Upper and lower limits

Aditya Makkar

a.makkar@columbia.edu

Abstract

This note attempts to present the concepts of upper and lower limits in a lucid manner. It grew out of the unsatisfactorily terse treatment of this important topic in Rudin's Principles of Mathematical Analysis. Very basic familiarity with analysis is assumed.

1 Preliminaries

In the spirit of keeping this article fairly independent and establishing a common notation, let's review some preliminaries.

Definition 1.1. Suppose S is an ordered set, and $E \subset S$. If there exists a $\beta \in S$ such that $x \leq \beta$ for every $x \in E$, we say that E is bounded above, and call β an upper bound of E.

Lower bounds are defined in the same way with \geq in place of \leq .

Definition 1.2. Suppose S is an ordered set, $E \subset S$, and E is bounded above. Suppose there exists an $\alpha \in S$ with the following properties:

- 1. α is an upper bound of E.
- 2. If $\gamma < \alpha$ then γ is not an upper bound of E.

Then α is called the *least upper bound* of E or the *supremum* of E, and we write

$$\alpha = \sup E$$

That there is at most one supremum is clear from the property 2 above. The *greatest lower bound*, or *infimum*, of a set E which is bounded below is defined in the same manner, and we write it as inf E. Note that if $x \in E$, $\alpha = \sup E$, and $x < \alpha$ then there exists $y \in E$ such that $x < y < \alpha$ because otherwise x would a lower bound less than α .

Definition 1.3. A sequence is function defined on the set \mathbb{N} of positive integers. If $f(n) = x_n$, for $n \in \mathbb{N}$, we denote the sequence f by the symbol $\{x_n\}$, or sometimes by x_1, x_2, \ldots

Definition 1.4. A sequence $\{p_n\}$ in a metric space X is said to *converge* if there is a point $p \in X$ with the following property: For every $\epsilon > 0$ there is an integer N such that $n \geq N$ implies that $d(p_n, p) < \epsilon$. We write this as $\lim_{n \to \infty} p_n = p$ or as $p_n \to p$.

Definition 1.5. Let $\{s_n\}$ be a sequence of real numbers with the following property: For every real M there is an integer N such that $n \geq N$ implies $s_n \geq M$. We then write $s_n \to +\infty$. Similarly for $s_n \to -\infty$.

Remark. The symbol \rightarrow is now used for certain type of divergent sequences as well.

Definition 1.6. Given a sequence $\{p_n\}$, consider a sequence $\{n_k\}$ of positive integers, such that $n_1 < n_2 < \cdots$. Then the sequence $\{p_{n_k}\}$, which is a composition of the functions $\{n_k\}$ and $\{p_n\}$, is called a *subsequence* of $\{p_n\}$. If $\{p_{n_k}\}$ converges, its limit is called a *subsequential limit* of $\{p_n\}$.

Lemma 1. The subsequential limits of a sequence $\{p_n\}$ in a metric space X form a closed subset of X.

Proof. Let E be the set of all subsequential limits of $\{p_n\}$ and let q be a limit point of E. We have to show that $q \in E$. To show this we will construct a subsequence of $\{p_n\}$ which converges to q.

Choose n_1 so that $p_{n_1} \neq q$. If no such n_1 exists, then E has only one element, $q = p_1 = p_2 = \cdots$, and there is nothing to prove. Define $\delta = d(q, p_{n_1})$. Suppose n_1, \ldots, n_{i-1} are chosen. Since q is a limit point of E, there is an $x \in E$ with $d(q, x) < \frac{\delta}{2^i}$. Since $x \in E$, there is an $n_i > n_{i-1}$ such that $d(x, p_{n_i}) < \frac{\delta}{2^i}$. Thus

$$d(q, p_{n_i}) \le d(q, x) + d(x, p_{n_i}) < \frac{\delta}{2^{i-1}}$$

for $i=1,2,\ldots$ This implies $\{p_{n_k}\}\to q$, and thus $q\in E$.

Definition 1.7. A sequence $\{s_n\}$ of real numbers is said to be

- 1. monotonically increasing if $s_n \leq s_{n+1}$ for $n \in \mathbb{N}$;
- 2. monotonically decreasing if $s_n \geq s_{n+1}$ for $n \in \mathbb{N}$.

A sequence is *monotonic* if it is either monotonically increasing or monotonically decreasing.

Lemma 2. Suppose $\{s_n\}$ is monotonic. Then $\{s_n\}$ converges if and only if it is bounded.

Proof. Suppose $\{s_n\}$ is monotonically increasing (the proof for monotonically decreasing is similar). Let E be the range of E. If $\{s_n\}$ is bounded, let $s = \sup E$. Then

$$s_n \leq s, \quad n \in \mathbb{N}$$

For every $\epsilon > 0$, there is an integer N such that

$$s - \epsilon < s_N \le s$$

for otherwise $s - \epsilon$ would be an upper bound of E. Since $\{s_n\}$ is increasing,

$$s - \epsilon < s_n \le s, \quad n \ge N$$

which shows $\{s_n\}$ converges to s.

For the converse let $s_n \to p$. There is an integer N such that n > N implies $|p - s_n| < 1$. Put

$$r = \max\{1, |p - s_1|, \dots, |p - s_N|\}$$

Then $|s - s_n| \le r$ for all $n \in \mathbb{N}$ and $\{s_n\}$ is bounded.

2 Upper and lower limits

Definition 2.1. Let $\{s_n\}$ be a sequence of real numbers. Let E be the set of numbers x (in the extended real number system, i.e. $x \in \overline{\mathbb{R}} := \mathbb{R} \cup \{+\infty, -\infty\}$) such that $s_{n_k} \to x$ for some subsequence $\{s_{n_k}\}$. Therefore, this set contains all the subsequential limits of $\{s_n\}$ plus possibly the numbers $+\infty$ and $-\infty$. We define

$$s^* = \sup E$$

$$s_* = \inf E$$

The numbers s^* and s_* are called the *upper* and *lower limits* of $\{s_n\}$. We use the notation

$$\limsup_{n \to \infty} s_n = s^*$$

$$\liminf_{n \to \infty} s_n = s_*$$

It immediately follows that $s_* \leq s^*$.

The fact that E is non-empty (and thus taking sup or inf makes sense) follows from the observation that either $\{s_n\}$ is bounded or unbounded. If it is bounded then it must contain a convergent subsequence (Bolzano-Weierstrass theorem) and thus at least one element, or if it is unbounded then it must contain either $+\infty$ or $-\infty$.

Lemma 3. Let F be a nonempty closed set of real numbers which is bounded above. Let $\alpha = \sup F$. Then $\alpha \in F$.

Proof. Assume for the sake of the contradiction that $\alpha \notin F$. Then since F^{c} is an open set (because F is closed) there exists an $\epsilon > 0$ such that $(\alpha - \epsilon, \alpha + \epsilon) \subset F^{\mathsf{c}}$. But this implies $\alpha - \frac{\epsilon}{2}$ is an upper bound for F which is lower that α . This gives us our required contradiction.

Theorem 4. Let $\{s_n\}$ be a sequence of real numbers. Let E and s^* have the same meaning as in Definition 2.1. Then s^* has the following two properties:

1.
$$s^* \in E$$
.

2. If $x > s^*$, there is an integer N such that $n \ge N$ implies $s_n < x$.

Moreover, s^* is the only number with these two properties.

Of course, an analogous result is true for s_* .

Proof. We start by showing the two properties.

1. If $s^* = +\infty$, then E is not bounded above; hence $\{s_n\}$ is not bounded above, and thus there is a subsequence $\{s_{n_k}\}$ such that $s_{n_k} \to +\infty$.

If s^* is real, then E is bounded above, and at least one subsequential limit exists by the definition of sup. then $s^* \in E$ follows from the Lemmas 1 and 3.

If $s^* = -\infty$, then E contains only one element, namely $-\infty$, and there is no subsequential limit. Thus, $s^* \in E$.

2. Suppose for the sake of contradiction that there is a number $x > s^*$ such that $s_n \ge x$ for infinitely many values of n. Let's denote this set of n's with K and let $\{s_k\}_{k \in K}$ be this subsequence. If $\{s_k\}_{k \in K}$ is unbounded then $s^* = +\infty$ contradicting the fact that there exists an $x > s^*$. And if $\{s_k\}_{k \in K}$ is bounded that it contains a convergent subsequence (Bolzano-Weierstrass theorem). Suppose this convergent subsequence converges to y. Then $y \ge x > s^*$. This contradicts the definition of s^* .

To show the uniqueness, suppose there are two numbers, p and q, which satisfy the two properties, and suppose p < q. Choose x such that p < x < q. Since p satisfies the second property, we have $s_n < x$ for $n \ge N$. But then q cannot satisfy the second property.

Theorem 5. If $s_n \leq t_n$ for $n \geq N$, where N is fixed, then

$$\liminf_{n \to \infty} s_n \le \liminf_{n \to \infty} t_n,
\limsup_{n \to \infty} s_n \le \limsup_{n \to \infty} t_n$$

Proof. Let $s^* = \limsup_{n \to \infty} s_n$ and $t^* = \limsup_{n \to \infty} t_n$. Suppose for the sake of contradiction $t^* < s^*$. Choose x such that $t^* < x < s^*$. Then by the second property of Theorem 4 there is an integer N_1 such that $n \ge N_1$ implies $t_n < x$. Also by the first property there exists a subsequence $\{s_{n_k}\}$ such that $s_{n_k} \to s^*$. This implies that there exists an integer N_2 such that $n \ge N_2$ implies $x < s_n$. But then for $n \ge \max\{N_1, N_2\}$ we have $t_n < x < s_n$. This gives us our required contradiction. A similar argument can be made for the $t > t_n < t_n$

Theorem 6. For a real-valued sequence $\{s_n\}$, $\lim_{n\to\infty} s_n = s \in \overline{\mathbb{R}}$ if and only if

$$\limsup_{n \to \infty} s_n = \liminf_{n \to \infty} s_n = s$$

Proof. We divide the analysis into three cases.

First, let $s \in \mathbb{R}$. Then if $\limsup_{n \to \infty} s_n = \liminf_{n \to \infty} s_n = s$, Theorem 4 implies that for any $\epsilon > 0$ we have $s_n \in (s - \epsilon, s + \epsilon)$ for all but finitely many n, which means $s_n \to s$. On the other hand if $s_n \to s$ then every subsequence $\{s_{n_k}\}$ must converge to s and hence $\limsup_{n \to \infty} s_n = \liminf_{n \to \infty} s_n = s$.

Now let $s = +\infty$. Then $s_n \to s$, i.e., for every $M \in \mathbb{R}$ there is an integer N such that $n \geq N$ implies $s_n \geq M$ if and only $\liminf_{n \to \infty} s_n = +\infty$, and then $\limsup_{n \to \infty} s_n = +\infty$ since $\liminf_{n \to \infty} s_n \leq \limsup_{n \to \infty} s_n$.

Lastly, let $s = -\infty$. Then $s_n \to s$, i.e., for every $M \in \mathbb{R}$ there is an integer N such that $n \geq N$ implies $s_n \leq M$ if and only $\limsup_{n \to \infty} s_n = -\infty$, and then $\liminf_{n \to \infty} s_n = -\infty$ since $\liminf_{n \to \infty} s_n \leq \limsup_{n \to \infty} s_n$.

3 Upper and lower limits - a reprise

There is an equivalent way to express upper and lower limits.

Definition 3.1. Let $\{s_n\}$ be a sequence of real numbers. We let

$$\sup_{k \ge n} s_k = \sup\{s_k : k \ge n\}$$
$$\inf_{k \ge n} s_k = \inf\{s_k : k \ge n\}$$

Remark. The sequence $\{\sup_{k\geq n} s_k\}$ is monotonically decreasing and the sequence $\{\inf_{k\geq n} s_k\}$ is monotonically increasing.

Theorem 7. Let $\{s_n\}$ be a sequence of real numbers. Then

$$\lim_{n \to \infty} \sup_{k \ge n} s_k = \limsup_{n \to \infty} s_n$$
$$\lim_{n \to \infty} \inf_{k \ge n} s_k = \liminf_{n \to \infty} s_n$$

Proof. We will prove the first equation. The proof for the second is similar. We prove the equation in two steps.

Let $S = \{s_n : n \in \mathbb{N}\}$. Let's show that $\sup S = +\infty$ if and only if $\limsup_{n \to \infty} s_n = +\infty$. Suppose first that $\sup S = +\infty$. Then we construct a subsequence $\{s_{n_k}\}$ as follows. We let $n_1 = 1$. Suppose n_1, \ldots, n_k are chosen and let

$$S_k = \{ n \in \mathbb{N} : s_n \ge \max\{s_{n_1}, \dots, s_{n_k}, k\} + 1 \}$$

Notice that S_k is infinite as otherwise we can find an $M \in \mathbb{R}$ such that $s_n \leq M$ for all $n \geq 1$, contradicting the fact that $\sup S = +\infty$. We pick n_{k+1} to be the smallest element of S_k which is bigger than n_k . The resulting subsequence satisfies the condition that $s_{n_k} \geq k$ for $k \geq 2$ and thus we conclude that $s_{n_k} \to +\infty$ which gives $\limsup_{n \to \infty} s_n = +\infty$. Now suppose that $\limsup_{n \to \infty} s_n = +\infty$.

From Theorem 4 we can conclude that there exists a subsequence $\{s_{n_k}\}$ such that $s_{n_k} \to +\infty$. This immediately implies $\sup S = +\infty$.

For the second step, suppose $\sup S < +\infty$. Let

$$a_n = \sup_{k \ge n} s_k$$

Notice that $a_1 < +\infty$ and $\{a_n\}$ is a monotonically decreasing sequence. Therefore, by Lemma 2 we have that either $\{a_n\}$ is lower bounded in which case it converges to, say, a or it is not in which case $\lim_{n\to\infty} a_n = -\infty$. Since $s_n \leq a_n$, by Theorem 5 we can conclude

$$\limsup_{n \to \infty} s_n \le \limsup_{n \to \infty} a_n = \lim_{n \to \infty} a_n$$

where the last equality follows from Theorem 6. We will now show that

$$\limsup_{n \to \infty} s_n \ge \lim_{n \to \infty} a_n$$

which will give us our required equality. If $\lim_{n\to\infty} a_n = -\infty$ there is nothing to prove and so we assume that $a > -\infty$. Let $\epsilon > 0$ be given and let

$$B = \{ n \in \mathbb{N} : s_n \ge a - \epsilon \}$$

We claim that B is infinite. Indeed, if B were finite we can find $N \in \mathbb{N}$ so that $N \geq \max(B)$. This will imply that $s_n \leq a - \epsilon$ for all $n \geq N$ and so $a_n \leq a - \epsilon$ for $n \geq N$. But then by Theorem 5 we would conclude $a = \lim_{n \to \infty} a_n \leq a - \epsilon$, which is absurd. Thus B is infinite and we let $\{s_{n_k}\}$ be a subsequence of $\{s_n\}$ with $n_k \in B$. Notice that $\limsup_{n \to \infty} s_{n_k} \leq \limsup_{n \to \infty} s_n$, since any subsequential limit of $\{s_{n_k}\}$ is also a subsequential limit of $\{s_n\}$. This along with Theorem 5 give

$$a - \epsilon \le \limsup_{n \to \infty} s_{n_k} \le \limsup_{n \to \infty} s_n$$

Since ϵ was arbitrary we conclude that $\limsup_{n\to\infty} s_n \geq a$, which is what we wanted.

4 Properties of upper and lower limits

Theorem 8. Let $\{s_n\}$ be a sequence of real numbers. Then

$$\liminf_{n \to \infty} s_n = \limsup_{n \to \infty} (-s_n)$$

Theorem 9. For any two real sequences $\{a_n\}$ and $\{b_n\}$,

$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$$

provided the sum on the right is not of the form $\infty - \infty$.

Proof. If $\limsup_{n\to\infty} a_n = \infty$ then as by assumption the right side is not $\infty - \infty$, it is ∞ and there is nothing to prove. Similarly for the case $\limsup_{n\to\infty} b_n = \infty$. We may thus assume that

$$\limsup_{n\to\infty} a_n = A < \infty \text{ and } \limsup_{n\to\infty} b_n = B < \infty$$

We note that $\sup_{k\geq 1} a_k < \infty$, $\sup_{k\geq 1} b_k < \infty$, and so