Министерство образования и науки Российской Федерации Федеральное агентство по образованию Федеральное государственное бюджетное образовательное учреждение высшего образования «Вятский государственный университет»

	J 7 1	J 1	
Факультет ан	втоматики и вы	числительн	ой техники
Кафедра эл	ектронных выч	ислительн	ых машин
	абораторной рас Организация па		
	Вариан	г 1	
	инципов орган вание стеков т		
Выполнил студент п Проверил			/Крючков И. С./ _/Мельцов В. Ю./

1. Задание

1) Исследовать работу стеков типа LIFO и FIFO в режимах загрузки и чтения стека

LIFO:

- начальный адрес стека -0x0C
- глубина стена 8
- УС указывает на свободную ячейку с постдекрементом

FIFO:

- начальный адрес -0x00
- глубина стека 7
- УС указывает на свободную ячейку с постинкрементом
- 2) Составить подмикропрограммы операций загрузки данных в стек и извлечения из стека для заданного варианта
- 3) Для каждого стека выполнить последовательность следующих операций:
 - запись 4-х чисел
 - чтение 2-х чисел
 - запись 2-х чисел
 - чтение 3-х чисел
 - запись пока стен не будет полон
 - чтение пока стек не будет пуст

2. Исследование стека LIFO

2.1. Функциональная схема

Управляющие сигналы:

- ~WR = 0 сигнал записи данных в ОЗУ
- \sim RD = 0 сигнал чтения данных из ОЗУ
- CRI вход сигнала записи с MD в RgI по срезу сигнала синхронизации
- ~CS вход выборки кристалла

SP+, SP- – сигналы изменения указателя стека LIFO

у0 – запись в СТ, установка Т1 в единицу

у1 – сброс СТ

у2 – разрешение выдачи из RgO

Осведомительные сигналы:

Z = 1 -стек пуст

FL = 1 -стек полон

Функциональная схема представлена на рисунке 1.

Рисунок 1 – Функциональная схема LIFO

2.2. Граф-схема алгоритма записи и чтения

Граф-схема алгоритма записи в стек LIFO и чтения из стека LIFO представлены на рисунках 2 и 3 соответственно.

Рисунок 2 – Граф-схема записи в стек LIFO

Рисунок 3 – Граф-схема чтения из стека LIFO

2.3. Текст микропрограммы

Текст микропрограммы представлен на рисунках 4-8

N≗	Данные	~WR	~RD	CRI	SP+	SP-	~WR	~RD	CRI	WR+	RD+	Комментарии
00	11000100	1	1	1	0	0						->RgDI
01	00000000	0	1	0	0	1						wr SP-

Рисунок 4 – Микропрограмма записи в стек LIFO

N≗	Данные	~WR	~RD	CRI	SP+	SP-	~WR	~RD	CRI	WR+	RD+	Комментарии
02	00000000	1	1	0	1	0						SP+
03	00000000	1	0	0	0	0						rd ->RgDO

Рисунок 5 – Микропрограмма чтения из стека LIFO

Рисунок 6 – Микропрограмма работы со стеком LIFO

N≗	Данные	~WR	~RD	CRI	SP+	SP-	~WR	~RD	CRI	WR+	RD+	Комментарии	
1A	01000010	1	1	1	0	0						RgDI (w7.1)	
1B	00000000	0	1	0	0	1						wr SP-	
1C	00111110	1	1	1	0	0						RgDI (w7.2)	
1D	00000000	0	1	0	0	1						wr SP-	
1E	11000111	1	1	1	0	0						RgDI (w7.3)	
1F	00000000	0	1	0	0	1						wr SP-	
20	10100111	1	1	1	0	0						RgDI (w7.4)	
21	00000000	0	1	0	0	1						wr SP-	
22	10111011	1	1	1	0	0						RgDI (w7.5)	
23	00000000	0	1	0	0	1						wr SP-	
24	11001110	1	1	1	0	0						RgDI (w7.6)	
25	00000000	0	1	0	0	1						wr SP-	
26	10111111	1	1	1	0	0						RgDI w7.7	
27	00000000	0	1	0	0	1						wr SP-	
28	00000000	1	1	0	1	0						SP+ r8.1	
29	00000000	1	0	0	0	0						->RgDO	
2A	00000000	1	1	0	1	0						SP+ r8.2	
2B	00000000	1	0	0	0	0						->RgDO	
2C	00000000	1	1	0	1	0						SP+ r8.3	
2D	00000000	1	0	0	0	0						->RgDO	
2E	00000000	1	1	0	1	0						SP+ r8.4	
2F	00000000	1	0	0	0	0						->RgDO	
30	00000000	1	1	0	1	0						SP+ r8.5	

Рисунок 7 – Микропрограмма работы со стеком LIFO

N≗	Данные	~wr	~RD	CRI	SP+	SP-	~WR	~RD	CRI	WR+	RD+	Комментарии
31	00000000	1	0	0	0	0						->RgDO
32	00000000	1	1	0	1	0						SP+ r8.6
33	00000000	1	0	0	0	0						->RgDO
34	00000000	1	1	0	1	0						SP+ (r8.7)
35	00000000	1	0	0	0	0						->RgDO
36	00000000	1	1	0	1	0						SP+ (r8.8)
37	00000000	1	0	0	0	0						->RgDO

Рисунок 8 – Микропрограмма работы со стеком LIFO

2.4. Экранные формы

10.

Экранные формы работы микропрограммы представлены на рисунках 9-

Файл Вид Правка i) Стек LIFO полный. Дальнейшая запись невозможна. 🗅 😅 🖫 l ? **√** ok 21 00000000 wr SP-22 10111011 RgDI (w7.5) 00000000 23 0 wr SP-0 0 24 11001110 0 0 RgDI (w7.6) 25 00000000 wr SP-26 10111111 RaDI w7.7 Схема LIFO 🔽 ШД [0..7] 00000000 Схема FIFO Г cri 0 RgDI 10111111 RgDI XXXXXXXX +1 05 00 06 01 111011 07 02 SP ΒP SPrd 08 03 XXXXXXX MS 09 xxxxxxx 04 0A 05 0B KC KC RgDO 01000101 RaDO FL ШД [0..7] ШД [0..7] 01000101 0

Рисунок 9 – Полный стек LIFO

Рисунок 10 – Пустой стек LIFO

3. Исследование стека FIFO

3.1. Функциональная схема

Управляющие сигналы:

 \sim WR = 0 – сигнал записи данных в ОЗУ

 \sim RD = 0 – сигнал чтения данных из ОЗУ

CRI – вход сигнала записи с MD в RgI по срезу сигнала синхронизации

~CS – вход выборки кристалла

WR+, RD+ – сигналы изменения указателя стека FIFO

у0 – запись в SPrd, SPwr, установка T1 в единицу

y1 – cброс SPrd, SPwr

у2 – разрешение выдачи из RgO

Осведомительные сигналы:

Z = 1 -стек пуст

FL = 1 -стек полон

Функциональная схема представлена на рисунке 11.

Рисунок 11 – Функциональная схема FIFO

3.2. Граф-схема алгоритма записи и чтения

Граф-схема алгоритма записи в стек FIFO и чтения из стека FIFO представлены на рисунках 12 и 13 соответственно.

Рисунок 12 – Граф-схема записи в стек FIFO

Рисунок 13 – Граф-схема чтения из стека FIFO

3.3. Текст микропрограммы

Текст микропрограммы представлен на рисунках 14-18.

N≗	Данные	~wr	~RD	CRI	SP+	SP-	~wr	~RD	CRI	WR+	RD+	Комментарии	
00	01010101						1	1	1	0	0	RgDI (w4.1)	
01	00000000						0	1	0	1	0	wr WR+	

Рисунок 14 – Микропрограмма записи в стек FIFO

N≗	Данные	~WR	~RD	CRI	SP+	SP-	~WR	~RD	CRI	WR+	RD+	Комментары
08	00000000						1	0	0	0	0	->RgDO (r2.1)
09	00000000						1	1	0	0	1	RD+

Рисунок 15 — Микропрограмма чтения из стека FIFO

			39 типа LIFO 39 типа FIFO											
N≗	Данные	~WR	~RD	CRI	SP+	SP-	~WR	~RD	CRI	WR+	RD+	Комментарии		
00	01010101						1	1	1	0	0	RgDI (w4.1)		
01	00000000						0	1	0	1	0	wr WR+		
02	01000101						1	1	1	0	0	RgDI (w4.2)		
03	00000000						0	1	0	1	0	wr WR+		
04	01000111						1	1	1	0	0	RgDI (w4.3)		
05	00000000						0	1	0	1	0	wr WR+		
06	11010011						1	1	1	0	0	RgDI (w4.4)		
07	00000000						0	1	0	1	0	wr WR+		
08	00000000						1	0	0	0	0	->RgDO (r2.1)		
09	00000000						1	1	0	0	1	RD+		
0A	00000000						1	0	0	0	0	->RgDO (r2.2)		
0B	00000000						1	1	0	0	1	RD+		
0C	11001101						1	1	1	0	0	RgDI (w2.1)		
0D	00000000						0	1	0	1	0	wr WR+		
0E	11000000						1	1	1	0	0	RgDI (w2.2)		
0F	00000000						0	1	0	1	0	wr WR+		
10	00000000						1	0	0	0	0	->RgDO (r3.1)		
11	00000000						1	1	0	0	1	RD+		
12	00000000						1	0	0	0	0	->RgDO (r3.2)		
13	00000000						1	1	0	0	1	RD+		
14	00000000						1	0	0	0	0	->RgDO (r3.3)		
15	00000000						1	1	0	0	1	RD+		
16	01000010						1	1	1	0	0	RgDI w6.1		

Рисунок 16 – Микропрограмма работы со стеком FIFO

Nº	Данные	~WR	~RD	CRI	SP+	SP-	~wr	~RD	CRI	WR+	RD+	Комментарии	
17	00000000						0	1	0	1	0	wr WR+	
18	00111110						1	1	1	0	0	RgDI w6.2	
19	00000000						0	1	0	1	0	wr WR+	
1A	11000111						1	1	1	0	0	RgDI w6.3	
1B	00000000						0	1	0	1	0	wr WR+	
1C	10100111						1	1	1	0	0	RgDI w6.4	
1D	00000000						0	1	0	1	0	wr WR+	
1E	10111011						1	1	1	0	0	RgDI w6.5	
1F	00000000						0	1	0	1	0	wr WR+	
20	11001110						1	1	1	0	0	RgDI w6.6	
21	00000000						0	1	0	1	0	wr WR+	
22	10111111						1	0	0	0	0	RgDO (r7.1)	
23	00000000						1	1	0	0	1	RD+	
24	00000000						1	0	0	0	0	RgDO (r7.2)	
25	00000000						1	1	0	0	1	RD+	
26	00000000						1	0	0	0	0	RgDO (r7.3)	
27	00000000						1	1	0	0	1	RD+	
28	00000000						1	0	0	0	0	RgDO (r7.4)	
29	00000000						1	1	0	0	1	RD+	
2A	00000000						1	0	0	0	0	RgDO (r7.5)	
2B	00000000						1	1	0	0	1	RD+	
2C	00000000						1	0	0	0	0	RgDO (r7.6)	
2D	00000000						1	1	0	0	1	RD+	

Рисунок 17 — Микропрограмма работы со стеком FIFO

			J	THILL L				J	THILID				
N°	Данные	~WR	~RD	CRI	SP+	SP-	~WR	~RD	CRI	WR+	RD+		Комментарии
2E	00000000						1	0	0	0	0	RgD0	(r7.7)
21	00000000						1	1	0	0	1	RD+	

Рисунок 18 – Микропрограмма работы со стеком FIFO

3.4. Экранные формы

Экранные формы работы микропрограммы представлена на рисунках 19-20.

Рисунок 19 – Полный стек FIFO

Рисунок 20 – Пустой стек FIFO

4. Вывод

В ходе лабораторной работы были изучены принципы работы стеков LIFO и FIFO. Реализованы микропрограммы для выполнения операция PUSH и POP, выполняющие запись и чтение из стека.