

2005 – סמסטר אביב – 234247) אלגוריתמים

פתרון תרגיל בית 1

שאלה 1

k - כאמור, ההוכחה באינדוקציה על מספר הפעולות שמתבצעות על . נסמן מספר זה ב-

. בסיסs עבור k=0 , כלומר Q מכיל רק את s הטענה מתקיימת t=0

ביצוע הפעולה Q ונסתכל על Q לאחר ביצוע הפעולה $k \geq 0$ פעולות על Q לאחר ביצוע הפעולה ה-k+1. נפריד לשני מקרים בהתאם לפעולה שהתבצעה.

ברור כי מתקיים . $Q=(v_2,v_3,...,v_r)$ ברור הפעולה . Q ברור כי מתקיים . Q ברור כי מתקיים . $d[v_1] \le d[v_2] \le ... \le d[v_r]$ כי לפני ביצוע הפעולה ולפי הנחת האינדוקציה התקיים $d[v_1] \le d[v_2] \le ... \le d[v_r]$, $d[v_1] \le d[v_2] \le d[v_1] + 1$ וכמו כן $d[v_1] \le d[v_1] \le d[v_1] + 1$ וכמו כן $d[v_1] \le d[v_1] + 1$ לכן מתקיים $d[v_1] \le d[v_1] + 1 \le d[v_1] + 1$

u בעפייי הנחת האינדוקציה $Q=(v_1,v_2,...,v_r,v_{r+1})$ בעפייי הנחת האינדוקציה $Q=(v_1,v_2,...,v_r,v_{r+1})$ ב- $Q=(v_1,v_2,...,v_r,v_{r+1})$ ב- $Q=(v_1,v_2,...,v_r,v_{r+1})$ ב- $Q=(v_1)$ - $Q=(v_1$

<u>שאלה 2</u>

הרעיון: ניצור שלושה העתקים של G אשר מכילים רק את הקשתות הלבנות. את הקשתות השחורות נכוון הרעיון: ניצור שלושה העתקים של G אשר מכילים רק את הקשתות השני, ומהצמתים המתאימים בעותק השני מהצמתים המתאימים בעותק השלישי. נריץ BFS החל מהצומת המתאים ל-s בעותק הראשון. לכל $v \in V$ שאינו מכיל כלל הערך שהתקבל בצומת המתאים ל-v בעותק השני מייצג מסלול קצר ביותר מ-s ל-v שמכיל קשתות שחורות; הערך שהתקבל בצומת המתאים ל-v בעותק השני מייצג מסלול קצר ביותר מ-s ל-v שמכיל בדיוק קשת שחורה אחת; והערך שהתקבל בצומת המתאים ל-v בעותק השלישי מייצג מסלול קצר ביותר מ-s ל-v שמכיל בדיוק שתי קשתות שחורות. נחזיר כמובן את הערך המינימלי מבין שלושתם.

G' = (V', E') באופן פורמלי: ניצור גרף חדש

$$V' = \{v^{1}, v^{2}, v^{3} \mid v \in V\}$$

$$E' = \{(v^{1} \to u^{1}), (v^{2} \to u^{2}), (v^{3} \to u^{3}) \mid (v \to u) \in E \land (v \to u) \text{ is white}\}$$

$$\cup \{(v^{1} \to u^{2}), (v^{2} \to u^{3}) \mid (v \to u) \in E \land (v \to u) \text{ is black}\}$$

את הערך את אר $V\in V$ נריץ BFS מחזיר לכל מיינם היפת בסיום בסיום מייצג את הערך החל מייצג את הערך שחושב בהרצת מייצג את הערך שחושב בהרצת לע $d(v)=\min\{\lambda(v^1),\lambda(v^2),\lambda(v^3)\}$

: סיבוכיות

מאחר O(V'+E')=O(V+E) לוקחת G' לוקחת של הרצת ה-BFS מאחר ומן. הרצת O(V+E) אמן. לוקחת O(V+E) ו-C(V) והריצה הוא הריצה הערך המבוקש לכל צומת לוקח C(V'+E') לכן סהייכ זמן הריצה הוא O(V'+E') כפי שנדרש.

נכונות:

נסמן ב- $\delta(v)$ את המסלול הקצר ביותר מ-s ל-v ב-s המכיל לכל היותר 2 קשתות שחורות. נסמן ב- $\delta(v)$ את המסלול הקצר ביותר מ-s ל-v ב-s המכיל בדיוק $\delta_0(v), \delta_1(v), \delta_2(v)$ קשתות שחורות, $\delta(v) = \min\{\delta_0(v), \delta_1(v), \delta_2(v)\}$ בהתאמה. אזי ברור כי $\delta(v) = \min\{\delta_0(v), \delta_1(v), \delta_2(v)\}$

i=0,1,2 ולכל $v\in V$ לכל $\lambda(v^{i+1})=\delta_i(v)$ כי להראות מספיק להראות מספיק להראות את נכונות האלגוריתם מספיק להראות כי i=0,1 ההוכחה עבור i=0,1 דומה. $\lambda(v^3)=\delta_2(v)$ מתקיים $v\in V$ אנו נראה כי לכל

נראה כי $(v^3) \leq k < \infty$ אם $(v^3) \leq \delta_2(v)$ אז ברור כי $(v^3) \leq \delta_2(v)$ אם $(v^3) \leq \delta_2(v)$ אז קיים מסלול באורך $(v_i) = v_0$ המכיל בדיוק 2 קשתות שחורות: $(v_i) = v_0$ המכיל בדיוק 2 קשתות השחורות: $(v_i) = v_0$ המכיל בדיוק 2 קשתות השחורות: $(v_i) = v_0$ המכיל בדיוק 2 קשתות השחורות: $(v_i) = v_0$ וב- $(v_i) = v_0$ וב- $(v_i) = v_0$ וב- $(v_i) = v_0$ וב- $(v_i) = v_0$ מופיעה ראשונה). עפייי בנית $(v_i) = v_0$ לכן, עפייי מסלול באורך $(v_i) = v_0$ מ'ן ב- $(v_i) = v_0$ בי $(v_i) = v_0$ מ'ן ב- $(v_i) = v_0$ מ'ן ב

נראה כעת כי $\lambda(v^3)=k<\infty$ אז ברור כי $\lambda(v^3)\geq \delta_2(v)$ אז ברור כי $\lambda(v^3)=\infty$ אז קיים $\lambda(v^3)=\infty$ אז קיים $\lambda(v^3)=k<\infty$ בי $\lambda(v^3)\geq \delta_2(v)$ אז קיים $\lambda(v^3)\geq \delta_2(v)$ אז קיים $\lambda(v^3)\geq \delta_2(v)$ אז קיים מסלול באורך $\lambda(v^3)=v^3$ בי $\lambda(v^3)=v^3$ בי $\lambda(v^3)=v^3$ בי $\lambda(v^3)\geq \delta_2(v)$ בי $\lambda(v^3)\geq \delta_2(v)$ ברור כי $\lambda(v^3)\geq \delta_2(v)$

<u>שאלה 3</u>

אם אין מסלול מ-s ל-s הפתרון הוא הקבוצה הריקה. לכן נניח בהמשך כי קיים מסלול מ-s ל-s. נסמן ב-s ל-s ל-s ל-s האלגוריתם שנציע מתבסס על הטענה הבאה. ב-s ל-s ל-s לבומת s לבומת s לבומת ביותר מצומת s לבותר מסלול קצר ביותר מ-s ל-s ל-s ל-s נמצא על מסלול קצר ביותר מ-s ל-s ל-s ל-s נמצא על מסלול קצר ביותר מ-s ל-s ל-s הוכחה:

כיוון ראשון: נניח כי v נמצא על מסלול קצר ביותר p מ-s ל-s ניח מר-המסלול מ-s על מסלול מ-s לכי, $d(v,t) \leq \left|p_{vt}\right|$ מתת-המסלול מ-s ל-s אזי מתקיים כי $\left|p_{sv}\right| < \delta(s,v) \leq \left|p_{vt}\right|$ הוא לכל היותר $\left|p_{sv}\right| < \delta(s,v) < s$ הוא לכל היותר $\left|p_{sv}\right| < s$ לכן, $\left|p_{sv}\right| < s$ מ-s ל-s הוא לכל היותר $\left|p_{sv}\right| < s$ אז מתקיים כי $\left|p_{sv}\right| < s$ אז מתקיים כי $\left|p_{sv}\right| < s$ או מתקיים כי $\left|p_{sv}\right| < s$ או $\left|p_{vt}\right| < s$ או מתקיים כי $\left|p_{sv}\right| < s$ או $\left|p_{vt}\right| < s$ או $\left|p_{vt}\right| < s$ או קיים $\left|p_{sv}\right| < s$ או $\left|p_{vt}\right| < s$ מסלול באורך $\left|p_{sv}\right| < s$ מסלול $\left|p_{sv}\right| < s$ מיה לא יתכן.

כיוון שני: אם $\delta(s,v)$ אוי קיים מסלול $\delta(s,t)=\delta(s,v)+\delta(v,t)$ וקיים מסלול $\delta(s,t)=\delta(s,v)+\delta(v,t)$ וקיים מסלול $\delta(s,v)$ מ-s ל-s שאורכו $\delta(v,t)$ אוי שאורכו $\delta(v,t)$ שאורכו

 $\delta(v,t)$ את מנת לחשב את s -ש BFS איי הרצת $\delta(s,v)$ את $v\in V$ את מנת לחשב את ברור כי ניתן לחשב לכל צומת $v\in V$ את את $v\in V$ קיים מסלול באורך v מ-v בי v כי לכל זוג צמתים v בי v קיים מסלול באורך v מ-v ל-v ב-v כאשר v הוא הגרף המתקבל מהפיכת כיווני הקשתות ב-v מ-v ל-v ב-v מ-v ל-v מ-v ל-v מ-v ל-v מ-v ל-v מ-v ל-v מ-v ל-v מ-v מ-

מסקנה : לכל צומת $\delta'(t,v)$ את המרחק הקצר כי מתקיים כי $\delta'(t,v)$ מתקיים מחקנה מחקנה מחקנה מתקיים כי $\delta'(t,v)$ מתקיים כי $\delta'(t,v)$ מתקיים כי $\delta'(t,v)$ מרים מחקנה מחקנה

מהדיון הנייל נסיק כי האלגוריתם הבא יחשב את הדרוש:

- .1 $L \leftarrow \{\}$ ורשימה המאותחלת להיות ריקה).
- $v \in V$ מ-s לכל צומת BFS איז הרץ פוער g א לכל צומת g לחישוב המרחק הקצר ביותר, g
 - $d[t] < \infty$ אם .3
 - G' ייצר את הגרף .4
- $v \in V$ מ-t לכל צומת t, לחישוב המרחק הקצר ביותר, d'[v] מ-t לכל צומת .5
 - d[v] + d'[v] = d[t] אם $v \in V$ הוסף את א ל-6.
 - .L את החזר את .7

סיבוכיות האלגוריתם היא כמובן O(V+E), מאחר והוא מורכב מ-2 הרצות O(V+E) לכל היותר (כל אחת בסיבוכיות בסיבוכיות O(V+E)), יצירת הגרף O(V) (שוב, O(V+E)), ובדיקת התנאי לכל הצמתים (ב-O(V)).

שאלה 4

א. נניח כי G דו-צדדי ותהא (V_1,V_2) דו-חלוקה של צמתי G. אזי נצבע את צמתי V_1 בצבע V_2 א. נניח כי V_1 דו-חלוקה אין שני צמתים שכנים הצבועים באותו הצבע, לכן הצביעה V_2 בצבע V_2 בצבע V_3 בצבע. מצד שני, נניח כי V_1 -2. צביע. נסתכל על צביעה של צמתי V_2 בשני צבעים, 1 ו-2.

נסמן ב- V_1 את קבוצת הצמתים בצבע 1 וב- V_2 את קבוצת הצמתים בצבע 1. אזי ברור וב- V_1 את קבוצת הצמתים בצבע 1. אזי ברור ואין $V_1 \cup V_2 = V$, או ב- $V_1 \cap V_2 = \emptyset$ היא דו-חלוקה של $V_1 \cap V_2 = \emptyset$ דו-צדדי.

נניח כי G מכיל מעגל באורך אי זוגי ונניח בשלילה כי G דו-צדדי. על פי הסעיף הקודם G 2-צביע. נסמן את המעגל בי $U_1-V_2-V_3-...-V_k-V_1$ ונסתכל על 2-צביעה חוקית של G נניח, בלי הגבלת הכלליות, כי U_1 צבוע בצבע U_2 אזי U_2 צבוע בהכרח בצבע U_3 באופן דומה U_4 צבוע בהכרח בצבע U_4 ובאופן כללי כל צומת עם אינדקס זוגי על המעגל צבוע בצבע U_4 וכל צומת עם אינדקס אי-זוגי צבוע בצבע U_4 אי-זוגי (כי צומת עם אינדקס זוגי על המעגל צבוע בצבע U_4 ולכן הצביעה אינה חוקית U_4 ו- U_4 שכנים בעלי אותו צבע. אורך המעגל אי-זוגי) לכן U_4 צבוע בצבע U_4 ונראה כי U_4 2-צביע (כאמור, זה שקול לדו-צדדי). בכיוון השני, נניח כי U_4 קשיר, אחרת, נתייחס לכל רכיב קשירות בנפרד. יהא U_4 צומת כלשהו ב- U_4 נצבע את צמתי U_4 באופן הבא: U_4 יצבע בצבע U_4 אי-זוגי (U_4) הוא המרחק הקצר ביותר מ- U_4 ל- U_4 ובצבע U_4 אוגי (מאחר ו- U_4 קשיר (U_4) סופי) נראה שהצביעה שהגדרנו חוקית: נניח בשלילה ששני צמתים שכנים U_4 (צבעו בצבע זהה. אזי קיים מעגל U_4 (לאו דווקא פשוט) המורכב ממסלול קצר ביותר בין U_4 (U_4) וממסלול קצר ביותר בין U_4 (U_4) אותה זוגיות, אורכו של U_4 אי-זוגי – סתירה. U_4 אי-זוגי – סתירה. U_4 אותה זוגיות, אורכו של U_4 אי-זוגי – סתירה.

- : האלגוריתם שנציע נובע מהוכחת הכיוון השני בסעיף הקודם
 - $d[v] \leftarrow \infty$ נגדיר ב- G נגדיר לכל צומת ב- 1
 - $d[s] = \infty$ כך ש- כל עוד קיים צומת $s \in V$ כל עוד קיים 2.
- $(v-1 \ s \)$ בין מסלול בין א לכל צומת $v \$ כך שיש מסלול בין $s-s \$ BFS הרץ.
 - $(u,v) \in E$ לכל קשת .4
 - .5 אם $d[u] \equiv d[v] \pmod{2}$ הכרז ייהגרף אינו צדדייי וסיים.
- $V_2 = \{v \mid d[v] \text{ is even}\}$ ו- $V_1 = \{v \mid d[v] \text{ is odd}\}$ הכרז ייהגרף דו-צדדיי והחזר את הדו-חלוקה.

סיבוכיות כל הרצות ה- m_i מכיל m_i רכיבי קשירות כך שברכיב ה-i ישנם m_i צמתים ו- m_i קשתות. אזי סיבוכיות כל הרצות ה-BFS הינה $\sum_{i=1}^k O(n_i+m_i)=O\left(\sum_{i=1}^k n_i+\sum_{i=1}^k m_i\right)=O(V+E)$ מנת למצוא BFS כך ש- m_i כך ש- m_i נחזיק רשימה מקושרת של הצמתים. כדי למצוא צומת כנדרש בשלב 2 צומת m_i כך ש- m_i נחזיך הצומת הנוכחי m_i מתקיים כי m_i נחזיר את m_i (כמובן, נוציא אותו מהרשימה) ונעצור. אחרת, נוציא את m_i מהרשימה ונמשיך לאיבר הבא ברשימה. כלומר, בכל צעד על הרשימה יוצא ממנה צומת אחד. צומת שיצא מן הרשימה כבר לא יחזור אליה ולכן סהייכ

המעברים על הרשימה לוקח O(V+E) זמן. שלבים 1,4-6 זמן. ממן. סהייכ הזמן ולכן הרשימה לוקח אמעברים על הרשימה לוקח O(V+E). כפי שנדרש.

נכונות: אם האלגוריתם מחזיר דו-חלוקה אזי ברור כי היא חוקית משום שהבדיקה בשלב 2 מבטיחה $(u,v)\in E$ או ל- V_1 או ל- V_2 ובשלבים 4-5 בודקים את כל הקשתות, לכן לכל קשת V_1 או ל- V_2 ובשלבים ל- V_2 ובשלבים ל- V_1 ולכן לא יתכן ש- V_2 ולכן לא יתכן ש- V_1 ולכן לא יתכן ש- V_2 ולכן לא יתכן ש- V_1 ולכן לא יתכן ש- V_2 באותה קבוצה בדו-חלוקה.

מצד שני, נראה כי אם האלגוריתם מכריז שהגרף אינו דו-צדדי אז G מכיל מעגל אי-זוגי ולכן עפייי הסעיף הקודם אינו דו-צדדי. תהא u . $d[u] \equiv d[v] \pmod 2$ שייכים לאותו רכיב u . $d[u] \equiv d[v] \pmod 2$ קשת כך ש-u . u .

ד. נסתכל על הגרף G בו כל צומת מייצג תא ושני צמתים שכנים אם התאים המתאימים להם שכנים. נשים לב שכל קשת ב- G מתאימה לחצייה של ישר אחד בדיוק מצידו האחד לצידו השני. נסתכל על כל הקשתות במעגל G ב- G המתאימות לחצייה של ישר ℓ . מספר הקשתות הללו הוא בהכרח זוגי, אחרת המעגל היה מתחיל ומסתיים בצדדים שונים של ℓ . נסיק מכך ש- ℓ מעגל זוגי, כלומר ℓ אינו מכיל מעגלים אי-זוגיים ולכן לפי הסעיפים הקודמים הינו 2-צביע. נסיק מכך שהתאים ניתנים לצביעה חוקית ב-2 צבעים משום שיחס שכנות ב- ℓ מקביל ליחס שכנות בין התאים במישור.

שאלה 5

- א. הטענה נכונה. נניח בשלילה שהתקבלו שני עלים uו-v. נניח, בהייכ, כי uהתגלה לפני v. אזי ברגע גילוי א. הטענה נכונה. נניח בשלילה שהתקבלו שני עלים uולכן לפי משפט המסלול הלבן (דרך הקשת u) מ-u לכן לפי משפט המסלול הלבן uיהיה אב קדמון של u, בסתירה לכך שu עלה.
- ב. הטענה נכונה. למשל, עבור ריצת DFS היוצאת "מרכז הגלגל" וסובבת סביבו. עם זאת, שימו לב שלא כל ריצת DFS על גלגל מניבה שרוך (ראו דוגמה).
- ג. הטענה אינה נכונה. יהא v הצומת הראשון על vישפת הגלגלvישמתגלה. אזי שני שכניו על שפת הגלגל יהיו צאצאיו (לפי משפט המסלול הלבן), ולכן vיאינו עלה.
 - ד. הטענה אינה נכונה:

על W_6 שאינה מניבה שרוך DFS ריצת

מכיל מעגל המילטון W_{ϵ}