# Limit theorems for a class of critical superprocesses with stable branching

## Zhenyao Sun<sup>1</sup>

Based on a joint work with **Yan-Xia Ren**<sup>1</sup>and **Renming Song**<sup>2</sup>

<sup>1</sup>Peking University

<sup>2</sup>University of Illinois at Urbana-Champaign

University of International Business and Economics June, 2019

#### Outline

- Background
  - Kolmogorov's result
  - Yaglom's result
  - Slack's result
- 2 Model
  - Settings
  - Superprocesses
  - Assumptions
  - Slack type results
- Remarks
- **4** Methods
  - Size-biased transforms
  - Poisson random measures
  - Kuznetsov measures
  - Measure transform of superprocesses
- **5** Few References



# Background/Kolmogorov's result

## Theorem (Kesten, Ney and Spitzer (1966))

Let  $(Z_n)_{n\in\mathbb{N}}$  be a critical Galton-Watson process with offspring variance  $\sigma^2\in(0,\infty)$ . Then

$$nP(Z_n > 0) \xrightarrow[n \to \infty]{} \frac{2}{\sigma^2}.$$

• Kolmogorov (1938) obtained the above Theorem under a three moment condition.

## Background/Yaglom's result

#### Theorem (Kesten, Ney and Spitzer (1966))

Let  $(Z_n)_{n\in\mathbb{N}}$  be a critical Galton-Watson process with offspring variance  $\sigma^2\in(0,\infty)$ . Then

$$\left\{\frac{Z_n}{n}; P(\cdot|Z_n>0)\right\} \xrightarrow[n\to\infty]{d} \frac{\sigma^2}{2}e,$$

where e is an exponential random variable with mean 1.

• Yaglom (1947) obtained the above Theorem under a stronger condition.

## Background/Slack's result

#### Theorem (Slack (1968))

Let  $(Z_n)_{n\geq 0}$  be a critical Galton-Watson process with offspring generating function  $f(s) = s + (1-s)^{\alpha}l(1-s)$  where  $\alpha \in (1,2]$  and l is a slowly varing function at 0. Then  $P(Z_n > 0) = n^{-1/(\alpha-1)}L(n)$  where L is slowly varying at  $\infty$ ; and

$$\{P(Z_n > 0)Z_n; P(\cdot|Z_n > 0)\} \xrightarrow[n \to \infty]{d} \mathbf{z}^{(\alpha - 1)},$$

where  $\mathbf{z}^{(\alpha-1)}$  is a positive random variable with Laplace transform

$$E[e^{-u\mathbf{z}^{(\alpha-1)}}] = 1 - (1 + u^{-(\alpha-1)})^{-1/(\alpha-1)}, \quad u \ge 0.$$

• Zolotarev (1957) obtained the above Theorem under a stronger condition.

|                                            | $\alpha = 2$ : Analytical                                               | $\alpha = 2$ : Probabilistic                                                                         | $\alpha \in (1,2)$                                         |
|--------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Galton-Watson<br>(GW) processes            | Kolmogorov (1938)<br>Yaglom (1947)<br>Kesten, Ney<br>and Spitzer (1966) | Lyons, Pemantle<br>and Peres (1995)<br>Geiger (1999)<br>Geiger (2000)<br>Ren, Song<br>and Sun (2018) | Zolotarev (1957)<br>Slack (1968)                           |
| Multitype GW                               | Joffe and Spitzer<br>(1967)                                             | Vatutin and<br>Dyakonova (2001)                                                                      | Goldstein and Hoppe (1978)                                 |
| Continuous time<br>GW process              | Athreya and Ney (1972)                                                  | -                                                                                                    | Vatutin (1977)                                             |
| Continuous time<br>Multitype<br>GW process | Athreya and Ney (1974)                                                  | -                                                                                                    | Vatutin (1977)                                             |
| Branching Markov<br>processes              | Asmussen and<br>Hering (1983)                                           | Powell (2015)                                                                                        | Asmussen and Hering (1983)                                 |
| Continuous-state<br>branching processes    | Li (2000)<br>Lambert (2007)                                             | Ren, Song<br>and Sun (2019)                                                                          | Kyprianou and Pardo (2008)<br>Ren, Yang<br>and Zhao (2014) |
| Superprocesses                             | Evans and Perkins (1990)<br>Ren, Song<br>and Zhang (2015)               | Ren, Song<br>and Sun (2019)                                                                          | Ren, Song<br>and Sun (2019+)                               |

## Model/Settings

- $\bullet$  *E* be a locally compact separable metric space;
- $\mathcal{M}$  be the collection of all the finite Borel measures on E;
- Spatial motion  $\{(\xi_t)_{t\geq 0}; (\Pi_x)_{x\in E}\}$  be an *E*-valued Hunt process with transition semigroup  $(P_t)_{t\geq 0}$ ;
- Branching mechanism  $\psi$  be a function from  $E \times [0, \infty)$  to  $[0, \infty)$  s.t.

$$\psi(x,z) := -\beta(x)z + \alpha(x)z^2 + \int_{(0,\infty)} (e^{-zy} - 1 + zy)\pi(x,dy),$$

where  $\beta$  is a bounded measurable function on E,  $\alpha$  is a bounded non-negative measurable function on E, and  $\pi$  is a kernel from E to  $(0, \infty)$  s.t.

$$\sup_{x \in E} \int_{(0,\infty)} (y \wedge y^2) \pi(x, dy) < \infty.$$



## Model/Superprocesses

- For each measure  $\mu$  and function f, write  $\mu(f) := \int f d\mu$  whenever the integral make sense.
- We say a measurable function f on  $\mathbb{R}_+ \times E$  is locally bounded if

$$\sup_{s \in [0,t], x \in E} |f(s,x)| < \infty, \quad t \in \mathbb{R}_+.$$

#### Definition (Superprocesses)

An  $\mathcal{M}$ -valued Markov process  $\{(X_t)_{t\geq 0}; (\mathbf{P}_{\mu})_{\mu\in\mathcal{M}}\}$  is called a  $(\xi, \psi)$ -superprocess if for each  $\mu \in \mathcal{M}, f \in b\mathcal{B}_+$  and  $t \geq 0$  we have

$$\mathbf{P}_{\mu}[e^{-X_t(f)}] = e^{-\mu(\mathbf{V}_t f)}.$$

Here,  $(t, x) \mapsto V_t f(x)$  on  $[0, \infty) \times E$  is the unique locally bounded positive solution to the equation

$$V_t f(x) + \int_0^t P_{t-s} \psi(\cdot, V_s f(\cdot))(x) ds = P_t f(x).$$

## Model/Superprocesses

• Superprocess arose as high-density limits of branching particle systems. (Watanabe 1968, Dawson 1975, Dynkin 1991).



## Model/Assumptions/Spatial motion

• The mean semigroup of the superprocess:

$$\mathbf{P}_{\delta_x}[X_t(f)] = \mathbf{P}_t^{\beta} f(x) := \Pi_x[e^{\int_0^t \beta(\xi_r) dr} f(\xi_t)].$$

#### Assumption 1.

There exist a  $\sigma$ -finite measure m with full support on E and a family of strictly positive, bounded continuous functions  $\{p_t(\cdot,\cdot): t>0\}$  on  $E\times E$  such that

- $P_t f(x) = \int_E p_t(x, y) f(y) m(dy);$
- $\int_E p_t(y,x)m(dy) \leq 1$ ;
- $\int_E \int_E p_t(x,y)^2 m(dx) m(dy) < \infty;$
- $x \mapsto \int_E p_t(x,y)^2 m(dy)$  and  $x \mapsto \int_E p_t(y,x)^2 m(dy)$  are both continuous.



## Model/Assumptions/Spatial motion

Under Assumption 1, we can say the following:

- $(P_t^{\beta})_{t\geq 0}$  and its disjoint  $(P_t^{\beta*})_{t\geq 0}$  are strongly continuous semigroups of compact operators in  $L^2(E,m)$ .
- Let L and  $L^*$  be the generators of  $(P_t^{\beta})_{t\geq 0}$  and  $(P_t^{\beta*})_{t\geq 0}$ , respectively. Then  $\lambda := \sup \operatorname{Re}(\sigma(L)) = \sup \operatorname{Re}(\sigma(L^*))$  is a common eigenvalue of multiplicity 1 for both L and  $L^*$ .
- The corresponding eigenfunctions  $\phi$  of L and  $\phi^*$  of  $L^*$  can be chosen to be strictly positive and continuous everywhere on E.
- Normalize  $\phi$  and  $\phi^*$  by  $\langle \phi, \phi \rangle_m = \langle \phi, \phi^* \rangle_m = 1$  so that they are unique.
- Operator  $P_t^{\beta}$  has transition density  $p_t^{\beta}(x,y)$  with respect to measure m.

# ${\bf Model/Assumptions/Mean\ semigroup\ and\ branching\ mechanism}$

### Assumption 2. (Critical and Intrinsic Ultracontractive)

- $\bullet$   $\lambda = 0.$
- $\forall t > 0, \exists c_t > 0, \forall x, y \in E, \quad p_t^{\beta}(x, y) \le c_t \phi(x) \phi^*(y).$

#### Assumption 3 (Stable branching)

The branching mechanism  $\psi$  is of the form:

$$\psi(x,z) = -\beta(x)z + \kappa(x)z^{\gamma(x)},$$

where  $\beta \in \mathcal{B}_b(E), \gamma \in \mathcal{B}_b^+(E), \kappa \in \mathcal{B}_b^+(E)$  with  $1 < \gamma(\cdot) < 2$ . We also assume that

$$\gamma_0 := \operatorname{ess\,inf}_{m(dx)} \gamma(x) > 1$$

and  $\kappa_0 := \operatorname{ess\,inf}_{m(dx)} \kappa(x) > 0.$ 



## Results/Slack type results

#### Theorem 1

Under Assumptions 1,2 and 4, we have

- (1)  $\mathbf{P}_{\delta_x}(||X_t|| = 0) > 0$ , for each t > 0 and  $x \in E$ .
- (2) For each  $\mu \in \mathcal{M}$ ,  $\mathbf{P}_{\mu}(\|X_t\| \neq 0) = t^{-\frac{1}{\gamma_0 1}} L(t)$  where L(t) is a slowly varing function at  $\infty$ .

Write 
$$C_X := \langle \mathbf{1}_{\gamma(\cdot) = \gamma_0} \kappa \cdot \phi^{\gamma_0}, \phi^* \rangle_m$$
 and  $\eta_t := (C_X(\gamma_0 - 1)t)^{-1/(\gamma_0 - 1)}$ .  
Further assume that  $m(x : \gamma(x) = \gamma_0) > 0$ , then

- (3)  $\lim_{t\to\infty} \eta_t^{-1} \mathbf{P}_{\mu}(||X_t|| \neq 0) = \mu(\phi);$
- (4) for each  $f \in \mathcal{B}^+(E)$  with  $\langle f, \phi^* \rangle_m > 0$  and  $\|\phi^{-1}f\|_{\infty} < \infty$ ,

$$\{\eta_t X_t(f); \mathbf{P}_{\mu}(\cdot | ||X_t|| \neq 0)\} \xrightarrow[t \to \infty]{d} \langle f, \phi^* \rangle_m \mathbf{z}^{(\gamma_0 - 1)}.$$

## Remarks/Slack type result

- The asymptotic behavior of the critical superprocesses with spatially dependent stable branching is dominated by the heaviest tail  $\gamma_0$ .
- The weak limit is universal: the distribution of  $\mathbf{z}^{(\gamma_0-1)}$  is only related to  $\gamma_0$ .
- We proof the above results by characterizing some measure transform of the superprocesses.

#### Definition (Size-biased transform)

Let G be a non-negative measurable function which is integrable with respect to a  $\sigma$ -finite measure Q. A probability measure  $Q^G$  is called the G-transform of Q if

$$d\mathbf{Q}^{G} = \frac{G}{Q[G]}dQ.$$

### Methods: Size-biased add-on

 $\bullet$  Let X be an non-negative r.v. with finite mean. Define

$$F(\theta) := \frac{P^X[e^{-\theta X}]}{P[e^{-\theta X}]}, \quad \theta \ge 0.$$

Then it holds that

$$-\log \mathbf{P}[e^{-\theta X}] = \mathbf{P}[X] \int_0^{\theta} \mathbf{F}(r) dr, \quad \theta \ge 0.$$

- We call  $F(\theta)$  the size-biased add-on function of the random variable X.
- The distribution of X is characterized by its mean and its size-biased add-on function.

## Methods/Poisson random measures

#### Lemma 1

Let  $\mathcal{N}$  be a Poisson random measure with intensity measure N. Let F be a non-negative testing function with  $0 < N[F] < \infty$ . Then

$$\{\mathcal{N}; P^{\mathcal{N}(F)}\} \stackrel{d}{=} \{\mathcal{N} + \delta_s; P \otimes N^F(ds)\}.$$





## Methods/Kuznetsov measures

• The Kuznetsov measures  $(\mathbb{N}_x)_{x\in E}$  of superprocess  $(X_t)_{t\geq 0}$  is given by the following Theorem:

#### Theorem (Li (2011) Theorem 8.24)

There is a family of  $\sigma$ -finite measures  $(\mathbb{N}_x)_{x \in E}$  on space

 $\mathbb{D} := \{ \mathcal{M}\text{-valued c\`{a}dl\`{a}g functions on } [0, \infty)$ with the null measure as a trap}

such that for each  $x \in E$ ,

$$\{(X_t)_{t>0}; \mathbf{P}_{\delta_x}\} \stackrel{d}{=} \left(\int_{\mathbb{D}} w_t \mathcal{N}(dw)\right)_{t>0},$$

where N is a Poisson random measure on  $\mathbb{D}$  with intensity measure  $\mathbb{N}_x$ .

## Methods/Measure transform of superprocesses

#### Theorem 3.

Let  $\mu \in \mathcal{M}$  and write  $\mathbb{N}_{\mu}(\cdot) := \int_{E} \mathbb{N}_{x}(\cdot)\mu(dx)$ . For each non-negative measurable function F on  $\mathbb{D}$  with  $\mathbb{N}_{\mu}[F] \in (0, \infty)$ , we have

$$\{(X_t)_{t\geq 0}; \mathbf{P}_{\mu}^{\mathcal{N}(F)}\} \stackrel{d}{=} \{(X_t)_{t\geq 0}; \mathbf{P}_{\mu}\} \otimes \{(w_t)_{t\geq 0}; \mathbb{N}_{\mu}^F(dw)\}.$$

We can characterize  $\{(w_t)_{t\geq 0}; \mathbb{N}^F_{\mu}(dw)\}$  while

- $F(w) = w_t(\phi)$  using the classical Spine Decomposition Theorem.
- $F(w) = w_t(f)$  using a generalized Spine Decomposition Theorem.
- $F(w) = w_t(\phi)^2$  using a 2-Spine Decomposition Theorem.

#### Few References

- Ren, Y.-X., Song, R. and Sun, Z.: Limit theorems for a class of critical superprocesses with stable branching. ArXiv:1807.02837
- Ren, Y.-X., Song, R. and Sun, Z.: A 2-spine decomposition of the critical Galton-Watson tree and a probabilistic proof of Yaglom's theorem. Electron. Commun. Probab. 23 (2018), Paper No. 42, 12 pp.
- Ren, Y.-X., Song, R. and Sun, Z.: Spine decompositions and limit theorems for a class of critical superprocesses. Acta Appl. Math. (2019), https://doi.org/10.1007/s10440-019-00243-7

感谢!