1 Nondeterminism

1.1 Introduction

We give a treatment of nondeterminism in the ordinal games setting. Let α be a large ordinal. If A is an α -game, then a nondeterministic strategy for A is a subset $\sigma \subseteq P_A$ satisfying:

• For all P-positions $s \in \sigma$, if a is an O-move such that $sa \in P_A$, then $sa \in \sigma$.

That is, we drop the condition that P-replies to O-moves should be unique.

Since the proof that the (totality of O-replies) condition above is preserved by composition did not use the uniqueness of P-replies, it follows that nondeterministic strategies may be composed to yield nondeterministic strategies and we get a category $G_{\rm nd}(\alpha)$ of games and nondeterministic strategies.

Note that if A is a game, then the collection $\operatorname{Strat}(A)$ of nondeterministic strategies for A forms a complete lattice under set-inclusion; i.e., is is closed under unions and intersections.

Let A, B be α -games. Then a strategy σ for $A \multimap B$ induces a map of sets

$$f_{\sigma} \colon \operatorname{Strat}(A) \to \operatorname{Strat}(B)$$

by

$$f_{\sigma}(\tau) = \{s|_B : s \in \sigma, s|_A \in \tau\}$$

If we identify $\operatorname{Strat}(X)$ with the hom-set $\mathcal{G}(\alpha)(I,X)$, then we see that this is nothing more than the action of the functor $\mathcal{G}(\alpha)(I,-)$.

Proposition 1.1. f_{σ} is order preserving and preserves unions and intersections.

Not every function $\operatorname{Strat}(A) \to \operatorname{Strat}(B)$ that preserves unions and intersections arises from a strategy for $A \multimap B$, however. Consider, for example, the map

$$\overset{!}{\circ} \colon \operatorname{Strat}(A) \to \operatorname{Strat}(!A)$$

where $\overset{!}{\sigma}$ is the strategy for !A in which we play according to σ in every copy of A; i.e.:

$$\dot{\overset{!}{\sigma}} = \{ s \in P_{!A} : \ \forall \beta \ . \ s|_{A_{\beta}} \in \sigma \}$$

Of course, there need not be a strategy for $A \multimap !A$, so \circ will not arise from a strategy in general.

Proposition 1.2. $\stackrel{!}{\circ}$ is order preserving and preserves unions and intersections.

Let us now compose the two maps we have considered: let σ be a strategy for $!A \multimap B$; then we form the map

$$f_{\sigma}^! = \operatorname{Strat}(A) \xrightarrow{!} \operatorname{Strat}(!A) \xrightarrow{f_{\sigma}} \operatorname{Strat}(B)$$

or, written out in full:

$$f_{\sigma}^!(\tau) = \{s|_B : s \in \sigma, \forall \beta . s|_{A_{\beta}} \in \tau\}$$

 $f_{\sigma}^!$ is the composition of order preserving maps that preserve unions and intersections, so it preserves unions and intersections. We now claim that every such map arises from a strategy for $!A \multimap B$. Let \mathcal{CL} denote the category of complete lattices and order-preserving maps that preserve unions and intersections. Furthermore, let $\mathcal{G}_{\mathrm{nd}}^!(\alpha)$ denote the co-Kleisli category for the exponential comonad on $\mathcal{G}_{\mathrm{nd}}(\alpha)$. Then our main result is:

Theorem 1.3. The maps $f_{\sigma}^{!}$ define a fully faithful functor

$$\mathcal{G}^!_{\mathrm{nd}}(\alpha) \to \mathcal{CL}$$

1.2 Functoriality of $f_{\sigma}^!$

We first establish that $f_{\sigma}^!$ gives rise to a functor $\mathcal{G}_{\mathrm{nd}}^!(\alpha) \to \mathcal{CL}$. Recall that the objects of $\mathcal{G}_{\mathrm{nd}}^!$ are completely negative α -games and that the morphisms from A to B are nondeterministic strategies for $!A \multimap B$. Our functor will send a game A to its set of nondeterministic strategies $\mathrm{Strat}(A)$ and it will send a strategy $\sigma \colon !A \multimap B$ to the map $f_{\sigma}^!$.

Before showing that this is a functor, we shall quickly establish that f_{σ} gives rise to a functor $\mathcal{G}_{\mathrm{nd}}(\alpha) \to \mathcal{CL}$ by sending a game A to $\mathrm{Strat}(A)$ and a strategy σ for $A \multimap B$ to $f_{\sigma} \colon \mathrm{Strat}(A) \to \mathrm{Strat}(B)$. As we remarked above, after we have identified $\mathrm{Strat}(X)$ with $\mathcal{G}_{\mathrm{nd}}(\alpha)(I,X)$, we may identify this with the hom-set functor $\mathcal{G}_{\mathrm{nd}}(\alpha)(I,-)$.

Now we come to functoriality of the functor defined by $f_{\sigma}^!$. Recalling the usual definition of a co-Kleisli category, we see that composition in $\mathcal{G}_{\mathrm{nd}}^!(\alpha)$ of strategies $\sigma: !A \multimap B$ and $\tau: !B \multimap C$ is given by

$$\tau \circ \sigma = !A \xrightarrow{\mathrm{mult}} !!A \xrightarrow{!\sigma} !B \xrightarrow{\tau} C$$