Analysis of Pollution Level in various cities during COVID-19 Lockdown

Importing modules

```
[4]: import pandas as pd
     import numpy as np
     import seaborn as sns
     import matplotlib.pyplot as plt
     print('Modules are imported.')
     Modules are imported.
[5]: city_day= pd.read_csv('city_day.csv')
[6]: display("CITY DAILY DATA")
     display(city_day.head(5))
     'CITY DAILY DATA'
                   Date PM2.5 PM10
             City
                                     NO NO2 NOx NH3
                                                             CO 502
                                                                         O3 Benzene Toluene Xylene AQI AQI Bucket
                   2015-
     0 Ahmedabad
                           NaN NaN
                                      0.92 18.22 17.15 NaN 0.92 27.64 133.36
                                                                                 0.00
                                                                                         0.02
                                                                                                0.00 NaN
                                                                                                               NaN
                   01-01
                   2015-
     1 Ahmedabad
                           NaN
                                NaN
                                       0.97 15.69 16.46 NaN 0.97 24.55 34.06
                                                                                 3.68
                                                                                         5.50
                                                                                                3.77 NaN
                                                                                                               NaN
                   01-02
                   2015-
     2 Ahmedabad
                           NaN
                                NaN 17.40 19.30 29.70 NaN 17.40 29.07 30.70
                                                                                 6.80
                                                                                        16.40
                                                                                                2.25 NaN
                                                                                                               NaN
                   01-03
                   2015-
     3 Ahmedabad
                           NaN NaN 1.70 18.48 17.97 NaN 1.70 18.59 36.08
                                                                                 4.43
                                                                                        10.14
                                                                                                1.00 NaN
                                                                                                               NaN
                   01-04
                   2015-
                                                                                 7.01
     4 Ahmedabad
                           NaN NaN 22.10 21.42 37.76 NaN 22.10 39.33 39.31
                                                                                        18.89
                                                                                               2.78 NaN
                                                                                                               NaN
                   01-05
```

Enlisting datatypes

```
[4]: city_day.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 29531 entries, 0 to 29530
     Data columns (total 16 columns):
                 29531 non-null object
     City
     Date
                  29531 non-null object
     PM2.5
                 24933 non-null float64
     PM10
                 18391 non-null float64
                  25949 non-null float64
                 25946 non-null float64
     NO2
     NOx
                 25346 non-null float64
     NH3
                  19203 non-null float64
                  27472 non-null float64
     CO
     S02
                 25677 non-null float64
     03
                  25509 non-null float64
                  23908 non-null float64
     Benzene
     Toluene
                 21490 non-null float64
     Xylene
                  11422 non-null float64
     AOI
                  24850 non-null float64
     AQI_Bucket
                24850 non-null object
     dtypes: float64(13), object(3)
     memory usage: 3.6+ MB
```

Missing value Treatment

Your selected dataframe has 16 columns.

There are 14 columns that have missing values.

[5]: Missing Values % of Total Values

Xylene	18109	61.3
PM10	11140	37.7
NH3	10328	35
Toluene	8041	27.2
Benzene	5623	19
AQI	4681	15.9
AQI_Bucket	4681	15.9
PM2.5	4598	15.6
NOx	4185	14.2
О3	4022	13.6
SO2	3854	13.1
NO2	3585	12.1
NO	3582	12.1
со	2059	7

Displaying cities, range of dates and dropping redundant columns

```
[6]: cities = city_day['City'].value_counts()
      print(f'Total number of cities in the dataset : {len(cities)}')
      print(cities.index)
      Total number of cities in the dataset : 26
      Index(['Delhi', 'Lucknow', 'Ahmedabad', 'Bengaluru', 'Chennai', 'Mumbai',
             'Hyderabad', 'Patna', 'Gurugram', 'Visakhapatnam', 'Amritsar',
             'Jorapokhar', 'Jaipur', 'Thiruvananthapuram', 'Amaravati',
             'Brajrajnagar', 'Talcher', 'Kolkata', 'Guwahati', 'Coimbatore',
             'Shillong', 'Chandigarh', 'Bhopal', 'Kochi', 'Ernakulam', 'Aizawl'],
            dtype='object')
 [7]: city_day['Date'] = pd.to_datetime(city_day['Date'])
 [8]: print(f"The available data is between {city_day['Date'].min()} and {city_day['Date'].max()}")
      The available data is between 2015-01-01 00:00:00 and 2020-07-01 00:00:00
 [9]: city_day['BTX'] = city_day['Benzene']+city_day['Toluene']+city_day['Xylene']
      city_day.drop(['Benzene','Toluene','Xylene'],axis=1);
[10]: city_day['Particulate_Matter'] = city_day['PM2.5']+city_day['PM10']
[11]: pollutants = ['PM2.5','PM10','NO2', 'CO', 'SO2','O3', 'BTX']
```


Finding the maximum polluted city according to pollutants

```
[13]: def max_polluted_city(pollutant):
          x1 = city_day[[pollutant, 'City']].groupby(["City"]).mean().sort_values(by=pollutant, ascending=False).reset_index
          x1[pollutant] = round(x1[pollutant],2)
          return x1[:10].style.background_gradient(cmap='OrRd')
[14]: from IPython.display import display_html
      def display_side_by_side(*args):
          html str=''
          for df in args:
              html str+=df.render()
          display_html(html_str.replace('table','table style="display:inline"'),raw=True)
[15]: pm2_5 = max_polluted_city('PM2.5')
      pm10 = max_polluted_city('PM10')
      no2 = max_polluted_city('NO2')
      so2 = max_polluted_city('SO2')
      co = max_polluted_city('CO')
      btx = max_polluted_city('BTX')
      display_side_by_side(pm2_5,pm10,no2,so2,co,btx)
```

	City	PM2.5		City	PM10		City	NO2		City	SO2		City	СО
0	Patna	123.5	0	Delhi	232.81	0	Ahmedabad	59.03	0	Ahmedabad	55.25	0	Ahmedabad	22.19
1	Delhi	117.2	1	Gurugram	191.5	1	Delhi	50.79	1	Jorapokhar	33.65	1	Lucknow	2.13
2	Gurugram	117.1	2	Talcher	165.77	2	Kolkata	40.4	2	Talcher	28.49	2	Delhi	1.98
3	Lucknow	109.71	3	Jorapokhar	149.66	3	Patna	37.49	3	Patna	22.13	3	Talcher	1.85
4	Ahmedabad	67.85	4	Patna	126.75	4	Visakhapatnam	37.19	4	Kochi	17.6	4	Bengaluru	1.84
5	Kolkata	64.36	5	Brajrajnagar	124.22	5	Lucknow	33.24	5	Delhi	15.9	5	Brajrajnagar	1.8
6	Jorapokhar	64.23	6	Jaipur	123.48	6	Jaipur	32.42	6	Mumbai	15.2	6	Ernakulam	1.63
7	Brajrajnagar	64.06	7	Bhopal	119.32	7	Bhopal	31.35	7	Guwahati	14.66	7	Patna	1.53
8	Guwahati	63.69	8	Guwahati	116.6	8	Coimbatore	28.78	8	Amaravati	14.26	8	Kochi	1.3
9	Talcher	61.41	9	Kolkata	115.63	9	Hyderabad	28.39	9	Bhopal	13.06	9	Gurugram	1.26

	City	втх
0	Kolkata	38.23
1	Ahmedabad	37.11
2	Delhi	26.86
3	Patna	17.43
4	Visakhapatnam	15.03
5	Gurugram	14.6
6	Amritsar	14.58
7	Hyderabad	10.73
8	Chandigarh	9.09
9	Amaravati	3.68

Trend plots:

```
def trend_plot(dataframe, value):
   # Prepare data
   df['year'] = [d.year for d in df.Date]
   df['month'] = [d.strftime('%b') for d in df.Date]
   years = df['year'].unique()
   # Draw Plot
   fig, axes = plt.subplots(1, 2, figsize=(14,6), dpi= 80)
    sns.boxplot(x='year', y=value, data=df, ax=axes[0])
    sns.pointplot(x='month', y=value, data=df.loc[~df.year.isin([2015, 2020]), :])
   # Set Title
   axes[0].set_title('Year-wise Box Plot \n(The Trend)', fontsize=18);
    axes[1].set_title('Month-wise Plot \n(The Seasonality)', fontsize=18)
   plt.show()
city_day.reset_index(inplace=True)
df = city_day.copy()
value='NO2'
trend_plot(df,value)
```


