eDNA

Jay T. Lennon, Mario E. Muscarella, ...
12 February, 2017

Analysis of quantitative PCR data to test whether the abundance of bacterial communities is affected by extracellular DNA

Setup Work Environment

```
rm(list=ls())
getwd()
setwd("~/GitHub/eDNA/code")
require("plyr")
require("grid")
require("png")
require("car")
sem <- function(x, ...){sd(x, na.rm = TRUE)/sqrt(length(na.omit(x)))}</pre>
```

Load data and calcualte corrected copy number

```
eDNA.raw <- read.table("../data/eDNA_qPCR.txt", sep = "\t", header = T)

# Correct for dilutions and sample processing

# eDNA.raw[,7] = copies not corrected by dilution factor
# eDNA.raw[,8] = dilution factor
# eDNA.raw[,9] = volume (uL) in supernatant of phenol-chloroform extraction
# eDNA.raw[,10] = volume (ul) from supernatant of phenol-chlorofom subsampled

copies.corr <- eDNA.raw[,7] * eDNA.raw[,8] * (eDNA.raw[,9]/eDNA.raw[,10])

# Make new dataframe with corrected copy numbers
eDNA.corr <- data.frame(eDNA.raw, copies.corr)</pre>
```

Take mean of technical replicates and sort

```
# Rename columns
colnames(eDNA) <- c("sample.number", "sample.name", "env", "treat", "copy.number")</pre>
```

Calculate proportion of degradable DNA per sample and test differences

```
# Use `ddply` to return the DNase-1 degradable proportion of 16S rRNA gene copy
eDNA.prop <- ddply(eDNA, .(sample.number, sample.name, env), summarize,
                  prop = 1 - ((copy.number[treat == "E"]) / (copy.number[treat == "C"])))
# Sort by environment
eDNA.prop <- eDNA.prop[order(eDNA.prop[,3]) ,]</pre>
# Three samples (cat feces [32], human feces [28], T7Core) have negative proportions
# Set these to zero (i.e., no eDNA)
eDNA.prop$prop <- ifelse(eDNA.prop$prop < 0, 0, eDNA.prop$prop)
write.table(eDNA.prop, "../data/eDNA.prop.txt", sep = "\t", col.names = T, row.names = F)
# Use glm to test whether amount of eDNA differs among environments
eDNA.prop.test <- glm(prop ~ env, data = eDNA.prop)
summary(eDNA.prop.test)
##
## Call:
## glm(formula = prop ~ env, data = eDNA.prop)
## Deviance Residuals:
       \mathtt{Min}
                 1Q
                        Median
                                      3Q
                                                Max
## -0.33945 -0.10951 -0.04154 0.13124
                                           0.46044
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.27373 0.07256
                                   3.773 0.000684 ***
## envsed
              0.09535
                          0.10577
                                   0.901 0.374276
## envsoil
              -0.02365
                          0.10577 -0.224 0.824573
## envwater
              0.15897
                          0.10001
                                    1.589 0.122107
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for gaussian family taken to be 0.04738117)
##
      Null deviance: 1.6650 on 34 degrees of freedom
## Residual deviance: 1.4688 on 31 degrees of freedom
## AIC: -1.6555
##
## Number of Fisher Scoring iterations: 2
Anova(eDNA.prop.test, type = "II", test.statistic = "F")
## Analysis of Deviance Table (Type II tests)
##
## Response: prop
```

```
## Error estimate based on Pearson residuals
##
##
                SS Df
                           F Pr(>F)
            0.1962 3 1.3803 0.2671
## env
## Residuals 1.4688 31
# Use Anova to test whether the amount of dDNA differs among environments
eDNA.prop.lm <- lm(prop ~ env, data = eDNA.prop)
summary(eDNA.prop.lm)
##
## Call:
## lm(formula = prop ~ env, data = eDNA.prop)
## Residuals:
       Min
                 1Q
                      Median
                                    3Q
## -0.33945 -0.10951 -0.04154 0.13124 0.46044
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.27373 0.07256 3.773 0.000684 ***
## envsed
              0.09535
                          0.10577 0.901 0.374276
                          0.10577 -0.224 0.824573
## envsoil
              -0.02365
## envwater
              0.15897
                          0.10001
                                   1.589 0.122107
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2177 on 31 degrees of freedom
## Multiple R-squared: 0.1178, Adjusted R-squared: 0.03247
## F-statistic: 1.38 on 3 and 31 DF, p-value: 0.2671
eDNA.anova <- Anova(eDNA.prop.lm, type = "II")
eDNA.anova
## Anova Table (Type II tests)
## Response: prop
            Sum Sq Df F value Pr(>F)
##
            0.1962 3 1.3803 0.2671
## env
## Residuals 1.4688 31
# Calculate means, sem, and sample size by environment
eDNA.mean <- aggregate(eDNA.prop$prop ~ eDNA.prop$env, eDNA.prop, mean)
eDNA.n <- aggregate(eDNA.prop$prop ~ eDNA.prop$env, eDNA.prop, length)
eDNA.sem <- aggregate(eDNA.prop$prop ~ eDNA.prop$env, eDNA.prop, sem)
# Make table of proportion eDNA by environment
eDNA.table <- data.frame(eDNA.mean, eDNA.sem[ ,2], eDNA.n[ ,2])
colnames(eDNA.table) <- c("env", "mean", "sem", "n")</pre>
eDNA.table <- eDNA.table[order(eDNA.table[,2]), ]</pre>
```

Make bar plot with error bars by environment

```
png(filename="../figures/qPCR.bar.png",
    width = 800, height = 800, res = 96*2)
bp <- barplot(eDNA.table$mean, ylim =c(0, 0.6),</pre>
              pch = 15, cex = 1.25, las = 1, cex.lab = 1.25, cex.axis = 1,
              col = "gray90", axis.lty = 1, lwd = 2, xlab = NA,
              ylab = "Proportion eDNA",
              names.arg = c("Gut", "Soil", "Sediment", "Water"), cex.names = 0.9)
              box(1wd = 2)
arrows(x0 = bp, y0 = eDNA.table$mean, y1 = eDNA.table$mean - eDNA.table$sem,
       angle = 90, length = 0.1, lwd = 2)
arrows(x0 = bp, y0 = eDNA.table$mean, y1 = eDNA.table$mean + eDNA.table$sem,
       angle = 90, length=0.1, lwd = 2)
# Close Plot Device
dev.off()
graphics.off()
# Show Plot
img <- readPNG("../figures/qPCR.bar.png")</pre>
grid.raster(img)
```

Make x-y plot with error bars by environment

```
png(filename="../figures/Prop_eDNA.png",
    width = 800, height = 800, res = 96*2)
par(mar = c(3, 5, 1, 1))
non.bp <- plot(eDNA.table$mean, ylim = c(0, 0.6),</pre>
               xlim = c(0.5, 4.5), pch = 22, bg = "gray90", lwd = 2,
               cex = 3, yaxt = "n", xaxt = "n", cex.lab = 2, cex.axis = 1.5,
               las = 1, ylab = "", xlab = "")
box(1wd = 2)
mtext(expression('Proportion eDNA'), side = 2,
      outer = FALSE, cex = 1.5, line = 3, adj = 0.5)
# Major Axes
axis(side = 2, lwd.ticks = 2, cex.axis = 1.25, las = 1,
     labels = c(0.0, 0.2, 0.4, 0.6), at = c(0.0, 0.2, 0.4, 0.6))
axis(side = 4, lwd.ticks = 2, cex.axis = 1.5, las = 1,
     at=c(0.0, 0.2, 0.4, 0.6), labels = F, tck = -0.02)
axis(side = 1, lwd.ticks = 2, cex.axis = 0.9, las = 1,
     labels = c("Gut", "Soil", "Sediment", "Water"), at = c(1, 2, 3, 4))
axis(side = 3, lwd.ticks = 2, cex.axis = 1.5, las = 1,
    at = c(1, 2, 3, 4), labels = F, tck = -0.02)
```

```
axis(side = 1, labels = F, lwd.ticks = 2, tck = 0.02, at = c(1, 2, 3, 4))
axis(side = 2, labels = F, lwd.ticks = 2, tck = 0.02, at = c(0, 0.2, 0.4, 0.6))
axis(side = 3, labels = F, lwd.ticks = 2, tck = 0.02, at = c(1, 2, 3, 4))
axis(side = 4, labels = F, lwd.ticks = 2, tck = 0.02, at = c(0, 0.2, 0.4, 0.6))
arrows(x0 = c(1, 2, 3, 4), y0 = eDNA.table\$mean,
       y1 = eDNA.table$mean - eDNA.table$sem, angle = 90,
       length = 0.1, lwd = 2)
arrows(x0 = c(1,2,3,4), y0 = eDNA.table\$mean,
       y1 = eDNA.table$mean + eDNA.table$sem, angle = 90,
       length=0.1, lwd = 2)
points(x = c(1:4), eDNA.table$mean,
      pch = 22, bg = "gray90", 1wd = 2, cex = 3)
# Close Plot Device
dev.off()
## pdf
## 2
graphics.off()
# Show Plot
img <- readPNG("../figures/Prop_eDNA.png")</pre>
grid.raster(img)
```