§19. Методы описания систем многих частиц:

термодинамический метод

В предыдущих параграфах были рассмотрены динамический и статистический методы описания систем многих частиц. Динамический метод предполагал детальное описание системы на основе информации о положении и скорости всех частиц. Статистический метод описывает систему, опираясь на параметры, относящиеся к большим совокупностям частиц. Оба из перечисленных методов учитывают внутреннее устройство материальных тел.

Но систему многих частиц можно рассматривать и по-другому, не интересуясь совсем её внутренней структурой. При таком методе описания нужно использовать понятия и физические величины, относящиеся к системе в целом. Таких физических величин немного, и носят они название макроскопических (термодинамических) параметров системы. Например, макроскопическими параметрами, описывающими модель идеального газа, являются:

- *V* объём область пространства, занимаемая системой;
- ρ плотность масса единицы объёма системы $\left(\rho = \frac{dm}{dV}\right)$;
- n концентрация число частиц в единице объема $\left(n = \frac{dN}{dV}\right)$;
- P давление сила, с которой части системы действуют друг на друга, отнесенная к единице поверхности;
- T температура интенсивность теплового движения частиц системы, мера нагретости тела.

Значения этих параметров могут быть установлены с помощью измерительных приборов.

Экспериментальные исследования призваны установит связи между этими величинами, а теория, построенная на общих положениях (например, 3СЭ), объяснить эти связи.

Такой метод изучения систем многих частиц получил название *термодинамический*. Он не интересуется внутренними механизмами процессов, определяющих поведение системы. Система при этом рассматривается как целое.

Статистический и термодинамический методы изучения систем многих частиц дополняют друг друга. Их комбинированное применение способствует наиболее эффективному решению научных проблем, в которых приходится иметь дело с подобными системами.

Начиная описывать системы термодинамическим методом, договоримся рассматривать только системы, находящиеся в *состоянии термодинамического равновесия* (или в

лекции по физике (І семестр) доц. Т.А.Андреева

равновесном состоянии). Не всегда макроскопический параметр, описывающий систему многих частиц, имеет одно и то же значение во всех частях системы.

Если, например, температура в разных точках системы неодинакова, то системе нельзя приписать определённое значение макропараметра T. Представим себе кастрюлю с водой, стоящую на нагревателе. Слои воды у дна кастрюли имеют более высокую температуру, чем те, которые находятся ближе к крышке. $T_3 > T_1$. В

этом случае состояние системы называется неравновесным.

Если снять кастрюлю с нагревателя и предоставить самой себе, то спустя некоторое время

температура воды в ней выровняется и станет одинаковой во всех точках этой системы. Следовательно, можно утверждать, что система перейдёт в *равновесное состояние*. Значение температуры кастрюли и воды в ней не изменятся до тех пор, пока мы снова не поставим её

на нагреватель, т.е. пока внешнее воздействие не выведет систему из состояния равновесия.

Аналогичные примеры можно привести и для других термодинамических параметров,

например, давления. Рассмотрим очень разреженный газ в цилиндрическом сосуде под плотно пригнанным поршнем. Если начать быстро вдвигать поршень в сосуд, то под ним образуется газовый слой, давление в котором будет выше, чем в остальной части газа. Значит, описать газ определённым значением величины давления в этом

случае не удастся. Состояние газа в каждый момент будет неравновесным.

Однако, если прекратить перемещение поршня, то через некоторое время давление в разных точках сосуда выровняется, газ перейдёт в равновесное состояние. Этот опыт можно

повторить, медленно вдвигая поршень в сосуд, так чтобы. скорость поршня была много меньше средней скорости частиц газа. В этом случае частицы вместо того, чтобы скапливаться под поршнем (как в примере выше), будут успевать равномерно распределяться по всему объёму системы. Поскольку скорость молекул при

комнатной температуре составляет сотни метров в секунду (см. §18), то вдвигание поршня со скоростью несколько метров в секунду будет проходить через равновесные состояния газа.

Таким образом, *равновесным состоянием* или *термодинамическим равновесием* называется такое состояние, при котором все макропараметры, описывающие систему, имеет

лекции по физике (І семестр) доц. Т.А.Андреева

определённые значения, остающиеся постоянными сколь угодно при неизменных внешних условиях.

Во всех последующих параграфах будем рассматривать только системы многих частиц, находящиеся в состоянии термодинамического равновесия. Состояния таких систем будем описывать с помощью макропараметров (термодинамических параметров).