TD3-Circuits RLC: Régime transitoire

Exercice 1. Un condensateur de capacité $C=100\mu F$, initialement déchargé, est branché en série avec un générateur de fem E=6V, un interrupteur et une résistance $R=100\Omega$.

- 1. Établir l'équation différentielle vérifiée par $u_C(t)$, la tension aux bornes du condensateur, lorsque l'on ferme l'interrupteur.
- 2. Déterminer l'expression de $u_C(t)$.
- 3. Tracer E(t), $u_C(t)$ et i(t) dans trois graphes ayant la même échelle de temps.
- 4. Quelle est l'intensité maximale parcourant le circuit ?

Exercice 2. Un bobine d'inductance L=100mH, initialement déchargé, est branché en série avec un générateur de fem E=6V, un interrupteur et une résistance $R=100\Omega$.

- 1. Établir l'équation différentielle vérifiée par le courant dans le circuit i(t) lorsque l'on ferme l'interrupteur.
- 2. Déterminer l'expression de i(t).
- 3. Tracer E(t), $u_L(t)$ (tension aux bornes de la bobine) et i(t) dans trois graphes ayant la même échelle de temps.
- 4. Quelle est la tension maximale parcourant le circuit ?

Exercice 3. On réalise le circuit ci-dessous avec $R=1k\Omega,\,r=10\Omega,\,C=2\mu F$ et E=10V :

L'interrupteur étant fermé depuis "très longtemps", on l'ouvre à la date t=0.

- 1. Déterminer les valeurs prises par u et i juste avant l'ouverture de l'interrupteur.
- 2. Déterminer u(t) et i(t).

TD3-Circuits RLC: Régime transitoire

Exercice 4. On réalise le circuit ci-dessous avec $R = 5\Omega$, $r = 10\Omega$, L = 25mH et E = 10V:

La bobine est supposée idéale.

L'interrupteur étant fermé depuis "très longtemps", on l'ouvre à la date t=0.

- 1. Déterminer les valeurs prises par u et i juste avant l'ouverture de l'interrupteur.
- 2. Déterminer u(t) et i(t).
- 3. Déterminer l'énergie perdue par la bobine une fois l'interrupteur fermé.
- 4. Calculer la puissance instantanée P(t) et l'énergie totale dissipées par la résistance pour t > 0.
- 5. Comparer les résultats obtenus.

Exercice 5. On considère le circuit ci-dessous :

- 1. Établir l'équation différentielle reliant $u_C(t)$ et ses dérivées première et seconde, R, L, C et u(t).
- 2. Quels sont les trois régimes transitoires dans lesquels ce circuit peut se trouver ?

TD3-Circuits RLC: Régime transitoire

Exercice 6. Bonus. On réalise le circuit ci-dessous avec $R = 8\Omega$, $r = 5\Omega$, L = 50mH, $C = 0, 3\mu F$ et E = 10V:

La bobine est supposée idéale. Le condensateur est déchargé.

- 1. L'interrupteur est en position 1.
 - (a) Déterminer l'expression de u(t) et calculer la constante de temps τ du circuit.
 - (b) Représenter graphiquement u(t).
 - (c) Au bout de quelle durée la charge du condensateur diffère-t-elle de sa charge limite de 0,01%?
- 2. L'interrupteur est en position 2. Le condensateur est totalement chargé.
 - (a) Établir l'équation différentielle à laquelle satisfait la tension u(t).
 - (b) Déterminer la fréquence propre f_0 et la durée de relaxation en énergie τ_e de cet oscillateur.
 - (c) Déterminer l'expression de u(t), sachant qu'en début de décharge la tension vaut U_0 .
 - (d) Calculer la valeur de la pseudo-fréquence f_a du phénomène.
 - (e) Au bout de quelle durée l'amplitude des oscillations est-elle divisée par 10 ?
 - (f) Comparer cette durée à la pseudo-période T_a .

Exercice 7. Bonus. On réalise le circuit ci-dessous avec $R = 10k\Omega$, L = 10mH et $C = 1\mu F$:

La charge du condensateur vaut $1\mu C$ et l'intensité du courant dans la bobine 0, 1mA.

- 1. Déterminer l'équation différentielle vérifiée par u(t). La bobine est supposée idéale.
- 2. Définissez le coefficient de qualité Q du circuit.
- 3. Déterminer u(t).

