
(Total for question = 6 marks)

Mark Scheme

Q1.

Question Number	Answer	Mark
	В	1

Q2.

Question	Answer	Mark
Number		
	D larger ball bearing in liquid with lower viscosity	1
	Incorrect Answers:	
	A smaller ball bearing in higher viscosity will fall most slowly	
	B ball bearing in higher viscosity will fall the more slowly than in lower viscosity	
	C smaller ball bearing will fall more slowly than a larger ball bearing	

Question Number	Acceptable Answers		Additional guidance	Mark
(i)	 Focus image of distant/far object on to a screen 	(1)	MP2 dependent on MP1	
	Measure distance from lens to screen	(1)		
	Or			
	 Use <u>parallel</u> rays of light 	(1)		2
	Measure distance from lens to	(1)		
	the point where the rays			
	converge			
(ii)	Greater <u>refraction</u>	(1)		
	 To converge (parallel) rays at a 	(1)		2
	point closer to the lens			_
(iii)	Photograph 2 has a greater	(1)		
	magnification			
	 so v is greater 	(1)		
	 since u is constant 	(1)		
	 So f is greater 	(1)	MP5 dependent on MP2 and	
	 Hence photograph 2 taken with lens of focal length 200 mm 	(1)	MP4	5

Question Number	Acceptable answers		Additional guidance	Mark
(i)	• Use of $\ln 2 = \lambda t_{1/2}$ • $\lambda = 4.92 \times 10^{-18} \text{ (s}^{-1}\text{)}$	(1) (1)	Example of calculation $\lambda = \ln 2 / 1.41 \times 10^{17} \text{ s}$ = 4.92 × 10 ⁻¹⁸ s ⁻¹	2
(ii)	 Calculate rate = counts / time Subtract background radiation Use of A = - λN Calculates N × atomic mass Calculates percentage by mass Answer = 0.17% (ecf for λ from (a)(i)) 	(1) (1) (1) (1) (1) (1)	Example of calculation background rate = $525 / (10 \times 60)$ s = 0.875 s^{-1} vase count rate = $3623 / (5 \times 60)$ s = 12.077 s^{-1} corrected rate = 11.2 s^{-1} for whole vase = $11.2 \text{ s}^{-1} \times 0.0177 \text{ m}^2 / 6.36 \times 10^{-5} \text{ m}^2$ = 3117 s^{-1} $N = 3117 / 4.91 \times 10^{-18} \text{ s}^{-1} = 6.348 \times 10^{20}$ Mass = $6.348 \times 10^{20} \times 238 \times 1.66 \times 10^{-27} \text{ kg} = 2.51 \times 10^{-4} \text{ kg}$ Percentage = $2.51 \times 10^{-4} \text{ kg} \times 100 / 0.149 = 0.17 \%$	6
(iii)	Alpha particles could have been absorbed by the glass Alpha particles will be emitted in all directions, not just towards the detector Some alpha particles could have been detected from other parts of the vase The count could include radiation from decay products	(1) (1) (1) (1)		2

Some alpha particles could be	
absorbed by the GM tube window	

Q5.

Question	Acceptable Answers	Additional guidance	Mark
Number			
(i)	• Use of $v = \frac{s}{t}$ (1)	Example of Calculation	
	• Use of $V = \frac{4}{3}\pi r^3$ (1)	$v = \frac{0.5}{3.9} = 0.13 \text{ (m s}^{-1}\text{)}$	
	• Use of $v = \frac{Vg(\rho_s - \rho_l)}{6\pi r\eta}$ (1)	$\eta = \frac{\frac{4}{3}\pi(4\times10^{-3})^3\times9.81\times(7800-1300)}{6\pi\times4\times10^{-3}\times0.13} = 1.8 \text{ Pa s}$	
	• $\eta = 1.8 \text{ Pa s}$ (1)	$\eta = \frac{1.8 \text{ Pa s}}{6\pi \times 4 \times 10^{-3} \times 0.13} = 1.8 \text{ Pa s}$ Accept kg m ⁻¹ s ⁻¹ / N s m ⁻²	4

Question Number	Acceptable Answers	Additional guidance	Mark
(ii)	Laminar flow Or less/no (1) turbulent flow So Stoke's law applies Or sphere falls at a more constant rate		2

Q6.

Question Number	Answer		Mark
(i)	(Stokes' law is only for) small (solid) spheres		
	Or(Stokes' law is only for) laminar flow		
	Or there is turbulent flow	(1)	
	Additional/less drag due to the bubbles having a non-stationary surface		
	Or Stokes' law cannot be applied to a gas bubble because they have a non-		
	stationary surface Or sides of container too close to bubbles		
	Or volume/shape changes as it rises	(1)	2
	Of volume/shape changes as it rises	(1)	2
* (ii)	(QWC – work must be clear and organised in a logical manner using technical terminology where appropriate)		
	Either: Resultant forces method 4 marks		
	Measure the diameter/radius of the sphere (from the photograph)	(1)	
	Use of $4\pi r^3/3$ to find the volume of the sphere	(1)	
	Use $V \rho g$ to find the upthrust / weight of the bubble	(1)	
	Drag = upthrust - weight	(1)	
	Or: Stokes' law method 2 marks		
	Measure the diameter/radius of the sphere (from the photograph)	(1)	
	Calculate the (terminal) velocity using $v = s/t$ and substitute into $F = 6\pi r \eta v$	(1)	4

Question Number	Acceptable Answers		Additional guidance	Mark
(i)	 Recognises resultant force on raindrop = 0 Or Uses W=F(+U) Use of F = 6πηrν Use of U = weight of air displaced Or U = ⁴/₃ρ_aπr³g Or U = ρ_aVg and V = ⁴/₃πr³ 	(1) (1)	Example of Calculation $W=F+U$ $F = 6\pi \times 1.3 \times 10^{-5} \text{Nm}^{-2} \times 1.0 \times 10^{-4} \times v = (2.45 \times 10^{-8} v) \text{ (N)}$ $U = 1.225 \text{ kg m}^{-3} \times \frac{4}{8}\pi (0.0001 \text{ m})^3 \times 9.81 \text{m s}^{-2} = 4.9 \times 10^{-11} \text{ (N)}$	
	Or $U = mg$ and $\rho = \frac{m}{v}$ and $V = \frac{4}{3}\pi r^3$ Or states upthrust is negligible • 1.7 m s ⁻¹	(1)	$v = \frac{4.1 \times 10^{-8} \text{ N} - 4.9 \times 10^{-11} \text{ N}}{2.45 \times 10^{-8}} = 1.7 \text{ m s}^{-1}$	4

(ii)	turbulent flow (so) Stokes law does not apply	(1) (1)	,

Q8.

Question Number	Acceptable Answers		Additional guidance	Mark
	 See drag = 6πrην see Upthrust = ρ_lVg see weight of sphere = ρ_s V g 	(1) (1) (1)	Accept F or D for drag Do not accept $U = \rho_s Vg$ for MP2 Accept ρ_f for ρ_l Example of Calculation At terminal velocity: Weight =Drag + Upthrust Therefore $m_s g = 6\pi r \eta v + m_l g$ $\rho_s Vg = 6\pi r \eta v + \rho_l Vg$ Rearranging $v = \frac{\rho_s Vg - \rho_l Vg}{6\pi r \eta}$ $v = \frac{Vg(\rho_s - \rho_l)}{6\pi r \eta}$	3

Question	Acceptable Answers		Additional guidance	Mark
Number				
(i)	• Use of $v = \frac{s}{t}$	(1)	Example of Calculation	
	• Use of $V = \frac{4}{3}\pi r^3$	(1)	$\eta = \frac{\frac{4}{3}\pi \left(\frac{7.0\times10^{-3} \text{ m}}{2}\right)^{3}\times9.81 \text{ m s}^{-2}\times(7800 - 1430)\text{kg m}^{-3}}{6\pi\times\frac{7.0\times10^{-3}\text{m}}{2}\times\frac{0.8 \text{ m}}{5.3 \text{ s}}}$	
	• Use of $v = \frac{vg(\rho_s - \rho_l)}{6\pi r \eta}$	(1)	$6\pi \times \frac{7.0 \times 10^{-3} \text{m}}{2} \times \frac{0.8 \text{ m}}{5.3 \text{ s}}$ $\eta = 1.13 \text{ Pa s}$	
	• $\eta = 1.1 \text{ (Pa s)}$	(1)		4
(ii)	With the large sphere the speed will be greater so Stokes' law won't apply The flow is turbulent or not laminar	(1)		2
(iii)	Any one Can eliminate human reaction time Can playback to measure time more accurately Can check that terminal velocity is reached	(1)		1

Question Number	Answer	Additional Guidance	Mark
	• Use of $F = 6\pi \eta r v$ (1)	Example of calculation	6
		$F = 6\pi \times 1.0 \times 10^{-3} \text{ kg m}^{-1} \text{ s}^{-1} \times 2.5 \times 10^{-7} \text{ m} \times v$,
	and $V = \frac{4}{3}\pi r^3$	$V = \frac{4}{3}\pi (2.5 \times 10^{-7} \text{ m})^3 = 6.5 \times 10^{-20} \text{ m}^3$	
	• Recognises $W = F + U$ (1)	$U = \rho_w V g = 1000 \text{ kg m}^{-3} \times 6.5 \times 10^{-20} \text{ m}^3 \times 9.81$	m s ⁻¹
	• Use of $v = \frac{s}{t}$ (1)		
	Either	$W = 2650 \text{ kg m}^{-3} \times 6.5 \times 10^{-20} \text{ m}^3 \times 9.81 \text{ m s}^{-1}$ $W = 1.7 \times 10^{-15} \text{ N}$	
	• $t = 1.7 \times 10^7 \text{ s}$ (1) • comparison with 6 months	$F = 1.7 \times 10^{-15} \mathrm{N} - 6.4 \times 10^{-16} \mathrm{N}$ $F = 1.1 \times 10^{-15} \mathrm{N}$	
	and conclusion consistent with their answer	$v = \frac{1.1 \times 10^{-15} \text{ N}}{6\pi \times 1.0 \times 10^{-3} \text{kg m}^{-1} \text{s}^{-1} \times 2.5 \times 10^{-7}}$	m
	Or	$v = 2.3 \times 10^{-7} \mathrm{m s^{-1}}$	
	• $s = 3.3 - 3.6 \text{ m}$ (1)	$t = \frac{4 \text{ m}}{2.3 \times 10^{-7} \text{ m s}^{-1}} = 1.7 \times 10^7 \text{ s}$	
	comparison with 4 m and conclusion consistent	t = 197 days which is 6.6 months	
	with their answer	accept 1 month = 28 to 31 days giving $t = 6.3$ to 7.0 months	