

Bioinformática aplicada à Nanociências

Introdução

Sistemas de Informação CPO187 – Bioinformática aplicada à Nanociências

Prof. Sylvio A. G. Vieira – sylvio@unifra.br

Comparar sequências!

- Por que comparar sequências?
- Achar similaridades????
- Dadas 2 sequências, quão parecidas elas são?
- DNA e proteína
- Buscas em banco de dados
 - Achar quais sequências do banco são parecidas com minha sequência-consulta
 - Consulta (query) é tipicamente uma sequência nova
 - Busca no Google?

Comparar sequências!

- Porquê?????
 - Construir famílias
 - Saber quais organismos tem membros da família
 - Determinar uma "assinatura" para a família

- Construir filogenias
- Entender a história evolutiva de genes e organismos
 - (Bactérias, fungos, ...)

Comparar sequências!

• Em geral buscamos sequências que sejam

"aparentadas"

- Sequências aparentadas são similares
 - aparentadas = homólogas
 - Descendem de um mesmo ancestral
 Descendentes sofreram mutações ao longo do tempo

CENTRO UNIVERSITÁRIO FRANCISCANO

Comparar sequências!

CPT-187-Bioinformática aplicada à Nanociências

Genes Homólogos

O gene homólogo a outro quer dizer que eles possuem um ancestral em comum, refletido na sua sequência de DNA comum. Se comparar as sequências de DNA, você vai ver que existem regiões entre o humano e o rato que possuem regiões idênticas, que provavelmente se mantiveram conservadas do ancestral comum (ou convergiram para a mesma sequência ao longo do tempo).

Genes Ortólogos

Um gene ortólogo de um outro significa que eles são de espécies diferentes, (1) que possuem um ancestral comum e (2) a proteína codificada por este código genético manteve suas propriedades e funções.

Exemplo: Ao pegar um gene X homólogo humano e colocá-lo em uma levedura com o gene Y homólogo inativado.

Se por acaso, o gene humano restabelecer o comportamento normal da levedura, você saberá que aquele gene manteve sua função e pode ser considerado um ortólogo àquele gene homólogo de levedura.

Alinhamento de DNA

GTGGTGGCCTACGAAGGT

GTAGTGCCTTCGAAGGGT

Como avaliar o Alinhamento

Sistema de pontuação

Match: +1

Mismatch: -1

Pontuação do Alinhamento

Como melhorar o Alinhamento

Com a introdução de espaços!!!

Como melhorar o Alinhamento

Como avaliar o Alinhamento

Sistema de pontuação com espaços

Match: +1

Mismatch: -1

Espaço: -2

Pontuação do Alinhamento

$$+1+1-1+1+1+1-2+1+1+1-1+1+1+1+1-2+1+1+1 = 9$$

Porque um sistema de pontuação?

Matches tem que ser recompensados (> 0)

Mismatches e espaços tem que ser penalizados (< 0)

Mismatches representam substituições

Mutações (ocorrem com frequência)

Podem não trazer letalidade

Espaços representam inserções ou remoções

Mais prováveis de causarem letalidade

Alteram quadro de leitura

Ocorrem com muito menos frequência

Alinhamentos ótimos

São os alinhamentos de pontuação máxima similaridade entre duas sequências

É o valor da pontuação do alinhamento ótimo

No exemplo anterior

Similaridade = 9

9 é melhor que 4!!!

Pontuações para trocas de bases

Os nucleotídeos tem diferentes características:

Adenina e Guanina são Purinas

Citosina e Timina são Pirimidinas

Se base correta = +1

Se base trocada mesma família = 0

Se base trocada família diferente = -1

Pontuações para trocas de bases

Algoritmo para achar alinhamentos ótimos de DNA

Desenvolvido com a técnica de Programação dinâmica

Técnica desenvolvida na década de 1950 por Richard Bellman

Se usa para problemas que tem uma estrutura de subproblemas

Num alinhamento com sequências H e C um subproblema é qualquer alinhamento entre h' e c' tal que

h' = um prefixo de H e c' = um prefixo de C

Como fazer?

Achar soluções de subproblemas e armazená-las em uma tabela (matriz)

Para achar a solução ótima:

Procurar as soluções na direção dos subproblemas menores para os maiores

Este processo precisa começar com o "menor subproblema possível".

Qual seria?

Quando pelo menos uma das sequências é vazia Inicialização: Alinhar h com cadeia vazia e alinhar c com cadeia vazia

	h	G	Α	T	С
С					
G					
T					
С					

Alinhar caracter H com caracter C

- 3 possibilidades X com Y
- Aplicar pontuação respectiva, dependendo das bases encontradas

	h	G	Α	T	С
С	0				
G		1	0	-1	-1
T		-1	-1	1	0
С		-1	-1	0	1

Se base correta = +1

Se base trocada mesma família = 0

Se base trocada família diferente = -1

Pontuação por PD

Atividade

- Buscar duas sequências
- Implementar um algoritmo que faça a comparação e a pontuação
- Testar e entregar pelo moodle.