A Poisson Multiplex Graph Model for Clustering Scientific Abstracts

Eve Fraczkiewicz, Alfonso Landeros

Department of Statistics, University of California, Riverside

Abstract

- Generative AI models like ChatGPT are notorious for regurgitating false information, and as they become more sophisticated, it becomes increasingly difficult to differentiate between AI-generated and "human-generated" text.
- As more evidence of these models being used in academic writing comes to light, it is important to develop methods for detecting AI-generated text to protect academic integrity.
- We propose a Poisson multiplex graph model that clusters scientific abstracts into three groups: Al-generated, human-written, or ambiguous, by utilizing n-grams.
- Al-generated text, like human-written text, tends to have distinct features. By observing shared n-grams across and between generated and written text, we can find these unique features and use them to cluster abstracts into their respective groups.
- We tested our method on two datasets, the first being a collection of 28,000 abstracts from COVID-19 research papers, and the second being a collection of 12,000 abstracts of various topics scrapped from Nature.
- We utilized the Jaccard index and F-1 scores to assess the quality and accuracy of our model.

Background

Multiplex Graphs

- A mathematical model which contains nodes that are connected by
- Multigraphs can have multiple edges between two nodes.
- Multiplex graphs are multigraphs that can have different types of edges.

- A list of n-sized consecutive word groups from a piece of text. **Sentence Embeddings**
- Word embeddings are special vectors that capture the semantic and contextual information of a word.
- To calculate sentence embeddings we compute the weighted average of all the word embeddings in a sentence:

$$v_s = \frac{1}{|s|} \sum_{w \in s} \frac{\alpha}{\alpha + p(w)} v_w$$

- And remove the projections of the weighted average vector on their first singular vector: $v_s = v_s - uu^T v_s$

Methods

Collecting n-gram Data

- After generating n-grams for each abstract we calculate the sentence embeddings of each n-gram.
- In every abstract pair we calculate the cosine distance between each embedding and add to a count matrix if the distance is smaller than 0.1.
- **Poisson Clustering Model** - The resulting count matrix is a representation of our multiplex graph, each abstract is a node and their shared n-gram counts are the edges.
- To determine if the connections between nodes are statistically significant we assume the number of edges between nodes follows a Poisson distribution.
- We assign each node i a propensity p_i to form edges with other nodes and a cluster assignment c, to account for the two different types of abstracts.
- To estimate the expected parameters we use the Poisson log-likelihood:

$$Poisson(c, p, R) = \sum_{i} \sum_{j \neq i} \left[x_{ij} \ln(r_{c_i c_j} p_i p_j) - r_{c_i c_j} p_i p_j - \ln(x_{ij}!) \right]$$

Mutual Ranking

- To calculate statistical significance we calculate the p-values of the residuals for each node pair and rank them for each node and all its node pairs.

$$R_{ij} = h(Z_{ij}) - [h(\hat{\mu}_{ij}) + \frac{1}{2}h''(\hat{\mu}_{ij})\hat{\mu}_{ij}]$$

Covid Dataset Performance

5 Cluster Jaccard Index and F-1 Score

1-gram machine **9** 2-gram machine 11 3-gram human

Row	n_gram	f1_score
	String	Float64
1	1-gram	0.831403
2	2-gram	0.907001
3	3-gram	0.793068

 3-gram machine machine Row n gram f1 score 1-gram 0.818878 2-gram 0.9332 3-gram 0.820937

8 Cluster Jaccard Index and F-1 Score

Articles Dataset Performance

14 3-gram machine machine

•		5 Cluste	r Jaccard Ind	dex and F-1 S	core	8	Cluster	Jaccard Inc	dex and F-1	Score
score	Row	n_gram	cluster_label	ground_truth	j_score	Row	n_gram	cluster_label	ground_truth	j_score
loat64		String	String	String	Float64		String	String	String	Float6
0.512	1	1-gram	human	human	0.895753	1	1-gram	human	human	0.906
0.488	2	1-gram	human	machine	0.00630252	2	1-gram	human	machine	0.0355
0.0	3	1-gram	machine	human	0.0482897	3	1-gram	machine	human	0.0165
	4	1-gram	machine	machine	0.899254	4	1-gram	machine	machine	0.89
0.0		3				5	2-gram	ambiguous	human	0.047
0.0	5	2-gram	ambiguous	human	0.167213	6	2-gram	ambiguous	machine	0.0661
0.0	6	2-gram	ambiguous	machine	0.166102	7	2-gram	human	human	0.847
0.876173	7	2-gram	human	human	0.758285	8	2-gram	human	machine	0.0327
	8	2-gram	human	machine	0.00114025	9	2-gram	machine	human	0.0278
.0219895	9	2-gram	machine	human	0.0233074	10	2-gram	machine	machine	0.822
.0459653	10	2-gram	machine	machine	0.764244	11	3-gram	ambiguous	human	0.139
0.876173	11	3-gram	human	human	0.722772	12	3-gram	ambiguous	machine	0.157
0.729875	12	3-gram	human	machine	0.101512	13	3-gram	human	human	0.667
.0524554	13	3-gram	machine	human	0.0816777	14	3-gram	human	machine	0.0645
0.109129	14		machine	machine	0.701068	15	3-gram	machine	human	0.057
	14	a-dram	Machine	Machine	11/111108					

Row	n_gram	f1_score
	String	Float64
1	1-gram	NaN
2	2-gram	0.934
3	3-gram	0.853824

human

machine

Row n_gram f1_score

1 1-gram 0.757519

2 2-gram 0.932362

3 3-gram 0.809777

	_5	
	String	Float64
1	1-gram	0.99
2	2-gram	0.972781
3	3-gram	0.860656

Row n gram f1 score

Row n_gram f1_score

- We tested 2-8 different clusters to see if there was any clustering happening on a level beyond just written and generated text.
- While the Jaccard indices were the best for 2 clusters, the F-1 scores improved with higher order clusters.
- This suggests that globally we are not accurately clustering written and generated abstracts, but our within-cluster groupings are good.

Conclusion

Project Goal

- We successfully built an accessible model that directly accounts for n-gram statistics and is able to achieve reasonable clustering into generated and written abstracts.

Reflection

- We initially intended on only collecting raw shared n-gram counts and using a purely propensity-based Poisson model, but we shifted to sentence embeddings and clustering to better reflect our data.

Future Directions

- In the future, we anticipate improving our initial clustering and investigating any possible hierarchical clustering.
- We will also experiment with using adjective information from the abstracts to improve our model
- Our end goal is to use our insights to pool information across layers in the multiplex graph to guide the design of a classification model.

References

Ranola, John M., et al. "A Poisson model for random multigraphs." Bioinformatics, vol. 26, no. 16, 16 June 2010, pp. 2004-2011, https://doi.org/10.1093/bioinformatics/btq309.

Ranola, John Michael et al. "Cluster and propensity based approximation of a network." BMC systems biology vol. 7 21. 14 Mar. 2013, doi:10.1186/1752-0509-7-21

Arora, Sanjeev, et al. "A Simple but Tough-to-Beat Baseline for Sentence Embeddings", 5 May 2023, https://openreview.net/group?id=ICLR.cc/2017/conference.