CS1006T Data Strucutres Unit 1 - Mathematical Background and Intro to DS

Dr. V.A.Kandappan

Assistant Professor,
Department of Computer Science,
Shiv Nadar University Chennai.

Lecture	Tutorial	Practical	Credit
3	0	0	3

Svllabus

Prerequisites - CS1001 Programming in C.

- 1 Mathematical background and introduction to datastructures Basic Terminology - Data Organization - Abstract Data Types - Data Structures: Types and Operations - Time and Space Complexity analysis: \mathcal{O}, Θ and Ω notations - Growth rates - Time-Space trade-off - Time complexity analysis of some example problems. (6 lectures)
- 2 List ADT: Array Implementation of List Operations on lists: Insertion, Deletion, Merging - Linked Lists: Singly Linked list, Doubly linked list, Circular linked list - Operations on linked lists - The Polynomial ADT - Cursor implementation of lists (5 lectures)

Syllabus (Contd..)

- 3 Stack ADT: Array Implementation, Linked list implementation -Operations on Stacks - Applications of stacks: Balancing Symbols, Postfix expression evaluation, Infix to postfix conversion - Function calls - Recursion. (5 lectures)
- 4 Queue ADT: Array Implementation, Linked list implementation Operations on Queues Circular Queue Double-ended queue Priority Queue Applications of Queue. (5 lectures)
- 5 Tree ADT: Implementation of trees Tree traversals Binary trees Binary Search Trees (BST): Operations on BSTs Expression trees AVL trees: Operations on AVL trees Splay trees Red-Black trees B-Trees Heaps Types of heaps. (6 lectures)

Syllabus (Contd..)

- 6 Sorting and Searching: Searching: Linear Search, Binary Search -Sorting: Bubble sort, Selection sort, Insertion sort, Quick Sort, Merge Sort, Shell sort, Counting Sort. (8 lectures)
- 7 Hashing: Hash Tables Hash Functions Separate Chaining Linear Probing - Quadratic Probing - Open addressing - Rehashing -Extendible hashing. (3 lectures)
- 8 **Graph ADT:** Implementation of Graphs Traversal: Breadth First Search, Depth first search Topological sort (7 lectures)

Total periods: 45

Textbooks and References

- (CORMEN) Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to algorithms. MIT Press, (2009).
- (MAW) Weiss, Mark Allen. Data structures and algorithm analysis in C++. Fourth edition, Benjamin/Cummings Publishing Company (2013).

Evaluation Pattern

	Marks
Continuous Assessment	20
Mid Semester	30
End semester	50

Do we need to really need this course?

What this course is about?

- How much memory does it take to solve a computational problem in a machine? (little bit of !!MATH!! - efficiency of data)
- What is abstraction in computer science?
- How do we create, analyse and design custom data-types?
- What operations can we do on the custom data structures?
 (Operation details correctness)

Abstraction in Computer science

"Abstraction is the process of removing unnecessary information so that the computer program runs as efficiently as possible."

Abstraction!

Different levels of Abstraction

Primitive operations in a machine

- 1 Increment (a++,a--)/Assignment
- **2** Compare (==, ||, &, !=)
- 3 Add/Subtract
- Multiply
- Modulo Operations
- 6 Advanced math operations
- Operations

```
\begin{array}{ccc} \text{for(int } i = 0; i < N; i + +) \\ & \text{do\_something();} \end{array}
```

```
for (int i=0; i < N; i++)
do_something();
```

do_something(); statement runs N times

```
\begin{array}{cccc} \text{for(int } i = 0; & i < N; & i + +) \\ & \text{for(int } j = 0; & j < N; & j + +) \\ & & \text{do\_something();} \end{array}
```

 $do_something()$; statement runs N^2 times

```
for(int i=0; i<N; i++)
    for(int j=i; j<N; j++)
        do_something();</pre>
```

$$do_something()$$
; statement runs $\sum_{i=0}^{N} \sum_{j=i}^{N} c$ times c is the time taken to perform $do_something()$; one time.

```
if(val == true)
    do_something();
else
    do_nothing();
```

```
if(val == true)
    do_something();
else
    do_nothing();
```

 $do_something()$; takes k_1 and $do_nothing()$; takes k_2 then the above code block takes almost $MAX(k_1, k_2)$.

```
if(val < k)
    do_something_1(val);
else if(val > k)
    do_something_2(val);
else
    do_nothing();
```

```
if(val < k)
    do_something_1(val);
else if(val > k)
    do_something_2(val);
else
    do_nothing();
```

 $do_something()$; takes k_1 and $do_nothing()$; takes k_2 then the above code block takes almost $MAX(k_1, k_2)$.

```
void do_nothing(){
  int a = 1, b = 4, c = 9;
  int disr = b*b - 4*a*c;
  if(disr > 0)
      printf("%d,%d",sqrt(disr), -1*sqrt(disr));
  else
      printf("%di,%dl",sqrt(-1*disr), -1*sqrt(-1));
```

Count number of primitive operations

Increment/Assignment - 4 Compare - 1 Additions/Sub - 1 Multiplications - 7 sqrt - 4 IO - 2

```
void do something(){
   a = 100:
   a++;
   while (a < 200)
       printf("%d\n",a);
       a += 10:
       b = pow(a, 4);
       printf("%d\n",a);
```

Count number of primitive operations

```
void do something(){
   a = 100:
   a++:
   while (a < 200)
        printf("%d\n",a);
       a += 10:
       b = pow(a, 4);
       printf("%d\n",a);
   —а ;
```

Count number of primitive operations

 $3c_1, 10c_2,$

Exercise 1

```
for (int i = 0; i < M; i++) {
    for (int j = 0; j < N; j++) {
        c[i][j] = 0;
        for (int k = 0; k < K; k++) {
            c[i][j] += a[i][k] * b[k][j];
        }
    }
}</pre>
```

Exercise 2 - Factorial

```
unsigned int factorial (unsigned int n) {
    if (n == 0 \mid \mid n == 1)
        return 1;
    return n * factorial (n - 1);
}
```

Exercise 3 - Fibonacci Numbers

```
unsigned int fib (unsigned int n) {
    if (n == 0 \mid \mid n == 1)
        return 1;
    return fib (n - 1) + fib (n-2);
}
```

Exercise 4 - Finding GCD

```
long long gcd(long long m, long long n){
    while (n != 0){
        long long rem = m % n;
        m = n;
        n = rem;
    }
    return m;
}
```

 $\log_b(N)$

 $\lceil \log_b(N) \rceil$

Constants are so boring??

what is an Asmptote??

Asymptotic Notations

- O(f(n))
- $\Omega(g(n))$
- $\Theta(h(n))$

Asymptotic Notations

- $\mathcal{O}(f(n)) \implies \text{Worst case Analysis (??)}$
- $\Omega(g(n)) \implies$ Best case analysis (??)
- $\Theta(h(n)) \implies$ Average case analysis (??)

Big O - $\mathcal{O}(\cdot)$ Definition

 $C(n) \in \mathcal{O}(f(n))$ if and only if there exists constants k, n_0 such that

$$C(n) \le kf(n) \quad \forall n \ge n_0$$

Layman definition

C(n) grows asymptotically no faster than f(n)

Big ${\mathcal O}$ notation

Alternative Big O notation:

$$O(1) = O(yeah)$$

 $O(log n) = O(nice)$
 $O(n) = O(ok)$
 $O(n^2) = O(my)$
 $O(2^n) = O(no)$
 $O(n!) = O(mg!)$

Ω Definition

 $C(n) \in \Omega(g(n))$ if and only if there exists constants k, n_0 such that

$$C(n) \ge kg(n) \quad \forall n \ge n_0$$

Layman definition

C(n) grows asymptotically no slower than f(n)

Θ Definition

 $C\left(n\right)\in\Theta\left(h(n)\right)$ if and only if there exists constants k_{1},k_{2} and n_{0} such that

$$k_1 h(n) \leq C(n) \leq k_2 h(n) \quad \forall n \geq n_0$$

Layman definition

C(n) grows asymptotically as fast as f(n)

Big \mathcal{O} notation properties

- $C(n) \in \mathcal{O}(f(n))$, then kC(n)
- $C_1(n) \in \mathcal{O}(f(n)), C_2(n) \in \mathcal{O}(g(n)), \text{ then } C_1(n)C_2(n)$
- $C_1(n) \in \mathcal{O}(f(n)), C_2(n) \in \mathcal{O}(g(n)), \text{ then } C_1(n) + C_2(n)$
- $C_1(n) \in \mathcal{O}(C_2(n)), C_2(n) \in \mathcal{O}(f(n)), \text{ then } C_1(n) \in \mathcal{O}(f(n))$

Asymptotic notations and bounds

- $C(N) \in \mathcal{O}(f(n))$ f(n) is the Upper bound for C(N)
- $C(N) \in \Omega(g(n))$ g(n) is the Lower bound for C(N)

Asymptotic Analysis - Searching

- Linear Search
 - Worst-case analysis
 - Best-case analysis
 - Average-case analysis
- Binary Search
 - Worst-case analysis
 - Best-case analysis
 - Average-case analysis

Linear Search

Array:

- 1 Compare Z with R (Not a match)
- Compare Z with U (Not a match)
- 3 Compare Z with C (Not a match)
- 4 Compare Z with A (Not a match)
- **5** Compare Z with T (Not a match)

Search Key: Z

Linear Search - Algorithm

Find and return the first occurrence of an element in the array Arr.

```
1: function LINEAR-SEARCH(Arr[N], K)
2:
      flag := -1
      for (i = 0; i < N; i + +) do
3:
         if (Arr[i] == K) then
4:
             return i
5:
          end if
6:
      end for
7:
      return flag
8:
9: end function
```

Linear Search - Asymptotic Analysis

Linear Search problem

Find and return the first occurrence of an element in the array Arr.

- Worst-case Analysis Worst case occurs if either element is not found or at the last element.
- Best-case analysis Searching for the element that is at the first location.
- Average-case analysis The different run times possible are

$$1, 2, \dots, N$$
. Taking average on all possibilities $\frac{1}{N} \sum_{i=1}^{N} i = \frac{N+1}{2}$ which is $\mathcal{O}(N)$.

Binary Search

Sorted Array:

А	С	R	Т	U

- ① Compare Z with R (Not a match)
- 2 Compare Z with T (Not a match)
- 3 Compare Z with U (Not a match)

Search Key: Z

Binary Search - Algorithm

Find and return the first occurrence of an element in the sorted array Arr.

```
1: function BINARY-SEARCH(Arr[N], K, start, end)
                                                                                                 \triangleright Assume C(N)
 2:
          if start \leq end then
               mid = \left| \frac{end - start}{2} \right|
 3:
                                                                                                     \triangleright takes \mathcal{O}(1)
               if Arr[mid] == K then
 4:
 5:
                    return mid
                                                                                                     \triangleright takes \mathcal{O}(1)
 6:
               end if
 7:
               if Arr[mid] > K then
                                                                                                 \triangleright takes C\left(\frac{N}{2}\right)
                    BINARY-SEARCH(Arr[N], K, start, mid - 1)
 8:
 9:
               else
                                                                                                 \triangleright takes C\left(\frac{N}{2}\right)
                    BINARY-SEARCH(Arr[N], K, mid + 1, end)
10:
11:
               end if
12:
          else
13:
               return -1
                                                                                                     \triangleright takes \mathcal{O}(1)
14:
          end if
15: end function
```

Binary Search - Asymptotic Analysis

Find and return the first occurrence of an element in the sorted array *Arr*. The algorithm described has the following recurrence equation:

$$C(N) = C\left(\frac{N}{2}\right) + \mathcal{O}(1) \implies C(N) \in \mathcal{O}(\log(N))$$

- Worst-case Analysis Worst case occurs if either element is not found or at the last element.
- Best-case analysis Searching for the element that is at the first location.

$$\frac{1}{\log\left(N\right)}\sum_{i=1}^{\log\left(N\right)}i=\frac{\log\left(N\right)+1}{2} \text{ which is } \mathcal{O}\left(\log\left(N\right)\right).$$

Note on recurrence solution

$$C(N) = \begin{cases} C\left(\frac{N}{2}\right) + \mathcal{O}(1) & \text{if } N \ge 2\\ \mathcal{O}(1) & \text{if } N < 2 \end{cases}$$
 (1)

Solution to the recurrence (1) using the back substitution method:

Using the above recurrence equation, we know that $C\left(\frac{N}{2}\right) = C\left(\frac{N}{4}\right) + \mathcal{O}(1)$

and
$$C\left(\frac{N}{4}\right) = C\left(\frac{N}{8}\right) + \mathcal{O}\left(1\right)$$

$$C(N) = C\left(\frac{N}{2^L}\right) + (L-1)\mathcal{O}(1)$$

The above recurrence equation is solved if $\frac{N}{2^L} \leq 1$ with which $L \geq \log_2(N)$.

$$C\left(\mathit{N}\right) = \mathcal{O}\left(1\right) + \left(\log_{2}\left(\mathit{N}\right) - 1\right)\mathcal{O}\left(1\right) = \log_{2}\left(\mathit{N}\right)\mathcal{O}\left(1\right) \implies C\left(\mathit{N}\right) \in \mathcal{O}\left(\log_{2}\left(\mathit{N}\right)\right)$$

Summary on Asymptotic Analysis - Searching

- Linear Search
 - Worst-case analysis $\mathcal{O}(N)$
 - Best-case analysis $\mathcal{O}(1)$
 - Average-case analysis $\mathcal{O}(N)$
- Binary Search
 - Worst-case analysis $\mathcal{O}(\log(N))$
 - Best-case analysis $\mathcal{O}\left(1\right)$
 - Average-case analysis $\mathcal{O}(\log(N))$

Exercise

Asymptotic bound on finding the maximum element in an array

- Worst-case analysis
- ② Best-case analysis
- Average-case analysis

Asymptotic bound on finding the maximum element in a presorted array (descending order)

- Worst-case analysis
- ② Best-case analysis
- 3 Average-case analysis

Back to Finding Nth Fibonacci number

Algorithm 1 - A simple recursive function

- 1: function REC-FIB(N)
- 2: **if** (N == 0 || N == 1) then
- 3: **return** 1
- 4: end if
- 5: **return** REC-FIB(N-1) + REC-FIB(N-2)
- 6: end function

Complexity Analysis:

- Running time complexity: $\mathcal{O}\left(2^{N}\right)$
- Memory: $\mathcal{O}(1)$

Back to Finding Nth Fibonacci number

Algorithm 2 - A Fast recursive function

```
Arr[0] := 1, Arr[1] := 1, Arr[2 : N] = -1

1: function REC-FIB-FAST(N, Arr)

2: if Arr[N-1]! = -1 then

3: return Arr[N-1]

4: else

5: Arr[N-1] = REC-FIB-FAST(N-1) + REC-FIB-FAST(N-2)

6: return Arr[N-1]

7: end if

8: end function
```

Complexity Analysis:

- Running time complexity: $\mathcal{O}(N)$
- Memory: $\mathcal{O}(N)$

Back to Finding Nth Fibonacci number

Algorithm 3 - Fastest non-recursive function

```
1: function FIB-FASTEST(N)
       if (N == 0 \parallel N == 1) then
3:
          return 1
4:
    else
          Fn1 := 1, Fn2 := 1
5:
          for (i = 0; i < N; i + +) do
6:
              Ans = Fn1 + Fn2
7:
              Fn2 = Fn1. Fn1 = Ans
8:
9:
          end for
          return Ans
10:
11:
       end if
12: end function
```

Complexity Analysis:

- Running time complexity: O(N)
- Memory: *O* (1)

Space-Time Trade-off

Finding Nth Fibonacci numbers

Algorithm	Time complexity	Space complexity	
Algorithm 1 (Recursive)	$\mathcal{O}\left(2^{N}\right)$	$\mathcal{O}\left(1 ight)$	
Algorithm 2 (Recursive-Fast)	$\mathcal{O}\left(N\right)$	$\mathcal{O}\left(N\right)$	
Algorithm 3 (Efficient)	$\mathcal{O}\left(N\right)$	$\mathcal{O}\left(1\right)$	

"Recursion is not bad; The implementation by programmer (!!you) of the recursion at times is bad."

- Smaller code vs Loop Unrolling
- Look-ups vs Recalculation
- Compression vs Free data

• Smaller code vs Loop Unrolling

Smaller Code

```
for (i=0; i<100; i++)
Arr [i] = 1.0;
```

Loop Unrolling

```
for ( i = 0; i < 100; i = i + 2) {

Arr[i] = 1.0;

Arr[i+1] = 1.0;
```

• Look-ups vs Recalculation

Recalculation

Lookups

Compression vs Free data

Free data

$$A = \begin{bmatrix} 1 & 0 & 6 & 0 & 0 \\ 0 & 6 & 0 & 1 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 12 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 9 \end{bmatrix}$$

Compression

$$D = \begin{bmatrix} 1 & 6 & 2 & 0 & 9 \end{bmatrix}$$
 $N = 5$
 $id = \begin{bmatrix} 2 & 8 & 15 & 21 \end{bmatrix}$
 $val = \begin{bmatrix} 6 & 1 & 12 & 1 \end{bmatrix}$

Growth rates of most common functions

Revisiting meme

Alternative Big O notation:

$$O(1) = O(yeah)$$

 $O(log n) = O(nice)$
 $O(n) = O(ok)$
 $O(n^2) = O(my)$
 $O(2^n) = O(no)$
 $O(n!) = O(mg!)$

Summary of Unit 1

What have we seen till now?

- Abstraction
- Time complexity of an algorithm
- 3 Different asymptotic notations
- 4 Space-time trade-off
- **6** Asymptotic analysis