

VIT

Vellore Institute of Technology

(Deemed to be University under section 3 of UGC Act, 1956)

Continuous Assessment Test II - October 2022

Programme	: B.Tech.	Semester	:	Fall 2022 – 23
Course Title	: Linear Algebra and Transform Techniques	Code	:	MAT3008
		Slot	:	E1+TE1
Faculty (s)	: Dr. Poulomi De, Dr. Sushmitha P	Max. Marks	:	50
Class Nbr.	: CH2022231001856, CH2022231001859	Time	:	90 minutes

Answer all the Questions (5X10=50)

Q.No.	Sub. Sec.	Question Description	
1.	a	If $T: V_3 \to V_{2}$ and $T(x_1, x_2, x_3) = (x_1 - x_2, x_1 + x_3)$, then show that T is a linear transformation.	
	b.	Consider the mapping $F: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $F(x, y, z) = (xz, y^2)$. Find F (5,-2,3) and $F^{-1}(0,0)$.	3
2.		Let T be the linear operator on $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x_1, x_2, x_3) = (-2x_1 + x_2, -x_1 + 2x_2 + 4x_3, 3x_1 + x_3)$	10
9	•	Find the matrix of T in the ordered basis $\{\alpha_1, \alpha_2, \alpha_3\}$, where $\alpha_1 = (-1,2,1)$, $\alpha_2 = (2,1,1)$ and $\alpha_3 = (1,0,1)$.	
3	· .	Apply the Gram-Schmidt process to the vectors $(1,0,1),(1,0,-1),(0,3,4)$ to find an orthonormal basis for $V_3(R)$ with the standard product.	10
4)		Consider the following polynomials in P(t) with the inner product $f(t) = t + 2$, $g(t) = 3t - 2$ $f(t)g(t)dt$ and $f(t) = t + 2$, $g(t) = 3t - 2$ and	
		$h(t) = t^3 - 2t - 3$	10
		a) Find $\langle f,g \rangle$ and $\langle f,h \rangle$ b) Find $\ f\ $ and $\ g\ $ c) Normalize f and g.	
(5.)		Let $F: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear mapping defined by	
		F(x, y, z, t) = (x - y + z + t, 2x - 2y + 3z + 4t, 3x - 3y + 4z + 5t).	5+5
		Find basis and dimension of (a) Image of F and (b) Kernel of F.	

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow$