Hamming encoder/decoder

ARQUITETURAS DE ALTO DESEMPENHO

MANUEL COUTO (93285)

Abordagem

- ► Encoder:
 - Control Unit -> 4 bit counter + ROM
- Decoder:
 - ParityBits = (matriz H) * (matriz transposta da mensagem recebida)
 - ▶ 15 bits de comprimento -> 4 Parity Bits

Circuito Encoder

Equações Decoder

- $M = y1 \oplus y7 \oplus y8 \oplus y11$
- \triangleright K = y6 \oplus y9 \oplus y10 \oplus y11
- ▶ $P1 = y2 \oplus y3 \oplus y9 \oplus y12 \oplus M$
- ► $P2 = y4 \oplus y5 \oplus y10 \oplus y13 \oplus M$
- ► $P3 = y2 \oplus y4 \oplus y7 \oplus y14 \oplus K$
- ightharpoonup P4 = y3 \oplus y5 \oplus y8 \oplus y15 \oplus K

Conclusão

- ightharpoonup H * y^T <- deteta a transmissão de erros
- ▶ 4 bits a 0 -> não tem erros
- ▶ 1 ou mais bits a 1 -> 1 ou mais erros

Decoder:

Encoder:

