Hiperbolični prostori

TJAŠA VRHOVNIK Fakulteta za matematiko in fiziko Oddelek za matematiko

9. junij 2021

Kazalo

1	Modeli hiperboličnih prostorov			
		Osnovne definicije		
2	Hip	erbolična geometrija	5	

1 Modeli hiperboličnih prostorov

1.1 Osnovne definicije

Naslednje definicije opisujejo mnogoterosti z visoko simetrijo. Natančneje to pomeni, da so njihove grupe izometrij velike. Najpreprostejši primer so Evklidski prostori - zanje že intuitivno vemo, da obstajajo preslikave, izometrije, ki poljubni točki preslikajo eno v drugo, celo več, ortonormirano bazo v prvi točki lahko preslikajo v ortonormirano bazo v drugi. Izkazalo se bo, da to niso edini taki prostori. Drug primer so n-dimenzionalne sfere \mathbb{S}^n , mi pa se bomo posvetili študiju hiperboličnih prostorov.

Definicija 1 Naj bosta (M, g) in (M, \tilde{g}) Riemannovi mnogoterosti. Gladka preslikava $\phi: M \to \tilde{M}$ ohranja metriko, če velja $g = \phi^* \tilde{g}$.

Difeomorfizem, ki ohranja metriko, imenujemo izometrija. Lokalna izometrija pa je lokalni difeomorfizem, ki ohranja metriko.

Definicija 2 Naj bo (M,g) Riemannova mnogoterost. Množico izometrij mnogoterosti M, ki je grupa za komponiranje, označimo z $\operatorname{Iso}(M,g)$. Pravimo, da je (M,g) homogena Riemannova mnogoterost, če grupa $\operatorname{Iso}(M,g)$ deluje tranzitivno na M. To pomeni, da za poljuben par točk $p,q \in M$ obstaja izometrija $\phi \colon M \to M$ z lastnostjo $\phi(p) = q$.

Če je ϕ izometrija Riemannove mnogoterosti (M,g), je njen diferencial $d\phi$ preslikava na tangentnem prostoru TM. V vsaki točki $p \in M$ diferencial definira linearno izometrijo $d\phi_p : T_pM \to T_{\phi(p)}M$.

Definicija 3 1. Naj bo $p \in M$. Podgrupo grupe $\operatorname{Iso}(M,g)$ izometrij, ki fiksirajo p, imenujemo izotropična podgrupa v p in označimo z $\operatorname{Iso}_p(M,g)$.

- 2. Preslikavi I_p : Iso $_p(M,g) \to \operatorname{GL}(T_pM)$, definirani s predpisom $I_p(\phi) = d\phi_p$, pravimo izotropična reprezentacija.
- 3. Mnogoterost M je izotropična v točki p, kadar izotropična reprezentacija deluje tranzitivno na množico enotskih vektorjev v T_pM . Nadalje pravimo, da je M izotropična, če je izotropična v vsaki točki $p \in M$.

Označimo z $\mathcal{O}(M) = \sqcup_{p \in M} \{ \text{ortonormirane baze } T_p M \}$ množico vseh ortonormiranih baz na tangentnih prostorih mnogoterosti M. Delovanje grupe izometrij $\mathrm{Iso}(M,g)$ na množico $\mathcal{O}(M)$ povezuje ortonormirani bazi v točkah p in $\phi(p)$ na naslednji način. Naj bo $\phi \in \mathrm{Iso}(M,g)$ in $e_1,\ldots,e_n \in \mathcal{O}(M)$. Delovanje definiramo s predpisom

$$\phi \cdot (e_1, \dots, e_n) = (d\phi_p(e_1), \dots, d\phi_p(e_n)). \tag{1}$$

Definicija 4 Riemannova mnogoterost (M,g) je frame homogeneous oziroma maksimalno simetrična, če je delovanje 1 tranzitivno na množici O(M); natančneje, če za poljuben par $p,q \in M$ in poljuben izbor ortonormiranih baz na tangentnih prostorih T_pM in T_qM obstaja izometrija, ki preslika p v q ter ortonormirano bazo v točki p v izbrano ortonormirano bazo v točki q.

Geometrično si homogeno Riemannovo mnogoterost predstavljamo kot tako, ki ne glede na izbor točke na njej, izgleda enako. Izotropična Riemannova mnogoterost pa izgleda enako tudi v vseh smereh.

Definicija 5 Naj bosta (M,g) in (\tilde{M},\tilde{g}) Riemannovi mnogoterosti. Difeomorfizem $\phi \colon M \to \tilde{M}$ je konformna preslikava, če obstaja taka pozitivna funkcija $\mu \in C^{\infty}(M)$, da velja

$$\phi^* \tilde{g} = \mu g$$
.

Vtem primeru pravimo, da sta mnogoterosti (M,g) in (\tilde{M},\tilde{g}) konformno ekvivalentni.

Konformni difeomorfizmi med Riemannovimi mnogoterostmi so ravno difeomorfizmi, ki ohranjajo velikosti kotov. Tako se pomen zgornje definicije sklada s konformnostjo, ki jo poznamo iz kompleksne analize.

Posebej zanimive Riemannove mnogoterosti so tiste, ki jih (vsaj) lokalno lahko primerjamo z Evklidskim prostorom. Pravimo, da je Riemannova mnogoterost (M,g) lokalno konformno ploska, če ima vsaka točka $p \in M$ okolico, ki je konformno ekvivalentna odprti množici v (\mathbb{R}^n, \bar{g}) , kjer \bar{g} označuje običajno Evklidsko metriko.

1.2 Modeli

V tem razdelku bomo navedli modele hiperboličnih prostorov, ki so "frame homogeneous" Riemannove mnogoterosti dimenzije $n \geq 1$. Sprva jih bomo le navedli, kasneje pa pokazali njihovo frame homogeneity. Izkaže se, da so vsi ti modeli med seboj izometrični, zato lahko v praksi izberemo kateregakoli izmed njih, na njem obravnavamo želeno in to prenesemo na splošen hiperbolični prostor te dimenzije.

Naj bo $n \ge 1$ in izberimo R > 0. (n+1)-dimensionalni prostor Minkowskega je prostor $\mathbb{R}^{n,1}$, ki ga v standardnih koordinatah (x^1,\ldots,x^n,τ) opremimo z metriko Minkowskega

$$\bar{q}^{n,1} = (dx^1)^2 + \dots + (dx^n)^2 - (d\tau)^2.$$
 (2)

Metriko $\bar{q}^{n,1}$ bomo v nadaljevanju označevali preprosto s \bar{q} .

1. HIPERBOLOID $\mathbb{H}^n(R)$ definramo na naslednji način.

Vzemimo (n+1)-dimenzionalni prostor Minkowskega $\mathbb{R}^{n,1}$ s standardnimi koordinatami (x^1,\dots,x^n,τ) in metriko \bar{q} . Pozitivni del $(\tau>0)$ dvodelnega hiperboloida $(x^1)^2+\dots+(x^n)^2-\tau^2=-R^2$ opremimo z metriko

$$\ddot{\mathbf{g}}_R^1 = \iota^* \bar{q}, \tag{3}$$

kjer ι označuje inkluzijo $\iota \colon \mathbb{H}^n(R) \to \mathbb{R}^{n,1}$. Dobljeno podmnogoterost $(\mathbb{H}^n(R), \check{\mathbf{g}}_R^1)$ imenujemo *hiperboloid* dimenzije n s polmerom R.

2. Beltrami-Kleinov model $\mathbb{K}^n(R)$

Na n-dimenzionalni krogli $\mathbb{K}^n(R)$ s središčem v izhodišču prostora \mathbb{R}^n in polmerom R uvedimo koordinate (w^1, \ldots, w^n) . Kroglo opremimo z metriko

$$\check{\mathbf{g}}_R^2 = R^2 \frac{(dw^1)^2 + \dots + (dw^n)^2}{R^2 - |w|^2} + R^2 \frac{(w^1 dw^1 + \dots + w^n dw^n)^2}{(R^2 - |w|^2)^2}.$$
(4)

Mnogoterost ($\mathbb{K}^n(R), \check{\mathbf{g}}_R^2$) se imenuje Beltrami-Kleinov model.

3. Poincaréjeva krogla $\mathbb{B}^n(R)$

Na n-dimenzionalni krogli $\mathbb{B}^n(R)$ s središčem v izhodišču prostora \mathbb{R}^n in polmerom R uvedimo koordinate (u^1, \dots, u^n) . Kroglo opremimo z metriko

$$\check{\mathbf{g}}_R^3 = 4R^4 \frac{(du^1)^2 + \dots + (du^n)^2}{(R^2 - |u|^2)^2}.$$
(5)

Mnogoterost $(\mathbb{B}^n(R), \S^3_R)$ se imenuje Poincaréjeva krogla.

4. Poincaréjev polprostor $\mathbb{U}^n(R)$

Na Evklidskem prostoru \mathbb{R}^n uvedimo koordinate (x^1,\dots,x^{n-1},y) in njegov podprostor $\mathbb{U}^n(R)=\{(x,y);\ y>0\}$ opremimo z metriko

Mnogoterosti ($\mathbb{U}^n(R), \check{\mathbf{g}}_R^4$) pravimo Poincaréjev polprostor.

2 Hiperbolična geometrija

Literatura