

Kubeflow

Build and manage simple, portable and scalable machine learning workflows

Boris El Gareh

GROUPE CRÉDIT AGRICOLE

Introduction

Contexte

- Deal with scale
- **■** Générer, surveiller et analyser
- **■** Colaboration
 - ☐ Travail d'équipe
 - ☐ Environnements différents
- **■** Tracking des expériences
 - Traçabilité
 - □ Reproductibilité
 - Portabilité
- Déploiement
- Gestion des modèles

Aperçu

- Open source machine toolkit pour Kubernetes
- Kubernetes
 - ☐ Framework open source de Google
 - ☐ Automatisation du déploiement
 - Auto-scaling
 - Orchestration
- Kubeflow : une adaptation de Kubernetes pour ML
- Développé par Google dans un premier temps

■ Simple, portable and scalable workflow

Aperçu de la présentation

End-to-end ML Workflows avec Kubeflow

- Setting-up de l'environnement Kubeflow
- Construction d'un modèle de ML avec Kubeflow
- Déploiement d'un modèle de ML avec Kubeflow
- Construction d'un pipeline de ML avec Kubeflow Pipeline

Usecase

- End-to-end image classification system
- **■** Fashion-MNIST dataset
- Open source
- 28x28 pixels images
- Items : vêtements, sac et chaussures
- Réseau de neurones convolutifs (CNN)
 - □ TensorFlow

Fashion-MNIST ML workflow

Setting up Kubeflow environmenent

Kubeflow Setup

Kubeflow

Machine learning toolkit for Kubernetes

Kubernetes

Open source system that runs everywhere (on-premise, public cloud, hybrid)

Options de déploiement

Public cloud

Google Cloud Platform (GCP)

Amazon Web Services (AWS)

Microsoft Azure

On-premise

On-premise Kubernetes cluster

Private cloud

IBM private cloud

Local

MiniKF

Minikube

MicroK8s

Déploiement sur GCP et GKE

- - ☐ Approche facile
 - ☐ https://deploy.kubeflow.cloud
- CLI
 - ☐ Plus de contrôle
 - ☐ Contrôler facilement les versions
 - Automatisation

Démo setup

Prérequis

- Un projet GCP actif
- ☐ gcloud
 - Google Cloud SDK
- ☐ Kubectl
 - Interaction avec le cluster K8s
- ☐ Idéalement travailler avec Linux ou macOS
- OAuth authentification
- Déployer Kubeflow sur GCP
- Supprimer Kubeflow sur GCP
 - ☐ Eviter les mauvaises surprises

Kubeflow Training

Challenges

■ Experiments tracking

- □ Améliorer la productivité
- ☐ Assurer la reproductibilité

Execution

- ☐ Single node
- □ Accélérateurs
 - GPU, TPU
- Multi-node/Multi-worker
 - Entrainement distribué

■ Environnement de développement

- Notebook (data scientist)
- Scripts (ML engineer)

Kubeflow components for training

■ Notebook server

☐ Interactive multi-user environment

■ Training at scale

- ☐ TFJob
- PyTorch
- MXNet

Fairing

Training jobs depuis le notebook

■ Metadata

Track model artifacts and metadata

■ Katib

Hyperparameter tuning

Kubeflow Notebook

- Notebook server
- Utiliser une image pré-existente ou personnalisée
- Authentification et contrôle des accès
- Ajout de volume persistant pour les données ou workspaces
- Configuration des ressources (CPU, RAM)
- Configuration des accélérations (GPU)

Pourquoi utiliser des images personnalisées ?

- **■** Eviter de setup manuellement l'environnement
- Setup des images pour des équipes différentes
 - ☐ Exploration des données (pandas, matplotlib, etc.)
 - ☐ Machine learning classique (Scikit-learn, etc.)
 - ☐ Deep-learning (Tensorflow, PyTorch, etc.)
- Team centrale qui gère ces images customs
 - Onboarding rapide des data scientists

Kubeflow Metadata

- Track et manage les metadatas
- Backend database pour storer les infos
- API pour requêter et retrouver les infos
- Artifact store dashboard
- Tracking des metadatas
 - Model
 - ☐ Metric
 - Dataset

Kubeflow Fairing

- Python package to streamline the process
 - Build
 - ☐ Train anywhere (local, cloud)
 - □ Deploy
- **■** Couche abstraite
 - Executable directement depuis le notebook
 - ☐ Réutilisation des blocks
- Parfait pour les data scientists
- **■** En version beta

Distributed Training

Distributed Training

Distributed Training

Mirrored Strategy

Multi-worker Mirrored Strategy

Hyperparameter tuning

Hyperparameters

- Paramètres de configuration
 - Learning rate
 - Batch size
- Paramétrés avant processus d'entrainement

Hyperparameter tuning

- Trouver les valeurs optimales qui optimisent la fonction objectif
- ☐ Les valeurs optimales améliorent la performance du modèle

Katib

- Inspiré de Google Vizier
- **■** Framework agnostic
- **Plusieurs algorithmes d'optimisation**
 - Random search
 - ☐ Grid search
 - Bayesian optimisation
 - Hyperband

Serving ML Models

Model serving challenges

- Deploiement
- Realease (Canary, A/B test)
- Scaling
- Monitoring
- **■** Explication du modèle

Kubeflow components for serving

- **■** TensorFlow serving
 - ☐ Serve TensorFlow models
- **NVIDIA TensorRT**
 - □ NVIDIA inference server
- **■** Seldon core serving
 - ☐ Support multiple framework
- KFServing
 - ☐ High level abstractions for common frameworks

KFServing

- Serverless inference on Kebernetes
- Supporte des frameworks communs
 - ☐ TensorFlow, XGBoost, Scikit-learn, PyTorch, ONNX, etc.
- Possibilité de custom
- Déploiement
 - Canary Rollouts
- Performance monitoring
 - ☐ Prometheus, Grafana, Elasticsearch
- Amélioration de l'explication des modèles
- Auto-scaling et load-balancing

Kubeflow Pipeline

Pourquoi un pipeline?

- Reproductibilité
- Orchestration de bout-en-bout
- Automatisation
- **■** Expérimentation rapide
- **■** Experiment to production
- Réutilisabilité

Kubeflow Pipeline

- Build and deploy portable, scalable, workflows
- **■** Expérimentation rapide
 - Management et tracking des expériences avec l'UI
- Orchestration de bout-en-bout
 - ☐ Utilisation du SDK pour définir et orchestrer le pipeline et ses composants
 - Multi-step workflow engine
 - ☐ Utilisation d'un notebook pour intéragir avec le SDK

Kubeflow Pipeline Concepts

Kubeflow Pipeline Concepts

Kubeflow Pipeline Concepts

Pour aller plus loin

Explorer des features avancées de Kubeflow

Setup

- ☐ Cloud (AWS, Azure), On-premise
- Authentification avancée
 - Multi-tenancy component

■ Kustomize

- Customisation des fichiers de conf yaml
- Katib
 - ☐ Stratégies d'hyperparameters tuning avancées

■ Pipeline

- ☐ Intégration avec des artifacts d'output
- ☐ CI/CD pipeline