STAT 525

Chapter 9 Model Selection

Dr. Qifan Song

Example: Patients Survival Time (p.350)

- Surgical unit wants to predict survival in patients undergoing a specific liver operation
- Random sample of 54 patients studied
- Y is post-operation survival time
- Four predictor variables:

 X_1 — blood clotting score

 X_2 — prognostic index (age)

 X_3 — enzyme function score

 X_4 — liver function score

Survival Time as Response

- Often skewed with a few long-lived times
- In this case, we observe all survival times
- Times can be censored if the study were prior to some subjects' deaths
 - Survival analysis techniques could be used (STAT 526)
- Transformation of survival times will be investigated using Box-Cox transformation under the grand model

Lambda	R-Square	Log Like
-1.0	0.64	-293.077
-0.9	0.66	-289.803
-0.8	0.68	-286.714
-0.7	0.69	-283.837
-0.6	0.70	-281.203
-0.5	0.72	-278.846
-0.4	0.73	-276.805
-0.3	0.74	-275.119
-0.2	0.75	-273.828 *
-0.1	0.75	-272.971 *
0.0 +	0.76	-272.579 <
0.1	0.76	-272.675 *
0.2	0.76	-273.269 *
0.3	0.76	-274.360 *
0.4	0.75	-275.933
0.5	0.75	-277.961
0.6	0.74	-280.409
0.7	0.73	-283.238
0.8	0.72	-286.406
0.9	0.71	-289.869
1.0	0.69	-293.591

< - Best Lambda

^{* -} Confidence Interval

^{+ -} Convenient Lambda

Scatterplot Matrix

Predictor Summary Statistics

Prelim analysis to justify the grand model

```
/* logsurv = log(surv) */
proc corr;
   var logsurv blood prog enz liver;
run; quit;
```

Simple Statistics

Variable	N	Mean	Std Dev	$\operatorname{\mathtt{Sum}}$	Minimum	${\tt Maximum}$
logsurv	54	6.43048	0.49158	347.24600	5.19800	7.75900
blood	54	5.78333	1.60303	312.30000	2.60000	11.20000
prog	54	63.24074	16.90253	3415	8.00000	96.00000
enz	54	77.11111	21.25378	4164	23.00000	119.00000
liver	54	2.74426	1.07036	148.19000	0.74000	6.40000

Pearson Correlation Coefficients, N = 54Prob > |r| under H0: Rho=0

	logsurv	blood	prog	enz	liver
logsurv	1.00000	0.24619	0.46994	0.65389	0.64926
G		0.0727	0.0003	<.0001	<.0001
blood	0.24619	1.00000	0.09012	-0.14963	0.50242
	0.0727		0.5169	0.2802	0.0001
prog	0.46994	0.09012	1.00000	-0.02361	0.36903
	0.0003	0.5169		0.8655	0.0060
enz	0.65389	-0.14963	-0.02361	1.00000	0.41642
	<.0001	0.2802	0.8655		0.0017
liver	0.64926	0.50242	0.36903	0.41642	1.00000
	<.0001	0.0001	0.0060	0.0017	

Grand model

Y = Bot Bixi+ ... + Bxp-1

Variable Selection

21-1 All 21-1 subject model compension

- Two distinct questions
 - What is the appropriate subset size? adjusted \mathbb{R}^2 , \mathbb{C}_p , MSE, PRESS, AIC, SBC
 - What is the best model for a fixed size?

 \mathbb{R}^2

- * May result in several worthy models
- * Use subject matter to make final decision

Mallows' C_p Criterion

- ullet Compares total mean squared error with σ^2
- if the BotB, X,

We have Bot PoX2

Squared error

$$\begin{array}{ll} (\hat{Y}_i - \mu_i)^2 &=& (\hat{Y}_i - \mathsf{E}(\hat{Y}_i) + \mathsf{E}(\hat{Y}_i) - \mu_i)^2 \\ \text{true} &=& (\mathsf{E}(\hat{Y}_i) - \mu_i)^2 + (\hat{Y}_i - \mathsf{E}(\hat{Y}_i))^2 \end{array}$$
 where large difference is a Bias $^2 + (\hat{Y}_i - \mathsf{E}(\hat{Y}_i))^2$

- Mean value is $(E(\hat{Y}_i) \mu_i)^2 + \sigma^2(\hat{Y}_i)$
- ullet Total mean value is $\sum (\mathsf{E}(\hat{Y}_i) \mu_i)^2 + \sum \sigma^2(\hat{Y}_i)$ has on true infimution
- Criterion measure

• Estimate σ^2 from the full model (P-1) predictors in total)

$$-\hat{\sigma}^2=\mathsf{MSE}(X_1,X_2,...,X_{P-1})=\mathsf{MSE}_{\underline{P}}$$
 MSE in grand (all p predictors)

- ullet Consider a model with p-1 predictors
 - Can show $E(SSE_p) = \sum (E(\hat{Y}_i) \mu_i)^2 + (n-p)\sigma^2$ * Estimate $\sum (E(\hat{Y}_i) - \mu_i)^2$ by $SSE_p - (n-p)$ MSE_P
 - $\text{ Note } \sum \sigma^2(\hat{Y}_i) = \text{Trace}\{\sigma^2(\hat{Y})\} = \sigma^2 \text{Trace}\{H\} = p\sigma^2$ $(w(\hat{Y})) = (w(\hat{Y})) = ($
- ullet Putting it together, Γ_p is estimated by

$$C_p = \frac{(SSE_p - (n-p)MSE_P) + pMSE_P}{MSE_P}$$
$$= \frac{SSE_p}{MSE(X_1, X_2, ..., X_{P-1})} - (n-2p)$$

A good model has no bias

all true predicators
$$\Gamma_p = \frac{0+p\sigma^2}{\sigma^2} = p; \quad E(C_p) \approx p;$$
 \rightarrow no bits for AL

A bad model is biased

$$\Gamma_p > \frac{0 + p\sigma^2}{\sigma^2} = p; \quad E(C_p) > p;$$

- When plotting models against p
 - Biased models will fall above $C_p = p$
 - Unbiased models will fall around the line $C_p=p$

Adjusted R^2 Criterion

- Takes into account the number of parameters in the model
- Switches from SS's to MS's

$$R_a^2 = 1 - \left(\frac{n-1}{n-p}\right) \frac{\text{SSE}}{\text{SSTO}} = 1 - \frac{\text{MSE}}{\text{MSTO}}$$

- \bullet Choose model which maximizes R_a^2
- Same approach as choosing smallest MSE

PRESS_p Criterion

- Looks at the PREdiction Sum of Squares which quantifies how well the fitted values can predict the observed responses
 - For each case i, predict Y_i using model generated from other n-1 cases
- Want to select model with small PRESS
- Can calculate this in one fit (Chapter 10)

$$Y_1 = \beta_0 + \beta_1 X_1$$
 $y_1 = \beta_0 + \beta_1 X_1$
 $y_2 = \beta_0 + \beta_1 X_1$
 $y_3 = \beta_0 + \beta_1 X_1$
 $y_4 = \beta_0 + \beta_1 X_1$
 $y_5 = \beta_0 + \beta_1 X_1$

Other Approaches

- Criterion based on minimizing -2log(likelihood) plus a penalty for more complex model
- AIC Akaike's information criterion (similar to C_p)

$$n\log\left(\frac{\mathsf{SSE}_p}{n}\right) + 2p$$
 when $n\uparrow \neg$ not sufficient

SBC - Schwarz Bayesian Criterion

$$n \log \left(\frac{\text{SSE}_p}{n} \right) + p \log(n)$$
 stronger penality when M1, BI more

- It is also called BIC, i.e, Bayesian Information Criterion
- If n is very large, AIC tends to overselect the model, while BIC is consistent.

SELECTION in SAS

- Helpful options in MODEL statement
 - SELECTION = to choose model selection procedure and criterion
 - * FORWARD (step up)
 - * BACKWARD (step down)
 - * STEPWISE (forward with backward glance)
 - * RSQUARE, ADJRSQ, CP (all subset selection using the specified criterion)
 - INCLUDE = n forces first n variables into all models
 - BEST = n limits output to the best n models
 - START = n limits output to models with $\geq n \ X$'s
 - B will include parameter estimates

Forward Selection

start with nothing and predictors one by one

/* SLE: significance level for entry into the model */
/* Default: sle=0.5

model logsurv = blood prog enz liver/selection=f sle=0.5;

Start with no variables

- Add the next variable with best F-value given the previous variables in the model (only if p-value < sle)
- Stop if no variables can be added with p-value < sle

Backward Elimination

- Start with all the variables
- Delete the variable that has the smallest extra SS (only if p-value > sls)
- Delete the next variable that has the smallest extra SS (only if p-value > sls)
- Stop when all variables have p-value < sls

Stepwise Search

```
/* Default: sle = 0.15, sls=0.15 */
model logsurv = blood prog enz liver/selection=stepwise;
```

- Start with no variables
- Add variables sequentially as in forward selection, using sle
- After a variable is added, however, the stepwise method looks at all the variables already included in the model and deletes any variable that does not produce an F statistic significant at sls
- Stop when nothing can be added, and nothing non-significant can be removed
- Fix sle \leq sls to void cycling.

All Subset Selection

- Select from all the possible models
 - selection=rsquare
 - selection=adjrsq
 - selection=cp

Models of Same Subset Size

- Can also use R^2 or SSE
- May result in several worthy models
- Use knowledge on subject matter to make final decision
- Decision not that important if goal is prediction

Example: All Subset Selection in SAS

```
/* ---- Variable Selection: Quality of Fit ---- */
proc reg data=a1;
   model logsurv = blood prog enz<sub>n</sub>liver/ od R<sup>2</sup> (P) mikkept
                 selection = rsquare adjrsq cp b;
                          which selection method you want to my
run;
Number in
                    Adjusted
 Model
         R-Square R-Square C(p)
  size b1
           0.4276
                     0.4166 66.4889
      1
          0.4215 0.4104 67.7148
         0.2208 0.2059 108.5558
            0.0606 0.0425 141.1639
            0.6633 0.6501 20.5197
            0.5995 0.5838
                                33.5041
            0.5486 0.5309
                               43.8517
      2
            0.4830 0.4627 57.2149
            0.4301 0.4078 67.9721
            0.2627 0.2338
                               102.0313
            0.7573 0.7427 3.3905
      3
            0.7178 0.7009
                                11.4237
            0.6121 0.5889
                                32.9320
            0.4870
                   0.4562
                                58.3917
            0.7592 0.7396 5.0000
     4
```

Number in			Paro	ameter Estimates	;	
Model	R-Square	Intercept	blood	prog	enz	liver
1	0.4276	5.26426	•	•	0.01512	•
1	0.4215	5.61218	•	•	•	0.29819
1	0.2208	5.56613	•	0.01367	•	•
1	0.0606	5.99386	0.07550	•	•	•
2	0.6633	4.35058		0.01412	0.01539	
2	0.5995	5.02818	•	•	0.01073	0.20945
2	0.5486	4.54623	0.10792	•	0.01634	•
2	0.4830	5.24574	•	0.00776	•	0.25299
2	0.4301	5.73422	-0.03282	•	•	0.32288
2	0.2627	5.23573	0.06302	0.01313	•	•
3	0.7573	3.76618	0.09546	0.01334	0.01645	
3	0.7178	4.40582		0.01101	0.01261	0.12977
3	0.6121	4.78168	0.04482		0.01220	0.16360
3	0.4870	5.34144	-0.02272	0.00752	•	0.27147
4	0.7592	3.85195	0.08368	0.01266	0.01563	0.03216

```
/* ---- PRESS: Quality of Prediction ---- */
/* OUTEST: outputs estimates & model fit summary statistics
/* PRESS: outputs the PRESS statistic of the (final selected) model to the
OUTEST= data set, use multiple model statement to obtain multiple PRESS
statistics */
/* Model with Three/Four Predictors */
proc reg data=a1 outest=sumstats1 press;
   model logsurv = blood prog enz;
   model logsurv = blood prog enz liver;
run;
proc print data=sumstats1; run; quit;
Obs _MODEL_ ... _RMSE_ _PRESS_ Intercept ... enz
                                                       liver
                                                                logsurv
1 MODEL1 ... 0.24934 3.91424 3.76618 ... 0.016452
                                                                  -1
2 MODEL2 ... 0.25087 4.06857 3.85195 ... 0.015632 0.032161
                                                                  -1
```

Example: Stepwise Selection in SAS

All variables left in the model are significant at the 0.1500 level.

No other variable met the 0.1500 significance level for entry into the model.

Summary of Stepwise Selection

	Variable	Variable	Number	Partial	Model			
Step	Entered	Removed	Vars In	R-Square	R-Square	C(p)	F Value	Pr > F
1	enz		1	0.4276	0.4276	117.409	38.84	<.0001
2	prog		2	0.2357	0.6633	50.4716	35.70	<.0001
3	alcheavy		3	0.1147	0.7780	18.9145	25.85	<.0001
4	blood		4	0.0519	0.8299	5.7508	14.93	0.0003
5	gender		5	0.0076	0.8374	5.5406	2.23	0.1418

LASSO selection

LASSO (least absolute shrinkage and selection operator):

$$\mathbf{b} = \arg \min \|\mathbf{Y} - \mathbf{X}\mathbf{b}\|, \text{ subject to } \sum |b_i| \le t$$

• Equivalent estimation:

$$\mathbf{b} = \arg \min \|\mathbf{Y} - \mathbf{X}\mathbf{b}\| + \lambda \sum |b_i|$$

- a sequence of models, from null to full, as t increases
- One can pick one among them, depending on some criterion.

LASSO in SAS

```
proc glmselect data=a1 plot=CriterionPanel ;
  model logsurv=blood prog enz liver age gender alcmod alcheavy
                / selection=LASSO(choose=SBC steps=10);
run;
  LASSO Selection Summary
Step Effect
                Effect
                         Number
      Entered
                Removed Effects In SBC
      Intercept
                                     -73.7135
0
                                     -70.2835
1
      enz
     liver
                                     -89.6791
3
                                     -98.5064
     prog
4
                                     -135.1305
      alcheavy
5
      blood
                                     -142.6026
6
     gender
                                     -142.3672
                                     -144.4504*
      age
      alcmod
8
                                     -142.8701
* Optimal Value of Criterion
```

Plus additional table, e.g. parameter estimations, and figures.

Cross Validation

```
* ---- select random 30 subjects ----;
proc surveyselect data=a1 method=srs n=30 out=a3 outall;
run;
* ---- take the 30 subjects in the training set ----;
data train; set a3; if Selected=1; run;
* ---- the remainders in the validation set ----;
data val; set a3; if Selected ne 1; run;
* ---- regression model on the training set ----;
proc reg data=train outest=trainStats;
    model lsurv = blood prog enz;
run;
* ---- predict survival on the validation set ----;
proc score data=val score=trainStats
    out=valStats type=parms;
var blood prog enz ;
run;
* ---- find MSPR ----;
data valSummary; set valStats;
    spr = (lsurv - MODEL1)*(lsurv - MODEL1);
run;
proc univariate data=valSummary; var spr; run;
```

Chapter Review

- Variable Selection Criteria
 - $-R^2$, Adjusted R^2
 - $-C_p$
 - PRESS
 - AIC, SBC (aka BIC)
- Automatic Search Procedures
 - Forward Selection
 - Backward Elimination
 - Stepwise Search
 - All Subset Selection
 - LASSO