Introduction to Algebraic Topology PSET 8

Nilay Kumar

Last updated: March 28, 2014

Proposition 1. Hatcher exercise 2.1.11

Proof. Let $\iota: A \to X$ be the inclusion of A into X, and $r: X \to X$ be the retract of X onto A. The composition $r \circ \iota: A \to A$ yields the identity $\mathrm{Id}_A: A \to A$. The induced maps on the homology are $(r \circ \iota)_* = r_* \circ \iota_* = \mathrm{Id}: H_n(A) \to H_n(A)$. This map is of course injective, which implies that $\iota_*: H_n(A) \to H_n(X)$ must be injective as well.

Proposition 2. Hatcher exercise 2.1.12

Proof. Let us show that the relation of chain homotopy between chain maps is an equivalence relation. Consider $f_{\#}, g_{\#}, h_{\#}: C_n(A) \to C_{n+1}(B)$. The relation is clearly reflexive, as $f_{\#} \sim f_{\#}$ by the zero morphism $0: C_n(A) \to C_{n+1}(B)$. Symmetry holds as follows: if $f_{\#} \sim g_{\#}$ via a chain homotopy h, then $g_{\#} \sim f_{\#}$ via the chain homotopy -h, because then

$$f_{\#} - g_{\#} = \partial h + h\partial$$

$$g_{\#} - f_{\#} = -(\partial h + h\partial)$$

$$= \partial (-h) + (-h)\partial.$$

Finally, the relation is transitive, because given $f_{\#} \sim g_{\#}$ via H_1 and $g_{\#} \sim h_{\#}$ via H_2 , we can add the two commutation relations to obtain that

$$f_{\#} - h_{\#} = \partial H_1 + H_1 \partial + \partial H_2 + H_2 \partial$$

= $\partial (H_1 + H_2) + (H_1 + H_2) \partial$,

as desired. \Box

Proposition 3. Hatcher exercise 2.1.14

Proof.

Proposition 4. Hatcher exercise 2.1.15

Proof. Consider the exact sequence

$$A \xrightarrow{\alpha} B \xrightarrow{\beta} C \xrightarrow{\gamma} D \xrightarrow{\delta} E.$$

Exactness at B requires $\ker \beta = \operatorname{im} \alpha$, and hence α is surjective if and only if $\ker \beta = B$. Exactness at D requires $\ker \delta = \operatorname{im} \gamma$, and hence δ is injective if and only if $\operatorname{im} \gamma = 0$. Hence if (and only if) α is surjective and δ is injective then $\gamma = 0$ and $\beta = 0$ and the exactness at C (requiring that $\ker \gamma = \operatorname{im} \beta$) forces C = 0. Hence for a good pair (X, A), we find that $H_n(X, A) = 0$ if and only if the inclusion $A \to X$ induces isomorphisms on all homology groups, as the long exact sequence of theorem 2.13 splits into sequences

$$0 \longrightarrow \tilde{H}_n(A) \xrightarrow{\iota_*} \tilde{H}_n(X) \longrightarrow 0$$

for all n.

Proposition 5. Let A and B be chain complexes. A chain map $f: A \to B$ is a chain homotopy equivalence if there exists a chain map $g: B \to A$ such that $f \circ g \sim \operatorname{Id}_B$ and $g \circ f \sim \operatorname{Id}_A$ in the sense of chain homotopies.

- (a) Prove that if $f: A \to B$ is a chain homotopy equivalence, then f induces an isomorphism on homology.
- (b) Give an example of chain complexes A and B with isomorphic homology but no chain homotopy equivalence between them. (Hint: let A be \mathbb{Z} in two consecutive gradings and zero everywhere else.)

Proof.

- (a) Recall that chain-homotopic maps induce the same homorphism on homology. Hence $(f \circ g)_* = f_* \circ g_* = (\mathrm{Id}_B)_* = \mathrm{Id}_{H_n(B)}$ and $(g \circ f)_* = g_* \circ f_* = (\mathrm{Id}_A)_* = \mathrm{Id}_{H_n(A)}$. As $\mathrm{Id}_{H_n(B)}$ is injective, $f_* : H_n(A) \to H_n(B)$ must be as well, and as $\mathrm{Id}_{H_n(A)}$ is surjective, f_* must be as well. Hence f_* is an isomorphism.
- (b) Consider the map of chain complexes $f: A_{\bullet} \to B_{\bullet}$ given by

$$\cdots \longrightarrow 0 \longrightarrow \mathbb{Z} \xrightarrow{\operatorname{Id}_{\mathbb{Z}}} \mathbb{Z} \longrightarrow 0 \longrightarrow \cdots$$

$$\downarrow 0 \qquad \downarrow 0 \qquad \downarrow 0 \qquad \downarrow 0$$

$$\cdots \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots$$

where each square clearly commutes. The homology groups of the two sequences are $H_{\bullet}(A) = 0$ and $H_{\bullet}(B) = 0$. However, there does not exist a chain homotopy equivalence between A_{\bullet} and B_{\bullet} , as we now show. If there did exist one, there would exist a chain map $g: B_{\bullet} \to A_{\bullet}$ such that the appropriate compositions of f and g would be chain homotopic to Id_B and Id_A via some chain homotopy h. Of course, the only possible g is the zero morphism, and hence $g \circ f: A_{\bullet} \to A_{\bullet}$ is the zero map. Drawing the diagram

$$\begin{array}{c}
\mathbb{Z} & \xrightarrow{\operatorname{Id}_{\mathbb{Z}}} \mathbb{Z} \\
\downarrow_{0} & \downarrow_{0} & \downarrow_{0} \\
\mathbb{Z} & \xrightarrow{\operatorname{Id}_{\mathbb{Z}}} \mathbb{Z}
\end{array}$$

we find that h must be an automorphism of \mathbb{Z} such that $\mathrm{Id}_{\mathbb{Z}} \circ h + h \circ \mathrm{Id}_{\mathbb{Z}} = -\mathrm{Id}_{\mathbb{Z}}$. As the automorphisms of \mathbb{Z} are $\mathrm{Id}_{\mathbb{Z}}$, this equality cannot be satisfied and hence there does not exist a chain homotopy.