1/1

1/1

1/1

701	
Thermod	lynamics
T IIOI IIIO	i, ilicitii

MCQ March 11th 2022

$\square 2 \square 2$	← Please enter you student number,
	and write your name above.
	NAME, First Name:
□5 □5 □5 □5 ■5 □5 □5	
	HIDEUX Lélahel
_7 _7 _7 _7 _7 _7 _7 _7 _7 _7	
<u>_8 _8 _8 _8 _8 _8 _8</u> _8 _8	
$\Box 9 \ \Box 9$	

Duration: 30 minutes - No document allowed and all calculators authorised - No wifi no 4/5G

Q1 In order to cook some pasta, you need to let the water in the pot boil. Considering that the system is composed by the pot with the water and defining Q the heat exchanged between the system and the surroundings, which of the following sentences is correct?

 $\square \quad Q = 0 \qquad \qquad \square \quad Q < 0 \qquad \qquad \square \quad Q > 0$

Q2 Which energy chain showing the functioning of an electric heater from a coal power plant is correct?

Q3 A closed chamber of volume $8\,L$ at a temperature of $293\,K$ contains $10\,\text{moles}$ of an ideal gas mixture of O_2 , N_2 et H_2O . Knowing that the partial pressures of O_2 , N_2 are respectively 8 and $7\,\text{bar}$, how many moles of water are present in the chamber? The gas constant R is $8.31\,\text{J/K/mol}$. Give the result in moles with three significant digits.

Q4 Which of the following energie(s) is (are) a type of primary source?

1/1 Hydraulic energy Wind energy Geothermal energy 🔲 Electric energy

A wind power plant of $2.0\,\mathrm{MW}$ can usually produce electrical energy for only seven hours per day

	on average. How much energy (expressed in GWh with one significant digit) is produced in one year?
1/1	
	Q6 Which of the following statement(s) is (are) correct?
0.999/0.999	Sublimation requires energy to be provided . Solidification requires energy to be removed.
	Q7 The KERS (Kinetic Energy Recovery System) allows the recovery of kinetic energy to feed the battery in Formula 1 cars. Knowing that its efficiency is 0.65, how much energy is recovered in the battery from the deceleration of a car of $700\mathrm{kg}$ from a speed of $260\mathrm{km/h}$ to $60\mathrm{km/h}$? Give the result in MJ with two significant digits.
4.14	
1/1	
	Q8 At equilibrium, the partial pressure of water can be (several possible answers):
0.999/0.999	lower than its vapor pressure. larger than its vapor pressure. equal to its vapor pressure.
	Q9 A kid on the earth surface ($T=25^{\circ}\text{C}$, $P=1\text{bar}$) fills its balloon of 4L with air and then he let it rise in the atmosphere until it reaches a height where the temperature is -18°C . Supposing that the atmospheric pressure is constant and that the balloon is a closed system, what will the balloon volume be at this height? The gas constant R is 8.31J/K/mol . Give the result in L with two significant digits.
1/1	
	Q10 What is the temperature rise of 3.2 kg of iron when 97 kJ of heat is supplied to it? Heat capacity of iron: $C=25.1\mathrm{J/K/mol.}$ Molar mass: $M=55.8\mathrm{g/mol.}$ Give the result in degree celsius with three significant digits.
1/1	