SC 201-Physics I

Classical Mechanics

Dr. V. S. Gayathri

Classical Mechanics

- Classical mechanics is the branch of Physics which deals with the motion of physical bodies at macroscopic level.
- Classical mechanics is based on Newton's laws of motion, so often called as Newtonian mechanics.
- To study the *motion of a physical body*, the most basic parameters are **space** and time. (both are continuous).
- So, to describe the motion of a body, one has to specify its position in space as a function of time.
- This needs a suitable choice of a coordinate system.

Frame of reference

- If we imagine a coordinate system attached to a rigid body and we describe the position of any particle w.r.t it, then such coordinate system is called as *frame* of reference (FOR).
- The simplest FOR is Cartesian coordinate system (x,y,z)

24/08/20

Types of frame of reference

- 1. Inertial frame of reference
- 2. Non-inertial frame of reference

1. Inertial frame of reference:

- i. An inertial frames of reference are the frames, in which *law of inertia* holds and other *laws of physics are valid*.
- ii. These frames are <u>unaccelerated frames</u> (at rest or moving with constant velocity) (acceleration of the frame, $a_f=0$).
- iii. All frames which are moving with constant velocity w.r.t. an inertial frame are also inertial.

 Dr. V. S. Gayathri

2. Non-inertial frame of reference:

- i. If a frame is <u>accelerated</u> w.r.t an inertial frame (road, train moving with constant velocity), these frames are called non-inertial frames. (acceleration of the frame, $a_f \neq 0$)
- ii. In non-inertial frames, newton's laws of motion are not valid.
- iii. In non-inertial frames, $(ma \neq F)$ $ma - F \neq 0$ $= F_p$, Pseudo force

Therefore by adding an extra pseudo force with F, we are able to do all operations, like inertial frames.

Dr. V. S. Gavathri

Various Coordinate systems

To specify the *position and motion of a body* in specific frame of reference, we have various coordinate systems.

- i. Cartesian or rectangular coordinate system (x,y)
- ii. Plane polar coordinate system (r, θ)
- iii. Cylindrical coordinate system (ρ, ϕ, z)
- iv. Spherical polar coordinate system (r, θ, ϕ)
- Frequently used 2D coordinate system is Cartesian or rectangular coordinate system.

24/08/20

Cartesian or rectangular coordinate system

- To specify the position of any point in space, we need two perpendicular coordinates X-axis and Y-axis.
- We represent the position of the point P as P(x,y) in CC.
- It is a 2D coordinate system suitable for straight line motion.

24/08/20 Dr. V. S. Gayathri

Plane polar coordinates

- To describe *circular motion*, we need plane polar coordinate system.
- This two-dimensional coordinate system is based on the three dimensional cylindrical coordinate system.

• The coordinates r and θ are called *plane* polar coordinates, as motion is restricted in x-y plane here.

Dr. V. S. Gayathri

Comparison of constant coordinate lines for the Cartesian coordinate system and for the plane polar coordinate system:

24/08/20

 θ is +ve if we move counter clockwise from x-axis.

Relation Between Cartesian coordinates(CC) and plane polar coordinates(PPC).

In Cartesian coordinates, position vector r is given as

$$\vec{r} = x\hat{i} + y\hat{j}$$

while in polar coordinates, we have

$$\vec{r} =_{r} \hat{r}$$

Here, \hat{r} is radial unit vector and is given as $\hat{r} = \cos \theta \hat{i} + \sin \theta \hat{j}$

$$=r(\cos\theta \hat{i} + \sin\theta \hat{j})$$

On comparing above equations, we have,

$$x\hat{i}+y\hat{j}=\cos\theta\,\hat{i}+\sin\theta\,\hat{j}$$

$$x = rcos \theta$$

$$y = rsin \theta$$

On squaring &adding and then taking ratio, we have

$$\begin{vmatrix}
 r = \sqrt{x^2 + y^2} \\
 \theta = tan^{-1} \frac{y}{x}
 \end{vmatrix}$$

24/08/20

Plot the points whose polar coordinates are $(1,\pi/4)$ and $(2,-3\pi/4)$.

Plot the points having polar coordinates $(1,5\pi/4)$ and $(1,-3\pi/4)$

In CC system, every point has only one representation, but in PPC system, each point may has many representation.

24/02/20

Dr V S Gavathr

Convert the point $(2,\pi/3)$ in CC.

$$x = r \cos \theta$$
 $x = 2\cos \pi/3$
 $= 2 \times \frac{1}{2}$
 $= 1$ The answer is $(1, \sqrt{3})$
 $y = r \sin \theta$ $x = 2\sin \pi/3$
 $= 2 \times \frac{\sqrt{3}}{2}$
 $= \sqrt{3}$

Represent the point(-3,4) in PPC.

If we choose r positive, then
$$r = \sqrt{x^2 + y^2}$$

 $= \sqrt{(-3)^2 + (4)^2}$
 $= 5$
 $\theta = \tan^{-1} \frac{(4)}{-3} = \tan^{-1} \left(\frac{-4}{3}\right) = 127^0$
24/08/20 Dr. V. S. The ranswers is $(5, 127^0)$

Express the equation $x^2=4y$ in polar coordinates.

Put the value of $x = r \cos \theta \& y = r \sin \theta$ in the equation, we get

$$(r \cos \theta)^2 = 4 r \sin \theta$$

$$r^2 \cos^2 \theta = 4 r \sin \theta$$

$$r \cos^2 \theta = 4 \sin \theta$$

$$r = 4 \sin \theta / \cos^2 \theta$$

$$r = 4 (\sin \theta / \cos \theta)(1/\cos \theta)$$

$$r = 4 \tan \theta \sec \theta$$

You can notice, now equation is having only polar coordinates r and θ .

Dr. V. S. Gayathri

Rewrite the polar equation $r = \sin(2\theta)$ in Cartesian coordinates.

$$r = \sin(2\theta)$$

 $r = 2 \sin \theta \cos \theta$
 $r = 2$. y/r . x/r
 $r = 2xy/r^2$
 $r^3 = 2xy$
 $(x^2+y^2)^{3/2}= 2xy$
Square both sides,
 $(x^2+y^2)^3 = 4 x^2y^2$

$$x = r \cos \theta \& y = r \sin \theta$$

Express the equation $x^2+y^2=6y$ in polar coordinates.

Put the value of $x = r \cos \theta \& y = r \sin \theta$ in the equation, we get

$$(r \cos \theta)^2 + (r \sin \theta)^2 = 6 r \sin \theta$$

$$r^{2}[\cos^{2}\theta + \sin^{2}\theta] = 6 r \sin \theta$$

As,
$$\cos^2 \theta + \sin^2 \theta = 1$$

$$r=6 \sin \theta$$

Rewrite the polar equation $r = \frac{3}{1 - 2\cos\theta}$ as a Cartesian equation.

$$r(1-2\cos\theta) = 3$$

$$r-2r\cos\theta = 3$$

$$r-2x = 3$$

$$r = 3+2x$$

$$r^2 = (3+2x)^2$$

$$(x^2+y^2) = (3+2x)^2$$

$$(x^2+y^2) = (9+4x^2+12x)$$

$$y^2-3x^2-12x = 9$$

$$y^2-3(x+2)^2 = -3$$
Put $r\cos\theta = x$

Squaring both sides

Putting value of r^2

Keep solving and arranging until you get a specific equation

$$(x+2)^2-y^2/3=1$$

Unit Vectors in Cartesian coordinates

$$\hat{\mathbf{i}} \cdot \hat{\mathbf{i}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{k}} = 1$$

$$\hat{\mathbf{i}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{k}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{i}} = 0$$

$$\hat{\mathbf{i}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}}$$

$$\hat{\mathbf{j}} \times \hat{\mathbf{k}} = \hat{\mathbf{i}}$$

$$\hat{\mathbf{k}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}}.$$

$$\mathbf{A} = A_x \mathbf{\hat{i}} + A_y \mathbf{\hat{j}} + A_z \mathbf{\hat{k}}$$

Dr. V. S. Gayathri

18

Unit Vectors in Polar coordinates

- In CC, there are base unit vectors \hat{i} and \hat{j} where \hat{i} indicates the direction of increasing x and \hat{j} indicates the direction of increasing y.
- In the same way, in PPC also, we have two base unit vectors, \hat{r} and $\hat{\theta}$ that points in the direction of increasing r and increasing θ .
- The directions of \hat{r} and $\hat{\theta}$ vary with position, whereas $\hat{\imath}$ and $\hat{\jmath}$ have fixed directions.

24/08/20

Dr. V. S. Gayathri

Unit vectors represention

$$\mathbf{\hat{r}}(\theta) = \cos\theta\,\mathbf{\hat{i}} + \sin\theta\,\mathbf{\hat{j}}$$

$$\hat{\boldsymbol{\theta}}(\theta) = -\sin\theta\,\hat{\mathbf{i}} + \cos\theta\,\hat{\mathbf{j}}.$$

Properties of unit vectors of PCC

1.
$$|\hat{r}| = |\hat{\theta}| = 1$$

2.
$$\hat{r} \cdot \hat{\theta} = 0$$

 \hat{r} and $\hat{\theta}$ are **orthogonal**

Value of $\frac{d\hat{r}}{dt}$ and $\frac{d\hat{\theta}}{dt}$

On differentiating \hat{r} and $\hat{\theta}$, we have

$$\frac{d\hat{\mathbf{r}}}{dt} = \frac{d}{dt}(\cos\theta)\,\hat{\mathbf{i}} + \frac{d}{dt}(\sin\theta)\,\hat{\mathbf{j}}$$

$$= -\sin\theta\,\hat{\mathbf{i}} + \cos\theta\,\hat{\mathbf{j}}$$

$$= (-\sin\theta\,\hat{\mathbf{i}} + \cos\theta\,\hat{\mathbf{j}})\,\hat{\boldsymbol{\theta}}.$$

$$= \dot{\boldsymbol{\theta}}\,\hat{\boldsymbol{\theta}}.$$

$$\frac{d\hat{\boldsymbol{\theta}}}{dt} = (-\cos\theta\,\hat{\mathbf{i}} - \sin\theta\,\hat{\mathbf{j}})\,\dot{\boldsymbol{\theta}}$$
$$= -\dot{\boldsymbol{\theta}}\,\hat{\mathbf{f}}.$$

Standard Notation

$$\frac{dr}{dt} = \dot{r} \qquad \qquad \frac{d^2r}{dt^2} = \ddot{r}$$

$$\frac{d\theta}{dt} = \dot{\theta} \qquad \qquad \frac{d^2\theta}{dt^2} = \ddot{\theta}$$

$$rac{d\widehat{r}}{dt} = \dot{ heta}\widehat{ heta} \qquad rac{d\widehat{ heta}}{dt} = -\dot{ heta}\widehat{r}$$

Dr. V. S. Gayathri

Motion in Plane Polar Coordinates

Velocity in plane polar coordinates

The position vector \vec{r} in polar coordinate is given by $\vec{r}=r\hat{r}$

The velocity in PPC is given by

$$\vec{v} = \frac{d\vec{r}}{dt}$$

$$= \frac{d}{dt}(r\hat{r})$$

$$= \frac{dr}{dt}\hat{r} + r\frac{d\hat{r}}{dt}$$

$$= \dot{r}\hat{r} + r\dot{\theta}\hat{\theta}$$

$$\vec{v} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta}$$

=radial velocity + tangential velocity

Therefore, the velocity in PPC is a combination of radial and tangential motion.

Case 1: Radial velocity ($\theta = \text{constant}, r \text{ varies}$).

If, θ is a constant, $\dot{\theta} = 0$, and, $\vec{v} = \dot{r}\hat{r}$

This implies one-dimensional motion in a fixed *radial* direction.

Case 2: Tangential velocity (r = constant, θ varies).

In this case $\vec{v} = r\dot{\theta}\hat{\theta}$

Since *r* is fixed, the motion lies on the arc of a circle(in the *tangential* direction).

Acceleration in plane polar coordinates

Acceleration in plane polar coordinates, $\vec{a} = \frac{d\vec{v}}{dt}$

$$=\frac{d}{dt}(\dot{r}\,\hat{\mathbf{r}}+r\dot{\theta}\,\hat{\boldsymbol{\theta}})$$

$$= \ddot{\mathbf{r}}\,\hat{\mathbf{r}} + \dot{r}\frac{d}{dt}\,\hat{\mathbf{r}} + \dot{r}\dot{\theta}\,\hat{\boldsymbol{\theta}} + r\ddot{\theta}\,\hat{\boldsymbol{\theta}} + r\dot{\theta}\,\frac{d}{dt}\hat{\boldsymbol{\theta}}.$$

$$= \ddot{r}\,\hat{\mathbf{r}} + \dot{r}\dot{\theta}\,\hat{\boldsymbol{\theta}} + \dot{r}\dot{\theta}\,\hat{\boldsymbol{\theta}} + r\ddot{\theta}\,\hat{\boldsymbol{\theta}} - r\dot{\theta}^2\,\hat{\mathbf{r}}$$

$$= (\ddot{r} - r\dot{\theta}^2)\,\hat{\mathbf{r}} + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\,\hat{\boldsymbol{\theta}}.$$

= radial acceleration + tangential acceleration

24/08/20

- The Coriolis acceleration we discussed here, is a real acceleration that is present whenever r and θ both change with time.
- Half of the Coriolis acceleration is due to the change in direction of the radial velocity, $dv_r/dt = v_r \dot{\theta}$.
- The other half arises, due to tangential speed $v_{\theta} = r\dot{\theta}$. If r changes by Δr , then v_{θ} changes by $\Delta v_{\theta} = \Delta r\dot{\theta}$, and the contribution to the tangential acceleration is therefore $\dot{r}\dot{\theta}$, the other half of the Coriolis acceleration.

24/08/20 Dr. V. S. Gayathri 27

Newton's law in plane polar coordinates

$$\vec{F} = m\vec{a}$$

$$= m[(\ddot{r} - r\dot{\theta}^2)\hat{r} + (2\dot{r}\dot{\theta} + r\ddot{\theta})\hat{\theta}]$$

In radial direction, $F_r = m(\ddot{r} - r\dot{\theta}^2)$

In tangential direction, $F_{\theta} = m(2\dot{r}\dot{\theta} + r\ddot{\theta})$

Newton's law in polar coordinates do not follow its Cartesian form as,

$$F_r \neq m\ddot{r}$$
 or $F_{\theta} \neq m\ddot{\theta}$

It means, the form of Newton's law is different in different coordinate systems.

24/08/20 Dr. V. S. Gayathri 28

A particle moves in a circle of radius b with angular velocity $\dot{\theta} = \alpha t$, where α is a constant. (α has the units rad/s².) Describe the particle's velocity in polar coordinates. Find particle's position also. Sol.

Velocity of the particle is given as

Since r = b = constant,

Therefore, $\dot{r} = 0$

Also, $\dot{\theta} = \alpha t$

Putting these values in 1, we get

$$\vec{v} = b\alpha t\hat{\theta}$$

v is purely tangential

Position of the particle is given as

$$r=b, \quad \theta=\theta_0+\int_0^t \dot{\theta}dt=\theta_0+\frac{1}{2}\alpha t^2.$$

If the particle is on the x axis at t = 0, then $\theta_0 = 0$.

 $\left(b, \frac{1}{2}\alpha t^2\right)$

Discussion:

The particle's position vector is $\vec{r} = b\hat{r}$ but as diagram indicates, θ must be given to specify the direction of \hat{r} .

Consider a particle moving with constant velocity $\mathbf{v} = u\hat{\mathbf{i}}$ along the line y = 2. Describe \mathbf{v} in polar coordinates:

Sol.

$$\mathbf{v} = v_r \hat{\mathbf{r}} + v_\theta \hat{\boldsymbol{\theta}}.$$

From the sketch,

$$v_r = u \cos \theta$$

$$v_\theta = -u \sin \theta$$

$$\mathbf{v} = u \cos \theta \,\hat{\mathbf{r}} - u \sin \theta \,\hat{\boldsymbol{\theta}}.$$

Discussion:

As the particle moves to the right, θ decreases and $\hat{\bf r}$ and $\hat{\bf \theta}$ change

Problem-3:

A bead moves along the spoke of a wheel at constant speed u meters per second. The wheel rotates with uniform angular velocity $\dot{\theta}=\omega$ radians per second about an axis fixed in space. At t=0 the spoke is along the x axis, and the bead is at the origin. Find the velocity at time t

24/08/20

<u>Sol.</u>

In polar coordinates, r = ut, $\dot{r} = u$, $\dot{\theta} = \omega$. Hence $\mathbf{v} = \dot{r} \,\hat{\mathbf{r}} + r \dot{\theta} \,\hat{\boldsymbol{\theta}} = u \,\hat{\mathbf{r}} + u\omega t \,\hat{\boldsymbol{\theta}}$.

At time t, the bead is at radius ut on the spoke, and the spoke makes angle ωt with the x axis.

Problem-4:

A bead moves outward with constant speed u along the spoke of a wheel. It starts from the center at t=0. The angular position of the spoke is given by $\theta=\omega t$, where ω is a constant. Find the acceleration.

The acceleration is

$$\mathbf{a} = (\ddot{r} - r\dot{\theta}^2)\hat{\mathbf{r}} + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{\mathbf{\theta}}$$
$$= -ut\omega^2\hat{\mathbf{r}} + 2u\omega\hat{\mathbf{\theta}}.$$

Discussion:

The velocity is shown in the sketch for several different positions of the wheel.

Here, the radial velocity is constant.

The tangential acceleration is also constant