UFPI - CCN - DC Estruturas de Dados

Árvores 2-3 de Busca

Prof. Raimundo Moura rsm@ufpi.edu.br

Árvore 2-3 de Busca

▶ Como implementar uma tabela de símbolos em uma BST de modo que a árvore permaneça aproximadamente balanceada (ou seja, tenha altura próxima de lg N, sendo N o número de nós) qualquer que seja a sequência de buscas e inserções aplicada à árvore?

Árvore 2-3 de Busca

- ▶Por que a altura de uma BST cresce?
 - ► Cada inserção (*put*) pode criar um novo nó e assim pode aumentar a altura da árvore.
- Solução: colocar mais de uma chave em cada nó!
- Difícil: fazer isso de modo que nenhum nó tenha mais que 2 chaves.

Árvore 2-3 de Busca

A árvore, que era binária, torna-se ternária. Na verdade, uma mistura de binária e ternária.

Anatomy of a 2-3 search tree

Anatomy of a 2-3 search tree

Árvore 2-3 de Busca (2-3 Search Tree)

- uma árvore vazia;
- ▶ ou um nó simples, que contém uma chave e dois links: um link esquerdo para uma árvore 2-3 que tem chaves menores que a chave do nó e um link direito para uma árvore 2-3 que tem chaves maiores;
- ▶ou um nó duplo, que contém duas chave e três links: um link esquerdo para uma árvore 2-3 que tem chaves menores; um link do meio para uma árvore 2-3 que tem chaves entre as duas chaves do nó; e um link direito para uma árvore 2-3 que tem chaves maiores.

Árvore 2-3 de Busca (2-3 Search Tree)

Arvores 2-3 têm esse nome porque cada nó tem 2 ou 3 links

►Toda árvore 2-3 é perfeitamente balanceada: todos os links null estão no mesmo nível.

successful search for H

H is less than M so look to the left

A C H L P S X

Buscas em Árvore 2-3

found H so return value (search hit)

unsuccessful search for B

B is between A and C so look in the middle link is null so B is not in the tree (search miss)

Search hit (left) and search miss (right) in a 2-3 tree

- ➤Inserção em um nó simples:
 - A operação não estraga o balanceamento

Insert into a 2-node

inserting S

➤Inserção em um nó duplo isolado

Insert into a single 3-node

- ➤Inserção em um nó duplo cujo pai é um nó simples:
 - A operação não estraga o balanceamento

inserting Z

Insert into a 3-node whose parent is a 2-node

Inserção em um nó duplo cujo pai é um nó duplo duplo

Insert into a 3-node whose parent is a 3-node

- ▶Inserção em um nó duplo cujo pai é um nó duplo:
 - Repitir a operação subindo em direção à raiz até encontrar um nó simples (nesse caso a altura não aumenta) ou até encontrar a raiz (nesse caso a altura aumenta). A operação não estraga o balanceamento.

➤ Divisão da raiz:

 Não estraga o balanceamento, mas aumenta a altura

inserting D

add new key D to 3-node to make temporary 4-node

add middle key C to 3-node to make temporary 4-node

split 4-node into two 2-nodes pass middle key to parent

Splitting the root

SEARCHXMPL (Parte 1)

SEARCHXMPL (Parte 2)

Árvore 2-3

Construção da árvore: passo a passo (Ordem qualquer)

Árvore 2-3

Construção da árvore: passo a passo (Ordem qualquer)

Árvore 2-3 de Busca (2-3 Search Tree)

- ► Ver o vídeo com ilustrações de operações de busca e inserção sobre uma árvore 2-3:
 - algs4.cs.princeton.edu/lectures/33De mo23Tree.mov

Atividade de participação

- 1) Inserir as seguintes chaves em uma Árvore de Busca 2-3:
 - a) JROBUSCAEXMPL
 - b) GBFIEXAMPLSRCHU
- 2) Inserir as seguintes chaves em uma Árvore de Busca Rubro-Negra:
 - a) JRBUSCAEXMPLO
 - b) GBUFIEXAMPLSRCH

