# Математический анализ. Третий семестр

Автор: Вячеслав Чепелин

# Содержание

| 1. | Творческий кризис Кохася          | 3  |
|----|-----------------------------------|----|
|    | 1.1. Системы Штейнера             | 3  |
|    | 1.1.1. Мудрецы и шляпы            | 2  |
|    | 1.1.2. Идея                       | 2  |
|    | 1.1.3. Система Штейнера           |    |
|    | 1.1.4. Решаем мудрецов $n=4, k=9$ |    |
|    | 1.1.5. Еще решения мудрецов       |    |
| 2  | Теория Меры                       |    |
| ۷. | 2.1. Системы множеств             |    |
|    | 2.2. Объем                        | 5  |
|    | 2.3. Mepa                         |    |
|    |                                   |    |
|    | 2.4. Продолжение меры             | 12 |
|    | 2.5. Мера Лебега.                 |    |
|    | Интеграл                          |    |
| 4. | Информация о курсе                | 20 |

# 1. Творческий кризис Кохася

# 1.1. Системы Штейнера

## 1.1.1. Мудрецы и шляпы

У нас есть n мудрецов и k шляп  $k \ge n$ . Мудрецы стоят в ряд. Каждому мудрецу на голову надевают одну из k шляп, выбранную случайным образом. Мудрец не видит шляпу на своей собственной голове, но видит шляпы всех впереди стоящих мудрецов (тот, кто стоит последним в ряду, видит всех, кроме себя, а тот, кто стоит первым, не видит никого).

Мудрецы не могут общаться друг с другом, жестами, поворачиваться и т.д. Однако, начиная с затылка ряда (с того, кто видит больше всех), каждого мудреца по очереди спрашивают: «Какого цвета твоя шляпа?». Мудрец должен ответить одним из k возможных цветов. При этом нельзя повторять цвета. Его цель — **назвать правильный цвет**. Мудрецы могут заранее договориться об общей стратегии, чтобы максимизировать число гарантированно угаданных шляп. В этом и состоит наша задача.

Есть разные интересные простые частные решения. Для расширения кругозора <u>тык</u> (там с самого начало). Нас интересует нечто другое.

#### 1.1.2. Идея

Что вот по-хорошему должны сделать мудрецы?

- Первый мудрец почти всегда проиграет, он не может угадать, что у него на голове
- Первый должен передать какой-то «ключ» своим коллегам перед ним и коллеги имея ключ должны угадать свой номер. То есть по факту каждый человек видит ключ(key) знает тех, кто был до него и видит тех, кто был после него:

Мы хотим такой список, что зная n-1 число, мы можем понять n-ое.

#### 1.1.3. Система Штейнера

# Определение. Система Штейнера $S(t,n,\nu)$

КПК вообще сделал лирическое отступление про «Конструктор Ромашку». Пример странный, так что формальное объяснение:

<u>Система Штейнера</u> это набор из n —элементных подмножеств множества X из  $\nu$  элементов таких, что любое t —элементное подмножество множества X содержалось ровно в одном из выбранных подмножеств.

В литературе чаще используют  $S(t,k,\nu)$ 

По факту наша задача про мудрецов свелась к S(n-1,n,k).

Бывает S(4,5,11), не бывает S(3,4,7)

## **1.1.4.** Решаем мудрецов n = 4, k = 9

Они берут конечное поле из 8 элементов:  $F_8$ . Мы знаем, что конечные поля существуют в  $F_{p^l}$ .

Есть  $\mathbb{R}$  и  $\mathbb{R}^3$ , мы умеем думать об  $\mathbb{R}^3$  как о коэффициентах перед i,j,k. Возьмем идею.

Возьмем 1,  $\xi$ ,  $\xi^2$  - 3 линейно независимых векторов в  $\mathbb{R}^3$ . Пусть у нас выполнено:

$$\xi^3 + \xi + 1 = 0$$

У нас получается нечто из 8 точек (будем ставить 0 или 1 перед  $1, \xi, \xi^2$ ). Почему-то они удовлетворяют аксиомам поля (можете проверить).  $f(x) = \frac{ax+b}{cx+d}$  - гипербола, если  $ad-bc \neq 0.$ 

Будем считать, что  $f:(\mathbb{R}\cup\{\infty\})\to(\mathbb{R}\cup\{\infty\})$  - проективная прямая

Оно представляет все точечки, кроме асимптоты. Поэтому будем считать, что  $\infty \to \frac{a}{c}, -\frac{d}{c} \to \infty$ . То есть у нас биективная функция.

# Теорема.

 $orall \underbrace{a,b,c}_{\mathrm{разл.}} \in \overline{\mathbb{R}}: orall \underbrace{A,B,C}_{\mathrm{разл.}} \in \overline{\mathbb{R}}: \exists !f$  - дробно-линейная, такая что:

$$f(a) = A, f(b) = B, f(c) = C$$

# Доказательство:

Вот она:

$$\frac{y-A}{y-B}:\frac{C-A}{C-B}=\frac{x-a}{x-b}:\frac{c-a}{c-b}$$

КПК: Единственность покажете сами

Q.E.D.

А теперь склеиваем все воедино.

- Первый мудрец видит перед собой номера шляп: b, c, d. По вышесказанной теореме существует функция, которое отображает f(2) = b, f(3) = c, f(4) = d. Так как она единственная Первый мудрец говорит f(1)
- Второй мудрец имея 3 числа из 4 восстанавливает дробно-линейную функцию, а так как она единственная то получает ту же самую. Он восстанавливает свой номер и называет его
- Остальные аналогично восстанавливают свой номер

#### 1.1.5. Еще решения мудрецов

X - множество, |X| = k > 23

Линия - это подмножество X

- 1. Любые две пересек. по  $\leq$  1 точке
- 2.  $\forall a,b \in X: \exists !$ линия  $l{:}\;a,b \in l$
- 3. |l| = 4, 5, 6

В угоду моей психике это будет сделано позже

# 2. Теория Меры

## 2.1. Системы множеств

# Определение. Полукольцо множеств $\mathcal P$

X - множество.  $\mathcal{P} \subset 2^{X}$  - полукольцо, если:

- 1.  $\emptyset \in \mathcal{P}$
- 2.  $\forall A, B \in \mathcal{P}, A \cap B \in \mathcal{P}$
- 3.  $\forall A,B\in\mathcal{P},\exists \underline{B_1,...,B_n}\in\mathcal{P}:A\smallsetminus B=\bigcup_{k=1}^nB_k$

# <u>Пример.</u> Полукольцо ячеек в $\mathbb{R}^m$

$$a,b \in R^m : [a,b) = \{x \in \mathbb{R}^m : \forall x = 1...m : a_k \leq x_k < b_k\}$$

То есть множество таких параллелепипедов. Очевидно оно удовлетворяет всем трем аксиомам полукольца.

## Еще пример

 $X = \{1, ..., 6\}^m$ . Покажем, что  $\mathcal{P}$  - полукольцо для этого множества

- 1. Очевидно принадлежит.
- 2.  $A_{c_1c_2}\cap A_{c_5}=A_{c_1c_2c_5}\in P$  работает
- 3. TODO

# Пример. Полукольцо рациональных чисел

[a,b), где  $a_i,b_i\in\mathbb{Q}$ 

## Антисвойство

 $\mathcal P$  - полукольцо:  $A,B\in \mathcal P$ . Тогда вообще говоря  $A\cup B,A\setminus B,X\setminus A,A \triangle B$  не лежат в  $\mathcal P$ 

#### Свойство:

$$\overline{\forall A,B_1,...,B_k} \in \mathcal{P}: \exists \underline{D_1,...,D_n}$$
 - кон. количество:  $A \setminus \left(igcup_{i=1}^k B_i\right) = igcup_{j=1}^n D_j$ 

Это доказывается по индукции

# Определение. Алгебра подмножеств пространства X

 $a\subset 2^X$  - такой объект называется **алгеброй**, если выполнены свойства:

- 1.  $X \in a$
- 2.  $A, B \in a \Rightarrow A \setminus B \in a$

#### Свойства

- 1.  $\emptyset = X \setminus X \in a$
- 2.  $A, B \in a \Rightarrow A \cap B = A \setminus (A \setminus B) \in a$
- 3.  $A^c = X \setminus A \in a$
- 4.  $A \cup B = (A^c \cap B^c)^c \in a$
- 5. Всякая алгебра есть полукольцо

# <u>Пример.</u> Тривиальный - $2^X$

# Пример. Хитрый, но простой

 $X=\mathbb{R}^2$ . a состоит ограниченных множеств и из дополнений ограниченных множеств.

- $\emptyset, X \in a$
- Выполняется вторая аксиома:
  - 1. A orp.

2. 
$$A^c$$
 - orp. +.  $B$  - orp.  $\Rightarrow (A \setminus B)^c$  - orp. +.  $B^c$  - orp.  $\Rightarrow A \setminus B \subset B^c \Rightarrow$  orp.

# Пример. На счётность

X= бесконечное множество:  $\alpha=\{A\subset X:A$  НБЧС или  $X\setminus A$  НБЧС}

# Определение. $\sigma$ -алгебра a подмножества X

 $a\in 2^X$  и выполняется:

- 1. a алгебра 2.  $\forall A_1, A_2, \ldots \in a: \bigcup_{i=1}^{+\infty} A_i \in a$

# Свойство:

$$\forall A_1,A_2,\ldots\in a:\bigcap_{i=1}^{+\infty}A_i\in a$$

#### 2.2. Объем

# Определение. Конечно аддитивная функция

 $X,\mathcal{P}$  - полукольцо подмножеств  $X,\varphi:\mathcal{P}\to \overline{\overline{\mathbb{R}}}$ .  $\varphi$  - конечно аддитивная функция, если:

- 1.  $\varphi(\emptyset) = 0$
- 2.  $A, A_1, ..., A_m, A = \bigsqcup_{i=1}^n A_i$  дизъюнктное объединение, выполнено:

$$\varphi(A) = \sum_{i=1}^{m} \varphi(A_i)$$

# Определение. Объем

 $X,\mathcal{P}$  - полукольцо подмножеств  $X,\varphi:\mathcal{P} o\overline{\mathbb{R}}$ .  $\varphi$  - объем, если:

- 1.  $\varphi \geq 0$
- 2.  $\varphi$  конечно-аддитивно

# Пример.

 $g:\mathbb{R} o\mathbb{R}$  возрастает и непрерывно. Давайте зададим  $\mu_g[a,b)=g(b)-g(a)$  - тоже пример объема.

# Теорема. Свойства

 $\mu:\mathcal{P}\rightarrow\mathbb{R}$ , где  $\mathcal{P}$  - полукольцо. Тогда выполнено:

- 0.  $B \subset A \Rightarrow \mu B \leq \mu A$  монотонность объема.
- 1. <u>Усиленная монотонность</u>:  $\forall A_1,...,A_n,A\in\mathcal{P}:\bigsqcup_{i=1}^nA_i\subset A$ :

$$\mu A \ge \sum_{i=1}^{n} \mu A_i$$

2. Конечная полуаддитивность:  $\forall A_1...., A_n: A \subset \bigcup_{i=1}^n A_i$ :

$$\mu A \leq \sum u A_i$$

3.  $A,B,A \setminus B \in \mathcal{P}: \mu(B) < +\infty$ . Тогда:

$$\mu(A \setminus B) \ge \mu A - \mu B$$

#### Доказательство:

1.  $A \setminus (\bigsqcup A_i) = \bigsqcup_{\text{кон.}} B_j$  - по модиф. условию кольца. Тогда по вышесказанному:

$$A = | A_i \cup | B_j$$

По определения объема:

$$\mu A = \sum \mu A_i + \sum \mu B_j$$

Что и требовалось показать.

2.  $B_i := A \cap A_i \in \mathcal{P} : A = \bigcup_{\text{for } B_i} B_i$ .

Теперь давайте действовать так: Обозначим за  $C_i$  - то какие части множества добавляет та или иная  $B_i$ 

$$C_i = B_i \smallsetminus \left(\bigcup_{j=1}^{i-1} B_j\right)$$

Тогда  $A=\bigsqcup_{i=1}^n C_i$ . НО. Мы не можем сразу сделать вывод об объеме, так как не факт что  $C_i$  лежат у нас в полукольцо. НО каждое  $C_i$  мы можем составить из конечного числа множеств по аксиомам полукольца. Воспользуемся усиленной монотонностью и докажем требуемое.

3. Он очевиден из прошлых пунктов.

КПК: Это проверка на вашу вменяемость

# 2.3. **Mepa**

# Определение. Мера.

 $X, \bar{\mathcal{P}}$  - полукольцо:  $\mu: \mathcal{P} \to \overline{\mathbb{R}} - \underline{\mathtt{mepa}}$ , если:

1. μ - объем

2.  $\mu$  - счетно-аддитивно

**Замечание:** Счетная аддитивность:  $\forall A_1, ... \in \mathcal{P}: A = \bigsqcup A_i: \mu A = \sum_{i=1}^{+\infty} \mu A_i$ 

Замечание: Объем ⇒ выполняется счетная аддитивность.

# <u>Теорема об эквивалентности счетной аддитивности и счетной полуаддитивности .</u>

 $\mu:\mathcal{P}\to\overline{\mathbb{R}}$  — объем. Тогда эквивалентно:

1.  $\mu$  — мера, т.е  $\mu$  — счетно-аддитивна

2.  $\mu$  — счетно-полуаддитивна (нет дизъюнктивности):  $\forall A, A_1... \in \mathcal{P}, \ A \subset \bigcup A_i$  :

$$\mu A \leq \sum_{i} \mu A_{i}$$

## Доказательство:

 $1 \Rightarrow 2$ . Берем второй пункт теоремы о свойствах объема, но вместо конечного объединения по k берем счетное объединение (так как у нас теперь мера, то все хорошо) и тадам, все получается.

 $2 \Rightarrow 1$ . Надо проверить, что:

$$A = \bigsqcup_{i=1}^{\infty} A_i \stackrel{?}{\Rightarrow} \mu A = \sum_{i=1}^{\infty} \mu A_i$$

Воспользуемся усиленной монотонностью, тогда для любого n будет верно:

$$\sum_{i=1}^{n} \mu A_i \le \mu A$$

По определению счетной полуаддитивности:

$$\mu A \le \sum_{i=1}^{\infty} \mu A_i$$

Итого:

$$\sum_{i=1}^n \mu A_i \leq \mu A \leq \sum_{i=1}^\infty \mu A_i$$

И если перейти к пределу при  $n \to +\infty$  мы сразу получим то, что требуется.

Q.E.D.

<u>Следствие:</u>  $A\in\mathcal{P}, A_n\in\mathcal{P}, \mu A_n=0, \mu$  - объем. Пусть  $A\subset\bigcup A_n$ . Тогда  $\mu A=0$ 

# Теорема о непрерывности меры снизу.

a - алгебра.  $\mu:a o\overline{\mathbb{R}}$  - объем. Тогда:

1.  $\mu$  — мера

2.  $\mu$  — непрерывны снизу:

$$\forall A,A_1,A_2,...\in a,\quad A_1\subset A_2\subset...,\quad A=\bigcup_{i=1}^\infty A_i$$

Следует:

$$\mu A = \lim_{i \to \infty} \mu A_i$$

# Теорема о непрерывности меры сверху.

a — алгебра,  $\mu:a o\mathbb{R}$  — конечный объем. Тогда эквивалентно:

- 1.  $\mu$  мера, т.е счетно-аддитивна
- 2.  $\mu$  непрерывна сверху, те:

$$\forall A,A_1,A_2,...\in a,\quad A_1\supset A_2\supset...,\quad A=\bigcap_{i=1}^\infty A_i$$

Следует:

$$\mu A = \lim_{i \to \infty} \mu A_i$$

# Доказательство:

Нарисуем упрощающий рисунок:



#### $1 \Rightarrow 2$

Пусть  $B_k \coloneqq A_k \setminus A_{k+1}$ . Тогда такие  $B_k$  дизъюнктивны. Отсюда получаем, что

$$A_1 = \bigsqcup_{i=1}^{\infty} B_i \sqcup A$$

Так как  $\mu$  мера, то получаем, что:

$$\mu A_1 = \sum_{i=1}^{\infty} \mu B_i + \mu A$$

Теперь посмотрим на «хвост» этого ряда, и аналогично первому утверждению доказательства напишем:

$$\mu A_i = \sum_{k=i}^{\infty} \mu B_k + \mu A$$

Т.к. ряд из  $\sum\limits_{i=1}^\infty \mu B_i$  сходится, то при  $i\to +\infty$ , «хвост»  $\to 0: \sum\limits_{k=i}^\infty \mu B_k \underset{i\to +\infty}{\to} 0$  Делаем предельный переход в равенстве выше, и получаем:

$$\lim_{i \to \infty} \mu A_i = 0 + \mu A = \mu A$$

 $2\Rightarrow 1$ . Эта часть доказательства будет потом переписана, автор пока копирует то, что говорит Кохась. Если что это примерно 10 минут после перерыва.

В доказательстве этого пункта мы будем пользоваться только следствием пункта 2, а именно:

$$A_1\supset A_2\supset...,\quad A=\bigcap A_k=\varnothing\Rightarrow \mu A=\lim_{i\to +\infty}\mu A_i=0$$

Мы хотим проверить счетную аддитивность, т.е.

$$C = \bigsqcup_{i=1}^{\infty} C_i \stackrel{?}{\Rightarrow} \mu C = \sum_{i=1}^{\infty} \mu C_i$$

Для этого введем множества  $A_k$  следующим образом:

$$A_k = \bigcup_{i=k+1}^{\infty} C_i = C \setminus \left(\bigsqcup_{i=1}^k C_i\right)$$

Так как это конечное объединение, то  $\bigsqcup_{i=1}^k C_i \in a$ , а значит и правая часть  $\in a \Rightarrow A_k \in a$ 

Заметим также, что  $\bigcap_{k=1}^{+\infty} A_k = \emptyset$ , т.к. все  $C_i$  дизъюнктны, то любая точка из C содержится ровно в одном  $C_i$ , а значит в  $A_{k>i}$  она уже содержаться не будет (по определению  $A_k$ ), и в пересечении всех  $A_k$  её тоже не будет

Отсюда следует, что мы можем применять следствие 2 пункта из начала доказательства. Осталось только заметить, что:

$$C = \bigsqcup_{i=1}^{k} C_i \sqcup A_k$$

Т.к.  $\mu$  — объем:

$$\mu C = \sum_{i=1}^{k} \mu C_i + \mu A_k$$

Делаем предельный переход при  $k \to +\infty$ 

$$\mu C = \sum_{i=1}^{+\infty} \mu C_i + 0$$

# 2.4. Продолжение меры.

# Определение. Пространство с мерой

Обозначается тройкой  $\left(\underbrace{X}_{\text{мн-во}},\underbrace{\alpha}_{\sigma\text{-алг.}},\underbrace{\mu}_{\text{мера}}\right)$ 

# Определение. Сигма-конечная мера

 $\mu:\mathcal{P}\subset 2^X o\overline{\mathbb{R}}$  — мера (или объём)

 $\mu-\pmb{\sigma}$ -конечная мера (или объем), если

$$\exists A_1,A_2,\ldots\in\mathcal{P}\quad X=\bigcup_{i=1}^{+\infty}A_i,\ \mu(A_i)<+\infty$$

Замечание. Множество измеримо, если оно лежит в области определения меры

# Теорема о лебеговском продолжении меры.

 $\mathcal{P}_0 \subset 2^X$ — полукольцо:  $\mu_0: \mathcal{P}_0 \to \overline{\mathbb{R}} - \sigma$ -конечная мера.

Тогда  $\exists \sigma$ -алгебра  $a:\mathcal{P}_0\subset a$  и  $\exists \mu$  - мера на a такие, что:

- 1.  $\left.\mu\right|_{\mathcal{P}}=\mu_{0},$  т.е.  $\mu-$  продолжение  $\mu_{0}$  на a
- 2.  $\mu$  полная мера
- 3. Если  $a_1$   $\sigma$ -алгебра,  $\mu_1$ -мера, полная,  $\mathcal{P} \in a_1, \mu_1|_{\mathcal{P}}$ , то  $a \subset a_1, \mu_1|_a = \mu$
- 4. Если  $\mathcal{P}\subset\mathcal{P}_2\subset a:\mu_2\mid_{\mathcal{P}}=\mu_0$ , то тогда  $\mu|_{\mathcal{P}_2}=\mu_2$
- 5.  $A \in a, \mu A$  кон, то

$$\mu A = \inf \Biggl( \sum \mu P_k, A \subset igcup_{k=1}^{+\infty} P_k,$$
где  $P_k \in \mathcal{P} \Biggr)$ 

К счастью, без доказательства

## <u>Определение.</u> *µ*-измеримое множество

 $A\subset X-\mu$ -измеримо, если  $\forall E\subset X$  :

$$\mu E = \mu(A \cap E) + \mu(A^C \cap E)$$

# 2.5. Мера Лебега.

Автор ничего не понимает и еще в будущем будет стдеть и перепечатывать доказательство. Пока так.

## Лемма. Счетная аддитивность классического объема

Счетная аддитивность классического объема  $\mathcal{P}^m$  — множество всех ячеек на  $\mathbb{R}^m$ .  $\mu$  — классический объем. Тогда  $\mu$  —  $\sigma$ -конечная мера.

#### Доказательство:

- 1.  $\sigma$ -конечность очевидна: можно либо разлиновать пространство на клеточки как в тетради, либо просто взять увеличивающийся параллелепипед
- 2. Надо доказать счетную аддитивность. Давайте по теореме об эквив. счетной аддитивности и полуаддитивности, докажем полуаддитивность:

$$P = [a, b), P_n = [a_n, b_n): P \subset \bigcup_{n=1}^{+\infty} P_n \stackrel{?}{\Rightarrow} \mu P \leq \sum \mu P_n$$

Далее под фразой «чуть уменьшим» вектор из  $\mathbb{R}^m$  будем подразумевать небольшое уменьшение каждой из его координат. Возьмем  $\varepsilon>0$ :

1. Чуть уменьшим b и получим b':

$$[a,b']\subset [a,b):\ \mu(P\smallsetminus [a,b'))<\varepsilon$$

2. Теперь для каждого  $P_n$  немного уменьшим  $a_n$  и получим  $a_n^\prime$  :

$$(a_n',b_n)\supset [a_n,b_n):\ \mu([a_n',b_n)\smallsetminus P_n)<\frac{\varepsilon}{2^n}$$

3. Получаем, что  $\underbrace{[a,b']}_{\text{компакт}} \subset \bigcup_{n=1}^{+\infty} (a'_n,b_n)$ 

Т.к. это компакт, а справа стоит открытое покрытие, то по определению существует конечное подпокрытие:

$$[a,b']\subset \bigcup_{n=1}^N (a_n',b_n)$$

Теперь в правую часть включения добавим часть точек, а слева уберем. Очевидно включение от этого не сломается:

$$[a,b')\subset\bigcup_{n=1}^N[a_n',b_n)$$

По конечной аддитивности:

$$\mu[a,b) - \varepsilon \overset{(1)}{\leq} \mu[a,b') \overset{(3)}{\leq} \sum_{n=1}^N \mu[a_n',b_n) \overset{(2)}{\leq} \sum_{n=1}^N \Bigl(\mu[a_n,b_n) + \frac{\varepsilon}{2^n}\Bigr)$$

$$\mu[a,b) \leq \varepsilon + \sum_{n=1}^N \mu[a_n,b_n) \leq 2\varepsilon + \sum_{n=1}^{+\infty} \mu[a_n,b_n)$$

Делаем предельный переход при  $\varepsilon \to 0$  и получаем ровно то, что и хотели.

# Определение. Мера Лебега

**Мера Лебега** в  $\mathbb{R}^m$  — это результат применения теоремы о продолжении лебеговском продолжении меры к класс. объему.

 $(\mathbb{R}^m,\mathcal{P},\mu_0)\rightsquigarrow (\mathbb{R}^m,m^m,\lambda)$ , где  $\mu_0$  - классический объема,  $\lambda,\lambda_m$  — мера Лебега (иногда хотим указывать размерность пространства)

#### Свойство:

- 1. Объединение, пересечение (в том числе счетные) множеств, изменимые по Лебегу тоже
- 2. Полнота.  $\lambda A = 0, B \subset A \Rightarrow \lambda B = 0$
- 3. Содержит все открытые и замкнутые множества в  $\mathbb{R}^m$  (доказательство см ниже)
- 4. E измеримо и  $\lambda(E)=0 \Rightarrow$  у E нет внутренних точек
- 5.  $A \in \mathcal{M}^m$ , тогда  $\forall \varepsilon > 0$ :
  - $\exists$  открытое  $G_{\varepsilon}:A\subset G_{\varepsilon}:\lambda(G_{\varepsilon}\setminus A)<\varepsilon$
  - $\exists$  замкнутое  $F_\varepsilon:A\supset F_\varepsilon:\lambda(A\smallsetminus F_\varepsilon)<\varepsilon$

#### Доказательство:

5. Пусть  $\lambda A < +\infty: \forall \varepsilon > 0: \exists P_k: A \subset \bigcup P_k$  по пункту 5 теоремы о лебеговском продолжении меры

$$\lambda A \le \sum \lambda P_k \le \lambda A + \varepsilon$$

Заменим  $P_k=[a_k,b_k]$  на  $P_k'=(a_k-\alpha_k,b_k)$ , так, чтобы  $\lambda P_{k'}<\lambda P_k+rac{arepsilon}{2^k}.$ 

Возьмем  $G_{arepsilon} \coloneqq \bigcup P_k'$  - открытое. Тогда:

$$\lambda A \leq \sum \lambda P_k' < \left(\sum \lambda P_k\right) + \varepsilon < \lambda + 2\varepsilon$$

Заметим, что тогда выбранное  $G_{\varepsilon}$  удовлетворяет условию.

Теперь для произвольного A:  $\mathbb{R}^m = \bigsqcup Q_i$ .  $A \cap Q_i$ . Существует открытое  $G_i$ , что  $(A \cap Q_i) \subset G_i$ 

$$\lambda(G_i \smallsetminus (A \cap Q_i)) < \frac{\varepsilon}{2^i}$$

TODO: тут не совсем понял, как мы такие  $G_i$  можем выбрать, ладно

$$A = \bigsqcup (A \cap Q_i) \subset \bigcup G_i = G$$
 - открытое.

Ну и видно, что найденное G подходит условию.

Q.E.D.

TODO: пропущены следствия, можете пожалуйста их сформулировать кто=то

# <u>Лемма.</u> О смысле жизни открытых и замкнутых множеств

 $O\subset \mathbb{R}^m$  — открытое. Тогда  $\exists Q_i:\ O=igsqcup_{i=1}^{+\infty}Q_i$ , где  $Q_i$  — кубические ячейки:

- можно считать, что у ни с рациональными координатами.
- можно даже считать, что с двоично-рациональными
- они «закопаны» внутрь области О.  $Q_i \subset \overline{Q_i} \subset O$

## Доказательство:

 $\forall x \in O$  :Возьмем Q(x) - любую кубические ячейку с нужными нам из условия свойствами

$$O = \bigcup_{x \in Q} Q(x) \underset{\text{шаманим}}{=} \bigcup_{i=1}^{+\infty} Q(x_i)$$

Шаманство: O- континуальное множество. Казалось бы, как такое посчитать. Заметим, что ячеек с двоично-рациональными координатами счетно. Так что мы просто пройдемся по ним и будем нумеровать, так что шаманство работает!

# 3. Интеграл

# Определение. Разбиение множества Е

Разбиением множества Е называется его разбиение на конечное количество множеств, то есть:

$$E = | | E_i$$

# Определение. Ступенчатая функция

 $f:X o\mathbb{R}$  — называется **ступенчатой**, если:

$$\exists e_i: X = \bigsqcup_{\text{\tiny KOH}} e_i: \ \forall i \ f|_{e_i} = \text{const}$$

При этом такое разбиение называется допустимым.

 $\Pi$ ример: Характеристическая функция  $\chi_{e_k} = \begin{cases} 1, & x \in e_k \\ 0, & x \notin e_k \end{cases}$ 

#### Свойства

- 1. Если f, g ступенчатые функции, то  $\exists$  разбиение, допустимое для обоих
- 2. f, g ступенчатые,  $\alpha \in \mathbb{R}$ . Тогда:

$$f+g,\ fg,\ \max(f,g),\ \min(f,g),\ |f|,\ lpha f$$
 — ступенчатые

Доказательство этих свойств очевидно

# Определение. Лебеговские множества.

Пусть есть  $f:E\subset X\to \overline{\mathbb{R}}$  и  $a\in\mathbb{R}$ . Тогда следующие 4 множества называются **Лебеговскими**:

- 1.  $E(f < a) = \{x \in E, f(x) < a\}$
- 2.  $E(f \le a) = \{x \in E, f(x) \le a\}$
- 3.  $E(f \ge a) = \{x \in E, \ f(x) \ge a\}$ 4.  $E(f > a) = \{x \in E, \ f(x) > a\}$

#### Замечания:

- $\begin{array}{l} \bullet \ E(f>a) = (E(f \leq a))^c \\ \bullet \ E(f \leq a) = \bigcap_{n \in \mathbb{N}} E\big(f < a + \frac{1}{n}\big) \end{array}$

TODO: те ли замечания?

# Определение. Измеримая функция

 $(X,a,\mu)$  — пространство с мерой. Возьмем  $f:E\subset X o \overline{\mathbb{R}}, E\in a$ . Тогда f — **измерима** на E, если

$$\forall a \in \mathbb{R}: \ E(f < a) \in a$$

(аналогично для еще 3х случаев)

 ${\color{red} {\bf 3}}$ амечание: Если f измеримо на X говорят, что X просто измеримо. Если  $X=\mathbb{R}^m$ ,  $a=m^m$ , то говорят, что X измеримо по Лебегу

TODO: так ли это??!?!?!?

ТООО: пропущено замечание про эквивалентность, потому что не разобрал

#### Свойства:

- 1. f измерима  $\Rightarrow \forall a \in \mathbb{R}: \ E(f=a) = E(f \geq a) \cap E(f \leq a)$  измеримо
- 2. f измерима  $\Rightarrow \forall \alpha \in \mathbb{R}: \ \alpha f$  измерима

- 3. f измерима на  $E_k \Rightarrow f$  измерима на  $E = \bigcup E_k$
- 4. f измерима на  $E, E' \subset E, E' \in a \Rightarrow$  измерима на E'
- 5.  $f \neq 0$  на Е, измерима  $\Rightarrow \frac{1}{f}$  измерима
- 6.  $f \geq 0, \; \alpha > 0$  измерима  $\Rightarrow f^{\alpha}$  измерима

# Теорема. Об измеримости пределов и супремумов.

 $f_n$  — измеримые функции на X. Тогда:

- 1.  $\sup f_n$ ,  $\inf f_n$  измеримы.
- 2.  $\overline{\lim} f_n$ ,  $\underline{\lim} f_n$  измеримы.
- 3. Если  $\forall x \quad \exists \lim_{n \to +\infty} (f_n(x)) = f(x),$  то f измерима.

#### Доказательство:

1) Пусть  $g(x) \coloneqq \sup f_n(x)$ 

Докажем, что

$$X(g>a)=\bigcup_n X(f_n>a)$$

Если это верно, то справа стоит счетное объединение измеримых множеств ⇒ оно измеримо

Чтобы это показать, докажем включение в обе стороны.

Покажем, что

$$X(g>a)\subset\bigcup_nX(f_n>a)$$

Рассмотрим какой-нибудь  $x\in X(g>a)$ . По определению множества  $X(g>a):\ g(x)>a\Rightarrow\sup f_n(x)=g(x)>a$ . Тогда по техническому описанию  $\sup:\ \exists n:f_n(x)>a$ . Значит x лежит в правой части тоже.

Покажем, что

$$X(g>a)\supset \bigcup_n X(f_n>a)$$

Рассмотрим какой-нибудь  $x\in \bigcup_n X(f_n>a)$ . Это значит, что  $\exists n:\ x\in X(f_n>a)$ .

По определению этого множества  $f_n(x) > a \Rightarrow g(x) = \sup f_n(x) > a$ 

TODO: скопировал 2 и 3 пункт с прошлого года, так как не понял, распишите их нормальной

- 2) Распишем верхни предел по определению (для нижнего все будет аналогчино)

Заметим, что по предыдущему пункту  $s_n$  — измерим (т.к. она sup измеримых)

$$\overline{\lim} f_n(x) = \inf_n(s_n)$$

Аналогично  $\lim f_n(x)$  — измерима, т.к.  $s_n$  измеримы

3) Очевидно: так как если  $\exists \lim \Rightarrow \overline{\lim} = \lim = \underline{\lim}$ 

Q.E.D.

<u>Следствие.</u> f - измеримо  $\Rightarrow |f|, f^+, f^-$  - измеримы

# <u>Теорема.</u> Характеризация измеримых функций с помощью ступенчатых

 $f:X o\overline{\mathbb{R}},\,f\geq0,$  f-измеримо. Тогда <br/>  $\exists f_n-$ ступенчатые функции:

$$1. \ 0 \le f_n \le f$$

1. 
$$0 \le f_n \le f$$
  
2.  $\forall x : \lim_{n \to +\infty} f_n(x) = f(x)$ 

#### Доказательство:



Выберем  $n \in \mathbb{N}$  и нарежем ось «y» сначала на n отрезков длины 1, а потом каждый из них на отрезки длины  $\frac{1}{n}$ . И введем следующие обозначения:

$$e_k^{(n)} := X\left(\frac{k}{n} \le f < \frac{k+1}{n}\right), \ k = 0, 1, ..., n^2 - 1$$
 
$$e_{n^2}^{(n)} = X(f \ge n)$$

Заметим, что X разбилось на  $n^2+1$  дизъюнктных кусков:  $X=\bigsqcup_k e_k^{(n)}.$ 

Замечание: Концептуально функция не обязательно убывающая, мы просто делим на куски и возможно, что  $e_k^{(n)}$  будут не непрерывны, как на рисунке.

Построим теперь ступенчатую функцию  $g_n$ :

$$0 \leq g_n \coloneqq \sum_{k=0}^{n^2} \frac{k}{n} \cdot \chi_{e_k^{(n)}} \leq f$$

Левое неравенство очевидно, т.к. каждое из слагаемых не меньше 0 Правое неравенство следует из того, что на  $e_k^{(n)}$  значение функции  $f \geq \frac{k}{n}$ , а в сумме мы рассматриваем функцию, у которой на  $e_k^{(n)}$  значение в точности равно  $\frac{k}{n}$ . Неравенство становится очевилным

Найдем предельную функцию:

$$\lim_{n\to\infty}g_n(x)=f(x)=\begin{cases} +\infty, & \text{если } f(x)=+\infty, \left(\text{ т.к. } \forall n: \ x\in e_{n^2}^{(n)}\Rightarrow g_n(x)=n\right)\\ f(x), & \text{если } f(x)<+\infty, \left(\text{ т.к. } \text{ HCHM } n>f(x)\ x\in e_k^{(n)}\stackrel{(\star)}{\Rightarrow}|f(x)-g_n(x)|<\frac{1}{n}\right) \end{cases}$$

 $(\star)$ : Т.к. n>f(x), то  $k< n^2$ , а по определению  $e_k^{(n)}$  значения на этом множестве  $g_n$  отличаются от fне более, чем на  $\frac{k+1}{n} - \frac{k}{n} = \frac{1}{n}$ .

Теперь определим  $f_n$  так, чтобы они были монотонными:

$$f_n(x)\coloneqq \max(g_1,g_2,...,g_n)$$

Очевидно, что  $f_n = \max(g_1,...,g_n)$ ,  $0 \le f_n \le f_{n+1} \le f$  и они ступенчатые.

Q.E.D.

Todo: сверьте следствия

#### Следствие 1:

 $f:X o\overline{\mathbb{R}}$  — измеримая. Тогда  $\exists f_n$  — ступенчатые, что:

1.  $\forall x \ \forall n : \ |f_n| \le |f|$ 

2.  $\forall x: \lim_{n \to +\infty} f_n(x) = f(x)$ 

#### Доказательство:

Очевидно, что  $f^+, f^-$  — измеримы, и при этом  $f^+, f^- \ge 0$ . Тогда по теореме:

1.  $\exists h_n - \text{ступ.}: \quad h_n \uparrow, \quad 0 \leq h_n \leq f^+, \quad \lim h_n = f^+$ 

2.  $\exists g_n - \text{ступ.}: g_n \uparrow, 0 \leq g_n \leq f^-, \lim g_n = f^-$ 

По свойству ступенчатых функций  $h_n-g_n$  — тоже ступенчатая. И при этом:  $h_n-g_n \to f^+-f^-=f$  Тогда  $\sphericalangle f_n:=h_n-g_n$  и докажем что они подходят.

Второе условие выполнено за счет предпоследней строчки Докажем первое условие, по определению срезок:

$$\forall x: \ f^+(x) = 0$$
 или  $f^-(x) = 0$ 

Поэтому

$$\forall x \ \forall n: \ |f_n| = |h_n(x) - g_n(x)| = h_n(x)$$
 или  $g_n(x)$ 

И при этом

$$h_n(x) \le f^+(x) \le |f|$$
 if  $g_n(x) \le f^-(x) \le |f|$ 

Получается, что  $|f_n| < |f|$  — ровно то, что надо

Q.E.D.

#### Следствие 2:

f,g — измеримы. Тогда fg — тоже измеримо

## Доказательство:

Рассмотрим  $f_n \to f, \ g_n \to g$  — ступенчатые из нашей теоремы. При этом  $f_n, \ g_n$  — конечные (т.к. сутпенчатые). Тогда по свойству поточечной сходимости:

$$f_n g_n \to fg$$

(будем считать, что  $0 \cdot \pm \infty = 0$ )

Q.E.D.

#### Следствие 3:

f,g — измеримы. Считаем, что  $\nexists x \; f(x) = \pm \infty, \; g(x) = \mp \infty.$  Тогда f+g — измеримо

## Доказательство:

 $\exists f_n, \ g_n$  — ступенчатые из нашей теоремы. Тогда по свойству поточечной сходимости:

$$f_n + g_n \to f + g$$

# 4. Информация о курсе

Поток — y2024.

Группы М3238-М3239.

Преподаватель — Кохась Константин Петрович.

Уже по традиции здесь будут мои пописульки:

09.01.25 — Старт Кохася. Пока не убивает

09.08.25 - Еще не убивает

