

Transmission Systems, Coding and Error Control

Redes de Comunicações I

Mestrado Integrado em Engenharia de Computadores e Informática

DETI-UA, 2023/2024

Transmission systems

- Physical layer of communication networks
 - Responsible for transmission of signals over a physical connection
- <u>Terminal equipments</u>: the sources and destinations of information
 - PCs, mobile terminals, servers, ...
- Physical connection
 - Transmission medium between two remote points
 - Between terminal equipment
 - Example: a shared medium connecting PCs
 - Between network equipment
 - Example: a direct cable between routers
 - Between terminal and network equipment
 - Example: in a shared medium, the communication between a PC and the router that is its default gateway
- Physical connections
 - Point-to-point connections
 - Shared connections

Guided/Unguided Transmission Systems

- Guided: a signal travels through a bounding physical medium (copper cable, optical fibre, ...)
- Unguided: a signal travels through a boundless medium (air, water, vacuum, ...)
 - Can be directional or omni-directional.

Electromagnetic spectrum

Transmission systems

- Analogue electrical signals: the signal amplitude varies continuously over time
- Digital electrical signals: the signal amplitude assumes a discrete set of values

Transmission systems

- Transmitter adapts the signal to the transmission channel characteristics.
 - Typical operations: modulation, coding.
- Transmission channel medium connecting transmitter to receiver.
 - Examples: copper twisted pairs, coaxial cable, optical fibres, free space.
 - Degradation factors: attenuation, distortion, interference, noise.
- Receiver processes the received signal in order to compensate the transmission channel degradation factors.
 - Typical operations: amplification, demodulation, decoding, filtering.

Analog to Digital: Sampling

Sampling Frequency

- The sampling process measures and quantifies the analogue signal at equally space time intervals.
- The sampling process must be able to capture the main characteristics of the original analogue signal.
- The sampling rate determines the amount of information that is transferred to the digital signal.
- To reconstruct a signal from the samples, the sampling frequency must be high enough to capture the relevant signal information (frequency components).

Sampling Frequency

- For a signal where the highest (relevant) frequency is f_m , the sampling frequency (f_s) must be higher than two times f_m
- $f_s > 2 * f_m$ is called the Nyquist rate.

PCM (Pulse Code Modulation) system

- The digital transmission of analogue signals requires:
 - an analogue-digital converter (ADC) in the source, and

a digital-analogue converter (DAC) in the

destination.

PCM

• Assuming that $|x(t)| \le z$, the difference between rounding levels is z/q and the maximum rounding error is z/(2q). In this case:

$$q = M^{v}$$
 $v = log_{M} q$

v symbols, and the transmission rate is $v \times f_s$ baud.

- Lowering the rounding distortion implies
 - enlarging the number of rounding levels
 - and, consequently, enlarging the transmission rate.
- In the case of voice telephony:
 - $-f_s = 8000 \text{ samples/s}, q = 256 \text{ levels}, M = 2, v = 8:$ $v = \log_2 256$
 - it results in a voice channel bit rate of 64 Kb/s ($v \times f_s = 8 \times 8000$).

Example 1

- An analogue signal x(t) limited in amplitude such that |x(t)| < 5 Volts and with effective bandwidth of 6 MHz is converted into a binary PCM stream for transmission. What is the minimum data rate that guarantees a rounding error not higher than 0.05 Volts?
 - Maximum rounding error = 10/2q (q is the number of rounding levels)
 - q must be the lower power of 2 (binary signal) higher or equal to $10/(2\times0.05) = 100$; therefore, q = 128
 - We need $log_2(128) = 7$ bits per sample
 - Minimum sampling rate: 2×6 MHz = 12×10^6 samples/s
 - Minimum data rate: $7 \times 12 \times 10^6 = 84$ Mbits/s

Video rate

- Sequence of image frames
 - Each image is digitized and compressed
- Frame rate
 - 10-30-60 frames/sec depending on the qualit

- Small frames for videoconference
- Standard frames for standard broadcast TV
- HDTV frames
- BitRate = 3colours x (WxH) pixels/frame x B bits/pixel x F frames/sec

Video frames

Examples of Modulation

- Quadrature Amplitude Modulation (QAM)
- Uses 2-Dimensional signalling

Regeneration of Pulse Amplitude Modulation (PAM) digital signals

Example: NRZ unipolar

DETEÇÃO DE ERROS

Introdução

Problemas no canal de comunicação

- Pacotes corrompidos (recebidos com erros)
- Pacotes perdidos
- Pacotes recebidos fora de ordem

Deteção de erros

- O recetor ser capaz de detetar pacotes recebidos com erros
- Métodos a abordar:
 - Código de verificação de paridade simples
 - Código de verificação de paridade em blocos
 - CRC (Cyclic-Redundancy Check)

Código de verificação de paridade simples

- Junta-se um bit adicional, o bit de paridade, à palavra binária a transmitir
- Bit de paridade escolhido por forma a garantir que a palavra completa tem um número par de 1s (paridade par) ou um número ímpar de 1s (paridade ímpar)
- Exemplo (paridade par):

```
0 1 0 0 0 0 0 1 caracter ASCII A com bit de paridade par
0 1 0 0 0 0 1 1 com 1 bit errado
0 1 0 0 0 0 1 1 1 com 2 bits errados
```

• Detecta todos os erros com um nº ímpar de bits errados; não detecta nenhum erro com um nº par de bits errados

Código de verificação de paridade em blocos

- Utilizado na transmissão de blocos de palavras binárias
- É formado um bit de paridade em cada palavra individual (na horizontal) e também sobre o bloco de palavras (na vertical). É adicionado um carater designado por *Block-Check Caracter* (BCC) no fim do bloco.

BCC	С	В	Α	
110000000	1 10000011	0 10000010	0 10000001	\longrightarrow

Código de verificação de paridade em blocos

- Mensagem a transmitir: 57268
- Emissor e recetor combinam divisor: 84
- No emissor executa-se 57268 / 84 = 681 + 64/84
- O emissor transmite 5726864
- A mensagem chega com erros ao recetor: 5754864
- Agora 57548 / 84 = 685 + 8/84
- Como resto é diferente de 64 o erro é detetado!

Ethernet II

• Represente-se a sequência de bits

$$b_{n-1}, b_{n-2}, ..., b_3, b_2, b_1, b_0$$

através de um polinómio

$$b_{n-1}x^{n-1} + b_{n-2}x^{n-2} + ... + b_3x^3 + b_2x^2 + b_1x + b_0$$

- A geração de um CRC para uma mensagem M(x) com m bits segue os seguintes passos:
 - 1. O emissor e o recetor acordam num polinómio gerador G(x), com pelo menos dois termos não-nulos, x^r e 1, onde r é a ordem de G(x).
 - 2. O emissor adiciona r zeros no fim da mensagem a ser transmitida. A mensagem fica então com m+r bits correspondendo ao polinómio $x^rM(x)$.
 - 3. O emissor determina o resto da divisão de $x^rM(x)$ por G(x) (tem sempre r ou menos bits). Este resto designa-se por R(x).
 - 4. A mensagem transmitida é $T(x) = x^r M(x) + R(x)$.

Exemplo:

- $-M(x) = x^4 + x^3 + x^2 + 1$ (m = 5); Mensagem a enviar: 11101
- $-G(x) = x^3 + 1 (r = 3);$
- $-x^rM(x) = x^7 + x^6 + x^5 + x^3;$
- $R(x) = x^2 + x$;
- $-T(x) = x^{r}M(x) + R(x) = x^{7} + x^{6} + x^{5} + x^{3} + x^{2} + x$. Mensagem enviada: 11101110
- Seja Z(x) o resultado da divisão de $x^rM(x)$ por G(x). Então

$$x^r M(x) = G(x)Z(x) + R(x)$$

$$T(x) = x^r M(x) + R(x) = G(x)Z(x)$$

ou seja, todas as palavras transmitidas são <u>divisíveis</u> por G(x). (Nota: subtração módulo 2= adição módulo 2).

x4+x3+x2+1 -> H(x) $\chi^{2} \chi(u) = \chi^{3} + 1$ x4+x3+x2+x xy + x5 + u9 + uy + 1 n2+2 = R(x) $x^{1}+(x)+R(x)\rightarrow 0$ que é enviado pors Gaue é divisited pour 23+1

- A mensagem recebida pode conter erros, isto é, pode ser T(x) + E(x), onde E(x) é o polinómio que representa os erros.
- O recetor divide a mensagem recebida por G(x), isto é, executa

$$[T(x)+E(x)]/G(x)$$

Uma vez que

Resto de [T(x)+E(x)]/G(x) = Resto de E(x)/G(x) então, o recetor decide que não houve erro se o resto for zero e que houve erros caso contrário.

Os erros não serão detetados, se e só se,

$$E(x) = G(x)Z(x)$$

para algum polinómio não-nulo Z(x).

- Erros detetados pelos CRC:
 - Todos os erros de 1 bit.
 - Todos os erros de 2 bits, quando G(x) tem um fator com pelo menos 3 termos.
 - Qualquer nº ímpar de erros, quando G(x) tem um fator (x+1).
 - Todas as rajadas de erros com um comprimento inferior ao comprimento do CRC.

Norma	Polinómio Gerador $G(x)$
CRC-12	$x^{12}+x^{11}+x^3+x^2+x+1$
CRC-16 (ANSI)	$x^{16}+x^{15}+x^{5}+1$
CRC-16	$x^{16}+x^{15}+x^2+1$
CRC-CCITT (V.41)	$x^{16}+x^{12}+x^5+1$
CRC-32	$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x + 1$

Exemplos

Considere um emissor com os 4 bytes 01110101.01100101.01000101.00110000 para enviar com um código de paridade ímpar aplicado a palavras de 8 bits. Diga justificadamente qual a sequência de bits enviada.

Considere a recepção da sequência binária "1011100110" gerada com controle de erros através de um CRC com polinómio gerador $x^3 + x^2 + 1$. Determine justificando se o receptor assume que houve erros de transmissão ou não.

Considere que um emissor tem os 2 bytes 00001101.11100111 para enviar e usa um código CRC com o polinómio gerador x^4+x+1 . Indique justificadamente qual a sequência de bits enviada.