Submission date 7th October Questions with boxes will be marked for feedback this week Starred questions are beyond the level of the course

- 1. Let *G* be a group and let *S* be a subset of *G*.
 - (a) Prove that if A is any non-empty set of subgroups of G, then

$$\bigcap_{H\in\mathcal{A}}H$$

is a subgroup of G.

(b) Let A_S be the set of subgroups $H \subset G$ such that $S \subset H$. Prove that

$$\langle S \rangle := \bigcap_{H \in \mathcal{A}_S} H$$

is the smallest subgroup of G containing S in the sense that

- $S \subset \langle S \rangle$;
- if *H* is a subgroup of *G* such that $S \subset H$, then $\langle S \rangle \subset H$.
- (c) If *G* is any group, then what are A_{\emptyset} and $\langle \emptyset \rangle$?
- (d*) Let $G = GL_2(\mathbb{R})$ and let

$$S = \left\{ \left(\begin{smallmatrix} r & 0 \\ 0 & r^{-1} \end{smallmatrix} \right) \middle| r \in \mathbb{R}^{\times} \right\} \cup \left\{ \left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix} \right), \left(\begin{smallmatrix} 1 & 0 \\ 1 & 1 \end{smallmatrix} \right) \right\}.$$

Prove that $\langle S \rangle = \mathrm{SL}_2(\mathbb{R})$.

- 2. Let *G* be a group.
 - (a) Let $Z(G) = \{ g \in G \mid gh = hg \text{ for all } h \in G \}$. Prove that Z(G) is a normal subgroup of G. (The subgroup Z(G) is called the *centre* of G).
 - (b) Suppose that $h \in G$, and let $Z_G(h) = \{g \in G \mid gh = hg\}$. Prove that $Z_G(h)$ is the largest subgroup H of G such that $h \in Z(H)$. (The subgroup $Z_G(h)$ is called the *centralizer* of h in G.)
 - (c) Suppose that *H* is a subgroup of *G*, and let

$$N_G(H) = \{ g \in G \mid gHg^{-1} = H \}.$$

Prove that $N_G(H)$ is the largest subgroup $H' \subset G$ such that H is a normal subgroup of H'. (The subgroup $N_G(H)$ is called the *normalizer* of H in G).

- (d) Let $G = GL_2(\mathbb{R})$ and let $h = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Find Z(G), $Z_G(h)$ and $N_G(\langle h \rangle)$.
- 3. Suppose that *G* is a group and $g \in G$ and let $f : \mathbb{Z} \to G$ denote the homomorphism defined by $f(n) = g^n$.
 - (a) What is im(f)?
 - (b) Describe ker(f) in terms of the order of g.
 - (c) Prove that every cyclic group is isomorphic either to \mathbb{Z} , or to $\mathbb{Z}/n\mathbb{Z}$ for some integer $n \ge 1$.

- 4. Let *G* be a group, and let Aut(G) denote the set of automorphisms of *G*, i.e. the set of isomorphisms $f: G \to G$.
 - (a) Prove that Aut(G) is a group under composition.
 - (b) Suppose that $h \in G$ and define $\varphi_h : G \to G$ by $\varphi_h(g) = hgh^{-1}$. Prove that $\varphi_h \in \operatorname{Aut}(G)$.
 - (c) Prove that the function $\varphi: G \to \operatorname{Aut}(G)$ defined by $\varphi(h) = \varphi_h$ is a homomorphism such that $\ker(\varphi) = Z(G)$ and $\operatorname{im}(\varphi)$ (denoted $\operatorname{Inn}(G)$) is normal in $\operatorname{Aut}(G)$.
 - (d) Let $G = \mathbb{Z}/n\mathbb{Z}$. Prove that Aut(G) is isomorphic to $(\mathbb{Z}/n\mathbb{Z})^{\times}$.
 - 5. Suppose that G is a group and N is a normal subgroup of G. Let \overline{G} denote G/N, and let $A = A_N$, i.e. the set of subgroups $H \subset G$ such that $N \subset H$. If $g \in G$, then write \overline{g} for $gN \in \overline{G}$, and if $H \in A$, then write \overline{H} for the subgroup H/N of \overline{G} .
 - (a) Prove that $H \mapsto \overline{H}$ defines a bijection

$$\mathcal{A} \longleftrightarrow \{\text{subgroups of } \overline{G}\}.$$

- (b) Prove that if $H \in \mathcal{A}$, then $[G : H] = [\overline{G} : \overline{H}]$.
- (c) Prove that if $H \in \mathcal{A}$, then H is normal in G if and only if \overline{H} is normal in \overline{G} .
- (d) Prove that if $H \in \mathcal{A}$ and H is normal in G, then there is an isomorphism $\overline{G}/\overline{H} \to G/H$ defined by $\overline{g}\overline{H} \mapsto gH$.
- 6. Let *G* be a group and let

$$[G,G] = \langle \{ghg^{-1}h^{-1} | g,h \in G\} \rangle.$$

- (a) Prove that [G,G] is the smallest normal subgroup N of G such that G/N is abelian. (The subgroup [G,G] is called the *commutator subgroup* of G.)
- (b) Determine the commutator subgroups of $GL_2(\mathbb{R})$ and $PGL_2(\mathbb{R})$. (*Hint: you may use 1d*) here.*)
- (c) Prove that $GL_2(\mathbb{R})$ is not isomorphic to $\mathbb{R}^{\times} \times PGL_2(\mathbb{R})$.