

Análise de Circuitos

Licenciatura em Engenharia Electrotécnica e de Computadores LEEC e MBioNano 2021/22

1º Trabalho de Laboratório

CIRCUITOS RESISTIVOS

Leis de Kirchhoff, Equivalente de Thévenin e Princípio da Sobreposição

Teresa Mendes de Almeida Paulo Flores

Departamento de Engenharia Electrotécnica e de Computadores Área Científica de Electrónica

Setembro de 2021

Circuitos Resistivos Ver.20211007

© Teresa Mendes de Almeida

© Paulo Flores

Este Guia de Trabalho de Laboratório destina-se a ser utilizado, exclusivamente, pelos alunos da unidade curricular Análise de Circuitos da Licenciatura em Engenharia Electrotécnica e de Computadores (LEEC) e Mestrado Bolonha em Bioengenharia e Nanossistemas (MBioNano) do Instituto Superior Técnico, no 1º trimestre do ano lectivo 2021/2022. É expressamente interdita a cópia, reprodução e difusão para outros fins, sem autorização expressa dos autores, quaisquer que sejam os meios para tal utilizados, com a excepção do direito de citação definido na lei.

GUIA DO TRABALHO DE LABORATÓRIO

1 Introdução

Para a realização deste trabalho de laboratório é necessário fazer uma preparação antes da aula de laboratório, que consta da leitura do guia do trabalho, da aprendizagem dos conceitos teóricos necessários, da análise teórica dos circuitos a serem testados, da resposta a todas as questões teóricas que são colocadas no guia de trabalho, da simulação dos circuitos em análise e da previsão e planeamento dos procedimentos experimentais a realizar na aula de laboratório. Durante a aula de laboratório devem ser realizadas as experiências indicadas no guia do trabalho, registados os resultados e elaborado o relatório. Este relatório consiste no correcto preenchimento da secção 2.3 - RELATÓRIO DO TRABALHO DE LABORATÓRIO, que faz parte deste guia e que deve ser entregue em papel no final da aula de laboratório.

1.1 Objectivos

Este trabalho de laboratório tem os seguintes objectivos:

- consolidação da aprendizagem da utilização de alguns equipamentos de laboratório (base de experimentação e placa de ensaio (*breadboard*), equipamentos de medida e geradores de funções).
- montagem e teste de circuitos simples que permitem a verificação experimental de alguns dos conceitos teóricos aprendidos, nomedamente:
 - 1. verificação experimental da Lei de Kirchhoff das Tensões (KVL);
 - 2. verificação experimental do Teorema de Sobreposição;
 - 3. verificação experimental do equivalente de Thévenin.
- análise dos resultados experimentais obtidos através da sua confrontação com os resultados da previsão teórica e da simulação;
- elaboração de um relatório de um trabalho experimental;
- desenvolvimento de competências em ambiente laboratorial e de trabalho em equipe.

1.2 Equipamento e Material para Ensaio Laboratorial

Para a realização do trabalho são necessários os seguintes equipamentos: base de experimentação com fontes de tensão fixas de $\pm 5\,\mathrm{V}$ e reguláveis até $\pm 15\,\mathrm{V}$, multímetro, osciloscópio, gerador de funções, cabos BNC-BNC, um adaptador T e um alicate e/ou descarnador. Para realizar as montagens precisa de uma placa de ensaio, fios e os componentes do circuito.

Os componentes a utilizar são os seguintes:

$$1 \times 15k\Omega$$
 $8 \times 22k\Omega$ $1 \times 150k\Omega$ $1 \times 33k\Omega$

Antes de iniciar o laboratório um dos alunos do grupo deve requisitar a placa de ensaio e as resistências ficando responsável pelo material requisitado.

No início do laboratório, deve trazer para a bancada todo o equipamento e material necessário e no fim da aula deve devolvê-lo e arrumá-lo e deixar a bancada arrumada e limpa e todos os equipamentos desligados.

1.3 Base de Experimentação

A montagem dos circuitos em ensaio é feita sobre a base de experimentação e interligando os respectivos componentes na placa ensaio.

A alimentação dos circuitos em ensaio é feita directamente através da base de experimentação que fornece tensões DC reguláveis entre -15 V e +15 V, e fixas de -5 e de +5 V.

1.4 Voltímetro Digital

Um voltímetro digital em modo DC permite medir tensões (diferenças de potencial) entre os nós de interesse. Neste modo DC é medido o valor médio da tensão (uma tensão alternada sinusoidal sem componente contínua dará indicação de 0V). A escala de um voltímetro (quando não é automática) deve ser escolhida com atenção de forma a estar ajustada ao valor da grandeza a medir.

2 Plano de Trabalho

2.1 Divisor de Tensão com carga

O divisor de tensão resistivo é muito utilizado em circuitos electrónicos como forma de disponibilizar múltiplas tensões contínuas (DC) geradas como réplicas escaladas de uma mesma tensão de alimentação fixa. No entanto, há que ter o cuidado de dimensionar o divisor resistivo por forma a que, ao colocarmos uma carga resistiva, esta não altere significativamente o valor da tensão resultante.

Vamos analisar este efeito com mais detalhe. Para tal, com o auxílio da placa de ensaio e da base de experimentação monte o circuito representado na Figura 1. As resistências têm o valor de $R_1 = 22k\Omega$ e $R_2 = 33k\Omega$. A fonte de tensão independente V_S é realizada recorrendo à fonte de alimentação fixa de 5V disponível na base de experimentação. Execute agora os seguintes passos do procedimento experimental, registando, comentando e procurando justificar no relatório todos os resultados obtidos:

Figura 1: Divisor resistivo e respectiva resistência de carga.

- 1. Com $R_L = \infty$, determine os valores teóricos de V_{R_1} , V_{R_2} . Meça com o voltímetro as tensões V_{R_1} , V_{R_2} e V_S . Confirme que a lei KVL se verifica na malha formada pela fonte tensão e pelas resistências R1 e R2. Comente os resultados obtidos quanto à precisão das igualdades obtidas.
- 2. Carregue agora o divisor de tensão, fazendo sucessivamente $R_L = 150k\Omega$ e $R_L = 15k\Omega$
 - (a) Utilizando o conceito de divisor de tensão, apresente uma equação simbólica que permita determinar V_{AB} (ou seja, a tensão entre os terminais $A \to B$ que está aplicada na resistência de carga R_L) a partir de V_S e considerando R_L ligada ao circuito. Utilize a notação simplificada para resistências em paralelo (por exemplo, R_A/R_B).
 - (b) Calcule os valores teóricos esperados para cada uma das resistências de carga R_L .
 - (c) Registe os valores experimentais obtidos para V_{AB} para os diferentes calores de carga R_L .
 - (d) Compare os valores obtidos experimentalmente com os valores teóricos e comente o efeito de redução de R_L no divisor de tensão.

2.2 Teorema de Sobreposição – Rede com dois Geradores de Tensão

O Teorema de Sobreposição é extremamente útil e permite obter as grandezas eléctricas de um circuito linear com múltiplos geradores independentes como uma sobreposição de contribuições de cada uma desses geradores quando consideradas de forma isolada.

Figura 2: Circutio com dois geradores de tensão.

Considere o circuito representado na Figura 2 e faça $R_1 = R_2 = R_4 = \mathbf{R} = 22k\Omega$ e $R_3 = \frac{\mathbf{R}}{2} = 11k\Omega = \frac{22}{2}k\Omega$ (obtido com o paralelo de duas resistências iguais). Faça ainda $V_{B0} = V_{B1} = +5V$.

Sempre com a carga R_L desligada proceda da seguinte forma:

- 1. Meça e registe o valor da tensão de saída aos terminais A B ($V_{AB} = V_A V_B$).
- 2. Anule a fonte V_{B1} , nessa situação meça e registe a contribuição da fonte V_{B0} para a tensão de saída (V_{AB_0}) .
- 3. Anule agora apenas a fonte V_{B0} , nessa situação meça e registe a contribuição da fonte V_{B1} para a tensão de saída (V_{AB_1}) .
- 4. Determine a expressão simbólica que permite calcular teoricamente os valores de V_{AB_0} e V_{AB_1} (considerando R_L desligada). Calcule os valores teóricos de V_{AB_0} e V_{AB_1} .
- 5. Confirme que a tensão originalmente obtida é a soma das duas contribuições V_{AB_0} e V_{AB_1} obtidas separadamente. Comente os resultados obtidos face aos valores teóricos e ao teorema de sobreposição.

2.3 Equivalente de Thévenin de uma Rede com dois Geradores de Tensão

Os Equivalentes de Thévenin e de Norton constituem ferramentas de grande utilidade para facilitar a análise de redes lineares. Neste ponto iremos determinar experimentalmente o Equivalente de Thévenin visto para esquerda dos os terminais A - B da circuito da Figura 2 (com $V_{B0} = V_{B1} = +5V$) e confirmar a sua equivalência.

Para determinar experimentalmente a resistência equivalente de Thévenin, sem usar um amperímetro, pode proceder-se como se indica a seguir:

- 1. Registe o valor da tensão equivalente de Thévenin que coincide com o valor da tensão V_{AB} quando $R_L = \infty$ (valor já obtido anteriormente).
- 2. Faça $R_L = 33k\Omega$ e meça a tensão de saída aos terminais A B, registando o resultado obtido (V'_{AB}) .
- 3. Com base nos dois resultados anteriores, apresente a expressão simbólica que permite determinar a resistência equivalente de Thévenin (R_{Th}) . Calcule o valor experimental de R_{Th} .

- 4. Apresente o circuito que permite determinar a R_{Th} e apresente a expressão simbólica que permite obter o seu valor teórico. Utilize a notação simplificada para as resistências em paralelo, por exemplo: $(R_A//R_B) + R_C$.
- 5. Compare e comente o resultado teórico com o valor determinado experimentalmente.

Para confirmar a equivalência de ambos os circuitos, proceda do seguinte modo:

- 6. Faça $R_L = 15k\Omega$ e meça a tensão de saída aos terminais A B, registando o resultado obtido.
- 7. Construa agora o circuito equivalente de Thévenin com base nos elementos que calculou anteriormente. A resistência de Thévenin (R_{Th}) pode ser realizada com duas resistências em paralelo. A tensão de Thévenin (V_{Th}) pode ser realizada com uma das fontes de alimentação ajustáveis. Desenhe o esquema do circuito que montou.
- 8. Carregue agora o equivalente de Thévenin com a mesma carga $R_L = 15k\Omega$ e meça a tensão de saída aos terminais A B, registando o resultado obtido. Compare o resultado obtido com o que obteve no ponto 6 e comente a validade do equivalente.

RELATÓRIO DO TRABALHO DE LABORATÓRIO

ACir 2021/22 Lab.1	Data		Turno	Grupo
Número	Nome			_
Número	Nome			
Número	Nome			
Estas folhas servem para reş A numeração das secções co				
2.1 Divisor de Tensão co	om carga			
1. Valores teóricos e exp	perimentais de <i>V</i>	V_{R_1} , V_{R_2} e V_S (com R	$Q_L = \infty$):	
Val. Teóricos: V_{R_1}	=	$V_{R_2} =$		$V_S =$
Val. Medidos: V_{R_1}	=	$V_{R_2} =$		$V_S =$
Confirmação experim	iental das equaç	ões do KVL:		
Comentário ao resulta	ado obtido:			
		_		
2. Efeito de carga no div	visor de tensão.			
(a) Expressão teório	ca para o cálculo	de V_{AB} com R_L :		
$ig _{V_{AB}}$ $=$				

(b)	Valores teóricos de V_{AB} pa	ara os dois valore	es de R_L :		
	$R_L = 150k\Omega : V_{AB} =$		$R_L=15$	$k\Omega:V_{AB}=$	
(c)	Valores experimentais me	edidos de V_{AB} par	a os valores de	R_L :	
	$R_L = 150k\Omega : V_{AB} =$		$R_L=15$	$k\Omega:V_{AB}=$	
(d)	Comparação dos valores o	obtidos e efeito d	la redução do va	alor de R_L na tensão V_{AB} :	
2 2 T		.	G 1 1	. m. ~	
2.2 1eor	ema de Sobreposição –	Rede com dois	s Geradores d	le Tensao	
Reg	isto da medição dos valores	s de V_{AB} :			
1.	$V_{AB} =$	$2. V_{AB_0} = \underline{\hspace{1cm}}$		3. $V_{AB_1} = $	
4. Exp	ressão simbólica para cálcu	ilo de valores V_{AI}	_B e respectivo v	alores teóricos:	_
V_A	$B_0 =$		$V_{AB_0}=$		
V_A	$B_0 = \underline{\hspace{1cm}}$		$V_{AB_0} = $		
5. Con	firmação do teorema de sob	oreposição e com	nparação com o	s valores teóricos:	

2.3 Equivalente de Thévenin de uma Rede com dois Geradores de Tensão

1. $V_{AB} =$	2. $V'_{AB} = $	
xpressão simbólica para o cálculo c	e R_{Th} experimental:	
$R_{Th} =$	$R_{Th} = $	
álculo teórico do valor de R_{Th} :		
Circuito para calculo de R_{Th} :		
Expressão Teórica: $R_{Th}=$	Valor de R	Th = -
Expressão Teórica: $R_{Th}=$	Valor de R	Th =

Esquema do	circuito equivale	nte de Thévenin	(indique o valo	r que usado V_{T_i}	$_{h}$ e de R_{Th}):
	no circuito equivo de resultados e c				
	no circuito equivo de resultados e c				
omparação	o de resultados e c				
Comparação	o de resultados e c				
Comparação	o de resultados e c				
Comparação	o de resultados e c				
Comparação	o de resultados e c				
	o de resultados e c				