Digital Logic II. Combinational Circuits

Jalal Kawash

Digital Logic II Combinational Circuits

Outline

- 1. Types of Circuits
- 2. Basic Combinational Circuits
 - a. Adders
 - b. Decodres
- 3. ALUs
- 4. More Combinational Circuits
 - a. Multiplexers
 - b. Multipliers
 - c. Comparators

Digital Logic 2 Combinational Circuits

Section 1
Types of Digital Circuits

Digital Logic II Combinational Circuits

Section 1 Objective

At the end of this section you will

1. Understand the difference between combinational and sequential circuits

Combinational Circuits

 A combinational circuit is a logic circuit whose output is solely determined by the inputs

Sequential Circuits

• Unlike a combinational circuit, the output of a sequential circuit at time *t* can affect the circuits output at time *t*+1

Sequential Circuits

Digital Logic II Combinational Circuits

Section 2
Basic Circuits

Digital Logic II Combinational Circuits

Section 2 Objectives

At the end of this section you will

- 1. Be able to build half-adder (HA) circuits
- 2. Understand HA limitations
- 3. Be able to build full-adder (FA) circuits
- 4. Chain combinational circuits
- 5. Be able to build decoders
- 6. Understand how to use decoders as "switches" to build mult-function circuits

Half Adder (HA)

• Input: two bits, *x* and *y*

• Output: x + y

x	y	Sum	Carry
О	O	O	O
O	1	1	O
1	O	1	O
1	1	O	1

HA Circuit

x	y	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

- Sum = $x'y + y'x = x \oplus y$
- Carry = xy

Source: DL2.circ (HA)

Limitation of a HA

• Can we build an adder for 2-bit numbers from the 1-bit HAs?

Limitation of a HA

• Can we build an adder for 2-bit numbers from the 1-bit HAs? Does not work if xo + yo produce a carry!

Full Adder (FA)

• Input: three bits, *x*, *y*, and *z*

• Output: x + y + z

x	y	Z	Sum	Carry
0	0	0	0	0
O	O	1	1	0
O	1	O	1	0
O	1	1	0	1
1	O	O	1	0
1	O	1	0	1
1	1	0	0	1
1	1	1	1	1

Full Adder - BSP for Carry

x	y	Z	Sum	Carry	
O	0	0	0	0	
O	O	1	1	0	
O	1	O	1	0	
O	1	1	0	1	x'yz
1	O	0	1	0	
1	O	1	0	1	xy'z
1	1	O	0	1	xy'z xyz' xyz
1	1	1	1	1	XYZ

Carry Function

• Carry = x'yz + xy'z + xyz' + xyz

m_o	$m_{_{1}}$	$m_3^{}$	m_2
m_4	$m_5^{}$	m_{7}	m_6

- Carry = x(y'z + yz') + yz
- $Carry = x(y \oplus z) + yz$

Full Adder - BSP for Sum

x	y	Z	Sum	Carry	
0	O	O	0	0	
O	O	1	1	0	x'y'z
0	1	O	1	0	x'y'z x'yz'
O	1	1	0	1	
1	O	O	1	0	xy'z'
1	O	1	0	1	_
1	1	O	0	1	
1	1	1	1	1	XYZ

Sum Function

• Sum = x'y'z + x'yz' + xy'z' + xyz

• Map is useless!!

m_o	$m_{_{1}}$	$m_3^{}$	m_2
m_4	$m_5^{}$	m_7	m_6

Sum Function

- Observation: $(a \oplus b)' = a'b' + ab$
- Proof:

□
$$(a \oplus b)' = (a'b + b'a)'$$
 xor definition

□ $(a \oplus b)' = (a'b)'(b'a)'$ DeMorgan's law

□ $(a \oplus b)' = (a'' + b')(b'' + a')$ DeMorgna's law

□ $(a \oplus b)' = (a + b')(b + a')$ Double negation

□ $(a \oplus b)' = ab + a'a + b'b + a'b'$ Distribution

□ $(a \oplus b)' = ab + a'b'$ xx' = 0, x+0=x

Sum Function

- Sum = x'y'z + x'yz' + xy'z' + xyz
- Sum = x'(y'z + yz') + x(y'z' + yz)
- $Sum = x'(y \oplus z) + x(y \oplus z)'$
- $Sum = x \oplus y \oplus z$
 - □ Let $a = (y \oplus z)$, $Sum = x'a + xa' = x \oplus a$

FA Circuit

- $Sum = x \oplus y \oplus z$
- $Carry = x(y \oplus z) + yz$

Source: DL2.circ (FA)

Chaining FAs (2-bit number FA)

Chaining

- Chaining is an easy way to build "higher-order" circuits from "lower-order" ones
- However, it is not the best
- The longer the chain the slower the circuit

Full Subtractor

- Can be built from a FA
- $\bullet \ x y = x (y \oplus 1) + 1$
- Why?

Decoders

- A decoder is a combinational circuit such that
 - It has n inputs
 - It has 2ⁿ outputs
 - For each input a unique associated output line carries 1
 - All other lines carry o
 - Let b_n be the binary number corresponding to the input bits
 - If the input is b_n , then line b_n is set (carries 1)

2-4 Decoder

2-4 Decoder

2-4 Decoder

Multi-Function Circuits

- Hardware runs all the time
- A multi-function circuit will compute all of its functions
- A decoder is used to "filter out" the functions that are not required

4-Function Circuit

2-4 Decoder (Truth Table)

x	y	$oxed{F_o}$	F_{1}	$oxed{F_2}$	$oxed{F_3}$
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	O	0	O	1

2-4 Decoder (Circuit)

Source: DL2 (2-4 Decoder)

3-8 Decoder

Exercise

Digital Logic II Combinational Circuits

Section 3
A Simple ALU

Digital Logic II Combinational Circuits

Section 3 Objectives

At the end of this section you will

- Build a simple 1-bit ALU
- 2. Use chaining to build higher order ALU

Bit Slice

- A bit slice is a 1-bit ALU
- We will use chaining to create a larger ALU
- ALU can do
 - And
 - Or
 - Not
 - Addition
 - Only

Logic Unit

Source: DL2 (Logic Unit)

Bit slice demo

Source: DL2.circ (Bit Slice)

4-bit ALU (by chaining)

Source: DL2 (4-bit ALUS)

Digital Logic II Combinational Circuits

Section 4
More Combinational Circuits

Digital Logic II Combinational Circuits

Section 4 Objective

At the end of this section you will

1. Gain more practice with combinational circuits

Multiplexers

- If S = o, $X = I_o$
- If S = 1, $X = I_1$

4-Input Multiplexer

Source: D2l.circ (4-input Multiplexer)

Shifters

1-bit left/right shifter.C = 0 for left 1 for right

 $\begin{array}{c} \mathbf{D_0D_1D_2D_3D_4D_5D_6D_7} \\ \mathbf{D_1D_2D_3D_4D_5D_6D_7O} \end{array}$ Left Shift D_4 D_5 D_0 D_3 D_2 D_7 D₁ **D**2 D6 D3 D7 D5 D4 0

C = 0

C = 1 $\begin{array}{c} \mathbf{D_{0}D_{1}D_{2}D_{3}D_{4}D_{5}D_{6}D_{7}} \\ \mathbf{0} \ \mathbf{D_{0}D_{1}D_{2}D_{3}D_{4}D_{5}D_{6}} \end{array}$ Right Shift D_4 D_5 D_2 D_3 D5['] D_3 D_2 Do D₁ D6 D4 D2D3 D5 0

Comparators

- Two bits can be compared with a XOR gate
- Two numbers can be compared bit-wise

Magnitude Comparator

- <u>Challenge</u> yourself with designing a circuit that inputs 2-bit binary numbers A & B
- It has 3 outputs:
 - First output is 1, iff the numbers are equal
 - Second is 1, iff A < B
 - Third is 1, iff A > B
- Repeat for 4 bit numbers

Multipliers

- Multiplication can be done by addition
- To multiply X and Y, add Y to itself X times; or add X to itself Y times
- Challenge yourself to build a "direct" multiplier
 - i.e., do not use the method described above
 - Hint: fix the size of your inputs; e.g., multiply 2bit by a 3-bit number

Self-Test Quiz

• Challenge yourself to build a "direct" multiplier that multiplies 2-bit by a 3-bit number