Detección de posibles mosaicismos estructurales y puntuales

Curso Medicina Genómica Personalizada

Barcelona, 5-7 Noviembre 2018

Juan R Gonzalez

Bioinformatics Research Group in Epidemiology (BRGE), ISGlobal

www.brge.isglobal.org

email: juanr.gonzalez@isglobal.org

URDCat Spectrum of variation in the human genome

Genetic Mosaicism: Presence of two population of cells with different genotype in one individual

Early somatic mosaicism

Early developmental event propagated to daughter cells

Adapted from Campbell IM 2015

Late somatic mosaicism

Early or late somatic event with clonal selection for variable reasons

Adapted from Fernández, Luis C 2015

Adapted from Jacobs, KB et al. Nat Genet, 2012

Adapted from Zhou, W et al. Nat Genet, 2016

Associated with

- Late events:
 - Aging
 - Solid and hematological cancer
- Early events:
 - Developmental disorders
 - Brain and other malformations
 - Pregnancy loss

- Late events:
 - All-type mortality
 - Alzheimer, cardiovascular events
 - Hematological cancer
- Early events:
 - Mosaic Turner syndrome and related effects

Phenotypic Spectrum

Mosaic Disorders	Tissue Affected	Chromosome
Chronic lymphocytic leukemia	Blood	13q14
Down's syndrome	Multiple	21
Keratinocytic epidermal nevus	Skin	11p
Maffucci syndrome	Multiple	2q,15q
McCune-Albright syndrome	Multiple	20q
Nevus sebaceous	Skin	11p,12p
Ollier disease	Connective	2q,15q
Proteus syndrome	Multiple	14q
Schimmelpenning syndrome	Multiple	11p,12p
Turner's syndrome	Multiple	X

By event type and location

Mosaic Chromosome Count						Mosaic	Chrom	osome Fre	quency (%)
Event Location	Gain	Loss	CN LOH	Mixed	Total	Gain	Loss	CN LOH	Mixed	Total
Chromosome	70	11	45	5	131	6.7	1.0	4.3	0.5	12.5
Telomeric p	16	24	144	1	185	1.5	2.3	13.7	0.1	17.6
Telomeric q	22	26	232	0	280	2.1	2.5	22.1	0.0	26.6
Interstitial	46	379	2	1	428	4.4	36.1	0.2	0.1	40.7
Span centromere	2	1	2	0	5	0.2	0.1	0.2	0.0	0.5
Complex	1	5	9	7	22	0.1	0.5	0.9	0.7	2.1
Total	157	446	434	14	1051	14.9	42.4	41.3	1.3	100.0

Abbreviation: CN LOH, copy-neutral loss of heterozygosity.

Adapted from Laurie et al. Nat Genet, 2012 and Jacobs et al. Nat Genet, 2012

Mosacic detection

- Cytogenetics and fluorescent in situ hybridization
- Sanger sequencing and pyrosequencing
- Single cell sequencing
- Personalized assays (targeted approach)
- Arrays (aCGH or SNPs)
- Massively-parallel sequencing (WES or WGS)

Copy number variants (CNVs)

Type of Mosaic rearrangements

MAD: https://github.com/isglobal-brge/MAD

- Case—control analysis: 1303 cases with **developmental disorders** and 5094 controls (OR = 39.4, *P*-value 1.073e 6)
- A meta-analysis that included frequency estimates 7000 children with congenital diseases yielded an even stronger statistical enrichment (*P*-value 1.784e 11)

MADloy: https://github.com/isglobal-brge/MADloy

Associated to all cause and cancer mortalities

Forsberg, 2014

Associated with higher risk of developing Alzheimer's disease

Dumanski, 2016

Autism spectrum disorder

Autism spectrum disorder

0.43% rate (autosomes)

0.07% rate (gonosomes)

79.16% events not previously detected

 Significantly higher mosaicism rate in ASD patients than controls in the same age bin (OR = 8.11, p=9.798·10⁻⁶).

MrMosaic

4911 patients with undiagnosed developmental disorders, and 11 events among nine patients were detected.

Exome detections							SNP validation			
Decipher ID	Chromosome	Туре	Start (GRCh37)	End (GRCh37)	B _{dev}	log₂ ratio	Tissue	Clonality	Clonality saliva	Clonality blood
265800	12	Gain	988,894	33,535,510	0.201	0.140	Saliva	1.34	0.68ª	Absent
261373	12	Gain	283,642	33,535,289	0.131	0.262	Saliva	0.72	0.45a	Absent
273553	18	Gain	670,541	18,534,702	0.186	0.185	Saliva	1.18	0.6a	Absent
259003	22	Loss	42,912,136	50,717,129	0.131	-0.129	Blood	0.42	0.54	0.34
274013	10	Loss	121,717,932	134,916,366	0.159	-0.324	Saliva	0.48	0.44	Absent
274600	18	Loss	48,458,662	76,870,586	0.190	-0.434	Saliva	0.55	0.49	Absent
260462	18	Loss	662,103	2,740,714	0.171	-0.339	Saliva	0.51	0.46	Absent
260462 ^b	18	Gain	12,702,610	15,323,214	0.118	0.263	Saliva	0.41	0.5	Absent
260462	18	Loss	48,466,843	74,962,645	0.153	-0.345	Saliva	0.47	0.45	Absent
257978	5	LOH	146,077,526	179,731,635	0.167	-0.002	Blood	0.33	0.24	0.26
274396	11	LOH	66,834,252	134,126,612	0.255	-0.0047	Saliva	0.51	0.28	0.17

Decipher ID	Phenotypes
257978	Intellectual disability profound, seizures, somnolence, thoracolumbar scoliosis, gastroesophageal reflux, abnormality of neuronal migration
259003	Generalized hypotonia, global developmental delay
260462	Microcephaly, muscular hypotonia, short philtrum, upslanted palpebral fissure
261373	Moderate global developmental delay
265800	Global developmental delay, meningocele, delayed closure of the anterior fontanelle, macroglossia, sparse scalp hair, ligamentous laxity, delayed speech and language development, coarse facial features
273553	Global developmental delay, joint laxity, hypermetropia, strabismus
274013	Severe expressive language delay, global developmental delay, abnormal facial shape, brachydactyly syndrome, thick hair, coarse facial features, abnormality of facial musculature, joint stiffness
274396	Congenital hypothyroidism, congenital microcephaly, moderately short stature, mild global developmental delay, premature anterior fontanel closure, fine hair, sparse scalp hair, long palpebral fissure, wide mouth, short broad hands, excessive wrinkling of palmar skin, excessive skin wrinkling on dorsum of hands and fingers, strabismus, generalized hypopigmentation of hair, progressive hyperpigmentation, mixed hypo- and hyperpigmentation of the skin, axillary and groin hyperpigmentation and hypopigmentation
274600	Microcephaly, progressive microcephaly, severe global developmental delay, abnormal posturing, brachycephaly, epicanthus, muscular hypotonia, narrow palate, hypotelorism, broad distal phalanx of finger

• Acuna-Hidalgo, et al. AJHG, 2015 found that ~6.5% of presumed germline *de novo* **mutations** were present as **mosaic mutations** in the blood of the offspring and were therefore likely to have occurred postzygotically.

- Postzygotic mosaic mutations (PPM)
 analysis of ASD (Simon Simplex Collection)
- 470 PMMs detected in children
- Increase up to 22% SNVs mosaic detected
- The authors estimate that PPMs may contribute to 3-4% of simplex ASD case.

nature methods

BRIEF COMMUNICATION

https://doi.org/10.1038/s41592-018-0051-

Strelka2: fast and accurate calling of germline and somatic variants

- 251 samples belonging to URDCat
- Nimblegen_SeqCapEZExome_v3_64Mb
- Analysis using adhoc pipeline

Filter Description	# Variants (in total)
Initial	1.200.0000
Software Developer	150.000
QC filters from Strelka	44.000
GATK MQ	41.000
SnpCluster & repetitive regions	37.352
Unique variants (1-2 individuals)	717
Depth coverage >= 30	578
Coverage ALT > 3	576
Coverage Forward & Coverage Reverse >= 1 (avoid strand bias)	565

Filter Description	# Variants
DPForward & DPReverse >= 1	565
AAF >= 0.05 & <= 0.15 >= 0.85 & <= 0.95	7
Population (ExAC, gnomAD) < 0.002	3
Segmental duplication	3
Known clinical significance (CLINSIG)	3
pLI >0.9	2

False positive !!!

FAMILIA	Relación	PHENOTIPS ID	CENTRE	RDCat ID	Mutación	PATOLOGIA
FAM0000238	Probando	P0000400	VHIR	EPR762118	Germinal	Progresiva
FAM0000238	Padre	P0001037	VHIR	EPR943482	Germinal	No afecto
FAM0000238	Madre	P0001038	VHIR	EPR798030		No afecto
FAM0000307	Probando	P0000474	IDIBELL	EPR236242	De novo ?	Progresiva
FAM0000307	Padre	P0000806	IDIBELL	EPR292176		No afecto
FAM0000331	Probando	P0000354	IDIBELL	EPR211571	De novo ?	Progresiva
FAM0000331	Madre	P0000814	IDIBELL	EPR000148	De novo ?	Afecto
FAM0000472	Probando	P0000786	IDIBELL	EPR606291	De novo	Neuromuscular
FAM0000472	Padre	P0000863	IDIBELL	EPR255030		Afecto
FAM0000472	Madre	P0000863	IDIBELL	EPR308956		Afecto
FAM0000664	Probando	P0001175	VHIR	EPR228697	De novo	no afecto
FAM0000664	Padre	P0001174	VHIR	EPR105166		Epilepsia y TPNE
FAM0000664	Madre	P0001176	VHIR	EPR802333		no afecto
FAM0000676	Probando	P0001212	VHIR	EPR290453	De novo	no afecto
FAM0000676	Padre	P0001210	VHIR	EPR416046		Epilepsia y TPNE
FAM0000676	Madre	P0001211	VHIR	EPR846345		no afecto
FAM0000683	Probando	P0001232	VHIR	EPR296368	De novo	no afecto
FAM0000683	Padre	P0001230	VHIR	EPR334036		Metabólica Hereditaria
FAM0000683	Madre	P0001231	VHIR	EPR909792		No afecto

EPR606291

Chrom	Pos	REF	ALT	Coverage	REF cov	ALT cov	AAF
16	66957496	C	Т	33	27	5	0.15

Software

- MAD: https://github.com/isglobal-brge/MAD/blob/master/vignettes/MAD.html
- MADloy: https://github.com/isglobal-brge/MADloy/
- mrMosaic: https://github.com/asifrim/mrmosaic
- Strelka2: https://github.com/Illumina/strelka
- MADseq: https://bioconductor.org/packages/release/bioc/html/MADSEQ.html
- URDCat pipeline: juanr.gonzalez@isglobal.org

Detección de posibles mosaicismos estructurales y puntuales

Curso Medicina Genómica Personalizada

Barcelona, 5-7 Noviembre 2018

Juan R Gonzalez

Bioinformatics Research Group in Epidemiology (BRGE), ISGlobal

www.brge.isglobal.org

email: juanr.gonzalez@isglobal.org