

Mark Scheme (Final)

Summer 2015

Pearson Edexcel International A Level in Statistics 3 (WST03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code IA042726
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

June 2015 WST03 Statistics 3 Mark Scheme

Question Number	Scheme	Marks
1. (a)	$\{w\} = 018 \text{ or } 18$	B1
		[1]
(b)	$\{x\} = 18$	B1
		[1]
(c)	$\{\text{prob} = \} 0$	B1
. ,		[1]
(d)	Advantage: Any one of:	
	• <u>Simple or easy</u> to use also allow "quick" or "efficient" (o.e.)	
	It is suitable for large samples (or populations)	B1
	Gives a good spread of the data	
	Disadvantage: Any one of:	
	• The alphabetical list is (probably) <u>not random</u>	
	Biased since the list is not (truly) random	B1
	• <u>Some combinations</u> of names are <u>not possible</u>	
		[2]
	NT 4	(Total 5)
	Notes	
(d)	If no labels are given treat the 1 st reason as an advantage and the 2 nd as a disadvantage 1 st B1: for advantage 2 nd B1: for disadvantage "it requires a sampling frame" is 2 nd B0 since the alphabetical list is given. Note: Do not score both B1 marks for opposing advantages and disadvantages.	e

Question Number					Schem	ne						Marks
Tullioci		\overline{A}	В	\overline{C}	L	N	R	S	T	Y		
2. (a)	Judge 1	6	3	4	9	2	8	1	5	7		
	Judge 2	8	3 4	5	7	3	9	1	2	6		
	or											M1
	Judge 1 Judge 2	S	N	\boldsymbol{B}	C	T	\boldsymbol{A}	Y	R	L		
	Judge 1	1	2	3	4	5	6	7	8	9		
	Judge 2	1	3	4	5	2	8	6	9	7		3.61
	$\sum d^2 = 4 + 1$										\sqrt 22 - 22	M1
	O	r = 0 + 1	1 + 1 +	1 + 9 -	+ 4 + 1	+1+4	4 = 22				$\sum d^2 = 22$	A1
	. 6(22)) _	01.666									M1;
	$r_s = 1 - \frac{6(22)}{9(80)}$	-; = 0)	0.81666	66							$\frac{49}{60}$ or awrt 0.817	A1
												[5]
(b)	$\mathbf{H}_0: \boldsymbol{\rho} = 0 \; , \; \; \mathbf{I}$	$H_1: \rho$	> 0									B1
	Critical Value	e = 0.7	833 <u>or</u>	CR:	$r_s \geqslant 0$).7833					0.7833	B1
	Since $r_s = 0.8$	3166	it lies	in the	CR,	<u>or</u> reje	ct H ₀	(o.e.)				M1
	The two judge											A1ft
	there is a posi	tive co	orrelati	on bet	ween ti	ne rank	s of th	e two 1	<u>udges</u> .			[4]
												(Total 9)
						N	otes					(= 0 000 7)
(a)	1 st M1 for an											
	2 nd M1 for an	attem	npt at d	² row ((may b	e impli	ied by	sight of	$\int d^2$	=22 o	or 221 for reverse ranks	s)
	_										d by correct answer.	
	3 rd M1 for us	se of tl	he corr	ect for	mula w	ith the	$\sum d$	² (if it	is clea	rly stat	ed)	
	If the	e answ	ver is n	ot corr	ect the	n a coi	rect ex	pressio	on is re	quired		
False	e.g Alphabet	tic ran	king: C	ives	_							
Ranking					Judge	2: 7	8 5 2	2 3 9	4 1 6	\sum	$r_{s} = 162$ and $r_{s} = 162$	-0.35
	Scores: M0(t	for ran	ıking),	M1(fo	r atten	npt at a	d^2 row)	, A0, 1	M1 (for	use of	f their $\sum d^2$), A0 i.e	e. 2 out of 5
					Ca	n follo	w thro	ugh the	$\operatorname{eir} r_s$ i	in (b)		
(b)	1 st B1 for bot	h hypo	otheses	stated	correc	etly in	terms o	$f \rho$ (all	$low \rho_s$) H ₁ m	ust be compatible with	ranking
											but compatible sign w	
	M1: for a con	rrect st	tatemer	nt (in v	vords)	relating	g their	r_s with	their o	critical	value.	
	e.g. "rej	ect H ₀	","in c	ritical	region'	", "sig	nifican	t", "po	sitive o	correlat	tion"	
cv >1	May be If their c	•	•						ward N	/I0A0		
' '						-					are in agreement" (o.e.) for A1ft
		b								_	ges don't agree" (o.e.)	
	A1ft: for a co					_						
	"posit	ive co	rrelatio	n" alo	ne scor	es M1	A0					
	For re	verse 1	ranking	shoul	d still s	say" jı	ıdges <u>a</u>	<u>re</u> in a	greeme	ent"		

Question Number			Scheme					Mar	ks		
3. (a)	$\widehat{\lambda} = \frac{0(47) + 10}{2}$	(57) + 2(46) - 20	+ 3(35) + 4(9 0	$\frac{(1)+5(6)}{20}=\frac{320}{20}$	$\frac{0}{0} = 1.6$ *	Full exp' or at products and 3		B1 *			
(b)	$r = 200 \times \frac{e^{-1.6}(1.6)^2}{2!} \left\{ = 51.68550861 \right\}$ Using $r = 200 \times \frac{e^{-1.6}(1.6)^2}{2!}$ $s = 200 - (40.38 + 64.61 + \text{their } r + 27.57 + 11.03) \left\{ = 4.72449139 \right\}$ or their $r + s = 56.41$										
	s = 200 - (40.	38 + 64.61 +	their $r + 27.5$	57 + 11.03) {=	4.72449139	} or their	r + s = 56.41	M1			
	r = 51.685508	361 and s =	= 4.72449139)	r = awrt	51.69 and s	s = awrt 4.72	A1	[3]		
(c)	H_0 : Poisson (H_1 : Poisson (B1	[-]		
	Number of accidents	Observed	Expected	Combined Observed	Combined Expected	$\frac{(O-E)^2}{E}$	$\frac{O^2}{E}$				
	0	47	40.38	47	40.38	1.0853	54.7053				
	$\frac{1}{2}$	57 46	64.61 51.69	57 46	64.61 51.69	0.8963 0.6264	50.2863 40.9364				
	3	35	27.57	35	27.57	2.0024	44.4324				
	4 ≥ 5	9	11.03 4.72	15	15.75	0.0357	14.2857				
	<i>y</i> 3	0	4.72		Totals	4.6461	204.6461	M1			
	$X^2 = \sum \frac{(O - I)^2}{I}$	$\frac{(E)^2}{E}$ or \sum	$\frac{O^2}{O}$ – 200	;= 4.6461			. 4 65	M1;			
	v = 5 - 1 - 1 =	-	- E				awrt 4.65	A1			
	$\chi_3^2(0.10) = 6.2$		$X^2 > 6.251$				6.251	B1 ft B1 ft			
	[Since $X^2 = 4$.			R, then there is	insufficient	evidence to re		Din			
	The number of the <i>supervisor</i>	accidents pe	r day can be				<i>y</i> 0.1	A1 ft			
	the supervisor	s belief is col	ilect.					(TC - 4 - 1	[7]		
				Note	PS			(Total	11)		
(b)	Note: Allow	v A1 for s = a	awrt 4.74 (fo	und as a result		ected values t	o full accuracy	7.)			
(c)	1 st B1: for <u>b</u>	ooth hypothes	es and mention	oning Poisson a	at least once.						
				odel" but <u>not</u> " potheses is B0			ı .				
				ants and $\geqslant 5$ acc				is M0			
	2 nd M1: For a 1 st A1: For a			ic, at least 2 coins if awrt 4.65 see		ons/values (to	o awrt 2 d.p.)				
No pooling	If no	pooling can	allow 2 nd M1	if $X^2 = 5.33$ is							
	2 nd B1ft: For						B1B1 may be in				
	3 rd B1ft: For a	correct ft for	their $\chi_k^2(0.1)$	0), where $k =$	n-1-1 from		6.251 (if poolin for no pooling	g) or 1.1	19		
	2 nd A1ft: (<i>Dep</i>					d on their test	t statistic and t		ical		
				or <i>supervisor</i> .							
				.g. "significant							
	Note: Full acc	curacy gives a	combined ex	spected frequer	ncy of 15.76,	$\frac{(O-E)^2}{E}=0$	$0.0366, \frac{O^2}{E} = 1$	14.2766	,		
	$X^2 = 4.$	64855 and	p-value 0.199	9							

Question Number	Scheme		Marks
4. (a)	Let $X =$ weight of a sack of potatoes, $X \sim N(25.6, 0.24^2)$		
· · · · · · · · · · · · · · · · · · ·	So $D = X_1 - X_2 \sim N(0, 2(0.24)^2)$ or $D \sim N(0, 0.1152)$	Attempt at D and $D \sim N(0,)$ $(0.24)^2 + (0.24)^2$; 0.1152	M1 A1; A1
	${P(D > 0.5) = } 2P(D > 0.5)$	$2 \times P(D > 0.5)$ can be implied	dM1
	$= 2 \times P\left(Z > \frac{0.5}{\sqrt{0.1152}}\right)$		dM1
	$= 2 \times P(Z > 1.4731) \underline{or} = 2(1 - 0.9292)$ $= 0.1416$	awrt 0.141 or awrt 0.142	A1
	= 0.1110	awit 0.171 of awit 0.172	[6]
(b)	Let $Y =$ weight of an empty pallet, $Y \sim N(20.0, 0.32^2)$ So $T = X_1 + X_2 + + X_{30} + Y$		
		30(25.6) + 20 <u>or</u> 788	B1
	$T \sim N(30(25.6) + 20, 30(0.24)^2 + 0.32^2)$	$30(0.24)^2 + 0.32^2$	M1
	$T \sim N(788, 1.8304)$	N and 1.8304 or awrt 1.83	A1
	${P(T > 785) = } P\left(Z > \frac{785 - 788}{\sqrt{1.8304}}\right)$		M1
	= P(Z > -2.2174)		
	= 0.9868	awrt 0.987	A1 [5]
			(Total 11)
	Notes		
(a)	1 st M1: For clear definition of D and normal distribution wi 1 st A1: for correct use of Var($X_1 - X_2$) formula 2 nd A1: for 0.1152	th mean of 0 (Can be implied by	3 rd M1)
	$2^{\text{nd}} \text{ dM1: For realising need } 2 \times P(D > 0.5)$ (Dependent on 1)	1 st M1 i.e. must be using suitable <i>I</i>	D)
	3 rd dM1: Dep on 1st M1 for standardising with 0.5, 0 and the		
	P(Z > 1.47) implies 1 st M1 1 st A1 2 nd A1 and 3 rd M1		
	Correct answer only will score 6 out of 6		
(b)	B1: For a mean of $30(25.6) + 20$. Can be implied by 7.	88.	
	1 st M1: For $30(0.24)^2 + 0.32^2$. Can be implied by 1.8304 or	awrt 1.83	
	Allow M1 for swapping error i.e. $30 \times 0.32^2 + 0.24$	*	
	1st A1: For normal and correct variance of 1.8304 or awrt 1.8	3.	
	Normality may be implied by standardisation 2 nd M1: For standardising with 785 with their mean and st. de	ev($\neq 0.24$) Must lead to P(Z >	-ve) oe.
	2 nd A1: awrt 0.987	, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,
	Correct answer only will score 5 out of 5		
	Note: Calculator answers are (a) 0.14071, (b) 0.98670.		
	2.000 Carearator and mere are (a) 0.110/11, (b) 0.700/0.		

Question Number			;	Scheme			Ma	rks			
5.	H ₀ : Grades	•		•	-	Siddes and Sender	B1				
	H_1 : Grades	and gen	der are	dependent (or associate	d) mentioned at least once.		(1)			
	Observe	d	Male	Female	2	An attempt to convert percentages					
	Distinction	n	37	44		to observed frequencies.	M1				
	Merit		127	96		A 11 - 1 1 C					
	Unsatisfact	ory	36	20		All observed frequencies are correct.	A1				
						Some attempt at					
	Expected		Male	Female		<u> </u>	M1				
	Distinction		45	36	81	(Grand Total)	1411				
	Merit		123.889	99.111		Can be implied by a correct E_i					
	Unsatisfact	ory	31.111	24.889		All expected frequencies are	A1				
	Totals		200	160	360	correct to nearest integer.					
				$(O F)^2$	O^2	At least 2 correct terms for $(O - F)^2 = O^2$					
	Observed	Expec	eted -	$\frac{(O-E)^2}{E}$	$\frac{O^2}{E}$	$\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$ or correct					
	37	45		1.422	30.422	expressions with their E_i .	M1				
	44 36			1.778	53.778	Accept 2 sf accuracy					
	127 123.889		889	0.078	130.189	for the M1 mark.					
	96	99.1	11	0.098	92.987	All correct $\frac{(O-E)^2}{F}$ or $\frac{O^2}{F}$ terms					
	36	31.1	11	0.768	41.657	to either 2 dp or better.	A1				
	20	24.88		0.960	16.071	Allow truncation. (\Rightarrow by awrt 5.1 if 3^{rd} M1 seen)					
			otals	5.104	365.104		A1				
	$X^2 = \sum \frac{(O-E)^2}{E}$ or $\sum \frac{O^2}{E} - 360$; = awrt 5.1										
	$\nu = (3-1)(2$	/				(v =) 2 (Can be implied by 5.991)	B1				
	$\chi_2^2(0.05) = 5.991 \implies \text{CR}: \ X^2 \geqslant 5.991$ For 5.991 only										
	Since $X^2 = 5.1$ does not lie in the CR, then there is insufficient evidence to reject H_0										
	Business Stu				•	or ades and gender. Or	A1ft				
	Head of depa				_	ades and gender. Or		(4)			
							(Tota	[12] al 12)			
	Notes										
					-	statistic and their critical value (> 3.8)					
	Final A1ft: I			-		0. E.g. "significant, do not reject H_0 ".					
	1	must me Condone	ntion "g "relatio	grades" and 'onship" or "c	"gender" or connection"	"sex" or "head of department" here but not "correlation". hip between grades and gender"					
5.10 only	Just seei	ng 5.10.	only c	an imply 1st	3 Ms but lo	oses 1st 3 As so can score 4 out of 7 (Qu says	s "show	·")			
	Note: Full a	ccuracy	y gives	$X^2 = 5.104$	356 and 1	o-value 0.0779					

Question Number				Sc	heme				Marks				
5.	Mark Scheme for candidates who use percentages instead of observed values.												
	H ₀ : Grades and gender are independent (or not associated) "grades" and "gender"												
	H_1 : Grades	and g	gender a	re de	pendent (c	or asso	ciated)	mentioned at least once.	B1				
	Observed	d	Mal	e	Female	;		These marks cannot be obtained.	M0 A0				
	Distinctio	n	18.5	5	27.5			These marks cannot be obtained.	MO AO				
	Merit		63.5		60.0								
	Unsatisfact	ory	18.0)	12.5								
	Some attempt a												
	Expected	ł	Mal	e	Female	. 7	Γotals	(Row Total)(Column Total)					
	Distinctio		23		23		46	(Grand Total)	M1				
	Merit		61.7	5	61.75		123.5	Can be implied by one of these E_i 's					
	Unsatisfact	orv	15.2		15.25		30.5	1 3					
	Totals	or y	100		100		200	Expected frequencies are not correct.	A0				
	At least 2 "correct" terms for												
				$(O F)^2$			2^{2}						
	Observed	ved Expected		$\frac{(O-E)^2}{E}$		_	$\frac{O^2}{E}$	$\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$ or correct					
	18.5		23		0.8804		8804	expressions with their E_i .	M1				
	27.5		23 (0.8804		8804	Accept 2 sf accuracy					
	63.5	6	61.75		0.0496 0.0496 0.4959		2996	for the M1 mark.					
	60.0	6					2996						
	18.0	1					2459	This mark cannot be obtained.	A0				
	12.5	1	5.25	0	.4959	10.	2459	This mark cultion of de detained.	710				
			Totals	2	.8518	202	.8518						
	$X^2 = \sum \frac{(O-E)^2}{E}$ or $\sum \frac{O^2}{E} - 360$; = 2.8518 This mark cannot be obtained.												
	v = (3-1)(2			-	=			$(\nu =)$ 2 (Can be implied by 5.991)	B1				
	$\chi_2^2(0.05) = 5$.991	⇒CR:	X^2	≥ 5.991			For 5.991 only	B1				
	Since $X^2 = 2.86$ does not lie in the CR, then there is insufficient evidence to reject H_0												
								Not available since comes from incorrect working.	A0				
								-	[12] (Total 12)				
	TC 11.1				.1 .1	1	Not						
	If a candidate They can get		_	_				lues then they can obtain a maximum of (marks.				

Question Number	Scheme	Marks
6. (a)	$\left\{ \hat{\mu} = \frac{\sum x}{n} = \frac{1570}{50} = \right\} \overline{x} = 31.4$ $\left\{ \hat{\sigma}^2 = \frac{\sum x^2 - n\overline{x}^2}{n - 1} = \right\} s_x^2 = \frac{49467.58 - 50(31.4)^2}{50 - 1}$	B1 cao
	$\left\{ \hat{\sigma}^2 = \frac{\sum x^2 - n\bar{x}^2}{n - 1} = \right\} s_x^2 = \frac{49467.58 - 50(31.4)^2}{50 - 1}$	M1 A1ft
	= 3.460816 awrt 3.46	A1 [4]
(b)	[Let $Y = \text{time taken to complete obstacle course in the afternoon.}]$	[4]
	$H_0: \mu_x = \mu_y, H_1: \mu_x > \mu_y$	B1
	$ (z =) \frac{"31.4" - 30.9}{\sqrt{\frac{"3.46"}{50} + \frac{3.03}{50}}} $	M1 A1ft
	$= 1.38781$ awrt 1.39 CR: $Z \ge 1.6449$ or probability = awrt 0.082 or awrt 0.083 1.6449 or better	A1
	CR: $Z \ge 1.6449$ or probability = awrt 0.082 or awrt 0.083 1.6449 or better Since $z = 1.38781$ does not lie in the CR, then there is insufficient evidence to reject H ₀	B1 M1
	Conclude that the <u>mean time</u> to complete the obstacle course is the same for the early <u>morning</u> and late <u>afternoon</u> .	A1
(2)		[7]
(c)	\overline{X} and \overline{Y} are both approx. normally distributed or $\overline{X} - \overline{Y}$ normal (Condone \overline{x} and \overline{y})	B1 [1]
(d)	Have assumed $s^2 \approx \sigma^2$ or variance of sample \approx variance of population	B1
		[1] (Total 13)
	Notes	
(a)	B1: 31.4 cao Allow 31 minutes, 24 seconds. 1 st M1: A correct expression for either <i>s</i> or <i>s</i> ² (ignore label)	
	1 st A1ft: A correct expression for s^2 with their ft \overline{x} . 3 rd A1: awrt 3.46 (Correct answer scores 3 out of 3)	
(b)	1 st B1: Both hypotheses stated correctly, with some indication of which μ is which.	$\mu_{\scriptscriptstyle M}$, $\mu_{\scriptscriptstyle A}$
	1 st M1: For an attempt at $\frac{a-b}{\sqrt{\frac{c}{50} + \frac{d}{50}}}$ with at least 3 of a, b, c or d correct. Allow \pm	
	1st A1ft: for $\pm \frac{\text{their } 31.4 - 30.9}{\sqrt{\frac{\text{their } 3.46}{50} + \frac{3.03}{50}}}$ Allow $D = \overline{x} - \overline{y}$ 1.64 ~ 1.65 $= \frac{D - 0}{\sqrt{\frac{"3.46"}{50} + \frac{3.03}{50}}}$ [SE = 0.1]	.360277]
	2 nd A1: for awrt 1.39 (possibly \pm)(Allow for CV D = awrt 0.593) (NB d = 0.5) Correct answer scores M1A1ftA1 <u>but</u> $0 - (31.4 - 30.9) \rightarrow -1.39$ loses this 2 nd A ma	rek
	Correct answer scores MTATITAT <u>but</u> $0 - (51.4 - 50.9) \rightarrow -1.59$ loses this 2 ° A magnetic answer scores MTATITAT <u>but</u> $0 - (51.4 - 50.9) \rightarrow -1.59$ loses this 2 ° A magnetic answer scores MTATITAT <u>but</u> $0 - (51.4 - 50.9) \rightarrow -1.59$ loses this 2 ° A magnetic answer scores with a magnetic answer score and a magnetic answer score and a magnetic answer score answer score and a magnetic and a magnetic answer score and a magnetic and a ma	
	Note: p-values are 0.0823 (tables) and 0.0826 (calculator). 2 nd M1: For a correct statement linking their test statistic and their critical value. Note: Contradictory statements score M0. E.g. "significant, do not reject H ₀ ".	
	3 rd A1: For a correct statement in context that accepts H ₀ (no ft) Condone "no difference in me	an times"
(c)	Must mention "mean time", "morning" and "afternoon" or "both times of day" B1 E.g. $\overline{X} \sim N()$ need both. Allow in words e.g "sample means are normally distributed"	l''
(d)	B1 condone only mentioning "x" or "y" but watch out for $s_x = s_y$ or $\sigma_x = \sigma_y$ which scores	В0

Question	Scheme	Marks
Number		IVILIKS
7.	Let $X = $ score on a die	D1
(0)	$E(S) = 3.5$, $Var(S) = \frac{35}{12}$ $Var(S) = \frac{35}{12}$ or awrt 2.92.	B1
(a)	$E(S) = 3.5$, $Var(S) = \frac{35}{12}$ $Var(S) = \frac{35}{12}$ or awrt 2.92	B1
	12	[2]
	(,,(35),,)	[2]
(b)	So, $\overline{S} \sim N \left("3.5", \frac{"\left(\frac{35}{12}\right)"}{40} \right)$ or $\overline{S} \sim N \left("3.5", \frac{7}{96} \right)$	B1ft
	$P(\overline{S} < 3) = P\left(Z < \frac{3 - "3.5"}{\sqrt{\frac{7}{96}}}\right) \{ = P(Z < -1.85164) \}$	M1
	$\{=1-0.9678\ \} = 0.0322$ 0.032 to 0.0322	A1
	(1 000010 00001	[3]
		(Total 5)
	Notes	
(a)	2 nd B1 allow awrt 2.92	
(b)	B1ft for $\overline{S} \sim N \left("3.5", \frac{"\left(\frac{35}{12}\right)"}{40} \right)$ seen or implied. Follow through their E(S) and their Var(S) NB $\frac{7}{96} = 0.07291\dot{6}$ accept awrt 0.0729	
	M1 for an attempt to standardise with 3, their mean (>3) and $\sqrt{\frac{\text{their Var}(S)}{40}}$. Must lead to P	(Z<-ve)
	A1 for 0.032 ~ 0.0322	
ΑLΤ ΣS	B1ft for $\sum S \sim N\left(140, \frac{350}{3}\right)$ where 140 is 40×their E(S) and variance is 40×their Var(S) M1 for $P\left(Z < \frac{120 - "140"}{\sqrt{\frac{350}{3}}}\right)$ or $P\left(Z < \frac{119.5 - "140"}{\sqrt{\frac{350}{3}}}\right)$ {= P(Z < -1.8979)} A1 for 0.032~0.0322 or (with continuity correction) 0.0287 (tables) or 0.0289 (calculator).	

Question Number	Scheme	Marks
8. (a)	$\left\{ \overline{x} = \frac{29.74 + 31.86}{2} \right\} \Rightarrow \overline{x} = 30.8$ This can be implied. See note.	B1
	"1.96" $\left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 - 30.8$ or $2("1.96") \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 - 29.74$	M1
	$SE_{\bar{x}} = \frac{31.86 - 30.8}{1.96} = 0.540816 = 0.54 (2dp)$ awrt 0.54	A1 [3]
(b)	A 90% CI for μ is $\bar{x} \pm 1.6449 \left(\frac{\sigma}{\sqrt{n}} \right)$	B1
	$= 30.8 \pm 1.6449 (0.54) $ (their \overline{x}) \pm (their z)(their $SE_{\overline{x}}$ from (a)) = (29.91, 31.69) (awrt 29.9 , awrt 31.7)	M1 A1
(c)	Let $X =$ number of confidence intervals containing μ	[3]
	or $Y =$ number of confidence intervals not containing μ	
	So $X \sim Bin(4, 0.9)$ or $Y \sim Bin(4, 0.1)$	M1
	$P(X \ge 3) \text{ or } P(Y \le 1) = {}^{4}C_{3}(0.9)^{3}(0.1) + (0.9)^{4}$ = 0.2916 + 0.6561 = 0.9477	A1 oe
	= 0.2916 + 0.6561 = 0.9477 0.9477 or 0.948	A1 [3]
		(Total 9)
	Notes	
(a)	B1: $\overline{x} = 30.8 \text{ may be implied by } 1.96 \left(\frac{\sigma}{\sqrt{n}}\right) = [31.86 - 30.8] = 1.06 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31$.86 – 29.74
	M1: A correct equation for either a width or a half-width involving a z-value $1.5 \le z \le 2$	
	Eg: "their z " $\left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 - "30.8"$ ft their \overline{x} or $2("their z") \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 - 29$	
	or "their $z''(SE_{\bar{x}}) = 31.86 - "30.8"$ or $2("their z")(SE_{\bar{x}}) = 31.86 - 29.74$ are fine	for M1.
	A1: 0.54 or awrt 0.54 Must be seen as final answer to (a) NB $\frac{53}{98}$ as final answer is A0	
	Condone $\bar{x} \pm 1.96\sigma =$ for B1 and M1 but A0 even if they say " $\sigma =$ standard error = 0. Otherwise answer only of 0.54 scores 3 out of 3	54"
(b)	B1 for use of 1.6449 or better in an attempt at a CI formula. Need at least 1.6449 (their SE M1 for attempt at CI ft their values and provided $1 \le z \le 1.7$	
(c)	M1: States or applies either $X \sim \text{Bin}(4, 0.9)$ or $Y \sim \text{Bin}(4, 0.1)$	
	Condone M1 for $0.9^4 + 0.9^3 \times 0.1$ (o.e.)	
	1 st A1: ${}^{4}C_{3}(0.9)^{3}(0.1) + (0.9)^{4}$ or $(0.9)^{4} + {}^{4}C_{1}(0.1)(0.9)^{3}$ oe	
	2 nd A1: 0.9477 or 0.948	
<u> </u>	I .	

G. B. Attwood 30/05/15

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom