Classical Questions

1. Evaluate the following integrals:

(a)
$$\int (2x+3x^2) \ln(x) dx$$
. (b) $\int \sqrt{36-25x^2} dx$. (c) $\int \frac{\cos x}{\sin^2(x)-25} dx$.

2. Evaluate the following improper integrals:

(a)
$$\int_0^\infty \frac{3x-1}{4x^4-x^2} dx$$
. (b) $\int_0^\infty x^2 e^{-x} dx$. (c) $\int_0^3 \frac{dx}{\sqrt{9-x^2}} dx$.

3. Check for convergence:

(a)
$$\int_{1}^{\infty} \frac{e^{-x}}{x^{3/2}} dx$$
. (b) $\int_{3}^{\infty} \frac{dx}{x + e^{x}} dx$. (c) $\int_{3}^{\infty} \frac{x^{2} + 1}{(x - 2)(x^{2} + 2)} dx$.

4. Determine whether the following series converge or not:

(a)
$$\sum_{n=1}^{\infty} n^2 e^{-n^3}$$
 (c) $\sum_{n=1}^{\infty} \frac{(-1)^n (\ln n)^2}{n+1}$ (e) $\sum_{n=1}^{\infty} \frac{n^n}{n^2 6^{n^2}}$ (b) $\sum_{n=1}^{\infty} \frac{5^n n!}{(2n)!}$ (d) $\sum_{n=1}^{\infty} \frac{(\ln n)^3}{n^{3/2}}$ (f) $\sum_{n=1}^{\infty} \frac{\sqrt{n^2+1}}{(n^5-n^2+n+1)^{1/3}}$

5. Decide whether the following series is absolutely convergent, conditionally convergent or divergent.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \sin(n)}{n^2 + 1}$$
 (b) $\sum_{n=1}^{\infty} \frac{(-1)^n n \ln(n)}{n^2 + n + 1}$

6. Find the radius and interval of convergence for the following power series:

(a)
$$\sum_{n=1}^{\infty} \frac{n(x+2)^n}{(n+1) \ 3^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{(-1)^n n}{4^n} (x+3)^n$

7. Find a power series representation of the following functions:

(a)
$$\frac{4x}{1-4x^2}$$

(b)
$$\ln(1-x^2)$$
.

- 8. Find the Taylor series for the function $f(x) = \cos(x)$ at $\pi/3$.
- 9. Consider the function $f(x) = (1+2x)^{1/3}$.
 - (a) Find the first four terms (up to x^3) of the Taylor expansion about x=0.
 - (b) Use the Taylor polynomial $P_2(x)$ of f(x) near x = 0, to estimate the value of $\sqrt[3]{2}$.
 - (c) Estimate the error using the remainder formula and compare with the exact error.
- 10. A curve C is defined by the parametric equations $x=t^2,y=t^3-3t,t^2\leq 3.$
 - (a) Show that C has two tangents at the point (3,0) and find their equations.
 - (b) Find the points on C where the tangent is horizontal or vertical
 - (c) Determine where the curve is concave upward or downward
 - (d) Sketch the curve
 - (e) Find the area of the region inside the loop
 - (f) Find the area of the surface generated by rotating the curve about the x-axis.
- 11. Find parametric equations describing the given curves
 - (a) The line segment from (1,2) to (-1,5)
 - (b) The circle of radius 5 centered at (2,1), drawn counterclockwise.
- 12. Consider the two polar curves $r = 6\cos\theta$ and $r = 2 + 2\cos\theta$.
 - (a) Identify the symmetries, if any, for each curve
 - (b) Sketch the graph of the two curves on the same coordinates
 - (c) Find the intersection points
 - (d) Find the area inside the curve the first curve and outside the second curve.
- 13. Find the area of the region shared by the graph of $r = 2 + 2\cos\theta$ and r = 3.

2 IZU

Multiple Choice Questions

(Circle the correct answer.)

- M.1 Which of the following sequences converge?
- I. $\left\{n\sin\frac{1}{n}\right\}$ II. $\left\{n^{1/n}\right\}$ III. $\left\{\frac{\sqrt{n^6+n}}{n^2+1}\right\}$ IV. $\left\{n\cos n\pi\right\}$
- a.) Only I. and II.
- b.) Only II. and III.
- c.) Only II. and IV.
- d.) Only I. and IV.
- M.2 If $a_n = \frac{1}{\sqrt{n^{1.1}}}$, then
 - a.) The series $\sum_{n=0}^{\infty} a_n$ converges.
 - b.) The series $\sum_{n=0}^{\infty} a_n$ diverges.
 - c.) There is not enough information to determine whether the series converges or diverges.
- M.3 If $a_n > \frac{1}{n^2}$, then
 - a.) The series $\sum_{n=0}^{\infty} a_n$ converges.
 - b.) The series $\sum_{n=0}^{\infty} a_n$ diverges.
 - c.) There is not enough information to determine whether the series converges or diverges.
- M.4 If $\sum_{n=0}^{\infty} \sqrt{n} \ a_n$ converges and $a_n > 0$ then
 - a.) The series $\sum_{n=1}^{\infty} a_n$ converges.

3 IZU

- b.) The series $\sum_{n=1}^{\infty} a_n$ diverges.
- c.) There is not enough information to determine whether the series converges or diverges.
- M.5 The series $\sum_{n=1}^{\infty} (-1)^n \frac{n^2+1}{2-n^2}$
 - a.) converges conditionally.
 - b.) diverges by the n-th term test.
 - c.) converges absolutely.
 - d.) converges by the limit comparison test.
- M.6 The sum of the series $\sum_{n=1}^{\infty} 2^{-2n} (-3)^n$ is equal to

 - a.) 3/7 b.) -3/7 c.) ∞ d.) 4/7
- e.) None of these.
- M.7 Which of the following statements is most correct regarding $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{1+\ln n}}$
 - a.) It diverges according to the n-th term test.
 - b.) It diverges according to the integral test.
 - c.) It diverges according to the ratio test.
 - d.) It converges according to the n-th term test.
 - e.) It converges according to the ratio test.
- M.8 The equation $r = \tan \theta \sec \theta$ can be expressed in a rectangular coordinates by the equation
 - a.) $x = y^2$
- b.) $y = x^2$
- c.) $x = \frac{1}{y^2}$ d.) $y^2 = x^2$
- M.9 Which of the following statements is FALSE?
 - a.) $(-3, \pi/6)$ and $(3, \frac{7\pi}{6})$ represent the same point.
 - b.) The graph of $r \sec \theta = 2$ is a circle.
 - c.) The curve $r = 4 + 3\sin\theta$ passes through the origin.
 - d.) The circles $r = 2\sin\theta$ and $r = 2\cos\theta$ intersect at only two points.