609-A: Observation, Modeling, and Impacts of Emissions in West Africa

COSPAR Capacity Building Workshop, Kumasi, Ghana

Eloise Marais, University of Birmingham, UK (e.a.marais@bham.ac.uk)

Chemistry of the Atmosphere

Aerosol Components:

Sulfate

Nitrate

Ammonium

Organics

Black Carbon

Source: UK Met Office

Atmospheric Chemistry Transport Models

Atmospheric chemical transport model infrastructure

Code: Fortran (historical, but also efficient for solving mathematical equations)

<u>Input/output:</u> mix of binary punch and NetCDF files (intention is to be 100% NetCDF)

Compile: a few minutes

Run time: depends on model version. Walltime is ~10-12 hours for 1 month (1 NODE, 8 CPUs)

Not very computationally demanding, but requires lots of space for input/output

Track version history: git

Debug: Totalview

Visualization software: IDL (costly), Python (free), NCAR Common Language

or NCL (free), R (free).

Would we use an atmospheric chemistry model to address these research topics?

What is the surface concentration of ozone in Sierra Leone?

Contribution of land cover change to drought in West Africa.

Human health effect of electronic waste burning in southern Ghana.

Shift in the ITCZ due to desertification in the Sahel.

Climate change impact of aerosols from intense seasonal fires in Africa.

Example Model Output

Excessive nitrogen input to the Earth's surface:

[Ellis et al., 2013]

Surface ozone concentrations:

[http://fizz.phys.dal.ca/~atmos/animation/]

Combine with satellite observations to derive surface particulate matter concentrations

GEOS-Chem Models that Exist are Many

Some examples:

Standard model: global air quality model (NO_x-O₃-VOC-aerosol chemistry) at 2x2.5 degrees (~200x250 km) or 4x5 (~400x500 km) degrees.

Other specialized options:

SOA model: Standard model with explicit treatment of secondary organic aerosols

<u>High-performance model:</u> Standard model at high resolution (under development)

<u>Nested models</u>: Standard model, but at high resolution over a specific region (China, Europe, North America, Africa, West Africa) with boundary conditions at the coarse global resolution. High resolution dictated by resolution of meteorological fields

Others: Mercury, POPs, radon, Methane

RED: GEOS-Chem models used in my research

Major Development Initiative

Reformat GEOS-Chem to be used within the Earth System Modelling Framework (**ESMF**)

Dynamic representation of earth systems (ocean/forest/atmosphere) (advantage) Plug-and-play framework to couple different model components (advantage) Very high computational demand (disadvantage)

Satellite Observations (remote sensing, Earth observations)

Air Quality Monitoring Sites in Africa are Few

Surface and aircraft observations limited to a few international campaigns and networks

Country-level air quality monitoring and well-defined standards limited to South Africa

By comparison US has widespread monitoring sites, well-defined standards, and easy data access

Criteria Pollutant Monitoring Sites

- ★ Lead
 - Fine particles (PM_{2.5})
- Coarse particles (PM₁₀)
- △ CO
- \bigcirc NO₂
- SO₂
- Ozone

[US EPA, 2013]

Column densities from OMI

Provides the sum of molecules from the surface of the Earth to the top of the atmosphere

Ozone Monitoring Instrument (OMI) is onboard the NASA Aura platform

NASA Aura platform

Launch:

July 2004

Overpass:

13h30 LT

Resolution:

 $13 \times 24 \text{ km}^2$

Aura in the A-Train Constellation

Useful Links/Information

Giovanni, to visualize satellite observations: https://giovanni.gsfc.nasa.gov/giovanni/

NASA satellite products portal: https://disc.gsfc.nasa.gov/Aura/data-holdings/

UMD data products: http://glcf.umd.edu/data/

European website with satellite products:

TEMIS: http://temis.nl/index.php

QA4ECV: http://www.qa4ecv.eu/ecvs

MOPITT: https://www2.acom.ucar.edu/mopitt

Open Source processing software: R, Python NCL (NCAR Common Language).

My email address: <u>e.a.marais@bham.ac.uk</u>

Steps to Retrieve Space-based column density observations

Instrument views solar backscattered radiation

Column density: molecules cm⁻²

Fit spectrum to get slant column (Ω_s)

[De Smedt et al., 2008]

Compute air mass factor (AMF) to get true vertical column (Ω_v)

$$AMF = AMF_G \int_0^\infty \omega(z) S_z(z) dz$$
Geometric AMF

HCHO shape factor

Scattering weights

$$\Omega_V = \Omega_S / AMF$$

[Palmer et al., 2001]

Many Applications of Satellite Observations

Top-down emission estimates

Nitrogen oxides (NO_x) from soils estimated with OMI tropospheric NO₂

[Vinken et al., 2014]

Trends in air pollution from the long record of satellite observations

Nitrogen oxides (NO_x) from soils estimated with OMI tropospheric NO₂

Absolute Values 2011 2015 25 20 15 10 5 molec/cm²

Change from 2011 to 2015

Funding Opportunity for Women from Developing Countries

Schlumberger Faculty for the Future

http://www.facultyforthefuture.net/

NEW GRANTS: CALL FOR APPLICATIONS 2016-2017 FACULTY FOR THE FUTURE FELLOWSHIPS

SCHLUMBERGER FOUNDATION FACULTY FOR THE FUTURE

Air Quality in Nigeria: A Space-based Perspective

Atmospheric chemical transport models

GEOS-Chem as an example

What emissions should be included in this model?
What meteorology should be included in this model?

Satellite Observations of Atmospheric Composition

Column densities from space-based observations of solar backscattered UV-vis radiation

 NO_x ($NO_x = NO + NO_2$) surface sources from tropospheric NO_2 column densities Reactive VOCs from formaldehyde (HCHO) and glyoxal (CHOCHO) column densities SO_2 surface sources (volcanoes and anthropogenic activity)

Energy Mix and Pollution in Nigeria

Charcoal making: a growing industry

Proliferation of two wheelers: more polluting than cars

[Vasic and Weilemen, 2006]

Kerosene for lighting:

emitted aerosols warm the planet

Solid Biofuels for Cooking: dominant source of energy

Other Sources of Pollution

Trash and e-waste burning

Agricultural waste and savanna fires

[Giglio et al., 2003]

Flaring (wasting) of natural gas

Distinguish flares from lights and other fires:

[Elvidge et al., 2009]

Artisanal Oil Refining:

Large informal sector

Energy Mix in Nigeria

Population distribution in 2000

Energy Mix in 2010

[EIA, 2012]

Inefficient energy mix and wasted natural gas

New Population Distribution Maps

PICTURING POPULATION

Scientists at the Oak Ridge National Laboratory in Tennessee analysed satellite imagery with computer algorithms to help define different types of neighbourhood in Kano, Nigeria.

Seasonal Pollution in Nigeria

Seasonal enhancements from open fires (Dec-Feb) and soils (Jun-Aug)

OMI tropospheric NO₂ in 2005-2007 [10¹⁵ molecules cm⁻²]

Meteorological features in each season

Temperature inversion (Harmattan winds)
Severely restricted ventilation

West African Monsoon

Efficient ventilation

Meteorology is also important

Unprecedented persistent stagnation in the dry season from natural inversion established by warm northeasterly winds

Seasonal mean (2006) GEOS-Chem Radon-222 (222Rn)

²²²Rn: Uniform source from non-frozen soils

Loss is by radioactive decay

Interpretation: High values indicate stagnation leading to build up of pollution

GEOS-Chem Radon simulation [Jacob et al., 1997]

Atmospheric Composition in Nigeria

Annual mean satellite data for 2005-2007 at 0.5×0.5° (GOME-2 is 2007 only)

CO and NO₂ are dominated by open fires (but AIRS boundary layer sensitivity is low)

Evaluate **NMVOC emissions** with HCHO and CHOCHO:

NMVOC oxidation \rightarrow HCHO

Aromatic oxidation → CHOCHO

Niger Delta CH₄ and HCHO hotpots indicate extensive gas leakage, venting and flaring.

Lagos CHOCHO and HCHO hotspots from reactive aromatics (vehicle and generator emissions)

Aircraft measurements of air pollutants

Constraints on Nigerian Emissions

Satellite observations and AMMA aircraft observations provide constraints on emissions in Nigeria

NMVOC and CO concentrations over Lagos below 1 km on 8 August 2006

Model (2×2.5° simulation) underestimates aromatic, acetaldehyde and higher alkanes.

Model bias is **due to emissions**, rather than dilution or transport (good agreement with CO, acetone and shorter alkanes)

The corrected Nigerian NMVOC emissions are 5.7 Tg C a⁻¹ (a priori emissions =1.6 Tg C a⁻¹)

EDGAR v4.2 CH₄ oil & gas emissions are also increased from 1.7 Tg CH₄ a⁻¹ to 5.5 Tg CH₄ a⁻¹.