$$
$$= u_{n^{26}} - 26u_n + 26\ln(n) - 26\ln(n)$$
$$= u_{n^{26}} - 26u_n.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n^{26}} \frac{1}{k} - 26 \sum_{k=1}^{n} \frac{1}{k} \right) = \gamma - 26\gamma = -25\gamma,$$

d'où le résultat.

Corrigé 15. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 2

$$\sum_{k=2n}^{4n} \frac{1}{k} = \sum_{k=1}^{4n} \frac{1}{k} - \sum_{k=1}^{2n} \frac{1}{k}$$

$$= u_{4n} + \ln(4n) - u_{2n} - \ln(2n)$$

$$= u_{4n} - u_{2n} + \ln(2).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=2n}^{4n} \frac{1}{k} = \gamma - \gamma + \ln(2) = \ln(2),$$

d'où le résultat.

Corrigé 16. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 2

$$\sum_{k=1}^{n^{27}} \frac{1}{k} - 27 \sum_{k=1}^{n} \frac{1}{k} = u_{n^{27}} + \ln(n^{27}) - 27(u_n + \ln(n))$$
$$= u_{n^{27}} - 27u_n + 27\ln(n) - 27\ln(n)$$
$$= u_{n^{27}} - 27u_n.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n^{27}} \frac{1}{k} - 27 \sum_{k=1}^{n} \frac{1}{k} \right) = \gamma - 27\gamma = -26\gamma,$$

d'où le résultat.

Corrigé 17. Soit n au voisinage de $+\infty$. Une décomposition en éléments simples donne :

 $\leftarrow \text{page } 2$

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{5}{(2k+3)(k+1)k} = \frac{5}{3k} - \frac{5}{k+1} + \frac{20}{3(2k+3)}.$$

Donc:

$$\sum_{k=1}^{n} \frac{5}{(2k+3)(k+1)k} = \frac{5}{3} \sum_{k=1}^{n} \frac{1}{k} - 5 \sum_{k=1}^{n} \frac{1}{k+1} + \frac{20}{3} \sum_{k=1}^{n} \frac{1}{2k+3}.$$

Or:

$$\sum_{k=1}^{n} \frac{1}{2k+3} = \sum_{k=2}^{n+1} \frac{1}{2k+1}$$

$$= \sum_{k=1}^{n+1} \frac{1}{2k+1} - \sum_{k=1}^{1} \frac{1}{2k+1}$$

$$= \sum_{k=1}^{2n+3} \frac{1}{k} - \frac{4}{3}$$

$$= \sum_{k=1}^{2n+3} \frac{1}{k} - \sum_{k=1}^{2n+3} \frac{1}{k} - \frac{4}{3}$$

$$= \sum_{k=1}^{2n+3} \frac{1}{k} - \sum_{\ell=1}^{2n+1} \frac{1}{2\ell} - \frac{4}{3}$$

$$= u_{2n+3} + \ln(2n+3) - \frac{1}{2}(u_{n+1} + \ln(n+1)) - \frac{4}{3},$$

et:

$$\sum_{k=1}^{n} \frac{1}{k+1} = \sum_{k=2}^{n+1} \frac{1}{k}$$

$$= \sum_{k=1}^{n+1} \frac{1}{k} - \sum_{k=1}^{1} \frac{1}{k}$$

$$= u_{n+1} + \ln(n+1) - 1,$$

ce dont on déduit:

$$\sum_{k=1}^{n} \frac{5}{(2k+3)(k+1)k} = \frac{5}{3} (u_n + \ln(n)) - 5 (u_{n+1} + \ln(n+1) - 1) + \frac{20}{3} \left(u_{2n+3} + \ln(2n+3) - \frac{1}{2} (u_{n+1} + \ln(n+1)) - \frac{4}{3} \right)$$

$$= \frac{5}{3} u_n - 5 u_{n+1} + \frac{20}{3} u_{2n+3} - \frac{10}{3} u_{n+1} - \frac{35}{9} + \ln\left(\frac{(2n+3)^{\frac{20}{3}} n^{\frac{5}{3}}}{(n+1)^{\frac{25}{3}}}\right).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{5}{(2k+3)(k+1)k} = \frac{5}{3}\gamma - 5\gamma + \frac{20}{3}\gamma - \frac{10}{3}\gamma - \frac{35}{9} + \ln\left(64 \cdot 2^{\frac{2}{3}}\right)$$
$$= \ln\left(64 \cdot 2^{\frac{2}{3}}\right) - \frac{35}{9},$$

d'où le résultat.

Corrigé 18. Soit n au voisinage de $+\infty$. On a:

$$\frac{1}{\ln(n)} \sum_{k=n^2}^{n^8} \frac{1}{k} = \frac{1}{\ln(n)} \left(\sum_{k=1}^{n^8} \frac{1}{k} - \sum_{k=1}^{n^2} \frac{1}{k} \right)$$

$$= \frac{u_{n^8} + \ln(n^8) - u_{n^2} - \ln(n^2)}{\ln(n)}$$

$$= \frac{u_{n^8} - u_{n^2}}{\ln(n)} + \underbrace{\frac{8\ln(n) - 2\ln(n)}{\ln(n)}}_{-6}.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également, tandis que le logarithme tend vers $+\infty$. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n^2}^{n^8} \frac{1}{k} = 6,$$

d'où le résultat.

Corrigé 19. Soit n au voisinage de $+\infty$. On a:

$$\frac{1}{\ln(n)} \sum_{k=n^2}^{n^3} \frac{1}{k} = \frac{1}{\ln(n)} \left(\sum_{k=1}^{n^3} \frac{1}{k} - \sum_{k=1}^{n^2} \frac{1}{k} \right)$$

$$= \frac{u_{n^3} + \ln(n^3) - u_{n^2} - \ln(n^2)}{\ln(n)}$$

$$= \frac{u_{n^3} - u_{n^2}}{\ln(n)} + \underbrace{\frac{3\ln(n) - 2\ln(n)}{\ln(n)}}_{=1}.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également, tandis que le logarithme tend vers $+\infty$. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n^2}^{n^3} \frac{1}{k} = 1,$$

 \leftarrow page 2

 \leftarrow page 2

d'où le résultat.

Corrigé 20. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 2

$$\sum_{k=n}^{12n} \frac{1}{k} = \sum_{k=1}^{12n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k}$$
$$= u_{12n} + \ln(12n) - u_n - \ln(n)$$
$$= u_{12n} - u_n + \ln(12).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=n}^{12n} \frac{1}{k} = \gamma - \gamma + \ln(12) = \ln(12),$$

d'où le résultat.

Corrigé 21. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 2

$$\frac{1}{\ln(n)} \sum_{k=n}^{n^4} \frac{1}{k} = \frac{1}{\ln(n)} \left(\sum_{k=1}^{n^4} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k} \right)$$

$$= \frac{u_{n^4} + \ln(n^4) - u_n - \ln(n)}{\ln(n)}$$

$$= \frac{u_{n^4} - u_n}{\ln(n)} + \underbrace{\frac{4\ln(n) - \ln(n)}{\ln(n)}}_{=3}.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également, tandis que le logarithme tend vers $+\infty$. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n}^{n^4} \frac{1}{k} = 3,$$

d'où le résultat.

Corrigé 22. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 2

$$\sum_{k=n}^{2n} \frac{1}{k} = \sum_{k=1}^{2n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k}$$
$$= u_{2n} + \ln(2n) - u_n - \ln(n)$$
$$= u_{2n} - u_n + \ln(2).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=n}^{2n} \frac{1}{k} = \gamma - \gamma + \ln(2) = \ln(2),$$

d'où le résultat.

Corrigé 23. Soit n au voisinage de $+\infty$. Une décomposition en éléments simples donne :

 \leftarrow page 2

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{5}{(2k+1)(k+2)} = -\frac{5}{3(k+2)} + \frac{10}{3(2k+1)}.$$

Donc:

$$\sum_{k=1}^{n} \frac{5}{(2\,k+1)(k+2)} = -\frac{5}{3} \sum_{k=1}^{n} \frac{1}{k+2} + \frac{10}{3} \sum_{k=1}^{n} \frac{1}{2\,k+1}.$$

Or:

$$\sum_{k=1}^{n} \frac{1}{2k+1} = \sum_{\substack{k=1 \ k \text{ impair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\substack{k=1 \ k \text{ pair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\ell=1}^{n} \frac{1}{2\ell} - 1$$

$$= u_{2n+1} + \ln(2n+1) - \frac{1}{2} (u_n + \ln(n)) - 1,$$

et:

$$\sum_{k=1}^{n} \frac{1}{k+2} = \sum_{k=3}^{n+2} \frac{1}{k}$$

$$= \sum_{k=1}^{n+2} \frac{1}{k} - \sum_{k=1}^{2} \frac{1}{k}$$

$$= u_{n+2} + \ln(n+2) - \frac{3}{2},$$

ce dont on déduit:

$$\sum_{k=1}^{n} \frac{5}{(2k+1)(k+2)} = -\frac{5}{3} \left(u_{n+2} + \ln(n+2) - \frac{3}{2} \right) + \frac{10}{3} \left(u_{2n+1} + \ln(2n+1) - \frac{1}{2} \left(u_n + \ln(n) \right) - 1 \right)$$

$$= -\frac{5}{3} u_{n+2} + \frac{10}{3} u_{2n+1} - \frac{5}{3} u_n - \frac{5}{6} + \ln\left(\frac{(2n+1)^{\frac{10}{3}}}{(n+2)^{\frac{5}{3}} n^{\frac{5}{3}}} \right).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{5}{(2k+1)(k+2)} = -\frac{5}{3}\gamma + \frac{10}{3}\gamma - \frac{5}{3}\gamma - \frac{5}{6} + \ln\left(8 \cdot 2^{\frac{1}{3}}\right)$$
$$= \ln\left(8 \cdot 2^{\frac{1}{3}}\right) - \frac{5}{6},$$

d'où le résultat.

Corrigé 24. Soit n au voisinage de $+\infty$. On a:

$$\sum_{k=n}^{6n} \frac{1}{k} = \sum_{k=1}^{6n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k}$$
$$= u_{6n} + \ln(6n) - u_n - \ln(n)$$
$$= u_{6n} - u_n + \ln(6).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=n}^{6n} \frac{1}{k} = \gamma - \gamma + \ln(6) = \ln(6),$$

d'où le résultat.

Corrigé 25. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 2

$$\frac{1}{\ln(n)} \sum_{k=n^2}^{n^3} \frac{1}{k} = \frac{1}{\ln(n)} \left(\sum_{k=1}^{n^3} \frac{1}{k} - \sum_{k=1}^{n^2} \frac{1}{k} \right)$$

$$= \frac{u_{n^3} + \ln(n^3) - u_{n^2} - \ln(n^2)}{\ln(n)}$$

$$= \frac{u_{n^3} - u_{n^2}}{\ln(n)} + \underbrace{\frac{3\ln(n) - 2\ln(n)}{\ln(n)}}_{=1}.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également, tandis que le logarithme tend vers $+\infty$. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n^2}^{n^3} \frac{1}{k} = 1,$$

d'où le résultat.

Corrigé 26. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 2

$$\frac{1}{\ln(n)} \sum_{k=n}^{n^{232}} \frac{1}{k} = \frac{1}{\ln(n)} \left(\sum_{k=1}^{n^{232}} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k} \right)$$

$$= \frac{u_{n^{232}} + \ln(n^{232}) - u_n - \ln(n)}{\ln(n)}$$

$$= \frac{u_{n^{232}} - u_n}{\ln(n)} + \underbrace{\frac{232 \ln(n) - \ln(n)}{\ln(n)}}_{=231}.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également, tandis que le logarithme tend vers $+\infty$. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n}^{n^{232}} \frac{1}{k} = 231,$$

d'où le résultat.

Corrigé 27. Soit n au voisinage de $+\infty$. Une décomposition en éléments simples donne:

 \leftarrow page 3

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{k+3}{(2\,k+3)(k+5)k} = \frac{1}{5\,k} - \frac{2}{35\,(k+5)} - \frac{2}{7\,(2\,k+3)}.$$

$$\sum_{k=1}^{n} \frac{k+3}{(2\,k+3)(k+5)k} = \frac{1}{5} \sum_{k=1}^{n} \frac{1}{k} - \frac{2}{35} \sum_{k=1}^{n} \frac{1}{k+5} - \frac{2}{7} \sum_{k=1}^{n} \frac{1}{2\,k+3}.$$

$$\begin{split} \sum_{k=1}^{n} \frac{1}{2k+3} &= \sum_{k=2}^{n+1} \frac{1}{2k+1} \\ &= \sum_{k=1}^{n+1} \frac{1}{2k+1} - \sum_{k=1}^{1} \frac{1}{2k+1} \\ &= \sum_{k=1}^{2n+3} \frac{1}{k} - \frac{4}{3} \\ &= \sum_{k=1}^{2n+3} \frac{1}{k} - \sum_{k=1}^{2n+3} \frac{1}{k} - \frac{4}{3} \\ &= \sum_{k=1}^{2n+3} \frac{1}{k} - \sum_{\ell=1}^{2n+3} \frac{1}{2\ell} - \frac{4}{3} \\ &= u_{2n+3} + \ln(2n+3) - \frac{1}{2} \left(u_{n+1} + \ln(n+1) \right) - \frac{4}{3} \end{split}$$

et:

$$\sum_{k=1}^{n} \frac{1}{k+5} = \sum_{k=6}^{n+5} \frac{1}{k}$$

$$= \sum_{k=1}^{n+5} \frac{1}{k} - \sum_{k=1}^{5} \frac{1}{k}$$

$$= u_{n+5} + \ln(n+5) - \frac{137}{60},$$

ce dont on déduit:

$$\sum_{k=1}^{n} \frac{k+3}{(2k+3)(k+5)k} = \frac{1}{5} (u_n + \ln(n)) - \frac{2}{35} \left(u_{n+5} + \ln(n+5) - \frac{137}{60} \right) +$$

$$- \frac{2}{7} \left(u_{2n+3} + \ln(2n+3) - \frac{1}{2} (u_{n+1} + \ln(n+1)) - \frac{4}{3} \right)$$

$$= \frac{1}{5} u_n - \frac{2}{35} u_{n+5} - \frac{2}{7} u_{2n+3} + \frac{1}{7} u_{n+1} + \frac{179}{350} + \ln\left(\frac{(n+1)^{\frac{1}{7}} n^{\frac{1}{5}}}{(2n+3)^{\frac{2}{7}} (n+5)^{\frac{2}{35}}} \right).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{k+3}{(2\,k+3)(k+5)k} = \frac{1}{5}\gamma - \frac{2}{35}\gamma - \frac{2}{7}\gamma + \frac{1}{7}\gamma + \frac{179}{350} + \ln\left(\frac{1}{2} \cdot 2^{\frac{5}{7}}\right)$$

$$= \ln\left(\frac{1}{2} \cdot 2^{\frac{5}{7}}\right) + \frac{179}{350},$$

d'où le résultat.

Corrigé 28. Soit n au voisinage de $+\infty$. Une décomposition en éléments simples donne :

 \leftarrow page 3

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{9}{(2k+1)(k+8)} = -\frac{3}{5(k+8)} + \frac{6}{5(2k+1)}.$$

$$\sum_{k=1}^{n} \frac{9}{(2k+1)(k+8)} = -\frac{3}{5} \sum_{k=1}^{n} \frac{1}{k+8} + \frac{6}{5} \sum_{k=1}^{n} \frac{1}{2k+1}.$$

$$\sum_{k=1}^{n} \frac{1}{2k+1} = \sum_{\substack{k=1 \ \text{impair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\substack{k=1 \ k \text{ pair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\ell=1}^{n} \frac{1}{2\ell} - 1$$

$$= u_{2n+1} + \ln(2n+1) - \frac{1}{2} (u_n + \ln(n)) - 1,$$

et:

$$\sum_{k=1}^{n} \frac{1}{k+8} = \sum_{k=9}^{n+8} \frac{1}{k}$$

$$= \sum_{k=1}^{n+8} \frac{1}{k} - \sum_{k=1}^{8} \frac{1}{k}$$

$$= u_{n+8} + \ln(n+8) - \frac{761}{280},$$

ce dont on déduit:

$$\sum_{k=1}^{n} \frac{9}{(2k+1)(k+8)} = -\frac{3}{5} \left(u_{n+8} + \ln(n+8) - \frac{761}{280} \right) + \frac{6}{5} \left(u_{2n+1} + \ln(2n+1) - \frac{1}{2} \left(u_n + \ln(n) \right) - 1 \right)$$

$$= -\frac{3}{5} u_{n+8} + \frac{6}{5} u_{2n+1} - \frac{3}{5} u_n + \frac{603}{1400} + \ln\left(\frac{(2n+1)^{\frac{6}{5}}}{(n+8)^{\frac{3}{5}} n^{\frac{3}{5}}} \right).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{9}{(2k+1)(k+8)} = -\frac{3}{5}\gamma + \frac{6}{5}\gamma - \frac{3}{5}\gamma + \frac{603}{1400} + \ln\left(2 \cdot 2^{\frac{1}{5}}\right)$$
$$= \ln\left(2 \cdot 2^{\frac{1}{5}}\right) + \frac{603}{1400},$$

d'où le résultat.

Corrigé 29. Soit n au voisinage de $+\infty$. Une décomposition en éléments simples donne :

 \leftarrow page 3

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{k+2}{(2k+1)(k+3)k} = \frac{2}{3k} - \frac{1}{15(k+3)} - \frac{6}{5(2k+1)}.$$

$$\sum_{k=1}^{n} \frac{k+2}{(2k+1)(k+3)k} = \frac{2}{3} \sum_{k=1}^{n} \frac{1}{k} - \frac{1}{15} \sum_{k=1}^{n} \frac{1}{k+3} - \frac{6}{5} \sum_{k=1}^{n} \frac{1}{2k+1}.$$

$$\sum_{k=1}^{n} \frac{1}{2k+1} = \sum_{\substack{k=1\\k \text{ impair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\substack{k=1\\k \text{ pair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\ell=1}^{n} \frac{1}{2\ell} - 1$$

$$= u_{2n+1} + \ln(2n+1) - \frac{1}{2} (u_n + \ln(n)) - 1,$$

et:

$$\sum_{k=1}^{n} \frac{1}{k+3} = \sum_{k=4}^{n+3} \frac{1}{k}$$

$$= \sum_{k=1}^{n+3} \frac{1}{k} - \sum_{k=1}^{3} \frac{1}{k}$$

$$= u_{n+3} + \ln(n+3) - \frac{11}{6}$$

ce dont on déduit:

$$\sum_{k=1}^{n} \frac{k+2}{(2k+1)(k+3)k} = \frac{2}{3} (u_n + \ln(n)) - \frac{1}{15} \left(u_{n+3} + \ln(n+3) - \frac{11}{6} \right) +$$

$$- \frac{6}{5} \left(u_{2n+1} + \ln(2n+1) - \frac{1}{2} (u_n + \ln(n)) - 1 \right)$$

$$= \frac{2}{3} u_n - \frac{1}{15} u_{n+3} - \frac{6}{5} u_{2n+1} + \frac{3}{5} u_n + \frac{119}{90} + \ln\left(\frac{n^{\frac{19}{15}}}{(2n+1)^{\frac{6}{5}} (n+3)^{\frac{1}{15}}} \right).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{k+2}{(2\,k+1)(k+3)k} = \frac{2}{3}\gamma - \frac{1}{15}\gamma - \frac{6}{5}\gamma + \frac{3}{5}\gamma + \frac{119}{90} + \ln\left(\frac{1}{4} \cdot 2^{\frac{4}{5}}\right)$$

$$= \ln\left(\frac{1}{4} \cdot 2^{\frac{4}{5}}\right) + \frac{119}{90},$$

d'où le résultat.

Corrigé 30. Soit n au voisinage de $+\infty$. On a:

$$\sum_{k=n}^{5n} \frac{1}{k} = \sum_{k=1}^{5n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k}$$

$$= u_{5n} + \ln(5n) - u_n - \ln(n)$$

$$= u_{5n} - u_n + \ln(5).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=n}^{5n} \frac{1}{k} = \gamma - \gamma + \ln(5) = \ln(5),$$

 \leftarrow page 3

d'où le résultat.

Corrigé 31. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 3

$$\sum_{k=3n}^{20n} \frac{1}{k} = \sum_{k=1}^{20n} \frac{1}{k} - \sum_{k=1}^{3n} \frac{1}{k}$$

$$= u_{20n} + \ln(20n) - u_{3n} - \ln(3n)$$

$$= u_{20n} - u_{3n} + \ln\left(\frac{20}{3}\right).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n\to +\infty} \sum_{k=3\,n}^{20\,n} \frac{1}{k} = \gamma - \gamma + \ln\left(\frac{20}{3}\right) = \ln\left(\frac{20}{3}\right),$$

d'où le résultat.

Corrigé 32. Soit n au voisinage de $+\infty$. Une décomposition en éléments simples donne :

 \leftarrow page 3

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{k+1}{(2k+1)(k+2)k} = \frac{1}{2k} - \frac{1}{6(k+2)} - \frac{2}{3(2k+1)}$$

Donc:

$$\sum_{k=1}^{n} \frac{k+1}{(2\,k+1)(k+2)k} = \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k} - \frac{1}{6} \sum_{k=1}^{n} \frac{1}{k+2} - \frac{2}{3} \sum_{k=1}^{n} \frac{1}{2\,k+1}.$$

Or:

$$\sum_{k=1}^{n} \frac{1}{2k+1} = \sum_{\substack{k=1\\k \text{ impair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\substack{k=1\\k \text{ pair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\ell=1}^{n} \frac{1}{2\ell} - 1$$

$$= u_{2n+1} + \ln(2n+1) - \frac{1}{2} (u_n + \ln(n)) - 1,$$

et:

$$\sum_{k=1}^{n} \frac{1}{k+2} = \sum_{k=3}^{n+2} \frac{1}{k}$$

$$= \sum_{k=1}^{n+2} \frac{1}{k} - \sum_{k=1}^{2} \frac{1}{k}$$

$$= u_{n+2} + \ln(n+2) - \frac{3}{2},$$

ce dont on déduit:

$$\sum_{k=1}^{n} \frac{k+1}{(2k+1)(k+2)k} = \frac{1}{2} (u_n + \ln(n)) - \frac{1}{6} \left(u_{n+2} + \ln(n+2) - \frac{3}{2} \right) +$$

$$- \frac{2}{3} \left(u_{2n+1} + \ln(2n+1) - \frac{1}{2} (u_n + \ln(n)) - 1 \right)$$

$$= \frac{1}{2} u_n - \frac{1}{6} u_{n+2} - \frac{2}{3} u_{2n+1} + \frac{1}{3} u_n + \frac{11}{12} + \ln\left(\frac{n^{\frac{5}{6}}}{(2n+1)^{\frac{2}{3}} (n+2)^{\frac{1}{6}}} \right).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{k+1}{(2k+1)(k+2)k} = \frac{1}{2}\gamma - \frac{1}{6}\gamma - \frac{2}{3}\gamma + \frac{1}{3}\gamma + \frac{11}{12} + \ln\left(\frac{1}{2} \cdot 2^{\frac{1}{3}}\right)$$
$$= \ln\left(\frac{1}{2} \cdot 2^{\frac{1}{3}}\right) + \frac{11}{12},$$

d'où le résultat.

Corrigé 33. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 3

$$\sum_{k=1}^{n^{37}} \frac{1}{k} - 37 \sum_{k=1}^{n} \frac{1}{k} = u_{n^{37}} + \ln(n^{37}) - 37(u_n + \ln(n))$$

$$= u_{n^{37}} - 37u_n + 37\ln(n) - 37\ln(n)$$

$$= u_{n^{37}} - 37u_n.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n^{37}} \frac{1}{k} - 37 \sum_{k=1}^{n} \frac{1}{k} \right) = \gamma - 37\gamma = -36\gamma,$$

d'où le résultat.

Corrigé 34. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 3

$$\frac{1}{\ln(n)} \sum_{k=n}^{n^2} \frac{1}{k} = \frac{1}{\ln(n)} \left(\sum_{k=1}^{n^2} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k} \right)$$

$$= \frac{u_{n^2} + \ln(n^2) - u_n - \ln(n)}{\ln(n)}$$

$$= \frac{u_{n^2} - u_n}{\ln(n)} + \underbrace{\frac{2\ln(n) - \ln(n)}{\ln(n)}}_{-1}.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également, tandis que le logarithme tend vers $+\infty$. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n}^{n^2} \frac{1}{k} = 1,$$

d'où le résultat.

Corrigé 35. Soit n au voisinage de $+\infty$. Une décomposition en éléments simples donne :

 \leftarrow page 3

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{2(k+1)}{(2k+1)(k+10)k} = \frac{1}{5k} - \frac{9}{95(k+10)} - \frac{4}{19(2k+1)}.$$

$$\sum_{k=1}^{n} \frac{2(k+1)}{(2k+1)(k+10)k} = \frac{1}{5} \sum_{k=1}^{n} \frac{1}{k} - \frac{9}{95} \sum_{k=1}^{n} \frac{1}{k+10} - \frac{4}{19} \sum_{k=1}^{n} \frac{1}{2k+1}.$$

$$\sum_{k=1}^{n} \frac{1}{2k+1} = \sum_{\substack{k=1 \ \text{impair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\substack{k=1 \ k \text{ pair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\ell=1}^{n} \frac{1}{2\ell} - 1$$

$$= u_{2n+1} + \ln(2n+1) - \frac{1}{2} (u_n + \ln(n)) - 1,$$

et:

$$\sum_{k=1}^{n} \frac{1}{k+10} = \sum_{k=11}^{n+10} \frac{1}{k}$$

$$= \sum_{k=1}^{n+10} \frac{1}{k} - \sum_{k=1}^{10} \frac{1}{k}$$

$$= u_{n+10} + \ln(n+10) - \frac{7381}{2520}$$

ce dont on déduit:

$$\begin{split} \sum_{k=1}^{n} \frac{2 \left(k+1\right)}{(2 \, k+1) (k+10) k} &= \frac{1}{5} \left(u_n + \ln \left(n\right)\right) - \frac{9}{95} \left(u_{n+10} + \ln \left(n+10\right) - \frac{7381}{2520}\right) + \\ &- \frac{4}{19} \left(u_{2\,n+1} + \ln \left(2\, n+1\right) - \frac{1}{2} \left(u_n + \ln \left(n\right)\right) - 1\right) \\ &= \frac{1}{5} u_n - \frac{9}{95} u_{n+10} - \frac{4}{19} u_{2\,n+1} + \frac{2}{19} u_n + \frac{12981}{26600} + \ln \left(\frac{n^{\frac{29}{95}}}{(2\, n+1)^{\frac{4}{19}} (n+10)^{\frac{9}{95}}}\right). \end{split}$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{2\,k+2}{(2\,k+1)(k+10)k} = \frac{1}{5}\gamma - \frac{9}{95}\gamma - \frac{4}{19}\gamma + \frac{2}{19}\gamma + \frac{12981}{26600} + \ln\left(\frac{1}{2} \cdot 2^{\frac{15}{19}}\right)$$

$$= \ln\left(\frac{1}{2} \cdot 2^{\frac{15}{19}}\right) + \frac{12981}{26600},$$

d'où le résultat.

Corrigé 36. Soit n au voisinage de $+\infty$. On a:

$$\frac{1}{\ln(n)} \sum_{k=n}^{n^{2001}} \frac{1}{k} = \frac{1}{\ln(n)} \left(\sum_{k=1}^{n^{2001}} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k} \right)$$

$$= \frac{u_{n^{2001}} + \ln(n^{2001}) - u_n - \ln(n)}{\ln(n)}$$

$$= \frac{u_{n^{2001}} - u_n}{\ln(n)} + \underbrace{\frac{2001 \ln(n) - \ln(n)}{\ln(n)}}_{\text{2000}}.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également, tandis que le logarithme tend vers $+\infty$. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n}^{n^{2001}} \frac{1}{k} = 2000,$$

d'où le résultat.

Corrigé 37. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 3

$$\sum_{k=1}^{n^2} \frac{1}{k} - 2\sum_{k=1}^{n} \frac{1}{k} = u_{n^2} + \ln(n^2) - 2(u_n + \ln(n))$$
$$= u_{n^2} - 2u_n + 2\ln(n) - 2\ln(n)$$
$$= u_{n^2} - 2u_n.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n^2} \frac{1}{k} - 2 \sum_{k=1}^{n} \frac{1}{k} \right) = \gamma - 2\gamma = -\gamma,$$

d'où le résultat.

Corrigé 38. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 3

$$\sum_{k=1}^{n^2} \frac{1}{k} - 2\sum_{k=1}^{n} \frac{1}{k} = u_{n^2} + \ln(n^2) - 2(u_n + \ln(n))$$
$$= u_{n^2} - 2u_n + 2\ln(n) - 2\ln(n)$$
$$= u_{n^2} - 2u_n.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n\to+\infty}\left(\sum_{k=1}^{n^2}\frac{1}{k}-2\sum_{k=1}^{n}\frac{1}{k}\right)=\gamma-2\gamma=-\gamma,$$

d'où le résultat.

Corrigé 39. Soit n au voisinage de $+\infty$. Une décomposition en éléments simples donne :

 \leftarrow page 3

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{6}{(2k+1)(k+2)} = -\frac{2}{k+2} + \frac{4}{2k+1}.$$

$$\sum_{k=1}^{n} \frac{6}{(2k+1)(k+2)} = -2\sum_{k=1}^{n} \frac{1}{k+2} + 4\sum_{k=1}^{n} \frac{1}{2k+1}.$$

 \leftarrow page 3

Or:

$$\sum_{k=1}^{n} \frac{1}{2k+1} = \sum_{\substack{k=1\\k \text{ impair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\substack{k=1\\k \text{ pair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\ell=1}^{n} \frac{1}{2\ell} - 1$$

$$= u_{2n+1} + \ln(2n+1) - \frac{1}{2} (u_n + \ln(n)) - 1,$$

et:

$$\sum_{k=1}^{n} \frac{1}{k+2} = \sum_{k=3}^{n+2} \frac{1}{k}$$

$$= \sum_{k=1}^{n+2} \frac{1}{k} - \sum_{k=1}^{2} \frac{1}{k}$$

$$= u_{n+2} + \ln(n+2) - \frac{3}{2},$$

ce dont on déduit:

$$\sum_{k=1}^{n} \frac{6}{(2k+1)(k+2)} = -2\left(u_{n+2} + \ln(n+2) - \frac{3}{2}\right) + 4\left(u_{2n+1} + \ln(2n+1) - \frac{1}{2}\left(u_n + \ln(n)\right) - 1\right)$$
$$= -2u_{n+2} + 4u_{2n+1} - 2u_n - 1 + \ln\left(\frac{(2n+1)^4}{(n+2)^2n^2}\right).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{6}{(2k+1)(k+2)} = -2\gamma + 4\gamma - 2\gamma - 1 + \ln(16)$$
$$= 4 \ln(2) - 1,$$

d'où le résultat.

Corrigé 40. Soit n au voisinage de $+\infty$. On a:

$$\sum_{k=1}^{n^3} \frac{1}{k} - 3\sum_{k=1}^{n} \frac{1}{k} = u_{n^3} + \ln(n^3) - 3(u_n + \ln(n))$$
$$= u_{n^3} - 3u_n + 3\ln(n) - 3\ln(n)$$
$$= u_{n^3} - 3u_n.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n^3} \frac{1}{k} - 3 \sum_{k=1}^{n} \frac{1}{k} \right) = \gamma - 3\gamma = -2\gamma,$$

d'où le résultat.

Corrigé 41. Soit n au voisinage de $+\infty$. Une décomposition en éléments simples donne :

 \leftarrow page 3

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{1}{(2k+1)(k+2)} = -\frac{1}{3(k+2)} + \frac{2}{3(2k+1)}.$$

Donc:

$$\sum_{k=1}^{n} \frac{1}{(2k+1)(k+2)} = -\frac{1}{3} \sum_{k=1}^{n} \frac{1}{k+2} + \frac{2}{3} \sum_{k=1}^{n} \frac{1}{2k+1}.$$

Or:

$$\sum_{k=1}^{n} \frac{1}{2k+1} = \sum_{\substack{k=1 \ k \text{ impair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\substack{k=1 \ k \text{ pair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\ell=1}^{n} \frac{1}{2\ell} - 1$$

$$= u_{2n+1} + \ln(2n+1) - \frac{1}{2} (u_n + \ln(n)) - 1,$$

et:

$$\sum_{k=1}^{n} \frac{1}{k+2} = \sum_{k=3}^{n+2} \frac{1}{k}$$

$$= \sum_{k=1}^{n+2} \frac{1}{k} - \sum_{k=1}^{2} \frac{1}{k}$$

$$= u_{n+2} + \ln(n+2) - \frac{3}{2}$$

ce dont on déduit:

$$\sum_{k=1}^{n} \frac{1}{(2k+1)(k+2)} = -\frac{1}{3} \left(u_{n+2} + \ln(n+2) - \frac{3}{2} \right) + \frac{2}{3} \left(u_{2n+1} + \ln(2n+1) - \frac{1}{2} \left(u_n + \ln(n) \right) - 1 \right)$$

$$= -\frac{1}{3} u_{n+2} + \frac{2}{3} u_{2n+1} - \frac{1}{3} u_n - \frac{1}{6} + \ln\left(\frac{(2n+1)^{\frac{2}{3}}}{(n+2)^{\frac{1}{3}} n^{\frac{1}{3}}} \right).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{(2k+1)(k+2)} = -\frac{1}{3}\gamma + \frac{2}{3}\gamma - \frac{1}{3}\gamma - \frac{1}{6} + \ln\left(2^{\frac{2}{3}}\right)$$
$$= \ln\left(2^{\frac{2}{3}}\right) - \frac{1}{6},$$

d'où le résultat.

Corrigé 42. Soit n au voisinage de $+\infty$. Une décomposition en éléments simples donne :

 \leftarrow page 4

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{1}{(2k+3)(k+1)} = \frac{1}{k+1} - \frac{2}{2k+3}.$$

Donc:

$$\sum_{k=1}^{n} \frac{1}{(2k+3)(k+1)} = \sum_{k=1}^{n} \frac{1}{k+1} - 2\sum_{k=1}^{n} \frac{1}{2k+3}.$$

Or:

$$\begin{split} \sum_{k=1}^{n} \frac{1}{2k+3} &= \sum_{k=2}^{n+1} \frac{1}{2k+1} \\ &= \sum_{k=1}^{n+1} \frac{1}{2k+1} - \sum_{k=1}^{1} \frac{1}{2k+1} \\ &= \sum_{k=1}^{2n+3} \frac{1}{k} - \frac{4}{3} \\ &= \sum_{k=1}^{2n+3} \frac{1}{k} - \sum_{k=1}^{2n+3} \frac{1}{k} - \frac{4}{3} \\ &= \sum_{k=1}^{2n+3} \frac{1}{k} - \sum_{\ell=1}^{2n+1} \frac{1}{2\ell} - \frac{4}{3} \\ &= u_{2n+3} + \ln(2n+3) - \frac{1}{2} \left(u_{n+1} + \ln(n+1) \right) - \frac{4}{3} \end{split}$$

et:

$$\sum_{k=1}^{n} \frac{1}{k+1} = \sum_{k=2}^{n+1} \frac{1}{k}$$

$$= \sum_{k=1}^{n+1} \frac{1}{k} - \sum_{k=1}^{1} \frac{1}{k}$$

$$= u_{n+1} + \ln(n+1) - 1,$$

ce dont on déduit:

$$\sum_{k=1}^{n} \frac{1}{(2k+3)(k+1)} = (u_{n+1} + \ln(n+1) - 1) - 2\left(u_{2n+3} + \ln(2n+3) - \frac{1}{2}\left(u_{n+1} + \ln(n+1)\right) - \frac{4}{3}\right)$$
$$= u_{n+1} - 2u_{2n+3} + u_{n+1} + \frac{5}{3} + \ln\left(\frac{(n+1)^2}{(2n+3)^2}\right).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{(2k+3)(k+1)} = \gamma - 2\gamma + \gamma + \frac{5}{3} + \ln\left(\frac{1}{4}\right)$$
$$= \ln\left(\frac{1}{4}\right) + \frac{5}{3},$$

d'où le résultat.

Corrigé 43. Soit n au voisinage de $+\infty$. On a:

$$\sum_{k=n}^{2n} \frac{1}{k} = \sum_{k=1}^{2n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k}$$
$$= u_{2n} + \ln(2n) - u_n - \ln(n)$$
$$= u_{2n} - u_n + \ln(2).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=n}^{2n} \frac{1}{k} = \gamma - \gamma + \ln(2) = \ln(2),$$

d'où le résultat.

Corrigé 44. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 4

$$\sum_{k=1}^{n^9} \frac{1}{k} - 9 \sum_{k=1}^{n} \frac{1}{k} = u_{n^9} + \ln(n^9) - 9(u_n + \ln(n))$$
$$= u_{n^9} - 9u_n + 9\ln(n) - 9\ln(n)$$
$$= u_{n^9} - 9u_n.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n\to +\infty} \left(\sum_{k=1}^{n^9} \frac{1}{k} - 9\sum_{k=1}^n \frac{1}{k}\right) = \gamma - 9\gamma = -8\gamma,$$

d'où le résultat.

Corrigé 45. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 4

$$\frac{1}{\ln(n)} \sum_{k=n^2}^{n^4} \frac{1}{k} = \frac{1}{\ln(n)} \left(\sum_{k=1}^{n^4} \frac{1}{k} - \sum_{k=1}^{n^2} \frac{1}{k} \right)$$

$$= \frac{u_{n^4} + \ln(n^4) - u_{n^2} - \ln(n^2)}{\ln(n)}$$

$$= \frac{u_{n^4} - u_{n^2}}{\ln(n)} + \underbrace{\frac{4\ln(n) - 2\ln(n)}{\ln(n)}}_{=2}.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également, tandis que le logarithme tend vers $+\infty$. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=-2}^{n^4} \frac{1}{k} = 2,$$

d'où le résultat.

Corrigé 46. Soit n au voisinage de $+\infty$. On a:

← page 4

$$\sum_{k=1}^{n^{25}} \frac{1}{k} - 25 \sum_{k=1}^{n} \frac{1}{k} = u_{n^{25}} + \ln(n^{25}) - 25(u_n + \ln(n))$$
$$= u_{n^{25}} - 25u_n + 25\ln(n) - 25\ln(n)$$
$$= u_{n^{25}} - 25u_n.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n^{25}} \frac{1}{k} - 25 \sum_{k=1}^{n} \frac{1}{k} \right) = \gamma - 25\gamma = -24\gamma,$$

d'où le résultat.

Corrigé 47. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 4

$$\sum_{k=3n}^{4n} \frac{1}{k} = \sum_{k=1}^{4n} \frac{1}{k} - \sum_{k=1}^{3n} \frac{1}{k}$$

$$= u_{4n} + \ln(4n) - u_{3n} - \ln(3n)$$

$$= u_{4n} - u_{3n} + \ln\left(\frac{4}{3}\right).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=3}^{4n} \frac{1}{k} = \gamma - \gamma + \ln\left(\frac{4}{3}\right) = \ln\left(\frac{4}{3}\right),$$

d'où le résultat.

Corrigé 48. Soit n au voisinage de $+\infty$. Une décomposition en éléments simples donne :

 \leftarrow page 4

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{5k+1}{(2k+1)(k+1)k} = \frac{1}{k} - \frac{4}{k+1} + \frac{6}{2k+1}.$$

Donc:

$$\sum_{k=1}^{n} \frac{5 \, k + 1}{(2 \, k + 1)(k + 1)k} = \sum_{k=1}^{n} \frac{1}{k} - 4 \sum_{k=1}^{n} \frac{1}{k + 1} + 6 \sum_{k=1}^{n} \frac{1}{2 \, k + 1}.$$

Or:

$$\sum_{k=1}^{n} \frac{1}{2k+1} = \sum_{\substack{k=1 \ k \text{ impair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\substack{k=1 \ k \text{ pair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\ell=1}^{n} \frac{1}{2\ell} - 1$$

$$= u_{2n+1} + \ln(2n+1) - \frac{1}{2} (u_n + \ln(n)) - 1,$$

et:

$$\sum_{k=1}^{n} \frac{1}{k+1} = \sum_{k=2}^{n+1} \frac{1}{k}$$

$$= \sum_{k=1}^{n+1} \frac{1}{k} - \sum_{k=1}^{1} \frac{1}{k}$$

$$= u_{n+1} + \ln(n+1) - 1,$$

ce dont on déduit:

$$\sum_{k=1}^{n} \frac{5k+1}{(2k+1)(k+1)k} = (u_n + \ln(n)) - 4(u_{n+1} + \ln(n+1) - 1) +$$

$$+ 6\left(u_{2n+1} + \ln(2n+1) - \frac{1}{2}(u_n + \ln(n)) - 1\right)$$

$$= u_n - 4u_{n+1} + 6u_{2n+1} - 3u_n - 2 + \ln\left(\frac{(2n+1)^6}{(n+1)^4n^2}\right).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{5k+1}{(2k+1)(k+1)k} = \gamma - 4\gamma + 6\gamma - 3\gamma - 2 + \ln(64)$$
$$= 6 \ln(2) - 2,$$

d'où le résultat.

Corrigé 49. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 4

$$\sum_{k=1}^{n^{54}} \frac{1}{k} - 54 \sum_{k=1}^{n} \frac{1}{k} = u_{n^{54}} + \ln(n^{54}) - 54(u_n + \ln(n))$$

$$= u_{n^{54}} - 54u_n + 54\ln(n) - 54\ln(n)$$

$$= u_{n^{54}} - 54u_n.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n^{54}} \frac{1}{k} - 54 \sum_{k=1}^{n} \frac{1}{k} \right) = \gamma - 54\gamma = -53\gamma,$$

d'où le résultat.

Corrigé 50. Soit n au voisinage de $+\infty$. Une décomposition en éléments simples donne :

 \leftarrow page 4

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{6}{(2k+1)(k+4)k} = \frac{3}{2k} + \frac{3}{14(k+4)} - \frac{24}{7(2k+1)}.$$

Donc:

$$\sum_{k=1}^{n} \frac{6}{(2k+1)(k+4)k} = \frac{3}{2} \sum_{k=1}^{n} \frac{1}{k} + \frac{3}{14} \sum_{k=1}^{n} \frac{1}{k+4} - \frac{24}{7} \sum_{k=1}^{n} \frac{1}{2k+1}.$$

Or:

$$\sum_{k=1}^{n} \frac{1}{2k+1} = \sum_{\substack{k=1 \ k \text{ impair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\substack{k=1 \ k \text{ pair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\ell=1}^{n} \frac{1}{2\ell} - 1$$

$$= u_{2n+1} + \ln(2n+1) - \frac{1}{2} (u_n + \ln(n)) - 1,$$

et:

$$\sum_{k=1}^{n} \frac{1}{k+4} = \sum_{k=5}^{n+4} \frac{1}{k}$$

$$= \sum_{k=1}^{n+4} \frac{1}{k} - \sum_{k=1}^{4} \frac{1}{k}$$

$$= u_{n+4} + \ln(n+4) - \frac{25}{12}$$

ce dont on déduit:

$$\sum_{k=1}^{n} \frac{6}{(2k+1)(k+4)k} = \frac{3}{2} \left(u_n + \ln(n) \right) + \frac{3}{14} \left(u_{n+4} + \ln(n+4) - \frac{25}{12} \right) +$$

$$- \frac{24}{7} \left(u_{2n+1} + \ln(2n+1) - \frac{1}{2} \left(u_n + \ln(n) \right) - 1 \right)$$

$$= \frac{3}{2} u_n + \frac{3}{14} u_{n+4} - \frac{24}{7} u_{2n+1} + \frac{12}{7} u_n + \frac{167}{56} + \ln\left(\frac{(n+4)^{\frac{3}{14}} n^{\frac{45}{14}}}{(2n+1)^{\frac{24}{7}}} \right).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{6}{(2k+1)(k+4)k} = \frac{3}{2}\gamma + \frac{3}{14}\gamma - \frac{24}{7}\gamma + \frac{12}{7}\gamma + \frac{167}{56} + \ln\left(\frac{1}{16} \cdot 2^{\frac{4}{7}}\right)$$

$$= \ln\left(\frac{1}{16} \cdot 2^{\frac{4}{7}}\right) + \frac{167}{56},$$

d'où le résultat.

Corrigé 51. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 4

$$\sum_{k=n}^{3n} \frac{1}{k} = \sum_{k=1}^{3n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k}$$

$$= u_{3n} + \ln(3n) - u_n - \ln(n)$$

$$= u_{3n} - u_n + \ln(3).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=n}^{3n} \frac{1}{k} = \gamma - \gamma + \ln(3) = \ln(3),$$

d'où le résultat.

Corrigé 52. Soit n au voisinage de $+\infty$. Une décomposition en éléments simples donne :

 \leftarrow page 4

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{10 \, k + 1}{(2 \, k + 1)(k + 1)k} = \frac{1}{k} - \frac{9}{k + 1} + \frac{16}{2 \, k + 1}.$$

Donc:

$$\sum_{k=1}^{n} \frac{10\,k+1}{(2\,k+1)(k+1)k} = \sum_{k=1}^{n} \frac{1}{k} - 9\sum_{k=1}^{n} \frac{1}{k+1} + 16\sum_{k=1}^{n} \frac{1}{2\,k+1}.$$

Or:

$$\sum_{k=1}^{n} \frac{1}{2k+1} = \sum_{\substack{k=1\\k \text{ impair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\substack{k=1\\k \text{ pair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\ell=1}^{n} \frac{1}{2\ell} - 1$$

$$= u_{2n+1} + \ln(2n+1) - \frac{1}{2} (u_n + \ln(n)) - 1,$$

et:

$$\sum_{k=1}^{n} \frac{1}{k+1} = \sum_{k=2}^{n+1} \frac{1}{k}$$

$$= \sum_{k=1}^{n+1} \frac{1}{k} - \sum_{k=1}^{1} \frac{1}{k}$$

$$= u_{n+1} + \ln(n+1) - 1,$$

ce dont on déduit:

$$\sum_{k=1}^{n} \frac{10 k + 1}{(2 k + 1)(k + 1)k} = (u_n + \ln(n)) - 9(u_{n+1} + \ln(n + 1) - 1) +$$

$$+ 16\left(u_{2n+1} + \ln(2 n + 1) - \frac{1}{2}(u_n + \ln(n)) - 1\right)$$

$$= u_n - 9u_{n+1} + 16u_{2n+1} - 8u_n - 7 + \ln\left(\frac{(2 n + 1)^{16}}{(n + 1)^9 n^7}\right).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{10 \, k + 1}{(2 \, k + 1)(k + 1)k} = \gamma - 9\gamma + 16\gamma - 8\gamma - 7 + \ln (65536)$$
$$= 16 \ln (2) - 7,$$

d'où le résultat.

Corrigé 53. Soit n au voisinage de $+\infty$. On a:

$$\sum_{k=n}^{2n} \frac{1}{k} = \sum_{k=1}^{2n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k}$$

$$= u_{2n} + \ln(2n) - u_n - \ln(n)$$

$$= u_{2n} - u_n + \ln(2).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=n}^{2n} \frac{1}{k} = \gamma - \gamma + \ln(2) = \ln(2),$$

d'où le résultat.

Corrigé 54. Soit n au voisinage de $+\infty$. On a:

$$\frac{1}{\ln(n)} \sum_{k=n^2}^{n^3} \frac{1}{k} = \frac{1}{\ln(n)} \left(\sum_{k=1}^{n^3} \frac{1}{k} - \sum_{k=1}^{n^2} \frac{1}{k} \right)$$

$$= \frac{u_{n^3} + \ln(n^3) - u_{n^2} - \ln(n^2)}{\ln(n)}$$

$$= \frac{u_{n^3} - u_{n^2}}{\ln(n)} + \underbrace{\frac{3\ln(n) - 2\ln(n)}{\ln(n)}}_{=1}.$$

 \leftarrow page 4

 \leftarrow page 4

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également, tandis que le logarithme tend vers $+\infty$. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n^2}^{n^3} \frac{1}{k} = 1,$$

d'où le résultat.

Corrigé 55. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 4

$$\sum_{k=1}^{n^5} \frac{1}{k} - 5 \sum_{k=1}^{n} \frac{1}{k} = u_{n^5} + \ln(n^5) - 5(u_n + \ln(n))$$
$$= u_{n^5} - 5u_n + 5\ln(n) - 5\ln(n)$$
$$= u_{n^5} - 5u_n.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n\to +\infty} \left(\sum_{k=1}^{n^5} \frac{1}{k} - 5\sum_{k=1}^n \frac{1}{k}\right) = \gamma - 5\gamma = -4\gamma,$$

d'où le résultat.

Corrigé 56. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 4

$$\sum_{k=1}^{n^4} \frac{1}{k} - 4\sum_{k=1}^{n} \frac{1}{k} = u_{n^4} + \ln(n^4) - 4(u_n + \ln(n))$$
$$= u_{n^4} - 4u_n + 4\ln(n) - 4\ln(n)$$
$$= u_{n^4} - 4u_n.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n\to +\infty} \left(\sum_{k=1}^{n^4} \frac{1}{k} - 4\sum_{k=1}^n \frac{1}{k}\right) = \gamma - 4\gamma = -3\gamma,$$

d'où le résultat.

Corrigé 57. Soit n au voisinage de $+\infty$. Une décomposition en éléments simples donne:

 \leftarrow page 5

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{k+2}{(2\,k+5)(k+4)k} = \frac{1}{10\,k} - \frac{1}{6\,(k+4)} + \frac{2}{15\,(2\,k+5)}.$$

$$\sum_{k=1}^{n} \frac{k+2}{(2k+5)(k+4)k} = \frac{1}{10} \sum_{k=1}^{n} \frac{1}{k} - \frac{1}{6} \sum_{k=1}^{n} \frac{1}{k+4} + \frac{2}{15} \sum_{k=1}^{n} \frac{1}{2k+5}.$$

$$\sum_{k=1}^{n} \frac{1}{2k+5} = \sum_{k=3}^{n+2} \frac{1}{2k+1}$$

$$= \sum_{k=1}^{n+2} \frac{1}{2k+1} - \sum_{k=1}^{2} \frac{1}{2k+1}$$

$$= \sum_{k=1}^{2n+5} \frac{1}{k} - \frac{23}{15}$$

$$= \sum_{k=1}^{2n+5} \frac{1}{k} - \sum_{k=1}^{2n+5} \frac{1}{k} - \frac{23}{15}$$

$$= \sum_{k=1}^{2n+5} \frac{1}{k} - \sum_{\ell=1}^{2n+5} \frac{1}{2\ell} - \frac{23}{15}$$

$$= u_{2n+5} + \ln(2n+5) - \frac{1}{2} (u_{n+2} + \ln(n+2)) - \frac{23}{15},$$

et:

$$\sum_{k=1}^{n} \frac{1}{k+4} = \sum_{k=5}^{n+4} \frac{1}{k}$$

$$= \sum_{k=1}^{n+4} \frac{1}{k} - \sum_{k=1}^{4} \frac{1}{k}$$

$$= u_{n+4} + \ln(n+4) - \frac{25}{12}$$

ce dont on déduit:

$$\begin{split} \sum_{k=1}^{n} \frac{k+2}{(2\,k+5)(k+4)k} &= \frac{1}{10} \left(u_n + \ln\left(n\right) \right) - \frac{1}{6} \left(u_{n+4} + \ln\left(n+4\right) - \frac{25}{12} \right) + \\ &\quad + \frac{2}{15} \left(u_{2\,n+5} + \ln(2\,n+5) - \frac{1}{2} \left(u_{n+2} + \ln(n+2) \right) - \frac{23}{15} \right) \\ &= \frac{1}{10} u_n - \frac{1}{6} u_{n+4} + \frac{2}{15} u_{2\,n+5} - \frac{1}{15} u_{n+2} + \frac{257}{1800} + \ln\left(\frac{\left(2\,n+5\right)^{\frac{2}{15}} n^{\frac{1}{10}}}{\left(n+4\right)^{\frac{1}{6}} \left(n+2\right)^{\frac{1}{15}}} \right). \end{split}$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{k+2}{(2k+5)(k+4)k} = \frac{1}{10}\gamma - \frac{1}{6}\gamma + \frac{2}{15}\gamma - \frac{1}{15}\gamma + \frac{257}{1800} + \ln\left(2^{\frac{2}{15}}\right)$$
$$= \ln\left(2^{\frac{2}{15}}\right) + \frac{257}{1800},$$

d'où le résultat.

Corrigé 58. Soit n au voisinage de $+\infty$. On a:

$$\sum_{k=n}^{6n} \frac{1}{k} = \sum_{k=1}^{6n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k}$$
$$= u_{6n} + \ln(6n) - u_n - \ln(n)$$
$$= u_{6n} - u_n + \ln(6).$$

 \leftarrow page 5

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=n}^{6n} \frac{1}{k} = \gamma - \gamma + \ln(6) = \ln(6),$$

d'où le résultat.

Corrigé 59. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 5

$$\sum_{k=1}^{n^{30}} \frac{1}{k} - 30 \sum_{k=1}^{n} \frac{1}{k} = u_{n^{30}} + \ln\left(n^{30}\right) - 30\left(u_n + \ln(n)\right)$$
$$= u_{n^{30}} - 30u_n + 30\ln(n) - 30\ln(n)$$
$$= u_{n^{30}} - 30u_n.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n^{30}} \frac{1}{k} - 30 \sum_{k=1}^{n} \frac{1}{k} \right) = \gamma - 30\gamma = -29\gamma,$$

d'où le résultat.

Corrigé 60. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 5

$$\sum_{k=1}^{n^5} \frac{1}{k} - 5 \sum_{k=1}^{n} \frac{1}{k} = u_{n^5} + \ln(n^5) - 5(u_n + \ln(n))$$
$$= u_{n^5} - 5u_n + 5\ln(n) - 5\ln(n)$$
$$= u_{n^5} - 5u_n.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n\to +\infty} \left(\sum_{k=1}^{n^5} \frac{1}{k} - 5\sum_{k=1}^n \frac{1}{k}\right) = \gamma - 5\gamma = -4\gamma,$$

d'où le résultat.

Corrigé 61. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 5

$$\sum_{k=1}^{n^{19}} \frac{1}{k} - 19 \sum_{k=1}^{n} \frac{1}{k} = u_{n^{19}} + \ln(n^{19}) - 19(u_n + \ln(n))$$
$$= u_{n^{19}} - 19u_n + 19\ln(n) - 19\ln(n)$$
$$= u_{n^{19}} - 19u_n.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n^{19}} \frac{1}{k} - 19 \sum_{k=1}^{n} \frac{1}{k} \right) = \gamma - 19\gamma = -18\gamma,$$

Corrigé 62. Soit n au voisinage de $+\infty$. Une décomposition en éléments simples donne :

 \leftarrow page 5

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{1}{(2k+1)(k+17)k} = \frac{1}{17k} + \frac{1}{561(k+17)} - \frac{4}{33(2k+1)}.$$

Donc:

$$\sum_{k=1}^{n} \frac{1}{(2k+1)(k+17)k} = \frac{1}{17} \sum_{k=1}^{n} \frac{1}{k} + \frac{1}{561} \sum_{k=1}^{n} \frac{1}{k+17} - \frac{4}{33} \sum_{k=1}^{n} \frac{1}{2k+1}.$$

Or:

$$\sum_{k=1}^{n} \frac{1}{2k+1} = \sum_{\substack{k=1 \ k \text{ impair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\substack{k=1 \ k \text{ pair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\ell=1}^{n} \frac{1}{2\ell} - 1$$

$$= u_{2n+1} + \ln(2n+1) - \frac{1}{2} (u_n + \ln(n)) - 1,$$

et:

$$\sum_{k=1}^{n} \frac{1}{k+17} = \sum_{k=18}^{n+17} \frac{1}{k}$$

$$= \sum_{k=1}^{n+17} \frac{1}{k} - \sum_{k=1}^{17} \frac{1}{k}$$

$$= u_{n+17} + \ln(n+17) - \frac{42142223}{12252240},$$

ce dont on déduit:

$$\begin{split} \sum_{k=1}^{n} \frac{1}{(2\,k+1)(k+17)k} &= \frac{1}{17} \left(u_n + \ln\left(n\right) \right) + \frac{1}{561} \left(u_{n+17} + \ln\left(n+17\right) - \frac{42142223}{12252240} \right) + \\ &\quad - \frac{4}{33} \left(u_{2\,n+1} + \ln(2\,n+1) - \frac{1}{2} \left(u_n + \ln(n) \right) - 1 \right) \\ &= \frac{1}{17} u_n + \frac{1}{561} u_{n+17} - \frac{4}{33} u_{2\,n+1} + \frac{2}{33} u_n + \frac{791010097}{6873506640} + \ln\left(\frac{\left(n+17\right)^{\frac{1}{561}} n^{\frac{67}{561}}}{(2\,n+1)^{\frac{4}{33}}} \right). \end{split}$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\begin{split} \lim_{n \to +\infty} \sum_{k=1}^n \frac{1}{(2\,k+1)(k+17)k} &= \frac{1}{17} \gamma + \frac{1}{561} \gamma - \frac{4}{33} \gamma + \frac{2}{33} \gamma + \frac{791010097}{6873506640} + \ln\left(\frac{1}{2} \cdot 2^{\frac{29}{33}}\right) \\ &= \ln\left(\frac{1}{2} \cdot 2^{\frac{29}{33}}\right) + \frac{791010097}{6873506640}, \end{split}$$

d'où le résultat.

Corrigé 63. Soit n au voisinage de $+\infty$. On a:

$$\frac{1}{\ln(n)} \sum_{k=n}^{n^5} \frac{1}{k} = \frac{1}{\ln(n)} \left(\sum_{k=1}^{n^5} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k} \right)$$

$$= \frac{u_{n^5} + \ln(n^5) - u_n - \ln(n)}{\ln(n)}$$

$$= \frac{u_{n^5} - u_n}{\ln(n)} + \underbrace{\frac{5\ln(n) - \ln(n)}{\ln(n)}}_{=4}.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également, tandis que le logarithme tend vers $+\infty$. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n}^{n^5} \frac{1}{k} = 4,$$

d'où le résultat.

Corrigé 64. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 5

$$\sum_{k=1}^{n^5} \frac{1}{k} - 5 \sum_{k=1}^{n} \frac{1}{k} = u_{n^5} + \ln(n^5) - 5(u_n + \ln(n))$$
$$= u_{n^5} - 5u_n + 5\ln(n) - 5\ln(n)$$
$$= u_{n^5} - 5u_n.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n\to +\infty} \left(\sum_{k=1}^{n^5} \frac{1}{k} - 5\sum_{k=1}^n \frac{1}{k}\right) = \gamma - 5\gamma = -4\gamma,$$

d'où le résultat.

Corrigé 65. Soit n au voisinage de $+\infty$. Une décomposition en éléments simples donne :

 \leftarrow page 5

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{1}{(2k+1)(k+3)k} = \frac{1}{3k} + \frac{1}{15(k+3)} - \frac{4}{5(2k+1)}.$$

Donc:

$$\sum_{k=1}^{n} \frac{1}{(2k+1)(k+3)k} = \frac{1}{3} \sum_{k=1}^{n} \frac{1}{k} + \frac{1}{15} \sum_{k=1}^{n} \frac{1}{k+3} - \frac{4}{5} \sum_{k=1}^{n} \frac{1}{2k+1}.$$

$$\sum_{k=1}^{n} \frac{1}{2k+1} = \sum_{\substack{k=1\\k \text{ impair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\substack{k=1\\k \text{ pair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\ell=1}^{n} \frac{1}{2\ell} - 1$$

$$= u_{2n+1} + \ln(2n+1) - \frac{1}{2} (u_n + \ln(n)) - 1,$$

et:

$$\sum_{k=1}^{n} \frac{1}{k+3} = \sum_{k=4}^{n+3} \frac{1}{k}$$

$$= \sum_{k=1}^{n+3} \frac{1}{k} - \sum_{k=1}^{3} \frac{1}{k}$$

$$= u_{n+3} + \ln(n+3) - \frac{11}{6},$$

ce dont on déduit:

$$\sum_{k=1}^{n} \frac{1}{(2k+1)(k+3)k} = \frac{1}{3} (u_n + \ln(n)) + \frac{1}{15} \left(u_{n+3} + \ln(n+3) - \frac{11}{6} \right) +$$

$$- \frac{4}{5} \left(u_{2n+1} + \ln(2n+1) - \frac{1}{2} (u_n + \ln(n)) - 1 \right)$$

$$= \frac{1}{3} u_n + \frac{1}{15} u_{n+3} - \frac{4}{5} u_{2n+1} + \frac{2}{5} u_n + \frac{61}{90} + \ln\left(\frac{(n+3)^{\frac{1}{15}} n^{\frac{11}{15}}}{(2n+1)^{\frac{4}{5}}} \right).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{(2k+1)(k+3)k} = \frac{1}{3}\gamma + \frac{1}{15}\gamma - \frac{4}{5}\gamma + \frac{2}{5}\gamma + \frac{61}{90} + \ln\left(\frac{1}{2} \cdot 2^{\frac{1}{5}}\right)$$

$$= \ln\left(\frac{1}{2} \cdot 2^{\frac{1}{5}}\right) + \frac{61}{90},$$

d'où le résultat.

Corrigé 66. Soit n au voisinage de $+\infty$. Une décomposition en éléments simples donne :

 \leftarrow page 5

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{1}{(2k+3)(k+1)} = \frac{1}{k+1} - \frac{2}{2k+3}.$$

Donc:

$$\sum_{k=1}^{n} \frac{1}{(2k+3)(k+1)} = \sum_{k=1}^{n} \frac{1}{k+1} - 2\sum_{k=1}^{n} \frac{1}{2k+3}.$$

$$\begin{split} \sum_{k=1}^{n} \frac{1}{2k+3} &= \sum_{k=2}^{n+1} \frac{1}{2k+1} \\ &= \sum_{k=1}^{n+1} \frac{1}{2k+1} - \sum_{k=1}^{1} \frac{1}{2k+1} \\ &= \sum_{k=1}^{2n+3} \frac{1}{k} - \frac{4}{3} \\ &= \sum_{k=1}^{2n+3} \frac{1}{k} - \sum_{k=1}^{2n+3} \frac{1}{k} - \frac{4}{3} \\ &= \sum_{k=1}^{2n+3} \frac{1}{k} - \sum_{\ell=1}^{2n+3} \frac{1}{2\ell} - \frac{4}{3} \\ &= u_{2n+3} + \ln(2n+3) - \frac{1}{2} \left(u_{n+1} + \ln(n+1) \right) - \frac{4}{3}, \end{split}$$

et:

$$\sum_{k=1}^{n} \frac{1}{k+1} = \sum_{k=2}^{n+1} \frac{1}{k}$$

$$= \sum_{k=1}^{n+1} \frac{1}{k} - \sum_{k=1}^{1} \frac{1}{k}$$

$$= u_{n+1} + \ln(n+1) - 1,$$

ce dont on déduit:

$$\sum_{k=1}^{n} \frac{1}{(2k+3)(k+1)} = (u_{n+1} + \ln(n+1) - 1) - 2\left(u_{2n+3} + \ln(2n+3) - \frac{1}{2}\left(u_{n+1} + \ln(n+1)\right) - \frac{4}{3}\right)$$
$$= u_{n+1} - 2u_{2n+3} + u_{n+1} + \frac{5}{3} + \ln\left(\frac{(n+1)^2}{(2n+3)^2}\right).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{(2k+3)(k+1)} = \gamma - 2\gamma + \gamma + \frac{5}{3} + \ln\left(\frac{1}{4}\right)$$
$$= \ln\left(\frac{1}{4}\right) + \frac{5}{3},$$

d'où le résultat.

Corrigé 67. Soit n au voisinage de $+\infty$. Une décomposition en éléments simples donne :

 \leftarrow page 5

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{1}{(2k+3)k} = \frac{1}{3k} - \frac{2}{3(2k+3)}.$$

Donc:

$$\sum_{k=1}^{n} \frac{1}{(2k+3)k} = \frac{1}{3} \sum_{k=1}^{n} \frac{1}{k} - \frac{2}{3} \sum_{k=1}^{n} \frac{1}{2k+3}.$$

$$\begin{split} \sum_{k=1}^{n} \frac{1}{2\,k+3} &= \sum_{k=2}^{n+1} \frac{1}{2k+1} \\ &= \sum_{k=1}^{n+1} \frac{1}{2k+1} - \sum_{k=1}^{1} \frac{1}{2k+1} \\ &= \sum_{k=1}^{2\,n+3} \frac{1}{k} - \frac{4}{3} \\ &= \sum_{k=1}^{2\,n+3} \frac{1}{k} - \sum_{k=1}^{2\,n+3} \frac{1}{k} - \frac{4}{3} \\ &= \sum_{k=1}^{2\,n+3} \frac{1}{k} - \sum_{\ell=1}^{n+1} \frac{1}{2\ell} - \frac{4}{3} \\ &= u_{2\,n+3} + \ln(2\,n+3) - \frac{1}{2} \left(u_{n+1} + \ln(n+1)\right) - \frac{4}{3}, \end{split}$$

ce dont on déduit:

$$\sum_{k=1}^{n} \frac{1}{(2k+3)k} = \frac{1}{3} (u_n + \ln(n)) - \frac{2}{3} \left(u_{2n+3} + \ln(2n+3) - \frac{1}{2} (u_{n+1} + \ln(n+1)) - \frac{4}{3} \right)$$

$$= \frac{1}{3} u_n - \frac{2}{3} u_{2n+3} + \frac{1}{3} u_{n+1} + \frac{8}{9} + \ln\left(\frac{(n+1)^{\frac{1}{3}} n^{\frac{1}{3}}}{(2n+3)^{\frac{2}{3}}}\right).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\begin{split} \lim_{n \to +\infty} \sum_{k=1}^n \frac{1}{(2\,k+3)k} &= \frac{1}{3}\gamma - \frac{2}{3}\gamma + \frac{1}{3}\gamma + \frac{8}{9} + \ln\left(\frac{1}{2} \cdot 2^{\frac{1}{3}}\right) \\ &= \ln\left(\frac{1}{2} \cdot 2^{\frac{1}{3}}\right) + \frac{8}{9}, \end{split}$$

d'où le résultat.

Corrigé 68. Soit n au voisinage de $+\infty$. Une décomposition en éléments simples donne :

 \leftarrow page 5

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{1}{(2k+1)k} = \frac{1}{k} - \frac{2}{2k+1}.$$

Donc:

$$\sum_{k=1}^{n} \frac{1}{(2k+1)k} = \sum_{k=1}^{n} \frac{1}{k} - 2\sum_{k=1}^{n} \frac{1}{2k+1}.$$

Or:

$$\sum_{k=1}^{n} \frac{1}{2k+1} = \sum_{\substack{k=1 \ k \text{ impair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\substack{k=1 \ k \text{ pair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\ell=1}^{n} \frac{1}{2\ell} - 1$$

$$= u_{2n+1} + \ln(2n+1) - \frac{1}{2} (u_n + \ln(n)) - 1,$$

ce dont on déduit:

$$\sum_{k=1}^{n} \frac{1}{(2k+1)k} = (u_n + \ln(n)) - 2\left(u_{2n+1} + \ln(2n+1) - \frac{1}{2}\left(u_n + \ln(n)\right) - 1\right)$$
$$= u_n - 2u_{2n+1} + u_n + 2 + \ln\left(\frac{n^2}{(2n+1)^2}\right).$$

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{(2k+1)k} = \gamma - 2\gamma + \gamma + 2 + \ln\left(\frac{1}{4}\right)$$
$$= \ln\left(\frac{1}{4}\right) + 2,$$

Corrigé 69. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 5

$$\frac{1}{\ln(n)} \sum_{k=n}^{n^{21}} \frac{1}{k} = \frac{1}{\ln(n)} \left(\sum_{k=1}^{n^{21}} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k} \right)$$

$$= \frac{u_{n^{21}} + \ln(n^{21}) - u_n - \ln(n)}{\ln(n)}$$

$$= \frac{u_{n^{21}} - u_n}{\ln(n)} + \underbrace{\frac{21 \ln(n) - \ln(n)}{\ln(n)}}_{=20}.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également, tandis que le logarithme tend vers $+\infty$. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n}^{n^{21}} \frac{1}{k} = 20,$$

d'où le résultat.

Corrigé 70. Soit n au voisinage de $+\infty$. Une décomposition en éléments simples donne :

 \leftarrow page 5

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{3}{(2k+1)(k+14)k} = \frac{3}{14k} + \frac{1}{126(k+14)} - \frac{4}{9(2k+1)}.$$

Donc:

$$\sum_{k=1}^{n} \frac{3}{(2k+1)(k+14)k} = \frac{3}{14} \sum_{k=1}^{n} \frac{1}{k} + \frac{1}{126} \sum_{k=1}^{n} \frac{1}{k+14} - \frac{4}{9} \sum_{k=1}^{n} \frac{1}{2k+1}.$$

Or:

$$\sum_{k=1}^{n} \frac{1}{2k+1} = \sum_{\substack{k=1 \ k \text{ impair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\substack{k=1 \ k \text{ pair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\ell=1}^{n} \frac{1}{2\ell} - 1$$

$$= u_{2n+1} + \ln(2n+1) - \frac{1}{2} (u_n + \ln(n)) - 1,$$

et:

$$\sum_{k=1}^{n} \frac{1}{k+14} = \sum_{k=15}^{n+14} \frac{1}{k}$$

$$= \sum_{k=1}^{n+14} \frac{1}{k} - \sum_{k=1}^{14} \frac{1}{k}$$

$$= u_{n+14} + \ln(n+14) - \frac{1171733}{360360},$$

ce dont on déduit:

$$\sum_{k=1}^{n} \frac{3}{(2k+1)(k+14)k} = \frac{3}{14} \left(u_n + \ln(n) \right) + \frac{1}{126} \left(u_{n+14} + \ln(n+14) - \frac{1171733}{360360} \right) +$$

$$- \frac{4}{9} \left(u_{2n+1} + \ln(2n+1) - \frac{1}{2} \left(u_n + \ln(n) \right) - 1 \right)$$

$$= \frac{3}{14} u_n + \frac{1}{126} u_{n+14} - \frac{4}{9} u_{2n+1} + \frac{2}{9} u_n + \frac{19008427}{45405360} + \ln\left(\frac{(n+14)^{\frac{1}{126}} n^{\frac{55}{126}}}{(2n+1)^{\frac{4}{9}}} \right).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{3}{(2k+1)(k+14)k} = \frac{3}{14}\gamma + \frac{1}{126}\gamma - \frac{4}{9}\gamma + \frac{2}{9}\gamma + \frac{19008427}{45405360} + \ln\left(\frac{1}{2} \cdot 2^{\frac{5}{9}}\right)$$

$$= \ln\left(\frac{1}{2} \cdot 2^{\frac{5}{9}}\right) + \frac{19008427}{45405360},$$

d'où le résultat.

Corrigé 71. Soit n au voisinage de $+\infty$. Une décomposition en éléments simples donne :

 \leftarrow page 5

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{1}{(2k+1)k} = \frac{1}{k} - \frac{2}{2k+1}.$$

Donc:

$$\sum_{k=1}^{n} \frac{1}{(2k+1)k} = \sum_{k=1}^{n} \frac{1}{k} - 2\sum_{k=1}^{n} \frac{1}{2k+1}.$$

Or:

$$\sum_{k=1}^{n} \frac{1}{2k+1} = \sum_{\substack{k=1 \ k \text{ impair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\substack{k=1 \ k \text{ pair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\ell=1}^{n} \frac{1}{2\ell} - 1$$

$$= u_{2n+1} + \ln(2n+1) - \frac{1}{2} (u_n + \ln(n)) - 1,$$

ce dont on déduit:

$$\sum_{k=1}^{n} \frac{1}{(2k+1)k} = (u_n + \ln(n)) - 2\left(u_{2n+1} + \ln(2n+1) - \frac{1}{2}\left(u_n + \ln(n)\right) - 1\right)$$
$$= u_n - 2u_{2n+1} + u_n + 2 + \ln\left(\frac{n^2}{(2n+1)^2}\right).$$

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{(2k+1)k} = \gamma - 2\gamma + \gamma + 2 + \ln\left(\frac{1}{4}\right)$$
$$= \ln\left(\frac{1}{4}\right) + 2,$$

Corrigé 72. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 6

$$\frac{1}{\ln(n)} \sum_{k=n}^{n^3} \frac{1}{k} = \frac{1}{\ln(n)} \left(\sum_{k=1}^{n^3} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k} \right)$$

$$= \frac{u_{n^3} + \ln(n^3) - u_n - \ln(n)}{\ln(n)}$$

$$= \frac{u_{n^3} - u_n}{\ln(n)} + \underbrace{\frac{3\ln(n) - \ln(n)}{\ln(n)}}_{-2}.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également, tandis que le logarithme tend vers $+\infty$. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n}^{n^3} \frac{1}{k} = 2,$$

d'où le résultat.

Corrigé 73. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 6

$$\sum_{k=n}^{3n} \frac{1}{k} = \sum_{k=1}^{3n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k}$$

$$= u_{3n} + \ln(3n) - u_n - \ln(n)$$

$$= u_{3n} - u_n + \ln(3).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=n}^{3n} \frac{1}{k} = \gamma - \gamma + \ln(3) = \ln(3),$$

d'où le résultat.

Corrigé 74. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 6

$$\sum_{k=3n}^{22n} \frac{1}{k} = \sum_{k=1}^{22n} \frac{1}{k} - \sum_{k=1}^{3n} \frac{1}{k}$$
$$= u_{22n} + \ln(22n) - u_{3n} - \ln(3n)$$
$$= u_{22n} - u_{3n} + \ln\left(\frac{22}{3}\right).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=3n}^{22n} \frac{1}{k} = \gamma - \gamma + \ln\left(\frac{22}{3}\right) = \ln\left(\frac{22}{3}\right),$$

d'où le résultat.

Corrigé 75. Soit n au voisinage de $+\infty$. Une décomposition en éléments simples donne :

 \leftarrow page 6

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{k+1}{(2k+1)(k+4)k} = \frac{1}{4k} - \frac{3}{28(k+4)} - \frac{2}{7(2k+1)}.$$

Donc:

$$\sum_{k=1}^{n} \frac{k+1}{(2k+1)(k+4)k} = \frac{1}{4} \sum_{k=1}^{n} \frac{1}{k} - \frac{3}{28} \sum_{k=1}^{n} \frac{1}{k+4} - \frac{2}{7} \sum_{k=1}^{n} \frac{1}{2k+1}.$$

Or:

$$\sum_{k=1}^{n} \frac{1}{2k+1} = \sum_{\substack{k=1\\k \text{ impair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\substack{k=1\\k \text{ pair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\ell=1}^{n} \frac{1}{2\ell} - 1$$

$$= u_{2n+1} + \ln(2n+1) - \frac{1}{2}(u_n + \ln(n)) - 1,$$

et:

$$\sum_{k=1}^{n} \frac{1}{k+4} = \sum_{k=5}^{n+4} \frac{1}{k}$$

$$= \sum_{k=1}^{n+4} \frac{1}{k} - \sum_{k=1}^{4} \frac{1}{k}$$

$$= u_{n+4} + \ln(n+4) - \frac{25}{12},$$

ce dont on déduit:

$$\sum_{k=1}^{n} \frac{k+1}{(2k+1)(k+4)k} = \frac{1}{4} \left(u_n + \ln(n) \right) - \frac{3}{28} \left(u_{n+4} + \ln(n+4) - \frac{25}{12} \right) +$$

$$- \frac{2}{7} \left(u_{2n+1} + \ln(2n+1) - \frac{1}{2} \left(u_n + \ln(n) \right) - 1 \right)$$

$$= \frac{1}{4} u_n - \frac{3}{28} u_{n+4} - \frac{2}{7} u_{2n+1} + \frac{1}{7} u_n + \frac{57}{112} + \ln\left(\frac{n^{\frac{11}{28}}}{(2n+1)^{\frac{2}{7}} (n+4)^{\frac{3}{28}}} \right).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{k+1}{(2k+1)(k+4)k} = \frac{1}{4}\gamma - \frac{3}{28}\gamma - \frac{2}{7}\gamma + \frac{1}{7}\gamma + \frac{57}{112} + \ln\left(\frac{1}{2} \cdot 2^{\frac{5}{7}}\right)$$
$$= \ln\left(\frac{1}{2} \cdot 2^{\frac{5}{7}}\right) + \frac{57}{112},$$

d'où le résultat.

Corrigé 76. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 6

$$\sum_{k=2n}^{3n} \frac{1}{k} = \sum_{k=1}^{3n} \frac{1}{k} - \sum_{k=1}^{2n} \frac{1}{k}$$

$$= u_{3n} + \ln(3n) - u_{2n} - \ln(2n)$$

$$= u_{3n} - u_{2n} + \ln\left(\frac{3}{2}\right).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=2n}^{3n} \frac{1}{k} = \gamma - \gamma + \ln\left(\frac{3}{2}\right) = \ln\left(\frac{3}{2}\right),$$

d'où le résultat.

Corrigé 77. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 6

$$\frac{1}{\ln(n)} \sum_{k=n}^{n^2} \frac{1}{k} = \frac{1}{\ln(n)} \left(\sum_{k=1}^{n^2} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k} \right)$$

$$= \frac{u_{n^2} + \ln(n^2) - u_n - \ln(n)}{\ln(n)}$$

$$= \frac{u_{n^2} - u_n}{\ln(n)} + \underbrace{\frac{2\ln(n) - \ln(n)}{\ln(n)}}_{=1}.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également, tandis que le logarithme tend vers $+\infty$. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n}^{n^2} \frac{1}{k} = 1,$$

d'où le résultat.

Corrigé 78. Soit n au voisinage de $+\infty$. Une décomposition en éléments simples donne :

 \leftarrow page 6

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{7}{(2k+1)(k+1)} = -\frac{7}{k+1} + \frac{14}{2k+1}.$$

Donc:

$$\sum_{k=1}^{n} \frac{7}{(2k+1)(k+1)} = -7\sum_{k=1}^{n} \frac{1}{k+1} + 14\sum_{k=1}^{n} \frac{1}{2k+1}.$$

$$\sum_{k=1}^{n} \frac{1}{2k+1} = \sum_{\substack{k=1 \ k \text{ impair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\substack{k=1 \ k \text{ pair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\ell=1}^{n} \frac{1}{2\ell} - 1$$

$$= u_{2n+1} + \ln(2n+1) - \frac{1}{2} (u_n + \ln(n)) - 1,$$

et:

$$\sum_{k=1}^{n} \frac{1}{k+1} = \sum_{k=2}^{n+1} \frac{1}{k}$$

$$= \sum_{k=1}^{n+1} \frac{1}{k} - \sum_{k=1}^{1} \frac{1}{k}$$

$$= u_{n+1} + \ln(n+1) - 1,$$

ce dont on déduit:

$$\sum_{k=1}^{n} \frac{7}{(2k+1)(k+1)} = -7(u_{n+1} + \ln(n+1) - 1) + 14\left(u_{2n+1} + \ln(2n+1) - \frac{1}{2}(u_n + \ln(n)) - 1\right)$$
$$= -7u_{n+1} + 14u_{2n+1} - 7u_n - 7 + \ln\left(\frac{(2n+1)^{14}}{(n+1)^7n^7}\right).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{7}{(2k+1)(k+1)} = -7\gamma + 14\gamma - 7\gamma - 7 + \ln(16384)$$
$$= 14 \ln(2) - 7,$$

d'où le résultat.

Corrigé 79. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 6

$$\frac{1}{\ln(n)} \sum_{k=n}^{n^2} \frac{1}{k} = \frac{1}{\ln(n)} \left(\sum_{k=1}^{n^2} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k} \right)$$

$$= \frac{u_{n^2} + \ln(n^2) - u_n - \ln(n)}{\ln(n)}$$

$$= \frac{u_{n^2} - u_n}{\ln(n)} + \underbrace{\frac{2\ln(n) - \ln(n)}{\ln(n)}}_{-1}.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également, tandis que le logarithme tend vers $+\infty$. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n}^{n^2} \frac{1}{k} = 1,$$

d'où le résultat.

Corrigé 80. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 6

$$\sum_{k=2n}^{5n} \frac{1}{k} = \sum_{k=1}^{5n} \frac{1}{k} - \sum_{k=1}^{2n} \frac{1}{k}$$

$$= u_{5n} + \ln(5n) - u_{2n} - \ln(2n)$$

$$= u_{5n} - u_{2n} + \ln\left(\frac{5}{2}\right).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=2n}^{5n} \frac{1}{k} = \gamma - \gamma + \ln\left(\frac{5}{2}\right) = \ln\left(\frac{5}{2}\right),$$

d'où le résultat.

Corrigé 81. Soit n au voisinage de $+\infty$. Une décomposition en éléments simples donne :

 \leftarrow page 6

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{7}{(2k+3)(k+1)} = \frac{7}{k+1} - \frac{14}{2k+3}.$$

Donc:

$$\sum_{k=1}^{n} \frac{7}{(2k+3)(k+1)} = 7\sum_{k=1}^{n} \frac{1}{k+1} - 14\sum_{k=1}^{n} \frac{1}{2k+3}.$$

Or:

$$\sum_{k=1}^{n} \frac{1}{2k+3} = \sum_{k=2}^{n+1} \frac{1}{2k+1}$$

$$= \sum_{k=1}^{n+1} \frac{1}{2k+1} - \sum_{k=1}^{1} \frac{1}{2k+1}$$

$$= \sum_{k=1}^{2n+3} \frac{1}{k} - \frac{4}{3}$$

$$= \sum_{k=1}^{2n+3} \frac{1}{k} - \sum_{k=1}^{2n+3} \frac{1}{k} - \frac{4}{3}$$

$$= \sum_{k=1}^{2n+3} \frac{1}{k} - \sum_{\ell=1}^{2n+3} \frac{1}{2\ell} - \frac{4}{3}$$

$$= u_{2n+3} + \ln(2n+3) - \frac{1}{2}(u_{n+1} + \ln(n+1)) - \frac{4}{3}$$

et:

$$\sum_{k=1}^{n} \frac{1}{k+1} = \sum_{k=2}^{n+1} \frac{1}{k}$$

$$= \sum_{k=1}^{n+1} \frac{1}{k} - \sum_{k=1}^{1} \frac{1}{k}$$

$$= u_{n+1} + \ln(n+1) - 1,$$

ce dont on déduit:

$$\sum_{k=1}^{n} \frac{7}{(2k+3)(k+1)} = 7(u_{n+1} + \ln(n+1) - 1) - 14\left(u_{2n+3} + \ln(2n+3) - \frac{1}{2}(u_{n+1} + \ln(n+1)) - \frac{4}{3}\right)$$
$$= 7u_{n+1} - 14u_{2n+3} + 7u_{n+1} + \frac{35}{3} + \ln\left(\frac{(n+1)^{14}}{(2n+3)^{14}}\right).$$

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{7}{(2k+3)(k+1)} = 7\gamma - 14\gamma + 7\gamma + \frac{35}{3} + \ln\left(\frac{1}{16384}\right)$$
$$= \ln\left(\frac{1}{16384}\right) + \frac{35}{3},$$

Corrigé 82. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 6

$$\frac{1}{\ln(n)} \sum_{k=n}^{n^2} \frac{1}{k} = \frac{1}{\ln(n)} \left(\sum_{k=1}^{n^2} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k} \right)$$

$$= \frac{u_{n^2} + \ln(n^2) - u_n - \ln(n)}{\ln(n)}$$

$$= \frac{u_{n^2} - u_n}{\ln(n)} + \underbrace{\frac{2\ln(n) - \ln(n)}{\ln(n)}}_{-1}.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également, tandis que le logarithme tend vers $+\infty$. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n}^{n^2} \frac{1}{k} = 1,$$

d'où le résultat.

Corrigé 83. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 6

$$\sum_{k=n}^{51n} \frac{1}{k} = \sum_{k=1}^{51n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k}$$

$$= u_{51n} + \ln(51n) - u_n - \ln(n)$$

$$= u_{51n} - u_n + \ln(51).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=n}^{51 \, n} \frac{1}{k} = \gamma - \gamma + \ln(51) = \ln(51),$$

d'où le résultat.

Corrigé 84. Soit n au voisinage de $+\infty$. Une décomposition en éléments simples donne :

 \leftarrow page 6

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{k+6}{(2k+7)(k+1)k} = \frac{6}{7k} - \frac{1}{k+1} + \frac{2}{7(2k+7)}.$$

Donc:

$$\sum_{k=1}^{n} \frac{k+6}{(2k+7)(k+1)k} = \frac{6}{7} \sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k+1} + \frac{2}{7} \sum_{k=1}^{n} \frac{1}{2k+7}.$$

Or:

$$\begin{split} \sum_{k=1}^{n} \frac{1}{2k+7} &= \sum_{k=4}^{n+3} \frac{1}{2k+1} \\ &= \sum_{k=1}^{n+3} \frac{1}{2k+1} - \sum_{k=1}^{3} \frac{1}{2k+1} \\ &= \sum_{k=1}^{2n+7} \frac{1}{k} - \frac{176}{105} \\ &= \sum_{k=1}^{2n+7} \frac{1}{k} - \sum_{k=1}^{2n+7} \frac{1}{k} - \frac{176}{105} \\ &= \sum_{k=1}^{2n+7} \frac{1}{k} - \sum_{\ell=1}^{n+3} \frac{1}{2\ell} - \frac{176}{105} \\ &= u_{2n+7} + \ln(2n+7) - \frac{1}{2} \left(u_{n+3} + \ln(n+3) \right) - \frac{176}{105} \end{split}$$

et:

$$\sum_{k=1}^{n} \frac{1}{k+1} = \sum_{k=2}^{n+1} \frac{1}{k}$$

$$= \sum_{k=1}^{n+1} \frac{1}{k} - \sum_{k=1}^{1} \frac{1}{k}$$

$$= u_{n+1} + \ln(n+1) - 1,$$

ce dont on déduit:

$$\sum_{k=1}^{n} \frac{k+6}{(2k+7)(k+1)k} = \frac{6}{7} (u_n + \ln(n)) - (u_{n+1} + \ln(n+1) - 1) + \frac{2}{7} \left(u_{2n+7} + \ln(2n+7) - \frac{1}{2} (u_{n+3} + \ln(n+3)) - \frac{176}{105} \right)$$

$$= \frac{6}{7} u_n - u_{n+1} + \frac{2}{7} u_{2n+7} - \frac{1}{7} u_{n+3} + \frac{383}{735} + \ln\left(\frac{(2n+7)^{\frac{2}{7}} n^{\frac{6}{7}}}{(n+3)^{\frac{1}{7}} (n+1)}\right).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{k+6}{(2k+7)(k+1)k} = \frac{6}{7}\gamma - \gamma + \frac{2}{7}\gamma - \frac{1}{7}\gamma + \frac{383}{735} + \ln\left(2^{\frac{2}{7}}\right)$$
$$= \ln\left(2^{\frac{2}{7}}\right) + \frac{383}{735},$$

d'où le résultat.

Corrigé 85. Soit n au voisinage de $+\infty$. On a:

$$\sum_{k=1}^{n^4} \frac{1}{k} - 4 \sum_{k=1}^{n} \frac{1}{k} = u_{n^4} + \ln(n^4) - 4(u_n + \ln(n))$$
$$= u_{n^4} - 4u_n + 4\ln(n) - 4\ln(n)$$
$$= u_{n^4} - 4u_n.$$

 \leftarrow page 6

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n^4} \frac{1}{k} - 4 \sum_{k=1}^{n} \frac{1}{k} \right) = \gamma - 4\gamma = -3\gamma,$$

d'où le résultat.

Corrigé 86. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 6

$$\sum_{k=1}^{n^2} \frac{1}{k} - 2\sum_{k=1}^{n} \frac{1}{k} = u_{n^2} + \ln(n^2) - 2(u_n + \ln(n))$$
$$= u_{n^2} - 2u_n + 2\ln(n) - 2\ln(n)$$
$$= u_{n^2} - 2u_n.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n\to+\infty}\left(\sum_{k=1}^{n^2}\frac{1}{k}-2\sum_{k=1}^n\frac{1}{k}\right)=\gamma-2\gamma=-\gamma,$$

d'où le résultat.

Corrigé 87. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 7

$$\sum_{k=n}^{11n} \frac{1}{k} = \sum_{k=1}^{11n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k}$$

$$= u_{11n} + \ln(11n) - u_n - \ln(n)$$

$$= u_{11n} - u_n + \ln(11).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=n}^{11 n} \frac{1}{k} = \gamma - \gamma + \ln(11) = \ln(11),$$

d'où le résultat.

Corrigé 88. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 7

$$\sum_{k=2n}^{7n} \frac{1}{k} = \sum_{k=1}^{7n} \frac{1}{k} - \sum_{k=1}^{2n} \frac{1}{k}$$

$$= u_{7n} + \ln(7n) - u_{2n} - \ln(2n)$$

$$= u_{7n} - u_{2n} + \ln\left(\frac{7}{2}\right).$$

$$\lim_{n \to +\infty} \sum_{k=2n}^{7n} \frac{1}{k} = \gamma - \gamma + \ln\left(\frac{7}{2}\right) = \ln\left(\frac{7}{2}\right),$$

Corrigé 89. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 7

$$\sum_{k=1}^{n^2} \frac{1}{k} - 2\sum_{k=1}^{n} \frac{1}{k} = u_{n^2} + \ln(n^2) - 2(u_n + \ln(n))$$
$$= u_{n^2} - 2u_n + 2\ln(n) - 2\ln(n)$$
$$= u_{n^2} - 2u_n.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n^2} \frac{1}{k} - 2 \sum_{k=1}^{n} \frac{1}{k} \right) = \gamma - 2\gamma = -\gamma,$$

d'où le résultat.

Corrigé 90. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 7

$$\sum_{k=n}^{88n} \frac{1}{k} = \sum_{k=1}^{88n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k}$$
$$= u_{88n} + \ln(88n) - u_n - \ln(n)$$
$$= u_{88n} - u_n + \ln(88).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=n}^{88 n} \frac{1}{k} = \gamma - \gamma + \ln(88) = \ln(88),$$

d'où le résultat.

Corrigé 91. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 7

$$\frac{1}{\ln(n)} \sum_{k=n}^{n^{345}} \frac{1}{k} = \frac{1}{\ln(n)} \left(\sum_{k=1}^{n^{345}} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k} \right)$$

$$= \frac{u_{n^{345}} + \ln(n^{345}) - u_n - \ln(n)}{\ln(n)}$$

$$= \frac{u_{n^{345}} - u_n}{\ln(n)} + \underbrace{\frac{345 \ln(n) - \ln(n)}{\ln(n)}}_{-344}.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également, tandis que le logarithme tend vers $+\infty$. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n}^{n^{345}} \frac{1}{k} = 344,$$

d'où le résultat.

Corrigé 92. Soit n au voisinage de $+\infty$. On a :

 \leftarrow page 7

$$\frac{1}{\ln(n)} \sum_{k=n^2}^{n^{551}} \frac{1}{k} = \frac{1}{\ln(n)} \left(\sum_{k=1}^{n^{551}} \frac{1}{k} - \sum_{k=1}^{n^2} \frac{1}{k} \right) \\
= \frac{u_{n^{551}} + \ln(n^{551}) - u_{n^2} - \ln(n^2)}{\ln(n)} \\
= \frac{u_{n^{551}} - u_{n^2}}{\ln(n)} + \underbrace{\frac{551 \ln(n) - 2 \ln(n)}{\ln(n)}}_{-540}.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également, tandis que le logarithme tend vers $+\infty$. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n^2}^{n^{551}} \frac{1}{k} = 549,$$

d'où le résultat.

Corrigé 93. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 7

$$\frac{1}{\ln(n)} \sum_{k=n}^{n^{92}} \frac{1}{k} = \frac{1}{\ln(n)} \left(\sum_{k=1}^{n^{92}} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k} \right)$$

$$= \frac{u_{n^{92}} + \ln(n^{92}) - u_n - \ln(n)}{\ln(n)}$$

$$= \frac{u_{n^{92}} - u_n}{\ln(n)} + \underbrace{\frac{92\ln(n) - \ln(n)}{\ln(n)}}_{=91}.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également, tandis que le logarithme tend vers $+\infty$. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n}^{n^{92}} \frac{1}{k} = 91,$$

d'où le résultat.

Corrigé 94. Soit n au voisinage de $+\infty$. Une décomposition en éléments simples donne :

 \leftarrow page 7

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{3}{(2k+1)(k+1)k} = \frac{3}{k} + \frac{3}{k+1} - \frac{12}{2k+1}.$$

Donc:

$$\sum_{k=1}^{n} \frac{3}{(2k+1)(k+1)k} = 3\sum_{k=1}^{n} \frac{1}{k} + 3\sum_{k=1}^{n} \frac{1}{k+1} - 12\sum_{k=1}^{n} \frac{1}{2k+1}.$$

$$\sum_{k=1}^{n} \frac{1}{2k+1} = \sum_{\substack{k=1\\k \text{ impair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\substack{k=1\\k \text{ pair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\ell=1}^{n} \frac{1}{2\ell} - 1$$

$$= u_{2n+1} + \ln(2n+1) - \frac{1}{2} (u_n + \ln(n)) - 1,$$

et:

$$\sum_{k=1}^{n} \frac{1}{k+1} = \sum_{k=2}^{n+1} \frac{1}{k}$$

$$= \sum_{k=1}^{n+1} \frac{1}{k} - \sum_{k=1}^{1} \frac{1}{k}$$

$$= u_{n+1} + \ln(n+1) - 1,$$

ce dont on déduit:

$$\sum_{k=1}^{n} \frac{3}{(2k+1)(k+1)k} = 3(u_n + \ln(n)) + 3(u_{n+1} + \ln(n+1) - 1) +$$

$$-12\left(u_{2n+1} + \ln(2n+1) - \frac{1}{2}(u_n + \ln(n)) - 1\right)$$

$$= 3u_n + 3u_{n+1} - 12u_{2n+1} + 6u_n + 9 + \ln\left(\frac{(n+1)^3 n^9}{(2n+1)^{12}}\right).$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{3}{(2k+1)(k+1)k} = 3\gamma + 3\gamma - 12\gamma + 6\gamma + 9 + \ln\left(\frac{1}{4096}\right)$$
$$= \ln\left(\frac{1}{4096}\right) + 9,$$

d'où le résultat.

Corrigé 95. Soit n au voisinage de $+\infty$. On a:

$$\frac{1}{\ln(n)} \sum_{k=n}^{n^{13}} \frac{1}{k} = \frac{1}{\ln(n)} \left(\sum_{k=1}^{n^{13}} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k} \right)$$

$$= \frac{u_{n^{13}} + \ln(n^{13}) - u_n - \ln(n)}{\ln(n)}$$

$$= \frac{u_{n^{13}} - u_n}{\ln(n)} + \underbrace{\frac{13\ln(n) - \ln(n)}{\ln(n)}}_{=12}.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également, tandis que le logarithme tend vers $+\infty$. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n}^{n^{13}} \frac{1}{k} = 12,$$

d'où le résultat.

Corrigé 96. Soit n au voisinage de $+\infty$. Une décomposition en éléments simples donne:

 \leftarrow page 7

 \leftarrow page 7

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{k+1}{(2\,k+1)(k+141)k} = \frac{1}{141\,k} - \frac{140}{39621\,(k+141)} - \frac{2}{281\,(2\,k+1)}.$$

Donc:

$$\sum_{k=1}^{n} \frac{k+1}{(2\,k+1)(k+141)k} = \frac{1}{141} \sum_{k=1}^{n} \frac{1}{k} - \frac{140}{39621} \sum_{k=1}^{n} \frac{1}{k+141} - \frac{2}{281} \sum_{k=1}^{n} \frac{1}{2\,k+1}.$$

Or:

$$\sum_{k=1}^{n} \frac{1}{2k+1} = \sum_{\substack{k=1 \ \text{impair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\substack{k=1 \ k \text{ pair}}}^{2n+1} \frac{1}{k} - 1$$

$$= \sum_{k=1}^{2n+1} \frac{1}{k} - \sum_{\ell=1}^{n} \frac{1}{2\ell} - 1$$

$$= u_{2n+1} + \ln(2n+1) - \frac{1}{2} (u_n + \ln(n)) - 1,$$

et:

$$\sum_{k=1}^{n} \frac{1}{k+141} = \sum_{k=142}^{n+141} \frac{1}{k}$$

$$= \sum_{k=1}^{n+141} \frac{1}{k} - \sum_{k=1}^{141} \frac{1}{k}$$

$$= u_{n+141} + \ln(n+141) - \frac{18420327039982467977683059131589948994910848850884262273592293}{33312720618553145840562713089120360606823375590405920630576000}$$

ce dont on déduit:

$$\begin{split} \sum_{k=1}^{n} \frac{k+1}{(2\,k+1)(k+141)k} &= \frac{1}{141} \left(u_n + \ln\left(n\right) \right) - \frac{140}{39621} \left(u_{n+141} + \ln\left(n+141\right) - \frac{18420327039982467977683059130}{333127206185531458405627130} \right) \\ &- \frac{2}{281} \left(u_{2\,n+1} + \ln\left(2\,n+1\right) - \frac{1}{2} \left(u_n + \ln(n) \right) - 1 \right) \\ &= \frac{1}{141} u_n - \frac{140}{39621} u_{n+141} - \frac{2}{281} u_{2\,n+1} + \frac{1}{281} u_n + \frac{25130460764576744496996405625255}{942773788305495850963525182360027} \right) \end{split}$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \sum_{k=1}^n \frac{k+1}{(2\,k+1)(k+141)k} = \frac{1}{141} \gamma - \frac{140}{39621} \gamma - \frac{2}{281} \gamma + \frac{1}{281} \gamma + \frac{25130460764576744496996405625255621637}{9427737883054958509635251823600270054} \\ = \ln \left(\frac{1}{2} \cdot 2^{\frac{279}{281}} \right) + \frac{251304607645767444969964056252556216314281287912374548}{942773788305495850963525182360027005430677831619623558}$$

d'où le résultat.

Corrigé 97. Soit n au voisinage de $+\infty$. On a:

$$\leftarrow$$
 page 7

$$\sum_{k=1}^{n^{15}} \frac{1}{k} - 15 \sum_{k=1}^{n} \frac{1}{k} = u_{n^{15}} + \ln\left(n^{15}\right) - 15\left(u_n + \ln(n)\right)$$
$$= u_{n^{15}} - 15u_n + 15\ln(n) - 15\ln(n)$$
$$= u_{n^{15}} - 15u_n.$$

$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n^{15}} \frac{1}{k} - 15 \sum_{k=1}^{n} \frac{1}{k} \right) = \gamma - 15\gamma = -14\gamma,$$

Corrigé 98. Soit n au voisinage de $+\infty$. Une décomposition en éléments simples donne :

 \leftarrow page 7

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{4k+1}{(2k+3)(k+1)k} = \frac{1}{3k} + \frac{3}{k+1} - \frac{20}{3(2k+3)}.$$

Donc:

$$\sum_{k=1}^{n} \frac{4k+1}{(2k+3)(k+1)k} = \frac{1}{3} \sum_{k=1}^{n} \frac{1}{k} + 3 \sum_{k=1}^{n} \frac{1}{k+1} - \frac{20}{3} \sum_{k=1}^{n} \frac{1}{2k+3}.$$

Or:

$$\sum_{k=1}^{n} \frac{1}{2k+3} = \sum_{k=2}^{n+1} \frac{1}{2k+1}$$

$$= \sum_{k=1}^{n+1} \frac{1}{2k+1} - \sum_{k=1}^{1} \frac{1}{2k+1}$$

$$= \sum_{k=1}^{2n+3} \frac{1}{k} - \frac{4}{3}$$

$$= \sum_{k=1}^{2n+3} \frac{1}{k} - \sum_{k=1}^{2n+3} \frac{1}{k} - \frac{4}{3}$$

$$= \sum_{k=1}^{2n+3} \frac{1}{k} - \sum_{\ell=1}^{n+1} \frac{1}{2\ell} - \frac{4}{3}$$

$$= u_{2n+3} + \ln(2n+3) - \frac{1}{2}(u_{n+1} + \ln(n+1)) - \frac{4}{3},$$

et:

$$\sum_{k=1}^{n} \frac{1}{k+1} = \sum_{k=2}^{n+1} \frac{1}{k}$$

$$= \sum_{k=1}^{n+1} \frac{1}{k} - \sum_{k=1}^{1} \frac{1}{k}$$

$$= u_{n+1} + \ln(n+1) - 1,$$

ce dont on déduit:

$$\sum_{k=1}^{n} \frac{4k+1}{(2k+3)(k+1)k} = \frac{1}{3} (u_n + \ln(n)) + 3(u_{n+1} + \ln(n+1) - 1) +$$

$$- \frac{20}{3} \left(u_{2n+3} + \ln(2n+3) - \frac{1}{2} (u_{n+1} + \ln(n+1)) - \frac{4}{3} \right)$$

$$= \frac{1}{3} u_n + 3u_{n+1} - \frac{20}{3} u_{2n+3} + \frac{10}{3} u_{n+1} + \frac{53}{9} + \ln\left(\frac{(n+1)^{\frac{19}{3}} n^{\frac{1}{3}}}{(2n+3)^{\frac{20}{3}}}\right).$$

$$\begin{split} \lim_{n \to +\infty} \sum_{k=1}^n \frac{4\,k+1}{(2\,k+3)(k+1)k} &= \frac{1}{3}\gamma + 3\gamma - \frac{20}{3}\gamma + \frac{10}{3}\gamma + \frac{53}{9} + \ln\left(\frac{1}{128} \cdot 2^{\frac{1}{3}}\right) \\ &= \ln\left(\frac{1}{128} \cdot 2^{\frac{1}{3}}\right) + \frac{53}{9}, \end{split}$$

Corrigé 99. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 7

$$\sum_{k=1}^{n^{17}} \frac{1}{k} - 17 \sum_{k=1}^{n} \frac{1}{k} = u_{n^{17}} + \ln\left(n^{17}\right) - 17\left(u_n + \ln(n)\right)$$
$$= u_{n^{17}} - 17u_n + 17\ln(n) - 17\ln(n)$$
$$= u_{n^{17}} - 17u_n.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n^{17}} \frac{1}{k} - 17 \sum_{k=1}^{n} \frac{1}{k} \right) = \gamma - 17\gamma = -16\gamma,$$

d'où le résultat.

Corrigé 100. Soit n au voisinage de $+\infty$. On a:

 \leftarrow page 7

$$\frac{1}{\ln(n)} \sum_{k=n^3}^{n^5} \frac{1}{k} = \frac{1}{\ln(n)} \left(\sum_{k=1}^{n^5} \frac{1}{k} - \sum_{k=1}^{n^3} \frac{1}{k} \right)$$

$$= \frac{u_{n^5} + \ln(n^5) - u_{n^3} - \ln(n^3)}{\ln(n)}$$

$$= \frac{u_{n^5} - u_{n^3}}{\ln(n)} + \underbrace{\frac{5\ln(n) - 3\ln(n)}{\ln(n)}}_{=2}.$$

Or $(u_n)_{n\geqslant 1}$ converge vers un réel noté γ , donc toutes ses suites extraites également, tandis que le logarithme tend vers $+\infty$. On en déduit, quand on prend la limite quand $n\to +\infty$:

$$\lim_{n \to +\infty} \frac{1}{\ln(n)} \sum_{k=n^3}^{n^5} \frac{1}{k} = 2,$$

d'où le résultat.