

Выполнила: Короткова Инга Сергеевна

Цель работы – закрепить навыки проектирования интеллектуальных моделей с помощью библиотеки Scikit-Learn для задач построения классифицирующих систем и оценки эффективности их работы.

Задачи:

Выбрать набор данных, содержащий не менее 500 объектов и не менее 10 атрибутов, отмеченный как набор, для задачи классификации с репозитария https://archive.ics.uci.edu/ml/datasets.php Загрузить выбранный набор данных. Произвести исследовательский анализ данных:

- получить объём исследуемых данных;
- получить число атрибутов и их типы данных;
- посмотреть распределение числа примеров классов
- если необходимо, выполнить преобразование категориальных атрибутов;
- если необходимо, заполнить пропущенные значения в выборке.

Разделить набор данных на обучающую и тестовую выборку и объяснить это разбиение. Обучить модели классификации на основе алгоритмов трёх алгоритмов (по выбору слушателя курса), отметить почему были выбраны эти алгоритмы Оценить эффективность моделей на тестовой выборке с помощью матрицы неточностей, критериев полноты Recall и точности Precision.

▼ Постановка задачи и описание данных:

Описание переменных и датасет взяты с сайта: http://archive.ics.uci.edu/ml/datasets/thyroid+disease

Этот набор данных содержит информацию о заболеваниях связанных с функцией щитовидной железы.

Данные собраны Garvan Institue в Австралии.

Объекты разделены на несколько классов, всего 29 атрибутов (22 категориальных и 7 численных).

Сами данные описаны следующим образом:

- age: continuous.
- sex: M, F.
- on thyroxine: f, t.
- query on thyroxine: f, t.
- on antithyroid medication: f, t.
- sick: f, t.
- pregnant: f, t.
- thyroid surgery: f, t.
- I131 treatment: f, t.
- query hypothyroid: f, t.
- query hyperthyroid: f, t.
- lithium: f, t.
- goitre: f, t.
- tumor: f, t.
- hypopituitary: f, t.
- psych: f, t.
- TSH measured: f, t.
- TSH: continuous.
- T3 measured: f, t.
- T3: continuous.
- TT4 measured: f, t.
- TT4: continuous.
- T4U measured: f, t.
- T4U: continuous.
- FTI measured: f, t.
- FTI: continuous.TBG measured: f, t.
- TD0 ::
- TBG: continuous.
- referral_source WEST, STMW, SVHC, SVI, SVHD, other.
- class

Целевая переменная - Class.

Импорт необходимых библиотек

```
1 import numpy as np
 2 import pandas as pd
 3 from matplotlib import pyplot as plt
 4 import seaborn as sns
 5 sns.set(font_scale=1.3)
 7 from sklearn.impute import SimpleImputer
8 from sklearn.preprocessing import OneHotEncoder
 9 from sklearn.preprocessing import MinMaxScaler
10 from sklearn.preprocessing import QuantileTransformer
11 from sklearn.pipeline import Pipeline
12 from sklearn.compose import ColumnTransformer
13
14 from sklearn.model_selection import train_test_split
15
16 from sklearn.multiclass import OneVsRestClassifier
17
18 from sklearn.linear_model import LogisticRegression
19 from sklearn.neighbors import KNeighborsClassifier
20 from sklearn.ensemble import GradientBoostingClassifier
21
22 from sklearn.metrics import confusion_matrix
23 from sklearn.metrics import f1_score, make_scorer
24 from sklearn.metrics import classification_report
26 %matplotlib inline
```

Обзорное исследование данных.

Загрузим датасет.

1 df.info()

```
1 df_columns = ['age',
 2 'sex',
3 'on_thyroxine',
 4 'query_on_thyroxine',
5 'on_antithyroid_medication',
6 'sick',
7 'pregnant',
8 'thyroid_surgery',
9 'I131_treatment',
10 'query_hypothyroid',
11 'query_hyperthyroid',
12 'lithium',
13 'goitre',
14 'tumor',
15 'hypopituitary',
16 'psych',
17 'TSH_measured',
18 'TSH',
19 'T3_measured',
20 'T3',
21 'TT4_measured',
22 'TT4',
23 'T4U_measured',
24 'T4U',
25 'FTI_measured',
26 'FTI',
27 'TBG_measured',
28 'TBG',
29 'referral_source',
30 'Class']
 1 df = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/thyroid-disease/allhypo.data', sep = ',', na_values = '?',
                         decimal=".", header =None)
 3 df.columns = df_columns
 1 df.shape
     (2800, 30)
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2800 entries, 0 to 2799
Data columns (total 30 columns):
#
    Column
                               Non-Null Count Dtype
0
                               2799 non-null
                                              float64
    age
1
                               2690 non-null
                                               object
    sex
                                               object
2
    on_thyroxine
                               2800 non-null
                               2800 non-null
                                               object
3
    query_on_thyroxine
    on_antithyroid_medication 2800 non-null
                                               object
5
    sick
                               2800 non-null
                                               object
    pregnant
                               2800 non-null
                                               object
6
    thyroid_surgery
                               2800 non-null
7
                                               object
    I131_treatment
                               2800 non-null
                                               object
8
                               2800 non-null
                                               object
9
    query_hypothyroid
10 query_hyperthyroid
                               2800 non-null
                                               object
11 lithium
                               2800 non-null
                                               object
12 goitre
                               2800 non-null
                                               object
13 tumor
                               2800 non-null
                                               object
14 hypopituitary
                                               object
                               2800 non-null
                               2800 non-null
                                               object
15 psych
16 TSH_measured
                               2800 non-null
                                               object
17 TSH
                               2516 non-null
                                               float64
18 T3_measured
                               2800 non-null
                                               object
                               2215 non-null
                                               float64
19 T3
20 TT4_measured
                               2800 non-null
                                               object
                                               float64
21
    TT4
                               2616 non-null
22
    T4U_measured
                               2800 non-null
                                               object
 23
    T4U
                               2503 non-null
                                               float64
                               2800 non-null
24 FTI_measured
                                               object
25 FTI
                               2505 non-null
                                               float64
26 TBG_measured
                               2800 non-null
                                               object
                                               float64
 27 TBG
                               0 non-null
28
   referral_source
                               2800 non-null
                                               object
                               2800 non-null
 29 Class
                                               obiect
```

Преобразуем метки классов и выделим из них диагнозы.

```
1 df.Class = df.Class.str.split('.').str[0]
2 df.Class = df.Class.str.replace(' ', '_')
```

```
1 df.head()
```

	age	sex	on_thyroxine	query_on_thyroxine	on_antithyroid_medication	sick	pregnant	thyroid_surgery	I131_treatment qu	ery_h
0	41.0	F	f	f	f	f	f	f	f	
1	23.0	F	f	f	f	f	f	f	f	
2	46.0	М	f	f	f	f	f	f	f	
3	70.0	F	t	f	f	f	f	f	f	
4	70.0	F	f	f	f	f	f	f	f	

```
1 df.tail()
```

	age	sex	on_thyroxine	query_on_thyroxine	on_antithyroid_medication	sick	pregnant	thyroid_surgery	I131_treatment	quer
2795	70.0	М	f	f	f	f	f	f	f	
2796	73.0	М	f	t	f	f	f	f	f	
2797	75.0	М	f	f	f	f	f	f	f	
2798	60.0	F	f	f	f	f	f	f	f	
2799	81.0	F	f	f	f	f	f	f	f	

Также посмотрим какие значения содержит целевая переменная:

```
1 df.Class.unique()
   array(['negative', 'compensated_hypothyroid', 'primary_hypothyroid',
           'secondary_hypothyroid'], dtype=object)
1 df.Class.value_counts()
```

```
negative 2580 compensated_hypothyroid 154
```

Итого: есть набор данных из 30 колонок и 2800 строк, различных типов.

Часть данных - это бинарные признаки (true/false, male/female), другая часть - это численные значения, а также еще есть referral_source (WEST, STMW, SVHC, SVI, SVHD, other).

Целевая переменная Class состоит из следующих значений: ('negative', 'compensated_hypothyroid', 'primary_hypothyroid', 'secondary_hypothyroid')

Перед тем, как приступать к каким-либо преобразованиям требуется убедиться, в каких объемах есть пропуски.

Проверим, какая часть данных отсутствует, для этого выведем долю и количество пропущенных значений:

```
1 print (pd.concat([1- df.count() / df.shape[0], df.isna().sum()],axis=1))
```

	0	1
age	0.000357	1
sex	0.039286	110
on_thyroxine	0.000000	0
query_on_thyroxine	0.000000	0
on_antithyroid_medication	0.000000	0
sick	0.000000	0
pregnant	0.000000	0
thyroid_surgery	0.000000	0
I131_treatment	0.000000	0
query_hypothyroid	0.000000	0
query_hyperthyroid	0.000000	0
lithium	0.000000	0
goitre	0.000000	0
tumor	0.000000	0
hypopituitary	0.000000	0
psych	0.000000	0
TSH_measured	0.000000	0
TSH	0.101429	284
T3_measured	0.000000	0
Т3	0.208929	585
TT4_measured	0.000000	0
TT4	0.065714	184
T4U_measured	0.000000	0
T4U	0.106071	297
FTI_measured	0.000000	0
FTI	0.105357	295
TBG_measured	0.000000	0
TBG	1.000000	2800
referral_source	0.000000	0
Class	0.000000	0

Столбец TBG состоит из пропусков полностью, поэтому его придется дропнуть.

В остальных столбцах процент пропусков не превышает 20%, что достаточно неплохо и с этим нужно работать.

```
1 df['TBG_measured'].value_counts().plot(kind='bar')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fa8b06a3518>

Столбец TBG_measured состоит только из False, поэтому его тоже удалим.

```
1 df.drop(['TBG', 'TBG_measured'],axis=1,inplace=True)
```

Исследуем величины, в которых содержаться пропуски.

```
1 col_with_na = df.columns[df.isna().sum() > 0 ]
2 col_with_na
```

```
Index(['age', 'sex', 'TSH', 'T3', 'TT4', 'T4U', 'FTI'], dtype='object')
```

Так как 6 из 7 признаков - численные, то графики в данном случае строить смысла нет, чтобы не дублировать вывод одной и той же информации. Численные признаки будут рассматриваться далее.

Для полов построим отдельно гистограмму. В целом, для анализа пропусков этот график не имеет смысла, но обзорно посмотреть на это соотношение стоит.

```
1 df['sex'].value_counts().plot(kind='bar')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fa8d89fe390>

Как оказалось, женщин в выборке в два раза больше, что говорит о дисбалансе в этом признаке.

Зафиксируем целевую переменную а также, выделим числовые и категориальные признаки в отдельные наборы данных.

```
1 seed = 10
2
3 target = 'Class'
4 numeric_columns = df.select_dtypes(include=np.number).columns.tolist()
5 cat_columns = df.select_dtypes(include=['object']).columns.tolist()
```

Приступим к анализу численных признаков.

Выведем численные статистики.

```
1 df[numeric_columns].describe()
```

	age	TSH	Т3	TT4	T4U	FTI
count	2799.00000	2516.000000	2215.000000	2616.000000	2503.000000	2505.000000
mean	51.84423	4.672150	2.024966	109.072401	0.997912	110.787984
std	20.46116	21.449453	0.824600	35.392443	0.194390	32.883986
min	1.00000	0.005000	0.050000	2.000000	0.310000	2.000000
25%	36.00000	0.440000	1.600000	88.000000	0.880000	93.000000
50%	54.00000	1.400000	2.000000	104.000000	0.980000	107.000000
75%	67.00000	2.600000	2.400000	125.000000	1.080000	124.000000
max	455.00000	478.000000	10.600000	430.000000	2.120000	395.000000

```
1 df[numeric_columns].hist(figsize=(15, 15), bins='doane', xlabelsize=8, ylabelsize=8);
```


Вывод:

Скорее всего выбросы есть в:

- Age, т.к. не может быть возраст 455 (возможно такое и бывает, но из моего опыта, такое невозможно)
- TSH, TT4, FTI т.к. максимальные значения этих величин выше 75 процентов данных. эти величины обозначают количество гормонов в крови.

Удалим выброс в Age, т.к. скорее всего это ошибка ввода.

Можно конечно предположить, что человек хотел ввести, 45.5 или 55 и заменить на выбранное число, но так делать некорректно, по отношению к данным.

Проверим значение данного выброса:

```
1 df[df.age > 100]

age sex on_thyroxine query_on_thyroxine on_antithyroid_medication sick pregnant thyroid_surgery I131_treatment question for the first pregnant thyroid_surgery for the first pregnant for
```

```
1 df.drop(index=1364, inplace=True)
```

Рассмотрим величину TSH.

```
1 ind_tsh = df[df.TSH > 300].index
2 df.iloc[ind_tsh]
```

	age	sex	on_thyroxine	query_on_thyroxine	on_antithyroid	_medication	sick	pregnant	thyroid_surgery	I131_treatment	que
1165	18.0	F	t	f		f	f	f	f	f	
2506	2.0	NaN	f	f		f	f	f	f	f	
2771	25.0	F	f	f		f	f	f	f	f	

^{2 #}сразу обновим индексы

³ df.reset_index(drop=True, inplace=True)

Это не является выбросом, такой вывод сделан из анализа предметной области, высокий уровень TSH говорит об ослабленной щитовидной железе, что подтверждается значением переменной класс.

FTI и TT4 будем рассматривать совместно, т.к. они взаимосвязаны.

```
1 ind_TT4_FTI = df[(df.TT4 > 250) & (df.FTI > 250)].index
2 df.iloc[ind_TT4_FTI,:]
```

	age	sex	on_thyroxine	query_on_thyroxine	${\tt on_antithyroid_medication}$	sick	pregnant	thyroid_surgery	I131_treatment	quer
604	27.0	F	f	f	f	f	f	f	f	
743	41.0	F	f	f	f	f	f	f	f	
1414	41.0	F	f	f	f	f	t	f	f	

Исходя из предметной области, эти величины TT4 и FTI связаны между собой, the Free Thyroxine Index (FTI or T7) is obtained by multiplying the total T4 with T3 uptake.

В нашем случае Т3 не uptake, но взаимосвязь прослеживается.

Посмотрим на категориальные признаки.

Перед тем, как приступать к анализу категориальных признаков столбцы 'TSH_measured', 'T3_measured', 'TT4_measured', 'T4U_measured', 'FTI_measured' дропнем, т.к. они представляют собой индикатор, было ли собрано соотвествующее численнное значение. Это не несет особой информации, т.к. в соседней колонке записано число.

```
1 df.drop(['TSH_measured', 'T3_measured', 'T74_measured', 'T4U_measured', 'FTI_measured'], axis = 1, inplace=True)

1 # Обновим список колонок
2 cat_columns = df.select_dtypes(include=['object']).columns.tolist()[:-1]

1 for i, col in enumerate(df[cat_columns].columns):
2 print(df[col].value_counts())
```

```
1829
F
Μ
      860
Name: sex, dtype: int64
f
     2469
t
      330
Name: on_thyroxine, dtype: int64
f
     2759
t
Name: query_on_thyroxine, dtype: int64
f
t
Name: on_antithyroid_medication, dtype: int64
```

Продублируем информацию графически:

```
f 2758

1 plt.figure(figsize=(17, 35))

2 for i, col in enumerate(df[cat_columns].columns):# выводим все величины, кроме последней (целевой, ее будем рассматривать отдельно)

3 plt.subplot(8,4,i+1)

4 sns.countplot(x=df[col], data=df)

5 plt.subplots_adjust(hspace = 0.25)
```


Из графиков и таблицы можно сделать следующий вывод:

- большинство классов несбалансированно.
- Стоит обратить внимание на признаки с thyroid в названии, возможно они могут привести к утечке данных.

Анализ целевой переменной.

Класс secondary_hypothyroid будет несостоятельным для классификации в данной задаче, т.к. он имеет всего 2 значения.

Его можно удалить, но здесь приму решение оставить, т.к. удалять целевые признаки не очень хорошо + всегда есть вероятность получить больше данных (этот комментарий не совсем корректен к этой задаче, но в плане общего подхода может позволить совершить меньше ошибок).

```
1 plt.figure(figsize=(15, 5))
2 sns.countplot(x=df[target], hue='Class', data=df)
3 plt.show()
```


Между классам достаточно большой разброс, на качество классификации это скорее всего повлияет отрицательно.

```
1 plt.figure(figsize=(15, 5))
2 sns.boxplot(x=df[target],y=df.age, hue='Class', data=df)
3 plt.show()
```


Также дополнитель посмотрим график зависимости от возраста, как видно negative/compensated/primary на одном уровне, как видно из графика, в основном пациенты были примерно одного возраста. Скорее всего age не принесет улучшения модели.

Метрики.

В работе будем использовать следующие метрики:

Confusion Matrix - для понимания, того как алгоритм справляется с классификацией.

Precision - здесь нужен, как оценка выявления правильно поставленного диагноза (т.е. считаем случаи, когда болен к отношению болен+болен ошибочно).

Recall - для выявления, что мы вычислили все случаи болезни и ничего не пропустили.

F1-score - комбинированная оценка, учитывающая предыдущие факторы.

Здесь все перечисленные оценки будут полезны.

▼ Подготовка данных.

Разделим данные, включим стратификацию, потому, что классы несбалансированы.

```
1 X = df.drop(target, axis = 1)
2 y = df[target]
```

Производить enumerate над переменной класса не будем, т.к. это не имеет смысла в данной задаче.

Настроим Pipeline для обработки данных и построения моделей.

Для численных данных пропуски будем заполнять mean, скейлим как мин-макс и попробуем их приведем к нормальному распределению.

```
1 num_features_pipeline = Pipeline([
      ('impute', SimpleImputer(missing_values=np.nan, strategy='mean',copy = False)),
      ('scale', MinMaxScaler()),
3
      ('transform', QuantileTransformer(output_distribution='normal'))
5])
1 # для категориальных колонок действием аналогично, только используем энкодер
2 cat_features_pipeline = Pipeline([
      ('impute', SimpleImputer(missing_values=np.nan, strategy='most_frequent', fill_value='missing', )),
      ('onehot', OneHotEncoder(handle_unknown="ignore"))
4
5])
1 # создадим трансформер, который будет применять преобразования к выбранным колонкам
2 preprocessor = ColumnTransformer(
3
     transformers=[
4
          ('num', num_features_pipeline, numeric_columns),
         ('cat bin', cat features pipeline, cat columns)
5
6
     ]
7)
```

Выбор алгоритмов.

В качестве алгоритмов были выбраны:

- логистическая регрессия, неплохой и быстрый алгоритм, который хорошо подходит для быстрого получения результатов.
- алгоритм k-ближайших соседей, выбран потому, что в основе его лежит достаточно простая гипотеза о том, что можно судить о классе объекта (исходя из выбранной метрики) по его соседям. Т.к. речь идет про диагностировании заболеваний, то, возможно это окажется эффективным способом верно предсказывать заболевание по текущему набору данных.

• алгоритм градиентного бустинга, этот алгоритм, был выбран в силу того, что является эффективным решением. Он сочетает в себе скорость работы и содержит простую, но эффективную идею того, что ансамбль слабых моделей в совокупности дает хороший результат.

▼ Логистическия регрессия

```
1 \ \# \ \text{т.к.} классов много, используем подход 1 против всех
2 clf_log = OneVsRestClassifier(LogisticRegression(multi_class = 'multinomial',
3
                                                      solver='newton-cg',
                                                      random_state = seed,
4
5
                                                      n_{jobs} = -1,
                                                      max_iter = 10e2,
6
7
                                                      class_weight='balanced'))
1 baseline_pipeline_logit = Pipeline(
      steps=[
2
3
          ('preprocessing', preprocessor),
4
          ('classify', clf_log)
5
      ]
6)
```

Посчитаем метрики для этого baseline'a.

on train

1 logit_regr = baseline_pipeline_logit.fit(X_train, y_train)

_warn_prf(average, modifier, msg_start, len(result))

```
1 y_pred_train = logit_regr.predict(X_train)
2 y_pred_test = logit_regr.predict(X_test)
3 print ("on train")
4 print(classification_report(y_train, y_pred_train))
5 print("confusion matrix on train")
6 print(confusion_matrix(y_train, y_pred_train))
```

```
precision
                                   recall f1-score
                                                    support
compensated_hypothyroid
                           0.66
                                    0.96
                                              0.78
                                                        108
             negative
                           1.00
                                    0.97
                                              0.98
                                                       1805
   primary_hypothyroid
                           0.70
                                    0.78
                                              0.74
                                                         45
 secondary_hypothyroid
                           0.00
                                    0.00
                                              0.00
                                                         1
                                              0.96
                                                       1959
             accuracy
                                     0.68
            macro avg
                           0.59
                                              0.63
                                                       1959
         weighted avg
                           0.97
                                     0.96
                                              0.97
                                                       1959
confusion matrix on train
0]
  43 1751 11
                  0]
[ 10
      0 35
                  0]
[ 0
        1
           0
                  0]]
/usr/local/lib/python3.6/dist-packages/sklearn/metrics/_classification.py:1272: UndefinedMetricWarning: Precision and F-score are
```

```
1 print ("on test")
2 print(classification_report(y_test, y_pred_test))
3
4 print("confusion matrix on test")
5 print(confusion_matrix(y_test, y_pred_test))
```

```
on test
                                       recall f1-score
                         precision
                                                          support
compensated_hypothyroid
                              0.66
                                         0.96
                                                   0.78
                                                               46
                                         0.96
                                                   0.98
                                                              774
               negative
                              1.00
    primary_hypothyroid
                              0.68
                                         0.89
                                                   0.77
                                                               19
```

```
▼ KNN
```

```
maci o ava
                                                                   _{\cup 	o \cup}
1 clf_knn = KNeighborsClassifier(n_neighbors=3, algorithm='kd_tree',weights = 'uniform')
2 baseline_pipeline_knn = Pipeline(
      steps=[
3
          ('preprocessing', preprocessor),
4
5
          ('classify', clf_knn)
6
     ]
7)
1 knn = baseline_pipeline_knn.fit(X_train, y_train)
1 y_pred_train = knn.predict(X_train)
2 y_pred_test = knn.predict(X_test)
3 print ("on train")
4 print(classification_report(y_train, y_pred_train))
5 print("confusion matrix on train")
6 print(confusion_matrix(y_train, y_pred_train))
    on train
                                           recall f1-score
                             precision
                                                              support
                                   0.91
    compensated_hypothyroid
                                             0.69
                                                       0.79
                                                                  108
                   negative
                                   0.98
                                             1.00
                                                       0.99
                                                                  1805
        primary_hypothyroid
                                   0.93
                                             0.89
                                                       0.91
                                                                    45
      secondary_hypothyroid
                                   0.00
                                             0.00
                                                       0.00
                                                                     1
                                                       0.98
                                                                  1959
                   accuracy
                                   0.71
                                             0.64
                                                       0.67
                                                                  1959
                  macro avg
               weighted avg
                                   0.98
                                             0.98
                                                       0.97
                                                                  1959
    confusion matrix on train
    [[ 75
            32
                   1
                        0]
        5 1798
                   2
                        0]
                  40
                        0]
        2
             3
                   0
                        0]]
    /usr/local/lib/python3.6/dist-packages/sklearn/metrics/_classification.py:1272: UndefinedMetricWarning: Precision and F-score are
      _warn_prf(average, modifier, msg_start, len(result))
1 print ("on test")
2 print(classification_report(y_test, y_pred_test))
4 print("confusion matrix on test")
5 print(confusion_matrix(y_test, y_pred_test))
    on test
                                           recall f1-score
                                                              support
                             precision
```

```
compensated_hypothyroid
                            0.66
                                      0.41
                                               0.51
                                                          46
              negative
                            0.96
                                      0.99
                                               0.98
                                                         774
    primary_hypothyroid
                            0.93
                                      0.74
                                               0.82
                                                          19
 secondary_hypothyroid
                                               0.00
                            0.00
                                      0.00
                                                           1
                                               0.95
                                                         840
              accuracy
             macro avg
                            0.64
                                      0.53
                                               0.58
                                                         840
          weighted avg
                            0.94
                                     0.95
                                               0.95
                                                         840
confusion matrix on test
[[ 19 27
          0 0]
[ 7 766 1
              0]
   3 2 14
              0]
[ 0 1 0 0]]
```

/usr/local/lib/python3.6/dist-packages/sklearn/metrics/_classification.py:1272: UndefinedMetricWarning: Precision and F-score are _warn_prf(average, modifier, msg_start, len(result))

Ситуация кардинально не изменилась. compensated_hypothyroid стал распознаваться хуже, primary_hypothyroid стал распознаваться лучше.

→ Gradient Boosting

```
1 clf_gb = GradientBoostingClassifier(n_estimators=20, learning_rate=0.5, max_depth=5, random_state=0)
2 baseline_pipeline_gb = Pipeline(
      steps=[
3
          ('preprocessing', preprocessor),
4
5
          ('classify', clf_gb)
     ]
6
7)
1 gb = baseline_pipeline_gb.fit(X_train, y_train)
1 y_pred_train = gb.predict(X_train)
2 y_pred_test = gb.predict(X_test)
3 print ("on train")
4 print(classification_report(y_train, y_pred_train))
5 print("confusion matrix on train")
6 print(confusion_matrix(y_train, y_pred_train))
    on train
                                          recall f1-score
                             precision
                                                             support
    compensated_hypothyroid
                                  1.00
                                            1.00
                                                      1.00
                                                                 108
                                                      1.00
                                                                1805
                   negative
                                  1.00
                                            1.00
        primary_hypothyroid
                                  1.00
                                            1.00
                                                      1.00
                                                                  45
      secondary_hypothyroid
                                  1.00
                                            1.00
                                                      1.00
                                                                   1
                                                      1.00
                                                                1959
                   accuracy
                  macro avg
                                  1.00
                                            1.00
                                                      1.00
                                                                1959
               weighted avg
                                                                1959
                                  1.00
                                            1.00
                                                      1.00
    confusion matrix on train
    [[ 108
             0
                  0
                        0]
        0 1805
                  0
                        0]
        0
             0
                 45
                        0]
        0
                        1]]
1 print ("on test")
2 print(classification_report(y_test, y_pred_test))
4 print("confusion matrix on test")
5 print(confusion_matrix(y_test, y_pred_test))
    on test
                                          recall f1-score
                             precision
                                                             support
    compensated_hypothyroid
                                  0.94
                                            0.96
                                                      0.95
                                                                  46
                  negative
                                  1.00
                                            1.00
                                                      1.00
                                                                 774
        primary_hypothyroid
                                  0.85
                                            0.89
                                                      0.87
                                                                  19
      secondary_hypothyroid
                                  0.00
                                            0.00
                                                      0.00
                                                                   1
                                                      0.99
                                                                 840
                   accuracy
                                  0.70
                                            0.71
                                                      0.70
                                                                 840
                  macro avg
               weighted avg
                                  0.99
                                            0.99
                                                      0.99
                                                                 840
    confusion matrix on test
    [[ 44 1
              1
                   0]
       1 771
               2
                    0]
       2
           0 17
                    0]
                    0]]
    /usr/local/lib/python3.6/dist-packages/sklearn/metrics/_classification.py:1272: UndefinedMetricWarning: Precision and F-score are
      _warn_prf(average, modifier, msg_start, len(result))
```

А вот алгоритм на основе ансамбля решающих деревьев показывает намного лучшие результаты.

▼ Заключение

Среди сравненных классфикаторов и параметров наилучшими оценками обладают (в порядке убывания):

- градиентный бустинг на деревьях принятия решений
- KNN
- логистическая регрессия

В данной работы мы провели:

- работу с датасетом, а именно отбор и фильтрацию признаков
- исследование данных при помощи статистик и графиков
- подготовку данных перед подачей их в алгоритмы
- обучение нескольких алгоритмов машинонного обучения
- сравнение их результатов