Vi tích phân 1: Chương 5: Lý thuyết chuỗi

Anh Ha Le

University of Sciences

Ngày 5 tháng 4 năm 2023

Vi tích phân 1: Chương 5: Lý thuyết chuỗi

Anh Ha Le

University of Sciences

Ngày 5 tháng 4 năm 2023

Outline

- Dãy số thực
 - Định nghĩa dãy số
 - Hội tụ của dãy số
 - Dãy đơn điệu, dãy bị chặn
- Chuỗi số
 - Các dấu hiệu hội tụ
 - Chuỗi đan dấu
 - Hội tụ tuyệt đối
- Chuỗi lũy thừa

Định nghĩa (Dãy số)

Dãy số có thể được nghĩa là một tập hợp những số được viết như sau:

$$a_1, a_2, a_3, \cdots, a_n, \cdots$$

 a_1 được gọi là số đầu tiên của dãy số, a_2 là số thứ 2 của dãy số, a_n là số thư n của dãy số.

Với mỗi số nguyên dương n thì có tương ứng một số thực a_n nên dãy số có thể gọi là hàm số từ số nguyên dương vào số thực.

Một dãy $\{a_1, a_2, \cdots, a_n, \cdots\}$ cũng thường ký hiệu bởi:

$$\{a_n\}$$
 hay $\{a_n\}_{n=1}^{\infty}$

Ví dụ: Một dãy $\{a_n\}$ có thể được biểu diễn thành 3 dạng sau:

a.
$$\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$$
, $a_n = \frac{n}{n+1}$, $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots\right\}$

b.
$$\{\sqrt{n-3}\}_{n=3}^{\infty}$$
, $a_n = \sqrt{n-3}, n \ge 3$, $\{0, 1, \sqrt{2}, \sqrt{3}, \cdots, \sqrt{n-3}, \cdots\}$

Ví dụ: Tìm dạy tổng quát của dãy số sau:

$$\left\{\frac{3}{5}, -\frac{4}{25}, \frac{5}{125}, -\frac{6}{625}, \frac{7}{3215}, \cdots\right\}$$

Ta trở lại với ví dụ đầu tiên $a_n=\frac{n}{n+1}$, ta thấy rằng a_n sẽ sắp xĩ tới 1 khi n lớn. Ta có

$$1 - a_n = 1 - \frac{n}{n+1} = \frac{1}{n+1}$$

là rất nhỏ khi n đủ lớn. Ta có thể viết rằng

$$\lim_{n \to \infty} \frac{n}{n+1} = 1$$

Outline

- Dãy số thực
 - Định nghĩa dãy số
 - Hội tụ của dãy số
 - Dãy đơn điệu, dãy bị chặn
- Chuỗi số
 - Các dấu hiệu hội tụ
 - Chuỗi đan dấu
 - Hội tụ tuyệt đối
- Chuỗi lũy thừa

hay tổng quát

$$\lim_{n \to \infty} a_n = L$$

có nghĩa là a_n sắp xĩ L khi n đủ lớn.

Định nghĩa (Hội tụ dãy số)

Một dãy $\{a_n\}$ có giới hạn là L, chúng ta có thể viết

$$\lim_{n\to\infty} a_n = L$$
 hay $a_n \to L$ khi $n\to\infty$

nếu a_n gần giá trị L khi n đủ lớn. Nếu $\lim a_n$ tồn tại thì ta nói dãy số hội tụ. Nếu $\lim_{n \to \infty} a_n$ không tồn tại thì ta nói dãy số phân kỳ.

Định nghĩa (Hội tụ dãy số, (ε, N))

Một dãy $\{a_n\}$ có giới hạn là L, chúng ta có thể viết

$$\lim_{n o\infty}a_n=L$$
 hay $a_n o L$ khi $n o\infty$

nếu với mọi $\varepsilon>0$, tồn tại so nguyên dương N sao cho

$$|a_n - L| \le \varepsilon$$
 với mọi $n > N$

Định Lý

Nếu
$$\lim_{x\to\infty}f(x)=L$$
 thì $a_n=f(n)$ khi n là số nguyên dương thì $\lim_{n\to\infty}a_n=L$

$$\text{V\'i d}\underline{\text{u}}\text{: Ta c\'o}\lim_{x\to\infty}\frac{1}{x^r}=0 \text{ v\'oi } r>0 \text{ thì } \lim_{n\to\infty}\frac{1}{n^r}=0 \text{ khi } r>0$$

Định nghĩa (Hội tụ về vô cùng)

 $\lim_{n \to \infty} a_n = \infty$ nghĩa là khi với mọi số thực M>0 thì tồn tại số nguyên dương N sao cho

$$a_n > M$$
 với moi $n > N$

Nếu dãy $\{a_n\}$ và $\{b_n\}$ là những dãy hội tụ và c là hằng số thì

•
$$\lim_{n \to \infty} (a_n \pm b_n) = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n$$

$$\bullet \lim_{n \to \infty} (ca_n) = c \lim_{n \to \infty} a_n$$

•
$$\lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} a_n \lim_{n \to \infty} b_n$$

$$\bullet \ \lim_{n \to \infty} (\frac{a_n}{b_n}) = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} \ \text{n\'eu} \ \lim_{n \to \infty} b_n \neq 0$$

$$\bullet \ \lim_{n \to \infty} a_n^p = [\lim_{n \to \infty} a_n]^p$$
 nếu $p > 0$ và $a_n > 0$

• Nếu
$$a_n \leq b_n \leq c_n$$
 với $n \geq n_0$, và $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$ thì $\lim_{n \to \infty} b_n = L$

Định Lý

$$N\acute{e}u \lim_{n\to\infty} |a_n| = 0 \ thì \lim_{n\to\infty} a_n = 0$$

Một số giới hạn cơ bản

- Với r>0 thì $\lim_{n\to\infty}\frac{1}{n^r}=0$
- Với r>0, $\lim_{n\to\infty} \sqrt[n]{r}=1$
- $\bullet \lim_{n \to \infty} \sqrt[n]{n} = 1$
- Với r>0 và α cho trước tùy ý thì $\lim_{n\to\infty} \frac{n^{\alpha}}{(1+r)^n}=0$
- • Với r cho trước thỏa |r| < 1 thì $\lim_{n \to \infty} r^n = 0$

$$\text{Ví dụ: Tìm } \lim_{n \to \infty} \frac{n}{n+1}, \lim_{n \to \infty} \frac{n}{\sqrt{10+n}}, \lim_{n \to \infty} \frac{\ln n}{n}$$

Ví dụ: Khảo sát sự hội tụ của dãy
$$a_n=(-1)^n$$
, $a_n=\frac{(-1)^n}{n}$

Định Lý

Nếu $\lim_{n o \infty} a_n = L$ và hàm số f liên tục tại L thì

$$\lim_{n \to \infty} f(a_n) = f(L)$$

Ví dụ: Tìm $\lim_{n\to\infty}\sin(\frac{\pi}{n})$.

Ví dụ: Khảo sát sự hội tụ của dãy $a_n = \frac{n!}{n^n}$.

Ví dụ: Khảo sát sự hội tụ của dãy $a_n = r^n$.

 $\mbox{V{\it i} d} \mbox{u: T{\it i}} \mbox{m} \lim_{n \to \infty} \sqrt[n]{r} \mbox{ v{\it \'e}} \mbox{i} \ r > 0.$

Ví dụ: Tìm $\lim_{n\to\infty} \sqrt[n]{n}$ với r>0.

extstyle ext

Outline

- 1 Dãy số thực
 - Định nghĩa dãy số
 - Hội tụ của dãy số
 - Dãy đơn điệu, dãy bị chặn
- Chuỗi số
 - Các dấu hiệu hội tụ
 - Chuỗi đan dấu
 - Hội tụ tuyệt đối
- Chuỗi lũy thừa

Dãy đơn điệu

Định nghĩa (Dãy đơn điệu)

Một dãy số $\{a_n\}$ được gọi là tăng nếu $a_{n+1}>a_n$ với mọi $n\geq 1$, nghĩa là $a_1< a_2< a_3< \cdots < a_n< a_{n+1}< \cdots$. Một dãy số $\{a_n\}$ được gọi là giảm nếu $a_{n+1}< a_n$ với mọi $n\geq 1$. Một dãy được gọi là đơn điệu nếu nó tăng hoặc giảm

Ví dụ: Dãy số
$$\left\{\frac{n}{n+1}\right\}$$
 là dãy tăng. Ví dụ: Dãy số $\left\{\frac{3}{n+5}\right\}$ là dãy giảm. Ví dụ: Dãy số $a_n=\frac{n}{n^2+1}$ là dãy giảm.

Dãy bị chặn

Định nghĩa (Dãy bị chặn)

Một dãy số $\{a_n\}$ bị chặn trên nếu tồn tại số thực M sao cho

$$a_n \leq M$$
 với mọi $n \geq 1$

Một dãy số $\{a_n\}$ bị chặn dưới nếu tồn tại số thực m sao cho

$$a_n \ge m$$
 với mọi $n \ge 1$

Nếu một dãy $\{a_n\}$ số bị chặn trên và bị chặn dưới thì $\{a_n\}$ được gọi dãy bị chặn.

Ví dụ: Dãy $a_n=\frac{n}{n+1}$ bị trên bởi 1 và bị chặn dưới bởi 0 và hội tụ về 1. Ví dụ: Dãy $a_n=(-1)^n$ bị chặn trên và chặn dưới $-1\leq a_n\leq 1$ với mọi n nhưng a_n phân kỳ

Định Lý

Mọi dãy bị chặn, đơn điệu thì hội tụ

Ví dụ: Xét dãy số sau:

$$a_1=2, \ a_{n+1}=rac{1}{2}(a_n+6)$$
 với $n=1,2,3,\cdots$

Dãy số trên bị chặn trên và tăng

Định Lý (Sự bảo toàn thứ tự qua giới hạn)

Nếu hai dãy $\{a_n\}$ và $\{b_n\}$ là hai dãy hội tụ và tồn tại $n_0>0$ sao cho $a_n\leq b_n$ với mọi $n\geq n_0$ thì $\lim_{n\to\infty}a_n\leq \lim_{n\to\infty}b_n$

Định Lý (Định lý kẹp)

Nếu có $n_0\in \mathbf{N}$ sao cho với mọi $n\geq n_0$, $a_n\leq b_n\leq c_n\geq$ và $\lim_{n\to\infty}a_n=\lim_{n\to\infty}c_n=L$ thì $\lim_{n\to\infty}b_n=L$

Ví dụ: Tìm
$$\lim_{n\to\infty} \frac{1}{n^2+1}$$

Định nghĩa (Chuỗi số)

Cho dãy số $\{a_n\}_{n=1}^{\infty}$, với mỗi $n\geq 1$, xét tổng hữu hạn

$$s_n = \sum_{k=1}^n a_n \tag{2.1}$$

Các tổng s_n gọi là tổng riêng phần. Dãy $\{s_n\}_{n=1}^{\infty}$ được gọi là chuỗi số và được ký hiệu:

$$\sum_{n=1}^{\infty} a_n \text{ hay } a_1 + a_2 + a_2 + \dots + a_n + \dots.$$

Nếu dãy $\{s_n\}$ hội tụ và $\lim_{n \to \infty} s_n = s$ tồn tại thì chuỗi $\sum_{n=1}^\infty a_n$ được gọi là

hội tụ và có thể

$$\sum_{n=1}^{\infty} a_n = s = \lim_{s \to \infty} s_n$$

Định nghĩa

Nếu $\{s_n\}$ phân kỳ thì chuỗi được gọi phân kỳ.

 $extsf{V\'i}$ dụ: Cho dãy $a_n=rac{1}{2^n}$ với mọi $n\geq 1$, vậy

$$s_n = \sum_{k=1}^n a_n = \sum_{k=1}^n \frac{1}{2^k} = \frac{1}{2} \sum_{k=1}^n \frac{1}{2^{k-1}} = \frac{1}{2} \frac{1 - \frac{1}{2^n}}{1 - \frac{1}{2}} = 1 - \frac{1}{2^n}$$

Vậy

$$\lim_{n \to \infty} s_n = 1$$

Và chuỗi $\sum_{n=1}^{\infty} a_n$ hội tụ và $\sum_{n=1}^{\infty} a_n = 1$

Ví dụ: Cho $a \neq 0$. Ta xét chuỗi hình học: $\sum_{n=1}^{\infty} ar^{n-1}$.

- Nếu
$$|r|=1$$
, $s_n=\sum_{k=1}^n a=na$. Vì $\lim_{n\to\infty} s_n$ không tồn tại nên chuỗi phân kỳ.

- Nếu
$$|r|<1$$
, $s_n=\sum_{k=1}^n ar^{k-1}=a\frac{1-r^n}{1-r}$, vì $\lim_{n o\infty} r^n=0$ nên

$$\lim_{n \to \infty} s_n = \frac{a}{1-r}$$
. Vậy chuỗi $\sum_{n=1}^{\infty} ar^{n-1} = \frac{1}{1-r}$.

- Nếu
$$|r|>1$$
, $s_n=\sum_{k=1}^n ar^{k-1}=arac{1-r^n}{1-r}$, vì $\lim_{n o\infty} r^n=\infty$ nên

$$\lim_{n \to \infty} s_n = \infty$$
. Vậy chuỗi $\sum_{n=1}^{\infty} ar^{n-1}$ phân kỳ.

Ví dụ: Tìm tổng của chuỗi sau:

$$5 - \frac{10}{3} + \frac{20}{9} - \frac{40}{27} + \cdots$$

Ví dụ: Chuỗi số $\sum_{n=1}^{\infty} 2^{2n} 3^{n-1}$ hội tụ hay phân kỳ.

Ví dụ: Viết số $2.3\overline{17} = 2.31717171717\cdots$ dưới dạng số thập phân.

Ví dụ: Tìm tổng của chuỗi số $\sum_{n=0} x^n$ với |x| < 1.

Ví dụ: Chứng minh chuỗi số $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.

Ví dụ: Chứng minh chuỗi điều hòa

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots$$

Hint: $s_{2^n} > 1 + \frac{n}{2}$

Định Lý

Nếu chuỗi
$$\sum_{n=1}^{\infty} a_n$$
 hội tụ thì $\lim_{n \to \infty} a_n = 0$.

Remark

Nếu
$$\lim_{n \to \infty} a_n = 0$$
 thì không kết luận được rằng $\sum_{n=1} a_n$ hội tụ

Định Lý

Nếu
$$\lim_{n \to \infty} a_n$$
 không tồn tại hoặc $\lim_{n \to \infty} a_n \neq 0$ thì $\sum_{n=1}^{\infty} a_n$ phân kỳ

Ví dụ: : Chứng minh
$$\sum_{n=1}^{\infty} \frac{n^2}{5n^2+4}$$
 phân kỳ.

Định Lý

Cho hai chuỗi $\sum_{n=0}^{\infty} a_n$ và $\sum_{n=0}^{\infty} b_n$ hội tụ thì chuỗi $\sum_{n=0}^{\infty} ca_n$ (c là hằng số),

$$\sum_{n=1}^{\infty} (a_n \pm b_n)$$

(i)
$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$$
, (ii) $\sum_{n=1}^{\infty} (a_n \pm b_n) = \sum_{n=1}^{\infty} a_n \pm \sum_{n=1}^{\infty} b_n$

Ví dụ: Tìm tổng
$$\sum_{1}^{\infty} \left(\frac{3}{n(n+1)} + \frac{1}{2^n} \right)$$

Remark

Nếu $\sum_{n=1}^{\infty}a_n$ hội tụ và $\sum_{n=1}^{\infty}b_n$ phân kỳ thì $\sum_{n=1}^{\infty}(a_n+b_n)$ phân kỳ.

Nếu $\sum_{n=0}^{\infty} a_n$ phân kỳ và $\sum_{n=0}^{\infty} b_n$ phân kỳ thì $\sum_{n=0}^{\infty} (a_n + b_n)$ không có kết luận.

Outline

- 1 Dãy số thực
 - Định nghĩa dãy số
 - Hội tụ của dãy số
 - Dãy đơn điệu, dãy bị chặn
- Chuỗi số
 - Các dấu hiệu hội tụ
 - Chuỗi đan dấu
 - Hội tụ tuyệt đối
- Chuỗi lũy thừa

Tiêu chuẩn so sánh (bất đẳng thức)

Cho hai chuỗi $\sum_{n=1}^\infty a_n$ và $\sum_{n=1}^\infty b_n$ thỏa: $0 \le a_n \le b_n$ với mọi $n \ge 1$ thì

- (i) Nếu $\sum_{n=1}^{\infty} b_n$ hội tụ thì $\sum_{n=1}^{\infty} a_n$ hội tụ
- (ii) Nếu $\sum_{n=1}^{\infty} a_n$ phân kỳ thì $\sum_{n=1}^{\infty} b_n$ phân kỳ

Ví dụ: Chứng minh sự hội tụ của chuỗi $\sum_{n=1}^{\infty} \frac{1}{2^n+1}$.

Ví dụ: Xác định chuỗi $\sum_{n=1}^{\infty} \frac{5}{2n^2+4n+3}$ hội tụ hay phân kỳ

Tiêu chuẩn so sánh (giới hạn)

Cho hai chuỗi $\sum_{n=1}^\infty a_n$ và $\sum_{n=1}^\infty b_n$ với $a_n,b_n\geq 0$ với mọi $n\geq 1$. Nếu $\lim_{n\to\infty} \frac{a_n}{b_n}=c$

- (i) Nếu $c\in(0,\infty)$ thì $\sum_{n=1}^\infty a_n$ và $\sum_{n=1}^\infty b_n$ cùng hội tụ hay cùng phân kỳ.
- (ii) Nếu c=0 thì nếu $\sum_{n=1}^{\infty}b_n$ hội tụ thì $\sum_{n=1}^{\infty}a_n$ hội tụ
- (iii) Nếu $c=\infty$ thì nếu $\sum_{n=1}^\infty b_n$ hội tụ thì $\sum_{n=1}^\infty b_n$ hội tụ

Ví dụ: Chứng minh sự hội tụ của chuỗi $\sum_{n=1}^{\infty} \frac{1}{2^n-11}$.

Ví dụ: Chuỗi $\sum_{n=0}^{\infty} \frac{2n^2 + 3n}{\sqrt{4 + n^5}}$ hội tụ hay phân kỳ.

Định Lý

Cho chuỗi $\sum_{n=1}^{\infty} \frac{1}{n^p}$ với số thực p

- (i) Nếu p > 1 thì chuỗi hội tụ
- (ii) Nếu $p \le 1$ thì chuỗi phân kỳ

Outline

- 1 Dãy số thực
 - Định nghĩa dãy số
 - Hội tụ của dãy số
 - Dãy đơn điệu, dãy bị chặn
- Chuỗi số
 - Các dấu hiệu hội tụ
 - Chuỗi đan dấu
 - Hội tụ tuyệt đối
- Chuỗi lũy thừa

Chuỗi đan dấu

Cho dãy số $\{a_n\}$ và $a_n \geq 0$ với mọi $n \geq 1$. Khi đó chuỗi $\sum_{n=1}^{\infty} (-1)^n a_n$

Định nghĩa (Chuỗi Leinitz)

Chuỗi đan dấu
$$\sum_{n=1}^{\infty} (-1)^n a_n$$
 hay $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ được gọi là chuỗi Leinitz

nêu:

- (i) $\lim_{n\to\infty} a_n = 0$
- (ii) $a_{n+1} \le a_n$ với mọi $n \ge 1$ (dãy $\{a_n\}$ là dãy giảm)

Định Lý

Chuỗi Leinitz hội tụ và có tổng s thỏa $|s| \leq a$ với $|a_1|$.

Ví dụ: Chuỗi đan dấu điều hòa $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$

(i)
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{1}{n} = 0$$

$$\text{(ii)} \ a_{n+1} \geq a_n \ \text{vi} \ \frac{1}{n+1} \leq \frac{1}{n}$$

Nên chuỗi đan dấu $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$ hội tụ.

Ví dụ: Chuỗi đan dấu $\sum_{n=1}^{\infty} \frac{(-1)^n 3n}{4n-1}$ hội tụ hay phân kỳ.

Ví dụ: Chuỗi $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{n^3+1}$ hội tụ hay phân kỳ.

Outline

- 1 Dãy số thực
 - Định nghĩa dãy số
 - Hội tụ của dãy số
 - Dãy đơn điệu, dãy bị chặr
- Chuỗi số
 - Các dấu hiệu hội tụ
 - Chuỗi đan dấu
 - Hội tụ tuyệt đối
- Chuỗi lũy thừa

Chuỗi tuyệt đối

Cho chuỗi $\sum a_n$, chuỗi sau đây

$$\sum_{n=1}^{\infty} |a_n| = |a_1| + |a_2| + \dots + |a_n| + \dots$$

được gọi là chuỗi tuyệt đối (các phần tử được lấy giá trị tuyệt đối).

Hội tụ tuyệt đối

Một chuỗi $\sum_{n=1} a_n$ được gọi là hội tụ tuyệt đối nếu chuỗi tuyệt đối $\sum_{n=1} |a_n|$ hôi tu.

Ví dụ: Chuỗi $\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{n^2}$ hội tụ tuyệt đối.

Ví dụ: Chuỗi đan dấu điều hòa $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ không hội tụ tuyệt đối.

Hội tụ có điều kiện

Chuỗi $\sum_{n=1}^{\infty}a_n$ được gọi là hội tụ có điều kiện nếu $\sum_{n=1}^{\infty}a_n$ hội tụ và không hôi tu tuyết đối.

Ví dụ: Chuỗi $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ hội tụ có điều kiện

Định lý

Nếu chuỗi $\sum_{n=1}^{\infty} a_n$ hội tụ tuyệt đối thì nó hội tụ

Ví dụ: Chuỗi $\sum_{n=1}^{\infty} \frac{\cos n}{n^2}$ hội tụ hay phân kỳ.

Ví dụ: Chuỗi $\sum_{n=1}^{\infty} \frac{(-1)^n}{2^n}$ hội tụ hay phân kỳ.

Định lý (Tiêu chuẩn d'Alembert)

- (i) Nếu $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$ thì chuỗi $\sum_{n=1}^\infty a_n$ hội tụ tuyệt đối
- (ii) Nếu $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$ hoặc $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty a_n$ thì chuỗi $\sum_{n=1}^{\infty}$ phân kỳ.
- (iii) $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$ thì không có kết luận gì về sự hội tụ hay phân kỳ của chuỗi $\sum_{n=1}^\infty a_n$

Remark

Phần (iii) của định lý trên rằng $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, không đưa tới kết luận nào.

Remark

Cho ví dụ chuỗi $\sum_{n=1}^{\infty} \frac{1}{n^2}$ hội tụ, ta có

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \frac{1}{\left(1 + \frac{1}{n}\right)^2} \to 1 \text{ khi } n \to \infty$$

Trong khi đó chuỗi phân kỳ $\sum_{n=1}^{\infty} \frac{1}{n}$ có

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{\frac{1}{(n+1)}}{\frac{1}{n}} = \frac{1}{1+\frac{1}{n}} \to 1 \text{ khi } n \to \infty$$

Ví dụ: Chuỗi $\sum_{n=0}^{\infty} (-1)^n \frac{n^3}{3^n}$ hội tụ tuyệt đối.

Ví dụ: Chuỗi $\sum_{n=1}^{\infty} \frac{n^n}{n!}$ phân kỳ.

 V í dụ: Kiểm tra sự hội tụ của chuỗi $\sum a_n$ với

Định lý (Tiêu chuẩn Cauchy)

- (i) Nếu $\lim_{n \to \infty} \sqrt[n]{|a_n|} = L < 1$ thì chuỗi $\sum_{n=1}^\infty a_n$ hội tụ tuyệt đối
- (ii) Nếu $\lim_{n\to\infty}\sqrt[n]{|a_n|}=L>1$ hoặc $\lim_{n\to\infty}\sqrt[n]{|a_n|}=\infty$ thì chuỗi $\sum_{n=1}^\infty$ phân kỳ.
- (iii) $\lim_{n \to \infty} \sqrt[n]{|a_n|} = 1$ thì không có kết luận gì về sự hội tụ hay phân kỳ của chuỗi $\sum_{n=1}^\infty a_n$

Ví dụ: Kiểm tra sự hội tụ của chuỗi $\sum_{n=1}^{\infty} \left(\frac{2n+3}{3n+2}\right)^n$

Định nghĩa chuỗi lũy thừa

Chuỗi lũy thừa là chuỗi có dang

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \cdots$$

trong đó x là biến và c_n 's là hằng số và là hệ số của chuỗi. Một chuỗi lũy thừa tống quát có dạng là

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \cdots$$

gọi là chuỗi lũy thừa tâm a hay chuỗi lũy thừa quanh a

 $orall \mathbf{V} \mathbf{I} \ \mathrm{d} \mathbf{u}$: Tìm x để chuỗi lũy thừa $\sum n! x^n$ hội tụ.

Ví dụ: Tìm x để chuỗi lũy thừa $\sum_{n=0}^{\infty} \frac{(x-3)^n}{n}$ hội tụ.

Ví dụ: Tìm miền hội tụ của hàm Bessel $J(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$

Định lý

Cho chuỗi lũy thừa $\sum_{n=0}^{\infty} c_n (x-a)^n$, chỉ có 3 trường hợp sau:

- (i) Chuỗi chỉ hội tụ tại x=a
- (ii) Chuỗi hội tụ với mọi x
- (iii) Có một số dương R sao cho chuỗi hội tụ khi |x-a| < R va phân kỳ khi |x-a| > R

Bán kính hội tụ

R trong phần (iii) được gọi là bán kính hội tụ của chuỗi lũy thừa. Theo qui ước, R=0 trong phần (i), $R=\infty$ trong phần (ii)

Miền hội tụ

Miền hội tụ của chuỗi lũy thừa là miền chứa những giá trị x mà chuỗi hội tụ. Trong phần (i) thì Miền hội tụ là điểm a, trong phần (ii) thì miền hội tụ là miền $(-\infty,\infty)=\mathbb{R}$, trong phân (iii), miền hội tụ là $\{x\in\mathbb{R}:|x-a|\leq R\}=\{x\in\mathbb{R}:a-R< x< a+R\}=(a-R,a+R),$ nếu |x-a|=R, chúng ta không đưa ra bất kỳ kết luận nào. Vậy phần (iii) thì có 4 khả năng miền hội là $(a-R,a+R),\quad [a-R,a+R),\quad [a-R,a+R]$

convergence for
$$|x-a| < R$$

$$a - R$$

Ví dụ: Tìm bán kính hội tụ và miền hội tụ của chuỗi lũy thừa

$$\sum_{n=0}^{\infty} \frac{(-3)^n x^n}{\sqrt{n+1}}.$$

Ví dụ: Tìm bán kính hội tụ và miền hội tụ của chuỗi lũy thừa

$$\sum_{n=0}^{\infty} \frac{(5x-4)^n}{\sqrt{n^3}}$$

Ví dụ: Tìm bán kính hội tụ và miền hội tụ của chuỗi lũy thừa

$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{n!(n+1)! 2^{2n+1}}$$