Car Accident Severity Prediction

Shubhaan Saxena, Jinyong Xie, Yash Sharma

Data Overview (US Accidents Dataset (2016-2023)

- Total rows: ~7.7 million accidents
- 45 columns
- Time Frame: February 2016 March 2023
- Coverage 49 US states
- Data Source: Streaming traffic incident data from:
 - State Departments of Transportation
 - Law Enforcement Agencies
 - Traffic Cameras and Sensors

Column Name	Description
Severity (Target Variable)	Impact (1= minor, 4=major traffic impact)
State	State where the accident occured (ex. CA, TX, FL).
Weather Condition	(Rain, snow, fog, etc)
Temperature (F)	Temperature at time of the accident
Visibility (mi)	Visibility at the location
Wind Speed(mph)	Wind speed at the time of the crash
Wind Direction	(N, S, E, W)

Project Implication & Business Application

- Use Case: Predict accident severity based on weather conditions, location, and time of the day.
 - o Insurance companies can spike rates on highly prone accident areas.
 - Traffic agencies can use accident density maps to design safer intersections.
 - Help in allocating emergency response units more efficiently
- Self-driving car companies (Tesla, Waymo) can train model accident scenarios to improve vehicle decision-making.
 - Companies like Uber, Lyft and google maps can use real-time accident prediction models to reroute drivers.
- Governments can analyze accident trends to propose safer regulations (road improvements, speed limits).

Time of Day	Top State with Most Accidents
Afternoon (12 PM - 5 PM)	CA
Evening (5 PM - 9 PM)	CA
Morning (5 AM - 12 PM)	CA
Night (9 PM - 5 AM)	CA

Histogram of Accidents Based on Weather Conditions

Cleaning & Preprocessing Overview

- 1. Drop columns with majority of missing value & imputation (numerical→ median;categorical→ "unknown")
- 2. Datatype Conversation (eg. boolean, datetype)
- 3. Feature Engineering (hours, dayofweek,)
- 4. Target Variable Conversion (severity → severity binary)
- 5. StandardScaler (distance, temperature, humanity)
- 6. OneHotEncoder
- 7. SMOTE for oversampling training set

Drop columns with majority of missing value & imputation

```
df_nan.columns = ['Feature','Count']
 drop = df_nan.loc[df_nan['Count']>250000]
 droplist = drop.Feature.tolist()
 droplist
 ['End_Lat', 'End_Lng', 'Wind_Chill(F)', 'Wind_Speed(mph)', 'Precipitation(in)']
 df = df.drop(columns = droplist)
categorical_cols = df.select_dtypes(include=['object', 'category']).columns
df[categorical_cols] = df[categorical_cols].fillna("Unknown")
```

```
df[numeric_list] = df[numeric_list].fillna(df[numeric_list].median())
```

Datatype Conversation (eg. boolean, datetype)

df_cleaned["Start_Time"] = pd.to_datetime(df_cleaned["Start_Time"])

df_cleaned["End_Time"] = pd.to_datetime(df_cleaned["End_Time"])

```
# select all boolean datatype
boolean_columns = df_cleaned.select_dtypes(include=['bool'])
boolean_columns.info()

df_cleaned["Start_Time"] = df_cleaned["Start_Time"].str.split('.').str[0] # Remove nanoseconds
df_cleaned["End_Time"] = df_cleaned["End_Time"].str.split('.').str[0] # Remove nanoseconds
```

Feature Engineering

```
df_cleaned["Start_Hour"] = df_cleaned["Start_Time"].dt.hour

df_cleaned["Start_DayOfWeek"] = df_cleaned["Start_Time"].dt.dayofweek

df_cleaned["End_Hour"] = df_cleaned["End_Time"].dt.hour
```

Target Variable Conversation (severity \rightarrow severity binary)

```
# Define mapping for binomial classification
df_cleaned['Severity_Binary'] = df_cleaned['Severity'].map(lambda x: 0 if x in [1, 2] else 1)

# Verify class distribution
print(df_cleaned['Severity_Binary'].value_counts())

df_cleaned.drop(columns=['Severity'], inplace=True)

Severity_Binary
0 6224347
1 1504047
Name: count, dtype: int64
```

Deal with specific important feature before encoder

```
# Define weather categories based on provided weather conditions
weather categories = {
    'Clear': ['Clear', 'Fair', 'Mostly Clear'],
    'Cloudy': ['Partly Cloudy', 'Mostly Cloudy', 'Overcast', 'Cloudy'],
    'Rain': ['Light Rain', 'Rain', 'Heavy Rain', 'Rain Shower', 'Drizzle', 'Heavy Drizzle',
             'Light Drizzle', 'Light Rain Showers', 'Rain Showers', 'Heavy Rain Showers'],
    'Thunderstorm': ['Thunderstorms and Rain', 'Thunderstorm', 'T-Storm', 'Thunder',
                     'Heavy Thunderstorms and Rain', 'Thunder in the Vicinity',
                     'Thunder / Windy', 'Thunder and Hail', 'Thunder and Hail / Windy',
                     'Thunder / Wintry Mix'],
    'Snow': ['Light Snow', 'Snow', 'Heavy Snow', 'Light Snow Showers', 'Snow Showers',
             'Snow / Windy', 'Blowing Snow', 'Blowing Snow Nearby', 'Heavy Blowing Snow',
             'Snow and Thunder', 'Snow and Sleet', 'Light Snow and Sleet', 'Snow and Sleet / Windy',
             'Heavy Snow with Thunder', 'Heavy Snow / Windy'],
    'Fog/Haze': ['Haze', 'Fog', 'Shallow Fog', 'Mist', 'Patches of Fog', 'Light Fog',
                 'Fog / Windy', 'Dense Fog', 'Partial Fog', 'Patches of Fog / Windy',
                 'Shallow Fog / Windy'],
    'Windy/Dusty': ['Blowing Sand', 'Blowing Dust', 'Blowing Dust / Windy', 'Widespread Dust',
                    'Widespread Dust / Windy', 'Duststorm', 'Sand', 'Blowing Snow / Windy',
                    'Sand / Dust Whirlwinds', 'Sand / Dust Whirls Nearby', 'Sand / Windy',
                    'Heavy Duststorm'],
    'Icy/Freezing': ['Light Freezing Drizzle', 'Light Freezing Rain', 'Freezing Drizzle',
                     'Freezing Rain', 'Light Freezing Rain / Windy', 'Heavy Freezing Rain',
                     'Heavy Freezing Rain / Windy', 'Ice Pellets', 'Heavy Ice Pellets',
                     'Light Ice Pellets'],
    'Hail/Sleet': ['Hail', 'Small Hail', 'Light Hail', 'Heavy Sleet', 'Sleet',
                   'Light Sleet', 'Heavy Sleet / Windy', 'Sleet / Windy'],
    'Extreme': ['Tornado', 'Volcanic Ash', 'Squalls', 'Squalls / Windy', 'Funnel Cloud',
                'Dust Whirls', 'Heavy Smoke', 'Wintry Mix', 'Wintry Mix / Windy']
```

StandardScaler & OneHotEncoder

```
scaler = StandardScaler()
df_scaled = df_cleaned.copy()

df_scaled[numerical_cols] = scaler.fit_transform(df_cleaned[numerical_cols])
```

```
encoder = OneHotEncoder(handle_unknown='ignore')

# Fit and transform the categorical features for the training set
X_train_encoded = encoder.fit_transform(X_train[categorical_cols])
X_test_encoded = encoder.transform(X_test[categorical_cols])

# Convert sparse matrix to dense array
X_train_encoded = X_train_encoded.toarray()
X_test_encoded = X_test_encoded.toarray()

# Ensure that we get the correct feature names from the encoder
encoded_columns = encoder.get_feature_names_out(categorical_cols)

# Check the shape of the encoded arrays and column names to avoid mismatch
print("Shape of X_train_encoded:", X_train_encoded.shape)
print("Encoded columns:", encoded_columns)
```

SMOTE for oversampling

```
from imblearn.over_sampling import SMOTE
from sklearn.model_selection import train_test_split
# Apply SMOTE to the training data
smote = SMOTE(sampling_strategy='auto', random_state=42)
X_train_resampled, y_train_resampled = smote.fit_resample(X_train_encoded, y_train)
```

```
y_train_resampled.value_counts()
y_train.value_counts()

Severity_Binary
0    128668
1    128668
Name: count, dtype: int64

Severity_Binary
0    128668
1    31332
Name: count, dtype: int64
```

Model Building

- We used the following models to see how results would vary
 - Logistic Regression
 - Random Forest
 - XGBoost
 - o SVM
 - Neural Network
- We sampled 200,000 rows of our dataset.
- We used RandomizedSearchCV() to tune our models as GridSearchCV() was too exhaustive.

Logistic Regression

```
param_dist = {
    'C': np.logspace(-3, 3, 7), # Regularization strength (log scale)
    'penalty': ['l2'],
    'solver': ['liblinear', 'saga'], # Solvers for optimization
    'max_iter': [100, 200, 500, 1000] # Number of iterations for convergence
# Initialize the model
model = LogisticRegression()
random_search = RandomizedSearchCV(estimator=model, param_distributions=param_dist,
                                   n iter=10, cv=5, scoring='accuracy', n jobs=-1, random state=42)
random_search.fit(X_train_resampled, y_train_resampled)
# Best parameters
print("Best Parameters from RandomizedSearchCV:", random_search.best_params_)
# Use the best estimator
best_model = random_search.best_estimator_
# predict
y_pred = best_model.predict(X_test_encoded)
```

Random Forest

```
# Define the distribution of hyperparameters to sample from
param dist rf = {
    'n estimators': [100, 200, 500, 1000], # Number of trees
    'max_depth': [10, 20, 30, None], # Depth of trees
    'min_samples_split': [2, 5, 10], # Min samples to split a node
    'min_samples_leaf': [1, 2, 4], # Min samples in a leaf node
    'bootstrap': [True, False] # Whether to use bootstrap sampling
# Initialize the model
rf model = RandomForestClassifier(random state=42)
# Initialize RandomizedSearchCV
random search rf = RandomizedSearchCV(estimator=rf model, param distributions=param dist rf,
                                      n iter=10, cv=5, scoring='accuracy', n jobs=-1, random state=42)
# Fit to training data
random search rf.fit(X train resampled, y train resampled)
# Best parameters
print("Best Parameters from RandomizedSearchCV (RF):", random search rf.best params )
# Use the best model f
best rf model = random search rf.best estimator
# predict
y pred rf = best rf model.predict(X test encoded)
```

Random Forest

XGBoost

```
param dist_xqb = {
    'n_estimators': [100, 200, 500, 1000], # Number of boosting rounds
    'max_depth': [3, 6, 9, 12], # Maximum depth of trees
    'learning_rate': [0.01, 0.05, 0.1, 0.2], # Step size shrinkage
    'subsample': [0.6, 0.8, 1.0], # Fraction of data used for training each tree
    'colsample_bytree': [0.6, 0.8, 1.0], # Fraction of features used per tree
    'gamma': [0, 0.1, 0.2, 0.5], # Minimum loss reduction required to make a split
    'reg_lambda': [1, 5, 10] # L2 regularization term
# Initialize the model
xqb_model = XGBClassifier(use_label_encoder=False, eval_metric='logloss', random_state=42)
# Initialize RandomizedSearchCV
random search xqb = RandomizedSearchCV(estimator=xqb model, param distributions=param dist xqb,
                                       n iter=10, cv=5, scoring='accuracy', n jobs=-1, random state=42)
# Fit to training data
random_search_xgb.fit(X_train_resampled, y_train_resampled)
# Best parameters
print("Best Parameters from RandomizedSearchCV (XGBoost):", random search_xgb.best_params_)
# Use the best model
best_xgb_model = random_search_xgb.best_estimator_
# predict
y_pred_xgb = best_xgb_model.predict(X_test_encoded)
```

XGBoost

SVM

```
# Define hyperparameter distribution
param dist = {
    'C': np.logspace(-3, 3, 7), # Regularization parameter
    'gamma': ['scale', 'auto'] + list(np.logspace(-3, 2, 6)), # Kernel coefficient for RBF/Sigmoid
    'kernel': ['linear', 'rbf', 'poly', 'sigmoid'], # Types of kernel
    'degree': [2, 3, 4], # Degree for polynomial kernel
# Initialize model
svm model = SVC()
# Initialize RandomizedSearchCV
random_search = RandomizedSearchCV(estimator=svm_model, param_distributions=param_dist,
                                   n_iter=10, cv=5, scoring='accuracy', n_jobs=-1, random_state=42)
# Fit to the training data
random_search.fit(X_train_resampled, y_train_resampled)
# Best parameters
print("Best Parameters from RandomizedSearchCV:", random_search.best_params_)
# Use the best model
best_svm_model = random_search.best_estimator_
# predict
y_pred = best_svm_model.predict(X_test_encoded)
```

Neural Network

```
# Define the Neural Network Model
model = Sequential([
    Dense(64, activation='relu', input_shape=(X_train_resampled.shape[1],)),
    Dropout(0.2),
    Dense(32, activation='relu'),
    Dropout (0.2),
    Dense(1, activation='sigmoid') # Sigmoid for binary classification
])
# Compile the model
model.compile(optimizer=keras.optimizers.Adam(learning_rate=0.001),
              loss='binary_crossentropy',
              metrics=['accuracy'])
# Train the model
history = model.fit(X_train_resampled, y_train_resampled, epochs=20, batch_size=32, validation_data=(X_test_encoded,
                                                                                                      y_test))
# Evaluate the model
test loss, test acc = model.evaluate(X test encoded, y test)
print(f"Test Accuracy: {test_acc:.4f}")
```

Evaluation

• Recall - true positive rate - focuses on minimizing false negatives and correctly predicting true positives.

Logistic Regression Results

Classificat	ion				
		precision	recall	f1-score	support
	0	0.89	0.68	0.77	16087
9	1	0.33	0.64	0.43	3913
accurac	у			0.67	20000
macro av	g	0.61	0.66	0.60	20000
weighted av	g	0.78	0.67	0.70	20000
NOSC U					

Random
Forest
Results

Classification	Report (RF): precision	recall	f1-score	support
0 1	0.84 0.32	0.80 0.39	0.82 0.35	16087 3913
accuracy macro avg weighted avg	0.58 0.74	0.59 0.72	0.72 0.59 0.73	20000 20000 20000

XGBoost Results

Classification	Report (XGB	oost):		
	precision	recall	f1-score	support
	102-10 102-102-10			
0	0.85	0.82	0.83	16087
1	0.34	0.39	0.36	3913
accuracy			0.73	20000
macro avg	0.59	0.60	0.60	20000
weighted avg	0.75	0.73	0.74	20000

	Classification	Report: precision	recall	f1-score	support
SVM Results	0 1	0.83 0.31	0.84 0.30	0.83 0.30	1612 388
	accuracy macro avg weighted avg	0.57 0.73	0.57 0.73	0.73 0.57 0.73	2000 2000 2000
	67 5 .5	precision	recall	f1-score	support
Neural Network	0 1	precision 0.87 0.34	recall 0.74 0.53	f1-score 0.80 0.41	support 16087 3913

Evaluation

- Best Models
 - Recall: Logistic Regression
 - Overall Accuracy: XGBoost
- Future Considerations
 - Setting 'scoring' parameter to recall
 - Tuning the neural network

Summary

- Accidents are highly concentrated in urban areas, especially in major cities like Los Angeles, Dallas, Atlanta, Houston, and Miami.
 - high traffic congestion
 - frequent stop and go traffic
 - Infrastructure challenges
 - The midwest and Northern states show fewer accidents due to lower traffic density
- Morning rush hours contribute to the most accidents, requiring better urban planning, traffic control, and public awareness.
- The most important features are Wind Direction, Weather Conditions, and State.
- A logistic regression or a neural network should be used to best predict the severity of a car accident.

Thank you! Questions?