Lecture 10 Asymmetric-Key Encryption

Jason Lin

學習目標

- 區別對稱式金鑰密碼系統與非對稱式金鑰密碼系統
- 介紹單向暗門函數以及其於非對稱式金鑰密碼系統的使用情形
- · 討論 RSA 密碼系統
- 討論 Rabin 密碼系統
- 討論 ElGamal 密碼系統

10.1 簡介

- 對稱式金鑰密碼學與非對稱式金鑰密碼學可以同時並存,並且提供服務。我們著實認為它們之間是互補的,其中一個的優點可以補償另外一個的缺點
- 本節討論主題
 - 金鑰
 - 一般概念
 - 兩者皆需要
 - 單向暗門函數

10.1 簡介(續)

注意

對稱式金鑰密碼技術是基於分享的祕密,非對稱式金鑰密碼技術是基於個人的祕密。

在對稱式金鑰密碼學中,符號被重新排列與取代; 在非對稱式金鑰密碼學中,數字被操作處理。

10.1.1 金鑰

• 非對稱式金鑰密碼學使用兩把不同的金鑰:一把為私密金鑰 (Private Key),一把為公開金鑰(Public Key)

圖 10.1 非對稱式金鑰密碼系統的上鎖與開鎖

圖 10.2 非對稱式金鑰密碼系統的一般概念

10.1.2 一般概念

- •明文/密文
 - 與對稱式金鑰密碼學不同的是,非對稱式金鑰密碼學將明文(Plaintext) 與密文(Ciphertext)當成整數
- •加密/解密
 - 密文表示為 $C = f(K_{\text{QL}}, P)$
 - 明文表示為 $P = f^{-1}(K_{A \otimes R}, C)$

10.1.3 兩者皆需要

一件重要但有時卻難以理解的事實是,非對稱式金鑰(公開金鑰) 密碼學的來臨並不會抹煞我們對於對稱式金鑰(祕密金鑰)密碼 學的需求

公開金鑰基本概念

- 對稱式密碼系統有金鑰的管理問題
 - 例如要與N個人做秘密通訊,那麼就必須握有N把秘密金鑰
- 為了改善對稱式密碼系統問題,於是便有公開金鑰密碼系統 (Public-Key Cryptosystems)的產生
 - 只需要1把私密金鑰跟1把公開金鑰

公開金鑰密碼系統

- 著名之公開金鑰密碼系統
 - Diffie-Hellman 概念 1976
 - RSA 密碼系統 1977
 - Rabin 密碼系統 1979
 - ElGamal 密碼系統 1985
- 公開金鑰密碼系統的優點
 - 沒有金鑰管理的問題
 - 高安全性
 - 有數位簽章功能
- 公開金鑰密碼系統的缺點
 - 加解密速度慢

10.1.4 單向暗門函數

• 非對稱式金鑰密碼學的主要概念是單向暗門函數

10.1.4 單向暗門函數(續)

- 單向函數
 - ƒ 容易計算
 - f^{-1} 很難計算
- 單向暗門函數
 - 給一個y以及一個暗門(Trapdoor,祕密),則x可以很容易計算出來

範例10.1

•當 n 值很大, $n = p \times q$ 是一個單向函數。注意,在這個函數內, x 是指由兩個質數所構成的序列 (p,q),而且 y 值為 n 。給定 p 及 q,計算 n 值十分容易;但給 n 值,要計算 p 及 q 則非常困難。 這是一個分解因數的問題,我們已於第九章中討論過。在此情形下,計算 f^{-1} 並沒有多項式時間的解法

範例10.2

- •當 n 值很大,函數 $y = x^k \mod n$ 是一個單向暗門函數。給定 x k 及 n ,要計算 y 是很容易的,可以使用第九章所討論的快速指數運算演算法。但給定 y 、k 及 n ,要計算 x 是很困難的,這是第九章所討論的離散對數問題。在此情形下,沒有多項式時間的解法來計算 f^{-1} 。
- 然而,如果我們知道 $k \times k^{-1} = 1 \mod \phi(n)$ 的暗門 k^{-1} ,則我們能使用 $x = y^{k^{-1}} \mod n$ 來求出 x。這便是著名的 RSA 系統,本章 稍後將會討論

Diffie-Hellman Notations

- Alice 的私鑰: $x_a \in [1, p-1]$
- Alice 的公鑰: $y_a = g^{x_a} \mod p$
- Bob 的私鑰: $x_b \in [1, p-1]$
- Bob 的公鑰: $y_b = g^{x_b} \mod p$
- 其中 p 跟 g 是可公開的參數

Diffie-Hellman Key Exchange Protocol

Man-in-the-Middle Attack

Random: $a \in [1, p-1]$

 $K_1 = (g^c)^{x_a} \pmod{p}$

18

Random: $b \in [1, p-1]$

 $K_2 = (g^c)^{x_b} \pmod{p}$

Possible Solutions

- 建立認證的安全通道,利用『前置共享密鑰』(Pre-shared Secret) 來交換訊息加密
- 在 Diffie-Hellman 交換訊息之後,緊接著傳送共享數值、名稱、 與前置共享密鑰的雜湊值
- 在 Diffie-Hellman 交換訊息之後,緊接著傳送前置共享密鑰與所傳送參數的雜湊值

10.2 RSA 密碼系統

- •屬於非對稱式密碼系統的一種,於1977年由美國麻省理工學院的三位教授 Rivest、Shamir、Adleman (RSA) 所發展出來的
- •利用公開金鑰密碼系統作為資料加密的方式,可達到資料加密及數位簽章的功能
- RSA Encryption
 - •明文加密使用區塊為每次加密的範圍,使用對方公開金鑰(Public Key) 將明文加密
- RSA Decryption
 - · 必須使用自己的私密金鑰(Private Key)才能將密文解出

公開金鑰加密系統

演算法10.2 RSA 金鑰產生

•建議 p 及 q 必須至少為 512 位元; n 必須至少為 1024 位元

```
RSA_Key_Generation
   Select two large primes p and q such that p \neq q.
   n \leftarrow p \times q
   \phi(n) \leftarrow (p-1) \times (q-1)
   Select e such that 1 < e < \phi(n) and e is coprime to \phi(n)
   d \leftarrow e^{-1} \mod \phi(n)
                                                          //d 是 e 在模 \phi(n) 底下的乘法反元素
   Public_key \leftarrow (e, n)
                                                          //公開宣布
   Private_key \leftarrow d
                                                          //保持祕密
   return Public_key and Private_key
```

演算法10.3 RSA 加密

演算法10.4 RSA 解密

RSA演算法

- Bob 選 2 個大質數 p 和 q (至少 100 個位數),令 $n = p \cdot q$,再計算 $\phi(n) = (p-1)(q-1)$,並選一個與 $\phi(n)$ 互質的數 e
 - $\phi(n)$ 為 Euler's totient 函數,其意為與n 互質之個數
 - (e,n) 即為 Bob 的公開金鑰
- Bob 選 1 個數 d,滿足 $e \cdot d \mod \phi(n) = 1$
 - d 即為 Bob 的解密金鑰(亦稱私密金鑰)
- 加密法為 $C = P^e \mod n$
- 解密法為 $P = C^d \mod n$
 - · RSA 之安全性取決於質因數分解之困難度
 - 要將很大的n因數分解成p跟q之相乘,是很困難的

RSA的證明

如果 $n = p \times q$, a < n, 而且 k 是一個整數,則 $a^{k \times \phi(n)+1} \equiv a \pmod{n}$

```
P_1 = C^d \mod n = (P^e \mod n)^d \mod n = P^{ed} \mod n ed = k\phi(n) + 1 //d 與 e 在模 \phi(n) 底下互為乘法反元素 P_1 = P^{ed} \mod n \rightarrow P_1 = P^{k\phi(n)+1} \mod n = P \mod n // 尤拉定理(第二種版本)
```

RSA演算法-例子

- Bob 選 p = 3, q = 11此時 $n = p \cdot q = 3 \times 11 = 33$
- Bob 選出一個與 $(p-1) \times (q-1) = (3-1)(11-1) = 20$ 互質的數 e=3
- (e,n) = (3,33) 即為 Bob 的公開金鑰
- Bob 選一個數 d = 7 當作解密金鑰, 並滿足 $e \cdot d \equiv 1 \mod 20$ (7 × 3 $\equiv 1 \mod 20$)
- 今明文 P = 19
 - 加密: $C = P^e \mod n = 19^3 \mod 33 = 28$
 - 解密: $P = C^d \mod n = 28^7 \mod 33 = 19$

安全基礎—因數分解問題

- $\phi(n) = (p-1)(q-1)$,如果知悉公開參數n的兩個質因數(p,q),則 $\phi(n)$ 的值將無秘密可言
- •由於 e 為公開訊息,並且滿足 $ed = 1 \mod \phi(n)$,因此如果 $\phi(n)$ 為外人所知悉,則可利用歐式演算法計算出私鑰 d 的值
- 換言之,如果可以有效率地執行因數分解,則 RSA 密碼系統毫無安全性可言

因數分解問題

```
15 =
3×5
91 =
7×13
2173 =
41×53
3776111 =
1889×1999
```

1522605027922533360535618378132637429718068114961380688657908 494580122963258952897654000350692006139 = ?

RSA 數

- RSA 數 (RSA Numbers)為 RSA 質因數分解挑戰問題所使用大半質數的集合,其中從 RSA-100 到 RSA-500,數字代表的是十進制的位數,而從 RSA-576 開始,數字是以二進制的位數來命名的
- 這項挑戰從 1991 年 3 月開始, 旨在鼓勵整數分解的相關研究, 獎金最高可達美金 200,000 元, 挑戰已於 2007 年結束

RSA-200

- 27997833911221327870829467638722601621070446786955428537 56000992932612840010760934567105295536085606182235191095 13657886371059544820065767750985805576135790987349501441 78863178946295187237869221823983
- 200 digits (663 bits)
- May 9, 2005, Franke et al.
 - 2.2 GHz CPU---55 years
 - 80 2.2 GHz CPU---3 months
 - RSA 768 bits---8 months (December 12, 2009)

RSA-200

• Factors =

35324619344027701212726049781984643686197400197625023649 303468776121253679423200058547956528088349

and

79258699544783330333470858414800596877379758573642199607 34330341455767872818152135381409304740185467

30,000 USD. RSA-704

- 74037563479561712828046796097429573142593188889231289084 93623263897276503402826627689199641962511784399589433050 21275853701189680982867331732731089309005525051168770632 99072396380786710086096962537934650563796359
- 704 bits (212 digits)
- July 2, 2012, Shi et al.

RSA-704

• Factors =

90912135295978188784406583026004374858926083103283587204 28512168960411528640933367824950788367956756806141

and

81438592591100452657278091262844293358778990021676278832 00914172429324360133004116702003240828777970252499

100,000 USD. RSA-1024

- 1024 bits (309 digits)

200,000 USD. RSA-2048

- 2048 bits (617 digits)

Public-Key Cryptosystems 之特性 (1/2)

- 1. 可還原性:D(d, E(e, P)) = P
- 2. 金鑰產生容易: d和 e 很容易求得
- 3. 單向暗門:若公開(e,n),別人很難從(e,n)去求得 d,即只有自己知道如何解以 e 加的密
- 4. 可驗證性: *D*(*e*, *E*(*d*, P)) = P

Public-Key Cryptosystems 之特性 (2/2)

- 滿足 1~3 項稱之為 Trapdoor One-Way Function
 - "One-Way"因易加密而不易解密
 - · "Trapdoor"若知一些特別資訊即可解密
- 滿足 1~4 項稱之為 Trapdoor One-Way Permutation
- 1 ~ 3 項為 Public-Key Cryptosystems 之要求
- 若同時滿足第 4 項要求,則該保密法可用來製作數位簽章

Public-Key Cryptography -- Encryption

Public-Key Cryptography -- Authentication

Public-Key Characteristics

- Public-key algorithms rely on two keys with the characteristics that it is:
 - Computationally infeasible to find decryption key knowing only algorithm & encryption key
 - Computationally easy to en/decrypt messages when the relevant (en/decrypt) key is known
 - Either of the two related keys can be used for encryption, with the other used for decryption (in some schemes)

10.3 Rabin 密碼系統

- Rabin 密碼系統可想成一個將 e 及 d 固定 的 RSA 密碼系統。加密 是 $C \equiv P^2 \pmod{n}$,而解密是 $P \equiv C^{1/2} \pmod{n}$
- 本節討論主題
 - 程序
 - Rabin 系統的安全性

圖 10.10 Rabin 密碼系統的加密、解密及金鑰產生

演算法 10.6 Rabin 密碼系統的金鑰產生

- 與RSA系統相同,接收者Bob任選兩大質數p及q並求出n = pq
- 公開金鑰: n
- 私密金鑰:p、q

```
Rabin_Key_Generation {

Choose two large primes p and q in the form 4k+3 and p \neq q.

n \leftarrow p \times q

Public_key \leftarrow n

Private_key \leftarrow (q, n)

return Public_key and Private_key {
}
```

演算法 10.7 Rabin 密碼系統加密

• 若 Alice 欲傳送明文 P 給 Bob,則她首先必須先取得 Bob 之公開金鑰n(其中 $0 \le P < n$),並求出密文 $C = P^2 \mod n$,傳送給 Bob

```
Rabin_Encryption (n, P) //n是公開金鑰;P是在\mathbf{Z}_n^*下的明文 { C \leftarrow P^2 \mod n //C是密文 return C }
```

演算法 10.8 Rabin 密碼系統解密

• Bob 收到密文後,求出 C 在模 n 之四個平方根 P₁、P₂、P₃ 及 P₄,則 P 必為此四根之一,可由 P 的預設格式 (如後面加許多 0) 來判定何者為真正明文

10.3 Rabin 密碼系統(續)

注意

Rabin 密碼系統是非確定式的:解密得到四個同樣都可能的明文。

範例 10.8

- 以一個非常顯而易見的例子來說明此概念
 - Bob 選擇 p=23 及 q=7,注意兩個都是在模 4 下同餘為 3
 - Bob 計算 $n = p \times q = 161$
 - Bob 公布n; 他保持p及q為私密
 - Alice 想要傳送明文 P=24。注意 161 與 24 互質;24 在 \textbf{Z}_{161^*} 中。她計算 $C=24^2=93 \mod 161$,並將密文 93 傳送給 Bob

範例 10.8 (續)

- Bob 收到 93, 並計算下面四個值:
 - $a_1 = +(93^{(23+1)/4}) \mod 23 = 1 \mod 23$
 - $a_2 = -(93^{(23+1)/4}) \mod 23 = 22 \mod 23$
 - $b_1 = +(93^{(7+1)/4}) \mod 7 = 4 \mod 7$
 - $b_2 = -(93^{(7+1)/4}) \mod 7 = 3 \mod 7$

範例 10.8 (續)

• Bob 得到四個可能的答案 (a_1, b_1) 、 (a_1, b_2) 、 (a_2, b_1) 及 (a_2, b_2) ,並使用中國餘數定理找到四個可能的明文 116、24、137 及 45(全部都與 161 互質)。注意,只有第二個答案是 Alice 的明文。Bob 必須根據情況來決定。再次注意,所有四個解答在平方再模 n 之後,都會得到 Alice 送出的密文 93

範例 10.9

- 選取 p = 277, p = 331, 則 n = 91687
- 若要加密 P = 1001111001,可在後方複製部分原文使之能辨識 例如 $P = (1001111001111001)_2 = (40569)_{10}$
- 密文 C = 40569² mod 91678 = 62111

範例 10.9 (續)

- 解密時可解 P² = 62111 mod 91678
 - $P_1 = 1000100000010110$
 - $P_2 = 101011000010001$
 - $P_3 = 1001111001111001$
 - $P_4 = 11000111101011110$
- 故可知 P3 為正確的解

Rabin密碼系統的安全性分析

- 本系統之安全性可證明等於分解因數,但存在選擇密文攻擊法
 - 破譯者任選一亂數 x 並求出 $x^2 = C \mod n$,破譯者將 C 送給 Bob 並要求 Bob 解密
 - •若Bob解密得一明文P送回給破密者且 $P \neq \pm x \mod n$ (其機率為 $\frac{1}{2}$),則破密者可獲得C之4個平方根之兩獨立解,破解者可解因數n,故此系統可被破解

10.4 ElGamal 密碼系統

- •除了RSA與Rabin,另外一個公開金鑰密碼系統是 ElGamal 密碼系統 (ElGamal Cryptosystem),根據發明者 Taher ElGamal 命名。 ElGamal 是基於解離散對數問題
- 本節討論主題
 - ElGamal 密碼系統
 - 程序
 - 證明
 - 分析
 - ElGamal 的安全性
 - 應用

圖 10.11 ElGamal 系統的金鑰產生、加密及解密程序

演算法 10.9 ElGamal 系統的金鑰產生

```
ElGamal_Key_Generation
   Select a large prime p
   Select d to be a member of the group G = \langle \mathbf{Z}_p^*, \times \rangle such that 1 \le d \le p-2
   Select e_1 to be a primitive root in the group G = \langle \mathbf{Z}_p^*, \times \rangle
    e_2 \leftarrow e_1^d \mod p
    Public_key \leftarrow (e_1, e_2, p)
                                                                           //公開宣布
    Private_key \leftarrow d
                                                                           //保持祕密
    return Public_key and Private_key
```

演算法 10.10 ElGamal 加密

10.4.1 ElGamal 密碼系統

注意

在ElGamal密碼系統中的加密或解密位元運算複雜度是多項式型態的。

範例 10.10

- 這是一個顯而易見的例子。Bob 選擇 p 為 11,於是選擇 $e_1 = 2$ 。注意,2 是在 Z_{11} * 底下的原根
- 然後,他選擇 d=3 並計算 $e_2=e_1^d=8$ 。因此公開金鑰為 (2,8,11),而私密金鑰為 3。Alice 選擇 r=4,並計算明文 7 的密文 C_1 及 C_2

範例 10.10 (續)

明文:7 $C_1 = e_1^r \mod 11 = 16 \mod 11 = 5 \mod 11$

$$C_2 = (P \times e_2^r) \mod 11 = (7 \times 4096) \mod 11 = 6 \mod 11$$

密文:(5,6)

· Bob 收到密文 (5及6) 並計算明文

密文: $[C_2 \times (C_1^d)^{-1}] \mod 11 = 6 \times (5^3)^{-1} \mod 11 = 6 \times 3 \mod 11 = 7 \mod 11$

明文:7

範例 10.11

• 不使用 $P = [C_2 \times (C_1^d)^{-1}] \mod p$ 來解密,我們可以避免計算乘法 反元素,使用 $P = [C_2 \times C_1^{p-1-d}] \mod p$ (參見上一章之費瑪小定 理)。在範例 10.10 中,我們能計算 $P = [6 \times 5^{11-1-3}] \mod 11 = 7 \mod 11$

10.4.5 ElGamal 的安全性

注意

若希望 ElGamal 密碼系統是安全的, p 必須至少 300 位數字, 而且對每一次加密, r 都必須採用 一個全新的數值。

範例 10.12

• 這裡有一個較為實際的例子。Bob 使用一個 512 位元的隨機整數(理想值是 1024 位元)。整數 p 為 155 位數字(理想值是 300 位數字)。於是,Bob 選擇 e_1 、d 並計算 e_2 ,如以下所示:Bob 宣稱 (e_1,e_2,p) 為他的公開金鑰,並保持 d 為私密金鑰

<i>p</i> =	115348992725616762449253137170143317404900945326098349598143469219 056898698622645932129754737871895144368891765264730936159299937280 61165964347353440008577
$e_1 =$	2
<i>d</i> =	1007
<i>e</i> ₂ =	978864130430091895087668569380977390438800628873376876100220622332 554507074156189212318317704610141673360150884132940857248537703158 2066010072558707455

範例 10.12 (續)

• Alice 將明文 P = 3200 傳送給 Bob。她收到 r = 545131,計算 C_1 與 C_2 ,並將它們傳送給 Bob

P =	3200
r =	545131
C ₁ =	887297069383528471022570471492275663120260067256562125018188351429 417223599712681114105363661705173051581533189165400973736355080295 736788569060619152881
C ₂ =	708454333048929944577016012380794999567436021836192446961774506921 244696155165800779455593080345889614402408599525919579209721628879 6813505827795664302950

範例 10.12 (續)

• Bob 計算明文 $P = C_2 \times (C_1)^{p-1-d}$

P =	3200
-----	------

橢圓曲線密碼學

- 橢圓曲線密碼學 (Elliptic Curve Cryptography, ECC) 是一種基於 橢圓曲線數學的公開金鑰加密演算法,於 1985 年分別由 Neal Koblitz 與 Victor Miller 各自提出的
- ECC 的主要優勢是可以使用比 RSA 演算法還要小的金鑰長度, 並且提供相當等級的安全性,適合用於計算效能相對較差的輕量 級裝置上

Elliptic Curve 橢圓曲線 (1/2)

- 橢圓曲線所蘊含豐富且深奧的理論已被數學家研究超過 150 年
- 橢圓曲線方程式: $y^2 = x^3 + ax + b$
 - 此曲線剛好對稱於x軸(y=0這條直線)
 - 參數 a 和 b 必須滿足 $4a^3 + 27b^2 \neq 0$,才能確保沒有重根,具有唯一解
 - 加法單位元素 O 為一無窮遠的點,滿足 O = -O,亦須滿足橢圓曲線上某三點共線的合為 O
- 橢圓曲線的特性
 - 曲線上的任何點都以x 軸反射 (y = 0) , 並且仍是同樣的曲線 (奇特的 對稱性)
 - 任何不垂直的線穿過曲線最多只會有三個交點

Elliptic Curve 橢圓曲線 (2/2)

有限體和離散對數 (1/2)

- 因為橢圓曲線是連續的,容易被推算,因此,並不適合用於加密
- 把橢圓曲線定義在有限體上,這時就會用到以質數為模數的蓋洛 瓦體 GF(p)
 - 假設橢圓曲線為 $y^2 = x^3 + x + 1$,其在有限體 GF(p) 上時,可表示為: $y^2 = x^3 + x + 1$ (mod 23),也記作 $E_{23}(1,1)$
 - 此時,橢圓曲線不再是一條光滑連續曲線,而是一些離散的點

有限體和離散對數 (2/2)

• $E_{23}(1,1)$ 的點如下表與右圖所示

(0, 1)	(6, 4)	(12, 19)	
(0, 22)	(6, 19)	(13, 7)	
(1, 7)	(7, 11)	(13, 16)	
(1, 16)	(7, 12)	(17, 3)	
(3, 10)	(9,7)	(17, 20)	
(3, 13)	(9, 16)	(18, 3)	
(4, 0)	(11, 3)	(18, 20)	
(5, 4)	(11, 20)	(19, 5)	
(5, 19)	(12, 4)	(19, 18)	

橢圓曲線在有限體上的算術計算(1/2)

• Point Addition:

- 給定兩個點 $P = (x_1, y_1)$ 和 $Q = (x_2, y_2)$, 求 P + Q
- 若 P=Q,則使用 Doubling 的公式;否則,計算斜率 $\lambda = \frac{y_2-y_1}{x_2-x_1} \bmod p$
- 假設 Addition 後的新點為 $(x_3, y_3) = P + Q = (x_1, y_1) + (x_2, y_2)$, 其計算方式如下:

$$\begin{cases} x_3 = \lambda^2 - x_1 - x_2 \mod p \\ y_3 = \lambda(x_1 - x_3) - y_1 \mod p \end{cases}$$

- 特殊情況
 - 點 P 與無窮遠點 O 相加,其結果為點 P 本身 (P+O=P)
 - 點P與其負點-P相加,其結果為無窮遠點O(P+(-P)=O)

橢圓曲線在有限體上的算術計算(2/2)

• Point Doubling:

- 給定一個點 $P = (x_1, y_1)$
- 計算斜率 $\lambda = \frac{3x_1^2 + a}{2y_1} \mod p$
- 假設 Doubling 後的新點為 $(x_3, y_3) = 2P$,其計算方式如下

$$\begin{cases} x_3 = \lambda^2 - 2x_1 \mod p \\ y_3 = \lambda(x_1 - x_3) - y_1 \mod p \end{cases}$$

橢圓曲線加解密演算法

- 設私鑰與公鑰分別為 $k \setminus Q$,即Q = kG,其中G為基點
- 公鑰加密:
 - 選擇隨機數r,將訊息M生成密文C,該密文是一對點,即 $C = \{rG, M + rQ\}$,其中Q為公鑰
- 私鑰解密:
 - M + rQ k(rG) = M + r(kG) k(rG) = M, 其中 k 與 Q 分別為私鑰與公鑰
- 在橢圓曲線上,若已知 G 和 kG,則求 k 是非常困難的,此即為解橢圓曲線離散對數 (Elliptic Curve Discrete Logarithm Problem, ECDLP) 的難題

Security of Elliptic Curve Cryptography

- ECC 的安全性是基於解橢圓曲線離散對數的難題
 - 在給定橢圓曲線上的一點 P 和另一點 Q = kP ,已知 Q 和 P ,求解 k
- 目前已知的快速解法為 1975 年 John Pollard 所提的 Pollard's rho 演算法
- 在與因數分解難題相同的安全級別下,可以使用比 RSA 小很多的 金鑰大小

各加密演算法金鑰大小與破解困難度

• NIST SP-800-57

Symmetric Key	Diffie-Hellman, Digital	RSA	ECC
Algorithms	Signature Algorithm	(size of n in bits)	(modulus size in bits)
80	L = 1024 $N = 160$	1024	160–223
112	L = 2048 $N = 224$	2048	224–255
128	L = 3072 $N = 256$	3072	256–383
192	L = 7680 $N = 384$	7680	384–511
256	L = 15,360 N = 512	15,360	512+

Note: L = size of public key, N = size of private key.

總結 ECC 的優勢

- •安全性更高
 - 160 位元的 ECC 與 1024 位元的 RSA 有相同的安全强度
- 處理速度更快
 - 在計算速度上, ECC 比 RSA 快得多
- 頻寬要求更低
- 儲存空間更小
 - ECC 的密鑰大小參數,與 RSA 相比要小得多