Example: Multiple Linear Regression by Hand

Suppose we have the following dataset with one response variable y and two predictor variables X₁ and X₂:

У	X ₁	X ₂
140	60	22
155	62	25
159	67	24
179	70	20
192	71	15
200	72	14
212	75	14
215	78	11

Use the following steps to fit a multiple linear regression model to this dataset.

Step 1: Calculate X_1^2 , X_2^2 , X_1y , X_2y and X_1X_2 .

У	X_1	X ₂	
140	60	22	
155	62	25	
159	67	24	
179	70	20	
192	71	15	
200	72	14	
212	75	14	
215	78	11	
181.5	69.375	18.125	
1452	555	145	

Sum

X ₁ ²	X ₂ ²	X ₁ y	X ₂ y	X ₁ X ₂
3600	484	8400	3080	1320
3844	625	9610	3875	1550
4489	576	10653	3816	1608
4900	400	12530	3580	1400
5041	225	13632	2880	1065
5184	196	14400	2800	1008
5625	196	15900	2968	1050
6084	121	16770	2365	858
38767	2823	101895	25364	9859

Step 2: Calculate Regression Sums.

Mean

Sum

Next, make the following regression sum calculations:

- $\Sigma X_1^2 = \Sigma X_1^2 (\Sigma X_1)^2 / n = 38,767 (555)^2 / 8 =$ **263.875** $<math>\Sigma X_2^2 = \Sigma X_2^2 (\Sigma X_2)^2 / n = 2,823 (145)^2 / 8 =$ **194.875**
- $\Sigma x_1 y = \Sigma X_1 y (\Sigma X_1 \Sigma y) / n = 101,895 (555*1,452) / 8 =$ **1,162.5**
- $\Sigma x_2 y = \Sigma X_2 y (\Sigma X_2 \Sigma y) / n = 25,364 (145*1,452) / 8 = -953.5$
- $\Sigma X_1 X_2 = \Sigma X_1 X_2 (\Sigma X_1 \Sigma X_2) / n = 9,859 (555*145) / 8 = -200.375$

У	X_1	X ₂	
140	60	22	
155	62	25	
159	67	24	
179	70	20	
192	71	15	
200	72	14	
212	75	14	
215	78	11	
181.5	69.375	18.125	
1452	555	145	

X ₁ ²	X_2^2	X ₁ y	X ₂ y	X_1X_2
3600	484	8400	3080	1320
3844	625	9610	3875	1550
4489	576	10653	3816	1608
4900	400	12530	3580	1400
5041	225	13632	2880	1065
5184	196	14400	2800	1008
5625	196	15900	2968	1050
6084	121	16770	2365	858
38767	2823	101895	25364	9859

Mean Sum Sum

Reg Sums	263.875	194.875	1162.5	-953.5	-200.375

Step 3: Calculate
$$b_0$$
, b_1 , and b_2 . $b_1 = (SSx2 . SSx1y) - (SSx1x2 . SSx2y)$

(SSx1 . SSx2) - (SSx1x2)^2

The formula to calculate b_1 is: $[(\Sigma x_2^2)(\Sigma x_1 y) - (\Sigma x_1 x_2)(\Sigma x_2 y)] / [(\Sigma x_1^2)(\Sigma x_2^2) - (\Sigma x_1 x_2)^2]$

Thus, $\mathbf{b_1} = [(194.875)(1162.5) - (-200.375)(-953.5)] / [(263.875) (194.875) - (-200.375)^2] =$ **3.148**

The formula to calculate b₂ is: $[(\Sigma x_1^2)(\Sigma x_2 y) - (\Sigma x_1 x_2)(\Sigma x_1 y)] / [(\Sigma x_1^2)(\Sigma x_2^2) - (\Sigma x_1 x_2)^2]$ b2 = (SSx1 . SSx2y) - (SSx1x2 . SSx1y)

Thus, $\mathbf{b_2} = [(263.875)(-953.5) - (-200.375)(1152.5)] / [(263.875)(194.875) - (-200.375)^2] =$ **-1.656**

The formula to calculate b_0 is: $\overline{y} - b_1 \overline{X}_1 - b_2 \overline{X}_2$

Thus, $\mathbf{b_0} = 181.5 - 3.148(69.375) - (-1.656)(18.125) = -6.867$

Step 5: Place b_0 , b_1 , and b_2 in the estimated linear regression equation.

The estimated linear regression equation is: $\hat{y} = b_0 + b_1^*x_1 + b_2^*x_2$

In our example, it is $\hat{y} = -6.867 + 3.148x_1 - 1.656x_2$

How to Interpret a Multiple Linear Regression Equation

Here is how to interpret this estimated linear regression equation: \hat{y} = -6.867 + 3.148 x_1 – 1.656 x_2

 b_0 = -6.867. When both predictor variables are equal to zero, the mean value for y is -6.867.

 $\mathbf{b_1} = 3.148$. A one unit increase in $\mathbf{x_1}$ is associated with a 3.148 unit increase in y, on average, assuming $\mathbf{x_2}$ is held constant.

 $\mathbf{b_2} = -1.656$. A one unit increase in $\mathbf{x_2}$ is associated with a 1.656 unit decrease in y, on average, assuming $\mathbf{x_1}$ is held constant.