

Lecture 4: Matrix Decompositions

Mathematics for Machine Learning

July 9, 2024

Roadmap

- (1) Determinant and Trace
- (2) Eigenvalues and Eigenvectors
- (3) Cholesky Decomposition
- (4) Eigendecomposition and Diagonalization
- (5) Singular Value Decomposition
- (6) Matrix Approximation
- (7) Matrix Phylogeny

Summary

How to summarize matrices: determinants and eigenvalues

How matrices can be decomposed: Cholesky decomposition, diagonalization, singular value decomposition

How these decompositions can be used for matrix approximation

Roadmap

- (1) Determinant and Trace
- (2) Eigenvalues and Eigenvectors
- (3) Cholesky Decomposition
- (4) Eigendecomposition and Diagonalization
- (5) Singular Value Decomposition
- (6) Matrix Approximation
- (7) Matrix Phylogeny

L4(1) July 9, 2024 4 / 43

Determinant: Motivation (1)

For
$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
, $\mathbf{A}^{-1} = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$.

A is invertible iff $a_{11}a_{22} - a_{12}a_{21} \neq 0$

Let's define $\det(\mathbf{A}) = a_{11}a_{22} - a_{12}a_{21}$.

Notation: $det(\mathbf{A})$ or |whole matrix|

What about 3×3 matrix? By doing some algebra (e.g., Gaussian elimination),

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{21}a_{32}a_{13} + a_{31}a_{12}a_{23} \\ -a_{31}a_{22}a_{13} - a_{11}a_{32}a_{23} - a_{21}a_{12}a_{33}$$

L4(1) July 9, 2024 5 / 43

Determinant: Motivation (2)

Try to find some pattern ...

$$egin{aligned} a_{11}a_{22}a_{33} + a_{21}a_{32}a_{13} + a_{31}a_{12}a_{23} \ &- a_{31}a_{22}a_{13} - a_{11}a_{32}a_{23} - a_{21}a_{12}a_{33} = \ &a_{11}(-1)^{1+1}\det(oldsymbol{A}_{1,1}) + a_{12}(-1)^{1+2}\det(oldsymbol{A}_{1,2}) \ &+ a_{13}(-1)^{1+3}\det(oldsymbol{A}_{1,3}) \end{aligned}$$

- $A_{k,j}$ is the submatrix of A that we obtain when deleting row k and column j.

source: www.cliffsnotes.com

This is called Laplace expansion.

Now, we can generalize this and provide the formal definition of determinant.

L4(1)

Determinant: Formal Definition

Determinant

For a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, for all $j = 1, \dots, n$,

Expansion along column j: $\det(\mathbf{A}) = \sum_{k=1}^{n} (-1)^{k+j} a_{kj} \det(\mathbf{A}_{k,j})$

Expansion along row j: $\det(\mathbf{A}) = \sum_{k=1}^{n} (-1)^{k+j} a_{jk} \det(\mathbf{A}_{j,k})$

All expansion are equal, so no problem with the definition.

Theorem. $det(\mathbf{A}) \neq 0 \iff rk(\mathbf{A}) = n \iff \mathbf{A}$ is invertible.

L4(1) July 9, 2024 7 / 43

Determinant: Properties

- $(1) \det(\mathbf{AB}) = \det(\mathbf{A}) \det(\mathbf{B})$
- (2) $\det(\mathbf{A}) = \det(\mathbf{A}^{\mathsf{T}})$
- (3) For a regular \boldsymbol{A} , $\det(\boldsymbol{A}^{-1}) = 1/\det(\boldsymbol{A})$
- (4) For two similar matrices \mathbf{A}, \mathbf{A}' (i.e., $\mathbf{A}' = \mathbf{S}^{-1}\mathbf{A}\mathbf{S}$ for some \mathbf{S}), $\det(\mathbf{A}) = \det(\mathbf{A}')$
- (5) For a triangular matrix¹ T, $det(T) = \prod_{i=1}^{n} T_{ii}$
- (6) Adding a multiple of a column/row to another one does not change $det(\mathbf{A})$
- (7) Multiplication of a column/row with λ scales $\det(\mathbf{A})$: $\det(\lambda \mathbf{A}) = \lambda^n \mathbf{A}$
- (8) Swapping two rows/columns changes the sign of $det(\mathbf{A})$
 - \circ Using (5)-(8), Gaussian elimination (reaching a triangular matrix) enables to compute the determinant.

L4(1)

¹This includes diagonal matrices.

Trace

Definition. The trace of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is defined as

$$\mathsf{tr}(oldsymbol{\mathcal{A}}) := \sum_{i=1}^n a_{ii}$$

$$\operatorname{tr}(\boldsymbol{A} + \boldsymbol{B}) = \operatorname{tr}(\boldsymbol{A}) + \operatorname{tr}(\boldsymbol{B})$$

$$tr(\alpha \mathbf{A}) = \alpha tr(\mathbf{A})$$

$$\operatorname{tr}(\boldsymbol{I}_n) = n$$

L4(1) July 9, 2024 9 / 43

Invariant under Cyclic Permutations

$$\mathrm{tr}(\boldsymbol{A}\boldsymbol{B}) = \mathrm{tr}(\boldsymbol{B}\boldsymbol{A}) \text{ for } \boldsymbol{A} \in \mathbb{R}^{n \times k} \text{ and } \boldsymbol{B} \in \mathbb{R}^{k \times n}$$
 $\mathrm{tr}(\boldsymbol{A}\boldsymbol{K}\boldsymbol{L}) = \mathrm{tr}(\boldsymbol{K}\boldsymbol{L}\boldsymbol{A}), \text{ for } \boldsymbol{A} \in \mathbb{R}^{a \times k}, \ \boldsymbol{K} \in \mathbb{R}^{k \times l}, \ \boldsymbol{L} \in \mathbb{R}^{l \times a}$
 $\mathrm{tr}(\boldsymbol{x}\boldsymbol{y}^\mathsf{T}) = \mathrm{tr}(\boldsymbol{y}^\mathsf{T}\boldsymbol{x}) = \boldsymbol{y}^\mathsf{T}\boldsymbol{x} \in \mathbb{R}$

A linear mapping $\Phi: V \mapsto V$, represented by a matrix **A** and another matrix **B**.

 $m{A}$ and $m{B}$ use different bases, where $m{B} = m{S}^{-1} m{A} m{S}$

$$\operatorname{tr}(\boldsymbol{B}) = \operatorname{tr}(\boldsymbol{S}^{-1}\boldsymbol{A}\boldsymbol{S}) = \operatorname{tr}(\boldsymbol{A}\boldsymbol{S}\boldsymbol{S}^{-1}) = \operatorname{tr}(\boldsymbol{A})$$

Message. While matrix representations of linear mappings are basis dependent, but their traces are not.

L4(1) July 9, 2024 10 / 43

Background: Characteristic Polynomial

Definition. For $\lambda \in \mathbb{R}$ and a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, the characteristic polynomial of \mathbf{A} is defined as:

$$p_{\mathbf{A}}(\lambda) := \det(\mathbf{A} - \lambda \mathbf{I})$$

$$= c_0 + c_1 \lambda + c_2 \lambda^2 + \dots + c_{n-1} \lambda^{n-1} + (-1)^n \lambda^n,$$

where $c_0 = \det(\mathbf{A})$ and $c_{n-1} = (-1)^{n-1} \operatorname{tr}(\mathbf{A})$.

Example. For
$$\mathbf{A} = \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}$$
,

$$p_{\mathbf{A}}(\lambda) = \begin{vmatrix} 4 - \lambda & 2 \\ 1 & 3 - \lambda \end{vmatrix} = (4 - \lambda)(3 - \lambda) - 2 \cdot 1$$

L4(1) July 9, 2024 11 / 43

Roadmap

- (1) Determinant and Trace
- (2) Eigenvalues and Eigenvectors
- (3) Cholesky Decomposition
- (4) Eigendecomposition and Diagonalization
- (5) Singular Value Decomposition
- (6) Matrix Approximation
- (7) Matrix Phylogeny

L4(2) July 9, 2024 12 / 43

Eigenvalue and Eigenvector

Definition. Consider a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$. Then, $\lambda \in \mathbb{R}$ is an eigenvalue of \mathbf{A} and $\mathbf{x} \in \mathbb{R}^n \setminus \{0\}$ is the corresponding eigenvector of \mathbf{A} if

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

Equivalent statements

 λ is an eigenvalue.

 $(\mathbf{A} - \lambda \mathbf{I}_n)\mathbf{x} = 0$ can be solved non-trivially, i.e., $\mathbf{x} \neq \mathbf{0}$.

$$\mathsf{rk}(\mathbf{A} - \lambda \mathbf{I}_n) < n.$$

 $\det(\mathbf{A} - \lambda \mathbf{I}_n) = 0 \iff$ The characteristic polynomial $p_{\mathbf{A}}(\lambda) = 0$.

L4(2) July 9, 2024 13 / 43

Example

For
$$\mathbf{A} = \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}$$
, $p_{\mathbf{A}}(\lambda) = \begin{vmatrix} 4 - \lambda & 2 \\ 1 & 3 - \lambda \end{vmatrix} = (4 - \lambda)(3 - \lambda) - 2 \cdot 1 = \lambda^2 - 7\lambda + 10$

Eigenvalues $\lambda = 2$ or $\lambda = 5$.

Eigenvector E_5 for $\lambda = 5$

$$\begin{pmatrix} 4-\lambda & 2 \\ 1 & 3-\lambda \end{pmatrix} \mathbf{x} = 0 \implies \begin{pmatrix} -1 & 2 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 \implies E_5 = \operatorname{span}[\begin{pmatrix} 2 \\ 1 \end{pmatrix}]$$

Eigenvector E_2 for $\lambda=2$. Similarly, we get $E_2=\text{span}[\begin{pmatrix}1\\-1\end{pmatrix}]$

Message. Eigenvectors are not unique.

L4(2) July 9, 2024 14 / 43

Properties (1)

If x is an eigenvector of A, so are all vectors that are collinear².

 E_{λ} : the set of all eigenvectors for eigenvalue λ , spanning a subspace of \mathbb{R}^{n} . We call this eigensapce of \mathbf{A} for λ .

 E_{λ} is the solution space of $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = 0$, thus $E_{\lambda} = \ker(\mathbf{A} - \lambda \mathbf{I})$

Geometric interpretation

The eigenvector corresponding to a nonzero eigenvalue points in a direction stretched by the linear mapping.

The eigenvalue is the factor of stretching.

Identity matrix I: one eigenvalue $\lambda = 1$ and all vectors $\mathbf{x} \neq \mathbf{0}$ are eigenvectors.

L4(2)

²Two vectors are collinear if they point in the same or the opposite direction.

Properties (2)

 \boldsymbol{A} and $\boldsymbol{A}^{\mathsf{T}}$ share the eigenvalues, but not necessarily eigenvectors.

For two similar matrices $\boldsymbol{A}, \boldsymbol{A}'$ (i.e., $\boldsymbol{A}' = \boldsymbol{S}^{-1}\boldsymbol{A}\boldsymbol{S}$ for some \boldsymbol{S}), they possess the same eigenvalues.

Meaning: A linear mapping Φ has eigenvalues that are independent of the choice of basis of its transformation matrix.

Symmetric, positive definite matrices always have positive, real eigenvalues.

determinant, trace, eigenvalues: all invariant under basis change

L4(2) July 9, 2024 16 / 43

Examples for Geometric Interpretation (1)

$$m{A}=\left(egin{array}{cc} rac{1}{2} & 0 \ 0 & 2 \end{array}
ight)$$
, $\det(m{A})=1$ $\lambda_1=rac{1}{2},\lambda_2=2$

eigenvectors: canonical basis vectors area preserving, just vertical horizontal) stretching.

$$m{A}=(egin{smallmatrix}1&rac{1}{2}\0&1\end{smallmatrix})$$
, $\det(m{A})=1$ $\lambda_1=\lambda_2=1$

eigenvectors: colinear over the horiontal line area preserving, shearing

$$m{A}=\left(egin{array}{c} \cos(rac{\pi}{6})-\sin(rac{\pi}{6}) \ \sin(rac{\pi}{6}) \end{array}
ight)$$
, $\det(m{A})=1$

Rotation by $\pi/6$ counter-clockwise only complex eigenvalues (no eigenvectors) area preserving

L4(2)

Examples for Geometric Interpretation (2)

4.
$$\mathbf{A}=\begin{pmatrix}1&-1\\-1&1\end{pmatrix}$$
, $\det(\mathbf{A})=0$ $\lambda_1=0, \lambda_2=2$ Mapping that collapses a 2D onto 1D area collapses

5.
$$m{A}=({1\over 2}\,{1\over 2})$$
, $\det(m{A})=3/4$ $\lambda_1=0.5, \lambda_2=1.5$ area scales by 75%, shearing and stretching

Properties (3)

For $\mathbf{A} \in \mathbb{R}^{n \times n}$, n distinct eigenvalues \implies eigenvectors are linearly independent, which form a basis of \mathbb{R}^n .

Converse is not true.

Example of n linearly independent eigenvectors for less than n eigenvalues???

Determinant. For (possibly repeated) eigenvalues λ_i of $\mathbf{A} \in \mathbb{R}^{n \times n}$,

$$\det(\mathbf{A}) = \prod_{i=1}^n \lambda_i$$

Trace. For (possibly repeated) eigenvalues λ_i of $\mathbf{A} \in \mathbb{R}^{n \times n}$,

$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i$$

Message. det(A) is the area scaling and tr(A) is the circumference scaling

L4(2) July 9, 2024 19 / 43

Roadmap

- (1) Determinant and Trace
- (2) Eigenvalues and Eigenvectors
- (3) Cholesky Decomposition
- (4) Eigendecomposition and Diagonalization
- (5) Singular Value Decomposition
- (6) Matrix Approximation
- (7) Matrix Phylogeny

July 9, 2024 20 / 43

LU Decomposition

Source: http://mathonline.wikidot.com/

The Gaussian elimination is the processing of reaching an upper triangular matrix

Gaussian elimination: multiplying the matrices corresponding to two elementary operations ((i) row multiplication by a and (ii) adding two rows downward)

The above elementary operations are the low triangular matrices (LTM), and their inverses and their product are all LTMs.

$$(\boldsymbol{\mathit{E}}_{k}\boldsymbol{\mathit{E}}_{k-1}\cdot\boldsymbol{\mathit{E}}_{1})\boldsymbol{\mathit{A}}=\boldsymbol{\mathit{U}} \implies \boldsymbol{\mathit{A}}=\underbrace{(\boldsymbol{\mathit{E}}_{1}^{-1}\cdots\boldsymbol{\mathit{E}}_{k-1}^{-1}\boldsymbol{\mathit{E}}_{k}^{-1})}_{\boldsymbol{\mathit{L}}}\boldsymbol{\mathit{U}}$$

L4(3) July 9, 2024 21 / 43

Cholesky Decomposition

A real number: decomposition of two identical numbers, e.g., $9 = 3 \times 3$

Theorem. For a symmetric, positive definite matrix \mathbf{A} , $\mathbf{A} = \mathbf{L}\mathbf{L}^{\mathsf{T}}$, where \mathbf{L} is a lower-triangular matrix with positive diagonals

Such a *L* is unique, called Cholesky factor of *A*.

Applications

- (a) factorization of covariance matrix of a multivariate Gaussian variable
- (b) linear transformation of random variables
- (c) fast determinant computation: $\det(\mathbf{A}) = \det(\mathbf{L}) \det(\mathbf{L}^{\mathsf{T}}) = \det(\mathbf{L})^2$, where $\det(\mathbf{L}) = \prod_i I_{ii}$. Thus, $\det(\mathbf{A}) = \prod_i I_{ii}^2$.

L4(3) July 9, 2024 22 / 43

Roadmap

- (1) Determinant and Trace
- (2) Eigenvalues and Eigenvectors
- (3) Cholesky Decomposition
- (4) Eigendecomposition and Diagonalization
- (5) Singular Value Decomposition
- (6) Matrix Approximation
- (7) Matrix Phylogeny

L4(4) July 9, 2024 23 / 43

Diagonal Matrix and Diagonalization

Diagonal matrix. zero on all off-diagonal elements, $\mathbf{D} = \begin{pmatrix} a_1 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & d_n \end{pmatrix}$

$$m{D}^k = egin{pmatrix} d_1^k & \cdots & 0 \ dots & & dots \ 0 & \cdots & d_n^k \end{pmatrix}, \quad m{D}^{-1} = egin{pmatrix} 1/d_1 & \cdots & 0 \ dots & & dots \ 0 & \cdots & 1/d_n \end{pmatrix}, \quad \det(m{D}) = d_1 d_2 \cdots d_n$$

Definition. $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable if it is similar to a diagonal matrix \mathbf{D} , i.e., \exists an invertible $\mathbf{P} \in \mathbb{R}^{n \times n}$, such that $\mathbf{D} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P}$.

Definition. $A \in \mathbb{R}^{n \times n}$ is orthogonally diagonalizable if it is similar to a diagonal matrix D, i.e., \exists an orthogonal $P \in \mathbb{R}^{n \times n}$, such that $D = P^{-1}AP = P^{T}AP$.

L4(4) July 9, 2024 24 / 43

Power of Diagonalization

$$\mathbf{A}^k = \mathbf{P}\mathbf{D}^k\mathbf{P}^{-1}$$

$$\det(\boldsymbol{A}) = \det(\boldsymbol{P}) \det(\boldsymbol{D}) \det(\boldsymbol{P}^{-1}) = \det(\boldsymbol{D}) = \prod_i d_{ii}$$

Many other things ...

Question. Under what condition is \boldsymbol{A} diagonalizable (or orthogonally diagonalizable) and how can we find \boldsymbol{P} (thus \boldsymbol{D})?

L4(4) July 9, 2024 25 / 43

Diagonalizablity, Algebraic/Geometric Multiplicity

Definition. For a matrix $\mathbf{A} \in realnn$ with an eigenvalue λ_i ,

the algebraic multiplicity α_i of λ_i is the number of times the root appears in the characteristic polynomial.

the geometric multiplicity ζ_i of λ_i is the number of linearly independent eigenvectors associated with λ_i (i.e., the dimension of the eigenspace spanned by the eigenvectors of λ_i)

Example. The matrix $\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$ has two repeated eigenvalues $\lambda_1 = \lambda_2 = 2$, thus

 $lpha_1=2.$ However, it has only one distinct unit eigenvector $m{x}=egin{pmatrix}1\\0\end{pmatrix},$ thus $\zeta_1=1.$

Theorem. $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable $\iff \sum_{i} \alpha_{i} = \sum_{i} \zeta_{i} = n$.

L4(4) July 9, 2024 26 / 43

Orthogonally Diagonaliable and Symmetric Matrix

Theorem. $\mathbf{A} \in \mathbb{R}^{n \times n}$ is orthogonally diagonalizable $\iff \mathbf{A}$ is symmetric.

Question. How to find P (thus D)?

Spectral Theorem. If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric,

- (a) the eigenvalues are all real
- (b) the eigenvectors to different eigenvalues are perpendicular.
- (c) there exists an orthogonal eigenbasis

For (c), from each set of eigenvectors, say $\{x_1, \ldots, x_k\}$ associated with a particular eigenvalue, say λ_j , we can construct another set of eigenvectors $\{x_1', \ldots, x_k'\}$ that are orthonormal, using the Gram-Schmidt process.

Then, all eigenvectors can form an orthornormal basis.

L4(4) July 9, 2024 27 / 43

Example

Example.
$$\mathbf{A} = \begin{pmatrix} \frac{3}{2} & \frac{2}{3} & \frac{2}{2} \\ \frac{2}{2} & \frac{3}{3} & \frac{2}{3} \end{pmatrix}$$
. $p_{\mathbf{A}}(\lambda) = -(\lambda - 1)^2(\lambda - 7)$, thus $\lambda_1 = 1, \lambda_2 = 7$

$$E_1 = \mathsf{span}[\left(egin{array}{c} -1 \ 1 \ 0 \end{array}
ight), \left(egin{array}{c} -1 \ 0 \ 1 \end{array}
ight)], \quad E_7 = \mathsf{span}[\left(egin{array}{c} 1 \ 1 \ 1 \end{array}
ight)]$$

 $(111)^{\mathsf{T}}$ is perpendicular to $(-110)^{\mathsf{T}}$ and $(-101)^{\mathsf{T}}$

$$\binom{-1}{1}$$
 and $\binom{-1/2}{-1/2}$ (for $\lambda=1$) and $\binom{1}{1}$ (for $\lambda=7$) are the orthogonal basis in \mathbb{R}^3

After normalization, we can make the orthonormal basis.

July 9, 2024 28 / 43

Eigendecomposition

Theorem. The following is equivalent.

- (a) A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ can be factorized into $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$, where $\mathbf{P} \in \mathbb{R}^{n \times n}$ and \mathbf{D} is the diagonal matrix whose diagonal entries are eigenvalues of \mathbf{A} .
- (b) The eigenvectors of \mathbf{A} form a basis of \mathbb{R}^n (i.e., The n eigenvectors of \mathbf{A} are linearly independent)

The above implies the columns of P are the n eigenvectors of A (because AP = PD)

 $m{P}$ is an orthogonal matrix, so $m{P}^\mathsf{T} = m{P}^{-1}$

A is symmetric, then (b) holds (Spectral Theorem).

L4(4) July 9, 2024 29 / 43

Example of Orthogonal Diagonalization (1)

Eigendecomposition for
$$\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

Eigenvalues: $\lambda_1 = 1, \lambda_2 = 3$

(normalized) eigenvectors:
$$m{p}_1=rac{1}{\sqrt{2}}\begin{pmatrix}1\\-1\end{pmatrix}, \ m{p}_2=rac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix}.$$

 p_1 and p_2 linearly independent, so A is diagonalizable.

$$m{P} = ig(m{p}_1 \ m{p}_2ig) = rac{1}{\sqrt{2}} egin{pmatrix} 1 & 1 \ -1 & 1 \end{pmatrix}$$

$$\mathbf{D} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$$
. Finally, we get $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$

L4(4) July 9, 2024 30 / 43

Example of Orthogonal Diagonalization (2)

$$\begin{aligned} & \boldsymbol{A} = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \\ & \text{Eigenvalues: } \lambda_1 = -1, \lambda_2 = 5 \\ & (\alpha_1 = 2, \alpha_2 = 1) \end{aligned}$$

$$\begin{aligned} & \boldsymbol{E}_{-1} = \text{span} [\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}] \xrightarrow{\text{Gram-Schmidt}} \end{aligned}$$

$$\text{span} [\frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \frac{1}{\sqrt{6}} \begin{pmatrix} -1 \\ 1 \\ 2 \end{bmatrix}]$$

$$E_5 = ext{span} [rac{1}{\sqrt{3}} egin{pmatrix} 1 \ 1 \ 1 \end{pmatrix}] \ m{P} = egin{pmatrix} -1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \ 1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \ 0 & 2/\sqrt{6} & 1/\sqrt{3} \end{pmatrix} \ m{D} = m{P}^\mathsf{T} m{A} m{P} = egin{pmatrix} -1 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & 5 \end{pmatrix}$$

L4(4) July 9, 2024 31 / 43

Eigendecomposition: Geometric Interpretation

Question. Can we generalize this beautiful result to a general matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$?

L4(4) July 9, 2024 32 / 43

Roadmap

- (1) Determinant and Trace
- (2) Eigenvalues and Eigenvectors
- (3) Cholesky Decomposition
- (4) Eigendecomposition and Diagonalization
- (5) Singular Value Decomposition
- (6) Matrix Approximation
- (7) Matrix Phylogeny

L4(5)

Storyline

Eigendecomposition (also called EVD: EigenValue Decomposition): (Orthogoanl) Diagonalization for symmetric matrices $\mathbf{A} \in \mathbb{R}^{n \times n}$.

Extensions: Singular Value Decomposition (SVD)

First extension: diagonalization for non-symmetric, but still square matrices $\mathbf{A} \in \mathbb{R}^{n \times n}$

Second extension: diagonalization for non-symmetric, and non-square matrices $\mathbf{A} \in \mathbb{R}^{m \times n}$

Background. For $\mathbf{A} \in \mathbb{R}^{m \times n}$, a matrix $\mathbf{S} := \mathbf{A}^T \mathbf{A} \in \mathbb{R}^{n \times n}$ is always symmetric, positive semidefinite.

Symmetric, because $S^T = (A^TA)^T = A^TA = S$.

Positive semidefinite, because $\mathbf{x}^{\mathsf{T}}\mathbf{S}\mathbf{x} = \mathbf{x}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} = (\mathbf{A}\mathbf{x})^{\mathsf{T}}(\mathbf{A}\mathbf{x}) \geq 0$.

If $rk(\mathbf{A}) = n$, then symmetric and positive definite.

L4(5)

Singular Value Decomposition

Theorem. $\mathbf{A} \in \mathbb{R}^{m \times n}$ with rank $r \in [0, \min(m, n)]$. The SVD of \mathbf{A} is a decomposition of the form

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}},$$
 $\mathbf{v} = \mathbf{v} \mathbf{v}^{\mathsf{T}}$

with an orthogonal matrix $\boldsymbol{U} = (\boldsymbol{u}_1 \cdots \boldsymbol{u}_m) \in \mathbb{R}^{m \times m}$ and an orthogonal matrix $\boldsymbol{V} = (\boldsymbol{v}_1 \cdots \boldsymbol{v}_n) \in \mathbb{R}^{n \times n}$. Moreoever, Σ s an $m \times n$ matrix with $\Sigma_{ii} = \sigma_i \geq 0$ and $\Sigma_{ii} = 0, \ i \neq j$, which is uniquely determined for \boldsymbol{A} .

Note

The diagonal entries σ_i , i = 1, ..., r are called singular values.

 u_i and v_j are called left and right singular vectors, respectively.

L4(5) July 9, 2024 35 / 43

SVD: How It Works (for $\mathbf{A} \in \mathbb{R}^{n \times n}$)

 $\mathbf{A} \in \mathbb{R}^{n \times n}$ with rank $r \leq n$. Then, $\mathbf{A}^T \mathbf{A}$ is symmetric.

Orthogonal diagonalization of $A^T A$:

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}^{\mathsf{T}}.$$

$$m{D} = \begin{pmatrix} \lambda_1 \\ \ddots \\ \lambda_n \end{pmatrix}$$
 and an orthogonal matrix $m{V} = (m{v}_1 \cdots m{v}_n)$, where $\lambda_1 \geq \cdots \geq \lambda_r \geq \lambda_{r+1} = \cdots \lambda_n = 0$ are the eigenvalues of $m{A}^T m{A}$ and $\{m{v}_i\}$ are orthonormal.

All λ_i are positive

$$\forall x \in \mathbb{R}^n, \|\mathbf{A}x\|^2 = \mathbf{A}x^\mathsf{T}\mathbf{A}x = x^\mathsf{T}\mathbf{A}^\mathsf{T}\mathbf{A}x = \lambda_i \|x\|^2$$

$$rk(\mathbf{A}) = rk(\mathbf{A}^{\mathsf{T}}\mathbf{A}) = rk(D) = r$$

Choose $\mathbf{U}' = (\mathbf{u}_1 \cdots \mathbf{u}_r)$, where

$$u_i = \frac{Av_i}{\sqrt{\lambda_i}}, \ 1 \leq i \leq r.$$

We can construct $\{\boldsymbol{u}_i\}$, $i=r+1,\cdots,n$, so that $\boldsymbol{U}=\begin{pmatrix}\boldsymbol{u}_1&\cdots\boldsymbol{u}_n\end{pmatrix}$ is an orthonormal basis of \mathbb{R}^n .

Define
$$\Sigma = \left(egin{array}{ccc} \sqrt{\lambda_1} & & & \\ & \ddots & & \\ & & \sqrt{\lambda_n} \end{array}\right)$$

Then, we can check that $U\Sigma = AV$. Similar arguments for a general $A\mathbb{R}^{m\times n}$ (see pp. 104)

L4(5)

Example

37 / 43

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ -2 & 1 & 0 \end{pmatrix}$$

$$m{A}^{\mathsf{T}}m{A} = egin{pmatrix} 5 & -2 & 1 \ -2 & 1 & 0 \ 1 & 0 & 1 \end{pmatrix} = m{V}m{D}m{V}^{\mathsf{T}},$$

$$\mathbf{D} = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \mathbf{V} = \begin{pmatrix} \frac{5}{\sqrt{30}} & \frac{-2}{\sqrt{30}} & \frac{1}{\sqrt{30}} \\ 0 & \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{-1}{\sqrt{6}} & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{pmatrix}$$

 $rk(\mathbf{A}) = 2$ because we have two singular values $\sigma_1 = \sqrt{6}$ and $\sigma_2 = 1$

$$\Sigma = \begin{pmatrix} \sqrt{6} & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$extbf{ extit{u}}_1 = extbf{ extit{A}} extbf{ extit{v}}_1/\sigma_1 = egin{pmatrix} rac{1}{\sqrt{5}} \ rac{-2}{\sqrt{5}} \end{pmatrix}$$

$$extbf{\emph{u}}_2 = extbf{\emph{A}} extbf{\emph{v}}_2/\sigma_2 = egin{pmatrix} rac{2}{\sqrt{5}} \ rac{1}{\sqrt{5}} \end{pmatrix}$$

$$oldsymbol{U} = egin{pmatrix} oldsymbol{u}_1 & oldsymbol{u}_2 \end{pmatrix} = rac{1}{\sqrt{5}} egin{pmatrix} 1 & 2 \ -2 & 1 \end{pmatrix}$$

Then, we can see that $\mathbf{A} = \mathbf{U} \Sigma V^{\mathsf{T}}$.

July 9, 2024

$\overline{\mathsf{EVD}}\ (oldsymbol{A} = oldsymbol{P}oldsymbol{D}oldsymbol{P}^{-1})$ vs. $\mathsf{SVD}\ (oldsymbol{A} = oldsymbol{U}oldsymbol{\Sigma}oldsymbol{V}^\mathsf{T})$

SVD: always exists, EVD: square matrix and exists if we can find a basis of eigenvectors (such as symmetric matrices)

P in EVD is not necessarily orthogonal (only true for symmetric A), but U and V are orthogonal (so representing rotations)

Both EVD and SVD: (i) basis change in the domain, (ii) independent scaling of each new basis vector and mapping from domain to codomain, (iii) basis change in the codomain. The difference: for SVD, different vector spaces of domain and codomain.

SVD and EVD are closely related through their projections

The left-singular (resp. right-singular) vectors of \mathbf{A} are eigenvectors of $\mathbf{A}\mathbf{A}^{\mathsf{T}}$ (resp. $\mathbf{A}^{\mathsf{T}}\mathbf{A}$)

The singular values of \mathbf{A} are the square roots of eigenvalues of $\mathbf{A}\mathbf{A}^{\mathsf{T}}$ and $\mathbf{A}^{\mathsf{T}}\mathbf{A}$

When \boldsymbol{A} is symmetric, EVD = SVD (from spectral theorem)

L4(5) July 9, 2024 38 / 43

Different Forms of SVD

When $rk(\mathbf{A}) = r$, we can construct SVD as the following with only non-zero diagonal entries in Σ :

$$\boldsymbol{A} = \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathsf{T}}$$

We can even truncate the decomposed matrices, which can be an approximation of \mathbf{A} : for k < r

$$A \approx \underbrace{U}^{m \times k} \underbrace{\Sigma}^{k \times k} \underbrace{V}^{k \times n}$$

We will cover this in the next slides.

L4(5) July 9, 2024 39 / 43

Matrix Approximation via SVD

 $\mathbf{A} = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\mathsf{T}}$, where \mathbf{A}_i is the outer product³ of \mathbf{u}_i and \mathbf{v}_i

Rank k-approximation: $\hat{\mathbf{A}}(k) = \sum_{i=1}^{k} \sigma_i \mathbf{A}_i, k < r$

L4(6)

³If u and v are both nonzero, then the outer product matrix uvv^T always has matrix rank 1. Indeed, the columns of the outer product are all proportional to the first column.

How Close $\hat{A}(k)$ is to A?

Definition. Spectral Norm of a Matrix. For $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\|\mathbf{A}\|_2 := \max_{\mathbf{x}} \frac{\|\mathbf{A}\mathbf{x}\|_2}{\|\mathbf{x}\|_2}$

As a concept of length of \boldsymbol{A} , it measures how long any vector \boldsymbol{x} can at most become, when multiplied by \boldsymbol{A}

Theorem. Eckart-Young. For $\mathbf{A} \in \mathbb{R}^{m \times n}$ of rank r and $\mathbf{B} \in \mathbb{R}^{m \times n}$ of rank k, for any $k \leq r$, we have:

$$\hat{\boldsymbol{A}}(k) = \arg\min_{\mathsf{rk}(\boldsymbol{B})=k} \|\boldsymbol{A} - \boldsymbol{B}\|_2, \quad \mathsf{and} \quad \left\|\boldsymbol{A} - \hat{\boldsymbol{A}}(k)\right\|_2 = \sigma_{k+1}$$

Quantifies how much error is introduced by the SVD-based approximation

 $\hat{A}(k)$ is optimal in the sense that such SVD-based approximation is the best one among all rank-k approximations.

In other words, it is a projection of the full-rank matrix \boldsymbol{A} onto a lower-dimensional space of rank-at-most-k matrices.

L4(6) July 9, 2024 41 / 43

Roadmap

- (1) Determinant and Trace
- (2) Eigenvalues and Eigenvectors
- (3) Cholesky Decomposition
- (4) Eigendecomposition and Diagonalization
- (5) Singular Value Decomposition
- (6) Matrix Approximation
- (7) Matrix Phylogeny

L4(7) July 9, 2024 42 / 43

Phylogenetic Tree of Matrices

L4(7) July 9, 2024 43 / 43