1.Project Description

This project is an interactive tool designed to solve the map coloring problem using advanced algorithms such as the Four Color Theorem and Graph Coloring Algorithm . Regions or nodes are represented as a graph, and different colors are assigned to each region such that no two adjacent regions share the same color. The project provides an easy-to-use graphical user interface (GUI) that allows users to input data about regions and their borders, and automatically generates the coloring.

2. Tools and Libraries Used

Python: The primary programming language used to develop the project.

Tkinter: For creating the interactive graphical user interface (GUI).

NetworkX: For graph representation and data processing.

Matplotlib: For displaying graphs and maps within the interface.

Messagebox: For displaying alerts and notifications within the GUI.

FigureCanvasTkAgg: To integrate Matplotlib plots into the Tkinter interface.

> **PEAS** (Performance, Environment, Actuators, Sensors)

Component	Description
Performance	Safe and accurate coloring.Efficient use of minimum colors.Intuitive GUI.Fast processing.
Environment	 Regions and borders entered by the user. Graph structure representing regions and adjacency. Predefined color palette.
Actuators	 Buttons for adding regions, borders, and generating the map. Coloring algorithm to assign colors. Real-time visualization.
Sensors	Text fields for region and border input.Button clicks detected by the system.Graph data processed from user inputs.

> **ODESDA** (Observable, Deterministic, Episodic, Static, Discrete, Agent)

Component	Description
0	Fully observable
D	Deterministic
E	Sequential
S	Static
D	Discrete
Α	Single

> **Agent Type:** Goal-Based Agents