Generalized Least Squares, BLUES & BUES

STA 721: Lecture 6

Merlise Clyde (clyde@duke.edu)

Duke University

Outline

- General Least Squares and MLEs
- Gauss-Markov Theorem & BLUEs
- MVUE

Readings:

- Christensen Chapter 2 and 10 (Appendix B as needed)
- Seber & Lee Chapter 3

Other Error Distributions

Model:

$$\mathbf{Y} = \mathbf{X}oldsymbol{eta} + oldsymbol{\epsilon} \quad \mathsf{E}[oldsymbol{\epsilon}] = \mathbf{0}_n$$
 $\mathsf{Cov}[oldsymbol{\epsilon}] = \sigma^2 \mathbf{V}$

where σ^2 is a scalar and ${f V}$ is a n imes n symmetric matrix

Examples:

- ullet Heteroscedasticity: ${f V}$ is a diagonal matrix with $[{f V}]_{ii}=v_i$
 - $v_i = 1/n_i$ if y_i is the mean of n_i observations
 - survey weights or propogation of measurement errors in physics models
- Correlated data:
 - time series; first order auto-regressive model with equally spaced data $\mathsf{Cov}[\boldsymbol{\epsilon}] = \sigma^2 \mathbf{V}$, where $v_{ij} = \rho^{|i-j|}$.
- Hierarchical models with random effects

OLS under a General Covariance

- Is it still unbiased? What's its variance? Is it still the BLUE?
- Unbiasedness of $\hat{oldsymbol{eta}}$

$$egin{aligned} \mathsf{E}[\hat{oldsymbol{eta}}] &= \mathsf{E}[(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y}] \ &= (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathsf{E}[\mathbf{Y}] = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathsf{E}[\mathbf{X}oldsymbol{eta} + oldsymbol{\epsilon}] \ &= oldsymbol{eta} + \mathbf{0}_p = oldsymbol{eta} \end{aligned}$$

• Covariance of $\hat{oldsymbol{eta}}$

$$egin{aligned} \mathsf{Cov}[\hat{oldsymbol{eta}}] &= \mathsf{Cov}[(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y}] \ &= (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathsf{Cov}[\mathbf{Y}]\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1} \ &= \sigma^2(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{V}\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1} \end{aligned}$$

• Not necessarily $\sigma^2(\mathbf{X}^T\mathbf{X})^{-1}$ unless \mathbf{V} has a special form

GLS via Whitening

Transform the data and reduce problem to one we have solved!

• For ${f V}>0$ use the Spectral Decomposition

$$\mathbf{V} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T = \mathbf{U} \mathbf{\Lambda}^{1/2} \mathbf{\Lambda}^{1/2} \mathbf{U}^T$$

ullet define the symmetric square root of ${f V}$ as

$$\mathbf{V}^{1/2} \equiv \mathbf{U} \mathbf{\Lambda}^{1/2} \mathbf{U}^T$$

transform model:

$$\mathbf{V}^{-1/2}\mathbf{Y} = \mathbf{V}^{-1/2}\mathbf{X}oldsymbol{eta} + \mathbf{V}^{-1/2}oldsymbol{\epsilon} \ ilde{\mathbf{Y}} = ilde{\mathbf{X}}oldsymbol{eta} + ilde{oldsymbol{\epsilon}}$$

• Since $\mathsf{Cov}[\tilde{\boldsymbol{\epsilon}}] = \sigma^2 \mathbf{V}^{-1/2} \mathbf{V} \mathbf{V}^{-1/2} = \sigma^2 \mathbf{I}_n$, we know that $\hat{\boldsymbol{\beta}}_{\mathbf{V}} \equiv (\tilde{\mathbf{X}}^T \tilde{\mathbf{X}})^{-1} \tilde{\mathbf{X}}^T \tilde{\mathbf{Y}}$ is the BLUE for $\boldsymbol{\beta}$ based on $\tilde{\mathbf{Y}}$ (\mathbf{X} full rank)

GLS

- If ${f V}$ is known, then ${f ilde Y}$ and ${f Y}$ are known linear transformations of each other
- any estimator of $m{eta}$ that is linear in $f{Y}$ is linear in $f{ ilde{Y}}$ and vice versa from previous results
- $\hat{m{eta}}_{\mathbf{V}}$ is the BLUE of $m{eta}$ based on either $\tilde{\mathbf{Y}}$ or \mathbf{Y} !
- Substituting back, we have

$$egin{aligned} \hat{oldsymbol{eta}}_{\mathbf{V}} &= (\tilde{\mathbf{X}}^T \tilde{\mathbf{X}})^{-1} \tilde{\mathbf{X}}^T \tilde{\mathbf{Y}} \ &= (\mathbf{X}^T \mathbf{V}^{-1/2} \mathbf{V}^{-1/2} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{V}^{-1/2} \mathbf{V}^{-1/2} \mathbf{Y} \ &= (\mathbf{X}^T \mathbf{V}^{-1} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{V}^{-1} \mathbf{Y} \end{aligned}$$

which is the **Generalized Least Squares Estimator** of $oldsymbol{eta}$

▼ Exercise: Weighted Regression

Consider the model $\mathbf{Y} = \beta \mathbf{x} + \boldsymbol{\epsilon}$ where $\mathsf{Cov}[\boldsymbol{\epsilon}]$ is a known diagonal matrix \mathbf{V} . Write out the GLS estimator in terms of sums and interpret.

GLS of μ (Full Rank Case)[†]

• the OLS/MLE of $oldsymbol{\mu} \in C(\mathbf{X})$ with transformed variables is

$$\mathbf{P}_{ ilde{\mathbf{X}}} \mathbf{ ilde{Y}} = \mathbf{ ilde{X}} \hat{oldsymbol{eta}}_{\mathbf{V}}$$
 $\mathbf{ ilde{X}} \left(\mathbf{ ilde{X}}^T \mathbf{ ilde{X}}
ight)^{-1} \mathbf{ ilde{X}}^T \mathbf{ ilde{Y}} = \mathbf{ ilde{X}} \hat{oldsymbol{eta}}_{\mathbf{V}}$
 $\mathbf{V}^{-1/2} \mathbf{X} \left(\mathbf{X}^T \mathbf{V}^{-1} \mathbf{X}
ight)^{-1} \mathbf{X}^T \mathbf{V}^{-1} \mathbf{Y} = \mathbf{V}^{-1/2} \mathbf{X} \hat{oldsymbol{eta}}_{\mathbf{V}}$

• since ${f V}$ is positive definite, multiple thru by ${f V}^{1/2}$, to show that $\hat{m eta}_{f V}$ is a GLS/MLE estimator of ${m eta}$ iff

$$\mathbf{X} (\mathbf{X}^T \mathbf{V}^{-1} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{V}^{-1} \mathbf{Y} = \mathbf{X} \hat{\boldsymbol{\beta}}_{\mathbf{V}}$$

• Is $\mathbf{P_V} \equiv \mathbf{X} (\mathbf{X}^T \mathbf{V}^{-1} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{V}^{-1}$ a projection onto $C(\mathbf{X})$? Is it an orthogonal projection onto $C(\mathbf{X})$?

Projections

We want to show that $\mathbf{P_V} \equiv \mathbf{X} ig(\mathbf{X}^T \mathbf{V}^{-1} \mathbf{X}ig)^{-1} \mathbf{X}^T \mathbf{V}^{-1}$ is a projection onto $C(\mathbf{X})$

Oblique Projections

▼ Proposition: Projection

The n imes n matrix $\mathbf{P_V} \equiv \mathbf{X} ig(\mathbf{X}^T \mathbf{V}^{-1} \mathbf{X}ig)^{-1} \mathbf{X}^T \mathbf{V}^{-1}$ is a projection onto the $C(\mathbf{X})$

- Show that $\mathbf{P}^2_{\mathbf{V}} = \mathbf{P}_{\mathbf{V}}$ (idempotent)
- every vector $\mathbf{y} \in \mathbb{R}^n$ may be written as $\mathbf{y} = \mathbf{m} + \mathbf{n}$ where $\mathbf{P_v}\mathbf{y} = \mathbf{m}$ and $(\mathbf{I}_n \mathbf{P_v})\mathbf{y} = \mathbf{n}$ where $\mathbf{m} \in C(\mathbf{P_V})$ and $\mathbf{u} \in N(\mathbf{P_V})$
- Is $\mathbf{P}_{\mathbf{V}}$ an orthogonal projection onto $C(\mathbf{X})$ for the inner product space $(\mathbb{R}^n, \langle \mathbf{v}, \mathbf{u} \rangle = \mathbf{v}^T \mathbf{u})$?

▼ Definition: Oblique Projection

For the inner product space $(\mathbb{R}^n, \langle \mathbf{v}, \mathbf{u} \rangle = \mathbf{v}^T \mathbf{u})$, a projection \mathbf{P} that is not an orthogonal projection is called an *oblique projection*

Loss Function

The GLS estimator minimizes the following generalized squared error loss:

$$\|\tilde{\mathbf{Y}} - \tilde{\mathbf{X}}\boldsymbol{\beta}\|^2 = (\tilde{\mathbf{Y}} - \tilde{\mathbf{X}}\boldsymbol{\beta})^T (\tilde{\mathbf{Y}} - \tilde{\mathbf{X}}\boldsymbol{\beta})$$

$$= (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T \mathbf{V}^{-1/2} \mathbf{V}^{-1/2} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$

$$= (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T \mathbf{V}^{-1} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$

$$= \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|_{\mathbf{V}^{-1}}^2$$

where we can change the inner product to be

$$\langle \mathbf{u}, \mathbf{v}
angle_{\mathbf{V}^{-1}} \equiv \mathbf{u}^T \mathbf{V}^{-1} \mathbf{v}$$

Orthogonality in an Inner Product Space

▼ Definition: Orthogonal Projecton

For an inner product space, $(\mathbb{R}^n, \langle, \rangle)$. The projection **P** is an orthogonal projection if for every vector **x** and **y** in \mathbb{R}^n ,

$$\langle \mathbf{P}\mathbf{x}, (\mathbf{I}_n - \mathbf{P})\mathbf{y} \rangle = \langle (\mathbf{I}_n - \mathbf{P})\mathbf{x}, \mathbf{P}\mathbf{y} \rangle = 0$$

Equivalently:

$$\langle \mathbf{x}, \mathbf{P} \mathbf{y}
angle = \langle \mathbf{P} \mathbf{x}, \mathbf{P} \mathbf{y}
angle = \langle \mathbf{P} \mathbf{x}, \mathbf{y}
angle$$

▼ Exercise

Show that $\mathbf{P}_{\mathbf{V}}$ is an orthogonal projection under the inner product

$$\langle \mathbf{x}, \mathbf{y}
angle_{\mathbf{V}^{-1}} \equiv \mathbf{x}^T \mathbf{V}^{-1} \mathbf{y}$$

Variance of GLS

• Variance of the GLS estimator $\hat{m{eta}}_{f V}=({f X}^T{f V}^{-1}{f X})^{-1}{f X}^T{f V}^{-1}{f Y}$ is much simpler

$$\begin{aligned} \mathsf{Cov}[\hat{\boldsymbol{\beta}}_{\mathbf{V}}] &= (\mathbf{X}^T \mathbf{V}^{-1} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{V}^{-1} \mathsf{Cov}[\mathbf{Y}] \mathbf{V}^{-1} \mathbf{X} (\mathbf{X}^T \mathbf{V}^{-1} \mathbf{X})^{-1} \\ &= (\mathbf{X}^T \mathbf{V}^{-1} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{V}^{-1} \mathbf{V} \mathbf{V}^{-1} \mathbf{X} (\mathbf{X}^T \mathbf{V}^{-1} \mathbf{X})^{-1} \\ &= \sigma^2 (\mathbf{X}^T \mathbf{V}^{-1} \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{V}^{-1} \mathbf{X}) (\mathbf{X}^T \mathbf{V}^{-1} \mathbf{X})^{-1} \\ &= \sigma^2 (\mathbf{X}^T \mathbf{V}^{-1} \mathbf{X})^{-1} \end{aligned}$$

▼ Theorem: Gauss-Markov-Aitkin

Let $\hat{\boldsymbol{\beta}}$ be a linear unbiased estimator of $\boldsymbol{\beta}$ and $\hat{\boldsymbol{\beta}}_{\mathbf{V}}$ be the GLS estimator of $\boldsymbol{\beta}$ in the linear model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ with $\mathbf{E}[\boldsymbol{\epsilon}] = \mathbf{0}_n$ and $\mathbf{Cov}[\boldsymbol{\epsilon}] = \sigma^2\mathbf{V}$ with \mathbf{X} and $\mathbf{V} > 0$ known. Then $\hat{\boldsymbol{\beta}}_{\mathbf{V}}$ is the BLUE where

$$\mathsf{Cov}[ilde{oldsymbol{eta}}] \geq \sigma^2(\mathbf{X}^T\mathbf{V}^{-1}\mathbf{X})^{-1} = \mathsf{Cov}[\hat{oldsymbol{eta}}_{\mathbf{V}}]$$

When will OLS and GLS be Equal?

- For what covariance matrices \mathbf{V} will the OLS and GLS estimators be the same?
- Figuring this out can help us understand why the GLS estimator has a lower variance in general.

▼ Theorem

The estimators $\hat{m{eta}}$ (OLS) and $\hat{m{eta}}_{f V}$ (GLS) are the same for all ${f Y} \in \mathbb{R}^n$ iff

$$\mathbf{V} = \mathbf{X} \mathbf{\Psi} \mathbf{X}^T + \mathbf{H} \mathbf{\Phi} \mathbf{H}^T$$

for some positive definite matrices ${f \Psi}$ and ${f \Phi}$ and a matrix ${f H}$ such that ${f H}^T{f X}={f 0}.$

Outline of Proof

We need to show that $\hat{\boldsymbol{\beta}}$ and $\hat{\boldsymbol{\beta}}_{\mathbf{V}}$ are the same for all \mathbf{Y} . Since both \mathbf{P} and $\mathbf{P}_{\mathbf{V}}$ are projections onto $C(\mathbf{X})$, $\hat{\boldsymbol{\beta}}$ and $\hat{\boldsymbol{\beta}}_{\mathbf{V}}$ will be the same iff $\mathbf{P}_{\mathbf{V}}$ is an orthogonal projection onto $C(\mathbf{X})$ so that $\mathbf{P}_{\mathbf{V}}\mathbf{n}=0$ for $\mathbf{n}\in C(\mathbf{X})^{\perp}$ (they have the same null spaces)

1. Show that $C(\mathbf{X}) = C(\mathbf{V}\mathbf{X})$ iff \mathbf{V} can be written as

$$\mathbf{V} = \mathbf{X} \mathbf{\Psi} \mathbf{X}^T + \mathbf{H} \mathbf{\Phi} \mathbf{H}^T$$

(Show $C(\mathbf{VX})\subset C(\mathbf{X})$ iff \mathbf{V} has the above form and since the two subspaces have the same rank $C(\mathbf{X})=C(\mathbf{VX})$

- 2. Show that $C(\mathbf{X}) = C(\mathbf{V}^{-1}\mathbf{X})$ iff $C(\mathbf{X}) = C(\mathbf{V}\mathbf{X})$
- 3. Show that $C(\mathbf{X})^{\perp} = C(\mathbf{V}^{-1}\mathbf{X})^{\perp}$ iff $C(\mathbf{X}) = C(\mathbf{V}^{-1}\mathbf{X})$
- 4. Show that $\mathbf{n} \in C(\mathbf{X})^\perp$ iff $\mathbf{n} \in C(\mathbf{V}^{-1}\mathbf{X})^\perp$ so $\mathbf{P_V}\mathbf{n} = 0$

See Proposition 2.7.5 and Proof in Christensen

Some Intuition

For the linear model ${\bf Y}={\bf X}{m eta}+{m \epsilon}$ with ${\sf E}[{m \epsilon}]={\bf 0}_n$ and ${\sf Cov}[{m \epsilon}]=\sigma^2{\bf V}$, we can always write

$$oldsymbol{\epsilon} = \mathbf{P}oldsymbol{\epsilon} + (\mathbf{I} - \mathbf{P})oldsymbol{\epsilon} \ = oldsymbol{\epsilon}_{\mathbf{X}} + oldsymbol{\epsilon}_{N}$$

• we can recover ϵ_N from the data $\mathbf Y$ but not $\epsilon_{\mathbf X}$:

$$egin{aligned} \mathbf{PY} &= \mathbf{P}(\mathbf{X}oldsymbol{eta} + oldsymbol{\epsilon}_{\mathbf{X}} + oldsymbol{\epsilon}_{n}) \ &= \mathbf{X}oldsymbol{eta} + oldsymbol{\epsilon}_{\mathbf{X}} = \mathbf{X}\hat{oldsymbol{eta}} \ &(\mathbf{I}_{n} - \mathbf{P})\mathbf{Y} = oldsymbol{\epsilon}_{N} = \hat{oldsymbol{\epsilon}} = \mathbf{e} \end{aligned}$$

- Can ϵ_N help us estimate $\mathbf{X}\boldsymbol{\beta}$? What if ϵ_N could tell us something about ϵ_X ?
- Yes if they were highly correlated! But if they were independent or uncorrelated then knowing ϵ_N doesn't help us!

Intuition Continued

- For what matrices are $\epsilon_{\mathbf{X}}$ and ϵ_{N} uncorrelated?
- Under $\mathbf{V} = \mathbf{I}_n$:

$$egin{aligned} \mathsf{E}[oldsymbol{\epsilon}_X oldsymbol{\epsilon}_N] &= \mathbf{P} \mathsf{E}[oldsymbol{\epsilon} oldsymbol{\epsilon}^T] (\mathbf{I} - \mathbf{P}) \ &= \sigma^2 \mathbf{P} (\mathbf{I} - \mathbf{P}) = \mathbf{0} \end{aligned}$$

so they are uncorrelated

- For the V in the theorem, introduce
 - $lackbox{ } \mathbf{Z}_{\mathbf{X}}$ where $\mathsf{E}[\mathbf{Z}_{\mathbf{X}}] = \mathbf{0}_n$ and $\mathsf{Cov}[\mathbf{Z}_{\mathbf{X}}] = \mathbf{\Psi}$
 - lacksquare \mathbf{Z}_{N} where $\mathsf{E}[\mathbf{Z}_{\mathsf{N}}] = \mathbf{0}_n$ and $\mathsf{Cov}[\mathbf{Z}_{\mathsf{N}}] = \mathbf{\Phi}$
 - $lackbox{ } \mathbf{Z}_{\mathbf{X}}$ and \mathbf{Z}_{N} are uncorrelated, $\mathsf{E}[\mathbf{Z}_{\mathbf{X}}\mathbf{Z}_{\mathsf{N}}] = \mathbf{0}$
 - ullet $oldsymbol{\epsilon}=\mathbf{X}\mathbf{Z}_{\mathbf{X}}+\mathbf{H}\mathbf{Z}_{\mathsf{N}}$ so that $oldsymbol{\epsilon}$ has the desired mean and covariance \mathbf{V} in the theorem

Intuition Continued

As a consequence we have

- $\epsilon_{\mathbf{X}} = \mathbf{P} \epsilon = \mathbf{X} \mathbf{Z}_{\mathbf{X}}$
- $oldsymbol{\epsilon}_{\mathsf{N}} = (\mathbf{I}_n \mathbf{P})oldsymbol{\epsilon} = \mathbf{H}\mathbf{Z}_{\mathsf{N}}$
- $\epsilon_{\mathbf{X}}$ and $\epsilon_{\mathbf{N}}$ are uncorrelated

$$egin{aligned} \mathsf{E}[oldsymbol{\epsilon}_{\mathbf{X}}oldsymbol{\epsilon}_{\mathsf{N}}] &= \mathsf{E}[\mathbf{X}\mathbf{Z}_{\mathbf{X}}\mathbf{Z}_{\mathsf{N}}^T\mathbf{H}^T] \ &= \mathbf{X}\mathbf{0}\mathbf{H}^T \ &= \mathbf{0} \end{aligned}$$

- ullet so that $m{\epsilon_X}$ and $m{\epsilon_N}$ are uncorrelated with $f V = f X m{\Psi} f X^T + f H m{\Phi} f H$ ^T\$
- Alternative Statement of Theorem: $\hat{\beta} = \hat{\beta}_{\mathbf{V}}$ for all \mathbf{Y} under $\mathsf{Cov}[\mathbf{Y}] = \sigma^2 \mathbf{V}$ iff \mathbf{PY} and $(\mathbf{I} \mathbf{P})\mathbf{Y}$ are uncorrelated

Equivalence of GLS estimators

The following corollary to the theorem establishes when two GLS estimators for different $Cov[\epsilon]$ are equivalent :

▼ Corollary

Suppose
$$\mathbf{V}=\mathbf{X}\mathbf{\Psi}\mathbf{X}^T+\mathbf{\Omega}$$
. Then $\hat{m{eta}}_{\mathbf{V}}=\hat{m{eta}}_{\mathbf{\Omega}}$

• Can you construct an equivalent representation based on zero correlation of $\mathbf{P}_{\Omega}\mathbf{Y}$ and $(\mathbf{I}_n - \mathbf{P}_{\Omega})\mathbf{Y}$ when $\mathsf{Cov}[\boldsymbol{\epsilon}] = \sigma^2\mathbf{V}$?

