Nadir Arada

Distributions - Exercices corrigés

MASTER ANALYSE FONCTIONNELLE

MASTER PROBABILITÉS ET STATISTIQUE

Table des matières

Introduction				2	
1	Listes d'exercices : énoncés et corrigés 1.1 Liste 1 - Définition des distributions et critère de continuité			11	
2	Listes supplémentaires : énoncés et corrigés				
	2.1	Interro	ogations écrites	21	
		2.1.1	Interrogation 2016-2017	21	
		2.1.2	Interrogation 2017-2018	23	
		2.1.3	Interrogation 2018-2019	25	
		2.1.4	Interrogation 2019-2020	27	
	2.2	Exame	ens	29	
		2.2.1	Examen 2016-2017	29	
		2.2.2	Examen 2017-2018	34	
		2.2.3	Examen 2018-2019	35	
		2.2.4	Examen 2019-2020	38	
	2.3	Exame	ens de rattrapage	42	
		2.3.1	Examen de rattrapage 2016-2017	42	
		2.3.2	• •		
		2.3.3	Examen de rattrapage 2018-2019		
		2.3.4	Examen de rattrapage 2019-2020	51	

Introduction

Ce document est un complément au cours sur les distributions donné dans le cadre du Master 1 Analyse Fonctionnelle et du Master 1 Probabilités et Statistique, au niveau du Département de Mathématiques de l'Université Mohamed Seddik Benyahia de Jijel. Il présente les énoncés de quelques exercices et examens ainsi que leurs corrigés.

1. Listes d'exercices : énoncés et corrigés

1.1 Liste 1 - Définition des distributions et critère de continuité

Exercice 1.

1. Soit $f \in L^1_{loc}(\mathbb{R})$ et soit T_f la forme définie par

$$\langle T_f, \phi \rangle = \int_{\mathbb{R}} f(x)\phi(x) dx \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

Montrer que $T_f \in \mathcal{D}'(\mathbb{R})$.

2. Considère le delta Dirac relatif au point x_0 , noté δ_{x_0} et défini par

$$\langle \delta_{x_0}, \phi \rangle = \phi(x_0) \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

Montrer que $\delta_{x_0} \in \mathcal{D}'(\mathbb{R})$.

3. Soit $VP\left(\frac{1}{x}\right)$ ("valeur principale" de $\frac{1}{x}$) la forme définie par

$$\langle VP\left(\frac{1}{x}\right), \phi \rangle = \int_0^{+\infty} \frac{\phi(x) - \phi(-x)}{x} dx \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

Montrer que $VP\left(\frac{1}{x}\right) \in \mathcal{D}'(\mathbb{R})$.

Corrigé. 1. Il est clair que T_f est linéaire. En effet

$$\begin{split} \langle T_f, \alpha \phi_1 + \beta \phi_2 \rangle &= \int_{\mathbb{R}} f(x) \left(\alpha \phi_1 + \beta \phi_2 \right) (x) \, dx \\ &= \alpha \int_{\mathbb{R}} f(x) \phi_1(x) \, dx + \beta \int_{\mathbb{R}} f(x) \phi_1(x) \, dx \\ &= \alpha \, \langle T_f, \phi_1 \rangle + \beta \, \langle T_f, \phi_2 \rangle \qquad \forall \alpha, \beta \in \mathbb{R} \ \ \text{et} \ \ \forall \phi_1, \phi_2 \in \mathcal{D}(\mathbb{R}). \end{split}$$

Pour montrer la continuité séquentielle de T_f sur $\mathcal{D}(\mathbb{R})$, considérons une suite de fonctions $(\phi_n)_n$ convergeant vers une fonctions ϕ dans $\mathcal{D}(\mathbb{R})$ et montrons que la suite de

nombres réels $(\langle T_f, \phi_n \rangle)_n$ converge vers $\langle T_f, \phi \rangle$. Par définition de la convergence dans $\mathcal{D}(\mathbb{R})$, il existe un compact $K \subset \mathbb{R}$ tel que

Remarquant que

$$\langle T_f, \phi_n \rangle - \langle T_f, \phi \rangle = \langle T_f, \phi_n - \phi \rangle = \int_{\mathbb{R}} f(x) \left(\phi_n(x) - \phi(x) \right) dx$$

$$= \int_K f(x) \left(\phi_n(x) - \phi(x) \right) dx + \int_{\mathbb{R} \setminus K} f(x) \left(\phi_n(x) - \phi(x) \right) dx$$

$$= \int_K f(x) \left(\phi_n(x) - \phi(x) \right) dx$$

il vient que

$$\begin{aligned} |\langle T_f, \phi_n \rangle - \langle T_f, \phi \rangle| &\leq \int_K |f(x)| |\phi_n(x) - \phi(x)| \, dx \\ &\leq \int_K |f(x)| \, \|\phi_n - \phi\|_{C(K)} \, dx \\ &= \|f\|_{L^1(K)} \, \|\phi_n - \phi\|_{C(K)} \underset{n \to +\infty}{\longrightarrow} 0. \end{aligned}$$

La forme T_f étant linéaire et continue sur $\mathcal{D}(\mathbb{R})$ est donc un élément de $\mathcal{D}'(\mathbb{R})$.

2. Il est clair que δ_{x_0} est linéaire. En effet

$$\langle \delta_{x_0}, \alpha \phi_1 + \beta \phi_2 \rangle = (\alpha \phi_1 + \beta \phi_2) (x_0)$$

$$= \alpha \phi_1(x_0) + \beta \phi_2(x_0)$$

$$= \alpha \langle \delta_{x_0}, \phi_1 \rangle + \beta \langle \delta_{x_0}, \phi_2 \rangle \qquad \forall \alpha, \beta \in \mathbb{R} \text{ et } \forall \phi_1, \phi_2 \in \mathcal{D}(\mathbb{R}).$$

Pour montrer la continuité séquentielle de δ_{x_0} sur $\mathcal{D}(\mathbb{R})$, considérons une suite de fonctions $(\phi_n)_n$ convergeant vers une fonctions ϕ dans $\mathcal{D}(\mathbb{R})$ et montrons que la suite de nombres réels $(\langle \delta_{x_0}, \phi_n \rangle)_n$ converge vers $\langle \delta_{x_0}, \phi \rangle$. Par définition de la convergence dans $\mathcal{D}(\mathbb{R})$, il existe un compact $K \subset \mathbb{R}$ tel que

On a alors

$$\begin{split} |\langle \delta_{x_0}, \phi_n \rangle - \langle \delta_{x_0}, \phi \rangle| &= |\phi_n(x_0) - \phi(x_0)| \\ & \left\{ \begin{array}{l} = 0 & \text{si } x_0 \notin K, \\ \leq \|\phi_n - \phi\|_{C(K)} \underset{n \to +\infty}{\longrightarrow} 0 & \text{si } x_0 \in K. \end{array} \right. \end{split}$$

La forme δ_{x_0} étant linéaire et continue sur $\mathcal{D}(\mathbb{R})$ est donc un élément de $\mathcal{D}'(\mathbb{R})$.

3. Il est clair que $VP\left(\frac{1}{x}\right)$ est linéaire. En effet

$$\langle VP\left(\frac{1}{x}\right), \alpha\phi_1 + \beta\phi_2 \rangle = \int_0^{+\infty} \frac{(\alpha\phi_1 + \beta\phi_2)(x) - (\alpha\phi_1 + \beta\phi_2)(-x)}{x} dx$$

$$= \alpha \int_0^{+\infty} \frac{\phi_1(x) - \phi_1(-x)}{x} dx + \beta \int_0^{+\infty} \frac{\phi_2(x) - \phi_2(-x)}{x} dx$$

$$= \alpha \langle VP\left(\frac{1}{x}\right), \phi_1 \rangle + \beta \langle VP\left(\frac{1}{x}\right), \phi_2 \rangle$$

pour tout $\alpha, \beta \in \mathbb{R}$ et tout $\phi_1, \phi_2 \in \mathcal{D}(\mathbb{R})$.

Pour montrer la continuité séquentielle de $VP\left(\frac{1}{x}\right)$ sur $\mathcal{D}(\mathbb{R})$, considérons une suite de fonctions $(\phi_n)_n$ convergeant vers une fonctions ϕ dans $\mathcal{D}(\mathbb{R})$ et montrons que la suite de nombres réels $\left(\left\langle VP\left(\frac{1}{x}\right),\phi_n\right\rangle\right)_n$ converge vers $\left\langle VP\left(\frac{1}{x}\right),\phi\right\rangle$. Par définition de la convergence dans $\mathcal{D}(\mathbb{R})$, il existe un compact $K\subset\mathbb{R}$ tel que

$$\operatorname{supp} \phi \subset K \quad \text{et} \quad \operatorname{supp} \phi_n \subset K \quad \forall n \in \mathbb{N},$$

$$D^{\alpha} \phi_n \underset{n \to +\infty}{\longrightarrow} D^{\alpha} \phi \quad \text{uniformément sur } K, \ \forall \alpha \in \mathbb{N}.$$

Sans perte de généralité, nous pouvons supposer que $K \subset [-a,a]$ pour un un certain a>0. Il vient alors que

$$\left\langle VP\left(\frac{1}{x}\right),\phi_{n}\right\rangle - \left\langle VP\left(\frac{1}{x}\right),\phi\right\rangle = \int_{0}^{+\infty} \frac{\phi_{n}(x) - \phi_{n}(-x)}{x} dx - \int_{0}^{+\infty} \frac{\phi(x) - \phi(-x)}{x} dx$$
$$= \int_{0}^{a} \frac{\phi_{n}(x) - \phi_{n}(-x)}{x} dx - \int_{0}^{a} \frac{\phi(x) - \phi(-x)}{x} dx.$$

Remarquant que

$$\phi_n(x) - \phi_n(-x) = \int_{-x}^x \phi'_n(s) \, ds = x \int_{-1}^1 \phi'_n(ux) \, du,$$

et

$$\phi(x) - \phi(-x) = \int_{-x}^{x} \phi'(s) \, ds = x \int_{-1}^{1} \phi'(ux) \, du,$$

nous déduisons que

$$\left| \left\langle VP\left(\frac{1}{x}\right), \phi_n \right\rangle - \left\langle VP\left(\frac{1}{x}\right), \phi \right\rangle \right| = \left| \int_0^a \int_{-1}^1 \left(\phi'_n(ux) - \phi'(ux) \right) du \, dx \right|$$

$$\leq 2a \, \|\phi'_n - \phi'\|_{C([-a,a])}$$

$$= 2a \, \|\phi'_n - \phi'\|_{C(K)} \underset{n \to +\infty}{\longrightarrow} 0.$$

La forme $VP\left(\frac{1}{x}\right)$ étant linéaire et continue sur $\mathcal{D}(\mathbb{R})$ est donc un élément de $\mathcal{D}'(\mathbb{R})$.

Exercice 2. Montrer que

- **1.** Toute distribution régulière est d'ordre 0.
- 2. La distribution de Dirac est d'ordre 0.
- **3.** La distribution $VP\left(\frac{1}{x}\right)$ est d'ordre 1.

Corrigé. Commençons par rappeler le critère de continuité :

$$T \in \mathcal{D}'(\Omega)$$

1

$$(CC) \quad \left\{ \begin{array}{l} \text{Pour tout compact } K \subset \Omega, \text{ il existe } C > 0 \text{ et } m \in \mathbb{N}_0 \text{ tel que} \\ |\langle T, \phi \rangle| \leq C \sum_{|\alpha| \leq m} \|D^\alpha \phi\|_{C(K)} \qquad \forall \; \phi \in \mathcal{D}(K). \end{array} \right.$$

1. Soit K un compact de Ω . On a

$$|\langle T_f, \phi \rangle| \leq \int_{\mathbb{R}} |f(x)| |\phi(x)| dx = \int_{K} |f(x)| |\phi(x)| dx$$

$$\leq ||f||_{L^{1}(K)} ||\phi||_{C([K])} \quad \forall \phi \in \mathcal{D}(K).$$

Ceci implique que le critère de continuité (CC) est vérifié avec $C=\|f\|_{L^1(K)}$ et m=0. La distribution T_f est donc d'ordre 0.

2. De la même manière, on a

$$|\langle \delta_{x_0}, \phi \rangle| = |\phi(x_0)| \le ||\phi||_{C(K)} \quad \forall \phi \in \mathcal{D}(K),$$

ce qui implique que le critère de continuité (CC) est vérifié avec C=1 et m=0. La distribution δ_{x_0} est donc d'ordre 0.

3. Raisonnant de la même manière que dans l'alinéa 3. de l'exercice 1, il vient que pour tout compact $K \subset \mathbb{R}$, il existe a > 0 tel que

$$\left| \left\langle VP\left(\frac{1}{x}\right), \phi \right\rangle \right| = \left| \int_0^a \frac{\phi(x) - \phi(-x)}{x} \, dx \right| = \left| \int_0^a \int_{-1}^1 \phi'(ux) \, du \, dx \right|$$

$$\leq 2a \, \|\phi'\|_{C([-a,a])} = 2a \, \|\phi'\|_{C(K)} \quad \forall \phi \in \mathcal{D}(K).$$

Ceci implique que le critère de continuité (CC) est vérifié avec C=2a et m=1. La distribution $VP\left(\frac{1}{x}\right)$ est donc d'ordre 1.

Exercice 3. Montrer que la distribution $T \in \mathcal{D}'(-1,1)$ définie par

$$\langle T, \phi \rangle = \int_{-1}^{1} |x| \phi'(x) dx$$

est d'ordre 0.

Corrigé. Soit K un compact de (-1,1). Une simple intégration par parties montre que pour tout $\phi \in \mathcal{D}(K)$, on a

$$\langle T, \phi \rangle = \int_{-1}^{1} |x| \phi'(x) dx$$

$$= -\int_{-1}^{0} x \phi'(x) dx + \int_{0}^{1} x \phi'(x) dx$$

$$= -\left[x \phi(x)\right]_{-1}^{0} + \int_{-1}^{0} \phi(x) dx + \left[x \phi(x)\right]_{0}^{1} - \int_{0}^{1} \phi(x) dx$$

$$= \int_{-1}^{0} \phi(x) dx - \int_{0}^{1} \phi(x) dx.$$

Par conséquent, on obtient

$$|\langle T, \phi \rangle| \le \left| \int_{-1}^{0} \phi(x) \, dx \right| + \left| \int_{0}^{1} \phi(x) \, dx \right| \le \int_{-1}^{1} |\phi(x)| \, dx \le 2 \, \|\phi\|_{C(K)} \, .$$

Le critère de continuité (CC) est vérifié avec C=2 et m=0.

Exercice 4.

- **1.** Montrer que si ϕ une fonction de $\mathcal{D}(\mathbb{R})$, alors la série $\sum_{n=0}^{+\infty} \phi^{(n)}(n)$ converge.
- 2. On pose

$$\langle T, \phi \rangle = \sum_{n=0}^{+\infty} \phi^{(n)}(n) \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

Montrer que T est une distribution. Quel est son ordre?

Corrigé. 1. Si ϕ est à support compact K, il existe un entier naturel $m_K \in \mathbb{N}$ tel que

$$\phi(x) = 0$$
 pour tout x tel que $|x| > m_K$.

Il vient alors que pour tout $n \in \mathbb{N}$, on a

$$\phi^{(n)}(x) = 0$$
 pour tout x tel que $|x| > m_K$,

et donc

$$\phi^{(n)}(n) = 0$$
 pour tout $n \ge m_K + 1$.

Par conséquent,

$$\langle T, \phi \rangle = \sum_{n=0}^{m_K} \phi^{(n)}(n) < +\infty.$$

2. Il est facile de vérifier que T est linéaire. De plus, vu que

$$|\langle T, \phi \rangle| \le \sum_{n=0}^{m_K} \left| \phi^{(n)}(n) \right| \le \sum_{n=0}^{m_K} \left\| \phi^{(n)} \right\|_{C(K)}$$
 (1.1)

il vient de (CC) que T est continue et donc $T \in \mathcal{D}'(\mathbb{R})$. De plus, vu qu'il n'existe aucun m tel que (1.1) soit satisfaite indépendemment du compact K, nous déduisons que T n'est pas une distribution d'ordre fini.

Exercice 5. Soit ϕ une fonction de $\mathcal{D}(\mathbb{R})$ telle que

$$0 \le \phi(x) \le 1$$
 et $\sup \phi \subset]1,2[$.

On suppose de plus que

$$\phi(x) = 1$$
 pour tout $x \in]a, b[\subset]1, 2[$.

Soit $\phi_n(x) = e^{-n}\phi(nx), n \ge 1.$

- **1.** Montrer que $\phi_n \in \mathcal{D}(\mathbb{R})$, pour tout $n \geq 1$.
- **2.** Calculer $\phi_n^{(k)}$ et montrer que ϕ_n converge vers zéro dans $\mathcal{D}(\mathbb{R})$.
- **3.** On considère $T:\mathcal{D}(\mathbb{R}^*)\longrightarrow \mathbb{R}$ définie par

$$\langle T, \phi \rangle = \int_{\mathbb{D}} e^{\frac{1}{x^2}} \phi(x) \, dx.$$

Montrer que

$$\langle T, \phi_n \rangle \ge e^{-n} \int_{\frac{a}{n}}^{\frac{b}{n}} e^{\frac{1}{x^2}} dx,$$

et en déduire que

$$\langle T, \phi_n \rangle \geq \frac{b-a}{n} e^n$$
 pour tout n tel que $n^2 - b^2 \geq b^2$.

4. Calculer $\lim_{n\to+\infty} \langle T,\phi_n \rangle$. Déduire que $T\notin \mathcal{D}'(\mathbb{R}^*)$.

Corrigé. 1. La fonction ϕ_n appartient à $C^{\infty}(\mathbb{R})$ (comme composition des deux fonctions ϕ et $x \mapsto nx$, toutes deux indéfiniment différentiables sur \mathbb{R}). De plus, vu que $\operatorname{supp} \phi \subset]1,2[$, on a

$$\begin{split} \operatorname{supp} \phi_n &= \overline{\{x \in \mathbb{R} \mid \phi_n(x) \neq 0\}} = \overline{\{x \in \mathbb{R} \mid \phi(nx) \neq 0\}} \\ &\subset \overline{\{x \in \mathbb{R} \mid nx \in \operatorname{supp} \phi\}} \\ &\subset \overline{\{x \in \mathbb{R} \mid nx \in]1, 2[\}} \\ &= \left[\frac{1}{n}, \frac{2}{n}\right], \end{split}$$

et donc $\phi_n \in \mathcal{D}(\mathbb{R})$.

2. Il est facile de voir que pour tout $k \in \mathbb{N}$, on a

$$\phi_n^{(k)}(x) = e^{-n} n^k \phi^{(k)}(nx).$$

Montrons alors que $(\phi_n)_n$ converge vers 0 dans $\mathcal{D}(\mathbb{R})$. D'après **a)**, on a

$$\operatorname{supp} \phi_n \subset \left[\frac{1}{n}, \frac{2}{n}\right] \subset [0, 2] = K \qquad \forall n \in \mathbb{N}.$$

De plus,

$$\begin{split} \left\|\phi_n^{(k)} - 0\right\|_{C(K)} &= \left\|\phi_n^{(k)}\right\|_{C\left(\left[\frac{1}{n}, \frac{2}{n}\right]\right)} = e^{-n} n^k \sup_{x \in \left[\frac{1}{n}, \frac{2}{n}\right]} \left|\phi^{(k)}(nx)\right| \\ &\leq e^{-n} n^k \sup_{y \in [1, 2]} \left|\phi^{(k)}(y)\right| \\ &\leq e^{-n} n^k \sup_{y \in K} \left|\phi^{(k)}(y)\right| \underset{n \to +\infty}{\longrightarrow} 0. \end{split}$$

3. On considère $T:\mathcal{D}(\mathbb{R}^*)\longrightarrow \mathbb{R}$ définie par

$$\langle T, \phi \rangle = \int_{\mathbb{R}} e^{\frac{1}{x^2}} \phi(x) dx.$$

On a alors

$$\langle T, \phi_n \rangle = \int_{\mathbb{R}} e^{\frac{1}{x^2}} \phi_n(x) \, dx = \int_{\frac{1}{n}}^{\frac{2}{n}} e^{\frac{1}{x^2}} \phi_n(x) \, dx.$$

Utilisant le fait que

$$\phi(x) = 1$$
 pour tout $x \in]a, b[\subset]1, 2[$

nous déduisons que

$$\langle T, \phi_n \rangle = \underbrace{\int_{\frac{1}{n}}^{\frac{a}{n}} e^{\frac{1}{x^2}} \phi_n(x) \, dx}_{\geq 0} + \underbrace{\int_{\frac{a}{n}}^{\frac{b}{n}} e^{\frac{1}{x^2}} \phi_n(x) \, dx}_{\geq 0} + \underbrace{\int_{\frac{b}{n}}^{\frac{b}{n}} e^{\frac{1}{x^2}} \phi_n(x) \, dx}_{\geq 0}$$
$$\geq \underbrace{\int_{\frac{a}{n}}^{\frac{b}{n}} e^{\frac{1}{x^2}} \phi_n(x) \, dx}_{\geq 0} = \underbrace{\int_{\frac{a}{n}}^{\frac{b}{n}} e^{-n} e^{\frac{1}{x^2}} \, dx}_{\geq 0}.$$

Vu que $x\mapsto e^{\frac{1}{x^2}}$ est décroissante, il vient que

$$e^{\frac{n^2}{b^2}} \le e^{\frac{1}{x^2}} \qquad \forall x \in \left[\frac{a}{n}, \frac{b}{n}\right].$$

Donc

$$\begin{split} \langle T,\phi_n\rangle & \geq \int_{\frac{a}{n}}^{\frac{b}{n}} e^{-n}\,e^{\frac{n^2}{b^2}}\,dx = \tfrac{b-a}{n}\,e^{-n}\,e^{\frac{n^2}{b^2}} \\ & \geq \tfrac{b-a}{n}\,e^n \qquad \text{pour tout ntel que n^2-b^2} \geq b^2. \end{split}$$

4. Une conséquence directe de l'alinéa précédent est que

$$\lim_{n \to +\infty} \langle T, \phi_n \rangle \ge \lim_{n \to +\infty} \frac{b-a}{n} e^n = +\infty.$$

T n'étant pas séquentiellement continue, n'est donc pas une distribution.

1.2 Liste 2 - Convergence au sens des distributions

Exercice 1. Considère la suite de fonctions f_n , $n \ge 1$, définies par

$$f_n(x) = \left\{ egin{array}{ll} rac{\sin^2(nx)}{nx^2} & ext{ si } x
eq 0, \\ 0 & ext{ sinon.} \end{array}
ight.$$

- **1.** Montrer que f_n définit une distribution T_{f_n} , pour tout $n \ge 1$.
- **2.** Soit ϕ une fonction de $\mathcal{D}(\mathbb{R})$.
 - i) Calculer la limite de $\frac{\sin^2 t}{t^2}\phi\left(\frac{t}{n}\right)$ quand n tend vers l'infini et montrer que

$$\left|\frac{\sin^2 t}{t^2}\phi\left(\frac{t}{n}\right)\right| \le M\frac{\sin^2 t}{t^2},$$

où M est une constante positive qui dépend de ϕ .

- ii) Montrer que $\int_{\mathbb{R}} \frac{\sin^2(nx)}{nx^2} \phi(x) dx = \int_{\mathbb{R}} \frac{\sin^2 t}{t^2} \phi\left(\frac{t}{n}\right) dt$. **3.** Déduire de ce qui précéde que $(T_{f_n})_n$ converge vers $\pi \delta_0$.

Indication. On admettra que $\int_{\mathbb{D}} \frac{\sin^2 t}{t^2} dt = \pi$.

Corrigé. 1. Pour tout $n \ge 1$, f_n est localement intégrable car elle est continue partout sauf peut-être en 0 et elle est définie en x=0. Elle définit donc une distribution régulière T_{f_n}

$$\langle T_{f_n}, \phi \rangle = \int_{\mathbb{R}} f_n(x)\phi(x) dx \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

2.i) Soit ϕ une fonction de $\mathcal{D}(\mathbb{R})$. Il existe donc a>0 tel que supp $\phi\subset [-a,a]$. Il est facile de voir que

$$\lim_{n \to +\infty} \frac{\sin^2 t}{t^2} \,\phi\left(\frac{t}{n}\right) = \frac{\sin^2 t}{t^2} \,\phi(0).$$

De plus, on a

$$\begin{aligned} \left| \frac{\sin^2 t}{t^2} \, \phi\left(\frac{t}{n}\right) \right| &= \frac{\sin^2 t}{t^2} \, \left| \phi\left(\frac{t}{n}\right) \right| \\ &\leq \frac{\sin^2 t}{t^2} \, \sup_{n \in \mathbb{R}} \left| \phi\left(\frac{t}{n}\right) \right| \\ &\leq \frac{\sin^2 t}{t^2} \, \sup_{y \in \mathbb{R}} \left| \phi\left(y\right) \right| \\ &= \frac{\sin^2 t}{t^2} \, \max_{y \in [-a,a]} \left| \phi\left(y\right) \right|. \end{aligned}$$

ii) Un simple changement de variables montre que

$$\langle T_{f_n}, \phi \rangle = \int_{\mathbb{R}} \frac{\sin^2(nx)}{nx^2} \phi(x) dx = \int_{\mathbb{R}} \frac{\sin^2(t)}{t^2} \phi\left(\frac{t}{n}\right) dx.$$

3. Grâce au théorème de convergence dominée, nous déduisons des alinéas i) et ii) que

$$\lim_{n \to +\infty} \langle T_{f_n}, \phi \rangle = \lim_{n \to +\infty} \int_{\mathbb{R}} \frac{\sin^2(t)}{t^2} \phi\left(\frac{t}{n}\right) dt = \int_{\mathbb{R}} \frac{\sin^2(t)}{t^2} \phi\left(0\right) dt$$
$$= \phi(0) \int_{\mathbb{R}} \frac{\sin^2(t)}{t^2} dt$$
$$= \pi \phi(0) = \langle \pi \delta_0, \phi \rangle \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

Exercice 2. Soit $g_n(x) = ne^{-n|x|}$, $n \ge 0$. En utilisant une démarche analogue à celle de l'exercice précédent, calculer dans $\mathcal{D}'(\mathbb{R})$ la limite de $(T_{g_n})_n$ lorsque n tend vers l'infini.

Corrigé. Opérons de la même manière que dans l'exercice 1 avec

$$g_n(x) = ne^{-n|x|}.$$

Soit ϕ une fonction de $\mathcal{D}(\mathbb{R})$ telle que supp $\phi \subset [-a,a]$ pour un certain a>0. En effectuant un changement de variables, on obtient

$$\int_{\mathbb{R}} ne^{-n|x|} \phi(x) \, dx = \int_{\mathbb{R}} e^{-|t|} \phi\left(\frac{t}{n}\right) \, dt.$$

De plus, on a

$$e^{-|t|}\phi\left(\frac{t}{n}\right)\underset{n\to+\infty}{\longrightarrow}e^{-|t|}\phi\left(0\right)$$

et

$$\left|e^{-|t|}\phi\left(\frac{t}{n}\right)\right| \leq Me^{-|t|} \qquad \text{où } M = \sup_{t \in [-a,a]} \left|\phi(t)\right|.$$

Comme $t\mapsto e^{-|t|}$ est intégrable sur \mathbb{R} , en appliquant le théorème de convergence dominée, il vient que

$$\lim_{n \to +\infty} \langle T_{g_n}, \phi \rangle = \lim_{n \to +\infty} \int_{\mathbb{R}} -|t| \phi\left(\frac{t}{n}\right) dt = \int_{\mathbb{R}} e^{-|t|} \phi\left(0\right) dt$$
$$= \phi(0) \int_{\mathbb{R}} e^{-|t|} dt$$
$$= 2\phi(0) = \langle 2\delta_0, \phi \rangle.$$

Exercice 3. Soit $(T_n)_{n\in\mathbb{N}}$ la suite de formes linéaires définies par

$$\langle T_n, \phi \rangle = \int_{|x| > \frac{1}{x}} \frac{\phi(x)}{x} dx \qquad \phi \in \mathcal{D}(\mathbb{R}).$$

1. Montrer que $T_n \in \mathcal{D}'(\mathbb{R})$.

2. Montrer que $(T_n)_n$ converge vers $VP\left(\frac{1}{x}\right)$ au sens des distributions.

Corrigé. 1. Il est clair que $T_n \in \mathcal{D}'(\mathbb{R})$, vu que $T_n = T_{f_n}$ où

$$f_n(x) = \begin{cases} \frac{1}{x} & \text{si } |x| > \frac{1}{n} \\ 0 & \text{si } |x| \le \frac{1}{n} \end{cases}$$

est une fonction localement intégrable sur \mathbb{R} .

2. La suite $(T_n)_{n\in\mathbb{N}}$ converge dans $\mathcal{D}'(\mathbb{R})$. En effet, soit $\phi\in\mathcal{D}(\mathbb{R})$ avec supp $\phi\subset[-a,a]$. Alors

$$\langle T_n, \phi \rangle = \int_{\frac{1}{n} < |x| < a} \frac{\phi(x)}{x} dx = \int_{-a}^{-\frac{1}{n}} \frac{\phi(x)}{x} dx + \int_{\frac{1}{n}}^{a} \frac{\phi(x)}{x} dx$$
$$= \int_{\frac{1}{n}}^{a} \frac{\phi(x) - \phi(-x)}{x} dx \xrightarrow{n \to +\infty} \int_{0}^{a} \frac{\phi(x) - \phi(-x)}{x} dx = \langle VP(\frac{1}{x}), \phi \rangle.$$

1.3 Liste 3 - Opérations sur les distributions

Exercice 1. Soient $g, h \in C^{\infty}(\mathbb{R})$ et soit $T \in \mathcal{D}'(\mathbb{R})$. Montrer que

$$\langle gT + hT', \phi \rangle = \langle T, (g - h') \phi - h\phi' \rangle \quad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

En déduire que :

- i) $x\delta_0 = 0$
- ii) $x\delta_0' = -\delta_0$
- iii) les solutions de $xT=\delta_0$ sont de la forme $T=-\delta_0'+c\delta_0,\,c\in\mathbb{C}$ les équations étant prises au sens des distributions.

<u>Indication.</u> Nous rapellons que les solutions de xT = S sont de la forme $T = T_0 + c\delta_0$, où T_0 est une solution particulière.

Corrigé. De simples calculs montrent que

$$\langle gT + hT', \phi \rangle = \langle gT, \phi \rangle + \langle hT', \phi \rangle$$

$$= \langle T, g\phi \rangle + \langle T', h\phi \rangle$$

$$= \langle T, g\phi \rangle - \langle T, (h\phi)' \rangle$$

$$= \langle T, g\phi \rangle - \langle T, h'\phi + h\phi' \rangle$$

$$= \langle T, (g - h') \phi - h\phi' \rangle \quad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

i) Choisissant $g(x)=x,\,h(x)=0,\,T=\delta_0$ et utilisant l'identité précédente, nous obtenons

$$\langle x\delta_0, \phi \rangle = \langle \delta_0, x\phi \rangle = (x\phi)(0) = 0 \ \forall \phi \in \mathcal{D}(\mathbb{R}),$$

autrement dit $x\delta_0 = 0$ dans $\mathcal{D}'(\mathbb{R})$.

ii) De même, choisissant $g(x)=1,\,h(x)=x,\,T=\delta_0,$ nous obtenons

$$\langle \delta_0 + x \delta_0', \phi \rangle = \langle \delta_0, -x \phi' \rangle = -(x \phi')(0) = -0 \phi'(0) = 0 \quad \forall \phi \in \mathcal{D}(\mathbb{R}),$$

autrement dit $\delta_0 + x\delta'_0$ dans $\mathcal{D}'(\mathbb{R})$.

iii) D'après ii), $T_0 = -\delta_0'$ est une solution particulière de

$$xT = \delta_0$$
 dans $\mathcal{D}'(\mathbb{R})$.

Utilisant l'indication donnée, nous déduisons que les solutions de cette équation sont de la forme $T=-\delta_0'+c\delta_0,\,c\in\mathbb{C}.$

Exercice 2. a) Montrer que la forme linéaire définie par

$$\langle T, \phi \rangle = \sum_{i=0}^{n} \phi^{(j)}(0) \qquad \forall \phi \in \mathcal{D}(\mathbb{R})$$

détermine une distribution dans R. Quel est son ordre?

b) Exprimer T en fonction de la distribution de Dirac et de ses dérivées.

Corrigé. i) Il est facile de vérifier que T_n est linéaire. Soit $\phi \in \mathcal{D}(\mathbb{R})$ avec supp $\phi \subset [-a,a], \ a>0.$ On a

$$|\langle T_n, \phi \rangle| \le \sum_{j=0}^n |\phi^{(j)}(0)| \le \sum_{j=0}^n ||\phi^{(j)}||_{C([-a,a])}.$$

Il vient de (CC) que T_n est continue et donc $T_n \in \mathcal{D}'(\mathbb{R})$. De plus, T_n est d'ordre n.

ii) On a

$$\langle T, \phi \rangle = \sum_{j=0}^{n} \phi^{(j)}(0) = \sum_{j=0}^{n} \left\langle \delta_0, \phi^{(j)} \right\rangle$$
$$= \sum_{j=0}^{n} (-1)^j \left\langle \delta_0^{(j)}, \phi \right\rangle = \left\langle \sum_{j=0}^{n} (-1)^j \delta_0^{(j)}, \phi \right\rangle \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

Autrement dit

$$T = \sum_{i=0}^{n} (-1)^{j} \, \delta_0^{(j)} \qquad \text{dans } \mathcal{D}'(\mathbb{R}).$$

Exercice 3. Soit $T \in \mathcal{D}'(\mathbb{R})$ la distribution définie par

$$T = \frac{1}{2}\delta_0^{(2)} + c_1 \,\delta_0' + c_2 \,\delta_0 \qquad c_1, c_2 \in \mathbb{R}.$$

Montrer que

$$x^2T = \delta_0$$
.

Corrigé. Soit $\phi \in \mathcal{D}(\mathbb{R})$ et posons $\psi(x) = x^2 \phi(x)$. Il est alors clair que $\psi \in \mathcal{D}(\mathbb{R})$ et

$$\langle x^2 T, \phi \rangle = \langle T, x^2 \phi \rangle = \langle T, \psi \rangle$$

$$= \langle \frac{1}{2} \delta_0^{(2)} + c_1 \delta_0' + c_2 \delta_0, \psi \rangle$$

$$= \frac{1}{2} \langle \delta_0^{(2)}, \psi \rangle + c_1 \langle \delta_0', \psi \rangle + c_2 \langle \delta_0, \psi \rangle$$

$$= \frac{(-1)^2}{2} \langle \delta_0, \psi'' \rangle - c_1 \langle \delta_0, \psi' \rangle + c_2 \langle \delta_0, \psi \rangle$$

$$= \frac{1}{2} \psi''(0) - c_1 \psi'(0) + c_2 \psi(0).$$

De simples calculs montrent que

$$\psi''(0) = 2\phi(0), \quad \psi'(0) = 0, \quad \psi(0) = 0.$$

Par conséquent,

$$\langle x^2 T, \phi \rangle = \phi(0) = \langle \delta_0, \phi \rangle \quad \forall \phi \in \mathcal{D}(\mathbb{R}),$$

autrement dit

$$x^2T = \delta_0$$
 dans $\mathcal{D}'(\mathbb{R})$.

Exercice 4. Soit f(x) = |x|. Calculer la première et la seconde dérivée de T_f au sens des distributions. En déduire que

$$\frac{d^k T_f}{dx^k} = 2\delta_0^{(k-2)} \qquad \forall k \ge 2.$$

Corrigé. Prenant en compte le fait que f est continue et qu'elle est différentiable par morceaux, avec

$$\frac{df}{dx}(x) = \frac{x}{|x|} \qquad x \neq 0,$$

et utilisant la formule des sauts, nous obtenons

$$\frac{dT_f}{dx} = T_{\frac{df}{dx}} + \left(f(0^+) - f(0^-)\right)\delta_0 = T_{\frac{df}{dx}} \qquad \text{dans } \mathcal{D}'(\mathbb{R}).$$

Des arguments similaires montrent alors que

$$\begin{array}{ll} \frac{d^2T_f}{dx^2} &= T_{\frac{d^2f}{dx^2}} + \left(\frac{df}{dx}(0^+) - \frac{df}{dx}(0^-)\right)\delta_0 \\ &= T_0 + \left(1 - (-1)\right)\delta_0 = 2\delta_0 & \text{dans } \mathcal{D}'(\mathbb{R}). \end{array}$$

Par conséquent

$$\frac{d^k T_f}{dx^k} = \frac{d^{k-2} T_f}{dx^{k-2}} \left(\frac{d^2 T_f}{dx^2} \right) = 2\delta_0^{(k-2)} \qquad \forall k \ge 2.$$

Exercice 5. Soit f la distribution régulière définie par f = sin(x) H. Montrer que

$$\frac{df}{dx} = cos(x) H$$
 dans $\mathcal{D}'(\mathbb{R})$.

En déduire que

$$\frac{d^2f}{dx^2} - f = \delta_0 \quad \text{dans } \mathcal{D}'(\mathbb{R}).$$

Corrigé. Dérivant au sens des distributions dans \mathbb{R} , nous obtenons

$$\frac{df}{dx} = \frac{d}{dx} \left(\sin(x) H \right) = \frac{d}{dx} \left(\sin(x) \right) H + \sin(x) \frac{d}{dx} \left(H \right) = \cos(x) H + \sin(x) \delta_0.$$

Observant que

$$\langle \sin(x) \, \delta_0, \phi \rangle = \langle \delta_0, \sin(x) \, \phi \rangle = \sin(0) \, \phi(0) = 0 \qquad \forall \phi \in \mathcal{D}(\mathbb{R}),$$

nous déduisons que

$$\frac{df}{dx} = \cos(x) H \qquad \text{dans } \mathcal{D}'(\mathbb{R}).$$

Des arguments similaires montrent alors que

$$\frac{d^2 f}{dx^2} = \frac{d}{dx} \left(\frac{df}{dx} \right) = \frac{d}{dx} \left(\cos(x) H \right) = -\sin(x) H + \cos(x) \delta_0 = -f + \cos(0) \delta_0 = \delta_0.$$

Exercice 6. Trouver une distribution T satisfaisant l'équation différentielle

$$a\frac{d^2T}{dx^2} + b\frac{dT}{dx} + cT = m\delta_0 + n\delta_0'$$
 dans $\mathcal{D}'(\mathbb{R})$

où a,b,c,m,n sont des nombres réels fixés.

<u>Indication</u>: Chercher T sous la forme T = fH, où f est une fonction de classe C^2 et où H est la fonction de Heaviside.

Corrigé. Cherchons une solution de l'équation différentielle

$$a\frac{d^2T}{dr^2} + b\frac{dT}{dr} + cT = m\delta_0 + n\delta_0' \qquad \text{dans } \mathcal{D}'(\mathbb{R})$$
 (1.2)

sous la forme T=fH, où f est une fonction de classe C^2 et où H est la fonction de Heaviside. Dans ce cas, on a

$$\frac{dT}{dx} = \frac{d}{dx}(fH) = \frac{df}{dx}H + f\frac{dH}{dx} = \frac{df}{dx}H + f\delta_0 = \frac{df}{dx}H + f(0)\delta_0$$

et donc

$$\frac{d^{2}T}{dx^{2}} = \frac{d}{dx} \left(\frac{df}{dx} H + f(0) \delta_{0} \right)
= \frac{d^{2}f}{dx^{2}} H + \frac{df}{dx} \frac{dH}{dx} + f(0) \delta'_{0}
= \frac{d^{2}f}{dx^{2}} H + \frac{df}{dx} \delta_{0} + f(0) \delta'_{0}
= \frac{d^{2}f}{dx^{2}} H + \frac{df}{dx} (0) \delta_{0} + f(0) \delta'_{0}.$$

Combinant ces identités et substituant dans (1.2), nous déduisons que f doit satisfaire

$$a\left(\frac{d^{2}f}{dx^{2}}H + \frac{df}{dx}(0)\delta_{0} + f(0)\delta'_{0}\right) + b\left(\frac{df}{dx}H + f(0)\delta_{0}\right) + cfH = m\delta_{0} + n\delta'_{0}$$

autrement dit

$$\begin{cases} a\frac{d^2f}{dx^2} + b\frac{df}{dx} + cf = 0, \\ af(0) = n, \\ a\frac{df}{dx}(0) + bf(0) = m. \end{cases}$$

Exercice 7. Dans le plan, on appelle fonction de Heaviside la fonction H définie par

$$H(x,y) = \left\{ \begin{array}{ll} 1 & \text{si } x > 0 \text{ et } y > 0, \\ 0 & \text{ailleurs.} \end{array} \right.$$

Montrer que H définit une distribution et que l'on a

$$\frac{\partial^2 H}{\partial x \partial y} = \delta_{(0,0)}$$
 dans $\mathcal{D}'(\mathbb{R}^2)$.

Corrigé. La fonction H est localement intégrable dans \mathbb{R}^2 et définit une distribution régulière. De simples calculs montrent alors que

$$\begin{split} \left\langle \frac{\partial^2 H}{\partial x \partial y}, \phi \right\rangle &= (-1)^2 \left\langle H, \frac{\partial^2 \phi}{\partial y \partial x} \right\rangle = \int_{y=-\infty}^{y=+\infty} \int_{x=-\infty}^{x=+\infty} H(x,y) \, \frac{\partial^2 \phi}{\partial y \partial x}(x,y) \, dx dy \\ &= \int_{y=0}^{y=+\infty} \int_{x=0}^{x=+\infty} \frac{\partial^2 \phi}{\partial x \partial y}(x,y) \, dx dy \\ &= \int_{y=0}^{y=+\infty} \left[\frac{\partial \phi}{\partial y}(x,y) \right]_{x=0}^{x=+\infty} \, dy = - \int_{y=0}^{y=+\infty} \frac{\partial \phi}{\partial y}(0,y) \, dy \\ &= - \left[\phi(0,y) \right]_{y=0}^{y=+\infty} = \phi(0,0) = \left\langle \delta_{(0,0)}, \phi \right\rangle \qquad \forall \phi \in \mathcal{D}(\mathbb{R}^2). \end{split}$$

Autrement dit

$$\frac{\partial^2 H}{\partial x \partial y} = \delta_{(0,0)}$$
 dans $\mathcal{D}'(\mathbb{R}^2)$.

Exercice 8. a) Rappeler la définition du support d'une distribution. Donner le support des distributions δ_1 , H et $\chi_{[-1,1]}$. Ces distributions sont-elles à support compact?

b) Soit P l'opérateur différentiel à coefficients constants défini par

$$Pu = \frac{d^2u}{dx^2} - \frac{du}{dx} - 2u.$$

Déterminer la solution de l'équation différentielle homogène

$$\begin{cases} Pz = 0 \\ z(0) = 0, \quad z'(0) = 1. \end{cases}$$

c) Vérifier que E=zH est une solution élémentaire de P. Donner une solution particulière de l'équation

$$Pu = \chi_{[0,1]}$$
 dans $\mathcal{D}'(\mathbb{R})$.

d) Soit Q l'opérateur différentiel à coefficients variables défini par

$$Qu = \frac{du}{dx} - xu.$$

Déterminer les solutions de l'équation homogène

$$Qw = 0.$$

Montrer que $u = \frac{wH}{w(0)}$ ($w(0) \neq 0$) est une solution élémentaire de Q.

Corrigé. a) Le support d'une distribution est le complémentaire du plus grand ouvert d'annulation. On sait que

$${\rm supp}\, \delta_1 = \{1\}\,, \qquad {\rm supp}\, H = [0, +\infty[, \qquad {\rm supp}\, \chi_{[-1,1]} = [-1,1].$$

Donc δ_1 et $\chi_{[-1,1]}$ sont des distributions à support compact, tandis que H n'est pas une distribution à support compact.

b) Des arguments classiques montrent que l'équation différentielle homogène

$$\begin{cases} Pz = 0 \\ z(0) = 0, & \frac{dz}{dx}(0) = 1 \end{cases}$$

admet une solution unique donnée par $z(x) = \frac{1}{3} (e^{2x} - e^{-x})$.

c) Il est facile de voir que

$$\frac{dE}{dx} = \frac{d}{dx}(zH) = \frac{dz}{dx}H + z\frac{dH}{dx} = \frac{dz}{dx}H + z\delta_0 = \frac{dz}{dx}H + z(0)\delta_0 = \frac{dz}{dx}H,$$

et donc

$$\frac{d^{2}E}{dx^{2}} = \frac{d}{dx}\left(\frac{dz}{dx}H\right) = \frac{d^{2}z}{dx^{2}}H + \frac{dz}{dx}\frac{dH}{dx} = \frac{d^{2}z}{dx^{2}}H + \frac{dz}{dx}(0)\frac{dH}{dx} = \frac{d^{2}z}{dx^{2}}H + \delta_{0}.$$

Par conséquent

$$PE = PzH + \delta_0 = \delta_0$$

montrant ainsi que E=zH est une solution élémentaire de P. Une solution particulière de l'équation

$$Pu = \chi_{[0,1]}$$
 dans $\mathcal{D}'(\mathbb{R})$

est donnée par

$$u = E * \chi_{[0,1]}.$$

d) Soit Q l'opérateur différentiel à coefficients variables défini par

$$Qu = \frac{du}{dx} - xu$$
.

Des arguments classiques montrent que les solutions de Qw=0 sont de la forme $w(x)=w(0)\,e^{\frac{x^2}{2}}$. De la même manière que dans l'alinéa précédente, on obtient

$$\frac{d}{dx}\left(\frac{wH}{w(0)}\right) = \frac{1}{w(0)}\left(\frac{dw}{dx}H + w\frac{dH}{dx}\right) = \frac{1}{w(0)}\left(\frac{dw}{dx}H + w\delta_0\right) = \frac{1}{w(0)}\left(\frac{dw}{dx}H + w(0)\delta_0\right)$$

et donc

$$Q\left(\frac{wH}{w(0)}\right) = \frac{1}{w(0)} Qw H + \delta_0 = \delta_0.$$

Exercice 9. Considère la distribution $T=e^xH$, où H est la fonction de Heaviside. Montrer que pour tout $k\in\mathbb{N}$, $T^{(k)}=T+\sum_{i=0}^{k-1}\delta_0^{(i)}$.

Exercice 10. Soit H la fonction de Heaviside définie sur \mathbb{R} . Montrer que les équations suivantes sont satisfaites au sens des distributions :

$$a) \left(\frac{d}{dx} - \lambda \right) e^{\lambda x} H(x) = \delta_0, \qquad b) \left(\frac{d^2}{dx^2} + \lambda \right) \frac{\sin(\lambda x) H(x)}{\lambda} = \delta_0,$$

$$c) \frac{d^m}{dx^m} \left(\frac{x^{m-1} H(x)}{(m-1)!} \right) = \delta_0, \qquad m \in \mathbb{N}.$$

Exercice 11. On considère la fonction f définie par $f(x) = xe^{\lambda x}H(x)$, où H est la fonction de Heaviside définie sur $\mathbb R$ et λ un scalaire.

- a) Montrer que f définit une distribution.
- b) Montrer que $\frac{d^2}{dx^2}\left(\frac{df}{dx}-\lambda f\right)=\delta_0'+\lambda\delta_0+\lambda^2e^\lambda H(x)$, au sens des distributions.

2. Listes supplémentaires : énoncés et corrigés

2.1 Interrogations écrites

2.1.1 Interrogation 2016-2017

Exercice 1. Soit $(T_n)_{n\in\mathbb{N}}$ la suite définie par

$$\langle T_n, \phi \rangle = -\frac{1}{\pi} \int_{\mathbb{R}} \arctan(nx) \, \phi'(x) \, dx \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

1) Montrer que

$$\langle T_n, \phi \rangle = \frac{1}{\pi} \int_{\mathbb{R}} \frac{n}{1 + (nx)^2} \phi(x) dx \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

En déduire que T_n est une distribution d'ordre 0.

2) Montrer que

$$\langle T_n, \phi \rangle = \frac{1}{\pi} \int_{\mathbb{R}} \frac{1}{1+t^2} \phi\left(\frac{t}{n}\right) dt \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

En déduire que $(T_n)_n$ converge vers δ_0 dans $\mathcal{D}'(\mathbb{R})$.

Indication. Utiliser le théorème de convergence dominée.vspace2mm

Corrigé. 1) Soit $\phi \in \mathcal{D}(\mathbb{R})$ tel que supp $\phi \subset [-a,a]$. En effectuant une simple intégration par parties, nous obtenons

$$\langle T_n, \phi \rangle = -\frac{1}{\pi} \int_{-a}^{a} \arctan(nx) \, \phi'(x) \, dx$$

$$= \left[-\frac{1}{\pi} \arctan(nx) \, \phi(x) \right]_{-a}^{+a} + \frac{1}{\pi} \int_{-a}^{a} \frac{n}{1 + (nx)^2} \phi(x) \, dx$$

$$= \frac{1}{\pi} \int_{-a}^{a} \frac{n}{1 + (nx)^2} \phi(x) \, dx$$

$$= \frac{1}{\pi} \int_{\mathbb{R}}^{a} \frac{n}{1 + (nx)^2} \phi(x) \, dx.$$

Il est facile de voir que T_n est linéaire. De plus,

$$\begin{aligned} |\langle T_n, \phi \rangle| &= \frac{1}{\pi} \left| \int_{-a}^{a} \frac{n}{1 + (nx)^2} \phi(x) \, dx \right| \leq \frac{1}{\pi} \|\phi\|_{C([-a,a])} \int_{-a}^{a} \frac{n}{1 + (nx)^2} \, dx \\ &= \frac{1}{\pi} \left(\arctan(na) - \arctan(-na) \right) \|\phi\|_{C([-a,a])} \\ &= \frac{2}{\pi} \arctan(na) \|\phi\|_{C([-a,a])} \,, \end{aligned}$$

ce qui montre, d'après le critère de continuité, que \mathcal{T}_n est une distribution d'ordre 0.

2) Un simple changement de variables (t = nx) donne

$$\langle T_n, \phi \rangle = \frac{1}{\pi} \int_{\mathbb{D}} \frac{n}{1+t^2} \phi\left(\frac{t}{n}\right) \frac{1}{n} dt = \frac{1}{\pi} \int_{\mathbb{D}} \frac{1}{1+t^2} \phi\left(\frac{t}{n}\right) dt \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

De l'autre côté, il est clair que

$$\frac{1}{1+t^2} \phi\left(\frac{t}{n}\right) \longrightarrow \frac{1}{1+t^2} \phi(0)$$
 $p.p.$

et que

$$\left|\frac{1}{1+t^2}\,\phi\left(\frac{t}{n}\right)\right| \leq M\,\frac{1}{1+t^2} \leq M \qquad \text{où } M = \max_{y \in supp\,\phi} |\phi(y)|.$$

Utilisant le théorème de convergence dominée, il vient que

$$\lim_{n \to +\infty} \langle T_n, \phi \rangle = \frac{1}{\pi} \lim_{n \to +\infty} \int_{\mathbb{R}} \frac{1}{1+t^2} \phi\left(\frac{t}{n}\right) dt = \frac{1}{\pi} \int_{\mathbb{R}} \lim_{n \to +\infty} \frac{1}{1+t^2} \phi\left(\frac{t}{n}\right) dt$$
$$= \frac{1}{\pi} \int_{\mathbb{R}} \frac{1}{1+t^2} \phi\left(0\right) dt = \phi\left(0\right) \frac{1}{\pi} \int_{\mathbb{R}} \frac{1}{1+t^2} dt$$
$$= \phi\left(0\right) = \langle \delta_0, \phi \rangle \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

Autrement dit

$$\lim_{n\to+\infty}T_n=\delta_0\qquad \mathsf{dans}\ \mathcal{D}'(\mathbb{R}).$$

Exercice 2. Voir Exercice 1, liste 3

Exercice 3. Soit $T \in \mathcal{D}'(\mathbb{R})$ et $k \in \mathbb{R}$. On dit que T est homogène de degré k si pour tout $\lambda > 0$, on a

$$\langle T, \phi_{\lambda} \rangle = \lambda^{-1-k} \langle T, \phi \rangle \qquad \forall \phi \in \mathcal{D}(\mathbb{R}),$$

où $\phi_{\lambda}(x) = \phi(\lambda x)$.

- a) Montrer que δ_0 est homogène de degré -1.
- b) Montrer que pour tout $\phi \in \mathcal{D}(\mathbb{R})$, on a

$$\langle T', \phi_{\lambda} \rangle = -\lambda \langle T, \psi_{\lambda} \rangle$$

où $\psi_\lambda(x)=\phi'(\lambda x).$ En déduire que si T est homogène de degré k, alors T' est homogène de degré k-1.

Corrigé. a) On a

$$\langle \delta_0, \phi_\lambda \rangle = \phi_\lambda(0) = \phi(0) = \langle \delta_0, \phi \rangle = \lambda^{-1 - (-1)} \langle \delta_0, \phi \rangle \qquad \forall \phi \in \mathcal{D}(\mathbb{R}),$$

et donc δ_0 est homogène de degré -1.

b) Remarquant que

$$(\phi_{\lambda}(x))' = (\phi(\lambda x))' = \lambda \phi'(\lambda x) = \lambda (\phi')_{\lambda}(x),$$

nous déduisons

$$\langle T', \phi_{\lambda} \rangle = -\langle T, (\phi_{\lambda})' \rangle = -\lambda \langle T, (\phi')_{\lambda} \rangle.$$

Par conséquent si T est homogène de degré k, alors

$$\begin{split} \langle T', \phi_{\lambda} \rangle &= -\lambda \left\langle T, (\phi')_{\lambda} \right\rangle = -\lambda \lambda^{-1-k} \left\langle T, \phi' \right\rangle \\ &= -\lambda^{-k} \left\langle T, \phi' \right\rangle = \lambda^{-k} \left\langle T', \phi \right\rangle = \lambda^{-1-(k-1)} \left\langle T', \phi \right\rangle, \end{split}$$

i.e. T' est homogène de degré k-1.

2.1.2 Interrogation 2017-2018

Exercice 1. Voir Exercice 2, liste 3.

Exercice 2. Soit $(f_k)_{k\in\mathbb{N}}$ la suite de fonctions définies par

$$f_k(x) = k^{\frac{3}{2}} x e^{-kx^2} \qquad k \in \mathbb{N}.$$

- 1) Montrer que $f_k \in \mathcal{D}'(\mathbb{R})$. Quel est son ordre?
- 2) Montrer que

$$\langle f_k, \phi \rangle = \frac{\sqrt{k}}{2} \int_{\mathbb{R}} e^{-kx^2} \phi'(x) dx \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

En déduire que

$$\langle f_k, \phi \rangle = \frac{1}{2} \int_{\mathbb{R}} e^{-t^2} \phi' \left(\frac{t}{\sqrt{k}} \right) dt \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

3) En utilisant le théorème de convergence dominée, montrer que $(f_k)_k$ converge vers $-\frac{\sqrt{\pi}}{2}\delta_0'$ dans $\mathcal{D}'(\mathbb{R})$.

Indication. On admettra que $\int_{\mathbb{R}} e^{-t^2} dt = \sqrt{\pi}$.

Corrigé. 1) La fonction f_k est continue dans \mathbb{R} . Elle est donc localement intégrable sur \mathbb{R} et définit une distribution régulière (donc d'ordre 0) dans $\mathcal{D}'(\mathbb{R})$.

Soit $\phi \in \mathcal{D}(\mathbb{R})$ tel que supp $\phi \subset [-a,a]$. En effectuant une simple intégration par parties, nous obtenons

$$\langle f_k, \phi \rangle = k^{\frac{3}{2}} \int_{-a}^{a} x e^{-kx^2} \phi(x) dx$$

$$= \left[-\frac{\sqrt{k}}{2} e^{-kx^2} \phi(x) \right]_{-a}^{+a} + \frac{\sqrt{k}}{2} \int_{-a}^{a} e^{-kx^2} \phi'(x) dx$$

$$= \frac{\sqrt{k}}{2} \int_{-a}^{a} e^{-kx^2} \phi'(x) dx = \frac{\sqrt{k}}{2} \int_{\mathbb{R}} e^{-kx^2} \phi'(x) dx.$$

Un simple changement de variables ($t=\sqrt{k}x$) montre alors que

$$\langle f_k, \phi \rangle = \frac{1}{2} \int_{\mathbb{R}} e^{-t^2} \phi' \left(\frac{t}{\sqrt{k}} \right) dt \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

De l'autre côté, il est clair que

$$e^{-t^2} \phi\left(\frac{t}{\sqrt{k}}\right) \longrightarrow e^{-t^2} \phi(0)$$
 $p.p.$

et que

$$\left|e^{-t^2}\,\phi\left(\frac{t}{\sqrt{k}}\right)\right| \leq Me^{-t^2} \leq M \qquad \text{où } M = \max_{y \in supp\,\phi} |\phi(y)|.$$

Utilisant le théorème de convergence dominée, il vient que

$$\lim_{k \to +\infty} \langle f_k, \phi \rangle = \lim_{k \to +\infty} \frac{1}{2} \int_{\mathbb{R}} e^{-t^2} \phi' \left(\frac{t}{\sqrt{k}} \right) dt = \frac{1}{2} \int_{\mathbb{R}} \lim_{k \to +\infty} e^{-t^2} \phi' \left(\frac{t}{\sqrt{k}} \right) dt$$
$$= \frac{1}{2} \int_{\mathbb{R}} e^{-t^2} \phi' \left(0 \right) dt = \frac{1}{2} \phi' \left(0 \right) \int_{\mathbb{R}} e^{-t^2} dt$$
$$= \frac{\sqrt{\pi}}{2} \phi' \left(0 \right) = \frac{\sqrt{\pi}}{2} \langle \delta_0, \phi' \rangle = -\frac{\sqrt{\pi}}{2} \langle \delta'_0, \phi \rangle \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

Autrement dit

$$\lim_{k o +\infty} f_k = -rac{\sqrt{\pi}}{2} \, \delta_0' \qquad \mathsf{dans} \; \mathcal{D}'(\mathbb{R}).$$

Exercice 3. Voir Exercice 3, liste 3.

2.1.3 Interrogation 2018-2019

Exercice 1. Soit T la forme linéaire définie par

$$\langle T, \phi \rangle = \int_{\mathbb{R}} \phi(x^2) dx \quad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

En utilisant un changement de variables approprié, montrer que

$$\langle T, \phi \rangle = \int_{\mathbb{R}} \frac{H(y)}{\sqrt{|y|}} \phi(y) \ dy \qquad \forall \phi \in \mathcal{D}(\mathbb{R}),$$

où H est la fonction de Heaviside. En déduire que T détermine une distribution dans \mathbb{R} . Quel est son ordre?

Corrigé. La fonction $x \mapsto \phi(x^2)$ étant paire, nous avons que

$$\langle T, \phi \rangle = \int_{\mathbb{R}} \phi(x^2) dx = 2 \int_0^{+\infty} \phi(x^2) dx.$$

Un simple changement de variable ($x = \sqrt{y}$) montre alors que

$$\langle T, \phi \rangle = 2 \int_0^{+\infty} \frac{1}{\sqrt{y}} \phi(y) \ dy = \int_{\mathbb{R}} \frac{H(y)}{\sqrt{|y|}} \phi(y) \ dy \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

Soit $\phi \in \mathcal{D}(\mathbb{R})$ avec supp $\phi \subset [-a, a], a > 0$. On a

$$\langle T, \phi \rangle = \int_{\mathbb{R}} \frac{H(y)}{\sqrt{|y|}} \phi(y) \, dy = \int_{0}^{a} \frac{1}{\sqrt{y}} \phi(y) \, dy$$

$$\leq \|\phi\|_{C([-a,a])} \int_{0}^{a} \frac{1}{\sqrt{y}} \, dy = 2\sqrt{a} \, \|\phi\|_{C([-a,a])},$$

ce qui montre, grâce au critère de continuité, que T est une distribution d'odre 0.

Exercice 2. Soit $(f_k)_{k\in\mathbb{N}}$ la suite de fonctions définies par

$$f_k(x) = ke^{-kx}H(x)$$
 $k \in \mathbb{N}$.

- 1) Montrer que $f_k \in \mathcal{D}'(\mathbb{R})$.
- 2) Montrer que

$$\langle f_k, \phi \rangle = \int_0^{+\infty} e^{-t} \phi\left(\frac{t}{k}\right) dt \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

3) En utilisant le théorème de convergence dominée, montrer que $(f_k)_k$ converge vers δ_0 dans $\mathcal{D}'(\mathbb{R})$.

Corrigé. 1) Soit $\phi \in \mathcal{D}(\mathbb{R})$ tel que supp $\phi \subset [-a, a]$. Alors

$$\langle f_k, \phi \rangle = \int_{\mathbb{R}} k e^{-kx} H(x) \phi(x) dx$$
$$= \int_0^{+\infty} k e^{-kx} \phi(x) dx = \int_0^a k e^{-kx} \phi(x) dx$$

et donc

$$|\langle f_k, \phi \rangle| \leq \int_0^a k e^{-kx} |\phi(x)| dx$$

$$\leq \|\phi\|_{C[0,a]} \int_0^a k e^{-kx} dx = \left(1 - e^{-ka}\right) \|\phi\|_{C[0,a]}$$

$$\leq \|\phi\|_{C[0,a]},$$

ce qui, d'après le critère de continuité, montre que f_k est une distribution d'ordre 0.

2) Un simple changement de variables (t = kx) montre que

$$\langle f_k, \phi \rangle = \int_0^{+\infty} k e^{-kx} \, \phi(x) \, dx = \int_0^{+\infty} e^{-t} \phi\left(\frac{t}{k}\right) dt \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

3) Il est clair que pour presque tout $t \ge 0$, on a

$$e^{-t} \phi\left(\frac{t}{k}\right) \longrightarrow e^{-t} \phi(0),$$

et que

$$\left| e^{-t} \, \phi \left(\tfrac{t}{k} \right) \right| \leq M e^{-t} \leq M \qquad \text{où } M = \max_{y \in \operatorname{supp} \phi} |\phi(y)|.$$

Utilisant le théorème de convergence dominée, il vient que

$$\lim_{k \to +\infty} \langle f_k, \phi \rangle = \lim_{k \to +\infty} \int_0^{+\infty} e^{-t} \phi\left(\frac{t}{k}\right) dt = \int_0^{+\infty} \lim_{k \to +\infty} e^{-t} \phi\left(\frac{t}{k}\right) dt$$
$$= \int_0^{+\infty} e^{-t} \phi\left(0\right) dt = \phi\left(0\right) \int_0^{+\infty} e^{-t} dt$$
$$= \phi\left(0\right) = \langle \delta_0, \phi \rangle \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

Autrement dit

$$\lim_{k\to +\infty} f_k = \delta_0 \qquad \mathsf{dans} \ \mathcal{D}'(\mathbb{R}).$$

Exercice 3. Voir Exercice 5, liste 3.

2.1.4 Interrogation 2019-2020

Exercice 1. Soit $f \in L^1(\mathbb{R})$ et soit T la forme linéaire définie

$$\langle T, \phi \rangle = \int_{\mathbb{R}} f(x) \, \phi'(x) \, dx + \phi'(0) \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

- **1.** Écrire T sous une forme réduite et en déduire que c'est une distribution sur \mathbb{R} . Quel est son ordre?
- **2.** Supposons que f est dérivable dans $\mathbb{R} \setminus \{0\}$ et que $f(0^+)$ et $f(0^-)$ existent. Écrire T en fonction de $T_{f'}$, de δ_0 et de ses dérivées.

Corrigé. 1. On a

$$\langle T, \phi \rangle = \langle T_f, \phi' \rangle + \langle \delta_0, \phi' \rangle = -\langle (T_f)', \phi \rangle - \langle \delta_0', \phi \rangle$$
$$= \langle -(T_f)' - \delta_0', \phi \rangle \quad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

Autrement dit

$$T = -(T_f)' - \delta_0'$$
 dans $\mathcal{D}'(\mathbb{R})$.

Il est clair que T est d'ordre 1.

2. Si f est dérivable dans $\mathbb{R} \setminus \{0\}$ et que $f(0^+)$ et $f(0^-)$ existent, alors en utilisant la formule des sauts, on obtient

$$(T_f)' = T_{f'} + (f(0^+) - f(0^-)) \delta_0.$$

Prenant en compte l'alinéa 1., il vient que

$$T = -T_{f'} - \left(f\left(0^{+}\right) - f\left(0^{-}\right)\right)\delta_{0} - \delta'_{0}$$
 dans $\mathcal{D}'(\mathbb{R})$.

Exercice 2. Soit $f \in L^1(\mathbb{R})$ et soit $(g_n)_{n \in \mathbb{N}}$ la suite de fonctions définies par

$$g_n(x) = nf(nx)$$
 $n \in \mathbb{N}$.

- 1) Montrer que $g_n \in \mathcal{D}'(\mathbb{R})$.
- 2) Montrer que

$$\langle g_n, \phi \rangle = \int_{\mathbb{D}} f(t) \phi\left(\frac{t}{n}\right) dt \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

3) En utilisant le théorème de convergence dominée, montrer que $(g_n)_n$ converge vers $\alpha \delta_0$ dans $\mathcal{D}'(\mathbb{R})$ où α est un nombre réel à déterminer.

Corrigé. 1) La fonction $g_n \in L^1(\mathbb{R})$. En effet,

$$||g_n||_{L^1(\mathbb{R})} = \int_{\mathbb{R}} |g_n(x)| dx = \int_{\mathbb{R}} n |f(nx)| dx = \int_{\mathbb{R}} |f(y)| dy = ||f||_{L^1(\mathbb{R})} < +\infty.$$

Par conséquent, $g_n \in L^1_{loc}(\mathbb{R}) \subset \mathcal{D}'(\mathbb{R})$.

2) Des arguments similaires montrent que

$$\langle g_n, \phi \rangle = \int_{\mathbb{R}} g_n(x)\phi(x)dx = \int_{\mathbb{R}} nf(nx)\phi(x)dx = \int_{\mathbb{R}} f(t)\phi\left(\frac{t}{n}\right)dt \quad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

3) Il est clair que

$$f(t)\phi\left(\frac{t}{n}\right) \longrightarrow f(t)\phi(0)$$
 p.p.

et aue

$$\left|f(t)\phi\left(\frac{t}{n}\right)\right| \leq M\left|f(t)\right| \in L^1(\mathbb{R}) \qquad \text{où } M = \max_{y \in supp\,\phi} |\phi(y)|.$$

Utilisant le théorème de convergence dominée, il vient que

$$\lim_{n \to +\infty} \langle g_n, \phi \rangle = \lim_{n \to +\infty} \int_{\mathbb{R}} f(t) \phi\left(\frac{t}{n}\right) dt = \int_{\mathbb{R}} \lim_{n \to +\infty} f(t) \phi\left(\frac{t}{n}\right) dt$$
$$= \int_{\mathbb{R}} f(t) \phi\left(0\right) dt = \phi\left(0\right) \underbrace{\int_{\mathbb{R}} f(t) dt}_{\alpha}$$
$$= \alpha \langle \delta_0, \phi \rangle = \langle \alpha \delta_0, \phi \rangle \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

Autrement dit

$$\lim_{n\to+\infty}g_n=\alpha\delta_0\qquad\text{dans }\mathcal{D}'(\mathbb{R}).$$

Exercice 3. Soit $\psi \in C^{\infty}(\mathbb{R})$ et soit $f = \psi H$. Montrer que pour tout $k \in \mathbb{N}$ on a

$$f^{(k)} = \psi^{(k)} \, H + \sum_{i=0}^{k-1} \psi^{(k-1-i)}(0) \, \delta_0^{(i)} \qquad \text{dans } \mathcal{D}'(\mathbb{R}).$$

Corrigé. On a

$$f' = (\psi H)' = \psi' H + \psi H' = \psi' H + \psi \delta_0 = \psi' H + \psi(0) \delta_0 = \psi' H + \sum_{i=0}^{0} \psi^{(-i)}(0) \delta_0^{(i)},$$

ce qui montre que la propriété est vrai pour k=1. Supposons que la propriété soit vrai à l'ordre k et montrons qu'elle reste vraie à l'ordre k+1. Utilisant la définition de $f^{(k+1)}$

et l'hypothèse de récurence, nous obtenons

$$f^{(k+1)} = (f^{(k)})' = \left(\psi^{(k)} H + \sum_{i=0}^{k-1} \psi^{(k-1-i)}(0) \, \delta_0^{(i)}\right)'$$

$$= \psi^{(k+1)} H + \psi^{(k)} H' + \sum_{i=0}^{k-1} \psi^{(k-1-i)}(0) \, \delta_0^{(i+1)}$$

$$= \psi^{(k+1)} H + \psi^{(k)} \, \delta_0 + \sum_{j=1}^{k} \psi^{(k-j)}(0) \, \delta_0^{(j)}$$

$$= \psi^{(k+1)} H + \sum_{j=0}^{k} \psi^{(k-j)}(0) \, \delta_0^{(j)},$$

ce qui montre le résultat.

2.2 Examens

2.2.1 Examen 2016-2017

Exercice 1. Soit $N \geq 3$ un entier naturel et soit $f: \mathbb{R}^N \setminus \{0\} \longrightarrow \mathbb{R}$ la fonction, localement intégrable sur \mathbb{R}^N , définie par

$$f(x) = \frac{1}{|x|^{N-2}}$$
 où $|x| = \left(\sum_{i=1}^{N} x_i^2\right)^{\frac{1}{2}}$.

Pour $k \in \mathbb{N}$, soit f_k la fonction définie par

$$f_k(x) = \frac{1}{\left(|x|^2 + \frac{1}{k}\right)^{\frac{N-2}{2}}}, \quad x \in \mathbb{R}^N.$$

- **1.** Soit $x \in \mathbb{R}^N \setminus \{0\}$. Montrer que pour tout $k \in \mathbb{N}$, $0 \le f_k(x) \le f(x)$ et que la suite $(f_k(x))_k$ converge vers f(x). En déduire que la suite des distributions régulières $(T_{f_k})_k$ converge vers la distribution régulière T_f dans $\mathcal{D}'(\mathbb{R}^N)$.
- **2.** Montrer que f_k est de classe C^∞ sur \mathbb{R}^N et que

$$\Delta f_k(x) = \frac{(2-N)N}{k} \frac{1}{\left(|x|^2 + \frac{1}{k}\right)^{\frac{N+2}{2}}}$$

où Δ est le laplacien, défini par

$$\Delta h(x) = \sum_{i=1}^{N} \frac{\partial^2 h}{\partial x_i^2}(x) \qquad x \in \mathbb{R}^N.$$

3. Pourquoi a-t-on

$$T_{\Delta f_k} = \Delta (T_{f_k})$$
 dans $\mathcal{D}'(\mathbb{R}^N)$?

4. En effectuant un changement de variables approprié, montrer que

$$\langle T_{\Delta f_k}, \phi \rangle = \int_{\mathbb{R}^N} \frac{(2-N)N}{(|y|^2+1)^{\frac{N+2}{2}}} \phi\left(\frac{y}{\sqrt{k}}\right) dy.$$

En déduire que $(T_{\Delta f_k})_k$ converge vers $\alpha \delta_0$ dans $\mathcal{D}'(\mathbb{R}^N)$, où α est la constante donnée par

$$\alpha = \int_{\mathbb{R}^N} \frac{(2-N)N}{(|y|^2+1)^{\frac{N+2}{2}}} \, dy.$$

5. En utilisant les alinéas 3. et 4., montrer que

$$\Delta\left(T_{\frac{f}{\alpha}}\right) = \delta_0 \quad \text{dans } \mathcal{D}'(\mathbb{R}^N).$$

Corrigé. 1. Soit $x \in \mathbb{R}^N \setminus \{0\}$. Vu que $N \geq 3$, il est clair que pour $k \in \mathbb{N}$, on a

$$0 < |x|^{N-2} < (|x|^2 + \frac{1}{k})^{\frac{N-2}{2}}$$

et donc $0 < f_k(x) < f(x)$. De plus, il est facile de voir que

$$\lim_{k \to 0} f_k(x) = f(x).$$

Grâce au théorème de convergence dominée, nous déduisons que pour tout $\phi \in \mathcal{D}(\mathbb{R}^N)$, on a

$$\lim_{k \to +\infty} \langle T_{f_k}, \phi \rangle = \lim_{k \to +\infty} \int_{\mathbb{R}^N} f_k(x) \phi(x) \, dx = \int_{\mathbb{R}^N} f(x) \phi(x) \, dx = \langle T_f, \phi \rangle \, .$$

Ceci prouve la convergence de la suite de distributions régulières $(T_{f_k})_k$ vers la distribution régulière T_f dans $\mathcal{D}'(\mathbb{R}^N)$.

2. Il est clair que f_k , composée de deux fonctions de classe C^{∞} , est une fonction de classe C^{∞} sur \mathbb{R}^N . De plus, en effectuant des calculs élémentaires, nous obtenons pour tout $i=1,\cdots,N$

$$\frac{\partial f_k}{\partial x_i}(x) = -\frac{N-2}{2} \frac{\partial}{\partial x_i} (|x|^2) (|x|^2 + \frac{1}{k})^{-\frac{N-2}{2}-1}
= -(N-2) x_i (|x|^2 + \frac{1}{k})^{-\frac{N-2}{2}-1}$$

et

$$\begin{split} \frac{\partial^2 f_k}{\partial x_i^2}(x) &= -\left(N-2\right) \left(|x|^2 + \frac{1}{k}\right)^{-\frac{N-2}{2}-1} \\ &+ \left(N-2\right) \left(\frac{N-2}{2}+1\right) 2x_i^2 \left(|x|^2 + \frac{1}{k}\right)^{-\frac{N-2}{2}-2} \\ &= -\left(N-2\right) \left(|x|^2 + \frac{1}{k}\right)^{-\frac{N-2}{2}-2} \left(|x|^2 + \frac{1}{k} - Nx_i^2\right). \end{split}$$

Sommant les différents termes, nous obtenons

$$\begin{split} \Delta f_k(x) &= \sum_{i=1}^N \frac{\partial^2 f_k}{\partial x_i^2}(x) = -(N-2) \sum_{i=1}^N \left(|x|^2 + \frac{1}{k} \right)^{-\frac{N-2}{2}-2} \left(|x|^2 + \frac{1}{k} - N x_i^2 \right) \\ &= -(N-2) \left(|x|^2 + \frac{1}{k} \right)^{-\frac{N-2}{2}-2} \sum_{i=1}^N \left(|x|^2 + \frac{1}{k} - N x_i^2 \right) \\ &= -(N-2) \left(|x|^2 + \frac{1}{k} \right)^{-\frac{N+2}{2}} \left(N |x|^2 + \frac{N}{k} - N |x|^2 \right) \\ &= \frac{(2-N)N}{k} \frac{1}{\left(|x|^2 + \frac{1}{k} \right)^{\frac{N+2}{2}}}. \end{split}$$

3. La fonction f_k étant C^{∞} , il est clair que pout tout multi-indice $\alpha \in \mathbb{N}^N$, on a

$$D^{\alpha}\left(T_{f_{k}}\right) = T_{D^{\alpha}f}$$

au sens des distributions. En particulier,

$$T_{\Delta f_k} = \Delta (T_{f_k})$$
 dans $\mathcal{D}'(\mathbb{R}^N)$.

4. Grâce à **2.**, pour tout $\phi \in \mathcal{D}(\mathbb{R}^N)$ on a

$$\langle T_{\Delta f_k}, \phi \rangle = \int_{\mathbb{R}^N} \Delta f_k(x) \phi(x) \, dx = \frac{(2-N)N}{k} \int_{\mathbb{R}^N} \frac{1}{\left(|x|^2 + \frac{1}{k}\right)^{\frac{N+2}{2}}} \phi(x) \, dx$$
$$= \frac{(2-N)N}{k} \int_{\mathbb{R}^N} \frac{1}{\left(\frac{1}{k}(|\sqrt{k}x|^2 + 1)\right)^{\frac{N+2}{2}}} \phi(x) \, dx$$
$$= (2-N)Nk^{\frac{N}{2}} \int_{\mathbb{R}^N} \frac{1}{\left(|\sqrt{k}x|^2 + 1\right)^{\frac{N+2}{2}}} \phi(x) \, dx.$$

En considérant le changement de variables $y = \sqrt{k}x$, on obtient finalement

$$\langle T_{\Delta f_k}, \phi \rangle = (2 - N)Nk^{\frac{N}{2}} \int_{\mathbb{R}^N} \frac{1}{(|y|^2 + 1)^{\frac{N+2}{2}}} \phi\left(\frac{y}{\sqrt{k}}\right) \left(\frac{1}{\sqrt{k}}\right)^N dy$$
$$= (2 - N)N \int_{\mathbb{R}^N} \frac{1}{(|y|^2 + 1)^{\frac{N+2}{2}}} \phi\left(\frac{y}{\sqrt{k}}\right) dy.$$

En utilisant des arguments similaires à ceux de l'alinéa 1., nous pouvons montrer que pour tout $y \in \mathbb{R}^N$, on a

$$\lim_{k \to +\infty} \frac{1}{(|y|^2 + 1)^{\frac{N+2}{2}}} \phi\left(\frac{y}{\sqrt{k}}\right) = \frac{1}{(|y|^2 + 1)^{\frac{N+2}{2}}} \phi(0)$$

et

$$\left| \frac{1}{(|y|^2 + 1)^{\frac{N+2}{2}}} \phi\left(\frac{y}{\sqrt{k}}\right) \right| \le \left| \phi\left(\frac{y}{\sqrt{k}}\right) \right| \le M$$

où M est une constante indépendante de k. Utilisant le théorème de convergence dominée, et passant à la limite sur k, nous obtenons finalement

$$\lim_{k \to +\infty} \langle T_{\Delta f_k}, \phi \rangle = \lim_{k \to +\infty} (2 - N) N \int_{\mathbb{R}^N} \frac{1}{(|y|^2 + 1)^{\frac{N+2}{2}}} \phi\left(\frac{y}{\sqrt{k}}\right) dy$$
$$= (2 - N) N \int_{\mathbb{R}^N} \frac{1}{(|y|^2 + 1)^{\frac{N+2}{2}}} \phi(0) dy$$
$$= \alpha \phi(0) = \langle \alpha \delta_0, \phi \rangle$$

où α est la constante donnée par

$$\alpha = \int_{\mathbb{R}^N} \frac{(2-N)N}{(|y|^2+1)^{\frac{N+2}{2}}} \, dy.$$

Ceci montre la convergence de la suite $(T_{\Delta f_k})_k$ vers $\alpha \delta_0$ dans $\mathcal{D}'(\mathbb{R}^N)$.

5. En utilisant les alinéas 3. et 4., nous déduisons que

$$\left\langle \Delta \left(T_{\frac{f}{\alpha}} \right), \phi \right\rangle = \left\langle T_{\frac{f}{\alpha}}, \Delta \phi \right\rangle = \frac{1}{\alpha} \left\langle T_f, \Delta \phi \right\rangle$$

$$= \frac{1}{\alpha} \lim_{k \to +\infty} \left\langle T_{f_k}, \Delta \phi \right\rangle = \frac{1}{\alpha} \lim_{k \to +\infty} \left\langle \Delta T_{f_k}, \phi \right\rangle$$

$$= \frac{1}{\alpha} \lim_{k \to +\infty} \left\langle T_{\Delta f_k}, \phi \right\rangle = \left\langle \delta_0, \phi \right\rangle \quad \forall \phi \in \mathcal{D}(\mathbb{R}^N)$$

Autrement dit

$$\Delta\left(T_{\frac{f}{a}}\right)=\delta_0 \qquad \mathsf{dans}\; \mathcal{D}'(\mathbb{R}^N).$$

Exercice 2. Soient $S \in \mathcal{D}'(\mathbb{R})$, $T \in \mathcal{E}'(\mathbb{R})$ et $a \in \mathbb{R}$. Montrer que

$$e^{ax}(S*T) = (e^{ax}S)*(e^{ax}T).$$

Corrigé. Soient $S \in \mathcal{D}'(\mathbb{R})$, $T \in \mathcal{E}'(\mathbb{R})$ et $a \in \mathbb{R}$. Pour tout $\phi \in \mathcal{D}(\mathbb{R})$, on a

$$\langle e^{ax} (S * T), \phi \rangle = \langle S * T, e^{ax} \phi \rangle$$

$$= \langle S_x, \langle T_y, e^{a(x+y)} \phi(x+y) \rangle \rangle$$

$$= \langle S_x, \langle T_y, e^{ax} e^{ay} \phi(x+y) \rangle \rangle$$

$$= \langle S_x, e^{ax} \langle T_y, e^{ay} \phi(x+y) \rangle \rangle$$

$$= \langle e^{ax} S_x, \langle T_y, e^{ay} \phi(x+y) \rangle \rangle$$

$$= \langle (e^{ax} S) * (e^{ax} T), \phi \rangle$$

ce qui prouve que

$$e^{ax} (S * T) = (e^{ax}S) * (e^{ax}T).$$

Exercice 3. Soit H la fonction de Heaviside et soit, pour $n \ge 1$,

$$E_n(x) = \frac{x^{n-1}}{(n-1)!}H(x).$$

1. Démontrer par récurrence que pour tout $n \ge 1$, on a

$$\frac{d^n E_n}{dx^n} = \delta_0 \qquad \text{dans } \mathcal{D}'(\mathbb{R}).$$

2. En déduire que si $f \in \mathcal{E}'(\mathbb{R})$, alors $U = f * E_n$ est solution, au sens des distributions, de l'équation

$$\frac{d^n U}{dx^n} = f.$$

Corrigé. 1. Montrons par récurrence que pour tout $n \ge 1$, on a

$$\frac{d^n}{dx^n}(E_n) = \delta_0 \quad \text{dans } \mathcal{D}'(\mathbb{R}).$$

On a

$$\frac{d}{dx}(E_1) = \frac{dH}{dx} = \delta_0$$
 dans $\mathcal{D}'(\mathbb{R})$

et la propriété est vraie pour n = 1.

Supposons que la propriété est vraie à l'ordre n et montrons qu'elle reste vraie à l'ordre (n+1). On a

$$\frac{d^{n+1}}{dx^{n+1}} (E_{n+1}) = \frac{d^n}{dx^n} \left(\frac{d}{dx} (E_{n+1}) \right) = \frac{d^n}{dx^n} \left(\frac{d}{dx} \left(\frac{x^n}{n!} H \right) \right)$$

$$= \frac{d^n}{dx^n} \left(\frac{x^{n-1}}{(n-1)!} H + \frac{x^n}{n!} \frac{dH}{dx} \right)$$

$$= \frac{d^n}{dx^n} \left(\frac{x^{n-1}}{(n-1)!} H + \frac{x^n}{n!} \delta_0 \right).$$

Remarquant alors que

$$\frac{x^n}{n!}\delta_0=0$$
 dans $\mathcal{D}'(\mathbb{R})$

nous déduisons que

$$\frac{d^{n+1}}{dx^{n+1}}\left(E_{n+1}\right) = \frac{d^n}{dx^n}\left(\frac{x^{n-1}}{(n-1)!}H\right) = \frac{d^n}{dx^n}\left(E_n\right) = \delta_0.$$

2. Comme f est à support compact, l'expression de U a un sens. De plus, en prenant en compte le résultat de l'alinéa $\mathbf{1}$, on peut facilement vérifier que

$$\frac{d^{n}U}{dx^{n}} = \frac{d^{n}}{dx^{n}} \left(f * E_{n} \right) = f * \left(\frac{d^{n}}{dx^{n}} \left(E_{n} \right) \right) = f * \delta_{0} = f.$$

2.2.2 Examen 2017-2018

Exercice 1. Voir Exercice 7, liste 3.

Exercice 2. 1) Soit *f* la fonction partie entière définie par

$$f(x) = n$$
 $\text{Si } x \in [n, n+1]$ $(n \in \mathbb{Z}_0).$

Montrer que

$$\langle f, \phi \rangle = \sum_{n=-\infty}^{n=+\infty} \int_{n}^{n+1} n \, \phi(x) \, dx \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

En déduire que

$$f' = \sum_{n=-\infty}^{n=+\infty} \delta_n \qquad \mathsf{dans} \; \mathcal{D}'(\mathbb{R}).$$

Indication:

$$\sum_{n=-\infty}^{n=+\infty} n \left(\phi(n) - \phi(n+1) \right) = \sum_{n=-\infty}^{n=+\infty} \phi(n) \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

2) Montrer que

$$\lim_{a\to 0} \frac{\delta_a - \delta_{-a}}{2a} = -\delta_0' \quad \text{dans } \mathcal{D}'(\mathbb{R}).$$

Corrigé. 1) Remarquant que $\mathbb{R} = \cup_{n \in \mathbb{Z}_0} [n, n+1[$, il vient que

$$\langle f, \phi \rangle = \int_{\mathbb{R}} f(x)\phi(x) \, dx = \sum_{n \in \mathbb{Z}_0} \int_n^{n+1} f(x)\phi(x) \, dx$$
$$= \sum_{n \in \mathbb{Z}_0} \int_n^{n+1} n\phi(x) \, dx = \sum_{n=-\infty}^{n=+\infty} n \int_n^{n+1} \phi(x) \, dx \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

Par conséquent, on a

$$\langle f', \phi \rangle = -\langle f, \phi' \rangle = -\sum_{n=-\infty}^{n=+\infty} n \int_n^{n+1} \phi'(x) dx = -\sum_{n=-\infty}^{n=+\infty} n \left(\phi(n+1) - \phi(n) \right).$$

Utilisant l'indication, nous déduisons que

$$\langle f', \phi \rangle = \sum_{n=-\infty}^{n=+\infty} \phi(n) = \sum_{n=-\infty}^{n=+\infty} \langle \delta_n, \phi \rangle \quad \forall \phi \in \mathcal{D}(\mathbb{R}),$$

c'est-à-dire que

$$f' = \sum_{n=-\infty}^{n=+\infty} \delta_n$$
 dans $\mathcal{D}'(\mathbb{R})$.

2) Soit $\phi \in \mathcal{D}(\mathbb{R})$. On a

$$\lim_{a \to 0} \left\langle \frac{\delta_a - \delta_{-a}}{2a}, \phi \right\rangle = \lim_{a \to 0} \frac{\phi(a) - \phi(-a)}{2a} = \phi'(0) = \left\langle \delta_0, \phi' \right\rangle = -\left\langle \delta_0', \phi \right\rangle$$

ce qui montre le résultat.

Exercice 3. Voir Exercice 8, liste 3.

2.2.3 Examen 2018-2019

Problème. I. Objectif : résoudre l'équation différentielle S'=0 dans $\mathcal{D}'(\mathbb{R})$.

Soit $\phi_0 \in \mathcal{D}(\mathbb{R})$ tel que $\int_{\mathbb{R}} \phi_0 dx = 1$. Nous admettrons le résultat qui stipule que pour tout $\phi \in \mathcal{D}(\mathbb{R})$, il existe $\psi \in \mathcal{D}(\mathbb{R})$ et $c_1 \in \mathbb{R}$ tel que

$$\phi = \psi' + c_1 \, \phi_0.$$

i) Montrer que

$$c_1 = \int_{\mathbb{R}} \phi(x) dx = \langle 1, \phi \rangle.$$

En déduire que pour tout $S \in \mathcal{D}'(\mathbb{R})$, on a

$$\langle S, \phi \rangle = -\langle S', \psi \rangle + \langle c_2, \phi \rangle$$

où c_2 est une constante (indépendante de ϕ) à déterminer.

ii) Utilisant l'alinéa précédent, montrer que

$$S' = 0$$
 dans $\mathcal{D}'(\mathbb{R}) \iff S = c_2$ dans $\mathcal{D}'(\mathbb{R})$.

II. Objectif : résoudre l'équation différentielle homogène $\mathbf{T}'-\mathbf{aT}=\mathbf{0}$ dans $\mathcal{D}'(\mathbb{R}),$ $\mathbf{a}\in\mathbb{R}.$

Soit $T \in \mathcal{D}'(\mathbb{R})$ et posons $S = e^{-at} T$.

i) Montrer que

$$S = e^{-at} T$$
 dans $\mathcal{D}'(\mathbb{R}) \iff T = e^{at} S$ dans $\mathcal{D}'(\mathbb{R})$.

ii) Montrer que

$$S' = e^{-at} (T' - aT)$$
 dans $\mathcal{D}'(\mathbb{R})$.

iii) Utilisant la partie I, déduire des deux alinéas précédents que

$$T' - aT = 0$$
 dans $\mathcal{D}'(\mathbb{R}) \iff T = c_2 e^{at}$ dans $\mathcal{D}'(\mathbb{R})$.

III. Objectif : résoudre l'équation différentielle $\mathbf{T}' - a\mathbf{T} = \mathbf{f}$ dans $\mathcal{D}'(\mathbb{R})$.

Comme pour les équations différentielles ordinaires, la solution d'une équation linéaire avec second membre s'écrit comme somme d'une solution de l'équation homogène et d'une solution particulière.

i) Nous supposerons que $f \in \mathcal{E}'(\mathbb{R})$. Montrer que l'on peut chercher une solution élémentaire E sous la forme E = zH où H est la fonction de Heaviside et $z \in C^{\infty}(\mathbb{R})$ est la solution d'une EDO à déterminer.

En déduire que $T=E*f\in \mathcal{D}'(\mathbb{R})$ est solution particulière de T'-aT=f. Quelle est alors la forme de la solution générale?

ii) Supposons que f=H. Quel est le support de f ? Peut-on appliquer le résultat de l'alinéa précédent ?

Chercher une solution particulière de T'-aT=H sous la forme T=yH où $y\in C^\infty(\mathbb{R})$ est la solution d'une EDO à déterminer.

Corrigé. I. Soit $\phi_0 \in \mathcal{D}(\mathbb{R})$ tel que $\int_{\mathbb{R}} \phi_0 dx = 1$ et $\phi \in \mathcal{D}(\mathbb{R})$. D'après l'indication, il existe $\psi \in \mathcal{D}(\mathbb{R})$ et $c_1 \in \mathbb{R}$ tel que

$$\phi = \psi' + c_1 \,\phi_0. \tag{2.1}$$

La fonction 1 étant localement intégrable sur \mathbb{R} peut-être identifiée avec une distribution régulière dans $\mathcal{D}'(\mathbb{R})$ et il vient alors que

$$\langle 1, \phi \rangle = \int_{\mathbb{R}} \phi(x) \, dx = \int_{\mathbb{R}} \left(\psi'(x) + c_1 \, \phi_0(x) \right) dx$$
$$= \int_{\mathbb{R}} \psi'(x) \, dx + c_1 \int_{\mathbb{R}} \phi_0(x) \, dx = \left[\psi(x) \right]_{-\infty}^{+\infty} + c_1$$
$$= 0 + c_1 = c_1,$$

où on a utilisé le fait que ψ est à support compact dans \mathbb{R} .

Par conséquent (2.1) s'écrit

$$\phi = \psi' + \langle 1, \phi \rangle \phi_0$$

et pour tout $S \in \mathcal{D}'(\mathbb{R})$, il vient que

$$\langle S, \phi \rangle = \langle S, \psi' + \langle 1, \phi \rangle | \phi_0 \rangle = \langle S, \psi' \rangle + \langle 1, \phi \rangle | \langle S, \phi_0 \rangle = -\langle S', \psi \rangle + \langle c_2, \phi \rangle,$$

où $c_2 = \langle S, \phi_0 \rangle$ est une constante indépendante de ϕ .

ii) Utilisant l'alinéa précédent, il est facile de voir que

$$S' = 0 \quad \text{dans } \mathcal{D}'(\mathbb{R}) \qquad \Longrightarrow \quad \langle S, \phi \rangle = \langle c_2, \phi \rangle \quad \forall \phi \in \mathcal{D}(\mathbb{R})$$

$$\iff \quad S = c_2 \quad \text{dans } \mathcal{D}'(\mathbb{R}).$$

Réciproquement, il est clair que si $S=c_2$ dans $\mathcal{D}'(\mathbb{R})$, alors

$$\langle S', \phi \rangle = -\langle S, \phi' \rangle = -\langle c_2, \phi' \rangle = c_2 [\phi(x)]_{-\infty}^{+\infty} = 0 \quad \forall \phi \in \mathcal{D}(\mathbb{R}),$$

i.e. S' = 0 dans $\mathcal{D}'(\mathbb{R})$.

- II. Soit $T \in \mathcal{D}'(\mathbb{R})$ et posons $S = e^{-at} T$, où $a \in \mathbb{R}$.
- i) Supposons que $S=e^{-at}\,T$ dans $\mathcal{D}'(\mathbb{R}).$ Il vient alors que

$$\langle T, \phi \rangle = \langle T, e^{-at} e^{at} \phi \rangle$$
$$= \langle e^{-at} T, e^{at} \phi \rangle = \langle S, e^{at} \phi \rangle = \langle e^{at} S, \phi \rangle \quad \forall \phi \in \mathcal{D}(\mathbb{R}),$$

i.e. $e^{at} S = T$ dans $\mathcal{D}'(\mathbb{R})$. Réciproquement, des arguments similaires montrent que si $e^{at} S = T$ dans $\mathcal{D}'(\mathbb{R})$, alors

$$\begin{split} \langle S, \phi \rangle &= \left\langle S, e^{at} e^{-at} \, \phi \right\rangle \\ &= \left\langle e^{at} \, S, e^{-at} \, \phi \right\rangle = \left\langle T, e^{-at} \, \phi \right\rangle = \left\langle e^{-at} \, T, \phi \right\rangle \quad \forall \phi \in \mathcal{D}(\mathbb{R}), \end{split}$$

i.e. $e^{-at} T = S$ dans $\mathcal{D}'(\mathbb{R})$.

ii) utilisant les propriétés usuelles de dérivation des distributions, nous obtenons

$$S' = (e^{-at}T)' = (e^{-at})'T + e^{-at}T'$$
$$= -ae^{-at}T + e^{-at}T' = e^{-at}(T' - aT) \quad \text{dans } \mathcal{D}'(\mathbb{R}).$$

iii) Utilisant II. ii), I. ii) et II. i) respectivement, nous obtenons

$$\begin{split} T'-aT &= 0 \quad \mathsf{dans} \ \mathcal{D}'(\mathbb{R}) & \iff S' &= 0 \quad \mathsf{dans} \ \mathcal{D}'(\mathbb{R}) \\ & \iff S &= c_2 \quad \mathsf{dans} \ \mathcal{D}'(\mathbb{R}) \\ & \iff T &= S \ e^{at} = c_2 \ e^{at} \quad \mathsf{dans} \ \mathcal{D}'(\mathbb{R}). \end{split}$$

III. i) Nous supposerons que $f \in \mathcal{E}'(\mathbb{R})$ et posons E = zH où H est la fonction de Heaviside et $z \in C^{\infty}(\mathbb{R})$. Dérivant au sens des distributions, nous obtenons facilement que

$$E' - aE = (zH)' - azH = z'H + zH' - azH$$

= $(z' - az)H + z\delta_0 = (z' - az)H + z(0)\delta_0$.

Choisissant alors z comme la solution de l'équation différentielle ordinaire suivante

$$\left\{ \begin{array}{ll} z'-az=0 & \mathrm{dans} \ \mathbb{R}, \\ z(0)=1, \end{array} \right.$$

nous obtenons que

$$E' - aE = \delta_0.$$

Autrement dit E est une solution élémentaire. La distribution f étant à support compact, il est facile de vérifier que

$$T' - aT = (E * f)' - aE * f = E' * f - aE * f = (E' - aE) * f = \delta_0 * f = f$$

et donc T = E * f est une solution particulière de l'équation T' - aT = f. Prenant en compte l'alinéa II. iii), nous déduisons que la solution générale s'écrit sous la forme

$$T = E * f + ce^{at}.$$

ii) Si f=H alors supp $f=\mathbb{R}^+$ et vu qu'il n'est pas compact, nous ne pouvons pas appliquer les résultats de l'alinéa précédent.

Raisonnant de la même manière, nous pouvons chercher une solution particulière de T'-aT=H sous la forme T=yH où $y\in C^\infty(\mathbb{R})$. On obtient alors

$$T' - AT = (y' - ay) H + y(0)\delta_0.$$

Choisissant alors y comme la solution de l'équation différentielle ordinaire suivante

$$\begin{cases} y' - ay = 1 & \text{dans } \mathbb{R}, \\ y(0) = 0, \end{cases}$$

nous obtenons que

$$T' - aT = H.$$

2.2.4 Examen 2019-2020

Exercice 1. 1) Montrer que l'application linéaire T définie par

$$\langle T, \phi \rangle = \int_{\mathbb{R}} e^{x^2} \phi'(x) dx \qquad \forall \phi \in \mathcal{D}(\mathbb{R}),$$

est une distribution d'ordre 0.

- 2) Supposons que T admet un ouvert d'annulation U non vide.
 - i) Montrer qu'il existe $a \in \mathbb{R} \setminus \{0\}$ tel que $a \in U$.
 - ii) Sans perte de généralité, supposons que a>0. Montrer qu'il existe $\alpha>0$ tel que $|a-\alpha,a+\alpha|\subset U\cap]0,+\infty[$.

iii) Soit $\phi \in \mathcal{D}\left(\left]a-\alpha,a+\alpha\right[\right)$, positive et telle que $\phi=1$ sur $\left]a-\frac{\alpha}{2},a+\frac{\alpha}{2}\right[$. Montrer que

$$\langle T, \phi \rangle < 0$$

et conclure que U est nécessairement vide.

3) Quel est alors le support de T? Ce résultat était-il prévisible?

Corrigé. Soit $\phi \in \mathcal{D}(\mathbb{R})$ avec $\operatorname{supp} \phi \subset [-a,a]$ pour un certain a>0. Une simple intégration par parties montre que

$$\langle T, \phi \rangle = \int_{\mathbb{R}} e^{x^2} \phi'(x) dx = \left[e^{x^2} \phi(x) \right]_{-a}^a - \int_{-a}^a g(x) \phi(x) dx$$
$$= -\int_{-a}^a g(x) \phi(x) dx,$$

où $g(x) = 2xe^{x^2}$. Il vient alors que

$$\begin{aligned} |\langle T, \phi \rangle| &\leq \int_{-a}^{a} |g(x)| \, |\phi(x)| \, dx \leq \|\phi\|_{C([-a,a])} \int_{-a}^{a} |g(x)| \, dx \\ &= 2 \, \|\phi\|_{C([-a,a])} \left[e^{x^2} \right]_{0}^{a} = 2 \left(e^{a^2} - 1 \right) \|\phi\|_{C([-a,a])} \,, \end{aligned}$$

ce qui montre que le critère de continuité est satisfait avec m=0 et $C=2\left(e^{a^2}-1\right)$.

- 2) Supposons qu'il existe un ouvert d'annulation U non vide.
- i) U ne peut se réduire au singleton $\{0\}$, car ce dernier n'est pas ouvert. Il existe donc $a \in \mathbb{R} \setminus \{0\}$ tel que $a \in U$. Sans perte de généralité, nous pouvons supposer que a > 0.
- ii) Vu que U est un ouvert, il existe $\alpha > 0$ tel que $]a \alpha, a + \alpha[\subset U]$. De plus, on peut supposer que $\alpha < a$ de sorte que $]a \alpha, a + \alpha[\subset]0, +\infty[$.
- iii) Soit $\phi \in \mathcal{D}(]a \alpha, a + \alpha[)$, positive et telle que $\phi = 1$ sur $]a \frac{\alpha}{2}, a + \frac{\alpha}{2}[$. La fonction g est alors positive sur $]a \alpha, a + \alpha[$ et donc

$$\begin{split} \langle T, \phi \rangle &= -\int_{a-\alpha}^{a+\alpha} g(x) \, \phi(x) \, dx \\ &= -\int_{a-\alpha}^{a-\frac{\alpha}{2}} g(x) \, \phi(x) \, dx - \int_{a-\frac{\alpha}{2}}^{a+\frac{\alpha}{2}} g(x) \, \phi(x) \, dx - \int_{a+\frac{\alpha}{2}}^{a+\alpha} g(x) \, \phi(x) \, dx \\ &\leq -\int_{a-\frac{\alpha}{2}}^{a+\frac{\alpha}{2}} g(x) \, \phi(x) \, dx = -\int_{a-\frac{\alpha}{2}}^{a+\frac{\alpha}{2}} g(x) \, dx \\ &= e^{\left(a-\frac{\alpha}{2}\right)^2} - e^{\left(a+\frac{\alpha}{2}\right)^2} < 0 \end{split}$$

Donc $\langle T, \phi \rangle \neq 0$, ce qui contredit le fait que U est un ouvert d'annulation de T et donc U est vide.

3) D'après l'alinéa précédent, tous les ouverts d'annulation sont vides. En particulier, le plus grand ouvert d'annulation de T est vide et, par conséquent, supp $T = \mathbb{R}$. Ce résultat était prévisible car T est une distribution régulière ($T = T_g$) et d'après le cours

$$\begin{split} \operatorname{supp} T &= \operatorname{supp} T_g \\ &= \operatorname{supp} g = \overline{\{x \in \mathbb{R} \mid g(x) \neq 0\}} \\ &= \overline{\{x \in \mathbb{R} \mid x \neq 0\}} = \overline{\mathbb{R} \setminus \{0\}} = \mathbb{R}. \end{split}$$

Exercice 2. Soit $\varepsilon>0$ et soit H la fonction de Heaviside. Chercher une solution de l'équation

$$-\varepsilon E'' - E' + E = \delta_0$$
 dans $\mathcal{D}'(\mathbb{R})$,

sous la forme $E_{\varepsilon}=z_{\varepsilon}H$, où z_{ε} est une fonction à déterminer. Étudier la convergence de $(E_{\varepsilon})_{\varepsilon}$ dans $\mathcal{D}'(\mathbb{R})$.

Corrigé. Soit $\varepsilon > 0$ et soit H la fonction de Heaviside. Soit E = zH où z est une fonction de $C^{\infty}(\mathbb{R})$. Des calculs standard montrent que

$$E' = z'H + zH' = z'H + z\,\delta_0 = z'H + z(0)\,\delta_0 \qquad \text{dans } \mathcal{D}'(\mathbb{R}),$$

et donc

$$\begin{split} E" &= (E')' = (z'H + z(0)\,\delta_0)' \\ &= z"H + z'H' + z(0)\delta_0' = z"H + z'\,\delta_0 + z(0)\delta_0' \\ &= z"H + z'(0)\,\delta_0 + z(0)\delta_0' \quad \text{dans } \mathcal{D}'(\mathbb{R}). \end{split}$$

Combinant ces identités, nous obtenons

$$-\varepsilon E'' - E' + E = (-\varepsilon z'' - z' + z) H + (-\varepsilon z'(0) - z(0)) \delta_0 - z(0) \delta_0' \quad \text{dans } \mathcal{D}'(\mathbb{R}).$$

Ainsi, pour que la distribution $E_{\varepsilon}=z_{\varepsilon}H$ soit solution de l'équation

$$-\varepsilon E'' - E' + E = \delta_0$$
 dans $\mathcal{D}'(\mathbb{R})$,

il suffit que z_{ε} soit solution du système

$$\begin{cases}
-\varepsilon z'' - z' + z = 0, \\
z(0) = 0, \\
z'(0) = -\frac{1}{\varepsilon}.
\end{cases}$$

Des arguments classiques montrent que ce système admet une solution unique z_{ε} donnée par

$$z_{\varepsilon}(x) = -\frac{1}{\sqrt{1+4\varepsilon}} \left(e^{\frac{2x}{1+\sqrt{1+4\varepsilon}}} - e^{\frac{2x}{1-\sqrt{1+4\varepsilon}}} \right).$$

Il est clair que $z_{\varepsilon}\in C^{\infty}(\mathbb{R}).$ De plus, pour tout x>0, il est facile de voir que

$$\lim_{\varepsilon \to 0^+} z_{\varepsilon}(x) = -e^x \equiv g(x)$$

et

$$\begin{split} |z_{\varepsilon}(x)| &\leq \frac{1}{\sqrt{1+4\varepsilon}} \left(e^{\frac{2x}{1+\sqrt{1+4\varepsilon}}} + e^{\frac{2x}{1-\sqrt{1+4\varepsilon}}} \right) \\ &\leq e^{\frac{2x}{1+\sqrt{1+4\varepsilon}}} + e^{\frac{2x}{1-\sqrt{1+4\varepsilon}}} \\ &\leq e^x + 1. \end{split}$$

Par conséquent, il vient que pour tout $\phi \in \mathcal{D}(\mathbb{R})$ et pour presque tout $x \in \mathbb{R}$, on a

$$\lim_{\varepsilon \to 0^+} E_{\varepsilon}(x)\phi(x) = g(x)H(x),$$

et

$$|E_{\varepsilon}(x)\phi(x)| \le \max_{x \in supp \, \phi} ((e^x + 1) |\phi(x)|) = M_{\phi}.$$

Grâce au théorème de convergence dominée de Lebesgue, nous concluons que

$$\lim_{\varepsilon \to 0^{+}} \langle E_{\varepsilon}, \phi \rangle = \int_{\mathbb{R}} \lim_{\varepsilon \to 0^{+}} E_{\varepsilon}(x) \phi(x) dx$$
$$= \int_{\mathbb{R}} g(x) \phi(x) dx = \langle g, \phi \rangle \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

Exercice 3. Soit $f \in C_0(\mathbb{R})$ et soit $T \in \mathcal{D}'(\mathbb{R})$ tel que

$$T' = f$$
 dans $\mathcal{D}'(\mathbb{R})$.

1) Posons

$$v(x) = \int_{-\infty}^{x} f(t) dt, \quad x \in \mathbb{R}.$$

Montrer que $v \in C^1(\mathbb{R})$.

2) Montrer que

$$T' = v'$$
 dans $\mathcal{D}'(\mathbb{R})$.

En déduire que $T \in C^1(\mathbb{R})$.

<u>Indication.</u> On admettra que S'=0 dans $\mathcal{D}'(\mathbb{R})$ implique que S=constante.

Corrigé. Soit $f \in C_0(\mathbb{R})$, soit $u \in \mathcal{D}'(\mathbb{R})$ tel que

$$u' = f$$
 dans $\mathcal{D}'(\mathbb{R})$.

i) Posons

$$v(x) = \int_{-\infty}^{x} f(t) dt, \quad x \in \mathbb{R}.$$

La fonction f appartenant à $C_0(\mathbb{R})$, il existe M>0 tel que supp $f\subset [-M,M]$ et donc

$$v(x) = \int_{-\infty}^{-M} f(t) dt + \int_{-M}^{x} f(t) dt = \int_{-M}^{x} f(t) dt, \quad \forall x \in \mathbb{R}.$$

Grâce au théorème fondamental de l'analyse, il vient que $v \in C^1(\mathbb{R})$ et

$$v'(x) = f(x) \quad \forall x \in \mathbb{R}.$$

ii) Soit $\varphi \in \mathcal{D}(\mathbb{R})$ et soit b > 0 tel que supp $\phi \subset [-b,b]$. La fonction $v \in L^1_{loc}(\mathbb{R})$ et donc

$$\langle v', \phi \rangle = -\langle v, \phi' \rangle$$

$$= -\int_{\mathbb{R}} v(x)\phi'(x) \, dx = -\int_{-b}^{b} v(x)\phi'(x) \, dx$$

$$= [-v(x)\phi(x)]_{-b}^{b} + \int_{-b}^{b} v'(x)\phi(x) \, dx$$

$$= \int_{-b}^{b} v'(x)\phi(x) \, dx = \int_{\mathbb{R}} v'(x)\phi(x) \, dx$$

$$= \int_{\mathbb{D}} f(x)\phi(x) \, dx = \langle T', \phi \rangle \, .$$

Autrement dit

$$(T-v)' = T' - v' = 0$$
 dans $\mathcal{D}'(\mathbb{R})$,

et utilisant l'indication, nous concluons que

$$T = v + \text{constante} \in C^1(\mathbb{R}).$$

2.3 Examens de rattrapage

2.3.1 Examen de rattrapage 2016-2017

Exercice 1. Considère la suite de fonctions f_k , $k \ge 1$, définies par

$$f_k(x) = \sin\left(kx\right)$$

- a) Montrer que f_k définit une distribution T_{f_k} , pour tout $k \ge 1$. Quel est l'ordre de T_{f_k} ?
- **b)** Montrer que $(T_{f_k})_k$ converge vers 0 dans $\mathcal{D}'(\mathbb{R})$. Cette convergence implique-t-elle la convergence ponctuelle de la suite $(f_k)_k$?
- **c)** Considère la suite de fonctions g_k , $k \ge 1$, définies par

$$g_k(x) = \begin{cases} \frac{\sin(kx)}{x} & \text{si } x \neq 0, \\ 0 & \text{sinon.} \end{cases}$$

i) Montrer que

$$\langle T_{g_k}, \phi \rangle = \int_{\mathbb{R}} \frac{\sin(t)}{t} \phi\left(\frac{t}{k}\right) dt \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

ii) En utilisant le théorème de convergence dominée, en déduire que $(T_{g_k})_k$ converge vers $\pi \delta_0$ dans $\mathcal{D}'(\mathbb{R})$.

Indication: On admettra que
$$\int_0^{+\infty} \frac{\sin(t)}{t} = \frac{\pi}{2}$$
.

Corrigé. a) Il est clair que les fonctions f_k sont localement intégrables sur \mathbb{R} . Elles définissent alors des distributions régulières T_{f_k} (et sont donc d'ordre 0).

b) En effectuant une simple intégration par parties, nous obtenons

$$\langle T_{f_k}, \phi \rangle = \int_{\mathbb{R}} f_k(x) \phi(x) dx$$

$$= \left[-\frac{1}{k} \cos(kx) \phi(x) \right]_{-\infty}^{+\infty} + \frac{1}{k} \int_{\mathbb{R}} \cos(kx) \phi'(x) dx$$

$$= \frac{1}{k} \int_{\mathbb{R}} \cos(kx) \phi'(x) dx \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

Il s'ensuit alors que

$$\lim_{k \to +\infty} \langle T_{f_k}, \phi \rangle = \lim_{k \to +\infty} \frac{1}{k} \int_{\mathbb{R}} \cos(kx) \, \phi'(x) \, dx = 0 \qquad \forall \phi \in \mathcal{D}(\mathbb{R})$$

i.e. $(T_{f_k})_k$ converge vers 0 dans $\mathcal{D}'(\mathbb{R})$. Vu que la suite $(f_k)_k$ ne converge pas ponctuellement, nous déduisons que la convergence au sens des distributions n'implique pas nécessairement la convergence ponctuelle.

c) Considère la suite de fonctions g_k , $k \ge 1$, définies par

$$g_k(x) = \left\{ egin{array}{ll} rac{\sin(kx)}{x} & ext{si } x
eq 0, \\ 0 & ext{sinon.} \end{array}
ight.$$

i) En utilisant des arguments similaires à ceux de l'alinéa **a**), nous déduisons que g_k définit une distribution régulière T_{g_k} . Un simple changement de variables, montre que

$$\langle T_{g_k}, \phi \rangle = \int_{\mathbb{R}} \frac{\sin(kx)}{x} \phi(x) dx = \int_{\mathbb{R}} \frac{\sin(t)}{t} \phi\left(\frac{t}{k}\right) dt$$

pour tout $\phi \in \mathcal{D}(\mathbb{R})$.

ii) Des arguments classiques montrent que pour tout $\phi \in \mathcal{D}(\mathbb{R})$, on a

$$\lim_{k \to +\infty} \frac{\sin(t)}{t} \,\phi\left(\frac{t}{k}\right) = \frac{\sin(t)}{t} \,\phi\left(0\right)$$

et

$$\left| \frac{\sin(t)}{t} \phi\left(\frac{t}{k}\right) \right| \le M \left| \frac{\sin(t)}{t} \right|$$

où M est une constante indépendante de k. Grâce au théorème de convergence dominée, nous déduisons que

$$\lim_{k \to +\infty} \langle T_{g_k}, \phi \rangle = \lim_{k \to +\infty} \int_{\mathbb{R}} \frac{\sin(t)}{t} \, \phi\left(\frac{t}{k}\right) dt = \int_{\mathbb{R}} \frac{\sin(t)}{t} \, \phi\left(0\right) dt$$
$$= \phi(0) \int_{\mathbb{R}} \frac{\sin(t)}{t} dt = 2\phi(0) \int_{0}^{+\infty} \frac{\sin(t)}{t} dt$$
$$= \pi\phi(0) = \langle \pi\delta_{0}, \phi \rangle \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

Exercice 2. Voir Exercice 4, liste 3.

Exercice 3. Voir Exercice 6, liste 3.

Exercice 4. Soit H la fonction de Heaviside.

- a) Montrer que $\frac{d^2}{dx^2}(H*H)=\delta_0$ dans $\mathcal{D}'(\mathbb{R}).$
- **b)** Montrer que pour tout $\phi \in \mathcal{D}(\mathbb{R})$, on a

$$\langle H * H, \phi \rangle = \int_0^{+\infty} \int_r^{+\infty} \phi(z) \, dz \, dx.$$

En déduire que

$$\langle H * H, \phi \rangle = \int_{\mathbb{R}} z H(z) \phi(z) dz.$$

Corrigé. a) Des arguments classiques montrent que, au sens des distributions, nous avons

$$\frac{d}{dx}(H*H) = H*\frac{dH}{dx} = H*\delta_0 = H$$

et donc

$$\frac{d^2}{dx^2}(H*H) = \frac{dH}{dx} = \delta_0.$$

b) Prenant en compte la définition de H et celle du produit de convolution, il vient que pour tout $\phi \in \mathcal{D}(\mathbb{R})$

$$\begin{split} \langle H*H,\phi\rangle &= & \langle H_x, \langle H_y,\phi(x+y)\rangle\rangle \\ &= \int_{\mathbb{R}} H(x) \int_{\mathbb{R}} H(y) \phi(x+y) \, dy dx \\ &= \int_0^{+\infty} \int_0^{+\infty} \phi(x+y) \, dy \, dx \end{split}$$

et donc, par un simple changement de variables, nous obtenons

$$\langle H * H, \phi \rangle = \int_0^{+\infty} \int_x^{+\infty} \phi(z) \, dz \, dx.$$

Le théorème de Fubini implique alors que

$$\langle H * H, \phi \rangle = \int_0^{+\infty} \int_0^z \phi(z) \, dx \, dz = \int_0^{+\infty} z \phi(z) \, dz = \int_{\mathbb{R}} z H(z) \phi(z) \, dz.$$

2.3.2 Examen de rattrapage 2017-2018

Exercice 1. Soit T l'application définie par

$$\langle T, \phi \rangle = \int_{-1}^{1} |x| \phi'(x) dx \qquad \forall \phi \in \mathcal{D}(-1, 1).$$

Corrigé. Soit K un compact de (-1,1). Une simple intégration par parties montre que pour tout $\phi \in \mathcal{D}(K)$, on a

$$\langle T, \phi \rangle = \int_{-1}^{1} |x| \phi'(x) dx$$

$$= -\int_{-1}^{0} x \phi'(x) dx + \int_{0}^{1} x \phi'(x) dx$$

$$= -[x \phi(x)]_{-1}^{0} + \int_{-1}^{0} \phi(x) dx + [x \phi(x)]_{0}^{1} - \int_{0}^{1} \phi(x) dx$$

$$= \int_{-1}^{0} \phi(x) dx - \int_{0}^{1} \phi(x) dx.$$

Par conséquent, on obtient

$$|\langle T, \phi \rangle| \le \left| \int_{-1}^{0} \phi(x) \, dx \right| + \left| \int_{0}^{1} \phi(x) \, dx \right| \le \int_{-1}^{1} |\phi(x)| \, dx \le 2 \, \|\phi\|_{C(K)}.$$

Le critère de continuité (CC) est vérifié avec C=2 et m=0.

Finalement, en utilisant la définition de la dérivée au sens des distribtions, on obtient

$$\langle T', \phi \rangle = -\langle T, \phi' \rangle$$

$$= -\int_{-1}^{0} \phi'(x) dx + \int_{0}^{1} \phi'(x) dx$$

$$= \phi(-1) - \phi(0) + \phi(1) - \phi(0)$$

$$= -2\phi(0) = \langle -2\delta_{0}, \phi \rangle \qquad \forall \phi \in \mathcal{D}(-1, 1).$$

Autrement dit $T' = -2\delta_0$ dans $\mathcal{D}'(-1,1)$.

Exercice 2. Pour tout $k \in \mathbb{N}$, on pose

$$f_k(x) = H(x) g_k(x)$$
 avec $g_k(x) = \int_0^k \frac{e^{-xt}}{1+t^2} dt$.

- **1)** Montrer que f_k définit une distribution dans \mathbb{R} .
- 2) Montrer que

$$\frac{d^2 f_k}{dx^2} = \frac{d^2 g_k}{dx^2} H + g_k(0) \, \delta_0' + \frac{dg_k(0)}{dx} \, \delta_0 \qquad \text{dans } \mathcal{D}'(\mathbb{R}).$$

En déduire que

$$\frac{d^2 f_k}{dx^2} + f_k = \frac{1 - e^{-kx}}{x} H + \arctan(k) \, \delta_0' - \frac{1}{2} \ln\left(1 + k^2\right) \, \delta_0 \qquad \text{dans } \mathcal{D}'(\mathbb{R}).$$

3) Soit

$$f(x) = H(x) g(x)$$
 avec $g(x) = \int_0^{+\infty} \frac{e^{-xt}}{1+t^2} dt$.

Montrer que pour tout $k \in \mathbb{N}$ et tout $x \in \mathbb{R}$ on a

$$0 \le f(x) - f_k(x) = H(x) \int_{t_k}^{+\infty} \frac{e^{-xt}}{1+t^2} dt \le \frac{\pi}{2} - \arctan(k).$$

4) En déduire que

$$f_k \longrightarrow_{k \to +\infty} f$$
 dans $\mathcal{D}'(\mathbb{R})$.

5) Montrer alors que

$$\frac{d^2 f_k}{dx^2} \longrightarrow_{k \to +\infty} \frac{d^2 f}{dx^2} \quad \text{dans } \mathcal{D}'(\mathbb{R})$$

et utilisant 2) que

$$\frac{d^2f}{dx^2} + f = \frac{\pi}{2}\delta_0' + \lim_{k \to +\infty} \left(\frac{1 - e^{-kx}}{x}H - \frac{1}{2}\ln\left(1 + k^2\right)\,\delta_0\right) \qquad \text{dans } \mathcal{D}'(\mathbb{R}).$$

Corrigé. 1) D'après la définition de H, il est facile de voir que

$$f_k = \begin{cases} g_k(x) & \text{si } x \ge 0 \\ 0 & \text{si } x < 0. \end{cases}$$

Vu que

$$\frac{e^{-xt}}{1+t^2} \le 1 \qquad \text{pour } x \ge 0 \ \text{ et } \ t \in (0,k),$$

nous en déduisons que

$$f_k \le \int_0^k 1dt = k.$$

Il s'en suit que f_k est localement intégrable dans $\mathbb R$ et définit donc une distribution régulière.

2) En utilisant les propriétés de la dérivation au sens des distributions, nous obtenons

$$\frac{df_k}{dx} = \frac{d}{dx}(g_k H) = \frac{dg_k}{dx}H + g_k\frac{dH}{dx} = \frac{dg_k}{dx}H + g_k\delta_0 = \frac{dg_k}{dx}H + g_k(0)\delta_0$$

et de la même manière

$$\frac{d^2 f_k}{dx^2} = \frac{d}{dx} \left(\frac{df_k}{dx} \right) = \frac{d}{dx} \left(\frac{dg_k}{dx} H + g_k(0) \, \delta_0 \right) = \frac{d^2 g_k}{dx^2} H + \frac{dg_k}{dx} \, \delta_0 + g_k(0) \, \delta_0'$$

$$= \frac{d^2 g_k}{dx^2} H + \frac{dg_k(0)}{dx} \, \delta_0 + g_k(0) \, \delta_0'.$$

Par conséquent

$$\frac{d^2 f_k}{dx^2} + f_k = \left(\frac{d^2 g_k}{dx^2} + g_k\right) H + \frac{dg_k(0)}{dx} \,\delta_0 + g_k(0) \,\delta_0'. \tag{2.2}$$

Observant que

$$\frac{dg_k}{dx} = \int_0^k \frac{d}{dx} \left(\frac{e^{-xt}}{1+t^2} \right) dt = \int_0^k -\frac{te^{-xt}}{1+t^2} dt$$

et

$$\frac{d^{2}g_{k}}{dx^{2}} = \frac{d}{dx} \left(\frac{dg_{k}}{dx} \right) = \int_{0}^{k} \frac{d}{dx} \left(-\frac{te^{-xt}}{1+t^{2}} \right) dt = \int_{0}^{k} \frac{t^{2}e^{-xt}}{1+t^{2}} dt$$

nous déduisons que

$$\frac{d^2g_k}{dx^2} + g_k = \int_0^k e^{-xt} dt = \left[-\frac{e^{-xt}}{x} \right]_0^k = \frac{1 - e^{kx}}{x},$$
 (2.3)

$$g_k(0) = \int_0^k \frac{1}{1+t^2} dt = [\arctan(t)]_0^k = \arctan(k),$$
 (2.4)

$$\frac{dg_k(0)}{dx} = \int_0^k -\frac{t}{1+t^2} dt = -\frac{1}{2} \left[\ln(1+t^2) \right]_0^k = -\frac{1}{2} \ln(1+k^2). \tag{2.5}$$

Prenant en compte (2.3), (2.4), (2.5) et substituant dans (2.2), nous obtenons

$$\frac{d^2 f_k}{dx^2} + f_k = \frac{1 - e^{-kx}}{x} H + \arctan(k) \delta_0' - \frac{1}{2} \ln\left(1 + k^2\right) \delta_0 \qquad \text{dans } \mathcal{D}'(\mathbb{R}). \tag{2.6}$$

3) Soit

$$f(x) = H(x) g(x)$$
 avec $g(x) = \int_0^{+\infty} \frac{e^{-xt}}{1+t^2} dt$.

De simples calculs montrent que

$$f(x) - f_k(x) = H(x) (g(x) - g_k(x)) = H(x) \int_{t_k}^{+\infty} \frac{e^{-xt}}{1 + t^2} dt.$$

Il est facile de voir que

$$0 \le \frac{e^{-xt}}{1+t^2} \le \frac{1}{1+t^2} \qquad \forall x \ge 0 \text{ et } t \ge 0$$

et donc

$$0 \le f(x) - f_k(x) \le \int_k^{+\infty} \frac{1}{1 + t^2} dt = \left[\arctan(t)\right]_k^{+\infty} = \left(\frac{\pi}{2} - \arctan(k)\right)$$
 (2.7)

4. Grâce à (2.7), on obtient que

$$f_k(x) \leq f(x)$$
 p.p. dans $\mathbb R$ avec $f \in L^1_{loc}(\mathbb R)$, $\lim_{k \to +\infty} f_k(x) = f(x)$.

Utilisant le théorème de convergence dominée, il vient que

$$\lim_{k \to +\infty} \langle f_k, \phi \rangle = \lim_{k \to +\infty} \int_{\mathbb{R}} f_k(x) \phi(x) \, dx = \int_{\mathbb{R}} f(x) \phi(x) \, dx = \langle f, \phi \rangle \qquad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

Ceci prouve que la suite de distributions régulières $(f_k)_k$ converge vers la distribution régulière f dans $\mathcal{D}'(\mathbb{R})$.

5. Utilisant la définition de la dérivée, il vient alors que

$$\lim_{k \to +\infty} \left\langle \frac{d^2 f_k}{dx^2}, \phi \right\rangle = \lim_{k \to +\infty} (-1)^2 \left\langle f_k, \frac{d^2 \phi}{dx^2} \right\rangle = (-1)^2 \left\langle f, \frac{d^2 \phi}{dx^2} \right\rangle = \left\langle \frac{d^2 f}{dx^2}, \phi \right\rangle$$

pour tout $\phi \in \mathcal{D}(\mathbb{R})$. Autrement dit la suite de distributions régulières $\left(\frac{d^2f_k}{dx^2}\right)_k$ converge vers la distribution régulière $\frac{d^2f}{dx^2}$ dans $\mathcal{D}'(\mathbb{R})$. Passant alors à la limite dans (2.6), on obtient

$$\frac{d^2f}{dx^2} + f = \frac{\pi}{2}\delta_0' + \lim_{k \to +\infty} \left(\frac{1 - e^{-kx}}{x} H - \frac{1}{2} \ln\left(1 + k^2\right) \delta_0 \right) \qquad \text{dans } \mathcal{D}'(\mathbb{R}).$$

Exercice 3. Soit $a \in \mathbb{R}$. Montrer que l'équation différentielle

$$\frac{d^2E}{dx^2} + aE = \delta_0 \qquad \text{dans } \mathcal{D}'(\mathbb{R})$$

admet au moins une solution.

Indication. Chercher la solution sous la forme E = Hz où z est une fonction à définir.

Corrigé. Soit $a \in \mathbb{R}$ et soit z la solution de l'équation différentielle homogène

$$\begin{cases} \frac{d^2z}{dx^2} + az = 0\\ z(0) = 0, \quad \frac{dz}{dx}(0) = 1. \end{cases}$$

Il est facile de voir que

$$\frac{dE}{dx} = \frac{d}{dx}(zH) = \frac{dz}{dx}H + z\frac{dH}{dx} = \frac{dz}{dx}H + z\delta_0 = \frac{dz}{dx}H + z(0)\delta_0 = \frac{dz}{dx}H,$$

et donc

$$\frac{d^2E}{dx^2} = \frac{d}{dx}\left(\frac{dz}{dx}H\right) = \frac{d^2z}{dx^2}H + \frac{dz}{dx}\frac{dH}{dx} = \frac{d^2z}{dx^2}H + \frac{dz}{dx}(0)\frac{dH}{dx} = \frac{d^2z}{dx^2}H + \delta_0.$$

Par conséquent

$$\frac{d^2E}{dx^2} + aE = \left(\frac{d^2z}{dx^2} + az\right)H + \delta_0 = \delta_0$$

montrant ainsi que E=zH est une solution élémentaire.

2.3.3 Examen de rattrapage 2018-2019

Exercice 1. a) Soit $\alpha_0, \dots, \alpha_n$ des nombres réels et soit $f \in L^1_{loc}(\mathbb{R})$. Montrer que la forme linéaire définie par

$$\langle T, \phi \rangle = \int_{\mathbb{R}} f(x)\phi(x) dx + \sum_{i=0}^{n} \alpha_{i}\phi^{(i)}(0) \qquad \forall \phi \in \mathcal{D}(\mathbb{R})$$

détermine une distribution dans \mathbb{R} . Quel est son ordre?

b) Exprimer T en fonction de T_f , de la distribution de Dirac et de ses dérivées.

Corrigé. a) Soit K un compact de \mathbb{R} et soit ϕ une fonction de $\mathcal{D}(K)$. On a

$$\begin{aligned} |\langle T, \phi \rangle| &= \left| \int_{\mathbb{R}} f(x) \phi(x) \, dx + \sum_{j=0}^{n} \alpha_{j} \phi^{(j)}(0) \right| \\ &= \left| \int_{K} f(x) \phi(x) \, dx + \sum_{j=0}^{n} \alpha_{j} \phi^{(j)}(0) \right| \\ &\leq \left| \int_{K} f(x) \phi(x) \, dx \right| + \left| \sum_{j=0}^{n} \alpha_{j} \phi^{(j)}(0) \right| \\ &\leq \int_{K} |f(x) \phi(x)| \, dx + \sum_{j=0}^{n} |\alpha_{j}| \left| \phi^{(j)}(0) \right| \\ &\leq \|f\|_{L^{1}(K)} \|\phi\|_{C(K)} + \sum_{j=0}^{n} |\alpha_{j}| \left\| \phi^{(j)} \right\|_{C(K)} \\ &\leq \left(\|f\|_{L^{1}(K)} + \sum_{j=0}^{n} |\alpha_{j}| \right) \sum_{j=0}^{n} \left\| \phi^{(j)} \right\|_{C(K)}. \end{aligned}$$

D'après le critère de continuité, nous déduisons que T est continue d'ordre n.

b) Il est clair que

$$\langle T, \phi \rangle = \langle T_f, \phi \rangle + \sum_{j=0}^n \alpha_j \phi^{(j)}(0)$$

$$= \langle T_f, \phi \rangle + \sum_{j=0}^n \alpha_j \left\langle \delta_0, \phi^{(j)} \right\rangle$$

$$= \langle T_f, \phi \rangle + \sum_{j=0}^n \alpha_j (-1)^j \left\langle \delta_0^{(j)}, \phi \right\rangle$$

$$= \langle T_f, \phi \rangle + \left\langle \sum_{j=0}^n (-1)^j \alpha_j \delta_0^{(j)}, \phi \right\rangle$$

$$= \left\langle T_f + \sum_{j=0}^n (-1)^j \alpha_j \delta_0^{(j)}, \phi \right\rangle \quad \forall \phi \in \mathcal{D}(\mathbb{R}).$$

Autrement dit $T = T_f + \sum_{j=0}^n (-1)^j \alpha_j \delta_0^{(j)}$.

2.3.4 Examen de rattrapage 2019-2020

Exercice 1. Pour tout $n \geq 1$, on considère la distribution $T_n = n\left(\delta_{\frac{1}{n}} - \delta_{-\frac{1}{n}}\right)$. Montrer que la suite $(T_n)_{n\geq 1}$ converge dans $\mathcal{D}'(\mathbb{R})$ et calculer sa limite dans $\mathcal{D}'(\mathbb{R})$.

Corrigé. Soit $\phi \in \mathcal{D}(\mathbb{R})$. Alors

$$\langle T_n, \phi \rangle = n \left\langle \delta_{\frac{1}{n}}, \phi \right\rangle - n \left\langle \delta_{-\frac{1}{n}}, \phi \right\rangle$$

$$= n \left(\phi \left(\frac{1}{n} \right) - \phi \left(-\frac{1}{n} \right) \right) = \frac{\phi \left(\frac{1}{n} \right) - \phi \left(-\frac{1}{n} \right)}{\frac{1}{n}}$$

$$= \frac{\phi \left(\frac{1}{n} \right) - \phi(0)}{\frac{1}{n}} + \frac{\phi \left(-\frac{1}{n} \right) - \phi(0)}{-\frac{1}{n}} \forall \phi \in \mathcal{D}(\mathbb{R}).$$

Par conséquent

$$\lim_{n \to +\infty} \langle T_n, \phi \rangle = \lim_{n \to +\infty} \frac{\phi\left(\frac{1}{n}\right) - \phi(0)}{\frac{1}{n}} + \lim_{n \to +\infty} \frac{\phi\left(-\frac{1}{n}\right) - \phi(0)}{-\frac{1}{n}}$$
$$= \phi'(0) + \phi'(0) = 2\phi'(0)$$
$$= 2 \langle \delta_0, \phi' \rangle = -2 \langle \delta'_0, \phi \rangle,$$

i.e.

$$\lim_{n \to +\infty} T_n = -2\delta_0' \quad \text{dans } \mathcal{D}'(\mathbb{R}).$$

Exercice 2. Soit Ω un ouvert et $p \in [1, +\infty[$. Montrer qu'une fonction dans $L^p_{loc}(\Omega)$ définit une distribution d'ordre 0.

Corrigé. Soit $f \in L^p_{loc}(\Omega)$, K un compact de Ω et $\phi \in \mathcal{D}(K)$. Utilisant l'inégalité de H'older, on obtient

$$\begin{aligned} |\langle f, \phi \rangle| &= \left| \int_{\Omega} f(x) \phi(x) \, dx \right| = \left| \int_{K} f(x) \phi(x) \, dx \right| \\ &\leq \int_{K} |f(x)| \, |\phi(x)| \, dx \leq \|f\|_{L^{1}(K)} \|\phi\|_{C(K)} \\ &\leq \|1\|_{L^{p'}(K)} \|f\|_{L^{p}(K)} \|\phi\|_{C(K)} = |K|^{\frac{1}{p'}} \|f\|_{L^{p}(K)} \|\phi\|_{C(K)}, \end{aligned}$$

et donc d'après le critère de continuité, f est un élément de $\mathcal{D}'(\Omega)$ d'ordre 0.

Problème. On considère la fonction sur \mathbb{R}^2 donnée par

$$E(x,t) = \frac{H(t)}{\sqrt{4\pi t}} e^{-\frac{x^2}{4t}}, \qquad (x,t) \in \mathbb{R}^2,$$

où H est la fonction indicatrice de $]0, +\infty[$.

- **1.** Montrer que l'on peut associer à la fonction E une distribution d'ordre 0 sur \mathbb{R}^2 .
- **2.** Montrer que pour tout t > 0 et tout $x \in \mathbb{R}$, on a

$$\frac{\partial}{\partial t} \left(\frac{1}{\sqrt{4\pi t}} e^{-\frac{x^2}{4t}} \right) = \frac{\partial^2}{\partial x^2} \left(\frac{1}{\sqrt{4\pi t}} e^{-\frac{x^2}{4t}} \right).$$

3. Soit $\varepsilon > 0$ et soit $\phi \in \mathcal{D}(\mathbb{R}^2)$. On pose

$$I_{\varepsilon} = -\int_{\mathbb{R}} \int_{\varepsilon}^{+\infty} E(x,t) \frac{\partial}{\partial t} \phi(x,t) dt dx$$
 et $J_{\varepsilon} = -\int_{\mathbb{R}} \int_{\varepsilon}^{+\infty} E(x,t) \frac{\partial^2}{\partial x^2} \phi(x,t) dt dx$.

i) Montrer que

$$I_{\varepsilon} = \int_{\mathbb{R}} E(x, \varepsilon) \, \phi(x, \varepsilon) \, dx + \int_{\mathbb{R}} \int_{\varepsilon}^{+\infty} \frac{\partial}{\partial t} \left(E(x, t) \right) \phi(x, t) \, dt dx.$$

En déduire que

$$I_{\varepsilon} = \int_{\mathbb{R}} E(x, \varepsilon) \, \phi(x, \varepsilon) \, dx + \int_{\mathbb{R}} \int_{\varepsilon}^{+\infty} \frac{\partial^{2}}{\partial x^{2}} \left(E(x, t) \right) \phi(x, t) \, dt dx.$$

ii) Utilisant Fubini et deux intégrations par parties, montrer que

$$I_{\varepsilon} = \int_{\mathbb{R}} E(x, \varepsilon) \, \phi(x, \varepsilon) \, dx - J_{\varepsilon}.$$

iii) Grâce à un changement de variables adéquat, montrer que

$$I_{\varepsilon} + J_{\varepsilon} = \frac{1}{\sqrt{4\pi}} \int_{\mathbb{R}} e^{-\frac{y^2}{4}} \phi(\sqrt{\varepsilon} y, \varepsilon) dy.$$

Utilisant le théorème de convergence dominée, en déduire que

$$\lim_{\varepsilon \to 0} (I_{\varepsilon} + J_{\varepsilon}) = \phi(0, 0).$$

Indication.
$$\frac{1}{\sqrt{4\pi}} \int_{\mathbb{D}} e^{-\frac{y^2}{4}} dy = 1$$
.

4. Montrer que

$$\left\langle \left(\frac{\partial}{\partial t} - \frac{\partial^2}{\partial x^2} \right) E, \phi \right\rangle_{\mathcal{D}'(\mathbb{R}^2), \mathcal{D}(\mathbb{R}^2)} = \lim_{\varepsilon \to 0} \left(I_{\varepsilon} + J_{\varepsilon} \right).$$

En déduire que

$$\left(\frac{\partial}{\partial t} - \frac{\partial^2}{\partial x^2}\right) E = S \qquad \text{dans } \mathcal{D}'(\mathbb{R}^2),$$

où $S \in \mathcal{D}'(\mathbb{R}^2)$ est une distribution à déterminer.

Corrigé. 1. Soit K un compact de \mathbb{R}^2 . Il existe a>0 tel que $K\subset [-a,a]^2$. On a alors

$$||E||_{L^{1}(K)} = \int_{K} E(x,t) \, dx dt$$

$$\leq \int_{-a}^{a} \int_{-a}^{a} E(x,t) \, dx dt = \int_{0}^{a} \int_{-a}^{a} \frac{1}{\sqrt{4\pi t}} e^{-\frac{x^{2}}{4t}} \, dx dt$$

$$\leq \int_{0}^{a} \int_{-a}^{a} \frac{1}{\sqrt{4\pi t}} \, dx dt = 2a\sqrt{\frac{a}{\pi}}.$$

La fonction E appartient donc à $L^1_{loc}(\mathbb{R}^2)$ et définit une distribution dans \mathbb{R}^2 d'ordre 0.

2. Des calculs standard mpntrent que pour tout t>0 et tout $x\in\mathbb{R}$, on a

$$\frac{\partial}{\partial t} \left(\frac{1}{\sqrt{4\pi t}} e^{-\frac{x^2}{4t}} \right) = \frac{\partial}{\partial t} \left(\frac{1}{\sqrt{4\pi t}} \right) e^{-\frac{x^2}{4t}} + \frac{1}{\sqrt{4\pi t}} \frac{\partial}{\partial t} \left(e^{-\frac{x^2}{4t}} \right)$$

$$= \left(-\frac{1}{2\sqrt{4\pi t^3}} + \frac{x^2}{4\sqrt{4\pi t^5}} \right) e^{-\frac{x^2}{4t}}$$

$$= \frac{\partial^2}{\partial x^2} \left(\frac{1}{\sqrt{4\pi t}} e^{-\frac{x^2}{4t}} \right).$$

3. Soit $\varepsilon > 0$ et soit $\phi \in \mathcal{D}(\mathbb{R}^2)$. On pose

$$I_{\varepsilon} = -\int_{\mathbb{D}} \int_{\varepsilon}^{+\infty} E(x,t) \, \frac{\partial \phi}{\partial t}(x,t) \, dt dx \quad \text{et} \quad J_{\varepsilon} = -\int_{\mathbb{D}} \int_{\varepsilon}^{+\infty} E(x,t) \, \frac{\partial^2 \phi}{\partial x^2}(x,t) \, dt dx.$$

i) Un simple intégration par parties, combinée à l'identité prouvée dans 2., montre que

$$I_{\varepsilon} = -\int_{\mathbb{R}} \left[E(x,t) \, \phi(x,t) \right]_{t=\varepsilon}^{t=+\infty} \, dx + \int_{\mathbb{R}} \int_{\varepsilon}^{+\infty} \frac{\partial E}{\partial t}(x,t) \, \phi(x,t) \, dt dx$$
$$= \int_{\mathbb{R}} E(x,\varepsilon) \, \phi(x,\varepsilon) \, dx + \int_{\mathbb{R}} \int_{\varepsilon}^{+\infty} \frac{\partial E}{\partial t}(x,t) \, \phi(x,t) \, dt dx$$
$$= \int_{\mathbb{R}} E(x,\varepsilon) \, \phi(x,\varepsilon) \, dx + \int_{\mathbb{R}} \int_{\varepsilon}^{+\infty} \frac{\partial^{2} E}{\partial x^{2}}(x,t) \, \phi(x,t) \, dt dx.$$

ii) Utilisant i), Fubini et intégrant par parties deux fois, on obtient

$$I_{\varepsilon} = \int_{\mathbb{R}} E(x,\varepsilon) \, \phi(x,\varepsilon) \, dx + \int_{\mathbb{R}} \int_{\varepsilon}^{+\infty} \frac{\partial^{2} E}{\partial x^{2}}(x,t) \, \phi(x,t) \, dt dx$$

$$= \int_{\mathbb{R}} E(x,\varepsilon) \, \phi(x,\varepsilon) \, dx + \int_{\varepsilon}^{+\infty} \int_{\mathbb{R}} \frac{\partial^{2} E}{\partial x^{2}}(x,t) \, \phi(x,t) \, dx dt$$

$$= \int_{\mathbb{R}} E(x,\varepsilon) \, \phi(x,\varepsilon) \, dx + \int_{\varepsilon}^{+\infty} \underbrace{\left[E(x,t) \, \phi(x,t)\right]_{x=-\infty}^{x=+\infty}}_{x=-\infty} dt$$

$$- \int_{\varepsilon}^{+\infty} \int_{\mathbb{R}} \frac{\partial E}{\partial x}(x,t) \, \frac{\partial \phi}{\partial x}(x,t) \, dx dt$$

$$= \int_{\mathbb{R}} E(x,\varepsilon) \, \phi(x,\varepsilon) \, dx - \int_{\varepsilon}^{+\infty} \int_{\mathbb{R}} \frac{\partial E}{\partial x}(x,t) \, \frac{\partial \phi}{\partial x}(x,t) \, dx dt$$

$$= \int_{\mathbb{R}} E(x,\varepsilon) \, \phi(x,\varepsilon) \, dx - \int_{\varepsilon}^{+\infty} \underbrace{\left[E(x,t) \, \frac{\partial \phi}{\partial x}(x,t)\right]_{x=-\infty}^{x=+\infty}}_{x=-\infty} dt$$

$$+ \int_{\varepsilon}^{+\infty} \int_{\mathbb{R}} E(x,t) \, \frac{\partial^{2} \phi}{\partial x}(x,t) \, dx dt$$

$$= \int_{\mathbb{R}} E(x,\varepsilon) \, \phi(x,\varepsilon) \, dx - J_{\varepsilon}.$$

iii) Grâce à ii), on a

$$I_{\varepsilon} + J_{\varepsilon} = \int_{\mathbb{R}} E(x, \varepsilon) \, \phi(x, \varepsilon) \, dx = \int_{\mathbb{R}} \frac{1}{\sqrt{4\pi \, \varepsilon}} \, e^{-\frac{x^2}{4\varepsilon}} \, \phi(x, \varepsilon) \, dx.$$

Utilisant le changement de variables $y = \frac{x}{\sqrt{\varepsilon}}$, il vient que

$$I_{\varepsilon} + J_{\varepsilon} = \frac{1}{\sqrt{4\pi}} \int_{\mathbb{R}} e^{-\frac{y^2}{4}} \phi(\sqrt{\varepsilon} y, \varepsilon) dy.$$

Utilisant le théorème de convergence dominée, en déduire que

$$\lim_{\varepsilon \to 0} (I_{\varepsilon} + J_{\varepsilon}) = \frac{1}{\sqrt{4\pi}} \int_{\mathbb{R}} \lim_{\varepsilon \to 0} e^{-\frac{y^2}{4}} \phi(\sqrt{\varepsilon} y, \varepsilon) \, dy$$
$$= \frac{1}{\sqrt{4\pi}} \int_{\mathbb{R}} \lim_{\varepsilon \to 0} e^{-\frac{y^2}{4}} \phi(0, 0) \, dy$$
$$= \phi(0, 0) \frac{1}{\sqrt{4\pi}} \int_{\mathbb{R}} \lim_{\varepsilon \to 0} e^{-\frac{y^2}{4}} \, dy$$
$$= \phi(0, 0) = \langle \delta_{(0, 0)}, \phi \rangle.$$

4. Utilisant la dérivation distributionnelle, on obtient

$$\left\langle \left(\frac{\partial}{\partial t} - \frac{\partial^{2}}{\partial x^{2}} \right) E, \phi \right\rangle_{\mathcal{D}'(\mathbb{R}^{2}), \mathcal{D}(\mathbb{R}^{2})} = \left\langle \frac{\partial E}{\partial t}, \phi \right\rangle_{\mathcal{D}'(\mathbb{R}^{2}), \mathcal{D}(\mathbb{R}^{2})} - \left\langle \frac{\partial^{2} E}{\partial x^{2}}, \phi \right\rangle_{\mathcal{D}'(\mathbb{R}^{2}), \mathcal{D}(\mathbb{R}^{2})} \\
= -\left\langle E, \frac{\partial \phi}{\partial t} \right\rangle_{\mathcal{D}'(\mathbb{R}^{2}), \mathcal{D}(\mathbb{R}^{2})} - (-1)^{2} \left\langle E, \frac{\partial^{2} \phi}{\partial x^{2}} \right\rangle_{\mathcal{D}'(\mathbb{R}^{2}), \mathcal{D}(\mathbb{R}^{2})} \\
= -\left\langle E, \frac{\partial \phi}{\partial t} + \frac{\partial^{2} \phi}{\partial x^{2}} \right\rangle_{\mathcal{D}'(\mathbb{R}^{2}), \mathcal{D}(\mathbb{R}^{2})} \\
= -\int_{\mathbb{R}} \int_{\mathbb{R}} E(x, t) \left(\frac{\partial \phi}{\partial t}(x, t) + \frac{\partial^{2} \phi}{\partial x^{2}}(x, t) \right) \\
= \lim_{\varepsilon \to 0} \left(I_{\varepsilon} + J_{\varepsilon} \right).$$

Prenant alors en compte l'alinéa précédent, nous déduisons que

$$\left\langle \left(\frac{\partial}{\partial t} - \frac{\partial^2}{\partial x^2} \right) E, \phi \right\rangle_{\mathcal{D}'(\mathbb{R}^2), \mathcal{D}(\mathbb{R}^2)} = \left\langle \delta_{(0,0)}, \phi \right\rangle \qquad \forall \phi \in \mathcal{D}(\mathbb{R}^2).$$

Autrement dit

$$\left(\tfrac{\partial}{\partial t} - \tfrac{\partial^2}{\partial x^2}\right) E = \delta_{(0,0)} \qquad \text{dans } \mathcal{D}'(\mathbb{R}^2).$$