

TENTAMEN

Kursnummer:	HF0024					
	Matematik för basår II					
Moment:	TENA					
Program:	Tekniskt basår					
Rättande lärare:	Niclas Hjelm					
Examinator:	Niclas Hjelm					
Datum:	2019-06-05					
Tid:	08:00-12:00					
Hjälpmedel:	Formelsamling: ISBN 978-91-27-72279-8 eller ISBN					
	978-91-27-42245-2 (utan anteckningar).					
	Inga andra formelsamlingar är tillåtna!					
	Miniräknare, penna, radergummi, linjal, gradskiva					
Omfattning och						
betygsgränser:	Poäng Betvg					
	11 Fx 12 – 14 E					
	15 – 17 D					
	18 – 20 C					
	21 – 23 B 24 – 26 A					
	Till samtliga uppgifter krävs fullständiga					
	lösningar. Lösningarna skall vara tydliga och lätta					
	att följa. Införda beteckningar skall definieras.					
	Uppställda samband skall motiveras.					
	Skriv helst med blyertspenna!					
	Svaret ska framgå tydligt och vara förenklat så					
	långt som möjligt. Svara med enhet och lämplig					
	avrundning på tillämpade uppgifter. Svara exakt på					
	övriga uppgifter, om inte annat anges. Lycka till!					

- 1. Beräkna f'(e) om $f(x) = x \ln x$. 2 **p**
- 2. Vinkeln v ligger mellan 90° och 270° och uppfyller $\sin v = \frac{\sqrt{5}}{3}$. Beräkna det exakta värdet av tan v.
- 3. Lös ekvationen cos(2x) + sin x = 0. 2 **p**
- 4. Beräkna arean av det område som begränsas av kurvorna $y = 3 x^4$ och $y = 2x^2$.
- 5. Beräkna $\int_{1}^{4} \frac{\left(x^2 1\right)dx}{\sqrt{x}}$.
- 6. Bestäm alla lokala maximi-, minimi- och terrasspunkter till funktionen $f(x) = x^3 e^{-x}$. 3 p
- 7. För vilka vinklar v mellan 0° och 360° gäller olikheten $\sin v + \sqrt{3}\cos v \le 1$? 3 **p**
- 8. Låt $f(x) = A\cos(3x)$. Bestäm konstanten A och en primitiv funktion F(x) till f(x) så att $F(\pi/6) = 1$ och så att $F(\pi/2) = 2$.
- 9. En bil med massan m = 1200 kg har i ett visst ögonblick hastigheten v = 18 m/s och accelerationen a = 2,0 m/s². Beräkna bilens effekt i detta ögonblick.
 - Ledning: Effekten ges av $P = \frac{dE_k}{dt}$, där $E_k = \frac{mv^2}{2}$. Accelerationen ges av $a = \frac{dv}{dt}$.
- 10. Bestäm derivatan av funktionen $f(x) = \ln \frac{1+x}{3-2x}$.
- 11. För två icke-negativa tal x och y definieras det a ritmetiska medelvärdet a som $a = \frac{x+y}{2}$ och det g eometriska medelvärdet g som $g = \sqrt{xy}$. Visa att $a \ge g$ för alla $x, y \ge 0$.

 Ledning: Det kan rekommenderas att betrakta uttrycket $\left(\sqrt{x} \sqrt{y}\right)^2$. (Andra metoder kan finnas.)

Lösningsförslag

- 1. Produktregeln ger $f'(x) = 1 \cdot \ln x + x \cdot \frac{1}{x} = \ln x + 1$. Insättning ger $f'(e) = \ln e + 1 = 2$. **Svar:** f'(e) = 2.
- 2. Trigonometriska ettan ger $\cos^2 v = 1 \frac{5}{9} = \frac{4}{9} \Leftrightarrow \cos v = \pm \frac{2}{3}$. Eftersom v ligger mellan 90° och 270° , är $\cos v \le 0$, alltså $\cos v = -\frac{2}{3}$. $\tan v = \frac{\sin v}{\cos v} = -\frac{\sqrt{5}}{3} / \frac{2}{3} = -\frac{\sqrt{5}}{2}$.

 Svar: $\tan v = -\frac{\sqrt{5}}{2}$.
- 3. Med formeln för dubbla vinkeln $\cos(2x) = 1 2\sin^2 x$ får vi en andragradsekvation för $\sin x$ $1 2\sin^2 x + \sin x = 0 \Leftrightarrow \sin^2 x \frac{1}{2}\sin x \frac{1}{2} = 0.$

Med substitutionen
$$t = \sin x$$
 fås ekv $t^2 - \frac{1}{2}t - \frac{1}{2} = 0$

$$pq$$
-formeln ger $t = \frac{1}{4} \pm \sqrt{\frac{1}{16} + \frac{1}{2}} = \frac{1}{4} \pm \frac{3}{4}$.

Plustecknet ger sin
$$x = 1$$
 med lösningarna $x = \frac{\pi}{2} + 2n\pi$.

Minustecknet ger
$$\sin x = -\frac{1}{2}$$
 med lösningarna $x = -\frac{\pi}{6} + 2n\pi$ och $x = \frac{7\pi}{6} + 2n\pi$.

Svar:
$$x = \frac{\pi}{2} + 2n\pi$$
, $x = -\frac{\pi}{6} + 2n\pi$, $x = \frac{7\pi}{6} + 2n\pi$

4. Först beräknas skärningspunkterna mellan kurvorna: $3-x^4=2x^2\Leftrightarrow x^4+2x^2-3=0$. Substitutionen $t=x^2$ ger $t^2+2t-3=0$. Lösningar $t=-1\pm\sqrt{1+3}=-1\pm2$. Eftersom $t=x^2$ gäller att t>0 och vi måste förkasta t=-3. Vi har alltså t=1 och genom att substituera tillbaka fås $x^2=1$ vilket ger skärningspunkterna $x=\pm1$.

Prövning visar att $3-x^4 > 2x^2$ för -1 < x < 1. Sökta arean är därför

$$A = \int_{-1}^{1} \left(3 - x^4 - 2x^2 \right) dx = \left[3x - \frac{x^5}{5} - \frac{2x^3}{3} \right]_{-1}^{1} = 2 \cdot \left(3 - \frac{1}{5} - \frac{2}{3} \right) = \frac{64}{15}.$$

Svar: Arean $\ddot{a}r \frac{64}{15}$.

5.
$$\int_{1}^{4} \frac{\left(x^{2} - 1\right) dx}{\sqrt{x}} = \int_{1}^{4} \left(x^{\frac{3}{2}} - x^{-\frac{1}{2}}\right) dx = \left[\frac{2}{5}x^{\frac{5}{2}} - 2x^{\frac{1}{2}}\right]_{1}^{4} = \frac{2}{5} \cdot 32 - 2 \cdot 2 - \left(\frac{2}{5} - 2\right)$$
$$= \frac{64 - 5 \cdot 4 - 2 + 5 \cdot 2}{5} = \frac{52}{5}.$$
Svar:
$$\int_{1}^{4} \frac{\left(x^{2} - 1\right) dx}{\sqrt{x}} = \frac{52}{5}$$

6.
$$f'(x) = 3x^2e^{-x} + x^3(-e^{-x}) = (3-x)x^2e^{-x}$$
.

Då $e^{-x} \neq 0$ för alla x fås derivatans nollställen till x = 0 och x = 3.

Teckentabell:

X		0		3	
f'(x)	+	0	+	0	-
f(x)	71	0	7	$27e^{-3}$	K

Svar: Terrasspunkt (0,0). Maximipunkt (3, 27e⁻³).

7. Omskrivning: $\sin v + \sqrt{3}\cos v = \sqrt{1+3}\sin(v+\varphi) = 2\sin(v+\varphi)$, där $\tan \varphi = \frac{\sqrt{3}}{1} = \sqrt{3}$, $0 \le \varphi \le 90^\circ$, dvs. $\varphi = 60^\circ$. Olikheten blir alltså $\sin(v+60^\circ) \le \frac{1}{2}$.

Gränserna till detta område ges av $\sin(v + 60^\circ) = \frac{1}{2}$. Vi substituerar $w = v + 60^\circ$ och får

$$\sin w = \frac{1}{2} \mod \text{l\"osningarna} \quad w = 30^\circ + n \cdot 360^\circ \Leftrightarrow v = -30^\circ + n \cdot 360^\circ \text{ och}$$

 $w = 150^\circ + n \cdot 360^\circ \Leftrightarrow v = 90^\circ + n \cdot 360^\circ$.

De gränsvinklar som ligger mellan 0 och 360° är $v_1 = 90^\circ$ och $v_2 = 330^\circ$.

Vi ritar nu $f(v) = \sin v + \sqrt{3}\cos v$ och $g(v) = \frac{1}{2}$ i samma graf och kan därefter läsa av i vilka intervall linjen ligger över kurvan.

Alternativ motivering: Vi prövar nu om olikheten är uppfylld i de områden som begränsas av ändpunkterna och gränsvinklarna.

Först en vinkel mellan 0° och 90°, t.ex 30°: $\sin(30^\circ + 60^\circ) = \sin 90^\circ = 1 > \frac{1}{2}$.

Sedan prövar vi en vinkel mellan 90° och 330°, t.ex 300°:

$$\sin(300^\circ + 60^\circ) = \sin 360^\circ = 0 \le \frac{1}{2}.$$

Till sist provar vi en vinkel mellan 330° och 360°, t.ex. 345°:

$$\sin(345^\circ + 60^\circ) = \sin 405^\circ \approx 0,71 > \frac{1}{2}$$

Prövningen visar att olikheten är uppfylld för vinklar mellan v_1 och v_2 men inte för andra vinklar mellan 0° och 360° .

Svar: $90^{\circ} \le v \le 330^{\circ}$.

8. Vi bestämmer först samtliga primitiva funktioner F(x) till f(x).

$$F(x) = \int f(x)dx = \int A\cos(3x)dx = \frac{A\sin(3x)}{3} + B.$$

Insättning av $F(\pi/6) = 1$ och $F(\pi/2) = 2$ ger ekvationssystemet

$$\begin{cases} 1 = \frac{A\sin(3 \cdot \pi/6)}{3} + B \\ 2 = \frac{A\sin(3 \cdot \pi/2)}{3} + B \end{cases}$$
$$\begin{cases} 1 = \frac{A\sin(\pi/2)}{3} + B \\ 2 = \frac{A\sin(3 \cdot \pi/2)}{3} + B \end{cases}$$
$$\begin{cases} 1 = \frac{A\sin(3 \cdot \pi/2)}{3} + B \end{cases}$$
$$\begin{cases} 1 = \frac{A}{3} + B \quad (I) \\ 2 = \frac{-A}{3} + B \quad (II) \end{cases}$$

(I)+(II) ger 3=2B, dvs B=3/2. Insättning i (I) ger

$$1 = \frac{A}{3} + \frac{3}{2}$$
$$\frac{A}{3} = 1 - \frac{3}{2}$$
$$\frac{A}{3} = -\frac{1}{2}$$

$$A = -\frac{3}{2}$$
.

Den sökta primitiva funktionen blir

$$F(x) = \frac{-\frac{3}{2}\sin(3x)}{3} + \frac{3}{2} = -\frac{1}{2}\sin(3x) + \frac{3}{2}.$$

Svar: $A = -\frac{3}{2}$ och den sökta primitiva funktionen är $F(x) = -\frac{1}{2}\sin(3x) + \frac{3}{2}$.

9. Kedjeregeln ger

$$\frac{dE_k}{dt} = \frac{m}{2} \cdot 2v \cdot \frac{dv}{dt} = mva$$

$$\frac{dE_k}{dt}$$
 = 1200 · 18 · 2, 0 = 43200 W

Svar: Effekten är 43 kW

10. Kedjeregeln med $u = \frac{1+x}{3-2x}$ samt kvotregeln ger

$$f'(x) = \frac{1}{u} \cdot \frac{1 \cdot (3 - 2x) - (1 + x) \cdot (-2)}{(3 - 2x)^2} = \frac{3 - 2x}{1 + x} \cdot \frac{5}{(3 - 2x)^2} = \frac{5}{(3 - 2x)(1 + x)}$$

Alternativ lösning: $f(x) = \ln(1+x) - \ln(3-2x)$

$$f'(x) = \frac{1}{1+x} - \frac{-2}{3-2x} = \frac{5}{(3-2x)(1+x)}.$$

Svar:
$$f'(x) = \frac{5}{(3-2x)(1+x)}$$

11. $(\sqrt{x} - \sqrt{y})^2 = x - 2\sqrt{xy} + y = 2(a - g)$. Eftersom det ursprungliga uttrycket är en kvadrat, kan det inte vara negativt. Därför gäller $2(a - g) \ge 0$ och alltså $a \ge g$, vilket skulle bevisas.

Generella riktlinjer för tentamensrättning

A. Varje beräkningsfel	-1 poäng
(Därefter fortsatt rättning enligt nya förutsättningar)	-1 poung
B. Beräkningsfel; allvarliga och/eller leder till förenkling	-2 poäng eller mer
C. Prövning istället för generell metod D. Felaktiga antaganden/ansatser	- samtliga poäng - samtliga poäng
E. Antar numeriska värden	- samtiga poäng - samtliga poäng
F. Lösning svår att följa och/eller Svaret framgår inte tydligt	-1 poäng eller mer
(Vid flera svar väljs det minst gynnsamma. Svara antingen avrunda	
G. Matematiska symboler används felaktigt/saknas Bl.a Om '=' saknas (t.ex. '=>' används istället)	-1poäng eller mer -1 poäng/tenta
Om '=' används felaktigt (t.ex. istället för '=>')	-1 poäng/tenta
Teoretiska uppgifter:	1
H. Avrundat svar Tillämpade uppgifter:	-1 poäng/tenta
I. Enhet saknas/fel	-1 poäng/tenta
J. Avrundningar i delberäkningar som ger fel svar	-1 poäng/tenta
K. Svar med felaktigt antal värdesiffror (±1 värdesiffra ok)	-1 poäng/tenta
L. Andra avrundningsfel M. Exakt svar	-1 poäng/tenta -1 poäng/tenta
	1 6
Preliminär Rättningsanvisning för uppgifter	
f'(x) follows	2 n
1. $f'(x)$ fel	-2 p
Fel vid insättning av $x = e$	-1 p
ln e kvar i svaret	-1 p
2. Svarar $\tan v = \pm \frac{\sqrt{5}}{2}$ eller $\tan v = \pm \frac{\sqrt{5}}{2}$	-1p
3. Varje saknad lösningsfamilj	-1 p
Period saknas eller felaktig	-1 p
4. Integrationsgränser ej analytiskt beräknade	-1 p
Korrekt uttryck för gränserna, men felberäknade	-1p
Integrationsfel	-2 p
Negativ area eller får negativt svar och trollar bort minusteck	-
5. Fel primitiv funktion	-2 p
Anger enhet t ex a.e. 6. Varje saknat nollställe till derivatan	-1p -1 p
Felaktig kategorisering eller ej kategoriserade punkter	-1 p/uppgift
7. Håller sig inte till intervallet 0 - 360°	-1 p
Rätt gränser, redovisar ej på vilken sida villkoret gäller	-1 p
Förskjuter sinuskurvan åt fel håll	-1p
8. Försöker bestämma A innan integrering	-3p
Saknar 3 i nämnare till primitiv funktion	-1p
Annat fel i primitiv funktion	-3p
Rätt ekvationssystem	+2p
Korrekt beräknat A , men glömmer att svara med A	-0p
,	1
9. Saknad enhet	-0p denna gång
10. Deriveringsfel	-2 p
11	r