Мотоциклист в сфере

Математические модели для решения физических задач

Команда: Кривошеин Алексей, Сулимов Андрей, Юдинцев Степан

Цель проекта

Основная цель:

Исследовать движение мотоциклиста внутри сферы, определить условия устойчивого движения по экватору и необходимые параметры для выполнения трюка "сфера смерти", включая отрыв нижней части сферы.

Ключевые задачи:

- Разработать математическую модель движения.
- ullet Определить минимальную скорость v_{\min} для движения по экватору.
- Реализовать интерактивный GUIсимулятор для визуализации и анализа.
- Исследовать влияние параметров (радиус, трение, тяга) на движение.

Роли в команде

• Кривошеин Алексей:

- Интеграция физической модели и GUI.
- Написание отчета и технической документации.
- Тестирование, верификация результатов, анализ чувствительности.

• Сулимов Андрей:

- Разработка графического интерфейса (PyQt5, 3D-визуализация).
- Реализация элементов управления, отображения данных и траектории.
- Анализ литературных источников.

• Юдинцев Степан:

- Разработка динамической модели (Python).
- Реализация физических алгоритмов (силы, интегрирование, условия отрыва/ проскальзывания).

Анализ литературы

• Ключевые источники:

- Ландау, Лифшиц "Механика" фундаментальные принципы.
- Goldstein "Classical Mechanics" углубленный лагранжев формализм.
- Статьи McDonald K.T., Abramowicz M.A. специфика движения в сфере.
- Журнал «Квант», Downey A.B. "Modeling and Simulation" практические подходы.

• Влияние на работу:

- Подтверждение теоретических формул (v_{\min}).
- Понимание важности учета трения и динамики.
- Обоснование выбора численных методов и подходов к моделированию.

Математическая модель и Алгоритмы

Выбор подходов, алгоритмов и структур данных

- Физическая модель:
 - Ньютоновская механика для описания сил.
 - Лагранжев формализм для верификации и анализа устойчивости.
- Численный метод:
 - Метод Эйлера:
 - Выбран, как наиболее простой и надежный в реализации.
- Интерактивность:
 - **PyQt5 для GUI:** 3D-визуализация и управление параметрами.

- Ключевые алгоритмы:
 - Итерационное интегрирование ОДУ: Эйлер для пошагового расчета ${f r}(t), {f v}(t).$
 - **Проверка условий:** Алгоритмы для детекции отрыва ($N \leq 0$) и проскальзывания ($F_{\text{трения}} > \mu_s N$).
 - **Коррекция траектории:** Обеспечение нахождения точки на поверхности сферы.

Входные данные модели

- ullet Геометрия: Радиус сферы R (м).
- Объект: Масса мотоциклиста m (кг) (моделируется как материальная точка).
- Силы:
 - Коэффициент статического трения μ_s .
 - ullet Сила тяги двигателя $F_{
 m drive}$ (H) или $a_{
 m e}$ (м/с²).
- Симуляция:
 - ullet Общее время симуляции $T_{
 m sim}$ (c).
 - ullet Шаг интегрирования Δt (с).
- Начальные условия:
 - ullet Позиция ${f r}_0$ на сфере.
 - Скорость \mathbf{v}_0 .

Параметры модели

• Динамика:

- Траектория движения $\mathbf{r}(t)$.
- Вектор скорости $\mathbf{v}(t)$ и скалярная скорость v(t).
- ullet Сила нормальной реакции N(t).

• Критические значения:

- Минимальная скорость v_{\min} для удержания на экваторе.
- Минимальная начальная скорость $v_{0,\min}$ для "мертвой петли".

• События:

• Момент и условия отрыва от поверхности.

Информация о точке (текущий кадр)

Критическая скорость: 6.26 м/с

Время: 1.275 сек

Позиция (x,y,z): (-1.975, -0.966, -3.342)

Скорость (vx,vy,vz): (8.131, 4.242, -6.032)

Скорость (скаляр): 10.977 м/с

Математическая модель: Уравнения

Основное уравнение движения (2-й закон Ньютона):

$$m\ddot{\mathbf{r}} = \mathbf{F}_{ ext{gravity}} + \mathbf{F}_{ ext{drive}} + \mathbf{F}_{ ext{friction}} + \mathbf{N}$$

где ${f N}$ – сила нормальной реакции, ${f F}_{
m friction}$ – сила трения.

Сила нормальной реакции (для движения по окружности в верт. плоскости):

$$N=mrac{v^2}{R}-mg\cos heta$$

Условие отсутствия проскальзывания:

$$|\mathbf{F}_{ ext{friction}}| \leq \mu_s N$$

Критическая скорость на экваторе (без соскальзывания вниз):

$$v_{
m min,\,equator} = \sqrt{rac{gR}{\mu_s}}$$

Сравнение моделей

Статическая модель (анализ равновесия):

- Рассматривает силы в конкретной точке
- Позволяет вывести аналитические формулы
- не описывает переходные процессы, разгон

Динамическая модель (симуляция):

- Описывает эволюцию системы во времени: $\mathbf{r}(t), \mathbf{v}(t).$
- Учитывает инерцию, изменение скорости
- Позволяет моделировать:
 - Разгон до нужной скорости.
 - Движение по сложным траекториям ("мертвая петля").

Результаты симуляции и GUI

Количественные результаты и верификация

Проверка теоретических предсказаний:

- ullet $v_{
 m min,\ equator}=\sqrt{gR/\mu_s}$: Симуляции подтвердили эту формулу для разных R и μ_s .
- "Мертвая петля" (без тяги, старт снизу): $v_{0,\min} \approx \sqrt{5gR}$. Симуляция показала отрыв при меньших скоростях.

Основные результаты проекта

- Разработана и реализована динамическая модель движения мотоциклиста в сфере.
- **Создан интерактивный GUI-симулятор** на Python (PyQt5) с 3D-визуализацией, позволяющий:
 - ullet Задавать параметры системы ($R, m, \mu_s, F_{
 m drive}$).
 - Наблюдать траекторию движения в реальном времени.
 - Отслеживать критические события (отрыв, падение).
- Проведена верификация модели:

Спасибо за внимание!

Готовы ответить на ваши вопросы.