Gliederung Thema P2: De-Novo-Sequencing using Spectrum-Graphs, enabling Open Searches

- Grundsätzliches zur Themenwahl
 - Beschreibung warum ausgerechnet das De-Novo Sequencing Thema gewählt wurde
 - o Unter Umständen: Hoffnungen bzw. Erwartungen an diesem Thema
- Begriffserklärungen
 - Häufig verwendete Abkürzungen (z.B. MS/MS, ETD, HCD, etc.)
 - Erklärung und Einordnung der wichtigsten Begriffe aus dem Bereich der Peptidsequenzierung
- Themenabgrenzung
 - Welche Schwerpunkte werden behandelt?
 - Was ist die De-Novo-Peptidsequenzierung?
 - Was erhofft man sich von dieser Technologie?
 - Inwiefern spielen die Spektrums-Graphen dabei eine Rolle?
 - Welche Probleme liegen vor, die von der Seite der Informatik gelöst / verbessert werden können?
 - Welche Aspekte werden nicht behandelt?
 - Genaue Funktionsweise der Massenspektrometrie
 - Tiefere Informationen über die Funktionsweise von "Konkurrenzalgorithmen"
 - Weitergehende Informationen aus dem Bereich der organischen Chemie
- Einleitung
 - Allgemeines zur De-Novo-Peptidsequenzierung
 - Was ist die De-Novo-Peptidsequenzierung mittels Spektrumsgraphen?
 - Welche Informationen benötigt dieses Verfahren?
 - Welche Informationen kann das Verfahren am Ende liefern?
 - Anwendungsbereiche bzw. Anwendungszweck
 - Mit welchen Zielen wurde diese Technologie geschaffen?
 - Welche Probleme versucht die De-Novo-Peptidsequenzierung mittels Spektrumsgraphen zu lösen bzw. zu vereinfachen?
- De-Novo-Peptidsequenzierung und Spektrums-Graphen im Detail
 - Datengewinning
 - Vorbereitung der Probe durch Fragmentierung der Aminosäuresequenz (mittels ETD und HCD)
 - Durchführung der Massenspektrometrie
 - Datenauswertung
 - Zusammenführung der Spektrumsinformationen in einem DA-Graphen (bzw. DAG)
 - Ermitteln des längsten asymmetrischen Pfades im Graphen
 - "Prioritätsalgorithmus" entscheidet bei nicht eindeutigen Ergebnissen
 - Wenn alles funktioniert hat: Peptidsequenz (wahrscheinlich) gefunden
 - Probleme in der Praxis
 - Pfadermittlung benötigt viel Rechenzeit
 - Genauigkeit nimmt mit längerer Peptidkette schnell ab
 - Schlechte Ergebnisse bei unerwarteten Änderungen der Peptidkette
 - Eingangsdaten müssen genau sein
 - Lösungsansätze
 - Punktesystem durch vortrainiertem ML Algorithmus

- Trade-off zwischen Genauigkeit und Geschwindigkeit meist möglich
- Bewusst Ungenauigkeiten zulassen
- Peptidkette verringern
- Ungelöste Probleme
 - Optimierungsideen erwarten, dass maximal eine Änderung in der Peptidkette vorhanden ist
 - By Design nimmt die Qualität mit zunehmender Länge der Peptidkette ab
 - Was tun, wenn die Eingangsdaten nicht allzu genau sind

Zusammenfassung

- o Bedeutung und Mehrwert von hochwertigen Proteinsequenzierungsdaten
- Mehrwert von Spektrumsgraphen bei der De-Novo-Peptidsequenzierung
- Grenzen dieses Ansatzes
- Wann kann man diesen Ansatz verwenden; wann sollte man es nicht tun
- Zukunftsbetrachtung: Wie könnte es mit der De-Novo-Peptidsequenzierung mittels Spektrumsgraphen weitergehen?