Introducción al Análisis Numérico. Errores

María González Taboada

Departamento de Matemáticas

21 de febrero de 2007

Esquema:

- 1 Estudio matemático de un problema real
- 2 Análisis numérico y métodos constructivos

3 Tipos de problemas en análisis numérico y errores

Estudio matemático de un problema real

Modelado matemático:

Problema real \implies Ecuaciones

Ejemplo: (Movimiento de una partícula)

$$\begin{cases} x'' &= f(t, x, x') \\ x(0) &= x_0 \\ x'(0) &= v_0 \end{cases}$$

Etapas para resolver un problema real

- Establecer un modelo matemático.
- Estudio teórico del modelo: existencia, unicidad, propiedades de la solución.
- 3 Cálculo de la solución:
 - En algunos casos sencillos, es posible obtener la solución exacta o analítica.
 - En la mayoría de los casos, solo es posible obtener una aproximación de la solución.
- 4 Interpretación o visualización de la solución.

Cálculo de las aproximaciones

Para calcular las aproximaciones se usan métodos numéricos o constructivos.

- Estudio del error.
- Implementación de los métodos en el ordenador:
 - Lenguajes de programación (Fortran, C++).
 - Sistemas multifuncionales (Matlab, Maple).

Se obtiene un conjunto de números, denominado *solución numérica*, que hay que interpretar.

Ejemplo (circuito eléctrico)

Intensidad eléctrica:

$$i(t) = 2,55e^{-0,25t}\sin(2\pi t)$$
.

■ Problema: calcular t tal que i(t) = 2, equiv.,

$$f(t) = i(t) - 2 = 2,55e^{-0,25t}\sin(2\pi t) - 2 = 0$$
.

Método de Newton–Raphson:

$$\begin{cases} t_0 = 0.5 \\ t_{k+1} = t_k - \frac{f(t_k)}{f'(t_k)}, & k = 0, 1, 2, \dots \end{cases}$$

Ejemplo (circuito eléctrico)

- El límite de esta sucesión es el valor t^* tal que $f(t^*) = 0$.
- El método de Newton-Raphson construye la sucesión de números reales:

```
t_1 = 0.358552018

t_2 = 0.338916275

t_3 = 0.337305112

t_4 = 0.337293740

\vdots
```

■ Como $f(t_4) = -3.8145 \times 10^{-6}$, tomamos el valor t_4 como aproximación de una de las soluciones del problema.

Análisis numérico y métodos constructivos

Análisis numérico:

Teoría de los métodos constructivos en el análisis matemático.

Método constructivo:

Procedimiento que permite obtener la solución de un problema con una precisión determinada en un número finitos de pasos.

Ejemplo (método de Newton-Raphson)

- Para obtener α tal que $f(\alpha) = 0$, se hace lo siguiente:
 - 1 Se toma una aproximación inicial, x_0 .
 - 2 Para k = 0, 1, 2, ...,

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

si
$$f'(x_k) \neq 0$$
.

Ejemplo (método de Newton-Raphson)

- Para obtener α tal que $f(\alpha) = 0$, se hace lo siguiente:
 - 1 Se toma una aproximación inicial, x_0 .
 - 2 Para k = 0, 1, 2, ...,

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

si
$$f'(x_k) \neq 0$$
.

- Cuestiones de las que se ocupa el análisis numérico:
 - ¿Bajo qué condiciones $(x_k)_k \to \alpha$?
 - ¿En qué paso tendremos una aproximación razonable?
 - Si nos detenemos en el paso k, ¿cuál es el error cometido?

Tipos de problemas en análisis numérico

■ Problemas de dimensión finita:

En el planteamiento del problema interviene un conjunto finito de números.

Problemas de dimensión infinita:

En el planteamiento del problema interviene un conjunto infinito de números.

Ejemplos de problemas de dimensión finita

- Resolución de un sistema de n ecuaciones lineales y n incógnitas.
 - Datos: matriz de coeficientes y vector del segundo miembro; en total, $n^2 + n$ números.
 - Solución: vector de *n* componentes, es decir, *n* números.
- 2 Cálculo de las raíces de un polinomio de grado n.
 - Datos: coeficientes del polinomio, n + 1 números.
 - Solución: las *n* raíces del polinomio, es decir, *n* números.

Ejemplos de problemas de dimensión infinita

- 1 Los problemas en los que intervienen funciones definidas en conjuntos infinitos de números.
- Resolución del problema de valor inicial

$$\begin{cases} y' = f(x,y) \\ y(x_0) = y_0 \end{cases}$$

- Datos: los números x_0 e y_0 , y la función f.
- Solución: la función y.

Resolución de un problema de dimensión infinita

- Para resolver numéricamente un problema de dimensión infinita, el problema se aproxima por uno de dimensión finita. Este proceso se llama discretización y lleva asociado un error.
- El error de discretización mide la diferencia entre la solución del problema original y la solución del problema de dimensión finita que lo aproxima.

Resolución de un problema de dimensión finita

Métodos directos:

- Permiten calcular la solución del problema en un número finito de pasos, conocido a priori.
- En la práctica, se cometen errores de redondeo, debido al empleo de sistemas de cálculo que usan aritmética finita.

Métodos iterativos:

- Construyen una sucesión diseñada para converger a la solución exacta del problema.
- En la práctica, además de los errores de redondeo, se produce un error de truncamiento, al tomar un término de la sucesión como aproximación de la solución.

Ejemplo (error de truncamiento)

 En el algoritmo de Newton-Raphson construido para resolver la ecuación

$$f(t) = 2,55e^{-0,25t}\sin(2\pi t) - 2 = 0$$

el error de truncamiento en el paso 4 es

$$|t_4 - t^*|$$

siendo *t** una solución exacta (y desconocida) de la ecuación.