Wave Packets

· So for we have been considering individual plane waves. A general wave is a superposition of plane waves

The wave packet should also be a solution to the Helmholtz equations.

This means for every it there is an w(k).

We will assume w(k) real. In general there is imaginary part. Then

U(x,t) = Jak A(k) eikx-iw(k) + ~ \ \ A_k eiknx-iwkt

The shape of the initial packet determines A(k)

$$U(x,0) = \int \frac{dx}{dx} A(k) e^{ik \cdot x} \longrightarrow A(k) = \int \frac{dx}{dx} U(x,0) e^{-ik \cdot x}$$

& y
where OK << k Since k DX ~ k >> y
Δk
· Then lets ask about the solution at future times:
· · · · · · · · · · · · · · · · · · ·
$u(x,t) = \int dk A(k) e^{tikx - i\omega(k)t}$
J 21T
And we expand near ko dw/dk/k=k.
$\omega(k) \simeq \omega(k_0) + d\omega_0(k-k_0)$
dk °
So
+ i [dw/dk k = iw/k) 14 P
(1x,t) = eti[dwo/dkko-iw(ko)]t dk/zmekx-dwo/dkkt
A('k)
= eid. + (eik (x - dwoldk +) A(k)
ibt
$u(x,t) = e^{i\phi_0 t} u(x - dw_0/dk t)$
Thus we see that apart from an irrelevent phase
the wave packet travels with a speed given by
$\frac{1}{drave} = \frac{d\omega}{dk}$
Jeroup OK ku

For									
			******	·					
	W(k) =	ck	_						
		77(k)							 -
									
	1								
	<u>du -</u>	C _	CK	dn	dw				
	dk	n(k)	Ns	dw	dk				
Solve									
				· · · · · · · · · · · · · · · · · · ·					
	dw	C				·			
	dk	n (w)) + dn	/dw					
							·		
									
									
•						-			
									
				·					
_									
									
									
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·						

Comments on Homework

The setup is the following. A wave-packet has the following form $H_{T}^{o}(x) = \int dk H_{T}(k) e^{ikx} \leftarrow represents$ the magne the magnetic field

looks something like this:

H_I(x)

H_I(k) where $H^{c}(x)$

Now consider an incoming wave-packet

$$H_{\perp}(x,t) = \int_{-\infty}^{\infty} \frac{dk}{dt} H_{\perp}(k) e^{ikx - ckt} = H_{\perp}^{\circ}(x - ct)$$

wave packet at time t lhus the

is centerred at x=-L. This is where x-ct is

The reflected wave as a fin of x and t is: $\frac{co}{H_R(x,t)} = \int \frac{dk}{2\pi i} H_R(k) e^{-ikx-ickt}$ We previously showed that $\frac{H_{\rho}(k)}{H_{\rho}(k)} \simeq 1 - \sqrt{2\mu\omega} (1-i) \equiv r(k) e^{i\phi(k)}$ where $\Gamma(k) \simeq 1 - \sqrt{2\mu\omega/\sigma}$ and $\phi(k) \simeq \sqrt{2\mu\omega/\sigma}$ Show that the center of the wave packet returns to x=-L/c at time $t = \frac{L}{c} + \frac{m\delta_0}{2c}$ with $S_0 = \sqrt{2c/\sigma\mu k_0}$ is the skin depth evaluated at the central (or mean) wave number of the packet.