

بسمه تعالی دانشکده مهندسی برق و کامپیوتر تمرین سری نهم درس آمار و احتمال مهندسی

فرض کنید X یک متغیر تصادفی با تـابع چگـالی f(x) باشـد. مـیدانیم f(x) تنها یـک مـاکزیمم دارد و در دو طـرف ایـن ماکزیمم بهصورت اکیداً یکنوا به صفر میرا میشود. با فرض آن که $\gamma=c_1$ نشـان دهیـد c_2-c_3 هنگـامی

. کمترین مقدار را دارد که $f(c_1)=f(c_2)$ باشد

خرض کنید X_1 سرنههایی تصادفی از یک توزیع یکنواخت روی X_{min} و X_{max} به ترتیب کوچکترین و بزرگترین نمونه در بین این نمونهها باشند. با استفاده از نتایج مسألهی ۱۱ از تمرین سری قبل تعیین کنید که:

الف) آیا $M = (X_{\text{max}} + X_{\text{min}})/2$ (به M اصطلاحاً Midrange Estimator) گفته می شود) یک تخمین بـدون بایـاس از میانگین است؟ [پاسخ: بله]

 $[rac{1}{2n^2+6n+4}=\sigma_M^2\leq\sigma_{ar{X}}^2=rac{1}{12n}\quad orall n\in\mathbb{N}$. ب آیا این تخمین از میانگین نمونهای بهتر است؟ چرا ایا این تخمین از میانگین نمونه ای بهتر است

- U_1 فرض کنید U_2 و U_3 دو تخمین بدون بایاس و مستقل برای U_3 به ترتیب با واریانسهای 2 و U_3 باشند. تخمین بدون بایاس جدیدی به صورت $U_3 \triangleq \alpha U_1 + \beta U_2$ برای $U_3 \triangleq \alpha U_1 + \beta U_2$ تعریف می کنیم. $U_3 \triangleq \alpha U_1 + \beta U_2$ تعریف جدید کم ترین واریانس را داشته باشد. کدام یک از سه تخمین فوق بهترین است؟ چرا؟ [پاسخ: $U_3 = \frac{3}{5}$, $U_3 = \frac{3}{5}$, $U_3 = \frac{3}{5}$ بهترین است.
- به فرض کنید متغیر تصادفی X عمر مفید نوعی لاستیک خودرو را برحسب کیلومتر نشان می دهد و $\sigma_X=5000$ است. در یک نمونه یا ۶۹ تایی از این نوع لاستیک، میانگین نمونه یا $\overline{X}=25000$ Km به به به بیاید. [پاسخ: $\overline{X}=25000$ این نوع $\overline{X}=25000$ این نوع لاستیک، میانگین متغیر تصادفی $\overline{X}=25000$ بیابید. [پاسخ: $\overline{X}=25000$ این نوع لاستیک، میانگین متغیر تصادفی $\overline{X}=25000$ بیابید.
 - **۵-** در امتحان آمار و احتمال مهندسی، نمره ی ۱۷ نفر از شرکت کنندگان به شرح زیر است:

P7. Y6. 79. TV. 6Y. YV. AV. PV. IA. IA. 7A. 7A. 6A. YA. PA. 9P. 9P

اگر نمرهها تقریباً توزیع نرمال داشته باشند، بازهی اطمینان %95 را برای میانگین نمرهها از روشهای زیر بیابید: $[ar X\pm z_{0.975} rac{s}{\sqrt{n}}=78.24\pm5.86 = ar x_{0.975} rac{s}{\sqrt{n}}=78.24\pm0.36$ الف) با استفاده از توزیع $[ar X\pm t_{0.975}^{16} rac{s}{\sqrt{n}}=78.24\pm6.34 = ar x_{0.975}^{16} rac{s}{\sqrt{n}}=78.24\pm0.34$

- طول عمر نوعی لامپ، یک متغیر تصادفی نرمال با میانگین نامعلوم و $\sigma=10$ ساعت است. پـس از بررسـی ۲۰ نمونـه از ایـن نوع لامپ، میانگین طول عمر آنها برابر ۸۰ ساعت به دست آمده است. عدد c را به گونه ای بیابید که بـا اطمینـان %95 بـت وان گفت اگر یک لامپ جدید را امتحان کنیم، طول عمر آن در بازه ی c=10 خواهد بود. [پاسخ: c=4.3827
- متغیر تصادفی X توزیع ارلانگ با تابع چگـالی c>0 گـالی $f_X(x)=c^4x^3e^{-cx}$ دارد. نمونـههای 3.1، 3.3 و 3.4 از آن آ $\hat{c}_{\mathrm{ML}}=\frac{12}{x_1+x_2+x_3}=1.2245$ مشاهده شدهاند. تخمین c را بر اساس معیار بیشترین شباهت (ML) بیابید. آپاسخ:

- را تابع چگالی (Truncated Exponential) با تابع چگالی X_n نمونه X_n X_2 X_1 نمونه X_1 نمونه X_2 X_3 نمونه X_1 از یک متغیر تصادفی X_2 با توزیع نمایی کوتاه شده (X_1 مقداری معلوم است). تخمین پـارامتر X_2 را براسـاس معیـار X_3 در اختیار داریم (X_1 مقداری معلوم اسـت). تخمـین پـارامتر X_2 را براسـاس معیـار X_3 در اختیار داریم (X_1 مقداری معلوم اسـت). تخمـین پـارامتر X_2 را براسـاس معیـار X_3 بیابید. [پاسخ: X_1 را براسـاس معیـار X_2 را براسـاس معیـار X_3 بیابید.
- را در نظر بگیرید. فرض کنید n مشاهده ی $f_X(x)=c~(1+ heta x),~-1\leq x\leq 1$ مشاهده ی $f_X(x)=c~(1+ heta x),~-1\leq x\leq 1$ مشاهده ی مستقل از این متغیر تصادفی به صورت x_1 ... و x_2 صورت گرفته است. الف) مقدار x_1 را تعیین کنید و نشان دهید x_1 و نشان دهید x_2 تخمین بدون بایاس از x_1 است. x_2 الف) مقدار x_3 را تعیین کنید و نشان دهید x_1 در تخمین بدون بایاس از x_2 است. x_3 است. x_4 است. x_5 است. x_5

الف) مقدار c را تعیین کنید و نشان دهید $\theta=3X$ یک تخمین بدون بایاس از θ است. آپاسخ: $\frac{1}{2}$ $\frac{1}{2}$ است از θ ا

- اات نشان دهید تخمین ML برای میانگین یک متغیر تصادفی با توزیع پوآسن با پارامتر λ بر اساس n مشاهدهی مستقل از ایس متغیر تصادفی، برابر میانگین نمونهای است یعنی $\hat{\lambda}_{\mathrm{ML}}=ar{X}$.
- جرم هر بسته از یک محصول را برحسب کیلوگرم با متغیر تصادفی X بـا میـانگین η مـدل کـردهایــم. جـرم ۶۴ بســته از ایــن محصول را اندازه گیری کردهایم و میانگین و انحراف معیار نمونهای به ترتیب $\overline{X}=7.7$ و $\overline{X}=7.7$ بهدســت آمدهانــد. فـرض H_1 : H_2 : H_3 : قابل قبول/غیر قابل قبول].
- ۱۳- در ۶۴ بار پرتاب یک سکه ۲۲ بار شیر ظاهر شده است. فرض سالم بودن سکه را در مقابل فرض اریب بودن آن برای $\alpha=0.05$
- ۱۴- نمونهای ۴۹ نفره از دانشجویان دانشگاه تهران انتخاب شده و از آنها در مورد مدت زمان خوابشان در طول یک شبانهروز سوال شده است. میانگین مدت زمان خواب این نمونه 7.73 ساعت و انحراف معیار آن 1.05 ساعت ثبت شده است. الف) یک بازه اطمینان %90 برای میانگین زمان خواب دانشجویان دانشگاه تهران محاسبه کنید. [پاسخ: [7.6057,7.8543]] با فرض $\alpha = 0.02$ یک آزمون فرض طراحی کنید و به کمک آن تصمیم بگیرید که آیا میانگین مدت زمان خواب دانشجویان دانشگاه تهران برابر ۸ ساعت است یا کهتر از آن؟ [پاسخ: نمی توان H_0 را رد کرد].