

Optimising Llama2

Enhancing Efficiency and Scalability of Large Language Models with PyTorch

Chris Stylianou

Research Engineer

CaSToRC

eurocc.cyi.ac.cy

A Bit About Myself

- Research Engineer at CaSToRC
- Collaborations Task Leader for EuroCC2
- Area of expertise in High Performance Computing (HPC)
- PhD Candidate, EPCC
- Contact & Info:
 - Email: c.stylianou@cyi.ac.cy
 - Website: cstyl.github.io

Introduction

- Generative AI use cases have exploded in popularity recently!
- Text generation one particularly popular area.
 - ChatGPT, Llama, vLLM etc.
- PyTorch is a popular open-source ML/AI library widely used in the area of AI
 - Ease of Use and Flexibility
 - Strong community and industry support
 - Integration with Python ecosystem
 - Accelerated computing (GPU support)
 - Educational resources
- How fast we can run transformer inference with only pure, native PyTorch?

- Training GitHub Repo to be available at:
 - https://github.com/CaSToRC-Cyl/isc2024-tutorial/tree/main/gpt-fast
 - Follow README . md for every part in the slides.
- Complete tutorial:
 - https://github.com/pytorch-labs/gpt-fast
- To download Llama2 7B parameters model, go to
 - https://huggingface.co/meta-llama/Llama-2-7b
 - Stored in HF Transformer format
 - Shared directory with processed weights available for the training!
- Hardware needed: GPUs with BF16 & INT8 precision
 - E.g., A100 NVIDIA GPUs 40GB

Environment Setup

```
Connect to GWDG
$ ssh -i /path/to/ssh-key <username>@glogin.hlrn.de
# Shared Project Path
$ export SHARED PATH=/mnt/lustre-emmy-ssd/projects/isc2024 accel genai pytorch
# Make a local copy of the code
 git clone https://github.com/CaSToRC-CyI/isc2024-tutorial.git
# Activate environment
$ module load python/3.9.16
$ source $SHARED PATH/torch/bin/activate
# Code for the session
 cd isc2024-tutorial/gpt-fast
```


Figure 1: High-level overview of a Supercomputer [1].

A Note on the Scheduler Settings

```
#!/bin/bash -l
#SBATCH -- job-name=gpt-fast-baseline
#SBATCH --nodes=1
                                # Request 1 Node
#SBATCH --ntasks-per-node=1
                                # Request 1 Process
#SBATCH -G A100:1
                                # Request 1 GPU
                                # Request 12 threads (not used, but good for locality)
#SBATCH --cpus-per-task=16
                                # Request on Cluster with A100 NVIDIA GPUs
#SBATCH --partition=grete
#SBATCH --time=01:00:00
                                # Request access for 1 hour
#SBATCH --exclusive
                                # Request exclusive access on whole node
#SBATCH --output=%x.out
# Setup paths and Environment
SHARED PATH=/mnt/lustre-emmy-ssd/projects/isc2024 accel genai pytorch
EXEC_PATH=$SHARED_PATH/isc2024-tutorial/gpt-fast # Path to Code
CHECKPOINTS PATH=$SHARED PATH/qpt-fast-checkpoints # Path to Weights
module load python/3.9.16
source $SHARED_PATH/torch/bin/activate
export DEVICE=cuda
export MODEL REPO=meta-llama/Llama-2-7b
python $EXEC_PATH/generate.py --checkpoint_path $CHECKPOINTS_PATH/$MODEL_REPO/model.pth --prompt "Hello, my name is"
```


Establishing a Baseline

- Llama2 (Meta) model
 - **7B** Parameters (~13GB)
 - **BF16** Precision used for weights
- Inference
 - Prompt: "Hello, my name is"
 - Generate 5 samples, up to 200 tokens.
 - Batch Size = 1
- Resources configuration:
 - # of GPUs (Nodes): 1 (1)
 - CUDA Version: 11.8.0
 - PyTorch Version: 2.3

"Hello, my name is [Name], and I am a [insert activity or hobby here] enthusiast. I have been involved in this activity for [insert number of years] years, and I can tell you that it has brought me a great deal of joy and fulfillment."

Original Model:

https://github.com/meta-llama/llama/tree/main

Running Baseline Version (23.17 tokens/s)

The Problem with Baseline Model

- Modern GPUs are extremely efficient, with a lot compute power.
- Deep learning computations run entirely on GPU
 - CPU acts as the orchestrator, telling the GPU what to do next.
- Complex algorithms often require multiple GPU operations
 - → Multiple kernel launches
- Each kernel launch is associated with some overhead.
- When kernels sent individually and complete quickly:
 - CPU tries to keep up with the GPU (CPU-bound)
 - Combined overhead becomes noticeable, drop in overall performance!
- Solutions:
 - Rewrite in C++, raw CUDA?
 - Send more work to GPU at once?

A Compiler for PyTorch Models

- Purpose of torch.compile(): [Requires PyTorch >= 2.0]
 - Arbitrary Python functions can be optimised by passing the callable to torch.compile()
 - **JIT** Compilation, via minimal code changes.

Usage Example:

```
def foo(x, y):
    a = torch.sin(x)
    b = torch.cos(y)
    return a + b

opt_foo1 = torch.compile(foo)
print(opt_foo1(torch.randn(10, 10), torch.randn(10, 10)))
```

Key Considerations:

- Can also be used for torch.nn.Module
 - Compiles the model into optimised kernels during execution!
 - Useful if optimised model is used several times (Only have to pay once!)

A Compiler for PyTorch Models – LLM Case

- Speedup achieved via reducing Python overhead and GPU read/writes.
- torch.compile optimizes computational graphs in PyTorch to reduce CPU overhead.
 - Allows for larger model components to be compiled into a single optimized section.

Usage Example:

```
torch.compile(decode one token, mode="reduce-overhead", fullgraph=True)
```

- Available Modes:
 - *Default*: For large models, **low compile time**, no extra memory
 - Reduce-overhead: Reduces framework overhead, uses extra memory, good for small batches
 - Max-autotune: Produces the fastest model but takes a very long time to compile.
- fullgraph=True :
 - Minimizes the frequency and impact of "graph breaks"
 - i.e portions that cannot be compiled.
 - Ensures maximum potential utilization of torch.compile.

A Compiler for PyTorch Models – KV Caching

- A common optimisation trick for speeding up transformer inference.
 - Activations computed for the previous tokens are cached.
- As more tokens are generated, the "logical length" of the kv-cache grows.
 - Rellocating and copying every time the cache grows!
- Due to this dynamism torch.compile less efficient
 - i.e. need to recompile.

A Compiler for PyTorch Models – KV Caching

- Use "static" ky-cache:
 - Statically allocate the maximum size of kv-cache
 - Mask out the unused values in the attention portion

```
with torch.device(device):
    model.setup_caches(max_batch_size=1, max_seq_length=max_seq_length)
```

- Two-phase compilation:
 - 1. The prefill, where the entire prompt is processed
 - more dynamic, due to variable prompt length

```
prefill = torch.compile(prefill, dynamic=True,
fullgraph=True)
```

2. Decoding, where each token is generated (kv-cache static)

Running Compile Version (104.37 tokens/s)

Accelerating Models with Reduced Precision Operations

- Largest bottleneck now is the cost of loading weights from GPU global memory to registers.
 - Happens in each forward pass.
- Percentage of memory bandwidth used during inference given by Model Bandwidth Utilisation (MBU):

$$MBU = \frac{\# Params * \frac{bytes}{param} * \frac{tokens}{second}}{Memory Bandwidth}$$

• In our case, (7B Params, each FP16, and 104 tokens/s):

$$MBU = \frac{7B * 2 * 104}{1.6 \, TB} = 93\%$$

- Very close to the theoretical limit!
- We can change how many bytes each parameter is stored in!

Accelerating Models with Reduced Precision – From BF16 to INT8

- Quantize only the weights, computation still done in BF16.
 - Easy to apply with little to no loss of accuracy.
- Done once, offline!
 - Results in reduced memory footprint and faster execution on hardware.
- Here applied per-channel.
- Example:

$$X_q = round\left(\frac{127}{\max|X|} * X\right)$$

maps FP16 values into [-127, 127] 8-bit integers!

Quantized Matrix Multiplication becomes:

```
x: bf16[1, K]
weight: int8[K, N]
@torch.compile
def int8_mm(x, weight):
    return F.linear(x, weight.to(torch.bfloat16))
```


Running Quantized Version (133.07 tokens/s)

Speculative Decoding

- For every token generated, weights have to be loaded over and over.
 - Strict serial dependency in autoregressive generation.
- Speculative decoding breaks this dependency!
- Main Idea:
 - Larger model, which we want to use for inference (Verifier Model)
 - Smaller model, able to generate text much faster (Draft Model)
 - But less accurate!
 - Generate N tokens using the cheaper draft model, then process all of them in parallel using the verifier model
 - Those **not matching**, discard and **regenerate with Verifier Model**.
- Speculative decoding does not change the quality of the output.
- Around 50 lines of code implementation.
- Runtime performance varies depending on the generated text.

Running Speculative Version (102.85 tokens/s)

Tensor Parallelism

- So far, only one GPU was used!
- Running on more GPUs gives us access to more memory bandwidth.
- Parallelisation strategy is to split the processing of one token across multiple devices
 - Tensor Parallelism
- PyTorch supports this, although low-level API currently.
 - 150 lines of code, no model changes!
- Main idea:

Running Tensor Parallelism Version (250 tokens/s)

Other Optimisations

- Memory efficient attention implementations
 - Scaled dot product attention (SPDA)
- Semi-structured (2:4) Sparsity
 - Good for Sparsification/Prunning

From <u>developer.nvidia.com/blog/exploiting-ampere-structured-sparsity-with-cusparselt</u>

Summary

- Using native PyTorch offers ease of use without sacrificing performance.
- The code for optimisations is around 900 lines.
 - torch.compile
 - Quantization (BF16 to INT8)
 - Speculative Decoding (Expert 7B 16BF, Draft 7B INT8)
 - Tensor Parallelism
- From:
 - 23.17 tokens/second to 250!
 - 1 GPU to 4 GPUS.
 - Overhead-bound to memory bandwidth bound.

Acknowledgements

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 101101903.

References

1. https://gu-eresearch.github.io/hpcWorkshop/content/12-logOntoHPC.html