13 Liquids X and Y are stored in large open tanks. Liquid X has a density of 800 kg m⁻³ and liquid Y has a density of 1200 kg m⁻³.

At which depths are the pressures equal?

	depth in liquid X/m	depth in liquid Y/m
Α	8	20
В	10	15
С	15	10
D	20	8

14 A train of mass 3.3×10^6 kg is moving at a constant speed up a slope inclined at an angle of 0.64° to the horizontal. The engine of the train is producing a useful output power of 14 MW.

Assume that there are no frictional forces opposing the motion of the train.

What is the speed of the train?

- **A** $0.43\,\mathrm{m\,s^{-1}}$
- **B** $4.2 \,\mathrm{m \, s^{-1}}$
- $C 39 \,\mathrm{m \, s^{-1}}$
- **D** $380 \,\mathrm{m \, s^{-1}}$
- **15** A cannon-ball of mass 3.50 kg is fired at a speed of 22.0 m s⁻¹ from a gun on a ship at a height of 6.00 m above sea level.

The total energy of the cannon-ball is the sum of the gravitational potential energy relative to the surface of the sea and the kinetic energy.

What is the total energy of the cannon-ball as it leaves the gun?

- **A** 206 J
- **B** 641J
- **C** 847 J
- **D** 1050 J
- **16** An aircraft travels at a constant velocity of 90 m s⁻¹ in horizontal flight. The diagram shows some of the forces acting on the aircraft.

The mass of the aircraft is 2000 kg.

What is the power produced by the thrust force?

- **A** $1.8 \times 10^5 \text{W}$
- **B** $2.2 \times 10^5 \text{W}$
- **C** $1.8 \times 10^6 \text{ W}$
- **D** 2.0×10^{6} W