

Sintesi di Reti Combinatorie

Ottimizzazione di Reti Combinatorie a Due Livelli: Metodo di Karnaugh

Introduzione

Metodo di Karnaugh per reti completamente specificate Le condizioni di indifferenza

Metodo di Karnaugh per reti non completamente specificate

Sintesi di reti combinatorie a due livelli: *Introduzione (1)*

Obiettivo:

ridurre la complessità di una (o più) funzione(i) booleana(e) espressa(e) in forma di *Prodotto di Somme* o di *Somma di Prodotti* (SOP). Si considerano le forme canoniche come soluzioni iniziali

- Ci si riferirà alla sola forma Somma di Prodotti o SOP
 - · l'altra ne è la duale ed i principi sono gli stessi.
- Nella <u>sintesi a due livelli</u> la riduzione di complessità avviene tramite
 - Riduzione del numero dei termini prodotto
 - Riduzione del numero di letterali
 - Esempio:
 - f(a,b,c)=a'b'c'+a'bc'+a'b'c equivale af(a,b,c)=a'b'+a'c'

- 2 -

Sintesi di reti combinatorie a due livelli: *Introduzione (2)*

Metodologie di sintesi ottima:

- Esatte: Karnaugh e Quine Mc Cluskey;
- Euristiche per sintesi a due livelli.

Sintesi ottima:

- dipende dalla cifra di merito che si vuole ottimizzare
- la cifra di merito generalmente adottata per la riduzione di complessità di una rete combinatoria a 2 livelli è il costo (dell'implementazione) della rete
- esistono diversi criteri di costo
 - Cardinalità (= n°di termini prodotto) della soluzione
 - Numero di letterali della soluzione
- Il metodo di Karnaugh identifica una soluzione ottima minimizzando la cardinalità
 - In caso di soluzione ottima non unica, quindi a pari cardinalità, può essere possibile scegliere la soluzione con il minor numero di letterali

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Karnaugh*

Karnaugh

- Si propone di identificare forme minime a due livelli applicando la regola di riduzione
- a Z + a' Z = (a+a') Z = Z con Z termine prodotto di n-1 variabili.
 - Esempio: abcd' + ab'cd' = acd'
- La riduzione può essere applicata iterativamente
 - Esempio: abc'd'+abc'd+abcd'+abcd=abc'(d'+d)+abc(d'+d)=abc'+abc=ab(c'+c)=ab
 - Nota: si osservi che la applicazione della relazione identificata è applicata ad un numero di termini pari a 2^n quindi 2, 4, 8, ...
- Osservazione: la regola identificata mantiene inalterato il numero dei livelli
 - Cioè, somme di prodotti rimangono tali. Al più, tali espressioni possono banalizzarsi in semplici prodotti o costanti.

- 3 -

Karnaugh

- La formula di riduzione potrebbe essere facilmente applicata direttamente alle espressioni Booleane.
- Il problema però consiste nell'identificare:
 - 1. sia tutti i termini su cui applicare la riduzione;
 - Non è sempre immediato identificare tutti termini su cui applicare la regola di riduzione identificata.
 - sia i tutti termini che partecipano a più riduzioni contemporaneamente e replicarli (vedi esempio).
 - Nota: si ricordi che, per le proprietà dell'algebra di Boole, la relazione x+x=x può essere applicata anche come x=x+x.

- 5 -

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Karnaugh*

Karnaugh (cont.)

- Esempio di replicazione dei termini:

a	b	f(a,b)
0	0	0
0	1	1
1	0	1
1	1	1

SOP:
$$f(a,b)=a'b+ab+ab'$$

$$= (a'+a)b+ab'=b+ab'$$

$$=a'b+a(b+b')=a'b+a$$

- Nessuna delle due espressioni è ulteriormente riducibile
- È evidente, comunque, che la soluzione minima sia a+b

- 6 -

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Karnaugh*

Karnaugh (cont.)

- Esempio di replicazione dei termini:

a	b	f(a,b)
0	0	0
0	1	1
1	0	1
1	1	1

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Karnaugh*

Karnaugh (cont.)

- Il metodo delle mappe di Karnaugh consente di risolvere direttamente i problemi identificati:
 - · sia dovuti alla replicazione dei termini.
 - ${\boldsymbol \cdot}\;$ sia legati alla identificazione dei termini da raggruppare.
- Il metodo delle mappe di Karnaugh è grafico.
 - · La sua applicazione è semplice per un numero di variabili fino a 4.
 - Risulta complesso per un numero di variabili da 5 a 6.
 - É praticamente inattuabile per un numero di variabili superiori a 6.

- 7 -

Mappe di Karnaugh

- Una mappa di Karnaugh è uno schema deducibile dalla rappresentazione geometrica delle configurazioni binarie.
- Definizione utili:
 - Distanza di Hamming: numero di bit che cambia nel passare da una configurazione binaria ad un'altra
 - Esempio: la *distanza di Hamming* tra le configurazioni 01001 e 10101 è 3 poiché cambiano 3 bit.
- L'applicazione della regola di riduzione consiste nell'identificare le configurazioni binarie associate ai termini prodotto che sono a distanza di Hamming unitaria.
 - Esempio: i termini prodotto abcd' e ab'cd' corrispondono a 1110 e 1010 e sono a distanza di Hamming pari ad 1.

- 9 -

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Karnaugh*

- È noto che una funzione di commutazione a n variabili
 f: {0,1}ⁿ → {0,1} può essere rappresenta in modo comodo utilizzando una tabella della funzione o tabella della verità.
- In modo assolutamente equivalente una funzione a n variabili può essere associata ad una rappresentazione cartesiana in uno spazio a n dimensioni.
- Esempio (spazio 3 dimensionale)

_	_ '				000 0	0.0
	a	b	С	f(a,b,c)		
Γ	0	0	0	0		
	0	0	1	1	100 1 101 1	
	0	1	0	0		
	0	1	1	1	010 0	01
	1	0	0	1	a *	•
	1	0	1	1	110 0 111 1	
	1	1	0	0	•	
	1	1	1	1	▼	
L				l	b	

- 10 -

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Karnaugh*

- Nella rappresentazione cartesiana di una funzione in uno spazio a n dimensioni, collegando i vertici le cui configurazioni sono a distanza di Hamming unitaria si ottiene un n-cubo.
 - Spazio a 1 dimensione (1 variabile)
 - È una *linea*, e l'1-cubo è un segmento: i due vertici sono associati alle configurazioni 0 e 1

- Spazio a 2 dimensioni (2 variabili):
 - È il piano, il 2-cubo è un quadrato che si ottiene dall'1-cubo per proiezione. Si premette 0 alle configurazioni dei vertici originali, 1 a quelle dei vertici proiettati

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Karnaugh*

- Spazio a 3 dimensioni (3 variabili)
 - Il 3-cubo è un solido, che si ottiene dal 2-cubo per proiezione, premettendo 0 alle configurazioni dei vertici originali, 1 a quelle dei vertici proiettati

- Si può pensare di trasportare una tabella delle verità a n variabili su un n-cubo, marcando opportunamente i nodi associati a 0 e 1.
 - Si sottolinea nuovamente che due configurazioni sono a distanza unitaria (adiacenti) se e solo se i vertici associati sono collegati da un lato.
- Esempio: $f(a,b,c) = ON_{set}(1,3,4,5,6)$

- 13 -

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Karnaugh*

- Di fatto, la rappresentazione in uno spazio a n dimensioni non è maneggevole
 - Già per sole tre dimensioni non è di semplice utilizzo.
- Quindi, si passa allo sviluppo nel piano dei cubi.
- Al cubo sviluppato nel piano, che ha 2ⁿ vertici, si sovrappone una griglia (mappa) con 2ⁿ caselle organizzate secondo righe e colonne
 - Esempio: per il 2-cubo si ha una mappa di 4 caselle su due righe e due colonne, e ad ogni colonna si associa una delle variabili come coordinata

- 14 -

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Karnaugh*

- Una mappa così realizzata costituisce una mappa di Karnaugh:
 - Le configurazioni assunte dalla variabili di ingresso danno origine gli indici di riga e colonna della mappa.
 - In ogni casella si trascrive il valore assunto dalla funzione quando la configurazione delle variabili corrisponde a quella delle coordinate che contrassegnano le caselle.
 - In una mappa di Karnaugh, *due caselle che condividono un lato di un n-cubo corrispondono a due configurazioni di variabili adiacenti* (distanza di Hamming pari ad 1).

- Esempio: $f(a,b) = ON_{set}(1,2)$

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Karnaugh*

- Lo sviluppo nel piano di un 3-cubo implica il taglio del cubo
- Il taglio deve mantenere intatta, concettualmente, la adiacenza fra vertici. Si presti molta attenzione all' ordinamento delle coordinate
 - ordinamento delle coordinate mantiene le distanze di Hamming e *non* coincide con la numerazione consecutiva

- 15 -

Caratteristiche delle mappe: riassunto

Indici di riga e colonna: configurazioni adiacenti Cambia un solo bit nel passaggio da una configurazione ad un'altra

Le colonne e righe identificate da 00 e 10 sono adiacenti

Contenuto della matrice: valori della assunti dalla funzione

Esempio: f(a,b,c,d) per a=0 b=0 c=0 e d=0 assume valore 1

- 17 -

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Karnaugh*

Caratteristiche delle mappe

- Si ricorda che: un implicante è un termine prodotto in cui compaiono solo alcuni dei letterali.

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Karnaugh*

Metodo:

- 1. Individuare gli implicanti primi e primi essenziali;
 - Implicante primo
 - Termine prodotto associato ad un raggruppamento di dimensione massima.
 - · implicante primo essenziale
 - Implicante primo che copre uno o più 1 non coperti da nessun altro implicante primo.

2. Copertura:

 Scelta del minor numero di implicanti primi e primi essenziali (minimizzazione della cardinalità della soluzione)

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Karnaugh*

Scopo:

 identificare una forma SoP che includa il numero minimo di implicanti e
 a parità di numero di prodotti - gli implicanti col minimo numero di letterali (definita come forma minima) garantendo la copertura di tutti gli 1 della funzione

Teorema:

- Esiste sicuramente una forma minima costituita da soli implicanti primi
 - sulla mappa di Karnaugh si identificano tutti gli implicanti primi.
 - Nota: la somma di tutti gli implicanti primi è spesso ridondante.
- Implicanti primi essenziali devono essere inclusi nella forma minima.
- Una forma minima costituita da soli *implicanti primi essenziali* è unica
 - · Condizione sufficiente.

- 19 -

_ Esempio: alcuni raccoglimenti

- 21 -

CONTROL OF THE PARTY OF THE PAR

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Karnaugh*

- 22 -

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Karnaugh*

- Ad ogni raccoglimento è associato un termine prodotto.
- Il termine prodotto (implicante) è ottenuto:
 - identificando le variabili che non cambiano mai di valore e riportando ogni variabile in modo naturale (esempio: a) se il valore che essa assume è 1 o in modo complementato (esempio: a') se il valore da essa assunto è 0
- Osservazione:
 - un numero di 1 raccolti pari a 2ⁿ produce un implicante di N-n letterali dove N è il numero delle variabili della funzione.
 - Esempio: per una funzione di quattro variabili -es. f(a,b,c,d) un implicante che raccoglie quattro 1 è associato ad un termine prodotto di 2 variabili (es. a'd)

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Karnaugh*

Esempio: identificazione del termine prodotto

b e d cambiano valore: non compaiono nel termine prodotto. a e c compaiono come 0 quindi a' e c' . Il termine prodotto è a'c'.

- 23 -

Copertura

- *Copertura*: sotto insieme degli implicanti identificati tale per cui nessun 1 della funzione rimane *scoperto*.
- Poiché ogni implicante scelto aumenta il costo della realizzazione della funzione, il numero di implicanti da scegliere deve essere il minore possibile.
- L'obiettivo è la riduzione del costo; questo si traduce nella identificazione della copertura di *minima cardinalità*:
 - sotto insieme degli implicanti primi e primi ed essenziali identificati che realizza una copertura della funzione che è di cardinalità minima.

- 25 -

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Karnaugh*

- Copertura (cont.)
 - Scelta degli implicanti per realizzare la copertura:
 - 1. Si scelgono tutti gli implicanti primi essenziali.
 - Gli implicanti primi essenziali devono essere parte della copertura poiché "sono essenziali" e, quindi, non è possibile fare a meno di loro.
 - 2. Si eliminano tutti gli implicanti primi che sono coperti da quelli essenziali (eliminazione implicanti completamente ridondanti)
 - gli implicanti eliminati, detti completamente ridondanti, coprono degli 1 che sono già ricoperti da quelli essenziali e, quindi, non servono ed aumentano il costo
 - 3. Si seleziona il numero minore degli implicanti primi che sono rimasti.
 - gli implicanti residui sono detti *parzialmente ridondanti*.
 - Osservazione: la scelta viene fatta seguendo un criterio basato sulla pura osservazione della tabella.

- 26 -

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Karnaugh*

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Karnaugh*

- 27 -

- 29 -

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Karnaugh*

- Condizioni di Indifferenza (don't care)
 - La specifica di un progetto (la descrizione di quello che si vuole progettare) contiene, spesso, delle *condizioni di indifferenza* sull'uscita (denominate anche *don't care* o *DC*).
 - le condizioni di indifferenza corrispondono a configurazioni di ingresso per le quali il valore dell'uscita non è noto e non è neppure di interesse sapere quanto può valere. Questo accade quando:
 - Le configurazioni di ingresso non si presentano mai; e/o
 - Le configurazioni di ingresso impediscono all'uscita della rete in fase di progetto - di essere osservata.

- 30 -

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Karnaugh*

- Le configurazioni di ingresso per le quali il valore dell'uscita è non specificato vengono definite condizioni di indifferenza e costituiscono il DC_{set} della funzione stessa.
- Sulla tabella delle verità (o in una mappa di Karnaugh) il valore non specificato della funzione si indica il simbolo "-" (o anche "x").
- Le condizioni di indifferenza sono gradi di libertà nel processo di sintesi.
 - In fase di sintesi, ai valori non specificati si può assegnare indifferentemente il valore 0 oppure 1 a seconda di quanto conviene per minimizzare la funzione.
 - Una condizione di indifferenza non deve necessariamente essere coperta da un implicante (forma SoP), ma può esserlo se questo conviene cioè se consente:
 - 1. o di ridurre il numero degli implicanti;
 - 2. o di ridurre il numero dei letterali degli implicanti esistenti.

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Karnaugh*

- Importante:
- 1. Gli implicanti primi realizzati solamente mediante condizioni di indifferenza non hanno alcuno scopo (non servono).
- 2. Un implicante primo non diventa essenziale perché è l'unico a coprire una data condizione di indifferenza.

- 31 -

Esempio 1:

- Si voglia sintetizzare una funzione con quattro ingressi A, B, C, D e un'uscita f. Gli ingressi rappresentano cifre decimali codificate in codice BCD;
- I'uscita deve valere 1 se e solo se la cifra in ingresso è minore o uguale a 3 oppure maggiore o uguale a 8.
- Dalla specifica risulta che, delle 16 possibili configurazioni degli ingressi solo 10 potranno effettivamente presentarsi.
 - Nota: Codifica BCD
- In corrispondenza delle configurazioni di valori impossibili, non interessa il valore che la funzione può assumere
 - In questi casi, il valore dell'uscita è *non specificato*.

- 33 -

Sintesi di reti combinatorie a due livelli:

Metodi esatti - Karnaugh: esempio 1

Esempio 1 (cont.)

- 34 -

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Karnaugh: esempio 1*

Esempio 1 (cont.)

 Ignorando la presenza dei gradi di libertà introdotti dalle condizioni di indifferenza, l'utilizzo dei soli 1 porterebbe a identificare due implicanti essenziali.

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Karnaugh: esempio 1*

Esempio 1 (cont.)

- Servendosi delle condizioni di indifferenza si migliora il risultato riducendo il costo della realizzazione.
 - assegnando valore 1 in corrispondenza di 1010 e 1011 e valore 0 in corrispondenza delle altre configurazioni.

- 35 -

Esempio 2:

- Si voglia sintetizzare la rete RC di figura soggetta ai seguenti vincoli di progetto:
 - 1. il valore assunto da A è sempre uguale a quello di B.
 - Quando A=0;B=0 e quando A=1;B=1;C=0 il valore di f è 1 mentre, in tutti gli altri casi, f vale 0.
- Problema: Qual è la funzione associata alla rete combinatoria RC (f=g(a,b,c))?

- 37 -

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Karnaugh: esempio 2*

Esempio 2 (cont.):

- si consideri il seguente esempio dove il valore di A è sempre uguale al valore di B mentre C può assumere qualunque valore. Quando A=B=0 e quando A=B=1 e C=0 il valore di f è 1 mentre, in tutti gli altri casi, f vale 0. Qual è la funzione associata alla rete combinatoria RC (f=q(a,b,c))?
- Se non facessimo alcuna considerazione né sul fatto che A deve essere uguale a B né sul contesto in cui è inserito il circuito si avrebbe:

- 38 -

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Karnaugh: esempio 2*

Esempio 2 (cont.):

- si consideri il seguente esempio dove il valore di A è sempre uguale al valore di B mentre C può assumere qualunque valore. Quando A=B=0 e quando A=B=1 e C=0 il valore di f è 1 mentre, in tutti gli altri casi, f vale 0. Qual è la funzione associata alla rete combinatoria RC (f=g(a,b,c))?
- Considerando il solo vincolo sugli ingressi, espresso da "A è sempre uguale a B", si avrebbe:

		1		AB
авс	f	ABC	f	C 00 01 11 10
0 0 0		0 0 0	1	0 1 - 1 -
0 0 1		0 0 1	1	1 1 - 10 -
0 1 0	A diverso da B	0 1 0	-	
0 1 1	A diverso da B	0 1 1	-	
1 0 0	A diverso da B	1 0 0	_	
1 0 1	A diverso da B	1 0 1	_	f(a,b,c)= a'+c'
1 1 0		1 1 0	1	oppure
1 1 1		1 1 1	0	f(a,b,c)= b'+c'

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Karnaugh: esempio 2*

Esempio 2 (cont.):

 Considerando i vincoli imposti sia sugli ingressi sia sulle uscite :

Configurazioni mai osservate da Z

Configurazioni mai prodotte dall'ambiente
_

·9 ·· · · · · · · · · · · · · · · · · ·	and the second s	
ABC f	A B C f	ABC f
0 0 0	0 0 0 -	0 0 0 Z indipendente da f
0 0 1	0 0 1 1	0 0 1
0 1 0 A diverso da B	0 1 0 -	0 1 0 Z indipendente da f
0 1 1 A diverso da B	0 1 1 -	0 1 1
1 0 0 A diverso da B	100 -	1 0 0 Z indipendente da f
1 0 1 A diverso da B	1 0 1 - `	1 0 1
1 1 0	1 1 0 -	1 1 0 Z indipendente da f
1 1 1	1 1 1 0	1 1 1

Il simbolo "-" indica che il valore assunto dalla uscita non ha alcuna importanza poiché:

- a) La configurazione degli ingressi ad esso relativa non viene mai generata $\,$
- b) L'uscita corrispondente alla configurazione degli ingressi non viene mai osservata

- 39 -

- Metodo (riassunto):
 - Rispetto al caso senza condizioni di indifferenza si hanno le seguenti variazioni:
 - 1. Individuare gli implicanti primi e primi essenziali considerando le condizioni di indifferenza come se fossero 1;
 - Nota: Si ricordi che gli implicanti primi realizzati solamente mediante condizioni di indifferenza non hanno alcun valore.
 - 2. Coprire solo l'ON_{set} della funzione con gli implicanti identificati.
 - Infatti, i soli termini significativi sono gli 1 della funzione. Questi termini sono gli unici elementi di rilievo (vincoli).

Esempio:	авс	f	
	0 0 0	_	AB 00 01 11 110
	0 0 1	1	c = 00 01/11/10 $f(a,b,c) = a'$
	0 1 0	-	0
	0 1 1	-	\longrightarrow 1 1 \longrightarrow 0 0 0 oppure
	1 0 0	-	f(a,b,c)=b'
	1 0 1	-	¥ 2(a,2,0, 2
	1 1 0	-	Trascurato in fase di copertura o
	1 1 1	0	non sviluppato in fase di espansione
	Esempio:	0 0 0 0 0 1 0 1 0 1 1 1 0 0 1 0 1	0 0 0 0 - 0 0 1 1 0 1 0 - 0 1 1 - 1 0 0 - 1 0 1 -

STEEN CO

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Karnaugh*

Esempio

