Perspectives and Hints for Homework 1

April 3, 2022
Lisheng Su
lisheng@uchicago.edu

The views expressed are the author's and do not necessarily represent the views of the management of the Federal Reserve Bank of Chicago or the Federal Reserve System.

Q1. Know Thy Correlations

Given PD's and PDJ's

PD ₁	PD ₂	PD_3	PDJ _{1,2}	PDJ _{1,3}	PDJ _{2,3}
0.1	0.2	0.3	0.06	0.06	0.06

- 1. Find the three values of correlation: $\rho_{1,2}$, $\rho_{1,3}$, $\rho_{2,3}$
- Find the three values of <u>default correlation</u>:
 DCorr[D₁, D₂], DCorr[D₁, D₃], and DCorr[D₂, D₃]

Q1 Hints: ρ_{ij} versus DCorr[D_i, D_j]

- Note the difference between ρ_{ij} and DCorr[D_i, D_j]
 - Theory check: What are the variables underlying each of the two correlation measures? (See L1.S39 – 43)
 - Bonus: How are the two quantities related, i.e., $\rho_{\rm ij}$ versus DCorr[D_i, D_i]?
 - Bonus on bonus: Lecture 1 describes "three common ways to state the degree of connection between firms". Given one, is it possible to infer the other two? (Hint: L1.S42)
 - We will build more intuitions in later homework questions

Q1. Hints for Solving ρ_{ij}

• Given the PDs and PDJ, solve ho_{ii} from

$$PDJ_{ij} = \int_{-\infty}^{\Phi^{-1}[PD_i]} \int_{-\infty}^{\Phi^{-1}[PD_j]} \phi \left[Z_i, Z_j, \rho_{ij} \right] dZ_j dZ_i \rightarrow \rho_{ij}$$

- The process calls for
 - numerically implementing the double integral and
 - then inverting the function to solve for ho_{ii}
- Theory check: What is the condition for a function to be invertible?

Q2. Joint Probabilities of Default

• Given that each PD = 0.10 and ρ_{ij} 's =

$\begin{pmatrix} 1 & .4 & .5 \\ .4 & 1 & .6 \end{pmatrix} \rightarrow$	PD_1	PD_2	PD_3	$ ho_{1,2}$	$ ho_{1,3}$	$ ho_{2,3}$
.5 .6 1	0.1	0.1	0.1	0.4	0.5	0.6

1. Find the three values of PDJ:

$$PDJ_{ij} = \int_{-\infty}^{\Phi^{-1}[PD_i]} \int_{-\infty}^{\Phi^{-1}[PD_j]} \phi[Z_i, Z_j, \rho_{ij}] dZ_j dZ_i =?$$

- 2. State the range of possible values for the probability that all three firms default. Hint: try to stylize your solution using the Venn diagrams as examples (L1.S48)
- 3. State the probability that all three default under the Gauss copula.

$$PDJ_{123} = \int_{-\infty}^{\Phi^{-1}[0.1]} \int_{-\infty}^{\Phi^{-1}[0.1]} \int_{-\infty}^{\Phi^{-1}[0.1]} \phi_3 \begin{bmatrix} Z_1 \\ Z_2 \\ Z_3 \end{bmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & .4 & .5 \\ .4 & 1 & .6 \\ .5 & .6 & 1 \end{pmatrix} dZ_1 dZ_2 dZ_3 = ?$$

Q2. Hints on Implementation

- Implement a numerical function to do a triple integral
 - Hint on hint: This might become a programming challenge. Try to code one piece of the equation at a time and make sure that the parentheses are balanced.
 - You might want to use a simple case to perform sanity check on the implementation, e.g., what should triple integral produce if all three firms are independent?

Q3. Credit Worthiness and Dynamics

Q3. Suppose a firm rated A has correlation 0.4 with a firm rated B. They will obey the transition matrix in the next period.

Transition probabilities											
	A B D										
Α	0.5	0.4	0.1								
В	0.3	0.5	0.2								

Create a three-by-three grid and fill in the cells with probabilities that sum to 1.00. Two digits of accuracy is sufficient, e.g., 0.66. Assume that all transitions obey a Gauss copula.

Q3 Hints: Rating Transition Matrix

- A firm's credit worthiness is measured by credit ratings.
 - Firm A is rated A and Firm B is rated B today.
 - Rating A is better than rating B, which is better than rating D.
 - D = default.
- In the next period (e.g., in 12 months), "things" can change. So would a firm's credit worthiness. The probabilities of a firm's new rating are given in the transition matrix. For example,
 - The probability of Firm A remaining at the rating of A is 50%.
 - The default probabilities are given, $PD_1 = 10\%$ and $PD_2 = 20\%$.

Transition probabilities										
Firm/New Rating	Α	В	D							
Firm A	0.5	0.4	0.1							
Firm B	0.3	0.5	0.2							

Q3 Hints: The Underlying Dynamics

- Assume Gaussian copula and build from the previous homework questions.
 - Let Z_1 denote the latent variable that drives the ratings of Firm A, and Z_2 for Firm B.
 - The innovations of the latent variable cause a firm's rating to transition in the next period. For example,

$$Z_1 \sim N[0, 1] \text{ or } P[D_1 = 1] = \int_{-\infty}^{\Phi^{-1}[PD_1]} \phi[z_1] dz_1 = 10\%$$

The underlying dynamics also drive the joint default behavior of the two firms:

$$PDJ_{AB} = \int_{-\infty}^{\Phi^{-1}[.1]} \int_{-\infty}^{\Phi^{-1}[.2]} \phi[Z_1, Z_2, 0.4] dZ_2 dZ_1$$

Q4. Beyond Gaussian Copula

- Suppose that four firms have PDs equal to 1%, 2%, 3%, and 4%, and the probability that any given pair defaults equals 0.1%.
 - Part 1. What is the matrix of correlations?
 - Part 2. Explain why the defaults of the four firms can or cannot be connected by a Gauss copula.

Q4 Hints: Validity of a Correlation Matrix

- One way to interpret the question: Assume PDs and PDJs can be observed from data,
 - Can we claim that the underlying copula is Gaussian?
 - Even if we can use a Gaussian copula to explain the data (meaning the correlation matrix inferred from data is valid), can we assume that no other copulas are possible?
- Hint: Assume Gaussian copula for Part 1 and see if you can find a valid correlation matrix from the given PDs and PDJs (what makes a correlation matrix valid?! If so, the first half of Part 2 is answered.)

Applying Math in Modeling

- Focus on capturing the behaviors of drivers and dynamics, e.g., what causes default?
 - Using latent variable, Z, as proxy driver
 - Layered dynamics: how Z translates to default event;
 correlated Z's to represent herd behaviors
- Set up a collection of machinery
 - Analytical approach and asymptotic approach
 - Always helpful to build intuitions and do sanity checks with simulations and plotting
- Always be curious and always seek discipline

Appendix. Notations and Greek Letters

- Notations for normal distribution in this course
 - Unless otherwise specified, we denote a variable having the standard normal distribution as Z ~ N[0,1]
 - Denote normal distribution PDF (probability density function): ϕ ,
 pronounced as /fee/
 - Denote normal distribution CDF (cumulative distribution function): Φ , also pronounced /fee/

Greek letters															
Name	TeX	HTML	Name	TeX	HTML		Name	TeX	HTML	Name	TeX	HTML	Name	TeX	HTML
Alpha	A α	Αα	Digamma	FF	FF		Карра	Κκχ	Ккх	Omicron	Оо	Оо	Upsilon	Υv	Υυ
Beta	$B\beta$	Вβ	Zeta	$Z\zeta$	Ζζ		Lambda	$\Lambda \lambda$	Λλ	Pi	$\Pi\pi\varpi$	Пπϖ	Phi	$\Phi \phi \varphi$	Φφφ
Gamma	$\Gamma \gamma$	Гγ	Eta	${ m H}\eta$	Нη		Mu	$\mathrm{M}\mu$	Мμ	Rho	$P \rho \varrho$	Ρρο	Chi	$X\chi$	Хχ
Delta	$\Delta \delta$	Δδ	Theta	$\Theta \theta \vartheta$	Θθ3		Nu	$N \nu$	Νv	Sigma	Σσς	Σσς	Psi	$\Psi \psi$	Ψψ
Epsilon	$\mathrm{E}\epsilonarepsilon$	Εεε	lota	$I\iota$	Ti		Xi	$\Xi \xi$	Ξξ	Tau	$\mathrm{T} au$	Тт	Omega	$\Omega \omega$	Ωω

(taken from Wikipedia.com)