

Visualization of Supernovae Classification

Rohan Thavarajah Nick Ruta Cristóbal Donoso

Outline

- 1. Introduction
- 2. Getting the information
 - a. Tension as an uncertainty measure
 - b. Making the csv file
- 3. Visualizing changes through time
- 4. Demo
- 5. Future Work

Introduction: Why Visualization?

Vision is the most important channel for receiving information from our environment

Figure 1: Scientific visualization, using data from a computer simulation. It shows a Supernova 1987A. *Credits: NASA, ESA, and F. Summers and G. Bacon (STScI); Simulation Credit: S. Orlando (INAF-Osservatorio Astronomico di Palermo)*

Introduction: Why Visualization?

It's hard for humans detect patterns from numbers

	id_sn	time	RA	DECL	MWEBV	REDSHIFT FINAL	g	r	i	z	g_e	r_e	i_e	z_e	SIM REDSHIFT	class
0	393133	1.10850	34.5	-5.5	0.0227	0.695	36.7300	8.8670	-16.9800	-1.8180	30.750	3.599	7.060	2.926	0.7001	2
1	393133	2.09000	34.5	-5.5	0.0227	0.695	-5.3990	0.4444	6.1790	3.0800	9.315	3.863	6.318	2.922	0.7001	2
2	393133	3.10750	34.5	-5.5	0.0227	0.695	0.6672	4.0030	-0.3458	-0.5002	7.694	2.655	4.790	3.017	0.7001	2
3	393133	7.13700	34.5	-5.5	0.0227	0.695	6.9330	-3.9910	1.7490	-2.4030	3.789	1.758	3.200	2.936	0.7001	2
4	393133	8.15075	34.5	-5.5	0.0227	0.695	0.4684	-2.3700	0.3952	2.4730	2.000	1.875	2.783	3.190	0.7001	2

We need to translate these measures in order to show it clearly

Presentation and Exploratory Graphics

 Presentation graphics are static. They're useful for presenting summaries of information

Figure 2: Histogram of supernovae sorted by type

Chen, C. H., Härdle, W. K., & Unwin, A. (Eds.). (2007). Handbook of data visualization. Springer Science & Business Media.

Presentation and Exploratory Graphics

• Exploratory graphs are used to look for results. In the context of supernovae classification, they have to show us changes through time

The problem

We want to explore the results from an online classification of supernovae. In order to do this, we have to visualize:

- 1. **Probability of type classification** for each supernova
- 2. **Tension** between classes
- 3. Global information

Online Classification

We receive information from the universe via observations at each time step

We train a model & make classifications

We want to visualize the process & results

Motivating Tension

Simulating Online Predictions

Our Visualization

Future Work

- Time Elapse
- Online Feedback Have we achieved classification yet? If not, should we keep observing?
- Visualize thousands of objects at different levels of granularity
- Accessibility for color blindness

