周四晚第6组1号台 甘城屹 直流平衡电桥测电阻

一、数据处理

1. 将平衡电桥测电阻的结果列表, 计算灵敏度 S。

万用表粗测结果: $R_x = 29.10Ω$

条件				直接量			间接量		
E/V	R_h	R_1/Ω	R_2/Ω	R_0/Ω	R_0'/Ω	Δn	$\Delta R_0/\Omega$	$R_{x} = \frac{R_1}{R_2} R_0$	$S = \frac{R_0 \triangle n}{\triangle R_0}$
	$/\Omega$			n	n'			$K_{x} = \frac{R_{2}}{R_{2}} K_{0}$	$S = \frac{1}{\Delta R_0}$
		100	100	33.0	32.9	7.9	0.1	32. $9(R_{x3})$	7.9×33.0
	0			-3.9	4.0				$\frac{100000}{0.1} = 2607$
2.0		100	1k	332.2	333. 2	2.3	1.0	33. $22(R_{x4})$	2.3 × 332.2
				0	2.3				$\frac{1.0}{1.0} = 764.06$
		1k (A)	1k (B)	33.9	32.9	1.3	1.0	33. $9(R_{x1})$	1.3 × 33.9
				0	1.3				${1.0}$ = 44.07
		1k (B)	1k(A)	32.3	33.0	0.9	0.7	32. 3 (R_{x2})	$\frac{0.9 \times 32.3}{0.7} = 41.53$
				0	0.9				0.7
	3k	100	100	33. 4	35.0	4.0	1.6	33. $4(R_{x5})$	$\frac{4.0 \times 33.4}{1.6} = 83.5$
				0	4.0				${1.6}$ = 83.5
1.0	0	100	100	33. 4	33.5	4.0	0.1	33. $4(R_{x6})$	4.0 × 33.4
				2.0	-2.0				${0.1}$ = 1336

2. 计算交换桥臂测量法测得的电阻值及其不确定度。

「昇文挟作背側里法側待的电阻值及其不開走度。
$$R_x = \sqrt{R_{x1}R_{x2}} = \sqrt{33.9 \times 32.3}\varOmega = 33.09\varOmega$$

$$e_1 = (30 \times 0.001 + 3 \times 0.005 + 0.9 \times 0.02 + 0.012)\varOmega = 0.075\varOmega$$

$$e_2 = (30 \times 0.001 + 2 \times 0.005 + 0.3 \times 0.02 + 0.012)\varOmega = 0.058\varOmega$$

$$\delta_{R_{x1}} = \frac{0.2R_{x1}}{S} = \frac{0.2 \times 33.9}{44.07}\varOmega = 0.1538\varOmega$$

$$\delta_{R_{x2}} = \frac{0.2R_{x2}}{S} = \frac{0.2 \times 32.3}{41.53}\varOmega = 0.1555\varOmega$$

$$\sigma_{R_{x1}} = \sqrt{\delta_{R_{x1}}^2 + \frac{e_1^2}{3}} = \sqrt{0.1538^2 + \frac{0.075^2}{3}}\varOmega = 0.1598\varOmega$$

$$\sigma_{R_{x2}} = \sqrt{\delta_{R_{x2}}^2 + \frac{e_2^2}{3}} = \sqrt{0.1555^2 + \frac{0.058^2}{3}}\varOmega = 0.1590\varOmega$$

$$\frac{\sigma_{R_x}}{R_x} = \sqrt{\left(\frac{\sigma_{R_{x1}}}{2R_{x1}}\right)^2 + \left(\frac{\sigma_{R_{x2}}}{2R_{x2}}\right)^2} = \sqrt{\left(\frac{0.1598}{2 \times 33.9}\right)^2 + \left(\frac{0.1590}{2 \times 32.3}\right)^2}\varOmega = 3.4 \times 10^{-3}$$

$$\sigma_{R_x} = 33.09\varOmega \times 3.4 \times 10^{-3} = 0.11\varOmega$$

结果为:

$$R_x = (33.09 \pm 0.11)\Omega$$

3. 计算测得的各个电阻值的不确定度。

$$R_{x3}$$

$$e_3 = (30 \times 0.001 + 3 \times 0.005 + 0.012)\Omega = 0.057\Omega$$

$$\delta_{R_{x3}} = \frac{0.2R_{x3}}{S} = \frac{0.2 \times 33.0}{2607}\Omega = 2.532 \times 10^{-3}\Omega$$

$$\sigma_{R_{x3}} = \sqrt{\delta_{R_{x3}}^2 + \frac{e_3^2}{3}} = \sqrt{0.002532^2 + \frac{0.057^2}{3}}\Omega = 0.03\Omega$$

 R_{x4}

$$e_4 = (330 \times 0.001 + 3 \times 0.005 + 0.2 \times 0.02 + 0.012)\Omega = 0.361\Omega$$

$$\delta_{R_{x3}} = \frac{0.2R_{x3}}{S} = \frac{0.2 \times 33.32}{764.06}\Omega = 8.72 \times 10^{-3}\Omega$$

$$\sigma_{R_{x3}} = \sqrt{\delta_{R_{x3}}^2 + \frac{e_3^2}{3}} = \sqrt{0.00872^2 + \frac{0.361^2}{3}}\Omega = 0.2\Omega$$

 R_{x5}

$$e_5 = (30 \times 0.001 + 3 \times 0.005 + 0.4 \times 0.02 + 0.012)\Omega = 0.065\Omega$$

$$\delta_{R_{x3}} = \frac{0.2R_{x5}}{S} = \frac{0.2 \times 33.4}{83.5}\Omega = 0.08\Omega$$

$$\sigma_{R_{x3}} = \sqrt{\delta_{R_{x3}}^2 + \frac{e_3^2}{3}} = \sqrt{0.08^2 + \frac{0.065^2}{3}}\Omega = 0.09\Omega$$

 R_{x6}

$$e_6 = (30 \times 0.001 + 3 \times 0.005 + 0.4 \times 0.02 + 0.012)\Omega = 0.065\Omega$$

$$\delta_{R_{x6}} = \frac{0.2R_{x6}}{S} = \frac{0.2 \times 33.4}{1336}\Omega = 5 \times 10^{-3}\Omega$$

$$\sigma_{R_{x3}} = \sqrt{\delta_{R_{x3}}^2 + \frac{e_3^2}{3}} = \sqrt{0.005^2 + \frac{0.065^2}{3}}\Omega = 0.04\Omega$$

非平衡电桥测铂电阻的温度系数

一、数据处理

1. 画电路图,连接非平衡电桥测温电路,铂电阻传感器使用三线接法。设置电源电压为19 伏,电桥桥臂阻值 R1 和 R2 均为 10k 欧姆,记录这些条件参数(实测值)。让铂电阻温度为水的冰点,此时调节电桥平衡。记录数据。

表 1 条件及冰点电阻值

项目	Е	R_1	R_2	冰点平衡R ₀	
数据	18. 994V	10. 225k Ω	9.965 kΩ	97. 7 Ω	

2. 逐步改变铂电阻的温度直至水的沸点,记录其温度和电桥非平衡电压的系列数据。

表 2 T-Uout数据

T/ °C	-0.4	22.45	36.74	51.3	67.92	80.26	89.81	100.27
U_{out}/V	-0.04	15.97	25.99	36.12	47.66	56.15	62.72	69.9

3. 对非平衡电桥测温电路的输出~输入曲线作图,作线性拟合,记录拟合直线方程、方程系数和相关系数。 计算测温电路灵敏度。

图 1 T-Uout 曲线

非平衡电桥U(out)与T关系

无量纲化后方程(原单位)U = 0.69467T + 0.37697 $k = 0.69467 \pm 0.00116$, $b = 0.37697 \pm 0.07522$ r = 0.99999

灵敏度 $K = \frac{dU}{dT} = 0.69467 \text{mV/°C}$

4. 推导稳压电源情况下的铂电阻温度系数 A1 理论公式,由输出^{*}输入曲线线性拟合的斜率

计算铂电阻温度系数 A1 ,(选做)估计其不确定度。将测量结果与参考值比较。

由基尔霍夫定律:
$$U_{\text{out}} = E \frac{R_2 R_T - R_1 R_P}{(R_1 + R_T)(R_2 + R_P)}$$

则
$$\frac{dU_{\text{out}}}{dR_{\text{T}}} = E \frac{R_1}{(R_1 + R_{\text{T}})^2}$$

代入数据,
$$\frac{dU_{\text{out}}}{dR_{\text{T}}} = 18.994 \times \frac{10225}{(10225+97.7)^2} V/\Omega = 1.8226 \times 10^{-3} V/\Omega$$
.

结合
$$\frac{dU_{\text{out}}}{dT} = \frac{dU_{\text{out}}}{dR_{\text{T}}} \frac{dR_{\text{T}}}{dT}$$
, 及 $\frac{dU_{\text{out}}}{dT} = 6.9467 \times 10^{-4} \text{V/°C}$,

得
$$\frac{dR_{\rm T}}{dT} = \frac{6.9467 \times 10^{-4} \text{V/°C}}{1.8226 \times 10^{-3} \text{V/}\Omega} = 0.381142 \Omega/°C$$
,

$$\text{Im} A_1 = \frac{\frac{dR_{\rm T}}{dT}}{R_0} = \frac{0.381142\Omega/^{\circ}\text{C}}{97.7\Omega} = 3.9011 \times 10^{-3} \, \text{°C}^{-1}.$$

计算不确定度: 上述过程中
$$A_1 = k \frac{(R_1 + R_0)^2}{ER_1 R_0}$$

$$\sigma_{k} = 0.00116$$

$$\sigma_{R_1} = \frac{0.002 \times 10.225 + 0.005}{\sqrt{3}} \, \text{k} \, \Omega \, = 0.014694 \text{k} \, \Omega \, = 14.694 \, \Omega$$

$$\sigma_{R_0} = \frac{90 \times 0.001 + 7 \times 0.005 + 0.7 \times 0.02 + 0.012}{\sqrt{3}} = 0.087180 \ \Omega$$

$$\sigma_E = \frac{0.0005 \times 18.994 + 0.003}{\sqrt{3}} V = 7.2151 \times 10^{-3} V$$

$$\sigma_{\frac{(R_1+R_0)^2}{R_1R_0}} = \sqrt{(-\frac{R_1}{R_0^2} + \frac{1}{R_1})^2 \sigma_{R_0}^2 + (-\frac{R_0}{R_1^2} + \frac{1}{R_0})^2 \sigma_{R_1}^2} = 0.17702 \,\Omega$$

$$\frac{\sigma_{A_1}}{A_1} = \sqrt{\frac{\frac{\sigma_{(R_1 + R_0)^2}}{R_1 R_0}}{\frac{(R_1 + R_0)^2}{R_1 R_0}}}^2 + \left(\frac{\sigma_E}{E}\right)^2 + \left(\frac{\sigma_k}{k}\right)^2 = 2.4 \times 10^{-3}$$

$$A_1 = (3.901 \pm 0.009) \times 10^{-3} \,^{\circ}\text{C}^{-1}$$

5. 用平衡桥测量铂电阻温度系数 A1 。

表 3 平衡电桥测温度系数

T/ °C									
U_{out}/V	97.7	105.3	111.3	115.4	119.4	122.6	127.7	131.6	135.2

图 2 R-T 曲线

平衡电桥测R-T曲线

以最小二乘法拟合: k = 0.37198 ± 4.54955E - 4

$$A_1 = \frac{\frac{dR_T}{dT}}{R_0} = \frac{0.37198\Omega/^{\circ}C}{97.7\Omega} = 3.81 \times 10^{-3} {\circ}C^{-1}$$

不确定度:

$$\sigma_{R_0} = \frac{90 \times 0.001 + 7 \times 0.005 + 0.7 \times 0.02 + 0.012}{\sqrt{3}} = 0.087180 \,\Omega$$

 $\sigma_k = 4.54955 \times 10^{-4} \Omega / ^{\circ} \text{C}$

$$\frac{\sigma_{A_1}}{A_1} = \sqrt{\left(\frac{\sigma_{R_0}}{R_0}\right)^2 + \left(\frac{\sigma_k}{k}\right)^2} = 9 \times 10^{-3}$$

 $\sigma_{A_1} = 9 \times 10^{-3} \times 3.81 \times 10^{-3} ^{\circ} \text{C}^{-1} = 3.4 \times 10^{-2} \times 10^{-3} ^{\circ} \text{C}^{-1}$

最终结果为: $A_1 = (3.81 \pm 0.03) \times 10^{-3}$ °C⁻¹

二、收获与感想

由于预习时间距离正式实验较久,遗忘了实验内容,第一次操作时做成了平衡电桥相 关操作,导致实验完成时间推迟较久。但好在平衡电桥的实验也得出铂电极的温度系数, 且理论值落在了两次实验结果的区间内,得到了印证。今后在实验前应当对实验步骤及目 的有更好地把握。