Pregunta 1 (2 puntos)

- a) Sean, $p_1, p_2, \ldots, p_k \in \mathbb{N}^*$, k números primos distintos. Demuestre que el número $N = p_1 p_2 \ldots p_k + 1$ no es divisible por ningún p_i siendo $i = 1, 2, \ldots, k$.
- b) Deduzca de lo anterior que existen infinitos números primos.

Nota. Se recuerda que un número natural primo es un número natural n estrictamente mayor que 1 que tiene únicamente dos divisores naturales distintos: el 1 y él mismo.

Pregunta 2 (3 puntos) Sea la sucesión a_n definida por recurrencia mediante:

$$\begin{cases} a_0 = 4 \\ a_{n+1} = \frac{2a_n^2 - 3}{a_n + 2} \end{cases}$$

- a) Demuestre, por inducción, que $a_n 3 > 0$ para todo $n \in \mathbb{N}$.
- b) Demuestre que $a_{n+1} 3 \frac{3}{2}(a_n 3) > 0$ para todo $n \in \mathbb{N}$.
- c) Demuestre, por inducción, que $a_n \geqslant \left(\frac{3}{2}\right)^n + 3$ para todo $n \in \mathbb{N}$.

Pregunta 3 (2,5 puntos) Sea $f: [0,1] \longrightarrow [0,1]$ una aplicación creciente, es decir, para todo $x, x' \in [0,1]$, si $x \leq x'$ entonces $f(x) \leq f(x')$. Sea $A = \{x \in [0,1] \mid f(x) \leq x\}$.

- a) Demuestre que $A \neq \emptyset$.
- b) Demuestre que $f(A) \subset A$.
- c) Sea $a = \inf(A)$. Demuestre que f(a) es una cota inferior de A y deduzca que f(a) = a.

Pregunta 4 (2,5 puntos) En el conjunto $\mathcal{G} = \{z = a + ib \in \mathbb{C} \mid a, b \in \mathbb{Z}\}$, se considera las restricciones a \mathcal{G} de la suma y el producto de números complejos.

- a) Demuestre que si $z, z' \in \mathcal{G}$ entonces z + z' y $zz' \in \mathcal{G}$.
- b) Determine el conjunto de todos los elementos de \mathcal{G} con inverso en \mathcal{G} .
- c) Demuestre que para todo $\omega \in \mathbb{C}$ existe $z \in \mathcal{G}$ tal que $|\omega z| < 1$.