Konvergenzkriterien

Prokop Lukas

November 16, 2010

1 Konvergenzkriterien für Folgen

1.1 Das allgemeine Konvergenzkriterium

$$(\forall \varepsilon > 0)(\exists N \in \mathbb{N} :) \forall n \ge N : |a_n - A| < \varepsilon$$

1.2 Cauchy-Kriterium

Die Folge $(s_n)_{n\in\mathbb{N}}$ konvergiert genau, wenn

$$(\forall \varepsilon > 0)(\exists N :)(\forall n > N)(\forall l \in \mathbb{N}) : |s_{n+l} - s_n| < \varepsilon$$

Dies beschränkt sich jedoch auf $\mathbb R$ und $\mathbb C$. In $\mathbb Q$ ist nicht jede Cauchy-Folge ebenso konvergent.

1.3 Hauptsatz über monotone Zahlenfolgen

Eine nach oben beschränkte monoton wachsende Folge in \mathbb{K} ist konvergent, ebenso eine nach unten beschränkte monoton fallende.

1.4 Beschränktheit, Monotonie und Konvergenz

Eine monotone und beschränkte Folge ist konvergent.

1.5 Bolzano-Weierstrauß

Sei $(a_n)_{n\in\mathbb{N}_0}$ eine beschränkte Folge, dann besitzt $(a_n)_{n\in\mathbb{N}_0}$ eine konvergente Teilfolge (damit auch eine Häufungspunkt).

1.6 Sandwich-Kriterium

Wenn $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = A$ und $a_n \leq b_n \leq c_n$ für fast alle $n \in \mathbb{N}$ ist, so ist auch (b_n) konvergent und es ist $\lim_{n\to\infty} b_n = A$.

1.7 Nullfolgen

Wenn a_n eine Nullfolge ist und b_n beschränkt ist, so ist $(a_n \cdot b_n)$ konvergent und ebenfalls eine Nullfolge: $\lim_{n\to\infty} b_n = A$.

2 Konvergenzkriterien für Reihen

2.1 Cauchy-Kriterium

Die Reihe $\sum_{n=0}^{\infty} a_n$ konvergiert genau dann, wenn:

$$(\forall \varepsilon > 0)(\exists N :)(\forall n > N)(\forall l \in \mathbb{N}) : \left| \sum_{k=n+1}^{n+l} a_k < \varepsilon \right|$$

2.2 Satz 2.8.3

Seien $a_n \geq 0$. Die dazugehörige Reihe $s_n = \sum_{n=0}^{\infty} a_n$ konvergiert genau dann, wenn die Folge der Partialsummen beschränkt ist.

2.3 Majorantenkriterium

Sei $\sum_{n=0}^{\infty} a_n$ eine konvergente Reihe mit positiven Gliedern und es gelte $\forall n : 0 \leq b_n \leq a_n$, dann konvergiert die Reihe $\sum_{n=0}^{\infty} b_n$.

2.4 Minorantenkriterium

Sei $a_n \geq 0$ und es divergiere die Reihe $\sum_{n=0}^{\infty} a_n$. Sei weiters $b_n \geq a_n$, dann divergiert auch $\sum_{n=0}^{\infty} b_n$.

2.5 Verdichtungssatz

Sei $(a_n)_{n\in\mathbb{N}}$ monoton fallend und positiv. Dann konvergiert $\sum_{n=0}^{\infty}a_n$ genau dann, wenn $\sum_{k=0}^{\infty}2^k\cdot a_{2^k}$ konvergiert.

2.6 Leibniz-Kriterium

Sei $(a_n)_{n\in\mathbb{N}}$ eine monoton fallende Nullfolge, dann konvergiert $\sum_{n=0}^{\infty} (-1)^n \cdot a_n$.

2.7 Quotientenkriterium

Sei $(b_n)_{n\in\mathbb{N}}$ eine Folge reeler Zahlen, dann gilt:

$$\liminf_{n \to \infty} \frac{|b_{n+1}|}{|b_n|} > 1 \Rightarrow \sum_{n=0}^{\infty} b_n \text{ ist divergent} \quad (a)$$

$$\limsup_{n \to \infty} \frac{|b_{n+1}|}{|b_n|} < 1 \Rightarrow \sum_{n=0}^{\infty} b_n \text{ ist konvergent}$$
 (b)

Wenn $q=\lim_{n\to\infty}\frac{|b_{n+1}|}{|b_n|}$ existiert, dann konvergiert $\sum_{n=0}^{\infty}b_n$, wenn q<1 und divergiert, wenn q>1. Bei q=1 ist keine Aussage möglich.

2.8 Wurzelkriterium

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge reeler Zahlen, dann gilt:

Wenn
$$\limsup_{n\to\infty} \sqrt[n]{a_n} > 1$$
, dann divergiert die Reihe

(c)

Wenn $\limsup_{n\to\infty} \sqrt[n]{a_n} < 1$, dann konvergiert die Reihe

Wenn $q = \lim_{n \to \infty} \sqrt[n]{a_n}$ existiert, so konvergiert die Reihe, wenn q < 1, und divergiert, wenn q > 1. Bei q = 1 ist keine Aussage möglich.

3 Referenzfolgen

$$\lim_{n \to \infty} \frac{1}{n} = 0$$

$$\lim_{n \to \infty} \sqrt[n]{a} = 1$$

$$\lim_{n \to \infty} \sqrt[n]{n} = 1$$

$$\lim_{n \to \infty} \sqrt[n]{n!} = \infty$$

$$\lim_{n \to \infty} \frac{a^n}{n!} = 0$$

$$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$$

4 Referenzreihen

Mit $k \in \mathbb{N}^+$

$$\sum_{n=1}^{\infty} \frac{1}{k \cdot n}$$
 ist divergent

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \text{ ist } \begin{cases} \text{konvergent} & \text{ für } \alpha > 1 \\ \text{divergent} & \text{ für } \alpha \leq 1 \end{cases}$$