

Department of Physics, Shandong University

Compressed EWK study(ISRC1N2)

Chengxin Liao

liaocx@ihep.ac.cn

Wed, Fri 19, 2024

Outline

- 1. Hyperparameters optimization
- 2. Performance of Model

Chengxin Liao IHEP SUSY Meeting

Task-list

- Machine learning for LH channel
 - check more Variable and select significance var for ML(DONE)
 - BDTG hyperparameters optimization/ Setup a Grid Search framework (DONE)
- Preliminary study on multibody quantum mechanics (In Progress)
 QFT Lecture (Peskin part I)
- BSc thesis: https://www.overleaf.com/project/674e7119837a2580151a0868
- CS61A (python): https://cs61a.vercel.app/index.html

Hyperparameters optimization(HH)

Input(HH-Channel):

Sample:

Sig: ISRC1N2(mass_C1 = 100GeV, mass_N2 = 70GeV)->12180 entries

Bkg: 513850 entries

All input data(C1N2_100_70 and Bkg) already passed pre-selection

Strategy:

method: BDTG

Separate sig(bkg) into five folders, one for test, the other three for train, and last one for validation set, then traverse all possibilities.

Pre-Selection

```
had-had channel: nTaus \ge 2, nLeps = 0
pass \ MET \ trigger; \ MET \ge 200
1 \le nBaseJet \le 8
b - Veto
OS
```

Hyperparameters optimization(HH)

Variables:

Obj kinematics

Pt_tt

Angular correlations

dPhit1x

dEtatt

dPhiMax xt

dPhiztt

dPhitt

dPhizxe

dPhiMin_xt

dPhit2x

dPhiMin_tj1

dRt2x

dRMax_xt

dRMin_tj

dRtt

sum_cos_dphi

Event kinematics

MII(Invariant Mass of tau1 and tau2)

MIA

MT2_150

MET Tau

Proj_tt

MstauA

MCT

frac_MET_tt

frac MET tau1

frac_MET_MeffInc_40

frac_MET_Meff

These vars are selected based on the importance

Hyperparameters optimization(HH)

Grid Search:

Ntrees: 200, 300, 400, 500

Max Depth: 6, 8, 10, 12

MinNodeSize: 1%, 2%, 3%

Learning Rate: 0.01, 0.05, 0.1

Show top Zn

Model Name	Binned	Significance	Max Zn	Max Zn Bin
500_12_1_005		14.2770	3.83857	199
300_10_1_01		13.9648	3.76965	198
200_6_1_01		13.9250	3.74940	198
500_6_3_01		14.2740	3.72616	199
400_10_1_01		13.9553	3.70167	199
300_6_2_01		13.9366	3.69620	199
300_10_2_01		14.0094	3.67743	199
300_8_1_01		14.0434	3.67624	198
200_8_1_01		14.1925	3.67005	198
400_12_1_005		14.1384	3.66529	199
200_6_2_01		14.2209	3.65978	199
200_6_3_01		13.7197	3.64427	199
500_10_1_01		13.8227	3.63722	198
500_8_1_01		13.8369	3.61405	198
400_10_2_01		14.2001	3.60950	199
500_6_1_005	4113	14.0399	3.60132	197

Rebin result

```
Model Name, Binned Significance, Max Zn, Max Zn Bin, bin num 500_12_1_005, 16.0862, 3.8635, 198, 200 500_12_1_005, 15.9967, 3.62563, 99, 100 500_12_1_005, 15.9318, 3.62563, 50, 50 500_12_1_005, 15.6612, 3.07372, 40, 40 500_12_1_005, 15.3086, 2.45396, 25, 25 500_12_1_005, 15.0825, 2.20391, 20, 20
```

Binned significance: $Z = \sqrt{2((s_i + b_i)\log(1 + \frac{s_i}{b_i}) - s_i)}$

Compared with form result, there has a significant improvement in Zn

	Model Name	Binned Significance 12.1380 12.9663 12.1254 12.1150 13.1608 12.8853 12.7673 12.9965 12.8248 13.1256 12.9703 12.4457 12.9285 12.8685 12.7738 12.2453 12.9369 12.7388 12.6318 12.9393 12.9179 12.8501 12.9846 12.9337 12.8854 12.9337 12.8854 12.9936 12.9337 12.8854 12.9906 12.8406 13.2400 12.8263	Max 7n	May 7n Rin
137	100 8 3 005	12,1380	3.27179	48
128	100 6 1 01	12, 9663	3.24539	49
15	100 12 3 005	12.1254	3.22901	48
85	100 10 3 005	12.1150	3.20722	48
	200 10 1 01	13.1608	3.19603	50
	100_8_1_01	12.8853	3.18398	50
	200_6_1_005	12.7673	3.17520	49
	200 6 1 01	12.9052	3.17138	50
38	100_6_2_01	12.8248	3.16297	49
	300_8_2_01	13.1256	3.16255	50
93	300 6 1 005	12.9703	3.14200	50
73	100_6_1_005	12.4457	3.14142	48
69	400_6_1_01	12.9285	3.14074	50
54	200_8_3_01	12.8685	3.13397	50
12	200_6_2_005	12.7035	3.12582	49
33	100_6_2_005	12.2453	3.11746	48
66	400_6_1_005	12.9369	3.10400	50
45	100_10_3_01	12.7388	3.10074	49
7	100_12_3_01	12.6318	3.10071	49
48	400_12_2_01	12.9393	3.09236	50
72	400_12_2_005	12.9179	3.06882	50
62	300_6_1_01	12.8501	3.06869	50
	400_10_1_01	12.9846	3.06413	50
91	100_6_3_01	12.6291	3.06320	49
	400_8_3_01	12.9337	3.06226	50
	300_10_3_005	12.8854	3.05992	49
	300_10_1_01	12.9906	3.05755	50
	100_10_2_01	12.8406	3.05210	49
43	200_8_2_01	13.2400	3.04952	50
19	400_6_2_005	12.8263	3.04206	50

Performance of Model(HH)

Apply cut at BDT = 0.97

hyper parameter: NTrees=500, learning rate=0.05, max depth=12, MinNodeSize=1%(default)

bin	max Zn	C1N2ISR (100,70)	bkg	Higgs	OtherTop	SingleTop	TopPair	VV	Wjets	Zlljets	Zttjets
198(0.97)	3.4089	19.929+- 0.858	17.186+- 3.007(17.4%)	0.007+- 0.007	0.025+- 0.014	0.345+- 0.184	1.748+- 0.528	1.125+- 0.132	13.445+- 2.950	0.180+- 0.055	0.311+- 0.085
199(0.98)	3.83857	25.232+- 1.287	7.805+- 3.807(54.3%)	0.000+- 0.000	0.009+- 0.017	0.003+- 0.184	0.302+- 0.570	1.138+- 0.187	6.034+- 3.753	0.116+- 0.084	0.203+- 0.114
200(0.99)	1.86049	4.390+- 1.350		0.000+- 0.000	0.000+- 0.017	0.000+- 0.184	0.000+- 0.570	0.100+- 0.189	1.562+- 3.850	0.132+- 0.139	0.086+- 0.129

Hyperparameters optimization(LH)

Input(LH-Channel):

Sample:

Sig: ISRC1N2(mass_C1 = 100GeV, mass_N2 = 70GeV)->21225 entries

Bkg: 1703476 entries

All input data(C1N2_100_70 and Bkg) already passed pre-selection

Strategy:

method: BDTG

Separate sig(bkg) into five folders, one for test, the other three for train, and last one for validation set, then traverse all possibilities.

```
Signal -- training events : 12735
Signal -- testing events : 4245
Signal -- training and testing events: 16980
Background -- training events : 1022092
Background -- testing events : 340692
Background -- training and testing events: 1362784
```

Pre-Selection

```
lep-had channel: nTaus \ge 1, nLeps \ge 1

pass MET trigger; MET \ge 200

1 \le nBaseJet \le 8

b-Veto

OS
```

Hyperparameters optimization(LH)

Variables:

Obj kinematics

nBase_Jet

mt_lep

e_lep(energy of tau2)

Angular correlations

dPhitt

dRtt

dRt1x

dPhiMin_xj

dPhiMax_tj

Event kinematics

MII(Invariant Mass of tau1 and tau2)

METsig

MT2_50

Mwh(Invariant Mass of tau1 and MET)

Mwl(Invariant Mass of tau2 and MET)

MCT(Transverse Mass Squared)

Proj_j(Projection of pt jet on zeta)

Proj tt(Projection of tau1+tau2 on zeta)

mtx_tau

Mtx_lep

ht_tau

mt_quad_sum

mt_sum

frac_MET_tau1

frac_MET_tau2

frac_MET_tt

frac_MET_sqrtHT_40

frac_jet_tau1

frac_jet_tau2

frac_jet_tt

MT_taumin

pt_Vframe

High importance at shiyi's feature

Note:

zeta is bisector direction of tau1 and tau2[PhyUtils::bisector(tau1, tau2)]

Hyperparameters optimization(LH)

Grid Search:

Ntrees: 200, 300, 400, 500

Max Depth: 6, 8, 10, 12

MinNodeSize: 1%, 2%, 3%

Learning Rate: 0.01, 0.05, 0.1

Show top Zn

Shiyi's result of LH channel

	Model Name	Binned Significance	Max Zn	Max Zn Bin
50	500_12_1_005	16.0862	3.86350	198
105	200_10_1_01	15.9554	3.86006	198
138	400_10_1_01	15.8606	3.81102	199
93	400_12_1_001	15.4420	3.80592	192
119	500 12 1 01	15.7926	3.76671	199
42	400 10 1 005	15.9734	3.75629	198
133	500_10_1_005	15.9676	3.74424	198
142	500_10_1_01	15.7853	3.73933	199
4	200 10 1 005	15.8636	3.73165	196
57	300 10 1 005	15.9380	3.73121	197
140	400 12 1 005	16.0214		197
0	300_12_1_005	15.9525	3.69489	197
72	200 8 1 005	15.7834	3.68745	196
80	400 10 1 001	15.3819	3.67258	192
24	500 8 1 01	15.6123	3.63555	199
13	500_12_1_001	15.5728		193
121	$400 \ 1\overline{2} \ \overline{1} \ 01$	15.8163	3.62834	199
26	300 10 1 01	15.7691	3.60172	199
83	500 8 1 005	15.8636	3.57064	198
79	300 12 1 001	15.1381	3.56449	188
3	400 8 1 005	15.8068	3.55725	197
117	300 8 1 005	15.7569	3.54771	197
137	300 12 1 01	15.7540	3.53785	199
82	200 12 1 01		3.52960	198
12	400 8 1 001	15.2398	3.50279	191

yrsicsaic	OI LII	Cilaii
hy	sig	
400_10_2_0.05	15.3225	4.47044
300_11_1_0.05	15.3127	4.65233
500 10 2 0.05	15.3099	4.32933
400_6_1_0.05	15.3075	4.69647
500_8_1_0.05		4.30067
400 8 2 0.05	15.2980	4.49312
300 6 1 0.05	15.2929	4.91804
500 8 2 0.05	15.2891	4.35987
200 11 1 0.05	15.2849	4.71509
300 11 2 0.05	15.2804	4.62741
400 11 2 0.05	15.2780	4.42181
300_8_1_0.05	15.2753	4.59008
300 10 1 0.05	15.2733	4.46305
400_11_1_0.05	15.2701	4.33036
500 6 1 0.05		4.61315
200 6 1 0.1	15.2559	4.69140
400_12_1_0.05	15.2554	4.29994
500 10 1 0.05		4.19292
300_12_1_0.05	15.2461	4.45857
300 6 1 0.1	15.2424	4.48235
300_10_2_0.05	15.2319	4.52470
200_8_1_0.1	15.2283	4.44394
200_12_1_0.05	15.2279	
300_8_1_0.1	15.2267	
500_12_2_0.05		4.18619
300_12_2_0.05	15.2161	4.43485
400_6_1_0.1		4.28123
400_8_1_0.05	15.2139	4.29323

Rebin result

```
Model Name, Binned Significance, Max Zn, Max Zn Bin, Bin number 500_12_1_005, 16.0862, 3.8635, 198, 200 500_12_1_005, 15.9967, 3.62563, 99, 100 500_12_1_005, 15.9318, 3.62563, 50, 50 500_12_1_005, 15.6612, 3.07372, 40, 40 500_12_1_005, 15.3086, 2.45396, 25, 25 500_12_1_005, 15.0825, 2.20391, 20, 20
```

Binned significance: $Z = \sqrt{2((s_i + b_i) \log(1 + \frac{s_i}{b_i}) - s_i)}$

Performance of Model(LH)

Apply cut at BDT = 0.97

hyper parameter: NTrees=500, learning rate=0.05, max depth=12, MinNodeSize=1%(default)

bin	max Zn	C1N2ISR (100,70)	bkg	Higgs	OtherTop	SingleTop	TopPair	VV	Wjets	Zlljets	Zttjets
197 0.96-0.97	3.62563	32.151+- 1.083	24.064+- 2.244(9.32%)	0.038+	0.046+- 0.023	1.325+- 0.388	2.877+- 0.663	4.210+- 0.340	14.541+- 2.075	-0.012+- 0.044	1.049+- 0.154
198	3.8635	30.244+-	15.848+-	0.006+	0.006+-	0.801+-	2.214+-	2.911+-	9.635+-	0.051+-	0.224+-
0.97-0.98		1.512	2.885(18.2%)	-0.021	0.023	0.497	0.875	0.423	2.663	0.052	0.196
199	3.53666	21.783+-	11.019+-	0.000+	-0.007+-	0.731+-	0.660+-	1.811+-	7.668+-	0.012+-	0.144+-
0.98-0.99		1.754	3.228(29.3%)	-0.021	0.026	0.573	0.937	0.488	2.988	0.052	0.222

TODO

1. add Mttau_min and pt_Vframe into ML

2. find a better way to select vars