

SESA2025 Mechanics of Flight Phugoid approximations

Lecture 3.7

Phugoid (Long Period) Mode

The pitch angle (constant pitch rate) and airspeed varies but the angle of attack remains constant for moderate oscillations

 $E_{total} = E_p + E_k = mgh + \frac{1}{2}mV^2 = const.$ (if no dissipation into air)

Exchange between potential energy & kinetic energy

McDonnell Douglas F-4C Phantom II

Phugoid eigenvector; Mode shape 2nd Mode

```
>> M_inv = np.linalg.inv(M)
     >> A = np.dot(M_inv, A_prime)
     >> evals,evect = np.linalg.eig(A)
     >> evect[:,2] =
       0.9903 + 0.0000i
u
       0.1384 - 0.0067i
w
       -0.0006 + 0.0000i
q
       0.0000 - 0.0079i]
     >> eval[2]
     ans =
       -0.0065 + 0.0779i
```


Altitude out of phase with velocity

McDonnell Douglas F-4C Phantom II

Example

Eigenvalues

$$\lambda_1 = -0.3690 \pm i 1.3558$$

$$\lambda_2 = -0.0065 \pm i0.0779$$

First Mode is SPO with

$$\omega_n = \sqrt{0.3960^2 + 1.3558^2} = 1.4052 \,\mathrm{rad}\cdot\mathrm{s}^{-1}$$

$$\zeta = \frac{0.3690}{1.4052} = 0.2626$$

Second mode is Phugoid with

$$\omega_n = \sqrt{0.0065 + 0.0779^2} = 0.0781 \,\mathrm{rad} \cdot \mathrm{s}^{-1}$$

$$\zeta = \frac{0.0065}{0.0781} = 0.0825$$

<u>U.S. Air Force photo by SSgt Mark L. Comerford on Wikimedia</u> (flipped) [accessed on 13 February 2019] in the public domain

(slightly unstable phugoid, but easily corrected by a pilot)

Lanchester's phugoid approximation

$$\frac{1}{2}mU_{\infty}^2 = \frac{1}{2}mU^2 + mgh = const.$$

$$L = \left(\frac{1}{2}\rho U^2 S\right) C_L = \frac{1}{1} \rho \gamma C_L \left(U^2\right)$$

$$= \frac{1}{2} \rho S C_L \left(U_\infty^2 - 2gh\right)$$

$$U_\infty^2 = U^2 + 2gh$$

$$V_\infty^2 - 2gh$$

$$L = mg - \rho SC_L gh$$

Newton's law in vertical direction (altitude,
$$h$$
)
$$\begin{array}{ll}
M^{\alpha} &= F \\
m\ddot{h} &= L - mg
\end{array}$$

$$= -\rho S C_L g h$$
Use $C_L \oint \frac{\text{definition}}{U} dt$

$$\ddot{h} + \frac{2g^2}{U_{\infty}^2} h = 0$$
Which results in
$$\omega_n = \frac{g\sqrt{2}}{U_{\infty}}; \zeta = 0 \qquad \text{(no damping)}$$

Lanchester's phugoid approximation we are going to assume lift = weight, ignoring pitching effects.

Approximation result for F-4C $\omega_n = 0.0779 \text{ rad} \cdot \text{s}^{-1}$

so ignoring drag, the phygoid motions tregulous is

Not Examinable

Pitch equilibrium:

$$\dot{q} = 0$$

Zero initial climb angle

$$Z_q = Z_{\dot{w}} = M_q = M_{\dot{w}} = 0$$

$$\begin{bmatrix} m & 0 & 0 & 0 \\ 0 & m - \mathring{Z}_{\dot{w}} & 0 & 0 \\ 0 & -\mathring{M}_{\dot{w}} & I_{yy} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{u} \\ \dot{w} \\ \dot{q} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \mathring{X}_{u} & \mathring{X}_{w} & 0 & -mg\cos\gamma_{0} \\ \mathring{Z}_{u} & \mathring{Z}_{w} & \mathring{Z}_{q} + mU_{\infty} & -mg\sin\gamma_{0} \\ \mathring{M}_{u} & \mathring{M}_{w} & \mathring{M}_{q} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} u \\ w \\ q \\ \theta \end{bmatrix}$$

Not Examinable

$$\begin{bmatrix} m & 0 & 0 & 0 \\ 0 & m & 0 & 0 \\ 0 & 0 & I_{yy} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{u} \\ \dot{w} \\ 0 \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \mathring{X}_{u} & \mathring{X}_{w} & 0 & -mg \\ \mathring{Z}_{u} & \mathring{Z}_{w} & mU_{\infty} & 0 \\ \mathring{M}_{u} & \mathring{M}_{w} & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} u \\ w \\ q \\ \theta \end{bmatrix}$$

The last equation is just $\dot{\theta}=q$, so we can remove it and we also don't need q on the right-hand-side (ie replace with $\dot{\theta}$)

$$\begin{bmatrix} m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{u} \\ \dot{w} \\ 0 \end{bmatrix} = \begin{bmatrix} \mathring{X}_u & \mathring{X}_w & 0 & -mg \\ \mathring{Z}_u & \mathring{Z}_w & mU_\infty & 0 \\ \mathring{M}_u & \mathring{M}_w & 0 & 0 \end{bmatrix} \begin{bmatrix} u \\ w \\ \dot{\theta} \\ \theta \end{bmatrix}$$

Not Examinable

Now rewrite back into state space form

$$\begin{bmatrix} m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{u} \\ \dot{w} \\ 0 \end{bmatrix} = \begin{bmatrix} \mathring{X}_u & \mathring{X}_w & 0 & -mg \\ \mathring{Z}_u & \mathring{Z}_w & mU_\infty & 0 \\ \mathring{M}_u & \mathring{M}_w & 0 & 0 \end{bmatrix} \begin{bmatrix} u \\ w \\ \dot{\theta} \\ \theta \end{bmatrix}$$

to obtain

$$\begin{bmatrix} m & 0 & 0 \\ 0 & m & -mU_{\infty} \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{u} \\ \dot{w} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \mathring{X}_{u} & \mathring{X}_{w} & -mg \\ \mathring{Z}_{u} & \mathring{Z}_{w} & 0 \\ \mathring{M}_{u} & \mathring{M}_{w} & 0 \end{bmatrix} \begin{bmatrix} u \\ w \\ \theta \end{bmatrix}$$

Not Examinable

Then using

$$\begin{bmatrix} m & 0 & 0 \\ 0 & m & -mU_{\infty} \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{u} \\ \dot{w} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \mathring{X}_{u} & \mathring{X}_{w} & -mg \\ \mathring{Z}_{u} & \mathring{Z}_{w} & 0 \\ \mathring{M}_{u} & \mathring{M}_{w} & 0 \end{bmatrix} \begin{bmatrix} u \\ w \\ \theta \end{bmatrix}$$

and let $w = w_0 e^{\lambda t}$ etc.

to obtain:

$$\begin{bmatrix} m\lambda - \mathring{X}_u & -\mathring{X}_w & mg \\ -\mathring{Z}_u & m\lambda - \mathring{Z}_w & -mU_{\infty}\lambda \\ -\mathring{M}_u & -\mathring{M}_w & 0 \end{bmatrix} \begin{bmatrix} u_0 \\ w_0 \\ \theta_0 \end{bmatrix} = 0$$

Finally, nontrivial solutions exist when the matrix determinant is zero.

Not Examinable

Determine characteristic equation, expand out and compare with standard form.
$$\lambda^2 + 2\zeta \omega_n \lambda + \omega_n^2 = 0$$
 to obtain:
$$\omega_n^2 = \frac{g}{mU_\infty} \left(\frac{\mathring{M}_u}{\mathring{M}_w} \mathring{Z}_w - \mathring{Z}_u \right)$$
 to obtain:
$$\zeta = \frac{1}{2\omega_n} \frac{1}{m} \left(\frac{\mathring{M}_u}{\mathring{M}_w} \left(\mathring{X}_w - \frac{mg}{U_\infty} \right) - \mathring{X}_u \right)$$
 for the charge with standard form.
$$\zeta = \frac{1}{2\omega_n} \frac{1}{m} \left(\frac{\mathring{M}_u}{\mathring{M}_w} \left(\mathring{X}_w - \frac{mg}{U_\infty} \right) - \mathring{X}_u \right)$$
 for the charge with standard form.
$$\zeta = \frac{1}{2\omega_n} \frac{g}{mU_\infty} \left(\frac{\mathring{M}_u}{\mathring{M}_w} \left(\mathring{X}_w - \frac{mg}{U_\infty} \right) - \mathring{X}_u \right)$$
 for the charge with standard form.
$$\zeta = \frac{1}{2\omega_n} \frac{g}{mU_\infty} \left(\frac{\mathring{M}_u}{\mathring{M}_w} \left(\mathring{X}_w - \frac{mg}{U_\infty} \right) - \mathring{X}_u \right)$$
 for the charge with standard form.
$$\zeta = \frac{1}{2\omega_n} \frac{g}{mU_\infty} \left(\frac{\mathring{M}_u}{\mathring{M}_w} \left(\mathring{X}_w - \frac{mg}{U_\infty} \right) - \mathring{X}_u \right)$$

Undamped natural frequency:

$$\omega_n^2 = \frac{g}{mU_\infty} \left(\frac{\mathring{M}_u}{\mathring{M}_w} \mathring{Z}_w - \mathring{Z}_u \right)$$

Damping ratio:

$$\zeta = \frac{1}{2\omega_n} \frac{1}{m} \left(\frac{\mathring{M}_u}{\mathring{M}_w} \left(\mathring{X}_w - \frac{mg}{U_\infty} \right) - \mathring{X}_u \right)$$

Approximation results for F-4C

$$\omega_n = 0.0797 \text{ rad} \cdot \text{s}^{-1}$$
 $\zeta = 0.0949$

Aircraft details	
Flight Speed (m/s)	178
Aircraft mass (kg)	17642
g (m/s ²)	9.81

$$\dot{X}_{u} = -126.86 \text{ Ns/m}$$
 $\dot{X}_{w} = 80.62 \text{ Ns/m}$
 $\dot{Z}_{u} = -1214.01 \text{ Ns/m}$
 $\dot{Z}_{w} = -5215.44 \text{ Ns/m}$
 $\dot{M}_{u} = 277.47 \text{ Ns}$
 $\dot{M}_{w} = -1770.07 \text{ Ns}$

McDonnell Douglas F-4C Phantom II

Phugoid approximation results

Lanchester's approximation result

$$\omega_n = 0.0779 \text{ rad} \cdot \text{s}^{-1}$$
$$(\zeta = 0)$$

Approximation results:

$$\omega_n = 0.0797 \text{ rad} \cdot \text{s}^{-1}$$
 $\zeta = 0.0949$

U.S. Air Force photo by SSgt Mark L. Comerford on Wikimedia (flipped) [accessed on 13 February 2019] in the public domain

Full matrix results results:

$$\omega_n = 0.0781 \text{ rad} \cdot \text{s}^{-1}$$
 $\zeta = 0.0852$

Extra questions: What is the half-life? and what is the period?