Nume și prenume	Nr. matricol	Data completării formularului
Billich Steven	LM61240	08.10.2021

TEMĂ DE CASĂ NR. 1

(Tema de casă se depune pe CV în săptămâna consecutivă celei în care s-a efectuat lucrarea de laborator. Formularul completat se depune în format pdf.)

1.1. Imaginați câte un exemplu de semnal în timp continuu pentru cele 4 domenii precizate în tabel. Răspunsurile se vor formula potrivit relațiilor (1), (2) și exemplelor de la pag. 1 și 2 din Lucrarea de laborator nr. 1.

Corpul omenesc	Activitatea electrica a fibrelor musculare ale inimii, (semnal	
	monodimensional) (observabil pe ECG), activitatea nervilor	
Domeniul automotive	Presiunea intr-o roata a unui autovehicul (semnal monodimensional)	
Mediul înconjurător	Presiunea atmosferica, temperatura aerului (semnal monodimensional)	
Domeniul audio-video	Semnalul radio (semnal monodimensional) tunetul	

1.2. Determinati transformatele Laplace ale următoarelor semnale (nu se cer demonstrații ci doar rezultatele):

$u(t) = 230 \cdot \sin(100 \cdot \pi \cdot t), t \in \mathbf{R}_{+}$	(230*100π)/(s²+(100π)²)
$i(t) = 1.3 \sin (2 \cdot \pi \cdot 50 \cdot t - 0.1), t \in \mathbf{R}_{+}$	$1.3*\frac{100\pi*\cos(0,1)+\sin(0,1)*s}{s^2+(100\pi)^2}$
$x(t) = 10 \cdot [\sigma(t-t_1) - [\sigma(t-t_2)], t_1 < t_2, t \in \mathbf{R}_+$	$10 * \frac{e^{-t_1 * s} - e^{-t_2 * s}}{s}$
$v(t) = (2 \cdot t + 30) \ \sigma(t-4), \ t \in \mathbf{R}_{+}$	$e^{-4s} * \left(\frac{2}{s^2} + \frac{38}{s}\right)$

1.3. Pentru semnalul x(t), $t \in \mathbf{R}_+$ se obține, în urma unor calcule în domeniul operațional, expresia $x(s) = \frac{2s-1}{s^2(0.01s+1)}$. Să se arate că semnalul original este x(t) = $2.01 \cdot (1-e^{-100 \cdot t}) - t$, $t \in \mathbf{R}_+$. Indicație: Se va descompune expresia lui x(s) în termeni de forma celor din tabelele de transformare, apoi se vor aduce termenii la forma din tabel, iar în final se folosește teorema de liniaritate a transformatei Laplace.

1.4. Generați, semnalele din tabel adaptând și modificând modelul simulink/xcos din lucrarea de laborator, (pentru inserarea figurilor puteți folosi Snipping Tool, Print Screen etc..

Amplitude:	
230	:
Bias:	
0	:
Frequency (rad/sec):	
100*pi	:
Phase (rad):	
0	:
Sample time:	
0	:

Step time:	
0.005	1
Initial value:	
0	1
Final value:	
25	1
Sample time:	
0	1

Step time:	
0.0053	:
Initial value:	
0	:
Final value:	
-25	:
Sample time:	
0	1