Ejecicicos

Gerald Palomino Monge 22 de septiembre de 2017

Ejercicios R Markdown

+

savepar

```
Ejercicio 1:
operaciones
1+2*(3+4)
## [1] 15
4**3+3**2+1
## [1] 74
  sqrt((4+3)*(2+1))
## [1] 4.582576
((1+2)/(3+4))
## [1] 0.4285714
desviacion estandar
 sd(1:100)
## [1] 29.01149
demostracion de simbolos matematicos
  demo(plotmath)
##
##
##
    demo(plotmath)
##
##
## > # Copyright (C) 2002-2016 The R Core Team
## >
## > require(datasets)
##
## > require(grDevices); require(graphics)
##
## > ## --- "math annotation" in plots :
## >
## > ######
## > # create tables of mathematical annotation functionality
## > #####
## > make.table <- function(nr, nc) {</pre>
         savepar <- par(mar=rep(0, 4), pty="s")</pre>
## +
         plot(c(0, nc*2 + 1), c(0, -(nr + 1)),
## +
              type="n", xlab="", ylab="", axes=FALSE)
```

```
## + }
##
## > get.r <- function(i, nr) {</pre>
         i %% nr + 1
## + }
##
## > get.c <- function(i, nr) {</pre>
         i %/% nr + 1
## +
## + }
##
## > draw.title.cell <- function(title, i, nr) {</pre>
## +
         r <- get.r(i, nr)
## +
         c <- get.c(i, nr)</pre>
         text(2*c - .5, -r, title)
## +
## +
         rect((2*(c-1) + .5), -(r - .5), (2*c + .5), -(r + .5))
## + }
##
## > draw.plotmath.cell <- function(expr, i, nr, string = NULL) {</pre>
## +
         r <- get.r(i, nr)
         c <- get.c(i, nr)</pre>
## +
## +
         if (is.null(string)) {
              string <- deparse(expr)</pre>
## +
              string <- substr(string, 12, nchar(string) - 1)</pre>
## +
## +
         text((2*(c-1) + 1), -r, string, col="grey50")
## +
         text((2*c), -r, expr, adj=c(.5,.5))
## +
         rect((2*(c-1) + .5), -(r - .5), (2*c + .5), -(r + .5), border="grey")
## + }
##
## > nr <- 20
##
## > nc <- 2
## > oldpar <- make.table(nr, nc)</pre>
```

Arithmetic Operators		Lists	
x + y	x + y	list(x, y, z)	x, y, z
x – y	x – y	Relations	
x * y	ху	x == y	x = y
x/y	x/y	x != y	x ≠ y
x %+-% y	$x \pm y$	x < y	x < y
x%/%y	x ÷ y	x <= y	x ≤ y
x %*% y	$x \times y$	x > y	x > y
x %.% y	x · y	x >= y	$x \ge y$
-X	- X	x %~~% y	x ≈ y
+X	+ X	x %=~% y	$x \cong y$
Sub/Superscripts		x %==% y	$x \equiv y$
x[i]	Xi	k %prop% y	x ∝ y
x^2	χ^2	x %~% y	x ~ y
Juxtaposition		Typeface	
x * y	ху	plain(x)	Χ
paste(x, y, z)	xyz	italic(x)	X
Radicals		bold(x)	X
sqrt(x)		bolditalic(x)	X
sqrt(x, y)	√X	underline(x)	<u>X</u>

```
##
## > i <- 0
## > draw.title.cell("Arithmetic Operators", i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(x + y), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(x - y), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(x * y), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(x / y), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(x %+-% y), i, nr); i <- i + 1
##
## > draw.plotmath.cell(expression(x %/% y), i, nr); i <- i + 1
##
## > draw.plotmath.cell(expression(x %*% y), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(x %.% y), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(-x), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(+x), i, nr); i <- i + 1</pre>
##
## > draw.title.cell("Sub/Superscripts", i, nr); i <- i + 1</pre>
## > draw.plotmath.cell(expression(x[i]), i, nr); i <- i + 1</pre>
##
```

```
## > draw.plotmath.cell(expression(x^2), i, nr); i <- i + 1
##
## > draw.title.cell("Juxtaposition", i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(x * y), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(paste(x, y, z)), i, nr); i <- i + 1</pre>
##
## > draw.title.cell("Radicals", i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(sqrt(x)), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(sqrt(x, y)), i, nr); i <- i + 1</pre>
##
## > draw.title.cell("Lists", i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(list(x, y, z)), i, nr); i <- i + 1</pre>
## > draw.title.cell("Relations", i, nr); i <- i + 1</pre>
## > draw.plotmath.cell(expression(x == y), i, nr); i <- i + 1
## > draw.plotmath.cell(expression(x != y), i, nr); i <- i + 1</pre>
## > draw.plotmath.cell(expression(x < y), i, nr); i <- i + 1</pre>
## > draw.plotmath.cell(expression(x <= y), i, nr); i <- i + 1</pre>
## > draw.plotmath.cell(expression(x > y), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(x >= y), i, nr); i <- i + 1
##
## > draw.plotmath.cell(expression(x %~~% y), i, nr); i <- i + 1
##
## > draw.plotmath.cell(expression(x %=~% y), i, nr); i <- i + 1
##
## > draw.plotmath.cell(expression(x %==% y), i, nr); i <- i + 1
##
## > draw.plotmath.cell(expression(x %prop% y), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(x %~% y), i, nr); i <- i + 1
##
## > draw.title.cell("Typeface", i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(plain(x)), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(italic(x)), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(bold(x)), i, nr); i <- i + 1</pre>
## > draw.plotmath.cell(expression(bolditalic(x)), i, nr); i <- i + 1</pre>
## > draw.plotmath.cell(expression(underline(x)), i, nr); i <- i + 1</pre>
##
```

```
## > # Need fewer, wider columns for ellipsis ...
## > nr <- 20
##
## > nc <- 2
##
## > make.table(nr, nc)
```

	Ellipsis		Arrows	
lis	t(x[1],, x[n])	₁ ,, X _n	x %<->% y	$x \leftrightarrow y$
X	$1] + + x[nX_1]$	$+\cdots + x_n$	x %->% y	$X \rightarrow Y$
list()	<[1], cdots, x[X]) ···, X _n	x %<-% y	$x \leftarrow y$
x[1] + Idots + x [[a]	$+ \dots + X_n$	x %up% y	x↑y
	Set Relat	ions	c%down% y	x↓y
Χ	%subset% y	$X \subset Y$	x %<=>% y	$X \Leftrightarrow Y$
x %	%subseteq% y	$X \subseteq Y$	x %=>% y	$x \Rightarrow y$
Χ	%supset% y	$x \supset y$	x %<=% y	$x \leftarrow y$
x %	%supseteq% y	$X \supseteq Y \rightarrow$	%dblup% y	x î y
x %	notsubset% y	x⊄yx°	%dbldown% y	x↓y
	x %in% y	$x \in y$	Symbolic N	lames
>	k %notin% y	x∉y Al	pha – Omega	$A - \Omega$
	Accent	s al	pha – omega	$\alpha - \omega$
	hat(x)	x p	hi1 + sigma1	$\varphi + \varsigma$
	tilde(x)	ĩ	Upsilon1	Υ
	ring(x)	×	infinity	∞
	bar(xy)	xy	32 * degree	32°
	widehat(xy)	хŷ	60 * minute	60′
\	videtilde(xy)	~ .	30 * second	30"

```
## $mar
## [1] 0 0 0 0
##
## $pty
## [1] "s"
##
##
## > i <- 0
## > draw.title.cell("Ellipsis", i, nr); i <- i + 1
## > draw.plotmath.cell(expression(list(x[1], ..., x[n])), i, nr); i <- i + 1
## > draw.plotmath.cell(expression(x[1] + ... + x[n]), i, nr); i <- i + 1
\#\# > draw.plotmath.cell(expression(list(x[1], cdots, x[n])), i, nr); i <- i + 1
## > draw.plotmath.cell(expression(x[1] + 1dots + x[n]), i, nr); i <- i + 1
## > draw.title.cell("Set Relations", i, nr); i <- i + 1</pre>
## > draw.plotmath.cell(expression(x %subset% y), i, nr); i <- i + 1</pre>
##
```

```
## > draw.plotmath.cell(expression(x %subseteq% y), i, nr); i <- i + 1
##
## > draw.plotmath.cell(expression(x %supset% y), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(x %supseteq% y), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(x %notsubset% y), i, nr); i <- i + 1
##
## > draw.plotmath.cell(expression(x %in% y), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(x %notin% y), i, nr); i <- i + 1</pre>
##
## > draw.title.cell("Accents", i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(hat(x)), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(tilde(x)), i, nr); i <- i + 1</pre>
## > draw.plotmath.cell(expression(ring(x)), i, nr); i <- i + 1
## > draw.plotmath.cell(expression(bar(xy)), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(widehat(xy)), i, nr); i <- i + 1</pre>
## > draw.plotmath.cell(expression(widetilde(xy)), i, nr); i <- i + 1
## > draw.title.cell("Arrows", i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(x %<->% y), i, nr); i <- i + 1
##
## > draw.plotmath.cell(expression(x %->% y), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(x %<-% y), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(x %up% y), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(x %down% y), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(x %<=>% y), i, nr); i <- i + 1
##
## > draw.plotmath.cell(expression(x %=>% y), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(x %<=% y), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(x %dblup% y), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(x %dbldown% y), i, nr); i <- i + 1</pre>
##
## > draw.title.cell("Symbolic Names", i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(Alpha - Omega), i, nr); i <- i + 1</pre>
## > draw.plotmath.cell(expression(alpha - omega), i, nr); i <- i + 1</pre>
##
```

```
## > draw.plotmath.cell(expression(phi1 + sigma1), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(Upsilon1), i, nr); i <- i + 1</pre>
## > draw.plotmath.cell(expression(infinity), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(32 * degree), i, nr); i <- i + 1
##
## > draw.plotmath.cell(expression(60 * minute), i, nr); i <- i + 1
##
## > draw.plotmath.cell(expression(30 * second), i, nr); i <- i + 1</pre>
## > # Need even fewer, wider columns for typeface and style ...
## > nr <- 20
##
## > nc <- 1
##
## > make.table(nr, nc)
## $mar
## [1] 0 0 0 0
##
## $pty
## [1] "s"
##
##
## > i <- 0
## > draw.title.cell("Style", i, nr); i <- i + 1</pre>
## > draw.plotmath.cell(expression(displaystyle(x)), i, nr); i <- i + 1</pre>
## > draw.plotmath.cell(expression(textstyle(x)), i, nr); i <- i + 1</pre>
## > draw.plotmath.cell(expression(scriptstyle(x)), i, nr); i <- i + 1</pre>
## > draw.plotmath.cell(expression(scriptscriptstyle(x)), i, nr); i <- i + 1</pre>
## > draw.title.cell("Spacing", i, nr); i <- i + 1</pre>
## > draw.plotmath.cell(expression(x ~~ y), i, nr); i <- i + 1</pre>
## > # Need fewer, taller rows for fractions ...
## > # cheat a bit to save pages
## > par(new = TRUE)
##
## > nr <- 10
##
## > nc <- 1
##
## > make.table(nr, nc)
```

Style		
displaystyle(x)	X	
textstyle(x)	X	
scriptstyle(x)	х	
scriptscriptstyle(x)	x	
Spacing		
X ~ ~Y	ху	

```
x + phantom(0) + y x + y

x + over(1, phantom(0)) x + -

Fractions
```

```
Fractions

frac(x, y) \frac{x}{y}

over(x, y) \frac{x}{y}

atop(x, y) \frac{x}{y}
```

```
## $mar
## [1] 0 0 0 0
##
## $pty
## [1] "s"
##
##
## > i <- 4
##
## > draw.plotmath.cell(expression(x + phantom(0) + y), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(x + over(1, phantom(0))), i, nr); i <- i + 1</pre>
##
## > draw.title.cell("Fractions", i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(frac(x, y)), i, nr); i <- i + 1</pre>
## > draw.plotmath.cell(expression(over(x, y)), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(atop(x, y)), i, nr); i <- i + 1</pre>
## > # Need fewer, taller rows and fewer, wider columns for big operators ...
## > nr <- 10
##
## > nc <- 1
##
## > make.table(nr, nc)
```

```
Big Operators
    sum(x[i], i = 1, n)
prod(plain(P)(X == x), x) \prod_{x} P(X = x)
 integral(f(x) * dx, a, b)
                                     f(x)dx
   union(A[i], i == 1, n)
                                     \bigcap_{i=1}^{n} A_i
 intersect(A[i], i == 1, n)
                                   \lim_{x\to 0} f(x)
   \lim(f(x), x \% -> \% 0)
                                   \min_{x \geq 0} g(x)
    min(g(x), x \ge 0)
            inf(S)
                                     inf S
                                     sup S
           sup(S)
```

```
## $mar
## [1] 0 0 0 0
##
## $pty
## [1] "s"
##
##
## > i <- 0
##
## > draw.title.cell("Big Operators", i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(sum(x[i], i=1, n)), i, nr); i <- i + 1</pre>
## > draw.plotmath.cell(expression(prod(plain(P)(X == x), x)), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(integral(f(x) * dx, a, b)), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(union(A[i], i==1, n)), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(intersect(A[i], i==1, n)), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(lim(f(x), x \%-\% 0)), i, nr); i <- i + 1
##
## > draw.plotmath.cell(expression(min(g(x), x >= 0)), i, nr); i <- i + 1
##
## > draw.plotmath.cell(expression(inf(S)), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(sup(S)), i, nr); i <- i + 1
##
## > nr <- 11
```

```
##
## > make.table(nr, nc)
```

	Grouping	
	{}(x, y)	(x, y)
	(x + y) * z	(x+y)z
	x^y + z	$x^y + z$
	$x^{(y + z)}$	$x^{(y+z)}$
	$x^{y} + z$	\mathbf{X}^{y+z}
gı	oup("(", list(a, b), "]")	(a, b]
bgr	oup("(", atop(x, y), ")")	$\begin{pmatrix} x \\ y \end{pmatrix}$
	group(Iceil, x, rceil)	ſxĺ
9	roup(Ifloor, x, rfloor)	[x]
	group(" ", x, " ")	x

```
## $mar
## [1] 0 0 0 0
##
## $pty
## [1] "s"
##
##
## > i <- 0
## > draw.title.cell("Grouping", i, nr); i <- i + 1</pre>
##
## > # Those involving '{ . }' have to be done "by hand"
## > draw.plotmath.cell(expression(\{\}(x, y)), i, nr, string="\{\}(x, y)"); i <- i + 1
##
## > draw.plotmath.cell(expression((x + y)*z), i, nr); i <- i + 1
##
## > draw.plotmath.cell(expression(x^y + z), i, nr); i <- i + 1</pre>
## > draw.plotmath.cell(expression(x^(y + z)), i, nr); i <- i + 1
## > draw.plotmath.cell(expression(x^{y + z}), i, nr, string="x^{y + z}"); i <- i + 1
## > draw.plotmath.cell(expression(group("(", list(a, b), "]")), i, nr); i <- i + 1</pre>
## > draw.plotmath.cell(expression(bgroup("(", atop(x, y), ")")), i, nr); i <- i + 1</pre>
## > draw.plotmath.cell(expression(group(lceil, x, rceil)), i, nr); i <- i + 1</pre>
##
```

```
## > draw.plotmath.cell(expression(group(lfloor, x, rfloor)), i, nr); i <- i + 1</pre>
##
## > draw.plotmath.cell(expression(group("|", x, "|")), i, nr); i <- i + 1</pre>
##
## > par(oldpar)
mil masotas
  mascotas=sample(c("perro","gato","pollo","pez dorado"),1000,replace = TRUE)
 mascotas[1:10]
## [1] "pollo"
                                    "pez dorado" "pez dorado" "perro"
                      "perro"
## [6] "pez dorado" "pollo"
                                    "pez dorado" "perro"
                                                                "pollo"
  sum(mascotas=="perro")
## [1] 277
  sum(mascotas=="pollo")
## [1] 248
  sum(mascotas=="gato")
## [1] 239
  sum(mascotas=="pez dorado")
## [1] 236
funciones
  f<-function(n){
    if (n\%\%2==0)
      return(n/2)
    else
      return(3*n+1)
  }
  collats<-function(n){</pre>
    cont=0
    while (n>1){
      n=f(n)
      cont=1+cont
    }
    return(cont)
  }
  collats2<-function(n){</pre>
    cont=0
    while (n>1){
      n=f(n)
      print(n)
      cont=1+cont
    return(cont)
  }
```

```
numero=100
  cantidad=collats(numero)
  for (i in 100:200){
      if (collats(i) < cantidad) {</pre>
        numero=i
       cantidad=collats(i)
      }
  }
numero
## [1] 128
cantidad
## [1] 7
kk=collats2(numero)
## [1] 64
## [1] 32
## [1] 16
## [1] 8
## [1] 4
## [1] 2
## [1] 1
algorimo de euclides
  a<-36
  b<-24
  while (b!=0){
   carry<-a%%b
   a<-b
  b<-carry
  }
a
## [1] 12
b
## [1] 0
```