	考试林	斗目名	称			整作多	系统_		(A 卷	<u>;</u>)	
	考试方式	注 闭剂	<u>尝</u>	考试 日期	月 <u>2013</u>	年 <u>7</u>	月 <u>7</u> 日	教师	币 <u>骆</u> 萍	忧、葛季	≦栋
	系(专业	y) <u>软件</u>	学院软	件工程	_	年级_	2011 \$	级		班级	
	学号			_	姓名	<u></u>		_	成组	责	
	题号 分数	_	<u> </u>	三	四	五	六	七	八		
	得分		选择题	(本题湯	50 分	>,每小	题 2 分))			
	Α.	系统调》 用户编写 操作系统	高的一个	— 子程序					是供的接	口	
		页面替 FIFO				^主 生 Bel C.OPT	•		ock		
	3.	假设表标 是 ⁷		i述的两个 l现并发打	-	-	·发执行,	,其中,	a, b,	c, d, e	是原语,
看看		process F	P() {			proce	ess Q() {				
			o; c; }				d; e;				
	A.	a,b,c,d,e		B. a,b,d,	e,c	C. a,d	l,e,c,b	D.	a,b,d,c,e		
		操 司时交互位	吏用计算	机。						可以通	过各自的
	A.	网络		B. 分作	工	C. 分	下时	D.	头时		
		现有三 [/] T1 <t2< T1+T2+T3</t2< 	T3。系统	充采用短	作业优生	 . 算法,	则平均	周转时门	可是	o	
		Unix 系 超级块							空闲块		
区分内部碎片与5 碎片		一采用 分页式存储					分区式存	E储 管理	D.分科	设式存储	管理
		采用分類 最大长度是		理的系统 。	统,若地	丛址用 24	4 位表示	,其中:	8 位表示	段号,	则允许每
分段存储管理的 式	存储格 A.2	2 ²⁴ E	3.2^{32}	C.2	28	D. 2 ¹⁰	6				

	9. 在 UNIX 系统中运行以下程序,最多可再产生出个进程?画出 <mark>进程家属树</mark> 。
不明白	main(){
	A. 9 B.7 C.5 D.3
	10. Linux 系统中的 slab 分配器, 采用内存管理方式。 A. 固定分区 B.分页式 C.伙伴系统 D.分段式
	11. 某系统中有 3 个并发进程,都需要同类资源 4 个,试问该系统不会发生死锁的最少资源数是。
	A. 9 B. 10 C. 11 D. 12
十么是Solaris?	12. Solaris 的多线程的实现方式为。 A.纯内核级线程 B.混合式 C.纯用户级多线程 D.单线程结构进程
四种I/O方式	13. 如果 I/O 设备与存储设备进行数据交换不经过 CPU 来完成,这种数据交换方式是。 A.轮询方式 B.中断方式 C.DMA 方式 D.无条件存储方式
	14. 引入多道程序设计技术的前提条件之一是系统具有。 A. 多个 CPU B.多个终端 C. 中断功能 D.分时功能
	。 A. 由一系列机器指令组成 B.由一系列通道指令组成
什么是通道	C.可以由高级语言编写 D.就是通道控制器
	76. 对一个文件的访问,常由共同限制。 A. 用户访问权限和文件属性 B. 用户访问权限和用户优先级
	C. 优先级和文件属性 D. 文件属性的口令
O软件的分层结	
	18. 对于两个并发进程,设互斥信号量为 mutex,若 mutex=0,则。
	A. 表示没有进程进入临界区 B. 表示有一个进程进入临界区
	C. 表示有一个进程进入临界区,另一个进程等待进入
	D. 表示有两个进程进入临界区

2. 假定磁盘有 200 个柱面,编号 0~199,当前存取臂的位置在 100 号柱面上,并刚刚完成了 80 号柱面的服务请求,如果请求队列的先后顺序是: 55、58、39、18,90,160、150、38、184;试问:如果采用**循环扫描**算法完成上述请求,其存取臂移动的总量是多少?

答:	并写出磁头臂移动的序列。(2分)
3.	在 UNIX 系统中,每个 i 节点中分别含有 12 个直接地址的索引和一、二、三级间接索引。假设每个盘块有 1024Byte,若每个盘块放 256 个盘块地址,25MB 的文件分别占用多少直接、一、二、三级间接盘块?。(3 分)
4. 答:	请画出经典的七状态进程模型及其状态转换图。(3分)
5. 答:	一台机器有 48 位虚地址和 32 位物理地址,若页长为 8KB,问页表共有多少个页表项?如果设计一个 <mark>反置页表</mark> ,则有多少个页表项?(2分)

得分 三、(本题满分 4 分)

考虑下面的进程集合:

进程	到达时间	处理时间
A	0	1
В	1	9
С	2	1
D	3	9

如果使用先来先服务 FCFS 调度算法,得到的每个单位时间内的进程执行序列表示为

算法	=	0	1	2	3 4	1	5 6	5	7	8 9	1	0 1	1 1	2 1	13 1	4	15	16	17	18	19	20
FCF	S	A	В	В	В	В	В	В	В	В	В	С	D	D	D	D	D	D	D	D	D	

参照该 FCFS 调度算法给出的执行序列的写法,写出如果采用时间片轮转 RR(时间片单位 q=4)、多级反馈队列 Feedback (反馈 Fback, q=1)等 3 个调度算法,得到进程执行序列,即在如下表格中填入每个单位时间内执行的进程代号。

答:

算法	0	1	2	2	3	4	5	6	7	8 9) 1	0	11 1	2	13	14	15	16	17	18	19	20
RR,q=4																						
Fback,q=	1																					

得分

四、(本题满分 6分)

一个进程在主存中固定分配给3个页框(frame),发生如下顺序的页访问:

4, 3, 2, 1, 4, 3, 5, 4, 3, 2, 1, 5

- (a) 如果使用 LRU 算法, <u>给出相继驻留在这3个页框上的页,并计算缺页次数</u>。假设这些页框最初是空的。(**注**: 在计算缺页次数的时候,请将最初页框为空时也统计在内)
- (b) 如果使用 Clock 算法, 重复问题(a) (注:不考虑修改位, 只考虑引用位)。

答:

LRU 算法

	71 14											
	4	3	2	1	4	3	5	4	3	2	1	5
页框 0												
页框 1												
页框 2												
缺页标记												

缺页次数为 ____次

Clock 算法

	4	3	2	1	4	3	5	4	3	2	1	5
页框 0												
页框 1												
页框 2												
缺页标记												

缺页次数为 ____次

得分

五、(本题满分 6分)

设系统中有 4 种类型的资源(A、B、C、D)和 5 个进程(P0、P1、P2、P3、P4),A 资源的总量为 3,B 资源的总量为 12,C 资源的总量为 14,D 资源的总量为 14。在 T0 时刻系统中个资源使用情况的状态如下表所示,系统采用银行家算法实施死锁避免策略。

进程	已经分	分配资源	(Alloc	cation)	最大需求矩阵 (Claim)					
	A	В	C	D	A	В	C	D		
P0	0	0	3	2	0	0	4	4		
P1	1	0	0	0	2	7	5	0		
P2	1	3	5	4	3	6	10	10		
P3	0	3	3	2	0	9	8	4		
P4	0	0	1	4	0	6	6	10		

剩分	≷资源 ((Available)					
A	В	С	D				
1	6	2	2				

试问: T0 时刻的<u>各资源剩余数量为多少</u>? T0 时刻的<u>是否为安全状态</u>? 若是,请给出其中可能的一种<u>安全序列,并依照该序列,写出各资源的回收步骤</u>。

答:

得分

吸烟者问题(Patil, 1971),三个吸烟者在一个房间内,还有一个香烟供应者。为了制造并 抽掉香烟,每个吸烟者需要三样东西:烟草(编号为0)、纸(编号为1)和火柴(编号为2), 供应者有丰富货物提供。三位吸烟者中,第一位(编号为 1)有自己的烟草,第二位(编号 为 2)有自己的纸和第三位(编号为 3)有自己的火柴。供应者随机地将两样东西放在桌子 上,允许一个吸烟者进行对健康不利的吸烟。当吸烟者完成吸烟后唤醒供应者,供应者 再把两样东西放在桌子上,唤醒另一个吸烟者。请信号量和 P、V 操作写出该问题的程

答:

序描述。

问题分析:

供应者seller随即产生两样东西,提供它们,这里用普通变量来表示

吸烟者进程smoker根据其排号不同,拥有不同的一件东西。假设1号吸烟者拥有烟草tobacco,2号吸烟者拥有纸paper,3号 吸烟者拥有火柴match。其他号码错误返回。

吸烟者的序号代表他们拥有的东西,用他们的序号和供应者产生的两样东西比较,如果都不相等,则说明他拥有的东西和供应者 产生的东西匹配,它可以吸烟。如果其中一个相等,则退出,继续排队。

mutex信号量代表一个只能进入的门,每次只有一个吸烟者可以进入进行比较和吸烟。

每个吸烟者在吸烟完毕之后出门之前要叫醒供应者,调用seller进程。

```
vars, $1, $2, $3; semaphore;
   S:=1; S1:=S2:=S3:=0;
   fiag1,flag2,fiag3:Boolean;
   fiag1:=flag2:=flag3:=true;
   cobegin
   process 供应者
   begin
   repeat
   P(S);
   取两样香烟原料放桌上,由flagi标记;
   //flag1、flag 2、flag 3 代表烟草、纸、火柴
if flag2&flag3 then V(S1); //供纸和火柴
   else if flag1&fiag3 then V(S2); //供烟草和火柴
   else V(S3); //供烟草和纸
   untile false;
   end
   process吸烟者1
   begin
   repeat
   P(S1);
   取原料;
   做香烟;
   V(S);
   吸香烟;
   untile false;
   process吸烟者2
   begin
   repeat
P(S2);
   取原料;
   做香烟;
   V(S);
   吸香烟;
   untile false;
   end
   process吸烟者3
   begin
   repeat
   P(S3);
   取原料;
   做香烟;
   V(S);
   吸香烟;
   untile false;
   end
```

coend

得分

七、管程(本题满分 7分)

用 Hoare 管程方法写出五个哲学就餐问题的程序描述。

答:

八、(本题满分 8分)

好题

有一多道程序设计系统, 1) 进程调度采用时间片调度算法, 不考虑进程的输入输出和操作系统的调度开销; 2) 存储管理采用可变分区方式, 用户空间为 100K, 采用最先适应算法分配主存且不允许移动; 3) 系统配有 4 台磁带机, 对磁带机采用静态分配策略。今有如下作业序列:

作业名	进输入井时间	需执行时间	主存量要求	申请磁带机数
\mathbf{J}_1	10:00	25 分钟	15K	2
J_2	10:20	30 分钟	60K	1
J_3	10:30	10 分钟	50K	3
J_4	10:40	15 分钟	30K	2

当作业调度采用"响应比最高优先算法"时,假定操作系统从11:00 开始调度,问:

 J_1 装入主存时间: I_1 , 结束时间: I_2 , 4

 J_2 裝入主存时间: 1 4 4 1 4 ,结束时间: 1 2 1 2 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 6 1 6 1 6 1 6 1 6 1 6 1 7 1 6 1 7 1 7 1 8 1 9

 J_3 装入主存时间: 17.00 ,结束时间: 11.70 ;

答: