TP no 1 - Méthodes de Monte Carlo

Master parcours SSD - UE Statistique Computationnelle

Septembre 2019

1 Simulation de variables aléatoires

Exercice 1 (utilisation des fonctions de R)

Le logiciel R permet de simuler des nombres aléatoires selon de nombreuses distributions usuelles (voir la liste complète au sujet "Distributions" dans l'aide R, via la commande >?Distributions).

- 1. Générer des n-échantillons de taille croissante selon les lois normale, exponentielle, et beta.
- 2. Comparer les distributions empiriques obtenues et la distribution théorique.

On pourra utiliser les fonctions hist et density/plot.density de R.

Rappels:

— la distribution normale $\mathcal{N}(\mu, \sigma)$ de moyenne μ et variance σ^2 a pour densité

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$$
, pour $x \in \mathbb{R}$.

— la distribution exponentielle $\mathcal{E}(\lambda)$ de taux λ a pour densité

$$f(x) = \lambda \exp(-\lambda x)$$
, pour $x \in \mathbb{R}^+$.

— la distribution $\beta(\alpha,\beta)$ de paramètres de forme $\alpha>0$ et $\beta>0$ a pour densité

$$f(x) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$
, où $B(\alpha, \beta)$ est la fonction bêta, pour $x \in [0, 1]$.

Exercice 2 (simulation par la méthode d'inversion)

Simuler une variable suivant une loi exponentielle de paramètre 0.5 par la méthode d'inversion et comparer à la méthode proposée par R.

Exercice 3 (simulation par la méthode du rejet)

Soit la densité f(x) = 6x(1-x) définie pour $x \in [0,1]$.

- 1. Vérifier que f est bien une densité et trouver le plus petit M tel que $f(x) \leq M$.
- 2. Simuler 1000 variables aléatoires distribuées selon f en utilisant la fonction g(x) = M comme fonction majorante. Mesurer le taux de rejet et vérifier que la distribution empirique correspond bien à la distribution théorique.
- 3. Tracer l'évolution du taux de rejet en fonction de M, quand M varie de sa valeur minimale à 3 fois sa valeur minimale.

2 Méthodes MC pour l'intégration

Exercice 4 (estimation de π)

- 1. Estimer π avec l'approche décrite dans le cours à partir de n=50 points.
- 2. Reproduire cette expérience en faisant varier n de 50 à 1000.
- 3. Reproduire cette seconde expérience 100 fois et visualiser la variabilité du résultat. On pourra par exemple utiliser la fonction boxplot de R.

Exercice 5

Proposer deux manières d'appproximer $I=\int_0^1\cos(x^3)\exp{(-x)}dx$ par la méthode de Monte-Carlo.

Exercice 6

On s'intéresse à $I = \int_0^1 \sin(\sqrt{x}) dx$.

- 1. Proposer une méthode MC pour calculer I et l'implémenter.
- 2. Tracer l'évolution de l'estimateur et de son intervalle de confiance à 95% en fonction du nombre de tirages.