Álgebra I. Doble grado en Informática y Matemáticas. Final global, 2015/16.

NOMBRE:

DNI:

Cuestiones. (3 puntos. Acierto=0.75, Fallo=-0.5)

		el conjunto de números $\{100x + 40y \mid x, y \in \mathbb{Z}\} \subseteq \mathbb{Z}$ ¿Cuál de las siguientes ciones es VERDADERA?
	\Box no co	ontiene a ningún múltiplo de 20.
	□ conti	iene algún múltiplo de 20, pero no a todos.
	□ conti	iene a todos los múltiplos de 20, pero también otros números lo son.
	□ conti	iene a todos los múltiplos de 20 y a ningún otro número.
2. En el anillo $\mathbb{Z}[i\sqrt{5}]$ ¿Cuál de las siguientes afirmaciones es VERDADERA?		
		$1+i\sqrt{5}$ es primo, pero no irreducible.
		$1+i\sqrt{5}$ es irreducible, pero no primo.
		$1+i\sqrt{5}$ ni es irreducible ni es primo.
		$1+i\sqrt{5}$ es primo e irreducible.
		los grupos abelianos $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3$, $\mathbb{Z}_3 \times \mathbb{Z}_{12}$, $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_9$ y \mathbb{Z}_{36} , ¿Cuál de iientes asertos es FALSA?
		Cualesquiera dos de ellos no son isomorfos.
		Cualquier grupo abeliano con 36 elementos es isomorfo a uno de estos.
		Dos grupos abelianos con 36 elementos son isomorfos si y solo si tienen el mismo ulador minimal.
		Una de las afirmaciones anteriores es falsa.
	4. ¿Cuál d	le las siguientes afirmaciones es FALSA?
		El polinomio $x^5 - 3x^3 + 6x - 12 \in \mathbb{Z}[x]$ es irreducible.
		El polinomio $x^5 - x^2 + 1 \in \mathbb{Z}[x]$ es irreducible.
		El polinomio $2x^3 - 6x - 6 \in \mathbb{Q}[x]$ es irreducible.
		Una de las afirmaciones anteriores es falsa.

Teoría. (2 puntos, 1 por pregunta)

- 1. Dado el sistema de congruencias en un DE, $\begin{cases} x \equiv a \mod(m) \\ x \equiv b \mod(n) \end{cases}$, demuestra que tiene solución si y solo si $a \equiv b \mod(m,n)$ y, que en tal caso, las soluciones son congruentes módulo [m,n].
- 2. Demuestra que el anulador minimal del K[x]-módulo definido por una matriz nunca es cero.

Ejercicios (5 puntos, 2.5 por ejercicio)

- 1. Determinar todos los polinomios $f(x) \in \mathbb{Z}_2[x]$ de grado menor o igual que 4, tales que: 1) el resto de dividir f(x) entre $x^2 + 1$ es x, 2) el resto de dividir xf(x) entre $x^2 + x + 1$ es x + 1, y 3) f(1) = 1.
- 2. De la siguiente matriz A, determina sus polinomios característico y mínimo, sus factores invariantes y divisores elementales. También sus formas canónicas (Frobenius, Weierstrass y, si existen, de Jordan y diagonal).

$$A = \left(\begin{array}{rrr} 3 & 4 & 2 \\ -2 & -3 & -1 \\ -4 & -4 & -3 \end{array}\right)$$