Tycho Problem ID: tycho

Pojazd do eksploracji planet *Tycho VIII* musi wrócić do bazy macierzystej po zebraniu próbek minerałów. Tycho podróżuje w linii prostej z pozycji 0 do bazy domowej na pozycji b. Podczas ruchu posuwa się do przodu w wolnym, ale stałym tempie 1 jednostki na sekundę. W każdej sekundzie Tycho ponosi 1 jednostkę szkód środowiskowych spowodowanych trudnymi warunkami panującymi na planecie.

Sytuację pogarsza jeszcze promieniowanie z pobliskiego pulsara, które dodaje d dodatkowych jednostek obrażeń co p sekund. Obrażeń od promieniowania można jednak uniknąć, szukając

schronienia w jednej z n różnych kryjówek — jaskiniach, roślinności, dużych skałach, padlinach megafauny planety — po drodze. Tycho może zdecydować się na stanie w miejscu przez dowolną liczbę całkowitą sekund.

Pozycja startowa 0 i baza domowa b są osłonięte, więc Tycho nie otrzymuje tam żadnych obrażeń od promieniowania.

Jaka jest najmniejsza sumaryczna liczba obrażeń otrzymanych przez Tycho w drodze powrotnej do bazy?

Przykład

Rozważ sytuację, w której baza macierzysta znajduje się na pozycji 18, a na pozycjach 8 i 15 znajdują się schrony.

Przyjmij, że okres pulsara to 4, więc Tycho poza schronieniem odbierałby obrażenia w momentach 4, 8, 12, itd. Jeśli Tycho wyjdzie z pozycji startowej (gdzie jest osłonięty) w czasie 0, może dotrzeć do pierwszego schronu po 8 sekundach, ponosząc obrażenia od promieniowania d w czasie 4 (ale żadnych w czasie 8, ponieważ jest wtedy osłonięty). Kontynuując bez zatrzymywania się, dociera do bazy domowej w czasie 18, ponosząc d+d kolejnych jednostek obrażeń od promieniowania (odpowiednio w czasie 12 i 16). W ten sposób ponosi d+d+d=3d jednostek obrażeń od promieniowania i 18 jednostek obrażeń od środowiska. Jeśli zamiast tego Tycho czeka w schronie o numerze 2 (na pozycji 15) przez 1 sekundę, impuls w czasie 16 nie powoduje żadnych obrażeń, a do bazy macierzystej dociera w czasie 19 z łączną liczbą 2d+19 jednostek obrażeń. Jest to lepsze rozwiązanie dla większości wartości d. Te dwie sytuacje są pokazane tutaj:

Jeśli okres pulsara wynosi 10, Tycho może czekać na pozycji startowej przez 2 sekundy, a potem po prostu wrócić do domu, nie zatrzymując się w żadnym schronie. W ten sposób mija schron o numerze 1 (na pozycji 8) we właściwym momencie, gdy pulsar rozbłyska i dociera do bazy macierzystej w czasie 20, za łączną sumę 20 szkód środowiskowych i żadnych szkód radiacyjnych.

Wejście

Pierwsza linia składa się z czterech liczb całkowitych b, p, d, oraz n, oddzielonych pojedynczymi spacjami: lokalizacji bazy domowej b, okresu rozbłysku pulsara p, dodatkowych szkód radiacyjne d spowodowane przez każdą flarę pulsara, oraz liczby schronów n. Kolejne n wierszy zawierają po jednej liczbie całkowitej oznaczającej lokalizacje schronów

```
a_1, \ldots, a_n, spełniające 0 < a_1 < \cdots < a_n < b.
```

Wyjście

Wypisz pojedynczą liczbę całkowitą: minimalną ilość obrażeń, jakie musi przyjąć Tycho, by dotrzeć na pozycję b.

Ograniczenia i punktacja

Możesz założyć $1 \le p < b$ oraz $0 \le n < b$. Zawsze jest spełnione $1 \le b \le 10^{12}, 0 \le d \le 10^6$, oraz $0 \le n \le 10^5$.

Twoje rozwiązanie zostanie przetestowane na zestawie grup testowych, z których każda jest warta pewną liczbę punktów. Każda grupa testowa zawiera zestaw przypadków testowych. Aby uzyskać punkty za grupę testową musisz rozwiązać wszystkie przypadki testowe w tej grupie. Twój ostateczny wynik będzie maksymalnym wynikiem pojedynczego zgłoszenia.

Grupa	Punkty	Ograniczenia
1	18	$p \le 10^6$ oraz Tycho nie musi czekać po wyjściu z pozycji $0.*$
2	15	$b \le 1000, p \le 100, n \le 10$
3	7	$b \le 1000$
4	15	$p \le 10^6, n \le 1000$
5	20	$p \le 100$
6	15	$p \le 10^6$
7	10	Brak dodatkowych ograniczeń

^{*} W grupie testowej 1, Tycho może nadal potrzebować czekać na pozycji 0 *zanim* zacznie się poruszać. Na przykład, przykładowe wejścia 2, 3, oraz 4 należą do grupy testowej 1.

Sample Input 1	Sample Output 1	
18 4 5 2	29	
8		
15		
Sample Input 2	Sample Output 2	
18 4 0 2	18	
8		
15		
Sample Input 3	Sample Output 3	
18 10 100 2	20	
8		
15		
Sample Input 4	Sample Output 4	
18 4 100 0	418	
Sample Input 5	Sample Output 5	
65 20 100 3	172	
14		
25		
33		