2023-2024-2《高等数学 A(下)》 综合练习题

24.点(2,3,-1)关于 yz 坐标面对称的点为____

- 25.点 (1,4,1) 到平面 x+2y-2z=1 的距离为______.
- 26.点 (1,1,2) 到球面 $x^2 + y^2 + (z-1)^2 = 1$ 的球心的距离为_____.
- 27.点 (1,2,1) 到平面 x+2y+2z-10=0 的距离为_____.
- 28.设 α, β, γ 为向量 \overrightarrow{a} 的方向角,则 $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma =$ ______.
- 29. 曲线 $\begin{cases} x^2 + y^2 + z^2 = 9 \\ x + y + z = 1 \end{cases}$ 在 xOy 面上的投影曲线为______.
- 30.过点 (4,-1,3) 且平行于直线 $\frac{x-3}{2} = \frac{y}{1} = \frac{z-1}{5}$ 的直线方程为_____.
- 31.过点 P(1,-1,2) 且与平面 x+2y-z=0 平行的平面方程为_____.
- 32.空间直角坐标系 Oxyz 下,坐标面 yOz 上的曲线 $y^2-z^2=1$ 绕 z 轴旋转一周得到的旋转曲面的方程为______.
- 33.空间直角坐标系 Oxyz中,xOy坐标面上的椭圆 $4x^2+9y^2=36$ 绕 y 轴旋转所得旋转曲面方程为______.
- 34. 曲线 C: $\begin{cases} x^2 = 2y \\ z = 0 \end{cases}$ 绕 y 轴旋转后产生的旋转曲面方程是_____.
- 35.函数 $f(x,y) = \sqrt{2-x^2-y^2}$ 的定义域为_____.
- 36. 函数 $z = \frac{1}{\sqrt{\ln xy}}$ 的定义域为_____.
- 37.二元函数 $z = \arcsin \frac{x^2 + y^2}{4} + \sqrt{x^2 + y^2 1}$ 的定义域为_____.
- 38. 二元函数 $z = \frac{\sqrt{1-x^2-y^2}}{x-y}$ 的定义域为______.
- 39. $\lim_{(x,y)\to(1,0)} \frac{\ln(1+xy)}{y} = \underline{\qquad}$
- 40. $\lim_{(x,y)\to(0,0)} (x^2 + y^2) \sin\frac{1}{xy} = \underline{\qquad}$
- 41.函数 $z = \frac{1}{\sqrt{x^2 + y^2}}$ 的间断点为_____.
- 42.设 $f(x, y) = e^{x+y^2}$,则 $f_x(0, 1) =$ ______.
- 43.设函数 $f(x,y) = 3x + (y-1)\sin(x\cos(xy))$,则 $f_x(1,1) =$ ______.
- 44. 函数 $z = x^3 y^2$,则 $\frac{\partial z}{\partial x} = \underline{\hspace{1cm}}$
- 45. 设函数 $f(x,y) = xe^{xy}$,则 $f_{xy}(x,y) = _____$.

46. 设
$$z = \ln(2e^x - e^y)$$
, 则 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{(0,0)} = \underline{\qquad}$

47. 已知
$$u = x^2 y^5$$
,则 $\frac{\partial^4 u}{\partial x^3 \partial y} = \underline{\hspace{1cm}}$.

48.设
$$z = z(x, y)$$
 由方程 $xy + yz + xz = 1$ 所确定,则 $\frac{\partial z}{\partial y} = \underline{\hspace{1cm}}$

49. 函数
$$z = x^2 + e^{xy}$$
 在点 (1,0)的全微分 $dz =$ _____.

50. 函数
$$z = (x+2y)^x$$
 在点 $(1,0)$ 处的全微分 $dz = _____$.

51. 函数
$$f(x,y)=x^2+(y-1)^2$$
 的驻点为_____.

52. 若
$$(x_0, y_0)$$
是可微函数 $z = f(x, y)$ 的极值点,则 $f_y(x_0, y_0) = _____$.

53. 函数
$$z = 4 - \sqrt{x^2 + y^2}$$
 的最大值为_____.

54. 曲线
$$x = t$$
, $y = t^2$, $z = \ln t$ 在点 $(1,1,0)$ 处的切线方程为_____.

55. 曲线
$$x=t, y=t^2, z=t^3$$
 在点 $(1,1,1)$ 处的切线方程为_____.

56. 函数
$$f(x,y) = x^2 + y^2$$
 在点 (1,1) 处的方向导数最大为_____.

57.设
$$f(x)$$
 连续,若 $\int_0^1 f(x) dx = 3$,则 $\int_0^1 dx \int_0^1 f(x) f(y) dy =$ _______

58. 二次积分
$$\int_0^2 dx \int_0^x \frac{y}{\sqrt{1+x^3}} dy =$$
_______.

59. 设
$$D = \{(x, y) | x^2 + y^2 \le 9\}$$
, 则 $\iint_D 2 dx dy = _____.$

60. 设区域
$$D = \{(x, y) | -1 \le x \le 1, 0 \le y \le 3\}$$
, 则 $\iint_D \sin x (1 + \cos y)^3 d\sigma =$ ______.

61. 设
$$\Omega = \{(x, y, z) | x^2 + y^2 + z^2 \le 9 \}$$
, 则 $\iint_{\Omega} dx dy dz =$ ______.

62.
$$\iiint_{\Omega} x^2 y z dx dy dz = \underline{\qquad}, \quad \sharp \neq \Omega = \{(x, y, z) | x^2 + y^2 + z^2 \le 4\}.$$

63. 若级数为
$$\sum_{n=0}^{\infty} (\sqrt{n+2} - 2\sqrt{n+2} + \sqrt{n})$$
,则其和是______.

64. 设
$$k \in \mathbf{R}$$
, 若级数 $\sum_{n=1}^{\infty} kn$ 收敛,则 $k =$ _____.

65. 级数
$$\sum_{n=0}^{\infty} \frac{(\ln 3)^n}{2^n}$$
 的和为______.

66. 设
$$p \in \mathbb{R}$$
, 级数 $\sum_{n=1}^{\infty} \frac{3}{1+n^p}$ 收敛的充要条件是______.

67. 幂级数
$$\sum_{n=0}^{\infty} \frac{\ln(n+1)}{n+1} x^{n+1}$$
 的收敛半径是______.

68. 函数
$$f(x) = e^x$$
 展开成 x 的幂级数为_____.

69. 幂级数
$$\sum_{n=0}^{\infty} \frac{2 \cdot 3^n x^n}{n!}$$
 的和函数是______.

87.在空间直角	角坐标系 Oxyz 下	,方程 $z = x^2 - y$, ² 的图形是 ()		
A. 双曲柱面	面 B. 双曲	n抛物面 C.	单叶双曲面	D.	双叶双曲面

88.
$$zOx$$
 面上双曲线 $\frac{x^2}{3} - \frac{z^2}{4} = 1$ 绕 z 轴旋转所得的曲面方程为().

- A. $\frac{x^2 + y^2}{3} \frac{z^2}{4} = 1$
- B. $\frac{x^2}{2} \frac{y^2 + z^2}{4} = 1$
- C. $\frac{(x+y)^2}{2} \frac{z^2}{4} = 1$

D. $\frac{x^2}{2} - \frac{(y+z)^2}{4} = 1$

89.
$$xOy$$
 面上的双曲线 $4x^2 - y^2 = 1$ 绕 y 轴旋转而成的曲面方程为().

A. $4x^2 + z^2 - v^2 = 1$

B. $4x^2 + 4z^2 - y^2 = 1$

C. $4x^2 - y^2 - z^2 = 1$

D. $x^2 - 4y^2 + z^2 = 1$

90.
$$\lim_{(x,y)\to(0,0)} \frac{\sqrt{xy+1}-1}{xy} = ($$
).

- A. 1
- C. $\frac{1}{2}$
- D. $-\frac{1}{2}$

91.
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2} = ($$
).

- B. **0**
- C. $\frac{1}{2}$

D. 2

92.函数
$$f(x,y) = \begin{cases} \frac{2x^2 + y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
 在点 $(0,0)($).

- C.极限不存在
- D.无定义

93.设
$$z = z(x, y)$$
是由方程 $2x^2 + y^2 + yz = 0$ 确定的可导函数,则 $z_x = ($).

- A. $\frac{4x}{y}$ B. $-\frac{4x}{y}$ C. $\frac{y}{4x}$

94.设函数
$$u = \frac{e^{2x}(y-z)}{5}$$
, 又 $y = 2\sin x, z = \cos x$, 则 $\frac{du}{dx} = ($).

- A. $e^{2x} \sin x$ B. $e^{2x} \cos x$ C. $\frac{1}{5} e^{2x} (2\cos x + \sin x)$
- D. $\frac{1}{5}e^{2x}\cos x$

95.设
$$z=u\ln v$$
 , $u=xy$, $v=x+y$, 则 $z_y=($).

- A. $y \ln(x+y) + \frac{xy}{x+y}$
 - B. $x \ln(x+y) + \frac{xy}{x+y}$
- C. $x \ln(x+y) + \frac{y}{x+y}$
- D. $y \ln(x+y) + \frac{x}{x+y}$

96.设
$$z = f(x+2y,3x+4y)$$
 且函数 f 可微,则 $\frac{\partial z}{\partial x} = ($).

- A. $f_1' + 3f_2'$ B. $f_1' + 4f_2'$ C. $2f_1' + 3f_2'$ D. $2f_1' + 4f_2'$

97.设
$$u = \arctan \frac{y}{r}$$
 , 则 $\frac{\partial u}{\partial r} = ($).

- A. $\frac{-y}{x^2 + y^2}$ B. $\frac{x}{x^2 + y^2}$ C. $\frac{y}{x^2 + y^2}$ D. $\frac{-x}{x^2 + y^2}$

98.设函数
$$f(x, y, z) = xy^2 + yz^2 + zx^2$$
,则 $f_{xz}(1,0,2) = ($

A. 1	В. —1	C.	0	D.	2			
99. 设函数 $z = z(x, y)$ 由方程 $\sin x + 2y - z = e^z$ 所确定,则 $\frac{\partial z}{\partial r} = ($).								
A. $\frac{\cos x}{1+\alpha^2}$	B. $\frac{\sin x}{y + e^z}$	C.	$\frac{y + \cos x}{1 - 2^z}$	D.	$\frac{y+\sin x}{1+a^z}$			
100. 设函数 z = xy,	•		1-6		1+6			
	B. $xdx + ydy$) = $x^2 + y^2 - 2y$ 的驻点			D.	ydx + ydy			
	(1,0) B. $(1,0)$			D.	(-1,0)			
102. 函数 $z = xy$ 在.	x+y=1条件下的极大 f							
A. 1	B. $\frac{1}{2}$	C.	$\frac{1}{3}$	D.	$\frac{1}{4}$			
103. 设函数 $f(x,y)$ 在 \mathbb{R}^2 上有连续的偏导数,若 $(0,1)$ 是函数 $f(x,y)$ 在条件 $x^2+y^2=1$ 下的极小值点,则必有 ().								
A. $f_{r}(0,1) = 0$		В.	$f_{v}(0,1) = 0$					
c. $f_x(0,1) = f$			以上选项都不对					
	·	((π)	V /				
	$t, y = 4\cos t, z = t$ 在点							
A. $2x - z = 4 - \frac{2}{3}$	$\frac{\pi}{2}$	В.	$2x-z=\frac{\pi}{2}-4$	误!未	指定书签。			
$C. 4y - z = -\frac{\pi}{2}$		D.	$4y-z=\frac{\pi}{2}$					
-	v=5在点(2,1,0)处的切							
A. $x-2y+4=$			x+2y+4=0					
C. $x+2y-4=$		٠.	x-2y-4=0	\				
106. $z = f(x, y)$ α	有界闭域 D 上连续是 $\iint\limits_{D}$	f(x)	<i>x</i> , <i>y</i>) d σ 存在的 ()				
A. 充分条件		C.	充要条件	D.	无关条件			
107. 交换积分次序	$\int_0^1 \mathrm{d}y \int_0^y f(x, y) \mathrm{d}x = 0$).					
$A. \int_0^1 \mathrm{d}x \int_0^y f(x) dx$			$\int_0^1 \mathrm{d}x \int_x^1 f(x,y) \mathrm{d}y$					
$C. \int_0^y \mathrm{d}x \int_0^1 f(x) dx$	(x, y) dy	D.	$\int_{x}^{1} \mathrm{d}x \int_{0}^{1} f(x, y) \mathrm{d}y$,				
108. $\int_0^2 dy \int_0^{\sqrt{2-y}} 3x^3$	y^2 dx 改变积分次序为().						
$A. \int_0^2 dx \int_0^{\sqrt{2-x}} 3x^{-2} dx$	dx^3y^2dy	В.	$\int_0^{\sqrt{2}} \mathrm{d}x \int_{x^2 - 2}^{2 - x^2} 3x^3 y$	² dy				
C. $\int_0^{\sqrt{2}} dx \int_0^{2-x^2} 3x^2 dx$	x^3y^2dy	D.	$\int_{\sqrt{2}}^{0} dx \int_{0}^{2-x^2} 3x^3 y^2 dx$	dy				
109.设 $D: x^2 + y^2 \le 0$	$4, y \ge 0, \text{in} \iint \sin(x^3 y)$	²)dx	dy = () .					
А. О	В. 1	C.	-1	D.	2			
110. $\partial D: x^2 + y^2 \le 1$, $\partial \iint_D \sqrt{x^2 + y^2} dxdy = ($).								
$\Delta \frac{2}{2}\pi$	$\frac{D}{R}$	C	π	D	2 т			

$$A. \quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$

B.
$$\sum_{n=1}^{\infty} \frac{3^n}{2^{2n}}$$

C.
$$\sum_{n=1}^{\infty} \frac{n+1}{2n-1}$$

A.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
 B. $\sum_{n=1}^{\infty} \frac{3^n}{2^{2n}}$ C. $\sum_{n=1}^{\infty} \frac{n+1}{2n-1}$ D. $\sum_{n=1}^{\infty} (1+\frac{1}{n})^{n^2}$

A.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$$
 B. $\sum_{n=1}^{\infty} \frac{3^n}{n}$

B.
$$\sum_{n=1}^{\infty} \frac{3^n}{n}$$

$$C. \quad \sum_{n=1}^{\infty} \frac{1}{n^n}$$

C.
$$\sum_{n=1}^{\infty} \frac{1}{n^n}$$
 D. $\sum_{n=1}^{\infty} \frac{1}{5^n - 2^n}$

$$A. \quad \sum_{n=1}^{\infty} \frac{n^k}{n!}$$

B.
$$\sum_{n=1}^{\infty} \frac{3^n n!}{n^n}$$

$$C. \quad \sum_{n=1}^{\infty} \frac{n+1}{n^2+2}$$

A.
$$\sum_{n=1}^{\infty} \frac{n^k}{n!}$$
 B. $\sum_{n=1}^{\infty} \frac{3^n n!}{n^n}$ C. $\sum_{n=1}^{\infty} \frac{n+1}{n^2+2}$ D. $\sum_{n=1}^{\infty} \frac{n}{100+n}$

117. 级数
$$\sum_{n=1}^{\infty} a_n$$
 收敛的一个充分条件是 ().

A.
$$\lim_{n\to\infty} a_n = 0$$

$$B. \quad \lim_{n \to \infty} \frac{a_{n+1}}{a_n} < 1$$

A.
$$\lim_{n\to\infty}a_n=0$$
 B. $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}<1$ C. $\sum_{n=1}^{\infty}\left|a_n\right|$ 收敛 D. $\sum_{n=1}^{\infty}a_n^2$ 收敛

$$D.\sum_{n=1}^{\infty}a_n^2$$
 收敛

118.若正项级数
$$\sum_{n=1}^{\infty} u_n$$
 收敛,则 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n}$ ().

A.
$$> 1$$

$$C. = 1$$

119. 关于级数
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} + \left(\frac{2}{3} \right)^{n-1} \right)$$
 的敛散性说法正确的是 ().

- A. 绝对收敛 B. 条件收敛
- C. 发散
- D. 无法判定

120. 交错级数
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$$
 ().

- C. 发散
- D. 不能确定

121. 级数
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
 的和是 ().

- D. 2

122 已知级数
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
,则级数 $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$ 之和是

A.
$$\frac{\pi^2}{4}$$
 B. $\frac{\pi^2}{8}$

B.
$$\frac{\pi^2}{9}$$

$$C.\frac{\pi^2}{12}$$

D.
$$\frac{\pi^2}{16}$$

123. 幂级数
$$\sum_{n=1}^{\infty} a_n x^n$$
 的收敛半径为().

A. $\lim_{n\to\infty} \left| \frac{a_n}{a} \right|$ B. $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a} \right|$ C. $\lim_{n\to\infty} a_n$ D. $+\infty$

124. 级数 $\sum_{n=1}^{\infty} a_n x^n$ 在 x = -2 处收敛,则该级数在 x = 1 处().

C. 绝对收敛 D. 敛散性不确定

125. 级数 $\sum_{n=0}^{\infty} (2^n + 3^n) x^n$ 的收敛半径为().

A. $\frac{1}{2}$ B. $\frac{1}{3}$ C. 2

D. 3

126. 级数 $\sum_{n=0}^{\infty} x^n$ 在其收敛域上的和函数为().

A. $\frac{1}{1-x}$ B. $-\frac{x}{1-x}$ C. $\frac{1}{x-1}$

 $D. \quad \frac{x}{1-x}$

127. 求点 (2,1,-1) 在平面 x+2y+3z-29=0 上的投影点.

128. 求以A(1,2,3), B(3,4,5), C(2,1,4)为顶点的三角形的面积S.

129.求过点(-1,2,0)且与平面x+y+z+1=0和2x-y+3z+4=0平行的直线方程.

130.求过两点 A(1,2,3), B(4,5,6), 且平行于直线 $\frac{x-1}{2} = \frac{y+3}{1} = \frac{z-2}{1}$ 的平面的方程.

131.求过三点 $M_1(2,-1,4),M_2(-1,3,-2),M_3(0,2,3)$ 的平面方程.

132.求曲面 $5z^2 + 4x^2y - 6xz^2 = 3$ 在点(1,1,1)处的切平面和法线方程.

133.求曲面 $e^z - z + xy = 3$ 在点(2,1,0)处的切平面和法线方程.

134.求曲面 $3x^2 + y^3 - z^2 = 3$ 在点 (1,1,1) 处的切平面和法线方程.

135.求函数 $z = x^2 y^3 + \cos(x + y)$ 的所有二阶偏导数.

136.求函数 $f(x, y) = x^4 + y^4 + 4xy$ 的极值.

137.计算二重积分 $\iint xy dx dy$, 其中积分区域 D 由 y = x - 2 和 $y^2 = x$ 围成.

138. 计算 $\iint_{\mathcal{D}} \cos x^2 dx dy, \text{其中 } D: 0 \le y \le x, 0 \le x \le \sqrt{\frac{\pi}{2}}.$

139. D 为由 $x^2 + y^2 = 1$ 与所与 $x^2 + y^2 = 4$ 围成的圆环,求二重积分 \iint $\arctan \frac{y}{x} d\sigma$.

140.求二重积分 $\iint 2xy dx dy$, 其中 D 是有两条坐标轴和直线 x+y=2 围成的有界闭区域.

141.计算 $I = \iint \frac{x}{y} d\sigma$, 其中 $D = \{(x, y) | x^2 + y^2 \le 2ay, x \le 0\}$, a > 0.

142. 计算 $\iiint (x^2+y^2) dx dy dz$, 其中 Ω 为平面z=2与曲面 $x^2+y^2=2z$ 所围成的区域.

143.计算 $\iiint x dx dy dz$, 其中 Ω 是由三个坐标面及平面 x+2y+z=1 所围成的有界闭区域.

144.求幂级数 $\sum_{n+1}^{\infty} \frac{x^n}{n+1}$ 的收敛半径、收敛区间及收敛域.

145.判定级数 $\sum_{i=1}^{\infty} \left(\frac{n}{2n+1}\right)^n$ 的敛散性.

146. 求幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n2^n}$ 的收敛半径、收敛区间及收敛域.

147.求有抛物面 $z=1-x^2-y^2$ 与平面z=0所围立体的表面积。

148.一家公司研发了一种产品,其中的一个部件是形如曲面 $z=x^2+y^2$ 被平面 z=2 截得的有界部分的薄片. 由于该部件的形状较为特殊,需要使用3D 打印技术进行制造,请求该部件的面积,以便该公司在生产过程中进行合理备料.

149.某工厂要用铁板做成一个表面积为48平方米的无盖长方体水箱,则当长、宽、高各取多少时,水箱的容积最大?

150. 要造一个容积为 4 的长方体无盖蓄水池,应如何选择水池的尺寸,才能使它的表面积最小.