

Bezeztrátová komprese

Obsah

- > Komprese a dekomprese
- > Dělení kompresních algoritmů
- > RLE
- > LZ
- Aritmetické kódování

Proč komprimovat

- > Snaha o co nejlepší využití datových nosičů.
- Snaha o co nejlepší využití přenosových kanálů.
 - Při přenosu zkomprimovaného souboru má rušení závažné důsledky.

Komprese

- > Synonymem slova komprimace, zabalení.
- Speciální typ kódování.
 - Nerovnoměrné kódy.
 - Prakticky se mohou kompresní algoritmy chovat heuristicky.
- Proces, při kterém je vytvořen obraz původního souboru.

Komprese

Její úspěšnost může být dána

- Kompresní poměr podíl délky zkomprimovaného souboru k délce původního souboru.
- Kompresní faktor převrácená hodnota předchozího.
- Kompresní zisk stonásobek přirozeného logaritmu z kompresního faktoru.

Komprese

- > Bpc (Bits per character) či BPB (Bits Per Byte):
 - Poměr počtu bitů ve zkomprimovaném souboru ku počtu symbolů (bytů) v původním souboru.
- Kompresní algoritmy se testují na referenčních vzorcích daných např. Canterbury Corpusem.

Dekomprese

- > Synonyma jsou dekomprimace a rozbalení.
- Vstupem je zkomprimovaný soubor a výstupem soubor obnovený.
- Bezeztrátové kompresní algoritmy
 - Při dekompresi je původní soubor zcela obnoven, žádná informace se neztrácí.

Rozdělení

- Podle poměru časové náročnosti komprese a dekomprese dělíme kompresní algoritmy na:
 - symetrické x asymetrické.
- Podle schopnosti kompresního algoritmu přizpůsobit se komprimovaným datům:
 - adaptivní x neadaptivní.

- Run Length Encoding kódování proudů.
 - Proud blok opakujících se symbolů ve vstupním souboru.
- Proudy se hledají procházením po řádcích, sloupcích, dlaždicích či cik-cak.
- Použití např. u obrázků s malým počtem barev.

Záznam o bloku či proudu ve zkomprimovaném souboru je vždy tvořen alespoň dvěma byty.

> První byte:

- První bit prvního bytu určuje, zda se jedná o záznam proudu opakujícího se bytu (1), či bloku neopakujících se bytů (0).
- Zbývajících sedm bitů prvního bytu určuje délku proudu opakujícího se následujícího bytu, nebo délku bloku následujících neopakujících se bytů.

> Komprese

- $-65_{10} 65_{10} 65_{10} 65_{10} 65_{10} 65_{10} = 10000101_2 01000001_2$
- $-72_{10} 65_{10} = 00000010_2 01001000_2 01000001_2$

> Dekomprese

- $-135_{10} 65_{10} 3_{10} 72_{10} 79_{10} 74_{10} 131_{10} 68_{10} 1_{10} 65_{10} = 10000111_2 01000001_2 00000011_2 01001000_2 01001111_2 01001010_2 10000101_2 01000100_2 00000001_2 01000001_2 = 65_{10} 65_{10} 65_{10} 65_{10} 65_{10} 65_{10} 65_{10} 65_{10} 65_{10} 65_{10}$
- Kompresní poměr = 5:7

- > Modifikace předchozího.
 - Pro obrázky s paletou barev, kde jsou velké stejnobarevné plochy.
- Typ bytu je určován podle hodnoty a závisí na tom, zda je nastaven na 1 určitý počet prvních bitů.
 - Pokud ano, následující byte se opakuje.
 - Pokud ne, v bytu je již kód barvy.

> Komprese

- Počítadlo nastaveno na $C0_{16} = \overline{110000000_2}$.
- $-A0_{16} A0_{16} A0_{16} = 11000011_2 10100000_2 = C3_{16} A0_{16}$
- $-88_{16} = 01000100_2 = 88_{16}$
- $-DE_{16} = 11000001_2 \ 110111110_2 = C1_{16} \ DE_{16}$

> Dekomprese

- Počítadlo nastaveno na $C0_{16} = 11000000_2$.
- $-C1_{16} CC_{16} C5_{16} FE_{16} 18_{16} AF_{16} = 11000001_{2}$ $11001100_{2} 11000101_{2} 111111110_{2} 00010100_{2}$ $10101111_{2} = CC_{16} FE_{16} FE_{16} FE_{16} FE_{16} FE_{16} 18_{16} AF_{16}$

Algoritmy rodiny LZ

- > Třída algoritmů pojmenovaná po tvůrcích původního z roku 1977.
 - Lempel a Ziv.
- Využívá se tzv. "posuvného okna" rozděleného na prohledávané pole a komprimované pole.
- Jedna z prvních verzí se např. i dnes využívá u formátu PNG, další pak v ARJ, ZIP, RAR...

Do výstupního souboru se zapisují trojice:

- Pozice kopírované sekvence z prohledávaného pole.
- Délka sekvence.
- Následující symbol.
- Délka prohledávaného pole se pohybuje v kilobytech, délka komprimovaného pole spíše v B.

- Prohledávané pole nahrazeno dynamickým slovníkem opakujících se řetězců.
- Ve zkomprimovaném souboru dvojice:
 - Ukazatel (většinou 12bitový) do slovníku již dříve nalezených řetězců.
 - Bezprostředně následující symbol.

- > Modifikace navržená Welchem.
- Nejprve se inicializuje slovník a není třeba posléze používat dvojice (stačí odkazy do slovníku).
- Využití např. u grafického formátu GIF.
- Slovník není součástí zkomprimovaného souboru.

- > J. J. Risanen v roce 1976.
 - Vztahuje se na něj patent.
- Vstupní soubor je převeden na číslo z intervalu <0;1).</p>
- > Je třeba znát pravděpodobnost výskytu znaků ve vstupním souboru.
 - Řadíme od nejmenší po největší.

- Z pravděpodobností výskytu jednotlivých prvků se vytvoří na intervalu <0;1) podintervaly, které ho vyplní.
 - Pole **mez**, obsahuje dolní meze podintervalů.
 - Pole mez_h obsahuje horní meze podintervalů.
 - Součást vstupního i výstupního souboru (+ počet znaků).

Komprese

- Základní inicializace h = 1; d = 0; s = 1.
- Cyklus postupně pro jednotlivé znaky:
 - h := d + s · mez_{h(aktuálního symbolu)}
 - d := d + s · mez_{d(aktuálního symbolu)}
 - s := h d
- Po provedení cyklu pro poslední znak vybereme reprezentanta K z aktuálního intervalu (d; h).

> Dekomprese

- Označíme K jako K₁ a podle intervalu, do něhož patří, dekomprimujeme první znak.
- Další znaky dekomprimujeme postupně na základě obecného vzorce pro ítého reprezentanta:

$$K_i = \frac{K_{i-1} - mez_{di-1}}{s_{i-1}}$$

- JIROUŠEK, R. a kol. Principy digitální komunikace. Voznice: Leda, 2006. 309 s.
 ISBN 80-7335-084-X
- SNÁŠEL, V., DVORSKÝ, J. Algoritmická matematika I. Olomouc : Univerzita Palackého, 1999. 256 s. ISBN 80-244-0013-8