An optimal Arc Consistency algorithm for a chain of Atmost constraints with cardinality

Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet

Toulouse, France

Outline

The ATMOSTSEQCARD constraint

Filtering the domains

Experimental results

Conclusion & Future work

Definition

 $\mathsf{ATMOSTSEQCARD}(u,q,d,[x_1,\ldots,x_n]) \Leftrightarrow$

$$\bigwedge_{i=0}^{n-q} \left(\sum_{l=1}^{q} x_{i+l} \leq u\right) \wedge \left(\sum_{i=1}^{n} x_{i} = d\right)$$

Definition

 $\mathsf{ATMOSTSEQCARD}(u,q,d,[x_1,\ldots,x_n]) \Leftrightarrow$

$$\bigwedge_{i=0}^{n-q} \left(\sum_{l=1}^{q} x_{i+l} \leq u \right) \wedge \left(\sum_{i=1}^{n} x_{i} = d \right)$$

Example ATMOSTSEQCARD(2, 4, 4, [x_1, \ldots, x_7])

$$\frac{1}{1} = \frac{1}{1} = \frac{0}{1} = \frac{0}{1} = \frac{0}{1} = \frac{0}{1}$$

Sequence Constraints

• Let $[x_1, \ldots, x_n]$ be a sequence of integer variables.

Sequence Constraints

- Let $[x_1, \ldots, x_n]$ be a sequence of integer variables.
- The Among constraint ensures that the number of occurrences of values in $\{v_1..v_k\}$ in a subsequence $[x_{i1},...,x_{iq}]$ is bounded between I and u.

Sequence Constraints

- Let $[x_1, \ldots, x_n]$ be a sequence of integer variables.
- The Among constraint ensures that the number of occurrences of values in $\{v_1..v_k\}$ in a subsequence $[x_{i1},...,x_{iq}]$ is bounded between l and u.
- AMONGSEQ: the conjunction of all n-q+1 AMONG on q consecutive variables (i.e. $\bigwedge_{i=0}^{n-q} \text{AMONG}([x_{i+1}, \dots, x_{i+q}])$).

Sequence Constraints

- Let $[x_1, \ldots, x_n]$ be a sequence of integer variables.
- The Among constraint ensures that the number of occurrences of values in $\{v_1..v_k\}$ in a subsequence $[x_{i1},...,x_{iq}]$ is bounded between l and u.
- AMONGSEQ: the conjunction of all n-q+1 AMONG on q consecutive variables (i.e. $\bigwedge_{i=0}^{n-q} \text{AMONG}([x_{i+1}, \dots, x_{i+q}])$).
- GEN-SEQUENCE: Conjunction of (consecutive) AMONG

Sequence Constraints

- Let $[x_1, \ldots, x_n]$ be a sequence of integer variables.
- The Among constraint ensures that the number of occurrences of values in $\{v_1..v_k\}$ in a subsequence $[x_{i1},...,x_{iq}]$ is bounded between l and u.
- AMONGSEQ: the conjunction of all n-q+1 AMONG on q consecutive variables (i.e. $\bigwedge_{i=0}^{n-q} \text{AMONG}([x_{i+1}, \dots, x_{i+q}])$).
- GEN-SEQUENCE: Conjunction of (consecutive) AMONG
- $AtMostSeqCard \equiv AmongSeq \oplus a$ cardinality constraint

Sequence Constraints

- Let $[x_1, \ldots, x_n]$ be a sequence of integer variables.
- The Among constraint ensures that the number of occurrences of values in $\{v_1..v_k\}$ in a subsequence $[x_{i1},...,x_{iq}]$ is bounded between l and u.
- AMONGSEQ: the conjunction of all n-q+1 AMONG on q consecutive variables (i.e. $\bigwedge_{i=0}^{n-q} \text{AMONG}([x_{i+1}, \dots, x_{i+q}])$).
- GEN-SEQUENCE: Conjunction of (consecutive) AMONG
- $AtMostSeqCard \equiv AmongSeq \oplus a$ cardinality constraint
- → ATMOSTSEQCARD can be encoded with a GEN-SEQUENCE

Sequence Constraints

- Let $[x_1, \ldots, x_n]$ be a sequence of integer variables.
- The Among constraint ensures that the number of occurrences of values in $\{v_1..v_k\}$ in a subsequence $[x_{i1},...,x_{iq}]$ is bounded between l and u.
- AMONGSEQ: the conjunction of all n-q+1 AMONG on q consecutive variables (i.e. $\bigwedge_{i=0}^{n-q} \text{AMONG}([x_{i+1}, \dots, x_{i+q}])$).
- GEN-SEQUENCE: Conjunction of (consecutive) AMONG
- $AtMostSeqCard \equiv AmongSeq \oplus a$ cardinality constraint
- → ATMOSTSEQCARD can be encoded with a GEN-SEQUENCE
- → ATMOSTSEQCARD can be encoded with a Global Sequencing Constraint (GSC)

Existing complexities

Gen-Sequence

- COST-REGULAR encoding: $O(2^q n)$ [Van Hoeve et al, 2009]
- Gen-Sequence: $O(n^3)$ [Van Hoeve et al, 2009]
- Flow-based Algorithm: $O(n^2)$ [Maher et al, 2008]

Gsc

• GCC encoding, Not AC, NP-Hard [Puget and Régin, 1997]

Why the ATMOSTSEQCARD constraint? [1]

Figure: The car-sequencing problem

Why the ATMOSTSEQCARD constraint? [2]

$\overline{7}$ days, 4 employees, 3 periods, 40h per week, Atmost(1,3)

Table: Crew-rostering problem

The proposed algorithm

- Let (x₁,...,x_n) be a boolean sequence subject to ATMOSTSEQCARD(u, q, d, [x₁,...,x_n])
- Our filtering algorithm is based on a greedy procedure (denoted by leftmost).
- leftmost: computes an assignment w maximizing the cardinality of the sequence with respect to the ATMOST constraints.

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

		С				
x_i	W	1	2	3	4	max
	0					
0	0					
	0					
1	1					
	0					
	0					
	0					
0	0					
	0					
0	0					
1	1					
	0					
	0					
1	1					
	0					
	0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

					(2		
	Xi		W	1	2	3	4	max
\rightarrow		_	0	0				
	0		0					
			0					
	1		1					
			0					
			0					
			0					
	0		0					
			0					
	0		0					
	1		1					
			0					
			0					
	1		1					
			0					
			0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

					С			
	Xi		W	1	2	3	4	max
\rightarrow		_	0	0	0			
	0	_	0					
			0					
	1		1					
			0					
			0					
			0					
	0		0					
			0					
	0		0					
	1		1					
			0					
			0					
	1		1					
			0					
			0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

					(2		
	Xi		W	1	2	3	4	max
\rightarrow		_	0	0	0	0		
	0	_	0					
		_	0					
	1		1					
			0					
			0					
			0					
	0		0					
			0					
	0		0					
	1		1					
			0					
			0					
	1		1					
			0					
			0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

				c				
	Xi		W	1	2	3	4	max
\rightarrow			0	0	0	0	1	
	0	_	0					
		_	0					
	1	_	1					
			0					
			0					
			0					
	0		0					
			0					
	0		0					
	1		1					
			0					
			0					
	1		1					
			0					
			0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

x _i	W	1	2	3	4	max
•	0	0	0	0	1	1
0	0					
•	0					
1	1					
	0					
	0					
•	0					
0	0					
	0					
0	0					
1	1					
•	0					
	0					
1	1					
•	0					
•	0					

October 2012 CP 2012 9 / 23

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

			(2		
X _i	W	1	2	3	4	max
•	1	0	0	0	1	1
0	0					
	0					
1	1					
·	0					
·	0					
·	0					
0	0					
	0					
0	0					
1	1					
	0					
	0					
1	1					
	0					
•	0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

					(2		
	Xi		W	1	2	3	4	max
-		_	1	0	0	0	1	1
\rightarrow	0	_	0	1				
			0					
	1		1					
			0					
			0					
			0					
	0		0					
			0					
	0		0					
	1		1					
			0					
			0					
	1		1					
			0					
			0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

					(2		
	Xi		W	1	2	3	4	max
		_	1	0	0	0	1	1
\rightarrow	0	_	0	1	1			
		_	0					
	1		1					
			0					
			0					
			0					
	0		0					
			0					
	0		0					
	1		1					
			0					
			0					
	1		1					
			0					
			0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

					(5		
	Xi		W	1	2	3	4	max
		_	1	0	0	0	1	1
\rightarrow	0	_	0	1	1	2		
		_	0					
	1	_	1					
			0					
			0					
			0					
	0		0					
			0					
	0		0					
	1		1					
			0					
			0					
	1		1					
			0					
			0					

October 2012 CP 2012 9 / 23

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

					(c		
	Xi		W	1	2	3	4	max
			1	0	0	0	1	1
\rightarrow	0	_	0	1	1	2	1	
		_	0					
	1	_	1					
		_	0					
			0					
			0					
	0		0					
			0					
	0		0					
	1		1					
			0					
			0					
	1		1					
			0					
			0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

				5		
Xį	W	1	2	3	4	max
	1	0	0	0	1	1
0	0	1	1	2	1	2
	0					
1	1					
	0					
	0					
	0					
0	0					
	0					
0	0					
1	1					
	0					
	0					
1	1					
	0					
	0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

			(c		
Xi	W	1	2	3	4	max
	1	0	0	0	1	1
0	0	1	1	2	1	2
	0					
1	1					
	0					
	0					
	0					
0	0					
	0					
0	0					
1	1					
	0					
	0					
1	1					
	0					
-	0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

						c		
	Xi		W	1	2	3	4	max
		_	1	0	0	0	1	1
	0	_	0	1	1	2	1	2
\rightarrow		_	0	1				
	1		1					
			0					
			0					
			0					
	0		0					
			0					
	0		0					
	1		1					
			0					
			0					
	1		1					
			0					
			0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

						2		
	Xi		W	1	2	3	4	max
		_	1	0	0	0	1	1
	0	_	0	1	1	2	1	2
\rightarrow		_	0	1	2			
	1	_	1					
			0					
			0					
			0					
	0		0					
			0					
	0		0					
	1		1					
			0					
			0					
	1		1					
			0					
			0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

	.,			С				
	Xi		W	1	2	3	4	max
			1	0	0	0	1	1
	0	_	0	1	1	2	1	2
\rightarrow		_	0	1	2	1		
	1	_	1					
		_	0					
			0					
			0					
	0		0					
			0					
	0		0					
	1		1					
			0					
			0					
	1		1					
			0					
			0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

	.,				(C		
	Xi		W	1	2	3	4	max
			1	0	0	0	1	1
	0		0	1	1	2	1	2
\rightarrow		_	0	1	2	1	1	
	1	_	1					
		_	0					
		_	0					
			0					
	0		0					
			0					
	0		0					
	1		1					
			0					
			0					
	1		1					
			0					
			0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

				c		
Xi	W	1	2	3	4	max
	1	0	0	0	1	1
0	0	1	1	2	1	2
	0	1	2	1	1	2
1	1					
	0					
	0					
	0					
0	0					
	0					
0	0					
1	1					
	0					
•	0					
1	1					
•	0					
-	0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

			(c		
Xi	W	1	2	3	4	max
	1	0	0	0	1	1
0	0	1	1	2	1	2
	0	1	2	1	1	2
1	1					
	0					
	0					
	0					
0	0					
	0					
0	0					
1	1					
	0					
	0					
1	1					
	0					
	0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

						5		
	Xi		W	1	2	3	4	max
		_	1	0	0	0	1	1
	0	_	0	1	1	2	1	2
		_	0	1	2	1	1	2
\rightarrow	1	_	1	2				
			0					
			0					
			0					
	0		0					
			0					
	0		0					
	1		1					
			0					
			0					
	1		1					
			0					
			0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

						c		
	Xi		W	1	2	3	4	max
			1	0	0	0	1	1
	0	_	0	1	1	2	1	2
		_	0	1	2	1	1	2
\rightarrow	1	_	1	2	1			
		_	0					
			0					
			0					
	0		0					
			0					
	0		0					
	1		1					
			0					
			0					
	1		1					
			0					
			0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

	.,				(c		
	Xi		W	1	2	3	4	max
			1	0	0	0	1	1
	0		0	1	1	2	1	2
		_	0	1	2	1	1	2
\rightarrow	1	_	1	2	1	1		
		_	0					
		_	0					
			0					
	0		0					
			0					
	0		0					
	1		1					
			0					
			0					
	1		1					
			0					
			0					

October 2012 CP 2012 9 / 23

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

			С					
	Xi		W	1	2	3	4	max
			1	0	0	0	1	1
	0		0	1	1	2	1	2
			0	1	2	1	1	2
\rightarrow	1	_	1	2	1	1	1	
		_	0					
		_	0					
		_	0					
	0		0					
			0					
	0		0					
	1		1					
			0					
			0					
	1		1					
			0					
			0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

		С				
Xi	W	1	2	3	4	max
•	1	0	0	0	1	1
0	0	1	1	2	1	2
·	0	1	2	1	1	2
1	1	2	1	1	1	2
·	0					
·	0					
·	0					
0	0					
	0					
0	0					
1	1					
	0					
	0					
1	1					
	0					
•	0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

			(c		
Xi	W	1	2	3	4	max
-	1	0	0	0	1	1
0	0	1	1	2	1	2
ē	0	1	2	1	1	2
1	1	2	1	1	1	2
	0					
	0					
ē	0					
0	0					
	0					
0	0					
1	1					
	0					
	0					
1	1					
	0					
•	0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

						c		
	Xi		W	1	2	3	4	max
			1	0	0	0	1	1
	0	_	0	1	1	2	1	2
		_	0	1	2	1	1	2
	1	_	1	2	1	1	1	2
\rightarrow		_	0	1				
			0					
			0					
	0		0					
			0					
	0		0					
	1		1					
			0					
			0					
	1		1					
			0					
			0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

						5		
	Xi		W	1	2	3	4	max
			1	0	0	0	1	1
	0		0	1	1	2	1	2
			0	1	2	1	1	2
	1	_	1	2	1	1	1	2
\rightarrow		_	0	1	1			
		_	0					
			0					
	0		0					
			0					
	0		0					
	1		1					
			0					
			0					
	1		1					
			0					
			0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

					(c		
	Xi		W	1	2	3	4	max
-			1	0	0	0	1	1
	0		0	1	1	2	1	2
			0	1	2	1	1	2
	1	_	1	2	1	1	1	2
\rightarrow		_	0	1	1	1		
		_	0					
		_	0					
	0		0					
			0					
	0		0					
	1		1					
			0					
			0					
	1		1					
			0					
			0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

					5		
Xį		W	1	2	3	4	max
		1	0	0	0	1	1
0		0	1	1	2	1	2
		0	1	2	1	1	2
1		1	2	1	1	1	2
	_	0	1	1	1	0	
		0					
	_	0					
0	_	0					
		0					
0		0					
1		1					
		0					
		0					
1		1					
		0					
		0					
	0 1 0 0 1	. 0 . 1 . — . — —	. 1 0 0 . 0 1 1 0 0 0 0 0 0 0 0 1 1 . 0 0 0 1 1 . 0 1 1 . 0	. 1 0 0 0 1 . 0 1 1 1 2 0 1 0 0 - 0 0 0 0 1 1 . 0 0 1 1 . 0 0	x _i	. 1 2 3 . 1 0 0 0 0 1 1 2 1 . 0 1 2 1 1 1 2 1 1 0 1 1 1 0 0 0 0 0 0 1 1 1 . 0 0 1 1 1 . 0 0	xi w 1 2 3 4 . 1 0 0 0 1 0 0 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 0 .

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

Xi	W	1	2	3	4	max
•	1	0	0	0	1	1
0	0	1	1	2	1	2
	0	1	2	1	1	2
1	1	2	1	1	1	2
	0	1	1	1	0	1
	0					
	0					
0	0					
	0					
0	0					
1	1					
	0					
	0					
1	1					
	0					
	0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

		С				
Xi	W	1	2	3	4	max
	1	0	0	0	1	1
0	0	1	1	2	1	2
	0	1	2	1	1	2
1	1	2	1	1	1	2
	1	1	1	1	0	1
	0					
	0					
0	0					
	0					
0	0					
1	1					
	0					
	0					
1	1					
	0					
	0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

					(c		
	Xį		W	1	2	3	4	max
			1	0	0	0	1	1
	0		0	1	1	2	1	2
		_	0	1	2	1	1	2
	1	_	1	2	1	1	1	2
		_	1	1	1	1	0	1
\rightarrow		_	0	2				
			0					
	0		0					
			0					
	0		0					
	1		1					
			0					
			0					
	1		1					
			0					
			0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

					(c		
	Xi		W	1	2	3	4	max
			1	0	0	0	1	1
	0		0	1	1	2	1	2
			0	1	2	1	1	2
	1	_	1	2	1	1	1	2
		_	1	1	1	1	0	1
\rightarrow		_	0	2	2			
		_	0					
	0		0					
			0					
	0		0					
	1		1					
			0					
			0					
	1		1					
			0					
			0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

	Χį		W	1	2	3	4	max
			1	0	0	0	1	1
	0		0	1	1	2	1	2
			0	1	2	1	1	2
	1		1	2	1	1	1	2
		_	1	1	1	1	0	1
\rightarrow		_	0	2	2	1		
		_	0					
	0	_	0					
			0					
	0		0					
	1		1					
			0					
			0					
	1		1					
			0					
			0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

	Xi		W	1	2	3	4	max
			1	0	0	0	1	1
	0		0	1	1	2	1	2
			0	1	2	1	1	2
	1		1	2	1	1	1	2
			1	1	1	1	0	1
\rightarrow		_	0	2	2	1	0	
		_	0					
	0	_	0					
		_	0					
	0		0					
	1		1					
			0					
			0					
	1		1					
			0					
			0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

			(
Xi	W	1	2	3	4	max
	1	0	0	0	1	1
0	0	1	1	2	1	2
	0	1	2	1	1	2
1	1	2	1	1	1	2
	1	1	1	1	0	1
	0	2	2	1	0	2
	0					
0	0					
	0					
0	0					
1	1					
	0					
	0					
1	1					
	0					
	0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

			(
Xi	W	1	2	3	4	max
	1	0	0	0	1	1
0	0	1	1	2	1	2
	0	1	2	1	1	2
1	1	2	1	1	1	2
	1	1	1	1	0	1
	0	2	2	1	0	2
	0					
0	0					
	0					
0	0					
1	1					
	0					
	0					
1	1					
	0					
	0					

$$\overrightarrow{w} = \text{leftmost} (u = 2, q = 4)$$

Χį	W	1	2	3	4	max
•	1	0	0	0	1	1
0	0	1	1	2	1	2
	0	1	2	1	1	2
1	1	2	1	1	1	2
•	1	1	1	1	0	1
•	0	2	2	1	0	2
•	0	2	1	0	0	2
0	0	1	0	0	1	1
	1	0	0	1	1	1
0	0	0	2	2	1	2
1	1	2	2	1	2	2
•	0	2	1	2	1	2
	0	1	2	1	1	2
1	1	2	1	1	1	2
	1	1	1	1	0	1
	0	2	2	1	0	2

$$\overrightarrow{w} = \texttt{leftmost} \ (u = 2, q = 4)$$

x _i	W	1	2	3	4	max
	1	0	0	0	1	1
0	0	1	1	2	1	2
	0	1	2	1	1	2
1	1	2	1	1	1	2
	1	1	1	1	0	1
	0	2	2	1	0	2
	0	2	1	0	0	2
0	0	1	0	0	1	1
	1	0	0	1	1	1
0	0	0	2	2	1	2
1	1	2	2	1	2	2
	0	2	1	2	1	2
	0	1	2	1	1	2
1	1	2	1	1	1	2
	1	1	1	1	0	1
	0	2	2	1	0	2

 \rightarrow Complexity = O(n.q)

• leftmost_count($[x_1, \ldots, x_n], u, q, d$): a linear time implementation of leftmost but returning the maximum cardinality that we can add to the sequence until i.

- leftmost_count($[x_1, \ldots, x_n], u, q, d$): a linear time implementation of leftmost but returning the maximum cardinality that we can add to the sequence until i.
- L (resp. R): the result of leftmost_count from left to right (resp. right to left).

- leftmost_count($[x_1, \ldots, x_n], u, q, d$): a linear time implementation of leftmost but returning the maximum cardinality that we can add to the sequence until i.
- L (resp. R): the result of leftmost_count from left to right (resp. right to left).
- Example:

- leftmost_count($[x_1, \ldots, x_n], u, q, d$): a linear time implementation of leftmost but returning the maximum cardinality that we can add to the sequence until i.
- L (resp. R): the result of leftmost_count from left to right (resp. right to left).
- Example:

• O(n) implementation

- leftmost_count($[x_1, \ldots, x_n], u, q, d$): a linear time implementation of leftmost but returning the maximum cardinality that we can add to the sequence until i.
- L (resp. R): the result of leftmost_count from left to right (resp. right to left).
- Example:

```
\mathcal{D}(x_i) \hspace{1.5cm} . \hspace{1.5cm} 0 \hspace{1.5cm} . \hspace{1.5cm} \hspace{1.5cm} . \hspace
```

• O(n) implementation

- ()				
С	c[1]	c[2]	c[3]	 c[q]
ptr	†			

- leftmost_count($[x_1, \ldots, x_n], u, q, d$): a linear time implementation of leftmost but returning the maximum cardinality that we can add to the sequence until i.
- L (resp. R): the result of leftmost_count from left to right (resp. right to left).
- Example:

O(n) implementation

- leftmost_count($[x_1, \ldots, x_n], u, q, d$): a linear time implementation of leftmost but returning the maximum cardinality that we can add to the sequence until i.
- L (resp. R): the result of leftmost_count from left to right (resp. right to left).
- Example:

```
\mathcal{D}(x_i) \hspace{1.5cm} . \hspace{1.5cm} 0 \hspace{1.5cm} . \hspace{1.5cm} \hspace{1.5cm} . \hspace
```

O(n) implementation

- leftmost_count($[x_1, \ldots, x_n], u, q, d$): a linear time implementation of leftmost but returning the maximum cardinality that we can add to the sequence until i.
- L (resp. R): the result of leftmost_count from left to right (resp. right to left).
- Example:

O(n) implementation

` '	•				
С	c[1]	c[2]	c[3]	 c[q]	ı
ptr					ı

The Arc consistency algorithm

The Arc consistency algorithm

The Arc consistency algorithm

$$AC(u = 4, q = 8, d = 12, ub = 10)$$

 $\mathcal{D}(x_i) \hspace{1.5cm} .\hspace{.5cm} 0 \hspace{.5cm} .\hspace{.5cm} \hspace{.5cm} .\hspace{.5cm} .\hspace{.5cm}$

$$AC(u = 4, q = 8, d = 12, ub = 10)$$

$\mathcal{D}(x_i)$	٠	0	٠	٠				٠	0	1	0		٠	٠	٠	٠	٠	٠	٠	٠		1
₩ [i]	1	0	1	1	1	0	0	0	0	1	0	1	1	1	0	0	0	1	0	1	1	1

$$AC(u = 4, q = 8, d = 12, ub = 10)$$

$\mathcal{D}(x_i)$		0							0	1	0											1
$\overrightarrow{w}[i]$	1	0	1	1	1	0	0	0	0	1	0	1	1	1	0	0	0	1	0	1	1	1
₩[i]	1	0	0	1	1	1	0	0	0	1	0	1	1	1	0	0	0	0	1	1	1	1

$$AC(u = 4, q = 8, d = 12, ub = 10)$$

$$AC(u = 4, q = 8, d = 12, ub = 10)$$

$$AC(u = 4, q = 8, d = 12, ub = 10)$$

$$AC(u = 4, q = 8, d = 12, ub = 10)$$

$$AC(u = 4, q = 8, d = 12, ub = 10)$$

Mohamed SIALA October 2012 CP 2012 12 / 23

$$AC(u = 4, q = 8, d = 12, ub = 10)$$

Mohamed SIALA October 2012 CP 2012 12 / 23

Car-sequencing

Constraints

- Each class c is associated with a demand D_c .
- For each option j, each sub-sequence of size q_j must contain at most u_j cars requiring the option j.

Mohamed SIALA October 2012 CP 2012 13 / 23

Models

- 1 sum
- 2 gsc
- 3 amsc
- $\mathbf{4}$ amcs + gsc

Heuristics

```
\langle \{lex, mid\}, \{class, opt\}, \{1, q/u, d, \delta, n - \sigma, \rho\}, \{\leq_{\sum}, \leq_{Euc}, \leq_{lex} \} \rangle. \rightarrow 34 heuristics \times 5 randomized tests.
```

Benchmarks (CSP Lib)

- Groupe 1: 70 satisfiable instances
- Groupe 2: 4 satisfiable instances
- Groupe 3: 5 unsatisfiable instances
- Groupe 4: 7 satisfiable instances

Mohamed SIALA October 2012 CP 2012 14 / 23

Table: Experimental results : Car-sequencing

Models	G1 (70 × 34 × 5) 11900		G2 (4	1 × 34 × 5) 680	G3 (5	5 × 34 × 5) 850	G4 (7 × 34 × 5) 1190	
					ļ., ,			
	#sol	time	#sol	time	#sol	time	#sol	time
sum	8480	13.93	95	76.60	0	> 1200	64	43.81
gsc	11218	3.60	325	110.99	31	276.06	140	56.61
amsc	10702	4.43	360	72.00	16	8.62	153	33.56
amsc+gsc	11243	3.43	339	106.53	32	285.43	147	66.45

Table: Experimental results : Car-sequencing

Models	G1 (70 × 34 × 5) 11900		G2 (4 × 34 × 5) 680		G3 (5	5 × 34 × 5) 850	G4 (7 × 34 × 5) 1190	
	#sol	time	#sol	time	#sol	time	#sol	time
sum	8480	13.93	95	76.60	0	> 1200	64	43.81
gsc	11218	3.60	325	110.99	31	276.06	140	56.61
amsc	10702	4.43	360	72.00	16	8.62	153	33.56
amsc+gsc	11243	3.43	339	106.53	32	285.43	147	66.45

 \bullet The level of filtering obtained by enforcing AC on the ${\rm ATMostSeqCARD}$ constraint is incomparable with that of the GCC encoding of the GSC constraint

Table: Experimental results : Car-sequencing

Models	G1 (70 × 34 × 5) 11900		× 5) G2 (4 × 34 × 5) 680		G3 (5	5 × 34 × 5) 850	G4 (7 × 34 × 5) 1190	
$\overline{}$			#sol		//aal		#sol	time
	#sol	ume	#501	time	#sol	time	#SOI	time
sum	8480	13.93	95	76.60	0	> 1200	64	43.81
gsc	11218	3.60	325	110.99	31	276.06	140	56.61
amsc	10702	4.43	360	72.00	16	8.62	153	33.56
amsc+gsc	11243	3.43	339	106.53	32	285.43	147	66.45

- The level of filtering obtained by enforcing AC on the ATMOSTSEQCARD constraint is incomparable with that of the GCC encoding of the GSC constraint
- \bullet The Gsc propagator seems to save more backtracks than AtMostSeqCard.

Mohamed SIALA October 2012 CP 2012 15 / 23

Table: Experimental results: Car-sequencing

Models		× 34 × 5) 11900	G2 (4	× 34 × 5) 680	G3 (5	5 × 34 × 5) 850	G4 (7	7 × 34 × 5) 1190
	#sol	time	#sol	time	#sol	time	#sol	time
sum	8480	13.93	95	76.60	0	> 1200	64	43.81
gsc	11218	3.60	325	110.99	31	276.06	140	56.61
amsc	10702	4.43	360	72.00	16	8.62	153	33.56
amsc+gsc	11243	3.43	339	106.53	32	285.43	147	66.45

- The level of filtering obtained by enforcing AC on the ATMOSTSEQCARD constraint is incomparable with that of the GCC encoding of the GSC constraint
- \bullet The Gsc propagator seems to save more backtracks than AtMostSeqCard.
- However, it's much slower than ATMOSTSEQCARD (overall a factor of 12.5 on the number of nodes explored per second!)

Mohamed SIALA October 2012 CP 2012 15 / 23

Crew-rostering

		Week 1							W 3	W 4	d
emp ₁											17
emp ₂											17
											17
emp ₂₀											17
demande:	6;6;3	6;6;3	6;6;3	6;6;3	6;6;3	2;2;1	2;2;1				17*20

Constraints

- A required demand for each period.
- Each employee has to work 34 hours per week (17 shifts overall).
- Atmost 8h working shift per day.
- Atmost 5 days per week.

Mohamed SIALA October 2012 CP 2012 16 / 23

Models

- sum
- gsc
- amsc

Heuristics

- worst employee: $MIN(\sigma_i = n_i \frac{21d_i}{5})$, $MIN(\sigma'_j = m_j d^s_j)$.
- worst shift: $MIN(\sigma'_i = m_j d^s_i)$, $MIN(\sigma_i = n_i \frac{21d_i}{5})$

Benchmarks

- 281 instances with different employee unavailabilities (ranging from from 18% to 46% by increment of 0.1).
- Set 1: 126 sat instances.
- Set 2: 111 instances (mostly sat).
- Set 3: 44 instances (mostly unsat).

Mohamed SIALA October 2012 CP 2012 17 / 23

Table: Experimental results: Crew-Rostering

Benchmarks	G1 (5	× 2 × 126)	G2 (5	× 2 × 111)	G3 (5	\times 2 \times 44)	
Delicilliarks		1260		1110	440		
	#sol	time	#sol	time	#sol	time	
sum	1229	12.72	574	38.45	272	5.56	
gsc	1210	29.19	579	77.78	276	24.14	
amsc	1237	5.82	670	31.01	284	6.22	

Mohamed SIALA October 2012 CP 2012 18 / 23

Table: Experimental results: Crew-Rostering

Benchmarks	G1 (5		G2 (5	× 2 × 111)	G3 (5	
Deneminarks		1260		1110		440
	#sol	time	#sol	time	#sol	time
sum	1229	12.72	574	38.45	272	5.56
gsc	1210	29.19	579	77.78	276	24.14
amsc	1237	5.82	670	31.01	284	6.22

 By analogy with the car-sequencing, there is one class with one option for each employee since we treat boolean variables.

Table: Experimental results: Crew-Rostering

Benchmarks	G1 (5		G2 (5	× 2 × 111)	G3 (5	
Deneminarks		1260		1110		440
	#sol	time	#sol	time	#sol	time
sum	1229	12.72	574	38.45	272	5.56
gsc	1210	29.19	579	77.78	276	24.14
amsc	1237	5.82	670	31.01	284	6.22

- By analogy with the car-sequencing, there is one class with one option for each employee since we treat boolean variables.
- The GSC constraint here is equivalent to the ATMOSTSEQCARD hence can not do better that our propagator.

Mohamed SIALA October 2012 CP 2012 18 / 23

Table: Experimental results: Crew-Rostering

Benchmarks	G1 (5		G2 (5	× 2 × 111)	G3 (5	\times 2 \times 44)	
Delicilliarks		1260		1110	440		
	#sol	time	#sol	time	#sol	time	
sum	1229	12.72	574	38.45	272	5.56	
gsc	1210	29.19	579	77.78	276	24.14	
amsc	1237	5.82	670	31.01	284	6.22	

- By analogy with the car-sequencing, there is one class with one option for each employee since we treat boolean variables.
- The GSC constraint here is equivalent to the ATMOSTSEQCARD hence can not do better that our propagator.
- ATMOSTSEQCARD is much faster than the GSC: a factor 20.4 in terms of explored nodes per second!

Mohamed SIALA October 2012 CP 2012 18 / 23

Contributions

- Best existing complexity: $O(n^2)$ [Maher et al, 2008].
- A complete filtering algorithm with a linear time complexity O(n).
 - Car-sequencing
 - Crew-Rostering

Future work

- Adapt the filtering rule with more general sequence constraints.
- Using the ATMOSTSEQCARD algorithm and more generally filtering algorithms in a CP-based SMT-Solver.

Mohamed SIALA October 2012 CP 2012 19 / 23

Thank you!

Questions?

Mohamed SIALA October 2012 CP 2012 20 / 23

 When moving one step forward, we get one new subsequence (and lose another one)

I

- When moving one step forward, we get one new subsequence (and lose another one)
- $i-1 \mod q$ points to the first subsequence at step i

Mohamed SIALA October 2012 CP 2012 21 / 23

- When moving one step forward, we get one new subsequence (and lose another one)
- $i-1 \mod q$ points to the first subsequence at step i
 - Replace $c(i-1 \mod q)$ by $c(i+q-1 \mod q) + w[i+q] w[i]$

Mohamed SIALA October 2012 CP 2012 21 / 23

- When assigning w[i] to 1, we should increment all subsequences
 - O(q) operations

Mohamed SIALA October 2012 CP 2012 22 / 23

- When assigning w[i] to 1, we should increment all subsequences
 - O(q) operations
- In the previous formula: only the negative delta
 - w[i+q-1] is equal to the minimum value in $D(x_{i+q-1})$
 - w[i] might be equal to 1 because of an assignment

Mohamed SIALA October 2012 CP 2012 22 / 23

- When assigning w[i] to 1, we should increment all subsequences
 - O(q) operations
- In the previous formula: only the negative delta
 - w[i+q-1] is equal to the minimum value in $D(x_{i+q-1})$
 - w[i] might be equal to 1 because of an assignment
- However, the positive delta is the same for all:

$$\sum_{l=1}^{I}(w[l]-\min(x_l))$$

• Cardinality of the *j*th subsequence:

$$c[(i+j-2) \mod q] + \sum_{l=1}^{i} (w[l] - min(x_l))$$

Mohamed SIALA October 2012 CP 2012 22 / 23

Computing the Maximum Cardinality of any Subsequence

- Computing the max, or keeping the cardinalities sorted?
 - O(q) operations

Mohamed SIALA October 2012 CP 2012 23 / 23

Computing the Maximum Cardinality of any Subsequence

- Computing the max, or keeping the cardinalities sorted?
 - O(q) operations
- We keep the *number* of subsequences of each cardinality
 - Increment all subsequences in O(1)

Mohamed SIALA October 2012 CP 2012 23 / 23

Computing the Maximum Cardinality of any Subsequence

- Computing the max, or keeping the cardinalities sorted?
 - O(q) operations
- We keep the number of subsequences of each cardinality
 - Increment all subsequences in O(1)
- The maximum cardinality of any subsequence can only change by 1
 - If the number of subsequences of card MAX(c) becomes 0, then MAX(c) - 1 is the new maximum

Mohamed SIALA October 2012 CP 2012 23 / 23