Лабораторная работа № 2

Вариационные ряды и их графическое изображение

Цель работы: получить навыки установления статистических закономерностей, присущих массовым случайным явлениям средствами Excel.

No 1

Постановка задачи:

1. Имеются данные о распределении 100 рабочих цеха по выработке в отчетном году (в процентах к предыдущему году). Всего n=100 значений. (см. файл zadanie1.docx в приложении, внизу этой страницы)

Ряд	103.4	115.2	127	131	 102,3	114.5	118	127
признаков								

Необходимо построить вариационный ряд. Сгруппировать его и построить графические изображения вариационного ряда. Построить полигон (гистограмму), кумулянту и эмпирическую функцию распределения рабочих

Формулы, использованные для решения:

Количество интервалов по формуле Стерджерса:

$$k = 1 + 1.4 \ln{(n)}$$

где n – общее количество значений.

Длина интервала:

$$l = \frac{x_{max} - x_{min}}{k},$$

где k – количество интервалов, рассчитанное по формуле Стерджерса.

 n_i — частота i — того интервала.

 m_i — накопленная частота i — того интервала.

Эмпирическая функция распределения:

$$w_i = F_n(\mathbf{x}) = \frac{m_i}{n},$$

где n – общее количество значений.

Nº 2

Постановка задачи:

2. В таблице 2 дан дискретный ряд. В ней приведены данные о распределении 50-ти рабочих цеха по тарифному разряду.

Тарифный разряд хі (варианты)	1	2	3	4	5	6
Частота (количество рабочих) ni	2	3	6	8	22	9

Построить полигон (гистограмму), кумулянту и эмпирическую функцию распределения рабочих

Формулы, использованные для решения:

 n_i — частота i — того интервала.

 m_i — накопленная частота i — того интервала.

Эмпирическая функция распределения:

$$w_i = F_n(\mathbf{x}) = \frac{m_i}{n},$$

где n – общее количество значений.

Nº 3

Постановка задачи:

3. В файле zadanie2.docx (в приложении внизу страницы) содержатся выборочные данные. Постройте вариационный ряд и его графические изображения (гистограмму, полигон, кумулянту и эмпирическую функцию распределения).

Формулы, использованные для решения: Количество интервалов по формуле Стерджерса:

$$k = 1 + 1,4\ln\left(n\right)$$

где n – общее количество значений.

Длина интервала:

$$l = \frac{x_{max} - x_{min}}{k}$$

где k – количество интервалов, рассчитанное по формуле Стерджерса.

 n_i — частота i — того интервала.

 m_i — накопленная частота i — того интервала.

Эмпирическая функция распределения:

$$w_i = F_n(\mathbf{x}) = \frac{m_i}{n},$$

где n – общее количество значений.

IV

Постановка задачи:

4. Имеются выборочные данные по результатам экзамена по химии учащихся школы. Построить интервальный вариационный ряд и его графическое представление (гистограмму, полигон, кумулянту и эмпирическую функцию распределения).

4	4	3	3	2	5	2	3	3	4
3	4	4	2	5	2	3	3	4	4
3	3	4	4	2	5	5	2	3	3

Формулы, использованные для решения:

 n_i — частота i — того интервала.

 m_i — накопленная частота i — того интервала.

Эмпирическая функция распределения:

$$w_i = F_n(\mathbf{x}) = \frac{m_i}{n},$$

где n – общее количество значений.

Nº 5

Постановка задачи:

5. В ходе спортивных соревнований были получены результаты бега 30 спортсменов. Эти результаты образуют следующий ряд:

18	10	17	13	15	15	14	17	20	19
15	15	14	13	16	16	12	11	13	14
19	20	15	16	15	16	14	16	13	12

Построить интервальный вариационный ряд и его графическое представление (гистограмму, полигон, кумулянту и эмпирическую функцию распределения).

Формулы, использованные для решения:

Количество интервалов по формуле Стерджерса:

$$k = 1 + 1.4 \ln{(n)}$$

где n – общее количество значений.

Длина интервала:

$$l = \frac{x_{max} - x_{min}}{k},$$

где k – количество интервалов, рассчитанное по формуле Стерджерса.

 n_i — частота i — того интервала.

 m_i — накопленная частота i — того интервала.

Эмпирическая функция распределения:

$$w_i = F_n(\mathbf{x}) = \frac{m_i}{n},$$

где n – общее количество значений.

