Geometría y Álgebra Lineal 2

Mauro Polenta Mora

Ejercicio 5

Consigna

Hallar la forma y una base de Jordan de los siguientes operadores:

- 1. $T:\mathbb{R}^3\to\mathbb{R}^3$ tal que T(x,y,z)=(-y-2z,x+3y+z,x+3z)2. $T:\mathbb{R}^3\to\mathbb{R}^3$ tal que T(x,y,z)=(3x+2y-2z,4y-z,y+2z)

Resolución

Transformación 1

Considerando la base canónica de \mathbb{R}^3 , calculemos la matriz asociada $_{\mathcal{E}}(T)_{\mathcal{E}}$:

- T(1,0,0) = (0,1,1)
- T(0,1,0) = (-1,3,0)
- T(0,0,1) = (-2,1,3)

Entonces:

$$_{\mathcal{E}}(T)_{\mathcal{E}} = \begin{pmatrix} 0 & -1 & -2 \\ 1 & 3 & 1 \\ 1 & 0 & 3 \end{pmatrix}$$

Ahora calculemos el polinomio característico $\mathbf{X}_T(\lambda)$:

$$\begin{split} \mathbf{X}_T(\lambda) &= \begin{vmatrix} -\lambda & -1 & -2 \\ 1 & 3-\lambda & 1 \\ 1 & 0 & 3-\lambda \end{vmatrix} \\ &= (-\lambda)(3-\lambda)^2 + 0 - 1 - (-2(3-\lambda) + 0 - 1(3-\lambda)) \\ &= (-\lambda)(3-\lambda)^2 - 1 + 3(3-\lambda) \\ &= (3-\lambda)(-\lambda(3-\lambda) + 3) - 1 \\ &= (3-\lambda)(\lambda^2 - 3\lambda + 3) - 1 \\ &= -\lambda^3 + 6\lambda^2 - 12\lambda + 8 \end{split}$$

Recordatorio (teorema de raíces racionales)

Si un polinomio tiene raíces racionales, estas son de la forma $\frac{p}{q}$, donde p es un divisor del término independiente y q es un divisor del coeficiente del término de mayor grado.

Continuación

Ahora que conocemos la forma de las raíces, podemos concluir que las raíces del polinomio de tercer grado anterior están incluidas en la lista: $\{\pm 1, \pm 2, \pm 4, \pm 8\}$

Probemos con 2:

$$-(2)^3 + 6 \cdot 2^2 - 12 \cdot 2 + 8 = -8 + 24 - 24 + 8$$
$$= 0$$

Como sabemos que 1 es raíz, podemos factorizar el polinomio con Ruffini:

Por lo tanto, puedo expresar el polinomio de tercer grado como:

$$-\lambda^{3} + 6\lambda^{2} - 12\lambda + 8 = (\lambda - 2)(-\lambda^{2} + 4\lambda - 4)$$

Entonces tenemos $\lambda_1=2$, y ahora usando Bhaskara puedo obtener todas las demás raíces:

$$\lambda = \frac{-4 \pm \sqrt{16 - 16}}{-2} = \frac{-4 \pm 0}{-2}$$

De donde obtenemos:

•
$$\lambda = 2$$
, con $ma(2) = 3$

 S_2

Tenemos que resolver el sistema $(T-2\mathbb{I})v=0$:

$$\left(\begin{array}{ccc|c} -2 & -1 & -2 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{array}\right) \sim \left(\begin{array}{ccc|c} -2 & -1 & -2 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ 0 & -\frac{1}{2} & 0 & 0 \end{array}\right)$$

De donde sacamos que:

- y = 0
- x = -z
- $z \in \mathbb{R}$

El subespacio asociado sería el definido por:

$$S_2 = \{(-\alpha, 0, \alpha) \in \mathbb{R}^3 : \alpha \in \mathbb{R}\}$$

Entonces una base de este subespacio podría ser:

$$\{(-1,0,1)\}$$

Por lo que mq(2) = 1, esto implica que T NO es diagonalizable, la forma de Jordan sería:

$$J_T = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$

BASE DE JORDAN

Por ahora entonces la base de Jordan que tenemos es $\mathcal{B} = \{v_1, v_2, (-1, 0, 1)\}.$

Para hallar v_2 , tenemos que:

$$T(v_2) = 2v_2 + v_3(T - 2\mathbb{I})v_2 = v_3$$

Lo que nos deja con el siguiente sistema:

$$\begin{pmatrix}
-2 & -1 & -2 & | & -1 \\
1 & 1 & 1 & | & 0 \\
1 & 0 & 1 & | & 1
\end{pmatrix}
\sim
\begin{pmatrix}
-2 & -1 & -2 & | & -1 \\
0 & \frac{1}{2} & 0 & | & -\frac{1}{2} \\
0 & -\frac{1}{2} & 0 & | & \frac{1}{2}
\end{pmatrix}
\sim
\begin{pmatrix}
-2 & -1 & -2 & | & -1 \\
0 & 1 & 0 & | & -1 \\
0 & -1 & 0 & | & 1
\end{pmatrix}$$

De donde sacamos que:

- $\begin{array}{ll} \bullet & y = -1 \\ \bullet & x = \frac{-2 + 2z}{-2} = 1 z \\ \bullet & z \in \mathbb{R} \end{array}$

Con esto podemos elegir un vector, por ejemplo:

$$v_2 = (1, -1, 0)$$

Ahora tenemos que repetir el proceso para hallar v_1 , tenemos que:

$$T(v_1) = 2v_1 + v_2(T - 2\mathbb{I})v_1 = v_2$$

Lo que nos deja con el siguiente sistema:

$$\begin{pmatrix} -2 & -1 & -2 & 1 \\ 1 & 1 & 1 & -1 \\ 1 & 0 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} -2 & -1 & -2 & 1 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & -\frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix} \sim \begin{pmatrix} -2 & -1 & -2 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & -1 & 0 & 1 \end{pmatrix}$$

De donde sacamos que:

- y = -1
- x = -z
- $z \in \mathbb{R}$

Con esto podemos elegir un vector, por ejemplo:

$$v_1 = (0, -1, 0)$$

Solo habría que verificar que los vectores son LI, por lo tanto, verifiquemos que el siguiente determinante sea diferente a 0:

$$\begin{vmatrix} 0 & 1 & -1 \\ -1 & -1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = \dot{1(0+1)} = 1$$

Con esto confirmamos que $\mathcal{B} = \{(0, -1, 0), (1, -1, 0), (-1, 0, 1)\}$ es una base, y además es base de Jordan.

VERIFICACIÓN:

Para estar seguros que esto es correcto, verifiquemos que se cumple lo siguiente:

- $T(0,-1,0) = 2v_1 + v_2$
- $T(1,-1,0) = 2v_2 + v_3$
- $T(-1,0,1) = 2v_3$

Con la definición de la transformación tenemos:

 $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que T(x,y,z) = (-y-2z, x+3y+z, x+3z)

- T(0,-1,0) = (1,-3,0)
- T(1,-1,0) = (1,-2,1)
- T(-1,0,1) = (-2,0,2)

Igualamos con los puntos de arriba:

- T(0,-1,0) = (1,-3,0) = 2(0,-1,0) + (1,-1,0)
- T(1,-1,0) = (1,-2,1) = 2(1,-1,0) + (-1,0,1)
- T(-1,0,1) = (-2,0,2) = 2(-1,0,1)

Por lo tanto, \mathcal{B} es efectivamente una base de Jordan

Transformación 2

Considerando la base canónica de \mathbb{R}^3 , calculemos la matriz asociada $_{\mathcal{E}}(T)_{\mathcal{E}}$:

- T(1,0,0) = (3,0,0)
- T(0,1,0)=(2,4,1)
- T(0,0,1) = (-2,-1,2)

Entonces:

$$_{\mathcal{E}}(T)_{\mathcal{E}} = \begin{pmatrix} 3 & 2 & -2\\ 0 & 4 & -1\\ 0 & 1 & 2 \end{pmatrix}$$

Ahora calculemos el polinomio característico $X_T(\lambda)$:

$$\begin{split} \mathbf{X}_T(\lambda) &= \begin{vmatrix} 3-\lambda & 2 & -2 \\ 0 & 4-\lambda & -1 \\ 0 & 1 & 2-\lambda \end{vmatrix} \\ &= (3-\lambda)((4-\lambda)(2-\lambda)+1) \\ &= (3-\lambda)(\lambda^2-6\lambda+9) \\ &= -\lambda^3+9\lambda^2-27\lambda+27 \end{split}$$

Recordatorio (teorema de raíces racionales)

Si un polinomio tiene raíces racionales, estas son de la forma $\frac{p}{q}$, donde p es un divisor del término independiente y q es un divisor del coeficiente del término de mayor grado.

Continuación

Ahora que conocemos la forma de las raíces, podemos concluir que las raíces del polinomio de tercer grado anterior están incluidas en la lista: $\{\pm 1, \pm 3, \pm 9, \pm 27\}$

Probemos con 3:

$$-(3)^3 + 9 \cdot (3)^2 - 27 \cdot 3 + 27 = -27 + 81 - 81 + 27$$
$$= 0$$

Como sabemos que 3 es raíz, podemos factorizar el polinomio con Ruffini:

Por lo tanto, puedo expresar el polinomio de tercer grado como:

$$-\lambda^3 + 9\lambda^2 - 27\lambda + 27 = (\lambda - 3)(-\lambda^2 + 6\lambda - 9)$$

Entonces tenemos $\lambda_1=3,$ y ahora usando Bhaskara puedo obtener todas las demás raíces:

$$\lambda = \frac{-6 \pm \sqrt{36 - 36}}{-2} = \frac{-6 \pm 0}{-2}$$

De donde obtenemos:

•
$$\lambda = 3$$
, con $ma(3) = 3$

 S_3

Tenemos que resolver el sistema $(T-3\mathbb{I})v=0$:

$$\left(\begin{array}{ccc|c}
0 & 2 & -2 & 0 \\
0 & 1 & -1 & 0 \\
0 & 1 & -1 & 0
\end{array}\right)$$

De donde sacamos que:

- z = y
- $x \in \mathbb{R}$
- $z \in \mathbb{R}$

El subespacio asociado sería el definido por:

$$S_3 = \{(\alpha, \beta, \beta) \in \mathbb{R}^3 : \alpha, \beta \in \mathbb{R}\}\$$

Entonces una base de este subespacio podría ser:

$$\{(1,0,0),(0,1,1)\}$$

Por lo que mg(2) = 2, esto implica que T NO es diagonalizable, la forma de Jordan sería:

$$J_T = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 1 & 3 \end{pmatrix}$$

BASE DE JORDAN

Por ahora entonces la base de Jordan que tenemos es $\mathcal{B} = \{(1,0,0), v_2, (0,1,1)\}.$

Para hallar v_2 , tenemos que:

$$T(v_2) = 3v_2 + v_3(T-3\mathbb{I})v_2 = v_3$$

Lo que nos deja con el siguiente sistema:

$$\left(\begin{array}{ccc|c}
0 & 2 & -2 & 0 \\
0 & 1 & -1 & 1 \\
0 & 1 & -1 & 1
\end{array}\right)$$

Ojo, tenemos que el sistema es incompatible, por lo que tenemos que elegir un vector $v_3 \in S_3$ que permita que este sistema sea compatible para encontrar la base, por ejemplo: $v_3 = (2,1,1) \in S_3$. Entonces el sistema nos queda:

$$\left(\begin{array}{ccc|c}
0 & 2 & -2 & 2 \\
0 & 1 & -1 & 1 \\
0 & 1 & -1 & 1
\end{array}\right)$$

De donde sacamos:

- y = 1 + z
- $z \in \mathbb{R}$
- $x \in \mathbb{R}$

Con esto podemos elegir un vector, por ejemplo:

$$v_2 = (0, 1, 0)$$

Solo habría que verificar que los vectores de la base $\mathcal{B} = \{(1,0,0), (0,1,0), (2,1,1)\}$ son LI, por lo tanto, verifiquemos que el siguiente determinante sea diferente a 0:

$$\begin{vmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{vmatrix} = \dot{1}(1 - 0) = 1$$

Con esto confirmamos que \mathcal{B} es una base, y además es base de Jordan.

VERIFICACIÓN:

Para estar seguros que esto es correcto, verifiquemos que se cumple lo siguiente:

- $T(1,0,0) = 3v_1$
- $T(0,1,0) = 3v_2 + v_3$
- $T(2,1,1)=3v_3$

Con la definición de la transformación tenemos:

 $T: \mathbb{R}^3 \to \mathbb{R}^3 \text{ tal que } T(x, y, z) = (3x + 2y - 2z, 4y - z, y + 2z)$

- T(1,0,0) = (3,0,0)
- T(0,1,0) = (2,4,1)
- T(2,1,1) = (6,3,3)

Igualamos con los puntos de arriba:

- T(1,0,0) = (3,0,0) = 3(1,0,0)
- T(0,1,0) = (2,4,1) = 3(0,1,0) + (2,1,1)
- T(2,1,1) = (6,3,3) = 3(2,1,1)

Por lo tanto, \mathcal{B} es efectivamente una base de Jordan