American Sign Language Understanding

André Alves - 89334 Miguel Mota - 89331

Introdução

- Dados
- Algoritmos:
 - Regressão Logística
 - Rede Neural
 - Rede Neural Convolucional
- K-Fold Cross Validation
- Matriz de Confusão

- Duas base de dados
- Imagens 28 x 28 pixeis (GrayScale)
- 24 Classes

A	В	C	D	E	F	G	H	I	J K	L	M	I
1126	1010	1144	1196	957	1204	1090	1013	1162	0 111	4 124	1 105	55
N	О	P	Q	R	S	T	U	V	W	X	Y	Z
1151	1196	1088	1279	1294	1199	1186	1161	1082	1225	1164	1118	00

Dados de Treino

Total: 27455 imagens

A	В	\mathbf{C}	D	E	F	G	H	I	J	K	L	M
331	432	310	245	498	247	348	436	288	0	331	209	394
N	О	P	Q	R	S	T	U	V	W	X	Y	Z
291	246	347	164	144	246	248	266	346	206	267	332	00

Dados de Teste

Total: 7172 imagens

Algoritmos

Problema de Classificação Não-Linear

- Valores n\u00e3o esperados
- Pouco eficiente
- Duração 4 horas para cross-validation de 1/20 imagens

Não é adequado para um problema complexo não-linear

Rede Neural

- Comparado ao algoritmo de regressão logística:
 - Mais eficiente
 - Melhores resultados 80% de precisão

Não era possível executar com o GPU com a biblioteca SK-Learn

Como funciona?

- 3 Layers:
 - Input
 - Hidden Layers
 - A. Convolutional Layer
 - B. Pooling
 - C. Dropout
 - D. Flatten
 - E. Dense
 - Output

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12	В		

Exemplo de uma arquitetura de CNN:

Pré-Processamento de Dados

- Sem normalização das features:
 - 2 % de precisão

Normalização das features:

92 % de precisão

✓ Dados não normalizados faz com que o modelo não convirja no mesmo tempo se fosse com os dados normalizados.

Arquitetura

Epochs: 10

BatchSize: 1000

Accuracy: 93%

Loss: 23%

K-Fold Cross Validation

5 Splits

Dropout 0.2, Pooling 2x2 e 32 filtros

Test Score:	0.96
Média Validation Score:	1.00
Média Train Score:	0.99

- → 96% ainda é um valor relativamente baixo para um problema de 24 classes.
- → Overfit

K-Fold Cross Validation

 Para combater o overfit, mudou-se o rate do dropout, na qual é um hiper parâmetro regularizador que ajuda a prevenir o overfitting.

 Pelo gráfico, é visível a diminuição do overfitting com o aumento de rate do dropout, contudo ainda não é um valor desejável.

K-Fold Cross Validation - Compreensão do modelo

- 181 classificações erradas em 7172 imagens, com 11 classes a serem mal classificadas.
- As letras G,T e N responsáveis por 31,45 e 30 respetivamente.
- 3 classes são responsáveis por cerca de 60% das classificações erradas.
- As classes mais escolhidas erradamente foram H,M e X.

K-Fold Cross Validation

O train accuracy aumentou muito.

 Embora ainda exista overfitting, a melhoria do resultado na parte de treino, comprova que o número de filtros na camada Conv2d é sensível na performance do modelo.

K-Fold Cross Validation

 Pooling com um tamanho de 2 x 2, pode ser um fator causador de overfitting, por estar a guardar apenas o valor máximo a cada 2 píxeis. Se passarmos para 3 x 3, torna-se uma camada mais regularizadora.

- Test Acc.: 0.9919(0.4, 312, 3)
- Test Acc.: 0.9870(0.3, 312, 3)
- Test Acc.: 0.9881(0.3, 124, 3)

Última variação de hiperparâmetros

• Por fim, tentou-se apenas variar as épocas para os três melhores modelos, onde se pode ver que 40 épocas é o melhor valor para o melhor modelo.

Terceiro Melhor Modelo

Matriz de confusão

-0.8

-0.6

-0.4

-0.2

17

Melhorias

Conclusão

- Compreensão do modelo, como:
 - o a sua performance;
 - seus parâmetros;
 - camadas;
- Aprendizagem do uso de métodos estatísticos e qual a sua importância.