Topics in Machine Learning Final

2017-06-06

- Logistic regression:
 - $\circ \ \ p(y_i|x_i) = 1/(1 + \exp(-y_i w^{\mathrm{T}} x_i))$, where $y_i \in \{-1,1\}$
 - \circ Log-likelihood function: $l(w) = -\sum_i \log(1 + \exp(-y_i w^{\mathrm{T}} x_i))$
 - $\circ~$ Primal problem: minimize $\sum_i \log(1 + \exp(-y_i w^{\mathrm{T}} x_i))$
- Support vector machine:
 - \circ Primal problem: minimize $rac{1}{2}\omega^{ ext{T}}\omega+C\sum_{i}\xi_{i}$ subject to $y_{i}w^{ ext{T}}x_{i}\geq1-\xi_{i}$ and $\xi_{i}\geq0$
- Loss functions $\xi(w; x, y)$:
 - $\circ \;\; ext{Ideal:} \; \xi(w; x_i, y_i) = \left\{ egin{aligned} 1 ext{ if } y_i w^{ ext{T}} x_i < 0 \ 0 ext{ otherwise} \end{aligned}
 ight.$
 - \circ Logistic regression: $\xi(w; x_i, y_i) = \log(1 + \exp(-y_i w^{\mathrm{T}} x_i))$
 - \circ Support vector machine: $\xi(w; x_i, y_i) = \max\{0, 1 y_i w^{\mathrm{T}} x_i\}$
- Regularization R(w):
 - \circ To avoid overfitting by manipulating the value of w to be less extreme.
 - The idea of making **w** closer to zero is to create the maximal margin in SVM.
 - *C* is a regularization parameter arbitrarily chosen by users to weigh the importance of the regularization term.
 - Support vector machine: $R(w) = \frac{1}{2}\omega^{\mathrm{T}}\omega$, which is an L2 regularization.

2017-06-13

- Unconstrained minimization assumes
 - **f** is convex and twice continuously differentiable.
 - Optimal value $p^* = \inf_x f(x)$ is attained.
- Descent methods require a starting point $oldsymbol{x}^{(0)}$ such that
 - $x^{(0)} \in \mathrm{dom} f$
 - Sublevel set $S = \{x | f(x) \le f(x^{(0)})\}$ is closed
 - S is closed if $\mathrm{dom} f = \mathbb{R}^n$.
 - S is closed if $f(x) \to \infty$ as $x \to$ boundary of $\mathrm{dom} f$.
- *f* is **strongly convex** on *S*:
 - \circ There exists an m>0 such that $abla^2 f(x)\succeq mI$ for all $x\in S$.

- $\circ f(y) \geq f(x) +
 abla f(x)^{\mathrm{T}}(y-x) + rac{m}{2} \|y-x\|_2^2 ext{ for } x,y \in S_2$
- Stopping criterion: $f(x) p^* \leq \frac{1}{2m} \|\nabla f(x)\|_2^2$
- Descent methods:
 - $x^+ = x + t\Delta x$ with $f(x^+) < f(x)$ at each step, where t > 0 is the step size.
 - \circ From convexity, $f(x^+) < f(x)$ implies $\nabla f(x)^{\mathrm{T}} \Delta x < 0$ (i.e., Δx is a descent direction).
 - Stopping criterion with parameter arepsilon: $\|
 abla f(x) \|_2 \leq arepsilon$ implies

$$f(x)-p^* \leq rac{1}{2m} \|
abla f(x)\|_2^2 \leq rac{arepsilon^2}{2m}$$

- Line search:
 - Exact line search: $t = \operatorname{argmin}_{t>0} f(x + t\Delta x)$
 - o Backtracking line search with parameters $lpha \in (0,1/2), eta \in (0,1)$: starting at t=1, repeat t:=eta t until $f(x+t\Delta x) < f(x) + lpha t
 abla f(x)^{\mathrm{T}} \Delta x$
- Gradient descent method:
 - $\circ \ \Delta x = -\nabla f(x)$
 - Convergence with exact line search: if $MI \succeq
 abla^2 f(x) \succeq mI$, then

$$f(x^+) - p^* \le (1 - rac{m}{M})(f(x) - p^*) ext{ or } f(x^{(k)}) - p^* \le (1 - rac{m}{M})^k (f(x^{(0)}) - p^*)$$

- Steepest descent method:
 - \circ Normalized steepest descent direction: $\Delta x_{ ext{nsd}} = \operatorname{argmin}\{
 abla f(x)^{ ext{T}} v | \|v\| = 1 \}$
 - \circ (Unnormalized) steepest descent direction: $\Delta x_{
 m sd} = \|
 abla f(x) \|_* \Delta x_{
 m nsd}$
 - Euclidean norm: $\Delta x_{\mathrm{sd}} = -\nabla f(x)$
 - $\circ~$ Quadratic norm: $\Delta x_{
 m sd} = -P^{-1}
 abla f(x)$, where $\|x\|_P = (x^{
 m T} P x)^{1/2}, P \in \mathbb{S}^n_{++}$
 - \circ 11-norm: $\Delta x_{
 m sd} = -rac{\partial f(x)}{\partial x_i} e_i$, where $|rac{\partial f(x)}{\partial x_i}| = \|
 abla f(x)\|_{\infty}$
- Newton step:

$$\circ \ \ \Delta x_{
m nt} = -
abla^2 f(x)^{-1}
abla f(x)$$

 $\circ \ \ x + \Delta x_{
m nt}$ minimizes second order approximation

$$f(x+v) = f(x) +
abla f(x)^{\mathrm{T}} v + rac{1}{2} v^{\mathrm{T}}
abla^2 f(x) v$$

 $\circ \ x + \Delta x_{
m nt}$ solves linearized optimality condition

$$abla f(x+v)pprox
abla \hat{f}\left(x+v
ight)=
abla f(x)+
abla^2 f(x)v=0$$

 \circ $\Delta x_{
m nt}$ is the steepest descent direction at x in local Hessian norm

$$\|u\|_{
abla^2 f(x)} = (u^{\mathrm{T}}
abla^2 f(x) u)^{1/2}$$