

Detecting Anomalies

Team B2

Our Team

Aash Gohil Tommy Yang Zixing Li Phyllis Cao Zihan cui

Agenda

- Project and Progress Background
- Datasets Overview & EDA
- Optimized Detection Method 1 Modified Z-score
- Optimized Detection Method 2 KNN
- Models Performance Measurement and Pipeline Designs
- Project Summary

Project Background - Data Outlier Detection

- Assette data warehouse refreshes its client databases on a batch process.
- Possibility that Assette receives data that has not been properly curated.
- Detecting errors after data ingestion has a high cost on time and it can also cause issues with the compliance if it is not handled properly in time
- Solution: Develop a series of statistical validations to detect anomalies in data submitted by asset managers (Assettes's clients) during ingestion process.

Progress on Z-score Model along with Building New

- Understood datasets structure, explored key data features in main datatables
- Utilize Z-score model on data but still needs to develop the optimized function
- Develop researches on a set of secondary statistical validation rules including cluster analysis and other appropriate methods, needs to build the function and implement on data

Data Features Overview

- There are 502 accounts from 1979 to 2021 and 244 benchmarks from 1969 to 2019.
- We heavily use 'MonthlyValue' in each table to do the anomaly detection, since it's easy to see if the value is inside or outside the normal range.
- The original 'MonthlyValue' is left skewed, but we look for normal distribution (see next page).

BenchMark History			
Number of benchmark		244	
	Num Benchmark	Year	
oldest account	1	1969	
newest account	2	2019	
maximum accounts	98	1994	
median accounts	98	1994	

AccountPerformanceFactors			
Number of accounts		502	
	Num Account	Year	
oldest account	1	1979	
newest account	18	2021	
maximum accounts	36	2015	
median accounts	19	2011	

Relationship between BMH and APF			
Num of benchmark	Num of Accounts		
1	168		
2	293		
3	25		
4	19		
5	2		
6	5		
7	1		

Subsetting Outliers to Generate Normal Distribution Account performance - 'monthly value'

count	1548221	
mean	0.00049841	
std	0.25027337	
min	-0.99679540	
25%	-0.00092048	
50%	0.00007890	
75%	0.00166912	
max	311.21399605	

count	1488342
mean	0.00033709
std	0.00507803
min	-0.01984254
25%	-0.00077853
50%	0.00007892
75%	0.00151997
max	0.01920008

Subsetting Outliers to Generate Normal Distribution Benchmark - 'monthly value'

count	314888
mean	0.00155766
std	0.03898630
min	-0.92339600
25%	-0.00214400
50%	0.00036400
75%	0.00499100
max	12.24417700

count	308660
mean	0.00142636
std	0.01018846
min	-0.04163900
25%	-0.00203000
50%	0.00036500
75%	0.00485100
max	0.04584000

Boston University Questrom School of Business

Comparing Sample Account and Corresponding Benchmark

- Expect to find the anomalous data for an account that differs from its pegged benchmark.
- Most of the monthly values and monthly value percentage are between [-0.05, 0.05].

Two Methods Implementing on Primary & Comparison Datasets

- 2 Methods Modified Z-score & KNN
 - Utilize Modified Z-score model from mid-term and bring out according function
 - Create the KNN function
- 2 Datasets Primary Dataset & Comparison Dataset
 - Implement methods on original Account Performance Factor datasets
 - Also Implement on the created Comparison between Account and Benchmark Dataset
- In result it would have 4 functions with 4 anomalies detection result output

Method 1: Modified Z-Score Model

- The standard z-score are limited when the data are not normally distributed or the data/sample size is small, also sensitive to extreme values
- The modified z-score is a standardized score that measures outlier strength or how much a particular score differs from the typical score
 - It is less influenced by outliers when compared to the standard z-score because it relies on the median for calculating the z-score
 - The modified z-score is calculated from the mean absolute deviation (MeanAD) or median absolute deviation (MAD)
 - The values are multiplied by a constant to approximate the standard deviation

$$Z\text{-score} = \frac{x - mean}{Standard Deviation}$$

If
$$MAD = 0$$
:

$$Modified\ Z\text{-}score = (X\text{-}MED)/(1.253314*MeanAD)$$

If MAD
$$\neq$$
 0:

 $Modified\ Z\text{-}score = (X - MED) / (1.486*MAD)$

Method 1 Implementation on 2 Datasets

- Model implements on sample account 911 percentage of monthly values changes
- Modified Z-score implementation on primary dataset got 824 anomalies
- Modified Z-score implementation on comparison dataset got 363 anomalies

- Modified Z-score on primary dataset of percentage of monthly values changes
- Orange points are detected outliers

- Modified Z-score on comparison dataset
- Y label represents the difference between account performance and benchmark

Method 2: K-Nearest Neighbours algorithm Model

- K-Nearest Neighbours algorithm detects anomalies using the distances of k-nearest neighbors as anomaly scores.
 - If an observation is much far from the other observations then that observation is considered to be an anomaly.
- The key parameter in KNN is N_neighbors, which determines the number of neighbors to use for calculating distances from the point of measurement

Method 2 Implementation on Two Datasets

- Model implements on sample account 911 percentage of monthly values changes
- KNN model implementation on primary dataset got 460 anomalies
- KNN model implementation on difference dataset got 222 anomalies

- KNN on primary dataset of percentage of monthly values changes
- Red points are detected outliers

- KNN on comparison dataset
- Y label represents the difference between account performance and benchmark

Anomalies Measurement with 4 Model Outputs

- After implementing 4 methods, establish a vote function that combines 4 outputs and the total votes would decide whether anomalies or not
 - For example, for the single datapoint, if model 1,3&4 decided it anomaly and model 2 not, the total votes for this point is 3
 - Then the return statement would define if total votes >= 3 then return anomalies, the datapoint would be detected as an anomaly
 - The vote parameter could be decided and entered by the Team

Sample Output of Process

```
Model 1 | Model 2 | Model 3 | Model 4 | total Votes
03/31/2022 - 1 0 1 1 3
```

Sample Return Statement

```
return rows where df.totalvotes >= 3
```


Final Vote Outputs

- The final vote outputs for the sample account shows that 440 detected anomalies got 1 vote, 516 anomalies got 2 votes, 51 anomalies got 3 votes and 61 anomalies got 4 votes
- Final decision will base on the voting parameter that Business Team choose

	date	model1_modified_zscore	model2_modified_zscore_diff	KNN	KNN_diff	final_sum
0	2006-05-12	0	0	0.0	0.0	0.0
1	2006-05-15	0	0	0.0	0.0	0.0
2	2006-05-16	0	0	0.0	0.0	0.0
3	2006-05-17	1	0	0.0	0.0	1.0
4	2006-05-18	0	0	0.0	0.0	0.0
4733	2015-11-15	0	0	0.0	0.0	0.0
4734	2015-11-22	0	0	0.0	0.0	0.0
4735	2015-11-26	0	0	0.0	0.0	0.0
4736	2015-11-29	0	0	0.0	0.0	0.0
4737	2015-12-06	0	0	0.0	0.0	0.0
4738 rd	ows × 6 colum	ns				

Manually Create Anomalies to Test Model Accuracy

- Conduct litmus test in order to test model accuracy
 - Randomly take 200 monthly-change-percentage values, multiply by 10, as human error and label those data as anomalies
 - Run through Modified Z-score and kNN models to test whether they could detect out the anomalies we created
- The Modified Z-score performs better for getting more True Positive results

Project Implementation in Actual Business Practice

- Step 1: The Business Team enters 3 inputs about the account they want to examine, the total vote parameter and the confidence interval
- Step 2: Coming from the pipeline to DB, fetch data for the input account
- Step 3: Running through 4 models modified Z-score & KNN methods respectively on Account & Account Benchmark Difference Data
- Step 4: With 4 outputs and the defined vote parameter, list out corresponding outliers
- Step 5: Repeat the whole process for other accounts

Project Summary

- 1. Litmus test shows that the modified z-score method is more accurate than the kNN method
- 2. The validity of methods can also be verified by detecting out larger proportions of anomalies during economic events
- Final detection outputs for the sample account are 824 & 363 outliers for modified z-score, detecting more outliers than the 460 & 222 for kNN
- 4. For limitations, there were no labelled data so anomalies need to be manually verified, so that the next steps can focus on experimenting with other different methods
- Our project provides the automated outliers detection from pipeline to database which can help gain more effectiveness in daily business operations

ASSETTE

Thank You

References

- https://towardsdatascience.com/statistical-techniques-for-anomaly-detection-6ac89e32d17a
- https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-clustering/
- https://www.analyticsvidhya.com/blog/2021/06/univariate-anomaly-detection-a-walkthrough-in-python/#:~:text =K%2DNearest%20Neighbours%20algorithm,-K%2DNearest%20Neighbours%20algorithm
- https://towardsdatascience.com/k-nearest-neighbors-knn-for-anomaly-detection-fdf8ee160d13

