

Projekt: MSS54 Modul: BA

Seite 1 von 8

Projekt: MSS54

Modul: Beschleunigungsanreicherung

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.2013	E. Steger	BA.DOC

Projekt: MSS54 Modul: BA

Seite 2 von 8

1. FREIGABEBEDINGUNGEN FÜR BESCHLEUNIGUNGSANREICHERUNG	3
1.1 Allgemeine Freigabebedingungen	3
1.2 Freigabe einer negativen / positiven Beschleunigungsanreicherung 1.2.1 positive Beschleunigungsanreicherung 1.2.2 negative Beschleunigungsanreicherung	3 3 4
2. BERECHNUNG DES FAKTOR 'BA_F_TI'	4
3. RETRIGGERUNG UND START DER REGELUNG	5
4. AUFREGEL- BZW. ABREGELFKUNKTION DES BA-FAKTORS	5
4. BA - ABBRUCH IM LEERLAUF	6
5. ABSCHALTEN DES LAMBDAREGLERS	7
6. VARIABLEN UND KONSTANTEN	7

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.2013	E. Steger	BA.DOC

Seite 3 von 8

Projekt: MSS54 Modul: BA

1. Freigabebedingungen für Beschleunigungsanreicherung

1.1 Allgemeine Freigabebedingungen

- Bedingung Motor läuft muß gegeben sein (B_ML)
 Die Beschleunigungsanreicherung kann in allen Motorzuständen ausgelöst werden
- der Momentenabbau nach START muß beendet sein (!B_MD_NACHSTART)
- die Drehzahlschwelle K_BA_AKTIV_SCHWELLE darf nicht überschritten werden
- kein teilbefeuerter Betrieb vorhanden (!B_SKS_TIEINGRIFF) zum Schutz des Kathalysators

1.2 Freigabe einer negativen / positiven Beschleunigungsanreicherung

Ob eine positve oder negative Beschleunigungsanreicherung ausgelöst werden muß, wird über das Maß "delta air mas - dam" festgestellt.

Unter "dam" versteht man die Änderung des Luftmassenstroms, bezogen auf einen Zylinder.

Dieser Wert wird zusätzlich über die Drehzahl normiert. Die Berechnung erfolgt in der Segement-Task.

 $dam_{ROH} = d_ml_720 / ml_720_min d_ml_720 = ml_x - ml_{(x-720°KW)}$

 $ml_720_min = max[ml, K_HFM_ML_SEG_MIN]$

 $dam = dam_{ROH} * n_{NORM}$ $dam = [-3 .. 3] (n_{NORM} normiert auf 1024 U/min)$

negatives *dam* ergibt sich beim Schließen der Klappe positives *dam* ergibt sich beim Öffnen der Klappe

1.2.1 positive Beschleunigungsanreicherung

- ein positives dam ist aufgetreten
- die Änderung des Luftmassenstroms dam überschreitet die applizierbare Schwelle KF_BA_POS_TMOT_N(tmot,n)
- der relative Öffnungsquerschnitt **aq_rel_delta** ändert sich um mehr als dem Wert **KL_BA_AQ_DELTA_POS**(aq_rel)

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.2013	E. Steger	BA.DOC

Projekt: MSS54 Modul: BA

Seite 4 von 8

Sind all diese Triggerbedingungen erfüllt, so wird der Rohwert des BA-Faktors ermittelt. Hierfür wird die **Differenz dam_delta** aus dem tatsächlichen dam-Wert und der Schwelle KF_BA_POS_TMOT_N ermittelt. Diese Differenz ist der **Eingangswert** in die Kennlinie **KL BA DAM POS**(dam delta), aus welchem der **Rohfaktor ba fak roh signed** ermittelt wird.

1.2.2 negative Beschleunigungsanreicherung

- ein negatives dam ist aufgetreten
- die Änderung des Luftmassenstroms (Betrag) dam überschreitet die applizierbare Schwelle KF_BA_NEG_TMOT_N(tmot,n)
- der relative Öffnungsquerschnitt aq_rel_delta (Vorzeichen ist bei einer neg. BA negativ) ändert sich um mehr als dem Wert KL_BA_AQ_DELTA_NEG(aq_rel)
- Schubabschalten ist nicht aktiv (!B_SA).

Sind all diese Triggerbedingungen erfüllt, so wird der Rohwert des BA-Faktors ermittelt. Hierfür wird der Absolutwert der **Differenz dam_delta** aus dem tatsächlichen dam-Wert und der Schwelle KF_BA_NEG_TMOT_N ermittelt. Dieser Wert ist der **Eingangswert** in die Kennlinie **KL BA DAM NEG**(dam delta), aus welchem der **Rohfaktor ba fak roh signed** ermittelt wird.

2. Berechnung des Faktor 'ba_f_ti'

Bei erkanntem Trigger wird segmentsynchron ein Faktor errechnet.

Der ermittelte Rohfaktor ba_fak_roh_signed wird korrigiert mit

- einem TMOT/TAN abhängigen Faktor (KF_BA_FAKT_TMOT_TAN(tmot,tan))
- einem Drehzahl / RF Faktor, abhängig davon, ob es sich um eine positive oder negative BA handelt.:
 neg. BA: KF_BA_FAKT_RF_N_NEG(rf,n) pos. BA: KF_BA_FAKT_RF_N(rf,n)
- einem Wiedereinsetzfaktor, mit dem der Wandfilmabbau während SA kompensiert werden soll. Die Eingangsgröße in die Kennlinie KL_BA_FAKT_ZEIT ist die Verweildauer in Schubabschalten. Dieser Faktor kommt nur für eine Zeit K_BA_ZEIT_WIEDEREINSETZEN nach Wiedereinsetzen zum Tragen.

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.2013	E. Steger	BA.DOC

Projekt: MSS54 Modul: BA

Seite 5 von 8

Der auf diese Weise ermittelte Offsetwert wird zum Neutralwert "1" addiert. Dieser neue Faktor wird auf ein Minimum **K_BA_FAKT_MIN** und ein Maximum **K_BA_FAKT_MAX** begrenzt.

3. Retriggerung und Start der Regelung

Ausgangszustand: BA-Regelung ist inaktiv und

- Trigger positiv BA => Start der Regelung POS-BA und Übernahme des gerade ermittelten Fakors in ba_berech
- Trigger negativ BA => Start der Regelung NEG-BA und Übernahme des gerade ermittelten Faktors in ba_berech

Ausgangszustand: Regelung POS-BA ist aktiv und

- Trigger positiv BA => ist der neu ermittelte Faktor größer, so wird der Wert in ba berech übernommen
- Trigger negativ BA => Umschaltung auf Regelung NEG-BA und Übernahme des neuen Faktors in ba berech

Ausgangszustand: Regelung NEG-BA ist aktiv und

- -Trigger negativ BA => ist der neu ermittelte Faktor kleiner, so wird der Wert in ba berech übernommen
- Trigger positiv BA => Umschaltung auf Regelung POS-BA und Übernahme des neuen Faktors in ba_berech

Jedesmal, wenn der neue Faktor in ba_berech übernommen wird, wird die Aufregel- bzw. Abregelfunktion des BA-Faktors initialisiert.

4. Aufregel- bzw. Abregelfkunktion des BA-Faktors

Die Aufregel- bzw. Abregelung erfolgt über 3 Stufen - außerdem wird auf pos. bzw. neg. BA unterschieden:

1. Ausgabe des errechneten Faktors ba_berech in ba_f_ti für die Zeit **KL_BA_IGN_POS/_NEG_TMOT** (für eine bestimmte Anzahl von Zündungen)

ba_f_ti = ba_berech

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.2013	E. Steger	BA.DOC

& E-Power

Projekt: MSS54 Modul: BA

Seite 6 von 8

2. Ausgabe eines reduzierten BA-Faktors in ba_f_ti für die Zeit **KL_BA_IGN_RED_POS/_NEG_TMOT** (für eine bestimmte Anzahl von Zündungen)

3. Abregelung des BA-Faktors ba_f_ti über eine Treppe mit einer Treppenbreite K_BA_IGN_DECAY_POS/_NEG (für eine bestimmte Anzahl von Zündungen)

pos. Regelung - Abregelung auf ba_f_ti = 1:

neg. Regelung - Aufregelung auf ba_f_ti = 1:

$$ba_f_ti_{NEU} = ba_f_ti_{ALT} + KF_BA_FAKT_RED_NEG_TMOT_N(tmot,n)$$

BA-Faktor

Anzahl Zündungen

4. BA - Abbruch im Leerlauf

Generell wird eine Beschleunigungsanreicherung in allen Motorbetriebszuständen ausgelöst. Probleme können jedoch im Leerlauf auftreten (zu fettes Gemisch). Deshalb wird beim Betreten des Leerlaufs eine aktive positive BA abgebrochen.

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.2013	E. Steger	BA.DOC

Projekt: MSS54 Modul: BA

5. Abschalten des Lambdareglers

Wenn die errechnete Beschleunigungsanreicherung ein bestimmtes Fenster verläßt, dann wird die Lambdaregelung abgeschalten.

Wenn ba_f_ti > K_LA_BA_OFF_POS

oder ba_f_ti < K_LA_BA_OFF_NEG

=> Abschalten des Lambdareglers (la_st_aus - BIT7)

6. Variablen und Konstanten

Name	Тур	Bedeutung
ba_regel_count	-	Zähler für 1. Regelstufe
ba_regel_count_red	-	Zähler für 2. Regelstufe
ba_regel_count_decay	-	Zähler für 3. Regelstufe
ba_berech	-	Zwischenwert des BA-Faktors
ba_tmot	-	TMOT-Korrekturfaktor
ba_fakt_time	-	Korrekturfaktor nach SA
ba_red_tmot	-	Reduktionsfaktor für Auf-/Abregelung
ba_dam_neg_schwelle	-	DAM-Schwelle für neg. BA
ba_dam_pos_schwelle	-	DAM-Schwelle für pos. BA
ba_aq_delta_neg	%/segment	AQ-REL-Scjwelle für neg. BA
ba_aq_delta_pos	%/segment	AQ-REL-Schwelle für pos.BA
ba_st	-	Statusvariable
ba_f_ti	-	BA-Faktor
K_BA_ZEIT_WIEDEREINSETZEN	K	Zeit für Kennfeldumschaltung
K_BA_AKTIV_SCHWELLE	K	Drehzahlschwelle über der BA abgeschaltet wird
KL_BA_IGN_POS/_NEG_TMOT	K	Anzahl Zündungen für f_ti_ba
KL_BA_IGN_RED_POS/_NEG_TMOT	K	Anzahl Zündungen für f_ti_ba reduziert
K_BA_IGN_DECAY_POS/_NEG	K	Anzahl Zündungen für f_ti_ba im Abregelvorgang
K_BA_FAKT_MIN	K	minimaler f_ti_ba Faktor (immer Positiv)
K_BA_FAKT_MAX	K	maximaler f_ti_ba Faktor
K_LA_BA_OFF_POS	K	Bei Pos BA wird ab einem bestimmeten Faktor der LA-Regler abgeschaltet
K_LA_BA_OFF_NEG	K	Bei NEG BA wird ab einem bestimmeten Faktor der LA-Regler abgeschaltet
KL_BA_AQ_DELTA_NEG	KL=f(aq_rel)	AQ_REL - Schwelle für neg. BA
KL_BA_AQ_DELTA_POS	KL=f(aq_rel)	AQ-REL - Schwelle für pos. BA
KL_BA_DAM_POS	KL=f(dam_delta)	Rohfaktor für pos. BA abh. von dam_delta
KL_BA_DAM_NEG	KL=f(dam_delta)	Rohfaktor für neg. BA abh. von dam_delta
KL_BA_FAKT_ZEIT	KL=f(time)	Zeit seit Wiedereinsetzen
KL_BA_FAKT_RED_TMOT	KL=f(tmot)	Faktor als f(tmot) für reduzierten Faktor
KF_BA_FAKT_TMOT_TAN	KF=f(tmot,tan)	Faktor als f(tmot,tan)
KF_BA_POS_TMOT_N	KF=f(tmot,n)	DAM-Schwelle für pos. BA

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.2013	E. Steger	BA.DOC

Seite 7 von 8

Seite 8 von 8

Projekt: MSS54 Modul: BA

KF_BA_NEG_TMOT_N	KF=f(tmot,n)	DAM-Schwelle für neg. BA
KF_BA_FAKT_RF_N_NEG	KF=f(rf,n)	Gewichtungsfaktor als f(tmot,n) für neg. BA
KF_BA_FAKT_RF_N	KF=f(rf,n)	Gewichtungsfaktor als f(Last,n) für pos. BA
KF_BA_FAKT_RED_NEG_TMOT_N	KF=f(tmot,n)	Red Faktor als f(tmot,n) für neg. BA
KF_BA_FKAT_RED_POS_TMOT_N	KF=f(tmot,n)	Red. Faktor als f(tmot,n) für pos. BA

Statusvariable:

ba_st

Statusbyte für BA Bit 0: Triggerung auf pos. BA Bit 1: Triggerung auf neg. BA Bit 2: Regelung pos. BA Bit 3: Regelung neg. BA

Bit 4: ---Bit 5: ---Bit 6: ---Bit 7: ---

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-32	01.04.2013	E. Steger	BA.DOC