Encoding Hard String Problems with Answer Set Programming

Dominik Köppl

Uni Muenster, Germany

warning:

Although I mostly work on theoretical stuff, we here get actual code to run!

problem setting

- only a tiny fraction of problems are efficiently solvable
- infinitely many problems are NP-hard (NP-hard is closed under union/intersection/concatenation)
- but sometimes we need really to solve a problem, for which no efficient solution exists

What can we do?

- use heuristics: approximation algorithms, probabilistic tree search, evolutionary algorithm, etc.
- but may not work if we want the exact solution!

On what problems we want to look at?

best matching score

What is the music score that has the fewest maximal mismatches with each of the given scores?

solution

- Solution has exactly three errors with each input score!
- There is no solution with fewer errors.

solution

reduction to CLOSEST STRING

Problem Closest String

Input

lacktriangle set of m strings $\mathcal{S} = \{S_1, \dots, S_m\}$ on an alphabet Σ of size σ

 $|S_i| = n \quad \forall j \in [1..m]$

Task: find string T with

|T| = n $= \max_{\mathbf{x} \in [1...m]} \operatorname{dist}_{\text{ham}}(S_{\mathbf{x}}, T) \text{ is minimal}$

where $\operatorname{dist}_{\operatorname{ham}}(S_x, T) := |\{i \in [1..n] : S_x[i] \neq T[i]\}|$ is Hamming distance between T and S_x .

- problem is NP-hard for $\sigma \ge 2$ in n and m! Frances,Litman'97
- fortunately: already exist efficient solutions for this problem (ILP solver, etc.)

example

```
S_1 = 1 n e e p 1 e s s n e 1 s S_2 = s 1 e p s 1 e s s n e s n S_3 = s n e e p 1 e s s s n s s s S_4 = s n e e p 1 e s s n s s s S_5 = s 1 e e l e s s n s s s s
```

example

actually same problem and solution with the scores!

why this problem?

- well-studied:
 - □ 31 conference papers
 - □ 22 journal papers
- it is a string problem, and we love strings!

yet..

do we have any implementation of a solution available so far?

"We do not compare with the algorithm in [6], because its code is not available."

Shota Yuasa, Zhi-Zhong Chen, Bin Ma, Lusheng Wang: Designing and Implementing Algorithms for the Closest String Problem.

Proc. FAW 2017, LNCS 10336, pages 79-90

Of course, the authors also did not publish their code. \ldots

So is there any implementation available at all?

The algorithm is explained in detail in the following article:

https://example.com

https://github.com/kirilenkobm/BDCSP (accessed: 30th of April 2023)

Other Half-Baken Code Repositories

- "A challenge to make this basic closest-strings program more efficient." last update: 3 years ago (2020)

 https://github.com/robertvunabandi/closest-strings-challenge
- "Swarm Intelligence project: Closest string problem" last update: 6 years ago (2017)

https://github.com/arnomoonens/closest-string-problem

7

Looks like some unfinished student projects. So:

- will the code run? maybe
- will it produce correct results? unknown: there are (mostly) no tests

lour aim

exact search:

- brute-force, exhaustive search : easy to program, but combinatorial explosion prevents from working even on small input sizes
- Integer linear programming (ILP) or MAX-SAT formulation: burden on the implementation!

want to have: tool for fast prototyping

- easy implementation
- speed should be reasonable
- goals:
 - fast problem solving
 - □ usable for testing coding-intensive implementations at an early stage

introduction to answer set programming (ASP)

- Prolog-like declarative language
- most classic problems like traveling salesman program can be expressed in a few lines of code, but still performant on small instance sizes
- current standard: ASP-Core-2
- standard reference implementation: clingo
 - in active development at https://potassco.org/clingo/ (University of Potsdam) by Torsten Schaub
 - shipped with common Linux distributions such as Ubuntu/Debian: adb install gringo

Calimeri+'19

how to solve CLOSEST STRING with ASP?

with seven lines of code:

```
1 mat(X,I) :- s(X,I,_).
2 1 {t(I,C) : s(_,I,C)} 1 :- mat(_,I).
3 c(X,I) :- t(I,C), s(X,I,A), C != A.
4 cost(X,C) :- C = #sum {1,I : c(X,I)}, mat(X,_).
5 mcost(M) :- M = #max {C : cost(_,C)}.
6 #minimize {M : mcost(M)}.
7 #show t/2. #show mcost/1. #show cost/2.
```

how does the input look like?

transform texts

$$lacksquare$$
 $S_1 = \text{lneeplessnels}$

- lacksquare $S_5=$ slleelessnsss

write $S_j[i]$ as $s(j, i, rank(S_j[i]))$, where rank is the ASCII rank of the symbol

- **■** 1 → 108
 - . 110
 - \blacksquare n \mapsto 110
 - lacksquare e \mapsto 101
 - \blacksquare s \mapsto 115

ASP input

- 1 s(0, 0, 108).
- 2 s(0, 1, 110).
- 3 s(0, 2, 101).
 - . . .
- 5 s(4, 10, 115).
- 6 s(4, 11, 115).
- 7 s(4, 12, 115).

modelling the input

- so we have at startup tuples $s(i, j, S_i[j])$
- next we create a boolean matrix mat that specifies whether S_i[j] exists

```
1 mat(X,I) :- s(X,I,_).
2 1 {t(I,C) : s(_,I,C)} 1 :- mat(_,I).
3 c(X,I) :- t(I,C), s(X,I,A), C != A.
4 cost(X,C) :- C = #sum {1,I : c(X,I)}, mat(X,_).
5 mcost(M) :- M = #max {C : cost(_,C)}.
```

7 #show t/2. #show mcost/1. #show cost/2.

6 #minimize {M : mcost(M)}.

but how do we get to the closest substring of that?

Restriction of Optimal Solution

Lemma (Kelsey, Kotthoff'11)

There exists an optimal solution T with $T[i] \in \{S_1[i], \ldots, S_m[i]\}$.

Proof.

- \blacksquare if $T[i] \notin \{S_1[i], \ldots, S_m[i]\}$, then T mismatches with all input strings at position i
- \blacksquare if $T[i] = S_i[i]$, then the distance to at least S_i is better, so it does not worsen the distance

Definition

define $\Sigma_i := \{S_1[i], \dots, S_m[i]\}$ effective alphabet for position $i \in [1..n]$

modelling T

- \blacksquare model T[i] as a boolean matrix $T_{i,c} = 1 \Leftrightarrow T[i] = c$
- only one $T_{i,c}$ is set:

$$orall i \in \llbracket 1..n
rbrack : \sum_{c \in \Sigma_i} \mathcal{T}_{i,c} = 1$$

$$c \in \Sigma_i$$

$$[\mathcal{O}(n), \mathcal{O}(\min(m, \sigma))]$$

complexity
$$(x,y)$$
:

- \blacksquare x: # clauses
- v: # variables per clause

```
1 \text{ mat}(X,I) := s(X,I,_).
                                  2 1 \{t(I,C) : s(\_,I,C)\} 1 :- mat(_,I).
state that T[i] = S_x[i], i.e., 3 c(X,I) :- t(I,C), s(X,I,A), C != A.
                                  4 cost(X,C) :- C = #sum \{1,I : c(X,I)\}, mat(X,I)\}
```

- _). 5 $mcost(M) :- M = \#max \{C : cost(_,C)\}.$
- 6 #minimize {M : mcost(M)}.
 - 7 #show t/2. #show mcost/1. #show cost/2.

modelling costs

- \blacksquare define $C_{i,x} \in \{0,1\}$: $\forall i \in [1..n], x \in [1..m]$ with $C_{i,x}=1$ if $T[i]\neq S_x[i]$.
- \blacksquare then dist_{ham} $(T, S_x) =$ $\sum_{i \in [1..n]} C_{i,x}$ is Hamming distance between T and S_{\sim}

$$\forall i \in [1..n], c \in \Sigma_i, x \in [1..m]$$
:

$$T_{i,c} \wedge S_{x}[i] \neq c \implies C_{i,x}$$

$$S_{\mathbf{x}}[i] \neq \mathbf{c} \implies C_{i,\mathbf{x}}$$

 $[\mathcal{O}(nm\sigma), \mathcal{O}(1)]$

- 1 $mat(X,I) := s(X,I,_).$
 - 2 1 $\{t(I,C) : s(_,I,C)\}$ 1 :- mat(_,I). 3 c(X,I) := t(I,C), s(X,I,A), C != A.
 - $4 \quad cost(X,C) :- C = \#sum \{1,I : c(X,I)\}, mat(X,I)\}$
 - _). 5 $mcost(M) :- M = \#max \{C : cost(_,C)\}.$
 - 6 #minimize {M : mcost(M)}.
 - 7 #show t/2. #show mcost/1. #show cost/2.

maximum of summed costs

7 #show t/2. #show mcost/1. #show cost/2.

setting the objective

- statement for setting C_{i,x} to false is not needed:
 optimizer will do so if it
- does not violate Line 3

 for that, our objective is:

```
minimize \max_{x \in [1..m]} \sum_{i \in [1..n]} C_{i,x}
```

 $[\mathcal{O}(1),\,\mathcal{O}(\mathit{mn})]$

```
1 mat(X,I) :- s(X,I,_).
2 1 {t(I,C) : s(_,I,C)} 1 :- mat(_,I).
3 c(X,I) :- t(I,C), s(X,I,A), C != A.
4 cost(X,C) :- C = #sum {1,I : c(X,I)}, mat(X,__).
```

5 $mcost(M) :- M = \#max \{C : cost(_,C)\}.$

#show t/2. #show mcost/1. #show cost/2.

#minimize {M : mcost(M)}.

specifying the output

output T, mcost, and cost

```
1 mat(X,I) :- s(X,I,_).
2 1 {t(I,C) : s(_,I,C)} 1 :- mat(_,I).
3 c(X,I) :- t(I,C), s(X,I,A), C != A.
4 cost(X,C) :- C = #sum {1,I : c(X,I)}, mat(X,_).
5 mcost(M) :- M = #max {C : cost(_,C)}.
6 #minimize {M : mcost(M)}.
```

7 #show t/2. #show mcost/1. #show cost/2.

complexities

- $(T_{i,c})$
- \bigcirc $\mathcal{O}(nm)$ helper variables $(C_{i,\times}),$
- \square $\mathcal{O}(nm\sigma)$ clauses (Line 3).

```
1 mat(X,I) := s(X,I,_).
```

- $2 1 \{t(I,C) : s(_,I,C)\} 1 := mat(_,I).$
- 3 c(X,I) := t(I,C), s(X,I,A), C != A.
- $4 \ \cos t(X,C) :- C = \# \sup \{1,I : c(X,I)\}, \max(X,C) \}$
- 5 $mcost(M) :- M = \#max \{C : cost(_,C)\}.$
- 6 #minimize {M : mcost(M)}.
- 7 #show t/2. #show mcost/1. #show cost/2.

interpreting output

- \blacksquare since mcost = 3, we have at most three errors at each text position
- (actually we have exactly three errors at all positions when looking at cost for this solution)
- ▶ by remapping ASCII ranks to characters from t(i, rank(T[i])), we obtain T = sleeplessness

```
mcost(3)
cost(0,3) cost(1,3) cost(2,3)
cost(3,3) cost(4,3)
t(0,115) t(1,108) t(2,101) t(3,101)
t(4,112) t(5,108) t(6,101) t(7,115)
t(8,115) t(9,110) t(10,101)
t(11,115) t(12,115)
```

works in practice

freely available at https://github.com/koeppl/aspstring

- python wrapper around ASP/clingo calls
- input and output: plain string(s)
- framework for working with strings: easy to write code for other string-related problems

evaluation with brute-force approach (test every possible value for T[1..n])

evaluation on random datasets

			ASP			brute-force		s05m07n009i0 denotes
file	X	rules	vars	choices	[s]	choices	[s]	$\sigma = 5$
s05m07n009i0	6	1025	264	673	0.01	327 680	2.19	\blacksquare $m=7$
s05m07n009i1	6	1002	262	608	0.01	172 800	1.15	
s05m07n009i2	6	977	253	589	0.01	98 304	0.66	\blacksquare $n=9$
s05m08n009i0	6	1122	290	605	0.01	230 400	1.74	lacksquare $i=0$ -th sample
s05m08n009i1	6	1123	290	975	0.01	216 000	1.64	
s05m08n009i2	6	1136	291	716	0.01	288 000	2.17	(iteration)
s05m09n009i0	6	1288	321	725	0.01	640 000	5.47	
s05m09n009i1	7	1258	319	1723	0.02	409 600	3.48	columns:
s05m09n009i2	7	1273	320	1828	0.02	512 000	4.33	$\mathbf{x} = mcost$
s06m07n009i0	6	1039	265	974	0.01	384 000	2.57	
s06m07n009i1	7	1078	268	1767	0.02	768 000	5.12	[s]: time in seconds
s06m07n009i2	6	1002	262	569	0.01	172 800	1.15	observation:
s06m08n009i0	6	1191	295	1074	0.01	750 000	5.67	
s06m08n009i1	7	1248	299	2378	0.02	1800000	13.63	# choices
s06m08n009i2	7	1248	299	2128	0.02	1 800 000	13.61	correlates with time
s06m09n009i0	7	1303	322	1837	0.02	800 000	6.81	
s06m09n009i1	7	1396	328	1849	0.02	2 700 000	22.97	ASP has much
s06m09n009i2	6	1336	324	1874	0.02	1 080 000	9.07	fewer to check
								20 / 21

but wait...

... if there are good solutions like ILP for CLOSEST STRING, why bother?

maybe you work on a variation: Closest String \Rightarrow Closest Substring

- fewer references, much fewer implementations
- hard to adapt ILP/MAX-SAT implementations to this variation
- but easy with ASP!

CLOSEST SUBSTRING

- **n** parameter λ : length of the output string $T: |T| = \lambda$
- objective: minimize $\max_{x \in [1..m]} \operatorname{dist}_{\lambda}(S_x, T)$

where $\operatorname{dist}_{\lambda}(S_{x}, T) := \min_{i \in [1...n-\lambda+1]} \operatorname{dist}_{\operatorname{ham}}(S_{x}[i..i+\lambda-1], T)$: alignment score

CLOSEST SUBSTRING example for $\lambda = 4$ 1 2 3 4 5 6 7 8 9 10 11 12 13 $S_1 = s$ 1 e s n 1 e s s p e s s $S_2 = s$ n e 1 p e 1 1 n e s s s $S_3 = s$ s s s s s l p s p e s s $S_4 = p$ s e 1 n e s e e 1 s e s $S_5 = n$ e s s s 1 s n e 1 e s s

- lacksquare task: compute a solution for $\lambda=4$
- idea: shift S_j and compute CLOSEST STRING for the first λ characters Gramm+'03

CLOSEST SUBSTRING example for $\lambda=4$

$$S_1=s$$
 1 e s n 1 e s s p e s s
 $S_2=$ s n e 1 p e 1 1 n e s s s
 $S_3=s$ s s s s s 1 p s p e s s
 $S_4=$ p s e 1 n e s e e 1 s e s
 $S_5=$ n e s s s 1 s n e 1 e s s
 $S_7=$ s n e s

output has distance 1 to all input strings

https://upload.wikimedia.org/wikipedia/commons/2/24/Super_Nintendo_Entertainment_System-USA.jpg

modelling input

same startup, but also need to set $\lambda = 4$ via la(4).

```
mat(X,I) := s(X,I,_).
2 1 \{d(X,D) : D = 0..n-la\} 1 :- mat(X,0).
3 si(I,C) := s(X,J,C), d(X,D), J-D>=0, I=J-D.
4 1 \{t(I,C) : si(I,C)\} 1 :- mat(_,I), I < la.
5 c(X,I) := t(I,C), s(X,J,A), d(X,D), I+D==J,
      I < la. A != C.
6 cost(X,C) := C=\#sum \{1,I:c(X,I)\}, mat(X,).
7 \mod(M) :- M = \#\max\{C : \cos((,C)\}\}.
8 #minimize {M : mcost(M)}.
9 #show t/2. #show mcost/1. #show cost/2.
```

for space reasons: $\mathtt{si}(\mathtt{gma}) = \sigma$, $\mathtt{la}(\mathsf{mbda}) = \lambda$

modelling shifts

- select shifts $d_x \in [0..n \lambda]$ of each input string S_x such that the CSP of $\{S_1[1+d_1..\lambda+d_1],\ldots,S_m[1+d_m..\lambda+d_m]\}$ is a solution of CSS if we take the minimum distance over all shifts d_x
- represent the shifts by a matrix of selectable Boolean variables of size $\mathcal{O}(m(n-\lambda))$

for space reasons: $si(gma) = \sigma$, $la(mbda) = \lambda$

modelling alphabet

```
redefine the alphabet for the
i-th character to be
                                    1 \text{ mat}(X.I) := s(X.I.).
\Sigma_i := \{S_1[i+d_1], \dots, S_m[i+d_m]\}
                                    2 1 \{d(X,D) : D = 0..n-la\} 1 :- mat(X,0).
                                    3 \text{ si}(I,C) := \text{s}(X,J,C), d(X,D), J-D>=0, I=J-D.
                                      1 \{t(I,C) : si(I,C)\} 1 :- mat(_,I), I < la.
                                    5 c(X,I) := t(I,C), s(X,J,A), d(X,D), I+D==J,
                                            I < la. A != C.
                                    6 cost(X,C) := C=\#sum \{1,I:c(X,I)\}, mat(X,...)
                                    7 \mod(M) :- M = \#\max\{C : \cos((,C))\}.
                                    8 #minimize {M : mcost(M)}.
                                    9 #show t/2. #show mcost/1. #show cost/2.
                                      for space reasons: si(gma) = \sigma, la(mbda) = \lambda
```

modelling output T

- - $[\mathcal{O}(\lambda), \mathcal{O}(\min(m, \sigma))]$ 8 #minimize {M : mcost(M)}. 9 #show t/2. #show mcost/1. #show cost/2.

for space reasons: $si(gma) = \sigma$, $la(mbda) = \lambda$

6 cost(X,C) :- C=#sum {1,I:c(X,I)}, mat(X,_).
7 mcost(M) :- M = #max {C : cost(_,C)}.

modelling costs

for costs we need to take shifts into consideration

$$\forall i \in [1..\lambda], c \in \Sigma_i, x \in [1..m]:$$

$$T_{i,c} \land S_x[i+d_x] \neq c \implies C_{i,x}$$

$$[\mathcal{O}(\lambda nm\sigma), \mathcal{O}(1)]$$

additional *n*-term in #clauses because offsets $d_x \in [1..n]$ given by two-dimensional binary array $D[x,\ell] = 1 \Leftrightarrow d_x = \ell$

#show t/2. #show mcost/1. #show cost/2.

for space reasons: $si(gma) = \sigma$, $la(mbda) = \lambda$

complexity

and d_{\sim}

- \bigcirc $\mathcal{O}(\lambda \sigma + m(n-\lambda))$ selectable variables: $T_{i,c}$
- \bigcirc $\mathcal{O}(\lambda m)$ helper variables:
- $C_{i,x}$
- lacksquare $\mathcal{O}(\lambda mn\sigma)$ clauses
- largest clause size: $\mathcal{O}(\lambda m)$

```
1 mat(X,I) := s(X,I,_).
```

- 2 1 $\{d(X,D) : D = 0..n-la\}$ 1 :- mat(X,0).
- 3 si(I,C) :- s(X,J,C), d(X,D), J-D>=0, I=J-D.
 4 1 {t(I,C) : si(I,C)} 1 :- mat(_,I), I < la.</pre>
- 5 c(X,I) :- t(I,C), s(X,J,A), d(X,D), I+D==J,
 - I < la, A != C.
- 6 cost(X,C) :- C=#sum {1,I:c(X,I)}, mat(X,_).
 7 mcost(M) :- M = #max {C : cost(_,C)}.
- 8 #minimize {M : mcost(M)}.
 - 9 #show t/2. #show mcost/1. #show cost/2.

for space reasons: $si(gma) = \sigma$, $la(mbda) = \lambda$

weakness

- ASP is slower than good MAX-SAT implementation, e.g.: string attractor
- Bannai+'22: MAX-SAT for string attractor in pysat, 566 line of code
- but ASP for string attractor in 5 line of code:
- $1 \{ in(1..n) \}.$
- $sub_str(S,E) := cover(S,E,_).$ $:- not 1 \{ in(P) : cover(S,E,P) \}, sub_str(S,E).$
- #minimize $\{ 1,P : in(P) \}$.
- #show in/1.

by Mutsunori Banbara'22

conclusion

introduction of ASP to hard string problems

- fast prototyping
- actual code available for comparison, benchmarks, etc.
- framework to implement new code easily
- usually faster than naive implementations but slower than sophisticated ones

https://github.com/koeppl/aspstring happy coding ♪