

HRA - Visual Resources | Tutorial

Manual for VRA Core 4 Transform Tool

(Version 0.0.4.)

Version: 06.08.20152015 | Author: MA

Contents

1.	Int	troduction and project history	3		
2.	Da	ata preparation	4		
2	2.1.	Predefined headers	4		
2	2.2.	Repeated values	4		
2	2.3.	Display values			
2	2.4.	Controlled data	5		
3.	Int	troducing the template	7		
3	3.1.	Downloading the template	7		
3	3.2.	The template explained	7		
3	3.3.	Creating a .csv file	9		
4.	Ac	ccessing the transform tool online	10		
4	.1.	The basic user interface	10		
5.	Up	oloading a file	11		
6.	Ge	enerating VRA Core 4 XML	12		
6	5.1.	Selecting a mapping	12		
6	5.2.	Selecting a transformation	12		
6	5.3.	Defining the records to be processed	13		
6	6.4.	Generating XML	14		
6	5.5.	Allow pop-ups	15		
7.	Th	ne interface in Advanced Mode	16		
7	'.1.	Applying XSLs	16		
7	'.2.	Validating the XML	16		
8.	lf١	validation fails	18		
8	3.1.	Example 1 (element type):	18		
8	3.2.	Example 2 (element type):	19		
8	3.3.	Example 3 (date pattern):	19		
9.	Ge	enerating RDF XML	21		
10.		Contact	22		
11.		Appendix: Elements, displays and repetitions	23		
12.		Appendix: Columns Full Template	25		
13.		Appendix: Converting .xslx file to .csv using OpenOffice Calc	27		

1. Introduction and project history

The VRA Core 4 XML Transform Tool converts descriptive image metadata from flat tables (.csv) to structured VRA Core 4 XML. It makes use of a template with predefined headers. Users may work with the tool in a simple or advanced mode. The transform tool also offers XML validation and provides feedback in case of errors.

This manual covers whole the workflow of using the VRA Core 4 XML Transform Tool from preparation of data via uploading data, adjusting usage settings, data transformation, data validation and handling validation feedback throughout to downloading the XML files. It also covers the (experimental) generation of RDF XML and includes a number of appendices for further reference.

Development of the *VRA Core 4 XML Transform Tool* was based on an initiative by Susan Jane Williams and resulted in a successful application by Matthias Arnold for a <u>Project Grant</u> funded by the <u>Visual Resources Association Foundation</u> (VRAF) in Fall 2014. Additional support was given by the <u>Heidelberg Research Architecture</u> (HRA) at the <u>Cluster of Excellence "Asia and Europe in a Global Context"</u>, Heidelberg University.

"Matthias Arnold, Heidelberg Research Architecture, University of Heidelberg, will use the award to support the development of the VRA Core 4 XML Transform Tool. This tool will enable any user who can supply descriptive image metadata in a standardized CSV form (comma separated values, e.g. via Excel) to create validating VRA Core 4 XML. Useful on its own, this XML also represents an important step for further transformations to other XML schemas, like RDF to support output of data as LOD (Linked Open Data). The tool is being developed in consultation with both the VRA Data Standards and the Core OC Committees, will be shared with the image management community during beta-testing for feedback, and will be open-source and freely available upon completion. Susan Jane Williams (Independent Cataloging and Consulting Services) will serve as coordinator for the mapping templates and will help create documentation, demonstrations (sample records and mappings), and further mapping help in use of the tool. We are confident that this tool will have broad value and impact within the visual resources community, and for the VRA Core 4 standard."

"2014-2015 VRA Foundation Project Grant Winners Named", VRAF News & Events, December 19, 2014

The template csv files and the mappings to XML were developed by Susan Jane Williams, Greg Reser, and Matthias Arnold. Implementation was coordinated by Heidelberg, programming was conducted by HRA's senior developer Matthias Guth.

Please note:

The tool is still in BETA version, currently v.0.0.4. Any feedback on issues, bugs or problems encountered is very much appreciated and should be directed to the developers (see section "Contact").

The VRA Core 4 XML Transform Tool is developed as Open Source, its source code can be found at: https://github.com/exc-asia-and-europe/csv2xml

Note: This user manual will be updated with every ne feature or functionality. The most current version can be found on GitHub: https://github.com/exc-asia-and-europe/csv2xml/tree/master/doc.

2. Data preparation

Data transformation is based on templates. The *VRA Core 4 XML Transform Tool* uses **predefined headers** to identify data in the template and write the values to the correct elements or attributes in XML. To be able to transform your .csv data into XML you have to use these headers.

Any descriptive image metadata can be used for transformation, be it an export from your institution's Digital Asset Management System, metadata embedded in images, or a personal image database. You only need to do two things for preparation:

- Use the predefined template headers
- 2. Have the data exported as flat comma separated value (.csv) file

2.1. Predefined headers

Currently, the template offers 224 columns with fixed headers for your data.

These include references to your local system, like "IMAGE_Filename" or "LOCAL-REPO-NAME". This also includes multiple values for a number of elements, like up to three agents and up to eight subjects for the WORK record. The template also allows including references to controlled vocabularies, like the name and Ref-ID of a subject in a vocabulary, and data types controlled by VRA Core 4 schema.

For example, each of the eight subjects of a WORK record can be expressed in four columns:

WORK_Subject1-8 WORK_SubjectType1-8 WORK_SubjectVocab1-8 WORK_SubjectRefid1-8

You do not need to fill each column with data. The sequence of columns (headers) may be changed and you can even delete columns you will not need. It is, however, essential **not to change the headers** themselves, i.e. not their "text" or "values".

The complete list of headers can be found in "Appendix: Columns Full Template" below.

2.2. Repeated values

For a number of the eighteen elementSet's of VRA Core 4 XML for WORK and IMAGE records elements can be repeated. These values usually are combined with other information, like references to authority files.

WORK

Agent: 3

CulturalContext: 2

Date: 2Location: 2Material: 4

Measurements: 2 sets

Relation: 2 (plus 1 work-image)

Style/Period: 4

Subject: 8Technique: 4

• Title: 2 (preferred/alternative)

• Worktype: 3

IMAGE

Subject: 3

An expanded list of repeated elements can be found below, in "Appendix: Elements, displays and repetitions."

2.3. Display values

The template is designed to include data for each of the eighteen elementSet's of VRA Core 4 XML for WORK and IMAGE records. For a large number of elementsSets structured (or "qualified") information can be transformed. All elementSets have at least one display element.

For more information about which elementSet will only contain display values and which will also include other elements and attributes please refer to "Appendix: Elements, displays and repetitions" below.

2.3.1. Auto-filling displays

For The VRA Core 4 XML Transform Tool allows transforming both, structured data for subelements and attributes, and unstructured data for display values.

If users do NOT have data for display in their .csv file, *VRA Core 4 XML Transform Tool* will automatically construct the display element based on available data from the structured information.

For example, if the template contains

WORK_AgentDisplay

WORK_Agent1NameType personal

WORK_Agent1Name Michelangelo Buonarroti

WORK_Agent1Role painter WORK_Agent1Attribution school of

The transform tool will also create content for the display element:

<display>school of Michelangelo Buonarroti (painter)</display>

If users provide data for the display element (in the example "WORK_AgentDisplay") these values will be used and not changed.

2.4. Controlled data

VRA Core 4.0 in the restricted version uses controlled type lists and date formats.

2.4.1. Data type values

For the **type values** please refer to the <u>VRA Core 4.0 Restricted Schema Type Values</u> document.

2.4.2. Date values

For **date values** there is no pdf file, but the <u>vra-strict.xsd</u> states for dateValueType:

"...Defines a date which follows the ISO 8601 date format, and allows right truncation.

[...] In brief, the following formats are allowed:

```
present
2006
                  (2006)
2006-12
                  (December, 2006)
2006-12-31
                  (31 December 2006)
                  (44 BCE)
-44
-44-03
                  (March, 44 BCE)
-44-03-15
                  (15 March, 44 BCE)
-10000000
                  (10 Million Years Ago)
-100000000000
                  (100 Billion Years Ago)"
```

Source: http://loc.gov/standards/vracore/vra-strict.xsd, last accessed August 3, 2015

To be able to convert your data into valid VRA Core 4 XML these type values must be used and date format rules must be followed.

The transform tool will assist you as far as possible.

For example, in <date> the sub-element <latestDate> must not be empty. But if you only entered <earliestDate> the tool will automatically fill <latestDate> with the <earliestDate> value.

If you accidentally mistyped a controlled type value, the validation will point you to this error in the validation results (see chapter "Validation errors" below).

3. Introducing the template

3.1. Downloading the template

The full template for VRA Core 4 XML Transform Tool is available for download at

https://github.com/exc-asia-and-europe/csv2xml/tree/master/doc

in these formats:

- Comma-separated values textfile (.csv)
- Excel (.xslx)
- OpenDocument spreadsheet (.ods)

3.2. The template explained

The template consists of three worksheets.

Figure 1: Full template - Input workbook (in Excel)

The "**Input**" worksheet contains all the columns with their respective header in horizontal layout (colour coded), so that it can be used for editing data.

The "**Columns**" worksheet contains two columns. In the first, all headers are arranged vertically and colour coded, while in the second some hints to the content of the data are given.

The colour codes are included to provide visual feedback in case different types of data are expected for a "field".

Display values are shown in black on grey background.

Type values are shown in orange on light grey. Allowed values are provided in the second column.

References to external vocabularies are shown in dark blue on orange background.

Special content relevant for validation is shown in black on red background, together with the validation rules. This is used for dates.

Figure 2: Full template - Columns workbook (in Excel)

The "Vocabularies" worksheet contains an (incomplete) list of external authorities or controlled vocabularies. These values are not controlled by the VRA Core 4 schema, but it is strongly recommended to make sure the content is consistent within your data set. This is especially of interest if you intend to transform your data to RDF and use it as Linked (Open) Data.

	А	В	С	D	Е	F		
1	AAT	http://vocab.getty.edu/aat/						
2	TGN	http://vocab.getty.edu/tgn/						
3	ULAN	http://vocab.getty.edu/ulan/						
4	CONA	http://vocab.getty.edu/cona/						
5	LCNAF	http://id.loc.gov/authorities/names/						
6	LCSH	http://id.loc.gov/authorities/subjects/						
7	LCGFT	http://id.loc.gov/authorities/genreForms/						
8	TGM	http://id.loc.gov/vocabulary/graphicMaterials/						
9	VIAF	http://viaf.o	rg/viaf/					
10	ICONCLASS	http://iconcl	ass.org/					
11								
12								
If () Input Columns Vocabularies								

Figure 3: Full template - Vocabularies workbook (in Excel)

3.3. Creating a .csv file

Export records from your local system directly into .csv files if you can include the template headers.

Alternatively, use your preferred spreadsheet software (e.g. Microsoft Excel, OpenOffice Calc, or LibreOffice Calc) as intermediary to adjust the headers and export from there into .csv files. In the <u>doc folder on GitHub</u> an Excel (.xslx) version of the template is available.

Only .csv files can be transformed so make sure you convert spreadsheets (e.g. from Excel or Calc) to .csv text files before transformation. **Use UTF-8 as encoding** to conserve possible special characters in your data.

For a guide on how to convert Microsoft Excel files into comma separated value (.csv) files see "Appendix: Converting .xslx file to .csv using OpenOffice Calc" below.

To be covered:

Other data sources: EMWG export-import tool

4. Accessing the transform tool online

At the moment, the *VRA Core 4 XML Transform Tool* can be accessed online for testing at http://kjc-ws2.kjc.uni-heidelberg.de:8081/exist/apps/csv2xml/index.xq

Please note this is a server dedicated to testing software and developments.

4.1. The basic user interface

The VRA Core 4 XML Transform Tool interface offers a Simple and an Advanced Mode.

Figure 4: User interface - Simple mode.

In simple mode the XML generation and validation are processed in one step finishing with the optional download of the XML files.

The advanced interface provides additional functionalities for the advanced user including the possibility to apply additional transformations.

5. Uploading a file

To transform data you need to upload it first. Click the "Browse" button:

...then select the .csv file on your computer and click "Open".

The name of the .csv file will be displayed in the interface (here: "testrecord_full_30recs.csv"). Now click on "Upload".

You will see an "Upload successful" message.

6. Generating VRA Core 4 XML

After uploading a .csv file to the *VRA Core 4 XML Transform Tool* you can just hit the "generate XML" button. This will proces all records into VRA Core 4 XML using the default settings.

However, even in Simple Mode you can manipulate how the XML is generated. You have three options:

- Select another mapping
- Select another transform
- Define the range of records to be processed

6.1. Selecting a mapping

The VRA Core 4 XML Transform Tool supports generating XML based on different mappings. For VRA Core, two variants are available: "VRA strict" and "VRA strict Cluster".

6.1.1. *VRA strict*

This is the **default mapping**. It is based on the VRA Core 4 restricted version (http://www.loc.gov/standards/vracore/vra-strict.xsd). It uses controlled values for types and date formats.

For more information please refer to http://www.loc.gov/standards/vracore/schemas.html.

6.1.2. VRA strict Cluster

This mapping is an expansion of the restricted VRA Core 4 version developed at the Cluster of Excellence "Asia and Europe in a Global Context", University of Heidelberg. It adds, for example, attributes for multilingual data, role attributes for agents, and an element for geocoordinates (http://cluster-schemas.uni-hd.de/vra-strictCluster.xsd).

For more information please refer to the document "VRA Core – Extensions".

6.2. Selecting a transformation

The tool supports different transformations.

In the current version of *VRA Core 4 XML Transform Tool* (0.0.4) additional .xsl files need to be added in the source code to become available in the interface. This may be changed in a future version.

Currently, two transformations are implemented:

- Unmodified VRA Core 4 XML
- Transform into RDF (explanations see below)

To transform the .csv data into VRA Core 4 XML choose "Unmodified VRA Core 4 XML".

6.3. Defining the records to be processed

By default, all records of an uploaded .csv file will be processed.

6.3.1. Calculating records for processing

Within the .csv file a record equals a line. You may have noticed, that in the example .csv the 30 records result in 31 lines. This is because the first record (first line) always contains the column headers. The *VRA Core 4 XML Transform Tool* "knows" that and will per default only process data beginning with line #2 (i.e. record #1).

6.3.2. **Defining a range of records**

The VRA Core 4 XML Transform Tool also allows you to define the range of records to be processed. This is very helpful if you want to check a smaller range of records or even individual ones, look at their xml and test if they validate.

In this example, only line 5 (i.e. record #4) will be processed.

6.4. Generating XML

If all settings are made, click the "generate XML" button.

The tool will start generating the XML.

Please note: Processing a large number of records may take some time for XML generation and validation, so please be patient.

If the XML is generated, the code will be displayed below the button. To the top another message will be displayed:

"Generating successful. Please be patient, validating now..."

At the end of the validation another message will be shown:

"Validation passed successfully," together with a "Download" link. The "Generate XML" button is now green and the download dialog "Opening converted.xml" opens.

The default file name will be "converted.xml".

You can save the file or open it in your preferred XML editor.

6.5. Allow pop-ups

If you do not see the download dialog, you might need to check any pop-up blocker. In Firefox it may look like this:

Choos "Allow pop-ups" from the "Options" menue.

7. The interface in Advanced Mode

In the Advanced mode it is possible to apply XSL transforms, choose a schema against which you wish to validate your XML file, and upload your own Schema file. It also separates XML generation from validation.

Figure 5: User interface - Advanced mode.

7.1. Applying XSLs

For the default transformation to VRA Core 4 XML this field will remain empty.

If you choose "Transform into RDF" the "VRA2RDF.xsl" will be loaded and applied. For more information about RDF transformation see chapter "Generating RDF" below.

In the current version of *VRA Core 4 XML Transform Tool* (0.0.4) additional .xsl files need to be added in the source code to become available in the interface. This may be changed in a future version.

7.2. Validating the XML

Just by applying a transformation the tool cannot be sure the resulting xml files are valid. The restricted VRA Core schema defines a number of fixed values. If the values in the .csv document do not match the values expected by the schema, validation will fail. We therefore strongly recommend validating the generated data.

7.2.1. Choosing a schema for validation

In the "Validate against" box you can choose a schema for validation. Depending on the selected mapping (see above) the respective default validation schema is automatically set.

For example, if you selected "VRA strict" as mapping, the corresponding schema http://www.loc.gov/standards/vracore/vra-strict.xsd is automatically set.

It is possible to choose different validation schemas. Users may also upload their own schema (ALPHA!).

7.2.2. Starting the validation

To start the validation process, click "validate".

Note: Validating a large XML file may take some time, please be patient.

7.2.3. Getting the validation result

Once the validation is finished, a new browser tab will be opened with the validation result. In addition, the button's color will change:

8. If validation fails

VRA Core 4 in the restricted version uses controlled type lists and date formats. If your data does not match the prescribed rules, your XML will not validate.

In case of problems with the validation, the error messages will be displayed in a separate tab. The messages will indicate both line and column of the respective generated XML document. This is displayed in the interface.

Error messages usually come in pairs. The first line will name the invalid value based on an enumeration in the schema (e.g. type values defined by vra-strict). The second line will indicate the parent element.

8.1. Example 1 (element type):

```
constrain minitises 1000/divisions
consequence 1000/divisions
consequence 1000/divisions
consequence 1000/divisions
consequence 1000/divisions 1000/div
```

The error message refers to line="134" column="52" in the XML:

The first line of the message states that "illustrative" is not valid because it is not included in the list of possible values: "brandName, cited, creator, descriptive, former, generalView, inscribed, owner, partialView, popular, repository, translated, other".

The second line adds that the error occurred within attribute "type" of element <title>, and the provided value for "type" was not valid.

Result:

Values of <title type=""> are controlled by the schema.

You need to delete "illustrative" and use of one of the allowed values, i.e. "brandName, cited, creator, descriptive, former, generalView, inscribed, owner, partialView, popular, repository, translated, other".

8.2. Example 2 (element type):

```
cmessage level="Error" line="247" column="67">cvvc-enumeration vilid: Value 'person'
is not facet-valid with respect to enumeration '[personal, corporate, family,
other]'. It must be a value from the enumeration '[personal, corporate, family,
other]'. It must be a value from the enumeration.
cmessage level="Error" line="247" column="67">cvvc-enumeration.
cmessage level="Error" line="247" column="67">cvvc-attribute 'yay' on cleans' line '(personal, corporate, family,
other]'. It must be a value from the enumeration.
cmessage level="Error" line="247" column="67">cvvc-attribute.3: The value 'person'
of attribute 'type' on element 'name' is not valid with respect to its type,
'agentNameTypeType'.
/message>
```

The error message refers to line="247" column="67" in the XML:

The first line of the message states that "person" is not valid because it is not included in the list of possible values: "personal, corporate, family, other".

The second line adds that the error occurred within attribute "type" of element <name>, and the provided value for "type" was not valid.

Result:

XML:

Values of <name type=""> are controlled by the schema.

You need to delete "person" and use of one of the allowed values, i.e. "personal, corporate, family, other".

8.3. Example 3 (date pattern):

This example consists of two similar problems:

</date>

</dateSet>

```
506.
             <dateSet>
507.
                 <display>a predefined work date display</display>
508.
                 <date type="creation">
509.
                     <earliestDate>01.05.15</earliestDate>
510.
                     <latestDate>01.05.15</latestDate>
511.
                 </date>
512.
                 <date type="alteration">
513.
                      <earliestDate>2015/06</earliestDate>
514.
                      <latestDate>2015/06</latestDate>
```

The first lines of each message sat state that "01.05.15" and "2015/06" are not valid because they do not follow the predefined pattern for dateValues.

The second lines add that the error occurred within element <latestDate> (respective <earliestDate>), and the element must be valid.

Result:

515.

516.

Values of <earliestDate> and <latestDate> are pattern-controlled by the schema.

You need to write the dates in the correct format, i.e. "2015-05-01" or "2015-06".

9. Generating RDF XML

In addition to generating VRA Core 4 XML it is possible to transform the data to RDF. At the moment, this feature is still experimental.

The tool makes use of the XSLT stylesheet as provided by the VRA-RDF-Project https://github.com/mixterj/VRA-RDF-Project.

To transform your data to RDF first make sure the .csv data will validate in VRA Core.

Then go back and select "transform into RDF" in the "transform" line. Note that the entry "xsl/VRA2RDF.xsl" appears in the "Applied XSL's" box.

Now click "generate XML".

Once generated, the RDF XML will be displayed in the "Result" box and can be downloaded.

```
Result:

1. cefi:RDF xxlne:library*http://putl.org/library/* xxlne:void**http://cdfs.org/ns/void** xxlne:vra**http://purl.org/vra/* xxlne:determa**http://purl.org/dc/terms/* xxlne:rdfs**http://purl.org/vra/* xxlne:determa**http://purl.org/dc/terms/* xxlne:rdfs**http://purl.org/vra/* xxlne:determa**http://purl.org/vra/cxlnes**http://purl.org/vra/cxlnes**http://purl.org/vra/cxlnes**http://purl.org/vra/cxlnes**/cxlnes**http://purl.org/vra/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxlnes**/cxln
```

10. Contact

If you have problems or questions please contact Matthias Arnold at marrold@asia-europe.uni-heidelberg.de

Contact details

arnold@asia-europe.uni-heidelberg.de

Phone: +49 (0) 6221 - 54 4094 Fax: +49 (0) 6221 - 54 4012

Skype: matz-skype

Further links
HRA Portal

http://hra.uni-hd.de/

MediaLab Tutorials in Sharepoint

https://sharepoint.urz.uni-heidelberg.de/vjc/kjc/hra/medialab/

Office address

Karl Jaspers Centre, Room 005b

MediaLab

Karl Jaspers Centre, Room 005c

11. Appendix: Elements, displays and repetitions

WORK

[workID]

Agent display

3x nameType - name - nameVocab - nameRefid - role

CulturalContext display

2x culturalContext - vocab - refid

Date display

2x type - earliestDate - latestDate

Description display [display = description]

descriptionSource

Inscription display [display = text]

Location display

Location notes

2x type - Name - NameType - NameVocab - NameRefID - ObjType - ObjRefID - Geo - GeoVocab - GeoRefid

Material display

4x material - vocab - refid

Measurements display

2x extent - unit - value1-4 - type1-4

Relation display

2x relatedWork – type

[transform adds work-image link]

Rights display [display = text]

Source display

StateEdition display

Style/Period display

4x stylePeriod - vocab - refid

Subject display

8x subject - vocab - refid - type

Technique display

4x technique - vocab - refid

TextRef display

Title display

titlePref, titlePrefType, titleAlt, titleAltType

Worktype display

3x worktype - vocab - refid

IMAGE

[Filename (-> href); accessionID (-> refid)]

Agent display

1x nameType - name - nameVocab - nameRefid - role

CulturalContext display

Date display

Description display [display = description]

Inscription display [display = text]

Location display

[localRepoName, accession-id]

Material display

Measurements display

Relation display

[transform adds image-work link]

Rights display

Rights notes

1x type – holder – text

Source display

[VendorName, VendorID]

1x sourceType, sourceValue

StateEdition display

Style/Period display

Subject display

3x subject - vocab - refid - type

Technique display

[Technique: <technique vocab="AAT" refid="300237903">digital imaging</technique>]

TextRef display

Title display

1x type, title

WorkType display

[Worktype: <worktype vocab="AAT" refid="300215302">digital images</worktype>]

12. Appendix: Columns Full Template

IMAGE_Filename IMAGE_AccessionID IMAGE_VendorID IMAGE_VendorName LOCAL-REPO-NAME WORK_ID

WORK_TitleDisplay WORK_TitlePref WORK_TitlePrefType

WORK_TitleAlt
WORK_TitleAltType
WORK_AgentDisplay
WORK_Agent1NameType
WORK_Agent1Name

WORK_Agent1NameVocab WORK_Agent1NameRefid WORK_Agent1Role WORK_Agent1Attribution

WORK_Agent2NameType WORK_Agent2Name WORK_Agent2NameVocab WORK_Agent2NameRefid

WORK_Agent2Role WORK_Agent2Attribution WORK_Agent3NameType WORK_Agent3Name

WORK_Agent3NameVocab WORK_Agent3NameRefid WORK_Agent3Role

WORK_Agent3Attribution
WORK_CulturalContextDisplay
WORK_CulturalContext1

WORK_CulturalContext1Vocab WORK_CulturalContext1Refid WORK_CulturalContext2

WORK_CulturalContext2Vocab WORK_CulturalContext2Refid

WORK_DateDisplay
WORK_Date1Type
WORK_EarliestDate1
WORK_LatestDate1
WORK_Date2Type
WORK_EarliestDate2
WORK_LatestDate2
WORK_LoescriptionDisplay
WORK_DescriptionSource

WORK_InscriptionDisplay
WORK_LocationDisplay
WORK_LocationNotes
WORK_Location1Type
WORK_Location1Name
WORK_Location1NameType
WORK_Location1NameVocab

WORK_Location1ObjType WORK_Location1ObjRefID WORK_Location1Geo

WORK_Location1NameRefID

WORK_Location1GeoVocab WORK_Location1GeoRefid

WORK_Location2Type

WORK_Location2Name WORK_Location2NameType

WORK_Location2NameVocab WORK_Location2NameRefID WORK_Location2ObjType WORK_Location2ObjRefID

WORK_Location2ObjRefiD WORK_Location2Geo WORK_Location2GeoVocab

WORK_Location2GeoRefid
WORK_MaterialDisplay

WORK_Material1
WORK_MaterialVocab1
WORK_MaterialRefid1
WORK_Material2
WORK MaterialVocab2

WORK_MaterialRefid2 WORK_Material3 WORK_MaterialVocab3 WORK_MaterialRefid3 WORK_Material4

WORK_MaterialVocab4 WORK_MaterialRefid4

WORK_MeasurementsDisplay
WORK_Measurements1Extent
WORK_Measurements1Unit
WORK_Measurements1Value1
WORK_Measurements1Type1
WORK_Measurements1Value2
WORK_Measurements1Value3

WORK_Measurements1Value3 WORK_Measurements1Type3 WORK_Measurements1Value4 WORK_Measurements1Type4 WORK_Measurements2Extent WORK_Measurements2Unit WORK_Measurements2Value1 WORK_Measurements2Type1

WORK_Measurements2Value2 WORK_Measurements2Type2 WORK_Measurements2Value3 WORK_Measurements2Type3 WORK_Measurements2Value4 WORK_Measurements2Type4

WORK_RelationDisplay
WORK_RelatedWork1
WORK_RelationType1
WORK_RelatedWork2
WORK_RelationType2
WORK_RightsDisplay
WORK_SourceDisplay
WORK_StateEditionDisplay
WORK_StylePeriodDisplay
WORK_StylePeriod1

WORK_StylePeriodVocab1

WORK_StylePeriodRefid1 WORK_StylePeriod2 WORK_StylePeriodVocab2 WORK_StylePeriodRefid2 WORK_StylePeriod3 WORK_StylePeriodVocab3 WORK_StylePeriodRefid3 WORK_StylePeriod4 WORK_StylePeriodVocab4 WORK_StylePeriodRefid4 WORK_SubjectDisplay WORK_Subject1 WORK_SubjectType1 WORK_SubjectVocab1 WORK SubjectRefid1 WORK Subject2 WORK_SubjectType2 WORK SubjectVocab2 WORK_SubjectRefid2 WORK_Subject3 WORK_SubjectType3 WORK_SubjectVocab3 WORK_SubjectRefid3 WORK_Subject4 WORK_SubjectType4 WORK_SubjectVocab4 WORK_SubjectRefid4 WORK_Subject5 WORK_SubjectType5 WORK_SubjectVocab5 WORK_SubjectRefid5 WORK_Subject6 WORK_SubjectType6 WORK_SubjectVocab6 WORK SubjectRefid6 WORK Subject7 WORK_SubjectType7 WORK SubjectVocab7 WORK_SubjectRefid7 WORK_Subject8 WORK_SubjectType8 WORK_SubjectVocab8 WORK_SubjectRefid8 WORK_TechniqueDisplay WORK_Technique1 WORK_TechniqueVocab1 WORK_TechniqueRefid1 WORK_Technique2 WORK_TechniqueVocab2 WORK_TechniqueRefid2 WORK_Technique3 WORK_TechniqueVocab3 WORK_TechniqueRefid3 WORK_Technique4 WORK_TechniqueVocab4

WORK_TechniqueRefid4 WORK_TextrefDisplay WORK_WorktypeDisplay WORK_Worktype1 WORK_WorktypeVocab1 WORK_WorktypeRefid1 WORK_Worktype2 WORK_WorktypeVocab2 WORK_WorktypeRefid2 WORK_Worktype3 WORK_WorktypeVocab3 WORK_WorktypeRefid3 IMAGE_AgentDisplay IMAGE Agent1NameType IMAGE Agent1Name IMAGE_Agent1NameVocab IMAGE Agent1NameRefid IMAGE_Agent1Role IMAGE_CulturalContextDisplay IMAGE_DateDisplay IMAGE_DescriptionDisplay IMAGE_InscriptionDisplay IMGAE_LocationDisplay IMAGE_MaterialDisplay IMAGE_MeasurementsDisplay IMAGE_RelationDisplay IMAGE_RightsDisplay IMAGE_RightsNotes IMAGE_RightsType IMAGE_RightsHolder IMAGE_RightsText IMAGE_SourceDisplay IMAGE_SourceValue IMAGE_SourceType IMAGE StateEditionDisplay IMAGE StylePeriodDisplay IMAGE SubjectDisplay **IMAGE Subject1** IMAGE_SubjectRefid1 IMAGE_SubjectVocab1 IMAGE_SubjectType1 IMAGE_Subject2 IMAGE_SubjectRefid2 IMAGE_SubjectVocab2 IMAGE_SubjectType2 IMAGE_Subject3 IMAGE_SubjectRefid3 IMAGE_SubjectVocab3 IMAGE_SubjectType3 IMAGE_TechniqueDisplay IMAGE_TextrefDisplay IMAGE_TitleDisplay IMAGE_Title IMAGE_TitleType IMAGE_WorktypeDisplay

13. Appendix: Converting .xslx file to .csv using OpenOffice Calc

Save your Excel spreadsheet as usual.

Start OpenOffice Calc

Click "Open"...

...and select your spreadsheet.

Once the document is opened go to the "File menu" and select "Save As..."

Choose "Text CSV (.csv) (*.csv)" and hit the "Save" button.

This will open the "Export Text File" dialog.

Change the "Character set" to "Unicode (UTF-8)".

Then click "OK".

If the workbook contained more than one spreadsheets, a message will be displayed, informing you that only the active sheet was saved to .csv format. Click "OK" to confirm.

You can now close Calc.

To double-check if your data is correctly encoded, open the .csv file in an editor like NotePad++. If it displays correctly, you can proceed to XML transformation.