上海交通大学试卷(物理144A卷)

(2014至2015学年第2学期试卷2015年6月30日)

班级号	学号	姓名	
课程名称	大学物理	成绩	

注意:(1) 试卷共三张;(2) 填空题空白处写上关键式子,可参考给分,计算题要列出必要的方程和解题的关键步骤;(3) 不要将订书钉拆掉。 一、填空题(56分)

1、(本小題 4分) 利用多普勒效应监测车速,固定波源发出频率为 ν 的超声波,当汽车向波源行驶时,与波源安装在一起的接收器接收到从汽车反射回来的波的频率为 ν 。已知空气中的声速为u,则车速为_____。 ν = $\frac{\nu + \nu}{\nu + \nu}$ ν = $\frac{\nu + \nu}{\nu + \nu}$

2、(本小题 6 分) 一系统由如图所示的 a 状态沿 acb 到达 b 状态,有 330J 热量传入系统,而系统做功 120J。经 adb 过程,系统做功 42J,则传入系统的热量为 252 了。当系统由 b 状态沿曲线 ba 返回状态 a 时,外界对系统做功为 84J,则系统 294 万次 (填"吸收"或"放出")的热量为 294 丁。

abc: DE=330-120=210(T) 2'P adb: Q=BE-A=210-(-42)=252(J)2' b~C: Q=-210-84=-294(J) Z'

3、(本小题6分)转动着的飞轮的转动惯量为J,在t=0时角速度为 ω_0 。此后飞轮经历制动过程,阻力矩M的大小与角速度 ω 的平方成正比,比例系数为k(k为大于0的常数)。当 $\omega = \omega_0/3$

时,飞轮的角加速度大小 $\beta = \frac{K\omega_0^2/9J}{4J}$ 。从开始制动到 $\omega = \omega_0/3$ 所经过的时间 $t = \frac{2J/k\omega_0}{k\omega_0}$ $J\beta = -k\omega^2 \Rightarrow \beta = -\frac{k\omega_0^2}{9J}$ $J\omega = -k\omega^2 \Rightarrow dt = -\frac{J}{k\omega_0}$ $\Delta t = \frac{J}{k\omega_0}$ $\Delta t = \frac{J}{k\omega_0}$

4、(本小题 3 分) 质量为 m 的小孩站在半径为 R 的水平平台边缘上,平台可以绕通过其中 心的竖直光滑固定轴自由转动,转动惯量为 J ,平台和小孩开始时均静止。当小孩突然以 相对于平台为V的速率在台边沿逆时针转向走动时,则此平台相对地面旋转的角速度大小

平台十日、3差,食甘油旬幼营寺中夏 $0 = J\omega + (V + \omega R) mR \Rightarrow mVR + (5 + mR^2)\omega = 0$ $0 = -\frac{mVR}{J + mR^2}$

5、(本小题6分) 一质点作简谐振动, 速度最大值 $u_m = 2.0 \times 10^{-1} \,\mathrm{m/s}$, 振幅 $A = 6.0 \times 10^{-2} \,\mathrm{m}$,

则质点振动的角频率 $\omega = 0.3 \times 10^{-3}$ rad/s; 若从该质点速度为正的最大值时开始计时,质

3 $U_m = A\omega \not= \omega = \frac{U_m}{A} = \frac{2.0 \times 10^7}{B.0 \times 10^2} = 0.3 \times 10^1$ $V = -A\omega \sin(\omega t + \varphi)$ $\Rightarrow A\omega = -A\omega \sin\varphi \Rightarrow \sin\varphi = 1 \Rightarrow \varphi = -\frac{\pi}{2} \neq \frac{3}{2}\pi$ 点振动的初相位 $\varphi = -\overline{2}$ 表 3.3.3

6、(本小题 6 分) 一定量理想气体,从同一状态开始使其体积由 V_1 膨胀到 $2V_1$,分别经历

以下三种过程: (1) 等压过程; (2) 等温过程; (3)绝热过程。其中: 第1 (1) 过程气体对

子量 40) 三种气体分子的速率分布曲线。其中

曲线 (a) 是 氢 2 气分子的速率分布曲线;

我承诺,我将严 格遵守考试纪律。

承诺人: _____

题号	 1	2	3	4
得分				
批阅人(流水阅卷教师签名处)				

	8、(本小題 6 分) 设有 N 个分子,其速率分布函数为 $f(v) = \begin{cases} Cv & (0 \le v \le V_0) \\ 0 & (v > V_0) \end{cases}$,其中 V_0
	为已知量,则常数 C 为 $_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$
	率为 $2V_0/3$, 分子的方均根速率为 $52\sqrt{6}$ $V^2 = \frac{1}{2} CV_0^2 + 1$, $C = 2/V_0^2 + 1$ $V^2 = \frac{1}{2} CV_0^2 + 1$ $V^2 = \frac{1}{2} CV_0^$
	50°CVdV=C\(\frac{1}{2}\)V2=\(\frac{1}{2}\)V3=\(\frac{1}\)V3=\(\frac{1}{2}\)V3=\(\frac{1}{2}\)V3=\(\frac{1}{2}\)V3=\(\frac{1}{2}\)V3=\(\frac{1}{2}\)V3=\(\frac{1}{2}\)V3=\(\frac{1}{2}\)V3=\(\frac{1}{2}\)V3=\(\frac{1}{2}\)V3=\(\frac{1}{2}\)V3=\(\fra
V	$7 = \frac{1}{3} CV^{3} = \frac{1}{3} CV^{3} = \frac{1}{3} CV^{3} = \frac{1}{3} CV^{3} = \frac{1}{3} CV^{4} = \frac{1}{4} CV^{4} = $
	9、(本小题 6 分)两星之间的距离为 1.8×10 ¹⁰ 米,一飞船以 0.6c 的速度沿两星连线方向飞
	行。在星体上的观测者测得飞船掠过这两星间距所用的时间为_1005,飞船上的宇
	航员测得的时间为
	At= == 1005/ At= Y(At - == 4X)=V(== == 1)=V= (1-=== == 1-===== 1-==================
Ŀ	= AX = Y(AX + UAt') at = 1 (AX') = Y/ = 1/ = 1/ = 1/
	$= AX = V(AX' + UAt')$ $\xrightarrow{\text{at'}}$ $L = AX = V(AX') = VL' => L' = V^{-1}L = L = L = L = L = L = L = L = L = L =$
	积比 $V_1/V_2=1/3$,则其内能之比 E_1/E_1 为 $\sqrt{9}$
	$E = \frac{1}{2} V R T$, $O_2: i = 5$, V_2 $E_1 / E_2 = \frac{1}{3} \cdot \frac{V_1}{V_2} = \frac{5}{3} \cdot \frac{7}{3} = \frac{7}{7}$ $\frac{1}{3} \cdot \frac{1}{V_2} = \frac{5}{3} \cdot \frac{7}{2} = \frac{7}{3} = 7$
	$PV = VRT \Rightarrow V_1/V_2 = \sqrt{2}$ 11、(本小題 6 分)体积为 V 的容器内装有质量为 M ,摩尔质量为 M 的氦气,设容器以速度 V 作定向运动,今使容器突然停止,气体的定向运动机械能全部转化为分子热运动的动
	MUZ
	, while the cap
	h_mv/3/.
6	$\Sigma_{k} = \frac{3}{2} k_{B} T \Rightarrow \Delta E_{k} = \frac{13}{2} k_{B} \Delta T, \Delta E_{k} = \frac{1}{2} \frac{M}{N_{A}} U^{2} \Rightarrow \Delta T = \frac{2 \Delta \xi_{k}}{3} = \frac{2}{3} \frac{1}{k_{B}} \frac{1}{2} \frac{M}{N_{A}} U^{2}$
P	= nKBT => GP=nKBAT=NAM/M KBAT = MV2
	$= \frac{m}{N} \frac{R}{N} \frac{MV^2}{N} = \frac{mV^2}{3N}$

144 学 时 参 考 答 案

一、填空题

1、
$$\frac{u(\nu'-\nu)}{\nu'+\nu}$$
 (4分) B卷: $\frac{u(\nu-\nu_0)}{\nu+\nu_0}$

2、252J; 放出; ±294J(正负都正确)。 (2+2+2分) B卷: 262J; 放出; ±284J

3,
$$\beta = \frac{k\omega_0^2}{9J}$$
; $t = \frac{2J}{k\omega_0}$ (3+3/ $\dot{\gamma}$) $\beta = \frac{k\omega_0^2}{16J}$; $t = \frac{3J}{k\omega_0}$

4、
$$\omega = \frac{mVR}{J + mR^2}$$
 (3分) B卷: $\omega = \frac{mVr}{J + mr^2}$

6、等压过程; 等压过程; 等压过程 (2+2+2分)

7、氫; 氦 (2+2分) B卷; 氦; 氩

8、
$$\frac{2}{V_0^2}$$
; $\frac{2V_0}{3}$; $\frac{\sqrt{2}}{2}V_0$ (2+2+2分) B卷:

9、 100s; 80s; 1.44×10¹⁰m (2+2+2分) B卷: 200s; 160s; 2.88×10¹⁰m

10、
$$\frac{5}{9}$$
 (3分) B卷: $\frac{5}{12}$

11.
$$\Delta T = \frac{Mv^2}{3R}$$
; $\Delta p = \frac{mv^2}{3V}$ (3+3 $\frac{1}{2}$)

二、计算题

1、解:以B为研究对象

$$T_{B} - \frac{M}{4}g = \frac{M}{4}a_{B} \qquad 2$$

以A为研究对象

$$T_A - Mg = Ma_A$$
 2分

以滑轮为研究对象

$$T_4 R - T_R R = J\alpha$$
 25)

 $J=MR^{2}/4$

约束关系

$$a_R = R\alpha$$
 2分

$$a_A = a - a_B 2$$

解得:
$$a_B = \frac{1}{2}g + \frac{2}{3}a$$
 1分 $T_A = \frac{1}{2}Mg + \frac{1}{3}Ma$ 1分

2、解: (1)
$$y_B = 3 \times 10^{-2} \cos [4\pi t + \pi] \text{m}$$

$$y_B = 3 \times 10^{-2} \cos \left[4\pi (t - \frac{x}{20}) + \pi \right]$$
m 4 ½

(2)
$$y_D = 3 \times 10^{-2} \cos \left[4\pi t - \frac{9}{5}\pi \right] \text{m}$$
 4 \(\frac{4}{5}\)

$$(4) \quad \varphi_{B} - \varphi_{C} = -\frac{8}{5}\pi \qquad \qquad 2 \, \text{ }$$

3、解: (1) 物体初速度为ν_ο

$$E = \frac{1}{2}Mv_0^2$$

动量守恒定律

$$Mv_0 = \alpha Mv_1 \cos \theta + (1-\alpha)Mv_2 \cos \theta$$
 2 \Rightarrow

$$\alpha M v_1 \sin \theta = (1 - \alpha) M v_2 \sin \theta$$
 2 $\%$

$$v_1 = \frac{\sec \theta}{\alpha} \sqrt{\frac{E}{2M}}$$
 1 $\frac{1}{2}$

$$v_2 = \frac{\sec \theta}{1 - \alpha} \sqrt{\frac{E}{2M}}$$

(2)
$$E' = \frac{1}{2}\alpha M v_1^2 + \frac{1}{2}(1-\alpha)M v_2^2 = \frac{E\sec^2\theta}{4\alpha(1-\alpha)}$$
 3 $\frac{1}{2}$

$$\Delta E = E' - E = E \left[\frac{\sec^2 \theta}{4\alpha (1 - \alpha)} - 1 \right]$$
 1 \(\frac{\pi}{2}\)

$$\alpha = \frac{1}{2}$$
时, 1分 $\Delta E_{\text{min}} = E \tan \hat{\mathbf{n}} \theta$ 2分

4、解:(1)理想气体状态方程:

$$pV = \frac{m}{M}RT$$
 $V = \frac{m}{Mp}RT$
 $Tp^{-\frac{1}{2}} = 常数$ 2分

(3)
$$C = \frac{dQ}{dT} = \frac{dE + pdV}{dT} = C_{V,m} + \frac{pdV}{dT}$$
 2 \Re

由
$$p^{\frac{1}{2}}V =$$
常数 得 $2pdV + Vdp = 0$ 1 分 $-pdV = RdT$

$$C = C_{V,m} - R \qquad 2 \, \text{分}$$

注意: (3) 直接利用多方指数公式,结果正确得3分。

二、计算题(44分)

I、(本题12分)如图所示,轻绳绕过一半径为R的定滑轮,滑轮轴光滑,滑轮的质量为M/4,均匀分布在其边缘上,绳子A端有一质量为M的人抓住了绳端,而在绳的另一端B系了一质量为M/4的重物。已知滑轮对轴的转动惯量 $J=MR^2/4$,设人从静止开始相对绳以匀加速度a向上爬时,绳与滑轮间无相对滑动,求B端重物上升的加速度及人拉绳子的力。

- 2、(本题 10 分) 如图所示,x 轴上点 B 与 C 、 A 与 B 、 A 与 D 的间距分别为 8 m 、 5 m 和 9 m ,一平面简谐波以速度 u=20 m/s 沿 x 轴向右传播,点 A 的简谐振动方程为 $y_A=3\times10^{-2}\cos(4\pi t)$ m 。
- (1) 以 B 为坐标原点, 写出波动式;
- (2) 写出传播方向上点 D 的简谐振动方程;
- (3) 求B与C两点间振动的相位差 $\varphi_B \varphi_C$ 。

