

Checkmate with Al

Alexandros Stathakopoulos, Mohanad Kandil Technische Universität München Heilbronn, 29. Januar 2025

Agenda

- 1. Introduction
- 2. Model Overview
- 3. Algorithm Explanation
- 4. Code Structure & Implementation
- 5. Algorithm Performance & Results
- 6. Implications & Limitations
- 7. Conclusion & Q&A

Introduction - Background

- Problem Statement: Implement an AI, which can play checkers against the player
- Why is reinforcement learning important?
- Project Goal: Train a RL gent, which can play checkers

Model Overview

- What is our RL model trying to achieve?
- Type of RL Model: Q-Learning & Deep Q-Network (DQN)
- High-Level Concept: Interaction between Agent and Environment

Algorithm Explanation - Deep Q-Learning

- Reinforcement learning technique to find optimal action-value function Q(s, a)
- Uses a neural network instead of a Q-table
- Action Selection: ε -greedy policy for exploration vs exploitation
- Experience Replay to improve stability

Code Structure & Implementation

Overview of Repository Structure

Key Libraries: Python, PyTorch, NumPy

• Training and Evaluation Pipeline

Algorithm Performance & Results

• Performance Metrics: Reward over Episodes

Implications

- Application in Finance, Robotics, Gaming, and Cloud Optimization
- Enhancements for real-world decision-making
- Future research directions: Combining RL with Transformer models

Limitations

- High computational cost (even with latest GPUs)
- Inefficiency
- Generalization issues across different environments

NVID	IA-SMI	565.57	.01 Driver	Version: 565.57.01	CUDA Version: 12.7
GPU Fan 	Name Temp	Perf		!	Volatile Uncorr. ECC GPU-Util Compute M. MIG M.
0 N/A 	NVIDIA 35C	H100 I P0	NVL On 92W / 400W	00000000:4A:00.0 Off 1018MiB / 95830MiB 	0 48% Default Disabled
1 N/A 	NVIDIA 31C	H100 I P0	NVL On 58W / 400W	00000000:61:00.0 Off 1MiB / 95830MiB	0 0% Default Disabled
2 N/A 	NVIDIA 30C	H100 I P0	NVL On 59W / 400W	00000000:CA:00.0 Off 1MiB / 95830MiB	
3 N/A 	NVIDIA 29C	H100 I	NVL On 58W / 400W	00000000:E1:00.0 Off 1MiB / 95830MiB 	0 0% Default Disabled

Conclusion & Summary

- Key Takeaways: Insights from Model Performance
- Challenges & Future Work

Conclusion & Summary

- Key Takeaways: Insights from Model Performance
- Challenges & Future Work

Any Questions?

Thank You

Mohanad Kandil, Alexandros Stathakopoulos (TUM)