

STOCK PRICE REVERSAL POINTS

CAPSTONE

AGENDA

- Problem Statement
- Data Collection
- Data Cleaning
- EDA
- Feature Engineering
- Classification Method
- Regression Method
- Final Model
- Conclusion
- Future Progress

PROBLEM STATEMENT

 In the financial markets, traders have always said, Buy low and Sell High (Motto of the Century)

However, the problem that everyone faces in the investing/ trading world is, at any given moment, we are all questioning, is this really the lowest price now and we should buy the stock now / is this really the highest price now and we should sell the stock to take profit or short the stock?

In this project, I am going to solve this problem and identify the reversal points (buy/sell points) for a few selected stocks.

DATA COLLECTION

- Data is scraped and collected from Yahoo Finance
- Features collected:
 - High, Low, Open, Close, Volume, Time
- Stocks Scraped:
 - Apple, Facebook, Visa, Intel, Disney, Saleforce, Nike, General Motors, Twitter and TripAdvisor

DATA CLEANING

1)

```
# Clean up DataFrame
def clean data(data):
    # Drop all rows with volume == 0. We do not need premarket/postmarket data since we cant trade during these hours
   data = data[data['volume']!=0]
   # Drop Duplicates
   data = data.drop_duplicates(subset=['stock', 'time'], keep = 'last')
   # Drop Null Values
   data = data.dropna()
   # Sort by ticker symbol and time
   data = data.sort_values(by = ['stock','time']).reset_index(drop=True)
   # Create New Column for localtime
   for i, epoch in enumerate(data['time']):
       if data['local_time'][i] == '':
           data['local time'][i] = time.strftime('%m/%d/%Y %H:%M:%S', time.localtime(epoch))
    # Change local time datatype from object to date time
   data['local_time'] = pd.to_datetime(data['local_time'])
   return data
```

) 2)

```
# Combine Scraped Stocks with current dataset
def scraper(ticker):
    # CHECK IF THERE IS ALREADY A CSV FILE
       all df = pd.read csv('../datasets/technical data.csv')
   except:
        # Create empty dataframe if there is no csv file
       all df = pd.DataFrame()
       print("No Dataset yet")
    # Get Current time and last day of scraping
   current time, four years ago = get current time()
    # Get DataFrame of Scraped Stocks
    scraped df = scrape yahoo(ticker, current time, four years ago)
    # Combine current data with scraped data
    all_df = all_df.append(scraped_df).reset_index(drop=True)
    # Clean DataFrame
   cleaned df = clean data(all df)
   # Save DataFrame to CSV
   cleaned df.to csv('../datasets/technical data.csv', index = False)
   return cleaned df
```

DATA CLEANING

- Results: 10060 Observations, 8 Columns
- Applied a function to get reversal points

	stock	time	local_time	open_price	close_price	highest_price	lowest_price	volume	gain	reversal
0	AAPL	1449239400	2015-12-04 22:30:00	115.290001	119.029999	119.250000	115.110001	57777000	1	2
1	AAPL	1449498600	2015-12-07 22:30:00	118.980003	118.279999	119.860001	117.809998	32084200	-1	0
2	AAPL	1449585000	2015-12-08 22:30:00	117.519997	118.230003	118.599998	116.860001	34309500	1	0
3	AAPL	1449671400	2015-12-09 22:30:00	117.639999	115.620003	117.690002	115.080002	46361400	-1	0
4	AAPL	1449757800	2015-12-10 22:30:00	116.040001	116.169998	116.940002	115.510002	29212700	1	0
5	AAPL	1449844200	2015-12-11 22:30:00	115.190002	113.180000	115.389999	112.849998	46886200	-1	0
6	AAPL	1450103400	2015-12-14 22:30:00	112.180000	112.480003	112.680000	109.790001	64318700	1	0
7	AAPL	1450189800	2015-12-15 22:30:00	111.940002	110.489998	112.800003	110.349998	53323100	-1	0
8	AAPL	1450276200	2015-12-16 22:30:00	111.070000	111.339996	111.989998	108.800003	56238500	1	0
9	AAPL	1450362600	2015-12-17 22:30:00	112.019997	108.980003	112.250000	108.980003	44772800	-1	0

EDA (APPLE)

- Red Reversal Point (Sell)
- Green Reversal Point (Buy)

FEATURE ENGINEERING

Check for Stationarity

```
ADF Statistic for AAPL: -0.17336167360079732
p-value for AAPL: 0.9416232414164956
Critial Values:
    1%, -3.4369325637409154
Critial Values:
    5%, -2.8644462162311934
Critial Values:
    10%, -2.568317409920808
P-Value is more than 0.05, Null Hypothesis cannot be Rejected. Hence, AAPL is not Stationary.
```

▶ To make it Stationary, we take the %change

FEATURE ENGINEERING

- Created other features such as:
 - Returns
 - Exponential Moving Average
 - Volatility
 - Etcetc
- Total Number of Features: 80

```
df.shape
(10060, 80)
```

CLASSIFICATION METHOD

Unbalanced Dataset

1 = Reversal Point

0 = Non Reversal Point

- Models Used:
 - Logistic Regression
 - Random Forest
 - KNearestNeighbor
 - SVM
 - Naive Bayes
 - GLM Poisson
 - Ada Boost
 - Gradient Boost

Logistic Regression

Random Forest

K Nearest Neighbors

SVM

F1 Score: 0.000

Naive Bayes

Ada Boost

Gradient Boost

REGRESSION

- Forecast the future prices
- Use Forecasted price to Classify Reversal Points
- Models Used:
 - LassoCV
 - Random Forest
 - AdaBoost
 - Gradient Boost
 - SVM
 - XGBoost
 - ARIMA
 - SARIMA

REGRESSION

Regression Model	RMSE Score
ARIMA	11.30
SARIMA	13.72
LassoCV	15.64
XGBoost	20.16
Random Forest	24.04
Ada Boost	27.60
SVM	408.15
Gradient Boost	13688926462382.30

FINAL MODEL

 \blacktriangleright SARIMA (Order = (3,0,3), Seasonal Order = (3,1,0,8))

FINAL MODEL

LassoCV

ARIMA

CONCLUSION

Although the confusion matrix is still bad, I think the model is still quite acceptable to be used for its purpose.

Blue - Actual Price
Green-Dotted - Predicted Price
Red Arrow - Actual Reversal (Sell)
Green Arrow - Actual Reversal (Buy)
Orange Arrow - Pred Reversal (Sell)
Purple Arrow - Pred Reversal (Buy)

CONCLUSION

Although the confusion matrix is still bad, I think the model is still quite acceptable to be used for its purpose.

Blue - Actual Price
Green-Dotted - Predicted Price
Red Arrow - Actual Reversal (Sell)
Green Arrow - Actual Reversal (Buy)
Orange Arrow - Pred Reversal (Sell)
Purple Arrow - Pred Reversal (Buy)

CONCLUSION

Although the confusion matrix is still bad, I think the model is still quite acceptable to be used for its purpose.

Blue - Actual Price
Green-Dotted - Predicted Price
Red Arrow - Actual Reversal (Sell)
Green Arrow - Actual Reversal (Buy)
Orange Arrow - Pred Reversal (Sell)
Purple Arrow - Pred Reversal (Buy)

FURTHER DEVELOPMENT

- Deployment of Model (Returns will be Revealed during Meet and Greet)
- Improve Forecasting Model
 - SARIMAX + GARCH
 - Using Fundamentals as features
 - Sentiment Analysis on the News
 - Deep Learning Models
- Create Evaluation Metrics to evaluate Model
- Use different GridSearch Metric (AIC, BIC)