Project Planning Phase Sprint Delivery Plan

Date	26 October 2022
Team ID	PNT2022TMID44567
Project Name	Gas Leakage Monitoring and Alerting System for Industries
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022

Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Analyzing the gas leakage	USN-1	The owner who wants to save his employees or a person who wants to save their family from explosion takes necessary actions	2	High	Akshayakumar Anuja Deventhiran Prasad
Sprint-1	Preventing from explosion	USN-2	The fire officers worries about any explosions due to gas leakage which may cause many death	1		Prasad Deventhiran anuja
Sprint-2	To detect the gas leakage	USN-3	The owner can take necessary steps by deploying gas detectors in their surroundings	2		Deventhiran Anuja prasad
Sprint-3	Testing and training of the model device	USN-4	The programmer can design an gas leakage detection model by training the dataset	2	Medium	anuja prasad akshayakumar
Sprint-4	Notification	USN-5	The gas leakage detected by the model can be notified using SMS or alarming system	1		Akshayakumar Prasad deventhiran

Project Tracker, Velocity & Burndown Chart: (4 Marks) Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

