# Homework 1

Zsiros, Gabriella

2022-11-26

# Prep

```
library(tidyverse)
library(modelsummary)
library(stargazer)
library(fastDummies)
library(huxtable)
library(estimatr)
library(knitr)
knitr::opts_chunk$set(fig.pos = "H", out.extra = "")
df <- read.csv('/users/Gabi/Downloads/morg-2014-emp.csv')</pre>
```

#### About the data

Dataset is available at https://osf.io/g8p9j/ . The purpose of this report is to analyse earnings of men and women in a certain occupational sector.

I calculated the hourly earnings as well as its logarithmic values to help with further analysis.

```
df <- df %>%
  mutate(w = earnwke / uhours) %>%
  mutate(lnw = log(w))
```

#### Which occupation to choose?

I considered that I should have approximately same amount of male data as female, and should have originally more than 500 observations per sex. Based on a short check I have selected the category of *Marketing and sales managers*.

| occ2012 | Sex1 | $\mathbf{Sex2}$ | ratio |
|---------|------|-----------------|-------|
| 50      | 539  | 494             | 1.09  |
| 2200    | 696  | 741             | 0.939 |
| 4760    | 1632 | 1594            | 1.02  |

Removing extreme values

|         | $sex \backslash \_factor$ | Mean | Median               | Min | Max                | P5 | P95 | Range |
|---------|---------------------------|------|----------------------|-----|--------------------|----|-----|-------|
| earnwke | male<br>female            |      | $1538.46 \\ 1076.92$ |     | 2884.61<br>2884.61 |    |     |       |

| <br>$sex\_factor$ | Mean           | Median        | Min | Max             | P5 | P95            | Range          |
|-------------------|----------------|---------------|-----|-----------------|----|----------------|----------------|
| male<br>female    | 38.20<br>29.68 | 37.50 $25.85$ | -   | 100.00<br>73.70 |    | 72.12<br>58.89 | 95.19<br>73.67 |

### How many hours?

A quick check of the distribution of hours has led me ot narrow it down between 20 and 60 hours per week.

## Hourly earning of men and women

#### Statistical summary

It is visible in he summary that both the mean and median show difference between the two sexes.

#### Visualizing the wage gap

```
ggplot(data = df, aes(x = sex_factor, y= w, color = sex_factor))+
  geom_boxplot() +
  scale_x_discrete(limits=rev)+
  labs(x = '', y = '$', title = "Hourly wage", ) +
  theme_classic() +
  theme(legend.position="none")
```



### T-test

```
df50f <- df %>% filter(sex == 2)
df50m \leftarrow df \%\% filter(sex == 1)
t.test(df50m$w,df50f$w, mu = 0)
##
##
    Welch Two Sample t-test
##
## data: df50m$w and df50f$w
## t = 7.9448, df = 901.17, p-value = 5.784e-15
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
     6.419754 10.632048
##
## sample estimates:
## mean of x mean of y
    38.20496 29.67906
```

T test with value 8.5176 shows with a p -value of 2.2e-16 (very close to zero) that there is a significant difference in the average earning between men and women. Men earn 6.25-10.46 \$ more on a weekly basis with 95% CI.

### Linear regression

```
reg1 <- lm( w ~ sex, df)
reg2 <- lm(lnw ~ sex, df)
huxreg('wage' = reg1,'ln wage' = reg2)</pre>
```

|             | wage           | ln wage    |
|-------------|----------------|------------|
| (Intercept) | 46.731 ***     | 3.831 ***  |
|             | (1.695)        | (0.059)    |
| sex         | -8.526 ***     | -0.295 *** |
|             | (1.073)        | (0.037)    |
| N           | 906            | 906        |
| R2          | 0.065          | 0.065      |
| logLik      | -3805.266      | -759.514   |
| AIC         | 7616.532       | 1525.028   |
| *** < 0.00  | 11 ** - 0 01 * | - 0.05     |

\*\*\* p < 0.001; \*\* p < 0.01; \* p < 0.05.

Applying simple regression analysis shows that women earn \$8.5, i.e. 29% less on average on a weekly basis

# Introducing grade variable

## Scatter plot with regression

```
ggplot(data = df, aes(x = grade92, y=w, color = sex_factor))+
  geom_point()+
  geom_smooth(method = 'lm')+
  labs(x = '', y = '$', title = "Hourly wage", ) +
  facet_wrap(~sex_factor)+
  theme_classic() +
  theme(legend.position="none")
```

# Hourly wage



# Summary plot with regression

```
ggplot(data = df, aes(x = grade92, y=w, color = sex_factor))+
  stat_summary()+
  scale_x_continuous(breaks = c(39:46))+
  geom_smooth(method = 'lm') +
  labs(x = '', y = '$', title = "Hourly wage", ) +
  xlim(39,46)+
  theme_classic()
```



# Loess

```
ggplot(data = df, aes(x = grade92, y=w, color = sex_factor))+
  stat_summary()+
  geom_smooth(method = 'loess') +
  scale_x_continuous(breaks = c(39:46))+
  labs(x = '', y = '$', title = "Hourly wage + loess", ) +
  theme_classic()
```



Lowess method in this case does not seem to be sensible, as the grade variable is a factor, rather than a numerical value.

### Multivariate regression

```
reg4 <- lm( w ~ sex + grade92, df)
reg5 <- lm( lnw ~ sex + grade92, df)
reg6 <- lm_robust(lnw ~ sex + grade92, data = df, se_type = "HC1")
huxreg('wage'=reg4,'ln wage'= reg5,'ln wage robust' = reg6)</pre>
```

```
knitr::opts_chunk$set(fig.pos = "H", out.extra = "")
```

Log-level transformation seems to be a more accurate model, with lower SE-s, and higher R2. In this case robust SE does not show great decrease of SE, so the second model (reg5) will be used to final summary.

We can see a greater statistical significance in Bachelor's and Master's degree

|             | wage        | ln wage    | ln wage robust |
|-------------|-------------|------------|----------------|
| (Intercept) | -82.492 *** | -0.926 *   | -0.926         |
|             | (13.474)    | (0.464)    | (0.573)        |
| sex         | -7.807 ***  | -0.268 *** | -0.268 ***     |
|             | (1.025)     | (0.035)    | (0.035)        |
| grade92     | 3.026 ***   | 0.111 ***  | 0.111 ***      |
|             | (0.313)     | (0.011)    | (0.014)        |
| N           | 906         | 906        | 906            |
| R2          | 0.153       | 0.164      | 0.164          |
| logLik      | -3760.714   | -708.978   |                |
| AIC         | 7529.428    | 1425.957   |                |

<sup>\*\*\*</sup> p < 0.001; \*\* p < 0.01; \* p < 0.05.

## Summary

```
reg7 <- lm( grade92 ~ sex, df)
huxreg('ln wage' = reg2, 'ln wage' = reg5, 'grade' = reg7, statistics = c(N = "nobs", R2 = "r.squared")</pre>
```

|             | ln wage            | ln wage            | grade              |
|-------------|--------------------|--------------------|--------------------|
| (Intercept) | 3.831 *** (0.059)  | -0.926 * (0.464)   | 42.708 *** (0.171) |
| sex         | -0.295 *** (0.037) | -0.268 *** (0.035) | -0.238 * (0.109)   |
| grade92     |                    | 0.111 *** (0.011)  |                    |
| N           | 906                | 906                | 906                |
| R2          | 0.065              | 0.164              | 0.005              |

<sup>\*\*\*</sup> p < 0.001; \*\* p < 0.01; \* p < 0.05.

Comparing men and women in *Marketing and Sales manager* occupational sector, analysis shows an approximate 30% difference in average salaries, considering a 20-60 work week. The second model introduces the education level, where comparing men and women in the same education level, we get a 26.8 log point difference, which here I will interpret as 27%. Relation between grade and sex is not to be interpreted in this case, since the education level is a factor.