Theorem: (R-1)-1 = R Ket R be a relation between two sets A and B. Then, R' will be an inverse relation from B Required to prove (RTP): 1) (R') - S E R 2) R ≤ (₹') \. 1) Let (x13) €(R1)-1.7 Then, $(3,x) \in \mathbb{R}^1$ $\therefore (\mathbb{R}^1)^{-1} \subseteq \mathbb{R}$ $\Rightarrow (3,3) \in \mathbb{R}$. 2) Let $(\pi, \pi) \in \mathbb{R}$ Then, $(9, \pi) \in \mathbb{R}^1$ }: $\mathbb{R} \subseteq (\mathbb{R}^1)^{-1}$. $\Rightarrow (\pi, \pi) \in (\mathbb{R}^1)^{-1}$ $S = \{(n,n) \in N \times N \mid x+y=5\}$ RTP: Sis symmetric. $(21) \in S$. Then, n+n=5 カッチャ=5 = (y,*) ES $a^{5} a \Rightarrow a^{5} x, \forall x, y \in N.$ A = A, $B = \{3, 4\}$ AxB={(1,3),(1,