Алгоритмы для контекстно-свободных грамматик

Некоторые обозначения, используемые при описании алгоритмов $A \leftarrow B$ — операция присваивания («A присвоить B»); $A \leftarrow a$ — операция добавления элемента в множество («добавить в множество A элемент a»); $A \leftarrow B$ — операция добавления множества элементов во множество («добавить в множество A все элементы из B»); \triangleright — начало комментария, продолжающегося до конца строки.

Алгоритм 1 (нахождение порождающих символов).

Вход: КС-грамматика $G = (\Sigma, N, \mathcal{P}, S \in N)$.

Выход: $\operatorname{Gen}_G(\Sigma)$ — множество порождающих в G символов.

- 1 $\operatorname{Gen}_G(\Sigma) \leftarrow \Sigma \rhd \operatorname{Терминалы}$ являются порождающими символами $\rhd \operatorname{Ищем}$ продукции, в правых частях которых только порождающие символы...
- 2 while $\exists A \to X_1 \dots X_n \in \mathcal{P}, \ n \geqslant 0$, такое что $\forall i \ X_i \in \operatorname{Gen}_G(\Sigma)$ do $\operatorname{Gen}_G(\Sigma) \hookleftarrow A \rhd \dots$ левые части таких продукций добавляются в $\operatorname{Gen}_G(\Sigma)$:

Замечание (о многократном просмотре продукций). В цикле на шаге 2 одна и та же продукция $A \to X_1 \dots X_n$ может быть просмотрена несколько раз, причём если на ранних итерациях она не удовлетворяла условию $\forall i \ X_i \in \operatorname{Gen}_G(\Sigma)$, то на поздних, когда множество $\operatorname{Gen}_G(\Sigma)$ станет достаточно большим, положение дел может измениться (условие $\forall i \ X_i \in \operatorname{Gen}_G(\Sigma)$) выполнится и A надо будет добавить в $\operatorname{Gen}_G(\Sigma)$).

Алгоритм 2 (нахождение достижимых символов).

Вход: КС-грамматика $G = (\Sigma, N, \mathcal{P}, S \in N)$.

Выход: Reach_G — множество достижимых в G символов.

- 1 Reach $_G \leftarrow \{S\} \rhd S$ достижим в G \rhd Ищем продукции, в левых частях которых стоит достижимый символ...
- 2 while $\exists A \to X_1 \dots X_n \in \mathcal{P}$, такое что $A \in \operatorname{Reach}_G$
 - \rhd символы из правых частей таких продукций добавляются в Reach_G: $\mathbf{do} \ \mathrm{Reach}_G \hookleftarrow \{X_i\}_{i=1}^n$

Замечание (о многократном просмотре продукций). Справедливо замечание, аналогичное сделанному в алгоритме 1

Алгоритм 3 (удаление бесполезных символов).

Вход: КС-грамматика $G = (\Sigma, N, \mathcal{P}, S \in N)$.

Выход: КС-грамматика $G' = (\Sigma', N', \mathcal{P}', S \in N')$, не содержащая бесполезных символов, такая что L(G') = L(G), либо сигнал о том, что язык исходной грамматики пуст и не существует эквивалентной G грамматики без бесполезных символов.

1 Построить множество $\text{Gen}_G(\Sigma)$, используя алгоритм 1. Если $S \not\in \text{Gen}_G(\Sigma)$ — завершение алгоритма, сообщение о пустоте языка исходной грамматики. Иначе удалить из G все символы, не вошедшие в $\text{Gen}_G(\Sigma)$.

2 Построить множество Reach_G , используя алгоритм 2. Удалить из G все символы, не вошедшие в Reach_G . Получившуюся грамматику обозначить G' и подать её на выход алгоритма.

Замечание (об операции удаления символа из грамматики). Когда в алгоритме требуется удалить символ X из грамматики G, необходимо не только исключить его из множества N или Σ , но и удалить из \mathcal{P} все продукции, в которых он участвует.

Алгоритм 4 (удаление ε -правил).

Вход: КС-грамматика $G = (\Sigma, N, \mathcal{P}, S \in N)$.

ВЫХОД: КС-грамматика $G'=(\Sigma,N,\mathcal{P}',S\in N)$, без ε -правил (продукций вида $A\to\varepsilon$), такая что $L(G')=L(G)\setminus\{\varepsilon\}$.

МЕТОД: «устранение перегородок».

- 1 Построить множество $\mathrm{Gen}_G(\varepsilon) \subset N$ всех порождающих ε нетерминалов, используя следующую процедуру:
 - 1 for $A \to \varepsilon \in \mathcal{P}$ do $\operatorname{Gen}_G(\varepsilon) \longleftrightarrow A$ 2 while $\exists A \to X_1 \dots X_n \in \mathcal{P}$, где $\{X_i\}_{i=0}^n \subset \operatorname{Gen}_G(\varepsilon)$ do $\operatorname{Gen}_G(\varepsilon) \longleftrightarrow A$
- 2 Выполнить следующие действия:

for
$$A \to \alpha_0 B_1 \alpha_1 \dots B_n \alpha_n \in \mathcal{P}$$
, где $\forall i \ B_i \in \operatorname{Gen}_G(\varepsilon) \land \ \alpha_i \in ((N \cup \Sigma) \setminus \operatorname{Gen}_G(\varepsilon))^*$
do $\mathcal{P} \hookleftarrow \{\alpha_0 X_1 \alpha_1 \dots X_n \alpha_n \mid \forall i \ X_i = \varepsilon \lor X_i = B_i\}$

3 Удалить из \mathcal{P} все ε -правила, обозначить получившееся множество правил \mathcal{P}' и подать на выход алгоритма грамматику $G' = (N, \Sigma, \mathcal{P}', S)$.

Замечание (о методе «устранения перегородок»). На шаге 2 каждая продукция \mathcal{P} просматривается ровно один раз. Понятно, что для подходящего n любая продукция может быть представлена в виде $A \to \alpha_0 B_1 \alpha_1 \dots B_n \alpha_n$ с указанными условиями для B_i и α_i . Например, если в продукции нет ε -порождающих символов, то это продукция вида $A \to \alpha_0$ и для неё нет необходимости добавлять новые продукции.

Другой пример: продукция $C \to aDbD$, где $D \in \mathrm{Gen}_G(\varepsilon)$, $a,b \in \Sigma$, это продукция вида $A \to \alpha_0 B_1 \alpha_1 B_2 \alpha_2$, где A = C, $\alpha_0 = a$, $B_1 = B_2 = D$, $\alpha_2 = \varepsilon$, и для неё нужно добавить три новых продукции. Укажем их, пояснив название метода «удаления перегородок». Можно считать, что ε -порождающие символы B_i являются «перегородками» в продукции $A \to \alpha_0 B_1 \alpha_1 \dots B_n \alpha_n$ и новые продукции получаются из данной при помощи устранения этих перегородок всеми возможными способами. Для продукции $C \to aDbD$ это: $C \to abD$, $A \to aDb$ и $A \to ab$.

Алгоритм 5 (удаление цепных продукций).

Вход: КС-грамматика $G = (\Sigma, N, \mathcal{P}, S \in N)$, не содержащая ε -правил.

Выход: КС-грамматика $G'=(\Sigma,N,\mathcal{P}',S\in N)$, без цепных правил (продукций вида $A\to B$), такая что L(G')=L(G).

- 1 Для каждого нетерминала $A \in N$ построить множество циклически достижимых из A нетерминалов C(A), используя процедуру:
 - 1 $C(A) \leftarrow \{A\}$ 2 **while** $\exists D \to E \in \mathcal{P}$, такая что $D \in C(A)$ **do** $C(A) \hookleftarrow E$
- 2 Выполнить следующую процедуру:

$$\begin{array}{c} \mathbf{for}\ A \in N \\ \mathbf{do}\ \mathbf{for}\ B \to \alpha \in \mathcal{P} \\ \mathbf{do}\ \mathbf{if}\ B \in C(A) \\ \mathbf{then}\ \mathcal{P} \hookleftarrow A \to \alpha \end{array}$$

3 Удалить из \mathcal{P} все цепные правила, обозначить получившееся множество правил \mathcal{P}' и подать на выход алгоритма грамматику $G' = (N, \Sigma, \mathcal{P}', S)$.

Алгоритм 6 (приведение к нормальной форме Хомского).

Вход: КС-грамматика $G = (\Sigma, N, \mathcal{P}, S \in N)$, не содержащая ε -правил.

Выход: КС-грамматика $G' = (\Sigma', N', \mathcal{P}', S \in N)$ в НФХ, такая что $L(G') = L(G) \setminus \{\varepsilon\}$ или сообщение о пустоте языка грамматики.

МЕТОД: «разбиение слов на слоги».

1 2

3

- 1 Последовательно воспользоваться алгоритмами 4 и 5, полученную грамматику обозначить $G'' = (N, \Sigma, \mathcal{P}'', S)$.
- 2 Применить к G'' алгоритм 3. Если получен ответ $L(G'')=\varnothing$, остановить алгоритм и подать на выход сигнал о пустоте языка исходной грамматики. Иначе получена грамматика $G'=(N',\Sigma',\mathcal{P}',S)$.
- $3 \ \mathrm{K} \ G'$ применить следующую процедуру:

for
$$a \in \Sigma$$
 do if $\exists A \to X_1 \dots X_n \in \mathcal{P}''$, такая что $n > 1 \land \exists i \ X_i = a$ then добавить в N новый нетерминал A' заменить a на A' во всех продукциях с правой частью длиннее 1 $\mathcal{P}'' \hookleftarrow A' \to a$

4 К G' применить следующую процедуру:

for
$$A \to B_1 B_2 \dots B_n \in \mathcal{P}'$$
, где $n > 2$, $B_i \in N$
do

добавить в N новые нетерминалы $C_1, \dots C_{n-2}$

$$\mathcal{P}' \longleftrightarrow \{A \to B_1 C_1\} \cup \{C_i \to B_{i+1} C_{i+1}\}_{i=1}^{n-3} \cup \{C_{n-2} \to B_{n-1} B_n\}$$
удалить $A \to B_1 B_2 \dots B_n$ из \mathcal{P}'

Подать G' на выход алгоритма.

1

2

3

Замечание (о введении новых нетерминалов). Следует отметить, что на каждой итерации цикла шага 4, если есть необходимость ввести новые нетерминалы, то они должны отличаться не только от тех, которые присутствовали в грамматике до начала этого цикла, но и от тех, которые были введены на предыдущих итерациях этого цикла. Таким образом, одного комплекта букв $\{C_i\}$ для выполнения цикла может не хватить. Для борьбы с нехваткой букв можно вводить нетерминалы, помеченные частями исходного слова $B_1 \dots B_n$, которое «разбивается на слоги». Например, вместо набора $\{C_i\}_{i=1}^{n-2}$ можно использовать набор $\{\langle B_{i+1} \dots B_n \rangle\}_{i=1}^{n-2}$, где для каждого i выражение $\langle B_{i+1} \dots B_n \rangle$ понимается как один новый нетерминал. Аналогично можно поступать на шаге 3, добавляя для рассматриваемого терминала a новый нетерминал $\langle a \rangle$, а не A'.

Алгоритм 7 (решение проблемы принадлежности для КС-языков; Кок—Янгер—Касами, СҮК-алгоритм).

Вход: грамматика $G = (\Sigma, N, \mathcal{P}, S \in N)$ в НФХ, слово $w = w_1 \dots w_n \in \Sigma^*$.

Выход: да, $w \in L(G)$ / нет, $w \notin L(G)$.

МЕТОД: последовательное определение нетерминалов, выводящих всевозможные подстроки w всё большей длины.

Для всех $1 \leqslant i \leqslant j \leqslant n$ определим множество

$$N_{ij} = \{ A \in N \mid A \Rightarrow_G^* w_i \dots w_j \}.$$

Построить множества N_{ij} , используя процедуру:

```
for i \leftarrow 1 to n do N_{ii} \leftarrow \{A \in N \mid A \to w_i \in \mathcal{P}\} \rhd \Piодстроки w длины 1 for s \leftarrow 2 to n \rhd  Цикл по длине подстроки do for i \leftarrow 1 to n-s+1 \rhd  Цикл по месту начала подстроки j \leftarrow i+s-1 \rhd \Piозиция конца подстроки c началом в w_i длины s N_{ij} \leftarrow \{A \in N \mid A \to BC \in \mathcal{P}; \exists k \in [i,j-1]_{\mathbb{Z}} \colon B \in N_{ik}, \ C \in N_{k+1j}\}
```

Если $S \in N_{1n}$, то подать на выход алгоритма «да», иначе — «нет».

Замечание (о табличной форме СҮК-алгоритма). Алгоритм удобно выполнять, заполняя таблицу с N_{ij} в ячейках. Ячейки таблицы расположены в системе координат (i,s), в позиции (i,s) находится множество $N_{i,i+s-1}$.