Aufgabe 5

Zeigen oder widerlegen Sie die folgenden Aussagen (die jeweiligen Beweise sind sehr kurz):

(a) Alle regulären Sprachen liegen in NP.

Stimmt. Alle regulären Sprachen sind in Polynomialzeit entscheidbar (es existiert ein Automat dazu), sie liegen als in P und folglich auch in NP.

(b) Es gibt Sprachen A, B mit $A \subseteq B$, sodass B regulär und A kontextfrei ist.

Stimmt. Es existieren Sprachen mit der Eigenschaft wie gefordert. Wir wählen: $B=(a|b)^*$ und $A=\{a^nb^n\mid n\in\mathbb{N}\}$. A ist bekanntermaßen nicht regulär, wie man mit dem Pumping Lemma beweisen kann, kann aber durch eine Grammatik $G=(V,\{a,b\},\{S\to aSb\mid \varepsilon\},S)$ erzeugt werden. Für B gibt es einen deterministischen endlichen Automaten.

(c) Es gibt unentscheidbare Sprachen L über den Alphabet Σ , so dass sowohl L als auch das Komplement $\overline{L} = \Sigma^* \setminus L$ rekursiv aufzählbar (= partiell entscheidbar) sind.

Stimmt nicht. Ist L und sein Komplement rekursiv aufzählbar, so können wir L entscheiden, denn wir haben eine Maschine, die auf Eingabe x hält und akzeptiert, wenn $x \in L$ ist, sowie eine Maschine die hält, wenn x und akzeptiert, wenn $x \notin L$ ist. Daraus lässt sich eine Maschine konstruieren, die L entscheidet.

(d) Sei L eine beliebige kontextfreie Sprache über dem Alphabet Σ . Dann ist das Komplement $\overline{L} = \Sigma^* \setminus L$ entscheidbar.

Stimmt. Es gibt einen Entscheider für die Sprache L. Dieser entscheidet für eine Eingabe x, ob diese in L ist oder nicht. Negiert man diese Entscheidung, so ergibt sich ein Entscheider für \overline{L} .

Schreiben Sie zuerst zur Aussage "Stimmt" oder "Stimmt nicht" und dann Ihre Begründung.