

Final Project – Image Classification (Kaggle)

Student: Jyun-Hua Chen

Advisor: Juinn-Dar Huang, Ph.D.

Aug 22, 2021

Outline

- Final project: Image Classification
 - Task Description
 - Grading and Requirement
 - Submission
 - Kaggle
 - Report
 - Hints

Task Description: Image Classification

Dataset: Canadian Institute for Advanced Research

Task: Image Classification

- The images are collected from CIFAR-100 dataset
- Dataset provided by TA:
 - Train: 50000 images
 - Test: 10000 images
- DO NOT use the label of test data, it is regarded as CHEATING

Model Limitations and Grading

Model limitations:

- You have to use Transformer-based model (e.g., ViT \ DeiT \ LeViT, ...)
- You can increase or decrease #layers in the model
- Your model must include attention layers
- You can refine the model through
 - Adding layers before/after attention layers
 - > Using residual links, different activation functions, ...
 - Applying model reduction (e.g., pruning)

Scoring formula:

 Unlike the midterm project, this time the grading process considers both accuracy and model size

Grading and Requirements

- Deadline:
 - Kaggle: 9/5 (Sun.) 23:59 in UTC+8
- Grading:
 - Scoreboard ranking (60%) :
 - Score = 100 * ReLU(Acc 70) / Model_Size
 - » Acc is Top-1 accuracy in % on Kaggle leaderboard
 - » Model_Size is in M (10⁶)
 - Report (40%)
- Rules:
 - Discussion is allowed, but you should do your project by yourself
 - DO NOT label the testing data or use the labels of testing data!
 - Your code should be able to generate the results you submitted to the leaderboard (within 1%)

Submission

- Submit your code via email andychen10209@gmail.com
 - <your chinese name>_ final _project.zip (Ex: 陳俊樺_final_project.zip)
 - Include:
 - > Your code (.py or .ipynb)
 - > Model weight file (.pt or .pth)
 - > Report.pdf

DO NOT

- Submit the dataset or model
- Submit your results in wrong formats
 - > like .rar/.7z or report.doc

Kaggle

- Register a Kaggle account by yourself
- Join our in-class competition
 - Link: https://www.kaggle.com/c/2021-ai-training-final-project/data
 - Maximum daily submission: 20

Rules:

- Your team name should be: < your Chinese name >
 - > E.g., 陳俊樺
 - > Otherwise, your submission will NOT be graded.
- You can NOT create multiple Kaggle accounts to submit more results
- You can NOT upload results identical to other people's

Report Problems (40%)

- Model Size (10%)
 - Print your model and show number of total size / number of parameters(5%)

```
[Hint]:

1     from torchsummary import summary
2     result = summary(model, (3, 32, 32))
3     print(result)
```

Print learning curve and briefly state your observations. (loss or accuracy for your CNN) (5%)

```
[Hint]: use plt ()
```

- How to improve the accuracy (list your method) (30%):
 - Loss function ?
 - Your network?
 - Activity function?
 - Etc...

Report Example

Total params: 3,191,397 Trainable params: 3,191,397 Non-trainable params: 0

Input size (MB): 0.01

Forward/backward pass size (MB): 69.50

Params size (MB): 12.17

Estimated Total Size (MB): 81.69

Hints

- You can refine the items listed below to improve model accuracy
 - Model architecture (Prof. Adar's personal favorite)
 - Data normalization
 - Data augmentation
 - Residual connections
 - Batch normalization
 - Learning rate scheduling
 - Optimizer selection
 - Hyperparameter adjustment
 - _ Etc...

Equally Important!

References

- An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
 - ViT: https://arxiv.org/abs/2010.11929
- Training data-efficient image transformers & distillation through attention
 - DeiT: https://arxiv.org/abs/2012.12877
- LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference
 - LeViT: https://arxiv.org/abs/2104.01136

Thank you

