

DR. WAHAB DEEP LEARNING

University of Science and Technology Bannu

Deep Learning

Lesson 4

May 14, 2024

Practicable Demo of MLP on Iris Dataset

Learning Objectives

Steps

DOWNLOAD THE IRIS DATASET UCI OR KAGGLE

DR. WAHAB

DEEP LEARNING

SETTING COLAB ENVIRNMENT

Give name and connect the colab

Start Coding

UPLOAD THE IRIS DATASET

READ THE DATASET

os os	0	df.head(15)							
	→		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species	
		0	1	5.1	3.5	1.4	0.2	Iris-setosa	
		1	2	4.9	3.0	1.4	0.2	Iris-setosa	
		2	3	4.7	3.2	1.3	0.2	Iris-setosa	
		3	4	4.6	3.1	1.5	0.2	Iris-setosa	
		4	5	5.0	3.6	1.4	0.2	Iris-setosa	
		5	6	5.4	3.9	1.7	0.4	Iris-setosa	

DISPLAY THE DATA

ONE HOT ENCODING

Setting Train and Test Split using Sklearn

step=10

Setting the Neural Network (MLP)

```
[11] from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test=train_test_split(x,y,test_size=0.3)

from keras.models import Sequential
from keras.layers import Dense
```

```
model=Sequential()
 model.add(Dense(6,activation="sigmoid")) #Hidden Layer
 model.add(Dense(3,activation="softmax"))#uotput Layer
 #model.compile(loss="categorical crossentropy", matrics=["accuracy"])
 model.compile(loss="categorical crossentropy",metrics=["accuracy"])
 model.fit(x train,y train,epochs=25, batch size=5)
→ Epoch 1/25
 Epoch 2/25
 Epoch 3/25
 Epoch 4/25
 Epoch 5/25
 Epoch 6/25
 Epoch 7/25
 Epoch 8/25
```

Printing the Result