

One Tilt Controller

Mathew Kostrzewa Kristian Menes 100591924 100383679

Game Hardware Course Project Faculty of Business and Information Technology Ontario Tech University 2022

Presentation Outline

Problem + Justification + Goal

Methodology

Systems Analysis

Architecture

Developer Tools

Subsystem Development

Design Process

Demo

Timeline

Results + Conclusions

One Tilt: Introduction

Video games are among the most popular forms of entertainment but inaccessible for some

Standard controllers offer little support for individuals with disabilities

Customizable controllers require the device to rest on a surface, not allowing play from a couch or away from a desk or table, and are not easily portable

One Tilt: Justification

Over 3 million Americans have a hand-related disability

Hand injuries are the most common type of injury in the workplace

Without accessible designs, millions unable to comfortably play games

Our goal is a compact, one-handed controller designed for accessibility, comfort, and freedom of movement

Allow players with disabilities to play games easily and comfortably

One Tilt: Methodology

One Tilt: Analysis & Characterization

While there are video game controllers that are made to be accessible, many are cumbersome or have notable drawbacks for certain use cases

The Xbox Adaptive Controller, for example, is a large rectangular device meant to rest on a surface

Of all the controllers designed with accessibility in mind, few deliver a nimble and mobile experience similar to a regular gamepad

One Tilt: System Architecture

The design process began by looking at existing one-handed controllers through the lens of the intended user, analyzing the benefits and drawbacks of each one

Common drawbacks included the secondary analog input method requiring that the controller be rested on a steady surface, which limits posture options and play spaces, or requiring significant arm movement, which can cause fatigue with extended use

One Tilt: System Architecture

The idea to avoid these issues was to use gyroscopic sensors to detect tilt movements of the controller, and have that act as the secondary analog input method, with the primary method being a regular gamepad joystick

Due to many one-handed players being familiar with standard gamepad layouts due to necessity, it was also suggested that the control scheme be similar to one side of a standard Xbox or PlayStation gamepad

One Tilt: Development Tools

GRABCAD

AUTODESK° TINKERCAD°

One Tilt: Subsystem Development

One Tilt: Study Design

First concept iteration:

- Similar layout to right side of standard gamepads (Xbox and PlayStation)
- Start, select, and left stick press added to cover missing inputs
- Back of the controller includes a groove for the middle finger to rest and press left bumper and trigger

Second concept iteration:

- Inspired by Sony's DualShock 4 controller
- Comfortable grip and compact design
- Utilizes buttons on the back of the controller for left bumper and trigger

One Tilt: Timeline

January 30th	February 20th	March 15th	March 24th	April 1st	April 15th	Future Plans
Brainstorming and Design Process	Design Iterations and Initial Model	Circuitry and Model Schematics	AR Model View and Wiring Changes	Simulated 3D Print and Interactive Scene	Refinement and Refinement	Possible Continuation of the One Tilt Project
Brainstorming and planning Initial designs for controller	Initial design changes First 3D model of One Tilt controller	Circuit diagrams and wiring Model materials and measurements	Model in AR authoring tool Changes to wiring and functionality	Simulated 3D print of One Tilt controller Simulation of controller in a virtual scene	Getting One Tilt ready and polished for final submission	Still to be determined May be worth pursuing in the future

One Tilt: Results

Results:

- Mixed opinions
 - Complexity
 - Controller Feel
- Generally positive usability

One Tilt: Conclusions

Conclusions:

- Problem definition and related analysis led to a clear goal
- Iteration and feedback refined the solution to best cover the needs of the product
- One-handed controller which utilizes a gyroscope and convenient design to provide familiar, comfortable, and portable use to impaired gamers

