特点

- 集成电荷泵,支持高边充电和放电 NFET 驱 动
- 集成高边预充电和预放电 PFET 驱动
- 两个独立的 ADC
 - 支持电压和电流同时采样
 - 高精度电池电压测量
 - 高精度库仑计
 - 支持内部传感器和最多6个外部热敏电阻进行温度测量
- 电池采样引脚具有 132V 耐压,支持乱序上 电及热插拨
- 集成电池被动均衡驱动器
- 集成多种硬件保护
 - 电池过压保护(COV)
 - 电池欠压保护(CUV)
 - 两级充电过流保护(OCC1/OCC2)
 - 两级放电过流保护(OCD1/OCD2)
 - 放电短路保护(SCD)
- 3种电源模式(典型值)
 - 正常模式: ~270μA
 - 休眠模式: ~60uA
 - 关机模式: ~1μA
- 支持多种休眠模式唤醒功能
 - I²C 通信唤醒
 - 定时唤醒
 - 充/放电流检测唤醒
 - 第2级充/放电过流唤醒
 - 放电短路唤醒
 - 充电器检测唤醒
- 3.3V/50mA LDO 供外部系统使用
- 100kHz I²C 通信接口,支持 CRC 校验和从机 地址硬线配置
- LQFP48(7mm×7mm)封装

应用

- 电动自行车、电动轻型摩托车、电动摩托车
- 不间断电源系统(UPS)
- 电网储能
- 18V, 24V, 36V, 48V, 60V, 72V 磷酸铁锂/ 三元锂/钛酸锂/纳离子等电池组

描述

DVC1124-1(以下简称 DVC1124)是一款采用车规级高压 BCD 工艺设计的多串电池组监控芯片,适用于总电压不超过 100V 的电池包。

DVC1124 在正常模式下, VADC 可以在 35ms 内完成 24 串电池电压和 6 个热敏电阻温度测量; CADC 集成了 2 个滤波器 CC1 和 CC2, 分别 4ms 和 256ms 输出一次电流测量值。

DVC1124 在休眠模式下,3.3V LDO 可以开启支持外部 MCU 等系统持续工作,高边充电和放电 NFET 驱动可以开启使电池组处于待机状态,同时第2级充/放电过流保护和放电短路保护可以在充/放电电流异常时立即关闭充/放电驱动,保持电池组功能安全。

DVC1124 在休眠模式下,既支持 I²C 通信被动唤醒功能,也支持定时唤醒、充/放电电流检测唤醒、第 2 级充/放电过流唤醒、放电短路唤醒和充电器检测等主动唤醒功能。

典型应用

联系方式

公司名称:南京集澈电子科技有限公司

宜矽源半导体南京有限公司

公司网址: http://www.easypowerinc.com

技术支持: fae@devechip.com

DVC1124-1 数据手册

特点1	I ² C 看门狗定时器	19
应用1	管理系统	20
描述1	电池均衡管理	20
典型应用1	电池内部 MOS 均衡	20
联系方式1	电池外部 NPN 均衡	20
引脚配置3	电池奇偶交替均衡	20
引脚功能3	电池均衡定时器	20
绝对最大额定值5	放电管理	21
推荐工作条件 6	电荷泵	21
电气特性7	高边放电驱动	21
系统框图11	高边预放电驱动	21
功能模式12	高边负载检测	21
关机模式12	低边放电驱动	21
休眠模式12	低边预放电驱动	21
正常模式12	放电硬线控制	21
测量系统13	充电管理	21
电流测量13	高边充电驱动	21
CADC 测量周期13	高边预充电驱动	22
CADC 输入量程与分辨率13	高边充电器检测	22
电压测量13	低边充电驱动	22
VADC 测量周期13	低边预充电驱动	22
VADC 轮询模式13	充电硬线控制	22
电池电压量程和分辨率14	通信系统	23
C24、PACK 和 LOAD 电压量程和分辨率	I ² C 串行接口	23
14	I ² C 总线协议	23
V1P8 电压量程和分辨率14	I²C 从机地址	23
GP 模拟电压量程和分辨率14	CRC8 校验	23
电池采样接线方式15	I2C 寄存器地址	23
电池采样断线检测15	I²C 写操作	23
温度测量15	I²C 读操作	23
芯片内核温度15	I2C 总线超时定时器	24
热敏电阻温度15	中断控制器	24
保护系统17	应用和实施	25
电池电压保护17	敷形涂层	25
电池过压保护(COV)17	未使用引脚	25
电池欠压保护(CUV)17	推荐布局	26
充/放电电流保护17	应用框图	27
第 1 级放电过流保护(OCD1)17	封装规格	28
第 1 级充电过流保护(OCC1)18	LQFP48(7mm×7mm)	28
第 2 级放电过流保护(OCD2)18	订购信息	29
第 2 级充电过流保护(OCC2)18	修订历史记录	29
放电短路保护(SCD)18		

引脚配置

LQFP48 顶视图

引脚功能

 引脚	名称	类型	描述
1	C24	I	电池采样输入,连接到第24 串电池的正极
2	C23	1	电池采样输入,连接到第23串电池的正极
3	C22	I	电池采样输入,连接到第22串电池的正极
4	C21	1	电池采样输入,连接到第21串电池的正极
5	C20	1	电池采样输入,连接到第20串电池的正极
6	C19	1	电池采样输入,连接到第19串电池的正极
7	C18	1	电池采样输入,连接到第18串电池的正极
8	C17	1	电池采样输入,连接到第17串电池的正极
9	C16	1	电池采样输入,连接到第16串电池的正极
10	C15	1	电池采样输入,连接到第15串电池的正极
11	C14	1	电池采样输入,连接到第14串电池的正极
12	C13	1	电池采样输入,连接到第13串电池的正极

引脚	名称	类型	描述
13	C12	Ţ	电池采样输入,连接到第 12 串电池的正极
14	C11	1	电池采样输入,连接到第11串电池的正极
15	C10	1	电池采样输入,连接到第10串电池的正极
16	C9	I	电池采样输入,连接到第9串电池的正极
17	C8	1	电池采样输入,连接到第8串电池的正极
18	C7	I	电池采样输入,连接到第7串电池的正极
19	C6	1	电池采样输入,连接到第6串电池的正极
20	C5	Ţ	电池采样输入,连接到第5串电池的正极
21	C4	Ţ	电池采样输入,连接到第4串电池的正极
22	C3	1	电池采样输入,连接到第3串电池的正极
23	C2	1	电池采样输入,连接到第2串电池的正极
24	C1	1	电池采样输入,连接到第1串电池的正极
25	СО	I	电池采样输入,连接到第1串电池的负极
26	SRN	1	电流采样负极输入,连接到采样电阻负端(靠近 VSS)
27	SRP	I	电流采样正极输入,连接到采样电阻正端
28	VSS	S	地,连接到第1串电池的负极
29	GP6	1/0	热敏电阻输入、模拟电压输入、低边放电驱动输出、中断输出
30	GP5	1/0	热敏电阻输入、模拟电压输入、低边充电驱动输出、中断输出
31	GP4	1/0	热敏电阻输入、模拟电压输入、放电硬线控制输入
32	GP3	1/0	热敏电阻输入、模拟电压输入、低边预充电驱动输出、中断输出
33	GP2	1/0	热敏电阻输入、模拟电压输入、低边预放电驱动输出、中断输出
34	GP1	1/0	热敏电阻输入、模拟电压输入、充电硬线控制输入
35	V1P8	0	1.8V 电源输出,需在靠近芯片引脚位置通过 1μF 电容连接到 VSS
36	V3P3	0	3.3V 电源输出,需在靠近芯片引脚位置通过 1μF 电容连接到 VSS
37	SDA	1/0	I ² C 通信总线数据输入/输出
38	SCL	1	I ² C 通信总线时钟输入
39	VREG	S	5V 电源输入,需在靠近芯片引脚位置通过 1μF 电容连接到 VSS
40	VBASE	0	NPN 预稳压器基极驱动电压输出,需在靠近芯片引脚位置通过 1μF 电容连接到 VSS
41	LOAD	I/O	负载检测引脚
42	PDSG	0	高边预放电驱动输出
43	PCHG	0	高边预充电驱动输出
44	PACK	1	充电器检测引脚
45	DSG	0	高边放电驱动输出
46	CHG	0	高边充电驱动输出
47	VCP	0	电荷泵输出,需在靠近芯片引脚位置通过 2.2μF 电容连接到 VTOP
48	VTOP	S	电源输入,连接到电池组正极,需在靠近芯片引脚位置通过 1μF 电容连接到 VSS

注: I表示输入引脚, O表示输出引脚, I/O表示输入/输出引脚, S表示电源引脚。

绝对最大额定值

符号	参数	条件	最小值	最大值	单位
V _{TOP}	VTOP 电源引脚输入电压	VTOP-VSS	-0.3	132	V
V _{CELL}	电池检测引脚输入电压	CO-VSS	-0.3	6	V
		C(n)-VSS, n=124	-0.3	132	V
		C(n)-C(n-1), n=124	-0.3	132	V
V _{CP}	电荷泵引脚输出电压	VCP-VSS	-0.3	132	V
		VCP-VTOP	-0.3	15	V
V _{SR}	电流检测引脚输入电压	SRP-VSS	-0.3	6	V
		SRN-VSS			
V_{DSG}	高边放电驱动引脚输出电 压	DSG-VSS	-0.3	132	V
V_{CHG}	高边充电驱动引脚输出电 压	CHG-VSS	-0.3	132	V
V _{PDSG}	高边预放电驱动引脚输出 电压	PDSG-VSS	-0.3	132	V
V _{PCHG}	高边预充电驱动引脚输出 电压	PCHG-VSS	-0.3	132	V
V _{PACK}	充电检测引脚电压	PACK-VSS	-0.3	132	٧
V _{LOAD}	负载检测引脚电压	LOAD-VSS	-0.3	132	٧
V _{BASE}	NPN 基极驱动引脚输出电	VBASE-VSS	-0.3	15	٧
	压	VBASE-VTOP	-132	0.3	٧
V _{REG}	5V 电源引脚输入电压	VREG-VSS	-0.3	6	٧
V _{3P3}	3.3V 电源引脚输出电压	V3P3-VSS	-0.3	6	٧
		V3P3-VREG	-6	0.3	٧
V _{1P8}	1.8V 电源引脚输出电压	V1P8-VSS	-0.3	2	٧
		V1P8-VREG	-6	0.3	٧
V_{DIG}	数字引脚电压	SCL-VSS	-0.3	6	٧
		SDA-VSS			
		GP(n)-VSS, n=16			
I _{IO}	流入/流出引脚的电流	C(n), n=024	0	25	mA
		VREG, V3P3	0	50	mA
		其他	0	1	mA
T _J	额定结温范围		-40	85	°C
Ts	贮存温度范围		-65	150	°C
V _{ESD}	设备 ESD 等级	HBM 模型		±2000	V
		CDM 模型		±250	V

推荐工作条件

符号	参数	条件	最小值 典型值	最大值	单位
V _{TOP}	VTOP 电源引脚输入电压	VTOP-VSS	8	120	V
		VTOP-C24	-1	120	٧
V _{CELL}	电池检测引脚输入电压	CO-VSS	0	0.3	V
		C(n)-C(n-1), n=124	0	5.0	
V _{CP}	电荷泵引脚输出电压	VCP-VTOP	0	12	V
		VCP-VSS	0	120	V
V _{SR}	电流检测引脚输入电压	SRP-VSS	-150	150	mV
		SRN-VSS			
		SRP-SRN			
V _{DSG}	高边放电驱动引脚输出电 压	DSG-VSS	0	VCP	v
V _{CHG}	高边充电驱动引脚输出电 压	CHG-VSS	VTOP	VCP	V
V _{PDSG}	高边预放电驱动引脚输出 电压	PDSG-VSS	0	120	V
V _{PCHG}	高边预充电驱动引脚输出电压	PCHG-VSS	0	120	V
V _{PACK}	充电检测引脚电压	PACK-VSS	0	120	V
V _{LOAD}	负载检测引脚电压	LOAD-VSS	0	120	V
V _{BASE}	NPN 基极驱动引脚输出电压	VBASE-VSS	0	6.5	V
V_{REG}	5V 电源引脚输入电压	VREG-VSS	0	5.5	V
V _{3P3}	3.3V 电源引脚输出电压	V3P3-VSS	0	3.3	V
V _{1P8}	1.8V 电源引脚输出电压	V1P8-VSS	0	1.8	V
V_{DIG}	数字引脚电压	SCL-VSS	0	5	V
		SDA-VSS			
		GP(n)-VSS, n=16			
V _{TS}	热敏电阻引脚输入电压	GP(n)-VSS, n=16	0	1.8	V
V _{AIN}	模拟引脚输入电压	GP(n)-VSS, n=16	0	1.8	V
I _{CB}	电池被动均衡驱动电流	C(n), n=024	0	25	mA
R _C	VADC 输入滤波电阻		220		Ω
Cc	VADC 输入滤波电容		0.1		μF
T _{OPR}	工作温度		-40	85	°C

电气特性

符号	参数	条件	最小值	典型值	最大值	单位
VADC 规格						•
	输入范围	C(n)-C(n-1), n=124	-0.3		5.0	V
		GP(n)-VSS, n=16	0		1.98	V
		V1P8-VSS	0		1.98	V
		C24-VSS, PACK-VSS, LOAD-VSS	0		120	V
	测量分辨率	C(n)-C(n-1), n=124		100		μV/bit
		GP(n)-VSS, n=16				
		V1P8-VSS				
		C24-VSS, PACK-VSS, LOAD-VSS		12.8		mV/bit
	ADC 偏移电压	C(n)-C(n-1), n=124		1		mV
		GP(n)-VSS, n=16				
		V1P8-VSS				
		C24-VSS, PACK-VSS, LOAD-VSS				
	ADC 增益误差	C(n)-C(n-1), n=124		0.1		%
		GP(n)-VSS, n=16				
		V1P8-VSS				
		C24-VSS, PACK-VSS, LOAD-VSS				
	25℃测量误差	C(n)-C(n-1), n=124		±5		mV
		GP(n)-VSS, n=16				
		V1P8-VSS				
		C24-VSS, PACK-VSS, LOAD-VSS		±500		mV
	未进行测量时的输入漏电流	C(n), n=024		±10		nA
		GP(n), n=16				
		V1P8				
		C24, PACK, LOAD		10		nA
	进行测量时的输入漏电流	C(n), n=024		±1		μΑ
		GP(n), n=16				
		V1P8				
		C24, PACK, LOAD			31	μΑ
	测量时间	单个通道	0.791	1.54	6.02	ms
		全部通道	34.5	61.4	223	ms
CADC 规格	<u> </u>	L				
	输入范围		-150		150	mV
	测量分辨率	CC1		5		μV/bit
		CC2		0.3125		μV/bit
	ADC 偏移电压			50		μV
	ADC 增益误差			0.1		%
	测量误差			±200		μV

符号	参数	条件	最小值	典型值	最大值	单位
	未进行测量时的输入漏电	SRP, SRN		±10		nA
	流					ПА
	进行测量时的输入漏电流	SRP, SRN		±1		μΑ
	测量时间	CC1	0.5		4.0	ms
		CC2		256		ms
一般直流规格	}					
I _{BAT}	VTOP 电源电流	正常模式		15		μΑ
		休眠模式		8		μΑ
		关机模式		1		μΑ
I _{REG}	VREG 电源电流	正常模式		255		μΑ
		休眠模式		52		μΑ
		关机模式		0.1		μΑ
LDO 规格						•
V _{3P3}	V3P3 输出电压			3.3		V
I _{3p3}	V3P3 输出电流		0		50	mA
电池被动均衡	· 「驱动规格					I
R _{CB_ON}	电池被动均衡驱动导通电	C(n)至 C(n-1),n=424	173	290	441	Ω
	阻	C(n)至 C(n-1),n=13	123	170	204	Ω
I _{CB_ON}	电池被动均衡驱动导通电	C(n)至 C(n-1),n=124				
_	流		0		25	mA
电荷泵规格						· L
V _{CP}	电荷泵输出电压	VCP-VTOP	6		12	٧
T _{CP_START}	电荷泵启动时间	C _{CP} =2.2μF, V _{CP} =10V		91		ms
<u></u> 充电/放电管						ı
T _{CHG_ON}	开启充电管时驱动上升时	C _L =47.2nF, R _{GATE} =51Ω, V _{CP} =10V, V _{GS}				
	间	from 0V to 4V	44			μs
T _{DSG_ON}	开启放电管时驱动上升时	C_L =47.2nF, R_{GATE} =51 Ω , V_{CP} =10V, V_{GS}				
_	间	from 0V to 4V	26			μs
T _{CHG_OFF}	关闭充电管时驱动下降时	$C_L=47.2$ nF, $R_{GATE}=51\Omega$, $V_{CP}=10$ V				
_	间		199			μs
T _{DSG_OFF}	关闭放电管时驱动下降时	C _L =47.2nF, R _{GATE} =51Ω, V _{CP} =10V				
_	间		6.5			μs
T _{PCHG_PDSG_ON}	开启预充电/预放电管时	C _L =860pF, R _{PU} =270kΩ				
	驱动下降时间		2.0			ms
T _{PCHG_PDSG_OFF}	关闭预充电/预放电管时	C _L =860pF, R _{PU} =270kΩ				
	驱动上升时间		2.0			ms
I _{PCHG PDSG ON}	开启预充电/预放电时引					
	脚下拉电流		23.2	36.0	54.4	μΑ
	l.	I	<u> </u>			1
V _{OV_TH}	电池过压保护阈值		501		4595	mV
V _{OV_TH_STEP}	电池过压保护阈值步进			1	-	mV
T _{OV_DLY}	电池过压保护延时		200		8000	ms

 符号	参数	条件	最小值	 典型值	最大值	単位
V _{UV_TH}	电池欠压保护阈值		1		4095	mV
V _{UV_STEP}	电池欠压保护阈值步进			1		mV
T _{UV_DLY}	电池欠压保护延时		200		8000	ms
V _{OC1_TH}	第1级充/放电过流保护阈		0.25		63.75	mV
	值					
V _{OC1_TH_STEP}	第1级充/放电过流保护阈			0.25		mV
	值步进					
T _{OC1_DLY}	第1级充/放电过流保护延		8		2048	ms
	时					
T _{OC1_DLY_STEP}	第1级充/放电过流保护延			8		ms
	时步进					
V _{OC2_TH}	第2级充/放电过流保护阈		4		256	mV
	值					
V _{OC2_TH_STEP}	第2级充/放电过流保护阈			4		mV
	值步进					
T _{OC2_DLY}	第2级充/放电过流保护延		4		1024	ms
	时					
T _{OC2_DLY_STEP}	第2级充/放电过流保护延			4		ms
	时步进					
V _{SCD_TH}	放电短路保护阈值		10		630	mV
V _{SCD_TH_STEP}	放电短路保护阈值步进			10		mV
T _{SCD_DLY}	放电短路保护延时	注 1	0		1992	μs
T _{SCD_DLY_STEP}	放电短路保护延时步进			7.81		μs
I ² C 接口直流						
V _{IH_I2C}	I ² C 引脚数字输入电压为高	SCL, SDA	1.25			V
	电平					
V _{IL_I2C}	I ² C 引脚数字输入电压为低	SCL, SDA			0.9	V
	电平					
I _{LEAK_DIG}	数字输入漏电流	SCL, SDA			±1	μΑ
V _{OL_SDA}	SDA 引脚数字输出电压为	SDO 下拉电流 1mA			0.3	V
	低电平					
I ² C 时序规格						
f _{SCL}	SCL 时钟频率	占空比为 50%			100	kHz
t _{HD;STA}	(重复)起始条件的保持时		4.0			μs
	间,在这个周期后,产生第					
	1个时钟脉冲					
t _{LOW}	SCL 时钟低电平周期		4.7			μs
t _{HIGH}	SCL 时钟高电平周期		4.0			μs
t _{HD;DAT}	数据保持时间		0			ns
t _{SU;DAT}	数据建立时间		250			ns
t _r	SCL 和 SDA 的上升时间	10%至 90%			1000	ns
t _f	SCL 和 SDA 的下降时间	90%至 10%			300	ns

1. 1

符号	参数	条件	最小值	典型值	最大值	单位
t _{SU;STO}	停止条件的建立时间		4.0			μs
t _{BUF}	停止和启动条件之间的总 线空闲时间		4.7			μs
R _{PULLUP}	总线上拉电阻		1.5			kΩ
t _{TIME_OUT}	总线超时时间			64		ms

注 1: 这个时间仅指芯片内部逻辑延时,不包含输入 RC 滤波器延时和输出驱动 FET 负载延时。

图 112C 通信总线时序

系统框图

图 2 系统框图

功能模式

DVC1124 具有 3 种功能模式: 关机模式、休眠模式和正常模式。

图 3 功能状态图

表 1 功能列表

名称	正常模式	休眠模式	关机模式
VADC	支持		
CADC	支持		
Charge Pump	支持	支持	
FET 驱动	支持	支持	
电池均衡	支持		
COV/CUV	支持		
OCD1/OCC1	支持		
OCD2/OCC2	支持	支持	
SCD	支持	支持	
VBASE	支持	支持	
V3P3	支持	支持	
I ² C 通信	支持		
电流唤醒		支持	
定时唤醒		支持	
I ² C 唤醒		支持	支持
LOAD 唤醒			支持
充电器检测	支持	支持	支持
电源电流	~270µA	~60µA	~1µA

关机模式

DVC1124 在关机模式下,除 I²C 唤醒和充电器检测模块开启外,其他模块全部关闭,寄存器复位至初始状态。芯片有 2 种方法进入关机模式:

- 1) 通过 I²C 通信发送关机指令;
- 2) 芯片内核过热自动关机。 芯片在以下 2 种状态会退出关机模式,进入正常模式:
- 1) 在 I²C 通信引脚检测到唤醒信号;
- 2) 在 PACK 引脚施加高于 VTOP 引脚 2V 以上的 电压:
- 3) 在 LOAD 引脚施加 2V 以上的电压。

休眠模式

DVC1124 在休眠模式下,VADC、CADC、COV/CUV 保护和 I²C 通信功能关闭,寄存器数据、V3P3、Charge Pump、FET 驱动、OCD2/OCC2保护、SCD 保护会保持进入休眠模式之前的状态,同时开启定时唤醒和电流唤醒检测功能。芯片有 1 种方法进入休眠模式:

- 1) 通过 I²C 通信发送休眠指令。 芯片在以下 6 种状态会退出休眠模式,进入正常模式:
- 1) 在 I²C 通信引脚检测到唤醒信号;
- 2) 定时唤醒倒计时结束;
- 3) 检测到充/放电电流;
- 4) 检测到第 2 级充/放电过流(同时关闭充/放电 驱动):
- 5) 检测到放电短路(同时关闭放电驱动);
- 6) 在 PACK 引脚施加高于 VTOP 引脚 2V 以上的 电压。

芯片恢复至正常模式后,可以通过 GP 引脚向 MCU 发送中断信号。MCU 也可以通过读取寄存器查询芯片退出休眠模式的原因。

正常模式

DVC1124 在正常模式下,支持完整的电池组测量、保护和管理功能,MCU 可以通过 I²C 通信读取和配置芯片状态。

测量系统

电流测量

DVC1124 集成 1 个 Σ -Δ CADC、2 个库仑计 CC1 和 CC2。CADC 在正常模式下,可以连续测量 SRP 和 SRN 差值。

CADC 测量周期

CC1 和 CC2 的测量时序如图 4 所示,CC2 测量时间 t_{CM2} 固定为 256ms,CC1 测量时间 t_{CM1} 在不同配置下如表 2 所示。

表 2 CADC CC1 测量时间

C1OW	t _{CM1}	单位
0x00	0.5	ms
0x01	1.0	ms
0x02	2.0	ms
0x03	4.0	ms

每次 CC1 测量完成后,芯片会执行以下操作:

- 1) 寄存器 CC1F 置位为 1。
- 每次 CC2 测量完成后,芯片会执行以下操作:
- 1) 寄存器 CC2F 置位为 1;
- 2) 中断控制器发送 1 次 1ms 低电平脉冲。

CADC 输入量程与分辨率

CADC 输入量程为±150mV, CC1 数据格式为 16 位有符号整数, LSB 为 5μV; CC2 数据格式为 20 位有符号整数, LSB 为 0.3125μV。

电压测量

DVC1124 集成 1 个 Σ -Δ VADC,支持 PACK、LOAD、内核温度、V1P8、6 个 GP、24 串电池电压和电池组总压测量。VADC 在正常模式下,可以连续测量上述电压。

VADC 测量周期

VADC 测量周期由 42 个时间片组成,其中包含 36 个测量时间片和 6 个延时时间片。

当 GP(n)被配置为热敏电阻输入时,VADC 会在相应的测量时间片前插入 1ms 的延时时间片tvp,以满足外部 RC 建立时间的需求。

在所有 42 个时间片中,t_{VM1}、t_{VM2} 和 t_{VM13} 至 t_{VM16} 这 6 个测量时间片不可以被屏蔽,会出现在每个 VADC 测量周期中。对 t_{VM17} 至 t_{VM36} 这 20 个测量时间片,在寄存器 CMM 置 0 时,VADC 在测量时会跳过被屏蔽通道对应的测量时间片;在寄存器 CMM 置 1 时,VADC 在测量时不会跳过被屏蔽通道对应的测量时间片。对剩余的 16 个时间片,VADC 在测量时会跳过被屏蔽通道对应的时间片。

VADC 在不同配置下,单位测量时间 t_{VM} 和最长测量周期 t_{VADC} 如表 3 所示:

表 3 VADC 测量时间

VAO	t _{VM}	t _{VADC}	单位
0x00	0.791	34.5	ms
0x01	1.54	61.4	ms
0x02	3.03	115	ms
0x03	6.02	223	ms

每次 VADC 测量完成后,芯片会执行以下操作:

- 1) 寄存器 VADF 置位为 1:
- 2) 中断控制器发送 1 次 1ms 低电平脉冲。

VADC 轮询模式

VADC 支持连续测量模式和同步测量模式,在连续测量模式下(寄存器 VASM 置 0), VADC 会在上一个测量周期结束后,立即开始下一个测量周期,此时 VADC 与 CADC 为异步测量状态(如图 6 所示)。

在同步测量模式下(寄存器 VASM 置 1), VADC 会与 CADC 同步开始测量, VADC 完成后会进入低功耗模式,等待 CADC CC2 完成后再开始下一个测量周期。其中同步周期(寄存器 VAMP)可以设为 1、2、4 或 8 个 CADC CC2 测量周期(如图 7 和图 8 所示)。

图 4 CADC 测量时序

电池电压量程和分辨率

电池电压量程为-0.3V 至+5.0V,寄存器 CVS 置 0 时数据格式为 16 位无符号整数,LSB 为 100µV,负读数被舍弃为 0V。

寄存器 CVS 置 1 时数据格式为 16 位有符号整数, LSB 为 200μV, 负读数保留。

C24、PACK 和 LOAD 电压量程和分辨率

C24、PACK 和 LOAD 电压量程为 0V 至 120V,数据格式为 16 位无符号整数,LSB 为 12.8mV。

V1P8 电压量程和分辨率

V1P8 电压量程为 0V 至 1.98V,数据格式为 16 位无符号整数,LSB 为 100μ V。

GP 模拟电压量程和分辨率

DVC1124 在 GP(n)被配置为模拟电压输入时,最多可以测量 6 路外部模拟电压。

GP 模拟电压量程为 0V 至 1.98V,数据格式为 16 位无符号整数,LSB 为 100μV。

图 5 VADC 测量时序

图 8 VADC 同步测量模式(2 个 CC2 周期)

电池采样接线方式

DVC1124 支持 4 串至 24 串电池组监控,当电池组低于 24 串时,未使用的电池采样引脚不能处于悬空状态。C0~C4 电池采样引脚不支持短接,必须分别接至第 1 串至第 4 串电池正负极。其余电池采样引脚没有限制,可以按照电池组串联顺序采取合适方式短接。

DVC1124 推荐的短接方式有 2 种,采用图 9(a)所示的短接方式,可以降低电池间串联电阻 R_{BUS} 的影响,在充放电时更精确地测量电池电压。为简化应用,也可以采用图 9(b)所示的短接方式。

图 9 电池采样短接

电池采样断线检测

DVC1124 在 C1~C24 电池采样引脚上集成了 24 个 100μA 下拉电流源,在开启电池采样断线检测功能时,24 个电流源会同时下拉,MCU 可以根据电池电压测量值判断在电池采样引脚上是否

存在断线。断线检测功能的定时器时间为 1s,倒 计时结束后,芯片会自动关闭所有下拉电流源。

温度测量

芯片内核温度

DVC1124 通过 VADC 测量内部三极管基极-发射极电压差(ΔV_{BE})来获取芯片内核温度,该电压需要定期测量,以确保芯片在正常模式下不超过额定结温。

芯片内核温度(TDIE)计算公式如下:

 $T_{\text{DIE}} = (N_{\text{DT}} \times 0.24467)^{\circ}\text{C} - 271.03^{\circ}\text{C}$

其中, N_{DT} 为芯片内核温度测量值,数据格式为 16 位无符号整数。

热敏电阻温度

DVC1124 在 GP(n)被配置为热敏电阻输入时,最多可以测量 6 路外部热敏电阻温度。由于内部上拉电阻(R_{PU})阻值约为 10kΩ,所以只支持常温阻值为 10kΩ 的热敏电阻温度测量(图 10)。

芯片在测量热敏电阻温度时,先将该路热敏电阻连接至内部上拉电阻,VADC等待 1ms 后开始电压测量,测量完毕后断开热敏电阻与内部上拉电阻的连接。

芯片在测量热敏电阻温度时,需要在靠近芯片引脚位置放置滤波电容(*C_F*)。滤波电容容值的选取要考虑到 RC 建立时间的影响,计算公式为:

$$C_{\rm F} = \frac{1\rm m}{10 \times R_{\rm PU}}$$

滤波电容(*C_F*)一般推荐容值为 10nF, 在连接线较长时需要适当减小。

热敏电阻阻值(RNTC)计算公式如下:

$$R_{\rm NTC} = \frac{N_{\rm VGP}}{N_{\rm V1P8} - N_{\rm VGP}} \times R_{\rm PU}$$

其中, N_{VGP}为 GP 引脚电压测量值,数据格式为 16 位无符号整数; N_{V1P8}为 V1P8 引脚电压测量值,数据格式为 16 位无符号整数。

内部上拉电阻阻值(*R_{PU}*)在芯片终测时会进行修调,计算公式如下:

 $R_{PU}=N_{FRT}\times25\Omega+6800\Omega$

其中, N_{ERT} 为 8 位无符号整数。

图 10 热敏电阻温度测量

保护系统

电池电压保护

DVC1124 基于 VADC 测量值进行电池过压和 欠压保护。

电池过压保护(COV)

开启电池过压保护需要同时满足以下条件:

- 1) 芯片处于正常模式;
- 2) VADC 使能控制位 VAE 置 1;
- 3) 电池过压保护阈值 COVT 不为 0; 电池过压保护阈值电压(*V*_{COV})范围为 501mV 至 4595mV,步进为 1mV;延时时间(*T*_{COV})范围为 200ms 至 8s。

芯片集成了 24 路电池过压保护定时器,当其中一串电池电压测量值大于 V_{cov} 时,该路电池过压保护定时器启动。在设定的 T_{cov} 内,如果该串电池任意一次电压测量值小于 V_{cov} ,定时器复位,否则倒计时继续。任意一路电池过压保护定时器倒计时结束时,都会触发电池过压保护警报。

第5 串电池至第24 串电池可以被设置为屏蔽状态,在屏蔽状态下,该路电池过压保护定时器被禁用,该串电池电压任意测量值都不会触发电池过压保护警报。

在电池过压保护警报触发后,芯片会执行以 下操作:

- 1) 寄存器 COV 置 1;
- 2) 中断控制器发送 1 次 1ms 低电平脉冲; 电池过压保护警报触发后寄存器 COV 会一直锁 存,直至以下任意条件触发时,解除电池过压保 护警报:
- 1) 寄存器 COV 复位为 0;
- 2) VADC 使能控制位 VAE 置 0;
- 3) 芯片处于休眠模式。

电池欠压保护(CUV)

开启电池欠压保护需要同时满足以下条件:

- 1) 芯片处于正常模式;
- 2) VADC 使能控制位 VAE 置 1;
- 3) 电池欠压保护阈值 CUVT 不为 0; 电池欠压保护阈值电压(*V*_{Cuv})范围为 1mV 至 4095mV,步进为 1mV。延时时间(*T*_{Cuv})范围为 200ms 至 8s。

芯片集成了 24 路电池欠压保护定时器,当 其中一串电池电压测量值小于 Vcuv 时,该路电池 欠压保护定时器启动。在设定的 Tcuv 内,如果该 串电池任意一次电压测量值大于 Vcuv,定时器复 位,否则倒计时继续。任意一路电池欠压保护定 时器倒计时结束时,都会触发电池欠压保护警 报。

第5 串电池至第24 串电池可以被设置为屏蔽状态,在屏蔽状态下,该路电池欠压保护定时器被禁用,该串电池电压任意测量值都不会触发电池欠压保护警报。

在电池欠压保护警报触发后,芯片会执行以 下操作:

- 1) 寄存器 CUV 置位为 1;
- 2) 中断控制器发送 1 次 1ms 低电平脉冲; 电池欠压保护警报触发后寄存器 CUV 会一直锁 存,直至以下任意条件触发时,解除电池欠压保 护警报:
- 1) 寄存器 CUV 置 0;
- 2) VADC 使能控制位 VAE 置 0;
- 3) 芯片处于休眠模式。

充/放电电流保护

DVC1124 基于 CADC 测量值进行 1 级充/放电过流保护,基于硬件过流比较器(OC2)进行 2 级充/放电过流保护,基于硬件短路比较器(SCD)进行放电短路保护。

第1级放电过流保护(OCD1)

开启第1级放电过流保护需要同时满足以下 条件:

- 1) 芯片处于正常模式;
- 2) CADC 使能控制位 CAE 置 1;
- 3) 第 1 级放电过流保护阈值 OCD1T 不为 0; 第 1 级放电过流保护阈值电压(*V*_{OCD1_TH})范围为 0.25mV 至 63.75mV,步进为 0.25mV;延时时间 (*T*_{OCD1 DLY})范围为 8ms 至 2048ms,步进为 8ms。

当 SRP-SRN 电压测量差值大于 $V_{\text{OCD1_TH}}$ 时,第 1 级放电过流保护定时器启动。在设定的 $T_{\text{OCD1_DLY}}$ 内,如果任意一次 SRP-SRN 电压测量差值 小于 $V_{\text{OCD1_TH}}$,定时器复位,否则倒计时继续。在倒计时结束时,触发第 1 级放电过流保护警报。芯片执行以下操作:

- 1) 寄存器 OCD1 置位为 1;
- 2) 中断控制器发送 1 次 1ms 低电平脉冲。

第1级放电过流保护警报触发后寄存器 OCD1 会一直锁存,直至以下任意条件触发时,解除第1级放电过流保护警报:

- 1) 寄存器 OCD1 复位为 0;
- 2) CADC 使能控制位 CAE 置 0;
- 3) 芯片处于休眠模式。

第1级充电过流保护(OCC1)

开启第1级充电过流保护需要同时满足以下 条件:

- 1) 芯片处于正常模式;
- 2) CADC 使能控制位 CAE 置 1;
- 3) 第 1 级充电过流保护阈值 OCC1T 不为 0; 第 1 级充电过流保护阈值电压(*V*_{OCC1_TH})范围为 0.25mV 至 63.75mV,步进为 0.25mV;延时时间(*T*_{OCC1_DIV})范围为 8ms 至 2048ms,步进为 8ms。

当 SRN-SRP 电压测量差值大于 $V_{\text{OCC1_TH}}$ 时,第 1 级充电过流保护定时器启动。在设定的 $T_{\text{OCC1_DLY}}$ 内,如果任意一次 SRN-SRP 电压测量差值 小于 $V_{\text{OCC1_TH}}$,定时器关闭,否则倒计时继续。在倒计时结束时,触发第 1 级充电过流保护警报。芯片执行以下操作:

- 1) 寄存器 OCC1 置 1;
- 2) 中断控制器发送 1 次 1ms 低电平脉冲; 第 1 级充电过流保护警报触发后寄存器 OCC1 会 一直锁存,直至以下任意条件触发时,解除第 1 级充电过流保护警报:
- 1) 寄存器 OCC1 置 0;
- 2) CADC 使能控制位 CAE 置 0;
- 3) 芯片处于休眠模式。

第 2 级放电过流保护(OCD2)

开启第 2 级放电过流保护需要同时满足以下 条件:

- 1) 芯片处于正常模式或休眠模式;
- 2) OC2 使能控制位 OCD2E 置 1;

第 2 级放电过流保护阈值电压(*V*_{OCD2_TH})范围为 4mV 至 256mV,步进为 4mV;延时时间(*T*_{OCD2_DLY}) 范围为 4ms 至 1024ms,步进为 4ms。

当 SRP-SRN 电压测量差值大于 $V_{\text{OCD2_TH}}$ 时,第 2 级放电过流保护定时器启动。在设定的 $T_{\text{OCD2_DLY}}$ 内,如果任意一次 SRP-SRN 电压测量差值 小于 $V_{\text{OCD2_TH}}$,定时器关闭,否则倒计时继续。在 倒计时结束时,触发第 2 级放电过流保护警报。 芯片执行以下操作:

- 1) 寄存器 OCD2 置位为 1;
- 2) 中断控制器发送 1 次 1ms 低电平脉冲; 第 2 级放电过流保护警报触发后寄存器 OCD2 会 一直锁存,直至以下任意条件触发时,解除第 2 级放电过流保护警报:
- 1) 寄存器 OCD2 置 0;
- 2) OC2 使能控制位 OCD2E 置 0。

第2级充电过流保护(OCC2)

开启第 2 级充电过流保护需要同时满足以下 条件:

- 1) 芯片处于正常模式或休眠模式;
- 2) OC2 使能控制位 OCC2E 置 1;

第 2 级充电过流保护阈值电压(*V*_{OCC2_TH})范围为 4mV 至 256mV,步进为 4mV;延时时间(*T*_{OCC2_DLY}) 范围为 4ms 至 1024ms,步进为 4ms。

当 SRN-SRP 电压测量差值大于 $V_{\text{OCC2_TH}}$ 时,第 2 级充电过流保护定时器启动。在设定的 $T_{\text{OCC2_DLY}}$ 内,如果任意一次 SRN-SRP 电压测量差值 小于 $V_{\text{OCC2_TH}}$,定时器关闭,否则倒计时继续。在倒计时结束时,触发第 2 级充电过流保护警报。芯片执行以下操作:

- 1) 寄存器 OCC2 置 1;
- 2) 中断控制器发送 1 次 1ms 低电平脉冲; 第 2 级充电过流保护警报触发后寄存器 OCC2 会 一直锁存,直至以下任意条件触发时,解除第 2 级充电过流保护警报:
- 1) 寄存器 OCC2 置 0;
- 2) OC2 使能控制位 OCC2E 置 0。

放电短路保护(SCD)

开启放电短路保护需要同时满足以下条件:

- 1) 芯片处于正常模式或休眠模式;
- 2) SCD 使能控制位 SCDE 置位为 1。

放电短路保护阈值电压(V_{SCD_TH})范围为 10mV至 630mV,步进为 10mV; 延时时间(T_{SCD_DLY})范围为 0μ s 至 1992μ s,步进为 7.81μ s。

当 SRP-SRN 电压测量差值大于 V_{SCD_TH} 时,放电短路保护定时器启动。在设定的 T_{SCD_DLY} 内,如果任意一次 SRP-SRN 电压测量差值小于 V_{SCD_TH} ,定时器关闭,否则倒计时继续。在倒计时结束时,触发放电短路保护警报。芯片执行以下操作:

- 1) 寄存器 SCD 置位为 1;
- 2) 中断控制器发送 1 次 1ms 低电平脉冲;

放电短路保护警报触发后寄存器 SCD 会一直锁存,直至以下条件触发时,解除放电短路保护警报:

- 1) 寄存器 SCD 置 0。
- 2) SCD 使能控制位 SCDE 置 0。

I²C 看门狗定时器

开启 I2C 看门狗定时器需要满足以下条件:

- 1) 芯片处于正常模式;
- 2) I²C 看门狗定时器控制位 IWT 不为 0x00; 在 I²C 看门狗定时器开启状态下,如果芯片在寄存器 IWT 设定的时间内没有接收到有效的 I²C 读写指令,会触发 I²C 看门狗超时警报。芯片执行以下操作:
- 1) 寄存器 IWTS 置 1;

时警报:

- 2) 寄存器 IWTF 置 1。 I²C 看门狗超时警报触发后,寄存器 IWTS 会一直 锁存,直到以下条件触发时,解除 I²C 看门狗超
- 1) 芯片接收到有效的 I²C 读写指令。 但寄存器 IWTF 只有在上位机主动复位的情况下 才会为 0。

管理系统

电池均衡管理

DVC1124 集成 24 路电池被动均衡驱动器,只有在芯片处于正常模式且 VADC 处于低功耗模式下才可以被开启。

电池内部 MOS 均衡

DVC1124 使用片内 MOS 进行均衡时(图 11),每串电池最大均衡电流不得超过 25mA,同时需要实时监测芯片核心温度,防止结温超过最大额定值。

图 11 电池内部均衡

电池外部 NPN 均衡

DVC1124 使用片内 MOS 驱动片外 NPN 进行均衡时(图 12),均衡电流不受芯片散热限制,可以实现大电流电池均衡。

图 12 电池外部均衡

电池奇偶交替均衡

DVC1124 会对电池进行奇偶串交替均衡,避免相邻串电池同时均衡的情况出现(图 13)。电池

均衡时间(tcB)计算公式如下:

$t_{CB}=N\times t_{CM2}-t_{VADC}$

其中,N 为 VADC 同步测量周期,可以为 1、2、4 或 8; t_{CM2} 为 CADC CC2 测量时间,固定为 256ms; t_{VADC} 为 VADC 测量时间,详见表 3。

芯片会根据电池采样引脚屏蔽状态从第 1 串电池开始对电池组进行奇偶排序,屏蔽引脚的电池被动均衡驱动器被禁用。表 4 列出了一种应用于 13 串电池组屏蔽设置及电池奇偶分组情况。

表 413 串电池组屏蔽设置和奇偶分组

及 4 15 中电枢组开散以且作可隔升组					
<u></u> 引脚	串数	屏蔽	奇/偶		
C1	1	N/A	奇		
C2	2	N/A	偶		
C3	3	N/A	奇		
C4	4	N/A	偶		
C5		是	N/A		
C6	5	否	奇		
C7		是	N/A		
C8		是	N/A		
C9	6	否	偶		
C10	7	否	奇		
C11		是	N/A		
C12		是	N/A		
C13		是	N/A		
C14	8	否	偶		
C15	9	否	奇		
C16	10	否	偶		
C17		是	N/A		
C18		是	N/A		
C19		是	N/A		
C20		是	N/A		
C21	11	否	奇		
C22	12	否	偶		
C23	13	否	奇		
C24		是	N/A		

电池均衡定时器

DVC1124 内置被动均衡驱动定时器,将任意一串电池均衡控制位置 1,定时器启动。在 60s内,如果还有任意一串电池均衡控制位置 1,定时器重新装载为 60s;否则倒计时继续。在倒计时结束后,芯片会将所有电池均衡控制位复位为 0。

图 13 电池均衡时序

放电管理

电荷泵

DVC1124 内部集成电荷泵,需要 1 个位于 VTOP 和 VCP 引脚之间的外部电容器存储电荷。 当电荷泵开启时,该电容器会被充电至高于 VTOP 电压的过驱动电压。

电荷泵产生的过驱动电压可以用来驱动 DSG 开启高边放电 NFET,驱动 CHG 开启高边充电 NFET 和驱动 MUX 测量电池电压。

过驱动电压可以在 6V 至 12V 之间设置。越高的过驱动电压会消耗更多的电流,可以根据 NFET 特性设置合适的过驱动电压以节省电流。

高边放电驱动

DVC1124 内部集成高边放电驱动器,用于驱动 DSG 来控制高边放电 NFET。在高边放电 NFET 关闭时,高边放电驱动器会将放电管栅源电压下拉至 OV。在高边放电 NFET 开启时,高边放电驱动器有 2 种输出模式: 电荷泵输出模式和源随输出模式。

在电荷泵输出模式下,高边放电驱动器会将 DSG 上拉至 VCP 电平,此时电荷泵输出的过驱动 电压将使放电 NFET 的导通电阻降至较低水平。

在源随输出模式下,高边放电驱动器会将 DSG 上拉至 VTOP 电平,此时高边 NFET 工作在源 随状态。源随输出模式适用于芯片休眠模式下保 持放电 NFET 开启,此时可以关闭电荷泵,将芯 片功耗降至较低水平。

高边预放电驱动

DVC1124 内部集成高边预放电驱动器,用于驱动 PDSG 来控制高边预放电 PFET。在预放电 PFET 关闭时,PDSG 输出为高阻态,由外部 270kΩ 电阻将预放电 PFET 的 V_{GS} 上拉为 0V。在预

放电 PFET 开启时,PDSG 下拉约 32μ A 电流,通过外部 $270k\Omega$ 电阻将预放电 PFET 的 V_{GS} 下拉至约 8.6 V_{\odot}

高边负载检测

DVC1124 内置高边负载上拉驱动器,在高边放电 NFET 关闭时,开启高边负载上拉驱动器会输出 150μA 左右电流将 LOAD 引脚上拉至 VTOP和 PACK 两者之间的较高电平。上位机可以通过VADC 读取 LOAD 引脚电压判断负载连接情况。

高边负载上拉驱动器具有定时关闭功能,将 高边负载上拉驱动器控制位置 1,60s 定时器启 动,在倒计时结束后,芯片会自动将高边负载上 拉驱动器控制位复位为 0。

低边放电驱动

寄存器 GP6M 置为 0x07 时,GP6 引脚设置为低边放电驱动输出。

低边预放电驱动

寄存器 GP2M 置为 0x07 时,GP2 引脚设置为低边预放电驱动输出。

放电硬线控制

寄存器 GP4M 置为 0x03 时,GP4 引脚设置为放电硬线控制输入。GP4 输入低电平时关闭放电驱动输出,高电平时不影响放电驱动输出状态。

充电管理

高边充电驱动

DVC1124 内部集成高边充电驱动器,用于驱动 CHG 来控制高边充电 NFET。在高边充电 NFET 关闭时,高边充电驱动器会将 CHG 下拉至 VTOP 电平。在高边充电 NFET 开启时,高边充电驱动器会将 CHG 上拉至 VCP 电平。

1.1

高边预充电驱动

DVC1124 内部集成高边预充电驱动器,用于驱动 PCHG 来控制高边预充电 PFET。在预充电 PFET 关闭时,PCHG 输出为高阻态,由外部 270k Ω 电阻将预充电 PFET 的 V_{GS} 上拉为 OV。在预充电 PFET 开启时,PCHG 下拉约 32μ A 电流,通过外部 270k Ω 电阻将预充电 PFET 的 V_{GS} 下拉至约 8.6V。

高边充电器检测

DVC1124 内置高边充电器检测器,在 PACK 电平高于 VTOP 电平 2V 左右时,即认为充电器已连接。

低边充电驱动

寄存器 GP5M 置为 0x07 时,GP5 引脚设置为低边充电驱动输出。

低边预充电驱动

寄存器 GP3M 置为 0x07 时,GP3 引脚设置为低边预充电驱动输出。

充电硬线控制

寄存器 GP1M 置为 0x03 时,GP1 引脚设置为充电硬线控制输入。GP1 输入低电平时关闭充电驱动输出,高电平时不影响充电驱动输出状态。

通信系统

I2C 串行接口

DVC1124 的 I²C 串行接口工作在从机模式, 支持 100kHz 通信速率和 CRC8 校验。SCL 为单向 时钟输入引脚,没有时钟延展功能; SDA 为双向 数据输入/输出引脚。SCL 和 SDA 在芯片内部没有 配置上拉电阻,可以兼容外部 5V 上拉电平。

I2C 总线协议

I²C 总线每传输一个数据位就产生一个时钟脉冲。SDA 数据线上的电平必须在 SCL 时钟为高电平时保持稳定,SDA 数据线上的高低电平状态只有在 SCL 时钟为低电平时才能切换。

在 SCL 时钟线为高电平时,SDA 数据线由高电平切换为低电平,这个情况定义为起始条件 (S);在 SCL 时钟线为高电平时,SDA 数据线由低电平切换为高电平,这个情况定义为停止条件 (P)。起始条件和停止条件均由主机发送,I²C 总线在起始条件后处于忙碌状态,在停止条件后处于空闲状态。如果产生重复起始条件(Sr)而不产生停止条件,总线会一直处于忙碌状态,此时起始条件和重复起始条件在功能上是一样的。在本文档中,除非有特别声明的 Sr,符号 S 将作为一个通用术语既表示起始条件,又表示重复起始条件。

发送到 SDA 数据线上的每个数据包必须包含 1 个字节和 1 个响应位,每个字节首先传输的是最高位(MSB)。与标准 I²C 协议不同的是,即使在 I²C 时钟频率超过 DVC1124 响应极限的情况下,DVC1124 也不会通过使 SCL 时钟线保持低电平来 迫使主机进入等待状态。

I²C 从机地址

在典型应用场景下,DVC1124 在 I²C 通信中的从机地址固定为 0x40(写)或 0x41(读)。

为适用级联应用场景,在引脚 SRN 和 SRP 分别短接到引脚 VSS 和 VREG 时,可通过复用 GP 引脚实现 I²C 地址硬线编码。DVC1124-1 系列芯片包含 DVC1124-12 和 DVC1124-14 两个型号,两者唯一区别就在 I²C 地址硬线编码使用的 GP 引脚不同。如表 5 所示,DVC1124-12 使用 GP1~GP2 两个引脚来编码 I²C 地址,而 DVC1124-14 则使用GP1~GP4 四个引脚来编码 I²C 地址。并且,当 GP

引脚被复用作 I²C 地址硬线编码时,将固定为数字输入模式。

表 5 级联应用 I2C 从机地址

芯片型号	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
DVC1124-12	1	1	0	0	0	GP2	GP1	R/W
DVC1124-14	1	1	0	GP4	GP3	GP2	GP1	R/W

CRC8 校验

CRC8 校验多项式为 x⁸+x²+x+1,初始值为 0x00。

I2C 寄存器地址

DVC1124 的寄存器地址为 0x00 至 0x90, 共145 个字节。对连续读写的字节数量没有限制, 当寄存器地址达到边界 0x90 时会返回至 0x00 继续读写。

I2C 写操作

I²C 写操作以主机发送起始条件作为开始信 号, 主机传输的第1个字节为SA+W, 如果 SA 匹 配 DVC1124 从机地址, DVC1124 会返回 ACK: 否 则返回 NACK,本次传输结束。主机传输的第2 个字节为 RA, 如果 RA 在 0x00 至 0x8F 地址范围 内, DVC1124 会返回 ACK; 否则返回 NACK, 本次 传输结束。主机传输的第3个字节为 DATAO, DVC1124 会返回 ACK。传输的第 4 个字节为 CRCO, 如果 CRCO 与前 3 个字节SA+W、RA 和 DATAO 的 CRC8 校验值一致,DVC1124 会将 DATAO 写入寄存器地址为 RA 的字节中,并返回 ACK; 否则 DATAO 将被丢弃,并返回 NACK,本次传输 结束。主机传输的第5个字节为 DATA1, DVC1124 会返回 ACK。主机传输的第 6 个字节为 CRC1,如果 CRC1与 DATA1的 CRC8校验值一致, DVC1124 会将 DATA1 写入寄存器地址为 RA+1 的 字节中,并返回 ACK; 否则 DATA1 将被丢弃,并 返回 NACK,本次传输结束。以此类推直至主机 发送停止条件结束本次传输。

I²C 读操作

I²C 读操作以主机发送起始条件作为开始信号,主机传输的第 1 个字节为SA+W,如果 SA 匹配 DVC1124 从机地址,DVC1124 会返回 ACK;否则返回 NACK,本次传输结束。主机传输的第 2个字节为 RA,如果 RA 在 0x00 至 0x8F 地址范围内,DVC1124 会返回 ACK;否则返回 NACK,本次传输结束。主机发送重复起始条件后传输的第 3

23 / 29

个字节为 SA+R,如果 SA 匹配 DVC1124 从机地址,DVC1124 会返回 ACK;否则返回 NACK,本次传输结束。传输的第 4 个字节为 DVC1124 返回的寄存器地址为 RA 的值 DATAO,主机需要响应ACK。传输的第 5 个字节为 DVC1124 返回的CRCO,如果 CRCO 与前 4 个字节SA+W、RA、SA+R和 DATAO 的 CRC8 校验值一致,说明 DATAO 读取无误。主机继续读取需要响应 ACK,传输的第 6 个字节为 DVC1124 返回的寄存器地址为 RA+1 的值 DATA1,主机需要返回 ACK。传输的第 7 个字节为 DVC1124 返回的 CRC1,如果 CRC1 与 DATA1的 CRC8 校验值一致,说明 DATA1 读取无误。以此类推,直至主机放弃读取并返回 NACK,最后主机发送停止条件结束本次传输。

I2C 总线超时定时器

DVC1124 内置总线超时定时器,接收到主机 发送的起始条件(不包含重复起始条件)时,定时 器启动。在 64ms 内,如果接收到主机发送的停 止条件,定时器关闭;否则倒计时继续。在倒计 时结束后,DVC1124 的 I²C 串行接口会强制结束 本次传输,不再响应主机除起始条件以外的任何 信号。

中断控制器

DVC1124 可以将 GP2、GP3、GP5 或 GP6 设置为中断信号输出引脚。芯片处于正常模式下,通过设置对应的屏蔽寄存器,可以选择表 6 中的一个或多个触发事件,通过中断信号输出引脚输出 1ms 低电平脉冲。

表 6 中断触发事件

触发事件	屏蔽寄存器
芯片从休眠模式转换为正常模式	IWM
VADC 完成 1 个测量周期	IVOM
CADC CC2 完成 1 个测量周期	ICCM
触发电池过压警报	ICOM
触发电池欠压警报	ICUM
触发第1级过流警报	IOC1M
触发第2级过流警报	IOC2M
触发放电短路警报	ISCDM

I²C Write Operation

From slave to master

Sr = Repeat Start Condition

P = Stop Condition

图 14 I2C 传输协议

NA = Not Acknowledge(SDA HIGH) RA = Register Address

W = Write(SDA LOW)

应用和实施

敷形涂层

为满足 IPC-2221B 或 IEC/UL 60950-1 对相邻引脚电气间隙和爬电间距的要求,DVC1124 在印刷电路板组装过程中可能需要使用敷形涂层进行覆盖。

未使用引脚

表 7 未使用引脚处理方式

		7 7 区门 打断及注 7 2			
高/低边驱动	高	低边			
同/分口应用	同口	分口	同/分口		
C5~C24	未使用師	寸参考"电池采样接线方式"短接至	相邻引脚		
SRP, SRN		未使用时应短接到引脚 VSS			
GP1~GP6	未使用时应悬空				
V3P3	未使用时可以悬空或通过 1μF 电容连到引脚 VSS,并将寄存器 V3P3EW 和 V3P3ES 置 0				
DSG, CHG	未使用印	应悬空			
PDSG, PCHG	未使用时应短	接到引脚 VSS	应短接到引脚 VSS		
LOAD	在引脚 DSG 未使用时,引脚 LOAD	应短接到引脚 VSS			
	PACK+,也可以				
PACK	在引脚 CHG 未使用时,引脚	在引脚 CHG 未使用时,引脚	应短接到引脚 VSS		
	PACK 可以通过 10kΩ 电阻连接到	PACK 可以通过 10kΩ 电阻连接到			
	电池包 PACK+,也可以短接到引	电池包 CPACK+,也可以短接到引			
	脚 VSS	脚 VSS			
VCP	在引脚 DSG 和 CHG 均未使用时,	应在靠近芯片引脚位置通过			
	电容连接到 VTOP,并将	100nF 电容连接到 VTOP,并将寄			
		存器 CPVS 置为 0x01			

推荐布局

图 15 PCB 推荐布局

应用框图

封装规格

LQFP48(7mm×7mm)

1.1

注: 所有线性尺寸均以毫米为单位

订购信息

器件标记	封装描述	MSL 等级	包装方式	最小订货单位
DVC1124-12	48-Lead Plastic LQFP	3	Reel (1500pcs)	1500pcs
DVC1124-14	48-Lead Plastic LQFP	3	Reel (1500pcs)	1500pcs

注: DVC1124-1 包含 DVC1124-12 和 DVC1124-14 两个型号,两者区别是 I^2C 硬线地址编码方式不同,详见 I^2C 从机地址</u>说明。

修订历史记录

版本	日期	描述	页码		
1.0	2023/4/2	修改 "DSG 和 CHG 绝对最大额定值"	5		
		修改"DSG和 CHG推荐工作电压"			
		修改"开启电池过压保护的条件"和"解除电池过压保护警报的条件"			
		修改"开启电池欠压保护的条件"和"解除电池欠压保护警报的条件"	17		
		修改"开启第1级放电过流保护的条件"和"解除第1级放电过流警报的条件"	17		
		修改"开启第1级充电过流保护的条件"和"解除第1级充电过流警报的条件"	18		
		修改"开启第2级放电过流保护的条件"和"解除第2级放电过流警报的条件"	18		
		修改"开启第2级充电过流保护的条件"和"解除第2级充电过流警报的条件"	18		
		修改"高边预放电驱动"描述	21		
		修改"高边预充电驱动"描述	22		
		修改"I ² C 从机地址"描述	23		
		修改"I ² C 寄存器地址"描述	23		
		新增"应用和实施"	25		
1.1	2024/7/24	修改"I ² C 从机地址"描述	23		
		修改"最低电池串数"描述	15		