675. $2^{\omega(n)}$

Let $\omega(n)$ denote the number of distinct prime divisors of a positive integer n. So $\omega(1)=0$ and $\omega(360)=\omega(2^3\times 3^2\times 5)=3$.

Let
$$S(n)$$
 be $\Sigma_{d|n} 2^{\omega(d)}$.

E.g.
$$S(6) = 2^{\omega(1)} + 2^{\omega(2)} + 2^{\omega(3)} + 2^{\omega(6)} = 2^0 + 2^1 + 2^1 + 2^2 = 9.$$

Let
$$F(n) = \sum_{i=2}^{n} S(i!)$$
. $F(10) = 4821$.

Find F(10,000,000). Give your answer modulo 1,000,000,087.

675. $2^{\omega(n)}$

令 $\omega(n)$ 为正整数 n 不同的质因子个数。 因此 $\omega(1)=0$ 且 $\omega(360)=\omega(2^3\times 3^2\times 5)=3$ 。

$$\diamondsuit S(n)$$
 为 $\Sigma_{d|n} 2^{\omega(d)}$ 。

例如,
$$S(6)=2^{\omega(1)}+2^{\omega(2)}+2^{\omega(3)}+2^{\omega(6)}=2^0+2^1+2^1+2^2=9$$
。

再令
$$F(n) = \sum_{i=2}^{n} S(i!)$$
。 $F(10) = 4821$.

求出 F(10,000,000) 模 1,000,000,087 的值。