

Bioestatística MIEB - 2015/2016 O que é a estatística?

Francisco Caramelo
Miguel Patrício
Bárbara Oliveiros

laboratório de Bioestatística e Informática Médica

Disclaimer

Nestes slides pretende-se introduzir alguns conceitos de estatística de forma operacional

* Uma compreensão global e aprofundada dos mesmos conceitos, consultando outras fontes, é recomendada

Segundo a Wikipedia:

"Statistics is the study of the collection, organization, analysis, interpretation and presentation of data"

"Data don't make any sense, we will have to resort to statistics."

Definição-exemplo

× Estatística

+ Descritiva

+ Inferencial do se

× Estimação

"Como se caracterizam as idades dos doentes de Alzheimer que constam da base de dados dos CHUCs?"

"Como se pode estimar a média da idade de todos os doentes de Alzheimer do sexo feminino, a nível mundial?"

× Testes de hipóteses "Em média, os pacientes de Alzheimer do sexo masculino são mais novos que as do sexo feminino?"

Definição

- × Podemos dividir a estatística em:
 - + descritiva: recolha, redução, organização e apresentação de dados estatísticos
 - + inferencial: processo de tomada de decisões a partir de dados amostrais:
 - × estimação
 - × Testes de hipóteses

Exemplo [estatística descritiva]

- Se se pretender conhecer o perfil dos doentes que v\u00e3o a uma determinada consulta, pode-se:
 - + recolher os dados relevantes sobre os mesmos [ex: idade, género, medicação que toma, etc.]
 - + organizar os dados numa base de dados
 - + caracterizar os mesmos, calculando médias, medianas, fazendo gráficos...

Número de processo do paciente	Género •	Idade •
1	M	32
2	М	41
3	F	18
4	F	23
5	F	15
6	М	54
7	М	20
8	F	22
9	М	34
10	М	15

Exemplo [estatística descritiva]

- Se se pretender conhecer o perfil dos doentes que v\u00e3o a uma determinada consulta, pode-se:
 - + recolher os dados relevantes sobre os mesmos [ex: idade, género, medicação que toma, etc.]
 - + organizar os dados numa base de dados
 - + caracterizar os mesmos, calculando médias, medianas, fazendo gráficos...

Número de processo do paciente	Género ▼	Idade •
1	М	32
2	М	41
3	F	18
4	F	23
5	F	15
6	М	54
7	М	20
8	F	22
9	М	34
10	М	15

Exemplo [estatística descritiva]

- Se se pretender conhecer o perfil dos doentes que v\u00e3o a uma determinada consulta, pode-se:
 - + recolher os dados relevantes sobre os mesmos [ex: idade, género, medicação que toma, etc.]
 - + organizar os dados numa base de dados
 - + caracterizar os mesmos, calculando médias, medianas, fazendo gráficos...

Número de processo do paciente	Género •	Idade •
1	M	32
2	М	41
3	F	18
4	F	23
5	F	15
6	М	54
7	М	20
8	F	22
9	М	34
10	М	15

Estatística inferencial - Estimação

- Pretende-se estudar um conjunto de elementos com uma característica em comum: uma população
- × Pretende-se conhecer medidas relativas a esta população: parâmetros
- Estuda-se apenas um subgrupo da população, uma amostra
- Medidas relativas à amostra: estatísticas

Exemplo:

População: habitantes de Portugal

Parâmetro média das alturas

Notação

Medida estatística	Parâmetro (relativo à população)	Valor observado (de uma amostra)
Dimensão	N	n
Média	œ	\overline{x}
Proporção	π	р
Variância	σ^2	S ²
Desvio padrão	σ	S
Coeficiente de correlação	ρ	r

Estatística inferencial – testes de hipóteses

- Parte-se de uma hipótese de investigação (formula-se a hipótese nula)
- A partir dos dados amostrais, procura desmentir-se a hipótese nula
- Resultados possíveis:
 - + mostra-se haver evidência estatística suficiente para rejeitar a hipótese nula
 - não se mostra haver evidência estatística suficiente para rejeitar a hipótese nula

Estatística inferencial – testes de hipóteses [Exemplos]

- Exemplos de hipóteses nulas que poderemos tentar desmentir com estatística inferencial:
 - + As mulheres têm o mesmo nível de glicémia que os homens
 - + Fumar não está relacionado com o aumento de probabilidade de sofrer um enfarte de miocárdio
 - + O crescimento do número de bactérias ao longo do tempo, quando colocadas nas soluções A, B ou C, é igual

Exercício

- × As seguintes perguntas podem ser associadas à estatística
 - (1) descritiva,
 - (2) inferencial (estimação) ou
 - (3) inferencial (teste de hipóteses)?

P1: Dos inquiridos do sexo feminino, quantos responderam "sim"?

P2: Qual é o QI médio da população mundial?

P3: O QI médio da população mundial é 110?

P4: Algum paciente apresentou um valor extremo de nível de glicose?

- **×** Estatística descritiva
 - + onde se pode calcular médias, medianas, desvios-padrão, fazer tabelas de frequências, gráficos?

- **×** Estatística descritiva
 - + onde se pode calcular médias, medianas, desvios-padrão, fazer tabelas de frequências, gráficos?

Resposta: calculadora, Excel, SPSS, ...

- × Estatística descritiva
 - + onde se pode calcular médias, medianas, desvios-padrão, fazer tabelas de frequências, gráficos?

Resposta: calculadora, Excel, SPSS, ...

+ Qual a dificuldade?

Estatística descritiva

+ onde se pode calcular médias, medianas, desvios-padrão, fazer tabelas de frequências, gráficos?

Resposta: calculadora, Excel, SPSS, ...

+ Qual a dificuldade?

Dominar um programa de computador é fácil. As partes difíceis são

- 1) ter uma base de dados consolidada
- 2) escolher os resultados que melhor informam ou melhor ilustram o que se pretende

- Estatística descritiva
 - + onde se pode calcular médias, medianas, desvios-padrão, fazer tabelas de frequências, gráficos?

Resposta: calculadora, Excel, SPSS, ...

+ Qual a dificuldade?

Dominar um programa de computador é fácil. As partes difíceis são

- 1) ter uma base de dados consolidada
- 2) escolher os resultados que melhor informam ou melhor ilustram o que se pretende
- + Como fazer no SPSS? R: ver passos_SPSS_descritiva.pdf

- Estatística inferencial estimação
 - + O que queremos?

- Estatística inferencial estimação
 - + O que queremos?

Resposta: estimar um parâmetro (exemplo: média das alturas dos Portugueses)

- Estatística inferencial estimação
 - + O que queremos?

Resposta: estimar um parâmetro (exemplo: média das alturas dos Portugueses)

+ Como o fazemos?

- Estatística inferencial estimação
 - + 0 que queremos?

Resposta: estimar um parâmetro (exemplo: média das alturas dos Portugueses)

+ Como o fazemos?

Resposta: determinamos uma estatística (ou seja, média das alturas de uma amostra que se pretende representativa da população)

- Estatística inferencial estimação
 - + O que queremos?

Resposta: estimar um parâmetro (exemplo: média das alturas dos Portugueses)

+ Como o fazemos?

Resposta: determinamos uma estatística (ou seja, média das alturas de uma amostra que se pretende representativa da população)

- + Pontos a ponderar:
 - × Qual é a população?
 - × Como escolher a amostra? É representativa?
 - × ...

Estatística inferencial – estimação: Que amostra escolheria se pretender saber a média das alturas dos habitantes em Portugal?

Estatística inferencial – estimação: Que amostra escolheria se pretender saber a média das alturas dos habitantes em Portugal?

Resposta: podemos consultar o Census. Nesse caso, amostra=população

Estatística inferencial – estimação: Que amostra escolheria se pretender saber a média das alturas dos habitantes em Portugal?

Resposta: podemos consultar o Census. Nesse caso, amostra=população

+ E se não tiver acesso ao Census?

Estatística inferencial – estimação: Que amostra escolheria se pretender saber a média das alturas dos habitantes em Portugal?

Resposta: podemos consultar o Census. Nesse caso, amostra=população

+ E se não tiver acesso ao Census?

Resposta: pergunta-se a um conjunto de pessoas (amostra) qual a sua altura? Este conjunto de pessoas deve ser tão representativo da população de Portugal quanto possível. Por exemplo, poderá ser boa ideia estratificar por géneros (porquê?).

Estatística inferencial – estimação: Que amostra escolheria se pretender saber a média das alturas dos habitantes em Portugal?

Resposta: podemos consultar o Census. Nesse caso, amostra=população

+ E se não tiver acesso ao Census?

Resposta: pergunta-se a um conjunto de pessoas (amostra) qual a sua altura? Este conjunto de pessoas deve ser tão representativo da população de Portugal quanto possível. Por exemplo, poderá ser boa ideia estratificar por géneros (porquê?).

+ E se um médico especialista numa doença rara pretender estimar um parâmetro relativamente aos pacientes com essa doença? R: poderá ter de usar uma amostra por conveniência...

Testes de hipóteses

- Estatística inferencial: testes de hipóteses
 - + Existem diferentes testes de hipóteses, mas todos têm em comum:
 - × partir de uma hipótese (hipótese nula)
 - × determinar um valor p. Se ele for mais baixo que o nível de significância α, rejeita-se a hipótese nula.

- Ponto de partida
 - + escolha do nível de significância α
 - + formulação da questão de investigação: definição da hipótese nula H₀

- Ponto de partida
 - + escolha do nível de significância α
 - + formulação da questão de investigação: definição da hipótese nula H₀

Exemplo: α =0.05; H_o: As mulheres têm o mesmo nível de glicémia que os homens

- Ponto de partida
 - + escolha do nível de significância α
 - + formulação da questão de investigação: definição da hipótese nula H₀

Exemplo: α =0.05; H_0 : As mulheres têm o mesmo nível de glicémia que os homens

+ (já com base de dados consolidada - estatística descritiva) Escolha do teste estatístico

- Ponto de partida
 - + escolha do nível de significância α
 - + formulação da questão de investigação: definição da hipótese nula H₀

Exemplo: α =0.05; H₀: As mulheres têm o mesmo nível de glicémia que os homens

+ (já com base de dados consolidada - estatística descritiva) Escolha do teste estatístico

A escolha depende de vários factores. Neste caso, assumindo que "n" é pequeno, o teste escolhido é o Mann-Whitney U

- Ponto de partida
 - + escolha do nível de significância α
 - + formulação da questão de investigação: definição da hipótese nula H₀

Exemplo: α =0.05; H₀: As mulheres têm o mesmo nível de glicémia que os homens

+ (já com base de dados consolidada - estatística descritiva) Escolha do teste estatístico

A escolha depende de vários factores. Neste caso, assumindo que "n" é pequeno, o teste escolhido é o Mann-Whitney U

+ Cálculo do p-valor

Test Statistics ^a			
	VAR00002		
Mann-Whitney U	5.000		
Wilcoxon W	15.000		
Z	929		
Asymp. Sig. (2-tailed)	.353		
Exact Sig. [2*(1-tailed Sig.)]	.486 ^b		
a. Grouping Variable: VAR00001			
b. Not corrected for ties.			

- Ponto de partida
 - + escolha do nível de significância α
 - + formulação da questão de investigação: definição da hipótese nula H₀

Exemplo: α =0.05; H₀: As mulheres têm o mesmo nível de glicémia que os homens

+ (já com base de dados consolidada - estatística descritiva) Escolha do teste estatístico

A escolha depende de vários factores. Neste caso, assumindo que "n" é pequeno, o teste escolhido é o Mann-Whitney U

- Cálculo do p-valor
- Comparação do p-valor com α:

Como p> α, não podemos rejeitar a hipótese nula, ou seja, não conseguimos mostrar que as mulheres têm nível de glicémia diferente dos homens

Test Statistics ^a		
		VAR00002
	Mann-Whitney U	5.000
	Wilcoxon W	15.000
	Z	929
	Asymp. Sig. (2-tailed)	.353
	Exact Sig. [2*(1-tailed Sig.)]	.486 ^b
a. Grouping Variable: VAR00001		
b. Not corrected for ties.		

Testes de hipóteses - exercício

- Cada uma das questões de investigação seguintes foi alvo de um estudo estatístico. Conhecendo os níveis de significância de cada estudo e os p-valores que foram obtidos, para cada estudo:
 - + identifique a hipótese nula
 - + indique se se deve ou não rejeitar a hipótese nula
 - + responda à questão de investigação

Q1: Os doentes de Alzheimer têm scores cognitivos diferentes da restante população? (p=0.001, α =0.05)

Q2: À nascença, os bebés albinos têm um peso maior que os outros? (p=0.362, α =0.05)

Q3: Há associação entre obesidade e risco cardíaco? (p=0.09, α =0.1)

Q4: O batimento cardíaco é alterado durante um jogo de futebol? (p=0.11, α =0.1)

Testes de hipóteses - exercício

- Cada uma das questões de investigação seguintes foi alvo de um estudo estatístico. Conhecendo os níveis de significância de cada estudo e os p-valores que foram obtidos, para cada estudo:
 - + identifique a hipótese nula
 - + indique se se deve ou não rejeitar a hipótese nula
 - + responda à questão de investigação

R1: H0: Os doentes de Alzheimer têm scores cognitivos iguais aos da restante população. A hipótese nula deve ser rejeitada: conclui-se que os doentes de Alzheimer têm scores cognitivos mais baixos que a restante população

R2: H0: À nascença, os bebés albinos têm um peso igual aos outros. A hipótese nula não pode ser rejeitada: não se pode afirmar que os bebés albinos têm um peso maior que os outros

R3: H0: Não há associação entre obesidade e risco cardíaco. A hipótese nula deve ser rejeitada: conclui-se que há associação entre obesidade e risco cardíaco

R4: H0: <u>O batimento cardíaco não é alterado durante um jogo de futebol</u>. A hipótese nula não pode ser rejeitada (apesar de haver uma tendência de rejeição, por p estar próximo de α): não se pode concluir que o batimento cardíaco é alterado durante um jogo de futebol

Testes de hipóteses

- Estatística inferencial: testes de hipóteses
 - + Existem diferentes testes de hipóteses, mas todos têm em comum:
 - × partir de uma hipótese (hipótese nula)
 - × determinar um valor p. Se ele for mais baixo que o nível de significância α, rejeita-se a hipótese nula.
 - + Algumas questões:
 - × Que testes de hipóteses há? Quais as hipóteses subjacentes?
 - × Como escolher o teste correcto?
 - Como interpretar o resultado de um teste?
 - \times Qual deve ser o valor de α ?

Número de grupos	Dependência	Testes paramétricos (média)	Testes não paramétricos (mediana)
1		T-student	Wilcoxon signed rank
	Emparelhadas	T-student (emparelhadas)	Wilcoxon
2	Independentes	T-student (independentes)	Mann-Whitney
3 ou mais	Emparelhadas	ANOVA de medidas repetidas	Friedman
	Independentes	ANOVA	Kruskal-Wallis

Pontos importantes para escolha do teste de hipóteses:

- + Quantos grupos amostrais estão envolvidos?
- + Há dependência entre os grupos?
- + A variável que pretendemos comparar é qualitativa ou quantitativa?
- + Se for quantitativa, a sua distribuição é normal (para cada um dos grupos envolvidos)?

Queremos comparar a média de uma variável de um grupo com um determinado valor? Ou a média entre n grupos?

Existe informação mútua partilhada entre os grupos que possa ser reflectida na variável?

Os valores que a variável toma dividem os dados em categorias que se distinguem por características não numéricas ou são contagens/medições?

O histograma da variável, para cada grupo, tem uma forma geométrica aproximada a uma distribuição normal?

 Pretende-se comparar o valor médio das alturas dos portugueses e dos japoneses

Quantos grupos amostrais estão envolvidos?

Número de grupos	Dependência	Testes paramétricos (média)	Testes não paramétricos (mediana)
1		T-student	Wilcoxon signed rank
2	Emparelhadas	T-student (emparelhadas)	Wilcoxon
2	Independentes	T-student (independentes)	Mann-Whitney
3 ou mais	Emparelhadas	ANOVA de medidas repetidas	Friedman
	Independentes	ANOVA	Kruskal-Wallis

2 grupos amostrais

 Pretende-se comparar o valor médio das alturas dos portugueses e dos japoneses

Há dependência entre os grupos?

Número de grupos	Dependência	Testes paramétricos (média)	Testes não paramétricos (mediana)
1		T-student	Wilcoxon signed rank
2	Emparelhadas	T-student (emparelhadas)	Wilcoxon
2	Independentes	T-student (independentes)	Mann-Whitney
3 ou mais	Emparelhadas	ANOVA de medidas repetidas	Friedman
	Independentes	ANOVA	Kruskal-Wallis

independentes

grupos

amostrais

ทลัด

 Pretende-se comparar o valor médio das alturas dos portugueses e dos japoneses

A variável é quantitativa e a sua distribução é normal?

sim

		SIIII	↓ Ha∪	
Número de grupos	Dependência	Testes paramétricos (média)	Testes não paramétricos (mediana)	
1		T-student	Wilcoxon signed rank	
2	Emparelhadas	T-student (emparelhadas)	Wilcoxon	
2	Independentes	T-student (independentes)	Mann-Whitney	independente
3 ou mais	Emparelhadas	ANOVA de medidas repetidas	Friedman	_
	Independentes	ANOVA	Kruskal-Wallis	

Testes de hipóteses - exercício

Que teste de hipótese usaria para verificar se à nascença os bebés albinos têm um peso igual aos outros? Sabe-se que as distribuições de pesos dos bebés, albinos ou outros, são normais.

Número de grupos	Dependência	Testes paramétricos (média)	Testes não paramétricos (mediana)
1		T-student	Wilcoxon signed rank
	Emparelhadas	T-student (emparelhadas)	Wilcoxon
2	Independentes	T-student (independentes)	Mann-Whitney
3 ou mais	Emparelhadas	ANOVA de medidas repetidas	Friedman
	Independentes	ANOVA	Kruskal-Wallis

Testes de hipóteses - exercício

O peso de pessoas obesas a tomar diariamente um suplemento comercial para redução de peso foi medido semanalmente durante 5 semanas, começando no dia da primeira toma. Sabendo que apenas na medição da segunda semana a distribuição dos pesos não foi normal, que teste estatístico usaria para averiguar se o peso dos pacientes foi alterado?

Número de grupos	Dependência	Testes paramétricos (média)	Testes não paramétricos (mediana)
1		T-student	Wilcoxon signed rank
	Emparelhadas	T-student (emparelhadas)	Wilcoxon
2	Independentes	T-student (independentes)	Mann-Whitney
3 ou mais	Emparelhadas	ANOVA de medidas repetidas	Friedman
	Independentes	ANOVA	Kruskal-Wallis

Tabela de testes

Variável Depende nte	2 Grupos de Indivíduos diferentes	Mais de 2 Grupos de indivíduos diferentes	Antes - Depois (só 2 medições)	Antes - Depois (mais de 2 medidas repetidas)	Associação entre 2 variáveis	Associação com várias variáveis (continuas ou nominais)
Quantitat iva	Teste T de Student para a diferença entre duas médias	Anova de 1 factor	Teste t de Student para pares emparelhado s	Anova medidas repetidas	Regressão/ Correlação Linear simples (Pearson)	Regressão Linear Múltipla Anova 2 ou mais factores Ancova
Nominal	Regras de Cochran: - X ² - X ² corrigido - T.E.Fischer	X ²	McNemar K index	Q de Cochrane	Odds Ratio	Regressão Binária Logística
Ordinal	U de Mann- Whitney	Kruskal- Wallis	Wilcoxon matched- pairs	Friedman	Spearman	
Tempo até ao evento	Log Rank	Log-Rank			Cox-Regression	Cox-Regression