

Description et Analyse des Mécanismes (LMECA 1210)

1. Cinématique : rappels et notions fondamentales

Paul Fisette, Hervé Jeanmart, Benoît Herman

Ecole Polytechnique de Louvain (EPL)

Université catholique de Louvain (UCL)

Louvain-la-Neuve

Animations: www.ar-cad.com/

Contenu général du cours

- 1. Cinématique : rappels et notions fondamentales
- 2. Mécanismes, Couples et Chaînes Cinématiques
- 3. Mécanismes à Couples Inférieurs Systèmes Articulés
- 4. Mécanismes à Couples Supérieurs
- 5. Engrenages plans et dans l'espace
- 6. Phénomène du Frottement
- 7. Glissement par Translation
- 8. Glissement par Rotation
- 9. Liens Flexibles

Contenu du cours 1

1. Etude des déplacements

2. Vitesses

3. Accélérations

4. Mouvement général

5. Mouvement de contact sur solide fixe

6. Mouvement plan d'un solide

Grandeurs utiles

Masse ponctuelle (1 -> 3 ddl)

Corps rigide (1 -> 6 ddl)

- Repère fixe (inertiel) : $O_{i}\{\hat{I}_{\alpha}\}$
- \circ Repère solidaire du corps (mobile) : $P_{\bullet}\{\hat{x}_{\alpha}\}$
- Vecteur position : $\vec{r}_M(t) = O\vec{M}(t)$ (coordonnées cartésiennes, polaires, ...)
- Description des orientations $A(\alpha,\beta,\gamma)$: angles d'Euler, de Tait-Bryan, ...
- Point quelconque M d'un corps rigide : $\vec{r}_M(t)$ à partir de $\vec{r}_P(t)$ et $A(\alpha,\beta,\gamma)$

Deux déplacement finis « élémentaires »

Translation suivant un axe (fixe)

Pour tout point A du solide : $\vec{r}_A(t_2) - \vec{r}_A(t_1) = \vec{T} = c^{tte}$

 $\overrightarrow{T_i}$: vecteurs équipollents à \overrightarrow{R}

Commutativité des $\overrightarrow{T_i}$ successives

Rotation autour d'un axe (fixe)

Exemple : rotation autour de l'axe z : $[\hat{\mathbf{x}}_{\alpha}] = \mathbf{A}^{(3)}[\hat{\mathbf{I}}_{\alpha}]$ ($a = \hat{\mathbf{I}}_{z}$)

- Même axe => Commutativité des rotations successives
- Axes quelconques => pas de commutativité!

^{*} À distinguer de la notion de « mouvement » : déplacement = on observe les configurations de départ et d'arrivée (entre lesquelles il y a eu mouvement), pas les configurations intermédiaires. Mais déplacement nécessite mouvement (lol!)

Déplacements finis : théorème d'Euler*

 « Tout déplacement d'un solide ayant un point fixe se résume à une rotation autour d'un axe (a) unique, <u>fixe</u>, passant par ce point »

Le vecteur unitaire $\hat{\mathbf{e}}$ (sur l'axe a) aura les mêmes composantes dans les deux repères

$$e = A e$$
 ou $(A - E) e = 0$

Donc, $\hat{\mathbf{e}}$ existe \Leftrightarrow A possède une valeur propre $\lambda = 1$ (e = vecteur propre associé)

(démonstration dans le nouveau syllabus, chap. 1)

- Une telle rotation = 3 degrés de liberté (dans l'espace)
 - Exemple : 2 pour orienter l'axe $e(\alpha, \beta) + 1$ autour de l'axe (θ)
 - Exemple: 3 rotations successives autour de 3 axes orthogonaux:

Tait-Bryan:
$$[\hat{x}_{\alpha}] = A[\hat{I}_{\alpha}] = A^{(3)}A^{(2)}A^{(1)}[\hat{I}_{\alpha}]$$

^{*} Leonhard Euler 1707 - 1783 mathématicien et physicien suisse.

• Propriétés utiles (... pour le théorème de Chasles)

• Rotations successives autour d'axes a_i parallèles

 \Leftrightarrow Rotation autour d'un axe a parallèle aux a_i

○ Propriétés utiles (... pour le théorème de Chasles)

- Rotations successives autour d'axes a_i parallèles
 - \Leftrightarrow Rotation autour d'un axe a parallèle aux a_i

- Deux rotations successives (axes //) d'angles α et $-\alpha$
 - ⇔ Rotation autour d'un axe a rejeté à l'infini ⇔ Translation!

○ Propriétés utiles (... pour le théorème de Chasles)

- Rotations successives autour d'axes a_i parallèles
 - \Leftrightarrow Rotation autour d'un axe a parallèle aux a_i

- Deux rotations successives (axes //) d'angles α et $-\alpha$
 - ⇔ Rotation autour d'un axe a rejeté à l'infini ⇔ Translation!

 Une translation peut « donc » être remplacée par une paire de rotations

ex. translater un meuble lourd en une succession de rotations!!

Déplacement finis quelconque : théorème de Chasles*

- 1. Un déplacement fini quelconque d'un solide peut être représenté par la combinaison d'un translation et d'une rotation
- En effet : 1. Translation \overrightarrow{T} du solide, vecteur équipollent à $\overrightarrow{PP'}$ (soit ! le déplacement $\overrightarrow{PP'}$ d'un point P du solide)
 - 2. Rotation R d'axe a autour de P', pt fixe (Euler)

(soit! Tet R)

$$\bullet$$
 T = T// + T₁ à l'axe R

$$\bullet$$
 $T_{\perp} \Leftrightarrow R_1, R_2 // R$

$$\circ$$
 R₁, R₂, R \Leftrightarrow R₃ // à T//

=> Mouvement global R₃T_{//}

○ Déplacement fini quelconque ⇔ mouvement « hélicoïdal »

2. <u>Théorème de Chasles</u>: Un déplacement général d'un solide = composition* d'une translation et d'une rotation autour d'un axe parallèle à cette translation (« R₃ T// »)

« Déplacement hélicoïdal », d'axe R₃

(axe hélicoïdal « screw axis »)

- Point P sur l'axe : mouvement de translation
- Point M hors axe : mouvement d'hélice (axe R₃)

NB: Non-commutativité des mouvements hélicoïdaux

^{*} composition ≠ séquence => mvt général 3D

Déplacement infinitesimal

- Propriété : rotations infinitésimales autour d'axes sécants : commutatives

$$\mathsf{A}_{(3)} \mathsf{A}_{(2)} \mathsf{A}_{(1)} = \left(\begin{array}{cccc} c\vartheta_2 & c\vartheta_3 & s\vartheta_1 & s\vartheta_2 & c\vartheta_3 + c\vartheta_1 & s\vartheta_3 & -c\vartheta_1 & s\vartheta_2 & c\vartheta_3 + s\vartheta_1 & s\vartheta_3 \\ -c\vartheta_2 & s\vartheta_3 & -s\vartheta_1 & s\vartheta_2 & s\vartheta_3 + c\vartheta_1 & c\vartheta_3 & c\vartheta_1 & s\vartheta_2 & s\vartheta_3 + s\vartheta_1 & c\vartheta_3 \\ s\vartheta_2 & -s\vartheta_1 & c\vartheta_2 & c\vartheta_1 & c\vartheta_2 \end{array} \right)$$

Angles θ petits (ou infinitésimaux) => $\cos(\theta) \approx 1$, $\sin(\theta) \approx \theta$

$$\Rightarrow$$
 $A_{(3)}A_{(2)}A_{(1)} = A_{(1)}A_{(2)}A_{(3)} = A_{(1)}A_{(3)}A_{(2)} = ... = E - \overset{\sim}{\Theta}$

avec
$$\Theta = (\theta_1 \ \theta_2 \ \theta_3)^T$$

Mouvement général d'un solide =

Séquence de déplacements* hélicoïdaux infinitésimaux autour d'axes hélicoïdaux instantanés successifs

Contenu du cours 1

1. Etude des déplacements

2. Vitesses

3. Accélérations

4. Mouvement général

5. Mouvement de contact sur solide fixe

6. Mouvement plan d'un solide

Expression générale

Point M pas nécessairement fixe sur le corps

$$\vec{OM}(t) = \vec{r}_M = \vec{R} + \vec{\rho}_M$$

$$[\hat{\mathbf{x}}_{\alpha}] = \mathbf{A}[\hat{\mathbf{I}}_{\alpha}]$$

$$\vec{R} = [\hat{I}_{\alpha}]^T R$$

$$\vec{\rho}_{M} = [\hat{x}_{\alpha}]^{T} \rho_{M}$$

$$\vec{v}_M(t) = \frac{d}{dt} \vec{OM}(t) = \vec{v}_P + \vec{v}_{M/P}$$

$$\vec{\mathbf{v}}_{\mathbf{M}} = \vec{\mathbf{v}}_{\mathbf{P}} + \vec{\hat{\mathbf{p}}}_{\mathbf{M}} + \vec{\boldsymbol{\omega}} \times \vec{\mathbf{p}}_{\mathbf{M}} \text{ avec } \hat{\vec{\mathbf{p}}}_{\mathbf{M}} = [\hat{\mathbf{x}}_{\alpha}]^{\mathrm{T}} \dot{\mathbf{p}}_{\mathbf{M}}$$

$$\circ$$
 Vitesse angulaire absolue de la base $\{\hat{\mathbf{x}}\}: \vec{\omega}$

$$\vec{\omega} = [\hat{x}_{\alpha}]^{T} \omega$$

$$\vec{\omega} = A \dot{A}^{T}$$

Il en découle des définitions « pratiques » :

- Vitesse d'entraînement d'origine (P): v
- Vitesse d'entraı̂nement (de M) : $\vec{v}_P + \vec{\omega} \times \vec{\rho}_M$ (ex. M fixe sur corps rigide)
- Vitesse de M « autour » du point P : $\vec{p}_M = \vec{v}_{M/P} = \vec{p}_M + \vec{\omega} \times \vec{p}_M$
 - Vitesse relative de M par rapport à la base $\{x\}$: $\mathring{\vec{p}}_{M} = [\hat{x}_{\alpha}]^{T}\dot{p}_{M}$

- Vitesses de deux points : compatibilité
 - Corps rigide ⇔ Champ de vecteur conditionné

Soit deux points matériels A et B, on peut

écrire:

$$\vec{v}_A = \vec{v}_B + \vec{\omega} \times B\vec{A}$$

Multiplions scalairement par AB:

$$\vec{\mathbf{v}}_{\mathbf{A}} \cdot \mathbf{A} \vec{\mathbf{B}} = \vec{\mathbf{v}}_{\mathbf{B}} \cdot \mathbf{A} \vec{\mathbf{B}}$$

On en conclut:

« La projection des vitesses en deux points d'un solide sur la droite qui les relie est la même »

! La distance AB est constante : $\vec{v}_{A/B} = \vec{\omega} \times \vec{BA}$ est $\perp \vec{AB}$

Autrement dit : **interdiction** de fixer arbitrairement les vitesses en deux points d'un corps rigide

Vitesse et mouvement hélicoïdal

• Axe instantané de rotation a_{ir} (du mvt hélicoïdal) // au vecteur $\vec{\boldsymbol{\alpha}}$

$$\vec{\mathbf{v}}_{\mathbf{A}} = \vec{\mathbf{v}}_{\mathbf{P}} + \vec{\boldsymbol{\omega}} \times \mathbf{P} \vec{\mathbf{A}}$$
 Appliquons à $A = P'_1$ et $A = P'_2$

- Vitesses de P, P'_1 , P'_2 suivant a_{ir} et identiques (par def. de l'axe hélic.)
- \circ => $\overset{\rightarrow}{\omega} \times \overset{\rightarrow}{PP'}_1 = \overset{\rightarrow}{\omega} \times \overset{\rightarrow}{PP'}_2 = 0$ (entraînement nul)
- $\circ => a_{ir} // \vec{o}$

En toute généralité, l'axe hélicoïdal est mobile dans l'espace et dans le solide.

Mouvement hélicoïdal – cas particuliers

Translation continue

$$\vec{\omega} = 0$$

Pour tout point $A : \vec{\mathbf{v}}_{\mathbf{A}} = \vec{\mathbf{v}}_{\mathbf{P}'}$

Cas d'axes mobiles: succession de translations infinitésimales

$$\vec{\mathbf{v}}_{\mathbf{P}} = \mathbf{0}$$

 $\vec{\omega}$ de direction fixe

Contenu du cours 1

1. Etude des déplacements

2. Vitesses

3. Accélérations

4. Mouvement général

5. Mouvement de contact sur solide fixe

6. Mouvement plan d'un solide

Accélérations

Expression générale (cf. FSAB1202)

• Accélération absolue du point M :

$$\vec{a}_{M} = \frac{d}{dt} \vec{v}_{M} = \frac{d^{2}}{dt^{2}} O\vec{M}(t) = \vec{a}_{P} + \vec{a}_{M/P}$$

$$\vec{a}_{M} = \vec{a}_{P} + \overset{\circ}{\vec{\omega}} \times \vec{\rho}_{M} + \vec{\omega} \times (\vec{\omega} \times \vec{\rho}_{M}) + \overset{\circ}{\vec{\rho}}_{M} + 2\vec{\omega} \times \overset{\circ}{\vec{\rho}}_{M}$$

avec
$$\vec{\vec{p}}_{M} = [\hat{x}_{\alpha}]^{T} \vec{p}_{M}$$

$$\vec{\vec{\omega}} = \vec{\vec{\omega}}$$

Il en découle des définitions « pratiques » :

- Accélération d'entraînement d'origine (P): ap
- Accélération d'entraînement (de M) : $\vec{a}_P + \vec{\omega} \times \vec{p}_M + \vec{\omega} \times (\vec{\omega} \times \vec{p}_M)$ (pt fixe sur corps)
- Accélération centripète* : $\vec{\omega} \times (\vec{\omega} \times \vec{p}_{M})$ Jet turn simulator (9g!)
- Accélération de Coriolis : $2\vec{\omega} \times \vec{p}_{M}$ (c.à.d. $2\vec{\omega} \times \vec{v}_{r}$)
- Accélération relative de M par rapport à la base $\{x\}$: $\ddot{\vec{p}}_{M} = [\hat{x}_{\alpha}]^{T}\ddot{p}_{M}$

Les différentes composantes de l'accélération

Soit:

- un carrousel en rotation (ω)
- un bonhomme qui se déplace vers le centre (x)
 - ? Accélération « a » du bonhomme ?

Les différentes composantes de l'accélération

Accélération d'entrainement (partie omega dot) : $a_e = \dot{\omega} r_{\hat{1}_1}$

Origine : accélération angulaire du carrousel

<u>Direction</u>: tangentielle

Les différentes composantes de l'accélération

Accélération relative : $a_r = \ddot{x}$

Origine : accélération linéaire du bonhomme

(par rapport au repère mobile {X})

<u>Direction</u>: suivant trajectoire du bonhomme (radial ici)

Les différentes composantes de l'accélération

Accélération centripète : $a_c = \omega^2 r$

Origine: vitesse angulaire du carrousel

<u>Direction</u>: radiale, vers l'intérieur

Les différentes composantes de l'accélération

Accélération de « Coriolis » : $a_{Cor} = 2 \omega \dot{x}$

<u>Origine</u>: vitesse angulaire (carrousel) <u>et</u> vitesse relative (bonhomme)

<u>Direction</u>: tangentielle (pour un bonhomme à vitesse radiale)

Vitesses et accélérations : utilité

Vitesses

- Pour le calcul des accélérations ! (cfr. formule)
- Pour des équations constitutives de force :
 - Frottement visqueux (ex.: amortisseur)

Force de contact pneu/sol

- Calcul de la puissance d'une force (ex. puissance dissipée),

Accélérations

- Pour l'établissement des équations du mouvement (Newton/Euler)
- Pour certains résultats spécifiques :
 - Confort de personnes dans les véhicules

- Sécurité des personnes (chocs, jeux de foire, ...)
- Comparaison modèle-expérience (accéléromètres)

Accélérations : confort

Exemple : Confort véhicule – norme ISO 2631

Projet UCL : Calcul du niveau de confort d'un tramway à deux bogies, roulant à 80 km/h sur voie de qualité « 6+ » américaine (équivalente)

Courbe d'iso-confort (versus frequence)

Accélérations : sécurité

○ Exemple : TMA : décélération passager

Projet « TruckStop »

UCL – ULg 2008-2010

Modelling of a truck-mounted attenuator

Accélérations : mesures

Mesures expérimentales via accéléromètres

Projet « Scoliose » UCL (LLN - Wolluwe) 2014

Accélération verticale du bassin pendant la marche

Contenu du cours 1

1. Etude des déplacements

2. Vitesses

3. Accélérations

4. Mouvement général

5. Mouvement de contact sur solide fixe

6. Mouvement plan d'un solide

Etude des déplacements (rappel)

Déplacement infinitesimal

- = cas particulier d'un déplacements fini axe hélicoïdal instantané
- Propriété supplémentaire : rotations infinitésimales commutatives

$$\begin{array}{l} \mathsf{A}_{(3)} \mathsf{A}_{(2)} \mathsf{A}_{(1)} = \left(\begin{array}{ccccc} c\vartheta_2 & c\vartheta_3 & & s\vartheta_1 & s\vartheta_2 & c\vartheta_3 + c\vartheta_1 & s\vartheta_3 & & -c\vartheta_1 & s\vartheta_2 & c\vartheta_3 + s\vartheta_1 & s\vartheta_3 \\ -c\vartheta_2 & s\vartheta_3 & & -s\vartheta_1 & s\vartheta_2 & s\vartheta_3 + c\vartheta_1 & c\vartheta_3 & & c\vartheta_1 & s\vartheta_2 & s\vartheta_3 + s\vartheta_1 & c\vartheta_3 \\ & s\vartheta_2 & & -s\vartheta_1 & c\vartheta_2 & & c\vartheta_1 & c\vartheta_2 \end{array} \right)$$

Angles θ petits (ou infinitésimaux) => $\cos(\theta) \approx 1$, $\sin(\theta) \approx \theta$

$$\Rightarrow A_{(3)}A_{(2)}A_{(1)} = A_{(1)}A_{(2)}A_{(3)} = A_{(1)}A_{(3)}A_{(2)} = \dots = E - \overset{\sim}{\Theta}$$

$$avec \Theta = (\theta_1 \ \theta_2 \ \theta_3)^T$$

Mouvement général d'un solide =

Séquence de mouvements hélicoïdaux autour d'axes hélicoïdaux instantanés successifs

Mouvement général d'un solide

Axoïdes

• Axoïde fixe = ensemble des droites de l'espace qui coïncident avec les axes hélicoïdaux successifs (= surface réglée fixe)

Axoïde mobile = ensemble des droites solidaires du solide qui coïncident avec les axes hélicoïdaux successifs (= surface réglée liée au solide)

Poncelet:

« Le mouvement le plus général = le roulement <u>avec</u> glissement le long de leur <u>génératrice commune</u> d'une surface réglée mobile sur une surface réglée fixe »

Mouvement général d'un solide

- Mouvement axoïdes
- A chaque instant
 - Génératrice commune g aux 2 axoïdes (= axe hélicoïdal instantané)
 - Translation // à cette génératrice (glissement des axoïdes)
 - Rotation autour de cette génératrice (roulement des axoïdes)
- Cas particulier «particulièrement» utile : (cfr. suite du cours)
 => deux corps en rotation axes fixes

En pratique pour l'ingénieur :

=> Rapport de transmission constant et RSG =>2 cas

- Cylindres de révolution (glissement suivant g = 0)
- Cônes de révolution (idem)

Contenu du cours 1

1. Etude des déplacements

2. Vitesses

3. Accélérations

4. Mouvement général

5. Mouvement de contact sur solide fixe

6. Mouvement plan d'un solide

Contact sur solide fixe

(ça va glisser en DAM!)

O Prérequis : point de contact géométrique / matériel

- Soit deux solides A, B en contacts ponctuels (même tangence)
- Point matériel (PM): « particule » fixe sur [la surface d'] un solide (A ou B)
- Point matériel de contact (PMC) : celui (PM) qui, instantanément, est au point de contact entre A et B (1ère et 8ème image de la roue)
- Point géométrique de contact (PGC) : point <u>de l'espace</u> qui coïncide avec le contact (se meut sur les corps A et B comme une « goutte d'eau »)

Mouvement de contact sur solide fixe (ça va glisser en DAM!)

Contact ponctuel : cinématique générale

ω peut être décomposé en :

 ω_r , rotation de roulement

 ω_{P} rotation de pivotement

- => Mvt général d'un solide en contact ponctuel avec un solide fixe : 5 ddl
 - Glissement \vec{v}_{g} du pt de contact géom. dans le plan tangent (2 ddl)
 - Roulement autour d'un axe tangent (2 ddl)
 - Pivotement $\vec{\omega}_n$ autour d'un axe normal (1 ddl)

Votre attention!

Glissement ≠ Frottement

Glissement ≠ Frottement

Glissement ≠ Frottement

Glissement ≠ Frottement

Glissement ≠ Frottement

Glissement ≠ Frottement

Glissement ≠ Frottement

Votre attention!

Glissement ≠ Frottement

Cinématique

Dynamique

Vitesse [m/s]

Force [N]

On peut:

- Glisser sans frotter
- Frotter sans glisser
- Frotter et glisser
- Ni frotter ni glisser

Mouvement de contact sur solide fixe

Contact ponctuel : cinématique de translation (glissement)

- Contact régulier ⇔ même plan tangent
- \bullet En t = 0 : contact A-A1
- En t = dt : contact en A'-A'1
- Lieu des contacts : Γ , Γ ₁

Calcul du glissement via les vitesses des points de contact géométriques évaluées sur chaque corps

- Soit $\mathbf{\vec{u}} [\mathbf{\vec{u}_1}]$ la vitesse du point de contact <u>géométrique</u> sur Γ [resp. Γ_1]
- Au premier ordre : $\overrightarrow{A_1A'_1}$ et $\overrightarrow{AA'}$ sont dans le plan tangent (=> infinitésimal)
- Relation déplacement-vitesse : $A\vec{A}' = \vec{u} dt$ $A_1\vec{A}'_1 = \vec{u}_1 dt$

 $\vec{\mathbf{v}}$ Vitesse de glissement $\vec{\mathbf{v}}_{g}$: $A'_{1}\vec{A}' = A\vec{A}' - A_{1}\vec{A}'_{1} = (\vec{\mathbf{u}} - \vec{\mathbf{u}}_{1})dt = \vec{\mathbf{v}}_{g} dt$

Mouvement de contact sur solide fixe

Glissements, pivotement : calcul (pratique) via les PMC

FSAB1202!

Calcul des glissements par la vitesse instantanée du PMC qui coïncide avec le PGC (trouvé au préalable)

$$\mathbf{v}_{\mathsf{gx}} = (\dot{\mathbf{x}} + \boldsymbol{\omega}^Y \times \mathbf{w}) \cdot \hat{\mathbf{T}}_1$$

$$\mathbf{v}_{\mathsf{gy}} = (\dot{\mathbf{x}} + \boldsymbol{\omega}^Y \times \mathbf{w}) \cdot \hat{\mathbf{T}}_2$$

 Calcul du pivotement par la vitesse angulaire instantanée du corps projetée suivant la normale au contact

$$\omega_{\mathsf{p}\mathsf{z}} = \boldsymbol{\omega}^Y \cdot \hat{\mathbf{T}}_3$$

Repère de contact
$$\{\hat{T}\}$$
:
 $\hat{T}_1, \hat{T}_2 \text{ tangent } ; \hat{T}_3 \text{ normal}$

Mouvement de contact sur solide fixe

Réalité versus modélisation

- Contact ponctuel ? entre deux corps en contact (⇔ effort normal)
- Illustration contact ferroviaire :
 - La réalité : surface elliptique
 - + Cisaillement du contact

Partie en glissement

Partie en adhésion

la modélisation : contact ponctuel

Contact « pseudo-glissant » : /

 v_q petit mais non nul! (et donc = RSG)

=> Résultante (équivalente) des force de contact

Contenu du cours 1

1. Etude des déplacements

2. Vitesses

3. Accélérations

- 4. Mouvement général
- 5. Mouvement de contact sur solide fixe

6. Mouvement plan d'un solide

Définition, propriétés

 Mouvement plan
 trois points non colinéaires du solide se meuvent dans un plan fixe

- Mouvement de tout point // au plan
- Mouvement complètement décrit par un plan mobile dans un plan fixe
- Mouvement hélicoïdal
 à translation nulle =>
 - $oldsymbol{\omega}$ perpendiculaire au plan
 - . Axe instantané de rotation
 - . Dans le plan : centre instantané de rotation (c.i.r.)

c.i.r. = point géométrique coïncidant avec le point matériel I du corps à vitesse nulle

=> Pour tout point A du corps :

$$\vec{v}_A = \vec{v}_I + \vec{\omega} \times I\vec{A} = \vec{\omega} \times I\vec{A}$$

Détermination graphique du c.i.r.

$$\vec{\mathbf{v}}_{\mathbf{A}} = \vec{\boldsymbol{\omega}} \times \vec{\mathbf{I}}\vec{\mathbf{A}}$$
 (1)

La vitesse de tout point (A) est perpendiculaire au vecteur position $\overrightarrow{IA} =>$ détermination immédiate à partir de deux points A et B.

Détermination graphique du c.i.r.

$$\vec{\mathbf{v}}_{\mathbf{A}} = \vec{\boldsymbol{\omega}} \times \vec{\mathbf{I}}\vec{\mathbf{A}}$$
 (1)

La vitesse de tout point (A) est perpendiculaire au vecteur position $\overrightarrow{IA} =>$ détermination immédiate à partir de deux points A et B.

Par (1)

Par (1) + triangles semblables ($V_A/|IA| = V_B/|IB| = |\omega|$)

Détermination graphique du c.i.r.

 Le CIR, par rapport au tonneau, de la barre rigide AB glissant dans ce dernier qui, lui, roule sans glisser sur le sol

Détermination graphique du c.i.r.

Le CIR du porteur de roue par rapport au châssis de la voiture

O Détermination graphique du c.i.r.

Le CIR du porteur de roue par rapport au châssis de la voiture

Détermination graphique du c.i.r.

Le CIR par rapport au bâti fixe de la bielle BC.

Détermination graphique du c.i.r.

$$\vec{\mathbf{v}}_{\mathbf{A}} = \vec{\boldsymbol{\omega}} \times \vec{\mathbf{I}}\vec{\mathbf{A}}$$
 (1)

La vitesse de tout point (A) est perpendiculaire au vecteur position $\overrightarrow{IA} =>$ détermination immédiate à partir de deux points A et B.

Centre de roulis d'une voiture

Détermination cinématique

Cas de suspensions

Indépendantes à doubles bras

<u>Hypothèses</u>:

- rotules parfaites
- aucune flexibilité
- pas de glissement roue/sol

RC = CIR de la roue par rapport au châssis : => intersection des barres 1 et 3

RS = CIR de la roue par rapport au sol : => point de contact roue/sol*

Théorème de Kennedy : dans un mvt plan à 3 corps, les CIR relatifs sont alignés 2 à 2:

CS: aligné avec RC et RS

et sur l'axe de symétrie (par symétrie d'un véhicule à roulis nul)

NB: CS est « instantané : il « migre » avec la configuration

^{*} Hypothèse de glissement latéral pneu/sol faible => $ddl = 3 + 1 + 1 - (2 \times 2) = 1$, en réalité ddl = 3 (mvt chassis) : y, z et ϕ

Critère de déraillement (train)

Détermination analytique du c.i.r.

Connaissant la vitesse de deux points A et B:

$$\vec{v}_B = \vec{v}_A + \vec{\omega} \times A\vec{B}$$

$$\vec{v}_A = \vec{v}_B = > \text{Translation de vitesse } \vec{v}_A \text{ (I à l'infini)}$$

si
$$\vec{v}_A = 0$$
 $\vec{v}_B \neq 0$: $I = A$ et $\vec{\omega} = \frac{AB \times \vec{v}_B}{|A\vec{B}|^2}$ (*)

si
$$0 \neq \vec{v}_A \neq \vec{v}_B \neq 0$$
: $\vec{\omega} = A\vec{B} \times \frac{\vec{v}_B - \vec{v}_A}{|A\vec{B}|^2}$ 1. Trouver ω

$$A\vec{I} = \frac{\vec{\omega} \times \vec{v}_A}{|\vec{\omega}|^2}$$
 2. Trouver ω

2018: voir footnote

Evolution du c.i.r. (déplacement fini)

- Le c.i.r. se déplace dans le plan fixe ET dans le plan mobile
- Le c.i.r. est un point géométrique qui se déplace de point matériel I en point matériel I => vitesse de déplacement « géométrique ».
- Le c.i.r. décrit :
 - dans le plan fixe une courbe B appelée Base (axoïde fixe « 2D »)
 - dans le plan mobile (solidaire du corps) une courbe R appelée Roulante (axoïde mobile « 2D »).
- Lors du mouvement, la Roulante roule sans glisser (RSG) sur la Base en leur point matériel de contact I dont la vitesse instantanée = 0.

Bases et roulantes : cas simples

Exemple « trivial » mais illustratif : la roue sur sol plat en RSG

La base roule sur la roulante sans glisser, en effet :

v_I = 0 , pour chaque configuration (=> RSG)

La vitesse de parcours du c.i.r est identique sur B et sur R, en effet :

- $v_{cir} = v$, dans le plan fixe
- $v_{cir} = v$, dans le plan mobile* : $v_{rel} = v_{abs}$ $v_{entrain}$.

<u>Illustration</u>: coulisse-manivelle

- Bases et roulantes : cas simples résolution graphique
 - Exemple académique : l'échelle de longueur L contre le mur

Base ? : dans le corps fixe : lieu des I, points d'intersection des perpendiculaires à V_A , $V_B =>$ cercle de centre O, rayon L (voir le rectangle de diagonale constante L)

- Bases et roulantes : cas simples résolution graphique
 - Exemple académique : l'échelle de longueur L contre le mur

Base ? : dans le corps fixe : lieu des I, points d'intersection des perpendiculaires à V_A , $V_B =>$ cercle de centre O, rayon L (voir le rectangle de diagonale constante L)

Roulante ? : dans le corps mobile, trouver le lieu des I : I est toujours à une distance L/2 du centre P => cercle centré en P.

Bases et roulantes : cas simples - résolution analytique

Exemple académique : l'échelle de longueur L contre le mur configuration caractérisée par l'angle α (paramètre indépendant)

On cherche une fonction f(X,Y) ... On voit, directement à partir de la figure, que :

$$Y = L \cos \alpha$$
 (1) $X = L \sin \alpha$ (2)

$$(2)^2 + (1)^2$$

$$\implies$$
 Base B : $X^2 + Y^2 = L^2$

Bases et roulantes : cas simples – résolution analytique

Exemple académique : l'échelle de longueur L contre le mur

Soit (X,Y), les coordonnées de I dans plan fixe; (x,y), ses coordonnées dans le plan mobile

Position de I:
$$X = X_B + x \cos \alpha - y \sin \alpha$$

Comme

$$(X_B) = L \sin \alpha$$

 $(P_{I} = P_{B} + \dots)$

$$Y = x \sin \alpha + y \cos \alpha$$

$$x = L \sin \alpha \cos \alpha = \frac{L}{2} \sin 2\alpha$$

$$0 = \dot{X}_B - \dot{\alpha}(x \sin \alpha + y \cos \alpha)$$

$$y = L \cos^2 \alpha = \frac{L}{2} (1 + \cos 2\alpha)$$

$$\dot{\alpha}(x \cos \alpha + y \sin \alpha)$$

$$Y = L \cos \alpha$$

$$X = L \sin \alpha$$

Base B :
$$X^2 + Y^2 = L^2$$

☼ Base et roulante : échelle qui glisse

Bases et roulantes : échelle qui glisse

Pour trouver l'expression cartésienne (*i.e.* une fonction de x et de y) de la roulante R, écrivons la position absolue du point \underline{I} , en y faisant apparaître les coordonnées x, y et l'angle α qui joue le rôle de paramètre :

$$X = X_B + \underline{x}\cos\alpha - \underline{y}\sin\alpha$$

$$Y = \underline{x}\sin\alpha + \underline{y}\cos\alpha$$
(1.24)

O Base et roulante : échelle qui glisse

. . .

Bases et roulantes : échelle qui glisse

$$X = X_B + x \cos \alpha - y \sin \alpha$$
$$Y = x \sin \alpha + y \cos \alpha$$

$$X_B = L \sin \alpha = \lambda \dot{X}_B = L \dot{\alpha} \cos \alpha$$

Dérivons ces expressions par rapport au temps et exploitons la propriété du point I (i.e. vitesse nulle $\forall t$) :

$$\mathbf{v}_I = 0$$

$$0 = \dot{X}_B - \dot{\alpha}(x\sin\alpha + y\cos\alpha) \tag{1.25a}$$

$$= \dot{\alpha} \left(L \cos \alpha - (x \sin \alpha + y \cos \alpha) \right) \tag{1.25b}$$

$$0 = \dot{\alpha}(x\cos\alpha - y\sin\alpha) \tag{1.25c}$$

Bases et roulantes : échelle qui glisse

$$0 = \dot{X}_B - \dot{\alpha}(x \sin \alpha + y \cos \alpha)$$

$$= \dot{\alpha}(L \cos \alpha - (x \sin \alpha + y \cos \alpha))$$

$$0 = \dot{\alpha}(x \cos \alpha - y \sin \alpha)$$

$$(1.25a)$$

$$(1.25b)$$

$$(1.25c)$$

1. Eliminer y = obtenir $x(2\alpha)$

Pour ce faire, en faisant la différence (1.25b) $\times \sin \alpha$ - (1.25c) $\times \cos \alpha = 0$, nous obtenons facilement, via la règle du sinus d'angle double :

$$x = L \sin \alpha \cos \alpha = \frac{L}{2} \sin 2\alpha \tag{1.26}$$

O Bases et roulantes : échelle qui glisse

$$0 = \dot{X}_B - \dot{\alpha}(x \sin \alpha + y \cos \alpha)$$

$$= \dot{\alpha}(L \cos \alpha - (x \sin \alpha + y \cos \alpha))$$

$$(1.25b)$$

$$0 = \dot{\alpha}(x \cos \alpha - y \sin \alpha)$$

$$(1.25c)$$

$$x = L \sin \alpha \cos \alpha = \frac{L}{2} \sin 2\alpha$$

$$(1.26)$$

2. Eliminer x = obtenir $y(2\alpha)$

Ensuite, pour déterminer $y(\alpha)$, introduisons l'égalité de gauche de (1.26) dans (1.25c); cela fournit directement :

$$y = L\cos^2\alpha\tag{1.27}$$

Pour faire apparaître l'angle double 2α dans cette expression de y, comme on l'a fait pour x, exploitons la règle du cosinus de l'angle double. Cela donne :

$$y = L\left(\frac{1+\cos 2\alpha}{2}\right) \tag{1.28}$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$

$$\Leftrightarrow$$

$$\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$$

O Bases et roulantes : échelle qui glisse

$$y = L\left(\frac{1+\cos 2\alpha}{2}\right) \Leftrightarrow \left(y - \frac{L}{2}\right) = \frac{L}{2}\cos 2\alpha \quad (1.29)$$

3. Eliminiation de α

$$\begin{cases} x = L \sin \alpha \cos \alpha = \frac{L}{2} \sin 2\alpha & (1.26) \end{cases}$$

Venons-en à l'élimination du paramètre α . En observant les termes de droite des équations (1.26) et (1.29), une fois mis au carré, ceux-ci se prêtent à la règle trigonométrique de base $\cos^2 \theta + \sin^2 \theta = 1$. Élevons donc (1.26) et (1.29) au carré et sommons-les, cela donne :

$$x^{2} + \left(y - \frac{L}{2}\right)^{2} = \left(\frac{L}{2}\right)^{2} \tag{1.30}$$

qui est l'expression analytique de <u>la roulante R, i.e. un cercle de rayon L/2 centré en P.</u>

Bases et roulantes : cas simples - résolution analytique

Exemple académique : l'échelle de longueur L contre le mur

Soit (X,Y), les coordonnées de I dans plan fixe; (x,y), ses coordonnées dans le plan mobile

Position de I (*):
$$X = X_B + x \cos \alpha - y \sin \alpha$$
 avec
 $(P_I = P_B + ...)$
 d/dt
 $Y = x \sin \alpha + y \cos \alpha$

 $X_B = L \sin \alpha$

$$\dot{X}_B = L \dot{\alpha} \cos \alpha$$

Vitesse de I:

$$x = L \sin \alpha \cos \alpha = \frac{L}{2} \sin 2\alpha$$

$$y = L \cos^2 \alpha = \frac{L}{2} (1 + \cos 2\alpha)$$

^{*} en passant par B, origine du repère mobile, dans lequel on veut exprimer la roulante (x,y)

Cours 1: conclusions

Importance de maîtriser :

- Les notions de base en cinématique vectorielle
 - Position, Orientation
 - Vitesse, Vitesse angulaire
 - Accélérations
 - ...

• Importance de comprendre :

- Certains éléments fondamentaux de géométrie/cinématique
 - 3D: mouvement hélicoïdal, axoïdes
 - 2D : CIR, bases et roulantes

Géométrie (SR1)

Surface réglée

- Surface par chaque point de laquelle passe une droite contenue dans la surface
- Les droites contenues dans une surface réglée sont appelées les *génératrices*
- On peut obtenir une surface réglée en prenant la réunion d'une famille de droites D(u) => paramètre u: point P(u) et vecteur directeur $\mathbf{v}(u)$

Figure: source: wikipedia/

Géométrie (SR2)

Quelques Surfaces réglées courantes

(génératices : sommet commun)

(génératices : parallèles)

(deux familles de génératrices)

Figure: source: wikipedia/

Géométrie (SRD)

Surfaces réglées <u>développables</u>

- Surface réglée telle que le plan tangent est le même le long d'une génératrice.
- On peut « faire rouler sans glisser » une telle surface sur un plan, le contact se faisant le long d'une droite.
- O'un point de vue pratique, une forme correspondant à une surface développable est facilement construite à partir d'un patron plan tracé selon sa « développée » sur un matériau plan et souple (tôle, carton)

Géométrie (SR2bis)

Quelques Surfaces réglées courantes

Figure : source : wikipedia/

Géométrie (AX)

Illustration d'axoïdes dans l'espace

Mouvement 3D : Cycloïde sphérique

Cône de révolution roulant sans glisser sur un cône de révolution de même sommet

Axoïde fixe : en vert (cône fixe)

Axoïde mobile : cône mobile

Evolution d'un PM : en rouge

Figure: source: http://www.mathcurve.com

Géométrie (BR)

Illustration d'axoïdes dans l'espace

Base: en magenta (courbe de « Jerabek »)

Roulante: en bleu clair

Mouvement 2D: coulisse-manivelle

Mouvement d'une tige - entraînée par une manivelle dont une extrémité a un mouvement circulaire et qui passe ("coulisse") par un point fixe

Figure: source: http://www.mathcurve.com

Rappel: Valeurs et vecteurs propres

Problème aux valeurs propres :

$$A x = \lambda x$$

A : matrice carrée d'ordre n,

 λ , scalaire

x, vecteur colonne non nul

 λ , valeur propre

x, vecteur propre correspondant

Calcul direct:

$$(A - \lambda E) x = 0 \tag{1}$$

n equations homogènes à n inconnues x

Calcul des valeurs propres :

Pour admettre d'autres solutions que la solution trivial nulle, $A-\lambda E$ doit être singulière :

$$det(A - \lambda E) = 0 \qquad \Longrightarrow \lambda$$

Et puis résoudre (1) pour chaque $\lambda_i => x_i$ (déterminé à une constante près)

