Problem statement

Data collection

Importing libraries

In [1]:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

Importing dataset

In [2]:

data=pd.read_csv(r"C:\Users\user\Downloads\fiat500_VehicleSelection_Dataset (2).csv")
data

Out[2]:

•		ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	р
	0	1.0	lounge	51.0	882.0	25000.0	1.0	44.907242	8.611559868	8
	1	2.0	pop	51.0	1186.0	32500.0	1.0	45.666359	12.24188995	8
	2	3.0	sport	74.0	4658.0	142228.0	1.0	45.503300	11.41784	4
	3	4.0	lounge	51.0	2739.0	160000.0	1.0	40.633171	17.63460922	6
	4	5.0	pop	73.0	3074.0	106880.0	1.0	41.903221	12.49565029	5
	•••	•••				•••				
	1544	NaN	NaN	NaN	NaN	NaN	NaN	NaN	length	
	1545	NaN	NaN	NaN	NaN	NaN	NaN	NaN	concat	lonp
	1546	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Null values	
	1547	NaN	NaN	NaN	NaN	NaN	NaN	NaN	find	
	1548	NaN	NaN	NaN	NaN	NaN	NaN	NaN	search	

1549 rows × 11 columns

head

```
In [3]:
```

```
# to display first 8 dataset values
da=data.head(8)
da
```

Out[3]:		ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price	U
	0	1.0	lounge	51.0	882.0	25000.0	1.0	44.907242	8.611559868	8900	_
	1	2.0	pop	51.0	1186.0	32500.0	1.0	45.666359	12.24188995	8800	
	2	3.0	sport	74.0	4658.0	142228.0	1.0	45.503300	11.41784	4200	
	3	4.0	lounge	51.0	2739.0	160000.0	1.0	40.633171	17.63460922	6000	
	4	5.0	pop	73.0	3074.0	106880.0	1.0	41.903221	12.49565029	5700	
	5	6.0	pop	74.0	3623.0	70225.0	1.0	45.000702	7.68227005	7900	
	6	7.0	lounge	51.0	731.0	11600.0	1.0	44.907242	8.611559868	10750	
	7	8.0	lounge	51.0	1521.0	49076.0	1.0	41.903221	12.49565029	9190	

info

```
In [4]:
```

to identify missing values
data.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 1549 entries, 0 to 1548 Data columns (total 11 columns): Column Non-Null Count Dtype 0 ID 1538 non-null float64 1 model 1538 non-null object 2 engine_power 1538 non-null float64 3 age_in_days 1538 non-null float64 4 1538 non-null float64 5 previous_owners 1538 non-null float64 6 lat 1538 non-null float64 7 1549 non-null object lon 8 price 1549 non-null object 9 Unnamed: 9 0 non-null float64 10 Unnamed: 10 1 non-null object dtypes: float64(7), object(4)

describe

In [5]: # to display summary of the dataset
 data.describe()

memory usage: 133.2+ KB

Out[5]:

	ID	engine_power	age_in_days	km	previous_owners	lat	9
cou	nt 1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	0.0
me	an 769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361	NaN
9	s td 444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518	NaN

	ID	engine_power	age_in_days	km	previous_owners	lat	Unnamed:
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839	NaN
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990	NaN
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096	NaN
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960	NaN
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612	NaN

columns

```
In [6]:
        # to display headings of the dataset
        data.columns
In [7]:
        a=data.dropna(axis=1,how='any')
        b=a.head(8)
Out[7]:
               lon
                   price
       0 8.611559868
                   8900
        12.24188995
                   8800
           11.41784
                   4200
        17.63460922
                   6000
         12.49565029
                   5700
          7.68227005
                   7900
                  10750
        8.611559868
       7 12.49565029
                   9190
In [8]:
        a.columns
Out[8]: Index(['lon', 'price'], dtype='object')
```

EDA and Visualization

```
In [9]: sns.pairplot(data)
```

Out[9]: <seaborn.axisgrid.PairGrid at 0x234ac1c6880>

distribution plot

```
In [10]: sns.displot(a["price"])
```

Out[10]: <seaborn.axisgrid.FacetGrid at 0x234b2690880>

correlation

To train the model-Model Building

```
In [13]:
           # to split my dataset into training and test data
          from sklearn.model_selection import train_test_split
          x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [14]:
          from sklearn.linear_model import LinearRegression
          lr= LinearRegression()
          lr.fit(x_train,y_train)
Out[14]: LinearRegression()
In [15]:
          print(lr.intercept_)
          -1.8189894035458565e-12
In [16]:
           coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
           coeff
Out[16]:
               Co-efficient
                       1.0
          price
In [17]:
           prediction=lr.predict(x_test)
          plt.scatter(y_test,prediction)
Out[17]: <matplotlib.collections.PathCollection at 0x234b5188460>
          9000
          8000
          7000
          6000
          5000
          4000
               9190
                                     4200
                                                            8900
In [18]:
          print(lr.score(x_test,y_test))
         1.0
```