

### **International Olympiad in Informatics 2012**

23-30 September 2012 Sirmione - Montichiari, Italy Competition tasks, day 1: Leonardo's inventions and projects

rings

Slovak — 1.2

# Kruhové padáky

Stará a celkom rozumná verzia toho, čo dnes nazývame padák, je opísaná v Leonardovom spise *Codex Atlanticus* (ca. 1485). Leonardov padák pozostával z plachtoviny, ktorá bola otváraná a spevnená pomocou drevenej štruktúry pyramidového tvaru.

### Spojené kruhy

Parašutista Adrian Nicholas testoval Leonardov návrh o viac než 500 rokov neskôr. Leonardov padák mal k telu pripojený modernou, málo vážiacou štruktúrou reťazí. Krúžky týchto reťazí boli urobené z flexibilného a silného materálu. Kruhy je možné ľahko spájať, pretože každý kruh môžno otvoriť a znovu zatvoriť. Špeciálna konfigurácia spojených kruhov je *reťaz*. Reťaz je postupnosť kruhov, v ktorej je každý kruh spojený len so svojimi (najviac dvoma) susedmi tak, ako je to znázornené nižšie. Táto postupnosť musí mať začiatok a koniec (začiatočný a tiež koncový kruh je spojený s najviac jedným iným kruhom). Špeciálne, jeden izolovaný kruh je tiež reťaz.



Okrem reťazí samozrejme existujú aj iné konfigurácie, pretože každý kruh môže byť spojený aj s troma a viac inými kruhmi. Hovoríme, že kruh je *kritický*, ak po jeho otvorení a odstránení všetky zostávajúce kruhy tvoria množinu reťazí. (To nastane aj vtedy, ak už nezostalo vôbec nič.) Inak povedané, nesmie zostať žiadna po kope držiaca konfigurácia kruhov, ktorá nie je reťaz.

#### Príklad

Na nasledujúcom obrázku je 7 kruhov očíslovaných od 0 do 6. V tejto štruktúre existujú dva kritické kruhy. Jedným z nich je kruh 2: po jeho odstránení zostávajúce kruhy tvoria reťaze [1], [0, 5, 3, 4] a [6]. Druhý kritický kruh je 3: po jeho odstránení zostávajúce kruhy tvoria reťaze [1, 2, 0, 5], [4] a [6]. Ak odstránime ľubovoľný iný kruh, nedostaneme množinu disjunktných reťazí. Napríklad, po odstránení kruhu 5: hoci [6] je reťaz, spojené kruhy 0, 1, 2, 3 a 4 netvoria reťaz.

rings - sk 1/4



# Úloha

Vašou úlohou je vypočítať počet kritických kruhov v danej konfigurácii, ktorá bude analyzovaná vaším programom.

Na začiatku je daný určitý počet kruhov, pričom žiadne dva nie sú prepojené. Potom kruhy postupne spájame. V ľubovoľnom okamihu môže byť od vás požadovaná odpoveď na otázku o počte kritických kruhov v aktuálnej konfigurácii. Špecificky, musíte implementovať tri rutiny.

- Init(N) je zavolaná práve jedenkrát na začiatku komunikácie, pričom N je počet disjunktných kruhov očíslovaných od 0 do N 1 (včítane) v počiatočnej konfigurácii.
- Link(A, B) dva kruhy s číslami A a B sa stávajú spojenými. Je zaručené, že A a B sú rôzne a ešte nie sú priamo spojené. A a B nemusia spĺňať žiadne iné podmienky. Špeciálne nepredpokladajte nič vyplývajúce z fyzikálnych obmedzení. Volania Link(A, B) a Link(B, A) sú ekvivalentné.
- CountCritical() vráti počet kritických kruhov pre aktuálnu konfiguráciu spojených kruhov.

#### Príklad

Majme konfiguráciu tvorenú N = 7 kruhmi a predpokladajme, že na začiatku nie sú spojené. Ukážeme možnú postupnosť volaní, pričom po poslednom volaní dostaneme situáciu znázornenú na našom obrázku.

rings - sk 2/4

| Volanie         | Návraty |
|-----------------|---------|
| Init(7)         |         |
| CountCritical() | 7       |
| Link(1,2)       |         |
| CountCritical() | 7       |
| Link(0,5)       |         |
| CountCritical() | 7       |
| Link(2,0)       |         |
| CountCritical() | 7       |
| Link(3,2)       |         |
| CountCritical() | 4       |
| Link(3, 5)      |         |
| CountCritical() | 3       |
| Link(4, 3)      |         |
| CountCritical() | 2       |

# Podúloha 1 [20 bodov]

- $N \le 5000$ .
- Funkcia CountCritical je zavolaná len jedenkrát, po všetkých iných volaniach; funkcia Link je zavolaná najviac 5 000 krát.

### Podúloha 2 [17 bodov]

- $N \le 1000000$ .
- Funkcia CountCritical je zavolaná len jedenkrát, po všetkých ostatnýh volaniach; funkcia Link je zavolaná najviac 1 000 000 krát.

### Podúloha 3 [18 bodov]

- $N \le 20000$ .
- Funkcia CountCritical je zavolaná najviac 100 krát; funkcia Link je zavolaná najviac 10 000 krát.

### Podúloha 4 [14 bodov]

- $N \le 100000$ .
- Funkcie CountCritical a Link sú zavolané celkom, najviac 100 000 krát.

## Podúloha 5 [31 bodov]

■  $N \le 1000000$ .

rings - sk 3/4

• Funkcie CountCritical a Link sú zavolané celkom, najviac 1 000 000 krát.

### Implementačné detaily

Musíte poslať do systému práve jeden súbor, ktorý sa volá rings.c, rings.cpp alebo rings.pas. Tento súbor musí implementovať podprogramy, ktoré sú popísané vyššie použitím nasledujúcich označení.

### C/C++ programy

```
void Init(int N);
void Link(int A, int B);
int CountCritical();
```

#### Pascal programy

```
procedure Init(N : LongInt);
procedure Link(A, B : LongInt);
function CountCritical() : LongInt;
```

Tieto podprogramy sa musia správať tak, ako je uvedené vyššie. Samozrejme, môžete implementovať iné podprogramy pre svoju internú potrebu. Váš odoslaný súbor nesmie komunikovať žiadnym spôsobom so štandardným vstupom/výstupom a ani s inými súbormi.

### Hodnotenie príkladu

Pri vyhodnotení príkladu je prečítaný vstup v nasledujúcom formáte:

- riadok 1: N, L;
   riadky 2, ..., L + 1:
  - -1 spustit' CountCritical;
  - A, B parametre do Link.

Ukážkový testovač vypíše na výstup všetky výsledky z CountCritical.

rings - sk 4/4