Step-1

Consider the matrix F with 3 columns:

$$F = \begin{bmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega^4 \end{bmatrix}$$

Consider the matrix *P* as follows:

$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

This gives:

$$FP = \begin{bmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega^4 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega \\ 1 & \omega^4 & \omega^2 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 & 1 \\ 1 & \overline{\omega} & \overline{\omega}^2 \\ 1 & \overline{\omega}^2 & \overline{\omega}^4 \end{bmatrix}$$
$$= \overline{F}$$

Step-2

The permutation matrix should be such that the first row and the first column of *FP* should be made up of 1's only.

Therefore, the first row first entry column entry of *P* should be 1 and all other entries in the first row and first column should be obviously zeros.

Now the complex conjugate of $\ddot{l}\%^{n-1}$, The complex conjugate of $\ddot{l}\%^{2}$ is $\ddot{l}\%^{n-2}$ and so on!

This gives us the idea about how the permutation matrix should be.

Step-3

Suppose F is as follows:

$$F = \begin{bmatrix} 1 & 1 & 1 & \dots & \dots & 1 \\ 1 & \omega & \omega^2 & \dots & \dots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \dots & \dots & \omega^{2n-2} \\ 1 & \omega^3 & \omega^6 & \dots & \dots & \omega^{3n-3} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \omega^{n-1} & \omega^{2n-2} & \dots & \dots & \omega^{(n-1)^2} \end{bmatrix}$$

Then we get P as follows:

P =	1	0	0		0	0
	0	0	0		0	1
	0	0	0		1	0
	0	0	1	0	0	0
	0	1	0			0

Step-4

To obtain F^2 we can proceed as follows:

$$F\overline{F} = nI$$

$$F(FP) = nI$$

$$F^{2}P = nI$$

$$F^{2} = nIP^{-1}$$

That is,
$$F^2 = nP^{-1}$$
. Similarly, $F^4 = n^2 (P^{-1})^2$.