```
1 %What I have done here
 2 %Basically Arnoldi process is used to find Km krylov subspace where m is an
 3 %integer
 4 %Here we are using Grahm Shmidtconcept of finding orthonormal vectors
 5
 6 function[V,h,beta] = arnoldi(A,r0,m)
7 %First we are giving norm value of residue r0 to beta
 8 beta=norm(r0);
9 n=size(A,1);
10
11 % I am preassumin matrix V and matrix h(hessenberg matrix)
12 V=zeros(n,m+1);
13 h=zeros(m+1,m);
14 V(:,1) = r0/beta;
15 for j=1:m
16
17
       % we are using this because krylov subspace is in the form of
18
       % r,Ar,Ar2,Ar3
19
       w=A*V(:,j);
20
21
       %Grahm shmidt process
22
       for i=1:j
23
           h(i,j)=w'*V(:,i);
           w=w-h(i,j)*V(:,i);
24
25
       end
26
       h(j+1,j) = norm(w);
27
28
       %Stopping creteria as given in the exam
29
       if norm(w)<1e-6
30
           break;
31
       end
32
       % We have calculated a new vector which belongs to basis of Km <math display="inline">% V_{0}
33
34
       V(:,j+1) = w/norm(w);
35 end
36
37 end
```

```
1 function[]=SelfFOM(A,b)
 2 A = [2 -1 0 0; -1 2 -1 0; 0 -1 2 -1; 0 0 -1 2];
 3 b = [1;0;0;0];
 5 %I am running this for loop for 4 times because we habe to show for 4
 6 %values of m
7 for i=1:4
9 n=size(A,1);
10 x0=zeros(n,1); %Initial vector as mentioned in exam
11 m=i;
12 r=b;
                    % Here I am allocating value to r .....r=b-A*x.....But x0=0 ⊌
soit will be equal to b
13
14 %Here I am using predefined arnoldi function
15 [V,H,beta] = arnoldi(A,r,m);
16 fprintf('Values for m=%d \n',i);
17
       disp("Required H:");
18
19
       disp("Required V:");
20
21
      y=H(1:m,:) \setminus (beta*(eye(m,1)));
22
23
      x=V(:,1:m)*y;
24
25 end
26 end
27
28
29
```

>> SelfFOM
Values for m=1
Required H:

H =

2

Required V:

∨ =

x =

0.5000 0 0

Values for m=2 Required H:

H =

2 1 1 2 0 1

Required V:

V =

1 0 0 0 -1 0 0 0 1 0 0 0

x =

0.6667

0.3333

0

Values for m=3
Required H:

H =

2 1 0 1 2 1 0 1 2 0 0 1

Required V:

V =

 1
 0
 0
 0

 0
 -1
 0
 0

 0
 0
 1
 0

 0
 0
 0
 -1

x =

0.7500 0.5000 0.2500

Ο

Values for m=4 Required H:

H =

0 2 1 0 1 2 1 0 2 0 1 1 0 0 1 2 0 0 0 0

Required V:

V =

1 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 -1 0 0 0 0

x =

0.8000

0.6000

0.4000

0.2000

>>

```
1 function[]=SelfCG(A,b)
 2 A= [4 -1 0 0 0 0;-1 4 -1 0 0 0;0 -1 4 -1 0 0;0 0 -1 4 -1 0;0 0 0 -1 4 -1;0 0 0 0 v
-1 4];
 3 b = [0;5;0;6;-2;6];
 4
 5 tol=1e-8;
6 n=size(A,1);
 7 %Here I am assumin initial vector as zero vector
8 \times 0 = zeros(n,1);
9 x=x0;
10 iter=1;
11 r=b; % It will work because x0=0 so r=b
12 p=r;
13 while(iter>0)
14
     iter=iter+1;
15
       alpha=(r'*r)/(p'*(A*p));
16
      x=x+alpha*p;
17
      temp=r;
      r=r-alpha*A*p;
18
19
20
     beta=(r'*r)/(temp'*temp);
21
     p=r+beta*p;
22
     if (norm(r) < tol)</pre>
23
24
           break;
25
       end
26 end
27 disp("Number of Iteration");
28 iter-1
29 disp("Requires Solution:")
30 x
31
```

```
>> SelfCG
Number of Iteration
ans =
     6
Requires Solution:
x =
     0.3892
     1.5569
     0.8382
     1.7959
     0.3456
     1.5864
```

>>

```
2 function[]=SelfSQRIter(A, maxNumIter)
 3 A=[17 24 1 8 15;23 5 7 14 16;4 6 13 20 22;10 12 19 21 3;11 18 25 2 8];
 4 maxNumIter=20;
 5
 6 [n,m] = size (A);
7 for i=1:2
8 %Initialising spectrum set by zero vector
9 spset = zeros(n, 1);
10 Ai = A;
11 iter=1;
12 ex=eig(A);
13
14 E=zeros(n,maxNumIter);
15 while iter<=maxNumIter
16
       %Here using if condiiton i distincting both the questions mentioned in
17
      %the exam
18
       if (i==1)
19
           mu=0;
20
      end
21
      if (i==2)
22
           mu=Ai(n,n);
23
       end
24
25
      Ai=Ai - mu * eye(n);
26
     [Q, R] = qr(Ai);
27
28
29
      Ai = R * Q + mu * eye(m);
30
       ei=abs(sort(ex)-sort(diag(Ai)));
31
      E(:,iter)=ei;
32
       if(iter==maxNumIter)
           spset = diag(Ai);
33
34
       end
       iter=iter+1;
35
37 %Printing spectrum set and Error matrix
38 spset
39 E
40 end
41 end
42
43
```

>> SelfSQRIter

spset =

64.8024
-20.4958
20.1062
-11.5578
11.1450

E =

Columns 1 through 11

11.5180 2.8396 1.7			2.9166	3.2018	2.1993	2.9911	1.9550 ⊭			
14.9793 1.7056 2.6	5.0475	5.2044	3.3700	3.0403	3.0837	2.1562	2.8517 ⊭			
9.9352 1.5883 2.5	4.7740	3.4832	3.0210	2.1995	2.9336	1.8384	2.7996 ⊭			
	5.2289	5.7431	3.2548	4.0415	2.3494	3.3089	2.0071 Ľ			
10.3673	1.1761	0.1046	0.0108	0.0011	0.0001	0.0000	0.0000 ⊭			
Columns 12 through 20										
1.6511	2.5341	1.5210	2.3869	1.4000	2.2468	1.2875	2.1143 Ľ			
1.1829 2.3746	1.1875	2.1535	1.0041	1.9504	0.8484	1.7655	0.7142 Ľ			
1.5979 2.3687	1.1713	2.1515	0.9981	1.9497	0.8461	1.7653	0.7133 Ľ			
1.5978 1.6570	2.5503	1.5230	2.3929	1.4007	2.2490	1.2877	2.1152 ⊭			
1.1830	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 ⊭			
0.0000										

spset =

64.8024 -21.6948 -13.1397 21.2892

12.7429

E =

Columns 1 through 11											
17.4536	7.4460	3.7972	1.8738	0.7820	0.2038	0.0664	0.1722 Ľ				
0.1956 0.1832 0.1573											
14.4466	0.7515	2.1467	1.6804	0.6594	0.1865	0.0811	0.1753 ⊭				
0.1980 0.1839 0.1578											
5.9888	0.0019	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 Ľ				
0.0000 0.0000 0.0000											
9.9366	2.7569	0.6601	0.0831	0.0373	0.0108	0.0036	0.0011 Ľ				
0.0004 0.0	0001 0.	0000									
	3.9358		0.2765	0.0852	0.0281	0.0111	0.0042 Ľ				
0.0020 0.0	0.007	0004									
Columns 12 through 20											
0.1291	0.1030	0.0807	0.0625	0.0481	0.0367	0.0280	0.0212 Ľ				
0.0161											
0.1292	0.1031	0.0808	0.0626	0.0481	0.0367	0.0279	0.0212 Ľ				
0.0161											
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 Ľ				
0.0000											
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 Ľ				
0.0000											
0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 Ľ				
0.0000											