

Aula 6 – Aritmética Computacional

Introdução à Computação ADS - IFBA

Representação de Números

- Inteiros
- Vírgula fixa (Fixed Point)
- Ponto Flutuante
- Para todos, a quantidade de valores possíveis depende do número de bits (N)
 - ○2^N valores

Números com Sinal e Números sem Sinal ala

- Base 10:
 - \bigcirc 2543₍₁₀₎=2×10³+5×10²+4×10¹+3×10⁰₍₁₀₎
- Base 2:
 - $01011_{(2)} = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 11_{(10)}$
- Representação no Z80 (8 bits)

00001011

Bit Mais Significativo (MSB)

Bit Menos Significativo (LSB)

Aritmética Binária

SOMA: Semelhante à soma decimal

$$0+0 = 0$$

$$0+1 = 1+0 = 1$$

$$1+1 = 0$$
, com vai '1'

Ex:

101101

+ 101011

1011000

Aritmética Binária

 SUBTRAÇÃO: semelhante, porém o 'empréstimo' agora vale 2 (na base decimal quando temos 0-N pegamos 10 emprestado ao algarismo da esquerda).

0-0=0, 1-1=0, 1-0=1, 0-1 => 'empréstimo'

2 002

Ex: 101101

- 100111 000110 100001

Aritmética Não-Decimal

Aritmética Binária – Subtração Binária

Exemplos:

	2	22
101101	1010-1	1001
100111	<u>100111</u>	<u>100111</u>
0	10	000110

ADS – IFBA www.ifba.edu.br/professores/antoniocarlos

Adição e Subtração

- No computador: soma semelhante à soma no sistema decimal.
- Soma: soma cada bit, mais o vai-um.

Adição e Subtração (8 bits)

- $6_{(10)} = 0000 \ 0110_{(2)}$ $7_{(10)} = 0000 \ 0111_{(2)}$

adição

0000 0111 0000 0110 0000 1101

subtração

0000 0111 0000 0110 0000 0001

Subtração com complemento a 2

0000 0001

ADS - IFBA www.ifba.edu.br/professores/antoniocarlos

Aritmética Binária

Exemplo: Vamos multiplicar 1001₂ de 1100₂

Multiplicando 1001

Multiplicador <u>x 1100</u>

Terceiro produto parcial 100100

Quarto produto parcial 1001

Produto Final 1101100

Exemplo: como na prática

multiplicando 1000

multiplicador \times 1001

1000

0000

0000

1000

produto 1001000

- Número de dígitos: multiplicando + multiplicador.
- 32 bits x 32 bits = 64 bits.

Divisão

A operação recíproca da multiplicação é a divisão, operação que é ainda menos freqüente que a multiplicação e mais ardilosa. Além disso, ela oferece uma rara oportunidade de se efetuar uma operação matemática inválida: a divisão por zero.

dividendo = quociente x divisor + resto

Aritmética Binária

Divisão: igual a divisão binária

ADS – IFBA www.ifba.edu.br/professores/antoniocarlos

Exercício

- Dividir 0000 0111₂ por 0010₂.
- Valores iniciais:
 - Quociente = 0000
 - Divisor = 0010 0000
 - Resto = 0000 0111

Representação de Números

- Inteiros
- Vírgula fixa (Fixed Point)
- Ponto Flutuante
- Para todos, a quantidade de valores possíveis depende do número de bits (N)
 - ○2^N valores

Representação de números Instituto FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA

- Números reais: infinitos.
- No computador: finitos.
- Maioria: grande quantidade de zeros à esquerda.
- Computador: pode lidar com números até um certo tamanho.
- Overflow: tratado pelo sistema operacional.
- No computador: é preciso representar números com sinal.
 - Solução: usar 1 bit (sinal magnitude).
- Primeira tentativa: o bit mais significativos (MSB) é usado para sinal.
 - Problema: duas representações para o zero
 - Solução mais usada: complemento a 2

Inteiros

- Positivos
 - Mesmo valor, limitado ao número de bits
 - \bigcirc Exemplo: $6_{10} = 110_2$
- Negativos: mesma limitação, de 4 formas
 - Módulo e sinal
 - OComplemento de 1 (C-1)
 - Complemento de 2 (C-2)
 - Excesso de 2 elevado a (N-1)

Módulo e Sinal (MS)

- O bit mais à esquerda representa o sinal
 - valor 0: sinal +; valor 1: sinal -
- (N-1) bits restantes: módulo do número
- Quantidade: $-2^{N-1}+1 \le X \le 2^{N-1}-1$
 - $ON = 8, -127 \le X \le 127$
- Exemplo: limitação de 8 bits (N=8)
 - $\bigcirc 00101010_2 = +42_{10}$
 - $\bigcirc 10101010_2 = -42_{10}$

Complemento de 1 (C-1)

- O bit mais à esquerda representa o sinal
 - valor 0: sinal +; valor 1: sinal -
- (N-1) bits restantes: módulo do número
- O simétrico é o complemento de 1
 - Troque 0 por 1 e vice-versa incluindo o sinal; ex.:
 - $00101010_2 = +42_{10}$
 - $011010101_2 = -42_{10}$
- Mesmo que MS: $-2^{N-1}+1 \le X \le 2^{N-1}-1$

Complemento de 2 (C-2)

- O bit mais à esquerda representa o sinal
 - valor 0: sinal +; valor 1: sinal -
- (N-1) bits restantes: módulo do número
- Simétrico em dois passos
- Passo 1: calcula-se C-1
- Passo 2: Soma-se 1 a esse C-1
 - ODespreza-se transporte no último, caso exista
- Quantidade assimétrica: -2^{N-1} ≤ X ≤ 2^{N-1}-1

Complemento de 2 (C-2)

ADS – IFBA www.ifba.edu.br/professores/antoniocarlos

Excesso de 2 elevado a (N-1) INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA

- Não usa bit de sinal
- Valor é o número mais um excesso
 - $\bigcirc N \ bits = 2^{N-1}$
- Exemplo
 - OPara 8 bits o excesso é 128_{10} ($2^7 = 128$)
 - $010_{10} = 10001010_2 (10_{10} + 128_{10} = 138_{10})$
 - $O-10_{10} = 01110110_2 (-10_{10} + 128_{10} = 118_{10})$

Exercícios

- Converta -15₍₁₀₎ para binário com representação em sinal/magnitude (16 bits).
- 2. Converta -15₍₁₀₎ para binário com representação em complemento a 2 (16 bits).
- 3. Qual é o número, em decimal, representado em complemento a 2 por 1010 0011₍₂₎?
- 4. Usando complemento a 2 qual é a faixa de números que podem ser representados com 8 bits?

Overflow

 Ocorre sempre que o resultado de uma operação não pode ser representado no hardware disponível.

Operação	Operando A	Operando B	Resultado
A+B	>= 0	>=0	<0
A+B	<0	<0	>=0
A-B	>=0	<0	<0
A-B	<0	>=0	>=0

 Se um número for negativo, e o outro positivo, não ocorrerá overflow.

Exemplo de overflow Adição de 2 operandos positivos (8 bits)

 Isto significa que o resultado está correto se o bit de sinal for ignorado

Exemplo de overflow Adição de 2 operandos negativos (8 bits)

 Isto significa que o resultado é negativo e está em complemento a 2 Exemplo de overflow Adição de operandos com sinais opostos (8 bits)

 Não ocorre overflow, o resultado é negativo e está em complemento a 2 Exemplo de overflow Adição de operandos com sinais opostos (8 bits)

 Não ocorre overflow, o carry é ignorado e o resultado é positivo

Interface Hardware/Software

- Na ocorrência de overflow: a máquina precisa decidir como tratá-lo.
 - Linguagem C: não toma conhecimento do overflows. A tarefa é do programador.
 - FORTRAN: trata o overflow

Exercícios

- Faça as operações aritméticas abaixo utilizando números binários de 8 bits e complemento a 2:
 - 1. +9 + 4
 - 2. +9 4
 - 3. -9 + 4
 - 4. -9 4

Vírgula fixa (Fixed Point)

- Usada apenas para inteiros
- Situada à direita dos dígitos
- Quatro maneiras
 - Binário puro
 - Decimal
 - Decimal n\u00e3o compactado
 - Decimal compactado

Referências

- Professora Maria Clicia Stelling de Castro.
 Organização de Computadores I. Capítulo 6 Aritmética Computacional.
 http://www.ime.uerj.br/professores/Mariaclicia/Oc1/Cap6 aritm.pdf. Rio de Janeiro. 2005.
- http://www.gia.deinf.ufma.br/~geraldo/disciplinas /intoee2008_2/9_aritmetica.ppt#256,1,Aritmética Binária
- http://www.g6team.com/attachment/7/1/5/0/5029.attach