Propositional Logic for KRR

We are going to look at propositional and first order logic, and consider their suitability for use in knowledge representation.

For a comprehensive review of these logics, I recommend:

Logic for Computer Scientists by Ewe Shöning.

Propositional Logic

We might consider using Propositional Logic

- It is one of the simplest logics
- It can be used to write simple representations of a domain
- There exist reasoning algorithms that exhibit excellent performance in practice
- (Most of) you are already familiar with it!

Syntax: Propositional Alphabet

- Propositional variables (PL): basic statements that can be true or false, e.g., Sunny
- 2. The symbols \top ("truth") and \bot ("falsehood")
- 3. Propositional connectives:
 - ► ¬: negation (not)
 - \(\chi\): conjunction (and)
 - V: disjunction (or)
 - \rightarrow : implication (if ... then)
 - →: bi-directional implication (if and only if)
- Punctuation symbols "(" and ")" can be used to avoid ambiguity

Syntax: Formulas

Atomic formulas (atoms): propositional variables, e.g., Sunny

Formulas: Inductively defined from atoms, \top , and \bot with connectives:

- Each atom is a formula.
- ightharpoonup op and op are formulas.
- ▶ If α is a formula, then $\neg \alpha$ is a formula.
- ▶ If α , β are formulas, then so is $(\alpha \circ \beta)$, for $\circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}$.

Examples of formulas:

▶ If the tumour is benign then it does not have metastasis

$$Benign \rightarrow \neg Metastasis$$

A tumour is in Stage 4 if and only if it is not benign

If a tumour has a treatment, it is surgery, or chemotherapy, or radiotherapy

Treatment → Surgery ∨ Chemo ∨ Radio

Semantics: Interpretations

An interpretation \mathcal{I} assigns truth values to propositional variables:

$$\mathcal{I}: \mathbf{PL} \to \{\mathbf{true}, \mathbf{false}\}$$

Then, we extend \mathcal{I} by induction to assign a truth value to complex formulas as follows:

- $ightharpoonup \perp^{\mathcal{I}} = false.$
- ightharpoonup op op
- $(\neg \alpha)^{\mathcal{I}}$ = true if and only if $\alpha^{\mathcal{I}}$ = false.
- $(\alpha_1 \wedge \alpha_2)^{\mathcal{I}}$ = true if and only if $\alpha_1^{\mathcal{I}}$ = true and $\alpha_2^{\mathcal{I}}$ = true.
- $(\alpha \vee \beta)^{\mathcal{I}}$ = true if and only if $\alpha_1^{\mathcal{I}}$ = true or $\alpha_2^{\mathcal{I}}$ = true (or both).
- $(\alpha \to \beta)^{\mathcal{I}}$ = false if and only if $\alpha^{\mathcal{I}}$ = true and $\beta^{\mathcal{I}}$ = false.
- $(\alpha \leftrightarrow \beta)^{\mathcal{I}}$ = true if and only if $\alpha^{\mathcal{I}} = \beta^{\mathcal{I}}$.

Semantics

In other words, truth values for complex formulas are given by the table below, where 1 stands for true and 0 for *false*:

α	β	$\neg \alpha$	$\alpha \wedge \beta$	$\alpha \vee \beta$	$\alpha \to \beta$	$\alpha \leftrightarrow \beta$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

Example: An interpretation \mathcal{I} for the formula $R \to ((Q \lor R) \to R)$:

$$R^{\mathcal{I}} = \text{true}$$

 $Q^{\mathcal{I}} = \text{false}$

A formula with n propositional variables has 2^n interpretations.

Semantics of Formulas

The truth value of the propositional variables in a formula α determines the truth value of α .

$$R o ((Q \lor R) \to R)$$
 $R^{\mathcal{I}} = \text{true}$ $Q^{\mathcal{I}} = \text{false}$ $Q \lor R \land R$ $Q \lor R \lor R$ $Q \lor R$

We say that \mathcal{I} is a model of α , written $\mathcal{I} \models \alpha$, if \mathcal{I} makes α true.

Given $\mathcal I$ and α , checking whether $\mathcal I \models \alpha$ can be done effectively, in polynomial time.

Using PL for KR

Propositional Logic provides a simple KR language.

To write down a representation of our domain do the following:

1. Identify the relevant propositions:

Benign The tumour is benign

Metastasis The tumour has metastasis

Stage4 The tumour is in Stage 4

Express our knowledge using a set of formulas (knowledge base):

Benign Benign ↔ ¬Metastasis Stage4 → Metastasis

٠.

Reasoning with a Knowledge Base

Knowledge Base \mathcal{K}_1 : Knowledge Base \mathcal{K}_2 :

Benign \land Stage4BenignBenign $\leftrightarrow \neg$ MetastasisBenign $\leftrightarrow \neg$ MetastasisStage4 \rightarrow MetastasisStage4 \rightarrow Metastasis

We would like to answer the following questions:

1. Do our KBs make sense?

 \mathcal{K}_1 seems contradictory

2. What is the implicit knowledge we can derive from our KBs? \mathcal{K}_2 seems to imply the formula $\neg Stage4$

Satisfiability Problem

Satisfiability: An instance is a formula α . The answer is true if there exists a model $\mathcal I$ of α and false otherwise.

For α the formula $R \to ((Q \lor R) \to R)$ the answer is true: \mathcal{I} assigning R to true and Q to false is a model of α .

For α the formula $(R \land Q) \leftrightarrow (\neg R \lor \neg Q)$ the answer is false: None of the 4 possible interpretations is a model of α .

Satisfiability defined for sets of formulas in the obvious way.

The following knowledge base is unsatisfiable:

$$\mathcal{K}_1 = \{Benign \land Stage4 \\ Benign \leftrightarrow \neg Metastasis \\ Stage4 \rightarrow Metastasis \\ \dots \}$$

Other Reasoning Problems

Validity: An instance is a formula α .

The answer is true if every interpretation for α is a model of α and false otherwise.

Entailment: An instance is a pair of formulas α, β .

The answer is true if every model of α is also a model of β and false otherwise.

Equivalence: An instance is a pair of formulas α, β .

The answer is true if the set of all models of α and β coincide and false otherwise.

Reductions Between Problems

Intuitively, these problems are strongly related:

- ightharpoonup α is valid if and only if $\neg \alpha$ is unsatisfiable
- ightharpoonup α and β are equivalent if and only if α entails β and β entails α
- α entails β if and only if $\alpha \wedge \neg \beta$ is unsatisfiable

A reduction from problem P_1 to P_2 is a function f such that

- ▶ for each input x to P_1 , the answer of P_1 for input x coincides with the answer of P_2 for input f(x),
- ightharpoonup given x, the input f(x) can be efficiently computed.

The mentioned before (and many other) problems can be reduced to (un)satisfiability

Expressivity -v- Complexity

Propositional satisfiability is (famously) NP-complete:

Theorem (Cook-Levin)

Propositional satisfiability is an NP-complete problem:

- 1. It is in NP
- 2. It is NP-hard: all problems in NP are reducible to it

So should we just give up (as reasoning is intractable)?

NO!

- Algorithms such as DPLL are effective in practice
- Highly optimised SAT solvers can deal with problems containing millions of propositional variables (www.maxsat.udl.cat)