单片机复习

第一章 单片机概述

- 本章了解的内容
 - 单片机的概念
 - 单片机的特点
 - 发展概况及应用领域
 - 典型单片机系列的基本情况
- 要求掌握:
- 1. 2进制\10进制\16进制之间的相互 转换,如: 11101011B=235D=EBH,
- 2. 会计算原码\补码\反码的相互转换.

第二章 单片机组成及原理

- 单片机系统结构和引脚
 - 单片机是把包括运算器、控制器、 少量的存储器、最基本的输入输出 口电路、串行口电路、中断和定时 电路等都集成在一个尺寸有限的芯 片上。
 - 单片机40个引脚,各引脚引脚的功能,特别是几个控制引脚。

- MCS-51单片机芯片内部逻辑 结构
 - 通过MCS-51单片机内部的逻辑结构图(书图2.1)掌握单片机内部的逻辑结构及各个部件的功能与特点:

中央处理器(CPU)、内部数据存储器、内部程序存储器、定时器/计数器、并行I/O口、串行口、中断控制系统、时钟电路、位处理器、总线。

• MCS-51单片机的内部存储器

- MCS-51单片机芯片内部有数据存储器和程序存储器两类存储器,即所谓的内部RAM和内部ROM。
- 重点要掌握内部数据存储器的结构、 用途、地址分配和使用特点。
 - 内部数据存储器的低128单元,它包括 了寄存器区、位寻址区、用户RAM区, 要掌握这些单元的地址分配、作用等。
 - 内部数据存储器高128单元,这是专用 寄存器区,地址范围为80H~FFH。

- 专用寄存器中,重点要掌握以下寄存器的使用:
 - 累加器A、B寄存器、程序状态字(PSW)、 数据指针(DPTR)。
 - 程序计数器(PC)
- · MCS-51的堆栈操作
 - 堆栈的作用
 - 堆栈的设置
 - 堆栈使用方式
 - 子程序调用时PC的存储顺序(低先入高先出)

• 内部程序存储器

- 8051单片机内有4K ROM存储单元, 其地址 为0000H~0FFFH。
- 无论是片内或是片外存储器(对于无片内 ROM的单片机),在程序存储器中有一组特殊的保留单元0000H~002AH,使用时应特别注意:

系统的启动单元: 0000H~0002H 五个中断源的中断地址区:0003H~002AH

- 0003H~000AH 外部中断0中断地址区
- 000BH~0012H 定时/计数器0中断地址区
- 0013H~001AH 外部中断1中断地址区
- 001BH~0022H 定时/计数器1中断地址区
- 0023H~002AH 串行中断地址区

· MCS-51单片机并行输入/输出口电路

- MCS-51共有四个8位的并行双向I/O口, 分别记作PO、P1、P2、P3,实际上它们 已被归入专用寄存器之列。
- 这四个口除了按字节寻址之外,还可以 按位寻址,四个口合在一起共有32位。
- 掌握并行口引脚工作的过程。

第三章 指令系统

- 掌握单片机指令的格式和不同的种类,例如:字节数、周期长度等区别。
- 掌握7种寻址方式,寻址的范围、表达式上的区别等。
- 掌握单片机每条指令的操作功能、 寻址方式、对程序状态字(PSW)各 位的影响等。

- 1. 片内RAM(MOV), 记住片外RAM(4种MOVX语句), 片内外ROM(2种MOVC语句).
- 2. 注意PUSH POP的顺序,一定是先进后出, 否则数据就交换了.
- 3. 了解XCH XCHD SWAP的含义.
- 4. 注意ADDC SUBB都必须考虑进位CY,会按 DA的规定计算,记住DIV/ MUL中A和B各 自的的内容.
- 5. 了解SJMP(256B)\AJMP(2KB)\LJMP(64KB)的差异,散转语句JMP@A+DPTR中基址为DPTR,变址为A,JZ JNZ必须事先向A赋值.了解ACALL(2KB)和LCALL(64KB)的区别.记住子程序调用时,16位PC值入栈和出栈的顺序(PC低位先入).
- 6. 记住位寻址一定和C打交道,了解操作对象,分清JC、JNC、JB、JNB 的判断条件, 着重记住JBC.

第四章 汇编语言程序设计

1. 掌握语句格式:

[标号:] 操作码 [操作数] [;注释]

2. 必须掌握伪指令:
ORG、 END、DB、DW、DS、EQU、BIT 的
含义和作用.

3. 编程题画流程图, 搭出程序架:ORG END, 重点是语句必须分清片内RAM、片外 RAM, 对它们的访问用不同的指令.

4. 查表程序注意表格是几个字节的,能区别 MOVC A, @A+PC

MOVC A, @A+DPTR

5. 掌握不同语句的含义,例如: SJMP \$是原地踏步.

第五章1 单片机中断系统

- 51单片机的中断系统。
- 中断系统应用。
- 1. 掌握有关中断、中断源、中断优先级等概念。
- 2. 掌握中断响应过程。
- 3. 掌握中断允许寄存器IE、中断优先级 寄存器IP各位的含义及设置
- 4. 掌握外部中断的两种触发方式: 电平触发、边沿触发。
- 5. 须软件清除中断标志的有: 电平触发的外部中断、串行中断

中断相关寄存器

TCON	D7	D6	D5	D4	D3	D2	D1	D0
88H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
位地址	8FH	8EH	8DH	8CH	8BH	8AH	89H	88H
SCON	D7	D6	D5	D4	D3	D2	D1	D0
98H							TI	RI
位地址							99H	98H
IE	D7	D6	D5	D4	D3	D2	D1	D0
A8H	EA			ES	ET1	EX1	ЕТ0	EX0
位地址	AFH			ACH	ABH	AAH	А9Н	А8Н
IP	D7	D6	D5	D4	D3	D2	D1	D0
B8H				PS	PT1	PX1	PT0	PX0
位地址	-//11/05			ВСН	BBH	ВАН	В9Н	В8Н

第五章2 定时/计数器

- 定时/计数器的结构和工作原理。
- 定时器/计数器的控制及使用。
- 定时器应用举例。
 - 输出一定占空比的波形;
 - LED循环显示。

定时/计数器的工作方式

T1 T0

TMOD(89H) GATE C/T M1 M0 GATE C/T M1 M0

M1	MO	方式	功能
0	0	0	13位定时/计数器
0	1	1	16位定时/计数器
1	0	2	8位自动重装定时/计数器
1	1	3	定时器0分为2个8位定时/计数器

与定时/计数器有关的寄存器

 T1
 T0

 TMOD(89H) GATE C/T M1 M0 GATE C/T M1 M0

TCON(88H) TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

位地址

8FH 8EH 8DH 8CH 8BH 8AH 89H 88H

第七章 单片机系统扩展

• LED显示

第七章 单片机系统扩展

LED显示器结构与原理

- LED显示器结构上分为:共阴 极和共阳极两种。
 - 共阴极,就是八段相连的一端 接GND。
 - 共阳极,就是八段相连的一端 接VCC。

LED的显示

- 显示分为静态显示和动态显示。
 - 静态显示:每一个字符的段选由一个8位的并口控制,没有位选码, 因此多字符显示时需要占用较多的 并行接口。
 - 动态显示: 多个字符的段选并联在 一起,与一个8位的并口相连;每 个字符有一个位选码,相当于该位 字符的片选控制。

第八章 单片机串行接口

- 串行口的结构;
- 串行接口的工作方式;
- 单片机双机通信。

51单片机的串行通信控制寄存器

• SBUF(99H)

数据缓冲寄存器,在物理上,它对 应着两个寄存器,一个发送寄存器, 一个接收寄存器。

• PCON(87H)

主要是为了实现单片机的电源控制 而设置的,可实现对串行通信波特 率的控制。

• SCON(98H)

用于定义串口的操作方式和进行一些功能控制。

波特率的计算

• 方式0:

波特率 =
$$\frac{f_{OSC}}{12}$$

• 方式1和3:

波特率=
$$\frac{2^{\text{SMOD}}}{32}$$
×T1溢出率

• 方式2:

波特率=
$$\frac{2^{\text{SMOD}}}{64} \times f_{\text{osc}}$$

通常采用定时器T1工作方式2作为波特率发生器

定时时间 =
$$(2^8 - X) \times \frac{12}{f_{osc}}$$

$$T1$$
溢出率=
$$\frac{1}{定时时间} = \frac{f_{osc}}{12 \times (2^8 - X)}$$

波特率 =
$$\frac{2^{\text{SMOD}}}{32} \times \frac{f_{\text{osc}}}{12 \times (2^8 - X)}$$

填空

- 1. MCS-51单片机的基本组成部分包括: 、__、_、_、。
- 2. MCS-51单片机的CPU包括了 __、 __两部分电路。
- 3. MCS-51单片机的PSEN引脚是__ 的选通信号。
- 4. MCS-51单片机有__种寻址方式, 其指令系统总共有__条指令。

- 5. MCS-51单片机有___个__位的 __计数器。
- 6. 数据传送的控制方式有__、

7. MCS-51单片机有___个__级优 先级的中断源。

简答题

- 1. 单片机的PO、P1、P2、P3口的结构和工作过程。
- 2. 请说明MCS-51单片机片内RAM低128 字节如何分配。不同工作寄存器组的 各寄存器地址是什么?
- 3. 请说明MCS-51单片机堆栈的操作。
- 4. 汇编语言伪指令的作用是什么?
- 5. 定时/计数器的初值与定时/计数之间的关系是什么?

5. 什么是中断?

6. 单片机存储器扩展的编址方法有哪几种,其区别是什么?

