Chapter 14

Wireless LANs

- Basic Services: Basic Service Set (BSS) and the Extended Service Set (ESS)
- BSS building block of a wireless LAN
 - Made up of stationary or mobile wireless stations and an optional central base station, access point (AP)
 - Ad hoc BSS without AP
 - Infrastructure BSS with AP

BSS: Basic service set

AP: Access point

- ESS made up of two or more BSSs with APs; BSS are connected through a distribution system, usually a wired LAN
- Mobile or stationary stations

• ESS

- Station Types:
 - No-transition stationary or moving only inside a BSS
 - BSS-transition station can move from one BSS to another confined inside one ESS
 - ESS-transition mobility station can move from one ESS to another
- IEEE does not guarantee that communication is continuous

IEEE 802.11 MAC

Distributed Coodination Function

- Distributed Coordination Function (DCF)
- Uses CSMA/CA
- Cannot use CSMA/CD because:
 - Station must send and receive at the same time; costly
 - Collision may not be detected because of hidden station problem
 - Distance between stations may be great

Distributed Coordination Function

- Abbreviations
 - DIFS distributed interframe space
 - RTS request to send
 - SIFS short interframe space
 - CTS clear to send

CSMA/CA Flow-

chart

Network Allocation Vector

- How other stations defer sending their data if one station acquires access?
 - When a station sends an RTS frame, it includes the duration of time it needs to occupy the channel
 - Station affected by the transmission creates a timer called NAV
- Each station, before sensing the physical medium to see if it is idle, first checks to see its NAV to see it it has expired
- During handshaking no CTS means collision

CSMA/CA and NAV

Point Coordination Function

- Optional access method for time-sensitive transmission
- Can be implemented in an infrastructure network only
- Centralized, contention-free polling access method
- PIFS and SIFS, PIFS shorter than DIFS (gives higher priority to PCF over DCF)

Point Coordination Function

 Repetition interval - allow DCF stations to access the medium(when PCF is present)

ICS-UPLB

Fragmentation

- Wireless environment is very noisy
- Corrupted frames must be retransmitted
- More efficient to resend small frames than a large one

 Frame Control (FC) – defines the type of frame and some control information

Field	Explanation		
Version	Current version is 0		
Туре	Type of information: management (00), control (01), or data (10)		
Subtype	Subtype of each type (see Table 14.2)		
To DS	Defined later		
From DS	Defined later		
More flag	When set to 1, means more fragments		
Retry	When set to 1, means retransmitted frame		
Pwr mgt	When set to 1, means station is in power management mode		
More data	When set to 1, means station has more data to send		
WEP	Wired equivalent privacy (encryption implemented)		
Rsvd	Reserved		

- D duration of the transmission that is used to set the value of NAV
- Addresses four 6-byte addresses (depends on the value of TO DS and FROM DS
- Sequence control sequence number of the frame to be used in flow control
- Frame body can be between 0 and 2312 bytes;
 info depends on the type and subtype in FC

ICS-UPLB

• FCS - CRC-32

Frame Types

- Management Frames initial communication
- Data Frames data
- Control Frames –accessing the channel and acknowledging frames; type field: 01

Subtype Meaning		
1011	Request to send (RTS)	
1100	Clear to send (CTS)	
1101 Acknowledgment (ACK)		

Addressing Mechanisms

To DS	From DS	Address 1	Address 2	Address 3	Address 4
0	0	Destination	Source	BSS ID	N/A
0	1	Destination	Sending AP	Source	N/A
1	0	Receiving AP	Source	Destination	N/A
1	1	Receiving AP	Sending AP	Destination	Source

Addressing Mechanisms

a. Case 1

c. Case 3

b. Case 2

d. Case 4

Hidden Station Problem

 Can reduce the capacity of the network because of collision

B and C are hiddent from each other with respect to A.

Hidden Station Problem

Handshaking to solve HSP

First Semester 2012-2013

CMSC 137
Data Communications and Networking ICS-UPLB

Exposed Station Problem

 Station refrains from using the channel even when it is available

C is exposed to transmission from A to B.

Physical Layer

IEEE	Technique	Band	Modulation	Rate (Mbps)
802.11	FHSS	2.4 GHz	FSK	1 and 2
	DSSS	2.4 GHz	PSK	1 and 2
		Infrared	PPM	I and 2
802.11a	OFDM	5.725 GHz	PSK or QAM	6 to 54
802.11b	DSSS	2.4 GHz	PSK	5.5 and 11
802.11g	OFDM	2.4 GHz	Different	22 and 54

Physical Layer

ISM band

Physical Layer

First Semester 2012-2013

CMSC 137
Data Communications and Networking ICS-UPLB

JAC Hermocilla

IEEE 802.11a OFDM

- Orthogonal frequency-division multiplexing (OFDM) same as FDM except all sub bands are used by one source at a given time
- Band is divided into 52 subbands with 48 groups of bits at a time and 4 subbands for control information
- Uses PSK (18 Mbps) and QAM (54 Mbps)

IEEE 802.11b DSSS

- High-rate direct sequence spread spectrum (HR-DSSS)
- 2.4-GHz ISM
- Uses complementary code keying (CCK)
- Encode 4 or 8 bits to one CCK symbol

ICS-UPLB

First Semester 2012-2013

CMSC 137
Data Communications and Networking

IEEE 802.11g

- OFDM
- 2.4-GHz ISM band
- 22- or 54-Mbps data rate

Bluetooth

- Wireless LAN technology designed to connect devices of different functions such as telephones, notebooks, computers (desktop and laptop), cameras, etc.
- An ad hoc network piconet
- Network cannot be large
- Started as a project by the Ericsson Company

ICS-UPLB

From the word "Blaatand"

Bluetooth

Piconet

- May have up to 8 nodes; one primary others secondary
- Scatternet
 - Combination of Piconets
 - A secondary station in one piconet can be the primary in another
 - A station can be a member of two piconets
- Current data rate of 1Mbps with 2.4 GHz bandwidth can cause interference with 802.11b

ICS-UPLB

Layers

Radio Layer

- Equivalent to the physical layer
- Range of 10m
- 2.4-GHz ISM band divided into 79 channels of 1 MHz each
- FHSS hops 1600 times per second
- Uses Gaussian FSK for modulation

Baseband Layer

- Equivalent to the MAC sublayer
- Uses Time-Division Duplex TDMA
- Communication is between primary and secondaries only
- If there is one secondary, time slot is divided into 625 micro seconds with the primary using even-numbere slots and secondary using oddnumbered slots

Baseband Layer

 Single secondary communication; primary uses even numbered slots

Baseband Layer

 Multiple-secondary communication; similar to poll/select with reservations

Physical Links

- Synchronous connection-oriented (SCO) used when avoiding latency is more important than integrity; no retransmission
 - Reserves two slots at regular intervals
 - Used in real-time audio
- Asynchoronous connectionless link (ACL) used when data integrity is more important than latency; with retransmission

Frame Format (Baseband Layer)

- Three types: one-slot, three-slot, five-slot
- A slot is 625 microseconds
- One-slot: with 1-MHz bandwidth and 1 bit/Hz, size is 366 bits
- Three-slot: size is 1616 bits
- Five-slot: size is 2866 bits

- Access code 72-bits; sync bits; primary id
- Header 54 bits in a repeated 18-bit pattern
 - Address secondaries id
 - Type type of data
 - F flow control, A ACK, S seq #, HECchecksum

This 18-bit part is repeated 3 times.

illa

Frame Format (Baseband Layer)

Payload – 0 to 2740 bits

L2CAP

- Logical Link Control and Adaptation Protocol (L2CAP)
- Used for exchange in ACL link
- Allows multiplexing, segmentation and reassembly, QoS, and Group Management

2 bytes	2 bytes	0 to 65,535 bytes
Length	Channel ID	Data and control

Enjoy!:)