MaLo		Marc Ludevid	405401
SS 2021	Übungsblatt 11	Andrés Montoya	405409
11. Juli 2021	-	Til Mohr	405959

Aufgabe 1

E-Test

Aufgabe 2

Wir suchen ein unendliches Axiomensystem Ψ , welches die Klasse \mathcal{K} widerspricht. Ψ soll also genau die Klasse der ungerichteten Graphen G axiomatisieren, welche eine unendliche Clique enthalten. Enthält G eine unendliche Clique, so enthält G offensichtlich für jedes $n \in \mathbb{N} \setminus \{0\}$ eine Clique der Länge n. Wir können Ψ also wie folgt aufstellen:

$$\Psi := \{ \forall x (\neg Exx), \forall x \forall y (Exy \to Eyx) \} \cup \{ \psi_n \mid n \in \mathbb{N} \setminus \{0\} \}$$

, wobei $\psi_n := \exists x_1 \dots \exists x_n (\bigwedge_{1 \leq i < j \leq n} x_i \neq x_j \wedge Ex_i x_j)$ für alle $n \in \mathbb{N} \setminus \{0\}$ die Hilfsformel für eine Clique der Länge n ist.

Nehmen wir nun an, es gibt ein Axiomensystem Φ , welches \mathcal{K} axiomatisiert. Dann ist $\Phi \cup \Psi$ unerfüllbar. Nach dem KS existiert eine endliche Teilmenge $\Theta_0 \subseteq \Phi \cup \Psi$, welches bereits unerfüllbar ist.

Sei $\Psi_0 := \Theta_0 \cap \Psi$. Es existert wegen Endlichkeit ein $m \in \mathbb{N} \setminus \{0\}$, sodass $\psi_n \notin \Psi_0$ für alle $n \geq m$. Es folgt $\Psi_0 \subseteq \{ \forall x (\neg Exx), \forall x \forall y (Exy \to Eyx) \} \cup \{ \psi_n \mid n < m \}$

Betrachte $\mathfrak{A} := (V := \mathbb{N}, E := \mathbb{N} \times \mathbb{N})$. \mathfrak{A} ist dann also ein ungerichteter Graph, welcher eine Clique mit unendlicher Länge ist. Es gilt also $\mathfrak{A} \in \mathcal{K}$, weshalb auch $\mathfrak{A} \models \Phi$ gilt. Jedoch gilt auch $\mathfrak{A} \models \Psi_0$ offensichtlich. Also folgt $\mathfrak{A} \models \Theta_0$. Jedoch soll Θ_0 unerfüllbar sein.

Dies ist ein Widerspruch. Also ist K nicht axiomatisierbar.

Aufgabe 3

- (a)
- (b)
- (c) U muss hier leer sein oder einelementig sein. Angenommen U ist mindestens zweielementig, aber immer noch endlich. Dann gilt ja für alle $x,y\in U$ mit x< y, dass ein z existiert, sodass $x< z\wedge z < y$. Per Induktion stellt man schnell fest, dass U unendlich sein muss. Dies ist ein Widerspruch.

Man kann die Klasse \mathcal{K}_c axiomatisieren durch:

$$\Phi_c := \{ \forall x \forall y (x = y) \}$$

- (d) Da $f(U) \subseteq U$, gilt auch $|f(U)| \le |U|$. Da f(U) unendlich ist, ist folglich auch U unendlich.
- (e)
- (f) $\Phi_f = \text{Th}(\mathfrak{A})$?
- (g) Die Signatur ist mit $\tau_g := ((R_n)_{n \in \mathbb{N}})$ offensichtlich abzählbar. Wegen der Definition von R_n sind alle a_S unterscheidbar. Man kann also von jedem a_S auf ein $S \subseteq \mathbb{N}$ schließen (bijektiv). Deshalb gilt: $|A| = |\operatorname{Pot}(\mathbb{N})|$ überabzählbar.

Satz von LS↓:

Angenommen es gibt ein Φ_g , welches \mathcal{K}_g axiomatisiert. Da die Signatur abzählbar ist, ist Φ_g abzählbar. Nach LS \downarrow ein abzählbares Modell. Jedoch gibt es in \mathcal{K}_g keine endlichen Strukturen.

Widerspruch. \mathcal{K}_g ist nicht axiomatisierbar.

Aufgabe 4

Aufgabe 5*

- (a)
- (b)