Séries de Fourier

2022-2023: TD 6

Exercice 1 - Sommes usuelles.

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction 2π -périodique, impaire, telle que

$$f(x) = \begin{cases} 1 & \text{si } x \in]0, \pi[\\ 0 & \text{si } x = \pi. \end{cases}$$

- 1. Calculer les coefficients de Fourier (trigonométriques) de *f* et étudier la convergence de la série de Fourier *S*(*f*) de *f*.
- 2. En déduire les valeurs des sommes

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1}, \quad \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2}, \quad \sum_{n=1}^{\infty} \frac{1}{n^2}, \quad \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$$

Exercice 2 - Sommes usuelles (2).

Soit $f: R \to R$ la function 2π -périodique telle que $f(x) = e^x$ pour tout $x \in]-\pi,\pi]$.

- 1. Calculer les coefficients de Fourier (exponentiels) de la fonction f et étudier la convergence de la série de Fourier S(f) de f.
- 2. En déduire les valeurs des sommes

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + 1}, \quad \sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$

Exercice 3 – Inégalité de Wirtinger.

Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction 2π -périodique de classe C^1 . On suppose que $\int_0^{2\pi} f(t)dt = 0$.

1. Montrer

$$\int_0^{2\pi} |f(t)|^2 dt \le \int_0^{2\pi} \left| f'(t) \right|^2 dt$$

2. Caractériser l'égalité.

Exercice 4 – Inégalité Isopérimétrique.

Soit $\gamma:[0,2\pi]\to\mathbb{C}$ une fonction de classe C^1 telle que $\gamma(0)=\gamma(2\pi)$ et $|\gamma'(t)|=1$ pour tout $t\in[0,2\pi]$ (γ est une courbe fermée paramétrée par longueur d'arc). On note

$$A = \frac{1}{2i} \int_{0}^{2\pi} \gamma(t) \overline{\gamma'(t)} dt$$

(A est l'aire algébrique du domaine enlacé par la courbe γ).

1. Montrer que

$$|A| \leq \pi$$
,

2. Caractériser l'égalité.

Exercice 5 - Phénomène de Gibbs. **

On considère le signal carré φ , qui est la fonction 2π -périodique, égale à 1 sur $]0, \pi[$, à 0 sur $]\pi, 2\pi[$, et qui vaut 1/2 en ses points de discontinuité.

- 1. Calculer la série de Fourier de φ , montrer qu'elle converge simplement vers φ et même uniformément sur tout intervalle fermé ne contenant pas les discontinuités de φ .
- 2. Montrer que les sommes partielles d'indice impair $s_{2n-1}(t)$ de la série de Fourier de φ admettent la représentation intégrale

$$s_{2n-1}(t) = \frac{1}{2} + \frac{1}{\pi} \int_0^t \frac{\sin 2ns}{\sin s} ds$$

- 3. Calculer les points critiques de s_{2n-1} sur $[0, \pi]$ et la valeur de son maximum.
- 4. Montrer que ce maximum converge lorsque n tend vers l'infini vers le nombre

$$M = \frac{1}{2} + \frac{1}{\pi} \int_0^\pi \frac{\sin s}{s} ds,$$

puis conclure (on admet qu'une valeur approximative à 10^{-3} près est $M \approx 1,089$).

Exercice 6 - Théorème de Féjer.

On note $\mathscr{C}(\mathbb{R}/2\pi\mathbb{Z})$ l'ensemble des fonctions continues de \mathbb{R} dans \mathbb{C} et 2π -périodiques. On définit le produit de convolution de deux fonctions $f_1, f_2 \in \mathscr{C}(\mathbb{R}/2\pi\mathbb{Z})$ par

$$(f_1 * f_2)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f_1(x - y) f_2(y) dy.$$

Pour tout $k \in \mathbb{N}^*$, soit $\varphi_k : \mathbb{R} \to \mathbb{C}$ la fonction définie par

$$\varphi_k(x) = \frac{1}{k} \sum_{l=0}^{k-1} \sum_{m=-l}^{l} e^{imx}$$

1. Montrer que

$$\varphi_k(x) = \begin{cases} \frac{1}{k} \frac{1 - \cos kx}{1 - \cos x} & \text{si } x \notin 2\pi \mathbb{Z} \\ k & \text{si } x \in 2\pi \mathbb{Z} \end{cases}$$

2. Montrer que φ_k satisfait les propriétés suivantes :

—
$$\forall k, \frac{1}{2\pi} \int_{-\pi}^{\pi} \varphi_k(x) dx = 1;$$

$$-$$
 ∀ε ∈]0, π [, $\frac{1}{2\pi} \int_{|x| \in [\varepsilon, \pi]} \varphi_k(x) dx \to 0$ lorsque $k \to \infty$.

En déduire que, si $f \in \mathcal{C}(\mathbb{R}/2\pi\mathbb{Z})$, alors $f * \varphi_k$ converge vers f uniformément sur \mathbb{R} .

3. Calculer $f * \varphi_k$. Conclure.

Exercice 7 - Convergences. ***

Soit (λ_n) une suite positive, décroissante et tendant vers 0.

- 1. Montrer que la série de fonctions $\sum \lambda_n \sin(nx)$ converge simplement vers une fonction f sur \mathbb{R} , et que f est continue sur $]0, 2\pi[$.
- 2. $\operatorname{Si}\lambda_n = o(1/n)$ lorsque $n \to +\infty$, montrer que $\sum \lambda_n \sin(nx)$ converge uniformément vers f sur \mathbb{R} .
- 3. Réciproquement, si $\sum \lambda_n \sin(nx)$ converge uniformément vers f sur \mathbb{R} , montrer que $\lambda_n = o(1/n)$.
- 4. Plus généralement, si f est continue sur \mathbb{R} montrer que $\lambda_n = o(1/n)$. (Considérer $F(x) = \int_0^x f(t)dt$.)

Exercice 8 - Formule de Poisson.

Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction de classe C^1 vérifiant $f(x) = O(1/x^2)$ et $f'(x) = O(1/x^2)$ lorsque $|x| \to +\infty$.

1. Après avoir justifié l'existence des sommes infinies, montrer que $\forall x \in \mathbb{R}$, $\sum_{n \in \mathbb{Z}} f(x+n) = \sum_{n \in \mathbb{Z}} f^*(n)e^{2i\pi nx}$ où $\forall n \in \mathbb{Z}$, $f^*(n) = \int_{-\infty}^{+\infty} f(t)e^{-2i\pi nt}dt$ (formule sommatoire de Poisson).

2

2. (Application.) Montrer que

$$\forall s > 0, \quad \sum_{n = -\infty}^{+\infty} e^{-\pi n^2 s} = s^{-1/2} \sum_{k = -\infty}^{+\infty} e^{-\pi k^2/s}$$