A PROJECT REPORT ON

STRUCTURAL VIBRATION ANALYSIS OF PLATES

BY

K.BADARI VISHAL

2018A4PS0807G

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI ACADEMIC YEAR 2020-21

A PROJECT REPORT ON

STRUCTURAL VIBRATION ANAYSIS OF PLATES

BY

K.BADARI VISHAL 2018A4PS0807G B.E. (Hons.) MECHANICAL

Prepared in fulfillment of the Study Oriented Project (SOP) Course No. ME F266

Under

Dr. Kiran D Mali
Assistant Professor
Department of Mechanical Engineering
BITS Pilani KK Birla Goa Campus

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI ACADEMIC YEAR 2020-21

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI

Title of the Project: Study Oriented Project on Structural Vibration Analysis of Plates.

ID No.NAMEDiscipline2018A4PS0807GK.BADARI VISHALB.E. (Hons) Mechanical

Name of the Mentor: Dr. KIRAN D MALI, Assistant Professor, Dept. of Mechanical Engineering, BITS Pilani K.K.Birla Goa Campus

Keywords: Vibration, Plates, Kirchoff's plate theory, Ritz's Method

Abstract: This report discusses the Structural Vibration analysis of 'Perforated plates' and the Kirchoff's plate theory involved in the analysis of plates. The report also discusses the Ritz's & Galerkin methods that are applied for the analysis of Plates followed by a code developed in 'MAPLE' software that is based on a 4 term approximation of Rayleigh-Ritz method for a simply supported plate.

TABLE OF CONTENTS

i.	Cover Page	1
ii.	Title Page	2
iii.	Abstract	3
1. Introdu	uction	5
1.1	Kirchoff's classical plate theory	5
1.2	Equations of the Plate	5
1.3	Boundary Conditions	7
1.4	Solution in Rectangular coordinates	8
2. Rayleig	gh – Ritz Method for plates	9
3. Code fo	or simply supported plate	11
4. Verification on ANSYS		15
5. Conclu	sion	17
6. Referei	nces	17

1. Introduction

A mathematically exact stress analysis of a thin plate subjected to loads acting normal to its surface requires a solution of the differential equations of three-dimensional elasticity. Since such a scenario is bound to encounter insurmountable mathematical difficulties, we utilize the Kirchoff's plate theory or often called 'Classical Plate Theory'.

1.1 Kirchoff's theory

Kirchoff's theory takes into consideration the following assumptions such that the originally 3D stress problems of elasticity are now reduced to 2D problems of plates:

- 1. The material is homogeneous, isotropic and linearly elastic (it follows Hooke's law).
- 2. The plate is initially flat.
- 3. The middle surface of the plate remains unstrained during bending.
- 4. The constant thickness of the plate is small compared to its other dimensions (the smallest lateral dimension of the plate is at least 10 times larger than its thickness).
- 5. The transverse deflections w(x,y) are small compared to the plate thickness (A maximum deflection of one-tenth of the thickness is considered the limit of the small-deflection theory).
- 6. Slopes of the defected middle surface are small compared to unity.
- 7. Sections taken normal to the middle surface before deformation remain plane and normal to the deflected middle surface. Consequently, shear deformations are neglected.
- 8. The normal stress ' σ_z ' in the direction transverse to the plate surface can be neglected.

1.2 Equations of the Plate

The bending moments and twisting moments are given by –

$$m_x = \int_{-(h/2)}^{+(h/2)} \sigma_x z \, dz$$
 and $m_y = \int_{-(h/2)}^{+(h/2)} \sigma_y z \, dz$.
 $m_{xy} = \int_{-(h/2)}^{+(h/2)} \tau_{xy} z \, dz$ and $m_{yx} = \int_{-(h/2)}^{+(h/2)} \tau_{yx} z \, dz$;

Figure

On substituting the normal stress which are given as –

$$\sigma_x = -\frac{Ez}{1 - v^2} \left(\frac{\partial^2 w}{\partial x^2} + v \frac{\partial^2 w}{\partial y^2} \right)$$

$$\sigma_{y} = -\frac{Ez}{1 - v^{2}} \left(\frac{\partial^{2}w}{\partial y^{2}} + v \frac{\partial^{2}w}{\partial x^{2}} \right).$$
 We arrive at
$$-m_{x} = -\frac{Eh^{3}}{12(1 - v^{2})} \left(\frac{\partial^{2}w}{\partial x^{2}} + v \frac{\partial^{2}w}{\partial y^{2}} \right)$$
$$= -D \left(\frac{\partial^{2}w}{\partial x^{2}} + v \frac{\partial^{2}w}{\partial y^{2}} \right) = D(\kappa_{x} + v\kappa_{y})$$

$$m_y = -D\left(\frac{\partial^2 w}{\partial y^2} + v \frac{\partial^2 w}{\partial x^2}\right) = D(\kappa_y + v \kappa_x),$$

$$D = \frac{Eh^3}{12(1 - v^2)}$$

Where D is flexural rigidity.

Based on the equilibrium equations and substitution of expressions for moments in them, we arrive at the non-homogeneous biharmonic equation, given by –

$$\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} + \frac{q}{D} = 0$$

Or in short

$$abla^4 w = rac{q}{D}$$

1.3 Boundary Conditions

The summary for various boundary conditions (geometric, statical and mixed boundary conditions) are given as follows:

Type of Support at $x = a$	Mathematical Expressions	
Simple support	$(w)_{x=a} = 0; (m_x)_{x=a} = \left(\frac{\partial^2 w}{\partial x^2} + v \frac{\partial^2 w}{\partial y^2}\right)_{x=a} = 0$	
Fixed edge	$(w)_{x=a} = 0; \left(\frac{\partial w}{\partial x}\right)_{x=a} = 0$	
Free-edge	$(m_x)_{x=a} = \left(\frac{\partial^2 w}{\partial x^2} + v \frac{\partial^2 w}{\partial y^2}\right)_{x=a} = 0$	
	$(v_x)_{x=a} = \left[\frac{\partial^3 w}{\partial x^3} + (2 - v)\frac{\partial^3 w}{\partial x \partial y^2}\right]_{x=a} = 0$	
Partially fixed edge	$(w)_{x=a}=0$	
	$\left(\frac{\partial w}{\partial x}\right)_{x=a} = -(\rho^{4})^{-1}D\left(\frac{\partial^2 w}{\partial x^2} + v\frac{\partial^2 w}{\partial y^2}\right)_{x=a}$	
Elastic support	$(m_x)_{x=a} = \left(\frac{\partial^2 w}{\partial x^2} + v \frac{\partial^2 w}{\partial y^2}\right)_{x=a} = 0$	
	$(w)_{x=a} = \rho^{-1} D \left[\frac{\partial^2 w}{\partial x^2} + (2 - v) \frac{\partial^3 w}{\partial x \partial y^2} \right]_{x=a}$	
Elastic support and restraint	$(w)_{x=a} = \rho^{-1} D \left[\frac{\partial^3 w}{\partial x^3} + (2 - v) \frac{\partial^3 w}{\partial x \partial y^2} \right]_{x=a}$	
	$\left(\frac{\partial w}{\partial x}\right)_{x=a} = -(\rho^{4\zeta})^{-1}D\left(\frac{\partial^2 w}{\partial x^2} + \nu \frac{\partial^2 w}{\partial y^2}\right)_{x=a}$	

1.4 Solution in Rectangular coordinates

Considering the case for a simply supported plate, where having found W(x,y) as follows –

$$W_1(x,y) = (\overline{A}\sin\alpha_1x + \overline{B}\cos\alpha_1x)(\overline{C}\sin\alpha_2y + \overline{D}\cos\alpha_2y)$$

$$= A\sin\alpha_1x\sin\alpha_2y + B\sin\alpha_1x\cos\alpha_2y + C\cos\alpha_1x\sin\alpha_2y + D\cos\alpha_1x\cos\alpha_2y$$

$$W_2(x, y) = E \sinh \alpha_1 x \sinh \alpha_2 y + F \sinh \alpha_1 x \cosh \alpha_2 y$$

+ $G \cosh \alpha_1 x \sinh \alpha_2 y + H \cosh \alpha_1 x \cosh \alpha_2 y$

Combining above two equations, we get –

$$W(x, y) = A \sin \alpha_1 x \sin \alpha_2 y + B \sin \alpha_1 x \cos \alpha_2 y$$

$$+ C \cos \alpha_1 x \sin \alpha_2 y + D \cos \alpha_1 x \cos \alpha_2 y$$

$$+ E \sinh \alpha_1 x \sinh \alpha_2 y + F \sinh \alpha_1 x \cosh \alpha_2 y$$

$$+ G \cosh \alpha_1 x \sinh \alpha_2 y + H \cos \alpha_1 x \cosh \alpha_2 y$$

The boundary conditions for this case are given as –

at
$$x = 0$$
 and $x = a$, $W = \frac{\partial^2 W}{\partial x^2} = 0$
at $y = 0$ and $y = b$, $W = \frac{\partial^2 W}{\partial y^2} = 0$

Finding solutions separately for $\overline{W}(x)$ and $\overline{W}(y)$, we arrive at the following solution for W –

$$W_{mn}(x, y) = A_{mn} \sin \frac{m\pi x}{a} \cdot \sin \frac{n\pi y}{b}$$

And the frequency is given by –

$$\omega_{mn}=\pi^2iggl[\Big(rac{m}{a}\Big)^2 + \Big(rac{n}{b}\Big)^2iggr] \sqrt{rac{D}{
ho h}}$$

The case with m = n = 1 corresponds to the case of fundamental natural frequency.

2. Rayleigh – Ritz Method

For the plate vibrating freely, we start with the assumption of the solution and hence obtain the maximum strain and kinetic energies which are given as follows:

$$T_{\max} = \frac{1}{2} \omega^2 \iint_{R} \rho h W^2 dx dy$$

$$U_{\text{max}} = \frac{1}{2} \iint_{R} D \left[(\nabla^{2} W)^{2} + 2(1 - \nu) \left\{ W_{xy}^{2} - W_{xx} W_{yy} \right\} \right] dx dy$$

Equating the above two expressions and applying the N-term approximation, we arrive at –

$$p\omega^{2} = \frac{\iint\limits_{R} \left[\left(\sum_{j=1}^{N} C_{j} \phi_{j}^{xx} \right)^{2} + \left(\sum_{j=1}^{N} C_{j} \phi_{j}^{yy} \right)^{2} + 2\nu \left(\sum_{j=1}^{N} C_{j} \phi_{j}^{xx} \right) \left(\sum_{j=1}^{N} C_{j} \phi_{j}^{yy} \right) + 2(1-\nu) \left(\sum_{j=1}^{N} C_{j} \phi_{j}^{xy} \right)^{2} \right] dxdy}{\iint\limits_{R} \left(\sum_{j=1}^{N} C_{j} \phi_{j} \right)^{2} dxdy}$$

where

$$\phi_j^{xx} = \frac{\partial^2 \phi_j}{\partial x^2}$$

$$\phi_j^{yy} = \frac{\partial^2 \phi_j}{\partial y^2}$$

$$\phi_j^{xy} = \frac{\partial^2 \phi_j}{\partial x \partial y}$$
 $p = \frac{12\rho(1 - \nu^2)}{E}$

Taking derivatives with respect to each coefficient and equating it to zeros followed by non-dimensionalizing the expression, we have the re-written form given by –

$$\sum_{j=1}^{N} (a_{ij} - \lambda^2 b_{ij}) C_j = 0$$
 where we get -

$$a_{ij} = \iint_{R'} H^3 \left[\phi_i^{XX} \phi_j^{XX} + \phi_i^{YY} \phi_j^{YY} + \nu \left(\phi_j^{XX} \phi_j^{YY} + \phi_i^{YY} \phi_j^{XX} \right) + 2(1 - \nu) \phi_i^{XY} \phi_j^{XY} \right] dXdY$$

$$\lambda^2 = \frac{12\rho a^4(1-\nu^2)\omega^2}{Eh_0^2}$$

$$b_{ij} = \iint_{R^1} H \phi_i \phi_j dX dY$$

We basically have a generalized eigenvalue problem, which can be solved for frequencies and mode shapes for free vibration of plates of various shapes and with different boundary conditions.

3. Code for simply supported plate

The code for the case of a simply supported plate is developed on MAPLE software. The problem is solved by a 4-term trigonometric approximation using Rayleigh – Ritz Method.

The dimensions (including thickness) and other plate properties considered are given as follows:

$$a = 0.138; b = 0.216; h = 0.002$$

 $\vartheta = 0.3; E = 210GPa = 210 * 10^9; \rho = 7850;$

Based on the above values considered, the below parameters are found out:

$$m = \rho h = 15.7$$

$$D = \frac{E * h^3}{12(1 - \vartheta^2)} = 153.8461538 \text{ (which is the flexural rigidity)}$$

As stated earlier, we take 4-term approximation for W. The coding interface is as follows:

Text Math C 2D Input Times New Roman D 12 D B
$$I$$
 E \equiv T, Q \rightleftharpoons \rightleftharpoons h \Rightarrow 0.002; h \Rightarrow 0.002 (1) h \Rightarrow 0.002 (2) h \Rightarrow 0.3 (2) h \Rightarrow 0.4 (3) h \Rightarrow 0.138; h \Rightarrow 0.150; h \Rightarrow 0.216; h \Rightarrow 0.226; h \Rightarrow 0.22

After finding the derivatives of W with respect to x and y, we calculate the kinetic and strain energies. For the ease of calculations the below code is written as such:

$$\begin{aligned} dlx &\coloneqq \frac{\mathbf{\hat{o}}}{\mathbf{o}x}(W); \\ 7.246376812\,cl \cos(7.246376812\,\pi x) \,\pi \sin(4.629629630\,\pi y) + 7.246376812\,cl \cos(7.246376812\,\pi x) \,\pi \sin(9.259259260\,\pi y) \\ &+ 7.246376812\,cl \cos(7.246376812\,\pi x) \,\pi \sin(13.88888889\,\pi y) + 14.49275362\,cd \cos(14.49275362\,\pi x) \,\pi \sin(4.629629630\,\pi y) \\ d2x &\coloneqq \frac{\mathbf{\hat{o}}}{\mathbf{o}x}(dlx); \\ &- 52.50997690\,cl \sin(7.246376812\,\pi x) \,\pi^2 \sin(4.629629630\,\pi y) - 52.50997690\,cl \sin(7.246376812\,\pi x) \,\pi^2 \sin(9.259259260\,\pi y) \\ &- 52.50997690\,cl \sin(7.246376812\,\pi x) \,\pi^2 \sin(13.88888889\,\pi y) - 210.0399075\,cd \sin(14.49275362\,\pi x) \,\pi^2 \sin(4.629629630\,\pi y) \\ dly &\coloneqq \frac{\mathbf{\hat{o}}}{\mathbf{\hat{o}y}}(W); \\ 4.629629630\,cl \sin(7.246376812\,\pi x) \cos(4.629629630\,\pi y) \,\pi + 9.259259260\,cl \sin(7.246376812\,\pi x) \cos(9.259259260\,\pi y) \,\pi \\ &+ 13.88888889\,cl \sin(7.246376812\,\pi x) \cos(4.629629630\,\pi y) \,\pi + 4.629629630\,cl \sin(14.49275362\,\pi x) \cos(4.629629630\,\pi y) \,\pi \\ d2y &\coloneqq \frac{\mathbf{\hat{o}}}{\mathbf{\hat{o}y}}(dly); \\ -21.43347051\,cl \sin(7.246376812\,\pi x) \,\pi^2 \sin(4.629629630\,\pi y) - 85.73388204\,cl \sin(7.246376812\,\pi x) \,\pi^2 \sin(9.259259260\,\pi y) \,\pi \\ -192.9012346\,cl \sin(7.246376812\,\pi x) \,\pi^2 \sin(13.88888889\,\pi y) - 21.43347051\,cl \sin(14.49275362\,\pi x) \,\pi^2 \sin(4.629629630\,\pi y) \\ ul &\coloneqq \int_0^{\mathbf{A},\mathbf{\hat{o}}} (d2x + d2y)^2 \,dxdy; \\ 7636.334479\,cl\,cl + 4917.770255\,cl^2 + 12664.16348\,cl^2 + 47377.76874\,cl^2 + 44594.38945\,cl^2 - 8593.557996\,cl\,cl^3 \\ -7530.561491\,cl\,cl + 26070.49837\,cl^2\,cl^3 - 5846.743888\,cl^2\,cl + 6579.640119\,cl^3\,cl^4 \\ \mathbf{E} &\coloneqq stmplify(\frac{\mathbf{\hat{n}ex}}{2}\,ul); \\ 5.874103445\,10^5\,cl\,cl + 3.782900195\,10^5\,cl^2 + 9.741664210\,10^5\,cl^2 + 3.644443748\,10^6\,cl^2 + 3.430337649\,10^6\,cl^2 \\ - 6.610429225\,10^5\,cl\,cl - 3.782900195\,10^5\,cl^2 + 9.741664210\,10^5\,cl^2 + 3.644443748\,10^6\,cl^2 + 3.430337649\,10^6\,cl^2 \\ - 6.610429225\,10^5\,cl\,cl - 3.782900195\,10^5\,cl^2 + 9.741664210\,10^5\,cl^2 + 3.644443748\,10^6\,cl^2 + 3.430337649\,10^6\,cl^2 \\ - 6.610429225\,10^5\,cl\,cl - 3.782900195\,10^5\,cl^2 + 9.741664210\,10^5\,cl^2 + 3.644443748\,10^6\,cl^2 + 3.430337649\,10^6\,cl^2 \\ - 6.610429225\,10^5\,cl\,cl - 3.782900195\,10^5\,cl^2 + 9.741664210\,10^5\,cl^2 + 3.644443748\,10^6\,cl^2 + 3.430337649\,10^6\,cl^2 \\ - 6.610429225\,10^5\,cl\,cl - 3.78290019$$

In the above code –

- d1x is the partial derivative of W with respect to x, d2x being the 2^{nd} derivative of W
- d1y is the partial derivative of W with respect to y, d2y being the 2^{nd} derivative of W.
- *E* here in the code represents the strain energy.
- u1 was used to solve the integral so as to ease the calculation process.

In the code following below –

- *F* represents the kinetic energy.
- t1 was used to solve the integral so as to ease the calculation process.

$$tI := \int_{0}^{\mathbf{a}} \int_{0}^{b} (W)^{2} dxdy;$$

$$0.007669020688 cI c2 + 0.009233563836 cI^{2} + 0.006802762692 c2^{2} + 0.008075814119 c3^{2} + 0.008544342177 c4^{2}$$

$$- 0.004861602287 cI c3 - 0.004516761140 cI c4 + 0.007888775467 c2 c3 - 0.001875718587 c2 c4 + 0.001189069393 c3 c4$$

$$F := simplify\left(\frac{\mathbf{m}}{2} \cdot tI\right);$$

$$0.06020181240 cI c2 + 0.07248347610 cI^{2} + 0.05340168715 c2^{2} + 0.06339514085 c3^{2} + 0.06707308610 c4^{2} - 0.03816357796 cI c3$$

$$- 0.03545657495 cI c4 + 0.06192688740 c2 c3 - 0.01472439091 c2 c4 + 0.009334194735 c3 c4$$

Taking derivatives with respect to the coefficients c1, c2, c3 and c4, and clubbing them into rows, we have –

$$row1 := \frac{\partial}{\partial cI} (E) - \omega^2 \cdot \frac{\partial}{\partial cI} (F);$$

$$5.874103445 \cdot 10^5 c2 + 7.565800390 \cdot 10^5 cI - 6.610429225 \cdot 10^5 c3 - 5.792739605 \cdot 10^5 c4 - \omega^2 (0.06020181240 c2 + 0.1449669522 cI - 0.03816357796 c3 - 0.03545657495 c4)$$

$$row2 := \frac{\partial}{\partial c2} (E) - \omega^2 \cdot \frac{\partial}{\partial c2} (F);$$

$$5.874103445 \cdot 10^5 cI + 1.948332842 \cdot 10^6 c2 + 2.005422951 \cdot 10^6 c3 - 4.497495297 \cdot 10^5 c4 - \omega^2 (0.06020181240 cI + 0.1068033743 c2 + 0.06192688740 c3 - 0.01472439091 c4)$$

$$(19)$$

$$row3 := \frac{\partial}{\partial c\beta} (E) - \omega^2 \cdot \frac{\partial}{\partial c\beta} (F);$$

$$7.28888749610^6 c\beta - 6.61042922510^5 c\beta + 2.00542295110^6 c\beta + 5.06126163010^5 c\beta - \omega^2 (0.1267902817 c\beta - 0.03816357796 c\beta + 0.06192688740 c\beta + 0.009334194735 c\beta)$$

$$(20)$$

$$row4 := \frac{\partial}{\partial c4} (E) - \omega^2 \cdot \frac{\partial}{\partial c4} (F);$$

$$6.860675298 \cdot 10^6 \cdot c4 - 5.792739605 \cdot 10^5 \cdot cI - 4.497495297 \cdot 10^5 \cdot c2 + 5.061261630 \cdot 10^5 \cdot c3 - \omega^2 (0.1341461722 \cdot c4 - 0.03545657495 \cdot cI - 0.01472439091 \cdot c2 + 0.009334194735 \cdot c3)$$

$$(21)$$

The solution for ω is further solved as follows:

- Club all the rows into a Matrix *M* with each row getting differentiated with respect to each of the coefficients.
- Take the determinant of the matrix and equal it to 0. We arrive at an equation for ω .
- Having found an equation, solve for ω further for obtaining the frequencies.

The below interface describes the code used for the above steps for solving.

```
M := Matrix([[(diff(row1, c1)), (diff(row1, c2)), (diff(row1, c3)), (diff(row1, c4))], [(diff(row2, c1)), (diff(row2, c2)), (diff(row2, c3)), (diff(row2, 
                          (diff(row3, c4)), [(diff(row3, c1)), (diff(row3, c2)), (diff(row3, c3)), (diff(row3, c4))], [(diff(row4, c1)), (diff(row4, c2)), (diff(r
                          (diff(row4, c3)), (diff(row4, c4))]);
[7.56580039010^5 - 0.1449669522 \omega^2, 5.87410344510^5 - 0.06020181240 \omega^2, -6.61042922510^5 + 0.03816357796 \omega^2]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (22)
                          -5.79273960510^5 + 0.03545657495 \omega^2
                        [5.87410344510^5 - 0.06020181240 \omega^2, 1.94833284210^6 - 0.1068033743 \omega^2, 2.00542295110^6 - 0.06192688740 \omega^2, 1.94833284210^6 - 0.006192688740 \omega^2, 1.9483284210^6 - 0.006192688740 \omega^2, 1.9483284210^6 - 0.006192688740 \omega^2, 1.9483284210^6 - 0.006192688740 \omega^2, 1.9483284210^6 - 0.006192688740 \omega^2, 1.948840 \omega^2, 1.94880 \omega^2, 1.9480 \omega^2, 1.9480
                          -4.49749529710^5 + 0.01472439091 \omega^2
                        \left[-6.61042922510^{5}+0.03816357796\omega^{2},2.00542295110^{6}-0.06192688740\omega^{2},7.28888749610^{6}-0.1267902817\omega^{2},\right]
                         5.061261630\,10^5 - 0.009334194735\,\omega^2
                        6.86067529810^{6} - 0.1341461722 \omega^{2}
           determinant
                                                                            1.78251494310^{25} - 7.27148529110^{18} \omega^2 + 5.24728701510^{11} \omega^4 - 10823.10564 \omega^6 + 0.00006368032486 \omega^8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (23)
          solve for omega
 [\omega = -1761.314878], [\omega = 1761.314878], [\omega = -4218.965914], [\omega = 4218.965914], [\omega = -7245.579357], [\omega = 7245.579357], [\omega = 7245.579357]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (24)
                          -9826.476430], [\omega = 9826.476430]]
```

Having found the various solutions for ω , the respective frequencies are found out which are given as follows:

$$fI := \frac{1761.314878}{2 \cdot 3.1416}$$

$$f2 := \frac{4218.965914}{2 \cdot 3.1416}$$

$$f3 := \frac{7245.579357}{2 \cdot 3.1416}$$

$$f4 := \frac{9826.476430}{2 \cdot 3.1416}$$

$$1563.928640$$
(25)
$$(26)$$

$$(27)$$

4. Verification on ANSYS

Simply supported plate conditions are used.

First we check for various metals

Plate dimensions are: h=0.002, a=0.138, b=0.216

Metals	Natural frequency using MAPLE	Natural Frequency using APDL
Carbon steel	f1 = 274.3621, f2 = 657.1933, f3 = 1128.652, f4 = 1530.593	f1 = 363.51 f2 = 679.44 f3 = 1137.7 f4 = 1205.9
Cast Iron	f1 = 197.0194, f2 = 471.9321, f3 = 810.4881, f4 = 1099.186	f1 = 249.68 f2 = 466.68 f3 = 781.44 f4 = 828.30
Stainless Steel	f1 = 269.2503, f2 = 644.9515, f3 = 1107.629, f4 = 1502.169	f1 = 345.27 f2 = 645.35 f3 = 1080.6 f4 = 1145.4

Now we change the dimensions of the plate made of stainless steel. Height is kept really small compared to the edges to satisfy thin plate requirement.

Dimensions	MAPLE	APDL
a = 0.138,b=0.216,h=0.002	f1 = 269.2503, f2 = 644.9515, f3 = 1107.629, f4 = 1502.169	f1 = 345.27 f2 = 645.35 f3 = 1080.6 f4 = 1145.4
a = 0.15,b = 0.2,h=0.002	f1 = 327.65, f2 = 697.65, f3 = 1007.99, f4 = 1390.47	f1 = 324.26 f2 = 674.30 f3 = 946.66 f4 = 1257.6
a = 0.3,b=0.4,h=0.002	f1 = 81.91	f1 = 81.079

	f2 = 168.63 f3 = 236.74
f4 = 347.61	f4 = 314.55

The mesh we obtained for modal analysis using ANSYS APDL is shown below.

5. Conclusion

The structural vibration analysis of plates was discussed starting with the Kirchoff's classical plate's theory followed by the equations of plate, boundary conditions and a solution method in rectangular coordinates.

The next study described the Rayleigh – Ritz method for solving the vibration analysis of plates given the appropriate boundary conditions.

The case of a simply supported plate was solved with a code developed on MAPLE software followed by verification on ANSYS software.

6. References

- 1. Chakraverty S., "Vibration of Plates", Taylor & Francis Group.
- 2. Szliard R., "Theories and applications of Plate Analysis", John Wiley & Sons.