UPPSALA UNIVERSITET

FÖRELÄSNINGSANTECKNINGAR VT22

Ordinära Differentialekvationer

Rami Abou Zahra

1

Contents

1. Föreläsning - Intro	3
1.1. Vad är en differentialekvation?	3
1.2. Exemepel på ODE	3
1.3. Exemepel på PDE	3
1.4. Newtons andra lag	3
1.5. Spridning av en sjukdom	4
1.6. Riktningsfält	4
1.7. Lösning av en ODE	4
1.8. Klassificering av ODE:er	5
1.9. Exemple	5
1.10. Exemple	6
1.11. Idén i den här kursen	6
2. Föreläsning - 1:a ordningens ODE och 3 typer	7
2.1. Linjära 1:a ordningens ODE	7
2.2. Motiverande exmpel	7
2.3. Exempel	8
2.4. Separabla ekvationer	8
2.5. Exempel	8
2.6. Exempel 2	9
2.7. Exakta ekvationer	10
2.8. Enkelt exempel	10
2.9. Exempel	11
2.10. Exempel på differentialekvationer som ej linjär, exakt, eller separabel	11
3. Förtydligande - Föreläsning 2	12
3.1. Exempel	12
4. Föreläsning - Existens och unikhet	14
4.1. Exempel	15
5. Uppgifter - Klassificering av ODE	17
6. Andra ordningens linjära ODE:er	18
6.1. Exempel	18
6.2. Homogena ekvationer	19
7. Föreläsning - Homogena ekvationer	22
7.1. Reduktion av ordning	22
7.2. Homogena 2:a orndingens linj. ODE med konstanta koefficienter p, q	23
8. Föreläsning	26
8.1. Metoden med obestämda koefficienter	26
8.2. Variation av parameter-metoden	29
9. Uppgifter -	31
10. Potensserielösningar	32
10.1. Potensserier - Repetition	32
10.2. Potensserie-metoden	35
11. Potensserielösningar - Forts.	38
11.1. Cauchy-Eulers Ekvation	38
11.2. Reguljära singulära punkter	40
12. Egna anteckningar - Fundamental teori	42
12.1. Lösningsintervall	42
13. Frobenius metod	44
13.1. Exempel	45
14. Uppgifter	49
14.1. Potensserielösningar	49
14.2. Eulerekvationen	49
14.3. Frobeinus metod	49
14.4. Gammal inlupp uppgift	49
15. System av första ordningens linjära differentialekvationer	50
15.1. Existens och unikhet	50
16. Homogena linjära system med konstanta koefficienter	54
16.1. Repetition - Hitta egenvärden och egenvektorer	54
	, -

16.2. Fall 1 - Reella distinkta rötter	54
16.3. Fasporträtt	57
17. Homogena Linjära system med konstanta koefficienter - Forts	59
17.1. Komplexa egenvärden	59
17.2. Dubbla egenvärden	60
18. Icke-homogena linjära system med konstanta koefficienter	62
18.1. Metoden med obestämda koefficienter	62
18.2. Variation av parameter metoden	63
18.3. Flera egenskaper hos fundamentalmatrisen	65
19. Uppgifter	67
19.1. Lösningar till homogena system $(X' = AX)$	67
19.2. Inhomogena system $(X' = AX + F)$	67
19.3. Extra	67
20. Numeriska metoder - Datorprojekt	68
21. Icke linjära system	69
21.1. Autonoma system	69
21.2. Stabilitet för system med konstanta koefficienter	70
21.3. Lokalt linjära system	71
22. Liapunovs andra metod	74
23. Liapunovs satser	75
23.1. Definita funktioner	75
24. Periodiska lösningar och gränscykler	78
25. Lektion	81
25.1. Kritiska punkter och lokalt linjära system	81
25.2. Liapunovs metod	81
25.3. Gränscykler	81

1. FÖRELÄSNING - INTRO

1.1. Vad är en differentialekvation? En ekvation som innehåller derivator med avseende på en eller flera oberoende variabler.

Om det enbart är en variabel som är oberoendekallas det för en ordinär differentialekvation.

Fråga: Vad är poängen med att variablerna är oberoende? Svar: Man måste ha oberoende variabler som man löser för

- 1.2. Exemepel på ODE.

I alla dessa fall hade vi en oberoende variabel, har vi flera så är det en partiell differentialekvation (PDE).

- 1.3. Exemepel på PDE.
- 1.4. Newtons andra lag. $F = m \cdot a$ där F är kraften, m massan, a accelerationen. Säg att vi har en sten:

Figure 1. Figur

Då får vi följande samband

$$a = \frac{d^2s}{dt^2}F = -mg - mg = m \cdot \frac{d^2s}{dt^2}\frac{d^2s}{dt^2} = -g$$

1.5. **Spridning av en sjukdom.** Ett virus sprids genom en population. Spridning sker när folk som är infekterade kommer i kontakt med folk som inte är smittade.

Vad säger detta om spridningen? Antag att vid tid t så är x(t) personer infekterade och y(t) personer är inte infekterade. Spridning bör vara proportionell mot hur många från x, y som mötes, det vill säga ett rimligt antagande är:

$$\frac{dx}{dt} = kxy$$

Något man kan studera är vad som händer när en infekterad person introduceras till en grupp ickeinfekterade. Detta betyder att x(0) = 1. Antal personer är x + y = n + 1. Stoppar vi in detta i ekvationen får vi:

$$\frac{dx}{dt} = k \cdot x \cdot (n+1-x)$$

Ofta kan man inte lösa ODE:er med hand, då kan man lösa det grafiskt/m.h.a dator. Det finns flera verktyg som kan åstadkomma detta men ett av dessa verktyg är ett vektorfält/riktningsfält.

1.6. **Riktningsfält.** Grafiska verktyg är ofta väldigt kraftfulla för att förstå hur lösningen till en ODE ser ut.

Tänk oss att vi har följande ODE:

$$y' = \frac{y}{x^2}$$

De flesta ODE:er går inte att lösa exakt. Därför är grafiska verktyg/numreriska metoder väldigt användbara när man vil lösa ODE:er.

1.7. Lösning av en ODE.

$$\frac{dp}{dt} = \frac{p}{2} - 450$$

$$\frac{dp}{dt} = \frac{1}{2}(p - 450)$$

$$p = 900 \Rightarrow \frac{dp}{dt} = 0 \Rightarrow p(t) = 900 \text{är en lösning}$$

$$p \neq 900 \Rightarrow \frac{\frac{dp}{dt}}{p - 900} = \frac{1}{2}$$

$$\frac{d}{dt}(\log(|p - 900|)) = \frac{1}{2} \text{vi kan nu integrera m.a.p t}$$

$$\log(|p - 900|) = \int \frac{1}{2} dt = \frac{t}{2} + C$$

$$|p - 900| = e^{\frac{t}{2} + C} = e^{C} e^{\frac{t}{2}}$$

$$p = 900 \pm e^{C} e^{\frac{t}{2}} \text{där } e^{C} \text{ är en positiv konstant}$$

Kom ihåg att p = 900 är en lösning, alltså:

$$p = 900 + Ce^{t/2}$$

ger alla lösningar. Vi kan få fram C genom att kolla på startpopulation:

$$p(0) = 1000 \Rightarrow C = 100p(t) = 900 + 100e^{t/2}$$

Liknande beteende $\forall p(0) > 900$

1.8. Klassificering av ODE:er. I funktionen y(t) är y en beroende variabel (beror på t) och t en oberoende variabel. Detta är en reellvärd funktion på intervallet (a,b):

$$y:(a-b)\to\mathbb{R}$$

$$y' = \frac{dy}{dt}, y'' = \frac{d^2y}{dt}, y''' = \frac{d^3y}{dt}$$

Alternativt:

$$y^{(0)} = y, y^{(1)} = \frac{dy}{dt} \cdots$$

Sats 1.1: ODE

En ordinär differentialekvation för funktionen y = y(t) är en ekvation på formen:

$$F(t, y, y^{(1)}, \cdots y^{(n)}) = 0$$

Sats 1.2: Graden av en ODE

Graden av en ODE är ordningen på den högsta derivatan av y som förekommer. I sats 1.1 hade det då varit n.

Sats 1.3: Linjär ODE

En ODE kallas för linjär om den är på formen:

$$\sum_{i=0}^{n} a_i(t) y^{(i)}(t) = g(t)$$

Sats 1.4: Icke-linjär ODE

Om en ODE inte är linjär kallas den icke-linjär

Hur definierar vi en lösning till en ODE?

En lösning till en ODE på ett intervall (a, b) är en funktion y(t) så att:

- y och alla dess derivator är kontinuerliga $\forall t \in (a, b)$
- y löser ekvationen $\forall t$

Om detta uppfylls kallas (a, b) lösningsintervallet.

1.9. Exemepel.

$$t^5 y^{(4)} - t^3 - y^{(2)} + 6y = 0$$

Denna ODE är linjär och av grad 4.

1.10. Exemppel.

$$u'' = \sqrt{1 + (u')^2}$$

Sats 1.5: Initialvärdesproblem

Ett initialvärdesproblem (IVP) är en ODE tillsammans med ett startvärde för den oberoende variabeln. För en ODE av grad 1:

$$F(t, y, y') = 0 \operatorname{och} y(x_0) = y_0$$

Där $y(x_0) = y_0$ kallas initialvillkoret

Ofta kommer vi ha:

$$y^{(n)}(t) = F(t, y^{(1)} \cdots y^{(n-1)}(t))$$

1.11. Idén i den här kursen.

- Givet en ODE, finns det lösning?
- Om ja, hur många lösningar finns det? (Inget initialvärde kommer vi ha oändligt)
- Hitta explicita lösningar till enkla ODE:er
- Analysera och approximera lösningar till komplicerade ODE:er med serier (typ som Taylor-serier men med mer krut)
- Kvalitativa egenskaper (hur påverkar initialvillkoret lösningen?)
- Numreriska metoder

2. FÖRELÄSNING - 1:A ORDNINGENS ODE OCH 3 TYPER

Vi kommer kolla på 3 olika typer av 1:a ordningens ODE:

- Linjära
- Separabla
- Exakta

I alla dessa fall kommer vi kunna lösa dessa och få fram explicita lösningar - i allmänhet inte möjligt. Däremot är det viktigt att notera att det finns 1:a ordningens ODE som inte täcks av dessa fallen!

Vi kommer primärt undersöka ODE:er på formen y' = f(t, y)

2.1. Linjära 1:a ordningens ODE.

Kan skrivas på formen:

$$a(x)\frac{dy}{dx} + b(x)y = c(x) \Leftrightarrow \frac{dy}{dx} = \frac{c(x) - b(x)y}{a(x)}$$

Här antas $a(x) \neq 0$

2.2. Motiverande exmpel.

Antag att vi har en ODE på formen:

$$xy' + y = e^x$$
$$x > 0$$

Vi har $xy' + y = (xy)' = e^x$ där vi nu kan integrera båda sidorna:

$$xy = \int e^x dx + C \Leftrightarrow xy = e^x + C \Leftrightarrow y = \frac{e^x + C}{x}$$

Här hade vi riktigt tur att vi kunde inse att derivatan av produkten var lika med ODE:n vi ville lösa. Givetvis går det inte alltid att göra så. Men vad vi kan göra är att vi kan multiplicera ekvationen med en *faktor* för att få ODE:n på den formen.

Denna faktor brukar betecknas $\mu(x)$ och kallas för den integrerande faktorn. Låt oss kolla på den allmänna lösningsmetoden:

- Skriv på formen y' + p(x)y = f(x)
- Beräkna integrerande faktorn $\mu(x) = e^{\int p(x) dx}$
- Tag integrerande faktor och multiplicera ekvationen med den: $\mu(x)y' + \mu(x)p(x)y = \mu(x)f(x)$
- Nu har vi $(\mu(x)y)' = \mu(x)y' + \mu(x)p(x)y$
- Vi kan skriva om ekvationen som $(\mu(x)y)' = \mu(x)f(x) \Leftrightarrow \mu(x)y = \int \mu(x)f(x)dx$

Detta ger oss slutgiltigen lösningen $y = \frac{1}{\mu(x)} \int \mu(x) f(x) dx$

Notera att $\mu(x) \neq 0$ ty $e^x \neq 0$

Detta funkar "alltid", så länge vi kan integrera.

2.3. Exempel.

$$y' + 3x^2y = x^2$$

Vi noterar att vi är på rätt form, dvs $p(x) = 3x^2$, $f(x) = x^2$. Då kan vi räkna den integrerande faktorn:

$$\mu(x) = e^{\int p(x)dx} = e^{\int 3x^2 dx} = e^{x^3}$$

$$\Leftrightarrow e^{x^3}y' + e^{x^3}3x^2y = e^{x^3} \cdot x^2 \Leftrightarrow (e^{x^3} \cdot y)' = e^{x^3}x^2$$

$$e^{x^3}y = \int x^2 \cdot e^{x^3} dx \Leftrightarrow e^{x^3}y = \frac{e^{x^3}}{3} + C$$

$$y = \frac{1}{3} + C \cdot e^{-x^3}$$

2.4. Separabla ekvationer.

Namnet är ganska beskrivande i det här fallet, där är ekvationer där vi kan separera variablerna. Formellt menas det att ekvationer på denna form är separabla:

$$\frac{dy}{dx} = g(x)h(y)$$

En lösningsmetod ser ut på följande:

- Skriv som $\frac{dy}{h(y)} = g(x)dx$ (flyttat över allt med y på ena sidan och allt med x på andra)
- Integrera båda sidorna: $\int \frac{dy}{h(y)} = \int g(x)dx$

En rimlig fråga man kan ställa sig är "varför funkar det att betrakta $\frac{dy}{dx}$ som ett bråk?":

$$y'(x) = g(x)h(y(x)) \Leftrightarrow \frac{y'(x)}{h(y(x))} = g(x)$$

$$\int \frac{y'(x)}{h(y(x))} dx = \int g(x) dx \text{HL ""ar ok, men VL, ""ar den verkligen samma som vi kom fram till? Vi skriver om den } \int \frac{y'(x)}{h(y(x))} dx = \left[u(x) = y(x), \frac{du}{dx} = y'(x)\right] = \int \frac{1}{h(u)} du \text{Men } u \text{ kan lika g"arna vara } y$$

2.5. Exempel.

$$k = 1, n = 1000, x(0) = 1$$

$$\frac{dx}{dt} = kx(n+1-x), 0 < x < n+1$$

$$\frac{dx}{dt} = x(1001-x)$$

$$\frac{dx}{x(1001-x)} = dt$$

$$\int \frac{dx}{x(1001-x)} dx = \int 1 dt$$

$$\int \frac{dx}{x(1001-x)} dx = \frac{1}{1001} \int \frac{1}{x} + \frac{1}{1001-x} dx \text{vi använde PBU}$$

$$\Leftrightarrow \frac{1}{1001} \cdot (\log(x) - \log(1001-x)) = t + C$$

$$\log\left(\frac{x}{1001-x}\right) = 1001 \cdot t + C$$

$$\frac{x}{1001-x} = e^{1001t+C}$$

$$x(0) = 1 \Rightarrow \frac{1}{1001-1} = e^{0+C} \Leftrightarrow e^{C} = \frac{1}{1000}$$

$$x = \frac{1001e^{1001t}}{1000+e^{1001t}}$$

2.6. Exempel 2.

$$(e^{2y} + y) \cdot \cos(x) \frac{dy}{dx} = e^y \sin(2x)$$

Här är det inte helt uppenbart att den är separabel, vi kan testa att flytta runt saker och se vad vi får:

$$\frac{e^{2y} + y}{e^y} dy = \frac{\sin(2x)}{\cos(x)} dx, (\cos(x) \neq 0)$$

Nu ser vi att den är separabel och vi kan köra på!

$$\int \frac{e^{2y} + y}{e^y} dy = \int e^y + y e^{-y} dy = e^y - y e^{-y} - e^{-y} + C = VL$$

$$\int \frac{\sin(2x)}{\cos(x)} dx = \int \frac{2\sin(x)\cos(x)}{\cos(x)} dx = 2 \int \sin(x) dx = -2\cos(x) + D = HL$$

$$VL = HL \Leftrightarrow e^y - y e^{-y} - e^{-y} = -2\cos(x) + C$$

Detta är en lösning på implicit form, och det går inte att göra så mycket bättre än så ty inga startvärden. Detta är vanligt för separabla ekvationer.

Värt att notera, när vi delar på $\cos(x)$ antar vi att den inte antar värdet 0, men sen i slutet spelar det ingen roll om vi har $\cos(x) = 0$. Detta gäller för att vi har kontinuitet och är okej och giltigt.

När $\sin(x) = 0$ är $\cos(x) = 0$ samtidigt (i bråket), vi får kolla på gränsvärdet då och vi ser att det finns ett G.V. utan problem. Det blir så kallat härbar singularitet.

2.7. Exakta ekvationer.

Diff. ekvationer på formen:

$$M(x,y) + N(x,y) \cdot \frac{dy}{dx} = 0$$

Detta betyder nödvändigtvis inte att den är exakt, så vi måste ställa krav på M, N. Därför ställer vi lite krav som de bör uppfylla.

Sats 2.1: Exakt ekvation

Ekvationen är exkakt om det finns en funktion F(x,y) så att $\frac{\partial F(x,y)}{\partial x} = M(x,y)$ och $\frac{\partial F(x,y)}{\partial y} = N(x,y)$

Bevis 2.1: Bevisskiss: exakt ekvation

$$\begin{split} M(x,y)dx + N(x,y)dy &= 0\\ dF(x,y) &= \frac{\partial F}{\partial x} \cdot dx + \frac{\partial F}{\partial y} \cdot dy = M(x,y)dx + N(x,y)dy = dF(x,y) = 0\\ \Leftrightarrow F(x,y) &= C \end{split}$$

2.8. Enkelt exempel.

$$ydx + xdy = 0 \Leftrightarrow F(x,y) = xy \Rightarrow \frac{\partial F}{\partial x} = y, \frac{\partial F}{\partial y} = x$$

 $\Leftrightarrow F(x,y) = C \Rightarrow xy = C \Rightarrow y = \frac{C}{x}$

Kuriosa: Varför kallas dessa för exakta? Inom differentialgeometri så kallas en differential på denna form ydx + xdy = 0 för exakt. En viktigare fråga man törs fråga sig är kanske $n\ddot{a}r$ $\ddot{a}r$ en differentialekvation exakt?.

Vi har sagt att den är det om det finns ett F, men hur kan vi hitta det?

Sats 2.2: När kan vi hitta F

åt M(x,y) och N(x,y) vara två kontinuerliga funktioner med kontinuerliga första ordningens partiella derivator (vi antar att det här gäller i någon rektangel a < x < b, c < y < d). Då är M(x,y)dx + N(x,y)dy = 0 exakt omm:

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Bevis 2.2: När kan vi hitta F

Vi börjar med ena hållet, om ekvationen är exakt vill vi visa att det här gäller.

Att den är exakt implicerar att $\frac{\partial F}{\partial x}=M,\, \frac{\partial F}{\partial y}=N.$

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y} \frac{\partial F}{\partial x}$$
$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x} \frac{\partial F}{\partial y}$$
$$\Leftrightarrow \text{De \"{ar} lika}$$

Eftersom M, N har kontinuerliga derivator så kommuterar dem (enligt flervariabelanalys)

Vissa ekvationer kan göras exakta genom att multiplicera med en integrerande faktor. Inte så allmänt

2.9. Exempel.

Betrakta följande differentialekvation:

$$2xydx + (x^2 - 1)dy$$

Här är 2xy = M och $(x^2 - 1) = N$. Nu vill vi kolla om den här differentialekvation är exakt:

$$\frac{\partial M}{\partial y} = 2x = \frac{\partial N}{\partial x}$$

Nu vill vi hitta ett F så att $\frac{\partial F}{\partial x}=M=2x$ och att $\frac{\partial F}{\partial y}=N=x^2-1.$

Låt oss ta integralen på N:

$$F(x,y) = \int (x^2 - 1)dy = (x^2 - 1) \cdot y + h(x)$$

Viktigt att notera att vi får h(x) som konstant, ty vi vet inte om konstanten beror på x när vi integrerar med avseende på y.

Vi vill hitta h(x) så att den första partialen (M) uppfylls:

$$\frac{\partial}{\partial x} ((x^2 - 1)y + h(x)) = 2xy$$
$$2xy + h'(x) = 2xy \Leftrightarrow h'(x) = 0 \Leftrightarrow h(x) = C$$

Vi behöver ett F, så vi kan ta C=0:

$$F(x,y) = (x^{2} - 1)y$$
$$dF(x,y) = 0 \Leftrightarrow F(x,y) = C$$
$$(x^{2} - 1)y = C \Leftrightarrow y = \frac{C}{x^{2} - 1}$$

- 2.10. Exempel på differentialekvationer som ej linjär, exakt, eller separabel.
 - $y' = \sin(xy)$ $e^{y'} = x$

3. FÖRTYDLIGANDE - FÖRELÄSNING 2

Det kanske var lite otydligt just *vad* en exakt lösning/differentialkevation var och vad det innebär med just att den löses *implicit*.

Sats 3.1: Implicit lösning

En lösning kallas för *implicit* om den *implicerar* explicita lösningar.

3.1. Exempel.

Låt oss titta på ekvationen för en cirkel med radie 5 i planet:

$$25 = x^2 + y^2$$

Detta är en funktion som inte är rent definierad, det vill säga vi har inget VL som består av enbart beroende variabler från HL såsom y(x). Däremot så implicerar den de explicita funktionerna:

- $y = \sqrt{25 x^2}$
- $y = -\sqrt{25 x^2}$

Nu har vi gått igenom definitionen, låt oss rigoröst gå igenom definitionen av en *exakt* differentialkevation. Vi kommer göra detta genom att gå igenom ett exempel och sedan se vad det är vi kommer behöva för att lösa den.

Antag att vi vill lösa följande:

$$2xy - 9x^2 + (2y + x^2 + 1)\frac{dy}{dx} = 0$$

För förklaringens skull, antag att vi har en funktion $\varphi(x,y) = y^2 + (x^2 + 1)y - 3x^3$. Låt oss nu finna den partiella derivatan av denna funktion:

- $\bullet \ \frac{\partial}{\partial x} = 2xy 9x^2$
- $\bullet \ \frac{\partial}{\partial y} = 2y + x^2 + 1$

Notera här att detta matchar precis differentialkevationen förutom att den saknar en $\frac{dy}{dx}$ term. Men! Tricket kommer från flervarren. Vi vet att y är en beroende variabel som beror på x, alltså kommer vi enligt kedjeregeln få följande:

$$\frac{d}{dx}(\varphi(x,y(x))) = \frac{\partial}{\partial x} + \frac{\partial}{\partial y} \cdot \frac{dy}{dx}$$

Detta på grund av att y(x) tekniskt sett har en inre derivata som vi måste ta hänsyn till. Vi ser nu att vi kan skriva om vår differentialkevation som $\frac{d}{dx}\varphi(x,y(x))=0$. Men om en ordinär derivata (dvs inte partiell, ty då måste vi betrakta alla partialer) är lika med noll så måste det vara så att vi differentierar en konstant! Alltså $\varphi(x,y(x))=C$, men detta motsvarar i vårat exempel då att vi har:

$$\varphi(x,y) = y^2 + (x^2 + 1)y - 3x^3 = C$$

Detta blir då en *implicit* lösning, eftersom den implicerar flera lösningar som vi får arbeta oss för. Det som nu återstår är att kolla hur vi kan hitta denna underbara φ funktion och under vilka villkor som den fungerar.

Vår sugardaddy/mommy funktion skall alltså uppfylla:

- $\varphi_x = M$
- $\varphi_{y} = N$

Givet att $\varphi(x, y(x))$ och dess första derivator också är kontinuerliga vet vi från flervarren att vi kan kommutera partialerna på följande sätt:

$$\varphi_{xy} = \varphi_{yx}$$

Men givet detta, och att $\varphi_x = M$ osv så kan vi alltså busa lite!

$$\varphi_{xy} = (\varphi_x)_y = (M)_y = M_y$$

$$\varphi_{yx} = (\varphi_y)_x = (N)_x = N_x$$

Men eftersom $\varphi_{xy} = \varphi_{yx}$ så vet vi alltså att $M_y = N_x$, fiffigt sätt att kontrollera att man har gjort rätt!

Hur kan vi hitta denna funktion då? Vi skulle kunna använda $M_y = N_x$ sambandet och se om vi kommer någon vart:

$$\varphi = \int M dx \Leftrightarrow \int N dy$$

Detta är fördelaktigt att vi kan byta runt och integrera lite som vi vill, ty förhoppningsvis är en utav dem lättare än den andra. Låt oss antag att dx integralen är den vi vill integrera:

$$\int Mdx = \varphi + h(y)$$

Detta eftersom φ är en funktion av 2 variabler och vi integrerar med avseende på en, alltså vet vi inte om konstanten kanske beror på den andra variabeln. Därför skriver vi h(x) istället för C som vi kanske är vana med.

Hur kan vi hitta denna mystiska funktion h(x)? Vi vet att om vi deriverar φ med avseende på y så bör vi få N, vi använder detta till vår fördel:

$$\varphi_y = \frac{\partial}{\partial y} \left(\int M dx \right) = \frac{\partial}{\partial y} \varphi + h'(y) = N$$

$$h'(y) = N - \frac{\partial}{\partial y} \varphi$$

Nu är det bara en fråga om att integrera h'(y):

$$h(y) = \int (N - \frac{\partial}{\partial}\varphi)dy$$
$$\Leftrightarrow \varphi + D$$

Vi kan strunda i konstanten D eftersom i vår implicita lösning så kommer vi ha $\varphi + D = C$ där vi nu kan slå ihop D och C till en enda konstant. Nu har vi hittat en metod för att lösa dessa differentialkevationer! För definitionen, se Sats 2.1.

4. FÖRELÄSNING - EXISTENS OCH UNIKHET

Antag att vi har en ODE på formen:

$$y' = f(x, y), y(x_0) = y_0$$

I allmänhet kan vi inte lösa den här explicit. Vi kommer under denna föreläsning kika på IVP. Vi kommer studera 3 frågor:

- Lokal existens: finns det en lösning y(x) def. i närheten av x_0 ?
- Existens i stort: Hur stort intervall kan den vara definierad på som innehåller x_0 där y(x) är def.?
- Unikhet: Finns det flera lösningar eller bara en? Detta är viktigt att veta om man studerar en ODE eftersom man behöver ha koll på att den lösningen man får som kanske löser ett system så behöver vi veta vad den andra lösningen betyder.

När det gäller första punkten, det visar sig att lokal existens endast kräver att f är kontinuerlig:

Sats 4.1

Om f är kontinuerlig så finns det en lösning definierad i närheten av en punkt.

Detta räcker inte för att lösningen ska vara unik! Exempelvis:

$$y' = xy^{1/3}, y(0) = 0$$

 $y((x)) = 0, y(x) = \frac{x^3}{\sqrt{27}}$

Vi kommer kolla på ett intressant bevis om när lösnignen är unik, ty beviset ger information om hur man kan approximera en lösning.

Sats 4.2

Antag att f och $\frac{\partial f}{\partial y}$ är kontinuerliga i någon rektangel $R = \{(x, y) \in \mathbb{R}^2, a \leq x \leq b, c \leq y \leq d\}$ som innehåller (x_0, y_0) i dess inre (kan ej ligga på randen).

Då existerar det något intervall $I=(x_0-h,x_0+h)$ för h>0 och en unik funktion y=y(x) definierad på I så att y'=f(x,y) på I och $y(x_0)=y_0$

Kommentar: $y' = xy^{1/3} = f(x, y)$ ger oss $\frac{\partial f}{\partial y} = \frac{x}{3y^{2/3}}$ som inte är kontinuerlig ty $y \neq 0$ ger bus.

Kommentar: Bara för att funktionen är definierad i en rektangel betyder det inte att samma rektangel är intervallet för lösningen. I allmänhet är intervallet mindre än rektangel.

$$y' = y^{2}, y(0) = 1$$

$$\Leftrightarrow f(x, y) = y^{2} \text{ är kont.}$$

$$\frac{\partial f}{\partial y}(x, y) = 2y \text{ är kont.}$$

$$y(x) = \frac{1}{1 - x}$$

Så satsen gäller \forall rektanglar. Notera att lösningen inte är def. i x=1, men den är definierad för x<1.

Bevis 4.1: Sketch av bevis för unikhet av unikhetssats

Idén är att använda metoden med successiva approximationer. Vi kommer börja med en funktion som inte är en lösning men som ger oss lite info och så fortsätter vi tills vi når ett "gränsvärde" som är vår lösning:

- Skriv om som integralekvation: $y' = f(x, y), y(x_0) = y_0 \Leftrightarrow \int_{x_0}^x y'(t)dt = \int_{x_0} x f(t, y(t))dt \Leftrightarrow$ $y(x) - y(x_0) = \int_{x_0}^x f(t, y(t)) dt \Leftrightarrow y(x) = y_0 + \int_{x_0}^x f(t, y(t)) dt$ • Det härliga här är att vi kan förkasta initalvärdet, ty det blir lätt att stoppa in och lösa.
- Nu definierar vi en sekvens av funktioner som är våra "successiva approximation": $\varphi_0(x) =$ y_0 . Denna uppfyller IV men i allmänhet inte funktionen. Sedan definierar vi φ_1 $y_0 + \int_{x_0}^x f(t, \varphi_0(t)) dt$ (i allmänhet inte en lösning til ekvationen), men vi fortsätter såhär $\cdots \varphi_{n+1}(x) = y_0 + \int_{x_0}^x f(t, \varphi_n(t)) dt$
- Vi vill få en känsla för att den här sekvensen av funktioner i gränsvärdet när $y \to \infty$ ger oss en lösning.
- Notera, φ_n(x₀) = y₀ + ∫_{x₀}^{x₀} f(t, φ_{n-1}(t))dt = y₀ men i allmänhet inte φ'_n = f(x, φ_n)
 lim_{n→∞} φ_{n+1}(x) = y₀ + lim_{n→∞} ∫_{x₀}^x f(t, φ_n(t))dt
 Om vi låter φ = lim_{n→∞} φ_n får vi:
 φ(x) = y₀ + ∫_{x₀}^x f(t, φ(t))dt → φ är en lösning!
 Dette är ett inf

- Detta är ett informellt bevis ty vi vet inte när vi kan flytta in gränsvärdet innanför integralen, går det att få in det så löser det sig.

Vi får inte glömma att vi använder oss av att f är kontinuerlig och definierad i rektangeln. Vi måste alltså se till att φ hamnar inom denna rektangeln. Vi måste därför begränsa φ så att den aldrig lämnar rektangeln.

4.1. Exempel.

Vi kommer ta en explicit ekvation och kolla vad som händer med φ

$$y' = -\frac{y}{2} + t, y(0) = 0$$

$$y(t) = 0 + \int_0^x \frac{y(s)}{2} + sds$$

$$\varphi_0(t) = 0$$

$$\varphi_1(t) = 0 + \int_0^t \frac{0}{2} + sds = \left[\frac{s^2}{2}\right]_0^t = \frac{t^2}{2}$$

$$\varphi_2(t) = \int_0^t \frac{\frac{s^2}{2}}{2} + sds = \int_0^t \frac{s^2}{4} + sds = \left[\frac{s^3}{2 \cdot 3!} + \frac{s^2}{2}\right]_0^t = \frac{t^3}{12} + \frac{t^2}{2}$$

$$\vdots$$

$$\lim_{n \to \infty} \varphi_n(t) = \sum_{i=0}^\infty \frac{(-1)^{n+1}t^{n+1}}{2^{n-1}(n+1)!} \text{ ser ut som taylor för } e^x$$

Vi kan kolla att den konvergerar genom kriterier för serier. I detta fall kan vi försöka få en explicit lösning. Vi noterar att den liknar taylor, låt oss undersöka:

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!} \to \sum_{k=2}^{\infty} (-1)^{k} \frac{t^{k}}{2^{k-2}k!} = 4 \sum_{k=2}^{\infty} (-1)^{k} \frac{t^{k}}{2^{k}k!} = 4 \sum_{k=2}^{\infty} \frac{\left(\frac{-t^{k}}{2}\right)}{k!} = 4 \sum_{k=0}^{\infty} \frac{\left(\frac{-t^{k}}{2}\right)}{k!} - 4 + 2t = 4e^{\left(\frac{-t}{2}\right)} - 4 + 2t$$

Bevis 4.2: Bevis av unikhet

Antag att vi har 2 lösningar, y_1 och y_2 . Det vi gjorde var att vi skrev om den på integralform:

$$y_1(x) = y_0 + \int_{x_0}^x f(t, y_1(t)) dt$$

$$y_2 = y_0 + \int_{x_0}^x f(t, y_2(t)) dt$$
Om de är unika så borde $y_1 - y_2 = 0$

$$y_1 - y_2 = \left(y_0 + \int_{x_0}^x f(t, y_1(t)) dt\right) - \left(y_0 + \int_{x_0}^x f(t, y_2(t)) dt\right)$$

$$y_1 - y_2 = \int_{x_0}^x f(t, y_1(t)) - f(t, y_2(t)) dt$$
MVS ger $g(y_1) - g(y_2) = g'(\alpha y_1 + (1 - \alpha y_2))(y_1 - y_2), \alpha \in [0, 1]$

$$f(t, y_1) - f(t, y_2) = \frac{\partial f}{\partial y}(\alpha y_1 + (1 - \alpha)y_2)(y_1 - y_2)$$
Eftersom $\frac{\partial f}{\partial y}$ är kont. i R finns det en övre gräns:
$$\left| \frac{\partial f}{\partial y} < C \right| \text{ för någon konstant } C$$

$$\left| \frac{\partial f}{\partial y}(\alpha y_1 - (1 - \alpha)y_2) \right| \le C$$

$$|f(t, y_1) - f(t, y_2)| < C|y_1 - y_2|$$

Går vi tillbaka till där vi skrev "för någon konstant C" får vi:

$$|y_1 - y_2| = \left| \int_{x_0}^x f(t, y_1(t)) - f(t, y_2(t)) dt \right| \le \int_{x_0}^x |f(t, y_1(t)) - f(t, y_2(t))| dt \le C \int_{x_0}^x |y_1(t) - y_2(t)| dt$$

$$\text{Låt } u(x) = |y_1(x) - y_2(2)|:$$

$$u'(x) \le C \cdot u(x) \Leftrightarrow u'(x) - Cu(x) \le 0$$

Detta är en linjär differentialolikhet som vi löser på följande sätt:

Integrerande faktor: $\mu(x) = e^{\int -Cdx} = e^{-Cx} > 0$ så ändrar inte olikheten:

$$e^{-Cx}u'(x) - Ce^{-Cx}u(x) \le 0 \Leftrightarrow (e^{-Cx}u(x))' \le 0$$

$$\Leftrightarrow \int_{x_0}^x (e^{-Ct}u(t))'dt \le 0 \Leftrightarrow e^{-Cx}u(x) - e^{Cx_0}u(x_0) \le 0$$

$$\Leftrightarrow \int_{x_0}^x (e^{-Ct}u(t))'dt \le 0 \Leftrightarrow e^{-Cx}u(x) - e^{Cx_0}u(x_0) \le 0$$

Då är frågan, vad är $u(x_0)$?

$$u(x_0) = |y_1(x_0) - y_2(x_0)| = |y_0 - y_0| = 0$$

 $e^{-Cx}u(x) \le 0 \Leftrightarrow u(x)=0$ men eftersom u(x) är absolutbelopp så kan ej vara negativ, alltså $u(x)=0 \Leftrightarrow y_1(x)-y_2(x)=0 \Leftrightarrow y_1(x)=y_2(x)$

5. Uppgifter - Klassificering av ODE

Avgör om följande är linjära:

•
$$\sin(x)y' + \cos(x)y = 0$$

$$\bullet y' = e^x$$

$$\bullet \ y' + y = \sin(y)$$

•
$$y' = e^x$$

• $y' + y = \sin(y)$
• $\frac{y'}{y} = \log(x)$
• $yy' = \cos(x)$
• $y' + y = x$

•
$$yy' = \cos(x)$$

$$\bullet \ y' + y = x$$

Påminnelse: $a(x)\frac{dy}{dx} + b(x)y = c(x)$ är en linjär 1:a ordningens

Avgör om följande är separabla:

•
$$yy' = x$$

$$\bullet xy' = y$$

•
$$yy = x$$

• $xy' = y$
• $\frac{dy}{dx} = \frac{e^y}{y(x+5)}$
• $y' + y = x$
• $\sin(y') = x + 5$

$$\bullet \ y' + y = x$$

$$\bullet \ \sin(y') = x + 5$$

•
$$y' = x\sin(y) + x$$

Avgör om följande är exakta (tips, dela på dx):

$$\bullet \ xdx + ydy = 0$$

•
$$\sin(y)dx + \sin(x)dy = 0$$

•
$$3yx^3dx + x^3dy = 0$$

Anmärkning: Att avgöra om en ekvation är exakt innebär att man avgör om formen som den är skriven är exakt. Det går oftast att manpulera den så att den blir exakt annars. Exempelvis:

$$(3xy + xy) + (x^2 + xy)y' = 0$$

$$\Leftrightarrow x(3xy + xy) + x(x^2 + xy)y' = 0$$

$$\Leftrightarrow (3x^2 + xy^2) + (x^3 + x^2y)y' = 0$$

6. Andra ordningens linjära ODE:er

Vi kommer introducera dessa och tala om homogena ekvationer.

Sats 6.1: Andra ordningens ODE

En allmän andra ordningens ODE är:

$$G(x, y, y', y'') = 0$$

Om vi kan isolera y'' får vi:

$$y'' = F(x, y, y')$$

Vi kommer fokusera främst på linjära ODE:er.

Sats 6.2: Linjär ODE

En ODE som kan skrivas på formen:

$$A(x)y'' + B(x)y' + C(x)y = F(x)$$

Vi kommer anta att A, B, C, F är kontinuerliga

6.1. Exempel.

Exempel på en linjär ODE (Bessel-ekvationen)

$$x^{2}y'' + xy' + (x^{2} - \alpha^{2})y = 0$$
$$y'' = (y+1)^{2}y' + y^{2}$$

Exempel på en icke-linjär 2:a ordningens ODE:

$$y'' = (y+1)^2 y' + y^2$$

Sats 6.3: Homogen ekvation

Om F(x) = 0 kallas ekvationen för homogen. Annars kallas den inhomogen.

Den associerade homogena ekvationen är en ODE där vi ansätter F(x) = 0, det vill säga om vi tar ekvationen från sats 6.2 och sätter F(x) = 0 så är det vår associerade homogena ekvationen.

Exempel:

$$3y'' + (2+x)y' + y = \cos(x)$$

har den associerade homogena ekvationen:

$$3y'' + (2+x)y' + y = 0$$

Notera här att vi kan multiplicera vår associerade ekvation med vad som, detta kommer inte ändra vår lösningsmängd.

IVP existerar för andra ordningens ODE:er. För en fullständig lösning kommer vi kräva 2 initalvillkor, men vi kan få en *parametriserad* lösningsmängd om vi har 1.

Sats 6.4: Existens

Betrakta

$$y'' + p(x)y' + q(x)y = f(x) y(a) = b_0, \ y'(a) = b_1$$

Om p, q är kontinuerliga på ett intervall I som innehåller a (våran startpunkt), då finns exakt en lösning y = y(x) och den är definierad på hela intervallet I.

Kommentar: Första ord. ODE:er har endast en lösning som går igenom en punkt (x_0, y_0) . För andra ordningen har vi en lösning för varje lutning också!

Kommentar: Det visar sig att vi kommer stöta på en massa linjär algebra. Kanske inte för 2:a ordningens, men för första är det användbart. För 3:e ordningen och n:e ordningen går det m.h.a linjär algebra att generalisera ganska enkelt, vi kommer bara få större matriser.

Kommentar: Vissa lösningar kommer vi se blir system av mindre ordningens ODE:er, detta går också att definiera och lösa m.h.a linjär algebra.

6.2. Homogena ekvationer.

För att förstå inhomogena måste vi först förstå homogena. Detta kanske inte är tydligt varför, men det kommer vi se senare när vi diskuterar andra ekvationer. Vi påminner oss om att en homogen ekvation är på formen:

$$A(x)y'' + B(x)y' + y = 0$$

Sats 6.5

Om y_1 och y_2 löser den homogena ekvationen på ett intervall I, då löser även $y=C_1y_1+C_2y_2$ ekvationen för alla konstanter C_1, C_2 på I

Notera här att det i princip blir en linjärkombination, varpå namnet "linjär ODE" kommer ifrån. Beviset lämnas som övning till läsaren. Exempel:

$$y_1=e^x \text{ och } y_2=xe^x \text{ \"{ar} l\"{o}sningar till}$$

$$y''-2y'+y=0$$
 Då $\text{\"{ar}}\ y=C_1e^x+C_2xe^x=(C_1+C_2x)e^x \text{ också en l\"{o}sning}$

Varför vill man ha detta? Om vi har ett IVP så vill vi att lösningen skall ha ett specifikt värde. Då kan vi kombinera lösningar för att få det svaret vi söker.

Lösningsmetod (idé):

- Hitta 2 lösningar y_1 och y_2
- Ta deras linjärkombination $y = C_1y_1 + C_2y_2$
- Använd initalvillkor för att bestämma C_1, C_2

Funkar sista punkten verkligen alltid? Svaret är ja, om man väljer y_1 och y_2 på rätt sätt. Men detta implicerar att det finns ett fel sätt också. Om vi exempelvis får att y = y' så kan vi inte bestämma C_1, C_2

Sats 6.6: Linjärt oberoende

Två funktioner f, g är linjärt oberoende om vi *inte* har:

$$f=kg$$
eller $g=kf$ för någon konstant $k\in\mathbb{R}$

Det som är viktigt är att ingen av de (k eller funktionerna) är noll, ty annars kan vi dela på noll.

Exempel:

$$\begin{vmatrix} \sin(x) \text{ och } \cos(x) \text{ \"{ar} linj\"{ar}t oberoende} \\ e^x \text{ och } xe^x \\ x+1 \text{ och } x^2 \end{vmatrix} \text{Linj\"{ar}t oberoende}$$

Man kan verifiera om de är linj. ober. genom att ta $\frac{f}{g}$, om de inte är lika med en konstant så är de oberoende. Exempelvis är då e^{x+1} och e^x linjärt beroende. Det är inte alltid lätt att se, exempelvis:

$$\sin(2x)$$
 och $\sin(x)\cos(x)$ är linjärt beroende ty:
 $\sin(2x) = 2\sin(x)\cos(x)$

Ett verktyg som är användbart när man studerar dessa typer av ODE:er är Wronskianen.

Sats 6.7: Wronskianen

Wronskianen av 2 deriverbara funktioner f, g är:

$$W(f,g) = \det\begin{pmatrix} f & g \\ f' & g' \end{pmatrix} = fg' - f'g$$

Lemma 6.1

Om f, g är deriverbara på intervallet I och är linjärt beroende på I, då är $W(f, g) = 0 \ \forall x \in I$. Om vi får oberoende ekvationer, då kan vi hitta en lösning m.h.a lösningsidén.

Bevis 6.1: Wronskianen

Om f, g är linjärt beroende så är f = kg eller g = kf. Vi stoppar in det i uttrycket för Wronskianen:

$$W(f,g) = \det\begin{pmatrix} f & g \\ f' & g' \end{pmatrix} = \det\begin{pmatrix} kg & g \\ kg' & g' \end{pmatrix} = kgg' - kg'g = 0$$

Det funkar tyvärr inte åt andra hållet, det vill säga om determinanten är noll så är de inte alltid linjärt beroende. \Box

Motexempel:

$$f = x^2$$
, $q = |x|x$

Dessa är linjärt oberoende men har noll-determinant.

Hur vet vi att det ens finns 2 linjärt oberoende lösningar så att vi kan få vårat coola svar? Det visar sig att det inte är jättekrångligt att visa! Vi kan använda satsen om existens och unikhet:

$$y'' + p(x)y' + g(x) = 0$$

y(a) = 0, $y'(a) = 1 \Rightarrow$ det finns en lösning y_1 enligt existens och unikhetssatsen y(a) = 1, y'(a) = 0 det finns en lösning y_2 enligt existens och unikhetssatsen Då måste vi kolla så att y_1, y_2 är linjärt oberoende (Wronskianen nollskilld):

$$W(y_1, y_2)(a) = \det\begin{pmatrix} y_1(a) & y_2(a) \\ y_1'(a) & y_2'(a) \end{pmatrix} = y_1(a)y_2'(a) - y_1'(a)y_2(a) = 0 \cdot 0 - 1 \cdot 1 = -1 \neq 0$$

Alltså linjärt oberoende

Sats 6.8

åt y_1 och y_2 vara linjärt oberoende lösningar till:

$$y'' + p(x)y' + q(x)y = 0$$
 där p, q är kontinuerliga på intervallet I

Då är alla lösningar på formen $y = C_1y_1 + C_2y_2$

Sats 6.9: Fundamental lösningsmängd

Två linjärt oberoende lösnignar kallas för en fundamental lösningsmängd

Bevis 6.2

Antag att vi har en lösning y. Vi vill hitta C_1, C_2 . Tag en punkt $a \in I$ och lös systemet:

$$C_1y_1(a) + C_2y_2(a) = y(a)$$

$$C_1y_1'(a) + C_2y_2' = y'(a)$$

Skriv som:

$$\begin{pmatrix} y_1(a) & y_2(a) \\ y_1'(a) & y_2'(a) \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} y(a) \\ y'(a) \end{pmatrix}$$

Har en lösning om matrisens determinant är nollskilld. Gäller om $W(y_1, y_2)(a) \neq 0$. Detta går att visa! Så systemet har en lösning.

Vi kan defninera en lösning $g = C_1y_1 + C_2y_2$ (linjär kombination av lösningar är en lösning på samma initalvillkor), men vi har unikhet, alltså måste lösningen vara samma, dvs y = g

Sats 6.10: Abels sats

Om y_1 och y_2 är lösningar till y'' + p(x)y' + q(x)y = 0 där p,q är kontinuerliga på I. Då är deras Wronskian $W(y_1,y_2)(x) = Ce^{-\int p(x)dx}$ där C är en konstant som ej beror på x. Antingen är $W(y_1,y_2)(x) = 0 \ \forall x \in I$ eller $W(y_1,y_2)(x) \neq 0 \ \forall x \in I$

Bevis 6.3: Bevisidé för Abels sats

Derivera $W(y_1, y_2)$ med avseende på x. Då får man ett uttryck som innehåller y_1, y_2 och dess derivator. Använder man ODE:n så kan man visa att även W uppfyller en linjär första ordningens ODE och den kan man lösa explicit.

7. FÖRELÄSNING - HOMOGENA EKVATIONER

Vi vill hitta dessa linjärt oberoende funktionerna, det är syftet med dagens föreläsning. Vi kommer börja med att undersöka följande:

$$y'' + p(x)y' + q(x)y = 0$$

Alla lösningar är på formen $y = C_1y_1 + C_2y_2$ där $\{y_1, y_2\}$ är en fundamental lösningsmängd, dvs linjärt oberoende.

Hur ska vi hitta y_1, y_2 ? Vi kommer använda 2 olika metoder:

- Reduction of order (reduction av ordning, om vi har y_1 så kan vi hitta y_2)
- \bullet p,q är konstanter så finns det en annan metod

7.1. Reduktion av ordning.

Antag att vi har en lösning y_1 till y'' + p(x)y' + q(x)y = 0.

Denna metod kan användas för att hitta en till (linjärt oberoende) lösning y_2 . Idén:

- Hitta y_2 som ej är beroende av y_1
- Vi sätter $y_2(x) = u(x) \cdot y_1(x)$, om linj. ber. så är u(x) en konstant så vi vill hitta u(x)

Vi kan börja med att se att:

$$y_2' = u' \cdot y_1 + uy_1'$$

$$y_2'' = u'' \cdot y_1 + 2u'y_1' + uy_1''$$
Insättning av y_2, y_2', y_2'' i ekvationen ger:
$$(u'' \cdot y_1 + 2u'y_1' + uy_1'') + p(u' \cdot y_1 + uy_1') + quy_1$$

$$u\underbrace{(y_1'' + py_1' + qy_1)}_{\text{Ekvationen!}} + u''y_1 + u'(2y_1' + py_1)$$

$$\underbrace{(y_1'' + py_1' + qy_1)}_{\text{Ekvationen!}} + u''y_1 + u'(2y_1' + py_1)$$

Det som står framför u är lika med noll ty det är precis det vi börjar med:

$$u''y_1 + u'(2y'_1 + py_1) = 0$$

Låt $w = u'$:

 $y_1w' + w(2y_1' + py_1) = 0$ Detta är en linjär första ordningens ODE

Exempel: Givet att x^4 är en lösning till $x^2y'' - 7xy' + 16y = 0$, hitta en annan lösning. Det vi kommer se är att metoden vi precis gick igenom funkar ävenom vi har något framför y''

Ansätt $y_2 = uy_1 \text{ där } y_1 = x^4$:

$$x^{2}(u''y_{1} + 2u'y'_{1} + uy''_{1}) + p(u'y_{1} + uy'_{1}) + quy_{1} = 0$$

$$u(x^{2}y''_{1} + py'_{1} + qy_{1}) + x^{2}u''y_{1} + u'(2x^{2}y'_{1} + py_{1}) = 0$$

$$0 + x^{2}u''y_{1} + u'(2x^{2}y'_{1} + py_{1}) = 0$$

$$\text{Låt } w = u' \text{ och sätt in } y_{1} = x^{4} :$$

$$x^{2} \cdot x^{4} \cdot w' + w(2x^{2} \cdot 4x^{3} - 7x \cdot x^{4}) = 0 \text{ OBS: } q \text{ finns inte med}$$

$$x^{6}w' + w(8x^{5} - 7x^{5}) = 0$$

$$x^{6}w' + x^{5}w = 0$$

$$xw' + w = 0$$

$$(xw)' = 0$$

$$xw = C$$

$$w = \frac{C}{x}$$

$$u' = \frac{C}{x} \Leftrightarrow u = C \log(|x|) + D$$

 $y_2 = u \cdot y_1 = (C \log(|x|) + D)x^4$ men vi vill få en lösning, detta är en familj av lösning Oftast väljer man D = 0. C får helst inte vara noll, annars får vi att $y_2 = Cy_1$, alltså linjärt beroende Väljer vi C = 1, D = 0 får vi:

$$y_2 = x^4 \log(|x|)$$

Alla lösningar är på formen:

$$C_1y_1 + C_2y_2 = C_1x^4 + C_2x^4\log(|x|) = x^4(C_2\log(|x|) + C_1)$$

Kommentar: Detta fungerar bara om vi har en lösning redan. Påminner lite om polynom, där om man redan har en lösning så kan vi dela bort den och få ett polynom med lägre grad.

7.2. Homogena 2:a orndingens linj. ODE med konstanta koefficienter p, q.

Vi kommer betrakta y'' + py' + qy = 0 för $p, q \in \mathbb{R}$. Det visar sig att det alltid finns en lösning på formen $y(x) = e^{r \cdot x}$ där r beror på p, q. Insättning ger:

$$r^2e^{rx} + pre^{rx} + qe^{rx} = 0 \Leftrightarrow e^{rx}(r^2 + pr + q) = 0e^{rx}$$
 är aldrig noll, alltså $r^2 + pr + q = 0$

För att det skall vara lika med noll, så måste r vara en rot, alltså har vi en lösning enbart då.

Sats 7.1: Karaktäristiska polynom

Polynomet $r^2 + pr + q$ kallas för det karaktäristiska polynomet till y'' + py' + qy = 0

Vi får 3 oilka fall när vi hanterar rötter:

- Fall 1: 2 distinkta reela rötter
- Fall 2: Dubbelrot
- Fall 3: Icke-reela rötter

Fall 1: När $r_1 \neq r_2$. Vi får 2 lösningar, en för r_1 och en för r_2 : $y_1 = e^{r_1 x}$ och $y_2 = e^{r_2 x}$. Dessa är linjärt oberoende eftersom $\frac{e^{r_1 x}}{e^{r_2 x}} = e^{(r_1 - r_2)x}$, om de är beroende hade vi fått en konstant det vill säga e^0 , men eftersom $r_1 \neq r_2$ får vi inte det. Alltså är $\{y_1, y_2\}$ en fundamental lösningsmängd. Vi vet att alla lösningar ges på foren $y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$

Fall 2: När $r_1 = r_2$. Vi får en lösning $y_1 = e^{rx}$ men vi behöver 2 lösningar. Använd reduktion av ordning för att hitta y_2 , $y_2 = u(x)y_1 = u(x)(e^{rx})$, derivera 2 gånger och stoppa in så får vi $u''y_1 + 2u'y'_1 + u''_1 + 2u'y'_1 + 2u'y'_$

 $p(u'y_1 + uy_1') + quy_1 = 0$. Då försvinner vissa termer och vi får kvar $y_1u'' + (2y_1' + py_1)u' = 0$. Vi har $y_1 = e^{r_1x} \mod r_1 = -\frac{p}{2}$. Insättning ger $e^{-\frac{p}{2}}u'' + (2(-\frac{p}{2})e^{-\frac{p}{2}x} + pe^{-\frac{p}{2}x})u' = 0$:

$$e^{-\frac{p}{2}}u'' = 0$$
$$u'' = 0$$
$$u = Cx + D$$

Vi har alltså $y_2=(Cx+D)e^{-\tfrac{p}{2}}x$. Sätt D=0 och $C=1\to y_2=xe^{-\tfrac{p}{2}}x=xe^{rx}=xy_1$

Alltså $y = C_1 e^{rx} + C_2 x e^{rx} = (C_1 + C_2 x) e^{rx} \text{ där } C_1 \neq C_2$

Fall 3: Komplexa rötter:

$$y_1 = e^{(a+bi)x}$$
 och $y_2 = e^{(a-bi)x}$

Dessa är linjärt oberoende. I denna kurs håller vi enbart på med reela ting, så det är fördelaktigt att skriva om så att det blir tydligt att vi arbetar med reela former. Vi kan använda oss av eulers formel $e^{i\theta} = \cos(\theta) + i\sin(\theta)$

Vi får:

$$e^{(a+bi)x} = e^{ax}e^{bix} = e^{ax}(\cos(bx) + i\sin(bx))$$
$$e^{(a-bi)x} = e^{ax}e^{-bix} = e^{ax}(\cos(-bx) + i\sin(-bx)) = e^{ax}(\cos(bx) - i\sin(bx))$$

Alla lösningar är på formen

$$y = C_1 e^{ax} (\cos(bx) + i\sin(bx)) + C_2 e^{ax} (\cos(bx) - i\sin(bx)) =$$

$$(C_1 + C_2)e^{ax} \cos(bx) + i(C_1 - C_2)e^{ax} \sin(bx) \text{ vi har real del och imaginär del}$$

$$\text{Tag } C_1 = C_2 = \frac{1}{2} \ y = e^{ax} \cos(bx)$$

$$\text{Tag } C_1 = -C_2 = -\frac{i}{2} \ = i(-\frac{i}{2} - \frac{i}{2})e^{ax} \sin(bx) = e^{ax} \sin(bx)$$

Dessa är linjärt oberoende, om vi delar dem på varandra får vi $\frac{\cos(bx)}{\sin(bx)}$ vilket inte är en konstant.

Alltså är $\{e^{ax}\cos(bx), e^{ax}\sin(bx)\}$ en annan fundamental lösningsmängd. Vi använder oftast denna.

Exempel: Hitta den allmänna lösningen till:

- 2y'' 5y' 3y = 0
- y'' 10y' + 25y = 0
- y'' + 4y' + 7y = 0

Vi kan konstatera att alla dessa är linjära, andra ordningen, konstanta koefficienter. Vi börjar att betrakta första punkten:

$$y''-\frac{5}{2}y'-\frac{3}{2}y=0$$
 Karaktäristiska polynomet: $r^2-\frac{5}{2}r-\frac{3}{2}=0$ Rötterna blir: $r_1=3, r_2=-\frac{1}{2}$
$$y=C_1e^{-\frac{1}{2}x}+C_2e^{3x} \text{ (notera, inget } x \text{ framför } C_2 \text{ ty ingen dubbelrot)}$$

Nästa:

Karaktäristiska polynomet: $r^2-10r+25$, rötterna är $r_1=5, r_2=5$ Dubbelrotination, allmänna lösningen ges av:

$$y = C_1 e^{5x} + C_2 x^{5x}$$

Sista:

Karaktäristiska polynomet: r^2+4r+7 , rötterna ges av $r_1=-2+i\sqrt(3), r_2=-2-i\sqrt(3)$ Två komplexa rötter, vi får:

$$y = C_1 e^{-2x} \cos(\sqrt{3x}) + C_2 e^{-2x} \sin(\sqrt{3x})$$

8. Föreläsning

Idag kommer vi lösa ekvationer på formen y'' + p(x)y' + q(x)y = f(x). Tidigare har vi kollat på det homogena fallet, det vill säga när f(x) = 0, nu ska vi hantera det inhomogena fallet.

Sats 8.1: Generell lösning

Den generella lösningen till y'' + p(x)y' + q(x)y = f(x) kan skrivas på formen:

$$y(x) = y_h + y_p(x)$$

Där $y_h = C_1 y_1(x) + C_2 y_2(x)$ är den allmänna lösnigen till den associerade homogena ekvationen, och y_p är $n\mathring{a}gon$ lösning till y'' + p(x)y' + q(x)y = f(x) (kallas för $partikul\"{a}r$ lösning). Partikul\"{a}rlösningen är alltid oberoende.

Vi ser då att lösnigen är summan av lösnigen till den associerade homogena ekvationen och en lösning till ekvationen.

Bevis 8.1: Generell lösning

Låt y vara en lösning till y'' + p(x)y' + q(x)y = f(x). Vi vill visa att y går att skriva på formen:

$$y = C_1 y_1 + C_2 y_2 + y_p$$

Vi har y'' + p(x)y' + q(x)y = f(x), men vi har också antagit att $y''_p + p(x)y'_p + q(x)y_p = f(x)$. Om vi subtraherar båda från varandra får vi:

$$(y - y_p)'' + p(x)(y - y_p)' + q(x)(y - y_p) = 0$$

Denna ekvation är homogen! Det ger oss:

$$y - y_p = C_1 y_1 + C_2 y_2$$

$$\Leftrightarrow y = C_1 y_1 + C_2 y_2 + y_p$$

Hur ska vi hitta y_p ? Detta är föreläsningens premiss. Partikulärlösningen är inte unik, även om vi hänvisar till den som "partikulärlösningen". Oftast får man den på en specifik form, men den är givetvis inte entydig.

Kommentar: Om vi har 2 olika partikulärlösningar y_{p_1}, y_{p_2} så förhåller de sig till varandra: $y_{p_2} = C_1 y_1 + C_2 y_2 + y_{p_1}$, men vi skulle kunna vända på det och skriva $y_{p_1} = D_1 y_1 + D_2 y_2 + y_{p_2}$

Vi kommer gå igenom 2 olika metoder för att hita partikulärlösningen:

- Metoden med obestämda koefficienter (ansatsmetoden) (mer gissning)
- Variation av parameter-metoden (mer allmän, mer räkna)

8.1. Metoden med obestämda koefficienter.

Idén går ut på att gissa en lösning och verifiera den.

Exempel: Hitta en partikulärlösning till:

- y'' + 3y' + 4y = 3x + 2
- $y'' y = 2e^{3x}$
- $3y'' + y' 2y = 2\cos(x)$

Anmärkning: De har alla konstanta koefficienter.

Vi börjar med att kolla på första. Vi söker ett y så att vi får 3x + 2 på HL. Det låter rimligt att det vi söker är ett polynom, så vi tar ett allmänt polynom och stoppar in och ser vad som händer.

Graden av polynomet på HL är av grad 1, så rimligtvis borde y vara ett förstagradspolynom. Det generella förstagradspolynomet är y = Ax + B. Vi stoppar in och ser vad som händer:

$$y'_p = A$$

$$y''_p = 0$$

$$\Leftrightarrow 0 + 3A + 4(Ax + B) = 3x + 2$$

$$4Ax + (3A + 4B) = 3x + 2$$

Här kan man jämföra vad som står framför x och vilka som är konstanter. Vi får:

$$\left. \begin{array}{l} 4A = 3 \\ 3A + 4B = 2 \end{array} \right\} = A = \frac{3}{4} \ , \ B = \frac{-1}{16} \\$$

En partikulärlösning är $y_p = \frac{3}{4}x - \frac{1}{16}$

Nästa kommer vara att inse att vi har en exponentialfunktion. Vi gissar:

$$y_p = Ae^{3x}$$

$$y'_p = 3Ae^{ex}$$

$$y''_p = 9Ae^{3x}$$

$$\Leftrightarrow 9Ae^{ex} - Ae^{3x} = 2e^{3x} = 8Ae^{3x}$$

$$\Leftrightarrow A = \frac{1}{4} \Rightarrow y_p = \frac{1}{4}e^{3x}$$

Ibland får man en gissning som ger 0 på VL, då har man gissat fel. Vissa folk på tentor har gissat fel och börjar lösa för x men det är inte riktigt det vi vill, vi vill hitta för alla x.

Vi kör sista (men inte minsta!). Vi ska testa vad som händer om man gissar fel. Vi gissar $y_p = A\cos(x)$:

$$y'_p = -A\sin(x)$$
$$y''_p = -A\cos(x)$$

Första anmärkningen på att något har gått snett är att vi har fått $\sin(x)$, vi forts.

$$-3A\cos(x) - A\sin(x) - 2A\cos(x) = 2\cos(x)$$

$$-5A\cos(x) - A\sin(x) = 2\cos(x)$$
För att detta skall gälla bör vi ha:

 $-5A = 2 \Rightarrow A = \frac{-2}{5}$ men vi har ingen sinus term i HL!

Vad vi skulle kunna göra är att vi gör en ny gissning, eftersom vi vet att vid derivering får vi motsatt funktion kan vi ansätta $y_p = A\cos(x) + B\sin(x)$. Vi får:

$$y_p'' = -A\sin(x) + B\cos(x)$$

$$y_p'' = -A\cos(x) - B\sin(x)$$

$$3(-A\cos(x) - B\sin(x)) + (-A\sin(x) + B\cos(x)) - 2(A\cos(x) + B\sin(x)) = 2\cos(x)$$

$$(-5A + B)\cos(x) + (-A - 5B)\sin(x) = 2\cos(x)$$

$$-5A + B = 2$$

$$-A - 5B = 0$$

$$B = \frac{1}{13}$$

$$y_p = \frac{-5}{13}\cos(x) + \frac{1}{13}\sin(x)$$

Denna metod fungerade bra i dessa exempel. Vi ska kika på ett exempel där den första gissningen inte riktigt skulle funka och tänka på "vad kan vi göra då?".

Exempel: Hitta en partikulärlösning till $y'' - 5y' + 4y = 8e^x$ (ganska lik ett tidigare exempel). Rimlig gissning är $y_p = Ae^x$:

$$Ae^x - 5Ae^x + 4Ae^x = 8e^x$$

$$0Ae^x = 8e^x \Rightarrow \text{Bus! Kan ej välja } A \text{ så att vi får en lösning.}$$

Varför hände detta och varför funkar det inte? Jo, för att om vi kollar på den associerade homogena ekvationen y'' - 5y' + 4y = 0 så har den den allmänna lösningen $y_h = C_1 e^x + C_2 e^{4x}$. Så $y_p = Ae^x$ löser den homogena ekvationen, löser den den homogena kan den inten rimligtvis lösa den inhomogena.

En smidig lösning på detta är att man tar det man gissade på, och multiplicerar med x. Detta funkar i allmänhet, får man noll så multiplicera med $x.y_p = Axe^x$. Vi kollar:

$$y_p' = Ae^x + Axe^x$$

$$y_p'' = Ae^x + Ae^x + Axe^x = 2Ae^x + Axe^x$$

$$\Leftrightarrow 2Ae^x + Axe^x - 5(Ae^x + Axe^x) + 4Axe^x = 8e^x$$

$$-3Ae^x + 0Axe^x = 8e^x$$

$$A = \frac{-8}{3} \Rightarrow y_p = \frac{-8}{3}xe^x$$

När vi säger "multipliera med x" kommer det betecknas x^s senare, detta för att ibland så kan det hända att man måste multipliera med x flera gånger så man låter helt enkelt s beteckna hur många gånger man behöver multipliera gissningen med x för att inte få en linjärt beroende lösning (0).

Nedan följer en (ej fullständig) tabell kring vilka de generella formerna på visa typer av uttryck ser ut:

Om $f(x)$ är	Gissa y_p
P_n (polynom av grad n)	x^s Polynom (där s oftast är noll men om vi får 0 , öka)
$a\cos(kx) + b\sin(kx)$	$x^{s}(A\cos(kx) + B\sin(kx))$
$e^{rx}(a\cos(kx) + b\sin(kx))$	$x^s e^{rx} (A\cos(kx) + B\sin(kx))$
$P_n e^{rx}$	$x^s(P_n)e^{rx}$
$P_n(a\cos(kx) + b\sin(kx))$	$x^{s}(P_{n})(A\cos(kx) + B\sin(kx))$

Vad händer om f(x) inte är på en form liknande ovan? Då kan vi troligen inte gissa lösningen. Men, om den är en summa av saker i tabellen, då kan vi använda att den är linjär och därmed dela upp i fall.

8.2. Variation av parameter-metoden.

Mer allmän, men kräver mer beräkning. Risken är därmed större att man räknar fel.

Den ger oss en lösning till y'' + p(x)y' + q(x)y = f(x) om vi har en fundamental lösningsmängd $\{y_1, y_2\}$ till den associerade homogena ekvationen.

En partikulärlösning ges då på formen $y_p = u_1(x)y_1(x) + u_2(x)y_2(x)$. Hade u_1, u_2 varit konstanter hade vi fått en homogen ekvation.

Här är $u_1'=\frac{W_1}{W(y_1,y_2)}$ och $u_2'=\frac{W_2}{W(y_1,y_2)}$ där W är Wronskianen som inte är något annat än en determinant av en 2x2 matris:

$$W = \det\left(\begin{pmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{pmatrix}\right) = y_1 y'_2 - y'_1 y_2$$

$$W_1 = \det\left(\begin{pmatrix} 0 & y_2 \\ f(x) & y'_2 \end{pmatrix}\right) = -f(x) y_2$$

$$W_2 = \det\left(\begin{pmatrix} y_1 & 0 \\ y'_1 & f(x) \end{pmatrix}\right) = f(x) y_1$$

Exempel: Lös $y'' + 3y' + 2y = \frac{1}{1 + e^x}$

Om vi vill använda denna metod, så behöver vi den homogena ekvationen, så steg 1, lös homogen:

$$y'' + 3y' + 2y = 0$$
Karaktäristiska polynomet $r^2 + 3r + 2 = 0$

$$r_1 = -1 \atop r_2 = -2 \rbrace$$
Lösningen är $y_h = C_1 e^{-x} + C_2 e^{-2x}$
Där $y_1 = e^{-x}, y_2 = e^{-2x}$
Vi söker $y_p = u_1(x)y_1(x) + u_2(x)y_2(x)$

$$W(y_1, y_2) = det\left(\begin{pmatrix} e^{-x} & e^{-2x} \\ -e^{-x} & -2e^{-2x} \end{pmatrix}\right) = -2e^{-3x} + e^{-3x} = -e^{-3x}$$

$$W_1 = \frac{-1}{1 + e^x} e^{-2x}$$

$$W_2 = \frac{1}{1 + e^x} e^{-x}$$

$$u'_1 = \frac{W_1}{W} = \frac{-e^{-2x}}{1 + e^x} \cdot \frac{1}{-e^{-3x}} = \frac{e^x}{1 + e^x}$$

$$u'_2 = \frac{e^{-x}}{1 + e^x} \cdot \frac{1}{-e^{-3x}} = \frac{-e^{2x}}{1 + e^x}$$

$$u_1=\int\frac{e^x}{1+e^x}dx=[u=e^x,du=e^xdx]=\int\frac{1}{1+u}du$$
 = ln |1 + u| (vi struntar i +C ty partikulärlösning är en) = ln |1 + e^x|

$$u_2 = \int \frac{e^2x}{1 + e^x} = -\int \frac{e^x(1 + e^x) - e^x}{1 + e^x} dx = -\int e^x dx + \int \frac{e^x}{1 + e^x} dx = -e^x + \ln|1 + e^x|$$

Vi får
$$y_p = \ln|1 + e^x| \cdot e^{-x} + (-e^x + \ln|1 + e^x| \cdot e^{-2x}) = \ln|1 + e^x| (e^{-x} + e^{-2x}) - e^{-x}$$

Allmänna lösningen ges av:

$$y = y_p + y_h = C_1 e^{-x} + C_2 e^{-2x} + \ln|1 + e^x| (e^{-x} + e^{-2x}) - e^{-x}$$

Varför funkar det här? Om vi stoppar in så löser det, men varför? Sätter vi in $y_p(x) = u_1(x)y_1(x) + u_2(x)y_2(x)$ i ekvationen och förenklar, får vi:

$$(y_1u_1' + y_2u_2')' + p(x)(y_1u_1' + y_2u_2') + y_1'u_1' + y_2'u_2' = f(x)$$

Notera att vi har $(y_1u_1' + y_2u_2')'$ 2 gånger. Vi kan då kräva

$$(y_1u'_1 + y_2u'_2)' = 0 y'_1u'_1 + y'_2u'_2 = t(x)$$

Detta är en linjärt system! Vi har slutna formler. Vi kan alltså kolla om systemet är lösbart genom Cramers regel.

9. Uppgifter -

Vilka metoder är applicerbara på följande ODE:er?

•
$$y'' + 5y' - 2y = 0$$

•
$$y'' + 5y' - 2y = 5 + x^2$$

$$\bullet \ y'' + 5y' - 2y = \tan(x)$$

•
$$x^2y'' - 7xy' + 16y = 0$$
 om vi har lösn. $y_1 = x^4$

•
$$x^2y'' - 7xy' + 16y = x$$
 om vi vet homo lösn.

•
$$x^2y'' - 7xy' + 16y = \sin(x)$$
 om vi vet homo lösn.

$$2y'' - y' = 0$$

Alla lösningar som slutar på = 0 kommer givetvis vara homogena, alltså kommer antingen "konstanta koefficienter" metoden eller "reduktion av ordning" metoden beroende på konstanter.

10. Potensserielösningar

På samama sätt som föregående kapitel kommer även detta gälla för linjära ODE:er. Denna metod fungerar för n:te ordningens linjära ODE:er men det blir snabbt mycket räkning så vi kommer begränsa oss till 2:a ordningen.

Kommer i allmänhet inte ge oss lönsingar på sluten form utan vi får lösningar i termer av en potensserie, därför är det bra att bra grund i potensserier så vi kommer ägna lite tid åt det.

De flesta ODE:er har inte lösning på sluten form utan måste beskrivas mha potensserier. Exempel på ekvationer:

- Bessel-ekvationerna $x^2y''+xy'+(x^2-\alpha^2)y=0$ Legendreekvationen $(1-x^2)y''-2xy'+\lambda(1+\lambda)y=0$

10.1. Potensserier - Repetition.

För att göra allt på ett snyggt sätt kommer vi kräva lite fler verktyg än vi har tillgång till men det betyder inte att vi inte kan göra saker (- Albert Einsten eller nåt). Nog med banter!

En potensserie är en serie på följande form:

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \cdots$$

Detta är en potensserie med center i a. Om center är i a = 0 får vi:

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 \cdots$$

Oftast kommer vi arbeta med a = 0 (det blir lättast). Men! Med variabelsubstitution är det lätt att byta mellan fallen.

Den viktigaste egenskapen en potensserie har är om den konvergerar eller ej inom ett intervall I.

Sats 10.1: Potensserie

Potensserien konvergerar om:

$$\sum_{n=0}^{\infty} c_n (x-a)^n = \lim_{N \to \infty} \sum_{n=0}^{N} c_n (x-a)^n$$

existerar för alla $x \in I$. Då är summan:

$$f(x) = \sum_{n=0}^{\infty} c_n (x - a)^n$$

definierad på I och serien kallas för en potensserierepresentation av f(x)

Exempel: Vi har:

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$
$$\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n)!}$$
$$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)!}$$

Dessa konvergerar $\forall x$. En som är värd att nämna:

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
$$\log(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^{n+1} x^n}{n}$$

Dessa konvergerar |x| < 1 och divergerar då |x| > 1.

Alla dessa går att beskriva i termer av taylorserier:

Sats 10.2: Taylorserie för funktion

Taylorserien för en funktion f centrerad i x = a är:

$$\sum_{n=0}^{\infty} \frac{f^{(n)}a}{n!} \cdot (x-a)^n = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 \cdots$$

Om a=0 är det MacLaurin serier

Om x = a konvergerar serien alltid till f(a).

Kommer serien konvergera för x utanför de punkterna?

Sats 10.3: Konvergensradie

Konvergensradien r av en potensserie är det värde $r \geq 0$ så att:

- Serien absolutkonvergerar för |x a| < r (notera, strikt mindre)
- Serien divergerar för |x-a| > r

Serien konvergerar i ett intervall med radie r centrerat kring a. Utanför intervallet divergerar den. Notera att vi inte betraktar ändpunkterna i konvergensintervallet; ibland konvergerar den där och ibland inte.

Sats 10.4: Konvergensradiens existens

Betrakta gränsvärdet:

$$r = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right|$$

Om gränsvärdet existerar (och är ändligt) så är r konvergensradien för serien.

Om gränsvärdet ∞ så är konvergensradien ∞

Bevis 10.1: Konvergensradie

Använd kvottest på $\sum_{n=0}^{\infty} a_n$ där $a_n = c_n(x-a)^n$ där kvottestet för en serie $\sum a_n$ görs genom att beräkna:

$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

Om L < 1 har vi absolutkonvergens, om L > 1 divergerar serien, om L = 1 eller om gränsvärdet inte existerar så får vi inte heller någon info.

Om Taylorserien för f(x) konvergerar till f(x) för alla $x \in I$ där $a \in I$. Då säger vi att f är analytisk på I och f är analytisk i a.

Kommentar: Begreppet analytisk (även kallat holomorf) kommer från komplex analys. Det är ett **väldigt** starkt begrepp. Vi kommer använda lite verktyg från komplex analys utan att bevisa dem. De flesta funktioner vi har stött på är analytiska.

Exempel på analytiska funktioner som är analytiska överallt: $\sin(x), \cos(x), e^x$. Exempel på analytiska funktioner som är analytisk nästan överallt är $\frac{1}{x}$ för alla $x \neq 0$. Exempel på en icke-analytisk funktion är |x| i $\mathbb C$

Om f, g är analytiska så är f + g och $f \cdot g$ analytisk och $\frac{f}{g}$ om $g \neq 0$. Den kan dock vara analytisk även om g = 0:

Lemma 10.1: När g = 0 ger analytisk funktion

Om f, g är analytiska funktioner i x = a då är $\frac{f(x)}{g(x)}$ analytisk i x = a omm $\lim_{x \to a} \frac{f(x)}{g(x)}$ existerar (är ändligt).

Exempelvis $\frac{\sin(x)}{x}$ är analytsik för alla x. Om $x \neq 0$ är det enkelt att se ty det är ett standardgränsvärde som är lika med 1.

Hur kan vi använda dessa potensserier för ODE:er? Vi måste derivera givetvis! Vi kan begga följande sats:

Sats 10.5

Om serierepresentationen $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$ konvergerar på ett öppet intervall I (som innehåller a), då är f glatt (oändligt differentierbar) och derivatan ges av att differentiera termvis, dvs:

$$f'(x) = \sum_{n=0}^{\infty} nc_n(x-a)^{n-1}$$

$$f'' = \sum_{n=0}^{\infty} n(n-1)(x-a)^{n-2}$$

Derivatornas potensserie konvergerar på samma intervall I.

En annan sats som kanske känns lite löjlig men som behövs:

Sats 10.6: Identitetsprincipen

Om:

$$\sum_{n=0}^{\infty}a_nx^n=\sum_{n=0}^{\infty}b_nx^n \text{ för } x\in I$$

Då är $a_n = b_n$.

Om:

$$\sum_{n=0}^{\infty} a_n x^n = 0$$

Så är $a_n = 0$ för alla n

10.2. Potensserie-metoden.

Allt tidigare var bara setup, so let's kick it!

Idé: Ansätt $y(x) = \sum_{n=0}^{\infty} c_n x^n$ i ekvationen och försök bestämma c_n

Exempel:

$$y' + 2y = 0$$

Denna går att lösa på andra sätt men för sakens skull, låt oss visa hur vi gör med potensserier:

Ansätt
$$y(x) = \sum_{n=0}^{\infty} c_n x^n \to y'(x) = \sum_{n=0}^{\infty} n c_n x^{n-1}$$
$$\to \sum_{n=1}^{\infty} n c_n x^{n-1} + 2 \sum_{n=0}^{\infty} c_n x^n = 0$$

Nu vill vi skriva om för att få båda serier med x^n :

$$\sum_{n=1}^{\infty} nc_n x^{n-1} = 1 \cdot c_1 \cdot x^0 + 2c_2 x^1 + \dots = \sum_{n=0}^{\infty} (n+1)c_{n+1} x^n$$

$$\to \sum_{n=0}^{\infty} (n+1)c_{n+1} x^n + 2\sum_{n=0}^{\infty} c_n x^n = 0$$

$$\Leftrightarrow \sum_{n=0}^{\infty} ((n+1)c_{n+1} + 2c_n) x^n = 0$$

Nu kan vi använda identitetsprincipen som säger att alla termer måste var lika med noll, altså:

$$(n+1)c_{n+1} + 2c_n = 0$$

Från det här får vi en rekursiv relation:

$$c_{n+1} = \frac{-2c_n}{n+1}$$

Om vi har något c_0 så kan vi få c_n för alla $n \ge 1$. Notera att c_0 är vår parameter, den kan exempelvis bestämmas av initialvillkoret. I vårat enkla exempel så kan vi få en explicit formel för att räkna c_n :

$$c_{1} = \frac{-2c_{0}}{1}$$

$$c_{2} = \frac{2^{2}c_{0}}{2!}$$

$$c_{3} = \frac{-2^{3}c_{0}}{3!}$$

$$\to c_{n} = \frac{(-1)^{n}2^{n}c_{0}}{n!}$$

Så:

$$y(x) = \sum_{n=0}^{\infty} \frac{(-1)^n 2^n c_0}{n!} = c_0 \sum_{n=0}^{\infty} \frac{(-2x)^n}{n!} = c_0 e^{-2x}$$

Då är frågan var denna serie konvergerar. I detta fall konvergerar den överallt ty vi hittade en taylorekvivalens men i andra fall får man kika närmare på konvergensradien. Alternativt skulle vi kunna räkna ut konvergensradien direkt från $c_{n+1} = \frac{-2c_n}{n+1}$:

$$\lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{c_n}{\frac{-2c_n}{n+1}} \right| = \lim_{n \to \infty} \frac{n+1}{2} \to \infty$$

Denna metod fungerar för linjära ekvationer men är relevant för grad ≥ 2

Vi fokuserar på grad 2 och homogena ekvationer (den funkar bra för inhomogena, men det blir lite mer räkningar), alltså:

$$A(x)y'' + B(x)y' + C(x)y = 0$$

För att detta skall funka kommer vi behöva anta att A, B, C är analytiska runt en punkt vi vill lösa ekvationen. I många fall kommer de vara polynom vilket är analytiska funktioner. I många fall kommer vi dela bort A, så vi får:

$$y'' + p(x)y' + q(x)y = 0$$
$$p(x) = \frac{A(x)}{B(x)}$$
$$q(x) = \frac{C(x)}{A(x)}$$

Detta funkar när $A \neq 0$ men det kan fungera ändå, så länge p,q är analytiska.

Sats 10.7

m $p(x) = \frac{B(x)}{A(x)}$ och $q(x) = \frac{C(x)}{A(x)}$ är analytiska i punkten x = a, då kallas punkten för en ordinär punkt. Annars kallas punkten för en singulär punkt (eller buspunkt som kidsen säger).

De flesta fall vi kommer jobba med kommer handla om singulära punkter.

Exempel: xy'' + y' + xy = 0, vi vill kolla var den är singulär resp. ordinär:

$$y'' + \frac{1}{x}y' + y = 0$$
$$p(x) = \frac{1}{x}, q(x) = 1$$

Här är x=0 en singulär punkt ty $p(x)=\frac{1}{x}$ inte är analytisk. Alla andra punkter däremot är ordinära.

Exempel: $xy'' + \sin(x)y' + x^2y = 0$:

$$y'' + \frac{\sin(x)}{x}y' + xy = 0$$

$$p(x) = \frac{\sin(x)}{x}, q(x) = x$$

Här är det uppenbart att q(x) är analytisk, men p(x) är inte lika uppenbar. Kikar vi närmare inser vi att man skulle kunna tro att x = 0 är en singularitet men det är bara ett standardgränsvärde, alltså inga singularitetspunkter, alltså alla punkter är ordinära.

Notera: Även om am vi har singulära punkter så finns det lösningar, lösningarna kommer i allmänhet inte vara analytiska.

Sats 10.8

m a är en ordinär punkt till A(x)y'' + B(x)y' + C(x)y = 0, då har ODE:n 2 linjärt oberoende lösningar på formen:

$$y(x) = \sum_{n=0}^{\infty} c_n (x - a)^n$$

Konvergensradien är åtminstonde lika stor som avståndet till närmsta singulära punkt. Man måste dock även ta hänsyn till komplexa singulära punkter.

Exempel: Betrakta ekvationen $(x^2 + 9)y'' + xy' + x^2y = 0$:

$$y'' + \frac{x}{x^2 + 9} + \frac{x^2}{x^2 + 9}y = 0$$

Denna har inga reella singularitetspunkter, men den har 2 komplexa, närmare bestämt $x=\pm 3i$. En serie lösning på formen:

$$\sum_{n=0}^{\infty} c_n x^n$$

Kommer den ha konvergensradie ≥ 3 . I en annan punkt exempelvis $\sum c_n(x-4)^n$ får vi $r \geq d(4,\pm 3i) = \sqrt{3^2+4^2} = 5$

11. Potensserielösningar - Forts.

Dagens föreläsning kommer handla om ett specialfall som kallas för Eulers ekvation samt reguljära singulära punkter. Oftast är det de singulära punkterna som är mest intressanta

11.1. Cauchy-Eulers Ekvation.

$$x^2y'' + \alpha xy' + \beta y = 0$$

Punkten vi är intresserade av är x=0 ty det är en singulär punkt eftersom:

$$p(x) = \frac{\alpha x}{x^2} = \frac{\alpha}{x}$$
$$q(x) = \frac{\beta}{x^2}$$

är analytiska i alla punkter förutom x = 0. Vi vill undersöka vad som händer när vi närmar oss x = 0, så vi delar upp i 2 fall, då x < 0 och x > 0. Vi kollar på x > 0 ty x < 0 fås genom t = -x.

Det visar sig att denna ekvation påminner om konstanta koefficienter metoden. Vi undersöker vidare. Ansätt $y = x^r$:

$$y' = rx^{r-1}$$

$$y'' = r(r-1)x^{r-2}$$

$$\Rightarrow x^{2}(r(r-1)x^{r-2}) + x\alpha rx^{r-1} + \beta x^{r} = 0$$
Multiplicera in x^{2} och förenkla:
$$((r(r-1) + \alpha r + \beta))x^{r} = 0$$

$$\Leftrightarrow r^{2} + (\alpha - 1)r + \beta = 0$$

$$r_{1,2} = -\frac{\alpha - 1}{2} \pm \sqrt{\frac{(\alpha - 1)^{2}}{4} - \beta}$$

Här får vi 3 fall:

- $r_1 \neq r_2$ reella
- $r_1 = r_2$
- $r_1 = \bar{r_2}$

Vi får direkt 2 linjärt oberoende lösningar $y_1 = x^{r_1}$ och $y_2 = x^{r_2}$ så den allmänna lösningen ges av $y = C_1 x^{r_1} + C_2 x^{r_2}$

Exempel:
$$x^2y'' + \underbrace{4}_{2}xy + \underbrace{2}_{2}y = 0$$

Exempel: $x^2y''+\underbrace{4}_{\alpha}xy+\underbrace{2}_{\beta}y=0$. Den karaktäristiska ekvationen blir då $r^2+(4-1)r+2=0\Rightarrow r_1=-1, r_2=-2$.

Den generella lösningen blir då $y=C_1x^{-1}+C_2x^{-2}=\frac{C_1}{x}+\frac{C_2}{x^2}$

Vi får en lösning, $y_1 = x^{r_1}$ och vi vill hitta en till, så vi kan använda reduktion av ordning ty vi har en lösning. Räkningarna är lite långa, så Dahne skriver upp resultaten:

$$y_2 = x^{r_1} \cdot \log(x)$$

Logaritmen är bara definierad för x > 0, men notera antagandet i början, dvs att x > 0. Den allmänna lösningen blir:

$$y = C_1 x^{r_1} + C_2 x^{r_1} \log(x) = (C_1 + C_2 \log(x)) x^{r_1}$$

Exempel: $x^2 y'' \underbrace{-3}_{\alpha} x y' + \underbrace{4}_{\beta} y = 0$

Karaktäristiska ekvationen blir $r^2 + (-3 - 1)r + 4 = 0$ där lösningen blir $r_1 = r_2 = 2$, vi får då y = $C_1x^2 + C_2x^2\log(x).$

Fall 3:

Antag att $r_1 = \lambda + i\mu$, $r_2 = \lambda - i\mu$. Vi får den generella lösningen $y = C_1 x^{\lambda + i\mu} + C_2 x^{\lambda - i\mu}$. Vi skriver på mer "reell" form:

Vi kommer ihåg att $e^{a+ib} = e^a(\cos(b) + i\sin(b))$. Detta ger då:

$$x^{\lambda+i\mu} = \left(e^{\log(x)}\right)^{\lambda+i\mu} = e^{\lambda\log(x)+i\mu\log(x)} = e^{\lambda\log(x)}(\cos(\pm\mu\log(x)) + i\sin(\pm\mu\log(x)))$$
$$= x^{\lambda}(\cos(\mu\log(x)) \pm i\sin(\mu\log(x)))$$

Vi kan då ta $y_1 = x^{\lambda} \cos(\mu \log(x))$ och $y_2 = x^{\lambda} \sin(\mu \log(x))$. Den allmänna lösningen ges av en linjärkomb av dessa:

$$y = C_1 x^{\lambda} \cos(\mu \log(x)) + C_2 x^{\lambda} \sin(\mu \log(x))$$

Exempel: $x^2y'' + 3xy' + 5y = 0$

Vi får en karaktäristisk ekvation vilket ger oss $r^2 + (3-1)r + 5 = 0$ vilket ger oss $r_1, r_2 = -1 \pm 2i$. Den allmänna lösningen ges då av:

$$y = C_1 x^{-1} \cos(2\log(x)) + C_2 x^{-1} \sin(2\log(x))$$

Nu har vi bara kikat på när x>0, men vi sa tidigare att vi kunde substituera t=-x för att vänta på schteken som kidsen säger. Gör vi denna substitution ser vi att vi kan byta ut x mot |x| i lösningarna.

Sats 11.1

ör alla intervall som inte innehåller x=0, har Cauchy-Euler ekvationen

$$x^2y'' + \alpha xy' + \beta y = 0$$

lösningar enligt följande:

Låt
$$r_1$$
, r_2 vara rötter till $r^2 + (\alpha - 1)r + \beta = 0$

- Om $r_1 \neq r_2 \in \mathbb{R}$ har vi $y = C_1 |x|^{r_1} + C_2 |x|^{r_2}$ Om $r_1 = r_2$ har vi $y = C_1 |x|^{r_1} + C_2 |x|^{r_1} \log(|x|)$
- Om $r_1, 2 = \lambda + i\mu$ har vi $y = C_1 |x|^{\lambda} \cos(\mu \log(|x|)) + C_2 |x|^{\lambda} \sin(\mu \log(|x|))$

Notera att vi inte vad som händer då x=0, men om vi gör variabelbytet t=x-a kan vi få lösningar till ekvatioen på formen:

$$(x-a)^2y'' + \alpha(x-a)y' + \beta y = 0$$

genom att byta ut $x \mod x - a$ i lösningarna i Sats 11.1. Lösningen är då definierad på intervall som inte innehåller a.

Exempel:
$$(x+1)^2y'' + 3(x+1)y' + \frac{3}{4}y = 0$$

Låt t = x + 1 så får vi ekvationen $r^2 + (3 - 1)r + \frac{3}{4}$ som har rötterna $r_1 = -\frac{1}{2}$, $r_2 = -\frac{3}{2}$. Detta är punkt 1 i Sats 11.1 och ger därmed den generella lösningen:

$$y = C_1 |x+1|^{-1/2} + C_2 |x+1|^{-3/2}$$

11.2. Reguljära singulära punkter.

Vi påminner om ursprungsekvationen A(x)y'' + B(x)y' + C(x) = 0. En punkt $x = x_0$ är singulär om $p(x) = \frac{B(x)}{A(x)}$ eller $q(x) = \frac{C(x)}{A(x)}$ inte är analytisk.

En reguljär singulär punkt är en inte-så-hemsk singulär punkt, vi ska gå igenom i mer detalj. Från Lemma 10.1 (sida 34) sa vi att p, q är analytiska i x_0 om:

$$\lim_{x \to x_0} p(x)$$
 $\lim_{x \to x_0} q(x)$ är ändliga

Exempel:

För att visa att x = 0 är den enda singulära punkten till

$$x^2y'' + xy' + (x^2 - \alpha^2)y = 0$$

Räcker det att notera att $p(x)=\frac{1}{x}$ och $q(x)=1-\frac{\alpha^2}{x^2}$ är ändliga precis då $x\neq 0$

När $x = x_0$ är en singulär punkt har ekvationen i allmänhet inte en analytisk lösning, det vill säga en lösning som skrivs som en potensserie:

$$y = \sum_{n=0}^{\infty} c_n (x - x_0)^n$$

Däremot, om punkten inte är $f\ddot{o}r$ singulär, kan vi ändå hitta en lösning. Exempelvis Cauchy-Euler ekvationen. Då återkommer vi till det där med "för singulär", det betyder i princip att den inte ska vara mer singulär än Cauchy-Euler ekvationerna.

Sats 11.2: Reguljär punkt

Den singulära punkten $x = x_0$ är en reguljär singulär punkt till A(x)y'' + B(x)y' + C(x) = 0 om:

$$(x - x_0)p(x) = (x - x_0)\frac{B(x)}{A(x)}$$
 och

$$(x - x_0)^2 q(x) = (x - x_0)^2 \frac{C(x)}{A(x)}$$

är analytiska. Annars kallas den för irreguljär.

Exempel:

För Cauchy-Euler ekvationen $x^2y'' + \alpha xy' + \beta y = 0$ är x = 0 en reguljär singulär punkt! Detta eftersom vi har:

$$xp(x) = x \cdot \frac{\alpha x}{r^2} = \alpha$$

$$x^2q(x) = x^2 \cdot \frac{\beta}{x^2} = \beta$$

Konstanter är analytiska funktioner.

Vi kommer senare se att lösningar vid reguljära punkter beter sig likt lösnignar för Cauchy-Euler ekvationen.

Exempel:

Bestäm de singulära punkterna och klassificera de som reguljära och irreguljära för:

$$x^{2}(1+x)^{2}y'' + x(4-x^{2})y' + (2+3x)y = 0$$

Det vi behöver göra är att kolla på p,q,så vi bestämmer de:

$$p(x) = \frac{x(4-x^2)}{x^2(1+x)^2} = \frac{4-x^2}{x(1+x)^2}$$
$$q(x) = \frac{2+3x}{x^2(1+x)^2}$$

De singulära punkterna är då vi får division med noll, vilket alltså ger oss att de singulära punkterna ges av $x = \{0, -1\}$. Nu vill vi kolla om de är reguljära eller irreguljära:

För
$$x = 0$$
 får vi:

$$xp(x) = \frac{4 - x^2}{(1 + x)^2}$$

$$x^2 q(x) = \frac{2 + 3x}{(1 + x)^2}$$

Båda är analytiska i punkten x=0, i punkten x=-1 får vi:

$$(x+1)p(x)=\frac{4-x^2}{x(1+x)}\leftarrow \text{Ej analytisk}$$

$$(x+1)^2q(x)=\frac{2+3x}{x^2}\leftarrow \text{Analytisk i } x=-1$$

Det räcker med att en ej är analytiskt för att punkten skall vara irreguljär

Det kan vara lite klurigt att kontrollera detta, och eftersom det är många beräkningar är det lätt att slarva. Vad man kan göra är att man räknar fram några koefficienter och använder en dator för att plotta. Om man ser att det går mot noll så har man troligtvis gjort rätt.

12.1. Lösningsintervall.

Lösningsintervall innefattar de intervall där en eller fler lösningar existerar för en ODE. Det kanske känns lite onaturligt att en lösning bara är definierad i ett intervall, men antag att $y=\frac{1}{x}$ är en lösning, denna funktion vet vi är ej definierad i x=0, därmed om den är en lösning kommer vi kräva att $x\neq 0$. I någon mening bygger detta koncept på det. Vi ska kika närmare på ett exempel.

Följande exponentialekvation

$$\frac{dx}{dt} = kx$$

förekommer ofta när tillväxten av något är proportionell till dess nuvarande storlek. Lösningen ges av

$$x(t) = x_0 e^{kt}$$

är definierad för alla värden på t. Funktionen är till och med väldefinierad. Vi kan säga mer om lösningen, nämligen att:

- $\forall t \text{ är } x(t)$ en väldefinierad och kontinuerlig och deriverbar funktion där $x(t) \neq 0$ aldrig antar 0 om inte $x_0 = 0$
- Om k > 0, $\lim_{t \to \infty} x(t) = \infty$. Om k < 0, $\lim_{t \to \infty} x(t) = 0$

Det vi tar med oss är att lösningen är "snäll" i någon mening, vi får kontinuitet, saker beter sig som de ska (en variabel går mot ∞ ger antingen 0 eller ∞).

Låt oss istället kika på ett IVP fall som inte är så snällt:

$$\frac{dx}{dx} = x^2$$
$$x(0) = 1$$

Denna har lösningen

$$x(t) = \frac{1}{1-t}$$

Vad kan vi säga om denna lösning?

- x(t) är inte definierad för t=1
- $\lim_{t\to 1} x(t) = \infty$. Detta sker i "ändlig" tid, ty $1 < \infty$

Beroende på vilket håll man angriper x(t) = 1 får vi antingen $+\infty$ eller $-\infty$. Punkten t = 1 kallas för singularitetspunkt.

Sats 12.1: Singularitet

Låt x(t) vara en lösning till x' = f(t, x). Vi säger att x har en singularitet i punkten s om:

- x(t) är odefinierad eller icke-kontinuerlig i punkten t = s, eller
- $\lim_{t\to s} |x(t)| = \infty$

Återgår vi till föregående exempel med singularitet noterar vi att punkten (0,1) som är givet som IVP begränsar lösningsmängden till det öppna intervallet $(-\infty, 1)$ ty det går inte på något sätt att "korsa över" till höger om t=1 kontinuerligt. Eftersom IVP är angivet vet vi även att lösningen är definierad till vänster om t=1. Detta sammanfattas i följande sats:

Sats 12.2: Existensintervall

Låt x(t) vara en lösing till

$$\frac{dx}{dt} = f(t, x)$$

som uppfyller IVP $x(t_0) = x_0$. Existensintervallet för x(t) är det största intervallet som innehåller punkten t_0 så att lösningen x(t) är kontinuerlig **och** differentierbar.

Exempel:

Lösningen till följande IVP

$$x' = x^2 \qquad x(2) = -1$$

har lösningen

$$x(t) = \frac{1}{1-t}$$

I detta fall är initalvärdet specifierat på t=2, alltså punkten (2,-1), detta är till höger om singularitetspunkten t=1 vilket då gör att lösningsintervallet är det öppna intervallet $(1,\infty)$.

En sak att notera är att i exemplen som vi tagit upp är x(t) godtyckligt definierad utöver de intervall som vi hittat men vi har valt att enbart inkludera det största som inkluderar och löser IVP. Detta för att det helt enkelt är orelevant att veta att funktionen är definierad efter t=1 eftersom vi inte kan nå den domänen av funktionen.

Vi utgår från samma ekvation som alltid

$$A(x)y'' + B(x)y' + C(x)y = 0$$

Dagens fokus handlar om reguljära singulära punkter, dvs när vi får problem med att dela bort A(x). Idag kommer vi inte hantera irreguljära singulära punkter. Man kan ha vilka reguljära singulära punkter som helst, men idag kommer vi anta att de ligger i origo (man kan alternativt bara substituera/flytta origo i andra fall).

Påminnelse: En *reguljära* singulär punkt kring $x_0 = 0$ ger:

- $x \cdot p(x) = x \frac{B(x)}{A(x)}$
- $x^2q(x) = x^2 \frac{C(x)}{A(x)}$

där båda dessa är *analytiska* (dvs deras potensserie konvergerar till funktionen). Vi kan därför skriva om dessa på deras respektive potensserier:

$$xp(x) = \sum_{n=0}^{\infty} p_n x^n$$

$$x^2q(x) = \sum_{n=0}^{\infty} q_n x^n$$

Vi kan nu skriva om A(x)y'' + B(x)y' + C(x)y = 0 till:

$$y'' + p(x)y' + q(x)y = 0$$

$$\Leftrightarrow x^2y'' + x^2p(x)y' + x^2q(x)y = 0$$

$$\Leftrightarrow x^2y'' + x(xp(x))y' + (x^2q(x))y = 0$$

$$\Leftrightarrow x^2y'' + x\left(\sum_{n=0}^{\infty} p_n x^n\right)y' + \left(\sum_{n=0}^{\infty}\right)y = 0$$

Om $p_n=q_n=0$ för $n\geq 1$ får vi

$$x^2y'' + p_0xy' + q_0y = 0$$

Detta är en Eulerekvation!

Förra föreläsningen såg vi att Eulerekvationen har lösningar på formen $y=x^r$. Vi provar nu att hitta lösningar på formen

$$y = x^r \cdot f(x) = x^r \sum_{n=0}^{\infty} c_n x^n$$

Om $c_0 = 0$ blir den första termen som dyker upp x vilket vi kan bryta ut så att vi får x^{r+1} , vi vill inte ha saker som vi kan bryta ut. Eftersom $c_1 \cdot y$ också är en lösning kan vi ta $c_0 = 1$.

Att hitta lösningar på den formen kallas för *Frobenius metod*. Den kräver ganska mycket räkning, så vi kommer gå igenom ett långt exempel och senare gå igenom satser och definitioner.

13.1. Exempel.

Betrakta

$$2x^2y'' + 3xy' - (x^2 + 1)y = 0$$

Notera här att om ekvationen hade sett ut på följande $2x^2y'' + 3xy' - (1)y = 0$ så hade det varit en Eulerekvation.

Vi börjar med att kontrollera att origo är en reguljär singulär punkt. Vi har:

$$p(x) = \frac{3x}{2x^2} = \frac{3}{2x}$$
 $q(x) = -\frac{1}{2} - \frac{1}{2x^2}$

Vi ser att x=0 är en singulär punkt ty p och q ej är analytiska. vidare skall vi betrakta $x \cdot p(x)$:

$$xp(x) = \frac{3}{2}$$
 $x^2q(x) = -\frac{x^2}{2} - \frac{1}{2}$

Båda dessa är analytiska, vi har alltså en reguljär singulär punkt, då kan vi använda Frobenius metod och se vad som händer.

Det vi vill göra är att ta en ansats som är på formen $y = x^r \sum_{n=0}^{\infty} c_n x^n$. Vi deriverar y och gör det lite enklare genom att multiplicera in x^r . Då blir det inte en potensserie ty vi kräver att $n \in \mathbb{N}$ och med r som spökar kan vi inte garantera det, men det spelar ingen roll. Vi får:

$$y' = \sum_{n=0}^{\infty} (n+r)c_n x^{n+r-1}$$

 $y'' = \sum_{n=0}^{\infty} (n+r)(n+r-1)c_n x^{n+r-2}$

Insättning ger:

$$2x^{2} \cdot \sum_{n=0}^{\infty} (n+r)(n+r-1)c_{n}x^{n+r-2} + 3x \sum_{n=0}^{\infty} (n+r)c_{n}x^{n+r-1} - (x^{2}+1) \sum_{n=0}^{\infty} c_{n}x^{n+r} = 0$$

$$\sum_{n=0}^{\infty} 2(n+r)(n+r-1)c_{n}x^{n+r} + \sum_{n=0}^{\infty} 3(n+r)c_{n}x^{n+r} - \sum_{n=0}^{\infty} c_{n}x^{n+r+2} - \sum_{n=0}^{\infty} c_{n}x^{n+r} = 0$$

Vi vill skriva om summorna så att exponenten blir samma för alla. Skriv som den lägsta! (Ej strikt nödvändigt, men gör räkning lättare). I detta fall är det n+r. I detta exempel betraktar vi även x>0. Den enda sumnan vi behöver skriva om i det här fallet är den med x^{n+r+2} , vi vill skriva om den så att den får exponenten x^{n+r} :

$$\sum_{n=0}^{\infty} c_n x^{n+r+2} = c_0 x^{r+2} + c_1 x^{r+3} + c_2 x^{r+4} \cdots$$

Vi noterar att om vi istället börjar på n=2 så får vi:

$$\sum_{n=2}^{\infty} c_{n-2} x^{n+r}$$

Insättning ger:

$$\sum_{n=0}^{\infty} 2(n+r)(n+r-1)c_n x^{n+r} + \sum_{n=0}^{\infty} 3(n+r)c_n x^{n+r} - \sum_{n=2}^{\infty} c_{n-2} x^{n+r} - \sum_{n=0}^{\infty} c_n x^{n+r} = 0$$

Allt är nästan nice här förutom att vi har en summa som börjar på n=2. Notera att den gemensamma summationen börjar vid n=2 isåfall. Vi kan "bryta ut" de första 2 termer från de övriga summorna:

$$(2r(r-1))c_0 + 3(rc_0 - c_0)x^r + (2(1+r)(1+r-1))c_1 + 3(1+r)c_1 - c_1x^{r+1} + \sum_{n=2}^{\infty} (2(n+r)(n+r-1)c_n + 3(n+r)c_n - c_{n-2} - c_n)x^{n+r}$$

Dela med x^r och förenkla:

$$(2r(r-1)+3r-1)c_0+(2(1+r)r+3(1+r)-1)c_1x\\ +\sum_{n=2}^{\infty}\left((2(n+r)(n+r-1)+3(n+r)-1)c_n-c_{n-2}\right)x^n=0\\ \Leftrightarrow (2r(r-1)+3r-1)c_0=0 \Rightarrow 2r(r-1)+3r-1=0 \qquad \text{Karaktäristiska ekvation, lös för } r:\\ r_1=\frac{1}{2} \qquad r_2=-1$$

Nu har vi kommit fram till vad r måste vara, nu behöver vi hitta c_n . Betraktar vi andra termen har vi:

$$(2(1+r)r + 3(1+r) - 1)c_1 \neq 0$$
 för r_1 eller r_2 , alltså $c_1 = 0$

Nu vill vi kolla för summan, vi får:

$$(2(n+r)(n+r-1) + 3(n+r) - 1)c_n - c_{n-2} = 0$$

Det vi vill göra är att få fram en differensekvation för c_n . Om $(2(n+r)(n+r-1)+3(n+r)-1)\neq =0$. Då kan vi dela bort den så att vi får:

$$c_n = \frac{c_{n-1}}{(2(n+r)(n+r-1)+3(n+r)-1)}$$

 $c_n = \frac{c_{n-1}}{(2(n+r)(n+r-1)+3(n+r)-1)}$ Hur vet vi att vi kan dela bort den? Jo för att $\underbrace{(2(n+r)(n+r-1)+3(n+r)-1)}_{\text{karaktäristiska ekvationen med }n+r\text{ istället för }r}_{\text{constant}}$ och vi vet att $n \geq 2 \text{ (se täljare)}. \text{ Det vi vill göra nu är att hitta } 2 \text{ linjärt oberoende lösningar. Vi har } 2 \text{ rötter } r_1 \text{ och significant oberoende lösningar.}$

 r_2 , så vi delar upp det i 2 fall:

Fall 1:
$$r = r_1 = \frac{1}{2}$$

Sätt in r_1 i differensekvationen för c_n . För att inte förvirra oss så kommer vi kalla koefficienterna för a_n . Vi får:

$$a_n = \frac{a_{n-2}}{2n^2 + 3n} \qquad n \ge 2$$

Vi har då:

- $\bullet \ a_1 = 0$ $\bullet \ a_n = \frac{a_{n-2}}{2n^2 + 3n}$

Vi kan räkna ut några a_n :

$$a_n=0$$
 för alla udda n
$$a_2=\frac{a_0}{14}, \qquad a_4=\frac{a_2}{44}=\frac{a_0}{616}$$

Vi har alltså att serien

$$y_1 = x^{1/2} \sum_{n=0}^{\infty} a_n x^n$$

är en lösning!

Fall 2:
$$r = r_2 = -1$$

Vi kallar koefficienterna här för b_n . Vi får

$$b_n = \frac{b_{n-2}}{2n^2 - 3n} \qquad n \ge 2$$

Återigen har vi $b_1 = 0$ och $b_0 = \text{fri konsntant}$. Vi får:

$$y_2 = x^{-1} \sum_{n=0}^{\infty} b_n x^n$$

Sammanfogar vi fallen får vi att den generella lösningen är:

$$y = C_1 y_1 + C_2 y_2$$

Här funkade allt väldigt bra och smidigt, men det kan uppstå problem. Vi kan få 2 problem:

- Dubbelrot löses likt Eulerekvation
- Vi kan få division med noll i differensekvationen. Händer om $r_1 = r_2 + N$ $N \in \mathbb{Z}$

Sats 13.1

Betrakta ODE:n

$$x^2y'' + x(xp(x))y' + x^2q(x)y = 0$$

Antag att x=0 är en reguljär singulär punkt. Då ges xp(x) och $x^2q(x)$ av potensserier:

$$xp(x) = \sum_{n=0}^{\infty} p_n x^n, \qquad x^2 q(x) = \sum_{n=0}^{\infty} q_n x^n$$

för $|x| < \rho$ där ρ är \leq konvergensradien för de två serierna.

Låt r_1, r_2 vara rötter till indikalekvationen $r^2 + (p_0 - 1)r + q_0 = 0$ (notera, samma som för Eulerekvation).

Antag att $r_1, r_2 \in \mathbb{R}$ och $r_1 \leq r_2$.

Då har vi i intervallen $(-\rho,0)$ och $(0,\rho)$ en lösning på formen

$$y_1 = |x|^{r_1} \sum_{n=0}^{\infty} a_n x^n \qquad a_0 \neq 0$$

För den andra (linjärt oberoende lösning) får vi 3 fall:

• $r_1 \neq r_2$ $r_1 \neq r_2 + N$ för $N \in \mathbb{N}$ Då är y_2 :

$$|x|^{r_2} \sum_{n=0}^{\infty} b_n x^n \qquad b_0 \neq 0$$

• $r_1 = r_2$ ger:

$$y_2 = y_1 \log(|x|) + |x|^{r_1} \sum_{n=1}^{\infty} b_n x^n$$

• $r_1 = r_2 + N$ $N \in \mathbb{N}$ ger:

$$y_2 = ay_1 \log(|x|) + |x|^{r_2} \sum_{n=0}^{\infty} b_n x^n$$

där a är konstant som kan vara 0.

Kommentar: alla serier konvergerar för $|x| < \rho$ och mängden $\{y_1, y_2\}$ ger en fundamental lösnignsmängd

Satsen säger inte mycet om hur man hittar a_n eller b_n , men de går att bestämma genom insättning vilket kan vara mer eller mindre krångligt.

Beviset liknar metoden för det introducerande exemplet för metoden men mer generellt.

Bevis 13.1: Bevisskiss - Frobenius metod

För att visa att y_1 är en lösning gör man som i exemplet.

För y_2 kan mann göra samma ansats, men man stöter på probem om $r_1 = r_2$ eller $r_1 = r_2 + N$. Hur gör man i de fallen? Man kan använad reduktion av ordning.

Kommentar: Om r_1, r_2 är komplexa så fungerar samma ansats, men du får komplexa koefficienter. Man kan få fram reella lösningar på samma sätt som vi gjorde för Eulerekvationerna, men detta kommer inte diskuteras vidare

Ett problem är att kontrollera sin lösning eftersom man får en potensserielösning. Detta gör att Dahne inte är lika **hård** om man missar tecken. Denna metod är även väldigt mekanisk så en dator kan göra det. Det finns några program/paket för att göra det vilket ger en taylorlösning.

14. Uppgifter

14.1. Potensserielösningar.

- (1) De singulära punkterna är nollställen till A(x)
- (2) De singulära punkterna är punkterna där antingen p(x) eller q(x) inte är analytisk
- (3) Lösningen till ekvationen är analytisk i närheten av en ordinär punkt
- (4) Lösningen till ekvationen är inte analytisk i närheten av en singulär punkt
- (5) En singulär punkt är reguljär om $x \cdot p(x)$ och $x^2 \cdot q(x)$ är analytisk
- (6) En singulär punkt är reguljär om $x \cdot p(x)$ och $x \cdot q(x)$ är analytis
- (7) För att kontrollera om x=a är en ordinär punkt räcker det att kontrollera om p(x) och q(x) båda är ändliga när $x \to a$

14.2. Eulerekvationen.

- (1) Indikalekvationen för Eulerekvationen ges av $r^2 + (a-1)r + b = 0$
- (2) Eulerekvationen har alltid 2 linjärt oberoende lösningar
- (3) Lösningarna till Eulerekvationen är analytiska vid x=0
- (4) Eulerekvationen har en irreguljär singulär punkt vid x = 0
- (5) Om r är en rot till indikalekvationen är en lösning x^r
- (6) Om indikalekvationen har en dubbelrot är en lösning $x^r \cdot \log(x)$

14.3. Frobeinus metod.

- (1) Metoden ska användas för reguljära singulära punkter
- (2) Indikalekvationen ges av $r^2 + p_0 \cdot r + q_0 = 0$
- (3) Om r är en rot till indikalekvationen är en lösning på formen $x^{r \cdot f(x)}$ där f är analytisk och $f(0) \neq 0$
- (4) Det är 2 olika fall att hantera beroende på rötterna till indikalekvationen
- (5) Det finns alltid 2 linjärt oberoende lösningar
- (6) Metoden ger i allmänhet en differensekvation för koefficienterna i serierna för de 2 lösningarna

14.4. Gammal inlupp uppgift.

- (1) Betrakta $(1+x^2)\sin(x)y'' + xy' + (1+x^2)xy = 0$
 - (a) Bestäm alla reella singulära punkter
 - (b) Klassifiera singulära punkterna som antingen reguljära eller irreguljära
 - (c) Om vi söker en potensserielösning i punkten $x_0=1$, det vill säga en serie på formen

$$\sum_{n=0}^{\infty} c_n (x-1)^n$$

vad är det största intervallet I där vi kan förvänta oss att serien konvergerar?

- (2) Betrakta $x^2y'' x(x+3)y' + (x+3)y = 0$
 - (a) Visa att x=0 är en reguljär singulär punkt
 - (b) Finn indikalekvationen och bestäm dess rötter
 - (c) Finn en potensserielösning för x > 0 (en lösning räcker). Det räcker att ge differensekvationen för koefficienterna såväl som de tre första nollskillda termer.

15. System av första ordningens linjära differentialekvationer

Vad händer om vi har system med flera okända funktioner istället för att lösa för en? Det är premissen för dagens föreläsning. Det visar sig att i många system irl så är det många saker inblandade.

Exempel på hur en sådan ODE kan se ut - SIR modellen, som beskriver hur ett virus sprids:

$$S(t) =$$
Susceptible vid tid t
 $I(t) =$ Infekterade vid tid t
 $R(t) =$ Recovered vid tid t

$$\frac{dS}{dt} = -\underbrace{k_1}_{\text{Infektionshastigheten}} \cdot S$$

$$\frac{dI}{dt} = -\underbrace{k_2}_{\text{Återställningshastighet}} \cdot I + k_1 \cdot S$$

$$S + I + R = n \text{ där } n \text{ är befolkning}$$

$$\frac{dR}{dt} = k_2 \cdot I$$

Ytterliggare ett exempel (likt det på sida 3):

$$\begin{split} m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx &= F(t) \text{Modell för fjäder-mass system. Låt } u = \frac{dx}{dt} \\ &\Leftrightarrow \frac{du}{dt} = \frac{d^2x}{dt^2} = \frac{1}{m} \left(-c\frac{dx}{dt} - kx + F(t) \right) \\ \frac{du}{dt} &= \frac{1}{m} \left(-c \cdot u - kx + F(t) \right) \\ \begin{cases} \text{System av 1:a ordninges ODE från 2:a ordningens} \\ \frac{dx}{dt} &= 0 \end{cases} \end{split}$$

Mer generellt kan vi skriva om en ODE som är på formen:

$$y^{(n)} = F(t, y, y', \dots, y^{(n-1)})$$

till ett system av storlek n med första ordningens ekvationer. Vi gör detta genom att införa/subba variabler:

 $x_1 = y,$ $x_2 = y',$ \dots $x_n = y^{(n-1)}$ $x'_1 = x_2$

$$x'_{2} = x_{3}$$

$$\vdots$$

$$x'_{n-1} = x_{n}$$

$$x'_{n} = F(t, x_{1}, x_{2}, \dots, x_{n})$$

Det omvända funkar inte, vi kan inte ta en ODE av grad n och skriva den som högre ordningens system. Den typen av ODE:er som vi kommer kolla på nu är system på formen:

$$\begin{cases}
x'_{1} = F_{1}(t, x_{1}, x_{2}, \dots, x_{n}) \\
x'_{2} = F_{2}(t, x_{1}, \dots, x_{n}) \\
\vdots \\
x'_{n} = F_{n}(t, x_{1}, \dots, x_{n})
\end{cases}$$

Notera! Vi har bytt den beroende och oberoende variabeln, beroende = x och oberoende = t.

15.1. Existens och unikhet.

Vi får ODE:n:

Vad innebär att hitta en lösning till systemet? Jo, en lösning på ett öppet interval I är en mängd funktioner

$$x_1 = x_1(t), x_2 = x_2(t), \dots, x_n = x_n(t)$$

Som är deriverbara på I och uppfyller systemet.

I tidigare kapitel har vi kikat på IVP, detta fungerar givetvis för system av ODE:er, men skillnaden är att vi behöver ett villkor för varje funktion. Initialvärden tar formen:

$$x_1(t_0) = x_1^0$$
 (ej upphöjt i 0, utan index), $x_2(t_0) = x_2^0$, ..., $x_n(t_0) = x_n^0$

 $\mathrm{d\ddot{a}r}\ t_0 \in I \ \mathrm{och}\ x_1^0, \cdots, x_n^0 \in \mathbb{R}$

Sats 15.1: Existens och unikhet för system av ODE:er

Antag att F_1, \dots, F_n är kontinuerliga samt att derivatan med avseende på alla variabler är kontinuerliga:

$$\frac{\partial F_1}{\partial x_1}, \cdots \frac{\partial F_n}{\partial x_1}$$

$$\vdots$$

$$\frac{\partial F_1}{\partial x_n}, \cdots, \frac{\partial F_n}{\partial x_n}$$

Detta i regionen

$$R = \{(t, x_1, \dots, x_n) \in \mathbb{R}^{n+1}, \alpha < t < \beta, \alpha_1 < x_1 < \beta_1, \dots, \alpha_n < x_n < \beta_n\}$$

(Högdimensionell rektangel). Då gäller för alla $(t_0, x_1^0, \dots, x_n^0) \in \mathbb{R}$ finns ett intervall $|t - t_0| < h$ där vi har en unik lösning till systemet med det givna initialvillkoret.

Anmärkning: Derivatan med avseende på t behöver alltså inte vara kontinuerlig.

Beviset för denna är i princip samma som beviset för det envariabelfallet, bara att man gör det för flera variabler. Oftast gör man det (likt i Flervarren) att man tar ett koncept i envarren och kikar på flera variabler.

15.1.1. System av linjära ODE:er.

Ett system av linjära ODE:er är på formen:

$$x'_{1} = a_{11}(t)x_{1} + a_{12}(t)x_{2} + \dots + a_{1n}(t)x_{n} + f_{1}(t)$$

$$x'_{2} = a_{21}(t)x_{1} + a_{22}(t)x_{2} + \dots + a_{2n}(t)x_{n} + f_{2}(t)$$

$$x'_{n} = a_{n1}(t)x_{1} + a_{n2}(t)x_{2} + \dots + a_{nn}(t)x_{n} + f_{n}(t)$$

Vi kan skriva detta på matrisform:

$$X' = AX + F \, \mathrm{d\ddot{a}r}$$

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \qquad A = \begin{pmatrix} a_{11}(t) \dots a_{1n}(t) \\ \vdots \\ a_{n1}(t) \dots a_{nn}(t) \end{pmatrix}, \qquad F = \begin{pmatrix} f_1(t) \\ \vdots \\ f_n(t) \end{pmatrix}$$

Om
$$F = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$
 så kallas systemet för homogent, annars, inhomogent.

Exempel:

$$\frac{dx}{dt} = 3x + 4y + t$$

$$\frac{dy}{dt} = 5x - 7y + e^{t}$$

$$X = \begin{pmatrix} x \\ y \end{pmatrix}, \qquad A = \begin{pmatrix} 3 & 4 \\ 5 & -7 \end{pmatrix}, \qquad F = \begin{pmatrix} t \\ e^{t} \end{pmatrix}$$

$$\Leftrightarrow X' = AX + F$$

För linjära system har vi en starkare sats än existens och unikhet som säger att lösnignen inte bara finns på ett intervall utan på hela intervallet som saker är definierade på:

Sats 15.2

Om elementen i A = A(t) och F = F(t) är kontinuerliga på ett intervall I, då finns en unik lösning till IVP som är definierad på hela I.

Vi har nu ett antal resultat som liknar de för linjära ekvationer av grad 2 med koefficienter.

Sats 15.3

Om X_1,X_2,\cdots,X_k (där stora X_i representerar en kolonn i X) ör lösningar till det homogena systemet X'=A(t)X för $t\in I$. Då är linjärkombinationen $X=C_1X_1+C_2X_2+\cdots+C_kX_k$ också en lösning för alla $C_i\in\mathbb{R}$

Vi kommer främst vara intresserade av linjärt oberoende lösningar.

Sats 15.4

åt X_1, \dots, X_k vara en mängd lösningar till X' = A(t)X. Vi säger att X_1, \dots, X_K är linjärt beroende om det finns konstanter C_1, \dots, C_k så att $C_1X_1 + \dots + C_kX_k = 0$ för alla $t \in I$ (inte alla $C_i = 0$). Annars kallas de för linjärt beroende.

Kommentar: För k=2 får vi att X_1 och X_2 är linjärt beroende om $\frac{X_1}{X_2}=-\frac{C_2}{C_1}$ är konstant. Detta stämmer överens med vår tidigare definition. X_1 och X_2 är vektorer, så vi menar "elementvis division" med $\frac{X_1}{X_2}$.

Låt
$$X_1 = \begin{pmatrix} x_{11} \\ \vdots \\ x_{n1} \end{pmatrix}, \cdots, X_n = \begin{pmatrix} X_{1n} \\ \vdots \\ x_{nn} \end{pmatrix}$$
 vara lösningar till $X' = A(t)X$ (kommer kallas för systemet

framöver). Dessa lösningar är linjärt beroende om Wronskianen $W(X_1, \dots, X_n) \neq 0 = \begin{vmatrix} x_{11} & \dots & x_{1n} \\ \vdots & \vdots & \vdots \\ x_{n1} & \dots & x_{nn} \end{vmatrix}$

Kommentar: Vi har

- Om $W(X_1, \dots, X_n) = 0$ för något $t = t_0$, då är $W(X_1, \dots, X_n) = 0$ för alla $t \in I$
- Om $W(X_1, \dots, X_n) \neq 0$ för något $t = t_0 \in I$ är den aldrig 0.

Sats 15.5: Fundamentala lösningsmängden

En mängd $\{X_1, \dots, X_n\}$ av linjärt oberoende lösningar till systemet kallas för en fundamental lösningsmängd.

Kommentar: Det finns alltid en fundamental lösningsmängd (beviset för detta är exakt samma som när

vi hade 2). Bevisas genom att lösa systemet med initialvillkoren
$$X(t_0) = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, X(t_0) = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \cdots$$

Detta ger oss n lösnignar, kalla dessa X_1, X_2, \dots, X_n . För att kolla om den är linjärt beroende kollar vi på dens Wronskian i $t = t_0$:

$$W(X_1, \dots, X_n)(t_0) = \begin{vmatrix} 1 & 0 & 0 \dots \\ 0 & 1 & 0 \dots \\ \vdots & \vdots & \vdots \end{vmatrix} = \text{enhetsmatrisen} = 1 \neq 0 \Rightarrow \text{linjärt oberoende}$$

Sats 15.6

åt X_1, \dots, X_n vara en fundamental lösningsmängd till systemet, då ges den allmänna/generella lösningen av en linjärkombination

$$X = C_1 X_1 + \dots + C_n X_n$$

Där C_1, \dots, C_n är reella nollskillda konstanter

Exempel:

$$X' = \begin{pmatrix} 1 & 3 \\ 5 & 3 \end{pmatrix} \qquad X = \begin{pmatrix} x \\ y \end{pmatrix}$$
 Vi kan kontrollera att $X_1 = \begin{pmatrix} e^{-2t} \\ -e^{-2t} \end{pmatrix}$ och $X_2 = \begin{pmatrix} 3e^{6t} \\ 5e^{6t} \end{pmatrix}$ är lösningar. Vi deriverar X_1 :
$$X_1' \begin{pmatrix} -2e^{-2t} \\ 2e^{-2t} \end{pmatrix} = \text{vänsterled}$$

$$A = \begin{pmatrix} 1 & 3 \\ 5 & 3 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3 \\ 5 & 3 \end{pmatrix} \begin{pmatrix} e^{-2t} \\ -e^{-2t} \end{pmatrix} = \begin{pmatrix} e^{-2t} - 3e^{-2t} \\ 5e^{-2t} - 3e^{-2t} \end{pmatrix} = \begin{pmatrix} -2e^{-2t} \\ 2e^{-2t} \end{pmatrix}$$

Det är tydligt att X_1 och X_2 inte är en konstant multipel av varandra, de är alltså linjärt oberoende. $\{X_1, X_2\}$ är vår fundamentala lösningsmängd. Den generella lösningen är:

$$X = C_1 X_1 + C_2 X_2 = \begin{pmatrix} C_1 e^{-2t} + 3C_2 e^{6t} \\ -C_1 e^{-2t} + 5C_2 e^{6t} \end{pmatrix}$$

Kommentar: Nu har vi pratat om generella lösningar till homogena system. För ett inhomogent system X' = A(t)X + F(t) får vi lösnignen genom att ta den generlla lösningen för det associerade homogena systemet X' = A(t)X plus en partikulärlösning.

Som vi har sett så har vi många likheter mellan 2:a ordningens linjära ODE:er. Nästa gång kommer vi kika på fallet med konstanta koefficienter. Man kan se det redan nu i exemplet, lösningen hade med exponentialfunktionen att göra, vilket var precis det vi fick innan. I allmänhet kommer detta hända (dvs, vi får något med exponentialfunktionen).

16. Homogena linjära system med konstanta koefficienter

Från tidigare hade vi:

$$X' = \begin{pmatrix} 1 & 3 \\ 5 & 3 \end{pmatrix} X \Rightarrow X = C_1 X_1 + C_2 X_2$$
$$X_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-2t}, \qquad X_2 = \begin{pmatrix} 3 \\ 5 \end{pmatrix} e^{6t}$$

Notera här att både X_1 och X_2 är på formen:

$$\begin{pmatrix} k_1 \\ k_2 \end{pmatrix} e^{\lambda t}$$

Då kan vi ställa oss frågan, gäller detta generellt? JA!!

Låt A vara en $n \times n$ matris med konstanta koefficienter. Vi studerar X' = AX. Ansätt $X = Ke^{\lambda t}$ (där K kolonnvektor). Vi har då:

$$X' = \lambda \cdot K e^{\lambda t}$$
 Insättning ger: $\lambda K e^{\lambda t} = AK e^{\lambda t}$
$$\Leftrightarrow \lambda K = AK$$

Det vill säga, K är en egenvektor till A med egenvärde λ .

16.1. Repetition - Hitta egenvärden och egenvektorer.

- Skriv $AK = \lambda K$ som $(A \lambda I)K = 0$. Vi vill att determinanten till $(A \lambda I)$ ska vara 0, ty då vet vi att $(A \lambda I)$ inte är 0 och vi kan då hitta K
- Lös polynomekvationen $det(A \lambda I) = 0$. Ekvation av grad n, n rötter $(\lambda_1, \dots, \lambda_n)$ om vi räknar multipliciteten och tar med komplexa rötter
- Sätt in λ_i i $(A \lambda I)K = 0$. En nollskilld lösning till detta system ger en egenvektor.

I denna (och nästa) föreläsning kommer vi diskutera vad som händer i tre fall:

- rella distinkta rötter
- Rötter med multiplicitet ¿ 1 (repeterande rötter)
- Komplexa rötter

Vi kommer även studera beteendet hos lösningen genom att betrakta dess fasporträtt.

16.2. Fall 1 - Reella distinkta rötter.

Det här är, som tidigare, det enkla fallet. Vi behöver inte göra så många busigheter.

Sats 16.1

Betrakta ett system X' = AX där A är en nxn matris med konstanta koefficienter. Om A har n distinkta reella egenvärden $\lambda_1, \dots, \lambda_n$ med egenvektor K_1, \dots, K_n , då är den generella lösningen till ekvationen:

$$X = C_1 K_2 e^{\lambda_1 t} + \dots + C_n K_n e^{\lambda_n t}$$

Exempel:

$$\begin{cases} \frac{dx}{dt} = -4x + y + z \\ \frac{dy}{dt} = x + 5y - z \\ \frac{dz}{dt} = y - 3x \end{cases}$$

Första steget kommer vara att skriva om detta på matrisform för att sedan kunna skriva det på formen X' = AX har vi:

$$A = \begin{pmatrix} -4 & 1 & 1 \\ 1 & 5 & -1 \\ 0 & 1 & -3 \end{pmatrix}, \qquad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Vi hittar egenvärdena genom att kolla på determinanten av $(A - \lambda I) = 0$:

$$\begin{vmatrix} -4 - \lambda & 1 & 1 \\ 1 & 5 - \lambda & -1 \\ 0 & 1 & -3 - \lambda \end{vmatrix} = 0$$

Kofaktorutveckla längst sista raden eller Sarrus ger:

$$-(4 + \lambda - 1) - (3 + \lambda)(-(4 + \lambda)(5 - \lambda) - 1) = -(\lambda + 3) + (\lambda + 3)((4 + \lambda)(5 - \lambda) + 1)$$
$$(\lambda + 3)(4 + \lambda)(5 - \lambda)$$
$$\Leftrightarrow \lambda_1 = -3, \qquad \lambda_2 = -4, \qquad \lambda_3 = 5$$

Nu gäller det att bestämma egenvektorerna:

$$\lambda_1 = -3 \Rightarrow (A - \lambda_1 I) = \begin{pmatrix} -1 & 1 & 1\\ 1 & 8 & -1\\ 0 & 1 & 0 \end{pmatrix}$$

Vi vill lösa:

$$\begin{pmatrix} -1 & 1 & 1 \\ 1 & 8 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix}$$

Vi gör Gauzz med den:

$$\begin{pmatrix} -1 & 1 & 1\\ 1 & 8 & -1\\ 0 & 1 & 0 \end{pmatrix} = 0$$

$$k_1 = k_3\\ k_2 = 0$$
 \Rightarrow Vi kan ta $k_1 = 1$:
$$K_1 = \begin{pmatrix} 1\\0\\1 \end{pmatrix} \Rightarrow K_1 e^{-3t}$$

 $\lambda = -4$:

$$A - \lambda_2 I = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 9 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$k_2 + k_3 = 0$$

$$k_1 - 10k_3 = 0$$
 Väljer vi $k_3 = 1$ får vi heltalsgrejer, najs :
$$k_3 = 1, \qquad k_1 = 10, \qquad k_2 = -1$$

$$K_2 = \begin{pmatrix} 10 \\ -1 \\ 1 \end{pmatrix} \Rightarrow X_2 = K_2 e^{-4t}$$

För
$$\lambda = 5$$
 får vi $K_3 = \begin{pmatrix} 1 \\ 8 \\ 1 \end{pmatrix}$

Generella lösningen ges av linjärkombination av alla:

$$X = C_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} e^{-3t} + C_2 \begin{pmatrix} 10 \\ -1 \\ 1 \end{pmatrix} e^{-4t} + C_3 \begin{pmatrix} 1 \\ 8 \\ 1 \end{pmatrix} e^{5t}$$

Vi vill nu lägga grunden för fasporträtt. Vi gör detta genom ett exempel:

Rörelsen för en partikel beskrivs av ODE:en

$$X' = AX$$
 där $X = \begin{pmatrix} x \\ y \end{pmatrix}$ och A uppfyller:
$$A \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \end{pmatrix} \text{ och } A \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

Hitta den generella lösningen och beskriv vad som händer med en partikel som vid t=2 är $\binom{2}{2}$ när $t\to\infty$.

Vad vi noterar är att det enda som händer vid matrismultiplikationen är att i första fallet så får vi $3 \cdot \binom{1}{2}$ och andra fallet $-1 \cdot \binom{1}{-2}$ så vi kan enkelt läsa ut vilka våra egenvärden och egenvektorer är:

$$\lambda_1 = 3$$
 dess egenvektor är $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$
 $\lambda_2 = -1$ dess egenvektor är $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$

Då har vi allt för att hitta lösningen:

$$X = C_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{3t} + C_2 \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-t}$$

Nu skall vi svara på frågan. Vi söker C_1, C_2 så att $X(2) = \binom{2}{2}$:

$$C_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^6 + C_2 \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-2} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \Leftrightarrow \begin{pmatrix} e^6 & e^{-2} \\ 2e^6 & -2e^{-25} \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
$$\Leftrightarrow C_1 =$$

Vi får då:

$$C_1 = \frac{3}{2}e^{-6}$$

$$C_2 = \frac{1}{2}e^2$$

Lösningen är då:

$$X(t) = e^{3t} \begin{pmatrix} \frac{3}{2}e^{-6} \\ \frac{3}{2}e^{-6} \end{pmatrix} + \frac{1}{2}e^{-t} \begin{pmatrix} \frac{1}{2}e^2 \\ -e^2 \end{pmatrix}$$

Vad händer när $t \to \infty$?:

$$e^{3t} \to \infty$$
 när $t \to \infty$
 $e^{-t} \to 0$ när $t \to \infty$

Det vi kan se är att partikeln går mot ∞ i riktningen som ges av $\binom{3}{2}e^{-6}$, eftersom vi bara bryr oss om riktningen kan vi ta bort e^{-6} , dvs $\binom{3}{2}$

16.3. Fasporträtt.

Den generella lösningen till X' = AX går att beskriva grafiskt. Exempelvis för lösningen från tidigare exemplet har vi:

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} C_1 e^{3t} + C_2 e^{-t} \\ 2C_1 e^{3t} - 2C_2 e^{-t} \end{pmatrix}$$

Denna ritar upp en kurva i planet. För varje val av C_1 och C_2 får vi en kurva. Dessa kurvor har det formella namnet banor. I detta fall kommer banorna befinna sig i \mathbb{R}^2 , vi kallar \mathbb{R}^2 för fasplanet. Anledningen till varför det kallas fasplan är att vi kommer se att beroende på var partiekln börjar kommer vi få olika faser.

Fasporträttet ges av att rita ut ett par banor i fasplanet. Man kan inte välja dessa banor hur som helst utan måste göra det representativt.

Hur kan vi systematiskt rita ut fasporträtt? Om vi börjar att kolla på lättare fall, säg $C_2=0$, får vi $X=C_1\begin{pmatrix}1\\2\end{pmatrix}e^{3t}$. Hur beter sig denna när den går mot $\pm\infty$?

När $t \to -\infty$ går denna mot origo. När $t \to \infty$ får vi olika fall beroende på om C_1 är positivt eller negativt. Om C_1 är positivt går denna i riktningen $\binom{1}{2}$, om C_1 är negativ går den i riktningen $-\binom{1}{2}$:

FIGURE 2. Fasporträtt

Om $C_1 = 0$ får vi $X = C_2 \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-t}$. När $t \to +\infty$ går denna mot origo, när $t \to -\infty$ får viockså 2 olika fall beroende på om C_2 är positiv eller negativ:

Om $C_1 \neq 0 \neq C_2$ får vi:

$$X = C_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{3t} + C_2 \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-t}$$

FIGURE 3. Fasporträtt 2

När $t \to +\infty$ närmar sig X $C_1\begin{pmatrix} 1\\2 \end{pmatrix} e^{3t}$ och när $t \to -\infty$ $C_2\begin{pmatrix} 1\\-2 \end{pmatrix}$. "Kombinerar" vi graferna får vi:

FIGURE 4. Fasporträtt3

17. HOMOGENA LINJÄRA SYSTEM MED KONSTANTA KOEFFICIENTER - FORTS

Förra gången tittade vi på X' = AX där A är en nxn-matris med konstanta koefficienter. Lösningen är en kolonnvektor $X = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix}$. Om A har n distinkta egenvärden är lösningen given på formen $X = C_1 e^{\lambda_1 t} K_1 + \dots + C_n e^{\lambda_n t} K_n$

I dagens föreläsning ska vi kolla på om vi har komplexa egenvärden och eller dubbla.

17.1. Komplexa egenvärden.

Vi kollar på fallet n = 2 (dvs 2x2-matriser), men det är relativt tydligt hur man generaliserar till högre dimensioner.

Vi har då $\lambda = \alpha + i\beta$ är ett egenvärde, då är motsvarande egenvektor komplex:

$$K = K_1 + iK_2$$

En lösning till X' = AX ges på samma sätt som vi gjorde förra gången:

$$X = e^{\lambda t} \cdot K = e^{(\alpha + i\beta)t} \left(K_1 + K_2 \right)$$

Däremot vill vi oftast skriva detta på en mer reell form. Vi har gjort liknande när vi gjorde detta för 2:a ordningens ekvationer.

Exempel:

$$\text{L\"{os}} \ X' = \underbrace{\begin{pmatrix} 4 & -5 \\ 5 & -4 \end{pmatrix}}_{A} X$$

Steg 1, bestäm egenvärden:

$$det(A - \lambda I) = \lambda^2 + 9 = 0 \Leftrightarrow \lambda = \pm 3i$$

Steg 2, hitta egenvektor (vi behöver bara räkan ut 1, ty även deras egenvektorer är konjugat). För $\lambda_1 = 3i$ får vi:

$$\begin{pmatrix} 4-3i & -5 \\ 5 & -4-3i \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \end{pmatrix} = 0$$

Notera att raderna är linjärt beroende, så det räcker med att kolla på en rad. Vi kikar på den övre:

$$(4-3i)k_1 - 5k_2 = 0$$

Denna löses genom $k_1 = 5$ och $k_2 = 4 - 3i$.

Vår första egenvektor är då:

$$K_1 = \begin{pmatrix} 5 \\ 4 - 3i \end{pmatrix} = \begin{pmatrix} 5 \\ 4 \end{pmatrix} + \begin{pmatrix} 0 \\ -3 \end{pmatrix} i K_2 = \begin{pmatrix} 5 \\ 4 \end{pmatrix} + \begin{pmatrix} 0 \\ 3 \end{pmatrix} i$$

Vi har då:

$$\begin{split} X_1 &= e^{\lambda_1 t} K_1 = e^{3it} \left(\begin{pmatrix} 5 \\ 4 \end{pmatrix} + \begin{pmatrix} 0 \\ -3 \end{pmatrix} i \right) = \left(\cos(3t) + i \sin(3t) \right) \left(\begin{pmatrix} 5 \\ 4 \end{pmatrix} + \begin{pmatrix} 0 \\ -3 \end{pmatrix} i \right) \\ \Leftrightarrow \left(\begin{matrix} 5 \cos(3t) \\ 4 \cos(3t) + 3 \sin(3t) \end{matrix} \right) + \left(\begin{matrix} 5 \sin(3t) \\ -3 \cos(3t) + 4 \sin(3t) \end{matrix} \right) i \end{split}$$

$$X_2 = \dots = \begin{pmatrix} 5\cos(3t) \\ 4\cos(3t) + 3\sin(3t) \end{pmatrix} - \begin{pmatrix} 5\sin(3t) \\ -3\cos(3t) + 4\sin(3t) \end{pmatrix} i$$

Om vi tittar på de reella lösningarna (vilket vi kan få från linjärkombinationer):

$$\frac{1}{2}X_1 + \frac{1}{2}X_2 = \begin{pmatrix} 5\cos(3t) \\ 4\cos(3t) + 3\sin(3t) \end{pmatrix}$$
$$\frac{1}{2i}X_1 - \frac{1}{2i}X_2 = \begin{pmatrix} 5\sin(3t) \\ -3\cos(t) + 4\sin(3t) \end{pmatrix}$$

Men skalärer är $\in \mathbb{R}$? De flesta saker fungerar även i \mathbb{C} , detta även här. Inga konstigheter alltså!

Nu har vi löst ekvationen, men m.h.a fasporträtt får vi en "känsla" av hur lösningen är och beter sig. Detta kan vi göra genom att sätta $C_1 = 0$ och $C_2 = 0$ där C_i är konstanten i linjärkombinationen. Vi har då i första fallet:

$$X = \begin{pmatrix} 5\cos(3t) \\ 4\cos(3t) - 3\sin(3t) \end{pmatrix}$$

Notera här att lösningen blir periodiskt med period $\frac{2p}{3}$ (detta kommer från att vi har argumentet 3t). Vi kan testa stoppa in några värden på t och plotta:

t	=
0	$\binom{5}{4}$
$\frac{\pi}{6}$	$\begin{pmatrix} 0 \\ 3 \end{pmatrix}$
$\frac{\pi}{3}$	$\begin{pmatrix} -5 \\ -4 \end{pmatrix}$
$\frac{\pi}{2}$	$\begin{pmatrix} 0 \\ -3 \end{pmatrix}$

Om läsaren testar att plotta detta så kommer en ellips uppenbara sig. Generellt, om egenvärden är rent imaginära får vi slutna lösningar (periodisk) som roterar runt origo. Fasporträttet kallas för stabilt

Om $\lambda = \alpha + i\beta$ med $\alpha < 0$ får vi spiraler som rör sig mot origo. Kallas för stabil spiral men även för asymptotiskt stabil

Däremot, om $\alpha > 0$ rör sig spiralerna utåt. Denna är en instabil spiral ty vi rör oss bort från origo.

17.2. Dubbla egenvärden.

Det som skiljer sig här från tidigare är att vi har algebraiskmultiplicitet, men även geometrisk multiplicitet. Återigen kommer vi kolla på fallet n=2. Det som händer i högre dimensioner är liknande men vi kan få lite problem.

Antag X' = AX där A har bara ett egenvärde λ . Problemet här är att vi behöver 2 lösningar men har barar 1 egenvärde. Men! Det visar sig att det går att lösa om vi kikar på den geometriska multipliciteten. Vi delar in i fall:

Fall 1: Geometrisk multiplicitet 2 (hur många tillhörande egenvektorer som finns)

 $(A - \lambda I)K = 0$ har 2 linjärt oberoende lösningar. Då är det inga problemis, ty vi får vårt K_1 och K_2 . Vi får:

$$X_1 = e^{\lambda t} K_1, \qquad X_2 = e^{\lambda t} K_2$$

Här händer inget särskillt. Det enda som skiljer sig lite är att vanligtvis rör sig fasporträtt till den största egenvektorn, men här är de lika stora.

Fall 2: Geometrisk multiplicitet 1:

 $(A - \lambda I)K = 0$ har bara 1 lösning K_1 . Vi får $X_1 = e^{\lambda t}K_1$, men vi måste hitta K_2 . Idén är lik den med 2:a ordningens, vi testar:

$$X_2 = e^{\lambda t} t K_1$$

Detta kommer inte funka, men det vi kommer göra är:

$$X_2 = e^{\lambda t} t K_1 + e^{\lambda t} p$$

Detta kommer däremot inte funka i det endimensionella fallet. Vi tar det som ansats och stoppar in i X' = AX. Vi får:

$$K_1 \lambda t e^{\lambda t} + K_1 e^{\lambda t} + p \lambda e^{\lambda t} + A p e^{\lambda t}$$

$$\Leftrightarrow t e^{\lambda t} \underbrace{(\lambda K_1 - A K_1)}_{=0} + e^{\lambda t} \underbrace{(K_1 + \lambda p - A P)}_{=0} = 0$$

Det enda sättet den är lika med noll är om det som står i måsvingarna är noll, annars har vi linjärt beroende.

$$(\lambda K_1 - AK_1) = (A - \lambda I)K_1 = 0$$

 $(K_1 + \lambda p - AP) = (A - \lambda I)p = K_1$

Notera att den första ekvationen är uppfyllt eftersom K_1 är en egenvektor med egenvärde λ . Det enda vi behöver göra är alltså att hitta p som löser den andra ekvationen. Man kommer alltid kunna hitta det här p:et givet denna situation.

Den generella lösningen är:

$$X = C_1 e^{\lambda t} K_1 + C_2 e^{\lambda t} (tK_1 + p)$$

Exempel:

$$\text{L\"{o}s } X' = \begin{pmatrix} -1 & 3\\ -3 & 5 \end{pmatrix} X$$

Steg 1, egenvärden!:

$$det(A - \lambda I) = (\lambda - 2)^2 \Rightarrow \lambda_1 = \lambda_2 = 2$$

Egenvektorer är:

$$\begin{pmatrix} -3 & 3 \\ -3 & 3 \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Notera att den övre och undre är indentisk, vi får $k_1 = k_2$. Vi får 1 egenvektor $K = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$: (. Det som kan hända att man får 2 linjärt oberoende lösningar (om man har geometrisk multiplicitet i, 1) men det fick vi inte i detta fall.

Vi har en lösning $X_1 = e^{2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

För X_2 söker vi p så att $(A - \lambda I)p = K$:

$$\begin{pmatrix} -3 & 3 \\ -3 & 3 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Vi kan ta $p_1 = 0$ och $p_2 = \frac{1}{3} \Rightarrow p = \begin{pmatrix} 0 \\ \frac{1}{3} \end{pmatrix}$. Även här finns det många lösningar till denna ekvation och det spelar ingen roll vilken man tar. Det vi *inte* kan göra är att multiplicera med en konstant. Detta ger oss:

$$X_2 = e^{2t} \left(t \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ \frac{1}{3} \end{pmatrix} \right) = e^{2t} \begin{pmatrix} t \\ t + \frac{1}{3} \end{pmatrix}$$

Den generella lösningen ges av:

$$X = C_1 X_1 + C_2 X_2 = C_1 e^{2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_2 e^{2t} \begin{pmatrix} t \\ t + \frac{1}{3} \end{pmatrix}$$

Kuriosa, om spiralen motsvarar gyllene snittet/avståndet mellan spiralen är gyllene snittet, vad säger det om ODE:en?

18. ICKE-HOMOGENA LINJÄRA SYSTEM MED KONSTANTA KOEFFICIENTER

Idag kommer vi prata om system av första ordningens ODE:er, likt det vi har gjort de tidigare föreläsningar, men vi kommer betrakta det inhomogena fallet, dvs X' = AX + F.

Lösningen är väldigt likt det vi gjorde för andra ordningens ODE:er. Den generella lösningen ges på formen:

$$X = X_h + X_p$$

 Där X_h är lösningen till den associerade homogena ekvationen, och X_p är en partikulärlösning. Man kan säga att förra föreläsningarna har gått igenom hur vi hittar X_h om A endast har konstanta koefficienter.

Hur hittar vi X_p ?

Metoden är i princip samma som den med andra ordningens ODE. Det finns ett par metoder att betrakta:

- Obestämda koefficienter, "gissa en lösning och sätt in"
- Variation-av-parameter metoden
 - Här kommer vi få en "fundamentalmatris"

18.1. Metoden med obestämda koefficienter.

Vi kör ett introducerande exempel, som vanligt. Idén går ut på att man gissar en lösning (systemet måste vara enkelt, annars kan vi oftast inte göra en bra gissning).

- Det krävs 2 saker för att göra en gissning:
 - A har konstanta koefficienter $\bullet~F$ är "lätt":
 - Polynom
 - Exponentialfunktioner
 - Trigonometriska funktioner
 - Produkter av ovanstående

Exempel:

Betrakta:

$$X' = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} X + \begin{pmatrix} 2 \\ -1 \end{pmatrix} e^t$$

Här är F "lätt". Det associerade homogena systemet ges av:

$$X' = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} X$$
$$X_h = C_1 e^{3t} \begin{pmatrix} 1 \\ 2 \end{pmatrix} + C_2 e^{-t} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

Nästa steg är att hitta en partikulärlösning.

Vi har $F(t) = \begin{pmatrix} 2 \\ -1 \end{pmatrix} e^t$, en rimlig gissning är en gissning på samma form, dvs $X_p = \begin{pmatrix} a \\ b \end{pmatrix} e^t$

Vi stoppar in och räknar:

$$\begin{pmatrix} a \\ b \end{pmatrix} e^t = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} e^t + \begin{pmatrix} 2 \\ -1 \end{pmatrix} e^t$$

$$\Leftrightarrow \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a+b+2 \\ 4a+b-1 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} b+2 \\ 4a-1 \end{pmatrix}$$

$$a = \frac{1}{4} \qquad b = -2$$

$$\Leftrightarrow X_p = \begin{pmatrix} 1/4 \\ -2 \end{pmatrix} e^t$$

Generella lösningen ges då av:

$$X = X_h + X_p = C_1 e^{3t} \begin{pmatrix} 1 \\ 2 \end{pmatrix} + C_2 e^{-t} \begin{pmatrix} 1 \\ -2 \end{pmatrix} + e^t \begin{pmatrix} 1/4 \\ -2 \end{pmatrix}$$

Detta var ett väldigt snällt exempel, men idén är smma sak i komplicerade fall men man får räkna lite mer.

Precis som tidigare så finns det en slags "mall" över lämpliga gissningar:

Om vi har
$$F(t) = \begin{pmatrix} 6t \\ -10t + 4 \end{pmatrix}$$
 ser vi att vi kan skriva om det som $\begin{pmatrix} 6 \\ -10 \end{pmatrix} t + \begin{pmatrix} 0 \\ 4 \end{pmatrix}$ Då blir en rimlig gissning $\begin{pmatrix} a_1 \\ b_2 \end{pmatrix} t + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix}$

Om vi har
$$F(t) = \begin{pmatrix} -1e^{-t} + 1 \\ e^{-t} - 5t + 7 \end{pmatrix}$$
 kan vi, som tidigare, dela upp det i $\begin{pmatrix} -2 \\ 1 \end{pmatrix} e^{-t} + \begin{pmatrix} 0 \\ -5 \end{pmatrix} t + \begin{pmatrix} 1 \\ 7 \end{pmatrix}$ Då blir en rimlig gissning $\begin{pmatrix} a_1 \\ b_1 \end{pmatrix} e^{-t} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} t + \begin{pmatrix} a_3 \\ b_3 \end{pmatrix}$

Notera, man kan även fördela räkningen av partikulärlösning genom att först räkna partikulärlösningen för första termen $\begin{pmatrix} a_1 \\ b_1 \end{pmatrix} e^{-t}$) och sedan andra och sedan summera dem.

Det blir snabbt mycket räkningar!

Vi får snabbt problem om gissningen löser det homogena systemet. I exmeplet, om det hade stått $F = \begin{pmatrix} 2 \\ -1 \end{pmatrix} e^{3t}$ så hade det inte funkat. Tidigare har vi kunnat multiplicera x eller logaritmer men det funkar inte riktigt här utan vi får göra lite mer komplicerade saker som vi inte kommer gå igenom. Det kan funka i vissa fall, men inte i alllmänhet.

18.2. Variation av parameter metoden.

För att kunna beskriva denna metod behöver vi ett nytt koncept, fundamentalmatris:

Sats 18.1: Fundamentalmatrisen

Låt X_1, \dots, X_n vra en fundamental lösningsmängd till X' = AXpå intervallet I Matrisen:

$$\Phi = \begin{pmatrix} \vdots & \vdots & \vdots \\ X_1 & \dots & X_n \\ \vdots & \vdots & \vdots \end{pmatrix}$$

kallas för fundamentalmatrisen till systemet. Notera att detta är en nxn-matris

Denna matris har behändiga egenskaper, såsom:

- Eftersom X_i löser $X_i' = AX_i$ $\forall i$ har vi även $\Phi' = A\Phi$
- Eftersom X_1, \dots, X_n är linjärt oberoende följer det att $det(\Phi) \neq 0$ gäller för alla $t \in I$, matrisen är alltså inverterbar
 - Notera: determinanten är även känd som Wronskianen

Alla lösningar till X' = AX är på formen:

$$X = C_1 X_1 + \cdots + C_n X_n$$
 (linjärkombination av lösnignar)

Denna linjärkombination går att skriva på ett smidigt sätt med hjälp av denna fundamentalmatris:

$$X = \Phi \cdot C$$
 $C = \begin{pmatrix} C_1 \\ \vdots \\ C_n \end{pmatrix}$

Vi provar $X_p = \Phi(t) \cdot U(t)$ där $U = \begin{pmatrix} u_1(t) \\ \vdots \\ u_n(t) \end{pmatrix}$ istället för $y_p = u_1 y_1 + u_2 y_2$. Nu är frågan om vi kan

stoppa in det i systemet och finna U så att vi kan finna en explicit lösning. Vi stoppar in i X' = AX:

$$\Phi'U + \Phi U' = A\Phi U + F$$

Vi kan använda från tidigare att Φ är en lösning till det homogena systemet:

$$A\Phi U + \Phi U' = A\Phi U + F$$

Vi vet att Φ^{-1} finns eftersom kolonnerna är linjärt oberoende, då kan vi göra:

$$\Phi U' = F \Rightarrow \Phi^{-1} \Phi U' = \Phi^{-1} F$$

$$U' = \Phi^{-1}F \Rightarrow U = \int \Phi^{-1}F dt$$
 (integralen ges av att elementvis integrera)

Om vi väljer U till detta, dvs:

$$X_p = \Phi \int \Phi^{-1} F dt$$

Så löser X_p det inhomogena systemet X' = AX + F

Betrakta:
$$X' = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} X + \begin{pmatrix} 1/\cos(t) \\ 0 \end{pmatrix}$$

A har konstanta koefficienter men F är inte på "enkel" form, vi kan inte gissa oss fram så det är ett ypperligt tillfälle att använda det vi precis lärt oss!

Steg 1: Lös det associerade homogena systemet:

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \Rightarrow \lambda = \pm i \text{ (egenvärden)}$$

Vi får att en egenvektor till $\lambda_1=i$ är $\binom{i}{1}$, för $\lambda_2=-i$ har vi då $\binom{-i}{1}$ (ges av konjugatet).

Den allmänna/generella lösningen (om vi skriver upp det i termer av dessa 2) blir:

$$C_1 e^{it} \begin{pmatrix} i \\ 1 \end{pmatrix} + C_2 e^{-it} \begin{pmatrix} -i \\ 1 \end{pmatrix}$$

Men detta vill vi skriva på reell form (i termer av sinus och cosinus):

$$\Leftrightarrow (C_1 + C_2) \begin{pmatrix} -\sin(t) \\ \cos(t) \end{pmatrix} + i(C_1 - C_2) \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix}$$

Om vi väljer
$$C_1$$
 och C_2 på rätt sätt kan vi få lösningen uttryckt i bara reella termer. Vi kan ta $X_1 = \begin{pmatrix} -\sin(t) \\ \cos(t) \end{pmatrix}$ och $X_2 = \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix}$

Vi får:

$$X_h = C_1 X_1 + C_2 X_2$$

Men det är inte X_h som vi bryr oss om här, det vi vill komma åt är Φ :

$$\Phi = \begin{pmatrix} X_1 & X_2 \end{pmatrix} = \begin{pmatrix} -\sin(t) & \cos(t) \\ \cos(t) & \sin(t) \end{pmatrix}$$

Steg 2:Hitta en partikulärlösning:

Då tar vi får Φ na formel som vi har hittat och stoppar in:

$$X_p = \Phi \int \Phi^{-1} F dt$$

Vi har Φ , vi har F, vi har inte Φ^{-1} . Vi räknar fram det. Tacksamt är det en 2x2 matris, och inversen ges av en sluten formel:

$$\frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

$$\Leftrightarrow \Phi = \frac{1}{-\sin^2(t) - \cos^2(t)} \begin{pmatrix} \sin(t) & -\cos(t) \\ -\cos(t) & -\sin(t) \end{pmatrix} = \begin{pmatrix} -\sin(t) & \cos(t) \\ \cos(t) & \sin(t) \end{pmatrix}$$

Notera, inversen är sig sjäv, coolt va! (Detta är absolut inte det allmänna fallet). Nu har vi Φ^{-1} så vi räknar:

$$\int \Phi^{-1}(t)F(t)dt = \int \begin{pmatrix} -\sin(t) & \cos(t) \\ \cos(t) & \sin(t) \end{pmatrix} \begin{pmatrix} 1/\cos(t) \\ 0 \end{pmatrix} dt$$

$$\Leftrightarrow \int \begin{pmatrix} -\frac{\sin(t)}{\cos(t)} \\ 1 \end{pmatrix} dt = \int \begin{pmatrix} -\tan(t) \\ 1 \end{pmatrix} dt$$

$$\Leftrightarrow \begin{pmatrix} \log(|\cos(t)|) \\ t \end{pmatrix}$$

Vi får inte glömma bort multiplikationen med Φ :

$$\Phi \int \Phi^{-1} F dt = \begin{pmatrix} -\sin(t) & \cos(t) \\ \cos(t) & \sin(t) \end{pmatrix} \begin{pmatrix} \log(|\cos(t)|) \\ t \end{pmatrix}$$
$$\Leftrightarrow \begin{pmatrix} -\sin(t)\log(|\cos(t)|) + t\cos(t) \\ \cos(t)\log(|\cos(t)|) + t\sin(t) \end{pmatrix}$$

Detta ger en partikulärlösning! Vi har vår homogena, vi har vår partikulärlösning, vi får alltså:

$$X = X_h + X_p \Rightarrow C_1 X_1 + C_2 X_+ X_p$$

18.3. Flera egenskaper hos fundamentalmatrisen.

Fundamentalmatrisen är som linjär algebra själv, det finns otroligt många tillämpningsområden och coola egenskaper man kan studera och som kan hjälpa en med ODE:er. Vi ska kika på ett par:

Om man skall hitta en specifik lösning till ett IVP behöver vi bestämma C_1, C_2, \dots, C_n . Man kan stoppa in och lösa, men det visar sig att det går att smidigt använda sig av fundamentalmatrisen för att göra saker lite enklare.

Vi har sett att lösningen till
$$X' = AX$$
 kan skrivas som $X = \Phi C$ där $C = \begin{pmatrix} C_1 \\ \vdots \\ C_n \end{pmatrix}$. Om vi nu vill hitta en

lösning så att vi har ett specifikt initialvillkor, exempelvis $X(0) = X_0$, så får vi ju en matrisekvation att lösa ty vi har $X_0 = \Phi(0)C$. Vi vet att Φ är inverterbar, så vi kan helt enkelt skriva det som $C = \Phi^{-1}(0)X_0$ Vi kan skriva detta på en sats:

Sats 18.2

Låt $\Phi(t)$ vara fundamentalmatrisen för X' = AX. Den (unika) lösningen till systemet med $X(0) = X_0$ ges av:

$$X(t) = \Phi(t) \cdot C = \Phi(t)\Phi^{-1}(0)X_0$$

Exempel: Betrakta

$$x' = 4x + 2y x(0) = 1$$

$$y' = 3x - y y(0) = -1$$

$$X' = \underbrace{\begin{pmatrix} 4 & 2 \\ 3 & -1 \end{pmatrix}}_{A} X$$

Hitta Φ , vi måste räkna fram egenvärden vilket blir $\stackrel{A}{\lambda}_1 = -2$ och $\lambda_2 = 5$. Tillhörande egenvektorer är $K_1 = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$ och $K_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

Lösningar ges av $X_1 = e^{-2t} \begin{pmatrix} 1 \\ -3 \end{pmatrix}, \qquad X_2 = e^{5t} \begin{pmatrix} 2 \\ !' \end{pmatrix}$

$$\Phi = \begin{pmatrix} e^{-2t} & 2e^{5t} \\ -3e^{-2t} & e^{5t} \end{pmatrix}$$

Vi vill hitta X så att $X(0) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Vi använder formen direkt:

$$\Phi(0) = \begin{pmatrix} 1 & 2 \\ -3 & 1 \end{pmatrix} \Rightarrow \Phi^{-1}(0) = \frac{1}{1+6} \begin{pmatrix} 1 & -2 \\ 3 & 1 \end{pmatrix}$$
$$\Leftrightarrow \frac{1}{7} \begin{pmatrix} 1 & -2 \\ 3 & 1 \end{pmatrix}$$

Vi stoppar in i formeln vi hade för att hitta C:

$$X(t) = \Phi\Phi^{-1}(0)X_0$$

$$= \begin{pmatrix} e^{-2t} & 2e^{5t} \\ -3e^{-2t} & e^{5t} \end{pmatrix} \frac{1}{7} \begin{pmatrix} 1 & -2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\Leftrightarrow \frac{1}{7} \begin{pmatrix} 3e^{-2t} + 4e^{5t} \\ -9e^{-2t} + 2e^{5t} \end{pmatrix}$$

19. Uppgifter

19.1. Lösningar till homogena system (X' = AX).

Oftast fallet att A har konstanta koefficienter

- (1) Den enda vi behöver för att hitta den generella lösningen är egenvärderna och egenvektorerna av
- (2) Ett n-dimensionellt linjärt första ordningenssystem har alltid n-linjärt oberoende lösningar
- (3) Vi bryr oss främst om den algebraiska multiplicitetet hos ett egenvärde, inte den geometriska
- (4) Om A har konstanta koefficienter är lösningen definierad på hela den reella linjen
- (5) En ODE av ordning n+1 kan skrivas som ett första ordningens system med n ODE:er
- (6) EN matris har alltid n distinkta egenvärden
- (7) Om alla egenvärden hos A är positiva, så konvergerar alla lösningar mot origo

19.2. Inhomogena system (X' = AX + F).

Metoder som finns är metoden med obestämda koefficienter (gissar lösning) och variation av parameter metoden

- (1) Variation av parametermetoden fungerar endast om A har konstanta koefficienter
- (2) Metoden med obestämda koefficienter fungerar endast om F(t) består av polynom
- (3) För att använda variation av parametermetoden måste vi först lösa det associerade homogena
- (4) Fundamentalmatrisen till ett system har lösningar som rader i matrisen
- (5) Fundamentalmatrisen till ett system är unik
- (6) Determinanten av fundamentalmatrisen är samma som Wronskianen
- (7) Variation av parametermetoden kan kräva att vi beräknar "omöjliga" integraler, integraler vi inte kan beräkna explicit

19.3. Extra.

- (1) Consider the system $X' = \begin{pmatrix} 1 & 4 \\ -1 & 1 \end{pmatrix} X$ (a) Find the general solution of the system. Give the solution in "real" form

 - (b) Find a particular solution satisfying $X(0) = \begin{pmatrix} 10 \\ 3 \end{pmatrix}$
 - (c) Sketch the phase portrait of the system and briefly describe its characteristics
- (2) The matrix A has eigenvalues $\lambda_1 = -1$ and $\lambda_2 = 3$ with respective eigenvectors

$$X_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \qquad X_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

- (a) Find the general solution to the system X' = AX
- (b) Find a particular solution to the system:

$$X' = AX + \begin{pmatrix} \frac{e^{-t}}{1+t^2} \\ \frac{-e^{-t}}{1+t^2} \end{pmatrix}$$

using the method of cariation of parameters and give the general solution

20. Numeriska metoder - Datorprojekt

Oftast kan vi inte hitta en explicit lösning, men en approximation är allt som behövs. Vi kommer titta på:

- ullet Eulers metod
- Förbättrad Eulers metod
- Runge-Kutta metoden

Sats 20.1

ntag y' = f(x, y) med $y(x_0) = y_0$ har en unik lösning på intervallet $[x_0, a]$. Då finns en konstant c, så att:

Om y_1, \cdots, y_n är approximationerna med Eulers metod beräknad med steglängd h, då har vi: $|y_i - y(x_i)| \leq C \cdot h$

21. ICKE LINJÄRA SYSTEM

Vi har kollat lite på detta, exvis separabla ODE:er. Vi ska kolla på stabiliteten på lösningarna (inte lösa de explicit).

Det finns lite system som är lättare att analysera, dessa kallas för autonoma system.

21.1. Autonoma system.

I det endimensionella fallet har vi en autonom ekvation på formen:

$$y' = f(y)$$

Notera att HL inte beror på den beroende variabeln. Just y = y(t), men förändringshastigheten beror inte på t. Detta är vanligt förekommande i fysiken.

Vi kan få mer information och förstå lösningarna till denna ODE genom att kolla på nollställena till f ty det är var vi har konstanta lösningar.

Om vi istället betraktar det 2-dimensionella fallet, så är ett autonomt system på formen:

$$X' = \underbrace{F(x)}_{\text{Beror ej på }t}$$

Även om vi bara betrktar det 2-dimensionella fallet, så brukar det gå att generalisera till flera dimensioner.

Vi kommer betrakta system på formen:

$$x' = P(x, y)$$
$$y' = Q(x, y)$$

Lösningar till:

$$0 = P(x, y)$$
$$0 = Q(x, y)$$

Ger oss konstanta lösningar till ODE:n. Nollställena kallas, precis som i flervariabelanalys, för kritiska punkter. Desas är ofta viktiga eftersom det inte händer något här. Vi kan då använda dessa som "startpunkt" för analys av ODE:n.

Exempel: Betrakta följande system

$$x' = y$$
$$y' = -x + \varepsilon x^3$$

Kritiska punkterna:

$$0 = y \\ 0 = \pm \frac{1}{\sqrt{\varepsilon}}$$

Målet är att studera stabiliteten runt de kritiska punktenra, men vad menas med det? Antag att (x_0, y_0) är en kritisk punkt till

$$x' = P(x, y)$$
$$y' = Q(x, y)$$

Vad händer då med banor som börjar nära de kritiska punkterna? Stannar den? Rör den sig bort? Närmar den sig? (Om vi börjar i en kritiskt punkt kommer vi stå still ty lösningen är konstant).

21.2. Stabilitet för system med konstanta koefficienter.

Detta har vi typ hållt på med, så det blir lite repetition. Vi påminner oss om:

$$X' = AX$$

Där A är en 2x2 matris med konstanta koefficienter. Vi kommer antag att determinanten är nollskilld eftersom om den inte är noll, kommer vi ha flera lösningar till AX = 0. Dvs den enda kritiska punkten är X = 0 = (0,0) om den är nollskilld. Då är egenvärdena nollskillda! Glöm inte, om egenvärdena är noll så blir Fasporträttet lite annorlunda och det vill vi undvika.

Hur ser stabiliteten ut i de olika fallen med avseende på egenvärdena?:

Egenvärden	Тур	Stabilitet
$0 < \lambda_2 < \lambda_1$ $\lambda_2 < 0 < \lambda_1$ $< \lambda_2 < \lambda_1 < 0$	Nod Sadelpunkt Nod	Instabil Instabil Asymptotiskt stabil
$\begin{array}{l} \alpha > 0, \beta \neq 0 \\ \alpha = 0, \beta \neq 0 \\ \alpha < 0, \beta \neq 0 \end{array}$	Spiral Center Spiral	Instabil Stabil Asymptotiskt stabil
$\lambda_1 = \lambda_2 > 0$	$\begin{array}{c} {\rm Nod}\; ({\rm G.M}=2) \\ {\rm Improper\; node}\; ({\rm G.M}<2) \end{array}$	Instabil Instabil
$\lambda_1 = \lambda_2 < 0$	Nod (G.M = 2) Improper nod (G.M < 2)	Asymptotiskt stabil Asymptotiskt stabil

Vi har inte glömt vår lilla funderin där uppe, vad menas med stabilitet?

De begrepp vi har använt är:

- Stabilt
- Instabilt
- Asymptotiskt stabilit

Men mer precist, vad betyder detta? Den intuitiva betydelsen är givetvis viktigt.

Sats 21.1: Stabilitet

En kritisk punkt (x_0, y_0) kallas stabil om det $\forall \varepsilon > 0 \quad \exists \delta > 0$ så att alla lösningar som börjar med distansen mellan (x_0, y_0) och (x(0), y(0)) är högst δ (vi kan byta ut noll i funktionerna mot vad som helst ty vi vill fokusera på den beroende variabeln).

Har vi att avståndet mellan (x(t), y(t)) och (x_0, y_0) är högst $\varepsilon \ \forall t > 0$.

Helt enkelt, jämför x-led och y-led. I allmänhet har vi $\delta \leq \varepsilon$. Börjar vi nära, så stannar vi nära.

En punkt som inte är stabil kallas för *instabil*

En skillnad mellan de linjära system är att detta gäller bara nära punkterna. I linjära system om vi hade ellipser så var det garanterat att vi hade ellipser överallt, men vihär kanske vi har ellipser lokalt, men vi vet inte hur det ser ut mer globalt.

Sats 21.2: Asymptotiskt Stabil

En kritisk punkt kallas asymptotiskt stabil om den är stabil och $\exists \delta > 0$ så att avståndet mellan (x(0), y(0)) och (x_0, y_0) är strikt mindre än δ och att vi har

$$\lim_{t \to \infty} (x(t), y(t)) = (x_0, y_0)$$

Hur ser stabilitet ut för icke-linjära system då? Betrakta:

$$x' = P(x, y)$$
$$y' = Q(x, y)$$

Denna kan ha flera kritiska punkter, men givetvis vill vi kunna klasificera dessa punkter. En metod vi kan göra detta på är genom fasplanet och säga lite om stabiliteten.

Tanken här är att vi inte kan lösa systemet i allmänhet, men vi kan rita ett riktningsfält. Då blir det ganska lätt att se dessa punkter, men det är givetvis inte ett bevis på att det existerar någon intressant punkt.

Riktningen ges av $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{Q(x,y)}{P(x,y)}$. Detta är en ODE som vi kan lösa, oftast inte för hand, men

dt ibland går det att få ut en explicit lösning.

Exempel:

$$x' = y$$

$$y' = -2x^3$$

De kritiska punkterna ges av:

$$y = -2x^3 = 0 \to (0,0)$$

Vi får:

$$\frac{dy}{dx} = \frac{-2x^3}{y}$$

Detta råkar vara en separabel ekvation och har lösningarna:

$$y^2 = -x^4 + C \Leftrightarrow y^2 + x^4 = C$$

Denna lösning är skriven på implicit form och som $n \ddot{a} s t a n$ är en cirkel. Hade vi haft x^2 istället hade det varit en cirkel med radie \sqrt{C} . Däremot går denna lösning att rita ut och vi kommer se att vi har något ellipsliknande. Det vi får här är att den kritiska punkten blir ett center, och punkten är stabilt.

21.3. Lokalt linjära system.

I närheten av kritiska punkter kommer, i allmänhet, det linjära beteendet dominära. Även för icke-linjära system.

Sats 21.3: Lokalt linjärt system

Antag att (0,0) är en kritisk punkt till $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} p(x,y) \\ q(x,y) \end{pmatrix}.$

Systemet kallas *lokalt linjärt* om (0,0) är en *isolerad* kritiskt punkt (inga andra kritiska punkter i närheten), och:

$$\lim_{(x,y)\to(0,0)} \frac{p(x,y)}{||(x,y)||} = 0 = \lim_{(x,y)\to(0,0)} \frac{q(x,y)}{||(x,y)||}$$

Vi vill helt enkelt att $\begin{pmatrix} p(x,y) \\ q(x,y) \end{pmatrix}$ ska gå mot noll vid den kritiska punkten

Exempel:

$$x' = 4x + 2y + 2x^2 - y^2$$

$$y' = 4x - 3y + 7xy$$

Vi noterar:

$$\left. \begin{array}{c} 4x + 2y \\ 4x - 3y \end{array} \right\} \mbox{linjär} \\ \left. \begin{array}{c} 2x^2 - y^2 \\ 7xy \end{array} \right\} \mbox{icke-linjär}$$

Vi ser även att (0,0) är en kritisk punkt. Den är isolerad, men vi visar inte detta nu. Det vi vill undersöka är nu om gränsvärderna stämmer. Det som är viktigt med dessa gränsvärdern är att täljaren går mot noll snabbare än vad nämnaren gör:

$$\begin{split} & \lim_{(x,y) \to (0,0)} \frac{p(x,y)}{\sqrt{x^2 + y^2}} = \lim_{(x,y) \to (0,0)} = \frac{2x^2 - y^2}{\sqrt{x^2 + y^2}} = [\text{Pol\"ara koordinater}] \\ \Rightarrow & \lim_{r \to 0} \frac{2r^2 \cos^2(\theta) - r^2 \sin^2(\theta)}{r} = \lim_{r \to 0} r \left(2 \cos^2(\theta) - \sin^2(\theta) \right) = 0 \end{split}$$

Liknande för q(x, y). Slutsatsen vi kan dra är att systemet är lokalt linjärt. De flesta systemen är lokalt linjära. Detta kan vi komma fram till genom att använda oss av taylorutvecklingen. Alla funktioner som har andra ordningens taylorutveckling är lokalt linjära.

Alla autonoma system med en isolerad kritisk punkt kan skrivas som lokalt linjära system om $P, q \in C^2$ (inte komplexa talen, utan kontinuerliga funktioner). Detta betyder helt enkelt att de har 2-gånger kontinuerliga derivator. Detta är inte ett jättestort krav, de flesta uppfyller detta, men givetvis finns det de som inte uppfyller dessa. Vi kan taylorutvecklar:

$$P(x,y) = P(x_0, y_0) + P_x(x_0, y_0)(x - x_0) + P_y(x_0, y_0)(y - y_0) + R_1(x, y)$$

$$Q(x,y) = Q(x_0, y_0) + Q_x(x_0, y_0)(x - x_0) + Q_y(x_0, y_0)(y - y_0) + R_2(x, y)$$

Här är:

$$\lim_{(x,y)\to(0,0)} \frac{R_1(x,y)}{||(x,y)||} = 0 \lim_{(x,y)\to(0,0)} \frac{R_2(x,y)}{||(x,y)||} = 0$$

Om (x_0, y_0) är en kritisk punkt, har vi att $P(x_0, y_0)$ och $Q(x_0, y_0)$ är 0. De försvinner, och det som blir kvar är derivatorna. Vi kan skriva det som:

$$\begin{pmatrix} x \\ y \end{pmatrix}' = \underbrace{\begin{pmatrix} p_x(x_0, y_0) & p_y(x_0, y_0) \\ q_x(x_0, y_0) & q_y(x_0, y_0) \end{pmatrix}}_{\text{Jacobianen}} \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix} + \begin{pmatrix} R_1(x, y) \\ R_2(x, y) \end{pmatrix}$$

Detta uppfyller kraven för lokalt linjär om vi byter ut (x,y) mot $(x-x_0,y-y_0)$

Tanken är helt enkelt att den icke-linjära delen är pyttepytteliten i närheten av den kritiska punkten (x_0, y_0) . Liten i den bemärkelsen att gränsvärderna ovan gäller. Systemet kan approximeras av den linjära delen.

Stabiliteten hos det ursprungliga systemt är samma som hos det linjära systemet (i de flesta fallen). Vad menar vi med "i de flesta fall?" Låt λ_1 och λ_2 vara egenvärdena till Jacobianen:

Egenvärden	Тур	Stabilitet
$0 < \lambda_2 < \lambda_1$ $\lambda_2 < 0 < \lambda_1$ $< \lambda_2 < \lambda_1 < 0$	Nod Sadelpunkt Nod	Instabil Instabil Asymptotiskt stabil
$\alpha > 0, \beta \neq 0$ $\alpha = 0, \beta \neq 0$ $\alpha < 0, \beta \neq 0$	Spiral Spiral/Center Spiral	Instabil Obestämd/Stabil Asymptotiskt stabil
$\lambda_1 = \lambda_2 > 0$ $\lambda_1 = \lambda_2 < 0$	Nod/Spiral Nod/Spiral	Instabil Stabil

Detta är oftast väldigt enkelt att bestämma, det enda vi behöver göra är att räkna ut Jacobianen och egenvärden.

Exempel:

$$x' = y$$

$$y' = -x + \varepsilon x^3$$

Har 3 kriska punkter, $\left(\pm\frac{1}{\sqrt{\varepsilon}},+\right)$ och (0,0)

Jacobianen ges av:

$$\begin{pmatrix} P_x & P_y \\ Q_x & Q_y \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 + 3\varepsilon x^2 & 0 \end{pmatrix}$$

Väldigt enkelt i detta fall eftersom funktionen bara beror på x. Vi undersöker punkterna och börjar med punkt 1, $\left(\frac{1}{\sqrt{\varepsilon}}, 0\right)$:

$$J = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$$

Notera att densamma gäller för $-\frac{1}{\sqrt{\varepsilon}}$. Egenvärden ges av:

$$\lambda_{1,2} = \pm \sqrt{2} \rightarrow$$
 Instabil sadelpunkt

I punkt 3(0,0) ger Jacobianen:

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Egenvärdena till denna Jacobian är:

 $\lambda_{1,2}=\pm i \to {\rm Spiral}$ eller center med obestämd stabilitet

22. Liapunovs andra metod

Vi kommer kika på Liapunovs andra metod som kan förhoppningsvis ge oss mer information när vi får imaginära egenvärden (såsom stabilitet eller typ).

Denna metod är användbar (ibland) om egenvärdena för det linjära systemet är rent imaginära.

Som exempel tar vi ett fysikaliskt system:

Givet ett konservativt fysikaliskt system (energin i systemet är konstant). Om potentialenergin är minimal i en punkt så är den stabil. Systemt är en pendel som svänger.

Antag att massan är m, längden på tråden är L, och θ är vinkel för tråden, så kan rörelsen beskrivas m.h.a en andra ordningens ODE:

$$\frac{d^2\theta}{dt^t} + \frac{g}{L}\sin(\theta) = 0$$

Låt $x=\theta$ och $y=\theta'$. Vi kan då skriva detta som ett system:

$$x' = y$$

$$y' = -\frac{g}{L}\sin(x)$$

Vi kan kontrollera att systemet är autonomt genom att notera att vi inte beror på t någonstans (det spelar ingen roll när vi börjar helt enkelt).

Vi skall studera stabiliteten, så vi börjar med att finna de kritiska punkterna:

$$y = 0
-\frac{g}{L}\sin(\theta)(x) = 0$$
 $\Leftrightarrow x = \pi \cdot n \qquad n \in \mathbb{Z}$ $\}$

Vi kollar på origo. Jacobianen i punkten (0,0):

$$\begin{pmatrix} 0 & 1 \\ -\frac{g}{L} & 0 \end{pmatrix}$$

Som har egenvärdena:

$$\lambda_{1,2} = \pm i \sqrt{\frac{g}{L}}$$

Notera att vi har rent imaginära egenvärden, vi får alltså ingen information om stabiliteten. Hur skall vi då gå tillväga? Jo! Vi kan kolla på energin (som vi vet är konstant), då kan vi utifrån det säga något om stabiliteten.

Den totala energin ges av: $E = \frac{m}{2}L^2y^2 + mgL(1-\cos(x))$. Eftersom E är konstant, så måste lösningarna (y, x) uppfylla föregående ekvation.

Om x och y är små (nära noll) har vi att $\cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{4!} + \dots \approx 1 - \frac{x^2}{2}$. Vi får då att:

$$E \approx \frac{1}{2}mL^{2}y^{2} + mgL\frac{x^{2}}{2}$$

$$\Leftrightarrow \frac{2E}{mgL^{2}} \approx \underbrace{\frac{y^{2}}{g} + \frac{x^{2}}{L}}_{\text{Ellipser runt original}}$$

Framförallt så stannar banorna nära origo (eftersom ellipsens banor inte kan skjuta ut åt oändligheten eftersom de har längden \sqrt{g} och \sqrt{L}), alltså är systemet stabilt.

23.1. Definita funktioner.

Vi kommer inte använda oss av den "vanliga definitionen" utan den från dynamiska system. I tidigare fallet hade vi energin som vår "test-funktion". Vi fill undersöka det allmänna fallet men då kommer vi kräva att dessa test-funktioner uppfyller några villkor. Det vi vill är att funktionen är definit:

Sats 23.1: Definit funktion

En kontinuerligt deriverbar funktion V(x,y) som uppfyller V(0,0) = 0 är positivt definit om $V(x,y) > 0 \quad \forall (x,y) \neq 0$ tillräckligt nära (0,0). Tänk på det som en grop.

Om istället $V(x,y) \ge 0$ är funktionen positivt semi-definit

Givetvis existerar det negativt definit samt negativt semi-definit genom att låta V(x,y) < 0 resp. $V(x,y) \leq 0$

Givet en funktion, hur kan vi identifiera att den är definit resp. semi-definit? Detta är ganska lätt att göra, enligt följande:

Sats 23.2

Låt V(x,y) vara en 3-gånger kontinuerligt deriverbar funktion i närheten av (x_0,y_0) (den kritiska punkten). Punkten (x_0,y_0) är ett lokalt minimum resp. maximum om:

•
$$\frac{\partial V}{\partial x}(x_0, y_0) = \frac{\partial V}{\partial y}(x_0, y_0) = 0$$

•
$$\frac{\partial^2 V}{\partial x^2} > 0 \text{ (resp } < 0)$$

$$\bullet \left(\frac{\partial^2 V}{\partial x^2} \frac{\partial^2 V}{\partial y^2} - \left(\frac{\partial^2 V}{\partial x \partial y} \right)^2 \right)$$

Anmärkning: Lokalt minimum \leftrightarrow positivt definit, lokalt maximum \leftrightarrow negativt definit

Exempel: Låt $V(x,y) = ax^2 + bxy + cy^2$:

$$\frac{\partial V}{\partial x} = 2ax + by \to \frac{\partial V}{\partial x}(0,0) = 0$$
$$\frac{\partial V}{\partial y} = bx + 2cy \to \frac{\partial V}{\partial y}(0,0) = 0$$

$$\frac{\partial^2 V}{\partial x^2} = 2a, \qquad \frac{\partial^2 V}{\partial y^2} = 2c, \qquad \frac{\partial^2 V}{\partial xy} = b$$

$$\frac{\partial^2 V}{\partial x^2} \frac{\partial^2 V}{\partial y^2} - \left(\frac{\partial^2 V}{\partial x \partial y}\right)^2 = 4ac - b^2$$

Om a > 0 och $4ac - b^2 > 0$ så uppfyller den punkt 2 och 3 och vi får att den är positivt definit. Om vi istället har att a < 0 och $4ac - b^2 > 0 \rightarrow$ negativt definit.

Vi har en plan! Välj V så att banorna till vår ODE rör sig uppåt eller neråt i "gropen" som ges av V. Hur skulle vi kunna göra detta?

Antag att $\gamma(x,y)=(x(t),y(t))$ är någon bana till en ODE. Vi vill kolla hur V förändras längs vår bana enligt:

$$\frac{d}{dt}V|_{\gamma(t)} = \frac{d}{dt}V(x(t),y(t)) = \frac{\partial V}{\partial x}\frac{dx}{dt} + \frac{\partial V}{\partial y}\frac{dy}{dt}$$

Kan vi säga något om ifall det här är ökande eller minskande? I vissa fall kan vi det, om vi väljer V på rätt sätt.

Antag att:

$$\begin{vmatrix} x' = P(x,y) \\ y' = Q(x,y) \end{vmatrix} \rightarrow = \frac{dV}{dx} P(x,y) + \frac{dV}{dy} Q(x,y) = \frac{\partial V}{\partial x} \frac{dx}{dt} + \frac{\partial V}{\partial y} \frac{dy}{dt}$$

Vi får redan vår information utan att behöva lösa ODE:n

Sats 23.3

Betrakta följande system:

$$x' = P(x, y)$$
$$y' = Q(x, y)$$

Antag att det existerar en kritisk punkt i origo (0,0). Antag även att det finns en funktion V(x,y) så att V är positivt definit.

Om funktionen $\frac{dV}{dt} = \frac{\partial V}{\partial x} P(x,y) + \frac{\partial V}{\partial y} Q(x,y)$ är negativt semi-definit, så är (0,0) en stabil kritisk punkt.

Om den är negativt definit, så är (0,0) asymptotiskt stabil.

Sats 23.4

Betrakta följande system:

$$x' = P(x, y)$$
$$y' = Q(x, y)$$

Antag att det existerar en kritisk punkt i origo (0,0). Låt V vara en funktion med kontinuerliga derivator. Antag V(0,0) = 0 och att i varje område runt origo finns minst en punkt så att V är positiv. Detta är ett svagare krav än positivt definit.

Om $\frac{dV}{dt}$ är positivt definit, då är (0,0) instabil.

Sats 23.5: Liapunov funktionen

Funktionen V kallas för Liapunov funktionen

Det som är viktigt med denna metod är att det inte är rena räkningar, vi måste hitta funktionen V. På tentan kommer vi få tips "leta efter V som är på den här formen". Man kan prova sig fram för att hitta detta V, men det finns ingen allmän metod för detta. Har man ett fysikaliskt system är detta lättare, men det finns ingen allmän metod för detta. Har man ett fysikaliskt system är detta lättare.

Exempel vid använding av Liapunovs metod:

Betrakta följande system:

$$x' = -\frac{1}{2}x^3 + 2xy$$
$$y' = -y^3$$

Vi vill visa att origo är en asymptotiskt stabil punkt. Genom att konstruera en Liapunovfunktion på formen $V(x,y) = ax^2 + cy^2$. Här är a och c obestämda, vi måste hitta a och c så vi får en Liapunovfunktion.

Enlig sats 23.3 följer det att (0,0) är asymptotiskt stabil om vi kan hitta V(x,y) så att följande gäller:

- \bullet V är positivt definit
- $\frac{dV}{dt}$ negativ definit

Notera, V är positivt definit om a och b > 0.

Nu beräknar vi $\frac{dV}{dt}$ och försöker välja a resp. b så att $\frac{dV}{dt}$ är negativt definit:

$$\frac{dV}{dt} = \frac{dV}{dx}\frac{dx}{dt} + \frac{dV}{dy}\frac{dy}{dt}$$

$$= 2ax\left(\frac{-1}{2}x^3 + 2xy^2\right) + 2cy\left(-y^3\right)$$

$$= -ax^4 + 4ax^2y^2 - 2cy^4$$

$$= -a(x^4 - 4x^2y^2) - 2cy^4$$

$$\Leftrightarrow -a\left((x^2 - 2y^2)^2 - 4y^4\right) - 2cy^4$$

$$\Leftrightarrow -a\left(\frac{x^2 - 2y^2}{2}\right) - \underbrace{y^4}_{\text{alltid positiv}} (2c - 4a)$$

Då kan vi se till att koefficienterna alltid är negativa så att vi får ett negativt uttryck (och därmed negativ definit).

Notera även att $\frac{dV}{dt}(0,0) = 0 \quad \forall a, c$

Om -a och -(2c-4a) är negativ, då är $\frac{dV}{dt}(x,y) < 0$ för (x,y) = (0,0).

Vi kan exempelvis ta a=1 och $c=\frac{5}{2}$

Med det valet får vi:

$$\frac{dV}{dt} = -(x^2 - 2y^2)^2 - y^4$$

Nu ser det ut som att det är negativt överallt. Vad som däremot kan hända är att vi får noll, vilket endast sker när vi är i origo.

Vi får då att $\frac{dV}{dt}$ är negativt definit. Samtidigt har vi att $V(x,y)=x^2+\frac{5}{2}y^2$ är positivt definit. Från Sats 23.3 är (0,0) asymptotiskt stabil.

24. Periodiska lösningar och gränscykler

Många fenomen i naturen/verkligheten beter sig periodiskt, eller i alla fall approximativt periodiska. I många fall beskriver periodiska lösningar någon slags gräns/slutfas hos ett system. Den kanske inte är periodisk från början, men när tiden går så blir den periodisk. Detta är premissen till dagens föreläsning.

Sats 24.1: Periodisk lösning

En lösning X = X(t) av det autonoma systemet X' = F(x).

En lösning till detta system kallas periodisk om det finns ett $t \in \mathbb{R}$ (perioden) så att:

$$X(t+T) = X(t) \quad \forall t \in \mathbb{R}$$

Konstanta lösningar är periodiska.

Vi bryr oss främst om icke-konstanta periodiska lösningar.

Vi har sätt exempel på periodiska lösningar när vi betraktade system av ODE:er med rent imaginära egenvärden och lösningen berodde på $\sin(x)$ och $\cos(x)$

Vi betraktar de fallen då lösningen inte är explicit periodisk utan är slutfasen.

Detta betyder att det kommer finnas en periodisk lösning (lokalt) och andra lösningar närmar sig denna lösning.

En sådan periodisk lösning kallas för en *gränscykel*. De flesta system kommer vi inte epxlicit kunna hitta gränscykeln, det kan gå numeriskt men oftast inte explicit.

Exempel: Betrakta följande system:

$$x' = x + y - x(x^2 + y^2) = P(x, y)$$
$$y' = -x + y - y(x^2 + y^2) = Q(x, y)$$

Det som gör detta system till ett snällt system är att vi har $x^2 + y^2$ som gör att vi kan skriva om till polära koordinater.

Till att börja med så kan vi notera att (0,0) är en kritisk punkt. Betraktar vi Jacobianen i punkten (0,0) har egenvärdena:

$$1 \pm i$$

Origo är en instabil punkt och det kommer vara någon slags spiral. Detta är inte av super intresse, utan bara en notering.

Hade vi haft ett linjärt system hade vi haft att spiralen går mot oändligheten. Eftersom det är icke-linjärt kan vi inte säga samma sak.

Vi kommer se att lösningar som börjar nära (0,0) närmar sig en gränscykel.

Byte till polära koordinater ger:

$$x = r\cos(\theta), \qquad y = r\sin(\theta)$$

Vi vet att följande gäller:

 $x^2 + y^2 = r^2$, derivering med avseende på t ger:

$$\begin{split} 2r\frac{dr}{dt} &= 2x\frac{dx}{dt} + 2y\frac{dy}{dt} \\ &= r\frac{dr}{dt} = x(x+y-x(x(x^2+y^2))) + (-x+y-y(x^2+y^2)) \\ &= x^2+y^2-(x^2+y^2)^2 \\ \Leftrightarrow r^2-r^4 \qquad \frac{dr}{dt} &= r(1-r^2) \Leftarrow \text{Autonom ekvation} \end{split}$$

Tecknet på derivatna beror på $r(1-r^2)$.

Vi får om
$$r \in (0,1) \Rightarrow \frac{dr}{dt} > 0 \Rightarrow r$$
 ökar. Om $r \in (1,\infty) \Rightarrow \frac{dr}{dt} < 0 \Rightarrow r$ minskar

Om $r = 1 \Rightarrow \frac{dr}{dt} = 0 \Rightarrow r$ konstant (motsvarar enhetscirkeln)

(Denna ODE är separabel och kan lösas explicit).

För θ får vi om vi deriverar $x = r\cos(\theta)$, $y = r\sin(\theta)$ med avseende på t:

(1)
$$\frac{dx}{dt} = \frac{dr}{dt}\cos(\theta) - r\sin(\theta)\frac{d\theta}{dt}$$

(2)
$$\frac{dy}{dt} = \frac{dr}{dt}\sin(\theta) + r\cos(\theta)\frac{d\theta}{dt}$$

Vi vill ha $\frac{d\theta}{dt}$

Vi kan få bort $\frac{dr}{dt}$ om vi tar $(1) \cdot \sin(\theta) - (2) \cdot \cos(\theta)$.

Om vi samtidigt multiplicerar med r får vi:

$$\underbrace{r\sin(\theta)}_{y} \frac{dx}{dt} - \underbrace{r\cos(\theta)}_{y} \frac{dy}{dt}$$

$$= r\sin(\theta) \left(\frac{dr}{dt}\cos(\theta) - r\sin(\theta)\frac{d\theta}{dt}\right) - r\cos(\theta) \left(\frac{dr}{dt}\sin(\theta) + r\cos(\theta)\frac{d\theta}{dt}\right)$$

$$\Leftrightarrow -r^{2}\frac{d\theta}{dt} = \text{HL}$$

För VL har vi:

$$y\frac{dx}{dt} - x\frac{dy}{dt} = x^2 + y^2 = r^2$$
$$\Leftrightarrow r^2 = -r^2\frac{d\theta}{dt} \Rightarrow \frac{d\theta}{dt} = -1$$

Vi får systemet:

$$\frac{dr}{dt} = r(1 - r^2)$$

$$\frac{d\theta}{dt} = -1$$

$$\Rightarrow \begin{cases} r = \frac{1}{\sqrt{1 + (r_0^{-2} - 1)e^{-2t}}} \\ \theta = -(t - \theta_0) \end{cases}$$

Om $r_0 = 1$ får vi r(t) = 1

Sats 24.2: Gränscykel

En sluten bana (ej har början eller slut) i fasplanet (vi tar endast upp 2-dim ty i 3-dim kan vi snurra runt) som uppfyller att andra banor närmar sig gränscykeln (antingen utifrån eller innifrån) när $t \to \infty$ kallas för en gränscykel.

- Om alla banor nära gränscykeln närmar sig, kallas gränscykeln för stabil
- Om enbart en sida närmar sig kallas den semi-stabil
- Om ingen sida närmar sig kallas den instabil, men är ej gränscykel per definition

OBS! En gränscykel måste inte vara en cirkel. Utseendet på gränscykeln är kopplad till t.

I allmänhet är det svårt att visa att att vi ens har gränscykler. Det är i allmänhet väldigt svårt att studera (även för polynom). Vi kommer visa fall då de *inte* finns gränscykler.

Betrakta följande system:

$$x' = P(x, y)$$
$$y' = Q(x, y)$$

Sats 24.3

Om P,Q har kontinuerliga deriverar i en enkelt sammanhängande område $D\subseteq\mathbb{R}^2$.

En sluten bana *måste* omsluta/omringa minst en kritisk punkt.

Om den endast omsluter/omringar en kritisk punkt, kan den punkten inte vara en sadelpunkt.

Från Sats 24.3 följer följande:

- Om ett område inte har några kritiska punkter, så existerar det inte slutna banor i det området
- Om ett område endast har en kritisk punkt som är en sadelpunkt, då finns inga slutna banor i det området.

Sats 24.4

Antag att P,Q har kontinuerliga derivator i ett enkelt sammanhängande område $D\subseteq\mathbb{R}^2$ Om P_x+Q_y har samma tecken i hela D så finns inga slutna banor.

Anmärkning: Enkelt sammanhängande = inga hål

Exempel: Betrakta följande system:

$$x' = -2x - 3y - xy^{2} = P(x, y)$$
$$y' = y + x^{3} - x^{2}y = Q(x, y)$$

Vi undrar om den har några slutna banor eller gränscykler.

Vi deriverar:

$$P_x + Q_y = (-2 - y^2) + (1 - x^2) = -1 - (x^2 + y^2)$$

Vi noterar att den är negativ i hela \mathbb{R}^2

Det finns då inga slutna banor enligt Sats 24.4

25. Lektion

25.1. Kritiska punkter och lokalt linjära system.

- En kritisk punkt är antingen stabil eller instabil
- Det räcker oftast att studera den linjära delen av ett system för att förstå stabilitet
- Ett system kan alltid skrivas som ett lokalt linjärt system
- Om Jakobianen vid en krisik punkt har ett positivt egenvärde är punkten instabil
- För asymptotiskt stabila kritiska punkter konvergerar närliggande lösningar mot punkten
- Om realdelarna för Jakobianens egenvärden alla är noll vid en kritisk punkt får vi ingen information om stabiliteten
- Nära en kritsk punkt dominerar den linjära delen av ett lokalt linjärt system

25.2. Liapunovs metod.

- Att hitta en fungerande Liapunovfunktion är enkelt
- En Liapunovfunktion behöver vara negativt definit
- Liapunovs satser är användbara när alla egenvärden till Jakobianen är rent imaginära
- Det finns bara en Liapunovfunktion som fungerar
- En Liapunovfunktion motsvarar ungefär energin hos ett fysikaliskt system
- Om det finns en Liapunovfunktion så att derivatan med avseende på systemet är engativt definit då är den kritiska punkten stabil
- Om systemet modellerar ett fysikaliskt system funerar energin hos systemet ofta som en Liapunovfunktion

25.3. Gränscykler.

- En gränscykel är en periodisk lösning
- Det finns alltid lösningar som konvergerar mot en gränscykel
- Alla lösningar konvergerar mot en gränscykel
- En gränscykel går alltid runt origo
- Man kan oftast beräkna gränscyklar explicit
- För att en gränscykel ska kunna finnas måste systemet ha en kritisk punkt
- En gränscykel omsluter exakt en kritisk punkt