

# System analysis of large-scale biochar production and use in Stockholm





# The biochar-energy trade-off





Lifecycle of biochar



3



### Four words about the model



A future and large plant

A *generic* and *explorative* farm





# Climate impact at production











### kg CO<sub>2-eq</sub>/ton dry woodchips

Combustion: 283 kg CO<sub>2-eq</sub>/ton 294 kg CO<sub>2-eq</sub>/ton Pyrolysis:

### $g CO_{2-eq}/MJ_{fuel} (LHV)$

Combustion: 14.9 g CO<sub>2-eq</sub>/MJ<sub>fuel</sub> Pyrolysis: 15.5 g CO<sub>2-eq</sub>/MJ<sub>fuel</sub>



# Climate impact after energy use





$$S_i = U_0 \times \eta_i \times EF_i$$

$$S_i = U_0 \times \eta_i \times \left[ (1 - \alpha_i) \times EF_{i,h} + \alpha_i \times EF_{i,p} \right]$$

### **Generic Energy Substitution**

**CHP from Natural Gas** 

### **Energy Penalty**

~ 540 kg CO<sub>2-ea</sub>/ton woodchips

Is the biochar use compensating the energy penalty?



### Climate impact after biochar use



### Biochar use phase

~ 770 kg CO<sub>2-ea</sub>/ton woodchips



25%  $CH_4$ ,  $N_2O$ 



64%  $CO_2$ 



11%

 $CO_2$ 



# So what? Life-cycle interpretation



- Methodological choices

  How is the penalty affected by choices?
- Uncertainty
  How certain are the biochar effects?
- Sensitivity
  What if key parameters are changed?



# (1) Specific energy substitution



$$S_i = U_0 \times \eta_i \times EF_i$$

$$S_i = U_0 \times \eta_i \times \left[ (1 - \alpha_i) \times EF_{i,h} + \alpha_i \times EF_{i,p} \right]$$

How is Stockholm's energy system responding to a change in production? Which fuels are replaced?

$$S_i = \sum (\Delta C_{fuel} \times EF_{fuel}) + \Delta C_p \times EF_p$$



~410 kg CO<sub>2</sub>/ton woodchips Power-dominated penalty



### (2) Biochar effects are uncertain

| List of Random Variables |    |               |       |        |         |              |        |
|--------------------------|----|---------------|-------|--------|---------|--------------|--------|
|                          |    | Variable      | Value | a/mean | b/stdev | Distribution | Mean   |
|                          | 1  | r.ent.CH4     | 3%    | 0,00   | 0,05    | uniform      | 2,5%   |
|                          | 2  | r.sto.CH4     | 11%   | 0,00   | 0,25    | uniform      | 12,5%  |
|                          | 3  | r.sto.vol.NH4 | 16%   | 0,00   | 0,25    |              | 12,5%  |
|                          | 4  | r.sto.N2O.d   | 6%    | 0,00   | 0,25    |              | 12,5%  |
|                          | 5  | r.sld.vol.NH4 | 5%    | 0,00   | 0,60    | uniform      | 30,0%  |
|                          | 6  | r.sld.lea.NO3 | 58%   | 0,00   | 0,60    | uniform      | 30,0%  |
|                          | 7  | r.sld.N2O.d   | 77%   | 0,15   | 0,30    | normal       |        |
|                          | 8  | r.mld.vol.NH4 | 42%   | 0,00   | 0,60    | uniform      | 30,0%  |
|                          | 9  | r.mld.lea.NO3 | 53%   | 0,00   | 0,60    | uniform      | 30,0%  |
|                          | 10 | r.mld.N2O.d   | -7%   | 0,15   | 0,30    | normal       |        |
|                          | 11 | r.soil.CH4    | -48%  | -0,50  | 0,00    | uniform      | -25,0% |
|                          | 12 | ar.feed       | 0,17  | 0,00   | 0,24    | uniform      | 0,12   |
|                          | 13 | ar.mixing     | 0,02  | 0,00   | 0,06    | uniform      | 0,030  |
|                          | 14 | SOC.decay     | 3,9%  | 0,00   | 0,10    | uniform      | 5,0%   |
|                          | 15 | SOC.input     | 4,5%  | 0,00   | 0,10    | uniform      | 5,0%   |
|                          | 16 | DC stability  | 920/  | 0.7    | 0.0     | wifema       | 90.00/ |

Monte-Carlo simulation provides a range of likely values around the "best guess".





### Two kinds of biochar systems



# Biochar system in a fossil reference

Penalty and Carbon sequestration are of same order of magnitude.

Agricultural effects are necessary to overcome penalty, but uncertainties are large.

### 2 "Ideal" biochar system

With a low-carbon power, agricultural effects alone could overcome the energy penalty.

Carbon sequestration then becomes an actual benefit



### **Conclusions**

The climate suitability of "using woodchips for biochar" is function of

- (i) Background energy system
- (ii) Performance of biochar in the field

In this study, this energy context, this biochar use and our assumptions:

- (i) Energy penalty: 400-500 kg CO<sub>2</sub>-eq/ton woodchips, dominated by the fate of power production
- (ii) Biochar in the field:  $770 \text{ kg CO}_2$ -eq/ton woodchips, but very uncertain, exploratory rather than predictive, require manure-related experiments and long-term carbon monitoring

