Title

Olof Sjödin * Sven Svensson †

4 June 2015

Sample Course - SI1337 Royal Institute of Technology

^{*}olsj@kth.se †sven@svensson.com

1 Introduction

Bla bla bla.

2 Theory

Bla bla bla.

3 Results

Our final result of the fit is shown in figure ??.

Figure 1: Fitting the data to the to the linear equation $\Delta\sigma=\omega_e-2\omega_e x_e(1+\nu)$ with inserted peaks. $R^2=0.3828$

 $\omega_e=214.50cm^{-1}$ and $\omega_e x_e=0.614cm^{-1}$ was retrieved from NiST[?] is the reference value or theoretical value. The result we got from the last fit is $\omega_e 202.5803^{-1}$ which is a 5.557% deviation from the theoretical value, $\omega_e x_e=0.46463cm^{-1}$ which is a 24.3277% deviation and $D_e=22081.5347cm^{-1}$ that is a 17.8751% deviation.

You can see the peaks that are used in figure ?? at table ??.

Vibrational quantum number ν	$\Delta \sigma \ [10^4 cm^{-1}]$
4	1.8828
11	1.7455
18	1.6131
20	1.5763
25	1.4855

Table 1: Inserted peaks that are used in figure ??

4 Discussion

References

- [1] ChemeDDL.org http://www.chemeddl.org/alfresco/service/api/node/content/workspace/ SpacesStore/8a367d14-7f6d-4fef-a7df-eb19579da11b/IodineSpectrum.pdf?guest=true
- [2] NiST http://webbook.nist.gov/cgi/cbook.cgi?ID=C7553562&Units=SI&Mask=1000