Perspectives on Probabilistic Graphical Models

Dong Liu

Information Science and Engineering KTH - Royal Institute of Technology

Profile page: https://firsthandscientist.github.io/

Slide is available at: https://github.com/FirstHandScientist/phdthesis

Why are Probabilistic Graphical Models interested?

DIRECTED GRAPH REPRESENTATION

UNDIRECTED GRAPH REPRESENTATIONS

Vision Perception

Received Symbol

Digital

communication

- Error-control codes
- Computational biology
- Natural language processing
- etc.

A Guide to This Dissertation

Motivation

What are Probabilistic Graphical Models

Informally...

Motivation

- attributes of our interests in a system → variable nodes
- relationship of these factors → structures of a graph

Intrinsic property: reasoning with uncertainty

A directed/undirected graph encoding dependencies/indepedencies of distribution $p(\mathbf{x}; \theta)$:

- A BN/Generative model is a directed graph
 - $p(\mathbf{x}; \theta) = \prod_{n=1}^{N} p(x_n | \mathcal{P}(x_n))$
 - $\mathcal{P}(\cdot)$ are parent nodes
 - the local functions are proper distributions
- An MRF denoted by an undirected graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$
 - The probability distribution (Gibbs distribution) is $p(\mathbf{x}; \theta) = \frac{1}{Z(\theta)} \prod_{a \in \mathcal{I}} \psi_a(\mathbf{x}_a; \theta_a)$
 - a indexes potential functions $\mathcal{I} = \{\psi_A, \psi_B, \cdots, \psi_M\}$
 - $Z(\theta) = \sum_{\mathbf{x}} \prod_{a} \psi_{a}(\mathbf{x}_{a}; \theta_{a}).$

What are Probabilistic Graphical Models

Informally...

Motivation

- attributes of our interests in a system → variable nodes
- relationship of these factors → structures of a graph

Intrinsic property: reasoning with uncertainty

A directed/undirected graph encoding dependencies/indepedencies of distribution $p(\mathbf{x}; \theta)$:

- A BN/Generative model is a directed graph
 - $p(\mathbf{x}; \theta) = \prod_{n=1}^{N} p(x_n | \mathcal{P}(x_n))$
 - $\mathcal{P}(\cdot)$ are parent nodes
 - the local functions are proper distributions
- An MRF denoted by an undirected graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$
 - The probability distribution (Gibbs distribution) is $p(\mathbf{x}; \theta) = \frac{1}{Z(\theta)} \prod_{a \in \mathcal{I}} \psi_a(\mathbf{x}_a; \theta_a)$
 - a indexes potential functions $\mathcal{I} = \{\psi_A, \psi_B, \cdots, \psi_M\}$
 - $Z(\theta) = \sum_{\mathbf{x}} \prod_{a} \psi_{a}(\mathbf{x}_{a}; \theta_{a}).$

- The common inference problems:
 - Computing the likelihood of observed data.
 - Computing the marginals distribution $p(\mathbf{x}_A)$ over particular subset $A \subset \mathcal{V}$ of nodes
 - Computing the conditional distribution $p(\mathbf{x}_A|\mathbf{x}_B)$,
 - Computing the partition function or the Helmholtz free energy (for MRFs)
- Learning:

• To model or determine $p(x; \theta)$.

Two key components interacting with each other

Infer..Learn

- The common inference problems:
 - Computing the likelihood of observed data.
 - Computing the marginals distribution $p(\mathbf{x}_A)$ over particular subset $A \subset \mathcal{V}$ of nodes
 - Computing the conditional distribution $p(\mathbf{x}_A|\mathbf{x}_B)$,
 - Computing the partition function or the Helmholtz free energy (for MRFs)
- Learning:

Motivation

• To model or determine $p(x; \theta)$.

Two key components interacting with each other:

Infer..Learn

What is the state of x?

A TOY EXAMPLE

Motivation

Assume that we are interested into the state of node i in an MRF, it can be answered by

• the probability $p(x_i)$, or

•0

• an empirical version, a collection of samples $\{x_i^n\}_{n=1}^N$

It is similar for the case when \mathbf{x} is of interests, instead of x_i .

what is the state of x_4

WHAT IS THE STATE OF x?

Gibbs sampling: let us guess by sampling

Mean Field and BP: message in form of sample values \rightarrow message in form of belief

Sample iteratively: $x_i \sim p(x_i|\mathbf{x}_{-i}) \sim p(x_i,\mathbf{x}_{-i})$

Motivation

Propagating beliefs iteratively

Queries by collected samples $\{x^n\}_1^N$.

Queries by collected samples $\{b_i\}$.

Intuition from Gibbs (variational) free energy

$$F_V(b) = \mathrm{KL}(b(\mathbf{x})||p(\mathbf{x};\theta)) - \log Z(\theta)$$

with trial b(x). Instance: Bethe free energy.

ALTERNATIVE VEIW OF BP: α -BP

Input:

Motivation

- A pairwise Markov random field: $p(\mathbf{x}) \propto \prod_{s \in \mathcal{V}} \varphi_s(x_s) \prod_{(s,t) \in \mathcal{E}} \varphi_{st}(x_s, x_t)$
- A trial distribution: $q(\mathbf{x}) \propto \prod_{s \in \mathcal{V}} \tilde{\varphi}_s(x_s) \prod_{(s,t) \in \mathcal{E}} \tilde{\varphi}_{st}(x_s, x_t)$ with factorization $\tilde{\varphi}_{s,t}(x_s, x_t) := m_{st}(x_t) m_{ts}(x_s)$
- A metric: α-Divergence

Approximate local minimization:

- Direct minimization: argmin $\mathcal{D}_{\alpha_{ts}}(p^{\setminus (t,s)}(\mathbf{x})\varphi_{ts}(x_t,x_s)\|q^{\setminus (t,s)}(\mathbf{x})\tilde{\varphi}_{ts}^{\text{new}}(x_t,x_s))$ $\tilde{\varphi}_{tc}^{\text{new}}(x_t, x_s)$
- Local minimization: argmin $\mathcal{D}_{\alpha_{ts}}(q^{\setminus (t,s)}(\mathbf{x})\varphi_{ts}(x_t,x_s)||q^{\setminus (t,s)}(\mathbf{x})\tilde{\varphi}_{ts}^{\text{new}}(x_t,x_s))$, say you are $\tilde{\varphi}_{tc}^{\text{new}}(x_t, x_s)$ updating $\tilde{\varphi}_{ts}^{\text{new}}(x_t, x_s) = m_{ts}^{\text{new}}(x_s) m_{st}(x_t)$

Definition of
$$\alpha$$
-divergence $\mathcal{D}_{\alpha}(\rho \| q) = \frac{\sum_{\mathbf{X}} \alpha \rho(\mathbf{X}) + (1-\alpha)q(\mathbf{X}) - \rho(\mathbf{X})^{\alpha}q(\mathbf{X})^{1-\alpha}}{\alpha(1-\alpha)}$

$$\underbrace{m_{ts}^{\text{new}}(x_s)}_{\text{new msg. to s}} \propto \underbrace{m_{ts}(x_s)^{1-\alpha_{ts}}}_{\text{old msg. to s}} \left[\sum_{x_t} \varphi_{ts}(x_t, x_s)^{\alpha_{ts}} \underbrace{m_{st}(x_t)^{1-\alpha_{ts}}}_{\text{old msg. to t}} \quad \varphi_t(x_t) \prod_{w \in \mathcal{N}(t) \setminus s} m_{wt}(x_t) \right].$$

msg. from variable node t to factor φ_{St}

$$\underbrace{m_{ts}^{\text{new}}(x_s)}_{\text{new msg. to s}} \propto \underbrace{m_{ts}(x_s)^{1-\alpha_{ts}}}_{\text{old msg. to s}} \left[\sum_{x_t} \varphi_{ts}(x_t, x_s)^{\alpha_{ts}} \underbrace{m_{st}(x_t)^{1-\alpha_{ts}}}_{\text{old msg. to t}} \right] \varphi_t(x_t) \prod_{w \in \mathcal{N}(t) \setminus s} m_{wt}(x_t)$$

 $\begin{array}{c} \text{msg. from variable node } t \text{ to factor } \varphi_{st} \\ \hline \\ \text{Problem} \\ \hline \\ \text{-----} \end{array}$

Insights of α -BP

Connection to standard BP

- \bullet $\alpha \rightarrow 0$
- α-divergence reduce KL-divergence
- Update rule of α -BP reduces to

 $m_{te}^{\text{new}}(x_s) \propto$ $\sum_{x_t} \varphi_{st}(x_s, x_t) \varphi_t(x_t) \prod_{w \in \mathcal{N}(t) \setminus s} m_{wt}(x_t),$ which is standard BP update rule

Convergence

For an arbitrary pairwise Markov random field over binary variables, if the largest singular value of matrix $M(\alpha, \theta)$ is less than one. α -BP converges to a fixed point.

The associated fixed point is unique. See Corollary 3.1 for relaxed condition where singular value computation is avoided.

What does that mean

- You can safely use α -BP as an alternative to (loopy) BP
- You can use matrix M to check if you are guaranteed to get stable solution from α -BP

 $(t \rightarrow s)$, as

For binary, symmetric log-potentials
$$\varphi_{st}(x_s,x_t) = \exp\left\{\theta_{st}(x_s,x_t)\right\}\,,$$

$$\varphi_{s}(x_s) = \exp\left\{\theta_{s}(x_s)\right\}\,.$$

Matrix
$$M(\alpha, \theta)$$
, size $|\vec{\mathcal{E}}| \times |\vec{\mathcal{E}}|$, indexed by directed edges

$$M_{(t \to s),(u \to v)} = \begin{cases} |1 - \alpha_{ts}|, & u = t, v = s, \\ |1 - \alpha_{ts}| \tanh |\alpha_{ts}\theta_{ts}|, & u = s, v = t, \\ \tanh |\alpha_{ts}\theta_{ts}|, & u \in \mathcal{N}(t) \backslash s, v = t, \\ 0, & \text{otherwise.} \end{cases}$$

otherwise. 14/45

SOME NUMERICAL RESULTS

Numerical illustration of convergence, with normalized error $\|\mathbf{m}^{(n)} - \mathbf{m}^*\|_2 / \|\mathbf{m}^*\|_2$ versus the number of iterations. Number of nodes N = 16. Blue region denotes the range from minimum to maximum of the normalized error of 100 graph realizations, whereas the curve stands for mean error of the 100 realized graphs.

CONTINUING: What is the state of x?

YEDIDIA, FREEMAN, WEISS: A STEP TO GENERALIZATION Message among variables & factors \rightarrow message among regions Maybe I should combine this slide to the next one

- Blue region: valid region
- Red region: invalid region

Generalized belief propagation (GBP) generalizes loopy BP

- usual better approximation than LBP
- higher complexity
- · sensitive to scheduling of region messages

Corresponding to minimization of approximated variational free energy $F_{V}(b)$ with trial b including $\{b_{B}\}$.

A region R is a set V_R of variables nodes and a set A_R of factor nodes, such that if a factor node 'a' belongs to A_R , all the variables nodes neighboring a are in V_R .

AN TOY EXAMPLE OF REGION GRAPHS

Factor graph representation of MRF (2-by-3 grid) with factor nodes. MRF \rightarrow region graph:

- Clustering nodes
- Valid regions
- Energy Calculated per region
- Msg. Scheduling
- .
- See Section 4.1

RENN: REGION-BASED ENERGY NEURAL NETWORK

The region-based free energy of a region graph is

$$F_R(\mathcal{B}; \boldsymbol{\theta}) = \sum_{R \in \mathcal{R}} \underbrace{c_R}_{\text{Counting number}} \underbrace{\sum_{\boldsymbol{x}_R}}_{\substack{\boldsymbol{x}_R \text{ Belief on region R Region average energy}}} (\underbrace{E_R(\boldsymbol{x}_R; \boldsymbol{\theta}_R)}_{\text{Hobselve}}) + \ln b_R(\boldsymbol{x}_R)),$$

- counting number: balance the contribution of each region
- region average energy: $-\sum_{a\in A_B} \ln \varphi_a(\mathbf{x}_a; \boldsymbol{\theta}_a)$

Motivation

RENN

Non-root belief:

Average incoming marginalization from parents

Objective of RENN:

RENN Inference

RENN

Non-root belief:

Average incoming marginalization from parents

Objective of RENN:

RENN Inference:

Insights of RENN

Generalization

Bethe free energy can be recovered from region-based free energy:

- two-level region graph representation
- · constraint that each region can contain at most one factor node

Section 4.2.1

Motivation

Attributes of RENN

- RENN requires neither sampling technique nor training data (ground-truth marginal probabilities) in performing inference tasks;
- RENN does gradient descent w.r.t. its neural network parameter instead of iterative message-passing, and returns approximation of marginal probabilities and partition estimation in one-shot
- No message propagation, thus no need of message scheduling
- · Competitive performance and efficiency

SOME NUMERICAL COMPARISONS

Ising model: $p(\mathbf{x}; \theta) = \frac{1}{Z(\theta)} \exp\left(\sum_{(i,j) \in \mathcal{E}_F} J_{ij} x_i x_j + \sum_{i \in \mathcal{V}} h_i x_i\right), \mathbf{x} \in \{-1,1\}^N$,

- J_{ij} is the pairwise log-potential between node i and j, $J_{ij} \sim \mathcal{N}(0,1)$
- h_i is the node log-potential for node i, $h_i \sim \mathcal{N}(0, \gamma^2)$

Inference on grid graph ($\gamma = 0.1$).

Metric	n	Mean Field	Loopy BP	Damped BP	GBP	Inference Net	RENN
ℓ_1 error	25 100 225 400	$\begin{array}{c} 0.271 \pm 0.051 \\ 0.283 \pm 0.024 \\ 0.284 \pm 0.019 \\ 0.279 \pm 0.014 \end{array}$	$\begin{array}{c} 0.086 \pm 0.078 \\ 0.085 \pm 0.041 \\ 0.100 \pm 0.025 \\ 0.110 \pm 0.016 \end{array}$	$\begin{array}{c} 0.084 \pm 0.076 \\ 0.062 \pm 0.024 \\ 0.076 \pm 0.025 \\ 0.090 \pm 0.016 \end{array}$	$\begin{array}{c} 0.057 \pm 0.024 \\ 0.064 \pm 0.019 \\ 0.073 \pm 0.013 \\ 0.079 \pm 0.009 \end{array}$	$\begin{array}{c} 0.111 \pm 0.072 \\ 0.074 \pm 0.034 \\ 0.073 \pm 0.012 \\ 0.083 \pm 0.009 \end{array}$	$\begin{array}{c} \textbf{0.049} \pm 0.078 \\ \textbf{0.025} \pm 0.011 \\ \textbf{0.046} \pm 0.011 \\ \textbf{0.061} \pm 0.009 \end{array}$
Corre- lation	25 100 225 400	$\begin{array}{c} 0.633 \pm 0.197 \\ 0.582 \pm 0.112 \\ 0.580 \pm 0.080 \\ 0.596 \pm 0.054 \end{array}$	$\begin{array}{c} 0.903 \pm 0.114 \\ 0.827 \pm 0.134 \\ 0.801 \pm 0.078 \\ 0.779 \pm 0.059 \end{array}$	$\begin{array}{c} 0.905 \pm 0.113 \\ 0.902 \pm 0.059 \\ 0.863 \pm 0.088 \\ 0.822 \pm 0.047 \end{array}$	$\begin{array}{c} 0.923 \pm 0.045 \\ 0.899 \pm 0.043 \\ 0.869 \pm 0.037 \\ 0.852 \pm 0.024 \end{array}$	$\begin{array}{c} 0.866 \!\pm 0.117 \\ 0.903 \!\pm 0.049 \\ 0.873 \pm 0.037 \\ 0.841 \pm 0.028 \end{array}$	$\begin{array}{c} \textbf{0.951} \pm 0.112 \\ \textbf{0.983} \pm 0.012 \\ \textbf{0.949} \pm 0.022 \\ \textbf{0.912} \pm 0.025 \end{array}$
log Z error	25 100 225 400	$\begin{array}{c} 2.512 \pm 1.060 \\ 13.09 \pm 2.156 \\ 29.93 \pm 4.679 \\ 51.81 \pm 4.706 \end{array}$	$\begin{array}{c} 0.549 \pm 0.373 \\ 1.650 \pm 1.414 \\ 3.348 \pm 1.954 \\ 5.738 \pm 2.107 \end{array}$	$\begin{array}{c} 0.557 \pm 0.369 \\ 1.457 \pm 1.365 \\ 3.423 \pm 2.157 \\ 5.873 \pm 2.211 \end{array}$	$\begin{array}{c} \textbf{0.169} \pm 0.142 \\ \textbf{0.524} \pm 0.313 \\ \textbf{1.008} \pm 0.653 \\ \textbf{1.750} \pm 0.869 \end{array}$	$\begin{array}{c} 0.762 \pm 0.439 \\ 2.836 \pm 2.158 \\ 3.249 \pm 2.058 \\ 3.953 \pm 2.558 \end{array}$	$\begin{array}{c} 0.240 \pm 0.140 \\ 1.899 \pm 0.495 \\ 4.344 \pm 0.813 \\ 7.598 \pm 1.146 \end{array}$

- ℓ_1 error of beliefs v.s. true
- correlation ρ between true and approximate marginals,
- log Z error, true v.s. free energy approximation.

SOME NUMERICAL COMPARISONS

RICHER COMPARISONS

Motivation

Inference on grid and complete graphs.

		Metric		Mean Field	Loopy BP	Damped BP	GBP	Inference Net	RENN
emp	Complete graph N=16	ℓ_1 - error	$\begin{array}{l} \gamma = 1 \\ \gamma = 4 \end{array}$	$\begin{array}{c} 0.273 \pm 0.086 \\ 0.197 \pm \! 0.049 \end{array}$	$\begin{array}{c} 0.239 \pm 0.059 \\ 0.181 \pm 0.035 \end{array}$	$\begin{array}{c} 0.239 \pm 0.059 \\ 0.180 \pm 0.034 \end{array}$	$\begin{array}{c} 0.260 \pm 0.086 \\ 0.210 \pm 0.070 \end{array}$	$\begin{array}{c} 0.249 \pm 0.067 \\ 0.174 \pm 0.030 \end{array}$	$\begin{array}{c} \textbf{0.181} \pm 0.092 \\ \textbf{0.125} \pm 0.050 \end{array}$
High Temp -erature	$J_{ij} \sim \mathcal{N}(0, 1)$ $h_i \sim \mathcal{N}(0, \gamma^2)$	log Z error	$\gamma = 1$ $\gamma = 4$	$\begin{array}{c} \textbf{20.66} \pm \textbf{5.451} \\ \textbf{10.74} \pm \textbf{7.385} \end{array}$	$\begin{array}{c} 178.7 \pm 22.18 \\ 565.7 \pm 73.33 \end{array}$	$\begin{array}{c} 178.9 \pm 21.88 \\ 566.1 \pm 73.13 \end{array}$	$\begin{array}{c} 153.3 \pm 25.29 \\ 106.0 \pm 54.43 \end{array}$	$\begin{array}{c} 213.6 \pm 12.75 \\ 588.3 \pm 62.58 \end{array}$	14.41 ± 4.135 14.72 ± 4.155
ow Temp-erature	Grid graph N=100	ℓ_1 error	5 15	$\begin{array}{c} 0.257 \pm 0.065 \\ 0.328 \pm 0.068 \end{array}$	$\begin{array}{c} 0.115 \pm 0.071 \\ 0.228 \pm 0.088 \end{array}$	$\begin{array}{c} 0.120 \pm 0.073 \\ 0.267 \pm 0.147 \end{array}$	$\begin{array}{c} 0.250 \pm 0.024 \\ 0.303 \pm 0.026 \end{array}$	$\begin{array}{c} 0.164 \pm 0.036 \\ 0.279 \pm 0.024 \end{array}$	0.100 ± 0.046 0.207 ± 0.054
Low T -erat	$J_{ij} \sim \mathcal{U}(-u, u)$ $h_i \sim \mathcal{U}(-1, 1)$	log Z error	5 15	$42.65 \pm 17.86 \\ 164.9 \pm 56.07$	$\begin{array}{c} 7.346 \pm 7.744 \\ 58.40 \pm 41.36 \end{array}$	$\begin{array}{c} \textbf{5.444} \pm 4.811 \\ \textbf{101.9} \pm \textbf{54.31} \end{array}$	$\begin{array}{c} \textbf{8.369} \pm \textbf{7.401} \\ \textbf{23.10} \pm \textbf{15.06} \end{array}$	$65.60 \pm 8.786 \\ 224.3 \pm 25.52$	$\begin{array}{c} 11.34 \pm 4.724 \\ 78.85 \pm 15.08 \end{array}$

Average consumed time per inference instance (unit: second)

	Mean Field	Loopy BP	Damped BP	GBP	Inference Net	RENN
Grid G , $N = 400$, $J_{ii} \sim \mathcal{N}(0, 1)$, $h_i \sim \mathcal{N}(0, 0.1^2)$	9.897	425.0	328.3	286.3	74.41	101.0
Complete \mathcal{G} , $N = 16$, $J_{ii} \sim \mathcal{N}(0, 1)$, $h_i \sim \mathcal{N}(0, 1)$	0.457	0.777	1.285	14.29	12.45	16.16
Grid \mathcal{G} , $N = 100$, $J_{ii} \sim \mathcal{U}(-15, 15)$, $h_i \sim \mathcal{U}(-1, 1)$	2.314	253.3	229.3	53.72	103.4	79.38
Complete G , $N = 9$, $J_{ii} \sim U(-15, 15)$, $h_i \sim U(-1, 1)$	0.502	15.86	18.23	3.213	17.21	7.857

0000

TWO DIRECTION IMPACT

Why impact in two direction?

Motivation

Learning to Inference:

Stuff we have been taken as default, a given $p(\mathbf{x}; \theta)$

- built by expert knowledge, or
- built by extracting information from evidence (empirical data).

TWO DIRECTION IMPACT

Why impact in two direction?

Motivation

· Learning to Inference:

Stuff we have been taken as default, a given $p(x; \theta)$

- built by expert knowledge, or
- built by extracting information from evidence (empirical data).
- Inference to Learning:

Model learning: an error trial process that compares inferred 'fact' and actual fact (evidence).

Model learning usually needs inference as a subroutine, which sometimes are replaced by sampling in particle based methods.

INFERENCE ROUTINE IN LEARNING

What is θ in $p(\mathbf{x}; \theta) = \frac{1}{Z(\theta)} \prod_{a} \psi_{a}(\mathbf{x}_{a}; \theta_{a})$? A direct view:

$$\max_{\theta} \log p(\mathbf{x}; \theta) = \max_{\theta} \sum_{a} \log \psi_{a}(\mathbf{x}_{a}; \theta_{a}) \underbrace{-\log Z(\theta)}_{\text{Helmholtz free energy, can be est. by } F}$$

An alternative view:

$$\frac{\partial \log p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}_a} = \frac{\partial \log \varphi_a(\mathbf{x}_a; \boldsymbol{\theta}_a)}{\partial \boldsymbol{\theta}_a} - \underbrace{\mathbb{E}_{p(\mathbf{x}_a; \boldsymbol{\theta})} \left[\frac{\partial \log \varphi_a(\mathbf{x}_a; \boldsymbol{\theta}_a)}{\partial \boldsymbol{\theta}_a} \right]}_{\text{can be est, by beliefs}}.$$

Remark:

Motivation

- This essentially requires estimation of Helmholtz free energy or marginal probabilities.
- Stationary points translate into moment matching.

INFERENCE ROUTINE IN LEARNING

What is θ in $p(\mathbf{x}; \theta) = \frac{1}{Z(\theta)} \prod_{a} \psi_{a}(\mathbf{x}_{a}; \theta_{a})$? A direct view:

$$\max_{\boldsymbol{\theta}} \log p(\mathbf{x}; \boldsymbol{\theta}) = \max_{\boldsymbol{\theta}} \sum_{a} \log \psi_{a}(\mathbf{x}_{a}; \boldsymbol{\theta}_{a}) \underbrace{-\log Z(\boldsymbol{\theta})}_{\text{Helmholtz free energy, can be est. by } F$$

An alternative view:

$$\frac{\partial \log p(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_a} = \frac{\partial \log \varphi_a(\mathbf{x}_a; \boldsymbol{\theta}_a)}{\partial \theta_a} - \mathbb{E}_{p(\mathbf{x}_a; \boldsymbol{\theta})} \left[\frac{\partial \log \varphi_a(\mathbf{x}_a; \boldsymbol{\theta}_a)}{\partial \theta_a} \right].$$
Inference Learning

Remark:

Motivation

- This essen
- Stationary
- Two modules are not necessarily coupled
- Each module may be replaced by another algorithm while the other one remains.

al probabilities.

LEARNING MRFS

WHAT IS θ IN $p(x; \theta)$?

Motivation

Table of negative log-likelihood of learned MRFs

N	True	Exact	Mean Field	Loopy BP	Damped BP	GBP	Inference Net	RENN				
	Grid Graph											
25 100 225	9.000 19.34 63.90	9.004 19.38 63.97	9.811 23.48 69.01	9.139 19.92 66.44	9.196 20.02 66.25	10.56 28.61 92.62	9.252 20. 29 68.15	9.048 19.76 64.79				
	Complete Graph											
9 16	3.276 4.883	3.286 4.934	9.558 28.74	5.201 13.64	5.880 18.95	10.06 24.45	5.262 13.77	3.414 5.178				

Average consumed time per epoch (unit: second) for two MRF learning cases.

	Mean Field	Loopy BP	Damped BP	GBP	Inference Net	RENN
Grid \mathcal{G} , $N = 225$	40.09	335.1	525.1	12.37	19.49	16.03
Complete \mathcal{G} , $N = 16$	2.499	12.40	5.431	1.387	0.882	2.262

INCOMPLETE OBSERVATION

Partial observation:
$$\mathbf{x} = [\mathbf{x}_{U} , \mathbf{x}_{O}]$$

Motivation

Unobserved Observed

$$I(\mathbf{x}_O; \boldsymbol{\theta}) = \log \sum_{\mathbf{x}_U} p(\mathbf{x}_U, \mathbf{x}_O; \boldsymbol{\theta}) = \log \underbrace{Z(\mathbf{x}_O; \boldsymbol{\theta})}_{\sum_{\mathbf{x}_U} \tilde{p}(\mathbf{x}; \boldsymbol{\theta})} - \log Z(\boldsymbol{\theta}),$$

Connect Free Energy to Evidence Lower Bounder:

$$\begin{split} I(\mathbf{x}_{O}; \boldsymbol{\theta}) \geqslant &- \underbrace{F_{V}(q(\mathbf{x}_{U} | \mathbf{x}_{O}))}_{Variational Free Energy} - \log Z(\boldsymbol{\theta}) \\ &= \mathbb{E}_{q(\mathbf{x}_{U} | \mathbf{x}_{O})} \left[\log \frac{p(\mathbf{x}_{U}, \mathbf{x}_{O}; \boldsymbol{\theta})}{q(\mathbf{x}_{U} | \mathbf{x}_{O})} \right] \\ &= \underbrace{\mathbb{E}_{q(\mathbf{x}_{U} | \mathbf{x}_{O})} \left[\log p(\mathbf{x}_{U}, \mathbf{x}_{O}; \boldsymbol{\theta}) \right] + H(q(\mathbf{x}_{U} | \mathbf{x}_{O}))}_{} \end{split}$$

Intuition of maximizing $F(q, \theta)$

- Maximizing (incomplete) likelihood
- Minimizing free energy

Evidence Lower Bound $F(q, \theta)$

This gives the EM as a coordinate ascent method:

E step:
$$q^{(t+1)} = \underset{q}{\operatorname{argmax}} F(q, \theta^{(t)}),$$

M step: $\theta^{(t+1)} = \underset{\theta}{\operatorname{argmax}} F(q^{(t+1)}, \theta).$

EQUIPPING EM WITH NORMALIZING FLOWS

- Ideal case: The underline true $p^*(\mathbf{x})$ is in hypothesis space \mathcal{H} , i.e. $p^*(\mathbf{x}) \in \mathcal{H}$.
- Out of reach: Test $p^*(\mathbf{x}) \stackrel{?}{\in} \mathcal{H}$
- A general desire:

 \mathcal{H} is large \rightarrow condidate $p(\mathbf{x}; \boldsymbol{\theta})$ is flexible

This brings up the finite mixture models.

$$p(\mathbf{x}; \mathbf{\Theta}) = \sum_{k=1}^{K} \pi_k p_k(\mathbf{x}) = \sum_{k=1}^{K} \pi_k p(\mathbf{x})$$

($g(z; \theta_k)$ Variable change

via generator a

What to expect from GenMM:

Motivation

- Flexible and expressive model, enlarging hyperspace \mathcal{H}
- Tractable likelihood
- Compatible with typical statistical models
- Compatible with NN tools/frameworks
- · Scale to high-dimensional structured data
- Efficient in sampling (data generation)

• ...

A HIGH-LEVEL VIEW OF GENMM: FLOW GEARS

When the k-th generator is selected, i.e., $s_k = 1$ and $s_{k'} = 0$ for $k' \neq k$, say $\tilde{\mathbf{x}} = \mathbf{x}|_{s_k = 1}$. By following the change of variable rule

Motivation

$$\underbrace{p(\tilde{\mathbf{x}})|_{\tilde{\mathbf{x}}=\tilde{\mathbf{g}}(\mathbf{z})}}_{\mathbf{x}=\tilde{\mathbf{g}}(\mathbf{z})}$$

Induced distribution

Assumed known distribution easy to sample

$$\det\left(\frac{\partial \mathbf{z}}{\partial \tilde{\mathbf{x}}}\right)$$

Computational load depends on the mapping

A toy example:

Gaussian linear transform: $Z \sim N\left(0,1\right) \xrightarrow{X = \sigma \cdot Z + \mu} X \sim N\left(\mu,\sigma\right)$

A HIGH-LEVEL VIEW OF GENMM: FLOW GEARS

When the k-th generator is selected, i.e., $s_k = 1$ and $s_{k'} = 0$ for $k' \neq k$, say $\tilde{\mathbf{x}} = \mathbf{x}|_{s_k=1}$. By following the change of variable rule

Motivation

$$\underbrace{\rho(\tilde{\mathbf{x}})|_{\tilde{\mathbf{x}}=\tilde{\mathbf{g}}(\mathbf{z})}}_{\mathbf{z}=\tilde{\mathbf{y}}(\mathbf{z})}=$$

Induced distribution

Assumed known distribution easy to sample

$$\left| \det \left(\frac{\partial \mathbf{z}}{\partial \tilde{\mathbf{x}}} \right) \right|$$

Computational load depends on the mapping

Powering it with a *L*-layer neural network implementation:

$$z = h_0 \underset{\tilde{f}_1}{\overset{\tilde{g}_1}{\longleftrightarrow}} h_1 \underset{\tilde{f}_2}{\overset{\tilde{g}_2}{\longleftrightarrow}} \dots \qquad \underset{\tilde{f}_L}{\overset{\tilde{g}_L}{\longleftrightarrow}} x = h_L$$

A HIGH-LEVEL VIEW OF GENMM: ZOOM INTO LAYER

- $\textbf{\textit{h}}_{l-1} = \begin{bmatrix} \textbf{\textit{h}}_{l-1,a} \\ \textbf{\textit{h}}_{l-1,b} \end{bmatrix} = \begin{bmatrix} \textbf{\textit{h}}_{l,a} \\ \textbf{\textit{m}}_{a}(\textbf{\textit{h}}_{l,a}) \odot \textbf{\textit{h}}_{l,b} + \textbf{\textit{m}}_{b}(\textbf{\textit{h}}_{l,a}) \end{bmatrix}$
- $m_a m_b$ Inverse $n_{l,a}$

$$\mathbf{h}_{l} = \begin{bmatrix} \mathbf{h}_{l,a} \\ \mathbf{h}_{l,b} \end{bmatrix} = \begin{bmatrix} \mathbf{h}_{l-1,a} \\ (\mathbf{h}_{l-1,b} - \mathbf{m}_{b}(\mathbf{h}_{l-1,a})) \otimes \mathbf{m}_{a}(\mathbf{h}_{l-1,a}) \end{bmatrix}$$

- ⊙ denotes element-wise product, ⊘ denotes element-wise division
- Mapping m_a, m_b can be as complex as possible and not necessary invertible
- Same computation complexity of forward and inverse mapping
- Triangular matix of Jacobian

Alternative arch. on market: Auto-regressive flow, Glow, ODE, etc.

ALTERNATIVE MIXTURE AND REMARK

Remark On GenMM/GenHMM

- Free dimension for flexibility: number of mixture + complexity of functional form of neural networks
- Compatible with statistic methods and neural network techniques (error back-propagation, optimizer)
- Embed batch-gradient descent into M-step
- Lack of closed-form update rule and generator changes at each gradient step. We tackle
 by maintaining old and new generators in EM steps

SEMANTIC SCORES AND EXAMPLES

IS, FID, MMD and 1NN of GenMM and LatMM for MNIST dataset.

- IS: Inseption Score
- FID: Frechet Inception Distance
- MMD: Maximum Mean Discrepancy
- 1NN: 1-Nearest Neighbor

Motivation Summary and Q&A

SEMANTIC SCORES AND EXAMPLES

Generated samples by GenMM and LatMM.

Interpolation in latent space

APPLICATION TO CLASSIFICATION TASKS

Application to classification with maximum likelihood. Test Accuracy Table of GenMM for Classification Task

Dataset	K=1	K=2	K=3	K=4	K=10	K=20	State Of Art
Letter	0.9459	0.9513	0.9578	0.9581	0.9657	0.9674	0.9582
Satimage	0.8900	0.8975	0.9045	0.9085	0.9105	0.9160	0.9090
Norb	0.9184	0.9257	0.9406	0.9459	0.9538	0.9542	0.8920

GENHMM: Bring the concept into HMM

Motivation

At time t, the probabilistic model of a state $s \in \mathcal{S}$ is then given by

$$p(\mathbf{x}|s; \Phi_s) = \sum_{\kappa=1}^K \pi_{s,\kappa} p(\mathbf{x}|s,\kappa; \theta_{s,\kappa}),$$

where

- $\pi_{s,\kappa} = p(\kappa|s; \mathbf{H})$, naturally $\sum_{\kappa=1}^{K} \pi_{s,\kappa} = 1$
- $p_k(\mathbf{x})$ is induced by the *k*th generator $\mathbf{g}_k(\mathbf{z}) = \mathbf{g}(\mathbf{z}; \theta_k)$

GENHMM: Bring the concept into HMM

ALTERNATIVE VIEW OF GENHMM

We define the hypothesis set of HMM as $\mathcal{H}:=\{\textit{\textbf{H}}|\textit{\textbf{H}}=\{\mathcal{S},\textit{\textbf{q}},\textit{\textbf{A}},p(\textit{\textbf{x}}|s;\Phi_{\texttt{S}})\}\},$ where

- \mathcal{S} is the set of hidden states of \mathbf{H} .
- $\mathbf{q} = [q_1, q_2, \cdots, q_{|\mathcal{S}|}]^\mathsf{T}$ is the initial state distribution of \mathbf{H} with $|\mathcal{S}|$ as cardinality of \mathcal{S} . For $i \in \mathcal{S}, \ q_i = p(s_1 = i; \mathbf{H})$. We use s_t to denote the state s at time t.
- **A** matrix of size $|S| \times |S|$ is the transition matrix of states in **H**. That is, $\forall i, j \in S$, $\mathbf{A}_{i,j} = p(\mathbf{s}_{t+1} = j | \mathbf{s}_t = i; \mathbf{H})$.
- For a given hidden state s, the density function of the observable signal is $p(\mathbf{x}|s; \Phi_s)$, where Φ_s is the parameter set that defines this probabilistic model. Denote $\Phi = \{\Phi_s | s \in \mathcal{S}\}.$

LEARNING INTUITION

With empirical distribution $\hat{p}(\underline{x}) = \frac{1}{N} \sum_{n} \delta_{\mathbf{x}^{(n)}}(\underline{x})$, learning of GenHMM boils down to

$$\min_{\boldsymbol{H} \in \mathcal{H}} KL(\hat{p}(\underline{\boldsymbol{x}}) || p(\underline{\boldsymbol{x}}; \boldsymbol{H}))$$

Then problem becomes maximum likelihood estimation

$$\hat{\boldsymbol{H}} = \arg\max_{\boldsymbol{H} \in \mathcal{H}} \log\prod_{i} p(\underline{\boldsymbol{x}}^{(i)}; \boldsymbol{H}),$$

Use EM to solve:

Motivation

E-step: the expected likelihood function

$$Q(\boldsymbol{H}; \boldsymbol{H}^{\text{old}}) = \mathbb{E}_{\hat{p}(\boldsymbol{x}), p(\boldsymbol{s}, \boldsymbol{\kappa} | \boldsymbol{x}; \boldsymbol{H}^{\text{old}})} \left[\log p(\underline{\boldsymbol{x}}, \underline{\boldsymbol{s}}, \underline{\boldsymbol{\kappa}}; \boldsymbol{H}) \right],$$

where $\mathbb{E}_{\hat{p}(\boldsymbol{x}),p(\boldsymbol{s},\kappa|\boldsymbol{x};\boldsymbol{H}^{\mathrm{old}})}[\cdot]$ denotes the expectation operator by distribution $\hat{p}(\underline{\boldsymbol{x}})$ and $p(\mathbf{s}, \kappa | \mathbf{x}; \mathbf{H}^{\text{old}}).$

Initial State

M-step: the maximization step

$$\max_{\boldsymbol{H}} \, \mathcal{Q}(\boldsymbol{H}; \boldsymbol{H}^{old}).$$

The problem (??) can be reformulated as

$$\max_{\boldsymbol{H}} \mathcal{Q}(\boldsymbol{H}; \boldsymbol{H}^{\text{old}}) = \underbrace{\max_{\boldsymbol{q}} \mathcal{Q}(\boldsymbol{q}; \boldsymbol{H}^{\text{old}})}_{\boldsymbol{q}} + \underbrace{\max_{\boldsymbol{A}} \mathcal{Q}(\boldsymbol{A}; \boldsymbol{H}^{\text{old}})}_{\boldsymbol{A}} + \underbrace{\max_{\boldsymbol{\Phi}} \mathcal{Q}(\boldsymbol{\Phi}; \boldsymbol{H}^{\text{old}})}_{\boldsymbol{\Phi}}, \tag{1}$$

Transition

Maximizing a lower bound of $\log \prod_i p(\underline{x}^{(i)}; \boldsymbol{H})$.

Generators

Ition $\hat{p}(\mathbf{x})$ and

LEARNING INTUITION

With empirical distribution $\hat{p}(\underline{x}) = \frac{1}{N} \sum_{n} \delta_{\mathbf{x}^{(n)}}(\underline{x})$, learning of GenHMM boils down to

$$\min_{\boldsymbol{H} \in \mathcal{H}} KL(\hat{p}(\underline{\boldsymbol{x}}) \| p(\underline{\boldsymbol{x}}; \boldsymbol{H}))$$

Then problem becomes maximum likelihood estimation

•
$$F = Q + \text{Entropy}$$

Use EM to solve: E-step: the

Motivation

- E-step require inference (message-passing)
- No optimality in M-step (NN generators). Still, guaranteed non-decreasing lklh. (c.f.

Proposition 7.1)

where $\mathbb{E}_{\hat{D}(\mathbf{x}), p(\mathbf{y}, \underline{\kappa}_{|\mathbf{x}}, \dots)}$ $p(\mathbf{s}, \kappa | \mathbf{x}; \mathbf{H}^{\text{old}}).$

M-step: the maximization step

$$\max \, \mathcal{Q}(\textbf{\textit{H}}; \textbf{\textit{H}}^{old}).$$

The problem (??) can be reformulated as

$$\max_{\boldsymbol{H}} \mathcal{Q}(\boldsymbol{H}; \boldsymbol{H}^{\text{old}}) = \underbrace{\max_{\boldsymbol{q}} \mathcal{Q}(\boldsymbol{q}; \boldsymbol{H}^{\text{old}})}_{\text{Initial State}} + \underbrace{\max_{\boldsymbol{A}} \mathcal{Q}(\boldsymbol{A}; \boldsymbol{H}^{\text{old}})}_{\text{Transition}} + \underbrace{\max_{\boldsymbol{\Phi}} \mathcal{Q}(\boldsymbol{\Phi}; \boldsymbol{H}^{\text{old}})}_{\text{Generators}}, \tag{1}$$

Maximizing a lower bound of $\log \prod_i p(\underline{x}^{(i)}; \boldsymbol{H})$.

Application to Speech Recognition

Configuration of generators of GenHMM in Experiments on TIMIT

Latent distribution $p_{s,\kappa}(z)$ $s \in S, \kappa = 1, 2, \cdots, K$	Standard Gaussian
Number of flow blocks	4
Non-linear mapping m_a , m_b	Multiple layer perception 3 layers and with hidden dimension 24

Phoneme classification / recognition

	Model	Criterion	K=1	K=3	K=5
•	GMM-HMM	Accuracy Precision F1	62.3 67.9 63.7	68.0 72.6 69.1	68.7 73.0 69.7
	GenHMM	Accuracy Precision F1	76.7 76.9 76.1	77.7 78.1 77.1	77.7 78.0 77.0

Robustness to perturbation of noise.

Model	Criterion	White Noise SNR			
Woder		15dB	20dB	25dB	30dB
	Accuracy	36.6	44.2	50.8	57.1
GMM-HMM	Precision	59.2	64.2	68.4	70.6
	F1	39.9	47.7	53.9	59.9
	Accuracy	52.4	62.0	69.7	74.3
GenHMM	Precision	60.0	65.9	71.7	74.8
	F1	52.5	62.0	69.3	73.5

For our conducted experiments of applying GenHMM to sepsis detection for infants, see Section 7.5.

WHAT HAVE WE BEEN TALKING ABOUT?

WHAT HAVE WE BEEN TALKING ABOUT?

SUMMARY

Motivation

- Brief on probabilistic graphic models
- Overview of inference methods
- · A focus on the message-passing
- Transition to inference methods with NN

Infer..Learn 0000 Learning 000000000 00000 Summary and Q&A

Thank you for your attention. Q&A.