$MedvedskyPV\ 23122024\text{--}171237$

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
3.5	0.375	156.7	3.707	57.7	0.110	58.9	0.159	-102.4
4.0	0.380	151.1	3.239	52.7	0.125	55.9	0.154	-108.8
4.5	0.388	146.3	2.880	47.8	0.140	52.8	0.145	-114.6
5.0	0.393	142.2	2.599	43.2	0.154	49.5	0.135	-120.4
5.5	0.398	137.8	2.371	38.3	0.168	46.2	0.121	-126.9
6.0	0.406	132.7	2.181	33.6	0.181	42.9	0.103	-135.0
6.5	0.418	127.4	2.017	28.9	0.194	39.4	0.088	-148.8
7.0	0.433	121.7	1.872	24.0	0.207	36.0	0.073	-167.0
7.5	0.455	117.7	1.746	19.5	0.219	32.6	0.070	167.2
8.0	0.480	114.2	1.631	14.9	0.231	28.8	0.087	138.9
8.5	0.511	110.8	1.523	10.3	0.241	25.0	0.126	116.7

и частоты $f_{\rm H}=6$ ГГц, $f_{\rm B}=8$ ГГц. **Найти** модуль s_{22} в дБ на частоте $f_{\rm H}$.

- 1) -14.8 дБ
- 2) -19.7 дБ
- 3) 6.8 дБ
- 4) -7.8 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.458	-126.8	27.453	105.6	0.022	55.5	0.461	-58.8
1.7	0.456	-154.6	16.998	88.6	0.030	56.8	0.311	-72.5
2.4	0.461	-169.8	12.059	77.6	0.038	58.0	0.251	-85.0
3.1	0.473	179.2	9.284	69.3	0.047	57.7	0.229	-97.5
3.8	0.482	170.5	7.557	61.8	0.056	56.6	0.220	-105.1
4.5	0.494	163.0	6.345	54.3	0.066	54.5	0.208	-113.1
5.2	0.500	157.0	5.434	47.7	0.075	52.2	0.194	-120.2
5.9	0.503	150.5	4.791	41.2	0.086	48.8	0.183	-127.4
6.6	0.517	142.4	4.271	34.1	0.095	44.8	0.166	-139.7

и частоты $f_{\mbox{\tiny H}}=1.7$ ГГц, $f_{\mbox{\tiny B}}=6.6$ ГГц.

Найти обратные потери по выходу на $f_{\rm H}$.

- 1) 10.1 дБ
- 2) 7.8 дБ
- 3) 20.3 дБ
- 4) 15.6 дБ

Задан двухполюсник на рисунке 1, причём R1 = 154.16 Ом.

Рисунок 1 – Двухполюсник

Найти полуокружность (см. рисунок 2), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок2 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать undexc выбранной полуокружности.

Найти точку (см. рисунок 3), соответствующую коэффициенту отражения от нормированного импеданса $z=0.55\text{-}0.71\mathrm{i}$.

Рисунок 3 – Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s	22
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
3.3	0.692	103.1	1.640	20.5	0.135	41.1	0.217	-93.1
3.4	0.700	101.2	1.584	18.4	0.139	40.2	0.217	-96.2
3.5	0.708	99.4	1.531	16.1	0.142	39.4	0.218	-99.3
3.6	0.713	97.7	1.485	14.5	0.145	38.3	0.217	-102.7
3.7	0.719	96.1	1.441	12.7	0.148	37.3	0.217	-106.1
3.8	0.724	94.5	1.398	10.9	0.151	36.3	0.218	-109.5
3.9	0.731	92.9	1.357	9.0	0.154	35.4	0.220	-112.8
4.0	0.738	91.4	1.317	6.9	0.157	34.5	0.222	-116.1
4.1	0.742	89.9	1.279	5.3	0.159	33.5	0.223	-119.5
4.2	0.748	88.4	1.242	3.6	0.162	32.5	0.225	-122.8
4.3	0.753	87.0	1.207	1.9	0.165	31.6	0.227	-126.1

и частоты $f_{\rm H}=3.7~\Gamma\Gamma$ ц, $f_{\rm B}=4.1~\Gamma\Gamma$ ц. **Найти** неравномерность усиления в полосе $f_{\rm H}...f_{\rm B}$, используя рисунок 4.

Рисунок 4 – Частотная характеристика усиления

- 1) 2.7 дБ
- 2) 1 дБ
- 3) 1.1 дБ
- 4) 0.5 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.520	-110.9	25.458	110.7	0.026	52.1	0.535	-56.9
2.1	0.478	-153.8	13.250	84.8	0.037	50.9	0.314	-79.8
3.2	0.483	-175.4	8.691	69.9	0.049	51.6	0.256	-98.9
4.3	0.496	170.1	6.452	57.8	0.063	50.5	0.234	-110.7
5.4	0.503	159.3	5.055	46.8	0.078	48.1	0.209	-121.6
6.5	0.519	146.6	4.214	35.5	0.092	42.5	0.186	-138.4
8.6	0.601	127.5	3.048	14.5	0.120	31.7	0.151	157.8

Найти точку (см. рисунок 5), соответствующую s_{11} на частоте 3.2 ГГц.

Рисунок 5 – Кривые s_{11} и s_{22}

- 1) A

- 2) B 3) C 4) D