

Dr. Debdoot Sheet

Assistant Professor
Department of Electrical Engineering
Indian Institute of Technology Kharagpur

www.facweb.iitkgp.ernet.in/~debdoot/

NOT ABOUT WALKING IN A FOREST

1 Mar 2015

IS ALL ABOUT

Overview

- Historical Perspective
- Decision Tree
- Random Forest
- Application Scenarios
- Computational Complexity
- Variable Importance
- What's hot about them in ML Research?

Historical Perspective

Decision Trees and Random Forests / Debdoot Sheet / MLCN2015

Decision Trees

- L. Breiman, J. Friedman, C. J.
 Stone, and R. A. Olshen,
 Classification and Regression
 Trees. Chapman and Hall/CRC
 (SIAM), 1984.
- J. R. Quinlan, *C4.5: Programs* for Machine Learning. **1993**.

Random Forests

- Y. Amit and D. Geman., "Shape quantization and recognition with randomized trees," *Neural Computation*, vol. 9, pp. 1545–1588, **1997**.
- T. K. Ho, "The random subspace method for constructing decision forests," *IEEE T-PAMI*, vol. 20, no. 8, pp. 832–844, **1998**.
- L. Breiman, "Random forests," *Machine Learning*, vol. 45, no. 1, pp. 5–32, 2001.

DECISION TREE

Problem Statement

Formica rufa (Red wood ant)

Classification vs. Regression

Decision Tree

Forming a Decision Tree

Step 1: Split Function at Node

Step 2: Assessing Purity of Split

Sost function for Split Purity

1 hr

Entropy of class distribution

$$H(S) = -\sum_{c \in C} p(c) \log(p(c))$$

Information Gain

$$I = H(S) - \sum_{i \in \{L,R\}} \frac{|S^i|}{|S|} H(S^i)$$

Step 3: Selecting Optimum Split

Step 4: Stopping Criteria

Step 5: Leaf Prediction Model

Deploying a Decision Tree

RANDOM FOREST

Growing Multiple Trees in a Forest

Decorrelated trees

Bagging – Bootstrapped Aggregation

Ensemble Prediction Model

$$p(c|\mathbf{v}) = \frac{1}{T} \sum_{t}^{T} p_t(c|\mathbf{v})$$

What do we gain by using a Forest?

Noise Resilience and Topology Independence

Effect of Tree Depth

Effect of Split Function

Classification Margin

Random Forest vs. AdaBoost

Random Forest vs. SVM

Regression Forest

Manifold Forest

After the Brainstorming (Break)!

APPLICATION SCENARIOS

Gaming – Kinect for Xbox 360

J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and A. Blake, "Real-time human pose recognition in parts from a single depth image," in *Proc. CVPR*, 2011.

Vision – Scene Classification

Bosch, A., Zisserman, A., & Muoz, X. "Image classification using random forests and ferns", ICCV 2007.

Medical – Digital Anatomy

A. Criminisi, D. Robertson, E. Konukoglu, J. Shotton, S. Pathak, S. White, and K. Siddiqui, "Regression Forests for Efficient Anatomy Detection and Localization in Computed Tomography Scans", *Medical Image Analysis*, 2013

Medical – **Computational Histology**

D. Sheett cetal, "Dietritul control reportal bresoelis ishation kisha astrigin in ing astriging a like in ing a like in ing a like in ing a like ing a lik estricins execution of the political extension of ce tathisticadiliptivitisi cpt approximation to the control of the co Bolotrassocium dia dillege (1180 Belgie 20 na), 18(1), 2014

D. Sheet, et al., "Transfer Learning of Tissue Photon Interaction in Optical Coherence Tomography towards In vivo HI BOHOR SOFTHE WITH SOFTH PROPERTY OF THE S Cuntrast Imaging for Label-free Retinal Angiography", Int. Symp. Biomed. Imaging (ISBI), 2014

SPKK Kamiamd D.Sheetetalal. Deep Learnt Paoalpart interlishibataty proplementation Frederica de la composição de la composi Tinteayaasilyaridbiyasayubbiyaales and Bramagraphy webjorty was by strugger of the af

IFRAMET G 595 BV); 2012.

ENGINEERING DESIGN PERSPECTIVE

Understanding Computations

Computational Complexity

Training Complexity

Testing Complexity

Features and their Role

Decorrelated trees

Variable Importance

Genuer, R., Poggi, J.-M., Tuleau-Malot, C., (2010). Variable selection using random forests. *Pat. Recog. Letters.* **31**(14):2225-2236

WHAT'S HOT IN RESEARCH?

Research Challenges in 2015

- Architecture
 - Online learning
 - Incremental learning
 - Long term memory
 - Parallel distributed architectures
 - Split functions, cost functions, stopping criteria
 - Domain adaptation

- Engineering and Application
 - Computational complexity
- Statistics and Science
 - Consistency of forests
 - VC dimension
 - De-correlated trees

Take Home Message

Reading

- L. Breiman, J. Friedman, C. J.
 Stone, and R. A. Olshen,
 Classification and Regression
 Trees. Chapman and
 Hall/CRC, 1984.
- L. Breiman, "Random forests," *Machine Learning*, vol. 45, no. 1, pp. 5–32, 2001.
- A. Criminisi and J. Shotton, Decision Forests for Computer Vision and Medical Image Analysis, Springer, 2013.

Toolboxes and Packages

- randomForest in R
- TreeBagger in Matlab
- sklearn.ensemble.RandomFo restClassifier in Python-Scikit-learn

Conferences

- Int. Conf. Comp. Vis. (ICCV)
- Eur. Conf. Comp. Vis. (ECCV)
- Asian Conf. Comp. Vis. (ACCV)
- Comp. Vis. Patt. Recog. (CVPR)
- Med. Image Comp., Comp. Assist. Interv. (MICCAI)

