

IN THE CLAIMS

Claims 1, 4-11, and 16-25 are currently pending.

Claims 1-15 were originally presented.

Claims 16-25 have been previously added.

Claims 2, 3 and 12-15 have been previously canceled.

Claims 4, 11, 16, and 18-25 are herein amended.

1. **(Previously Presented):** A method comprising:
 - reading at least a subset of audio content comprising an audio file from optical media removably integrated with an optical drive, wherein the reading comprises:
 - reading a sector of audio content, wherein the reading of the sector is based on amplitude information of the sector;
 - determining whether additional sector reads of the audio content are necessary, based on a particular read size of the optical drive; and
 - iteratively repeating the reading step using different sizes, if it is determined if the additional sector reads are necessary;
 - analyzing at least the read subset of audio content to quantify optical drive read accuracy of the audio content, comprising
 - comparing a first bundle of audio content from one sector of audio content to a second bundle of audio content from the one sector; and

measuring a difference in amplitude between the first bundle and the second bundle to quantify intra-sector misalignment; and
generating one or more metrics of optical drive read accuracy based, at least in part, on the analysis of the read subset of audio content.

2. (Canceled)

3. (Canceled)

4. (Currently Amended): A method according to claim [[4]] 1, wherein analyzing the audio content further comprises:
comparing a last bundle of audio content from one sector of audio content to a first bundle of audio content from a subsequent sector of audio content; and
measuring an amplitude difference between the bundles to quantify inter-sector misalignment.

5. (Original): A method according to claim 4, wherein the subsequent bundle is immediately adjacent to the first bundle.

6. (Original): A method according to claim 4, further comprising:
adjusting one or more operational settings associated with the optical drive based, at least in part, on the intra- and/or inter-sector misalignment.

7. **(Original):** A method according to claim 4, wherein analyzing the audio content further comprises:

comparing data associated with a left channel of a bundle with data associated with a right channel of the bundle; and

measuring an amplitude difference between the left channel and the right channel to quantify a channel offset.

8. **(Original):** A method according to claim 7, further comprising:
adjusting one or more operational settings associated with the optical drive based, at least in part, on the intra-sector misalignment and/or the channel offset.

9. **(Previously Presented):** A method according to claim 1, wherein analyzing the audio content further comprises:

comparing a last bundle of audio content from one sector of audio content to a first bundle of audio content from a subsequent sector of audio content; and one or more of:

measuring an amplitude difference between the bundles to quantify inter-sector misalignment.

measuring an amplitude difference between data associated with a left channel of a bundle and data associated with a right channel of the bundle to quantify channel offset.

10. (Previously Presented): A method according to claim 1, wherein analyzing the audio content comprises:

comparing audio content within and between two adjacent sectors to quantify one or more of intra-sector misalignment, inter-sector misalignment and/or channel offset metrics.

11. (Currently Amended): A computer readable storage medium comprising of executable instructions, the executable instructions comprising:

reading at least a subset of audio content comprising an audio file from optical media removably integrated with an optical drive, wherein the reading comprises:

reading a sector of audio content;
determining whether additional sector reads of the audio content are necessary, based on a particular read size of the optical drive; and
determining whether additional sector reads are necessary; and
iteratively repeating the reading step using different sizes, if it is determined if the additional sector reads are necessary;

analyzing at least the read subset of audio content to quantify optical drive read accuracy of the audio content; and

generating one or more metrics of optical drive read accuracy based, at least in part, on the analysis of the read subset of audio content.

~~reading a sector of audio content, wherein the reading of the sector is based on amplitude information of the sector;~~

~~determining whether additional sector reads of the audio content are necessary, based on a particular read size of the optical drive; and~~

Claims 12-15 (**Canceled**).

16. (Currently Amended): A method according to claim 1, wherein the reading of the sector based on amplitude information of the sector, is based on known a priori amplitude information.

17. (Previously Presented): A method according to claim 16, wherein the a priori amplitude information is compared to a theoretically correct amplitude.

18. (Currently Amended): The computer readable storage medium of claim 11, wherein analyzing the audio content comprises:

comparing a first bundle of audio content from one sector of audio content to a second bundle of audio content from the one sector; and

measuring a difference in amplitude between the first bundle and the second bundle to quantify intra-sector misalignment.

19. (Currently Amended): The computer readable storage medium

of claim 18, wherein analyzing the audio content further comprises:

comparing a last bundle of audio content from one sector of audio content to a first bundle of audio content from a subsequent sector of audio content; and
measuring an amplitude difference between the bundles to quantify inter-sector misalignment.

20. (Currently Amended): The computer readable storage medium of claim 19, wherein the subsequent bundle is immediately adjacent to the first bundle.

21. (Currently Amended): The computer readable storage medium of claim 19, further comprising:

adjusting one or more operational settings associated with the optical drive based, at least in part, on the intra- and/or inter-sector misalignment.

22. (Currently Amended): The computer readable storage medium of claim 19, wherein analyzing the audio content further comprises:

comparing data associated with a left channel of a bundle with data associated with a right channel of the bundle; and
measuring an amplitude difference between the left channel and the right channel to quantify a channel offset.

23. (Currently Amended): The computer readable storage medium of claim 22, further comprising:

adjusting one or more operational settings associated with the optical drive based, at least in part, on the intra-sector misalignment and/or the channel offset.

24. (Currently Amended): The computer readable storage medium of 11, wherein analyzing the audio content further comprises:

comparing a last bundle of audio content from one sector of audio content to a first bundle of audio content from a subsequent sector of audio content; and one or more of:

measuring an amplitude difference between the bundles to quantify inter-sector misalignment.

measuring an amplitude difference between data associated with a left channel of a bundle and data associated with a right channel of the bundle to quantify channel offset.

25. (Currently Amended): The computer readable storage medium of claim 11, wherein the reading of the sector is based on amplitude information of the sector.