

EXPRESS MAIL CERTIFICATE

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 C.F.R. § 1.10 on the date indicated below and is addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231.

Typed or Printed Name	Cloyd Bigalbal	Express Mail No.	EL 563 387 369 US
Signature		Date	04/17/01
SUBMISSION OF SEQUENCE LISTING UNDER 37 CFR §§1.821-1.825 Address to: Assistant Commissioner for Patents Box Patent Application Washington, D.C. 20231		Attorney Docket	STAN110CON
		First Named Inventor	Butcher et al.
		Application Number	Unassigned
		Filing Date	Herewith (April 17, 2001)
		Group Art Unit	Unassigned
		Examiner Name	Unassigned
		Title:	"MODULATION OF SYSTEMIC MEMORY T CELL TRAFFICKING"

Sir:

A Sequence Listing in computer readable form as required by 37 CFR §1.821(e) and in compliance with the requirements of 37 CFR §1.824 is submitted herewith. In addition, applicant submits a paper copy of the Sequence Listing as required under 37 CFR §1.821(c) and a statement under 37 CFR §1.821(f).

I hereby state that this Sequence Listing submission, filed in accordance with 37 CFR §1.821(g), does not contain new matter. Furthermore, pursuant to 37 CFR §1.821(f), I hereby state that the content of the paper and computer readable copies of the Sequence Listing, submitted in accordance with 37 CFR §1.821(c) and (e), respectively, are the same and that the sequence listings contain no new matter.

The Sequence Listing was prepared with the software FASTSEQ, and conforms with the Patent Office guidelines. Applicant respectfully submits that the subject application is in adherence to 37 CFR §§1.821-1.825.

Respectfully submitted,

Dated: April 17, 2001

By:
 Pamela J. Sherwood
 Registration No. 36,677

BOZICEVIC, FIELD & FRANCIS LLP
 200 Middlefield Road, Suite 200
 Menlo Park, CA 94025
 Telephone: (650) 327-3400
 Facsimile: (650) 327-3231

SEQUENCE LISTING

<110> Butcher, Eugene C.
 Campbell, James J.
 Rottman, James B.
 Wu, Lijan

<120> Modulation of Systemic Memory T Cell
 Trafficking

<130> STAN-110CON

<140> Unassigned
 <141> 2001-04-17

<150> 09/232,878
 <151> 1999-01-15

<160> 6

<170> FastSEQ for Windows Version 4.0

<210> 1
 <211> 1677
 <212> DNA
 <213> H. sapiens

<220>
 <221> CDS
 <222> (183)...(1265)
 <223> CCR4, Chemokine receptor coding sequence

<400> 1						
cggggggtttt gatcttcttc cccttctttt cttccccc ttcctttcctt cctccctcccc						60
tctctcattt cccttctcctt tctccctcag tctccacattt caacatttgc aagtccattt						120
agaaaaagcaa gctgcttctg gttggggcca gacctgcctt gaggagcctg tagagttaaa						180
aa atg aac ccc acg gat ata gca gat acc acc ctc gat gaa agc ata						227
Met Asn Pro Thr Asp Ile Ala Asp Thr Thr Leu Asp Glu Ser Ile						
1 5 10 15						
tac agc aat tac tat ctg tat gaa agt atc ccc aag cct tgc acc aaa						275
Tyr Ser Asn Tyr Tyr Leu Tyr Glu Ser Ile Pro Lys Pro Cys Thr Lys						
20 25 30						
gaa ggc atc aag gca ttt ggg gag ctc ttc ctg ccc cca ctg tat tcc						323
Glu Gly Ile Lys Ala Phe Gly Glu Leu Phe Leu Pro Pro Leu Tyr Ser						
35 40 45						
ttg gtt ttt gta ttt ggt ctg ctt gga aat tct gtg gtg gtt ctg gtc						371
Leu Val Phe Val Phe Gly Leu Leu Gly Asn Ser Val Val Val Leu Val						
50 55 60						
ctg ttc aaa tac aag cgg ctc agg tcc atg act gat gtg tac ctg ctc						419
Leu Phe Lys Tyr Lys Arg Leu Arg Ser Met Thr Asp Val Tyr Leu Leu						
65 70 75						
aac ctt gcc atc tcg gat ctg ctc ttc gtg ttt tcc ctc cct ttt tgg						467

Asn Leu Ala Ile Ser Asp Leu Leu Phe Val Phe Ser Leu Pro Phe Trp				
80	85	90	95	
ggc tac tat gca gca gac cag tgg ttt ggg cta ggt ctg tgc aag				515
Gly Tyr Tyr Ala Ala Asp Gln Trp Val Phe Gly Leu Gly Leu Cys Lys				
100	105	110		
atg att tcc tgg atg tac ttg gtc ttt tac agt ggc ata ttc ttt				563
Met Ile Ser Trp Met Tyr Leu Val Gly Phe Tyr Ser Gly Ile Phe Phe				
115	120	125		
gtc atg ctc atg agc att gat aga tac ctg gcg ata gtg cac gcg gtg				611
Val Met Leu Met Ser Ile Asp Arg Tyr Leu Ala Ile Val His Ala Val				
130	135	140		
ttt tcc ttg agg gca agg acc ttg act tat ggg gtc atc acc agt ttg				659
Phe Ser Leu Arg Ala Arg Thr Leu Thr Tyr Gly Val Ile Thr Ser Leu				
145	150	155		
gct aca tgg tca gtg gct gtg ttc gcc tcc ctt cct ggc ttt ctg ttc				707
Ala Thr Trp Ser Val Ala Val Phe Ala Ser Leu Pro Gly Phe Leu Phe				
160	165	170	175	
agc act tgt tat act gag cgc aac cat acc tac tgc aaa acc aag tac				755
Ser Thr Cys Tyr Thr Glu Arg Asn His Thr Tyr Cys Lys Thr Lys Tyr				
180	185	190		
tct ctc aac tcc acg acg tgg aag gtt ctc agc tcc ctg gaa atc aac				803
Ser Leu Asn Ser Thr Trp Lys Val Leu Ser Ser Leu Glu Ile Asn				
195	200	205		
att ctc gga ttg gtg atc ccc tta ggg atc atg ctg ttt tgc tac tcc				851
Ile Leu Gly Leu Val Ile Pro Leu Gly Ile Met Leu Phe Cys Tyr Ser				
210	215	220		
atg atc atc agg acc ttg cag cat tgt aaa aat gag aag aag aac aag				899
Met Ile Ile Arg Thr Leu Gln His Cys Lys Asn Glu Lys Lys Asn Lys				
225	230	235		
gcg gtg aag atg atc ttt gcc gtg gtc ctc ttc ctt ggg ttc tgg				947
Ala Val Lys Met Ile Phe Ala Val Val Leu Phe Leu Gly Phe Trp				
240	245	250	255	
aca cct tac aac ata gtg ctc ttc cta gag acc ctg gtg gag cta gaa				995
Thr Pro Tyr Asn Ile Val Leu Phe Leu Glu Thr Leu Val Glu Leu Glu				
260	265	270		
gtc ctt cag gac tgc acc ttt gaa aga tac ttg gac tat gcc atc cag				1043
Val Leu Gln Asp Cys Thr Phe Glu Arg Tyr Leu Asp Tyr Ala Ile Gln				
275	280	285		
gcc aca gaa act ctg gct ttt gtt cac tgc tgc ctt aat ccc atc atc				1091
Ala Thr Glu Thr Leu Ala Phe Val His Cys Cys Leu Asn Pro Ile Ile				
290	295	300		
tac ttt ttt ctg ggg gag aaa ttt cgc aag tac atc cta cag ctc ttc				1139
Tyr Phe Phe Leu Gly Glu Lys Phe Arg Lys Tyr Ile Leu Gln Leu Phe				
305	310	315		

aaa acc tgc agg ggc ctt ttt gtg ctc tgc caa tac tgt ggg ctc ctc		1187
Lys Thr Cys Arg Gly Leu Phe Val Leu Cys Gln Tyr Cys Gly Leu Leu		
320 325 330 335		
caa att tac tct gct gac acc ccc agc tca tct tac acg cag tcc acc		1235
Gln Ile Tyr Ser Ala Asp Thr Pro Ser Ser Tyr Thr Gln Ser Thr		
340 345 350		
atg gat cat gat ctt cat gat gct ctg tag gaaaaatgaa atggtaaat		1285
Met Asp His Asp Leu His Asp Ala Leu *		
355 360		
gcagagtcaa tgaactttc cacattcaga gcttacttta aaattggtat ttttaggtaa		1345
gagatccctg agccagtgtc aggaggaagg cttacaccca cagtggaaag acagcttctc		1405
atcctgcagg cagcttttc tctcccaacta gacaagtcca gcctggcaag ggttcacctg		1465
gctgaggca tccttcctca caccaggctt gcctgcaggc atgagtcaat ctgatgagaa		1525
ctctgagcag tgcttgaatg aagttgtagg taatattgca aggcaaagac tattcccttc		1585
taacctgaac tgatgggttt ctccagaggg aattgcagag tactggctga tggagtaaat		1645
cgctacctt tgctgtggca aatggcccc cg		1677
<210> 2		
<211> 360		
<212> PRT		
<213> H. sapiens		
<400> 2		
Met Asn Pro Thr Asp Ile Ala Asp Thr Thr Leu Asp Glu Ser Ile Tyr		
1 5 10 15		
Ser Asn Tyr Tyr Leu Tyr Glu Ser Ile Pro Lys Pro Cys Thr Lys Glu		
20 25 30		
Gly Ile Lys Ala Phe Gly Glu Leu Phe Leu Pro Pro Leu Tyr Ser Leu		
35 40 45		
Val Phe Val Phe Gly Leu Leu Gly Asn Ser Val Val Val Leu Val Leu		
50 55 60		
Phe Lys Tyr Lys Arg Leu Arg Ser Met Thr Asp Val Tyr Leu Leu Asn		
65 70 75 80		
Leu Ala Ile Ser Asp Leu Leu Phe Val Phe Ser Leu Pro Phe Trp Gly		
85 90 95		
Tyr Tyr Ala Ala Asp Gln Trp Val Phe Gly Leu Gly Leu Cys Lys Met		
100 105 110		
Ile Ser Trp Met Tyr Leu Val Gly Phe Tyr Ser Gly Ile Phe Phe Val		
115 120 125		
Met Leu Met Ser Ile Asp Arg Tyr Leu Ala Ile Val His Ala Val Phe		
130 135 140		
Ser Leu Arg Ala Arg Thr Leu Thr Tyr Gly Val Ile Thr Ser Leu Ala		
145 150 155 160		
Thr Trp Ser Val Ala Val Phe Ala Ser Leu Pro Gly Phe Leu Phe Ser		
165 170 175		
Thr Cys Tyr Thr Glu Arg Asn His Thr Tyr Cys Lys Thr Lys Tyr Ser		
180 185 190		
Leu Asn Ser Thr Thr Trp Lys Val Leu Ser Ser Leu Glu Ile Asn Ile		
195 200 205		
Leu Gly Leu Val Ile Pro Leu Gly Ile Met Leu Phe Cys Tyr Ser Met		
210 215 220		
Ile Ile Arg Thr Leu Gln His Cys Lys Asn Glu Lys Lys Asn Lys Ala		
225 230 235 240		
Val Lys Met Ile Phe Ala Val Val Leu Phe Leu Gly Phe Trp Thr		

245	250	255
Pro Tyr Asn Ile Val Leu Phe Leu Glu Thr Leu Val Glu Leu Glu Val		
260	265	270
Leu Gln Asp Cys Thr Phe Glu Arg Tyr Leu Asp Tyr Ala Ile Gln Ala		
275	280	285
Thr Glu Thr Leu Ala Phe Val His Cys Cys Leu Asn Pro Ile Ile Tyr		
290	295	300
Phe Phe Leu Gly Glu Lys Phe Arg Lys Tyr Ile Leu Gln Leu Phe Lys		
305	310	315
Thr Cys Arg Gly Leu Phe Val Leu Cys Gln Tyr Cys Gly Leu Leu Gln		
325	330	335
Ile Tyr Ser Ala Asp Thr Pro Ser Ser Tyr Thr Gln Ser Thr Met		
340	345	350
Asp His Asp Leu His Asp Ala Leu		
355	360	

<210> 3
<211> 538
<212> DNA
<213> H. sapiens

<220>
<221> CDS
<222> (53)...(337)
<223> Coding sequence for TARC chemokine

<400> 3		
ccctgagcag agggacctgc acacagagac tccctcctgg gtcctggca cc atg gcc		58
	Met Ala	
	1	
cca ctg aag atg ctg gcc ctg gtc acc ctc ctc ctg ggg gct tct ctg		106
Pro Leu Lys Met Leu Ala Leu Val Thr Leu Leu Leu Gly Ala Ser Leu		
5	10	15
cag cac atc cac gca gct cga ggg acc aat gtg ggc cgg gag tgc tgc		154
Gln His Ile His Ala Ala Arg Gly Thr Asn Val Gly Arg Glu Cys Cys		
20	25	30
ctg gag tac ttc aag gga gcc att ccc ctt aga aag ctg aag acg tgg		202
Leu Glu Tyr Phe Lys Gly Ala Ile Pro Leu Arg Lys Leu Lys Thr Trp		
35	40	45
50		
tac cag aca tct gag gac tcc agg gat gcc atc gtt ttt gta act		250
Tyr Gln Thr Ser Glu Asp Cys Ser Arg Asp Ala Ile Val Phe Val Thr		
55	60	65
gtg cag ggc agg gcc atc tgt tcg gac ccc aac aac aag aga gtg aag		298
Val Gln Gly Arg Ala Ile Cys Ser Asp Pro Asn Asn Lys Arg Val Lys		
70	75	80
aat gca gtt aaa tac ctg caa agc ctt gag agg tct tga agcctcctca		347
Asn Ala Val Lys Tyr Leu Gln Ser Leu Glu Arg Ser *		
85	90	
ccccagactc ctgactgtct cccgggacta cctggaccc ccaccgttgg tgttcaccgc		407
ccccaccctg agcgccctggg tccagggag gccttccagg gacgaagaag agccacagtg		467
agggagatcc catccccttg tctgaactgg agccatggc acaaaggccc cagattaaag		527

tctttatcct c

538

<210> 4
<211> 94
<212> PRT
<213> H. sapiens

<400> 4
Met Ala Pro Leu Lys Met Leu Ala Leu Val Thr Leu Leu Leu Gly Ala
1 5 10 15
Ser Leu Gln His Ile His Ala Ala Arg Gly Thr Asn Val Gly Arg Glu
20 25 30
Cys Cys Leu Glu Tyr Phe Lys Gly Ala Ile Pro Leu Arg Lys Leu Lys
35 40 45
Thr Trp Tyr Gln Thr Ser Glu Asp Cys Ser Arg Asp Ala Ile Val Phe
50 55 60
Val Thr Val Gln Gly Arg Ala Ile Cys Ser Asp Pro Asn Asn Lys Arg
65 70 75 80
Val Lys Asn Ala Val Lys Tyr Leu Gln Ser Leu Glu Arg Ser
85 90

<210> 5
<211> 2923
<212> DNA
<213> H. sapiens

<220>
<221> CDS
<222> (20)...(301)
<223> Coding sequence for MDC chemokine

<400> 5
gagacataca ggacagagc atg gct cgc cta cag act gca ctc ctg gtt gtc 52
Met Ala Arg Leu Gln Thr Ala Leu Leu Val Val
1 5 10
ctc gtc ctc ctt gct gtg gcg ctt caa gca act gag gca ggc ccc tac 100
Leu Val Leu Ala Val Ala Leu Gln Ala Thr Glu Ala Gly Pro Tyr
15 20 25
ggc gcc aac atg gaa gac agc gtc tgc tgc cgt gat tac gtc cgt tac 148
Gly Ala Asn Met Glu Asp Ser Val Cys Cys Arg Asp Tyr Val Arg Tyr
30 35 40
cgt ctg ccc ctg cgc gtg aaa cac ttc tac tgg acc tca gac tcc 196
Arg Leu Pro Leu Arg Val Val Lys His Phe Tyr Trp Thr Ser Asp Ser
45 50 55
tgc ccg agg cct ggc gtg gtg ttg cta acc ttc agg gat aag gag atc 244
Cys Pro Arg Pro Gly Val Val Leu Leu Thr Phe Arg Asp Lys Glu Ile
60 65 70 75
tgt gcc gat ccc aga gtg ccc tgg gtg aag atg att ctc aat aag ctg 292
Cys Ala Asp Pro Arg Val Pro Trp Val Lys Met Ile Leu Asn Lys Leu
80 85 90
agc caa tga agaggctact ctgatgaccg tggccttggc tcctccagga 341
Ser Gln *

aggctcagga gccttacacc cctggcattta tagctgtcc cccgcagaag cctgtccaa
ctctctgcat tccctgatct ccattccctgt ggctgtcacc cttggtcacc tccgtgtctg
caactgccatc tccccctgta cccctctaacc ccattctctg cttccctccc tgcaagtca
gggtcctgtt cccatcagcg attccctgc ttAAACCCTT ccatgactcc ccactgcct
aagctgaggt cagtcctcca agcctggcat gtggccctct ggatctgggt tccatctctg
tctccagcct gcccacttcc cttcatgaat gttgggttct agctccctgt tctccaaacc
catactacac atcccacttc tgggtctttg cctggatgt tgctgacact cagaaagtcc
caccacccatc acatgtgttag ccccacccagc cttccaaaggc attgctgccc caagcagctg
gtaattccat ttcatgtatt agatgtcccc tggccctctg tccctctta ataacccttag
tcacagtctc cgcaagattct tgggattttgg ggggtttctc ccccacctct ccactagttg
gaccaaggtt tctagctaag ttactcttagt ctccaaggct cttagcataga gcactgcaga
caggccctgg ctcaagaatca gagccccagaa agtggtcgca gacaaaatca ataaaactaa
tgtccctccc ctctccctgc caaaaggcag ttacatatac atacagagac tcaaggtcac
tagaaatggg ccagctgggt caatgtgaag ccccaaattt gcccagatcc acctttctc
ccccactccc tttttttttt tttttttttt gagatggagt ttgcgtcttgc acacccacgc
tggagtgc aa tgggtggc ttggcttatt gaagcctctg cctcctgggt tcaagtgtt
ctcttcctc agcctcctgaa gtagctggga ttacagggtt ctagtaccac gcccagactaa
tttttgtatt tttagtagag acgaggctt accatgttgg ccaggcttgc ctogaactcc
tgtcctcagg taatccgccc acctcagcct cccaaagtgc tgggattaca gggtgagcc
acagtgcctg gccttctccc ccaggcttggaa gtgcagtggc actttttttt tttttttatg
gcagggtctc actctgtcgc cttccact gccccccca gtgatctcggtcaactacaa
cctcgaccc tcgggttcaa gtgatttcc caccggcgttcc tcccaagtag ctgggattac
aggtgtgtgc cactacggct ggctaatttt tttttttttt tttttttttt tttttttttt
atggccagg ctgttcttgc actcctgttgc tttttttttt tttttttttt tttttttttt
agtgtgaga ttacaggcgtt gacttatcac acccaggcttcc cccctttttt tcctaataagg
agactcctgtt acctttcttcc gttttaccta tttttttttt tttttttttt tttttttttt
cctcaggctt tttttgggtg tttttttttt tttttttttt tttttttttt tttttttttt
taccccccattt tccactttcc ctgccttctt cttttttttt tttttttttt tttttttttt
atgggtgtgaa agactaccc ttgttcttgc tttttttttt tttttttttt tttttttttt
aacagagtaa atacttaaga gttttttttt tttttttttt tttttttttt tttttttttt
gggggacaag gtgaagctt cttttttttt tttttttttt tttttttttt tttttttttt
ctctctctt gtctgtggca gttttttttt tttttttttt tttttttttt tttttttttt
ggtagagacc attctcagggtt gttttttttt tttttttttt tttttttttt tttttttttt
gcctttctgg ctgatTTTTT gttttttttt tttttttttt tttttttttt tttttttttt
actcctgggc tcaagcgttcc tttttttttt tttttttttt tttttttttt tttttttttt
aatcactgc gcctggcttc tttttttttt tttttttttt tttttttttt tttttttttt
gggacagcag tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
gaggctgggtg ccgtctgca gttttttttt tttttttttt tttttttttt tttttttttt
ccctgaaccc agcctgacaa tttttttttt tttttttttt tttttttttt tttttttttt
ctcagggttga aagtgtgggg tttttttttt tttttttttt tttttttttt tttttttttt
cctgtgtccc tcccgaaaccc tttttttttt tttttttttt tttttttttt tttttttttt
tgcctactgc ccatgaacgg tttttttttt tttttttttt tttttttttt tttttttttt
tgtccttgc cctcaggact tttttttttt tttttttttt tttttttttt tttttttttt
aaataaaaaaaaaaaaaaa

<210> 6
<211> 93
<212> PRT
<213> *H. sapiens*

```

<400> 6
Met Ala Arg Leu Gln Thr Ala Leu Leu Val Val Leu Val Leu Leu Ala
      1           5           10          15
Val Ala Leu Gln Ala Thr Glu Ala Gly Pro Tyr Gly Ala Asn Met Glu
      20          25          30
Asp Ser Val Cys Cys Arg Asp Tyr Val Arg Tyr Arg Leu Pro Leu Arg
      35          40          45

```

Val Val Lys His Phe Tyr Trp Thr Ser Asp Ser Cys Pro Arg Pro Gly
50 55 60
Val Val Leu Leu Thr Phe Arg Asp Lys Glu Ile Cys Ala Asp Pro Arg
65 70 75 80
Val Pro Trp Val Lys Met Ile Leu Asn Lys Leu Ser Gln
85 90