

9

SEQUENCE LISTING

A/1
<110> Kumar, Rajesh
Sahni, Girish
Roy, Chait
Rajagopal, Kammara
Nihalani, Deepak
Sundaram, Vasudha
Yadav, Mahavir

<120> NOVEL CLOT-SPECIFIC STREPTOKINASE
PROTEINS POSSESSING ALTERED PLASMINOGEN ACTIVATION
CHARACTERISTICS AND A PROCESS FOR THE PREPARATION OF SAID
PROTEIN

<130> 07064-009002

<140> 09/940,235
<141> 2001-08-27

<150> 09/471,349
<151> 1999-12-23

<150> IN 3825/DEL/98
<151> 1998-12-24

<160> 28

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 1245
<212> DNA
<213> Streptococcus equisimilis

<220>
<221> CDS
<222> (1)...(1242)

<400> 1
att gct gga cct gag tgg ctg cta gac cgt cca tct gtc aac aac agc
Ile Ala Gly Pro Glu Trp Leu Leu Asp Arg Pro Ser Val Asn Asn Ser
1 5 10 15

48

caa tta gtt gtt agc gtt gct act gtt gag ggg acg aat caa gac
Gln Leu Val Val Ser Val Ala Gly Thr Val Glu Gly Thr Asn Gln Asp
20 25 30

96

att agt ctt aaa ttt ttt gaa atc gat cta aca tca cga cct gct cat
Ile Ser Leu Lys Phe Phe Glu Ile Asp Leu Thr Ser Arg Pro Ala His
35 40 45

144

gga gga aag aca gag caa ggc tta agt cca aaa tca aaa cca ttt gct
Gly Gly Lys Thr Glu Gln Gly Leu Ser Pro Lys Ser Lys Pro Phe Ala
50 55 60

192

act gat agt ggc gcg atg tca cat aaa ctt gag aaa gct gac tta cta		240	
Thr Asp Ser Gly Ala Met Ser His Lys Leu Glu Lys Ala Asp Leu Leu			
65	70	75	80
aag gct att caa gaa caa ttg atc gct aac gtc cac agt aac gac gac		288	
Lys Ala Ile Gln Glu Gln Leu Ile Ala Asn Val His Ser Asn Asp Asp			
85	90	95	
tac ttt gag gtc att gat ttt gca agc gat gca acc att act gat cga		336	
Tyr Phe Glu Val Ile Asp Phe Ala Ser Asp Ala Thr Ile Thr Asp Arg			
100	105	110	
aac ggc aag gtc tac ttt gct gac aaa gat ggt tcg gta acc ttg ccg		384	
Asn Gly Lys Val Tyr Phe Ala Asp Lys Asp Gly Ser Val Thr Leu Pro			
115	120	125	
acc caa cct gtc caa gaa ttt ttg cta agc gga cat gtg cgc gtt aga		432	
Thr Gln Pro Val Gln Glu Phe Leu Leu Ser Gly His Val Arg Val Arg			
130	135	140	
cca tat aaa gaa aaa cca ata caa aac caa gcg aaa tct gtt gat gtg		480	
Pro Tyr Lys Glu Lys Pro Ile Gln Asn Gln Ala Lys Ser Val Asp Val			
145	150	155	160
gaa tat act gta cag ttt act ccc tta aac cct gat gac gat ttc aga		528	
Glu Tyr Thr Val Gln Phe Thr Pro Leu Asn Pro Asp Asp Asp Phe Arg			
165	170	175	
cca ggt ctc aaa gat act aag cta ttg aaa aca cta gct atc ggt gac		576	
Pro Gly Leu Lys Asp Thr Lys Leu Leu Lys Thr Leu Ala Ile Gly Asp			
180	185	190	
acc atc aca tct caa gaa tta cta gct caa gca caa agc att tta aac		624	
Thr Ile Thr Ser Gln Glu Leu Leu Ala Gln Ala Gln Ser Ile Leu Asn			
195	200	205	
aaa aac cac cca ggc tat acg att tat gaa cgt gac tcc tca atc gtc		672	
Lys Asn His Pro Gly Tyr Thr Ile Tyr Glu Arg Asp Ser Ser Ile Val			
210	215	220	
act cat gac aat gac att ttc cgt acg att tta cca atg gat caa gag		720	
Thr His Asp Asn Asp Ile Phe Arg Thr Ile Leu Pro Met Asp Gln Glu			
225	230	235	240
ttt act tac cgt gtt aaa aat cgg gaa caa gct tat agg atc aat aaa		768	
Phe Thr Tyr Arg Val Lys Asn Arg Glu Gln Ala Tyr Arg Ile Asn Lys			
245	250	255	
aaa tct ggt ctg aat gaa gaa ata aac aac act gac ctg atc tct gag		816	
Lys Ser Gly Leu Asn Glu Glu Ile Asn Asn Thr Asp Leu Ile Ser Glu			
260	265	270	
aaa tat tac gtc ctt aaa aaa ggg gaa aag ccg tat gat ccc ttt gat		864	
Lys Tyr Tyr Val Leu Lys Lys Gly Glu Lys Pro Tyr Asp Pro Phe Asp			
275	280	285	

cgc agt cac ttg aaa ctg ttc acc atc aaa tac gtt gat gtc gat acc		912	
Arg Ser His Leu Lys Leu Phe Thr Ile Lys Tyr Val Asp Val Asp Thr			
290	295	300	
aac gaa ttg cta aaa agt gag cag ctc tta aca gct agc gaa cgt aac		960	
Asn Glu Leu Leu Lys Ser Glu Gln Leu Leu Thr Ala Ser Glu Arg Asn			
305	310	315	320
tta gac ttc aga gat tta tac gat cct cgt gat aag gct aaa cta ctc		1008	
Leu Asp Phe Arg Asp Leu Tyr Asp Pro Arg Asp Lys Ala Lys Leu Leu			
325	330	335	
tac aac aat ctc gat gct ttt ggt att atg gac tat acc tta act gga		1056	
Tyr Asn Asn Leu Asp Ala Phe Gly Ile Met Asp Tyr Thr Leu Thr Gly			
340	345	350	
aaa gta gag gat aat cac gat gac acc aac cgt atc ata acc gtt tat		1104	
Lys Val Glu Asp Asn His Asp Asp Thr Asn Arg Ile Ile Thr Val Tyr			
355	360	365	
atg ggc aag cga ccc gaa gga gag aat gct agc tat cat tta gcc tat		1152	
Met Gly Lys Arg Pro Glu Gly Glu Asn Ala Ser Tyr His Leu Ala Tyr			
370	375	380	
gat aaa gat cgt tat acc gaa gaa gaa cga gaa gtt tac agc tac ctg		1200	
Asp Lys Asp Arg Tyr Thr Glu Glu Arg Glu Val Tyr Ser Tyr Leu			
385	390	395	400
cgt tat aca ggg aca cct ata cct gat aac cct aac gac aaa		1242	
Arg Tyr Thr Gly Thr Pro Ile Pro Asp Asn Pro Asn Asp Lys			
405	410		
taa		1245	
<210> 2			
<211> 414			
<212> PRT			
<213> Streptococcus equisimilis			
<400> 2			
Ile Ala Gly Pro Glu Trp Leu Leu Asp Arg Pro Ser Val Asn Asn Ser			
1	5	10	15
Gln Leu Val Val Ser Val Ala Gly Thr Val Glu Gly Thr Asn Gln Asp			
20	25	30	
Ile Ser Leu Lys Phe Phe Glu Ile Asp Leu Thr Ser Arg Pro Ala His			
35	40	45	
Gly Gly Lys Thr Glu Gln Gly Leu Ser Pro Lys Ser Lys Pro Phe Ala			
50	55	60	
Thr Asp Ser Gly Ala Met Ser His Lys Leu Glu Lys Ala Asp Leu Leu			
65	70	75	80
Lys Ala Ile Gln Glu Gln Leu Ile Ala Asn Val His Ser Asn Asp Asp			
85	90	95	
Tyr Phe Glu Val Ile Asp Phe Ala Ser Asp Ala Thr Ile Thr Asp Arg			
100	105	110	
Asn Gly Lys Val Tyr Phe Ala Asp Lys Asp Gly Ser Val Thr Leu Pro			
115	120	125	
Thr Gln Pro Val Gln Glu Phe Leu Leu Ser Gly His Val Arg Val Arg			

130	135	140
Pro Tyr Lys Glu Lys Pro Ile Gln Asn Gln Ala Lys Ser Val Asp Val		
145	150	155
Glu Tyr Thr Val Gln Phe Thr Pro Leu Asn Pro Asp Asp Asp Phe Arg		
165	170	175
Pro Gly Leu Lys Asp Thr Lys Leu Leu Lys Thr Leu Ala Ile Gly Asp		
180	185	190
Thr Ile Thr Ser Gln Glu Leu Leu Ala Gln Ser Ile Leu Asn		
195	200	205
Lys Asn His Pro Gly Tyr Thr Ile Tyr Glu Arg Asp Ser Ser Ile Val		
210	215	220
Thr His Asp Asn Asp Ile Phe Arg Thr Ile Leu Pro Met Asp Gln Glu		
225	230	235
Phe Thr Tyr Arg Val Lys Asn Arg Glu Gln Ala Tyr Arg Ile Asn Lys		
245	250	255
Lys Ser Gly Leu Asn Glu Glu Ile Asn Asn Thr Asp Leu Ile Ser Glu		
260	265	270
Lys Tyr Tyr Val Leu Lys Lys Gly Glu Lys Pro Tyr Asp Pro Phe Asp		
275	280	285
Arg Ser His Leu Lys Leu Phe Thr Ile Lys Tyr Val Asp Val Asp Thr		
290	295	300
Asn Glu Leu Leu Lys Ser Glu Gln Leu Leu Thr Ala Ser Glu Arg Asn		
305	310	315
Leu Asp Phe Arg Asp Leu Tyr Asp Pro Arg Asp Lys Ala Lys Leu Leu		
325	330	335
Tyr Asn Asn Leu Asp Ala Phe Gly Ile Met Asp Tyr Thr Leu Thr Gly		
340	345	350
Lys Val Glu Asp Asn His Asp Asp Thr Asn Arg Ile Ile Thr Val Tyr		
355	360	365
Met Gly Lys Arg Pro Glu Gly Glu Asn Ala Ser Tyr His Leu Ala Tyr		
370	375	380
Asp Lys Asp Arg Tyr Thr Glu Glu Glu Arg Glu Val Tyr Ser Tyr Leu		
385	390	395
Arg Tyr Thr Gly Thr Pro Ile Pro Asp Asn Pro Asn Asp Lys		
405	410	

<210> 3
<211> 777
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (1)...(777)

<400> 3
cag gct cag caa atg gtt cag ccc cag tcc ccg gtg gct gtc agt caa
Gln Ala Gln Gln Met Val Gln Pro Gln Ser Pro Val Ala Val Ser Gln
1 5 10 15

48
agc aag ccc ggt tgt tat gac aat gga aaa cac tat cag ata aat caa
Ser Lys Pro Gly Cys Tyr Asp Asn Gly Lys His Tyr Gln Ile Asn Gln
20 25 30

96
cag tgg gag cgg acc tac cta ggt aat gtg ttg gtt tgt act tgt tat
Gln Trp Glu Arg Thr Tyr Leu Gly Asn Val Leu Val Cys Thr Cys Tyr
35 40 45

144

gga gga agc cga ggt ttt aac tgc gaa agt aaa cct gaa gct gaa gag Gly Gly Ser Arg Gly Phe Asn Cys Glu Ser Lys Pro Glu Ala Glu Glu	192
50 55 60	
act tgc ttt gac aag tac act ggg aac act tac cga gtg ggt gac act Thr Cys Phe Asp Lys Tyr Thr Gly Asn Thr Tyr Arg Val Gly Asp Thr	240
65 70 75 80	
tat gag cgt cct aaa gac tcc atg atc tgg gac tgt acc tgc atc ggg Tyr Glu Arg Pro Lys Asp Ser Met Ile Trp Asp Cys Thr Cys Ile Gly	288
85 90 95	
gct ggg cga ggg aga ata agc tgt acc atc gca aac cgc tgc cat gaa Ala Gly Arg Gly Arg Ile Ser Cys Thr Ile Ala Asn Arg Cys His Glu	336
100 105 110	
ggg ggt cag tcc tac aag att ggt gac acc tgg agg aga cca cat gag Gly Gly Gln Ser Tyr Lys Ile Gly Asp Thr Trp Arg Arg Pro His Glu	384
115 120 125	
act ggt ggt tac atg tta gag tgt gtg tgt ctt ggt aat gga aaa gga Thr Gly Gly Tyr Met Leu Glu Cys Val Cys Leu Gly Asn Gly Lys Gly	432
130 135 140	
gaa tgg acc tgc aag ccc ata gct gag aag tgt ttt gat cat gct gct Glu Trp Thr Cys Lys Pro Ile Ala Glu Lys Cys Phe Asp His Ala Ala	480
145 150 155 160	
ggg act tcc tat gtg gtc gga gaa acg tgg gag aag ccc tac caa ggc Gly Thr Ser Tyr Val Val Gly Glu Thr Trp Glu Lys Pro Tyr Gln Gly	528
165 170 175	
tgg atg atg gta gat tgt act tgc ctg gga gaa ggc agc gga cgc atc Trp Met Met Val Asp Cys Thr Cys Leu Gly Glu Gly Ser Gly Arg Ile	576
180 185 190	
act tgc act tct aga aat aga tgc aac gat cag gac aca agg aca tcc Thr Cys Thr Ser Arg Asn Arg Cys Asn Asp Gln Asp Thr Arg Thr Ser	624
195 200 205	
tat aga att gga gac acc tgg agc aag aag gat aat cga gga aac ctg Tyr Arg Ile Gly Asp Thr Trp Ser Lys Lys Asp Asn Arg Gly Asn Leu	672
210 215 220	
ctc cag tgc atc tgc aca ggc aac ggc cga gga gag tgg aag tgt gag Leu Gln Cys Ile Cys Thr Gly Asn Gly Arg Gly Glu Trp Lys Cys Glu	720
225 230 235 240	
agg cac acc tct gtg cag acc aca tcg agc gga tct ggc ccc ttc acc Arg His Thr Ser Val Gln Thr Ser Ser Gly Ser Gly Pro Phe Thr	768
245 250 255	
gat gtt cgt Asp Val Arg	777

<210> 4
<211> 259
<212> PRT
<213> Homo sapiens

<400> 4
Gln Ala Gln Gln Met Val Gln Pro Gln Ser Pro Val Ala Val Ser Gln
1 5 10 15
Ser Lys Pro Gly Cys Tyr Asp Asn Gly Lys His Tyr Gln Ile Asn Gln
20 25 30
Gln Trp Glu Arg Thr Tyr Leu Gly Asn Val Leu Val Cys Thr Cys Tyr
35 40 45
Gly Gly Ser Arg Gly Phe Asn Cys Glu Ser Lys Pro Glu Ala Glu Glu
50 55 60
Thr Cys Phe Asp Lys Tyr Thr Gly Asn Thr Tyr Arg Val Gly Asp Thr
65 70 75 80
Tyr Glu Arg Pro Lys Asp Ser Met Ile Trp Asp Cys Thr Cys Ile Gly
85 90 95
Ala Gly Arg Gly Arg Ile Ser Cys Thr Ile Ala Asn Arg Cys His Glu
100 105 110
Gly Gly Gln Ser Tyr Lys Ile Gly Asp Thr Trp Arg Arg Pro His Glu
115 120 125
Thr Gly Gly Tyr Met Leu Glu Cys Val Cys Leu Gly Asn Gly Lys Gly
130 135 140
Glu Trp Thr Cys Lys Pro Ile Ala Glu Lys Cys Phe Asp His Ala Ala
145 150 155 160
Gly Thr Ser Tyr Val Val Gly Glu Thr Trp Glu Lys Pro Tyr Gln Gly
165 170 175
Trp Met Met Val Asp Cys Thr Cys Leu Gly Glu Gly Ser Gly Arg Ile
180 185 190
Thr Cys Thr Ser Arg Asn Arg Cys Asn Asp Gln Asp Thr Arg Thr Ser
195 200 205
Tyr Arg Ile Gly Asp Thr Trp Ser Lys Lys Asp Asn Arg Gly Asn Leu
210 215 220
Leu Gln Cys Ile Cys Thr Gly Asn Gly Arg Gly Glu Trp Lys Cys Glu
225 230 235 240
Arg His Thr Ser Val Gln Thr Thr Ser Ser Gly Ser Gly Pro Phe Thr
245 250 255
Asp Val Arg

<210> 5
<211> 1377
<212> DNA
<213> Streptococcus equisimilis

<400> 5
gcacccgtgg ccaggaccca acgctcccc agatctcgat cccgcgaaat taatacgact 60
cactataggg agaccacaac gtttccctc tagaaataat ttgtttaac ttaagaagg 120
agatatacca tgattgctgg acctgagtgg ctgctagacc gtccatctgt caacaacagc 180
caattggttg ttagcggttc tggtactgtt gaggggacga atcaagacat tagtctaaa 240
ttttttgaaa tcgatctaac atcacgacct gctcatggag gaaagacaga gcaaggctta 300
agtccaaaat caaaaccatt tgctactgat agtggcgcgta tgtcacataa acttgagaaa 360
gctgacttac taaaggctat tcaagaaccaa ttgatcgcta acgtccacag taacgacgac 420
tactttgagg tcattgattt tgcaagcgat gcaaccatta ctgatcgaaa cggcaaggtc 480
tactttgctg acaaagatgg ttccgttaacc ttgccgaccc aacctgtcca agaatttttg 540

ctaagcggac atgtgcgcgt tagaccatat aaagaaaaac caatacaaaa ccaagcgaaa	600
tctgttcatg tggaatatac tgtacagttt actcccttaa accctgatga cgatttcaga	660
ccagggtctca aagataactaa gctattgaaa acactagcta tcggtgacac catcacatct	720
caagaattac tagctcaagc acaaaggcatt ttaaacaaaa accacccagg ctatacgatt	780
tatgaacgtq actcctcaat cgtcactcat gacaatgaca tttccgtac gattttacca	840
atggatcaag agtttactta ccgtgttaaa aatcgggAAC aagcttatacg gatcaataaa	900
aaatctggtc tgaatgaaga aataaacaac actgacctga tctctgagaa atattacgtc	960
cttaaaaaag gggAAAAGCC gtatgatccc ttgatcgca gtcacttggaa actgttcacc	1020
atcaaatacg ttgatgtcga taccaacgaa ttgctaaaaa gtgagcagct cttacagct	1080
agcgaacgtA acttagactt cagagattt tacgatcctc gtgataaggc taaactactc	1140
tacaacaatc tcgatgctt ttgtattatg gactatacct taactggaaa agtagaggat	1200
aatcagcatg acaccaaccc tatcataacc gtttatatgg gcaagcgacc cgaaggagag	1260
aatgctagct atcatttagc ctatgataaa gatcggtata ccgaagaaga acgagaagtt	1320
tacagctacc tgcggttatac agggacaccc tacatgtata accctaacga caaataaa	1377

<210> 6

<211> 1327

<212> DNA

<213> Streptococcus equisimilis

<400> 6

taatacact cactataggg agaccacaac ggttccctc tagaaataat tttgtttaac	60
tttaagaagg agatatacca tgatagctgg tcctgaatgg ctactagatc gtccttctgt	120
aaataacagc caattggttt ttagcggtgc ttgtactgtt gagggggacga atcaagacat	180
tagtcttaaa ttttttggaaa tgcgttacac atcagcaccct gctcatggag gaaagacaga	240
gcaaggcttA agtccaaaat caaaaccatt tgctactgtat agtggcgccgat gttcacataa	300
acttgagaaa gctgacttac taaaggctat tcaagaacaa ttgatcgctt acgtccacag	360
taacgacgac tactttgagg tcattgattt tgcaagcgat gcaaccatata ctgatcgaaa	420
cggcaaggc tactttctg acaaagatgg ttccgttacc ttgccgaccc aacctgtcca	480
agaatttttgc ttaagcggac atgtgcgcgt tagaccatat aaagaaaaac caatacaaaa	540
ccaaagcgaaa tctgttcatg tggaaatatac tgcgttacat ttgtacgttt actcccttaa accctgatga	600
cgatttcaga ccagggtctca aagataactaa gctattgaaa acactagcta tcggtgacac	660
catcacatct caagaattac tagctcaagc acaaaggcatt ttaaacaaaa accacccagg	720
ctatacgatt tatgaacgtq actcctcaat cgtcactcat gacaatgaca tttccgtac	780
gattttacca atggatcaag agtttactta ccgtgttaaa atcgggAAC aagcttatacg	840
gatcaataaa aaatctggtc tgaatgaaga aataaacaac actgacctga tctctgagaa	900
atattacgtc cttaaaaaag gggAAAAGCC gtatgatccc ttgatcgca gtcacttggaa	960
actgttcacc atcaaatacg ttgatgtcga taccaacgaa ttgctaaaaa gtgagcagct	1020
cttaacagct agcgaacgtA acttagactt cagagattt tacgatcctc gtgataaggc	1080
taaactactc tacaacaatc tcgatgctt ttgtattatg gactatacct taactggaaa	1140
agttagaggat aatcagcatg acaccaaccc tatcataacc gtttatatgg gcaagcgacc	1200
cgaaggagag aatgctagct atcatttagc ctatgataaa gatcggtata ccgaagaaga	1260
acgagaagtt tacagctacc tgcggttatac agggacaccc tacatgtata accctaacga	1320
caaataaa	1377

<210> 7

<211> 52

<212> DNA

<213> Artificial Sequence

<220>

<223> Chimeric gene

<221> CDS

<222> (2)...(49)

<400> 7

```

g aat gct agc tac cat tta gct ggt ggt ggc cag gcg caa cag att gta      49
Asn Ala Ser Tyr His Leu Ala Gly Gly Gly Gln Ala Gln Gln Ile Val
   1           5           10          15

```

ccc . . . 52

<210> 8
<211> 16
<212> PRT
<213> Artificial Sequence

<220>
<223> Chimeric peptide

<400> 8
Asn Ala Ser Tyr His Leu Ala Gly Gly Gly Gln Ala Gln Gln Ile Val
1 5 10 15

```
<210> 9  
<211> 1541  
<212> DNA  
<213> Artificial Sequence
```

<220>
<223> Hybrid cassette

<400> 9						
tttgtttaac	ttaagaagg	agatataccca	tgatagctgg	tcctgaatgg	ctactagatc	60
gtccttctgt	aaataaacgc	caattggttg	ttagcgttgc	tggtactgtt	gaggggacga	120
atcaagacat	tagtcttaaa	tttttgaaa	tcgatctaac	atcacgacct	gctcatggag	180
gaaagacaga	gcaaggctta	agtccaaaat	caaaaccatt	tgctactgtat	agtggcgacg	240
tgtcacataa	acttgagaaa	gctgacttac	taaaggctat	tcaagaacaa	ttgatcgcta	300
acgtccacag	taacgacgac	tactttgagg	tcattgattt	tgcaagcgat	gcaaccattt	360
ctgatcgaaa	cggcaaggtc	tactttgctg	acaaagatgg	ttcggtaacc	ttgccgaccc	420
aacctgtcca	agaatttttgc	ctaagcggac	atgtgcgcgt	tagaccatat	aaagaaaaac	480
caatacaaaa	ccaagcggaa	tctgttgatg	tggaaatatac	tgtacagttt	actcccttaa	540
accctgtatg	cgatttcaga	ccaggtctca	aagataactaa	gctattgaaa	acactagcta	600
tcggtgacac	catcacatct	caagaattac	tagctcaagc	acaaagcattt	ttaaacaaaa	660
accaccagg	ctatacgatt	tatgaacgtg	actcctcaat	cgtcactcat	gacaatgaca	720
tttccgtac	gattttacca	atggatcaag	agtttactta	ccgtgttaaa	aatcgggAAC	780
aagttatag	gatcaataaaa	aaatctggtc	tgaatgaaga	aataaacaac	actgaccta	840
tctctgagaa	atattacgtc	cttaaaaaaa	ggggaaaagcc	gtatgatccc	tttgatcgca	900
gtcacttgaa	actgttcacc	atcaaatacg	ttgatgtcga	taccaacgaa	ttgctaaaaa	960
gtgagcagct	cttaacagct	agcgaacgta	acttagactt	cagagattt	tacgatccctc	1020
gtgataaggc	taaactactc	tacaacaatc	tcgatgcttt	tggtattatg	gactataact	1080
taactggaaa	agtagaggat	aatcacgatg	acaccaaccg	tatcataacc	gttttatatgg	1140
gcaaggcacc	cgaaggagag	aatgctagct	accatttagc	tggtgggtggc	caggcgcaac	1200
agattgtacc	catagctgag	aagtgttttgc	atcatgctgc	tgggacttcc	tatgtggtcg	1260
gagaaacgtg	ggagaagccc	taccaaggct	ggatgatgg	agattgtact	tcgcggag	1320
aaggcagcgg	acgcatcaact	tgcacttcta	gaaatagatg	caacgatcag	gacacaagga	1380
catcctatag	aattggagac	acctggagca	agaaggataa	tgcaggaaac	ctgctccagt	1440
gcatctgcac	aggcaacggc	cgaggagat	ggaagtgtga	gaggcacacc	tctgtgcaga	1500
ccacatcgag	cgatctggc	cccttacccg	atgttcgtta	q		1541

<210> 10
<211> 1661
<212> DNA

<213> Artificial Sequence

<220>

<223> Hybrid cassette

<400> 10

gcaaccccg	cagcctagcc	gggtcctcaa	cgacaggagc	acgatcatgc	gcacccgtgg	60
ccaggaccca	acgctgccc	agatctcgat	cccgcaaat	taatacgact	cactataggg	120
agaccacaac	ggttccctc	tagaaataat	tttgttaac	ttaagaagg	agatatacca	180
tgattgctgg	acctgagtgg	ctgctagacc	gtccatctgt	caacaacagc	caattgggt	240
tttagcgttgc	tggtactgtt	gaggggacga	atcaagacat	tagtcttaaa	tttttgaaa	300
tcgatctaac	atcacgacct	gctcatggag	gaaagacaga	gcaaggctta	agtccaaaat	360
caaaaccatt	tgctactgat	agtggcgcga	tgtcacataa	acttgagaaa	gctgacttac	420
taaaggctat	tcaagaacaa	ttgatcgcta	acgtccacag	taacgacgac	tactttgagg	480
tcattgattt	tgcaagcgat	gcaaccatta	ctgatcgaaa	cgccaagggtc	tactttgctg	540
acaaaagatgg	ttcggtaacc	ttgccgaccc	aacctgtcca	agaatttttgc	ctaagcggac	600
atgtgcgcgt	tagaccatat	aaagaaaaac	caatacaaaa	ccaagcggaaa	tctgttgatg	660
tggaatatac	tgtacagttt	actcccttaa	accctgtatga	cgatttcaga	ccaggtctca	720
aagatactaa	gctattgaaa	acactagcta	tcggtgacac	catcacatct	caagaattac	780
tagctcaago	acaaaagcatt	ttaaacaaaaa	accacccagg	ctatacgatt	tatgaacgtg	840
actcctcaat	cgtcaactcat	gacaatgaca	ttttccgtac	gattttacca	atggatcaag	900
agtttactta	ccgtgttaaa	aatcgggaac	aagcttatag	gatcaataaa	aaatctggtc	960
tgaatgaaga	aataaacaac	actgacactg	tctctgagaa	atattacgtc	ctaaaaaaag	1020
gggaaaagcc	gtatgatccc	tttgatcgca	gtcacttgaa	actgttccacc	atcaaatacg	1080
ttgatgtcga	taccaacgaa	ttgctaaaaa	gtgagcagct	cttaacagct	agcgaacgta	1140
acttagactt	cagagattt	tacgatcctc	gtgataaggc	taaactactc	tacaacaatc	1200
tcgatgcttt	tggtattatg	gactatacc	taactggaaa	agtagaggat	aatcacgatg	1260
acaccaaccc	tatcataacc	gttttatatgg	gcaagcggacc	cgaaggagag	aatgctagct	1320
atcattttagc	cggtgggtgt	caggcgcagc	aaatggttca	gccccagttcc	ccgggtggctg	1380
tcaagtcaag	caagcccggt	ttttatgaca	atggaaaaca	ctatcgatata	aatcaacagtt	1440
gggagcggac	ctaccttaggt	aatgtgttg	tttgcatttg	ttatggagga	agccgagggtt	1500
ttaactgcga	aagtaaacct	gaagctgaag	agacttgctt	tgacaagttac	actgggaaca	1560
cttaccggat	gggtgacact	tatgagcgctc	ctaaagactc	catgatctgg	gactgtacct	1620
gcatcggggc	tggcgaggg	agaataagct	gtaccatcta	a		1661

<210> 11

<211> 1782

<212> DNA

<213> Artificial Sequence

<220>

<223> Hybrid cassette

<400> 11

tcgcttcacg	ttcgctcgcg	tatcggtat	tcattctgct	aaccagtaag	gcaaccccg	60
cagcctagcc	gggtcctcaa	cgacaggagc	acgatcatgc	gcacccgtgg	ccaggaccca	120
acgctgccc	agatctcgat	cccgcaaat	taatacgact	cactataggg	agaccacaac	180
ggttccctc	tagaaataat	tttgttaac	ttaagaagg	agatatacca	tggtgcaagc	240
acaacagatt	gtacccatag	ctgagaagtg	ttttgatcat	gctgctggga	cttcctatgt	300
ggtcggagaa	acgtgggaga	aggcagcgg	cgcattactt	gcaattctag	aaatagatgc	360
aacgatcagg	acacaaggac	atccatata	attggagaca	cctggagcaa	gaaggataat	420
cgaggaaacc	tgctccagt	catctgcaca	ggcaacggcc	gaggagatg	gaagtgtgag	480
aggcacac	ctgtgcagac	cacatcgagc	ggatctggcc	cttcaccga	tgttcgtatt	540
gctggacctg	agtggctgct	agaccgtcca	tctgtcaaca	acagccaatt	ggttggtagc	600
gttgcgtt	ctgttgaggg	gacgaatcaa	gacattagtc	ttaaatttt	tgaatcgat	660
ctaacatcac	gacctgctca	tggaggaaag	acagagcaag	gcttaagtcc	aaaatcaaaa	720
ccatttgcta	ctgatagtgg	cgcgtgtca	cataaacttg	agaaagctga	cttactaaag	780

gctattcaag	aacaattgtat	cgtacaaacgtc	cacagtaacg	acgactactt	tgagggtcatt	840
gattttgcaa	gcgtatgcac	cattactgtat	cggaaacggca	aggctactt	tgctgcacaaa	900
gatgggttcgg	taacccttgcc	gaccctaacct	gtccaagaat	ttttgctaag	cggacatgtg	960
cgcgttagac	catataaaaga	aaaaccataa	caaaaaccaag	cgaaatctgt	tgatgtggaa	1020
tatactgtac	agtttactcc	cttaaacccct	gatgacgatt	tcagaccagg	tctcaaagat	1080
actaaagctat	tgaaaacact	agctatcggt	gacaccatca	catctcaaga	attactagct	1140
caagcacaaaa	gcattttaaa	caaaaaccac	ccaggctata	cgatttatga	acgtgactcc	1200
tcaatcgta	ctcatgacaa	tgacattttc	cgtacgattt	taccaatgga	tcaagagttt	1260
acttaccgtg	ttaaaaatcg	ggaacaagct	tataggatca	ataaaaaatc	tggtctgaat	1320
gaagaaaataa	acaacactga	cctgatctct	gagaatattt	acgtccttaa	aaaaggggaa	1380
aagccgtatg	atccccttga	tcgcagtcac	ttgaaaactgt	tcaccatcaa	atacgttcat	1440
gtcgatatacc	acgaattgtct	aaaaagttag	cagctcttaa	cagctagcga	acgtactta	1500
gacttcagag	atttatacga	tcctcggtat	aaggctaaac	tactctacaa	caatctcgat	1560
gcttttggtt	ttatggacta	taccttaact	ggaaaagttag	aggataatca	cgtgcacacc	1620
aaccgtatca	taaccgttta	tatgggcaag	cgaccgcgaa	gagagaatgc	tagctatcat	1680
ttagcctatg	ataaaagatcg	ttataccgaa	gaagaacgag	aagtttacag	ctacctgcgt	1740
tatacaggga	cacctatacc	tgataaccct	aacgcacaaat	aa		1782

<210> 12
<211> 2096
<212> DNA
<213> 1-1

<220>
<223> Hybrid cassette

<400> 13

cgaagaccat	tcatgttgg	gctcagg	tcg	cagacgtt	ttt	gcagcag	cag	tcgcttcac	g	60												
ttcgctcg	cg	tatcggt	at	tcattctg	ct	aaccagta	ag	gcaaccc	ccgc	120												
gggtcctc	aa	cgacagg	gag	acgatcat	gc	gcacccgt	gg	ccaggaccc	a	180												
agatctcg	at	cccgcgaa	at	taatacg	act	cactata	agg	agaccaca	ac	240												
tagaaata	at	tttgtttaa	ac	ttt	agaagg	agatata	cca	tggtgcaag	c	300												
gtacccat	ag	ctgagaagt	g	ttt	gtatcat	gt	gtggg	ctt	cotatgt	g	360											
acgtggaga	agg	cgcagcgg	g	cgcat	actt	gcactt	ctag	aaatagat	gc	420												
acacaaggac	atc	cttataga	ttt	ggagaca	cct	ggagcaa	gaaggata	at	cgaggaa	acc	480											
tgctccag	tg	catctgcaca	gg	caacgg	cc	gaggag	gtg	aaagtgt	gag	aggcacac	540											
ctgtgcag	ac	cacatcg	gag	gc	gatctgg	cc	ttcac	cg	ttgtt	att	gtggac	ctg	600									
agtggctg	ct	agaccgt	c	tctgt	caaca	ac	agcca	att	gtt	gttag	gtt	gtgg	ta	660								
ctgttgagg	gg	gacgaat	caa	gacatt	atg	tc	ttaa	at	ttt	tga	atc	gat	cta	acat	720							
gacctgct	ca	tggagg	aa	ag	acagag	caag	gtt	taa	gtt	cc	aaat	caaaa	ccat	tttg	cta	780						
ctgatagt	gg	cgcgat	gt	ca	cataa	actt	g	aaa	agct	ta	ctt	actaa	ag	gtt	attt	caag	840					
aacaatt	tg	cgcta	ac	cg	taac	gt	ac	g	tttgc	att	ttt	tttgc	aa	tttgc	aa	900						
gcgatg	ca	catt	act	gt	cg	aaac	gg	ca	aggt	tct	actt	tg	tgc	aaaa	atgtt	cg	960					
taacctt	g	gaccc	aa	cc	gt	cc	aa	ga	ttt	gt	ct	gac	aaa	atgtt	cg	1020						
catataa	aga	aaa	acc	aa	taa	aa	cc	aa	gtt	gt	at	gt	gg	aa	tata	ctgt	1080					
agtttact	cc	ctt	aa	acc	c	ttt	gat	gac	gtt	tc	ca	gac	agg	t	tct	caa	at	acta	agct	1140		
tgaaaac	act	ag	ctat	cg	gt	ac	ccat	ca	at	ct	ca	aa	gat	act	at	act	aa	ca	agcac	aaa	1200	
gcattt	aaa	ca	aaa	acc	ca	cc	agg	ct	at	ttt	at	ttt	gt	act	cc	tca	at	cg	tca	1260		
ctcatg	aca	ta	g	acat	ttt	cg	tac	g	tt	tac	caat	gg	tca	ag	gtt	ttt	actt	acc	cg	tg	1320	
ttaaaat	cg	g	ga	aca	ag	ct	ta	at	taa	aa	atc	tgg	tct	gaat	g	a	aaa	at	aa	at	aa	1380
acaacact	ga	ac	at	cg	tc	ct	g	aa	at	at	gt	cc	t	aa	agg	gg	aa	a	agcc	gtat	1440	
atccctt	ga	tc	g	c	tg	ca	gt	ac	tt	tt	ac	ccat	ca	aa	cgtt	gt	at	cc	tt	gat	acca	1500
acgaatt	gt	aa	aa	gt	g	aa	gt	c	tt	tc	ac	tt	ca	at	ac	tt	gt	at	tt	tc	agag	1560
atttata	cg	ta	c	c	t	tc	tc	gt	aa	ac	t	t	t	ca	at	t	tc	gt	at	ttt	gg	1620
ttatgg	act	ta	c	c	t	ta	aa	gt	aa	at	ca	gg	ata	at	ca	cg	ac	ac	cc	gtat	ca	1680
taaccgtt	ta	t	a	t	gg	gg	ca	ag	cc	ga	g	ag	ga	at	gc	ta	c	cc	t	ttt	gg	1740
gtggccagg	gc	a	ac	ag	at	cc	ca	tg	aa	gt	ttt	gt	at	ca	t	gt	gt	gg	tt	gt	gg	1800

cttcctatgt ggtcggagaa acgtggaga agccotacca aggctggatg atggtagatt	1860
gtacttgcct gggagaaggc agcggacgca tcacttgac ttctagaat agatgcaacg	1920
atcaggacac aaggacatcc tatagaattt gagacacactg gagcaagaag gataatcgag	1980
gaaacctgct ccagtgcac tgcacaggca acggccgagg agagtggaaag tgtgagaggc	2040
acacacctgt gcagaccaca tcgagcggat ctggccccctt caccgatgtt cgtag	2096
<210> 13	
<211> 53	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetically generated primer	
<400> 13	
catgatagct ggtcctgaat ggctactaga tcgtccttct gtaaataaca gcc	53
<210> 14	
<211> 53	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetically generated primer	
<400> 14	
aattggctgt tatttacaga aggacgatct agtagccatt caggaccagc tat	53
<210> 15	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetically generated primer	
<400> 15	
cagccaatttg gttgttagcg ttgct	25
<210> 16	
<211> 47	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetically generated primer	
<400> 16	
ccggaattcg cgcaacagat tgtacccata gctgagaagt gtttgta	47
<210> 17	
<211> 43	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetically generated primer	

<400> 17		
ggccttaaga gcgctctaac gaacatcggt gaaggggcgt cta		43
<210> 18		
<211> 52		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetically generated primer		
<400> 18		
gaatgcttagc taccatttag ctggtggtgg ccaggcgcaa cagattgtac cc		52
<210> 19		
<211> 59		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetically generated primer		
<400> 19		
gtacggatcc gaatgcttagc tatcatttag cgggtggtgg tcaggcgcaag caaatggtt		59
<210> 20		
<211> 39		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetically generated primer		
<400> 20		
ggccttaaga gcgctctatt agatggtaca gcttattct		39
<210> 21		
<211> 44		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetically generated primer		
<400> 21		
ccatggtgca agcacaaacag attgtaccca tagctgagaa gtgt		44
<210> 22		
<211> 40		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetically generated primer		
<400> 22		

ctcagggtcca gcaatacgaa catcggtgaa ggggccagat	40
<210> 23	
<211> 42	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetically generated primer	
<400> 23	
ttcacccatg ttcgtattgc tggacctgag tggctgctag ac	42
<210> 24	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetically generated primer	
<400> 24	
tggtttgat tttggactta agccttg	27
<210> 25	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetically generated primer	
<400> 25	
attgctggac ctgagtggt	20
<210> 26	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetically generated primer	
<400> 26	
tggtttgat tttggact	18
<210> 27	
<211> 45	
<212> DNA	
<213> Streptococcus equisimilis	
<400> 27	
atgattgctg gaccttagtg gctgctagac cgtccatctg tcaac	45
<210> 28	
<211> 43	
<212> DNA	

<213> Streptococcus equisimilis

<400> 28

atgatacgctg gtctgaatgc tactagatcg tccttctgtta aat

43

SEQUENCE LISTING

<110> Sahni, Girish
Kumar, Rajesh
Roy, Chaiti
Rajagopal, Kammara
Nihalani, Deepak
Sundaram, Vasudha
Yadav, Mahavir

<120> NOVEL CLOT-SPECIFIC STREPTOKINASE PROTEINS POSSESSING ALTERED PLASMINOGEN ACTIVATION CHARACTERISTICS AND A PROCESS FOR THE PREPARATION OF SAID PROTEINS

<130> 07064/009001

<140> US 09/471,349
<141> 1999-12-23

<150> IN 3825/DEL/98
<151> 1998-12-24

<160> 24

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 1245
<212> DNA
<213> Streptococcus equisimilis

<220>
<221> CDS
<222> (1)...(1242)

<400> 1		
att gct gga cct gag tgg ctg cta gac cgt cca tct gtc aac aac agc		48
Ile Ala Gly Pro Glu Trp Leu Leu Asp Arg Pro Ser Val Asn Asn Ser		
1 5 10 15		
caa tta gtt gtt agc gtt gct ggt act gtt gag ggg acg aat caa gac		96
Gln Leu Val Val Ser Val Ala Gly Thr Val Glu Gly Thr Asn Gln Asp		
20 25 30		
att agt ctt aaa ttt ttt gaa atc gat cta aca tca cga cct gct cat		144
Ile Ser Leu Lys Phe Phe Glu Ile Asp Leu Thr Ser Arg Pro Ala His		
35 40 45		
gga gga aag aca gag caa ggc tta agt cca aaa tca aaa cca ttt gct		192
Gly Gly Lys Thr Glu Gln Gly Leu Ser Pro Lys Ser Lys Pro Phe Ala		
50 55 60		
act gat agt ggc gcg atg tca cat aaa ctt gag aaa gct gac tta cta		240
Thr Asp Ser Gly Ala Met Ser His Lys Leu Glu Lys Ala Asp Leu Leu		
65 70 75 80		

aag gct att caa gaa caa ttg atc gct aac gtc cac agt aac gac gac Lys Ala Ile Gln Glu Gln Leu Ile Ala Asn Val His Ser Asn Asp Asp	85	90	95	288
tac ttt gag gtc att gat ttt gca agc gat gca acc att act gat cga Tyr Phe Glu Val Ile Asp Phe Ala Ser Asp Ala Thr Ile Thr Asp Arg	100	105	110	336
aac ggc aag gtc tac ttt gct gac aaa gat ggt tcg gta acc ttg ccg Asn Gly Lys Val Tyr Phe Ala Asp Lys Asp Gly Ser Val Thr Leu Pro	115	120	125	384
acc caa cct gtc caa gaa ttt ttg cta agc gga cat gtg cgc gtt aga Thr Gln Pro Val Gln Glu Phe Leu Leu Ser Gly His Val Arg Val Arg	130	135	140	432
cca tat aaa gaa aaa cca ata caa aac caa gcg aaa tct gtt gat gtg Pro Tyr Lys Glu Lys Pro Ile Gln Asn Gln Ala Lys Ser Val Asp Val	145	150	155	480
160				
gaa tat act gta cag ttt act ccc tta aac cct gat gac gat ttc aga Glu Tyr Thr Val Gln Phe Thr Pro Leu Asn Pro Asp Asp Phe Arg	165	170	175	528
cca ggt ctc aaa gat act aag cta ttg aaa aca cta gct atc ggt gac Pro Gly Leu Lys Asp Thr Lys Leu Leu Lys Thr Leu Ala Ile Gly Asp	180	185	190	576
195				
acc atc aca tct caa gaa tta cta gct caa gca caa agc att tta aac Thr Ile Thr Ser Gln Glu Leu Leu Ala Gln Ala Gln Ser Ile Leu Asn	200	205		624
210				
aaa aac cac cca ggc tat acg att tat gaa cgt gac tcc tca atc gtc Lys Asn His Pro Gly Tyr Thr Ile Tyr Glu Arg Asp Ser Ser Ile Val	215	220		672
225				
act cat gac aat gac att ttc cgt acg att tta cca atg gat caa gag Thr His Asp Asn Asp Ile Phe Arg Thr Ile Leu Pro Met Asp Gln Glu	230	235	240	720
245				
ttt act tac cgt gtt aaa aat cgg gaa caa gct tat agg atc aat aaa Phe Thr Tyr Arg Val Lys Asn Arg Glu Gln Ala Tyr Arg Ile Asn Lys	250	255		768
260				
aaa tct ggt ctg aat gaa gaa ata aac aac act gac ctg atc tct gag Lys Ser Gly Leu Asn Glu Glu Ile Asn Asn Thr Asp Leu Ile Ser Glu	265	270		816
275				
aaa tat tac gtc ctt aaa aaa ggg gaa aag ccg tat gat ccc ttt gat Lys Tyr Tyr Val Leu Lys Lys Gly Glu Lys Pro Tyr Asp Pro Phe Asp	280	285		864
290				
cgc agt cac ttg aaa ctg ttc acc atc aaa tac gtt gat gtc gat acc Arg Ser His Leu Lys Leu Phe Thr Ile Lys Tyr Val Asp Val Asp Thr	295	300		912
300				
aac gaa ttg cta aaa agt gag cag ctc tta aca gct agc gaa cgt aac				960

Asn Glu Leu Leu Lys Ser Glu Gln Leu Leu Thr Ala Ser Glu Arg Asn				
305	310	315	320	
tta gac ttc aga gat tta tac gat cct cgt gat aag gct aaa cta ctc				1008
Leu Asp Phe Arg Asp Leu Tyr Asp Pro Arg Asp Lys Ala Lys Leu Leu				
325	330	335		
tac aac aat ctc gat gct ttt ggt att atg gac tat acc tta act gga				1056
Tyr Asn Asn Leu Asp Ala Phe Gly Ile Met Asp Tyr Thr Leu Thr Gly				
340	345	350		
aaa gta gag gat aat cac gat gac acc aac cgt atc ata acc gtt tat				1104
Lys Val Glu Asp Asn His Asp Asp Thr Asn Arg Ile Ile Thr Val Tyr				
355	360	365		
atg ggc aag cga ccc gaa gga gag aat gct agc tat cat tta gcc tat				1152
Met Gly Lys Arg Pro Glu Gly Glu Asn Ala Ser Tyr His Leu Ala Tyr				
370	375	380		
gat aaa gat cgt tat acc gaa gaa cga gaa gtt tac agc tac ctg				1200
Asp Lys Asp Arg Tyr Thr Glu Glu Arg Glu Val Tyr Ser Tyr Leu				
385	390	395	400	
cgt tat aca ggg aca cct ata cct gat aac cct aac gac aaa				1242
Arg Tyr Thr Gly Thr Pro Ile Pro Asp Asn Pro Asn Asp Lys				
405	410			
taa				1245

<210> 2
<211> 414
<212> PRT
<213> Streptococcus equisimilis

<400> 2				
Ile Ala Gly Pro Glu Trp Leu Leu Asp Arg Pro Ser Val Asn Asn Ser				
1	5	10	15	
Gln Leu Val Val Ser Val Ala Gly Thr Val Glu Gly Thr Asn Gln Asp				
20	25	30		
Ile Ser Leu Lys Phe Phe Glu Ile Asp Leu Thr Ser Arg Pro Ala His				
35	40	45		
Gly Gly Lys Thr Glu Gln Gly Leu Ser Pro Lys Ser Lys Pro Phe Ala				
50	55	60		
Thr Asp Ser Gly Ala Met Ser His Lys Leu Glu Lys Ala Asp Leu Leu				
65	70	75	80	
Lys Ala Ile Gln Glu Gln Leu Ile Ala Asn Val His Ser Asn Asp Asp				
85	90	95		
Tyr Phe Glu Val Ile Asp Phe Ala Ser Asp Ala Thr Ile Thr Asp Arg				
100	105	110		
Asn Gly Lys Val Tyr Phe Ala Asp Lys Asp Gly Ser Val Thr Leu Pro				
115	120	125		
Thr Gln Pro Val Gln Glu Phe Leu Leu Ser Gly His Val Arg Val Arg				
130	135	140		
Pro Tyr Lys Glu Lys Pro Ile Gln Asn Gln Ala Lys Ser Val Asp Val				
145	150	155	160	
Glu Tyr Thr Val Gln Phe Thr Pro Leu Asn Pro Asp Asp Asp Phe Arg				
165	170	175		

Pro Gly Leu Lys Asp Thr Lys Leu Leu Lys Thr Leu Ala Ile Gly Asp
 180 185 190
 Thr Ile Thr Ser Gln Glu Leu Leu Ala Gln Ala Gln Ser Ile Leu Asn
 195 200 205
 Lys Asn His Pro Gly Tyr Thr Ile Tyr Glu Arg Asp Ser Ser Ile Val
 210 215 220
 Thr His Asp Asn Asp Ile Phe Arg Thr Ile Leu Pro Met Asp Gln Glu
 225 230 235 240
 Phe Thr Tyr Arg Val Lys Asn Arg Glu Gln Ala Tyr Arg Ile Asn Lys
 245 250 255
 Lys Ser Gly Leu Asn Glu Glu Ile Asn Asn Thr Asp Leu Ile Ser Glu
 260 265 270
 Lys Tyr Tyr Val Leu Lys Lys Gly Glu Lys Pro Tyr Asp Pro Phe Asp
 275 280 285
 Arg Ser His Leu Lys Leu Phe Thr Ile Lys Tyr Val Asp Val Asp Thr
 290 295 300
 Asn Glu Leu Leu Lys Ser Glu Gln Leu Leu Thr Ala Ser Glu Arg Asn
 305 310 315 320
 Leu Asp Phe Arg Asp Leu Tyr Asp Pro Arg Asp Lys Ala Lys Leu Leu
 325 330 335
 Tyr Asn Asn Leu Asp Ala Phe Gly Ile Met Asp Tyr Thr Leu Thr Gly
 340 345 350
 Lys Val Glu Asp Asn His Asp Asp Thr Asn Arg Ile Ile Thr Val Tyr
 355 360 365
 Met Gly Lys Arg Pro Glu Gly Glu Asn Ala Ser Tyr His Leu Ala Tyr
 370 375 380
 Asp Lys Asp Arg Tyr Thr Glu Glu Arg Glu Val Tyr Ser Tyr Leu
 385 390 395 400
 Arg Tyr Thr Gly Thr Pro Ile Pro Asp Asn Pro Asn Asp Lys
 405 410

<210> 3
 <211> 777
 <212> DNA
 <213> Homo sapiens

<220>
 <221> CDS
 <222> (1)...(777)

<400> 3
 cag gct cag caa atg gtt cag ccc cag tcc ccg gtg gct gtc agt caa 48
 Gln Ala Gln Gln Met Val Gln Pro Gln Ser Pro Val Ala Val Ser Gln
 1 5 10 15

 agc aag ccc ggt tgt tat gac aat gga aaa cac tat cag ata aat caa 96
 Ser Lys Pro Gly Cys Tyr Asp Asn Gly Lys His Tyr Gln Ile Asn Gln
 20 25 30

 cag tgg gag cgg acc tac cta ggt aat gtg ttg gtt tgt act tgt tat 144
 Gln Trp Glu Arg Thr Tyr Leu Gly Asn Val Leu Val Cys Thr Cys Tyr
 35 40 45

 gga gga agc cga ggt ttt aac tgc gaa agt aaa cct gaa gct gaa gag 192
 Gly Gly Ser Arg Gly Phe Asn Cys Glu Ser Lys Pro Glu Ala Glu Glu
 50 55 60

act tgc ttt gac aag tac act ggg aac act tac cga gtg ggt gac act	240
Thr Cys Phe Asp Lys Tyr Thr Gly Asn Thr Tyr Arg Val Gly Asp Thr	
65 70 75 80	
tat gag cgt cct aaa gac tcc atg atc tgg gac tgt acc tgc atc ggg	288
Tyr Glu Arg Pro Lys Asp Ser Met Ile Trp Asp Cys Thr Cys Ile Gly	
85 90 95	
gct ggg cga ggg aga ata agc tgt acc atc gca aac cgc tgc cat gaa	336
Ala Gly Arg Gly Arg Ile Ser Cys Thr Ile Ala Asn Arg Cys His Glu	
100 105 110	
ggg ggt cag tcc tac aag att ggt gac acc tgg agg aga cca cat gag	384
Gly Gly Gln Ser Tyr Lys Ile Gly Asp Thr Trp Arg Arg Pro His Glu	
115 120 125	
act ggt ggt tac atg tta gag tgt gtg tgt ctt ggt aat gga aaa gga	432
Thr Gly Gly Tyr Met Leu Glu Cys Val Cys Leu Gly Asn Gly Lys Gly	
130 135 140	
gaa tgg acc tgc aag ccc ata gct gag aag tgt ttt gat cat gct gct	480
Glu Trp Thr Cys Lys Pro Ile Ala Glu Lys Cys Phe Asp His Ala Ala	
145 150 155 160	
ggg act tcc tat gtg gtc gga gaa acg tgg gag aag ccc tac caa ggc	528
Gly Thr Ser Tyr Val Val Gly Glu Thr Trp Glu Lys Pro Tyr Gln Gly	
165 170 175	
tgg atg atg gta gat tgt act tgc ctg gga gaa ggc agc gga cgc atc	576
Trp Met Met Val Asp Cys Thr Cys Leu Gly Glu Gly Ser Gly Arg Ile	
180 185 190	
act tgc act tct aga aat aga tgc aac gat cag gac aca agg aca tcc	624
Thr Cys Thr Ser Arg Asn Arg Cys Asn Asp Gln Asp Thr Arg Thr Ser	
195 200 205	
tat aga att gga gac acc tgg agc aag aag gat aat cga gga aac ctg	672
Tyr Arg Ile Gly Asp Thr Trp Ser Lys Lys Asp Asn Arg Gly Asn Leu	
210 215 220	
ctc cag tgc atc tgc aca ggc aac ggc cga gga gag tgg aag tgt gag	720
Leu Gln Cys Ile Cys Thr Gly Asn Gly Arg Gly Glu Trp Lys Cys Glu	
225 230 235 240	
agg cac acc tct gtg cag acc aca tcg agc gga tct ggc ccc ttc acc	768
Arg His Thr Ser Val Gln Thr Thr Ser Ser Gly Ser Gly Pro Phe Thr	
245 250 255	
gat gtt cgt	777
Asp Val Arg	

<210> 4
<211> 259
<212> PRT
<213> Homo sapiens

<400> 4

Gln	Ala	Gln	Gln	Met	Val	Gln	Pro	Gln	Ser	Pro	Val	Ala	Val	Ser	Gln
1				5				10						15	
Ser	Lys	Pro	Gly	Cys	Tyr	Asp	Asn	Gly	Lys	His	Tyr	Gln	Ile	Asn	Gln
				20				25						30	
Gln	Trp	Glu	Arg	Thr	Tyr	Leu	Gly	Asn	Val	Leu	Val	Cys	Thr	Cys	Tyr
				35			40					45			
Gly	Gly	Ser	Arg	Gly	Phe	Asn	Cys	Glu	Ser	Lys	Pro	Glu	Ala	Glu	Glu
				50			55				60				
Thr	Cys	Phe	Asp	Lys	Tyr	Thr	Gly	Asn	Thr	Tyr	Arg	Val	Gly	Asp	Thr
				65			70			75			80		
Tyr	Glu	Arg	Pro	Lys	Asp	Ser	Met	Ile	Trp	Asp	Cys	Thr	Cys	Ile	Gly
				85				90					95		
Ala	Gly	Arg	Gly	Arg	Ile	Ser	Cys	Thr	Ile	Ala	Asn	Arg	Cys	His	Glu
				100				105				110			
Gly	Gly	Gln	Ser	Tyr	Lys	Ile	Gly	Asp	Thr	Trp	Arg	Arg	Pro	His	Glu
				115			120				125				
Thr	Gly	Gly	Tyr	Met	Leu	Glu	Cys	Val	Cys	Leu	Gly	Asn	Gly	Lys	Gly
				130			135				140				
Glu	Trp	Thr	Cys	Lys	Pro	Ile	Ala	Glu	Lys	Cys	Phe	Asp	His	Ala	Ala
				145			150			155			160		
Gly	Thr	Ser	Tyr	Val	Val	Gly	Glu	Thr	Trp	Glu	Lys	Pro	Tyr	Gln	Gly
				165				170				175			
Trp	Met	Met	Val	Asp	Cys	Thr	Cys	Leu	Gly	Glu	Gly	Ser	Gly	Arg	Ile
				180				185				190			
Thr	Cys	Thr	Ser	Arg	Asn	Arg	Cys	Asn	Asp	Gln	Asp	Thr	Arg	Thr	Ser
				195				200			205				
Tyr	Arg	Ile	Gly	Asp	Thr	Trp	Ser	Lys	Lys	Asp	Asn	Arg	Gly	Asn	Leu
				210			215			220					
Leu	Gln	Cys	Ile	Cys	Thr	Gly	Asn	Gly	Arg	Gly	Glu	Trp	Lys	Cys	Glu
				225			230			235			240		
Arg	His	Thr	Ser	Val	Gln	Thr	Thr	Ser	Ser	Gly	Ser	Gly	Pro	Phe	Thr
				245				250				255			
Asp	Val	Arg													

<210> 5
<211> 1377
<212> DNA
<213> Streptococcus equisimilis

<400> 5

gcacccgtgg	ccaggaccacca	acgctgcccc	agatctcgat	cccgcgaaat	taatacgaact	60
cactataggg	agaccacaac	ggtttccctc	tagaaaataat	tttgtttaac	tttaagaagg	120
agatatacca	tgattgctgg	acctgagtg	ctgctagacc	gtccatctgt	caacaacagc	180
caattggttg	ttagcgttgc	tgtactgtt	gagggacgca	atcaagacat	tagcttaaa	240
tttttgaaa	tcgatctaac	atcacgacct	gctcatggag	gaaagacaga	gcaaggctta	300
agtccaaaat	caaaaccatt	tgctactgtat	agtggcgcg	tgtcacataa	acttgagaaa	360
gctgacttac	taaaggctat	tcaagaacaa	ttgatcgcta	acgtccacag	taacgacgac	420
tacatttgagg	tcattgtattt	tgcaagcgat	gcaaccatta	ctgatcgaaa	cggcaagggtc	480
tacatttgctg	acaaagatgg	ttcggtaacc	ttgccgaccc	aacctgtcca	agaatttttg	540
ctaagcggac	atgtgcgcgt	tagaccatat	aaagaaaaac	caatacaaaa	ccaagcgaaa	600
tctgttgatg	tggaatatac	tgtacagttt	actcccttaa	accctgtatg	cgatttcaga	660
ccaggtctca	aagataactaa	gctattgaaa	acactagcta	tcggtgacac	catcacatct	720
caagaattac	tagctcaagc	acaaagcatt	ttaaacaaaaa	accaccccagg	ctatacgatt	780
tatgaacgtg	actcctcaat	cgtcactcat	gacaatgaca	ttttccgtac	gatttacca	840
atggatcaag	agtttactta	ccgtgttaaaa	aatcgggaac	aagcttatag	gatcaataaa	900

aaatctggtc tgaatgaaga aataaacaac actgacctga tctctgagaa atattacgtc	960
cttaaaaaag gggaaaagcc gtatgatccc tttgatcgca gtcacttgaa actgttcacc	1020
atcaaatacg ttgatgtcga taccaacgaa ttgctaaaaa gtgagcagct cttaacagct	1080
agcgaacgta acttagactt cagagattt tacgatcctc gtgataaggc taaactactc	1140
tacaacaatc tcgatgttt tggattatg gactatacct taactggaaa agtagaggat	1200
aatcacgatg acaccaaccg tatkataacc gtttatatgg gcaagcgacc cgaaggagag	1260
aatgctagct atcatttgc ctatgataaa gatcggtata ccgaagaaga acgagaagtt	1320
tacagctacc tgcgttatac agggacacct atacctgata accctaacga caaataa	1377

<210> 6
<211> 1327
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetically generated primer

<400> 6	
taatacgact cactataggg agaccacaac ggttccctc tagaaataat tttgtttaac	60
tttaagaagg agatatacca tgatagctgg tcctgaatgg ctactagatc gtccttctgt	120
aaataacagc caattgttg ttacgttgc tggactgtt gaggggacga atcaagacat	180
tagtctaaa tttttgaaa tcgatctaac atcacgacct gctcatggag gaaagacaga	240
gcaaggctt agtccaaaat caaaaccatt tgctactgat agtggcgcga tgtcacataa	300
acttgagaaa gctgacttac taaaggctat tcaagaacaa ttgatcgcta acgtccacag	360
taacgacgac tactttgagg tcattgattt tgcaagcgat gcaaccatta ctgatcgaaa	420
cggcaagggtc tactttgctg acaaagatgg ttcggtaacc ttgccgaccc aacctgtcca	480
agaatttttgc ttaagcgac atgtgcgcgt tagaccatat aaagaaaaac caataaaaaa	540
ccaagcgaaa tctgttgc tgaatatac tgtacagttt actcccttaa accctgatga	600
cgatttcaga ccaggctca aagatactaa gctattgaaa acactagcta tcggtgacac	660
catcacatct caagaattac tagctcaagc acaaagcatt ttaaacaaaa accacccagg	720
ctatacgatt tatgaacgtg actcctcaat cgtaactcat gacaatgaca tttccgtac	780
gattttacca atggatcaag agtttactta ccgtttaaa aatcggaac aagcttata	840
gatcaataaaa aaatctggtc tgaatgaaga aataaacaac actgacctga tctctgagaa	900
atattacgtc cttaaaaaaa gggaaaagcc gtatgatccc tttgatcgca gtcactgaa	960
actgttcacc atcaaatacg ttgatgtcga taccaacgaa ttgctaaaaa gtgagcagct	1020
cttaacagct agcgaacgta acttagactt cagagattt tacgatcctc gtgataaggc	1080
taaactactc tacaacaatc tcgatgttt tggattatg gactatacct taactggaaa	1140
agttagaggat aatcacgatg acaccaaccg tatkataacc gtttatatgg gcaagcgacc	1200
cgaaggagag aatgctagct atcatttgc ctatgataaa gatcggtata ccgaagaaga	1260
acgagaagtt tacagctacc tgcgttatac agggacacct atacctgata accctaacga	1320
caaataa	1327

<210> 7
<211> 52
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetically generated primer

<221> CDS
<222> (2)...(52)

<400> 7	
g aat gct agc tac cat tta gct ggt ggt ggc cag gcg caa cag att gta	49
Asn Ala Ser Tyr His Leu Ala Gly Gly Gly Gln Ala Gln Gln Ile Val	
1 5 10 15	

ccc
Pro

52

<210> 8
<211> 17
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetically generated protein

<400> 8
Asn Ala Ser Tyr His Leu Ala Gly Gly Gln Ala Gln Gln Ile Val
1 5 10 15
Pro

<210> 9
<211> 1541
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetically generated primer

<400> 9
tttgttaac tttaagaagg agatatacca tgatagctgg tcctgaatgg ctactagatc 60
gtcctctgt aaataacagc caattgggtt ttagcggtgc tggtaactgtt gaggggacga 120
atcaagacat tagtctaaa tttttgaaa tcgatctaacc atcacgaccc gctcatggag 180
gaaagacaga gcaaggctt agtccaaaat caaaaccatt tgctactgtt agtggcgca 240
tgtcacataa acttgagaaa gctgacttac taaaggctt tcaagaacaa ttgatcgcta 300
acgtccacag taacgacgac tactttgagg tcattgattt tgcaagcgat gcaaccatta 360
ctgatcgaaa cggcaaggc tactttgtt acaaaagatgg ttcggttaacc ttgccgaccc 420
aacctgtcca agaatttttgc ttaagcggac atgtgcgcgt tagaccatat aaagaaaaac 480
caatacaaaa ccaagcgaaa tctgttgcgt tggaatatac tgtacagttt actcccttaa 540
accctgtatca cgatttcaga ccaggtctca aagataactaa gctattgaaa acactagcta 600
tcggtgacac catcacatct caagaattac tagctcaagc acaaaagcatt ttaaaca 660
accaccagg ctatacgatt tatgaacgtt actccctcaat cgtcactcat gacaatgaca 720
tttccgtac gattttacca atggatcaag agtttactta ccgtgttaaaa aatcgggaaac 780
aagtttatag gatcaataaa aaatctggtc tgaatgaaga aataaacaac actgaccta 840
tctctgagaa atattacgtc cttaaaaaaag gggaaaagcc gtatgatccc tttgatcgca 900
gtcacttgaa actgttccacc atcaaatacg ttgatgtcga taccacgaa ttgctaaaaa 960
gtgagcagct cttAACAGCTT AGCGAACGTA ACTTAGACTT CAGAGATTAC TACGATCCTC 1020
gtgataaggc taaactactc tacaacaatc tcgatgtttt tggtaattatg gactatacct 1080
taactggaaa agtagaggat aatcacgtatc acaccaaccg tatcataacc gtttatatgg 1140
gcaagcgacc cgaaggagag aatgctagct accatttagc tgggtggc caggcgcaac 1200
agattgtacc catagctgag aagtgttttgc atcatgtgc tgggacttcc tatgtggc 1260
gagaaacgtg ggagaagccc taccaaggctt ggtatgttgc agattgtact tgcctggag 1320
aaggcagcgg acgcataact tgcacttcta gaaatagatg caacgatcag gacacaagga 1380
catcctatag aattggagac acctggagca agaaggataa tgcaggaaac ctgctccagt 1440
gcatctgcac aggcaacggc cgaggagatg ggaagtgtga gaggcacacc tctgtgcaga 1500
ccacatcgag cggatctggc cccttcaccgc atgttcgtta g 1541

<210> 10
<211> 1661

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetically generated primer

<400> 10

gcaacccgc cagcctagcc gggcctcaa cgacaggagc acgatcatgc gcacccgtgg	60
ccaggaccca acgctcccc agatctcgat cccgcgaat taatacgact cactataggg	120
agaccacaac ggttccctc tagaaataat ttgtttaac ttaagaagg agatatacca	180
tgattgctgg acctgagtgg ctgcttagacc gtccatctgt caacaacagc caattggttg	240
ttagcgttgc tggtaactgtt gaggggacga atcaagacat tagtctaaa tttttgaaa	300
tcgatctaac atcacgacct gctcatggag gaaagacaga gcaaggctt agtccaaat	360
caaaaccatt tgctactgat atggcgcgta tgtcacataa acttgagaaa gctgacttac	420
taaaggctat tcaagaacaa ttgatcgcta acgtccacag taacgacgac tacttgagg	480
tcattgatt tgcaagcgat gcaaccatta ctgatcgaaa cggcaaggc tacttgctg	540
acaaagatgg ttcggttaacc ttgccgaccc aacctgtcca agaattttt ctaagcggac	600
atgtgcgcgt tagaccatat aaagaaaaac caataaaaaa ccaagcgaaa tctgtttagt	660
tggaaataac tgcgtttt accctgtatga cgatttcaga ccaggctca	720
aagataactaa gctattgaaa acactagcta tcggtgacac catcacatct caagaattac	780
tagctcaagc acaaaaggcatt taaaacaaaaa accaccagg ctatacgatt tatgaacgtg	840
actccctcaat cgtcactcat gacaatgaca ttccgttac gatatttacca atggatcaag	900
agtttactta cctgtttaaa aatcgggAAC aagcttatAG gatcaataaa aaatctggTC	960
tgaatgaaga aataaacaac actgacctga tctctgagaa atattacgtc cttaaaaaAG	1020
ggggaaAGCC gtatgatccc ttgtatcgca gtcacttggaa actgttccacc atcaaatacg	1080
ttgtatgtcgta taccaacgaa ttgtaaaaaa gtgagcagct cttacacgt agcgaacgtA	1140
acttagactt cagagatttA tacgatccctc gtgataaggc taaactactc tacaacaatC	1200
tcgatgtttt tggtaattatg gactatacct taactggaaa agtagaggat aatcacgtG	1260
acaccaacccg tattcataacc gtttatatgg gcaagcgacc cgaaggagag aatgttagCT	1320
atcatTTAGC cgggtgggtt caggcgccgc aaatgttca gcccagtcc ccgggtggctG	1380
tcaGTCAAAG caagccgggt tggtaatgaca atggaaaaACA ctatcagata aatcaacagt	1440
gggagcggac ctacctaggT aatgtgttgG tttgtacttg ttatggagGA agccgaggTT	1500
ttaactgcga aagtaaacct gaagctgaag agacttgctt tgacaagtac actggaaaca	1560
cttaccgagt gggtgacact tatgagcgTC ctaaaagactC catgatctgg gactgtacCT	1620
gcattcggggc tggcgaggg agaataagct gtaccatcta A	1661

<210> 11

<211> 1782

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetically generated primer

<400> 11

tcgcTTcAcg ttgcTcgcg tATCGGTGAT tcattctgct aaccagtaag gcaacccgc	60
cagcctagcc gggcctcaa cgacaggagc acgatcatgc gcacccgtgg ccaggaccca	120
acgctccccg agatctcgat cccgcgaat taatacgact cactataggg agaccacaac	180
ggttccctc tagaaataat ttgtttaac ttaagaagg agatatacca tggtaagc	240
acaacagatt gtacccatag ctgagaagtG ttgtatcat gctgctggGA cttcttatgt	300
ggTCGGAGAA acgtgggaga aggcagcggA cgcacactt gcacttctAG aaatagatgc	360
aacatcagg acacaaggac atcctataga attggagaca cctggagcaa gaaggataat	420
cggggaaacc tgctccatgt catctgcaca ggcaacggcc gaggagatg gaagtgtgag	480
aggcacacct ctgtgcagac cacatcgAGC ggtatctggcc ctttcaccga tgTTGTTATT	540
gctggacctg agtggctgtc agaccgtcca tctgtcaaca acagccaatt ggttggtagc	600
tttgctggta ctgttgaggg gacgaatcaa gacattagtc taaaatttt tgaaatcgat	660
ctaacatcac gacctgctca tgaggaaAG acagagcaag gcttaagtcc aaaatcaaaa	720

ccatttgc	ta ctgatagtgg	cgcgatgtca	cataaaacttg	agaaaagctga	cttactaaag	780
gctattcaag	aacaattgat	cgctaaccgtc	cacagtaacg	acgactactt	tgaggtcatt	840
gattttgcaa	gcgatgcaac	cattactgtat	cgaaacggca	aggtctactt	tgctgacaaa	900
gatgggttcgg	taaccctgcc	gaccacacct	gtccaagaat	ttttgctaag	cggacatgtg	960
cgcgttagac	catataaaga	aaaaccaata	caaaaccaag	cgaaatctgt	tgatgtggaa	1020
tatactgtac	agttaactcc	cttaaacccct	gatgacgatt	ttagaccagg	tctcaaagat	1080
actaagctat	tgaaaacact	agctatcggt	gacaccatca	catctcaaga	attactagct	1140
caagcacaaa	gcattttaaa	caaaaaccac	ccaggtata	cgatttatga	acgtgactcc	1200
tcaatcgta	ctcatgacaa	tgacatttc	cgtacgattt	taccaatgga	tcaagagttt	1260
acttaccgtg	ttaaaaatcg	ggaacaagct	tataggatca	ataaaaaatc	ttggctgaaat	1320
gaagaaataa	acaacactga	cctgatctct	gagaaatatt	acgtccttaa	aaaaggggaa	1380
aaggcgtatg	atccccttga	tcgcagtcac	ttgaaaactgt	tcaccatcaa	atacgttgc	1440
gtcgatacc	acgaattgct	aaaaagttag	cagctcttaa	cagctagcga	acgtaactta	1500
gacttcagag	atttatacga	tcctcgtat	aaggctaaac	tactctacaa	caatctcgat	1560
gctttggta	ttatggacta	taccttaact	ggaaaagtag	aggataatca	cgatgacacc	1620
aaccgtatca	taaccgttta	tatggcaag	cgaccgaaag	gagagaatgc	tagctatcat	1680
ttagcctatg	ataaagatcg	ttataccgaa	gaagaacgag	aagtttacag	ctacctgcgt	1740
tatacaggga	cacctatacc	tgataaccct	aacgacaaat	aa		1782

<210> 12

<211> 2096

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetically generated primer

<400> 12

cgaagaccat	tcatgttgtt	gctcaggtcg	cagacgtttt	gcagcagcag	tcgcttcacg	60
ttcgctcg	cg tattcgat	tcattctgct	aaccagtaag	gcaacccccc	cagcttagcc	120
gggtcctcaa	cgacaggagc	acgatcatgc	gcaccctgtgg	ccaggaccca	acgctgcccc	180
agatctcgat	cccgcgaaat	taatacgtact	cactataggg	agaccacaaac	ggttccctc	240
tagaaataat	tttggtaac	ttttaagaagg	agatatacc	ttggcgaagc	acaacagatt	300
gtacccatag	ctgagaagt	ttttgatcat	gctgctggga	cttcctatgt	gtcgagaa	360
acgtgggaga	aggcagcgg	cgcatcactt	gcacttctag	aatagatgc	aacgatcagg	420
acacaaggac	atcctataga	attggagaca	cctggagcaa	gaaggataat	cgagaaacc	480
tgctccagt	catctgcaca	ggcaacggcc	gaggagatg	gaagtgttag	aggcacac	540
ctgtgcagac	cacatcgagc	ggatctggcc	ccttaccg	ttgtcgatt	gtcgac	600
agtggctgct	agaccgtcca	tctgtcaaca	acagccaatt	gttggtagc	gttgcgtt	660
ctgttgaggg	gacgaatcaa	gacattagtc	ttaaattttt	tgaatcgat	ctaacatcac	720
gacctgctca	tggagggaaag	acagagcaag	gcttaagtcc	aaaatcaaaa	ccatttgct	780
ctgatagtgg	cgcgatgtca	cataaaacttg	agaaaagctga	tttactaaag	gttattcaag	840
aacaattgat	cgctaacgtc	cacagtaacg	acgactactt	tgaggtcatt	gattttgca	900
gcgatgcaac	cattactgtat	cgaaacggca	aggtctactt	tgctgacaaa	gtgggtcg	960
taaccctgcc	gaccacacct	gtccaagaat	ttttgctaag	cggacatgtg	cgcgttagac	1020
catataaaga	aaaaccaata	caaaaccaag	cgaaatctgt	tgatgtggaa	tatactgtac	1080
agtttactcc	cttaaacccct	gtgacgattt	tcagaccagg	tctcaaagat	actaagctat	1140
tgaaaacact	agctatcggt	gacaccatca	catctcaaga	attactagct	caagcacaaa	1200
gcattttaaa	caaaaaccac	ccaggtata	cgatttatga	acgtgactcc	tcaatcgta	1260
ctcatgacaa	tgacatttc	cgtacgattt	taccaatgga	tcaagagtt	acttaccgt	1320
ttaaaaatcg	ggaacaagct	tataggatca	ataaaaaatc	ttggctgaaat	gaagaaataa	1380
acaacactga	cctgatctct	gagaaatatt	acgtccttaa	aaaaggggaa	aagccgtatg	1440
atccccttga	tcgcagtcac	ttgaaaactgt	tcaccatcaa	atacgttgc	gtcgatacc	1500
acgaattgct	aaaaagttag	cagctcttaa	cagctagcga	acgtaactta	gacttcagag	1560
atttatacga	tcctcgtat	aaggctaaac	tactctacaa	caatctcgat	gttggat	1620
ttatggacta	taccttaact	ggaaaagtag	aggataatca	cgatgacacc	aaccgtatca	1680
taaccgttta	tatggcaag	cgaccgaaag	gagagaatgc	tagtaccat	ttagctgg	1740

gtggccaggc gcaacagatt gtacccatag ctgagaagtg ttttgcat gctgctggga	1800
cttcctatgt ggtcggagaa acgtggaga agccctacca aggctggatg atggtagatt	1860
gtacttgcct gggagaaggc agcggacgca tcacttgcac ttcttagaaat agatgcaacg	1920
atcaggacac aaggacatcc tatagaattt gagacacctg gagcaagaag gataatcgag	1980
gaaacctgct ccagtgcata tcgacaggca acggccgagg agagtggaaag tgtgagaggc	2040
acacctctgt cgagaccaca tcgagcggat ctggcccctt caccgatgtt cgtag	2096
<210> 13	
<211> 53	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetically generated primer	
<400> 13	
catgatagct ggtcctgaat ggctactaga tcgtccttct gtaaataaca gcc	53
<210> 14	
<211> 53	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetically generated primer	
<400> 14	
aattggctgt tatttacaga aggacgatct agtagccatt caggaccagc tat	53
<210> 15	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetically generated primer	
<400> 15	
cagccaatttg gttgttagcg ttgct	25
<210> 16	
<211> 47	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetically generated primer	
<400> 16	
ccggaattcg cgcaacagat tgtacccata gctgagaagt gttttga	47
<210> 17	
<211> 43	
<212> DNA	
<213> Artificial Sequence	
<220>	

<223> Synthetically generated primer

<400> 17
ggccttaaga gcgctctaac gaacatcggt gaaggggcgt cta 43

<210> 18
<211> 52
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetically generated primer

<400> 18
gaatgcttagc taccatttag ctggtggtgg ccaggcgcaa cagattgtac cc 52

<210> 19
<211> 59
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetically generated primer

<400> 19
gtacggatcc gaatgcttagc tatcatttag cgggtggtgg tcaggcgcaag caaatggtt 59

<210> 20
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetically generated primer

<400> 20
ggccttaaga gcgctctatt agatggtaca gcttattct 39

<210> 21
<211> 44
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetically generated primer

<400> 21
ccatggtgca agcacaacag attgtaccca tagctgagaa gtgt 44

<210> 22
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetically generated primer

<400> 22
ctcaggtcca gcaatacgaa catcggtgaa ggggccagat 40

<210> 23
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetically generated primer

<400> 23
ttcacccatg ttcgtattgc tggacctgag tggctgctag ac 42

<210> 24
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetically generated primer

<400> 24
tggtttgat ttggactta agccttg 27
