

Fig 1

~ 400 -

Data Rate (bps)	Data Channel Gain Relative to Pilot (dB)
4800	DataPilotRatio + DataOffset4k8 - 3
9600	DataPilotRatio + DataOffset9k6
19200	DataPilotRatio + DataOffset19k2 + 3
38400	DataPilotRatio + DataOffset38k4 + 6
76800	DataPilotRatio + DataOffset76k8 + 9
153600	DataPilotRatio + DataOffset153k6 + 12

Fig 4

Fig. 3

FIG. 5

Measure the ratio of reverse link pilot channel power to total power for each user (PNR_i)

601

Determine the data rate for each user (r_i) using explicit reverse rate indicator (RRI), assuming a zero data rate for users that the RRI cannot be determined

602

Determine the ratio of signal power to pilot power $(\gamma_i[r_i])$ for the determined data rate (r_i)

Determine the ratio of the reverse link signal power to the reverse link total power for each user (SNR_i) by scaling the measured pilot power to total power (PNR_i) by the known ratio of signal power to pilot power ($\gamma_i[r_i]$), That is, $SNR_i = \gamma_i [r_i] PNR_i$

-604

Determine the ratio of reverse link signal power to total reverse link power (SNR_T) by summing the users ratio of signal power to total power (SNR_i), M being the total number of users, That is,

 $SNR_T = \sum_{i=1}^{M} SNR_i = \sum_{i=1}^{M} \gamma_i [r_i] PNR_i$

-605

Determine the rise using the equation

$$Rise = \frac{1}{1 - SNR_{T}} = \frac{1}{1 - \sum_{i=1}^{M} \gamma_{i}[r_{i}]PNR_{i}}$$

and the load using equation

$$Load = SNR_T = \sum_{i=1}^{M} \gamma_i [r_i] PNR_i$$

Fig 6