Second Price Auctions

The highest bidder wins but the price paid is the second-highest bid

Second Price Auctions

- Players: n bidders.
- \blacksquare *Types*: Each bidder i's type is her valuation is v_i .
- Strategies: bidder i's maximal bid is b_i.
- Payoffs: $u_i(b_1, ..., b_n, v) = v_i \underline{b}_i$ if $b_i > \underline{b}_i$ 0 if $b_i \leq \underline{b}_i$ where, $\underline{b}_i = \max \{b_i : j \text{ different from } i\}$.

Weakly Dominant Solution

The strategy profile $(b_1^*, ..., b_n^*) = (v_1, ..., v_n)$ is the unique weakly dominant solution, and hence a Nash equilibirum.

	$\underline{b}_{i} < b_{i} \text{ or }$	$b_i < \underline{b}_i < v_i \text{ or }$	
	$\underline{b}_i = b_i \& i wins$	$b_i = b_i \& i loses$	$\underline{b}_{i} > v_{i}$
$b_i < v_i$	v _i - <u>b</u> i	0	0
$b_i = v_i$	v _i - <u>b</u> i	v _i - <u>b</u> i	0

		$v_i < \underline{b}_i < b_i \text{ or }$	$\underline{b}_{i} > b_{i}$ or
	$\underline{b}_i \leq v_i$	$\underline{b}_{i} = b_{i} \& i wins$	$\underline{\mathbf{b}}_{\mathbf{i}} = \mathbf{b}_{\mathbf{i}} & \mathbf{i} \text{ loses}$
$b_i = v_i$	v _i - <u>b</u> i	0	0
$b_i > v_i$	v _i - <u>b</u> i	$v_i - \underline{b}_i \ (< 0)$	0

In sum, bidding $b_i = v_i$ yields at least as high a payoff as bidding $b_i > v_i$ or $b_i < v_i$ for any opponents' bids.

Generalized Second Price Auctions were Adopted for Ads Bidding

