

Introduction

- Further develop the AS side of the economy; examine the dynamic adjustment process from the short run to the long run
 - The price-output relationship is based upon links between wages, prices, employment, and output
 - → link between unemployment and inflation = Phillips Curve
 - Translate between unemployment and output, inflation and price changes
- Introduce role of price and inflation expectations, and the "rational expectations revolution"
- NOTE: theory of AS is the least settled area in macro
 - Don't fully understand why W and P are slow to adjust, but offer several theories
 - All modern models differ in starting point, but reach the same conclusion: SRAS is flat, LRAS is vertical

Inflation and Unemployment

- Figure 6.1 shows U.S. unemployment over several decades
 - Several periods of high unemployment: early 1960s, mid 1970's, early-mid 1980's, early 1990s, and the current period
 - Several periods of low unemployment: late 1960's, early 2000, and 2007

Inflation and Unemployment

- Phillips curve (PC) shows the relationship between unemployment and inflation
 - Although GDP is linked to unemployment, it is easier to work with the PC than the AS when discussing unemployment

The Phillips Curve

- In 1958 A.W. Phillips published a study of wage behavior in the U.K. between 1861 and 1957
- The main findings are summarized in Figure 6.2
 - → There is an inverse relationship between the rate of unemployment and the rate of increase in money wages
 - → From a policymaker's perspective, there is a tradeoff between wage inflation and unemployment

The Phillips Curve

- The PC shows the rate of growth of wage inflation decreases with increases in unemployment
 - If W_t = wage this period W_{t+1} = wage next period g_w = rate of wage inflation, then $g_w = \frac{W_{t+1} W_t}{W_t}$ (1)
- If μ^* represents the natural rate of unemployment, the simple PC is defined as: $g_w = -\varepsilon(\mu \mu^*)$ (2) where ε measures the responsiveness of wages to unemployment
 - Wages are falling when $\mu > \mu^*$ and rising when $\mu < \mu^*$
 - $(\mu \mu^*)$ is called the unemployment gap

The Phillips Curve

- Suppose the economy is in equilibrium with prices stable and unemployment at the natural rate
 - If money supply increases by 10%, wages and prices both must increase by 10% for the economy to return to equilibrium
 - PC shows:
 - If wages increase by 10%, unemployment will have to fall
 - If wages increase, price will increase and the economy will return to the full employment level of output and unemployment

• To see why this is so, rewrite equation (1) in terms of current and past wage levels:

$$\frac{W_{t+1} - W_t}{W_t} = -\varepsilon(\mu - \mu^*)$$

$$W_{t+1} - W_t = W_t(-\varepsilon(\mu - \mu^*))$$

$$W_{t+1} = W_t(-\varepsilon(\mu - \mu^*)) + W_t$$

$$W_{t+1} = W_t[1 - \varepsilon(\mu - \mu^*)]$$
(2a)

→ For wages to rise above previous levels, u must fall below the natural rate

The Policy Tradeoff

- PC quickly became a cornerstone of macroeconomic policy analysis since it suggests that policy makers could choose different combinations of u and Π rates
 - Can choose low u if willing to accept high Π (late 1960's)
 - Can maintain low Π by having high u (early 1960's)
- In reality the tradeoff between u and Π is a short run phenomenon
 - Tradeoff disappears as AS becomes vertical

- Figure 6-4 shows the behavior of Π and u in the US since 1960 → does not fit the simple PC story
 - Individuals are concerned with standard of living, and compare wage growth to inflation
 - If wages do not "keep up" with inflation, standard of living falls
 - Individuals form
 expectations as to what Π
 will be over a particular
 period of time, and use in
 wage negotiations (Π^e)
- Rewrite (2) to reflect this as: $(g_w - \Pi^e) = -\varepsilon(\mu - \mu^*)$ (3)

FIGURE 6-4 RELATIONSHIP OF INFLATION AND UNEMPLOYMENT: UNITED STATES, 1961–2012.

- If maintaining the assumption of a constant real wage, W/P, actual Π will equal wage inflation
- The equation for the modern version of the PC, the expectations augmented PC, is:

$$(g_{w} - \Pi^{e}) = -\varepsilon(\mu - \mu^{*}) \Rightarrow$$

$$(\Pi - \Pi^{e}) = -\varepsilon(\mu - \mu^{*}) \Rightarrow$$

$$\Pi = \Pi^{e} - \varepsilon(\mu - \mu^{*})$$
(4)

NOTE:

- 1. Π^{e} is passed one for one into actual Π
- 2. $u = u^*$ when $\Pi^e = \Pi$

- The modern PC intersects the natural rate of u at the level of expected inflation
- Figure 6-5 illustrates the inflation expectations-augmented Phillips curve for the 1980s and early 2000
- The height of the SRPC depends upon Π^e

- Changes in expectations <u>shifts</u> the curve up and down
 - The role of Π^e adds another automatic adjustment mechanism to the AS side of the economy
- When high AD moves the economy up and to the left along the SRPC, Π results
 - if persists, people adjust their expectations upwards, and move to higher SRPC

- After 1960, the original PC relationship broke down
- How does the augmented PC hold up?
- To test the augmented PC, need a measure of $\Pi^e \rightarrow$ best estimate is last period's inflation, $\Pi^e = \Pi_{t-1}$
- Figure 6-6 illustrates the augmented PC using the equation:

$$\Pi - \Pi^e \approx \Pi - \Pi_{t-1} = -\varepsilon(u - u^*)$$

→ Appears to work well in most periods

FIGURE 6-6 RELATIONSHIP OF CHANGES IN INFLATION AND UNEMPLOYMENT RATES.

Rational Expectations

- The augmented PC predicts that actual Π will rise above Π^e when $u < u^* \rightarrow So$ why don't individuals quickly adjust their expectations to match the model's prediction?
 - The PC relationship relies on people being WRONG about Π in a very predictable way
 - If people learn to use (4) to predict Π, Π^e should always equal Π, and thus $u = u^*$
- Robert Lucas modified the model to allow for *mistakes*
 - He argued that a good economics model should not rely on the public making easily avoidable mistakes
 - So long as we are making predictions based on information available to the public, then the values we use for Π^e should be the same as the values the model predicts for Π
 - Surprise shifts in AD will change u, but <u>predictable</u> shifts will not

Rational Expectations

- The argument over rational expectations is as follows:
 - The usual macroeconomic model takes the height of the PC as being pegged in the SR by Π^e , where Π^e is set by historical experience
 - The rational expectations model has the SRPC floating up and down in response to available information about the near future
 - Individuals use new information to update their expectations
- Both models agree that if money growth were permanently increased, the PC would shift up in the LR, and Π would increase with no LR change in u
 - The RE model states that this change is instantaneous, while the traditional model argues that the shift is gradual

- In neoclassical theory of supply, wages adjust instantly to ensure that output always at the full employment level, BUT output is <u>not</u> always at the full employment level, and the PC suggests that wages adjust slowly in response to changes in u
- The key question in the theory of AS is "Why does the nominal wage adjust slowly to shifts in demand?" OR "Why are wages sticky?"
- Wages are sticky when wages move slowly over time, rather than being flexible, allowing for economy to deviate from the full employment level

• To clarify the assumptions about wage stickiness, translate (3) into a relationship between g_w and the level of employment:

If N^* = full employment level of employment N = actual level of employment u = share of N^* that is not employed, then

• Substitute (5) into (3) We \bar{h} are \bar{h} PC relationship between E, Π^e , and g_w :

$$g_w - \Pi^e = \frac{W_{t+1} - W_t}{W_t} - \Pi^e = -\varepsilon \left(\frac{N^* - N^2}{N^*}\right)^{b}$$

$$g_{w} - \Pi^{e} = \frac{W_{t+1} - W_{t}}{W_{t}} - \Pi^{e} = -\varepsilon \left(\frac{N^{*} - N}{N^{*}}\right)$$
 (2b)

- The wage next period is equal to the wage that prevailed this period, but with an adjustment for the level of employment and π^e
 - At full employment, $N^* = N$, this period's wage equals last period's, plus an adjustment for π^e
 - If N > N*, the wage next period increases above this period's by more than π^e since g_w π^e > 0

- Figure 6-7 illustrates the wage-employment relationship, WN
- The extent to which the wage responds to E depends on the parameter $\boldsymbol{\epsilon}$
- If ε is large, u has large effects on wages and the WN line is steep

- The PC relationship also implies WN relationship shifts over time
- If there is over-employment this period, WN shifts up to WN'
- If there is less than full employment this period, WN curve shifts down to WN"
- → <u>Result</u>: Changes in AD that alter the u this period will have effects on wages in subsequent periods

• Each school of thought has to explain why there is a PC, or the reasons for wage and price stickiness

Examples of such explanations for wage and price stickiness include:

- 1. Imperfect information
 - Friedman and Phelps
 - In the context of clearing markets
- 2. Coordination problems
 - Focus on the process by which firms adjust their prices when demand changes
- 3. Efficiency wages and costs of price changes
 - Focus on wage as a means of motivating labor

- Explanation of wage stickiness builds upon mentioned theories and one central element → the labor market involves long-term relationships between firms and workers
 - Working conditions, including the wage, are renegotiated periodically, but not frequently, due to the costs of doing so
- At any time, firms and workers agree on a wage schedule to be paid to currently employed workers
 - If demand for labor increases and firms increase hours of work, in the SR wages rise along the WN curve
 - With demand up, workers press for increased wages, but takes time to renegotiate all wages (staggered wage-setting dates)
 - During the adjustment process, firms also resetting P to cover increased cost of production
 - Process of W and P adjustment continues until economy back at full employment level of output

The transition from the PC to the AS curve requires four steps:

- 1. Translate output to employment
- 2. Link prices firms charge to costs
- 3. Use Phillips curve relationship between W and E
- 4. Combine 1-3 to derive upward sloping AS curve

Translate output to employment

- Close relationship between unemployment/employment and output in SR
- Okun's Law defines this relationship:

$$\frac{Y - Y^*}{Y^*} = -\omega(u - u^*)$$
 (6)

 Estimate ω to be close to 2 → each point of u costs 2% points of GDP

The transition from the PC to the AS curve requires four steps:

- 1. Translate output to employment
- 2. Link prices firms charge to costs
- 3. Use Phillips curve relationship between W and E
- 4. Combine 1-3 to derive upward sloping AS curve

Link prices to costs

- Firms supply output at a price that at least covers costs of production
- Assuming N is the only cost of production, if each unit of N produces a units of output, the labor costs of production per unit is W/a
- Firms set price as a markup,
 z, on labor costs:

$$P = \frac{(1+z)W}{a} \tag{7}$$

The transition from the PC to the AS curve requires four steps:

- 1. Translate output to employment
- 2. Link prices firms charge to costs
- 3. Use Phillips curve relationship between W and E
- 4. Combine 1-3 to derive upward sloping AS curve

The Aggregate Supply curve

Combining (2b), (6), and (7) yields:

$$P_{t+1} = P_{t+1}^e + P_t \frac{\varepsilon}{\omega} \left(\frac{Y - Y^*}{Y^*} \right)$$
 (8)

Often replace (8) with an approximate version:

$$P_{t+1} = P_{t+1}^{e} \left[1 + \lambda (Y - Y^*) \right]^{(9)}$$

which is the equation for the aggregate supply curve

$$P_{t+1} = P_{t+1}^{e} \left[1 + \lambda (Y - Y^*) \right]$$

- Figure 6-8 shows AS curve implied by equation (9)
 - If Y > Y*, next period the AS curve will shift up to AS'
 - If Y < Y*, next period AS will shift down to AS"

<u>NOTE</u>: These are the same properties as the WN curve

Supply Shocks

- A supply shock is a disturbance in the economy whose first impact is a shift in the AS curve
- An adverse supply shock is one that shifts AS inwards (as in Figure 6-10)
 - As AS shifts to AS',
 equilibrium shifts from E to
 E' and prices increase while
 output falls
 - The u at E' forces wages and prices down until return to E, but process is slow

Supply Shocks

- After the shock:
 - Economy returns to the full employment level of employment
 - Price level is the same as it was before the shock
 - Nominal wages are <u>LOWER</u> due to the increased u at the onset of the shock
 - Real wages must also fall

Supply Shocks

- Figure 6-10 also shows the impact of AD policy after an adverse supply shock
- Suppose G increases (to AD'):
 - Economy could move to E* if increase enough
 - Such shifts = "accommodating policies" (accommodate the fall in the real wage at the existing nominal wage)
 - Added inflation, although reduce u from AS shock

Evaluating the Tradeoff

 Gallup organization conducts opinion polls asking:

"What is the most important problem facing the country?"

 Unemployment has become the most important problem

What are the relative economic costs of inflation and unemployment?

TABLE 6-1	The Mo	The Most Important Problem Facing the Country?			
		INFLATION		UNEMPLOYMENT	
		NUMBER-ONE PROBLEM,		NUMBER-ONE PROBLEM	
	RATE, %	% OF RESPONDENTS	RATE, %	% OF RESPONDENTS	
1981	10.4	73	7.5	8	
1982	6.2	49	9.6	28	
1983	3.2	18	9.5	53	
1984	4.4	10	7.5	28	
1985	3.6	7	7.2	24	
1986	1.9	4	7.0	23	
1987	3.7	5	6.2	13	
1988	4.1	*	5.5	9	
1989	4.8	3	5.3	6	
1990	5.4	_	5.5	3	
1991	4.2	_	6.8	23	
1992	2.8	_	7.4	25	
1993	3.1	_	7.1	13	
1994	2.5	2	6.6	11	
1995	2.8	2	5.5	9	
1996	2.7	_	5.6	5	
1997	2.2	1	4.9	8	
1998	1.3	1	4.5	5	
1999	2.1	· —	4.2	5	
2000	3.4	2	4.0	2	
2001	2.9	2	4.8	6	
2002	2.4	1	5.8	8	
2003	2.3	1	6.0	15	
2004	2.7	1	5.5	12	
2005	3.4	1	5.1	9	
2010	-0.4	1	9.7	31	
*—indicates	less than 1 per	rcent.			

Unemployment

- The greatest cost of unemployment = lost production
 - This cost is large: a recession can easily cost 3-5% of GDP and hundreds of billions of dollars
 - Okun's law states that 1 extra point of unemployment costs 2% of GDP [See Figure 6-12]
- Costs borne unevenly, largely by those who lose their jobs
 - Workers just entering the labor force and teenagers are amongst the hardest hit

Political Business Cycle Theory

- Studies interactions between economic policy decisions and political considerations
- Building blocks:
 - 1. What are the tradeoffs from which a policymaker can choose?
 - 2. How do voters rate the issues?
 - 3. What is the optimal timing for influencing election results?
- Voters worry about both the <u>level</u> and <u>rate of change</u> of unemployment and inflation
 - Public worries about:
 - 1. Rising unemployment
 - 2. Inflation that differs from expectations

These worries influence types of policies used

Political Business Cycle Theory

- Studies interactions between economic policy decisions and political considerations
- Building blocks:
 - 1. What are the tradeoffs from which a policymaker can choose?
 - 2. How do voters rate the issues?
 - 3. What is the optimal timing for influencing election results?
- Policymaker wants economy pointing in the right direction at election time to maximize voter approval
- How to use the period between inauguration and election to bring the economy to just the right position?
 - Use restrictive policies early to raise unemployment and lower inflation
 - As election approaches, use expansionary policy to lower unemployment

Should be a systematic cycle in unemployment

Political Business Cycle Theory

- Studies interactions between economic policy decisions and political considerations
- Building blocks:
 - 1. What are the tradeoffs from which a policymaker can choose?
 - 2. How do voters rate the issues?
 - 3. What is the optimal timing for influencing election results?
- Factors work against PBCT:
 - Ability of government to fine tune the economy is limited
 - Difficulties specific to the implementation of politically motivated manipulations
 - Midterm elections
 - Risks associated with cynical manipulation of macroeconomic policies
 - Macroshocks overshadowing election cycle
 - Executive branch does not control full range of instruments
 - Rational expectations