

Global Constraints in Or-Tools

Some Global Constraints in Or-Tools

Let's see the signature for some global constraints in or-tools:

x refers always to a list of variables (or expressions)

- ALLDIFFERENT(X) ←→ slv.AllDifferent(X)
- ALLDIFFERENTEXCEPT(X) ←→ slv.AllDifferentExcept(X, v)
 - v is the escape value
- DISTRIBUTE(X, V, C) ←→ slv.Distribute(X, V, C)
 - v is the list of the values to constrain/count
 - f c is a list with the cardinality variables for the values in f v
- COUNT(X, V, C) \longleftrightarrow slv.Count(X, v, c)
 - f v is the value to count, f c is either a cardinality variable or a value
- ATMOST(X) ←→ slv.AtMost(X, v, u)
 - v is the value to limit, u the maximum number of occurrences

Some Global Constraints in Or-Tools

Let's see the signature for some global constraints in or-tools:

x refers always to a list of variables (or expressions)

- MIN(z, X) ←→ slv.Min(X)
 - z is implicit (slv.Min returns an expression object)
- $MAX(z,X) \longleftrightarrow slv.Max(X)$
 - **z** is implicit (same as above)
- $SUM(z, X) \longleftrightarrow slv.Sum(X)$
 - z is implicit (same as above)
- ELEMENT(z, V, x) ←→ var.IndexOf(V)
 - var corresponds to x (i.e. the index)
 - v is the list to be indexed
 - **z** is implicit (same as above)

Constraint Systems

Lab 5 - Improving a Model

A data center hosts servers running a number of Virtual Machines

A data center hosts servers running a number of Virtual Machines

About the servers:

- There is a finite number of servers n_s
- Each server has a finite number of cores n_c
- All servers are identical

About the Virtual Machines:

- Each Virtual Machine i can run on a single server
- **Each VM requires exclusive access to a number of cores** c_i
- The VMs are grouped in services
- VMs within the same service should run on different servers.

A data center hosts servers running a number of Virtual Machines

Goal:

- Pack the VMs on the smallest possible number of servers
 - This is called server consolidation
 - It's a common technique to reduce power consumption
- Build a CP model for this server consolidation problem.
 - The start-kit contains instances + a basic working model
 - Try to improve the model as much as possible!
 - Use global constraints, break symmetries...
 - ...Add bounds and redundant constraints
 - Only one rule: do not change the search strategy

It is possible to solve all instances in less than 30 seconds

The provided model is given by:

min
$$z = \sum_{j=0}^{n_s-1} (u_j > 0)$$

subject to: $u_j = \sum_{i=0}^{n_{vm}-1} r_i(x_i = j)$ $\forall j = 0..n_s - 1$
 $u_j \le n_c$ $\forall j = 0..n_s - 1$
 $x_i \ne x_j$ $\forall i, j = 0..n_{vm} - 1 : i < j, s_i = s_j$
 $x_i \in \{0..n_s - 1\}$ $\forall i = 0..n_{vm} - 1$
 $u_j \in \{0..n_c\}$ $\forall j = 0..n_s - 1$

- n_{vm} is the number of VMs, $x_i = j$ iff VM i is assigned to server j
- u_i is a variable/expression representing the core usage on server j
- s_i is the service for VM i, r_i the required number of cores