

Findings in Language Model for Recommendation

Reindex-Then-Adapt: Improving Large Language Models for Conversational Recommendation (WSDM 2025)

Language Representations Can be What Recommenders Need: Findings and Potentials (ICLR 2025)

Xinyu He, Xinrui He

Reindex-Then-Adapt: Improving Large Language Models for Conversational Recommendation

Zhankui He, Zhouhang Xie, Harald Steck, Dawen Liang, Rahul Jha, Nathan Kallus, and Julian McAuley. 2025. Reindex-Then-Adapt: Improving Large Language Models for Conversational Recommendation. Proceedings of the Eighteenth ACM International Conference on Web Search and Data Mining. Association for Computing Machinery, New York, NY, USA, 866–875. https://doi.org/10.1145/3701551.3703573

Xinyu

Conversational Recommender System (CRS)

- * A conversation is represented by $C = (u_t, s_t, \mathcal{I}_t)_{t=1}^T$ involving user $u_t \in \mathcal{U}$, user utterance s_t and ranked item list $\mathcal{I}_t \in \mathcal{I}$ with T conversational turns.
- \diamond Goal: generate ranked list of items $\hat{\mathcal{I}}_k$ that align with \mathcal{I}_k , based on the preceding context $(u_t, s_t, \mathcal{I}_t)_{t=1}^{k-1}$.

Motivation: Item-Indexing Ability Analysis

- Learn to Index task(L2I): LLMs index items by using the item titles as the item identifiers
- Finding: LLMs Show Sufficient Item Content Knowledge.

Motivation: Recommendation Ability Analysis

- Learn to Retrieve task (L2R): LLMs use conversational context as queries to generate item indices.
- Finding: LLMs Show Severe Distribution Misalignment.

"I'm feeling bored today and looking for a sci-fi action movie, preferably starring Tom Cruise."

Edge of Tomorrow

Motivation: Recommendation Ability Analysis

- Finding: LLMs Struggle to Use Collaborative Information.
- Masking or randomly replacing mentioned movies in conversation contexts
 has little negative impact on the final recommendation accuracy

SO(Original)
S1(ItemOnly)
S2(ItemRemoved)
S3(ItemRandom)
Φ1(in-dataset titles)
Φ2(excludes seen titles)

Motivation

- Room for improvement:
 - adapting towards the item distributions in target platforms
 - enables the synergy between LLMs and traditional methods
- LLMs represent (i.e., index) each item with typically multiple tokens, which makes obtaining recommendation probabilities for a large-scale set of items extremely inefficient, thus hindering the potential of LLMs

Re-index

To better control LLM item recommendation, Reindex step condense multi-token item embeddings into single-token item embeddings.

$$(\mathbf{v}_i)_{i=j}^{j+n} = \operatorname{Embed}\left((v_i)_{i=j}^{j+n}\right), \ \tilde{\mathbf{v}} = \operatorname{Aggregator}\left((\mathbf{v}_i)_{i=j}^{j+n}\right),$$

- $(v_i)_{i=j}^{j+n}$: tokens representing the item, e.g., tokens of 'Edge of Tomorrow'.
- Aggregator: RNN/transformer/weighted pooling

$$\mathcal{L}_{reindex} = -\frac{1}{|\mathcal{D}|} \sum_{\mathbf{q}, \tilde{\mathbf{v}} \in \mathcal{D}} \log \left[\frac{\exp \left(\mathbf{q}^{\top} \tilde{\mathbf{v}} \right)}{\exp \left(\mathbf{q}^{\top} \tilde{\mathbf{v}} \right) + \sum_{\mathbf{n} \in \mathcal{N}} \exp \left(\mathbf{q}^{\top} \mathbf{n} \right)} \right],$$

Adapt

- ♦ Bias Term Adjustment: $\hat{p} = softmax (gW + b)$,
- Recsys gating: $\hat{\mathbf{p}} = \operatorname{softmax} (\alpha \mathbf{g} + (1 \alpha)\tilde{\mathbf{g}})$,

$$\mathcal{L}_{adapt} = -\frac{1}{|\mathcal{D}^*|} \sum_{i=1}^{|\mathcal{D}^*|} \log \hat{\mathbf{p}}_{i,*},$$

Experiment

Table 3: The main results for our models on conversational recommendation accuracy performance, compared against (1) traditional recommendation models; (2) zero-shot large language models (LLMs); (3) traditional conversational recommendation models; and (4) zero-shot dense retrievers. The size of the reported LLMs used here is 7B. We denote the model metrics with the best performance in bold. Llama2-R denotes the Llama2-7b model after our reindex step. We also show the results after the adapt step with bias terms (+Bias) or RecSys (here we use FISM [31]) model combination with Gating mechanism (+RecSys).

	INSPIRED				ReDIAL				Reddit-V1.5			
	H@5	N@5	H@10	N@10	H@5	N@5	H@10	N@10	H@5	N@5	H@10	N@10
Popuplarity	.089 .020	.065 .015	.103 .021	.070 .015	.035 .003	.025 .002	.052 .003	.030 .002	.008 .001	.004 .000	.014 .001	.006 .000
FISM [31]	.090 .017	.065 .012	.104 .021	.072 .011	.065 .004	.040 .003	.112 .005	.054 .003	.022 .001	.012 .001	.043 .001	.019 .001
SASRec [32]	.092 .014	.068 .011	.103 .020	.073 .013	.068 .004	.041 .002	.116 .005	.056 .003	.022 .001	.013 .001	.039 .001	.018 .001
MPT [52]	.075 .018	.045 .011	.099 .020	.052 .012	.072 .004	.045 .003	.116 .005	.059 .003	.026 .001	.017 .001	.040 .001	.021 .001
Mistral [30]	.061 .016	.040 .011	.066 .017	.041 .012	.082 .004	.056 .003	.111 .005	.065 .003	.029 .001	.020 .001	.038 .001	.023 .001
Llama2 [53]	.080 .019	.050 .012	.122 .022	.064 .013	.094 .004	.059 .003	.145 .005	.075 .003	.042 .001	.027 .001	.064 .001	.034 .001
ReDIAL [38]	.060 .016	.041 .012	.106 .021	.056 .012	.067 .004	.044 .003	.106 .005	.057 .003	.029 .001	.019 .001	.044 .001	.024 .001
UniCRS [57]	.091 .019	.055 .011	.132 .019	.073 .014	.085 .003	.058 .003	.112 .004	.071 .003	.028 .001	.017 .001	.040 .001	.021 $.001$
SBERT [47]	.038 .013	.026 .010	.066 .017	.036 .010	.016 .002	.010 .001	.026 .002	.013 .001	.003 .000	.002 .000	.005 .000	.002 .000
Instructor [50]	.052 .015	.034 .011	.085 .019	.045 .011	.025 .002	.013 .001	.043 .003	.019 .001	.009 .001	.006 .000	.017 .001	.000. 800.
Llama2-R	.075 .018	.045 .012	.131 .023	.063 .012	.072 .004	.044 .003	.120 .005	.059 .003	.034 .001	.020 .001	.056 .001	.028 .001
w/ Bias	.117 .022	.077 .016	.174 .026	.095 .016	.096 .004	.061 .003	.165 .006	.083 .003	.052 .001	.033 .001	.088 .002	.044 .001
w/ RecSys	.131 .023	.081 .015	.197 .027	.101 .016	.103 .005	.066 .003	.165 .006	.085 .003	.057 .001	.035 .001	.093 .002	.047 .001

Ablations

	INSP	IRED	ReD	OIAL	Reddit-V1.5		
Model	H@10	N@10	H@10	N@10	H@10	N@10	
Llama2	.122 .022	.064 .013	.145 .005	.075 .003	.064 .001	.034 .001	
→ RTA w/ Bias → RTA w/ RecSys	.174 .026	.095 .016	.165 .006	.083 .003	.088 .002	.044 .001	
GPT-3.5-t [49]	.150 .024	.089 .016	.163 .006	.089 .003	.104 .002		

	Agg. Frozen?	INSPIRED	ReDIAL	RedditV1.5
Llama2-R	-	.131 .023	.120 .005	.056 .001
	Bias Term	Adjustment (w	/ Bias)	
/ crXA7	×	.150 .025	.165 .006	.082 .002
w/ gW	✓	.146 .024	.141 .006	.058 .001
/ b	×	.174 .026	.165 .006	.087 .002
w/b	✓	.136 .235	.117 .005	.058 .001
/XA7 . b	×	.155 .025	.167 .006	.088 .002
w/ gW+b	✓	.160 .025	.144 .005	.058 .001
	RecSys Mod	lel Gating (w/	RecSys)	
/ TIOM	×	.197 .027	.146 .005	.093 .002
w/ FISM	✓	.207 .028	.165 .006	.074 .002
/ O A CD	×	.178 .026	.148 .005	.093 .002
w/ SASRec	✓	.188 .027	.157 .006	.075 .002

Conclusion and Comments

- Reindex technique provides potential for re-ranking and post-processing
- LLM is sufficient as item indexers for popular items
- Adapting popularity distribution may increase popularity bias

Language Representations Can be What Recommenders Need: Findings and Potentials

Leheng Sheng, An Zhang, Yi Zhang, Yuxin Chen, Xiang Wang, Tat-Seng Chua. ICLR 2025

ID- vs. Modality-based Recommnder Models

- ❖ ID-based Recommender: a learnable ID embedding matrix $X^I \in \mathbb{R}^{|I| \times d}$ is initialized. Each vector X^I represents the latent space of an item i.
- * **LLm-based Recommender**: For an Item i, a pre-trained encoder is used to generate the representation to replace the ID embedding in IDRec.

RQ1: Do LMs inherently encode collaborative signals

Linear Mapping:

Finding 1: Post-mapping representations of advanced LMs achieve superior recommendation performance in most cases, suggesting the possible homomorphism between language spaces and behavior spaces.

		Movies & TV			Video Games			Books		
		Recall	NDCG	HR	Recall	NDCG	HR	Recall	NDCG	HR
	MF (Rendle et al., 2012)	0.0568	0.0519	0.3377	0.0323	0.0195	0.0864	0.0437	0.0391	0.2476
CF	MultVAE (Liang et al., 2018)	0.0853	0.0776	0.4434	0.0908	0.0531	0.2211	0.0722	0.0597	0.3418
	LightGCN (He et al., 2021)	0.0849	0.0747	0.4397	0.1007	0.0590	0.2281	0.0723	0.0608	0.3489
ρņ	BERT	0.0415	0.0399	0.2362	0.0524	0.0309	0.1245	0.0226	0.0194	0.1240
oji.	RoBERTa	0.0406	0.0387	0.2277	0.0578	0.0338	0.1339	0.0247	0.0209	0.1262
appin	Llama2-7B	0.1027	0.0955	0.4952	0.1249	0.0729	0.2746	0.0662	0.0559	0.3176
\mathbf{Z}	Mistral-7B	0.1039	0.0963	0.4994	0.1270	0.0687	0.2428	0.0650	0.0544	0.3124
ear	text-embedding-ada-v2	0.0926	0.0874	0.4563	0.1176	0.0683	0.2579	0.0515	0.0436	0.2570
jne	text-embeddings-3-large	0.1109	0.1023	0.5200	0.1367	0.0793	0.2928	0.0735	0.0608	0.3355
	SFR-Embedding-Mistral	0.1152	0.1065	0.5327	0.1370	0.0787	0.2927	0.0738	0.0610	0.3371

RQ1: Do LMs inherently encode collaborative signals

 Finding 2: Language representations encode user preference similarities beyond semantic textual similarities.

RQ2: Scaling and Robustness

- Finding 3: The encoding of user preference similarities becomes more refined as model size increases, leading to better linear mapping performance.
- Finding 4: Language representations are relatively robust to prompt disturbances.

Table 2: The robustness of language representations for recommendation.

Movies & TV			Video Games			Books			
	Recall	NDCG	HR	Recall	NDCG	HR	Recall	NDCG	HR
Title + Random Noise	0.0952	0.0887	0.4731	0.1213	0.0706	0.2722	0.0632	0.0525	0.3099
Title Only	0.1027	0.0955	0.4952	0.1249	0.0729	0.2746	0.0662	0.0559	0.3176

RQ3: How powerful are such language representations for building advanced CF models that can outperform prevailing ID-based CF methods

❖ AIPHAREC

Nonlinear projection

$$\mathbf{e}_i^{(0)} = \mathbf{W}_2 \operatorname{LeakyReLU}(\mathbf{W}_1 \mathbf{z}_i + \mathbf{b}_1) + \mathbf{b}_2, \quad \mathbf{e}_u^{(0)} = \mathbf{W}_2 \operatorname{LeakyReLU}(\mathbf{W}_1 \mathbf{z}_u + \mathbf{b}_1) + \mathbf{b}_2.$$

- $\Rightarrow \quad \text{Graph convolution} \qquad \mathbf{e}_u^{(k+1)} = \sum_{i \in \mathcal{N}_u} \frac{1}{\sqrt{|\mathcal{N}_u|}\sqrt{|\mathcal{N}_i|}} \mathbf{e}_i^{(k)}, \quad \mathbf{e}_i^{(k+1)} = \sum_{u \in \mathcal{N}_i} \frac{1}{\sqrt{|\mathcal{N}_i|}\sqrt{|\mathcal{N}_u|}} \mathbf{e}_u^{(k)}.$
- Contrastive learning objective

$$\mathcal{L}_{\text{InfoNCE}} = -\sum_{(u,i)\in\mathcal{O}^+} \log \frac{\exp\left(s(\mathbf{e}_u,\mathbf{e}_i)/\tau\right)}{\exp\left(s(\mathbf{e}_u,\mathbf{e}_i)/\tau\right) + \sum_{j\in\mathcal{S}_u} \exp\left(s(\mathbf{e}_u,\mathbf{e}_j)/\tau\right)}.$$

RQ3: Recommendation capabilities

Finding 5: Advanced language representations shows strong potentials for recommendation, which can be unleashed by appropriate model design.

	Movies & TV			<u> </u>	/ideo Game	es	Books			
	Recall	NDCG	HR	Recall	NDCG	HR	Recall	NDCG	HR	
MF (Rendle et al., 2012)	0.0568	0.0519	0.3377	0.0323	0.0195	0.0864	0.0437	0.0391	0.2476	
MultVAE (Liang et al., 2018)	0.0853	0.0776	0.4434	0.0908	0.0531	0.2211	0.0722	0.0597	0.3418	
LightGCN (He et al., 2021)	0.0849	0.0747	0.4397	0.1007	0.0590	0.2281	0.0723	0.0608	0.3489	
SGL (Wu et al., 2021)	0.0916	0.0838	0.4680	0.1089	0.0634	0.2449	0.0789	0.0657	0.3734	
BC Loss (Zhang et al., 2022)	0.1039	0.0943	0.5037	0.1145	0.0668	0.2561	0.0915	0.0779	0.4045	
XSimGCL (Yu et al., 2024)	0.1057	0.0984	0.5128	0.1138	0.0662	0.2550	0.0879	0.0745	0.3918	
KAR (Xi et al., 2023)	0.1084	0.1001	0.5134	0.1181	0.0693	0.2571	0.0852	0.0734	0.3834	
RLMRec (Ren et al., 2024b)	<u>0.1119</u>	<u>0.1013</u>	<u>0.5301</u>	0.1384	0.0809	0.2997	0.0928	0.0774	0.4092	
AlphaRec	0.1221*	0.1144*	0.5587*	0.1519*	0.0894*	0.3207*	0.0991*	0.0828*	0.4185*	
Imp.% over the best baseline	6.79%	5.34%	2.27%	9.12%	10.75%	5.40%	9.75%	10.51%	7.01%	

KAR and RLMRec: the combination of ID-based embeddings and language representations in these methods does not yield higher results than purel language-representation-based AlphaRec

Ablation Study

- (a) Ablation study on Movies & TV
- (b) Ablation study on Video Games

Figure 6: Ablation study

Potentials of Language Representations for Recommendation

Potential 1: Good initialization for item representations

Table 4: The zero-shot recommendation performance comparison on entirely new datasets. The improvement achieved by AlphaRec is significant (p-value << 0.05).

		Indus	Industrial & Scientific			MovieLens-1M			Book Crossing		
		Recall	NDCG	HR	Recall	NDCG	HR	Recall	NDCG	HR	
_	MF (Rendle et al., 2012)	0.0344	0.0225	0.0521	0.1855	0.3765	0.9634	0.0316	0.0317	0.2382	
Ę	MultVAE (Liang et al., 2018)	0.0751	0.0459	0.1125	0.2039	0.3741	0.9740	0.0736	0.0634	0.3716	
	LightGCN (He et al., 2021)	0.0785	0.0533	0.1078	0.2019	0.4017	0.9715	0.0630	0.0588	0.3475	
-	Random	0.0148	0.0061	0.0248	0.0068	0.0185	0.2611	0.0039	0.0036	0.0443	
shot	Pop	0.0216	0.0087	0.0396	0.0253	0.0679	0.5439	0.0119	0.0101	0.1157	
S-0	ZESRec (Ding et al., 2021)	0.0326	0.0272	0.0628	0.0274	0.0787	0.5786	0.0155	0.0143	0.1347	
zer	UniSRec (Hou et al., 2022)	0.0453	0.0350	0.0863	0.0578	0.1412	0.7135	0.0396	0.0332	0.2454	
	AlphaRec	0.0913*	0.0573	0.1277*	0.1486*	0.3215*	0.9296*	0.0660*	0.0545*	0.3381*	
	Imp.% over the best zero-shot baseline	157.09%	127.69%	30.29%	66.67%	64.16%	37.78%	101.55%	63.71%	47.97%	

(b) Training efficiency comparison

Potential 1: Zero-shot ability

provide opportunities for learning transferable item representations

Potentials of Language Representations for Recommendation

❖ **Potential 3**: The language understanding ability in advanced language representations enables recommenders to perceive user intentions and refine recommendations.

Table 5: The performance comparison in user intention capture.

Solution Variation Solution User intention $e_{\nu}^{Intention}$

➤ New user representation:

$$\tilde{e}_u^{(0)} = (1-\alpha)e_u^{(0)} + \alpha e_u^{Intention}$$

	Movie	Lens-1M	Video Games		
	HR@5	NDCG@5	HR@5	NDCG@5	
TEM (Bi et al., 2020)	0.2738	0.1973	0.2212	0.1425	
AlphaRec (w/o Intention)	0.0793	0.0498	0.0663	0.0438	
AlphaRec (w Intention)	0.4704*	0.3738*	0.2569*	0.1862*	

User Intention: I'm looking for a classic movie that delves into the world of organized crime, family loyalty, and power struggles, with iconic performances and unforgettable quotes.

Target: Godfather, The (1972)

Recommendation List (w/o Intention)

- Braveheart (1995)
- Schindler's List (1993)
- Star Wars: Episode V (1980)
- Pulp Fiction (1994)
- L.A. Confidential (1997)

Recommendation List (w Intention)

- Godfather, The (1972)
- L.A. Confidential (1997)
- Schindler's List (1993)
- Pulp Fiction (1994)
- Braveheart (1995)

(b) Effect of α

(a) Case study of user intention capture

Thank you! Q & A

