

Astuces en text-mining: removeSparseTerms

Text-mining Basics : Tips and Tricks R(S)

Par Thibaut LOMBARD
Décembre 2016

Parcimonie Document/Fréquence

Définition :

La parcimonie est la précision relative au rapport document/fréquence d'un ou plusieurs termes contenu dans une matrice (triplet).

Cette précision dépends :

- Du nombre de termes contenu dans le document
- Du nombre de document(s) dans laquelle la fonction est exécutée.

Formule

$$df_j > N*(1- heta)$$

Pour

- I < θ < □
- La lettre j (le terme)
- N le nombre de documents

Sparse.r

```
packages <- function(paquets)
{
    new.paquets <- paquets[!(paquets %in% installed.packages()[, "Package"])] if
    (length(new.paquets))
    install.packages(new.paquets, dependencies = TRUE, repos='http://cran.rstudio.com/')
    sapply(paquets, require, character.only = TRUE)
}
packages(c("NLP", "tm", "NMF", "proxy"))</pre>
```

Rscript sparse.r

inspect(maTdm)

```
[1] "Inspection de la matrice Term document maTdm avec as.matrix()"
   <<DocumentTermMatrix (documents: 3, terms: 11)>>
Non-/sparse entries: 13/20
Sparsity
               : 61%
Maximal term length: 10
Weighting : term frequency (tf)
   Terms
Docs avec bâchez dans est fakir fakir. les matrice pyjamas queue wagon-taxi
```


Le calcul de sparsity (parcimonie) 50%

c <- removeSparseTerms (maTdm, 0.5)</pre>

```
<<DocumentTermMatrix (documents: 3, terms: 2)>>
Non-/sparse entries: 4/2
Sparsity : 33%
Maximal term length: 10
Weighting : term frequency (tf)
```

Terms

Docs	matrice	wagon-taxi
1	0	1
2	1	1
3	1	0

d <- removeSparseTerms (maTdm, 0.9)</pre>

Le calcul de sparsity (parcimonie) 90%

Création des annotated Heatmap

```
b <- as.matrix(maTdm)
ch <- as.matrix(removeSparseTerms(maTdm, 0.5))
dh <- as.matrix(removeSparseTerms(maTdm, 0.9))

aheatmap(b, filename = "sparse-heatmap-matrix.png")
aheatmap(ch, filename = "sparse-heatmap-50percent.png")
aheatmap(dh, filename = "sparse-heatmap-99percent.png")</pre>
```


Annotated Heatmap (matrice maTdm)

Annotated Heatmap Parcimonie à 50%

Annotated Heatmap Parcimonie à 90%

E Agency

Matrice de similarité (méthode cosinus) Eisen et al. 1998

$$d_{eisen}(\mathbf{x}, \mathbf{y}) = 1 - \frac{\mathbf{x}'\mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} = 1 - \frac{|\sum_{i=1}^{m} x_i y_i|}{\sqrt{\sum_{i=1}^{m} x_i^2 \sum_{i=1}^{m} y_i^2}}$$

distance_cosinus <- dist(as.matrix(t(b)), method = "cosine")
distance_cosinus</pre>

avec	bâchez	dans	est	fakir	fakir.	
bâchez	0.0000000					
dans	1.0000000	1.0000000				
est	1.0000000	1.0000000	0.0000000			
fakir	1.0000000	1.0000000	0.0000000	0.0000	000	
fakir.	0.0000000	0.0000000	1.0000000	1.0000	000 1.0000000)
les	0.0000000	0.0000000	1.0000000	1.0000	000 1.0000000	0.0000000
matrice	1.0000000	1.0000000	0.2928932	0.2928	932 0.2928932	1.000000
pyjamas	0.0000000	0.0000000	1.0000000	1.0000	000 1.0000000	0.0000000
queue	0.0000000	0.0000000	1.0000000	1.0000	000 1.0000000	0.0000000
wagon-tax	i 0.2928932	0.2928932	1.0000000	1.0000	000 1.0000000	0.2928932

Clustering similarité cosinus (Eisen)

Distance Matrix (similarité) Cosinus

distance_cosinus

Matrice de dissimilarité , calcul de distance Euclidienne

$$d_{euc}(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{m} (x_i - y_i)^2}$$

distance_Euclidienne <- dist(as.matrix(t(b)), method = "Euclidean")
distance Euclidienne</pre>

	avec	bâchez	dans	est f	akir f	akir.	les	
	bâchez	0.00000	0					
	dans	1.41421	4 1.414214					
	est	1.41421	4 1.414214	0.000000				
	fakir	1.41421	4 1.414214	0.00000	0.00000	00		
	fakir.	0.00000	0 0.000000	1.414214	1.41421	4 1.414214		
	les	0.00000	0 0.00000	1.414214	1.41421	4 1.414214	0.000000	
	matrice	1.73205	1 1.732051	1.000000	1.00000	00 1.000000	1.732051	1.732051
	pyjamas	0.00000	0 0.00000	1.414214	1.41421	4 1.414214	0.000000	0.000000
	queue	0.00000	0 0.00000	1.414214	1.41421	4 1.414214	0.000000	0.000000
	wagon-ta	axi 1.00000	0 1.000000	1.732051	1.73205	51 1.732051	1.000000	1.000000

Clustering dissimilarité Euclidienne

Distance Matrix (dissimilarité) Euclidienne

distance_Euclidienne

Création d'un graphique de clustering

```
fit <- hclust(distMatrix)
png(filename="sparse-clust.png", width=800, height=600)
plot(fit)
rect.hclust(fit, k = 3, border="blue")</pre>
```

