Seminar 2

1. Let "*" be the operation on \mathbb{R} defined by:

$$x * y = xy - 5x - 5y + 30.$$

Is $(\mathbb{R}, *)$ a group? What about $(\mathbb{R} \setminus \{5\}, *)$?

2. Let $n \in \mathbb{N}$, $n \geq 2$. Show that the set

$$GL_n(\mathbb{R}) = \{ A \in M_n(\mathbb{R}) \mid \det(A) \neq 0 \}$$

is a stable subset of the monoid $(M_n(\mathbb{R}),\cdot)$ and $(GL_n(\mathbb{R}),\cdot)$ is a group.

3. Let $n \in \mathbb{N}^*$. Show that the set

$$U_n = \{ z \in \mathbb{C} \mid z^n = 1 \}$$

is a stable subset of the group (\mathbb{C}^*,\cdot) , (U_n,\cdot) is an abelian group, and determine the elements of U_n .

4. Let $n \in \mathbb{N}$ and $\mathbb{Z}_n = \{\widehat{x} \mid x \in \mathbb{Z}\}$, where $\widehat{x} = x + n\mathbb{Z} = \{x + nk \mid k \in \mathbb{Z}\}$. Let "+" be the operation on \mathbb{Z}_n defined by:

$$\widehat{x} + \widehat{y} = \widehat{x + y}, \quad \forall \ \widehat{x}, \widehat{y} \in \mathbb{Z}_n.$$

Show that $(\mathbb{Z}_n, +)$ is an abelian group and determine its cardinal (discussion on n).

5. Let $M \neq \emptyset$ be a set and

$$S_M = \{f : M \to M \mid f \text{ bijective}\}.$$

- (i) Show that (S_M, \circ) is a group.
- (ii) If $|M| = n \in \mathbb{N}^*$, then we denote S_M by S_n . Determine the operation table for the group (S_3, \circ) .
- **6.** Determine the operation table for the dihedral group (D_3, \cdot) of rotations and symmetries of an equilateral triangle.
- 7. Determine the operation table for the dihedral group (D_4, \cdot) of rotations and symmetries of a square.
- **8.** Let (G, \cdot) and (G', \cdot) be groups with identity elements e and e' respectively. Let " \cdot " be the operation on $G \times G'$ defined by:

$$(g_1, g_1') \cdot (g_2, g_2') = (g_1 \cdot g_2, g_1' \cdot g_2'), \quad \forall (g_1, g_1'), (g_2, g_2') \in G \times G'.$$

Show that $(G \times G', \cdot)$ is a group, called the *direct product* of the groups G and G'.

- **9.** Determine the group of invertible elements of the monoids $(\mathbb{N}, +)$, (\mathbb{N}, \cdot) , (\mathbb{Z}, \cdot) , (\mathbb{Q}, \cdot) , (\mathbb{R}, \cdot) , (\mathbb{C}, \cdot) , $(M_n(\mathbb{R}), \cdot)$ $(n \in \mathbb{N}, n \ge 2)$ and (M^M, \circ) , where $M \ne \emptyset$ is a set and M^M denotes the set of all functions $f: M \to M$.
 - **10.** Let (G, \cdot) be a group. Show that:
 - (i) G is abelian $\iff \forall x, y \in G, (xy)^2 = x^2y^2.$
 - $(ii) \ \forall x \in G, \ x^2 = 1 \Longrightarrow G \text{ is abelian.}$