

InSAR time series methods

These methods make use of multiple interferograms in order to constrain:

- Slow deformation processes (i.e. processes that are at or below the noise level in an individual interferogram)
- Time-variable processes

Time series methods typically make use of redundancy and/or temporal correlations in the data to maximize coherent pixels, extract deformation signals and mitigate noise

Example: the San Francisco Bay Area

RADARSAT ascending

ERS descending

Deformation signals have same sign – vertical motion Deformation signals have different signs – horizontal motion

Subsidence at Treasure Island

Treasure Island is a man-made island, built in 1936/7

http://walrus.wr.usgs.gov/geotech/treasureposter/treasure.html

Subsidence at Treasure Island

Calculate velocities of NW and central Treasure Island with respect to Yerba Buena

NW Treasure Island – significant high velocity

Central Treasure
Island – stationary
within error

ERS track 070 (1992-2000) velocities overlaid on 2004 airphoto

Subsidence at Treasure Island

Subsidence in San Francisco

High subsidence rates at the location of an old stream channel

Subsidence in San Francisco

There is an excellent correlation between liquefaction risk and subsidence

DETAIL OF SAN FRANCISCO AREA

Knudsen *et al.*, 2000, USGS Open File Report 00-444

The Santa Clara aquifer

Overall a pattern of increasing uplift, but there are large seasonal fluctuations (up in winter, down in summer)

Principal component analysis of InSAR time series

 $D = U(t) S V(x)^{T}$

Principal components can be tied to well and precipitation data

LOS velocity (mm/yr) 6 LOOK 40 km

Hayward fault creep

Volcan Alcedo, Galapagos

Deflation/contraction in the caldera over three year period

Persistent Scatterer InSAR

Persistent/Permanent Scatterer InSAR (PSI) offers a means to overcome these problems

- It relies on pixels that maintain coherence (hence the term 'persistent scatterer') and thus maximizes the number of observations
- It uses the idea that deformation signals are correlated over time...
- ...and that atmospheric signals are correlated in space, but uncorrelated in time, as a means of separating the two

Characteristics of PS

PS are pixels with a single or dominant radar scatterer

PSI: the basics

- Typically need a minimum of 25 SAR images
- All images are coregistered; a multi-image amplitude map is made
- Interferograms are made with respect to a common reference (in the center of baseline/time space)
- PS candidates are selected on the basis of high, stable amplitude
- Phase of the PS candidates is used to estimate a best pixel height/velocity, considering pairs of points
- Atmospheric 'phase screen' estimated from residuals

PSI: the basics

First, coregister every SAR image (SLC) to a common reference image (optimize for baseline and time span)

PSI: the basics

Ferretti et al. (2001) showed that bright radar scatterers had consistent pixel phase over time

Amplitude dispersion, D, is a measure of amplitude variation

Phase std. dev. is a measure of phase variation

PS candidates

Thus, the search for 'good' pixels is reduced to a (easier) search for consistently radar-bright (low dispersion) pixels

These are referred to as 'PS candidates'

Phase-stable targets

Examples of the most common phase stable targets:

Unwrapping in time

If we expect a particular behavior with time, we can unwrap the phase (and estimate the noise as whatever is left)

Unwrapping the phase

In the Ferretti PS analysis, phase is unwrapped in time

The relative phase for a pair of points is unwrapped by finding the combination of scatterer height and velocity that best fits the wrapped time/baseline series

The atmospheric phase screen

The APS is made by kriging (interpolating) the residuals to the velocity/height fit for each epoch

It is a prediction of the atmospheric phase in a given interferogram

Such estimates can be subtracted from all interferograms

PSI: step two

- Atmospheric phase screens subtracted from all interferograms
- Velocity/scatterer height estimation repeated for every single pixel (not just the high amplitude ones)
- Pixels with phase stability within a specified threshold are considered permanent scatterers (PS)
- Typically get 100-1000x more PS than PS candidates

PSI methodology

Advantages of PSI

- Mitigates effect of atmospheric noise on data
 - => High precision in velocity estimates
- Maximizes number of observations with time
- As a scatterer is often smaller than a full SAR pixel, can increase the range of useable baselines (important for legacy satellites, not so important now)
- Does not require stable pixels to be adjacent to each other each pixel can be identified independently

More coverage in vegetated areas

Interferogram stack (Schmidt et al., 2005)

PSI

PSI gives better coverage in the heavily vegetated East Bay Hills

But is it overkill?

PSI is very successful at recovering detailed information, especially in areas where InSAR is marginal, but it is very computationally expensive

- It assumes that each pixel is independent, but we know that most signals of interest are correlated spatially
- It does not make use of spatial unwrapping

SBAS

The Small BAseline Subset algorithm (SBAS) was proposed by Berardino et al. (2002) and Schmidt & Burgmann (2003) as a means of making use of spatially correlated data in a time series approach

- Only pairs of images with short spatial baselines are used
- Interferograms are unwrapped in space first
- Pixel phase time series are estimated by a least squares inversion (usually smoothed)

SBAS basics

Maximize correlation by forming short baseline interferograms

Gm = d

Deformation in Naples

The deformation need not be linear in velocity, or have a prescribed form

Here negative displacement is away from the satellite – the major signal here is subsidence of Campi Flegrei volcano (A)

Improvements to SBAS

More recent versions of SBAS codes have included features that improve the workflows and outputs

- Troposphere corrections from weather models
- 'Phase closure' tests for unwrapping errors (and in some cases, corrections)
- The ability to fit more complex functions to data (i.e. not just a bestfitting linear velocity)

So, which should I use?

PSI

- Good for monitoring of infrastructure and buildings (where high pixel resolution is necessary)
- Areas with isolated targets surrounded by vegetation
- Small spatial scales
- Usually requires processing interferograms yourself
- Computationally very expensive

SBAS

- Good for geophysical/tectonic applications (large spatial coverage needed, high resolution less important)
- Can use processed, unwrapped interferograms
- Computation is less expensive

Freely-available codes

A number of groups have implemented versions of the PSI and SBAS algorithms (or both). All of the following are freely available and open-source:

- MintPy (Miami InSAR method for Timeseries in Python) is a mature Python-based SBAS code that uses unwrapped interferograms
- StaMPS (Stanford Method for Persistent Scatterers) incorporates both PSI and SBAS, but it is MATLAB-based and is no longer actively supported
- FRINGE (Fine Resolution InSAR With Generalized Eigenvectors) is a PSI and SBAS code that is potentially very powerful, but support is limited
- MiAPIPy (MIAmi Phase Linking in Python) is a PSI and SBAS code built on top of MintPy that is relatively new, and has not been widely tested