Groupe3 Alexandre BOULAT Olivia MASSIKINI David LOUSTAU-CARRERE

Analyse exploratoire

Nous travaillons sur un jeu de données de bières avec pour objectif de pouvoir calculer le degrés d'alcool (ABV) ainsi que le niveau d'amertume (IBU) des différentes bières.

Pour cela nous avons un jeu de données constitué de 73861 lignes ainsi que de 23 colonnes. L'objectif va être de remettre en forme le fichier CSV ainsi que de supprimer les colonnes trop peu renseignées.

Description des données

À l'aide de la méthode info() de pandas, on peut visualiser la description de chaque type de variables.

```
In [435]: df.info()
          <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 73861 entries, 0 to 73860
          Data columns (total 23 columns):
           # Column
                              Non-Null Count Dtype
               BeerID
                               73861 non-null int64
                               73860 non-null object
               Name
                               73861 non-null object
                Style
                               73265 non-null
               StyleID
Size(L)
                               73861 non-null
                                                int64
                               73861 non-null
                                                float64
               OG
FG
                               73861 non-null
                               73861 non-null
                                                float64
                               73861 non-null
                IBU
                               73861 non-null
           10
               Color
                               73861 non-null
                                                float64
               BoilSize
           11
                               73861 non-null
                                                float64
               BoilTime
                               73861 non-null
               BoilGravity
                                                float64
                               70871 non-null
              Efficiency
                               73861 non-null
                                                float64
            15 MashThickness 43997 non-null
           16 SugarScale
                               73861 non-null object
           17 BrewMethod
                               73861 non-null
                                                obiect
            18 PitchRate
                               34609 non-null
           19 PrimaryTemp 51199 non-null20 PrimingMethod 6766 non-null
                               51199 non-null float64
                                                object
           21 PrimingAmount 4774 non-null
          22 UserId 23371 non-null fload
dtypes: float64(13), int64(3), object(7)
                               23371 non-null float64
          memory usage: 13.0+ MB
```

Cartographie de la distribution des valeurs manquantes

Pour sélectionner les données utiles ou inutiles nous avons mis en place une HeatMap des valeurs manquantes.

Diagramme en barre du pourcentage des valeurs manquantes

```
# Tracer le graphique
 plt.figure(figsize=(10, 6))
 bars = plt.bar(missing data.index, missing data * 100, color='blue')
 plt.bar(missing_data.index, missing_data * 100, color='blue')
 plt.title('Proportion de valeurs manquantes par colonne')
 plt.xlabel('Colonnes')
 plt.ylabel('Proportion de valeurs manquantes (%)')
 plt.xticks(rotation=90)

√for bar, proportion in zip(bars, missing data):

      plt.text(bar.get x() + bar.get width() / 2, bar.get_height() + 1, f'{proportion:.1%}', ha='center',
 plt.tight_layout()
 plt.show()
                                                                                                                Pyth
                                     Proportion de valeurs manquantes par colonne
         93.5%
  80
Proportion de valeurs manquantes (%)
  60
  20
                                    4.0%
                                        UserId
               PrimingMethod
                        PitchRate
                            MashThickness
           PrimingAmount
                                 PrimaryTemp
                                     BoilGravity
                                                  BrewMethod
                                                      SugarScale
                                                        Colonnes
```

Nous pouvons voir que les colonnes MashThickness, PitchRate,PrimingMethod, PrimingAmount, UserId sont trop peu remplis pour être utilisées. Par contre nous conserverons la donnée PrimaryTemp que nous inputerons avec la valeur médiane du jeu de données.

Analyse statistique de quelques variables

	BeerID	StyleID	Size(L)	OG	FG	ABV	IBU	Color	BoilSize	BoilTime
count	73861.000000	73861.000000	73861.000000	73861.000000	73861.000000	73861.000000	73861.000000	73861.000000	73861.000000	73861.000000
mean	36931.000000	60.179432	43.929775	1.406266	1.075865	6.136865	44.276186	13.404989	49.724919	65.07487
std	21321.978453	56.811462	180.373492	2.196908	0.432524	1.883510	42.945508	11.944511	193.246427	15.02422
min	1.000000	1.000000	1.000000	1.000000	-0.003000	0.000000	0.000000	0.000000	1.000000	0.00000
25% 50% 75%	18466.000000	10.000000	18.930000	1.051000	1.011000	5.080000	23.370000	5.170000	20.820000	60.00000
	36931.000000	35.000000	20.820000	1.058000	1.013000	5.790000	35.770000	8.440000	27.440000	60.00000
	55396.000000	111.000000	23.660000	1.069000	1.017000	6.830000	56.380000	16.790000	30.000000	60.00000
max	73861.000000	176.000000	9200.000000	34.034500	23.424600	54.720000	3409.300000	186.000000	9700.000000	240.00000

A l'aide de la méthode describe() de pandas, nous pouvons visualiser quelques paramètres statistiques de notre jeu de données dont, la moyenne, l'écart-type, le premier quartile(25%), le troisième quartile(75%), la médiane, le minimun et le maximun.

Analyse descriptive : Histogramme de la distribution des variables

Visualisation de la distribution des données à l'aide d'histogramme.

À l aide de la méthode hist() de pandas, nous pouvons visualiser la distribution des variables numériques

Analyse descriptive : la boîte à moustache de la distribution d'une de nos variables

Analyse statistique : étude de corrélation

On remarque que BoilSize est complètement corrélé au Volume du Brassin, nous créerons une nouvelle variable à partir de ces deux là : Le volume d'eau en L utilisé pour fabriquer un litre de bière.

BoilGravity est quasiment complétement correlé à FG et OG, nous ne la conserverons donc pas dans nos analyses.

FG et OG sont complètement corrélées, nous créerons une variable à partir de ces deux là dans la partie Feature Engineering qui sera FG - OG correspondant à la différence de densité entre le moût après fermentation et avant fermentation, en unités de densité.

Analyse statistique: Test ANOVA

Test ANOVA entre nos variables cibles et nos variables catégorielles In [453]: targets = ['ABV', 'IBU'] # Variables catégorielles liste_cat = ['Style', 'SugarScale', 'BrewMethod'] for target in targets: print(f"Analyse de variance pour la variable cible: {target}\n") for cat in liste_cat: print(f"Variable catégorielle: {cat}") # Séparer les groupes en fonction de la variable catégorielle groupes = [] for group_name, data in df.groupby(df[cat]): groupes.append(data[target]) # Effectuer le test ANOVA f_statistic, p_value = stats.f_oneway("groupes) print(f"Statistique F: {f_statistic..2f}") print(f"Valeur p: {p_value:.4f}") # Interpréter le résultat if p_value < 0.05: print("Rejet de l'hypothèse nulle : Il y a des différences significatives entre les groupes.") else: print("Ehec de rejeter l'hypothèse nulle : Aucune différence significative entre les groupes.") print("\------\n")

Résultat du Test ANOVA

```
Analyse de variance pour la variable cible: ABV
Variable catégorielle: Style
Statistique F: 299.68
Valeur p: 0.0000
Rejet de l'hypothèse nulle : Il y a des différences significatives entre les groupes.
Variable catégorielle: SugarScale
Statistique F:
Valeur p: 0.0014
Rejet de l'hypothèse nulle : Il y a des différences significatives entre les groupes.
Variable catégorielle: BrewMethod
Statistique F: 25.73
Valeur p: 0.0000
Rejet de l'hypothèse nulle : Il y a des différences significatives entre les groupes.
_____
Analyse de variance pour la variable cible: IBU
Variable catégorielle: Style
Statistique F: 171.67
Valeur p: 0.0000
Rejet de l'hypothèse nulle : Il y a des différences significatives entre les groupes.
Variable catégorielle: SugarScale
Statistique F: 16.59
Valeur p: 0.0000
Rejet de l'hypothèse nulle : Il y a des différences significatives entre les groupes.
Variable catégorielle: BrewMethod
Valeur p: 0.1141
Échec de rejeter l'hypothèse nulle : Aucune différence significative entre les groupes.
```

Ces résultats sont à relativiser car il faut vérifier si les distributions et les variances des données dans chaque groupe sont à peu près similaires.

La méthode de brassage ne semble pas influer sur l'Amertume d'une bière.

Suppression des variables trop peu renseignées (seuil à 40% de valeurs manquantes)

```
5]: df = df.drop(['PrimingAmount', 'PrimingMethod','UserId', 'PitchRate', 'MashThickness'], axis =1)
```

Suppression des variables qui n'ont pas de sens pour notre problématique

```
']: df = df.drop(['BeerID', 'Name', 'URL', 'StyleID'], axis = 1)
```

Suppression de la variable BoilGravity, qui a une corrélation linéaire quasi-parfaite avec OG et FG

```
idf = df.drop(['BoilGravity'], axis = 1)
```

Suppression des individus contenant des valeurs aberrantes par l'application de filtres

```
8]: # Une temperature de début de fermentation ne peut pas être négative (on conserve les NaN pour imputer plus tard)
df = df.loc[(df['PrimaryTemp'].isnull()) | (df['PrimaryTemp'] > 0)]

9]: # La densité du moût après fermentation ne peut pas être négative
df = df[df['FG'] > 0]
```

Feature Engineering

tenu de notre problématique

Feature Engineering conforme aux analyses exploratoires

Nous souhaitons effectuer une classification concernant l'amertume des bières, conformément aux exigences du milieu :

```
IBU < 20 : peu d'amertume - 0
IBU 20 à 40 : amertume modérée - 1
IBU 40 à 60 : amertume prononcée - 2
IBU 60 à 80 : amertume intense - 3
IBU > 80 : amertume très intense - 4
```

Source: https://unepetitemousse.fr/blog/biere-amere/

Pour la suite, nous créeons des variables à partir de deux variables fortement corrélées linéairement et qui font plus sens que les variables initiales compte

```
|: # Création d'une variable correspondant à la différence de densité du moût entre le début et la fin de la fermentation df['diff_densite_fermentation'] = df['FG'] - df['OG'] |
|: # Suppression des variables 'FG' et 'OG' |
| df = df.drop(['FG', 'OG'], axis = 1)
```

```
]: # Création d'une variable correspondant à La quantité d'eau utilisée pour l'ébulition du moût par litre de bière brassée

df['qte_eau_litre_biere'] = df['BoilSize'] / df['Size(L)']

]: # Suppression des variables 'BoilSize' et 'Size(L)'

df = df.drop(['BoilSize', 'Size(L)'], axis = 1)
```

```
: # Application d'un filtre pour retirer les bières qui sont brassées avec moins de 0.33L d'eau/L_bière

df = df[df['qte_eau_litre_biere'] > 1/3]

: df[df['qte_eau_litre_biere'] >= 3].shape

: (85, 11)

: # Suppression des valeurs extrêmes pour la variable 'qte_eau_litre_biere' (on la souhaite inférieure à 3 strictement)

df = df[df['qte_eau_litre_biere'] < 3]

: df[df['diff_densite_fermentation'] <= -17].shape

: (71, 11)

: # Suppression des valeurs extrêmes pour la variable 'diff_densite_fermentation' (on souhaite retirer un millième du jeu)

df = df[df['diff_densite_fermentation'] >= -17]
```

Résultat final de notre jeu de données après traitement La variable PrimaryTemp sera imputé par la médiane après le split d'entrainement du jeu de données.

: df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 72416 entries, 0 to 72896
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	Style	72416 non-null	object
1	ABV	72416 non-null	float64
2	Color	72416 non-null	float64
3	BoilTime	72416 non-null	int64
4	Efficiency	72416 non-null	float64
5	SugarScale	72416 non-null	object
6	BrewMethod	72416 non-null	object
7	PrimaryTemp	50351 non-null	float64
8	IBU_LABEL	72416 non-null	int32
9	diff_densite_fermentation	72416 non-null	float64
10	qte_eau_litre_biere	72416 non-null	float64

dtypes: float64(6), int32(1), int64(1), object(3)

memory usage: 6.4+ MB