Trabalho de Sistemas Digitais

2022/2023

Integrantes do grupo:

Tiago Pinto 54718

Henrique Anacleto 54897

Objetivo do trabalho:

Criar um sistema de controle de uma máquina de venda automática de café. Deve ser implementado com 2 módulos diferentes, moedeiro e módulo para fazer o café, que depois deverão ser ligados para formar o sistema completo. Deveremos utilizar o procedimento usual para a síntese de circuitos sequenciais, e ter em conta os componentes descritos pelo professor. Neste relatório estarão todos os passos, para a realização do trabalho.

MOEDEIRO

1 - Entradas: M1 (Moedas 0,10 €) e M2 (Moedas 0,20 €)

Saídas: L (Lâmpada do moedeiro)

Estados: a (0€), b (0,10€), c (0,20€) e d (0,30€)

2- Modelo ASM

3- Tabelas de transição

				Qn Qn+1		U+T		
M2	M1	Estado	Estado	X1	X0	X1	X0	L
		Atual	Seguinte					
0	0	a	а	0	0	0	0	0
-	1	а	b	0	0	0	1	0
1	-	а	С	0	0	1	0	0
0	0	b	b	0	1	0	1	0
-	1	b	С	0	1	1	0	0
1	-	b	d	0	1	1	1	0
0	0	С	С	1	0	1	0	0
_	1	С	d	1	0	1	1	0
1	-	С	d	1	0	1	1	0
-	-	d	а	1	1	0	0	1

4- Iremos utilizar os flip flops Edge Triggered D porque são os mais simples e os mais fáceis de compreensão , para este tipo de sistemas.

5- Utilização dos flip flops e respetivas equações

M2	M1	X1	X0	D1	D0	L
0	0	0	0	0	0	0
-	1	0	0	0	1	0
1	-	0	0	1	0	0
0	0	0	1	0	1	0
-	1	0	1	1	0	0
1	-	0	1	1	1	0
0	0	1	0	1	0	0
-	1	1	0	1	1	0
1	-	1	0	1	1	0
-	-	1	1	0	0	1

6- Logigrama

MÓDULO PARA SERVIR O CAFÉ

1-Entradas: BI (Botão de início)

Saídas: LCP (Lâmpada café pronto)

Estados: a (estado inicial), b (doseador de café), c (bomba de água 1ºciclo), d(bomba de água 2ºciclo), e (doseador de açúcar) e f (café pronto)

2- Modelo ASM

3- Tabelas de transição

Qn Q n+1 Estado X2 X2 X1 Х0 X1 Х0 LCP ВΙ Estado Seguinte Atual а а b a b С С d d f e f а

4- Iremos utilizar os flip flops Edge Triggered D

5- Utilização dos flip flops e respetivas equações

BI	X2	X1	X0	D2	D1	D0	LCP
0	0	0	0	0	0	0	0
1	0	0	0	0	0	1	0
1	0	0	1	0	1	0	0
1	0	1	0	0	1	1	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	1	0
1	1	0	1	0	0	0	1

D0= BI . ~X0

LCP= X2 . X0

6- Logigrama

Display de 7 segmentos

1- Tabelas de transição:

M2	M1	а	b	С	d	e	f	g
0	0	1	1	1	1	1	1	0
0	1	0	1	1	0	0	0	0
1	0	1	1	0	1	1	0	1
1	1	1	1	1	1	0	0	1

2- Equações das saídas:

 $a = ^{\sim}M1 + M2;$

b = 1;

 $c = ^{\sim}M2 + M1;$

 $d = ^{\sim}M1 + M2;$

e = ~M1;

f = ~M2 . ~M1;

g = M2;

3- Logigrama;

CIRCUITO FINAL

