Ordenamiento (sorting)

Ariel Bendersky^{1,2}, Nicolás D'Ippolito^{1,2}

¹ICC, UBA-CONICET

²Departamento de Computación, FCEyN,
Universidad de Buenos Aires, Buenos Aires, Argentina

Algoritmos y Estructuras de Datos II Segundo cuatrimestre de 2019

(2) Ordenar

- ¿En qué situaciones es necesario ordenar información?
- ¿Con qué objetivos?
- Problema clásico, muy estudiado.

(3) Suposiciones

- El problema de ordenamiento trabaja sobre un array de A[0...n-1] de elementos,
- que tienen una clave α_i ,
- tal que existe una relación de orden $<_{\alpha}$.
- Se busca que A contenga una permutación de su contenido inicial tal que $\forall i < n-1, A[i] <_{\alpha} A[i+1]$.
- Ojo: sorting in place.

(4) El método más intuitivo

- Recorro el arreglo y en cada posición i:
 - Seleccionar el mínimo elemento que se encuentra entre la posición actual y el final.
 - Ubicarlo en la posición *i*, intercambiándolo con el ocupante original de esa posición.
- Se Ilama Selection Sort.
- ¿Cuál es el invariante?
 - Los elementos entre la posición 0 y la posición i son los i+1 elementos más pequeños del arreglo original, y
 - los elementos entre la posición 0 y la posición i se encuentran ordenados,

(5) Complejidad

- ¿Cuántas operaciones realiza?
 - Hace *n* swaps.
 - ¿Y cuántas comparaciones?
 - Hay n-1 ejecuciones del ciclo principal.
- En la i-ésima iteración hay que encontrar el mínimo de entre n-i elementos y por lo tanto necesitamos n-i-1 comparaciones.
- $\sum_{i=0}^{n-2} (n-i-1) = \sum_{i=1}^{n-1} = \frac{n(n-1)}{2}$
- Observar que el costo no depende del eventual ordenamiento parcial o total del arreglo.

(6) Insertion Sort

- En Selection Sort teníamos una parte ya ordenada (digamos $0 \dots k$) y la extendíamos buscando el elemento que seguía para ubicar en la posición k+1.
- Este otro algoritmo propone tomar A[k+1] y ver qué lugar le corresponde dentro del rango A[0...k+1].
- Algoritmo:

```
Recorro el arreglo con i entre 0 y n-1:

// Inserto A[i] entre las posiciones 0 e i-1, es decir:

elem\_a\_insertar := A[i]
j := i-1
mientras (j >= 0 y A[j] > elem\_a\_insertar)
A[j+1] := A[j] // Voy desplazando.
j--

// Al salir del ciclo j es negativo o A[j] es \leq elem\_a\_insertar y
A[j+1] (si existe) es \geq elem\_a\_insertar.
A[j+1] := elem\_a\_insertar
```

(7) Insertion Sort (cont.)

- ¿Cuál es el invariante?
 - Los elementos entre la posición 0 y la posición i son los elementos que ocupaban las posiciones 0 a i del arreglo original, y
 - los elementos entre la posición 0 y la posición i se encuentran ordenados,
 - aunque no en sus posiciones definitivas.
 - El arreglo es una permutación del arreglo original (o sea que los elementos de las posiciones i+1 hasta n-1 son los que ocupaban esas posiciones en el arreglo original).

(8) Insertion Sort – complejidad

- n-1 ejecuciones del ciclo principal.
- En la i-ésima iteración hay que ubicar al elemento junto a otros i-1 elementos y por lo tanto necesitamos i-1 comparaciones.
- Costo: $\sum_{i=1}^{n-1} (i-1) = \frac{(n-1)(n-2)}{2}$
- Complejidad: $O(n^2)$
- ¿Y si está parcialmente ordenado?
- ¿Y si está ordenado al revés?

(9) Insertion Sort – otras características

- ¿De qué me sirve la parte del invariante que dice "pero no en sus posiciones definitivas"?
- Es estable.
- Un algoritmo es estable si mantiene el orden anterior de elementos con igual clave.
- ¿Para qué sirve la estabilidad?
- ¿Son estables los algoritmos que vimos hasta ahora?

(10) MergeSort

- ¿Podemos ordenar mediante D&C?
- Algoritmo:

Si n < 2, ya está ordenado.

Si no,

Dividir el arreglo en dos mitades.

Ordenarlas recursivamente.

Combinarlas mediante un merge.

- Complejidad?
- T(n) = 2T(n/2) + n
- Es decir, $T(n) = \Theta(n \log n)$.
- Lo veremos más en detalle la última clase.

(11) QuickSort

- Debido a C.A.R. Hoare
- Muy estudiado, analizado y utilizado en la práctica.
- Idea:
 - Supongamos que conocemos el elemento mediano del arreglo.
 - Separar el arreglo en dos mitades: los elementos menores que el mediano por un lado y los mayores por el otro.
 - Ordenar las dos mitades
 - ¡Y listo!
- ¿Y si no conocemos el mediano? ¡Lo buscamos!

(12) QuickSort

- QuickSort(A, inicio, fin) if (fin-inicio<2) return pivot:= elegir_pivot(A, inicio, fin) nueva_posición_pivot:= separar(A, pivot, inicio, fin) QuickSort(A, inicio, nueva_posición_pivot) QuickSort(A, nueva_posición_pivot+1, fin)
- La elección del pivote es clave.
- Si elijo el del medio, la separación puede llegar a $O(n^2)$.
- Si elijo mejor, me toma más tiempo pero la separación puede ser más eficiente.

(13) QuickSort (cont.)

- ¿Cuál es su complejidad?
- Peor caso: $O(n^2)$
- Caso promedio: $O(n \log n)$ (demo igual a MergeSort, por TM).
- Mejor caso: $O(n \log n)$.
- En la práctica es muy eficiente.

(14) QuickSort, peor caso

- El elemento pivot es siempre el mínimo.
- Costo = $O(n-1+n-2+...+2+1) = O(n^2)$

(15) QuickSort, mejor caso

log n+1 veces

- *n* potencia de 2 por simplicidad.
- Costo = $n + 2\frac{n}{2} + 4\frac{n}{4} + \ldots + n\frac{n}{n}$

$$\bullet = \sum_{i=0}^{\log n} 2^{i} \frac{n}{2^i} = n \log(n+1)$$

(16) Cota inferior

- ¿Cuánto nos toma ordenar?
- ¿Podremos hacerlo en menos de $O(n \log n)$ en el peor caso?
- ¿Cómo podemos analizar eso?

(17) Formalicemos

- Observación fundamental: todos los algoritmos deben comparar elementos (es decir, ese es nuestro modelo de cómputo).
- Dados a_i y a_k , tres casos posibles: $a_i < a_k$, $a_i > a_k$, o $a_i = a_k$.
- Supongamos por simplicidad que todos los a_i son distintos.
- Por ende, supongamos también que todas las comparaciones tienen la forma a_i < a_k.
- Nota: si los elementos pueden tener valores iguales entonces se consideran solamente comparaciones del tipo $a_i \leq a_k$.

(18) Árboles de decisión

Árbol de decisión para el conjunto $\{a_1, a_2, a_3\}$

- Un árbol de decisión representa las comparaciones ejecutadas por un algoritmo sobre un input dado.
- Cada hoja corresponde a una de las posibles permutaciones.

(19) Árboles de decisión (cont.)

Árbol de decisión para el conjunto $\{a_1, a_2, a_3\}$

- Hay n! posibles permutaciones.
- Por ende, el árbol debe contener n! hojas.
- La ejecución de un algoritmo corresponde a un camino en el árbol de decisión correspondiente al input considerado.

(20) Árboles de decisión (cont.)

- El camino más largo de la raíz a una hoja (altura) representa el número de comparaciones que el algoritmo tiene que realizar en el caso peor.
- Teorema: cualquier árbol de decisión que ordena n elementos tiene altura $\Theta(n \log n)$.
- Demostración (esquema):
 - 1) Un árbol de decisión es un árbol binario.
 - 2) Con n! hojas.
 - 3) Altura mínima de un árbol binario de x hojas: $\Theta(\log x)$.
 - 4) De 1, 2 y 3, sale que la altura mínima de un árbol de decisión es $\Theta(\log n!) = \Theta(n \log n)$.

(21) Árboles de decisión (cont.)

- Corolario: ningún algoritmo de ordenamiento tiene complejidad mejor que $\Theta(n \log n)$.
- Corolario: el algoritmo MergeSort tiene complejidad asintótica óptima.
- ¿Ninguno?
- Notar que existen algoritmos de ordenamiento con complejidad más baja, pero requieren ciertas hipótesis extra sobre el input.
- Tarea: leer de los libros: Bubble Sort $(O(n^2))$, Counting Sort, Bucket Sort y Radix Sort (O(n), no basados en comparaciones pero con requerimientos y suposiciones particulares).

(22) Hoy vimos

- Distintos algoritmos para ordenar.
- Los más simples (insertion y selection) tardan $O(n^2)$.
- Mergesort y Quicksort tardan $O(n \log n)$.
- Vimos que esa complejidad es óptima.
- Lo que viene: Colas de prioridad.