#### Introduction to

# 商务智能

第2章 商务智能过程

Lecture 2: Developing BI applications

# 主要内容

- 2.1 商务智能系统的开发方法
- 2.2 数据仓库与数据库
- 2.3 在线分析处理与在线事务处理
- 2.4 商务智能与决策支持系统

### 2.1 商务智能系统的开发方法

- 商务智能系统的开发过程
- 商务智能系统成功的关键因素

- 规划
- 需求分析
- 设计
- 实现



- 规划
- 需求分析
- 设计
- 实现

- 在规划阶段,主要目标是选择要实施商务智能的业务部门或业务领域,从而解决企业的关键业务决策问题,识别使用商务智能系统的人员以及相应的信息需求,规划项目的时间、成本、资源的使用
  - 了解每个业务部门或业务领域的需求,收集他们当前急需解决的问题
    - ▶企业中哪些业务环节的支出费用太高?哪些 过程耗用时间太长?哪些环节的决策质量不 高

- 规划
- 需求分析
- 设计
- 实现

- 每类需求, 重要性和实现的难易程度
- 重要性方面,可以从三个方面进行衡量
  - ▶衡量商务智能提供的信息的可操作性;
  - ▶衡量实施商务智能可能给企业带来的回报 ,
  - ▶衡量实施商务智能可以帮助企业实现短期目标
- 实现的难易程度
  - ▶商务智能的实现需要涉及的范围
  - ▶衡量数据的可获取性

- 规划
- 需求分析
- 设计
- 实现

- 分析阶段,针对在规划阶段最终选择要实现商务智能的业务部门或业务领域,进行详细的需求分析
  - 收集需要的各类数据,
  - 选择需要的商务智能支撑技术,如数据 仓库、在线分析数据或者数据挖掘等

- 规划
- 需求分析
- 设计
- 实现

- 如果要创建数据仓库,则进行数据仓库的模型设计,常用的是多维数据模型。数据集市可以从数据仓库中抽取数据进行构建
- 在不构建数据仓库的情况下,也可以直接为某个业务部门设计和实现数据集市。
- 如果要实现OLAP解决问题,则要设计多维 分析的聚集操作类型。
- 如果要借助数据挖掘技术,则需要选择具体的算法

- 规划
- 需求分析
- 设计
- 实现

- 实现阶段,选择ETL工具实现源数据的抽取, 构建数据仓库和(或)数据集市
- 对数据仓库或数据集市的数据,选取并应用相应的查询或分析工具,包括增强型的查询、报表工具、在线分析处理工具、数据挖掘系统以及企业绩效管理工具等
- 在具体应用该系统之前,需要完成对系统的数据加载和应用测试,设计系统的访问控制和安全管理方法。

# 2.1.2 商务智能系统成功的关键因素

- 业务驱动
- 高层支持
- 业务人员和IT人员的合作
- 循序渐进
- 培训

### 2.2 数据仓库与数据库

- 联系表现在两个方面
  - 数据仓库中的大部分数据来自于业务系统的数据库中
  - 当前绝大多数数据仓库都是利用数据库系统来管理的
- 区别:构建目的、管理的数据、管理方法都不同
  - 数据库主要用于实现企业的日常业务运营,提高业务运营的效率;数据仓库的构建主要用于集成多个数据源的数据,这些数据最终用于分析
  - 数据库通常只包含当前数据,数据的存储尽量避免冗余,数据的组织按照业务过程涉及的数据实现,是应用驱动的。数据仓库中的数据是按照主题组织的,将某一主题的所有数据集成在一起,数据存在冗余

### 2.2 数据仓库与数据库

- 区别:构建目的、管理的数据、管理方法都不同
  - 数据库中的数据需要进行频繁的插入、删除、修改等更新操作,需要复杂的并发控制机制保证事务运行的隔离性。
  - 数据仓库中的数据主要用于分析处理,除了初始的导入和成批的数据清除操作之外,数据很少需要更新操作
  - 数据库中数据的更新操作的时效性很强,事务的吞吐率是个非常重要的指标。而数据仓库的数据量十分庞大,分析时通常涉及大量数据,时效性不是最关键的。数据仓库中的数据质量非常关键,不正确的数据将导致错误的分析结果。

# 2.3 在线分析处理与在线事务处理

#### OLTP vs. OLAP

- 在线事务处理(online transaction processing), 简称OLTP,是数据库管理系统的主要功能,用于 完成企业内部各个部门的日常业务操作。
- 在线分析处理(online analytical processing), 简称OLAP,是数据仓库系统的主要应用,提供数据的多维分析以支持决策过程

#### OLTP vs. OLAP

|       | 在线事务处理<br>OLTP | 在线分析处理<br>OLAP |
|-------|----------------|----------------|
| 用户    | 普通职员           | 管理人员,分析人员      |
| 功能    | 日常业务处理         | 决策支持           |
| 数据库设计 | 高度规范化          | 非规范化           |
| 数据处理  | 在线插入、删除、修改     | 批量加载和删除        |
| 使用方式  | 重复操作           | 即时的图表形式的交互查询   |
| 执行单元  | 短的事务处理         | 复杂的查询          |
| 数据    | 当前、细节数据        | 历史的汇总数据        |
| 性能指标  | 事务吞吐量          | 查询响应时间         |
| 事务特性  | 并发控制和事务恢复很重要   | 并发控制和事务恢复不重要   |

# 2.4 商务智能与决策支持系统

#### DSS

- 决策支持系统(decision support system)的概念最早由Scott Morton在20世纪70年代初提出
  - "一种交互式的基于计算机的系统,用于协助决策者使用数据和模型解决非结构化的问题"
  - 决策支持系统的用户主要是管理人员和业务分析人员, 主要目的是辅助决策者进行科学决策

## DSS的系统架构

Ralph H. Sprague和 Eric D. Carlson: 对话-数据-模型架构(Dialog-Data-Modeling, DDM)

决策支持系统由数据库管理系统、模型库管理系统和对话产生与管理系统三部分组成。后来又引入了知识库管

理系统



#### DSS

- 数据库管理系统用于抽取、存储、 更新决策所需的数据
- 模型库管理系统主要用于管理决策 所需的各种模型
- 知识库管理系统提供知识的表示、 存储和管理,用于支持定量模型无 法解决的决策过程,帮助用户建立、 应用和管理描述性、过程性和推理 性知识
- 对话产生与管理系统主要负责用户 与系统的交互。



#### DSS & BI

- DSS中数据库的数据集成功能较弱,而数据仓库技术,具有良好的数据集成、转换等功能
- 决策支持系统的知识库通常是设置好的,知识很少 发生变化,知识的类型和范围很窄。商务智能系统 则能从大量的数据中发现新颖有用的知识,提供更 加灵活的查询和报表功能以及多维分析功能,可以 对决策支持系统的知识库进行动态更新
- 商务智能系统与决策支持系统相比,在数据分析和 知识发现方面具有更强的功能,但是它只提供对决 策有帮助的信息,并不提供可能的决策方案

