

MC 34 - MANDOS NEUMÁTICOS E HIDRÁULICOS

Mag. Ing. José Luis Becerra Felipe pcmcjbec@upc.edu.pe

SEMANA 13 : SISTEMAS DE GENERACIÓN HIDRÁULICA

Objetivo de la sesión

"Que el estudiante comprenda el funcionamiento de los elementos de los sistemas de generación hidráulica"

Contenido de la sesión

- Sistemas de Generación Hidráulica
- Fluidos Hidráulicos

Logro de la sesión:

Al finalizar la clase el estudiante será capaz de identificar los elementos de un sistema de generación hidráulica y comprender su funcionamiento.

Comparación de sistemas

		O	
	ELECTRICIDAD	NEUMÁTICA	HIDRÁULICA
Fugas			
Influencias del			
entorno			
Acumulación de			
energía			
Transporte de			
Energía			
Velocidad de Trabajo			
Costo de Energía			
Consumida			
Movimiento lineal			
Movimiento Rotativo			
Exactitud de			
Posicionamiento			
Estabilidad			
Fuerzas			

SISTEMAS DE GENERACIÓN HIDRÁULICA

Unidad de Potencia Hidráulica

Son los componentes que generan la energía hidráulica.

- Bomba hidráulica
- Depósito
- Filtro hidráulico
- Válvulas reguladoras
- Fluido hidráulico

Unidad de Potencia Hidráulica

Bomba hidráulica

Componente principal de la unidad de potencia hidráulica.
Aspira el fluido hidráulico del depósito y lo transporta hasta el punto requerido.

Bomba hidráulica

Consideraciones de diseño:

Caudal: caudal necesario de acuerdo a requerimiento del sistema.

Resistencias Internas: debido a pérdidas internas por fricción y por reducciones de flujo.

Resistencias Externas: Las que se producen por cargas estáticas, fricción mecánica y fuerzas de aceleración.

La bomba incrementará la presión del aceite hasta vencer la resistencia o la destrucción de los elementos, por este motivo se utilizan válvulas reguladoras de presión.

Parámetros de Selección

Presión de trabajo (p): se indica el valor de la presión de punta. Sin embargo, este valor no debe mantenerse durante la operación, pues ocasionaría un desgaste prematuro de la bomba.

Parámetros de Selección

Eficiencia: Durante el proceso de transformación de energía mecánica en hidráulica se producen pérdidas de potencia. La eficiencia de la bomba debe incluir el rendimiento volumétrico $(n_{vol})y$ el rendimiento hidromecánico (n_{hm})

$$n_{tot} = n_{vol} \times n_{hm}$$

Curva característica de una bomba 🌡

- En la medida que aumenta la presión en la bomba, se pierde caudal, esto se debe al aceite de fuga.
- El aceite de fuga es necesario para lubricar los elementos hidráulicos.

Curva característica de una bomba

$$Q(p=0)=10 \text{ dm}^3/\text{min}$$

 $Q(p=230 \text{ bar})=9,4 \text{ dm}^3/\text{min}$
 $Q \text{ aceite de fuga a 230 bar es 6\%}$

Bomba de engranajes

Bomba de aletas Bombas de Émbolo

Interiores

Exteriores

Anular

Helicoidal

Fuerza interior

Fuerza exterior

Radial

Axial

Caudal constante

Caudal constante, regulable y capacidad variab e

)		Tipo de bomba	Margen de revoluciones r.p.m.	Volumen de expulsión (cm³)	Presión nominal (bar)	Rendimiento
	E10 \$ 013	Bomba de engranajes externos	500 - 3500	1,2 - 250	63 - 160	0,8 - 0,91
	A STATE OF THE PARTY OF THE PAR	Bomba de engranajes internos	500 - 3500	4 - 250	160 - 250	0,8 - 0,91
		Bomba helicoidal	500 - 4000	4 - 630	25 - 160	0,7 - 0,84
		Bomba de aletas celularés	960 - 3000	5 - 160	100 - 160	0,8 - 0,93
		Bomba de émbolos axiales	3000 750 - 3000 750 - 3000	100 25 - 800 25 - 800	200 160 - 250 160 - 320	0,8 - 0,92 0,82 - 0,92 0,8 - 0,92
		Bomba de émbolos radiales	960 - 3000	5 - 160	160 - 320	0,90

Depósito Hidráulico

- Recepción.
 almacenamiento de aceite.
- Disipar el calor residual.
- Separar aceite, agua y sólidos.
- Soporte para bomba y otros elementos hidráulicos.

Filtros

Su función es retener la suciedad para extender la vida útil de los elementos del sistema.

Grado de filtración: es la capacidad que tiene para retener sólidos y se mide en um.

Filtros

Grado de filtración recomendado x en μm, siendo β x = 100	Tipo de sistema hidráulico
1 - 2	Para impurezas finas en sistemas altamente sensibles con gran fiabilidad; preferentemente en aviación y laboratorios
2 - 5	Para sistemas de mando y control sensibles y de alta presión; con frecuencia en la aviación, robots industriales y máquinas herramientas.
5 - 10	Para sistemas hidráulicos de alta calidad y fiabilidad con previsible larga vida útil de sus componentes.
10 - 20	Para hidráulica general y sistemas hidráulicos móviles; presiones medianas y tamaños intermedios.
15 - 25	Para sistemas de baja presión en la industria pesada o para sistemas de vida útil limitada.
20 - 40	Para sistemas de baja presión con holguras grandes.

Filtros

	Filtración en el circuito p		principal
	Filtro de descarga	Filtro de aspiración	Filtro de presión
Ventajas	Bajos coste. Poco mantenimiento	Protege a la bomba de la suciedad	Posibilidad de recurrir a poros más pequeños para proteger válvulas sensibles a la suciedad
Desventajas	las impurezas sólo son retenidas en las sali- das de los componen- tes del sistema	difícil acceso, proble- mas de aspiración con poros finos; con- secuencias: cavitación	costoso
Comentarios	muy difundido	posibilidad de usarlo como filtro adicional antepuesto a la bomba	requiere un cuerpo re- sistente a la presión y un indicador del grado de suciedad

Sistemas de Refrigeración

El aceite se calienta dentro del circuito producto de la fricción.

El aceite se enfría gracias a los elementos instalados en la unidad como son los depósitos, tuberías y demás elementos.

La temperatura de trabajo del aceite no debe exceder los 50 a 60 ℃.

En caso de no ser suficiente con las o instalaciones convencionales, o es necesario instalar un sistema de refrigeración.

Válvulas limitadoras de presión

Protegen al sistema hidráulico de presiones elevadas.

Válvula limitadora de presión Válvula reguladora de presión

Fluido Hidráulico

Cualquier líquido es útil para transmitir energía de presión, sin embargo no todos cumplen con las condiciones de operación.

El agua genera problemas de corrosión, ebullición, congelación y viscosidad.

Los aceites minerales cumplen con todas las condiciones necesarias para la operación:

- Transmitir presión.
- Lubricar las partes móviles de los equipos.
- Refrigerar.
- Amortiguar vibraciones.
 - Proteger contra la corrosión.
 - Eliminar partículas abrasivas.

Transmitir señales,

Fluido Hidráulico

"Para aplicaciones con alto riesgo de incendio se utilizan líquidos difícilmente inflamables."

Propiedades de un Fluido Hidráulico

- Densidad baja.
- Poca compresibilidad.
- Viscosidad no demasiado baja.
- Buena viscosidad en función de la temperatura.
- Buena viscosidad en función de la presión.
- Resistencia al envejecimiento.
- Baja inflamabilidad.
- Compatibilidad con otros materiales.

Clasificación

Denomi- nación	Características especiales	Campos de aplicación
HL	Protección anticorrosiva y aumento de la resistencia al envejecimiento.	Equipos en los que surgen elevadas solicitaciones térmicas o en los que es posible la corrosión por entradas de agua
HLP	Mayor resistencia al desgaste	Igual que los aceites HL y, además, para equipos en los que por su estructura o modo de funcionamiento hay más rozamientos
HV	Viscosidad menos afectada por la temperatura	Igual que los aceites HLP; se utiliza en equipos sometidos a variaciones de temperarura o que trabajana temperaturas ambientales bajas

Conclusiones

- Es importante considerar las propiedades del fluido a emplear en el sistema hidráulico.
- Debemos tomar mayores precauciones de seguridad al trabajar con sistemas hidráulicos.
- Los actuadores hidráulicos son más precisos que los neumáticos.
- Mantener los equipos hidráulicos alejados de máquinas que trabajen a altas temperaturas.

LOGRO CONSEGUIDO

Ahora eres capaz de identificar los elementos de un sistema de generación hidráulica y comprendes su funcionamiento.

GRACIAS

