# Experimental designs and data analysis in R

### Learning Objectives

Design, analyze, and interpret results from a factorial experiment

Identify focal and moderator treatment effects

Plan blocks, replication, and interspersion to maximize efficiency

Create and interpret statistical conclusions

Manage data in spreadsheets

Use R to inspect, plot, and analyze data

# Williams

BS Biology
Plasticity in tadpoles







PhD Biology

Sea urchin development

**MS Statistics** 

Quantitative genetics Big Data







Postdoc, Professor Plant development, evolution, breeding



### **PLS 205**

Lectures and materials for PLS 205: Experimental Design and Analysis at UC Davis

https://deruncie.github.io/PLS205\_course/Course\_content.html

| Week | Topics                                                                                                    | Lectures                | Labs     |    |                                                                    |                          |          |
|------|-----------------------------------------------------------------------------------------------------------|-------------------------|----------|----|--------------------------------------------------------------------|--------------------------|----------|
| 1    | Introduction, Estimating treatment effects                                                                | Lecture 1<br>Lecture 2  | Lab<br>1 | 6  | Introduction to Factorials; More factorials                        | Lecture 11<br>Lecture 12 | Lab<br>6 |
| 2    | Standard Errors and Confidence Intervals; Indirect estimates                                              | Lecture 3<br>Lecture 4  | Lab<br>2 | 7  | Continuation of Factorials, intro to the RCBD;<br>Generalized RCBD | Lecture 13<br>Lecture 14 | Lab<br>7 |
| 3    | Analysis of Design 1 - Indirect estimation; Analysis of Design 3 - Subsamples; Comparisons of Designs 1-3 | Lecture 5<br>Lecture 6  | Lab<br>3 | 8  | RCBD with replicates; Incomplete Blocks                            | Lecture 15<br>Lecture 16 | Lab<br>8 |
| 4    | When treatments have >2 levels; ANOVA                                                                     | Lecture 7<br>Lecture 8  | Lab<br>4 | 9  | Split Plot designs; More split plots!                              | Lecture 17<br>Lecture 18 | Lab<br>9 |
| 5    | Data Transformations; Replication                                                                         | Lecture 9<br>Lecture 10 | Lab<br>5 | 10 | More Split Plots; Review                                           | Lecture 19<br>Lecture 20 |          |

### Outline

Morning

Research Questions

Define and measure treatment effects

Load and inspect data in R

Fit models and extract summaries

Data transformations

Afternoon

Experimental Designs

Define Experimental Units and Blocks

Discuss confidence, replication, and power

Use Design Tables to set up model statements

Design and describe an experiment

Evening

Analyze data

Interpret an experimental description

Analyze data

Produce a report

Critique the experiment

### Let's run an experiment!

Research Question: Does standing affect a person's pulse?

Experimental Design:

Assign each person to stand or sit. Apply the treatments. Measure pulse for 30s.

On "Ready", get in position and find your pulse. On "Go", start counting...



Pulse (beats per minute) = count x 2

### Write a statement about the results

What conclusions can you draw?

#### Include:

Statements about **size** and **direction** of the treatment effect

Statements about **subjects** and **population** 

Statements about Confidence / Certainty about the conclusions

Standing **increased** pulse relative to sitting by XX bpm (95% CI: XX-XX bpm) among graduate students on the 3rd day of class at CSHL

Standing vs sitting had a **significant** effect on pulse ( $\alpha < 0.05$ ) ...

There was moderate evidence of an effect of standing vs sitting (p = 0.0023) ...

### Guidelines

Make statements about treatment effects

Treatments are comparisons between 2 levels Sitting vs Standing Mutant vs WT

Not Significant doesn't mean No Effect

We can conclude that an **effect > 0**, but we cannot conclude that there is **no effect** p > 0.05 may be *not significant*, but this doesn't mean that there is no effect Look at Confidence Intervals as a range of **plausible values** 

The p-value reported by R may not be the p-value for your Research Question

Often we need to **combine p-values** to address the real question

Do any genes change in expression?

Does geneA affect flowering in Long Days or Short Days?



Full paper | 🙃 Free Access

# Fluctuating, warm temperatures decrease the effect of a key floral repressor on flowering time in *Arabidopsis thaliana*

Liana T. Burghardt 

, Daniel E. Runcie, Amity M. Wilczek, Martha D. Cooper, Judith L. Roe, Stephen M. Welch, Johanna Schmitt

First published: 17 December 2015 | https://doi.org/10.1111/nph.13799 | Citations: 32



### What is this study about?

Effect of FRIGIDA (FRI) on flowering time in *Arabidopsis thaliana* 

**focal effect** FRI vs fri

How fluctuating, warm temperatures alter the effect of FRI on flowering time

How two other genes (FLC and VIN3) interact with FRI

#### moderator effects

VIN3 vs vin3

fluctuating vs constant + vs - vernalization FLC vs flc

### Focal treatment

The essential perturbation of study

Col-0 genotype has a non-functional *FRI* allele

What is the effect on flowering time of re-activating it?

Compare Col FRI to Col-0

#### **Key concept:**

There is never **one effect** of a treatment

What is the average effect?

How consistent is the effect?

What will the effect be for a specific plant?

What factors change the effect?

#### **Factorial experiment**

2+ treatments

focal and moderator

Measure the effect of the moderator treatment on the effect of the focal treatment



### Analysis 1: How do FLC and VIN3 modify the effect of FRI?

The essential perturbation of study





### Analysis 1: Summary



Are these estimates good summaries of the FRI effect?

### Data transformations - 1/Days.to.Bolt



On this scale, the FRI effects are more similarly sized among replicates



22C + Constant Temp + No-Vernalization

22C + Constant Temp + Vernalization

22C + Variable Temps + No-Vernalization

22C + Variable Temps + Vernalization

2 x 3 x 4 factorial

24 treatment combinations

What can we learn?

focal effect: (FRI - fri) on Bolting\_rate

moderator 1: Mutant (flc-3 - WT) or (vin3-4 - WT)

moderator 2: Env effect on mutant's effect on FRI effect



22C + Constant Temp + No-Vernalization

22C + Constant Temp + Vernalization

22C + Variable Temps + No-Vernalization

22C + Variable Temps + Vernalization

#### Plan:

1. Measure Mutant effects on FRI effect in each condition

2. Compare these effects

focal effect: (FRI - fri) on Bolting\_rate

moderator 1: Mutant (flc-3 - WT) or (vin3-4 - WT)

moderator 2: Env effect on mutant's effect on FRI effect



What changed?



### Summary - Part 1

Start by identifying the focal treatment effect

#### There is never ONE focal treatment effect

Our goal is to report as much about this effect as possible

Magnitude?

Direction?

Scale? Additive? Multiplicative? Inverse/rate? Probability?

Consistency?

Other factors that change its effect

In R: Load, check data

Fit a model

Construct estimates of effects (contrasts)

Make plots

### Part 2 - Experimental Designs

- 1. Data management
- 2. Statistics

Internal vs External validity

Confidence / uncertainty

Experimental Units, replication, interspersion

Blocking

R tools

References: Data Organization in Spreadsheets. Broman and Woo 2017

|    | А             | В        | С            | D           | E          |
|----|---------------|----------|--------------|-------------|------------|
| 1  | Plot: 2       |          |              |             |            |
| 2  | Data collecte | Species  | Sex          | Weight      | plate-well |
| 3  | 1/8/14        | NA       |              |             | 1-A01      |
| 4  | 1/8/14        | DM       | M            | 44          | 1-A02      |
| 5  | 1/8/14        | DM       | M            | 38          | 1-A03      |
| 6  | 1/8/14        | OL       |              |             | 1-B01      |
| 7  | 1/8/14        | PE       | М            | 22          | 1-B02      |
| 8  | 1/8/14        | DM       | M            | 38          | 1-B03      |
| 9  | 1/8/14        | DM       | M            | 48          | 1-C01      |
| 10 | 1/8/14        | DM       | M            | 43          | 1-C02      |
| 11 | 1/8/14        | DM       | F            | 35          | 1-C03      |
| 12 | 1/8/14        | DM       | M            | 43          | 1-D01      |
| 13 | 1/8/14        | DM       | F            | 37          | 1-D02      |
| 14 | 1/8/14        | PF       | F            | 7           | 1-D03      |
| 15 | 1/8/14        | DM       | M            | 45          | 2-A01      |
| 16 | 1/8/14        | ОТ       |              |             | 2-A02      |
| 17 | 1/8/14        | DS       | M            | 157         | 2-A03      |
| 18 | 1/8/14        | OX       |              |             | 2-B01      |
| 19 |               |          |              |             |            |
| 20 | Plot: 3       |          |              |             |            |
| 21 | 2/8/14        | NA       | M            | 218         | 2-B02      |
| 22 | 2/8/14        | PF       | F            | 7           | 2-B03      |
| 23 | 2/8/14        | DM       | M            | 52          | 2-C01      |
| 24 |               |          |              |             |            |
| 25 |               | MEASUREM | ENT DEVICE N | OT CALIBRAT | ED         |

What could be improved about this spreadsheet?

|    | А              | В       | С           | D            | E          |
|----|----------------|---------|-------------|--------------|------------|
| 1  | Plot: 2        |         |             |              |            |
| 2  | Data collected | Species | Sex         | Weight       | plate-well |
| 3  | 2014-01-08     | NA      |             |              | 1-A01      |
| 4  | 2014-01-08     | DM      | M           | 44           | 1-A02      |
| 5  | 2014-01-08     | DM      | M           | 38           | 1-A03      |
| 6  | 2014-01-08     | OL      |             |              | 1-B01      |
| 7  | 2014-01-08     | PE      | M           | 22           | 1-B02      |
| 8  | 2014-01-08     | DM      | M           | 38           | 1-B03      |
| 9  | 2014-01-08     | DM      | M           | 48           | 1-C01      |
| 10 | 2014-01-08     | DM      | M           | 43           | 1-C02      |
| 11 | 2014-01-08     | DM      | F           | 35           | 1-C03      |
| 12 | 2014-01-08     | DM      | M           | 43           | 1-D01      |
| 13 | 2014-01-08     | DM      | F           | 37           | 1-D02      |
| 14 | 2014-01-08     | PF      | F           | 7            | 1-D03      |
| 15 | 2014-01-08     | DM      | M           | 45           | 2-A01      |
| 16 | 2014-01-08     | OT      |             |              | 2-A02      |
| 17 | 2014-01-08     | DS      | M           | 157          | 2-A03      |
| 18 | 2014-01-08     | OX      |             |              | 2-B01      |
| 19 |                |         |             |              |            |
| 20 | Plot: 3        |         |             |              |            |
| 21 | 2014-02-08     | NA      | М           | 218          | 2-B02      |
| 22 | 2014-02-08     | PF      | F           | 7            | 2-B03      |
| 23 | 2014-02-08     | DM      | М           | 52           | 2-C01      |
| 24 |                |         |             |              |            |
| 25 |                | MEASURE | MENT DEVICE | NOT CALIBRAT | ΓED        |

- 1. Write dates as YYYY-MM-DD
- 2. Include a metadata sheet

References: Data Organization in Spreadsheets. Broman and Woo 2017



- 1. Write dates as YYYY-MM-DD
- 2. Include a metadata sheet



3. Avoid empty cells

|   | А             | В        | С           | D             | E          |
|---|---------------|----------|-------------|---------------|------------|
| 1 | Plot: 2       |          |             |               |            |
| 2 | Data collecte | Species  | Sex         | Weight        | plate-well |
| 3 | 2014-01-08    | NA       | NA          | NA            | 1-A01      |
| 1 | 2014-01-08    | DM       | M           | 44            | 1-A02      |
| 5 | 2014-01-08    | DM       | M           | 38            | 1-A03      |
| 6 | 2014-01-08    | OL       | NA          | NA            | 1-B01      |
| 7 | 2014-01-08    | PE       | M           | 22            | 1-B02      |
| 3 | 2014-01-08    | DM       | M           | 38            | 1-B03      |
| 9 | 2014-01-08    | DM       | M           | 48            | 1-C01      |
| 0 | 2014-01-08    | DM       | M           | 43            | 1-C02      |
| 1 | 2014-01-08    | DM       | F           | 35            | 1-C03      |
| 2 | 2014-01-08    | DM       | M           | 43            | 1-D01      |
| 3 | 2014-01-08    | DM       | F           | 37            | 1-D02      |
| 4 | 2014-01-08    | PF       | F           | 7             | 1-D03      |
| 5 | 2014-01-08    | DM       | M           | 45            | 2-A01      |
| 6 | 2014-01-08    | OT       | NA          | NA            | 2-A02      |
| 7 | 2014-01-08    | DS       | M           | 157           | 2-A03      |
| 8 | 2014-01-08    | OX       | NA          | NA            | 2-B01      |
| 9 | Plot: 3       |          |             |               |            |
| 0 | 2014-02-08    | NA       | M           | 218           | 2-B02      |
| 1 | 2014-02-08    | PF       | F           | 7             | 2-B03      |
| 2 | 2014-02-08    | DM       | M           | 52            | 2-C01      |
| 3 |               | MEASUREI | MENT DEVICE | NOT CALIBRATE | D          |

- 1. Write dates as YYYY-MM-DD
- 2. Include a metadata sheet
- 3. Avoid empty cells
- 4. Put only 1 thing in each cell

|    | Α             | В       | С   | D      | E     | F    |   |
|----|---------------|---------|-----|--------|-------|------|---|
| 1  | Plot: 2       |         |     |        |       |      | • |
| 2  | Data collecte | Species | Sex | Weight | plate | well |   |
| 3  | 2014-01-08    | NA      | NA  | NA     | 1     | A01  |   |
| 4  | 2014-01-08    | DM      | М   | 44     | 1     | A02  | 4 |
| 5  | 2014-01-08    | DM      | М   | 38     | 1     | A03  |   |
| 6  | 2014-01-08    | OL      | NA  | NA     | 1     | B01  | 1 |
| 7  | 2014-01-08    | PE      | М   | 22     | 1     | B02  | • |
| 8  | 2014-01-08    | DM      | М   | 38     | 1     | B03  |   |
| 9  | 2014-01-08    | DM      | М   | 48     | 1     | C01  | 4 |
| 10 | 2014-01-08    | DM      | М   | 43     | 1     | C02  |   |
| 11 | 2014-01-08    | DM      | F   | 35     | 1     | C03  | l |
| 12 | 2014-01-08    | DM      | M   | 43     | 1     | D01  | • |
| 13 | 2014-01-08    | DM      | F   | 37     | 1     | D02  |   |
| 14 | 2014-01-08    | PF      | F   | 7      | 1     | D03  |   |
| 15 | 2014-01-08    | DM      | M   | 45     | 2     | A01  |   |
| 16 | 2014-01-08    | OT      | NA  | NA     | 2     | A02  |   |
| 17 | 2014-01-08    | DS      | M   | 157    | 2     | A03  |   |
| 18 | 2014-01-08    | OX      | NA  | NA     | 2     | B01  |   |
| 19 | Plot: 3       |         |     |        |       |      |   |
| 20 | 2014-02-08    | NA      | M   | 218    | 2     | B02  |   |
| 21 | 2014-02-08    | PF      | F   | 7      | 2     | B03  |   |
| 22 | 2014-02-08    | DM      | M   | 52     | 2     | C01  |   |

- 1. Write dates as YYYY-MM-DD
- 2. Include a metadata sheet
- 3. Avoid empty cells
- 4. Put only 1 thing in each cell
- 5. Make it a rectangle

|    | Α    | В             | C         | D           | Е            | F     | G    |
|----|------|---------------|-----------|-------------|--------------|-------|------|
| 1  | Plot | Data collecte | Species   | Sex         | Weight       | plate | well |
| 2  | 2    | 2014-01-08    | NA        | NA          | NA           | 1     | A01  |
| 3  | 2    | 2014-01-08    | DM        | M           | 44           | 1     | A02  |
| 4  | 2    | 2014-01-08    | DM        | M           | 38           | 1     | A03  |
| 5  | 2    | 2014-01-08    | OL        | NA          | NA           | 1     | B01  |
| 6  | 2    | 2014-01-08    | PE        | M           | 22           | 1     | B02  |
| 7  | 2    | 2014-01-08    | DM        | M           | 38           | 1     | B03  |
| 8  | 2    | 2014-01-08    | DM        | M           | 48           | 1     | C01  |
| 9  | 2    | 2014-01-08    | DM        | M           | 43           | 1     | C02  |
| 10 | 2    | 2014-01-08    | DM        | F           | 35           | 1     | C03  |
| 11 | 2    | 2014-01-08    | DM        | M           | 43           | 1     | D01  |
| 12 | 2    | 2014-01-08    | DM        | F           | 37           | 1     | D02  |
| 13 | 2    | 2014-01-08    | PF        | F           | 7            | 1     | D03  |
| 14 | 2    | 2014-01-08    | DM        | M           | 45           | 2     | A01  |
| 15 | 2    | 2014-01-08    | ОТ        | NA          | NA           | 2     | A02  |
| 16 | 2    | 2014-01-08    | DS        | M           | 157          | 2     | A03  |
| 17 | 2    | 2014-01-08    | ОХ        | NA          | NA           | 2     | B01  |
| 18 | 3    | 2014-02-08    | NA        | M           | 218          | 2     | B02  |
| 19 | 3    | 2014-02-08    | PF        | F           | 7            | 2     | B03  |
| 20 | 3    | 2014-02-08    | DM        | M           | 52           | 2     | C01  |
| 21 |      |               | MEASUREME | NT DEVICE N | OT CALIBRATE | D     |      |

- 1. Write dates as YYYY-MM-DD
- 2. Include a metadata sheet
- 3. Avoid empty cells
- 4. Put only 1 thing in each cell
- 5. Make it a rectangle
- 6. Don't use font or highlighting as data

|    | A    | В             | С       | D   | Е      | F     | G    | Н          |
|----|------|---------------|---------|-----|--------|-------|------|------------|
| 1  | Plot | Data collecte | Species | Sex | Weight | plate | well | Calibrated |
| 2  | 2    | 2014-01-08    | NA      | NA  | NA     | 1     | A01  | Υ          |
| 3  | 2    | 2014-01-08    | DM      | M   | 44     | 1     | A02  | Υ          |
| 4  | 2    | 2014-01-08    | DM      | M   | 38     | 1     | A03  | Υ          |
| 5  | 2    | 2014-01-08    | OL      | NA  | NA     | 1     | B01  | Υ          |
| 6  | 2    | 2014-01-08    | PE      | М   | 22     | 1     | B02  | Υ          |
| 7  | 2    | 2014-01-08    | DM      | M   | 38     | 1     | B03  | Υ          |
| 8  | 2    | 2014-01-08    | DM      | M   | 48     | 1     | C01  | Υ          |
| 9  | 2    | 2014-01-08    | DM      | M   | 43     | 1     | C02  | Υ          |
| 10 | 2    | 2014-01-08    | DM      | F   | 35     | 1     | C03  | Υ          |
| 11 | 2    | 2014-01-08    | DM      | M   | 43     | 1     | D01  | Υ          |
| 12 | 2    | 2014-01-08    | DM      | F   | 37     | 1     | D02  | Υ          |
| 13 | 2    | 2014-01-08    | PF      | F   | 7      | 1     | D03  | Υ          |
| 14 | 2    | 2014-01-08    | DM      | M   | 45     | 2     | A01  | Υ          |
| 15 | 2    | 2014-01-08    | ОТ      | NA  | NA     | 2     | A02  | Υ          |
| 16 | 2    | 2014-01-08    | DS      | M   | 157    | 2     | A03  | N          |
| 17 | 2    | 2014-01-08    | OX      | NA  | NA     | 2     | B01  | Υ          |
| 18 | 3    | 2014-02-08    | NA      | M   | 218    | 2     | B02  | N          |
| 19 | 3    | 2014-02-08    | PF      | F   | 7      | 2     | B03  | Υ          |
| 20 | 3    | 2014-02-08    | DM      | M   | 52     | 2     | C01  | Υ          |

- 1. Write dates as YYYY-MM-DD
- 2. Include a metadata sheet
- 3. Avoid empty cells
- 4. Put only 1 thing in each cell
- 5. Make it a rectangle
- 6. Don't use font or highlighting as data
- 7. Use Data Validation to help data entry
- 8. Export as .csv for analysis

### **Statistics**





Are these conclusions valid?

What do the confidence intervals mean?

How can we make confidence intervals shorter? Do we **always** want to?

### Validity of conclusions

Are our estimates as good as they could be?

Are we accuractly communicating the confidence we have in our conclusions?

#### **Internal Validity**

Statements about the results of *this experiment* "past validity" - use past tense

#### **External Validity**

Extrapolations to broader conditions

"future validity" - use present/future tense

Validity requires the correct pairing of Experimental Design, Analysis methods, and Conclusion statements

The same experiment can be valid or invalid depending on the analysis

The same analysis can be valid or invalid depending on the Conclusion statements

The same experiment can be validly analyzed in different ways depending on the scope

### Experimental Design

Optimizing experimental strategies to get the most out of your work

Maximize "Gain in Knowledge" per \$\$, time



### **Experimental Units**

Unit of replication of a specific level of a treatment

Fundamental building block of any experiment

The **smallest** unit of experimental material to which a **single treatment** (or treatment combination) is assigned by the experimenter and which is dealt with **independently** of other such systems **under that treatment** at **all stages in the experiment** at which important variation may enter.

Kozlov and Hurlbert 2006

Each experimental unit get its treatment independently

Each experimental unit is equally likely to be assigned each treatment

Experimental units shouldn't **interfere** with each other

Experimental units should be randomly selected from a reference population

Experimental units of different treatments should be interspersed both temporally and spatially

40 pots are planted with pepper plants

1 plant per pot

2 hot and 2 cold growth chambers

10 plants per chamber

2 leaves harvested per plant (pot)

RNA extracted from each leaf

expression of the gene sp1 measured 3 times per RNA sample



What is the **Experimental Unit**?





Replicate of one Temperature: Chamber

Replicate of one Chamber: Plant

Replicate of one Plant: Leaf

#### **Key idea: Interspersion**

If you can draw a "box" around a group of plants of the same treatment

and accidental variation can affect all plants in that group

Then the individual plant is not the Experimental Unit

Randomization can create interspersion

But not always. Interspersion is always important

To study the effect of mutating the MC1R gene on fish fin colors, a researcher spends 2 years generating a knock-out mutant.



She places 6 fish of the wild-type strain in one tank and 6 fish of the mutant strain in a second tank.

When they get to 5cm in length, she measures the fin color of each fish

What is the experimental unit for the effect of MC1R on fin coloration?





To study the effect of mutating the MC1R gene on fish fin colors, a researcher spends 2 years generating a knock-out mutant.



She places 6 fish of the wild-type strain in one tank and 6 fish of the mutant strain in a second tank.

When they get to 5cm in length, she measures the fin color of each fish

She TAGS 6 FISH of the wild-type strain and 6 of the mutant strain and grows them All IN ONE TANK



### Experimental Units - Key Ideas

Every experiment needs experimental units

Valid measurements of treatment effects

Each experimental unit is specific to one treatment level

Each experimental unit is dealt with independently of every other experimental unit throughout the whole experiment

Experimental units of different treatment levels are interspersed in all dimensions that important variation can enter

Draw out the experimental layout

Can you draw a "box" around multiple units of the same treatment level?

Each treatment factor can have a different Experimental Unit factor

## Burghardt et al 2016



What is the Experimental Unit for the **Environment** treatment?

What is the Experimental Unit for the FRI treatment?

Chamber

Pot

#### Blocks

Block = mini experiment within a bigger experiment



Each chamber has a complete experiment

1+ experimental units for 2+ treatment levels

We can measure the **treatment effect** within each chamber



Replicates of treatment effects

Necessary for external validity

Sometimes necessary / useful for interspersion (internal validity)

## Why use blocks?

Chamber 1

FRI fri

fri FRI

Chamber 2

fri FRI

FRI fri

Chamber 1

FRI fri fri FRI

fri FRI FRI fri

1. Experimental Precision Internal Validity

Can't fit enough plants in one chamber without interferring with each other

VS

Bigger chambers have less precise environmental control

FRI effects will be more consistent in smaller chambers

# FRI effect FRI effect An area of the content of t

2. Generalizability

**External Validity** 

We need to see how much the FRI effect varies to extrapolate conclusions to new conditions

Chambers always differ somewhat from each other, so FRI effects will too

#### How to block

1. Repeat the whole experiment

"Best" replication

Necessary for treatments that cannot be interspersed

2. Identify groups of experimental units that you expect to be more homogeneous

Plants/pots within a chamber

Field location

Assay plate

Undergrad technician

Field location

- 3. Give this group of EU a unique name, record in your data table
- 4. Randomize treatment levels to EU within each block
- 5. (Optional) Run experiment for each block separatelyMeasure treatment effects for each block separately

#### Blocks - Summary

Blocks are mini-experiments

Increase precision within a specific condition

Help measure variation in treatment effects among conditions

Most experiments use blocks!

Any non-treatment factor containing 2+ treatment levels is a block

Can have multiple blocking factors

Usually best to overlay blocks



"Confound" the effects of each blocking factor

Our goal isn't to characterize the blocks themselves

#### Analysis of experiments

How do you communicate your experimental design and analysis goals to R?



#### What R sees

|   | Pot         | ${\tt Genotype}$ | FRI         | mutant      | ${\sf Treatment.V}$ | ${\it Chamber}$ | Days.to.Bolt |
|---|-------------|------------------|-------------|-------------|---------------------|-----------------|--------------|
|   | <db1></db1> | <chr></chr>      | <chr></chr> | <chr></chr> | <chr></chr>         | <db1></db1>     | <dbl></dbl>  |
| 1 | 3           | Col FRI          | FRI         | WT          | 22ConLDNV           | 1               | 70           |
| 2 | 7           | Col              | fri         | WT          | 22ConLDNV           | 1               | 20           |
| 3 | 8           | Col              | fri         | WT          | 22ConLDNV           | 1               | 21           |
| 4 | 9           | Col FRI          | FRI         | WT          | 22ConLDNV           | 1               | 53           |

# Design Table -> Model statement

| Chamber 1          | Chamber 2          | Chamber 3          | Chamber 4          |
|--------------------|--------------------|--------------------|--------------------|
| FRI fri            | fri FRI            | FRI fri            | fri FRI            |
| fri FRI            | FRI fri            | fri FRI            | FRI fri            |
| ConNV              | VarV               | ConV               | VarNV              |
| Chamber 5          | Chamber 6          | Chamber 7          | Chamber 8          |
|                    |                    |                    |                    |
| FRI fri            | fri FRI            | FRI fri            | fri FRI            |
| FRI fri<br>fri FRI | fri FRI<br>FRI fri | FRI fri<br>fri FRI | fri FRI<br>FRI fri |

|   | Pot         | Genotype    | FRI         | mutant      | Treatment.V | Chamber     | Days.to.Bolt |
|---|-------------|-------------|-------------|-------------|-------------|-------------|--------------|
|   | <dbl></dbl> | <chr></chr> | <chr></chr> | <chr></chr> | <chr></chr> | <db1></db1> | <dbl></dbl>  |
| 1 | 3           | Col FRI     | FRI         | WT          | 22ConLDNV   | 1           | 70           |
| 2 | 7           | Col         | fri         | WT          | 22ConLDNV   | 1           | 20           |
| 3 | 8           | Col         | fri         | WT          | 22ConLDNV   | 1           | 21           |
| 4 | 9           | Col FRI     | FRI         | WT          | 22ConLDNV   | 1           | 53           |

| Structure              | Variable                | # levels | Block   | EU      |
|------------------------|-------------------------|----------|---------|---------|
| Response               | Days.to.Bolt            | 64       |         |         |
| focal treatment        | FRI                     | 2        | Chamber | Pot     |
| moderator<br>treatment | Treatment.V             | 4        | None    | Chamber |
| combo treatment        | FRI:Treatment.V         | 8        | Chamber | Pot     |
| Design                 | Chamber                 | 8        |         |         |
|                        | Pot                     | 64       |         |         |
|                        | FRI:Chamber             | 16       |         |         |
|                        | FRI:Treatment.V:Chamber | 64       |         |         |



# Design Table - 1. Response



|   | Pot         | Genotype    | FRI         | mutant      | Treatment.V | Chamber     | Days.to.Bolt |
|---|-------------|-------------|-------------|-------------|-------------|-------------|--------------|
|   | <db1></db1> | <chr></chr> | <chr></chr> | <chr></chr> | <chr></chr> | <db1></db1> | <db1></db1>  |
| 1 | 3           | Col FRI     | FRI         | WT          | 22ConLDNV   | 1           | 70           |
| 2 | 7           | Col         | fri         | WT          | 22ConLDNV   | 1           | 20           |
| 3 | 8           | Col         | fri         | WT          | 22ConLDNV   | 1           | 21           |
| 4 | 9           | Col FRI     | FRI         | WT          | 22ConLDNV   | 1           | 53           |

| Structure | Variable     | # levels | Block | EU |
|-----------|--------------|----------|-------|----|
| Response  | Days.to.Bolt | 64       |       |    |

Variable: name of column in data.frame

or inverse(Days.to.Bolt/100)

# levels: # rows in data.frame

# Design Table - 2. Treatment



| Structure              | Variable     | # levels | Block   | EU      |
|------------------------|--------------|----------|---------|---------|
| Response               | Days.to.Bolt | 64       |         |         |
| focal treatment        | FRI          | 2        | Chamber | Pot     |
| moderator<br>treatment | Treatment.V  | 4        | None    | Chamber |
|                        |              |          |         |         |

|   | Pot         | Genotype    | FRI         | mutant      | Treatment.V | Chamber     | Days.to.Bolt |
|---|-------------|-------------|-------------|-------------|-------------|-------------|--------------|
|   | <db1></db1> | <chr></chr> | <chr></chr> | <chr></chr> | <chr></chr> | <db1></db1> | <db1></db1>  |
| 1 | 3           | Col FRI     | FRI         | WT          | 22ConLDNV   | 1           | 70           |
| 2 | 7           | Col         | fri         | WT          | 22ConLDNV   | 1           | 20           |
| 3 | 8           | Col         | fri         | WT          | 22ConLDNV   | 1           | 21           |

22ConLDNV

Variable: name of column in data.frame

# levels: # levels of each treatment

**Block** and **EU**:

Based on the design

Use the column names in data.frame

#### focal and moderator treatment

When 2+ treatments, declare 1 "focal"

# Design Table - 2. Treatment combos



| Structure              | Variable        | # levels | Block   | EU      |
|------------------------|-----------------|----------|---------|---------|
| Response               | Days.to.Bolt    | 64       |         |         |
| focal treatment        | FRI             | 2        | Chamber | Pot     |
| moderator<br>treatment | Treatment.V     | 4        | None    | Chamber |
| combo treatment        | FRI:Treatment.V | 8        | Chamber | Pot     |

|   | Pot         | Genotype    | FRI         | mutant      | Treatment.V | Chamber     | Days.to.Bolt |
|---|-------------|-------------|-------------|-------------|-------------|-------------|--------------|
|   | <dbl></dbl> | <chr></chr> | <chr></chr> | <chr></chr> | <chr></chr> | <db1></db1> | <dbl></dbl>  |
| 1 | 3           | Col FRI     | FRI         | WT          | 22ConLDNV   | 1           | 70           |
| 2 | 7           | Col         | fri         | WT          | 22ConLDNV   | 1           | 20           |
| 3 | 8           | Col         | fri         | WT          | 22ConLDNV   | 1           | 21           |
| 4 | 9           | Col FRI     | FRI         | WT          | 22ConLDNV   | 1           | 53           |

#### Combos are combined variables

combine names with ":" e.g. FRI:Treatment.V

|     | ConNV     | VarNV     | ConV     | VarV     |
|-----|-----------|-----------|----------|----------|
| fri | fri:ConNV | fri:VarNV | fri:ConV | fri:VarV |
| FRI | FRI:ConNV | FRI:VarNV | FRI:ConV | FRI:VarV |

#### # levels: # unique combinations in the experiment

#### **Terminology:**

"FRI" and "Treatment.V" are crossed

rows and columns have 2+ entries

# Design Table - 3. Design

| Chamber 1         | Chamber 2            | Chamber 3         | Chamber 4 |
|-------------------|----------------------|-------------------|-----------|
| FRI fri           | fri FRI              | FRI fri           | fri FRI   |
| fri FRI           | FRI fri              | fri FRI           | FRI fri   |
| ConNV             | VarV                 | ConV              | VarNV     |
|                   |                      |                   |           |
| Chamber 5         | Chamber 6            | Chamber 7         | Chamber 8 |
| Chamber 5 FRI fri | Chamber 6<br>fri FRI | Chamber 7 FRI fri | Chamber 8 |
|                   |                      |                   |           |

|   | Pot             | Genotype    | FRI         | mutant      | Treatment.V | Chamber     | Days.to.Bolt |
|---|-----------------|-------------|-------------|-------------|-------------|-------------|--------------|
|   | $<\!\!dbl\!\!>$ | <chr></chr> | <chr></chr> | <chr></chr> | <chr></chr> | <db1></db1> | <db1></db1>  |
| 1 | 3               | Col FRI     | FRI         | WT          | 22ConLDNV   | 1           | 70           |
| 2 | 7               | Col         | fri         | WT          | 22ConLDNV   | 1           | 20           |
| 3 | 8               | Col         | fri         | WT          | 22ConLDNV   | 1           | 21           |
| 4 | 9               | Col FRI     | FRI         | WT          | 22ConLDNV   | 1           | 53           |

| Structure              | Variable        | # levels | Block   | EU      |
|------------------------|-----------------|----------|---------|---------|
| Response               | Days.to.Bolt    | 64       |         |         |
| focal treatment        | FRI             | 2        | Chamber | Pot     |
| moderator<br>treatment | Treatment.V     | 4        | None    | Chamber |
| combo treatment        | FRI:Treatment.V | 8        | Chamber | Pot     |
| Design                 | Chamber         | 8        |         |         |
|                        | Pot             | 64       |         |         |
|                        |                 |          |         |         |
|                        |                 |          |         |         |

#### Variable:

List all Block and EUs Check that they are named **uniquely!** 

# Design Table - 3. Design

| Chamber 1            | Chamber 2            | Chamber 3         | Chamber 4 |
|----------------------|----------------------|-------------------|-----------|
| FRI fri              | fri FRI              | FRI fri           | fri FRI   |
| fri FRI              | FRI fri              | fri FRI           | FRI fri   |
| ConNV                | VarV                 | ConV              | VarNV     |
|                      |                      |                   |           |
| Chamber 5            | Chamber 6            | Chamber 7         | Chamber 8 |
| Chamber 5<br>FRI fri | Chamber 6<br>fri FRI | Chamber 7 FRI fri | Chamber 8 |
|                      |                      |                   |           |

|   | Pot         | Genotype    | FRI         | mutant      | Treatment.V | Chamber     | Days.to.Bolt |
|---|-------------|-------------|-------------|-------------|-------------|-------------|--------------|
|   | <dbl></dbl> | <chr></chr> | <chr></chr> | <chr></chr> | <chr></chr> | <db1></db1> | <db1></db1>  |
| 1 | 3           | Col FRI     | FRI         | WT          | 22ConLDNV   | 1           | 70           |
| 2 | 7           | Col         | fri         | WT          | 22ConLDNV   | 1           | 20           |
| 3 | 8           | Col         | fri         | WT          | 22ConLDNV   | 1           | 21           |
| 4 | 9           | Col FRI     | FRI         | WT          | 22ConLDNV   | 1           | 53           |

| Structure              | Variable                | # levels | Block   | EU      |
|------------------------|-------------------------|----------|---------|---------|
| Response               | Days.to.Bolt            | 64       |         |         |
| focal treatment        | FRI                     | 2        | Chamber | Pot     |
| moderator<br>treatment | Treatment.V             | 4        | None    | Chamber |
| combo treatment        | FRI:Treatment.V         | 8        | Chamber | Pot     |
| Design                 | Chamber                 | 8        |         |         |
|                        | Pot                     | 64       |         |         |
|                        | FRI:Chamber             | 16       |         |         |
|                        | FRI:Treatment.V:Chamber | 64       |         |         |

#### Variable:

List all Block and EUs Check that they are named **uniquely!** 

Form all possible **combination terms** among **crossed variables** count # levels

all Treatment:Block some Block:Block



**Crossed** Rows and Columns have 2+ entries

Crossed



**Crossed** Rows and Columns have 2+ entries

Crossed



Rows or Columns have 2+ entries. The other has only 1

# levels



|   | Pot         | Genotype    | FRI         | mutant      | Treatment.V | Chamber     | Days.to.Bolt |
|---|-------------|-------------|-------------|-------------|-------------|-------------|--------------|
|   | <dbl></dbl> | <chr></chr> | <chr></chr> | <chr></chr> | <chr></chr> | <db1></db1> | <dbl></dbl>  |
| 1 | 3           | Col FRI     | FRI         | WT          | 22ConLDNV   | 1           | 70           |
| 2 | 7           | Col         | fri         | WT          | 22ConLDNV   | 1           | 20           |
| 3 | 8           | Col         | fri         | WT          | 22ConLDNV   | 1           | 21           |
| 4 | 9           | Col FRI     | FRI         | WT          | 22ConLDNV   | 1           | 53           |

**Crossed** Rows and Columns have 2+ entries

Rows or Columns have 2+ entries. The other has only 1

Aliased one-to-one labels

FRI Treatment.V Chamber Pot 2 4 8 64

(Treatment.V:Chamber):Chamber

ConNV:Cham1 —— Cham1

VarV:Cham2 — Cham2 Aliased

ConV:Cham3 —— Cham3 one-to-one labels

ConV:Cham4 Cham4

ConV:Cham5

4\*8=32 possible levels

only 8 exist

# levels



|   | Pot         | Genotype    | FRI         | ${\it mutant}$ | ${\tt Treatment.V}$ | ${\it Chamber}$ | Days.to.Bolt |
|---|-------------|-------------|-------------|----------------|---------------------|-----------------|--------------|
|   | <db1></db1> | <chr></chr> | <chr></chr> | <chr></chr>    | <chr></chr>         | <db1></db1>     | <dbl></dbl>  |
| 1 | 3           | Col FRI     | FRI         | WT             | 22ConLDNV           | 1               | 70           |
| 2 | 7           | Col         | fri         | WT             | 22ConLDNV           | 1               | 20           |
| 3 | 8           | Col         | fri         | WT             | 22ConLDNV           | 1               | 21           |
| 4 | 9           | Col FRI     | FRI         | WT             | 22ConLDNV           | 1               | 53           |

**Crossed** Rows and Columns have 2+ entries

**Nested**Rows **or** Columns have 2+ entries.
The other has only 1

**Aliased** one-to-one labels

| FRI | Treatment.V | Chamber | Pot |
|-----|-------------|---------|-----|
| 2   | 4           | 8       | 64  |

Genotype: FRI

Col FRI — FRI

Col — fri Aliased

one-to-one labels

Alternate names for the same "thing"

All observations with Genotype == 'Col FRI' also have FRI == 'FRI'

# Design Table - 3. Design



|   | Pot             | Genotype    | FRI         | mutant      | Treatment.V | Chamber     | Days.to.Bolt |
|---|-----------------|-------------|-------------|-------------|-------------|-------------|--------------|
|   | $<\!\!dbl\!\!>$ | <chr></chr> | <chr></chr> | <chr></chr> | <chr></chr> | <db1></db1> | <dbl></dbl>  |
| 1 | 3               | Col FRI     | FRI         | WT          | 22ConLDNV   | 1           | 70           |
| 2 | 7               | Col         | fri         | WT          | 22ConLDNV   | 1           | 20           |
| 3 | 8               | Col         | fri         | WT          | 22ConLDNV   | 1           | 21           |
| 4 | 9               | Col FRI     | FRI         | WT          | 22ConLDNV   | 1           | 53           |

| Structure              | Variable                | # levels | Block   | EU      |
|------------------------|-------------------------|----------|---------|---------|
| Response               | Days.to.Bolt            | 64       |         |         |
| focal treatment        | ment FRI                |          | Chamber | Pot     |
| moderator<br>treatment | Treatment.V             | 4        | None    | Chamber |
| combo treatment        | FRI:Treatment.V         | 8        | Chamber | Pot     |
| Design                 | Chamber                 | 8        |         |         |
|                        | Pot                     | 64       |         |         |
|                        | FRI:Chamber             |          |         |         |
|                        | FRI:Treatment.V:Chamber | 64       |         |         |

**Crossed** Rows and Columns have 2+ entries

Rows or Columns have 2+ entries. The other has only 1

Aliased one-to-one labels

Keep adding rows for any crossed combos

If B is **nested in** A, or **aliased with** A, don't form a combo If C and A are **aliased**, don't need C (unless it is an EU)

# Design Table - 4. Model

| Chamber 1 | Chamber 2 | Chamber 3 | Chamber 4 |
|-----------|-----------|-----------|-----------|
| FRI fri   | fri FRI   | FRI fri   | fri FRI   |
| fri FRI   | FRI fri   | fri FRI   | FRI fri   |
| ConNV     | VarV      | ConV      | VarNV     |
| Chamber 5 | Chamber 6 | Chamber 7 | Chamber 8 |
| FRI fri   | fri FRI   | FRI fri   | fri FRI   |
| fri FRI   | FRI fri   | fri FRI   | FRI fri   |
|           |           |           |           |

|   | Pot         | Genotype    | FRI         | mutant      | Treatment.V | Chamber     | Days.to.Bolt |
|---|-------------|-------------|-------------|-------------|-------------|-------------|--------------|
|   | <dbl></dbl> | <chr></chr> | <chr></chr> | <chr></chr> | <chr></chr> | <dbl></dbl> | <dbl></dbl>  |
| 1 | 3           | Col FRI     | FRI         | WT          | 22ConLDNV   | 1           | 70           |
| 2 | 7           | Col         | fri         | WT          | 22ConLDNV   | 1           | 20           |
| 3 | 8           | Col         | fri         | WT          | 22ConLDNV   | 1           | 21           |
| 4 | 9           | Col FRI     | FRI         | WT          | 22ConLDNV   | 1           | 53           |

| Structure              | Variable                | # levels | Block   | EU      |
|------------------------|-------------------------|----------|---------|---------|
| Response               | Days.to.Bolt            | 64       |         |         |
| focal treatment        | atment FRI              |          | Chamber | Pot     |
| moderator<br>treatment | Treatment.V             | 4        | None    | Chamber |
| combo treatment        | FRI:Treatment.V         | 8        | Chamber | Pot     |
| Design                 | Chamber                 | 8        |         |         |
|                        | Pot                     | 64       |         |         |
|                        | FRI:Chamber             | 16       |         |         |
|                        | FRI.Treatment.V.Chamber | 04       |         |         |

- 1. Drop rows with same # levels as the Response
- 2. List all other terms, separated by "+"

Response ~ FRI + Treatment.V + FRI:Treatment.V + Chamber + FRI:Chamber

3. Convert EUs, terms nested in EUs, and (usually) Treatment:Block combos to random

# Design Table - 4. Model



|   | Pot         | Gend                                                                                                                                           | otype | FRI         | mutant      | Treatment.V | Chamber     | Days.to.Bolt |  |
|---|-------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|-------------|-------------|-------------|--------------|--|
|   | <db1></db1> | <chi< th=""><th>r&gt;</th><th><chr></chr></th><th><chr></chr></th><th><chr></chr></th><th><dbl></dbl></th><th><dbl></dbl></th><th></th></chi<> | r>    | <chr></chr> | <chr></chr> | <chr></chr> | <dbl></dbl> | <dbl></dbl>  |  |
| 1 | 3           | Col                                                                                                                                            | FRI   | FRI         | WT          | 22ConLDNV   | 1           | 70           |  |
| 2 | 7           | Col                                                                                                                                            |       | fri         | WT          | 22ConLDNV   | 1           | 20           |  |
| 3 | 8           | Col                                                                                                                                            |       | fri         | WT          | 22ConLDNV   | 1           | 21           |  |
| 4 | 9           | Col                                                                                                                                            | FRI   | FRI         | WT          | 22ConLDNV   | 1           | 53           |  |

| Structure              | Variable                | # levels | Block   | EU      |
|------------------------|-------------------------|----------|---------|---------|
| Response               | Days.to.Bolt            | 64       |         |         |
| focal treatment        | FRI                     | 2        | Chamber | Pot     |
| moderator<br>treatment | Treatment.V             | 4        | None    | Chamber |
| combo treatment        | FRI:Treatment.V         | 8        | Chamber | Pot     |
| Design                 | Chamber                 | 8        |         |         |
|                        | Pot                     | 64       |         |         |
|                        | FRI:Chamber             | 16       |         |         |
|                        | FRI.Treatment.V.Chamber | 04       |         |         |

- 1. Drop rows with same # levels as the Response
- 2. List all other terms, separated by "+"

Response ~ FRI + Treatment.V + FRI:Treatment.V + (1| Chamber) + (1|FRI:Chamber)

3. Convert **EUs**, terms **nested in EUs**, and (usually) **Treatment:Block combos** to random

model function:

Any random terms: Imer()

NO random terms: Im()

(1|Variable)

# Analysis

Once you have your data loaded and your model statement written

The analysis is the same as we saw earlier

- 1. Fit model
- 2. Calculate means for each treatment
- 3. Calculate treatment effects
- 4. If moderator treatments, regroup effects, calculate moderator treatment effects on focal treatment effects
- 5. Report treatment effect **estimates** and **Confidence Intervals**

#### Confidence Intervals

Summary of our knowledge after an experiment



**Estimate** = "measurement" of the thing we're trying to study

always the average of something

Average effect of adding a functional FRI allele to a WT (Col-0) plant on the rate of bolting when grown in the 22-Con-LD-NV condition

Remember: it doesn't mean that this is always the effect!

**Confidence Interval** = Range of *plausible* errors in our measurement

Using this experimental design

If we were to repeat the experiment many times in exactly the same way

NOT: Range of plausible treatment effects

Shorter interval = More knowledge = More confidence in the conclusions

#### p-values

Evidence that the TRUE value is NOT equal to zero



If a 95% Confidence Interval doesn't cross zero, then the p-value < 0.05

Smaller p-values = stronger evidence that the TRUE value is not zero

#### p-values

Evidence that the TRUE value is NOT equal to zero



If a 95% Confidence Interval doesn't cross zero, then the p-value < 0.05

Smaller p-values = stronger evidence that the TRUE value is not zero

Here, p will be large (~0.7 or so)

Can we conclude that the FRI effect IS zero?

No! There are lots of other plausible values near to zero

Days.to.Bolt



Why is this CI larger?

inverse(Days.to.Bolt/100)



We are more confident in the average effect size in thiese data

Because the **variation in effect size** measured in this way is smaller



Not necessarily "replicates"

Variation in effect size

# times we measure the effect

Measurement error per measurement

Confidence Interval = Estimate ± SE\*tc

t<sub>c</sub> = Critical value - dependent on Degrees of Freedom Usually (# replicates - 1)



Variation in effect size

# times we measure the effect

Measurement error per measurement

Depends on **how** we use our data

Depends on scope

Option 1

Randomly pair FRI and fri plants, average the difference

n(n-1)/2 pairs, but only (n-2) independent pairs

Option 2

Average FRI plants, and average fri plants, take the difference only 1 measurement. But that measurement was more precise



Variation in effect size

# times we measure the effect

Measurement error per measurement

Depends on **how** we use our data

Depends on scope

Option 1

Randomly pair FRI and fri plants, average the difference n(n-1)/2 pairs, but only (n-2) *independent* pairs

Option 2

Average FRI plants, and average fri plants, take the difference only 1 measurement. But that measurement was more precise

Both give the **same estimate** 

Different confidence intervals

## The difference depends on the scope of inference

**Scope:** How broad conclusions do we want to make?



Option 1: Randomly pair FRI and fri plants, average the difference

**scope:** Average effect of FRI in this condition in this experiment

Randomly pairs are independent replicates within this experiment

narrow Confidence Intervals Internal Validity



FRI

**Option 2:** Difference of averages

**scope:** Average effect of FRI in conditions similar to this experiment

Randomly pairs are all still in this particular condition

We don't know how different they might be in a repeat of this experiment

#### The difference depends on the scope of inference

**Scope:** How broad conclusions do we want to make?



## The difference depends on the scope of inference

**Scope:** How broad conclusions do we want to make?



Option 1: Randomly pair FRI and fri plants, average the difference

**scope:** Average effect of FRI in this condition in this experiment

Randomly pairs are independent replicates within this experiment

narrow Confidence Intervals Internal Validity

Question: Is this really the effect of FRI?

Are the different FRI plants independent?

Scope: FRI gene n=1

Scope: Col FRI genotype n=14

# What makes a replicate independent?

(# replicates) and (Degrees of Freedom) count independent replicates

Essentially - each one is separately representative of the range of plausible individuals in the target population

Scope = this experiment, these 2 genotypes

Replicates compare Experimental Units

Scope = similar conditions, similar genotypes

Replicates are repeats of the experiment with newly constructed genotypes



## Steps to analyze and experiment

- 1) Draw out the experimental layout
- 2) Create a **Design Table**

Make decisions about scope and goals

- 3) Load data and check it against the Design Table
- 4) Create a **Model Statement**
- 5) Run analysis and make conclusions

## Burghart et al 2016

Chamber 3 Chamber 1 Chamber 2 Chamber 4 fri FRI fri fri FRI FRI fri FRI **Treatment Block** EU FRI fri fri FRI FRI fri FRI fri FRI Chamber Plant ConNV VarV ConV VarNV Env None Chamber Chamber 5 Chamber 6 Chamber 7 Chamber 8 FRI ConV ConNV VarNV VarV

# Design Table

| Structure              | Variable                | # levels | Replicate | EU      |
|------------------------|-------------------------|----------|-----------|---------|
| Response               | Days.to.Bolt            | 64       |           |         |
| focal treatment        | FRI                     | 2        | Chamber   | Plant   |
| moderator<br>treatment | Treatment.V             | 4        | None      | Chamber |
| combo<br>treatment     | FRI:Treatment.V         | 8        | Chamber   | Plant   |
| Design                 | Chamber                 | 8        |           |         |
|                        | Plant                   | 64       |           |         |
|                        | FRI:Chamber             | 16       |           |         |
|                        | FRI:Treatment.V:Chamber | 64       |           |         |



Check data input in R
Response is numeric
Everything else is a factor
Check # levels using str()

#### Model Statement

| Structure              | Variable                    | # levels | Replicate | EU      |
|------------------------|-----------------------------|----------|-----------|---------|
| Response               | Days.to.Bolt                | 64       |           |         |
| focal treatment        | FRI                         | 2        | Chamber   | Plant   |
| moderator<br>treatment | Treatment.V                 | 4        | None      | Chamber |
| combo<br>treatment     | FRI:Treatment.V             | 8        | Chamber   | Plant   |
| Design                 | Chamber                     | 8        |           |         |
|                        | Plant                       | 64       |           |         |
|                        | FRI:Chamber                 | 16       |           |         |
|                        | FRI:Treatment.V:Chamb<br>er | 32       |           |         |

Response ~ Every other variable, separted by +

\* except if # levels >= response

\* except if two variables are **aliased**use function is\_aliased()

All EU declared as Random

(1|Plant) + (1|Chamber)

Block:Treatment declared Random for broader scope

Terms nested in Random terms are also Random

If any random terms, use *lmer()* instead of *lm()* 

Imer( Days.to.Bolt ~ FRI + Treatment.V + FRI:Treatment.V + (1|Chamber) + (1|FRI:Chamber) + (1|FRI:Treatment.V:Chamber ) )

#### Validity of conclusions

Are our estimates as good as they could be

Are we accuractly communicating the confidence we have in our conclusions?

Validity requires the correct pairing of Experimental Design, Analysis methods, and Conclusion statements

The same experiment can be valid or invalid depending on the analysis

The same analysis can be valid or invalid depending on the Conclusion statements

The same experiment can be validly analyzed in different ways depending on the scope

#### **Internal Validity**

Statements about the results of this experiment

Requires valid **Experimental Units** 

#### **External Validity**

Extrapolations to broader conditions

Requires valid **Experimental Units** 

Requires valid **Replication** 

## Burghart et al 2016



What is the Experimental Unit for the **Environment** treatment?

What is the Experimental Unit for the FRI treatment?

Chamber

**Plant** 

# Analysis of experiments

Collecting data

Loading data into R

Analyzing data

Reporting conclusions

#### Blocks

Block = mini experiment within a bigger experiment



Each chamber has a complete experiment

1+ experimental units for 2+ treatment levels

We can measure the treatment effect within each chamber





Replicates of treatment effects

Necessary for external validity

Sometimes necessary / useful for interspersion (in

Chambers always differ somewhat from each other

FRI effects will be more similar within chambers than between chambers

Chambers always differ somewhat from each other

#### Blocks

Replicates of treatment effects

Necessary for external validity

Sometimes necessary / useful for interspersion (internal validity)

Block = mini experiment within a bigger experiment



fri FRI

Chamber 2

fri FRI

FRI fri

Each chamber has a complete experiment

1+ experimental units for 2+ treatment levels

We can measure the treatment effect within each chamber

Chambers always differ somewhat from each other

**FRI effects** will be more similar within chambers than between chambers Chambers always differ *somewhat* from each other

#### How do you replicate?

1. Repeat the whole experiment

"Best" replication

Necessary for treatments that cannot be interspersed

2. Form **Blocks** within your experiment



FRI fri fri FRI Chamber 2

fri FRI FRI fri Chambers always differ somewhat from each other

If you have each genotype in each chamber, you can measure the FRI effect in each chamber

FRI effects will differ among chambers

If FRI effects don't change much, you'll have more confidence that it will replicate again the next time

If FRI effects do change a lot, you'll know that the FRI effect is very sensitive

But you don't know why

#### What is a Block?

Any grouping of Experimental Units of 2+ treatment levels

Not all levels need to be in every block (but usually best if they are)

Best if the Experimental Units within the block are more similar than to other blocks

This way you're exploring a greater range of conditions

While comparisons within the block are still precise

A factor (e.g. a chamber) can be a block for one treatment, but an Experimental Unit for another!

Examples of common blocking factors

Chamber, petri dish Plate

Field site Undergrad technician

Year Plant

## How do you use blocks?

Experimental Design stage

Identify groups of Experimental Units that are similar

Randomize treatments within each block separately

Chamber 1

FRI fri

fri FRI

Chamber 2

fri FRI

FRI fri

#### How do you use blocks?

Analysis stage

Give each block a unique name

Declare the block variable in your model

Declare the block:treatment combination variable in your model too

Two choices if you have 2+ experimental units / treatment level / block:

1) Measure and report the treatment effects separately in each block

Small scope + block:treatment

2) Measure and report the average treatment effect (across blocks)

broad scope + (1|block:treatment)

Random Variable