Car accident severity

Capstone Project

"Mohamed Basher"

2. Data

2.1 Data Source

The Original Data Came from:

Data-Collisions.csv

3. Feature

** Create Data Dictionary **

- 1. LOCATION: Description of the general location of the collision
- 2. SEVERITYCODE: A code that corresponds to the severity of the collision:
 - * 3 fatality
 - * 2b —serious injury
 - * 2 injury
 - * 1 prop damage
 - * o unknown
- 3. SEVERITYDESC: A detailed description of the severity of the collision
- 4. COLLISIONTYPE: Collision type
- 5. PERSONCOUNT: The total number of people involved in the collision
- 6. PEDCOUNT: The number of pedestrians involved in the collision. This is entered by the state.
- 7. PEDCYLCOUNT: The number of bicycles involved in the collision. This is entered by the state.
- 8. VEHCOUNT: The number of vehicles involved in the collision. This is entered by the state.

- 9. INJURIES: The number of total injuries in the collision. This is entered by the state.
- 10. SERIOUSINJURIES: The number of serious injuries in the collision. This is entered by the state.
- 11. FATALITIES: The number of fatalities in the collision. This is entered by the state.
- 12. INCDATE: The date of the incident.
- 13. INCDTTM: The date and time of the incident.
- 14. JUNCTIONTYPE: Category of junction at which collision took place
- 15. SDOT_COLCODE: A code given to the collision by SDOT.
- 16. SDOT_COLDESC: A description of the collision corresponding to the collision code.
- 17. INATTENTIONIND: Whether or not collision was due to inattention. (Y/N)
- 18. UNDERINFL: Whether or not a driver involved was under the influence of drugs or alcohol.
- 19. WEATHER: A description of the weather conditions during the time of the collision.
- 20. ROADCOND: The condition of the road during the collision.
- 21. LIGHTCOND: The light conditions during the collision.
- 22. PEDROWNOTGRNT: Whether or not the pedestrian right of way was not granted. (Y/N)
- 23. SDOTCOLNUM: A number given to the collision by SDOT.
- 24. SPEEDING: Whether or not speeding was a factor in the collision. (Y/N)
- 25. ST_COLCODE: A code provided by the state that describes the collision.
- 26. ST_COLDESC: A description that corresponds to the state's coding designation.
- 27. SEGLANEKEY: A key for the lane segment in which the collision occurred.
- 28. CROSSWALKKEY: A key for the crosswalk at which the collision occurred.
- 29. HITPARKEDCAR: Whether or not the collision involved hitting a parked car. (Y/N)

4. Methodology

4.1 Data Exploration

We look now for the target values (**SEVERITYCODE**) and do some analysis

```
1 df.SEVERITYCODE.value_counts()
```

1 136485 2 58188

Name: SEVERITYCODE, dtype: int64

- We see that most car accident severity :
 - 1 prop damage
 - 2 injury

- Make some visualization

- Here we look to the correlation between Feature

```
1 # we now see the corrlation beween Features
2 data_corr = df.corr()
3 data_corr
```

	SEVERITYCODE	X	Y	OBJECTID	INCKEY	COLDETKEY	INTKEY	SEVERITYCODE.1	PERSONCOUNT	PEDCOUNT	PED(
SEVERITYCODE	1.000000	0.010309	0.017737	0.020131	0.022065	0.022079	0.006553	1.000000	0.130949	0.246338	
X	0.010309	1.000000	-0.160262	0.009956	0.010309	0.010300	0.120754	0.010309	0.012887	0.011304	
Υ	0.017737	-0.160262	1.000000	-0.023848	-0.027396	-0.027415	-0.114935	0.017737	-0.013850	0.010178	
OBJECTID	0.020131	0.009956	-0.023848	1.000000	0.946383	0.945837	0.046929	0.020131	-0.062333	0.024604	
INCKEY	0.022065	0.010309	-0.027396	0.946383	1.000000	0.999996	0.048524	0.022065	-0.061500	0.024918	
COLDETKEY	0.022079	0.010300	-0.027415	0.945837	0.999996	1.000000	0.048499	0.022079	-0.061403	0.024914	
INTKEY	0.006553	0.120754	-0.114935	0.046929	0.048524	0.048499	1.000000	0.006553	0.001886	-0.004784	
SEVERITYCODE.1	1.000000	0.010309	0.017737	0.020131	0.022065	0.022079	0.006553	1.000000	0.130949	0.246338	
PERSONCOUNT	0.130949	0.012887	-0.013850	-0.062333	-0.061500	-0.061403	0.001886	0.130949	1.000000	-0.023464	
PEDCOUNT	0.246338	0.011304	0.010178	0.024604	0.024918	0.024914	-0.004784	0.246338	-0.023464	1.000000	
PEDCYLCOUNT	0.214218	-0.001752	0.026304	0.034432	0.031342	0.031296	0.000531	0.214218	-0.038809	-0.016920	
VEHCOUNT	-0.054686	-0.012168	0.017058	-0.094280	-0.107528	-0.107598	-0.012929	-0.054686	0.380523	-0.261285	
SDOT_COLCODE	0.188905	0.010904	-0.019694	-0.037094	-0.027617	-0.027461	0.007114	0.188905	-0.128960	0.260393	
SDOTCOLNUM	0.004226	-0.001016	-0.006958	0.969276	0.990571	0.990571	0.032604	0.004226	0.011784	0.021461	
SEGLANEKEY	0.104276	-0.001618	0.004618	0.028076	0.019701	0.019586	-0.010510	0.104276	-0.021383	0.001810	
CROSSWALKKEY	0.175093	0.013586	0.009508	0.056046	0.048179	0.048063	0.018420	0.175093	-0.032258	0.565326	

Make Correlation more beautiful

- We now will select feature that will help us in Machine learning Model

```
#we will focues in some feature that make result
car_acc = df[['WEATHER','ROADCOND','LIGHTCOND','VEHCOUNT','JUNCTIONTYPE','PERSONCOUNT','SEVERITYCODE']]
```

*Data Dictionary *

- 1. WEATHER: A description of the weather conditions during the time of the collision.
- 2. ROADCOND : The condition of the road during the collision.
- 3. LIGHTCOND: The light conditions during the collision.
- 4. VEHCOUNT: The number of vehicles involved in the collision. This is entered by the state.
- 5. JUNCTIONTYPE: Category of junction at which collision took place
- 6. PERSONCOUNT: The total number of people involved in the collision
- 7. SEVERITYCODE: A code that corresponds to the severity of the collision:
 - * 3 fatality
 - * 2b -serious injury
 - * 2 injury
 - * 1 prop damage
 - * 0 unknown

- This's our data now

1 car_acc

	WEATHER	ROADCOND	LIGHTCOND	VEHCOUNT	JUNCTIONTYPE	PERSONCOUNT	SEVERITYCODE
0	Overcast	Wet	Daylight	2	At Intersection (intersection related)	2	2
1	Raining	Wet	Dark - Street Lights On	2	Mid-Block (not related to intersection)	2	1
2	Overcast	Dry	Daylight	3	Mid-Block (not related to intersection)	4	1
3	Clear	Dry	Daylight	3	Mid-Block (not related to intersection)	3	1
4	Raining	Wet	Daylight	2	At Intersection (intersection related)	2	2
194668	Clear	Dry	Daylight	2	Mid-Block (not related to intersection)	3	2
194669	Raining	Wet	Daylight	2	Mid-Block (not related to intersection)	2	1
194670	Clear	Dry	Daylight	2	At Intersection (intersection related)	3	2
194671	Clear	Dry	Dusk	1	At Intersection (intersection related)	2	2
194672	Clear	Wet	Daylight	2	Mid-Block (not related to intersection)	2	1

194673 rows x 7 columns

- Make Soma Analysis to our data :

Most car accident happen when weather is :

- Clear
- Raining
- Overcast

here The condition of the road during the collision is :

- Dry
- Wet

Find The Patterns between WEATHER VS SEVERITYCODE

1	pd.crosstab(df	.WEATH	ER,df.
	SEVERITYCODE	1	2
	WEATHER		
	Blowing Sand/Dirt	41	15
	Clear	75295	35840
	Fog/Smog/Smoke	382	187
	Other	716	116
	Overcast	18969	8745
	Partly Cloudy	2	3
	Raining	21969	11176
	Severe Crosswind	18	7
Slee	t/Hail/Freezing Rain	85	28
	Snowing	736	171
	Unknown	14275	816

```
pd.crosstab(car_acc.WEATHER,car_acc.SEVERITYCODE).plot(kind='bar',figsize=(14,7));
plt.xlabel('Weather')
plt.ylabel('Severity Code');
```


- Remove Outlier like "Unknown"

'Standing Water', 'Oil'], dtype=object)

```
car_acc.drop(car_acc[car_acc['WEATHER']=='Unknown'].index,inplace=True)

C:\Users\Mohamed Basher\Anaconda3\lib\site-packages\pandas\core\frame.py:4102: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-ver sus-a-copy errors=errors,

pd.crosstab(car_acc.WEATHER,car_acc.SEVERITYCODE).plot(kind='bar',figsize=(14,7));
plt.xlabel('Weather')
plt.ylabel('Severity Code');
```

Find The Patterns between Road Condition VS SEVERITYCODE

```
pd.crosstab(car_acc.ROADCOND,car_acc.SEVERITYCODE).plot(kind='bar',figsize=(14,7));
plt.xlabel('Road Condition')
plt.ylabel('Severity Code');
#we see that most Car accident happen in Road Condition : Dry and Wet
```



```
#we will drop 'Unknown' Values
car_acc.drop(car_acc[car_acc['ROADCOND']=='Unknown'].index,inplace=True)
```

```
car_acc.ROADCOND.unique()
array(['Wet', 'Dry', nan, 'Snow/Slush', 'Ice', 'Other', 'Sand/Mud/Dirt',
```

-Find the Patterns between Light Condition VS SEVERITYCODE

```
pd.crosstab(car_acc.LIGHTCOND,car_acc.SEVERITYCODE).plot(kind='bar',figsize=(14,7));
plt.xlabel('Light Condition ')
plt.ylabel('Severity Code');
plt.legend({'Prop Damage':1,'Injury':2});
```



```
#we will drop 'Unknown' Values
car_acc.drop(car_acc['LIGHTCOND']=='Unknown'].index,inplace=True)

car_acc.LIGHTCOND.unique()
```

Correlation Between Features

Now we will prepare Data to use in Machine learning Model

- · We looking first for Convert Object , String values to Numeric Values
- · And Fill Missing Values in our Data

```
data_info = pd.DataFrame(data=car_acc.isna().sum(),columns=['Missing Values'],index=car_acc.columns)
data_info['Data Types'] = car_acc.dtypes
```

data_info

	Missing Values	Data Types
WEATHER	5067	object
ROADCOND	4995	object
LIGHTCOND	5121	object
VEHCOUNT	0	int64
JUNCTIONTYPE	2676	object
PERSONCOUNT	0	int64
SEVERITYCODE	0	int64

Import library for fill Missing Data and Convert Categorical data to Numerical Values, We will use Pipeline

```
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import OneHotEncoder
from sklearn.impute import SimpleImputer
from sklearn.compose import ColumnTransformer
```

```
#Define Defferent Features and transformer Pipeline

categorical_feature = ['WEATHER','ROADCOND','LIGHTCOND','JUNCTIONTYPE']
categorical_transformer =Pipeline(steps=[
    ('imputer',SimpleImputer(strategy='constant',fill_value='missing')),
    ('onehot',OneHotEncoder(handle_unknown='ignore'))])
```

```
#Split Data

X=car_acc.drop('SEVERITYCODE',axis=1)
y=car_acc['SEVERITYCODE']
```

```
#setup preprocessing Steps (Fill Missing values , then convert to numbers)
preprocessor =ColumnTransformer(transformers=[('cat',categorical_transformer,categorical_feature)])
preprocessor_x =preprocessor.fit_transform(X)
```

```
#bulid Train & Test Data

X_train ,X_test,y_train,y_test = train_test_split(preprocessor_x,y,test_size=0.2,random_state = 42)
```

Try 3 Different ML Models:

- Logistic Regrassion
- 2. K-Nearest Neighbours Classifier
- Random Forest Classifier

- Define Function to Fit and Score all models in one cell:

```
#Create Dictionary containing our Models
models = { 'Logistic Regrassion': LogisticRegression(),
         'KNN':KNeighborsClassifier() ,
         'Random Forest ':RandomForestClassifier()}
#Create a Function to fit and score models
def fit_and_score(models ,X_train,X_test,y_train,y_test):
    Fit and Evaluate Models
    Models : a dictionary of Sklearn ML Models
    X_train :Trainning Data (No labels)
    X_test : Testing Data (No labels)
    y train :Trainnin labels
   y_test :testing Labels
    #set a rondom Seed
    np.random.seed(42)
    #Make a dictionary to keep model score
    models score ={}
    #Loop Through Models
    for name , model in models.items():
        #fit the model to the data
        model.fit(X_train,y_train)
        #Evaluate the model and append to models score
        models score[name]=model.score(X test,y test)
    return models score
```

- it takes times to run

```
#try our Models
models_score = fit_and_score(models ,X_train,X_test,y_train,y_test)
models_score
C:\Users\Mohamed Basher\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:432: FutureWarning: Default solver will be
changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.
   FutureWarning)
C:\Users\Mohamed Basher\Anaconda3\lib\site-packages\sklearn\ensemble\forest.py:245: FutureWarning: The default value of n_estim
ators will change from 10 in version 0.20 to 100 in 0.22.
   "10 in version 0.20 to 100 in 0.22.", FutureWarning)
```

```
{'Logistic Regrassion': 0.6803584127435642, 'KNN': 0.6354999288863604,
```

Model Comparison

```
#Create Data Frame
model_comp_df = pd.DataFrame(models_score ,index=['Accuracy'])

#plot our Models
model_comp_df.T.plot.bar(figsize=(10,6),color='lightgreen')
plt.xticks(rotation=0);
```


^{&#}x27;Random Forest ': 0.6795050490684114}

- We try to improve our model by using different Parameter

Hyperprameter Tuning with GridSearchCV

Using Different parameter in our models to increase model's accuracy

· Now let's use GridSearchCV with Logistic Regrassion

- I face some problem with my PC when I try in Random Forest and KNN, so I will work in Logistic Regression

```
#Best parameter we found
gs_log_reg.best_params_

{'C': 0.0001, 'solver': 'liblinear'}

#Score The Model
print(f"Logistic Regression Score : {gs_log_reg.score(X_test,y_test) *100:0.2f}%")
```

Logistic Regression Score : 68.04%

Evaluating a classification model

- we use :
 - Classification report classification_report()
 - Precision precision score()
 - F1-score f1 score()

```
from sklearn.metrics import classification_report
from sklearn.metrics import precision_score
from sklearn.metrics import f1_score
from sklearn.model_selection import cross_val_score

y_preds = gs_log_reg.predict(X_test)
```

Classification report

We can make a classification report using classification report() and passing it the true labels as well as our models predicted labels.

```
print(classification report(y test,y preds))
            precision
                       recall f1-score
                                        support
         1
                0.68
                        1.00
                                  0.81
                                          23921
         2
                0.00
                         0.00
                                  0.00
                                          11234
                                  0.68
                                          35155
   accuracy
                0.34
                                  0.40
  macro avg
                         0.50
                                          35155
weighted avg
                0.46
                         0.68
                                  0.55
                                          35155
```

Cross validation score

We'll take the best model along with the best hyperparameters and use cross val score() along with various scoring parameter values.

cross_val_score() works by taking an estimator (machine learning model) along with data and labels. It then evaluates the machine learning model on the data and labels using cross-validation and a defined scoring parameter.

```
0.6758111407684189
```

cv_acc

cv_acc =np.mean(cv_acc)

0.6758111407684189

0.8065480940173073

Plot CV Metrics Score

```
sns.set()
cv_metrics =pd.DataFrame({'Accuracy':cv_acc,'Precision':cv_pre,'F1':cv_f1},index=[0])
cv_metrics.T.plot.bar(figsize=(8,6),title="Cross-Validated Metrics", legend=False);
```


5.Discussion

After the analysis data, we found

- 1. most car accident severity:
 - prop damage
 - injury
- 2. Most car accident happens when the weather is:
 - Clear
 - Raining
 - Overcast
- 3. The condition of the road during the collision is:
 - Dry
 - Wet

6.Conclusion

- We need to add some other models to precisely predict traffic accident severity. We need to improve the accuracy of the model too
- In the future, this model still needs improvement, and we need some additional features to increase prediction accuracy