Aufgabenblatt 1 - Aufgabe 1

20. Oktober 2014

(a)

$$\begin{split} &\frac{1}{n} \prec 1 \prec \log\log n \prec \log n \asymp \log n^3 \prec \log n^{\log n} \prec n \log n \\ &\text{und} \quad n \log n \prec n^{0.01} \prec \sqrt{n} \prec n^8 \prec 2^n \prec 8^n \prec n^n \prec n! \end{split}$$

Beweise:

Zunächst gilt es zu beweisen, dass

$$\frac{1}{n} \in o(1) \Leftrightarrow \lim_{n \to \infty} \frac{\left(\frac{1}{n}\right)}{1} = 0$$

gilt. Der Beweis ist trivial, denn es ist

$$\lim_{n \to \infty} \frac{\left(\frac{1}{n}\right)}{1}$$

$$\Leftrightarrow \lim_{n \to \infty} \frac{1}{n} = 0 \qquad \Box$$

und daraus folgt, dass $\frac{1}{n} \prec 1$ gilt. Analog dazu sind die folgenden Beweise.

 $1 \prec \log \log n$:

$$\frac{1}{\log\log n} \underset{n \to \infty}{\longrightarrow} 0 \Rightarrow 1 \prec \log\log n \qquad \Box$$

$\log \log n \prec \log n$:

Hier muss noch ein Beweis rein.

$\log n \simeq \log n^3$:

 $\overline{\log n} \in \mathcal{O}(\log n^3)$ gilt genau dann, wenn $0 < \lim_{n \to \infty} \frac{\log n}{\log n^3} < \infty$ gilt. Für den Grenzwert von $\frac{\log n}{\log n^3}$ für $n \to \infty$ gilt:

$$\lim_{n \to \infty} \frac{\log n}{\log n^3} = \frac{\log n}{3 \cdot \log n} = \frac{1}{3}$$

woraus folgt, dass die Behauptung wahr ist.

$\log n^3 \prec \log n^{\log n}$:

$$\lim_{n \to \infty} \frac{\log n^3}{\log n^{\log n}} = \lim_{n \to \infty} \frac{3 \cdot \log n}{\log n \cdot \log n}$$
$$= \lim_{n \to \infty} \frac{3}{\log n}$$
$$= 0 \qquad \Box$$

 $\log n^{\log n} \prec n \log n$:

$$\lim_{n \to \infty} \frac{\log n^{\log n}}{n \log n} = \lim_{n \to \infty} \frac{\log n \cdot \log n}{n \log n}$$

$$= \lim_{n \to \infty} \frac{\log n}{n} \quad mit \ l'Hospital$$

$$= 0 \quad \square$$

 $\underline{n\log n \prec n^{0.01}}:$

$$\lim_{n \to \infty} \frac{n \log n}{n^{0.01}} = \lim_{n \to \infty} \frac{n \log n}{n!} l' Hospital$$

$$= \lim_{n \to \infty} \frac{\frac{1}{n}}{\frac{1}{n^{0.99}}}$$

$$= \lim_{n \to \infty} \frac{n^{0.99}}{n}$$

$$= 0 \quad \square$$

 $n^{0.01} \prec n^{\frac{1}{2}}$:

Da Polynome mit einem höheren Grad immer schneller Wachsen, als Polynome mit einem niedrigeren, folgt die Behauptung.

 $\underline{n^{\frac{1}{2}} \prec n^8}$: Siehe vorheriger Beweis.

 $\underline{n^8 \prec 2^n}$:

Hier kommt noch ein Beweis hin.

 $2^n \prec 8^n$:

Hier kommt noch ein Beweis hin.

Für $n \to n+1$ wird n^8 mit 8 multipliziert, n! jedoch mit n+1. Deshalb steigt n! auf Dauer stärker als n^8 . (Beweis kann durch Induktion gemacht werden).

 $n! \prec n^n$:

Alle einzelnen Faktoren, außer dem n-ten sind bei n! kleiner als bei n^n , weshalb letztere Funktion schneller steigt.

(b) (i)

Behauptung: Für beliebige b > 1 gilt: $log_b(n) \in \Theta(log_2n)$ $\Leftrightarrow 0 < lim_{n \to \infty} \inf \frac{log_b(n)}{log_2(n)} \le lim_{n \to \infty} \sup \frac{log_b(n)}{log_2(n)} < \infty$ Für b = 2 ist $0 < lim_{n \to \infty} \inf \frac{log_b(n)}{log_2(n)} = lim_{n \to \infty} \sup \frac{log_b(n)}{log_2(n)} = 1 < \infty$ Für b > 2 ist $log_b(n) = \frac{log_2(n)}{log_2(b)}$ $\Leftrightarrow 0 < lim_{n \to \infty} \inf \frac{log_2(n)}{log_2(n) * log_2(b)} \le lim_{n \to \infty} \sup \frac{1}{log_2(b)}$ Aber: $lim_{n \to \infty} \inf \frac{1}{log_2(b)} = 0$

Also: Für beliebige b > 2 gilt: $log_b(n) \notin \Theta(log_2n)$

(ii)

Behauptung:
$$f \in O(g) \Rightarrow g \in \omega(f)$$

$$\Leftrightarrow \lim_{n \to \infty} \sup \frac{f(n)}{g(n)} < \infty \Rightarrow \lim_{n \to \infty} \inf \frac{f(n)}{g(n)} \Leftrightarrow g \in o(f)$$

$$\Leftrightarrow \lim_{n \to \infty} \sup \frac{f(n)}{g(n)} < \infty \Rightarrow \lim_{n \to \infty} \sup \frac{f(n)}{g(n)} = 0$$

$$\Leftrightarrow \lim_{n \to \infty} \sup \frac{f(n)}{g(n)} = 0 < \infty$$

(iii)

Behauptung:
$$f_c(n) := \sum_{i=0}^n c^i : f_c(n) \in \Theta(n) \Leftrightarrow c = 1$$

$$0 < \lim_{n \to \infty} \inf \frac{f_c(n)}{n} \leq \lim_{n \to \infty} \sup \frac{f_c(n)}{n} < \infty$$

$$0 < \lim_{n \to \infty} \inf \frac{\sum_{i=0}^n c^i}{n} \leq \lim_{n \to \infty} \sup \frac{\sum_{i=0}^i c^i}{n} < \infty$$
 Für $c > 1$ geht $\frac{f_c(n)}{n}$ gegen ∞ , für $c > 0$ geht $\frac{f_c(n)}{n}$ gegen 0 . Also muss $c = 1$ genau dann, wenn $f_c(n) \in \Theta(n)$.