

QUALITY CONTROL REPORT

- EM2121437 Work Order Page : 1 of 9

Client : Dept for Environment & Water Laboratory : Environmental Division Melbourne

: Mr FRANK MANGERUCA : Kieren Burns Contact Contact

Address Address : GPO BOX 2834 : 4 Westall Rd Springvale VIC Australia 3171

Telephone Telephone : +61881625130

Project : HCHB - Phase 1 Date Samples Received : 28-Oct-2021 Order number **Date Analysis Commenced** : 28-Oct-2021

: 12-Nov-2021 C-O-C number Issue Date

Site

ISO/IEC 17025 - Testing No. of samples analysed : 22

Accreditation No. 825

Accredited for compliance with

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

: 22

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

ADELAIDE SA. AUSTRALIA 5001

Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits

Matrix Spike (MS) Report; Recovery and Acceptance Limits

: AD/052/20 V2

Signatories

Sampler

Quote number

No. of samples received

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Signatories	1 Ostron	Accreditation Category

Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Dilani Fernando	Laboratory Coordinator	Melbourne Inorganics, Springvale, VIC
Jarwis Nheu	Senior Inorganic Chemist	Melbourne Inorganics, Springvale, VIC
Nikki Stepniewski	Senior Inorganic Instrument Chemist	Melbourne Inorganics, Springvale, VIC
Samantha Smith	Assistant Laboratory Manager	WRG Subcontracting, Springvale, VIC

Page : 2 of 9 Work Order : EM2121437

Client : Dept for Environment & Water

Project : HCHB - Phase 1

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EK055G-SW: Ammo	nia as N by Discrete Analyse	er in Saline Water (QC Lot: 3984443)							
EM2121437-001	1.8km west of Salt Creek	EK055G-SW: Ammonia as N	7664-41-7	0.02	mg/L	0.08	0.10	18.1	No Limit
EK055G-SW: Ammo	nia as N by Discrete Analyse	er in Saline Water (QC Lot: 3997898)							
EM2121437-002	3.2km south of Salt Creek (land) NR	EK055G-SW: Ammonia as N	7664-41-7	0.02	mg/L	<0.02	0.02	0.0	No Limit
EM2121437-018	Tauwitchere U/S	EK055G-SW: Ammonia as N	7664-41-7	0.02	mg/L	0.29	0.22	27.5	0% - 50%
EA015: Total Dissolv	ved Solids dried at 180 ± 5 °C	(QC Lot: 3991400)							
EM2121419-002	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	1950	2020	3.7	0% - 20%
EM2121266-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	3060	3090	0.8	0% - 20%
EA015: Total Dissolv	ved Solids dried at 180 ± 5 °C	(QC Lot: 3991403)							
EM2121437-006	McGrath Flat North	EA015H: Total Dissolved Solids @180°C		10	mg/L	87900	88800	1.0	0% - 20%
EM2121437-015	South Policeman Point / Seagull Island	EA015H: Total Dissolved Solids @180°C		10	mg/L	77300	78600	1.6	0% - 20%
EA045: Turbidity (Q	C Lot: 3983275)								
EM2121333-001	Anonymous	EA045: Turbidity		0.1	NTU	10.2	9.0	12.3	0% - 20%
EM2121437-011	North Jacks Point	EA045: Turbidity		0.1	NTU	11.3	11.2	0.9	0% - 20%
EA045: Turbidity (Q	C Lot: 3984860)								
EM2119635-016	Anonymous	EA045: Turbidity		0.1	NTU	13.9	13.6	2.2	0% - 20%
EM2121437-002	3.2km south of Salt Creek (land) NR	EA045: Turbidity		0.1	NTU	6.4	6.3	2.0	0% - 20%
ED037P: Alkalinity b	y PC Titrator (QC Lot: 3996)	233)							
EM2121437-002	3.2km south of Salt Creek (land) NR	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	11	16	38.0	0% - 50%

Page : 3 of 9
Work Order : EM2121437

Client : Dept for Environment & Water

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
ED037P: Alkalinity b	y PC Titrator (QC Lot: 3996	233) - continued							
EM2121437-002	3.2km south of Salt Creek (land) NR	ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	236	232	1.6	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	247	248	0.6	0% - 20%
EM2121437-012	Parnka Point NR	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	4	116	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	232	230	1.1	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	232	233	0.5	0% - 20%
ED037P: Alkalinity b	y PC Titrator (QC Lot: 3996	5234)							
EM2121576-004	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	1360	1340	1.2	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	1360	1340	1.2	0% - 20%
EM2121562-002	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	666	672	0.8	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	666	672	0.8	0% - 20%
ED045G: Chloride by	y Discrete Analyser (QC Lo	t: 3983513)							
EM2121260-009	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	1970	1970	0.2	0% - 20%
EM2121260-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	207	203	1.9	0% - 20%
ED045G: Chloride by	y Discrete Analyser (QC Lo	t: 3983518)							
EM2121459-003	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	122	124	1.7	0% - 20%
EM2121437-011	North Jacks Point	ED045G: Chloride	16887-00-6	1	mg/L	47200	43400	8.4	0% - 20%
ED045G: Chloride by	Discrete Analyser (QC Lo								
EM2121437-009	Murray Mouth NR	ED045G: Chloride	16887-00-6	1	mg/L	631	654	3.7	0% - 20%
EM2121394-002	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	1040	1010	3.0	0% - 20%
EG052G: Silica by D	iscrete Analyser (QC Lot: 3								
EM2121437-018	Tauwitchere U/S	EG052G: Reactive Silica		0.05	mg/L	0.25	0.24	0.0	No Limit
EM2121437-001	1.8km west of Salt Creek	EG052G: Reactive Silica		0.05	mg/L	1.40	1.38	1.7	0% - 20%
FG052G: Silica by D	iscrete Analyser (QC Lot: 3								
EM2121437-022	Villa de Yumpa NR	EG052G: Reactive Silica		0.05	mg/L	0.43	0.36	16.5	No Limit
EM2121437-002	3.2km south of Salt Creek	EG052G: Reactive Silica		0.05	mg/L	1.10	1.06	3.5	0% - 20%
LW2121407 002	(land) NR	LG032G. Neactive Silica		0.00	mg/L	1.10	1.00	0.0	070 2070
FK057G: Nitrite as I	N by Discrete Analyser (QC	Lot: 3983512)							
EM2121260-010	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EM2121260-010	Anonymous	EK057G: Nitrite as N EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
	N by Discrete Analyser (QC		11101 00 0	5.51	9, =	3.01	3.01	5.0	. TO Entire
EM2121437-011	North Jacks Point		14797-65-0	0.01		40.01	40.04	0.0	No Limit
		EK057G: Nitrite as N	14/9/-05-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
	N by Discrete Analyser (QC								
EM2121437-012	Parnka Point NR	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit

Page : 4 of 9
Work Order : EM2121437

Client : Dept for Environment & Water

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EK057G: Nitrite as	N by Discrete Analyser (QC	Lot: 3984987) - continued							
EM2121394-002	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK059G: Nitrite plu	s Nitrate as N (NOx) by Disc	crete Analyser (QC Lot: 3984442)							
EM2121371-009	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.06	0.06	0.0	No Limit
EM2121437-013	Salt Creek Outlet	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK059G: Nitrite plu	s Nitrate as N (NOx) by Disc	crete Analyser (QC Lot: 3997899)							
EM2121437-002	3.2km south of Salt Creek (land) NR	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit
EM2121437-018	Tauwitchere U/S	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK061G: Total Kjeld	lahl Nitrogen By Discrete An	nalyser (QC Lot: 3995086)							
EM2121437-001	1.8km west of Salt Creek	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	1.4	1.3	11.5	0% - 50%
EM2121437-010	Noonameena	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.9	0.8	17.7	No Limit
EK061G: Total Kjelo	lahl Nitrogen By Discrete An	alyser (QC Lot: 3995089)							
EM2121528-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.3	0.2	0.0	No Limit
EM2121437-021	Tilley Swamp Drain Watercourse Outlet NR	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.4	0.3	0.0	No Limit
EK067G: Total Phos	sphorus as P by Discrete An	alyser (QC Lot: 3995087)							
EM2121437-010	Noonameena	EK067G: Total Phosphorus as P		0.01	mg/L	0.66	# 0.46	34.4	0% - 20%
EM2121437-001	1.8km west of Salt Creek	EK067G: Total Phosphorus as P		0.01	mg/L	0.62	0.56	9.4	0% - 20%
EK067G: Total Phos	sphorus as P by Discrete An	alyser (QC Lot: 3995088)							
EM2121528-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.04	0.03	0.0	No Limit
EM2121437-021	Tilley Swamp Drain Watercourse Outlet NR	EK067G: Total Phosphorus as P		0.01	mg/L	0.02	0.03	0.0	No Limit
EK071G: Reactive P	Phosphorus as P by discrete	analyser (QC Lot: 3983516)							
EM2121437-017	Tauwitchere D/S	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EM2121437-001	1.8km west of Salt Creek	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.01	<0.01	0.0	No Limit
EK071G: Reactive P	Phosphorus as P by discrete	analyser (QC Lot: 3984990)							
EM2121437-021	Tilley Swamp Drain Watercourse Outlet NR	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.01	<0.01	0.0	No Limit
EM2121437-002	3.2km south of Salt Creek (land) NR	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EP002: Dissolved O	rganic Carbon (DOC) (QC L	ot: 3984189)							
EM2121437-001	1.8km west of Salt Creek	EP002: Dissolved Organic Carbon		1	mg/L	25	25	0.0	0% - 20%
EM2121446-001	Anonymous	EP002: Dissolved Organic Carbon		1	mg/L	4	4	0.0	No Limit
EP002: Dissolved O	rganic Carbon (DOC) (QC L	ot: 3998818)							
EM2121437-002	3.2km south of Salt Creek (land) NR	EP002: Dissolved Organic Carbon		1	mg/L	24	26	9.3	No Limit
EM2121437-021	Tilley Swamp Drain Watercourse Outlet NR	EP002: Dissolved Organic Carbon		1	mg/L	5	6	0.0	No Limit

Page : 5 of 9
Work Order : EM2121437

Client : Dept for Environment & Water

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EP005: Total Organi	c Carbon (TOC) (QC Lot: 3	984190)								
EM2121437-001	1.8km west of Salt Creek	EP005: Total Organic Carbon		1	mg/L	30	30	0.0	0% - 20%	
EM2121437-017	Tauwitchere D/S	EP005: Total Organic Carbon		1	mg/L	10	8	14.2	No Limit	
EP005: Total Organi	c Carbon (TOC) (QC Lot: 3	998819)								
EM2121437-002	3.2km south of Salt Creek (land) NR	EP005: Total Organic Carbon		1	mg/L	32	31	0.0	0% - 20%	
EM2121437-021	Tilley Swamp Drain Watercourse Outlet NR	EP005: Total Organic Carbon		1	mg/L	6	6	0.0	No Limit	
EP008: Chlorophyll	(QC Lot: 3992506)									
EM2121437-010	Noonameena	EP008B: Chlorophyll b		1	mg/m³	<1	<1	0.0	No Limit	

Page : 6 of 9 Work Order : EM2121437

Client : Dept for Environment & Water

Project : HCHB - Phase 1

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

b-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report					
			Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)		
CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
ine Water (QCLot:	3984443)								
7664-41-7	0.02	mg/L	<0.02	0.5 mg/L	101	81.1	124		
ine Water (QCLot:	3997898)								
7664-41-7	0.02	mg/L	<0.02	0.5 mg/L	106	81.1	124		
ot: 3991400)									
	10	mg/L	<10	2000 mg/L	101	91.0	110		
			<10	293 mg/L	101	91.0	110		
ot: 3991403)									
	10	mg/L	<10	2000 mg/L	99.4	91.0	110		
			<10	293 mg/L	98.6	91.0	110		
	0.1	NTU	<0.1	40 NTU	99.5	88.1	110		
	0.1	NTU	<0.1	40 NTU	99.5	88.1	110		
		mg/L		200 mg/L	98.1	85.0	116		
		mg/L		200 mg/L	108	85.0	116		
3)									
·	1	ma/L	<1	10 mg/L	115	85.0	115		
		3	<1	1000 mg/L	107	85.0	122		
8)									
16887-00-6	1	mg/L	<1	10 mg/L	97.0	85.0	115		
		-	<1	1000 mg/L	107	85.0	122		
8)									
16887-00-6	1	mg/L	<1	10 mg/L	91.2	85.0	115		
		-	<1	1000 mg/L	103	85.0	122		
	0.05	mg/L	<0.05	5 mg/L	107	78.9	118		
					, , , , , , , , , , , , , , , , , , ,				
	0.05	mg/L	<0.05	5 mg/L	109	78.9	118		
3512)		-		_					
	0.01	ma/L	<0.01	0.5 mg/L	98.5	90.9	112		
	ine Water (QCLot: 7664-41-7 ine Water (QCLot: 7664-41-7 ot: 3991400) ot: 3991403) ot: 3991403) ot: 3991403 ot: 39914	ine Water (QCLot: 3984443) 7664-41-7	ine Water (QCLot: 3984443) 7664-41-7 0.02 mg/L ine Water (QCLot: 3997898) 7664-41-7 0.02 mg/L ot: 3991400) 10 mg/L ot: 3991403) 0.1 NTU 0.1 NTU 0.1 NTU mg/L 3) 16887-00-6 1 mg/L 8) 16887-00-6 1 mg/L 8) 16887-00-6 1 mg/L	Report CAS Number LOR Unit Result	Report Spike Concentration	Report Spike Spike Recovery (%) LCS	Report Spike Spike Recovery (%) Acceptable LOS Low		

Page : 7 of 9
Work Order : EM2121437

Client : Dept for Environment & Water

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EK057G: Nitrite as N by Discrete Analyser (QCLot:	3983517)								
EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	97.9	90.9	112	
EK057G: Nitrite as N by Discrete Analyser (QCLot:	3984987)								
EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	96.4	90.9	112	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete	Analyser (QCLot: 3984	442)							
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	106	90.0	117	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete	Analyser (QCLot: 3997	'899)							
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	106	90.0	117	
EK061G: Total Kjeldahl Nitrogen By Discrete Analyse	er (QCLot: 3995086)								
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	5 mg/L	70.8	70.0	117	
EK061G: Total Kjeldahl Nitrogen By Discrete Analysi	er (QCLot: 3995089)								
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	5 mg/L	82.6	70.0	117	
EK067G: Total Phosphorus as P by Discrete Analyse	er (QCLot: 3995087)								
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	2.21 mg/L	100	71.9	114	
EK067G: Total Phosphorus as P by Discrete Analyse	er (QCLot: 3995088)								
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	2.21 mg/L	97.0	71.9	114	
EK071G: Reactive Phosphorus as P by discrete anal	vser (QCLot: 3983516)								
EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.5 mg/L	115	92.7	119	
EK071G: Reactive Phosphorus as P by discrete anal	vser (QCLot: 3984990)								
EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.5 mg/L	114	92.7	119	
EP002: Dissolved Organic Carbon (DOC) (QCLot: 39	084189)								
EP002: Dissolved Organic Carbon		1	mg/L	<1	100 mg/L	98.0	83.0	115	
EP002: Dissolved Organic Carbon (DOC) (QCLot: 39	98818)								
EP002: Dissolved Organic Carbon		1	mg/L	<1	100 mg/L	95.7	83.0	115	
EP005: Total Organic Carbon (TOC) (QCLot: 398419	0)								
EP005: Total Organic Carbon		1	mg/L	<1	100 mg/L	98.0	81.2	110	
EP005: Total Organic Carbon (TOC) (QCLot: 399881	9)								
EP005: Total Organic Carbon		1	mg/L	<1	100 mg/L	95.9	81.2	110	
EP008: Chlorophyll (QCLot: 3992506)									
EP008B: Chlorophyll b		1	mg/m³	<1					
EP008: Chlorophyll (QCLot: 3992507)									
EP008B: Chlorophyll b		1	mg/m³	<1					
EP008: Chlorophyll (QCLot: 3992517)									
EP008: Chlorophyll a		1	mg/m³	<1	20 mg/m³	110	70.0	130	
EP008: Pheophytin a		1	mg/m³	<1					
EP008: Chlorophyll (QCLot: 3992518)									
EP008: Chlorophyll a		1	mg/m³	<1	20 mg/m³	109	70.0	130	

Page : 8 of 9
Work Order : EM2121437

Client : Dept for Environment & Water

Project : HCHB - Phase 1

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
		Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)			
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS Low		High	
EP008: Chlorophyll (QCLot: 3992518) - continued									
EP008: Pheophytin a		1	mg/m³	<1					

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: WATER				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable L	imits (%)
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
K055G-SW: Amn	nonia as N by Discrete Analyser in Saline Water(QCL	ot: 3984443)					
EM2121437-003	Bonneys	EK055G-SW: Ammonia as N	7664-41-7	0.5 mg/L	107	70.0	130
EK055G-SW: Amn	nonia as N by Discrete Analyser in Saline Water(QCL	ot: 3997898)					
EM2121437-005	Mark Point NR	EK055G-SW: Ammonia as N	7664-41-7	0.5 mg/L	89.6	70.0	130
D045G: Chloride	by Discrete Analyser (QCLot: 3983513)						
EM2121260-002	Anonymous	ED045G: Chloride	16887-00-6	400 mg/L	107	70.0	142
ED045G: Chloride	by Discrete Analyser (QCLot: 3983518)						
EM2121437-013	Salt Creek Outlet	ED045G: Chloride	16887-00-6	400 mg/L	# Not	70.0	142
					Determined		
ED045G: Chloride	by Discrete Analyser (QCLot: 3984988)						
EM2121394-007	Anonymous	ED045G: Chloride	16887-00-6	400 mg/L	74.2	70.0	142
EG052G: Silica by	Discrete Analyser (QCLot: 3983515)						
EM2121437-003	Bonneys	EG052G: Reactive Silica		5 mg/L	94.9	80.0	120
EG052G: Silica by	Discrete Analyser (QCLot: 3984989)						
EM2121437-005	Mark Point NR	EG052G: Reactive Silica		5 mg/L	97.0	80.0	120
EK057G: Nitrite a	s N by Discrete Analyser (QCLot: 3983512)						
EM2121260-002	Anonymous	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	97.0	80.0	114
K057G: Nitrite a	s N by Discrete Analyser (QCLot: 3983517)						
EM2121437-013	Salt Creek Outlet	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	95.9	80.0	114
EK057G: Nitrite a	s N by Discrete Analyser (QCLot: 3984987)						
EM2121394-007	Anonymous	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	94.8	80.0	114
K059G: Nitrite p	lus Nitrate as N (NOx) by Discrete Analyser (QCLot:	3984442)					
EM2121371-011	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	99.5	70.0	130
K059G: Nitrite p	lus Nitrate as N (NOx) by Discrete Analyser (QCLot:	3997899)					
EM2121437-005	Mark Point NR	EK059G: Nitrite + Nitrate as N		0.5 mg/L	92.8	70.0	130

Page : 9 of 9
Work Order : EM2121437

Client : Dept for Environment & Water

Sub-Matrix: WATER				Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Acceptable I	imits (%)	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EK061G: Total Kje	Idahl Nitrogen By Discrete Analyser (QCLot: 3995086)							
EM2121437-002	3.2km south of Salt Creek (land) NR	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	91.7	70.0	130	
EK061G: Total Kje	Idahl Nitrogen By Discrete Analyser (QCLot: 3995089)							
EM2121437-022	Villa de Yumpa NR	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	73.0	70.0	130	
EK067G: Total Pho	osphorus as P by Discrete Analyser (QCLot: 3995087)							
EM2121437-002	3.2km south of Salt Creek (land) NR	EK067G: Total Phosphorus as P		1 mg/L	74.9	70.0	130	
EK067G: Total Pho	osphorus as P by Discrete Analyser (QCLot: 3995088)							
EM2121437-022	Villa de Yumpa NR	EK067G: Total Phosphorus as P		1 mg/L	# Not Determined	70.0	130	
EK071G: Reactive	Phosphorus as P by discrete analyser (QCLot: 3983516	5)						
EM2121437-003	Bonneys	EK071G: Reactive Phosphorus as P	14265-44-2	0.5 mg/L	110	79.0	123	
EK071G: Reactive	Phosphorus as P by discrete analyser (QCLot: 3984990))						
EM2121437-005	Mark Point NR	EK071G: Reactive Phosphorus as P	14265-44-2	0.5 mg/L	111	79.0	123	
EP002: Dissolved	Organic Carbon (DOC) (QCLot: 3984189)							
EM2121437-003	Bonneys	EP002: Dissolved Organic Carbon		100 mg/L	106	75.0	117	
EP002: Dissolved	Organic Carbon (DOC) (QCLot: 3998818)							
EM2121437-005	Mark Point NR	EP002: Dissolved Organic Carbon		100 mg/L	106	75.0	117	
EP005: Total Orga	nic Carbon (TOC) (QCLot: 3984190)							
EM2121437-003	Bonneys	EP005: Total Organic Carbon		100 mg/L	105	76.6	125	
EP005: Total Orga	nic Carbon (TOC) (QCLot: 3998819)							
EM2121437-005	Mark Point NR	EP005: Total Organic Carbon		100 mg/L	103	76.6	125	