

UNIVERSIDADE FEDERAL DO CEARÁ - CAMPUS SOBRAL CURSO DE ENGENHARIA DA COMPUTAÇÃO

DISCIPLINA: MICROPROCESSADORES

PROFESSOR: MARCELO SOUZA

EXERCÍCIO 03 - SOMA DE BITS MAIS E MENOS SIGNIFICATIVOS

YARA MARIA SANTOS MORAIS - 475867

Sobral - CE

2023

O exercício 03 requer que seja feita O cálculO da soma dos 4 bits menos significativos com os 4 bits mais significativos de uma variável de memória de 8 bits e que resultado seja armazenado em outra variável.

O número escolhido foi 5A que em dem hexadecimal corresponde ao valor 90. De início foi definida uma constante LSB_MASK para isolar os bits menos significativos, após foram declaradas as seguintes variáveis: variável que armazenou o número de 8 bits (BYTE_VAR), uma para armazenar os bits mais e menos significativos, MSB_VAR e LSB_VAR respectivamente e uma para guardar o valor da soma (RESULT_VAR).

Na figura 01 podemos observar a definição de todo o PORTB como saída e a definição do valor da variável de 8 bits.

Figura 01 – Código no MPLABX

```
#include "pl8F4550
; Definição de constantes
LSB_MASK
                                        : Máscara para isolar os 4 bits menos significativos
; Definição de variáveis
BYTE_VAR EQU
MSB_VAR EQU
LSB_VAR EQU
                                     ; Variável para armazenar os 4 bits mais significativos
; Variável para armazenar os 4 bits menos significativos
; Variável para armazenar o resultado da soma
                         0x21
RESULT VAR EOU
                        0x23
         0x0000
GOTO
         main
         0x0008
         0x0018
main:
     BANKSEL TRISB
                                  ; Define todo o PORTB como saída
     ; Inicialização da variável de 8 bits
        NKSEL BYTE_VAR
     MOVLW 0x5A
MOVWF BYTE_VAR
                                ; Valor da variável de 8 bits
```

Fonte: Autor

Após todas as inicializações, foi feito o isolamento dos bits menos e mais significativos por meio das funções já descritas anteriormente e foram armazenados nas variáveis MOVWF MSB_VAR e MOVWF LSB_VAR respectivamente. Com os bits separados, foram carregados para o registrador W (MOVF MSB_VAR, W), feita a soma (ADDWF LSB_VAR, W) e guardado o valor em MOVWF RESULT_VAR como pode ser visto na figura 02.

Figura 02 – Código no MPLABX

```
; Isolar os 4 bits mais significativos
BANKSEL BYTE_VAR, W ; Rotação para a direita para trazer os 4 MSBs para
ANDLM LSB_MASK ; Máscara para manter apenas os 4 bits menos significativos

; Atmarenar os 4 bits mais significativos em uma variável
BANKSEL MSB_VAR
MVVMF MSB_VAR
; Isolar os 4 bits menos significativos
BANKSEL BYTE_VAR
ANDLM LSB_MASK ; Máscara para manter apenas os 4 bits menos significativos
; Atmarenar os 4 bits menos significativos em uma variável
BANKSEL LSB_VAR
MVVMF LSB_VAR

MVVMF LSB_VAR

### WVMF LSB_VAR

### WVMF LSB_VAR

### WVMF RSSULT_VAR

### WVMF RSSULT_VAR

### WVMF RSSULT_VAR

### ADDMF LSB_VAR, W ; Carrega o valor dos 4 bits menos significativos para o registrador W

### ADDMF LSB_VAR, W ; Soma o valor dos 4 bits menos significativos para o registrador W

### ADDMF LSB_VAR, W ; Atmarena o resultado na variável de resultado

### Loop infinito

| Loop infinito
| Loop
END
```

Fonte: Autor

Executando o programa no MPLABX obtems o valor escolhido, os bits isolados e o resultado da soma respectivamente. Como pode ser analisado na figura 03.

Figura 03 – Resultado da soma

8																		
1 C	Output 🗴 🤇	Vari	iables	×	Cal	Stack	×	Br	eakpoi	nts »	File	Regis	ters	×				
Q	Address	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	Ī
	000	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	Ť.
-	010	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	Ţ,
7	020	5A	0A	0A	14	00	00	00	00	00	00	00	00	00	00	00	00	7
1	030	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	Ţ.
	040	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	Ţ,
	050	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	Ţ,
	060	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	Ţ
	070	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	Ţ.
	080	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	Ţ
	090	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	Ţ,
	0A0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	1
	0B0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	Ţ.
	0C0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	Τ.

Fonte: Autor