# 杭州电子科技大学学生考试卷 (A) 卷

| 考试课程 | 计算机组成原理 (甲) |                      | 考试日期 | 2020年 | 月日   | 成绩 |  |
|------|-------------|----------------------|------|-------|------|----|--|
| 课程号  | A0507030    | 教师号                  |      | 任课教   | 效师姓名 |    |  |
| 考生姓名 |             | 学 号 ( <b>8</b><br>位) |      | 年级    |      | 专业 |  |

| 题号 | 第一大题 <b>(</b> 共 <b>55</b> 分) |    |    |    |   |    |    |    |
|----|------------------------------|----|----|----|---|----|----|----|
| 型分 | 1                            | 2  | 3  | 4  | 5 | 6  | 7  | 总分 |
| 分数 | 10                           | 11 | 2  | 2  | 6 | 10 | 14 |    |
| 得分 |                              |    |    |    |   |    |    |    |
| 题号 | 第二大题(45 分)                   |    |    |    |   |    |    |    |
| 赵与 | 1                            | 2  | 3  | 4  |   |    |    |    |
| 分数 | 12                           | 7  | 15 | 11 |   |    |    |    |
| 得分 |                              |    |    |    |   |    |    | ]  |

请把答案写在试卷规定的地方,其它地方一律无效。

答题纸

### 一、(本大题共55分)

- 1. (本题 10 分)
- (1) (3分)
- (2) (3分)
- (3) (2分)
- (4) (2分)
- 2. (本题 11 分)
- (1) (2分)
- (2) (2分)
- (3) (2分)
- (4) (5分)

- 3. (本题2分)
- 4. (本題2分)
- 5. (本题6分)
- (1) (3分)

(2) (3分)

第1页 共6页

| 座位号:                   |                  |           |        |               |                          |   |            |         |
|------------------------|------------------|-----------|--------|---------------|--------------------------|---|------------|---------|
|                        |                  |           |        |               |                          |   | 2. (本题7分)  |         |
|                        |                  |           |        |               |                          |   |            |         |
| 6. (7                  | 本题 10 分)         |           |        |               |                          |   |            |         |
| (1)                    | (3分)             |           |        |               |                          |   |            |         |
|                        |                  |           |        |               |                          |   |            |         |
| (2)                    | (3分)             |           |        |               |                          |   |            |         |
|                        |                  |           |        |               |                          |   |            |         |
| (3)                    | (4分)             |           |        |               |                          |   | 3. (本题15分) |         |
|                        |                  |           |        |               |                          |   | (1) (5分)   |         |
| 7. (本                  | 题 14 分)          |           |        |               |                          |   |            |         |
|                        |                  | H-17/75   | 表3     | 近根 <i>作</i> 粉 | + 1/2/41: 田              | 1 |            |         |
|                        | 指令序号<br>1        | 助记符<br>1) | 寻址方式2) | 源操作数3)        | 执行结果                     |   |            |         |
|                        | 2                | 4)        | 5)     | 6)            |                          |   |            |         |
|                        | 3                | 7)        | 8)     | 9)            | 10) (R1) =<br>11) (FR) = |   |            |         |
|                        |                  |           |        |               | 11) (FR) =               | J | (2) (10分)  |         |
| 12)                    | )                | _ 13)     | 14)    |               |                          |   | 1) (4分)    |         |
|                        |                  |           |        |               |                          |   |            |         |
| <br> 二、(本 <sup>-</sup> | 大 <b>题共45</b> 分) |           |        |               |                          |   |            |         |
| <br> 1. (本题1           |                  |           |        |               |                          |   | 2) (2分)    |         |
| (1) (6分                |                  |           |        |               |                          |   | 3) (4分)    |         |
| (=) (=1)               |                  |           |        |               |                          |   |            |         |
| (2) (6分                | <b>r</b> )       |           |        |               |                          |   |            |         |
|                        |                  |           |        |               |                          |   |            |         |
|                        |                  |           |        |               |                          |   |            |         |
|                        |                  |           |        |               |                          |   | 4. (本题11分) |         |
|                        |                  |           |        |               |                          |   | (1) (2分)   |         |
|                        |                  |           |        |               |                          |   |            |         |
|                        |                  |           |        |               |                          |   | 第 2 页      | 其 4 6 页 |

| 座位号 |      |             |
|-----|------|-------------|
| (2) | (4分) |             |
|     |      |             |
| (3) | (5分) |             |
|     |      |             |
|     |      |             |
|     |      |             |
|     |      |             |
|     |      |             |
|     |      |             |
|     |      |             |
|     |      |             |
|     |      |             |
|     |      |             |
|     |      |             |
|     |      |             |
|     |      |             |
|     |      |             |
|     |      |             |
|     |      |             |
|     |      |             |
|     |      |             |
|     |      |             |
|     |      | 第 3 页 共 6 页 |

座位号:

#### 试 题

## 所有试题均做在答题纸上,否则不计分!

- 一、 (本大题共 55 分) 图 1 是某 8 位模型机的结构框图,其中 IR 为指令寄存器,PC 为程序计数器,MEM 为主存,AR 为地址寄存器,R0-R3 是通用寄存器,ALU 能完成各种算术运算和逻辑运算。各部件的控制信号均已标出,控制信号的命名准则是: '→'符号前的部分是数据发送方部件,'→'符号后部分的是数据接收方部件,并且控制信号中的 B 表示数据总线(在图 1 中各部件均使用唯一的数据总线
- B)。例如  $B\rightarrow DA1$  表示由数据总线 B 将数据打入暂存器 DA1 的控制信号。另外,  $\overline{J1}$  控制指令译码,

 $\overline{\text{MEMR}}$  控制存储器读,  $\overline{\text{MEMW}}$  控制存储器写。



- 1. **(本题 10 分)** 图 1 所示的计算机中,
- (1) (3分) 哪些部件属于控制器部分?
- (2) (3分)如果该计算机中的微指令由控制字段、判别测试字段和下址字段三部分构成,其中控制字段采用直接控制法,判别测试字段采用直接编译法,控制存储器有256个地址单元。那么微指令的长度是多少位?下址字段多少位?
  - (3) (2分) 图 2 中的指令是什么指令? 采用什么寻址方式?



图 2 指令执行流程图

- (4) (2分) 写出图 2 中标注①、②的 2 条微指令必须发送的微操作控制信号。
- 2. **(本题 11 分)** 假设该机另具有一个 16 位数据宽度的浮点运算部件(图 1 中未画出),浮点数的格式为

| 数符(1位) | 尾数 (7位) | 阶符(1位) | 阶码 (7位) |
|--------|---------|--------|---------|

其中阶码用移码表示; 尾数用补码表示。已知: (X) 10=7/32, Y 的浮点数表示为 A87FH。

- (1) (2分) 在浮点数格式中,用规格化数表示尾数,有什么优点?
- (2) (2分) 写出 X 的规格化浮点数表示形式。
- (3) (2分) 求 Y 的二进制真值。
- (4) **(5分)** 求 X+Y 浮点数 [X+Y]<sub>浮</sub> (采用 0 舍 1 入法,列出计算步骤)。
- 3. (本题2分) 从图1中可以看出,该计算机采用的是体系结构是。
  - A. 哈佛结构 B. 冯·诺依曼结构 C. ARM 结构 D. MIPS 结构
- 4. (本题 2 分) CPU 采用程序中断的方式与外设交换数据,下面说法错误的是。
- A. 实时性强 B. CPU 与外设可并行工作 C. 中断发生的时间可预知 D. 支持中断控制的硬件相对复杂
- 5. (本题 6 分) 假设该机的指令长度为两个字节,每个操作数的长度为 5 个 bit, 采用指令操作码扩展技术,要求编写 62 条双操作数指令, 63 条单操作数指令和 30 条无操作数指令。
  - (1) (3分) 画出双操作数指令、单操作数指令和无操作数指令的格式。
  - (2) (3分) 写出双操作数指令、单操作数指令和无操作数指令所占的编码范围。
- 6. **(本题 10 分)** 假设图 1 所示模型机 CPU 与主存之间添加了一个 Cache,在 Cache 中缺失的数据总能在主存中找到。Cache 的访问时间为 5 纳秒,局部命中率为 97%;主存的访问时间为 60 纳秒。

第4页 共6页

#### 座位号:

- (1) (3分) CPU 访问由 Cache/主存构成的存储体系的平均访问时间是多少纳秒?
- (2) (3分) 如果 Cache 和主存之间采用组相联映射,请画出主存地址可以划分成的字段及其名字。
- (3) (4分) 进行哪些方面技术改进,可以缩短该存储体系的平均访问时间?
- 7. (本题 14分) 该计算机指令系统支持的双字指令格式如下:

| OP (4位)                  | MOD (2 位) | DR (2位) |  |  |  |  |
|--------------------------|-----------|---------|--|--|--|--|
| ADDR/ DATA / DISP/PORTAR |           |         |  |  |  |  |

单字指令格式同上述指令格式的第一字,其中,DR为目的寄存器号,MOD为寻址方式码字段(该字段对于单字指令无意义,可以填入任意编码,如00),指令第二字为地址、数据、偏移量或者端口号;源操作数由MOD字段和指令第二字共同确定。除了HALT和DEC指令为单字指令外,其他指令均为双字指令;各字段解释如表1,某内存地址的部分单元内容如表2。已知一段程序中的6条指令,其中L0和L1是标号。

L0: 指令1;

指令2;

指令3:

L1: OUT [00H], R1;

DEC R3;

JMP L1; 采用相对跳转的寻址方式

(1) 设该机有一个标志寄存器 FR, 其高 4 位为 0, 低 4 位分别为 CF、OF、ZF、SF。若(PC)=20H, 变址寄存器(SI)=11H, 此时计算机从上面那段程序的 L0 开始执行,则程序执行的前三条指令如表 3,请填写完整。(对于算术类运算,为带符号数运算,并按如下方式进行:目的操作数 op 源操作数→目的操作数)

(1) 表1

| 指令助记符 | OP   | 指令助记符 | OP   | MOD | 寻址方式         | RD | 寄存器 |
|-------|------|-------|------|-----|--------------|----|-----|
| MOV   | 0000 | ADD   | 0100 | 00  | 立即寻址         | 00 | R0  |
| SUB   | 0001 | JMP   | 1000 | 01  | 直接寻址         | 01 | R1  |
| DEC   | 0010 |       |      | 10  | 变址寻址<br>(SI) | 10 | R2  |
| IN    | 0011 | HALT  | 1111 | 11  | 相对寻址         | 11 | R3  |

(2) 表 2

|      |     |      | (=) |      |     |
|------|-----|------|-----|------|-----|
| 单元地址 | 内容  | 单元地址 | 内容  | 单元地址 | 内容  |
| 16H  | 22H | 21H  | 51H | 26H  | 51H |
| 17H  | 90H | 22H  | 15H | 27H  | 37H |

| 18H | 10H | 23H | 18H |     |     |
|-----|-----|-----|-----|-----|-----|
| 19H | 11H | 24H | 49H | 37H | F8H |
| 20H | 01H | 25H | 26H | 38H | 63H |

(3) 表3

| 指令序号 | 助记符 | 寻址方式 | 源操作数 | 执行结果                     |
|------|-----|------|------|--------------------------|
| 1    | 1)  | 2)   | 3)   |                          |
| 2    | 4)  | 5)   | 6)   |                          |
| 3    | 7)  | 8)   | 9)   | 10) (R1) =<br>11) (FR) = |

- (2) 指令 DEC R3 机器码为 12)。
- (3) 无条件转移指令 JMP L1 第一个字的地址为 <u>13)</u>,按照相对跳转的寻址方式,指令第二字中的 8 位二进制偏移量采用补码表示,它的值是 <u>14)</u>。
- 二、(本大题共 45 分)图 3(见下页)是实现 32位 MIPS 单周期的模型机结构和数据通路。
- **1.** (本题12分) 对于指令: addi rt, rs, imm (rs+符号位扩展imm→rt, imm为偏移量),则:
- (1) **(6分)** 如果imm\_s信号恒为0,请回答该指令在此32位MIPS模型机下能否正常运行?为什么?
- (2) **(6分)** 如果该模型机的所有控制信号均能正常使用,请简单描述除了控制信号外,该条指令执行过程中经过的所有部件的数据通路。
- **2.** (本题7分) 在该系统中,如果变量i的值为65533, sizeof(int)和sizeof(short)分别为4和2。则在执行如下程序后:

int i = 65533;

short j = (short) i;

int k = j;

分析变量i, j, k的真值分别为多少(3分)?写出详细分析过程(4分)。

第5页 共6页

座位号:



图3 MIPS单周期CPU结构图

3. (本题15分) 针对某条高级语言循环语句:

while (Binary[count] == Dest\_Char) count += 1;

如果模型机编译生成的MIPS代码如下:

loop: sll reg\_1,reg\_2,2 #左移:  $(reg_2 << 2) \rightarrow reg_1$  add reg\_1,reg\_1,reg\_3 # reg\_1 + reg\_3  $\rightarrow$  reg\_1

lw reg\_4,0(reg\_1) #取数: mem(reg\_1 +offset) → reg\_4

bne reg\_4,reg\_5,exit #不相等转移: if (reg\_4 ≠ reg\_5) then goto exit

addi reg\_2,reg\_2,1 # reg\_2 = reg\_2 + 1

j loop #goto loop

exit: °°°

其中, reg\_i(i = 1, 2, ···, 5)代表某个寄存器的名称, 变量count和Dest\_Char分别分配在寄存器reg\_2和reg\_5中, 数组Binary的首地址放在寄存器reg\_4中, 问:

- (1) (5分) 该程序中哪些是R型指令?哪些是I型指令?
- (2) (10 分) 假设从 loop 处开始的指令序列放在内存 30000 处,上述代码对应的 MIPS 机器码如表 4 所示,则:

| 丰/         | 抬  | 今和    | 哭     | 代码        |
|------------|----|-------|-------|-----------|
| <b>化と4</b> | 18 | V 1/1 | /11IT | 1 (,'11-1 |

|    | ,,,,,, |    | 4. 4 |    |    |    |    |  |
|----|--------|----|------|----|----|----|----|--|
| 指令 | 内存地址   | 6位 | 5位   | 5位 | 5位 | 5位 | 6位 |  |

| sll reg_1,reg_2,2     | 30000 | 0  | 0     | 19 | 9 | 2 | 0  |
|-----------------------|-------|----|-------|----|---|---|----|
| add reg_1,reg_1,reg_3 | 30004 | 0  | 9     | 22 | 9 | 0 | 32 |
| lw reg_4,0(reg_1)     | 30008 | 35 | 9     | 8  |   | 0 |    |
| bne reg_4,reg_5,exit  | 30012 | 5  | 8     | 21 |   | 2 |    |
| addi reg_2,reg_2,1    | 30016 | 8  | 19    | 21 | 1 |   |    |
| j loop                | 30020 | 2  | 20000 |    |   |   |    |
|                       | 30024 |    |       |    |   |   |    |

且已知对应的寄存器序号和寄存器名称如表 5 所示。

表 5 寄存器序号和寄存器名称

| 寄存器序号     | 寄存器名称              |  |  |
|-----------|--------------------|--|--|
| \$2-\$3   | \$v0-\$v1          |  |  |
| \$4-\$7   | \$a0 <b>-</b> \$a3 |  |  |
| \$8-\$15  | \$t0-\$t7          |  |  |
| \$16-\$23 | \$s0 <b>-</b> \$s7 |  |  |
| \$24-\$25 | \$t8-\$t9          |  |  |
| \$26-\$27 | \$k0-\$k1          |  |  |
|           |                    |  |  |

- 1) (4分)请写出寄存器 reg\_3 和 reg\_4 对应的寄存器名称?并说明理由。
- 2) (2分) 编号 exit 的值是多少?
- 3) (4分) 该 MIPS 模型机的编址单位是什么?每个数组元素 Binary[i]占几个字节?
- 4. (本**题 11** 分)如果该模型机的数据存储器采用 DRAM 实现,其容量为 64K \* 16 位,由 16K\*4 位的 DRAM 芯片(芯片内部是 256\*256 结构)构成,存储器读/写周期为 500ns。则:
  - (1) (2分) 该数据存储器存储位元共有多少个?
- (2) (4分)如 DRAM 采用异步刷新方式,如单元刷新间隔不超过 2ms,则刷新信号周期是多少?存储器刷新一遍最少用多少时间?
- (3) (5分) 如果由上述 16K\*4位的 DRAM 芯片构成数据存储器,需要多少个这样的 DRAM 芯片?请简述存储器芯片的扩展方式,并写出每一组存储区域(大小为 16K\*16位)的地址范围。