10417-617 Deep Learning: Fall 2019

Andrej Risteski

Machine Learning Department

Lecture 10:

Intro to unsupervised learning

Unsupervised learning

Learning from data without labels.

What can we hope to do:

Task A: Fit a parametrized **structure** (e.g. clustering, low-dimensional subspace, manifold) to data to reveal something meaningful about data. (**Structure learning**)

Task B: Learn a (parametrized) **distribution** *close* to data generating distribution. (**Distribution learning**)

Task C: Learn a (parametrized) distribution that implicitly reveals an "embedding"/"representation" of data for downstream tasks. (Representation/feature learning)

Entangled! The "structure" and "distribution" often reveals an embedding.

Structure learning

Fit a parametrized **structure** (e.g. clustering, low-dimensional subspace) to data to reveal something meaningful about data.

PCA(principal component analysis), direction of highest variance

Clustering

Structure learning

804,414 newswire stories

Some typical choices of parametrized distributions:

Classical choices: fully-observed graphical models (undirected and directed), latent-variable graphical models (mixture models, sparse coding, topic models).

Markov Random Fields:

sparse independence structure: "A is independent of other vars, given B, D"

Latent variable models: data is "simple" conditioned on some unobserved (latent) variables

Some typical choices of parametrized distributions:

Semi-modern choices: deep Boltzmann machines, deep belief networks, (variational) auto-encoders, energy models.

Deep Boltzmann machines, belief networks: graphical model analogues of deep neural networks.

(Variational) autoencoders: model data by enforcing a latent space "bottleneck:

Some typical choices of parametrized distributions:

Modern choices: generative adversarial networks, autoregressive models (pixelRNN, pixelCNN), flow models, etc.

Training
Data(CelebA)

Model Samples (Karras et.al., 2018)

4 years of progression on Faces

Brundage et al., 2017

2016

2017

Which face is real. com

BigGAN, Brock et al '18

Conditional generative model P(zebra images | horse images)

Style Transfer

Input Image

Monet

Van Gogh

Zhou el al., Cycle GAN 2017

Source actor

Real-time reenactment

Target actor

Representation learning and selfsupervised learning

Given unlabeled data, design supervised tasks that induce a good representation for downstream tasks.

No good mathematical formalization, but the intuition is to "force" the predictor used in the task to learn something "semantically meaningful" about the data.

Examples in NLP: predict next word, given previous 5 words; predict middle word, given surrounding 5 words; etc.

Representation learning and selfsupervised learning

Examples in vision: a lot, and quite different in nature.

Rotation prediction

Predict one of four angles an image is rotated by

Jigsaw puzzles

Predict position of second piece wrt to first

Relationships between the tasks

Structure learning and feature learning often blend

E.g. low dimensional features in PCA or cluster a point belongs to in clustering can be viewed as features.

Structure learning/feature learning is in general weaker than distribution learning:

E.g. methods like PCA/clustering can't be used to generate new samples.

Feature, not a bug: it has been argued that self-supervised learning works because the task we are solving is easier (both computationally and statistically)

Relationships between the tasks

Distribution learning often implies representation learning:

Many distributions we fit are **latent-variable** models (i.e. model the joint distribution between some latent variables h and the observed data x)

$$P_{\theta}(x,h) = P_{\theta}(h)P_{\theta}(x|h)$$

The latent variables are often viewed as a "representation".

The **posterior** distribution $P_{\theta}(h|x)$ captures a distribution over representations, given some values of the observed data.

However, a-priori, distribution $P_{\theta}(h|x)$ is a-priori not an easy distribution to **approximate/sample** from!

$$P_{\theta}(h|x) = \frac{P_{\theta}(x|h)p(h)}{\int_{h'} p(h')p(x|h')} Hard high-dimensional sum/integral$$

Two typical families of training algorithms:

Likelihood-based: maximize the likelihood of the data under the model (possibly with some approximations)

$$\max_{\theta} \sum_{\text{samples } x_i} \log p_{\theta}(x_i)$$

In the limit of infinite number of samples:

$$\max_{\theta} \mathbb{E}_{x \sim p} \log p_{\theta}(x) = -(\mathbb{E}_{x \sim p} \log \frac{1}{p_{\theta}(x)} + \mathbb{E}_{x \sim p} \log p(x) - \mathbb{E}_{x \sim p} \log p(x))$$
$$= -(KL(p||p_{\theta}) + H(p))$$

Hence, we are minimizing KL divergence (H(p)) is a constant).

Two typical families of training algorithms:

Likelihood-based: maximize the likelihood of the data under the model (possibly with some approximations)

Pros

Easy training: can just maximize via gradient descent.

Evaluation: evaluating the fit of the model can be done by evaluating the likelihood (on test data)

Cons

Larger models needed:

likelihood objective is hard, to fit well need very big model

Likelihood encourages averaging:

produced samples tend to be blurrier, as likelihood encourages "coverage" of training data.

$$\mathrm{KL}(p||q) = -\int p(\mathbf{Z}) \ln \frac{q(\mathbf{Z})}{p(\mathbf{Z})} \mathrm{d}\mathbf{Z}.$$

There is a large positive contribution to the KL divergence from regions of Z space in which:

- q(Z) is near zero,
- unless p(Z) is also close to zero.

Minimizing KL(p||q) leads to distributions q(Z) that are nonzero in regions where p(Z) is nonzero.

Two typical families of training algorithms:

Likelihood-based: maximize the likelihood of the data under the model (possibly with some approximations)

Typical approximations used: variational inference (optimize tractable deterministic approximation of posteriors), MCMC methods (idea: approximate difficult quantities like posteriors with sampling)

Likelihood-free: use a surrogate loss – e.g. in GANs, train a discriminator to tell real and generated samples apart; noise-contrastive training: encourage model to put probability mass away from "fake" samples.

Likelihood-free: use a surrogate loss – e.g. in GANs, train a discriminator to tell real and generated samples apart; noise-contrastive training: encourage model to put probability mass away from "fake" samples.

Likelihood-free: use a surrogate loss – e.g. in GANs, train a discriminator to tell real and generated samples apart; noise-contrastive training: encourage model to put probability mass away from "fake" samples.

Pros

Better objective, smaller models needed: objective itself (i.e. discriminator) is "learned" – can result in visually better images w/ smaller models.

Cons

Unstable training: typically minmax (saddle point) problems.

Evaluation: no way to evaluate likelihood, so no way to evaluate evaluate quality of fit.

Figure 1: Population structure within Europe.

Figure 6: Plot from [1], depicting genomes for 1387 Europeans projected onto top 2 principal components. Colors/labels of datapoints correspond to geographic location of the individuals. Map of Europe (with same coloring) included in upper right for reference.

Novembre et al '08

Goal: find a k-dimensional (linear) subspace explaining most of the variance in the data.

Assume the data is centered, that is $\mathbb{E}[x] = 0$

Warmup: let k=1.

Goal: find a k-dimensional (linear) subspace explaining most of the variance in the data.

$$\underset{\{v_1, v_2, \dots, v_k\}}{\operatorname{argmax}} \frac{1}{m} \sum_{\text{samples } x_i} \left(\text{length of } \mathbf{x_i} \text{ on } \operatorname{span}(v_1, v_2, \dots, v_k) \right)^2$$

$$= \underset{\text{orthonormal } \{v_1, v_2, \dots, v_k\}}{\operatorname{argmax}} \frac{1}{m} \sum_{\text{samples } x_i} \sum_{j=1}^k \langle x_i, v_j \rangle^2$$

As
$$m \to \infty$$
, we get $\mathbb{E}[\sum_{j} \langle v_j, x \rangle^2]$

How to do this efficiently?

$$\underset{\text{orthonormal }\{v_1, v_2, \dots, v_k\}}{\operatorname{argmax}} \frac{1}{m} \sum_{\text{samples } x_i} \sum_{j=1}^{k} \langle x_i, v_j \rangle^2$$

A convenient rewrite:

$$= \underset{\text{orthonormal } \{v_1, v_2, \dots, v_k\}}{\operatorname{argmax}} \frac{1}{m} \sum_{\text{samples } x_i} \sum_{j=1}^k (v_j^T x_i) (x_i^T v_j)$$

$$= \underset{\text{orthonormal } \{v_1, v_2, \dots, v_k\}}{\operatorname{argmax}} \frac{1}{m} \sum_{\text{samples } x_i} \sum_{j=1}^k v_j^T (x_i x_i^T) v_j$$

$$= \underset{\text{orthonormal } \{v_1, v_2, \dots, v_k\}}{\operatorname{argmax}} \sum_{j=1}^k v_j^T \left(\frac{1}{m} \sum_{\text{samples } x_i} (x_i x_i^T)\right) v_j$$

$$= \underset{\text{orthonormal } \{v_1, v_2, \dots, v_k\}}{\operatorname{orthonormal} \{v_1, v_2, \dots, v_k\}} \sum_{j=1}^k v_j^T \left(\frac{1}{m} \sum_{\text{samples } x_i} (x_i x_i^T)\right) v_j$$

= D, (covariance matrix)

How to do this efficiently? - Singular Value Decomposition!!

$$\underset{\text{orthonormal }\{v_1, v_2, \dots, v_k\}}{\operatorname{argmax}} \frac{1}{m} \sum_{\text{samples } x_i} \sum_{j=1}^{k} \langle x_i, v_j \rangle^2$$

A convenient rewrite:
$$\underset{\text{orthonormal } \{v_1, v_2, \dots, v_k\}}{\operatorname{argmax}} \sum_{j=1}^k v_j^T \mathsf{D} v_j$$

If D is **diagonal** (w/ positive entries), and we sort the entries s.t. $D_{11} \ge D_{22} \dots \ge D_{dd}$, it's easy to see max is $\sum_{i=1}^k D_{ii}$. Namely:

$$\sum_{j=1}^{k} v_j^T D v_j = \sum_{j} \sum_{i} (v_j)_i^2 D_{ii} \le \sum_{j=1}^{k} D_{jj}$$
, as $(v_j)_i^2 = 1$

The corresponding argmax is $e_1, e_2, ..., e_k$.

How to do this efficiently? - **Singular Value Decomposition**!!

$$\underset{\text{orthonormal }\{v_1, v_2, \dots, v_k\}}{\operatorname{argmax}} \frac{1}{m} \sum_{\text{samples } x_i} \sum_{j=1}^{k} \langle x_i, v_j \rangle^2$$

A convenient rewrite:
$$\underset{\text{orthonormal } \{v_1, v_2, \dots, v_k\}}{\operatorname{argmax}} \sum_{j=1}^k v_j^T D v_j$$

If D is not diagonal, write D = U $\widetilde{D}U^T$ to reduce to diagonal case:

$$\underset{\text{orthonormal }\{v_1,v_2,\dots,v_k\}}{\operatorname{argmax}} \sum_{j=1}^k v_j^T (U \ \widetilde{D} U^T) v_j = \underset{\text{orthonormal }\{v_1,v_2,\dots,v_k\}}{\operatorname{argmax}} \sum_{j=1}^k \left(U^T v_j \right)^T \widetilde{D} (U^T v_j)$$

Since U^T is orthogonal, $\{U^Tv_1, U^Tv_2, ..., U^Tv_k\}$ also are orthonormal!

So, the max is $\sum_{i=1}^k \widetilde{D}_{i,i} = \sum_{i=1}^k \lambda_i(D)$ and the argmax are the **top k eigenvectors** of D

Goal: group the data into clusters of nearby points.

What's needed for clustering?

- Proximity measure, either
 - similarity measure $s(x_i, x_k)$: large if x_i, x_k are similar
 - dissimilarity(or distance) measure $d(x_i, x_k)$: small if x_i, x_k are similar

large s, small d

2. Criterion function to evaluate a clustering

3. Algorithm to compute clustering

Popular distance metrics:

Euclidean distance

$$d(x_i, x_j) = \sqrt{\sum_{k=1}^{d} (x_i^{(k)} - x_j^{(k)})^2}$$

translation invariant

$$d(x_i, x_j) = \sum_{k=1}^{d} |x_i^{(k)} - x_j^{(k)}|$$

 approximation to Euclidean distance, cheaper to compute

They are special cases of Minkowski distance:

$$d_p(\mathbf{x}_i, \mathbf{x}_j) = \left(\sum_{k=1}^m \left| x_{ik} - x_{jk} \right|^p \right)^{\frac{1}{p}}$$

(p is a positive integer)

Criterion functions:

Intra-cluster cohesion

 Cohesion measures how near the data points in a cluster are to the cluster "center".

Inter-cluster separation

– Separation means that different cluster centroids should be far away from one another.

In most applications, expert judgments are still the key

How many clusters?

- Possible approaches
 - 1. fix the number of clusters to k
 - find the best clustering according to the criterion function (number of clusters may vary)

K-means clustering

If the distance metric is the Euclidean distance, and the measure of cohesion is the average distance from the centroid: we get the **k-means objective.**

K-means clustering

A natural iterative algorithm, which as we will see later is a variant of the **EM** (expectation-maximization) algorithm:

```
Input: Data set X = \{x^{(1)}, x^{(2)}, \dots, x^{(m)} | x^{(i)} \in \mathbb{R}^n \}
   Output: Cluster centroids \mu_{i=1,\dots,k} \in \mathbb{R}^n; Cluster assignments c \in \mathbb{Z}
1 Initialize k cluster centroids \mu_1, \dots, \mu_k \in \mathbb{R}^n randomly from X;
2 repeat
        for i=1,\cdots,m do // Update cluster assignments
         set c^{(i)} = arg \min_{i} ||x^{(i)} - \mu_{j}||^{2};
      end
      for j=1,\cdots,k\;\mathrm{do} // Update cluster centroids
      set \mu_j = \frac{\sum_{i=1}^m 1\{c^{(i)}=j\}x^{(i)}}{\sum_{i=1}^m 1\{c^{(i)}=j\}};
        end
9 until Convergence;
10 return \mu and c;
```

Algorithm 1: Algorithm of batch-version for K-means

Some weaknesses

Very sensitive to outliers:

(A): Undesirable clusters

(B): Ideal clusters

Some weaknesses

Not suitable for non-spherical clusters:

(A): Two natural clusters

(B): k-means clusters