

Mathématiques et calculs 1 : Contrôle continu n°1 12 Octobre 2015

L1 : Licence sciences et technologies Mention mathématiques, informatique et applications

NB : Tout document est interdit. Les calculatrices et les téléphones portables, même à titre d'horloge, sont également interdits.

INDIQUEZ VOTRE GROUPE DE TD SUR VOTRE COPIE!

Exercice 1

- 1) Ecrire sous la forme exponentielle les nombres complexes (1+i) et (1-i)
- 2) Montrer que le nombre complexe Z défini par $Z = \frac{(1+i)^9}{(1-i)^7}$ vérifie Z = 2

Exercice 2

Résoudre dans $\mathbb C$ les équations suivantes : (on donnera les solutions sous forme algébrique)

$$(E_1) z^2 + \sqrt{2}z - i = 0$$

$$(E_2) z^4 - 8z^2 + 25 = 0$$

Résoudre dans C l'équation suivante : (on donnera les solutions sous forme exponentielle)

$$(E_3) (z^5 - 1)(z^3 + 8i) = 0$$

Exercice 3

On cherche à calculer pour
$$a, b \in \mathbb{R}$$
, $S = \sum_{k=0}^{n} {k \choose n} \cos(a+kb)$

On note
$$Z = \sum_{k=0}^{n} {n \choose n} e^{i(a+kb)}$$

1) Montrer que
$$Z = S + iT$$
 avec $T = \sum_{k=0}^{n} {k \choose n} \sin(a + kb)$.

2) Montrer que
$$Z = e^{i\left(a + \frac{nb}{2}\right)} \left(2\cos\left(\frac{b}{2}\right)\right)^n$$

3) En déduire que
$$S = 2^n \cos^n \left(\frac{b}{2}\right) \cos \left(a + n\frac{b}{2}\right)$$

Exercice 4

1) Calculer, si elles existent, les limites des suites suivantes :

a)
$$u_n = \sqrt{n^2 e^{2n} + 2} - ne^n$$
 b) $v_n = \frac{\cos n - n^3}{1 + n^2 \log n + n^3}$ c) $w_n = \frac{3^n + 2n^2}{2^n + 3n^3}$

2) Calculer
$$S_n = \sum_{k=0}^n \frac{2-5^k}{3^k}$$
 et en déduire $\lim_{n\to\infty} S_n$.

2

Exercice 5 Soit a > 0. On considère la suite $(u_n)_{n \in \mathbb{N}}$ définie par :

$$\begin{cases} u_{n+1} &= \frac{1}{5}u_n^2 + \frac{6}{5} \\ u_0 &= a. \end{cases}$$

- 1) Montrer que pour tout $n \ge 0$, $u_n > 0$.
- 2) Dans le cas où on suppose que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers une limite $\ell\in\mathbb{R}$, déterminer les valeurs possibles de ℓ .
- 3) On suppose que 0 < a < 2:

 Montrer par récurrence sur n que $u_n < 2$, puis montrer que la suite est croissante. En déduire qu'elle converge et donner sa limite.
- 4) On suppose que a > 3:

 Montrer par récurrence sur n que $u_n > 3$, puis montrer que la suite est croissante. En déduire que dans ce cas, la suite tend vers $+\infty$.