

Day 15

DIY

Q1. Problem Statement: Measures of Dispersion

Load the "HRdataset_v14.csv" dataset into a DataFrame and group the data based on the "Department" column. From the grouped DataFrame and perform the following tasks:

- 1. Calculate the Mean and Median, of the "Salary" column.
- 2. Find out which Department has the highest number of employees
- 3. Calculate the standard deviation and variance of the "Salary" column
- 4. Find the interquartile range of the "Salary" column
- 5. Find skewness and kurtosis of the original dataset
- 6. Find the z-score of the "Salary" column
- 7. Find the 30th percentile of the "Salary" column
- 8. Find the Quartiles of the "GenderID" column (You can set quartile values of your choice)

Dataset:

Sample Output:

1. Calculate the Mean and Median, of the "Salary" column

	Department	Salary
0	Admin Offices	71791.888889
1	Executive Office	250000.000000
2	IT/IS	97064.640000
3	Production	59953.545455
4	Sales	69061.258065
5	Software Engineering	94989.454545

Department		Salary
0	Admin Offices	63003.0
1	Executive Office	250000.0
2	IT/IS	92328.5
3	Production	59472.0
4	Sales	65310.0
5	Software Engineering	95660.0

2. Find out which Department has the highest number of employees

This department has highest number of employees 0 Production

3. Calculate the standard deviation and variance of the "Salary" column

Department-wise Standard deviation of salary:_____ 73050.21312523098

Department-wise Variance of salary:_____ 5336333637.641668

4. Find the interquartile range of the "Salary" column

Interquartile range of salary:_____ 31247.375

5. Find skewness and kurtosis of the original dataset.


```
Skewness in Original Dataset:
EmpID
                        0.000000
MarriedID
                       0.415730
MaritalStatusID
                       1.408602
0.267278
GenderID
                       0.631944
EmpStatusID
DeptID
                       -1.536392
PerfScoreID
                        -1.248091
FromDiversityJobFairID 2.811250
                       3.306181
Termd
                       0.705404
PositionID
                       -1.231676
                       4.105494
Zip
ManagerID
                       0.759271
EngagementSurvey
EmpSatisfaction
                       -1.116979
                      -0.222609
SpecialProjectsCount 1.539271
DaysLateLast30
                        3.143468
                        0.029283
Absences
dtype: float64
```

```
Kurtosis in Original Dataset:
                        -1.200000
MarriedID
EmpID
                        -1.839037
MaritalStatusID
                        2.053512
GenderTD
                        -1.941087
EmpStatusID
                       -1.488610
DeptID
                        2.241434
PerfScoreID
                        4.049610
FromDiversityJobFairID
                         5.941296
                      15.452149
Salarv
                       -1.512171
Termd
PositionID
                        0.812346
                      16.187425
Zip
                       1.608422
ManagerID
EngagementSurvey
EmpSatisfaction
                         1.164560
                      -0.762600
SpecialProjectsCount
                        0.641415
DaysLateLast30
                        8.830523
Absences
                        -1.301962
dtype: float64
```

6. Finding the z-score of the "Salary" column

```
array([-0.6192146 , 2.18495176, -0.17945578, -0.67216471, -0.58461933, -0.12949733])
```

7. Finding the 30th percentile of the "Salary" column

```
65th percentile of Salary column is: 65988.0
```

8. Finding Quartiles of the "GenderID" column