Lec 1 σ -algebra [Fol 1.2]

我们 (见 my Math 395 notes) 已经证明: 在 \mathbb{R} 上不存在一个 measure function $\mu: \mathcal{P}(\mathbb{R}) \to [0, \infty]$ satisfying:

- 1. $\mu(\emptyset) = 0;$
- 2. translate invariant
- 3. countably additivite

因而, 对于比如 \mathbb{R} 的这种无法在其幂集上定义良好的 measure function 的集合, 我们要定义一个 $\mathcal{A} \subseteq \mathcal{P}(X)$, 使得我们能在这个 power set 的子集上, 定义一个 make sense 的 measure.

首先,为了对于一个任意的集合 X 都能在其上定义 measure, 我们要考虑在 X 的一个什么样的子集簇上有希望定义这样的 measure.

Def 1.1 (algera, σ -algebra)

对于 set $X, S \subseteq \mathcal{P}(X)$ 被称为 X 上的一个 σ -algebra, if 其满足:

- 1. $\emptyset \in X$:
- 2. closed under complement: if $E \in S$ then $X \setminus E \in S$;
- 3. closed under countable union: if $E_1, E_2, \dots \in S$ then $\bigcup_{k=1}^{\infty} E_k \in S$.

如果第三条并不满足, 而是只满足 closed under finite union, 则称 S 是 X 上的一个 algebra. 当然, σ -algebra 是比 algebra 严格更强的条件.

我们定义 X 的一个子集簇为一个 σ -algebra 如果它包含空集并 closed under complement and countable union. 但这并不是 σ -algebra 的全部性质. 这三个性质还蕴涵了: σ -algebra 也一定包含 X, 且 **closed under set difference**, **symmetric difference** 以及 **countable intersection**.

对于 algebra, 它也有以上的所有性质的 finite version.

Theorem 1.1 (σ -algebra also closed under set difference, symmetric difference and countable intersection)

Let S be a σ -algebra on set X.

Claim:

1. $X \in S$

Proof Directly from def.

2. $D, E \in S \implies D \cup E, D \cap E, D \setminus E \in S$

Proof union: from def by leaving others as \emptyset ;

intersection:

$$(D \cap E)^C = D^C \cup E^C \in S$$

setminus:

$$D \setminus E = D \cap (X \setminus E) \in S$$

3. $D, E \in S \implies D\Delta S \in S$

Proof

$$D\Delta E = (D \setminus E) \bigcup (E \setminus D)$$

4.
$$A_1, A_2, \dots \in S \implies \bigcap_{i=1}^{\infty} A_i \in S$$

Proof

$$(\bigcap_{n=1}^{\infty})^C = \bigcup_{n=1}^{\infty} E_n^C \in S$$

Remark 我们发现 σ -algerbra 很像是 topology. 实际上 σ -algerbra 和 topology 的区别就是: σ -algebra 只保证了 closed under countable union 而 topology closed under any union; topology 只保证 closed under finite intersection 而 σ -algebra closed under countable intersection.

Lemma 1.1 (任意 σ -algebra 的 intersection 仍是 σ -algebra)

Let $\{S_{\alpha}\}_{{\alpha}\in A}$ be a collection of σ -algebra on X, then $\bigcap_{{\alpha}\in A}S_{\alpha}$ is a σ -algebra on X.

 \Diamond

Proof 这是个 trivial proof. 但是它具有一定理解上的启发.

我们对 σ -algebra 有一个直观理解: 如果我们想把一些集合做成一个 σ -algebra, 那么首先我们把它们的 补集放进这个 σ -algebra 里, 其次我们把这些集合的 up to countable 的任意组合的并集也放进这个 σ -algebra 里.

因而即便我们把一些 σ -algebra 给 intersect 起来, 其中每个集合的补集和这些集合的 up to ctbl 的任意组合的并集也在这个 intersection 里.

这是个重要的直观理解. 我们想到,如果我们要把一个 sigma-algebra 里的一部分去掉,并保持它仍然是一个 sigma-algebra,那么我们得把这些集合的补集,以及能够 ctbly union 成这些集合的小集合也去掉,并对这些小集合也 recursively 进行这个操作.

Corollary 1.1 (unique smallest σ -algebra containing a collection of subsets)

Given $\varepsilon \subseteq \mathcal{P}(X)$

$$<\varepsilon>:=\bigcap_{\varepsilon\subseteq S\subseteq \mathcal{P}(X),S\text{ is }\sigma\text{ -algebra on }X}S$$

 \bigcirc

Def 1.2 (σ -algebra generated by a subset)

We call

$$<\varepsilon>:=\bigcap_{\varepsilon\subseteq S\subseteq \mathcal{P}(X),S\text{ is }\sigma\text{ -algebra on }X}S$$

the σ -algebra generated by ε

2