Preparing Messy Real World Data For Supervised Machine Learning with vtreat

Nina Zumel
John Mount
Win-Vector LLC
http://www.win-vector.com/

Outline

- Why prepare data?
- Example: modeling with and without data treatment
- vtreat: Automating variable treatment in R and Python
- Overfit and Cross-frames
- References

Why Prepare Data at All?

- To facilitate modeling/analysis
 - Clean dirty data
 - Format data the way machine learning algorithms expect it
- Not a substitute for getting your hands dirty
 - But some issues show up again and again

Typical Data Problems

- "Bad" numerical values (NA, NaN, None)
- Categorical variables: missing values, missing levels
- Categorical variables: too many levels
- Invalid values
 - New/invalid category levels

Example Problem: KDD2009

- Data set for KDD DataCup 2009
 - Task: predict account cancellation (or "churn") from supplied features.
 - Very messy data
 - 230 columns/variables, 50000 instances
 - Numeric and Categorical values
 - High-cardinality categorical variables
 - Nonsense column and level names, and no data dictionary
 - Many missing values
 - Unbalanced task: churn rate around 7%

KDD model with xgboost (without data treatment)

fitter = xgboost.XGBClassifier(

n estimators=10,

xgboost didn't accept stringvalues (categorical) variables

- Even if you fixed this you still run into the other issues
 - Missing values
 - High-cardinality categorical variables
 - Rare levels and novel levels

Grab-bag solution

- Combine
 - sklearn.preprocessing.OneHotEncoder
 - sklearn.impute.SimpleImputer
 - Maybe keras.layers.Embedding to deal with high-cardinality categorical variables

Issues

- Lots of steps to manage.
- May not be statistically efficient.
- Possibly subject to nested model bias/overfit.

What we are advocating

- vtreat all in one step
 - Easy to use
 - Known good performance
 - Citable documentation: <u>arXiv 1611.09477 [stat.AP]</u>

vtreat Solution

https://github.com/WinVector/pyvtreat/blob/master/Examples/KDD2009Example/KDD2009Example.ipynb

Result

- vtreat first try: AUC performance of 0.73
 - Off the shelf variable treatment
 - Off the shelf machine learning, no hyper-parameter tuning
- Contest-winners: AUC performance of 0.7467 (day one) to 0.7651 (end of contest)
- · vtreat in the ballpark on first try, leaving time to tune/improve results.
 - A platform to build on

vtreat goal

- Goal: faithfully and reliably convert data into a ready for machine learning data frame that is entirely numeric, and without missing values.
 - By <u>ready</u> we mean: the converted information is in a <u>simple</u> encoding compatible with linear models, tree models, and neural nets.
 - By <u>faithful</u> we mean: most of the relevant modeling information is preserved.
 - By <u>reliable</u> we mean: a number subtle over-fitting (or nested model bias) traps are avoided.

vtreat organization

- Built on top of Pandas
 - Assumes columns addressed by name

.score_frame_				
variable	orig_variable	treatment	y_aware	PearsonR
x_is_bad	Х	missing_indicator	FALSE	-0.01
х	Х	clean_copy	FALSE	-0.01
x2	x2	clean_copy	FALSE	0.06
xc_is_bad	хс	missing_indicator	FALSE	-0.38
xc_logit_code	хс	logit_code	TRUE	0.83
xc_prevalence_code	хс	prevalence_code	FALSE	0.41
xc_lev_level_1.0	хс	indicator_code	FALSE	0.77
xc_levNA_	хс	indicator_code	FALSE	-0.38
xc_lev_level_0.5	хс	indicator_code	FALSE	0.19
xc_lev_level0.5	xc	indicator_code	FALSE	-0.34

From: https://github.com/WinVector/pyvtreat/blob/master/Examples/Classification/Classification.md

What does vtreat do?

1. Fix bad/missing numerical values

- Replace missing values with harmless stand-ins (the mean)
- Add an indicator variable to mark where that happened.
- Extra column makes the treatment "invertible"
 - Preserves maximum information in the data

MPG	
50	
Inf	
20	
36.4	
NaN	
NA	

MPG	MPG_isBad
50	0
35.5	1
20	0
36.4	0
35.5	1
35.5	1

Missingness as signal

- In business analytics missing data is often an indicator of where the data came from and how it was processed.
- Consequently it is often one of your more informative signals when modeling!

2. Encode Categorical Levels as Indicators

similar toOneHotEncoder(drop=None,handle unknown='ignore')

- novel levels in application data treated as "no level" (all zero indicator variables)
- difference: only common levels are dummy encoded

(novel level)

Training Data

Resid	len
CA	
NV	
OR	
CA	
CA	
WA	

New Data

Residen
OR
CA
WY

Encoded Training Data

Res_CA	Res_NV	Res_OR	Res_WA
1	0	0	0
0	1	0	0
0	0	1	0
1	0	0	0
1	0	0	0
0	0	0	1

Encoded New Data

Res_CA	Res_NV	Res_OR	Res_WA
0	0	1	0
1	0	0	0
0	0	0	0

3. Manage high-cardinality categorical variables

ZIP	SalePriceK
94127	725
94564	402
90011	386
94704	790
95555	1195
94109	903
94124	625
94123	439
94562	290

- Don't want to have an unbounded number of dummy variables
- Too many levels is a computational problem for many machine learning algorithms.
- You will inevitably have a novel level during application

Manage high-cardinality categoricals (cont.)

- Only dummy encode levels that occur more frequently than some threshold (e.g. 0.02 = 1/50)
 - user-definable threshold
 - prevent "dummy variable blowup"
 - max 1/threshold indicators created (per variable)
- Also convert categorical variables to a single informative numerical variable
 - "impact coding"

"Impact Coding"

ZIP	avgPriceK	ZIP_impact
90011	386	-253.4
94109	903	263.6
94124	532	-107.4
94127	960	320.6
94564	346	-293.4
94704	790	150.6
globalAvg	639.4	0

Impact-coding the ZIP variable

ZIP
94127
94564
90011
94704
94127
94109
94124
94124
93401

ZIP_impact	
320.6	
-293.4	
-253.4	
150.6	
320.6	
263.6	
-107.4	
-107.4	
0	

(novel level)

Don't Naively Use Training Data to Impact Code!

- Can introduce undesirable nested model bias
 - Full model may overestimate value of impact coded variable
 - Useless high-complexity variables cut in front of other variables.
 - Overall model is bad
- Use separate calibration data or crossvalidation methods
 - vtreat has built-in cross-validation methods that avoid these issues

Cross-Frames

Idea:

no row should be processed by a model it was included in the construction of.

Training data

Known Data Row outcome Known Data Row outcome

Partition the data into k folds (k = 3)

Data Row

Known outcome

Train Model 2 on folds 1 and 3, and use Model 2 to predict on fold 2

Now every row has a predicted outcome based on a model that was not trained on that row.

The vtreat calling pattern on training data

Naive call:

```
.fit(X_train, y).transform(X_train)
```

Calibration set method:

```
.fit(X_train_cal, y).transform(X_train_model)
```

Cross-frame method:

```
.fit transform(X_train, y)
```


The vtreat calling pattern on test or application data

.transform(X_test)

The value of cross-frames

.fit(X, y).transform(X)

(naive, also what some ad-hoc methods will do)

training set performance

test set performance

.fit_transform(X, y)
(cross-frames)

Conclusion

- vtreat is an easy-to-use, statistically sound process to prepare data for machine learning
 - prepared data is entirely numeric, and without missing values
- It's no substitute for getting your hands in the data
- Automating common data steps leaves the data scientist more time to develop high-value domain- or problem-specific ideas

References

- Impact Coding (Kagglers call this target coding)
 - http://www.win-vector.com/blog/2012/07/modeling-trick-impact-coding-of-categorical-variables-with-many-levels/
 - http://www.win-vector.com/blog/2012/08/a-bit-more-on-impact-coding/
 - "vtreat paper" https://arxiv.org/abs/1611.09477
- R vtreat:
 - https://github.com/WinVector/vtreat/
 - Install from CRAN with "install.packages(vtreat)"
- Python/Pandas vtreat:
 - https://github.com/WinVector/pyvtreat
 - Install from PyPi with "pip install vtreat"

Thank You

