import numpy as np
import pandas as pd

hrt=pd.read_csv('/content/heart_miss.csv')
hrt.head()

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope
0	63	1	3	145	233	1.0	0	150	0	2.3	0
1	37	1	2	130	250	0.0	1	187	0	3.5	0
2	41	0	1	130	204	0.0	0	172	0	1.4	2
3	56	1	1	120	236	0.0	1	178	0	0.8	2
4	57	0	0	120	354	0.0	1	163	1	0.6	2

hrt.isna().sum()

age	0
sex	0
ср	0
trestbps	0
chol	0
fbs	5
restecg	0
thalach	0
exang	0
oldpeak	0
slope	0
ca	0
thal	6
target	0
dtype: int64	1

hrt.describe()

f	chol	trestbps	ср	sex	age	
298.0000	303.000000	303.000000	303.000000	303.000000	303.000000	count
0.1510	246.264026	131.623762	0.966997	0.683168	54.366337	mean
0.3586	51.830751	17.538143	1.032052	0.466011	9.082101	std
0.0000	126.000000	94.000000	0.000000	0.000000	29.000000	min
0.0000	211.000000	120.000000	0.000000	0.000000	47.500000	25%
0.0000	240.000000	130.000000	1.000000	1.000000	55.000000	50%
0.0000	274.500000	140.000000	2.000000	1.000000	61.000000	75%
1.0000	564.000000	200.000000	3.000000	1.000000	77.000000	max

1 of 4 24/06/23, 21:58

X

```
✓ 0s completed at 9:56 PM
```

```
hrt.dtypes
                  int64
    age
                  int64
    sex
                  int64
    ср
    trestbps
                  int64
    chol
                  int64
    fbs
                float64
    restecq
                  int64
    thalach
                 int64
                  int64
    exang
               float64
    oldpeak
    slope
                  int64
    ca
                  int64
                float64
    thal
    target
                   int64
    dtype: object
hrt['target'].value counts()
    1
         165
    0
          138
    Name: target, dtype: int64
hrt['fbs'].fillna(hrt['fbs'].mean(),inplace=True)
hrt['thal'].fillna(hrt['thal'].mean(),inplace=True)
x=hrt.iloc[:,:-1].values
y=hrt.iloc[:,-1].values
from sklearn.model selection import train test split
xtr,xts,ytr,yts=train_test_split(x,y,test_size=0.30,random_state=42)
# from sklearn.preprocessing import StandardScaler
# std=StandardScaler()
# std.fit(xtr)
# xtr=std.transform(xtr)
# xts=std.transform(xts)
#another method for scaling
from sklearn.preprocessing import MinMaxScaler
mn=MinMaxScaler()
mn.fit(xtr)
xtr=mn.transform(xtr)
xts=mn.transform(xts)
```

2 of 4 24/06/23, 21:58

....,

```
from sklearn.svm import SVC
sv=SVC()
sv.fit(xtr,ytr)
ypr=sv.predict(xts)
ypr
```

from sklearn.metrics import accuracy_score,confusion_matrix,classification_repor
score=accuracy_score(yts,ypr)
score

0.8241758241758241

print(confusion matrix(yts,ypr))

[[33 8] [8 42]]

print(classification_report(yts,ypr))

	precision	recall	fl-score	support
0	0.80	0.80	0.80	41
1	0.84	0.84	0.84	50
accuracy			0.82	91
macro avg	0.82	0.82	0.82	91
weighted avg	0.82	0.82	0.82	91

3 of 4 24/06/23, 21:58