UC San Diego

Halıcıoğlu Data Science Institute DSC140A Probabilistic Modeling and Machine Learning

Problem Set 1 Due: 11:59 PM, 04/11/2025

Additional References

- \star Lecture 2 & Discussion 1
- \star Estimating Probabilities: MLE & MAP. Tom Mitchell, 2016.
- ★ PML Ch 4.2
- * BRML Ch 8.1, 8.3, 8.6
- \star MIT OCW Reading 10b and Reading 24

1. MLE Basics

Suppose that we are given n data points drawn independently from a Normal distribution:

$$x_1, x_2, \dots, x_n \stackrel{\text{iid}}{\sim} \mathsf{Normal}(\mu, \sigma).$$

- (a) What is the likelihood function $L(\mu, \sigma \mid x_1, \dots, x_n)$?
- (b) What is the maximum likelihood estimator $\hat{\mu}_{\text{MLE}}$?
- (c) What is the expected value of the estimator $E(\hat{\mu}_{MLE})$? Is it biased?
- (d) What is the variance of estimator $Var(\hat{\mu}_{MLE})$? Is it consistent?
- (e) What is the maximum likelihood estimator $\hat{\sigma}_{\text{MLE}}$?

2. MLE Basics (Matrix version)

Suppose that we are given n data points drawn independently from a d-dimensional normal distribution with known covariance matrix Σ :

$$x_1, x_2, \ldots, x_n \stackrel{\text{iid}}{\sim} \mathsf{Normal}(\theta, \Sigma).$$

- (a) What is the likelihood function $L(\theta, \Sigma \mid x_1, \dots, x_n)$?
- (b) What is the maximum likelihood estimator $\hat{\theta}_{\text{MLE}}$?
- (c) What is the expected value of the estimator $E(\hat{\theta}_{MLE})$? Is it biased?
- (d) What is the variance of estimator $Var(\hat{\theta}_{MLE})$? Is it consistent?
- (e) What is the maximum likelihood estimator $\hat{\Sigma}_{\text{MLE}}$?

3. MLE for the Exponential Distribution

Suppose we are given n data points drawn independently from an Exponential distribution

$$x_1, x_2, \ldots, x_n \stackrel{\text{iid}}{\sim} \mathsf{Exponential}(\theta).$$

- (a) Write the probability density function for a single point x_i .
- (b) Describe a real-world outcome that we could model using this distribution.
- (c) Derive an expression for $\hat{\theta}_{\text{MLE}}$, the maximum likelihood estimator of θ ?
- (d) Describe how you could compute $\hat{\theta}_{\text{MLE}}$ using only a summary statistic of the data?
- (e) Say you compute the MLE estimator using n data points, and then delete the data. Describe how you can update the MLE estimator with another point x_{n+1} ?

4. MLE without First-Derivatives

- (a) Suppose we have 5 data points drawn independently from a Uniform(a, b) distribution: 1.2, 2.1, 1.3, 10.5, 5. What are the maximum likelihood estimates for the parameters a and b?
- (b) Suppose that we have n data points x_1, x_2, \ldots, x_n drawn independently from a Uniform(a, b) distribution. What are the maximum likelihood estimators for a and b?

5. Simple Linear Regression via MLE

In this problem, we will use maximum likelihood estimation to fit the "most likely" line between x and y. We assume that x and y are related to one another through a model of y = ax + b for some constants a and b. Our goal is to estimate the values of a and b from n data points $(x_1, y_1), \ldots, (x_1, y_n)$.

We can estimate these values using MLE if we assume that each y_i is observed with "measurement error" $\epsilon_i \stackrel{\text{iid}}{\sim} \mathsf{Normal}(0, \sigma^2)$. Each ϵ_i is sampled from a Normal distribution with mean 0 and variance σ^2 , where σ is a positive value like $\sigma = 1$.

Putting everything together, this means that each y_i is an independent draw from a random variable

$$Y_i \sim ax_i + b + \epsilon_i$$

where $\epsilon_i \sim \mathsf{Normal}\left(0, \sigma^2\right)$.

- (a) Write an expression for the likelihood function $L(y_i \mid a, b, x_i, \sigma)$ for one observation of y_i .
- (b) Suppose that we are given 3 data points (1,8), (3,2), (5,1). Write down the expressions for the likelihood function and the log-likelihood function as functions of a, b, and σ .
- (c) Assume that σ is a constant, known value. For the data in part (b), find the maximum likelihood estimates for a and b.
- (d) For general data $(x_1, y_1) \dots (x_n, y_n)$, write down the expression for the likelihood and the log-likelihood functions as functions of a, b, σ .
- (e) Use Python to plot the data and the line from part (b). Print the plot and turn it in.

6. Complete the Google form at the following link:

https://forms.gle/XLctPCtFurMynQS37