Bayesian Inference Examples

Rohit Budhiraja

Machine Learning for Wireless Communications (EE798L)

Feb 28, 2024

Recap of last lecture and today's agenda

- Recap of last class
 - Derive Marginal likelihood for Olympic data model Chap-4 of FCML
 - Show its application for 5G wireless systems sparse Bayesian learning
- Today's agenda
- Perform Bayesian learning by taking examples of Gaussian random variables
 - Ref: Conjugate Bayesian analysis of the Gaussian distribution" Murphy (2007)

Bayesian Inference for mean of a univariate Gaussian

- Given N i.i.d observations $\mathbf{x} = \{x_1, x_2,, x_N\}$ which are assumed to be drawn from $\mathcal{N}(\mathbf{x}|\mu, \sigma^2)$
- Likelihood of each observation

$$p(x_n|\mu,\sigma^2) = \mathcal{N}(x_n|\mu,\sigma^2) \propto \exp\left[-\frac{(x_n-\mu)^2}{2\sigma^2}\right]$$

Joint likelihood of N observations

$$p(\mathbf{x}|\mu,\sigma^2) = \prod_{n=1}^{N} p(x_n|\mu,\sigma^2)$$

• Easy to see that, each x_n drawn from $\mathcal{N}(x|\mu,\sigma^2)$ is equivalent to the following:

$$x_n = \mu + \epsilon_n$$
, where $\epsilon_n \sim \mathcal{N}(x|0,\sigma^2)$

- x_n is like a noisy version of μ with zero mean Gaussian noise added to it
- Let's estimate μ given **x** using fully Bayesian inference (not point estimation)

A prior distribution for the mean μ

- ullet For Bayesian inference, we need a prior over μ
- We choose a Gaussian prior $p(\mu|\mu_0,\sigma_0^2)=\mathcal{N}(\mu|\mu_0,\sigma_0^2)$

- ullet Prior says that a priori we believe μ is close to μ_0
- ullet Prior's variance σ_0^2 denotes how certain we are about our belief
- ullet We will assume that the prior's hyperparameters (μ_0,σ_0^2) are known
- Since σ^2 in the likelihood $\mathcal{N}(x|0,\sigma^2)$ is known
 - Gaussian prior $\mathcal{N}(\mu|\mu_0,\sigma_0^2)$ on μ is also conjugate to the likelihood
 - ullet Posterior distribution of unknown mean parameter μ will also be Gaussian

Posterior distribution for the mean (1)

ullet Posterior distribution of the unknown mean parameter μ

$$p(\mu|\mathbf{x}) = \frac{p(\mathbf{x}|\mu)p(\mu)}{p(\mathbf{x})} \propto \prod_{n=1}^{N} \exp\left[-\frac{(x_n - \mu)^2}{2\sigma^2}\right] \times \exp\left[-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right]$$

$$= \exp\left[-\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2\right] \times \exp\left[-\frac{1}{2\sigma_0^2} (\mu - \mu_0)^2\right]$$

$$= \exp\left[-\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n^2 + \mu^2 - 2\mu x_n) - \frac{1}{2\sigma_0^2} (\mu^2 + \mu_0^2 - 2\mu \mu_0)\right]$$

$$\propto \exp\left[-\frac{1}{2\sigma^2} \left(\mu^2 N - 2\mu \sum_{n=1}^{N} x_n\right) - \frac{1}{2\sigma_0^2} (\mu^2 - 2\mu \mu_0)\right]$$
(1)

Let us denote the posterior in compact form as

$$p(\mu|\mathbf{x}) \propto \exp\left[-\frac{(\mu - \mu_N)^2}{2\sigma_N^2}\right] = \exp\left[-\frac{1}{2\sigma_N^2}(\mu^2 + \mu_N^2 - 2\mu\mu_N)\right]$$
(2)

• We compare quadratic and linear part of μ in (1) and (2)

Comparing quadratic part of μ

Posterior distribution of the unknown mean parameter μ

$$p(\mu|\mathbf{x}) \propto \exp\left[-\frac{1}{2\sigma^2}\left(\mu^2 N - 2\mu \sum_{n=1}^N x_n\right) - \frac{1}{2\sigma_0^2}\left(\mu^2 - 2\mu\mu_0\right)\right]$$
(3)

Posterior in compact form as

$$p(\mu|\mathbf{x}) \propto \exp\left[-\frac{1}{2\sigma_N^2}(\mu^2 + \mu_N^2 - 2\mu\mu_N)\right]$$
 (4)

• Comparing quadratic part of μ in (3) and (4), we have

$$-\frac{1}{2\sigma_N^2} = -\frac{1}{2\sigma^2}N - \frac{1}{2\sigma_0^2}$$
$$\frac{1}{\sigma_N^2} = \frac{N}{\sigma^2} + \frac{1}{\sigma_0^2}$$

• Posterior's precision is sum of prior's precision and sum of noise precisions of all observations

Comparing linear part of μ

 \bullet Posterior distribution of the unknown mean parameter μ

$$p(\mu|\mathbf{x}) \propto \exp\left[-\frac{1}{2\sigma^2}\left(\mu^2 N - 2\mu \sum_{n=1}^{N} x_n\right) - \frac{1}{2\sigma_0^2}\left(\mu^2 - 2\mu\mu_0\right)\right]$$
 (5)

Posterior in compact form as

$$p(\mu|\mathbf{x}) \propto \exp\left[-\frac{1}{2\sigma_N^2}(\mu^2 + \mu_N^2 - 2\mu\mu_N)\right]$$
 (6)

ullet Comparing linear part of μ (5) and (6), we have

$$\frac{1}{\sigma^2} \sum_{n=1}^{N} x_n + \frac{\mu_0}{\sigma_0^2} = \frac{\mu_N}{\sigma_N^2}$$

$$\frac{1}{\sigma^2} \sum_{n=1}^{N} x_n + \frac{\mu_0}{\sigma_0^2} = \left(\frac{N}{\sigma^2} + \frac{1}{\sigma_0^2}\right) \mu_N$$

$$\mu_N \stackrel{\text{(a)}}{=} \frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \mu_0 + \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \bar{x}$$

• Equality (a) is obtained by setting $\bar{x} = \frac{\sum_{n=1}^{N} x_n}{N}$.

• First term in posterior mean is contribution from prior, second is from data

Posterior distribution for large number of observations N

Posterior variance from last slide

$$\frac{1}{\sigma_N^2} = \frac{N}{\sigma^2} + \frac{1}{\sigma_0^2}$$

Posterior mean from last slide

$$\mu_N = \frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \mu_0 + \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \bar{x}$$

- \bullet What happens to the posterior as N (number of observations) grows very large?
 - Data (likelihood part) overwhelms the prior
 - Posterior's variance σ_N^2 will approximately be σ^2/N (and goes to 0 as $N \to \infty$)
 - Posterior's mean μ_N approaches \bar{x} , which is also the maximal likelihood solution

Bayesian inference for variance of a Gaussian

- Given N i.i.d observations which $\mathbf{x} = \{x_1, x_2, ..., x_N\}$, assumed to be drawn from $\mathcal{N}(x|\mu, \sigma^2)$
- Joint likelihood of N joint observations

$$p(x_n|\mu,\sigma^2) = \mathcal{N}(x|\mu,\sigma^2)$$
 and $p(\mathbf{x}|\mu,\sigma^2) = \prod_{n=1}^N p(x_n|\mu,\sigma^2)$

- We want to estimate the variance σ^2 . Assume μ to be known.
- If we want a conjugate prior $p(\sigma^2)$, its functional form must be same as likelihood

$$p(x_n|\mu,\sigma^2) \propto (\sigma^2)^{-1/2} \exp\left[-\frac{(x_n-\mu)^2}{2\sigma^2}\right]$$

• An inverse-gamma dist $IG(\alpha, \beta)$ has this form

$$p(\sigma^2) \propto (\sigma^2)^{-(\alpha+1)} \exp\left[-rac{eta}{\sigma^2}
ight]$$

• Due to conjugacy, posterior will also be $IG(\alpha_N, \beta_N)$ with expression

$$p(\sigma^2|\mathbf{x}) \propto (\sigma^2)^{-(\alpha_N+1)} \exp\left(-\frac{\beta_N}{\sigma^2}\right)$$

Posterior distribution of the variance σ^2

ullet Posterior distribution for the unknown variance parameter σ^2

$$\rho(\sigma^{2}|\mathbf{x}) = \frac{\rho(\mathbf{x}|\sigma^{2})\rho(\sigma^{2})}{\rho(\mathbf{x})}$$

$$\propto (\sigma^{2})^{-(\alpha+1)} \exp\left[-\frac{\beta}{\sigma^{2}}\right] \times \prod_{n=1}^{N} \left((\sigma^{2})^{-1/2} \exp\left[-\frac{(x_{n}-\mu)^{2}}{2\sigma^{2}}\right]\right)$$

$$= (\sigma^{2})^{-(\alpha+1)} (\sigma^{2})^{\left(-\frac{N}{2}\right)} \exp\left[-\frac{\beta}{\sigma^{2}} - \frac{1}{2\sigma^{2}} \sum_{n=1}^{N} (x_{n}-\mu)^{2}\right]$$

$$\stackrel{(a)}{=} (\sigma^{2})^{-(\alpha_{N}+1)} \exp\left(-\frac{\beta_{N}}{\sigma^{2}}\right)$$

- Equality (a) is obtained by denoting $\alpha_N = \alpha + \frac{N}{2}$, and $\beta_N = \beta + \frac{1}{2} \sum_{n=1}^{N} (x_n \mu)^2$
- Posterior is now

$$p(\sigma^2|\mathbf{x}) = IG(\alpha_N, \beta_N)$$

Working with Gaussians: Variance vs Precision

- Often, it is easier to work with the precision (=1/variance) rather than variance
- Likelihood is

$$p(x_n|\mu,\lambda^{-1}) = \mathcal{N}(x|\mu,\lambda^{-1}) = \sqrt{\frac{\lambda}{2\pi}} \exp\left[-\frac{\lambda}{2}(x_n-\mu)^2\right]$$

Joint likelihood is

$$p(\mathbf{x}|\sigma^2) = \prod_{n=1}^N \sqrt{\frac{\lambda}{2\pi}} \exp\left[-\frac{\lambda}{2}(x_n - \mu)^2\right]$$

ullet If mean is known, for precision, Gamma (α, β) is a conjugate prior to Gaussian likelihood

$$p(\lambda) \propto (\lambda)^{(\alpha-1)} \exp[-\beta \lambda]$$

• Due to conjugacy, posterior will also be Gamma (α_N, β_N) with expression

$$p(\lambda|\mathbf{x}) \propto (\lambda)^{(\alpha_N-1)} \exp[-\beta_N \lambda]$$

Posterior distribution for the unknown precision λ

ullet Posterior distribution for the unknown precision λ

$$p(\lambda|\mathbf{x}) = \frac{p(\mathbf{x}|\sigma^{2})p(\lambda)}{p(\mathbf{x})}$$

$$\propto \left(\prod_{n=1}^{N} \sqrt{\frac{\lambda}{2\pi}} \exp\left[-\frac{\lambda}{2}(x_{n}-\mu)^{2}\right]\right) \times \left(\lambda^{(\alpha-1)} \exp[-\beta\lambda]\right)$$

$$= \left(\left(\frac{\lambda}{2\pi}\right)^{N/2} \exp\left[-\frac{\lambda}{2}\sum_{n=1}^{N}(x_{n}-\mu)^{2}\right]\right) \times \left(\lambda^{(\alpha-1)} \exp[-\beta\lambda]\right)$$

$$= \lambda^{(\alpha-1+N/2)} \exp\left[-\left(\beta + \frac{\sum_{n=1}^{N}(x_{n}-\mu)^{2}}{2}\right)\lambda\right]$$

$$\stackrel{(a)}{=} (\lambda)^{(\alpha_{N}-1)} \exp[-\beta_{N}\lambda]$$

- Equality (a) is obtained by denoting $\alpha_N = \alpha + \frac{N}{2}$, $\beta_N = \beta + \frac{\sum_{n=1}^{N} (x_n \mu)^2}{2}$
- Posterior is now

 $p(\lambda|\mathbf{x}) = \mathsf{Gamma}(\alpha_N, \beta_N)$

Bayesian Inference for both parameters of a Gaussian

- Gaussian with unknown scalar mean and unknown scalar precision (two parameters)
- Given N i.i.d observations which $\mathbf{x} = \{x_1, x_2, ..., x_N\}$, assumed to be drawn from $\mathcal{N}(\mathbf{x}|\mu, \lambda)$
- ullet Assume both mean μ and precision λ to be unknown. Likelihood can be written as

$$p(\mathbf{x}|\mu,\lambda) = \prod_{n=1}^{N} \sqrt{\frac{\lambda}{2\pi}} \exp\left[-\frac{\lambda}{2}(x_n - \mu)^2\right] = \prod_{n=1}^{N} \sqrt{\frac{\lambda}{2\pi}} \exp\left[-\frac{\lambda}{2}(x_n^2 + \mu^2 - 2x_n\mu)\right]$$

$$\propto \left[\lambda^{1/2} \exp\left(-\frac{\lambda\mu^2}{2}\right)\right]^N \exp\left[\lambda\mu\sum_{n=1}^{N} x_n - \frac{\lambda}{2}\sum_{n=1}^{N} x_n^2\right]$$

- ullet Would like a jointly conjugate prior distribution $p(\mu,\lambda)$ must have same form as above likelihood
- Normal-gamma (NG) distribution
 - Since it can be written as a product of a normal and a gamma (next slide)

Bayesian Inference for Both Parameters of a Gaussian

Normal Gamma Distribution is defined as-

$$\begin{split} \mathsf{NG}(\mu,\lambda|\mu_0,\kappa_0,\alpha_0,\beta_0) &= \mathcal{N}(\mu|\mu_0,(\kappa_0\lambda)^{-1}) \times \mathsf{Gamma}(\lambda|\alpha_0,\beta_0) \\ &= \sqrt{\frac{\kappa_0\lambda}{2\pi}} \mathsf{exp}\left(-\frac{1}{2}\kappa_0\lambda(\mu-\mu_0)^2\right) \times \frac{\beta_0^{\alpha_0}}{\Gamma(\alpha_0)} \lambda^{\alpha_0-1} \mathsf{exp}(-\beta_0\lambda) \\ &\propto \lambda^{1/2} \mathsf{exp}\left(-\frac{1}{2}\kappa_0\lambda(\mu-\mu_0)^2\right) \lambda^{\alpha_0-1} \mathsf{exp}(-\beta_0\lambda) \end{split}$$

- NG also has a vector version
 - Normal-Wishart distribution to jointly model a real-valued vector and a PSD matrix
- Posterior is given as

$$p(\mu, \lambda | \mathbf{x}) \propto p(\mathbf{x} | \mu, \lambda) p(\mu, \lambda)$$

$$= p(\mathbf{x} | \mu, \lambda) \times \mathsf{NG}(\mu, \lambda | \mu_0, \kappa_0, \alpha_0, \beta_0)$$

• Posterior can be shown as a product of normal and Gamma function (Tutorial problem)

$$p(\mu, \lambda | \mathbf{x}) = NG(\mu_N, \kappa_N, \alpha_N, \beta_N)$$

• Here $\mu_N = \frac{\kappa_0 \mu_0 + N\bar{x}}{\kappa_0 + N}$, $\kappa_N = \kappa_0 + N$, $\alpha_N = \alpha_0 + N/2$, $\beta_N = \beta_0 + \frac{1}{2} \sum_{n=1}^N (x_n - \bar{x})^2 + \frac{\kappa_0 N(\bar{x} - \mu_0)^2}{2(\bar{\kappa}_0 + N)^2}$