## A Survey on Private Set Intersection

Presented by Hongrui Cui

RickFreeman@sjtu.edu.cn

October 17, 2019

## Overview

- Introduction
  - PSI Literature
  - Notations
  - The Core of PSI
- Semi-Honest PSI
  - Cuckoo Hashing
  - The Paradigm of [PSZ14]
- Malicious PSI
  - Malicious PSI via Dual Execution
- Multiparty PSI
  - Multiparty PSI from OPPRF

### Content

- Introduction
  - PSI Literature
  - Notations
  - The Core of PSI
- 2 Semi-Honest PSI
  - Cuckoo Hashing
  - The Paradigm of [PSZ14]
- Malicious PSI
  - Malicious PSI via Dual Execution
- 4 Multiparty PS
  - Multiparty PSI from OPPRF

## Private Set Intersection

### Research Background

Multiparty computation of set intersection

## **Functionality Classification**

- ► Security: Semi-Honest/Malicious
- ▶ Players: Two Party/Multi Party
- Output: Plain Intersection/Post-Processing

## Literature of Private Set Intersection

| Paper                 | Parties | Security    | Building Blocks |
|-----------------------|---------|-------------|-----------------|
| [PSZ14]               | 2       | Semi-Honest | OT(OPRF)        |
| [HEK12]               | 2       | Semi-Honest | GC,GMW          |
| [CHLR18]              | 2       | Hybrid      | (leveled-)FHE   |
| [RR17]                | 2       | Malicious   | OT(OPRF)        |
| [KMP <sup>+</sup> 17] | n       | Semi-Honest | OT(OPPRF)       |

Table: Comparison of Different Private Set Intersection Protocols

### **Notations**

#### **PSI Notations:**

- ►  $X, Y \subset \{0,1\}^{\sigma}$ : Input sets
- $X^*, Y^* \subset \{0,1\}^{\lambda + \log(|X|) + \log(|Y|)}$ : Processed input sets
- $igcep ig( {m \atop 1} ig) OT_{v}^{k}$ : k instances of m-choose-1 oblivious transfer on v-bit strings
- $ightharpoonup \mathcal{F}_{PSM}$ : Private set membership protocol (i.e.  $y \in X$ )

6/27

## **Notations**

### **Cuckoo Hashing Notations:**

- ▶ 🌣: Hash table "bins"
- $ightharpoonup m \in \mathbb{N}$ : Hash table size
- ▶  $h_1, h_2, h_3 : \{0, 1\}^* \to [m]$ : Hash function

### A Naïve PSI Protocol

### Compute Intersection on Hashed Values

$$\begin{array}{c} \textit{Sender} & \textit{Receiver} \\ \xrightarrow{X^* := \{H(x) | x \in X\}} & \textit{Output } X \cap Y := \\ & \underbrace{X \cap Y \text{ (optionally)}}_{\textit{Output } X \cap Y} & \text{Output } X \cap Y \end{array}$$

8 / 27

## A Naïve PSI Protocol

### Why Naïve

- ▶ Hashed set X\* has the same entropy as X
- ► This entropy is usually low
- ► Feasible brute-force attack

## A Naïve PSI Protocol

### Why Naïve

- Hashed set X\* has the same entropy as X
- This entropy is usually low
- ► Feasible brute-force attack

When the entropy is acceptable (e.g. 80 bits), this is secure.

### Content

- Introduction
  - PSI Literature
  - Notations
  - The Core of PSI
- Semi-Honest PSI
  - Cuckoo Hashing
  - The Paradigm of [PSZ14]
- Malicious PSI
  - Malicious PSI via Dual Execution
- 4 Multiparty PS
  - Multiparty PSI from OPPRF

## Semi-Honest PSI

- ▶ 2-Party Semi-Honest PSI receives most attention
- ightharpoonup State-of-the-art only incurs 1-10 times overhead

### **Cuckoo Hashing**

- ► A special hashing function
- Using eviction to resolve collision

#### Insertion

- ▶ Let i = 1, compute index  $l = h_i(x)$
- ▶ If  $\mathfrak{B}[I] = \bot$ , then insert  $\langle x, i \rangle$
- If not, insert anyway
- ▶ Let  $\langle y, j \rangle$  be the original content, let x := y  $i \stackrel{\$}{\leftarrow} [3] \setminus \{j\}$ , goto step 1 If the process iterates more than t times, put the item in a *stash* s.

#### Insertion

- ▶ Let i = 1, compute index  $l = h_i(x)$
- ▶ If  $\mathfrak{B}[I] = \bot$ , then insert  $\langle x, i \rangle$
- ► If not, insert anyway
- ▶ Let  $\langle y, j \rangle$  be the original content, let x := y  $i \stackrel{\$}{\leftarrow} [3] \setminus \{j\}$ , goto step 1 If the process iterates more than t times, put the item in a *stash* s.

### Lookup

▶ For inserted item x, there are only 3 + |s| possible locations



| Sender: "Thick" Table           |  |  |  |  |  |
|---------------------------------|--|--|--|--|--|
| Regular Hashing with $h_1, h_2$ |  |  |  |  |  |
| 1                               |  |  |  |  |  |
| $T_{2}[1]$                      |  |  |  |  |  |
| 1 :                             |  |  |  |  |  |
| $T_{1}^{1}T_{2}[h_{1}(x)]$      |  |  |  |  |  |
| I<br>I                          |  |  |  |  |  |
| :                               |  |  |  |  |  |
| 1                               |  |  |  |  |  |
| $T_{1}^{1}T_{2}[h_{2}(x)]$      |  |  |  |  |  |
| I<br>I                          |  |  |  |  |  |
| 1                               |  |  |  |  |  |
| :                               |  |  |  |  |  |
| 1                               |  |  |  |  |  |
| $T_{1}T_{2}[m]$                 |  |  |  |  |  |

## The Paradigm of [PSZ14]

$$\mathcal{F}_{\text{PSI}} \leq \mathcal{F}_{\text{PSM}}$$

- Receiver does cuckoo hashing, while the sender does regular hashing
- lacktriangle They then perform m instances of  $\mathcal{F}_{\mathsf{PSM}}$   $(m=|\mathfrak{B}|)$

Cui Hongrui (SJTU)

15 / 27

## The Paradigm of [PSZ14]

## $\mathcal{F}_{\text{PSI}} \leq \mathcal{F}_{\text{PSM}}$

- ▶ Receiver does cuckoo hashing, while the sender does regular hashing
- ▶ They then perform m instances of  $\mathcal{F}_{\mathsf{PSM}}$   $(m = |\mathfrak{B}|)$

#### Discussion

- Most works in the semi-honest model follow this paradigm
- $\blacktriangleright$  Various means to implement  $\mathcal{F}_{\mathsf{PSM}}$ , e.g. OT, FHE, GC/GMW
- Cuckoo Hashing may be inherently unsuitable for malicious world

## Set Membership from Oblivious Transfer

#### OT as OPRF

- ▶ F<sub>PSM</sub> from Oblivious PRF is quite easy
- (One-Time) Oblivious PRF can be considered some  $\binom{2^{\sigma}}{1} ROT$
- ▶ OT-Extension can efficiently implement this primitive

## A Brief Review on OT-Extension

The idea is to "bootstrap" a large number of OT instances from a small number of base OT's.

$$Sender \\ b \overset{\$}{\leftarrow} \{0,1\}^{v} \\ \xrightarrow{b_{j}} \\ \hline T_{b,j} \\ \hline Q^{i} = T_{b}^{i} \oplus s \cdot C^{i} \\ \hline Output (s,Q^{i}) \\ \hline \\ Receiver \\ T_{0},T_{1}\overset{\$}{\leftarrow} \{0,1\}^{m \times v} \\ \leftarrow (T_{0,j},T_{1,j}) \\ \leftarrow (T_{0,j},T_{1,j}) \\ \hline \\ Output H(i||T_{0}^{i}) \\ \hline \\ Output H(i||T_{0}^{i}) \\ \hline \\ C = T_{0}^{i} \oplus T_{1}^{i} \oplus ECC(w_{i}) \\ \hline \\ Output H(i||T_{0}^{i}) \\ \hline \\ C = T_{0}^{i} \oplus T_{1}^{i} \oplus ECC(w_{i}) \\ \hline \\ Output H(i||T_{0}^{i}) \\ \hline \\ C = T_{0}^{i} \oplus T_{1}^{i} \oplus ECC(w_{i}) \\ \hline \\ C = T_{0}^{i} \oplus T_{1}^{i} \oplus ECC(w_{i}) \\ \hline \\ C = T_{0}^{i} \oplus T_{1}^{i} \oplus ECC(w_{i}) \\ \hline \\ C = T_{0}^{i} \oplus T_{1}^{i} \oplus ECC(w_{i}) \\ \hline \\ C = T_{0}^{i} \oplus T_{1}^{i} \oplus ECC(w_{i}) \\ \hline \\ C = T_{0}^{i} \oplus T_{1}^{i} \oplus ECC(w_{i}) \\ \hline \\ C = T_{0}^{i} \oplus T_{1}^{i} \oplus ECC(w_{i}) \\ \hline \\ C = T_{0}^{i} \oplus T_{1}^{i} \oplus ECC(w_{i}) \\ \hline \\ C = T_{0}^{i} \oplus T_{1}^{i} \oplus ECC(w_{i}) \\ \hline \\ C = T_{0}^{i} \oplus T_{1}^{i} \oplus ECC(w_{i}) \\ \hline \\ C = T_{0}^{i} \oplus T_{1}^{i} \oplus ECC(w_{i}) \\ \hline \\ C = T_{0}^{i} \oplus T_{1}^{i} \oplus ECC(w_{i}) \\ \hline \\ C = T_{0}^{i} \oplus T_{1}^{i} \oplus ECC(w_{i}) \\ \hline \\ C = T_{0}^{i} \oplus T_{1}^{i} \oplus T_{1}^{i} \oplus ECC(w_{i}) \\ \hline \\ C = T_{0}^{i} \oplus T_{1}^{i} \oplus T$$

## Set Membership from Homomorphic Encryption

### Naive Approach



## Set Membership from Homomorphic Encryption

### Naive Approach



### **Several Optimizations**

- ▶ Batching: reduce communication by n/d
- lacktriangle Partitioning: reduce polynomial degree by lpha
- Windowing: reduce circuit depth logarithmally
- Pre-Processing: reduce circuit depth by 1

## Set Membership from General Framework

The main advantage is arbitrary post-processing can be applied (by concatenation of circuits), but shuffling the output may be needed.

## Content

- Introduction
  - PSI Literature
  - Notations
  - The Core of PSI
- Semi-Honest PSI
  - Cuckoo Hashing
  - The Paradigm of [PSZ14]
- Malicious PSI
  - Malicious PSI via Dual Execution
- 4 Multiparty PS
  - Multiparty PSI from OPPRF

## Malicious PSI via Dual Execution

Ideas of [RR17]:



Receiver
Randomly Permute Y



Output 
$$X \cap Y = \{y | \exists i, [y]_i \oplus [y]_j' \in Q\}$$

## **Optimizations**

It is possible to use regular hashing to reduce the quadratic complexity:

- Assuming *n* bins,  $\log(n)$  items per bin, the complexity is  $n \log(n)^2$
- Cuckoo hashing cannot be used here

### Content

- Introduction
  - PSI Literature
  - Notations
  - The Core of PSI
- Semi-Honest PSI
  - Cuckoo Hashing
  - The Paradigm of [PSZ14]
- Malicious PSI
  - Malicious PSI via Dual Execution
- Multiparty PSI
  - Multiparty PSI from OPPRF

The authors of [KMP<sup>+</sup>17] proposed a simple protocol for semi-honest, multiparty PSI:

- Zero-Sharing
- ► Reconstruction

The authors of [KMP<sup>+</sup>17] proposed a simple protocol for semi-honest, multiparty PSI:

- Zero-Sharing
- ► Reconstruction

The protocol heavily uses the *Oblivious Programmable PRF* functionality, which can be implemented from  $\mathcal{F}_{OPRF}$  and polynomial interpolation.

For every pair of parties  $P_i, P_j$ :

$$P_{i}$$

$$\text{chooses } s_{k}^{i,1}, \dots, s_{k}^{i,n}$$

$$\text{such that} \bigoplus_{I} s_{k}^{i,I} = 0$$

$$\xrightarrow{\{(x_{k}^{i}, s_{k}^{i,j})\}_{k}} \longrightarrow F_{\text{OPPRF}}$$

$$\begin{array}{c} P_{j} \\ \text{chooses } s_{k}^{j,1}, \dots, s_{k}^{j,n} \\ \text{such that} \bigoplus_{l} s_{k}^{j,l} = 0 \\ \longleftrightarrow \frac{\{s_{k}^{i,j}\}}{s_{k}^{j}} \longleftrightarrow s_{k}^{i,j} \end{array}$$

#### Note that

- $\blacktriangleright$  if  $x \in \bigcap_i X^i$
- ▶ then  $\bigoplus_j s_k^j = 0$

#### Note that

- $\blacktriangleright$  if  $x \in \bigcap_i X^i$
- ▶ then  $\bigoplus_j s_k^j = 0$

#### Reconsturction

- ▶ The n parties agree on a dealer, e.g.  $P_1$
- ▶ The party  $P_i$  uses  $(x_k^i, s_k^i)$  to program a PRF
- $\triangleright$   $P_1$  interacts with these parties and gets the sharings
- ▶ If  $x \in X^1$  is in the intersection, then the n-1 results from  $\mathcal{F}_{\mathsf{OPPRF}}$  with  $s^1_k$  (assuming  $x = s^1_k$ ) should form an additive sharing of 0

## Reference I



In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, *ACM CCS 2018: 25th Conference on Computer and Communications Security*, pages 1223–1237, Toronto, ON, Canada, October 15–19, 2018. ACM Press.

Yan Huang, David Evans, and Jonathan Katz.

Private set intersection: Are garbled circuits better than custom protocols?

In *ISOC Network and Distributed System Security Symposium – NDSS 2012*, San Diego, CA, USA, February 5–8, 2012. The Internet Society.

26 / 27

## Reference II



Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu.

Practical multi-party private set intersection from symmetric-key techniques.

In Thuraisingham et al. [TEMX17], pages 1257–1272.



Benny Pinkas, Thomas Schneider, and Michael Zohner.

Faster private set intersection based on OT extension.

In Kevin Fu and Jaeyeon Jung, editors, USENIX Security 2014: 23rd

USENIX Security Symposium, pages 797–812, San Diego, CA, USA, August 20–22, 2014. USENIX Association.



Peter Rindal and Mike Rosulek.

Malicious-secure private set intersection via dual execution. In Thuraisingham et al. [TEMX17], pages 1229–1242.

### Reference III



Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors.

ACM CCS 2017: 24th Conference on Computer and Communications Security, Dallas, TX, USA, October 31 – November 2, 2017. ACM Press.

# Thank You