

Diplomski studij

Informacijska i komunikacijska tehnologija

Telekomunikacije i informatika

Računarstvo

Programsko inženjerstvo i informacijski sustavi

Računarska znanost

Raspodijeljeni sustavi

Pitanja za provjeru znanja 1. blok predavanja

Napomena: Preporučena literatura su bilješke s predavanja.

Zadatak 1.1	Objasnite pojam skalabilnosti raspodijeljenog sustava.
Zadatak 1.2	Objasnite pojam migracijske transparentnosti raspodijeljenog sustava.
Zadatak 1.3	Definirajte Internet stvari.
Zadatak 1.4	Opišite okruženje Interneta stvari. Na jednom primjeru usluge navedite ulogu svakog dionika u ostvarenju usluge.

- 1.1 Skalabilnost omogucava povecavanje sustava prilokom pristizanja vise zahtijeva, to se moze raditi automatski ili rucno, replikama imamo problem odrzavanja konzistentnosti između kopije i orginala, visetrukostcu raspodjeljena baza podatataka.
- koliko ih skaliramo
- na kojem prostoru (nije isto lokalno ili mrezno)
- kako komuniciraju
- 1.2 prikrivanje promjene lokacija, ako promijjenimo lokaciju to ne onemogucava pristup sredstvu niti mijenja taj nacin
- 1.3 povezivanje uredaja na internet, fizickih i virtualnim
- 1.4 senzor moze opazati okolinu, aktuator izvrsiti odredene funkcije, oni se spajaju na internet i imaju svoj id. Njima upravlja ili salju podatke svome korisniku, primjer je mikrokontroler esp 8266 koji se moze spojiti na internet i preko kojeg se mogu dobivati podaci te slati naredbe

Zadatak 2.1

Korisnik nakon ispunjavanja obrasca na Web-u odabire opciju *Submit*, čime pošalje podatke Web-poslužitelju na adresu *www.tel.fer.hr/obrazac/accept* korištenjem protokola HTTP verzije 1.1. Kojim se HTTP zahtjevom šalju podaci

poslužitelju i kako je definiran prvi redak zahtjeva?

Zadatak 2.2

Objasnite opći format poruka protokola HTTP. Navedite kako glasi potpun i apsolutan URI koji identificira resurs zatražen u zahtjevu, ako prva 2 retka HTTP zahtjeva sadrže sljedeće podatke:

GET /predmet/rassus HTTP/1.1

Host: www.fer.hr

Zadatak

Objasnite razliku između web-aplikacija temeljenih na CGI (Common Gateway

2.3 Interface) i poslužiteljskim skriptama.

Zadatak

Navedite dva osnovna načina rada protokola SOAP i objasnite kako se poruka

SOAP šalje pomoću protokola HTTP.

Zadatak

Objasnite sadržaj apstraktnog i konkretnog opisa u strukturi dokumenta WSDL.

2.5

2.4

Zadatak 2.6 Objasnite svojstvo slabe povezanosti usluga kod uslužno orijentirane

arhitekture.

2.1 POST www.tel.fer ... HTTP/1.1

2.2 apsolutni uri --> www.fer.hr/predmet/rassus

Format

Request GET /path HTTP/1.0 --> GET - metoda, /path - putanja, HTTP/x.x - verzija Response HTTP/1.0 200 OK , HTTP/1.0 -verzija, 200 OK - status kod jos sadrze header i body

- 2.3 CGI kod svakog zahtijeva pokrece proces, podaci se razmijenjuju preko varijabli i tokova (Bash i Pearl) Server script generiranje htmla iz skripte (PHP, ASP, Ruby on Rails)
- 2.4 remote procedure call (RPC) i razmjena dokumenata/poruka

2.5 Apstraktan -

types (vrste podataka neovisne o platformi i jeziku)
message (ulazne i izlazne poruke kao parametri),
operation (operacija na uzluzi, sastoji se od ulaznih, izlaznih i iznimnih poruka)
portType (koristi poruke za opisivanje operacija)

konkretni -

binding (konkretna impelmentacija povezana s operacijama u apstraktnom opisu) service (uri na kojem je usluga)

2.6 jedna usluga ne ovisi o tehnologiji implementacije druge

Zadatak Objasnite razliku između sinkrone i asinkrone komunikacije. 3.1 Zadatak Navedite obilježja komunikacije socketom UDP. 3.2 Zadatak Skicirajte tijek komunikacije između klijenta i poslužitelja te objasnite odgođeni sinkroni poziv udaljene procedure RPC (Remote Procedure Call). 3.3 Zadatak Skicirajte model pozivanja udaljene metode Java RMI (Remote Method Invocation). Navedite korake u komunikaciji potrebne da bi klijent pozvao 3.4 metodu dostupnu na poslužitelju, uz pretpostavku da je klasa stub već instalirana na klijentskoj strani.

3.1 Sinkrona komunikacija - posiljatelj je blokiran dok primatelj ne odgovori, asinkrona - nakon slanja poruke moze ju ponoviti jer nije blokiran

3.2
Za razliku od TCP-a, nema provjere paketa, sluzi za prijenos videa pa gubitci se mogu tolerirati do neke granice nespojni prenosi datagrame asinkrona komuinkacija tranzijetna stanja

3.3

- omogucuje procesima pozivanje i izvodenje procedure na udaljenom racunalu

3.4 sucelje udaljenog implementira stup u adresnom prostoru klijentskog racunala klase stub i skeleton generiraju se iz implementacije a ne udaljenog objekta

Zadatak

4.1

Objasnite za koje je od sljedeća tri svojstva raspodijeljenih sustava značajna komunikacijska složenost algoritama: a) replikacijska transparentnost b) skalabilnost c) otvorenost.

Zadatak 4.2 Na temelju pri $\stackrel{\circ}{m}$ jera procesa sa slike **objasnite** jesu li sljedeći parovi događaja uzročno povezani ili nisu? a) e_1^3 i e_2^2 i b) e_2^2 i e_1^5 .

Zadatak 4.3 Objasnite model komunikacijskog kanala koji se temelji na uzročnoj slijednosti.

Zadatak 4.4 Objasnite zašto za sljedeći primjer vrijedi CO ili vrijedi non-CO?

4.1 C je valjda, replikacijska transparetnost znaci da ne znas kojoj replici pristupas, skalabilnost povecanje resursa, jedino otvorenost izgleda kao mjesto koje treba

4.2 ?

4.3 osigurava da su slanje 2 poruka istom primatelju dodu u onom redoslijedu u kojem su poslane

4.4
Prema slici desno rekao bih
da je to non-Co jer imamo
krizanje linija i s^2->s^3
jer na p1imamo r^2 -> r^3
sto god to znacilo
ili funkcioniralo

Zadatak 5.1 Skicirajte i objasnite primjer komunikacije porukama između dva procesa/objekta (primatelja i pošiljatelja). Kakva je komunikacija porukama s obzirom na vremensku ovisnost primatelja i pošiljatelja?

Zadatak 5.2 Objasnite sličnosti i razlike u obilježjima komunikacije između dva komunikacijska modela podržana s JMS (*Java Messaging Service*)?

Zadatak 5.3 Navedite i objasnite operacije koje implementira programska infrastruktura dijeljenog podatkovnog prostora.

Zadatak 5.4 Raspodijeljeni sustav objavi-pretplati, u kojem se koristi **algoritam preplavljivanja obavijestima**, sastoji se od 3 posrednika i 3 klijenta kako je prikazano slikom. Svaki klijent u sustavu ima ulogu pretplatnika i objavljivača. Odgovorite na sljedeća pitanja:

- a) U trenutku t1 klijent 1 generira pretplatu
 s1={G=Zagreb, T<15.5,P>0.98}. Napišite oznake svih posrednika na kojima se pohranjuje ova pretplata.
- b) U trenutku t2>t1 **klijent 2** generira pretplatu **s2=s1**. Napišite oznake svih posrednika na kojima se pohranjuje ova pretplata.
- c) U trenutku t3>t2 klijent 3 generira obavijest p1={G=Zagreb, T=2.2,P=1.01}. Objasnite točan redoslijed kojim će se ova obavijest proširiti sustavom i biti isporučena zainteresiranim klijentima.
- 4.1 akcija je ili sinkrona ili asinkrona, pull push, konekcijska bezkonekcijska, perzistentna, tranzijentna
- 4.2

Point-to-Point - komunikacija porukama, jedna poruka za jedno odrediste

klijent s salje prouku m sa s.send(m), sprema se u rep, ako postoji poruka brise se iz repa i salje

sa r.recieve()

pošiljatelj

računalo A

proces a

operacijski sustav A

poruka

poruka

poruka

Publish/subscribe - objavi- pretplati - poruka za skup pretplatnika izvor objavljuje prouku sa p.publish(m)

izvoi objavijuje prodku sa p.publisri(111)

isporucuje se poruka preko TopicSubscribera s u MessageListerner I sa naredbom I.onMessage(m)

Zadatak 6.1

Prikažite i objasnite korake algoritma Berkeley za usklađivanje satnih mehanizama tri računala u raspodijeljenoj okolini. Računala imaju sljedeće vrijednosti satova T(p)=03:02:00, T(q)=03:08:00 i T(c)=03:12:00. Upravitelj je treće računalo. Pretpostavite da prijenos poruke između 2 računala traje 1 minutu i da upravitelj koristi svoje lokalno vrijeme kao zajedničko pri usklađivanju satnih mehanizama.

Zadatak 6.2

Opišite postupak međusobnog isključivanja dvaju procesa (p i q) primjenom središnjeg upravljača s repom čekanja tako da nacrtate redoslijed operacija i objasnite ih. Nakon zauzimanja dijeljenog spremnika, proces provodi jednu operaciju čitanja ili pisanja nad dijeljenim spremnikom.

Zadatak 6.3

Za slijed razmjene poruka između tri računala prikazan na slici uspostavite globalni tijek vremena primjenom skalarnih oznaka logičkog vremena. Navedite i opišite trenutke u kojima se ostvaruje korekcija lokalnih satnih mehanizama.

Zadatak 6.4

Pet procesa postavljenih na različita računala u raspodijeljenoj okolini ostvaruje međusobno isključivanje primjenom prstena. Vrijeme prijenosa poruke zahtjeva i odgovora pri pristupu dijeljenom sredstvu jednako je 3 ms, vrijeme obrade poruke zahtjeva na sredstvu je 5 ms, vrijeme prijenosa *tokena* između dva susjedna procesa u prstenu je 2 ms. Kada primi *token*, proces može maksimalno jednom ostvariti pristup dijeljenom sredstvu prije nego što proslijedi *token* idućem susjedu. Naznačite navedena vremena na dijagramu. Koje je minimalno, a koje maksimalno vrijeme čekanja bilo kojeg procesa u prstenu za pristup dijeljenom sredstvu.

dijeljeno	T–Prijenos tokena, S–Spremi, R–Dohvati				
sredstvo					
p ₀			-		
p ₁					
p ₂					
p ₃					
p_4					

Zadatak 7.1 Objasnite razliku između ispada sustava i neispravnosti u sustavu.

Zadatak 7.2

Pretpostavite da grupa procesa treba postići sporazum. U slučaju da su dva procesa grupe u stanju bizantskog ispada, koji je minimalni ukupni broj procesa u grupi za postizanje sporazuma?

Zadatak 7.3 Objasnite razliku protokola *three-phase commit* u odnosu na *two-phase commit*.

Zadatak 7.4

U grupi od 4 procesa (p₁, p₂, p₃ i p₄) proces p₁ je neispravan (pretpostavite bizantski ispad). Grupa procesa želi postići sporazum o identifikatorima ostalih procesa grupe. U koracima 1 i 3 procesi međusobno razmjenjuju podatke, a u koracima 2 i 4 prikupljaju i analiziraju primljene podatke. Nacrtajte na slici podatke koje procesi razmjenjuju u koracima 1 i 3, a za korake 2 i 4 navedite podatke koje pojedini proces ima na raspolaganju radi donošenja odluke o sporazumu.

- 7.1 ispad sustava --> vise ga nije moguce koristiti neispravnost --> bug u kodu, pogreska u oblikovanju
- 7.3 three-fase commit --> rjesava problem blokiranja procesa u slucaju ispada kordinatora 2PC --> ako kordinator ispadne procesi ne mogu zakljuciti sto treba dalje napraviti