讲义习题2.3:1-6; 教材48-49页4,5,9.

2.3.1

Let V be a linear space on F, $S \subset V$ is linearly independent, $\alpha \in V \setminus S$. Prove that $S \cup \{a\}$ is linearly independent iff $\alpha \notin \operatorname{Span}(S)$.

Proof: $S \cup \{\alpha\}$ is linearly dependent iff there α can be written as the linear combination of S (since S is linearly independent), iff $\alpha \in \operatorname{Span}(S)$.

2.3.2

Suppose $S_1, S_2, S_3 \subset V$, $W_i = \operatorname{Span}(S_i)$, and $S_1 \cup S_2 \cup S_3$ is linearly independent, prove that

$$W_1 \cap (W_2 + W_3) = (W_1 \cap W_2) + (W_1 \cap W_3).$$

Proof: Since $S_1 \cup S_2 \cup S_3$ is linearly independent, both sides are $\{0\}$.

2.3.3&2.3.4

Give another proof of the theorem: if $S\subset V$ is linearly independent, $T\subset V$ generates V and both are finite, then $|S|\leqslant |T|$.

Proof: Let $S=\{u_1,u_2,\cdots,u_n\}$ and $T=\{v_1,v_2,\cdots,v_m\}$. Consider the following algorithm that maintains a list that generates V: Step1: Note that $u_1\in \operatorname{Span}\langle v_1,\cdots,v_m\rangle$ so u_1,v_1,\cdots,v_m are linearly dependent, and generates V. Take the first $v_k\in \operatorname{Span}\langle u_1,v_1,\cdots,v_{k-1}\rangle$, and remove it from the list. Rename the elements of the list as u_1,v_1,\cdots,v_{m-1} .

Step k: Suppose the list is in the form $u_1,\cdots,u_{k-1},v_1,\cdots,v_{m-k+1}$, then add u_k to the list. Since $u_1,\cdots,u_{k-1},v_1,\cdots,v_{m-k+1}$ generates V, the new list $u_1,\cdots,u_k,v_1,\cdots,v_{m-k+1}$ is linearly dependent, and for any $i\leqslant k$, $u_i\notin \operatorname{Span}\langle u_1,\cdots,u_{i-1}\rangle$. Hence there exists $v_j\in\operatorname{Span}\langle u_1,\cdots,u_k,v_1,\cdots,v_{j-1}\rangle$ and we remove it from the list.

If n>m then after step m the list becomes u_1, \dots, u_m which generates V, but u_1, \dots, u_n is linearly independent, leading to contradiction.

2.3.5

Suppose $m, n \in \mathbb{N}$, $a_{ii}, b_i \in F$. Consider the equation

$$egin{cases} a_{11}x_1+\cdots+a_{1n}x_n=b_1,\ \cdots \ a_{m_1}x_1+\cdots+a_{mn}x_n=b_m. \end{cases}$$

(1) Suppose m < n, and $b_1 = \cdots = b_m = 0$. Prove that there is a non-trivial solution. Proof: Consider the linear map $f: F^n \to F^m$, $(x_i)_{1\leqslant i\leqslant n} \mapsto \left(y_j = \sum_{i=1}^n a_{ij}x_i\right)_{1\leqslant j\leqslant m}$, then $\mathrm{dim}\mathrm{Ker} f = \mathrm{dim} F^n - \mathrm{dim}\mathrm{Im} f > 0$, so $\mathrm{Ker} f$ contains a non-trivial solution.

(2) Suppose m>n. Prove that there exists b_1,\cdots,b_m such that the equation has no solutions. Proof: Consider again the linear map in (1), since $\dim \mathrm{Im} f\leqslant \dim F^n< m$, f can't be surjective.

Suppose V is a finite dimensional linear space and $n=\dim V$. Let $M_1,\cdots,M_{n-1},N_1,\cdots,N_{n-1}$ be subspaces of V, such that $\dim M_i=\dim N_i=i$ for $1\leqslant i\leqslant n-1$, and $M_1\subset M_2\subset\cdots\subset M_{n-1}$, $N_1\subset\cdots\subset N_{n-1}$. Prove that there is a base S of V such that every one of these 2n-2 subspaces is spanned by a subset of S.

Proof: Use induction on n. The case n=2 is trivial (take $v_1\in M_1\setminus\{0\}, v_2\in N_2\setminus\{0\}$ then $\{v_1,v_2\}$ is suitable). Suppose the proposition holds for n-1.

Case1: $M_{n-1}=N_{n-1}$. Then use the induction hypothesis on the linear space M_{n-1} and $M_1\subset M_2\subset \cdots\subset M_{n-2}$, $N_1\subset \cdots\subset N_{n-2}$, we obtain a base $\{v_1,\cdots,v_{n-1}\}$ of M_{n-1} . Add $v_n\in V\backslash M_{n-1}$ then the base $\{v_1,\cdots,v_n\}$ is suitable. Case2: $M_{n-1}\neq N_{n-1}$. Then

$$\dim(M_{n-1}\cap N_{n-1})=\dim M_{n-1}+\dim N_{n-1}-\dim(M_{n-1}+N_{n-1})=n-2.$$

Take $v\in V\setminus (M_{n-1}\cup N_{n-1})$ (the existence of v was proved in previous exercises), and consider the quotient space $V'=V/\mathrm{Span}(v)$ with the canonical projection $\pi:V\to V'$. Since $v\not\in M_{n-1},M_j\cap\mathrm{Span}(v)=\emptyset$ so π is an isomorphism on M_j,N_j . Let $M_j'=\pi(M_j)$ then $\dim M_j'=\dim M_j=j$, so in the n-1 dimensional linear space V', we have $M_1'\subset\cdots\subset M_{n-2}',N_1'\subset\cdots\subset N_{n-2}'$ and $\dim M_j'=\dim N_j'=j$. Apply the induction hypothesis to get a base $\{\overline{v_1},\cdots,\overline{v_{n-1}}\}$ of V' such that every M_j',N_j' is spanned by some of them. Take any $v_j\in\pi^{-1}(\overline{v_j})$, we show that $\{v_1,\cdots,v_{n-1},v\}$ is the desired base (it is clearly a base of V). Suppose $M_j'=\mathrm{Span}(\overline{v_1},\cdots,\overline{v_j})$, then for any $u\in M_j,\pi(u)=\sum_{t=1}^j c_t\overline{v_t}=\sum_{t=1}^j c_t\pi(v_t)$ so $u-\sum_{t=1}^j c_tv_t\in\mathrm{Ker}\pi$ which implies $u\in\mathrm{Span}(v_1,\cdots,v_j,v)$. $u\in M_j$ implies $v\notin\mathrm{Span}(u,v_1,\cdots,v_j)$ hence $u\in\mathrm{Span}(v_1,\cdots,v_j)$. Since M_j and $\mathrm{Span}(v_1,\cdots,v_j)$ both have dimension j, $M_j=\mathrm{Span}(v_1,\cdots,v_j)$. Therefore the proposition holds for n, and by induction it is true for any V having finite dimension.

48-4

Show that the vectors

$$\alpha_1 = (1, 0, -1), \alpha_2 = (1, 2, 1), \alpha_3 = (0, -3, 2)$$

form a basis for \mathbb{R}^3 . Express each of the standard basis vectors as linear combinations of $\alpha_1, \alpha_2, \alpha_3$. Proof: Note that

$$e_1 = \frac{7}{10}\alpha_1 + \frac{3}{10}\alpha_2 + \frac{1}{5}\alpha_3, e_2 = \frac{-\alpha_1 + \alpha_2 + \alpha_3}{5}, e_3 = -\frac{3}{10}\alpha_1 + \frac{3}{10}\alpha_2 + \frac{1}{5}\alpha_3.$$

Hence $\mathrm{Span}(\alpha_1,\alpha_2,\alpha_3)=\mathbb{R}^3$ which is of dimension 3, so they are a basis of \mathbb{R}^3 .

48-5

Find three vectors in \mathbb{R}^3 which are linearly dependent, and are such that any two of them are linearly independent.

Solution: Consider (1,0,0), (1,1,0), (0,1,0). Then $(1,0,0)+(-1)\cdot(1,1,0)+(0,1,0)=0$, but each pair are linearly independent.

49-9

Let V be a vector space over a subfield F of the complex numbers. Suppose α, β, γ are linearly independent, prove that $(\alpha + \beta), (\beta + \gamma), (\gamma + \alpha)$ are linearly independent.

Proof: If there exists $c_1,c_2,c_3\in F$ not identically zero, such that $c_1(\alpha+\beta)+c_2(\beta+\gamma)+c_3(\gamma+\alpha)=0$, then $(c_1+c_3)\alpha+(c_1+c_2)\beta+(c_2+c_3)\gamma=0$. Since α,β,γ are linearly independent, $c_1+c_2=c_2+c_3=c_3+c_1=0$, hence $c_1=c_2=c_3=0$, a contradiction.