壹、主題:物流運籌管理 小組作業 #1-需求預估

貳、組別:3

參、組員:

一、羅郁荃 111950036 百川系

三、廖盈榕 111701043 運管系四、洪怡安 111701042 運管系

二、蔡瑀芯 111701018 運管系

肆、摘要

一、2019年的預估收入

(1) 觀察資料

華航 2013 至 2018 年的營收呈現週期性小幅震盪,趨勢穩定沒有大幅變化。綜觀整體營收,有逐年成長的趨勢;觀察圖二之月份資料,可以發現有季節性的變動。

(2) 2019 年預估營收

圖四:2019 年各月份營收預測值

二、模型的有效性評估(Static Time Series)

MSE =	5.350E+11
MAPE =	4.779%
MAD =	601,843.23
σ =	752,304.04
bias =	-478,933.85
TS_max =	24.78
TS_min =	-13.44

將 MSE (均方誤差)與 TS (跟蹤信號 Tracking Signal)一起觀察, TS 範圍值為(-13.5,24.8),可以發現幾處較大的誤差,而 MAPE (平均絕對百分比誤差)小於 15%,是較好的成果,可知整體偏誤不大。由此來看,該模型的整體營收預估偏誤少,variance 很低,只有少數區間有較大的偏誤。

三、相關分析/討論

(1) Holt's Model
$$\alpha = 0.1$$
, $\beta = 0.55$

MSE =	6.195E+11
MAPE =	4.781%
MAD =	599,232.80
σ =	749,040.99
bias =	-1,595,954.49
TS_max =	5.88
TS_min =	-7.53

除了 MAD, Holt's Model 的各項誤差指標雖然都在可接受範圍內,但數值表現上都比 Static Time Series Model 還差,這樣的現象可能是個別資料點有較大的誤差,或是模型對營收缺乏季節性的預測。此外,TS 的範圍值為(-7.6,5.9),雖然超過[-3,3],但比前述之 TS 範圍值低許多,能預估到整體營收的成長。

(2) Holt's Model (Seasonal) $\alpha = 0.17$, $\beta = 0.9$

由於 Holt's Model 無法預估季節性趨勢,因此我們以類似 Static Time Series Model 的方式,先將季節性因素去掉後再代回相乘。此模型的數據結果較穩定,與現實的情況誤差小,使 TS 的範圍值再降為(-3.1,6.1),比先前幾組理想許多。整體來說,此模型讓營收呈現季節性的調整,預估結果較其他模型佳。

(3) Winter's Model $\alpha = 0.45$, $\beta = 0.00001$, $\gamma = 0.00001$

,	
MSE =	1.871E+11
MAPE =	2.674%
MAD =	655,693.72
=	819,617.15
bias =	-2,770,170.40
TS_max =	4.03
TS_min =	-4.22

根據模擬結果,此模型之各項誤差分析數值較 Holt's Model (Seasonal)差一些,而 TS 的範圍值為(-4.3,4.1),與 Holt's Model (Seasonal)之值相去不遠。Winter's Model 模型為正規的計算模型,若僅討論正規模型,此模型為最佳。

(4) 結論

綜觀各模型之數據,Holt's Model (Seasonal)的 MSE、MAPE、MAD 皆為最小值,且由圖可知其整體趨勢及季節性皆最貼近實際值,故 Holt's Model (Seasonal) 是我們所找到最理想之模型。

此組數據經過幾個模型測試後,我們發現須同時預測整體趨勢及季節性才會得到較好的模型結果,且整體趨勢不好預測,但可從 Holt's 及 Winter's 的模型得出,指數模型與趨勢大致吻合,季節性則較單純,使用線性模型就能使其大概契合。