# CS 603: Minimum Spanning Trees: Prim and Kruskal's algorithms

Ellen Veomett

University of San Francisco

#### Outline

- Minimum Spanning Trees
- 2 Kruskal's Algorithm
- 3 Prim's Algorithm

# Minimum Spanning Trees

## Minimum Spanning Trees

- Suppose we have several locations that we need to connect with something
  - Ethernet Cable
  - Electricity
- There is a cost in connecting each location to each other.

### Minimum Spanning Trees

- Suppose we have several locations that we need to connect with something
  - Ethernet Cable
  - Electricity
- There is a cost in connecting each location to each other.
- We want to find the minimum cost!



<u>Claim:</u> If the cost is non-negative, the min cost can always be achieved on a tree. (Why?)

## Two Greedy Algorithms to find the Min Spanning Tree



## Two Greedy Algorithms to find the Min Spanning Tree



Kruskal's Algorithm: add cheapest edges that don't create a cycle

Illen Veomett (USF) Algorithms

 Minimum Spanning Trees
 Kruskal's Algorithm
 Prim's Algorithm

 00●
 00000
 000000

## Two Greedy Algorithms to find the Min Spanning Tree



- Kruskal's Algorithm: add cheapest edges that don't create a cycle
- Prim's Algorithm: add cheapest edges from current sub-tree to new node

Ellen Veomett (USF) Algorithms 4/15

#### Outline

Minimum Spanning Trees

- 2 Kruskal's Algorithm
- 3 Prim's Algorithm

• Until we have n-1 total edges (a spanning tree):

- Until we have n-1 total edges (a spanning tree):
  - Add the cheapest edge that does not create a cycle



- Until we have n-1 total edges (a spanning tree):
  - Add the cheapest edge that does not create a cycle



- Until we have n-1 total edges (a spanning tree):
  - Add the cheapest edge that does not create a cycle



- Until we have n-1 total edges (a spanning tree):
  - Add the cheapest edge that does not create a cycle



- Until we have n-1 total edges (a spanning tree):
  - Add the cheapest edge that does not create a cycle



- Until we have n-1 total edges (a spanning tree):
  - Add the cheapest edge that does not create a cycle



- Until we have n-1 total edges (a spanning tree):
  - Add the cheapest edge that does not create a cycle

#### Example



Thus, the weight of the minimum spanning tree is:

$$1+2+2+3+3+5+6=22$$

Ellen Veomett (USF) Algorithms 6/

• To make sure we don't create a cycle:

- To make sure we don't create a cycle:
  - Use Disjoint Sets

- To make sure we don't create a cycle:
  - Use Disjoint Sets
  - Initially each vertex is in its own set

- To make sure we don't create a cycle:
  - Use Disjoint Sets
  - Initially each vertex is in its own set
  - When an edge (u, v) is considered, if u and v are in different sets, that edge can be added and we take the union of those sets.

- To make sure we don't create a cycle:
  - Use Disjoint Sets
  - Initially each vertex is in its own set
  - When an edge (u, v) is considered, if u and v are in different sets, that edge
    can be added and we take the union of those sets.
  - If u and v are in the same set, then we can't add that edge (b/c it would create a cycle)

- To make sure we don't create a cycle:
  - Use Disjoint Sets
  - Initially each vertex is in its own set
  - When an edge (u, v) is considered, if u and v are in different sets, that edge
    can be added and we take the union of those sets.
  - If u and v are in the same set, then we can't add that edge (b/c it would create a cycle)
- To find the min edges available:

- To make sure we don't create a cycle:
  - Use Disjoint Sets
  - Initially each vertex is in its own set
  - When an edge (u, v) is considered, if u and v are in different sets, that edge
    can be added and we take the union of those sets.
  - If u and v are in the same set, then we can't add that edge (b/c it would create a cycle)
- To find the min edges available:
  - Use a Min Heap

Create Disjoint Sets

- Create Disjoint Sets
  - O(n)
  - 1 time

- Create Disjoint Sets
  - O(n)
  - 1 time
- Check if we can add an edge (two finds and maybe one union)

- · Create Disjoint Sets
  - O(n)
  - 1 time
- Check if we can add an edge (two finds and maybe one union)
  - O\*(1)
  - O(m) times

- Create Disjoint Sets
  - O(n)
  - 1 time
- Check if we can add an edge (two finds and maybe one union)
  - O\*(1)
  - *O*(*m*) times
- Create min heap

- Create Disjoint Sets
  - O(n)
  - 1 time
- Check if we can add an edge (two finds and maybe one union)
  - O\*(1)
  - O(m) times
- Create min heap
  - O(m)
  - 1 time

- Create Disjoint Sets
  - O(n)
  - 1 time

- Remove min
- Check if we can add an edge (two finds and maybe one union)
  - O\*(1)
  - O(m) times
- · Create min heap
  - O(m)
  - 1 time

- Create Disjoint Sets
  - O(n)
  - 1 time
- Check if we can add an edge (two finds and maybe one union)
  - O\*(1)
  - O(m) times
- · Create min heap
  - O(m)
  - 1 time

- Remove min
  - O(log(m))
  - O(m) times

- Create Disjoint Sets
  - O(n)
  - 1 time
- Check if we can add an edge (two finds and maybe one union)
  - O\*(1)
  - *O*(*m*) times
- · Create min heap
  - O(m)
  - 1 time

- Remove min
  - O(log(m))
  - *O*(*m*) times

In total: 
$$O(m \log(m)) = O(m \log(n))$$
  
(b/c  $n - 1 \le m < n^2$ ).

# Why does Kruskal's Algorithm Work?

# Why does Kruskal's Algorithm Work?

 Maybe you already know the following well-known tree theorem (we'll prove next class):

### Theorem

Suppose a graph on n vertices has any two of the following three properties:

- Connected
- 2 Acyclic
- 3 Has n − 1 edges

Then that graph must be a tree. (Connected and acyclic).

# Why does Kruskal's Algorithm Work?

 Maybe you already know the following well-known tree theorem (we'll prove next class):

### **Theorem**

Suppose a graph on n vertices has any two of the following three properties:

- 1 Connected
- 2 Acyclic
- 3 Has n − 1 edges

Then that graph must be a tree. (Connected and acyclic).

Can prove Kruskal's Algorithm works using the following:

#### Lemma

Suppose T and T' are both spanning trees of the same graph. Suppose, further, that e is in T but not in T'. Then we can find an e' in T' such that T' + e - e' is a tree.

### Outline

Minimum Spanning Trees

- 2 Kruskal's Algorithm
- 3 Prim's Algorithm

• Start with single vertex (any)

• Start with single vertex (any)

Prim's Algorithm: Basics

Add cheapest edge incident to that vertex; this is a sub-tree.

- Start with single vertex (any)
- Add cheapest edge incident to that vertex; this is a sub-tree.
- From the current sub-tree, add the cheapest edge to a vertex not in the current sub-tree until you have a tree



- Start with single vertex (any)
- Add cheapest edge incident to that vertex; this is a sub-tree.
- From the current sub-tree, add the cheapest edge to a vertex not in the current sub-tree until you have a tree



- Start with single vertex (any)
- Add cheapest edge incident to that vertex; this is a sub-tree.
- From the current sub-tree, add the cheapest edge to a vertex not in the current sub-tree until you have a tree





- Start with single vertex (any)
- Add cheapest edge incident to that vertex; this is a sub-tree.
- From the current sub-tree, add the cheapest edge to a vertex not in the current sub-tree until you have a tree

### Example



Ellen Veomett (USF) Algorithms 11/

- Start with single vertex (any)
- Add cheapest edge incident to that vertex; this is a sub-tree.
- From the current sub-tree, add the cheapest edge to a vertex not in the current sub-tree until you have a tree



- Start with single vertex (any)
- Add cheapest edge incident to that vertex; this is a sub-tree.
- From the current sub-tree, add the cheapest edge to a vertex not in the current sub-tree until you have a tree

### Example





Ellen Veomett (USF) Algorithms 11/

Minimum Spanning Trees Kruskal's Algorithm Prim's Algorithm

○○○ ○○○○○

Prim's Algorithm

○●○○○○

# Prim's Algorithm: Basics

- Start with single vertex (any)
- Add cheapest edge incident to that vertex; this is a sub-tree.
- From the current sub-tree, add the cheapest edge to a vertex not in the current sub-tree until you have a tree



- Start with single vertex (any)
- Add cheapest edge incident to that vertex; this is a sub-tree.
- From the current sub-tree, add the cheapest edge to a vertex not in the current sub-tree until you have a tree



# Prim's Algorithm: Basics

- Start with single vertex (any)
- Add cheapest edge incident to that vertex; this is a sub-tree.
- From the current sub-tree, add the cheapest edge to a vertex not in the current sub-tree until you have a tree







Thus, the weight of the minimum spanning tree is:

$$3+2+3+5+1+2+6=22$$

- Of course, we got the same minimum weight.
- But note that there can be more than one minimum spanning tree

(ロ) (部) (注) (注) 注 り(())

### Prim's Algorithm: Implementation

• Use Array/Hash Map to keep track of which vertices not yet in subtree.

# Prim's Algorithm: Implementation

- Use Array/Hash Map to keep track of which vertices not yet in subtree.
- Use Min Heap to keep track of cheapest edges to add
  - Items in min-heap are vertices, ordered by their distance from the sub-tree.
  - Initially we say the distance from any vertex to the sub-tree is  $\infty$

# Prim's Algorithm: Implementation

- Use Array/Hash Map to keep track of which vertices not yet in subtree.
- Use Min Heap to keep track of cheapest edges to add
  - Items in min-heap are vertices, ordered by their distance from the sub-tree.
  - Initially we say the distance from any vertex to the sub-tree is  $\infty$
  - In each step, we add a vertex u to the sub-tree, by removing the vertex of min distance from the heap.
    - When we add vertex u to our sub-tree, we consider all edges from u to a vertex v not in our sub-tree
    - If v's current distance to the tree is larger than weight of that edge, update the distance to be the weight of that edge
    - Otherwise, don't update v's distance to the tree.
  - Continue until each vertex is pulled.

Create Min Heap



- Create Min Heap
  - O(n)
  - 1 time

- Create Min Heap
  - O(n)
  - 1 time
- Remove Min

- Create Min Heap
  - O(n)
  - 1 time
- Remove Min
  - O(log(n))
  - n times

- · Create Min Heap
  - O(n)
  - 1 time
- Remove Min
  - O(log(n))
  - n times
- Update distance in min heap

- Create Min Heap
  - O(n)
  - 1 time
- Remove Min
  - O(log(n))
  - n times
- Update distance in min heap
  - O(log(n))
  - *O*(*m*) times

- Create Min Heap
  - O(n)
  - 1 time
- Remove Min
  - O(log(n))
  - n times
- Update distance in min heap
  - O(log(n))
  - *O*(*m*) times

 Update Array/Hash Map listing which nodes are in subtree

- Create Min Heap
  - O(n)
  - 1 time
- Remove Min
  - O(log(n))
  - n times
- Update distance in min heap
  - $O(\log(n))$
  - *O*(*m*) times

- Update Array/Hash Map listing which nodes are in subtree
  - O(1)
  - O(n) times

- Create Min Heap
  - O(n)
  - 1 time
- Remove Min
  - O(log(n))
  - n times
- Update distance in min heap
  - $O(\log(n))$
  - *O*(*m*) times

- Update Array/Hash Map listing which nodes are in subtree
  - O(1)
  - O(n) times

In total:  $O(m \log(n))$ .

# Why does Prim's Algorithm Work?

We can prove using the same Lemma used to prove Kruskal's algorithm works.

# Why does Prim's Algorithm Work?

We can prove using the same Lemma used to prove Kruskal's algorithm works.

<u>Note:</u> There's yet one more greedy algorithm to find the Minimum Spanning tree!

#### Prim's Algorithm ○○○○○●

# Why does Prim's Algorithm Work?

We can prove using the same Lemma used to prove Kruskal's algorithm works.

<u>Note:</u> There's yet one more greedy algorithm to find the Minimum Spanning tree!

"Inverse Kruskal:". Remove the most expensive edges which do not disconnect the graph, until you have a tree.

All of these greedy algorithms imply a kind of robustness for the MST problem.