参考資料

SPECIFICATIONS

A241-01-01B

	MODE	_	VS100E-3	VS100E-5	VS100E-12	VS100E-15	VS100E-24	VS100E-48
1	ITEMS		2.2	<i>-</i>	12	1.5	24	40
1	Nominal Output Voltage	V	3.3	5 20	12 8.5	7.0	24	2.2
2	Maximum Output Current	A W					4.3	
3	Maximum Output Power		66.0 80	100.0 85	102.0 85	105.0 85	103.2 86	105.6
4	Efficiency (Typ) (*1		80					87
5	Input Voltage Range (*2		1.5	85 - 132	2VAC (47 - 63	2.1	1/5VDC	
6	Input Current (Typ) (*1		1.5		20.4			
7	Inrush Current (Typ) (*1		2.07. 2.62	15.55		Cold Start	21 6 26 4	12.2 52.0
8	Output Voltage Range	V	2.97 - 3.63	4.5 - 5.5	10.8 - 13.2	13.5 - 16.5	21.6 - 26.4	43.2 - 52.8
9	Maximum Ripple & Noise 0 <ta<70°< td=""><td></td><td>120</td><td>120</td><td>150</td><td>150</td><td>150</td><td>200</td></ta<70°<>		120	120	150	150	150	200
10	(*3)(*4) -10 <u><</u> Ta<0°		160	160	180	180	180	240
10	Maximum Line Regulation (*3)(*5		20	20	48	60	96	192
11	Maximum Load Regulation (*3)(*6		40	40	96	120	150	240
12	Temperature Coefficient (*3					0.02% / °C	T	
13	Over Current Protection (*7		21.0 <u><</u>	21.0 <u><</u>	8.92 <u><</u>	7.35 <u><</u>	4.51 <u><</u>	2.31 <u><</u>
14	Over Voltage Protection (*8		3.80 - 4.46	5.75 - 6.75	13.8 - 16.2	17.3 - 20.3	27.6 - 32.4	55.2 - 64.8
15	Hold-up Time (Typ) (*1	/				ms		
16	Leakage Current (*9) -			Less tha	n 0.5mA		
17	Parallel Operation	-				-		
18	Series Operation	-				sible		
19	Operating Temperature (*10	-	Convection	on: -10 to +70	0° C (-10 to +5	0°C:100%, +6	60°C:70%, +7	0°C:20%)
20	Operating Humidity	-		3() to 90%RH (1	No Condensin	g)	
21	Storage Temperature	-	-30 to +85°C					
22	Storage Humidity	-	10 to 95%RH (No Condensing)					
23	Cooling	-			Convection	on Cooling	<u> </u>	
24	Withstand Voltage	-	Inp	ut - FG : 2kV	AC (10mA), I	nput - Output	: 2kVAC (10n	nA)
			_	Outpu	ıt - FG : 500V	AC (20mA) fo	or 1min	ŕ
25	Isolation Resistance	-	Mor		2 at 25°C and			VDC
26	Vibration	-			erating, 10 - 5			
					n/s ² Constant,			
27	Shock	-				196.1m/s ²		
28	Safety	-	Approv	ed by UL6095	50-1, CSA609:		0-1, EN50178	(OV II),
			Designed to meet DENAN (Section 2).					
29	Conducted Emission	-						
30	Radiated Emission	-						
31	Immunity	-	- Designed to meet IEC61000-4-2(Level 2,3), -3(Level 3), -4(Level 3),					
			-5(Level 2,3), -6(Level 3), -8(Level 4), -11					
32	Weight (Typ)	g		- (90		
33				62 x 29 x 155 (Refer to Outline Drawing)				

*Read instruction manual carefully, before using the power supply unit.

=NOTES=

- *1. At 100VAC, Ta=25°C, nominal output voltage and maximum output power.
- *2. For cases where conformance to various safety specs (UL, CSA, EN) are required, to be described as 100 120VAC(50/60Hz).
- *3. Please refer to Fig. A for measurement of line & load regulation and ripple voltage.
- *4. For start up at low ambient temperature and low input voltage, output ripple noise might not meet specification. However, there is no overshoot at start up and output ripple noise specification can be met after one second.
- *5. 85 132VAC, constant load.
- *6. No load-Full load, constant input voltage.
- *7. 3.3, 5V model: Constant current limit and hiccup with automatic recovery.
 - 12 48V model: Constant current limit with automatic recovery.

Avoid to operate at over load or short circuit condition for more than 30seconds.

- *8. OVP circuit will shut the output down, manual reset (Re power on).
- *9. Measured by the each measuring method of UL, CSA, EN and DENAN(at 60Hz), Ta=25°C.
- *10. Ratings
 - Derating at standard mounting. Refer to output derating curve(A241-01-02_).
 - When forced air cooling, refer to derating curve(A241-01-03_).
 - Load (%) is percent of maximum output power or maximum output current, whichever is greater.
- *11. Not include lead length on solder side.

C1 : Film Cap. 0.1 μF

C2 : Elec. Cap. 100 µF

OUTPUT DERATING

A241-01-02

*COOLING: CONVECTION COOLING

	LOAD (%)	LOAD (%)				
Ta (°C)	MOUNTING A,B	MOUNTING C-E				
-10 to +40	100	100				
50	100	70				
60	70	40				
70	20	-				

OUTPUT DERATING

A241-01-03

*COOLING: FORCED AIR COOLING

	LOAD (%)
Ta (°C)	MOUNTING A-E
-10 to +60	100
70	70

Air flow $\geq 0.5 \text{m}^3/\text{min}$: Air must flow through component side.

CONNECTORS USED:

PART DESCRIPTION	PART NAME	MANUFACT.	QTY
PIN HEADER (INPUT SIDE CN1)	B3P5-VH(LF)(SN)	J.S.T.	1
PIN HEADER (OUTPUT SIDE CN51)	B8P-VH(LF)(SN)	J.S.T.	1
*OUTPUT CURRENT OF EACH CONNE	CTOR PIN MUST BE	E LESS THAN 5	iΑ.

MATCHING HOUSINGS, PINS & TOOL (NOT INCLUDED WITH THE PRODUCT):

PART DESCRIPTION	PART NAME	MANUFACT.	QTY
SOCKET HOUSING (CN1)	VHR-5N	J.S.T.	1
SOCKET HOUSING (CN51)	VHR-8N	J.S.T.	1
TERMINAL PINS	SVH-21T-P1.1	J.S.T.	1.1
	BVH-21T-P1.1	0.5.1.	11
HAND CRIMPING TOOL	YC-160R	J.S.T.	_

NOTES

- A: $4-\emptyset 3.5$ HOLES ARE FOR CUSTOMER'S CHASSIS MOUNTING HOLES. ALL MUST BE SCREWED IN ORDER TO CONFORM THE VIBRATION/EMI SPEC.
- B: MODEL NAME, INPUT VOLTAGE RANGE, NOMINAL OUTPUT VOLTAGE, AND MAXIMUM OUTPUT CURRENT ARE SHOWN HERE IN ACCORDANCE WITH THE SPECIFICATIONS.
- C: COUNTRY OF MANUFACTURE WILL BE SHOWN HERE.
- D: \perp IS FOR SAFETY GROUND CONNECTION.
- E: TO KEEP THE DISTANCE MORE THAN 2mm BETWEEN PCB EDGE AND CUSTOMER'S CHASSIS.

(unit : mm)

MODEL NAME VS100E

TDK-Lambda

A241-02-01B

VS100E

EVALUATION DATA

型式データ

DWG No. A241-53-01								
APPD	APPD CHK							
1		Komatsu 5. Dec. '08						

INDEX

	万仏	Evaluation					PAGE
1. 1	0.47 17 17		Circuit use	ed for determi	nation		
	測定回路 1	•	Circuit 1 u	ised for deterr	nination		T-1
		静特性				Steady state data	
		過電流保護	護特性			Over current protection (OCP) characte	ristics
		過電圧保証	護特性			Over voltage protection (OVP) characte	
		出力立ち	上がり特性			Output rise characteristics	
		出力立ち	下がり特性			Output fall characteristics	
		出力保持時	時間特性			Hold up time characteristics	
	測定回路 2	2	Circuit 2 u	sed for determ	nination		T-1
			(負荷急変			Dynamic load response characteristics	
	測定回路3				nination		T-1
	V4/			入電流)特性		Inrush current characteristics	1-1
	測定回路 4						T-2
	N1/CHPI 1	・ リーク電泡		ised for determ	minacion	Leakage current characteristics	1-2
	測定回路 5			sed for deterr	nination	Leakage current characteristics	тэ
	DELICITIES OF		プル、ノイ				T-2
	測定構成	шллуу.			1	Output ripple and noise waveform	
	侧足啎风	TO AT MET. AM				n	T-2
				agnetic Interfe	erence chara		
			子電圧 (帰			Conducted Emission Noise	
	H- ITT Not el-state		界強度 (輻			Radiated Emission Noise	
1.2	使用測定機	器	List of equ	ipment used			T-3
						- line and load, Temperature drift	m 4
	(1) 入力	負荷・温	度変動/出	力起動・低	下電圧		
							777. 4
	(2) 効率	対出力電流	:			Start up voltage and Drop out voltage	T-4
						vs. Output current	T-5
		電流対出力			_	nt vs. Output current	T-6
0 0		電力対出力	电弧			er vs. Output current	T-7
	過電流保護					nt protection (OCP) characteristics	T-8
	過電圧保護		L 18 10 #±	Lat.		ge protection (OVP) characteristics	T-8
	出力立ち上		ら下かり符'	生		, Output fall characteristics	T-9
	出力保持時		riete Lei.		_	ne characteristics	T-10
2.6	過渡応答		符性			oad response characteristics	T-11
2. 7	入力電圧瞬					o brown out characteristics	T-12
	入力サージ		人電流)特·	性		ent waveform	T-13
2. 9	リーク電流					rrent characteristics	T-13
	出力リッフ		ズ波形		Output ripp	ble and noise waveform	T-14
2. 11	EMI特性	-			Electro-Ma	gnetic Interference characteristics T	[-15~]
	使用記号	Terminolog	gy used				
				Definition			
			Vin		入力電圧	Input voltage	
			Vout		出力電圧	Output voltage	
						Output voltage	
			Iin		入力電流	Input current	
			Iin Iout				
					出力電流	Input current	

TDK-Lambda

1. 測定方法

Evaluation Method

1.1 測定回路

Circuit used for determination

測定回路1 Circuit 1

• 静特性

• 過電流保護特性

• 過電圧保護特性

・出力立ち上がり特性

・出力立ち下がり特性

• 出力保持時間特性

Steady state data

Over current protection (OCP) characteristics

Over voltage protection (OVP) characteristics

Output rise characteristics

Output fall characteristics

Hold up time characteristics

Controlled temp. chamber

測定回路2 Circuit 2

・過渡応答(負荷急変) 特性

Dynamic load response characteristics

Output current waveform

測定回路3 Circuit 3

・入力サージ電流(突入電流)特性 Inrush current characteristics

測定回路4 Circuit 4

・リーク電流特性

Leakage current characteristics

測定回路5 Circuit 5

・出力リップル、ノイズ特性 Output ripple and noise waveform Normal Mode (JEITA Standard RC-9131A)

測定構成 Configuration

接地

Earth

金属大地面

Metal Ground Plate

· EMI特性 雑音端子電圧 (帰還ノイズ) Electro-Magnetic Interference characteristics Conducted Emission Noise

TDK-Lambda

フィルタ

Filter

入力電源

Input

1.2 使用測定機器 List of equipment used

	EQUIPMENT USED	MANUFACTURER	MODEL NO.
1	DIGITAL STORAGE OSCILLOSCOPE	TEKTRONIX	TDS3012
2	DIGITAL STORAGE OSCILLOSCOPE	YOKOGAWA ELECT.	DL1740EL/DL9040L
3	DIGITAL MULTIMETER	AGILENT	34970A
4	DIGITAL POWER METER	YOKOGAWA ELECT.	WT210
5	CURRENT PROBE/AMPLIFIER	YOKOGAWA ELECT.	701930
6	DYNAMIC DUMMY LOAD	TAKASAGO	FK-600L
7	SLIDE REGULATOR	MATSUNAGA	SD-2650
8	CVCF	TAKASAGO	AA2000XG
9	LEAKAGE CURRENT METER	HIOKI	3156
10	DYNAMIC DIP SIMULATOR	CYBERNETICS	PSA-210
11	CONTROLLED TEMP. CHAMBER	ESPEC	SU-261
12	SPECTRUM ANALYZER	ROHDE & SCHWARZ	FSA
13	EMI TEST RECEIVER	ROHDE & SCHWARZ	ESHS10
14	EMI TEST RECEIVER	ROHDE & SCHWARZ	ESVS10
15	RF RELAY MATRIX	ROHDE & SCHWARZ	PSU
16	AMN	KYORITU DENSHI	KNW-242
17	ANTENA(BICONICAL ANTENA)	SCHWARZBECK	BBA9106
18	POWER HITESTER	HIOKI	3193
19	POWER HITESTER	HIOKI	9600
20	IMPEDANCE NETWORK 20A	NF	4150
21	SING PHASE MASTER	NF	4420
22	BOOSTER	NF	4421

2. 特性データ

Characteristics

VS100E

2.1 静特性

Steady state data

(1) 入力·負荷·温度変動/出力起動·低下電圧

Regulation - line and load, Temperature drift / Start up voltage and Drop out voltage

5V

1. Regulation	a - line and l	Condition	Ta		
Iout \ Vin	85VAC	100VAC	132VAC	line r	egulation
0%	5.006V	5.007V	5.007V	1mV	0.020%
50%	5.006V	5.006V	5.007V	1mV	0.020%
100%	5.006V	5.006V	5.007V	1mV	0.020%
load	0mV	1mV	0mV		
regulation	0.000%	0.020%	0.000%		

2. Temperature drift

Conditions

Vin: 100 VAC

25 °C

Iout: 100 %

Ta	-10°C	+25℃	+50°C	temperatu	re stability
Vout	5.006V	5.006V	5.002V	4mV	0.080%

3. Start up voltage and Drop out voltage

Conditions

Ta: 25 ℃

Iout: 100 %

Start up voltage (Vin)	70VAC
Drop out voltage (Vin)	69VAC

12V

1. Regulation - line and load

Condition

Ta: 25 ℃

Iout \ Vin	85VAC	100VAC	132VAC	line regulation	
0%	11.967V	11.967V	11.967V	0mV	0.000%
50%	11.966V	11.966V	11.966V	0mV	0.000%
100%	11.966V	11.966V	11.966V	0mV	0.000%
load	1mV	1mV	1mV		
regulation	0.008%	0.008%	0.008%		

2. Temperature drift

Conditions

Vin: 100 VAC

Iout: 100 %

Ta	-10°C	+25℃	+50°C	temperatu	re stability
Vout	11.979V	11.966V	11.945V	34mV	0.283%

3. Start up voltage and Drop out voltage

Conditions

Ta: 25 ℃

Iout: 100 %

Start up voltage (Vin)	69VAC
Drop out voltage (Vin)	65VAC

24V

1. Regulation - line and load

Condition

Ta: 25 ℃

1.1108000001	1 11110 001100 1			0011011011	
Iout \ Vin	85VAC	100VAC	132VAC	line r	egulation
0%	23.982V	23.982V	23.982V	0mV	0.000%
50%	23.980V	23.981V	23.981V	1mV	0.004%
100%	23.981V	23.981V	23.981V	0mV	0.000%
load	2mV	1mV	1mV		
regulation	0.008%	0.004%	0.004%		

2. Temperature drift

Conditions

Vin: 100 VAC

Iout: 100 %

Ta	-10°C	+25℃	+50°C	temperature stabili	
Vout	24.005V	23.981V	23.950V	55mV	0.229%

3. Start up voltage and Drop out voltage

Conditions

Ta: 25 ℃

Iout: 100 %

Start up voltage (Vin)	69VAC
Drop out voltage (Vin)	68VAC

(2) 効率対出力電流

Efficiency vs. Output current

Conditions Vin: 85 VAC -----

: 100 VAC ----

: 132 VAC -

Ta: 25 ℃

TDK-Lambda

(3) 入力電流対出力電流 Input current vs. Output current

Conditions Vin: 85 VAC -----

: 100 VAC ---

: 132 VAC − Ta: 25 °C

(4) 入力電力対出力電流

Low load input power vs. Output current

Conditions Vin: 85 VAC ----

100 VAC ----

: 132 VAC —

Ta: 25 ℃

5	V	

12V

Conditions	Iout : 0%		
Vin	Input power		
85VAC	2.3W		
100VAC	2.0W		
132VAC	2.5W		

24V

	140			1	:	:	i !
	120						
(100						
Input power (W)	80						
t pow	60		 				
Inpu	40						
	20		A CONTRACTOR OF THE PARTY OF TH				
	0			6 6 4 1	:		1 1 1 1
		0	20	40	60	80	100
				Output cu	irrent (%)		

ConditionsIout: 0%VinInput power85VAC2.5W100VAC2.4W132VAC3.0W

TDK-Lambda

2.2 過電流保護特性

0

50

Output current (%)

Conditions

Over current protection (OCP) characteristics

Vin:

85 VAC

100 VAC

100

2.3 過電圧保護特性

2V/DIV

Over voltage protection (OVP) characteristics

Conditions Vin: 100 VAC

0 % Io:

1s/DIV

25 ℃ Ta:

150

2.4 出力立ち上がり特性、出力立ち下がり特性

Output rise characteristics, Output fall characteristics

Conditions

Vin: 85 VAC (A)

100 VAC (B)

132 VAC (C)

Iout: 100 % Ta: 25 ℃

2.5 出力保持時間特性 Hold up time characteristics

Conditions Vin: 100 VAC

Ta: 25 ℃

2.6 過渡応答(負荷急変)特性

+0.96%

Dynamic load response characteristics

-1.14%

Conditions Vin: 100 VAC

-1.18%

Io: 50 % ←> 100 %

(tr = tf = 50us)

Ta: 25 ℃

+1.00%

2.7 入力電圧瞬停特性

Response to brown out characteristics

Conditions Vin: 100 VAC

Iout: 100 %

50ms/DIV

10V/DIV

2.8 入力サージ電流 (突入電流) 特性

Inrush current waveform

Conditions

Vin: 100 VAC

Iout: 100 % Ta: 25 ℃

5V

Switch on phase angle of input AC voltage

50ms/DIV

Switch on phase angle of input AC voltage

2.9 リーク電流特性

20A/DIV

Leakage current characteristics

Conditions

Iout:

0 % -----

100 %

Ta: 25 ℃

f: 50 Hz

Equipment used: 3156 (HIOKI)

2.10 出力リップル、ノイズ波形 Output ripple and noise waveform

Conditions Vin: 100 VAC

Iout: 100 % Ta: 25 ℃

TDK-Lambda

2.11 EMI特性

Electro-Magnetic Interference characteristics

雜音端子電圧

Conducted Emission

Conditions

Vin:

100 VAC

Io: 100 %

EN55011-B,EN55022-Bの限界値はVCCI class Bの限界値と同じ Limit of EN55011-B,EN55022-B are same as its VCCI class B.

表示はピーク値です。 Indication is peak values. 雑音電界強度

Radiated Emission

Conditions

Vin:

100 VAC

Io: 100 %

EN55011-B,EN55022-Bの限界値はVCCI class Bの限界値と同じ Limit of EN55011-B,EN55022-B are same as its VCCI class B.

表示はピーク値です。 Indication is peak values.

VS100E

RELIABILITY DATA

信頼性データ

DWG No. A241-57-01						
APPD	CHK	DWG				
U.Mekremete	Ynoguchi	Shima mune				
5/Dec/08	5.Dec. 08	5.Dec,'as				

INDEX

	F	PAGE
1. M	MTBF計算値 Calculated Values of MTBF ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	R- 1
2. 剖	『品ディレーティング Component Derating ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	R-2∼3
3. 主	E要部品温度上昇值 Main Components Temperature Rise △T List ··········· F	R-4
4. 電	這解コンデンサ推定寿命計算値 Electrolytic Capacitor Lifetime ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	R-5~7
5. ア	ブノーマル試験 Abnormal Test ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	₹-8
6. 振	長動試験 Vibration Test ····································	R-9
7. ノ·	イズシミュレート試験 Noise Simulate Test ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	R-10
8. 熱	热衝擊試験 Thermal Shock Test ······ F	R- 11
	※ 試験結果は、代表データでありますが、全ての製品はほぼ同等な特性を示します。	

従いまして、以下の結果は実力値とお考え願います。

Test results are typical data. Nevertheless the following results are considered to be actual capability data because all units have nearly the same characteristics.

1. MTBF計算值 Calculated Values of MTBF

MODEL: VS100E-24

(1) 算出方法 Calculating Method

JEITA (RCR-9102, RCR-9102B)の部品点数法で算出されています。 それぞれの部品ごとに、部品故障率 λ_G が与えられ、各々の点数によって決定されます。 Calculated based on part count reliability projection of JEITA (RCR-9102, RCR-9102B). Individual failure rates λ_G is given to each part and MTBF is calculated by the count of each part.

<算出式>

$$MTBF = \frac{1}{\lambda_{equip}} = \frac{1}{\sum_{i=1}^{n} n_i (\lambda_G \pi_Q)_i} \times 10^6$$
 時間(Hours)

λequip :全機器故障率 (故障数/10⁶時間)

Total Equipment Failure Rate (Failure / 10⁶Hours)

λ_G:i番目の同属部品に対する故障率(故障数/10⁶時間)

Generic Failure Rate for The ith Generic Part (Failure / 10⁶Hours)

Ni : i 番目の同属部品の個数 Quantity of ith Generic Part

: 異なった同属部品のカテゴリーの数

Number of Different Generic Part Categories

 π_Q : i 番目の同属部品に対する品質ファクタ (π_Q =1) Generic Quality Factor for The ith Generic Part (π_Q =1)

(2) MTBF値 MTBF Values

n

G_F: 地上固定 (Ground, Fixed)

RCR-9102

MTBF ≒ 557,942 時間 (Hours)

RCR-9102B

MTBF ≒ 370,200 時間 (Hours)

2. 部品ディレーティング Components Derating

MODEL: VS100E-5

(1) 算出方法 Calculating Method

(a) 測定方法 Measuring method

•取付方法	:標準取付:A	·周囲温度	:50℃
Mounting method	Standard mounting: A	Ambient temperature	
•入力電圧	:100VAC	・出力電圧、電流	:5V,20A
Input voltage		Output voltage & cur	rent

(b) 半導体 Semiconductors

ケース温度、消費電力、熱抵抗より使用状態の接合点温度を求め最大定格、接合点温度との比較を求めました。

Compared with maximum junction temperature and actual one which is calculated based on case temperature, power dissipation and thermal impedance.

(c) IC、抵抗、コンデンサ等 IC, Resistors, Capacitors, etc.

周囲温度、使用状態、消費電力など、個々の値は設計基準内に入っています。 Ambient temperature, operating condition, power dissipation and so on are within derating criteria.

(d) 熱抵抗算出方法 Calculating method of thermal impedance

$$\theta \mathbf{j} - \mathbf{c} = \frac{T\mathbf{j}(\mathbf{max}) - T\mathbf{c}}{P\mathbf{c}(\mathbf{max})} \qquad \qquad \theta \mathbf{j} - \mathbf{l} = \frac{T\mathbf{j}(\mathbf{max}) - T\mathbf{l}}{P\mathbf{c}(\mathbf{max})} \qquad \qquad \theta \mathbf{j} - \mathbf{a} = \frac{T\mathbf{j}(\mathbf{max}) - T\mathbf{a}'}{P\mathbf{c}(\mathbf{max})}$$

Tc : ディレーティングの始まるケース温度 一般に25℃

Case Temperature at Start Point of Derating; 25°C in General

T1 : ディレーティングの始まるリード温度 一般に25℃

Lead Temperature at Start Point of Derating; 25°C in General

Ta': :ディレーティングの始まる周囲温度 一般に25℃

Ambient Temperature at Start Point of Derating; 25°C in General

Pc(max) :最大コレクタ(チャネル)損失

(Pch(max)) Maximum Collector (channel) Dissipation

Ti(max) :最大接合点(チャネル)温度

(Tch(max)) Maximum Junction (channel) Temperature θj-c :接合点(チャネル)からケースまでの熱抵抗

(θch-c) Thermal Impedance between Junction (channel) and Case

θj-1 :接合点(チャネル)からリードまでの熱抵抗

(θch-l) Thermal Impedance between Junction (channel) and Lead

θj-a :接合点(チャネル)から周囲までの熱抵抗

(θch-a) Thermal Impedance between Junction (channel) and Ambient

(2) 部品ディレーティング表 Component Derating List

部品番号 Location No.	Vin = 100VAC	Load = 100%	Ta = 50°C
Q1	Tch (max) = 150 °C	θ ch-c = 0.56 °C/W	Pch (max) = 225 W
FMP16N50E	Pch= 2.5 W	ΔTc= 62.9 °C	Tc= 112.9 °C
FUJI ELECTRIC	Tch= T c+ ((θ ch-c) × Pch)= 114.3 °C	Z10 02.5 C	10 112.5
FOILECTRIC	D.F. = 76.2 %		
Q51	Tch (max) = 150 $^{\circ}$ C	θ ch-c = 4.17 °C/W	Pch (max) = 30 W
H7N0308CF	Pch = 1.5 W	$\Delta Tc = 61.6 ^{\circ}C$	Tc= 111.6 °C
RENESAS	Tch = Tc + $((\theta \text{ch-c}) \times \text{Pch}) = 118.0 ^{\circ}\text{C}$		
1021(25115	D.F. = 78.7 %		
Q52	Tch (max) = 150 °C	θ ch-c = 4.17 °C/W	Pch (max) = 30 W
H7N0308CF	Pch = 0.6 W	$\Delta Tc = 58.3 ^{\circ}C$	Tc= 108.3 °C
RENESAS	Tch = Tc + $((\theta ch-c) \times Pch) = 110.9 ^{\circ}C$		
'	D.F. = 73.9 %		
D1	Tj (max) = 150 °C	θ j-c = 5.5 °C/W	
D3SB60	Pd = 4.4 W	$\Delta Tc = 47.7 ^{\circ}C$	Tc= 97.7 °C
SHINDENGEN	$Tj = Tc + ((\theta j - c) \times Pd) = 121.9 ^{\circ}C$		
	D.F. = 81.3 %		
D52	Tj (max) = 150 ℃	θj-c = 2.0 °C/W	
YG838C03R	Pd = 1.7 W	$\Delta Tc = 58.9 ^{\circ}C$	Tc= 108.9 °C
FUJI ELECTRIC	$Tj = Tc + ((\theta j - c) \times Pd) = 112.3 ^{\circ}C$		
	D.F. = 74.9 %		
A101	Tj (max) = 125 °C	θj-c = 72 °C/W	Pd (max) = 300 mW
FA3647N	Pd = 86.0 mW	$\Delta Tc = 22.8 ^{\circ}C$	Tc= 72.8 °C
FUJI ELECTRIC	$Tj = Tc + ((\theta j-c) \times Pd) = 79.0 ^{\circ}C$		
	D.F. = 52.7 %		
A102	Tj (max) = 125 ℃	θj-a = 160 °C/W	Pd (max) = 622.5 mW
BA2903F	Pd = 4.0 mW	Δ Ta = 27.7 °C	Ta= 77.7 °C
ROHM	$Tj = Ta + ((\theta j - a) \times Pd) = 78.3 ^{\circ}C$		
	D.F. = 52.2 %		
PC2	Tj (max) = 125 °C	θ j-c = 150°C/W	Pd (max)= 150 mW
PS2581L1	Pd = 2.0 mW	$\Delta Tc = 19.9 ^{\circ}C$	Tc= 69.9 °C
NEC	$Tj = Tc + ((\theta j-c) \times Pd) = 70.2 ^{\circ}C$		
	D.F. = 56.2 %		
<u> </u>			

3. 主要部品温度上昇值 Main Components Temperature Rise △T List

MODEL: VS100E-5

(1) 測定条件 Measuring Conditions

	Mounting A	Mounting B	Mounting C	Mounting D	Mounting E
取付方法 Mounting Method (標準取付: A) (Standard Mounting: A)	CN1(INPUT)	FIN	CN1 FIN	N	2 - 2
入力電圧 Input Voltage (VAC)			100		
出力電圧			100		
Output Voltage (VDC)			5		,
出力電流 Output Current (A)			20		

(2) 測定結果 Measuring Results

		ΔT Temperature Rise (°C)								
出力デ	· イレーティング	100								
Outpu	t Derating (%)	Ta=50°C	Ta=50°C	Ta=40℃	Ta=40°C	Ta=40℃				
部品番号	部品名	取付方向	取付方向	取付方向	取付方向	取付方向				
Location No.	Part name	Mounting A	Mounting B	Mounting C	Mounting D	Mounting E				
Q1	MOS FET	62.9	60.4	51.0	61.9	61.5				
Q51	MOS FET	61.6	60.0	57.8	57.4	61.7				
Q52	MOS FET	58.3	56.3	54.6	53.9	59.9				
D52	SBD	58.9	57.2	55.6	54.5	60.3				
D1	BRIDGE DIODE	47.7	49.8	46.1	50.2	46.8				
A101	CHIP IC	22.8	21.2	37.4	29.7	31.0				
A102	CHIP IC	27.7	25.2	36.7	34.5	33.8				
A201	CHIP IC	19.6	18.5	34.8	23.1	30.8				
T1	TRANS	45.4	41.7	48.2	45.2	48.0				
L1	BALUN	37.5	38.7	37.3	43.4	35.0				
L51	CHOKE COIL	41.7	40.5	47.4	42.0	51.1				
C5	E.CAP.	26.7	23.7	30.2	31.8	25.6				
C6	E.CAP.	17.6	16.3	30.8	25.2	22.6				
C51	E.CAP.	40.4	33.3	40.8	34.7	45.7				
C52	E.CAP.	28.3	24.8	36.1	29.2	38.3				
PC2	PHOTO COUPLER	19.9	19.4	38.4	27.1	30.5				

4. 電解コンデンサ推定寿命計算値

Electrolytic Capacitor Lifetime

MODEL: VS100E-5

空冷条件:自然空冷

Cooling Condition: Convection Cooling

取付方向 A Mounting A

Vin=100VAC

		Lifetime (years)							
Loa	d (%)	Ta=	Ta=	Ta=					
		40℃	50°C	60℃					
	40	10.0	6.0	3.0					
	60	9.3	4.6	2.3					
	80	6.6	3.3	_					
1	.00	4.4	2.2	_					

12
10
(Search of the content of the

取付方向 B Mounting B

Conditions Ta 40°C : --- 60°C : ---

Vin=100VAC

	Lifetime (years)							
Load (%)	Ta=	Ta=	Ta=					
	40°C	50°C	60°C					
40	10.0	9.6	4.8					
60	10.0	7.5	3.7					
80	10.0	5.6	-					
100	7.2	3.6	-					

取付方向 C Mounting C

Conditions Ta 30°C : ---- 50°C : ----

Vin=100VAC

	Life	etime (ye	ears)
Load (%)	Ta=	Ta=	Ta=
	30°C	40℃	50℃
40	10.0	10.0	7.3
60	10.0	10.0	5.3
80	10.0	7.0	-
100	8.6	4.3	-

	10	 	: : :	,	:	<u>:</u>	-	
ars)	8	 					\	
Life time (years)	6	 						
Life	4	 			1			
	2		1	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
			:					
	0							

取付方向 D

Mounting D

Conditions	Ta	30°C : ⁻
		40℃: -
		50℃: -

Vin=100VAC

	Lifetime (years)							
Load (%)	Ta=	Ta=	Ta=					
	30℃	40℃	50°C					
40	10.0	10.0	7.4					
60	10.0	10.0	5.9					
80	10.0	9.1	-					
100	10.0	6.5	-					

取付方向 E Mounting E

Vin=100VAC

	Lifetime (years)						
Load (%)	Ta=	Ta=	Ta=				
	30℃	40℃	50°C				
40	10.0	10.0	5.4				
60	10.0	7.6	3.8				
80	10.0	5.0	-				
100	6.1	3.0	-				

5. アブノーマル試験 Abnormal Test

MODEL: VS100E-5

(1) 試験条件 Test Conditions

Input: 132VAC Output: Rating Ta: R.T.

(-)	H (400/H2)(4	Test Ites															(Da:Damaged)
	Test p	osition	Te	est ode		Test result											
					a	Ъ	С	d	е	f	g	h	I	j	k	1	
No.	Location No.	Test point	Short	Open	Fire	Smoke	Burst	Smell	Red hot	Damaged	Fuse blown	O.V.P.	0.C.P.	No output	No change	Others	Note
1	Q1	D-S	0							0	0			0			Da:D101, D102, R111, R112
2		D-G	0							0	0			0			Da :Q1, D101, D102, R111, R112, Q103, A101
3		G-S	0											0			
4		D		0										0			
5		S		0										0			D 01 D101 D102 D111
6		G		0						0	0			0			Da: Q1, D101, D102, R111, R112
7	Q51	D-S	0						ļ				0				
8		D-G	0							_			0				Da: R201
9		G-S	0							0						0	Input power increase
10		D		0						0	0			0			Da: Q1, D101, D102, R111, R112
11		S		0						0	0			0			Da: D101, D102, R111, R112
12		G	_	0											0		
13	Q52	D-S	Ö					<u> </u>		<u> </u>			0				
14		D-G	0										0				Da : R206
15		G-S	0							0						0	Input power increase
16		D		0												0	Input power increase
17		S		0								ļ					Input power increase
18	D1	G	_	0					ļ			<u> </u>		<u> </u>		0	Input power increase
19	D1	AC-AC DC-DC	00	ļ						<u> </u>	00	-		00			
21		AC-DC	8								6			0			
22	D52	A-K	ŏ								Ť		0	Ť			
23		A		0												0	Input power increase
24		K		0												0	Input power increase
25	T1	1-3	0						<u> </u>				<u> </u>	Ō		ļ	·
26	4	5-6	0		ļ	ļ						ļ	<u> </u>	0		<u> </u>	
27	-	7-8	8						 	-		-	0	0			
28	1	9-11 1	10	0			-			-	 	 	1	0			
30	-	5	 	15					 					18	<u> </u>	 	
31	1	7		lŏ	 	t				 	 			Ť		0	Input voltage increase
32	1	9 (10)		Ō										0			

6. 振動試験 Vibration Test

MODEL: VS100E-5

(1) 振動試験種類 Vibration Test Class

掃引振動数耐久試験 Frequency variable endurance test

(2) 使用振動試験装置 Equipment Used

EMIC (株) 製

•制御部

: F-400-BM-E47

•加振部

: 905-FN

EMIC CORP

Controller

Vibrator

(3) 試験条件 Test Conditions

·周波数範囲

·掃引時間

•加速度

:10~55Hz

•振動方向

: X, Y, Z

Sweep frequency

: 1.0min

Direction ·試験時間

Sweep count

: 各方向共 1時間 1 hour each

: Constant 19.6m/s² (2G)

Acceleration

Sweep time

(4) 試験方法 Test Method

(5) 判定条件 Acceptable Conditions

1.破壊しない事

Not to be broken

2.試験後の特性は初期値から変動していない事 Characteristic to be within regulation specification after the test.

(6) 試験結果 Test Results

合格 OK

7. ノイズシミュレート試験 Noise Simulate Test

MODEL: VS100E-5

(1) 試験回路及び測定器 Test Circuit and Equipment

(ノイズ研究所) シミュレータ: INS-4320(A)

:INS-4320(A) (Noise Laboratory Co.,LTD) Simulator

(2) 試験条件 Test Conditions

•入力電圧

: 100VAC

・ノイズ電圧 Noise level :0V~2kV

Input voltage ·出力電圧

:定格

•位相

 $: 0 \sim 360 \deg$

Output Voltage

Rated

Phase

•出力電流

: 0, 100%

•極性 Polarity :+,-

Output current

: 25°C

・印加モード

:コモン、ノーマル

Ambient temperature

Mode

Common, Normal

・パルス幅 Pulse width

•周囲温度

:50~1000ns

・トリガ選択 Trigger select : Line

(3) 判定条件 Acceptable Conditions

1.破壊しない事

Not to be broken

2.出力がダウンしない事

Not to be shut down output

3.その他異常のない事

No other out of orders

(4) 試験結果 Test Results

合格

OK

8. 熱衝擊試験 Thermal Shock Test

MODEL: VS100E-5

(1) 使用計測器 Equipment Used

TSA-70H-W : ESPEC

(2) 試験条件 Test Conditions

(3) 試験方法 Test Method

初期測定の後、供試品を試験槽に入れ、上記サイクルで試験を行う。100サイクル後に、 供試品を常温常湿下に1時間放置し、出力に異常がない事を確認する。

Before testing, check if there is no abnormal output, then put the D.U.T. in testing chamber, and test it according to the above cycle. 100 cycles later, leave it for 1 hour at the room temperature, then check if there is no abnormal output.

(4) 判定条件 Acceptable Conditions

1.破壊しない事

Not to be broken

2.試験後の特性は初期値から変動していない事 Characteristic to be within regulation specification after the test.

(5) 試験結果 Test Results

合格 OK

VS100E

TEST DATA IEC61000 SERIES

テストデータ IEC61000シリーズ

DWG No. A241-58-01										
APPD	CHK	DWG								
4 MétarmeTo	¥.nogucki	Shima mune								
2/Dec/:08	2. Pec. '08	2,Dec,'08								

INDEX

		PAGE
1.	静電気放電イミュニティ試験 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	R-1
2.	放射性無線周波数電磁界イミュニティ試験 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	R-2
3.	電気的ファーストトランジェントバーストイミュニティ試験 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	R-3
4.	サージイミュニティ試験	R-4
5.	伝導性無線周波数電磁界イミュニティ試験 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	R-5
6.	電力周波数磁界イミュニティ試験 · · · · · · · Power Frequency Magnetic Field Immunity Test (IEC61000-4-8)	R-6
7.	電圧ディップ、瞬停イミュニティ試験 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	R-7

※ 試験結果は、代表データでありますが、全ての製品はほぼ同等な特性を示します。 従いまして、以下の結果は実力値とお考え願います。

Test results are typical data. Nevertheless the following results are considered to be actual capability data because all units have nearly the same characteristics.

1. 静電気放電イミュニティ試験

Electrostatic Discharge Immunity Test (IEC61000-4-2)

MODEL: VS100E

(1) 使用計測器 Equipment Used

静電気試験機

:NSG435 (SCHAFFNER)

Electro Static Discharge Simulator

放電抵抗

:330Ω

静電容量:150pF

Discharge Resistance

Capacity

(2) 試験条件 Test Conditions

•入力電圧

:100VAC

•出力電圧

:定格

Input Voltage

40004

Output Voltage

Rated

·出力電流

:100%

•極性

:+,-

Output Current

:10回

Polarity ·放電間隔

:>1秒

·試験回数 Test Times

10 times

Discharge Interval

>1 second

•周囲温度

:25°C

Ambient Temperature

(3) 試験方法及び印加箇所 Test Method and Device Test Point

接触放電

: 🛨 、ネジ止め部

Contact Discharge

±, Screw

気中放電

:入出力端子、🛨、ネジ止め部

Air Discharge

Input and output terminal, \pm , Screw

(4) 判定条件 Acceptable Conditions

1. 試験中の出力電圧変動は初期値(試験前)の±5%を限度とする事。

Output voltage regulation not to exceed $\pm 5\%$ of initial (before test) value during test.

2. 試験後の出力電圧は初期値から変動していない事。

Output voltage to be within regulation specification after the test.

3.1、2共に発煙/発火及び出力ダウンなき事。

Along with 1 and 2, without the occurrence of smoke and fire, as well as no output failure.

Contact Discharge (kV)	VS100E-5	VS100E-24	Air Discharge(kV)	VS100E-5	VS100E-24
2	PASS	PASS	2	PASS	PASS
4	PASS	PASS	4	PASS	PASS
(4.)			8	PASS	PASS

2. 放射性無線周波数電磁界イミュニティ試験

Radiated Radio-Frequency Electromagnetic Field Immunity Test (IEC61000-4-3)

MODEL: VS100E

(1) 使用計測器 Equipment Used

シグナルジェネレータ Signal Generator

:8648C (Hewlett Packard)

パワーアンプシステム Power Amplifier System

:AK500-200 (Kalmus)

パワーリフレクションメーター Power Reflection Meter: NRT (Rohde & Schwarz)

パワーヘッド Power Head

:NAP-Z6 (Rohde & Schwarz)

バイログアンテナ Bilog Antenna

:CBL6140 (Chase)

(2) 試験条件 Test Conditions

•入力電圧

:100VAC

•出力電圧

:定格

Input Voltage

Output Voltage

Rated

·出力電流

:100%

振幅変調

:80%, 1kHz

Output Current •電磁界周波数

 $: 80 \sim 1000 \text{MHz}$

Amplitude Modulated •周囲温度

Distance

:25°C

Electromagnetic Frequency

Ambient Temperature

・偏波

:水平、垂直

•距離

:3.0m

Wave Angle Horizontal and Vertical ・スイープコンディショ:1.0%ステップ、2.8秒保持

Sweep Condition

1.0%Step Up, 2.8 Seconds Hold

•試験方向

:上下、左右、前後

Test Angle

Top/Bottom, Both Sides, Front/Back

(3) 試験方法 Test Method

(4) 判定条件 Acceptable Conditions

1. 試験中の出力電圧変動は初期値(試験前)の±5%を限度とする事。

Output voltage regulation not to exceed ±5% of initial (before test) value during test.

2. 試験後の出力電圧は初期値から変動していない事。

Output voltage to be within regulation specification after the test.

3.1、2共に発煙/発火及び出力ダウンなき事。

Along with 1 and 2, without the occurrence of smoke and fire, as well as no output failure.

Radiation Field Strength (V/m)	VS100E-5	VS100E-24
1	PASS	PASS
3	PASS	PASS
10 .	PASS	PASS

3. 電気的ファーストトランジェントバーストイミュニティ試験

Electrical Fast Transient / Burst Immunity Test (IEC61000-4-4)

MODEL: VS100E

(1) 使用計測器 Equipment Used

EFT/B発生器

: NSG2025 (SCHAFFNER)

EFT/B Generator

(2) 試験条件 Test Conditions

•入力電圧

:100VAC

•出力電圧

:定格

Input Voltage

1000/

Output Voltage

Ambient Temperature

Rated

・出力電流

:100%

·試験時間

:1分間

Output Current

Test Time

1 minute

•極性

:+,-

•周囲温度

:25℃

Polarity ·試験回数

:3回

Number of Tests

3 times

(3) 試験方法及び印加箇所 Test Method and Device Test Point

 $(N, L, \pm), (N, L), (N), (L), (\pm)$ に印加 Apply to $(N, L, \pm), (N, L), (N), (L), (\pm).$

(4) 判定条件 Acceptable Conditions

1. 試験中の出力電圧変動は初期値(試験前)の±5%を限度とする事。

Output voltage regulation not to exceed $\pm 5\%$ of initial (before test) value during test.

2. 試験後の出力電圧は初期値から変動していない事。

Output voltage to be within output voltage regulation specification after the test.

3.1、2共に発煙/発火及び出力ダウンなき事。

Along with 1 and 2, without the occurrence of smoke and fire, as well as no output failure.

Test Voltage (kV)	Repetition Rate (kHz)	VS100E-5	VS100E-24
0.5	5	PASS	PASS
1	5	PASS	PASS
2	5	PASS	PASS

4. サージイミュニティ試験

Surge Immunity Test (IEC61000-4-5)

MODEL: VS100E

(1) 使用計測器 Equipment Used

サージ発生器

:LSS-15AX (Noiseken)

Surge Generator

結合インピーダンス :コモン

 12Ω

 2Ω

結合コンデンサ

:コモン

Coupling Capacitance

Common

Normal

Coupling Impedance Common ノーマル

ノーマル 18µF

9uF

Normal

(2) 試験条件 Test Conditions

•入力電圧

:100VAC

•出力電圧 Output Voltage :定格

Input Voltage •出力電流

:0, 100%

•試験回数

Rated :3回

Output Current

Test times

3 times

•極性

:+,-

・モード Mode

:コモン、ノーマル Common, Normal

Polarity

:0,90 deg

•周囲温度

:25℃

•位相 Phase

Ambient Temperature

(3) 試験方法及び印加箇所 Test Method and Device Test Points

コモンモード (N-±, L-±) 及びノーマルモード (N-L) に印加 Apply to Common mode $(N-\pm, L-\pm)$ and Normal mode (N-L).

(4) 判定条件 Acceptable Conditions

1. 試験中の出力電圧変動は初期値(試験前)の±5%を限度とする事。

Output voltage regulation not to exceed $\pm 5\%$ of initial (before test) value during test.

2. 試験後の出力電圧は初期値から変動していない事。

Output voltage to be within regulation specification after the test.

3.1、2共に発煙/発火及び出力ダウンなき事。

Along with 1 and 2, without the occurrence of smoke and fire, as well as no output failure.

Common		Normal			
Test Voltage (kV)	VS100E-5	VS100E-24	Test Voltage (kV)	VS100E-5	VS100E-24
0.5	PASS	PASS	0.5	PASS	PASS
1	PASS	PASS	1	PASS	PASS
2	PASS	PASS			

5. 伝導性無線周波数電磁界イミュニティ試験

Conducted Disturbances Induced by Radio-Frequency

Field Immunity Test (IEC61000-4-6)

MODEL: VS100E

(1) 使用計測器 Equipment Used

RF パワーアンプ

: 116FC (Kalmus)

RF POWER AMPLIFIER

シグナルジェネレータ

: SMG (ROHDE&SCHWARZ)

Electromagnetic Frequency

SIGNAL GENERATOR

結合/減結合ネットワーク

: TCDN-801-M3-25 (TOYO Corporation)

COUPLING DE-COUPLING NETWORK (CDN)

(2) 試験条件 Test Conditions

•入力電圧

•出力電流

:100VAC

·出力電圧

:定格 Rated

Input Voltage

:100%

Output Voltage ·電磁界周波数

:150kHz~80MHz

Output Current

•周囲温度

:25℃

Ambient Temperature

・スイープ・コンディション

:1.0%ステップ、2.8秒保持

Sweep Condition

1.0%Step Up, 2.8 Seconds Hold

(3) 試験方法 Test Method

(4) 判定条件 Acceptable Conditions

1. 試験中の出力電圧変動は初期値(試験前)の±5%を限度とする事。

Output voltage regulation not to exceed $\pm 5\%$ of initial (before test) value during test.

2. 試験後の出力電圧は初期値から変動していない事。

Output voltage to be within regulation specification after the test.

3.1、2共に発煙/発火及び出力ダウンなき事。

Along with 1 and 2, without the occurrence of smoke and fire, as well as no output failure.

Voltage Level (V)	VS100E-5	VS100E-24
1	PASS	PASS
3	PASS	PASS
10	PASS	PASS

6. 電力周波数磁界イミュニティ試験

Power Frequency Magnetic Field Immunity Test (IEC61000-4-8)

MODEL: VS100E

(1) 使用計測器 Equipment Used

ACパワーソース

: AA2000XG (Takasago)

AC Power Source

ヘルムホルツコイル

:HHS5215 (Spulen)

Helmholts Coil

(2) 試験条件 Test Conditions

•入力電圧

:100VAC

•出力電圧

:定格

Input Voltage

Output Voltage

Rated

•出力電流

:100%

·印加磁界周波数 Magnetic Frequency

:50Hz

Output Current •試験時間

:10秒以上(各方向)

•印加方向

:X,Y,Z

Test Time

More than 10sec(Each direction) Direction

•周囲温度

:25℃

Ambient Temperature

(3) 試験方法及び印加箇所 Test Method and Device Test Point

(4) 判定条件 Acceptable Conditions

1. 試験中の出力電圧変動は初期値(試験前)の±5%を限度とする事。

Output voltage regulation not to exceed $\pm 5\%$ of initial (before test) value during test.

2. 試験後の出力電圧は初期値から変動していない事。

Output voltage to be within regulation specification after the test.

3.1、2共に発煙/発火及び出力ダウンなき事。

Along with 1 and 2, without the occurrence of smoke and fire, as well as no output failure.

Magnetic Field Strength (A/m)	VS100E-5	VS100E-24
1	PASS	PASS
3	PASS	PASS
10	PASS	PASS
30	PASS	PASS

7. 電圧ディップ、瞬停イミュニティ試験

Voltage Dips, Short Interruptions Immunity Test (IEC61000-4-11)

MODEL: VS100E

(1) 使用計測器 Equipment Used

試験発生器

: AA2000XG (Takasago)

Test Generator

(2) 試験条件 Test Conditions

•入力電圧

:100VAC

•出力電圧

:定格

Input Voltage

:100%

Output Voltage

Rated

•出力電流

•周囲温度

:25℃

Output Current

Ambient Temperature •試験間隔

:10秒以上

Number of Tests

•試験回数

3 times

:3回

Test interval

More than 10sec

(3) 試験方法及び印加箇所 Test Method and Device Test Point

(4) 判定条件 Acceptable Conditions

1. 試験後の出力電圧は初期値から変動していない事。

Output voltage to be within output voltage regulation specification after the test.

2. 発煙/発火なき事。

Smoke and fire do not occur.

Test Level	Dip rate	Continue Time	VS100E-5	VS100E-24
70%	30%	500ms	PASS	PASS
40%	60%	200ms	PASS	PASS
0%	100%	10ms	PASS	PASS
0%	100%	20ms	PASS	PASS
0%	100%	5000ms	PASS	PASS