Time Series

Karanveer Mohan Keegan Go Stephen Boyd

EE103 Stanford University

November 15, 2016

Outline

Introduction

Linear operations

Least-squares

Prediction

Time series data

- ightharpoonup represent time series x_1, \ldots, x_T as T-vector x
- $ightharpoonup x_t$ is value of some quantity at time (period, epoch) t, $t=1,\ldots,T$
- examples:
 - average temperature at some location on day t
 - closing price of some stock on (trading) day t
 - hourly number of users on a website
 - altitude of an airplane every 10 seconds
 - enrollment in a class every quarter
- lacktriangle vector time series: x_t is an n-vector; can represent as $T \times n$ matrix

Types of time series

time series can be

- smoothly varying or more wiggly and random
- ► roughly periodic (*e.g.*, hourly temperature)
- growing or shrinking (or both)
- random but roughly continuous

(these are vague labels)

Melbourne temperature

- ▶ daily measurements, for 10 years
- you can see seasonal (yearly) periodicity

Melbourne temperature

▶ zoomed to one year

Apple stock price

- $ightharpoonup \log_{10}$ of Apple daily share price, over 30 years, 250 trading days/year
- ▶ you can see (not steady) growth

Log price of Apple

zoomed to one year

Electricity usage in (one region of) Texas

- ▶ total in 15 minute intervals, over 1 year
- you can see variation over year

Electricity usage in (one region of) Texas

- ▶ zoomed to 1 month
- you can see daily periodicity and weekend/weekday variation

Outline

Introduction

Linear operations

Least-squares

Prediction

Linear operations 11

Down-sampling

- $\blacktriangleright k \times down$ -sampled time series selects every kth entry of x
- ightharpoonup can be written as y = Ax
- \blacktriangleright for $2\times$ down-sampling, T even,

▶ alternative: average consecutive k-long blocks of x

Linear operations 12

Up-sampling

- $\blacktriangleright k \times$ (linear) up-sampling interpolates between entries of x
- ightharpoonup can be written as y = Ax
- \blacktriangleright for $2\times$ up-sampling

$$A = \begin{bmatrix} 1 \\ 1/2 & 1/2 \\ & 1 \\ & 1/2 & 1/2 \\ & & 1 \\ & & & \ddots \\ & & & & 1 \\ & & & & 1/2 & 1/2 \\ & & & & & 1 \end{bmatrix}$$

Up-sampling on Apple log price

$4\times$ up-sample

Linear operations 14

Smoothing

 \blacktriangleright k-long moving average y of x is given by

$$y_i = \frac{1}{k}(x_i + x_{i+1} + \dots + x_{i+k-1}), \quad i = 1, \dots, T - k + 1$$

• can express as y = Ax, e.g., for k = 3,

can also have trailing or centered smoothing

Melbourne daily temperature smoothed

▶ centered smoothing with window size 41

Linear operations 16

First-order differences

- ▶ (first-order) difference between adjacent entries
- discrete analog of derivative
- express as y = Dx, D is the $(T-1) \times T$ difference matrix

$$D = \begin{bmatrix} -1 & 1 & \dots & & & \\ & -1 & 1 & \dots & & & \\ & & \ddots & \ddots & & & \\ & & & & \dots & -1 & 1 \end{bmatrix}$$

▶ $||Dx||^2$ (Laplacian) is a measure of the wiggliness of x

$$||Dx||^2 = (x_2 - x_1)^2 + \dots + (x_T - x_{T-1})^2$$

Outline

Introduction

Linear operations

Least-squares

Prediction

De-meaning

► de-meaning a time series means subtracting its mean:

$$\tilde{x} = x - \mathbf{avg}(x)$$

- $ightharpoonup \mathbf{rms}(\tilde{x}) = \mathbf{std}(x)$
- this is the least-squares fit with a constant

Straight-line fit and de-trending

- ▶ fit data $(1, x_1), \dots, (T, x_T)$ with affine model $x_t \approx a + bt$ (also called *straight-line fit*)
- b is called the trend
- ightharpoonup a + bt is called the trend line
- de-trending a time series means subtracting its straight-line fit
- de-trended time series shows variations above and below the straight-line fit

Straight-line fit on Apple log price

Periodic time series

▶ let *P*-vector *z* be one period of periodic time series

$$x^{\mathrm{per}} = (z, z, \dots, z)$$

(we assume T is a multiple of P)

• express as $x^{\mathrm{per}} = Az$ with

$$A = \left[\begin{array}{c} I_P \\ \vdots \\ I_P \end{array} \right]$$

Extracting a periodic component

- ▶ given (non-periodic) time series x, choose z to minimize $||x Az||^2$
- gives best least-squares fit with periodic time series
- simple solution: average periods of original:

$$\hat{z} = (1/k)A^T x, \quad k = T/P$$

ightharpoonup e.g., to get \hat{z} for January 9, average all x_i 's with date January 9

Periodic component of Melbourne temperature

Extracting a periodic component with smoothing

can add smoothing to periodic fit by minimizing

$$||x - Az||^2 + \lambda ||Dz||^2$$

- $\lambda > 0$ is smoothing parameter
- ightharpoonup D is $P \times P$ circular difference matrix

$$D = \begin{bmatrix} -1 & 1 & & & & \\ & -1 & 1 & & & \\ & & \ddots & \ddots & & \\ & & & & -1 & 1 \\ 1 & & & & & -1 \end{bmatrix}$$

 \blacktriangleright λ is chosen visually or by validation

Choosing smoothing via validation

- split data into train and test sets, e.g., test set is last period (P entries)
- train model on train set, and test on the test set
- ightharpoonup choose λ to (approximately) minimize error on the test set

Validation of smoothing for Melbourne temperature

trained on first 8 years; tested on last two years

Periodic component of temperature with smoothing

ightharpoonup zoomed on test set, using $\lambda=30$

Outline

Introduction

Linear operations

Least-squares

Prediction

Prediction

- **b** goal: predict or guess x_{t+K} given x_1, \ldots, x_t
- ightharpoonup K=1 is one-step-ahead prediction
- ▶ prediction is often denoted \hat{x}_{t+K} , or more explicitly $\hat{x}_{(t+K|t)}$ (estimate of x_{t+K} at time t)
- $ightharpoonup \hat{x}_{t+K} x_{t+K}$ is prediction error
- applications: predict
 - asset price
 - product demand
 - electricity usage
 - economic activity
 - position of vehicle

Some simple predictors

- ▶ constant: $\hat{x}_{t+K} = a$
- current value: $\hat{x}_{t+K} = x_t$
- ▶ linear (affine) extrapolation from last two values:

$$\hat{x}_{t+K} = x_t + K(x_t - x_{t-1})$$

- average to date: $\hat{x}_{t+K} = \mathbf{avg}(x_{1:t})$
- (M+1)-period rolling average: $\hat{x}_{t+K} = \mathbf{avg}(x_{(t-M):t})$
- ▶ straight-line fit to date (*i.e.*, based on $x_{1:t}$)

Auto-regressive predictor

auto-regressive predictor:

$$\hat{x}_{t+K} = (x_t, x_{t-1}, \dots, x_{t-M})^T \beta$$

- M is memory length
- (M+1)-vector β gives predictor weights
- can add offset v to \hat{x}_{t+K}
- ▶ prediction \hat{x}_{t+K} is linear function of past window $x_{t-M:t}$
- (which of the simple predictors above have this form?)

Least squares fitting of auto-regressive models

- \triangleright choose coefficients β via least squares (regression)
- ightharpoonup regressors are (M+1)-vectors

$$x_{1:(M+1)}, \ldots, x_{(N-M):N}$$

outcomes are numbers

$$\hat{x}_{M+K+1},\ldots,\hat{x}_{N+K}$$

 \triangleright can add regularization on β

Evaluating predictions with validation

- ▶ for simple methods: evaluate RMS prediction error
- for more sophisticated methods:
 - split data into a training set and a test set (usually sequential)
 - train prediction on training data
 - test on test data

Example

- predict Texas energy usage one step ahead (K = 1)
- ▶ train on first 10 months, test on last 2

Coefficients

- $\blacktriangleright \ \mathrm{using} \ M = 100$
- ▶ 0 is the coefficient for today

Auto-regressive prediction results

Auto-regressive prediction results

showing the residual

Auto-regressive prediction results

predictor	RMS error
average (constant)	1.20
current value	0.119
auto-regressive $(M=10)$	0.073
auto-regressive ($M=100$)	0.051

Autoregressive model on residuals

- ▶ fit a model to the time series, e.g., linear or periodic
- ▶ subtract this model from the original signal to compute residuals
- apply auto-regressive model to predict residuals
- can add predicted residuals back to model to obtain predictions

Example

- ▶ Melbourne temperature data residuals
- ▶ zoomed on 100 days in test set

Auto-regressive prediction of residuals

Prediction results for Melbourne temperature

► tested on last two years

predictor	RMS error
average	4.12
current value	2.57
periodic (no smoothing)	2.71
periodic (smoothing, $\lambda = 30$)	2.62
auto-regressive $(M=3)$	2.44
auto-regressive ($M=20$)	2.27
auto-regressive on residual ($M=20$)	2.22