CLAIMS PENDING

1. (Previously Presented) A chemical vapor deposition process for the preparation of a single-wall carbon nanotube, comprising:

providing a methane gas composition and a supported iron-containing catalyst to a chemical vapor deposition chamber, and

decomposing the methane gas composition in the presence of the supported iron-containing catalyst, under a gas pressure of about 400 torr to about 600 torr and for a time sufficient to grow single-wall carbon nanotubes at a temperature from about 670° C to about 800° C.

- 2. (Original) A process of claim 1, wherein said temperature is from about 670°C to about 750°C.
- 3. (Original) A process of claim 1, wherein said temperature is from about 670°C to about 700°C
- 4. (Original) A process of claim 1, wherein said supported iron-containing catalyst is selected from the group consisting of: Al₂O₃/Fe/Mo/Co, Al₂O₃/Fe/Mo, Al₂O₃/Fe/Co, Al₂O₃/Fe, and mixtures thereof.
- 5. (Previously Presented) A process of claim 4, wherein the supported iron-containing catalyst is Al_2O_3 /Fe/Mo catalyst, and wherein the catalyst has a molar ratio of Al_2O_3 :Fe:Mo of about (10-20): 1: $^1/_3$.
- 6. (Previously Presented) A process of claim 1, wherein said methane gas composition is methane or a mixture of methane and a carrier gas.

- 7. (Original) A process of claim 6, wherein said carrier gas is selected from the group consisting of: argon, nitrogen, helium, and mixtures thereof.
- 8. (Original) A process of claim 7, wherein said methane gas and said carrier gas are used in a ratio of about 1:1 by volume to about 1:10 by volume.
- 9. (Previously Presented) A chemical vapor deposition process for the preparation of single-wall carbon nanotubes, comprising:

providing a methane gas composition and an $Al_2O_3/Fe/Mo$ catalyst to a chemical vapor deposition chamber, and

decomposing the methane gas composition in the presence of the Al₂O₃/Fe/Mo catalyst, under a gas pressure of about 400 torr to about 600 torr and for a time sufficient, to grow single-wall carbon nanotubes at a temperature from about 670° C to about 800° C,

wherein said single-wall carbon nanotubes have a diameter distribution ranging from about 0.7 nm to about 2.1 nm.

- 10. (Previously Presented) A process of claim 9, wherein the Al_2O_3 /Fe/Mo catalyst has a molar ratio of Al_2O_3 :Fe:Mo of about (10-20): 1: $^1/_3$.
- 11. (Original) A process of claim 9, wherein said temperature is from about 670 °C to about 750°C.
- 12. (Original) A process of claim 9, wherein said temperature is from about 670°C to about 700°C.

13. (Previously Presented) A chemical vapor deposition process for the preparation of single-wall carbon nanotubes, comprising:

providing a methane gas composition and an $Al_2O_3/Fe/Co/Mo$ catalyst to a chemical vapor deposition chamber, and

decomposing the methane gas composition in the presence of the Al₂O₃/Fe/Co/Mo catalyst, under a gas pressure of about 400 torr to about 600 torr and for a time sufficient, to grow single-wall carbon nanotubes at a temperature from about 680° C to about 800° C

wherein said single-wall carbon nanotubes have a diameter distribution ranging from about 0.7 nm to about 2.1 nm.

- 14. (Previously Presented) A process of claim 13, wherein the $Al_2O_3/Fe/Co/Mo$ catalyst has a molar ratio of $Al_2O_3:Fe:Co:Mo$ of about (10-20): 1:0.23: $^1/_6$.
- 15. (Previously Presented) A process of claim 13, wherein the $Al_2O_3/Fe/Co/Mo$ catalyst has a molar ratio of $Al_2O_3:Fe:Co:Mo$ of about (10-20): 1:0.23: $^{1}/_{18}$.
- 16. (Previously Presented) A process of claim 13, wherein the $Al_2O_3/Fe/Co/Mo$ catalyst has a molar ratio of $Al_2O_3:Fe:Co:Mo$ of about (10-20): 1:0.23: $^1/_{36}$.
- 17. (Original) A process of claim 13, wherein said temperature is from about 680 °C to about 750°C.
- 18. (Original) A process of claim 13, wherein said temperature is from about 680°C to about 700°C.