2020 秋季学期微积分 A(1)期中考试(电子系) 试题及参考解答(A卷,附评分建议)

一、填空题 (13 题, 每题 3 分, 共 13 题, 共 39 分):

1.
$$\exists \exists \lim_{n \to \infty} a_n = 3$$
, $\exists \lim_{n \to \infty} \frac{(1a_1)^2 + (2a_2)^2 + \dots + (na_n)^2}{n^3} = \underline{\qquad}$

2.
$$\lim_{x\to 0} \frac{x^3}{\sin x - \sin(\sin x)} = \underline{\hspace{1cm}}$$

3.
$$\lim_{x\to 0} \left(\frac{1}{\sin^2 x} - \frac{1}{\tan^2 x} \right) = \underline{\qquad}$$

4.
$$\lim_{x \to \infty} [e(1+\frac{1}{x})^{-x}]^x = \frac{1}{x}$$

5.
$$\forall x \to 0 \text{ ft } e^x - (ax^2 + bx + 1) = o(x^2)$$
, $\exists a + b = \underline{}$

6. 在
$$x \rightarrow 0$$
时 $\sqrt{1 + \tan x} - \sqrt{1 - \sin x}$ 是_ 无穷小。

9. 已知函数
$$f$$
 可导且 $f' \neq 0$,设 $y = f(\tan x)$ 定义了反函数 $x = x(y)$, 则 $\frac{dx}{dy} = -$

10. 已知
$$f'(x) = \arctan \sqrt{x}$$
, $y = f(\frac{1+x}{1-x})$, 则 $\frac{dy}{dx}\Big|_{x=\frac{1}{2}}$

11. 由方程
$$x^2 + y^2 + \ln x + \sin y = 1$$
 确定的曲线在(1,0) 点的切线方程为

12. 设
$$f(x) = x(x+1)(x+2)\cdots(x+2020)$$
 ,则 $f'(0) = _____$

13. 已知
$$\varphi(x)$$
 可导且 $\varphi'(1)=1$,又设方程 $y=\varphi(xy)$ 确定了隐函数 $y=y(x)$,且 $y(\frac{1}{2})=2$ 则 $dy(\frac{1}{2})=$ ____。

- 二、**计算证明题** (7 题, 每题 8-9 分, 共 61 分)
- 1. (9分) 讨论函数 $f(x) = \begin{cases} \frac{\ln \cos(x-1)}{1-\sin \frac{\pi}{2}x}, & x \neq 1, \\ 0, & x = 1 \end{cases}$ 在[0,2]区间上的连续性,

如有间断点指出其间断点类型。

2. $(9\, eta)$ 已知数列 $\{a_n\}$ 收敛于A。设曲线 $y=x^{2n}+a_n$ 在点 $(1,1+a_n)$ 处的切线与x 轴的交点为 $(\lambda_n,0)$,求 $\lim \, \lambda_n^n$ 。

3. (9分)设 y = f(x) 严格单调且有二阶导数,其反函数为 x = g(y) 已知 $f(1) = a, f'(1) = b \neq 0, f''(1) = c$ 。求 g''(a)。

4. (9分) 设
$$f(x) = \begin{cases} ax^2 + b \ln x + c, & x \ge 1 \\ e^x, & x < 1 \end{cases}$$
 在 $x = 1$ 点 2 阶可导,求 a, b, c 的值。

5. $(8\,

eta)$ 设 f(x) 于区间[0,1]上连续在(0,1) 内可导, f(0)=1 , f(1)=0 , 且 f(x) 不是线性函数。证明存在 $c\in (0,1)$,使得 f'(c)<-1 。

6. (8分)证明方程 $x^2 - 2\ln(1+x^2) - 1 = 0$ 有且仅有一个正根。

- 7. (9分) 设 $x_0 > 0$, $x_n = \sin x_{n-1}$, $n = 1, 2, 3, \dots$
 - (1) 证明 $\lim_{n\to+\infty} x_n$ 存在,并求其值;
 - (2) 求出极限 $\lim_{n\to +\infty} nx_n^2$ 。 【提示: 可以应用 Stolz 定理】