

Contents

Introduction		3
1	Vertical spacing	5
2	Framing	19
3	Numbering	29
4	Combining formulas	31
5	Features	33
6	Tricks	39

Introduction

This manual is not a systematic discussion about math in ConTeXt but more a collection of wrap-ups. The file also serves as testcase. The content can change over time and can also serve as a trigger for discussions on the mailing list. Suggestions are welcome.

We discuss high level as well as low level commands. Some of the low level commands (primitives) are wrapped in high level commands but you can of course always revert to bare TEX.

I won't go into much detail about typesetting beautiful math, for that I refer to the TEXbook.¹

Hans Hagen Hasselt NL

The most beautiful math is not typeset by TEX anyway: just search on YouTube for "Mathematics" by Hollie McNish, the Metropole Orkest (conducted by Jules Buckley) and Martin Pyper.

1 Vertical spacing

The low level way to input inline math in T_EX is

$$$ e = mc^2 $$$

while display math can be entered like:

$$$$ e = mc^2 $$$$

The inline method is still valid, but for display math the \$\$ method should not be used. This has to do with the fact that we want to control spacing in a consistent way. In ConTeXt the vertical spacing model is rather stable although in MkIV the implementation is quite different. It has always been a challenge to let this mechanism work well with space round display formulas. This has to do with the fact that (in the kind of documents that we have to produce) interaction with already present spacing is somewhat tricky.

Of course much can be achieved in TEX but in ConTEXT we need to have control over the many mechanisms that can interact. Given the way TEX handles space around display math there is no real robust solution possible that gives visually consistent space in all cases so that is why we basically disable the existing spacing model. Disabling is easier in LuaTEX and recent versions of MkIV have been adapted to that.

In pure TEX what happens is this:

H_**X**

A horizontal box (visualized by the thin rule on its baseline) get added which triggers a baselineskip. Then the formula is put below it. We can get rid of that box with \noindent:

In addition (not shown here) vertical space is added before and after the formula and leftand rightskip on the edges. In fact typesetting display math goes like this:

 $_{\scriptscriptstyle \mathrm{H}}$

- typeset the formula using display mode and wrap it in a box
- add an equation number, if possible in the same line, otherwise on a line below
- in the process center the formula using the available display width and required display indentation
- add vertical space above and below (depending also in displays being short in relation to the previous line
- at the same time also add penalties that determine the break across pages

Apart from the spacing around the formula and the equation number, typesetting is not different from:

```
\hbox {$ \displaystyle x $}
```

So this is what we will use by default in ConTeXt in order to better control spacing as spacing around math is a sensitive issue. Because math itself can have a narrow band, for instance a lone x, or relative much depth, as with y, or both depth and height as in (1,2) and $x^2 + y_2$ and because a preceding line can have no or little depth and a following line little height, the visual appearance can become inconsistent. The default approach is to force consistent spacing, but when needed we can implement variants.

Spacing around display math is set up with \setupformulas:

```
\setupformulas
  [spacebefore=big,
    spaceafter=big]
```

When the whitespace is larger that setting wins because as usual the larger of blanks or whitespace wins.

In figures 1.1, figures 1.2 and 1.3 we see how things interact. We show lines with and without maximum line height and depth (enforced by struts) alongside.

Because we want to have control over the placement of the formula number but also want to be able to align the formula with the left or right edge of the text area, we don't use the native display handler by default. We still have a way to force this, but this is only for testing purposes. By default a formula is placed centered relative to the current text, including left and right margins.

```
\fakewords{20}{40}
\startitemize
\startitem
\fakewords{20}{40}
\placeformula
\startformula
\fakeformula
\stopformula
\stopformula
\stopitem
\startitem
\fakewords{20}{40}
\stopitem
\stopitem
\stopitem
```

\fakewords{20}{40}\epar

Figure 1.1 No whitespace.

Figure 1.2 Whitespace the same as display spacing.

Figure 1.3 Whitespace larger than display spacing.

In the next examples we explicitly align formulas to the left (flushleft), center (middle) and right (flushright):

\setupformulas[align=flushleft]
\startformula\fakeformula\stopformula
\setupformulas[align=middle]
\startformula\fakeformula\stopformula
\setupformulas[align=flushright]
\startformula\fakeformula\stopformula

The three cases show up as:

You can also set a left and/or right margin:

With formula numbers these formulas look as follows:

$$\blacksquare + \blacksquare + \blacksquare + \blacksquare + \blacksquare = \blacksquare \tag{1.2}$$

$$= + = + = + = + = + = = = =$$
 (1.3)

$$+ + + + + = = (1.4)$$

and the same with margins:

$$= + = + = + = + = = =$$
 (1.5)

$$\blacksquare + \blacksquare + \blacksquare + \blacksquare = \blacksquare \tag{1.6}$$

$$\blacksquare + \blacksquare + \blacksquare + \blacksquare + \blacksquare = \blacksquare (1.7)$$

When the margin option is set to standard or yes the current indentation (when set) or left skip is added to the left side.

\setupformulas[align=flushleft]
\startformula \fakeformula \stopformula
\placeformula \startformula \fakeformula \stopformula

$$\blacksquare + \blacksquare + \blacksquare + \blacksquare = \blacksquare$$

$$\blacksquare + \blacksquare + \blacksquare + \blacksquare = \blacksquare$$
(1.8)

\setupformulas[align=flushleft,margin=standard] \startformula \fakeformula \stopformula \placeformula \startformula \fakeformula \stopformula

The distance between the formula and the number is only applied when the formula is left or right aligned.

\setupformulas[align=flushright,distance=0pt] \startformula \fakeformula \stopformula \placeformula \startformula \fakeformula \stopformula

\setupformulas[align=flushright,distance=2em] \startformula \fakeformula \stopformula \placeformula \startformula \fakeformula \stopformula

1.1 Scripts

Spacing is a trade off because there is no way to predict all usage. Of course a font can be very detailed in where italic correction is to be applied and how advanced stepwise kerns are used, but not many fonts have extensive information. Here are some differences in rendering. In OpenType the super- and subscript of an integral are moved right and left half of the italic correction.

$$F_j = \int_a^b F_j = \int_a^b$$

Latin Pagella Dejavu Cam- Lucida Xits
Mod- bria OT

1.2 Bad fonts

There might be fonts out there where the italic correction is supposed to be added to the width of a glyph. In that case the following trick can be tried:

\definefontfeature[mathextra][italicwidths=yes] % fix latin modern

in which case the following might look better:

Of course better is to fix the font.

1.3 Multiline

Inline formulas can span lines but display math normally sits on one line unless one uses alignment mechanisms. Take this:

$$x + 1x^{1x} + 2x^{2x} + 3x^{3x} + 4x^{4x} + 5x^{5x} + 6x^{6x} + 7x^{7x} + 8x^{8x} + 9x^{9x} + 10x^{10x} + 11x^{11x} + 12x^{12x} + 13x^{13x} + 12x^{12x} + 12x^{12x} + 13x^{13x} + 12x^{12x} + 12x^{1$$

You can set split to yes using \setupformula and get the following:

$$x + 1x^{1x} + 2x^{2x} + 3x^{3x} + 4x^{4x} + 5x^{5x} + 6x^{6x} + 7x^{7x} + 8x^{8x} + 9x^{9x} + 10x^{10x} + 11x^{11x} + 12x^{12x} + 13x^{13x} + 14x^{14x} + 15x^{15x} + 16x^{16x} + 17x^{17x} + 18x^{18x} + 19x^{19x} + 20x^{20x} + 21x^{21x} + 22x^{22x} + 23x^{23x} + 24x^{24x} + 25x^{25x} + 26x^{26x} + 27x^{27x} + 28x^{28x} + 29x^{29x} + 30x^{30x} = 10$$

Maybe nicer is to also set align to flushleft:

$$x + 1x^{1x} + 2x^{2x} + 3x^{3x} + 4x^{4x} + 5x^{5x} + 6x^{6x} + 7x^{7x} + 8x^{8x} + 9x^{9x} + 10x^{10x} + 11x^{11x} + 12x^{12x} + 13x^{13x} + 14x^{14x} + 15x^{15x} + 16x^{16x} + 17x^{17x} + 18x^{18x} + 19x^{19x} + 20x^{20x} + 21x^{21x} + 22x^{22x} + 23x^{23x} + 24x^{24x} + 25x^{25x} + 26x^{26x} + 27x^{27x} + 28x^{28x} + 29x^{29x} + 30x^{30x} = 10$$

There is an experimental alignment mechanism available. Watch the following examples:

before

```
\startformula
z + 3y = \alignhere x
      \dorecurse{20}{ + #1x^{#1x}}
```

```
\stopformula
  inbetween
                               \startformula
                                                             z + 3y \land alignhere = 1
                                                                                                                 \dorecurse{4}{
                                                                                                                                                       \dorecurse{#1}{+ #1x^{##1x}}
                                                                                                                                                       \ifnum#1<4\breakhere\fi
                                                                                                                 }
                               \stopformula
 after
 \setupformula
                  [split=no]
before
z + 3y = x + 1x^{1x} + 2x^{2x} + 3x^{3x} + 4x^{4x} + 5x^{5x} + 6x^{6x} + 7x^{7x} + 8x^{8x} + 9x^{9x} + 10x^{10x} + 11x^{11x} + 12x^{12x} + 10x^{10x} + 10x^{10x}
inbetween
                                z + 3y = 1 + 1x^{1x} + 2x^{1x} + 2x^{2x} + 3x^{1x} + 3x^{2x} + 3x^{3x} + 4x^{1x} + 4x^{2x} + 4x^{3x} + 4x^{4x}
after
 \setupformula
                  [split=yes,
                       align=flushleft]
before
z + 3y = x + 1x^{1x} + 2x^{2x} + 3x^{3x} + 4x^{4x} + 5x^{5x} + 6x^{6x} + 7x^{7x} + 8x^{8x} + 9x^{9x} + 10x^{10x} + 11x^{11x} + 2x^{10x} + 10x^{10x} + 11x^{11x} + 10x^{10x} 
12x^{12x} + 13x^{13x} + 14x^{14x} + 15x^{15x} + 16x^{16x} + 17x^{17x} + 18x^{18x} + 19x^{19x} + 20x^{20x}
inbetween
z + 3y = 1 + 1x^{1x}
  +2x^{1x}+2x^{2x}
  +3x^{1x}+3x^{2x}+3x^{3x}
 +4x^{1x}+4x^{2x}+4x^{3x}+4x^{4x}
after
 \setupformula
                  [split=yes,
                        align=flushleft,
                      hang=auto]
```

before

$$z + 3y = x + 1x^{1x} + 2x^{2x} + 3x^{3x} + 4x^{4x} + 5x^{5x} + 6x^{6x} + 7x^{7x} + 8x^{8x} + 9x^{9x} + 10x^{10x} + 11x^{11x} + 12x^{12x} + 13x^{13x} + 14x^{14x} + 15x^{15x} + 16x^{16x} + 17x^{17x} + 18x^{18x} + 19x^{19x} + 20x^{20x}$$

inbetween

$$z + 3y = 1 + 1x^{1x}$$

$$+ 2x^{1x} + 2x^{2x}$$

$$+ 3x^{1x} + 3x^{2x} + 3x^{3x}$$

$$+ 4x^{1x} + 4x^{2x} + 4x^{3x} + 4x^{4x}$$

after

```
\setupformula
  [split=yes,
  align=flushleft,
  hang=auto,
  distance=1em]
```

before

$$z + 3y = x + 1x^{1x} + 2x^{2x} + 3x^{3x} + 4x^{4x} + 5x^{5x} + 6x^{6x} + 7x^{7x} + 8x^{8x} + 9x^{9x} + 10x^{10x} + 11x^{11x} + 12x^{12x} + 13x^{13x} + 14x^{14x} + 15x^{15x} + 16x^{16x} + 17x^{17x} + 18x^{18x} + 19x^{19x} + 20x^{20x}$$

inbetween

$$z + 3y = 1 + 1x^{1x}$$

$$+ 2x^{1x} + 2x^{2x}$$

$$+ 3x^{1x} + 3x^{2x} + 3x^{3x}$$

$$+ 4x^{1x} + 4x^{2x} + 4x^{3x} + 4x^{4x}$$

after

```
\setupformula
  [split=yes,
   align=flushleft,
  hang=yes,
  distance=2em]
```

before

$$z + 3y = x + 1x^{1x} + 2x^{2x} + 3x^{3x} + 4x^{4x} + 5x^{5x} + 6x^{6x} + 7x^{7x} + 8x^{8x} + 9x^{9x} + 10x^{10x} + 11x^{11x} + 12x^{12x} + 13x^{13x} + 14x^{14x} + 15x^{15x} + 16x^{16x} + 17x^{17x} + 18x^{18x} + 19x^{19x} + 20x^{20x}$$

inbetween

$$z + 3y = 1 + 1x^{1x}$$

$$+ 2x^{1x} + 2x^{2x}$$

$$+ 3x^{1x} + 3x^{2x} + 3x^{3x}$$

$$+ 4x^{1x} + 4x^{2x} + 4x^{3x} + 4x^{4x}$$

after

```
\setupformula
  [split=yes,
   align=flushleft,
   hang=yes,
   distance=2em,
   interlinespace=1.5\lineheight]
```

before

$$z + 3y = x + 1x^{1x} + 2x^{2x} + 3x^{3x} + 4x^{4x} + 5x^{5x} + 6x^{6x} + 7x^{7x} + 8x^{8x} + 9x^{9x} + 10x^{10x} + 11x^{11x} + 12x^{12x} + 13x^{13x} + 14x^{14x} + 15x^{15x} + 16x^{16x} + 17x^{17x} + 18x^{18x} + 19x^{19x} + 20x^{20x}$$

inbetween

$$z + 3y = 1 + 1x^{1x}$$

$$+ 2x^{1x} + 2x^{2x}$$

$$+ 3x^{1x} + 3x^{2x} + 3x^{3x}$$

$$+ 4x^{1x} + 4x^{2x} + 4x^{3x} + 4x^{4x}$$

after

If you want to split over pages, you can say:

```
\setupformula
[split=page,
align=middle]
```

but that is rather experimental (especially in combination with other number placement related options).

1.4 Scripts

Superscripts and subscripts are typeset in a smaller size than their nucleus. You can influence that as follows:

```
x^{2} = x^{\text{textstyle 2}}
```

```
= x^{\scriptstyle 2}
= x^{\scriptscriptstyle 2}
\stopformula
```

$$x^2 = x^2 = x^2 = x^2$$

You can also use macros instead of a ^ and _, as in:

```
\startformula
x \superscript {2} =
x \superscript {\textstyle 2} =
x \superscript {\scriptstyle 2} =
x \superscript {\scriptscriptstyle 2} =
x \nosuperscript {2}
\stopformula
```

$$x^2 = x^2 = x^2 = x^2 = x^2$$

The \nosuperscript primitive makes sure that we get the same size as the nucleus.

```
\startformula
x \superscript {2} \subscript {i} =
x \nosuperscript {2} \subscript {i} =
x \superscript {2} \nosubscript {i} =
x \nosuperscript {2} \nosubscript {i}
```

\stopformula \nosuperscript \{2\} \nos

2 2 2

$$x_i^2 = x_i^2 = x_i^2 = x_i^2$$

1.5 Text accents

You can put an accent over a character:

```
$\grave{x} \neq \grave{i}$\quad
$\ddot {x} \neq \ddot {i}$\quad
$\bar {x} \neq \bar {i}$\quad
$\acute{x} \neq \acute{i}$\quad
$\hat {x} \neq \hat {i}$\quad
$\check{x} \neq \check{i}$\quad
$\check{x} \neq \check{i}$\quad
$\breve{x} \neq \breve{i}$\quad
$\dot {x} \neq \dot {i}$\quad
$\ring {x} \neq \ring {i}$\quad
$\tilde{x} \neq \tilde{i}$\quad
$\tilde{x} \neq \tilde{i}$\quad
$\ddot{x} \neq \ddot{i}$\quad
$\ddot{x} \neq \ddot{i}$\quad
$\ddot{x} \neq \ddot{i}$\quad
```

This comes out as: $\hat{x} \neq \hat{i}$ $\ddot{x} \neq \ddot{i}$ $\ddot{x} \neq \bar{i}$ $\dot{x} \neq \hat{i}$ $\ddot{x} \neq \hat{$

1.6 Directions

Math has its own direction control:

```
\startcombination[nx=4,ny=2,distance=1cm]
{\MathTest{TLT}{TLT}} {\MathShow1{TLT}{TLT}}{TLT}}
{\MathTest{TLT}{TLT}} {\MathShow2{TLT}{TLT}}{TRT}}
{\MathTest{TLT}{TRT}} {\MathShow3{TLT}{TRT}}{TRT}}
{\MathTest{TLT}{TRT}} {\MathShow4{TLT}{TRT}}{TRT}}
{\MathTest{TRT}{TLT}} {\MathShow4{TLT}{TRT}}{TLT}}
{\MathTest{TRT}{TLT}} {\MathShow5{TRT}{TLT}{TLT}}
{\MathTest{TRT}{TLT}}{TRT}} {\MathShow6{TRT}{TLT}{TRT}}
{\MathTest{TRT}{TRT}} {\MathShow7{TRT}{TRT}}{TRT}}
{\MathTest{TRT}{TRT}} {\MathShow8{TRT}{TRT}}{TRT}}
}
```

Normally you will not control directions this way but use the proper parameters in layout related setup commands.

1.7 Surround

The spacing around inline formulas is consistent with other spacing but it can be enlarged. We just show a few examples:

```
\hsize 20em
We have
\dorecurse {8} {%
    \ifcase#1\or\else and \fi
    $x+#1$ and $x-#1$ and $x \times #1$}
\removeunwantedspaces .
\par

We have x + 1 and x - 1 and x \times 1 and x + 2 and x - 2 and x \times 2 and x + 3 and x - 3 and x \times 3 and x + 4 and x - 4 and x \times 4 and x + 5 and x - 5 and x \times 5 and x + 6 and x - 6 and
```

 $x \times 6$ and x + 7 and x - 7 and $x \times 7$ and x + 8 and x - 8 and $x \times 8$.

\setupmathematics

[textdistance=2pt plus 1pt minus 1pt]

We have x + 1 and x - 1 and $x \times 1$ and x + 2 and x - 2 and $x \times 2$ and x + 3 and x - 3 and $x \times 3$ and x + 4 and x - 4 and $x \times 4$ and x + 5 and x - 5 and $x \times 5$ and x + 6 and x - 6 and $x \times 6$ and x + 7 and x - 7 and $x \times 7$ and x + 8 and x - 8 and $x \times 8$.

\setupmathematics

[textdistance=4pt plus 2pt minus 2pt]

We have x+1 and x-1 and $x\times 1$ and x+2 and x-2 and $x\times 2$ and x+3 and x-3 and $x\times 3$ and x+4 and x-4 and $x\times 4$ and x+5 and x-5 and $x\times 5$ and x+6 and $x\times 6$ and $x\times 7$ and $x\times 8$.

2 Framing

The \framed macro is one of the core constructors in ConTeXt and it's used all over the place. This macro is unlikely to change its behaviour and as it has evolved over years it comes with quite some options and some can interfere with the expectations one has. In general using this macro works out well but you need to keep an eye on using struts and alignment.

```
\framed{$e=mc^2$}
```

The outcome of this is:

$$e = mc^2$$

There is a bit of offset (that you can set) but also struts are added as can be seen when we visualize them:

$$e = mc^2$$

These struts can be disabled:

```
\framed[strut=no]{$e=mc^2$}
```

Now the result is more tight.

$$e = mc^2$$

These struts are the way to get a consistent look and feel and are used frequently in ConTEXT. We mention these struts because they get in the way when we frame a display formula. Let's first look at what happens when we just package a formula in a box:

```
\vbox\bgroup
  \startformula
    e = mc^2
  \stopformula
\egroup
```

We get:

Now there are a few properties of displaymath that one needs to keep in mind when messing around with them this way. First of all display math is meant to be used as part of the page stream. This means that spacing above and below is adapted to what comes before and after. It also means that, because formulas can be numbered, we have some settings that relate to horizontal placement.

The default vertical spacing is easy to get rid of:

```
\vbox\bgroup
\startformula[packed]
```

```
e = mc^2
    \stopformula
\egroup
This gives:
                                    e = mc^2
Another handy keyword is tight:
\vbox\bgroup
    \startformula[tight]
        e = mc^2
    \stopformula
\egroup
This gives:
  =mc^2
We can combine these two:
\vbox\bgroup
    \startformula[packed,tight]
         e = mc^2
    \stopformula
\egroup
```

Just in case you wonder why we need to go through these troubles: keep in mind that we are wrapping something (math) that normally goes in a vertical list with text above and below.

The packed and tight options can help when we want to wrap a formula in a frame:

```
\framed
    [strut=no]
    {
        \startformula[packed,tight]
        e = mc^2
        \stopformula
}
```

which renders as:

```
e = mc^2
```

This gives:

 $e = mc^2$

There is a dedicated math framed instance that is tuned to give better results and automatically switches to math mode:

```
\mframed {
    e = mc^2
}
becomes:
e = mc^2
```

Framing a formula is also supported as a option, where the full power of framed can be applied to the formula. We will illustrate this in detail on the next pages. For this we use the following sample:

\setuplayout[topspace=5mm,bottomspace=5mm,height=middle,header=1cm,footer=0cm]

\starttext

```
\startbuffer[sample]
    \enabletrackers[formulas.framed] \showboxes
    \startformula
        e = mc^2
    \stopformula
    \par
    \startformula
        e = mc^2
    \stopformula
    \startformula
        e = mc^2
    \stopformula
    \startformula
        e \dorecurse\{12\} { = mc^2 }
    \stopformula
    \startplaceformula
        \startformula
            e = mc^2
        \stopformula
    \stopplaceformula
    \startplaceformula
        \startformula
            e \dorecurse{12} { = mc^2 }
        \stopformula
    \stopplaceformula
\stopbuffer
```

```
\startbuffer[setup-b]
\setupformula
  [option=frame]
\stopbuffer
\startbuffer[setup-d]
\setupformulaframed
  [frame=on,
 %toffset=10pt,
 %boffset=10pt,
   foregroundcolor=white,
   background=color,
   backgroundcolor=gray]
\stopbuffer
\startbuffer[setup-c]
\setupformula
  [frame=number]
\stopbuffer
\startbuffer[all]
\start
    \typebuffer[setup-a]
    \getbuffer[setup-a]
    \getbuffer[sample]
    \typebuffer[setup-b]
    \typebuffer[setup-d]
    \getbuffer[setup-b]
    \getbuffer[setup-d]
    \getbuffer[sample]
    \typebuffer[setup-c]
    \getbuffer[setup-c]
    \getbuffer[sample]
    \page
\stop
\stopbuffer
\startbuffer
    \startbuffer[setup-a]
    \setupformula
      [align=flushleft]
    \stopbuffer
    \getbuffer[all]
    \startbuffer[setup-a]
    \setupformula
```

```
\stopbuffer
    \getbuffer[all]
    \startbuffer[setup-a]
    \setupformula
      [align=middle]
    \stopbuffer
    \getbuffer[all]
    \startbuffer[setup-a]
    \setupformula
      [align=middle,location=left]
    \stopbuffer
    \getbuffer[all]
    \startbuffer[setup-a]
    \setupformula
      [align=flushright]
    \stopbuffer
    \getbuffer[all]
    \startbuffer[setup-a]
    \setupformula
      [align=flushright,location=left]
    \stopbuffer
    \getbuffer[all]
\stopbuffer
\getbuffer
\startbuffer[setup-b]
\setupformula
  [option={tight,frame}]
\stopbuffer
\getbuffer
\stoptext
```

[align=flushleft,location=left]

In figure 2.1, 2.2 and 2.3 you see some combinations. You can run this example on your machine and see the details.

With each formula class a framed variants is automatically created:

```
\defineformula [foo]
```


right + flushleft

right + flushleft

left + flushleft + tight

left + flushleft + tight

Figure 2.1 Framed formulas flushed left.

right + middle

right + middle

left + middle + tight

left + middle + tight

Figure 2.2 Framed formulas centered.

| Setupformula | Setu

right + flushright

right + flushright

left + flushright + tight

left + flushright + tight

Figure 2.3 Framed formulas flushed right.

```
\setupformulaframed
  [foo]
  [frame=on,
    framecolor=red]

\startfooformula[frame]
    e=mc^2
\stopfooformula
```

This time you get a red frame:

```
e = mc^2
```

You can also frame the number, as in:

```
\setupformulaframed[framecolor=red,frame=on,offset=1ex]
\setupformula[option=frame,color=blue]
\setupformula[numbercommand={\inframed[framecolor=green]}]
```

```
\startplaceformula \startformula \ 2 + 2 = 2x \stopformula \stopplaceformula
```

The boxes get properly aligned:

3 Numbering

\startplaceformula[d] \startformula (5)

Numbering equations can be a bit of a mess. Formuals can be unnumbers, numbered, numbered with an associated reference. Numbers can go on the while formula and on the rows in an alignment. Combine that with positioning left or right and left or righ taligned formulas and the picture gets complicated. When something turns out wrong, just let me know and the respective branch in the code can be adapted. Here are some examples:

```
\startplaceformula[a]
    \startformula
        (1)
    \stopformula
\stopplaceformula
                                     (1)
                                                                         (3.1)
\startplaceformula[b]
    \startformula
        \startalignment
            \NC 1 \NC =
                              \NR
            \NC 2 \NC = (2) \NR
            \NC 3 \NC =
                              \NR
        \stopalignment
    \stopformula
\stopplaceformula
                                   1 =
                                                                         (3.2)
                                   2 = (2)
                                   3 =
\startplaceformula[c]
    \startformula
        \startalignment
            \NC 1 \NC = (3) \NR[x]
            \NC 2 \NC =
                             \NR.
            \NC 3 \NC = (4) \NR[y]
        \stopalignment
    \stopformula
\stopplaceformula
                                   1 = (3)
                                                                         (3.3)
                                   2 =
```

3 = (4)

(3.4)

\stopplaceformula \stopplaceformula (5) (3.5) \startplaceformula[e]

\startplaceformula[e]
\startformula
(6)
\stoppformula
\stopplaceformula

(6)

4 Combining formulas

Multiple formulas can be combined by wrapping them:

```
fakewords{20}{30}
\startformula
   a + b = c
\stopformula
fakewords{20}{30}
\startformulas
    \startformula
       a + b = c
    \stopformula
    \startformula
       d - e = f
    \stopformula
\stopformulas
fakewords{20}{30}
\startformulas
    \startformula
        \frac{x}{y}}{b} = c
    \stopformula
    \startformula
       d - e = f
    \stopformula
\stopformulas
fakewords{20}{30}
```

When we bump the space around formulas to big we get this:

The formulas get aligned on the baselline which in turn relates to the math axis of the formula.

5 Features

5.1 Default features

Math fonts are loaded in so called basemode, which gives them a traditional treatment in the engine. However, we do support features in basemode too, so setting them can influence what gets passed to TeX. Also, in math mode, some font features (like dtls and stylistic alternates) are applied dynamically.

The default mathematics feature set is as follows:

kern yes
language dflt
mathalternates yes
mathdimensions all
mathitalics yes
mathnolimitsmode 0,800
mode base
script math

We don't discuss the exact meaning of these options here because normally you don't have to deal with them. If a math font demands something special, the place to deal with it is the related font goodie file.

This feature set is the parent of two other sets: mathematics-12r and mathematics-r21:

kern yes
language dflt
mathalternates yes
mathdimensions all
mathitalics yes
mathnolimitsmode 0,800
mode base
script math

This one is the same as the parent but the right-to-left variant is different:

kern yes language dflt locl yes mathalternates yes mathdimensions all mathitalics yes mathnolimitsmode 0,800 mode base rtlm yes script math

Eventually we need size related feature sets and again we define a parent and direction specific ones: math-text, math-script and math-scriptscript.

34

kern yes language dflt mathalternates yes mathdimensions all mathitalics yes 0,800 mathnolimitsmode mode base script math ssty no

kern yes language dflt mathalternates yes mathdimensions all mathitalics yes mathnolimitsmode 0,800 mathsize yes mode base script math ssty 1

kern yes language dflt mathalternates yes mathdimensions all mathitalics yes 0,800 mathnolimitsmode mathsize yes modebase math script 2 ssty

The left-to-right sets math-*-12r are:

kern yes language dflt mathalternates yes mathdimensions all mathitalics yes mathnolimitsmode 0,800 mode base script math ssty no

kern yes language dflt

35

mathalternates yes mathdimensions all mathitalics yes 0,800 mathnolimitsmode mathsize yes mode base script math 1 ssty

kern yes dflt language mathalternates yes mathdimensions all mathitalics yes mathnolimitsmode 0,800 mathsize yes mode base script math 2 ssty

The right-to-left sets math-*-r21 are:

kern yes language dflt locl yes mathalternates yes mathdimensions all mathitalics yes mathnolimitsmode 0,800 mode base rtlm yes script math ssty no

kern yes language dflt locl yes mathalternates yes mathdimensions all mathitalics yes mathnolimitsmode 0,800 mathsize yes mode base rtlm yes script math 1 ssty

kern yes language dflt locl yes mathalternates yes mathdimensions all mathitalics yes mathnolimitsmode 0,800 mathsize yes mode base rtlm yes script math ssty

There are a few extra sets defined but these are meant for testing or virtual math fonts. The reason for showing these sets is to make clear that the number of features is minimal and that math is a real script indeed.

The kern features is questionable. In traditional TEX there are kerns indeed but in OpenType math kerns are not used that way because a more advanced kerning feature is present (and that one is currently always enabled). We used to set the following but these make no sense.

```
liga=yes, % (traditional) ligatures
tlig=yes, % tex ligatures, like -- and ---
trep=yes, % tex replacements, like the ' quote
```

Math fonts normally have no ligatures and supporting the TEX specific ones can actually be annoying. So, in todays ConTEXT these are no longer enabled. Just consider the following:

```
$- \kernOpt - \kern Opt \mathchar"2D$
$- \kernOpt -- \kern Opt \mathchar"2D \mathchar"2D$
$- \kernOpt --- \kern Opt \mathchar"2D \mathchar"2D \mathchar"2D$
```

The - is mapped onto a minus sign and therefore several in succession become multiple minus signs. The \mathchar"2D will remain the character with that slot in the font so there we will see a hyphen. If we would enable the tlig feature several such characters would be combined into an endash or emdash. So how do we get these than? Because getting a hyphen directly involves a command, the same is true for its longer relatives: \endash and \emdash.

– – -– – –--– – – – ---

As convenience we have defined a special \mathhyphen command. Watch the fact that a text hyphen in math mode is a minus in math! As comparison we also show the plus sign.

command	math	text
\mathhyphen	-	-
\texthyphen	_	-
-	_	-
+	+	+
\endash	_	_
\emdash		_

5.2 Stylistic alternates

todo

5.3 Dotless variants

todo

6 Tricks

6.1 Introduction

Math support in ConTeXt is wrapped around basic TeX primitives and unfortunately not all we want is easy to configure. This is not surprising because the original ideas behind TeX are that one makes a style per book and a one macro package 'we-can-do-it-all' approach is not what Don Knuth had in mind at that time.

So, for instance support for configurable spacing per math element, coloring of specific (sub) elements, simple switching of whatever combination of alignments and number placement, these all take quite a bit of code and hackery.

Even configuring something seemingly trivial as fractions or top, bottom, left, middle and right fences take some effort. This is because the engine uses information from fonts to combine shapes and paste the content and ornaments to together.

For that reason already in MkII but more extensively in MkIV we did a lot of these things in wrapper macros. When the math renderer was finalized for OpenType math some extra control was added that can make these things easier. However, because we go a bit beyond what is possible using this new functionality these new mechanisms are not yet used in MkIV, but they might be eventually. Here we just show some of the (newer) low level trickery. For details about what was already possible in pure TEX, we refer to the ultimate references: the TEXbook (by Donald Knuth) and TEX by Topic (by Victor Eijkhout).

6.2 Kerning

Kerning in OpenType math is not the same as in traditional TEX: instead of a single value, we have staircase kerns, that is, depending on the location (left or right) and the vertical position, at discrete distances between depth and height. In addition there is italic correction but that is only applied in certain cases, one of which is the script location.

Unfortunately not all fonts follow the same route. Some fonts have a true width and a moderate italic correction is added to it (of at all), while other fonts lie about the width and depend on an excessive italic correction to compensate for that.

I will not discuss the details because when a font gets updated, it might look better or worse. These fonts were loaded with the following directive set:

\enabledirectives[fontgoodies.mathkerning]

An example of a fontgoodie that fixed the kerning is pagella-math.lfg. Here is the relevant bit:

```
local kern_200 = { bottomright = { { kern = -200 } } } }
local kern_100 = { bottomright = { { kern = -100 } } } }
return {
    .....
    mathematics = {
        .....
    kerns = {
            [0x1D449] = kern_200, --
            [0x1D44A] = kern_100, --
        },
        .....
}
```

This fixes the real bad kerning of Pagella Math which at least in 2017 was not (yet) fixed. When the fonts are frozen we can start makling permanent runtime fixes like this.

6.3 Primes

Primes are a pain in the butt. The reason for this is that they are independent characters on the one hand but can be seen as a superscript on the other. Let's first look at the symbols at the three sizes that are used in math.

```
$
    {\textstyle
                       \char"2032}
    {\scriptstyle
                       \char"2032}
    {\scriptscriptstyle\char"2032}
\quad
    {\textstyle
                       \char"FE931}
    {\scriptstyle
                       \char"FE931}
    {\scriptscriptstyle\char"FE931}
\quad
    {\textstyle
                       \char"FE932}
    {\scriptstyle
                       \char"FE932}
    {\scriptscriptstyle\char"FE932}
$
```

We blow up the characters a bit and get this:

The first set is the normal prime character scaled to the text, script and scriptscriptsize. The second set shows the characters (at three sizes) as they are in the font. The largest character is raised while the other two are closer to the baseline. In some fonts the smaller sizes arenot smaller at all. The last set is a variant of the the first set but we made them into virtual characters with a displacement and different dimensions. Those are the ones we use as primes.

Next we show how primes show up in real math. The examples explain themselves.

```
{\textstyle f = g} \quad
{\scriptstyle f = g} \quad
{\scriptscriptstyle f = g}
```

$$f = g$$
 $f = g$

$$f_i' = g_i'$$
 $f_i' = g_i'$ $f_i' = g_i'$

$$f'(0) = g'(0)$$
 $f'(0) = g'(0)$ $f'(0) = g'(0)$

{\textstyle
$$f'(0) = g'(0)$$
} \quad {\scriptstyle $f'(0) = g'(0)$ } \quad {\scriptscriptstyle $f'(0) = g'(0)$ }

$$f'(0) = g'(0)$$
 $f'(0) = g'(0)$ $f'(0) = g'(0)$

The prime analyzer can deal with sizes, subscripts but also converts a sequence of upright quotes into one unicode symbol. So,

becomes:

$$f_i'' \neq f_i''' \neq f_i'''' \neq f_i''''$$

6.4 Radicals

Sometimes users complain about the look of a radical symbol. This is however a matter of design. Some fonts let the shape start more below the baseline than others. Soem go more straight up than relatives in another font. When largers sizes are needed, some fonts offer smaller than others. Just look at the different desings:

The automatic scaling doesn't always work out as expected but on the average is okay. Keep in mind that often the content is not that extreme.

In Lucida (the version at the time of writing this) we have to correct the threshold a bit in the goodie file:

```
local function FixRadicalDisplayStyleVerticalGap(value,target,original)
  local o = original.mathparameters.RadicalVerticalGap -- 50
  return 2 * o * target.parameters.factor
end

return {
    .....
    mathematics = {
        .....
    parameters = {
            RadicalDisplayStyleVerticalGap =
                FixRadicalDisplayStyleVerticalGap,
        },
        .....
```

```
},
}
```

6.5 Integrals

A curious exception in the math system is the integral sign. Its companions are the summation and product signs, but integral has as extra property that it has a slant. In LuaTeX there is rather advanced control over how the (optional) scripts are positioned (which relates to italic correction) but in ConTeXT we only make limited use of that. The main reason is that we also need to support additional features like color. Therefore integrals are handled by the extensible mechanism.

The size of an integral is more of less fixed but you can enlarge to your liking. One reason for this is that you might want a consistent size across formulas. Let's use the following setup:

```
\setupmathextensible
  [integral]
  [rightoffset=-1mu,
   exact=yes,
  factor=2]
```

\let\int\integral

We use the following exmaple:

\$\integral	f\frac{1}{2}	\$}
<pre>\$\integral[rightoffset=3mu]</pre>	f\frac{1}{2}	\$}
\$\integral[exact=no]	f\frac{1}{2}	\$}
\$\integral	$f\frac{1}{2}}{x}$	\$}
\$\integral[exact=no]	$f\frac{1}{2}}{x}$	\$}
\$\integral[factor=1]	f\frac{1}{2}	\$}
\$\integral[factor=3]	$f\frac{1}{2}}{x}$	\$}
\$\integral[factor=3]	f\frac{1}{2}	\$}
\$\int	f\frac{1}{2}	\$}% bonus

This renders as:

6.6 Fancy fences

Here I only show an example of fences drawn by MetaPost. For the implementation you can consult the library file meta-imp-mat.mkiv in the ConTeXt distribution.

\useMPlibrary[mat]

\setupmathstackers
 [both] % vfenced]
 [color=darkred,
 alternative=mp]

\setupmathstackers
[top]
[color=darkred,
alternative=mp]

\setupmathstackers
[bottom]
[color=darkred,
alternative=mp]

We keep the demo simple:

\$ \overbracket ${a+b+c+d} \setminus quad$ \underbracket ${a+b+c+d} \setminus quad$ \doublebracket ${a+b+c+d} \setminus quad$ ${a+b+c+d} \setminus quad$ \overparent \underparent ${a+b+c+d} \setminus quad$ ${a+b+c+d}$ \blank \doubleparent ${a+b+c+d} \setminus quad$ \$ \overbrace \underbrace ${a+b+c+d} \setminus quad$ \doublebrace ${a+b+c+d} \setminus quad$ \overbar ${a+b+c+d} \setminus quad$ ${a+b+c+d} \setminus quad$ \underbar \doublebar {a+b+c+d} \$ \blank \$ \overleftarrow ${a+b+c+d} \setminus quad$ \overrightarrow ${a+b+c+d} \setminus quad$ \underleftarrow ${a+b+c+d} \setminus quad$ \underrightarrow {a+b+c+d} \$ \blank

Or visualized:

$$a+b+c+d$$
 $a+b+c+d$ $a+b+c+d$