Übungsblatt 8

Pascal Diller, Timo Rieke June 6, 2025

Aufgabe 1

(i)

Für $\lambda_1 = 0$ ist der Eigenraum $E_0 = \text{Kern}(A)$:

$$Ax = 0$$

$$\begin{pmatrix} 3 & 1 & -1 & 1 \\ 1 & 3 & 1 & -1 \\ -1 & 1 & 3 & 1 \\ 1 & -1 & 1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Umformen von A:

$$R_1 \leftrightarrow R_2 : \begin{pmatrix} 1 & 3 & 1 & -1 \\ 3 & 1 & -1 & 1 \\ -1 & 1 & 3 & 1 \\ 1 & -1 & 1 & 3 \end{pmatrix}$$

$$R_2 \to R_2/(-4) R_3 \to R_3/4 : \begin{pmatrix} 1 & 3 & 1 & -1 \\ 0 & 2 & 1 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix}$$

$$R_2 \leftrightarrow R_3: \begin{pmatrix} 1 & 3 & 1 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & 2 & 1 & -1 \\ 0 & 1 & 0 & -1 \end{pmatrix}$$

$$R_1 \to R_1 - 3R_2 R_3 \to R_3 - 2R_2 : \begin{pmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & -1 & -1 \end{pmatrix}$$

$$R_{3} \rightarrow -R_{3}: \begin{pmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -1 & -1 \end{pmatrix}$$

$$R_{1} \rightarrow R_{1} + 2R_{3}$$

$$R_{2} \rightarrow R_{2} - R_{3}: \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 \Longrightarrow

$$x1 + x_4 = 0 \implies x_1 = -x_4$$
$$x2 - x_4 = 0 \implies x_2 = x_4$$
$$x3 + x_4 = 0 \implies x_3 = -x_4$$

Sei $x_4 = t$ mit $t \in \mathbb{R}$, dann sind die Eigenvektoren von der Form $t \begin{pmatrix} -1 \\ 1 \\ -1 \\ 1 \end{pmatrix}$.

Also ist der Eigenraum $E_0 = \operatorname{span} \left\{ \begin{pmatrix} -1\\1\\-1\\1 \end{pmatrix} \right\}$

Eine Basis für E_0 ist $B_0 = \left\{ \begin{pmatrix} -1\\1\\-1\\1 \end{pmatrix} \right\}$

Für $\lambda_2 = 4$ ist der Eigenraum $E_4 = \text{Kern}(A - 4I)$ Zu lösen: (A - 4I)x = 0

$$A - 4I = \begin{pmatrix} 3 - 4 & 1 & -1 & 1 \\ 1 & 3 - 4 & 1 & -1 \\ -1 & 1 & 3 - 4 & 1 \\ 1 & -1 & 1 & 3 - 4 \end{pmatrix} = \begin{pmatrix} -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 \end{pmatrix}$$

Es ergibt sich:

$$\begin{pmatrix}
1 & -1 & 1 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

 $\implies x_1 - x_2 + x_3 - x_4 = 0 \implies x_1 = x_2 - x_3 + x_4$

Seien $x_2 = s, x_3 = t, x_4 = u$ mit $s, t, u \in \mathbb{R}$ dann ist

$$\begin{pmatrix} s - t + u \\ s \\ t \\ u \end{pmatrix} = s \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + u \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Also ist der Eigenraum
$$E_4 = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$
 Eine Basis ist $\left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}$

(ii)

Für E_0 :

Der Eigenvektor $(1, -1, 1, -1)^T$ hat die Norm:

$$\|(1,-1,1,-1)^T\| = \sqrt{1^2 + (-1)^2 + 1^2 + (-1)^2} = \sqrt{4} = 2$$

Orthonormalbasis für E_0 :

$$\left\{ \frac{1}{2} \begin{pmatrix} 1\\ -1\\ 1\\ -1 \end{pmatrix} \right\}$$

Für E_4 :

Gram-Schmidt-Verfahren auf die Basis $\left\{\begin{pmatrix}1\\1\\0\\0\end{pmatrix},\begin{pmatrix}-1\\0\\1\\0\end{pmatrix},\begin{pmatrix}1\\0\\0\\1\end{pmatrix}\right\}$:

Schritt 1:

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad \|v_1\| = \sqrt{2}$$

$$u_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}$$

Schritt 2:

$$v_2 = \begin{pmatrix} -1\\0\\1\\0 \end{pmatrix}$$

$$\langle v_2, u_1 \rangle = \frac{1}{\sqrt{2}} (-1 \cdot 1 + 0 \cdot 1) = -\frac{1}{\sqrt{2}}$$

$$v_2' = v_2 - \langle v_2, u_1 \rangle u_1 = \begin{pmatrix} -1\\0\\1\\0 \end{pmatrix} - \left(-\frac{1}{\sqrt{2}} \right) \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix} = \begin{pmatrix} -1/2\\1/2\\1\\0 \end{pmatrix}$$

$$||v_2'|| = \sqrt{\frac{1}{4} + \frac{1}{4} + 1} = \sqrt{\frac{3}{2}}$$

$$u_2 = \frac{1}{\sqrt{6}} \begin{pmatrix} -1\\1\\2\\0 \end{pmatrix}$$

Schritt 3:

$$v_{3} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\langle v_{3}, u_{1} \rangle = \frac{1}{\sqrt{2}} (1 \cdot 1) = \frac{1}{\sqrt{2}}$$

$$\langle v_{3}, u_{2} \rangle = \frac{1}{\sqrt{6}} (1 \cdot (-1)) = -\frac{1}{\sqrt{6}}$$

$$v'_{3} = v_{3} - \langle v_{3}, u_{1} \rangle u_{1} - \langle v_{3}, u_{2} \rangle u_{2} = \begin{pmatrix} 1/2 \\ -1/2 \\ 1/3 \\ 1 \end{pmatrix}$$

Nach Normierung:

$$u_3 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\ -1\\ 0\\ 1 \end{pmatrix}$$

Orthonormalbasis für E_4 :

$$\left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \frac{1}{\sqrt{6}} \begin{pmatrix} -1\\1\\2\\0 \end{pmatrix}, \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\-1\\0\\1 \end{pmatrix} \right\}$$

(iii)

Ja, es existiert eine Orthonormalbasis des \mathbb{R}^4 bestehend aus Eigenvektoren von T_A .

- $\dim(E_0) = 1$ und $\dim(E_4) = 3$
- Da $1+3=4=\dim(\mathbb{R}^4)$, spannen die Eigenräume den gesamten \mathbb{R}^4 auf
- Eigenräume zu verschiedenen Eigenwerten sind orthogonal zueinander
- $\bullet\,$ Wir können die orthonormalen Basen aus (ii) zu einer orthonormalen Basis des \mathbb{R}^4 vereinigen

Die gesuchte Orthonormalbasis ist:

$$\left\{ \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \frac{1}{\sqrt{6}} \begin{pmatrix} -1 \\ 1 \\ 2 \\ 0 \end{pmatrix}, \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix} \right\}$$

(iv)

Nein, die Inverse zu A existiert nicht.

- A hat den Eigenwert $\lambda_1 = 0$
- Eine Matrix ist genau dann invertierbar, wenn alle ihre Eigenwerte ungleich null sind
- Da 0 ein Eigenwert von A ist, folgt det(A) = 0
- \bullet Daher ist A singulär und nicht invertierbar

Aufgabe 2

Da A symmetrisch ist, gilt $A^T = A$.

Das Skalarprodukt $u \cdot v$ kann als $u^T v$ geschrieben werden.

Linke Seite (LS):

$$(Ax) \cdot y = (Ax)^T y$$

Nach der Eigenschaft $(AB)^T = B^TA^T$ ist $(Ax)^T = x^TA^T$.

Somit wird die LS zu $x^T A^T y$.

Da A symmetrisch ist $(A^T = A)$, gilt:

$$LS = x^T A y$$

Rechte Seite (RS):

$$x \cdot (Ay) = x^T (Ay)$$

Somit ist:

$$RS = x^T A y$$

Da LS = RS, ist die Aussage $(Ax) \cdot y = x \cdot (Ay)$ gezeigt.

(ii)

Da A symmetrisch ist, existiert eine Orthonormalbasis (v_1, v_2) von \mathbb{R}^2 , die aus Eigenvektoren von T_A besteht.

Es seien $Av_1 = \lambda_1 v_1$ und $Av_2 = \lambda_2 v_2$ mit $\lambda_1, \lambda_2 > 0$.

Für die ONB gilt $v_1 \cdot v_1 = ||v_1||^2 = 1$, $v_2 \cdot v_2 = ||v_2||^2 = 1$ und $v_1 \cdot v_2 = 0$.

Ein beliebiger Vektor $x \in \mathbb{R}^2$ lässt sich als Linearkombination $x = c_1v_1 + c_2v_2$

darstellen. Dabei sind $c_1 = x \cdot v_1$ und $c_2 = x \cdot v_2$ die Koordinaten von x bezüglich dieser Basis. Die Norm von x ist:

$$||x||^2 = x \cdot x = (c_1 v_1 + c_2 v_2) \cdot (c_1 v_1 + c_2 v_2)$$
$$||x||^2 = c_1^2 (v_1 \cdot v_1) + 2c_1 c_2 (v_1 \cdot v_2) + c_2^2 (v_2 \cdot v_2)$$
$$||x||^2 = c_1^2 (1) + 2c_1 c_2 (0) + c_2^2 (1) = c_1^2 + c_2^2$$

Nun betrachten wir $(Ax) \cdot x$:

$$Ax = A(c_1v_1 + c_2v_2) = c_1(Av_1) + c_2(Av_2) = c_1\lambda_1v_1 + c_2\lambda_2v_2$$

Somit ist:

$$(Ax) \cdot x = (c_1\lambda_1v_1 + c_2\lambda_2v_2) \cdot (c_1v_1 + c_2v_2)$$

$$(Ax) \cdot x = \lambda_1c_1^2(v_1 \cdot v_1) + (\lambda_1 + \lambda_2)c_1c_2(v_1 \cdot v_2) + \lambda_2c_2^2(v_2 \cdot v_2)$$

$$(Ax) \cdot x = \lambda_1c_1^2(1) + (\lambda_1 + \lambda_2)c_1c_2(0) + \lambda_2c_2^2(1) = \lambda_1c_1^2 + \lambda_2c_2^2$$

Wir wollen zeigen: $\lambda_1 c_1^2 + \lambda_2 c_2^2 \ge c(c_1^2 + c_2^2)$ für ein c > 0. Sei $c = \min(\lambda_1, \lambda_2)$.

Da $\lambda_1, \lambda_2 > 0$, ist auch c > 0.

Da $c \leq \lambda_1$ und $c \leq \lambda_2$, und $c_1^2 \geq 0, c_2^2 \geq 0$, folgt:

$$\lambda_1 c_1^2 \ge c c_1^2$$

$$\lambda_2 c_2^2 \ge c c_2^2$$

Addieren dieser Ungleichungen ergibt:

$$\lambda_1 c_1^2 + \lambda_2 c_2^2 \ge c c_1^2 + c c_2^2 = c(c_1^2 + c_2^2)$$

Also gilt $(Ax) \cdot x \ge c||x||^2$ mit $c = \min(\lambda_1, \lambda_2) > 0$.

Aufgabe 3

- (i)
- (a)

$$\lim_{x \to 0} \frac{1 - \frac{1}{x}}{1 + \frac{1}{x^2}} = 0$$

Sei $(x_n)_{n\in\mathbb{N}}$ eine beliebige Folge mit $x_n\neq 0$ für alle $n\in\mathbb{N}$ und $\lim_{n\to\infty}x_n=0$. Betrachte $f(x_n)=\frac{1-\frac{1}{x_n}}{1+\frac{1}{x_n^2}}$. Umformen des Terms:

$$f(x_n) = \frac{x_n^2(1 - \frac{1}{x_n})}{x_n^2(1 + \frac{1}{x^2})} = \frac{x_n^2 - x_n}{x_n^2 + 1}$$

Da $x_n \to 0$, gilt nach den Grenzwertsätzen für Folgen (Satz 4.1.20 [cite: 133]):

$$\lim_{n \to \infty} (x_n^2 - x_n) = 0^2 - 0 = 0$$

$$\lim_{n \to \infty} (x_n^2 + 1) = 0^2 + 1 = 1$$

Somit ist:

$$\lim_{n \to \infty} f(x_n) = \frac{0}{1} = 0$$

(b)

$$\lim_{x \to 0} x \cdot \cos(x^{-2}) = 0$$

Sei $(x_n)_{n\in\mathbb{N}}$ eine beliebige Folge mit $x_n\neq 0$ für alle $n\in\mathbb{N}$ und $\lim_{n\to\infty}x_n=0$. Betrachte $f(x_n)=x_n\cdot\cos(x_n^{-2})$. Wir wissen, dass die Cosinusfunktion beschränkt ist: $-1\leq\cos(y)\leq 1$ für alle $y\in\mathbb{R}$. Also gilt:

$$-1 \le \cos(x_n^{-2}) \le 1$$

Multiplikation mit x_n führt zu:

$$-|x_n| \le x_n \cos(x_n^{-2}) \le |x_n|$$

Da $x_n \to 0$, gilt auch $|x_n| \to 0$ und somit $-|x_n| \to 0$. Nach dem Sandwichkriterium folgt:

$$\lim_{n \to \infty} x_n \cos(x_n^{-2}) = 0$$

(ii)

Sei $f(x) = \frac{9x^4 - 6x^3 + 2x^2 + 11x + 17}{3x^4 + 27x^3 + 7x^2 + 2x + 42}$. Wir betrachten eine beliebige Folge $(x_n)_{n \in \mathbb{N}}$ mit $x_n \to \infty$ für $n \to \infty$. Wir dividieren Zähler und Nenner durch die höchste Potenz von x_n im Nenner, also x_n^4 :

$$f(x_n) = \frac{9 - \frac{6}{x_n} + \frac{2}{x_n^2} + \frac{11}{x_n^3} + \frac{17}{x_n^4}}{3 + \frac{27}{x_n} + \frac{7}{x_n^2} + \frac{2}{x_n^3} + \frac{42}{x_n^4}}$$

Da $x_n \to \infty$, konvergieren die Terme der Form $\frac{c}{x_n^k}$ für $k \ge 1$ gegen 0. Mit den Rechenregeln für konvergente Folgen gilt:

$$\lim_{n \to \infty} f(x_n) = \frac{9 - 0 + 0 + 0 + 0}{3 + 0 + 0 + 0 + 0} = \frac{9}{3} = 3$$

(iii)

Der Ausdruck $x \nearrow 0$ bedeutet, dass x von links gegen 0 strebt, d.h. x < 0 und $x \to 0$. Sei $(x_n)_{n \in \mathbb{N}}$ eine beliebige Folge mit $x_n < 0$ für alle $n \in \mathbb{N}$ und $\lim_{n \to \infty} x_n = 0$. Für $x_n < 0$ gilt $|x_n| = -x_n$. Setzen wir dies in den Funktionsterm ein:

$$f(x_n) = \frac{x_n + |x_n|}{|x_n|} = \frac{x_n + (-x_n)}{-x_n} = \frac{0}{-x_n}$$

Da $x_n \neq 0$, ist $-x_n \neq 0$. Somit ist $f(x_n) = 0$ für alle $n \in \mathbb{N}$. Also gilt:

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} 0 = 0$$

Aufgabe 4

(i)

Sei $(x_n)_{n\in\mathbb{N}}$ eine beliebige Folge mit $x_n\in I\setminus\{x_0\}$ für alle $n\in\mathbb{N}$ und $x_n\to x_0$. Da $\lim_{x\to x_0}f(x)=y$, folgt nach Definition 7.1.4:

$$f(x_n) \to y \text{ für } n \to \infty$$

Da $\lim_{x\to x_0} g(x) = z$, folgt nach Definition 7.1.4:

$$g(x_n) \to z \text{ für } n \to \infty$$

Nach dem Produktsatz für konvergente Folgen (Kapitel 4) gilt:

$$f(x_n) \cdot g(x_n) \to y \cdot z \text{ für } n \to \infty$$

Das bedeutet:

$$(f \cdot g)(x_n) \to y \cdot z \text{ für } n \to \infty$$

Da die Folge (x_n) beliebig gewählt war, folgt nach Definition 7.1.4:

$$\lim_{x \to x_0} (f \cdot g)(x) = y \cdot z$$

(ii)

Sei $(x_n)_{n\in\mathbb{N}}$ eine beliebige Folge mit $x_n\in I\setminus\{x_0\}$ für alle $n\in\mathbb{N}$ und $x_n\to x_0$. Da $\lim_{x\to x_0} f(x)=y$, folgt nach Definition 7.1.4:

$$f(x_n) \to y \text{ für } n \to \infty$$

Da $\lim_{x\to x_0} g(x) = z = y$, folgt nach Definition 7.1.4:

$$g(x_n) \to y \text{ für } n \to \infty$$

Aus der Voraussetzung $f \leq h \leq g$ folgt für alle $n \in \mathbb{N}$:

$$f(x_n) \le h(x_n) \le g(x_n)$$

Wenn (a_n) und (c_n) beide gegen denselben Grenzwert L konvergieren und $a_n \leq b_n \leq c_n$ für alle n, dann konvergiert auch (b_n) gegen L.

$$a_n = f(x_n) \to y$$

$$b_n = h(x_n)$$

$$c_n = g(x_n) \to y$$

$$\text{mit } f(x_n) \le h(x_n) \le g(x_n)$$

Daher folgt:

$$h(x_n) \to y \text{ für } n \to \infty$$

Da die Folge (x_n) beliebig gewählt war, folgt nach Definition 7.1.4:

$$\lim_{x \to x_0} h(x) = y$$