The Recommendation Process

1.1 INTRODUCTION

U, I or UXIXV.

 $T(u) = T_{R}(u) = \{i \in I \mid \langle u, i \rangle \in R\}$

 $\mathcal{U}(i) = \mathcal{U}_{R}(i) = \{ \mathcal{U} \in \mathcal{U} \mid \langle u, i \rangle \in R \}$

159e PENDEND B

Active wer- any wer u s.e. $I_{R}(u) \neq \emptyset$ (any wer with a rating history)

("ICN U(I) IL I(U) -c $n \not\in M$ - Cold Start

. \mathcal{P} right N'nSIL'D RS be high, \mathcal{U} active wer $|\mathcal{M}|^{2}$, $|\mathcal{M}|^{2}$

Algorithm 1 Generation of recommendation list.

Require: A number of candidate items, D (positive integer such that $D \leq N$)

Require: The size of the recommendation list, L (positive integer such that $L \leq D$)

- 1: Choose $\mathcal{C} \subseteq \mathcal{I}$, according to a business-specific criterion, such that $|\mathcal{C}| = D$ and $\mathcal{C} \cap \mathcal{I}_{\mathbf{R}}(u) = \emptyset$.
- 2: Associate each item $i \in \mathcal{C}$ with a score p_i^u , which represents the appreciation of u for i
- 3: Let \mathcal{L}_u be the selection of the top L items in \mathcal{C} with the highest values p_i^u
- 4: Return \mathcal{L}_u

1.2.1 EVALUATION

- Online evaluation?

Ifk-ik 2735 pierseran ka somen pieaza

RS-a B Piazio

Isnin ka

- Offline ovaluation.

(Train) T-JR 731/N7) NK NM, (Test) 5

Prediction Accuracy

MAE = Mean Abolube Bror (widely)

MSE = 1/2 \(\text{Y} \cdot \text{V} \cdot \text{V} \)

RMJE = 1/MJE MPE= Mean Prediction Error $=\frac{1}{5!}\sum_{(n,i)\in\Gamma}\left\{ V_{i}^{n}\neq V_{i}^{n}\mathcal{Y}\right\}$

Confusion Mutrix

Recommendation Accuracy

N-8 735mm Nrich - Lu SE ruld 13176-200 JUK Jung his explicif teegpiere Gies Jung32 Jung Cilligo bijjing Juig3- In inco threshold - + 738 fiets(u):ru>+

L 8112 33800 LUIGI VISIG 23800 NOVEN & VIDIA Recall (L) = $\frac{1}{M} \sum_{n \in N} \frac{|\mathcal{L}_n \cap \mathcal{T}_n|}{|\mathcal{T}_n|}$

Precision (L) = $\frac{1}{M} \sum_{n \in M} \frac{|2n \cap 7n|}{|2n|}$

F = 2- precision recall

precision + recall

5161

Algorithm 2 User satisfaction of user u for item i.

Require: An item $i \in \mathcal{T}_u$

Require: A number of candidate items, D (positive integer such that $D \leq |\mathcal{I}|$)

Require: The size of the recommendation list, L (positive integer such that $L \leq D$)

- 1: Let \mathcal{C} be a random subset of \mathcal{I} , with size D, whose elements have not been rated by u
- 2: Add i in C
- 3: Assign to each item $i \in \mathcal{C}$ a score p_i^u , which represents the appreciation of u for i
- 4: Let \mathcal{L}_u be the selection of the L items in C with the highest values p_i^u
- 5: if $i \in \mathcal{L}_u$ then
- return a hit
- 7: else
- 8: return a miss
- 9: end if

US-Recall(u, L) = $\frac{$\pm$hits}{$\vee.1}$

1 1117 recall of hit formy you | TW = 1 18/10 1207 - Tu 5 '50 88 813'N PA 888

Ronk Accuracy

18 JOSYAN & WINK SIJS 6,6 C.WIN M 82 Stran le Mann - In . Tu - Is(u)

 $\mathcal{K}(\tau_{u}, \hat{\tau}_{u}) = \frac{2\left(\sum_{i,j\in\mathcal{I}} \mathbb{1}\left[\left[\tau_{u}(i) \prec \tau_{u}(j) \wedge \hat{\tau}_{u}(j) \prec \hat{\tau}_{u}(i)\right]\right)}{N(N-1)} \quad \in \left[0.1\right]$

 $\text{Spearman's} \qquad \rho(\tau_u, \hat{\tau}_u) = \frac{\displaystyle\sum_{i \in \mathcal{I}} (\tau_u(i) - \bar{\tau}_u)(\hat{\tau}_u(i) - \bar{\bar{\tau}}_u)}{\sqrt{\displaystyle\sum_{i \in \mathcal{I}} (\tau_u(i) - \bar{\tau}_u)^2 \sum_{i \in \mathcal{I}} (\hat{\tau}_u(i) - \bar{\bar{\tau}}_u)^2}} \in \left[-\right]_{\text{coef}}.$

Some other Evaluation Metrics

Navelty, Sovendipity Oiversity, Coverage

Main Challenges in RSs

· sparrity and Cold Store -

reduced coverage -> alla rionon right

cold stant - lieur items (16 6.121. 6.0) des

cold stant - lieur items (16 6.121. 6.0) des

in reduced coverage -> alla rionon right

in reduced coverage -> alla rionon rion

5) 6.11.1 6.65 6,647 6,10.1 5 6,041 5 6,041 6,10.2 6,041 6,0

Cho-(12) 16h & «Choc. be Cho-(12) 16h & «Choc. be Cho-order ner

Item Churn

('C2 x ('W)en 1 ('W0 ('501)

1/375 RINS (124)(A)

-2 2/3 e: -|el'n5

incremental model-maintenance
techniques

· User Pivocy

against mulicious went NC3.11 2,30.02 :3314222 713 . attacker profiles

1.3 RECOMMENDATION AS INFORMATION FILTERING

1.3.1 DEMOGRAPHIC FILTERING

711 168

1.3.2 CONTENT-BASED FILTERING

(3/NN

Cosine
$$Similarity$$
:

 $sim^{c}(i_{1}j) = \frac{w_{i}^{T}w_{j}}{\|w_{i}\|_{2} \cdot \|w_{j}\|_{2}}$

(effective in dealing)

with sparse feature)

vectors

Jaccord Similarity:
$$\sin^{2}(ij) = \frac{w_{i}^{T}w_{j}}{w_{i}^{T}w_{i} + w_{j}^{T}w_{j} - w_{i}^{T}w_{j}}$$

$$\sum_{x \in X} |x' - x| = \frac{-\|x\|_{2}}{-\|x\|_{2} - (-\|x\|_{2})} = -\frac{1}{3} \quad \text{O}$$

Jaccard similarity exhibits aspects of both the Euclidean and cosine measures. In particular, it tends to behave like the former (resp. the latter) if $sim^J(i,j) \to 1$ (resp. if $sim^J(i,j) \to 0$)

1.4 COLLABORATIVE FILTERING

The Assumption:

Users who adopted the same behaviour in the future.

Buselines:

item Avg(i) =
$$\overline{\Gamma}_i = \frac{1}{|\mathcal{U}_i|} \sum_{u \in \mathcal{U}_i} \Gamma_i^u$$

were Avg(u) = $\overline{\Gamma}^u = \frac{1}{|\mathcal{I}(u)|} \sum_{i \in \mathcal{I}(u)} \Gamma_i^u$

CF Approacher

LIGHT THIS MEMOND-PORES

neighborhood-burse methods

NOBSO NET - 124 MOSSON WAS - 124 MOSSON

heighborhood-bores method tous to detect strong but local relationships Model-bured

Place off-line at er

Pendonalized Fin

on-line -1 > lan

'in 'a C'enson

Nishs

interpretable und

model-bured -> = 175

Limenrianality reduction

Ex 21 KID (FL) 2 K'

meak but global rotation-mer

item-bosed expreasing files custs the solution of the contraction of t

is one one one constant

 $\hat{r}_{i}^{u} = b_{i}^{u} + \frac{\sum_{j \in \mathcal{N}^{K}(i;u)} s_{i,j} \cdot (r_{j}^{u} - b_{j}^{u})}{\sum_{j \in \mathcal{N}^{K}(i;u)} s_{i,j}}.$

(vinia vissa car convers: (1,20%)

 $\sum_{i} = \beta_{i}^{i} + \frac{\sum_{i \in N_{k}(n)} c_{n'n} \cdot (c_{i}^{i} - \beta_{i}^{n})}{\sum_{i \in N_{k}(n)} c_{n'n} \cdot (c_{i}^{i} - \beta_{i}^{n})}$

? (1'N3 20) 33')
i the Person We(i,j)=2/pi) NALi)
i the Person We(i,j)=2/pi) NALi)

 $Pearson(i,j) \triangleq \frac{\sum_{u \in \mathcal{U}_{\mathbf{R}}(i,j)} \left(r_i^u - \overline{r}_i\right) \cdot \left(r_j^u - \overline{r}_j\right)}{\sqrt{\sum_{u \in \mathcal{U}_{\mathbf{R}}(i,j)} \left(r_i^u - \overline{r}_i\right)^2} \sqrt{\sum_{u \in \mathcal{U}_{\mathbf{R}}(i,j)} \left(r_j^u - \overline{r}_j\right)^2}};$

$$AdjCosine(i,j) \triangleq \frac{\sum_{u \in \mathcal{U}_{\mathbf{R}}(i,j)} \left(r_i^u - \overline{r}_u\right) \cdot \left(r_j^u - \overline{r}_u\right)}{\sqrt{\sum_{u \in \mathcal{U}_{\mathbf{R}}(i,j)} \left(r_i^u - \overline{r}_u\right)^2} \sqrt{\sum_{u \in \mathcal{U}_{\mathbf{R}}(i,j)} \left(r_j^u - \overline{r}_u\right)^2}}.$$

$$\min \sum_{v \in \mathcal{U}_{\mathbf{R}}(i)} \left(r_i^v - \sum_{j \in \mathcal{N}^K(i; u, v)} w_{i,j} \cdot r_j^v \right)^2 \qquad \qquad \text{and} \qquad k$$

$$s.t. \qquad w_{i,j} \ge 0 \sum_j w_{i,j} = 1 \ \forall i, j \in \mathcal{I}. \qquad \text{white } i \text{ for } i$$

1.4.2 LATENT FACTOR MODELS

PYTHIN AND ACIUS CIC ILIA latent factor moder

いいいい シレノゴゴ

Lotent Jamontic Indexing = LSI

nyre IR -> dimensionality reduction sixpo

. (">rons ("In) ("In) > In)

Interne

$$SVD(A^{MXN}) = \bigcup_{MXM} MXN MXN T$$

$$A \approx U_k \cdot \Sigma_k \cdot V_k^T$$

L'ENSONA LE MACA KIA UNERK ANGER

Features on Ne 33"Ne 3mm-ko 2000 - Jeatures on Nes i ril oon Vi ERK mier - Jeatures - 2m 3nk 6 ei i-5, mo 3/ 23"Ne 13mm-k

:SVD JUS MIK nond

$$\mathbb{R} \approx \left(\mathcal{O}_{\mathcal{R}} \sqrt{\Sigma_{\mathcal{K}}} \right) \left(\sqrt{\Sigma_{\mathcal{K}}} \sqrt{\chi_{\mathcal{K}}} \right) = \mathcal{O} \cdot \sqrt{2}$$

71/2/17/2 & E/17 & MAR CHECHIT & CHERT BY BANK CHANK!.

$$r_i^{u} = \sum_{k=1}^{K} U_{u_i(k)} \cdot V_{k,i}$$

101 K2 VIOL 24 (CLS) 1012 VIOLU SA CANO SA CAN

- Ehe absonce of chilence is not the entence of Obsence"

feature matrices - in the son the son

 $(U,V) = \underset{U,V}{\text{even}} \left(\sum_{u,i \in Y} \left(Y_i^{u} - \sum_{k=1}^{K} U_{u,k} V_{u,i} \right)^{2} \right)$ GD 18 71/200 180K1 overtit vict 200 27-200 E regularizations mode m Maximum Margin Mutrix = MMMF Factorization UIV SE MINTIJA MK TILLATE STRE 150
FERTURES-A SE ANSIS"A NK STLATES STRE 150 MOON JE KSI MER teatures was by Mill Cur Nation of Nill Cur Nations $U_{i}V = \underset{i}{\text{anyenin}} \left[\sum_{i=1}^{N} \frac{1}{u_{i}u_{i}} V_{k,i} + \lambda_{i} t_{i}(u^{T}U) + \lambda_{i} t_{i}(v^{T}V) \right]$