

PSoC® Creator™ Project Datasheet for dcsd

Creation Time: 01/24/2017 02:21:13

User: MARCUS-PC\Marcus

Project: dcsd

Tool: PSoC Creator 4.0 Update 1

Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intl): 408.943.2600

http://www.cypress.com

Copyright

Copyright © 2017 Cypress Semiconductor Corporation. All rights reserved. Any design information or characteristics specifically provided by our customer or other third party inputs contained in this document are not intended to be claimed under Cypress's copyright.

Trademarks

PSoC and CapSense are registered trademarks of Cypress Semiconductor Corporation. PSoC Creator is a trademark of Cypress Semiconductor Corporation. All other trademarks or registered trademarks referenced herein are the property of their respective owners.

Philips I2C Patent Rights

Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name, NXP Semiconductors.

Disclaimer

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. While reasonable precautions have been taken, Cypress assumes no responsibility for any errors that may appear in this document. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of a Cypress product in a life support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Flash Code Protection

Cypress products meet the specifications contained in their particular Cypress PSoC Datasheets. Cypress believes that its family of PSoC products is one of the most secure families of its kind on the market today, regardless of how they are used. There may be methods, unknown to Cypress, that can breach the code protection features. Any of these methods, to our knowledge, would be dishonest and possibly illegal. Neither Cypress nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as 'unbreakable.'

Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly evolving. We at Cypress are committed to continuously improving the code protection features of our products.

Table of Contents

1 Overview	1
2 Pins	3
2.1 Hardware Pins	4
2.2 Hardware Ports	5
2.3 Software Pins	6
3 System Settings	7
3.1 System Configuration	7
3.2 System Debug Settings	7
3.3 System Operating Conditions	7
4 Clocks	8
4.1 System Clocks	9
4.2 Local and Design Wide Clocks	9
5 Interrupts	.11
5.1 Interrupts	. 11
6 Flash Memory	. 12
7 Bootloader and Bootloadable	. 13
7.1 Bootloadable Application	13
7.2 Bootloader Application	. 13
8 Design Contents	. 14
8.1 Schematic Sheet: Page 1	14
9 Components	15
9.1 Component type: ADC_SAR_SEQ_P4 [v2.40]	. 15
9.1.1 Instance ADC	. 15
9.2 Component type: Bootloadable [v1.50]	
9.2.1 Instance Bootloadable_1	
9.3 Component type: Em_EEPROM [v1.10]	
9.3.1 Instance EEPROM	
9.4 Component type: QuadDec [v3.0]	
9.4.1 Instance QDEC	
9.5 Component type: SCB_P4 [v3.20]	
9.5.1 Instance UART	
9.6 Component type: TCPWM_P4 [v2.10]	
9.6.1 Instance PWM_MOT	
9.6.2 Instance TX_SEND.	
10 Other Resources.	.40

1 Overview

The Cypress PSoC 4 is a family of 32-bit devices with the following characteristics:

- Digital system that includes configurable Universal Digital Blocks (UDBs) and specific function peripherals such as PWM, UART, SPI and I2C
- Analog subsystem that includes 12-bit SAR ADC, comparators, op amps, CapSense, LCD drive and more
- Several types of memory elements, including SRAM and flash
- Programming and debug system through Serial Wire Debug (SWD)
- High-performance 32-bit ARM Cortex-M0 core with a nested vectored interrupt controller (NVIC)
- · Flexible routing to all pins

Figure 1 shows the major components of a typical <u>PSoC 4200</u> series member PSoC 4 device. For details on all the systems listed above, please refer to the <u>PSoC 4 Technical Reference Manual</u>.

Figure 1. PSoC 4200 Device Series Block Diagram

Table 1 lists the key characteristics of this device.

Table 1. Device Characteristics

Name	Value
Part Number	CY8C4245PVI-482
Package Name	28-SSOP
Family	PSoC 4
Series	PSoC 4200
CPU speed (MHz)	48
Flash size (kBytes)	32
SRAM size (kBytes)	4
Vdd range (V)	1.71 to 5.5
Automotive qualified	No (Industrial Grade Only)
Temp range (Celcius)	-40 to 85

NOTE: The CPU speed noted above is the maximum available speed. The CPU is clocked by HFCLK, listed in the <u>System Clocks</u> section below.

Table 2 lists the device resources that this design uses:

Table 2. Device Resources

Resource Type	Used	Free	Max	% Used
Digital Clocks	1	3	4	25.00 %
Interrupts	5	27	32	15.63 %
IO	17	7	24	70.83 %
Segment LCD	0	1	1	0.00 %
CapSense	0	1	1	0.00 %
Die Temp	0	1	1	0.00 %
Serial Communication (SCB)	1	1	2	50.00 %
Timer/Counter/PWM	2	2	4	50.00 %
UDB				
Macrocells	22	10	32	68.75 %
Unique P-terms	45	19	64	70.31 %
Total P-terms	51			
Datapath Cells	2	2	4	50.00 %
Status Cells	2	2	4	50.00 %
Statusl Registers	2			
Control Cells	1	3	4	25.00 %
Control Registers	1			
Comparator/Opamp	0	1	1	0.00 %
LP Comparator	0	2	2	0.00 %
SAR ADC	1	0	1	100.00 %
DAC				
7-bit IDAC	0	1	1	0.00 %
8-bit IDAC	0	1	1	0.00 %

2 Pins

Figure 2 shows the pin layout of this device.

Figure 2. Device Pin Layout

2.1 Hardware Pins

Table 3 contains information about the pins on this device in device pin order. (No connection ["n/c"] pins have been omitted.)

Table 3. Device Pins

Pin	Port	Port Name Type		Drive Mode
1	P1[0]	phase	Software Output	Strong drive
2	P1[1]	enable	Dgtl Out	Strong drive
3	P1[2]	sleep	Software Output	Strong drive
4	P1[7]/VREF	\ADC:Bypass\	Analog	HiZ analog
5	P2[2]	isense	Analog	HiZ analog
6	P2[3]	ovc	Software Input	Res pull up
7	P2[4]	fault	Software Input	Res pull up
8	P2[5]	GPIO [unused]		
9	P2[6]	GPIO [unused]		
10	P2[7]	GPIO [unused]		
11	P3[0]	\UART:rx\	Dgtl In	HiZ digital
12	P3[1]	\UART:tx\	Dgtl Out	Strong drive
13	P3[2]	vin	Software Output	Strong drive
14	P3[3]	err	err Software Output	
15	P4[0]	error	Software Output	OD, DL
16	P4[1]	reset	reset Software Input	
17	P4[2]	[2] step Software Input		Res pull up
18	P4[3]	direction	Software Input	Res pull up
19	P0[0]	А	Dgtl In	Res pull up
20	P0[1]	В	Dgtl In	Res pull up
21	P0[2]	GPIO [unused]		
22	P0[3]	GPIO [unused]		
23	P0[6]	GPIO [unused]		
24	P0[7]	GPIO [unused]		
25	XRES	XRES	Dedicated	
26	VCCD	VCCD	Power	
27	VDD	VDD	Power	
28	VSS	VSS	Power	

Abbreviations used in Table 3 have the following meanings:

- Dgtl Out = Digital Output
- HiZ analog = High impedance analog
- Res pull up = Resistive pull up
- Dgtl In = Digital Input
- HiZ digital = High impedance digital
- OD, DL = Open drain, drives low

2.2 Hardware Ports

Table 4 contains information about the pins on this device in device port order. (No connection ["n/c"], power and dedicated pins have been omitted.)

Table 4. Device Ports

Port	Pin	Name	Type	Drive Mode
P0[0]	19	Α	Dgtl In	Res pull up
P0[1]	20	В	Dgtl In	Res pull up
P0[2]	21	GPIO [unused]		
P0[3]	22	GPIO [unused]		
P0[6]	23	GPIO [unused]		
P0[7]	24	GPIO [unused]		
P1[0]	1	phase	Software Output	Strong drive
P1[1]	2	enable	Dgtl Out	Strong drive
P1[2]	3	sleep	Software Output	Strong drive
P1[7]/VREF	4	\ADC:Bypass\	Analog	HiZ analog
P2[2]	5	isense	Analog	HiZ analog
P2[3]	6	ovc	Software Input	Res pull up
P2[4]	7	fault	Software Input	Res pull up
P2[5]	8	GPIO [unused]		
P2[6]	9	GPIO [unused]		
P2[7]	10	GPIO [unused]		
P3[0]	11	\UART:rx\	Dgtl In	HiZ digital
P3[1]	12	\UART:tx\	Dgtl Out	Strong drive
P3[2]	13	vin	Software Output	Strong drive
P3[3]	14	err	Software Output	Strong drive
P4[0]	15	error	Software Output	OD, DL
P4[1]	16	reset	Software Input	Res pull up
P4[2]	17	step	Software Input	Res pull up
P4[3]	18	direction	Software Input	Res pull up

Abbreviations used in Table 4 have the following meanings:

- Dgtl In = Digital Input
- Res pull up = Resistive pull up
- Dgtl Out = Digital Output
- HiZ analog = High impedance analog
- HiZ digital = High impedance digital
- OD, DL = Open drain, drives low

2.3 Software Pins

Table 5 contains information about the software pins on this device in alphabetical order. (Only software-accessible pins are shown.)

Table 5. Software Pins

Name	Port	Type
\ADC:Bypass\	P1[7]/VREF	Analog
\UART:rx\	P3[0]	Dgtl In
\UART:tx\	P3[1]	Dgtl Out
Α	P0[0]	Dgtl In
В	P0[1]	Dgtl In
direction	P4[3]	Software Input
enable	P1[1]	Dgtl Out
err	P3[3]	Software Output
error	P4[0]	Software Output
fault	P2[4]	Software Input
GPIO [unused]	P0[3]	
GPIO [unused]	P0[2]	
GPIO [unused]	P2[7]	
GPIO [unused]	P2[6]	
GPIO [unused]	P2[5]	
GPIO [unused]	P0[7]	
GPIO [unused]	P0[6]	
isense	P2[2]	Analog
ovc	P2[3]	Software Input
phase	P1[0]	Software Output
reset	P4[1]	Software Input
sleep	P1[2]	Software Output
step	P4[2]	Software Input
vin	P3[2]	Software Output

Abbreviations used in Table 5 have the following meanings:

- Dgtl In = Digital Input
- Dgtl Out = Digital Output

For more information on reading, writing and configuring pins, please refer to:

- Pins chapter in the System Reference Guide
 - CyPins API routines
- Programming Application Interface section in the cy pins component datasheet

3 System Settings

3.1 System Configuration

Table 6. System Configuration Settings

Name	Value
Device Configuration Mode	Compressed
Unused Bonded IO	Allow but warn
Heap Size (bytes)	0x20
Stack Size (bytes)	0x0100
Include CMSIS Core Peripheral Library Files	True

3.2 System Debug Settings

Table 7. System Debug Settings

Name	Value
Chip Protection	Open
Debug Select	GPIO

3.3 System Operating Conditions

Table 8. System Operating Conditions

	_
Name	Value
VDD (V)	5
Variable VDDA	True

dcsd Datasheet 01/24/2017 02:21 7

4 Clocks

The clock system includes these clock resources:

- Two internal clock sources:
 - o 3 to 48 MHz Internal Main Oscillator (IMO) ±2% at 3 MHz
 - o 32 kHz Internal Low Speed Oscillator (ILO) output
- HFCLK can be generated using an external signal from EXTCLK pin
- Twelve clock dividers, each with 16-bit divide capability:
 - o Eight can be used for fixed-function blocks
 - o Four can be used for the UDBs

Figure 3. System Clock Configuration

4.1 System Clocks

Table 9 lists the system clocks used in this design.

Table 9. System Clocks

Name	Domain	Source	Desired Freq	Nominal Freq	Accuracy (%)	Start at	Enabled
			1109	1109	(70)	Reset	
DPLL_Sel	NONE	IMO	48 MHz	48 MHz	±2	True	True
SYSCLK	NONE	HFCLK	? MHz	48 MHz	±2	True	True
Direct_Sel	NONE	IMO	48 MHz	48 MHz	±2	True	True
PLL1_Sel	NONE	IMO	48 MHz	48 MHz	±2	True	True
PLL0_Sel	NONE	IMO	48 MHz	48 MHz	±2	True	True
HFCLK	NONE	Direct_Sel	48 MHz	48 MHz	±2	True	True
IMO	NONE		48 MHz	48 MHz	±2	True	True
LFCLK	NONE	ILO	? MHz	32 kHz	±60	True	True
ILO	NONE		32 kHz	32 kHz	±60	True	True
Timer2 (WDT2)	NONE	LFCLK	? MHz	? MHz	±0	False	False
EXTCLK	NONE		24 MHz	? MHz	±0	False	False
DigSig3	NONE		? MHz	? MHz	±0	False	False
DigSig2	NONE		? MHz	? MHz	±0	False	False
DigSig4	NONE		? MHz	? MHz	±0	False	False
DigSig1	NONE		? MHz	? MHz	±0	False	False
Timer1 (WDT1)	NONE	LFCLK	? MHz	? MHz	±0	False	False
Timer0 (WDT0)	NONE	LFCLK	? MHz	? MHz	±0	False	False

4.2 Local and Design Wide Clocks

Local clocks drive individual analog and digital blocks. Design wide clocks are a user-defined optimization, where two or more analog or digital blocks that share a common clock profile (frequency, etc) can be driven from the same clock divider output source.

Figure 4. Local and Design Wide Clock Configuration

Table 10 lists the design wide clocks used in this design.

Table 10. Design Wide Clocks

Name	Domain	Source	Desired Freq	Nominal Freq	Accuracy (%)	Start at Reset	Enabled
clk12	DIGITAL, FIXED FUNCT- ION	HFCLK	12 MHz	12 MHz	±2	True	True

Table 11 lists the local clocks used in this design.

Table 11. Local Clocks

Name	Domain	Source	Desired Freq	Nominal Freq	Accuracy (%)	Start at Reset	Enabled
pwmClk	FIXED FUNCT- ION	HFCLK	48 MHz	48 MHz	±2	True	True
txClk	NONE	clk12	12 MHz	12 MHz	±2	True	True
qdClk	NONE	clk12	12 MHz	12 MHz	±2	True	True
ADC_intClock	FIXED FUNCT- ION	HFCLK	12 MHz	12 MHz	±2	True	True
UART_SCBCLK	FIXED FUNCT- ION	HFCLK	230.4 kHz	230.769 kHz	±2	True	True

For more information on clocking resources, please refer to:

- Clocking System chapter in the PSoC 4 Technical Reference Manual
 Clocking chapter in the System Reference Guide

 CySysClkImo API routines
 CySysClkWrite API routines

5 Interrupts

5.1 Interrupts

This design contains the following interrupt components: (0 is the highest priority)

Table 12. Interrupts

Name	Priority	Vector
QDEC_isr	0	0
stepISR	0	4
rxISR	1	11
txISR	2	2
ADC IRQ	3	14

For more information on interrupts, please refer to:

- Interrupt Controller chapter in the PSoC 4 Technical Reference Manual
- Interrupts chapter in the System Reference Guide
 - o Cylnt API routines and related registers
- Datasheet for cy_isr component

6 Flash Memory

PSoC 4 devices offer a host of Flash protection options and device security features that you can leverage to meet the security and protection requirements of an application. These requirements range from protecting configuration settings or Flash data to locking the entire device from external access.

Table 13 lists the Flash protection settings for your design.

Table 13. Flash Protection Settings

Start Address	End Address	Protection Level
0x0	0x7FFF	U - Unprotected

Flash memory is organized as rows with each row of flash having 128 bytes. Each flash row can be assigned one of four protection levels:

- U Unprotected
- W Full Protection

For more information on Flash memory and protection, please refer to:

- Flash Protection chapter in the <u>PSoC 4 Technical Reference Manual</u>
- Flash and EEPROM chapter in the **System Reference Guide**
 - CySysFlash API routines

7 Bootloader and Bootloadable

Figure 5 details the Flash memory map for the bootloader and/or bootloadable application(s) included in this design.

Bootloadable application Address 1

Figure 5. Bootloader Memory Map

Bootloader application

7.1 Bootloadable Application

Table 14. Bootloadable Settings

Name	Value
Application Version	0x0000
Application ID	0x0000
Application Custom ID	0x0
Application Image 1 Start Address	0x0
Application Image 1 End Address	0x7FFF
Manual Application Image Placement	False

Address 0

7.2 Bootloader Application

Table 15. Bootloader Settings

Name	Value
Checksum Type	BasicChecksum
Supports Multiple Application Images	False
Application Version	0x0000
Bootloader Start Address	0x0
Bootloader End Address	0x0

For more information on the bootloader and startup please refer to:

- Startup and Linking chapter in the System Reference Guide
- Datasheet for <u>Bootloader and Bootloadable component</u>

dcsd Datasheet 01/24/2017 02:21 13

8 Design Contents

This design's schematic content consists of the following schematic sheet:

8.1 Schematic Sheet: Page 1

Figure 6. Schematic Sheet: Page 1

This schematic sheet contains the following component instances:

- Instance <u>ADC</u> (type: ADC_SAR_SEQ_P4_v2_40)
- Instance <u>Bootloadable_1</u> (type: Bootloadable_v1_50)
- Instance <u>EEPROM</u> (type: Em_EEPROM_v1_10)
- Instance PWM_MOT (type: TCPWM_P4_v2_10)
- Instance <u>QDEC</u> (type: QuadDec_v3_0)
- Instance <u>TX_SEND</u> (type: TCPWM_P4_v2_10)
- Instance <u>UART</u> (type: SCB_P4_v3_20)

9 Components

9.1 Component type: ADC_SAR_SEQ_P4 [v2.40]

9.1.1 Instance ADC

Description: PSoC 4 Sequencing Successive Approximation ADC

Instance type: ADC_SAR_SEQ_P4 [v2.40]

Datasheet: online component datasheet for ADC_SAR_SEQ_P4

Table 16. Component Parameters for ADC

Parameter Name	Value	Description
AdcAClock	4	Acquisition time in clock cycles
		for configuration A.
AdcAdjust	ClockFreq	Timing parameter adjustable by the user.
AdcAlternateResolution	8	This parameter sets the alternate ADC resolution to either 8 or 10 bits.
AdcAvgMode	Fixed Resolution	This parameter sets how the averaging mode operates.
AdcAvgSamplesNum	8	This parameter sets the averaging rate for any channel that has its averaging option enabled.
AdcBClock	4	Acquisition time in clock cycles for configuration B.
AdcCClock	4	Acquisition time in clock cycles for configuration C.
AdcChannelsEnConf	1	This bitmask is intended to enable the channels for scanning during runtime.
AdcChannelsModeConf	0	Mode configuration for the channels (0 - Single, 1 - Differential)
AdcClock	Internal	Clock source type.
AdcClockFrequency	12000000	Specifies the internal clock frequency in Hz.
AdcCompareMode	High_Limit <= Result	This parameter sets the condition in which the limit condition will occur.
AdcDataFormatJustification	Right	This parameter sets whether the output data is left or right justified for a 16-bit word. For signed values, the result will be sign extended when configured in right justification mode.
AdcDClock	4	Acquisition time in clock cycles for configuration D.
AdcDifferentialResultFormat	Signed	This parameter sets the whether the result from a differential measurement is Signed or Unsigned.
AdcHighLimit	1500	This parameter sets the high limit for a limit compare.

Parameter Name	Value	Description
AdcInjChannelEnabled	false	Determines whether the symbol will display the injection channel.
AdcInputBufGain	Disable	Sets the input buffer gain or disables it.
AdcLowLimit	0	This parameter sets the low limit for a limit compare.
AdcMaxResolution	12	Sets the maximum resolution of the ADC in bits.
AdcSampleMode	HardwareSOC	Sampling mode.
AdcSarMuxChannelConfig	0	Channels mode configuration for the multiplexer (0 - Single, 1 - Differential)
AdcSequencedChannels	1	Number of input signals that will be scanned. This excludes the injection channel.
AdcSingleEndedNegativeInput	Vss	Negative input source for single ended operation.
AdcSingleResultFormat	Signed	This parameter sets whether the result from a single ended measurement is Signed or Unsigned.
AdcSymbolHasSingleEn- dedInputChannel	false	Determines whether the configuration contains an external negative input.
AdcVrefSelect	Internal 1.024 volts, bypassed	The reference voltage that is used for the SAR ADC.
AdcVrefVoltage_mV	1024	The reference voltage value.
rm_int	false	Removes the internal interrupt

9.2 Component type: Bootloadable [v1.50]

9.2.1 Instance Bootloadable_1

Description: Provides bootloadable application functionality.

Instance type: Bootloadable [v1.50]

Datasheet: online component datasheet for Bootloadable

Table 17. Component Parameters for Bootloadable_1

Parameter Name	Value	Description
appCustomID	0	Provides a 4 byte custom ID
		number to represent anything in
		the Bootloadable application.
appID	0	Provides a 2 byte number to
		represent the ID of the
		bootloadable application.
appVersion	0	Provides a 2 byte number to
		represent the version of the
		bootloadable application.
autoPlacement	true	Provides a method for PSoC
		Creator to place a Bootloadable
		application image at a specified
		location. If true, the image will
		be placed automatically. If false,
		the image will be placed at an
		address specified by the
		Placement Address option.

Parameter Name	Value	Description
checksumExcludeSize	0	Provides a size in bytes of
		checksum exclude section
elfFilePath	\\SCB_Bootloader\cncboot	Provides a reference to the
	cydsn\CortexM0\ARM_GCC	Bootloader application (.elf) that
	493\Debug\cncboot.elf	is associated with this
		Bootloadable application.
hexFilePath	\\SCB_Bootloader\cncboot	Provides a reference to the
	cydsn\CortexM0\ARM_GCC	Bootloader application (.hex)
	493\Debug\cncboot.hex	that is associated with this
		Bootloadable application.
placementAddress	0	Allows specifying an address
		where the bootloadable
		application will be placed in the
		memory. Available only if the
		Automatic Application Image
		Placement option is true.

9.3 Component type: Em_EEPROM [v1.10]

9.3.1 Instance EEPROM

Description: Emulates an EEPROM device in flash memory.

Instance type: Em_EEPROM [v1.10]

Datasheet: online component datasheet for Em_EEPROM

9.4 Component type: QuadDec [v3.0]

9.4.1 Instance QDEC

Description: Quadrature Decoder Component provides the ability to count transitions on a pair

of digital signals

Instance type: QuadDec [v3.0]

Datasheet: online component datasheet for QuadDec

Table 18. Component Parameters for QDEC

Parameter Name	Value	Description
CounterResolution	4	Defines the number of counts
		recorded in one period of the A
		and B inputs.
CounterSize	32	Specifies the counter bit width
UsingGlitchFiltering	false	This is a boolean parameter
		used to set whether or not to
		apply glitch filtering to all inputs.
UsingIndexInput	false	This is a boolean parameter
		used to set whether or not a
		third input – index – exists and
		will be used.

9.5 Component type: SCB_P4 [v3.20]

9.5.1 Instance UART

Description: Serial Communication Block (SCB)

Instance type: SCB_P4 [v3.20]

Datasheet: online component datasheet for SCB_P4

Table 19. Component Parameters for UART

Parameter Name	Value	Description
Ezl2cBusVoltage	3.3	When the SCB mode is EZI2C, this parameter specifies the voltage applied to the pull-up resistors on the I2C bus. Only applicable for devices
		other than PSoC 4000/PSoC 4100/PSoC 4200.
Ezl2cByteModeEnable	false	When the SCB mode is EZI2C, this parameter specifies the number of bits per FIFO data element. The byte mode – false: a 16-bit FIFO data element. The FIFO depth is 8 entries. The byte mode – true: an 8-bit FIFO data element. The FIFO depth is 16 entries. Applicable only for devices
		other than PSoC 4000/PSoC 4100/PSoC 4200.
Ezl2cClockFromTerm	false	When the SCB mode is EZI2C, this parameter provides a clock terminal to connect a clock outside the component.
EzI2cClockStretching	true	When the SCB mode is EZI2C, this parameter specifies whether the SCL is stretched while in EZI2C operation.
Ezl2cDataRate	100	When the SCB mode is EZI2C, this parameter defines EZI2C Data rate in kbps. The standard data rates are: 100, 400 and 1000 kbps.
Ezl2cNumberOfAddresses	1	When the SCB mode is EZI2C, this parameter defines the number of I2C slave addresses that device respond to.
Ezl2cPrimarySlaveAddress	8	When the SCB mode is EZI2C, this parameter specifies EZI2C primary 7-bits slave address (MSB ignored).
Ezl2cSecondarySlaveAddress	9	When the SCB mode is EZI2C, this parameter specifies EZI2C secondary 7-bits slave address (MSB ignored). Only applicable when EZI2C clock stretching option is set.

Parameter Name	Value	Description
Ezl2cSlewRate	Fast	When the SCB mode is EZI2C,
		this parameter specifies the
		slew rate settings of the I2C
		pins.
		For devices supporting GPIO
		Over-Voltage Tolerance
		(GPIO_OVT) pins, I2C FM+
		options should be used when
		I2C data rate is greater than
		400 kbps. This option also
		requires the I2C bus voltage to
		be defined.Refer to the Device
		Datasheet to determine which
		pins are GPIO_OVT capable.
Ezl2cSubAddressSize	8	When the SCB mode is EZI2C,
		this parameter specifies the
		maximum size of the slave
		buffer that is exposed to the
		master: 8bits – maximum buffer
		size is 256 bytes, 16 bits –
		maximum buffer size is 65535
		bytes.
Ezl2cWakeEnable	false	When the SCB mode is EZI2C,
		this parameter enables wakeup
		from Deep Sleep on I2C
		address match event.
I2cAcceptAddress	false	When the SCB mode is I2C, this
		parameter specifies whether to
		accept the match slave address
		in RX FIFO or not. All slave
		matched addresses are ACKed.
		The user has to register the
		callback function to handle
		accepted addresses. This
		feature has to be used when
		more than one address support
		is required.
I2cAcceptGeneralCall	false	When the SCB mode is I2C, this
		parameter specifies whether to
		accept the general call address.
		The general call address is
		ACKed when accepted and
		NAKed otherwise. The user has
		to register the callback function
		to handle the general call
10. D V. II	0.0	address.
I2cBusVoltage	3.3	When the SCB mode is I2C, this
		parameter specifies the voltage
		applied to the pull-up resistors
		on the I2C bus.
		Only applicable for device -
		Only applicable for devices
		other than PSoC 4000/PSoC
		4100/PSoC 4200.

Parameter Name	Value	Description
I2cByteModeEnable	false	When the SCB mode is I2C, this parameter specifies the number of bits per FIFO data element. The byte mode – false: a 16-bit FIFO data element. The FIFO depth is 8 entries. The byte mode – true: an 8-bit FIFO data element. The FIFO depth is 16 entries. Applicable only for devices other than PSoC 4000/PSoC 4100/PSoC 4200.
I2cClockFromTerm	false	When the SCB mode is I2C, this parameter provides a clock terminal to connect a clock outside the component.
I2cDataRate	100	When the SCB mode is I2C, this parameter specifies the data rate in kbps. The standard data rates are: 100, 400 and 1000 kbps.
I2cExternIntrHandler	false	When the SCB mode is I2C, this parameter specifies whether the I2C interrupt handler is configured in SCB_I2CInit(). This parameter is intended to be used by the PM/SM bus component. The modification parameter default value causes I2C mode failures.
I2cManualOversampleControl	true	When the SCB mode is I2C, this parameter specifies the method of calculating the oversampling as manual or automatic.
I2cMode	Slave	When the SCB mode is I2C, this parameter defines the I2C operation mode as: Slave, Master, Multi-Master or Multi-Master-Slave.
I2cOvsFactor	16	When the SCB mode is I2C, this parameter defines the oversampling factor of SCBCLK.
I2cOvsFactorHigh	8	When the SCB mode is I2C, this parameter defines the high oversampling factor of SCBCLK. Only applicable for I2C Master modes.
I2cOvsFactorLow	8	When the SCB mode is I2C, this parameter defines the low oversampling factor of SCBCLK. Only applicable for I2C Master modes.

Parameter Name	Value	Description
I2cSlaveAddress	8	When the SCB mode is I2C, this
		parameter specifies the I2C 7-
		bits slave address (MSB
		ignored).
I2cSlaveAddressMask	254	When the SCB mode is I2C, this
		parameter specifies the I2C
		Slave address mask.
		Bit value 0 – excludes bit from address comparison.
		Bit value 1 – the bit needs to
		match with the corresponding
		bit of the I2C slave address.
I2cSlewRate	Fast	When the SCB mode is I2C, this
120010W1 (ato	1 450	parameter specifies the slew
		rate settings of the I2C pins.
		For devices supporting GPIO
		Over-Voltage Tolerance
		(GPIO_OVT) pins, I2C FM+
		options should be used when
		I2C data rate is greater than
		400 kbps. This option also
		requires the I2C bus voltage to
		be defined. Refer to the Device
		Datasheet to determine which
10-14/-1	f-1	pins are GPIO_OVT capable.
I2cWakeEnable	false	When the SCB mode is I2C, this
		parameter enables wakeup from Deep Sleep on an I2C address
		match event.
ScbMisoSdaTxEnable	true	This parameter defines the
CODIVISCO da l'ALITADIO	liuo	availability of the spi_miso_i2c
		sda_uart_tx pin.
ScbMode	UART	This parameter defines the
		mode of operation for the SCB
		component.
ScbMosiSclRxEnable	true	This parameter defines the
		availability of the spi_mosi_i2c
		scl_uart_rx pin.
ScbRxWakeIrqEnable	false	This parameter defines the
		availability of the spi_mosi_i2c
		scl_uart_rx_wake pin.
ScbSclkEnable	false	This parameter defines the
		availability of the sclk pin.
ScbSs0Enable	false	This parameter defines the
		availability of the ss0 pin.
ScbSs1Enable	false	This parameter defines the
		availability of the ss1 pin.
ScbSs2Enable	false	This parameter defines the
		availability of the ss2 pin.
ScbSs3Enable	false	This parameter defines the
		availability of the ss3 pin.

Parameter Name	Value	Description CYPE
SpiBitRate	1000	When the SCB mode is SPI, this parameter specifies the Bit rate in kbps (up to 8000 kbps); the actual rate may differ based on available clock frequency and component settings. This parameter has no effect if the Clock from terminal parameter is enabled.
SpiBitsOrder	MSB First	When the SCB mode is SPI, this parameter defines the bit order as: MSB first or LSB first.
SpiByteModeEnable	false	When the SCB mode is SPI, this parameter specifies the number of bits per FIFO data element. The byte mode – false: a 16-bit FIFO data element. The FIFO depth is 8 entries. The byte mode – true: an 8-bit FIFO data element. The FIFO depth is 16 entries. Applicable only for devices other than PSoC 4000/PSoC 4100/PSoC 4200.
SpiClockFromTerm	false	When the SCB mode is SPI, this parameter provides a clock terminal to connect a clock outside the component.
SpiFreeRunningSclk	false	When the SCB mode is SPI, this parameter specifies the SCLK generation by the master as: gated or free running (continuous). Applicable only for devices other than PSoC 4000/PSoC 4100/PSoC 4200.
SpiInterruptMode	None	When the SCB mode is SPI, this parameter specifies the interrupt mode. None: Removes all interrupt support. Internal: Leaves the interrupt SCBIRQ inside the component - the interrupt terminal becomes invisible. External: Provides an interrupt terminal to connect an interrupt outside the component.
SpiIntrMasterSpiDone	false	When the SCB mode is SPI, this parameter enables the SCB.INTR_M. SPI_DONE interrupt source. SCB.INTR_M. SPI_DONE: all data are sent into TX FIFO and the TX FIFO and the TX FIFO and the Shifter register are emptied. Only applicable for SPI Master mode.

Parameter Name	Value	Description
SpilntrRxFull	false	When the SCB mode is SPI,
		this parameter enables the
		SCB.INTR_RX.FULL interrupt
		source.
		SCB.INTR_RX.FULL trigger
		condition: RX FIFO is full.
SpiIntrRxNotEmpty	false	When the SCB mode is SPI,
		this parameter enables the
		SCB.INTR_RX.NOT_EMPTY
		interrupt source.
		SCB.INTR_RX.NOT_EMPTY
		trigger condition: RX FIFO is not
		empty. There is at least one
		entry to get data from.
SpiIntrRxOverflow	false	When the SCB mode is SPI,
		this parameter enables the
		SCB.INTR_RX.OVERFLOW
		interrupt source.
		SCB.INTR_RX.OVERFLOW
		trigger condition: attempt to
		write to a full RX FIFO.
SpiIntrRxTrigger	false	When the SCB mode is SPI,
		this parameter enables the
		SCB.INTR_RX.TRIGGER
		interrupt source.
		SCB.INTR_RX.TRIGGER
		trigger condition: remains active
		until RX FIFO has more entries
		than the value specified by
		SpiRxTriggerLevel.
SpiIntrRxUnderflow	false	When the SCB mode is SPI,
		this parameter enables the
		SCB.INTR_RX.UNDERFLOW
		interrupt source.
		SCB.INTR_RX.UNDERFLOW
		trigger condition: attempt to
		read from an empty RX FIFO.
SpiIntrSlaveBusError	false	When the SCB mode is SPI,
		this parameter enables the
		SCB.INTR_SLAVE.BUS
		ERROR interrupt source.
		SCB.INTR_SLAVE.BUS
		ERROR trigger condition: slave
		select line is deselected at an
		unexpected time in the SPI
		transfer.
		Only applicable for SPI Slave
Co-illatoTo-Co-orto	£.1	mode.
SpiIntrTxEmpty	false	When the SCB mode is SPI,
		this parameter enables the
		SCB.INTR_TX.EMPTY interrupt
		SOURCE.
		SCB.INTR_TX.EMPTY trigger
		condition: TX FIFO is empty.

Parameter Name	Value	Description
SpiIntrTxNotFull	false	When the SCB mode is SPI,
		this parameter enables the
		SCB.INTR_TX.NOT_FULL
		interrupt source.
		SCB.INTR_TX.NOT_FULL trigger condition: TX FIFO is not
		full. There is at least one entry
		to put data.
SpiIntrTxOverflow	false	When the SCB mode is SPI,
		this parameter enables the
		SCB.INTR_TX.OVERFLOW
		interrupt source.
		SCB.INTR_TX.OVERFLOW trigger condition: attempt to
		write to a full TX FIFO.
SpiIntrTxTrigger	false	When the SCB mode is SPI,
		this parameter enables the
		SCB.INTR_TX.TRIGGER
		interrupt source.
		SCB.INTR_TX.TRIGGER
		trigger condition: remains active until TX FIFO has fewer entries
		than the value specified by
		SpiTxTriggerLevel.
SpiIntrTxUnderflow	false	When the SCB mode is SPI,
		this parameter enables the
		SCB.INTR_TX.UNDERFLOW
		interrupt source. SCB.INTR_TX.UNDERFLOW
		trigger condition: attempt to
		read from an empty TX FIFO.
SpiLateMisoSampleEnable	false	When the SCB mode is SPI,
		this parameter enables late
		sampling of the MISO line by
Co:Madios Filtas Faabla	falsa	the master.
SpiMedianFilterEnable	false	When the SCB mode is SPI, this parameter applies a digital
		3 tap median filter to the SPI
		input line.
SpiMode	Slave	When the SCB mode is SPI,
		this parameter selects SPI
		mode of operation as: Slave or
CniNumberOfDyDetaDita	0	Master.
SpiNumberOfRxDataBits	8	When the SCB mode is SPI, this parameter specifies the
		number of data bits inside the
		SPI byte/word for RX direction.
SpiNumberOfSelectLines	1	When the SCB mode is SPI,
		this parameter defines the
		number of slave select lines.
		The SPI Slave has only one slave select line. The SPI
		Master has up to 4 lines.
SpiNumberOfTxDataBits	8	When the SCB mode is SPI,
- CPITTALIBOI OF FADALABITA		this parameter define the
		number of data bits inside the
		SPI byte/word for TX direction.
	-	

Parameter Name	Value	Description
SpiOvsFactor	16	When the SCB mode is SPI, this parameter defines the oversampling factor of SCBCLK.
SpiRemoveMiso	false	When the SCB mode is SPI, this parameter removes the MISO pin.
SpiRemoveMosi	false	When the SCB mode is SPI, this parameter removes the MOSI pin.
SpiRemoveSclk	false	When the SCB mode is SPI, this parameter removes the SCLK pin.
SpiRxBufferSize	8	When the SCB mode is SPI, this parameter defines the size of the RX buffer.
SpiRxOutputEnable	false	When the SCB mode is SPI, this parameter enables the RX trigger output terminal of the component. This terminal must be connected to the DMA input trigger or left unconnected. Only applicable for devices which have a DMA controller.
SpiRxTriggerLevel	7	When the SCB mode is SPI, this parameter defines the number of entries in the RX FIFO to control the SCB.INTRRX.TRIGGER interrupt event or RX DMA trigger output.
SpiSclkMode	CPHA = 0, CPOL = 0	When the SCB mode is SPI, this parameter defines the serial clock phase (CPHA) and polarity (CPOL).
SpiSmartioEnable	false	When the SCB mode is SPI, this parameter enables the SmartIO support.
SpiSs0Polarity	Active Low	When the SCB mode is SPI, this parameter specifies active polarity of slave select 0. Applicable only for devices other than PSoC 4000/PSoC 4100/PSoC 4200.
SpiSs1Polarity	Active Low	When the SCB mode is SPI, this parameter specifies active polarity of slave select 1. Applicable only for devices other than PSoC 4000/PSoC 4100/PSoC 4200.
SpiSs2Polarity	Active Low	When the SCB mode is SPI, this parameter specifies active polarity of slave select 2. Applicable only for devices other than PSoC 4000/PSoC 4100/PSoC 4200.

Parameter Name	Value	Description
SpiSs3Polarity	Active Low	When the SCB mode is SPI, this parameter specifies active polarity of slave select 3. Applicable only for devices other than PSoC 4000/PSoC
SpiSubMode	Motorola	4100/PSoC 4200. When the SCB mode is SPI, this parameter defines the sub mode of the SPI as: Motorola, TI(Start Coincides), TI(Start Precedes), or National
SpiTransferSeparation	Continuous	Semiconductor. When the SCB mode is SPI, this parameter defines the type of SPI transfers separation as: continuous or separated.
SpiTxBufferSize	8	When the SCB mode is SPI, this parameter defines the size of the TX buffer.
SpiTxOutputEnable	false	When the SCB mode is SPI, this parameter enables the TX trigger output terminal of the component. This terminal must be connected to the DMA input trigger or left unconnected. Only applicable for devices which have a DMA controller.
SpiTxTriggerLevel	0	When the SCB mode is SPI, this parameter defines the number of entries in the TX FIFO to control the SCB.INTRTX.TRIGGER interrupt event or TX DMA trigger output.
SpiWakeEnable	false	When the SCB mode is SPI, this parameter enables wakeup from Deep Sleep on slave select event.
UartByteModeEnable	false	When the SCB mode is UART, this parameter specifies the number of bits per FIFO data element. The byte mode – false: a 16-bit FIFO data element. The FIFO depth is 8 entries. The byte mode – true: an 8-bit FIFO data element. The FIFO depth is 16 entries. Applicable only for devices other than PSoC 4000/PSoC 4100/PSoC 4200.
UartClockFromTerm	false	When the SCB mode is UART, this parameter provides a clock terminal to connect a clock outside the component.

Parameter Name	Value	Description
UartCtsEnable	false	When the SCB mode is UART, this parameter enables the cts input.
		Only applicable for devices other than PSoC 4000/PSoC 4100/PSoC 4200.
UartCtsPolarity	Active Low	When the SCB mode is UART, this parameter specifies active polarity of an input cts signal.
		Only applicable for devices other than PSoC 4000/PSoC 4100/PSoC 4200.
UartDataRate	19200	When the SCB mode is UART, this parameter specifies the Baud rate in bps (up to 1000 kbps); the actual rate may differ based on available clock frequency and component settings. This parameter has no effect if the Clock from terminal parameter is enabled.
UartDirection	TX + RX	When the SCB mode is UART, this parameter enables RX or TX direction or both simultaneously.
UartDropOnFrameErr	false	When the SCB mode is UART, this parameter defines whether the data is dropped from RX FIFO on a frame error event.
UartDropOnParityErr	false	When the SCB mode is UART, this parameter determines whether the data is dropped from RX FIFO on a parity error event.
UartInterruptMode	External	When the SCB mode is UART, this parameter specifies the interrupt mode. None: Removes all interrupt support. Internal: Leaves the interrupt SCBIRQ inside the component - the interrupt terminal becomes invisible. External: Provides an interrupt terminal to connect an interrupt outside component.
UartIntrRxFrameErr	false	When the SCB mode is UART, this parameter enables the SCB.INTR_RX.FRAMEERROR interrupt source. SCB.INTR_RX.FRAMEERROR trigger condition: frame error in received data frame.
UartIntrRxFull	false	When the SCB mode is UART, this parameter enables the SCB.INTR_RX.FULL interrupt source. SCB.INTR_RX.FULL trigger condition: RX FIFO is full.

Parameter Name	Value	Description CYPF
UartIntrRxNotEmpty	true	Description When the SCB mode is UART,
Oartinut XIVOLETTIPITY	liue	this parameter enables the
		SCB.INTR RX.NOT EMPTY
		interrupt source.
		SCB.INTR_RX.NOT_EMPTY
		trigger condition: RX FIFO is not
		empty. There is at least one
		entry to get data from.
UartIntrRxOverflow	false	When the SCB mode is UART,
		this parameter enables the
		SCB.INTR_RX.OVERFLOW
		interrupt source.
		SCB.INTR_RX.OVERFLOW
		trigger condition: attempt to write to a full RX FIFO.
Lordot Dy Dority Crr	folos	
UartIntrRxParityErr	false	When the SCB mode is UART, this parameter enables the
		SCB.INTR RX.PARITY -
		ERROR interrupt source.
		SCB.INTR_RX.PARITY
		ERROR trigger condition: parity
		error in received data frame.
UartIntrRxTrigger	false	When the SCB mode is UART,
		this parameter enables the
		SCB.INTR_RX.TRIGGER
		interrupt source.
		SCB.INTR_RX.TRIGGER
		trigger condition: remains active
		until RX FIFO has more entries
		than the value specified by
UartIntrRxUnderflow	f-1	UartRxTriggerLevel.
Uartintrexundernow	false	When the SCB mode is UART,
		this parameter enables the SCB.INTR RX.UNDERFLOW
		interrupt source.
		SCB.INTR_RX.UNDERFLOW
		trigger condition: attempt to
		read from an empty RX FIFO.
UartIntrTxEmpty	false	When the SCB mode is UART,
		this parameter enables the
		SCB.INTR_TX.EMPTY interrupt
		source.
		SCB.INTR_TX.EMPTY trigger
		condition: TX FIFO is empty.
UartIntrTxNotFull	false	When the SCB mode is UART,
		this parameter enables the
		SCB.INTR_TX.NOT_FULL
		interrupt source. SCB.INTR_TX.NOT_FULL
		trigger condition: TX FIFO is not
		full. There is at least one entry
		to put data.
UartIntrTxOverflow	false	When the SCB mode is UART,
	15.100	this parameter enables the
		SCB.INTR_TX.OVERFLOW
		interrupt source.
		SCB.INTR_TX.OVERFLOW
		trigger condition: attempt to
		write to a full TX FIFO.

Parameter Name	Value	Description
UartIntrTxTrigger UartIntrTxUartDone	false	When the SCB mode is UART, this parameter enables the SCB.INTR_TX.TRIGGER interrupt source. SCB.INTR_TX.TRIGGER trigger condition: remains active until TX FIFO has fewer entries than the value specified by UartTxTriggerLevel. When the SCB mode is UART,
		this parameter enables the SCB.INTR_TX.UART_DONE interrupt source. SCB.INTR_TX.UART_DONE trigger condition: all data are sent in to TX FIFO and the transmit FIFO and the shifter register are emptied.
UartIntrTxUartLostArb	false	When the SCB mode is UART, this parameter enables the SCB.INTR_TX.UART_ARBLOST interrupt source. SCB.INTR_TX.UART_ARBLOST trigger condition: UART lost arbitration, the value driven on the TX line is not the same as the value observed on the RX line. This event is useful when the transmitter and the receiver share a TX/RX line. Only applicable for UART SmartCard mode.
UartIntrTxUartNack	false	When the SCB mode is UART, this parameter enables the SCB.INTR_TX.UART_NACK interrupt source. SCB.INTR_TX.UART_NACK trigger condition: UART transmitter received a negative acknowledgement. Only applicable for UART SmartCard mode.
UartIntrTxUnderflow	false	When the SCB mode is UART, this parameter enables the SCB.INTR_TX.UNDERFLOW interrupt source. SCB.INTR_TX.UNDERFLOW trigger condition: attempt to read from an empty TX FIFO.
UartIrdaLowPower	false	When the SCB mode is UART, this parameter enables the low power receiver option. Only applicable for UART IrDA mode.
UartIrdaPolarity	Non-Inverting	When the SCB mode is UART, this parameter inverts the incoming RX line signal. Only applicable for UART IrDA mode.

Value	Description
false	When the SCB mode is UART, this parameter applies a digital 3 tap median filter to the UART input line.
false	When the SCB mode is UART, this parameter enables the UART multi-processor mode. Only applicable for UART Standard mode.
false	When the SCB mode is UART, this parameter define whether to put the matched UART address into RX FIFO. Only applicable for UART multiprocessor mode.
2	When the SCB mode is UART, this parameter defines the UART address. Only applicable for UART multi- processor mode.
255	When the SCB mode is UART, this parameter defines the address mask in multiprocessor operation mode. Bit value 0 – excludes bit from address comparison. Bit value 1 – the bit needs to match with the corresponding bit of the UART address. Only applicable for UART multiprocessor mode.
8 bits	When the SCB mode is UART, this parameter defines the number of data bits inside the UART byte/word.
1 bit	When the SCB mode is UART, this parameter defines the number of Stop bits.
12	When the SCB mode is UART, this parameter defines the oversampling factor of SCBCLK.
None	When the SCB mode is UART, this parameter applies UART parity check as Odd or Even or discards the parity entirely.
false	When the SCB mode is UART, this parameter enables the rts output. Applicable only for devices other than PSoC 4000/PSoC 4100/PSoC 4200.
	false false 2 255 8 bits 1 bit 12 None

Parameter Name	Value	Description
UartRtsPolarity	Active Low	When the SCB mode is UART,
		this parameter specifies active
		polarity of the output rts signal.
		Applicable only for devices
		other than PSoC 4000/PSoC
		4100/PSoC 4200.
UartRtsTriggerLevel	4	When the SCB mode is UART,
		this parameter specifies the
		number of entries in the RX
		FIFO to activate the rts output
		signal. When the receiver FIFO
		has fewer entries than the
		UartRtsTriggerLevel, an rts output signal is activated.
		output signal is activated.
		Applicable only for devices
		other than PSoC 4000/PSoC
		4100/PSoC 4200.
UartRxBufferSize	8	When the SCB mode is UART,
		this parameter defines the size
Hard Day Oarder of Earth I	6.1.	of the RX buffer.
UartRxOutputEnable	false	When the SCB mode is UART,
		this parameter enables the RX trigger output terminal of the
		component. This terminal must
		be connected to the DMA input
		trigger or left unconnected. Only
		applicable for devices which
		have a DMA controller.
UartRxTriggerLevel	7	When the SCB mode is UART,
		this parameter defines the
		number of entries in the RX FIFO to trigger control the
		SCB.INTR RX.TRIGGER
		interrupt event or RX DMA
		trigger output.
UartSmartioEnable	false	When the SCB mode is UART,
		this parameter enables the
		SmartIO support.
UartSmCardRetryOnNack	false	When the SCB mode is UART,
		this parameter defines whether
		to send a message again when a NACK response is received.
		Only applicable for UART
		SmartCard mode.
UartSubMode	Standard	When the SCB mode is UART,
		this parameter defines the sub
		mode of UART as: Standard,
		SmartCard or IrDA.
UartTxBufferSize	8	When the SCB mode is UART,
		this parameter defines the size
		of the TX buffer.

>
CYPRESS"

Parameter Name	Value	Description
UartTxOutputEnable	false	When the SCB mode is UART, this parameter enables the TX trigger output terminal of the component. This terminal must be connected to the DMA input trigger or left unconnected. Only applicable for devices which have a DMA controller.
UartTxTriggerLevel	0	When the SCB mode is UART, this parameter defines the number of entries in the TX FIFO to control the SCB.INTRTX.TRIGGER interrupt event or TX DMA trigger output.
UartWakeEnable	false	When the SCB mode is UART, this parameter enables the wakeup from Deep Sleep on start bit event. The actual wakeup source is RX GPIO. The skip start UART feature allows it to continue receiving bytes.

9.6 Component type: TCPWM_P4 [v2.10]

9.6.1 Instance PWM_MOT

Description: 16-bit Timer Counter PWM (TCPWM)

Instance type: TCPWM_P4 [v2.10]
Datasheet: online component datasheet for TCPWM_P4

Table 20. Component Parameters for PWM_MOT

Parameter Name	Value	Description
PWMCompare	1	The initial value for the
		comparison register when in the
		PWM mode
PWMCompareBuf	65535	The initial value for the second
		comparison register when in the
		PWM mode
PWMCompareSwap	Disable swap	Determines whether the PWM
		swap check box is enabled or
		disabled
PWMCountMode	Level	Determines whether the PWM
		counter counts at level detection
		or in various modes of edge
		detection
PWMCountPresent	false	Determines if the PWM count
		signal is present and controls
		the visibility of the count pin
PWMDeadTimeCycle	0	Sets the number of cycles of
		dead time insertion
PWMInterruptMask	None	The mask used for enabling the
		interrupt bit in the PWM mode
PWMKillEvent	Asynchronous	Selects whether a PWM kill
		event is synchronous or
		asynchronous to the input clock

Parameter Name	Value	Description
PWMLinenSignal	Direct Output	Selects whether the PWM line_n signal is inverted or is directly output
PWMLineSignal	Direct Output	Selects whether the PWM line signal is inverted or is directly output
PWMMode	PWM	Selects one of the three PWM modes - PWM, PWM with dead time insertion, or Pseudo random PWM
PWMPeriod	4096	The initial value for the period register when in the PWM mode
PWMPeriodBuf	65535	The initial value for the second period register when in the PWM mode
PWMPeriodSwap	Disable swap	Enables swap between the PWM period and period_buf registers
PWMPrescaler	0	Defines the prescaler used to divide the TCPWM clock to create the counter clock
PWMReloadMode	Rising edge	Determines whether the PWM reload signal is accepted at level detection or in various modes of edge detection
PWMReloadPresent	false	Determines whether the PWM reload signal is present and controls its pin visibility
PWMRunMode	Continuous	Selects between continuous and one shot run mode for the PWM
PWMSetAlign	Center align	Selects the alignment of the PWM waveform to be either left, right, center or asymmetrically aligned
PWMStartMode	Level	Determines whether the PWM start signal is accepted at level detection or in various modes of edge detection
PWMStartPresent	false	Determines whether the PWM start signal is present and controls its pin visibility
PWMStopEvent	Don't stop on Kill	Selects whether to kill the PWM on a stop signal or not
PWMStopMode	Rising edge	Determines whether the PWM stop signal is accepted at level detection or in various modes of edge detection
PWMStopPresent	false	Determines whether the PWM stop signal is present and controls its pin visibility
PWMSwitchMode	Rising edge	Determines whether the PWM switch signal is accepted at level detection or in various modes of edge detection
PWMSwitchPresent	false	Determines whether the PWM switch signal is present and controls its pin visibility

Parameter Name	Value	Description
QuadEncodingModes	x1 Encoding mode	Selects one of the three quadrature decoder modes – x1, x2, or x4 encoding mode
QuadIndexMode	Rising edge	Determines whether the Quadrature Decoder index signal is accepted at level detection or in various modes of edge detection
QuadIndexPresent	false	Determines whether the Quadrature Decoder index signal is present and controls its pin visibility
QuadInterruptMask	Terminal count mask	The mask used to configure which Quadrature Decoder event causes an interrupt
QuadPhiAMode	Level	Determines whether the Quadrature Decoder PhiA signal is accepted at level detection or in various modes of edge detection
QuadPhiBMode	Level	Determines whether the Quadrature Decoder PhiB signal is accepted at level detection or in various modes of edge detection
QuadStopMode	Rising edge	Determines whether the Quadrature Decoder stop signal is accepted at level detection or in various modes of edge detection
QuadStopPresent	false	Determines whether the Quadrature Decoder stop signal is present and controls its pin visibility
TCCaptureMode	Rising edge	Determines whether the Timer/Counter capture signal is accepted at level detection or in various modes of edge detection
TCCapturePresent	false	Determines whether the Timer/Counter capture signal is present and controls its pin visibility
TCCompare	65535	The initial value for the comparison register when in the Timer/Counter mode
TCCompareBuf	65535	The initial value for the second comparison register when in the Timer/Counter mode
TCCompareSwap	Disable swap	Determines whether the Timer/Counter swap check box is enabled or disabled
TCCompCapMode	Capture Mode	Selects whether the Timer/Counter capture or the compare mode is enabled
TCCountingModes	Counts up	Selects the count direction of the counter

Parameter Name	Value	Description
TCCountMode	Level	Determines whether the Timer/Counter count signal is accepted at a level detect or at various modes of edge detection
TCCountPresent	false	Determines whether the Timer/Counter count signal is present and controls its pin visibility
TCInterruptMask	Terminal count mask	The mask used to determine which Timer/Counter event causes an interrupt
TCPeriod	65535	The initial value for the Timer/Counter period register
TCPrescaler	0	Selects the prescaler value to apply to the Timer/Counter clock
TCPWMCapturePresent	false	Determines whether the Unconfigured capture signal is present and controls its pin visibility
TCPWMConfig	PWM	Selects the TCPWM mode - Unconfigured, Timer/Counter, PWM, or Quadrature Decoder
TCPWMCountPresent	false	Determines whether the Unconfigured count signal is present and controls its pin visibility
TCPWMReloadPresent	false	Determines whether the Unconfigured reload signal is present and controls its pin visibility
TCPWMStartPresent	false	Determines whether the Unconfigured start signal is present and controls its pin visibility
TCPWMStopPresent	false	Determines whether the Unconfigured stop signal is present and controls its pin visibility
TCReloadMode	Rising edge	Determines whether the Timer/Counter reload signal is accepted at level detection or in various modes of edge detection
TCReloadPresent	false	Determines whether the Timer/Counter reload signal is present and controls its pin visibility
TCRunMode	Continuous	Selects whether the counter runs continuously or one shot
TCStartMode	Rising edge	Determines whether the start signal is accepted at level detection or in various modes of edge detection

>
CYPRESS'

Parameter Name	Value	Description
TCStartPresent	false	Determines whether the
		Timer/Counter start signal is
		present and controls its pin visibility
TCStopMode	Rising edge	Determines whether the Timer/Counter stop signal is accepted at level detection or in various modes of edge detection
TCStopPresent	false	Determines whether the Timer/Counter stop signal is present and controls its pin visibility

9.6.2 Instance TX_SEND

Description: 16-bit Timer Counter PWM (TCPWM) Instance type: TCPWM_P4 [v2.10]

Datasheet: online component datasheet for TCPWM_P4

Table 21. Component Parameters for TX_SEND

	Description
65535	The initial value for the comparison register when in the PWM mode
65535	The initial value for the second comparison register when in the PWM mode
Disable swap	Determines whether the PWM swap check box is enabled or disabled
Level	Determines whether the PWM counter counts at level detection or in various modes of edge detection
false	Determines if the PWM count signal is present and controls the visibility of the count pin
0	Sets the number of cycles of dead time insertion
Terminal count mask	The mask used for enabling the interrupt bit in the PWM mode
Asynchronous	Selects whether a PWM kill event is synchronous or asynchronous to the input clock
Direct Output	Selects whether the PWM line_n signal is inverted or is directly output
Direct Output	Selects whether the PWM line signal is inverted or is directly output
PWM	Selects one of the three PWM modes - PWM, PWM with dead time insertion, or Pseudo random PWM
65535	The initial value for the period register when in the PWM mode
	Disable swap Level false 0 Terminal count mask Asynchronous Direct Output Direct Output

Parameter Name	Value	Description
PWMPeriodBuf	65535	The initial value for the second period register when in the PWM mode
PWMPeriodSwap	Disable swap	Enables swap between the PWM period and period_buf registers
PWMPrescaler	0	Defines the prescaler used to divide the TCPWM clock to create the counter clock
PWMReloadMode	Rising edge	Determines whether the PWM reload signal is accepted at level detection or in various modes of edge detection
PWMReloadPresent	false	Determines whether the PWM reload signal is present and controls its pin visibility
PWMRunMode	Continuous	Selects between continuous and one shot run mode for the PWM
PWMSetAlign	Left align	Selects the alignment of the PWM waveform to be either left, right, center or asymmetrically aligned
PWMStartMode	Rising edge	Determines whether the PWM start signal is accepted at level detection or in various modes of edge detection
PWMStartPresent	false	Determines whether the PWM start signal is present and controls its pin visibility
PWMStopEvent	Don't stop on Kill	Selects whether to kill the PWM on a stop signal or not
PWMStopMode	Rising edge	Determines whether the PWM stop signal is accepted at level detection or in various modes of edge detection
PWMStopPresent	false	Determines whether the PWM stop signal is present and controls its pin visibility
PWMSwitchMode	Rising edge	Determines whether the PWM switch signal is accepted at level detection or in various modes of edge detection
PWMSwitchPresent	false	Determines whether the PWM switch signal is present and controls its pin visibility
QuadEncodingModes	x1 Encoding mode	Selects one of the three quadrature decoder modes – x1, x2, or x4 encoding mode
QuadIndexMode	Rising edge	Determines whether the Quadrature Decoder index signal is accepted at level detection or in various modes of edge detection
QuadIndexPresent	false	Determines whether the Quadrature Decoder index signal is present and controls its pin visibility

Parameter Name	Value	Description
QuadInterruptMask	Terminal count mask	The mask used to configure
		which Quadrature Decoder
O IDLIANA		event causes an interrupt
QuadPhiAMode	Level	Determines whether the
		Quadrature Decoder PhiA signal is accepted at level
		detection or in various modes of
		edge detection
QuadPhiBMode	Level	Determines whether the
		Quadrature Decoder PhiB
		signal is accepted at level
		detection or in various modes of
		edge detection
QuadStopMode	Rising edge	Determines whether the
		Quadrature Decoder stop signal
		is accepted at level detection or in various modes of edge
		detection
QuadStopPresent	false	Determines whether the
		Quadrature Decoder stop signal
		is present and controls its pin
		visibility
TCCaptureMode	Rising edge	Determines whether the
		Timer/Counter capture signal is
		accepted at level detection or in
		various modes of edge detection
TCCapturePresent	false	Determines whether the
100aptarer resent	laise	Timer/Counter capture signal is
		present and controls its pin
		visibility
TCCompare	65535	The initial value for the
		comparison register when in the
	25525	Timer/Counter mode
TCCompareBuf	65535	The initial value for the second
		comparison register when in the Timer/Counter mode
TCCompareSwap	Disable swap	Determines whether the
1 Coompared wap	Biodolic Swap	Timer/Counter swap check box
		is enabled or disabled
TCCompCapMode	Capture Mode	Selects whether the
	·	Timer/Counter capture or the
		compare mode is enabled
TCCountingModes	Counts up	Selects the count direction of
T00 III :	. ,	the counter
TCCountMode	Level	Determines whether the
		Timer/Counter count signal is accepted at a level detect or at
		various modes of edge
		detection
TCCountPresent	false	Determines whether the
		Timer/Counter count signal is
		present and controls its pin
		visibility
TCInterruptMask	None	The mask used to determine
		which Timer/Counter event
		causes an interrupt

Parameter Name	Value	Description
TCPeriod	1000	The initial value for the
		Timer/Counter period register
TCPrescaler	7	Selects the prescaler value to
		apply to the Timer/Counter clock
TCPWMCapturePresent	false	Determines whether the
TOF WIVICAPtureFresent	laise	Unconfigured capture signal is
		present and controls its pin
		visibility
TCPWMConfig	Timer Counter	Selects the TCPWM mode -
		Unconfigured, Timer/Counter,
TODWA AC + Do +	folos	PWM, or Quadrature Decoder
TCPWMCountPresent	false	Determines whether the Unconfigured count signal is
		present and controls its pin
		visibility
TCPWMReloadPresent	false	Determines whether the
		Unconfigured reload signal is
		present and controls its pin
TCD\\\\\ACtoutDuccout	folos	visibility Determines whether the
TCPWMStartPresent	false	Unconfigured start signal is
		present and controls its pin
		visibility
TCPWMStopPresent	false	Determines whether the
		Unconfigured stop signal is
		present and controls its pin
TCReloadMode	Rising edge	visibility Determines whether the
Civeloadivioue	Trising edge	Timer/Counter reload signal is
		accepted at level detection or in
		various modes of edge
		detection
TCReloadPresent	false	Determines whether the
		Timer/Counter reload signal is present and controls its pin
		visibility
TCRunMode	Continuous	Selects whether the counter
		runs continuously or one shot
TCStartMode	Rising edge	Determines whether the start
		signal is accepted at level
		detection or in various modes of
TCStartPresent	false	edge detection Determines whether the
OStarti resent	laise	Timer/Counter start signal is
		present and controls its pin
		visibility
TCStopMode	Rising edge	Determines whether the
		Timer/Counter stop signal is
		accepted at level detection or in various modes of edge
		detection
TCStopPresent	false	Determines whether the
	.55	Timer/Counter stop signal is
		present and controls its pin
		visibility

10 Other Resources

The following documents contain important information on Cypress software APIs that might be relevant to this design:

- Standard Types and Defines chapter in the System Reference Guide
 - Software base types
 - Hardware register types
 - Compiler defines
 - Cypress API return codes
 - Interrupt types and macros
- Registers
 - o The full PSoC 4 register map is covered in the PSoC 4 Registers Technical Reference
 - o Register Access chapter in the System Reference Guide

 - § CY_GET API routines§ CY_SET API routines
- System Functions chapter in the **System Reference Guide**
 - General API routines
 - o CyDelay API routines
 - o CyVd Voltage Detect API routines
- Power Management
 - o Power Supply and Monitoring chapter in the PSoC 4 Technical Reference Manual
 - o Low Power Modes chapter in the PSoC 4 Technical Reference Manual
 - o Power Management chapter in the System Reference Guide
 - § CyPm API routines
- Watchdog Timer chapter in the System Reference Guide
 - CyWdť API routinės