Example-Lipschitz continuity is a sufficient condition

The initial value problem

$$y' = \sqrt{y} + 1, \ y(0) = 0$$

has a unique solution.

 Use separation of variables, one can see that a solution is given by

$$2\sqrt{y} - 2\ln(1+\sqrt{y}) = x, x \ge 0.$$

There is atmost one solution.
(Sketch) If y₁, y₂ are two solutions, consider

$$y(x) = (\sqrt{y_1(x)} - \sqrt{y_2(x)})^2$$

Then $y \ge 0, y' \le 0$. This implies $y \equiv 0$.

• $f(x,y) = \sqrt{y} + 1$ is doesn't satisfy Lipschitz condition.