Name - Akshat Shah

Roll No - 21BCP322

Sem – III

Digital Electronics and Computer Organization Lab

Course Code – 20CP203P

Department of CSE

Assignment-1

EXERCISE 1: Design the following logic functions using basic gates and test the output using truth table.

1.1: Y = ABC + DE + F

CIRCUIT DIAGRAM:

Figure 1.1 Digital Circuit representing Y = ABC + DE + F

Α	В	С	D	E	F	ABC	Υ	DE
0	0	0	0	0	0	0	0	0
0	0	0	0	0	1	0	1	0
0	0	0	0	1	0	0	0	0
0	0	0	0	1	1	0	1	0
0	0	0	1	0	0	0	0	0

0	0	0	1	0	1	0	1	0
0	0	0	1	1	0	0	1	1
0	0	0	1	1	1	0	1	1
0	0	1	0	0	0	0	0	0
0	0	1	0	0	1	0	1	0
0	0	1	0	1	0	0	0	0
0	0	1	0	1	1	0	1	0
0	0	1	1	0	0	0	0	0
0	0	1	1	0	1	0	1	0
0	0	1	1	1	0	0	1	1
0	0	1	1	1	1	0	1	1
0	1	0	0	0	0	0	0	0
0	1	0	0	0	1	0	1	0
0	1	0	0	1	0	0	0	0
0	1	0	0	1	1	0	1	0
0	1	0	1	0	0	0	0	0
0	1	0	1	0	1	0	1	0
0	1	0	1	1	0	0	1	1
0	1	0	1	1	1	0	1	1
0	1	1	0	0	0	0	0	0
0	1	1	0	0	1	0	1	0
0	1	1	0	1	0	0	0	0
0	1	1	0	1	1	0	1	0
0	1	1	1	0	0	0	0	0
0	1	1	1	0	1	0	1	0
0	1	1	1	1	0	0	1	1
0	1	1	1	1	1	0	1	1
1	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	1	0
1	0	0	0	1	0	0	0	0
1	0	0	0	1	1	0	1	0
1	0	0	1	0	0	0	0	0
1	0	0	1	0	1	0	1	0
1	0	0	1	1	0	0	1	1
1	0	0	1	1	1	0	1	1
1	0	1	0	0	0	0	0	0
1	0	1	0	0	1	0	1	0
1	0	1	0	1	0	0	0	0
1	0	1	0	1	1	0	1	0
1	0	1	1	0	0	0	0	0
1	0	1	1	0	1	0	1	0
1	0	1	1	1	0	0	1	1
1	0	1	1	1	1	0	1	1
1	1	0	0	0	0	0	0	0
1	1	0	0	0	1	0	1	0
1	1	0	0	1	0	0	0	0
1	1	0	0	1	1	0	1	0
1	1	0	1	0	0	0	0	0
1	1	0	1	0	1	0	1	0
1	1	0	1	1	0	0	1	1

1	1	0	1	1	1	0	1	1
1	1	1	0	0	0	1	1	0
1	1	1	0	0	1	1	1	0
1	1	1	0	1	0	1	1	0
1	1	1	0	1	1	1	1	0
1	1	1	1	0	0	1	1	0
1	1	1	1	0	1	1	1	0
1	1	1	1	1	0	1	1	1
1	1	1	1	1	1	1	1	1

Table 1.1 Representing Truth table of Y = ABC + DE + F

1.2:
$$Z = A'B' + AB' + A'B + AB$$

CIRCUIT DIAGRAM -:

Figure 1.2 Representing Circuit of Z = A'B' + AB' + A'B + AB

Α	В	AB	AB'	A'B	A'B'	Υ
0	0	0	0	0	1	1
0	1	0	1	0	0	1
1	0	0	0	1	0	1
1	1	1	0	0	0	1

Table 1.2 Representing truth table of Z = A'B' + AB' + A'B + AB

1.3:
$$K = (A'+B')(A+B')(A'+B)(A+B)$$

CIRCUIT DIAGRAM:

Figure 1.3 Representing Circuit of K = (A'+B')(A+B')(A'+B)(A+B)

Α	В	ABAB	AB	ABABAB	AB2	AB3	AB4	Υ
0	0	1	1	1	1	1	0	0
0	1	0	1	0	0	1	1	0

1	0	1	1	0	1	0	1	0
1	1	0	0	0	1	1	1	0

EXERCISE 2: Design the verify the functionality using existing library of basic gates in Logisim.

$$2.1: Y = ((A+B).(C+D+E))'$$

CIRCUIT DIAGRAM -:

Figure 2.1 Representing Circuit of Y = ((A+B).(C+D+E))

Α	В	С	D	E	х	у	Z	Υ
0	0	0	0	0	0	0	0	1
0	0	0	0	1	0	0	1	1
0	0	0	1	0	0	0	1	1
0	0	0	1	1	0	0	1	1
0	0	1	0	0	0	0	1	1
0	0	1	0	1	0	0	1	1
0	0	1	1	0	0	0	1	1
0	0	1	1	1	0	0	1	1
0	1	0	0	0	1	0	0	1

0	1	0	0	1	1	1	1	0
		_				_		
0	1	0	1	0	1	1	1	0
0	1	0	1	1	1	1	1	0
0	1	1	0	0	1	1	1	0
0	1	1	0	1	1	1	1	0
0	1	1	1	0	1	1	1	0
0	1	1	1	1	1	1	1	0
1	0	0	0	0	1	0	0	1
1	0	0	0	1	1	1	1	0
1	0	0	1	0	1	1	1	0
1	0	0	1	1	1	1	1	0
1	0	1	0	0	1	1	1	0
1	0	1	0	1	1	1	1	0
1	0	1	1	0	1	1	1	0
1	0	1	1	1	1	1	1	0
1	1	0	0	0	1	0	0	1
1	1	0	0	1	1	1	1	0
1	1	0	1	0	1	1	1	0
1	1	0	1	1	1	1	1	0
1	1	1	0	0	1	1	1	0
1	1	1	0	1	1	1	1	0
1	1	1	1	0	1	1	1	0
1	1	1	1	1	1	1	1	0

Table 2.1 Represents truth table of Y = ((A+B).(C+D+E))

2.2
$$F = ((A.B')'+(A'B')')'$$

Circuit diagram:

Figure 2.2 Representing Circuit of F = ((A.B')'+(A'B')')'

Α	В	х	у	Z
0	0	1	0	0
0	1	1	1	0
1	0	0	1	0
1	1	1	1	0

Table 2.2 represents truth table of F = ((A.B')'+(A'B')')'

$$2.3: K = ((A'+B)'.(A'+B')')'$$

Circuit Diagram:

Figure 2.3 Representing Circuit of K = ((A'+B)'.(A'+B')')'

Α	В	Х	у	Z
0	0	0	0	1
0	1	0	0	1
1	0	1	0	1
1	1	0	1	1

Table 2.3 represents truth table of K = ((A'+B)'.(A'+B')')'

EXERCISE 3 -: For each of the following problem statement, design a circuit, describe a Truth table and verify the outcome using Logisim.

3.1 -: Implement the functionality of XOR gate using only NAND gates.

Circuit Diagram:

Figure 3.1 Representing Circuit of XOR gate using NAND gates

А	В	х	У	Z	u	K
0	0	1	1	1	1	0
0	1	1	0	1	0	1
1	0	0	1	0	1	1
1	1	0	1	1	0	0

3.2: Implement the functionality of XNOR gate using only NOR gates.

CIRCUIT DIAGRAM:

A (A+(A+B))' (A+(A+B))' (A+(B))' (B+(A+B))' (B+(A+B))'

Figure 3.2 Representing Circuit of XNOR gate using NOR gates

Α	В	Х
0	0	1
0	1	0
1	0	0
1	1	1

Table 3.2 represents the truth table of XNOR gate

3.3 -: Implement the functionality of AND gate using only NAND gates.

CIRCUIT DIAGRAM

Figure 3.3 Representing Circuit of AND gate using NAND gate

Truth table:

Α	В	Х	Υ
0	0	1	0
0	1	1	0
1	0	1	0
1	1	0	1

Table 3.3 represents truth table of AND gate

3.4: Implement the functionality of OR gate using only NOR gates.

CIRCUIT DIAGRAM:

Figure 3.4 Representing Circuit of OR gate using NOR gates

Α	В	Х
0	0	0
0	1	1
1	0	1
1	1	1

Table 3.4 represents truth table of OR gate

3.5: Implement the functionality of NOT gate using only NAND gate.

CIRCUIT DIAGRAM:

Figure 3.5 Representing Circuit of NOT gate using NAND gate

Α	х
0	1
1	0

Table 3.5 represents truth table of NOT gate