Friday warm-up: Kinematics, II

Prof. Jordan C. Hanson

September 5, 2025

1 Memory Bank

- 1. $v = \frac{\Delta \vec{x}}{\Delta t}$... Average velocity.
- 2. $v = \frac{d\vec{x}}{dt}$... Instantaneous velocity.
- 3. $a = \frac{\Delta \vec{v}}{\Delta t}$... Average acceleration.
- 4. $a = \frac{d\vec{v}}{dt}$... Instantaneous acceleration.
- 5. $x(t) = \frac{1}{2}at^2 + v_it + x_i$... Position versus time, given constant acceleration
- 6. $v(t) = at + v_i$... Speed versus time, given constant acceleration
- 7. $v_f^2 = v_i^2 + 2a\Delta x$... Velocity, displacement, acceleration

2 Chapter 2 - Kinematics, II

- 1. In a 100-m race, the winner is timed at 11.2 s. The second-place finisher's time is 11.6 s. How far is the second-place finisher behind the winner when she crosses the finish line? Assume the velocity of each runner is constant throughout the race.
- 2. Consider the motion of the system depicted in Fig. 1 (top). Which of the following is true?
 - A: v < 0, then v > 0, then v < 0
 - B: v > 0, then v < 0, then v > 0
 - C: v > 0, then v < 0
 - D: v < 0, then v > 0
- 3. Consider the motion depicted in Fig. 1 (top). Which of the following is true?
 - A: a > 0, then a < 0
 - B: a < 0, then a > 0
 - C: a > 0
 - D: a < 0

Figure 1: (Top) A system moves with constant velocity. Velocity is the slope on this plot. (Bottom) A system moves with non-constant velocity.

4. Suppose a cyclist has a velocity of 15 m s⁻¹ at t = 0. If the acceleration is 3 m s⁻², (a) what is the velocity at t = 4 seconds? (b) What is the displacement of the cyclist at t = 4 seconds? (c) Is the average velocity different from the instantaneous velocity at t = 0 or t = 4 seconds?

5. Consider the motion of the sytem depicted in Fig. 1 (bottom). (a) From the given data, calculate the speed of the system at points P and Q. (b) Is the acceleration of the sytem positive or negative? Estimate the acceleration.