Math 435 Homework 1

September 1, 2025

Timothy Tarter
James Madison University
Department of Mathematics

Problem 1: Prove that a function $f: A \to B$ is surjective if and only if $g_1 \circ f = g_2 \circ f$ implies $g_1 = g_2$ for any set X and any two functions $g_1, g_2: B \to X$.

(Direction 1) Let $f: A \to B$ such that $\forall b \in B, \exists a \in A \text{ with } f(a) = b$. We want to show that $g_1(f) = g_2(f)$ implies $g_1 = g_2$ for any $g_1, g_2: B \to X$. Let $b \in B$ with

$$g_1(b) = g_2(b) \in X. \tag{1}$$

Since f is surjective, the fiber of b, $f^{-1}(b) = a$ for some $a \in A$. So, $g_1(f(a)) = g_2(f(b))$, $\forall a \in A$. But since f is surjective, B is the image of f, or B = im(f). Notably B is the whole domain of g_1 and g_2 . Then $g_1(B) = g_2(B)$. So $g_1 = g_2$.

(Direction 2) Let $g_1(f) = g_2(f)$ imply that $g_1(b) = g_2(b)$ for all $b \in B$. We want to show that $f: A \to B$ is surjective, either by showing that $\forall b \in B, \exists a \in A \text{ with } f(a) = b \text{ or } im(f) = B \text{ or } there \text{ exists } \ell: B \to A \text{ with } f \circ \ell = id_B$.

Assume for contradiction that $im(f) \subseteq B$, but $B \not\subseteq im(f)$ (i.e., f is not surjective). Then let $x_0 \in B \setminus im(f)$ and $X = \{0, 1\}$. We define

$$g_1(x) = \begin{cases} 1 & \text{if } x = x_0 \\ 0 & \text{otherwise} \end{cases}$$
 (2)

$$g_2(x) = 0. (3)$$

Then for any $b \in im(f)$,

$$g_1(b) \neq g_2(b). \tag{4}$$

But since $x_0 \notin im(f)$,

$$g_1(im(f)) = g_2(im(f)) \to g_1 = g_2,$$
 (5)

which is a contradiction. Thus, f is surjective.

Problem 2: Given a set A, we define $id_A : A \to A$ by $id_A(a) = a$ for all $a \in A$.

Part 1: Given $h:A\to A$, prove that $h=id_A$ implies $h\circ f=f$ and $g\circ h=g$ for any functions $f:X\to A$ and $g:A\to Y$.

Let $h:A\to A$ as above, and $f:X\to A$. $Im(f)\subseteq A$, by definition. So $\forall a\in im(f),\ h(a)=a$, which implies that, for any $x\in X$ with $f(x)=a\in A,\ h(f(x))=h(a)=a$. Similarly, letting $g:A\to Y$, since the domain of g is $A,\ \forall a\in A,\ h(a)=a$ implies g(h(a))=g(a). Then g(im(h))=g(A).

Part 2: Given that $h: A \to A$, prove that $h = id_A$ if $h \circ f = f$ for any function $f: X \to A$.

Let $f: X \to A$ with $f(x) = a \in A$ for any $x \in X$. Then for any $x \in X$, $h(f(x)) = h(a) = id_A(a) = a = f(x)$. So $h \circ f = f$ for any f.

Problem 3: Given a function $f:A\to B$, we say that $g:B\to A$ is a left inverse for f if $g\circ f=id_A$. Analogously, we say that a function $h:B\to A$ is a right inverse for f if $f\circ h=id_B$.

Part 1: Without referencing elements explicitly, prove that if f has a left inverse, then f is injective.

Let $f: A \to B$ and $g: B \to A$ with $g \circ f = id_A$. We want to show that f is injective, i.e., that f(b) = f(a) implies b = a for any $a, b \in A$. So, let $a, b \in A$ with

$$f(b) = f(a) \tag{6}$$

$$a \neq b \tag{7}$$

But g(f(x)) = x implies that

$$g(f(b)) = g(f(a)) \tag{8}$$

$$b = a \tag{9}$$

which is a contradiction. Then, f is injective.

Part 2: Show that if f has a right inverse, f is surjective.

Let $f: A \to B$ and $h: B \to A$ with $f \circ h = id_B$. We want to show that $\forall b \in B$, there exists $a \in A$ with f(a) = b. Assume for contradiction that there exists $b_0 \in B$ with no fiber in A. Then

$$f(h(b_0)) = b_0 \tag{10}$$

Problem 4: Prove that every injection has a left inverse.

Let $f: A \to B$ with f(a) = f(b) implies a = b. We want to show that there exists $g: B \to A$ with $g \circ f = id_A$. Let $im(f) = \{f(a) \in B \mid a \in A\}$. Notably we can define $h: B \to A$ as $g(f(a)) = a \in A$ because each element of $im(f) \subseteq B$ has exactly one preimage. If $b \notin im(f)$ and $g(b) = g(b_0)$ for some $b_0 \in im(f)$, then $b_0 = b$ and so b must be in im(f). Thus, any injection has a left inverse.