

Quantum Computing Introduction

Basic Quantum Algorithms

Bernardo Villalba Frías, PhD

b.r.villalba.frias@hva.nl

Classic computing

- n bits can be in N exclusive states:
 - $n \rightarrow \text{Number of bits}$
 - $N \rightarrow 2^n$
- Logic gates are non-reversible

NOT/XOR

NAND/NOR

No interesting computational power

Universal logic gates

Chips (NAND) → Efficient transistor implementation

Quantum computing

- ullet n qubits can be in a superposition of N states
 - $n \rightarrow \text{Number of bits}$
 - $N \rightarrow 2^n$
- ullet n qubits store N complex probability amplitudes
- In vector notation:
 - N-D complex vector space
 - Known as the Hilbert space:

"Hilbert space is a big place!"

Gate groups

Pauli gates

Clifford gates

Non-Clifford gates

- Finite group
- Single—qubit only
- I, X, Y, Z

- Finite group
- Single— and two— qubit
- E.g. H, S, CNOT, CZ
 E.g. Toffoli, T, Rx, Ry,
- Infinite group
- Single— and multi qubit only
 - E.g. Toffoli, T, Rx, Ry, Rz

Gate groups

Pauli gates

Clifford gates

Non-Clifford gates

- Finite group
- Single—qubit only
- I, X, Y, Z

No interesting computational capabilities

- Finite group
- Single— and two— qubit
- E.g. H, S, CNOT, CZ
- Infinite group
- Single— and multi qubit only
- E.g. Toffoli, T, Rx, Ry,
 Rz

Includes Pauli group

Superposition and entanglement

Can be *simulated efficiently* by classic computers

Required for *universal* quantum computing

Exponentially hard to simulate

Universal set of gates

- A set of gates that can be used to implement an arbitrary unitary operation on any number of qubits
- Required:
 - Full Clifford group (and Pauli group)
 - One or more non–Clifford gates
- A standard choice:

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad T = \begin{bmatrix} 1 & 0 \\ 0 & e^{\frac{\pi}{4}i} \end{bmatrix} \qquad CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

It may require MANY of these gates!

Applications

Promise to solve problems intractable by classic computers

Simulation

Optimization

En/Decryption

New drugs

Catalyst analysis

Machine learning

Quantum Arithmetic

- Quantum versions of classic arithmetic functions
 - Often based on X, CNOT, and Toffoli gates (CCNOT)
- Circuits are reversible
 - Number of input qubits = number of output qubits
 - y can be 0 (or any other value)

Quantum Sum

x_0	x_1	S
0	0	0
0	1	1
1	0	1
1	1	0

Quantum Carry

x_0	x_1	\boldsymbol{c}
0	0	0
0	1	0
1	0	0
1	1	1

Question #4

Figure 3: An arbitrary quantum circuit.

Question 4 Consider the quantum circuit presented in Figure 3 and assume $|q_3q_2q_1q_0\rangle = |0000\rangle$. Determine, by using the Dirac notation, what is the state vector of the quantum circuit just before the measurement?

Write down your solution here:

$$|x\rangle$$
 — $|f(x)\rangle$

- Very simple one—qubit functions
- Associated with a truth table:

Identity	NOT	Set	Reset
$f_I(x) = x$	$f_N(x) = \widetilde{x}$	$f_S(x) = 1$	$f_R(x) = 0$
$x \mid f_I(x)$	$x \mid f_N(x)$	$x \mid f_S(x)$	$x \mid f_R(x)$
0 0	0 1	0 1	0 0
1 1	1 0	1 1	1 0

NOT

$$f_N(x) = \widetilde{x}$$

Set

$$f_S(x) = 1$$

Identity

$$f_I(x) = x$$

Reset

$$f_R(x) = 0$$

 A function whose output yields as many 0s as 1s over its input set is called: balanced

Balanced					
	entity $f(x) = x$	f_N	$\mathbf{NOT} \\ (x) = \widetilde{x}$		
$\begin{array}{c} x \\ \hline 0 \\ 1 \end{array}$	$ \begin{array}{c c} f_I(x) \\ \hline 0 \\ 1 \end{array} $	$\frac{x}{0}$ 1	$\begin{array}{c c} f_N(x) \\ \hline 1 \\ 0 \end{array}$		

Question #6

Figure 4: An arbitrary quantum circuit.

Question 6 Consider the quantum circuit presented in Figure 4 and assume $|q_1q_0\rangle = |10\rangle$. Determine, by using the matrix–vector multiplication, what is the state vector of the quantum circuit just before the measurement?

Write down your solution here:

Deutsch's problem

- Classic version:
 - You have a "black box/oracle" with one of the four one—bit functions, but you are not told which one. Determine if the function is: balanced or constant
 - Two calls to the "oracle" required

Deutsch's problem

- Quantum version:
 - You have a "quantum black box/oracle" with one of the four one—bit functions, but you are not told which one. Determine if the function is: balanced or constant
 - Can we do better? (i.e. less calls to the "quantum oracle")

- We do not know what f(x) is, but...
- ... 2 options: balanced or constant

• If f(x) is constant, then $f(0) = f(1) \land \widetilde{f(0)} = \widetilde{f(1)}$

• If f(x) is balanced, then $f(0) = \widetilde{f(1)} \wedge f(1) = \widetilde{f(0)}$

- Finally, measure the register x:
 - $M(x) = 0 \Rightarrow$ constant function
 - $M(x) = 1 \Rightarrow$ balanced function
- The result was in register x
 - Register y was not even measured!
- Only 1 call to the "quantum oracle"

Question #8

Figure 5: An arbitrary quantum circuit.

Question 8 At this point, I assume that you noticed that Figure 4 represents the Deutsch circuit for a constant function. Likewise, the quantum circuit presented in Figure 5 represents the Deutsch circuit for a balanced function. Assume $|q_1q_0\rangle=|10\rangle$ and corroborate, by using the Dirac notation, that $M(|q_0\rangle)=1$ with 100% probability.

Write down your solution here:

Anatomy of a quantum algorithm

- 1. Start in superposition:
 - Parallelism: calculate for all inputs at once
- Perform the desired function
- 3. Somehow, transform the result to computational basis states
 - The "magic" of a properly designed algorithm

What is next?

- Assignment is already available (check DLO)
- ESK Wiskunde lectures and workshops
- Q & A, Discussion
 - Questions about the assignment or the material
 - Feel free to propose any discussion
 - You can always write me an email

