CMPE 138/180B Database System I Enhanced Entity-Relationship (EER) Model

Instructor: Kong Li

Outline

- Subclasses, Superclasses, and Inheritance
- Specialization and Generalization
- Constraints
 - Participation: total vs partial
 - Disjoint vs overlap
- Design Choice

Subtype, Subclass

- Subtype or subclass of an entity type
 - Subgroupings of entities that are meaningful
 - w/ specific role, etc
 - Represented explicitly due to significance to DB apps
 - E.g., EMPLOYEE → SECRETARY, ENGINEER, MANAGER,
 TECHNICIAN, SALARIED_EMPLOYEE, HOURLY_EMPLOYEE
- Terminology: relationship b/w a superclass and any one of its subclasses
 - Superclass/subclass
 - Supertype/subtype
 - Class/subclass relationship

IS-A relationship:

A SECRETARY <u>is an</u> EMPLOYEE A TECHNICIAN <u>is an</u> EMPLOYEE

Enhanced Entity-Relationship (EER) Model

Purposes

- more accurate database schemas
 - Reflect properties and constraints more precisely
- More complex requirements than traditional apps
- EER == ER +
 - subclass and superclass
 - specialization and generalization
 - category or union type
 - attr and relationship inheritance

EER Diagram (EERD)

EERD: Subtype, Subclass

Membership

- membership in subclass → membership in superclass
 - Any member in SECRETARY implies membership in EMPLOYEE
- Completeness/Participation
 - Total (double line): every entity in superclass belong to at least one subclass
 - Partial (single line): not every entity in superclass belong to some subclass
- Disjointness
 - Disjoint (d): An entity in superclass can be a member of at most one of the subclasses
 - A EMPLOYEE can be SECRETARY or ENGINEER, but not both
 - Overlap (o): An entity in superclass may belong to multiple subclasses
 - One PART may belong to both MANUFACTURED_PART and PURCHASED_PART

Type inheritance

- Subclass inherits all attrs and relationships of superclass
 - SECRETARY also has Ssn, Birth_day, Address attrs inherited from superclass

Specialization

- Process of defining a set of subclasses of an entity type
 - Based on distinguishing characteristic in the superclass
 - EMPLOYEE (job type) → {SECRETARY, ENGINEER, TECHNICIAN}
 - EMPLOYEE (method of pay) → {SALARIED_EMPLOYEE,
 HOURLY_EMPLOYEE}
- Subclass inherits all attrs and relationships of its superclass
- Subclass can define:
 - Specific (local) attrs
 - SECRETARY has Typing_speed attr, ENGINEER has Eng_type attr
 - Specific (local) relationship types
 - HOURLY_EMPLOYEE participates in the BELONGS_TO relationship
- EER Diagram:
 - an arc pointing to subclass
 - Subclass: rectangle

EER Diagram

Why Specialization?

- Reasons: be more precise
 - Certain attrs may apply to some but not all entities of the superclass
 - Some relationship types may be participated in only by members of the subclass
- Summary: Specialization allows us to
 - Define a set of subclasses of an entity type
 - Establish additional specific attrs with each subclass
 - Establish additional specific relationship types b/w each subclass and other entity types

Generalization

- Process of defining a generalized entity type from given entity types
 - Suppress differences among several entity types
 - Identify common features
 - Generalize into a single superclass
 - Original/source entity types are subclasses
- Reverse process of specialization
- Generalization: subclasses → superclass
 - {CAR, TRUCK} → VEHICLE
- Specialization: superclass → subclass
 - VEHICLE → {CAR, TRUCK}
- EER Diagram:
 - an arc pointing to subclass
 - Subclass: rectangle

Generalization (cont'd)

EER Diagram: attr-defined specialization

EER Diagram: overlapping specialization

Constraints on Specialization

- Disjointness and completeness constraints are independent
 - Disjoint + total
 - Disjoint + partial
 - Overlapping + total
 - Overlapping + partial
- Constraints on specialization also apply to generalization
- In general, a superclass through generalization process usually is total
- Insert/delete rules apply to specialization/generalization
 - Delete entity from superclass \rightarrow delete from *all* subclasses it belong to
 - Insert entity in superclass → insert in all predicate-defined (or attr-defined) subclasses it belong to
 - Insert an entity in superclass of a total specialization → inserted in at least one of the subclasses of the specialization

Refining Conceptual Schemas w/ Specialization and Generalization

- Top-down conceptual refinement process
 - Specialization process
 - Start from entity type and then subclasses (successive specialization)
- Bottom-up conceptual synthesis
 - Generalization process
 - Start from the bottom and work the way up
- Hybrid

Design Choices for Specialization, Generalization

- Specializations + subclasses
 - Pros: make conceptual model accurate
 - Cons: cluttered design
- A subclass w/ few attrs and no relationships
 - Can be merged into superclass (w/ one NULLable type attr)
- All subclasses of specialization/generalization w/ few attrs and no relationships
 - Can be merged into superclass (w/ multiple NULLable type attr)
- Specialization/generalization
 - Disjoint vs overlapping ?
 - Total vs partial ?
 - driven by requirements in miniworld being modeled
 - If no constraints specified by requirements → default: overlapping + partial

Summary

- Superclass, Subclass, inheritance
- Specialization
- Generalization
- Constraints
 - Participation: total vs partial
 - Disjoint vs overlap
- Design choice

Self Exercises

- 7/E: Exercise 4.17, 4.18, 4.19, 4.21, 4.22, 4.27
- 6/E: Exercise 8.17, 8.18, 8.19, 8.21, 8.22, 8.27