CS 228 : Logic in Computer Science

Krishna. S

Moving On: Temporal Logics

Starting Linear Temporal Logic (LTL)

Transition Systems

A Transition System is a tuple $(S, Act, \rightarrow, I, AP, L)$ where

- S is a set of states
- Act is a set of actions
- $s \stackrel{\alpha}{\to} s'$ in $S \times Act \times S$ is the transition relation
- ▶ $I \subseteq S$ is the set of initial states
- ► AP is the set of atomic propositions
- ▶ $L: S \rightarrow 2^{AP}$ is the labeling function

- ▶ Labels of the locations represent values of all observable propositions ∈ AP
- Captures system state
- ▶ Focus on sequences $L(s_0)L(s_1)...$ of labels of locations
- Such sequences are called traces
- Assuming transition systems have no terminal states,
 - ▶ Traces are infinite words over 2^{AP}
 - Traces ∈ (2^{AP})^ω

Given a transition system $TS = (S, Act, \rightarrow, I, AP, L)$ without terminal states,

▶ All maximal executions/paths are infinite

5/1

- All maximal executions/paths are infinite
- ▶ Path $\pi = s_0 s_1 s_2 ..., trace(\pi) = L(s_0)L(s_1)...$

- All maximal executions/paths are infinite
- ▶ Path $\pi = s_0 s_1 s_2 ..., trace(\pi) = L(s_0)L(s_1)...$
- ► For a set Π of paths, $Trace(Π) = \{trace(π) \mid π ∈ Π\}$

- All maximal executions/paths are infinite
- ▶ Path $\pi = s_0 s_1 s_2 ..., trace(\pi) = L(s_0)L(s_1)...$
- ► For a set Π of paths, $Trace(Π) = \{trace(π) \mid π ∈ Π\}$
- For a location s, Traces(s) = Trace(Paths(s))

- All maximal executions/paths are infinite
- ▶ Path $\pi = s_0 s_1 s_2 ..., trace(\pi) = L(s_0)L(s_1)...$
- ► For a set Π of paths, $Trace(Π) = \{trace(π) \mid π ∈ Π\}$
- ▶ For a location s, Traces(s) = Trace(Paths(s))
- ▶ $Traces(TS) = \bigcup_{s \in I} Traces(s)$

6/1

- $\blacktriangleright \{p,q\}\emptyset \{q,r\}^{\omega}$
- $\blacktriangleright (\{p,q\}\emptyset\{r\})^{\omega}$

- $AP = \{p, q, r, t\}$
 - $\blacktriangleright \{p,q\}\emptyset \{q,r\}^{\omega}$
 - $\blacktriangleright (\{p,q\}\emptyset\{r\})^{\omega}$
 - $(\{p,q\}\emptyset\{r\})^* \{p,q\}\emptyset \{q,r\}^{\omega}$

Linear Time Properties

- ▶ Linear-time properties specify traces that a *TS* must have
- ▶ A LT property P over AP is a subset of $(2^{AP})^{\omega}$
- ► TS over AP satisfies a LT property P over AP

$$TS \models P \text{ iff } Traces(TS) \subseteq P$$

▶ $s \in S$ satisfies LT property P (denoted $s \models P$) iff $Traces(s) \subseteq P$

7/1

▶ Whenever *p* is true, *r* will eventually become true

- ▶ Whenever *p* is true, *r* will eventually become true
 - $A_0A_1A_2\cdots \mid \forall i\geqslant 0, p\in A_i\rightarrow \exists j\geqslant i, r\in A_i \}$

- ▶ Whenever *p* is true, *r* will eventually become true
 - $\blacktriangleright \{A_0A_1A_2\cdots \mid \forall i\geqslant 0, p\in A_i\rightarrow \exists j\geqslant i, r\in A_j\}$
- q is true infinitely often

- ▶ Whenever *p* is true, *r* will eventually become true
 - $A_0A_1A_2\cdots \mid \forall i\geqslant 0, p\in A_i\rightarrow \exists j\geqslant i, r\in A_i \}$
- q is true infinitely often
 - $A_0A_1A_2\cdots \mid \forall i \geqslant 0, \exists j \geqslant i, q \in A_i$

8/1

- ▶ Whenever *p* is true, *r* will eventually become true
 - $A_0A_1A_2\cdots \mid \forall i \geqslant 0, p \in A_i \rightarrow \exists j \geqslant i, r \in A_i \}$
- q is true infinitely often
 - $\qquad \qquad \{A_0A_1A_2\cdots \mid \forall i\geqslant 0, \exists j\geqslant i, q\in A_j\}$
- ▶ Whenever *r* is true, so is *q*

- ▶ Whenever *p* is true, *r* will eventually become true
 - $A_0A_1A_2\cdots \mid \forall i \geqslant 0, p \in A_i \rightarrow \exists j \geqslant i, r \in A_i \}$
- q is true infinitely often
 - $A_0A_1A_2\cdots \mid \forall i\geqslant 0, \exists j\geqslant i, q\in A_j$
- ▶ Whenever *r* is true, so is *q*
 - $A_0A_1\cdots \mid \forall i\geqslant 0, r\in A_i\rightarrow q\in A_i$

Syntax of Linear Temporal Logic

Given AP, a set of propositions,

Syntax of Linear Temporal Logic

Given AP, a set of propositions,

- Propositional logic formulae over AP
 - $ightharpoonup a \in AP$ (atomic propositions)
 - $\triangleright \neg \varphi, \varphi \land \psi, \varphi \lor \psi$

Syntax of Linear Temporal Logic

Given AP, a set of propositions,

- Propositional logic formulae over AP
 - $ightharpoonup a \in AP$ (atomic propositions)
 - $\neg \varphi, \varphi \land \psi, \varphi \lor \psi$
- Temporal Operators
 - $\triangleright \bigcirc \varphi \text{ (Next } \varphi \text{)}$
 - $\varphi \cup \psi \ (\varphi \text{ holds until a } \psi \text{-state is reached})$
- LTL : Logic for describing LT properties

Derived Operators

- $true = \varphi \lor \neg \varphi$
- ▶ false = ¬true
- $\diamond \varphi = true \ \mathsf{U} \varphi \ (\mathsf{Eventually} \ \varphi)$

Precedence

- Unary Operators bind stronger than Binary
- ▶ and ¬ equally strong
- ▶ U takes precedence over \land, \lor, \rightarrow
 - ▶ $a \lor b \cup c \equiv a \lor (b \cup c)$