6. Polynomial interpolation. General results. Comparison of polynomial interpolation and piecewise polynomial interpolation. Use interpolation give examples.

Numerical Analysis E2021

Institute of Mathematics Aalborg University

Lagrange Interpolation

Numerical Analysis

Lagrange Interpolation

Constructing an

Error analysis

Piecewise polynomial

For a given set of data points (x_i, y_i) , with no x_i 's being equal, we wish to interpolate a function that describes this data.

Lagrange Interpolation Theorem

Let \mathbb{F} be a field, and let $m \in \mathbb{N}$. If $\alpha_1, \ldots, \alpha_m \in \mathbb{F}$ are all distinct, then the evaluation map $\mathcal{E} \colon \mathbb{F}[X]_{\leq m-1} \to \mathbb{F}^m$, such that $f(X) \mapsto (f(\alpha_1), \dots, f(\alpha_m))$, is an isomorphism.

Proof

 \mathcal{E} is a linear map, and the two vector spaces has the same dimension. Thus, it suffices to show that it is injective. This fact immediately follows by the fundamental theorem of algebra. \square

In other words: if we have m ordered pairs $(\alpha_1, y_1), \dots, (\alpha_m, y_m)$ all in \mathbb{F}^2 , such that $\alpha_1, \ldots, \alpha_m$ are all distinct. Then there exists a unique polynomial $f \in \mathbb{F}[X]_{< m-1}$, which satisfies $f(\alpha_i) = y_i$ for i = 1, ..., m.

Constructing an inverse

Numerical Analysis E2021

Lagrange Interpolation

Constructing an inverse

Error analysis

Piecewise polynomi interpolation Let \mathbb{F} be a field, and let $m \in \mathbb{N}$ such that $m \ge 1$. Furthermore, let $\alpha_1, \ldots, \alpha_m \in \mathbb{F}$ be pairwise distinct. Then

$$\delta_i(X) := \prod_{\substack{k=1\\k\neq i}}^m \frac{X - \alpha_k}{\alpha_i - \alpha_k} \tag{1}$$

for i = 1, ..., m. These are then clearly well-defined, and satisfy

- **1.** $deg(\delta_i) = m 1$
- 2. $\delta_i(\alpha_i) = 1$
- **3.** $\delta_i(\alpha_i) = 0$ if $1 \le j \le m$ and $j \ne i$

Proposition.

The inverse of \mathcal{E} is the map $\mathcal{E}^{-1} : \mathbb{F}^m \to \mathbb{F}[X]_{\leq m-1}$, such that $(y_1, \ldots, y_m) \mapsto \sum_{i=1}^m y_i \delta_i(X)$.

Error analysis, and other perversions

Numerical Analysis E2021

Lagrange Interpolation

Constructing an inverse

Error analysis

Piecewise polynomial interpolation

Assume that $f:[a,b]\to\mathbb{R}$ such that $\alpha_j\in[a,b]$, where $j=0,1,\ldots,N$, are all distinct. Then $y_i:=f(\alpha_i)$, and we say that the interpolating polynomium interpolates f. Then

Theorem

Assume that f is N+1 times differentiable on [a,b]. Let p be the interpolating polynomial corresponding to the dataset $(\alpha_i,(f(\alpha_i)))$. For every $x\in(a,b)$ there exists $\xi\in(a,b)$ such that

$$f(x) - p(x) = \frac{\prod_{i=0}^{N} (x - \alpha_i)}{(N+1)!} f^{(N+1)}(\xi)$$
 (2)

High-degree interpolation yields oscillatory polynomials, which can lead to poor results. See MATLAB demo of Runge. A way around this is to use piecewise interpolation.

Piecewise polynomial interpolation

Numerical Analysis E2021

Lagrange Interpolation

Constructing an inverse

Error analysis

Piecewise polynomial interpolation

We have several methods for polynomial interpolation:

- ► Piecewise linear interpolation
 - Hardly any smoothness
 - Preserves local monotonicity
- Lagrange interpolation
 - Infinitely differentiable
 - Often fails to preserve shape, particularly near ends, as seen with Runge
- pchip
 - Guaranteed to preserve shape
 - Discontinuous curvature due to non-continuous second-order derivaties
- ▶ spline
 - ► Has continuous second-order derivatives
 - Not guaranteed to preserve shape

MATLAB demo of interpqui