Cálculo Numérico 2016 Trabajo Práctico 4

Raíces de ecuaciones

Ejercicio 1:

- (a) Realice cuatro iteraciones con el método de la bisección para obtener una aproximación a una de las raíces de la ecuación f(x) = 3(x+1)(x-0.5)(x-1) en el intervalo [-2,1.5]. ¿A cuál de las raíces converge el método? Luego estime una cota para la precisión del resultado obtenido.
- (b) Implemente una función de Octave function [x,h] = biseccion(f,xmin,xmax,kmax,tol) que devuelva un cero x de la ecuación no lineal homogénea f(x) = 0 y la convergencia h usando el método de la bisección, para una tolerancia tol, un número máximo de iteraciones kmax y los extremos del intervalo inicial de búsqueda xmin, xmax, con xmin \neq xmax. Justifique si la bisección es o no un método globalmente convergente.
- (c) Obtenga una cota para el número de iteraciones que se requieren para alcanzar una aproximación con una exactitud de 10^{-3} a la solución de $x^3 + x 4 = 0$ que se encuentra en el intervalo [1,4]. Obtenga una aproximación de la raíz con esta exactitud mediante el método de la bisección.
- (d) Utilice la definición 2.6 del libro de Burden para demostrar que el método de la bisección tiene convergencia lineal ($\alpha = 1$) y constante de error asintótica $\lambda = 1/2$.

Ejercicio 2:

(a) Implemente una función de Octave function [x,h] = puntofijo(g,x0,kmax,tol) que devuelva un cero o raíz de f(x) = 0 y la convergencia h, resolviendo el problema de punto fijo asociado,

$$x^{(k+1)} = g(x^{(k)}) \quad k \ge 0$$

hasta que $\|x^{(k)} - x^{(k-1)}\| < tol$, para una tolerancia tol dada, un número máximo de iteraciones kmax, y una abscisa inicial x0. Notar que previamente debe transformarse la ecuación f(x) = 0 a la forma g(x) = x, lo cual puede hacerse de diversas maneras. Luego, la función g(x) hallada será uno de los argumentos de entrada para la función puntofijo() pedida. Responda si este método es o no globalmente convergente.

(b) La ecuación $x^3 + 4x^2 - 10 = 0$ tiene una raíz única en [1, 2]. Dadas las siguientes funciones g_1 y g_2 , proporcione los resultados del método de iteración de punto fijo programado en el item (a) para ambas funciones, considerando $p_0 = 1.5$, tol = 1e - 3 y como criterio de convergencia $|p_n - p_{n-1}| < tol$. Analice los resultados según el teorema correspondiente.

(i)
$$x = g_1(x) = \frac{1}{2}(10 - x^3)^{1/2}$$
, (ii) $x = g_2(x) = \left(\frac{10}{4+x}\right)^{1/2}$

(c) Indique si las cotas de error dadas por el Corolario 2.4 del libro de Burden son válidas para las funciones g_1 y g_2 propuestas en el item (b). Si lo fueran, aplíquelas para verificar los resultados obtenidos numéricamente.

Ejercicio 3:

- (a) Sea $f(x) = x^2 6$. Con $p_0 = 3$ y $p_1 = 2$ encuentre p_3 . Aplique primero el método de la secante, luego el de la posición falsa y saque conclusiones sobre los resultados obtenidos con ambos procedimientos.
- (b) Implemente una función en Octave function [x,h] = secante(f,xmin,xmax,kmax,tol) que devuelva un cero de f(x) = 0 y la convergencia h usando dicho método para una tolerancia tol, un número máximo de iteraciones kmax, y dos abscisas iniciales xmin, xmax, con xmin \neq xmax.
- (c) Implemente una función en Octave function [x,h] = posicionfalsa(f,xmin,xmax,kmax, tol) que devuelva un cero de f(x) = 0 y la convergencia h usando dicho método para una tolerancia tol, un número máximo de iteraciones kmax, y dos abscisas iniciales xmin, xmax, con xmin \neq xmax.

Ejercicio 4:

- (a) Implemente una función de Octave function [x,h] = newton(f,x0,kmax,tol) que devuelva un cero x de f(x) = 0 y la convergencia h usando dicho método para una tolerancia tol, un número máximo de iteraciones kmax, y una abscisa inicial x0.
- (b) Use el método de Newton para aproximar, con una exactitud de 10^{-4} , el valor de x que en la gráfica de $y = x^2$ produce el punto más cercano a (1,0). Ayuda: Reduzca al mínimo $[d(x)]^2$ donde d es la función distancia de la gráfica al punto.
- (c) Demuestre que la función $f(x) = e^x x 1$ tiene un cero de multiplicidad dos en p = 0. Aplique el método de Newton a dicha función con $p_0 = 1$ y saque conclusiones sobre la convergencia.

Ejercicio 5: La ecuación de estado de un gas (la cual relaciona la presión p, el volumen V y la temperatura T) está dada por

$$[p + a(N/V)^2](V - Nb) = kNT$$

donde a y b son dos coeficientes que dependen del gas en particular que hayamos considerado, N es el número de moléculas que se encuentran en el volumen V y k es la constante de Boltzmann.

Asumiendo que el gas es dióxido de carbono (CO_2) , los coeficientes a y b toman los siguiente valores: $a=0.401\,\mathrm{Pa\cdot m^6}$ y $b=42.7e-6\,\mathrm{m^3}$. Encuentre el volumen que ocupan 1000 moléculas de dicho gas a una temperatura $T=300\,\mathrm{K}$ y presión $p=3.5e+7\,\mathrm{Pa}$ mediante el método de bisección y el método de Newton, con una tolerancia de 1e-12 (la constante de Boltzmann vale $k=1.3806503e-23\,\mathrm{J/K}$).

Ejercicios sugeridos: S.2.1:1-14,17,18; **S.2.2**:1-15,19,20,23; **S.2.3**: 1-10,12-16,19-24,27,30; **S.2.4**:1-6,8,9.