Information Security CS 3002

Dr. Haroon Mahmood
Assistant Professor
NUCES Lahore

Design of Security Architecture

Defenses in Depth,

- Implementation of security in layers, policy, training, technology.
- Requires that organization establish sufficient security controls and safeguards so that an intruder faces multiple layers of controls

Security Perimeter

- Point at which an organization's security protection ends and outside world begins
- Does not apply to internal attacks from employee threats or on-site physical threats

Key Technology Components

Firewall

- Device that selectively discriminates against information flowing in and out
- Specially configured computer
- Usually on parameter part of or just behind gateway router

Proxy Server

- Performs actions on behalf of another system
- Configured to look like a web server
- Assigned the domain name
- Retrieves and transmits data
- Cache server

Key Technology Components

DMZ

- Buffer against outside attacks
- No mans land between computer and world
- Web servers often go here

IDS

- Intrusion Detection System
 - Host based
- Installed on machines they protect
- Monitor host machines

- Network based
 - Look at patterns of network traffic
 - Attempt to detect unusual activity
 - Requires database of previous activity
 - Uses "machine learning" techniques
 - Can use information form similar networks

Security Architecture

FIGURE 5-18 Firewalls, Proxy Servers, and DMZs

Information Security

Secure Communication and Storage

- Vulnerable components
 - Channels
 - Processes (clients, servers)
- Security properties:
 - Authentication
 - Authorization
 - Confidentiality
 - Integrity
 - Availability

Types of cryptographic functions

- Secret/symmetric key cryptographic function
 - Uses 1 key
 - Fast computation
- Public/Asymmetric key cryptographic function
 - Uses 2 keys
 - Slow computation
- Hash functions
 - Uses no keys
 - Very fast computation

Key terms

- Plaintext
 - Readable message or data that needs to be protected
- Encryption Algorithm
 - Algorithm to perform various substitutions and transformations on the plaintext
- Secret key
 - Used as input to the algorithm, transformations depend on the key
- Ciphertext
 - Scrambled message produced as output
- Decryption Algorithm
 - Produces the original plaintext

Symmetric/secret key encryption

- Also called conventional cryptography
- Sender and receiver must both know the secret key
- Uses techniques like confusion and diffusion to encrypt/decrypt data

Symmetric encryption uses

- Transmitting over secure channel
- Secure storage on insecure media
- Authentication
 - Strong authentication: prove the knowledge of a secret without revealing it
- Integrity check
 - Checksum vs cryptographic checksum
 - Message Authentication Code (MAC)/MIC

Problems with symmetric cryptography

- No mechanism of sharing the key
- Impersonation problem
 - If Alice and bob share a key. Imagine Trudy shares the same key with Alice for secure communication. Trudy may act as alice and talk to bob.
- Difficult key management

PUBLIC KEY CRYPTOGRAPHY

- Also called Asymmetric cryptography
- Rather newer form of cryptography invented in 1975.
- Two keys Public Key & Private Key
- Based on hard mathematical problems

Public key encryption

 The private key can unlock (decrypt) what is locked (encrypted) with the public key and vice versa

Digital signature

- Scheme for proving the authenticity and origin of a message.
- Recipient is sure of the origin of the message
- Sender can not deny having sent
- the message(non-repudiation)

Using PKC to share secret key

The key(K – which is the secret key NOT the private key) is encrypted using the Public key of Y so that the key(K) is shared between X and Y only. Then that K is used for encryption of data(hello!)

Public Key Cryptography Uses

- Used primarily for Symmetric key exchange
- Transmitting over an insecure channel
- Secure storage on insecure media
- Authentication
- Easy key management
- Digital signatures
 - Non-repudiation
 - Data integrity

Symmetric Encryption

E, D: Algorithms k: secret key

m: plaintext c: ciphertext

Encryption algorithm Should be publicly known

Early days techniques

- Confusion
 - Replacing of some bit strings with other bit strings
 - Also called substitution or Caesar's cipher

- Diffusion
 - Changing order of bit strings
 - Also called permutation/transposition

Question

What is the size of key space in the substitution cipher assuming 26 letters?

$$|\mathcal{K}| = 26$$

$$|\mathcal{K}| = 26!$$

$$|\mathcal{K}| = 2^{26}$$

$$|\mathcal{K}| = 26^2$$

Breaking of Substitution Cipher

(1) Use frequency of English letters E, I,T, A

(1) Use frequency of pairs of letters (di-grams) an, in, the

Example

UKBYBIPOUZBCUFEEBORUKBYBHOBBRFESPVKBWFOFERVNBCVBZPRUBOFERVNBCVBPCYY FVUFOFEIKNWFRFIKJNUPWRFIPOUNVNIPUBRNCUKBEFWWFDNCHXCYBOHOPYXPUBNCU BOYNRVNIWNCPOJIOFHOPZRVFZIXUBORJRUBZRBCHNCBBONCHRJZSFWNVRJRUBZRPCYZ PUKBZPUNVPWPCYVFZIXUPUNFCPWRVNBCVBRPYYNUNFCPWWJUKBYBIPOUZBCUIPOUN VNIPUBRNCHOPYXPUBNCUBOYNRVNIWNCPOJIOFHOPZRNCRVNBCUNENVVFZIXUNCHPCY VFZIXUPUNFCPWZPUKBZPUNVR

В	36	→ E
N	34	→ I
U	33	→ T
Р	32	→ A
C	26	

NC	11	→ IN
PU	10	→ AT
UB	10	
UN	9	

Di-grams

→ THE

Tri-grams

Vigenere Cipher

- Idea: Uses Caesar's cipher with various different shifts, in order to hide the distribution of the letters.
- A key defines the shift used in each letter in the text
- A key word is repeated as many times as required to become the same length

Plain text: I a t t a c k

Key: 2 3 4 2 3 4 2

Cipher text: Kdxvdgm

(key is "234")

Breaking of Vigenere Cipher

 Find repeated strings in the ciphertext. Their distance is expected to be a multiple of the length. Compute the gcd of (most) distances.

For example:

Plaintext: TOBENOTORTOBE

Keyword: 1231231231231

Ciphertext: UQEFPRUQUUQEF

Diagraph	First Position	Second Position	Distance	Factors
UQ	1	7	6	3
UQ	7	10	3	3
EF	3	12	9	3
QE	2	11	9	3