# **■** Errata zu Grundlagen der Antriebstechnik

Fehler sind durchstrichen und durch wellenförmig unterstrichene Korrekturen ersetzt.

# 1 Grundlegendes Handwerkszeug

• Seite 40, Fußnote 7, zweite Zeile: ... von *u* unterstreichen möchte.

#### 2 Mechanik

• Seite 66, Gl. (2.29): 
$$\vec{a} = \begin{pmatrix} a \\ 0 \text{ m/s}^2 \\ 0 \text{ m/s}^2 \end{pmatrix} = a \cdot \vec{e}_{x} \vec{e}_{x}$$

• Seite 76, in der zweiten Zeile unter Gl. (2.62): ... wobei wegen wegen ...

## 3 Betriebsumfeld

- Seite 86, Tabelle 3.1, Zeile IM V2: Flanschlagerschild auf Nicht-Antriebsseite ...
- Seite 90, Einheit der spezifischen Wärmespeicherkapazität c: WJ/(kg·K)

## 4 Magnetisches Feld

• Seite 118: Kasten ganz unten: Wenn wir in einer Konfiguration kein zeitlich veränderliches Magnetfeld <del>haben, oder das Magnetfeld sogar null ist und wir keine bewegten Leiter haben bzw. keinen bewegten Leiter haben, oder das Magnetfeld sogar null ist, so folgt ...</del>

# 5 Einphasen-Transformator

- Seite 137, vorletzte Zeile: Im Extremfall kann der Effektivwert der Spannung...
- Seite 141, drei Zeilen über Bild 5.13: Falls möglich, messen wir <del>bei</del> beim Bemessungsstrom ...
- Seite 145: Gl. (5.40):  $P_L = \text{Re}(\underline{U}_2 \cdot \underline{Y}_{\underline{X}}, \underline{I}_L^*) = -\text{Re}(\underline{U}_2 \cdot \underline{I}_2^*)$
- Seite 151: **Tiefspanner.** Beim Tiefspanner mit  $U_2 < U_{\frac{1}{2}1} \ldots$
- Seite 153, Gl. (5.52):  $\frac{I_{1A}}{I_{1AB}} = \frac{S_{NA}}{S_{NB}}$

#### 6 Drehstrom-Transformator

• Seite 167, Gl. (6.4):  $|\underline{U}_{1U}| = |\underline{U}_{1V}| = |\underline{U}_{1|V|}$ 

• Seite 168, Bild 6.9a: Änderung der Reihenfolge der Phasenbeschriftung auf Seite 2 von QQQ auf QQQ





(a)



## 7 Gleichstrommaschine

- Seite 196, Bild 7.9, Bildunterschift zu (b) in der zweiten Zeile: ... zu Maschinen der Bauweise ...
- Seite 209, fünf Zeilen unterhalb von Wechselwirkung zwischen elektrischen und mechanischen Größen: ... wir mit  $M_i = N_a \cdot \Phi_h \cdot \Omega I_a$  folgende ...
- Seite 219, sechs Zeilen unterhalb von Drehmoment-Drehzahl-Kennlinien:
  ... sind in den Kapiteln 8 und9 9 behandelt.

#### 10 Drehfeldmaschine

- Seite 265, Bild 10.6b, Ströme  $\underline{I}_1$  und  $\underline{I}_s$  gehören vertauscht:



# 11 Asynchronmaschine

- Seite 292, **Statorleistung.** ... komplexen Zeigern  $\underline{U}_s$  und  $\underline{I}_{\clip{1\over2},\clip{5}}$  oder aus deren Effektivwerten  $|\underline{U}_s|$  und  $|\underline{I}_{\clip{1\over2},\clip{5}}|$  sowie ...
- $\bullet \ \, \text{Seite 292, Gl. (11.13), Str\"{o}me} \ \underline{I}_1 \ \text{und} \ \underline{I}_s \ \text{geh\"{o}ren vertauscht:}} \ P_s = 3 \cdot \text{Re}(\underline{U}_s \cdot \underline{I}_{\underbrace{\downarrow}_s}^*) = 3 \cdot |\underline{U}_s| \cdot |\underline{I}_{\underbrace{\downarrow}_s}| \cdot \cos(\varphi_s)$

## 12 Synchronmaschine

• Seite 351, Einheiten der Reaktanzen:

| Zeichen       | Einheit                   | Größe                   | Quantity                          |
|---------------|---------------------------|-------------------------|-----------------------------------|
| $X_d$         | $\widetilde{\mathcal{M}}$ | Synchrone Längsreaktanz | Direct axis synchronous reactance |
| $X_h$         | $\widetilde{\mathcal{M}}$ | Hauptfeldreaktanz       | Main field reactance              |
| $X_{s\sigma}$ | $\widetilde{\mathcal{M}}$ | Statorstreureaktanz     | Stator leakage reactance          |

- Seite 352, Bild 12.14a bis e<br/>, Ströme  $\underline{I}_1$  und  $\underline{I}_s$  gehören vertauscht:











- Seite 353, Gl. (12.6), Ströme  $\underline{I}_1$  und  $\underline{I}_s$  gehören vertauscht:  $\underline{I}_h = \underline{I}_{\S_1} + \underline{I}'_e$
- Seite 353, Gl. (12.8), Ströme  $\underline{I}_1$  und  $\underline{I}_s$  gehören vertauscht:  $\underline{U}_s = R_s \cdot \underline{I}_{\{\frac{1}{2}\}} + \mathbf{j} \cdot X_d \cdot \underline{I}_{\{\frac{1}{2}\}} + \underline{U}_p$
- Seite 354, Gl. (12.11), Ströme  $\underline{I}_1$  und  $\underline{I}_s$  gehören vertauscht:  $P_{\text{Cu},s} = 3 \cdot R_s \cdot |\underline{I}_{\underbrace{\downarrow}_{\Sigma}}|^2 \approx 3 \cdot R_s \cdot |\underline{I}_{\underbrace{\downarrow}_{\Sigma}}|^2$
- Seite 354, Gl. (12.13), Ströme  $\underline{I}_1$  und  $\underline{I}_s$  gehören vertauscht:  $P_s = 3 \cdot \text{Re}(\underline{U}_s \cdot \underline{I}_{\downarrow s}^*) = 3 \cdot |\underline{U}_s| \cdot |\underline{I}_{\downarrow s}| \cdot \cos(\varphi_s)$
- Seite 355, Tabelle 12.1: Vorzeichen der Leistungsterme einer SAsynchronmaschine
- Seite 369, Einheiten der Reaktanzen:

| Zeichen  | Einheit                                         | Größe                                    | Quantity                              |
|----------|-------------------------------------------------|------------------------------------------|---------------------------------------|
| $X_{hd}$ | $\widetilde{\mathcal{H}\widetilde{U}}$          | Hauptfeldreaktanz<br>der <i>d-</i> Achse | Main field reactance of the $d$ axis  |
| $X_q$    | $\widetilde{\mathcal{H}}\widetilde{\mathbf{U}}$ | Synchrone Querreaktanz                   | Quadrature axis synchronous reactance |
| $X_{hq}$ | $\widetilde{\mathcal{H}}\widetilde{\mathbf{U}}$ | Hauptfeldreaktanz<br>der <i>q-</i> Achse | Main field reactance of the $q$ axis  |

• Seite 379, Bild 12.33, dritte Zeile der Bildunterschrift: ... (a) und (b) eine achsige ...