UCB

```
library(data.table)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:data.table':
##
##
       between, first, last
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(ggplot2)
library(reshape2)
##
## Attaching package: 'reshape2'
## The following objects are masked from 'package:data.table':
##
##
       dcast, melt
library(scales)
library(parallel)
library(stringr)
library(knitr)
dt.aging.stats = fread("annotations/aging_stats.txt") %>%
  mutate(count_total = count, occurrences_total = diversity, ucb = age == 0) %%
  select(sample_id, ucb, count_total, occurrences_total)
Load VDJdb annotations with 1 mismatch for aging data
dt.aging = rbindlist(mclapply(as.list(dt.aging.stats$sample_id),
                   function(x) fread(paste0("annotations/aging_split_1mm/", x, ".annot.txt")) %>%
                     mutate(sample_id = x), mc.cores = 40)) %>%
  group_by(sample_id, cdr3) %>%
  summarise(count = sum(count), occurrences = n())
VDJdb data
dt.vdjdb = fread("rearr_model/VDJDB_fullP_rob_ageing.txt") %>%
  filter(gene == "TRB", mhc.class == "MHCI") %>%
  mutate(hla_spec = str_split_fixed(mhc.a, pattern = "[:,]", 2)[,1]) %>%
  select(cdr3, hla_spec, antigen.epitope, antigen.species) %>%
  group_by(antigen.epitope) %>%
  mutate(unique_cdrs = n()) %>%
  filter(unique_cdrs > 30) %>%
  select(cdr3, hla_spec, antigen.epitope, antigen.species, unique_cdrs)
```

```
Merge datasets
dt.aging.m = dt.aging %>%
  merge(dt.vdjdb) %>%
  merge(dt.aging.stats)
Summarise by epitope
dt.aging.s = dt.aging.m %>%
  group_by(ucb, antigen.epitope, antigen.species, unique_cdrs) %>%
  summarise(occurrences = sum(occurrences) / unique_cdrs[1]) %>%
  merge(dt.aging.stats %>%
          group by(ucb) %>%
          summarise(occurrences_total = sum(as.numeric(occurrences_total))))
Distribution of epitopes in UCB and PBMC samples
fancy_scientific = function(1) {
     # turn in to character string in scientific notation
     1 = format(1, scientific = TRUE)
     # quote the part before the exponent to keep all the digits
    1 = gsub("^(.*)e", "' \setminus 1'e", 1)
     # turn the 'e+' into plotmath format
     1 = gsub("e", "%*%10^", 1)
     # return this as an expression
    parse(text=1)
}
dt.aging.s.s = dt.aging.s %>%
 filter(ucb == T) %>%
  group_by(antigen.epitope) %>%
  summarise(freq = sum(occurrences / unique_cdrs) / sum(occurrences_total))
dt.aging.s$antigen.epitope = factor(dt.aging.s$antigen.epitope,
                                    levels = dt.aging.s.s$antigen.epitope[order(dt.aging.s.s$freq)])
tmp = dt.aging.s %>%
  group_by(ucb, antigen.epitope) %>%
  summarise(freq = sum(occurrences / unique_cdrs) / sum(occurrences_total)) %>%
  dcast(antigen.epitope~ucb, value.var= "freq")
freq.ratios = tmp[,3] / tmp[,2]
m=mean(freq.ratios)
ci = qnorm(0.975)*sd(freq.ratios)/sqrt(length(freq.ratios))
paste(round(m,2), round(m-ci,2), round(m+ci,2))
## [1] "1.2 1.16 1.24"
t.test(occurrences / unique_cdrs / occurrences_total ~ ucb, dt.aging.s, paired=T)
## Paired t-test
## data: occurrences/unique_cdrs/occurrences_total by ucb
## t = -4.5646, df = 33, p-value = 6.613e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -5.323222e-08 -2.040925e-08
```

```
## sample estimates:
## mean of the differences
              -3.682073e-08
p17=ggplot(dt.aging.s, aes(x = antigen.epitope, fill = ucb,
                         y = occurrences / unique_cdrs / occurrences_total)) +
  geom_bar(stat="identity", position = "dodge") +
  coord_flip() +
  scale fill brewer("UCB", palette = "Set1") +
  xlab("") + scale_y_continuous("Fraction of rearrangements", labels = fancy_scientific,
                                   expand = c(0,0), limits = c(0, 9e-7)) +
  theme bw() +
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())
p17
  KLVALGINAV
   FLYNLLTRV
     EIYKRWII
 KRWIIMGLNK
  ISPRTLNAW
 AMFWSVPTV
  GPGHKARVL
EPLPQGQLTAY
IPSINVHHY
    LPPIVAKEI
   SLYNTVATL
  TPQDLNTML
TPGPGVRYPL
KAFSPEVIPMF
RPRGEVRFL
                                                                                    UCB
   IIKDYGKQM
LPRRSGAAGA
                                                                                        FALSE
   VTEHDTLLY
 HPKVSSEVHI
LLWNGPMAV
                                                                                        TRUE
   YVLDHLIVV
FLKEKGGL
    RAKFKQLL
  HSKKKCDEL
  FPRPWLHGL
  KRWIILGLNK
  CINGVCWTV
LLLGIGILV
TPRVTGGGAM
GILGFVFTL
  ATDALMTGY
  GLCTLVAML
  NLVPMVATV
  ELAGIGILTV
          0.0 \times 10^{+0}
                             2.5 \times 10^{-7}
                                               5.0 \times 10^{-7}
                                                                 7.5 \times 10^{-7}
                                 Fraction of rearrangements
```

Evenness of epitope-specific TCR occurrences

```
dt.aging.s2 = as.data.table(dt.aging.m) %>%
    group_by(sample_id, ucb, antigen.epitope, antigen.species, unique_cdrs) %>%
    summarise(occurrences = sum(occurrences)) %>%
    group_by(sample_id) %>%
    mutate(occurrences_share = occurrences / sum(occurrences) / unique_cdrs)

dt.p = data.table(antigen.epitope = unique(dt.aging.s2$antigen.epitope), p = 1, freq.ratio = 1) %>%
    merge(dt.aging.s2 %>% ungroup %>% select(antigen.species, antigen.epitope) %>% unique)
```

```
for (i in 1:nrow(dt.p)) {
   tmp = dt.aging.s2 %>% filter(antigen.epitope == dt.p$antigen.epitope[i])
   dt.p$freq.ratio[i] = with(tmp, mean(occurrences_share[which(ucb)]) / mean(occurrences_share[which(!uccout.p$p[i] = t.test(occurrences_share ~ ucb, tmp)$p.value
}

dt.p$p = p.adjust(dt.p$p, method = "BH")
dt.p$len = nchar(as.character(dt.p$antigen.epitope))

kable(dt.p %>% arrange(p))
```

antigen.epitope	p	freq.ratio	antigen.species	len
ATDALMTGY	0.0034813	0.8779157	HCV	9
TPGPGVRYPL	0.0034813	0.8452927	HIV-1	10
TPRVTGGGAM	0.0049082	0.8316385	CMV	10
GLCTLVAML	0.0064975	0.9659187	EBV	9
SLYNTVATL	0.0122898	0.8943390	HIV-1	9
ISPRTLNAW	0.0123381	0.9214290	HIV-1	9
AMFWSVPTV	0.0472048	1.0644062	HomoSapiens	9
EPLPQGQLTAY	0.0657514	0.8396878	EBV	11
EIYKRWII	0.0677543	1.1979569	HIV-1	8
RAKFKQLL	0.0841447	0.9341371	EBV	8
CINGVCWTV	0.1101124	0.8749749	HCV	9
KRWIILGLNK	0.1370102	1.1179089	HIV-1	10
NLVPMVATV	0.1370102	0.9584504	CMV	9
LPPIVAKEI	0.1419204	0.9029855	HIV-1	9
HSKKKCDEL	0.1768884	0.7849616	HCV	9
VTEHDTLLY	0.1797523	1.0544656	CMV	9
GILGFVFTL	0.1993188	1.0350935	InfluenzaA	9
FPRPWLHGL	0.3332847	1.0596474	HIV-1	9
FLKEKGGL	0.3585158	1.0773967	HIV-1	8
IIKDYGKQM	0.3987301	0.9466931	HIV-1	9
LLWNGPMAV	0.3987301	0.9718025	YellowFeverVirus	9
IPSINVHHY	0.4121486	1.0608830	CMV	9
KLVALGINAV	0.4121486	1.0260608	HCV	10
KRWIIMGLNK	0.4121486	1.0562421	HIV-1	10
LLLGIGILV	0.4219274	1.0190819	HomoSapiens	9
FLYNLLTRV	0.6465261	1.0311266	HomoSapiens	9
GPGHKARVL	0.6465261	1.0431526	HIV-1	9
KAFSPEVIPMF	0.6465261	0.9601713	HIV-1	11
RPRGEVRFL	0.6465261	0.9606192	HSV-2	9
TPQDLNTML	0.6747572	1.0231133	HIV-1	9
YVLDHLIVV	0.6747572	0.9804393	EBV	9
HPKVSSEVHI	0.9312795	1.0086373	HIV-1	10
ELAGIGILTV	0.9868604	0.9993951	HomoSapiens	10
LPRRSGAAGA	0.9880312	0.9996816	InfluenzaA	10

```
good_epi = (dt.p %>% filter(p < 0.05))$antigen.epitope
dt.aging.s2 = dt.aging.s2 %>%
   mutate(antigen.epitope = ifelse(antigen.epitope %in% good_epi, paste(antigen.epitope, "(*)"),antigen.
```

```
dt.aging.s2.s = dt.aging.s2 %>%
  #filter(ucb == T) %>%
  group_by(antigen.epitope) %>%
  summarise(freq = mean(occurrences_share[which(ucb)]))
dt.aging.s2$antigen.epitope = factor(dt.aging.s2$antigen.epitope,
                                    levels = dt.aging.s2.s$antigen.epitope[order(dt.aging.s2.s$freq)])
dt.aging.s2$epi.len = nchar(as.character(dt.aging.s2$antigen.epitope))
p18=ggplot(dt.aging.s2, aes(x = antigen.epitope, group = paste(antigen.epitope,ucb),
                        fill = ucb,
                       y = occurrences_share)) +
  geom_boxplot() +
  coord_flip() +
  scale_fill_brewer(guide = F, palette = "Set1") +
  xlab("") + scale_y_continuous("Share of annotated rearrangements",
                                expand = c(0,0) +
  theme_bw() +
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())
p18
```



```
ggsave("figures/p17.pdf", p17)
```

Saving 6.5×4.5 in image

ggsave("figures/p18.pdf", p18)

Saving 6.5 x 4.5 in image