

Capstone Project
Data Analytics Bootcamp 2024
Cohort no. 2

» neue fische

MEET THE TEAM

ALEXANDER SCHMIDT

Data acquisition & maintenance

SOMA PASUMARTHY
Web dev & database maintenance

NOAH KÜRTÖS

Data acquisition & model interpretation

HEIKO FRÄMBS
Project management & communications

PROJECT GOALS

INTERACTIVE PLATFORM FOR ECOSYSTEM CLASSIFICATION USING HISTORICAL SATELLITE DATA WITH FUTURE CHANGE FORECASTS

DEFINING CLASSIFICATION PARAMETERS

SATELLITE DATASETS

VIIRS Radiation Data

MODIS Vegetation Data

GLDAS Land Assimilation Data

Temperate Forest

Hot Desert

ECOSYSTEM CLASS

Urban **Buildings**

DEFINING CLASSIFICATION PARAMETERS

SATELLITE DATASETS

ECOSYSTEM CLASS

VIIRS Radiation Data

Urban Buildings

MODIS Vegetation Data

Temperate Forest

GLDAS Land Assimilation Data

Hot Desert

VIIRS Radiation Data Nighttime Lights

- GLOBAL GRID OF ENVIRONMENTAL PARAMETERS
- PROXIES FOR ECOSYSTEMS
- NIGHT LIGHT: **BUILDINGS**

123 Ion 🔻 123 radiance 🔻

MODIS Vegetation Data

Normalized Difference Vegetation Index (NDVI)

DEFINING CLASSIFICATION PARAMETERS

- GLOBAL GRID OF ENVIRONMENTAL PARAMETERS
- PROXIES FOR ECOSYSTEMS
- NDVI: FORESTS

•	123 lat 🔻	123 lon 🔻	123 ndvi 🔻
	30.625	117.125	0.4907304348
	30.625	117.375	0.3191789855
	30.625	117.625	0.4666876812
	30.625	117.875	0.5306688406
	30.625	118.125	0.6149615942
	30.625	118.375	0.6579163043
	30.625	118.625	0.7000971014
	30.625	118.875	0.5989065217

Copernicus

Elevation Data

DEFINING CLASSIFICATION PARAMETERS

- GLOBAL GRID OF ENVIRONMENTAL PARAMETERS
- PROXIES FOR ECOSYSTEMS
- Elevation: MOUNTAIN

•	123 lat 🔻	123 lon 🔻	123 elevation
	30.875	16.625	97.5077493456
	30.875	16.875	109.07020696
	30.875	17.125	108.6844774882
	30.875	17.375	80.8458383348
	30.875	17.625	56.5768642426
	30.875	17.875	28.7260633045
	30.875	18.125	11.3719178836
	30.875	20.125	3.2457014322
	30.875	20.375	44.3661664327

RANDOM FOREST

builds multiple decision trees using random subsets of data and features, then combines their predictions to obtain a singular prediction.

~300 000 pixels

~100 parameters

15 ecosystems

~300 000 pixels

~100 parameters

15 ecosystems

73 representative training points

10% training data

100 estimators

GLOBAL ECOSYSTEM PREDICTIONS

LINEAR REGRESSION

fits a straight line to the data by minimizing the difference between actual and predicted values, modeling the relationship between independent and dependent variables.

GLOBAL ECOSYSTEM PREDICTIONS

LINEAR REGRESSION

fits a straight line to the data by minimizing the difference between actual and predicted values, modeling the relationship between independent and dependent variables.

EcoVerse

Frontend:

React: Dynamic, responsive UI.

P HTML5 & CSS3

Backend:

Node.js & Express

PostgreSQL

Interface:

⊘ REST APIs: JSON over HTTPS

Hosting & Deployment:

AWS

Authentication & Security:

Data Encryption

EcoVerse-Key

EcoVerse-Nonce

Map Component:

Leaflet:

© Google Maps:

Search for a location

© 2024 Eco System Analysis @ EcoVerse

Choose an ecosystem to begin your journey.

© 2024 Eco System Analysis @ EcoVerse

Terrestrial

Aquatic

Ecosystem

Dive into the water-based

RECAP

Global ecosystem visualisation and classification

• Validate and improve our model

Implement predictions into webpage

Thank you for your attention!

Capstone Project 18.11.2024

"Data Analyst bootcamp" @neuefische
by Alexander Schmidt, Noah Kürtös, Soma
Pasumarthy & Heiko Främbs

https://github.com/NoahKuertoes/global_ecosystem_classifier Sources:

 $\frac{https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/viirs/https://ldas.gsfc.nasa.gov/}{}$

https://modis.gsfc.nasa.gov/

Pictures:

Sustainable Investing - Evidence Based Investing

https://www.istockphoto.com/

https://thaddeus-segura.com/linear-regression/

Peru Andes: Lea Graafen & Nawid Albinger

