Set Theory I

Ji, Yong-hyeon

October 13, 2024

Terminology.

- Set; Collection; Family.
- Tabular (or Roster) Form

$$A = \{0, 2, 4, 8\}$$
.

• Set-builder Form

 $A = \{x : x \text{ is even and } x < 10\}.$

Example.

- $\mathbb{N} = \{1, 2, \dots\}$
- $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$
- $\mathbb{Q} = \left\{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{Z} \setminus \{0\}, \gcd(p, q) = 1 \right\}$
- $\mathbb{R} = \{x : x \text{ is a real number}\}$
- $\mathbb{C} = \{z : z \text{ is a complex number}\}$

Exercise. Show that $\sqrt{2}$ is irrational.

Sol. Assume $\sqrt{2} \in \mathbb{Q}$, i.e., $\exists p, q \in \mathbb{Z}$ such that $\sqrt{2}q = p$, $g \neq 0$ and $\gcd(p, q) = 1$. Then $2q^2 = p^2$. Since p^2 is even $\Rightarrow p$ is even,

$$p = 2k$$
 for some $k \in \mathbb{Z}$

By substituting p = 2k into $2q^2 = p^2$, we have

$$2q^2 = (2k)^2 \implies 2q^2 = 4k^2 \implies q^2 = 2k^2$$

Since q^2 is even $\Rightarrow q$ is even,

$$q = 2m$$
 for some $m \in \mathbb{Z}$

Thus, p and q are both even \implies $\gcd(p,q) \ge 2$, which contradicts the assumption $\gcd(p,q) = 1$. \square

Subset and Set Equality

Definition. Let *A* and *B* are sets.

- Subset: $B \subseteq A \iff (x \in B \Rightarrow x \in A)$.
- Set Equality:

$$A = B \iff A \subseteq B \land B \subseteq A$$
$$\iff (x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A).$$

Power Set

Definition. The **power set** of a set *X* is the set of all subsets of *X*.

$$\mathcal{P}(X) = 2^X := \{S : S \subseteq X\}.$$

Cartesian Product

Definition. Let *A* and *B* are sets. The **cartesian product** of *A* and *B* is the set

$$A \times B = \{(a, b) : a \in A \land b \in B\}.$$

Union, Intersection and Complement

Definition. Let *U* is a universal set, and let $A, B \subseteq U$.

• The **union** of *A* and *B* is the set

$$A \cup B := \{x \in U : x \in A \lor x \in B\}.$$

Note that $x \in A \cup B \iff x \in A \lor x \in B$.

• The **intersection** of *A* and *B* is the set

$$A \cap B := \{ x \in U : x \in A \land x \in B \}.$$

Note that $x \in A \cap B \iff x \in A \land x \in B$.

• The **complement** of *A* is the set

$$A^{C} := \left\{ x \in U : \neg(x \in A) \right\} = \left\{ x : x \notin A \right\}.$$

Note that $x \in A^C \iff x \notin A$.

Proposition 1 *Let* A, B, $C \subseteq U$.

- $(1) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$
- $(2) \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$
- (3) $(A \cup B)^C = A^C \cap B^C$.
- (4) $(A \cap B)^C = A^C \cup B^C$.

Proof. (1) Refer to the Video[1].

- (2) Refer to the Video[1].
- (3) $(A \cup B)^C = \{x : \neg [x \in A \lor x \in B]\} = \{x : x \notin A \land x \notin B\} = A^C \cap B^C.$
- **(4)** $(A \cap B)^C = \{x : \neg [x \in A \land x \in B]\} = \{x : x \notin A \lor x \notin B\} = A^C \cup B^C.$

Exercise. Let *A* has *n* elements. Show that $\mathcal{P}(A)$ has 2^n elements.

Sol.

- (pf 1) For each element of A, there are two choices:
 - 1 Include the element in the subset
 - 2. Exclude the element from the subset.

Since we have two independent choices (include or exclude), the total number of subsets is:

$$\underbrace{2 \times 2 \times \cdots 2}_{n \text{ times}} = 2^n.$$

(pf 2) We use mathematical induction.

(Basic Step) Let $A = \emptyset$ (so |A| = 0). Then $\mathcal{P}(A) = \{\emptyset\}$ and so $|\mathcal{P}(A)| = |\{\emptyset\}| = 1$. (Inductive Step) Assume that $|\mathcal{P}(A)| = 2^k$ where |A| = k for some $k \in \mathbb{Z}_{\geq 0}$. Let $A' = A \cup \{x\}$ where |A| = k and $x \notin A$. That is, |A'| = k + 1. Then

$$\mathcal{P}(A') = \mathcal{P}(A) \cup \{S \cup \{x\} : S \in \mathcal{P}(A)\}\$$

This implies $|\mathcal{P}(A')| = |\mathcal{P}(A)| + |\mathcal{P}(A)|$. Therefore, by assumption, $|\mathcal{P}(A')| = 2^k + 2^k = 2^{k+1}$.

Function

Definition. Let *A* and *B* are sets. A relation $f \subseteq A \times B$ is a **function from** *A* **to** *B* if

$$\forall a \in A, \exists! b \in B \text{ such that } (a, b) \in f.$$

That is, every element of *A* relates to exactly one element of *B*.

Remark.

- The **domain** of f is Dom(f) = A.
- The **codomain** of f is Cdm(f) = B.
- The image of A under f is the set

$$\operatorname{Img}(f) = f[A] := \left\{ b \in B : \exists a \in A \text{ s.t. } (a, b) \in f \right\}$$
$$= \left\{ b \in B : \exists a \in A \text{ s.t. } f(a) = b \right\}$$
$$= \left\{ b \in B : b = f(a) \text{ for at least one } a \in A \right\}.$$

Simply we can express it as $f[A] = \{f(a) \in B : a \in A\}$.

Figure 1: Image of A under f.

Note that $f[A] \subseteq B = Cdm(f)$ and that

$$b \in f[A] \iff b = f(a) \text{ for some } a \in A.$$

• The **preimage** of $B_1 \subseteq B$ under f is the set

$$f^{-1}[B_1] := \left\{ a \in A : \exists b \in B_1 \text{ s.t. } (a, b) \in f \right\}$$

$$= \left\{ a \in A : \exists ! b \in B_1 \text{ s.t. } b = f(a) \right\} \text{ by def. of a function}$$

$$= \left\{ a \in A : f(a) = b \text{ for exactly one } b \in B_1 \right\}.$$

"Exactly one" ensures a unique assignment for every element of A, while "at most one" allows no assignment. Simply we can express it as $f^{-1}[B_1] = \{a \in A : f(a) \in B_1\}$.

Figure 2: Preimage of $B_1 \subseteq B$ under f.

Note that $f^{-1}[B_1] \subseteq A = \text{Dom}(f)$ and that $a \in f^{-1}[B_1] \iff f(a) \in B_1$.

Proposition 2 *Let* $f : A \rightarrow B$ *be a function from A to B, and let* $A_1, A_2 \subseteq A$.

- (1) $f[A_1 \cup A_2] = f[A_1] \cup f[A_2]$.
- (2) $f[A_1 \cap A_2] \subseteq f[A_1] \cap f[A_2]$.

Proof. Recall that

$$b \in f[A] \iff b = f(a) \text{ for some } a \in A.$$

(1) (\subseteq) Let $b \in f[A_1 \cup A_2]$. By the definition of the image, b = f(a) for some $a \in A_1 \cup A_2$. Then either $a \in A_1$ or $a \in A_2$.

(Case 1)
$$a \in A_1 \Rightarrow f(a) \in f[A_1]$$
.
(Case 2) $a \in A_2 \Rightarrow f(a) \in f[A_2]$.

Thus, $b = f(a) \in f[A_1] \cup f[A_2]$, and so $f[A_1 \cup A_2] \subseteq f[A_1] \cup f[A_2]$.

 (\supseteq) Let $b \in f[A_1] \cup f[A_2]$. Then either $b \in f[A_1]$ or $b \in f[A_2]$.

(Case 1)
$$b \in f[A_1] \Rightarrow b = f(a_1)$$
 for some $a_1 \in A_1$.
(Case 2) $b \in f[A_1] \Rightarrow b = f(a_2)$ for some $a_2 \in A_2$.

That is, $\exists a \in A_1 \cup A_2$ such that f(a) = b and $a \in \{a_1, a_2\}$. Thus, $b \in f[A_1 \cup A_2]$.

- (2) Let $b \in f[A_1 \cap A_2]$. By the definition of the image, b = f(a) for some $a \in A_1 \cap A_2$. Since $a \in A_1 \cap A_2$, we have $a \in A_1$ and $a \in A_2$. Then both of the following hold:
 - (i) $a \in A_1 \implies f(a) \in f[A_1]$
 - (ii) $a \in A_2 \implies f(a) \in f[A_2]$

Therefore, $b = f(a) \in f[A_1] \cap f[A_2]$.

Proposition 3 *Let* $f : A \rightarrow B$ *be a function from A to B, and let* $B_1, B_2 \subseteq B$.

- (1) $f^{-1}[B_1 \cup B_2] = f^{-1}[B_1] \cup f^{-1}[B_2].$
- (2) $f^{-1}[B_1 \cap B_2] = f^{-1}[B_1] \cap f^{-1}[B_2].$
- (3) $f^{-1}[B_1^C] = (f^{-1}[B_1])^C$.

Proof. Recall that

$$a \in f^{-1}[B] \iff f(a) \in B$$

(1) (\subseteq) Let $a \in f^{-1}[B_1 \cup B_2]$. By the definition of the preimage, we have $f(a) \in B_1 \cup B_2$. That is, either $f(a) \in B_1$ or $f(a) \in B_2$.

(Case 1)
$$f(a) \in B_1 \implies a \in f^{-1}[B_1]$$
.

(Case 2)
$$f(a) \in B_2 \implies a \in f^{-1}[B_2].$$

Thus, $a \in f^{-1}[B_1] \cup f[B_2]$.

 (\supseteq) Let $a \in f^{-1}[B_1] \cup f^{-1}[B_2]$. Then either $a \in f^{-1}[B_1]$ or $a \in f^{-1}[B_2]$.

(Case 1)
$$a \in f^{-1}[B_1] \implies f(a) \in B_1$$
.
(Case 2) $a \in f^{-1}[B_2] \implies f(a) \in B_2$.

That is, $f(a) \in B_1 \cup B_2$. Thus, $a \in f^{-1}[B_1 \cup B_2]$.

(2) (\subseteq) Let $a \in f^{-1}[B_1 \cap B_2]$. By the definition of the preimage, $f(a) \in B_1 \cap B_2$ and so $f(a) \in B_1$ and $f(a) \in B_2$. Then both of the following hold:

(i)
$$f(a) \in B_1 \implies a \in f^{-1}[B_1].$$

(ii)
$$f(a) \in B_2 \implies a \in f^{-1}[B_2].$$

Thus, $a \in f^{-1}[B_1] \cap f[B_2]$.

 (\supseteq) Let $a \in f^{-1}[B_1] \cap f^{-1}[B_2]$. Then $a \in f^{-1}[B_1]$ and $a \in f^{-1}[B_2]$. Then both of the following hold:

(i)
$$a \in f^{-1}[B_1] \implies f(a) \in B_1$$

(ii)
$$a \in f^{-1}[B_2] \implies f(a) \in B_2$$
.

That is, $f(a) \in B_1 \cap B_2$. Thus, $a \in f^{-1}[B_1 \cap B_2]$.

(3) (\subseteq) Let $a \in f^{-1}[B_1^C]$. By the definition of the preimage,

$$f(a) \in B_1^C \implies f(a) \notin B_1 \implies a \notin f^{-1}[B_1] \implies a \in (f^{-1}[B_1])^C$$

(⊇) Let $a \in (f^{-1}[B_1])^C$. By the definition of the preimage,

$$a \not\in f^{-1}[B_1] \implies f(a) \not\in B_1 \implies f(a) \in B_1^C \implies a \in f^{-1}[B_1^C]$$

Proposition 4 *Let* $f : A \rightarrow B$ *be a function from A to B. Let* $A_1 \subseteq A$ *and* $B_1 \subseteq B$.

- (1) $f[f^{-1}[B_1]] \subseteq B_1$.
- (2) $A_1 \subseteq f^{-1}[f[A_1]].$

Proof. Recall that

$$f^{-1}[B_1] := \left\{ a \in A : f(a) \in B_1 \right\}, \qquad f[A_1] := \left\{ f(a) \in B : a \in A_1 \right\},$$

$$f[f^{-1}[B_1]] := \left\{ f(a) \in B : a \in f^{-1}[B_1] \right\}, \qquad f^{-1}[f[A_1]] := \left\{ a \in A : f(a) \in f[A_1] \right\}$$

(1) Let $b \in f[f^{-1}[B_1]]$. By the definition of the image,

$$\exists a \in f^{-1}[B_1]$$
 such that $b = f(a)$

From the definition of the preimage, $a \in f^{-1}[B_1] \Rightarrow f(a) \in B_1$. Thus $b = f(a) \in B_1$.

(2) Let $a \in A_1$. By the definition of the image, we know that $f(a) \in f[A_1]$. By the definition of the preimage, $f(a) \in f[A_1] \Rightarrow a \in f^{-1}[f[A_1]]$.

Example (Counterexample). Consider a function $f : A \rightarrow B$, where $A = \{1, 2\}$ and $B = \{a, b\}$.

(1) Let $B_1 = \{b\} \subseteq B$. Then $f^{-1}[B_1] = \emptyset$ and so

$$f[f^{-1}[B]] = f[\varnothing] = \varnothing \neq \{b\} = B_1.$$

(2) Let $A_1 = \{1\} \subseteq A$. Then $f[A_1] = f[\{1\}] = \{a\}$ and so

$$f^{-1}[f[A_1]] = f^{-1}[\{a\}] = \{1,2\} \neq \{1\} = A_1.$$

Injection and Surjection

Definition. Let $f : A \rightarrow B$ is a function from A to B.

• A function f is an injection or injective (or one-to-one) if and only if

$$\forall a_1, a_2 \in A : [f(a_1) = f(a_2) \implies a_1 = a_2].$$

That is, an **injection** is a mapping such that the output uniquely determines its input.

• A function *f* is a surjection or surjective (or onto) if and only if

$$\forall b \in B : [\exists a \in A \text{ such that } f(a) = b].$$

That is, a **surjection** is a mapping such that every element of B is related to by some element of A.

Remark. A function *f* is **bijective** if and only if *f* is both injective and surjective.

- *f* is a bijection (or bijective).
- *f* is one-to-one and onto (or a one-to-one correspondence).

Composition of Functions

Definition. Let $f_1: A \to B$ and $f_2: B \to C$ be functions such that $Cdm(f_1) = B = Dom(f_2)$. The **composition** $f_2 \circ f_1$ is defined as:

$$(f_2 \circ f_1)(a) := f_2(f_1(a)).$$

for all $a \in A$.

Note (Diagram).

Figure 3: Diagram of $f_2 \circ f_1$.

Note (Illustration).

Figure 4: Illustration of $f_2 \circ f_1$

Remark. The composition is associative. For any f, g, $h \in G$, $(f \circ g) \circ h = f \circ (g \circ h)$.

Figure 5: Associativity of Composition.

Theorem 1 Let A and B are sets. Let $f: A \to B$ be a function.

- (1) f is one-to-one if and only if there exists the function $g: B \to A$ such that $g \circ f = id_A$.
- (2) f is onto if and only if there exists the function $g: B \to A$ such that $f \circ g = id_B$.

Remark.

Proof. (1) (\Rightarrow) Assume that $f: A \to B$ is injective. We need to construct a function $g: B \to A$ such that $g \circ f = \mathrm{id}_A$.

We define a function $g: B \to A$ given by

$$g(b) = \begin{cases} a & \text{if } \exists ! a \in A \text{ such that } f(a) = b \\ a_0 & \text{if } b \notin f[A] \end{cases}$$

for all $b \in B$, where $a_0 \in A$ is an arbitrary element of A. Since f is one-to-one, g is well-defined. For any $a \in A$, we have $f(a) \in B$. By the definition of g, we obtain g(f(a)) = a. Thus,

$$(g\circ f)(a)=g(f(a))=a=\mathrm{id}_A(a)$$

for all $a \in A$.

(**⇐)** Assume that there exists $g: B \to A$ such that $g \circ f = \mathrm{id}_A$. Suppose that $f(a_1) = f(a_2)$ for any $a_1, a_2 \in A$. Then

$$f(a_1) = f(a_2) \implies g(f(a_1)) = g(f(a_2))$$
 by def. of a function $\implies a_1 = a_2$ by assumption $g \circ f = \mathrm{id}_A$.

(2) (\Rightarrow) Assume $f:A\to B$ is surjective. Then, for every $b\in B$, there exists at least one $a\in A$ such that f(a)=b. We need to construct a function $g:B\to A$ such that $f\circ g=\mathrm{id}_B$, i.e., f(g(b))=b for every $b\in B$.

The **Axiom of Choice**¹ allows us to define $g: B \rightarrow A$ given by

$$g(b) = a \in f^{-1}[\{b\}]$$

for each $b \in B$. Thus,

$$(f \circ g)(b) = f(g(b))$$
 by def. of composition
 $= f(a)$ by def. of g
 $= b$ by assumption
 $= id_B(b)$

for all $b \in B$. That is, $f \circ g = \mathrm{id}_B$. Without the Axiom of Choice, we cannot always guarantee the existence of such a selection function, especially when the sets $f^{-1}[\{b\}]$ are uncountable.

(\Leftarrow) Assume that there exists $g: B \to A$ such that $f \circ g = \mathrm{id}_B$. Let $b \in B$. Since $f \circ g = \mathrm{id}_B$, we have $f(g(b)) = \mathrm{id}_B(b) = b$. Thus, for every $b \in B$,

$$\exists a = g(b) \in A$$
 such that $f(a) = f(g(b)) = b$.

 ${}^{\mathbf{1}}\mathrm{Here}, \mathbb{S} = \left\{ f^{-1}[\{b\}] \subseteq A : b \in B \right\} \text{ and } \bigcup \mathbb{S} = \bigcup_{b \in B} f^{-1}[\{b\}] = A. \text{ That is, there is a choice function } F : \mathcal{P}(A) \setminus \{\emptyset\} \to A.$

Note (Axiom of Choice). Let \$\mathbb{S}\$ be a set of non-empty sets.

"It is always possible to construct a choice function that selects a one element from each member of the set."

Formally,

$$\forall \mathbb{S}: \left[\varnothing \not\in \mathbb{S} \implies \exists \left(f: \mathbb{S} \to \bigcup \mathbb{S}\right) \text{ s.t. } \forall X \in \mathbb{S}: \left[f(X) \in X\right]\right].$$

For example, let $\mathbb{S} = \{A, B, C, \dots\}$ and $\bigcup \mathbb{S} = A \cup B \cup C \cup \dots$

References

- [1] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 1. 집합론 기초 (a)." YouTube Video, 30:55. Published September 05, 2019. URL: https://www.youtube.com/watch? v=9HUk8zays2E&list=PL4m4z_pFWq2pLwFsWf0KJX_uMNo-jktN5&index=132.
- [2] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 2. 집합론 기초 (b)." YouTube Video, 29:06. Published September 05, 2019. URL: https://www.youtube.com/watch? v=k53Sr9Q9NR8&list=PL4m4z_pFWq2pLwFsWf0KJX_uMNo-jktN5&index=133.