Contrôle 1 Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet

Exercice 1. Questions de cours (5 points)
Répondre aux questions suivantes. Une seule phrase suffit.
1. Pourquoi a-t-on besoin de doper les semi-conducteurs?
2. En quoi consiste le dopage?
3. Qu'est-ce qu'un modèle?
4. Pourquoi modéliser la diode?
5. Citer les différents modèles de la diode du plus précis au moins précis.

6.	L'équation de la caractéristique d'une diode à jonction PN est donnée par l'équation
	suivante : $I_D = I_S \left(e^{rac{V_D}{mV_T}} - 1 ight)$
	Le courant I_S est appelé « Courant thermique ». Pourquoi ?
	Ou deline of designation comment. Bounguoi co volcum actualla ci faible?
	On néglige généralement ce courant. Pourquoi sa valeur est-elle si faible?
7.	En deçà d'une certaine tension, on voit apparaître un fort courant inverse. Quels sont
	les phénomènes à l'origine de ce courant? (On ne vous demande pas de les expliquer)
8.	Quelle est la particularité d'une diode Zéner?
<u> </u>	
9.	Qu'est-ce qu'un petit signal?

Exercice 2. Les diodes : Polarisation (6 points)

Soit le schéma suivant : On modélisera la diode en utilisant son modèle à seuil avec $V_0 = 0.7V$.

1. Si $R_1=10\Omega$, $R_2=10k\Omega$ et E=10V, montrer que la diode est bloquée. (Rq: Utiliser un raisonnement par l'absurde)

2. Si $R_1=100\Omega$, $R_2=50\Omega$ et E=10V, montrer que la diode est passante. (Rq:Utiliser un raisonnement par l'absurde). Déterminer alors l'intensité du courant qui la traverse.

Exercice 3. (5 points)

Soit le circuit suivant :

On souhaite calculer le courant qui traverse la diode. On se propose, pour cela, de simplifier le circuit en utilisant le théorème de Thévenin.

1.	Déterminer le générateur de Thévenin équivalent à la partie gauche du circuit entre les deux bornes A et B .

2	Montrer alors qu	ue la diode est i	passante et	déterminer le	courant qui	la traverse
L .	Month of alors qu	de la aloue est	passaine	40,0,,,,,,,,		

Exercice 4. (4 points)

Soit le circuit suivant, avec :

$$E_1 = 10 V ; E_2 = 10 V$$

$$R_1=3\,k\Omega$$
 ; $R_2=3\,k\Omega$; $R_3=6\,k\Omega$;

$$R_4 = 10 \ k\Omega$$
; $R_5 = 2 \ k\Omega$

1	Déterminer	le o	énérateur	de	Thévenin	"711"	par	R.
Τ.	Determiner	16 9	enerareur	ue	mevenin	٧u	μui	nc.

1	
1	
1	
2. Calavian D. dalla ava V = 2 V	
2. Calculer R_C telle que $U=2\ V$.	
2. Calculer R_C telle que $U=2V$.	
2. Calculer R_C telle que $U=2\ V$.	
2. Calculer R_C telle que $U=2V$.	
2. Calculer R_C telle que $U=2V$.	
2. Calculer R_C telle que $U = 2 V$.	
2. Calculer R_C telle que $U=2\ V$.	
2. Calculer R_C telle que $U=2V$.	
2. Calculer R_C telle que $U=2V$.	
2. Calculer R_C telle que $U = 2V$.	
2. Calculer R_C telle que $U=2V$.	
2. Calculer R_C telle que $U=2V$.	
2. Calculer R_C telle que $U=2V$.	
2. Calculer R_C telle que $U=2V$.	
2. Calculer R_C telle que $U=2V$.	
2. Calculer R_C telle que $U=2V$.	
2. Calculer R_C telle que $U=2V$.	
2. Calculer R_c telle que $U=2V$.	
2. Calculer R_C telle que $U = 2V$.	
2. Calculer R_C telle que $U = 2V$.	
2. Calculer R_C telle que $U=2V$.	
2. Calculer R_C telle que $U=2V$.	
2. Calculer R_C telle que $U=2\ V$.	
2. Calculer R_C telle que $U=2V$.	
2. Calculer R_C telle que $U=2V$.	
2. Calculer R_C telle que $U = 2V$.	
2. Calculer R_C telle que $U = 2V$.	
2. Calculer R_C telle que $U=2V$.	