Příklad (1.)

(We assume $e = e(\eta, \varrho)$.) Let us assume that our substance of interest is the calorically perfect ideal gas. We know that the engineering equation of state for this substance reads

$$p_{th} = c_{V,ref}(\gamma - 1)\varrho\theta,$$

where $c_{V,ref}$ is a positive constant (specific heat at constant volume) and γ is a positive constant greater that one (adiabatic exponent). Symbol θ denotes the absolute temperature. Further, we also know that the internal energy of the substance is proportional to the temperature

$$e = c_{V,ref}\theta$$
.

Use this characterisations, solve the partial differential equations for e and identify – for our particular substance – the formula for the internal energy e as a function of the entropy and the density. Once you find the function $e(\eta, \varrho)$, find also the explicit formula for the entropy η as a function of the temperature and the density, $\eta(\theta, \varrho)$.

Řešení (Poupravené řešení z minulého roku)

Z přednášky / celého znění zadání máme diferenciální rovnice pro e, kam dosadíme rovnosti výše:

$$\frac{\partial e}{\partial \eta}(\eta, \varrho) = \theta = \frac{e}{c_{V,ref}},$$

$$\varrho^2 \frac{\partial e}{\partial \rho}(\eta, \varrho) = p_{th} = c_{V,ref}(\gamma - 1)\varrho\theta = (\gamma - 1)\varrho e.$$

Takže když se na funkci e podíváme ve směru η , dostaneme $e(\eta, \text{const}) = C \cdot \exp\left(\frac{\eta}{c_{V,ref}}\right)$. Když se podíváme ve směru ϱ , dostaneme $e(\text{const}, \varrho) = C \cdot \varrho^{\gamma-1}$. Tudíž máme $e(\eta, \varrho) = C \cdot \exp\left(\frac{\eta}{c_{V,ref}}\right) \cdot \varrho^{\gamma-1}$.

Uvažujme, že v referenčním stavu je nulová entropie, konstantní teplota θ_{ref} a konstantní hustota ϱ_{ref} . Tedy $\frac{\partial e}{\partial \eta}(0,\varrho_{ref})=\theta_{ref}$, tedy $C\cdot \frac{1}{c_{V,ref}}\cdot \varrho_{ref}^{\gamma-1}=\theta_{ref}$, tj.

$$e(\eta, \varrho) = \frac{c_{V,ref} \cdot \theta_{ref}}{\varrho_{ref}^{\gamma - 1}} \cdot \exp\left(\frac{\eta}{c_{V,ref}}\right) \cdot \varrho^{\gamma - 1}.$$

Pokud z toho vyjádříme η , tak dostaneme:

$$\frac{e(\eta, \varrho)}{c_{V,ref} \cdot \theta_{ref}} \cdot \left(\frac{\varrho}{\varrho_{ref}}\right)^{1-\gamma} = \exp\left(\frac{\eta}{c_{V,ref}}\right),$$

$$\ln\left(\frac{e(\eta, \varrho)}{c_{V,ref} \cdot \theta_{ref}} \cdot \left(\frac{\varrho}{\varrho_{ref}}\right)^{1-\gamma}\right) = \frac{\eta}{c_{V,ref}},$$

$$c_{V,ref} \cdot \ln\left(\frac{e(\eta, \varrho)}{c_{V,ref} \cdot \theta_{ref}} \cdot \left(\frac{\varrho}{\varrho_{ref}}\right)^{1-\gamma}\right) = \eta.$$

Nyní už stačí dosadit $\frac{e}{c_{V,ref}} = \theta$:

$$\eta(\theta, \varrho) = c_{V,ref} \cdot \ln \left(\frac{\theta}{\theta_{ref}} \cdot \left(\frac{\varrho}{\varrho_{ref}} \right)^{1-\gamma} \right) = \eta.$$

$P\check{r}iklad$ (2.)

Consider the energetic equation of state for the calorically perfect ideal gas $e(\eta, \varrho)$. Show that the specific Helmholtz free energy ψ for the calorically perfect ideal gas is given by the formula

$$\psi(\theta, \varrho) = -c_{V,ref}\theta\left(\ln\left(\frac{\theta}{\theta_{ref}}\right) - 1\right) + c_{V,ref}\theta(\gamma - 1)\ln\left(\frac{\varrho}{\varrho_{ref}}\right),$$

where ϱ_{ref} and θ_{ref} are some constants. (Temperature and density at a reference state.)

Důkaz (Z minulého roku)

Z předchozího příkladu víme

$$e(\eta, \varrho) = c_{V,ref} \theta_{ref} \left(\frac{\varrho}{\varrho_{ref}} \right)^{\gamma - 1} \exp\left(\frac{\eta}{c_{V,ref}} \right).$$

Také víme (z jeho zadání), že $e(\eta,\varrho) = \theta c_{V,ref}$, což můžeme také dostat jako

$$\theta = \frac{\partial e}{\partial \eta} = \theta_{ref} \left(\frac{\varrho}{\varrho_{ref}} \right)^{\gamma - 1} \frac{1}{c_{V,ref}} \exp\left(\frac{\eta}{c_{V,ref}} \right), \qquad e(\eta, \varrho) = \theta \frac{e}{\theta} = \theta c_{V,ref}.$$

Nakonec výsledkem prvního příkladu byla i entropie (vyjádřená z $e(\theta, \varrho)$), kterou můžeme upravit podle vzorců pro logaritmus:

$$\eta(\theta, \varrho) = c_{V,ref} \ln \left[\frac{\theta}{\theta_{ref}} \left(\frac{\varrho}{\varrho_{ref}} \right)^{1-\gamma} \right] = c_{V,ref} \ln \left[\frac{\theta}{\theta_{ref}} \right] + c_{V,ref} \ln \left[\frac{\varrho}{\varrho_{ref}} \right] \cdot (1-\gamma).$$

Nyní už stačí dosadit:

$$\begin{split} \psi(\theta,\varrho) &= e(\eta,\varrho)|_{\eta=\eta(\theta,\varrho)} - \theta\eta(\theta,\varrho) = \\ &= \theta c_{V,ref} - \theta \left(c_{V,ref} \ln \left[\frac{\theta}{\theta_{ref}} \right] + c_{V,ref} \ln \left[\frac{\varrho}{\varrho_{ref}} \right] \cdot (1 - \gamma) \right) = \\ &= -c_{V,ref} \theta \left(\ln \left(\frac{\theta}{\theta_{ref}} \right) - 1 \right) + c_{V,ref} \theta(\gamma - 1) \ln \left(\frac{\varrho}{\varrho_{ref}} \right). \end{split}$$