s

Cálculo Integral En Una Variable

José Juan Hernández Cervantes

Julio-Diciembre 2017

Chapter 1

Propiedades de los Números Reales

1.1 Axioma Del Supremo.

Todo subconjunto no vacío de \mathbb{R} acotado superiormente tiene supremo.

Definición: Supremo.

Sea $A \supseteq \mathbb{R}$ $(A \neq \emptyset)$ un conjunto acotado superiormente. Diremos que \bar{x} es el supremo de A (y lo denotamos por SupA) si cumple:

- 1. \bar{x} es cota superior de A.
- 2. Si z es cota superior de A, ocurre $\bar{x} \leq z$.

Teorema: Unicidad del supremo.

Si \bar{x} es el supremo de A, \bar{x} es único.

Demostración

Supongamos $\bar x$ y $\bar y$ supremos de A. Entonces, por definición de supremo ocurre: $\bar x \le \bar y \land \bar y \le \bar x$ $\therefore \bar x = \bar y$ Q.E.D

1.2 Propiedad Arquimedeana.

Para todo par de números $x, y \in \mathbb{R}$ con $x > 0 \exists n \in \mathbb{N}$ tal que nx > y.

Demostración: por reducción a lo absurdo.

Supongamos $\forall n \in \mathbb{N}, nx \leq y$. Si $y \leq 0$ entonces $x \leq 0$, contradicción con la hipótesis x > 0. Si y > 0, sea $A = \{nx : n \in \mathbb{N}\}$. Trivialmente $A \subseteq \mathbb{R}$ y $A \neq \emptyset$ pues $x \in A$, además A está acotado superiormente por y. Invocando el axioma del supremo, existe $\bar{x} = SupA$. Como $x > 0 \Rightarrow -x < 0 \Rightarrow \bar{x} - x < \bar{x}$. Con lo que $\bar{x} - x$ no es cota superior de A. Entonces existe a tal que $\bar{x} - x < a$.

Esto es $\exists n \in \mathbb{N}$ tal que $\bar{x} - x < xn = a$. Equivalentemente $\bar{x} < (n+1)x$. Como $(n+1)x \in A$, llegamos a una contradicción con la definicion de supremo. $\therefore \exists n \in \mathbb{N}$ tal que $nx > y \ \forall x > 0, y \in \mathbb{R}$. Q.E.D

1.3 Principio Del Buen Orden.

Todo subconjunto no vacío de \mathbb{N} tiene elemento más pequeño. $\forall A \subseteq \mathbb{R}, \ A \neq \emptyset, \ \exists a_0 : a_0 \leq a \ \forall a \in A.$

1.4 Principio De Inducción Matemática Fuerte.

Si $A=\{P(j): j\in \mathbb{N}\}$ es una colección de enunciados con las siguientes propiedades:

- 1. P(1) es verdadero.
- 2. P(n+1) es verdadero siempre que $P(n), P(n-1), \dots, P(2), P(1)$ sean verdaderos.

Entonces P(j) es verdadero $\forall j \in \mathbb{N}$

1.4.1 El principio de inducción matemática fuerte implica el principio de buen orden.

Demostración: por reducción a lo absurdo.

Supongamos que existe $A \subseteq \mathbb{N}$, $A \neq \emptyset$ tal que no existe $a_0 \in A$ con $a_0 \leq a \ \forall a \in A$ Sea $B = \{n \in \mathbb{N} : n \notin A\}$. Entonces $1 \notin A$, pues $1 \leq n \ \forall n \in \mathbb{N}$. Se sigue que $1 \in B \ (B \neq \emptyset)$. Supongamos $k \in B$, entonces $1,2,...,k-1,k \notin A$. Luego $k+1 \notin A$, de lo contrario k+1 sería el elemento más pequeño de A. Por el Principio De Inducción Matemática Fuerte tenemos $B = \mathbb{N}$, como $A \subseteq \mathbb{N} = B$ ocurre $A = \emptyset$. Contradicción con la hipótesis.

$$\therefore \forall A \subseteq \mathbb{N} \text{ y } A \neq \emptyset \exists a_0 : a_0 \leq a \ \forall a \in A.$$
 Q.E.D

1.4.2 El principio de buen orden implica el principio de inducción matemática fuerte.

Demostración pendiente.

1.5 Teorema Del Binomio De Newton.

 $\forall a,b \in \mathbb{R} \land \forall n \in \mathbb{N} \text{ se tiene: } (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$ **Demostración: Por inducción sobre n.** $P(0): (a+b)^0 = 1 \text{ por otro lado } \sum_{k=0}^0 \binom{0}{k} a^k b^{0-k} = \binom{0}{0} a^0 b^0 = 1$ $\therefore P(0) \text{ es verdadero.}$

Supongamos P(r) verdadero, es decir $(a+b)^r=\sum_{k=0}^r\binom{r}{k}a^kb^{r-k}$. Por demostrar P(r+1). $(a+b)^{k+1}=(a+b)^k\ (a+b)=\sum_{k=0}^r\binom{r}{k}a^kb^{r-k}\ (a+b)$

$$(a+b)^{k+1} = (a+b)^k (a+b) = \sum_{k=0}^r {r \choose k} a^k b^{r-k} (a+b)^k$$