

The BATMAV Project

Bio-inspired Smart Actuated Micro-size Air Vehicle

Intelligent Material Systems Lab (iMSL) Saarland University, Saarbrücken, Germany

Flapping Mechanism – Motor Actuation

Limitations:

- Gearbox and Motor Weigth
- Reduced D.O.F. (wings are jointed)
- Easy Breakability

Flapping Mechanism – SMA Actuation

Advantages:

- High Volume-Force Ratio
- Negligible Actuator Weight
- Freedom Movement (wings are actuated independently)
- Resistant to Bending

Flapping Mechanism – SMA Actuation

Challeges:

- Low Strain Ratio
- Low Actuation Frequency
- Low Energy Efficiency

Can we overcome these with some smart design ideas?

1. Agonist-Antagonist SMA Design

Experimental Setup

Performances

Single-wire

Agonist-Antagonist

Performances

Single-wire

time [s]

0

Agonist-Antagonist

Performances

Single-wire

Agonist-Antagonist

Model

Model

2. Resonant Compliant Joint Design

Natural frequency

Joint stiffness

$$I_{\text{wing}}\ddot{\theta} + b\dot{\theta} + \mathbf{K}\theta = M$$

Inertia Model

$$I_{\text{wing}}\ddot{\theta} + b\dot{\theta} + K\theta = M$$
 \longrightarrow $w_n = \sqrt{\frac{K}{I_{wing}}} = 2\pi f$

Target:

Flapping ~60° at 7 Hz no external cooling

Joint Geometric Measures L, W, tFixed Free end

2. Resonant Compliant Joint

Performances

ver [W]

No-Resonant

time [s]

Resonant (7 Hz)

2. Resonant Compliant Joint

Performances

No-Resonant

Resonant (7 Hz)

2. Resonant Compliant Joint

Performances

No-Resonant

Resonant (7 Hz)

3. SMA Wing Integrated Design Design

previous design the bundle flaps with the wing bundle end bundle start bundle end increased airflow bundle start less friction (straight actuation)

3. SMA Wing Integrated Design

Performances

Heat Transfer at static-air

Heat Transfer with increased airflow

4. Wing Aereodynamics Final Design

4. Wing Aereodynamics Final Design

Wingspan: **380 mm**Weight: **14 grams**

Performances

Performances

Performances – Rotating Flight Demonstration

Wing Flapping Model

$$dL_c = \frac{1}{2}\rho V_{rel}^2 C_{l-c} . c. dr$$
 Lift Component

$$dN_{nc} = -\frac{\rho\pi c^2}{4} \left(\dot{\theta}U + r\ddot{\beta}\cos\theta - 0.5\,\ddot{\theta}\right).dr$$
 Air Accelerating Momentum

$$dD_i = \frac{1}{2} \rho \, V_{rel}^2 \, C_{di} \, . \, c. \, dr + dD_p = \frac{1}{2} \rho \, V_{rel}^2 \, C_{dp} \, . \, c. \, dr -$$

Drag Component

Wing Flapping Model

Experiment

Wing Flapping Model

Experiment

Simulation

X.