Wine quality classification using Artificial Neural Network

Authors: P.Ozga

dataset from: by Andrewmchen and Mateiz from github link: https://github.com/mlflow/mlflow-example/blob/master/wine-quality.csv

dataset from: by Mustanger from kaggle link:

https://www.kaggle.com/code/eisgandar/red-wine-quality-eda-classification/input

Toolbox: Statistics and Machine Learning & Deep Learning

1. Data loading and Display

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
fixed acidity	7	6.3	8.1	7.2	7.2
volatile acidity	0.27	0.3	0.28	0.23	0.23
citric acid	0.36	0.34	0.4	0.32	0.32
residual sugar	20.7	1.6	6.9	8.5	8.5
chlorides	0.045	0.049	0.05	0.058	0.058
free sulfur dioxide	45	14	30	47	47
total sulfur dioxide	170	132	97	186	186
density	1.001	0.994	0.9951	0.9956	0.9956
pН	3	3.3	3.26	3.19	3.19
sulphates	0.45	0.49	0.44	0.4	0.4
alcohol	8.8	9.5	10.1	9.9	9.9
quality	6	6	6	6	6

Table 1.1 Wine characteristics- first 5 samples

```
% DEBUG NAMES
if isempty(fname.Properties.VariableNames)
    disp('Warning: The dataset lacks variable names!');
end
```

2. Data Verification

Each columns is numeric.

3. Dataset Statistics Calculation

```
numericCols = varfun(@isnumeric, fname, 'OutputFormat', 'uniform');
numericData = fname(:, numericCols);
dataArray = numericData{:,:};
countVals = sum(~ismissing(dataArray))';
                                                               % Compute statistic
minVals = min(dataArray)';
p25Vals = prctile(dataArray, 25)';
p50Vals = prctile(dataArray, 50)';
p75Vals = prctile(dataArray, 75)';
meanVals = mean(dataArray)';
stdVals = std(dataArray)';
maxVals = max(dataArray)';
                                                               % Create table
summaryVertical = table(countVals, minVals, p25Vals, p50Vals, p75Vals, meanVals, stdVals, maxVals, ...
    'VariableNames', {'Count','Min','P25%','P50%','P75%','Mean','Std','Max'}, ...
    'RowNames', numericData.Properties.VariableNames);
summaryVertical = round(summaryVertical, 3); % Zaokrąglenie do 3 miejsc po przecinku
\% Count: The number of non-missing (valid) entries in each column of the dataset.
% Min: The minimum value in each numerical column.
% P25%: The 25th percentile value (also known as the first quartile), which is the value below which 25% of the data falls.
% P50%: The 50th percentile value (median), which divides the data into two equal halves.
% P75%: The 75th percentile value (also known as the third quartile), where 75% of the data points fall below this value.
% Mean: The average value of the data in each column.
\% Std: The standard deviation, which measures the amount of variation or dispersion of the data.
\% Max: The maximum value in each numerical column.
disp(summaryVertical);
```

	Count	Min	P25%	P50%	P75%	Mean	Std	Max
fixed acidity	4898	3.8	6.3	6.8	7.3	6.855	0.844	14.2
volatile acidity	4898	0.08	0.21	0.26	0.32	0.278	0.101	1.1
citric acid	4898	0	0.27	0.32	0.39	0.334	0.121	1.66
residual sugar	4898	0.6	1.7	5.2	9.9	6.391	5.072	65.8
chlorides	4898	0.009	0.036	0.043	0.05	0.046	0.022	0.346
free sulfur dioxide	4898	2	23	34	46	35.308	17.007	289
total sulfur dioxide	4898	9	108	134	167	138.36	42.498	440
density	4898	0.987	0.992	0.994	0.996	0.994	0.003	1.039
pН	4898	2.72	3.09	3.18	3.28	3.188	0.151	3.82
sulphates	4898	0.22	0.41	0.47	0.55	0.49	0.114	1.08
alcohol	4898	8	9.5	10.4	11.4	10.514	1.231	14.2
quality	4898	3	5	6	6	5.878	0.886	9

Table 3.1 Count values Min, Max, Mean

4. Sample Selection for Each Quality Class

```
% Define classes
validClasses = 3:9;
samples = {};
                                                                     % initial empty list of samples
for i = 1:length(validClasses)
    quality_class = validClasses(i);
    sample = fname(fname.quality == quality_class, :);
    samples{i} = sample(1, :);
                                                                     % for first sample
end
%DEBUG IF QUALITY NOT FOUND
if ~ismember('quality', fname.Properties.VariableNames)
    error('Quality column not found in the dataset');
                                                                     % sum samples and create horizontal table
samples table = vertcat(samples{:});
samples_transposed = array2table(samples_table.Variables', ...
    'VariableNames', strcat("Class ", string(validClasses)), ...
    'RowNames', samples_table.Properties.VariableNames);
disp(samples_transposed);
```

Class 3	Class 4	Class 5	Class 6	Class 7	Class 8	Class 9
	-					
8.5	6.2	8.1	7	6.6	6.2	9.1
0.26	0.45	0.27	0.27	0.16	0.66	0.27
0.21	0.26	0.41	0.36	0.4	0.48	0.45
16.2	4.4	1.45	20.7	1.5	1.2	10.6
0.074	0.063	0.033	0.045	0.044	0.029	0.035
41	63	11	45	48	29	28
197	206	63	170	143	75	124
0.998	0.994	0.9908	1.001	0.9912	0.9892	0.997
3.02	3.27	2.99	3	3.54	3.33	3.2
0.5	0.52	0.56	0.45	0.52	0.39	0.46
9.8	9.8	12	8.8	12.4	12.8	10.4
3	4	5	6	7	8	9
	8.5 0.26 0.21 16.2 0.074 41 197 0.998 3.02 0.5 9.8	8.5 6.2 0.26 0.45 0.21 0.26 16.2 4.4 0.074 0.063 41 63 197 206 0.998 0.994 3.02 3.27 0.5 0.52 9.8 9.8	8.5 6.2 8.1 0.26 0.45 0.27 0.21 0.26 0.41 16.2 4.4 1.45 0.074 0.063 0.033 41 63 11 197 206 63 0.998 0.994 0.9988 3.02 3.27 2.99 0.5 0.52 0.56 9.8 9.8 12	8.5 6.2 8.1 7 0.26 0.45 0.27 0.27 0.21 0.26 0.41 0.36 16.2 4.4 1.45 20.7 0.074 0.063 0.033 0.045 41 63 11 45 197 206 63 170 0.998 0.994 0.9908 1.001 3.02 3.27 2.99 3 0.5 0.52 0.56 0.45 9.8 9.8 12 8.8	8.5 6.2 8.1 7 6.6 0.26 0.45 0.27 0.27 0.16 0.21 0.26 0.41 0.36 0.4 16.2 4.4 1.45 20.7 1.5 0.074 0.063 0.033 0.045 0.044 41 63 11 45 48 197 206 63 170 143 0.998 0.994 0.9908 1.001 0.9912 3.02 3.27 2.99 3 3.54 0.5 0.52 0.56 0.45 0.52 9.8 9.8 12 8.8 12.4	8.5 6.2 8.1 7 6.6 6.2 0.26 0.45 0.27 0.27 0.16 0.66 0.21 0.26 0.41 0.36 0.4 0.48 16.2 4.4 1.45 20.7 1.5 1.2 0.074 0.063 0.033 0.045 0.044 0.029 41 63 11 45 48 29 197 206 63 170 143 75 0.998 0.994 0.9988 1.001 0.9912 0.9892 3.02 3.27 2.99 3 3.54 3.33 0.5 0.52 0.56 0.45 0.52 0.39 9.8 9.8 12 8.8 12.4 12.8

Table 4.1 Sample selection for 7 classes

5. Class Distribution

```
qualityCounts = countcats(categorical(fname.quality));
uniqueClasses = unique(fname.quality);
for i = 1:length(uniqueClasses)
    fprintf('Class %d has %d samples\n', uniqueClasses(i), qualityCounts(i));
end

Class 3 has 20 samples
Class 4 has 163 samples
Class 5 has 1457 samples
Class 6 has 2198 samples
Class 6 has 2198 samples
Class 7 has 880 samples
Class 8 has 175 samples
Class 8 has 175 samples
Class 9 has 5 samples
```

Table 5.1 Class Distribution

6. Normalization input

```
Features4 = {'alcohol', 'volatile acidity', 'sulphates', 'citric acid'};
%X = fname{:, Features4}; % Only the 4 selected features
X = fname{:,1:end-1}; % for all features
Y = fname{:, 12}; % Quality rating (12th column)
X = normalize(X, 'range'); % Min-Max normalization
```

! Min-max normalization: Guarantees all features will have the exact same scale but does not handle outliers well.

! Z-score normalization: Handles outliers, but does not produce normalized data with the exact same scale ex. scale OX [1:1] and for OY [2:2]

7. Labels Encoding (One-hot Encoding)

Training and Testing Neural Network

8. Data Splitting

about cvpartition function, link: https://ch.mathworks.com/help/stats/cvpartition.html

9. Build MLP (Multilayer Perceptron) Network:

10. Prediction and Evaluation

```
Y_pred = net(X_test');
Y_pred_class = vec2ind(Y_pred);
Y_test_class = vec2ind(Y_test');

correct = (Y_pred_class == Y_test_class);
weightedCorrect = zeros(size(correct));

for i = 1:length(correct)
    if correct(i)
        weightedCorrect(i) = classWeights(Y_pred_class(i));
    end
end

sumWeightedCorrect = sum(weightedCorrect);
sumWeights = sum(classWeights);
weightedAccuracy = sumWeightedCorrect / sumWeights;

fprintf('Weighted Accuracy: %.2f%%\n', weightedAccuracy * 100);
```

Weighted Accuracy: 7257.14%

11. Confusion Matrix

```
Macro F1-score: 0.38
```

```
figure(1);
numClasses = size(Y_encoded, 2);
Y_test_vec = full(ind2vec(Y_test_class, numClasses));
Y_pred_vec = full(ind2vec(Y_pred_class, numClasses));
plotconfusion(Y_test_vec, Y_pred_vec);
classLabels = {'3','4','5','6','7','8','9','F1'};
ax = gca;
ax.XTickLabel = classLabels;
ax.YTickLabel = classLabels;
```

÷				Confusi	on Matr	ix	·	:
3	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	NaN% NaN%
4	0 0.0%	2 0.2%	0 0.0%	1 0.1%	0 0.0%	1 0.1%	0 0.0%	50.0% 50.0%
5	2 0.2%	20 2.0%	163 16.6%	96 9.8%	5 0.5%	0 0.0%	0 0.0%	57.0% 43.0%
Output Class	2 0.2%	10 1.0%	126 12.9%	308 31.5%	136 13.9%	26 2.7%	0 0.0%	50.7% 49.3%
7 Outbut	0 0.0%	0 0.0%	2 0.2%	34 3.5%	35 3.6%	8 0.8%	2 0.2%	43.2% 56.8%
8	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	NaN% NaN%
9	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	NaN% NaN%
F1	0.0% 100%	6.2% 93.8%	56.0% 44.0%	70.2% 29.8%	19.9% 80.1%	0.0% 100%	0.0% 100%	51.9% 48.1%
	ი	>	6	0	1	%	O)	٤^
				Target	Class			

```
figure(2);
plot(Y_test_class, 'b-o', 'LineWidth', 1.5); hold on;
plot(Y_pred_class, 'r--s', 'LineWidth', 1.5);
legend('Real quality', 'Predicted quality', 'Location', 'best');
xlabel('Sample index');
ylabel('Quality class');
classLabels = {'3', '4', '5', '6', '7', '8', '9', 'F1'};
ax = gca;
%ax.XTickLabel = classLabels;
ax.YTickLabel = classLabels;
grid on;
```



```
drawnow; % debugging while buffering pause(20);
```