CS 4476/6476 Spring 2020 PS1

Yunqing Jia yjia67@gatech.edu 903256707

Short answer problems

1.1 Use numpy.random.rand to return the roll of a six-sided die over N trials.

```
def prob_1_1(N):
    """

Args: N: the number of trials.
Returns: arr: array of rolls.
"""

### START CODE HERE ###
arr = np.round(np.random.rand(6)*6,
0)
### END CODE HERE ###
return arr
```

```
1.2 Let y be the vector: y = np.array([11, 22, 33,
44, 55, 66]). Use the reshape command to form a new
matrix z that looks like this:
[[11,22],[33,44],[55,66]]
def prob 1 2(y):
      11 11 11
      Args: y: numpy array.
      Returns: z: numpy array of shape
      (\text{new size, 2}).
      11 11 11
      ### START CODE HERE ###
      z = y.reshape((3,2))
      ### END CODE HERE ###
```

return z

1.3 Use the <code>numpy.max</code> and <code>numpy.where</code> functions to set <code>x</code> to the maximum value that occurs in <code>z</code> (above), and set <code>r</code> to the row number (0-indexed) it occurs in and <code>c</code> to the column number (0-indexed) it occurs in.

```
def prob 1 3(z):
     11 11 11
     Args: z: numpy array of shape (3,2).
     Returns: x: max value in z.
     r: row index of x.
     c: column index of x.
     ** ** **
     ### START CODE HERE ###
     x = np.max(z)
     ind = np.where(z == x)
     r, c = ind[0], ind[1]
     ### END CODE HERE ###
     return (x, r, c)
```

1.4 Let v be the vector: v = np.array([1, 4, 7, 1, 2, 6, 8, 1, 9]). Set a new variable x to be the number of 1's in the vector v.

```
def prob_1_4(v):
    """
    Args: v: numpy array.
    Returns: x: number of 1's in v.
    """

    ### START CODE HERE ###
    x = np.sum(v == 1)
    ### END CODE HERE ###

return x
```

2.1 Plot all the intensities in \mathbb{A} , sorted in decreasing value. Provide the plot in your answer sheet. (Note, in this case we don't care about the 2D structure of \mathbb{A} , we only want to sort the list of all intensities.)

2.2 Display a histogram of A's intensities with 20 bins. Again, we do not care about the 2D structure. Provide the histogram in your answer sheet.

3.1 Display the color channel swapped image.

3.2. Display the grayscale image.

3.3 Display the negative image.

3.4 Display the mirror image.

3.5 Display the averaged image.

3.6. Display the clipped image.

Understanding Color

4.1. Load the images and plot their R, G, B channels separately as grayscale images using plt.imshow() (beware of normalization).

R G В Indoor Outdoor

4.1.(contd) Then convert them into LAB color space using cv2.cvtColor() and plot the three channels again.

Α В Indoor Outdoor

4.2. Convert the input image from RGB to HSV.

