Cálculo Diferencial e Integral II

Ficha de trabalho 6

(Teorema de Fubini)

- 1. Calcule o integral da função indicada no rectângulo $\{(x,y) \in \mathbb{R}^2 : 0 \le x \le 2, 0 \le y \le 1\}$.
 - a) $f(x,y) = xy^3$.
 - b) $f(x,y) = x\cos(xy)$.
- 2. Invertendo a ordem de integração, calcule:
 - a) $\int_0^1 \left(\int_{2y}^2 \cos(x^2) \, dx \right) dy$.
 - b) $\int_0^1 \left(\int_{\arcsin y}^{\pi/2} y \sin x \, dx \right) dy$.
- 3. Inverta a ordem de integração dos seguintes integrais duplos:
 - a) $\int_0^1 \left(\int_{x^2-1}^{\sqrt{1-x^2}} f(x,y) dy \right) dx$.
 - b) $\int_0^1 \left(\int_{\sqrt{1-x^2}}^{2-x} f(x,y) dy \right) dx$.
 - c) $\int_0^{2\pi} \left(\int_{-1}^{\sin y} f(x, y) dx \right) dy.$
- 4. Calcule a área da região

$$D = \{(x, y) \in \mathbb{R}^2 : 0 < 2x < y < 3 - x^2\},\$$

usando um integral iterado da forma $\int (\int dx)dy$. Calcule ainda (usando a ordem de integração que entender) a coordenada x do centróide.

- 5. Escreva expressões para o volume de V na ordem indicada.
 - a) $V=\{(x,y,z)\in\mathbb{R}^3\colon x\geq 0,y\geq 0,x+y\leq 1,0\leq z\leq x+y\}$ nas ordens $\int\left(\int\left(\int dz\right)dx\right)dy$ e $\int\left(\int\left(\int dy\right)dx\right)dz$.
 - b) $V=\{(x,y,z)\in\mathbb{R}^3:x^2+y^2\leq 1\;;\;y^2+z^2\leq 1\}$ nas ordens $\int\left(\int\left(\int dz\right)dx\right)dy$ e $\int\left(\int\left(\int dz\right)dy\right)dx.$
 - c) $V=\{(x,y,z)\in\mathbb{R}^3:\frac{x}{2}\leq y\leq x\;;\;0\leq z\leq x\;;\;x\leq 1\}$ nas ordens $\int\left(\int\left(\int dx\right)dz\right)dy$ e $\int\left(\int\left(\int dx\right)dy\right)dz$.
- 6. Para cada um dos conjuntos seguintes escreva uma expressão para o respectivo volume, usando um único integral triplo:
 - a) $A = \{(x, y, z) \in \mathbb{R}^3 : \frac{x}{2} \le y \le x ; 0 \le z \le x ; x \le 1\},\$
 - b) $B = \{(x, y, z) \in \mathbb{R}^3 : \overline{x^2} + y^2 \le 1 ; 0 \le z \le x^2 y^2 ; x > 0\}.$
- 7. Considere a região

$$V = \{(x, y, z) \in \mathbb{R}^3 : x + y + 2z \le 1 \; ; \; x + y - 2z \le 1 \; ; \; x \ge 0 \; ; \; y \ge 0 \}.$$

Calcule o volume de V na forma:

- a) $\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \cdots dy \right) dx \right) dz$.
- b) $\int_{\cdots}^{\cdots} \left(\int_{\cdots}^{\cdots} \left(\int_{\cdots}^{\cdots} \cdots dz \right) dx \right) dy$.
- 8. Calcule $\int_V f$ sendo $f:\mathbb{R}^3 \to \mathbb{R}$ a função definida por f(x,y,z)=z e V o sólido limitado pelos planos $x=0,\ x=1,\ y=0,\ y=1,\ z=0$ e z=x+y.
- 9. Calcule a primeira coordenada do centróide do sólido limitado pela superfície $z=x^2-y^2$, o plano xy e os planos x=0 e x=1.