Método de Hückel Aplicado a Sistemas π Conjugados Resolução com Parâmetros Padronizados da Literatura

UFABC

August 27, 2025

Sumário

- Parâmetros Utilizados
- Questão 1: Azepina
- 3 Questão 2: Trifenileno e Derivados
- 4 Conclusões

Parâmetros da Tabela Fornecida

Energias Atômicas (h):

- $h_C = 0$ (carbono, referência)
- $h_N = 0.5$ (nitrogênio piridínico)
- $h_O = 1.0$ (oxigênio)
- $h_F = 3.0$ (flúor)
- $h_{CI} = 2.0$ (cloro)
- $h_{Br} = 1.5 \text{ (bromo)}$

Integrais de Ressonância (k):

- $k_{C-C} = 1.0$
- $k_{C-N} = 1.0$
- $k_{N-N} = 0.8$
- $k_{C-O} = 1.0$
- $k_{C-F} = 0.7$
- $k_{C-CI} = 0.4$
- $k_{C-Br} = 0.3$

Convenção

Hamiltoniana: $H_{ii} = h_i \beta$ e $H_{ij} = -k_{ij} \beta$ (para vizinhos)

Azepina - Parâmetros Aplicados

Estrutura da Azepina:

- 6 elétrons π (6 C + 1 N)
- Anel de 7 membros
- Não-aromática (geometria)

Parâmetros Utilizados:

- $h_N = 0.5\beta$ (nitrogênio)
- $h_C = 0$ (carbonos)
- $k_{C-N} = 1.0 \rightarrow \beta_{C-N} = -1.0\beta$
- $k_{C-C} = 1.0 \rightarrow \beta_{C-C} = -1.0\beta$

Azepina - Matriz Hamiltoniana

• Matriz Hamiltoniana com parâmetros padronizados:

$$H = \begin{pmatrix} 0.5 & -1.0 & 0 & 0 & 0 & 0 & -1.0 \\ -1.0 & 0 & -1.0 & 0 & 0 & 0 & 0 \\ 0 & -1.0 & 0 & -1.0 & 0 & 0 & 0 \\ 0 & 0 & -1.0 & 0 & -1.0 & 0 & 0 \\ 0 & 0 & 0 & -1.0 & 0 & -1.0 & 0 \\ 0 & 0 & 0 & 0 & -1.0 & 0 & -1.0 \\ -1.0 & 0 & 0 & 0 & 0 & -1.0 & 0 \end{pmatrix}$$

Azepina

Níveis de Energia:

$$E_{1} = -1.9452\beta \qquad \qquad (1)$$

$$E_{2} = -1.2470\beta \qquad \qquad (2)$$

$$E_{3} = -1.1122\beta \text{ (HOMO)} \qquad (3)$$

$$E_{4} = 0.4450\beta \text{ (LUMO)} \qquad (4)$$

$$E_{5} = 0.5862\beta \qquad \qquad (5)$$

$$E_{6} = 1.8019\beta \qquad (6)$$

$$E_{7} = 1.9712\beta \qquad (7)$$

Gap HOMO-LUMO: 1.5573β

Validação

Parâmetros padronizados confirmam resultados anteriores!

Azepina - Ordens de Ligação e Populações

Ordens de Ligação:

- N-C (1-2, 7-1): 0.6043
- C-C (2-3, 6-7): 0.6740
- C-C (3-4, 5-6): 0.6229
- C-C (4-5): 0.6679

Parâmetros k aplicados:

- $k_{C-N} = 1.0$ (ligações N-C)
- $k_{C-C} = 1.0$ (ligações C-C)

Populações Eletrônicas:

- N (átomo 1): 0.6639 e⁻
- C (átomo 2): 0.9210 e⁻
- C (átomo 3): 0.8639 e⁻
- C (átomo 4): 0.8831 e⁻
- C (átomo 5): 0.8831 e⁻
- C (átomo 6): 0.8639 e⁻
- C (átomo 7): 0.9210 e⁻

Total: 6.0000 e[−] ✓

Trifenileno - Parâmetros Diferenciados

- Sistemas estudados
 - **1 Trifenileno (0N)**: apenas ligações C-C ($k_{C-C} = 1.0$)
 - **2** Triazatrifenileno (3N): ligações C-C e C-N ($k_{C-N} = 1.0$)
 - **3** Hexaazatrifenileno (6N): C-C, C-N e N-N ($k_{N-N} = 0.8$)

Trifenileno - Espectros

Figure: Espectros calculados com parâmetros padronizados da tabela

- Diferenciação clara entre os três sistemas
- Efeito dos parâmetros $k_{N-N} = 0.8$ visível no sistema 6N
- Deslocamento sistemático dos níveis de energia

Trifenileno - Gaps HOMO-LUMO

Sistema	Gap (Parâmetros Corretos)
Trifenileno (0N)	0.8284eta
Triazatrifenileno (3N)	0.5725eta
Hexaazatrifenileno (6N)	0.2653eta

Table: Gaps calculados com parâmetros da tabela

Conclusões Finais

Parâmetros Validados:

- Tabela fornecida contém valores padronizados da literatura
- Azepina: confirmação completa dos resultados anteriores
- Equivalência: $h_N = 0.5\beta \equiv \alpha_N = \alpha_C + 0.5\beta$

Refinamento dos Trifenilenos:

- Diferenciação $k_{N-N} = 0.8 < k_{C-N} = k_{C-C} = 1.0$
- Tendência de diminuição do gap confirmada e refinada
- Sistema 6N: redução de 68% no gap (vs 42% anterior)

Método de Hückel:

- Importância dos parâmetros corretos demonstrada
- Consistência com literatura assegurada
- Base sólida para comparações quantitativas

Aplicações:

- Design molecular baseado em parâmetros confiáveis
- Previsão de propriedades eletrônicas
- Modulação controlada de gaps HOMO-LUMO