ALGEBRA Chapter 6

RETROALIMENTACIO N TOMO 2

SOLVED PROBLEMS

PROBLEMA 1

Si P(x) =
$$81x^{200} - 27x^{201} - 5x + 20$$

Evalúe P(3)

Resolución

$$x = 3$$

$$P(3) = (3)^4(3)^{200} - 3^3 \cdot (3)^{201} - 5(3) + 20$$

$$P(3) = (3)^{204} - (3)^{204} - 15 + 20$$

$$P(3) = 5$$

Sea P(x) = $(3x + 2)^3 + (x - 3)^2 + x + 3$.Calcule el término independiente.

<u>Resolución</u>

RECUERDA

Por propiedad. T.I.=P(0)

$$x = 0$$

$$P(0)=(3(0)+2)^3+(0-3)^2+0+3$$

$$P(0)=(2)^3+(-3)^2+3$$

$$P(0) = 8 + 9 + 3$$

$$\therefore P(0) = 20$$
, es el T.I.

20

Sea P(x+2) = $(x + 3)^5 - (x - 1)^3 + (x + 1)x$ Calcule la suma de coeficientes sabiendo que representa la edad de Lucio . ¿Cuál será la edad de Lucio dentro de 5 años?

Resolución

RECUERDA

Por propiedad. \sum coef. (P(x))=P(1)

$$x + 2 = 1$$

$$\Rightarrow x = -1$$

$$P(1) = ((-1) + 3)^{5} - (-1 - 1)^{3} + (-1 + 1)(-1)$$

$$P(1) = (2)^{5} - (-2)^{3} + (0)(-1)$$

$$P(1) = 32 + 8 + 0$$

$$P(1) = 40 \quad \text{,Es la S.C. que es edad de Lucio}$$

Por lo cual dentro de 5 años tendrá: 45 años

Dado el polinomio

$$P(x, y) = 5ax^{a+3}y^{b-2} - 2ax^{a+3}y^{b+1} + 5x^ay^{b-2}$$

se sabe que GA=10 y GR(y)=4.indique la suma de sus coeficientes

Resolution
$$a + b + 1$$
 $a + b + 4$ $a + b - 2$

$$P(x, y) = 5ax^{a+3}y^{b-2} - 2ax^{a+3}y^{b+1} + 5x^{a}y^{b-2}$$

$$G.A = a + b + 4 = 10$$

$$a + b = 6$$

$$GR(y) = b + 1 = 4 \rightarrow b = 3$$

$$Luego a = 3$$
Suma de coeficientes:
$$(5a) + (-2a) + 5$$

$$(15) + (-6) + 5$$

$$= 14$$

Halle el valor de "m" si

$$R(x) = (x^{2m} + 2)(x^{3m+5} - 12)$$
.Es de GA=45

Resolucion

RECUERDA

El grado en un polinomio de más de un término esta relacionado al mayor exponente de la variable.

8

$$5 \times 2 = 10$$
 $7 \times 4 = 28$ 2
Si $Q(x) = (x^5 + 2x)^2(x^7 - 3)^4(3x^2 + x)$
Tiene como grado absoluto (3n-5), halle el valor de n.

Resolucion

$Q(x) = (x^{5} + 2x)^{2}(x^{7} - 3)^{4}(3x^{2} + x)$

$$G.A = 10 + 28 + 2 = 3n - 5$$

 $45 = 3n$

 \rightarrow 15 = n

n = 15

RECUERDA

Cuando un polinomio esta elevado a un exponente, el grado esta relacionado con la multiplicación.

Si el polinomio es completo y ordenado

$$Q(x)=8x^{m-3}+10x^{n+5}+5x^{p-7}-2x+11, calcule m-n-p$$

Resolucion

$$* m - 3 = 4$$

$$m = 7$$

$$* n + 5 = 3$$

$$n = -2$$

$$p = 2$$
 $p = 9$
 $m - n - p$
 $7 - (-2) - (9) = 0$

Si el polinomio

$$W(x) = (m+n-1)x^3 + (n+p+2)x^5 + (m+p-3)$$

Es idénticamente nulo, calcule: $R = \sqrt{5(m+n+p)^3+4}$

Resolucion

$$W(x) = (\underline{m+n-1})x^3 + (\underline{n+p+2})x^5 + (\underline{m+p-3})$$

- * m+n-1=0 Luego m+n=1
- * n+p+2=0 Luego n+p=-2
- * m+p-3=0 Luego m+p=3

Sumando:
$$2(m+n+p)=2 \longrightarrow m+n+p=1$$

$$R = \sqrt{5(m+n+p)^3 + 4} = \sqrt{5(1)^3 + 4} = \sqrt{9}$$

Sabiendo que

$$P(x) = (a + b - 2)x^2 + (b + c + 3)x + (c + a - 1) - 7x^2$$

 $Q(x) = 11x^2 + 3x + 2$, son idénticos. Calcule a+b+c

Resolucion

$$(a+b-2)x^2 + (b+c+3)x + (c+a-1) \equiv 11x^2 + 3x + 2$$

Igualando los coeficientes

$$a+b-2=11$$

 $b+c+3=3$
 $c+a-1=2$

$$2a + 2b + 2c = 16$$

$$2(a+b+c)=16$$

$$a+b+c=8$$

Si el polinomio
$$Q(x,y) = 5x^{3a+b-1}y^7 - 1/2x^{3a+b} \ y^6$$
 Es homogéneo de grado 18, calcule $3a+b$

Resolución

*
$$3a + b - 1 + 7 = 18$$

 $3a + b = 18 + 1 - 7$
 $3a + b = 12$
12