Tipología y ciclo de vida de los datos: Práctica 2: Limpieza y validación de los datos

Autores: Youness El Guennouni y Mario Gutiérrez Calvo de Mora Mayo 2019

Contents

Introducción	1
Ejemplo de estudio visual con el juego de datos Titanic	2
Procesos de limpieza del juego de datos	2
Procesos de análisis del juego de datos	7
Introducción	
A título de muestra, trabajaremos con el juego de datos "Titanic" que recoge datos sobre el famoso cruce y sobre el que es fácil realizar tareas de clasificación predictiva sobre la variable "Survived".	ero
De momento dejaremos para las siguientes prácticas el estudio de algoritmos predictivos y nos centrarem por ahora en el estudio de las variables de un juego de datos, es decir, haremos un trabajo descriptivo emismo.	
Las actividades que llevaremos a cabo en esta práctica suelen enmarcarse en las fases iniciales de un proyec de minería de datos y consisten en la selección de caraterísticas o variables y la preparación del juego datos para posteriormente ser consumido por un algoritmo.	
Las técnicas que trabajaremos son las siguientes:	
1. Normalización	
2. Discretización	
3. Gestión de valores nulos	
4. Estudio de correlaciones	
5. Reducción de la dimensionalidad 6. Análisis visual del juego de datos	

Ejemplo de estudio visual con el juego de datos Titanic

Procesos de limpieza del juego de datos

Primer contacto con el juego de datos, visualizamos su estructura.

1309 obs. of 13 variables:

```
# Guardamos el juego de datos test y train en un único dataset
test <- read.csv('./data/titanic-test.csv',stringsAsFactors = FALSE)
train <- read.csv('./data/titanic-train.csv', stringsAsFactors = FALSE)

# Unimos los dos juetos de datos en uno solo
totalData <- bind_rows(train,test)
filas=dim(train)[1]

# Verificamos la estructura del juego de datos
str(totalData)</pre>
```

```
: int 1 2 3 4 5 6 7 8 9 1
## $ PassengerId
                                                                          : int 0 1 1 1 0 0 0 0 1 1
## $ Survived
  $ Pclass
                                                                          : int 3 1 3 1 3 3 1 3 3 2
## $ Name
                                                                          : chr
                                                                                "Braund, Mr. Owen H
## $ Sex
                                                                          : chr "male" "female" "fe
## $ Age
                                                                          : num 22 38 26 35 35 NA 5
## $ SibSp
                                                                          : int 1 1 0 1 0 0 0 3 0 1
                                                                          : int 000000120
## $ Parch
## $ Ticket
                                                                          : chr
                                                                                "A/5 21171" "PC 175
## $ Fare
                                                                          : num 7.25 71.28 7.92 53.
  $ Cabin
                                                                          : chr
                                                                                "" "C85" "" "C123"
                                                                                "S" "C" "S" "S" ...
## $ Embarked
                                                                          : chr
   $ PassengerId.Pclass.Name.Sex.Age.SibSp.Parch.Ticket.Fare.Cabin.Embarked.: chr NA NA NA NA ...
```

Trabajamos los atributos con valores vacíos.

'data.frame':

```
# Estadísticas de valores vacíos
colSums(is.na(totalData))
```

```
##
                                                                         PassengerId
##
                                                                                  418
##
                                                                            Survived
##
                                                                                  418
##
                                                                               Pclass
##
                                                                                  418
##
                                                                                 Name
##
                                                                                  418
##
                                                                                  Sex
##
                                                                                  418
##
                                                                                  Age
##
                                                                                  595
##
                                                                                SibSp
```

```
418
##
                                                                         Parch
##
                                                                           418
##
##
                                                                        Ticket
##
                                                                           418
##
                                                                          Fare
##
                                                                           418
##
                                                                         Cabin
##
                                                                           418
##
                                                                      Embarked
##
                                                                           418
## PassengerId.Pclass.Name.Sex.Age.SibSp.Parch.Ticket.Fare.Cabin.Embarked.
colSums(totalData=="")
```

```
##
                                                                       {\tt PassengerId}
##
                                                                                 NA
##
                                                                          Survived
##
                                                                                 NA
##
                                                                            Pclass
##
                                                                                 NA
##
                                                                              Name
##
                                                                                 NA
                                                                               Sex
##
                                                                                NA
##
##
                                                                               Age
##
                                                                                 NA
##
                                                                             SibSp
##
                                                                                 NA
##
                                                                             Parch
##
                                                                                 NA
##
                                                                            Ticket
##
                                                                                 NA
##
                                                                              Fare
##
                                                                                 NA
##
                                                                             Cabin
##
                                                                                 NA
##
                                                                          Embarked
##
## PassengerId.Pclass.Name.Sex.Age.SibSp.Parch.Ticket.Fare.Cabin.Embarked.
```

```
# Tomamos valor "C" para los valores vacíos de la variable "Embarked"
totalData$Embarked[totalData$Embarked==""]="C"

#Para los valores perdidos procedemos con aplicar la distancia de Gower
totalData <- kNN(totalData)</pre>
```

Discretizamos cuando tiene sentido y en función de cada variable.

$\hat{A}_{\dot{c}}$ Para qué variables tendría sentido un proceso de discretización? apply(totalData,2, function(x) length(unique(x)))

##	PassengerId
##	891
##	Survived
##	2
##	Pclass
##	3 Nome
## ##	Name 891
##	Sex
##	2
##	Age
##	88
##	SibSp
##	7
##	Parch
##	7
##	Ticket
##	681
##	Fare
##	248
##	Cabin
##	148
##	Embarked
##	Degenerated Delega News Cov. Are SibSn Devek Ticket Fore Cobin Embanked
## ##	PassengerId.Pclass.Name.Sex.Age.SibSp.Parch.Ticket.Fare.Cabin.Embarked.
##	PassengerId_imp
##	rassengerid_imp
##	Survived_imp
##	2
##	Pclass_imp
##	2
##	Name_imp
##	2
##	Sex_imp
##	2
##	Age_imp
##	2
##	SibSp_imp
## ##	2 Parch_imp
##	7 ar ch_1mp 2
##	Ticket_imp
##	2
##	Fare_imp
##	2
##	Cabin_imp
##	2
##	Embarked_imp
##	2

```
# Discretizamos las variables con pocas clases
cols<-c("Survived", "Pclass", "Sex", "Embarked")
for (i in cols){
   totalData[,i] <- as.factor(totalData[,i])
}

# Después de los cambios, analizamos la nueva estructura del juego de datos
str(totalData)</pre>
```

PassengerId.Pclass.Name.Sex.Age.SibSp.Parch.Ticket.Fare.Cabin.Embarked._imp

##

```
## 'data.frame':
                   1309 obs. of 26 variables:
                                                                               : int 1 2 3 4 5 6 7 8
## $ PassengerId
## $ Survived
                                                                               : Factor w/ 2 levels "
## $ Pclass
                                                                               : Factor w/ 3 levels "
## $ Name
                                                                               : chr "Braund, Mr. Ow
## $ Sex
                                                                               : Factor w/ 2 levels ":
## $ Age
                                                                               : num 22 38 26 35 35
## $ SibSp
                                                                               : int 1 1 0 1 0 0 0 3
## $ Parch
                                                                               : int 0000001
## $ Ticket
                                                                                      "A/5 21171" "PC
## $ Fare
                                                                               : num 7.25 71.28 7.92
## $ Cabin
                                                                                      "" "C85" "" "C1
                                                                               : chr
                                                                               : Factor w/ 3 levels "
## $ Embarked
## $ PassengerId.Pclass.Name.Sex.Age.SibSp.Parch.Ticket.Fare.Cabin.Embarked.
                                                                                      " Mrs. James (E
                                                                               : chr
## $ PassengerId_imp
                                                                               : logi FALSE FALSE FA
## $ Survived_imp
                                                                               : logi
                                                                                      FALSE FALSE FA
## $ Pclass_imp
                                                                               : logi
                                                                                      FALSE FALSE FA
## $ Name_imp
                                                                               : logi FALSE FALSE FA
## $ Sex_imp
                                                                               : logi FALSE FALSE FA
                                                                               : logi FALSE FALSE FA
## $ Age_imp
## $ SibSp imp
                                                                               : logi FALSE FALSE FA
## $ Parch_imp
                                                                               : logi FALSE FALSE FA
## $ Ticket_imp
                                                                                       FALSE FALSE FA
                                                                               : logi
## $ Fare_imp
                                                                                       FALSE FALSE FA
                                                                               : logi
                                                                                       FALSE FALSE FA
## $ Cabin_imp
                                                                               : logi
## $ Embarked_imp
                                                                                       FALSE FALSE FA
                                                                               : logi
## $ PassengerId.Pclass.Name.Sex.Age.SibSp.Parch.Ticket.Fare.Cabin.Embarked._imp: logi
                                                                                       TRUE TRUE TRUE
```

Cuadro de las estimaciónes no robustas y robustas.

```
age_s<-summary(totalData$Age)
pclass_s<-summary(totalData$Pclass)
sibSp_s<-summary(totalData$SibSp)
parch_s<-summary(totalData$Parch)
fare_s<-summary(totalData$Fare)

table_s <- suppressWarnings(rbind(age_s,pclass_s,sibSp_s,parch_s, fare_s))
age_r <- c(sd(totalData$Age), winsor.mean(totalData$Age,trim=0.05), IQR(totalData$Age))
pclass_r <- c(sd(totalData$Pclass), "NA", IQR(totalData$Pclass))
#pclass_r <- c(sd(totalData$Pclass), winsor.mean(totalData$Pclass,trim=0.05), IQR(totalData$Pclass))
sibSp_r <- c(sd(totalData$Pclass), winsor.mean(totalData$Pclass,trim=0.05), IQR(totalData$Pclass))</pre>
```

```
parch_r <- c(sd(totalData$Parch), winsor.mean(totalData$Parch,trim=0.05), IQR(totalData$Parch))
fare_r <- c(sd(totalData$Fare), winsor.mean(totalData$Fare,trim=0.05), IQR(totalData$Fare))

table_r <- rbind(age_r,pclass_r,sibSp_r, parch_r, fare_r)
table_res <- cbind(table_s, table_r)
colnames( table_res) <- c("Min", "1st Qu", "Median", "Mean", "3rd Qu", "Max", "SD", "WINSOR", "IQR")
kable(table_res)</pre>
```

	Min	1st Qu	Median	Mean	3rd Qu	Max	SD	WINSOR
age_s	0.42	11	21	23.5459663865546	32	80	14.3387964848852	23.3907563025
$pclass_s$	216	184	909	216	184	909	0.761315077742776	NA
$sibSp_s$	0	0	1	1.95263559969442	5	8	2.2775770777165	1.93659281894
parch_s	0	0	0	0.898395721925134	2	6	1.00590254596032	0.87394957983
$fare_s$	0	9.5	30	36.896981894576	46.9	512.3292	41.5602225355617	32.8266262032
Detactamos	a los v	alores at	ípicos					

```
#Los valores atípicos SibSp.
boxplot.stats(totalData$SibSp)$out
```

integer(0)

```
#Los valores atípicos Parch.
boxplot.stats(totalData$Parch)$out
```

[1] 6

```
#Los valores atípicos Fare.
boxplot.stats(totalData$Fare)$out
```

```
## [1] 263.0000 146.5208 263.0000 247.5208 146.5208 113.2750 512.3292 ## [8] 153.4625 135.6333 151.5500 247.5208 151.5500 110.8833 108.9000 ## [15] 262.3750 164.8667 134.5000 135.6333 153.4625 133.6500 134.5000 ## [22] 263.0000 135.6333 211.5000 227.5250 120.0000 113.2750 120.0000 ## [29] 263.0000 151.5500 108.9000 221.7792 106.4250 106.4250 110.8833 ## [36] 227.5250 110.8833 153.4625 113.2750 133.6500 512.3292 211.3375 ## [43] 110.8833 227.5250 151.5500 227.5250 211.3375 512.3292 262.3750 ## [50] 120.0000 211.3375 120.0000 164.8667
```

Remplazamos a los valores atípicos

```
#Parch
qnt <- quantile(totalData$Parch, probs=c(.25, .75), na.rm = T)
caps <- quantile(totalData$Parch, probs=c(.05, .95), na.rm = T)
H <- 1.5 * IQR(totalData$Parch, na.rm = T)
totalData$Parch[totalData$Parch < (qnt[1] - H)] <- caps[1]
totalData$Parch[totalData$Parch > (qnt[1] + H)] <- caps[2]

#Fare
qnt <- quantile(totalData$Fare, probs=c(.25, .75), na.rm = T)</pre>
```

```
caps <- quantile(totalData$Fare, probs=c(.05, .95), na.rm = T)
H <- 1.5 * IQR(totalData$Fare, na.rm = T)
totalData$Fare[totalData$Fare < (qnt[1] - H)] <- caps[1]
totalData$Fare[totalData$Fare > (qnt[1] + H)] <- caps[2]

#Los valores atípicos Parch.
boxplot.stats(totalData$Parch)$out</pre>
```

numeric(0)

```
#Los valores atípicos Fare.
boxplot.stats(totalData$Fare)$out
```

numeric(0)

Procesos de análisis del juego de datos

Nos proponemos analizar las relaciones entre las diferentes variables del juego de datos.

```
# Visualizamos la relación entre las variables "sex" y "survival":
ggplot(data=totalData[1:filas,],aes(x=Sex,fill=Survived))+geom_bar()
```



```
# Otro punto de vista. Survival como función de Embarked:
ggplot(data = totalData[1:filas,],aes(x=Embarked,fill=Survived))+geom_bar(position="fill")+ylab("Frecue:
```


Obtenemos una matriz de porcentages de frecuencia.

Vemos, por ejemplo que la probabilidad de sobrebivir si se embarcó en "C" es de un 55,88%

```
t<-table(totalData[1:filas,]$Embarked,totalData[1:filas,]$Survived)
for (i in 1:dim(t)[1]){
    t[i,]<-t[i,]/sum(t[i,])*100
}
t</pre>
```

```
## 0 1
## C 44.11765 55.88235
## Q 61.03896 38.96104
## S 66.30435 33.69565
```

Veamos ahora como en un mismo gráfico de frecuencias podemos trabajar con 3 variables: Embarked, Survived y Pclass.

```
# Now, let's devide the graph of Embarked by Pclass:
ggplot(data = totalData[1:filas,],aes(x=Embarked,fill=Survived))+geom_bar(position="fill")+facet_wrap(~)
```


Comparemos ahora dos gráficos de frecuencias: Survived-SibSp y Survived-Parch

```
# Survivial como función de SibSp y Parch
ggplot(data = totalData[1:filas,],aes(x=SibSp,fill=Survived))+geom_bar()
```


ggplot(data = totalData[1:filas,],aes(x=Parch,fill=Survived))+geom_bar()

Vemos como las forma de estos dos gráficos es similar. Este hecho nos puede indicar presencia de corr

Veamos un ejemplo de construcción de una variable nueva: Tamaño de familia

```
# Construimos un atributo nuevo: family size.
totalData$FamilySize <- totalData$SibSp + totalData$Parch +1;
totalData1<-totalData[1:filas,]
ggplot(data = totalData1[!is.na(totalData[1:filas,]$FamilySize),],aes(x=FamilySize,fill=Survived))+geom</pre>
```


Observamos como familias de entre 2 y 6 miembros tienen más del 50% de posibilidades de supervivencia

Veamos ahora dos gráficos que nos compara los atributos Age y Survived. Observamos como el parámetro position="fill" nos da la proporción acumulada de un atributo dentro de otro

```
# Survival como función de age:
ggplot(data = totalData1[!(is.na(totalData[1:filas,]$Age)),],aes(x=Age,fill=Survived))+geom_histogram(b
```


ggplot(data = totalData1[!is.na(totalData[1:filas,]\$Age),],aes(x=Age,fill=Survived))+geom_histogram(bin

