第 10 章 b: 二重积分的计算

数学系 梁卓滨

2016-2017 **学年** II

Outline

- 1. 如何计算二重积分?
- 2. X-型区域上的二重积分
- 3. Y-型区域上的二重积分
- 4. 交换二重积分的积分次序
- 5. 极坐标下计算二重积分
- 6. 二重积分的应用

We are here now...

1. 如何计算二重积分?

- 2. X-型区域上的二重积分
- 3. Y-型区域上的二重积分
- 4. 交换二重积分的积分次序
- 5. 极坐标下计算二重积分
- 6. 二重积分的应用

$$\iint_D f(x, y) d\sigma =$$

• 一般方法 化二重积分为 "累次积分": $\iint_D f(x, y) d\sigma = \iint_D f(x, y) dx dy$

$$\iint_{D} f(x, y) d\sigma = \iint_{D} f(x, y) dx dy = \int \int f(x, y) dx dy$$

$$\iint_{D} f(x, y) d\sigma = \iint_{D} f(x, y) dx dy = \int \left[\int f(x, y) dx \right] dy$$

$$\iint_{D} f(x, y) d\sigma = \iint_{D} f(x, y) dx dy = \int \left[\int_{*}^{*} f(x, y) dx \right] dy$$

$$\iint_{D} f(x, y) d\sigma = \iint_{D} f(x, y) dx dy = \int_{*}^{*} \left[\int_{*}^{*} f(x, y) dx \right] dy$$

$$\iint_{D} f(x, y) d\sigma = \iint_{D} f(x, y) dx dy = \int_{*}^{*} \left[\int_{*}^{*} f(x, y) dx \right] dy$$
$$= \int_{*}^{*} \left[\int_{*}^{*} f(x, y) dy \right] dx$$

● 一般方法 化二重积分为 "累次积分":

$$\iint_{D} f(x, y) d\sigma = \iint_{D} f(x, y) dx dy = \int_{*}^{*} \left[\int_{*}^{*} f(x, y) dx \right] dy$$
$$= \int_{*}^{*} \left[\int_{*}^{*} f(x, y) dy \right] dx$$

• 问题: 如何确定积分上下限?

$$\iint_{D} f(x, y) d\sigma = \iint_{D} f(x, y) dx dy = \int_{*}^{*} \left[\int_{*}^{*} f(x, y) dx \right] dy$$
$$= \int_{*}^{*} \left[\int_{*}^{*} f(x, y) dy \right] dx$$

- 问题: 如何确定积分上下限?
- 当 D 为两种基本类型积分区域: X-型区域, Y-型区域, 可以确定累次积分的上下限

We are here now...

- 1. 如何计算二重积分?
- 2. X-型区域上的二重积分
- 3. Y-型区域上的二重积分
- 4. 交换二重积分的积分次序
- 5. 极坐标下计算二重积分
- 6. 二重积分的应用

• X-型区域: $D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \alpha \le x \le b\}$

• X-型区域: $D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \alpha \le x \le b\}$ 此时, $\iint_D f(x, y) dx dy = \left[\int_{-\infty}^{\infty} f(x, y) dy \right] dx$

• X-型区域: $D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \alpha \le x \le b\}$ 此时, $\iint_D f(x, y) dx dy = \int_{\sigma_1(x)} \left[\int_{\sigma_2(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$

• X-型区域: $D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \alpha \le x \le b\}$ 此时, $\iint_D f(x, y) dx dy = \int_a^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$

b

$$\iint_{D} f(x, y) dx dy = \int_{a}^{b} \left[\int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x, y) dy \right] dx$$

$$x = a$$

$$y = \varphi_{2}(x)$$

$$y = \varphi_{1}(x)$$

$$y = \varphi_{1}(x)$$

• X-型区域: $D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \alpha \le x \le b\}$

此时, $\iint_{D} f(x, y) dx dy = \int_{a}^{b} \left[\int_{a_{1}(x)}^{\varphi_{2}(x)} f(x, y) dy \right] dx$ $y = \varphi_2(x)$

• 设
$$D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \ a \le x \le b\}$$
,则
$$\iint_D f(x, y) d\sigma = \int_a^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$$

•
$$\mathfrak{P} D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \ \alpha \le x \le b\}, \ \mathfrak{P}$$

$$\iint_D f(x, y) d\sigma = \int_a^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$$

• 设
$$D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \ a \le x \le b\}, \ 则$$

$$\iint_D f(x, y) d\sigma = \int_a^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$$

• 设 $D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \ a \le x \le b\}, \ 则$ $\iint_D f(x, y) d\sigma = V \qquad \qquad \int_a^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$

• 设 $D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \ a \le x \le b\}, \ 则$ $\iint_D f(x, y) d\sigma = V \qquad \qquad \int_a^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$

• 设 $D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \ \alpha \le x \le b\}, \ 则$ $\iint_D f(x, y) d\sigma = V = \int_a^b A(x) dx \int_a^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$

• 设 $D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \ a \le x \le b\}, \ 则$ $\iint_D f(x, y) d\sigma = V = \int_a^b A(x) dx \int_a^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$

• 设 $D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \ a \le x \le b\}, \ 则$ $\iint_D f(x, y) d\sigma = V = \int_a^b A(x) dx = \int_a^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$

解 1. 如图, 画出 D,

y = 2x y = 2x y = x $0 \qquad 1$

解 1. 如图, 画出 D,

 \mathbf{H} 1. 如图,画出 \mathbf{D} ,可理解为 \mathbf{X} -型区域

解 1. 如图,画出 *D*,可理解为 *X*-型区域

$$D = \{(x, y) | x \le y \le 2x,$$

 \mathbf{H} 1. 如图, 画出 \mathbf{D} , 可理解为 \mathbf{X} -型区域

$$D = \{(x, y) | x \le y \le 2x, \ 0 \le x \le 1\}$$

 \mathbf{H} 1. 如图, 画出 \mathbf{D} , 可理解为 \mathbf{X} -型区域

$$D = \{(x, y) | x \le y \le 2x, \ 0 \le x \le 1\}$$

 \mathbf{H} 1. 如图,画出 D,可理解为 X-型区域

$$D = \{(x, y) | x \le y \le 2x, \ 0 \le x \le 1\}$$

2.

$$\iint_{D} xy dx dy = \int \left[\int xy dy \right] dx$$

 \mathbf{H} 1. 如图,画出 D,可理解为 X-型区域

$$D = \{(x, y) | x \le y \le 2x, \ 0 \le x \le 1\}$$

$$\iint_{D} xy dx dy = \int \left[\int_{x}^{2x} xy dy \right] dx$$

 \mathbf{H} 1. 如图, 画出 D, 可理解为 X-型区域

$$D = \{(x, y) | x \le y \le 2x, \ 0 \le x \le 1\}$$

$$\iint_{D} xy dx dy = \int_{0}^{1} \left[\int_{x}^{2x} xy dy \right] dx$$

 \mathbf{H} 1. 如图,画出 \mathbf{D} ,可理解为 \mathbf{X} -型区域

$$D = \{(x, y) | x \le y \le 2x, \ 0 \le x \le 1\}$$

2. $\iint_{D} xydxdy = \int_{0}^{1} \left[\int_{x}^{2x} xydy \right] dx$ $\frac{1}{2}xy^{2}$

 \mathbf{H} 1. 如图,画出 \mathbf{D} ,可理解为 \mathbf{X} -型区域

$$D = \{(x, y) | x \le y \le 2x, \ 0 \le x \le 1\}$$

2. $\iint_{D} xydxdy = \int_{0}^{1} \left[\int_{x}^{2x} xydy \right] dx$ $\frac{1}{2}xy^{2} \Big|_{x}^{2x}$

 \mathbf{H} 1. 如图,画出 \mathbf{D} ,可理解为 \mathbf{X} -型区域

$$D = \{(x, y) | x \le y \le 2x, \ 0 \le x \le 1\}$$

2. $\iint_{D} xydxdy = \int_{0}^{1} \left[\int_{x}^{2x} xydy \right] dx$ $= \int_{0}^{1} \left[\frac{1}{2} xy^{2} \Big|_{x}^{2x} \right] dx$

 \mathbf{H} 1. 如图,画出 \mathbf{D} ,可理解为 \mathbf{X} -型区域

$$D = \{(x, y) | x \le y \le 2x, \ 0 \le x \le 1\}$$

 $\iint_{\Omega} xydxdy = \int_{0}^{1} \left[\int_{x}^{2x} xydy \right] dx$

$$\int_{D} \int_{D} \left[\int_{X} xy^{2} \right]_{x}^{2x} dx$$

$$= \int_{D} \left[\frac{1}{2} xy^{2} \right]_{x}^{2x} dx$$

 \mathbf{H} 1. 如图,画出 \mathbf{D} ,可理解为 \mathbf{X} -型区域

$$D = \{(x, y) | x \le y \le 2x, \ 0 \le x \le 1\}$$

 $\iint_{D} xy dx dy = \int_{0}^{1} \left[\int_{x}^{2x} xy dy \right] dx$

$$\int_{0}^{1} \left[\int_{0}^{1} xy^{2} \Big|_{x}^{2x} \right] dx = \int_{0}^{1} \frac{3}{2} x^{3} dx$$

$$D = \{(x, y) | x \le y \le 2x, \ 0 \le x \le 1\}$$

$$\iint_{D} xy dx dy = \int_{0}^{1} \left[\int_{x}^{2x} xy dy \right] dx$$
$$= \int_{0}^{1} \left[\frac{1}{2} xy^{2} \Big|_{x}^{2x} \right] dx = \int_{0}^{1} \frac{3}{2} x^{3} dx = \frac{3}{8} x^{4}$$

$$D = \{(x, y) | x \le y \le 2x, \ 0 \le x \le 1\}$$

$$\iint_{D} xy dx dy = \int_{0}^{1} \left[\int_{x}^{2x} xy dy \right] dx$$
$$= \int_{0}^{1} \left[\frac{1}{2} xy^{2} \Big|_{x}^{2x} \right] dx = \int_{0}^{1} \frac{3}{2} x^{3} dx = \frac{3}{8} x^{4} \Big|_{0}^{1}$$

$$D = \{(x, y) | x \le y \le 2x, 0 \le x \le 1\}$$

$$\iint_{D} xy dx dy = \int_{0}^{1} \left[\int_{x}^{2x} xy dy \right] dx$$
$$= \int_{0}^{1} \left[\frac{1}{2} xy^{2} \Big|_{x}^{2x} \right] dx = \int_{0}^{1} \frac{3}{2} x^{3} dx = \frac{3}{8} x^{4} \Big|_{0}^{1} = \frac{3}{8}$$

解 1. 如图, 画出 D,

解 1. 如图, 画出 D,

解 1. 如图,画出 *D*,可理解为 *X*-型区域

$$D = \{(x, y) | x \le y \le 2x,$$

 \mathbf{H} 1. 如图, 画出 D, 可理解为 X-型区域

$$D = \{(x, y) | x \le y \le 2x, \ 0 \le x \le 1\}$$

 \mathbf{H} 1. 如图, 画出 D, 可理解为 X-型区域

$$D = \{(x, y) | x \le y \le 2x, \ 0 \le x \le 1\}$$

 \mathbf{H} 1. 如图,画出 D,可理解为 X-型区域

$$D = \{(x, y) | x \le y \le 2x, \ 0 \le x \le 1\}$$

$$\iint_{D} e^{x+y} dx dy = \int \left[\int e^{x+y} dy \right] dx$$

 \mathbf{H} 1. 如图, 画出 D, 可理解为 X-型区域

$$D = \{(x, y) | x \le y \le 2x, \ 0 \le x \le 1\}$$

$$\iint_{D} e^{x+y} dx dy = \int \left[\int_{x}^{2x} e^{x+y} dy \right] dx$$

 \mathbf{H} 1. 如图,画出 D,可理解为 X-型区域

$$D = \{(x, y) | x \le y \le 2x, \ 0 \le x \le 1\}$$

$$\iint_{D} e^{x+y} dx dy = \int_{0}^{1} \left[\int_{x}^{2x} e^{x+y} dy \right] dx$$

$$D = \{(x, y) | x \le y \le 2x, \ 0 \le x \le 1\}$$

$$\iint_{D} e^{x+y} dx dy = \int_{0}^{1} \left[\int_{x}^{2x} e^{x+y} dy \right] dx \qquad e^{x+y}$$

$$e^{x+y}$$

$$D = \{(x, y) | x \le y \le 2x, \ 0 \le x \le 1\}$$

$$\iint_{D} e^{x+y} dx dy = \int_{0}^{1} \left[\int_{x}^{2x} e^{x+y} dy \right] dx \qquad e^{x+y} \Big|_{x}^{2}$$

$$e^{x+y}\Big|_x^{2x}$$

 \mathbf{H} 1. 如图,画出 D,可理解为 X-型区域

$$D = \{(x, y) | x \le y \le 2x, \ 0 \le x \le 1\}$$

$$\iint_{D} e^{x+y} dx dy = \int_{0}^{1} \left[\int_{x}^{2x} e^{x+y} dy \right] dx = \int_{0}^{1} \left[e^{x+y} \Big|_{x}^{2x} \right] dx$$

 \mathbf{H} 1. 如图, 画出 D, 可理解为 X-型区域

$$D = \{(x, y) | x \le y \le 2x, \ 0 \le x \le 1\}$$

2.
$$\iint_{D} e^{x+y} dx dy = \int_{0}^{1} \left[\int_{x}^{2x} e^{x+y} dy \right] dx = \int_{0}^{1} \left[e^{x+y} \Big|_{x}^{2x} \right] dx$$
$$e^{3x} - e^{2x}$$

 \mathbf{H} 1. 如图,画出 D,可理解为 X-型区域

$$D = \{(x, y) | x \le y \le 2x, \ 0 \le x \le 1\}$$

$$\int_{D}^{2x} e^{x+y} dx dy = \int_{0}^{1} \left[\int_{x}^{2x} e^{x+y} dy \right] dx = \int_{0}^{1} \left[e^{x+y} \Big|_{x}^{2x} \right] dx \\
= \int_{0}^{1} e^{3x} - e^{2x} dx$$

$$D = \{(x, y) | x \le y \le 2x, \ 0 \le x \le 1\}$$

$$\int_{D}^{2x} e^{x+y} dx dy = \int_{0}^{1} \left[\int_{x}^{2x} e^{x+y} dy \right] dx = \int_{0}^{1} \left[e^{x+y} \Big|_{x}^{2x} \right] dx
= \int_{0}^{1} e^{3x} - e^{2x} dx = \frac{1}{3} e^{3x} - \frac{1}{2} e^{2x}$$

 \mathbf{H} 1. 如图,画出 D,可理解为 X-型区域

$$D = \{(x, y) | x \le y \le 2x, \ 0 \le x \le 1\}$$

$$\int_{D}^{2} e^{x+y} dx dy = \int_{0}^{1} \left[\int_{x}^{2x} e^{x+y} dy \right] dx = \int_{0}^{1} \left[e^{x+y} \Big|_{x}^{2x} \right] dx
= \int_{0}^{1} e^{3x} - e^{2x} dx = \frac{1}{3} e^{3x} - \frac{1}{2} e^{2x} \Big|_{0}^{1}$$

 \mathbf{H} 1. 如图,画出 D,可理解为 X-型区域

$$D = \{(x, y) | x \le y \le 2x, 0 \le x \le 1\}$$

$$\iint_{D} e^{x+y} dx dy = \int_{0}^{1} \left[\int_{x}^{2x} e^{x+y} dy \right] dx = \int_{0}^{1} \left[e^{x+y} \Big|_{x}^{2x} \right] dx$$
$$= \int_{0}^{1} e^{3x} - e^{2x} dx = \frac{1}{3} e^{3x} - \frac{1}{2} e^{2x} \Big|_{0}^{1} = \frac{1}{3} e^{3} - \frac{1}{2} e^{2} + \frac{1}{6}$$

解 1. 如图, 画出 D,

解 1. 如图, 画出 D,

y = x y = 1 x = 0 0 x

 \mathbf{m} 1. 如图,画出 D,可理解为 X-型区域

$$D = \{(x, y) | x \le y \le 1,$$

$$D = \{(x, y) | x \le y \le 1, \ 0 \le x \le 1\}$$

$$D = \{(x, y) | x \le y \le 1, \ 0 \le x \le 1\}$$

例 计算
$$\iint_D (2x + 6y) dx dy$$
, 其中 D 是由
直线 $x = 0$, $y = 1$ 和 $y = x$ 所围成区域。

$$D = \{(x, y) | x \le y \le 1, \ 0 \le x \le 1\}$$

$$\iint_{D} (2x + 6y) dx dy = \int \left[\int (2x + 6y) dy \right] dx$$

例 计算
$$\iint_D (2x + 6y) dx dy$$
, 其中 D 是由
直线 $x = 0$, $y = 1$ 和 $y = x$ 所围成区域。

$$D = \{(x, y) | x \le y \le 1, \ 0 \le x \le 1\}$$

$$\iint_{D} (2x + 6y) dx dy = \int_{X} \left[\int_{X}^{1} (2x + 6y) dy \right] dx$$

例 计算
$$\iint_D (2x + 6y) dx dy$$
, 其中 D 是由
直线 $x = 0$, $y = 1$ 和 $y = x$ 所围成区域。

$$D = \{(x, y) | x \le y \le 1, \ 0 \le x \le 1\}$$

$$\iint_{D} (2x + 6y) dx dy = \int_{0}^{1} \left[\int_{x}^{1} (2x + 6y) dy \right] dx$$

例 计算
$$\iint_D (2x + 6y) dx dy$$
, 其中 D 是由
直线 $x = 0$, $y = 1$ 和 $y = x$ 所围成区域。

$$D = \{(x, y) | x \le y \le 1, \ 0 \le x \le 1\}$$

$$\iint_{D} (2x + 6y) dx dy = \int_{0}^{1} \left[\int_{x}^{1} (2x + 6y) dy \right] dx$$
$$2xy + 3y^{2}$$

例 计算
$$\iint_D (2x + 6y) dx dy$$
,其中 D 是由直线 $x = 0$, $y = 1$ 和 $y = x$ 所围成区域。

$$D = \{(x, y) | x \le y \le 1, \ 0 \le x \le 1\}$$

$$\iint_{D} (2x + 6y) dx dy = \int_{0}^{1} \left[\int_{x}^{1} (2x + 6y) dy \right] dx$$
$$2xy + 3y^{2} \Big|_{x}^{1}$$

例 计算 $\iint_D (2x + 6y) dx dy$,其中 D 是由 直线 x = 0,y = 1 和 y = x 所围成区域。

 \mathbf{H} 1. 如图,画出 \mathbf{D} ,可理解为 \mathbf{X} -型区域

$$D = \{(x, y) | x \le y \le 1, \ 0 \le x \le 1\}$$

$$\iint_{D} (2x + 6y) dx dy = \int_{0}^{1} \left[\int_{x}^{1} (2x + 6y) dy \right] dx$$
$$= \int_{0}^{1} \left[2xy + 3y^{2} \Big|_{x}^{1} \right] dx$$

例 计算 $\iint_D (2x + 6y) dx dy$,其中 D 是由 直线 x = 0,y = 1 和 y = x 所围成区域。

$$D = \{(x, y) | x \le y \le 1, \ 0 \le x \le 1\}$$

2.
$$\iint_{D} (2x + 6y) dx dy = \int_{0}^{1} \left[\int_{x}^{1} (2x + 6y) dy \right] dx$$
$$= \int_{0}^{1} \left[2xy + 3y^{2} \Big|_{x}^{1} \right] dx - 5x^{2} + 2x + 3$$

例 计算 $\iint_D (2x + 6y) dx dy$,其中 D 是由直线 x = 0,y = 1 和 y = x 所围成区域。

 \mathbf{H} 1. 如图,画出 \mathbf{D} ,可理解为 \mathbf{X} -型区域

$$D = \{(x, y) | x \le y \le 1, \ 0 \le x \le 1\}$$

2.
$$\iint_{D} (2x + 6y) dx dy = \int_{0}^{1} \left[\int_{x}^{1} (2x + 6y) dy \right] dx$$
$$= \int_{0}^{1} \left[2xy + 3y^{2} \Big|_{x}^{1} \right] dx = \int_{0}^{1} -5x^{2} + 2x + 3dx$$

例 计算
$$\iint_D (2x + 6y) dx dy$$
,其中 D 是由
直线 $x = 0$, $y = 1$ 和 $y = x$ 所围成区域。

 \mathbf{H} 1. 如图,画出 \mathbf{D} ,可理解为 \mathbf{X} -型区域

$$D = \{(x, y) | x \le y \le 1, \ 0 \le x \le 1\}$$

$$\iint_{D} (2x+6y)dxdy = \int_{0}^{1} \left[\int_{x}^{1} (2x+6y)dy \right] dx$$
$$= \int_{0}^{1} \left[2xy + 3y^{2} \Big|_{x}^{1} \right] dx = \int_{0}^{1} -5x^{2} + 2x + 3dx$$
$$= -\frac{5}{3}x^{3} + x^{2} + 3x$$

例 计算
$$\iint_D (2x + 6y) dx dy$$
,其中 D 是由
直线 $x = 0$, $y = 1$ 和 $y = x$ 所围成区域。

解 1. 如图,画出 D,可理解为 X-型区域

$$D = \{(x, y) | x \le y \le 1, \ 0 \le x \le 1\}$$

$$\iint_{D} (2x + 6y) dx dy = \int_{0}^{1} \left[\int_{x}^{1} (2x + 6y) dy \right] dx$$
$$= \int_{0}^{1} \left[2xy + 3y^{2} \Big|_{x}^{1} \right] dx = \int_{0}^{1} -5x^{2} + 2x + 3dx$$
$$= -\frac{5}{3}x^{3} + x^{2} + 3x \Big|_{0}^{1}$$

例 计算
$$\iint_D (2x + 6y) dx dy$$
,其中 D 是由
直线 $x = 0$, $y = 1$ 和 $y = x$ 所围成区域。

解 1. 如图,画出 *D*,可理解为 *X*-型区域

$$D = \{(x, y) | x \le y \le 1, \ 0 \le x \le 1\}$$

$$\iint_{D} (2x + 6y) dx dy = \int_{0}^{1} \left[\int_{x}^{1} (2x + 6y) dy \right] dx$$
$$= \int_{0}^{1} \left[2xy + 3y^{2} \Big|_{x}^{1} \right] dx = \int_{0}^{1} -5x^{2} + 2x + 3dx$$
$$= -\frac{5}{3}x^{3} + x^{2} + 3x \Big|_{0}^{1} = \frac{7}{3}$$

解 1. 如图, 画出 D,

解 1. 如图, 画出 D,

 \mathbf{H} 1. 如图, 画出 \mathbf{D} , 可理解为 \mathbf{X} -型区域

$$D = \{(x, y) | x^2 \le y \le 1,$$

 \mathbf{H} 1. 如图, 画出 \mathbf{D} , 可理解为 \mathbf{X} -型区域

$$D = \{(x, y) | x^2 \le y \le 1, -1 \le x \le 1\}$$

 \mathbf{H} 1. 如图, 画出 D, 可理解为 X-型区域

$$D = \{(x, y) | x^2 \le y \le 1, -1 \le x \le 1\}$$

 \mathbf{H} 1. 如图, 画出 \mathbf{D} , 可理解为 \mathbf{X} -型区域

$$D = \{(x, y) | x^2 \le y \le 1, -1 \le x \le 1\}$$

2.

$$\iint_{D} x^{2}y dx dy = \int \left[\int x^{2}y dy \right] dx$$

 \mathbf{H} 1. 如图, 画出 \mathbf{D} , 可理解为 \mathbf{X} -型区域

$$D = \{(x, y) | x^2 \le y \le 1, -1 \le x \le 1\}$$

$$\iint_D x^2 y dx dy = \int \left[\int_{x^2}^1 x^2 y dy \right] dx$$

 \mathbf{H} 1. 如图, 画出 \mathbf{D} , 可理解为 \mathbf{X} -型区域

$$D = \{(x, y) | x^2 \le y \le 1, -1 \le x \le 1\}$$

 $\iint_{D} x^{2}y dx dy = \int_{1}^{1} \left[\int_{y^{2}}^{1} x^{2}y dy \right] dx$

 \mathbf{H} 1. 如图, 画出 \mathbf{D} , 可理解为 \mathbf{X} -型区域

$$D = \{(x, y) | x^2 \le y \le 1, -1 \le x \le 1\}$$

2.

$$\iint_D x^2 y dx dy = \int_{-1}^1 \left[\int_{x^2}^1 x^2 y dy \right] dx \qquad \frac{1}{2} x^2 y^2$$

 \mathbf{H} 1. 如图, 画出 \mathbf{D} , 可理解为 \mathbf{X} -型区域

$$D = \{(x, y) | x^2 \le y \le 1, -1 \le x \le 1\}$$

2.

$$\iint_{D} x^{2}y dx dy = \int_{-1}^{1} \left[\int_{x^{2}}^{1} x^{2}y dy \right] dx \qquad \frac{1}{2} x^{2} y^{2} \Big|_{x^{2}}^{1}$$

 \mathbf{H} 1. 如图, 画出 \mathbf{D} , 可理解为 \mathbf{X} -型区域

$$D = \{(x, y) | x^2 \le y \le 1, -1 \le x \le 1\}$$

$$\iint_{D} x^{2}y dx dy = \int_{-1}^{1} \left[\int_{x^{2}}^{1} x^{2}y dy \right] dx = \int_{-1}^{1} \left[\frac{1}{2} x^{2}y^{2} \Big|_{x^{2}}^{1} \right] dx$$

 \mathbf{H} 1. 如图, 画出 \mathbf{D} , 可理解为 \mathbf{X} -型区域

$$D = \{(x, y) | x^2 \le y \le 1, -1 \le x \le 1\}$$

2.

$$\iint_{D} x^{2}y dx dy = \int_{-1}^{1} \left[\int_{x^{2}}^{1} x^{2}y dy \right] dx = \int_{-1}^{1} \left[\frac{1}{2} x^{2} y^{2} \Big|_{x^{2}}^{1} \right] dx$$

$$x^2(1-x^4)$$

 \mathbf{H} 1. 如图, 画出 \mathbf{D} , 可理解为 \mathbf{X} -型区域

$$D = \{(x, y) | x^2 \le y \le 1, -1 \le x \le 1\}$$

2.

$$\iint_{D} x^{2}y dx dy = \int_{-1}^{1} \left[\int_{x^{2}}^{1} x^{2}y dy \right] dx = \int_{-1}^{1} \left[\frac{1}{2} x^{2} y^{2} \Big|_{x^{2}}^{1} \right] dx$$
$$= \int_{-1}^{1} x^{2} (1 - x^{4}) dx$$

 \mathbf{H} 1. 如图,画出 D,可理解为 X-型区域

$$D = \{(x, y) | x^2 \le y \le 1, -1 \le x \le 1\}$$

2

$$\iint_{D} x^{2}y dx dy = \int_{-1}^{1} \left[\int_{x^{2}}^{1} x^{2}y dy \right] dx = \int_{-1}^{1} \left[\frac{1}{2} x^{2} y^{2} \Big|_{x^{2}}^{1} \right] dx$$
$$= \int_{-1}^{1} x^{2} (1 - x^{4}) dx = \frac{1}{2} (\frac{1}{3} x^{3} - \frac{1}{7} x^{7})$$

 \mathbf{H} 1. 如图,画出 D,可理解为 X-型区域

$$D = \{(x, y) | x^2 \le y \le 1, -1 \le x \le 1\}$$

2

$$\iint_{D} x^{2}y dx dy = \int_{-1}^{1} \left[\int_{x^{2}}^{1} x^{2}y dy \right] dx = \int_{-1}^{1} \left[\frac{1}{2} x^{2} y^{2} \Big|_{x^{2}}^{1} \right] dx$$
$$= \int_{-1}^{1} x^{2} (1 - x^{4}) dx = \frac{1}{2} (\frac{1}{3} x^{3} - \frac{1}{7} x^{7}) \Big|_{-1}^{1}$$

 \mathbf{H} 1. 如图,画出 D,可理解为 X-型区域

$$D = \{(x, y) | x^2 \le y \le 1, -1 \le x \le 1\}$$

$$\iint_{D} x^{2}y dx dy = \int_{-1}^{1} \left[\int_{x^{2}}^{1} x^{2}y dy \right] dx = \int_{-1}^{1} \left[\frac{1}{2} x^{2} y^{2} \Big|_{x^{2}}^{1} \right] dx$$
$$= \int_{-1}^{1} x^{2} (1 - x^{4}) dx = \frac{1}{2} (\frac{1}{3} x^{3} - \frac{1}{7} x^{7}) \Big|_{-1}^{1} = \frac{4}{21}$$

/20 4 5 4

We are here now...

- 1. 如何计算二重积分?
- 2. X-型区域上的二重积分
- 3. Y-型区域上的二重积分
- 4. 交换二重积分的积分次序
- 5. 极坐标下计算二重积分
- 6. 二重积分的应用

• Y-型区域: $D = \{(x, y) | \psi_1(y) \le x \le \psi_2(y), c \le y \le d\}$

• Y-型区域: $D = \{(x, y) | \psi_1(y) \le x \le \psi_2(y), c \le y \le d\}$ 此时, $\iint_D f(x, y) dx dy = \int \left[\int f(x, y) dx \right] dy$

• Y-型区域: $D = \{(x, y) | \psi_1(y) \le x \le \psi_2(y), c \le y \le d\}$ 此时, $\iint_D f(x, y) dx dy = \int \left[\int_{\psi_1(x)}^{\psi_2(x)} f(x, y) dx \right] dy$

• Y-型区域: $D = \{(x, y) | \psi_1(y) \le x \le \psi_2(y), c \le y \le d\}$ 此时, $\iint_D f(x, y) dx dy = \int_c^d \left[\int_{\psi_1(x)}^{\psi_2(x)} f(x, y) dx \right] dy$

● Y-型区域: $D = \{(x, y) | \psi_1(y) \le x \le \psi_2(y), c \le y \le d\}$

0

• Y-型区域: $D = \{(x, y) | \psi_1(y) \le x \le \psi_2(y), c \le y \le d\}$

0

Y-型积分区域

• Y-型区域: $D = \{(x, y) | \psi_1(y) \le x \le \psi_2(y), c \le y \le d\}$

0

Y-型积分区域

• Y-型区域: $D = \{(x, y) | \psi_1(y) \le x \le \psi_2(y), c \le y \le d\}$

0

解 1. 如图画出 D,

解 1. 如图画出 D,

解 1. 如图画出 **D,**

 \mathbf{H} 1. 如图画出 D,可理解为 Y-型区域

 \mathbf{H} 1. 如图画出 D,可理解为 Y-型区域

$$D = \{(x, y) | y^2 \le x \le y + 2,$$

 \mathbf{H} 1. 如图画出 D,可理解为 Y-型区域

$$D = \{(x, y) | y^2 \le x \le y + 2,$$

 \mathbf{H} 1. 如图画出 D,可理解为 Y-型区域

$$D = \{(x, y) | y^2 \le x \le y + 2,$$

 \mathbf{H} 1. 如图画出 D,可理解为 Y-型区域

$$D = \{(x, y) | y^2 \le x \le y + 2, -1 \le y \le 2\}$$

 \mathbf{H} 1. 如图画出 D, 可理解为 Y-型区域

$$D = \{(x, y) | y^2 \le x \le y + 2, -1 \le y \le 2\}$$

 \mathbf{H} 1. 如图画出 \mathbf{D} ,可理解为 \mathbf{Y} -型区域

$$D = \{(x, y) | y^2 \le x \le y + 2, -1 \le y \le 2\}$$

$$\iint_{D} xydxdy = \int \left[\int xydx \right] dy$$

 \mathbf{H} 1. 如图画出 \mathbf{D} ,可理解为 \mathbf{Y} -型区域

$$D = \{(x, y) | y^2 \le x \le y + 2, -1 \le y \le 2\}$$

$$\iint_{D} xydxdy = \int_{-1}^{2} \left[\int_{y^{2}}^{y+2} xydx \right] dy$$

 \mathbf{H} 1. 如图画出 \mathbf{D} ,可理解为 \mathbf{Y} -型区域

$$D = \{(x, y) | y^2 \le x \le y + 2, -1 \le y \le 2\}$$

$$\iint_{D} xydxdy = \int_{-1}^{2} \left[\int_{y^{2}}^{y+2} xydx \right] dy$$

\mathbf{H} 1. 如图画出 \mathbf{D} , 可理解为 \mathbf{Y} -型区域

$$D = \{(x, y) | y^2 \le x \le y + 2, -1 \le y \le 2\}$$

$$\iint_{D} xy dx dy = \int_{-1}^{2} \left[\int_{y^{2}}^{y+2} xy dx \right] dy \qquad \frac{1}{2} x^{2} y$$

\mathbf{H} 1. 如图画出 \mathbf{D} ,可理解为 \mathbf{Y} -型区域

$$D = \{(x, y) | y^2 \le x \le y + 2, -1 \le y \le 2\}$$

$$\iint_{D} xy dx dy = \int_{-1}^{2} \left[\int_{y^{2}}^{y+2} xy dx \right] dy \qquad \frac{1}{2} x^{2} y \Big|_{y^{2}}^{y+2}$$

 \mathbf{H} 1. 如图画出 \mathbf{D} ,可理解为 \mathbf{Y} -型区域

$$D = \{(x, y) | y^2 \le x \le y + 2, -1 \le y \le 2\}$$

$$\iint_{D} xy dx dy = \int_{-1}^{2} \left[\int_{y^{2}}^{y+2} xy dx \right] dy = \int_{-1}^{2} \left[\frac{1}{2} x^{2} y \Big|_{y^{2}}^{y+2} \right] dy$$

 \mathbf{H} 1. 如图画出 \mathbf{D} ,可理解为 \mathbf{Y} -型区域

$$D = \{(x, y) | y^2 \le x \le y + 2, -1 \le y \le 2\}$$

2

$$\iint_{D} xy dx dy = \int_{-1}^{2} \left[\int_{y^{2}}^{y+2} xy dx \right] dy = \int_{-1}^{2} \left[\frac{1}{2} x^{2} y \Big|_{y^{2}}^{y+2} \right] dy$$

$$y[(y+2)^2-y^4]$$

 \mathbf{m} 1. 如图画出 \mathbf{D} ,可理解为 \mathbf{Y} -型区域

$$D = \{(x, y) | y^2 \le x \le y + 2, -1 \le y \le 2\}$$

2

$$\iint_{D} xy dx dy = \int_{-1}^{2} \left[\int_{y^{2}}^{y+2} xy dx \right] dy = \int_{-1}^{2} \left[\frac{1}{2} x^{2} y \Big|_{y^{2}}^{y+2} \right] dy$$

$$= \int_{-2}^{2} y [(y+2)^2 - y^4] dy$$

 \mathbf{H} 1. 如图画出 D,可理解为 Y-型区域

$$D = \{(x, y) | y^2 \le x \le y + 2, -1 \le y \le 2\}$$

$$\iint_{D} xy dx dy = \int_{-1}^{2} \left[\int_{y^{2}}^{y+2} xy dx \right] dy = \int_{-1}^{2} \left[\frac{1}{2} x^{2} y \Big|_{y^{2}}^{y+2} \right] dy$$
$$= \int_{-1}^{2} \left[(y+2)^{2} - y^{4} \right] dy = \frac{45}{8}$$

$$\iint_{D} xy dx dy = \int_{-1}^{2} \left[\int_{y^{2}}^{y+2} xy dx \right] dy$$

$$= \int_{-1}^{2} \left[\frac{1}{2} x^{2} y \Big|_{y^{2}}^{y+2} \right] dy$$

$$= \frac{1}{2} \int_{-1}^{2} y ((y+2)^{2} - y^{4}) dy$$

$$= \frac{1}{2} \int_{-1}^{2} y ((y+2)^{2} - y^{4}) dy$$

$$\iint_{D} xy dx dy = \int_{-1}^{2} \left[\int_{y^{2}}^{y+2} xy dx \right] dy$$

$$= \int_{-1}^{2} \left[\frac{1}{2} x^{2} y \Big|_{y^{2}}^{y+2} \right] dy$$

$$= \frac{1}{2} \int_{-1}^{2} y ((y+2)^{2} - y^{4}) dy$$

$$= -y^{5} + y^{3} + 4y^{2} + 4y$$

$$\iint_{D} xy dx dy = \int_{-1}^{2} \left[\int_{y^{2}}^{y+2} xy dx \right] dy$$

$$= \int_{-1}^{2} \left[\frac{1}{2} x^{2} y \Big|_{y^{2}}^{y+2} \right] dy$$

$$= \frac{1}{2} \int_{-1}^{2} y ((y+2)^{2} - y^{4}) dy$$

$$= \frac{1}{2} \int_{-1}^{2} -y^{5} + y^{3} + 4y^{2} + 4y dy$$

$$\iint_{D} xydxdy = \int_{-1}^{2} \left[\int_{y^{2}}^{y+2} xydx \right] dy$$

$$= \int_{-1}^{2} \left[\frac{1}{2} x^{2} y \Big|_{y^{2}}^{y+2} \right] dy$$

$$= \frac{1}{2} \int_{-1}^{2} y((y+2)^{2} - y^{4}) dy$$

$$= \frac{1}{2} \int_{-1}^{2} -y^{5} + y^{3} + 4y^{2} + 4ydy$$

$$= \frac{1}{2} (-\frac{1}{6} y^{6} + \frac{1}{4} y^{4} + \frac{4}{3} y^{3} + 2y^{2})$$

$$\iint_{D} xydxdy = \int_{-1}^{2} \left[\int_{y^{2}}^{y+2} xydx \right] dy$$

$$= \int_{-1}^{2} \left[\frac{1}{2} x^{2} y \Big|_{y^{2}}^{y+2} \right] dy$$

$$= \frac{1}{2} \int_{-1}^{2} y ((y+2)^{2} - y^{4}) dy$$

$$= \frac{1}{2} \int_{-1}^{2} -y^{5} + y^{3} + 4y^{2} + 4y dy$$

$$= \frac{1}{2} (-\frac{1}{6} y^{6} + \frac{1}{4} y^{4} + \frac{4}{3} y^{3} + 2y^{2}) \Big|_{-1}^{2} = \frac{1}{2} (-\frac{1}{6} y^{6} + \frac{1}{4} y^{4} + \frac{4}{3} y^{3} + 2y^{2}) \Big|_{-1}^{2} = \frac{1}{2} (-\frac{1}{6} y^{6} + \frac{1}{4} y^{4} + \frac{4}{3} y^{3} + 2y^{2}) \Big|_{-1}^{2} = \frac{1}{2} (-\frac{1}{6} y^{6} + \frac{1}{4} y^{4} + \frac{4}{3} y^{3} + 2y^{2}) \Big|_{-1}^{2} = \frac{1}{2} (-\frac{1}{6} y^{6} + \frac{1}{4} y^{4} + \frac{4}{3} y^{3} + 2y^{2}) \Big|_{-1}^{2} = \frac{1}{2} (-\frac{1}{6} y^{6} + \frac{1}{4} y^{4} + \frac{4}{3} y^{3} + 2y^{2}) \Big|_{-1}^{2} = \frac{1}{2} (-\frac{1}{6} y^{6} + \frac{1}{4} y^{4} + \frac{4}{3} y^{3} + 2y^{2}) \Big|_{-1}^{2} = \frac{1}{2} (-\frac{1}{6} y^{6} + \frac{1}{4} y^{4} + \frac{4}{3} y^{3} + 2y^{2}) \Big|_{-1}^{2} = \frac{1}{2} (-\frac{1}{6} y^{6} + \frac{1}{4} y^{4} + \frac{4}{3} y^{3} + 2y^{2}) \Big|_{-1}^{2} = \frac{1}{2} (-\frac{1}{2} y^{6} + \frac{1}{4} y^{4} + \frac{4}{3} y^{3} + 2y^{2}) \Big|_{-1}^{2} = \frac{1}{2} (-\frac{1}{2} y^{6} + \frac{1}{2} y^{6} + \frac{1}{2$$

$$\iint_{D} xydxdy = \int_{-1}^{2} \left[\int_{y^{2}}^{y+2} xydx \right] dy$$

$$= \int_{-1}^{2} \left[\frac{1}{2} x^{2} y \Big|_{y^{2}}^{y+2} \right] dy$$

$$= \frac{1}{2} \int_{-1}^{2} y ((y+2)^{2} - y^{4}) dy$$

$$= \frac{1}{2} \int_{-1}^{2} -y^{5} + y^{3} + 4y^{2} + 4y dy$$

$$= \frac{1}{2} (-\frac{1}{6} y^{6} + \frac{1}{4} y^{4} + \frac{4}{3} y^{3} + 2y^{2}) \Big|_{-1}^{2} = \frac{45}{8}$$

解法一视 D 为 X-型区域:

解法一视 D 为 X-型区域:

$$\iint_D e^{x^2} dx dy = \int \left[\int e^{x^2} dy \right] dx$$

例 计算
$$\iint_D e^{x^2} dx dy$$
,其中 D 是由 $y = x$, $x = 1$, x 轴所围成的区域

解法一视 D 为 X-型区域:

$$\iint_D e^{x^2} dx dy = \int \left[\int e^{x^2} dy \right] dx$$

解法一 视 D 为 X-型区域:
$$D = \{(x, y) | 0 \le y \le x, 0 \le x \le 1\}$$

$$\left(\int_{-e^{x^2}} e^{x^2} dx dy = \int_{-e^{x^2}} \left(\int_{-e^{x^2}} e^{x^2} dy \right) dx \right)$$

$$\iint_D e^{x^2} dx dy = \int \left[\int e^{x^2} dy \right] dx$$

解法一 视 D 为 X-型区域:
$$D = \{(x, y) | 0 \le y \le x, 0 \le x \le 1\}$$

$$\iint_{\mathbb{R}} e^{x^2} dx dy = \iint_{\mathbb{R}} \int_{0}^{x} e^{x^2} dy dx$$

解法一 视 D 为 X-型区域:
$$D = \{(x, y) | 0 \le y \le x, 0 \le x \le 1\}$$

$$\iint_D e^{x^2} dx dy = \int_0^1 \left[\int_0^x e^{x^2} dy \right] dx$$

解法一 视
$$D$$
 为 X -型区域: $D = \{(x, y) | 0 \le y \le x, 0 \le x \le 1\}$

$$\iint_D e^{x^2} dx dy = \int_0^1 \left[\int_0^x e^{x^2} dy \right] dx \qquad e^x$$

解法一 视
$$D$$
 为 X -型区域: $D = \{(x, y) | 0 \le y \le x, 0 \le x \le 1\}$

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$

解法一 视
$$D$$
 为 X -型区域: $D = \{(x, y) | 0 \le y \le x, 0 \le x \le 1\}$

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= x e^{x^{2}}$$

解法一 视
$$D$$
 为 X -型区域: $D = \{(x, y) | 0 \le y \le x, 0 \le x \le 1\}$

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx$$

解法一 视 D 为 X-型区域: $D = \{(x, y) | 0 \le y \le x, 0 \le x \le 1\}$

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big|_{0}^{1}$$

解法一 视
$$D$$
 为 X -型区域: $D = \{(x, y) | 0 \le y \le x, 0 \le x \le 1\}$

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big|_{0}^{1} = \frac{1}{2} e^{-\frac{1}{2}}$$

解法一 视 D 为 X-型区域: $D = \{(x, y) | 0 \le y \le x, 0 \le x \le 1\}$

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big|_{0}^{1} = \frac{1}{2} e^{-\frac{1}{2}}$$

例 计算
$$\iint_D e^{x^2} dx dy$$
,其中 D 是由 $y = x$, $x = 1$, x 轴所围成的区域

解法一 视 D 为 X-型区域: $D = \{(x, y) | 0 \le y \le x, 0 \le x \le 1\}$

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big|_{0}^{1} = \frac{1}{2} e - \frac{1}{2}$$

$$\iint_{\mathbb{R}} e^{x^2} dx dy = \int \left[\int e^{x^2} dx \right] dy$$

解法一 视 D 为 X-型区域: $D = \{(x, y) | 0 \le y \le x, 0 \le x \le 1\}$

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big|_{0}^{1} = \frac{1}{2} e - \frac{1}{2}$$

$$\iint_{\mathbb{D}} e^{x^2} dx dy = \int \left[\int e^{x^2} dx \right] dy$$

解法一 视 D 为 X-型区域: $D = \{(x, y) | 0 \le y \le x, 0 \le x \le 1\}$

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big|_{0}^{1} = \frac{1}{2} e - \frac{1}{2}$$

$$\iint_{\mathbb{D}} e^{x^2} dx dy = \int \left[\int e^{x^2} dx \right] dy$$

解法一 视 D 为 X-型区域: $D = \{(x, y) | 0 \le y \le x, 0 \le x \le 1\}$

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big|_{0}^{1} = \frac{1}{2} e - \frac{1}{2}$$

解法二 视 D 为 Y-型区域: $D = \{(x, y) | y \le x \le 1, 0 \le y \le 1\}$ $\iint_{\mathbb{R}} e^{x^2} dx dy = \iint_{\mathbb{R}} e^{x^2} dx dy$

解法一 视 D 为 X-型区域: $D = \{(x, y) | 0 \le y \le x, 0 \le x \le 1\}$

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big|_{0}^{1} = \frac{1}{2} e - \frac{1}{2}$$

解法二 视 D 为 Y-型区域: $D = \{(x, y) | y \le x \le 1, 0 \le y \le 1\}$ $\iint_D e^{x^2} dx dy = \int_{Y} \left[\int_{Y}^1 e^{x^2} dx \right] dy$

解法一 视 D 为 X-型区域: $D = \{(x, y) | 0 \le y \le x, 0 \le x \le 1\}$

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big|_{0}^{1} = \frac{1}{2} e - \frac{1}{2}$$

解法二 视 D 为 Y-型区域: $D = \{(x, y) | y \le x \le 1, 0 \le y \le 1\}$ $\iint_D e^{x^2} dx dy = \int_0^1 \left[\int_v^1 e^{x^2} dx \right] dy$

解法一 视 D 为 X-型区域: $D = \{(x, y) | 0 \le y \le x, 0 \le x \le 1\}$

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big|_{0}^{1} = \frac{1}{2} e - \frac{1}{2}$$

解法二 视 D 为 Y-型区域: $D = \{(x, y) | y \le x \le 1, 0 \le y \le 1\}$ $\iint_{D} e^{x^2} dx dy = \int_{0}^{1} \left[\int_{0}^{1} e^{x^2} dx \right] dy = \cdots$ 积不出

解法一 视 D 为 X-型区域: $D = \{(x, y) | 0 \le y \le x, 0 \le x \le 1\}$

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big|_{0}^{1} = \frac{1}{2} e - \frac{1}{2}$$

解法二 视 D 为 Y-型区域: $D = \{(x, y) | y \le x \le 1, 0 \le y \le 1\}$

注 选择恰当的积分次序,才能算出二重积分!

We are here now...

- 1. 如何计算二重积分?
- 2. X-型区域上的二重积分
- 3. Y-型区域上的二重积分
- 4. 交换二重积分的积分次序
- 5. 极坐标下计算二重积分
- 6. 二重积分的应用

$$\iint_D f(x,y) dx =$$

区域 D 同时是

X-型区域:

$$\iint_D f(x,y)dx =$$

区域 D 同时是

X-型区域:

$$\iint_D f(x,y)dx =$$

区域 D 同时是

X-型区域:

$$\iint_D f(x,y)dx =$$

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x,$$

$$\iint_{D} f(x,y) dx =$$

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, 1 \le x \le 2\}$$

$$\iint_{D} f(x,y) dx =$$

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, 1 \le x \le 2\}$$

$$\iint_{D} f(x,y) dx =$$

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, 1 \le x \le 2\}$$

$$\iint_{D} f(x,y) dx =$$

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, 1 \le x \le 2\}$$

$$\iint_{\mathbb{R}} f(x,y) dx =$$

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, 1 \le x \le 2\}$$

$$D = \{(x, y) | y \le x \le 2,$$

$$\iint_{\mathbb{R}} f(x,y) dx =$$

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, 1 \le x \le 2\}$$

$$D = \{(x, y) | y \le x \le 2, \ 1 \le y \le 2\}$$

$$\iint_{\mathbb{R}} f(x,y) dx =$$

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, 1 \le x \le 2\}$$

$$D = \{(x, y) | y \le x \le 2, \ 1 \le y \le 2\}$$

$$\iint_{\mathbb{R}} f(x,y) dx =$$

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, \ 1 \le x \le 2\}$$

$$D = \{(x, y) | y \le x \le 2, \ 1 \le y \le 2\}$$

$$\iint_{D} f(x, y) dx = \int \left[\int f(x, y) dy \right] dx$$

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, \ 1 \le x \le 2\}$$

$$D = \{(x, y) | y \le x \le 2, \ 1 \le y \le 2\}$$

$$\iint_D f(x,y)dx = \int \left[\int_1^x f(x,y)dy \right] dx$$

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, \ 1 \le x \le 2\}$$

$$D = \{(x, y) | y \le x \le 2, \ 1 \le y \le 2\}$$

$$\iint_D f(x, y) dx = \int_1^2 \left[\int_1^x f(x, y) dy \right] dx$$

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, \ 1 \le x \le 2\}$$

Y-型区域:

$$D = \{(x, y) | y \le x \le 2, \ 1 \le y \le 2\}$$

$$\iint_D f(x,y)dx = \int_1^2 \left[\int_1^x f(x,y)dy \right] dx = \int_1^x \left[\int_1^x f(x,y)dx \right] dy$$

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, \ 1 \le x \le 2\}$$

$$D = \{(x, y) | y \le x \le 2, \ 1 \le y \le 2\}$$

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, \ 1 \le x \le 2\}$$

$$D = \{(x, y) | y \le x \le 2, \ 1 \le y \le 2\}$$

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, 1 \le x \le 2\}$$

$$D = \{(x, y) | y \le x \le 2, \ 1 \le y \le 2\}$$

$$\iint_D f(x,y)dx = \int_1^2 \left[\int_1^x f(x,y)dy \right] dx = \int_0^1 \left[\int_0^y f(x,y)dx \right] dy$$

问题 1.
$$\int_0^1 \left[\int_0^y f(x,y) dy \right] dx$$

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, 1 \le x \le 2\}$$

$$D = \{(x, y) | y \le x \le 2, \ 1 \le y \le 2\}$$

$$\iint_D f(x,y)dx = \int_1^2 \left[\int_1^x f(x,y)dy \right] dx = \int_0^1 \left[\int_0^y f(x,y)dx \right] dy$$

问题 1.
$$\int_0^1 \left[\int_0^y f(x,y) dy \right] dx = \int_*^* \left[\int_*^* f(x,y) dx \right] dy,$$

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, \ 1 \le x \le 2\}$$

Y-型区域:

$$D = \{(x, y) | y \le x \le 2, \ 1 \le y \le 2\}$$

E域
$$D$$
 同时是

• X -型区域:

 $D = \{(x, y) | 1 \le y \le x, 1 \le x \le 2\}$

• Y -型区域:

 $D = \{(x, y) | y \le x \le 2, 1 \le y \le 2\}$

$$\iint_{0}^{y = x} f(x, y) dx = \int_{1}^{2} \left[\int_{1}^{x} f(x, y) dy \right] dx = \int_{0}^{1} \left[\int_{1}^{y} f(x, y) dx \right] dy$$

问题 1.
$$\int_0^1 \left[\int_0^y f(x,y) dy \right] dx = \int_*^* \left[\int_*^* f(x,y) dx \right] dy,$$

 $2. \int_1^2 \left[\int_1^x f(x,y) dx \right] dy$

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, \ 1 \le x \le 2\}$$

Y-型区域:

$$D = \{(x, y) | y \le x \le 2, \ 1 \le y \le 2\}$$

$$D = \{(x, y) | y \le x \le 2, \ 1 \le y \le 2\}$$

$$\iint_{D} f(x, y) dx = \int_{1}^{2} \left[\int_{1}^{x} f(x, y) dy \right] dx = \int_{0}^{1} \left[\int_{0}^{y} f(x, y) dx \right] dy$$

у,

问题 1.
$$\int_0^1 \left[\int_0^y f(x,y) dy \right] dx = \int_*^* \left[\int_*^* f(x,y) dx \right] dy,$$

2.
$$\int_{1}^{2} \left[\int_{1}^{x} f(x, y) dx \right] dy = \int_{*}^{*} \left[\int_{*}^{*} f(x, y) dy \right] dx$$
.

y = x

x = 2

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy$$
.

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy.$$

$$D = \{(x, y) | 0 \le y \le \ln x, \ 1 \le x \le e\}$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy$$
.

$$D = \{(x, y) | 0 \le y \le \ln x, \ 1 \le x \le e\}$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy$$
.

$$D = \{(x, y) | 0 \le y \le \ln x, \ 1 \le x \le e\}$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy.$$

$$D = \{(x, y) | 0 \le y \le \ln x, \ 1 \le x \le e\}$$

$$\int_{1}^{e} \left[\int_{0}^{\ln x} f(x, y) dy \right] dx$$

$$= \int_{1}^{e} \left[\int_{0}^{\ln x} f(x, y) dx \right] dy$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy.$$

$$D = \{(x, y) | 0 \le y \le \ln x, \ 1 \le x \le e\}$$

$$\int_{1}^{e} \left[\int_{0}^{\ln x} f(x, y) dy \right] dx$$
$$= \int_{0}^{\pi} \left[\int_{0}^{\ln x} f(x, y) dx \right] dy$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy.$$

$$D = \{(x, y) | 0 \le y \le \ln x, \ 1 \le x \le e\}$$

$$\int_{1}^{e} \left[\int_{0}^{\ln x} f(x, y) dy \right] dx$$
$$= \int_{0}^{\pi} \left[\int_{0}^{\ln x} f(x, y) dx \right] dy$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy$$
.

$$D = \{(x, y) | 0 \le y \le \ln x, \ 1 \le x \le e\}$$

$$\int_{1}^{e} \left[\int_{0}^{\ln x} f(x, y) dy \right] dx$$
$$= \int_{0}^{e} \left[\int_{0}^{\ln x} f(x, y) dx \right] dy$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy$$
.

$$D = \{(x, y) | 0 \le y \le \ln x, \ 1 \le x \le e\}$$

$$\int_{1}^{e} \left[\int_{0}^{\ln x} f(x, y) dy \right] dx$$
$$= \int_{0}^{e} \left[\int_{0}^{\ln x} f(x, y) dx \right] dy$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy$$
.

$$D = \{(x, y) | 0 \le y \le \ln x, \ 1 \le x \le e\}$$
$$= \{(x, y) | e^y \le x \le e, \ 0 \le y \le 1\}$$

$$\int_{1}^{e} \left[\int_{0}^{\ln x} f(x, y) dy \right] dx$$
$$= \int_{0}^{e} \left[\int_{0}^{\ln x} f(x, y) dx \right] dy$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy.$$

解 1. 因为

$$D = \{(x, y) | 0 \le y \le \ln x, \ 1 \le x \le e\}$$
$$= \{(x, y) | e^y \le x \le e, \ 0 \le y \le 1\}$$

所以

$$\int_{1}^{e} \left[\int_{0}^{\ln x} f(x, y) dy \right] dx$$
$$= \int_{0}^{e} \left[\int_{0}^{e} f(x, y) dx \right] dy$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy$$
.

解 1. 因为

$$D = \{(x, y) | 0 \le y \le \ln x, \ 1 \le x \le e\}$$

= \{(x, y) | e^y \le x \le e, \ 0 \le y \le 1\}

所以

$$\int_{1}^{e} \left[\int_{0}^{\ln x} f(x, y) dy \right] dx$$
$$= \int_{0}^{1} \left[\int_{0}^{e} f(x, y) dx \right] dy$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy.$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy.$$

$$D = \{(x, y) | 0 \le y \le \sqrt{1 - x^2}, -1 \le x \le 1\}$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy$$
.

$$D = \{(x, y) | 0 \le y \le \sqrt{1 - x^2}, -1 \le x \le 1\}$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy.$$

$$D = \{(x, y) | 0 \le y \le \sqrt{1 - x^2}, -1 \le x \le 1\}$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy.$$

$$D = \{(x, y) | 0 \le y \le \sqrt{1 - x^2}, -1 \le x \le 1\}$$

$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^{2}}} f(x,y) dy \right] dx$$

$$= \int_{0}^{1} \left[\int_{0}^{\sqrt{1-x^{2}}} f(x,y) dx \right] dy$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy$$
.

$$D = \{(x, y) | 0 \le y \le \sqrt{1 - x^2}, -1 \le x \le 1\}$$

$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^{2}}} f(x,y) dy \right] dx$$

$$= \int_{0}^{1} \left[\int_{0}^{\sqrt{1-x^{2}}} f(x,y) dx \right] dy$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy$$
.

$$D = \{(x, y) | 0 \le y \le \sqrt{1 - x^2}, -1 \le x \le 1\}$$

$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^{2}}} f(x,y) dy \right] dx$$

$$x = -\sqrt{1-y^{2}}$$

$$= \int_{0}^{1} \left[\int_{0}^{\sqrt{1-x^{2}}} f(x,y) dx \right] dy$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy.$$

$$D = \{(x, y) | 0 \le y \le \sqrt{1 - x^2}, -1 \le x \le 1\}$$

$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^{2}}} f(x,y)dy \right] dx$$

$$x = -\sqrt{1-y^{2}}$$

$$= \int_{0}^{1} \left[\int_{0}^{\sqrt{1-x^{2}}} f(x,y)dx \right] dy$$

$$x = \sqrt{1-y^{2}}$$

$$y = \sqrt{1-x^{2}}$$

$$x = \sqrt{1-y^{2}}$$

$$y = \sqrt{1-y^{2}}$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy.$$

$$D = \{(x, y) | 0 \le y \le \sqrt{1 - x^2}, -1 \le x \le 1\}$$

= \{(x, y) | -\sqrt{1 - y^2} \le x \le \sqrt{1 - y^2}, 0 \le y \le 1\}

$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^{2}}} f(x,y)dy \right] dx$$

$$x = -\sqrt{1-y^{2}}$$

$$= \int_{0}^{1} \left[\int_{0}^{\sqrt{1-x^{2}}} f(x,y)dx \right] dy$$

$$x = \sqrt{1-y^{2}}$$

$$y = \sqrt{1-x^{2}}$$

$$x = \sqrt{1-y^{2}}$$

$$y = \sqrt{1-y^{2}}$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy$$
.

解 2. 因为

$$D = \{(x, y) | 0 \le y \le \sqrt{1 - x^2}, -1 \le x \le 1\}$$

= \{(x, y) | -\sqrt{1 - y^2} \le x \le \sqrt{1 - y^2}, 0 \le y \le 1\}

所以

$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx$$

$$x = -\sqrt{1-y^2}$$

$$= \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} f(x,y) dx dy$$

$$0$$

$$x = \sqrt{1-y^2}$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy.$$

解 2. 因为

$$D = \{(x, y) | 0 \le y \le \sqrt{1 - x^2}, -1 \le x \le 1\}$$

= \{(x, y) | -\sqrt{1 - y^2} \le x \le \sqrt{1 - y^2}, 0 \le y \le 1\}

所以

$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^{2}}} f(x,y) dy \right] dx$$

$$= \int_{0}^{1} \left[\int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} f(x,y) dx \right] dy$$

$$= \int_{0}^{1} \left[\int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} f(x,y) dx \right] dy$$

例 补充积分限 $\int_0^2 \left[\int_{y^2}^{2y} f(x,y) dx \right] dy = \int_*^* \left[\int_*^* f(x,y) dy \right] dx.$

例 补充积分限
$$\int_0^2 \left[\int_{y^2}^{2y} f(x,y) dx \right] dy = \int_*^* \left[\int_*^* f(x,y) dy \right] dx.$$

$$D = \{(x, y) | y^2 \le x \le 2y, \ 0 \le y \le 2\}$$

例 补充积分限 $\int_0^2 \left[\int_{y^2}^{2y} f(x,y) dx \right] dy = \int_*^* \left[\int_*^* f(x,y) dy \right] dx.$

$$D = \{(x, y) | y^2 \le x \le 2y, \ 0 \le y \le 2\}$$

例 补充积分限 $\int_0^2 \left[\int_{y^2}^{2y} f(x,y) dx \right] dy = \int_*^* \left[\int_*^* f(x,y) dy \right] dx.$

$$D = \{(x, y) | y^2 \le x \le 2y, \ 0 \le y \le 2\}$$

例 补充积分限
$$\int_0^2 \left[\int_{y^2}^{2y} f(x,y) dx \right] dy = \int_*^* \left[\int_*^* f(x,y) dy \right] dx.$$

$$D = \{(x, y) | y^2 \le x \le 2y, \ 0 \le y \le 2\}$$

$$\int_0^2 \left[\int_{y^2}^{2y} f(x, y) dx \right] dy$$
$$= \int_0^2 \left[\int_0^{2y} f(x, y) dy \right] dx$$

例 补充积分限
$$\int_0^2 \left[\int_{y^2}^{2y} f(x,y) dx \right] dy = \int_*^* \left[\int_*^* f(x,y) dy \right] dx.$$

$$D = \{(x, y) | y^2 \le x \le 2y, \ 0 \le y \le 2\}$$

$$\int_0^2 \left[\int_{y^2}^{2y} f(x, y) dx \right] dy$$
$$= \int_0^2 \left[\int_0^{2y} f(x, y) dy \right] dx$$

例 补充积分限
$$\int_0^2 \left[\int_{y^2}^{2y} f(x,y) dx \right] dy = \int_*^* \left[\int_*^* f(x,y) dy \right] dx.$$

$$D = \{(x, y) | y^2 \le x \le 2y, \ 0 \le y \le 2\}$$

$$\int_0^2 \left[\int_{y^2}^{2y} f(x, y) dx \right] dy$$
$$= \int_0^2 \left[\int_0^{2y} f(x, y) dy \right] dx$$

例 补充积分限
$$\int_0^2 \left[\int_{y^2}^{2y} f(x,y) dx \right] dy = \int_*^* \left[\int_*^* f(x,y) dy \right] dx.$$

$$D = \{(x, y) | y^2 \le x \le 2y, \ 0 \le y \le 2\}$$

$$\int_0^2 \left[\int_{y^2}^{2y} f(x, y) dx \right] dy$$
$$= \int_0^2 \left[\int_0^{2y} f(x, y) dy \right] dx$$

例 补充积分限
$$\int_0^2 \left[\int_{y^2}^{2y} f(x,y) dx \right] dy = \int_*^* \left[\int_*^* f(x,y) dy \right] dx.$$

$$D = \{(x, y) | y^2 \le x \le 2y, \ 0 \le y \le 2\}$$

$$\int_0^2 \left[\int_{y^2}^{2y} f(x, y) dx \right] dy$$
$$= \int_0^2 \left[\int_0^{2y} f(x, y) dy \right] dx$$

例 补充积分限 $\int_0^2 \left[\int_{y^2}^{2y} f(x,y) dx \right] dy = \int_*^* \left[\int_*^* f(x,y) dy \right] dx.$

$$D = \{(x, y) | y^2 \le x \le 2y, \ 0 \le y \le 2\}$$

$$= \{(x, y) | -x \le y \le \sqrt{y}, \ 0 \le y \le 4\}$$

$$= \{(x,y) | \frac{1}{2}x \le y \le \sqrt{x}, \ 0 \le x \le 4\}$$

$$\int_{0}^{2} \left[\int_{y^{2}}^{2y} f(x, y) dx \right] dy$$
$$= \int_{0}^{2} \left[\int_{y^{2}}^{2y} f(x, y) dy \right] dx$$

例 补充积分限
$$\int_0^2 \left[\int_{y^2}^{2y} f(x,y) dx \right] dy = \int_*^* \left[\int_*^* f(x,y) dy \right] dx.$$

$$D = \{(x, y) | y^2 \le x \le 2y, \ 0 \le y \le 2\}$$
$$= \{(x, y) | \frac{1}{2}x \le y \le \sqrt{x}, \ 0 \le x \le 4\}$$

所以

$$\int_{0}^{2} \left[\int_{y^{2}}^{2y} f(x, y) dx \right] dy$$
$$= \int_{0}^{2} \left[\int_{\frac{1}{2}x}^{\sqrt{x}} f(x, y) dy \right] dx$$

例 补充积分限
$$\int_0^2 \left[\int_{y^2}^{2y} f(x,y) dx \right] dy = \int_*^* \left[\int_*^* f(x,y) dy \right] dx.$$

$$D = \{(x, y) | y^2 \le x \le 2y, \ 0 \le y \le 2\}$$
$$= \{(x, y) | \frac{1}{2} x \le y \le \sqrt{x}, \ 0 \le x \le 4\}$$

所以

$$\int_0^2 \left[\int_{y^2}^{2y} f(x, y) dx \right] dy$$
$$= \int_0^4 \left[\int_{\frac{1}{2}x}^{\sqrt{x}} f(x, y) dy \right] dx$$

We are here now...

- 1. 如何计算二重积分?
- 2. X-型区域上的二重积分
- 3. Y-型区域上的二重积分
- 4. 交换二重积分的积分次序
- 5. 极坐标下计算二重积分
- 6. 二重积分的应用

• 直角坐标 (x, y), 极坐标 (ρ, θ) 的转换:

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases}$$

直角坐标 (x, y), 极坐标 (ρ, θ) 的转换:

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases}$$

注

- 圆周的方程是 $\rho = \rho_0$ 射线的方程是 $\theta = \theta_0$

• 直角坐标 (x, y), 极坐标 (ρ, θ) 的转换:

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases}$$

注

- 圆周的方程是 $\rho = \rho_0$
- 射线的方程是 $\theta = \theta_0$

如下情形,不妨引入极坐标:

● 函数 *f*(*x*, *y*) 在极坐标下, 能够简化

• 点集 D 在极坐标下的表示, 显得简单

直角坐标 (x, y), 极坐标 (ρ, θ) 的转换:

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases}$$

注

- 圆周的方程是 $\rho = \rho_0$
- 射线的方程是 $\theta = \theta_0$

如下情形,不妨引入极坐标:

• 函数 f(x, y) 在极坐标下,能够简化,如

$$f_1(x,y) = e^{-x^2 - y^2}$$
 $f_2(x,y) = \ln(1 + x^2 + y^2)$

$$f_3(x,y) = \sqrt{4a^2 - x^2 - y^2}$$

• 点集 D 在极坐标下的表示, 显得简单

直角坐标 (x, y), 极坐标 (ρ, θ) 的转换:

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases}$$

注

- 圆周的方程是 $\rho = \rho_0$
- 射线的方程是 $\theta = \theta_0$

如下情形,不妨引入极坐标:

• 函数 f(x, y) 在极坐标下,能够简化,如 $f_1(x, y) = e^{-x^2 - y^2} = e^{-\rho^2}$; $f_2(x, y) = \ln(1 + x^2 + y^2)$

$$f_3(x,y) = \sqrt{4a^2 - x^2 - y^2}$$

• 点集 D 在极坐标下的表示,显得简单

直角坐标 (x, y), 极坐标 (ρ, θ) 的转换:

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases}$$

注

• 圆周的方程是 $\rho = \rho_0$ • 射线的方程是 $\theta = \theta_0$

如下情形,不妨引入极坐标:

函数 f(x, y) 在极坐标下,能够简化,如

$$f_1(x,y) = e^{-x^2 - y^2} = e^{-\rho^2}; \quad f_2(x,y) = \ln(1 + x^2 + y^2) = \ln(1 + r^2)$$

$$f_3(x, y) = \sqrt{4\alpha^2 - x^2 - y^2}$$

点集 D 在极坐标下的表示,显得简单

直角坐标 (x, y), 极坐标 (ρ, θ) 的转换:

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases}$$

注

• 圆周的方程是 $\rho = \rho_0$ • 射线的方程是 $\theta = \theta_0$

• 射线的方程是 $\theta = \theta_0$

如下情形,不妨引入极坐标:

函数 f(x, y) 在极坐标下,能够简化,如

$$f_1(x,y) = e^{-x^2 - y^2} = e^{-\rho^2};$$
 $f_2(x,y) = \ln(1+x^2+y^2) = \ln(1+r^2)$
 $f_3(x,y) = \sqrt{4a^2 - x^2 - y^2} = \sqrt{4a^2 - r^2}$

• 点集 D 在极坐标下的表示,显得简单

- 1. D_1 是由圆周 $x^2 + y^2 = 1$ 和 $x^2 + y^2 = 4$ 在第一象限围成的区域
- 2. D_2 是由圆周 $x^2 + y^2 = 1$ 在第一象限所围成的闭区域
- 3. D_3 是由圆周 $x^2 + y^2 = 1$ 所围成的闭区域

- 1. D_1 是由圆周 $x^2 + y^2 = 1$ 和 $x^2 + y^2 = 4$ 在第一象限围成的区域
- 2. D_2 是由圆周 $x^2 + y^2 = 1$ 在第一象限所围成的闭区域
- 3. D_3 是由圆周 $x^2 + y^2 = 1$ 所围成的闭区域

- 1. D_1 是由圆周 $x^2 + y^2 = 1$ 和 $x^2 + y^2 = 4$ 在第一象限围成的区域
- 2. D_2 是由圆周 $x^2 + y^2 = 1$ 在第一象限所围成的闭区域
- 3. D_3 是由圆周 $x^2 + y^2 = 1$ 所围成的闭区域

- 1. D_1 是由圆周 $x^2 + y^2 = 1$ 和 $x^2 + y^2 = 4$ 在第一象限围成的区域
- 2. D_2 是由圆周 $x^2 + y^2 = 1$ 在第一象限所围成的闭区域
- 3. D_3 是由圆周 $x^2 + y^2 = 1$ 所围成的闭区域

- 1. D_1 是由圆周 $x^2 + y^2 = 1$ 和 $x^2 + y^2 = 4$ 在第一象限围成的区域
- 2. D_2 是由圆周 $x^2 + y^2 = 1$ 在第一象限所围成的闭区域
- 3. D_3 是由圆周 $x^2 + y^2 = 1$ 所围成的闭区域

1.
$$D_1 = \{(\rho, \theta) | 1 \le \rho \le 2, 0 \le \theta \le \frac{\pi}{2} \}.$$

- 1. D_1 是由圆周 $x^2 + y^2 = 1$ 和 $x^2 + y^2 = 4$ 在第一象限围成的区域
- 2. D_2 是由圆周 $x^2 + y^2 = 1$ 在第一象限所围成的闭区域
- 3. D_3 是由圆周 $x^2 + y^2 = 1$ 所围成的闭区域

1.
$$D_1 = \{(\rho, \theta) | 1 \le \rho \le 2, 0 \le \theta \le \frac{\pi}{2} \}.$$

- 1. D_1 是由圆周 $x^2 + y^2 = 1$ 和 $x^2 + y^2 = 4$ 在第一象限围成的区域
- 2. D_2 是由圆周 $x^2 + y^2 = 1$ 在第一象限所围成的闭区域
- 3. D_3 是由圆周 $x^2 + y^2 = 1$ 所围成的闭区域

- 1. $D_1 = \{(\rho, \theta) | 1 \le \rho \le 2, 0 \le \theta \le \frac{\pi}{2} \}$.
- 2. $D_2 = \{(\rho, \theta) | 0 \le \rho \le 1, 0 \le \theta \le \frac{\pi}{2} \}.$

- 1. D_1 是由圆周 $x^2 + y^2 = 1$ 和 $x^2 + y^2 = 4$ 在第一象限围成的区域
- 2. D_2 是由圆周 $x^2 + y^2 = 1$ 在第一象限所围成的闭区域
- 3. D_3 是由圆周 $x^2 + y^2 = 1$ 所围成的闭区域

- 1. $D_1 = \{(\rho, \theta) | 1 \le \rho \le 2, 0 \le \theta \le \frac{\pi}{2} \}$.
- 2. $D_2 = \{(\rho, \theta) | 0 \le \rho \le 1, 0 \le \theta \le \frac{\pi}{2} \}.$

- 1. D_1 是由圆周 $x^2 + y^2 = 1$ 和 $x^2 + y^2 = 4$ 在第一象限围成的区域
- 2. D_2 是由圆周 $x^2 + y^2 = 1$ 在第一象限所围成的闭区域
- 3. D_3 是由圆周 $x^2 + y^2 = 1$ 所围成的闭区域

- 1. $D_1 = \{(\rho, \theta) | 1 \le \rho \le 2, 0 \le \theta \le \frac{\pi}{2} \}.$
- 2. $D_2 = \{(\rho, \theta) | 0 \le \rho \le 1, 0 \le \theta \le \frac{\pi}{2} \}.$
- 3. $D_3 = \{(\rho, \theta) | 0 \le \rho \le 1, 0 \le \theta \le 2\pi\}.$

$$(x-a)^2 + y^2 = a^2$$

$$(x-a)^2 + y^2 = a^2 \implies x^2 - 2ax + y^2 = 0$$

$$(x-\alpha)^2 + y^2 = \alpha^2 \quad \Rightarrow \quad x^2 - 2\alpha x + y^2 = 0$$

$$\xrightarrow[y=\rho\sin\theta]{}$$

$$(x-a)^{2} + y^{2} = a^{2} \quad \Rightarrow \quad x^{2} - 2\alpha x + y^{2} = 0$$

$$\xrightarrow{x=\rho\cos\theta} \quad \rho^{2} - 2\alpha\rho\cos\theta = 0$$

$$(x-a)^{2} + y^{2} = a^{2} \implies x^{2} - 2ax + y^{2} = 0$$

$$\xrightarrow{x=\rho\cos\theta} \qquad \rho^{2} - 2a\rho\cos\theta = 0$$

$$\Rightarrow \qquad \rho = 2a\cos\theta$$

$$(x-a)^{2} + y^{2} = a^{2} \implies x^{2} - 2ax + y^{2} = 0$$

$$\xrightarrow{x=\rho\cos\theta} \qquad \rho^{2} - 2a\rho\cos\theta = 0$$

$$\Rightarrow \qquad \rho = 2a\cos\theta$$

解 1. 先把圆弧的方程用极坐标改写:

$$(x-\alpha)^2 + y^2 = \alpha^2 \quad \Rightarrow \quad x^2 - 2\alpha x + y^2 = 0$$

$$\xrightarrow{\frac{x = \rho \cos \theta}{y = \rho \sin \theta}} \quad \rho^2 - 2\alpha \rho \cos \theta = 0$$

$$\Rightarrow \quad \rho = 2\alpha \cos \theta$$

2. 所以

$$D = \{(\rho, \theta) \mid 0 \le \rho \le 2\alpha \cos \theta, \ 0 \le \theta \le \frac{\pi}{2}\}.$$

$$\iint_D f(x, y) d\sigma \frac{x = \rho \cos \theta}{y = \rho \sin \theta}$$

$$\iint_D f(x, y) d\sigma \frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_D f(\rho \cos \theta, \rho \sin \theta)$$

$$\iint_D f(x, y) d\sigma \xrightarrow{\frac{x = \rho \cos \theta}{y = \rho \sin \theta}} \iint_D f(\rho \cos \theta, \rho \sin \theta)$$

$$\iint_D f(x, y) d\sigma \frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_D f(\rho \cos \theta, \rho \sin \theta)$$

$$\iint_D f(x, y) d\sigma \frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_D f(\rho \cos \theta, \rho \sin \theta)$$

$$\iint_D f(x, y) d\sigma \frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_D f(\rho \cos \theta, \rho \sin \theta)$$

$$\iint_D f(x, y) d\sigma \frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_D f(\rho \cos \theta, \rho \sin \theta)$$

$$\iint_D f(x, y) d\sigma \frac{\sum_{x=\rho \cos \theta} f(\rho \cos \theta, \rho \sin \theta)}{\int_D f(\rho \cos \theta, \rho \sin \theta)}$$

$$\iint_D f(x, y) d\sigma \frac{\sum_{x=\rho \cos \theta} f(\rho \cos \theta, \rho \sin \theta)}{\int_D f(\rho \cos \theta, \rho \sin \theta)}$$

$$\iint_D f(x, y) d\sigma \frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_D f(\rho \cos \theta, \rho \sin \theta)$$

$$\iint_D f(x, y) d\sigma \frac{\sum_{x=\rho \cos \theta} f(\rho \cos \theta, \rho \sin \theta)}{\sum_{x=\rho \sin \theta} f(\rho \cos \theta, \rho \sin \theta)}$$

$$\iint_D f(x, y) d\sigma \frac{\sum_{x=\rho \cos \theta} f(\rho \cos \theta, \rho \sin \theta)}{\int_D f(\rho \cos \theta, \rho \sin \theta)}$$

$$\iint_D f(x, y) d\sigma \frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_D f(\rho \cos \theta, \rho \sin \theta)$$

$$\iint_D f(x, y) d\sigma \frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_D f(\rho \cos \theta, \rho \sin \theta)$$

$$\iint_D f(x, y) d\sigma \frac{\sum_{x=\rho \cos \theta} f(\rho \cos \theta, \rho \sin \theta)}{\sum_{x=\rho \sin \theta} f(\rho \cos \theta, \rho \sin \theta)}$$

$$\iint_D f(x, y) d\sigma \frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_D f(\rho \cos \theta, \rho \sin \theta)$$

$$\iint_{D} f(x, y) d\sigma \frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_{D} f(\rho \cos \theta, \rho \sin \theta) r dr d\theta$$

$$\iint_{D} f(x, y) d\sigma \frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_{D} f(\rho \cos \theta, \rho \sin \theta) r dr d\theta$$

$$= \iint_{\rho = 5.5} \int_{\theta = 70^{\circ}} \int_{\theta = 60^{\circ}} \int_{\rho = 4.5} \int_{\rho = 4} \int_{\theta = 40^{\circ}} \int_{\theta = 30^{\circ}} \int_{\theta = 30^{\circ}} \int_{\theta = 2.5} \int_{\theta = 20^{\circ}} \int_{\theta = 1.5} \int_{\rho = 1.5} \int_{\theta = 10^{\circ}} \int_{\theta = 10$$

$$\iint_{D} f(x, y) d\sigma \frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_{D} f(\rho \cos \theta, \rho \sin \theta) r dr d\theta$$

$$= \iint_{D} f(\rho \cos \theta, \rho \sin \theta) r dr d\theta$$

$$\theta = \beta$$

$$\iint_{D} f(x, y) d\sigma \frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_{D} f(\rho \cos \theta, \rho \sin \theta) r dr d\theta$$

$$= \iint_{D} f(\rho \cos \theta, \rho \sin \theta) r dr d\theta$$

$$\theta = \beta$$

$$\iint_{D} f(x, y) d\sigma \frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_{D} f(\rho \cos \theta, \rho \sin \theta) r dr d\theta$$

$$= \iint_{D} f(\rho \cos \theta, \rho \sin \theta) r dr d\theta$$

$$\theta = \beta$$

$$\theta = \beta$$

$$\iint_{D} f(x, y) d\sigma \frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_{D} f(\rho \cos \theta, \rho \sin \theta) r dr d\theta$$

$$= \iint_{D} \int_{D} f(\rho \cos \theta, \rho \sin \theta) r dr d\theta$$

$$\theta = \beta$$

$$\theta = \beta$$

$$\theta = \alpha$$

$$\iint_{D} f(x, y) d\sigma \frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_{D} f(\rho \cos \theta, \rho \sin \theta) r dr d\theta$$

$$= \iint_{D} \left[\int f(\rho \cos \theta, \rho \sin \theta) r dr \right] d\theta$$

$$\theta = \beta$$

$$D = \{(r, \theta) | \varphi_{1}(\theta) \le r \le \varphi_{2}(\theta), \alpha \le \theta \le \beta\}$$

$$\theta = \alpha$$

$$\iint_{D} f(x, y) d\sigma \frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_{D} f(\rho \cos \theta, \rho \sin \theta) r dr d\theta$$

$$= \int \left[\int_{\varphi_{1}(\theta)}^{\varphi_{2}(\theta)} f(\rho \cos \theta, \rho \sin \theta) r dr \right] d\theta$$

$$\theta = \beta$$

$$\rho = \varphi_{2}(\theta)$$

$$D = \{(r, \theta) | \varphi_{1}(\theta) \le r \le \varphi_{2}(\theta), \alpha \le \theta \le \beta\}$$

$$\theta = \alpha$$

$$\iint_{D} f(x, y) d\sigma \frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_{D} f(\rho \cos \theta, \rho \sin \theta) r dr d\theta$$

$$= \int_{\alpha}^{\beta} \left[\int_{\varphi_{1}(\theta)}^{\varphi_{2}(\theta)} f(\rho \cos \theta, \rho \sin \theta) r dr \right] d\theta$$

$$\theta = \beta$$

$$\rho = \varphi_{2}(\theta)$$

$$D = \{(r, \theta) | \varphi_{1}(\theta) \le r \le \varphi_{2}(\theta), \alpha \le \theta \le \beta\}$$

$$\theta = \alpha$$

例 计算 $\iint_D \sqrt{x^2 + y^2} dx dy$,其中区域 D 如右图所示

例 计算 $\iint_D \sqrt{x^2 + y^2} dx dy$,其中区域 D 如右图所示

解 区域 D 用极坐标表示是:

例 计算 $\iint_D \sqrt{x^2 + y^2} dx dy$,其中区域 D 如右图所示

解 区域 D 用极坐标表示是:

$$D = \{(\rho, \theta) | \alpha \le \rho \le b, \ 0 \le \theta \le \pi\}$$

例 计算
$$\iint_D \sqrt{x^2 + y^2} dx dy$$
,其中区域 D 如右图所示

$$D = \{(\rho, \theta) | \alpha \le \rho \le b, \ 0 \le \theta \le \pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$

例 计算
$$\iint_D \sqrt{x^2 + y^2} dx dy$$
,其中区域 D 如右图所示

$$D = \{(\rho, \theta) | \alpha \le \rho \le b, \ 0 \le \theta \le \pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \rho$

例 计算
$$\iint_D \sqrt{x^2 + y^2} dx dy$$
,其中区域 D 如右图所示

$$D = \{(\rho, \theta) | \alpha \le \rho \le b, 0 \le \theta \le \pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \rho \cdot \rho d\rho d\theta$

例 计算
$$\iint_D \sqrt{x^2 + y^2} dx dy$$
,其中区域 D 如右图所示

$$D = \{(\rho, \theta) | \alpha \le \rho \le b, 0 \le \theta \le \pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \rho \cdot \rho d\rho d\theta = \int \left[\int \rho^2 d\rho\right] d\theta$

例 计算
$$\iint_D \sqrt{x^2 + y^2} dx dy$$
,其中区域 D 如右图所示

$$D = \{(\rho, \theta) | \alpha \le \rho \le b, \ 0 \le \theta \le \pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \rho \cdot \rho d\rho d\theta = \int_{a}^{b} \left[\int_{a}^{b} \rho^2 d\rho\right] d\theta$

例 计算
$$\iint_D \sqrt{x^2 + y^2} dx dy$$
,其中区域 D 如右图所示

$$D = \{(\rho, \theta) | \alpha \le \rho \le b, \ 0 \le \theta \le \pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \rho \cdot \rho d\rho d\theta = \int_0^\pi \left[\int_a^b \rho^2 d\rho\right] d\theta$

例 计算
$$\iint_D \sqrt{x^2 + y^2} dx dy$$
,其中区域 D 如右图所示

$$D = \{(\rho, \theta) | \alpha \le \rho \le b, 0 \le \theta \le \pi\}$$

原式
$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta}$$
 $\iint_D \rho \cdot \rho d\rho d\theta = \int_0^{\pi} \left[\int_a^b \rho^2 d\rho \right] d\theta$ $= \pi \left(\right)$

例 计算
$$\iint_D \sqrt{x^2 + y^2} dx dy$$
,其中区域 D 如右图所示

$$D = \{(\rho, \theta) | \alpha \le \rho \le b, 0 \le \theta \le \pi\}$$

原式
$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_D \rho \cdot \rho d\rho d\theta = \int_0^{\pi} \left[\int_a^b \rho^2 d\rho \right] d\theta$$
$$= \pi \left(\frac{1}{3} \rho^3 \Big|_a^b \right)$$

例 计算
$$\iint_D \sqrt{x^2 + y^2} dx dy$$
,其中区域 D 如右图所示

$$D = \{(\rho, \theta) | \alpha \le \rho \le b, 0 \le \theta \le \pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \rho \cdot \rho d\rho d\theta = \int_0^\pi \left[\int_a^b \rho^2 d\rho\right] d\theta$
= $\pi \left(\frac{1}{3}\rho^3\Big|_a^b\right) = \int_0^\pi \left(\frac{1}{3}b^3 - \frac{1}{3}\alpha^3\right) d\theta$

例 计算
$$\iint_D \sqrt{x^2 + y^2} dx dy$$
,其中区域 D 如右图所示

$$D = \{(\rho, \theta) | \alpha \le \rho \le b, 0 \le \theta \le \pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \rho \cdot \rho d\rho d\theta = \int_0^\pi \left[\int_a^b \rho^2 d\rho\right] d\theta$
= $\pi \left(\frac{1}{3}\rho^3\Big|_a^b\right) = \int_0^\pi \left(\frac{1}{3}b^3 - \frac{1}{3}a^3\right) d\theta = \frac{\pi}{3}(b^3 - a^3)$

例 计算 $\iint_D \ln(1+x^2+y^2)dxdy$,其中区域 D 如右图所示

例 计算 $\iint_D \ln(1+x^2+y^2)dxdy$,其中区域 D 如右图所示

 $\rho = 1$

解 区域 D 用极坐标表示是:

例 计算 $\iint_D \ln(1+x^2+y^2)dxdy$,其中区域 D 如右图所示

解 区域 D 用极坐标表示是:

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

例 计算
$$\iint_D \ln(1+x^2+y^2)dxdy$$
,其中区域 D 如右图所示

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$

例 计算
$$\iint_D \ln(1+x^2+y^2)dxdy$$
,其中区域 D 如右图所示

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \ln(1+\rho^2)$

例 计算
$$\iint_D \ln(1+x^2+y^2)dxdy$$
,其中区域 D 如右图所示

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \ln(1+\rho^2)\cdot\rho d\rho d\theta$

例 计算
$$\iint_D \ln(1+x^2+y^2)dxdy$$
,其中区域 D 如右图所示

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \ln(1+\rho^2)\cdot\rho d\rho d\theta$
$$= \int \left[\int \ln(1+\rho^2)\cdot\rho d\rho\right] d\theta$$

例 计算
$$\iint_D \ln(1+x^2+y^2)dxdy$$
,其中区域 D 如右图所示

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

原式
$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta}$$
 $\iint_D \ln(1 + \rho^2) \cdot \rho d\rho d\theta$
$$= \int_0^1 \ln(1 + \rho^2) \cdot \rho d\rho d\theta$$

例 计算
$$\iint_D \ln(1+x^2+y^2)dxdy$$
,其中区域 D 如右图所示

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \ln(1+\rho^2)\cdot\rho d\rho d\theta$
$$= \int_0^{\frac{1}{2}\pi} \left[\int_0^1 \ln(1+\rho^2)\cdot\rho d\rho \right] d\theta$$

例 计算
$$\iint_D \ln(1+x^2+y^2)dxdy$$
,其中区域 D 如右图所示

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

原式
$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_D \ln(1 + \rho^2) \cdot \rho d\rho d\theta$$

$$= \int_0^{\frac{1}{2}\pi} \left[\int_0^1 \ln(1 + \rho^2) \cdot \rho d\rho \right] d\theta \xrightarrow{u = 1 + \rho^2}$$

例 计算
$$\iint_D \ln(1+x^2+y^2)dxdy$$
,其中区域 D 如右图所示

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

所以

原式
$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_D \ln(1 + \rho^2) \cdot \rho d\rho d\theta$$

$$= \int_0^{\frac{1}{2}\pi} \left[\int_0^1 \ln(1 + \rho^2) \cdot \rho d\rho \right] d\theta \xrightarrow{u = 1 + \rho^2}$$

In u

例 计算
$$\iint_D \ln(1+x^2+y^2)dxdy$$
,其中区域 D 如右图所示

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

原式
$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_D \ln(1 + \rho^2) \cdot \rho d\rho d\theta$$

$$= \int_0^{\frac{1}{2}\pi} \left[\int_0^1 \ln(1 + \rho^2) \cdot \rho d\rho \right] d\theta \xrightarrow{u = 1 + \rho^2} \ln u \cdot \frac{1}{2} du$$

例 计算
$$\iint_D \ln(1+x^2+y^2)dxdy$$
,其中区域 D 如右图所示

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \ln(1+\rho^2)\cdot\rho d\rho d\theta$
$$= \int_0^{\frac{1}{2}\pi} \left[\int_0^1 \ln(1+\rho^2)\cdot\rho d\rho \right] d\theta \xrightarrow{u=1+\rho^2} \int_1^2 \ln u \cdot \frac{1}{2} du$$

例 计算
$$\iint_D \ln(1+x^2+y^2)dxdy$$
,其中区域 D 如右图所示

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta} \iint_D \ln(1+\rho^2)\cdot\rho d\rho d\theta$$

$$= \int_0^{\frac{1}{2}\pi} \left[\int_0^1 \ln(1+\rho^2)\cdot\rho d\rho \right] d\theta \xrightarrow{u=1+\rho^2} \int_0^{\frac{1}{2}\pi} \left[\int_1^2 \ln u \cdot \frac{1}{2} du \right] d\theta$$

例 计算
$$\iint_D \ln(1+x^2+y^2)dxdy$$
,其中区域 D 如右图所示

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

所以

原式
$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_{D} \ln(1 + \rho^{2}) \cdot \rho d\rho d\theta$$
$$= \int_{0}^{\frac{1}{2}\pi} \left[\int_{0}^{1} \ln(1 + \rho^{2}) \cdot \rho d\rho \right] d\theta \xrightarrow{u = 1 + \rho^{2}} \int_{0}^{\frac{1}{2}\pi} \left[\int_{1}^{2} \ln u \cdot \frac{1}{2} du \right] d\theta$$

 $=\pi$.

例 计算
$$\iint_D \ln(1+x^2+y^2)dxdy$$
,其中区域 D 如右图所示

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta} \iint_D \ln(1+\rho^2) \cdot \rho d\rho d\theta$$

$$= \int_0^{\frac{1}{2}\pi} \left[\int_0^1 \ln(1+\rho^2) \cdot \rho d\rho \right] d\theta \xrightarrow{u=1+\rho^2} \int_0^{\frac{1}{2}\pi} \left[\int_1^2 \ln u \cdot \frac{1}{2} du \right] d\theta$$

$$= \pi \cdot \frac{1}{2} \left[u \ln u \right]_1^2 - \int_1^2 u d \ln u \right]$$

例 计算
$$\iint_D \ln(1+x^2+y^2)dxdy$$
,其中区域 D 如右图所示

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

所以

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \ln(1+\rho^2)\cdot\rho d\rho d\theta$
$$= \int_0^{\frac{1}{2}\pi} \left[\int_0^1 \ln(1+\rho^2)\cdot\rho d\rho \right] d\theta \xrightarrow{u=1+\rho^2} \int_0^{\frac{1}{2}\pi} \left[\int_1^2 \ln u \cdot \frac{1}{2} du \right] d\theta$$

$$= \pi \cdot \frac{1}{2} \left[u \ln u \right]_1^2 - \int_1^2 u d \ln u = \pi \cdot \frac{1}{2} \left[2 \ln 2 - 1 \right]$$

第 10 章 b:二重积分的计算

例 计算
$$\iint_D \ln(1 + x^2 + y^2) dx dy$$
,其中区域 D 如右图所示

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

所以

原式
$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_{D} \ln(1 + \rho^{2}) \cdot \rho d\rho d\theta$$

$$= \int_{0}^{\frac{1}{2}\pi} \left[\int_{0}^{1} \ln(1 + \rho^{2}) \cdot \rho d\rho \right] d\theta \xrightarrow{u = 1 + \rho^{2}} \int_{0}^{\frac{1}{2}\pi} \left[\int_{1}^{2} \ln u \cdot \frac{1}{2} du \right] d\theta$$

$$= \pi \cdot \frac{1}{2} \left[u \ln u \Big|_{1}^{2} - \int_{1}^{2} u d \ln u \right] = \pi \cdot \frac{1}{2} \left[2 \ln 2 - 1 \right] = \frac{\pi}{4} (2 \ln 2 - 1)$$

● 暨南大寺

解 区域 D 用极坐标表示是:

解 区域 D 用极坐标表示是:

$$D = \{(\rho, \theta) | 0 \le \rho \le \alpha, 0 \le \theta \le 2\pi\}$$

解 区域 D 用极坐标表示是:

$$D = \{(\rho, \theta) | 0 \le \rho \le \alpha, 0 \le \theta \le 2\pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$

解 区域 D 用极坐标表示是:

$$D = \{(\rho, \theta) | 0 \le \rho \le \alpha, 0 \le \theta \le 2\pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D e^{-\rho^2}$

解 区域 D 用极坐标表示是:

$$D = \{(\rho, \theta) | 0 \le \rho \le \alpha, 0 \le \theta \le 2\pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D e^{-\rho^2} \cdot \rho d\rho d\theta$

解 区域 D 用极坐标表示是:

$$D = \{(\rho, \theta) | 0 \le \rho \le \alpha, 0 \le \theta \le 2\pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D e^{-\rho^2}\cdot\rho d\rho d\theta = \int \left[\int e^{-\rho^2}\cdot\rho d\rho\right]d\theta$

解 区域 D 用极坐标表示是:

$$D = \{(\rho, \theta) | 0 \le \rho \le \alpha, 0 \le \theta \le 2\pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D e^{-\rho^2} \cdot \rho d\rho d\theta = \int \left[\int_0^a e^{-\rho^2} \cdot \rho d\rho\right] d\theta$

解 区域 D 用极坐标表示是:

$$D = \{(\rho, \theta) | 0 \le \rho \le \alpha, 0 \le \theta \le 2\pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D e^{-\rho^2} \cdot \rho d\rho d\theta = \int_0^{2\pi} \left[\int_0^\alpha e^{-\rho^2} \cdot \rho d\rho \right] d\theta$

解 区域 D 用极坐标表示是:

$$D = \{(\rho, \theta) | 0 \le \rho \le \alpha, 0 \le \theta \le 2\pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D e^{-\rho^2} \cdot \rho d\rho d\theta = \int_0^{2\pi} \left[\int_0^{\alpha} e^{-\rho^2} \cdot \rho d\rho \right] d\theta$

解 区域 D 用极坐标表示是:

$$D = \{(\rho, \theta) | 0 \le \rho \le \alpha, 0 \le \theta \le 2\pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D e^{-\rho^2} \cdot \rho d\rho d\theta = \int_0^{2\pi} \left[\int_0^{\alpha} e^{-\rho^2} \cdot \rho d\rho \right] d\theta$

$$\frac{u=\rho^2}{2\pi} 2\pi$$

解 区域 D 用极坐标表示是:

$$D = \{(\rho, \theta) | 0 \le \rho \le \alpha, 0 \le \theta \le 2\pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D e^{-\rho^2} \cdot \rho d\rho d\theta = \int_0^{2\pi} \left[\int_0^{\alpha} e^{-\rho^2} \cdot \rho d\rho \right] d\theta$

$$\frac{u=\rho^2}{2\pi} 2\pi \left[e^{-u} \right]$$

解 区域 D 用极坐标表示是:

$$D = \{(\rho, \theta) | 0 \le \rho \le \alpha, 0 \le \theta \le 2\pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D e^{-\rho^2} \cdot \rho d\rho d\theta = \int_0^{2\pi} \left[\int_0^\alpha e^{-\rho^2} \cdot \rho d\rho \right] d\theta$

$$\frac{u=\rho^2}{2\pi} 2\pi \left[e^{-u} \cdot \frac{1}{2} du \right]$$

解 区域 D 用极坐标表示是:

$$D = \{(\rho, \theta) | 0 \le \rho \le \alpha, 0 \le \theta \le 2\pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D e^{-\rho^2} \cdot \rho d\rho d\theta = \int_0^{2\pi} \left[\int_0^{\alpha} e^{-\rho^2} \cdot \rho d\rho \right] d\theta$

$$= \frac{u=\rho^2}{2\pi} 2\pi \left[\int_0^{\alpha^2} e^{-u} \cdot \frac{1}{2} du \right]$$

解 区域 D 用极坐标表示是:

$$D = \{(\rho, \theta) | 0 \le \rho \le \alpha, 0 \le \theta \le 2\pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D e^{-\rho^2} \cdot \rho d\rho d\theta = \int_0^{2\pi} \left[\int_0^a e^{-\rho^2} \cdot \rho d\rho \right] d\theta$

$$= \frac{u=\rho^2}{2\pi} 2\pi \left[\int_0^{a^2} e^{-u} \cdot \frac{1}{2} du \right] = 2\pi \cdot \frac{1}{2} \left[-e^{-u} \Big|_0^{a^2} \right]$$

解 区域 D 用极坐标表示是:

$$D = \{(\rho, \theta) | 0 \le \rho \le \alpha, 0 \le \theta \le 2\pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$

$$\iint_D e^{-\rho^2} \cdot \rho d\rho d\theta = \int_0^{2\pi} \left[\int_0^a e^{-\rho^2} \cdot \rho d\rho \right] d\theta$$

$$\frac{u=\rho^2}{2\pi} 2\pi \left[\int_0^{a^2} e^{-u} \cdot \frac{1}{2} du \right] = 2\pi \cdot \frac{1}{2} \left[-e^{-u} \Big|_0^{a^2} \right] = (1-e^{-a^2})\pi$$

We are here now...

- 1. 如何计算二重积分?
- 2. X-型区域上的二重积分
- 3. Y-型区域上的二重积分
- 4. 交换二重积分的积分次序
- 5. 极坐标下计算二重积分
- 6. 二重积分的应用

$$V = \int\!\!\int_D f(x, y) d\sigma$$

$$V = \int\!\!\int_D f(x, y) d\sigma$$

$$V = \int\!\!\int_D f(x, y) d\sigma$$

$$V = \int\!\!\int_D f(x, y) d\sigma$$

曲顶柱体的体积:
$$V = \iint_D f(x, y) d\sigma = \iint_D f(x, y) dx dy$$

z = f(x, y)

例 求两个底圆半径均为 R 的直交圆柱面所围成的立体体积。

$$V = 8 \iint_D \sqrt{R^2 - x^2} dx dy = 8 \iint_{R^2} \left[\int_{R^2} \left$$

$$\sqrt{R^2-x^2}dy\bigg]dx$$

$$\sqrt{R^2-x^2}dy$$
 dx

$$V = 8 \iint_{D} \sqrt{R^2 - x^2} dx dy = 8 \iint_{D} \left[\int_{D} \left[\int_$$

$$\sqrt{R^2-x^2}dy$$
 dx

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$R$$

$$D = \{(x, y) | x^{2} + y^{2} \le R^{2}\}$$

解

$$\iint_D \sqrt{R^2 - x^2 - y^2} dx dy$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$
 $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$
 $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$
 $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$
 $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$

$$V = 2 \iint_D \sqrt{R^2 - x^2 - y^2} dx dy$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$
 $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$
 $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$
 $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$

$$V = 2 \iint_{D} \sqrt{R^2 - x^2 - y^2} dx dy \frac{x = \rho \cos \theta}{y = \rho \sin \theta}$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$
 $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$
 $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$
 $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$
 $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$

$$V = 2 \iint_{D} \sqrt{R^{2} - x^{2} - y^{2}} dx dy = \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \sqrt{R^{2} - \rho^{2}}$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$
 $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$
 $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$
 $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$

$$V = 2 \iint_D \sqrt{R^2 - x^2 - y^2} dx dy \xrightarrow{\frac{x = \rho \cos \theta}{y = \rho \sin \theta}} 2 \iint_D \sqrt{R^2 - \rho^2} \cdot \rho d\rho d\theta$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$V = 2 \iiint_{D} \sqrt{R^{2} - x^{2} - y^{2}} dx dy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iiint_{D} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$
$$= 2 \iint_{D} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$

 $x^{2} + y^{2} + z^{2} = R^{2}$ $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $y = (x, y)|x^{2} + y^{2} \le R^{2}$ $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$

$$V = 2 \iiint_{D} \sqrt{R^{2} - x^{2} - y^{2}} dx dy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iiint_{D} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$
$$= 2 \iint_{D} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$

 $x^{2} + y^{2} + z^{2} = R^{2}$ $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ R $D = (x, y)|x^{2} + y^{2} \le R^{2}$

$$V = 2 \iiint_{D} \sqrt{R^{2} - x^{2} - y^{2}} dx dy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iiint_{D} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$
$$= 2 \iint_{D} \left[\int_{0}^{R} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho \right] d\theta$$

 $x^{2} + y^{2} + z^{2} = R^{2}$ $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $y = (x, y)|x^{2} + y^{2} \le R^{2}$ $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$

$$V = 2 \iiint_{D} \sqrt{R^{2} - x^{2} - y^{2}} dx dy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iiint_{D} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$
$$= 2 \int_{0}^{2\pi} \left[\int_{0}^{R} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho \right] d\theta$$

 $z^{2} + y^{2} + z^{2} = R^{2}$ $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$

$$V = 2 \iint_{D} \sqrt{R^2 - x^2 - y^2} dx dy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \sqrt{R^2 - \rho^2} \cdot \rho d\rho d\theta$$
$$= 2 \int_{0}^{2\pi} \left[\int_{0}^{R} \sqrt{R^2 - \rho^2} \cdot \rho d\rho \right] d\theta = 4\pi \int_{0}^{R} \sqrt{R^2 - \rho^2} \cdot \rho d\rho$$

 $x^{2} + y^{2} + z^{2} = R^{2}$ $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$

$$V = 2 \iint_{D} \sqrt{R^{2} - x^{2} - y^{2}} dx dy \xrightarrow{\frac{x = \rho \cos \theta}{y = \rho \sin \theta}} 2 \iint_{D} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$
$$= 2 \int_{0}^{2\pi} \left[\int_{0}^{R} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho \right] d\theta = 4\pi \int_{0}^{R} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho$$
$$\frac{u = R^{2} - \rho^{2}}{2\pi} \left[\int_{0}^{R} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho \right] d\theta = 4\pi \int_{0}^{R} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho$$

 $x^{2} + y^{2} + z^{2} = R^{2}$ $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ R $D = (x, y)|x^{2} + y^{2} \le R^{2}$

$$V = 2 \iint_{D} \sqrt{R^{2} - x^{2} - y^{2}} dx dy \xrightarrow{\frac{x = \rho \cos \theta}{y = \rho \sin \theta}} 2 \iint_{D} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$

$$= 2 \int_{0}^{2\pi} \left[\int_{0}^{R} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho \right] d\theta = 4\pi \int_{0}^{R} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho$$

$$\xrightarrow{u = R^{2} - \rho^{2}} 4\pi \int_{0}^{2\pi} u^{\frac{1}{2}} \cdot (-\frac{1}{2}) du$$

 $x^2 + v^2 + z^2 = R^2$ $z = f(x, y) = \sqrt{R^2 - x^2 - y^2}$

列 求半径为
$$R$$
 的球的体积。
$$\begin{array}{c}
R \\
D = \{(x,y)|x^2 + y^2 \le R^2\} \\
\{(\rho,\theta)|0 \le \rho \le R, \ 0 \le \theta \le 2\pi\}
\end{array}$$

$$V = 2 \iint_{D} \sqrt{R^{2} - x^{2} - y^{2}} dx dy \xrightarrow{\frac{x = \rho \cos \theta}{y = \rho \sin \theta}} 2 \iint_{D} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$

$$= 2 \int_{0}^{2\pi} \left[\int_{0}^{R} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho \right] d\theta = 4\pi \int_{0}^{R} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho$$

$$\xrightarrow{u = R^{2} - \rho^{2}} 4\pi \int_{0}^{0} u^{\frac{1}{2}} \cdot (-\frac{1}{2}) du$$

 $z^{2} + y^{2} + z^{2} = R^{2}$ $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$

$$V = 2 \iint_{D} \sqrt{R^{2} - x^{2} - y^{2}} dx dy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$

$$= 2 \int_{0}^{2\pi} \left[\int_{0}^{R} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho \right] d\theta = 4\pi \int_{0}^{R} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho$$

$$\frac{u = R^{2} - \rho^{2}}{2\pi} 4\pi \int_{R^{2}}^{0} u^{\frac{1}{2}} \cdot \left(-\frac{1}{2}\right) du = 2\pi \int_{0}^{R} u^{\frac{1}{2}} du$$

M 求半径为 R 的球的体积。

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$V = 2 \iiint_{D} \sqrt{R^{2} - x^{2} - y^{2}} dx dy \xrightarrow{\frac{x = \rho \cos \theta}{y = \rho \sin \theta}} 2 \iiint_{D} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$

$$= 2 \int_{0}^{2\pi} \left[\int_{0}^{R} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho \right] d\theta = 4\pi \int_{0}^{R} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho$$

$$= \frac{u = R^{2} - \rho^{2}}{2\pi} 4\pi \int_{0}^{0} u^{\frac{1}{2}} \cdot (-\frac{1}{2}) du = 2\pi \int_{0}^{R} u^{\frac{1}{2}} du = 2\pi \cdot \frac{2}{3} u^{\frac{3}{2}} \Big|_{0}^{R}$$

解

$$V = 2 \iint_{D} \sqrt{R^{2} - x^{2} - y^{2}} dx dy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$

$$= 2 \int_{0}^{2\pi} \left[\int_{0}^{R} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho \right] d\theta = 4\pi \int_{0}^{R} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho$$

$$\frac{u = R^{2} - \rho^{2}}{2\pi} 4\pi \int_{0}^{0} u^{\frac{1}{2}} \cdot (-\frac{1}{2}) du = 2\pi \int_{0}^{R} u^{\frac{1}{2}} du = 2\pi \cdot \frac{2}{3} u^{\frac{3}{2}} \Big|_{0}^{R} = \frac{4}{3} \pi R^{3}$$

例 求球体 $x^2 + y^2 + z^2 \le (2\alpha)^2$ 被圆柱 $(x - \alpha)^2 + y^2 = 0$ ($\alpha > 0$) 所截得的立体的体积。

所截得的立体的体积。

所截得的立体的体积。

$$\iint_{D} \sqrt{4a^2 - x^2 - y^2} dx dy$$

$$V = 4 \iint_{\Omega} \sqrt{4\alpha^2 - x^2 - y^2} dx dy$$

$$V = 4 \iint_{D} \sqrt{4a^2 - x^2 - y^2} dx dy \frac{x = \rho \cos \theta}{y = \rho \sin \theta}$$

$$V = 4 \iint_{D} \sqrt{4a^{2} - x^{2} - y^{2}} dxdy = \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 4 \iint_{D} \sqrt{4a^{2} - \rho^{2}}$$

$$V = 4 \iint_{D} \sqrt{4\alpha^{2} - x^{2} - y^{2}} dxdy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 4 \iint_{D} \sqrt{4\alpha^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$

例 求球体 $x^2 + y^2 + z^2 \le (2a)^2$ 被圆柱 $(x-a)^2 + y^2 = 0$ (a > 0) 所載得的立体的体积。

$$V = 4 \iint_{D} \sqrt{4\alpha^{2} - x^{2} - y^{2}} dxdy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 4 \iint_{D} \sqrt{4\alpha^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$
$$= 4 \iint_{D} \sqrt{4\alpha^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$

$$V = 4 \iint_{D} \sqrt{4\alpha^{2} - x^{2} - y^{2}} dxdy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 4 \iint_{D} \sqrt{4\alpha^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$
$$= 4 \iint_{D} \sqrt{4\alpha^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$

$$V = 4 \iint_{D} \sqrt{4\alpha^{2} - x^{2} - y^{2}} dxdy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 4 \iint_{D} \sqrt{4\alpha^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$
$$= 4 \iint_{D} \sqrt{4\alpha^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$

$$V = 4 \iint_{D} \sqrt{4\alpha^{2} - x^{2} - y^{2}} dx dy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 4 \iint_{D} \sqrt{4\alpha^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$
$$= 4 \iint_{D} \sqrt{4\alpha^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$

$$V = 4 \iint_{D} \sqrt{4\alpha^{2} - x^{2} - y^{2}} dxdy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 4 \iint_{D} \sqrt{4\alpha^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$
$$= 4 \int_{0}^{\frac{\pi}{2}} \left[\int_{0}^{2\alpha \cos \theta} \sqrt{4\alpha^{2} - \rho^{2}} \cdot \rho d\rho \right] d\theta$$

$$V = 4 \int_0^{\frac{\pi}{2}} \left[\int_0^{2\alpha \cos \theta} \sqrt{4\alpha^2 - \rho^2} \cdot \rho d\rho \right] d\theta$$

$$V = 4 \int_0^{\frac{\pi}{2}} \left[\int_0^{2\alpha \cos \theta} \sqrt{4\alpha^2 - \rho^2} \cdot \rho d\rho \right] d\theta$$

$$u = 4\alpha^2 - \rho^2$$

$$V = 4 \int_{0}^{\frac{\pi}{2}} \left[\int_{0}^{2a\cos\theta} \sqrt{4a^{2} - \rho^{2}} \cdot \rho d\rho \right] d\theta$$

$$\frac{u = 4a^{2} - \rho^{2}}{2} \cdot 4 \int_{0}^{\frac{\pi}{2}} \left[\int_{4a^{2}}^{4a^{2}\sin^{2}\theta} u^{\frac{1}{2}} \cdot (-\frac{1}{2}) du \right] d\theta$$

$$V = 4 \int_0^{\frac{\pi}{2}} \left[\int_0^{2a\cos\theta} \sqrt{4a^2 - \rho^2} \cdot \rho d\rho \right] d\theta$$

$$\frac{u = 4a^2 - \rho^2}{4} \int_0^{\frac{\pi}{2}} \left[\int_{4a^2}^{4a^2\sin^2\theta} u^{\frac{1}{2}} \cdot (-\frac{1}{2}) du \right] d\theta$$

$$= \frac{4}{3} \int_0^{\frac{\pi}{2}} \left[u^{\frac{3}{2}} \Big|_{4a^2\sin^2\theta}^{4a^2} \right] d\theta$$

$$V = 4 \int_0^{\frac{\pi}{2}} \left[\int_0^{2\alpha \cos \theta} \sqrt{4\alpha^2 - \rho^2} \cdot \rho d\rho \right] d\theta$$

$$\frac{u = 4\alpha^2 - \rho^2}{4} \int_0^{\frac{\pi}{2}} \left[\int_{4\alpha^2}^{4\alpha^2 \sin^2 \theta} u^{\frac{1}{2}} \cdot (-\frac{1}{2}) du \right] d\theta$$

$$= \frac{4}{3} \int_0^{\frac{\pi}{2}} \left[u^{\frac{3}{2}} \Big|_{4\alpha^2 \sin^2 \theta}^{4\alpha^2 \sin^2 \theta} \right] d\theta = \frac{4}{3} \cdot 8\alpha^3 \int_0^{\frac{\pi}{2}} (1 - \sin^3 \theta) d\theta$$

$$V = 4 \int_0^{\frac{\pi}{2}} \left[\int_0^{2a\cos\theta} \sqrt{4a^2 - \rho^2} \cdot \rho d\rho \right] d\theta$$

$$\frac{u = 4a^2 - \rho^2}{3} \int_0^{\frac{\pi}{2}} \left[\int_{4a^2}^{4a^2\sin^2\theta} u^{\frac{1}{2}} \cdot (-\frac{1}{2}) du \right] d\theta$$

$$= \frac{4}{3} \int_0^{\frac{\pi}{2}} \left[u^{\frac{3}{2}} \Big|_{4a^2\sin^2\theta}^{4a^2} \right] d\theta = \frac{4}{3} \cdot 8a^3 \int_0^{\frac{\pi}{2}} (1 - \sin^3\theta) d\theta$$

其中
$$\int_{2}^{\frac{\pi}{2}} \sin^{3}\theta d\theta$$

$$V = 4 \int_0^{\frac{\pi}{2}} \left[\int_0^{2\alpha \cos \theta} \sqrt{4\alpha^2 - \rho^2} \cdot \rho d\rho \right] d\theta$$

$$= \frac{u - 4\alpha^2 - \rho^2}{4} \int_0^{\frac{\pi}{2}} \left[\int_{4\alpha^2}^{4\alpha^2 \sin^2 \theta} u^{\frac{1}{2}} \cdot (-\frac{1}{2}) du \right] d\theta$$

$$= \frac{4}{3} \int_0^{\frac{\pi}{2}} \left[u^{\frac{3}{2}} \Big|_{4\alpha^2 \sin^2 \theta}^{4\alpha^2} \right] d\theta = \frac{4}{3} \cdot 8\alpha^3 \int_0^{\frac{\pi}{2}} (1 - \sin^3 \theta) d\theta$$

$$\int_{0}^{\frac{\pi}{2}} \sin^{3}\theta d\theta = \int_{0}^{\frac{\pi}{2}} \sin^{2}\theta \cdot \sin\theta d\theta$$

$$V = 4 \int_{0}^{\frac{\pi}{2}} \left[\int_{0}^{2a\cos\theta} \sqrt{4a^{2} - \rho^{2}} \cdot \rho d\rho \right] d\theta$$

$$\frac{u = 4a^{2} - \rho^{2}}{4} \int_{0}^{\frac{\pi}{2}} \left[\int_{4a^{2}}^{4a^{2}\sin^{2}\theta} u^{\frac{1}{2}} \cdot (-\frac{1}{2}) du \right] d\theta$$

$$= \frac{4}{3} \int_{0}^{\frac{\pi}{2}} \left[u^{\frac{3}{2}} \Big|_{4a^{2}\sin^{2}\theta}^{4a^{2}} \right] d\theta = \frac{4}{3} \cdot 8a^{3} \int_{0}^{\frac{\pi}{2}} (1 - \sin^{3}\theta) d\theta$$

$$\int_{0}^{\frac{\pi}{2}} \sin^{3}\theta d\theta = \int_{0}^{\frac{\pi}{2}} \sin^{2}\theta \cdot \sin\theta d\theta = -\int_{0}^{\frac{\pi}{2}} (1 - \cos^{2}\theta) d\cos\theta$$

$$V = 4 \int_{0}^{\frac{\pi}{2}} \left[\int_{0}^{2a\cos\theta} \sqrt{4a^{2} - \rho^{2}} \cdot \rho d\rho \right] d\theta$$

$$= \frac{u - 4a^{2} - \rho^{2}}{4} \int_{0}^{\frac{\pi}{2}} \left[\int_{4a^{2}}^{4a^{2}\sin^{2}\theta} u^{\frac{1}{2}} \cdot (-\frac{1}{2}) du \right] d\theta$$

$$= \frac{4}{3} \int_{0}^{\frac{\pi}{2}} \left[u^{\frac{3}{2}} \Big|_{4a^{2}\sin^{2}\theta}^{4a^{2}} \right] d\theta = \frac{4}{3} \cdot 8a^{3} \int_{0}^{\frac{\pi}{2}} (1 - \sin^{3}\theta) d\theta$$

$$= \int_{0}^{\frac{\pi}{2}} \sin^{3}\theta d\theta = \int_{0}^{\frac{\pi}{2}} \sin^{2}\theta \cdot \sin\theta d\theta = -\int_{0}^{\frac{\pi}{2}} (1 - \cos^{2}\theta) d\cos\theta$$

$$\int_0^{\frac{\pi}{2}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{2}} \sin^2 \theta \cdot \sin \theta d\theta = -\int_0^{\frac{\pi}{2}} (1 - \cos^2 \theta) d\theta$$

$$= \frac{u = \cos \theta}{1} - \int_0^0 (1 - u^2) du$$

其中

$$V = 4 \int_{0}^{\frac{\pi}{2}} \left[\int_{0}^{2a\cos\theta} \sqrt{4a^{2} - \rho^{2}} \cdot \rho d\rho \right] d\theta$$

$$= \frac{u = 4a^{2} - \rho^{2}}{4} \int_{0}^{\frac{\pi}{2}} \left[\int_{4a^{2}}^{4a^{2}\sin^{2}\theta} u^{\frac{1}{2}} \cdot (-\frac{1}{2}) du \right] d\theta$$

$$= \frac{4}{3} \int_{0}^{\frac{\pi}{2}} \left[u^{\frac{3}{2}} \Big|_{4a^{2}\sin^{2}\theta}^{4a^{2}} \right] d\theta = \frac{4}{3} \cdot 8a^{3} \int_{0}^{\frac{\pi}{2}} (1 - \sin^{3}\theta) d\theta$$

其中
$$\int_{0}^{\frac{\pi}{2}} \sin^{3}\theta d\theta = \int_{0}^{\frac{\pi}{2}} \sin^{2}\theta \cdot \sin\theta d\theta = -\int_{0}^{\frac{\pi}{2}} (1 - \cos^{2}\theta) d\cos\theta$$

$$\frac{u = \cos\theta}{\theta} - \int_{1}^{0} (1 - u^{2}) du = -(u - \frac{1}{3}u^{3}) \Big|_{1}^{0}$$

$$V = 4 \int_{0}^{\frac{\pi}{2}} \left[\int_{0}^{2a\cos\theta} \sqrt{4a^{2} - \rho^{2}} \cdot \rho d\rho \right] d\theta$$

$$\frac{u = 4a^{2} - \rho^{2}}{4} \int_{0}^{\frac{\pi}{2}} \left[\int_{4a^{2}}^{4a^{2}\sin^{2}\theta} u^{\frac{1}{2}} \cdot (-\frac{1}{2}) du \right] d\theta$$

$$= \frac{4}{3} \int_{0}^{\frac{\pi}{2}} \left[u^{\frac{3}{2}} \Big|_{4a^{2}\sin^{2}\theta}^{4a^{2}} \right] d\theta = \frac{4}{3} \cdot 8a^{3} \int_{0}^{\frac{\pi}{2}} (1 - \sin^{3}\theta) d\theta$$

其中
$$\int_{0}^{\frac{\pi}{2}} \sin^{3}\theta d\theta = \int_{0}^{\frac{\pi}{2}} \sin^{2}\theta \cdot \sin\theta d\theta = -\int_{0}^{\frac{\pi}{2}} (1 - \cos^{2}\theta) d\cos\theta$$

$$\frac{u=\cos\theta}{1} - \int_{1}^{0} (1-u^2) du = -\left(u - \frac{1}{3}u^3\right)\Big|_{1}^{0} = \frac{2}{3}$$

$$V = 4 \int_0^{\frac{\pi}{2}} \left[\int_0^{2\alpha \cos \theta} \sqrt{4\alpha^2 - \rho^2} \cdot \rho d\rho \right] d\theta$$

$$\frac{u=4a^{2}-\rho^{2}}{2} 4 \int_{0}^{\frac{\pi}{2}} \left[\int_{4a^{2}}^{4a^{2}\sin^{2}\theta} u^{\frac{1}{2}} \cdot (-\frac{1}{2}) du \right] d\theta$$

$$= \frac{4}{3} \int_0^{\frac{\pi}{2}} \left[u^{\frac{3}{2}} \Big|_{4\alpha^2 \sin^2 \theta}^{4\alpha^2} \right] d\theta = \frac{4}{3} \cdot 8\alpha^3 \int_0^{\frac{\pi}{2}} (1 - \sin^3 \theta) d\theta$$

其中 $\int_{0}^{\frac{\pi}{2}} \sin^{3}\theta d\theta = \int_{0}^{\frac{\pi}{2}} \sin^{2}\theta \cdot \sin\theta d\theta = -\int_{0}^{\frac{\pi}{2}} (1 - \cos^{2}\theta) d\cos\theta$ $\underline{u = \cos\theta} - \int_{0}^{0} (1 - u^{2}) du = -(u - \frac{1}{3}u^{3}) \Big|_{1}^{0} = \frac{2}{3}$

所以
$$V = \frac{32}{3} \alpha^3 \left[\frac{\pi}{2} - \frac{2}{3} \right]$$

A =

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{Y}(x, y)^{2}} dxdy$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{Y}(x, y)^{2}} dxdy$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{Y}(x, y)^{2}} dxdy$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{Y}(x, y)^{2}} dxdy$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{Y}(x, y)^{2}} dxdy$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{Y}(x, y)^{2}} dxdy$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{Y}(x, y)^{2}} dxdy$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{Y}(x, y)^{2}} dxdy$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{Y}(x, y)^{2}} dxdy$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{Y}(x, y)^{2}} dxdy$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{Y}(x, y)^{2}} dxdy$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{Y}(x, y)^{2}} dxdy$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{Y}(x, y)^{2}} dxdy$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{Y}(x, y)^{2}} dxdy$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{y}(x, y)^{2}} dxdy$$

$$\overrightarrow{p_{0}p_{1}} \times \overrightarrow{p_{0}p_{2}} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ & \overrightarrow{j} & \overrightarrow{k} \end{vmatrix}$$

$$(x, y, f(x, y)) p_{0}$$

$$(x, y + dy, f(x, y + dy))$$

$$(x + dx, y, f(x + dx, y))$$

$$(x + dx, y, f(x, y) + f_{X}(x, y)dx) p_{1}$$

$$(x + dx, y, f(x, y) + f_{X}(x, y)dx) p_{1}$$

$$(x + dx, y + dy, f(x, y) + f_{X}(x, y)dx + f_{Y}(x, y)dy)$$

$$(x + dx, y + dy, f(x, y) + f_{X}(x, y)dx + f_{Y}(x, y)dy)$$

$$(x + dx, y) q_{X}$$

$$(x + dx, y) (x + dx, y + dy)$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{y}(x, y)^{2}} dxdy$$

$$\overrightarrow{p_{0}p_{1}} \times \overrightarrow{p_{0}p_{2}} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ dx & 0 & f_{x}dx \end{vmatrix}$$

$$(x, y, f(x, y)) p_{0} \qquad (x, y + dy, f(x, y + dy))$$

$$(x + dx, y, f(x + dx, y)) \qquad (x + dx, y, f(x, y) + f_{y}(x, y)dy)$$

$$(x + dx, y, f(x, y) + f_{x}(x, y)dx) p_{1} \qquad (x + dx, y + dy, f(x, y) + f_{x}(x, y)dx + f_{y}(x, y)dy)$$

$$(x + dx, y, f(x, y) + f_{x}(x, y)dx + f_{y}(x, y)dy)$$

$$(x + dx, y, f(x, y) + f_{x}(x, y)dx + f_{y}(x, y)dy)$$

$$(x + dx, y, f(x, y) + dy)$$

$$A = \iiint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{y}(x, y)^{2}} dxdy$$

$$\overrightarrow{p_{0}p_{1}} \times \overrightarrow{p_{0}p_{2}} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ dx & 0 & f_{X}dx \\ 0 & dy & f_{Y}dy \end{vmatrix}$$

$$(x, y, f(x, y)) p_{0} \qquad (x, y + dy, f(x, y + dy))$$

$$(x, y + dy, f(x, y) + f_{Y}(x, y)dy)$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{y}(x, y)^{2}} dxdy$$

$$\overrightarrow{p_{0}p_{1}} \times \overrightarrow{p_{0}p_{2}} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ dx & 0 & f_{x}dx \\ 0 & dy & f_{y}dy \end{vmatrix}$$

$$= (-f_{x}dxdy, -f_{y}dxdy, dxdy)$$

$$dA \approx |\overrightarrow{p_{0}p_{1}} \times \overrightarrow{p_{0}p_{2}}|$$

$$(x, y + dy, f(x, y + dy))$$

$$(x + dx, y, f(x + dx, y))$$

$$(x + dx, y, f(x, y) + f_{x}(x, y)dx)$$

$$(x + dx, y + dy, f(x, y) + f_{y}(x, y)dy)$$

$$(x + dx, y + dy, f(x, y) + f_{x}(x, y)dx + f_{y}(x, y)dy)$$

$$\overrightarrow{DPB}$$

$$(x + dx, y)$$

$$(x + dx, y + dy)$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{y}(x, y)^{2}} dxdy$$

$$\overrightarrow{p_{0}p_{1}} \times \overrightarrow{p_{0}p_{2}} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ dx & 0 & f_{x}dx \\ 0 & dy & f_{y}dy \end{vmatrix}$$

$$= (-f_{x}dxdy, -f_{y}dxdy, dxdy)$$

$$= (-f_{x}, -f_{y}, 1)dxdy$$

$$dA \approx |\overrightarrow{p_{0}p_{1}} \times \overrightarrow{p_{0}p_{2}}|$$

$$(x, y + dy, f(x, y + dy))$$

$$(x + dx, y, f(x + dx, y))$$

$$(x + dx, y, f(x, y) + f_{x}(x, y)dx)$$

$$(x + dx, y + dy, f(x, y) + f_{y}(x, y)dy + f_{y}(x, y)dy)$$

$$(x + dx, y + dy, f(x, y) + f_{x}(x, y)dx + f_{y}(x, y)dy)$$

$$\overrightarrow{y}$$

$$(x + dx, y)$$

$$(x + dx, y + dy)$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{y}(x, y)^{2}} dxdy$$

$$\overrightarrow{p_{0}p_{1}} \times \overrightarrow{p_{0}p_{2}} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ dx & 0 & f_{x}dx \\ 0 & dy & f_{y}dy \end{vmatrix}$$

$$= (-f_{x}dxdy, -f_{y}dxdy, dxdy)$$

$$= (-f_{x}, -f_{y}, 1)dxdy$$

$$dA \approx |\overrightarrow{p_{0}p_{1}} \times \overrightarrow{p_{0}p_{2}}| = \sqrt{1 + f_{x}^{2} + f_{y}^{2}}dxdy$$

$$(x, y + dy, f(x, y + dy))$$

$$(x + dx, y, f(x + dx, y))$$

$$(x + dx, y, f(x, y) + f_{x}(x, y)dx)$$

$$(x + dx, y + dy, f(x, y) + f_{x}(x, y)dx + f_{y}(x, y)dy)$$

$$(x + dx, y + dy, f(x, y) + f_{x}(x, y)dx + f_{y}(x, y)dy)$$

$$(x + dx, y + dy, f(x, y) + f_{x}(x, y)dx + f_{y}(x, y)dy)$$

$$(x + dx, y + dy, f(x, y) + f_{x}(x, y)dx + f_{y}(x, y)dy)$$

$$(x + dx, y + dy, f(x, y) + f_{x}(x, y)dx + f_{y}(x, y)dy)$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{Y}(x, y)^{2}} dxdy$$

$$\iint_D \sqrt{1 + f_\chi^2 + f_y^2} dx dy$$

$$A = 2 \iint_D \sqrt{1 + f_\chi^2 + f_y^2} dx dy$$

$$f_{X} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}}$$
$$f_{Y} = \frac{-y}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$A = 2 \iint_D \sqrt{1 + f_x^2 + f_y^2} dx dy$$

$$f_X = \frac{-x}{\sqrt{R^2 - x^2 - y^2}}$$

$$f_Y = \frac{-y}{\sqrt{R^2 - x^2 - y^2}} \implies 1 + f_X^2 + f_Y^2 = \frac{R^2}{R^2 - x^2 - y^2}$$

$$A = 2 \iint_D \sqrt{1 + f_x^2 + f_y^2} dx dy$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$f_{y} = \frac{-y}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$f_x = \frac{-x}{\sqrt{R^2 - x^2 - y^2}}$$

$$f_y = \frac{-y}{\sqrt{R^2 - x^2 - y^2}} \implies 1 + f_x^2 + f_y^2 = \frac{R^2}{R^2 - x^2 - y}$$

$$A = 2 \iiint_{D} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} dxdy = 2 \iiint_{D} \frac{R}{\sqrt{R^{2} - x^{2} - y^{2}}} dxdy$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$f_{y} = \frac{-y}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$\Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$f_x = \frac{-x}{\sqrt{R^2 - x^2 - y^2}}$$

$$f_y = \frac{-y}{\sqrt{R^2 - x^2 - y^2}} \Rightarrow 1 + f_x^2 + f_y^2 = \frac{R^2}{R^2 - x^2 - y}$$

$$A = 2 \iiint_{D} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} dxdy = 2 \iiint_{D} \frac{R}{\sqrt{R^{2} - x^{2} - y^{2}}} dxdy$$

$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta}$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$f_{y} = \frac{-y}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$\Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$f_x = \frac{-x}{\sqrt{R^2 - x^2 - y^2}}$$

$$f_y = \frac{-y}{\sqrt{R^2 - x^2 - y^2}} \implies 1 + f_x^2 + f_y^2 = \frac{R^2}{R^2 - x^2 - y}$$

$$A = 2 \iint_{D} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} dx dy = 2 \iint_{D} \frac{R}{\sqrt{R^{2} - x^{2} - y^{2}}} dx dy$$

$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \frac{R}{\sqrt{R^{2} - \rho^{2}}}$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$f_{y} = \frac{-y}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$f_x = \frac{-x}{\sqrt{R^2 - x^2 - y^2}}$$

$$f_y = \frac{-y}{\sqrt{R^2 - x^2 - y^2}} \Rightarrow 1 + f_x^2 + f_y^2 = \frac{R^2}{R^2 - x^2 - y^2}$$

$$A = 2 \iint_{D} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} dxdy = 2 \iint_{D} \frac{R}{\sqrt{R^{2} - x^{2} - y^{2}}} dxdy$$

$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho d\theta$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$f_{y} = \frac{-y}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$\Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$f_x = \frac{-x}{\sqrt{R^2 - x^2 - y^2}}$$

$$f_y = \frac{-y}{\sqrt{R^2 - x^2 - y^2}} \implies 1 + f_x^2 + f_y^2 = \frac{R^2}{R^2 - x^2 - y}$$

$$A = 2 \iint_{D} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} dx dy = 2 \iint_{D} \frac{R}{\sqrt{R^{2} - x^{2} - y^{2}}} dx dy$$

$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho d\theta = 2 \iint_{D} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho d\theta$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$f_{y} = \frac{-y}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$A = 2 \iint_{D} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} dx dy = 2 \iint_{D} \frac{R}{\sqrt{R^{2} - x^{2} - y^{2}}} dx dy$$

$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho d\theta = 2 \iint_{D} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho d\theta$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$f_{y} = \frac{-y}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$A = 2 \iint_{D} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} dx dy = 2 \iint_{D} \frac{R}{\sqrt{R^{2} - x^{2} - y^{2}}} dx dy$$

$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho d\theta = 2 \int_{D} \left[\int_{0}^{R} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho \right] d\theta$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$f_{y} = \frac{-y}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$\Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$\begin{cases} f_{y} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \\ f_{y} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \end{cases}$$

$$\begin{cases} f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \\ f_{y} = \frac{R^{2}}{\sqrt{R^{2} - x^{2} - y^{2}}} \end{cases}$$

$$\begin{cases} f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \\ f_{y} = \frac{R^{2}}{\sqrt{R^{2} - x^{2} - y^{2}}} \end{cases}$$

$$A = 2 \iint_{D} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} dx dy = 2 \iint_{D} \frac{R}{\sqrt{R^{2} - x^{2} - y^{2}}} dx dy$$

$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho d\theta = 2 \int_{0}^{2\pi} \left[\int_{0}^{R} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho \right] d\theta$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$f_{y} = \frac{-y}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$\Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$\begin{cases} f_{y} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \\ f_{y} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \end{cases}$$

$$\begin{cases} f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \\ f_{y} = \frac{R^{2}}{\sqrt{R^{2} - x^{2} - y^{2}}} \end{cases}$$

$$\begin{cases} f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \\ f_{y} = \frac{R^{2}}{\sqrt{R^{2} - x^{2} - y^{2}}} \end{cases}$$

$$A = 2 \iint_{D} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} dx dy = 2 \iint_{D} \frac{R}{\sqrt{R^{2} - x^{2} - y^{2}}} dx dy$$

$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho d\theta = 2 \int_{0}^{2\pi} \left[\int_{0}^{R} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho \right] d\theta$$

$$= 4\pi R \int_{0}^{R} \frac{\rho}{\sqrt{R^{2} - \rho^{2}}} d\rho$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$f_{y} = \frac{-y}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$\Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$\begin{cases} f_{y} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \\ f_{y} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \end{cases}$$

$$\begin{cases} f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \\ f_{y} = \frac{R^{2}}{\sqrt{R^{2} - x^{2} - y^{2}}} \end{cases}$$

$$\begin{cases} f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \\ f_{y} = \frac{R^{2}}{\sqrt{R^{2} - x^{2} - y^{2}}} \end{cases}$$

$$A = 2 \iint_{D} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} dx dy = 2 \iint_{D} \frac{R}{\sqrt{R^{2} - x^{2} - y^{2}}} dx dy$$

$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho d\theta = 2 \int_{0}^{2\pi} \left[\int_{0}^{R} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho \right] d\theta$$

$$= 4\pi R \int_{0}^{R} \frac{\rho}{\sqrt{R^{2} - \rho^{2}}} d\rho \frac{u = R^{2} - \rho^{2}}{\sqrt{R^{2} - \rho^{2}}}$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$f_{y} = \frac{-y}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x \neq 0 \quad \text{for } x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$(x, y) \mid x^{2} + y^{2} \le R^{2} \}$$

$$\{(\rho, \theta) \mid 0 \le \rho \le 1, 0 \le \theta \le 2\pi\}$$

$$A = 2 \iint_{D} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} dx dy = 2 \iint_{D} \frac{R}{\sqrt{R^{2} - x^{2} - y^{2}}} dx dy$$

$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho d\theta = 2 \int_{0}^{2\pi} \left[\int_{0}^{R} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho \right] d\theta$$

$$= 4\pi R \int_{0}^{R} \frac{\rho}{\sqrt{R^{2} - \rho^{2}}} d\rho \frac{u = R^{2} - \rho^{2}}{\sqrt{R^{2} - \rho^{2}}} 4\pi R \int_{0}^{2\pi} u^{-\frac{1}{2}} \cdot (-\frac{1}{2}) du$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$f_{y} = \frac{-y}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x \neq 0 \quad \text{for } x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$(x, y) \mid x^{2} + y^{2} \le R^{2} \}$$

$$\{(\rho, \theta) \mid 0 \le \rho \le 1, 0 \le \theta \le 2\pi\}$$

$$A = 2 \iint_{D} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} dx dy = 2 \iint_{D} \frac{R}{\sqrt{R^{2} - x^{2} - y^{2}}} dx dy$$

$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho d\theta = 2 \int_{0}^{2\pi} \left[\int_{0}^{R} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho \right] d\theta$$

$$= 4\pi R \int_{0}^{R} \frac{\rho}{\sqrt{R^{2} - \rho^{2}}} d\rho \frac{u = R^{2} - \rho^{2}}{\sqrt{R^{2} - \rho^{2}}} 4\pi R \int_{R^{2}}^{0} u^{-\frac{1}{2}} \cdot (-\frac{1}{2}) du$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$f_{y} = \frac{-y}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

解

$$A = 2 \iint_{D} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} dx dy = 2 \iint_{D} \frac{R}{\sqrt{R^{2} - x^{2} - y^{2}}} dx dy$$

$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho d\theta = 2 \int_{0}^{2\pi} \left[\int_{0}^{R} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho \right] d\theta$$

$$= 4\pi R \int_{0}^{R} \frac{\rho}{\sqrt{R^{2} - \rho^{2}}} d\rho \frac{u = R^{2} - \rho^{2}}{\sqrt{R^{2} - \rho^{2}}} 4\pi R \int_{R^{2}}^{0} u^{-\frac{1}{2}} \cdot (-\frac{1}{2}) du = 4\pi R^{2}$$

● 整角大学