Теоремы по матану, семестр 4

15 февраля 2018 г.

Содержание

1	Характеризация измеримых функций с помощью ступенчатых (формулировка). Следствия	2
2	Измеримость монотонной функции	2
3	Теорема Лебега о сходимости почти везде и сходимости по мере	2
4	Теорема Рисса о сходимости по мере и сходимости почти везде	2
5	Простейшие свойства интеграла Лебега 5.1 Для определения (5)	2
6	Счетная аддитивность интеграла (по множеству)	9
7	Теорема Леви	9
8	Линейность интеграла Лебега	3

- 1 Характеризация измеримых функций с помощью ступенчатых (формулировка). Следствия
- 2 Измеримость монотонной функции
- 3 Теорема Лебега о сходимости почти везде и сходимости по мере
- 4 Теорема Рисса о сходимости по мере и сходимости почти везде
- 5 Простейшие свойства интеграла Лебега
- 5.1 Для определения (5)
 - 1. $\int_{\mathbb{X}} f$ не зависит от представления f как ступенчатой функции, то есть если f реализуется как $f = \sum_{k} (\lambda_k \cdot \chi_{E_k})$ и как $f = \sum_{l} (\alpha_l \cdot \chi_{G_l})$, интегралы по этим функциям равны

Доказательство:

Выпишем общее разбиение для этих двух разбиений

Пусть
$$F_{ij} = E_i \cap G_j$$

Тогда
$$f = \sum_k (\lambda_k \cdot \chi_{E_k}) = \sum_l (\alpha_l \cdot \chi_{G_l}) = \sum_{i,j} (\lambda_i (= \alpha_j) \cdot \chi_{F_{i,j}})$$

$$\int f = \sum_{i,j} (\lambda_i \cdot \mu F_{i,j}) = \sum_i (\lambda_i \cdot \sum_j (\mu F_{i,j})) = \sum_i (\lambda_i \cdot \mu E_i) = \int f$$
 для первого разбиения

Аналогично для второго разбиения получаем

$$\int f = \sum_{i,j} (\lambda_i \cdot \mu F_{i,j}) = \sum_j (\alpha_i \cdot \sum_i (\mu F_{i,j})) = \sum_j (\lambda_j \cdot \mu G_i) = \int f$$
 для второго разбиения, что и требовалось доказать

2. f,g -измеримые ступенчатые функции, $f\leqslant g$, тогда $\int\limits_{\mathbb{X}}f\leqslant\int\limits_{\mathbb{X}}g$

Доказательство:

Пусть
$$f = \sum_{k} (\lambda_k \cdot \chi_{E_k}), g = \sum_{l} (\alpha_l \cdot \chi_{G_l})$$

Аналогично доказательству предыдущей теоремы, строим общее ступенчатое разбиение

Пусть
$$F_{ij}=E_i\cap G_j$$

Тогда $\int f=\sum_{i,j}(\lambda_i\cdot \mu F_{i,j})\leqslant \sum_j(\alpha_j\cdot \mu F_{i,j})=\int g$, что и требовалось доказать

6 Счетная аддитивность интеграла (по множеству)

Тут будет вторая теорема

- 7 Теорема Леви
- 8 Линейность интеграла Лебега