# 10 Codificação de Canal (Códigos de Controlo de Erros)

Comunicação Digital

(21 de abril de 2023)



#### Sumário

- 1. Aspetos gerais sobre a comunicação digital
  - Comportamento do canal
  - Causas da existência de erros
- 2. Códigos detetores e corretores de erros
  - Códigos de bloco linear (n,k)
  - Caraterísticas dos códigos
  - Capacidades de deteção e correção
  - Códigos de repetição e bit de paridade
  - Código de Hamming
  - CRC Cyclic Redundancy Check
- 3. Deteção e Correção
- 4. Análise matricial dos códigos
- 5. Aplicações
- 6. Exercícios



## Sistemas de Comunicação

Diagrama de blocos genérico





## 1. Cenário de utilização



#### 1. Modelo de canal discreto

- O canal é analisado através de modelo discreto usando variáveis aleatórias (v.a.)
- Do ponto de vista da transmissão, um SCD pode ser visto através de modelo probabilístico
- A probabilidade de erro por troca de bit não é nula





#### 1. Modelo de canal discreto

- O canal é analisado através de modelo discreto usando variáveis aleatórias (v.a.)
- Modelo BSC binary symmetric channel



Probabilidade de erro de bit

$$P_{e} = P(y_{0}, x_{1}) + P(y_{1}, x_{0})$$

$$= P(y_{0}|x_{1})P(x_{1}) + P(y_{1}|x_{0})P(x_{0})$$

$$= \alpha P(x_{1}) + \alpha P(x_{0})$$

$$= \alpha$$

A probabilidade de erro define o **BER** (*Bit Error Rate*) do canal. É a taxa de erros por bit.



# 1. Cenário de Utilização: detalhe





#### 2. Códigos de controlo de erros

- A deteção e correção são obtidas pela introdução de <u>redundância</u> na mensagem original
- Essa redundância é função da mensagem
- Códigos a analisar: repetição; bit de paridade par;
   Hamming e CRC
- Os códigos de canal são utilizados nos modos:
  - FEC Forward Error Correction
  - ARQ Automatic Repeat ReQuest



#### 2. Modos de funcionamento

- FEC Forward Error Correction
  - Modo de correção de erros
  - O recetor recebe as palavras, deteta eventuais erros e corrige-os
- ARQ Automatic Repeat ReQuest
  - Modo de deteção de erros
  - O recetor recebe as palavras e deteta eventuais erros; em caso de erro, solicita a retransmissão



# 2. Códigos de bloco (n,k)

- Codificador de bloco
- Cada bloco de k bits de mensagem origina uma palavra de código com n bits
- k = número de bits de mensagem
- n = número de bits de palavra de código

Bits de mensagem

k bits

Codificador
de canal
n bits



#### 2. Códigos de bloco (n,k): propriedades

- 1. Code rate (ritmo) $R=rac{k}{n}$  , medida de eficiência
- Distância de Hamming (dH): número de dígitos em que diferem duas quaisquer palavras do código
- 3. Distância mínima (dmin): é a menor distância de Hamming entre duas quaisquer palavras do código; depende da redundância:

$$dmin \le 1 + q, \quad q = n - k$$

- 4. Deteta todos os padrões até "l" erros:  $l \leq dmin 1$
- 5. Corrige todos os padrões até "t" erros:  $t \leq \lfloor \frac{\text{dmin}-1}{2} \rfloor$
- 6. Deteta "l" erros e corrige "t" erros: dmin  $\geq l + t + 1$ , com l > t



#### Richard Wesley Hamming (1915 – 1998)





http://www-history.mcs.st-and.ac.uk/Biographies/Hamming.html https://en.wikipedia.org/wiki/Richard Hamming



#### 2. Códigos de bloco (n,k): distância

Distância de Hamming entre palavras







#### 2. Códigos lineares de bloco (n,k)

- Bloco: todas as palavras têm a mesma dimensão
- Linear:
  - o vetor nulo pertence ao código
  - a soma modular de quaisquer duas palavras do código é ainda uma palavra do código

n = número de bits da palavra de código
k = número de bits da mensagem
q = n - k, é o número de bits redundantes

2<sup>n</sup> palavras possíveis2<sup>k</sup> palavras de código

Seja  $\mathbf{m} = [m_0 m_1 ... m_{k-1}]$  a mensagem e  $\mathbf{c}$  a palavra de código

Podem ser sistemáticos ou não sistemáticos; exemplos destas formas:

- sistemática:  $\mathbf{c} = [m_0 m_1 ... m_{k-1} b_0 b_1 ... b_{q-1}]$
- não sistemática:  $\mathbf{c} = [m_0 \ b_1 \ b_0 \ m_1 \ ... \ m_{k-1} \ ... \ b_{q-1}]$



#### 2. Códigos lineares de bloco (n,k)

- O desenho de códigos eficientes é um problema complexo: maximizar dmin com constrição R ou maximizar R com constrição dmin
- São problemas adicionais: memória ocupada e complexidade do codificador e do descodificador
- Através dos conceitos de estrutura algébrica e espaço vetorial definem-se os códigos lineares (elementos de subespaço vetorial)
- Os códigos lineares são um sub-conjunto de todos os códigos; requerem menos memória e existem codificadores e descodificadores imples



# 2. Código de repetição (3,1)

- Consiste na repetição da mensagem
- Exemplo: código (3,1), na forma (n,k) com k=1 bit de mensagem e n=3 bit na palavra de código



Usa  $2^k = 2^1 = 2$  palavras de  $2^n = 2^3 = 8$  possíveis



m

# 2. Código de repetição (3,1)

- Descodificação realizada por maioria
- A distância entre as palavras de código, garante que:
  - <u>Deteta</u> todos os erros de 1 e 2 bit
  - Corrige todos os erros de 1 bit

Considerando um BSC com  $\alpha = 10^{-5}$ , tem-se que:

$$P(1,3) = C_1^3 \alpha^1 (1 - \alpha)^2 = \frac{3!}{2!1!} \alpha (1 - \alpha)^2$$
$$= 3\alpha - 6\alpha^2 + 3\alpha^3 \approx 3 \times 10^{-5}$$

$$P(2,3) = C_2^3 \alpha^2 (1-\alpha)^1 = \frac{3!}{1!2!} \alpha^2 (1-\alpha)$$



$$=3lpha^2-3lpha^3pprox 3 imes 10^{-Cancunicação Digital}$$



#### 2. Código bit de paridade (3,2) - paridade par

- Adicionar um bit no final da mensagem; este bit é a soma módulo 2 dos bits da mensagem
- A palavra de código é  $\mathbf{c} = [\mathbf{m}_0 \ \mathbf{m}_1 \ \mathbf{m}_0 \oplus \mathbf{m}_1]$

|     | l   |
|-----|-----|
| m   | c   |
| 00  | 000 |
| 01  | 011 |
| 10  | 101 |
| 11  | 110 |
| 1 1 |     |



- Deteta a presença de 1 e 3 bits errados
  - Não tem capacidade de <u>correção</u>; não realiza FEC



## 2. Palavras de código: vetores



- Palavras de 3 bit
  - (a) código de repetição (3,1); 3 arestas entre as 2 palavras de código
  - **(b)** código de bit de paridade (3,2); 2 arestas entre 2 palavras de código mais próximas



#### 2. Peso de Hamming

- Define-se peso de Hamming (w) como o número de dígitos não nulos numa palavra
- Sejam  $c_i$  e  $c_j$  duas palavras distintas de um código linear de bloco; tem-se por definição que dmin =  $\min_{i \neq j} dH(c_i, c_j)$
- Dado que o código é linear, tem-se:

$$dmin = min \ w(c_i \oplus c_j) = min \ w(c_k),$$
 soma modular

sendo c<sub>k</sub> palavra do código, diferente do vetor nulo

#### **Exemplos:**

Código de repetição (3,1)

Código de bit de paridade par (3,2)

| $_{\rm m}$ |            |   | dmin = 3 | m                  | c         | $\mathbf{w}(\mathbf{c})$ | dmin = 2    |
|------------|------------|---|----------|--------------------|-----------|--------------------------|-------------|
| 0          | 000<br>111 | 0 | l = 2    | 00                 | 000       | 0                        | l = 1       |
| 1          | 111        | 3 | t = 1    | () 1               |           | _                        | t = 0       |
|            |            |   | <u>-</u> | LEIC - Comunicação | Digital 1 | $\frac{1}{2}$            | $\iota - 0$ |



## 2. Códigos de Hamming

- Família de códigos lineares de bloco
- Têm dmin=3, logo corrigem todos os erros de 1 bit
- A motivação:  $P(2,n) \ll P(1,n)$
- Definidos por um parâmetro inteiro m (≥ 2) tal que:

$$(n,k) = (2^m - 1, 2^m - 1 - m)$$

Por exemplo, com m=3 tem-se o código (7,4)

$$\mathbf{c} = [\mathbf{m}_0 \ \mathbf{m}_1 \ \mathbf{m}_2 \ \mathbf{m}_3 \ \mathbf{b}_0 \ \mathbf{b}_1 \ \mathbf{b}_2]$$
  
Equações de paridade:

$$b_0 = m_1 \oplus m_2 \oplus m_3$$
$$b_1 = m_0 \oplus m_1 \oplus m_3$$
$$b_2 = m_0 \oplus m_2 \oplus m_3$$





#### 2. Hamming (7,4): todas as palavras

Listagem das 16 palavras de código e respetivos pesos de Hamming

| Palavra de código |   |   | P | <u>'eso</u> | Palavra de código |   |   |   |   |   | Peso |   |   |   |   |
|-------------------|---|---|---|-------------|-------------------|---|---|---|---|---|------|---|---|---|---|
| 0                 | 0 | 0 | 0 | 0           | 0                 | 0 | 0 | 1 | 0 | 0 | 0    | 0 | 1 | 1 | 3 |
| 0                 | 0 | 0 | 1 | 1           | 1                 | 1 | 4 | 1 | 0 | 0 | 1    | 1 | 0 | 0 | 3 |
| 0                 | 0 | 1 | 0 | 1           | 0                 | 1 | 3 | 1 | 0 | 1 | 0    | 1 | 1 | 0 | 4 |
| 0                 | 0 | 1 | 1 | 0           | 1                 | 0 | 3 | 1 | 0 | 1 | 1    | 0 | 0 | 1 | 4 |
| 0                 | 1 | 0 | 0 | 1           | 1                 | 0 | 3 | 1 | 1 | 0 | 0    | 1 | 0 | 1 | 4 |
| 0                 | 1 | 0 | 1 | 0           | 0                 | 1 | 3 | 1 | 1 | 0 | 1    | 0 | 1 | 0 | 4 |
| 0                 | 1 | 1 | 0 | 0           | 1                 | 1 | 4 | 1 | 1 | 1 | 0    | 0 | 0 | 0 | 3 |
| 0                 | 1 | 1 | 1 | 1           | 0                 | 0 | 4 | 1 | 1 | 1 | 1    | 1 | 1 | 1 | 7 |

O menor peso de Hamming para palavras não nulas é 3, logo:

dmin = 3, 
$$l = 2$$
 e  $t = 1$ 



## 2. Códigos de Hamming (caraterísticas)

- Seja k o número de bits da mensagem a transmitir e n o número de bits efetivamente transmitidos
- Códigos de Hamming são códigos de bloco linear (n,k) onde:
  - $q \ge 3$ , sendo q = n k o número de *bits* redundantes
  - $n = 2^{q} 1$
  - para  $q = \{1, 2, 3, ...\}$ , temos então (7,4), (15,11), (31,26), ...
- A eficiência do código (code rate) é  $\mathbf{r}_c = k/n = 1 q/(2^q 1)$ 
  - $\mathbf{r_c} \rightarrow 1$ , se q >> 1
- $d_{min} = 3$ , independentemente de q



# 2. Códigos Cíclicos - CRC

- Os códigos cíclicos são uma sub-classe dos códigos lineares de bloco
  - Linear: o vetor nulo pertence ao código; a soma modular de duas palavras do código é ainda uma palavra do código
  - Bloco: todas as palavras têm a mesma dimensão de n bits
- Nos códigos cíclicos tem-se que qualquer rotação cíclica de qualquer ordem sobre uma palavra de código é ainda uma palavra de código
- Exemplo: código de bit de paridade par (3,2)





# 2. Códigos Cíclicos

- Tem-se c(X) = m(X)g(X) em que:
  - c(x) é a palavra de código polinómio de grau n-1
  - m(x) depende da mensagem polinómio de grau k-1
  - g(x) polinómio gerador de grau q
- As palavras de código  $c=[c_{n-1} \ c_{n-2} \ .... \ c_1 \ c_o]$  podem ser analisadas como polinómios:
  - $c(X) = c_{n-1} X^{n-1} + c_{n-2} X^{n-2} + .... + c_1 X + c_0$
- O número de bits redundantes (de paridade) corresponde ao grau do polinómio gerador



#### 2. Polinómio Gerador

- Determinado polinómio g(X) de grau q é gerador de um código (n,k), com q=n-k, caso seja factor de X<sup>n</sup>+1
- Ser fator de X<sup>n</sup>+1 implica que resto  $\left| \frac{X^n+1}{g(X)} \right| = 0$
- Assim, a fatorização do polinómio X<sup>n</sup>+1 é importante, neste contexto
- Através desta fatorização, conseguimos obter polinómios geradores para códigos de diferentes dimensões



#### 2. Polinómios Geradores

| Código    | Polinómio gerador g(X)                                                                      |
|-----------|---------------------------------------------------------------------------------------------|
| CRC4      | $X^4+X^3+X^2+X+1$                                                                           |
| CRC7      | $X^7 + X^6 + X^4 + 1$                                                                       |
| CRC12     | $X^{12}+X^{11}+X^3+X^2+X+1$                                                                 |
| CRC16     | $X^{16}+X^{15}+X^2+1$                                                                       |
| CRC-CCITT | $X^{16}+X^{12}+X^{5}+1$                                                                     |
| CRC32     | $X^{32}+X^{26}+X^{23}+X^{22}+X^{16}+X^{12}+X^{11}+X^{10}+X^{8}+X^{7}+X^{5}+X^{4}+X^{2}+X+1$ |



## 2. CRC – Cyclic Redundancy Check

Num código cíclico sistemático, as palavras têm a seguinte organização



- Os bits b(X), que constituem um polinómio de grau q-1 designam-se por CRC-Cyclic Redundancy Check
- A palavra de código é dada por

$$c(X) = m(X)X^{q} + b(X) = m(X)X^{q} + \text{resto}\left[\frac{m(X)X^{q}}{g(X)}\right]$$



## 2. CRC – Cyclic Redundancy Check

- O CRC resulta do resto da divisão de polinómios entre:
  - A mensagem deslocada de q bits para a esquerda
  - O polinómio gerador do código

$$CRC = b(X) = \text{resto}\left[\frac{m(X)X^q}{g(X)}\right]$$

- Dado que g(X) tem grau q, resulta que b(X) terá grau q-1, sendo constituído por q bits
- Assim, temos palavra de código com n bits (k de mensagem e q de paridade)



## 2. CRC – Cyclic Redundancy Check

- Exemplo de cálculo do CRC para código (7,4)
  - $m(X)=X^3+1=[1\ 0\ 0\ 1]$
  - $g(X)=X^3+X^2+1=[1\ 1\ 0\ 1]$

$$CRC = b(X) = \text{resto}\left[\frac{m(X)X^{q}}{g(X)}\right] = \text{resto}\left[\frac{(X^{3} + 1)X^{3}}{X^{3} + X^{2} + 1}\right] = \text{resto}\left[\frac{X^{6} + X^{3}}{X^{3} + X^{2} + 1}\right]$$
  
=  $X + 1$ 

1001000

1101

01000

1101

01010

1101

01110

1101

0 0 1 1

$$c(X) = m(X)X^{3} + b(X) = (X^{3} + 1)X^{3} + (X + 1).$$

$$= X^{6} + X^{3} + X + 1$$

$$= [1 \ 0 \ 0 \ 1 \ 0 \ 1 \ ]$$



#### 3. Descodificador de canal: caraterísticas

- O descodificador:
  - 1. recebe a palavra **y** (possivelmente com erros)
  - 2. estima a palavra de código $\widehat{x}$  que lhe deu origem
  - 3. estima a mensagem  $\,\widehat{m}$



- Funciona num dos modos:
  - 1. deteção
  - 2. correção
  - 3. deteção e correção
- Se a palavra recebida y não pertence ao código, houve erro(s)



Um critério possível

# 3. Descodificação: deteção

Processo de descodificação em modo deteção (ARQ)







m

- Tabela de síndromas para o código Hamming(7,4)
- O código tem 2<sup>3</sup>=8 síndromas: síndroma nulo ausência de erro; os outros 7 correspondem aos padrões de um bit em erro por palavra

| Síndroma        | Padrão de Erro              | Observações      |
|-----------------|-----------------------------|------------------|
| 000             | 0000000                     | Ausência de erro |
| 011             | 1000000                     | 1.º bit em erro  |
| 110             | 0100000                     | 2.º bit em erro  |
| 101             | 0010000                     | 3.º bit em erro  |
| 111             | 0001000                     | 4.º bit em erro  |
| 100             | 0000100                     | 5.º bit em erro  |
| 010             | 0000010                     | 6.º bit em erro  |
| 001 LEIC - Comu | 0000001<br>unicação Digital | 7.º bit em erro  |



Sejam as palavras de código

• 
$$c_1 = [1000 \ 011]$$

• 
$$c_2 = [0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0]$$



• 
$$y_1 = c_1 + [1000000] = [\underline{\mathbf{0}} \ 000011]$$

• 
$$y_2 = c_2 + [001000] = [0001010]$$

• 
$$y_3 = c_1 + [1 1 0 0 0 0 0] = [0 1 0 0 0 1 1]$$



• 
$$s_1 = [0 \ 1 \ 1]$$

• 
$$s_2 = [1 \ 0 \ 1]$$

• 
$$s_3 = [1 \ 0 \ 1]$$



Dois erros na palavra



e

|   |        | . ~   |    |      | •      | • 1   | ~   |
|---|--------|-------|----|------|--------|-------|-----|
| • | Os pad | droes | de | erro | associ | ıados | sao |

• 
$$e_1 = [1000000]$$

• 
$$e_2 = [0 \ 0 \ 1 \ 0 \ 0 \ 0]$$

• 
$$e_3 = [0 \ 0 \ 1 \ 0 \ 0 \ 0]$$

#### As palavras estimadas são

• 
$$c_1 = y_1 + e_1 = [\underline{\mathbf{0}} \ 0 \ 0 \ 0 \ 0 \ 1 \ 1] + [1 \ 0 \ 0 \ 0 \ 0 \ 0] = [1 \ 0 \ 0 \ 0 \ 1 \ 1]$$

• 
$$c_2 = y_2 + e_2 = [0001010] + [0010000] = [0011010]$$

• 
$$c_3 = y_3 + e_3 = [\underline{0} \underline{1} 0 0 0 1 1] + [0 0 1 0 0 0 0] = [0 1 1 0 0 1 1]$$

#### As mensagens obtidas após correção

• 
$$m_1 = [1 \ 0 \ 0 \ 0]$$

• 
$$m_2 = [0 \ 0 \ 1 \ 1]$$

Os dois erros na palavra implicaram erro após correção (t=1)







e

# 3. CRC – Cyclic Redundancy Check

- O descodificador, em modo de deteção calcula o síndroma s(X)
- Dado que c(X)=m(X)g(X), tem-se que qualquer palavra de código é fator do polinómio gerador
- Seja y(X) = c(X) + e(X) a palavra recebida, em que e(X) é o padrão de erro
  - Caso e(X) seja nulo o síndroma é nulo

$$s(X) = \operatorname{resto}\left[\frac{y(X)}{g(X)}\right] = \operatorname{resto}\left[\frac{c(X)}{g(X)}\right] = \operatorname{resto}\left[\frac{m(X)g(X)}{g(X)}\right] = 0$$

 Caso e(X) seja não nulo o síndroma é não nulo e depende do valor de e(X)

$$s(X) = \text{resto}\left[\frac{y(X)}{g(X)}\right] = \text{resto}\left[\frac{m(X)g(X) + e(X)}{g(X)}\right] = \text{resto}\left[\frac{e(X)}{g(X)}\right]$$



## 3. CRC – Cyclic Redundancy Check

- Na descodificador temos divisão de polinómios  $s(X) = \text{resto} \left| \frac{c(X)}{g(X)} \right|$
- Recorrendo ao MATLAB, podemos usar a função deconv

Sejam 
$$c(X) = X^6 + X^3 + X + 1$$
  $g(X) = X^3 + X^2 + 1$   $= [1001 \ 011]$   $= [1101]$ 

```
>> c = [1 0 0 1 0 1 1];

>> g = [1 1 0 1];

>> [q, s] = deconv(c, g);

>> mod(s,2)

ans =

0 0 0 0 0 0 0
```

Síndroma nulo

Ausência de erros



# 3. CRC – Cyclic Redundancy Check

Introduzindo 1 erro no penúltimo bit na palavra c(X) temos

$$y(X) = c(X) + e(X) = (X^{6} + X^{3} + X + 1) + (X)$$
  
=  $X^{6} + X^{3} + 1$   
=  $[1\ 0\ 0\ 1 \ 0\ 0\ 1]$ 

$$g(X) = X^3 + X^2 + 1$$
$$= [1101]$$

Síndroma não nulo

**Erros detetados** 



# 3. CRC - Cyclic Redundancy Check

- · Tipicamente é utilizado em modo de deteção de erros
- Quando a distância mínima do código for maior ou igual a 3, também pode ser usado em modo correção
- Tipicamente temos um número reduzido de bits de paridade calculado para elevado número de bits de mensagem
  - $n \gg q > 1$
- O CRC tem elevada capacidade de deteção de erros, especialmente de burst de erros (rajada de erros)
- Um burst ou rajada de erros define-se como um bloco contíguo de bits recebidos em erro; o primeiro e último bit distam B bits entre si, sendo B o comprimento do burst



# 3. CRC - Cyclic Redundancy Check

- Elevada capacidade de deteção de erros:
  - todos os burst de dimensão q ou menor
  - uma fração dos burst de dimensão q+1; a fração é 1-2-(q-1)
  - uma fração dos burst de dimensão superior a q+1; a fração é 1-2-q
  - todas as combinações de d<sub>min</sub> ou menos erros
  - todos os padrões com número ímpar de erros, quando o gerador tem número par de coeficientes não nulos
- Por exemplo, para o código CRC7 com g(X)=X<sup>7</sup>+X<sup>6</sup>+X<sup>4</sup>+1 temos
  - todos os burst de dimensão 7 ou menor
  - $1-2^{-(q-1)} = 1 2^{-(7-1)} = 98,44 \%$  dos *burst* de dimensão 8
  - $1-2^{-(q)} = 1 2^{-(7)} = 99,22 \%$  dos *burst* de dimensão superior a 8
  - todos os padrões com número ímpar de erros



# 3. Comparação de códigos

Análise comparativa de códigos: ritmo e capacidades de deteção e correção de erros.

| Código              | R = k/n | dmin      | Deteta l | Corrige t |  |  |
|---------------------|---------|-----------|----------|-----------|--|--|
| Repetição (2,1)     | 0.500   | 2         | 2 1 0    |           |  |  |
| Repetição (3,1)     | 0.333   | 0.333 3 2 |          |           |  |  |
| Repetição (4,1)     | 0.250   | 0.250 4 3 |          |           |  |  |
| Repetição (5,1)     | 0.200   | 5         | 2        |           |  |  |
| Paridade (3,2)      | 0.666   | 2         | 1        | 0         |  |  |
| Paridade (8,7)      | 0.875   | 2         | 1        | 0         |  |  |
| Hamming (7,4) m=3   | 0.571   | 3         | 2        | 1         |  |  |
| Hamming (15,11) m=4 | 0.733   | 3         | 3 2 1    |           |  |  |
| Hamming (31,26) m=5 | 0.838   | 3         | 2        | 1         |  |  |



# 4. Análise matricial dos códigos

Aumentar a robustez do SCD relativamente aos efeitos indesejados do canal



transmissão sem erros

- Cada bloco de k bits de mensagem dá origem a uma palavra de código com n bits
  - 2<sup>k</sup> palavras de código no espaço de 2<sup>n</sup> palavras



### 4. Matriz Geradora

 As palavras de código c são obtidas através do produto do vetor mensagem m pela matriz geradora do código G

$$c = m \times G$$

- c é vetor de dimensões 1 x n; m é vetor 1 x k
- **G** é matriz k x n; nos códigos sistemáticos temos
  - G = [I<sub>k</sub> | P] ou G = [P | I<sub>k</sub>] sendo P a sub-matriz geradora de paridade, ou seja, a matriz que estabelece as equações de paridade do código
  - Cada coluna de P constitui uma equação de paridade
  - P tem dimensões k x q



### 4. Matriz Geradora

- Exemplos de matrizes geradoras
- Código de repetição (3,1)

$$G = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

Código de bit de paridade par (3,2)

$$G = \begin{bmatrix} I_2 & P \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
 ou  $G = \begin{bmatrix} P & I_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ 



# 4. Códigos de Hamming

- Família de códigos lineares de bloco
- Têm dmin=3, logo corrigem todos os erros de 1 bit
- A motivação:  $P(2,n) \ll P(1,n)$
- Definidos por um parâmetro inteiro m (≥ 2) tal que:

$$(n,k) = (2^m - 1, 2^m - 1 - m)$$

Por exemplo, com m=3 tem-se o código (7,4)

 $\mathbf{c} = [\mathbf{m}_0 \ \mathbf{m}_1 \ \mathbf{m}_2 \ \mathbf{m}_3 \ \mathbf{b}_0 \ \mathbf{b}_1 \ \mathbf{b}_2]_{\mathbf{c}}$ 

Equações de paridade:

$$b_0 = m_1 \oplus m_2 \oplus m_3$$
$$b_1 = m_0 \oplus m_1 \oplus m_3$$

$$b_2 = m_0 \oplus m_2 \oplus m_3$$





## 4. Códigos de Hamming: forma matricial

$$\mathbf{c} = m\mathbf{G} = m\left[I_4 \mid P\right]$$

$$\mathbf{c} = m\mathbf{G} = m \begin{bmatrix} I_4 & P \end{bmatrix}$$

$$= \begin{bmatrix} m_0 & m_1 & m_2 & m_3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} m_0 & m_1 & m_2 & m_3 & b_0 & b_1 & b_2 \end{bmatrix}$$

- **G** é a matriz geradora do código
- Cada linha de **G** é uma palavra do código
- Todas as palavras do código são obtidas por combinação linear das linhas de G
- **G** é um conjunto de vetores linearmente independentes
- Gera 16 vetores de um total possível de 128; base de sub-espaço vetorial



### 4. Cálculos em MATLAB





• G está na forma sistemática

$$G = [P \mid I_4]$$

 As equações de paridade são diferentes das apresentadas no exemplo anterior



### 4. Cálculos em MATLAB

```
>> m1 = [0 1 0 1]; m2 = [1 1 0 1];

>> c1 = mod ( m1*G, 2 )

c1 =

1 1 0 0 1 0 1

>> c2 = mod ( m2*G, 2 )

c2 =

0 0 0 1 1 0 1
```

- Entre as mensagens m1 e m2 muda apenas um bit; entre as palavras de código c1 e c2 mudam três bits
- c1 resulta da soma módulo 2 da segunda e quarta linhas de G
- c2 resulta da soma módulo 2 da primeira, segunda e quarta linhas de **G**



### 4. Descodificador de canal: caraterísticas

- O descodificador:
  - 1. recebe a palavra **y** (possivelmente com erros)
  - 2. estima a palavra de código $\widehat{x}$  que lhe deu origem
  - 3. estima a mensagem  $\hat{m}$



- Funciona num dos modos:
  - 1. deteção
  - 2. correção
  - 3. deteção e correção



Se a palavra recebida y não pertence ao código, houve erro(s)

Um critério possível

# 4. Codificação / descodificação

O codificador gera as palavras de código através da matriz geradora G,
 com

$$c = m \times G$$

- No caso dos códigos sistemáticos temos G = [I<sub>k</sub> | P] sendo P a submatriz geradora de paridade.
- A matriz de controlo de paridade H definida por  $H = [P^T | I_{n-k}]$  permite verificar se existem erros na palavra recebida c, através do cálculo do síndroma (conjunto de sintomas)

$$s = c \times H^T$$

- Caso s seja nulo, não se detetam erros
- Caso contrário, existem erros detetados



# 4. Codificação / descodificação

- Codificação e descodificação matricial
- Na codificação temos

c= m × G = m × [
$$I_k \mid P$$
] = [ $m_0 m_1 ... m_{k-1} b_0 b_1 ... b_{q-1}$ ],

de forma a obter a concatenação k bits mensagem | q bits de paridade.

- Na descodificação é necessário obter os bits de mensagem, recalcular a paridade sobre estes e comparar com os bits de paridade enviados
- Para tal usa-se a matriz de controlo de paridade H = [P<sup>T</sup> | I<sub>n-k</sub>] no cálculo do síndroma

$$\mathbf{s} = \mathbf{c}\mathbf{H}^{\mathrm{T}} = \mathbf{m} G\mathbf{H}^{\mathrm{T}} = m[I_{k} \quad P] \begin{bmatrix} P \\ I_{q} \end{bmatrix} = [s_{0}s_{1}\cdots s_{q-1}]$$



# 4. Descodificação

- O síndroma é um vetor de q bits (H<sup>T</sup> tem dimensões n x q).
- Cada bit do síndroma corresponde à verificação da presença de erros no respectivo bit de paridade
- Na ausência de erros temos síndroma nulo porque GH<sup>T</sup> são ortogonais

$$s = cH^{T} = m GH^{T} = m[I_{k} \quad P] \begin{bmatrix} P \\ I_{q} \end{bmatrix} = [00 \cdots 0]$$

- Erros são detetados sempre que o síndroma não é nulo
- O valor do síndroma só depende do padrão de erro e; não depende da palavra de código

$$s = (c + e)H^{T} = cH^{T} + eH^{T} = [00 \cdots 0] + eH^{T} = eH^{T}.$$



# 4. Descodificação

- Cada padrão de 1 bit em erro, tem um síndroma único associado
- Sejam os padrões de erro
  - e1 = [1 0 .... 0], que corresponde ao primeiro bit errado
  - e2 = [0 1 .... 0], que corresponde ao segundo bit errado
- Para uma palavra de código c temos

$$s_1 = e_1 H^T$$
 = primeira linha de  $H^T$ .  
 $s_2 = e_2 H^T$  = segunda linha de  $H^T$ .

As linhas de H<sup>T</sup> são sempre não nulas



- Mecanismo de correção: exemplo para o código **Hamming** (7,4)
- Matrizes geradora **G** e de teste de paridade **H**<sup>T</sup>





- Tabela de síndromas para o código Hamming (7,4)
- O código tem 2<sup>3</sup>=8 síndromas:
  - síndroma nulo ausência de erro;

os outros 7 correspondem aos padrões de um bit em erro por

palavra

|         | 011   |
|---------|-------|
|         | 110   |
|         | 101   |
| $H^T =$ | 111   |
|         | 100   |
|         | 010   |
|         | 0 0 1 |

| Síndroma | Padrão de Erro | Observações      |
|----------|----------------|------------------|
| 000      | 0000000        | Ausência de erro |
| 011      | 1000000        | 1.º bit em erro  |
| 110      | 0100000        | 2.º bit em erro  |
| 101      | 0010000        | 3.º bit em erro  |
| 111      | 0001000        | 4.º bit em erro  |
| 100      | 0000100        | 5.º bit em erro  |
| 010      | 0000010        | 6.º bit em erro  |
| 001      | 000001         | 7.º bit em erro  |



- Sejam as palavras de código
  - $c_1 = [1000 \ 011]$

|   | • $c_2 = [0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0]$        |
|---|----------------------------------------------|
| • | Sejam as palavras recebidas no descodificado |
|   | • $v_4 = c_4 + [1000000] = [0000011]$        |

• 
$$y_2 = c_2 + [001000] = [0001010]$$

• 
$$y_3 = c_1 + [1 1 0 0 0 0 0] = [\underline{0} \underline{1} 0 0 0 1 1]$$

Os síndromas obtidos são

• 
$$s_1 = y_1 H^T = [0 \ 1 \ 1]$$

• 
$$s_2 = y_2 H^T = [1 \ 0 \ 1]$$

• 
$$s_3 = y_3 H^T = [1 \ 0 \ 1]$$



Dois erros na palavra



e

- Os padrões de erro associados são
  - $e_1 = [1000000]$
  - $e_2 = [0 \ 0 \ 1 \ 0 \ 0 \ 0]$
  - $e_3 = [0010000]$
- As palavras estimadas são

• 
$$c_1 = y_1 + e_1 = [\underline{\mathbf{0}} \ 0 \ 0 \ 0 \ 0 \ 1 \ 1] + [1 \ 0 \ 0 \ 0 \ 0 \ 0] = [1 \ 0 \ 0 \ 0 \ 1 \ 1]$$

• 
$$c_2 = y_2 + e_2 = [0001010] + [0010000] = [0011010]$$

• 
$$c_3 = y_3 + e_3 = [\underline{0} \, \underline{1} \, 0 \, 0 \, 0 \, 1 \, 1] + [0 \, 0 \, 1 \, 0 \, 0 \, 0] = [0 \, 1 \, 1 \, 0 \, 0 \, 1 \, 1]$$

As mensagens obtidas após correção

• 
$$m_1 = [1000]$$

• 
$$m_2 = [0\ 0\ 1\ 1]$$



Os dois erros na palavra implicaram erro após correcção (t=1)





e

## 5. Aplicações - Bit de paridade e Hamming

- Comunicação série assíncrona
  - 1 bit de paridade por cada byte
- Memórias RAM
  - 1 bit de paridade por cada byte
  - mais do que 1 bit de paridade ECC (Error Correcting Code)
     RAM
- Teletexto
  - Hamming (8,4) extensão do Hamming (7,4)
- Discos rígidos
  - Alguns usam código de Hamming existem bits de paridade por cada setor



# 5. Aplicações - Bit de paridade, repetição e Hamming

- RAID (Redundant Array of Independent Disks)
  - RAID 1 mirroring; código de repetição
  - RAID 2 Hamming system; no caso do Hamming (7,4) usa
     7 discos rígidos (4 dados + 3 paridade)
  - RAID 3 parallel transfer with parity drive; usa código bit de paridade, no qual existem vários discos de dados e um de paridade
- Bluetooth (comunicação sem fios)
  - Usa código de repetição (3,1) packet header
  - Usa Hamming modificado (15,10) application data



# 5. Aplicações - CRC32

- Norma Ethernet 802.3 (Rede Local LAN)
- Usa CRC32 (32 bits / 4 bytes) para verificação da integridade da trama;

$$g(X)=X^{32}+X^{26}+X^{23}+X^{22}+X^{16}+X^{12}+X^{11}+X^{10}+X^{8}+X^{7}+X^{5}+X^{4}+X^{2}+X+1$$

- O campo FCS-Frame Check Sequence no cabeçalho da trama tem sempre 32 bits, independentemente da dimensão da trama
- A dimensão máxima da trama é 1518 bytes (12144 bits)





# 5. Aplicações - CRC32

- Norma Ethernet 802.3  $g(X)=X^{32}+X^{26}+X^{23}+X^{22}+X^{16}+X^{12}+X^{11}+X^{10}+X^8+X^7+X^5+X^4+X^2+X+1$
- Existem sempre 32 bits de paridade
- A trama tem dimensão mínima e dimensão máxima; esta última é 1518 bytes (12144 bits); temos um código (n, n-32)

### Distância mínima em função da dimensão da trama n

| n            | d <sub>min</sub> |
|--------------|------------------|
| 3007 a 12144 | 4                |
| 301 a 3006   | 5                |
| 204 a 300    | 6                |
| 124 a 203    | 7                |
| 90 a 123     | 8                |

#### Fonte:

J. Moreira and P. Farrell, **Essentials of Error-Control Coding**, 2006, John Wiley and sons. [Pág. 93]



# 5. Aplicações - CRC32

- Codificador de fonte WinRar (e outros)
  - Usa CRC32 para verificação da integridade de cada ficheiro comprimido
  - Antes de descomprimir o ficheiro, verifica a integridade do ficheiro comprimido (cálculo do síndroma)





# 5. Aplicações - Outras aplicações

- Dígito de controlo do Bilhete de Identidade/Cartão de Cidadão
  - O último dígito do número do BI/CC serve para a deteção de erros
  - http://www.mat.uc.pt/~picado/SistIdent/mistBI.html
  - http://www.cognoscomm.com/arquivo/3067/101-cartao-do-cidadao/
- Dígito de controlo do ISBN (*International Standard Book* Number) tem uma funcionalidade idêntica
  - http://en.wikipedia.org/wiki/International Standard Book Number
- Outros dígitos de controlo (códigos de barras,....)
  - http://en.wikipedia.org/wiki/Check digit
  - https://en.wikipedia.org/wiki/International Article Number
  - https://en.wikipedia.org/wiki/International Article Number#Check d iait LEIC - Comunicação Digital



Tenha em conta os mecanismos de deteção e correção de erros usados nos códigos de bloco (n, k).

- a) Quais as vantagens e desvantagens da utilização destes códigos? Justifique.
- b) Indique, justificando, quais as técnicas normalmente utilizadas para estabelecer os bits redundantes para proceder à deteção/correção de erros. Exemplifique e relacione o número de bits redundantes com as capacidades de deteção e correção de erros.
- c) Considere que o ficheiro f demorou 5 segundos a ser transmitido, sem a utilização de códigos detetores e corretores de erros. Passando a transmitir o ficheiro f, no mesmo sistema, usando um código (8, 4), quanto tempo demorará essa transmissão?



# 6. Exercícios Solução

a) Vantagens: controlo de erros, diminuição de BER, aumento da qualidade de serviço (QoS).

Desvantagens: maior complexidade, mais tempo necessário para a transmissão (e retransmissão, quando necessário) e correção.

- b) Técnica de repetição e técnica de bits de paridade (XOR) Exemplo de repetição: mensagem=010 -> palavra de código=000 111 000 Exemplo de paridade par: mensagem=0110 -> palavra de código=011 101 As capacidades de deteção e correção de erros são diretamente proporcionais ao número de bits redundantes.
- c) Demorará o dobro do tempo, 10 segundos (no melhor caso).



Considere o código de controlo de erros cujas palavras estão organizadas na forma c =  $[m_0 m_1 b_0 b_1]$ , tais que  $b_0 = m_0 \oplus m_1$  e  $b_1 = m_1$ .

- a) Apresente todas as palavras de código.
- b) Calcule a distância mínima de Hamming.
- c) Calcule as capacidades de deteção e correção de erros.
- d) Suponha que se transmite a mensagem 01 e que sobre a palavra de código resultante é aplicado o padrão de erro 1010. Qual a mensagem descodificada? Comente.



### Solução

Código (4,2), com 4 palavras de código

0000

0111

1010

1101

- b) dmin=2
- c) deteção l=1 bits por bloco, correção t=0 bits (não tem).
- d) m=01 -> c=0111 -> y = c + e = 0111 + 1010 = 1101. A mensagem descodificada é 11 (os dois primeiros bits do bloco). Os dois erros introduzidos na transmissão não foram detetados.

Assuma uma transmissão digital com código Hamming (7,4), cujas palavras estão organizadas na forma  $c = [m_0 m_1 m_2 m_3 b_0 b_1 b_2]$ , com equações de paridade

$$b_0 = m_1 \oplus m_2 \oplus m_3$$
  $b_1 = m_0 \oplus m_1 \oplus m_3$   $b_2 = m_0 \oplus m_2 \oplus m_3$ 

- a) Sabendo que o número de bits a transmitir antes da aplicação do código é 40000, qual o número de bits a transmitir após a aplicação do código?
- b) Qual a sequência transmitida quando se enviam os bits de informação 10100011?
- c) Caso seja recebida a sequência 1010001, existem erros nesta sequência?



### Solução

- a) São transmitidos 40000 + 30000 = 70000 bits, no total.
- b) A sequência transmitida é 1010 110 0011 010.
- c) A palavra 1010 001 não pertence ao código. Logo, existem erros detetados nesta sequência.



Considere o código de bloco linear com palavras definidas por  $c = [m_0 m_1 m_2 b_0 b_1 b_2 b_3]$ , em que  $b_0 = m_0 \oplus m_1$ ,  $b_1 = m_2$ ,  $b_2 = m_1 \oplus m_2$  e  $b_3 = m_0 \oplus m_2$ .

- a) Indique as dimensões (n,k).
- b) Qual a distância mínima do código e as respetivas capacidades de deteção e correção de erros?
- c) Exemplifique uma deteção de erros.
- d) Apresente as matrizes geradora G e de teste de paridade transposta H<sup>T.</sup>



### Solução

$$(n,k) = (7,3).$$

- a) Listando as 8 palavras de código, conclui-se que a palavra de código com menor peso de Hamming tem peso igual a 3. Logo dmin=3, l=2 e t=1.
- b) Por exemplo, se a palavra de código 0010111 sofrer um erro no último bit, temos que a palavra recebida é 0010110. Esta palavra não pertence à lista de palavras de código, logo temos a presença de erro detetada.

Em alternativa, assumindo que os bits de mensagem recebidos 001 estão corretos, e se recalcularmos os bits de paridade teremos 0111, o que difere da configuração recebida 0110, detetando-se assim o erro

### Solução (Continuação)

d) 
$$G = [I_k | P] = [I_3 | P]$$
  
 $G = [100 1001$ 

$$H^{\mathsf{T}} = [P = [P \\ I_{\mathsf{q}}] \quad I_{\mathsf{4}}]$$

$$H^{T} = [1001]$$



Considere o polinómio gerador  $g(X) = X^4 + X^3 + X^2 + X + 1$  de código (10,6).

- a) Apresente a palavra de código c(X), quando a mensagem é 1 0 0 0 0 1.
- b) A palavra 1111111111 pertence ao código?

Considere o polinómio gerador  $g(X) = X^3 + X + 1$  do código (7,4).

- a) Quais das palavras 0000000, 1011000 e 0000011 pertencem ao código?
- b) Apresente todas as palavras de código.



### Solução

- a) c(X) = [1000010000].
- b) Sim. A palavra 1111111111 pertence ao código. Se dividirmos esta palavra pelo polinómio gerador, temos resto nulo. Isto significa que a palavra pertence ao código.

a) As palavras 0000000 e 1011000 pertencem ao código. Se dividirmos estas palavras pelo polinómio gerador, temos resto nulo. Isto significa que estas palavras pertencem ao código. Para a palavra 0000011 não se obtém resto nulo, pelo que não pertence ao código.



### Solução (continuação)

b) As 16 palavras de código.

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
| 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |



Suponha uma transmissão digital em que são enviados os bits de informação 1010. Considere que o controlo de erros é realizado através de CRC com polinómio gerador  $g(X) = X^3 + X + 1$ .

- a) Apresente a sequência binária transmitida.
- b) Provoque um erro nesta sequência binária e ilustre o funcionamento da deteção de erros.

Determine o tempo que demora a transmissão de um ficheiro com 1 024 000 bytes, considerando a utilização de modulação 16-QAM, com tempo de símbolo Ts =10  $\mu$ s, nos seguintes cenários:

- a) Ausência de códigos detetores e corretores de erros.
- b) Deteção de erros com código CRC7, estabelecido por  $g(X) = X^7 + X^6 + X^4 + 1$ , aplicado a blocos de mensagem com dimensão 1024 bits.



### Solução

- a) 1010011
- b) 1010001, é a sequência anterior com erro no penúltimo bit. Se dividirmos esta sequência pelo polinómio gerador obtemos o resto 010. Dado que o resto não é nulo, o descodificador/recetor deteta o erro.

Por outro lado, o resto da divisão de 1010011 pelo polinómio gerador, é nulo.

- a) Demora 20,48 segundos.
- b) Demora 20,62 segundos.



Considere o código (6,3) com matriz geradora

$$G = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

- a) Pretende-se estender este código adicionando um bit de paridade resultante da soma de todos os bits de mensagem; indique as dimensões (n,k) do código estendido e apresente as matrizes geradora e de teste de paridade.
- b) Qual o peso máximo dos padrões de erro que o código estendido consegue: i) detetar? ii) corrigir?



### Solução

b) O peso máximo de Hamming dos padrões de erro indica o número máximo de bits errados por palavra de código. Listando todas as palavras de código conclui-se que o menor peso de Hamming é 4. Logo dmin=4, l=3, t=1. Assim, deteta padrões de erro de até peso 3. Corrige padrões de erro de peso 1.



Seja o código de bloco linear sistemático (6,4) com as palavras organizadas na forma  $c = [m_0 \ m_1 \ m_2 \ m_3 \ b_0 \ b_1]$ . A sub-matriz geradora de paridade é

$$P = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

- a) Apresente as matrizes geradora G e de teste de paridade H<sup>T</sup>.
- b) Verifique se as palavras 000000, 001111 e 011010 pertencem ao código.
- c) Calcule a distância mínima do código e indique as capacidades de deteção e correção de erros.

#### Solução

- b) A palavra 000000 (Vetor nulo) pertence ao código.  $0\ 1$ ]; [001111] .  $H^T = [0\ 1]$ , logo a palavra 001111 não pertence ao código. [011010] .  $H^T = [0\ 0]$ , logo a palavra 011010 pertence ao código.
- c) Listando todas as palavras de código conclui-se que o menor peso de Hamming é 2. Logo dmin=2, l=1, t=0. Assim, deteta 1 bit erro e não tem capacidade de correção.

