### Algorithms – Chapter 13 Red-Black Trees



Juinn-Dar Huang Professor jdhuang@mail.nctu.edu.tw

October 2007 Rev. '08, '11, '12, '15, '16, '18, '19, '20

### **Red-Black Trees**

- A red-black tree
  - is a binary tree with colored nodes
  - no such path is more than twice as long as any other from the root to a leaf
  - is approximately balanced

### **Properties of Red-Black Trees**

### **Property**

- 1) every node is either red or black
- 2) the root is black
- 3) every leaf (NIL) is black
- 4) if a node is red, its 2 children are black (if any)
- 5) for each node, all paths from the node to descendant leaves contain the same number of black nodes

# Red-Black Trees

### **Example (1/3)**



# **Example (2/3)**



### **Example (3/3)**



Use the simplified representation later

### **Black-Height**

- The number of black nodes on any path from, but not including, a node x down to a leaf is defined as the black-height of the node x
  - denoted as bh(x)

### Tree Height (1/2)

 A red-black tree with n internal nodes has height at most 2lg(n+1)

```
- \text{ or h} \leq 2 \lg(n+1)
```

Proof

```
prove 2^{bh(root)} - 1 \le the \# of nodes n by induction if bh(root) = 0, empty tree \Rightarrow 2^0 - 1 \le 0 assume 2^k - 1 \le n holds for bh(root) = k for bh(root) = k+1: bh of 2 children \Rightarrow k+1 or k
```

- → at least 2<sup>k</sup>-1 nodes for each subtree
- $\rightarrow$  at least  $2^{k+1}$ -1 nodes in the tree

# Tree Height (2/2)

Let h be the height of the tree

- → at least half the nodes on any simple path from the root to a leaf, not including the root, must be black
- $\rightarrow$  bh(root)  $\geq$  h/2
- →  $n \ge 2^{bh(root)} 1 \ge 2^{h/2} 1$
- $\rightarrow$  h  $\leq$  2lg(n+1)
- That is, h = O(Ign)
- How to do insertion and deletion?

### Fixes to Preserve the Properties

- Use TREE-INSERT & TREE-DELETE (described) in Chap 12) in a red-black tree
  - time complexity: O(lgn)
  - after operations, the tree may violate the properties of red-black tree → some fixes are required
- Fixes
  - do rotations
  - change the colors of some nodes

### **Rotations**



### **Left Rotations**

```
LEFT-ROTATE(T, x)
```

```
y \leftarrow right[x] // assume y is not nil
2 right[x] \leftarrow left[y]
3 if left[y] \neq nil[T]
                                        Time Complexity: O(1)
        then p[left[y]] \leftarrow x
5 p[y] \leftarrow p[x]
    if p[x] = nil[T]
       then root[T] \leftarrow y
       else if x = left[p[x]]
                then left[p[x]] \leftarrow y
10
                else right[p[x]] \leftarrow y
11 left[y] \leftarrow x
12 p[x] \leftarrow y
```

### **Example**



### **Insertions in Red-Black Tree (1/2)**

```
RB-INSERT(T, z)
```

8  $p[\mathbf{z}] \leftarrow \mathbf{y}$ 

```
1 y \leftarrow nil[T]

2 x \leftarrow root[T]

3 while x \neq nil[T]

4 do y \leftarrow x

5 if key[z] < key[x]

6 then x \leftarrow left[x]

7 else x \leftarrow right[x]
```

### **Insertions in Red-Black Tree (2/2)**

```
9 if y = nil[T]

10 then root[T] \leftarrow z

11 else if key[z] < key[y]

12 then left[y] \leftarrow z

13 else right[y] \leftarrow z
```

- 14  $left[z] \leftarrow nil[T]$
- 15  $right[z] \leftarrow nil[T]$
- 16  $color[z] \leftarrow RED$
- 17 RB-INSERT-FIXUP(T, z)

Compare with TREE-INSERT (Chap 12, p. 11)

# n-Dar Huang jdhuang @mail.nctu.

# idhuang@mail nctu edu ti

### **INSERT-FIXUP (1/2)**

### RB-INSERT-FIXUP(T, z)

```
1 while color[p[z]] = RED

2 do if p[z] = left[p[p[z]]]

3 then y \leftarrow right[p[p[z]]]

4 if color[y] = RED

5 then color[p[z]] \leftarrow BLACK Case 1

6 color[y] \leftarrow BLACK Case 1

7 color[p[p[z]]] \leftarrow RED Case 1

8 z \leftarrow p[p[z]] Case 1
```

# **INSERT-FIXUP (2/2)**

| 9  | <b>else if</b> $z = right[p[z]]$         |          |
|----|------------------------------------------|----------|
| 10 | then $z \leftarrow p[z]$                 | Case 2   |
| 11 | LEFT-ROTATE $(T, z)$                     | Case 2   |
| 12 | $color[p[z]] \leftarrow \text{BLACK}$    | Case 3   |
| 13 | $color[p[p[z]]] \leftarrow \text{RED}$   | Case 3   |
| 14 | RIGHT-ROTATE( $T$ , $p[p[z]]$ )          | Case 3   |
| 15 | else (same as then (Line 3) clause       |          |
|    | with "right" and "left" ex               | changed) |
| 16 | $color[root[T]] \leftarrow \text{BLACK}$ |          |

### **Case 1 in RB-INSERT-FIXUP**



Case 1: z's uncle y is red

### Case 2 & 3 in RB-INSERT-FIXUP



Case 2: z's uncle y is black and z is a right child

Case 3: z's uncle y is black and z is a left child

# Red-Black Trees idhuang@mail.nctu.edu.tv

# Fixup Example (1/2)



19

# Fixup Example (2/2)



### **Time Complexity**

- RB-INSERT-FIXUP takes O(lgn)
- RB-INSERT-FIXUP never performs more than two rotations, since the while loop terminates if Case 2 or Case 3 is executed

The overall time for RB-INSERT is O(Ign)

### **Deletions in Red-Black Tree (1/2)**

### RB-DELETE(T, z)

- 1 **if** left[z] = nil[T] or right[z] = nil[T]
- 2 then  $y \leftarrow z$
- 3 **else**  $y \leftarrow \text{TREE-SUCCESSOR}(z)$
- 4 **if**  $left[y] \neq nil[T]$
- 5 then  $x \leftarrow left[y]$
- 6 **else**  $x \leftarrow right[y]$
- $7 p[x] \leftarrow p[y]$

### **Deletions in Red-Black Tree (2/2)**

```
if p[y] = nil[T]
                                       Compare with TREE-DELETE
9
        then root[T] \leftarrow x
                                       (Chap 12, p. 13)
        else if y = left[p[y]]
10
11
                then left[p[y]] \leftarrow x
12
                else right[p[y]] \leftarrow x
13
    if y \neq z
14
        then key[z] \leftarrow key[y]
              copy y's satellite data into z
15
16 if color[y] = BLACK
        then RB-DELETE-FIXUP(T, x)
18 return y
```

### • The deleted node y is red

Color of Deleted Node (1/2)

- no black-height in the tree have changed
- no red nodes have been made adjacent
- the deleted node cannot be the root
  - → the root remains black
- so, no fix-up is required!

### Color of Deleted Node (2/2)

- The deleted node y is black
  - if the deleted node is the root and its red child becomes the new root → violate Property 2
  - if both x and p[y] are red → violate Property 4
  - the black-height decreases 1 for paths passing through the deleted node y → violate Property 5
  - so, fix-ups are definitely required!

# Juinn-Dar

## **DELETE-FIXUP (1/3)**

RB-DELETE-FIXUP(T, x)

```
1 while x \neq root[T] and color[x] = BLACK

2 do if x = left[p[x]]

3 then w \leftarrow right[p[x]]

4 if color[w] = RED

5 then color[w] \leftarrow BLACK Case1

6 color[p[x]] = RED Case1

7 LEFT-ROTATE(T, p[x]) Case1

8 w \leftarrow right[p[x]] Case1
```

26

# **DELETE-FIXUP (2/3)**

| 9  | <b>if</b> $color[left[w]] = BLACK$ and        |       |
|----|-----------------------------------------------|-------|
|    | color[right[w]] = BLACK                       |       |
| 10 | then $color[w] \leftarrow RED$                | Case2 |
| 11 | $x \leftarrow p[x]$                           | Case2 |
| 12 | else if $color[right[w]] = BLACK$             |       |
| 13 | <b>then</b> $color[left[w]] \leftarrow BLACK$ | Case3 |
| 14 | $color[w] \leftarrow \text{RED}$              | Case3 |
| 15 | RIGHT-ROTATE( $T$ , $w$ )                     | Case3 |
| 16 | $w \leftarrow right[p[x]]$                    | Case3 |

# idhuana@paeudhi

# **DELETE-FIXUP (3/3)**

| 17              | $color[w] \leftarrow color[p[x]]$     | Case4        |
|-----------------|---------------------------------------|--------------|
| 18              | $color[p[x]] \leftarrow \text{BLACK}$ | Case4        |
| 19              | $color[right[w]] \leftarrow BLACK$    | Case4        |
| 20              | LEFT-ROTATE( $T$ , $p[x]$ )           | Case4        |
| 21              | $x \leftarrow root[T]$                | Case4        |
| 22              | else (same as then (Line 3) clause    | with "right" |
|                 | and "left" exchanged)                 |              |
| $23 \ color[x]$ | ← BLACK                               |              |

# Neu-Dlack lifees

### Case 1 & 2 in RB-DELETE-FIXUP

x is y's single black child initially; x has one "extra black" w is x's sibling and must exist



# Red-Black Trees

### Case 3 & 4 in RB-DELETE-FIXUP



### **Time Complexity**

- RB-DELETE-FIXUP takes O(lgn) time and performs at most three rotations
- The overall time for RB-DELETE is O(lgn)

