

SEQUENCE LISTING

<110> IMAMURA, Jun YANAGIDATE, Ritsuko SAKAI, Takako FUJIMOTO, Hideya KOIZUKA, Nobuya HAYAKAWA, Takahiko

<120> A Protein Which is Involved in Recovery of Cytoplasm Male Fertility from Sterility and a Gene Encoding the Protein

<130> P23889

<140> US 10/613,053

<141> 2003-07-07

<150> PCT JP02/04092

<151> 2002-04-24

<160> 41

<170> PatentIn version 3.2

<210> 1

<211> 8553

<212> DNA

<213> Raphanus sativus

<400> 1

atttaaattt	tatacttaat	atgtatttaa	actctccaat	gcaataaggg	atataaacaa	60
aaggtattca	tagatgttat	gtattcgtac	accgatgtat	tcgtatacct	taaatatatg	120
tatacttatg	tatacatata	cttgtgtatt	cgtacacctt	aagtattcga	tgggttatgt	180
tggtattcgt	atattttatg	tatttgtaca	ccttatgtat	acttatgtat	atgtacacct	240
tatgtatttg	tacatcttaa	gtattagatg	agttatgttg	atattcgtac	accttatgta	300
ttcgtacacc	ttctgtatac	cttaggtatt	cgtacacctt	aggtatttgt	acacctaagg	360
tattcgtaca	ccttatgtat	acttatgtat	acgtacacct	tatatattcg	aacaccttag	420
atattcgtac	atcttatgta	tacgtatact	tatttcttga	gttatagtga	attagattgt	480
attaaacgtt	agacataggg	ttccggattt	atccaagggt	tccagattgt	ttcagattct	540
ggatttaccc	aatggttctg	gatttaccca	agggttccgg	atttaggatt	caaggtttag	600
agtttaggat	tttaggttta	gtgttttgtt	gatgattttt	aatatttaag	ataaatgtag	660
acaaatttgt	tcttcctacc	attttgacaa	aaaatgaaag	atctatgtag	gtttccaagt	720
ttattaaatt	tacccagatt	tatgaaaatt	atccataaat	ttatataatt	ttatgaataa	780
tttatcattt	atttgggtaa	atttcataaa	tatgaaagtt	tcttttatgg	gtcaaaatgt	840
ataatttatt	cggattctgg	atttacccaa	gggttccgga	tttacccaag	gattccagat	900
ttaggattca	tggtttagag	tttaggagtt	tatgtttagt	gttttgttga	tgattttaaa	960

1020 tatttaagat aagaagttta tgcgagagaa tttggtcaaa ctcaggttga gtcttaactt 1080 cttaagacat aaaaatcact agatacttga catggaggca ccaaattatc ctatattttt tggacttaat cttggtgtac ccctagagta aaccttaagg ttcaccaacc aatagaaatc 1140 actcatttca cagttgatat cttttaaaaa agtaaacaaa atattgtcga gttatattac 1200 1260 ttaaaaagat tttaatttcg tcaacaaaac actaaactct aaactctaaa tcctaaaccc 1320 1380 ttggataaat actaaaccct aaattaaaaa cattaaacca taatagtatt tttaagattt aatgttttag tgtttagtgt ttttgattta gaatttagga ttatccaagt gtttatgatt 1440 tatccaaggg tttagggttt agaatttagg gtttagggtt tagagtttaa aattatccaa 1500 gggtctaggg tatacccaag ggtttagggt ttaggattta gggtttaggg tttagaattt 1560 agggtttagg gtttagagtt taaaattatc caagggttta gggtataccc aagggtttag 1620 ggtttaggat ttagggttta aggtttagtg ttttttgacg atattaaaaa tagttttcaa 1680 1740 1800 attoctattg gttgggtgaa cctaaatgtt cactctaggg gtgaacctaa ggataactct 1860 attttttggg gtgaaatagc actatagcgg atatcttttt caatagatta taagcacggc 1920 tctacctatg actaatcaag aacttgggat gattggaaat ctgcaggttg tactcaatat 1980 gggattatat tggttctaac aagtagatat gatccttgaa aattaaagtt attagatcag 2040 ttcatcgtga aaggtgtagg gtttgtcatt ttattaacaa atttgtcatt tcattaacaa 2100 tttttgtcat tttataaaca tgaaaattat aacgaatgca ctttgctgcc agatcccaat 2160 ttgtcatttt atttttggga aaaaaatgta gcatttcgtg agtgtttcta tttttgqcaa 2220 aaacaaaaag tgtgagatca attttgacca aaaaaaaatg taagattcac gtaggtttcc 2280 aaatttatta aatttaccca actatattaa aattaaatgt agacaaattt gttttcctgc 2340 cattttggca aaaaatgaag gatctatgaa ggtttccaag tttattaaat ttactcagat 2400 ttatgataat tatccataaa tttacataat tttatgaatt atcatttatt tgggtagatt 2460 tcataaatat gaaagtttct tttatgagtc aaaatgtata atttattggg taactttcat 2520 aaattttaga atttacatcg attttatatt aattcgtata gatttatgtt gactttatat 2580 atgaaaaaat atgtattata ttaaaagtag ttgctcatat atgattttta aatattaaat 2640 atgatccaaa agtttaatga ataaagaatg tttatggaat ttacaaaagt tagttgttaa 2700 aagttagtgg gaaaaaaatt attttttata ggcaaagtgg attttgggtc ccacgaaatt 2760

2820 🖣 acttttccaa cttgccaagt ttaataggca aaaaggttaa aaatgtcata aatttattct 2880 ctctctacta ggttgcccaa ttgcctaata taaacttgag gtggcctatt tttctaattc aaacttaaaa gttgcccttt cccctaattg acccataaaa gaatgaaaga catttttctt 2940 3000 ttccaaatta caatccctag ataattttat tttgtaggtg cattccatcg gttatgatta 3060 cagaatagct acgcttctct attgattctt attgcgccgt tggtgacgtt ttccatggaa 3120 tcaagtagtg ttttatctcc tatcactaac aacatattca tagattttgt ttatcacttg ttctgtgttc ctgatcatat acttgactca gtttctgtga tttcatcaag tttttgagaa 3180 cagaagaagc aaaaaagaaa acgagcagag ctgctcttac aatgttttaa ccgtgagtga 3240 taaatttatt tacataaaag tattttaaaa atagatttaa tcaaccaatt taatatatta 3300 ttttatattt agttcatttt tttttgacat cttttatatt tagtttagaa cacctctatt 3360 tgagtacaac atagattata atgataaatt tataaaatag cataattttt tattttcatt 3420 3480 gttttatgat aaaattctaa ataacaataa ttataatatt attatattac taattgcaaa 3540 aattaattaa tacattattt tataataaat atttaaaaacg ttgggtagga ttttgttaga tttttttcaa caaattttgt tatagctaaa ataaaattca aatgtattgt taaaattgat 3600 3660 ttaactaagt ggtcctaatc tttgaactag gggtgggcgt tcgggtacct attcgggttt 3720 cggttcgagt ctattcggat ttcggatttt tggggtcaaa gattttagcc ccattcggtt 3780 3840 atttctaaat tacggttcgg gttcggttcg gatccttgcg gattcggttc gggttcggat 3900 aacccgttta aattattttc aaaattttaa aatttcatta tatattttaa acttttcgaa 3960 atttgtaaac aaaataatat attacatata aatttcaata atatgtgtcg aagtaccaaa 4020 acttaacatg taaattggtt tgatttggat atttggatag aaaatcaatc atattttata tatttttggt gttttgagta tgctttaact atttatacat gtacttttta atgtttttat 4080 atattttcta gtattttgaa caatttaaaa gtattatata tattttagat gctttttaat 4140 4200 atatattcaa tctaaaaata gttaaatata tatgtatatt aatctatttc ggatacattc 4260 ggatatccaa aatattttgg ttcggatcgg gttcggtttt ggttctttaa ataccaaaaa 4320 tttaaaccta ttcggatatt caattaattt cggttcggat ttggtattac ttttgcagat 4380 cggattcggt tcggttcttt ggattcagtt tttttgtcca gccctactct gaacagtaga taaaaaaatag aaccctaaat taataggtta gattttggtt aggtctttct aattagtatg 4440 4500 . gagatteteg attecttete attgeagtgt ggtatgteea acteattgtt tatgtaeata 4560 tccaatttag ttttgagtca aatgtttagt tacttaagag ttgaatgaaa taggggatga 4620 tattgatggc caaggttctc ccaaagtaaa taactttgtt tatattttaa gttagcttat

4680 aacatcaata aaaatgtcat taactggttc aataaaaatg tcattaactg gttcctctaa tataattatt taacacacct ggctgttgat aaatttttat gatcgtttaa taattttaga 4740 agtggatagt ctgtaaatgg tctttgattg gtcgtcttga tttttaaaag tggactaaac 4800 aagaaggett agtaataaat actgaaccgg aactetactg gtttcaatag ctcggtttat 4860 caatttetet eggetetggg tttagtgaat catgtggeee tgtgggttta aacaaggaae 4920 4980 tcaatcaatc aactggtgac aaatctgaac cggaaattgt ataattcaaa ctgaaccggt tettgtaaaa caaatggaac eegtttgtac tttatetete gtttatttte teagteaega 5040 gtttttttta gagatcgacg aagaacaaaa tttaggcgaa acaaaaataa aatgttggct 5100 agggtttgtg gattcaagtg ttcttcttct cctgctgagt ctgcggctag attgttctgt 5160 acgagatcga ttcgtgatac tctggccaag gcaagcggag agagttgcga agcaggtttt 5220 ggaggagaga gtttgaagct gcaaagtggg tttcatgaaa tcaaaggttt agaggatgcg 5280 attgatttgt tcagtgacat gcttcgatct cgtcctttac cttctgtggt tgatttctgt 5340 5400 aaattgatgg gtgtggtggt gagaatggaa cgcccggatc ttgtgatttc tctctatcag aagatggaaa ggaaacagat tcgatgtgat atatacagct tcaatattct gataaaatgt 5460 5520 ttctgcagct gctctaagct cccctttgct ttgtctacat ttggtaagat caccaagctt ggactccacc ctgatgttgt taccttcacc accetgetee atggattatg tgtggaagat 5580 agggtttctg aagccttgga tttttttcat caaatgtttg aaacgacatg taggcccaat 5640 gtcgtaacct tcaccacttt gatgaacggt ctttgccgcg agggtagaat tgtcgaagcc 5700 gtagetetge ttgateggat gatggaagat ggteteeage etaeceagat taettatgga 5760 acaatcgtag atgggatgtg taagaaggga gatactgtgt ctgcactgaa tctgctgagg 5820 aagatggagg aggtgagcca catcataccc aatgttgtaa tctatagtgc aatcattgat 5880 ageetttgta aagaeggaeg teatagegat geacaaaate tttteaetga aatgeaagag 5940 aaaggaatct ttcccgattt atttacctac aacagtatga tagttggttt ttgtagctct 6000 6060 ggtagatgga gcgacgcgga gcagttgttg caagaaatgt tagaaaggaa gatcagccct 6120 gatgttgtaa cttataatgc tttgatcaat gcatttgtca aggaaggcaa gttctttgag gctgaagaat tatacgatga gatgcttcca aggggtataa tccctaatac aatcacatat 6180 6240 agttcaatga tcgatggatt ttgcaaacag aatcgtcttg atgctgctga gcacatgttt tatttgatgg ctaccaaggg ctgctctccc aacctaatca ctttcaatac tctcatagac 6300 ggatattgtg gggctaagag gatagatgat ggaatggaac ttctccatga gatgactgaa 6360 acaggattag ttgctgacac aactacttac aacactctta ttcacgggtt ctatctggtg 6420

6480 ggcgatctta atgctgctct agacctttta caagagatga tctctagtgg tttgtgccct 6540 gatatcgtta cttgtgacac tttgctggat ggtctctgcg ataatgggaa actaaaagat gcattggaaa tgtttaaggt tatgcagaag agtaagaagg atcttgatgc tagtcacccc 6600 ttcaatggtg tggaacctga tgttcaaact tacaatatat tgatcagcgg cttgatcaat 6660 6720 gaagggaagt ttttagaggc cgaggaatta tacgaggaga tgccccacag gggtatagtc ccagatacta tcacctatag ctcaatgatc gatggattat gcaagcagag ccgcctagat 6780 6840 gaggctacac aaatgtttga ttcgatgggt agcaagagct tctctccaaa cgtagtgacc 6900 tttactacac tcattaatgg ctactgtaag gcaggaaggg ttgatgatgg gctggagctt 6960 ttctgcgaga tgggtcgaag agggatagtt gctaacgcaa ttacttacat cactttgatt 7020 tgtggttttc gtaaagtggg taatattaat ggggctctag acattttcca ggagatgatt 7080 tcaagtggtg tgtatcctga taccattacc atccgcaata tgctgactgg tttatggagt aaagaggaac taaaaagggc agtggcaatg cttgagaaac tgcagatgag tatggtatgt 7140 7200 aagtttetgt teagtetatg tattttttat ataaacaaga atgtatacat tettttgtgt 7260 7320 ggatctatca tttgggggat gaatgatcaa agattttctt ctgtttgcgc agcagagctt caatgtcatt ttgtttctgc tgctgcatgt ataccctact aatgtttgat caaatcgttg 7380 aatagagtga tcatagtgaa aaattgtgtg gttagtaagt tattttgctg ctattctaat 7440 gacagccttt tatgcgtcta ttgtctgggc ttaataaatt tgaccatttc caattaaatt 7500 7560 ccatacactt gtttcacgca agattattgg tctgaactaa agaggcacac cttccagaag atttcaggtg ttaaaagatg tttaggtgtc tgcccgttct gtagctgtca ccatggttat 7620 7680 cgtcaagctc ggtcttcatg agagctgata gctgtgatgc catcttcctc ctcttcttca 7740 tattggctct gtcctgcctt gtctgctccc atgtgggttc aggaggagat catgttcttt taatcttggt ggaaatgttg ttgtcgctta tgcttctctg gttcgcctct tgacttgctt 7800 agcttcattc tttatctcca aattgctatg aaatcaattt accataagta gaataaactt 7860 gcagattcat tctattattg cttaagcttt tgttaatcaa caaagaaacc agagacgaga 7920 aatacaaact ctataagctt ctcttttttc tttcttgata gtaaaaccgg ttagagagta 7980 gagattgatc atatgaacta aaaatcgata ctaaaacggt ttggctccga cttataaacc 8040 ggaaccccac cgttttgcat ctctctctca aacatcacac aatgtccaag atgaagaagt 8100 atttgtgttg tcatctctct gggtgaggag atgcaaatgt tatattctaa ttgttttcag 8160 tgcttggtct aactttttta agagattact cccagtggtt ggatcaaaga aagagtcaac 8220 attgcattgt gtaaggtgac gaaaactgag ttaaagtaag tgagaacaat acttcaatgc 8280

Ť,							
•	ttttcttgtg	acaacctgtg	taatcatcgc	atttgaatat	atatgtatat	gatgcttatg	8340
	atgaagctat	gagaataggc	aaatagggtc	tgtgttattt	ccctgcgatt	ctagattctg	8400
	atttgtttt	ccttcttaat	atttagatta	ggtggtcttg	cttatcctgt	tttagtatta	8460
	gagtcggagt	tttggggatg	aatcatcccg	gatgatatat	acaattgtgt	attttatgaa	8520
	tttcagtttt	tagtggataa	tgaacacgtt	aac			8553
	<210> 2 <211> 206- <212> DNA <213> Rapl	4 nanus sativu	18				
	<400> 2 atgttggcta	gggtttgtgg	attcaagtgt	tcttcttctc	ctgctgagtc	tgcggctaga	60
		cgagatcgat					120
		gaggagagag					180
		ttgatttgtt					240
		aattgatggg					300
		agatggaaag					360
		tctgcagctg					420
	accaagcttg	gactccaccc	tgatgttgtt	accttcacca	ccctgctcca	tggattatgt	480
	gtggaagata	gggtttctga	agccttggat	ttttttcatc	aaatgtttga	aacgacatgt	540
	aggcccaatg	tcgtaacctt	caccactttg	atgaacggtc	tttgccgcga	gggtagaatt	600
	gtcgaagccg	tagctctgct	tgatcggatg	atggaagatg	gtctccagcc	tacccagatt	660
	acttatggaa	caatcgtaga	tgggatgtgt	aagaagggag	atactgtgtc	tgcactgaat	720
	ctgctgagga	agatggagga	ggtgagccac	atcataccca	atgttgtaat	ctatagtgca	780
	atcattgata	gcctttgtaa	agacggacgt	catagcgatg	cacaaaatct	tttcactgaa	840
	atgcaagaga	aaggaatctt	tcccgattta	tttacctaca	acagtatgat	agttggtttt	900
	tgtagctctg	gtagatggag	cgacgcggag	cagttgttgc	aagaaatgtt	agaaaggaag	960
	atcagccctg	atgttgtaac	ttataatgct	ttgatcaatg	catttgtcaa	ggaaggcaag	1020
	ttctttgagg	ctgaagaatt	atacgatgag	atgcttccaa	ggggtataat	ccctaataca	1080
	atcacatata	gttcaatgat	cgatggattt	tgcaaacaga	atcgtcttga	tgctgctgag	1140
	cacatgtttt	atttgatggc	taccaagggc	tgctctccca	acctaatcac	tttcaatact	1200
	ctcatagacg	gatattgtgg	ggctaagagg	atagatgatg	gaatggaact	tctccatgag	1260
	atgactgaaa	caggattagt	tgctgacaca	actacttaca	acactcttat	tcacgggttc	1320

tatctggtgg gcgatcttaa tgctgctcta gaccttttac aagagatgat ctctagtggt 1380 ttgtgccctg atatcgttac ttgtgacact ttgctggatg gtctctgcga taatgggaaa 1440 ctaaaagatg cattggaaat gtttaaggtt atgcagaaga gtaagaagga tcttgatqct 1500 agtcacccct tcaatggtgt ggaacctgat gttcaaactt acaatatatt gatcagcggc 1560 ttgatcaatg aagggaagtt tttagaggcc gaggaattat acgaggagat gccccacagg 1620 ggtatagtcc cagatactat cacctatagc tcaatgatcg atggattatg caagcagagc 1680 cgcctagatg aggctacaca aatgtttgat tcgatgggta gcaagagctt ctctccaaac 1740 gtagtgacct ttactacact cattaatggc tactgtaagg caggaagggt tgatgatggg 1800 ctggagcttt tctgcgagat gggtcgaaga gggatagttg ctaacgcaat tacttacatc 1860 actttgattt gtggttttcg taaagtgggt aatattaatg gggctctaga cattttccag 1920 gagatgattt caagtggtgt gtatcctgat accattacca tccgcaatat gctgactggt 1980 ttatggagta aagaggaact aaaaagggca gtggcaatgc ttgagaaact gcagatgagt 2040 atggatctat catttggggg atga 2064

<210> 3

<211> 687

<212> PRT

<213> Raphanus sativus

<400> 3

Met Leu Ala Arg Val Cys Gly Phe Lys Cys Ser Ser Ser Pro Ala Glu
1 5 10 15

Ser Ala Ala Arg Leu Phe Cys Thr Arg Ser Ile Arg Asp Thr Leu Ala 20 25 30

Lys Ala Ser Gly Glu Ser Cys Glu Ala Gly Phe Gly Gly Glu Ser Leu 35 40 45

Lys Leu Gln Ser Gly Phe His Glu Ile Lys Gly Leu Glu Asp Ala Ile 50 55 60

Asp Leu Phe Ser Asp Met Leu Arg Ser Arg Pro Leu Pro Ser Val Val 65 70 75 80

Asp Phe Cys Lys Leu Met Gly Val Val Val Arg Met Glu Arg Pro Asp 85 90 95

Leu Val Ile Ser Leu Tyr Gln Lys Met Glu Arg Lys Gln Ile Arg Cys . 100 105 110

Asp Ile Tyr Ser Phe Asn Ile Leu Ile Lys Cys Phe Cys Ser Cys Ser 115 120 125

Lys Leu Pro Phe Ala Leu Ser Thr Phe Gly Lys Ile Thr Lys Leu Gly 130 135 140

Leu His Pro Asp Val Val Thr Phe Thr Thr Leu Leu His Gly Leu Cys 145 150 155 160

Val Glu Asp Arg Val Ser Glu Ala Leu Asp Phe Phe His Gln Met Phe 165 170 175

Glu Thr Thr Cys Arg Pro Asn Val Val Thr Phe Thr Thr Leu Met Asn 180 185 190

Gly Leu Cys Arg Glu Gly Arg Ile Val Glu Ala Val Ala Leu Leu Asp 195 200 205

Arg Met Met Glu Asp Gly Leu Gln Pro Thr Gln Ile Thr Tyr Gly Thr 210 . 215 220

Ile Val Asp Gly Met Cys Lys Lys Gly Asp Thr Val Ser Ala Leu Asn 225 230 235 240

Leu Leu Arg Lys Met Glu Glu Val Ser His Ile Ile Pro Asn Val Val 245 250 255

Ile Tyr Ser Ala Ile Ile Asp Ser Leu Cys Lys Asp Gly Arg His Ser 260 265 270

Asp Ala Gln Asn Leu Phe Thr Glu Met Gln Glu Lys Gly Ile Phe Pro 275 280 285

Asp Leu Phe Thr Tyr Asn Ser Met Ile Val Gly Phe Cys Ser Ser Gly 290 295 300

Arg Trp Ser Asp Ala Glu Gln Leu Leu Gln Glu Met Leu Glu Arg Lys 305 310 315 320

Ile Ser Pro Asp Val Val Thr Tyr Asn Ala Leu Ile Asn Ala Phe Val 325 330 335

Lys Glu Gly Lys Phe Phe Glu Ala Glu Glu Leu Tyr Asp Glu Met Leu 340 345 350

Pro Arg Gly Ile Ile Pro Asn Thr Ile Thr Tyr Ser Ser Met Ile Asp 355 360 365

Gly Phe Cys Lys Gln Asn Arg Leu Asp Ala Ala Glu His Met Phe Tyr $370 \hspace{1cm} 375 \hspace{1cm} 380$

Leu Met Ala Thr Lys Gly Cys Ser Pro Asn Leu Ile Thr Phe Asn Thr 385 390 395 400

Leu Ile Asp Gly Tyr Cys Gly Ala Lys Arg Ile Asp Asp Gly Met Glu 405 410 415

Leu Leu His Glu Met Thr Glu Thr Gly Leu Val Ala Asp Thr Thr 420 425 430

Tyr Asn Thr Leu Ile His Gly Phe Tyr Leu Val Gly Asp Leu Asn Ala 435 440 445

Ala Leu Asp Leu Leu Gln Glu Met Ile Ser Ser Gly Leu Cys Pro Asp 450 455 460

Ile Val Thr Cys Asp Thr Leu Leu Asp Gly Leu Cys Asp Asn Gly Lys 475 475 480

Leu Lys Asp Ala Leu Glu Met Phe Lys Val Met Gln Lys Ser Lys Lys 485 490 495

Asp Leu Asp Ala Ser His Pro Phe Asn Gly Val Glu Pro Asp Val Gln 500 505 510

Thr Tyr Asn Ile Leu Ile Ser Gly Leu Ile Asn Glu Gly Lys Phe Leu 515 520 525

Glu Ala Glu Glu Leu Tyr Glu Glu Met Pro His Arg Gly Ile Val Pro 530 540

Asp Thr Ile Thr Tyr Ser Ser Met Ile Asp Gly Leu Cys Lys Gln Ser 545 550 555 560

Arg Leu Asp Glu Ala Thr Gln Met Phe Asp Ser Met Gly Ser Lys Ser 565 570 575

Phe Ser Pro Asn Val Val Thr Phe Thr Thr Leu Ile Asn Gly Tyr Cys 580 585 590

*Lys Ala Gly Arg Val Asp Asp Gly Leu Glu Leu Phe Cys Glu Met Gly 595 600 605 Arg Arg Gly Ile Val Ala Asn Ala Ile Thr Tyr Ile Thr Leu Ile Cys 610 Gly Phe Arg Lys Val Gly Asn Ile Asn Gly Ala Leu Asp Ile Phe Gln 625 630 Glu Met Ile Ser Ser Gly Val Tyr Pro Asp Thr Ile Thr Ile Arg Asn 645 650 655 Met Leu Thr Gly Leu Trp Ser Lys Glu Glu Leu Lys Arg Ala Val Ala 660 665 670 Met Leu Glu Lys Leu Gln Met Ser Met Asp Leu Ser Phe Gly Gly 680 <210> 4 <211> 25 <212> DNA <213> Artificial <220> <223> Probe <400> 4 25 gaagcaaaaa agaaaacgag cagag <210> 5 <211> 25 <212> DNA <213> Artificial <220> <223> Probe <400> 5 25 ccaaaaatcc gaaatccgaa tagac <210> 6 <211> 20 <212> DNA <213> Artificial <220> <223> Probe <400> 6 ctcggctctg ggtttagtga 20

<210> 7

```
• <211> 20
• <212> DNA
  <213> Artificial
  <220>
  <223> Probe
  <400> 7
  tccacaaacc ctagccaaca
                                                                      20
  <210> 8
  <211> 24
  <212> DNA
  <213> Artificial
  <220>
  <223> Probe
  <400> 8
  gcttatgctt ctctggttcg cctc
                                                                      24
  <210> 9
  <211> 27
  <212> DNA
  <213> Artificial
  <220>
  <223> Probe
  <400> 9
  ctcagttttc gtcaccttac acaatgc
                                                                      27
  <210> 10
  <211> 23
  <212> DNA
  <213> Artificial
  <220>
  <223> Probe
 <400> 10
 gattcctttc tcttgcattt cag
                                                                      23
 <210> 11
 <211> 23
  <212> DNA
 <213> Artificial
 <220>
 <223> Probe
 <400> 11
 atctcgtcct ttaccttctg tgg
                                                                      23
 <210> 12
 <211> 18
```

الح

```
<212>
       DNA
<213> Artificial
<220>
<223>
      Probe
<400> 12
cgggatccgc tcacaatt
                                                                       18
<210>
       13
       100
<211>
<212>
       DNA
<213> Artificial
<220>
<223> Probe
<400> 13
geggateeea attteattet geateactet eeetgtegtt ategaeeteg eaaggttttt
                                                                       60
gaaacggccg aaacgggaag tgacaatacc gcttttcttc
                                                                      100
<210>
       14
<211>
       100
<212>
       DNA
<213> Artificial
<220>
<223>
      Probe
<400> 14
ggaattcact aactttacat tcagtaggag tgagattatg acaaaaagtg gacaattttt
                                                                       60
cgaaaaaggt aatcatgcat ttatatgctg aagaaaagcg
                                                                      100
<210>
       15
<211>
       3306
<212>
       DNA
<213>
       Raphanus sativus
<400> 15
caattaattt cggttcggat ttggtattac ttttgcagat cggattcggt tcggttcttt
                                                                       60
ggattcagtt tttttgtcca gccctactct gaacagtaga taaaaaatag aaccctaaat
                                                                      120
taataggtta gattttggtt aggtctttct aattagtatg gagattctcg attccttctc
                                                                      180
attgcagtgt ggtatgtcca actcattgtt tatgtacata tccaatttag ttttgagtca
                                                                      240
aatgtttagt tacttaagag ttgaatgaaa taggggatga tattgatggc caaggttctc
                                                                      300
ccaaagtaaa taactttgtt tatattttaa gttagcttat aacatcaata aaaatgtcat
                                                                      360
taactggttc aataaaaatg tcattaactg gttcctctaa tataattatt taacacacct
                                                                      420
ggctgttgat aaatttttat gatcgtttaa taattttaga agtggatagt ctgtaaatgg
                                                                      480
tctttgattg gtcgtcttga tttttaaaag tggactaaac aagaaggctt agtaataaat
                                                                      540
```

600 actgaaccgg aactctactg gtttcaatag ctcggtttat caatttctct cggctctggg 660 tttagtgaat catgtggccc tgtgggttta aacaaggaac tcaatcaatc aactggtgac aaatctgaac cggaaattgt ataattcaaa ctgaaccggt tcttgtaaaa caaatggaac 720 780 ccgtttgtac tttatctctc gtttattttc tcagtcacga gtttttttta gagatcgacg 840 aagaacaaaa tttaggcgaa acaaaaataa aatgttggct agggtttgtg gattcaagtg ttcttcttct cctgctgagt ctgcggctag attgttctgt acgagatcga ttcgtgatac 900 960 tctggccaag gcaagcggag agagttgcga agcaggtttt ggaggagaga gtttgaagct 1020 gcaaagtggg tttcatgaaa tcaaaggttt agaggatgcg attgatttgt tcagtgacat gettegatet egteetttae ettetgtggt tgatttetgt aaattgatgg gtgtggtg 1080 gagaatggaa cgcccggatc ttgtgatttc tctctatcag aagatggaaa ggaaacagat 1140 tegatgtgat atatacaget teaatattet gataaaatgt ttetgeaget getetaaget 1200 eccetttget ttgtetaeat ttggtaaget eaceaagett ggaeteeace etgatgttgt 1260 taccttcacc accctgctcc acggattgtg cgtggaagat agggtttctg aagctttgaa 1320 tttgtttcat caaatgtttg aaacgacatg taggcccaat gtcgtaacct tcaccacttt 1380 gatgaacggt ctttgccgcg agggtagaat tgtcgaagcc gtagctctgc ttgatcggat 1440 1500 gatggaagat ggtctccagc ctacccagat tacttatgga acaatcgtag atgggatgtg taagaaggga gatactgtgt ctgcactgaa tctgctgagg aagatggagg aggtgagcca 1560 catcataccc aatgttgtaa tctatagtgc aatcattgat agcctttgta aagacggacg 1620 tcatagcgat gcacaaaatc ttttcactga aatgcaagag aaaggaatct ttcccgattt 1680 atttacctac aacagtatga tagttggttt ttgtagctct ggtagatgga gcgacgcgga 1740 gcagttgttg caagaaatgt tagaaaggaa gatcagccct gatgttgtaa cttataatgc 1800 tttgatcaat gcatttgtca aggaaggcaa gttctttgag gctgaagaat tatacgatga 1860 gatgcttcca aggggtataa tccctaatac aatcacatat agttcaatga tcgatggatt 1920 ttgcaaacag aatcgtcttg atgctgctga gcacatgttt tatttgatgg ctaccaaggg 1980 ctgctctccc aacctaatca ctttcaatac tctcatagac ggatattgtg gggctaagag 2040 gatagatgat ggaatggaac ttctccatga gatgactgaa acaggattag ttgctgacac 2100 aactacttac aacactctta ttcacgggtt ctatctggtg ggcgatctta atgctgctct 2160 agacctttta caagagatga tctctagtgg tttgtgccct gatatcgtta cttgtgacac 2220 tttgctggat ggtctctgcg ataatgggaa actaaaagat gcattggaaa tgtttaaggt 2280 tatgcagaag agtaagaagg atcttgatgc tagtcacccc ttcaatggtg tggaacctga 2340

tgttcaa	act tacaatatat	tgatcagcgg	cttgatcaat	gaagggaagt	ttttagaggc	2400
cgaggaa	tta tacgaggaga	tgccccacag	gggtatagtc	ccagatacta	tcacctatag	2460
ctcaatg	atc gatggattat	gcaagcagag	ccgcctagat	gaggctacac	aaatgtttga	2520
ttcgatg	ggt agcaagagct	tctctccaaa	cgtagtgacc	tttactacac	tcattaatgg	2580
ctactgt	aag gcaggaaggg	ttgatgatgg	gctggagctt	ttctgcgaga	tgggtcgaag	2640
agggata	gtt gctaacgcaa	ttacttacat	cactttgatt	tgtggttttc	gtaaagtggg	2700
taatatt	aat ggggctctag	acattttcca	ggagatgatt	tcaagtggtg	tgtatcctga	2760
taccatt	acc atccgcaata	tgctgactgg	tttatggagt	aaagaggaac	taaaaagggc	2820
agtggca	atg cttgagaaac	tgcagatgag	tatggtatgt	aagtttctgt	tcagtctatg	2880
tattttt	tat ataaacaaga	atgtatacat	tcttttgtgt	gtagcttcag	attgatgata	2940
cacgttc	tgg aattaaccat	tggtttggtt	ttgcattgta	ggatctatca	tttgggggat	3000
gaatgat	caa agattttctt	ctgtttgcgc	agcagagctt	caatgtcatt	ttgtttctgc	3060
tgctgca	tgt ataccctact	aatgtttgat	caaatcgttg	aatagagtga	tcatagtgaa	3120
aaattgt	gtg gttagtaagt	tattttgctg	ctattctaat	gacagccttt	tatgcgtcta	3180
ttgtctg	ggc ttaataaatt	tgaccatttc	caattaaatt	ccatacactt	gtttcacgca	3240
agattat	tgg tctgaactaa	agaggcacac	cttccagaag	atttcaggtg	ttaaaagatg	3300
tttagg						3306
<211> 2 <212> 3 <213> 1	16 2064 DNA Raphanus sativo 16	วร				
	cta gggtttgtgg	attcaagtgt	tcttcttctc	ctgctgagtc	tgcggctaga	60

ttgttctgta cgagatcgat tcgtgatact ctggccaagg caagcggaga gagttgcgaa

gcaggttttg gaggagagag tttgaagctg caaagtgggt ttcatgaaat caaaggttta

gaggatgcga ttgatttgtt cagtgacatg cttcgatctc gtcctttacc ttctgtggtt

gatttctgta aattgatggg tgtggtggtg agaatggaac gcccggatct tgtgatttct

ctctatcaga agatggaaag gaaacagatt cgatgtgata tatacagctt caatattctg

ataaaatgtt totgcagotg ototaagoto cootttgott tgtotacatt tggtaagoto

accaagettg gactecacce tgatgttgtt acctteacca ceetgeteea eggattgtge

gtggaagata gggtttctga agctttgaat ttgtttcatc aaatgtttga aacgacatgt

aggcccaatg tcgtaacctt caccactttg atgaacggtc tttgccgcga gggtagaatt

120

180

240

300

360

420

480

540

600

gtcgaagccg tagetetget tgateggatg atggaagatg gtetecagee tacecagatt 660 720 acttatggaa caatcgtaga tgggatgtgt aagaagggag atactgtgtc tgcactgaat ctgctgagga agatggagga ggtgagccac atcataccca atgttgtaat ctatagtgca 780 840 atcattgata gcctttgtaa agacggacgt catagcgatg cacaaaatct tttcactgaa atgcaagaga aaggaatctt tcccgattta tttacctaca acagtatgat agttggtttt 900 tgtagctctg gtagatggag cgacgcggag cagttgttgc aagaaatgtt agaaaggaag 960 1020 atcagecetg atgttgtaac ttataatget ttgatcaatg catttgtcaa ggaaggeaag 1080 ttctttgagg ctgaagaatt atacgatgag atgcttccaa ggggtataat ccctaataca atcacatata gttcaatgat cgatggattt tgcaaacaga atcgtcttga tgctgctgag 1140 cacatgtttt atttgatggc taccaagggc tgctctccca acctaatcac tttcaatact 1200 ctcatagacg gatattgtgg ggctaagagg atagatgatg gaatggaact tctccatgag 1260 atgactgaaa caggattagt tgctgacaca actacttaca acactcttat tcacgggttc 1320 tatctggtgg gcgatcttaa tgctgctcta gaccttttac aagagatgat ctctagtggt 1380 1440 ttgtgccctg atatcgttac ttgtgacact ttgctggatg gtctctgcga taatqgqaaa ctaaaagatg cattggaaat gtttaaggtt atgcagaaga gtaagaagga tcttgatgct 1500 agtcacccct tcaatggtgt ggaacctgat gttcaaactt acaatatatt gatcagcggc 1560 ttgatcaatg aagggaagtt tttagaggcc gaggaattat acgaggagat gccccacagg 1620 ggtatagtcc cagatactat cacctatagc tcaatgatcg atggattatg caagcagagc 1680 egectagatg aggetacaca aatgtttgat tegatgggta geaagagett etetecaaae 1740 gtagtgacct ttactacact cattaatggc tactgtaagg caggaagggt tgatgatggg 1800 ctggagcttt tctgcgagat gggtcgaaga gggatagttg ctaacgcaat tacttacatc 1860 actttgattt gtggttttcg taaagtgggt aatattaatg gggctctaga cattttccag 1920 gagatgattt caagtggtgt gtatcctgat accattacca tccgcaatat gctgactggt 1980 ttatggagta aagaggaact aaaaagggca gtggcaatgc ttgagaaact gcagatgagt 2040 atggatctat catttggggg atga 2064

```
<210> 17
<211> 688
<212> PRT
<213> Raphanus sativus
```

<220>
<221> Xaa
<222> (688)..(688)
<223> Xaa can be any amino acid

<220>

<221> misc_feature

<222> (688)..(688)

<223> Xaa can be any naturally occurring amino acid

<400> 17

Met Leu Ala Arg Val Cys Gly Phe Lys Cys Ser Ser Ser Pro Ala Glu 1 5 10 15

Ser Ala Ala Arg Leu Phe Cys Thr Arg Ser Ile Arg Asp Thr Leu Ala 20 25 30

Lys Ala Ser Gly Glu Ser Cys Glu Ala Gly Phe Gly Glu Ser Leu 35 40 45

Lys Leu Gln Ser Gly Phe His Glu Ile Lys Gly Leu Glu Asp Ala Ile 50 55 60

Asp Leu Phe Ser Asp Met Leu Arg Ser Arg Pro Leu Pro Ser Val Val 65 70 75 80

Asp Phe Cys Lys Leu Met Gly Val Val Val Arg Met Glu Arg Pro Asp 85 90 95

Leu Val Ile Ser Leu Tyr Gln Lys Met Glu Arg Lys Gln Ile Arg Cys 100 105 110 ·

Asp Ile Tyr Ser Phe Asn Ile Leu Ile Lys Cys Phe Cys Ser Cys Ser 115 120 125

Lys Leu Pro Phe Ala Leu Ser Thr Phe Gly Lys Leu Thr Lys Leu Gly 130 135 140

Leu His Pro Asp Val Val Thr Phe Thr Thr Leu Leu His Gly Leu Cys 145 150 155 160

Val Glu Asp Arg Val Ser Glu Ala Leu Asn Leu Phe His Gln Met Phe 165 170 175

Glu Thr Thr Cys Arg Pro Asn Val Val Thr Phe Thr Thr Leu Met Asn 180 185 190

Gly Leu Cys Arg Glu Gly Arg Ile Val Glu Ala Val Ala Leu Leu Asp 195 200 205

Arg Met Met Glu Asp Gly Leu Gln Pro Thr Gln Ile Thr Tyr Gly Thr

Ile Val Asp Gly Met Cys Lys Lys Gly Asp Thr Val Ser Ala Leu Asn

Leu Leu Arg Lys Met Glu Glu Val Ser His Ile Ile Pro Asn Val Val

Ile Tyr Ser Ala Ile Ile Asp Ser Leu Cys Lys Asp Gly Arg His Ser

Asp Ala Gln Asn Leu Phe Thr Glu Met Gln Glu Lys Gly Ile Phe Pro

Asp Leu Phe Thr Tyr Asn Ser Met Ile Val Gly Phe Cys Ser Ser Gly

Arg Trp Ser Asp Ala Glu Gln Leu Leu Gln Glu Met Leu Glu Arg Lys

Ile Ser Pro Asp Val Val Thr Tyr Asn Ala Leu Ile Asn Ala Phe Val

Lys Glu Gly Lys Phe Phe Glu Ala Glu Glu Leu Tyr Asp Glu Met Leu

Pro Arg Gly Ile Ile Pro Asn Thr Ile Thr Tyr Ser Ser Met Ile Asp

Gly Phe Cys Lys Gln Asn Arg Leu Asp Ala Ala Glu His Met Phe Tyr

Leu Met Ala Thr Lys Gly Cys Ser Pro Asn Leu Ile Thr Phe Asn Thr

Leu Ile Asp Gly Tyr Cys Gly Ala Lys Arg Ile Asp Asp Gly Met Glu

Leu Leu His Glu Met Thr Glu Thr Gly Leu Val Ala Asp Thr Thr Thr

Tyr Asn Thr Leu Ile His Gly Phe Tyr Leu Val Gly Asp Leu Asn Ala

Ala Leu Asp Leu Leu Gln Glu Met Ile Ser Ser Gly Leu Cys Pro Asp

Ile Val Thr Cys Asp Thr Leu Leu Asp Gly Leu Cys Asp Asn Gly Lys Leu Lys Asp Ala Leu Glu Met Phe Lys Val Met Gln Lys Ser Lys Lys Asp Leu Asp Ala Ser His Pro Phe Asn Gly Val Glu Pro Asp Val Gln Thr Tyr Asn Ile Leu Ile Ser Gly Leu Ile Asn Glu Gly Lys Phe Leu Glu Ala Glu Glu Leu Tyr Glu Glu Met Pro His Arg Gly Ile Val Pro Asp Thr Ile Thr Tyr Ser Ser Met Ile Asp Gly Leu Cys Lys Gln Ser. Arg Leu Asp Glu Ala Thr Gln Met Phe Asp Ser Met Gly Ser Lys Ser Phe Ser Pro Asn Val Val Thr Phe Thr Thr Leu Ile Asn Gly Tyr Cys Lys Ala Gly Arg Val Asp Asp Gly Leu Glu Leu Phe Cys Glu Met Gly Arg Arg Gly Ile Val Ala Asn Ala Ile Thr Tyr Ile Thr Leu Ile Cys

625 630 635 640

Glu Met Ile Ser Ser Gly Val Tyr Pro Asp Thr Ile Thr Ile Arg Asn 645 655

Gly Phe Arg Lys Val Gly Asn Ile Asn Gly Ala Leu Asp Ile Phe Gln

Met Leu Thr Gly Leu Trp Ser Lys Glu Glu Leu Lys Arg Ala Val Ala 660 665 670

Met Leu Glu Lys Leu Gln Met Ser Met Asp Leu Ser Phe Gly Gly Xaa 675 680 685

<210> 18 <211> 2073 <212> DNA

<213> Raphanus sativus

<400> 18 atgttggcta gggtttgtgg attcaagtgt tcttcttctc ctgctgtgtc tgcggctaga 60 ttgttctgta cgagatcgat tcgtgatact ctggccaagg caagcaggga tggagagagt 120 180 tgcgaagcag gttttggagg agagagtttg aagctgcaaa gtgggtttca tgaaatcaaa 240 ggtttagagg atgcgattga tttgttcagt gacatgcttc gatctcgtcc tttaccttct 300 gtggttgatt tctgtaaatt gatgggtgtg gtggtgagga tgaaacgccc ggatgttgtg 360 atttctctcc ataagaagat ggaaatgcgg cgcattccat gtgatgcata cagcttcaat attotgataa agtgtttotg cagotgotot aagotgooot ttgotttgto tacatttggt 420 aageteacea agettggaet eeaceetgat gttgttaeet teaceaeeet teteeaegga 480 ttgtgtgtgg aaaatagggg ttctgaagct ttgaatttgt ttcatcaaat gtttgaaacg 540 600 reatgtagge ceaatgtegt aacetteace actttgatga aeggtetttg eegegagggt agaattgtcg aagccgtagc tctacttgat cggatgatgg aagatggtct ccagcctacc 660 720 cagattactt atggaacaat cgtagatggg atgtgtaaga agggagatac tgtgtctgca ctgaatctgc tgaggaagat ggaggaggtg agccacatca tacccaatgt tgtaatctat 780 agtgcaatca ttgatagcct ttgtaaagac ggacgtcata gcgattctca aaatcttttc 840 actgaaatgc aagagaaagg aatctttcca gatttattta cctacaactg tatgatcaac 900 gggttttgta gctctggtag atggatcgac gcggagcagt tgttgcaaga aatgttagaa 960 1020 aggaagatca gccctgatgt tgtaacttat aatgctttga tcaatgcatt tgtcaaggaa ggcaagttet ttgaggetga agaattatae gatgagatge tteetagggg tataateeet 1080 aatacaatca catatagttc aatgatcgat ggattttgca aacagaatcg tcttgatgct 1140 gctgagcaca tgttttattt gatgcctacc aagggctgct ctccggacgt attcactttc 1200 aatactctca tagacggata tcgtggggct aagaggatag atgatggaat ggaacttctc 1260 catgagatga ctgaagcagg attagttgct aacacagtta cttacaacac tcttattcac 1320 gggttttgtc aggtgggcga tcttactgct gctctagacc ttctacatga gatgatttct 1380 agtggtgtgt gccctaatgt cgttacttgt agcactttgc tggatggtct ctgcgataac 1440 1500 gggaaactaa aagatgcatg ggaactgttt aaggttatgc agaagagtaa gatggatctt gatgctagtc acceetteaa tggtgtggaa eetgatgtte aaaettacaa tatattgate 1560 agcggcttga tcaatgaagg gaagttttta gaggctgagg aattatacaa ggagatgccc 1620 cacaggggta tagtcccaga tactattacc tatagctcaa tgatcgatgg actatgcaag 1680 cagageegee tggatgagge tacacaaatg tttgattega tgggtageaa gagettetet 1740

•	ccaaacgt	ag t	gaco	cttta	ac ta	acact	catt	gat	ggct	tact	gta	aagca	agg a	aagg	gttgat
	gatgggct	igg a	agctt	ttct	g c	gagat	gggt	aga	agag	ggga	tag	ttgct	taa †	tacaa	attact
	tacatcac	ctt t	gatt	cgt	gg ti	tttc	gcaat	gto	gggta	aata	tta	atgg	ggc 1	tcta	gacatt
	ttccagga	aga t	gatt	tcaa	ag to	ggtgi	gtat	cct	ggta	atca	tta	ctato	ccg (cagta	atgctg
	actggttt	tat o	ggagt	caaaq	ga go	gaact	caaaa	agg	gacaç	gtgg	caa	tgctt	ga (ggaad	ctgcag
	atgagtgt	gg q	ggtat	cagt	t go	gagga	atgaa	a tga	a						
			anus	sati	ivus										
	<222>	(691)	_feat (6 can b	591)	ny na	atura	ally	occı	ırrin	ng an	nino	acio	d		
	<222>	(693)	_feat (6 can b	593)	ny ar	mino	acio	ł							
	<400> 1	19													
	Met Leu 1	Ala	Arg	Val 5	Cys	Gly	Phe	Lys	Cys 10	Ser	Ser	Ser	Pro	Ala 15	Val
	Ser Ala	Ala	Arg 20	Leu	Phe	Cys	Thr	Arg 25	Ser	Ile	Arg	Asp	Thr 30	Leu	Ala
	Lys Ala	Ser 35	Arg	Asp	Gly	Glu	Ser 40	Cys	Glu	Ala	Gly	Phe 45	Gly	Gly	Glu
	Ser Leu 50	Lys	Leu	Gln	Ser	Gly 55	Phe	His	Glu	Ile	Lys 60	Gly	Leu	Glu	Asp
	Ala Ile 65	Asp	Leu	Phe	Ser 70	Asp	Met	Leu	Arg	Ser 75	Arg	Pro	Leu	Pro	Ser 80
	Val Val	Asp	Phe	Cys 85	Lys	Leu	Met	Gly	Val 90	Val	Val	Arg	Met	Lys 95	Arg
	Pro Asp	Val	Val 100	Ile	Ser	Leu	His	Lys 105	Lys	Met	Glu	Met	Arg 110	Arg	Ile
	Pro Cys	Asp 115	Ala	Tyr	Ser	Phe	Asn 120	Ile	Leu	Ile	Lys	Cys 125	Phe	Cys	Ser

Cys Ser Lys Leu Pro Phe Ala Leu Ser Thr Phe Gly Lys Leu Thr Lys Leu Gly Leu His Pro Asp Val Val Thr Phe Thr Thr Leu Leu His Gly Leu Cys Val Glu Asn Arg Gly Ser Glu Ala Leu Asn Leu Phe His Gln Met Phe Glu Thr Thr Cys Arg Pro Asn Val Val Thr Phe Thr Thr Leu Met Asn Gly Leu Cys Arg Glu Gly Arg Ile Val Glu Ala Val Ala Leu Leu Asp Arg Met Met Glu Asp Gly Leu Gln Pro Thr Gln Ile Thr Tyr Gly Thr Ile Val Asp Gly Met Cys Lys Lys Gly Asp Thr Val Ser Ala Leu Asn Leu Leu Arg Lys Met Glu Glu Val Ser His Ile Ile Pro Asn Val Val Ile Tyr Ser Ala Ile Ile Asp Ser Leu Cys Lys Asp Gly Arg His Ser Asp Ser Gln Asn Leu Phe Thr Glu Met Gln Glu Lys Gly Ile Phe Pro Asp Leu Phe Thr Tyr Asn Cys Met Ile Asn Gly Phe Cys Ser Ser Gly Arg Trp Ile Asp Ala Glu Gln Leu Leu Gln Glu Met Leu Glu Arg Lys Ile Ser Pro Asp Val Val Thr Tyr Asn Ala Leu Ile Asn Ala Phe Val Lys Glu Gly Lys Phe Phe Glu Ala Glu Glu Leu Tyr Asp Glu Met Leu Pro Arg Gly Ile Ile Pro Asn Thr Ile Thr Tyr Ser Ser Met

Ile Asp Gly Phe Cys Lys Gln Asn Arg Leu Asp Ala Ala Glu His Met 370 380

Phe Tyr Leu Met Pro Thr Lys Gly Cys Ser Pro Asp Val Phe Thr Phe 385 390 395 400

Asn Thr Leu Ile Asp Gly Tyr Arg Gly Ala Lys Arg Ile Asp Asp Gly 405 410 415

Met Glu Leu His Glu Met Thr Glu Ala Gly Leu Val Ala Asn Thr 420 425 430

Val Thr Tyr Asn Thr Leu Ile His Gly Phe Cys Gln Val Gly Asp Leu 435 440 445

Thr Ala Ala Leu Asp Leu Leu His Glu Met Ile Ser Ser Gly Val Cys 450 455 460

Pro Asn Val Val Thr Cys Ser Thr Leu Leu Asp Gly Leu Cys Asp Asn 465 470 475 480

Gly Lys Leu Lys Asp Ala Trp Glu Leu Phe Lys Val Met Gln Lys Ser 485 490 495

Lys Met Asp Leu Asp Ala Ser His Pro Phe Asn Gly Val Glu Pro Asp 500 505 510

Val Gln Thr Tyr Asn Ile Leu Ile Ser Gly Leu Ile Asn Glu Gly Lys 515 520 525

Phe Leu Glu Ala Glu Glu Leu Tyr Lys Glu Met Pro His Arg Gly Ile 530 540

Val Pro Asp Thr Ile Thr Tyr Ser Ser Met Ile Asp Gly Leu Cys Lys 545 550 555 560

Gln Ser Arg Leu Asp Glu Ala Thr Gln Met Phe Asp Ser Met Gly Ser 565 570 575

Lys Ser Phe Ser Pro Asn Val Val Thr Phe Thr Thr Leu Ile Asp Gly 580 585 590

Tyr Cys Lys Ala Gly Arg Val Asp Asp Gly Leu Glu Leu Phe Cys Glu 595 600 605

Met Gly Arg Arg Gly Ile Val Ala Asn Thr Ile Thr Tyr Ile Thr Leu 610 615 620 Ile Arg Gly Phe Arg Asn Val Gly Asn Ile Asn Gly Ala Leu Asp Ile 625 630 635 640 Phe Gln Glu Met Ile Ser Ser Gly Val Tyr Pro Gly Ile Ile Thr Ile 645 650 655 Arg Ser Met Leu Thr Gly Leu Trp Ser Lys Glu Glu Leu Lys Arg Thr 660 665 670 Val Ala Met Leu Glu Glu Leu Gln Met Ser Val Gly Tyr Gln Leu Glu 675 685 Asp Glu Xaa 690 <210> 20 <211> 516 <212> DNA <213> Raphanus raphanistrum <400> 20 aatggaacgc ccggatcttg tgatttctct ctatcaaaag atggaaagga aacagattcc 60 atgtgatgta tacagcttta atattctgat aaaatgtttc tgcagttgct ctaagcttcc 120 ctttgctttg tctacatttg gtaagatcac caagcttgga ctccaccctg atgttgctac 180 cttcaacacc ctgctccacg gattatgtct tgataagagg gtttctgaag ccttggattt 240 gtttcatcaa atgtttgaaa cgacatgtag gccgaacatc ataacgttta ccacgctgat 300 gaacggtctt tgctacgagg gtagagttgt cgaagctgta gctctgcttg atcggatgct 360 agaagatggt ctccagcctg accagattac ttacggaaca attgtagacg ggatgtgtaa 420 gatgggagac actgtgtctg cattgaatct tctgaggaag atggaggagt tgagccacat 480 caaacccaat gtggtaatct atagtgccat cattga 516

<210> 21

<211> 171

<212> PRT

<213> Raphanus raphanistrum

<400> 21

Met Glu Arg Pro Asp Leu Val Ile Ser Leu Tyr Gln Lys Met Glu Arg $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Lys Gln Ile Pro Cys Asp Val Tyr Ser Phe Asn Ile Leu Ile Lys Cys

20 25 30

Phe Cys Ser Cys Ser Lys Leu Pro Phe Ala Leu Ser Thr Phe Gly Lys 40 Ile Thr Lys Leu Gly Leu His Pro Asp Val Ala Thr Phe Asn Thr Leu Leu His Gly Leu Cys Leu Asp Lys Arg Val Ser Glu Ala Leu Asp Leu Phe His Gln Met Phe Glu Thr Thr Cys Arg Pro Asn Ile Ile Thr Phe 90 Thr Thr Leu Met Asn Gly Leu Cys Tyr Glu Gly Arg Val Val Glu Ala 105 100 110 Val Ala Leu Leu Asp Arg Met Leu Glu Asp Gly Leu Gln Pro Asp Gln 115 120 Ile Thr Tyr Gly Thr Ile Val Asp Gly Met Cys Lys Met Gly Asp Thr 130 135 140 Val Ser Ala Leu Asn Leu Leu Arg Lys Met Glu Glu Leu Ser His Ile 145 150 155 160 Lys Pro Asn Val Val Ile Tyr Ser Ala Ile Ile 165 170 <210> 22 <211> 2073 <212> DNA <213> Raphanus <220> <221> misc feature <222> (113)..(118)<223> n can be any nucleotide <400> 22 atgttggcta gggtttgtgg attcaagtgt tcttcttctc ctgctgwgtc tgcggctaga 60 ttgttctgta cgagatcgat tcgtgatact ctggccaagg caagcrgrga krnnnnnngt 120 tgcgaagcag gttttggagg agagagtttg aagctgcaaa gtgggtttca tgaaatcaaa 180 ggtttagagg atgcgattga tttgttcagt gacatgcttc gatctcgtcc tttaccttct 240 gtggttgatt tctgtaaatt gatgggtgtg gtggtgagra tgraacgccc ggatsttgtg 300

atttctctcy	atmaraagat	ggaaakgmrr	crsattcsat	gtgatryata	cagcttyaat	360
attctgataa	artgtttctg	cagytgctct	aagctbccct	ttgctttgtc	tacatttggt	420
aagmtcacca	agcttggact	ccaccctgat	gttgytacct	tcamcaccct	kctccayggà	480
ttrtgystkg	awrakagggk	ttctgaagcy	ttgratttkt	ttcatcaaat	gtttgaaacg	540
rcatgtaggc	csaayrtcrt	aacsttyacc	ackytgatga	acggtctttg	cyrcgagggt	600
agarttgtcg	aagcygtagc	tctrcttgat	cggatgmtrg	aagatggtct	ccagcctrmc	660
cagattactt	ayggaacaat	ygtagayggg	atgtgtaaga	wgggagayac	tgtgtctgca	720
ytgaatctkc	tgaggaagat	ggaggagktg	agccacatca	wacccaatgt	kgtaatctat	780
agtgcmatca	ttgatagcct	ttgtaaagac	ggacgtcata	gcgatkcwca	aaatcttttc	840
actgaaatgc	aagagaaagg	aatctttccm	gatttattta	cctacaacwg	tatgatmrwy	900
ggkttttgta	gctctggtag	atggakcgac	gcggagcagt	tgttgcaaga	aatgttagaa	960
aggaagatca	gccctgatgt	tgtaacttat	aatgctttga	tcaatgcatt	tgtcaaggaa	1020
ggcaagttct	ttgaggctga	agaattatac	gatgagatgc	ttccwagggg	tataatccct	1080
aatacaatca	catatagttc	aatgatcgat	ggattttgca	aacagaatcg	tcttgatgct	1140
gctgagcaca	tgttttattt	gatgsctacc	aagggctgct	ctccsracst	awtcactttc	1200
aatactctca	tagacggata	tygtggggct	aagaggatag	atgatggaat	ggaacttctc	1260
catgagatga	ctgaarcagg	attagttgct	racacaryta	cttacaacac	tcttattcac	1320
gggttytrtc	wggtgggcga	tcttamtgct	gctctagacc	ttytacawga	gatgatytct	1380
agtggtktgt	gccctratrt	cgttacttgt	rrcactttgc	tggatggtct	ctgcgataay	1440
gggaaactaa	aagatgcatk	ggaamtgttt	aaggttatgc	agaagagtaa	gawggatctt	1500
gatgctagtc	accccttcaa	tggtgtggaa	cctgatgttc	aaacttacaa	tatattgatc	1560
agcggcttga	tcaatgaagg	gaagttttta	gaggcygagg	aattatacra	ggagatgccc	1620
cacaggggta	tagtcccaga	tactatyacc	tatagctcaa	tgatcgatgg	aytatgcaag	1680
cagageegee	trgatgaggc	tacacaaatg	tttgattcga	tgggtagcaa	gagcttctct	1740
ccaaacgtag	tgacctttac	tacactcatt	ratggctact	gtaargcagg	aagggttgat	1800
gatgggctgg	agcttttctg	cgagatgggt	mgaagagga	tagttgctaa	yrcaattact	1860
tacatcactt	tgattygtgg	ttttcgyaaw	gtgggtaata	ttaatggggc	tctagacatt	1920
ttccaggaga	tgatttcaag	tggtgtgtat	cctgrtayca	ttacyatccg	cartatgctg	1980
actggtttat	ggagtaaaga	ggaactaaaa	aggrcagtgg	caatgcttga	graactgcag	2040
atgagtrtgg	rkywwymrtt	kgrggrwkra	tga			2073

•

.

<210> 23 2073 <212> DNA <213> Raphanus <220> <221> misc feature <222> (113)...(118)<223> n can be any nucleotide <400> 23 atgttggcta gggtttgtgg attcaagtgt tcttcttctc ctgctgwgtc tgcggctaga ttgttctgta cgagatcgat tcgtgatact ctggccaagg caagergrga krnnnnnngt tgcgaagcag gttttggagg agagagtttg aagctgcaaa gtgggtttca tgaaatcaaa ggtttagagg atgcgattga tttgttcagt gacatgcttc gatctcgtcc tttaccttct

gtggttgatt tctgtaaatt gatgggtgtg gtggtgagra tgraacgccc ggatsttgtg

atttctctcy atmagaagat ggaaakgmrr crsattcsat gtgatryata cagcttcaat

attotgataa artgtttotg cagotgotot aagotsocot ttgottttgto tacatttggt

aagmtcacca agcttggact ccaccctgat gttgttacct tcaccaccct kctccaygga

ttrtgygtgg aaratagggk ttctgaagcy ttgratttkt ttcatcaaat gtttgaaacg

reatgtagge ceaatgtegt aacetteace actttgatga aeggtetttg cegegagggt

agaattgtcg aagccgtagc tctrcttgat cggatgatgg aagatggtct ccagcctacc

cagattactt atggaacaat cgtagatggg atgtgtaaga agggagatac tgtgtctgca

ctgaatctgc tgaggaagat ggaggaggtg agccacatca tacccaatgt tgtaatctat

agtgcaatca ttgatagcct ttgtaaagac ggacgtcata gcgatkcwca aaatcttttc

actgaaatgc aagagaaagg aatctttccm gatttattta cctacaacwg tatgatmrwy

ggkttttgta gctctggtag atggakcgac gcggagcagt tgttgcaaga aatgttagaa

aggaagatca gccctgatgt tgtaacttat aatgctttga tcaatgcatt tgtcaaggaa

ggcaagttct ttgaggctga agaattatac gatgagatgc ttccwagggg tataatccct

aatacaatca catatagttc aatgatcgat ggattttgca aacagaatcg tcttgatgct

gctgagcaca tgttttattt gatgsctacc aagggctgct ctccsracst awtcactttc

aatactctca tagacggata tygtggggct aagaggatag atgatggaat ggaacttctc

catgagatga ctgaarcagg attagttgct racacaryta cttacaacac tcttattcac

gggttytrtc wggtgggcga tcttamtgct gctctagacc ttytacawga gatgatytct

agtggtktgt gccctratrt cgttacttgt rrcactttgc tggatggtct ctgcgataay

gggaaactaa aagatgcatk ggaamtgttt aaggttatgc agaagagtaa gawggatctt

60

120

180

240

300

360

420

480

540

600

660

720

780

840

900

960

1020

1080

1140

1200

1260

1320

1380

1440

1500

gatgctagtc accccttcaa tggtgtggaa	cctgatgttc aa	acttacaa	tatattgatc	1560
agcggcttga tcaatgaagg gaagttttta	gaggcygagg aa	ıttatacra	ggagatgccc	1620
cacaggggta tagtcccaga tactatyacc	tatagctcaa tg	gatcgatgg	aytatgcaag	1680
cagageegee trgatgagge tacacaaatg	tttgattcga tg	ıggtagcaa	gagcttctct	1740
ccaaacgtag tgacctttac tacactcatt	ratggctact gta	aargcagg	aagggttgat	1800
gatgggctgg agcttttctg cgagatgggt	mgaagagga ta	igttgctaa	yrcaattact	1860
tacatcactt tgattygtgg ttttcgyaaw	gtgggtaata tta	aatggggc	tctagacatt	1920
ttccaggaga tgatttcaag tggtgtgtat	cctgrtayca tta	acyatccg	cartatgctg	1980
actggtttat ggagtaaaga ggaactaaaa	aggrcagtgg caa	atgcttga	graactgcag	2040
atgagtrtgg rkywwymrtt kgrggrwkra	tga			2073
<210> 24 <211> 2064 <212> DNA <213> Raphanus <400> 24				
atgttggcta gggtttgtgg attcaagtgt	tettettete et	gctgagtc	tgcggctaga	60
ttgttctgta cgagatcgat tcgtgatact	ctggccaagg caa	agcggaga	gagttgcgaa	120
gcaggttttg gaggagagag tttgaagctg	caaagtgggt tto	catgaaat	caaaggttta	180
gaggatgcga ttgatttgtt cagtgacatg	cttcgatctc gto	cctttacc	ttctgtggtt	240
gatttctgta aattgatggg tgtggtggtg	agaatggaac gc	ccggatct	tgtgatttct	300
ctctatcara agatggaaag gaaacagatt	csatgtgatr ta	tacagett	yaatattctg	360
ataaaatgtt tctgcagytg ctctaagcty	ccctttgctt tg	tctacatt	tggtaagmtc	420
accaagettg gactecaeee tgatgttgyt	accttcamca cc	ctgctcca	yggattrtgy	480
stkgawraka gggtttctga agcyttgrat	ttktttcatc aaa	atgtttga	aacgacatgt	540
aggccsaayr tcrtaacstt yaccackytg	atgaacggtc tt	tgcyrcga	gggtagartt	600
gtcgaagcyg tagctctgct tgatcggatg	mtrgaagatg gto	ctccagcc	trmccagatt	660
acttayggaa caatygtaga ygggatgtgt	aagawgggag aya	actgtgtc	tgcaytgaat	720
ctkctgagga agatggagga gktgagccac	atcawaccca ato	gtkgtaat	ctatagtgcm	780
atcattgata gcctttgtaa agacggacgt	catagcgatg cad	caaaatct	tttcactgaa	840
atgcaagaga aaggaatctt tcccgattta	tttacctaca aca	agtatgat	agttggtttt	900
tgtagctctg gtagatggag cgacgcggag	cagttgttgc aag	gaaatgtt	agaaaggaag	960

atcagccctg atgttgtaac ttataatgct ttgatcaatg catttgtcaa ggaaggcaag

1020

•	ttctttgagg	ctgaagaatt	atacgatgag	atgcttccaa	ggggtataat	ccctaataca	1080
			cgatggattt				1140
			taccaagggc				1200
			ggctaagagg				1260
			tgctgacaca				1320
			tgctgctcta				1380
			ttgtgacact				1440
			gtttaaggtt				1500
						_	
			ggaacctgat				1560
			tttagaggcc				1620
			cacctatage		_		1680
	cgcctagatg	aggctacaca	aatgtttgat	tcgatgggta	gcaagagctt	ctctccaaac	1740
	gtagtgacct	ttactacact	cattaatggc	tactgtaagg	caggaagggt	tgatgatggg	1800
	ctggagcttt	tctgcgagat	gggtcgaaga	gggatagttg	ctaacgcaat	tacttacatc	1860
	actttgattt	gtggttttcg	taaagtgggt	aatattaatg	gggctctaga	cattttccag	1920
	gagatgattt	caagtggtgt	gtatcctgat	accattacca	tccgcaatat	gctgactggt	1980
	ttatggagta	aagaggaact	aaaaagggca	gtggcaatgc	ttgagaaact	gcagatgagt	2040
	atggatctat	catttggggg	atga				2064
	<210> 25 <211> 2064 <212> DNA <213> Raph	anus					
	<400> 25						
			attcaagtgt				60
			tcgtgatact				120
	gcaggttttg	gaggagagag	tttgaagctg	caaagtgggt	ttcatgaaat	caaaggttta	180
	gaggatgcga	ttgatttgtt	cagtgacatg	cttcgatctc	gtcctttacc	ttctgtggtt	240
	gatttctgta	aattgatggg	tgtggtggtg	agaatggaac	gcccggatct	tgtgatttct	300
	ctctatcaga	agatggaaag	gaaacagatt	cgatgtgata	tatacagctt	caatattctg	360
	ataaaatgtt	tctgcagctg	ctctaagctc	ccctttgctt	tgtctacatt	tggtaagmtc	420
	accaagcttg	gactccaccc	tgatgttgtt	accttcacca	ccctgctcca	yggattrtgy	480
	gtggaagata	gggtttctga	agcyttgrat	ttktttcatc	aaatgtttga	aacgacatgt	540

600 aggcccaatg tcgtaacctt caccactttg atgaacggtc tttgccgcga gggtagaatt gtcgaagccg tagctctgct tgatcggatg atggaagatg gtctccagcc tacccagatt 660 720 acttatggaa caatcgtaga tgggatgtgt aagaagggag atactgtgtc tgcactgaat ctgctgagga agatggagga ggtgagccac atcataccca atgttgtaat ctatagtgca 780 atcattgata gcctttgtaa agacggacgt catagcgatg cacaaaaatct tttcactgaa 840 atgcaagaga aaggaatctt tcccgattta tttacctaca acagtatgat agttggtttt 900 tgtagctctg gtagatggag cgacgcggag cagttgttgc aagaaatgtt agaaaggaag 960 atcagecetg atgttgtaac ttataatget ttgatcaatg catttgtcaa ggaaggcaag 1020 ttctttgagg ctgaagaatt atacgatgag atgcttccaa ggggtataat ccctaataca 1080 1140 atcacatata gttcaatgat cgatggattt tgcaaacaga atcgtcttga tgctgctgag cacatgtttt atttgatggc taccaagggc tgctctccca acctaatcac tttcaatact 1200 1260 ctcatagacg gatattgtgg ggctaagagg atagatgatg gaatggaact tctccatgag 1320 atgactgaaa caggattagt tgctgacaca actacttaca acactcttat tcacgggttc 1380 tatctggtgg gcgatcttaa tgctgctcta gaccttttac aagagatgat ctctagtggt ttgtgccctg atatcgttac ttgtgacact ttgctggatg gtctctgcga taatgggaaa 1440 ctaaaagatg cattggaaat gtttaaggtt atgcagaaga gtaagaagga tcttgatgct 1500 agtcacccct tcaatggtgt ggaacctgat gttcaaactt acaatatatt gatcagcggc 1560 1620 ttgatcaatg aagggaagtt tttagaggcc gaggaattat acgaggagat gccccacagg 1680 ggtatagtcc cagatactat cacctatagc tcaatgatcg atggattatg caagcagagc 1740 cgcctagatg aggctacaca aatgtttgat tcgatgggta gcaagagctt ctctccaaac gtagtgacct ttactacact cattaatggc tactgtaagg caggaagggt tgatgatggg 1800 ctggagcttt tctgcgagat gggtcgaaga gggatagttg ctaacgcaat tacttacatc 1860 actttgattt gtggttttcg taaagtgggt aatattaatg gggctctaga cattttccag 1920 1980 gagatgattt caagtggtgt gtatcctgat accattacca tccgcaatat gctgactggt ttatggagta aagaggaact aaaaagggca gtggcaatgc ttgagaaact gcagatgagt 2040 atggatctat catttggggg atga 2064

<210> 26

<211> 690

<212> PRT

<213> Raphanus

```
- <221> Xaa
 <222>
        (16)..(16)
 <223> Glu or Val
 <220>
 <221>
        misc feature
 <222>
        (16)..(16)
        Xaa can be any naturally occurring amino acid
 <223>
 <220>
 <221>
        Xaa
 <222>
        (36)..(36)
 <223>
        Arg or none
 <220>
 <221>
        misc_feature
 <222>
        (36)..(37)
 <223>
        Xaa can be any naturally occurring amino acid
 <220>
 <221>
        Xaa
 <222>
        (37)..(37)
 <223>
        Asp or none
 <220>
 <221>
        Xaa
 <222>
        (95)..(95)
 <223>
        Glu or Lys
 <220>
        misc_feature
 <221>
 <222>
        (95)..(95)
 <223>
        Xaa can be any naturally occurring amino acid
 <220>
 <221>
        Xaa
 <222>
         (99)..(99)
 <223>
        Leu or Val
 <220>
        misc_feature
 <221>
 <222>
        (99)..(99)
 <223>
        Xaa can be any naturally occurring amino acid
 <220>
 <221>
        Xaa
 <222>
         (104)..(104)
 <223>
        Tyr or His
 <220>
 <221>
        misc feature
 <222>
        (104)..(105)
 <223>
        Xaa can be any naturally occurring amino acid
 <220>
 <221>
        Xaa
 <222>
         (105)..(105)
 <223>
        Gln or Lys
 <220>
 <221> Xaa
```

```
<222> (109)..(109)
<223> Arg or Met
<220>
<221>
      misc_feature
      (109) \dots (111)
<222>
<223> Xaa can be any naturally occurring amino acid
<220>
<221> Xaa
<222>
      (110)..(110)
<223> Lys or Arg
<220>
<221>
      Xaa
<222> (111)..(111)
<223> Gln or Arg
<220>
<221> Xaa
<222> (113)..(113)
<223> Arg or Pro
<220>
<221> misc feature
<222>
      (113)...(113)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (116)..(116)
<223> Ile, Ala or Val
<220>
<221>
      misc feature
      (116)...(116)
<222>
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
      (142)..(142)
<222>
<223> Leu or Ile
<220>
<221> misc feature
<222>
      (142)..(142)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (152)..(152)
<223> Val or Ala
<220>
<221>
      misc_feature
<222>
      (152)..(152)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> Xaa
<222> (155)..(155)
```

```
<223>
       Thr or Asn
<220>
<221>
      misc_feature
<222>
       (155)..(155)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
       Xaa
<222>
      (163)..(163)
<223> Val or Leu
<220>
<221>
      misc_feature
<222>
      (163\overline{)}..(165)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
       Xaa
<222>
      (164)..(164)
<223> Glu or Asp
<220>
<221>
      Xaa
<222>
      (165)..(165)
<223> Asp, Asn or Lys
<220>
<221>
      Xaa
<222>
      (167)..(167)
<223> Val or Gly
<220>
<221>
      misc feature
<222>
       (167)..(167)
<223>
       Xaa can be any naturally occurring amino acid
<220>
<221>
       Xaa
<222>
      (172)..(172)
<223> Asn or Asp
<220>
<221>
      misc_feature
<222>
       (172)..(173)
      Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (173)..(173)
<223> Leu or Phe
<220>
<221>
      Xaa
<222>
      (186)..(186)
<223> Val or Ile
<220>
<221>
      misc_feature
<222>
      (186) \dots (187)
<223> Xaa can be any naturally occurring amino acid
```

```
<220>
<221>
      Xaa
<222>
      (187)..(187)
<223> Val or Ile
<220>
<221> Xaa
<222>
      (198)..(198)
<223> Arg or Tyr
<220>
<221>
      misc feature
      (198)..(198)
<222>
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (202)..(202)
<223> Ile or Val
<220>
<221> misc feature
<222>
      (202)...(202)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
      (213)..(213)
<222>
<223> Met or Leu
<220>
<221>
      misc feature
      (213)...(213)
<222>
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (220)..(220)
<223>
      Thr or Asp
<220>
<221>
      misc feature
<222>
      (220)..(220)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (234)..(234)
<223> Lys or Met
<220>
<221>
      misc_feature
<222>
      (234)..(234)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (250)..(250)
<223> Val or Leu
```

```
<220>
<221>
      misc feature
<222>
       (250)...(250)
<223>
      Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (254)..(254)
<223> Ile or Lys
<220>
<221>
      misc feature
<222>
       (254)..(254)
<223>
      Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (276)..(276)
<223> Ala or Ser
<220>
<221>
      misc feature
<222>
       (276) ... (276)
<223>
      Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (297)..(297)
<223> Ser or Cys
<220>
<221>
      misc feature
<222>
      (297)..(297)
<223>
      Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (300)..(300)
<223> Val or Asn
<220>
<221>
      misc_feature
<222>
      (300)..(300)
<223>
      Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (309)..(309)
<223>
      Ser or Ile
<220>
<221>
      misc_feature
<222>
      (309) \dots (309)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
<222>
      (389)..(389)
<223> Ala or Pro
<220>
```

```
<221> misc feature
<222> (389)..(389)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> Xaa
<222> (396)..(396)
<223> Asn or Asp
<220>
<221> misc_feature
      (396) .. (398)
<222>
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (397)..(397)
<223> Leu or Val
<220>
<221> Xaa
<222> (398)..(398)
<223> Ile or Phe
<220>
<221> Xaa
<222> (408)..(408)
<223> Cys or Arg
<220>
<221> misc_feature
<222>
      (408)..(408)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (426)..(426)
<223> Thr or Ala
<220>
<221> misc_feature
<222>
      (426)..(426)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> Xaa
<222>
      (431)..(431)
<223> Asp or Asn
<220>
<221> misc_feature
<222>
      (431)...(431)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
       (433)..(433)
      Thr or Val
<223>
<220>
<221> misc feature
```

```
<222>
      (433)..(433)
<223>
      Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (443)..(443)
      Tyr or Cys
<223>
<220>
      misc_feature
<221>
<222>
       (443) \dots (444)
<223>
      Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (444)..(444)
<223> Leu or Gln
<220>
<221>
      Xaa
<222>
      (449)..(449)
<223> Asn or Thr
<220>
<221> misc feature
<222>
      (449)...(449)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (456)..(456)
<223> Gln or His
<220>
<221> misc feature
       (456) \dots (456)
<222>
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (463)..(463)
      Leu or Val
<223>
<220>
<221>
      misc feature
      (463) \dots (463)
<222>
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
       (466)..(466)
<223>
       Asp or Asn
<220>
<221>
      misc feature
<222>
      (466)..(467)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222> (467)..(467)
```

```
<223>
      Ile or Val
<220>
<221>
      Xaa
<222>
       (471)..(471)
<223> Asp or Ser
<220>
<221>
      misc feature
<222>
       (471) \dots (471)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
       Xaa
<222>
       (487)..(487)
<223> Leu or Trp
<220>
<221> misc feature
<222>
      (487)..(487)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
       Xaa
<222>
       (489)..(489)
<223> Met or Leu
<220>
<221> misc feature
<222>
      (489)..(489)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> Xaa
<222>
       (498)..(498)
<223> Lys or Met
<220>
<221> misc feature
<222>
       (498)..(498)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
       Xaa
<222>
       (537)..(537)
<223>
       Glu or Lys
<220>
<221>
       misc feature
<222>
       (537)..(537)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
       Xaa
<222>
       (591)..(591)
<223> Asn or Asp
<220>
<221>
      misc feature
<222>
      (591)..(591)
<223> Xaa can be any naturally occurring amino acid
```

```
<220>
<221>
      Xaa
<222>
      (618)..(618)
<223> Ala or Thr
<220>
<221> misc feature
<222>
       (618)...(618)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (626)..(626)
<223> Cys or Arg
<220>
<221> misc_feature
       (626<del>)</del>..(626)
<222>
<223> Xaa can be any naturally occurring amino acid
<220>
<221> Xaa
<222> (630)..(630)
<223> Lys or Asn
<220>
<221>
      misc_feature
       (630<u>)</u>..(630)
<222>
       Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222> (652)..(652)
<223> Asp or Gly
<220>
<221>
      misc feature
       (652)...(653)
<222>
       Xaa can be any naturally occurring amino acid
<220>
<221> Xaa
<222> (653)..(653)
<223> Thr or Ile
<220>
<221> Xaa
<222>
       (658)..(658)
<223> Asn or Ser
<220>
<221> misc feature
      (658)..(658)
<222>
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
       Xaa
<222>
       (672)..(672)
<223> Ala or Thr
```

```
<220>
<221>
      misc feature
<222>
      (672)..(672)
<223>
      Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
      (678)..(678)
<222>
<223> Lys or Glu
<220>
<221>
      misc feature
<222>
       (678)..(678)
<223>
      Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (683)..(683)
<223> Met or Val
<220>
<221>
      misc feature
<222>
      (683)..(690)
<223>
      Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (684)..(684)
<223> Asp or Gly
<220>
<221>
       Xaa
<222>
       (685)..(685)
<223>
      Leu or Tyr
<220>
<221>
      Xaa
<222>
      (686)..(686)
<223>
      Ser or Gln
<220>
<221>
      Xaa
<222>
       (687)..(687)
<223>
       Phe or Leu
<220>
<221>
      Xaa
       (688)..(688)
<222>
<223>
      Gly or Glu
<220>
<221>
      Xaa
<222>
       (689)..(689)
<223>
      Gly or Asp
<220>
<221>
      Xaa
<222>
       (690)..(690)
<223> Glu or none
<400> 26
```

Met Leu Ala Arg Val Cys Gly Phe Lys Cys Ser Ser Ser Pro Ala Xaa 1 5 10 15

Ser Ala Ala Arg Leu Phe Cys Thr Arg Ser Ile Arg Asp Thr Leu Ala 20 25 30

Lys Ala Ser Xaa Xaa Gly Glu Ser Cys Glu Ala Gly Phe Gly Glu 35 40 45

Ser Leu Lys Leu Gln Ser Gly Phe His Glu Ile Lys Gly Leu Glu Asp 50 55 60

Ala Ile Asp Leu Phe Ser Asp Met Leu Arg Ser Arg Pro Leu Pro Ser 65 70 75 80

Val Val Asp Phe Cys Lys Leu Met Gly Val Val Arg Met Xaa Arg 85 90 95

Pro Asp Xaa Val Ile Ser Leu Xaa Xaa Lys Met Glu Xaa Xaa Ile 100 105 110

Xaa Cys Asp Xaa Tyr Ser Phe Asn Ile Leu Ile Lys Cys Phe Cys Ser 115 120 125

Cys Ser Lys Leu Pro Phe Ala Leu Ser Thr Phe Gly Lys Xaa Thr Lys 130 135 140

Leu Gly Leu His Pro Asp Val Xaa Thr Phe Xaa Thr Leu Leu His Gly 145 150 155 160

Leu Cys Xaa Xaa Xaa Arg Xaa Ser Glu Ala Leu Xaa Xaa Phe His Gln 165 170 175

Met Phe Glu Thr Thr Cys Arg Pro Asn Xaa Xaa Thr Phe Thr Thr Leu 180 185 190

Met Asn Gly Leu Cys Xaa Glu Gly Arg Xaa Val Glu Ala Val Ala Leu 195 200 205

Leu Asp Arg Met Xaa Glu Asp Gly Leu Gln Pro Xaa Gln Ile Thr Tyr 210 215 220

Gly Thr Ile Val Asp Gly Met Cys Lys Xaa Gly Asp Thr Val Ser Ala 225 230 235 240

Leu Asn Leu Leu Arg Lys Met Glu Glu Xaa Ser His Ile Xaa Pro Asn 245 250 255

Val Val Ile Tyr Ser Ala Ile Ile Asp Ser Leu Cys Lys Asp Gly Arg 260 265 270

His Ser Asp Xaa Gln Asn Leu Phe Thr Glu Met Gln Glu Lys Gly Ile 275 280 285

Phe Pro Asp Leu Phe Thr Tyr Asn Xaa Met Ile Xaa Gly Phe Cys Ser 290 295 300

Ser Gly Arg Trp Xaa Asp Ala Glu Gln Leu Leu Gln Glu Met Leu Glu 305 310 315 320

Arg Lys Ile Ser Pro Asp Val Val Thr Tyr Asn Ala Leu Ile Asn Ala 325 330 335

Phe Val Lys Glu Gly Lys Phe Phe Glu Ala Glu Glu Leu Tyr Asp Glu 340 345 350

Met Leu Pro Arg Gly Ile Ile Pro Asn Thr Ile Thr Tyr Ser Ser Met 355 360 365

Ile Asp Gly Phe Cys Lys Gln Asn Arg Leu Asp Ala Ala Glu His Met 370 380

Phe Tyr Leu Met Xaa Thr Lys Gly Cys Ser Pro Xaa Xaa Xaa Thr Phe 385 390 395 400

Asn Thr Leu Ile Asp Gly Tyr Xaa Gly Ala Lys Arg Ile Asp Asp Gly 405 410 415

Met Glu Leu His Glu Met Thr Glu Xaa Gly Leu Val Ala Xaa Thr 420 425 430

Xaa Thr Tyr Asn Thr Leu Ile His Gly Phe Xaa Xaa Val Gly Asp Leu 435 440 445

Xaa Ala Ala Leu Asp Leu Leu Xaa Glu Met Ile Ser Ser Gly Xaa Cys 450 455 460

Pro Xaa Xaa Val Thr Cys Xaa Thr Leu Leu Asp Gly Leu Cys Asp Asn 465 470 475 480

Gly Lys Leu Lys Asp Ala Xaa Glu Xaa Phe Lys Val Met Gln Lys Ser

485 490 495

Lys Xaa Asp Leu Asp Ala Ser His Pro Phe Asn Gly Val Glu Pro Asp 500 505 510

Val Gln Thr Tyr Asn Ile Leu Ile Ser Gly Leu Ile Asn Glu Gly Lys 515 520 525

Phe Leu Glu Ala Glu Glu Leu Tyr Xaa Glu Met Pro His Arg Gly Ile 530 540

Val Pro Asp Thr Ile Thr Tyr Ser Ser Met Ile Asp Gly Leu Cys Lys 545 550 555 560

Gln Ser Arg Leu Asp Glu Ala Thr Gln Met Phe Asp Ser Met Gly Ser 565 570 575

Lys Ser Phe Ser Pro Asn Val Val Thr Phe Thr Thr Leu Ile Xaa Gly 580 . 585 590

Tyr Cys Lys Ala Gly Arg Val Asp Asp Gly Leu Glu Leu Phe Cys Glu 595 600 605

Met Gly Arg Arg Gly Ile Val Ala Asn Xaa Ile Thr Tyr Ile Thr Leu 610 620

Ile Xaa Gly Phe Arg Xaa Val Gly Asn Ile Asn Gly Ala Leu Asp Ile 625 630 635 640

Phe Gln Glu Met Ile Ser Ser Gly Val Tyr Pro Xaa Xaa Ile Thr Ile 645 650 655

Arg Xaa Met Leu Thr Gly Leu Trp Ser Lys Glu Glu Leu Lys Arg Xaa 660 665 670

Val Ala Met Leu Glu Xaa Leu Gln Met Ser Xaa Xaa Xaa Xaa Xaa Xaa 675 680 685

Xaa Xaa 690

<210> 27

<211> 690 <212> PRT

<213> Raphanus

```
<220>
<221>
       Xaa
<222>
       (16)..(16)
<223> Glu or Val
<220>
<221> misc_feature
<222>
      (16)..(16)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> Xaa
<222>
      (36)..(36)
<223> Arg or none
<220>
<221>
      misc_feature
<222>
      (36)..(37)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> Xaa
<222>
      (37)..(37)
<223> Asp or none
<220>
<221>
      Xaa
<222>
      (95)..(95)
<223> Glu or Lys
<220>
<221>
      misc feature
<222>
       (95)..(95)
<223>
       Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (99)..(99)
<223> Leu or Val
<220>
<221>
      misc feature
<222>
       (99)..(99)
       Xaa can be any naturally occurring amino acid
<220>
<221>
       Xaa
<222>
       (104)..(104)
<223>
       Tyr or His
<220>
<221>
       misc feature
<222>
       (104)..(105)
       Xaa can be any naturally occurring amino acid
<220>
<221>
       Xaa
       (105)..(105)
<222>
<223>
      Gln or Lys
<220>
```

```
<221> Xaa
<222> (109)..(109)
<223> Arg or Met
<220>
<221> misc feature
<222>
      (109)..(111)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> Xaa
<222> (110)..(110)
<223> Lys or Arg
<220>
<221> Xaa
<222> (111)..(111)
<223> Gln or Arg
<220>
<221> Xaa
<222> (113)..(113)
<223> Arg or Pro
<220>
<221> misc_feature
<222>
      (113)...(113)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> Xaa
<222> (116)..(116)
<223> Ile or Ala
<220>
<221> misc_feature
<222>
      (116)...(116)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> Xaa
<222> (142)..(142)
<223> Leu or Ile
<220>
<221> misc feature
<222>
      (142)...(142)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> Xaa
<222> (165)..(165)
<223> Asp or Asn
<220>
<221>
      misc_feature
<222>
      (165)...(165)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> Xaa
```

```
<222> (167)..(167)
<223> Val or Gly
<220>
<221>
      misc feature
<222>
      (167)..(167)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> Xaa
<222> (172)..(172)
<223> Asn or Asp
<220>
<221>
      misc_feature
<222>
      (172)...(173)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> Xaa
<222>
      (173)..(173)
<223> Leu or Phe
<220>
<221> Xaa
<222> (276)..(276)
<223> Ala or Ser
<220>
<221>
      misc_feature
<222>
      (276)..(276)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> Xaa
<222>
      (297)..(297)
<223> Ser or Cys
<220>
<221>
      misc_feature
<222>
      (297)..(297)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> Xaa
<222> (300)..(300)
<223> Val or Asn
<220>
<221>
      misc feature
<222>
      (300)..(300)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> Xaa
<222>
      (309)..(309)
<223> Ser or Ile
<220>
<221> misc_feature
<222>
      (309)..(309)
```

```
<223>
       Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (389)..(389)
<223> Ala or Pro
<220>
<221>
      misc feature
<222>
      (389)..(389)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (396) . . (396)
<223> Asn or Asp
<220>
<221>
      misc feature
<222>
      (396)..(398)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (397)..(397)
<223> Leu or Val
<220>
<221> Xaa
<222>
      (398)..(398)
<223> Ile or Phe
<220>
<221>
      Xaa
<222>
      (408)..(408)
<223> Cys or Arg
<220>
<221>
      misc_feature
<222>
      (408)..(408)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (426)..(426)
<223> Thr or Ala
<220>
<221> misc feature
<222>
      (426) \dots (426)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> Xaa
<222>
      (431)..(431)
<223> Asp or Asn
<220>
<221>
      misc feature
      (431)...(431)
<222>
<223> Xaa can be any naturally occurring amino acid
```

```
<220>
<221> Xaa
<222> (433)..(433)
<223> Thr or Val
<220>
<221> misc feature
<222> (433)..(433)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> Xaa
<222> (443)..(443)
<223> Tyr or Cys
<220>
<221> misc_feature
\langle 222 \rangle (443)...(444)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> Xaa
<222> (444)..(444)
<223> Leu or Gln
<220>
<221> Xaa
<222> (449)..(449)
<223> Asn or Thr
<220>
<221> misc_feature
<222> (449)..(449)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> Xaa
<222> (456)..(456)
<223> Gln or His
<220>
<221> misc feature
<222> (456)..(456)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> Xaa
<222>
      (463)..(463)
<223> Leu or Val
<220>
<221> misc_feature
<222>
      (463)..(463)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> Xaa
<222>
      (466)..(466)
<223> Asp or Asn
```

```
<220>
<221>
       misc_feature
<222>
       (466) \dots (467)
<223>
       Xaa can be any naturally occurring amino acid
<220>
<221>
       Xaa
<222>
       (467)..(467)
<223>
      Ile or Val
<220>
<221>
       Xaa
<222>
       (471)..(471)
<223>
      Asp or Ser
<220>
<221>
       misc_feature
<222>
       (471)..(471)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
       Xaa
<222>
       (487)..(487)
<223>
       Leu or Trp
<220>
<221>
       misc feature
<222>
       (487)..(487)
<223>
       Xaa can be any naturally occurring amino acid
<220>
<221>
       Xaa
<222>
       (489)..(489)
<223>
       Met or Leu
<220>
<221>
       misc feature
<222>
       (489)...(489)
<223>
       Xaa can be any naturally occurring amino acid
<220>
<221>
       Xaa
<222>
       (498)..(498)
<223>
       Lys or Met
<220>
<221>
       misc_feature
<222>
       (498)..(498)
<223>
       Xaa can be any naturally occurring amino acid
<220>
<221>
       Xaa
<222>
       (537)..(537)
<223>
       Glu or Lys
<220>
<221>
       misc feature
<222>
       (537)^{\circ}...(537)
<223>
       Xaa can be any naturally occurring amino acid
<220>
```

```
<221> Xaa
<222> (591)..(591)
<223> Asn or Asp
<220>
<221> misc_feature
<222>
      (591) \dots (591)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (618)..(618)
<223> Ala or Thr
<220>
<221> misc_feature
<222>
      (618)..(618)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (626)..(626)
<223> Cys or Arg
<220>
<221>
      misc feature
<222>
      (626)..(626)
<223>
       Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (630)..(630)
      Lys or Asn
<223>
<220>
<221>
      misc_feature
<222>
      (630)..(630)
<223>
       Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (652)..(652)
<223>
      Asp or Gly
<220>
<221>
      misc_feature
<222>
       (652)..(653)
<223>
       Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (653)..(653)
<223>
       Thr or Ile
<220>
<221>
      Xaa
<222>
      (658)..(658)
<223>
      Asn or Ser
<220>
<221> misc_feature
```

```
<222>
      (658)..(658)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222> (672)..(672)
<223> Ala or Thr
<220>
<221> misc_feature
<222>
      (672\overline{)}..(672)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (678)..(678)
<223> Lys or Glu
<220>
<221> misc_feature
<222>
      (678<del>)</del>..(678)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
       Xaa
<222>
      (683)..(683)
<223> Met or Val
<220>
<221>
      misc_feature
<222>
       (683)..(690)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      Xaa
<222>
      (684)..(684)
<223> Asp or Gly
<220>
<221>
      Xaa
<222>
      (685)..(685)
<223> Leu or Tyr
<220>
<221> Xaa
<222> (686)..(686)
<223> Ser or Gln
<220>
<221>
      Xaa
<222>
       (687)..(687)
<223>
       Phe or Leu
<220>
<221>
      Xaa
<222>
      (688)..(688)
<223> Gly or Glu
<220>
<221>
      Xaa
<222> (689)..(689)
```

<223> Gly or Asp

<220>

<221> Xaa

<222> (690)..(690)

<223> Glu or none

<400> 27

Met Leu Ala Arg Val Cys Gly Phe Lys Cys Ser Ser Ser Pro Ala Xaa 1 5 10 15

Ser Ala Ala Arg Leu Phe Cys Thr Arg Ser Ile Arg Asp Thr Leu Ala 20 25 30

Lys Ala Ser Xaa Xaa Gly Glu Ser Cys Glu Ala Gly Phe Gly Gly Glu 35 40 45

Ser Leu Lys Leu Gln Ser Gly Phe His Glu Ile Lys Gly Leu Glu Asp 50 55 60

Ala Ile Asp Leu Phe Ser Asp Met Leu Arg Ser Arg Pro Leu Pro Ser 65 70 75 80

Val Val Asp Phe Cys Lys Leu Met Gly Val Val Val Arg Met Xaa Arg 85 90 95

Pro Asp Xaa Val Ile Ser Leu Xaa Xaa Lys Met Glu Xaa Xaa Ile 100 105 110

Xaa Cys Asp Xaa Tyr Ser Phe Asn Ile Leu Ile Lys Cys Phe Cys Ser 115 120 125

Cys Ser Lys Leu Pro Phe Ala Leu Ser Thr Phe Gly Lys Xaa Thr Lys 130 135 140

Leu Gly Leu His Pro Asp Val Val Thr Phe Thr Thr Leu Leu His Gly 145 150 155 160

Leu Cys Val Glu Xaa Arg Xaa Ser Glu Ala Leu Xaa Xaa Phe His Gln 165 170 175

Met Phe Glu Thr Thr Cys Arg Pro Asn Val Val Thr Phe Thr Thr Leu 180 185 190

Met Asn Gly Leu Cys Arg Glu Gly Arg Ile Val Glu Ala Val Ala Leu 195 200 205 Leu Asp Arg Met Met Glu Asp Gly Leu Gln Pro Thr Gln Ile Thr Tyr 210 215 220

Gly Thr Ile Val Asp Gly Met Cys Lys Lys Gly Asp Thr Val Ser Ala 225 230 235 240

Leu Asn Leu Leu Arg Lys Met Glu Glu Val Ser His Ile Ile Pro Asn 245 250 255

Val Val Ile Tyr Ser Ala Ile Ile Asp Ser Leu Cys Lys Asp Gly Arg 260 265 270

His Ser Asp Xaa Gln Asn Leu Phe Thr Glu Met Gln Glu Lys Gly Ile 275 280 285

Phe Pro Asp Leu Phe Thr Tyr Asn Xaa Met Ile Xaa Gly Phe Cys Ser 290 295 300

Ser Gly Arg Trp Xaa Asp Ala Glu Gln Leu Leu Gln Glu Met Leu Glu 305 310 315 320

Arg Lys Ile Ser Pro Asp Val Val Thr Tyr Asn Ala Leu Ile Asn Ala 325 330 335

Phe Val Lys Glu Gly Lys Phe Phe Glu Ala Glu Glu Leu Tyr Asp Glu 340 345 350

Met Leu Pro Arg Gly Ile Ile Pro Asn Thr Ile Thr Tyr Ser Ser Met 355 360 365

Ile Asp Gly Phe Cys Lys Gln Asn Arg Leu Asp Ala Ala Glu His Met 370 380

Phe Tyr Leu Met Xaa Thr Lys Gly Cys Ser Pro Xaa Xaa Xaa Thr Phe 385 390 395 400

Asn Thr Leu Ile Asp Gly Tyr Xaa Gly Ala Lys Arg Ile Asp Asp Gly 405 410 415

Met Glu Leu His Glu Met Thr Glu Xaa Gly Leu Val Ala Xaa Thr 420 425 430

Xaa Thr Tyr Asn Thr Leu Ile His Gly Phe Xaa Xaa Val Gly Asp Leu 435 440 445

Xaa Ala Ala Leu Asp Leu Leu Xaa Glu Met Ile Ser Ser Gly Xaa Cys

450 455 460

Pro Xaa Xaa Val Thr Cys Xaa Thr Leu Leu Asp Gly Leu Cys Asp Asn Gly Lys Leu Lys Asp Ala Xaa Glu Xaa Phe Lys Val Met Gln Lys Ser 490 Lys Xaa Asp Leu Asp Ala Ser His Pro Phe Asn Gly Val Glu Pro Asp 505 Val Gln Thr Tyr Asn Ile Leu Ile Ser Gly Leu Ile Asn Glu Gly Lys 520 Phe Leu Glu Ala Glu Glu Leu Tyr Xaa Glu Met Pro His Arg Gly Ile 530 535 540 Val Pro Asp Thr Ile Thr Tyr Ser Ser Met Ile Asp Gly Leu Cys Lys 545 550 555 Gln Ser Arg Leu Asp Glu Ala Thr Gln Met Phe Asp Ser Met Gly Ser 565 570 Lys Ser Phe Ser Pro Asn Val Val Thr Phe Thr Thr Leu Ile Xaa Gly 580 585 Tyr Cys Lys Ala Gly Arg Val Asp Asp Gly Leu Glu Leu Phe Cys Glu 595 600 Met Gly Arg Arg Gly Ile Val Ala Asn Xaa Ile Thr Tyr Ile Thr Leu 610 Ile Xaa Gly Phe Arg Xaa Val Gly Asn Ile Asn Gly Ala Leu Asp Ile 625 630 Phe Gln Glu Met Ile Ser Ser Gly Val Tyr Pro Xaa Xaa Ile Thr Ile Arg Xaa Met Leu Thr Gly Leu Trp Ser Lys Glu Glu Leu Lys Arg Xaa 665 Val Ala Met Leu Glu Xaa Leu Gln Met Ser Xaa Xaa Xaa Xaa Xaa Xaa 675

Xaa Xaa 690

```
<210> 28
<211> 687
<212> PRT
<213> Raphanus
<220>
<221> X
<222>
      (111)..(111)
<223> Arg or Pro
<220>
<221>
     misc_feature
<222>
      (111)...(111)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> X
<222>
      (114)..(114)
<223> Ile or Val .
<220>
<221> misc feature
      (114)...(114)
<222>
<223> Xaa can be any naturally occurring amino acid
<220>
<221> X
<222>
      (140)..(140)
<223> Leu or Ile
<220>
<221>
      misc feature
<222>
      (140)...(140)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> X
      (150)..(150)
<222>
<223>
      Val or Ala
<220>
<221>
      misc_feature
<222>
      (150)...(150)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      Χ
<222>
      (153)..(153)
<223>
      Thr or Asn
<220>
<221>
      misc feature
<222>
      (153)..(153)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      Χ
<222> (161)..(161)
```

```
<223> Val or Leu
<220>
<221>
      misc feature
<222>
      (161)^{-}...(163)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> X
<222>
      (162)..(162)
<223> Glu or Asp
<220>
<221>
<222>
      (163)..(163)
<223> Asp or Lys
<220>
<221>
      (170)..(170)
<222>
<223> Asn or Asp
<220>
<221> misc feature
<222>
      (170)...(171)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      Χ
<222>
      (171)..(171)
<223> Leu or Phe
<220>
<221>
      X
<222>
      (184)..(184)
<223> Val or Ile
<220>
<221>
      misc feature
<222>
      (184)..(185)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      X
<222>
      (185)..(185)
<223> Val or Ile
<220>
<221>
<222>
      (196)..(196)
<223> Arg or Tyr
<220>
<221>
      misc_feature
<222>
      (196)...(196)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
<222>
      (200)..(200)
<223> Ile or Val
```

```
<220>
<221>
      misc_feature
<222>
      (200)..(200)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
<222>
      (211)..(211)
<223> Met or Leu
<220>
<221>
      misc feature
      (211\overline{)}..(211)
<222>
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      X
<222>
      (218)..(218)
<223>
       Thr or Asp
<220>
<221>
      misc feature
<222>
      (218)..(218)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      Χ
<222>
      (232)..(232)
<223> Lys or Met
<220>
<221>
      misc feature
<222>
      (232)..(232)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      Χ
<222>
      (248)..(248)
<223> Val or Leu
<220>
<221>
      misc feature
<222>
      (248)..(248)
<223> Xaa can be any naturally occurring amino acid
<220>
<221>
      Χ
<222>
       (252)..(252)
<223>
       Ile or Lys
<220>
<221>
      misc feature
<222>
      (252)...(252)
<223> Xaa can be any naturally occurring amino acid
<400> 28
Met Leu Ala Arg Val Cys Gly Phe Lys Cys Ser Ser Ser Pro Ala Glu
1
                                     10
                                                         15
```

Ser Ala Ala Arg Leu Phe Cys Thr Arg Ser Ile Arg Asp Thr Leu Ala 20 25 30

Lys Ala Ser Gly Glu Ser Cys Glu Ala Gly Phe Gly Glu Ser Leu 35 40 45

Lys Leu Gln Ser Gly Phe His Glu Ile Lys Gly Leu Glu Asp Ala Ile 50 55 60

Asp Leu Phe Ser Asp Met Leu Arg Ser Arg Pro Leu Pro Ser Val Val 65 . 70 . 75 . 80

Asp Phe Cys Lys Leu Met Gly Val Val Val Arg Met Glu Arg Pro Asp 85 90 95

Leu Val Ile Ser Leu Tyr Gln Lys Met Glu Arg Lys Gln Ile Xaa Cys 100 105 110

Asp Xaa Tyr Ser Phe Asn Ile Leu Ile Lys Cys Phe Cys Ser Cys Ser 115 120 125

Lys Leu Pro Phe Ala Leu Ser Thr Phe Gly Lys Xaa Thr Lys Leu Gly 130 135 140

Leu His Pro Asp Val Xaa Thr Phe Xaa Thr Leu Leu His Gly Leu Cys 145 150 155 160

Xaa Xaa Xaa Arg Val Ser Glu Ala Leu Xaa Xaa Phe His Gln Met Phe 165 170 175

Glu Thr Thr Cys Arg Pro Asn Xaa Xaa Thr Phe Thr Thr Leu Met Asn 180 185 190

Gly Leu Cys Xaa Glu Gly Arg Xaa Val Glu Ala Val Ala Leu Leu Asp 195 200 205

Arg Met Xaa Glu Asp Gly Leu Gln Pro Xaa Gln Ile Thr Tyr Gly Thr 210 215 220

Ile Val Asp Gly Met Cys Lys Xaa Gly Asp Thr Val Ser Ala Leu Asn 225 230 235 240

Leu Leu Arg Lys Met Glu Glu Xaa Ser His Ile Xaa Pro Asn Val Val 245 250 250

Ile Tyr Ser Ala Ile Ile Asp Ser Leu Cys Lys Asp Gly Arg His Ser 260 265 270

Asp Ala Gln Asn Leu Phe Thr Glu Met Gln Glu Lys Gly Ile Phe Pro 275 280 285

Asp Leu Phe Thr Tyr Asn Ser Met Ile Val Gly Phe Cys Ser Ser Gly 290 300

Arg Trp Ser Asp Ala Glu Gln Leu Leu Gln Glu Met Leu Glu Arg Lys 305 310 315 320

Ile Ser Pro Asp Val Val Thr Tyr Asn Ala Leu Ile Asn Ala Phe Val 325 330 335

Lys Glu Gly Lys Phe Phe Glu Ala Glu Glu Leu Tyr Asp Glu Met Leu 340 345 350

Pro Arg Gly Ile Ile Pro Asn Thr Ile Thr Tyr Ser Ser Met Ile Asp 355 360 365

Gly Phe Cys Lys Gln Asn Arg Leu Asp Ala Ala Glu His Met Phe Tyr 370 380

Leu Met Ala Thr Lys Gly Cys Ser Pro Asn Leu Ile Thr Phe Asn Thr 385 390 395 400

Leu Ile Asp Gly Tyr Cys Gly Ala Lys Arg Ile Asp Asp Gly Met Glu 405 410 415

Leu Leu His Glu Met Thr Glu Thr Gly Leu Val Ala Asp Thr Thr 420 425 430

Tyr Asn Thr Leu Ile His Gly Phe Tyr Leu Val Gly Asp Leu Asn Ala 435 440 445

Ala Leu Asp Leu Leu Gln Glu Met Ile Ser Ser Gly Leu Cys Pro Asp 450 460

Ile Val Thr Cys Asp Thr Leu Leu Asp Gly Leu Cys Asp Asn Gly Lys 465 470 475 480

Leu Lys Asp Ala Leu Glu Met Phe Lys Val Met Gln Lys Ser Lys Lys 485 490 495

Asp Leu Asp Ala Ser His Pro Phe Asn Gly Val Glu Pro Asp Val Gln

500 505 510

Thr Tyr Asn Ile Leu Ile Ser Gly Leu Ile Asn Glu Gly Lys Phe Leu 515 520 525

Glu Ala Glu Glu Leu Tyr Glu Glu Met Pro His Arg Gly Ile Val Pro 530 540

Asp Thr Ile Thr Tyr Ser Ser Met Ile Asp Gly Leu Cys Lys Gln Ser 545 550 555 560

Arg Leu Asp Glu Ala Thr Gln Met Phe Asp Ser Met Gly Ser Lys Ser 565 570 575

Phe Ser Pro Asn Val Val Thr Phe Thr Thr Leu Ile Asn Gly Tyr Cys 580 585 590

Lys Ala Gly Arg Val Asp Asp Gly Leu Glu Leu Phe Cys Glu Met Gly 595 600 605

Arg Arg Gly Ile Val Ala Asn Ala Ile Thr Tyr Ile Thr Leu Ile Cys 610 620

Gly Phe Arg Lys Val Gly Asn Ile Asn Gly Ala Leu Asp Ile Phe Gln 625 630 635

Glu Met Ile Ser Ser Gly Val Tyr Pro Asp Thr Ile Thr Ile Arg Asn 645 650 655

Met Leu Thr Gly Leu Trp Ser Lys Glu Glu Leu Lys Arg Ala Val Ala 660 665 670

Met Leu Glu Lys Leu Gln Met Ser Met Asp Leu Ser Phe Gly Gly 675 680 685

<210> 29

<211> 687

<212> PRT

<213> Raphanus

<220>

<221> X

<222> (140)..(140)

<223> Leu or Ile

<220>

<221> misc feature

<222> (140)..(140)

```
Xaa can be any naturally occurring amino acid
<220>
<221>
<222>
      (170)..(170)
<223>
      Asn or Asp
<220>
      misc feature
<221>
<222>
      (170)...(171)
<223>
      Xaa can be any naturally occurring amino acid
<220>
<221>
       Χ
<222>
      (171)..(171)
<223>
      Leu or Phe
<400> 29
Met Leu Ala Arg Val Cys Gly Phe Lys Cys Ser Ser Ser Pro Ala Glu
                                     10
Ser Ala Ala Arg Leu Phe Cys Thr Arg Ser Ile Arg Asp Thr Leu Ala
Lys Ala Ser Gly Glu Ser Cys Glu Ala Gly Phe Gly Gly Glu Ser Leu
                            40
Lys Leu Gln Ser Gly Phe His Glu Ile Lys Gly Leu Glu Asp Ala Ile
                        55
Asp Leu Phe Ser Asp Met Leu Arg Ser Arg Pro Leu Pro Ser Val Val
                    70
65
                                         75
Asp Phe Cys Lys Leu Met Gly Val Val Val Arg Met Glu Arg Pro Asp
                85
                                     90
Leu Val Ile Ser Leu Tyr Gln Lys Met Glu Arg Lys Gln Ile Arg Cys
            100
                                 105
                                                     110
Asp Ile Tyr Ser Phe Asn Ile Leu Ile Lys Cys Phe Cys Ser Cys Ser
        115
                            120
Lys Leu Pro Phe Ala Leu Ser Thr Phe Gly Lys Xaa Thr Lys Leu Gly
    130
                        135
                                             140
Leu His Pro Asp Val Val Thr Phe Thr Thr Leu Leu His Gly Leu Cys
145
                    150
                                         155
                                                             160
Val Glu Asp Arg Val Ser Glu Ala Leu Xaa Xaa Phe His Gln Met Phe
```

170

175

165

1

Glu Thr Thr Cys Arg Pro Asn Val Val Thr Phe Thr Thr Leu Met Asn Gly Leu Cys Arg Glu Gly Arg Ile Val Glu Ala Val Ala Leu Leu Asp Arg Met Met Glu Asp Gly Leu Gln Pro Thr Gln Ile Thr Tyr Gly Thr Ile Val Asp Gly Met Cys Lys Lys Gly Asp Thr Val Ser Ala Leu Asn Leu Leu Arg Lys Met Glu Glu Val Ser His Ile Ile Pro Asn Val Val Ile Tyr Ser Ala Ile Ile Asp Ser Leu Cys Lys Asp Gly Arg His Ser Asp Ala Gln Asn Leu Phe Thr Glu Met Gln Glu Lys Gly Ile Phe Pro Asp Leu Phe Thr Tyr Asn Ser Met Ile Val Gly Phe Cys Ser Ser Gly Arg Trp Ser Asp Ala Glu Gln Leu Leu Gln Glu Met Leu Glu Arg Lys Ile Ser Pro Asp Val Val Thr Tyr Asn Ala Leu Ile Asn Ala Phe Val Lys Glu Gly Lys Phe Phe Glu Ala Glu Glu Leu Tyr Asp Glu Met Leu Pro Arg Gly Ile Ile Pro Asn Thr Ile Thr Tyr Ser Ser Met Ile Asp Gly Phe Cys Lys Gln Asn Arg Leu Asp Ala Ala Glu His Met Phe Tyr Leu Met Ala Thr Lys Gly Cys Ser Pro Asn Leu Ile Thr Phe Asn Thr Leu Ile Asp Gly Tyr Cys Gly Ala Lys Arg Ile Asp Asp Gly Met Glu

Leu Leu His Glu Met Thr Glu Thr Gly Leu Val Ala Asp Thr Thr 420 425 430

Tyr Asn Thr Leu Ile His Gly Phe Tyr Leu Val Gly Asp Leu Asn Ala 435 440 445

Ala Leu Asp Leu Leu Gln Glu Met Ile Ser Ser Gly Leu Cys Pro Asp 450 460

Ile Val Thr Cys Asp Thr Leu Leu Asp Gly Leu Cys Asp Asn Gly Lys 475 475 480

Leu Lys Asp Ala Leu Glu Met Phe Lys Val Met Gln Lys Ser Lys Lys 485 490 495

Asp Leu Asp Ala Ser His Pro Phe Asn Gly Val Glu Pro Asp Val Gln 500 505 510

Thr Tyr Asn Ile Leu Ile Ser Gly Leu Ile Asn Glu Gly Lys Phe Leu 515 520 525

Glu Ala Glu Glu Leu Tyr Glu Glu Met Pro His Arg Gly Ile Val Pro 530 540

Asp Thr Ile Thr Tyr Ser Ser Met Ile Asp Gly Leu Cys Lys Gln Ser 545 550 555 560

Arg Leu Asp Glu Ala Thr Gln Met Phe Asp Ser Met Gly Ser Lys Ser 565 570 575

Phe Ser Pro Asn Val Val Thr Phe Thr Thr Leu Ile Asn Gly Tyr Cys 580 585 590

Lys Ala Gly Arg Val Asp Asp Gly Leu Glu Leu Phe Cys Glu Met Gly 595 600 605

Arg Arg Gly Ile Val Ala Asn Ala Ile Thr Tyr Ile Thr Leu Ile Cys 610 620

Gly Phe Arg Lys Val Gly Asn Ile Asn Gly Ala Leu Asp Ile Phe Gln 625 630 635

Glu Met Ile Ser Ser Gly Val Tyr Pro Asp Thr Ile Thr Ile Arg Asn 645 650 655

```
Met Leu Thr Gly Leu Trp Ser Lys Glu Glu Leu Lys Arg Ala Val Ala
            660
                                665
                                                    670
Met Leu Glu Lys Leu Gln Met Ser Met Asp Leu Ser Phe Gly Gly
                            680
<210> 30
<211>
      33
<212> DNA
<213> Artificial
<220>
<223> Probe
<400> 30
acataaaaat cactagatac ttgacatgga ggc
                                                                     33
<210> 31
<211> 25
<212> DNA
<213> Artificial
<220>
<223> Probe
<400> 31
aagaggagga agatggcatc acagc
                                                                     25
<210> 32
<211> 26
<212> DNA
<213> Artificial
<220>
<223> Probe
<400> 32
tggagtaaag aggaactaaa aagggc
                                                                     26
<210> 33
<211> 23
<212> DNA
<213> Artificial
<220>
<223>
     Probe
<400> 33
cagacaatag acgcataaaa ggc
                                                                     23
<210> 34
<211> 23
```

<212> DNA

<213> Artificial

<220> <223>	Probe		
<400> gattcc	34 tttc tcttgcattt	cag	23
<210> <211> <212> <213>	23		
<220> <223>	Probe		
<400> atctcg	35 teet ttacettetg	tgg	23
<210><211><211><212><213>	20		
<220> <223>	Probe		
<400> gatcca	36 tgca tttgtcaagg		20
<210> <211> <212> <213>	22		
<220> <223>	Probe		
<400> catttg	37 tgta gcctcatcta	gg	22
<210> <211> <212> <213>	38 23 DNA Artificial		
<220> <223>	Probe		
<400> gtccgg	38 agag cagcccttgg	tag	23
<210> <211> <212> <213>	39 23 DNA Artificial		
<220>			

<223>	Probe		
<400> tcatcg	39 cata attetteage	ctc	23
<210> <211> <212> <213>	22		
<220> <223>	Probe		
<400> aaagac	40 ggac gtcataccga	tg	22
<210> <211> <212> <213>	21		
<220> <223>	Probe		
<400> gacatgt	41 agg cccaatgtcg	t	21