ML&MEA (2024)

Lecture 12 - Linear Discriminant Analysis (LDA)

Quanying Liu

BME, SUSTech

2024.4.16

Content

- 1 Recap: PCA
- 2 LDA: model
- 3 LDA: solution
- 4 LDA: Eigendecomposition
- **5** Summary

- 1 Recap: PCA
- 2 LDA: mode
- 3 LDA: solution
- 4 LDA: Eigendecomposition
- Summary

What is Principal Component Analysis?

- (Wikipedia) PCA is the process of computing the principal components (PCs) and using them to perform a change of basis on the data. (转换坐标系: orthonormal basis)
- Variance of samples. The principal components are ordered by the variance of PCs.
- Goals: 最大化投影方差 ← 最小化重构误差

イロト 4回ト 4 重ト 4 重ト 重 めなり

4 / 31

PCA: maximizing projection variance

- To find the optimal vector z₁*
- ullet Objective: maximize the variance after projection $\mathbf{z}_1^T S \mathbf{z}_1$
- Constraints: $\mathbf{z}_1^T \mathbf{z}_1 = 1$ Let us denote λ as a Lagrange multiplier. The generalized Lagrangian function is:

$$\mathcal{L}(\mathbf{z}_1, \lambda) = -\mathbf{z}_1^\mathsf{T} S \mathbf{z}_1 + \lambda (\mathbf{z}_1^\mathsf{T} \mathbf{z}_1 - 1)$$

The derivative of \mathcal{L} is:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{z}_1} = -2S\mathbf{z}_1 + 2\lambda\mathbf{z}_1 = S\mathbf{z}_1 - \lambda\mathbf{z}_1 = 0$$

 \mathbf{z}_1 is an eigenvector of \mathcal{S} , $\lambda=\lambda_1$ is the largest eigenvalue

PCA: minimizing reconstruction error

- Data: $\mathbf{X} = (\mathbf{x}_1, \, \mathbf{x}_2, \dots, \mathbf{x}_N)^T \in \mathbb{R}^{N \times p}$
- Projections with PCA as encoder and decoder,

Encoder:
$$\mathbf{y}_i = G^T \mathbf{x}_i \in \mathbb{R}^q$$

Decoder:
$$\hat{\mathbf{x}}_i = G\mathbf{y}_i \in \mathbb{R}^p$$

where
$$G = [\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_q] \in \mathbb{R}^{p \times q}$$
.

- 4日 b 4 同 b 4 目 b 4 目 b 9 Q G

Recap: PCA

Recap: PCA

• Reconstruction error across N samples:

$$\mathcal{L}(W) = \frac{1}{N} \sum_{i=1}^{N} \|\mathbf{x}_i - \hat{\mathbf{x}}_i\|^2$$
 (1)

• Substitute $G = [\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_q]$ to Eq. (1)

$$= \frac{1}{N} \sum_{i=1}^{N} \|ZZ^{T} \mathbf{x}_{i} - GG^{T} \mathbf{x}_{i}\|^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \|\sum_{k=q+1}^{p} \mathbf{z}_{k} \mathbf{z}_{k}^{T} \mathbf{x}_{i}\|^{2} = \frac{1}{N} \sum_{i=1}^{N} (\sum_{k=q+1}^{p} \mathbf{z}_{k}^{T} \mathbf{x}_{i})^{2}$$

$$= \sum_{k=q+1}^{p} \frac{1}{N} \sum_{i=1}^{N} (\mathbf{z}_{k}^{T} \mathbf{x}_{i})^{2} = \sum_{k=q+1}^{p} \mathbf{z}_{k}^{T} \mathbf{S} \mathbf{z}_{k}$$

Minimize reconstruction error (最小化重构误差):

$$\mathbf{z}_k = \arg\min_{\mathbf{z}_k} \sum_{k=q+1}^p \mathbf{z}_k^T \mathbf{S} \mathbf{z}_k$$

s.t.
$$\mathbf{z}_k^T \mathbf{z}_k = 1$$

Maximizing projection variance (最大化投影方差):

$$\mathbf{z}_i = \arg \max_{\mathbf{z}_i} \ \mathbf{z}_i^T \mathbf{S} \mathbf{z}_i$$

s.t. $\mathbf{z}_i^T \mathbf{z}_i = 1$

s.t.
$$\mathbf{z}_i^T \mathbf{z}_i = 1$$

Recap: PCA 000000000

SVD on the data matrix HX

• Singular Value Decomposition (SVD) on the matrix HX, where $H = \mathbf{I}_N - \frac{1}{N} \mathbf{I}_N^T \mathbf{I}_N$, $H^T = H$, $H^2 = H$.

$$HX = U\Sigma V^{T} \tag{2}$$

$$U^T U = \mathbf{I}_p, \quad V^T V = VV^T = \mathbf{I}_p, \quad \Sigma = diag([\sigma_1, \ldots, \sigma_p])$$

• Substitute Eq. (2) to the covariance matrix S, we derive

$$S = \frac{1}{N} \mathbf{X}^T H H^T \mathbf{X} = \frac{1}{N} (HX)^T (HX)$$

$$= \frac{1}{N} (U\Sigma V^T)^T U\Sigma V^T = \frac{1}{N} V\Sigma U^T U\Sigma V^T$$

$$= \frac{1}{N} V\Sigma^2 V^T \Longrightarrow \text{Eigendecoposition of } S$$
(3)

Relationship between PCA and SVD

表 1: Relationship between PCA and SVD

PCA	SVD
Eigendecomposition on S	SVD on <i>HX</i>
$S = Z\Lambda Z^T$	$HX = U\Sigma V^T$
	$S = \frac{1}{N} V \Sigma^2 V^T$
$\Lambda = \textit{diag}([\lambda_1, \lambda_2, \dots, \lambda_{\textit{p}}])$	$\Sigma^2 = \textit{diag}([\sigma_1^2, \sigma_2^2, \dots, \sigma_{\textit{p}}^2])$

PCA might not be suitable for classification

- We usually use PCA for dimensionality reduction.
- A major problem: PCA may not be suitable for classification.
- Q: Why?

PCA is based on the sample covariance S which characterizes the scatter of the entire data set, **regardless of the class label**.

The projection axes chosen by PCA might not provide good discrimination between classes.

- Today's method: Linear Discriminant Analysis (LDA)

- 1 Recap: PCA
- 2 LDA: model
- 3 LDA: solution
- 4 LDA: Eigendecomposition
- Summary

LDA: 线性判别分析

 (Wikipedia) Linear discriminant analysis (LDA), normal discriminant analysis (NDA), or discriminant function analysis finds a linear combination of features that characterizes or separates two or more classes of objects or events. The resulting combination may be used as a linear classifier, or, more commonly, for dimensionality reduction before later classification.

LDA: 线性判别分析

 (Wikipedia) Linear discriminant analysis (LDA), normal discriminant analysis (NDA), or discriminant function analysis finds a linear combination of features that characterizes or separates two or more classes of objects or events. The resulting combination may be used as a linear classifier, or, more commonly, for dimensionality reduction before later classification.

• Goals: 类间大,类内小

13 / 31

LDA: 线性判别分析

- (Wikipedia) Linear discriminant analysis (LDA), normal discriminant analysis (NDA), or discriminant function analysis finds a linear combination of features that characterizes or separates two or more classes of objects or events. The resulting combination may be used as a linear classifier, or, more commonly, for dimensionality reduction before later classification.
- Goals: 类间大, 类内小

Quanying Liu BME, SUSTech

• Data: $\{(\mathbf{x}_i, y_i)\}_{i=1}^N$

BME, SUSTech

• Data:
$$\{(\mathbf{x}_i, y_i)\}_{i=1}^N$$

 $\mathbf{x}_i \in \mathbb{R}^p, \quad y_i \in \{+1, -1\}$

• Data: $\{(\mathbf{x}_i, y_i)\}_{i=1}^N$ $\mathbf{x}_{i} \in \mathbb{R}^{p}, \quad y_{i} \in \{+1, -1\}$

• Two Classes: $C_1 \& C_2$

- Data: $\{(\mathbf{x}_i, y_i)\}_{i=1}^N$ $\mathbf{x}_{i} \in \mathbb{R}^{p}, \quad y_{i} \in \{+1, -1\}$
- Two Classes: $C_1 \& C_2$
- Data in C_1 : $X_{C_1} = \{\mathbf{x}_i | y_i = +1\}$ sample size: N_{C_1} mean: $\bar{\mathbf{x}}_{\mathcal{C}_1} = \frac{1}{N_{\mathcal{C}_1}} \sum_{i=1}^{N_{\mathcal{C}_1}} \mathbf{x}_i, \quad \mathbf{x}_i \in X_{\mathcal{C}_1}$ variance: $S_{\mathcal{C}_1} = \frac{1}{N_{\mathcal{C}_1}} \sum_{i=1}^{N_{\mathcal{C}_1}} (\mathbf{x}_i - \bar{\mathbf{x}}_{\mathcal{C}_1}) (\mathbf{x}_i - \bar{\mathbf{x}}_{\mathcal{C}_1})^T$

LDA: training data

- Data: $\{(\mathbf{x}_i, v_i)\}_{i=1}^N$ $\mathbf{x}_i \in \mathbb{R}^p$, $\mathbf{y}_i \in \{+1, -1\}$
- Two Classes: $C_1 \& C_2$
- Data in \mathcal{C}_1 : $X_{\mathcal{C}_1} = \{\mathbf{x}_i | y_i = +1\}$ sample size: $N_{\mathcal{C}_1}$

mean:
$$\bar{\mathbf{x}}_{\mathcal{C}_1} = \frac{1}{N_{\mathcal{C}_1}} \sum_{i=1}^{N_{\mathcal{C}_1}} \mathbf{x}_i$$
, $\mathbf{x}_i \in X_{\mathcal{C}_1}$
variance: $S_{\mathcal{C}_1} = \frac{1}{N_{\mathcal{C}_1}} \sum_{i=1}^{N_{\mathcal{C}_1}} (\mathbf{x}_i - \bar{\mathbf{x}}_{\mathcal{C}_1}) (\mathbf{x}_i - \bar{\mathbf{x}}_{\mathcal{C}_1})^T$

variance:
$$S_{\mathcal{C}_1} = \frac{1}{N_{\mathcal{C}_1}} \sum_{i=1}^{N_{\mathcal{C}_1}} (\mathbf{x}_i - \bar{\mathbf{x}}_{\mathcal{C}_1}) (\mathbf{x}_i - \bar{\mathbf{x}}_{\mathcal{C}_1})$$

• Data in C_2 : $X_{C_2} = \{ \mathbf{x}_i | y_i = -1 \}$

sample size: $N_{\mathcal{C}_2}$

mean:
$$\bar{\mathbf{x}}_{\mathcal{C}_2} = \frac{1}{N_{\mathcal{C}_2}} \sum_{i=1}^{N_{\mathcal{C}_2}} \mathbf{x}_i, \quad \mathbf{x}_i \in X_{\mathcal{C}_2}$$

variance:
$$S_{\mathcal{C}_2} = \frac{1}{N_{\mathcal{C}_2}} \sum_{i=1}^{N_{\mathcal{C}_2}} (\mathbf{x}_i - \bar{\mathbf{x}}_{\mathcal{C}_2}) (\mathbf{x}_i - \bar{\mathbf{x}}_{\mathcal{C}_2})^T$$

• Project all the training data to the direction, w.

Projection

- Project all the training data to the direction, w.
- The decision boundary is $\mathbf{w}^T \mathbf{x} = 0$, where w is orthogonal to the boundary.

Projection

- Project all the training data to the direction, w.
- The decision boundary is $\mathbf{w}^T \mathbf{x} = 0$, where w is orthogonal to the boundary.
- Data after projection: $z_i = \mathbf{w}^T \mathbf{x}_i$

BME, SUSTech

Projection

- Project all the training data to the direction, w.
- The decision boundary is $\mathbf{w}^T \mathbf{x} = 0$, where w is orthogonal to the boundary.
- Data after projection: $z_i = \mathbf{w}^T \mathbf{x}_i$
- Q: what is the dimension of z_i ?

Two-class Data after projection

• Data after projection: $z_i = \mathbf{w}^T \mathbf{x}_i$

eluss Buta urter projection

• Data after projection: $z_i = \mathbf{w}^T \mathbf{x}_i$

• Class 1: mean:
$$\bar{\mathbf{z}}_1 = \frac{1}{N_{\mathcal{C}_1}} \sum_{i=1}^{N_{\mathcal{C}_1}} \mathbf{w}^T \mathbf{x}_i$$
, $\mathbf{x}_i \in \mathcal{X}_{\mathcal{C}_1}$

variance:
$$S_{1} = \frac{1}{N_{C_{1}}} \sum_{i=1}^{N_{C_{1}}} (z_{i} - \overline{z}_{1})(z_{i} - \overline{z}_{1})^{T}$$

$$= \frac{1}{N_{C_{1}}} \sum_{i=1}^{N_{C_{1}}} (\mathbf{w}^{T} \mathbf{x}_{i} - \overline{z}_{1})(\mathbf{w}^{T} \mathbf{x}_{i} - \overline{z}_{1})^{T}$$

$$(4)$$

Two-class Data after projection

- Data after projection: $z_i = \mathbf{w}^T \mathbf{x}_i$
- Class 1: mean: $\bar{\mathbf{z}}_1 = \frac{1}{N_{\mathcal{C}_1}} \sum_{i=1}^{N_{\mathcal{C}_1}} \mathbf{w}^T \mathbf{x}_i$, $\mathbf{x}_i \in \mathcal{X}_{\mathcal{C}_1}$

variance:
$$S_1 = \frac{1}{N_{C_1}} \sum_{i=1}^{N_{C_1}} (z_i - \bar{z}_1) (z_i - \bar{z}_1)^T$$

$$= \frac{1}{N_{C_1}} \sum_{i=1}^{N_{C_1}} (\mathbf{w}^T \mathbf{x}_i - \bar{z}_1) (\mathbf{w}^T \mathbf{x}_i - \bar{z}_1)^T$$
(4)

• Class 2: mean: $\bar{\mathbf{z}}_2 = \frac{1}{N_{\mathcal{C}_2}} \sum_{i=1}^{N_{\mathcal{C}_2}} \mathbf{w}^T \mathbf{x}_i, \quad \mathbf{x}_i \in \mathcal{X}_{\mathcal{C}_2}$

variance:
$$S_2 = \frac{1}{N_{C_2}} \sum_{i=1}^{N_{C_2}} (z_i - \bar{z}_2)(z_i - \bar{z}_2)^T$$

$$= \frac{1}{N_{C_2}} \sum_{i=1}^{N_{C_2}} (\mathbf{w}^T \mathbf{x}_i - \bar{z}_2)(\mathbf{w}^T \mathbf{x}_i - \bar{z}_2)^T$$

$$= \frac{1}{N_{C_2}} \sum_{i=1}^{N_{C_2}} (\mathbf{w}^T \mathbf{x}_i - \bar{z}_2)(\mathbf{w}^T \mathbf{x}_i - \bar{z}_2)^T$$

Quanying Liu

BME, SUSTech

• Class 1: mean:
$$\bar{\mathbf{z}}_1 = \frac{1}{N_{\mathcal{C}_1}} \sum_{i=1}^{N_{\mathcal{C}_1}} \mathbf{w}^T \mathbf{x}_i$$
, $\mathbf{x}_i \in \mathcal{X}_{\mathcal{C}_1}$

variance:
$$S_1 = \frac{1}{N_{C_1}} \sum_{i=1}^{N_{C_1}} (\mathbf{w}^T \mathbf{x}_i - \bar{\mathbf{z}}_1) (\mathbf{w}^T \mathbf{x}_i - \bar{\mathbf{z}}_1)^T$$

Between-class and Within-class

• Class 1: mean: $\bar{\mathbf{z}}_1 = \frac{1}{N_{\mathcal{C}_1}} \sum_{i=1}^{N_{\mathcal{C}_1}} \mathbf{w}^T \mathbf{x}_i, \quad \mathbf{x}_i \in \mathcal{X}_{\mathcal{C}_1}$

variance:
$$S_1 = \frac{1}{N_{C_1}} \sum_{i=1}^{N_{C_1}} (\mathbf{w}^T \mathbf{x}_i - \bar{\mathbf{z}}_1) (\mathbf{w}^T \mathbf{x}_i - \bar{\mathbf{z}}_1)^T$$

• Class 2: mean: $\bar{\mathbf{z}}_2 = \frac{1}{N_{C_2}} \sum_{i=1}^{N_{C_2}} \mathbf{w}^T \mathbf{x}_i$, $\mathbf{x}_i \in X_{C_2}$

variance:
$$S_2 = \frac{1}{N_{C_2}} \sum_{i=1}^{N_{C_2}} (\mathbf{w}^T \mathbf{x}_i - \bar{\mathbf{z}}_2) (\mathbf{w}^T \mathbf{x}_i - \bar{\mathbf{z}}_2)^T$$

Between-class and Within-class

• Class 1: mean: $\bar{\mathbf{z}}_1 = \frac{1}{N_{\mathcal{C}_1}} \sum_{i=1}^{N_{\mathcal{C}_1}} \mathbf{w}^T \mathbf{x}_i$, $\mathbf{x}_i \in \mathcal{X}_{\mathcal{C}_1}$

variance:
$$S_1 = \frac{1}{N_{C_1}} \sum_{i=1}^{N_{C_1}} (\mathbf{w}^T \mathbf{x}_i - \bar{\mathbf{z}}_1) (\mathbf{w}^T \mathbf{x}_i - \bar{\mathbf{z}}_1)^T$$

• Class 2: mean: $\bar{\mathbf{z}}_2 = \frac{1}{N_{\mathcal{C}_2}} \sum_{i=1}^{N_{\mathcal{C}_2}} \mathbf{w}^\mathsf{T} \mathbf{x}_i$, $\mathbf{x}_i \in \mathcal{X}_{\mathcal{C}_2}$

variance:
$$S_2 = \frac{1}{N_{C_2}} \sum_{i=1}^{N_{C_2}} (\mathbf{w}^T \mathbf{x}_i - \bar{\mathbf{z}}_2) (\mathbf{w}^T \mathbf{x}_i - \bar{\mathbf{z}}_2)^T$$

• Between-class(类间): $(\bar{z}_1 - \bar{z}_2)^2$

◆□▶◆圖▶◆臺▶◆臺▶● ◆○

Between-class and Within-class

• Class 1: mean: $\bar{\mathbf{z}}_1 = \frac{1}{N_{\mathcal{C}_1}} \sum_{i=1}^{N_{\mathcal{C}_1}} \mathbf{w}^T \mathbf{x}_i, \quad \mathbf{x}_i \in \mathcal{X}_{\mathcal{C}_1}$

variance:
$$S_1 = \frac{1}{N_{C_1}} \sum_{i=1}^{N_{C_1}} (\mathbf{w}^T \mathbf{x}_i - \bar{\mathbf{z}}_1) (\mathbf{w}^T \mathbf{x}_i - \bar{\mathbf{z}}_1)^T$$

• Class 2: mean: $\bar{\mathbf{z}}_2 = \frac{1}{N_{\mathcal{C}_2}} \sum_{i=1}^{N_{\mathcal{C}_2}} \mathbf{w}^\mathsf{T} \mathbf{x}_i$, $\mathbf{x}_i \in \mathcal{X}_{\mathcal{C}_2}$

variance:
$$S_2 = \frac{1}{N_{C_2}} \sum_{i=1}^{N_{C_2}} (\mathbf{w}^T \mathbf{x}_i - \bar{\mathbf{z}}_2) (\mathbf{w}^T \mathbf{x}_i - \bar{\mathbf{z}}_2)^T$$

- Between-class(类间): $(\bar{z}_1 \bar{z}_2)^2$
- Within-class(类内): *S*₁ + *S*₂

◆□▶◆圖▶◆臺▶◆臺▶●●</li

LDA: objective function (类间大,类内小)

• Between-class (类间): $(\bar{z}_1 - \bar{z}_2)^2$ ↑

- Between-class (类间): $(\bar{z}_1 \bar{z}_2)^2$ ↑
- Within-class (类内): S₁ + S₂ ↓

LDA: objective function (类间大,类内小)

- Between-class (类间): $(\bar{z}_1 \bar{z}_2)^2 \uparrow$
- Within-class (类内): S₁ + S₂ ↓
- Formulate the objective function of LDA, J(w), the goal is to maximize J(w) :

$$J(w) = \frac{(\bar{z}_1 - \bar{z}_2)^2}{S_1 + S_2}$$

- Between-class (类间): $(\bar{z}_1 \bar{z}_2)^2 \uparrow$
- Within-class (类内): S₁ + S₂ ↓
- Formulate the objective function of LDA, J(w), the goal is to maximize J(w):

$$J(w) = \frac{(\bar{z}_1 - \bar{z}_2)^2}{S_1 + S_2}$$

首先, 化简分子

$$(\bar{\mathbf{z}}_1 - \bar{\mathbf{z}}_2)^2 = \left[\frac{1}{N_{\mathcal{C}_1}} \sum_{i=1}^{N_{\mathcal{C}_1}} \mathbf{w}^T \mathbf{x}_i - \frac{1}{N_{\mathcal{C}_2}} \sum_{i=1}^{N_{\mathcal{C}_2}} \mathbf{w}^T \mathbf{x}_i \right]^2$$

$$= \left[\mathbf{w}^T \left(\frac{1}{N_{\mathcal{C}_1}} \sum_{i=1}^{N_{\mathcal{C}_1}} \mathbf{x}_i - \frac{1}{N_{\mathcal{C}_2}} \sum_{i=1}^{N_{\mathcal{C}_2}} \mathbf{x}_i \right) \right]^2$$

$$= \left[\mathbf{w}^T (\bar{\mathbf{x}}_{\mathcal{C}_1} - \bar{\mathbf{x}}_{\mathcal{C}_2}) \right]^2 = \mathbf{w}^T (\bar{\mathbf{x}}_{\mathcal{C}_1} - \bar{\mathbf{x}}_{\mathcal{C}_2}) (\bar{\mathbf{x}}_{\mathcal{C}_1} - \bar{\mathbf{x}}_{\mathcal{C}_2})^T \mathbf{w}$$

Quanying Liu

LDA: objective function (类间大, 类内小)

• Formulate the objective function of LDA, J(w):

$$J(w) = \frac{(\bar{z}_1 - \bar{z}_2)^2}{S_1 + S_2}$$

• 然后, 化简分母

$$S_{1} = \frac{1}{N_{C_{1}}} \sum_{i=1}^{N_{C_{1}}} (\mathbf{w}^{T} \mathbf{x}_{i} - \bar{\mathbf{z}}_{1}) (\mathbf{w}^{T} \mathbf{x}_{i} - \bar{\mathbf{z}}_{1})^{T}$$

$$= \frac{1}{N_{C_{1}}} \sum_{i=1}^{N_{C_{1}}} (\mathbf{w}^{T} \mathbf{x}_{i} - \frac{1}{N_{C_{1}}} \sum_{i=1}^{N_{C_{1}}} \mathbf{w}^{T} \mathbf{x}_{i}) (\mathbf{w}^{T} \mathbf{x}_{i} - \frac{1}{N_{C_{1}}} \sum_{i=1}^{N_{C_{1}}} \mathbf{w}^{T} \mathbf{x}_{i})^{T}$$

$$= \mathbf{w}^{T} \frac{1}{N_{C_{1}}} \sum_{i=1}^{N_{C_{1}}} (\mathbf{x}_{i} - \frac{1}{N_{C_{1}}} \sum_{i=1}^{N_{C_{1}}} \mathbf{x}_{i}) (\mathbf{x}_{i} - \frac{1}{N_{C_{1}}} \sum_{i=1}^{N_{C_{1}}} \mathbf{x}_{i})^{T} \mathbf{w}$$

$$= \mathbf{w}^{T} S_{C_{1}} \mathbf{w}$$

$$S_{1} + S_{2} = \mathbf{w}^{T} (S_{C_{1}} + S_{C_{2}}) \mathbf{w}$$

4 D > 4 P > 4 E > 4 E > E 9 Q P

• Formulate the objective function of LDA J(w):

$$J(w) = \frac{(\bar{z}_1 - \bar{z}_2)^2}{S_1 + S_2}$$

We derive the objective function as Eq. (6)

$$J(w) = \frac{\mathbf{w}^T (\bar{\mathbf{x}}_{\mathcal{C}_1} - \bar{\mathbf{x}}_{\mathcal{C}_2})(\bar{\mathbf{x}}_{\mathcal{C}_1} - \bar{\mathbf{x}}_{\mathcal{C}_2})^T \mathbf{w}}{\mathbf{w}^T (S_{\mathcal{C}_1} + S_{\mathcal{C}_2}) \mathbf{w}} = \frac{\mathbf{w}^T S_b \mathbf{w}}{\mathbf{w}^T S_w \mathbf{w}}$$
(6)

where
$$S_b = (\bar{\mathbf{x}}_{\mathcal{C}_1} - \bar{\mathbf{x}}_{\mathcal{C}_2})(\bar{\mathbf{x}}_{\mathcal{C}_1} - \bar{\mathbf{x}}_{\mathcal{C}_2})^T$$

 $S_w = S_{\mathcal{C}_1} + S_{\mathcal{C}_2}$

2 LDA: mode

3 LDA: solution

4 LDA: Eigendecomposition

Summary

BME, SUSTech

Gradient of the objective function in Eq. (6)

• The objective function in Eq. (6)

$$J(w) = \frac{\mathbf{w}^T S_b \mathbf{w}}{\mathbf{w}^T S_w \mathbf{w}} = (\mathbf{w}^T S_b \mathbf{w}) (\mathbf{w}^T S_w \mathbf{w})^{-1}$$

Differentiating the objective function w.r.t. w, we derive

$$\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} = 2S_b \mathbf{w} (\mathbf{w}^T S_w \mathbf{w})^{-1} + (\mathbf{w}^T S_b \mathbf{w}) (-1) (\mathbf{w}^T S_w \mathbf{w})^{-2} 2S_w \mathbf{w}
= S_b \mathbf{w} (\mathbf{w}^T S_w \mathbf{w}) - (\mathbf{w}^T S_b \mathbf{w}) S_w \mathbf{w} = 0
S_w \mathbf{w} = \frac{(\mathbf{w}^T S_w \mathbf{w})}{(\mathbf{w}^T S_b \mathbf{w})} S_b \mathbf{w}$$
(7)

We the optimal w*,

$$\mathbf{w}^* = S_w^{-1} \frac{(\mathbf{w}^T S_w \mathbf{w})}{(\mathbf{w}^T S_h \mathbf{w})} (\bar{\mathbf{x}}_{\mathcal{C}_1} - \bar{\mathbf{x}}_{\mathcal{C}_2}) (\bar{\mathbf{x}}_{\mathcal{C}_1} - \bar{\mathbf{x}}_{\mathcal{C}_2})^T \mathbf{w}$$

4 □ ▶ 4 同 ▶ 4 目 ▶ 4 目 ▶ 9 Q ○

- Since the w can be re-scaled (e.g., $|\mathbf{w}| = 1$), we only care about the direction of w.
- Let's have a detailed look at the optimal w*,

$$\mathbf{w}^* = S_{\mathbf{w}}^{-1} \frac{(\mathbf{w}^\mathsf{T} S_{\mathbf{w}} \mathbf{w})}{(\mathbf{w}^\mathsf{T} S_{\mathbf{b}} \mathbf{w})} (\bar{\mathbf{x}}_{\mathcal{C}_1} - \bar{\mathbf{x}}_{\mathcal{C}_2}) (\bar{\mathbf{x}}_{\mathcal{C}_1} - \bar{\mathbf{x}}_{\mathcal{C}_2})^\mathsf{T} \mathbf{w}$$

We notice that

$$\frac{(\mathbf{w}^T S_{\mathbf{w}} \mathbf{w})}{(\mathbf{w}^T S_{\mathbf{b}} \mathbf{w})}$$
 is a scalar.
 $(\bar{\mathbf{x}}_{C_1} - \bar{\mathbf{x}}_{C_2})^T \mathbf{w}$ is a scalar.

The direction of \mathbf{w}^* :

$$\mathbf{w}^* \propto S_w^{-1} (\bar{\mathbf{x}}_{\mathcal{C}_1} - \bar{\mathbf{x}}_{\mathcal{C}_2}) \tag{8}$$

- Recap: PCA
- 2 LDA: model
- 3 LDA: solution
- 4 LDA: Eigendecomposition
- Summary

LDA: Eigendecomposition of $S_w^{-1}S_b$

Recall Eq. (7):

$$S_{w}\mathbf{w} = \frac{(\mathbf{w}^{T}S_{w}\mathbf{w})}{(\mathbf{w}^{T}S_{b}\mathbf{w})}S_{b}\mathbf{w}$$

Let's denote $\lambda = \frac{(\mathbf{w}^T S_b \mathbf{w})}{(\mathbf{w}^T S_b \mathbf{w})}$

$$S_{w}\mathbf{w} = \frac{1}{\lambda}S_{b}\mathbf{w}$$

$$\lambda S_{w}\mathbf{w} = S_{b}\mathbf{w}$$

$$\lambda \mathbf{w} = S_{w}^{-1}S_{b}\mathbf{w}$$
(9)

Now we can easily notice that w is the largest eigenvectors of $S_{w}^{-1}S_{h}$.

LDA: Eigendecomposition of $S_w^{-1}S_b$

Recall the objective function in Eq. (6):

$$J(\mathbf{w}) = \frac{(\mathbf{w}^T S_b \mathbf{w})}{(\mathbf{w}^T S_w \mathbf{w})}$$

Now we have

$$\lambda = \frac{(\mathbf{w}^T S_b \mathbf{w})}{(\mathbf{w}^T S_w \mathbf{w})}$$

Therefore, maximizing the objective function is actually to find the q-th largest eigenvalue of $S_w^{-1}S_b$.

LDA: algorithm

LDA: a supervised dimensionality reduction method Given the **training data**: $\{(\mathbf{x}_i, y_i)\}_{i=1}^N$

$$\mathbf{x}_i \in \mathbb{R}^p$$
, $y_i \in \{+1, -1\}$

Algorithm

- 1 Calculate the sample mean of all training data: $\bar{\mathbf{x}}$, get $\mathbf{x} \longleftarrow \mathbf{x} - \bar{\mathbf{x}}$
- 2 Calculate the sample mean of each class: $\bar{\mathbf{x}}_{C_i}$
- **3** Calculate the variance of each class: S_{C_i}
- 4 Calculate $S_w = S_{C_1} + S_{C_2}$, $S_b = (\bar{\mathbf{x}}_{C_1} \bar{\mathbf{x}}_{C_2})(\bar{\mathbf{x}}_{C_1} \bar{\mathbf{x}}_{C_2})^T$
- **6** EigenDecomposition of $S_{\mu\nu}^{-1}S_{b\nu}$
- 6 Sort the eigenvalues in a descending order, and take the largest q eigenvalues and the corresponding eigenvectors
- **6** Get the projection matrix $W = [\mathbf{w}_1, \ \mathbf{w}_1, \dots, \mathbf{w}_q]$

- 1 Recap: PCA
- 2 LDA: mode
- 3 LDA: solution
- 4 LDA: Eigendecomposition
- **5** Summary

• Between-class (类间): $(\bar{z}_1 - \bar{z}_2)^2$

- Between-class (类间): $(\bar{z}_1 \bar{z}_2)^2$
- Within-class (类内): *S*₁ + *S*₂

- Between-class (类间): $(\bar{z}_1 \bar{z}_2)^2$
- Within-class (类内): S₁ + S₂
- Objective function: $J(\mathbf{w}) = \frac{(\bar{z}_1 \bar{z}_2)^2}{S_1 + S_2}$

- Between-class (类间): $(\bar{z}_1 \bar{z}_2)^2$
- Within-class (类内): S₁ + S₂
- Objective function: $J(\mathbf{w}) = rac{(ar{z}_1 ar{z}_2)^2}{S_1 + S_2}$
- We can derive the objective function as,

$$J(\mathbf{w}) = \frac{\mathbf{w}^T S_b \mathbf{w}}{\mathbf{w}^T S_w \mathbf{w}}$$

Between-class scatter matrix: $S_b = (\bar{\mathbf{x}}_{\mathcal{C}_1} - \bar{\mathbf{x}}_{\mathcal{C}_2})(\bar{\mathbf{x}}_{\mathcal{C}_1} - \bar{\mathbf{x}}_{\mathcal{C}_2})^T$ Within-class scatter matrix: $S_w = S_{\mathcal{C}_1} + S_{\mathcal{C}_2}$

LDA: solution

$$J(\mathbf{w}) = \frac{\mathbf{w}^T S_b \mathbf{w}}{\mathbf{w}^T S_w \mathbf{w}}$$

From $\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} = 0$, we derive the solution of \mathbf{w}^* :

$$\mathbf{w}^* \propto \mathcal{S}_{\mathbf{w}}^{-1} (\bar{\mathbf{x}}_{\mathcal{C}_1} - \bar{\mathbf{x}}_{\mathcal{C}_2})$$

This is known as Fisher's linear discriminant.

From Eigen Decomposition Perspective: \mathbf{w}^* is the eigenvector of $S_{uv}^{-1}S_h$.

- Similarity:
 - Both LDA and PCA reduce dimension.

BME, SUSTech

- Both LDA and PCA reduce dimension.
- Both construct new features which are linear combination of original features.

- 1 Both LDA and PCA reduce dimension.
- 2 Both construct new features which are linear combination of original features.
- **6** Both use Eigen Decomposition. (PCA: S; LDA: $S_w^{-1}S_b$)

- Both LDA and PCA reduce dimension.
- 2 Both construct new features which are linear combination of original features.
- **8** Both use Eigen Decomposition. (PCA: S; LDA: $S_w^{-1}S_b$)
- Difference:

Similarity:

- Both LDA and PCA reduce dimension.
- 2 Both construct new features which are linear combination of original features.
- **8** Both use Eigen Decomposition. (PCA: S; LDA: $S_w^{-1}S_b$)

Difference:

PCA is unsupervised learning, which does not consider class label. PCA finds components along maximum variability of the data.

• Similarity:

- Both LDA and PCA reduce dimension.
- 2 Both construct new features which are linear combination of original features.
- **3** Both use Eigen Decomposition. (PCA: S; LDA: $S_w^{-1}S_b$)

Difference:

- PCA is unsupervised learning, which does not consider class label. PCA finds components along maximum variability of the data.
- 2 LDA is supervised, which considers the class label. LDA finds components to maximially separate the classes.

