Importing the necessary libraries

In [1]:

```
import pandas as pd
import numpy as np
import os
os.chdir('C:\\Users\\Swapnil bandekar\\Downloads\\Swapnil\\Data Analytics\\My Work\\Python\
```

Reading the file

In [10]:

```
terror = pd.read_csv('terror.csv', encoding='latin')
terror.head()
```

C:\Users\Swapnil bandekar\Downloads\Swapnil\Data Analytics\anaconda3\lib\sit e-packages\IPython\core\interactiveshell.py:3063: DtypeWarning: Columns (4,6 1,62,66,116,117,123) have mixed types.Specify dtype option on import or set low memory=False.

interactivity=interactivity, compiler=compiler, result=result)

Out[10]:

		eventid	iyear	imonth	iday	approxdate	extended	resolution	country	country_txt	r
-	0	1.970000e+11	1970	0	0	NaN	0	NaN	58	Dominican Republic	
	1	1.970000e+11	1970	0	0	NaN	0	NaN	130	Mexico	
	2	1.970010e+11	1970	1	0	NaN	0	NaN	160	Philippines	
	3	1.970010e+11	1970	1	0	NaN	0	NaN	78	Greece	
	4	1.970010e+11	1970	1	0	NaN	0	NaN	101	Japan	

5 rows × 137 columns

In [11]:

terror.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 156772 entries, 0 to 156771
Columns: 137 entries, eventid to related
dtypes: float64(56), int64(23), object(58)

memory usage: 163.9+ MB

In [12]:

terror.dtypes

Out[12]:

eventid float64 iyear int64 imonth int64 iday int64 approxdate object . . . INT_LOG int64 INT_IDEO int64 INT_MISC int64 int64 INT_ANY related object Length: 137, dtype: object

In [14]:

terror.describe(include='all')

Out[14]:

	eventid	iyear	imonth	iday	approxdate	extended
count	1.567720e+05	156772.000000	156772.000000	156772.000000	4756	156772.000000
unique	NaN	NaN	NaN	NaN	1426	NaN
top	NaN	NaN	NaN	NaN	July 1-14, 2014	NaN
freq	NaN	NaN	NaN	NaN	27	NaN
mean	2.000539e+11	2000.474083	6.484666	15.455215	NaN	0.041347
std	1.298281e+09	12.982397	3.392225	8.815533	NaN	0.199091
min	1.970000e+11	1970.000000	0.000000	0.000000	NaN	0.000000
25%	1.989080e+11	1989.000000	4.000000	8.000000	NaN	0.000000
50%	2.005070e+11	2005.000000	6.000000	15.000000	NaN	0.000000
75%	2.013060e+11	2013.000000	9.000000	23.000000	NaN	0.000000
max	2.015120e+11	2015.000000	12.000000	31.000000	NaN	1.000000
4.4	407					

11 rows × 137 columns

```
In [17]:
```

```
print(terror.columns.tolist())
```

['eventid', 'iyear', 'imonth', 'iday', 'approxdate', 'extended', 'resolutio n', 'country', 'country_txt', 'region', 'region_txt', 'provstate', 'city', 'latitude', 'longitude', 'specificity', 'vicinity', 'location', 'summary', 'crit2', 'crit3', 'doubtterr', 'alternative', 'alternative_txt', 'm ultiple', 'success', 'suicide', 'attacktype1', 'attacktype1_txt', 'attacktyp e2', 'attacktype2_txt', 'attacktype3', 'attacktype3_txt', 'targtype1', 'targ type1_txt', 'targsubtype1', 'targsubtype1_txt', 'corp1', 'target1', 'natlty
1', 'natlty1_txt', 'targtype2', 'targtype2_txt', 'targsubtype2', 'targsubtype 'corp2', 'target2', 'natlty2', 'natlty2_txt', 'targtype3', 'targtyp e3_txt', 'targsubtype3', 'targsubtype3_txt', 'corp3', 'target3', 'natlty3', 'natlty3_txt', 'gname', 'gsubname', 'gname2', 'gsubname2', 'gname3', 'ingrou p', 'ingroup2', 'ingroup3', 'gsubname3', 'motive', 'guncertain1', 'guncertai n2', 'guncertain3', 'nperps', 'nperpcap', 'claimed', 'claimmode', 'claimmode _txt', 'claim2', 'claimmode2', 'claimmode2_txt', 'claim3', 'claimmode3', 'cl aimmode3_txt', 'compclaim', 'weaptype1', 'weaptype1_txt', 'weapsubtype1', 'w eapsubtype1_txt', 'weaptype2', 'weaptype2_txt', 'weapsubtype2', 'weapsubtype 2_txt', 'weaptype3', 'weaptype3_txt', 'weapsubtype3', 'weapsubtype3_txt', 'w eaptype4', 'weaptype4_txt', 'weapsubtype4', 'weapsubtype4_txt', 'weapdetai l', 'nkill', 'nkillus', 'nkillter', 'nwound', 'nwoundus', 'nwoundte', 'prope rty', 'propextent', 'propextent_txt', 'propvalue', 'propcomment', 'ishostki d', 'nhostkid', 'nhostkidus', 'nhours', 'ndays', 'divert', 'kidhijcountry', 'ransom', 'ransomamt', 'ransomamtus', 'ransompaid', 'ransompaidus', 'ransomn ote', 'hostkidoutcome', 'hostkidoutcome_txt', 'nreleased', 'addnotes', 'scit e1', 'scite2', 'scite3', 'dbsource', 'INT_LOG', 'INT_IDEO', 'INT_MISC', 'INT _ANY', 'related']

Q.1) How many attacks happened in India?

Hint: Use the country txt column.

Name: country_txt, dtype: int64

```
In [21]:
```

```
# Solution 1
terror.query(" country_txt == 'India'").shape[0]
Out[21]:
9940
In [23]:
# Solution 2
terror.query(" country_txt == 'India'")['country_txt'].value_counts()
Out[23]:
India
         9940
```

```
In [ ]:
# Solution 3
data[data['country_txt']=="India"].shape[0]
```

Q.2) How many attacks happened in India and upto 3 people were killed?

Hint: Use the country_txt and nkill column.

```
In [27]:
# Solution 1
```

```
terror.query(" country_txt=='India' & nkill < 4").shape[0]</pre>
Out[27]:
8362
In [ ]:
```

```
# Solution 2
data[(data['country_txt']=='India')&(data['nkill']<=3)].shape[0]</pre>
```

Q.3) Extract the city and summary for attacks above

Hint: Use country txt, nkill and summary columns

```
In [31]:
```

```
terror.query(" country_txt=='India' & nkill < 4")[['city','summary']]</pre>
```

Out[31]:

	city	summary
1185	New Delhi	NaN
3780	New Delhi	NaN
5251	Bombay	NaN
7266	Imphal	NaN
8609	Unknown	NaN
156695	Terem	12/29/2015: Assailants abducted three students
156698	Peravurani	12/29/2015: An explosive device was discovered
156713	Tulsibari	12/29/2015: Assailants abducted Hazrat Ali in
156725	Zhutovi	12/30/2015: Assailants attempted to extort mon
156756	Srinagar	12/31/2015: Assailants threw a grenade at an I
156756	Srinagar	12/31/2015: Assailants threw a grenade at an I

8362 rows × 2 columns

Q.4) In a single terror incident in India, find out top 5 cities by number

Hint: Use each row as as a unique terror incident. Use country_txt, nkill and city columns

In [196]:

```
terror.query("country_txt=='India'").sort_values('nkill',ascending=False)[['city','nkill','
Out[196]:
```

	city	nkill	iyear
81000	Mumbai	188.0	2006
96598	Jhargam	115.0	2010
54339	Bombay	115.0	1992
95860	Dantewada district	82.0	2010
56837	Banabari	70.0	1994

Q.5) In a single terror incident in India, find out top 5 cities by number killed and wounded

Hint: Use each row as as a unique terror incident. Use country_txt, nkill,nwound and city columns

In [207]:

```
terror.query("country_txt=='India'").sort_values('nkill',ascending=False)[['city','nkill','
Out[207]:
```

	city	nkill	nwound	iyear
81000	Mumbai	188.0	817.0	2006
96598	Jhargam	115.0	140.0	2010
54339	Bombay	115.0	0.0	1992
95860	Dantewada district	82.0	0.0	2010
56837	Banabari	70.0	100.0	1994

```
In [208]:
```

```
terror.query("country_txt=='India'").sort_values('nwound',ascending=False)[['city','nkill',
```

Out[208]:

	city	nkill	nwound	iyear
81000	Mumbai	188.0	817.0	2006
89128	Dispur	37.0	235.0	2008
30378	Chennai	32.0	200.0	1987
79045	New Delhi	55.0	155.0	2005
75769	Mumbai	52.0	150.0	2003

Q.6) How many attacks were successful that were suicide attacks?

Hint: Use suicide and success columns

In [40]:

```
print(terror['suicide'].dtypes)
print(terror['suicide'].unique())
print(terror['success'].dtypes)
print(terror['success'].unique())
int64
```

[0 1]

int64 [1 0]

In [41]:

```
terror.query(" suicide==1 & success==1 ").shape[0]
```

Out[41]:

4260

Q.7) Label all the incidents where the number killed was more than 5 as severe.

Hint: Use Aggregations and manipulations using apply and map

#map: map a function to each element of a series object

#Suppose we want to label all the incidents where the number killed was more than 5 as severe. This would involve applying a function on each element of the series, map helps in doing that.

#You can use lambda functions as well (if else follows a special form when used with lambdas) Use the nkill column.

```
In [45]:
# Solution 1
def sev(x):
    y = 'severe' if x > 5 else 'Not severe'
    return y
In [46]:
terror['severity'] = terror['nkill'].apply(sev)
In [61]:
# Solution 2
terror['severity_1'] = pd.Series(map(lambda x : 'severe' if x>5 else 'Not severe',terror['n
In [235]:
def get_label(x):
    if x>5:
        return 'Severe'
    else:
        return 'Not Severe'
data['nkill'].map(get_label)
Out[235]:
          Not Severe
0
          Not Severe
1
2
          Not Severe
3
          Not Severe
          Not Severe
             . . .
          Not Severe
156767
156768
          Not Severe
          Not Severe
156769
156770
          Not Severe
          Not Severe
156771
```

Q.8) write a function to label an incident that was both successful and suicidal

Name: nkill, Length: 156772, dtype: object

Hint: We can use apply to use a function column wise where you can use columns success and suicide in the data.

```
In [105]:
```

```
# Solution 1
def ss(cols):
    x = cols[0]
    y = cols[1]
    z = 'Suicide Successful' if x==1 & y==1 else 'Other'
    return z
```

```
In [110]:

terror['sui_success'] = terror[['suicide','success']].apply(ss,axis=1)
```

```
In [111]:
terror['sui_success'].unique()
Out[111]:
array(['Other', 'Suicide Successful'], dtype=object)
In [119]:
terror[terror['sui_success']== 'Suicide Successful'].shape[0]
Out[119]:
4260
In [122]:
# Solution 2
terror['sui_success 1']=pd.Series(map(lambda x,y : 'Suicide Successful' if x==1 & y==1 else
```

```
In [ ]:
```

```
# Alternate Solutions

# 3

def get_label(row):
    if row['success']==1 and row['suicide']==1:
        return 1
    else:
        return 0

terror.apply(get_label,axis=1)
terror.apply(get_label,axis=1).unique()

# 4

terror['b']=terror.apply(lambda row: 1 if row['success']==1 and row['suicide']==1 else 0,ax
```

Q.9) Create a new category representing if the incident occured in Afghanistan, Pakistan or India as one level of the category and all the other countries as another level. Label all other countries as ROW and new column which contains the new category as 'Local' in the data.

Hint: Create a new category representing if the incident occured in Afghanistan, Pakistan or India as one level of the category and all the other countries as another level. Use the columns – country_txt and create a new column called "Local" in the dataset.

```
In [138]:
# Solution 1
def cat(x):
   y = 'Local' if x=='Afghanistan' or x=='India' or x=='Pakistan' else 'ROW'
   return y
In [139]:
terror['New_Category'] = terror['country_txt'].apply(cat)
In [141]:
terror['New_Category'].unique()
Out[141]:
array(['ROW', 'Local'], dtype=object)
In [158]:
terror.query(" New_Category =='Local'")['country_txt'].unique()
Out[158]:
array(['Pakistan', 'India', 'Afghanistan'], dtype=object)
In [160]:
# Solution 2
terror['New_Category_1'] = pd.Series(map(lambda x : 'Local' if x=='Afghanistan' or x=='Indi
In [161]:
terror.query(" New_Category_1 =='Local'")['country_txt'].unique()
```

Out[161]:

array(['Pakistan', 'India', 'Afghanistan'], dtype=object)

```
In [ ]:
# Alternate Solutions
def get_label(row):
    if row['country_txt']=='India' or row['country_txt']=='Afghanistan' or row['country_txt
        return 'Af-Pak-India'
    else:
        return 'ROW'
terror.apply(get_label,axis=1)
terror['Local']=terror.apply(get_label,axis=1)
# 4
```

terror.apply(lambda row: 'Af-Pak-India' if row['country_txt']=='India' or row['country_txt

Q.10) How many incidents happened in Af-Pak-India vs ROW?

Hint: Use the newly created column "Local" and do a value count or use the size function.

```
In [168]:
# Solution 1
terror['New_Category'].value_counts()
Out[168]:
ROW
         124374
Local
          32398
Name: New_Category, dtype: int64
In [172]:
# Solution 2
terror.groupby('New_Category').size()
Out[172]:
New_Category
          32398
Local
         124374
ROW
dtype: int64
```

Q.11) List the number of suicides attacks and average kills by Af-Pak-India vs ROW. Rename columns in the output as Average Kills for average kills and Number_Incidents for count of suicide attacks.

Hint: Use the newly created Local column and Suicide column for group by summary and use the nkill column to take average and count.

In [181]:

```
# Solution 1
terror.groupby(['New_Category','suicide']).agg({'nkill':[np.mean,np.size]}).rename(columns=
```

Out[181]:

nkill

Average	kills	Number	_Incidents
, o. ago_			

New_Category	suicide		
Local	0	1.816514	30936.0
	1	8.127404	1462.0
ROW	0	2.167010	121065.0
	1	11.511403	3309.0

In [192]:

Solution 2

terror.pivot_table(index='New_Category',columns='suicide',values='nkill',aggfunc=[np.mean,n

Out[192]:

	Average_kills		Number_Incidents	
suicide	0	1	0	1
New_Category				
Local	1.816514	8.127404	30936.0	1462.0
ROW	2.167010	11.511403	121065.0	3309.0