

## **Introduction to Networking**

Cisco Networking Academy®
Mind Wide Open®



# **Chapter 7**

- 7.0 Introduction
- 7.1 Transport Layer Protocols
- 7.2 TCP and UDP
- 7.3 Summary



# **Chapter 7: Objectives**

- Describe the purpose of the transport layer in managing the transportation of data in end-to-end communication.
- Describe characteristics of the TCP and UDP protocols, including port numbers and their uses.
- Explain how TCP session establishment and termination processes facilitate reliable communication.
- Explain how TCP protocol data units are transmitted and acknowledged to guarantee delivery.
- Explain the UDP client processes to establish communication with a server.
- Determine whether high-reliability TCP transmissions, or non guaranteed UDP transmissions, are best suited for common applications.





# Cisco Networking Academy® Mind Wide Open®



#### **Transportation of Data**

## Role of the Transport Layer

The transport layer is responsible for establishing a temporary communication session between two applications and delivering data between them.

TCP/IP uses two protocols to achieve this:

- Transmission Control Protocol (TCP)
- User Datagram Protocol (UDP)

## **Primary Responsibilities of Transport Layer Protocols**

- Tracking the individual communication between applications on the source and destination hosts
- Segmenting data for manageability and reassembling segmented data into streams of application data at the destination
- Identifying the proper application for each communication stream





### **Transportation of Data**

# Role of the Transport Layer (Cont.)

#### **Enabling Applications on Devices to Communicate**



Presentation\_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 6







# **Conversation Multiplexing**

## **Segmenting the Data**

- Enables many different communications, from many different users, to be interleaved (multiplexed) on the same network, at the same time.
- Provides the means to both send and receive data when running multiple applications.
- Header added to each segment to identify it.

# Tracking the conversation



The transport layer tracks each individual conversation flowing between a source application and a destination application separately.



## Segmentation



The transport layer divides the data into segments that are easier to manage and transport

# **Identifying the Application**



The transport layer ensures that even with multiple applications running on a device, all applications receive the correct data

# **Transport Layer Services**



## **Transportation of Data**

# **Transport Layer Reliability**

Different applications have different transport reliability requirements.

TCP/IP provides two transport layer protocols, TCP and UDP. TCP

- Provides reliable delivery ensuring that all of the data arrives at the destination.
- Uses acknowledged delivery and other processes to ensure delivery
   Makes larger demands on the network more overhead.

#### **UDP**

Provides just the basic functions for delivery – no reliability.
 Less overhead.

#### **TCP or UDP**

- There is a trade-off between the value of reliability and the burden it places on the network.
- Application developers choose the transport protocol based on the requirements of their applications.

## **Introducing TCP and UDP**

# **Introducing TCP**

- Defined in RFC 793
- Connection-oriented –
   Creates a session
   between
   the source and
   destination
- Reliable delivery –
   Retransmits lost or
   corrupt
   data
- Ordered data
   reconstruction –
   Reconstructs
   numbering
   and sequencing of
   segments



- Flow control Regulates the amount of data transmitted
- Stateful protocol Tracks the session

Animation in Section 7.1.1.5

Presentation\_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 13

## **Introducing TCP and UDP**

# Introducing **LIDP**

- RFC 768
- Connectionless
- Unreliable delivery
- No ordered data reconstruction
- No flow control



Stateless protocol

Applications that use

UDP:

- Domain Name System (DNS)
- VideoStreaming
- VoIP

Animation in Section 7.1.1.6

Presentation ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 14

## **Introducing TCP and UDP**

# Separating Multiple Communications TCP

and UDP use port numbers to differentiate between applications. .



# Introducing TCP and UDP

# **TCP and UDP Port Addressing**



## **Introducing TCP and UDP**

# **TCP and UDP Port Addressing**



## **Introducing TCP and UDP**

# TCP and UDP Port Addressing (Cont.)



Presentation\_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 1

**Introducing TCP and UDP** 

# **TCP and UDP Port Addressing**

# (Cont.)

Netstat is used to examine TCP connections that are open and running on a networked host.



# **TCP and UDP Segmentation**

The transport layer divides the data into pieces and adds a header for delivery over the network











#### **TCP Communication**

## **TCP Server Processes**





#### **TCP Communication**

# **TCP Server Processes (Cont.)**





# TCP Communication TCP Connection, Establishment and Termination

## **Three-Way Handshake**

- Establishes that the destination device is present on the network
- Verifies that the destination device has an active service and is accepting requests on the destination port number that the initiating client intends to use for the session
- Informs the destination device that the source client intends to establish a communication session on that port number

# **Three-Way Handshake**



## **TCP Session Termination**



Check Activity 7.2.1.9 in CCNA

# TCP Reliability – Ordered Delivery

Sequence numbers are used to reassemble segments into their original order.



#### **Reliability and Flow Control**

## **Acknowledgement and Window Size**

The sequence number and acknowledgement number are used together to confirm receipt.



The window size is the amount of data that a source can transmit before an acknowledgement must be received.

**Reliability and Flow Control** 

## Window Size and

# Acknowledgements





Presentation\_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential  $29\,$ 

# TCP Flow Control – Congestion Avoidance



## Reliability and Flow Control TCP Reliability -

## **Acknowledgements**



Presentation\_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 31

#### **UDP** Communication

## **UDP Low Overhead vs. Reliability**

#### **UDP**

- Simple protocol that provides the basic transport layer function
- Used by applications that can tolerate small loss of data
- Used by applications that cannot tolerate delay

#### Used by

- DNS
- Simple Network Management Protocol (SNMP)
- Dynamic Host Configuration Protocol (DHCP)
- Trivial File Transfer Protocol (TFTP)
- IP telephony or VoIP
- Online games

Presentation ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 32

## **Datagram Reassembly**



#### **UDP Server and Client Processes**



UDP-based server applications

are assigned well-known or registered port numbers.

 UDP client process randomly selects port number from range of dynamic port numbers as the source port.

Presentation\_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 34

**TCP or UDP** 

### **Applications that use TCP**



Presentation\_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 35

#### **TCP or UDP**

## **Applications That Use UDP**



Presentation\_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 36







Presentation\_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 3 /

## **Chapter 7: Summary**

#### In this chapter, you learned:

- The role of the transport layer is to provide three main services: multiplexing, segmentation and reassembly, and error checking. It does this by:
  - Dividing data received from an application into segments.
  - Adding a header to identify and manage each segment.
  - Using the header information to reassemble the segments back into application data.
  - Passing the assembled data to the correct application.
- How TCP and UDP operate and which popular applications use each protocol.
- Transport Layer functions are necessary to address issues in QoS and security in networks.
- Ports provide a "tunnel" for data to get from the transport layer to the appropriate application at the destination.



Presentation\_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 39