# Towards Genome-scale Disease Progression Models

#### Saptarshi Pyne, Alok Ranjan Kumar and Ashish Anand

Department of Computer Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, India 781039



1. Objective

Downloadable PDF of this Poster: https://goo.gl/3nLSEz

Discover how the genome-scale gene regulatory network changes with time during progression of a given disease.



## 2. Challenges, Methods & Results

#### Challenges

- Estimation of a large number of parameters which also necessitates high computation time and memory
- Integration of auxiliary data, e.g., TF binding site information, to enhance accuracy

#### Methods and Results

- A novel algorithm, namely 'an algorithm for reconstructing Time-varying Gene regulatory networks with Shortlisted candidate regulators (TGS) plus (TGS+), is proposed [1]. TGS+ provides the state-of-the-art computational speed and accuracy (F1 score) w.r.t. three in-silico DREAM3 [2] benchmark datasets having 10, 50 and 100 genes.
- TGS+ has two steps. In step 1, for each gene, a shortlist of its candid-



| #Genes\Algo | TGS+   | ARTIVA | TVDBN-0 | TVDBN-bino-hard | TVDBN-bino-soft |
|-------------|--------|--------|---------|-----------------|-----------------|
| 10          | 6 sec  | 10 min | 2 min   | 2 min           | 2 min           |
| 50          | 22 sec | 5 hrs  | 12 min  | 10 min          | 8 min           |
| 100         | 1 min  | 32 hrs | 52 min  | 3 hrs           | 17 min          |

ate regulators is inferred through an information theoretic pipeline. In step 2, the shortlisted candidates are evaluated within a Bayesian network framework to identify the true regulators among them.

## 3. Conclusions & Future Directions

- A novel algorithm, TGS+, is proposed to reconstruct time-varying gene regulatory networks from time-series gene expression datasets. It provides the state-of-the-art computational speed and accuracy w.r.t. three benchmark in-silico DREAM3 datasets.
  TGS+ also reconstructs a biologically significant D. melanogaster (Dm)
- TGS+ also reconstructs a biologically significant D. melanogaster (Dn aka 'fruit fly' life cycle model in sub-30 mins when applied on a Dm developmental life cycle dataset with 588 genes and 66 time points.
- However, main memory (RAM) consumption of TGS+ increases exponentially with the number of genes. Reducing its memory requirement remains an important challenge.
- Moreover, TGS+ can be extended to incorporate auxiliary regulatory evidences, e.g., TF binding site information, for enhancing accuracy.

### 4. References

- 1. Pyne et al. 'Rapid Reconstruction of Time-varying Gene Regulatory Networks'. TCBB, 2018.https://ieeexplore.ieee.org/document/8423706/
- 2. DREAM3 In Silico Network Challenge. https://www.synapse.org/#!Synapse:syn2853594/wiki/71567
- 3. Lèbre et al. 'Statistical inference of the time-varying structure of gene-regulation networks'. BMC Syst Biol, vol 4, no 1, p130, Sep 2010.
- 4. Dondelinger et al. 'Non-homogeneous dynamic Bayesian networks with Bayesian regularization for inferring gene regulatory networks with gradually time-varying structure'. Mach Learn, vol 90, no 2, p191–230, 2013.

### 5. Contacts

AA: anand.ashish@iitg.ernet.in, SP: saptarshipyne01@gmail.com