ALGEBRA Y GEOMETRIA ANALITICA

TEMA 1: INTRODUCCION AL ALGEBRA Esp. Prof. Liliana N. Caputo

PROPOSICIONES

- Llamamos proposición a toda oración declarativa de la cual se puede decir si es verdadera o falsa. Se denotan con letras minúsculas (p, q, r, ...).
- Denotaremos que p es una proposición verdadera mediante v(p) = 1.
- Denotaremos que q es una proposición falsa mediante v(q) = 0.

PROPOSICIONES

- Las exclamaciones, preguntas y órdenes NO son proposiciones.
- Algunas oraciones declarativas en futuro, tampoco son proposiciones (Ej: Mañana lloverá).
- Las oraciones declarativas cuyo sujeto u objeto directo es una o más variables, NO son proposiciones. Se llaman PREDICADOS.
- De ninguna de ellas es posible determinar el valor de verdad (si es verdadera o falsa).

PREDICADOS	
 Un predicado es una oración declarativa cuyo sujeto u objeto directo está dado por una o más variables. Se denotan con letras mayúsculas y la o las variables entre paréntesis. Un predicado puede convertirse en proposición (verdadera o falsa), dando valores particulares a su(s) variable(s). Ejemplos: Jorge es correntino. P(Jorge) 2 es un divisor de x. S(x) x + y = 0. Q(x, y) 	
CONECTIVOS LOGICOS	
A continuación, relacionaremos proposiciones entre sí, utilizando conectivos	
u operadores lógicos, con lo cual	
generaremos proposiciones compuestas: • Negación: ¬	
Conjunción: ∧Disyunción: ∨	
Implicación: ⇒	
> Equivalencia o doble implicación: ⇔	
NEGACION	
 Dada una proposición p, su negación es una proposición compuesta que afirma exactamente lo contrario que p. 	
▶ NOTACION: Se lee "no p": ¬p.	
 Si v(p) = 1, v(¬p) = 0 y, si v(p) = 0, v(¬p) = 1. Es evidente que v(¬(¬p)) = v(p). 	
•	

CONJUNCION

- La conjunción de dos proposiciones p y q es una proposición compuesta que es verdadera únicamente si p y q son verdaderas y falsa en cualquier otro caso.
- ▶ NOTACION: Se lee "p y q": p ∧ q.
- $\mathbf{v}(\mathbf{p} \wedge \mathbf{q}) = 1$, únicamente, si $\mathbf{v}(\mathbf{p}) = \mathbf{v}(\mathbf{q}) = 1$.
- Es evidente que $v(p \wedge q) = v(q \wedge p)$.

- La disyunción lógica de dos proposiciones p y q es una proposición compuesta que es falsa únicamente si p y q son falsas y verdadera en cualquier otro caso.
- ▶ NOTACION: Se lee "p o q": p ∨ q.
- $\mathbf{v}(\mathbf{p} \vee \mathbf{q}) = \mathbf{0}$, únicamente, si $\mathbf{v}(\mathbf{p}) = \mathbf{v}(\mathbf{q}) = \mathbf{0}$.
- Es evidente que $v(p \lor q) = v(q \lor p)$.

IMPLICACION

- La implicación de dos proposiciones p y q (en ese orden) es una proposición compuesta que es falsa únicamente si p es verdadera y q es falsa, y es verdadera en cualquier otro caso.
- NOTACION: Se lee "Si p, entonces, q", o "Si p, q" o " q, si p": p ⇒ q. p se llama antecedente y q consecuente.
- En general, $v(p \Rightarrow q) \neq v(q \Rightarrow p)$. Veamos un ejemplo.

EQUIVALENCIA

- En general, diremos que dos proposiciones son equivalentes cuando tienen el mismo valor de verdad. Sin embargo, nos interesan aquellas equivalencias que "dicen lo mismo", pero en otros términos.
- ▶ En particular, cuando $v(p \Rightarrow q) = v(q \Rightarrow p) = 1$ decimos que p y q son equivalentes y denotamos con p \Leftrightarrow q. Se lee "p es equivalente a q" o "p si, y sólo si, q".
- ▶ Luego, $v(p \Leftrightarrow q) = 1$ únicamente si v(p) = v(q)

NEGACIONES DE PROPOSICIONES COMPUESTAS

- ▶ De la negación: $\neg(\neg p) \Leftrightarrow p$.
- ▶ De la conjunción: $\neg (p \land q) \Leftrightarrow (\neg p \lor \neg q)$.
- ▶ De la disyunción: $\neg(p \lor q) \Leftrightarrow (\neg p \land \neg q)$.
- De la implicación: ¬(p ⇒ q) ⇔ (p ∧ ¬q).
 A continuación justificaremos estas equivalencias

LEYES LOGICAS O TAUTOLOGIAS

- Dada una proposición compuesta P, P es una ley lógica o tautología si, y sólo si, v(P) = 1, cualesquiera sean los valores de verdad de las proposiciones que la conforman.
- ▶ Ejemplo: P: $p \Rightarrow (p \lor q)$. (Justificación)
- Dada una proposición compuesta Q, Q es una contradicción si, y sólo si, v(Q) = 0, cualesquiera sean los valores de verdad de las proposiciones que la conforman.
- ► Ejemplo: Q: p ∧ ¬p. (Justificación)

•	
•	
•	
·	
Ī	
	4

LEYES LOGICAS	
En el Anexo del Trabajo Práctico 1 se incluye una lista de LEYES LOGICAS que pueden ser	
necesarias en el futuro, por lo cual las	
aceptaremos sin demostración.	
TEORIA DE CONJUNTOS	
CONJUNTO: Término primitivo (no se define). Se denotan con letras mayúsculas A, B,	
ELEMENTO: Término primitivo. Se denotan	
con letras minúsculas x, y, Los elementos de un conjunto se encierran entre llaves.	
▶ PERTENENCIA: Término primitivo. Con x ∈ A	
denotamos que x es un elemento de A. En cambio, con y ∉ A denotamos que y no es un	
elemento de A. Se leen: "x pertenece a A" y "y no pertenece a A", respectivamente.	
no percenece a A, respectivamente.	
COMO DENOTAR UN CONJUNTO	
Cuando se nombran todos y cada uno de los	
elementos de un conjunto, decimos que el conjunto está denotado o expresado por	
extensión. Ejemplo: V = {a, e, i, o, u}. Cuando el conjunto tiene muchos elementos se	
lo expresa o denota por comprensión ; sus	
elementos serán todos aquellos que convierten a un predicado en una proposición verdadera.	
Ejemplo: $V = \{x \in A \mid x \text{ es una vocal}\}$, siendo A el conjunto de las letras del alfabeto.	

Entonces P(x): x es una vocal. Luego, $a \in V$ porque v(P(a)) = 1 y $b \notin V$ porque v(P(b)) = 0.

INCLUSION E IGUALDAD	
Sean A y B dos conjuntos. Decimos que A es un subconjunto de B si, y sólo si, todo	
elemento de A pertenece a B.	
 A ⊂ B ⇔ v(x ∈ A ⇒ x ∈ B) = 1. A y B son iguales si tienen exactamente los mismos elementos. En ese caso todo 	
elemento de A pertenece a B (A \subset B) y todo elemento de B pertenece a A (B \subset A) es decir,	
$A = B \Leftrightarrow A \subset B \wedge B \subset A.$	
NUMEROS ENTEROS	
Si bien más adelante los estudiaremos en profundidad, por ahora, suponemos	
conocidos los siguientes conjuntos: De nros. Naturales: $\mathbb{N} = \{1, 2, 3, \dots\}$	
▶ De Enteros No Negativos: $\mathbb{N}_0 = \{0, 1, 2, 3,\}$	
De nros. Enteros: $\mathbb{Z} = \{, -2, -1, 0, 1, 2,\}$ Nota: A los números naturales también se los	
llama números enteros positivos. Vemos que $\mathbb{N} \subset \mathbb{N}_0 \subset \mathbb{Z}$	
PROPOSICIONES CUANTIFICADAS	
Para convertir un predicado en proposición,	
pueden darse valores particulares a su(s) variable(s) o usarse cuantificadores.	
 <u>Cuantificador universal</u>: Se utiliza para simbolizar que todos los elementos de un conjunto verifican un predicado. 	
Ejemplo: P(x): x es un número natural par, se convierte en la proposición falsa: Todo	
número natural es par. En símbolos: $\forall x \in \mathbb{N}$: $2 x$.	

PROPOSICIONES CUANTIFICADAS	
 Cuantificador existencial: Se utiliza para simbolizar que sólo uno o algunos de los elementos de un conjunto verifican un predicado. Ejemplo: P(x): x es un número natural par, se convierte en la proposición verdadera: Algunos números naturales son pares. En símbolos: ∃x∈ N/2 x. Cuando el predicado consta de dos o más variables, se usa un cuantificador por cada una de ellas. Se verá en el práctico que el orden en que se enuncian los cuantificadores es importante. 	
PROPOSICIONES CUANTIFICADAS	
Para negar una proposición cuantificada, se	
cambia el cuantificador y se niega el predicado. Sean $P(x)$ y $Q(x,y)$ dos predicados con dominio en E : $\neg (\forall x \in E: P(x)) \Leftrightarrow \exists x \in E / \neg P(x)$	
$\rightarrow \neg (\exists x \in E / P(x)) \Leftrightarrow \forall x \in E : \neg P(x)$	
$ \neg (\forall x, y \in E: Q(x, y)) \Leftrightarrow \exists x, y \in E / \neg Q(x, y) $ $ \neg (\exists x, y \in E / Q(x, y)) \Leftrightarrow \forall x, y \in E: \neg Q(x, y) $	
→ $\neg(\forall x \in E, \exists y \in E/Q(x, y)) \Leftrightarrow \exists x \in E/\forall y \in E: \neg Q(x, y)$ → $\neg(\exists x \in E/\forall y \in E: Q(x, y)) \Leftrightarrow \forall x \in E, \exists y \in E: \neg Q(x, y)$	
CONJUNTOS PARTICULARES	
Conjunto vacío: Un conjunto que no tiene elementos se llama vacío. Notación: Ø.	
Conjunto unitario: Se llama conjunto unitario	
al conjunto unitario. Se nama conjunto unitario al conjunto que tiene un único elemento. Un conjunto unitario muy usado es {0}; algunos	
autores lo llaman "singulete cero".	

DIAGRAMAS DE VENN

- Es habitual representar los conjuntos en diagramas, llamados de Venn.
- Si A = {1, 2, 3, 8}, B = {2, 4} y C = {2, 3, 4, 6} se pueden representar por separado como sigue:

› O en un único diagrama:

DIAGRAMAS DE VENN

PROPIEDADES DE LA ⊂

Sean A, B y C tres conjuntos cualesquiera:

- 1. $A \subset A$ (todo conjunto está incluido en sí mismo).
- 2. $\emptyset \subset A$ (todos los conjuntos incluyen a vacío)
- 3. $A \subset B \land B \subset C \Rightarrow A \subset C$
- ${}^{4.} A \subset B \wedge B \subset A \Leftrightarrow A = B$

Demostremos a continuación estas propiedades

OPERACIONES CON CONJUNTOS

Sean A y E conjuntos tales que A \subset E

COMPLEMENTO DE A: Se llama complemento de A al conjunto A' = {x ∈ E / x ∉ A}

Ejemplo: $E = \{x \in \mathbb{N} \mid x \le 5\}, A = \{1, 3\}, luego: A' = \{2, 4, 5\}.$ Gráficamente:

OPERACIONES CON CONJUNTOS

 UNION DE CONJUNTOS: Sean A y B conjuntos.
 La unión de los conjuntos A y B es el siguiente conjunto:

 $A \cup B = \{x \mid x \in A \lor x \in B\}$ emplo: $A = \{x \in N \mid x < 3\}, B = \{1, 5, 2\}, Luego$

Ejemplo: A = $\{x \in \mathbb{N} \mid x \le 3\}$, B = $\{1, 5, 2\}$, luego: A \cup B = $\{1, 2, 3, 5\}$

Gráficamente:

OPERACIONES CON CONJUNTOS

INTERSECCION DE CONJUNTOS: Sean A y B conjuntos. La intersección de los conjuntos A y B es el conjunto siguiente:

 $A \cap B = \{x \mid x \in A \land x \in B\}$

• EJEMPLO: Para A y B dados antes, se tiene que $A \cap B = \{1, 2\}$. Gráficamente:

OPERACIONES	CON		INITO
OFENACIONES	COIA	COM	כטועונ

DIFERENCIA DE CONJUNTOS: Sean A y B conjuntos. La diferencia de los conjuntos A y B (en ese orden) es el conjunto siguiente:

$$A - B = \{x \,\in\, A \,\,/\,\, x \,\not\in\, B\}$$

• EJEMPLO: Para A y B dados antes, se tiene que A - B = {3}. Gráficamente:

▶ Nótese que si $B \subset A$, A - B = B'.

En el Anexo del Trabajo Práctico 1 se incluye una lista de propiedades de las operaciones con conjunto que pueden ser necesarias en el futuro, por lo cual las aceptaremos sin demostración.

> CONJUNTOS CUYOS ELEMENTOS SON CONJUNTOS

CONJUNTO DE PARTES

- Dado un conjunto A, se llama "conjunto de partes de A" al conjunto formado por todos los subconjuntos de A.
- ▶ Notación: ℘(A)
- ▶ Como \emptyset \subset A \wedge A \subset A, \emptyset ∈ \wp (A) \wedge A ∈ \wp (A) es decir, \wp (A) ≠ \emptyset .
- Si n ∈ N es el número de elementos de A, el número de elementos de ℘(A) es 2ⁿ
- > Se verán ejemplos en el Trabajo Práctico 1.

PARTICION DE UN CONJUNTO

- Sea A un conjunto no vacío y P un conjunto formado por algunos (no todos) subconjuntos de A. Diremos que P es una partición de A si, y sólo si, las siguientes proposiciones son verdaderas:
- 1. Todos los elementos de P son no vacíos.
- Si la intersección de todo par de elementos de P es no vacía, dichos conjuntos son iguales.
- 3. La unión de todos los elementos de P es A.

PARTICION DE UN CONJUNTO

▶ EJEMPLOS: Sean

 $A = \{1, 2, 3, 4\} P_1 = \{\emptyset, \{1, 2\}, \{1, 3, 4\}\},\$

 $P_2 = \{\{1, 2\}, \{4\}\}, P_3 = P_1 - \{\emptyset\},$

 $P_4 = \{\{1, 2\}, \{3\}, \{4\}\}$

 P_1 no es partición de A, pues $\emptyset \in P_1$ (Cond. 1).

 P_2 no es partición de A, pues $\{1, 2\} \cup \{4\} \neq A$ (Cond. 3).

Como $\{1, 2\} \cap \{1,3,4\} = \{1\} \neq \emptyset$, P_3 no es partición de A, (No cumple con la Cond. 2).

PARTICION DE UN CONJUNTO ► EJEMPLO CONTINUACION: Teníamos: A = {1, 2, 3, 4} y P ₄ = {{1, 2}, {3}, {4}}. Vemos que: *{1, 2} ≠ Ø ∧ {3} ≠ Ø ∧ {4} ≠ Ø (Cumple Cond.1). * {1,2} \cap {3}= Ø ∧ {1,2} \cap {4}= Ø ∧ {3} \cap {4}= Ø (Cumple Cond. 2). * {1, 2} \cup {3} \cup {4} = A (Cumple Cond. 3) ∴ P ₄ es una partición de A	
PARES ORDENADOS	
 Sean a, b, c, d elementos de algún conjunto. Llamamos "par ordenado" al siguiente conjunto de conjuntos: (a, b) = {a, {b}}. En este caso, a es la 1ª componente del par ordenado y b es la 2ª componente (Definición de Kuratowski). Es evidente que, en general, (a, b) ≠ (b, a). En efecto, si a ≠ b, resulta a∈ (a, b) = {a, {b}} ∧ a∉ (b, a) = {b,{a}} De ahí que podemos afirmar que: (a, b) = (c, d) ⇔ a = c ∧ b = d (Definición de igualdad de pares ordenados) 	
TERNAS ORDENADAS	
 Sean a, b, c, d elementos de algún conjunto. Llamamos "terna ordenada" al siguiente conjunto de conjuntos: (a, b, c) = {{a, 1} {b, 2}, {c, 3}} 	
(Definición de Hausdorff) a es la 1ª componente, b es la 2ª y c la 3ª. Definición de igualdad de ternas:	
 (a, b, e) = (c, d, f) ⇔ a = c ∧ b = d ∧ e = f Esta última definición pueden extenderse a un número natural n > 3. En ese caso, las llamamos n – uplas (por ejemplo, 10 – uplas) 	

PRODUCTO CARTESIANO	
DEFINICION: Sean A y B dos conjuntos. Se llama producto cartesiano A por B, al conjunto de todos los pares ordenados cuya 1ª componente es un elemento de A y la 2ª es un	
elemento de B. Luego: $AxB = \{(x, y)/x \in A \land y \in B\}$ Si C es un conjunto, el producto cartesiano $AxBxC = \{(x, y, z)/x \in A \land y \in B \land z \in C\}$. Al producto cartesiano $Ax A$ lo denotamos con	
A^2 y a AxAxA con A^3 . En general, AxxA (n veces y $n \in \mathbb{N}$), se denota con A^n .	
PROPIEDADES	
TROTIEDADES	
$ A \times B \neq \varnothing \Leftrightarrow A \neq \varnothing \wedge B \neq \varnothing $	
$ A \times B \neq B \times A $	
\rightarrow A x B x C \neq A x (B x C)	
Se presentan a continuación sus demostraciones	