Project Goals:

100% software compatible with the 65816. Bus and bus cycle similar but not exact. Easy development and modification.

Development Language

The core has been developed in the Verilog language exclusively.

Core Optimization

It should be noted that this core is not optimized for a small footprint. The core is fairly large being around 5000 6-LUTs. (about 8,000 Logic cells).

Top Module

An MPU module encapsulates the '816 core and provides additional functionality for the system, including system chip selects and counters.

FT816MPU.v

FT816.v – 65816 compatible core

Clocks

The core generates low speed clocks for interfacing to peripherals. Generated clocks have two non-overlapping phases. The clock rates are /4 and 1/32 of the core's clock rate.

Core Parameters

pIOAddress – This parameter determines the address range at which control registers are located. The default is \$F000.

pZPAddress – This parameter determines where in memory the count value registers are located. The default is \$0010.

Module Ports

	In/Out		Active
CLK	I	Input clock 32 MHz	
PHI11	0	1 MHz Output phase 1 (non-overlapping)	
PHI12	0	1 MHz Output phase 2 (non-overlapping)	
PHI81	0	8 MHz Output phase 1 (non-overlapping)	
PHI82	0	8 MHz Output phase 2 (non-overlapping)	
PHI3 ¹	0	32 MHz	
RST	ı	reset	Low
IRQ	ı		Low
NMI	I		Low
ABORTB	I	abort	Low
E	0	emulation status	
BE	ı	bus enable (tri-state the output signals)	
MLB	0	memory lock	
MX	0	mode select (M/X bits of status reg)	
CS0	0	Chip select	Low
CS1	0	Chip select	Low
CS2	0	Chip select	Low
CS3	0	Chip select	Low
CS4	0	Chip select	Low
CS5	0	Chip select	Low
CS6	0	Chip Select Other	Low
VDA	0	valid data address	
VPB	0	vector pull	
VPA	0	valid program address	
RW	0	read/write	
RDY	I	bus ready	
A0-A23	0	Address bus	
D0-D7	I/O	data bus	
CT0	I	Counter pulse	
CT1	l	counter pulse	
CT2	I	Counter pulse	

Programmable Chip Select Array

The programmable chip select array is located at \$00F000. These registers are write-only. Once setup further programming of the chip select array can be disabled by writing 'E0' to register 15. Care should be taken to ensure that decoded address ranges don't overlap, otherwise bus contention may result. A chip select can be disabled by not specifying a speed select for the chip select.

On reset the chip selects default to respond to the following addresses:

```
CS0 = $0070xx ; 256 bytes – 1MHz

CS1 = $0071xx ; 256 bytes – 1MHz

CS2 = $0072xx ; 256 bytes – 1MHz

CS3 = $0073xx ; 256 bytes – 1MHz

CS4 = $008xxx ; 32k bytes – 8MHz

CS5 = $01xxxx ; 32k bytes – 8MHz
```

CS6 = not (CS0 or CS1 or CS2 or CS3 or CS4 or CS5) ; full speed

Chip selects are active low.

Reg		Bits	Reset	
		Covered	Value	
F000	CS0	15 to 8	D0	
F001	CS0	23 to 16	00	
F002	CS1	15 to 8	D1	
F003	CS1	23 to 16	00	
F004	CS2	15 to 8	D2	
F005	CS2	23 to 16	00	
F006	CS3	15 to 8	D3	
F007	CS3	23 to 16	00	
F008	CS4	22 to 15	01	
F009	CS4	23	00	
F00A	CS5	22 to 15	02	
F00B	CS5	23	00	
F00C	SS1		0F	speed select 1MHz (1 = 1MHz)
F00D	SS8		30	speed select 8MHz (1 = 8MHz)
F00E	SS32		00	full speed select
F00F	EN			Write E0 to this register to disable the register set

Bit 0 of the speed select register corresponds to CSO

Bit 1 of the speed select register corresponds to CS1

etc.

Only one bit should be set in a speed select for a chip select.

Programmable Counters

There are three24 bit programmable counters present in the FT816MPU component. All three counters operate in an identical fashion. The counters may be programmed to count up or down using one of three clock sources. The first clock source is via software trigger by writing to the counter trigger register. The second source is automatic counting with automatic reload by the internal mpu clock. The third clock source is from an external count pulse. Counters reload automatically once the count expires. The count expires when the count reaches the limit while counting upwards, or when the count reaches zero while counting downwards.

The count value registers occupy zero page memory from \$10 to \$1F. Placing the value registers in zero page allows the counters to be used with zero page indirect addressing. The counter control registers occupy memory between \$F010 to \$F01F.

Counting may be disabled which allows the count value registers to act like memory locations.

Reg											
F010	count base/limit low byte	When counting up the counter may generate an interrupt when the limit value Is reached. The counter will then automatically reset to zero. When counting down, the counter may generate an interrupt when it reaches zero. Then the counter is reloaded with a base count from this register.									
F011	count base limit middle byte										
F012	count base / limit high byte										
F013	Bit										
	0	IRQ enable	1 = irq enabled								
	3:2	count source	00 = by software trigger only 01 = automatic on internal clock								
			10 = count external pulses								
	4	count direction	1 = count up (0 to limit)								
			0 = count down (base to 0)								
	5 to 7	reserved									
F014-F017	Identical to F010	to F013 except for counter #2									
F018-F01B	Identical to F010 to F013 except for counter #3										
F01C	Writing to this register triggers a count cycle for counter #1										
F01D	Writing to this register triggers a count cycle for counter #2										
F01E	Writing to this register triggers a count cycle for counter #3										

\$0010 to \$0012	low, mid, high bytes of counter value #1	
\$0014 to \$0016	low, mid, high bytes of counter value #2	
\$0018 to \$001A	low, mid, high bytes of counter value #3	

The counter values may be modified at any time by updating the value registers. However, the counter should be stopped prior to updating the registers in order to avoid a partial update of the counter. The counter may be stopped by setting the count source to software trigger only.

Additional Core Features

Store Bypassing

The FT816 core bypasses the second store cycle during a read-modify-write operation if the upper bits of the value have not changed.

Long Branches

The core also features long branches. If the branch displacement byte is \$FF then the next two bytes are used as a 16 bit branch displacement.

Opcode Map – 8 bit mode W65C816 compatible

= W65C816S instrucitons

	-0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-A	-B	-C	-D	-F	-F
0-	BRK	ORA (d,x)	COP	ORA d,s	TSB d,r	ORA d	ASL d	ORA [d]	PHP	OR #i8	ASL acc	PHD	TSB abs	ORA abs	ASL abs	ORA AL
1-	BPL disp	ORA (d),y	ORA (d)	ORA (d,s),y	TRB d,r	OR d,x	ASL d,x	ORA [d],y	CLC	OR abs,y	INA	TAS	TRB abs	ORA abs,x	ASL abs,x	ORA AL,x
2-	JSR abs	AND (d,x)	JSL abs24	AND d,s	BIT d	AND d	ROL d	AND [d]	PLP	AND #i8	ROL acc	PLD	BIT abs	AND abs	ROL abs	AND AL
3-	BMI disp	AND (d),y	AND (d)	AND (d,s),y	BIT d,x	AND d,x	ROL d,x	AND [d],y	SEC	AND abs,y	DEA	TSA	BIT abs,x	AND abs,x	ROL abs,x	AND AL,x
4-	RTI	EOR (d,x)	WDM	EOR d,s	MVP	EOR d	LSR d	EOR [d]	PHA	EOR #i8	LSR acc	PHK	JMP abs	EOR abs	LSR abs	EOR AL
5-	BVC disp	EOR (d),y	EOR (d)	EOR (d,s),y	MVN	EOR d,x	LSR d,x	EOR [d],y	CLI	EOR abs,y	PHY	TCD	JML abs24	EOR abs,x	LSR abs,x	EOR AL,x
6-	RTS	ADC (d,x)	PER	ADC d,s	STZ d	ADC d	ROR d	ADC [d]	PLA	ADC #i8	ROR acc	RTL	JMP (abs)	ADC abs	ROR abs	ADC AL
7-	BVS disp	ADC (d),y	ADC (d)	ADC (d,s),y	STZ d,x	ADC d,x	ROR d,x	ADC [d],y	SEI	ADC abs,y	PLY	TDC	JMP (abs,x)	ADC abs,x	ROR abs,x	ADC AL,x
8-	BRA disp	STA (d,x)	BRL disp	STA d,s	STY d	STA d	STX d	STA [d]	DEY	BIT#	TXA	PHB	STY abs	STA abs	STX abs	STA AL
9-	BCC disp	STA (d),y	STA (d)	STA (d,s),y	STY d,x	STA d,x	STX d,y	STA [d],y	TYA	STA abs,y	TXS	TXY	STZ abs	STA abs,x	STZ abs,x	STA AL,x
Α-	LDY #i8	LDA (d,x)	LDX #i8	LDA d,s	LDY d	LDA d	LDX d	LDA [d]	TAY	LDA #i8	TAX	PLB	LDY abs	LDA abs	LDX abs	LDA AL
B-	BCS disp	LDA (d),y	LDA (d)	LDA (d,s),y	LDY d,x	LDA d,x	LDX d,y	LDA [d],y	CLV	LDA abs,y	TSX	TYX	LDY abs,x	LDA abs,x	LDX abs,x	LDA AL,x
C-	CPY #i8	CMP (d,x)	REP#	CMP d,s	CPY d	CMP d	DEC d	CMP [d]	INY	CMP #i8	DEX	WAI	CPY abs	CMP abs	DEC abs	CMP AL
D-	BNE disp	CMP (d),y	CMP (d)	CMP (d,s),y	PEI	CMP d,x	DEC d,r	CMP [d],y	CLD	CMP abs,y	PHX	STP	JML (a)	CMP abs,x	DEC abs,x	CMP AL,x
E-	CPX #i8	SBC(d,x)	SEP#	SBC d,s	CPX d	SUB d	INC d	SBC [d]	INX	SBC #i8	NOP	XBA	CPX abs	SBC abs	INC abs	SBC AL,
F-	BEQ disp	SBC (d),y	SBC(r)	SBC (d,s),y	PEA	SUB d,x	INC d,r	SBC [d],y	SED	SBC abs,y	PLX	NAT	JSR (abs,x)	SBC abs,x	INC abs,x	SBC AL,x