12. Given that L is Turing recognizable, some enumerator E enumerates L. Consider another TM D that operates as follows. For a given input i, D runs E until it prints $\langle M_i \rangle$, the ith item. Then D runs M_i on input i. Finally, if M_i accepts, D rejects, and if M_i rejects, D accepts. Clearly, D always terminates on all inputs, and is thus a decider itself. Let's call the (decidable) language of D as L_D .

Now, let's assume that there is some $\langle M \rangle \in L$ such that M decides L_D . Then $\langle M \rangle$ must appear at some index k in the enumeration done by E. Now, since M and D are both deciders for L_D , M must accept input k iff D accepts input k. However, by definition, D rejects k if M accepts k. Therefore, our supposition that such a TM M exists is wrong, which implies that the language L_D has no decider in L. This concludes the proof.

- 20. Consider the following transformation procedure on any DFA D.
 - 1. Create an NFA N^r as follows.
 - 2. Copy over all states from D into N^r .
 - 3. If there exists a transition $\delta_D(q,a) \to q'$ in D, add correspondingly the transition $\delta_{N^r}(q',a) \to q$. This is visually equivalent to reversing the transition edges.
 - 4. Add a new state s and mark it as a start state of N^r . Add transitions of the form $\delta_{N^r}(s,\epsilon) \to f$ for each state f that is an accept state in D.
 - 5. Make the start state of D the only accept state of N^r .
 - 6. Finally, convert the NFA N^r into an equivalent DFA D^r .

Now, we can see from the above construction that N^r (and thus also D^r) accepts w^r iff D accepts w. Therefore, N^r (and thus also D^r) accepts both w^r and w iff D too accepts both w and w^r . Taking this to its conclusion, we can see that N^r (and thus also D^r) and D are equivalent iff for any string w, D accepts w^r iff it accepts w.

Now, consider a TM M that for any given DFA description < d >, performs the above DFA transformation procedure on d, and then checks whether d and d^r are equivalent. The transformation procedure itself takes a finite number of steps. Further, we know (from chapter 4 text) that the problem of determining whether two DFAs are equivalent is decidable, and thus can also be done in a finite number of steps. Therefore the TM M is a decider. In fact, it decides the language $S = \{< D > | D$ is a DFA that accepts w^r iff it accepts $w\}$. This concludes the proof.

22. Given that A and B are co-Turing recognizable, there are recognizers for \overline{A}

and \overline{B} . Call these M and N. Consider a TM T that operates as follows. For a given input w, it runs M and N one step at a time taking turns, and accepts if N accepts first, else rejects. Because A and B are disjoint, either M or N terminates on any given input. Therefore T is a decider. Call the language of T as C.

Now, we need to prove two things. Firstly, we need to prove that $A \subseteq C$. Consider the execution of T on any input $w \in A$. In that execution, N accepts the input and M rejects that input (or loops forever). Finally, T accepts the input, and thus $w \in C$. Therefore $A \subseteq C$.

Secondly, we need to prove that $B\subseteq \overline{C}$. Consider the execution of T on any input $w\in \overline{B}$. In that execution, N accepts the input. If it accepts first, T accepts and $w\in C$ else T rejects and $w\notin C$. Therefore, $C\subseteq \overline{B}$. Since A and B are disjoint, this implies that $B\subseteq \overline{C}$.

This implies that the decidable language C (decided by T) divides A and B, thus concluding the proof.

24. There are two directions to prove. Firstly, say we have a decidable language D such that $C = \{x \mid \exists y (< x, y > \in D)\}$. Then there must be some decider for D. Call it M_D . We'll use this to construct a recognizer M_C for C that operates as follows. For a given input x, M_c enumerates all strings in lexicographic order and for each such string y invokes M_D on the input < x, y >. This is guaranteed to terminate if $x \in C$. Therefore, M_C is a recognizer for C, and as such C is a Turing recognizable language.

Secondly, say that C indeed were a Turing recognizable language. Then, there must be some enumerator E_C that enumerates C. We'll use this to construct a decider M_D that operates as follows. For a given input < x, y >, M_D runs E_C for upto y steps, then checks if E_C printed x, and finally accepts if it did, and rejects if it did not. Clearly, M_D is a decider since it terminates on all inputs. Further, it decides a language D such that $C = \{x \mid \exists y (< x, y > \in D)\}$. This concludes the proof.