Q1 What is the true meaning of linearity?

Since linearity enables the computation to easily summing signals, this further makes lots of signal processing and mathematical techniques possible.

Q2 Derive transfer function from the I/O equation? (FIR)

$$y(n) = b_0 x(n) + b_1 x(n-1) + \dots + b_{L-1} x(n-L+1) \ \therefore H(z) = rac{Y(z)}{X(z)} = b_0 + b_1 z^{-1} + \dots + b_{L-1} z^{-(L-1)} = \sum_{l=0}^{L-1} b_l z^{-l}$$

Q3 Derive transfer function from the I/O equation? (IIR)

$$y(n) = \sum_{l=0}^{L-1} b_l x(n-l) - \sum_{m=1}^{M} a_m y(n-m) \ dots H(z) = rac{Y(z)}{X(z)} = rac{\sum_{l=0}^{L-1} b_l z^{-l}}{1 + \sum_{m=1}^{M} a_m z^{-m}} = rac{\sum_{l=0}^{L-1} b_l z^{-l}}{\sum_{m=0}^{M} a_m z^{-m}}$$

Q4 Derive transfer function of MA filter from the I/O equation?

$$egin{aligned} y(n) &= rac{1}{L} igg[x(n) + x(n-1) + \dots + x(n-L+1) igg] \ &\therefore H(z) &= rac{Y(z)}{X(z)} = rac{1}{L} \sum_{n=0}^{L-1} z^{-n} = rac{1}{L} rac{1-z^{-L}}{1-z^{-1}} = rac{1-z^{-L}}{L imes (1-z^{-1})} \end{aligned}$$

Q5 Derive recursive I/O equation from the transfer function? (MA)

$$egin{split} y(n) &= y(n-1) + rac{1}{L} \left[x(n) - x(n-L)
ight] \ dots \cdot H(z) &= rac{Y(z)}{X(z)} = rac{1-z^{-L}}{L imes (1-z^{-1})} \end{split}$$

https://forums.ni.com/t5/LabVIEW/Transfer-function-of-recursive-moving-average-filter/td-p/3172606

Q6 Is an MA filter stable?

Since there are always L-1 poles at the origin, one pole at z=1, L zeros spaced on the unit circle, there is no pole located outside the unit circle but one lies on the unit circle. Therefore MA filter is marginally stable.

Q7 Is an MA filter FIR or IIR?

MA filter is FIR filter.

Q8 When the input to the MA filter is a sinewave, explain it's output waveform in both time and frequency domain.

In time domain, the output of MA filter decreases its amplitude as the ${\it L}$ of MA filter increases.

Code in code1.m

In frequency domain of L=8 MA filter, magnitude have bumps which creates lowest points on $n\times 0.25\pi$. It is because those lowest points are where zeros are located on unit

circle.

Q9 We generate 100 samples of sinewave with A=1, f=1000Hz, and sampling rate of 10kHz.

(a) What is the digital frequency ω and F?

$$egin{align} \Delta_{\omega} &= rac{2\pi}{N} = rac{2\pi}{100} pprox 0.0628 \ \Delta_{f} &= rac{f_{s}}{N} = rac{1e4}{100} = 100 \ \end{dcases}$$

(b) If we compute DFT with N=100, what value of k corresponding to 1000Hz?

$$k = 0.1$$

(c) Sketch the amplitude spectrum |X(k)|.

Q10

(a) Why we see a line at k = 10?

Since the sampling frequency is 10000, and N is 100, which means $k=rac{f}{f_s} imes N=rac{1000}{10000} imes 100=10$

(b) If we see a line spectrum at k=15, what is the sinewave frequency?

Since k=1.5 imes k', $f_s=1.5 imes f_s'=15000$.

(c) If f is 950Hz, sketch the amplitude spectrum, what happened?

When f = 950Hz, the center frequency started shifting left.

The reason behind this wider range of frequency is because we use 100 samples to compute FFT, which results in $\frac{f_s}{samples} = \frac{10000}{100} = 100Hz$ frequency resolution. This results in this wider frequency range. If we use $f_s = 850$ would results in roughly the s

results in this wider frequency range. If we use $f_s=850$ would results in roughly the same plot.

Code in code3.m

CYEE10828241陳大荃