Data Types

ESC108A Elements of Computer Science and Engineering B. Tech. 2017

Course Leaders:

Roopa G.

Ami Rai E.

Chaitra S.

Objectives

- At the end of this lecture, student will be able to
 - Explain data representation and limitations for Integer, floating point and Character data types
 - Explain user defined data types

Contents

- Integer Data Type
- Floating Point Data Type
- Character Data Type

Data Types

 Data types indicate the type of data that a variable can hold

- In C, data types are categorized into
 - Built-in data types/Primitive data types
 - Derived data types
 - User-defined data types

Primitive Data Type

Mathematical Numbers

- Mathematics
 - Integers

•
$$-\infty$$
, -2, -1, 0, +1, +2, ... + ∞

- Real Numbers
 - Integers, Fraction and square roots
 - -∞, -2,...,-1,...,-1/2, 0, ...,+1,..., +2, ... + ∞

Data Types for Numbers

- Computers Integers
 - Every data type has a fixed size based on the processor
 - A processor can process a 'word' at a time
 - The size of an integer is equal to word size of the system
 - In'64-bit' processor, 64 bits or 8 bytes is the word size

- Computers Real Numbers (Floating Point)
 - Fixed size and hence limited range
 - Representation of all real numbers in decimal form
 - Example: 1.414, 3.12

Integer Data Type Declarations

They're messages to the compiler

For example the definition int i;

tells the compiler the type of variable i and instructs the compiler to reserve space in memory for the variable

Integer Data Type Declarations contd.

Declaration

```
int <variable list>;
```

- Example
 - int a; /*Single variable declaration*/
 - int a,b,c; /*Multiple variables*/
 - int a = 5; /*Single variable with initialisation, giving initial value to variable*/
 - int a = b = c = 5; /*multiple assignment statement*/

Integers – Variables and Constants

```
int a = 5;
```

- 5 is an Integer constant
- a is an Integer variable

#define SIDES 4

- 4 is an Integer constant
- SIDES is a Symbolic constant

Integer Data Type

- We can represent $(10)_{10}$ as $(1010)_2$
- How do we represent $(-10)_{10}$?

Signed Integers

- Assume MSB represents sign Call it sign bit
 0 means '+' and 1 means '-'
- Remaining numbers represent the actual number in binary form
- Results in +0 and -0

- For example, in an 8-bit system
 - $-1000\ 0000 = -(0)_2$
 - $-00000000 = +(0)_2$

Unsigned Integers

- Whole numbers
 0 to INT MAX (Infinity in mathematics)
- No need for sign bit
- Equivalent binary form
- Declaration

```
unsigned int <variable list>;
```

- Example
 - unsigned int a, b, c; /*Multiple variables*/
 - unsigned int a; /*Single variable*/
 - unsigned int a = 5; /*Single variable with initialisation*/

Range of Integers

Range of Integers

- Signed : -2^{n-1} to $2^{n-1}-1$

- Unsigned: $0 \text{ to } 2^{n}-1$

Where 'n' is word size in bits

• If n is 8 bits:

– Signed : - 128 to +127

Unsigned : 0 to +127

What if n is

- 16 bits

– 64 bits

14

Long and Short Modifiers

Long

- When applied to int, it doubles the length in bits of the base type that it modifies
- If an int is of 16-bits, then long int is of 32-bits
- When applied to double, it roughly doubles the precision

Short

Makes the size of an int half

Floating Point Data Type

- Think of how money is represented 300.50 (Three hundred Rupees and fifty Paisa)
- Consider
 - 3.1413
 - 2.0
 - 12.18
 - 122.1
 - These are numbers where the decimal point moves or 'floats'

 Such a representation of real numbers is called *floating* point number system

Floating Point Data Type contd.

- Consider
 - $3.1413 = 31413.0 \times 10^{-4}$
 - $2.0 = 2.0 \times 10^{0}$
 - $12.18 = 1218.0 \times 10^{-2}$
 - $122.1 = 1221.0 \times 10^{-1}$
- This representation is known as scientific notation
 - The fixed number is called 'Mantissa' and the power of 10 as 'Exponent'
- Floating point numbers are represented in computers as one memory area having 2 numbers: the exponent and mantissa

Floating Point Data Type contd.

- Both mantissa and exponent are represented in
 - Binary form if positive
 - 2's complement notation if negative
- Hence both numbers have a sign bit

- How many bits are allotted is left to the designer of the compiler
 - Range cannot be estimated
- Some compilers implement a standard form of representation known as IEEE-754

Double

- Used to indicate a double precision floating-point number
- Used when more accuracy in required in representing a floating-point number

- Equivalent to float
 - but the number of significant digits stored after the decimal point is double that of the float

Floating Point Data Type - Declaration

Declaration

```
float a;
float b = 5.0f;
float a = 5.1f, b = 2.2f;
double a;
double b = 5.0;
double a = 5.1, b = 2.2;
```

Constants

- 2.0f is a float constant
- 2.0 is a double constant

Character Data Type

- Character data types store numbers representing characters
- These numbers are given by ANSI and called ASCII codes
 'A' has the ASCII value 65

Character is an Integer data type with fixed size of 1 byte

 All operators that Integers can be used with can also be used with character operators

Character Constants

- A single character enclosed in a pair of apostrophes
- Signed (-128 to +127) or unsigned(0 to 255)
- Example

```
char c = 'A'; //notice the single quotes
int x=10+'A' //arithmetic operations can be done
printf("character is %c and its ASCII value is %d\n",c,c);
printf("Result is %d\n",x);
```

Output will be

character is A and its ASCII value is 65 Result is 75

Type-cast

- (type) is known as type cast or cast operator
 - Its use indicates that the programmer explicitly is converting value between incompatible types
- Beware
 - Do not convert between variables of data types with greater storage space and lesser storage space
 - Use cast operator if you know what you are doing
- Example:

```
int b = 10; char a = (char) b;
```

- a is a char variable and b is an int variable
- 10 is an integer constant

Type-cast

- Use cast operator to convert from float to integer
 - int a = (int) 10.5f;

- Beware
 - Integer only expressions return integer values
 - An expression must have at least one floating point variable or constant to yield a floating point result

Summary

- Data types specify the size, representation and organisation of data in the computer's memory
- Primitive Data types are the basic data types that are provided by the programming language
- Three primitive data types are
 - Integer
 - Float
 - Character

Further Reading

Kernighan, B. W. and Richie, D. (1992) *The C Programming Language*. 2nd ed., New Delhi:PHI.

