

Glycogen Branch Reducing point end (a) CH₂OH CH_2OH CH_2OH H OH H OH OH H 6) linkage HO Reducing **Branch Point** Nonreducing CH_2 CH₂OH CH_2OH CH_2OH CH_2OH ends H H H H H H H OH OH OHOH OH H H HO OH OH OH H OH OH OH Branch $\alpha(1 \longrightarrow 4)$ point linkage

(b)

Nonreducing

end

Branch points occur at ~ 1:10 glycosyl residues

Glycogen Breakdown

- α1-4 linkages are broken by phosphorylase, starting from the non- reducing ends. Breakdown is phosphorylytic.
- Product is G-1-P and glycogen_{n-1}

- α1-6 debranching is HYDROLYTIC, as opposed to phosphorylytic.
- Carried out by an α 1-6 glucosidase

α 1-4: phosphorylysis gives G1P \rightarrow G6P

 α 1-6: hydrolysis gives glucose $\stackrel{ATP}{\rightarrow}$ G6F

$$\begin{array}{c|c} & & & \\ & & & \\ \hline \bullet & & \\ \hline$$

Pyridoxal phosphate (PLP)

$$\begin{array}{c|c} & & & \\ \hline Phosphorylase \\ & & \\ \hline (CH_2)_4 \\ & & \\ Lys \ 679 \\ \hline \\ O \\ \hline \\ CH \\ O \\ \\ CH_3 \\ \\ H \\ \end{array}$$

PLP covalently bound to phosphorylase via a Schiff base to Lys 679 Glycogen Phosphorylase requires pyridoxal phosphate (vit. B6) as an active site cofactor.

The phosphate group probably acts as an acid-base catalyst.

This is not the same phosphate molecule that is incorporated into glucose

Glycogen Synthesis

Activation of Glucose-1-P

Examples of "activated molecules":

1. PO_4 + ADP + energy \rightarrow ATP (activated PO_4)

UDP-glucose pyrophosphorylase

$$\Delta G^{\circ} = -8 \text{ kcal/mol}$$

$$P_{i} + P_{i}$$

Glycogen Synthase

Where does G1P come from?

Isomerization of G6P to G1P

Details on Glycogen Breakdown/Synthesis

- 1. Glucose-1-P + Glyc_n \rightarrow Glyc_{n+1}
 - requires 1 ATP (UDP + ATP → UTP + ADP)
- 2. $Glyc_n \rightarrow Glyc_{n-1} + Glucose-1-P$
 - 90% no energy cost
 - 10% 1 ATP per Glucose

Efficiency of storing G6P as glycogen

G6P
$$\longrightarrow$$
 CO₂ + H₂O

31 ATP

96%

Enzyme Regulation – Levels of Complexity

- Michaelis-Menten
- Cooperative (T vs R)
 - regulated by substrate conc'n
 - regulated by allosteric ligands
 - regulated by phosphorylation

Glucagon/Epinephrine

In Muscle:

R
$$\stackrel{\mathsf{AMP}}{\longleftrightarrow} \mathsf{T}$$

Control by Phosphorylation

- Brought about by glucagon (liver) or epinephrine (liver & muscle).
- extracellular "sensor" of environmental conditions
 - In muscle: GP is activated for "fight or flight"
 - In liver: GP is activated in response to fasting

Allosteric Control

- In muscle: "intracellular sensor" of energy charge.