Homework 2. InternerWorking, Pierre FLEITZ

1) ARP:

a) <u>State of the five ARP caches after the IPv4 unicast datagram has been delivered to host H2:</u>

H1		
IP	MAC	Port
Α	a	North

Н3			
IP	MAC	Port	
В	b	North	

R1				
IP	MAC	Port		
E	e	West		
D	d	East		

H2		
IP	MAC	Port
Α	a	South

H4			
IP ARP Port			
Ее		South	

b) <u>State of the bridges B1's MAC address table after the IPv4 unicast datagram has been delivered to host H2</u>

B1 MAC Address table		
MAC Port		
d	South	
a	East	

2) UDP and Fragmentation:

- a) 7400 / 1480 = 5. Then we gonna have 5 fragments.
- b) Each fragment has its own header with most of the fields repeated, but some changed:

Fragment	MF	Offset	Length	
Number 1	1	0	1480 bytes (bytes 0 to 1479)	
Number 2	1	185	1480 bytes (bytes 1480 to 2959)	
Number 3	1	370	1480 bytes (bytes 2960 to 4439)	
Number 4	1	555	1480 bytes (bytes 4440 to 5919)	
Number 5	0	740	1480 bytes (bytes 5920 to 7399)	

3) Routing:

a) Initial routing state of D:

Destination	Metric	Next-Hop
208.218.2.0/24	1	-
208.218.4.0/24	1	-

b) Routing state of D after it has received the initial distance-vector from E:

Destination	Metric	Next-Hop
208.218.2.0/24	1	-
208.218.4.0/24	1	-
208.218.5.0/24	2	208.218.4.2

c) RIP messages:

Reminder : Type of RIP msg : (see p.294, Figure 11.11 and example Figure 11.13 p296 from TCP/IP book, I will not represent the two "spaces" between Network and Distance)

Command Version		•	/	
Far	nily		/	
Network				
Distance				

From A to B, so 208.218.1.1 to 208.218.1.2, interface used East:

Msg1	2	1	/	
	2		/	
		208.218.2.0/24	1	
		1		
Msg2	2	1	/	
	2		/	
	208.218.4.0/24			
	1			
Msg3	2	1	/	
	2		/	
	208.218.5.0/24			
	·	2		

From A to D, so 208.218.2.1 to 208.218.2.2, interface used South :

Msg1	2	1	/		
	2		/		
		208.218.1.0/2	4		
		2			
Msg2	2	1	/		
	2		/		
	208.218.2.0/24				
		2			
Msg3	2	1	/		
	2		/		
	208.218.4.0/24				
		2			
Msg4	2	1	/		
	2		/		
	208.218.5.0/24				
		2			

From A to E, so 208.218.2.1 to 208.218.2.3, interface used South :

Msg1	2	1	/	
	2		/	
		208.218.1.0)/24	
		1		
Msg2	2	1	/	
	2		/	
		208.218.2.0)/24	
		1		
Msg3	2	1	/	The message is prepared with the
	2		/	combinaison of split horizon and poison
		208.218.4.0)/24	reverse, in minde. A obtened
		16		information about these 2 networks by
Msg4	2	1	/	router E. Here A sends an update to E
	2		/	so it replaces the actual value of the hop
	208.218.5.0/24			count for the 2 networks with 16
		16		(infinity) to prevent any confusion for E

d) Routing states of D and E after they havec received the distance-vector from A:

Routing state of D		
Destination	Metric	Next-Hop
208.218.1.0/24	2	208.218.2.1
208.218.2.0/24	1	-
208.218.4.0/24	1	-
208.218.5.0/24	2	208.218.4.2

Routing state of E		
Destination	Metric	Next-Hop
208.218.1.0/24	2	208.218.2.1
208.218.2.0/24	1	-
208.218.4.0/24	1	-
208.218.5.0/24	1	-

4) ICMP:

- a) The source host, here H1, sends ICMP echo request messages (type: 8, code: 0); the destination, here H2, will respond with an ICMP echo reply message.
- b) Traceroute from H1 to H3:

H1 to A	
Type	Echo Request
TTL	1
@ Dest	90.59.5.2

A to H1	
Type	Time exceeded (type: 11, code:
	0)
@ Dest	90.59.1.2

H1 to B	
Туре	Echo Request
TTL	2
@ Dest	90.59.5.2

B to H1	
Type	Time exceeded (type: 11, code: 0)
@ Dest	90.59.1.2

H1 to C	
Туре	Echo
	Request
TTL	3
@ Dest	90.59.5.2

C to H1	
Туре	Time exceeded (type: 11, code: 0)
@ Dest	90.59.1.2

H1 to H3	
Туре	Echo Request
TTL	4
@ Dest	90.59.5.2

H3 to H1		
Type	Destination unreachable (type: 3, code: 3)	
@	90.59.1.2	
Dest		

5) TCP:

- a) MSS = Maximum Segment Size. The MSS used by TCP is : MSS = MTU 20 (IP header) 20 (TCP header) = 1040 20 20 = 1000 bytes
- b) To calcul the bandwidth delay product we need to do: RTTxBW. So here we have: Bandwidth-delay product = $((100*2)*10^3)*(4*10^6)=800$ KB. Therefore the received window is not big enough! If we want A to be able to fully utilize the channel, The received window should be at least 800KB.

Sorry for the quality of the schema, kind of hard to do something clean with a chronogramme like this... Hope you will understand what I tried to do.

When we are after connection establishment we have : RTO = max(2,5+G,3) = 3s, at TO. SRTT = RTTVAR = 0.

Values of SRTT, RTTVAR and RTO for the 4 first segement sent by A :

- Segment 1 : SRTT = 0s, RTTVAR = 0s, RTO = 3s.
- Segment 2:

We can see in the precedent figure that the ACK for the first segment is received at t0+402. Then we have RTT = 402 ms (delayed ack...). Therefore SRTT = 0,402 s and RTTVAR = 0,402/2 = 0,201 s. (Because this is the first measurement made on this connection!).

And RTO = SRTT + max(G,4*RTTVAR) = 0,402 + 0,804 = 1,206.

So Segment 2 : SRTT = 0,402s , RTTVAR = 0,201s, RTO = 1,206s

- Segment 3 : (Same thing) SRTT = 0.402s, RTTVAR = 0.201s, RTO = 1.206s.
- Segment 4:

We can see in the precedent figure that the ACK for the fourth segment is received at t0+606 and the segment was sent at t0+404. Then we have RTT = 202 ms.

SRTT' = 7/8 * SRTT + 1/8 * RTT = 0,377 s

RTTVAR = 0.75*0.201 + 0.25*|0.402-0.202| = 0.2008 s.

And RTO = SRTT + max(G,4*RTTVAR) = 0,377 + 0,803 = 1,18s.

So Segment 4 : SRTT = 0,377s , RTTVAR = 0,2008s , RTO = 1,18s.

d) At t0+1418ms.