

Monday 11 June 2012 - Afternoon

GCSE MATHEMATICS B

J567/01 Paper 1 (Foundation Tier)

Candidates answer on the Question Paper.

OCR supplied materials: None

Other materials required:

- Geometrical instruments
- Tracing paper (optional)

Duration: 1 hour 30 minutes

Candidate forename				Candidate surname			
Centre numb	oer			Candidate nu	umber		

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the boxes above. Please write clearly and in capital letters.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer all the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Your answers should be supported with appropriate working. Marks may be given for a correct method even if the answer is incorrect.
- Write your answer to each question in the space provided. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Do not write in the bar codes.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- Your Quality of Written Communication is assessed in questions marked with an asterisk (*).
- The total number of marks for this paper is 100.
- This document consists of 24 pages. Any blank pages are indicated.

This paper has been pre modified for carrier language OCR is an exempt Charity

Formulae Sheet: Foundation Tier

Area of trapezium = $\frac{1}{2}(a+b)h$

Volume of prism = (area of cross-section) \times length

PLEASE DO NOT WRITE ON THIS PAGE

1 Write the missing numbers in the boxes.

(b)
$$\div 10 = 57$$
 [1]

(c)
$$3 \times \boxed{} = 72$$

(a) This table shows the number of medals won by the top five countries in the 2008 Olympic Games. 2

	Gold	Silver	Bronze
USA	36	38	36
China	51	21	28
Russia	23	21	28
Great Britain	19	13	15
Australia	14	15	17

			Russia	23	21	28	
			Great Britain	19	13	15	
			Australia	14	15	17	
	(i)	How ma	ny silver medals	did China win	?		·
					(a)(i)		[1]
	(ii)	How ma	ny medals did Gr	eat Britain wi	n in total?		
	(iii)	How ma	ny more gold me	edals did Chin			[1]
					(iii)		[1]
)			ington won the 40 ng pool was 50 m		nming gold me	edal.	
	Hov	v many le	ngths of the pool	did Rebecca	swim?		

(a)	Cor	vert.				
	(i)	4.7 cm to millim	etres			
	(ii)	538 cm to metro	es	(a)(i)		_ mm [1]
				(ii)		m [1]
(b)	Cho	ose one of thes	e metric units to comp	plete each of the sent	ences below.	_
	n	netres	litres	grams	centimetres	
	k	ilograms	millimetres	kilometres	millilitres	
	(i)	The length of	a car is about 4.1			[1]
	• •	_				
	(ii)	ine petroi fan	ik ot a car holds abo	ut 55		[1]
	(iii)	The weight of	a car is about 1200			[1]

4 Points A, B and C are marked on the grid below.

(a) Write down the coordinates of A, B, and C.

A (_____)

B (_____)

C(____)

(b) Plot the point D so that ABCD is a square. [1]

[3]

5	Wo	rk ou	t.					
	(a)	(i)	13.5 + 5.72					
		(ii)	3 – 1.4			(a)(i) _		_ [1]
								_ [1]
	(b)	Wri	te these decim	als in ord	er of size, sma	allest first.		
				0.4	0.59	0.16	0.05	

_____ [2]

(b) _____

smallest

6	(a)	Wo	rk out.		
		(i)	10% of 320		
				(a)(i)	[1]
		(ii)	40% of 320		
				(ii)	[1]
		(iii)	5% of 320		
				(iii)	[1]
	(b)		ere are 320 students in Year 10 in a school. 6 of these students come to school by bus.		
		Hov	w many students come to school by bus?		
				(b)	[2]

(a) \	Woı	ork out these calculations.	
((i)	$4+3\times(1+2)$	
		(a)(i)	[1]
(ii)	$\frac{4}{2}$ + 1 × 3	
		(ii)	[1]
(i	ii)	$\frac{4\times3}{2+1}$	
		(iii)	[1]
(b) i	Feri	rn is finding calculations that follow these rules	
		 you must use all the digits 1, 2, 3 and 4, but they can each be used only once you can add, subtract, multiply or divide as many times as you like you can use brackets. 	
ŀ	For	r example when Fern was looking for a calculation with an answer of 9, she wrote dow	n
		$(4 + 3 + 2) \times 1$.	
i	Find	d a calculation, using her rules, which has an answer of	
((i)	8,	
(ii)	(b)(i)	[1]
		(ii)	[1]

© OCR 2012

The	у со	d Sadiq are mplete a ru ch keep a r	ın each day	for a week	ζ.				
(a)	The	ese are Jos	h's times in	seconds.					
		48.6	48.5	48.7	49.2	48.4	48.8	48.5	
	(i)	Work out	the median	time.					
						(a)(i)			seconds [2]
	(ii)	Work out	the range o	of Josh's tin	nes.				
						(ii)			seconds [1]
(b)	Sac	diq has a m	edian of 47	7.7 seconds	and a ranç	ge of 1.2 se	conds for hi	s runs.	
	Ma	ke two com	parisons be	etween Jos	sh's times a	nd Sadiq's t	imes.		
	1_								
	2 _								
									[2]

9 (a) Write down an expression for the perimeter of each triangle. Write each answer as simply as possible.

(i)

(a)(i)_____[1]

(ii)

(ii) ______ [1]

(b) Simplify.

$$3c - d - 2c - 4d$$

(b) _____ [2]

(c) A regular pentagon has a perimeter of length 10y.

What is the length of one side of the pentagon?

(c)_____[2]

This is a scale drawing of part of a wind farm.P, Q and R are wind turbines.P is North of Q.

(a) Use one of these words to complete the sentence.

	North	South	East	West	
R is	 	_ of P.			[1]

(b) Use the map to complete these sentences.

(i) The distance from P to Q is _____ metres. [1]

(ii) The bearing of R from Q is ______°. [1]

(c) A new wind turbine, T, is to be built.

The turbine will be 75 metres from Q on a bearing of 115°.

Mark the position of T with a cross on the scale drawing.

[2]

11	(a)	A square has a side of length	7 cm.	
		Work out the area of the square	re.	
			(a)	cm ² [2]
	(b)	A rectangle has width 4 cm an	d length 9 cm.	
		9 cm 4 cm	Not to scale	
		A square, of side <i>t</i> cm, has the	e same area as the rectangle.	
		t cm Not to scale		
		Work out t.		
			<i>a</i>	
			(b)	[3

12 (a) (i) Draw any lines of symmetry on this shape.

[1]

(ii) What is the special mathematical name of the shape? Choose from the words in this box.

(a)(ii) _____ [1]

(b) Work out angle *b* in this rhombus.

(b)_____°[3]

(c) Look at the diagram below.

The shaded triangle is equilateral.

(i) Work out angle x.

° [2]
° [2

(ii) Work out angle y.

(ii) _____ ° [2]

A box contains some counters.5 are red, 4 are black and 2 are yellow.George takes a counter from the box without looking.							
(i)	What is the probability that the counter is red?						
	(a)(i)	[2]					
(ii)	What is the probability that the counter is black or yellow?						
	(ii)	[1]					
(iii)	What is the probability that the counter is blue? (iii)	[1]					
Lyd She The	ia puts some more green counters into the box. The then takes a counter from the box without looking. The probability that the counter is green is $\frac{3}{5}$.						
	5 an Geo (i) (ii) And Lyd She The	5 are red, 4 are black and 2 are yellow. George takes a counter from the box without looking. (i) What is the probability that the counter is red? (a)(i) (ii) What is the probability that the counter is black or yellow?					

(b)_____[2]

13

14 Solve.

(a)
$$\frac{x}{5} = 8$$

(a) *x* = _____ [1]

(b)
$$3x + 5 = 26$$

(c)
$$5x-2=3x+7$$

(c)
$$x = [3]$$

© OCR 2012

15 The heights and weights of ten Year 11 girls are recorded in this table.

Height (cm)	161	148	151	174	153	163	155	168	173	164
Weight (kg)	72	53	51	83	62	70	70	76	75	79

The data for the first six girls is plotted on the scatter graph.

- (a) Complete the scatter graph. [2](b) Describe the correlation shown.
- _____[1]
- (c) (i) Draw a line of best fit on your graph. [1]
 - (ii) Another girl in Year 11 has a height of 159 cm.Use your line of best fit to estimate her weight.

(c)(ii) _____ kg [1]

		19		
(a)	Wri	te as a decimal.		
	(i)	3 50		
	(ii)	2 9	(a)(i)	[1]
(b)			(ii)	[1]
	(ii)	$3\frac{1}{3} - 1\frac{5}{6}$ Give your answer in its simplest form.	(b)(i)	[2]
		(ii) (b) Wor	(a) Write as a decimal. (i) $\frac{3}{50}$ (ii) $\frac{2}{9}$ (b) Work out. (i) $\frac{5^2 \times 5^5}{5^4}$	(a) Write as a decimal. (i) $\frac{3}{50}$ (a)(i)

(ii)_____[3]

17 The scale drawing shows a field ABCD.

Tom pitches his tent in the field.

The tent is pitched

- closer to AB than to AD
- more than 50m from C.

Construct and shade the region where Tom's tent could be pitched. Leave in all your construction lines.

[4]

18	Nita is making a fruit drink. She mixes apple juice and mango juice in the ratio 3 : 1.	
	(a) How much of each type of juice will she need to make 1 litre of the fruit drink? Give your answers in millilitres.	
	(a) Apple juice	
	(b)* Apple juice costs 56p for a 1-litre carton. Mango juice costs £1.20 for a 1-litre carton. A pack of 80 plastic cups costs £1.	
	Nita sells her fruit drink at a school concert in 250 ml cups for 60p each. She gives all the profit she makes to the school fund. Nita makes 80 cups of the fruit drink and sells them all.	
	How much money does she give to the school fund?	
	(b)	[5]

TURN OVER FOR QUESTION 19

19 (a) Here are the first four terms of a sequence.

		8	11	14	17			
	Write an expression for	the <i>n</i> th te	rm of th	nis sequ	ience.			
					(a)			[2]
(b)	The <i>n</i> th term of another	sequenc	e is give	en by 12	2 – 5 <i>n</i> .			
	Write down the first thre	e terms o	f this se	equence	Э.			
					(b)	,	,	[2]

23 BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© OCR 2012