

Introduction

How accurately can different machine learning models predict forest cover types using environmental features, and how does model choice impact prediction performance and interpretability?

Approaches: Logistic Regression, LDA/QDA, Random Forest, and Neural Network.

History of overlogging

Frequent Wildfires

Critical Habitat

Commercial Value

The need to assess the situation of the forest & make smart restoration & management decisions.

https://archive.ics.uci.edu/dataset/31/covertype

- Features (54 categorical & numerical):
 - Elevation
 - Aspect
 - Slope
 - Distance to Hydrology
 - Distance to Roadways
- Target variable: cover_type

- Wilderness Area
- Soil Type
- Hillshade
- Distance to Fire Points

	Logistic Regressio n	LDA	QDA	Random Forest	Neural Network
Accuracy	0.73	0.6798	0.0853	0.94	0.84
Recall	0.72	0.5726	0.4446	0.93	0.72
F1-score	0.71	0.5064	0.1305	0.91	0.75

- Most Important feature: elevation for Logistic Regression, Random Forest, and Neural Network
- Random Forest has the highest testing accuracy

Logistic Regression

- Model Parameter
 - multi_class='multinomial'
 - o solver='lbfgs'
 - max_iter=1000,
- Model Performance
 - Training Accuracy: 0.73
 - Test Accuracy: 0.73
 - o Recall: 0.72
 - o F1-score: 0.71
- Most Important features
 - Elevation

LDA & QDA

LDA:

- Model Performance
 - o Accuracy: 0.6798
- Most Important features
 - Horizontal Distance to Road

QDA:

- Model Performance
 - o Accuracy: 0.0853
- Most Important features
 - o Soil Type 14

Random Forest

- Tuning hyper parameters using CV:
 - 'n_estimators': 500,
 'min_samples_split': 5,
 'min_samples_leaf': 2, 'max_features':
 0.5, 'max_depth': None, 'class_weight': 'balanced'}
- Model Performance
 - Training Accuracy: 0.9974
 - Test Accuracy: 0.9675
 - o Recall: 0.94
 - o F1-score: 0.94
- Most Important features
 - Elevation (same case as Logistic Regression)

Random Forest

Neural Network

- Model Parameter
 - o activation='relu'
 - o epoch=50
 - o batch_size=64
- Model Performance
 - Training Accuracy: 0.81
 - Test Accuracy: 0.84
 - o Recall: 0.72
 - o F1-score: 0.75
- Most Important features
 - Elevation

Future Directions & Implications

To Improve Method Results...

- Manually combining relevant features
- Dimensionality Reduction through PCA or feature selections
- Further data cleaning: standardization, normalization, and outlier removal

Practical Usage of the Model:

- Can be adjusted and applied to other forests
- Understand species diversity and richness in specific forest ecosystems
- Assess wildfire risks based on forest cover types and terrain conditions
- Model impacts of environmental change

...Questions?

Thank You!

