용해도, 산 과 염기, 산 화·환원 반

CONTENTS

- I 평형 상수
- Ⅱ 용해 평형과 용해도
- Ⅲ 산과 염기
- IV 산화와 환원 반응
- ∨ 기출 문제

출제 포인트

- 이 섹션에서는 물질의 용해도와 산과 염기의 농도 및 이온화 도, 산화 환원 반응에서의 이동한 전자의 몰수나 반응물과 생 성물의 양을 묻는 계산 문제가 주로 출제된다.
- 기출 문제의 유형에서 크게 벗어나지 않게 출제되고 있는 추세이므로 계산 문제 풀이 과정을 암기할 정도로 익혀두어 실전에 대비할 수 있도록 하자.

평형 상수

- 동적 평형 상태
 - 반응물이 반응하는 속도와 생성물이 생성되는 속도가 동적 평형을 이루어 변화가 없는 것처럼 보이는 상태
- 평형상수
 - 일정한 온도와 압력에서 동적 평형을 이룰 때 반응물과 생성물 양의 비
 - 평형 상수(K) $aA+bB \to cC+dD\left(\text{단}, a \sim d\text{는 반응계수}\right)$

$$K = \frac{\left[C\right]^{c} \left[D\right]^{d}}{\left[A\right]^{a} \left[B\right]^{b}}$$

❖ 단, []는 물질의 몰 농도, 기체의 경우에는 분압을 의미함)

용해 평형과 용해도

- 용해 평형
 - 의미: 고체가 액체 에 녹을 때 용해 되는 속도와 석출되는 속도가 같 아 동적 평형을 이루는 상태
 - 용액

불포화 용액	포화 용액보다 용질이 적게 녹아 있는 상태의 용액
포화 용액	용질에 최대로 녹아 용해 평형을 이루는 상태의 용액
과포화 용액	포화 용액보다 용질이 더 녹아 있는 상태의 용액

■ 용해도곱 상수(Ksp): 고체가 용액 내에서 녹아 성분 이온으로 나뉘는 반응에 대한 평형 상수

$$K_{sp} = [Hg_2^{2+}][Cl^-] = 1.2 \times 10^{-18}$$

❖용해도 구하기

$$K_{sp} = [Hg_2^{2+}][Cl^-]^2 = x \times (2x)^2 = 1.2 \times 10^{-18}$$

$$\therefore \left[Hg_2^{2+}\right] = \sqrt[3]{\frac{K_{sp}}{4}}$$

용해 평형과 용해도

- 용해 평형
 - 용액의 끓음
 - ❖ 끓음 : 액체의 증기 압력 이 외부 압력과 같아질 때 액체 표면과내부에 서 격렬하게 기포가 생기는 현상
 - ❖ 끓는점 : 액체의 끓음 현상이 일어날 때의 온도
- 용해도
 - 의미 : 일정한 온도에서 일정량의 용매에 최대로 녹을 수 있는 용질의 양
 - 고체와 기체의 용해도

고체의 용해도	 일정한 온도에서 용매 100g에 최대로 녹을 수 있는 용질의 g수 용매, 온도에 영향 대부분 고체는 용해될 때 흡열 반응이므로, 온도가 높아질수록 용해도 증가
기체의 용해도	 용매, 온도, 압력의 영향을 받음 물에 기체가 용해될 때 대부분 발열 반응이므로, 온도가 낮아질수록 용해도 중가

• 기체의 압력이 커지면 기체의 용해도 증가

용해 평형과 용해도

- 용해도
 - 헨리의 법칙
 - ❖용해도가 작은 기체의 경우 일정한 온도와 일정량의 용매에 용해되는 기 체의 질량은 기체의 부분 압력에 비례
 - ❖ w = kP (w: 용해되는 기체의 질량, k : 비례 상수, P: 기체의 부분 압력)
 - ❖ 무극성 기체의 경우 헨리의 법칙에 잘 맞음(CO₂, H₂, N₂, O₂, CH₄ 등)

- 산과 염기의 성질
 - 일반적 성질

산	염기
신맛	쓴맛
금속과 반응하여 수소 기체발생	미끈미끈거림
수용액에서 전해질로 작용	수용액 에서 전해질로 작용
푸른색 리트머스 종이를 붉게 변화	붉은색 리트머스 종이를 푸르게 변화

■ 아레니우스 산과 염기

산	 수용액에서 수소이온(H+)을 내놓는 물질 HCl, HNO₃, H₂SO₄, CH₃COOH 등
염기	 수용액에서 수산화이온(OH-)을 내 놓는 물질 NaOH, KOH, Ca(OH)₂, Ba(OH)₂ 등

- 산과 염기의 성질
 - 브뢴스태드 로우리 산과 염기
 - ❖산 : H+을 내놓는 물질
 - ❖ 염기 : H+을 받아들이는 물질
 - ❖짝산-짝염기
 - ➤ H+의 이동에 의해 산과 염기로 되는 1쌍의 물질

$$\overset{\triangleright}{HCl}(aq) + H_2O(l) \overset{\frown}{\longleftrightarrow} \overset{Cl^-}{(2q)} + H_3O^+(aq)$$
 (짝산)

❖ 양쪽성 물질 : 산과 염기로 모두 작용할 수 있는 물질
$$HCl + H_2O \longleftrightarrow Cl^- + H_3O^+ (H_2O)$$
이 염기로 반응)
$$NH_3 + H_2O \longleftrightarrow NH_4^+ + OH^- (H_2O)$$
 산으로 반응)

- 루이스 산과 염기
 - ❖ 산 : 전자쌍 받개
 - ❖ 염기 : 전자쌍 주개

- 산과 염기의 세기
 - 이온화도(α)와 pH
 - 이온화도(a): 전해질 용액에서 전체 전해질 몰수에 대한 이온화된 전해질의 몰수비
 - $^{\bullet}$ 이온화도 $(\alpha) = \frac{$ 이온화된 전해질 몰수 용해된 전해질 몰수
 - ❖ 동일한 농도를 갖는 산과 염기에서 이온화도가 클수록 강산, 강염기이다.
 - pH : 수소 이온 농도 지수
 - $pH = -log[H^+]$
 - ❖ pH 값이 작을수록 H+의 농도가 크다.
 - $\star Kw = [H^+][OH^-] = 1.0*10^{-14}, 14 = pH + pOH$

수용액의 액성	pH(25°C)
산성	pH < 7
중성	pH = 7
염기성	pH > 7

- 산과 염기의 세기
 - 이온화 상수
 - ❖산의 이온화 상수(Ka): 산 HA가 물에 녹아 이온화 평형을 이룰 때의 평형 상수

$$\rightarrow HA(aq) + H_2O(l) \rightarrow A^-(aq) + H_3O^+(aq)$$

❖ 염기의 이온화 상수(Kb): 염기 B가 물에 녹아 이온화 평형을 이룰 때의 평형 상수

$$\Rightarrow B(aq) + H_2O(l) \rightarrow BH^+(aq) + OH^-(aq)$$

$$> K_b = \frac{ BH^+ (OH^-)}{ B}$$

 \star Kw = K_a x K_b = 1.0 x 10⁻¹⁴

- 산과 염기의 세기
 - 이온화도(a)와 약산의 이온화 상수(Ka) 관계

$$K_a = \frac{\left[A^{-}\right]\left[H_3O^{+}\right]}{\left[HA\right]} = \frac{C\alpha^2}{1-\alpha} \cong C\alpha^2$$

▶ 약산이므로 1-α ≒ 1이다.

$$\alpha = \sqrt{\frac{K_a}{C}}$$

$$H_3O^+ = C\alpha = C \times \sqrt{\frac{K_a}{C}} = \sqrt{K_aC}$$

- 중화반응
 - 의미 : 산과 염기가 반응하여 물과 염을 생성하는 반응
 - $Arr HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H₂O(l)$
 - ❖ 알짜 이온 반응식 : H+(aq) + OH-(aq) → H₂O(l)
 - ❖ 중화반응 양적 관계 : H+과 OH-의 반응몰수비는 1 : 1 이다.

$$mMV = n'M'V'$$

▶ (n, n': 산, 염기의 가수, M, M': 몰 농도, V, V': 수용액 부피)

- 중화반응
 - 중화 적정 : 중화 반응을 이용하여 농도를 알고 있는 표준 용액을 이용하여 미지의 산이나 염기의 농도를 구하는 방법
 - ❖ 중화점 : 반응하는 H+의 몰수와 OH-의 몰수가 같아지는 점
 - ❖ 중화 적정의 양적 관계 : nMV=n'M'V'

• 산화와 환원

산화	산소를 얻거나 전자를 잃는 반응산화수가 증가하는 반응
환원	산소를 잃거나 전자를 얻는 반응산화수가 감소하는 반응
산화제	자신은 환원되면서 다른 물질을 산화시키는 물질
환원제	자신은 산화되면서 다른 물질을 환원시키는 물질

- 산화수
 - - ❖ 성분 원소의 산화나 환원된 정도를 나타낸 수
 - ❖전자를 잃으면 '+' 산화수, 전자를 얻으면 '-' 산화수

- 산화수
 - 산화수 규칙
 - ❖ 원소나 홀원소 물질의 산화수는 0이다.
 - ▶ 예) H₂, O₂, Fe 등에서 H, O, Fe의 산화수 : 0
 - ❖ 화합물을 이루는 각 원자의 산화수 합은 0이다.
 - ▶ 예) CO₂에서 C의 산화수 + O의 산화수 x 2 = 0, C의 산화수 : +4, 0의 산화수 : -2
 - ❖ 이온의 산화수는 그 이온의 전하와 같다.
 - ▶ 예) Na+의 산화수 : +1, Cl 의 산화수 : 1
 - ❖ 다원자 이온의 산화수는 각 원자의 산화수 합과 다원자 이온의 전하와 같다.
 - ▶ 예) SO₄²⁻ 에서 S의 산화수 + O의 산화수 x 4 = -2, S의 산화수 +6, O의 산화수 -2
 - ◆ 1족 금속 , 2족 금속의 산화수는 화합물 속에서 각각 +1, +2이다.
 - ➤ 예) NaCl 에서 Na의 산화수는 +1, MgO에서 Mg의 산화수는 +2

- 산화수
 - 산화수 규칙
 - ❖화합물에서 수소의 산화수는 +1이다.
 - ➤ H₂O, HCl, CH₄에서 H의 산화수는 +1
 - ▶ 단, 금속의 수소 화합물에서는 -1
 - ➤ LiH, NaH에서 H의 산화수는 -1
 - ❖화합물에서 산소의 산화수는 -2이다.
 - ➤ H₂O, CO₂, SO₂에서 산소의 산화수는 -2
 - ▶ 단, H₂O₂에서 O의 산화수는 -1
 - ▶ 단, OF₂에서 O의 산화수는 +2
- 금속의 산화와 환원
 - 금속의 이온화 경향성 : 금속이 전자를 잃고 양이온이 되어 산화되기 쉬운 정도를 나타낸 것으로 다음과 같다.
 - ❖ K>Ca>Na>Mg>Al>Zn>Fe>Ni>Sn>Pb>(H) >Cu> Hg> Ag> Pt> Au
 - 금속과 금속 이온의 반응: 금속의 반응성이 큰 금속이 전자를 잃고 (산화) 양이온이 되고, 금속의 반응성이 작은 금속이 전자를 얻어(환 원) 금속으로 석출된다.
 - �예) Zn + Cu²⁺ →Zn²⁺ + Cu
 - ❖ Fe²⁺ + Cu → Fe + Cu²⁺ (반응이 일어나지 않음)

- 화학전지
 - 화학전지 :화학에너지를 전기 에너지로 전환시키는 장치
 - ❖ 전자의 이동 방향 : '-'극에서 '+'극 방향,
 - ❖ 전류의 방향 : '+'극에서 '-'극 방향
 - ◆전지 표시법 : '-'극 | 전해질 용액 | '+'극▶ (' | '는 경계를 표시한다)
 - 볼타 전지: 금속 아연(Zn)과 구리(Cu)를 묽은 황산(H₂SO₄) 수용액에 담그고 도선으로 두 금속을 연결한 전지
 - ❖ 전지 표시 법 : Zn(s) I H₂SO₄(aq) I Cu(s)
 - ❖ '-'극 : Zn → Zn²⁺ + 2e⁻ (Zn의 산화)
 - **♦** '+' \exists : 2H⁺(aq) + 2e⁻ \rightarrow H₂(g)
 - ❖ 분극 현상 : '+'극 표면이 H₂에 의해 전압이 급격히 떨어지는 현상으로 H₂O₂, MnO₂ 등과 같은 산화제를 넣어 H₂를 물로 산화시켜 분극 현상을 방지한다.
 - ❖ 감극제(소극제) : 분극 현상을 제거하기 위하여 사용하는 산화제로 발생 한 H₂ 기체를 물로 산화시킨다.

- 화학전지
 - 다니엘 전지: 금속 아연(Zn)과 황산 아연 (ZnSO₄) 수용액에 담그고, 구리 (Cu)를 황산 구리(II) (CuSO₄) 수용액에 담근 후 두 용액을 염다리로 연결하고 도선으로 두 금속을 연결한 전지
 - ❖ 전지 표시 법 : Zn(s) I ZnSO₄(aq) || CuSO₄(aq) I Cu(S)
 - ❖ '-'극 : Zn → Zn²⁺ + 2e⁻ (Zn의 산화)
 - ❖ '+'극 : Cu²⁺(aq) + 2e⁻ → Cu(s) (Cu의 환원)
 - ❖ 염다리 역할 : 양쪽 용액이 전기적 중성을 유지할 수 있도록 이온의 이동 통로 역할

- 전지 전위
 - 표준 환원 전위 (E°)
 - ❖ 표준 수소 전극을 '+'극으로 하여 얻은 다른 반쪽 전지의 환원 전위
 - ❖ +부호의 환원 전위를 갖는 물질은 H+보다 환원되기 쉽고 부호의 환원 전위를 갖는 물질은 H+보다 환원되기 어렵다.
 - ❖ 표준 환원 전위가 큰 물질이 '+'전극이 된다.
 - 표준 전지 전위 (E°_{전지})
 - ♣ E°_{전지} = E°_{환원} E°_{산화}
 - '+'= : Cu²⁺(aq) + 2e⁻ → Cu(s) = +0.34V
 - ♦ '-' $\frac{1}{7}$: Zn(s) → Zn²⁺(aq) + 2e⁻ = -0.76V
 - ❖ ∴ $E^{\circ}_{\text{MN}} = E^{\circ}_{\text{PR}} E^{\circ}_{\text{NP}} = +0.34 (-0.76) = +1.10V$

- 전기분해
 - 전기 분해의 원리
 - ❖ 전해질의 수용액이나 용융액에 직류 전류를 통하면 양이온은 (-)극으로 이동하여 환원되고 음이온은 (+)극으로 이동하여 산화된다.
 - ❖ 극판 자체의 반응을 막기 위해 반응성이 작은 백금이나 탄소 전극을 사용한다.
 - 전기 분해의 예
 - ❖물의 전기분해
 - \rightarrow '-' $\frac{1}{3}$: 4H₂O + 4e⁻ \rightarrow 2H₂ + 4OH⁻
 - \triangleright '+' $\frac{1}{3}$: 2H₂O → 2O₂ + 4OH⁻ + 4e⁻
 - ➤ 전체 반응: 2H₂O → 2H₂ +O₂
 - ❖ NaCl 수용액의 전기 분해
 - \triangleright '+' $\frac{1}{3}$: 2H₂O+2e⁻ → H₂ + 2OH⁻
 - \triangleright '-' $\frac{1}{3}$: 2Cl⁻ \rightarrow Cl₂ + 2e⁻
 - ➤ 전체 반응: 2Cl⁻ + 2H₂O → Cl₂ + H₂ + 2OH⁻

- 패러데이 법칙
 - 제1법칙
 - ❖ 같은 전해질인 경우 : 전기 분해할 때 석출 또는 발생되는 양은 통해 준 전하량에 비례한다.
 - 제2법칙
 - ❖서로 다른 전해질인 경우 : 같은 전하량에 의해 석출 또는 발생되는 양은 에 비례한다.
 - 전하량(C) = 전류의 세기(A)×시간(초)
 - ❖ 1F = 전자 1몰의 전하량
 - ❖ = 전자 1개의 전하량×아보가드로수
 - \bullet = 1.6×10-19C×6.02×1023=96500 C
 - 1페레데이
 - ❖물질 1g 당량을 석출하는데 필요한 전기량(96,500 쿨롬, 전자(e⁻)1몰 (6.20×10²³)의 전기량)

① 0.5

1. 3가지 기체 물질 A, B, C 가 일정한 온도에서 다음과 같은 반응을 하고 있다. 평형에서 A, B, C 가 각각 1몰, 2몰, 4몰이라면 평형상수 K의 값은? (16-01)

> A+3B→2C+열 ② 2 ③ 3 ④ 4

 고체상의 물질이 액체상과 평형에 있을 때의 온도와 액체의 증기압과 외부압 력이 같게 되는 온도를 각각 옳게 표시한 것은? (10-01)

- ① 끓는점과 어는점
- ② 전이점과 끓는점

③ 어는점과 끓는점

④ 용융점과 어는점

3. 20℃ 에서 NaCl 포화용액을 잘 설명한 것은? (단, 20℃ 에서 NaCl 의 용해도 는 36 이다.) (10-04)

- ① 용액 100g 중에 NaCl 이 36g 녹아 있을 때
- ② 용액 100g 중에 NaCl 이 316g 녹아 있을 때
- ③ 용액 136g 중에 NaCl 이 36g 녹아 있을 때
- ④ 용액 136g 중에 NaCl 이 136g 녹아 있을 때

4.	질산칼륨을 물에 용해시키면 용액의 온도가 떨어진다. 다음 사항 중 옳지 읺
	은 것은? (16-02)

- ① 용해시간과 용해도는 무관하다.
- ② 질산칼륨의 용해 시 열을 흡수한다.
- ③ 온도가 상승할수록 용해도는 증가한다.
- ④ 질산칼륨 포화용액을 냉각시키면 불포화용액이 된다.

5.	25℃ 에서 어떤 물질이 포화용액 90g 속	Է에 30g 녹아 있다. 같은 온도에서 이
	물질의 용해도는 얼마인가? (08-01)	

1 30

2 33

③ 50

(4) 63

6. 어떤 온도에서 물 200g에 최대 설탕이 90g 이 녹는다. 이 온도에서 설탕의 용 해도는? (08-02)

1 45

2 90

③ 180

4 290

7. 20°C 에서 설탕물 100g 중에 설탕 40g 이 녹아 있다 이 용액이 포화용액일 경우 용해도(g/H₂O 100g)는 얼마인가? (11-02)

(1) 72.4

2 66.7

(3) 40

(4) 28.6

8. 다음의 그래프는 어떤 고체물질의 용해도 곡선이다. 100℃ 포화용액(비중 1.4) 100mL 를 20℃ 의 포화 용액으로 만들려면 몇 g 의 물을 더 가해야 하는가? (16-01)

- 9. KNO₃의 물에 대한 용해도는 70℃에서 130 이며 30℃에서 40 이다. 70℃ 의 포화용액 260g 을 30℃ 로 냉각시킬 때 석출되는 KNO₃의 양은 약 얼마인가? (14-04)
 - ① 92g

1 20g

② 101g

③ 130g

4 153g

10.	60℃에서 KNO₃의 포화용액 100g 을 10℃로 냉각시키면 몇 g의 KNO₃가 석
	출하는가? (단, 용해도는 60℃에서 100g KNO₃/100g H₂O, 10℃ 에서 20g
	KNO ₃ /100g H ₂ O이다.) (15-02)

4
 40

(3) **80**

(4) 120

11.질산칼륨의 물에 대한 용해도는 40℃와 10℃에서 각각 60과 20이다. 40℃에 서 포화용액 800g을 만들어 10℃까지 냉각하면 몇 g의 질산칼륨이 석출하겠 는가? (07-02)

100
 200
 300

(4) 400

12.질산나트륨의 물 100g 에 대한 용해도는 80℃ 에서 148g, 20℃ 에서 88g이 다. 80°C의 포화용액 100g 을 70g으로 농축시켜서 20°C로 냉각시키면, 약 몇 g의 질산나트륨이 석출되는가? (07-02)

29.4
 40.3
 50.6

(4) 59.7

13.물 100g 에 소금 30g 을 넣어서 가열하여 완전히 용해시켰다. 이 용액을 전체 무게가 90g 이 될 때까지 끓여 물을 증발시키고 20℃ 로 냉각하였을 때 석출 되는 소금은 몇 g 인가? (단, 20°C에서 소금의 용해도는 35이다.) (08-01)

1 9

(2) 15(3) 21

4 25

14. 80℃ 와 40℃에서 물에 대한 용해도가 각각 50, 30 인 물질이 있다. 80℃ 의 이 포화용액 75g 을 40℃ 로 냉각시키면 몇 g 의 물질이 석출되겠는가? (13-01)

(1) 25

(2) 20

3 15

(4) 10

15.PbSO₄ 의 용해도를 실험한 결과 0.045g/L 이었다. PbSO₄의 용해도곱 상수 (Ks)는? (단, PbSO₄ 의 분자량은 303.27 이다.) (12-01)

(1) 5.5×10⁻²

 $(2) 4.5 \times 10^{-4}$ $(3) 3.4 \times 10^{-6}$ $(4) 2.2 \times 10^{-8}$

16.탄산음료의 마개를 따면 기포가 발생한다. 이는 어떤 법칙으로 설명이 가능한 가? (08-04)

① 보일의 법칙

② 샤를의 법칙

③ 헨리의 법칙

④ 르샤틀리에의 법칙

17.다음 중 헨리의 법칙으로 설명되는 것은? (15-01)

- ① 극성이 큰 물질일수록 물에 잘 녹는다.
- ② 비눗물은 0℃ 보다 낮은 온도에서 언다.
- ③ 높은 산 위에서는 물이 100℃ 이하에서 끓는다.
- ④ 사이다의 병마개를 따면 거품이 난다.

- 18. 탄산 음료수의 병마개를 열면 거품이 솟아 오르는 이유를 가장 올바르게 설명한 것은? (06-04)
 - ① 수증기가 생성되기 때문이다.
 - ② 이산화탄소가 분해되기 때문이다.
 - ③ 용기 내부압력이 줄어들어 기체의 용해도가 감소하기 때문이다.
 - ④ 온도가 내려가게 되어 기체의 포화 용해도가 감소하기 때문이다.
- 19.찬물을 컵에 담아서 더운 방에 놓아 두었을 때 유리와 물의 접촉면에 기포가 생기는 이유로 가장 옳은 것은? (14-02)
 - ① 물의 증기 압력이 높아지기 때문에
 - ② 접촉면에서 수증기가 발생하기 때문에
 - ③ 방안의 이산화탄소가 녹아 들어가기 때문에
 - ④ 온도가 올라갈수록 기체의 용해도 가 감소하기 때문에
- 20.다음 중 헨리의 법칙이 가장 잘 적용되는 기체는? (15-04)
 - ① 암모니아

② 염화수소

③ 이산화탄소

④ 플루오르화수소

- 21. 압력이 P 일 때 일정한 온도에서 일정량이 액체에 녹는 기체의 부피를 V라 하면 압력이 nP일 때 녹는 기체의 부피는? (12-02)
 - ① V/n
- ② nV

(3) V

4 n/V

- 22. 산의 일반적 성질을 옳게 나타낸 것은? (15-04)
 - ① 쓴 맛이 있는 미끈거리는 액체로 리트머스시험지를 푸르게 한다.
 - ② 수용액에서 OH- 이온을 내 놓는다.
 - ③ 수소보다 이온화경향이 큰 금속과 반응하여 수소를 발생한다.
 - ④ 금속의 수산화물로서 비전해질이다.
- 23.산(acid)의 성질을 설명한 것 중 틀린 것은? (13-02)
 - ① 수용액 속에서 H⁺를 내는 화합물이다.
 - ② pH 값이 작을수록 강산이다.
 - ③ 금속과 반응하여 수소를 발생하는 것이 많다.
 - ④ 붉은색 리트머스 종이를 푸르게 변화시킨다.

- 24. 아레니우스의 이론에 의한 산・염기 정의에 따르면 다음 중 산에 해당하는 물질은? (09-04)
 - ① 물에 녹아 수소 이온을 내놓는 물질
 - ② 물에 녹아 수소 이온을 받아들이는 물질
 - ③ 물에 녹아 색깔이 변하는 물질
 - ④ 물과 반응하지 않는 물질
- 25. 아레니우스의 이론에 의한 산.염기 정의에 따르면 다음 반응에서 산에 해당 하는 물질은? (07-02)

$$CO_3^{2-} + H_2O \rightarrow HCO_3^- + OH^-$$

- ① H₂O와 HCO₃- ② H₂O와 CO₃-2 ③ CO₃-2와 HCO₃- ④ CO₃-2와 OH-

- 26. 다음 중 산에 대한 설명으로 부적절한 것은? (06-04)
 - ① 비공유 전자쌍을 줄 수 있는 이온 또는 분자
 - ② pH 값이 작을수록 산의 세기가 강함
 - ③ 수소이온을 줄 수 있는 분자 또는 이온
 - ④ 푸른 리트머스 종이를 붉게 변화시키는 것

27. 다음 중 물이 산으로 작용하는 반응은? (14-01)

- (1) $NH_4^+ + H_2O \rightarrow NH_3^- + H_3O^+$ (2) $HCOOH + H_2O \rightarrow HCOO^- + H_3O^+$

28. 물이 브뢴스테드의 산으로 작용한 것은? (07-02)

- 1 $HCI + H_2O \neq H_3O^+ + CI^-$ 2 $HCOOH + H_2O \neq HCOO^- + H_3O^+$
- ③ $NH_3 + H_2O ≥ NH_4^+ + OH^-$ ④ $3Fe + 4H_2O ≥ Fe_3O_4 + 4H_2$

29. 다음 반응식에서 브뢴스테드의 산・염기 개념으로 볼 때 산에 해당하는 것은? (08-02)

$$H_2O + NH_3 \rightleftharpoons OH^- + NH_4^+$$

- ① NH₃ 와 NH₄⁺ ② NH₃ 와 OH⁻ ③ H₂O 와 OH⁻ ④ H₂O 와 NH₄⁺

30. 다음 중 수용액에서 산성의 세기가 가장 큰 것은? (15-01)

(1) HF

(2) HCl

(3) HBr

(4) HI

31. pH = 12 인 용액의 [OH-]는 pH = 9 인 용액의 몇 배인가? (15-04)

1/1000
 1/100
 1/100
 1/100
 1/100
 1/100

32. 어떤 용액의 [OH⁻] = 2×10⁻5M 이었다. 이 용액의 pH는 얼마인가? (14-01)

11.3

(2) **10.3**

(3) 9.3 (4) 8.3

33. [H⁺] = 2 × 10⁻⁶M 인 용액의 pH는 약 얼마인가? (13-02)

5.7
 4.7
 3.7
 4.2.7

34. 0.001N-HCl 의 pH는? (13-04)

2
 3
 4

(4) 5

35.다음 pH 값에서 알칼리성이 가장 큰 것은? (12-02)

① pH = 1 ② pH = 6 ③ pH = 8 ④ pH = 13

36.	H가 2인 용액은 pH가 4인 용액과 비교하면 수소이온농도가 몇 배인 용	올액
	이 되는가? (11-01)	

① 100배

② 10배

③ 10-1배

(4) 10-2배

37. 어떤 용액의 pH 를 측정하였더니 4 이었다. 이 용액을 1000배 희석시킨 용 액의 pH 를 옳게 나타낸 것은? (11-04)

(1) pH = 3

(2) pH = 4 (3) pH = 5 (4) 6 < pH < 7

38. 0.0016N에 해당하는 염기의 pH 값은? (10-01)

(1) 2.8

(2) 3.2

③ 10.28

(4) 11.2

39. 0.001N-HCl 의 pH는? (10-04)

2 3

(3) 4

(4) 5

40.0.1N-HCI 1.0mL를 물로 희석하여 1000mL로 하면 pH는 얼마가 되는가? (08-01)

(1) 2

(2) **3**

(3) 4

(4) 5

41.	0.05[몰/L]의 H ₂ SO ₂	수용액의 ph ② 2	H는 얼마인가? (07- ③ 3	-02)	
42.	25°C에서 83% 해리 ① 1.08	된 0.1N HCI ② 1.52	의 pH는 얼마인가? ③ 2.02	? (07-04) 4 2.25 	
43.	다음 중에서 산성이 ① [H+]=2×10 ⁻³ mol/ ③ [OH-]=2×10 ⁻³ mol/	L 2	pH=3		
	0.1N HCl 10ml를 9 가? (08-04) ① 1	0ml 의 증류수 ② 2)에 희석하였다. 0 ③ 3	용액의 pH 값은 ④ 4	얼마인
	pH가 10.7인 용액에 이다.) (06-01) ① 0.01 M ② 0.00		*(OH ⁻)의 농도는 얼 ③ 0.0005 M	설마인가? (단 log ④ 0.00007	

46.	다음 중 수용액의 pH ① 0.01N HCI ③ 0.01N CH3COOH	가 가장 작은 것은 ② 0.1N ④ 0.1N	HCI	
47.	다음 중 pH 값이 가장 ① 0.01N-HCl			④ pOH = 9
48.	다음 중 전리도가 가정 ① 농도와 온도가 일정형		(14-01) ② 농도가 진하고 (오도가 높을수록

49. 0.1N 아세트산 용액의 전리도가 0.01 이라고 하면 이 아세트산 용액의 pH 는? (11-02)

① 0.5

(2) 1

③ 농도가 묽고 온도가 높을수록

(3) 1.5

(4) 3

④ 농도가 진하고 온도가 낮을수록

50. 0.1M 아세트산 용액의 전리도를 구하면 약 얼마인가? (단, 아세트산의 전리 상수는 1.8×10⁻⁵ 이다.) (08-01)

(1) 1.8×10⁻⁵

(2) 1.8×10⁻²

③ 1.3×10⁻⁵

 $(4) 1.3 \times 10^{-2}$

51.	상온에서 1L의 순수한 물이 전리 재하는가? (단, [H+]과 [OH-] 순	되었을 때 [H+]과 [OH-]는 각각 얼마나 존 이다.) (07-02)
	① 1.008*10 ⁻⁷ g, 17.008*10 ⁻⁷ g ③ 18.016*10 ⁻⁷ g, 18.016*10 ⁻⁷ g	2 1000 *1/18g, 1000 * 17/18g 4 1.008*10 ⁻¹⁴ g, 17.008*10 ⁻¹⁴ g
52. 10.0mL 의 0.1M-NaOH 을 25.0mL 의 0.1M-HCl 에 혼합하였을 때 이 혼합 용액의 pH 는 얼마인가? (13-01)		

53. 0.01N NaOH 용액 100mL 에 0.02N HCl 55mL 를 넣고 증류수를 넣어 전체 용액을 1000mL 로 한 용액의 pH는? (16-01)

1 3

1.37

2 4

③ 10

(4) **11**

54. 0.5M HCl 100ml 와 0.1M NaOH 100ml를 혼합한 용액의 pH는 약 얼마인가? (08-04)

① 0.3

2 0.5

(2) 2.82

③ 0.7

③ 3.37

4 0.9

(4) 4.82

55. 0.1N HCl 100mL 용액에 수산화나트륨 0.16g을 넣고 물을 첨가하여 1L로 만든 용액의 pH 값은 약 얼마인가? (단, Na의 원자량은 23이다.) (09-02)

2.22

(2) 2.79(3) 3.22

4 3.79

56. 다음 중 산성이 가장 약한 산은? (10-02)

1 HCL 2 H_2SO_4 3 H_2CO_3

4 CH₃COOH

57. 다음 화합물의 0.1mol 수용액 중에서 가장 약한 산성을 나타내는 것은? (09-01)

1 H₂SO₄

② HCl ③ CH₃COOH

4 HNO₃

58. 염(salt)을 만드는 화학반응식이 아닌 것은? (16-01)

1 $HCI + NaOH \rightarrow NaCI + H_2O$

(2) $2NH_4OH + H_2SO_4 \rightarrow (NH_4)_2SO_4 + 2H_2O$

 $(3) CuO + H₂ \rightarrow Cu + H₂O$

4 $H_2SO_4 + Ca(OH)_2 \rightarrow CaSO_4 + 2H_2O$

59.	다음 중 산성염으로만 ① NaHSO ₄ , Ca(HCO ₃) ₂ ③ NaCl. Cu(OH)Cl		② Ca(OH)Cl, Cu(OH)Cl		
ļ	중화적정 실험 중 미지 넣었다. 이때 두 혼합산 황산의 농도는 몇 N인기	을 중화히	·는데 3N-NaOH 용액 4	수로 1N-HCl 25mL을 40mL가 소비되었다	
	1 3	2 3.75	3 4	4.75	
61.	불순물로 식염을 포함 이 NaOH의 농도는 약	하고 있는 몇 wt%인	NaOH 3.2g을 물에 녹 가? (11-04)	·여 100mL 필요했다	•
	1 10	2 20	③ 33	4 50	
62. I	0.01N의 HCI 수용액 4 NaOH 20mL가 소모되 ① 0.01	었다. 이 대	aOH 수용액으로 중화 [:] 대 NaOH의 농도는 몇 I ③ 0.02	적정실험을 하였더니 N 인가? (08-02) ④ 0.2	

(06-01)

① 0.28

① 0.05

	"				
63.		황산 용액 20ml 가 였 10ml 가 필요하다. 홍			
	① 0.01	② 0.02	③ 0.05	④ 0.10	
	액 B를 15.4ml 🤅	산의 용액 A 가 있다. 가하니 알칼리성으로 (확히 중화되었다면 3	되었다. 다시 0.	2N의 산의 용액 C	

65. 미지농도의 염산 용액 100mL 를 중화하는데 0.2N NaOH용액 250mL가 소

③ 2.47

③ 0.25

(2) 1.27

모되었다. 이 염산의 농도는 몇 N 인가? (09-04)

66. 다음 중 완충용액에 해당하는 것은? (13-02)

(2) 0.2

① CH₃COONa 와 CH₃COOH ② NH₄CI 와 HCI

③ CH₃COONa 와 NaOH ④ HCOONa 와 Na₂SO₄

용

(4) 4.28

(4) 0.5

- 67. pH 에 대한 설명으로 옳은 것은? (16-01)
 - ① 건강한 사람의 혈액의 pH는 5.7 이다.
 - ② pH 값은 산성용액에서 알칼리성용액보다 크다.
 - ③ pH가 7인 용액에 지시약 메틸오렌지를 넣으면 노란색을 띤다.
 - ④ 알칼리성용액은 pH가 7보다 작다.
- 68. 지시약으로 사용되는 페놀프탈레인 용액은 산성에서 어떤 색을 띠는가? (14-01)

① 적색

② 청색

③ 무색

④ 황색

69. 다음 중 산성용액에서 색깔을 나타내지 않는 것은? (10-02)

① 메틸오렌지 ② 페놀프탈레인

 ③ 메틸레드
 ④ 티몰블루

70. 산 염기 지시약인 페놀프탈레인의 pH 변색범위는? (09-01)

(1) 3.5 ~ 4.5 (2) 3.5 ~ 6.5 (3) 4.5 ~ 8.0 (4) 8.3 ~ 10.0

71. 발연황산이란 무엇인가? (12-01)

- ① H₂SO₄의 농도가 98% 이상인 거의 순수한 황산
- ② 황산과 염산을 1:3 의 비율로 혼합한 것
- ③ SO3를 황산에 흡수시킨 것
- ④ 일반적인 황산을 총괄

72. 다음 산화수에 대한 설명 중 틀린 것은? (14-02)

- ① 화학결합이나 반응에서 산화, 환원을 나타내는 척도이다.
- ② 자유원소 상태의 원자의 산화수는 0 이다.
- ③ 이온결합 화합물에서 각 원자의 산화수는 이온 전하의 크기와 관계 없다.
- ④ 화합물에서 각 원자의 산화수는 총합이 0 이다.

73. 산화-환원에 대한 설명 중 틀린 것은? (10-04)

- ① 한 원소의 산화수가 증가하였을 때 산화되었다고 한다.
- ② 전자를 잃은 반응을 산화라 한다.
- ③ 산화제는 다른 화학종을 환원시키며, 그 자신의 산화수는 증가하는 물질을 말한다.
- ④ 중성인 화합물에서 모든 원자와 이온들의 산화수의 합은 0이다.

74. 다음 산화환원에 관한 설명 중 틀린 것은? (09-01)

- ① 산화수가 감소하는 것은 산화이다..
- ② 산소와 화합하는 것은 산화이다.
- ③ 전자를 얻는 것은 환원이다.
- ④ 양성자를 잃는 것은 산화이다.

75. 산화에 해당되지 않는 것은? (06-01)

- ① 산화수가 증가할 때
- ② 물질이 산소와 화합할 때
- ③ 수소화합물이 수소를 잃을 때
- ④ 원자나 원자단 또는 이온이 전자를 얻을 때

76. 다음 밑줄 친 원소 중 산화수가 +5 인 것은? (15-01)

- 1 $Na_2Cr_2O_7$
- $2 K_2 SO_4$ $3 KNO_3$

4 <u>Cr</u>O₃

77. 밑줄친 원소의 산화수가 같은 것끼리 짝지워진 것은? (15-02)

- ① SO₃ 와 BaO₂ ② BaO₂ 와 K₂Cr₂O₇
- ③ K₂Cr₂O₇ 과 SO₃ ④ HNO₃ 와 NH₃

78.	KMnO ₄ 에서	Mn 의	산화수는	얼마인가?	(14-02)
-----	----------------------	------	------	-------	---------

(1) +3 (2) +5

(3) + 7

(4) + 9

79. 밑줄 친 원소의 산화수가 +5 인 것은? (12-01)

80. 중크롬산이온(Cr₂O₇²⁻)에서 Cr의 산화수는? (15-01)

(1) + 3

(2) + 6

(3) + 7

(4) + 12

81. 중크롬산칼륨(다이크롬산칼륨)에서 크롬의 산화수는? (14-04)

2
 4

(3) 6

(4) 8

82. 밑줄 친 원소 중 산화수가 가장 큰 것은? (12-02)

(1) NH_4^+ (2) NO_3^- (3) MnO_4^- (4) $Cr_2O_7^{2-}$

83. 산소의 산화수가 가장 큰 것은? (12-04)

(1) O_2

84. 다음 화합물 중 밑줄 친 원소의 산화수가 가장 큰 것은? (08-04)

① $KMnO_4$ ② Al_2O_3 ③ NH_3 ④ $Cr_2O_7^{2-}$

85. 화약제조에 사용되는 물질인 질산칼륨에서 N 의 산화수는 얼마인가? (11-04)

 \bigcirc +1

(2) +3 (3) +5 (4) +7

86. H₂S + I₂ → 2HI + S 에서 I₂의 역할은? (14-04)

① 산화제이다.

② 환원제이다.

③ 산화제이면서 환원제이다. ④ 촉매역할을 한다.

87.이산화황이 산화제로 작용하는 화학반응은? (14-04)

 $(1) SO₂ + H₂O \rightarrow H₂SO₄$

(3) SO₂ + 2H₂ \rightarrow 3S + 2H₂

② SO₂ + NaOH → HaHSO₃

 $(4) SO_2 + Cl_2 + 2H_2 \rightarrow H_2SO_4 + 2HCl$

88. 다음의 반응에서 환원제로 쓰인 것은? (16-02)

$$MnO_2 + 4HCl \rightarrow MnCl_2 + 2H_2O + Cl_2$$

(3) HCl

 4 MnO_2

89. 다음 중 산화 • 환원 반응이 아닌 것은? (11-04)

- 1 Cu + $2H_2SO_4 \rightarrow CuSO_4 + 2H_2O + SO_2$
- (2) $H_2S + I_2 \rightarrow 2HI + S$
- 3 Zn + CuSO₄ \rightarrow ZnSO₄ +Cu
- (4) HCl +NaOH \rightarrow NaCl + H₂O

90. 다음 반응식에 관한 사항 중 옳은 것은? (09-02)

$$SO_2 + 2H_2S \rightarrow 2H_2O + 3S$$

- ① SO₂는 산화제로 작용
- ③ SO,는 촉매로 작용

- ② H₂S는 산화제로 작용
- ④ H₂S는 촉매로 작용

91. 다음 중 산화제와 환원제로 모두 사용 가능한 것은? (06-01)

(1) $KMnO_4$ (2) $K_4Cr_2O_7$ (3) HNO_3 (4) H_2O_2

92. 일반적으로 환원제가 될 수 있는 물질이 아닌 것은? (16-01)

① 수소를 내기 쉬운 물질

② 전자를 잃기 쉬운 물질

③ 산소와 화합하기 쉬운 물질

④ 발생기의 산소를 내는 물질

93. 다음 중 산화·환원 반응이 아닌 것은? (06-04)

① $Cu + 2H_2SO_4 \rightarrow CuSO_4 + 2H_2O + SO_2$

(2) $H_2S + I_2 \rightarrow 2HI + S$

3 Zn + CuSO₄ \rightarrow ZnSO₄ + Cu

(4) HCl + NaOH → NaCl + H₂O

94. 질산은 용액에 담갔을 때 은(Ag)이 석출되지 않는 것은? (15-01)

① 백금 ② 납 ③ 구리 ④ 아연

95. 다음의 산화 환원 반응에서 Cr₂O₇²⁻ 1몰은 몇 당량인가? (10-01)

$$6Fe_2^+ + Cr_2O_7^{2-} + 14H^+ \rightarrow 2Cr_3^+ + 6Fe_3^+ + 7H_2O$$

3당량 (1)

- ② 4당량 ③ 5당량 ④ 6당량

96. 볼타 전지에 관련된 내용으로 가장 거리가 먼 것은? (15-01)

- ① 아연판과 구리판 ② 화학전지

③ 진한 질산 용액

④ 분극현상

97. 볼타전지의 기전력은 약 1.3V 인데 전류가 흐르기 시작하면 곧 0.4V로 된다. 이러한 현상을 무엇이라 하는가? (14-04)

감극

- ② 소극 ③ 분극 ④ 충전

98. 볼타전지에서 갑자기 전류가 약해지는 현상을 "분극현상" 이라 한다. 이 분 극현상을 방지해주는 감극제로 사용되는 물질은? (16-02)

- \bigcirc MnO₂
- ② CuSO₃ ③ NaCl
- (4) Pb(NO₃)₂

99. 다음과 같이 나타낸 전지에 해당하는 것은? (11-01)

 $Zn(-) \mid H_2SO_4 \mid (+)Cu$

볼타전지

- ② 납축전지 ③ 다니엘전지
- ④ 거전지

100. 다음 금속의 쌍으로 전기 화학 전지를 만들 때 외부 전류가 화살표 방향으 로 흐르게 되는 것은? (07-02)

- ① ZN --> AG ② FE --> AG ③ CU --> FE ④ ZN --> CU

101. 황산구리 수용액에 1.93A 의 전류를 통할 때 매 초음극에서 석출되는 Cu 의 원자수를 구하면 약 몇 개가 존재하는가? (15-01)

 \bigcirc 3.12×10¹⁸

- (2) 4.02×10^{18} (3) 5.12×10^{18} (4) 6.02×10^{18}

102. 전극에서 유리되고 화학물질의 무게가 전지를 통하여 사용된 전류의 양에 정비례하고 또한 주어진 전류량에 의하여 생성된 물질의 무게는 그 물질의 당 량에 비례한다는 화학법칙은? (14-01)

- ① 르 샤틀리에의 법칙 ② 아보가드로의 법칙

③ 패러데이의 법칙

④ 보일-샤를의 법칙

103.CuSO ₄ 용액에 0.5F 의 (단, 원자량은 Cu 64,	l 전기량을 흘렸을 S 32, O 16 이다.)	때 약 몇 g 구리기 (15-02)	ᅡ 석출되겠는가?
1 16	② 32	3 64	4 128
104. CuSO ₄ 수용액을 10 <i>A</i> 석출되는 Cu 의 질량은 ① 3.18			

105. 황산구리(II) 수용액을 전기분해할 때 63.5g 의 구리를 석출시키는데 필요한 전기량은 몇 F 인가? (단, Cu 의 원자량은 63.5 이다.) (11-02)

① 0.635F

2 1F

③ 2F

(4) 63.5F

106. 황산구리 수용액을 전기분해하여 음극에서 63.54g 의 구리를 석출시키고자한다. 10A의 전기를 흐르게 하면 전기분해에는 약 몇 시간이 소요되는가? (단, 구리의 원자량은 63.54 이다.) (08-04)

1 2.72

2 5.36

③ 8.13

4 10.8

107.CuCl ₂ 의 용액에	5A 전류를 1시간 동인	ː 흐르게 하면 [몇 g 의 구리기	ㅏ석출되
는가? (단, Cu 의	5A 전류를 1시간 동인 원자량은 63.54 이며,	전자 1개의 전	하량은 1.602	$\times 10^{-19}$ C
이다.) (15-02)				

3.17

(2) 4.83(3) 5.93

(4) 6.35

108. 전기화학 반응을 통해 전극에서 금속으로 석출되는 다음 원소 중 무게가 가 장 큰 것은? (단, 각 원소의 원자량은 Ag 는 107.868, Cu는 63.546, Al는 26.982, Pb는 207.2 이고, 전기량은 동일하다.) (12-02)

1 Ag

(2) Cu

(3) Al

(4) Pb

109. 1패러데이(Faraday)의 전기량으로 물을 전기분해하였을 때 생성되는 수소 기체는 0℃, 1기압에서 얼마의 부피를 갖는가? (11-02)

(1) 5.6L

② 11.2L ③ 22.4L ④ 44.8L

110. 백금 전극을 사용하여 물을 전기분해할 때 (+)극에서 5.6L 의 기체가 발생 하는 동안 (-)극에서 발생하는 기체의 부피는? (08-04)

(1) 5.6L (2) 11.2L (3) 22.4L (4) 44.8L

- 111.염화나트륨 수용액의 전기 분해시 음극(cathode)에서 일어나는 반응식을 옳게 나타낸 것은? (13-04)
 - 1 $2H_2O(L)+2Cl^-(aq)\rightarrow H_2(g)+Cl_2(g)+2OH^-(aq)$
 - 2 $2Cl^{-}(aq) \rightarrow Cl_{2}(g) + 2e^{-}$
 - 3 $2H_2O(L) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$
 - 4 $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$
- 112. 20%의 소금물을 전기분해하여 수산화나트륨 1몰을 얻는데는 1A의 전류를 몇 시간 통해야 하는가? (11-01)

13.4

2 26.8

3 53.6

4 104.2

113. 물을 전기분해하여 표준상태 기준으로 산소 22.4L를 얻는데 소요되는 전기 량은 몇 F 인가? (10-01)

1

2 2

3 4

4 8

114. 1패러데이(Faraday)의 전기량으로 물을 전기분해 하였을 때 생성되는 기체 중 산소 기체는 0℃, 1기압에서 몇 L인가? (09-04)

1 5.6

2 11.2

3 22.4

44.8

115.납축전지를 오랫동안 방전시키면 어느 물질이 생기는가? (12-01)

(1) Pb

- $(2) PbO_2$ $(3) H_2SO_4$ $(4) PbSO_4$

116. 다음 ()안에 알맞은 것을 차례대로 옳게 나열한 것은? (08-01)

납축전지는 (⊙)극은 납으로, (ⓒ)극은 이산화납으로 되어 있는데 방전시키면 두 극이 다같이 회백색의 (🕲) 로 된다. 따라서 용액 속의 (@)은 소비되고 용액의 비 중이 감소한다.

- $\textcircled{3} \textcircled{3} : +, \textcircled{\square} : -, \textcircled{\square} : H_2SO_4, \textcircled{2} : PbSO_4 \qquad \textcircled{4} \textcircled{3} : -, \textcircled{\square} : +, \textcircled{\square} : H_2SO_4, \textcircled{2} : PbSO_4$

117. 다음은 표준 수수전극과 짝지어 얻은 반쪽 반응 표준환원 전위값 이다. 이들 반쪽 전지를 짝지었을 때 얻어지는 전자의 표준 전위차 E°는?(09-04)

$$Cu^{2+} + 2^{9-} \rightarrow Cu$$
 $E^{\circ} = +0.34V$
 $Ni^{2+} + 2^{9-} \rightarrow Ni$ $E^{\circ} = -0.23V$

+0.11V

- ② -0.11V ③ +0.57V

(4) -0.57V

Thank you