МОЛЕКУЛЯРНАЯ ФИЗИКА

ГАЗЫ

"Атомный вес" – относительная масса атома (Джон Дальтон, 1803)

"Молекулярный вес" — относительная масса молекулы

Что считать за ЕДИНИЦУ массы?

1 а.е.м.
$$\equiv M(^{12}C)/12 = 1.6605402_{10} \cdot 10^{-24} \ r = 931.494028_{23} \ MэB/c^2$$

(Раньше была "кислородная" а еще раньше — "водородная" единица) "Грамматом" — такое количество данного элемента, масса которого, выраженная в граммах, численно равна его атомному весу.

"Граммолекула" ≡ моль – такое количество данного вещества, масса которого, выраженная в граммах, численно равна его молекулярному весу.

⇒ Грамматом любого элемента содержит одно и то же число атомов, а граммолекула – число молекул. Какое? Ответ: число Авогадро N.

$$\mathsf{N} = 6.02214179_{30} \cdot 10^{23} \; 1/\mathsf{моль}$$
 — сейчас-то знаем!

Итальянский граф Lorenzo Romano Amedeo Carlo Avogadro di Quaregna е Cerreto — учитель физики в гимназии (1811): при одинаковых условиях в равных объемах газов содержится одинаковое число молекул. (Позднее стал профессором физики в Туринском университете).

Роберт Браун (R.Brown), 1827 г.: \exists движение макрочастиц под ударами отдельных молекул \Rightarrow молекулы \exists и они не такие уж безумно малые.

Прикинем, каковы размеры 1 молекулы воды: молекулярный вес $\mu(\mathsf{H}_2\mathsf{O}){\simeq 18}$ г/моль

$$\Rightarrow$$
 масса $m=\mu/N\simeq 3\cdot 10^{-23}$ г

$$\Rightarrow$$
 объем $V=\rho m\simeq 3\cdot 10^{-23}~{
m cm}^3$

$$\Rightarrow$$
 "диаметр" $d \sim \sqrt[3]{V} \simeq 3.1 \cdot 10^{-8}$ см $= 3.1$ Å

Во всяком веществе \exists непрерывное хаотичное движение молекул, зависящее лишь от температуры. Точнее, температура — это и есть мера хаотичного движения молекул. Молекулярно-кинетическая теория.

Но сначала рассмотрим эмпирические закономерности в газах.

Закон Бойля-Мариотта (частный случай з.М-К)

Свойство газов: они целиком занимают сосуд, в котором заключены, и давят на стенки. Давление – физ. величина = силе, действующей нормально на единицу площади:

$$p = \frac{f_n}{S}$$

Приборы для измерения давления подразделяются по диапазону: барометры $(P \sim 1 \text{ ат.})$, манометры (P > 1 ат.), вакуумметры (P < 1 ат.); по конструкции: анероиды, жидкостные (ртутные), пьезоэлектрические, ...

Единицы измерения давления:

- CGS: [f]= дина, [S]= см 2 \Rightarrow [p]= дина/см 2
- ullet SI: [f]= H, [S]= м 2 \Rightarrow [p]= Паскаль = H/м $^2=$ 10 дин/см 2
- (несистемная): 1 мм ртутного столба (1 Торр)
- \bullet (несистемная): 1 атмосфера = 760 мм рт.ст. $\simeq 1.013 \cdot 10^5$ Па
- ullet (несистемная): 1 бар $=10^5~{
 m Пa} \simeq 0.987~{
 m at}.$
- (допотопная): 1 PSI = 1 Pound per Square Inch (фунт на кв.дюйм)

Итак, шотландец Robert Boyle (1662) и француз Edme Mariotte (1676)

независимо друг от друга обнаружили, что для данной массы газа при постоянной температуре давление газа меняется обратно пропорционально его объему (т.е., газы — упруги!):

$$pV = \mathsf{const}$$

При очень больших давлениях это перестает работать (до нуля газ не сжимается).

Другой важный параметр — $\mathbf{температурa}$. Многие свойства тел меняются при нагревании \Rightarrow можно их использоать для измерения T. Расширение жидкости: ртутный и спиртовой термометры; расширение твердого тела: биметаллический термометр; электрические свойства: термопара, термистор; излучательные свойства: пирометр.

Единица измерения – 1 градус. Какой? Градусы бывают разные...

• Шкала Реомюра: Франция, 1730. Уже давно не используется.

$$\left\{\begin{array}{ll} 1^{\circ} \equiv & \left[T(\text{кипения воды}) - T(\text{таяния льда})\right]/80\\ 0R \equiv & T(\text{таяния льда}) \end{array}\right.$$

• Шкала Цельсия: Швеция, 1742. Широко используется в быту.

$$\left\{ \begin{array}{l} 1^{\circ} \equiv \ \left[T(\text{кипения воды}) - T(\text{таяния льда}) \right] / 100 \\ 0C \equiv \ T(\text{таяния льда}) \end{array} \right.$$

• Шкала Фаренгейта: Германия, 1724. Используется только в США, Канаде и Ямайке.

$$1) \; \left\{ \begin{array}{l} 1^{\circ} \equiv \; \left[T({\rm тела \; человека}) - T({\rm таяния \; льда \; c \; солью}) \right] / 100 \\ 0 F \equiv \; T({\rm таяния \; льда \; c \; солью}) \end{array} \right.$$

$$2) \ \left\{ \begin{array}{ll} 1^{\circ} \equiv & \left[T ({\rm кипения\ воды}) - T ({\rm таяния\ льда}) \right] / 180 \\ 32 F \equiv & T ({\rm таяния\ льдa}) \end{array} \right.$$

• Абсолютная шкала. Единица – 1 Кельвин (названа в честь англ. физика Дж.Томсона (=лорд Кельвин). Используется в науке.

$$1K \equiv \left[T({
m кипения воды}) - T({
m таяния льда})\right]/100$$

Явление с характерной	Абс.шкала	Цельсий	Фаренгейт
температурой	K	$^{\circ}C$	$^{\circ}F$
Абсолютный ноль	0	-273.15	-459.67
Кипение азота	77.4	-195.75	-320.35
Плавление льда с солью	255.37	-17.78	0
Плавление льда	273.15	0	+32
Тело человека	~ 310	$\sim +36.6$	+98.2
Кипение воды	373.15	+100	212

1877 г. Международный Комитет мер и весов: $\mathbf{\Pi octyлировалось}$, что давление $\underline{\mathbf{линейно}}$ меняется с температурой: $p_t = p_0(1+\alpha t)$ – и было предложено это и использовать как термометр. Для шкалы Цельсия коэф-т α оказался $\simeq 0.0036613$ град $^{-1}$. Сегодня известно, что выбор был удачным: H_2 действительно ведет себя по этой формуле в широком T-диапазоне. Как ведут себя остальные газы?

Эмпирические <u>законы Гей-Люссака</u> (Joseph Louis Gay-Lussac, 1778-1850):

- 1. при постоянном объеме и массе газа его давление \propto температуре $p_t = p_0(1+\alpha_p t)$, где α_p термический коэффициент давления
- 2. при постоянном давлении и массе газа его объем \propto температуре $V_t = V_0(1+lpha_v t)$, где $lpha_v$ термический коэф-т объемного расширения

Второй закон еще называют законом Шарля (Jaques Charles, 1746-1823; изобрел водородный воздушный шар).

Для водорода эти 2 закона выполняется точно (по определению), а для остальных – не очень. Например, pV=const., $\alpha_p=\alpha_v$

	pV					α_p	α_v
Газ	1 ат	100 ат	200 ат	500 ат	1000 ат	$\times 10^3$	$\times 10^3$
H_2	1.0000	1.0690	1.1380	1.3565	1.7200	3.6613	3.6600
N_2	1.0000	0.9941	1.0483	1.3900	2.0685	3.6744	3.6732
O_2	1.0000	0.9265	0.9140	1.1560	1.7355		
воздух	1.0000	0.9730	1.0100	1.3400	1.9920	3.6750	3.6760
CO_2						3.7262	3.7414
Не						3.6601	3.6582

При очень больших давлениях отступления еще сильнее. Объем азота при 15 000 ат. в 16 раз больше расчетного.

По закону Гей-Люссака, все изохоры для разного количества газа пересекаются в одной точке. Для разных газов — тоже. Эта особая точка соответствует $t=-273^{\circ}$ С. Изобары ведут себя так же.

Если абстрагироваться от возможных небольших отклонений, то в первом приближении законы Б-М и Г-Л соблюдаются хорошо.

 $\underline{\mathbf{M}}$ деальный газ — гипотетический газ, для которого они выполнялись бы строго.

Если перейти к абсолютной температуре $t \to T$ (то есть, от градусов Цельсия к Кельвинам), то все уравнения упрощаются

Бенуа Поль Эмиль Клапейрон (1834):

$$\frac{pV}{T} = \text{const.} \tag{1}$$

здесь константа зависит от того, сколько взято газа и какого. Как уже говорилось, по закону Авогадро, моль любого газа при одинаковых условиях занимает один и тот же объем. Молярный объем: V_0 — объем, занимаемый одним молем газа.

Д.И.Менделеев (1874) все это объединил и получил уравнение Клапейрона-Менделеева, то есть, уравнение состояния идеального газа:

$$pV_0 = RT (2)$$

R — Универсальная газовая постоянная. Чему она равна? Посчитаем: $R=pV_0/T\simeq 1$ ат $\cdot 22.4$ л / 273 град. $\simeq 0.082$ л ат/град/моль

Более точно: $R=8.31441_{26}~\mbox{Дж/моль/K}=8.31441_{26}\cdot 10^7~\mbox{эрг/моль/K}$

Если у нас не 1 моль газа, а, например, m граммов при молекулярном весе μ , то формула несколько изменится. m граммов — это $\frac{m}{\mu}$ молей, и они занимают объем $V=V_0\cdot \frac{m}{\mu}$, поэтому

$$pV = \frac{m}{\mu}RT$$

Например, найдем плотность воздуха при 1 атмосфере и 27°C:

$$\rho = \frac{m}{V} = \frac{p\mu}{RT} = 1 \text{ат} \cdot \frac{29 \text{ г}}{\text{моль}} \cdot \frac{\text{град моль}}{0.082 \text{л ат}} \cdot \frac{1}{300 \text{град}} \simeq 1.17 \frac{\text{г}}{\text{л}} = 1.17 \frac{\text{кг}}{\text{м}^3} = 1.17 \frac{\text{мг}}{\text{см}^3}$$

То есть, плотность газов \sim на 3 порядка < плотности воды.

Еще задачка: сколько нужно молей водорода, чтобы наполненный им шар смог поднять человека? $\mu(H_2){=}2$, а для воздуха $\mu{=}29$, поэтому выталкивающая сила $=\frac{29-2}{29}$ от веса воздуха. Считая, что масса человека + масса оболочки =100 кг, и вспомнив, что 1 м 3 воздуха весит 1.17 кг, получим, что водородный шар объемом 1 м 3 может поднять $\frac{29-2}{29} \cdot 1.17 \simeq 1.09$ кг, а для поднятия 100 кг нужно, соответственно, 92 м 3 (\oslash 5.6 м) или $\frac{92000}{22.4} \cdot \frac{273}{300} \simeq 3738$ молей. Если пытаться получить водород из реакции

$$2HCl + Zn \rightarrow ZnCl_2 + H_2$$

то нужно 250 кг цинка и 270 кг соляной кислоты. Лучше сразу забыть и купить на сэкономленные деньги авиабилет.

Основные представления кинетической теории газов.

Поскольку при н.у. газы в 1000 раз менее плотны, чем жидкости, то расстояния между молекулами в $\sqrt[3]{1000} \simeq 10$ раз больше их размеров. Молекулы упруго соударяются друг с другом и со стенками. \Rightarrow распространение на весь объем и диффузия. Удары по стенкам \Rightarrow давление (идея Д.Бернулли, 1738, СПб). Дальнейшее развитие – лишь во второй половине XIX века. (Клаузиус, Больцман, Максвелл).

Рассмотрим маленький кубический объем $V{=}L^3$ с n молекулами. Считаем, что $\frac{n}{3}$ молекул летает \parallel оси x между левой и правой стенками, $\frac{n}{3}-\parallel$ оси y между передней и задней, и $\frac{n}{3}-\parallel$ оси z между верхней и нижней стенками. При упругом ударе об стенку молекула передает ей импульс 2mv. Период ударов — это время, чтобы слетать туда и обратно: $\Delta t = 2L/v$.

Регулярная мгновенная передача импульса 2mv с периодом Δt равносильна тому, как если бы в течение этого времени действовала постоянная маленькая сила Δf , сообщающая стенке тот же импульс за то же время: $\Delta f \cdot \Delta t = 2mv$. Подставив значение $\Delta t = 2L/v$, получим для вклада от одной і-ой молекулы: $\Delta f_i = mv_i^2/L$. Если у нас имеется j = n/3 таких молекул, каждая с какой-то своей скоростью, то суммарное давление на стенку определится суммой всех сил Δf_i :

$$p = \frac{F}{S} = \frac{\sum_{i=1}^{j} \Delta f_i}{L^2} = \frac{1}{L^3} \sum_{i=1}^{j} m v_i^2$$

Обратим внимание, что среднюю кинетическую энергию молекул можно определить как $1 \, \ \, \underbrace{j} \, \, m v_i^2$

 $\overline{w} = \frac{1}{j} \sum_{i=1}^{j} \frac{mv_i^2}{2}$

Тогда предыдущее выражение превращается в $p=\frac{2j}{L^3}\overline{w}$, а если обозначить за n_0 число молекул в единице объема: $n_0=n/L^3=3j/L^3$, то

$$p=rac{2}{3}\,n_0\,\overline{w}$$
 - основная формула кинетической теории газов

Если домножим обе части на молярный объем и учтем, что $n_0V_0=N$, то

$$pV_0=rac{2}{3}\;N\;\overline{w}$$
 но из ур.К-М: $pV_0=RT$

поэтому можно выразить значение средней энергии через температуру:

$$\overline{w} = \frac{3}{2} \frac{R}{N} T = \frac{3}{2} k T \tag{3}$$

где k=R/N – постоянная Больцмана (Ludwig Eduard Boltzmann, 1844-1906, Вена)

Численное значение:
$$k = \left\{ egin{array}{ll} 1.3806504_{24} \cdot 10^{-23} & \mbox{Дж/K} \\ 1.3806504_{24} \cdot 10^{-16} & \mbox{эрг/K} \\ 8.617343_{15} \cdot 10^{-5} & \mbox{эВ/K} \end{array} \right.$$

Посмотрим, сколько молекул в единице объема при н.у.:

$$n_0=rac{p}{kT}=2.6867774_{47}\cdot 10^{25} \mathrm{m}^{-3}=2.6867774_{47}\cdot 10^{19} \mathrm{cm}^{-3}$$
 - число Лошмидта

Итак, важный вывод:

температура однозначно определяется средней кинетической энергией поступательного движения молекул.

Задача: какова средняя энергия и скорость молекул N_2 при разных T ? Решение:

$$\overline{w} = \frac{3}{2} \; k \; T, \quad v_T \equiv \sqrt{\overline{v^2}} = \sqrt{\frac{2\overline{w}}{m}} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3RT}{mN}} = \sqrt{\frac{3RT}{\mu}} = \sqrt{\frac{3kNT}{\mu}}$$

$$T = \; 0.01K : \qquad \overline{w} = \; 1.29 \; \text{mkbB} \qquad v_T = \; 3 \; \text{m/c}$$

$$T = \; 4K : \qquad \overline{w} = \; 0.52 \; \text{mbB} \qquad v_T = \; 60 \; \text{m/c}$$

$$T = \; 300K : \qquad \overline{w} = \; 0.04 \; \text{bB} \qquad v_T = \; 517 \; \text{m/c}$$

$$T = \; 5760K : \qquad \overline{w} = \; 0.74 \; \text{bB} \qquad v_T = \; 2300 \; \text{m/c}$$

Вспомним основную формулу:
$$p = \frac{2}{3} n_0 \overline{w}$$

Что если молекулы – не одинаковы? $n_0=n_{0A}+n_{0B}+n_{0C}+\dots$ Каждый газ давит на стенки сам по себе, независимо от остальных. Поэтому

Закон Дальтона (John Dalton, 1766-1844, UK): Сумма **парциальных** давлений идеальных газов равна давлению всей газовой смеси.

$$p = p_A + p_B + p_C + \dots$$

Следствие: если разные идеальные газы при одинаковых условиях (р,Т) смешать, то давление не изменится, а объемы сложатся.

Мы видели, что T – это кинетическая энергия поступательного движения молекул. Но у молекул может быть еще энергия вращения, а также энергия колебаний!

Число степеней свободы – число координат, необходимых для полного описания положения тела в пространстве. Для материальной ТОЧКИ хватит трех – х,у,z. Для ТЕЛА надо еще 3: две для задания оси вращения $(\angle \vartheta \text{ и } \angle \varphi)$, и одна – для угла поворота $\angle \xi$. Если еще возможны смещения (колебания) отдельных частей тела, то для этого нужны еще дополнительные координаты.

Ни одно из движений не имеет преимущества \Rightarrow ПРЕДПОЛОЖЕНИЕ: На каждую степень свободы молекулы в среднем приходится одно и то же количество энергии $\overline{\mathbf{w}}/3=\frac{1}{2}\mathbf{k}\mathbf{T}-\frac{1}{2}\frac{\mathbf{R}}{\mathbf{N}}\mathbf{T}$.

Пусть газ имеет i степеней свободы. Внутренняя энергия 1 моля газа: $U_0 = N \frac{i}{2} \frac{R}{N} T = \frac{i}{2} R T$ — зависит только от T, но не от V или p.

Удельная теплоемкость (c) и молярная теплоемкость (C) – количество тепла, которое надо сообщить 1 (кило)грамму или 1 молю вещества, чтобы его T увеличилась на 1° .

$$C = \mu c$$

Результат, оказывается, зависит от того, \mathbf{KAK} происходит нагревание!

Например, нагреваем 1 моль газа при постоянном объеме V. Поскольку работа при этом не совершается, то все тепло идет на увеличение U:

$$\Delta U_0 = \frac{i}{2}R(T+1) - \frac{i}{2}RT = \frac{i}{2}R$$
 \Rightarrow $C_V = \frac{i}{2}R; \quad c_V = \frac{i}{2}\frac{R}{\mu}$

Поскольку количество тепла принято измерять в калориях (1 г воды от 19.5 до 20.5 °C), то \exists соотношение: 1 кал \approx 4.184 Дж. Можно пересчитать:

$$R = 8.31441$$
 Дж/моль/К $\simeq 1.986$ кал/моль/К

Теперь нагреем 1 моль газа при постоянном давлении p. Газ расширится и сдвинет поршень на рассояние h, совершив работу $A=f\cdot h=p\cdot S\cdot h=p\cdot \Delta V$. Поскольку молярный объем при температуре T составлял $V_0=RT/p$, а после нагрева до температуры T+1 стал $V_0'=R(T+1)/p$, то $\Delta V=R/p$, а совершенная работа $A=p\Delta V=R$.

Итак, при постоянном давлении теплоемкость выше, т.к. тепло идет не только на нагрев, но еще и на работу по расширению:

$$C_p = C_V + R = \frac{i}{2}R + R = \frac{i+2}{2}R$$

Если обозначить буквой γ отношение теплоемкостей $C_p/C_V \equiv \gamma$, то видно, что оно зависит только от числа степеней свободы: $\gamma = \frac{i+2}{i} = 1+2/i$.

Для одно-атомных молекул должно быть:

i=3 $C_V=\frac{3}{2}R=2.98$ кал/моль/К; $C_p=\frac{5}{2}R=4.97$ кал/моль/К для двух-атомных:

i=5 $C_V=\frac{5}{2}R=4.97$ кал/моль/К; $C_p=\frac{7}{2}R=6.95$ кал/моль/К для трех-атомных:

$$\dot{i}=6$$
 $C_V=rac{6}{2}R=5.96$ кал/моль/К; $C_p=rac{8}{2}R=7.94$ кал/моль/К

газ	C_V	C_p	γ	i
Не	2.98	5.00	1.67	2.99
Ar	2.98	5.07	1.65	3.07
H_2	4.87	6.87	1.41	4.88
N_2	4.96	6.84	1.41	4.88
O_2	4.99	6.90	1.38	5.22
СО	5.01	7.01	1.40	5.01
H_2O	6.65	8.65	1.30	6.65
CH_4	6.51	8.51	1.31	6.51
CHCl ₃	15.2	17.2	1.13	15.2
C_2H_5OH	18.9	20.9	1.11	18.9

В действительности, теплоемкость растет с температурой. А с охлаждением степени свободы как бы "вымораживаются". Причина: вращательная и колебательная энергии квантуются, и при низкой T их просто нет. Колебания

сказываются либо при совсем высокой T, либо при сложном строении молекул (тогда квант мал по величине).

Например: двухатомный газ при комнатной T имеет 5/2. При охлаждении сначала пропадает вращение $(5/2 \rightarrow 3/2)$, а затем заз замерзает, и вообще движение пропадает $(3/2 \rightarrow 0)$. При нагревании, наоборот, появляется возможность колебаний $(5/2 \rightarrow 7/2)$.

Да еще происходит частичная диссоциация \Rightarrow вместо одной 2-атомной молекулы с 7/2 возникают две 1-атомные (3/2+3/2=6/2)...