Integration using Monte Carlo

1.
$$\int_{0}^{1} 3x^{2} dx$$

1) Plot of Integral vs No. of points

2) Integral for 20 points over 100 trials

The standard deviation was **0.1777**

3) Integral for 1000 points over 100 trials

The standard deviation was 0.0296

4) Plot of standard deviation vs 1/sqrt(N) (N is number of points)

We see that the trend is fairly linear, especially for higher N (lower 1/sqrt(N)).

Therefore, standard deviation is inversely proportional to sqrt(N).

$$2. \int_{0}^{1} \int_{0}^{1} x^{2} y \, dx dy$$

1) Plot of Integral vs No. of points

2) Integral for 20 points over 100 trials

The standard deviation was 0.0476

3) Integral for 1000 points over 100 trials

The standard deviation was 0.0068

4) Plot of standard deviation vs 1/sqrt(N) (N is the number of points)

Again, the trend appears linear and the linearity is more pronounced for higher values of N (lower 1/sqrt(N)).

Therefore, standard deviation is inversely proportional to sqrt(N).