Trees (Part 1, Theoretical)

CSE 2320 – Algorithms and Data Structures University of Texas at Arlington

Trees

- Trees are a natural data structure for representing specific data.
 - Family trees.
 - Organizational chart of a corporation, showing who supervises who.
 - Folder (directory) structure on a hard drive.

Terminology

- Root: 0
- Path: 0-2-6, 1-3, 1-3-4
- Parent vs child
- Ascendants vs descendants:
 - ascendants of 3: 1,0 // descendants of 1: 5, 3,4
- Internal vs external nodes
 (non-terminal vs terminal nodes)
- Leaves: 5,4,6,7
- M-ary trees (Binary trees)
- General trees
- Subtree

Terminology

- If Y is the parent of X, then X is called a child of Y.
 - The root has no parents.
 - Every other node, except for the root, has exactly one parent.
- A node can have 0, 1, or more children.
- Nodes that have children are called internal nodes or non-terminal nodes.
- Nodes that have no children are called terminal nodes, external nodes, or leaves.

M-ary Trees - Worksheet

- An M-ary tree is a tree where every node is either a leaf or it has exactly M children.
- Example: binary trees, ternary trees, ...

Is this a binary tree?

Is this a binary tree?

M-ary Trees - Answers

- An M-ary tree is a tree where every node is either a leaf or it has exactly M children.
- Example: binary trees, ternary trees, ...

This is **not** a binary tree, node 3 has 1 child.

Types of binary trees

- Perfect each internal node has exactly 2 children and all the leaves are on the same level.
 - E.g. ancestry tree (anyone will have exactly 2 parents).

Perfect tree

- **Full** every node has exactly 0 or 2 children.
 - E.g. tree generated by the Fibonacci recursive calls.
 - Binary tree.
- Complete tree every level, except for possibly the last one is completely filled and on the last level, all the nodes are as far on the left as possible.
 - E.g. the heap tree.
 - Height: $\lfloor \lg N \rfloor$ and it can be stored as an array.

Reference: wikipedia (https://en.wikipedia.org/wiki/Binary_tree)

Complete Tree

- All levels are full, except possibly for the last level.
- At the last level:
 - Nodes are on the left.
 - Empty positions are on the right.
- There is "no hole"

Worksheet

- Self study: Give examples of trees that are:
 - Perfect
 - Full but not complete
 - Complete but not full
 - Neither full not complete

Worksheet

E1

Answers

For each tree, say if it is perfect, full or complete.

Terminology - Worksheet

- The *level* of the root is defined to be 0.
- The *level* of each node is defined to be 1+ the level of its parent.
- The *depth* of a node is the number of edges from the root to the node.
 (It is equal to the level of that node.)
- The height of a node is the number of edges from the node to the deepest leaf.
 (Treat that node as the root of a small tree)

Node	level	depth	height
Α			
В			
С			

Practice:

- Give the level, depth and height for each of the red nodes.
- What kinds of tree is this (perfect/full/complete)?
- How many nodes are on each level?

Terminology - Answers

- The *level* of the root is defined to be 0.
- The *level* of each node is defined to be 1+ the level of its parent.
- The depth of a node is the number of edges from the root to the node.
 (It is equal to the level of that node.)
- The *height* of a node is the number of edges from the node to the deepest leaf.
 (Treat that node as the root of a small tree)

Node	level	depth	height
Α	0	0	3
В	2	2	1
С	3	3	0

For any node, depth + height = tree height

Practice:

- Give the level, depth and height for each of the red nodes.
- What kinds of tree is this (perfect/full/complete)? ____perfect
- How many nodes are on each level? 1, 2, 4, 8

Perfect Binary Trees

A perfect binary tree with N nodes and height h, has:

- $\lceil N/2 \rceil$ leaves (half the nodes are on the last level)
- |N/2| internal nodes (half the nodes are internal)
- Height: $h = \lfloor \lg N \rfloor$
- Levels: $\lfloor \lg N \rfloor + 1 = \lg(N+1)$

In the other direction: $N = 2^{h+1}-1$

2	3
4 5	6 7
	• • • • • • •

$\sum_{k=0}^{h}$	$2^k =$	$= 2^{h+1}$	- 1
------------------	---------	-------------	------------

Level	Nodes per level		Sum of nodes from root up to this level	
0	2 ⁰	(=1)	$2^1 - 1$	(=1)
- 1	2 ¹	(=2)	$2^2 - 1$	(=3)
_2	2 ²	(=4)	$2^3 - 1$	(=7)
•••	•••			
i	2 ⁱ		$2^{i+1}-1$	
•••	•••			
h	2 ^h		$2^{h+1}-1$	

Properties of Full Trees

- A full binary tree (0/2 children) with P internal nodes has:
 - P+1 external nodes.
 - 2P edges (links).
 - height at least lg P and at most P:
 - Ig P if all external nodes are at the same level (perfect tree)

Proof

Prove that a full tree with P internal nodes has P+1 external leaves.

- Full tree property:
- What proof style will you use?