ĐỀ 2

ĐỀ THI GIỮA KÌ MÔN GIẢI TÍCH 1 - Học kì 20173 Mã HP: MI1111, Nhóm ngành 1, Thời gian: 60 phút Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi

Câu 1 (1đ). Tìm tập xác định của hàm số

$$y = \sqrt{2x - 1} + 4\arcsin\frac{3x - 1}{2}.$$

Câu 2 (1đ). Tìm và phân loại điểm gián đoạn của hàm số

$$y = \frac{\sin x}{x(x-1)}.$$

Câu 3 (1đ). Tính $\lim_{x\to 0} \frac{x \ln(1+2x)}{3x^2-4\sin^3 x}$.

Câu 4 (1đ). Tìm các tiệm cận của đồ thị hàm số $y = xe^{-\frac{1}{x}} + 2$.

Câu 5 (1đ). Tính tích phân $\int x \arctan x dx$.

Câu 6 (1đ). Tính tích phân $\int \frac{\sin^3 x}{\sqrt{\cos x}} dx$.

Câu 7 (1đ). Tính tích phân $\int \frac{dx}{(x^2+1)(x+2)}$.

Câu 8 (1đ). Có áp dụng được định lý Fermat cho hàm số f(x) = |x-1| trong khoảng [0,2]? Tìm cực trị của hàm này.

Câu 9 (1đ). Tính $\lim_{x\to 0} \frac{1-\sqrt{1+2x^4}\cos(x^2\sqrt{2})}{x^5\ln(1-2x^3)}$.

Câu 10 (1đ). Xét sự hội tụ và tìm giới hạn (nếu có) của dãy số

$$\{x_n\}: x_1 > 0, x_{n+1} = \frac{1}{2}\left(x_n + \frac{1}{x_n}\right), n \ge 1.$$

ĐỀ THI GIỮA KÌ MÔN GIẢI TÍCH 1 - Học kì 20173 Mã HP: MI1113, Nhóm ngành 3, Thời gian: 60 phút Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi

Câu 1 (1đ). Tìm tập xác định của hàm số

$$y = \sqrt{2x+1} + 4\arcsin\frac{3x+1}{2}.$$

Câu 2 (1đ). Tìm và phân loại điểm gián đoạn của hàm số

$$y = \frac{\sin(x-1)}{x(x-1)}.$$

Câu 3 (1đ). Tính $\lim_{x\to 0} \frac{x \ln(1-2x)}{3x^2+4\sin^3 x}$.

Câu 4 (1đ). Tìm các tiệm cận của đồ thị hàm số $y = xe^{-\frac{1}{x}} - 2$.

Câu 5 (1đ). Tính tích phân $\int x \operatorname{arccot} x dx$.

Câu 6 (1đ). Tính tích phân $\int \frac{\cos^3 x}{\sqrt{\sin x}} dx$.

Câu 7 (1đ). Tính tích phân $\int \frac{dx}{(x^2+1)(x-2)}$.

Câu 8 (1đ). Có áp dụng được định lý Fermat cho hàm số f(x) = |x+1| trong khoảng [-2,0]? Tìm cực trị của hàm này.

Câu 9 (1đ). Tính $\lim_{x\to 0} \frac{1-\sqrt{1+4x^4}\cos(2x^2)}{x^5\ln(1+2x^3)}$.

Câu 10 (1đ). Xét sự hội tụ và tìm giới hạn (nếu có) của dãy số

$$\{x_n\}: x_1 > 0, x_{n+1} = \frac{1}{2}\left(x_n + \frac{1}{x_n}\right), n \ge 1.$$

ĐỀ THI GIỮA KÌ MÔN GIẢI TÍCH 1 - Học kì 20173 Mã HP: MI1113, Nhóm ngành 3, Thời gian: 60 phút Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi

Câu 1 (1đ). Xét tính chẵn, lẻ của hàm số $y = \sqrt[5]{x-2} + \sqrt[5]{x+2}$. **Câu 2 (1đ).** Xét tính liên tục của hàm số $y = \begin{cases} \frac{\ln(1+2x^2)}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$

Câu 3 (1đ). Tính $\lim_{x\to 1^+} \left(\frac{x+3}{x-1}\right)^{2x+1}$.

Câu 4 (1đ). Tìm các cực trị của hàm số $y = \sqrt[5]{x^3 - x^2}$.

Câu 5 (1đ). Tính tích phân $\int (3x+1) \sin 2x dx$.

Câu 6 (1đ). Tính tích phân $\int \frac{dx}{\sqrt{e^x+1}}$.

Câu 7 (1đ). Tính tích phân $\int \frac{dx}{(x^2+1)(x+1)}$.

Câu 8 (1đ). Khai triển Maclaurin hàm số $y=\frac{1}{(1-2x)^{40}(1+x)^{50}}$ đến số hạng $o(x^2)$.

Câu 9 (1đ). $f(x) = x \cos x$ có phải là vô cùng lớn khi $x \to \infty$ không? Vì sao?.

Câu 10 (1đ). Cho $y = x^2 \ln(1 - 3x)$. Tính $y^{(n)}(0)$, $n \ge 3$.

ĐỀ THI GIỮA KÌ MÔN GIẢI TÍCH 1 - Học kì 20173 Mã HP: MI1113, Nhóm ngành 3, Thời gian: 60 phút Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi

Câu 1 (1đ). Xét tính chẵn, lẻ của hàm số $y = \sqrt[5]{2-x} + \sqrt[5]{x+2}$. **Câu 2 (1đ).** Xét tính liên tục của hàm số $y = \begin{cases} \frac{\ln(1-4x^2)}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$

Câu 3 (1đ). Tính $\lim_{x\to 1^+} \left(\frac{x+2}{x-1}\right)^{2x+1}$.

Câu 4 (1đ). Tìm các cực trị của hàm số $y = \sqrt[5]{x^3 + x^2}$.

Câu 5 (1đ). Tính tích phân $\int (3x-1)\cos 2x dx$.

Câu 6 (1đ). Tính tích phân $\int \frac{dx}{\sqrt{e^x-1}}$.

Câu 7 (1đ). Tính tích phân $\int \frac{dx}{(x^2+1)(x-1)}$.

Câu 8 (1đ). Khai triển Maclaurin hàm số $y=\frac{1}{(1+2x)^{40}(1-x)^{50}}$ đến số hạng $o(x^2)$.

Câu 9 (1đ). $f(x) = x \sin x$ có phải là vô cùng lớn khi $x \to \infty$ không? Vì sao?.

Câu 10 (1đ). Cho $y = x^2 \ln(1 - 3x)$. Tính $y^{(n)}(0)$, $n \ge 3$.

ĐỀ 6

ĐỀ THI GIỮA KÌ MÔN GIẢI TÍCH 1 - Học kì 20173 Mã HP: MI1113, Nhóm ngành 3, Thời gian: 60 phút Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi

Câu 1 (1đ). Tìm tập xác định và tập giá trị của hàm số

$$y = \arccos(e^x)$$
.

Câu 2 (1đ). So sánh cặp vô cùng bé sau đây khi $x \to 0^+$

$$\alpha(x) = \sqrt{x} - \sqrt[3]{x} - \sqrt[4]{x}, \quad \beta(x) = \sqrt{1-x} - 1.$$

Câu 3 (1đ). Tìm và phân loại điểm gián đoạn của hàm số

$$y = \cos x + \arctan \frac{1}{x}$$
.

Câu 4 (1đ). Tính giới hạn $\lim_{x\to 0} \frac{\ln(1+2x)-\sin 2x}{x^2}$.

Câu 5 (1đ). Tính tích phân $\int \frac{x^2}{(x+1)(x^2+1)} dx$.

Câu 6 (1đ). Chứng minh rằng $|x - y| \le |\cot x - \cot y|$ với mọi $x, y \in (0, \pi)$.

Câu 7 (1đ). Cho hàm số $f(x) = \begin{cases} e^{-\frac{1}{x}}, & \text{nếu } x > 0, \\ 0, & \text{nếu } x = 0. \end{cases}$ Tính $f'_{+}(0)$.

Câu 8 (1đ). Tìm tiệm cận xiên của đường cong $y = \ln(1 + e^{-2x})$.

Câu 9 (1đ). Cho $y = e^x \cos x$. Tính đạo hàm cấp cao $y^{(6)}(0)$.

Câu 10 (1đ). Cho hàm số $f:[1,3] \to [1,3]$ liên tục. Chứng minh rằng tồn tại $x_0 \in [1,3]$ sao cho $f(x_0) = x_0$.

ĐỀ THI GIỮA KÌ MÔN GIẢI TÍCH 1 - Học kì 20173 Mã HP: MI1113, Nhóm ngành 3, Thời gian: 60 phút Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi

Câu 1 (1đ). Tìm tập xác định và tập giá trị của hàm số

$$y = \arcsin(e^x)$$
.

Câu 2 (1đ). So sánh cặp vô cùng bé sau đây khi $x \to 0^+$

$$\alpha(x) = \sqrt[4]{x} - \sqrt[3]{x} - \sqrt{x}, \quad \beta(x) = \sqrt{1+x} - 1.$$

Câu 3 (1đ). Tìm và phân loại điểm gián đoạn của hàm số

$$y = \sin x + \operatorname{arccot} \frac{1}{x}$$
.

Câu 4 (1đ). Tính giới hạn $\lim_{x\to 0} \frac{\cos x - e^x - x}{x^2}$.

Câu 5 (1đ). Tính tích phân $\int \frac{x^2}{(x-1)(x^2+1)} dx$.

Câu 6 (1đ). Chứng minh rằng $|x-y| \le |\tan x - \tan y|$ với mọi $x,y \in (-\frac{\pi}{2},\frac{\pi}{2}).$

Câu 7 (1đ). Cho hàm số $f(x) = \begin{cases} e^{\frac{1}{x}}, & \text{nếu } x < 0, \\ 0, & \text{nếu } x = 0. \end{cases}$ Tính $f'_{-}(0)$.

Câu 8 (1đ). Tìm tiệm cận xiên của đường cong $y = \ln(1 + e^{-3x})$.

Câu 9 (1đ). Cho $y = e^x \sin x$. Tính đạo hàm cấp cao $y^{(6)}(0)$.

Câu 10 (1đ). Cho hàm số $f: [2,4] \rightarrow [2,4]$ liên tục. Chứng minh rằng tồn tại $x_0 \in [2,4]$ sao cho $f(x_0) = x_0$.