Estimating and Testing IV models in R

Elad Guttman

Outline

- 1. A Reminder
- 2. One endogenous variable
- 3. Multiple endogenous variables

A Reminder

The Model

• The general model you discussed in class:

$$y = X\beta + u = X_1\beta_1 + X_2\beta_2 + u$$

- where:
 - $\circ \ x_1$ are k_1 exogenous variables
 - $\circ \; x_2$ are k_2 endogenous variables
 - $\circ K = k_1 + k_2$
- z is a $1 \times L$ vector of:
 - $\circ k_1$ exogenous variables
 - *m* instruments
 - $\circ L = k_1 + m$

The Identification Assumptions

1. **2SLS.1:** E(z'u)=0 - all the variables in z are uncorrelated with u

2. 2SLS.2:

a. rank(E(z'z)) = L - no multicollinearity

b. rank(E(z'x))=K - The instruments are correlated with X, in the sense that the model is at least just-identified ($L\geq K$)

The 2SLS Estimator

1. First stage: for each endogenous variable j we estimate:

$$x_j = Z\delta + \epsilon$$

using OLS.

2. **Second stage:** then we replace x_2 with \hat{x}_2 (i.e., the predicted values from the first stage) and estimate:

$$y = X_1eta_1 + \hat{X}_2eta_2 + u$$

using OLS (again). Under assumptions **2SLS.1** and **2SLS.2**, this is a valid procedure for obtaining a consistent estimate for β .

One endogenous variable

Data

For this exercise, we'll use the following dataset:

```
library(wooldridge)
data("card")
#function to print the content from an R help file.
#You don't need that, just use ?card instead
help_console(card, "text", 5:8)

## Wooldridge Source: D. Card (1995), Using Geographic Variation in
College Proximity to Estimate the Return to Schooling, in Aspects
of Labour Market Behavior: Essays in Honour of John Vanderkamp.
## Ed. L.N. Christophides, E.K. Grant, and R. Swidinsky, 201-222.
```

Data

We'll pay special attention to the following variables:

Estimation

The familiar 1fe package provides flexiable syntax for estimating IV models. Here are some examples:

```
library(lfe)
library(stargazer)
library(tidyverse)

card = card %>%
    select(lwage, nearc2, nearc4, fatheduc, motheduc, educ) %>%
    drop_na() #caution: in general, this is a bad practice!

#one endogenous variable, two exogenous variables, and one instrument
twosls_with_exog = felm(lwage ~ fatheduc + motheduc | 0 | (educ ~ nearc4), data = card)

#one endogenous variable and one instrument, no exogenous variables
twosls_no_exog = felm(lwage ~ 1 | 0 | (educ ~ nearc4), data = card)

#we can easily look at the first stage results:
stage1_with_exog = twosls_with_exog$stage1
stage1_no_exog = twosls_no_exog$stage1
```

First Stage

```
##
##
                    Dependent variable:
##
##
                            educ
                     (1)
                                    (2)
## fatheduc
                                 0.216***
##
                                  (0.017)
##
## motheduc
                                 0.203***
##
                                  (0.020)
##
## nearc4
                   0.703***
                                 0.364***
##
                   (0.118)
                                  (0.103)
##
                  13.143***
                                 9.043***
## Constant
##
                   (0.098)
                                  (0.183)
##
                    2,220
## Observations
                                   2,220
                 *p<0.1; **p<0.05; ***p<0.01
## Note:
```

Second Stage

```
stargazer(twosls_no_exog, twosls_with_exog, type = "text", keep.stat = c("n"))
```

```
##
##
                    Dependent variable:
##
##
                            lwage
                     (1)
                                     (2)
##
## fatheduc
                                  -0.051**
##
                                   (0.020)
##
## motheduc
                                  -0.039**
##
                                  (0.019)
##
   `educ(fit)`
                   0.179***
                                  0.287***
##
                   (0.035)
                                  (0.089)
##
                   3.851***
                                  3.311***
## Constant
                   (0.483)
                                  (0.820)
##
##
## Observations
                    2,220
                                    2,220
                 *p<0.1; **p<0.05; ***p<0.01
## Note:
```

Standard Errors

```
#As usual, the felm function also calculates robust SE:
 stage1_no_exog$robustvcv
              (Intercept)
                           nearc4
##
## (Intercept) 0.01014738 -0.01014738
## nearc4 -0.01014738 0.01433573
twosls_no_exog$robustvcv
##
              (Intercept) `educ(fit)`
## (Intercept) 0.22874653 -0.016784276
## `educ(fit)` -0.01678428 0.001232261
 summary(twosls_no_exog, robust = T)$coefficients
##
               Estimate Robust s.e t value Pr(>|t|)
## (Intercept) 3.8514036 0.47827453 8.052705 1.307759e-15
## `educ(fit)` 0.1786111 0.03510358 5.088118 3.920201e-07
```

Manual Estimation

Alternatively, we can estimate IV models manually by estimating two OLS models:

```
manual_stage1_with_exog = lm(educ ~ fatheduc + motheduc + nearc4, data = card)

card$`educ(fit)` = predict(manual_stage1_with_exog)
manual_twosls_with_exog = lm(lwage ~ fatheduc + motheduc + `educ(fit)`, data = card)
```

First Stage

##							
##	=======================================						
##		Model:					
##							
##		OLS	felm				
##		(1)	(2)				
##							
##	fatheduc	0.216***	0.216***				
##		(0.017)	(0.017)				
##							
##	motheduc	0.203***	0.203***				
##		(0.020)	(0.020)				
##							
##	nearc4	0.364***	0.364***				
##		(0.103)	(0.103)				
##							
##	Constant	9.043***	9.043***				
##		(0.183)	(0.183)				
##							
##							
##	Observations	2,220	2,220				
##	==========	=========	=========				
##	Note:	*p<0.1; **p<0	.05; ***p<0.01				

Second Stage

## ##	=======================================					
##		Model:				
##################		0LS (1)		felm (2)		
	fatheduc	-0.051** (0.013)		.051** 0.020)		
	motheduc	-0.039** (0.012)		.039** 0.019)		
	`educ(fit)`	0.287** (0.054)		287*** 0.089)		
	Constant	3.311** (0.503)		311*** 0.820)		
	Observations	2,220		2,220 		
## ##	Note:	*p<0.1; *:	 *p<0.05;	***p<0.01		

Keep in mind that the right standard errors aren't the standard errors of the second stage!

Testing for weak instruments

- Remember that weak instrument can cause the 2SLS estimator to be biased towards OLS.
- We can test that by testing the null that the coefficients on the excluded instruments are 0.
- This is a simple Wald / F-test.

Testing for weak instruments

felm calculates this F-statistic by default (and also the robust version):

```
stage1_with_exog$iv1fstat
## $educ
                        chi2
## 4.262525e-04 1.241345e+01 1.000000e+00 4.348831e-04 1.241345e+01 2.216000e+03
## attr(,"formula")
## ~nearc4
## <environment: 0x7feb60061b98>
 stage1_with_exog$rob.iv1fstat
## $educ
                        chi2
                                      df1
                                                                             df2
## 4.313838e-04 1.239111e+01 1.000000e+00 4.400888e-04 1.239111e+01 2.216000e+03
## attr(,"formula")
## ~nearc4
## <environment: 0x7feb60080e40>
```

Multiple endogenous variables

Estimation

Very easy with the felm function:

```
#genetate squared education,
#so that we'll have two endogenous variables:
card = card %>%
   mutate(educ2 = educ^2)

twosls = felm(lwage ~ fatheduc + motheduc | 0 | (educ | educ2 ~ nearc4 + nearc2), data = card)

stage1 = twosls$stage1
```

First Stage

```
summarv(stage1, lhs = "educ")$coefficients
##
                 Estimate Std. Error
                                        t value
                                                    Pr(>|t|)
## (Intercept) 9.05423913 0.18370566 49.2866641 0.000000e+00
## fatheduc
               0.21694207 0.01665175 13.0281834 1.937660e-37
## motheduc
               0.20322762 0.02002206 10.1501861 1.081443e-23
## nearc4
               0.37209458 0.10417818 3.5717133 3.622168e-04
## nearc2
               -0.05817805 0.09690856 -0.6003396 5.483413e-01
 summary(stage1, lhs = "educ2")$coefficients
##
               Estimate Std. Error
                                      t value
                                                  Pr(>|t|)
## (Intercept) 72.955840 4.9895297 14.6217869 2.726431e-46
## fatheduc
               5.655023 0.4522692 12.5036656 1.028820e-34
## motheduc
               5.304095 0.5438083 9.7536117 4.907601e-22
## nearc4
               9.669448 2.8295269 3.4173373 6.437919e-04
## nearc2
               -1.090832 2.6320809 -0.4144371 6.785941e-01
```

Second Stage

## ## ## ##	======================================				
##			lwage		
## ## ##	fatheduc		-0.048 (0.063)		
## ## ##	motheduc		-0.037 (0.059)		
## ## ##	`educ(fit)`		-5.055 (5.777)		
## ## ##	`educ2(fit)`		0.204 (0.222)		
## ## ## ##	Constant		36.758 (36.087)		
## ##	Observations		2,220		
## ##	Note:	*p<0.1;	======= **p<0.05;	***p<0.01	

In the following slides we'll see that this estimation suffers from a weak IV problem, so do not try to interpret these results

Testing for weak instruments

```
stage1$iv1fstat
```

```
## $educ
## p chi2 df1 p.F F df2
## 1.686436e-03 1.277028e+01 2.000000e+00 1.717644e-03 6.385138e+00 2.215000e+03
## attr(,"formula")
## ~nearc4 | nearc2
## <environment: 0x7feb634c0c20>
##
## $educ2
## p chi2 df1 p.F F df2
## 2.907569e-03 1.168088e+01 2.000000e+00 2.952532e-03 5.840438e+00 2.215000e+03
## attr(,"formula")
## ~nearc4 | nearc2
## <environment: 0x7feb6446d730>
```

What is this test? Is it enough?

Testing for weak instruments

- This is an equation-by-equation F-test
- For each first stage equation, we test $H_0: eta_{nearc2} = eta_{nearc4} = 0$
- Remember the alternative: $H_1:eta_{nearc2}
 eq 0$ or $eta_{nearc4}
 eq 0$
- So a single instrument could be correlated with all the endogenous regressors, while the rest of the instruments are not
- This is not enough

Conditional F-test

The **general** idea proposed by Angrist and Pischke (2009):

- ullet Consider a model with two endogenous variables, x_1 and x_2 and a valid vector of instruments z
- Let's look at the following model: $y=eta_1x_1+eta_2\hat{x_2}+u*$
 - $\circ \; \hat{x_2}$ is exogenous since $\hat{x_2} = P_z x_2$
 - $\circ x_1$ is endogenous and (potentially) correlated with $\hat{x_2}$

Conditional F-test

- ullet Now let's regress x_1 on $\hat{x_2}$ and keep the residuals $M_{\hat{x_2}}x_1$
- ullet Let's look at the following model: $y=eta_1 M_{\hat{x_2}} x_1 + \epsilon$
 - $\circ \ M_{\hat{x_2}} x_1$ is endogenous, but not correlated with $\hat{x_2}$
 - This is the short version of the previous equation
 - \circ Applying the 2SLS procedure yields a consistent estimate for eta_1
- So now we have only one endogenous variable, and we can use the usual F-test in the first stage: $M_{\hat{x_2}}x_1=\kappa Z+\epsilon *$
- Note: This is just the general idea. See Sanderson and Windmeijer (2016) for the formal test

Conditional F-test

condfstat from the 1fe package performs that test:

```
condfstat(twosls)

## educ educ2
## iid F 1.01738 1.009886
## attr(,"df1")
## [1] 1
```