Derivative Formulas

	Derivative Rules	Examples
1.	The main Rules: If $y = x^a$; then $y' = ax^{a-1}$ If $y = x$; then $y' = 1$ If $y = c$; then $y' = 0$	Ex: $y = x^{-2} - x + 2$ $y' = -2x^{-3} - 1$ Ex: $y = 3x^4 - 5x + 4$ $y' = 12x^3 - 5$
2.	The ln rule If $y = \ln f(x)$; then $y' = \frac{f'(x)}{f(x)}$	Ex: $y = \ln(5x - 4)$ $y' = \frac{5}{5x - 4}$
3.	The <i>e</i> rule: If $y = e^{f(x)}$; then $y' = f'(x) \cdot e^{f(x)}$ y' = (derivative of the power). the original	Ex: $y = 4e^{-5x}$ $y' = 4(-5)e^{-5x} = -20e^{-5x}$
4.	The a rule: If $y = a^x$; then $y' = \ln a \cdot a^x$	Ex: $y = 4 \cdot 5^x$ $y' = 4 \cdot \ln 5 \cdot 5^x$
5.	The chain (power) rule: If $y = (f(x))^n$; then $y' = n(f(x))^{n-1} \cdot f'(x)$ y' = (derivative of outisde). (derivative of inside)	Ex: $y = (5-3x)^9$ $y' = 9(5-3x)^8.(-3)$ $= -27(5-3x)^8$
6.	The mutiplication rule: $y = f(x).g(x)$; then $y' = f'(x).g(x) + g'(x).f(x)$ or, it is easier this way: If $y = (first)(second)$; then: $y' = (derivative of first)(second) + (derivative of second)(first)$	Ex: $y = (3x - 2)(5 - 6x)$ y' = 3(5 - 6x) + (-6)(3x - 2) = 15 - 18x - 18x + 12 = 27 - 36x
7.	The quotient rule: $y = \frac{f(x)}{g(x)} \text{ ; then } y' = \frac{f'(x).g(x) - g'(x).f(x)}{[g(x)]^2}$ or, it is easier this way: If $y = \frac{\text{Num}}{\text{Den}}$; then:	Ex: $y = \frac{2x-3}{5x+1}$ $y' = \frac{(2)(5x+1)-(5)(2x-3)}{(5x+1)^2}$ $= \frac{10x+2-10x+15}{(5x+1)^2}$
	$y' = \frac{\text{(derivative of Num)(Den) - (derivative of Den)(Num)}}{\text{Den}^2}$	$=17x/(5x+1)^2$

- Rules 1, 2, 3 and 4 are from sections 3.1 and 3.2.
- Rule 5 is from section 3.3.
- Rules 6 and 7 are from section 3.4.