

planetmath.org

Math for the people, by the people.

field homomorphism

Canonical name FieldHomomorphism
Date of creation 2013-03-22 13:54:54
Last modified on 2013-03-22 13:54:54
Owner alozano (2414)
Last modified by alozano (2414)

Numerical id 9

Author alozano (2414) Entry type Definition Classification msc 12E99

Synonym field monomorphism
Related topic RingHomomorphism
Defines field homomorphism
Defines field isomorphism

Let F and K be fields.

Definition. A field homomorphism is a function $\psi \colon F \to K$ such that:

1.
$$\psi(a+b) = \psi(a) + \psi(b)$$
 for all $a, b \in F$

2.
$$\psi(a \cdot b) = \psi(a) \cdot \psi(b)$$
 for all $a, b \in F$

3.
$$\psi(1) = 1$$
, $\psi(0) = 0$

If ψ is injective and surjective, then we say that ψ is a field isomorphism.

Lemma. Let $\psi \colon F \to K$ be a field homomorphism. Then ψ is injective.

Proof. Indeed, if ψ is a field homomorphism, in particular it is a ring homomorphism. Note that the kernel of a ring homomorphism is an ideal and a field F only has two ideals, namely $\{0\}, F$. Moreover, by the definition of field homomorphism, $\psi(1) = 1$, hence 1 is not in the kernel of the map, so the kernel must be equal to $\{0\}$.

Remark: For this reason the terms "field homomorphism" and "field monomorphism" are synonymous. Also note that if ψ is a field monomorphism, then

$$\psi(F) \cong F, \quad \psi(F) \subseteq K$$

so there is a "copy" of F in K. In other words, if

$$\psi \colon F \to K$$

is a field homomorphism then there exist a subfield H of K such that $H \cong F$. Conversely, suppose there exists $H \subset K$ with H isomorphic to F. Then there is an isomorphism

$$\chi \colon F \to H$$

and we also have the inclusion homomorphism

$$\iota \colon H \hookrightarrow K$$

Thus the composition

$$\iota \circ \chi \colon F \to K$$

is a field homomorphism.

Remark: Let $\psi : F \to K$ be a field homomorphism. We claim that the characteristic of F and K must be the same. Indeed, since $\psi(1_F) = 1_K$

and $\psi(0_F)=0_K$ then $\psi(n\cdot 1_F)=n\cdot 1_K$ for all natural numbers n. If the characteristic of F is p>0 then $0=\psi(p\cdot 1)=p\cdot 1$ in K, and so the characteristic of K is also p. If the characteristic of F is 0, then the characteristic of K must be 0 as well. For if $p\cdot 1=0$ in K then $\psi(p\cdot 1)=0$, and since ψ is injective by the lemma, we would have $p\cdot 1=0$ in F as well.