ชื่อ-นามสกล	รหัสนักศึกษา	ตอนเรียน	ลำดับที่	
מי איים איים איים איים איים איים איים אי		710 700 0 0 70	 กำหนดส่ง	

Lab	
HW	
Until	

การบ้านปฏิบัติการ 3 Data Representation II (20 คะแนน)

ข้อกำหนด

- i. ในข้อที่มี [Attachment] ให้ Download ไฟล์ Template จาก Grader ลงมาแล้วส่งเฉพาะไฟล์ที่ชื่อตรงกับระบุใน แต่ละข้อเท่านั้น และ สามารถสร้างฟังก์ชันย่อยเพิ่มเติมได้ตามอัธยาศัย
- ii. Binary string ในปัญหาทุกข้อ หากเป็น integer จะใช้การแทนข้อมูลแบบ two's complement
- 1) **5 คะแนน** (HW03_1_XXXXXXXXX.go) [Attachments] ให้เขียนฟังก์ชัน addNSubtract(n1, n2 string, bitLen uint8) (int64, int64) เพื่อคำนวณและคืนค่าผลบวกและผลลบของ binary string n1 และ n2 โดย bitLen คือจำนวนบิต<u>ของผลลัพธ์</u>ที่สามารถเก็บได้ (มีการพิจารณาการ overflow ของการบวก และการ expand bit) และให้คืนค่าผลลัพธ์เป็น จำนวนเต็ม int64 ในระบบเลขฐาน 10 โดยมีข้อกำหนดดังนี้
 - a) กรณี binary string x และ y มีความยาวไม่เท่ากันให้ expand จำนวนบิตของ string ที่สั้นกว่าโดยคงค่าและ เครื่องหมายให้ถูกต้องการทำการคำนวณ (slide Data Representation Part I หน้า 47-49 หัวข้อ Expanding)
 - b) ความยาวของ string x และ y คือจำนวนบิตทั้งหมดของข้อมูลในฐาน 2 ในแต่ละจำนวน <u>Hint</u> พิจารณาเรียกใช้ฟังก์ชัน additiveInverse() จาก HW02_4

Input	Output
"1101" "1" 5	-4 -2
"01101" "01000" 4	5 5

2) **5 คะแนน** (HW03_2_XXXXXXXXX.go) [Attachments] ให้แก้ไขโปรแกรม จาก HW02_1 ในสัปดาห์ก่อนให้รองรับ จำนวนจริงบวก r_1 และ r_2 ที่มีความยาวไม่เกิน 70 หลัก (รวมจุดทศนิยมแล้ว) ในฐาน n ($2 \le n \le 10$) โดยให้เขียน ฟังก์ชันที่มี signature ดังนี้ baseNAddition(r_1 , r_2 string, n int) string โดยให้จำนวนตำแหน่งใน ผลลัพธ์เท่ากับจำนวนตำแหน่งทศนิยมที่มากที่สุดจาก r_1 และ r_2

<u>Input</u>	<u>Output</u>
11.01	100.11
1.1	
2	
18.50	28.70
10.2	
10	

				- / ~
1				
a	v v a	a	ຸ ຍ ຝ	
ชอ-นามสกล	รหสนกศึกษา	ตอนเรียน	0000100	
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	วทผาแดเแลา	ดเคเนเวยน	. ลาดบท	

3) 5 คะแนน (HW03_3_XXXXXXXXX.go) [Attachments] ให้<u>เขียนฟังก์ชัน</u> float16bitNormed(n float32) string เพื่อคืนค่า binary string แทนการแทนค่าข้อมูลแบบ float ความยาว 16 บิตตามวิธีของ IEEE 754 แบบ normalized (Case 1 จาก slide เรื่อง Data Representation Part II - Floating Points) โดยให้มีความยาวบิตในแต่ ละส่วนดังรูปด้านล่าง ทั้งนี้ให้ใช้การปัดเศษแบบ Truncating (ตัดทิ้งตามความยาวที่ระบุโดยไม่ต้องปัด) ในส่วน frac โดย String ที่คืนค่าจะต้องมีการเว้นวรรคแบ่งประเภทของบิตและหากมีการ overflow ให้คืนค่า empty string ทั้งนี้จะต้อง Encode ตัว Binary เอง และไม่อนุญาตให้ใช้ math.Float32bits(), math.Float64bits() หรืออื่นๆ ในลักษณะเดียวกัน

<u>Hint:</u> พิจารณาเรียกใช้ฟังก์ชัน floatToBaseB() จาก HW02_2 ในสัปดาห์ก่อน และ ฟังก์ชันต่าง ๆ จาก library strings

S	exp	frac
1	8-bits	7-bits

Input Output (สังเกตการเว้นวรรค)

204203	"0 10010000 1000111"
0.002	"0 01110110 0000011"
-23	"1 10000011 0111000"
0.0000000000000000000000000000000000000	"0 00001110 0000100"
0.0000000000000000000000000000000000000	"0 00000011 0001000"
0.0000000000000000000000000000000000000	"0 00000001 1011001"
0.0000000000000000000000000000000000000	"0 00000001 0000000"
0.0000000000000000000000000000000000000	пп
338953138925153547590470800371487866880	"0 11111110 1111111"

4) **5 คะแนน** (HW03_4_XXXXXXXXX.go) **[Attachments]** ให้เขียนให้เขียนฟังก์ชัน roundToEven(x string, bPlace uint8) string เพื่อคืนค่า binary string แทน<mark>จำนวนจริงบวก</mark> x ที่ผ่านการปัดเศษแบบ round to even ให้เหลือจำนวนตำแหน่ง binary places (จำนวนหลักหลังจุดทวินิยม) ตามที่ระบุจากตัวแปร bPlace

<u>Input</u>	Output
1101.101	1101.10
2	
1101.101	1110
0	
1101.111 Chiang Mai	1110.00
2 Cilians Mai	Offiversity
1101.111	1101.11100
5	

การ<u>ส่งงาน</u>

- 1. ลักษณะ/ลำดับข้อความของการรับค่า/แสดงผล จะ<u>ต้องเป็นไปตามที่ระบ</u>ุในตัวอย่างการ run
- 2. ไฟล์งานที่ส่ง จะต้องมีการแทรก comment ที่ต้นไฟล์ตามข้อกำหนดใน canvas รายวิชา
- 3. ไฟล์งานโปรแกรมที่ส่ง จะต้องมีการแทรก pseudocode เป็น comment ในแต่ละขั้นตอน
- 4. Upload ไฟล์ source code ตามที่ระบุในแต่ละข้อ ไปยังระบบตรวจให้คะแนนอัตโนมัติ <u>https://cmu.to/gdr203</u>

