





-the charges in depotion begins determine direction of electric



typical B
value is usually
high. Many more
electrons cross
while only I
recombines

or is usually 0.99 ....

 $I_c < I_E$ 



-will not be given in formula sheet - need to memorise

To remember NPN and PNP



C-B junction is reverse biasal

NAN

PNP

## **Voltage Relationship: Example**

Example: Consider the upn transistor with given voltages. Determine the type of biasing applied to B-E and C-B junctions of this transistor.

Solw: Here 
$$V_{BE} = V_B - V_E$$
or,  $V_{BE} = -2.5 - (-3.2) = 0.7 \vee$ 

Since the base has a positive voltage with respect to emitter, the B-E junction of this upn transistor is forward biased.

Again, 
$$V_{CB} = V_C - V_B$$
  
or,  $V_{CB} = -1 - (-2.5) = V_{CB} = 1.5 V$   
Since the collector has a positive voltage with

respect to base, the C-B junction of this upn transistor is reverse biased.

Notes:

-1.0 V

: Therefore transistor is properly liased

7

8

- Notice that the collector base junction is reverse biased although the n-type collector has a negative voltage applied to it
- The biasing depends on voltage difference across the junction

7

# **Voltage Relationship: Example**

-1.0 V

Example: Consider the given transistor. Determine the type of biasing applied to B-E and C-B junctions of this transistor.

Soln: Here 
$$V_{BE} = V_B - V_E$$
  
or,  $V_{BE} = -2 - (-1.3) = -0.7 V$ 

Since the base has a negative voltage with respect to emitter, the B-E junction of this pup transistor is forward biased.

Again, 
$$V_{CB} = V_C - V_B$$

or, 
$$V_{CB} = -1 - (-2) = V_{CB} = 1 \vee$$

Since the collector has a positive voltage with respect to base, the C-B junction of this pup transistor is forward biased.

Notes:

- Notice that the collector base junction is forward biased although the p-type collector has a negative voltage applied to it
- The biasing depends on voltage difference across the junction

-both forward biased so transistor won't WORK

this is also

from min carriers, right?

the drift current,

-never used
this equation
in assignments
or quiz
where do
these equations
come from?

Do I just memoria

## **Collector Current**

We know,  $i_C = I_S e^{\left(\frac{V_{BE}}{V_T}\right)}$ 

Also, 
$$i_B = \frac{1}{\beta} I_S e^{\left(\frac{v_{BE}}{V_T}\right)}$$

Also, 
$$i_E=rac{1}{lpha}I_Se^{\left(rac{v_{BE}}{V_T}
ight)}$$

Where,

 $I_S = Saturatíon$  current or scale current

 $V_{T}$  = Thermal voltage = (kT/q)

k = Boltzmann's constant

 $k = 1.38 \times 10^{-23} \text{ J/K}$ 

T = Temperature in °K

 $q = electron charge = 1.6x10^{-19} C$ 

Thus, at 20  $^{\circ}$ C  $V_{T}$  = 25.27 mV

use  $V_T = 25 \,\text{mV}$  in this course

Notes:

- Above equations are for npn transistors
- Use VEB instead of VBE for pnp transistors
- Collector current (also I<sub>B</sub> and I<sub>E</sub>) depends on temperature
- |VBE| controls collector current and other currents
- · Scale current is an inherent parameter of a transistor
- $I_s$  is typically in the order of  $10^{-12}$  to  $10^{-15}$  A

9

۵

# **Collector Current Examples**

Example: A transistor gives 4 mA of collector current at  $V_{BE} = 0.72$  V. Determine scale current  $I_S$  of the transistor.

**Example:** The saturation current of a transistor is given  $I_S = 2.1 \times 10^{-13}$  A. What base-emitter voltage is required to generate 2.5 mA of collector current?

Soln: 
$$ln\left(\frac{i_C}{I_S}\right) = \frac{v_{BE}}{V_T}$$

or, 
$$v_{BE} = V_T ln\left(\frac{i_C}{I_S}\right) = 0.58 \vee$$

10

Is = drift, saturation, scale

just rearranging of equation

## **Collector Current Example**

Example: Given that a transistor with  $\beta=150$  has a base current of 15  $\mu$ A. Determine a) collector current iC, b) emitter current iE, and c) the common-base current gain  $\alpha$ .

rearrouge equations and plug numbers

#### Soln:

- a) We know,  $i_C = \beta i_B = 150 \times 15 \times 10^{-6}$ or,  $i_C = 2.25 \text{ mA}$
- b) We know,  $\hat{i}_{\rm E} = \hat{i}_{\rm C} + \hat{i}_{\rm B}$  or,  $\hat{i}_{\rm E} = 2.25 \times 10^{-3} + 15 \times 10^{-6}$  or,  $\hat{i}_{\rm E} = 2.265 \, {\rm mA}$  Also,  $\hat{i}_{\rm E} = (\beta + 1) \hat{i}_{\rm B}$  or,  $\hat{i}_{\rm E} = 151 \times 15 \times 10^{-6}$  or,  $\hat{i}_{\rm E} = 2.265 \, {\rm mA}$
- c) We know,  $\alpha = \beta / (\beta + 1)$ 
  - or,  $\alpha = 150/151$ or,  $\alpha = 0.9934$
  - t just the math wou

It is not just the math, you need to fully understand how your design is changing.

Verify:  $\beta = \alpha / (\alpha + 1)$   $\beta = 150.5$  (0.3% error) if we take  $\alpha = 0.993$ ,  $\beta = 141.9$  (5.4% error)

if we take  $\alpha = 0.99$ ,  $\beta = 99.0$  (51.5% error)

11

-reed to unlerstand

increase

what it means in circuit

that if it's the or

### **Transistor Characteristics: Base-Emitter**

- This is the same as a diode
- Note the slope changes from infinite to almost zero
- What happens if the voltage is increased to 0.8 or higher? For this particular graph with  $I_S=5\times10^{-15}$ A and  $\beta=150$ , we'll have:

$$I_B = 247 \,\mu A$$
 at  $V_{BE} = 0.8 \,V$ 

$$I_{B} = 0.135 A$$
 at  $V_{BE} = 0.9 V$ 

$$I_B = 7.356$$
 A at  $V_{BE} = 1.0$  V

- V<sub>BE</sub> decreases by 2 mV for temperature rise of 1°C
- Consider  $V_{BE(on)} = 0.7V$  throughout this course



12

11



