Assignment 2 Problem 2

Michael Cai

February 7, 2016

- **2.** Let K_m denote the following indefinite integral: $K_m(x) = \int_x^m \sin(x) dx$ for m = 0, 1, 2...
- (a) Evaluate $K_1(x)$.

$$K_1(x) = \int x^1 \sin(x) dx$$

Integration by parts would be the strategy to solve the integral because the integrand is a product. Therefore, we let u=x and thus du=dx and dv=sinxdx and thus v=-cosx. $\int x^1 sin(x) = -xcosx + \int cosxdx$

$$= -xcosx + sinx + C$$

(b) Show
$$K_m(x) = -x^m \cos(x) + mx^{m-1} \sin(x) - m(m-1)K_{m-2}x$$

 $K_m(x) = \int x^m \sin(x) dx$

Because the integrand is a product, I am going to use integration by parts and select $u=x^m$ and thus $du=mx^{m-1}$. I choose dv=sin(x)dx and thus v=-cos(x). Therefore $\int x^m sin(x)dx = -x^m cos(x) + \int mx^{m-1}cos(x)dx$

Now consider $\int mx^{m-1}cos(x)dx$ which equals $m\int x^{m-1}cos(x)dx$

Again we use integration by parts because the integrand is a product.

I choose $u = x^{m-1}$ and thus $du = (m-1)x^{m-2}$. I choose dv = cos(x)dx and thus v = sin(x).

Therefore $m \int x^{m-1} \cos(x) dx = m(x^{m-1} \sin(x) - (m-1) \int x^{m-2} \sin(x) dx$

 $= mx^{m-1}sin(x) - m(m-1) \int x^{m-2}sin(x)dx$

This last integral $\int x^{m-2} \sin(x) dx$ is equal to $K_{m-2}(x)$.

Thus, plugging this integral back into the original equation, where we left off:

$$\int x^m sin(x) dx = -x^m cos(x) + \int mx^{m-1} cos(x) dx$$

$$= \int x^{m} \sin(x) dx = -x^{m} \cos(x) + mx^{m-1} \sin(x) - m(m-1) K_{m-2}(x)$$

(c) Calculate
$$K_0(x)$$
, $K_2(x)$, and $K_4(x)$

$$K_0(x) = \int x^0 \sin(x) dx = \int \sin(x) dx = -\cos(x) + C$$

$$K_2(x) = \int x^2 \sin(x) dx$$

Because the integrand is a product, we again apply integration by parts.

I choose $u = x^2$ and thus du = 2xdx. I choose dv = sin(x)dx and thus v = -cos(x).

Therefore $\int x^2 \sin(x) dx = -x^2 \cos(x) + 2 \int x \cos(x) dx$.

Consider the integral $\int x\cos(x)dx$

Again we apply IBP. Let u = x and thus du = dx. Let dv = cos(x)dx and thus v = sin(x). $\int x cos(x) dx = x sin(x) - \int sin(x) dx = x sin(x) - cos(x) + C$

Plugging this back into the original equations we get:

$$\int x^2 \sin(x) dx = -x^2 \cos(x) + 2 \int x \cos(x) dx = -x^2 \cos(x) + 2(x \sin(x) - \cos(x) + C)$$
$$= -x^2 \cos(x) + 2x \sin(x) + 2\cos(x) + C' : C' = 2C$$

$$K_4(x) = \int x^4 \sin(x) dx$$

Recall the formula for $K_m(x)$:

$$\int x^m \sin(x) dx = -x^m \cos(x) + mx^{m-1} \sin(x) - m(m-1)K_{m-2}(x)$$

Thus we choose m = 4 and we get:

$$= \int x^4 \sin(x) dx = -x^4 \cos(x) + 4x^3 \sin(x) - 4(3)K_2(x)$$

Then we plug in $K_2(x)$ and we get:

$$= -x^4 cos(x) + 4x^3 sin(x) + 12x^2 cos(x) + 24x sin(x) + 24cos(x) + C$$

(d) Solve the definite integral $\int_0^\pi x^4 \sin(x) dx$

To get the answer, we just need to evaluate the indefinite integral that we just calculated with the bounds 0 and π .

 $\int_0^{\pi} x^4 \sin(x) dx$ equals

$$-\pi^4 cos(\pi) + 4\pi^3 sin(\pi) + 12\pi^2 cos(\pi) + 24\pi sin(\pi) + 24cos(\pi)$$
minus $(0^4 cos(0) + 4(0)^3 sin(0) + 12(0)^2 cos(0) + 24(0) sin(0) + 24cos(0))$

$$= \pi^4 - 12\pi^2 - 24 - 24 = \pi^4 - 12\pi^2 - 48.$$