令和5年度 京都大学大学院理学研究科 数学·数理解析専攻

数学系 入学試験問題

2023 Entrance Examination

Master Course in Mathematics, Division of Mathematics and Mathematical Sciences, Graduate School of Science, Kyoto University

専門科目 Advanced Mathematics

© 9題の問題 $\boxed{1}\sim\boxed{9}$ のうちの 2題を選択して解答せよ.選択した問題番号を選択票に記入すること.

Select and answer 2 problems out of the 9 problems $\boxed{1}\sim\boxed{9}$. Write the problem numbers you chose on the selection sheet.

◎ 解答時間は2時間30分である.

The duration of the examination is 2 hours and 30 minutes.

◎ 問題は日本語および英語で書かれている. 解答は日本語または英語どちらかで書くこと.

The problems are given both in Japanese and in English. The answers should be written either in Japanese or in English.

◎ 参考書・ノート類・電卓・携帯電話・情報機器・<u>時計</u>等の持ち込みは <u>禁止</u> する. 指定された荷物置場に置くこと.

It is <u>not allowed</u> to refer to any textbooks, notebooks, calculators, cell phones, information devices or <u>clocks and watches</u> during the examination. They have to be kept in the designated area.

「注意」 Instructions

- 指示のあるまで問題冊子を開かないこと。
 Do not open this sheet until instructed to do so.
- 2. 答案用紙・下書用紙のすべてに、受験番号・氏名を記入せよ. Write your name and applicant number in each answer sheet and draft/calculation sheet.
- 3. 解答は問題ごとに別の答案用紙を用い、問題番号を各答案用紙の枠内に記入せよ.

Use a separate answer sheet for each problem and write the problem number within the box on the sheet.

4. 1 問を 2 枚以上にわたって解答するときは、つづきのあることを用紙下端に明示して次の用紙に移ること。

If you need more than one answer sheet for a problem, you may continue to the next sheet. If you do so, indicate clearly at the bottom of the page that there is a continuation.

5. 提出の際は、上から選択票、答案用紙 (問題番号順)、下書用紙の順に重ね、 記入した面を外にして一括して二つ折りにして提出すること.

When handing your exam to the proctor, stack your selection sheet and answer sheets (in the order of question numbers) followed by the draft/calculation sheets. Fold the stack in half with the filled-in side facing outward.

6. この問題冊子は持ち帰ってよい. You may keep this problem sheet.

[記号] Notation

以下の問題で \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} はそれぞれ,整数の全体,有理数の全体,実数の全体,複素数の全体を表す.In the problems, we denote the set of all integers by \mathbb{Z} , the set of all rational numbers by \mathbb{Q} , the set of all real numbers by \mathbb{R} and the set of all complex numbers by \mathbb{C} .

The English version is after the Japanese version.

1 n を正整数とし, $\zeta = e^{\pi \sqrt{-1}/n}$ を 1 の原始 2n 乗根とする.整数 $0 \le a, b \le 2n-1$ に対し,2 次複素正方行列 $X_{a,b}$ を以下のように定める.

$$X_{a,b} = \begin{pmatrix} \zeta^a & 0 \\ 0 & \zeta^b \end{pmatrix}.$$

また、2 次複素正方行列 S を以下のように定める.

$$S = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

一般線形群 $\mathrm{GL}_2(\mathbb{C})$ の部分群 G を, $X_{a,b}$ $(0 \le a,b \le 2n-1)$ および S で生成された群として定める.

- (1) G に含まれる位数 2 の元の個数を求めよ.
- (2) $\{g^2 \mid g \in G\}$ で生成された G の部分群を H とおく. [G:H] を求めよ.
- (3) G の部分群 $K \subset G$ であって,[G:K] = 2 となるものの個数を求めよ.
- ② 複素数係数 2 変数多項式環 $\mathbb{C}[X,Y]$ の元 F に対して剰余環 $\mathbb{C}[X,Y]/(F)$ を R とおく. x,y を X,Y の R での剰余類とし, $\mathfrak{m}=xR+yR$ とおき,これによる局所化を $R_{\mathfrak{m}}$ とおく.
 - (1) 2以上の整数 a,b を用いて $F(X,Y)=X^a+Y^b$ と書けるとき, $\mathfrak{m}R_{\mathfrak{m}}$ は 単項イデアルではないことを示せ.
 - (2) F(0,0)=0 かつ $\left(\left(\frac{\partial F}{\partial X}\right)(0,0),\left(\frac{\partial F}{\partial Y}\right)(0,0)\right)\neq(0,0)$ であるとき、 $\mathbf{m}R_{\mathbf{m}}$ は単項イデアルであることを示せ.

- $\boxed{ 3 }$ $S^2 = \{(x_1,x_2,x_3) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 + x_3^2 = 1\}$ とする. $S^2 \times S^2$ の部分集合 M を $M = \{((x_1,x_2,x_3),(y_1,y_2,y_3)) \in S^2 \times S^2 \mid x_1y_1 + x_2y_2 + x_3y_3 = 0, x_1 + y_1 = 0\}$ と定める.
 - (1) M は $S^2 \times S^2$ の C^∞ 級部分多様体であることを示せ.
 - (2) M は向き付け可能であることを示せ.
 - (3) 写像 $f: M \to S^2$ を

$$f((x_1, x_2, x_3), (y_1, y_2, y_3)) = (y_1, y_2, y_3)$$

と定める. M の向きをどのように選んでも, S^2 上の任意の二次微分形式 ω に対して,

$$\int_{M} f^* \omega = 0$$

となることを示せ.

$$(a,p) \sim (p,a), \quad (p \in S^1)$$

で生成される同値関係~を与える. 商空間

$$X = (S^1 \times S^1)/\sim$$

の整数係数ホモロジー群を計算せよ.

| 5 | 関数 $f:[0,\infty)\to(-1,\infty)$ は連続であり、

$$g(x) = \sup_{y \in [x,x+1]} |f(y) - f(x)| \quad (x \ge 0)$$

とおくとき,

$$\lim_{x \to \infty} f(x) = 0, \quad \int_0^\infty \{|f(x)| + g(x)\} \, dx < \infty$$

を満たすと仮定する. このとき, 極限

$$\lim_{n \to \infty} \prod_{k=1}^{\infty} \left\{ 1 + f\left(\frac{k}{n}\right) \right\}^{1/n}$$

を求めよ.

 $L^1([0,\infty))$ を $[0,\infty)$ 上の可積分関数全体のなす実 Banach 空間とし, $f\in L^1([0,\infty))$ に対して

$$||f||_1 = \int_0^\infty |f(x)| dx$$

とする. $f \in L^1([0,\infty))$ に対して $H_f: L^1([0,\infty)) \to L^1([0,\infty))$ を

$$(H_f g)(x) = \int_0^\infty f(x+y)g(y)dy$$

と定める.

- $(1) ||H_f|| \le ||f||_1$ を示せ. ここで $||H_f||$ は H_f の作用素ノルムである.
- (2) H_f はコンパクト作用素であることを示せ.

- [7] $B := \{x = (x_1, x_2) \in \mathbb{R}^2; x_1^2 + x_2^2 < 1\}, \ \bar{B} := \{x = (x_1, x_2) \in \mathbb{R}^2; x_1^2 + x_2^2 \le 1\}$ で ∂B は B の境界とする.
 - (1) 実数値関数 $f \in C^1([0,1])$ が f(1) = 0 を満たしているとき, 次が成り立つことを示せ.

$$\int_0^1 f(r)^2 r dr \le c_1 \int_0^1 f'(r)^2 r dr.$$

ここで, $c_1 > 0$ は f に依存しない定数である.

(2) 実数値関数 $f \in C^1(B) \cap C(\bar{B})$ は ∂B 上で f = 0 を満たしており、全ての 1 階偏導関数は \bar{B} 上の連続関数に拡張できるものとする. このとき、次が成り立つことを示せ.

$$\int_{B} f(x)^{2} dx \leq c_{2} \int_{B} \left\{ \left(\frac{\partial}{\partial x_{1}} f(x) \right)^{2} + \left(\frac{\partial}{\partial x_{2}} f(x) \right)^{2} \right\} dx.$$

ここで, $c_2 > 0$ は f に依存しない定数である.

- (3) 実数値関数 $u \in C^2((0,\infty) \times B) \cap C([0,\infty) \times \bar{B})$ は次を満たすものとする.
 - $\circ \ u(t,x) = 0, \ (t \in (0,\infty), \ x \in \partial B).$
 - 。 各 t>0 で $\frac{\partial}{\partial t}u(t,\cdot), \ \frac{\partial}{\partial x_1}u(t,\cdot), \ \frac{\partial}{\partial x_2}u(t,\cdot), \ \frac{\partial^2}{\partial x_1\partial x_2}u(t,\cdot)$ は、

 \bar{B} 上の連続関数に拡張できる.

このとき. もし

$$\frac{\partial}{\partial t}u(t,x) - \frac{\partial^2}{\partial x_1^2}u(t,x) - \frac{\partial^2}{\partial x_2^2}u(t,x) = 0, \ (t \in (0,\infty), \ x \in B)$$

が成り立つならば、全ての t > 0 に対して

$$\int_{B} u(t,x)^{2} dx \le c_{3} e^{-c_{4}t}$$

が成り立つことを示せ. ここで, $c_3 > 0$ は t に依存しない定数で, $c_4 > 0$ は t と u に依存しない定数である.

 $\boxed{8}$ 0 < a < 1 とし, $t \in \mathbb{R}$ の関数 $(r(t), \theta(t)) \in (0, \infty) \times (\mathbb{R}/2\pi\mathbb{Z})$ に対する以下の常微分方程式を考える:

$$\dot{r} = r \sin \theta, \qquad \dot{\theta} = \frac{1}{r^2} + \cos \theta - a,$$

ここで、ドット "·" はtに関する微分を表す。このとき、以下の問いに答えよ。

- (1) この常微分方程式の平衡点を求め、それらの線型安定性を判別せよ.
- (2) もし $(r(t), \theta(t))$ がこの常微分方程式の解ならば $(r(-t), -\theta(-t))$ も解となることを示せ.
- (3) この常微分方程式の解 $(r(t), \theta(t))$ で,ある平衡点 $(\hat{r}, \hat{\theta})$ に対して次の二条件を満たすものが存在することを示せ:
 - (a) $\lim_{t\to\infty} (r(t), \theta(t)) = \lim_{t\to-\infty} (r(t), \theta(t)) = (\hat{r}, \hat{\theta}).$
 - (b) 任意の $t \in \mathbb{R}$ に対して $(r(t), \theta(t)) \neq (\hat{r}, \hat{\theta})$.

9 n を非負整数とし, $A = \{i \mid 0 \le i \le n\}$ と定める。 a_0, a_1, \ldots, a_n を,任意の $i \in A$ について $i \le a_i$ をみたすような A の元の列とするとき,A 上の二項関係を $\sim = \{(i, a_i) \mid 0 \le i \le n\}$ で定める。また \sim^* を, \sim を含む最小の同値関係とする。

プログラムGを次のように定める。ただし、プログラム中 U,I,J,X_0,\ldots,X_n はプログラム変数, $Y \leftarrow e$ はプログラム変数Yへの式eの値の代入である。

$$U \leftarrow 1;$$
 while $U \neq 0$ do $U \leftarrow 0;$
$$G \equiv \qquad \text{for } I = 0 \text{ to } n \text{ do}$$

$$\qquad \qquad J \leftarrow X_I;$$

$$\qquad \qquad \text{if } X_I \neq X_J \text{ then } U \leftarrow U + 1 \text{ endif};$$

$$\qquad \qquad X_I \leftarrow X_J;$$
 done done

(1) プログラムGの実行前の事前条件として $\bigwedge_{i=0}^{n} X_i = a_i$ が成り立つとき,以下に定める条件 Φ_1 がG中の while ループの不変条件であることを示せ.

$$\Phi_1 \ \equiv \ \forall i \in A. \big(i \leq X_i \land (X_i = i \Leftrightarrow i = a_i) \big)$$

- (2) (1) と同じ事前条件の下で、以下の性質を満たす条件 Φ を与えよ.
 - (a) Φ は G 中の while ループの不変条件である.
 - (b) $\Phi \wedge U = 0$ ならば $\forall i, j \in A.(X_i = X_j \Leftrightarrow i \sim^* j)$ が成り立つ.

The English version starts here.

Let n be a positive integer. Let $\zeta = e^{\pi \sqrt{-1}/n}$ be a primitive 2n-th root of unity. For integers $0 \le a, b \le 2n - 1$, define a complex 2×2 matrix $X_{a,b}$ as follows.

$$X_{a,b} = \begin{pmatrix} \zeta^a & 0 \\ 0 & \zeta^b \end{pmatrix}.$$

Moreover, we define a complex 2×2 matrix S as follows.

$$S = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Let G be the subgroup of $GL_2(\mathbb{C})$ generated by $X_{a,b}$ $(0 \le a, b \le 2n - 1)$ and S.

- (1) Calculate the number of elements of order 2 in G.
- (2) Let H be the subgroup of G generated by $\{g^2 \mid g \in G\}$. Calculate [G:H].
- (3) Calculate the number of subgroups K of G satisfying [G:K]=2.
- Let F be an element of the polynomial ring $\mathbb{C}[X,Y]$ over \mathbb{C} with two variables X,Y. Let R be the residue ring $\mathbb{C}[X,Y]/(F)$. Let x,y be the residue classes of X,Y in R, respectively, and $\mathfrak{m}=xR+yR$. Let $R_{\mathfrak{m}}$ be the localization of R at \mathfrak{m} .
 - (1) Assume that F is written as $F(X,Y) = X^a + Y^b$ for some integers a,b greater than or equal to 2. Prove that the ideal $\mathfrak{m}R_{\mathfrak{m}}$ is not principal.
 - (2) Assume that F(0,0) = 0 and $\left(\left(\frac{\partial F}{\partial X}\right)(0,0), \left(\frac{\partial F}{\partial Y}\right)(0,0)\right) \neq (0,0)$ are satisfied. Prove that $\mathfrak{m}R_{\mathfrak{m}}$ is a principal ideal.

We set $S^2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 + x_3^2 = 1\}$. We define a subset M of $S^2 \times S^2$ by

$$M = \left\{ ((x_1, x_2, x_3), (y_1, y_2, y_3)) \in S^2 \times S^2 \mid x_1 y_1 + x_2 y_2 + x_3 y_3 = 0, \ x_1 + y_1 = 0 \right\}.$$

- (1) Show that M is a C^{∞} -submanifold of $S^2 \times S^2$.
- (2) Show that M is orientable.
- (3) We define a map $f: M \to S^2$ by

$$f((x_1, x_2, x_3), (y_1, y_2, y_3)) = (y_1, y_2, y_3).$$

Show that for any choice of an orientation on M, we have

$$\int_{M} f^* \omega = 0$$

for any 2-form ω on S^2 .

Let $S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$. We fix a point $a \in S^1$. We consider an equivalence relation \sim on $S^1 \times S^1$ generated by

$$(a, p) \sim (p, a), \quad (p \in S^1).$$

Let

$$X = (S^1 \times S^1)/\sim$$

be the quotient space. Compute the homology groups of X with integer coefficients.

[5] Let $f:[0,\infty)\to(-1,\infty)$ be a continuous function. Set

$$g(x) = \sup_{y \in [x,x+1]} |f(y) - f(x)| \quad (x \ge 0)$$

and suppose that

$$\lim_{x \to \infty} f(x) = 0 \quad \text{and} \quad \int_0^\infty \{|f(x)| + g(x)\} \, dx < \infty$$

are satisfied. Find the following limit:

$$\lim_{n \to \infty} \prod_{k=1}^{\infty} \left\{ 1 + f\left(\frac{k}{n}\right) \right\}^{1/n}.$$

Let $L^1([0,\infty))$ be the real Banach space of integrable functions over $[0,\infty)$, and for $f \in L^1([0,\infty))$, we define

$$||f||_1 = \int_0^\infty |f(x)| dx.$$

For $f \in L^1([0,\infty))$, we define $H_f: L^1([0,\infty)) \to L^1([0,\infty))$ by

$$(H_f g)(x) = \int_0^\infty f(x+y)g(y)dy.$$

- (1) Show that $||H_f|| \le ||f||_1$, where $||H_f||$ is the operator norm of H_f .
- (2) Show that H_f is a compact operator.

- Tet $B := \{x = (x_1, x_2) \in \mathbb{R}^2; x_1^2 + x_2^2 < 1\}, \ \bar{B} := \{x = (x_1, x_2) \in \mathbb{R}^2; x_1^2 + x_2^2 \le 1\}$ and ∂B be the boundary of B.
 - (1) Prove that if a real valued function $f \in C^1([0,1])$ satisfies f(1) = 0, then

$$\int_{0}^{1} f(r)^{2} r dr \le c_{1} \int_{0}^{1} f'(r)^{2} r dr$$

holds, where $c_1 > 0$ is a constant independent of f.

(2) Let $f \in C^1(B) \cap C(\bar{B})$ be a real valued function such that f = 0 on ∂B and all of the first derivatives extend to \bar{B} continuously. Prove that the inequality

$$\int_{B} f(x)^{2} dx \leq c_{2} \int_{B} \left\{ \left(\frac{\partial}{\partial x_{1}} f(x) \right)^{2} + \left(\frac{\partial}{\partial x_{2}} f(x) \right)^{2} \right\} dx$$

holds with a constant $c_2 > 0$ independent of f.

(3) Let $u \in C^2((0,\infty) \times B) \cap C([0,\infty) \times \overline{B})$ be a real valued function satisfying the following conditions.

$$\circ \ u(t,x) = 0, \ (t \in (0,\infty), \ x \in \partial B).$$

$$\circ \text{ For } t > 0, \ \frac{\partial}{\partial t} u(t, \cdot), \ \frac{\partial}{\partial x_1} u(t, \cdot), \ \frac{\partial}{\partial x_2} u(t, \cdot), \ \frac{\partial^2}{\partial x_1 \partial x_2} u(t, \cdot) \text{ extend}$$
 to \bar{B} continuously.

Prove that if u solves

$$\frac{\partial}{\partial t}u(t,x) - \frac{\partial^2}{\partial x_1^2}u(t,x) - \frac{\partial^2}{\partial x_2^2}u(t,x) = 0, \ (t \in (0,\infty), \ x \in B),$$

then for all t > 0, the inequality

$$\int_{B} u(t,x)^2 dx \le c_3 e^{-c_4 t}$$

holds, where $c_3 > 0$ is a constant independent of t, and $c_4 > 0$ is a constant independent of t and u.

Let 0 < a < 1. Consider the following system of ordinary differential equations for a function $(r(t), \theta(t)) \in (0, \infty) \times (\mathbb{R}/2\pi\mathbb{Z})$ of $t \in \mathbb{R}$:

$$\dot{r} = r \sin \theta, \qquad \dot{\theta} = \frac{1}{r^2} + \cos \theta - a,$$

where the dot " \cdot " means the differentiation with respect to t. Answer the following questions.

- (1) Find equilibria of this system, and determine their linear stability.
- (2) Prove that if $(r(t), \theta(t))$ is a solution of this system, then $(r(-t), -\theta(-t))$ is also a solution.
- (3) Prove that there exists a solution $(r(t), \theta(t))$ of this system satisfying the following two conditions for some equilibrium $(\hat{r}, \hat{\theta})$:
 - (a) $\lim_{t\to\infty} (r(t), \theta(t)) = \lim_{t\to-\infty} (r(t), \theta(t)) = (\hat{r}, \hat{\theta}).$
 - (b) For any $t \in \mathbb{R}$, $(r(t), \theta(t)) \neq (\hat{r}, \hat{\theta})$.

Let n be a nonnegative integer and define $A = \{i \mid 0 \le i \le n\}$. Suppose a_0, a_1, \ldots, a_n is a sequence of elements of A such that $i \le a_i$ for every $i \in A$. Let us define a binary relation \sim over A by $\sim = \{(i, a_i) \mid 0 \le i \le n\}$. We denote by \sim^* the smallest equivalence relation containing \sim .

We consider the following program G. In the program, $U, I, J, X_0, \ldots, X_n$ are program variables and $Y \leftarrow e$ is a substitution that assigns the value of e to Y.

$$U\leftarrow 1;$$
 while $U\neq 0$ do $U\leftarrow 0;$
$$G \equiv \qquad \text{for } I=0 \text{ to } n \text{ do}$$

$$\qquad \qquad J\leftarrow X_I;$$

$$\qquad \qquad \text{if } X_I\neq X_J \text{ then } U\leftarrow U+1 \text{ endif};$$

$$\qquad \qquad X_I\leftarrow X_J;$$
 done
$$\qquad \qquad \text{done}$$

(1) Suppose the precondition $\bigwedge_{i=0}^{n} X_i = a_i$ holds before the execution of the program G. Show that the condition Φ_1 given below is a loop invariant for the while loop in G.

$$\Phi_1 \equiv \forall i \in A. (i \leq X_i \land (X_i = i \Leftrightarrow i = a_i))$$

- (2) Assuming the same precondition as in (1), give a condition Φ that satisfies the following properties.
 - (a) Φ is a loop invariant for the while loop in G.
 - (b) $\Phi \wedge U = 0$ implies $\forall i, j \in A.(X_i = X_j \Leftrightarrow i \sim^* j).$