MMAD - Úkol 2

Filip Ditrich

Unicorn University, Prague, Czech Republic 27. dubna 2024

Úloha 1	
Úloha 2	
\checkmark Úloha 3	
Úloha 4	
\checkmark Úloha 5	
Úloha 6	
Úloha 7	
√ Úloha 8	
Úloha 9	
Úloha 10	
Úloha 11	
Úloha 12	
Úloha 13	
Úloha 14	
✓ Úloha programovací 1	
Úloha programovací 2	
Úloha 1	(0.1.1.)
Ulona 1	(2 body)

Pro následující grafy určete minimální stupeň $\delta(G)$, maximální stupeň $\Delta(G)$, skóre grafu a barevnost pro následující grafy:

- 1. a) Cesta P_n
- 2. b) Kružnice C_n
- 3. c) Úplný graf K_n
- 4. d) Úplný bipartitní graf $K_{m,n}$
- 5. e) Papův graf ukázaný níže

Řešení

Nejprve si připomeneme definice:

- Minimální stupeň $\delta(G)$ je nejmenší stupeň vrcholu v grafu G.
- Maximální stupeň $\Delta(G)$ je největší stupeň vrcholu v grafuG.

- \bullet Skóre grafu je součet stupňů všech vrcholů v grafu G.
- ullet Barevnost je minimální počet barev potřebných k obarvení vrcholů grafu G tak, aby žádné dva sousední vrcholy neměly stejnou barvu.
- 1a) Cesta P_n Definice: Cesta P_n je graf, který má n vrcholů a n-1 hran.

Obrázek (1) – Cesta P_n

ODPOVĚĎ 1A

Uvažujme cestu P_n s $n \geq 3$ vrcholy.

- $\delta(P_n)=1$... první a poslední vrchol mají stupeň 1
- $\Delta(P_n)=2$... všechny vrcholy kromě prvního a posledního mají stupeň 2
- Skóre grafu $P_n=2n-2$... vnitřní vrcholy mají stupeň 2, první a poslední vrchol mají stupeň 1
- Barevnost grafu $P_n=2$... vždy stačí 2 barvy

Pro P_2 pak platí, že $\delta(P_2) = \Delta(P_2) = 1$.

1b) Kružnice C_n Definice: Kružnice C_n má n vrcholů a každý vrchol je spojen s předchozím a následujícím vrcholem.

Obrázek (2) – Kružnice C_n

ODPOVĚĎ 1B

Uvažujme kružnici C_n s $n \geq 3$ vrcholy.

- $\delta(C_n)=2$... všechny vrcholy mají stupeň 2
- $\Delta(C_n) = 2$... všechny vrcholy mají stupeň 2
- \bullet Skóre grafu $C_n=2n$... všechny vrcholy mají stupeň 2
- Barevnost grafu $C_n=2$ pro sudé $n,\,3$ pro liché n

1c) Úplný graf K_n Definice: Úplný graf K_n má n vrcholů a každý vrchol je spojen s každým jiným vrcholem. Speciální případ úplného grafu je úplný graf K_2 , který má 2 vrcholy a 1 hranu a jedná se tedy o cestu P_2 . Další speciální případ je úplný graf K_3 , který má 3 vrcholy a 3 hrany a jedná se tedy o kružnici C_3 .

Obrázek (3) – Úplný graf K_4

ODPOVĚĎ 1C

Uvažujme úplný graf K_n s $n \geq 3$ vrcholy.

- $\delta(K_n) = n-1$... všechny vrcholy mají stupeň n-1
- $\Delta(K_n) = n 1$... všechny vrcholy mají stupeň n 1
- Skóre grafu $K_n = n(n-1)$... všechny vrcholy mají stupeň n-1
- Barevnost grafu $K_n = \begin{cases} n-1 & \text{pro sudé } n \\ n & \text{pro liché } n \end{cases}$

1d) Úplný bipartitní graf $K_{m,n}$ Definice: Úplný bipartitní graf $K_{m,n}$ má m vrcholů v jedné partitě a n vrcholů v druhé partitě a každý vrchol z jedné partity je spojen s každým vrcholem z druhé partity.

Obrázek (4) – Úplný bipartitní graf $K_{3,3}$

ODPOVĚĎ 1D

Uvažujme úplný bipartitní graf $K_{m,n}$ s $m,n \ge 1$ vrcholy.

- $\delta(K_{m,n}) = n$... všechny vrcholy z první partity mají stupeň n
- $\Delta(K_{m,n}) = m$... všechny vrcholy z druhé partity mají stupeň m
- $\bullet\,$ Skóre grafu $K_{m,n}=mn$... všechny vrcholy z první partity mají stupeň n, všechny vrcholy z druhé partity mají stupeň m
- Barevnost grafu $K_{m,n}=2$... vždy stačí 2 barvy, jedna pro každou partitu

1e) Papův graf Definice: Na obrázku níže je zobrazen Papův graf s 18 vrcholy a 27 hranami.

Obrázek (5) – Papův graf

ODPOVĚĎ 1E

TODO:

- $\delta(\text{Papův graf}) = 3 \dots$ všechny vrcholy mají stupeň 3
- $\Delta(\mbox{Papův graf}) = 3 \dots$ všechny vrcholy mají stupe
ň3
- Skóre grafu Papův graf = $18\times 3 = 54$... všechny vrcholy mají stupeň 3
- Barevnost grafu Papův graf = TODO?

Máme graf G = (V, E). Pro ukázku si představme následující graf H:

Obrázek (6) – Graf H

Definujme Laplacovu matici L jako:

$$L_{i,j} = \begin{cases} \deg(v_i) & \text{pro } i = j \\ -1 & \text{pro } i \neq j \text{ a } v_i \text{ je spojen s } v_j \\ 0 & \text{jinak} \end{cases}$$

Například pro ukázkový graf dostaneme Laplacovu matici:

$$L = \begin{pmatrix} 2 & -1 & -1 & 0 & 0 \\ 1 & 4 & -1 & -1 & -1 \\ -1 & -1 & 4 & -1 & -1 \\ 0 & -1 & -1 & 3 & -1 \\ 0 & -1 & -1 & -1 & 3 \end{pmatrix}$$

Mějme k-regulární graf G=(V,E) velikosti |V|=n, tj. graf pro který víme, že $\deg(v_i)=k$ pro všechny vrcholy $v_i\in V$. Navíc víme, že vlastní čísla matice sousednosti jsou reálná v pořadí $\lambda_1(A)\geq \lambda_2(A)\geq \ldots \geq \lambda_n(A)$. Lze nějak obecně vyjádřit všechna vlastní čísla Laplacovy matice takového grafu?

Řešení

✓ Úloha 3 (2 body)

Určete minimální a maximální počet hran v grafu na n vrcholech s c komponentami.

Řešení

Cílem je nalézt rozsah (minimální a maximální) možných hran v grafu skládajícím se z n vrcholů rozdělených do c komponent. Komponentou se rozumí podgraf, ve kterém jsou všechny vrcholy spojeny cestou a který není spojen s žádnými dalšími vrcholy v hlavním grafu.

Postup pro nalezení minimálního počtu hran:

- Izolované komponenty: Minimální počet hran nastává, když mají komponenty co nejméně hran. Extrémním případem je mít komponenty bez hran, tedy izolované vrcholy.
- Neizolované komponenty: Pro každou komponentu, která není jediný izolovaný vrchol, je minimální struktura vlastně strom. Strom s k vrcholy má k-1 hran (minimum pro udržení grafu spojeného).
- Pokud je potřeba c komponent a předpokládáme že c-1 komponent jsou jednotlivé izolované vrcholy a jedna komponenta obsahuje zbytek vrcholů, n-(c-1), tato poslední komponenta jako strom by měla n-(c-1)-1=n-c hran.
- Minimální počet hran je tedy 0 + (n c) = n c.

Příklad na grafu s n = 10 vrcholy a c = 3 komponentami:

- Izolované komponenty: 2 izolované vrcholy, 1 komponenta s 8 vrcholy.
- Minimální počet hran: 10 3 = 7.

ODPOVĚĎ 3A

Minimální počet v grafu na n vrcholech s c komponentami je n-c.

Postup pro nalezení maximálního počtu hran:

- Maximální počet hran nastává, když každá komponenta je úplný graf (graf, kde jsou každé různé vrcholy spojeny jedinou hranou).
- Respektive postačí nám jedna komponenta jako úplný graf a zbytek komponent jako izolované vrcholy (tedy bez hran).
- Počet hran v úplném grafu na k vrcholech je $\binom{k}{2}$
- Náš úplný graf má n-(c-1) vrcholů, tedy počet vrcholů mínus počet ostatních izolovaných vrcholů (komponent).
- Maximální počet hran je tedy $\binom{n-(c-1)}{2}$.

Příklad na grafu sn=10vrcholy a c=3komponentami:

- Úplný graf s 8 (10 (3 1)) vrcholy a 1 izolovaný vrchol.
- Maximální počet hran: $\binom{10-2}{2} = 28$.

ODPOVĚĎ 3B

Maximální počet v grafu na n vrcholech s c komponentami je $\binom{n-(c-1)}{2}$.

 $\acute{\mathbf{U}}\mathbf{loha} \mathbf{4}$ (2 body)

Mějme následující funkci:

$$f(x,y) = 100(y - x^2)^2 + (1 - x)^2$$

Vypočtěte gradient $\nabla f(x)$ a Hessian $\nabla^2 f(x)$ a rozhodněte (a zdůvodněte) zda-li je v bodě (1,1) splněna 1. podmínka pro lokální minimizátor (nulovost gradientu) či zda-li je splněna i 2. podmínka pro Hessovu matici.

Řešení

 \checkmark Úloha 5 (2 body)

Mějme množinu $\{1, 2, ..., n\}$. Určete, kolik je možné na této množině najít různých kružnic délky n? (jedná se tedy o počet průchodů, ale neorientovaného grafu).

Řešení

Problém můžeme řešit následovně:

- Krok 1: Seřadíme vrcholy kružnice do pořadí $1, 2, \ldots, n$. Takových sekvencí je n!.
- Krok 2: Zvolíme si jeden výchozí vrchol (symetrická rotace). Tím tedy získáme (n-1)! unikátních sekvencí, ignorujeme-li rotace.
- Krok 3: Otočením sekvence získáme stejnou kružnici. Počet kružnic tedy musíme dělit dvěma (pro n > 2), protože každá sekvence a její zrcadlový obraz jsou v kružnici identické.
- Počet různých neorientovaných kružnic délky n (pro n > 2) je tedy: $\frac{(n-1)!}{2}$.

Ukázka: na příkladu množiny $\{1, 2, 3, 4\}$:

Dle definice výše víme, že počet různých neorientovaných kružnic délky 4 bude $\frac{(4-1)!}{2} = 3$.

A bude se jednat o tyto 3 kružnice:

1.
$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$$

$$2. \ 1 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow 1$$

$$3. \ 1 \rightarrow 3 \rightarrow 2 \rightarrow 4 \rightarrow 1$$

Obrázek (7) – Různé neorientované kružnice délky 4

ODPOVĚĎ

Pro množinu $\{1,2,\dots,n\}$ je možné najít $\frac{(n-1)!}{2}$ různých neorientovaných kružnic délky n.

Úloha 6

(2 body)

Mějme graf $G_{n,2}=(V,E)$ definovaný následovně. Množina vrcholů jsou všechny podmnožiny množiny $A=\{1,2,\ldots,n\}$ o velikosti 2, tedy například $v_1=\{1,2\},v_2=\{2,3\},\ldots$ Hrany spojují ty vrcholy $v_i=\{a,b\},v_2=\{c,d\}$, které sdílí právě jeden prvek, tj. $a=b\neq c=d$. Příklad takového grafu je vidět na následujícím obrázku.

Obrázek (8) – Graf $G_{n,2}$

Pro takový obecný graf $G_{n,2}$ určete jaký bude jeho minimální a maximální stupeň vrcholu vyjádřeno jako funkce n. Také určete počet hran tohoto grafu, opět jako funkci n.

Řešení

 $\acute{\mathbf{U}}$ loha 7 (2 body)

Zdůvodněte, proč každá hrana vrcholově 2-souvislého grafu musí ležet na kružnici.

Řešení

✓ Úloha 8 (2 body)

Určete vrcholový a hranový stupeň grafu, neboli $\alpha(G)$ a $\kappa(G)$, pro následující grafy:

- 1. Cesta P_n
- 2. Kružnice C_n
- 3. Úplný graf K_n
- 4. Úplný bipartitní graf $K_{m,n}$

Řešení

Definice:

- Vrcholový stupeň $\alpha(G)$ je minimální počet vrcholů, které je třeba odebrat, aby se graf rozpadl na více komponent.
- Hranový stupeň $\kappa(G)$ je minimální počet hran, které je třeba odebrat, aby se graf rozpadl na více komponent.

Cesta P_n

- Odebráním jakéhokoliv vnitřního vrcholu se cesta rozpadne na dvě komponenty. Vrcholový stupeň je tedy $\alpha(P_n) = 1$.
- Odebráním jakékoliv hrany se cesta rozpadne na dvě komponenty. Hranový stupeň je tedy $\kappa(P_n) = 1$.

Poznámka: Bereme v potaz cestu P_n s $n \ge 2$ vrcholy.

ODPOVĚĎ 8A

Pro cestu P_n platí $\alpha(P_n) = 1$ a $\kappa(P_n) = 1$.

Kružnice C_n

- Odebráním jakéhokoliv vrcholu se z kružnice stane cesta, z tvrzení výše víme že $\alpha(P_n) = 1$. Vrcholový stupeň je tedy $\alpha(C_n) = \alpha(P_{n-1}) + 1$.
- Obdobně odebráním jakýchkoliv 2 sousedních hran se kružnice rozpadne na cestu a jeden izolovaný vrchol. Hranový stupeň je tedy $\kappa(C_n) = 2$.

Poznámka: Bereme v potaz kružnici C_n s $n \geq 3$ vrcholy.

ODPOVĚĎ 8B

Pro kružnici C_n platí $\alpha(C_n) = 2$ a $\kappa(C_n) = 2$.

Úplný graf K_n

• Postupným odebíráním vrcholů zůstává graf stále souvislý, dokud neodebereme až n-1 vrcholů, pak zůstává pouze izolovaný vrchol. Vrcholový stupeň je tedy $\alpha(K_n) = n-1$.

• Odebráním všech hran jednoho vrcholu, který má stupeň n-1, se graf rozpadne jednu jednu souvislou komponentu a izolovaný vrchol. Hranový stupeň je tedy $\kappa(K_n) = n-1$.

Poznámka: Bereme v potaz úplný graf K_n s $n \ge 2$ vrcholy.

ODPOVĚĎ 8C

Pro úplný graf K_n platí $\alpha(K_n) = n-1$ a $\kappa(K_n) = n-1$.

Úplný bipartitní graf $K_{m,n}$

- Odebráním všech vrcholů jedné partity se graf rozpadne na několik izolovaných vrcholů (jelikož každý vrchol z jedné partity je spojen s každým vrcholem z druhé partity, ale nikoliv s vrcholem ze stejné partity). Lze tedy říci, že vrcholový stupeň je $\alpha(K_{m,n}) = \min(m,n)$.
- Odebráním všech hran spojujících vrcholy jedné partity se graf rozpadne na souvislou komponentu a několik izolovaných vrcholů. Pokud vybereme vrchol z větši parity, musíme odebrat pouze tolik hran, kolik vrcholů má menší parita, tedy opět hranový stupeň je tedy $\kappa(K_{m,n}) = \min(m,n)$.

ODPOVĚĎ 8D

Pro úplný bipartitní graf $K_{m,n}$ platí $\alpha(K_{m,n}) = \min(m,n)$ a $\kappa(K_{m,n}) = \min(m,n)$.

 $\acute{\mathbf{U}}$ loha 9 (2 body)

Vezměmě si grafy typu strom o fixní velikosti n. Rozhodněte a nakreslete, jaký strom o velikosti n má:

- 1. Největší hodnotu nezávislosti $\alpha(G)$
- 2. Nejmenší hodnotu nezávislosti $\alpha(G)$
- 3. Největší hodnotu vrcholového pokrytí $\beta(G)$
- 4. Nejmenší hodnotu vrcholového pokrytí $\beta(G)$

Řešení

 $\acute{\mathbf{U}}$ loha 10 (2 body)

Ukažte proč pro každý kubický graf G, t.j. takový, že všechny stupně vrcholů jsou 3, platí, že stupeň vrcholové i hranové souvislosti se rovnají, tj. $\alpha(G) = \kappa(G)$. Hint: Pokuste se rozebrat případy pro různé vrcholové stupně souvislosti.

$\check{\mathbf{R}}$ ešení

 $\acute{\mathbf{U}}$ loha 11 (2 body)

Pokuste se navrhnout Turingův stroj pro rozpoznání, že neorientovaný graf má izolovaný vrchol. Hint: Graf uložte na pásku jako matici sousednosti (nezapomeňte na oddělovače řádků) a v ní pomocí pravidel nalezněte takový vrchol.

Řešení

 $\acute{\mathbf{U}}$ loha 12 (2 body)

Využijte vysvětlení proč platí polynomialita 2-SAT a nakreslete graf odpovídající následující formuli a otestujte a případně ukažte, zda-li je splněna. Pozn.: Graf na kreslete, i když budete schopni splnitelnost rozhodnout jinak.

$$f(x_1, x_2, x_3, x_4, x_5) = (x_1 \vee \overline{x_3}) \wedge (x_2 \vee x_3) \wedge (\overline{x_3} \vee x_4) \wedge (\overline{x_2} \vee \overline{x_4}) \wedge (x_4 \vee x_5) \wedge (\overline{x_3} \vee x_5)$$

Řešení

 $\acute{\mathbf{U}}$ loha 13 (2 body)

Na základě vysvětlení převodu SAT na IND nakreslete graf odpovídající následující formuli a otestujte splnitelnost formule nalezením nezávislé množiny. Pozn.: Graf nakreslete a zhodnoťte, i když budete schopni splnitelnost rozhodnout jinak.

$$f(x_1, x_2, x_3, x_4, x_5) = (x_2 \vee \overline{x_3} \vee x_4) \wedge (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee \overline{x_3} \vee x_4) \wedge (x_1 \vee \overline{x_2} \vee x_3 \vee \overline{x_4}) \wedge (x_4 \vee x_5)$$

Řešení

 $\acute{\mathbf{U}}$ loha 14 (2 body)

Na základě vysvětlení převodu 3-SAT na 3-COL nakreslete graf odpovídající následující formuli a otestujte barevnost grafu.

$$f(x_1, x_2, x_3, x_4, x_5) = (x_1 \vee x_2 \vee \overline{x_4}) \wedge (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_2} \vee \overline{x_3} \vee x_4) \wedge (x_1 \vee \overline{x_2} \vee x_3)$$

Řešení

Naprogramujte algoritmus pro testování isomorfismu grafů hrubou silou a otestujte to na pár příkladech grafů s využitím knihovní funkce pro testování isomorfismu.

Řešení

Isomorfismus lze testovat hrubou silou, kde se všechny možné permutace uzlů grafu G porovnají s uzly grafu H.

Vytvoříme funkci isomorphism(G, H), která otestuje isomorfismus grafů G a H následovně:

- Pokud mají grafy různý počet uzlů, vrátí False.
- \bullet Pro všechny permutace uzlů grafu G:
 - Vytvoří mapování uzlů grafu G na uzly grafu H.
 - Pokud všechny uzly grafu Gmají svůj ekvivalent v grafu Ha všechny hrany zůstanou zachovány, vrátí ${\tt True}.$
- Pokud žádná permutace nevyhovuje, vrátí False.

Implementačně je algoritmus následující:

```
import networkx as nx
          import itertools
          def isomorphism(G, H):
               if len(G.nodes) != len(H.nodes):
                   return False
               # získání všech permutací uzlů grafu G
              perms = itertools.permutations(list(G.nodes))
               for perm in perms:
10
                   # vytvoření mapování uzlů grafu G na uzly grafu H
11
                   # pokud všechny uzly grafu G mají svůj ekvivalent v grafu H a všechny hrany zůstanou zachovány,
12
                   → vrátí True
                   mapping = dict(zip(G.nodes, perm))
13
                   has_all_nodes = all([mapping[u] in H.nodes for u in G.nodes])
14
                   has_all_edges = all([mapping[u] in H.nodes for u in G.nodes])
15
                   if has_all_nodes and has_all_edges:
16
17
                       return True
18
                   return False
```

Poté již zbývá jen funkci výše otestovat na několika příkladech grafů a porovnat výsledky s knihovní funkcí pro testování isomorfismu:

```
G = nx.generators.small.cycle_graph(5)
H = nx.complement(nx.generators.small.cycle_graph(5))

my_isom = isomorphism(G, H)
nx_isom = nx.is_isomorphic(G, nx.complement(H))
print(f"Vlastn1: {my_isom} \nNetworkX: {nx_isom} \nÚspěch: {'Ano' if my_isom == nx_isom else 'Ne'}")
```

Úplný zdrojový kód je k nalezení v souboru ukol-2-k1.py.

Úloha programovací 2

(4 body)

Realizujte hrubou silou nalezení největší nezávislé množiny daného grafu a následně otestujte, že je množina nezávislá. Následně se pokuste vylepšit řešení procházení množinami použitím sousedů vrcholu.

Pokud chceme testovat procházení, nabízí se, ne nutně, řešení pomocí nějakého rekurzivního přístupu.

Řešení