- 18. Décrivez les étapes pour entrainer un réseau de neurones artificiels (MLP/ANN)
- 19. Dropout en deep learning? Et pourquoi on l'utilise?
- 20. Donner les composants d'un CNN classique, et l'importance de chaque composant ?

Part 2 : Régression linéaire (4 points)

Le tableau suivant décrit l'expérience de 5 étudiants avant l'examen d'un module et la note qu'ils ont obtenu en conséquence du nombre d'heures qu'ils ont passé à étudier et du nombre d'heures qu'ils ont dormi la veille de l'examen. La première colonne contient E1 jusqu'à E5 : qui est l'identifiant de chaque étudiant. La deuxième colonne définit le nombre d'heures total passé par chaque étudiant à étudier le module, la troisième colonne définit le nombre d'heures que chaque étudiant a dormi la veille de l'examen et la dernière colonne définit la note obtenue pour ce module.

Etudiant	Nombre d'heures d'études	Nombre d'heures de sommeil la veille de l'examen	Note
E1	1	8	3
E2	20	8	18
E3	5	5	7
E4	15	3	14
E5	25	8	19

Nous voulons définir la fonction qui exprime la note en fonction du nombre d'heures d'études et du nombre d'heures de sommeil la veille de l'examen en utilisant la régression linéaire : Note = f (Nombres d'heures d'études, Nombre d'heures de sommeil la veille de l'examen)

- 1. À quelles colonnes correspondent x1, x2 et y dans le tableau précédent ?
- 2. Exprimer $h_{\theta}(x^{(i)})$ en fonction des θ_i , des $x^{(i)}$ et $y^{(i)}$, pour le tableau précèdent.
- 3. Si on vous donne deux propositions de $\theta = [\theta_0 = 0, \theta_1 = 1 \theta_2 = 0.5]$ et $\theta = [\theta_0 = 0, \theta_1 = 1 \theta_2 = 1]$ laquelle des deux permet de prédire le mieux la note pour l'étudiant E3 ? Justifier la réponse.
- **4.** Pour le choix de θ = [0, 1, 0.5], exprimer l'erreur J(θ) pour les étudiants sur le tableau en exprimant la formule et les calculs d'une manière claire.
- 5. Pour le choix de α = 0.1 et de θ = [0, 1, 0.5], et la formule de mise à jour :

$$\theta j := \theta j - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Calculer la nouvelle valeur de θ après une mise à jour, détaillez le résultat.

Part 3: Régression logistique (4 points)

Pour adapter le tableau précédent au problème de **régression logistique** nous proposons un tableau où la note est remplacée par la validation : V. Le but est de trouver un modèle de régression logistique qui doit prédire si un étudiant a validé un modèle en utilisant le nombre d'heure qu'il a passé à étudier ce module et le nombre d'heures qu'il a dormi la veille de l'examen. Le tableau est le même en changeant uniquement la dernière colonne par l'utilisation de la règle suivante. Si Note>=10 alors V=1 sinon V=0.

Etudiant	Nombre d'heures	Nombre d'heures de	Note
	d'études	sommeil la veille de	
		l'examen	
E1	1	8	0
E2	20	8	1
E3	5	5	0
E4	15	3	1
E5	25	8	1

- 1. À quelles colonnes correspondent x₁, x₂ et y dans le tableau précédent.
- 2. Un nouvel étudiant a étudié pendant 10 heures et a dormi pendant 6 heures. Selon le modèle, a-t-il validé le module quand θ = **[-10, 6/10, 4/6]**, la règle est la suivante : si σ (...) \geq 0.5 alors l'étudiant a validé sinon il n'a pas validé, écrire la formule et les calculs correspondants.
- 3. Vérifier si pour la même valeur si le modèle prédit bien si un étudiant a validé ou pas dans le cas de l'étudiant à la première ligne et celui à la quatrième ligne. Justifier en appliquant les règles et les calculs correspondants.