CYRUS - BECK to sular will no

LECTURE &

The problem with Cohan-Sutherland was that the clipping region neated to be axis parnalled. Unich meant that we wouldn't be able to mark on anything other than a regular rectangular clipping region.

But with Cyrus-Beck we could potentially work on any polygon cuipping region with n-sides where (n) 3) (Althoug our main focus mill still be on

* Considering the direction
of the edge , anything on
the left is inside & right
is outside.

Normal
Normal
Vector (0x) = (1)

If of 9 and 10 and

drawn at 190° to the

*	List 0	- ALL	possible boundaries	:	
(1)	Bounday	7	N. (PE-B) radovirol	Explana (9-19) 1/110	(L
(1)	Top where, ye=ymax	(0 ¹ / ₂)	= (2 max - 40) = (4 max - 40)	= (9,-90)	31 - 70 7 - 70
2	RIGHT $x_{E} = x_{max}$	(1,0)	$= (x^{\max} - x^0) \cdot \left[+ (x^{\text{E}} - x^0) \cdot \right]$	$= (x_1 - x_0)$	$=\frac{\chi_{\text{IMax}}-\chi_0}{\chi_1-\chi_0}$
3	BOTTOM Ye = Ymin		= - 1 (ymin - yo) Screates no effect	=-1(A-A0)	= \frac{y_{min} - y_0}{y_1 - y_0}
4	TELL XE = Xwin	(-1,0)	= - 1 (xmin - xo) - x	= (21 (240)1) (02)A)	$=\frac{\pi_{\min}-\pi_0}{\pi_1-\pi_0}$
	, n	h. sireg	ot -xom	Hence	
	* (Pe-	P. N =	(20-x2). Nx + (y	- y . Ny	
	(P₁-P)	= N · (3	(x, - x0). Nx + (y)	-40)·Ny	
	, 🏅				

	List of All possible boundaries:					
(*)	Explanation for the derivation of t					
	(Pe+1Po): N.3 ((e-1)) (10) = (0) for Top, N= (0,1) (28! Pé = (22") max) (ot xemt)					
- semb	PE = (xerymax)					
10 10	for top, (of xeme)					
Xmax- X	$ \left[\left(x_{\varepsilon}, y_{\text{max}} \right) - \left(7(0, y_{0}) \right) \right] \cdot \left((0, 1) \right) = (0, 1) $ Then					
120-120	$=)\left(x_{e}-x_{0}\right)\cdot0+\left(y_{max}-y_{0}\right)\cdot y_{m}^{*}\right)$					
b 43	$J(\chi_{\varepsilon} - \chi_{0}) \cdot 0$ $J(\chi_{\varepsilon} - \chi_{0}) \cdot 0$					
of -it	(01-1) = - (49min-40) = (01-10) morrow (01-1) = - (49min-40) = (01-10)					
	37					
Marie 3	Also, (P-Po) 1) = (x,-xo) . 0 + (y,-yo) . 1					
K - IK	Max sum Screeder M Openin = C					
	Jac Calisago Mil waters of					
	Hence,					
	t= 4 max - yo					
	FN. (85-65) + 20. (85-62) = M. (81-81) (8					
	gh. (or -, v) + xh. (ox -, x) = h. (3-,9)					
	(or 12) = N. (31-11) (
	and the second of the second o					

(t) the leaving t's one - 2 tright & trops 3 (150 , 76.6 t= to steel min

(*) Cyrus beck says that the line has to be drawn from te(max) to te(min).

IMP

 $t_{L(top)} = \frac{y_{max} - y_{o}}{y_{1} - y_{o}} = \frac{100 - (-180)}{150 - (-180)} = 0.8484 \text{ or } \frac{22}{33}$ $t_{L(top)} = \frac{x_{max} - x_{o}}{x_{1} - x_{o}} = \frac{150 - (-200)}{250 - (-200)} = 0.778 \text{ or } \frac{7}{4}$ $t_{E(bottom)} = \frac{y_{min} - y_{o}}{y_{1} - y_{o}} = \frac{-100 - (-180)}{150 - (-180)} = 0.2424 \text{ or } \frac{8}{33}$ $t_{E(lopt)} = \frac{x_{min} - x_{o}}{x_{1} - x_{o}} = \frac{-160 - (-200)}{250 - (-200)} = 0.1111 \text{ or } \frac{7}{4}$ # drawn from temax) to tellmin) $t = \frac{8}{33}$, t_{elmax} (-90.91, -100) $t = \frac{7}{4}$, t_{elmin} (150, 76.67) from te(max) to te (min).

Example 2 (Type of sum to expect in exam)

Clip Region (-100,-120) to (150,200) Draw the line (chipped) for Po (-125, 260) to (195, -140)

ANS:

Region
$$\rightarrow$$
 (-100,-120) to (150,200)
 $\gamma_{min} = -100$ $\gamma_{min} = -120$ Process
1) Deternance $\gamma_{max} = 150$ $\gamma_{max} = 200$ 2) Vector

for vector D,

- 1) Determine P0 (xmin, ymin) and P1(xmax, ymax)
- 2) Vector, D = P1 P0
- 3) Find NL*D for all four corner of screen if NL*D < 0 , Entering point: if NL*D > 0, leaving point
- 4) Get t for all four corners t top = (ymax - y0) / (y1 - y0)t bottom = (ymin - y0) / (y1 - y0)t right = (xmax - x0) / (x1 - x0) $t \, left = (xmin - x0) / (x1 - x0)$

(min) = triant = 1864

5) For two entering point, select tmax as entering point For two leaving point, select tmin as leaving point

Solving for left:

: tul=
$$\frac{\pi_{min} - \pi_0}{\pi_1 - \pi_0} = \frac{-100 - (-125)}{195 - (-125)} = 0.078$$
 or 5/64

2

((025-061-) (25/35) 1 028 = R

16. m. J. (150 . 201)

$$N_T \cdot D = (0,1) \cdot (320, -400) = -400 \cdot (0, \text{ Entering})$$

$$t_{top} = \frac{y_{max} - y_0}{y_1 - y_0} = \frac{200 - 260}{-140 - 260} = 0.15 \text{ or } \frac{3}{20}$$

So, at
$$t = te(max)$$
 (251-) - 321
 $\pi = -125 + (3/20 \cdot (195 + 125)) = 1-77$

$$x = -125 + (720)$$

$$y = y_{max} = 200$$

$$So, (x_0, y_0) = (-77, 200) \rightarrow new$$

$$t = t_1(min)$$

Solve at Home: (40,50) (60,50) -to (60,50) Line (-100,60) to (110,-70) Q2) Cip Region (-120,-100) to (120, 100) Line (-135,-200) to (140,200) Pseudo Code void Cyrus-Beck (int xo, int yo, int x,, inty) Ploat temax = 0.0, timin = 1.0, tis

ymax = ..., ymin = ..., xmin = ..., xmin = ... For TOP = (4max -40)/(41-40) Example: if (y,>yo) } // Leaving if (&< temin) 7 Lunin = & 1 3 33 else 3 / Entering >2) 1 if (t>temax) } LEMAX = & t= (4min -40)/(4,=40) < min) () Example: FOR BOTTOM if (y,>yo) 2 11 entering Region) if (t> lemax) } (The same of the demand of the same of th else else a "leaving if (t < RLmin) 3 tLmin = t

POI new B, new Pi
POI Point (float &)
POI.x = Po.x + & (P.x - Po.x)
POI.y = Po.y + & (Pi.y - Po.y)
Teturn PoI.