1 Exercises of §2.2

Excercise 1.1 (The du Bois-Reymond Lemma). Let f be a continuous function on [a, b] such that

$$\int f\phi = 0$$

for any $\psi \in \mathscr{C}_0^{\infty}((a,b))$. Then f is identically zero.

Proof. Taking real and imaginary parts we may assume f real when ϕ is taken real. If $f(x_0) \neq 0$ we can find a non-negative $\psi \in \mathscr{C}_0^{\infty}$ with $\psi(x_0) \neq 0$ and support so close to x_0 that $f\psi$ has constant sign, which contradicts to the fact that its integral is 0.

Excercise 1.2 (Leibniz's Formula, a Generalization). The goal of this exercse is to prove the formula

$$P(x,\partial)(uv) = \sum_{\alpha} \frac{1}{\alpha!} \partial^{\alpha} u P^{(\alpha)}(x,\partial) v.$$

Let P be a linear differential operator with smooth coefficients. Prve that

- (1) $P(x, \xi + \eta) = \sum_{\alpha} \frac{1}{\alpha l} \xi^{\alpha} P^{(\alpha)}(x, \eta);$ (2) $P(x, \partial)(uv) = \sum_{\alpha} \partial u \cdot R_{\alpha}(x, \partial)v$, where R_{α} 's are linear differential operators with smooth
 - (3) $P(x, \partial)e^{\langle x, \eta \rangle} = P(x, \eta)e^{\langle x, \eta \rangle};$ (4) $R_{\alpha} = \frac{1}{\alpha!}P^{(\alpha)}(x, \partial).$

Proof. We write $P = \sum_{\alpha} a_{\alpha}(x) \partial^{\alpha}$. P defines a polynomial in ξ by $P(x,\xi) := e^{-\langle x,\xi \rangle} Pe^{\langle x,\xi \rangle} = e^{-\langle x,\xi \rangle} Pe^{\langle x,\xi \rangle}$ $\sum_{\alpha} a_{\alpha}(x) \xi^{\alpha}$.

Since the polynomial $P(x,\xi)$ is analytic in ξ , we have by Taylor's theorem

$$P(x,\xi+\eta) = \sum_{\alpha} \frac{1}{\alpha!} \xi^{\alpha} P^{(\alpha)}(x,\eta).$$

The identity (2) comes after expansion and rewriting of the differentials. Note that $\partial^{\alpha} e^{\langle x, \eta \rangle} = \eta^{\alpha} e^{\langle x, \eta \rangle}$, we have

$$\sum_{\alpha} a_{\alpha}(x) \partial^{\alpha} e^{\langle x, \eta \rangle} = \sum_{\alpha} a_{\alpha}(x) \eta^{\alpha} e^{\langle x, \eta \rangle}$$

and hence $P(x, \partial)e^{\langle x, \eta \rangle} = P(x, \eta)e^{\langle x, \eta \rangle}$.

For (4), note that $L: u \mapsto P(uv)$ is a linear differential operator. We have $L(x,\xi) =$ $e^{-\langle x,\xi\rangle} L e^{\langle x,\xi\rangle} = e^{-\langle x,\xi\rangle} P(e^{\langle x,\xi\rangle} v)$. Note that

$$e^{-\langle x,\xi\rangle}\partial^{\beta}v\partial^{\alpha}e^{\langle x,\xi\rangle} = \xi^{\alpha}\partial^{\beta}v,$$

we have by Leibniz's formula

$$e^{-\langle x,\xi\rangle}\partial^{\alpha}(e^{\langle x,\xi\rangle}v) = \sum_{\beta+\gamma=\alpha} \frac{\alpha!}{\beta!\gamma!} \xi^{\alpha}\partial^{\beta}v = (\xi+\partial)^{\alpha}v$$

and therefore $L(x,\xi) = P(x,\xi+\partial)v = \sum_{\alpha} \frac{1}{\alpha!} \partial^{\alpha} v P^{(\alpha)}(x,\xi)$, which gives

$$P(uv) = Lu = L(x, \partial)u = \sum_{\alpha} \frac{1}{\alpha!} \partial^{\alpha} v P^{(\alpha)}(x, \partial)u.$$

Excercise 1.3. Calculate $\Delta(uv)$ and $\Delta^2(uv)$, and prove that

$$e^{-\langle x,\xi\rangle}P(ue^{\langle x,\xi\rangle}) = P(x,\xi+\partial)u.$$

Proof. The identity is proven in the preceding exercise.

$$\Delta(uv) = 2\partial_i u \partial_i v + \partial_i^2 u \cdot v + u \cdot \partial_i^2 v.$$

$$\Delta^2(uv) = \Delta(\Delta(uv)) = 2\Delta u \Delta v + \Delta^2 u \cdot v + u \cdot \Delta^2 v + \dots$$

Excercise 1.4. Let $f \in L^1$, prove that

$$\lim_{\epsilon \to 0} \|f_{\epsilon} - f\|_{L^1} = 0.$$

Proof. Note that

$$f_{\epsilon} - f = \int [f(x - \epsilon y) - f(x)]\phi(y) dy.$$

Minkovskii's inequality gives

$$||f_{\epsilon} - f||_{L^{1}} \le \int ||f_{-\epsilon y} - f||_{L^{1}} |\phi(y)| \, dy,$$

where $f_{-\epsilon y}$ is the translation of f by ϵy to the right. For each y, $||f_{-\epsilon y} - f||_{L^1}$ tends to zero as $\epsilon \to 0^1$ and is bounded by $2||f||_{L^1}$, the desired result then follows from the dominated convergence theorem.

Excercise 1.5. Let $\phi \in \mathscr{C}_0^{\infty}$ with $\int \phi = 1$, and v be continuous. Define

$$u(x,t) = \int v(x-ty)\phi(y) dy.$$

Prove that

(1) When t > 0

$$\partial_{x_i}(t^k u(x,t)) = t^{k-1} \int v(x-ty) \partial_{y_i} \phi(y) \, \mathrm{d}y;$$

$$\partial_t(t^k u(x,t)) = t^{k-1} \int v(x-ty) [(k-n)\phi(y) - \sum_i y_i \partial_{y_i} \phi(y)] \, \mathrm{d}y;$$

(2) As $t \to 0^+$,

$$\partial_t^j(t^k u(x,t)) \to 0, j < k;$$
$$\partial_t^k(t^k u(x,t)) \to k! v(x).$$

¹The case where f is uniformly continuous is simple and the general case follows from approximating f with uniformly continuous functions.

Proof. By a change of variable we have

$$t^{k}u(x,t) = t^{k}|t|^{-n} \int v(y)\phi(\frac{x-y}{t}) dy.$$

Also notice that the integrand is bounded, hence differentiation commutes with integration. We have by direct calculation

$$\partial_{x_i}(t^k u(x,t)) = t^{k-1} \int v(x-ty) \partial_{y_i} \phi(y) \, \mathrm{d}y;$$
$$\partial_t(t^k u(x,t)) = t^{k-1} \int v(x-ty) [(k-n)\phi(y) - \sum_i y_i \partial_{y_i} \phi(y)] \, \mathrm{d}y;$$

Since $u(x,t) \to v(x)$ as $t \to 0$, (2) follows from Leibniz's formula.

Excercise 1.6. Let $\{\phi_{\epsilon}\}_{\epsilon}$ be an approximation to the identity and $f_{\epsilon}(x) = \int \phi_{\epsilon}(x-y) \, dy$. Prove

$$|\partial^{\alpha} f_{\epsilon}| \le C(\alpha, n) \epsilon^{-|\alpha|}.$$

Proof. Notice that

$$f_{\epsilon}(x) = \int \phi_{\epsilon}(x - y) \, dy = \epsilon^{-n} \int \phi(\frac{x - y}{\epsilon}) \, dy,$$

and therefore $\partial^{\alpha} f_{\epsilon} = \epsilon^{-n} \epsilon^{-|\alpha|} \int \partial^{\alpha} \phi(\frac{x-y}{\epsilon}) dy$.

The desired inequality holds since ϕ is a fixed function and $\int \partial^{\alpha} \phi(\frac{x-y}{\epsilon}) dy$ is always bounded for each α .

Excercise 1.7. We define $H_a = a^{-1}1_{[0,a]}$. Prove that $u * H_a \in \mathcal{C}^{k+1}$ if $u \in \mathcal{C}^k$.

Proof. We have by definition

$$u * H_a(x) = \frac{1}{a} \int u(x-y) 1_{[0,a]}(y) \, dy = \frac{1}{a} \int_0^a u(x-y) \, dy = a^{-1} \int_{x-a}^x u.$$

And the assertion follows from the fundamental theorem of integration.

Excercise 1.8. The goal of this exercise is to give another proof of the theorem for partition of the unity.

- (1) Let $\{X_{\alpha}\}$ be an open covering of the compact set U. There exist a finite number of $K_i \subset\subset X_i$ such that $\{K_i\}_i$ is an open covering of U.
- (2) Let $\phi \in \mathscr{C}_0^{\infty}$. There is for each i a $\phi_i \in \mathscr{C}_0^{\infty}$ such that $0 \le \phi_i \le 1$, $\phi_i \equiv 1$ on K_i and $\phi_i \equiv 0$ outside X_i .

Proof. For (1), let X_i^{ϵ} be the set of points in X_i with distance from $\mathbb{R}^n \setminus X_i$ larger than ϵ . Therefore $X_i^{\epsilon} \subset\subset X_i$.

We claim $U \subset \bigcup_{1}^{N} X_{i}^{\epsilon}$ if ϵ is small enough while $X_{1},...,X_{N}$ s a finite subcovering of U. Assume otherwise, for each $\epsilon > 0$ there exists $x_{\epsilon} \in U \setminus \bigcup_{i=1}^{N} X_{i}^{\epsilon}$. $\{x_{\epsilon}\}$ has a limit point x as $\epsilon \to 0$ since Uis compact. However $x \in \bigcup_{1}^{N} X_{i}$ then, which contradicts to our assumption that $X_{1},...,X_{N}$ covers

For (2), we choose $K_1, ..., K_N$ relatively compact in X_i so that $\operatorname{Supp} \phi \subset \bigcup_{i=1}^N K_i$. Then we choose $\psi_i \in \mathscr{C}_0^{\infty}(X_i)$ with $0 \le \psi_i \le 1$ and $\psi_i \equiv 1$ on K_i .

Let
$$\phi_1 = \phi \psi_1, \phi_2 = \phi \psi_2(1 - \psi_1), ..., \psi_N = \phi \psi_N(1 - \psi_1) \cdot ... \cdot (1 - \psi_{N-1}).$$

Let $\phi_1 = \phi \psi_1, \phi_2 = \phi \psi_2 (1 - \psi_1), ..., \psi_N = \phi \psi_N (1 - \psi_1) \cdot ... \cdot (1 - \psi_{N-1}).$ Then the functions ϕ_i satisfy the desired properties since $\sum_1^N \phi_i - \phi = -\phi \prod_1^N (1 - \psi_i) = 0.$

2 Exercises of §2.3