FINAL VERSION

Solution:

a) EINSTEIN'S MIRROR

By taking $\phi = \pi/2$ and replacing v with -v in Equation (1) we obtain

$$\sin \alpha - \sin \beta = -\frac{v}{c} \sin (\alpha + \beta) \tag{3}$$

This equation can also be written in the form of

$$\left(1 + \frac{v}{c}\cos\beta\right)\sin\alpha = \left(1 - \frac{v}{c}\cos\alpha\right)\sin\beta\tag{4}$$

The square of this equation can be written in terms of a squared equation of $\cos \beta$, as follows,

$$\left(1 - 2\frac{v}{c}\cos\alpha + \frac{v^2}{c^2}\right)\cos^2\beta + 2\frac{v}{c}\left(1 - \cos^2\alpha\right)\cos\beta + 2\frac{v}{c}\cos\alpha - \left(1 + \frac{v^2}{c^2}\right)\cos^2\alpha = 0$$
(5)

which has two solutions,

$$(\cos \beta)_{1} = \frac{2\frac{v}{c}\cos^{2}\alpha - \left(1 + \frac{v^{2}}{c^{2}}\right)\cos\alpha}{1 - 2\frac{v}{c}\cos\alpha + \frac{v^{2}}{c^{2}}}$$

$$(6)$$

and

$$(\cos \beta)_{2} = \frac{-2\frac{v}{c} + \left(1 + \frac{v^{2}}{c^{2}}\right)\cos \alpha}{1 - 2\frac{v}{c}\cos \alpha + \frac{v^{2}}{c^{2}}}$$
(7)

However, if the mirror is at rest (v = 0) then $\cos \alpha = \cos \beta$; therefore the proper solution is

$$\cos \beta_2 = \frac{-2\frac{v}{c} + \left(1 + \frac{v^2}{c^2}\right) \cos \alpha}{1 - 2\frac{v}{c} \cos \alpha + \frac{v^2}{c^2}}$$

$$(8)$$

Questions and Solutions

FINAL VERSION

b) FREQUENCY SHIFT

The reflection phenomenon can be considered as a collision of the mirror with a beam of photons each carrying an incident and reflected momentum of magnitude

$$p_f = hf / c \text{ and } p_f' = hf' / c, \qquad (9)$$

The conservation of linear momentum during its reflection from the mirror for the component parallel to the mirror appears as

$$p_f \sin \alpha = p_f ' \sin \beta \text{ or } f' \sin \beta = f' \frac{(1 - \frac{v^2}{c^2}) \sin \alpha}{(1 + \frac{v^2}{c^2}) - 2\frac{v}{c} \cos \alpha} = f \sin \alpha$$
 (10)

Thus

$$f' = \frac{(1 + \frac{v^2}{c^2}) - 2\frac{v}{c}\cos\alpha}{(1 - \frac{v^2}{c^2})} f \tag{11}$$

For $\alpha = 30^{\circ}$ and v = 0.6 c,

$$\cos \alpha = \frac{1}{2}\sqrt{3}, \ 1 - \frac{v^2}{c^2} = 0.64, \ 1 + \frac{v^2}{c^2} = 1.36$$
 (12)

so that

$$\frac{f'}{f} = \frac{1.36 - 0.6\sqrt{3}}{0.64} = 0.5\tag{13}$$

Thus, there is a decrease of frequency by 50% due to reflection by the moving mirror.

Questions and Solutions

FINAL VERSION

c) RELATIVISTICALLY MOVING MIRROR EQUATION

Figure 3.3 shows the positions of the mirror at time t_0 and t. Since the observer is moving to the left, system is moving relatively to the right. Light beam 1 falls on point a at t_0 and is reflected as beam 1'. Light beam 2 falls on point d at t and is reflected as beam 2'. Therefore, \overline{ab} is the wave front of the incoming light at time t_0 . The atoms at point are disturbed by the incident wave front \overline{ab} and begin to radiate a wavelet. The disturbance due to the wave front \overline{ab} stops at time t when the wavefront strikes point d. As a consequence

$$\overline{ac} = \overline{bd} = c(t - t_0). \tag{14}$$

From this figure we also have $\overline{ed} = \overline{ag}$, and

$$\sin \alpha = \frac{\overline{bd} + \overline{dg}}{\overline{ag}}, \quad \sin \beta = \frac{\overline{ac} - \overline{af}}{\overline{ag} - \overline{ef}}.$$
 (15)

Figure 3.4 displays the beam path 1 in more detail. From this figure it is easy to show that

$$\overline{dg} = \overline{ae} = \frac{\overline{ao}}{\cos \alpha} = \frac{v(t - t_0)\sin \phi}{\cos \alpha}$$
 (16)

and

$$\overline{af} = \frac{\overline{ao}}{\cos \beta} = \frac{v(t - t_0)\sin \phi}{\cos \beta} \tag{17}$$

Questions and Solutions

FINAL VERSION

From the triangles aeo and afo we have $\overline{eo} = \overline{ao} \tan \alpha$ and $\overline{of} = \overline{ao} \tan \beta$. Since $\overline{ef} = \overline{eo} + of$, then

$$\overline{ef} = v(t - t_0) \sin \phi \left(\tan \alpha + \tan \beta \right)$$
 (18)

By substituting Equations (14), (16), (17), and (18) into Equation (15) we obtain

$$\sin \alpha = \frac{c + v \frac{\sin \phi}{\cos \alpha}}{\frac{\overline{ag}}{t - t_0}}$$
 (19)

Figure 3.4.

and

$$\sin \beta = \frac{c - v \frac{\sin \phi}{\cos \beta}}{\frac{\overline{ag}}{t - t_0} - v \sin \phi (\tan \alpha + \tan \beta)}$$
(20)

Eliminating $\overline{ag}/(t-t_0)$ from the two Equations above leads to

Questions and Solutions

FINAL VERSION

$$v\sin\phi(\tan\alpha + \tan\beta) = c\left(\frac{1}{\sin\alpha} - \frac{1}{\sin\beta}\right) + v\sin\phi\left(\frac{1}{\sin\alpha\cos\alpha} + \frac{1}{\sin\beta\cos\beta}\right)$$
 (21)

By collecting the terms containing $v \sin \phi$ we obtain

$$\frac{v}{c}\sin\phi\left(\frac{\cos\alpha}{\sin\alpha} + \frac{\cos\beta}{\sin\beta}\right) = \frac{\sin\alpha - \sin\beta}{\sin\alpha\sin\beta}$$
 (22)

or

$$\sin \alpha - \sin \beta = \frac{v}{c} \sin \phi \sin(\alpha + \beta) \tag{23}$$

Questions and Solutions

FINAL VERSION

[Marking Scheme]

THEORETICAL Question 3

Relativistic Mirror

A. (3.0)	0.5	Equation: $\sin \alpha - \sin \beta = -\frac{v}{c} \sin (\alpha + \beta)$
	0.25	Equation $\left(1 + \frac{v}{c}\cos\beta\right)\sin\alpha = \left(1 - \frac{v}{c}\cos\alpha\right)\sin\beta$ $\left(1 - 2\frac{v}{c}\cos\alpha + \frac{v^2}{c^2}\right)\cos^2\beta + 2\frac{v}{c}\left(1 - \cos^2\alpha\right)\cos\beta + 2\frac{v}{c}\cos\alpha - \left(1 + \frac{v^2}{c^2}\right)\cos^2\alpha = 0$
	0.5	$\left[1 - 2\frac{v}{c}\cos\alpha + \frac{v^2}{c^2}\right]\cos^2\beta + 2\frac{v}{c}\left(1 - \cos^2\alpha\right)\cos\beta + 2\frac{v}{c}\cos\alpha - \left(1 + \frac{v^2}{c^2}\right)\cos^2\alpha = 0$
	0.75	$(\cos \beta)_{1} = \frac{2\frac{v}{c}\cos^{2}\alpha - \left(1 + \frac{v^{2}}{c^{2}}\right)\cos\alpha}{1 - 2\frac{v}{c}\cos\alpha + \frac{v^{2}}{c^{2}}}$
		$(\cos \beta)_2 = \frac{-2\frac{v}{c} + \left(1 + \frac{v^2}{c^2}\right) \cos \alpha}{1 - 2\frac{v}{c} \cos \alpha + \frac{v^2}{c^2}}$ Recognize the mirror is at rest $(v = 0)$ then $\cos \alpha = \cos \beta$
	0.5	Recognize the mirror is at rest ($v = 0$) then $\cos \alpha = \cos \beta$
	0.5	$\cos \beta_2 = \frac{-2\frac{v}{c} + \left(1 + \frac{v^2}{c^2}\right) \cos \alpha}{1 - 2\frac{v}{c} \cos \alpha + \frac{v^2}{c^2}}$
B(2.0)	0.25	$p_f \sin \alpha = p_f ' \sin \beta$
	0.25 0.25	Know how to calculate $\sin \beta$ $p_f = hf / c$
	0.75	$f' = \frac{(1 + \frac{v^2}{c^2}) - 2\frac{v}{c}\cos\alpha}{(1 - \frac{v^2}{c^2})} f$
	0.5	$\frac{f'}{f} = 0.5$

Questions and Solutions

FINAL VERSION

For part C, if the students is not able to prove the equation maximum point is 2.5.

(5.0)	1.0	Equation $\overline{ef} = v(t - t_0) \sin \phi \left(\tan \alpha + \tan \beta \right)$
	1.0	$c + v \frac{\sin \phi}{}$
		$\sin \alpha = \frac{\cos \alpha}{$
		$\frac{ag}{t-t_0}$
	0.5	$c - v \frac{\sin \phi}{\cos \beta}$
		$\int \sin \rho = \frac{1}{2}$
		$\frac{ag}{t-t_0} - v\sin\phi \left(\tan\alpha + \tan\beta\right)$
	2.5	$\sin \alpha - \sin \beta = \frac{v}{c} \sin \phi \sin(\alpha + \beta)$
	2.5	$\frac{\sin \beta - \frac{\alpha g}{ag}}{t - t_0} - v \sin \phi \left(\tan \alpha + \tan \beta \right)$

Propagation error can be considered but the maximum point is 2.5.