61. Вычисление коэффициентов суммы ортогонального ряда. Коэффициенты Фурье и ряды Фурье по ортогональной системе. Геометрические свойства частичных сумм ряда Фурье. Неравенство Бесселя

1) Вычисление коэффициентов суммы ортогонального ряда

Пусть $\{e_k\}_{k=1}^\infty$ — ортогональная система (ОС) в гильбертовом пространстве $\mathcal{H}, x \in \mathcal{H}$, причём $x = \sum_{k=1}^\infty c_k e_k$. Тогда коэффициенты c_k определяются единственным образом по формуле:

$$c_k = rac{\langle x, e_k
angle}{\|e_k\|^2}.$$

Смысл:

Эта формула позволяет найти коэффициенты разложения вектора x по ортогональной системе. Она гарантирует, что если вектор можно представить в виде ряда по ортогональным векторам, то коэффициенты вычисляются через скалярное произведение. Это прямое обобщение проекции вектора на координатные оси в ортогональном базисе.

2) Определение коэффициентов и ряда Фурье

Пусть $\{e_k\}_{k=1}^\infty$ — ОС в \mathcal{H} , $x\in\mathcal{H}$. Коэффициентами Фурье вектора x называются числа:

$$c_k(x) = rac{\langle x, e_k
angle}{\|e_k\|^2}.$$

Рядом Фурье вектора x по системе $\{e_k\}$ называется ряд:

$$\sum_{k=1}^{\infty} c_k(x) e_k.$$

Смысл:

Коэффициенты Фурье показывают "вклад" каждого элемента ортогональной системы e_k в вектор x. Сам ряд Фурье — это попытка восстановить x как бесконечную линейную комбинацию элементов ОС. Геометрически $c_k(x)e_k$ — это проекция x на прямую, порождённую вектором e_k .

3) Свойства частичных сумм ряда Фурье

Пусть $\{e_k\}_{k=1}^\infty$ — ОС в \mathcal{H} , $x\in\mathcal{H}$, $n\in\mathbb{N}$, $S_n=\sum_{k=1}^nc_k(x)e_k$, $\mathcal{L}=\mathcal{L}(e_1,\ldots,e_n)$. Тогда:

- 1. S_n ортогональная проекция x на \mathcal{L} , т.е. $x=S_n+z$, где $z\perp\mathcal{L}$.
- 2. S_n элемент наилучшего приближения к x в \mathcal{L} , т.е. $\|x-S_n\|=\min_{y\in\mathcal{L}}\|x-y\|$, причём минимум достигается только при $y=S_n$.
- 3. $||S_n|| \leq ||x||$.

Смысл:

Частичная сумма ряда Фурье S_n обладает ключевыми геометрическими свойствами. Во-первых, это проекция x на подпространство \mathcal{L} , натянутое на первые n векторов системы — значит, разность x — S_n ортогональна этому подпространству. Во-вторых, S_n даёт наилучшее приближение к x векторами из \mathcal{L} . В-третьих, норма проекции не превосходит нормы самого вектора.

4) Неравенство Бесселя

Следствие 1 (Неравенство Бесселя). Пусть $\{e_k\}_{k=1}^\infty$ — ОС в \mathcal{H} , $x\in\mathcal{H}$. Тогда:

$$\sum_{k=1}^{\infty} |c_k(x)|^2 \|e_k\|^2 \le \|x\|^2.$$

Смысл:

Неравенство Бесселя утверждает, что сумма квадратов коэффициентов Фурье (взвешенных по нормам $\|e_k\|^2$) не превосходит квадрата нормы вектора x. Оно следует из свойства $\|S_n\| \leq \|x\|$ и равенства $\|S_n\|^2 = \sum_{k=1}^n |c_k(x)|^2 \|e_k\|^2$ при переходе к пределу $n \to \infty$. Это гарантирует сходимость ряда из квадратов коэффициентов.

62. Теорема Рисса-Фишера. Равенство Паресваля.

Сходимость ряда Фурье

Пусть $\{e_k\}_{k=1}^{\infty}$ — ортонормированная система (ОС) в гильбертовом пространстве $\mathcal{H}, x \in \mathcal{H}$. Тогда ряд Фурье вектора x сходится в \mathcal{H} .

Смысл:

Это утверждает, что для любого вектора (или функции) в гильбертовом пространстве, его ряд Фурье, построенный по ортонормированной системе, всегда будет сходиться к какому-то элементу этого

пространства. Не гарантируется, что он сходится именно к самому x, но гарантируется, что он сходится к чему-то внутри пространства. Сходимость следует из неравенства Бесселя.

Представление элемента и ортогональная компонента

$$x=\sum_{k=1}^{\infty}c_k(x)e_k+z$$
, где $z\perp e_k$ для всех k (то есть $\langle z,e_k
angle=0$ для всех k).

Смысл:

Любой элемент x можно представить как сумму его ряда Фурье (часть, "натянутую" на данную ортонормированную систему) плюс некоторый остаток z. Этот остаток z ортогонален b векторам системы $\{e_k\}$. То есть z лежит в ортогональном дополнении к подпространству, порожденному системой $\{e_k\}$. Ряд Фурье дает наилучшее приближение x в этом подпространстве.

Условие равенства и равенство Паресваля

 $x = \sum_{k=1}^{\infty} c_k(x) e_k$ тогда и только тогда, когда выполняется равенство Паресваля:

$$\sum_{k=1}^{\infty} |c_k(x)|^2 \|e_k\|^2 = \|x\|^2.$$

Смысл:

Ряд Фурье сходится точно к самому элементу x (а не к чему-то другому) в том и только том случае, когда выполняется равенство Паресваля. Это равенство означает, что "энергия" (квадрат нормы) элемента x полностью определяется "энергиями" его коэффициентов Фурье. Оно эквивалентно тому, что ортогональная компонента z равна нулю ($z=\theta$). Равенство Паресваля также называется уравнением замкнутости и является признаком того, что ортонормированная система является базисом (полной системой) в \mathcal{H} .

63. Характеристика базиса в гильбертовом пространстве. Процесс ортогонализации Грама-Шмидта.

Определение базиса и связанных понятий

Ортогональная система $\{e_k\}_{k=1}^\infty\subset\mathcal{H}$ называется базисом (ортогональным базисом), если любой вектор $x\in\mathcal{H}$ раскладывается в ряд по этой системе: $x=\sum_{k=1}^\infty c_k(x)e_k$. Она называется полной, если не существует ненулевого вектора, ортогонального всем e_k . Она называется замкнутой, если для любого $x\in\mathcal{H}$ выполнено уравнение замкнутости.

Смысл:

Базис позволяет представить любой вектор пространства как бесконечную сумму (ряд) по базисным элементам. Полнота означает, что система "охватывает" всё пространство — нет ненулевых векторов, "спрятанных" от неё. Замкнутость формально связывает норму вектора с суммой квадратов его коэффициентов в разложении (уравнение Парсеваля).

Характеристика базиса

Пусть $\{e_k\}_{k=1}^\infty$ — ОС в \mathcal{H} . Следующие утверждения равносильны:

- 1. $\{e_k\}$ базис.
- 2. $\langle x,y \rangle = \sum_{k=1}^\infty c_k(x) c_k(y) \|e_k\|^2$ для любых $x,y \in \mathcal{H}$ (обобщенное уравнение замкнутости).
- 3. $\{e_k\}$ замкнута.
- 4. $\{e_k\}$ полна.
- 5. Линейная оболочка системы $\{e_k\}$ плотна в \mathcal{H} .

Смысл:

Эта теорема даёт пять разных взглядов на то, когда ортогональная система становится базисом. Ключевые идеи: возможность разложения любого вектора (1), обобщение теоремы Пифагора на скалярные произведения (2), выполнение уравнения Парсеваля (3), отсутствие "пропущенных" направлений (4) и возможность сколь угодно точно приблизить любой вектор конечными комбинациями базисных (5). Все они оказываются одинаково сильными условиями.

Процесс ортогонализации Грама-Шмидта

Пусть $\{x_k\}_{k=1}^\infty$ — линейно независимая система в \mathcal{H} . Тогда существует ОНС $\{e_k\}_{k=1}^\infty$, такая что $\mathcal{L}(e_1,\ldots,e_n)=\mathcal{L}(x_1,\ldots,x_n)$ для всех $n\in\mathbb{N}$. Эта ОНС единственна с точностью до множителей λ_k с $|\lambda_k|=1$ (т.е. $h_k=\lambda_k e_k$ для любой другой ОНС $\{h_k\}$, удовлетворяющей тому же условию).

Смысл:

Процесс Грама-Шмидта позволяет преобразовать любую линейно независимую систему векторов в ортонормированную систему (ОНС), которая порождает те же самые конечномерные подпространства на каждом шаге. Это как построение "перпендикулярных осей" из исходных "косых" направлений.

Единственность с точностью до фазового множителя ($\lambda_k=e^{i\phi_k}$) означает, что базисные векторы можно повернуть в их собственной плоскости, не меняя натянутое подпространство и ортонормированность.

64. Тригонометрические многочлены и ряды Фурье

1) Определение тригонометрического многочлена

Пусть $n \in \mathbb{Z}_+$. Функция T_n вида

$$T_n(x)=rac{a_0}{2}+\sum_{k=1}^n(a_k\cos kx+b_k\sin kx)$$

называется тригонометрическим многочленом порядка не выше n. Если $|a_n|+|b_n|\neq 0$, то порядок ровно n. Коэффициенты a_k,b_k — вещественные или комплексные числа. T_n — множество всех таких многочленов порядка $\leq n,T=\bigcup_{n=0}^\infty T_n$.

Смысл:

Тригонометрический многочлен — это конечная сумма синусов и косинусов кратных углов с коэффициентами. Он приближает периодические функции. Множество T_n содержит все многочлены сложности не выше n, а T — все возможные тригонометрические многочлены. Деление $a_0/2$ упрощает формулы для коэффициентов Фурье.

2) Тригонометрический ряд и комплексная форма

Тригонометрический ряд имеет вид:

$$rac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx).$$

С помощью формул Эйлера $\cos kx=rac{e^{ikx}+e^{-ikx}}{2},$ $\sin kx=rac{e^{ikx}-e^{-ikx}}{2i}$ он преобразуется в комплексную форму:

$$\sum_{k=-\infty}^{\infty} c_k e^{ikx} = \lim_{n o\infty} \sum_{k=-n}^n c_k e^{ikx}.$$

Это бесконечная версия тригонометрического многочлена. Комплексная форма использует экспоненты e^{ikx} вместо синусов и косинусов, что часто упрощает вычисления. Переход между формами осуществляется через формулы Эйлера. Частичные суммы в обеих формах совпадают, обеспечивая эквивалентность представлений.

3) Лемма о вычислении коэффициентов (ортогональность)

Если тригонометрический ряд сходится к функции f(x) в $L_2[-\pi,\pi]$, то его коэффициенты вычисляются по формулам:

$$a_k=rac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cos(kx)dx,\quad b_k=rac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin(kx)dx\quad (k\geq 0),$$

$$c_k = rac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx \quad (k \in \mathbb{Z}).$$

Смысл:

Эти формулы следуют из ортогональности системы функций $\{1,\cos(kx),\sin(kx)\}$ или $\{e^{ikx}\}$ на отрезке $[-\pi,\pi]$. Если ряд сходится к f(x) в смысле L_2 , то он обязан быть её рядом Фурье, и коэффициенты находятся интегрированием f с соответствующей базисной функцией. Равномерная сходимость гарантирует сходимость в L_2 , но условие можно ослабить.

4) Тригонометрический ряд Фурье функции

Тригонометрическим рядом Фурье функции f, интегрируемой на $[-\pi,\pi]$, называется ряд:

$$rac{a_0}{2} + \sum_{k=1}^\infty (a_k \cos kx + b_k \sin kx),$$
 где $a_k = rac{1}{\pi} \int_{-\pi}^\pi f(x) \cos(kx) dx,$ $b_k = rac{1}{\pi} \int_{-\pi}^\pi f(x) \sin(kx) dx.$

В экспоненциальной (комплексной) форме:

$$\sum_{k=-\infty}^{\infty} c_k e^{ikx},$$
 где $c_k = rac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx.$

Смысл:

Это способ разложить периодическую функцию в сумму гармоник (синусов и косинусов) или комплексных экспонент. Коэффициенты Фурье a_k,b_k или c_k показывают "вклад" гармоники с частотой k. Ряд Фурье функции может сходиться к ней (в L_2 , поточечно и т.д.) при определенных условиях, что позволяет анализировать и аппроксимировать периодические сигналы.

65. Теорема Римана-Лебега

1) Формулировка теоремы для преобразования Фурье

Пусть $f:\mathbb{R} \to \mathbb{C}$ — функция, интегрируемая по Лебегу на \mathbb{R} (или локально интегрируемая по Риману и абсолютно интегрируемая на \mathbb{R}). Тогда:

$$\lim_{|n| o \infty} \int_{-\infty}^{\infty} f(x) e^{-inx} dx = 0.$$

Смысл:

Эта часть теоремы утверждает, что преобразование Фурье интегрируемой функции затухает на бесконечности. Грубо говоря, чем быстрее осциллирует экспонента e^{-inx} (чем больше |n|), тем сильнее взаимное "гашение" при умножении на f(x) и интегрировании. Это фундаментальное свойство, показывающее, что высокочастотные составляющие сигнала f(x) в среднем стремятся к нулю.

2) Следствие для коэффициентов ряда Фурье

Пусть $f:[-\pi,\pi]\to\mathbb{R}$ (или \mathbb{C}) интегрируема по Риману (или Лебегу) на $[-\pi,\pi]$. Тогда коэффициенты Фурье f стремятся к нулю:

$$\lim_{|n| o \infty} \hat{f}(n) = \lim_{|n| o \infty} rac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx = 0.$$

Смысл:

Это следствие — "дискретная" версия теоремы, применяемая к рядам Фурье. Оно гарантирует, что коэффициенты Фурье $\hat{f}(n)$, представляющие амплитуды гармоник с частотой n, обязательно уменьшаются до нуля по мере роста частоты |n|. Без этого свойства сходимость рядов Фурье была бы невозможна. Теорема объясняет, почему в разложении функции важны лишь первые несколько гармоник.

3) Условие применимости (Интегрируемость)

Ключевое условие теоремы: функция f должна быть **интегрируемой** (в смысле Лебега) на рассматриваемом интервале I (конечном или бесконечном), то есть:

$$\int_I |f(x)| dx < \infty.$$

Смысл:

Условие интегрируемости — минимальное требование для "контроля" над функцией, при котором осцилляции экспоненты могут эффективно "усреднять" ее значения до нуля. Если функция растет

слишком быстро или имеет неинтегрируемые особенности (например, как 1/x на (0,1]), взаимное гашение может не произойти, и предел не будет нулевым. Теорема работает даже для разрывных функций, если их "общая площадь под модулем" конечна.

66. Свертка периодических функций, ее элементарные свойства. Ядро Дирихле. Сумма Фурье как свертка

1) Свертка периодических функций

Функция $(f*g)(x)=rac{1}{2\pi}\int_{-\pi}^{\pi}f(t)g(x-t)dt$ называется сверткой 2π -периодических функций f и g, интегрируемых на $[-\pi,\pi]$.

Смысл:

Свертка "смешивает" две периодические функции. Она вычисляет средневзвешенное значение функции f относительно "зеркально сдвинутой" функции g. Это позволяет изучать, как одна функция влияет на другую при сдвигах, и является основным инструментом для анализа линейных систем и сумм Фурье.

2) Элементарные свойства свертки

Пусть $f,g,h-2\pi$ -периодические, интегрируемые на $[-\pi,\pi]$. Тогда:

- 1. Коммутативность: f * g = g * f.
- 2. Ассоциативность: (f * g) * h = f * (g * h).
- 3. Дистрибутивность: f * (g + h) = f * g + f * h.
- 4. Свертка с константой: Если c константа, то $(c \cdot f) * g = c \cdot (f * g)$.

Смысл:

Эти свойства показывают, что свертка ведет себя подобно умножению. Коммутативность означает, что порядок функций не важен. Ассоциативность и дистрибутивность позволяют комбинировать свертки и упрощать выражения. Свойства делают работу со сверткой удобной и алгебраически предсказуемой.

3) Ядро Дирихле

Ядро Дирихле порядка
$$n-$$
 это функция $D_n(t)=rac{1}{2\pi}\sum_{k=-n}^n e^{ikt}=rac{\sin\left((n+rac{1}{2})t
ight)}{\sin\left(rac{t}{2}
ight)}$ для $t
eq 0$, и $D_n(0)=rac{2n+1}{2\pi}$.

Ядро Дирихле — это сумма первых 2n+1 комплексных экспонент (или косинусов/синусов). Его ключевое свойство — "собирать" частичные суммы ряда Фурье. Интеграл от произведения функции на $D_n(t-x)$ дает именно n-ю частичную сумму ряда Фурье функции. Это центральный объект для изучения сходимости рядов Фурье.

4) Сумма Фурье как свертка

n-я частичная сумма ряда Фурье 2π -периодической, интегрируемой функции f равна свертке f с ядром Дирихле порядка n:

$$S_n(f)(x) = (f * D_n)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) D_n(x-t) dt.$$

Смысл:

Это фундаментальная связь: частичную сумму ряда Фурье можно получить не как сумму коэффициентов, а как интеграл (свертку) исходной функции с особым ядром (Дирихле). Ядро D_n действует как "фильтр", выделяющий частоты до n-ой гармоники из функции f. Этот подход позволяет использовать мощь интегрального исчисления для анализа сходимости рядов Фурье.

67. Принцип локализации Римана. Признак Дини и его следствия.

1) Принцип локализации Римана

Сходимость тригонометрического ряда Фурье 2π -периодической интегрируемой по Риману на $[-\pi,\pi]$ функции f(x) в точке x_0 зависит только от поведения функции f(x) в произвольно малой окрестности этой точки. То есть, если две функции f(x) и g(x) совпадают в некоторой окрестности $(x_0-\delta,x_0+\delta)$, то их ряды Фурье сходятся или расходятся в точке x_0 одновременно, и в случае сходимости имеют одну и ту же сумму.

Смысл:

Этот принцип говорит о невероятной "локальности" ряда Фурье. Даже если две функции кардинально различаются где-то далеко от точки x_0 , но совпадают в сколь угодно маленьком интервале вокруг x_0 , их ряды Фурье будут вести себя в этой конкретной точке x_0 абсолютно одинаково (сходиться/ расходиться к одному значению). Сходимость ряда в точке определяется *только* локальными значениями функции около этой точки, а не ее глобальным поведением.

2) Признак Дини

Пусть $f(x)-2\pi$ -периодическая функция, интегрируемая по Риману на $[-\pi,\pi]$. Ряд Фурье функции f(x) сходится в точке x_0 к сумме S если сходится следующий интеграл:

$$\int_0^\pi \frac{|f(x_0+t)+f(x_0-t)-2S|}{t}dt < \infty$$

В частности, для сходимости к $f(x_0)$ достаточно сходимости интеграла:

$$\int_0^\pi rac{|f(x_0+t)+f(x_0-t)-2f(x_0)|}{t}dt < \infty$$

Смысл:

Признак Дини дает удобное достаточное условие сходимости ряда Фурье в точке. Он проверяет, насколько "хорошо" функция ведет себя *около* точки x_0 . Интеграл измеряет усредненную разницу между значением функции в x_0 и средним значением функции справа и слева от нее $(f(x_0+t))$ и $f(x_0-t)$, деленную на расстояние t. Если эта "усредненная разница" растет не слишком быстро при приближении t к нулю (интеграл сходится), то ряд Фурье гарантированно сойдется в точке x_0 к значению S (часто к $f(x_0)$).

3) Следствия признака Дини

- 1. Если функция f(x) имеет в точке x_0 конечную производную $f'(x_0)$, то ее ряд Фурье сходится в этой точке к $f(x_0)$.
- 2. Если функция f(x) удовлетворяет в точке x_0 условию Гёльдера порядка $\alpha>0$ (т.е. $|f(x)-f(x_0)|\leq C|x-x_0|^{\alpha}$ при x близких к x_0), то ее ряд Фурье сходится в x_0 к $f(x_0)$.
- 3. Если в точке x_0 функция f(x) имеет конечные односторонние пределы $f(x_0+)$ и $f(x_0-)$, и конечные односторонние производные, то ее ряд Фурье сходится в x_0 к $\frac{f(x_0+)+f(x_0-)}{2}$.

Смысл:

Признак Дини позволяет получить конкретные и часто легко проверяемые условия сходимости. Следствие 1: если функция гладкая (дифференцируема) в точке, ряд сходится к значению функции. Следствие 2: если функция "немного гладкая" (удовлетворяет условию Гёльдера, что слабее дифференцируемости, например, как $|x|^{1/2}$ в нуле), ряд все равно сходится к значению функции. Следствие 3: в точке разрыва первого рода (скачка), где существуют конечные пределы слева и справа и "односторонняя гладкость" (односторонние производные), ряд сходится не к значению функции (которое может не существовать или не совпадать), а к среднему арифметическому пределов слева и справа.

68. Примеры разложения функций в ряды Фурье.

Вычисление сумм
$$\sum_{n=1}^{\infty} rac{1}{n^2}$$
 и $\sum_{n=1}^{\infty} rac{(-1)^{n-1}}{n^2}$

1. Теорема Дирихле и Разложение в Ряд Фурье

Функция f(x), периодическая с периодом 2π , кусочно-непрерывная и кусочно-гладкая на $[-\pi,\pi]$, разлагается в ряд Фурье:

$$f(x)=rac{a_0}{2}+\sum_{n=1}^{\infty}\left(a_n\cos(nx)+b_n\sin(nx)
ight),$$

где коэффициенты вычисляются по формулам:

$$a_0 = rac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx, \quad a_n = rac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx, \quad b_n = rac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx.$$

В точках разрыва сумма ряда равна среднему арифметическому левого и правого пределов функции.

Смысл:

Теорема Дирихле дает условия, при которых периодическая функция может быть представлена в виде суммы синусов и косинусов (ряда Фурье). Коэффициенты a_n и b_n показывают "вес" каждой гармоники частоты n в сигнале f(x). Это основной инструмент для анализа периодических процессов в физике (колебания, теплообмен) и обработке сигналов.

2. Пример: Разложение Функции $f(x)=x^2$ на $[-\pi,\pi]$

Функция $f(x)=x^2$ (с периодом 2π) является четной. Ее ряд Фурье содержит только косинусы ($b_n=0$):

$$a_0 = rac{1}{\pi} \int_{-\pi}^{\pi} x^2 dx = rac{2\pi^2}{3}, \quad a_n = rac{1}{\pi} \int_{-\pi}^{\pi} x^2 \cos(nx) dx = rac{2}{\pi} \int_{0}^{\pi} x^2 \cos(nx) dx = (-1)^n rac{4}{n^2}.$$

Ряд Фурье:

$$x^2 = rac{\pi^2}{3} + \sum_{n=1}^{\infty} (-1)^n rac{4}{n^2} \cos(nx), \quad x \in [-\pi,\pi].$$

Квадратичная функция раскладывается в сумму косинусоидальных гармоник с амплитудами, убывающими как $1/n^2$. Четность функции (x^2) приводит к отсутствию синусов $(b_n=0)$. Этот конкретный пример важен для вычисления сумм числовых рядов, как показано ниже. Ряд сходится к x^2 на всей вещественной оси благодаря периодичности и непрерывности исходной функции на $[-\pi,\pi]$

3. Вычисление сумм $\sum_{n=1}^{\infty} rac{1}{n^2}$ и $\sum_{n=1}^{\infty} rac{(-1)^{n-1}}{n^2}$

1. Сумма $\sum_{n=1}^{\infty} \frac{1}{n^2}$:

Подставим $x=\pi$ в разложение x^2 :

$$\pi^2 = rac{\pi^2}{3} + \sum_{n=1}^{\infty} (-1)^n rac{4}{n^2} \cos(n\pi).$$

Учитывая $\cos(n\pi) = (-1)^n$, получим:

$$\pi^2 = rac{\pi^2}{3} + \sum_{n=1}^{\infty} (-1)^n rac{4}{n^2} (-1)^n = rac{\pi^2}{3} + \sum_{n=1}^{\infty} rac{4}{n^2}.$$

Решаем уравнение относительно суммы:

$$\pi^2 - rac{\pi^2}{3} = \sum_{n=1}^{\infty} rac{4}{n^2} \implies rac{2\pi^2}{3} = 4\sum_{n=1}^{\infty} rac{1}{n^2} \implies \sum_{n=1}^{\infty} rac{1}{n^2} = rac{\pi^2}{6}.$$

2. Сумма $\sum_{n=1}^{\infty} rac{(-1)^{n-1}}{n^2}$:

Подставим x=0 в разложение x^2 :

$$0 = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} (-1)^n \frac{4}{n^2} \cos(0) = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} (-1)^n \frac{4}{n^2}.$$

Выразим сумму:

$$\sum_{n=1}^{\infty} (-1)^n \frac{4}{n^2} = -\frac{\pi^2}{3} \implies \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} = -\frac{\pi^2}{12}.$$

Свяжем с искомой суммой ($\frac{(-1)^{n-1}}{n^2} = -\frac{(-1)^n}{n^2}$):

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = -\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} = -\left(-\frac{\pi^2}{12}\right) = \frac{\pi^2}{12}.$$

Ряды Фурье позволяют вычислять суммы числовых рядов, подставляя конкретные значения x в разложение известной функции. Для суммы квадратов $\sum 1/n^2$ (значение дзета-функции $\zeta(2)$) используется точка $x=\pi$, где $\cos(n\pi)$ дает $(-1)^n$. Для знакочередующегося ряда $\sum (-1)^{n-1}/n^2$ используется точка x=0, где $\cos(0)=1$. Этот метод демонстрирует мощь рядов Фурье в решении задач анализа.

69. Общее представление о методах суммирования рядов. Суммирование по Чезаро, суммирование методами Абеля-Пуассона (их перманентность и эффективность)

1. Общее представление о методах суммирования рядов

Метод суммирования — это правило, ставящее в соответствие некоторым расходящимся рядам (или рядам, сходимость которых неизвестна) определенное число, называемое его обобщенной суммой. Цель — расширить понятие суммы ряда за пределы классической сходимости.

Смысл:

Классическое определение суммы ряда работает не всегда. Методы суммирования дают осмысленный способ приписать "сумму" некоторым расходящимся рядам, например, ряду Гранди $1-1+1-1+\ldots$, который колеблется. Это позволяет работать с такими рядами в анализе и физике, извлекая полезную информацию.

2. Суммирование по Чезаро (С, 1)

Ряд $\sum_{n=1}^\infty a_n$ называется суммируемым по Чезаро к числу S (обозначается (C,1)-суммируем), если предел последовательности средних арифметических его частичных сумм $s_n=a_1+\ldots+a_n$ равен S .

$$\lim_{n o\infty}\sigma_n=S,$$
 где $\sigma_n=rac{s_1+s_2+\ldots+s_n}{n}.$

Смысл:

Вместо того чтобы смотреть на сами частичные суммы s_n , которые могут колебаться, метод Чезаро усредняет их. Если эти средние значения стабилизируются к некоторому числу S, то ряд считается суммируемым к S по Чезаро. Это "сглаживает" колебания. Например, ряд $1-1+1-1+\ldots$ не

сходится, но суммируем по Чезаро к 1/2, так как средние арифметические его частичных сумм стремятся к 1/2.

3. Суммирование методом Абеля-Пуассона (А)

Ряд $\sum_{n=0}^{\infty}a_n$ называется суммируемым методом Абеля к числу S (обозначается (A)-суммируем), если для любого $r\in [0,1)$ степенной ряд $\sum_{n=0}^{\infty}a_nr^n$ сходится и выполняется:

$$\lim_{r o 1^-}\sum_{n=0}^\infty a_n r^n=S.$$

Смысл:

Метод вводит "вес" r^n (r<1) для членов ряда, что делает его сходящимся. Сумма этого нового "затухающего" ряда $f(r)=\sum a_n r^n$ вычисляется. Затем r "подтягивается" к 1. Если при этом f(r) стремится к S, то S объявляется обобщенной суммой. Это похоже на плавное включение членов ряда. Например, ряд $1-2+3-4+\ldots$ суммируем Абелем к 1/4.

4. Перманентность методов Чезаро и Абеля

- Перманентность метода Чезаро (C, 1): Если ряд $\sum a_n$ сходится в обычном смысле к сумме S, то он суммируем и по Чезаро (C, 1) к той же сумме S.
- Перманентность метода Абеля (A): Если ряд $\sum a_n$ сходится в обычном смысле к сумме S, то он суммируем и методом Абеля к той же сумме S. Более того, если ряд суммируем по Чезаро (C, 1) к S, то он суммируем и методом Абеля к S.

Смысл:

Перманентность означает, что метод не противоречит классической сходимости: если ряд сходится обычным способом, новый метод даст ту же самую сумму. Это обязательное требование к "хорошему" методу суммирования. Метод Абеля сильнее метода Чезаро: он может просуммировать все ряды, суммируемые Чезаро, и даже некоторые дополнительные.

5. Эффективность методов Чезаро и Абеля

- Эффективность метода Чезаро (C, 1): Существуют ряды, расходящиеся в обычном смысле, но суммируемые по Чезаро (C, 1) (например, $\sum (-1)^n$).
- Эффективность метода Абеля (A): Существуют ряды, не суммируемые по Чезаро (C, 1), но суммируемые методом Абеля (например, $\sum (-1)^n (n+1)$).

Смысл:

Эффективность означает, что метод способен приписать сумму некоторым рядам, которые расходятся в обычном смысле. Метод Абеля мощнее метода Чезаро: он может "справиться" с более сильно расходящимися рядами. Например, ряд $1-2+3-4+\dots$ суммируем Абелем (S=1/4), но не

суммируем по Чезаро. Оба метода расширяют класс суммируемых рядов по сравнению с классической сходимостью.

70. Аппроксимативная единица и усиленная аппроксимативная единица. Теорема о свойствах свертки с аппроксимативной единицей (без док-ва). Теорема Фейера. Полнота тригонометрической системы в $L^2_{2\pi}$

1) Аппроксимативная единица

Семейство функций $\{k_n(t)\}_{n=1}^\infty$ в $L^1(\mathbb{R})$ называется аппроксимативной единицей, если:

- 1. $\int_{-\infty}^{\infty} k_n(t) dt = 1$ для всех n;
- 2. Существует M>0 такое, что $\int_{-\infty}^{\infty}|k_n(t)|dt\leq M$ для всех n;
- 3. Для любого $\delta>0$: $\lim_{n o\infty}\int_{|t|>\delta}|k_n(t)|dt=0$.

Смысл:

Аппроксимативная единица — это последовательность "пикообразных" функций, сосредотачивающихся около нуля. Их интеграл равен 1 (как у дельта-функции), они равномерно ограничены в L^1 , и их "масса" утекает из любой области, не содержащей ноль, при увеличении номера. Нужны для аппроксимации (приближения) функций и операций, подобных умножению на 1 (единицу), особенно в свертках.

2) Усиленная аппроксимативная единица

Аппроксимативная единица $\{k_n(t)\}_{n=1}^\infty$ называется усиленной, если дополнительно выполнено: 4. $k_n(t) \geq 0$ для всех t и всех n (неотрицательность).

Смысл:

Это частный, но очень важный случай аппроксимативной единицы, где все функции последовательности неотрицательны. Это условие упрощает доказательства многих теорем о сходимости (например, теоремы Фейера) и гарантирует, что свертка с такой единицей действует как оператор сглаживания или усреднения, не создающий осцилляций.

3) Свойства свертки с аппроксимативной единицей (Теорема без доказательства)

Пусть $\{k_n\}_{n=1}^\infty$ — аппроксимативная единица в $L^1(\mathbb{R})$, $f\in L^p(\mathbb{R})$, $1\leq p<\infty$. Тогда:

- 1. $k_n st f \in L^p(\mathbb{R})$ и $\|k_n st f\|_p \leq M \|f\|_p$;
- 2. $\lim_{n \to \infty} \|k_n * f f\|_p = 0$ (сходимость в L^p);
- 3. Если f ограничена и равномерно непрерывна на \mathbb{R} , то $k_n*f o f$ равномерно на $\mathbb{R}.$

Смысл:

Эта теорема — главный инструмент применения аппроксимативных единиц. Она утверждает, что свертка функции f из L^p с такой единицей: 1) Остается в L^p и контролируется по норме; 2) Приближает саму f в норме L^p (в среднем); 3) Если f "хорошая" (непрерывная и ограниченная), то приближение происходит равномерно по всей прямой. Свертка действует как сглаживающий оператор, дающий в пределе исходную функцию.

4) Теорема Фейера

Пусть $\sigma_n(x)$ — средние арифметические частичных сумм ряда Фурье 2π -периодической функции f (суммы Фейера). Тогда:

- 1. Если $f\in L^p[-\pi,\pi]$, $1\leq p<\infty$, то $\lim_{n o\infty}\|\sigma_n-f\|_p=0$ (сходимость в L^p);
- 2. Если f непрерывна и 2π -периодична, то $\sigma_n o f$ равномерно на $[-\pi,\pi].$

Смысл:

Теорема Фейера утверждает, что усредненные частичные суммы (суммы Фейера) ряда Фурье функции f сходятся к самой f: в среднем для интегрируемых в степени p функций и равномерно для непрерывных периодических функций. Ядра Фейера $\Phi_n(t)$ образуют периодическую, неотрицательную (а значит, усиленную) аппроксимативную единицу на $[-\pi,\pi]$, а $\sigma_n(x)=(f*\Phi_n)(x)$, поэтому теорема Фейера является прямым следствием общей теоремы о свертке с усиленной аппроксимативной единицей.

5) Полнота тригонометрической системы в $L^2_{2\pi}$

Тригонометрическая система $\{1,\cos kx,\sin kx\}_{k=1}^\infty$ полна в пространстве $L^2_{2\pi}$, то есть является ортогональным базисом. Это означает, что для любой функции $f\in L^2_{2\pi}$ ее ряд Фурье сходится к f в метрике L^2 :

$$\lim_{n o\infty}\left\|f-S_n(f)
ight\|_{L^2[-\pi,\pi]}=0,$$

где $S_n(f)-n$ -я частичная сумма ряда Фурье функции f. Эквивалентно: $\|f\|_2^2=\frac{a_0^2}{4}+\frac{1}{2}\sum_{k=1}^\infty(a_k^2+b_k^2)$ (равенство Парсеваля).

Полнота означает, что тригонометрические функции (синусы и косинусы разных частот) позволяют представить (аппроксимировать с любой точностью в среднем квадратичном) любую квадратично-интегрируемую периодическую функцию. Это фундаментальный результат гармонического анализа. Теорема Фейера доказывает этот факт: сходимость сумм Фейера σ_n к f в L^p (в частности, для p=2) и полнота пространства L^2 гарантируют, что частичные суммы Фурье $S_n(f)$ также обязаны сходиться к f в L^2 (так как σ_n — средние арифметические S_k).

71. Теорема Вейерштрасса о тригонометрических многочленах. Теорема Вейерштрасса об алгебраических многочленах

Теорема Вейерштрасса о тригонометрических многочленах

Любую непрерывную периодическую функцию $f:\mathbb{R}\to\mathbb{R}$ с периодом 2π можно равномерно приблизить тригонометрическими многочленами. То есть для любой такой функции f и любого $\varepsilon>0$ существует тригонометрический многочлен T(x) вида:

$$T(x)=rac{a_0}{2}+\sum_{k=1}^n(a_k\cos(kx)+b_k\sin(kx))$$

для которого выполняется:

$$\sup_{x\in\mathbb{R}}|f(x)-T(x)|$$

Смысл:

Эта теорема утверждает, что даже самые сложные периодические функции (например, с изломами или пиками) могут быть сколь угодно точно "покрыты" комбинацией простейших гармоник — синусов и косинусов разных частот. Это фундамент для рядов Фурье: вместо работы со сложной функцией можно работать с её приближением конечной суммой гармоник. Практически, это позволяет анализировать сигналы, звуки, колебания через их частотные компоненты.

Теорема Вейерштрасса об алгебраических многочленах

Любую непрерывную функцию $f:[a,b] \to \mathbb{R}$ на отрезке [a,b] можно равномерно приблизить алгебраическими многочленами. То есть для любой такой функции f и любого $\varepsilon>0$ существует алгебраический многочлен P(x) вида:

$$P(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$$

для которого выполняется:

$$\sup_{x\in [a,b]} |f(x)-P(x)|$$

Смысл:

Непрерывную функцию на отрезке, какой бы сложной она ни была (например, кривую с множеством изгибов), можно сколь угодно точно "повторить" обычным многочленом. Это ключевой результат в вычислительной математике: вместо сложных функций можно использовать приближающие их полиномы, которые легко вычислять, дифференцировать и интегрировать. Теорема гарантирует, что такие приближения всегда возможны с любой заданной точностью на конечном интервале.

Связь между теоремами

Обе теоремы Вейерштрасса являются частными случаями общей концепции о плотности подпространств в функциональных пространствах. Тригонометрические многочлены плотны в пространстве непрерывных 2π -периодических функций $C_{2\pi}(\mathbb{R})$ относительно равномерной нормы. Алгебраические многочлены плотны в пространстве непрерывных функций на отрезке C([a,b]) относительно равномерной нормы.

Смысл:

Хотя объекты приближения разные (гармоники vs степенные функции), обе теоремы говорят об одном: специальные "простые" наборы функций (многочлены) могут сколь угодно точно представить "сложные" непрерывные функции в соответствующих пространствах. Это позволяет сводить анализ сложных функций к работе с их полиномиальными или тригонометрическими аппроксимациями, что критически важно для вычислений, решения дифференциальных уравнений и обработки сигналов. Разница лишь в области и типе простых функций (периодичность требует гармоник, отрезок — степенных многочленов).