7-Stage Binary Ripple CounterHigh-Performance Silicon-Gate CMOS

The MC74HC4024 is identical in pinout to the standard CMOS MC14024. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

This device consists of 7 master–slave flip–flops. The output of each flip–flop feeds the next and the frequency at each output is half that of the preceding one. The state of the counter advances on the negative going edge of the Clock input. Reset is asynchronous and active–high.

State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and may have to be gated with the Clock of the HC4024 for some designs.

- · Output Drive Capability: 10 LSTTL Loads
- · Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2 to 6 V
- Low Input Current: 1 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- Chip Complexity: 206 FETs or 51.5 Equivalent Gates

LOGIC DIAGRAM

PIN 14 = V_{CC} PIN 7 = GND

PINS 8. 10 AND 13 = NO CONNECTION

MC74HC4024

N SUFFIX PLASTIC PACKAGE CASE 646–06

D SUFFIX SOIC PACKAGE CASE 751A-03

ORDERING INFORMATION

MC74HCXXXXN Plastic MC74HCXXXXD SOIC

FUNCTION TABLE

Clock	Reset	Output State
	L	No Change
	L	Advance to Next State
X	Н	All Outputs are Low

REV 6

10/95

© Motorola, Inc. 1995

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
VCC	DC Supply Voltage (Referenced to GND)	- 0.5 to + 7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	- 1.5 to V _{CC} + 1.5	V
V _{out}	DC Output Voltage (Referenced to GND)	- 0.5 to V _{CC} + 0.5	V
l _{in}	DC Input Current, per Pin	± 20	mA
l _{out}	DC Output Current, per Pin	± 25	mA
Icc	DC Supply Current, V _{CC} and GND Pins	± 50	mA
PD	Power Dissipation in Still Air Plastic DIP† SOIC Package†	750 500	mW
T _{stg}	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP or SOIC Package)	260	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq VCC. Unused inputs must always be tied to an appropriate logic voltage

level (e.g., either GND or V_{CC}). Unused outputs must be left open.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
VCC	DC Supply Voltage (Referenced to GND)			6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)			Vcc	V
TA	Operating Temperature, All Package Types			+ 125	°C
t _r , t _f	Input Rise and Fall Time (Figure 1)	V _{CC} = 2.0 V V _{CC} = 4.5 V V _{CC} = 6.0 V	0 0 0	1000 500 400	ns

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

				Gu	aranteed Li	mit	
Symbol	Parameter	Test Conditions	v _{CC}	– 55 to 25°C	≤ 85 °C	≤ 125°C	Unit
VIH	Minimum High-Level Input Voltage	$V_{\text{out}} = V_{\text{CC}} - 0.1 \text{ V}$ $ I_{\text{out}} \le 20 \mu\text{A}$	2.0 4.5 6.0	1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	٧
V _{IL}	Maximum Low–Level Input Voltage	$V_{Out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$ $ I_{Out} \le 20 \mu\text{A}$	2.0 4.5 6.0	0.3 0.9 1.2	0.3 0.9 1.2	0.3 0.9 1.2	V
VOH	Minimum High-Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \mu\text{A}$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
		$V_{\text{in}} = V_{\text{IH}} \text{ or } V_{\text{IL}} I_{\text{out}} \le 4.0 \text{ mA}$ $ I_{\text{out}} \le 5.2 \text{ mA}$	4.5 6.0	3.98 5.48	3.84 5.34	3.70 5.20	
VOL	Maximum Low–Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \mu\text{A}$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
		$V_{\text{in}} = V_{\text{IH}} \text{ or } V_{\text{IL}} I_{\text{out}} \le 4.0 \text{ mA}$ $ I_{\text{out}} \le 5.2 \text{ mA}$	4.5 6.0	0.26 0.26	0.33 0.33	0.40 0.40	
l _{in}	Maximum Input Leakage Current	$V_{in} = V_{CC}$ or GND	6.0	± 0.1	± 1.0	± 1.0	μΑ
Icc	Maximum Quiescent Supply Current (per Package)	V _{in} = V _{CC} or GND I _{out} = 0 μA	6.0	8	80	160	μА

NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).

^{*} Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

[†]Derating — Plastic DIP: – 10 mW/°C from 65° to 125°C SOIC Package: – 7 mW/°C from 65° to 125°C

For high frequency or heavy load considerations, see Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6 \text{ ns}$)

			Gu	Guaranteed Limit		
Symbol	Parameter	v _{CC}	– 55 to 25°C	≤ 85°C	≤ 125°C	Unit
f _{max}	Maximum Clock Frequency (50% Duty Cycle) (Figures 1 and 4)	2.0 4.5 6.0	5.4 27 32	4.4 22 26	3.6 18 21	MHz
tPLH, tPHL	Maximum Propagation Delay, Clock to Q1* (Figures 1 and 4)	2.0 4.5 6.0	210 42 36	265 53 45	315 63 54	ns
[†] PHL	Maximum Propagation Delay, Reset to Any Q (Figures 2 and 4)	2.0 4.5 6.0	210 42 36	265 53 45	315 63 54	ns
tPLH, tPHL	Maximum Propagation Delay, QN to QN + 1 (Figures 3 and 4)	2.0 4.5 6.0	125 25 21	155 31 26	190 38 32	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 1 and 4)	2.0 4.5 6.0	75 15 13	95 19 16	110 22 19	ns
C _{in}	Maximum Input Capacitance	_	10	10	10	pF

NOTES:

- 1. For propagation delays with loads other than 50 pF, see Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).
- 2. Information on typical parametric values can be found in Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).

 $V_{CC} = 2.0 \text{ V: tp} = [205 + 100(N - 1)] \text{ ns}$ $V_{CC} = 4.5 \text{ V: tp} = [41 + 20(N - 1)] \text{ ns}$

VCC = 6.0 V: tp = [35 + 17(N - 1)] ns

ſ			Typical @ 25°C, V _{CC} = 5.0 V		l
	C_{PD}	Power Dissipation Capacitance (Per Package)*	30	pF	l

^{*} Used to determine the no–load dynamic power consumption: $P_D = C_{PD} \ V_{CC}^2 f + I_{CC} \ V_{CC}$. For load considerations, see Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).

TIMING REQUIREMENTS (Input $t_r = t_f = 6 \text{ ns}$)

			Guaranteed Limit			
Symbol	Parameter	V _{CC}	– 55 to 25°C	≤ 85°C	≤ 125°C	Unit
t _{rec}	Minimum Recovery Time, Reset Inactive to Clock (Figure 2)	2.0 4.5 6.0	100 20 17	125 25 21	150 30 26	ns
t _W	Minimum Pulse Width, Clock (Figure 1)	2.0 4.5 6.0	80 16 14	100 20 17	120 24 20	ns
t _W	Minimum Pulse Width, Reset (Figure 2)	2.0 4.5 6.0	80 16 14	100 20 17	120 24 20	ns
t _r , t _f	Maximum Input Rise and Fall Times (Figure 1)	2.0 4.5 6.0	1000 500 400	1000 500 400	1000 500 400	ns

NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).

^{*} For $T_A = 25^{\circ}C$ and $C_L = 50$ pF, typical propagation delay from Clock to other Q outputs may be calculated with the following equations:

PIN DESCRIPTIONS

INPUTS

Clock (Pin 1)

Negative edge triggering clock input. A High to low transition of this input advances the state of the counter.

Reset (Pin 2)

Active high asynchronous reset. A high level applied to this

input resets the counter to its zero state, thus forcing all Q outputs low.

OUTPUTS

Q1-Q7 (Pins 12, 11, 9, 6, 5, 4, 3)

Active—high outputs. Each QN output divides the Clock input frequency by $2^{\hbox{\scriptsize N}}$.

SWITCHING WAVEFORMS

Figure 1.

Figure 2.

Figure 3.

* Includes all probe and jig capacitance

Figure 4. Test Circuit

TIMING DIAGRAM

EXPANDED LOGIC DIAGRAM

OUTLINE DIMENSIONS

N SUFFIX PLASTIC DIP PACKAGE CASE 646-06

- D

NOTES:

- LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
- DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
- 4. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.715	0.770	18.16	19.56	
В	0.240	0.260	6.10	6.60	
С	0.145	0.185	3.69	4.69	
D	0.015	0.021	0.38	0.53	
F	0.040	0.070	1.02	1.78	
G	0.100	BSC	2.54	BSC	
Н	0.052	0.095	1.32	2.41	
J	0.008	0.015	0.20	0.38	
K	0.115	0.135	2.92	3.43	
L		BSC	7.62 BSC		
M	0°	10°	0° 10		
N	0.015	0.039	0.39	1.01	

D SUFFIX

PLASTIC SOIC PACKAGE CASE 751A-03

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI
 - 2. CONTROLLING DIMENSION: MILLIMETER
- DIMENSIONS A AND B DO NOT INCLUDE

 MOLD PROTPUSION
- MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
 PER SIDE.
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIM	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	8.55	8.75	0.337	0.344	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050	BSC	
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
Р	5.80	6.20	0.228 0.24		
R	0.25	0.50	0.010	0.019	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447

MFAX: RMFAX0@email.sps.mot.com –TOUCHTONE (602) 244–6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

MC74HC4024/D

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.