МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГАОУ ВО «Крымский федеральный университет имени В. И. Вернадского»

ТАВРИЧЕСКАЯ АКАДЕМИЯ

Факультет математики и информатики

Анафиев А. С.

Учебно-методическое пособие

по дисциплине «Системы и методы принятия решений»

ПРИМЕНЕНИЕ ЯЗЫКА «R» К РЕШЕНИЮ ЗАДАЧ КЛАССИФИКАЦИИ: ПРИМЕРЫ

Анафиев А. С.

Учебно-методическое пособие по дисциплине «Системы и методы принятия решений». Применение языка «R» к решению задач классификации: примеры / А. С. Анафиев — ФГАОУ ВО «Крымский федеральный университет имени В. И. Вернадского». — Симферополь, 2016. — 40 с.

Пособие содержит основы языка программирования R, примеры программ решения задач классификации на языке R. Предназначено для обучающихся направления 01.03.02 Прикладная математика и информатика.

Рекомендовано к печати учебно-методическим советом Крымского федерального университета имени В. И. Вернадского от 23 декабря 2016 г., протокол N = 4

[©] Анафиев А. С.

[©] ФГАОУ ВО «Крымский федеральный университет имени В. И. Вернадского», 2016

1. ЯЗЫК R	4
1.1. Основные особенности языка R	6
1.2. Работа с графикой в R	13
2. ЗАДАЧА КЛАССИФИКАЦИИ	17
2.1. Метрические алгоритмы классификации	18
2.2. Байесовские алгоритмы классификации	23
2.2.1. Подстановочный алгоритм	24
2.2.2. Линейный дискриминант Фишера — ЛДФ	28
2.3. Линейные алгоритмы классификации	31
Список литературы	39

1. ЯЗЫК R

Язык R — язык для работы с данными: статистическая обработка данных, продвинутое математическое моделирование, визуализация данных. R является очень популярным в США и западной Европе, а в последнее время приобретает все большее распространение и в России. Его используют многие серьезные компании по всему миру.

Язык R — объектно-ориентированный язык программирования. Каждый объект принадлежит некоторому классу, который описывает данные и методы для работы с ними (данными). В зависимости от класса один и тот же метод может выводить различные результаты (например, функция plot(x) выводит различные результаты, когда х является регрессией и когда х является вектором). Теоретически всё что угодно может быть сохранено как объект.

Язык R можно бесплатно загрузить с официального сайта www.r-project.org под любую популярную операционною систему: Windows, Unix-системы и macOS.

После установки для запуска интерпретатора R достаточно выполнить в терминале команду:

\$ R

результатом которой будет нечто вроде этого:

```
R version 3.2.4 (2016-03-10) -- "Very Secure Dishes" Copyright (C) 2016 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin13.4.0 (64-bit)
```

R -- это свободное ΠO , и оно поставляется безо всяких гарантий.

Вы вольны распространять его при соблюдении некоторых условий.

Введите 'license()' для получения более подробной информации.

```
R -- это проект, в котором сотрудничает множество разработчиков.
Введите 'contributors()' для получения дополнительной информации и 'citation()' для ознакомления с правилами
```

упоминания R и его пакетов в публикациях.

```
Введите 'demo()' для запуска демонстрационных программ, 'help()' -- для получения справки, 'help.start()' -- для доступа к справке через браузер. Введите 'q()', чтобы выйти из R.
```

Как видно из выше приведенного листинга для выхода необходимо использовать команду

```
> q()
```

для получения подробной информации (справки) о любой функции, необходимо выполнить команду:

```
> help(<имя функции>)
либо
> ?<имя функции>
```

Кроме функции help(), полезной, если мы не знаем точного

названия функции, может оказаться команда

```
> help.search("vector")
```

результатом которой будет список команд, свойственных «векторам», с кратким описанием.

Для выполнения команд достаточно запустить среду R и выполнять в окне программы последовательность команд одну за другой. Однако, это не всегда удобно, более правильный подход — это создание *скриптов* (программ, которые загружаются и интерпретируются R). Одной из основ правильной работы в R является создание скриптов даже в самых простых ситуациях.

Загрузить некоторый скрипт можно при помощи команды:

```
> source("путь к файлу скрипта", echo = TRUE)
```

Скрипт R можно выполнить и не запуская саму среду, для этого в командной строке достаточно выполнить команду:

```
$ R -q --no-save < "имя файла-скрипта" > "имя файла-
результата"
```

Одним из важных преимуществ R является наличие для него многочисленных расширений (пакетов) практически для решения любой задачи обработки данных, которые можно легко скачать с официального онлайн-репозитория — **CRAN** (http://cran.r-project.org/) и установить с помощью команды:

```
install.packages()
```

При установке R автоматически устанавливаются так называемые базовые пакеты, без которых система просто не работает (например, это такие пакеты, как base, grDevices), и некоторые «рекомендованные» пакеты (например, cluster (для решения задач кластерного анализа), nlme (для анализа нелинейных моделей) и д. р.).

1.1. Основные особенности языка R

R — регистрозависимый язык, т. е., например, символы «А» и «а» могут обозначать разные объекты.

Для присваивания используется символы «<-» или «->» (можно также использовать традиционное « = »).

Аргументы функций передаются в круглых скобках через запятую.

```
func(x, y) # вызов функции с двумя аргументами x и у f(g(x, y), y) # Суперпозиция функций f и g
```

Для получения списка аргументов функции следует использовать функцию:

```
> args(q)
function (save = "default", status = 0, runLast = TRUE)
NULL
```

Как видно по результату функции args, она выдаёт информацию не только о том, какие аргументы имеют значения по умолчанию, но и сами эти значения.

Некоторые аргументы могут иметь имена, благодаря чему их можно перечислять не по порядку, а по имени. Имена можно сокращать вплоть до одной буквы, но только если нет других аргументов, которые от такого сокращения станут неразличимы. При перечислении аргументов по порядку имена можно опускать:

```
> args(round)
function (x, digits = 0)
NULL
> round(pi) # Использовали значение по умолчанию для
"digits"
[1] 3
> round(pi, 3) # Прямой порядок аргументов
[1] 3.142
> round(pi, digits = 10) # с использованием имени аргумента
[1] 3.141593
> round(pi, d = 5) # с использованием сокращенного имени
[1] 3.14159
> round(digits = 5, pi) # вызов с другим порядком аргументов
[1] 3.14159
```

Как вы успели заметить, для однострочных комментариев используется символ #:

Комментарий

Команды разделяются точкой с запятой «;» или символом перевода на новую строку:

```
1:10 -> a; mean(a);

ИЛИ

1:10 -> a
mean(a)
```

В самом простом случае R можно использовать как «продвинутый» калькулятор:

```
> # Использование R как калькулятора
> 1 + 2 + 3
[1] 6
> exp(1)^exp(1) # е в степени е
[1] 15.15426
> sin(pi/2)
[1] 1
```

Обратим внимание на единицу в квадратных скобках ([1]) — это индекс элемента вектора. Дело в том, что в *R любой результат с числами трактуется как вектор единичной длины*, так как скаляров в R, вообще говоря, нет. Кроме этого, нумерация элементов векторов начинается с 1, а не с 0, как во многих других языках программирования.

Сохранение числовых и строковых значений:

```
> number <- 10 # сохранение объект
> number # выводим объект
[1] 10
```

```
> (number <- 10) # Сохраняем и выводим объект
[1] 10
> string <- "Hello" # Сохраняем объект-строку
> string
[1] "Hello"
```

Кроме строк и чисел можно также создавать и сохранять векторы. Вектор создается с помощью функции с(), которая объединяет несколько однотипных элементов. Также, с помощью двоеточия «:» или функции seq() можно создать регулярную последовательность. Функция rep() позволяет повторять некоторый образец.

```
> v1 < -c(2, 3, 4, 6, 10)
> v1
[1] 2 3 4 6 10
> v1[3] # Получить третий элемент вектора
[1] 4
> v1[3:5] # Получить третий, четвертый и пятый элементы
вектора
[1] 4 6 10
> v2 <- c(1:5) # Определить вектор как последовательность
от 1 до 5
> v2
[1] 1 2 3 4 5
> s <- rep("a", 4)
[1] "a" "a" "a" "a"
> rep(1:4, 2)
[1] 1 2 3 4 1 2 3 4
> rep(1:4, each = 2)
[1] 1 1 2 2 3 3 4 4
```

```
> (v1 + v2) * v2 # Можно проводить простые операции над
векторами
[1] 3 10 21 40 75
> crossprod(v1, v2) # Вычисление скалярного произведения
        [,1]
[1,] 94
> v1[v1 > 4] # Получить все координаты вектора большие 4
[1] 6 10
```

Можно получать различные свойства векторов:

```
> length(v1) # Длина вектора
[1] 5
> mean(v1) # Среднее значение элементов вектора
[1] 5
> var(v1) # Дисперсия элементов вектора
[1] 10
```

Матрицы создаются с помощью команды matrix ():

```
> args(matrix)
function (data = NA, nrow = 1, ncol = 1, byrow = FALSE,
dimnames = NULL)
NULL
> matrix(data = 1:5, nrow = 5, ncol = 5, byrow = FALSE)
  [,1] [,2] [,3] [,4] [,5]
[1,] 1 1
                   1
               1
      2
          2
               2
                   2
                       2
[2,]
     3
          3
              3
                  3
                       3
[3,]
[4,] 4 4
[5,] 5 5
          4
              4
                  4
              5
                  5
> matrix(data = 1:5, nrow = 5, ncol = 5, byrow = TRUE)
   [,1] [,2] [,3] [,4] [,5]
[1,] 1 2
               3
                   4
          2
[2,]
      1
               3
                   4
                       5
     1
          2
              3
[3,]
                  4
     1
              3
          2
                  4
[4,]
[5,] 1
          2
              3
                  4
                       5
```

Можно создать матрицу с неопределенными значениями (для этого используется специальное обозначение NA):

```
> matrix(data = NA, nrow = 3, ncol = 3)
      [,1] [,2] [,3]
[1,] NA NA NA
[2,] NA NA NA
[3,] NA NA NA
```

Матрицу можно также получить с помощью функцийкомбинаторов cbind (объединяет столбцы) и rbind (объединяет строки).

```
> m <- cbind(v1, v2) # Создаем матрицу
> m
    v1 v2
[1,] 2 1
[2,] 3 2
[3,] 4 3
[4,] 6 4
[5,] 10 5
> typeof(m) # Получаем тип элементов матрицы
[1] "double"
> class(m) # Получаем класс объекта
[1] "matrix"
> is.matrix(m) # Проверяем, является ли m матрицей
[1] TRUE
> is.vector(m) # m не вектор
[1] FALSE
> dim(m) # Получаем размерность m
[1] 5 2
```

Примечание. Функция cbind (rbind) объединяет столбцы (строки) не только векторов, но и матриц и более сложных, подходящих для этого, структур данных:

```
> m1 <- cbind(m, m)
> m1
    v1 v2 v1 v2
[1,] 2 1 2
             1
[2,] 3 2 3 2
[3,] 4 3 4 3
[4,] 6 4 6 4
[5,] 10 5 10 5
> m2 < - rbind(m, m)
> m2
     v1 v2
 [1,]
     2 1
 [2,] 3 2
        3
 [3,] 4
 [4,]
        4
     6
 [5,] 10 5
     2 1
 [6,]
 [7,] 3 2
[8,] 4 3
 [9,] 6
        4
[10,] 10 5
```

Можно также определить свою структуру данных:

```
> mydat <- data.frame(m) # Создаём структуру данных
> names (mydat) # Даём имена каждой переменной
[1] "v1" "v2"
> str(mydat) # Выводим структуру данных
'data.frame': 5 obs. of 2 variables:
$ v1: num 2 3 4 6 10
$ v2: num 1 2 3 4 5
> summary(mydat) # Статистика
  v1
                 v2
Min. : 2 Min. :1
1st Qu.: 3 1st Qu.:2
Median: 4 Median: 3
Mean : 5 Mean : 3
3rd Qu.: 6 3rd Qu.:4
Max. :10 Max. :5
```

1.2. Работа с графикой в R

Основной функцией для рисования объектов в R является функция plot (x, y, ...):

- координаты точек графика, либо некоторая графическая структура, функция или объект, содержащий методы рисования.
- у у-координаты точек графика, если x соответствующего типа.
- ... остальные графические параметры. Перечислим некоторые из них:
 - параметр type позволяет изменять внешний вид точек на графике и может принимать одно из следующих значений:
 - "p" точки (*points*; используется по умолчанию);
 - "1" линии (*lines*):
 - "b" изображаются и точки, и линии (<u>b</u>oth points and lines);
 - "о" точки изображаются поверх линий (points over lines);
 - "h" гистограмма (*histogram*);
 - "s" ступенчатая кривая (<u>s</u>teps);
 - "n" данные не отображаются (*no points*).
 - параметры xlab и ylab задают название осей абсцисс и ординат, соответственно;
 - параметр main задаёт заголовок графика.

Рассмотрим несколько примеров.

```
# Линия регрессии:
> require(stats) # для lowess, rpois, rnorm
plot(cars)
lines(lowess(cars))
```


Рис 1.1. Линия регрессии.

```
# Синусоида:
> plot(sin, -pi, 2*pi)
```


Рис 1.2. Синусоида.

Рис 1.3. Дискретное распределение.

Рис 1.4. Квантили.

```
# Нейронная сеть:
...
library(neuralnet)
n <- names(train_)
f <- as.formula(paste("medv ~", paste(n[!n %in% "medv"], collapse = " + ")))
nn <-
neuralnet(f,data=train_,hidden=c(5,3),linear.output=T)
plot(nn)
```


Рис 1.5. Нейронная сеть.

Как видно из примеров, с помощью функции plot() можно создавать большое количество разнообразных графиков.

2. ЗАДАЧА КЛАССИФИКАЦИИ

Требуется построить алгоритм $a: X \to Y$, который бы восстанавливал неизвестную целевую зависимость y^* не только на объектах обучения $\{x_1, \dots, x_\ell\}$, но и на всем множестве X.

Сформулированная выше задача называется *задачей классификации*. Опишем несколько методов решения данной задачи.

Определение. *Моделью алгоритма* называется параметрическое семейство отображений

$$A = \{\phi: X \times \Theta \to Y\},\$$

где ϕ — некоторое фиксированное отображение, множество Θ — множество параметров модели или, как еще говорят, пространство поиска.

Определение. Эмпирическим риском называется величина

$$Q(a,X^{\ell}) = \frac{1}{\ell} \sum_{i=1}^{\ell} L(a,x_i),$$

где $L(a, x_i)$ — неотрицательная функция потерь, характеризующая величину потери алгоритма a на объекте x.

Для задачи классификации, как правило, используют бинарную функцию потерь, которая равна 1, если алгоритм a допускает ошибку на объекте x, и 0 — иначе. В этом случае эмпирический риск — это частота ошибки алгоритма a на выборке X^{ℓ} .

Определение. *Алгоритмом* (*методом*) *обучения* называется отображение

$$\mu: (X \times Y)^{\ell} \to A$$
,

которое произвольной конечной выборке X^{ℓ} ставит в соответствие алгоритм $a \in A$.

Классическим методом обучения μ решения задачи классификации является *минимизация эмпирического риска*:

$$\mu(A, X^{\ell}) = \arg\min_{a \in A} Q(a, X^{\ell}).$$

2.1. Метрические алгоритмы классификации

Предположим, что в пространстве объектов X задана некоторая функция расстояния (метрика) $\rho(x,x')$, характеризующая степень близости объектов, причём, необязательно метрика. Кроме этого, будем считать, что объекты из одного класса близки согласно функции ρ , а объекты разных классов — далеки. Данное предположение называют *гипотезой компактности*. Обратим внимание, что для вычисления ρ нам необязательно знать признаковое описание объектов.

Метрический классификатор — это классификатор, который принимает решение о принадлежности классам, помимо обучающей выборки, согласно функции расстояния ρ между объектами. В общем виде его можно записать следующим образом:

$$a(x) = \arg\max_{y \in Y} W_y(x, X^{\ell}),$$

где $W_y(x, X^\ell)$ — степень принадлежности объекта x классу y.

Рассмотрим несколько разновидностей метрических классификаторов.

Алгоритм ближайших соседей. В качестве функции $W_y(z, X^\ell) = W_y(z, X^\ell; k) = w_y(z, x_{z,1}, ..., x_{z,k}), x_{z,j} - j$ -ый по близости (близость определяется согласно функции ρ) к объекту z объект обучающей выборки X^ℓ . Объект $x_{z,j}$ называется j-ым соседом объекта z. Тогда $y_{z,j}$ — ответ на j-ом соседе. Если в качестве функции w_y взять $w_y = \sum_{i=1}^k [y = y_{z,i}],$ где $[y = y_{z,i}] = \begin{cases} 1, & y = y_{z,i}; \\ 0, & y \neq y_{z,i}, \end{cases}$ то получим метод k ближайших соседей (kNN). Другими словами, метод kNN относит классифицируемый объект k тому классу, k которому принадлежит большая часть из ближайших k соседей.

Реализуем данный алгоритм на языке R. Для примера рассмотрим обучающую выборку «Ирисы Фишера», которая в R хранится в объекте iris, фрагмент которой приведен ниже:

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
•••					
51	7.0	3.2	4.7	1.4	versicolor
52	6.4	3.2	4.5	1.5	versicolor
149	6.2	3.4	5.4	2.3	virginica
150	5.9	3.0	5.1	1.8	virginica

Данная выборка содержит 150 объектов—ирисов: по 50 объектов каждого из трёх классов (видов ирисов): «setosa» (щетинистые), «versicolor» (разноцветные) и «virginica» (виргиника). Каждый ирис представлен четырьмя признаками: «Sepal.Length» (длина чашелистика), «Sepal.Width» (ширина чашелистика), «Petal.Length» (длина лепестка) и «Petal.Width» (ширина лепестка). Последний столбец «Species» соответствует классу ирисов.

Для начала отобразим выборку, используя два последних признака:

Рис 2.1. Выборка «Ирисы Фишера».

В качестве функции расстояния будем использовать обычное евклидово расстояние

```
## Евклидово расстояние
euclideanDistance <- function(u, v)
{
    sqrt(sum((u - v)^2))
}</pre>
```

Далее приведен листинг для выше описанного алгоритма метода kNN.

```
## Сортируем объекты согласно расстояния до объекта z
sortObjectsByDist <- function(xl, z, metricFunction =</pre>
euclideanDistance)
    1 < -\dim(x1)[1]
    n < -dim(x1)[2] - 1
    ## Создаём матрицу расстояний
    distances <- matrix(NA, 1, 2)</pre>
    for (i in 1:1)
        distances[i, ] <- c(i, metricFunction(xl[i, 1:n], z))</pre>
    ## Сортируем
    orderedXl <- xl[order(distances[, 2]), ]</pre>
    return (orderedXl);
## Применяем метод kNN
kNN <- function(xl, z, k)
    ## Сортируем выборку согласно классифицируемого
объекта
    orderedXl <- sortObjectsByDist(xl, z)</pre>
    n \leftarrow dim(orderedX1)[2] - 1
    ## Получаем классы первых к соседей
    classes <- orderedXl[1:k, n + 1]</pre>
    ## Составляем таблицу встречаемости каждого класса
```

```
counts <- table(classes)
## Находим класс, который доминирует среди первых k

coceдей
class <- names(which.max(counts))

return (class)

## Рисуем выборку
colors <- c("setosa" = "red", "versicolor" = "green3",
"virginica" = "blue")
plot(iris[, 3:4], pch = 21, bg = colors[iris$Species], col
= colors[iris$Species], asp = 1)

## Классификация одного заданного объекта
z <- c(2.7, 1)
xl <- iris[, 3:5]
class <- kNN(xl, z, k=6)
points(z[1], z[2], pch = 22, bg = colors[class], asp = 1)
```

Результатом работы данного скрипта будет следующий график:

Рис 2.2. Классификация одного выделенного объекта (обозначен квадратиком).

На данном графике отображена обучающая выборка «Ирисы Фишера» (объекты–кружочки) и с помощью алгоритма 6NN проклассифицирован объект с координатами (2.7, 1).

2.2. Байесовские алгоритмы классификации

Байесовские алгоритмы классификации основаны на предположении, что $X \times Y$ — вероятностное пространство с неизвестной плотностью распределения p(x,y) = P(y)p(x|y), из которого случайно и независимо извлекаются ℓ наблюдений. Вероятность $P(y) = P_y$ появления объектов класса y называется априорной вероятностью класса, плотности распределения $p(x|y) = p_y(x)$ — функции правдоподобия классов.

Байесовский подход является классическим в теории распознавания образов и лежит в основе многих методов. Он опирается на теорему о том, что если плотности распределения классов известны, то алгоритм классификации, имеющий минимальную вероятность ошибок, можно выписать в явном виде.

Обозначим через λ_y — величину потери алгоритмом a при неправильной классификации объекта класса y.

Теорема. Если известны априорные вероятности классов P_y и функции правдоподобия $p_v(x)$, то минимум среднего риска

$$R(a) = \sum_{y \in Y} \sum_{s \in Y} \lambda_y P_y P(A_s|y), \quad A_s = \{x \in X \mid a(x) = s\},$$
 достигается алгоритмом

$$a(x) = \arg\max_{y \in Y} \lambda_y P_y p_y(x).$$

Алгоритм a(x) называется *оптимальным байесовским* решающим правилом. Однако, на практике зачастую плотности распределения классов неизвестны и их приходится восстанавливать

по обучающей выборке. В этом случае байесовский алгоритм перестает быть оптимальным. Поэтому, чем лучше удастся восстановить функции правдоподобия, тем ближе будет к оптимальному построенный алгоритм. Существуют множество способов восстановления плотностей распределения по обучающей выборке, откуда как следствие большое количество разновидностей байесовских алгоритмов классификаций.

2.2.1. Подстановочный алгоритм

Нормальный дискриминантный анализ — это один из вариантов байесовской классификации, в котором в качестве моделей восстанавливаемых плотностей рассматривают многомерные нормальные плотности:

$$N(x;\mu,\Sigma) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right), \quad x \in \mathbb{R}^n,$$

где $\mu \in \mathbb{R}^n$ — математическое ожидание (центр), $\Sigma \in \mathbb{R}^{n \times n}$ — ковариационная матрица. Предполагается, что матрица Σ симметричная, невырожденная, положительно определённая.

Восстанавливая параметры нормального распределения μ_y , Σ_y для каждого класса $y \in Y$ и подставляя в формулу оптимального байесовского классификатора восстановленные плотности, получим подстановочный (plug-in) алгоритм классификации либо линейный дискриминант Фишера (если предположить, что матрицы ковариации равны для всех классов).

Параметры нормального распределения оценивают согласно принципа максимума правдоподобия:

$$\mu_y = \frac{1}{\ell_y} \sum_{x_i: y_i = y} x_i, \qquad \Sigma_y = \frac{1}{\ell_y - 1} \sum_{x_i: y_i = y} (x_i - \mu_y) (x_i - \mu_y)^T.$$

Напишем программу, которая строит подстановочный (plug-in) алгоритм.

```
## Восстановление центра нормального распределения
estimateMu <- function(objects)</pre>
    \#\# mu = 1 / m * sum {i=1}^m(objects i)
    rows <- dim(objects)[1]
    cols <- dim(objects)[2]</pre>
    mu <- matrix(NA, 1, cols)</pre>
    for (col in 1:cols)
        mu[1, col] = mean(objects[,col])
   return (mu)
}
## Восстановление ковариационной матрицы нормального
распределения
estimateCovarianceMatrix <- function(objects, mu)</pre>
    rows <- dim(objects)[1]</pre>
    cols <- dim(objects)[2]</pre>
    sigma <- matrix(0, cols, cols)</pre>
    for (i in 1:rows)
        sigma <- sigma + (t(objects[i,] - mu) %*%</pre>
(objects[i,] - mu)) / (rows - 1)
    return (sigma)
}
## Получение коэффициентов подстановочного алгоритма
getPlugInDiskriminantCoeffs <- function(mu1, sigma1, mu2,</pre>
sigma2)
    ## Line equation: a*x1^2 + b*x1*x2 + c*x2 + d*x1 + e*x2
+ f = 0
    invSigma1 <- solve(sigma1)</pre>
```

```
invSigma2 <- solve(sigma2)</pre>
    f <- log(abs(det(sigma1))) - log(abs(det(sigma2))) +</pre>
mu1 %*% invSigma1 %*% t(mu1) - mu2 %*% invSigma2 %*%
t (mu2);
    alpha <- invSigma1 - invSigma2</pre>
    a <- alpha[1, 1]
    b <- 2 * alpha[1, 2]
    c <- alpha[2, 2]</pre>
    beta <- invSigma1 %*% t(mu1) - invSigma2 %*% t(mu2)
    d < -2 * beta[1, 1]
    e < -2 * beta[2, 1]
    return (c("x^2" = a, "xy" = b, "y^2" = c, "x" = d, "y"
= e, "1" = f)
}
## Количество объектов в каждом классе
ObjectsCountOfEachClass <- 100
## Подключаем библиотеку MASS для генерации многомерного
нормального распределения
library (MASS)
## Генерируем тестовые данные
Sigma1 <- matrix (c(10, 0, 0, 1), 2, 2)
Sigma2 <- matrix(c(1, 0, 0, 5), 2, 2)
Mu1 < - c(1, 0)
Mu2 < -c(15, 0)
xy1 <- mvrnorm(n=ObjectsCountOfEachClass, Mu1, Sigma1)</pre>
xy2 <- mvrnorm(n=ObjectsCountOfEachClass, Mu2, Sigma2)</pre>
## Собираем два класса в одну выборку
x1 \leftarrow rbind(cbind(xy1, 1), cbind(xy2, 2))
## Рисуем обучающую выборку
colors \leftarrow c(rgb(0/255, 162/255, 232/255), rgb(0/255,
200/255, 0/255))
plot(x1[,1], x1[,2], pch = 21, bg = colors[x1[,3]], asp =
1)
## Оценивание
objectsOfFirstClass <- x1[x1[,3] == 1, 1:2]</pre>
objectsOfSecondClass \leftarrow x1[x1[,3] == 2, 1:2]
```

```
mu1 <- estimateMu(objectsOfFirstClass)</pre>
mu2 <- estimateMu(objectsOfSecondClass)</pre>
sigma1 <- estimateCovarianceMatrix(objectsOfFirstClass,</pre>
mu1)
sigma2 <- estimateCovarianceMatrix(objectsOfSecondClass,</pre>
mu2)
coeffs <- getPlugInDiskriminantCoeffs(mu1, sigma1, mu2,</pre>
sigma2)
## Рисуем дискриминантую функцию - красная линия
x < -y < -seq(-10, 20, len=100)
z \leftarrow outer(x, y, function(x, y) coeffs["x^2"]*x^2 +
coeffs["xy"]*x*y
            + coeffs["y^2"]*y^2 + coeffs["x"]*x
           + coeffs["y"]*y + coeffs["1"])
contour(x, y, z, levels=0, drawlabels=FALSE, lwd = 3, col =
"red", add = TRUE)
```


Рис 2.3. Байесовский нормальный квадратичный дискриминант.

Выбирая различные матрицы ковариации и центры для генерации тестовых данных, будем получать различные виды дискриминантной функции.

Рис 2.4. Примеры работы подстановочного алгоритма.

2.2.2. Линейный дискриминант Фишера — ЛДФ

Теперь рассмотрим линейный дискриминант Фишера (ЛДФ), который, в отличии от подстановочного алгоритма, при построении предполагает, что ковариационные матрицы классов равны, и для их восстановления нужно использовать все (всех классов) объекты обучающей выборки.

```
## Оценка ковариационной матрицы для ЛДФ
estimateFisherCovarianceMatrix <- function(objects1,
objects2, mu1, mu2)
    rows1 <- dim(objects1)[1]</pre>
    rows2 <- dim(objects2)[1]</pre>
    rows <- rows1 + rows2</pre>
    cols <- dim(objects1)[2]</pre>
    sigma <- matrix(0, cols, cols)</pre>
    for (i in 1:rows1)
         sigma <- sigma + (t(objects1[i,] - mu1) %*%</pre>
(objects1[i,] - mu1)) / (rows + 2)
    }
    for (i in 1:rows2)
         sigma <- sigma + (t(objects2[i,] - mu2) %*%</pre>
(objects2[i,] - mu2)) / (rows + 2)
    }
    return (sigma)
}
## Генерируем тестовые данные
Sigma1 <- matrix (c(2, 0, 0, 2), 2, 2)
Sigma2 <- matrix(c(2, 0, 0, 2), 2, 2)
Mu1 < -c(1, 0)
Mu2 < -c(15, 0)
xy1 <- mvrnorm(n=ObjectsCountOfEachClass, Mu1, Sigma1)</pre>
xy2 <- mvrnorm(n=ObjectsCountOfEachClass, Mu2, Sigma2)</pre>
## Собираем два класса в одну выборку
x1 \leftarrow rbind(cbind(xy1, 1), cbind(xy2, 2))
## Рисуем обучающую выборку
colors \leftarrow c(rgb(0/255, 162/255, 232/255), rgb(0/255,
200/255, 0/255))
plot(x1[,1], x1[,2], pch = 21, bg = colors[x1[,3]], asp =
1)
## Оценивание
objectsOfFirstClass <- x1[x1[,3] == 1, 1:2]</pre>
objectsOfSecondClass \leftarrow xl[xl[,3] == 2, 1:2]
```

```
mu1 <- estimateMu(objectsOfFirstClass)
mu2 <- estimateMu(objectsOfSecondClass)

Sigma <-
estimateFisherCovarianceMatrix(objectsOfFirstClass,
objectsOfSecondClass, mu1, mu2)

## Получаем коэффициенты ЛДФ
inverseSigma <- solve(Sigma)
alpha <- inverseSigma %*% t(mu1 - mu2)
mu_st <- (mu1 + mu2) / 2
beta <- mu_st %*% alpha

## Рисуем ЛДФ
abline(beta / alpha[2,1], -alpha[1,1]/alpha[2,1], col =
"red", lwd = 3)</pre>
```


Рис 2.5. Линейный дискриминант Фишера.

2.3. Линейные алгоритмы классификации

Пусть
$$X = \mathbb{R}^n$$
 и $Y = \{-1; +1\}$. Алгоритм
$$a(x, w) = sign \langle w, x \rangle, \ w \in \mathbb{R}^n,$$

является линейным алгоритм классификации.

Уравнение $\langle w, x \rangle = 0$ задаёт разделяющую классы гиперплоскость в пространстве \mathbb{R}^n .

Для подбора оптимального (минимизирующего эмпирический риск $Q(w, X^{\ell})$) значения вектора весов w будем пользоваться memodom me

При использовании метода стохастического градиента необходимо нормализовать исходные данные:

```
## Нормализация обучающей выборки
trainingSampleNormalization <- function(xl)
{
    n <- dim(xl)[2] - 1
    for(i in 1:n)
    {
        xl[, i] <- (xl[, i] - mean(xl[, i])) / sd(xl[, i])
    }
    return (xl)
}
```

Алгоритм классификации ADALINE — *адаптивный линейный* элемент, в качестве функции потерь используется квадратичная функция потерь:

```
## Квадратичная функция потерь lossQuad <- function(x) { return ((x-1)^2)
```

Обучение ADALINE с помощью стохастического градиента:

```
## Стохастический градиент для ADALINE
sq.ADALINE <- function(xl, eta = 1, lambda = 1/6)
{
    1 < -\dim(x1)[1]
    n < -dim(x1)[2] - 1
    w \leftarrow c(1/2, 1/2, 1/2)
    iterCount <- 0</pre>
    ## initialize O
    0 < -0
    for (i in 1:1)
        ## calculate the scalar product <w,x>
        wx <- sum(w * xl[i, 1:n])
        ## calculate a margin
        margin \leftarrow wx * xl[i, n + 1]
        Q <- Q + lossQuad(margin)</pre>
    }
    repeat
        ## calculate the margins for all objects of the
training sample
        margins <- array(dim = 1)</pre>
```

```
xi <- xl[i, 1:n]
         yi \leftarrow xl[i, n + 1]
         margins[i] <- crossprod(w, xi) * yi</pre>
    ## select the error objects
    errorIndexes <- which (margins <= 0)</pre>
    if (length(errorIndexes) > 0)
         # select the random index from the errors
         i <- sample(errorIndexes, 1)</pre>
         iterCount <- iterCount + 1</pre>
         xi <- xl[i, 1:n]
         yi \leftarrow xl[i, n + 1]
         ## calculate the scalar product <w,xi>
         wx <- sum(w * xi)
         ## make a gradient step
         margin <- wx * yi
         ## calculate an error
         ex <- lossQuad(margin)</pre>
         eta <- 1 / sqrt(sum(xi * xi))
         w \leftarrow w - eta * (wx - yi) * xi
         ## Calculate a new Q
         Qprev <- Q
         Q \leftarrow (1 - lambda) * Q + lambda * ex
    }
    else
    {
         break
return (w)
```

for (i in 1:1)

Персептрон Розенблатта — линейный классификатор, обучаемый с помощью стохастического градиента с правилом Хэбба и кусочно-линейной функции потерь:

```
## Функция потерь для правила Хэбба
lossPerceptron <- function(x)</pre>
{
    return (max(-x, 0))
## Стохастический градиент с правилом Хебба
sg.Hebb \leftarrow function(xl, eta = 0.1, lambda = 1/6)
    l < -dim(xl)[1]
    n < -\dim(x1)[2] - 1
    w \leftarrow c(1/2, 1/2, 1/2)
    iterCount <- 0</pre>
    ## initialize O
    0 <- 0
    for (i in 1:1)
         ## calculate the scalar product <w,x>
        wx <- sum(w * xl[i, 1:n])</pre>
        ## calculate a margin
        margin \leftarrow wx * xl[i, n + 1]
        # Q <- Q + lossQuad(margin)
        Q <- Q + lossPerceptron(margin)</pre>
    }
    repeat
         ## Поиск ошибочных объектов
        margins <- array(dim = 1)</pre>
         for (i in 1:1)
             xi <- xl[i, 1:n]
             yi \leftarrow xl[i, n + 1]
             margins[i] <- crossprod(w, xi) * yi</pre>
         ## выбрать ошибочные объекты
         errorIndexes <- which (margins <= 0)</pre>
         if (length(errorIndexes) > 0)
             # выбрать случайный ошибочный объект
             i <- sample(errorIndexes, 1)</pre>
             iterCount <- iterCount + 1</pre>
             xi <- xl[i, 1:n]
```

Логистическая регрессия — линейный байесовский классификатор, использующий логарифмическую функцию потерь, имеет ряд интересных особенностей, например, алгоритм способен помимо определения принадлежности объекта к классу определять и степень его принадлежности. Является одним из популярных алгоритмом классификации.

```
## Логарифмическая функция потерь
lossLog <- function(x)</pre>
    return (\log 2(1 + \exp(-x)))
## Сигмоидная функция
sigmoidFunction <- function(z)</pre>
    return (1 / (1 + \exp(-z)))
## Стохастический градиент для логистической регрессии
sg.LogRegression <- function(x1)</pre>
    l < -dim(xl)[1]
    n < -dim(x1)[2] - 1
    w \leftarrow c(1/2, 1/2, 1/2)
    iterCount <- 0</pre>
    lambda <-1/1
    ## initialize Q
    Q < - 0
    for (i in 1:1)
        ## calculate the scalar product <w,x>
        wx <- sum(w * xl[i, 1:n])
```

```
## calculate a margin
        margin \leftarrow wx * xl[i, n + 1]
        Q <- Q + lossSigmoid(margin)</pre>
    }
    repeat
         # select the random index from the error objects
errorIndexes
        i <- sample(1:1, 1)
         iterCount <- iterCount + 1</pre>
        # i <- sample(1:1, 1)
        xi \leftarrow xl[i, 1:n]
        yi \leftarrow xl[i, n + 1]
         ## calculate the scalar product <w,xi>
        wx <- sum(w * xi)
        ## make a gradient step
        margin <- wx * yi
        ex <- lossSigmoid(margin)</pre>
        eta <- 0.3#1 / iterCount</pre>
        w <- w + eta * xi * yi * sigmoidFunction(-wx * yi)</pre>
        ## Calculate a new Q
        Qprev <- Q
        Q \leftarrow (1 - lambda) * Q + lambda * ex
        if (abs(Qprev - Q) / abs(max(Qprev, Q)) < 1e-5)
break
    return (w)
# Кол-во объектов в каждом классе
ObjectsCountOfEachClass <- 100
## Моделируем обучающие данные
library(MASS)
Sigma1 <- matrix(c(2, 0, 0, 10), 2, 2)
Sigma2 \leftarrow matrix(c(4, 1, 1, 2), 2, 2)
```

```
xy1 <- mvrnorm(n=ObjectsCountOfEachClass, c(0, 0), Sigma1)</pre>
xy2 <- mvrnorm(n=ObjectsCountOfEachClass, c(10, -10),
Sigma2)
x1 < - rbind(cbind(xy1, -1), cbind(xy2, +1))
colors <- c(rqb(255/255, 255/255, 0/255), "white",
rgb(0/255, 200/255, 0/255))
## Нормализация данных
xlNorm <- trainingSampleNormalization(xl)</pre>
xlNorm <- trainingSamplePrepare(xlNorm)</pre>
## Отображение данных
## ADALINE
plot(xlNorm[, 1], xlNorm[, 2], pch = 21, bg = colors[xl[,3]
+ 2], asp = 1, xlab = "x1", ylab = "x2", main = "Линейные
классификаторы")
w <- sq.ADALINE(xlNorm)
abline(a = w[3] / w[2], b = -w[1] / w[2], lwd = 3, col =
"blue")
## Правило Хебба
w <- sq.Hebb(xlNorm)
abline (a = w[3] / w[2], b = -w[1] / w[2], lwd = 3, col =
"green3")
## Логистическая регрессия
w <- sq.LogRegression(xlNorm)</pre>
abline (a = w[3] / w[2], b = -w[1] / w[2], lwd = 3, col =
"red")
legend ("bottomleft", c ("ADALINE", "Правило Хэбба",
"Логистическая регрессия"), pch = c(15, 15, 15), col =
c("blue", "green3", "red"))
```

Линейные классификаторы

Рис 2.6. Линейные алгоритмы классификации.

Список литературы

- 1. Шипунов А. Б., Балдин Е. М. Анализ данных с R [Электронный ресурс] / А. Б. Шипунов, Е. М. Балдин / URL: http://www.soc.univ.kiev.ua/sites/default/files/course/materials/r1.pdf
- 2. Савельев А. А., Мухарамова С. С., Пилюгин А. Г. (2007) Основные понятия языка R. Учебно-методическое пособие. Казань: Казанский гос. ун-т, 29 с.
- 3. Зарядов И. С. (2010) Введение в статистический пакет R: типы переменных, структуры данных, чтение и запись информации, графика. М.: Издательство Российского университета дружбы народов, 207 с.
- Воронцов К.В. Математические методы обучения по прецедентам (теория обучения машин). [Электронный ресурс]. 2011. 141 с. URL: http://www.machinelearning.ru/wiki/images/6/6d/Voron-ML-1.pdf
- Профессиональный информационно-аналитический ресурс, посвященный машинному обучению, распознаванию образов и интеллектуальному анализу данных URL: http://machinelearning.ru

Учебно-методическое пособие по дисциплине «Системы и методы принятия решений». Применение языка «R» к решению задач классификации: примеры.

Автор-составитель: Анафиев Айдер Сератович

Редакция автора

Подписано в печать 23.12.2016. Формат 60×80/16.

Отпечатано в отделе редакционно-издательской деятельности КФУ им. В. И. Вернадского 295007, Симферополь, пр-т Академика Вернадского, 4, КФУ им. В. И. Вернадского