# Exploitation des biais de choix alimentaires pour recommander des recettes plus saines

Membres KRISNI Almehdi ARICHANDRA Santhos



# Plan de la présentation

- 1. Introduction au papier
- 2. Récupération des données
  - a. Le site Allrecipes
  - b. Des recettes problématiques
- 3. Premier aperçu des données
  - a. Structure
  - b. Visualisation
- 4. Mise en place de l'expérience utilisateur
- 5. Analyse des résultats
  - a. Première étude
  - b. Deuxième étude
- 6. Dans la tête de l'utilisateur
  - a. Différents modèles, différents attributs, différents résultats
  - b. Le meilleur résultat pour la meilleure prédiction
- 7. Conclusion



## Introduction au papier

- Système de recommandations modernes proposent le plus souvent des recettes peu saines
- Incorporer le caractère sain des recettes dans les systèmes de recommandation
- Élément contextuel majeur souvent ignoré, l'utilisateur, ses connaissances et ses préférences
- Tendance à favoriser des recettes moins saines et importance des sentiments
- En raison du train de vie quotidien infernal, on dispose d'un temps limité pour se décider
- Préférence pour les recettes appétissantes et souvent contenant plus de gras
- On cherche à prédire les choix des utilisateurs à travers les études d'expériences

## Récupération des données

Le site Allrecipes



## Récupération des données

Des recettes problématiques

- Illustration manquante ou parfois cachée
- Certains identifiants n'existent pas
- Valeurs parfois invraisemblables
- 1 portion = **100 grammes** ?



Exemple de recette utilisable





Exemples de recettes problématiques

Structure

#### Données des recettes :

- fichiers CSV contenant 100 recettes chacun
- valeurs nutritionnelles (calories, gras, ...)
- adresse web de l'image

Concaténation de listes de valeurs pour former le dataframe global

#### Données des images :

- répertoire d'images téléchargées
- features (entropie, luminosité, ...)
- fichiers CSV contenant les features de 100 images chacun



#### Visualisation









#### Visualisation

#### **Score FSA**

- Mesure de la "healthiness" d'une recette
- Une des limites du papier
- Manque d'information sur Internet
- Calcul réalisé approximatif







Visualisation



$$\cos( heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|}$$

Similarité calculée à partir :

- titre
- valeurs nutritionnelles
- avis utilisateurs
- ingrédients

En moyenne, 30 recettes similaires dans la base de données par recette

## Mise en place de l'expérience utilisateur



# Mise en place de l'expérience utilisateur



Les résultats sont par la suite analysés pour le Machine Learning

| ected_answer | information_choice | recipe_choice | recipe_B_id | recipe_A_id | question_id |
|--------------|--------------------|---------------|-------------|-------------|-------------|
| 1            | . 2                | 1             | 22921       | 24078       | 0           |
| 2            | 1                  | 1             | 20356       | 19937       | 1           |
| 2            | 1                  | 1             | 24605       | 15510       | 2           |
| 2            | 1                  | 2             | 13495       | 23430       | 3           |
| 1            | . 2                | 1             | 17869       | 15136       | 4           |
| 2            | . 2                | 1             | 17828       | 12953       | 5           |
| 2            | 2                  | 2             | 22592       | 15538       | 6           |
| 2            | 1                  | 1             | 20701       | 20900       | 7           |
| 2            | 1                  | 1             | 14994       | 24472       | 8           |
| 1            | . 2                | 1             | 17866       | 19836       | 9           |

# Analyse des résultats

Première étude

Précision - 54%





Résultats en accordance avec le papier - La photo est l' élément de décision utilisé dans la majorité des cas

# Analyse des résultats

Deuxième étude

Précision - 61%





Résultats en accordance avec le papier - La liste d'ingrédients est l'élément de décision utilisé dans la majorité des cas

Différents modèles, différents attributs, différents résultats

| Feature Set | Rand.For. | Logistic | Naive Bay. | Nombre<br>Feat. |
|-------------|-----------|----------|------------|-----------------|
| Titre       | 56 %      | 53 %     | 41 %       | 54              |
| Image       | 59 %      | 55 %     | 53 %       | 10              |
| Ingrédients | 58 %      | 53 %     | 53 %       | 54              |
| Nutrition   | 57 %      | 52 %     | 52 %       | 12              |
| Total       | 34 %      | 34 %     | 33 %       | 130             |

- Modèles entraînés sur les résultats de la première étude
- On retrouve les images comme élément de décision majeur

Résultats sur les données de la première étude

Différents modèles, différents attributs, différents résultats

| Feature Set | Rand.For. | Logistic | Naive Bay. | Nombre<br>Feat. |
|-------------|-----------|----------|------------|-----------------|
| Titre       | 50 %      | 52 %     | 44 %       | 54              |
| Image       | 60 %      | 50 %     | 48 %       | 10              |
| Ingrédients | 66 %      | 69 %     | 50 %       | 54              |
| Nutrition   | 62 %      | 57 %     | 58 %       | 12              |
| Total       | 35 %      | 35 %     | 31 %       | 130             |

- Modèles entraînés sur les résultats de la deuxième étude
- On retrouve les ingrédients comme élément de décision majeur

Résultats sur les données de la deuxième étude

Le meilleur résultat pour la meilleure prédiction

- Meilleur classifieur = Régression Logistique (ingrédients, entraîné sur la deuxième étude)
- On s'en sert pour prédire les choix de la majorité des utilisateurs
- D'après les résultats, on peut garantir 3 recettes sur 5











Le meilleur résultat pour la meilleure prédiction

- Meilleur classifieur = Régression Logistique (ingrédients, entraîné sur la deuxième étude)
- On s'en sert pour prédire les choix de la majorité des utilisateurs
- D'après les résultats, on peut garantir 3 recettes sur 5











## Conclusion

- Reproduction du papier simple au niveau informatique (code, affichages, ...)
- Manque de précision par rapport aux données utilisées
- Extraction de features pour les images pas détaillée (entropie utilisée, ...)
- Ressources inaccessibles ou trop anciennes (FSA score, ...)
- Moins d'utilisateurs mais plus de données par utilisateurs (manque de diversité)
- Préférences sont fortement liées à la première impression
- Résultat peut être considéré comme décevant
- Choix de la recette relève plus de la chance ...

