Reparametrization of COM-Poisson Regression Models for Analysis of Count Data

Eduardo Elias Ribeiro Junior ^{1 2} Walmes Marques Zeviani ¹ Wagner Hugo Bonat ¹ Clarice Garcia Borges Demétrio ² John Hinde ³

¹Statistics and Geoinformation Laboratory (LEG-UFPR)

²Department of Exact Sciences (ESALQ-USP)

³School of Mathematics, Statistics and Applied Mathematics (NUI-Galway)

16th August 2018

jreduardo@usp.br | edujrrib@gmail.com

Outline

- 1. Background
- 2. Reparametrization
- 3. Simulation study
- 4. Case studies
- 5. Final remarks

1

Background

Poisson model and limitations

Count data

- Number of times an event occurs in the observation unit;
- Mean-variance relationship.

GLM framework (Nelder & Wedderburn 1972)

- Provide suitable distribution for a counting random variables;
- Efficient algorithm for estimation and inference;
- Implemented in many software.

Poisson model

▶ Relationship between mean and variance, E(Y) = Var(Y);

Main limitations

- ▶ Overdispersion (more common), E(Y) < Var(Y)
- ▶ Underdispersion (less common), E(Y) > Var(Y)

Weighted Poisson models

- ► The family of weighted Poisson distributions (WPD) (?), weights the Poisson probability function by a suitable function.
- ▶ The probability mass function of the WPD is

$$\Pr(Y = y) = \frac{\exp(-\lambda)\lambda^y}{y!} \frac{w(y)}{E_{\lambda}[w(Y)]}, \quad y \in \mathbb{N},$$

where $E_{\lambda}(\cdot)$ denotes the mean value with respect to the Poisson random variable with parameter λ and w(y) is a weight function.

► The weight function may depend on extra parameter to ensure more flexibility to the distribution.

COM-Poisson distribution

- ► The COM-Poisson (Shmueli et al. 2005) belongs to the family of weighted Poisson distributions with the weight function $w(y, v) = (y!)^{1-v}$.
- ▶ The probability mass function of *Y* a COM-Poisson random variable is

$$\Pr(Y=y) = \frac{\lambda^y \exp(-\lambda)}{(y!)^{\nu} E_{\lambda}[(Y!)^{1-\nu}]} = \frac{\lambda^y}{(y!)^{\nu} Z(\lambda, \nu)}, \quad Z(\lambda, \nu) = \sum_{j=0}^{\infty} \frac{\lambda^j}{(j!)^{\nu}},$$

where ν is the dispersion parameter.

▶ The moments of distribution are not obtained in closed forms. There is approximations proposed by Shmueli et al. (2005), Sellers & Shmueli (2010):

$$\mathrm{E}(\mathrm{Y}) pprox \dot{\mathrm{E}}(\mathrm{Y}) = \lambda^{1/\nu} - \frac{\nu-1}{2\nu}$$
 and $\mathrm{Var}(\mathrm{Y}) pprox \frac{\lambda^{1/\nu}}{\nu}.$

COM-Poisson regression models

Model definition

► Modelling the relationship between $E(Y_i)$ and x_i indirectly (Sellers & Shmueli 2010);

$$Y_i \mid \boldsymbol{x}_i \sim \text{COM-Poisson}(\lambda_i, \nu)$$

 $\eta(E(Y_i \mid \boldsymbol{x}_i)) = \log(\lambda_i) = \boldsymbol{x}_i^{\top} \boldsymbol{\beta}$

Main goals

- Study distribution properties in terms of i) modelling real count data and ii) inference aspects.
- Propose a reparametrization in order to model the expectation of the response variable as a function of the covariate values directly.

2

Reparametrization

Reparametrized COM-Poisson

Reparametrization

• Introduced new parameter μ , using the mean approximation

$$\mu = \dot{\mathrm{E}}(\mathrm{Y}) = \lambda^{1/\nu} - \frac{\nu - 1}{2\nu} \quad \Rightarrow \quad \lambda = \left(\mu + \frac{(\nu - 1)}{2\nu}\right)^{\nu};$$

 Precision parameter is taken on the log scale to avoid restrictions on the parameter space

$$\phi = \log(\nu) \Rightarrow \phi \in \mathbb{R};$$

Probability mass function

▶ Replacing λ and ν as function of μ and ϕ in the pmf of COM-Poisson

$$\Pr(Y = y \mid \mu, \phi) = \left(\mu + \frac{e^{\phi} - 1}{2e^{\phi}}\right)^{ye^{\phi}} \frac{(y!)^{-e^{\phi}}}{Z(\mu, \phi)}.$$

Study of the moments approximations

0.030

0.040

Figure: Quadratic errors for the approximation of the (a) expectation and (b) variance. Dotted lines represent the restriction for suitable approximations given by Shmueli et al. (2005).

0.000

0.010

0.020

10 20 30 40 50 60

COM-Poisson μ distribution

Figure: Shapes of the COM-Poisson distribution for different parameter values.

Properties of COM-Poisson distribution

To explore the flexibility of the COM-Poisson distribution, we consider the follow indexes:

- ▶ **Dispersion index:** DI = Var(Y)/E(Y);
- ▶ **Zero-inflation index:** $ZI = 1 + \log Pr(Y = 0) / E(Y)$;
- ► Heavy-tail index: HT = Pr(Y = y + 1) / Pr(Y = y), for $y \to \infty$.

These indexes are interpreted in relation to the Poisson distribution:

- over- (DI > 1), under- (DI < 1) and equidispersion (DI = 1);
- ightharpoonup zero-inflation (ZI > 0) and zero-deflation (ZI < 0) and
- ▶ heavy-tail distribution for HT \rightarrow 1 when $y \rightarrow \infty$.

Properties of COM-Poisson distribution

Figure: Indexes for COM-Poisson distribution. (a) Mean and variance relationship, (b–d) dispersion, zero-inflation and heavy-tail indexes for different parameter values. Dotted lines represents the Poisson special case.

COM-Poisson μ regression models

Let y_i a set of independent observations from the COM-Poisson and $x_i^{\top} = (x_{i1}, x_{i2}, ..., x_{ip})$ is a vector of known covariates, i = 1, 2, ..., n.

Model definition

▶ Modelling relationship between $\dot{E}(Y_i)$ and x_i directly

$$Y_i \mid \boldsymbol{x}_i \sim \text{COM-Poisson}_{\mu}(\mu_i, \phi)$$

$$\log(\dot{E}(Y_i \mid \boldsymbol{x}_i)) = \log(\mu_i) = \boldsymbol{x}_i^{\top} \boldsymbol{\beta}$$

Log-likelihood function ($\ell = \ell(\beta, \phi \mid y)$)

$$\ell = e^{\phi} \left[\sum_{i=1}^{n} y_i \log \left(\mu_i + \frac{e^{\phi} - 1}{2e^{\phi}} \right) - \sum_{i=1}^{n} \log(y_i!) \right] - \sum_{i=1}^{n} \log(Z(\mu_i, \phi))$$
 where $\mu_i = \exp(\boldsymbol{x}_i^{\top} \boldsymbol{\beta})$

Estimation and inference

The estimation and inference is based on the method of maximum likelihood. Let $\theta = (\beta, \phi)$ the model parameters.

 Parameter estimates are obtained by numerical maximization of the log-likelihood function (by BFGS algorithm);

$$\ell(\hat{\boldsymbol{\theta}}) = \max \ell(\boldsymbol{\theta}), \, \boldsymbol{\theta} \in \mathbb{R}^{p+1};$$

 Standard errors for regression coefficients are obtained based on the observed information matrix;

$$Var(\hat{\theta}) = -\mathcal{H}^{-1}$$
, where \mathcal{H} is the matrix of second partial derivatives at $\hat{\theta}$;

- ► Confidence intervals for $\hat{\mu}_i$ are obtained by delta method. $\operatorname{Var}[g(\hat{\theta})] \doteq G \operatorname{Var}(\hat{\theta})G^{\top}$, where $G^{\top} = (\partial g/\partial \beta_1, \dots, \partial g/\partial \beta_p)^{\top}$;
- ▶ The Hessian matrix \mathcal{H} is obtained numerically by finite differences.

3

Simulation study

Definitions on the simulation study

Objective: assess the properties of maximum likelihood estimators and orthogonality in the reparametrized model;

Simulation: we consider counts generated according a regression model with a continuous and categorical covariates and different dispersion scenarios.

```
Algorithm 1: Steps in simulation study.
```

```
for n \in \{50, 100, 300, 1000\} do

set x_1 as a sequence, with n elements, between 0 and 1;
set x_2 as a repetition, with n elements, of three categories;
compute \mu using \mu = \exp(\beta_0 + \beta_1 x_1 + \beta_{21} x_{21} + \beta_{22} x_{22});
for \phi \in \{-1.6, -1.0, 0.0, 1.8\} do

repeat

simulate y from COM-Poisson distribution with \mu and \phi parameters;
fit COM-Poisson_{\mu} regression model to simulated y;
get \hat{\theta} = (\hat{\phi}, \ \hat{\beta}_0, \ \hat{\beta}_1, \ \hat{\beta}_{21}, \ \hat{\beta}_{22});
get confidence intervals for \hat{\theta} based on the observed information matrix.
until 1000 times;
```

Definitions on the simulation study

Figure: Average counts (left) and dispersion indexes (right) for each scenario considered in the simulation study.

Bias of the estimators

Coverage rate of the confidence intervals

Figure: Coverage rate based on confidence intervals obtained by quadratic approximation for different sample sizes and dispersion levels.

Orthogonality property of the MLEs

Figure: Deviance surfaces contour plots under original and proposed parametrization. The ellipses are confidence regions (90, 95 and 99%), dotted lines are the maximum likelihood estimates, and points are the real parameters used in the simulation.

4

Case studies

Motivating data sets and data analysis

- ► Three illustrative examples of count data analysis are reported.
 - Assessing toxicity of nitrofen in aquatic systems, an equidispersed example;
 - Soil moisture and potassium doses on soybean culture, an overdispersed example; and
 - Artificial defoliation in cotton phenology, an underdispersed example.
- ▶ In the data analysis, we consider:
 - ► The COM-Poisson (original parametrization) model;
 - The COM-Poisson (new parametrization) model;
 - Quasi-Poisson model ($Var(Y) = \sigma E(Y)$); and
 - ▶ The standard Poisson regression model.

4.1

Artificial defoliation in cotton phenology

Cotton bolls data

Aim: to assess the effects of five defoliation levels on the bolls produced at five growth stages;

Design: factorial 5×5 , with 5 replicates;

Experimental unit: a plot with 2 plants;

Factors:

- ► Artificial defoliation (des):
- ► Growth stage (est):

Response variable: Total number of cotton bolls;

Cotton bolls data

Model specification

Linear predictor: following Zeviani et al. (2014)

▶ $\log(\mu_{ij}) = \beta_0 + \beta_{1j} \text{def}_i + \beta_{2j} \text{def}_i^2$ *i* varies in the levels of artificial defoliation; *j* varies in the levels of growth stages.

Alternative models:

- ▶ Poisson (μ_{ij});
- ► COM-Poisson ($\lambda_{ij} = \eta(\mu_{ij})$, ϕ)
- ► COM-Poisson $_{\mu}$ (μ_{ij} , ϕ)
- Quasi-Poisson ($Var(Y_{ij}) = \sigma \mu_{ij}$)

Parameter estimates

Table: Parameter estimates (Est) and ratio between estimate and standard error (SE).

	Poisson		COM-Poisson		COM-Poisson $_{\mu}$		Quasi-Poisson	
	Est	Est/SE	Est	Est/SE	Est	Est/SE	Est	Est/SE
φ,σ			1.585	12.417	1.582	12.392	0.241	
β_0	2.190	34.572	10.897	7.759	2.190	74.640	2.190	70.420
β_{11}	0.437	0.847	2.019	1.770	0.435	1.819	0.437	1.726
β_{12}	0.290	0.571	1.343	1.211	0.288	1.223	0.290	1.162
β_{13}	-1.242	-2.058	-5.750	-3.886	-1.247	-4.420	-1.242	-4.192
eta_{14}	0.365	0.645	1.595	1.298	0.350	1.328	0.365	1.314
β_{15}	0.009	0.018	0.038	0.035	0.008	0.032	0.009	0.036
β_{21}	-0.805	-1.379	-3.725	-2.775	-0.803	-2.961	-0.805	-2.809
β_{22}	-0.488	-0.861	-2.265	-1.805	-0.486	-1.850	-0.488	-1.754
β_{23}	0.673	0.989	3.135	2.084	0.679	2.135	0.673	2.015
β_{24}	-1.310	-1.948	-5.894	-3.657	-1.288	-4.095	-1.310	-3.967
β_{25}	-0.020	-0.036	-0.090	-0.076	-0.019	-0.074	-0.020	-0.074
LogLik	-255.803		-208.250		-208.398		_	
AIC	533.606		440.500		440.795		=	
BIC	564.718		474.440		474.735		_	

Fitted curves

Figure: Scatterplots of the observed data and curves of fitted values with 95% confidence intervals as functions of the defoliation level for each growth stage.

4.2

Case studies Soil moisture and potassium doses on soybean culture

Soybean data

Aim: evaluate the effects of potassium doses applied to soil in different soil moisture levels;

Design: factorial 5×3 in a randomized complete block design (5 blocks);

Experimental unit: a pot with a plant;

Factors:

- ► Potassium fertilization dose (K):
- ► Soil moisture level (umid):

Response variable: Total number of bean seeds per pot;

Soybean data

Model specification

Linear predictor: based on descriptive analysis,

 $\log(\mu_{ijk}) = \beta_0 + \gamma_i + \tau_i + \beta_1 K_k + \beta_2 K_k^2 + \beta_{3i} K_k$ *i* varies according the blocks; j varies in the levels of soil moisture; k varies in the levels of potassium fertilization.

Alternative models:

- Poisson (μ_{ii});
- COM-Poisson ($\lambda_{ij} = \eta(\mu_{ij})$, ϕ)
- COM-Poisson_u (μ_{ii} , ϕ)
- Quasi-Poisson (var(Y_{ij}) = $\sigma \mu_{ij}$)

Parameter estimates

Table: Parameter estimates (Est) and ratio between estimate and standard error (SE).

	Poisson		COM-Poisson		$COM ext{-Poisson}_{\mu}$		Quasi-Poisson	
	Est	Est/SE	Est	Est/SE	Est	Est/SE	Est	Est/SE
φ, σ			-0.779	-4.721	-0.782	-4.737	2.615	
β_0	4.867	144.289	2.232	6.042	4.867	97.781	4.867	89.225
γ_1	-0.019	-0.730	-0.009	-0.494	-0.019	-0.495	-0.019	-0.452
γ_2	-0.037	-1.373	-0.017	-0.921	-0.037	-0.931	-0.037	-0.849
γ_3	-0.106	-3.889	-0.049	-2.422	-0.106	-2.634	-0.106	-2.405
γ_4	-0.092	-3.300	-0.042	-2.102	-0.092	-2.237	-0.092	-2.040
$ au_1$	0.132	3.647	0.061	2.295	0.132	2.472	0.132	2.255
$ au_2$	0.124	3.432	0.057	2.177	0.124	2.326	0.124	2.122
eta_1	0.616	11.014	0.284	4.729	0.616	7.464	0.616	6.811
β_2	-0.276	-10.250	-0.127	-4.589	-0.276	-6.946	-0.276	-6.338
β_{31}	0.146	4.268	0.067	2.614	0.146	2.892	0.146	2.639
β_{32}	0.165	4.829	0.076	2.884	0.165	3.272	0.165	2.986
LogLik	-340.082		-325.241		-325.233		_	
AIC	702.164		674.482		674.467		_	
BIC	727.508		702.130		702.116		_	

Fitted curves

Figure: Dispersion diagrams of been seeds counts as function of potassium doses and humidity levels with fitted curves and confidence intervals (95%).

4.3

Case studies Assessing toxicity of nitrofen in aquatic systems

Nitrofen data

Aim: measure the reproductive toxicity of the herbicide nitrofen on a species of zooplankton (*Ceriodaphnia dubia*);

Design: completely randomized design, with 10 replicates;

Experimental unit: zooplankton animal;

Factors:

herbicide nitrofen dose (dose);

Response variable: Total number of live offspring;

Model specification

Linear predictors:

Linear: $\log(\mu_i) = \beta_0 + \beta_1 \mathsf{dose}_i$, Quadratic: $\log(\mu_i) = \beta_0 + \beta_1 \mathsf{dose}_i + \beta_2 \mathsf{dose}_i^2$ and Cubic: $\log(\mu_i) = \beta_0 + \beta_1 \mathsf{dose}_i + \beta_2 \mathsf{dose}_i^2 + \beta_3 \mathsf{dose}_i^3$.

Alternative models:

- Poisson (μ_{ij});
- ► COM-Poisson ($\lambda_{ij} = \eta(\mu_{ij})$, ϕ)
- $ightharpoonup COM-Poisson_{\mu} (\mu_{ij}, \phi)$
- Quasi-Poisson (var(Y_{ij}) = $\sigma \mu_{ij}$)

Likelihood ratio tests

Table: Model fit measures and comparisons between linear predictors.

Poisson	np	ℓ	AIC	$2(diff \ell)$	diff np	$P(>\chi^2)$	
Linear	2	-180.667	365.335				
Quadratic	3	-147.008	300.016	67.319	1	2.31E-16	
Cubic	4	-144.090	296.180	5.835	1	1.57E - 02	
COM-Poisson	np	ℓ	AIC	$2(\text{diff }\ell)$	diff np	$P(>\chi^2)$	$\hat{\phi}$
Linear	3	-167.954	341.908				-0.893
Quadratic	4	-146.964	301.929	41.980	1	9.22E - 11	-0.059
Cubic	5	-144.064	298.129	5.800	1	1.60E - 02	0.048
COM-Poisson $_{\mu}$	np	ℓ	AIC	$2(diff \ell)$	diff np	$P(>\chi^2)$	$\hat{\phi}$
т.			244.205				0.005
Linear	3	-167.652	341.305				-0.905
Linear Quadratic	3 4	-167.652 -146.950	341.305 301.900	41.405	1	1.24E-10	-0.905 -0.069
	-			41.405 5.773	1 1	1.24E-10 1.63E-02	
Quadratic	4	-146.950	301.900				-0.069
Quadratic Cubic	4 5	-146.950 -144.064	301.900 298.127	5.773	1	1.63E-02	-0.069 0.047
Quadratic Cubic Quasi-Poisson	4 5 np	-146.950 -144.064 QDev	301.900 298.127	5.773	1	1.63E-02	$ \begin{array}{c} -0.069 \\ 0.047 \\ \hat{\sigma} \end{array} $

Parameter estimates and fitted values

Table: Parameter estimates (Est) and ratio between estimate and standard error (SE).

	Pois	Poisson		COM-Poisson		COM-Poisson $_{\mu}$		Quasi-Poisson	
	Est	Est/SE	Est	Est/SE	Est	Est/SE	Est	Est/SE	
β_0	3.477	62.817	3.649	4.850	3.477	64.308	3.477	61.860	
β_1	-0.086	-0.433	-0.091	-0.448	-0.088	-0.452	-0.086	-0.426	
β_2	0.153	0.863	0.161	0.878	0.155	0.894	0.153	0.850	
β_3	-0.097	-2.398	-0.102	-2.229	-0.098	-2.464	-0.097	-2.361	

4.4 Case studies

Additional results

To compare the computational times on the two parametrizations we repeat the fitting 50 times.

Figure: Computational times to fit the models under original and reparametrized versions based on the fifty repetitions.

5

Final remarks

Concluding remarks

Summary

- Over/under-dispersion needs caution;
- COM-Poisson is a suitable choice for these situations;
- ▶ The proposed reparametrization, COM-Poisson $_{\mu}$ has some advantages:
 - Simple transformation of the parameter space;
 - Leads to the orthogonality of the parameters (seen empirically);
 - Full parametric approach;
 - Empirical correlation between the estimators was practically null;
 - Faster for fitting;
 - ▶ Allows interpretation of the coefficients directly (like GLM-Poisson model).

Future work

- Simulation study to assess model robustness against distribution miss specification;
- Assess theoretical approximations for $Z(\lambda, \nu)$ (or $Z(\mu, \phi)$), in order to avoid the selection of sum's upper bound;
- ▶ Propose a mixed GLM based on the COM-Poisson $_{\mu}$ model.

Full-text article is available on arXiv https://arxiv.org/abs/1801.09795

All codes (in R) and source files are available on GitHub https://github.com/jreduardo/article-reparcmp

Acknowledgements

National Council for Scientific and Technological Development (CNPq), for their support.

References

- Nelder, J. A. & Wedderburn, R. W. M. (1972), 'Generalized Linear Models', Journal of the Royal Statistical Society. Series A (General) 135, 370–384.
- Sellers, K. F. & Shmueli, G. (2010), 'A flexible regression model for count data', *Annals of Applied Statistics* **4**(2), 943–961.
- Shmueli, G., Minka, T. P., Kadane, J. B., Borle, S. & Boatwright, P. (2005), 'A useful distribution for fitting discrete data: Revival of the Conway-Maxwell-Poisson distribution', *Journal of the Royal Statistical Society. Series C: Applied Statistics* 54(1), 127–142.
- Zeviani, W. M., Ribeiro Jr, P. J., Bonat, W. H., Shimakura, S. E. & Muniz, J. A. (2014), 'The Gamma-count distribution in the analysis of experimental underdispersed data', *Journal of Applied Statistics* pp. 1–11.