=> Reap -> Os, viv us Kulkprogramming 05 Process, PCB, Pre- Non Pre, CPU Scheduling Non-preemptime => Cout switch processes premptone es sustains is possible Df. ue have a pre-emplone OS, we can schedule some other procen that will make our system mon efficient. CPV Scheduling 3) Why CPV Scheduling: -) Interactive Problems due to CPV Scheduling: CONTEXT SWITCHING A ---- 10 -> Swiry NF -930-40 ${f B}$. → (win Suresh ___ Netflix

> fustagram Clars

Spent here to get contest (lum)

CPU: when a CPU switches a task, it usu have to stox its previous state to the memory, and it usu also have to boad prev state of next task in the memory

- or It have and boading takes expra time
- 9 CONTERT SWITCHING
- of A lot of context sustering can do more harm than good because they also take there

: CPV scheduling algo!

- * 0 context sustering time
- * Single core CPV (I task at a time)

1) FCFS (first Came First Serve) :-

	PID	Arrival time	Pine to compute
	7	t	Ч
	a 2	\	5
/	3	3	6
	પ	\	8
	S	5	کر ا
	6		

At any time CPV has to decide which process to run next, here it will choose the process that had come the carbinst, if I or more processes come at the same time it will the process with lesson pid.

: Non-preemptive algo: No scheduling until & prouss faistes

Implement FCFS -> Plp => Ust < Process>

Process

-> Op => Ust < pid, time>

-> time to complete

: SRTF => Shortest Remaining Pine Frist a) Poc-empkine—algo!

it can pause a process already running to schedule a new process.

60 this algo will run:

- · Wherever a new process comes up
- · whenever an earlier process
- C) Whenever this also runs, it will calculate the remaining time of all processes that have come till now and will schedule one with the shortest remaining time.

PID	Arrival time	Time to compute	Remaining have	
1	1	4	2 X X O	\ -> U
	\	5	(& P	-> 1
2	3	6	6	→ (
ક પ	\	8	8	→ ô
9 S	4	a	& O	<u> </u>
6	5	Ч	\ x o	- (
\ 0				

-> Problem with SRif:

· STARVATION:

A process with large time of completion will storme for CPU.

=> Round Robin CPU scheduling algo:

- : Only t process to priched up, and other process.
- " take a quantem of time 2 q orsum o q = 2s

idea: after every quantum of time, pause the current process

Process

Pid	Amival Home	fine to compl.
ι	1	6460
Z	2	310
3	3	975
Y	3	¥ 20
2	5	X 87

(A) (Y)

Every time when a previous process ENDS OR a quentum of time clapses, pouce the current process, more to the back of queue, and start the process at the point of queue.

$$\begin{array}{c} 1 \longrightarrow 4 \\ 2 \longrightarrow 14 \\ 3 \longrightarrow 19 \end{array}$$

Y- 26

Word Processors (Ms. word, hoogie Doc)
ck.

Hi, now are you?

1) granuman check
11) Spell check
111) obsplay Ui
11) Suggestrons
11) Auto Same
11) Checks for updates

Thread

- A wit of Qu agrecution-

→ CPV eyewtes floread

whenever anything Ps number on your machine, there is a CPU running a thread, which is running the code.

3) Process US thread :-

1) threads can execute parallely multiple things

my data sharing - threads can share data but procurses cant share data.

Processes talk to each other, colled IPC & Luter Process (Communication)

111) Process talles more memory than threads.

100 Creating a new process & shower them creating a new thread.