Spectral Graph Embedding

Social Networks Analysis and Graph Algorithms

Prof. Carlos Castillo — https://chato.cl/teach

Sources

- J. Leskovec (2016). Defining the graph laplacian [video]
- E. Terzi (2013). Graph cuts The part on spectral graph partitioning
- D. A. Spielman (2009): The Laplacian
- URLs cited in the footer of slides

Graphs are nice, but ...

- They describe only local relationships
- We would like to understand a global structure
- ullet We will try to transform a graph into a more familiar object: a cloud of points in R^k

Graphs are nice, but ...

- They describe only local relationships
- We would like to understand a global structure
- ullet We will try to transform a graph into a more familiar object: a cloud of points in R^k

What is a graph embedding?

- A graph embedding (or graph projection) is a mapping from a graph to a vector space
- ullet If the vector space is \mathbb{R}^2 you can think of an embedding as a way of $\emph{drawing}$ a graph on paper

Exercise: draw this graph

```
V = \{v1, v2, ..., v8\}
E = \{ (v1, v2), (v2, v3), (v3, v4), (v4, v1), (v5, v6), (v6, v7), (v7, v8), (v8, v5), (v1, v5), (v2, v6), (v3, v7), (v4, v8) \}
```

Draw this graph on paper, upload a photo

What constitutes a good drawing?

In a good graph embedding ...

- Pairs of nodes that are connected to each other should be close
- Pairs of nodes that are not connected should be far
- Compromises will need to be made

Random projections

Random graph projection (2D)

- Start a BFS from a random node, that has x=1, and nodes visited have ascending x
- Start a BFS from another random node, which has y=1, and nodes visited have ascending y
- Project node i to position (x_i, y_i)

Exercise: random projection

- Given this graph
- Pick a random node u
 - $\overline{}$ Distances from u are the x positions
- Pick a random node v
 - Distances from v are the y positions
- ullet Draw the graph in an \mathbb{R}^2 plane lacktriangle

Refresher about eigenvectors/eigenvalues

Eigenvectors and eigenvalues

- In general $Av=\lambda v$ means A has an eigenvector v of eigenvalue λ
- In symmetric matrices, eigenvectors are orthogonal Suppose $\lambda_1 \neq \lambda_2$

$$\lambda_1 v_1^T v_2 = v_1^T A v_2 = v_1^T \lambda_2 v_2 = \lambda_2 v_1^T v_2$$

• This implies $v_1^T v_2 = 0$

In symmetric matrices

- The multiplicity of an eigenvalue λ is the dimension of the space of eigenvectors of eigenvalue λ
- Every $n \times n$ symmetric matrix has n eigenvalues counted with multiplicity
- Hence, it has an orthonormal basis of eigenvectors

Rayleigh quotient

In symmetric matrices M, the second eigenvalue is

$$\lambda_2 = \min_{x} \frac{x^T M x}{x^T x}$$

Eigenvectors of the adjacency matrix

Properties of adjacency matrix

$$A_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

How many non-zeros are in every row of A?

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix}$$

Adjacency matrix of G=(V,E)

$$A_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

Can you write y_i using E?

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Adjacency matrix of G=(V,E)

$$A_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

• What is Ax? Think of x as a set of labels/values:

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \qquad \begin{aligned} y_i &= \sum_{j:(j,i) \in E} x_j \\ \vdots \\ y_n \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$
Ax is a vector whose ith coordinate contains the sum of

$$y_i = \sum_{j:(j,i)\in E} x_j$$

coordinate contains the sum of the x_i who are in-neighbors of i

Spectral graph theory ...

- Studies the eigenvalues and eigenvectors of a graph matrix
 - Adjacency matrix $Ax = \lambda x$
 - Laplacian matrix (next)
- Suppose graph is d-regular: $k_i = d \ \forall i$
- What is the value of __
- What does that imply?

 $\begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} =$

An eigenvector of a d-regular graph

• Suppose graph is d-regular, i.e. all nodes have degree d:

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} = \begin{bmatrix} d \\ d \\ \vdots \\ d \end{bmatrix} = d \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

• Hence, $[1, 1, ..., 1]^T$ is an eigenvector of eigenvalue d

Disconnected graphs

Suppose the graph is regular and disconnected

Then its adjacency matrix has block structure:

$$A = \begin{bmatrix} S & 0 \\ 0 & S' \end{bmatrix}$$

Disconnected graphs

Suppose the graph is regular and disconnected

Let
$$x_i^S = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{if } i \in S' \end{cases}$$

Disconnected graphs

Suppose the graph is regular and disconnected

$$Ax^S = dx^S$$

$$Ax^{S'} = dx^{S'}$$

- What is the multiplicity of eigenvalue d?
- What happens if there are more than 2 connected components?

In general

Disconnected graph

$$\lambda_1 = \lambda_2$$

Almost disconnected graph

$$\lambda_1 \approx \lambda_2$$

Small "eigengap"

Graph Laplacian

Adjacency matrix

$$A_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}_{31/69}$$

Degree matrix

$$D_{ij} = \begin{cases} k_i & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

$$D = \begin{bmatrix} 3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

2/69

Laplacian matrix

L = D - A

 $L = \begin{vmatrix} -1 & -1 & 3 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & 0 & 0 & -1 & 3 & -1 \\ 0 & 0 & 0 & -1 & 3 & -1 \end{vmatrix}$ They only differ in the diagonal.

Laplacian matrix L = D - A

$$L\vec{1} = \begin{bmatrix} 3 & -1 & -1 & 0 & -1 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ -1 & -1 & 3 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ 0 & 0 & 0 & -1 & 3 & -1 \\ 0 & 0 & 0 & -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = 3$$

The constant vector is an eigenvector of L

The constant vector $x=[1,1,...,1]^T$ is an eigenvector of the Laplacian, and has eigenvalue 0

$$Lx = \begin{bmatrix} 3 & -1 & -1 & 0 & -1 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ -1 & -1 & 3 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & 0 & 0 & -1 & 3 & -1 \\ 0 & 0 & 0 & -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = 0 \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Does it need to be this specific graph? Why?

Does it need to be the vector [1, 1, ..., 1]? Why?

If the graph is disconnected

- If the graph is disconnected into two components, the same argument as for the adjacency matrix applies, and $\lambda_1=\lambda_2=0$
- The multiplicity of eigenvalue 0 is equal to the number of connected components

 $x^T L x$

Prove this!

• Prove that $\mathbf{x}^T L \mathbf{x} = \sum_{(i,j) \in E} (x_i - x_j)^2$

$$L_{ij} = D_{ij} - A_{ij}$$

$$D_{ij} = \begin{cases} k_i & \text{if } i = j \\ 0 & \text{otherwise} \end{cases} \quad A_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

Think of this quantity as the "stress" produced by the assignment of node labels x

One of the eigenvalues of L is 0

• If x is such that $x_i = x_j$ for all i,j:

$$x^{T}Lx = \sum_{(i,j)\in E} (x_{i} - x_{j})^{2} = 0 \Rightarrow Lx = 0$$

• This means 0 is an eigenvalue of L

The eigenvector x of $\lambda = 0$ is the constant vector if the graph is connected

• If x is the eigenvector of eigenvalue 0, Lx = 0

• Then
$$x^T L x = \sum_{(i,j) \in E} (x_i - x_j)^2 = 0$$

From this, we deduct that $x_i = x_j$ for any pair i, j even if i and j are not directly connected by an edge. Why?

The eigenvector x of $\lambda = 0$ is the constant vector if the graph is connected

- If x is the eigenvector of eigenvalue 0, Lx = 0
- Then $x^T L x = \sum_{(i,j) \in E} (x_i x_j)^2 = 0$
- Hence, for any pair of nodes (i,j) connected by an edge, $x_i = x_j$
- Given the graph is connected, there is a path between any two nodes \Rightarrow for any pair of nodes (i,j), even the ones not connected by an edge, $x_i = x_j$
- Hence x is a constant vector

All the eigenvalues of the Laplacian are non-negative

• If ν is an eigenvector of L of eigenvalue λ :

$$\lambda v^T v = v^T L v = \sum_{(i,j) \in E} (v_i - v_j)^2 \ge 0$$

• This means all eigenvalues λ are non-negative

In summary, the Laplacian matrix L = D - A

- Is symmetric, eigenvectors are orthogonal
- ullet Has N eigenvalues that are non-negative
- 0 is one eigenvalue $0 = \lambda_1 \le \lambda_2 \le ... \le \lambda_N$
- ullet The multiplicity of eigenvalue O equals the number of connected components of the graph

The second eigenvector of the Laplacian in a connected graph

x^TLx and graph cuts

- Suppose (S, S') is a cut of graph G
- Set $x_i = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{if } i \in S' \end{cases}$

$$|c(S, S')| = 2$$

$$x^{T}Lx = \sum_{(i,j)\in E} (x_{i} - x_{j})^{2} = \sum_{(i,j)\in c(S,S')} 1^{2} = |c(S,S')|$$

Remember

For symmetric matrices

$$\lambda_2 = \min_{x} \frac{x^T M x}{x^T x}$$

Second eigenvector

- Orthogonal to the first one: $x \cdot \vec{1} = 0 \Rightarrow \sum_{i} x_i = 0$
- Normal: $\sum_{i} x_i^2 = 1$

$$\lambda_2 = \min_{x} \frac{x^T L x}{x^T x} = \min_{x: \sum x_i = 0} \frac{x^T L x}{\sum x_i^2} = \min_{x: \sum x_i = 0} \sum_{(i,j) \in E} (x_i - x_j)^2$$

The second eigenvalue tells us how well the graph can be partitioned into two

$$\lambda_2 = \min_{x: \sum x_i = 0} \sum_{(i,j) \in E} (x_i - x_j)^2$$

If the graph is divided into two connected components of sizes N_1 and N_2 , the optimal x is:

 $x_i = +1/N_1$ for nodes in one component, and $x_i = -1/N_2$ for nodes in the second component

The second eigenvalue tells us how well the graph can be partitioned into two

$$\lambda_2 = \min_{x: \sum x_i = 0} \sum_{(i,j) \in E} (x_i - x_j)^2$$

If the graph is connected but almost partitioned into two component, the optimal X should have values similar to each other in each partition

Example Graph 1

$$L = \begin{bmatrix} -1 & 3 & -1 & -1 & 0 & 0 & 0 & 0 \\ -1 & -1 & 3 & -1 & 0 & 0 & 0 & 0 \\ -1 & -1 & -1 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 & -1 & 3 & -1 & -1 \\ 0 & 0 & 0 & 0 & -1 & -1 & 3 & -1 \\ -1 & 0 & 0 & 0 & -1 & -1 & -1 & 4 \end{bmatrix}$$

Example Graph 1 (second eigenvalue of L)

$$L = \begin{bmatrix} -1 & 3 & -1 & -1 & 0 & 0 & 0 & 0 \\ -1 & -1 & 3 & -1 & 0 & 0 & 0 & 0 \\ -1 & -1 & -1 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 & -1 & 3 & -1 & -1 \\ 0 & 0 & 0 & 0 & -1 & -1 & 3 & -1 \\ -1 & 0 & 0 & 0 & -1 & -1 & -1 & 4 \end{bmatrix}$$

 $v_2 = \begin{bmatrix} 0.383 \\ 0.383 \\ 0.383 \\ -0.383 \\ -0.383 \\ -0.383 \\ -0.247 \end{bmatrix}$

0.247

Example Graph 1, projected in R¹

Example Graph 1, communities

Example Graph 2

$$L = \begin{bmatrix} -1 & 3 & -1 & -1 & 0 & 0 & 0 & 0 \\ -1 & 3 & -1 & -1 & 0 & 0 & 0 & 0 \\ -1 & -1 & 3 & -1 & 0 & 0 & 0 & 0 \\ -1 & -1 & -1 & 4 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 4 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 & -1 & 3 & -1 & -1 \\ 0 & 0 & 0 & 0 & -1 & -1 & 3 & -1 \\ -1 & 0 & 0 & 0 & -1 & -1 & -1 & 4 \end{bmatrix}$$

$$\lambda_1 = 0$$
$$\lambda_2 = 0.764$$

Example Graph 3

8

$$\lambda_1 = 0$$
$$\lambda_2 = 0.748$$

Example Graph 3, projected (where to cut?)

Example Graph 3, projected (where to cut?)

A graph with two communities in \mathbb{R}^1

A graph with four communities in \mathbb{R}^1

Application: graph drawing

A graph with four communities in \mathbb{R}^2

Value in third eigenvector Value in second eigenvector

Third eigenvector

A graph with four communities in R² (cont)

The graph from the initial exercise

Input nodes and edges

Spectral embedding

Exercise: spectral projection

- Write the Laplacian
- Get the second and third eigenvector
- Obtain projection

A barbell graph in R² (code)

```
B = nx.barbell graph(10,2)
 plt.figure(figsize=(6,6))
 nx.draw networkx(B)
   = plt.show()
 plt.figure(figsize=(6,6))
 nx.draw_spectral(B)
   = plt.show()
Graph Laplacian
```

Dodecahedral graph in 3D

g = nx.dodecahedral_graph()
pos = nx.spectral_layout(g, dim=3)
network_plot_3D_alt(g, 60, pos)

Application: spectral clustering

Generating data

```
from sklearn.datasets import
   make blobs
  = 1000
x, = make_blobs(
   n_samples=N,
   centers=3,
   cluster std=1.2)
plt.figure(figsize=(8,8))
plt.scatter(x[:,0], x[:,1])
plt.show()
```


Connect nodes to k=5 nearest neighbors

```
from sklearn.neighbors
  import NearestNeighbors
nbrs = NearestNeighbors(
   .fit(x)
distances, neighbors =
   nbrs.kneighbors(x)
G = nx.Graph()
for neighbor list in neighbors:
   source node = neighbor list[0]
   for target index in range(1,
       len(neighbor_list)):
       target node = neighbor list[target ind
       G.add edge(source node, target node)
```


Perform spectral embedding

nx.draw_spectral(G, with_labels=True)

Perform spectral embedding

nx.draw_spectral(G, with_labels=True)

Summary

Things to remember

- Graph Laplacian
- Laplacian and graph components
- Spectral graph embedding

Exercises for this topic

- Mining of Massive Datasets (2014) by Leskovec et al.
 - Exercises 10.4.6