

NFV and Open Networking

Red Hat Enterprise Linux OpenStack Platform

Nir Yechiel, Senior Technical Product Manager
December 2015

Red Hat Product Portfolio

RED HAT' ENTERPRISE LINUX'

RED HAT JBOSS MIDDLEWARE

RED HAT' ENTERPRISE VIRTUALIZATION

RED HAT'
STORAGE

RED HAT'
ENTERPRISE LINUX'
OPENSTACK' PLATFORM

RED HAT'
CLOUDFORMS

RH0055

Upstream First

- Red Hat is heavily focused on "upstream first"
- All patches are contributed to the community
- Red Hat will not fragment their OpenStack distribution (or any other product) or support forks

What is OpenStack?

- Fully open-source cloud "operating system"
- Comprised of several open source sub-projects
- Provides building blocks to create an laaS cloud
- Governed by the vendor agnostic OpenStack Foundation
- Enormous market momentum

RHEL OpenStack Platform

- Red Hat's officially supported OpenStack distribution
- Tightly integrated with Red Hat Enterprise Linux
- Released every six months; Two-three months after upstream
- Focus on:
 - Code maturity, stability and security
 - Backports of important patches through lifecycle
 - 3rd party ecosystem of certified platforms
 - Product documentation and reference architectures

RHEL OpenStack Platform 7 (Kilo)

Technology preview

NFV loves OpenStack

- OpenStack is the de-facto choice for VIM on early NFV deployments
- OpenStack's pluggable architecture a key for NFV
 - e.g storage, networking
- Open standards and multi-vendor
- Many NEPs and the large operators are already involved in the community

Does OpenStack love NFV?

- OpenStack was designed for cloud-based applications
 - Scaling out versus scaling up
 - Cloud = hide the technical details from the user
- Most of the VNFs today not cloud enabled
 - Rely on the infrastructure for HA
- NFV requires tight control over hardware resources
 - e.g scheduling, QoS
- VNF a super privileged VM
 - e.g VLAN trunking, security-groups

NFV Infrastructure

OpenStack
libvirt
DPDK
Open vSwitch
QEMU/KVM
Linux

Red Hat Product Focus

- Our focus is on the infrastructure:
 - NFVI
 - o VIM
 - Enablement for VNFs
- Partner with ISVs for MANO
- Partner with hardware providers (compute, storage, network)
- No separate product for NFV
 - We don't make an OpenStack version for NFV, but rather make NFV features available in RHEL OpenStack Platform

OPNFV

- Open source NFV reference implementation
 - o Open, transparent
 - Upstream first
 - Integration and validation
- Move from SDO to Open Source
- Red Hat is a Platinum Founding member

OPNFV

Source: https://www.opnfv.org/software

Use Cases

- Atomic VNFs
- Enterprise WAN services (vCPE, vPE)
- Evolved Packet Core (vEPC)
- Cloud RAN

RHEL OpenStack Platform 7 (Kilo)

- Enhanced Platform Awareness (EPA)
 - vCPU pinning
 - Large Pages
 - Scheduler NUMA awareness (CPU, RAM)
 - I/O based NUMA scheduling
- Single root I/O virtualization (SR-IOV)
- Neutron IPv6 support
- ML2 port-security extension
- DPDK (RHEL 7 Guest OS)

Red Hat and Intel upstream contribution

Mobile Packet Core (vEPC)

Example - vPGW

- Sits between SGW (S5) and sGi-LAN interface
 - Last hop in the EPC network before going to the Internet
 - Edge router
- Connected with the PCRF (S8)
 - Policy Control and Charging functions

Example - Design for vPGW

- Data plane (S5-sGi)
 - Non-blocking high performance traffic
 - Focus on highly scalable data connectivity and QoS enforcement
 - Integrated DPI
- Control plane (S8)
 - Medium performance network traffic
 - Mobility management and connection management
 - Detection, gating, QoS and flow-based charging

Example - Design for vPGW

- Data plane interfaces: 40 Gbps PCI-Passthrough
- Control plane interfaces: 4 x 10 Gbps using SR-IOV

RHEL OpenStack Platform 8 (Liberty)*

- RT-KVM (Technology Preview)
- DPDK accelerated Open vSwitch (Technology Preview)
- VirtlO networking multi-queue support
- Neutron QoS

^{*}Roadmap, subject to change

Data Plane Options

- DPDK accelerated Open vSwitch*
 - Best for: signaling, processing of small packets (~64 bytes)
 - Losing kernel functionality
- DPDK within the guest
- SR-IOV
 - Best for: deterministic, high-bandwidth connections
 - Physical Function (PF) or Virtual Function (VF) pass-through
 - No live migration, no attach/detach, static configuration

^{*}Roadmap, planned as a Technology Preview in OpenStack Platform 8

Resources

- Are you ready for OpenStack?
 - redhat.com/openstack
- Learn more about Red Hat Telco solutions
 - redhat.com/en/technologies/industries/telecommunications
- Red Hat OpenStack blog
 - http://redhatstackblog.redhat.com

Resources

- SR-IOV Part I: Understanding the Basics
- SR-IOV Part II: Walking Through the Implementation
- Driving in the Fast Lane: CPU Pinning and NUMA Topology
- Driving in the Fast Lane: Huge Pages
- Scaling NFV to 213 Million Packets per Second with Red Hat Enterprise Linux, OpenStack, and DPDK

