ADRIANA J. LADERA

University of South Florida, Tampa, FL 33620

(727)-580-1162 ♦ adrianalader@usf.edu ♦ Orcid ID: 0000-0002-5538-5011

RESEARCH INTERESTS

numerical methods, high-performance scientific computing, modeling, simulation, graphics, algorithms

EDUCATION

University of South Florida, Tampa, FL

Bachelor of Science, Computer Science; Minor in Physics, GPA: 3.69 / 4.00

Expected May 2022

RESEARCH EXPERIENCE

University of South Florida, Department of Physics

Undergraduate Research Assistant, February 2020 - present

Revealing Hidden Dynamics of $Ba(Ti_{1-x}, Zr_x)O_3$ with Machine Learning (Principal Investigator: Inna Ponomareva, Ph.D.)

- Construct datasets of simulations of Ba(Ti_{1-x}, Zr_x)O₃ (barium zirconate titanate, BZT) polarization domain structures at temperatures up to 450 Kelvin and zirconium concentrations up to 25%, with datasets separated by concentration
- Develop an unsupervised machine learning workflow that partitions the datasets using k-means clustering and plots the cluster labels as a function of temperature to show phase transitions (i.e. transition between cluster labels)
- Visualize each of the clusters by choosing a simulation from each cluster to represent its dipole dynamics
- Compare cluster-predicted phase transitions with simulation phase transitions, in which discrepancies may require more physical investigation

Undergraduate Research Assistant, May – August 2020

 $Ba(Ti_{1-x}, Zr_x)O_3$ Relaxors in the Gigahertz Frequency Range (Principal Investigator: Inna Ponomareva, Ph.D.)

- Learned how to use Molecular Dynamics simulations and properties of relaxor ferroelectrics
- Ran and processed simulations of BZT at temperatures up to 450 Kelvin, zirconium concentrations up to 25%, and frequencies up to 5.0 GHz to demonstrate the frequency dependence of phase transition temperature and remnant polarization

Undergraduate Research Assistant, February - May 2019

Optical Characterization of Transition Metal Dichalcogenides: MoS₂ (Principal Investigator: Dmitri Voronine, Ph.D.)

- Received training for optical and atomic force microscopy and conducted optical characterizations of MoS₂
- Learned to read scientific literature, scientific communication, and presentation skills

Massachusetts Institute of Technology, Department of Chemical Engineering

MIT Summer Research Program (MSRP) Intern, June – August 2021, Fall MSRP Intern, October – November 2021 An Active Learning Approach for Exploring Transition Metal Complexes (Principal Investigator: Heather Kulik, Ph.D.)

- Calculated energy properties for each transition metal complex (TMC) using 23 different density functional approximations for over 1000 TMCs
- For each functional, trained a separate ANN on the set of TAEs produced by that functional
- Developed ANN active learning scheme that searches for TMCs which produce large functional disagreement

University of South Florida, Department of Computer Science and Engineering

Undergraduate Research Assistant, August – November 2019

Functional Object-Oriented Networks (Principal Investigator: Yu Sun, Ph.D.)

- Collected object and state data (i.e. "tomato" and "knife" with states "chopped", "dirty") for a functional object-oriented network composed of subgraphs of recipes, with each subgraph containing nodes of objects and states
- Practiced writing machine learning models using Tensorflow and Keras software

Pennsylvania State University, Department of Material Science and Engineering

REU Intern, May - August 2019, Visiting Student Researcher, August - December 2019

Phase-Field Simulations: Phase-Diagram of K_{0.5}Na_{0.5}NbO₃ Thin Films (Principal Investigator: Long-Qing Chen, Ph.D.)

- Created and visualized phase-field simulations of K_{0.5}Na_{0.5}NbO₃ (potassium sodium niobate, KNN) thin films by varying lateral tensile and compressive strain, temperature, and film size
- Arranged simulations to establish anisotropic strain phase diagrams of KNN at different temperatures and film sizes
- After REU, continued simulation work with Penn State in collaboration with the Leibniz-Institut für Kristallzüchtung group to demonstrate great agreement in computational and experimental results of KNN thin film properties

PUBLICATIONS

Duan, C., **Ladera**, **A**., and Kulik, H.J. (2021). Why do density functionals disagree the most: An active learning approach for screening experimental crystal structures. In preparation.

Zhou, M.J., Wang, B., **Ladera**, **A.**, Bogula, L., Liu, H.X., Chen, L.Q., and Nan, C.W. (2021). Phase diagrams, superdomains, and superdomain walls in $(K_x, Na_{1-x}Nb)O_3$ epitaxial thin films. *Acta Materialia*, 215, 117038 (https://doi.org/10.1016/j.actamat.2021.117038).

Wang, B., Bogula, L., **Ladera, A.,** Wang, J.J., Schmidbauer, M., Schwarzkopf, J., and Chen, L.Q. (2021). Phase stability and three-dimensional structures of polydomains in orthorhombic ferroelectric thin films under anisotropic misfit strains. In review.

Lisenkov, S., **Ladera, A.**, and Ponomareva, I. (2020). Ba(Ti_{1-x}, Zr_x)O₃ relaxors: Dynamic ferroelectrics in the gigahertz frequency range. *Phys. Rev. B*, 102, 224109 (https://doi.org/10.1103/PhysRevB.102.224109).

Schmidbauer, M., Bogula, L., Wang, B., Hanke, M., von Helden, L., **Ladera, A.,** Wang, J.J., Chen, L.Q., and Schwarzkopf, J. (2020). Temperature Dependence of Three-Dimensional Domain Wall Arrangement in Ferroelectric K_{0.9}Na_{0.1}NbO₃ Epitaxial Thin Films. *J. Appl. Phys.* 128 (https://doi.org/10.1063/5.0029167).

PRESENTATIONS

Schmidbauer, M., Bogula, L., Wang, B., Hanke, M., von Helden, L., **Ladera, A.,** Wang, J.J., Chen, L.Q., and Schwarzkopf, J. Ferroelectric Phase Transitions in Strained K0.9Na0.1NbO3 Epitaxial Films Studied by in situ X-Ray Diffraction and Three-Dimensional Phase-Field Simulations. Oral presentation session presented at: *International Conference on Advances in Functional Materials (AAAFM) at UCLA*; 2021 August 18-20; University of California, Los Angeles, CA.

Ladera, A., Duan, C., Vennelakanti, V., and Kulik, H.J. Exploring Transition Metal Complex Space with Computation and Artificial Neural Networks. Poster session presented at: *36th Annual MIT Summer Research Program Research Forum*; 2021 August 5; Massachusetts Institute of Technology, Cambridge MA.

Ladera, A. and Ponomareva, I. Investigating the Structure-Property Relationship of the Ba(Ti_{1-x}, Zr_x)O₃ Relaxor Ferroelectric via Machine Learning. Poster session presented at: 2021 USF Undergraduate Research Conference; 2021 April 1; University of South Florida, Tampa FL.

Ladera, A., Wang, B., Wang, J.J., and Chen, L.Q. Phase-Field Simulations: Anisotropic Misfit Strain Phase Diagram of $K_{0.5}Na_{0.5}NbO3$ Thin Films. Poster session presented at: 2019 Penn State REU Symposium; 2019 August 1; Penn State University, University Park PA.

HONORS AND AWARDS

USF Directors Award August 2018 – present

\$3,500 awarded per semester for four years, University of South Florida

Florida Academic Scholarship

August 2018 - present

Full tuition scholarship for four years (\$25,517), Bright Futures

Dean's List Spring 2019

3.9 GPA for the semester, University of South Florida

TEACHING AND WORK EXPERIENCE

University of South Florida, Department of Computer Science and Engineering

Peer Leader, January 2021 – present

- Expand the learning experience for Program Design (COP 3514) students by creating lesson plans for recitation sessions, held twice a week for one hour
- Demonstrate live programming examples, discuss course material, and give guidance for internships, research experiences, and the computer science major
- Provide outreach and individualized course guidance to students in Program Design, especially women and nonbinary students, to promote a retention of underrepresented gender groups in STEM

University of South Florida, Department of Computer Science and Engineering

Undergraduate Teaching Assistant, August 2020 – present

- Aid in-class lectures and grade weekly programming projects, quizzes, and exams for Program Design
- Guide students in understanding class concepts and answer programming project questions through email and office hours

University of South Florida, Department of Physics

Research Project Mentor, December 2020 – December 2021

- Trained a now first year college student to learn aspects of machine-learning relaxor research project with Dr. Inna Ponomareva
- Outlined biweekly project plans and demonstrated data visualization tasks

SOFWERX, Tampa

Cybersecurity Intern, August – December 2020

- Collected samples of various frequencies of wireless communication signals to train a machine learning model
- Employed machine learning techniques to identify signals, detected using a software-defined radio
- Developed fully automated devices which classify and localize signals at given frequencies for the user to gain better understanding of the device-mapping around them

SKILLS

Programming Languages and Software: Python, C, C++, Java, MATLAB, Processing, CSS, HTML, molSimplify, TensorFlow, Keras, Sci-Kit Learn

Computational: machine learning workflows, unsupervised machine learning clustering algorithms, data analysis and visualization, phase-field simulations, calculating with density functional approximations, efficient algorithm design, 2D polygon triangulation algorithms

Non-Computational: optical microscopy, atomic force microscopy

Languages: English (native), Ilocano (native), French (fluent)

LEADERSHIP AND SERVICE

University of South Florida, Women in Computer Science and Engineering (WICSE)

Vice President and WICSE Mentor, November 2020 - present

- Co-host weekly general body meetings with WICSE President
- Mentor women students with career, internship, research, and major study advice
- Advise WICSE participation in USF Engineering Expo and the Grace Hopper Conference

DoSomething.org Online Volunteering

Campaign Volunteer, April 2020 – present

• Raise the impact factor and awareness of racial justice, environment, LGBTQ+ and gender rights through online volunteering campaigns, social media, and guided discussion

University of South Florida, National Academy of Engineering Grand Challenges Scholars Program

CubeSat Program Founding Member, September 2019 – present

- Collaborate with fellow engineering students to deploy a satellite as a secondary payload to a launch vehicle
- Research funding and assemble the telecommunications components of the satellite as the Telecommunications Lead
- Develop a 3D printed model of proposed satellite design that can hold necessary components such as transceivers, solar panels and other forms of power