1. Fields and polynomials

1.1. Basic properties of fields

- **Definition**: ring R is **field** if every element of $R \{0\}$ has multiplicative inverse and $1 \neq 0 \in R$.
- Lemma: every field is integral domain.
- **Definition**: field homomorphism is a ring homomorphism $\varphi: K \to L$ between fields:
 - $\varphi(a+b) = \varphi(a) + \varphi(b)$
 - $\varphi(ab) = \varphi(a)\varphi(b)$
 - $\varphi(1) = 1$

These imply $\varphi(0) = 0$, $\varphi(-a) = -\varphi(a)$, $\varphi(a^{-1}) = \varphi(a)^{-1}$.

- Lemma: let $\varphi: K \to L$ homomorphism.
 - $\operatorname{im}(\varphi) = \{ \varphi(a) : a \in K \}$ is a field.
 - $\ker(\varphi) = \{a \in K : \varphi(a) = 0\} = \{0\}$, i.e. φ is injective.
- **Definition**: subfield K of field L is subring of L where K is a field. L is a field extension of K.
- The above lemma shows the image of $\varphi: K \to L$ is a subfield of L.
- Lemma: intersections of subfields are subfields.
- **Prime subfield** of L: intersection of all subfields of field L.
- **Definition**: **characteristic** char(K) of field K is

$$char(K) := min(\{0\} \cup \{n \in \mathbb{N} : \chi(n) = 0\})$$

where $\chi: \mathbb{Z} \to K$, $\chi(m) = 1 + \dots + 1$ (*m* times).

- Example: $\operatorname{char}(\mathbb{Q}) = \operatorname{char}(\mathbb{R}) = \operatorname{char}(\mathbb{C}) = 0$, $\operatorname{char}(\mathbb{F}_p) = p$ for p prime.
- Lemma: for any field K, char(K) is either 0 or a prime.
- Theorem:
 - $\operatorname{char}(K) = 0$ iff \mathbb{Q} is the prime subfield of K.
 - $\operatorname{char}(K) = p > 0$ iff \mathbb{F}_p is the prime subfield of K.
- Note $p \mid \binom{p}{i}$ so $(a+b)^p = a^p + b^p$.