Міністерство освіти і науки України Національний технічний університет України «Київський Політехнічний Інститут імені Ігоря Сікорського» Кафедра конструювання електронно-обчислювальної апаратури

Звіт З виконання лабораторної роботи №1 з дисципліни "Аналогова електроніка - 1"

Виконав:

студент групи ДК-62

Сокол Я. В.

Перевірив:

доц. Короткий \in B.

1) Дослідження суматора напруги на резисторі

а) Під час лабораторного заняття було складено суматор напруги за наступною схемою:

У якості джерел напруги було використано керовані джерела, включенні в плату Analog Discovery 2. Резистори були вибрані з номіналами 200кОм, які є значно більшими за внутрішній опір джерел.

Напруги джерел було налаштовано наступним чином: ☑ Enable Simple **3** Stop Running - DC 3 Type: Frequency: 1 kHz Amplitude: 5 V 8 5 V Offset: Symmetry: 50 % 6 5 4 3 2 1 0 0 ms 0.2 ms 0.4 ms 0.6 ms 0.8 ms 1 ms 00 Channel 2 © 🕲 Run Enable Simple -DC 8 Ready 3.5 1 kHz Frequency: 3.3 500 mV Amplitude: 3.1 3 V Offset: 2.9 2.7 50 % Symmetry: 2.5 0 0 Phase: 0.2 ms 0.4 ms 0.6 ms 0.8 ms 1 ms

Щуп вольтметру Analog Discovery було підключено до точки Vout.

Результати вимірювань склали 3,953 В, що з урахуванням похибок, відповідає теоретичним передбаченням:

b) Симуляція суматора в LTspice для постійного сигналу

 $V_1 = 5V$

 $V_2 = 3V$

 $V_{out} = 4V \\$

Результати симуляції відповідають формулі Uвих = (U1 + U2)/2 з теоретичного опису суматора.

- с) На суматор було подано два сигнали імпульсний, амплітудою 1В, частотою 1 кГц та коефіцієнтом заповнення 50%, та синусоїдальний, амплітудою 1В та частотою 5 кГц.
- d) До виходу суматора було під'єднано один зі входів осцилографу, інший вхід було підключено до виходу генератора:

На виході суматора спостерігали комбінацію двох вхідних сигналів, що відповідає теоретичним очікуванням.

е) Симуляція суматора в LTspice для змінного сигналу:

Джерела налаштовано аналогічно до налаштувань генератору під час лабораторного дослідження.

Отриманий вихідний сигнал відповідає за формою сигналу з лабораторних досліджень:

2) Дослідження RC-ланцюжка.

а) Під час лабораторної роботи було складено інтегруючий RC-ланцюжок с наступними параметрами: С

$$= 4.7 \text{ MK}\Phi$$

$$R = 10 \text{ kOm}$$

b)Тривалість заряду/розряду до 95% складає:

$$t = 3\tau = 3 \times R \times C = 3 \times 4.7 \times 10^{-6} \times 10 \times 10^{3} = 140 \text{ MC}$$

с) На вхід RC-ланцюжка подали імпульсний сигнал з частотою 1 кГц, амплітудою 1В та коефіцієнтом заповнення 50%.

Два щупи осцилографа було підключено відповідно до входу та виходу RC-ланцюжка.

d) Було проведено симуляцію схеми в LTspice, результати якої також відповідають теоретичним очікуванням:

3) Дослідження RC-фільтру низької частоти

а) Під час лабораторної роботи будо складено RC-ФНЧ з наступними параметрами:

$$C = 2 H\Phi$$

 $R = 10 кОм$

Частота зрізу такого фільтру:

$$f_3 = \frac{1}{2\pi \times R \times C} = \frac{1}{2 \times 3,14 \times 10 \times 10^3 \times 2 \times 10^{-9}} \approx 7,96 \text{ к}$$
Гц

b) Для визначення АЧХ фільтру, що було складено, використали Network Analyzer у складі плати Analog Discovery.

с) Було отримано наступні результати:

Загальна форма АЧХ відповідає формі з теоретичної бази.

Точка частоти зрізу (-3 дБ) знаходиться на частоті 7.468 кГц, що, з урахуванням похибки, відповідає очікуванням.

Швидкість спадання АЧХ - -20дБ/дек. також спостерігається у виміряній АЧХ, що відповідає очікуванням:

d) Було розраховано ряд значень K_u теоретичного фільтру та порівняно з даними, отриманими експериментально. Результати наведено у таблиці:

Nº	<i>f</i> , Гц	Ku теоретичне	K _u експеримент.	Похибка, %
1	10	0,966	1	3,5
2	3000	0,918	0,871	5,1
3	4000	0,873	0,871	0,2
4	5000	0,823	0,822	0,1
5	6000	0,768	0,773	0,7
6	7000	0,716	0,725	1,3
7	7300	0,735	0,721	1,9
8	8000	0,703	0,68	3,3
9	9000	0,661	0,64	3,2
10	10000	0,621	0,6	3,4
11	11000	0,584	0,57	2,4

Виділено К_и на частоті зрізу. Аналіз похибки вимірювань свідчить про коректність отриманих даних.

е) Було проведено моделювання RC-ФНЧ в LTspice, під час якого було отримано AЧX:

Форма АЧХ відповідає теоретичній та загалом співпадає з виміряною з урахуванням масштабу.

Висновки

Було виконано дослідження роботи суматору на резисторах та RC-ланцюжка в умовах роботи з гармонійним і імпульсним сигналом. Під час роботи зняли вихідну осцилограму суматора при постійних та змінних сигналах на вході, частотну та перехідну характеристики RCфільтру. Проведенні експерименти повторили у симуляторі та порівняли результати. Збіжність даних симуляції та експерименту підтверджують коректність експериментів при урахуванні деякої похибки вимірювань.