Propositional Logic and Inference

Marcus Hughes
CSCI 2824
4 June 2019: Lecture 2

https://xkcd.com/1856/

Logical Equivalence

Epp Book

Are they equivalent?

 $\sim (p \wedge q)$ $\sim p \wedge \sim q$

p	\boldsymbol{q}	$\sim p$	$\sim q$	$p \wedge q$	$\sim (p \wedge q)$		$\sim p \wedge \sim q$
T	T	F	F	T	F		F
T	F	F	T	F	T	≠	F
F	Т	T	F	F	Т	≠	F
F	F	Т	T	F	T		T

 $\sim (p \land q)$ and $\sim p \land \sim q$ have different truth values in rows 2 and 3, so they are not logically equivalent

Valid?

```
p \to q \lor \sim r
q \to p \land r
\therefore p \to r
```

premises

conclusion

p	\boldsymbol{q}	r	~r	$q \vee \sim r$	$p \wedge r$	$p \rightarrow q \vee \sim r$	$q \rightarrow p \wedge r$	$p \rightarrow r$
T	T	T	F	T	Т	T	Т	T
T	T	F	T	T	F	Т	F	
Т	F	T	F	F	Т	F	Т	
T	F	F	T	T	F	T	Т	F
F	T	T	F	Т	F	T	F	
F	T	F	T	Т	F	T	F	
F	F	T	F	F	F	T	T	T
F	F	F	T	Т	F	T	T	T

This row shows that an argument of this form can have true premises and a false conclusion. Hence this form of argument is invalid.

Inference

Modus Ponens	$p \rightarrow q$		Elimination	a. $p \vee q$	b. $p \vee q$
	p			$\sim q$	$\sim p$
	∴ <i>q</i>			∴ p	$\therefore q$
Modus Tollens	$p \rightarrow q$		Transitivity	$p \rightarrow q$	
	$\sim q$			$q \rightarrow r$	
	∴ ~ <i>p</i>			$p \rightarrow r$	
Generalization	a. p	b. q	Proof by	$p \lor q$	
	$\therefore p \vee q$	$\therefore p \vee q$	Division into Cases	$p \rightarrow r$	
Specialization	a. $p \wedge q$	b. $p \wedge q$		$q \rightarrow r$	
	∴ <i>p</i>	∴ q		r	
Conjunction	p		Contradiction Rule	$\sim p \rightarrow c$	
	q			∴. <i>p</i>	
	$\therefore p \land q$				

Digital Circuits

Circuits and Logic?

(a) Switches in Series

Swit	ches	Light Bulb State	
P	Q		
closed	closed	on	
closed	open	off	
open	closed	off	
open	open	off	

(b) Switches in Parallel

Swit	ches	Light Bulb State	
P	Q		
closed	closed	on	
closed	open	on	
open	closed	on	
open	open	off	

What is the formula?

feedback.jmbhughes.com

What did you like? What did you not like?