GLOBAL PROJECT BASED LEARNING

Team 1

FINAL PRESENTATION

OUTLINE

- About the Data
- Data Preprocessing
- Improvements after the mid-term presentation
 - Feature Engineering
 - Modeling (Random Forest Regression)
- Final result
- What we learned throughout this program

ABOUT OUR TEAMS

ABOUT THE DATA

- Time series data with range
 - January 1, 2013 to August 15,
 2017 for train data
 - August 16, 2017 to August 31,
 2017 for test data.
- The goal is to **predict sales** for product families sold in data test.
- Have some additional data like oil price, holiday/event, and store.

Data Train

	id	date	store_nbr	family	sales	onpromotion
0	0	2013-01-01	1	AUTOMOTIVE	0.0	0
1	1	2013-01-01	1	BABY CARE	0.0	0
2	2	2013-01-01	1	BEAUTY	0.0	0
3	3	2013-01-01	1	BEVERAGES	0.0	0
4	4	2013-01-01	1	BOOKS	0.0	0

Data Test

	id	date	store_nbr	family	onpromotion
0	3000888	2017-08-16	1	AUTOMOTIVE	0
1	3000889	2017-08-16	1	BABY CARE	0
2	3000890	2017-08-16	1	BEAUTY	2
3	3000891	2017-08-16	1	BEVERAGES	20
4	3000892	2017-08-16	1	BOOKS	0

ABOUT THE DATA

Data Oil

date	dcoilwtico
uate	GCOTTM CTCO

1213	2017-08-25	47.65
1214	2017-08-28	46.40
1215	2017-08-29	46.46
1216	2017-08-30	45.96
1217	2017-08-31	47.26

Daily oil price. Includes values during timeframes

Data Store

	store_nbr	city	state	type	cluster
0	1	Quito	Pichincha	D	13
1	2	Quito	Pichincha	D	13
2	3	Quito	Pichincha	D	8
3	4	Quito	Pichincha	D	9
4	5	Santo Domingo	Santo Domingo de los Tsachilas	D	4

Store metadata. Includes city, state, type, and cluster (grouping of similar stores)

ABOUT THE DATA

Data Holiday/Events

	date	type	locale	locale_name	description	transferred
0	2012-03-02	Holiday	Local	Manta	Fundacion de Manta	False
1	2012-04-01	Holiday	Regional	Cotopaxi	Provincializacion de Cotopaxi	False
2	2012-04-12	Holiday	Local	Cuenca	Fundacion de Cuenca	False
3	2012-04-14	Holiday	Local	Libertad	Cantonizacion de Libertad	False
4	2012-04-21	Holiday	Local	Riobamba	Cantonizacion de Riobamba	False

Holidays & Events, with metadata. A holiday that is transferred officially falls on that calendar day, but was moved to another date.

DATA PREPROCESSING

Focusing attention on:

- Events (holiday, oil, etc..)
- Periodic parameters (by week, by month)

Adding and editing variables

- Merge & align the datas
- Filling missing oil value by using scipy.interporate (method = linear)

THE IDEAS OF PREPROCESSING

Analyzing Data (Oil)

THE IDEAS OF PREPROCESSING

Analyzing Data (Train)

THE IDEAS OF PREPROCESSING

Analyzing Data (Train)

Improvements After Mid-Term Presentations

First, we try to use Linear Regression.

Linear Regression: All explanatory variables must be <u>numeric</u>.

- → We have to change categorical variable to something available
 - One-hot Encording

Make variable to TRUE/FALSE

source:https://iq.opengenus.org/one-hot-encoding-in-tensorflow/

How to conduct Linear Regression?

- apply "one-hot" to categorical variable (like "family" of product)
- also use variables which correlate with "sales"(like "onpromotion" value of product)
- put values togather to DataFrame

train data (consist of 74 columns)

	id	date	sales	onpromotion	family_AUTOMOTIVE	CARE	family_BEAUTY	family_BEVERAGES	family_BOOKS	family_BREAD/BAKERY	 month_10	month_11	month_12	days_0	days_1	days_2	days_3	days_4	days_5	days_6
0	0	2013- 01-01	0.0	0	True	False	False	False	False	False	 False	False	False	False	True	False	False	False	False	False
1	1	2013- 01-01	0.0	0	False	True	False	False	False	False	 False	False	False	False	True	False	False	False	False	False
2	2	2013- 01-01	0.0	0	False	False	True	False	False	False	 False	False	False	False	True	False	False	False	False	False
3	3	2013- 01-01	0.0	0	False	False	False	True	False	False	 False	False	False	False	True	False	False	False	False	False
4	4	2013- 01-01	0.0	0	False	False	False	False	True	False	 False	False	False	False	True	False	False	False	False	False

OUTPUT: NOT GOOD SCORE

But why...?

notebook8382691a3c - Version 1

Complete · 15h ago

2.29044

• One-hot Encording advantages: can be used for various type of Machine Learning

ex) Linear Regression, etc...

disadvantages: Too many Explanatory Variable

→ get less accurate

Label Encording advantages: small number of Explanatory variable

disadvantages: can be used <u>only</u> for <u>decision tree</u>

→ We need "Decison tree-based" and besides, "Regression" model

THIS IS "RANDOM FOREST REGRESSION"

and also XG-boost, LightGBM...

FEATURE ENGINEERING

- Make new features : Average per Store, Average Sales per Month
- The reason is to decrease noise and small fluctuative so the model can be easily see the trend of data
- Another reason is to normalize data, so the model can be learn with same scale

```
#average per store

store_nbr_mean = train.groupby("store_nbr").sales.mean().reset_index()
store_nbr_mean.columns = ["store_nbr", "store_nbr_mean"]
store_nbr_mean.head()
```

```
#average sales per month

month_mean = train.groupby("nbr_of_days").sales.mean().reset_index()
month_mean.columns = ["nbr_of_days", "month_mean"]
month_mean.head(20)
```

FEATURE ENGINEERING

- Based on the graph, the difference in total sales between the products with promotion and not is very big.
 Besides that, the scatter plot shows the relation closely to linear
- So we make new feature named is_promotion

Relationship between On Promotion and Total Sales

Relationship between Total Promotions and Total Sales per Product Family

FEATURE ENGINEERING

• We use moving averages to identify the trends, reducing noise and outliers so the model can learn easily based on the mean value in past time.

RANDOM FOREST REGRESSION

Decision Tree:

- Each Node has question and the answer connects to another node
- Ex. Is it holiday? Is the oil value above 50? Is the family_mean value above 100?
- Many branch make regression more accurate
- The aim of Preprocessing was to make data fit into decision tree

RANDOM FOREST REGRESSION

How it work:

- Step 1: split data into many pieces
 (120 pieces for this project)
- Step 2: each data of pieces were put into corresponding decision tree
- Step 3: Take mean of decision tree values to predict value

For classification, we do majority vote instead of taking mean.

RandomForest

Bagging

Parallel

XGBoost

Boosting

Sequential

RANDOM FOREST REGRESSION

Characteristics:

Pros

- Effective to multi-variate data (characteristic of decision tree based model)
- takes less time (than XGBoost)
- Easy to implement using Scikit-Learn

Cons

- Less accurate than XGBoost (still accurate than Linear Regression though)
- Difficult to deal with missing values (Decision Tree Model Problem)

We tried to use linear regression at first, but since the data is multivariate, we decided to use random-forest-regressor as our main model.

RESULTS

Using RandomForestRegressor (In Mid Term Presentation)

• Kaggle : about 0.66

Using RandomForestRegressor

• Kaggle : about 0.61974

Submissions

COMPARISON

Using **XGBoost** (learning rate = 0.1)

• In notebook : 1.3250

• Kaggle score: 0.98921

RMSLE: 1.3250

submission.csv

Complete · Abdillah Dwi Cahya · 5d ago

0.98921

Using **LightGBM** (learning rate = 0.01)

• In notebook: 1.5813

```
[LightGBM] [Info] Start training from score 358.114891
[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).

RMSLE: 1.5813
```

WHAT WE LEARNED THROUGH THIS PROGRAM

We learned:

- How to perform Time Series Forecasting ex) data-handling, Machine Learning, etc...
- The importance of work together
- Cultural exchange and mutual understanding

Q&A