

Universidade do Minho

Escola de Engenharia

METI - Emulação e Simulação de Redes de Telecomunicações

Relatório de Especificação da fase B

Grupo 2

Alunos:

João Pedro Costa Bastos - pg57564 Bruno Miguel Fernandes Araújo - pg55806

Docentes:

Adriano Jorge Cardoso Moreira Bruno Daniel Mestre Viana Ribeiro José Augusto Afonso

Conteúdo

Lista de S'imbolos Lista de Figuras							
2 Proposta de Aplicação							
3	Especificação da Fase B						
	3.1	S'intese de conceitos					
	3.2	Arquitetura geral do sistema					
		3.2.1 Especificação da rede de sensores					
	3.3	Requisitos					
		3.3.1 Requisitos funcionais					
		3.3.2 Requisitos não funcionais					
	3.4	Objetivos					
	3.5	Planeamento					
		3.5.1 Planeamento temporal					
		3.5.2 Ferramentas utilizadas					
		3.5.2.1 <i>Software</i>					
		3.5.2.2 <i>Hardware</i>					
4	Con	clusão					

Lista de Símbolos

	,		
$\mathbf{A}\mathbf{C}$	ro	nır	nos

Cloud	1 Cloud 1
Cloud	2 Cloud 2
DNS	Domain Name System
DNS	Servidor DNS
<i>IoT</i>	Internet of Things
IP	Internet Protocol
LED	Light Emitting Diode
NAT	Network address translation
OS PF	Open Shortest Path First Protocol
<i>R</i> 1	Router 1
<i>R</i> 2	Router 2
R3	Router 3
<i>R</i> 4	Router 4
<i>R</i> 5	Router 5
Switch	h1 Switch 1

Lista de Figuras

1	Arquitetura resultante da Fase A	3
2	Esboço inicial da Rede de Sensores da Fase B	4
3	Diagrama de Gantt da Fase B	-

1 Introdução

Este projeto visa o desenvolvimento de um sistema de "smart parking" para gestão inteligente de estacionamento, utilizando tecnologias de Internet das Coisas (IoT) e simulação no ambiente virtual "CupCarbon". A crescente urbanização e a consequente escassez de espaços de estacionamento têm incentivado a pesquisa e desenvolvimento de soluções tecnológicas que otimizem o uso desses recursos limitados. Com isso em mente, o sistema proposto procura oferecer uma solução eficiente para ambientes de estacionamento de pequenas dimensões, com aproximadamente 10 a 15 vagas, onde sera´ utilizada comunicação sem fios via Bluetooth para a transmissão de dados devido a` proximidade dos dispositivos.

Este sistema permitira´ monitorizar o estado de ocupação das vagas em tempo real, informando o status "livre" ou "ocupado" para uma central que, posteriormente, distribuira´ as informações via internet. Para isso, o sistema sera´ conectado a uma rede simulada com uma infraestrutura em malha composta por cinco routers e duas clouds, de modo a garantir a transmissão segura e eficiente dos dados capturados pelos sensores.

2 Proposta de Aplicação

A proposta escolhida foi "Smart Parking", utilizando sensores ultrasom para poder dar a informação se um determinado lugar num parque de estacionamento esta´ ocupado ou não, possibilitando a criação de um display para dar a conhecer aos utilizadores a lotação do parque, e fornecendo ao dono/a do parque dados para criação de estatisticas de ocupação numa linha temporal. Este projeto visa conectar um sistema de sensores ultrasom numa rede de routers em malha utilizando a internet, esta rede estara´ interligada a um servidor DNS para tradução de nomes de dom´inio e a duas clouds para gerir e armazenar dados. Essa estrutura proporcionara´ um sistema eficiente e em tempo real para monitorizar a ocupação de vagas de estacionamento, facilitando a gestão e melhorando a experiência dos utilizadores.

3 Especificação da Fase B

3.1 S'intese de conceitos

- Plataforma IoT É um ambiente integrado que fornece as ferramentas e serviços necessários para conectar, gerenciar e controlar dispositivos inteligentes que fazem parte do ecossistema da Internet das Coisas (IoT). Estas plataformas ajudam a conectar dispositivos físicos (sensores, atuadores, máquinas, etc.) a` internet, recolher dados, analisá-los, e permitir que os dispositivos interajam uns com os outros ou com aplicações.
- Sensores São dispositivos que detetam mudanças no ambiente ou em objetos e convertem essas variações em dados digitais, que podem ser transmitidos e analisados. Eles desempenham um papel fundamental na recolha de informações que são utilizadas para monitorizar, controlar e otimizar processos, e são essenciais para aplicações de IoT.
- Atuadores São dispositivos que recebem comandos para executar uma ação física ou mecânica em resposta aos dados processados de sensores ou comandos diretos do sistema. Eles atuam como a "parte de ação" dos sistemas de IoT, enquanto os sensores representam a "parte de coleta de dados".
- **Bluetooth** E uma tecnologia de comunicação sem fio de curto alcance que permite a transferência de dados entre dispositivos próximos, como smartphones, tablets, computadores, fones de ouvido e dispositivos IoT. Ele usa ondas de rádio de baixa energia na faixa de frequência de 2,4 GHz para transmitir informações.

3.2 Arquitetura geral do sistema

A arquitetura geral do sistema resultante da Fase A, encontra-se ilustrada esquemáticamente na Figura 1.

Figura 1: Arquitetura resultante da Fase A.

Esta foi a rede com encaminhamento dinámico (usamos o OSPF) que desenvolvemos na fase A.

Desde a apresentação da demo A, alteramos as ligações serial para ethernet e removemos um servidor DNS que tinhamos colocado para testes.

Para esta **Fase B**, sera´ necessário que a rede tenha uma conexão com a Internet através de uma Cloud, que a representara´ e a` qual o Cupcarbon estara´ ligado. Para isso, precisaremos substituir a NAT.

3.2.1 Especificação da rede de sensores.

Na rede de sensores do nosso projeto de *Smart Parking*, temos presente **1 parque de estacionamente** com **10 lugares dispon'iveis**.

Nesse vamos ter presentes **10 sensores ultrassom** que iram detetar se o lugar se encontra ocupado ou não e **10 Leds (atuadores)** cuja luz dependera do estado do lugar a que este se encontra associado.

Tendo em conta que a à rea de cobertura da rede de sensores e´ pequena, que os dispositivos não estarão muito afastados entre si e que estes não consumirão nem muita energia nem muita largura de banda, optamos pela tecnologia de redes sem fios **Bluetooth**.

Usamos o Cup Carbon para representarmos um esboço inicial da rede de sensores que temos em mente, este encontra-se ilustrado na Figura 2.

Figura 2: Esboço inicial da Rede de Sensores da Fase B.

Legenda:

Os 10 sensores do Sistema.

Os 10 atuadores do Sistema (LEDS).

Teremos de desenvolver **SenScripts** para programar os comportamentos dos sensores e dos atuadores.

Por exemplo, para os Leds em principio teremos um ciclo com mark 1 e 0 em que 1 representa quando este se encontra ligado (Lugar do estacionamento livre) e 0 quando este se encontra desligado (Lugar do estacionamento ocupado).

3.3 Requisitos

Definição de vários requisitos funcionais e requisitos não funcionais que serão pontos obrigatórios na realização desta fase.

3.3.1 Requisitos funcionais

- O sistema deve ser capaz de identificar e comunicar o estado de cada lugar de estacionamento, indicando se esta' "ocupado" ou "livre";
- Os sensores devem transmitir o status dos lugares via Bluetooth para os dispositivos centrais, em função do curto alcance e da necessidade de economia de energia.
- O sistema deve ser capaz de atualizar o status das vagas em tempo real.

3.3.2 Requisitos não funcionais

- A transmissão via Bluetooth deve ser otimizada para garantir baixo consumo de energia e minimizar o tempo de comunicação entre os sensores.
- O sistema deve minimizar a latência no processamento e envio de informações, mantendo as atualizações em tempo quase real.

3.4 Objetivos

Para esta fase os objetivos principais a realizar são:

- Definição da área de aplicação do sistema IoT a desenvolver pelo grupo.
- Definição, dentro da área de aplicação escolhida, dos parâmetros a monitorizar/controlar e respetivos sensores/atuadores.
- Definição da área de cobertura do sistema e do número e distribuição dos dispositivos sensores nesta área.
- Proposta de uma tecnologia de redes sem fios adequada para uma implementação f'isica da rede
 de sensores sem fios tendo em consideração parâmetros como a distância entre os dispositivos,
 a topologia de rede, o consumo de energia dos dispositivos e o débito requerido pelos sensores.
- Definição de um protocolo de comunicação e os formatos das mensagens enviadas e recebidas pelos dispositivos sensores.
- Instalação e simulação da rede de sensores utilizando o CupCarbon.
- Integração entre a rede de sensores e a infraestrutura de rede criada utilizando o GNS3.

Objetivos extra:

- Configuração dos dispositivos: Definição e implementação de mensagens downlink para configuração remota dos parâmetros dos dispositivos.
- Atuação: Definição e implementação de mensagens/comandos downlink para atuação remota de atuadores nos dispositivos.
- Definição/implementação de um protocolo MAC na rede de sensores que permita aos dispositivos da rede entrarem em modo sleep nos per í odos de inatividade.
- Integrar um dispositivo sensor real na simulação utilizando a plataforma de desenvolvimento ESP32.

3.5 Planeamento

Primeiramente apresentamos a planificação temporal da Fase B do projeto, acompanhando-a pelo seu diagrama de Gantt respetivo e de seguida indicamos o conjunto de ferramentas que serão utilizadas neste projeto.

3.5.1 Planeamento temporal

Na Figura 3 esta o Diagrama de *Gantt* correspondente a esta fase.

Figura 3: Diagrama de Gantt da Fase B.

3.5.2 Ferramentas utilizadas

Apresentamos as ferramentas utilizadas, listadas conforme a sua categoria: Software ou Hardware.

3.5.2.1 *Software*

As ferramentas a n'ivel de software serão as seguintes:

- Programa *GNS3*, para a simulação de redes, permite o teste de cenários e de configurações antes da implementação prática.
- Programa Oracle VM Virtualbox, para a utilização da virtual machine como servidor local para estabelecer ligação a´internet.
- Plataforma *Discord*, para a comunicação e partilha de ficheiros entre o grupo.
- Plataforma *OverLeaf*, para a elaboração de relatórios em LATEX.
- Programa Microsoft Excel, para o desenvolvimento do diagrama de Gantt usado no planeamento temporal das tarefas do grupo.
- Programa *CupCarbon*, para a simulação e monitorização da rede de sensores.

3.5.2.2 *Hardware*

Ao n'ivel de hardware temos apenas presentes 2 computadores, um para cada estudante.

4 Conclusão

Nesta fase B, concentramo-nos em implementar a rede de sensores IoT tivemos de ter em conta a à rea de aplicação, os sensores e atuadores a serem usados e ainda tivemos de tomar uma decisão importante com a escolha da tecnologia de redes sem fios.

Revisitamos a fase A ao integrarmos a rede de sensores simulada no Cup Carbon com a rede criada no GNS3.

É nesta fase que temos a oportunidade de trazer a simulação ao real, se optarmos em integrar um sensor real a´ nossa rede simulada, algo que acreditemos ser muito similar ao mercado de trabalho, mostrando assim, a importância deste projeto.