Διαγώνισμα Κατεύθυνση Β Λυκείου

Θέμα Α

- 1. [Μονάδες 10] Να αποδείξετε ότι ο γεωμετρικός μέσος \overrightarrow{OM} ενός ευθύγραμμου τμήματος με άκρα $A=(x_1,y_1)$ και $B=(x_2,y_2)$ είναι $\overrightarrow{OM}=\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$.
- 2. [Mονάδες 5] Πώς ορίζεται το $\sigma v \nu \theta$ της γωνίας θ δύο διανυσμάτων $\vec{\alpha}$ και $\vec{\beta}$.
- 3. [Μονάδες 10] Να χαρακτηρίσετε τις παρακάτω προτάσεις με Σωστό ή Λάθος
 - α) $\vec{\alpha} \perp \vec{\beta} \Leftrightarrow \vec{\alpha} \cdot \vec{\beta} = -1$ για κάθε $\vec{\alpha}$ και $\vec{\beta}$.
 - β) $|\vec{\alpha} \cdot \vec{\beta}| = |\vec{\alpha}| \cdot |\vec{\beta}|$ για κάθε $\vec{\alpha}$ και $\vec{\beta}$.
 - γ) Η κλίση ενός διανύσματος (x,y) είναι $\lambda=\frac{y}{x}$ για κάθε (x,y).
 - δ) Το διάνυσμα με άκρα τα $\mathbf{A}=(x_1,y_1)$ και $\mathbf{B}=(x_2,y_2)$ είναι το (x_1+x_2,y_1+y_2) .
 - ε) $|\vec{\alpha}|^2 = \vec{\alpha}^2$ για κάθε $\vec{\alpha}$.

Θέμα Β

Aν $\vec{\alpha}=(1,2)$ και $\vec{\beta}=(-2,1)$.

- 1. [**Μονάδες 5**] Να βρεθεί το διάνυσμα $2\vec{\alpha} + \vec{\beta}$.
- 2. [Μονάδες 5] Να βρεθεί το αντίθετο διάνυσμα του $\vec{\alpha}$.
- 3. [Μονάδες 7] Να βρεθεί ο διανυσματικός μέσος $\vec{\mu}$ των $\vec{\alpha}$ και $\vec{\beta}$.
- 4. [Μονάδες 8] Να γραφτεί το διάνυσμα (0,5) ως γραμμικός συνδυασμός των $\vec{\alpha}$ και $\vec{\beta}$.

Θέμα Γ

Δίνονται τα διανύσματα $\vec{\alpha}=(\kappa-2,-2\kappa)$ και $\vec{\beta}=(-\kappa-3,\kappa-2)$, $\kappa>0$

- 1. [Μονάδες 7] Να βρεθεί το κ ώστε τα διανύσματα να είναι κάθετα.
- 2. [Μονάδες 7] Να βρεθεί το κ ώστε $|\vec{\alpha}| = \sqrt{3}$.

Av $\vec{\gamma} = \vec{\beta} + (6, 2)$,

3. [Μονάδες 11] Να βρεθεί το κ ώστε τα διανύσματα $\vec{\alpha}$ και $\vec{\gamma}$ να είναι παράλληλα.

Θέμα Δ

- 1. Από τα κάθετα βγάζουμε ότι $\vec{\alpha}^2 \vec{\beta}^2 = 0$ και από το μέτρο $\vec{\alpha}^2 10\vec{\alpha}\vec{\beta} + 25\vec{\alpha}^2 = 400$ και άρα $|\vec{\alpha}| = 3|\vec{\beta}|$ και $|\vec{\alpha}|^2 450 + 25|\vec{\beta}|^2 = 400$. Δηλαδή $|\vec{\alpha}| = 15$ και $|\vec{\beta}| = 5$.
- 2. $|\vec{\alpha}+3\vec{\beta}|^2=\vec{\alpha}^2+6\vec{\alpha}\vec{\beta}+9\vec{\beta}^2=225+6\cdot 45+9\cdot 45=720=36\cdot 20$ $\Delta \eta \lambda \alpha \delta \acute{\eta} \ |\vec{\alpha}+3\vec{\beta}|=6\sqrt{20}.$

$$\sigma \upsilon \nu \theta = \frac{\vec{\alpha}(\vec{\alpha} + 3\vec{\beta})}{|\vec{\alpha}||\vec{\alpha} + 3\vec{\beta}|} = \frac{\vec{\alpha}^2 + 3\vec{\alpha}\vec{\beta}}{15 \cdot 6\sqrt{20}} = \frac{360}{90\sqrt{20}} = \frac{2\sqrt{5}}{5}$$

Καλή επιτυχία