파이썬으로 배우는 알고리즘 기초 Chap 3. 통적계획

3.5

五五

■ 최적 이진검색트리 문제

- 주어진 n개의 키로 최적 이진검색트리를 구하시오.
- 엄밀한 문제 정의
 - 주어진 n개의 키: K_1, K_2, \dots, K_n
 - 각 키의 검색 확률 p_i : 전체 검색 횟수 중에서 K_i 를 검색하는 확률
 - 각 키의 비교 횟수 c_i : K_i 를 검색하는 데 필요한 키의 비교 횟수
 - 각 키의 평균 검색 비용(시간): 검색 확률 \times 비교 횟수 $(p_i \times c_i)$
 - 전체 키의 평균 검색 비용(시간): $T_{avg} = \sum_{i=1}^{n} p_i c_i$
- 최적 이진검색트리 문제는 최적화 문제
 - 전체 키의 평균 검색 비용을 최소화하는 이진검색트리 찾기

주니온TV@Youtube 자세히 보면 유익한 코딩 채널

- 이진검색트리 (BST: Binary Search Tree)
 - 다음의 조건들을 모두 만족하는 이진트리
 - 각 노드는 하나의 유일한 키를 가지고 있다
 - 모든 노드가 가진 키의 값은 그 노드의 왼쪽 서브트리의 키의 값보다 크다
 - 모든 노드가 가진 키의 값은 그 노드의 오른쪽 서브트리의 키의 값보다 작다

- 최적 이진검색트리: 단순무식하게 풀기(Brute-Force Approach)
 - 모든 경우의 수에 대해서 계산해 보고 최적의 이진트리 선택
 - 이진검색트리의 가능한 경우의 수는?

- 카탈란 수:
$$C(n) = \frac{1}{n+1} {2n \choose n} \sim \frac{4^n}{n^{3/2} \sqrt{\pi}}$$

- n개의 키로 만들 수 있는 이진 트리의 수 = C(n)

■ 최적 이진검색트리의 입력 사례

• n = 3, K=[10, 20, 30], p = [0.7, 0.2, 0.1]

- 최적 이진검색트리: 동적계획(Dynamic Programming)
 - 1단계: 재귀 관계식을 찾는다.
 - A: 이진검색트리를 만드는데 최적 검색비용의 행렬
 - A[i][j]: K_i 에서 K_j 까지 이진검색트리를 만드는데 최적 검색 비용
 - 목표: $K_i \cdots K_j$ 를 $(K_i \cdots K_{k-1})K_k(K_{k+1} \cdots K_j)$ 로 분할하는 재귀 관계식 찾기

- 2단계: 상향식 방법으로 해답을 구한다.
 - 초기화: $A[i][i] = p_i$ (주대각선을 p_i 으로)
 - 최종 목표:*A*[1][*n*].
 - 상향식 계산: 대각선 1번, 대각선 2번, …, 대각선 n-1번

- 최적 이진검색트리의 재귀 관계식 구하기
 - 트리 k: 키 K_k 가 루트 노드에 있는 최적 이진검색트리
 - 키 비교 횟수: 서브 트리의 비교 횟수에 루트에서 비교 한 번 추가
 - $m \neq k$ 인 K_m 에 대해서 트리 k에 K_m 을 놓기 위한 비교 한 번 추가
 - K_m 의 평균 검색비용에 p_m 을 추가
 - $A[1][k-1]+A[k+1][n]+\sum_{m=1}^{n}p_m$

- 최적 트리: k개의 트리 중 평균 검색비용이 가장 작은 트리
 - $A[1][n] = \min_{i \le k \le i} (A[1][k-1] + A[k+1][n] + \sum_{m=1}^{n} p_m)$

■ 최적 이진검색트리의 재귀 관계식

- $A[i][i] = p_i$
- A[i][i-1] = 0
- A[j+1][j] = 0
- $A[i][j] = \min_{i \le k \le j} (A[i][k-1] + A[k+1][j]) + \sum_{m=i}^{j} p_m$, i < j

주니은TV@Youtube 자세히 보면 유익한 코딩 채널

Algorithm 3.9: Optimal Binary Search Tree

```
def optsearchtree (p):
    n = len(p) - 1
    A = [[-1] * (n + 1) for _ in range(n + 2)]
    R = \lceil \lceil -1 \rceil * (n + 1) \text{ for } in \text{ range}(n + 2) \rceil
    for i in range(1, n + 1):
         A[i][i - 1] = 0
         A[i][i] = p[i]
         R[i][i - 1] = 0
         R[i][i] = i
    A[n + 1][n] = 0
    R[n + 1][n] = 0
    for diagonal in range(1, n):
         for i in range(1, n - diagonal + 1):
             j = i + diagonal
             A[i][j], R[i][j] = minimum(A, p, i, j)
    return A, R
```


주니은TV@Youtube 자세히 보면 유익한 코딩 채널

Algorithm 3.9: Optimal Binary Search Tree

```
def minimum (A, p, i, j):
    minValue = INF
    minK = 0
    for k in range(i, j + 1):
        value = A[i][k - 1] + A[k + 1][j]
        for m in range(i, j + 1):
            value += p[m]
        if (minValue > value):
            minValue = value
            minK = k
    return minValue, minK
```



```
즈니ミTV@Youtube
 자세히 보면 유익한 코딩 채널
```

```
INF = 999
keys = [0, 10, 20, 30, 40, 50]
p = [0, 35, 12, 22, 8, 15]
A, R = optsearchtree(p)
print('A = ')
for i in range(1, len(A)):
    print(A[i])
print('R = ')
for i in range(1, len(R)):
    print(R[i])
```

```
A =
[0, 35, 59, 115, 139, 182]
[-1, 0, 12, 46, 62, 100]
[-1, -1, 0, 22, 38, 76]
[-1, -1, -1, 0, 8, 31]
[-1, -1, -1, -1, 0, 15]
[-1, -1, -1, -1, -1, 0]
[0, 1, 1, 1, 1, 3]
[-1, 0, 2, 3, 3, 3]
[-1, -1, 0, 3, 3, 3]
[-1, -1, -1, 0, 4, 5]
[-1, -1, -1, -1, 0, 5]
[-1, -1, -1, -1, -1, 0]
```


- 최적 이진검색트리 구하기
 - R[i][j]: i번째에서 j번째까지 최적 트리의 루트 노드 인덱스
 - 재귀 호출을 통한 분할 정복

• n = 4, $K = K_1$, K_2 , K_3 , $K_4 = [10, 20, 30, 40]$, $p = p_1$, p_2 , p_3 , $p_4 = [3, 3, 1, 1]$.

A	1	2	3	4	_	R	1	2	3	4	
1						1					20
2						2					(10) (30)
3						3					40
4						4					

本LI全TV@Youtube 자세히 보면 유익한 코딩 채널

Algorithm 3.10: Build Optimal Binary Search Tree

```
def tree (R, i, j):
    k = R[i][j]
    if (k == 0):
        return None
    else:
        node = BSTNode(keys[k])
        node.left = tree(R, i, k - 1)
        node.right = tree(R, k + 1, j)
        return node
```


Algorithm 3.10: Build Optimal Binary Search Tree

```
class BSTNode:
    def __init__ (self, key):
        self.key = key
        self.left = None
        self.right = None
def preorder (node):
                                      def inorder (node):
    if (node is None):
                                          if (node is None):
        return
                                              return
    else:
                                          else:
        print(node.key, end = ' ')
                                              inorder(node.left)
                                              print(node.key, end = ' ')
        preorder(node.left)
        preorder(node.right)
                                              inorder(node.right)
```



```
root = tree(R, 1, len(p) - 1)
print('inorder: ', end = ' ')
inorder(root)
print('\npreorder: ', end = ' ')
preorder(root)
```

inorder: 10 20 30 40 50

preorder: 30 10 20 50 40

주니온TV@Youtube

자세히 보면 유익한 코딩 채널

https://bit.ly/2JXXGqz

- 여러분의 구독과 좋아요는 강의제작에 큰 힘이 됩니다.
- 강의자료 및 소스코드: 구글 드라이브에서 다운로드 (다운로드 주소는 영상 하단 설명란 참고)

https://bit.ly/3fN0q8t