Module 4

Eigenvalues and Eigenvectors

Today's Outline

- I. Eigenvectors & Eigenvalues- Conceptual Analysis
- II. Eigenvectors & Eigenvalues- Definition
- III. Eigenvectors & Eigenvalues- Attributes
- IV. Eigenvectors & Eigenvalues- Computation general case
- V. Eigenvectors & Eigenvalues- Computation for n= 3
- VI. Eigenspace
- VII. Tutorials

Parallel Vectors

When are two vectors V & W parallel?

- 1. Two vectors V and W are called parallel if and only if the angle they form between them is 0°.
- 2. If two vectors V and W are parallel $\rightarrow \vec{V} = \lambda \vec{u}$ (where λ = Cte.)

Activity

- 1. Are U [2,1,5] and W [3,8,0] Parallel?
- 2. Are U [2,1,5] and W [2,1,5] Parallel?
- 3. Are U [2,1,5] and W [-2,-1,-5] Parallel?
- 4. Are U [2,1,5] and W [10,5,25] Parallel?

Conceptual Example- General Case

A is a 3X3 matrix

V is a 3X1 Column matrix (Vector)

It is obvious:

- Matrix A has been multiplied in Vector V0
- The magnitude of V0 has changed
- The Direction of V0 has changes

Eigenvectors & Eigenvalues

- In general, a matrix multiplied to a vector, changes both its
 - I. Magnitude
 - II. Direction.

Conceptual Example- Special Case

A is a 3X3 matrix

V is a 3X1 matrix (Vector)

It is obvious:

AV = 3V

Should this equation be <u>valid then:</u>

- $\lambda \rightarrow$ eigenvalue of A
- **V** → eigenvector

Eigenvectors & Eigenvalues

- In general, a matrix multiplied to a vector, changes **both** its
 - I. Magnitude
 - II. Direction.
- However, a matrix may operate on <u>certain vectors</u> by <u>changing only their magnitude</u>.
- The new transformed vector is just scaled of the original vector

Eigenvectors & Eigenvalues cont

Matrix A has transformed vector X → AX

- The direction of AX is along X
- Vector X is scaled to λX.

$$AX = \lambda X$$

- Number λ: an eigenvalue of the matrix A.
- Vector x: an eigenvector corresponding to λ .

Eigen is German for "own" / "typical"

Today's Outline

- I. Eigenvectors & Eigenvalues- Conceptual Analysis
- II. Eigenvectors & Eigenvalues- Definition
- III. Eigenvectors & Eigenvalues- Attributes
- IV. Eigenvectors & Eigenvalues- Computation general case
- V. Eigenvectors & Eigenvalues- Computation for n= 3
- VI. Eigenspace
- VII. Tutorials

Eigenvectors & Eigenvalues Definition

- Let A be an $n \times n$ matrix $\rightarrow A_{n \times n}$
- Let λ be a nonzero scalar (constant number)
- If there exists a nonzero vector **X** in **R**ⁿ such that

$$AX = \lambda X$$

- λ : an eigenvalue of matrix A.
- vector **x** : an eigenvector corresponding to λ .

Exercise (Individual, 10')

Which of the following is an Eigen value for vector X?

$$A = \begin{bmatrix} -6 & 3 \\ 4 & 5 \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

a)
$$\lambda = 6$$

b)
$$\lambda = -6$$

c)
$$\lambda = 0$$

d)
$$\lambda = 3$$

Example) Show that for matrix A, V is an eigenvector & 6 is an eigenvalue.

$$A = \begin{bmatrix} -6 & 3 \\ 4 & 5 \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

We should Show that: $Ax = \lambda x$

•
$$Ax = \begin{bmatrix} -6 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 6 \\ 24 \end{bmatrix}$$

• $\lambda x = \begin{bmatrix} 6 \\ 24 \end{bmatrix} = 6 \begin{bmatrix} 1 \\ 4 \end{bmatrix}$
• $\lambda x = \lambda x$

$$\lambda = 6$$

Hence, for the Matrix A:

- λ =6 is an eigenvalue
- X is an eigenvector

Today's Outline

- I. Eigenvectors & Eigenvalues- Conceptual Analysis
- II. Eigenvectors & Eigenvalues- Definition
- III. Eigenvectors & Eigenvalues- Attributes
- IV. Eigenvectors & Eigenvalues- Computation general case
- V. Eigenvectors & Eigenvalues- Computation for n= 3
- VI. Eigenspace
- VII. Tutorials

Geometrical Interpretation

A is a transformation matrix acting on a vector X:

• Does not change *the direction* of the vector X

$$A\mathbf{x} = \lambda \mathbf{x}$$

In this shear mapping:

- Red arrow changes direction
- Blue arrow does not.

Blue arrow → eigenvector

- 1. It is a transformation matrix
- 2. It does not change direction
- 3. Its length is unchanged \rightarrow its eigenvalue is 1

Application in Machine Learning

- Matrices represent a large set of data & information.
- Dealing with large-scale datasets might be problematic due to the need for a huge amount of memory and slow computational speed.
- Using eigenvalues & eigenvectors, <u>one value</u>& <u>one vector</u> can **represent** a large matrix, therefore alleviate the problem.
- You may think of eigenvalues and eigenvectors as **providing** summary of a large matrix.

Reflection (Individual, 10')

- 1. What is an eigenvector? What is an eigenvalue?
- 2. What is the application of eigenvalues & eigenvectors in AI & ML?
- 3. What is the characteristic that distinguishes between eigenvectors and other matrix transformations?
- 4. What is the geometrical interpretation of eigenvectors & eigenvalues?
- 5. Have you ever used this mathematical concept in your coding?

Today's Outline

- I. Eigenvectors & Eigenvalues- Conceptual Analysis
- II. Eigenvectors & Eigenvalues- Definition
- III. Eigenvectors & Eigenvalues- Attributes
- IV. Eigenvectors & Eigenvalues- Computation general case
- V. Eigenvectors & Eigenvalues- Computation for n= 3
- VI. Eigenspace
- VII. Tutorials

Computation Eigenvalues and Eigenvectors

- Let A be an $n \times n$ matrix $\rightarrow A_{n \times n}$
- With eigenvalue λ
- And corresponding eigenvector \mathbf{x}_{nx1} .
- Thus;

$$Ax = \lambda x$$

Which can be re-written:

$$Ax - \lambda x = 0$$

• Given that: $\lambda = \lambda I_n$ (I_n is an $n \times n$ identity matrix), we can write:

$$(A - \lambda I_n)x = 0$$

• λ is an eigenvalue of matrix A if and only, if the equation $(A - \lambda I_n)x = 0$, has a nontrivial solution \rightarrow

$$|A - \lambda I_n| = 0$$

Computation Eigenvalues and Eigenvectors cont

- The equation $|A \lambda I_n| = 0$ is called the **characteristic equation** of A.
- On expending the determinant $|A \lambda I_n|$, we get a polynomial in λ .
- This polynomial is called the characteristic polynomial of A.
- The roots of characteristic polynomial are the eigenvalues of A.

Procedure for Computation

Matrix $A_{n \times n}$ is given. To compute it's eigenvalue & eigenvector:

- 1) The eigenvector for $A_{n\times n}$ will be of the form: $x_{n\times 1}$
- 2) And I_n will be of the form: $I_{n \times n}$
- 3) Hence, $Ax = \lambda I_n x \rightarrow (A \lambda I_n)x = 0$
- 4) Drive the characteristic equation $|A \lambda I_n|$ (determinant of equation 3)
- 5) Expand the characteristic equation → characteristic Polynomial
- 6) Find the roots of the characteristic Polynomial $\rightarrow |A \lambda I_n| = 0 \rightarrow$ Find λ_1 , λ_2 , etc.
- 7) Replace each λ in equation 3. For example, for $\lambda_1 \rightarrow A_{n \times n} (\lambda_1 |_{n \times n})] \mathbf{x}_{n \times 1} = \mathbf{0}_{n \times 1}$
- 8) For each λ , calculate the elements of $\mathbf{x}_{n \times 1}$

Conceptual Example) Find the eigenvalues and eigenvectors of the matrix

$$A = \begin{bmatrix} -4 & -6 \\ 3 & 5 \end{bmatrix}$$

Let's do this together!

Procedure- Compute Eigenvalues

Step1) Finding Eigenvalues

- 1) $A_{n \times n} \rightarrow \text{ what is } I_{n \times n}$
- 2) Derive $A \lambda I_n$
- 3) Compute $|A \lambda I_n|$ Characteristic Polynomial
- 4) For what values of $\lambda \rightarrow |A \lambda|_n = 0$ Eigenvalue of Matrix A

Step1) Finding Eigenvalues

$$A = \begin{bmatrix} -4 & -6 \\ 3 & 5 \end{bmatrix} \qquad \qquad n=2 \qquad \qquad I = I_2$$

$$A - \lambda I_2 = \begin{bmatrix} -4 & -6 \\ 3 & 5 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -4 - \lambda & -6 \\ 3 & 5 - \lambda \end{bmatrix} \implies$$

$$|A - \lambda I_2| = (-4 - \lambda)(5 - \lambda) + 18 = \lambda^2 - \lambda - 2$$
 Characteristic Polynomial

We now solve the characteristic polynomial of A.

$$\lambda^2 - \lambda - 2 = 0 \Rightarrow (\lambda - 2)(\lambda + 1) = 0 \Rightarrow \lambda = 2 \text{ or } \lambda = -1$$

Eigenvalue of Matrix A

The eigenvalues of A are 2 and $-1 \rightarrow$ The corresponding eigenvectors are found by using these values of λ in the equation $(A - \lambda I_2)\mathbf{x} = \mathbf{0}$. There are many eigenvectors corresponding to each eigenvalue.

Procedure- Compute First Eigenvector

Step 2- Compute eigenvectors corresponding to $\lambda = 2$

- 1) What would be $(A 2I_2)$?
- 2) What would be $(A 2I_2) \times \rightarrow$ Expands to a set of two equations?
- 3) Show that the solution to above equations are: $x_1 = -r \& x_2 = r$
- 4) Eigenvectors of A corresponding to $\lambda = 2$ is the nonzero vectors below. Why?

$$r\begin{bmatrix} -1\\1\end{bmatrix}$$

$\lambda = 2$

We solve the equation $(A - 2I_2)\mathbf{x} = \mathbf{0}$ for \mathbf{x} . The matrix $(A - 2I_2)$ is obtained by subtracting 2 from the diagonal elements of A. We get

$$\begin{bmatrix} -6 & -6 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{0}$$

This leads to the system of equations

$$\int -6x_1 - 6x_2 = 0$$
$$3x_1 + 3x_2 = 0$$

- Giving $x_1 = -x_2$. The solutions to this system of equations are $x_1 = -r$, $x_2 = r$, where r is a scalar.
 - Thus, the eigenvectors of A corresponding to $\lambda = 2$ are nonzero vectors of the form

eigenvectors of A corresponding to
$$\lambda = 2$$
 $r \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

- $\lambda = 2$ is an eigenvalue of the matrix A
- vector X_1 is an eigenvector of the matrix A corresponding to $\lambda = 2$

$$X_1 = r \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} -4 & -6 \\ 3 & 5 \end{bmatrix} * r \begin{bmatrix} -1 \\ 1 \end{bmatrix} = 2 \left\{ r \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}$$

Procedure- Compute Second Eigenvector

Step 3- Compute eigenvectors corresponding to $\lambda = -1$

- 1) What would be $(A \lambda I_2)$
- 2) What would be $(A \lambda I_2) \times \rightarrow$ Expands to a set of two equations
- 3) Show that the solution to above equations are: $x_1 = -2s \& x_2 = s$
- 4) Eigenvectors of A corresponding to $\lambda = -1$ is the nonzero vectors below. Why?

$$s\begin{bmatrix} -2\\1\end{bmatrix}$$

$\lambda = -1$

We solve the equation $\frac{(A + 1I_2)x = 0}{A + 1I_2}$ for x. The matrix $\frac{(A + 1I_2)}{A + 1I_2}$ is obtained by adding 1 to the diagonal elements of A. We get

$$\begin{bmatrix} -3 & -6 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{0}$$

This leads to the system of equations

$$\int -3x_1 - 6x_2 = 0$$
$$3x_1 + 6x_2 = 0$$

Thus $x_1 = -2x_2$. The solutions to this system of equations are $x_1 = -2s$ and $x_2 = s$, where s is a scalar. Thus the eigenvectors of A corresponding to $\lambda = -1$ are nonzero vectors of the form

eigenvectors of A corresponding to
$$\lambda = -1$$

$$S \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

- $\lambda = -1$ is an eigenvalue of the matrix A
- vector X_2 is an eigenvector of the matrix A corresponding to $\lambda = -1$

$$X_2 = s \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} -4 & -6 \\ 3 & 5 \end{bmatrix} * s \begin{bmatrix} -2 \\ 1 \end{bmatrix} = (-1) \left\{ s \begin{bmatrix} -2 \\ 1 \end{bmatrix} \right\}$$

Activity (Individual, 20')

• What is the eigenvalues & eigen vectors of of A?

$$A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$

Check your Answer

$$r\begin{pmatrix}1\\1\end{pmatrix}, s\begin{pmatrix}-6/5\\1\end{pmatrix}$$

Break- 20'

Today's Outline

- I. Eigenvectors & Eigenvalues- Conceptual Analysis
- II. Eigenvectors & Eigenvalues- Definition
- III. Eigenvectors & Eigenvalues- Attributes
- IV. Eigenvectors & Eigenvalues- Computation general case
- V. Eigenvectors & Eigenvalues- Computation for n= 3
- VI. Eigenspace
- VII. Tutorials

Determinants

- The process of calculating the determinants of matrix with $n > 2 \rightarrow$ Hectic
- We use different tricks, including:
 - 1. Interchange Property
 - 2. Sign Property
 - 3. Zero Property
 - 4. Multiplication Property
 - 5. Sum Property
 - 6. Property Of Invariance
 - 7. Triangular Property

Reading(Individual, 15')

• Bellow article discuss the properties of a determinant. Read and investigate each property.

Properties of Determinants - Properties, Formulas, Examples (cuemath.com)

Activity (Individual, 30')

• What are the eigenvalues & eigenvectors for Matrix A?

Procedure- Compute Eigenvalues

- 1) $A_{n \times n} \rightarrow \text{ what is } I_{n \times n}$
- 2) Derive $A \lambda I_n$
- 3) Compute $|A \lambda|_n$ Characteristic Polynomial
- 4) For what values of $\lambda \rightarrow |A \lambda|_n = 0$ Eigenvalue of Matrix A

Solution

1) The matrix $A - \lambda I_3$ is obtained by subtracting λ from the diagonal elements of A.

$$A - \lambda I_3 = \begin{bmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 - \lambda & 4 & 2 \\ 4 & 5 - \lambda & 2 \\ 2 & 2 & 2 - \lambda \end{bmatrix}$$

- So, the characteristic polynomial of A is $|A \lambda I_3| \rightarrow |A \lambda I_3| = \begin{vmatrix} 5 \lambda & 4 & 2 \\ 4 & 5 \lambda & 2 \\ 2 & 2 & 2 \lambda \end{vmatrix}$
- 2) Using row and column operations to simplify determinants

[Row 1 - Row2 ::
$$\{((5-1)-4), (4-(5-1)), (2-2)\}$$
 \rightarrow we get

Property of Invariance

$$|A - \lambda I_3| = \begin{vmatrix} 5 - \lambda & 4 & 2 \\ 4 & 5 - \lambda & 2 \\ 2 & 2 & 2 - \lambda \end{vmatrix} = \begin{vmatrix} 1 - \lambda & -1 + \lambda & 0 \\ 4 & 5 - \lambda & 2 \\ 2 & 2 & 2 - \lambda \end{vmatrix}$$

3)
$$|A - \lambda I_3| = \begin{vmatrix} 1 - \lambda & -1 + \lambda & 0 \\ 4 & 5 - \lambda & 2 \\ 2 & 2 - \lambda \end{vmatrix}$$

Using Row & Column operation → Simplify determinant →

Replace Column 2 with → Column 1 + Column 2

$$|A - \lambda I_3| = \begin{vmatrix} 1 - \lambda & 0 & 0 \\ 4 & 9 - \lambda & 2 \\ 2 & 4 & 2 - \lambda \end{vmatrix}$$

4)
$$|A - \lambda I_3| = \begin{vmatrix} 1 - \lambda & 0 & 0 \\ 4 & 9 - \lambda & 2 \\ 2 & 4 & 2 - \lambda \end{vmatrix} = (1 - \lambda)[(9 - \lambda)(2 - \lambda) - 8] = (1 - \lambda)[\lambda^2 - 11\lambda + 10]$$

$$= (1 - \lambda)[(\lambda - 10)(\lambda - 1)] = -(\lambda - 10)(\lambda - 1)^2$$

- 5) solving the characteristic equation of A: $-(\lambda 10)(\lambda 1)^2 = 0 \implies \lambda = 10 \text{ or } \lambda = 1$
- The eigenvalues of A are 10 and 1.
- 6) The corresponding eigenvectors are found by using values of λ in the equation $(A \lambda I_3)\mathbf{x} = \mathbf{0}$.

Procedure- Compute Eigenvector

Compute eigenvectors corresponding to $\lambda = 10$

- 1) What would be $(A \lambda I_3)$
- 2) What would be $(A \lambda I_3) \times \rightarrow$ Expands to a set of three equations \rightarrow Find the solutions of X

$$A = \begin{bmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$

$$\lambda = 10$$
We get $(A - 10I_3)\mathbf{x} = \mathbf{0} \to \begin{bmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{bmatrix} - 10 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \mathbf{0} \quad \Rightarrow \quad \begin{bmatrix} -5 & 4 & 2 \\ 4 & -5 & 2 \\ 2 & 2 & -8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \mathbf{0}$

The solution to this system of equations are $x_1 = 2r$, $x_2 = 2r$, and $x_3 = r$, where r is a scalar.

Thus, the eigenvector of $\lambda = 10$ is the one-dimensional space of vectors of the form.

Procedure- Compute Eigenvector

Compute eigenvectors corresponding to $\lambda = 1$

- 1) What would be $(A \lambda I_3)$
- 2) What would be $(A \lambda I_3) \times \rightarrow$ Expands to a set of three equations \rightarrow Find the solutions of X

$$\lambda = 1$$

Let $\lambda = 1$ in $(A - \lambda I_3)\mathbf{x} = \mathbf{0}$. We get

Subtract 1 from the elements of the main diagonal of A

The solution to this system of equations can be shown to be $x_1 = -s - t$, $x_2 = s$, and $x_3 = 2t$, where s and t are scalars.

Thus, the eigenspace of $\lambda = 1$ is the space of vectors of the form:

$$\begin{bmatrix} -s - t \\ s \\ 2t \end{bmatrix}$$

Separating the parameters *s* and *t*, we can write

$$\begin{bmatrix} -s - t \\ s \\ 2t \end{bmatrix} = s \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}$$

Thus, the eigenvector of $\lambda = 1$ is a two-dimensional subspace of \mathbb{R}^2 with basis

$$\left\{ S \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, t \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} \right\}$$

Today's Outline

- I. Eigenvectors & Eigenvalues- Conceptual Analysis
- II. Eigenvectors & Eigenvalues- Definition
- III. Eigenvectors & Eigenvalues- Attributes
- IV. Eigenvectors & Eigenvalues- Computation general case
- V. Eigenvectors & Eigenvalues- Computation for n= 3
- VI. Eigenspace
- VII. Tutorials

Eigenspace

- As evident, there are different eigenvalues for the matrix A.
- For every eigenvalue, there is a group of eigenvectors corresponding to that eigenvalue.
- Further, zero vector is the nontrivial solution to the equation $(A \lambda I_n)\mathbf{x} = \mathbf{0}$
- All the eigenvectors corresponding to λ together with the zero vector forms a set.
- This set is known as eigenspace.

Eigenspace cont.

Definition

- The set of all solutions of $(A \lambda I)x = 0$
- Is called the **eigenspace** of A corresponding to A.
- This is the set of all the eigenvectors corresponding to a λ

Eigenspace cont

• In Exercise 1, the eigenspace is:

$$\{r\begin{bmatrix}-1\\1\end{bmatrix}, s\begin{bmatrix}-2\\1\end{bmatrix}, t\begin{bmatrix}0\\0\end{bmatrix}\}$$

• Where, r, s & t are three constants

Exercise (Individual, 10')

What is the eigenspace of A?

$$A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$

<u>Check your Answer</u>

•
$$\vec{v} = \{ t \begin{bmatrix} 0 \\ 0 \end{bmatrix}, r \begin{pmatrix} 1 \\ 1 \end{pmatrix}, s \begin{pmatrix} -6/5 \\ 1 \end{pmatrix} \}$$

Today's Outline

- I. Eigenvectors & Eigenvalues- Conceptual Analysis
- II. Eigenvectors & Eigenvalues- Definition
- III. Eigenvectors & Eigenvalues- Attributes
- IV. Eigenvectors & Eigenvalues- Computation general case
- V. Eigenvectors & Eigenvalues- Computation for n= 3
- VI. Eigenspace
- VII. Tutorials

Reflection (Individual, 20')

- 1. What is an eigenvector? What is an eigenvalue? What is an eigenspace?
- 2. What is the application of eigenvalues & eigenvectors in AI & ML?
- 3. What is the characteristic that distinguishes between eigenvectors and other matrix transformations?
- 4. What is the geometrical interpretation of eigenvectors & eigenvalues?
- 5. The eigenvalue for the matrix A (bellow)is λ =2. Determine if U or V are the eigenvectors corresponding to λ .

$$A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}, \qquad a) \quad u = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

$$b) \quad v = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Exercise 5- Answer

The eigenvalue for the matrix A (bellow) is $\lambda = 2$.

Determine if U or V are the eigenvectors corresponding to λ .

a.
$$u = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix},$$

b.
$$v = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

a.
$$AU \neq \lambda U \rightarrow U$$
 is not an eigenvector corresponding to λ

b.
$$AV = \lambda V \rightarrow V$$
 is an eigenvector corresponding to this λ

Reading (Individual, 20')

Read the bellow article and summaries the application of eigenvalues
 & eigenvectors in computer science.

https://www.linkedin.com/pulse/understanding-eigenvalues-eigenvectors-computervision-kanishka-gabel/?utm source=rss&utm campaign=articles sitemaps

Any Questions or Concerns?

Sources for the slides:

https://fdocuments.in/

And

https://www.xpowerpoint.com/