Recitation: Relation Proofs

Fix your relations

April 8, 2022

Questions

1. 5 points Given Theorem 1 and Definition 1 below, prove Theorem 2.

Theorem 1. Let R be an equivalence relation on a set A. The following statements for elements a and b of A are equivalent.

$$(i)aRb \quad (ii)[a] = [b] \quad (iii)[a] \cap [b] \neq \emptyset$$

Definition 1. A partition of a set, A, is a set of non-empty subsets, A_i , of A, such that every element a in A is in exactly one of these subsets (i.e. A is a disjoint union of the subsets). [Wikipedia]

Theorem 2. Let R be an equivalence relation on a set S. Then the equivalence classes of R form a partition of S.

2. 5 points Prove the following theorem.

Theorem 3. Let R be an equivalence relation on a set A. The following statements for elements a and b of A are equivalent.

$$(i)aRb$$
 $(ii)[a] = [b]$ $(iii)[a] \cap [b] \neq \emptyset$

- 3. 5 points Given non empty set S and a partition A_i of S. Prove that $R = \bigcup_{A_i} (A_i \times A_i)$ is an equivalence relation on S. Moreover the equivalence classes of R are exactly A_i .
- 4. | 5 points | Show that a finite nonempty poset has a maximal element.
- 5. 5 points The following is a summary of someone's attempt to prove that exists only one unique God. Find the error in the proof.

Proof: Assume there is more than one unique God.

Insert convincing argument to show that this leads to a contradiction.

Since having more than one unique God results in a contradiction, there exists only one unique God.

6. 5 points "Prove the least element is unique when it exists.". State the error in the following proofs.

Proof 1: Assume that Least element exists and it is not unique. Let a be a least element and g be another least element and $a \neq g$. Then by the definition of least element, $g \prec a$. But we assumed that a is the least element. Therefore, this is a contradiction and hence we can say that, The least element is unique when it exists.

Proof 2: Let's assume that there is more than one unique least element, with a and b being two distinct least elements. For the relation R to be antisymmetric, a must be equal to be (a = b), given that $(a,b) \in R$ and $(b,a) \in R$. Since a and b are equal to each other, we can conclude that there is only one unique least element.

- 7. 5 points The relation R on a set A is transitive if and only if $R^n \subseteq R$ for n = 1, 2, 3, ...
- 8. 5 points Fix the problem in the proof. "Show that for a reflexive relation $R, R^{-1} \subseteq R \circ R^{-1}$ "

Proof: By reflexivity, $(a, a) \in R$, therefore $(b, a) \in R \circ R^{-1}$

- 9. | 5 points | Show that a subset of an antisymmetric relation is also antisymmetric.
- 10. 5 points A relation R is called circular if aRb and bRc imply that cRa. Show that R is reflexive and circular if and only if it is an equivalence relation.