> Problématique

FIGURE 1 : Caméra fixée sur un support lié à la table (à gauche) ou sur un support lié au plateau (à droite)

Comment le placement d'une caméra peut-il influer sur l'étude du mouvement d'un objet ?

Peut-on assimiler l'objet à un point ou doit-on le considérer comme un solide ?

- *repérer l'objet dans l'espace et dans le temps
- étudier l'évolution de la position au cours du temps

Cinématique: étude du mvt en fct du temps

Lycée M. Montaigne – MP2I

1 Notion de point en physique

- 1.1 Solide
- > Modèle du solide indéformable

Définition:

Distances entre 2 pts qcq restent invariables au cours du temps

- > Étude du mouvement d'un solide
 - Mvt d'1 de ses points : 3 coordonnées
 - Mvt de rotation propre du solide : 3 angles
 6 degrés de liberté

1 Notion de point en physique

1.2 Modèle du point matériel

> <u>Définition</u>:

Solide tq position donnée par 3 coordonnées d'1 pt Caractéristiques physiques d'1 solide affectées au point

- > Quand peut-on modéliser le système par un point ?
 - * extension spatiale du solide négligée
 - ❖ tout effet de rotation sur lui-même négligé

- 2.1 Repère d'espace
- > Observateur, situé en un point O, repère l'espace avec un système de coordonnées (axes orthogonaux)
- $\succ (\vec{u_1}, \vec{u_2}, \vec{u_3})$ Base OrthoNormée Directe (B.O.N.D.)
- Définition : repère d'espace R origine O + B.O.N.D.
- > <u>Définition</u>: position du point M p/r à l'origine O vecteur position \overline{OM}

Outils mathématiques 5 : Vecteurs : produit scalaire, projection, dérivée temporelle, fonctions composées

Lycée M. Montaigne – MP2I

- 2.2 Repère de temps
- > échelle de temps
- \triangleright vecteur position $\overrightarrow{OM(t)}$

2.3 Référentiel

Retour à la problématique : observations expérimentales

FIGURE 2 : Mouvement de P, caméra liée à la table (à gauche)

Mouvement de G, caméra liée au plateau (au centre)

Mouvement de G, caméra liée à la table (à droite)

> Référentiel d'observation

 $\mathcal{R}\left(O; \overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}, t\right)$

<u>Définition</u>: référentiel d'observation \mathcal{R}

2.3 Référentiel

> Caractère absolu du temps

$$\mathcal{R}\left(O; \overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}\right)$$

> Caractère relatif du mouvement

Propriété:

> Repère = référentiel

3 Cinématique du point

- 3.1 Trajectoire et vecteur position
- > Retour à la problématique
- > Trajectoire

<u>Définition</u>: Trajectoire

Équation(s) de la trajectoire :

- * 3 équations paramétriques (ou horaires)
- > Vecteur position du mvt rectiligne

3.2 Vecteur vitesse instantanée

- > Cas du mvt rectiligne
- > Généralisation à tout mvt

Définition Vecteur vitesse instantanée

$$\vec{v}_{M/\mathcal{R}}(t) = \vec{v}(t) = \lim_{\Delta t \to 0} \left(\frac{\overrightarrow{OM}(t + \Delta t) - \overrightarrow{OM}(t)}{\Delta t} \right)_{\mathcal{R}} = \left(\frac{d\overrightarrow{OM}}{dt} \right)_{\mathcal{R}}$$

- > Remarque
- Caractéristiques du vecteur vitesse instantanée
 Propriétés

3 Cinématique du point

3.3 Vecteur accélération instantanée

- > Cas du mvt rectiligne
- > Généralisation à tout mvt

Définition: Vecteur accélération instantanée

$$\vec{a}(t) = \lim_{\Delta t \to 0} \left(\frac{\vec{v}(t + \Delta t) - \vec{v}(t)}{\Delta t} \right)_{\mathcal{R}} = \left(\frac{d\vec{v}}{dt} \right)_{\mathcal{R}} = \left(\frac{d^2 \overrightarrow{OM}}{dt^2} \right)_{\mathcal{R}}$$

> Caractéristiques du vecteur vitesse instantanée

Propriétés

Remarque

4 Mouvements plans en coordonnées cartésiennes

4.1 Mouvements rectilignes

<u>Définitions</u>:

- \bigstar Mvt rectiligne : v(t) direction cste
- **Avt uniforme:** $\|\vec{v}(t)\| = v(t)$ cste
- \bigstar Mvt rectiligne uniforme: $\vec{v}(t)$ vecteur cst
- \bigstar Mvt rectiligne uniformé accéléré: $\vec{a}(t)$ vecteur cst

Lycée M. Montaigne – MP2I

4 Mouvements plans en coordonnées cartésiennes

4.2 Mouvement rectiligne uniformément accéléré

Exercice d'application

On lance une bille avec une vitesse initiale $\overline{v_0}$, faisant un angle α avec l'horizontale, à partir d'un point M_0 à l'instant t=0 dans le champ de pesanteur uniforme. Son accélération est $\overline{a} = \overline{g} = \overline{cste}$ à tout instant.

- 1. Exprimer le vecteur vitesse et le vecteur position en fonction du temps.
- 2. Établir l'équation de la trajectoire en coordonnées cartésiennes.

5 Mouvements circulaires

5.1 Vecteur position

- > Retour à la problématique
- > Vecteur position

FIGURE 3 : Valeurs expérimentales de x et y du point P à différents instants

Lycée M. Montaigne – MP2I

5.2 Coordonnées polaires et base polaire

- > Syst. de coord. le mieux adapté au mvt circulaire : polaires de base $(\overrightarrow{u_r}, \overrightarrow{u_\theta})$
- > Coordonnées du point M
 - <u>Définition</u>: Dans le plan (xOy), les coordonnées polaires de M sont (r,θ) telles que : r=OM
- Vecteurs de la base polaireDéfinition
- \Leftrightarrow vecteur unitaire **radial** $\overrightarrow{u_r}$ $\overrightarrow{OM} = r\overrightarrow{u_r}$
- *vecteur unitaire orthoradial $\overrightarrow{u_{\theta}}$ Propriété: base locale

5 Mouvements circulaires

5.2 Coordonnées polaires et base polaire

> Vecteur position

$$\overrightarrow{OM} = r\overrightarrow{u_r} = \begin{vmatrix} r \\ 0 \end{vmatrix}$$

> Remarques

Coord. de $M \neq$ composantes du vecteur position

➤ Passage coord. cartésiennes ↔ coord. Polaires

$$\begin{cases} r = \sqrt{x^2 + y^2} \\ \tan(\theta) = \frac{y}{x} \end{cases} \Leftrightarrow \begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta) \end{cases}$$

 \triangleright Dérivées temporelles des vecteurs $\overrightarrow{u_r}$ et $\overrightarrow{u_\theta}$

$$\left(\frac{d\overrightarrow{u_r}}{dt}\right)_{\mathcal{R}} = \overrightarrow{\theta u_{\theta}} \text{ et } \left(\frac{d\overrightarrow{u_{\theta}}}{dt}\right)_{\mathcal{R}} = -\overrightarrow{\theta u_r}$$

5 Mouvements circulaires

5.3 Vecteur vitesse

- > Vecteur position
- > Vecteur vitesse

$$\vec{v} = r\dot{\theta}\vec{u_{\theta}} = r\omega\vec{u_{\theta}} = v\vec{u_{\theta}}$$

> Norme du vecteur vitesse

$$v = r\omega$$

> Caractéristiques du vecteur vitesse

5.4 Vecteur accélération

> Expression du vecteur accélération

> Expression en fonction de la norme de la vitesse

$$\vec{a} = -\frac{v^2}{r} \vec{u_r} + \frac{dv}{dt} \vec{u_\theta}$$

5 Mouvements circulaires

5.5 Base de Frenet

> Vecteurs de la base de Frenet

Définition

- lacktriangle T vecteur unitaire **tangent** à la trajectoire
- lacktriangleq N vecteur unitaire orthogonal à T
- > Mouvement circulaire
 - <u>Vecteur vitesse</u> $v = r\omega u_{\theta} = r\omega T$

$$\vec{v} = r\omega \overrightarrow{u_{\theta}} = r\omega \overrightarrow{T}$$

Vecteur accélération

$$\overrightarrow{a} = \frac{v^2}{r}\overrightarrow{N} + \frac{dv}{dt}\overrightarrow{T}$$

5.6 Nature des mouvements circulaires

> Cas d'un mouvement circulaire uniforme

FIGURE 4 : Vecteurs vitesse et accélération du point *P* (mouvement circulaire uniforme)

> Propriété

accélération centripète

5.6 Nature des mouvements circulaires

> Cas d'un mouvement circulaire non uniforme

FIGURE 5 : Vecteurs vitesse et accélération du point P (mouvement circulaire non uniforme)

Propriété

vect. acc. orienté vers la concavité de la trajectoire

5.6 Nature des mouvements circulaires

Evolution de v au cours du temps

FIGURE 5 : Vecteurs vitesse et accélération du point *P* (mouvement circulaire non uniforme)

> Généralisation à tout mvt

<u>Propriété</u>

6 Paramétrage d'un mouvement en 3 dimensions nature du mouvement + symétries :

choix d'un système de coordonnées adapté

- 6.1 Coordonnées cartésiennes
- > Utilisation
- > B.O.N.D. cartésienne : $(\overrightarrow{u_x}, \overrightarrow{u_y}, \overrightarrow{u_z})$ base fixe

Animation 1 : Figures animées pour la physique / Mécanique /
 Cinématique / Coordonnées cartésiennes

http://www.sciences.univ-

nantes.fr/physique/perso/gtulloue/Meca/Cinematique/coord_cartesiennes.php

6 Paramétrage d'un mouvement en 3 dimensions

6.1 Coordonnées cartésiennes

> Coordonnées du point M

 $\underline{\mathsf{Définition}}: \mathsf{coordonn\acute{e}es}\ \mathsf{cart\acute{e}siennes}\ \mathsf{de}\ M: (x,y,z)$

$$x = \overrightarrow{OM} \cdot \overrightarrow{u_x}$$
: abscisse $y = \overrightarrow{OM} \cdot \overrightarrow{u_y}$: ordonnée $z = \overrightarrow{OM} \cdot \overrightarrow{u_z}$: cote

> Vecteur position

$$\overrightarrow{OM} = x\overrightarrow{u_x} + y\overrightarrow{u_y} + z\overrightarrow{u_z}$$
 ou $\overrightarrow{OM} = \begin{vmatrix} x \\ y \\ z \end{vmatrix}$

> Remarque

Coordonnées du point M

= composantes du vecteur position

- > Vecteur vitesse
- > Vecteur accélération

6.2 Coordonnées cylindriques

- > Utilisation
- > B.O.N.D. cylindrique: (u_r, u_θ, u_z)
 - Animation 2 : Figures animées pour la physique / Mécanique / Cinématique / Coordonnées cylindriques http://www.sciences.univ-

nantes.fr/physique/perso/gtulloue/Meca/Cinematique/coord_cylindriques.php

> Coordonnées du point M

Définition :

H: projeté orthogonal de M dans le plan (xOy). coordonnées cylindriques de M: (r,θ,z)

$$r = OH$$
 $\theta = \left(\overrightarrow{\overline{u_x}}, \overrightarrow{OH}\right)$ $z = HM = \overrightarrow{OM} \cdot \overrightarrow{u_z}$

6 Paramétrage d'un mouvement en 3 dimensions

6.2 Coordonnées cylindriques

> Vecteurs de la base

Définition:

- \bullet u_r tel que $\overrightarrow{OH} = r\overrightarrow{u_r}$: vecteur unitaire **radial**
- \diamond vecteur unitaire **orthoradial** $\overline{u_{\alpha}}$

Propriété:

base locale : dépend de la position du point M, et dépend donc du temps

> Vecteur position

$$\overrightarrow{OM} = r\overrightarrow{u_r} + z\overrightarrow{u_z}$$
 ou $\overrightarrow{OM} = \begin{vmatrix} r \\ 0 \\ z \end{vmatrix}$

Remarques

Coord. de $M \neq$ composantes du vecteur position

6 Paramétrage d'un mouvement en 3 dimensions

6.2 Coordonnées cylindriques

> Coordonnées polaires

z=0: coord cylindriques = coord polaires (r,θ) du plan (xOy)

- > Vecteur vitesse
- > Vecteur accélération

6.3 Coordonnées sphériques

- > Utilisation
- > B.O.N.D. sphérique: $(u_r, u_\theta, u_\varphi)$
 - Animation 3 : Figures animées pour la physique / Mécanique / Cinématique / Coordonnées sphériques

http://www.sciences.univ-

nantes.fr/physique/perso/gtulloue/Meca/Cinematique/coord_spheriques.php

> Coordonnées du point M

Définition :

H: projeté orthogonal de M dans le plan (xOy). coordonnées sphériques de M: (r,θ,φ)

$$r = OM$$
 $\theta = \left(\overrightarrow{\overline{u_z}}, \overrightarrow{OM}\right)$ $\varphi = \left(\overrightarrow{\overline{u_x}}, \overrightarrow{OH}\right)$

6 Paramétrage d'un mouvement en 3 dimensions

6.3 Coordonnées sphériques

> Vecteurs de la base

Définition:

Propriété:

base locale : dépend de la position du point M, et dépend donc du temps

> Vecteur position

$$\overrightarrow{OM} = r\overrightarrow{u_r}$$
 ou $\overrightarrow{OM} = \begin{bmatrix} r \\ 0 \\ 0 \end{bmatrix}$

> Remarque

Coord. de $M \neq$ composantes du vecteur position

7 Vecteur déplacement élémentaire

7.1 Définition

- > Vecteur déplacement
- Vecteur déplacement élémentaire
 Propriété :
- > Lien avec le vecteur vitesse

$$d\overrightarrow{OM}(t) = d\overrightarrow{l} = \overrightarrow{v}dt$$

Lycée M. Montaigne – MP2I 30

7 Vecteur déplacement élémentaire

7.2 Expression dans les différentes bases

> Base cartésienne

FIGURE 6 : Déplacement élémentaire en coordonnées cartésiennes

$$\overrightarrow{dOM} = dx\overrightarrow{u_x} + dy\overrightarrow{u_y} + dz\overrightarrow{u_z}$$

7 Vecteur déplacement élémentaire

7.2 Expression dans les différentes bases

> Base cylindrique

FIGURE 7 : Déplacement élémentaire en coordonnées cylindriques par rapport à r (à gauche), à θ (au centre), à z (à droite)

$$\overrightarrow{dOM} = dr\overrightarrow{u_r} + rd\theta \overrightarrow{u_\theta} + dz\overrightarrow{u_z}$$

7 Vecteur déplacement élémentaire

7.2 Expression dans les différentes bases

Base sphérique

FIGURE 8 : Déplacement élémentaire en coordonnées sphériques par rapport à r (à gauche), à θ (au centre), à φ (à droite)

$$\overrightarrow{dOM} = \overrightarrow{dru_r} + rd\theta \overrightarrow{u_\theta} + r\sin(\theta)d\varphi \overrightarrow{u_\varphi}$$

