Logic Testing ATPG

Virendra Singh

Professor

Department of Electrical Engineering & Dept. of Computer Science & Engineering Indian Institute of Technology Bombay http://www.ee.iitb.ac.in/~viren/

E-mail: viren@{ee, cse}.iitb.ac.in

EE-677: Foundations of VLSI CAD

Lecture 24 on 05 Oct 2021

CADSL

& Algebraire & Boolean Dufference SAT. Algorithmic > PODEM. (1981)

Probhy Goel.
(Verilog) Q > 0

ATPG - Algorithmic

- Path Sensitization Method
 - Fault Sensitization
 - ➤ Fault Propagation ✓
 - ➤ Line Justification ✓
- Path Sensitization Algorithms
 - ➤ D- Algorithm (Roth)
 - ➤ PODEM (P. Goel)
 - FAN (Fujiwara)
 - > SOCRATES (Schultz)
 - SPIRIT (Emil & Fujiwara)

Common Concept

- ❖ Fault Activation problem → a LJ Problem
- ❖ The Fault Propagation problem →
 - Select a FP path to PO → Decision 1
 - 2. Once the path is selected \rightarrow a set of LJ problems
- The LJ Problems Decisions or Implications

To justify $c = 1 \rightarrow a = 1$, b = 1 (Implication)

To justify $c = 0 \rightarrow a = 0$ or b = 0 (Decision)

❖ Incorrect decision → Backtrack → Another decision

Automatic Test Pattern Generation: Algorithmic

PODEM

CAD@IITB

CADSL

9

Decisions during LJ

J – Frontier: A set of all gates whose output value is known but not implied by its input value

PODEM High-Level Flow

- 1. Assign binary value to unassigned PI
- 2. Determine implications of all PIs
- 3. Test Generated? If so, done.
- 4. Test possible with more assigned PIs? If maybe, go to Step 1
- 5. Is there untried combination of values on assigned PIs? If not, exit: untestable fault
- 6. Set untried combination of values on assigned PIs using objectives and backtrace. Then, go to Step 2

PODEM-Algorithm

PODEM: Example

PODEM: Value Comp

Objective	PI assignment	Implications	D-frontier	Comments
a=0	a=0	h=1	g	
b=1	b=1		g	
c=1	c=1	g=D	i,k,m	
d=1	d=1	d?0		
		i=D	k,m,n	
k=1	e=0	e?1		
		j=0		
		k=1		
		n=1	m	x-path check fail !!
	e=1	e?0		reversal
		j=1		
		k=D	m,n	
I=1	f=1	f?0		
		I=1		
		m=D		
		n=D		

PODEM: Decision Tree

Thank You

