MA4702. Programación Lineal Mixta. 2020.

Profesor: José Soto Auxiliar: Diego Garrido Fecha: 23 de abril de 2020.

Modelos y Dualidad

	mın	max	
Restricciones	$\geq b_i$	≥ 0	Variables
	$\leq b_i$	≤ 0	
	$=b_i$	Libre	
Variables	≥ 0	$\leq c_j$	Restricciones
	≤ 0	$\geq c_j$	
	Libre	$=c_j$	

1. Minium Spanning Tree (MST)

Queremos construir una red de comunicación que conecte a todas las ciudades a costo mínimo, para ello contamos con un grafo conectado no dirigido G(V, E), donde V es el conjunto de ciudades, E las carreteras que conectan las ciudades y w_e costo de usar la carretera $e \in E$. El problema anterior se puede formular como un MST.

a) Considere los siguientes modelos para el MST:

$$\begin{array}{ll} \text{modeloConect} \\ & \text{min} \quad \sum_{e \in E} w_e x_e \\ & \text{s.a.} \quad x(E) = \lvert V \rvert - 1 \\ & x(\delta(S)) \geq 1 \quad \forall S \subset V, \quad S \neq \emptyset \\ & x_e \in \{0,1\} \quad \forall e \in E \end{array}$$

$$\begin{aligned} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\$$

Demuestre que ambos son exactos

b) Relaje la integralidad de la primera formulación. Demuestre que no es un modelo exacto, pero si un modelo.

2. Maximum Set Packing (MSP)

Dado un universo U y una familia S de subconjuntos de U, un empaquetamiento es una subfamilia $C \subset S$ tal que todos los conjuntos en C son disjuntos de a pares (en otras palabras, no hay dos conjuntos que compartan un elemento), siendo el tamaño del empaquetamiento igual a |C|. EL problema de empaquetamiento busca maximizar el número de conjuntos disjuntos de a pares en S que se puede escoger.

$$\begin{array}{ll} \text{m\'ax} & \sum_{s \in S} x_s \\ \text{s.a.} & \sum_{s \in S: e \in S} x_s \leq 1 & \forall e \in U \\ & x_s \in \{0,1\} & \forall s \in S \end{array}$$

Obtenga el dual de la relajación lineal, luego restringa el dominio de las variables a $\{0,1\}$ e interprete el problema obtenido.

3. Single Source Capacitated Facility Location Problem (CFLP)

El problema consiste en escoger donde instalar bodegas tal que se satisface la demanda de los minoristas a costo mínimo. Cada minorista debe estar asignado a una única bodega y esta debe satisfacer toda su demanda por producto único sin violar su restricción de capacidad.

Parámetros del problema:

- M: sitios potenciales, con $M = \{1, \dots, m\}$
- N: minoristas, con $N = \{1, \dots, n\}$
- q_i : capacidad de bodega j.
- w_i : demanda del minorista i.
- f_j : costo de abrir bodega en sitio j.
- c_{ij} : costo de transportar w_i unidades de producto de bodega j a minorista i.
- a) Formule el PLB.
- b) Obtenga el dual de la relajación lineal.