Problem 1

Let \mathcal{F} and \mathcal{G} be σ -fields of subsets of Ω .

- (a) Use elementary set operations to show that \mathcal{F} is closed under countable intersections; that is, if A_1, A_2, \ldots are in \mathcal{F} , then so is $\bigcap A_i$.
- (b) Let $\mathcal{H} = \mathcal{F} \cap \mathcal{G}$ be the collection of subsets of Ω lying in both \mathcal{F} and \mathcal{G} . Show that \mathcal{H} is a σ -field.
- (c) Show that $\mathcal{F} \cup \mathcal{G}$, the collection of subsets of Ω lying in either \mathcal{F} or \mathcal{G} , is not necessarily a σ -field.

Proof.

(a) :Let $A_1, A_2, \ldots \in \mathcal{F}$. Then $A_1^c, A_2^c, \ldots \in \mathcal{F}$. Since \mathcal{F} is a σ -field, we have $\bigcup_i A_i \in \mathcal{F}$. By De Morgan's Law, $\left(\bigcap_i A_i\right)^c = \bigcup_i A_i^c \in \mathcal{F}$. Hence, $\bigcap_i A_i \in \mathcal{F}$.

- (b) :1. Since $\Omega \in \mathcal{F}$ and $\Omega \in \mathcal{G}$, we have $\Omega \in \mathcal{H}$.
 - 2. $\forall A \in \mathcal{H}$, we have $A \in \mathcal{F}$ and $A \in \mathcal{G}$, so $A^c \in \mathcal{F}$ and $A^c \in \mathcal{G}$, hence $A^c \in \mathcal{H}$.
 - 3. $\forall A_1, A_2, \ldots \in \mathcal{H}$, we have $A_1, A_2, \ldots \in \mathcal{F}$ and $A_1, A_2, \ldots \in \mathcal{G}$, so $\bigcup_i A_i \in \mathcal{F}$ and $\bigcup_i A_i \in \mathcal{G}$, hence $\bigcup_i A_i \in \mathcal{H}$.
- (c) :Counterexample: Let $\Omega = \{1, 2, 3\}$, $\mathcal{F} = \{\emptyset, \{1, 2\}, \{3\}, \Omega\}$, $\mathcal{G} = \{\emptyset, \{1\}, \{2, 3\}, \Omega\}$. Then $\{1, 2\} \in \mathcal{F}$ and $\{1\} \in \mathcal{G}$, but $\{1, 2\} \cup \{1\} = \{1, 2\} \notin \mathcal{F} \cup \mathcal{G}$. Hence, $\mathcal{F} \cup \mathcal{G}$ is not necessarily a σ -field.

Problem 2

Let A_1, A_2, \ldots be a sequence of events. Define

$$B_n = \bigcup_{m=n}^{\infty} A_m, \quad C_n = \bigcap_{m=n}^{\infty} A_m$$

Clearly $C_n \subseteq A_n \subseteq B_n$. The sequences $\{B_n\}$ and $\{C_n\}$ are decreasing and increasing respectively with limits

$$\lim B_n = B = \bigcap_n B_n = \bigcap_n \bigcup_{m \ge n} A_m, \quad \lim C_n = C = \bigcup_n C_n = \bigcup_n \bigcap_{m \ge n} A_m$$

The events B and C are denoted $\limsup_{n\to\infty} A_n$ and $\liminf_{n\to\infty} A_n$ respectively. Show that

- (a) $B = \{ \omega \in \Omega : \omega \in A_n \text{ for infinitely many values of } n \},$
- (b) $C = \{ \omega \in \Omega : \omega \in A_n \text{ for all but finitely many values of } n \},$ We say that the sequence $\{A_n\}$ converges to $A = \lim A_n$ if B and C are the same set A. Suppose that $A_n \to A$ and show that
- (c) A is an event, i.e. $A \in \mathcal{F}$,
- (d) $\mathbb{P}(A_n) \to \mathbb{P}(A)$.

Proof.

(a) :Since by defination:
$$B = \bigcap_{n} \bigcup_{m \ge n} A_m$$

$$\Rightarrow$$
Suppose $\omega \in B$, then $\omega \in \bigcup_{m \geq n} A_m$ for all $n \in \mathbb{N}$

This means for each n, we can find an $m \geq n$ such that $\omega \in A_m$

Hence, $\omega \in A_n$ for infinitely many values of n

 \Leftarrow Suppose $\omega \in A_n$ for infinitely many values of n,

then for each n, we can find an $m \geq n$ such that $\omega \in A_m$

This means
$$\omega \in \bigcup_{m \geq n} A_m$$
 for all $n \in \mathbb{N}$

Hence,
$$\omega \in \bigcap_{n} \bigcup_{m>n} A_m = B$$

(b) :
$$\Rightarrow$$
Suppose $\omega \in C$, then $\exists n \in \mathbb{N}$ such that $\omega \in \bigcap_{m \geq n} A_m$

This means $\exists n \in \mathbb{N}$ such that $\omega \in A_m$ for all $m \geq n$

Hence, $\omega \in A_n$ for all but finitely many values of n

 \Leftarrow Suppose $\omega \in A_n$ for all but finitely many values of n,

then $\exists n \in \mathbb{N} \text{ such that } \omega \in A_m \text{ for all } m \geq n$

This means
$$\omega \in \bigcap_{m \in \mathbb{N}} A_m$$

This means
$$\omega \in \bigcap_{m \geq n} A_m$$

Hence, $\omega \in \bigcup_n \bigcap_{m > n} A_m = C$

(c) :Since
$$A_n \to A$$
, so $\lim_{n \to +\infty} A_n = \limsup_{n \to +\infty} A_n = \liminf_{n \to +\infty} A_n$

So we have A = B = C

Since B_n are countable unions of A_m , so $B_n \in \mathcal{F}$ for all $n \in \mathbb{N}$

Then,
$$B = \bigcap_{n} B_n \in \mathcal{F}$$

Hence, we have $A \in \mathcal{F}$

(d):Since
$$C_n \subseteq A_n \subseteq B_n$$
, we have $\mathbb{P}(C_n) \leq \mathbb{P}(A_n) \leq \mathbb{P}(B_n)$

Since C_n increases to C, B_n decreases to B,

we have
$$\mathbb{P}(C_n) \to \mathbb{P}(C) = \mathbb{P}(A), \mathbb{P}(B_n) \to \mathbb{P}(B) = \mathbb{P}(A)$$

Hence by squeeze theorem, $\mathbb{P}(A_n) \to \mathbb{P}(A)$

Problem 3

Let \mathcal{E} be the left open right closed intervals of $\Omega := \mathbb{R}$ defined in class. Write down the algebra generated by \mathcal{E} , and prove your result.

We have $\mathcal{E} = \{ \text{left open right closed intervals} \} = \begin{cases} (a, b], & -\infty \le a < b < +\infty \\ (a, +\infty) \end{cases}$

$$a(\mathcal{E}) =$$
 "finite disjioint union of elements in \mathcal{E} "
$$= \underbrace{\{I_1 \cup \cdots \cup I_k; I_j \in \mathcal{E}, \text{ and } I_i \cap I_j = \emptyset\}}_{f}$$

Proof. Denote the collection of finite disjoint union of elements in \mathcal{E} by f

- $f \subseteq a(\mathcal{E})$
 - Since $a(\mathcal{E})$ is an algebra containing \mathcal{E} , it is closed under finite unions.
 - Any element of f is a finite disjoint union of intervals from \mathcal{E} , hence belongs to $a(\mathcal{E})$.
 - Thus, $f \subseteq a(\mathcal{E})$
- $a(\mathcal{E}) \subseteq f$
 - we need to prove that f is an algebra
 - * since $\Omega = \mathbb{R} = (-\infty, +\infty)$, choose $I_1 = (-\infty, a], I_2 = (a, +\infty) \in \mathcal{E}$, then $I_1 \cup I_2 = \Omega \in f$
 - * for $\forall I_i, I_j \in f, I_i \cup I_j \in f$ by defination

- * for $\forall (a, b] \in f$, we have $(a, b]^c = (-\infty, a] \cup (b, +\infty) \in f$ for $\forall (a, +\infty) \in f$, we have $(a, +\infty)^c = (-\infty, a] \in f$
- since $\mathcal{E} \subseteq f$, f is an algebra and $a(\mathcal{E})$ is the smallest algebra containing \mathcal{E} , Hence, $a(\mathcal{E}) \subseteq f$

Problem 4

Let Ω be a sample space. Show that any finite algebra on Ω is a σ -algebra.

Proof. Let \mathcal{A} be a finite algebra on Ω , and we can write $\mathcal{A} = \{A_1, A_2, \dots, A_n\}$.

- Since \mathcal{A} is an algebra, $\Omega \in \mathcal{A}$.
- Since \mathcal{A} is an algebra, if $A_i \in \mathcal{A}$, then $A_i^c \in \mathcal{A}$.
- Since A is an algebra, if A_i, A_j ∈ A, then A_i ∪ A_j ∈ A.
 Let {B_i}_{i∈I} be a countable family of subsets of Ω, where I is a countable index set, and each B_i ∈ A. Since A is finite, the image of the function f : I → A defined by f(i) = B_i is finite. That is, there are only finitely many distinct sets in {B_i}_{i∈I}. Let these distinct sets be C₁, C₂,..., C_m, where m ≤ n and C_k ∈ A for all k = 1, 2,..., m.

The countable union $\bigcup_{i \in I} B_i$ can therefore be written as:

$$\bigcup_{i \in I} B_i = C_1 \cup C_2 \cup \dots \cup C_m.$$

Since A is an algebra, it is closed under finite unions. By induction:

- For m = 1, $C_1 \in \mathcal{A}$.
- Assume $C_1 \cup C_2 \cup \cdots \cup C_k \in \mathcal{A}$ for some $m = k \ge 1$.
- Then, $(C_1 \cup C_2 \cup \cdots \cup C_k) \cup C_{k+1} \in \mathcal{A}$ because \mathcal{A} is closed under binary unions.

Thus, $C_1 \cup C_2 \cup \cdots \cup C_m \in \mathcal{A}$, and we conclude:

$$\bigcup_{i\in I} B_i \in \mathcal{A}.$$

Therefore, \mathcal{A} is a σ -algebra.