Problem Set - MLE

November 13, 2021

1 Maximum Likelihood Estimator

1.1 Gaussian Distribution

Given a Gaussian distribution $f(y, \mu, \sigma = 1) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{(y-\mu)^2}{2})$ and a set of observations y_1 , y_2 ..., y_n

- 1. Write down the likelihood function $L(y_i, \mu)$ for the *ith* observation y_i . What is the total likelihood function for all n observation $L(y_1, y_2, ..., y_n, \mu)$?
- 2. What is the total log likelihood function $\ell(y_1, y_2, ..., y_n, \mu)$
- 3. Prove that ℓ is maximized when $\mu=1$, given one observation $y_1=1$.
- 4. Prove that ℓ is maximized when $\mu = \sum_{i=1}^{n} \frac{y_i}{n}$, given n observations $y_1, y_2 ..., y_n$

1.2 Bernoulli Distribution

Given a Bernoulli distribution $f(y,p)=p^y(1-p)^{1-y}$ and a set of observations $y_1,y_2,...,y_n$. Assume that k out of the n observations are 1, the rest are 0. We then have the total likelihood function $L(y_1,y_2,....y_n,p)=\prod_{i=1}^n p^{y_i}(1-p)^{1-y_i}$.

- 1. What is the total log likelihood function $\ell(y_1, y_2, ..., y_n, \mu)$?
- 2. Prove that ℓ is maximized when $p = \frac{k}{n}$.