Guía Práctica 4

- 1. Utilice el método de Lagrange para encontrar los máximos y mínimos de los siguientes problemas:
 - a) $\max_{x,y} xy$ s.a. x + 3y = 24
 - b) $\max_{x,y} 10x^{1/2}y^{1/3}$ s.a. 2x + 4y = m
 - c) $\min_{x,y} x^2 + 3xy + y^2$ s.a. x + y = 100
 - d) $\max_{x,y} \sqrt{x} + \sqrt{y}$ s.a. $x^2 + y^2 = 100$
 - e) $\min_{x,y} 6x + 8y \text{ s.a. } xy = 20$
- 2. Utilice el método de Lagrange para resolver el siguiente problema:

$$\min_{Q_1, Q_2} -40Q_1 + Q_1^2 - 2Q_1Q_2 - 20Q_2 + Q_2^2 \text{ s.a. } Q_1 + Q_2 = 15$$

- 3. Considere el problema máx $U\left(x,y\right)=100-e^{-x}-e^{-y}$ s.a. $p_{x}x+p_{y}y=m.$
 - a) Encuentre las condiciones de primer orden del problema. Encuentre la solución al problema en términos de p_x , p_y y m. ¿Qué supuestos debemos realizar para que la solución sea no negativa?
 - b) Verifique que x e y son homogéneas de grado 0 respecto a p_x , p_y y m. Eso implica que si tanto los precios como el ingreso del individuo se multiplicaran por t, entonces la elección óptima no cambiaría, porque
 - $x^*(p_x, p_y, m) = x^*(tp_x, tp_y, tm)$
 - $y^*(p_x, p_y, m) = y^*(tp_x, tp_y, tm)$
- 4. Resuelva los siguientes problemas:
 - a) $\max_{x,y} 3xy$ s.a. $x^2 + y^2 = 8$
 - b) $\max_{x,y} x + y$ s.a. $x^2 + 3xy + y^2 = 3$
 - c) $\max_{x,y} x^2 + y^2 2x + 1$ s.a. $x^2 + 4y^2 = 16$
 - d) $\min_{x,y} \ln(2 + x^2) + y^2$ s.a. x + 2y = 1
 - e) $\max_{x,y} 24x x^2 + 16y 2y^2$ s.a. $x^2 + 2y^2 = 44$