

Tema 3. Álgebra de Conmutación

Objetivos

- Indicar los postulados o axiomas del Álgebra de Boole.
- Teoremas del Álgebra de Boole.
- Definir el concepto de función lógica o función de conmutación.
- Definir el concepto de puerta lógica

Tema 3. Álgebra de Conmutación

Contenido

- Postulados del Algebra de Boole
- Funciones Lógicas
- Funciones Lógicas básicas derivadas del Álgebra de Conmutación: NOT, OR, AND
- Otras Funciones Lógicas importantes: NAND, NOR, XOR, XNOR

Postulados o axiomas del Álgebra de Boole

- Un Álgebra es una estructura matemática que comprende un conjunto de elementos y un conjunto de operaciones u operadores, que actúan sobre dichos elementos.
- Los postulados o axiomas determinan como se realizan dichas operaciones.
- Los postulados no se demuestran y permiten deducir los teoremas y propiedades de dicha estructura.
- Se suele usar los axiomas propuestos por Huntington en 1904 para definir el Álgebra de Boole.
- Sea un conjunto de elementos llamado B en el que se puede establecer una relación de equivalencia que denotaremos con el símbolo = y para la que se verifica el <u>principio de sustitución</u>.
 - $\exists x, y \in B / x = y$
 - Es decir, en cualquier expresión en la que aparezca x se podrá sustituir por y, y viceversa.

Postulados o axiomas del Álgebra de Boole

- Postulados.
 - 1. Leyes de composición interna.

+ (operador OR o suma lógica) • (operador AND o producto lógico) $\forall x, y \in B \implies x + y \in B$ $x \cdot y \in B$

2. Conmutatividad de las leyes de composición interna.

$$\forall x, y \in B \implies x + y = y + x \qquad x \cdot y = y \cdot x$$

3. Elementos neutros.

$$\exists 0 \in B / \forall x \in B, x + 0 = 0 + x = x$$

 $\exists 1 \in B / \forall x \in B, x \cdot 1 = 1 \cdot x = x$

4. <u>Distributividad de las leyes de composición interna.</u>

$$\forall x, y, z \in B \qquad x + (y \bullet z) = (x+y) \bullet (x+z)$$

$$\forall x, y, z \in B \qquad x \bullet (y+z) = (x \bullet y) + (x \bullet z)$$

5. Elemento opuesto.

$$\forall x \in B$$
 $\exists \overline{X} \in B / x + \overline{X} = 1$ $x \bullet \overline{X} = 0$ \overline{X} se denomina complemento de x

6. Número de elementos.

$$\exists x, y \in B / x \neq y$$

En el conjunto B existen por lo menos 2 elementos.

Teoremas del Álgebra de Boole.

- Para cada teorema existen dos enunciados.
 - 1. No es necesario demostrar ambos enunciados.
 - 2. Se demuestra un enunciado y el otro queda probado por el principio de dualidad (Ver principio de dualidad en la siguiente transparencia para B₂).

Teorema 1.

 $\forall x \in B_2 \qquad x+1=1 \qquad x \bullet 0 = 0$

Teorema 2. Idempotencia. $\forall x \in B_2$ x + x = x $x \bullet x = x$

Teorema 3. Involución. $\forall X \in B_2$ X = X

Teorema 4. Absorción. $\forall x,y \in B_2$ $x + x \bullet y = x$ $x \bullet (x+y) = x$

Teorema 5.

 $\forall x, y, z \in B_2 \qquad x + [(x \bullet y) \bullet z] = x \quad x \bullet [(x + y) + z] = x$

Teorema 6. Asociativa.

 $\forall x, y, z \in B_2$ x + (y + z) = (x + y) + z $x \bullet (y \bullet z) = (x \bullet y) \bullet z$

Teorema 7.

 $\forall x, y \in B_2$ $x + \overline{x} \cdot y = x + y$ $x \cdot (\overline{x} + y) = x \cdot y$

Teorema 8. Leyes de De Morgan.

$$\forall x, y \in B_2$$
 $\overline{x+y} = \overline{x} \cdot \overline{y}$ $\overline{x \cdot y} = \overline{x} + \overline{y}$

$$\overline{x \cdot y} =$$

Álgebra de Conmutación. Principio de Dualidad.

- El Álgebra de Conmutación (A. C.) es un Álgebra de Boole que emplea solamente dos elementos. $B = \{0, 1\}$. lo representamos B_2
- Las operaciones quedan definidas de la siguiente forma:

	OR			AND		NOT
+	01	_	•	01	_	
0	01	_	0	00	0	1
1	11		1	01	1	0

- Se comprueba fácilmente que los operadores cumplen los postulados de Huntington.
- Los elementos 0 y 1 de B₂ corresponde a los dos valores binarios usados en los sistemas digitales.
- Principio de dualidad.
 - Si en una igualdad se sustituye 0 por 1, + por *, y viceversa, en todos los lugares que aparezcan, se obtiene otra igualdad.
 - Si se parte del enunciado a) de un postulado y se aplica el principio de dualidad se obtiene el enunciado b), y viceversa.

Funciones Lógicas o de Conmutación Definición

Una función lógica f, que representaremos $f(x_1, x_2, ..., x_n)$, donde $x_1, x_2, ..., x_n$ son las variables de entrada y f la de salida se define:

Toda función cuyos valores de entrada y salida solamente pueden ser los elementos del álgebra de conmutación, es decir 0 y 1, y están relacionados mediante los operadores del Álgebra de Conmutación $\{+, \bullet, \bar{-}\}$.

Las variables de entrada y salida se denominan variables lógicas.

- Las señales de entrada y salida de un sistema digital solamente pueden tomar los valores 0 y 1, por lo que:
 - ■Se podrán representar mediante variables lógicas.
 - Las señales de salida se podrán expresar matemáticamente a partir de las de entrada mediante una función lógica.
 - •El álgebra de conmutación permitirá el análisis y diseño de los sistemas digitales.

Funciones Lógicas básicas

- Las derivadas de los operadores del Álgebra de Conmutación:
 - ✓ Función lógica AND.
 - ✓ Función lógica OR.
 - ✓ Función lógica NOT.
- Otras funciones básicas:
 - ✓ Función lógica NAND. (puerta universal)
 - ✓ Función lógica NOR. (puerta universal)
 - ✓ Función lógica XOR.
 - ✓ Función lógica XNOR

■Puerta lógica.

- ✓ Circuito digital que implementa un operador del álgebra de conmutación o una función lógica sencilla.
- ✓ Actualmente se implementan mediante Circuitos Integrados Digitales.

Función lógica NOT

Función lógica NOT.

- ■Corresponde al operador complemento o NOT (¯) del A.C.
- ■Tiene una única entrada.
- **Expresión lógica:** $f(x) = \overline{x}$

✓ Donde x es la variable de entrada y f la de salida

■Tabla de verdad:

x	f
0	1
1	0

✓ El valor de la función lógica NOT es el opuesto del de la variable de entrada.

Puerta lógica:

$$x - f = \overline{x}$$

Función lógica AND

Función lógica AND.

- ■Corresponde al operador Producto Lógico o AND (•) del A.C.
- **Expresión lógica**: $f(x, y) = x \cdot y$

✓ Donde x e y son las variables de entrada y f la de salida

■Tabla de verdad:

x	y	f
0	0	0
0	1	0
1	0	0
1	1	1

Puerta lógica:

$$y = \int_{y}^{x} f = x y$$

Extensión a más de dos entradas.

Por ser conmutativa y asociativa según los postulados y teoremas del Álgebra de Boole, se puede hacer la AND lógica de más de dos entradas.

$$\bullet f(x_1, x_2, ..., x_n) = x_1 x_2 ... x_n$$

Función lógica OR

Función lógica OR

- ■Corresponde al operador Suma Lógica u OR (+) del A.C.
- **Expresión lógica**: f(x, y) = x + y

✓ Donde x e y son las variables de entrada y f la de salida

■Tabla de verdad:

\boldsymbol{x}	y	f
0	0	0
0	1	1
1	0	1
1	1	1

Puerta lógica:

$$y - f = x + y$$

Extensión a más de dos entradas.

$$-f(x_1, x_2,..., x_n) = x_1 + x_2 + ... + x_n$$

Función lógica NAND

Las restantes funciones lógicas básicas se obtienen combinando varios operadores del Álgebra de Boole.

Función lógica NAND.

- ■Corresponde a las siglas de NOT AND. Por tanto, es el complemento de la AND.
- **Expresión lógica**: f(x,y) = x y

✓ Donde x e y son las variables de entrada y f la de salida

■Tabla de verdad:

x	у	f
0	0	1
0	1	1
1	0	1
1	1	0

Puerta lógica:

$$y = \int_{y}^{x} -f = \overline{x} y$$

Función lógica NAND

Extensión a más de dos entradas.

La función lógica NAND es conmutativa, pero no es asociativa:

$$\overline{x y} = \overline{y x}$$
; $(\overline{x y}) z \neq \overline{x (\overline{y z})} \neq \overline{x y z}$

- No obstante, por ser la AND complementada se puede obtener la función lógica NAND de más de 2 variables de entrada:
 - 1.Se hace la AND lógica de todas las variables de entrada.
 - 2.Se complementa la salida de la función lógica AND.

$$f(x_1, x_2, ..., x_n) = x_1x_2...x_n$$

- ✓ La función lógica NAND de n entradas es 0 si todas las variables de entrada son 1.
- ✓ De lo contrario, si alguna de las variables de entrada es 0 el valor de salida es 1.

Función lógica NOR

Función lógica NOR.

■Corresponde a las siglas de NOT OR. Por tanto, es el complemento de la OR.

Expresión lógica: f(x,y) = x + y

✓ Donde x e y son las variables de entrada y f la de salida

■Tabla de verdad:

x	у	f
0	0	1
0	1	0
1	0	0
1	1	0

Puerta lógica:

$$x-y-f=\overline{x+y}$$

Función lógica NOR

Extensión a más de dos entradas.

La función lógica NOR es conmutativa, pero no es asociativa:

$$\overline{x+y} = \overline{y+x}$$
; $(\overline{x+y}) + z \neq \overline{x+(y+z)} \neq \overline{x+y+z}$

- ■No obstante, por ser la OR complementada se puede obtener la función lógica NOR de más de 2 variables de entrada:
 - 1.Se hace la OR lógica de todas las variables de entrada.
 - 2. Se complementa la salida de la función lógica OR.

$$f(x_1, x_2,..., x_n) = \overline{x_1 + x_2 + ... + x_n}$$

✓ La función lógica NOR de n entradas es 1 si todas las variables de entrada son 0.

✓De lo contrario, si alguna de las variables de entrada es 1 el valor de salida es 0.

Función lógica XOR

Función lógica XOR u OR EXCLUSIVA

- •El valor de salida es 1 si hay un número impar de 1 en sus variables de entrada.
- ■Se representa mediante el símbolo ⊕
- **■**Expresión lógica: $f(x,y) = x \oplus y = x y + x y$

✓ Donde x e y son las variables de entrada y f la de salida

■Tabla de verdad:

x	y	f
0	0	0
0	1	1
1	0	1
1	1	0

Puerta lógica:

$$x - f = x \oplus y$$

Extensión a más de dos entradas.

- La función lógica XOR es conmutativa y asociativa, por lo que se puede hacer directamente la XOR de más de dos entradas.
- $F(x,y,z) = x \oplus y \oplus z$

Función lógica XNOR

Función lógica XNOR o NOR EXCLUSIVA

- ■Se definirá solamente para dos variables de entrada.
- ■Se representa mediante el símbol
- **Expresión lógica**: $f(x,y) = x \odot y = \overline{x} \overline{y} + x y$

✓ Donde x e y son las variables de entrada y f la de salida

■Tabla de verdad:

x	у	f
0	0	1
0	1	0
1	0	0
1	1	1

Puerta lógica:

$$x - y - f = x \odot y$$

Puertas universales: NAND y NOR

Las puertas NAND y NOR se les añade el adjetivo de universales porque es posible implementar cualquier función lógica utilizando solamente puertas NAND o puertas NOR:

- La manera más fácil de demostrarlo es consiguiendo cualquier puerta NOT, OR y AND utilizando puertas NAND o puertas NOR.
- Se verá el caso para puertas NAND

Puerta universal NAND

Implementación de las funciones lógicas básicas mediante puertas NAND.

NOT
$$x - f = \overline{x}$$

✓Dos opciones:

a) Por el Teorema de Idempotencia $\mathbf{x} \cdot \mathbf{x} = \mathbf{x}$

$$\mathbf{f} = \overline{\mathbf{x}} = \overline{\mathbf{x} \cdot \mathbf{x}}$$

$$\mathbf{x} - \mathbf{f} = \overline{\mathbf{x}} = \overline{\mathbf{x}}$$

b) Por el Postulado del Elemento neutro $\mathbf{x} \cdot \mathbf{1} = \mathbf{x}$

$$f = \overline{x} = \overline{x \cdot 1}$$

$$V_{CC}$$
 Y_{CC} Y_{C

Puerta universal NAND

AND

$$X \longrightarrow f = x y$$

$$x = y$$
 \Rightarrow $f = \overline{x} y$

- Una es el complemento de la otra.
- Por el Teorema de Involución

$$\overline{\overline{x}} = x$$

$$\mathbf{f} = \mathbf{x} \cdot \mathbf{y} = \overline{\mathbf{x}} \cdot \mathbf{y}$$

OR

$$y$$
 $f = x+y$

$$x = y$$
 $\Rightarrow f = x y$

$$\mathbf{f} = \mathbf{x} + \mathbf{y} = \overline{\overline{\mathbf{x}} + \mathbf{y}} = \overline{\overline{\mathbf{x}} \cdot \overline{\mathbf{y}}}$$

Bibliografía detallada Álgebra de Conmutación

- Las diapositivas se han confeccionado utilizando como fuente:
 - "Diseño Lógico". A. Lloris, A. Prieto. Mc-Graw Hill. 1996. Apartados: 1.2, 1.3, 1.4, 1.5, 1.7