# **Training Trainers**

By: Nigel Nelson and Collin Quinn

## **Background Information**

International Journal of Sports Physiology and Performance, 2021, 16, 1522-1531 https://doi.org/10.1123/ijspp.2020-0518
© 2021 Human Kinetics, Inc.



#### Injury Prediction in Competitive Runners With Machine Learning

S. Sofie Lövdal, Ruud J.R. Den Hartigh, and George Azzopardi



#### The Data Set

- Training logs for team of 74 high-level medium/long distance runners
- Collected over 7 years
- 42,766 entries, 583 injuries
- Two data sets: weekly logs and daily logs:



## The Day Approach

- Greater predictive ability than week approach
- 73 features in total: 10
  features for each day,
  ahtleteID, date, and Injury
  flag to indicate if injury
  occured

| No | Day feature                       | Range       |
|----|-----------------------------------|-------------|
| 1  | Number of sessions                | [0, 2]      |
| 2  | Total distance                    | [0.0, 25.0] |
| 3  | Sum of distance in Z3-Z4          | [0.0, 15.0] |
| 4  | Sum of distance in Z5, T1, and T2 | [0.0, 10.0] |
| 5  | Distance sprinting                | [0.0, 1.5]  |
| 6  | Number of strength sessions       | [0, 1]      |
| 7  | Hours alternative training        | [0.0, 3.0]  |
| 8  | Perceived exertion                | [0.0, 1.0]  |
| 9  | Perceived training success        | [0.0, 1.0]  |
| 10 | Perceived recovery                | [0.0, 1.0]  |



### **Research Questions**

- What features are most predictive of injuries in long distance runners?
- Can a injury prediction model be made accurate enough to provide meaningful insight on training protocols?

## Hypothesis

- The greater the perceived exertion an athlete reports, the higher the probability that later training sessions result in injury.

## Experimental Design: Pre-processing

- No empty values in data set
- Perceived independent features normalized for each athlete
- Dropped non-useful columns (i.e. Athlete ID)
- Renamed feature names that used jargon:
  - Km Z3-4 : km low-intensity
  - Km Z5-T1-T2 : km medium-intensity
  - Km sprinting : km high-intensity
- Float64 -> Categorical (# of sessions, # of strength training sessions)

| Data | columns (total 73 columns):   |                |          |
|------|-------------------------------|----------------|----------|
| #    | Column                        | Non-Null Count | Dtype    |
|      |                               |                |          |
| 0    | nr. sessions                  | 42766 non-null | category |
| 1    | total km                      | 42766 non-null | float64  |
| 2    | km low-intensity              | 42766 non-null | float64  |
| 3    | km medium-intensity           | 42766 non-null | float64  |
| 4    | km high-intensity             | 42766 non-null | float64  |
| 5    | strength training             | 42766 non-null | category |
| 6    | hours alternative             | 42766 non-null | float64  |
| 7    | perceived exertion            | 42766 non-null | float64  |
| 8    | perceived trainingSuccess     | 42766 non-null | float64  |
| 9    | perceived recovery            | 42766 non-null | float64  |
| 10   | nr. sessions.1                | 42766 non-null | category |
| 11   | total km.1                    | 42766 non-null | float64  |
| 12   | km low-intensity.1            | 42766 non-null | float64  |
| 13   | km medium-intensity.1         | 42766 non-null | float64  |
| 14   | km high-intensity.1           | 42766 non-null | float64  |
| 15   | strength training.1           | 42766 non-null | category |
| 16   | hours alternative.1           | 42766 non-null | float64  |
| 17   | perceived exertion.1          | 42766 non-null | float64  |
| 18   | perceived trainingSuccess.1   | 42766 non-null | float64  |
| 19   | perceived recovery.1          | 42766 non-null | float64  |
|      |                               |                |          |
| 70   | Athlete ID                    | 42766 non-null | int64    |
| 71   | injury                        | 42766 non-null | category |
| 72   | Date                          | 42766 non-null | int64    |
| dtyp | es: category(15), float64(56) | , int64(2)     |          |

## Experimental Design- Before Model Creation

- Use Statistical Tests to evaluate features
  - Kruskal Wallis used on continuous features
  - Chi Square Contingency on categorical features
- Use Data visualization to understand features
  - Box plots used on continuous features
  - Heat maps used on categorical features

= Categorical Feature

| [0, 2]<br>[0.0, 25.0]                  |
|----------------------------------------|
| [0.0, 25.0]                            |
|                                        |
| C1000100000000000000000000000000000000 |
| [0.0, 15.0]                            |
| [0.0, 10.0]                            |
| [0.0, 1.5]                             |
| [0, 1]                                 |
| [0.0, 3.0]                             |
| [0.0, 1.0]                             |
| [0.0, 1.0]                             |
| [0.0, 1.0]                             |
|                                        |

## **Experimental Design: Model Creation**

- Classification Problem
- Numerous types of classification models received 98% accuracy
  - Why did this happen!? (42,766 features 583 injuries) / 42,766 features = 0.98636768
- As a result, created a balanced (injury/non-injury) training/testing set
  - Elected to choose Random Forest
  - Used Synthetic Minority Oversampling Technique (SMOTE)

#### Results: Most Predictive Features

- Most Statistically significant Features:
  - 1. Perceived exertion
  - 2. Perceived training success
  - 3. Perceived recovery
- Most Significant Features from RF model:
  - 1. Perceived exertion
  - 2. Perceived training success
  - 3. Perceived recovery
- Interesting Observations:
  - Most recent day logs not always most predictive:
    - Perceived exertion, strength training, etc.



- Consistent throughout day logs
- Unsurprising results, days with higher perceived exertion had higher incidents of injuries

|                    | perceived exertion | injury   |
|--------------------|--------------------|----------|
| perceived exertion | 1.000000           | 0.039748 |
| injury             | 0.039748           | 1.000000 |

Perceived Exertion on Days Leading to Predicted Injury



- Consistent throughout day logs
- High number of outliers
- Surprising results, days with higher perceived recovery had higher incidents of injuries

Perceived Recovery on Days Leading to Predicted Injury



- Consistent throughout day logs
- Surprising results, days with higher perceived success had higher incidents of injuries

Perceived Training Success on Days Leading to Predicted Injury



- Consistent throughout day logs
- Plots don't tell whole story:

day\_data['strength training'].value\_counts()

0.8s

0.0 378711.0 4819

2.0 76



# Strength Training Sessions on Days Leading to Predicted Injury



- Consistent throughout day logs
- Plots don't tell whole story:

```
day_data['nr. sessions'].value_counts()

✓ 0.1s

1.0 27103

0.0 11476

2.0 4187

Name: nr. sessions, dtype: int64
```



- Consistent throughout day logs
- All outliers
- Surprisingly, high kmran = no injuries

Medium-Intensity Km. Ran on Days Leading to Predicted Injury



- Consistent throughout day logs
- Many outliers
- No obvious separation besides outliers for non-injuries



#### **Model Results**

- Random Forest Model Top 3 Most Predictive:
  - Perceived training Success
  - Perceived exertion
  - Perceived recovery
- Metrics for RF Model w/ Feature Selection:
  - AUC Score: .83
  - F1 Score: .88





#### **Discussion: Model**

- Hypothesis and research questions are supported by our model
- Future Uses
- Different Imbalanced Classification
   Techniques (i.e. bagging)



## Discussion: Hypothesis

- The greater the perceived exertion an athlete reports, the higher the probability that later training sessions result in injury.
- Perceived exertion = lowest
   p-value of all features
- Positive Pearson correlation



|                    | perceived exertion | injury   |
|--------------------|--------------------|----------|
| perceived exertion | 1.000000           | 0.039748 |
| injury             | 0.039748           | 1.000000 |

Hypothesis: Accepted!

#### **Discussion: Features**

- Research Question: What features are most predictive of injuries in long distance runners?
- Answer: Perceived exertion, perceived training success, perceived recovery
  - Many athletic pursuits can incorporate these

- Unbalanced data set resulted in difficult EDA
- Team aspect likely skewed data

How would these features hold up for other teams and/or sports?

## Questions?



## Source(s):

 Lovdal, S., den Hartigh, R., & Azzopardi, G. (2021). Injury Prediction in Competitive Runners with Machine Learning. International journal of sports physiology and performance, 16(10), 1522–1531. https://doi.org/10.1123/ijspp.2020-0518