

Лекция по эконометрике № 9

3 модуль

Модели множественного выбора (дополнительная тема)

Демидова

Ольга Анатольевна

https://www.hse.ru/staff/demidova_olga

E-mail:demidova@hse.ru

15.03.2021

План лекции

•Модели упорядоченного множественного выбора

•Мультиномиальные модели

Напоминание о моделях бинарного выбора

$$Y_i^* = \beta_0 + \beta_1 X_{1i} + \ldots + \beta_k X_{ki} + \varepsilon_i,$$

$$E(\varepsilon_i) = 0$$
, $var(\varepsilon_i) = \sigma_{\varepsilon}^2$, $i = 1, ..., n$, $F - cumulative$ function of $\varepsilon/\sigma_{\varepsilon}$, $f = F'$ is a symmetric function.

$$\begin{cases} Y_{i} = 1, if Y_{i}^{*} \geq 0 \\ Y_{i} = 0, if Y_{i}^{*} < 0 \end{cases}$$

Отношение шансов (odd ratio) для логит модели

$$OR = \frac{\Pr(Y = 1)}{\Pr(Y = 0)}$$

$$ln(OR) = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k$$

Если X_j изменится на 1 то OR изменится в $\exp(\beta_j)$ раз.

Модели упорядоченного множественного выбора

Пример 1. Ответ на вопрос: «Насколько Вы доверяете правительству страны?»

Варианты ответов:

- •1 полностью доверяю
- •2 скорее доверяю
- •3 скорее не доверяю
- •4 полностью не доверяю

Модели упорядоченного множественного выбора

Пример 2. Состояние здоровья Варианты ответов:

- 1 fair
- 2-good
- 3- excellent

Пример 3. Состояние на рынке труда Варианты ответов:

- 1 не работает
- 2 частичная занятость (неполный рабочий день)
- 3 полная занятость (полный рабочий день)

Модели упорядоченного множественного выбора

$$Y_i = 1, 2, ..., m$$

$$Y_i^* = x_i'\beta + \varepsilon_i,$$

$$Y_{i} = j \quad if \quad c_{j-1} < Y_{i}^{*} < c_{j}, \quad j = 1, ..., m,$$

$$c_{0} = -\infty, \quad ..., \quad c_{m} = \infty,$$

$$P(Y_{i} = j) = F(c_{j} - x_{i}'\beta) - F(c_{j-1} - x_{i}'\beta),$$

$$L = \prod_{j=1}^{m} \prod_{i:Y_{j}=j} (F(c_{j} - x_{i}'\beta) - F(c_{j-1} - x_{i}'\beta)) \to \max_{\beta,c}$$

Оценка параметров с помощью метода максимального правдоподобия

Проверка гипотезы о параллельности

$$P(Y_i = j) = F(c_j - x_i'\beta) - F(c_{j-1} - x_i'\beta),$$

$$\Rightarrow P(Y_i \le k | X) = F(c_k - x_i'\beta), \ k = 1,...,m$$
(parallel regression assumption)

Brant test

Детали теста Бранта можно найти в W.Greene, 7 edition, p. 791

Отношение шансов для упорядоченной логит модели

$$\frac{P(Y_i \le k|X)}{P(Y_i > k|X)} = \exp(c_k - x_i'\beta), \ k = 1, \dots, m$$

$$\Rightarrow \frac{P(Y_i \le k | X)(X, x_j + 1)}{P(Y_i > k | X)(X, x_j + 1)} = \exp(-\beta_j)$$

$$\frac{P(Y_i > k | X)(X, x_j + 1)}{P(Y_i \le k | X)(X, x_j + 1)} = \exp(\beta_j)$$

$$\frac{\partial P(Y_i = 1)}{\partial X_k} = -\beta_k f(c_1 - (X\beta)),$$

$$\frac{\partial P(Y = j)}{\partial X_k} = -\beta_k [f(c_j - (X\beta)) - f(c_{j-1} - (X\beta))], \quad j = 1, ..., m - 1$$

$$\Rightarrow \frac{\partial P(Y = j)}{\partial X_k} = \beta_k f(c_{m-1} - (X\beta))$$

Пример оценки моделей упорядоченного множественного выбора

Пример позаимствован у Ani Katchova,

https://www.youtube.com/watch?v=c9kvqeLFF8U

Зависимая переменная: Y = healthstatus

Значения: 1 - fair, 2 - good, 3 - excellent

tab healthstatus

health status (fair, good, excellent)

	Freq.	Percent	Cum.
Fair	523	9.38	9.38
good	2,034	36.49	45.87
Excellent	3,017	54.13	100.00
Total	5,574	100.00	

Пример оценки моделей упорядоченного множественного выбора

Независимые переменные

sum age logincome numberdiseases

Variable	Obs	Mean	Std. Dev.	Min	Max
age	5,574	25.57613	16.73011	.0253251	63.27515
logincome	5,574	8.696929	1.220592	0	10.28324
numberdisease	s 5,574	11.20526	6.788959	0	58.6

Результаты оценки

. ologit healthstatus age logincome numberdiseases

```
Iteration 0: log likelihood = -5140.0463
Iteration 1: log likelihood = -4776.008
Iteration 2: log likelihood = -4769.8693
Iteration 3: log likelihood = -4769.8525
Iteration 4: log likelihood = -4769.8525
```

Ordered logistic regression	Number of obs	=	5,574
-----------------------------	---------------	---	-------

LR chi2(3) = 740.39

Prob > chi2 = 0.0000 Pseudo R2 = 0.0720

Log likelihood = -4769.8525 Pseudo R2

healthstatus	Coef.	Std. Err.	Z	P> z	[95% Conf.	. Interval]
age logincome numberdiseases	0292944 .2836537 0549905	.001681 .0231098 .0040692	-17.43 12.27 -13.51	0.000 0.000 0.000	0325891 .2383593 0629661	0259996 .3289481 047015
/cut1 /cut2	-1.39598 .9513097	.2061301 .2054301			-1.799987 .5486741	9919722 1.353945

. margins, dydx(*) atmeans predict(outcome(1))

Conditional marginal effects Number of obs = 5,574

Model VCE : OIM

Expression : Pr(healthstatus==1), predict(outcome(1))

dy/dx w.r.t. : age logincome numberdiseases

at : age = 25.57613 (mean)

logincome = 8.696929 (mean)

numberdise \sim s = 11.20526 (mean)

	dy/dx	Delta-method Std. Err.	l z	P> z	[95% Conf.	Interval]
age	.002058	.0001333	15.44	0.000	.0017969	.0023192
logincome	0199278	.0017344	-11.49	0.000	0233272	0165284
numberdiseases	.0038633	.0003056	12.64	0.000	.0032643	.0044623

. margins, dydx(*) atmeans predict(outcome(2))

Conditional marginal effects Number of obs = 5,574

Model VCE : OIM

Expression : Pr(healthstatus==2), predict(outcome(2))

dy/dx w.r.t. : age logincome numberdiseases

at : age = 25.57613 (mean)

logincome = 8.696929 (mean)

numberdise~s = 11.20526 (mean)

	[Delta-method				
	dy/dx	Std. Err.	Z	P> z	[95% Conf.	Interval]
age	.0052244	.0003258	16.04	0.000	.0045859	.0058629
logincome	0505872	.0043054	-11.75	0.000	0590256	0421489
numberdiseases	.0098071	.000768	12.77	0.000	.0083018	.0113124

. margins, dydx(*) atmeans predict(outcome(3))

Conditional marginal effects Number of obs

Model VCE : OIM

Expression : Pr(healthstatus==3), predict(outcome(3))

dy/dx w.r.t. : age logincome numberdiseases

at : age = 25.57613 (mean)

logincome = 8.696929 (mean)

numberdise \sim s = 11.20526 (mean)

		Delta-method				
	dy/dx	Std. Err.	Z	P> z	[95% Conf.	. Interval]
age	0072824	.0004179	-17.43	0.000	0081014	0064634
logincome	.070515	.0057527	12.26	0.000	.05924	.0817901
numberdiseases	0136704	.0010126	-13.50	0.000	015655	0116858

5,574

Предсказанные значения зависимой переменной

- . predict p1ologit p2ologit p3ologit, pr
- . summarize p1ologit p2ologit p3ologit

Variable	0bs	Mean	Std. Dev.	Min	Max
p1ologit	5,574	.0946903	.0843148	.0233629	.859022
p2ologit p3ologit	5,574 5,574	.3651672 .5401425	.0946158 .1640575	.1255265 .0154515	.5276064

. tab healthstatus

health			
status			
(fair,			
good,			
excellent)	Freq.	Percent	Cum.
1	523	9.38	9.38
2	2,034	36.49	45.87
3	3,017	54.13	100.00
Total	5,574	100.00	

Пример 1. Отношение шансов

. ologit healthstatus age logincome numberdiseases, or

```
Iteration 0: log likelihood = -5140.0463
Iteration 1: log likelihood = -4776.008
Iteration 2: log likelihood = -4769.8693
Iteration 3: log likelihood = -4769.8525
Iteration 4: log likelihood = -4769.8525
```

Ordered logistic regression	Number of obs	=	5,574
	LR chi2(3)	=	740.39
	Prob > chi2	=	0.0000
Log likelihood = -4769.8525	Pseudo R2	=	0.0720

healthstatus	Odds Ratio	Std. Err.	Z	P> z	[95% Conf	. Interval]
age logincome numberdiseases	.9711306 1.327973 .9464941	.0016325 .0306892 .0038515	-17.43 12.27 -13.51	0.000 0.000 0.000	.9679362 1.269165 .9389753	.9743355 1.389506 .9540731
/cut1 /cut2	-1.39598 .9513097	.2061301 .2054301			-1.799987 .5486741	9919722 1.353945

Пример 1. Тест Бранта

. brant

Brant Test of Parallel Regression Assumption

Variable	chi2	p>chi2	df
All	17.45	0.001	3
age logincome numberdise~s	0.18 17.40 0.20	0.672 0.000 0.659	1 1 1

A significant test statistic provides evidence that the parallel regression assumption has been violated.

Мультиномиальные модели

Пример 1. Сфера деятельности Варианты ответов:

- 1 бизнес
- **2** образование
- 3 некоммерческая организация

Пример 2. Способ рыбалки Варианты ответов:

- 1 с берега
- 2 с причала
- 3 с собственной лодки
- 4 с арендованной лодки

Мультиномиальные модели

Зависимая переменная не является упорядоченной, Существует выбор между альтернативами j = 1, 2, ..., M, U_{ij} — полезность j-ой альтернативы для i-го индивида.

$$P\{Y_i = \mathbf{j}\} = P\{U_{ij} = \max\{U_{i1}, \dots, U_{iM}\}\},$$

$$U_{ij} = x'_i \beta_j + \varepsilon_{ij}.$$

Задача допускает аналитическое решение, если ε_{ij} независимы и имеют функцию распределения $F(x) = \exp\{-\exp(-x)\}$

Мультиномиальные логит модели

$$P(Y_i = 1) = \frac{1}{1 + \exp(x_i'\beta_2) + ... + \exp(x_i'\beta_m)},$$

$$P(Y_i = j) = \frac{exp(x_i'\beta_j)}{1 + \exp(x_i'\beta_2) + \ldots + \exp(x_i'\beta_m)}$$

$$\Rightarrow \frac{P(Y_i = j)}{P(Y_i = k)} = \frac{exp(x_i'\beta_j)}{\exp(x_i'\beta_k)} = \exp(x_i'(\beta_j - \beta_k))$$

IIA – independence from irrelevant alternatives Test Small-Hsiao

Пример 1

Пример 1 позаимствован у Ani Katchova, https://www.youtube.com/watch?v=iqypob4My4o

Зависимая переменная Y = mode = Способ рыбалки Значения:

- 1 beach (с берега)
- 2 pier (с причала)
- 3 private (с собственной лодки)
- 4 charter (с арендованной лодки)

Пример

. mlogit mode income

```
Iteration 0: log likelihood = -1497.7229
Iteration 1: log likelihood = -1477.5265
Iteration 2: log likelihood = -1477.1514
Iteration 3: log likelihood = -1477.1506
Iteration 4: log likelihood = -1477.1506
```

Multinomial logistic regression

Number of obs = 1,182 LR chi2(3) = 41.14 Prob > chi2 = 0.0000 Pseudo R2 = 0.0137

Log likelihood = -1477.1506

mode	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]
beach						
income	.0316399	.0418463	0.76	0.450	0503774	.1136571
_cons	-1.341291	.1945167	-6.90	0.000	-1.722537	9600457
pier						
income	111763	.0439795	-2.54	0.011	1979612	0255649
_cons	5271412	.1777842	-2.97	0.003	8755918	1786906
private						
income	.1235462	.0279106	4.43	0.000	.0688425	.17825
_cons	6023707	.1360964	-4.43	0.000	8691147	3356267
charter	(base outco	ome)				

Пример

```
. mlogit mode income, baseoutcome(2)
```

```
Iteration 0: log likelihood = -1497.7229
Iteration 1: log likelihood = -1477.5265
Iteration 2: log likelihood = -1477.1514
Iteration 3: log likelihood = -1477.1506
Iteration 4: log likelihood = -1477.1506
```

Multinomial logistic regression Number of obs

LR chi2(3) = 41.14 Prob > chi2 = 0.0000

1,182

Log likelihood = -1477.1506

Pseudo R2 = 0.0137

mode	Coef.	Std. Err.	Z	P> z	[95% Conf.	. Interval]
beach						
income	.1434029	.0532884	2.69	0.007	.0389595	.2478463
_cons	8141503	.228632	-3.56	0.000	-1.262261	3660399
pier	(base outc	ome)				
private					120	
income	.2353093	.0436681	5.39	0.000	.1497214	.3208971
_cons	0752295	.1832396	-0.41	0.681	4343724	.2839134
charter						
income	.111763	.0439795	2.54	0.011	.0255649	.1979612
_cons	.5271412	.1777842	2.97	0.003	.1786906	.8755918

. margins, dydx(*) atmeans predict(pr outcome(1))

Conditional marginal effects Number of obs = 1,182

Model VCE : OIM

Expression : Pr(mode==beach), predict(pr outcome(1))

dy/dx w.r.t. : income

at : income = 4.099337 (mean)

	ı	Delta-method				
	dy/dx	Std. Err.	z	P> z	[95% Conf.	. Interval]
income	.000075	.0039337	0.02	0.985	0076349	.0077848

.

. margins, dydx(*) atmeans predict(pr outcome(2))

Conditional marginal effects Number of obs = 1,182

Model VCE : OIM

Expression : Pr(mode==pier), predict(pr outcome(2))

dy/dx w.r.t. : income

at : income = 4.099337 (mean)

		Delta-method Std. Err.	z	P> z	[95% Conf.	Interval]
income	0206598	.0048735	-4.24	0.000	0302117	011108

. margins, dydx(*) atmeans predict(pr outcome(3)) Conditional marginal effects Number of obs 1,182 Model VCE : OIM : Pr(mode==private), predict(pr outcome(3)) dy/dx w.r.t. : income 4.099337 (mean) : income at Delta-method dy/dx Std. Err. P>|z| [95% Conf. Interval] income .0325985 .005692 5.73 0.000 .0214424 .0437547

. margins, dydx(*) atmeans predict(pr outcome(4))

Conditional marginal effects Number of obs = 1,182

Model VCE : OIM

Expression : Pr(mode==charter), predict(pr outcome(4))

dy/dx w.r.t. : income

at : income = 4.099337 (mean)

		Delta-method Std. Err.	z	P> z	[95% Conf.	Interval]
income	0120137	.0060756	-1.98	0.048	0239215	0001058

Предсказанные значения зависимой переменной

. predict pmlogit1 pmlogit2 pmlogit3 pmlogit4, pr

•

. summarize pmlogit1 pmlogit2 pmlogit3 pmlogit4

Variable	Obs	Mean	Std. Dev.	Min	Max
-					
pmlogit1	1,182	.1133672	.0036716	.0947395	.1153659
pmlogit2	1,182	.1505922	.0444575	.0356142	.2342903
pmlogit3	1,182	.3536379	.0797714	.2396973	.625706
pmlogit4	1,182	.3824027	.0346281	.2439403	.4158273

•

. tab mode

Fishing mode	Freq.	Percent	Cum.
beach	134	11.34	11.34
pier	178	15.06	26.40
private	418	35.36	61.76
charter	452	38.24	100.00
Total	1,182	100.00	

Пример 2. Продолжение примера про здоровье

. mlogit healthstatus age logincome numberdiseases

```
Iteration 0: log likelihood = -5140.0463 Iteration 1: log likelihood = -4826.7356 Iteration 2: log likelihood = -4772.0141 Iteration 3: log likelihood = -4766.2058 Iteration 4: log likelihood = -4766.1902 Iteration 5: log likelihood = -4766.1902
```

Multinomial logistic regression

Number of obs = 5,574 LR chi2(6) = 747.71 Prob > chi2 = 0.0000 Pseudo R2 = 0.0727

Log likelihood = -4766.1902

healthstatus	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
fair						aphelo
age	.0424728	.0031346	13.55	0.000	.0363292	.0486165
logincome	4191076	.0323039	-12.97	0.000	4824221	3557931
numberdiseases	.0833499	.006825	12.21	0.000	.0699731	.0967266
_cons	3537368	.282676	-1.25	0.211	9077716	.2002979
good						
age	.025483	.0018533	13.75	0.000	.0218506	.0291155
logincome	1473865	.0291931	-5.05	0.000	2046039	0901692
numberdiseases	.0454721	.004827	9.42	0.000	.0360114	.0549328
_cons	2366722	.2592993	-0.91	0.361	7448895	.2715451
excellent	(base outco	ome)				

Пример 2. Продолжение примера про здоровье

. mlogit healthstatus age logincome numberdiseases, baseoutcome(2)

```
Iteration 0: log likelihood = -5140.0463

Iteration 1: log likelihood = -4826.7356

Iteration 2: log likelihood = -4772.0141

Iteration 3: log likelihood = -4766.2058

Iteration 4: log likelihood = -4766.1902

Iteration 5: log likelihood = -4766.1902
```

Multinomial logistic regression

Number of obs = 5,574 LR chi2(6) = 747.71 Prob > chi2 = 0.0000 Pseudo R2 = 0.0727

Log likelihood = -4766.1902

healthstatus	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
fair						l phe o
age	.0169898	.0031035	5.47	0.000	.010907	.0230726
logincome	2717211	.0286096	-9.50	0.000	327795	2156473
numberdiseases	.0378778	.0062911	6.02	0.000	.0255475	.050208
_cons	1170646	.2524238	-0.46	0.643	6118062	.3776769
good	(base outco	ome)				
excellent						
age	025483	.0018533	-13.75	0.000	0291155	0218506
logincome	.1473865	.0291931	5.05	0.000	.0901692	.2046039
numberdiseases	0454721	.004827	-9.42	0.000	0549328	0360114
_cons	.2366722	.2592993	0.91	0.361	2715451	.7448895

Пример 2. Предельные эффекты для исхода 1

. margins, dydx(*) atmeans predict(pr outcome(1))

Conditional marginal effects Number of obs = 5,574

Model VCE : OIM

Expression : Pr(healthstatus==fair), predict(pr outcome(1))

dy/dx w.r.t. : age logincome numberdiseases

at : age = 25.57613 (mean)

logincome = 8.696929 (mean)

numberdise~s = 11.20526 (mean)

	dy/dx	Delta-method Std. Err.	l z	P> z	[95% Conf	. Interval]
age	.0022253	.0001985	11.21	0.000	.0018363	.0026144
logincome	0249397	.0019742	-12.63	0.000	0288091	0210703
numberdiseases	.004497	.0004403	10.21	0.000	.003634	.0053601

Пример 2. Сравнение предельных эффектов ologit и mlogit для исхода 1

	dy/dx	Delta-method Std. Err.	z	P> z	[95% Conf.	Interval]
age	.002058	.0001333	15.44	0.000	.0017969	.0023192
logincome	0199278	.0017344	-11.49	0.000	0233272	0165284
numberdiseases	.0038633	.0003056	12.64	0.000	.0032643	.0044623

		Delta-method						
	dy/dx	Std. Err.	Z	P> z	[95% Conf.	Interval]		
age	.0022253	.0001985	11.21	0.000	.0018363	.0026144		
logincome	0249397	.0019742	-12.63	0.000	0288091	0210703		
numberdiseases	.004497	.0004403	10.21	0.000	.003634	.0053601		

Пример 2. Сравнение предельных эффектов ologit и mlogit для исхода 2

	Delta-method					
	dy/dx	Std. Err.	Z	P> z	[95% Conf	. Interval]
age	.0052244	.0003258	16.04	0.000	.0045859	.0058629
logincome	0505872	.0043054	-11.75	0.000	0590256	0421489
numberdiseases	.0098071	.000768	12.77	0.000	.0083018	.0113124

	dy/dx	Delta-method Std. Err.	Z	P> z	[95% Conf	. Interval]
age	.0047914	.0004161	11.52	0.000	.0039759	.0056069
logincome	022744	.0064079	-3.55	0.000	0353032	0101848
numberdiseases	.0083332	.0010648	7.83	0.000	.0062462	.0104203

Пример 2. Сравнение предельных эффектов ologit и mlogit для исхода 3

	[Delta-method	I			
	dy/dx	Std. Err.	Z	P> z	[95% Conf.	Interval]
age	0072824	.0004179	-17.43	0.000	0081014	0064634
logincome	.070515	.0057527	12.26	0.000	.05924	.0817901
1.	0126704	.0010126	-13.50	0.000	015655	0116858
numberdiseases	0136704	.0010120	13.30	0.000	015055	.0110030
numberdiseases		Delta-method		0.000	013033	.0110030
numberdiseases				P> z	[95% Conf.	
numberdiseases		Delta-method	i			
	dy/dx	Delta-method Std. Err.	i z	P> z	[95% Conf.	Interval]

Пример 2. Предсказанные значения зависимой переменной

. predict pmlogit1 pmlogit2 pmlogit3, pr

•

. summarize pmlogit1 pmlogit2 pmlogit3

Variable	Obs	Mean	Std. Dev.	Min	Max
pmlogit1	5,574	.0938285	.0903648	.0168382	.8635994
pmlogit2 pmlogit3	5,574 5,574	.3649085	.0860006 .1576133	.1258262	.5486323

•

. tab healthstatus

health status (fair, good, excellent)	Freq.	Percent	Cum.
fair good excellent	523 2,034 3,017	9.38 36.49 54.13	9.38 45.87 100.00
Total	5 , 574	100.00	

Thank you for your attention!

20, Myasnitskaya str., Moscow, Russia, 101000 Tel.: +7 (495) 628-8829, Fax: +7 (495) 628-7931 www.hse.ru