Robot Perception

Dynamic Bayes Network for Robot Pose

Dynamic Bayes Network for Robot Pose

Under the Markov assumption, we are required to model

$$p(x_t|x_{t-1},u_t)$$

which is called the **state transition probability** and shows how the robot's pose changes in time due to input actions.

And,

$$p(z_t|x_t)$$

which is called the **measurement probability** and shows the probability of sensor measurements given the robot's pose

Sensor modeling

We do not have to model the phenomena that generate the measurements. We aim to model the **typical noise** observed by the sensor.

Note We may use any insights based on the specific phenomena that generate the sensor measurements, but we can treat is a black box

Laser rangefinder models

Laser rangefinder

Sensor commonly used in robotics uses a narrow laser beam to determine the distance to objects using the time it takes the beam to be reflected from the object (time of flight)

2D rangefinders (z, θ)

Uses a mirror to rotate a laser beam. For each beam, we have distance z and angle θ

Sensor	RP-1	Hokuyo UST-05	Hokuyo UTM-30	Hokuyo UXM-30		
		HOKOVO		P-ICHCUM!		
Range [m]	0.15~6	0.06~5	0.1~30	0.1~100		
beams/scan	360	1080	1080	1080		
Fol/ [dea]	360	270	270	270		

3D rangefinders (XYZ)

Sensor	Velodyne Puck	Velodyne HDL32	Robosense rs- ruby		
	Velodyne	Valodyne	rotosenss		
Range [m]	1~100	1~100	0.4~200		
beams/horizontal scan	900~3600	900~3600	900/1800		
Channels	16	32	128		

Beam Model

We match the distance obtained from each beam of the rangefinder to the distance that should be obtained given a geometric map of the environment.

Example of range data (ideal case)

Ray Casting

To implement this model, for any possible location \mathbf{x} we need to find the distance of beam i to its closest object in the map z_d .

Considering a grid map, where each cell is either

- 1. empty/free
- 2. occupied

Ray Casting

We check for the closest obstacle by checking every cell on the path of the beam

We stop once we get an *occupied* cell, and return z_d as the distance from the robot to the occupied cell.

If we do not find an occupied cell until the sensors maximum range, we return z_{max}

Ray Casting

This approach is known as raycasting and can be considerably expensive unless GPU acceleration is used.

Ideally, distances from the rangefinder \boldsymbol{z} would be the same as the ones obtained from the map

However, typically we get something closer to

Sensor modeling

We aim to model the **typical noise** observed by the sensor.

Occlusions

Due to people, unmapped objects, etc

Misrecognitions

Objects outside sensor range (min/max), translucent objects, sensor errors, etc

Random errors

Electronic noise, reflective surfaces, etc

Pobabilistic Model

4 error types are used:

- 1. Measurement noise p_{hit}
- 2. Occlusions p_{short}
- 3. Missrecognitions p_{max}
- 4. Random errors p_{rand}

Measurement noise (p_{hit})

The noise around the correct distance z_d is used to model errors due to sensor noise/sensor accuracy.

Modeled as a Gaussian around the true distance z_d with standard devition σ_{hit} and support $[0,z_{max}]$

$$p_{hit}(z) = egin{cases} \eta \mathcal{N}(z|\mu = z_d, \sigma = \sigma_{hit}) & orall z \in [0, z_{max}] \ 0 & ext{otherwise} \end{cases}$$

with η being a normalization constant (due to the modified support) of z.

$$\eta = rac{1}{CDF(z_{max}) - CDF(0)}$$

Measurement noise (p_{hit})

Occlusions (p_{short})

Probability error to account for dynamic objects (such as people), unmapped objects, etc.

Modeled as an exponential distribution with exponential constant λ_{short} and support from zero until the true distance $[0,z_d]$

$$p_{short}(z) = egin{cases} \eta \lambda_{short} \exp\left(-\lambda_{short} z
ight) & orall z \in [0, z_d] \ 0 & ext{otherwise} \end{cases}$$

with η being a normalization constant

$$\eta = rac{1}{1 - \exp\left(-\lambda_{short} z_d
ight)}$$

Occlusions (p_{short})

Missrecognitions (p_{max})

Probability error to account for objects outside sensor range (min/max), translucent objects, sensor errors, etc.

Modeled as a probability mass at z_{max}

$$p_{short}(z) = egin{cases} 1 & ext{if} & z = z_{max} \ 0 & ext{otherwise} \end{cases}$$

Missrecognitions (p_{max})

Random errors (p_{rand})

Probability error to account for electronic noise, reflective surfaces, etc. Modeled as a uniform distribution with support $[0, z_{max}]$

$$p_{short}(z) = egin{cases} rac{1}{z_{max}} & orall z \in [0, z_{max}] \ 0 & ext{otherwise} \end{cases}$$

Random errors (p_{rand})

Beam model

The previous 4 errors are combined using a weighted constants $lpha_{0:3}$, with

$$\sum lpha_{0:3}=1$$

$$p_{tot} = lpha_0 p_{hist} + lpha_1 p_{short} + lpha_2 p_{zmax} + lpha_3 p_{rand}$$

Beam model

For each horizontal scan, we have m beams $\mathbf{z}_{0:m-1}$. If we consider iid,

$$p(\mathbf{z}|\mathbf{x},m) = \prod_{z_i \in \mathbf{z}} p_{tot}(z_i|\mathbf{x},m)$$

Practical Considerations

Considering most rangefinders have hundreds of beams, computing this model for each beam is

- 1. Computationally expensive
- 2. Using the iid assumption tends to generate extremely peaked distributions.

IID assumption

Practical considerations

In practice, it is common to average neighboring beams and only performs raytracing on this subset.

Usually around 40 beams

Use a smoothing factor λ to avoid overconfident predictions

$$p(\mathbf{z}|\mathbf{x},m) = \prod_{z_j \in \mathbf{z}} p_{tot}(z_j|\mathbf{x},m)^{\lambda}$$

• λ is often set to 1/(number of beams in the subset used)

Likelihood Field Model

An approximation that generates similar likelihoods but lacks a physical explanation.

Computationally efficient and works well in practice

Likelihood Fields Model

Compute the probability of a measurement based on the euclidean distance transform at the beam's endpoint.

End-point

Measurements z are in the robot's reference frame, so we transform it into the global reference frame.

Distance Transform

a.k.a distance map, distance field

For each cell in a grid map, it assigns its value as the distance to the closest obstacle.

Euclidean Distance Transform:

Occupancy map (0:empty, 1:occupied) \rightarrow Distance Transform

$\lceil 0 \rceil$	0	0	0	0	0	0	0		$\lceil 1.4 \rceil$	1	1	1.4	2.2	2.8	2.2	$2\rceil$
0	1	1	0	0	0	0	0		1	0	0	1	2	2.2	1.4	1
0	1	1	0	0	0	0	1	\rightarrow	1	0	0	1	2	2	1	0
0	0	0	0	0	0	0	1		1.4	1	1	1.4	2.2	2	1	0
$\lfloor 0$	0	0	0	0	0	0	1		$\lfloor 2.2$	2	2	2.2	2.8	2	1	0

Measurement Noise (p_{hit})

Errors due to sensor noise/sensor accuracy are modeled using the value of the distance transform d at the endpoint's location

Modeled as a zero-mean Gaussian with standard deviation σ_{hit}

$$p_{hit}(z) = \mathcal{N}(d|\mu=0, \sigma=\sigma_{hit})$$

Missrecognitions (p_{max})

Same as before, using a point mass probability p_{max} if the range is z_{max}

Random errors (p_{rand})

Same as before, using an uniform distribution p_{rand} with scope $[0,\,z_{max}]$

Example

Disadvantages

- 1. Does not consider dynamic obstacles
- 2. Rangefinder sees through walls

Advantages

Extremely fast

Gaussian Distribution over Distance Transform can be pre-computed, making online computation simply finding end-points for beams and a look-up table to retrieve p_{hit}