Increased fecundity associates with earlier offspring dispersal and son-bias in cooperative breeding Seychelles warblers

Kiran Gok Lune Lee

2021

Contents

Load packages and data and create dataframes	1
Offspring that could be assigned genetic parentage with at least 50% confidence (mean +/- SE confidence of parentage = 0.98 +/- 0.002, n= 1140) were included	0
three subsequent years as most offspring (this study: 92.1%, n=508) disperse by then	9
Most mothers have singleton clutches per breeding season, though 14.7% (144/977) produce multiple	9
offspring, up to four per breeding season (mean +/- SE= 1.17 +/- 0.014)	9
13.7% ($128/931$) of mothers are co-breeding subordinates NB: This statement in my report is incorrect if	
we run the script $(126/932)$	10
the number of offspring produced by breed groups, with an upper limit of seven per breeding season (mean $+/-$ SE= 1.68 $+/-$ 0.031) NB: This statement in my report is incorrect if we run the script (1.35+/-	
0.027)	10
Breed groups with more helping subordinates, but not non-helping subordinates produce more offspring (figure 1), with no impact of territory quality or field period length in which sampling took place	
$(table 1) \dots $	10
Breed groups in better quality territories sustain more adult individuals (estimate= 0.179 , SE= 0.080 , p=	
0.025, figure 2)	12
Per mother, the number of offspring produced is not influenced by territory quality (estimate= 0.039, SE=	
0.068, p= 0.566), by the number of helping subordinates (estimate= 0.0610, SE= 0.068, p= 0.566), or by non-helping subordinates in the breed group (estimate= 0.003, SE= 0.035, p= 0.938), whether she	
is dominant or subordinate (estimate = 0.032, SE= 0.102, p= 0.756), or the field period length in	
which sampling took place (estimate<0.001, SE= 0.002, p= 0.893)	14
53.2% (453/851) of offspring disperse after one year, 85.9% (556/647) after two years and 92.1% (468/508)	
after three years	15
Rates of offspring dispersal from the natal territory increases when offspring natal territory quality is higher	
and when more offspring are born in the breed group (table 2, Fig. 2)	16
89.6% (241/269) of sons becoming dominant and 82.8% (198/239) of daughters becoming dominant three	
years later	19
There is no impact of natal territory quality (estimate= 0. 252, SE= 0.150, p= 0.093), the number of	
offspring co-born in the natal territory (estimate = -0.042, SE = 0.059, p = 0.476) or the number of	
adult subordinates in the natal territory (estimate = -0.061, SE = 0.069, p = 0.380) on whether offspring	
established dominancy in subsequent years	20
Dominant mothers male-bias offspring sex ratios when increasing the number of offspring produced, despite even mean offspring sex-ratios (0.48) (table 3, Fig. 3a) There is no influence of territory quality or	
the number of adult subordinates in the territory on offspring sex-ratios	21
v 1 O	

Load packages and data and create dataframes

library(ggplot2)
library(dplyr)

```
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
      filter, lag
## The following objects are masked from 'package:base':
##
      intersect, setdiff, setequal, union
##
library(plyr)
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## ------
##
## Attaching package: 'plyr'
## The following objects are masked from 'package:dplyr':
##
      arrange, count, desc, failwith, id, mutate, rename, summarise,
##
      summarize
library(tidyverse)
## -- Attaching packages ------ 1.3.1 --
## v tibble 3.1.7
                  v purrr 0.3.4
## v tidyr
          1.2.0
                    v stringr 1.4.0
## v readr
           2.1.2
                  v forcats 0.5.1
## -- Conflicts ------ tidyverse_conflicts() --
## x plyr::arrange()
                    masks dplyr::arrange()
## x purrr::compact() masks plyr::compact()
## x plyr::count()
                    masks dplyr::count()
## x plyr::failwith() masks dplyr::failwith()
## x dplyr::filter() masks stats::filter()
## x plyr::mutate() masks dplyr::mutate()
## x plyr::rename() masks dplyr::rename()
## x plyr::summarise() masks dplyr::summarise()
## x plyr::summarize() masks dplyr::summarize()
library(ggpubr)
##
## Attaching package: 'ggpubr'
## The following object is masked from 'package:plyr':
##
##
      mutate
library(lme4)
## Loading required package: Matrix
## Attaching package: 'Matrix'
```

```
## The following objects are masked from 'package:tidyr':
##
##
                  expand, pack, unpack
library(readxl)
# territory quality data
YearlyTQData <- read excel("YearlyTQ.xlsx")</pre>
TQ <- read_excel("TQ.xlsx")</pre>
TQ<-rename(TQ, c("PeriodYear"="Year"))</pre>
TQ<-rename(TQ, c("TQcorrected"="TerritoryQuality"))</pre>
TQ<-subset(TQ, !is.na(TerritoryQuality))</pre>
TQ$logTerritoryQuality<-log(TQ$TerritoryQuality)</pre>
TQ\$GelmanTerritoryQuality < -(TQ\$logTerritoryQuality) - (mean(TQ\$logTerritoryQuality)) / (2*sd(TQ\$logTerritoryQuality)) / (2*sd(TQ\$logTerritoryQuality) / (2*sd(TQ\$logTerritoryQuality)) / (2*sd(TQ\$logTerritoryQuality)) / (2*sd(TQ\$
 #create dataframe with summary stats for each year on territory quality
TQgroupstata<-ddply(TQ, .(Year), summarise,
                    MeanTQ= mean(TerritoryQuality),
                    RangeTQ=max(TerritoryQuality)-min(TerritoryQuality),
                    sdTQ= sd(TerritoryQuality),
                    cvTQ= sdTQ/MeanTQ)
 # sex ratio data
FullestSexRatioData <- read_excel("FullestSexRatioData.xlsx")</pre>
Data <- subset(FullestSexRatioData, !is.na(Year))</pre>
Data <- subset(Data, !is.na(Sex))</pre>
Data <- subset(Data, !is.na(TerritoryQuality))</pre>
Data <- subset(Data, pParentage>0.5) #choose chicks who's parentage is known with higher than half probabi
Data$MumID[Data$MumID == "-998"] <- NA
Data$GelmanTerritoryQuality<-(log(Data$TerritoryQuality)-(mean(log(Data$TerritoryQuality))))/(2*sd(log(Dat
ggplot(data=Data, aes(x=GelmanTerritoryQuality))+
     geom_histogram() #histogram to see spread of gelman territory quality. looks good
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```



```
# status of each bird in field season
BirdIDSexYear <- read_excel("BirdIDSexYear.xlsx")</pre>
\#create dataframe with summary stats per territory and then add this to other dataframes
TerritoryIDGroupStat<-ddply(Data, .(TerritoryID), summarise,</pre>
                   MeanTQbetweenyears= mean(TerritoryQuality),
                   RangeTQbetweenyears=max(TerritoryQuality)-min(TerritoryQuality),
                   sdTQbetweenyears= sd(TerritoryQuality),
                   SexRatiobetweenyears= mean(Sex),
                   cvTQbetweenyears= sdTQbetweenyears/MeanTQbetweenyears)
#add cvTQbetweenyears column
Data<-merge(x = Data , y = TerritoryIDGroupStat[ , c("TerritoryID", "cvTQbetweenyears")], by = "TerritoryI
# subset data so each row is a breedgroup in a field season
TData <-ddply(Data, .(Year, BreedGroupID, TerritoryID, nHelpers, nAB, nABX, nAllAB,nHelpersABX, nAdults,cvT
             SexRatio= mean(Sex),
             TerritoryQuality= mean(TerritoryQuality),
             GelmanTerritoryQuality=mean(GelmanTerritoryQuality),
             nFem= length(Sex[Sex=="0"]), # number females per Year and territory ID
             nMale= length(Sex[Sex=="1"]), # number of males per year and territory ID
             nMums=n_distinct(MumID, na.rm = FALSE)
)
#add column of how variable territory qualities are within a year
TData <-merge(x = TData , y = TQgroupstata[ , c("Year", "cvTQ")], by = "Year", all.x=TRUE)
```

```
#make breedgroupid a factor
TData$BreedGroupID<- as.factor(TData$BreedGroupID)</pre>
#add a column for subordinate non-helpers
TData$NonHelpers<-TData$nAdults - TData$nHelpersABX
#add in the dominant mum and dad id for each breed group
DominantMaleIDSexYear<-subset(BirdIDSexYear, Status=="BrM")</pre>
DominantMaleIDSexYear$MaleID<-DominantMaleIDSexYear$BirdID
DominantFemaleIDSexYear<-subset(BirdIDSexYear, Status=="BrF")</pre>
DominantFemaleIDSexYear$FemaleID<-DominantFemaleIDSexYear$BirdID
TData <-merge(x = TData, y = DominantMaleIDSexYear[, c("BreedGroupID", "MaleID")], by = "BreedGroupID", al
TData <-merge(x = TData, y = DominantFemaleIDSexYear[, c("BreedGroupID", "FemaleID")], by = "BreedGroupID"
#add column of how variable a territory's quality is
TData <-merge(x = TData , y = TerritoryIDGroupStat[ , c("TerritoryID", "cvTQbetweenyears")], by = "TerritoryIDGroupStat", c("TerritoryID", "cvTQbetweenyears")],
#add column of how variable territory qualities are within a year
TData \leftarrow merge(x = TData, y = TQgroupstata[, c("Year", "cvTQ")], by = "Year", all.x=TRUE)
TData$BreedGroupID<- as.factor(TData$BreedGroupID)</pre>
##create dataframe with summary stats for each year on numbers daughters and males and territory quality
DataGroupStat<-ddply(Data, .(Year), summarise,</pre>
                                MeanTQ= mean(TerritoryQuality),
                                RangeTQ=max(TerritoryQuality)-min(TerritoryQuality),
                                sdTQ= sd(TerritoryQuality),
                                OffspringSexRatio= mean(Sex), # mean offspring sex ratio had in that year
                                cvTQ= sdTQ/MeanTQ,
                                nDaughters= length(Sex[Sex=="0"]), # number daughters had in that year
                                nSons= length(Sex[Sex=="1"])) # number sons had in that year
# add fieldperiod start and end dates into dataframes
#first create dataframe with summary stats per fieldperiod
FieldPeriodIDGroupStat<-ddply(BirdIDSexYear, .(FieldPeriodID, PeriodEnd, PeriodStart), summarise,
                                                   nFem= length(Sex[Sex=="0"]),
                                                   nMale= length(Sex[Sex=="1"]))
Field Period ID Group Stat \$ Period Length \verb|<-FieldPeriodIDG roupStat| \$ Period End-Field Period ID GroupStat| \$ Period Start Period End-Field Period ID GroupStat| \$ Period End-Field Period
Data<-merge(x = Data , y = FieldPeriodIDGroupStat [ , c("FieldPeriodID", "PeriodStart")], by = "FieldPerio
Data <-merge(x = Data , y = FieldPeriodIDGroupStat [ , c("FieldPeriodID", "PeriodEnd")], by = "FieldPeriodI
Data<-merge(x = Data , y = FieldPeriodIDGroupStat [ , c("FieldPeriodID", "PeriodLength")], by = "FieldPeri
TData <-merge(x = TData , y = FieldPeriodIDGroupStat [ , c("FieldPeriodID", "PeriodLength")], by = "FieldPeriodID"
# create sex ratio data including mum's status
PedigreePlusStatus<- read_excel("PedigreePlusStatus.xlsx")</pre>
MumStatus <- subset(PedigreePlusStatus, !is.na(Year))</pre>
MumStatus <- subset(MumStatus, !is.na(Sex))</pre>
MumStatus <- subset(MumStatus, !is.na(TerritoryQuality))</pre>
MumStatus <- subset(MumStatus, pParentage>0.5) #choose chicks who's parentage is known with higher than ha
MumStatus$MumID <- as.character(MumStatus$MumID)</pre>
MumStatus$MumID[MumStatus$MumID == "-998"] <- "NA"
MumStatus$MumID<- as.factor(MumStatus$MumID)</pre>
MumStatus$TerritoryQuality<-as.numeric(gsub(",", ".", MumStatus$TerritoryQuality))
MumStatus$GelmanTerritoryQuality<-(log(MumStatus$TerritoryQuality)-(mean(log(MumStatus$TerritoryQuality)))</pre>
```

```
#add cvTQbetweenyears column
Mumstatusgroupstat<-ddply(MumStatus, .(MumID,BreedGroupID,TerritoryID,GelmanTerritoryQuality,FieldPeriodID
                                 OffspringSexRatio= mean(Sex),
                                 nFem= length(Sex[Sex=="0"]), # number females per treatment group
                                nMale= length(Sex[Sex=="1"]))
Mumstatusgroupstat$ClutchSize<-Mumstatusgroupstat$nFem+Mumstatusgroupstat$nMale
Mumstatusgroupstat < -merge(x = Mumstatusgroupstat , y = FieldPeriodIDGroupStat [ , c("FieldPeriodID", "PeriodID") | FieldPeriodID", "PeriodID" | FieldPeriodID", "PeriodID" | FieldPeriodID" |
# assign dominancy to mums
MumStatus$StatusBrF<-revalue(MumStatus$Status, c(ABX="NonBrF",H="NonBrF",AB="NonBrF",NSA="NonBrF",SEEN1="NonBrF",Deen (MumStatus$Status)
Mumstatusgroupstat$Dominant<-Mumstatusgroupstat$Status
Mumstatusgroupstat$Dominant[Mumstatusgroupstat$Status!="BrF"] <- 0
Mumstatusgroupstat$Dominant[Mumstatusgroupstat$Status=="BrF"] <- 1
Mumstatusgroupstat$NonHelpers<-Mumstatusgroupstat$nAdults - Mumstatusgroupstat$nHelpersABX
Mumstatusgroupstat$Dominant<-as.factor(Mumstatusgroupstat$Dominant)</pre>
#mum group stat. My dataset contains 995 mums and 1034 dads.
Mumgroupstat < -ddply(Data, .(MumID, BreedGroupID, GelmanTerritoryQuality, nHelpers, nAB, nABX, nAllAB, nHelpers
                                          OffspringSexRatio= mean(Sex),
                                          nFem= length(Sex[Sex=="0"]), # number females per treatment group
                                          nMale= length(Sex[Sex=="1"]))
#how many unique breeding events? 396 (when not including -998 who are NA mums)
length(unique(unlist(Mumgroupstat[c("MumID")])))
## [1] 397
Mumgroupstat$ClutchSize<-Mumgroupstat$nFem+Mumgroupstat$nMale
#creating dataframes to study dispersal over subsequent years
Data$YearLater<-Data$Year+1
Data$TwoYearsLater<-Data$Year+2
Data$ThreeYearsLater<-Data$Year+3
#merge status column in BirdIDSexYear if the Year matches YearLater and if BirdID matches ChickID. Here I
TrialMergeData = merge(Data, BirdIDSexYear, by.x=c("YearLater", "ChickID"), by.y=c("Year", "BirdID"))
TrialMergeData2 = merge(Data, BirdIDSexYear, by.x=c("TwoYearsLater", "ChickID"), by.y=c("Year", "BirdID"))
TrialMergeData3 = merge(Data, BirdIDSexYear, by.x=c("ThreeYearsLater", "ChickID"), by.y=c("Year", "BirdID")
TrialMergeData$MumID<-as.factor(TrialMergeData$MumID)</pre>
TrialMergeData2$MumID<-as.factor(TrialMergeData2$MumID)</pre>
TrialMergeData3$MumID<-as.factor(TrialMergeData3$MumID)</pre>
Mumgroupstat$MumID<-as.factor(Mumgroupstat$MumID)</pre>
TrialMergeData$BreedGroupID<-TrialMergeData$BreedGroupID.x
TrialMergeData$BreedGroupID<-as.factor(TrialMergeData$BreedGroupID)</pre>
TrialMergeData2$BreedGroupID<-TrialMergeData2$BreedGroupID.x
TrialMergeData2$BreedGroupID<-as.factor(TrialMergeData2$BreedGroupID)</pre>
TrialMergeData3$BreedGroupID<-TrialMergeData3$BreedGroupID.x
TrialMergeData3$BreedGroupID<-as.factor(TrialMergeData3$BreedGroupID)
Mumgroupstat$BreedGroupID<-as.factor(Mumgroupstat$BreedGroupID)
TrialMergeData<-left_join(TrialMergeData, Mumgroupstat, by=c('MumID'='MumID', 'Year'='Year', 'BreedGroupID')</pre>
TrialMergeData2<-left_join(TrialMergeData2, Mumgroupstat, by=c('MumID'='MumID', 'Year'='Year', 'BreedGroup
TrialMergeData3<-left_join(TrialMergeData3, Mumgroupstat, by=c('MumID'='MumID', 'Year'='Year', 'BreedGroup
```

```
#remove NAs
TrialMergeData$MumID[TrialMergeData$MumID == "NA"] <- NA</pre>
TrialMergeData$DadID[TrialMergeData$DadID == -998] <- NA
TrialMergeData<-subset(TrialMergeData, !is.na(MumID))</pre>
# assign ranks (1-15) to individuals based on their status
TrialMergeData$RankedStatus<-recode(TrialMergeData$Status, "CH"=1, "BrF" = 1, "BrM" = 1, "H"=2, "OFL" = 3,
#select chicks whose rank the next year is "highest" if the same chick occurs twice
TrialMergeData <-TrialMergeData %>%
   group_by(ChickID, BreedGroupID, FieldPeriodID.x, Sex.x, YearLater, nOffspringBreedGroup, nAdults.x) %>%
   slice(which.min(RankedStatus))
#remove NAs
TrialMergeData2$MumID[TrialMergeData2$MumID == "NA"] <- NA</pre>
TrialMergeData2$DadID[TrialMergeData2$DadID == -998] <- NA
TrialMergeData2<-subset(TrialMergeData2, !is.na(MumID))</pre>
# assign ranks (1-15) to individuals based on their status
TrialMergeData2$RankedStatus<-recode(TrialMergeData2$Status, "CH"=1,"BrF" = 1, "BrM" = 1, "H"=2, "OFL" = 3
#select chicks whose rank in two years is "highest" if the same chick occurs twice
TrialMergeData2<-TrialMergeData2 %>%
   group_by(ChickID, BreedGroupID, FieldPeriodID.x, Sex.x, YearLater, nOffspringBreedGroup, nAdults.x) %>%
   slice(which.min(RankedStatus))
#remove NAs
TrialMergeData3$MumID[TrialMergeData3$MumID == "NA"] <- NA</pre>
TrialMergeData3$DadID[TrialMergeData3$DadID == -998] <- NA
TrialMergeData3<-subset(TrialMergeData3, !is.na(MumID))</pre>
# assign ranks (1-15) to individuals based on their status
TrialMergeData3$RankedStatus<-recode(TrialMergeData3$Status, "CH"=1, "BrF" = 1, "BrM" = 1, "H"=2, "OFL" = 3
#select chicks whose rank in three years is "highest" if the same chick occurs twice
TrialMergeData3<-TrialMergeData3 %>%
   group_by(ChickID, BreedGroupID, FieldPeriodID.x, Sex.x, YearLater, nOffspringBreedGroup, nAdults.x) %>%
   slice(which.min(RankedStatus))
#add a column for whether they remain on territory or not
TrialMergeData$DispersalStatus<-if_else( TrialMergeData$TerritoryID.x==TrialMergeData$TerritoryID.y, 0, 1)
TrialMergeData2$DispersalStatus<-if_else( TrialMergeData2$TerritoryID.x==TrialMergeData2$TerritoryID.y, 0,
TrialMergeData3$DispersalStatus<-if_else( TrialMergeData3$TerritoryID.x==TrialMergeData3$TerritoryID.y, 0,
#add columns to each dataframe specifying the number of years later for the data of the chick
TrialMergeData$YearsLater<-(TrialMergeData$YearLater/TrialMergeData$YearLater)
TrialMergeData2$YearsLater<-(TrialMergeData2$YearLater/TrialMergeData2$YearLater)+1
TrialMergeData3$YearsLater<-(TrialMergeData3$YearLater/TrialMergeData3$YearLater)+2
TrialMergeData$DispersalStatusOneYear<-TrialMergeData$DispersalStatus
TrialMergeData2$DispersalStatusTwoYears<-TrialMergeData2$DispersalStatus
{\tt TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3\$DispersalStatusThreeYears{-TrialMergeData3}}
TrialMergeData$BreedingStatusOneYear<-TrialMergeData$Status
TrialMergeData2$BreedingStatusTwoYears<-TrialMergeData2$Status
TrialMergeData3$BreedingStatusThreeYears<-TrialMergeData3$Status
```

merging relevant data from each TrialMergeData into one dataframe where \$YearsLater identifies the numbe OneYearLater<-data.frame(TrialMergeData\$ChickID,TrialMergeData\$MumID,TrialMergeData\$DadID, TrialMergeData\$TwoYearLater<-data.frame(TrialMergeData2\$ChickID,TrialMergeData2\$MumID,TrialMergeData2\$DadID, TrialMergeData7\$ThreeYearLater<-data.frame(TrialMergeData3\$ChickID,TrialMergeData3\$MumID,TrialMergeData3\$DadID, TrialMergeData7\$DadID,TrialMergeData7\$Dat

```
#tidy up the spaces and fullstops in the column headings
names (OneYearLater) \leftarrow gsub(x = names (OneYearLater),
                             pattern = "\\.",
                             replacement = " ")
names(TwoYearLater) <- gsub(x = names(TwoYearLater),</pre>
                             pattern = "\\.",
                             replacement = " ")
names(ThreeYearLater) <- gsub(x = names(ThreeYearLater),</pre>
                             pattern = "\\.",
                             replacement = " ")
OneYearLater <- rename (OneYearLater, c("TrialMergeData ChickID"="ChickID",
                                      "TrialMergeData MumID"="MumID",
                                      "TrialMergeData DadID"="DadID",
                                      "TrialMergeData Sex x"="Sex",
                      "TrialMergeData Status"="BreedingStatus",
                      "TrialMergeData DispersalStatus"="DispersalStatus",
                      "TrialMergeData YearsLater"="YearsLater",
                      "TrialMergeData nOffspringBreedGroup"="nOffspringBreedGroup",
                      "TrialMergeData ClutchSize"="ClutchSize",
                     "TrialMergeData nAllAB x"="nAllABx",
                      "TrialMergeData nAdults x"="nAdults",
                      "TrialMergeData BreedGroupID"="BreedGroupID",
                     "TrialMergeData TerritoryID x"="TerritoryIDx",
                      "TrialMergeData GelmanTerritoryQuality x"="GelmanTerritoryQuality",
                     "TrialMergeData TerritoryID y"="TerritoryIDy",
                      "TrialMergeData FieldPeriodID y"="FieldPeriody",
                     "TrialMergeData FieldPeriodID x"="FieldPeriodx",
                      "TrialMergeData YearLater"="YearLater"))
TwoYearLater<-rename(TwoYearLater, c("TrialMergeData2 ChickID"="ChickID",</pre>
                                      "TrialMergeData2 MumID"="MumID",
                                      "TrialMergeData2 DadID"="DadID",
                                      "TrialMergeData2 Sex x"="Sex",
                                      "TrialMergeData2 Status"="BreedingStatus",
                                      "TrialMergeData2 DispersalStatus"="DispersalStatus",
                                      "TrialMergeData2 YearsLater"="YearsLater",
                                      "TrialMergeData2 nOffspringBreedGroup"="nOffspringBreedGroup",
                                      "TrialMergeData2 ClutchSize"="ClutchSize",
                                      "TrialMergeData2 BreedGroupID"="BreedGroupID",
                                      "TrialMergeData2 TerritoryID x"="TerritoryIDx",
                                      "TrialMergeData2 GelmanTerritoryQuality x"="GelmanTerritoryQuality",
                                      "TrialMergeData2 TerritoryID y"="TerritoryIDy",
                                      "TrialMergeData2 FieldPeriodID y"="FieldPeriody",
                                      "TrialMergeData2 FieldPeriodID x"="FieldPeriodx",
                                      "TrialMergeData2 nAllAB x"="nAllABx",
                                      "TrialMergeData2 nAdults x"="nAdults",
                                      "TrialMergeData2 YearLater"="YearLater"))
ThreeYearLater <- rename (ThreeYearLater, c("TrialMergeData3 ChickID" = "ChickID",
                                          "TrialMergeData3 MumID"="MumID",
                                          "TrialMergeData3 DadID"="DadID",
                                      "TrialMergeData3 Sex x"="Sex",
```

```
"TrialMergeData3 Status"="BreedingStatus",
                                   "TrialMergeData3 DispersalStatus"="DispersalStatus",
                                   "TrialMergeData3 YearsLater"="YearsLater",
                                   "TrialMergeData3 nOffspringBreedGroup"="nOffspringBreedGroup",
                                   "TrialMergeData3 ClutchSize"="ClutchSize",
                                   "TrialMergeData3 BreedGroupID"="BreedGroupID",
                                   "TrialMergeData3 TerritoryID x"="TerritoryIDx",
                                   "TrialMergeData3 GelmanTerritoryQuality x"="GelmanTerritoryQuality",
                                   "TrialMergeData3 TerritoryID y"="TerritoryIDy",
                                   "TrialMergeData3 FieldPeriodID y"="FieldPeriody",
                                   "TrialMergeData3 FieldPeriodID x"="FieldPeriodx",
                                   "TrialMergeData3 nAllAB x"="nAllABx",
                                   "TrialMergeData3 nAdults x"="nAdults",
                                   "TrialMergeData3 YearLater"="YearLater"))
AllYearLater<-bind_rows(OneYearLater, TwoYearLater, ThreeYearLater)</pre>
#rank status to numbers so that we can exclude those not seen and not known to be alive
AllYearLater$RankedStatus<-AllYearLater$BreedingStatus
AllYearLater$RankedStatus<-recode(AllYearLater$RankedStatus, "CH"=1, "BrF" = 1, "BrM" = 1, "H"=2, "OFL" = 3
AllYearLater$BreedGroupSize<-AllYearLater$nAdults+AllYearLater$nOffspringBreedGroup
AllYearLater<-subset(AllYearLater, RankedStatus<14) #remove chicks listed as "NS (not seen) and NSA (not s
Offspring that could be assigned genetic parentage with at least 50\% confidence (mean
+/- SE confidence of parentage = 0.98 +/- 0.002, n= 1140) were included
mean(Data$pParentage)
## [1] 0.9755588
sd(Data$pParentage, na.rm = TRUE)/sqrt(length(Data$pParentage[!is.na(Data$pParentage)]))
## [1] 0.00231845
nrow(Data)
## [1] 1140
three subsequent years as most offspring (this study: 92.1\%, n=508) disperse by then
table(AllYearLater$YearsLater, AllYearLater$DispersalStatus)
##
##
        0
##
   1 394 457
##
   2 91 556
    3 40 468
##
Most mothers have singleton clutches per breeding season, though 14.7\% (144/977)
0.014).
table(Mumgroupstat$ClutchSize)
##
```

##

1 2 3 ## 835 123 17

```
mean(Mumgroupstat$ClutchSize)
```

```
## [1] 1.166837
sd(Mumgroupstat$ClutchSize, na.rm = TRUE)/sqrt(length(Mumgroupstat$ClutchSize[!is.na(Mumgroupstat$ClutchSi
## [1] 0.01380802
```

13.7% (128/931) of mothers are co-breeding subordinates NB: This statement in my report is incorrect if we run the script (126/932).

```
table(MumStatus$StatusBrF)

##
## BrF NonBrF
## 806 126
```

the number of offspring produced by breed groups, with an upper limit of seven per breeding season (mean +/- SE= 1.68 +/- 0.031) NB: This statement in my report is incorrect if we run the script (1.35+/- 0.027).

```
mean(TData$nOffspringBreedGroup)

## [1] 1.337196

sd(TData$nOffspringBreedGroup, na.rm = TRUE)/sqrt(length(TData$nOffspringBreedGroup[!is.na(TData$nOffspringBreedGroup[!is.na(TData$nOffspringBreedGroup[])
## [1] 0.02321379
```

Breed groups with more helping subordinates, but not non-helping subordinates produce more offspring (figure 1), with no impact of territory quality or field period length in which sampling took place (table 1)

```
# Territories with more helpers have larger clutches
# visually
ggplot(data = subset(TData), aes(x = factor(nHelpers), y = nOffspringBreedGroup)) +
    geom_violin() + stat_summary(fun.data = mean_sdl, mult = 1,
    geom = "pointrange", color = "red") + geom_jitter(alpha = 0.25,
    width = 0.2, height = 0.1) + ylim(1, 7) + labs(x = "number of helping subordinates",
    y = "number of offspring born") + theme(axis.title.x = element_text(size = rel(2)),
    axis.title.y = element_text(size = rel(2)), axis.text = element_text(size = rel(1.5))) +
    annotate("text", size = 5, y = 0.5, x = 1, label = "n=6") +
    annotate("text", size = 5, y = 0.5, x = 2, label = "n=10") +
    annotate("text", size = 5, y = 0.5, x = 3, label = "n=32") +
    annotate("text", size = 5, y = 0.5, x = 4, label = "n=83") +
    ylim(0.5, 7)
```

```
## Warning: Ignoring unknown parameters: mult
## Scale for 'y' is already present. Adding another scale for 'y', which will
## replace the existing scale.
## Warning: Computation failed in `stat_summary()`:
## Warning: Removed 2 rows containing missing values (geom point).
```



```
mm <- glmer(nOffspringBreedGroup ~ GelmanTerritoryQuality + nHelpers +
NonHelpers + PeriodLength + (1 | TerritoryID) + (1 | FieldPeriodID) +
(1 | MaleID) + (1 | FemaleID), data = TData, family = poisson)</pre>
```

```
## boundary (singular) fit: see help('isSingular')
summary(mm)
```

```
## Generalized linear mixed model fit by maximum likelihood (Laplace
     Approximation) [glmerMod]
##
  Family: poisson (log)
## Formula:
## nOffspringBreedGroup ~ GelmanTerritoryQuality + nHelpers + NonHelpers +
##
       PeriodLength + (1 | TerritoryID) + (1 | FieldPeriodID) +
##
       (1 | MaleID) + (1 | FemaleID)
##
      Data: TData
##
                       logLik deviance df.resid
##
        AIC
                 BIC
##
     2086.0
              2128.7
                      -1034.0
                                2068.0
##
##
  Scaled residuals:
##
      Min
                1Q Median
                                3Q
                                        Max
  -0.6244 -0.2863 -0.2203 0.1089
##
                                    4.8177
##
## Random effects:
  Groups
                  Name
                              Variance Std.Dev.
```

```
## MaleID
                 (Intercept) 0
## FemaleID
                                      0
                 (Intercept) 0
## TerritoryID
                 (Intercept) 0
                                      0
                                      0
## FieldPeriodID (Intercept) 0
## Number of obs: 848, groups:
## MaleID, 333; FemaleID, 320; TerritoryID, 114; FieldPeriodID, 26
##
## Fixed effects:
##
                           Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                          0.2405179 0.1137032 2.115 0.03440 *
## GelmanTerritoryQuality 0.0873263 0.0622716 1.402 0.16081
## nHelpers
                          0.1640740 0.0532151
                                                3.083 0.00205 **
## NonHelpers
                          0.0299286 0.0327653
                                               0.913 0.36102
## PeriodLength
                         -0.0002375 0.0013432 -0.177 0.85963
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
##
              (Intr) GlmnTQ nHlprs NnHlpr
## GlmnTrrtryQ -0.070
## nHelpers
            -0.014 -0.022
## NonHelpers -0.200 -0.142 -0.127
## PeriodLngth -0.930 0.111 -0.116 -0.011
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
drop1(mm, test = "Chisq")
## boundary (singular) fit: see help('isSingular')
## Single term deletions
##
## Model:
## nOffspringBreedGroup ~ GelmanTerritoryQuality + nHelpers + NonHelpers +
      PeriodLength + (1 | TerritoryID) + (1 | FieldPeriodID) +
##
##
      (1 | MaleID) + (1 | FemaleID)
##
                                        LRT Pr(Chi)
                         npar
                                 AIC
## <none>
                              2086.0
## GelmanTerritoryQuality
                            1 2086.0 1.9655 0.160925
## nHelpers
                            1 2093.1 9.0494 0.002628 **
## NonHelpers
                            1 2084.9 0.8244 0.363887
                            1 2084.1 0.0313 0.859683
## PeriodLength
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Breed groups in better quality territories sustain more adult individuals (estimate=
```

0.179, SE= 0.080, p= 0.025, figure 2)

```
mmm <- glmer(nAdults ~ GelmanTerritoryQuality + (1 | FieldPeriodID) +
    (1 | TerritoryID) + (1 | MaleID) + (1 | FemaleID), data = TData,
    family = poisson)
summary(mmm)
```

Generalized linear mixed model fit by maximum likelihood (Laplace

```
##
    Approximation) [glmerMod]
## Family: poisson (log)
## Formula: nAdults ~ GelmanTerritoryQuality + (1 | FieldPeriodID) + (1 |
      TerritoryID) + (1 | MaleID) + (1 | FemaleID)
##
##
     Data: TData
##
##
       ATC.
                BIC
                      logLik deviance df.resid
##
    2469.5
              2497.9 -1228.7
                               2457.5
##
## Scaled residuals:
                      Median
##
       Min
                 1Q
                                    3Q
                                            Max
## -1.47526 -0.82444 -0.08846 0.50155
##
## Random effects:
## Groups
                 Name
                              Variance Std.Dev.
## MaleID
                  (Intercept) 0.003399 0.0583
## FemaleID
                  (Intercept) 0.131519 0.3627
## TerritoryID
                  (Intercept) 0.039619 0.1990
## FieldPeriodID (Intercept) 0.018116 0.1346
## Number of obs: 848, groups:
## MaleID, 333; FemaleID, 320; TerritoryID, 114; FieldPeriodID, 26
## Fixed effects:
                          Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                           0.15131
                                      0.05595
                                                2.704 0.00684 **
## GelmanTerritoryQuality 0.17946
                                      0.08031
                                                2.235 0.02545 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Correlation of Fixed Effects:
## GlmnTrrtryQ 0.009
drop1(mmm, test = "Chisq")
## boundary (singular) fit: see help('isSingular')
## Single term deletions
##
## Model:
## nAdults ~ GelmanTerritoryQuality + (1 | FieldPeriodID) + (1 |
##
      TerritoryID) + (1 | MaleID) + (1 | FemaleID)
##
                          npar
                                  AIC
                                         LRT Pr(Chi)
## <none>
                               2469.5
## GelmanTerritoryQuality
                             1 2472.3 4.7703 0.02895 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
ggplot(data = TData, aes(x = factor(nAdults), y = GelmanTerritoryQuality)) +
    geom_violin() + coord_flip() + stat_summary(fun.y = mean,
    mult = 1, geom = "pointrange", color = "red") + geom_jitter(alpha = 0.25,
    width = 0.2, height = 0.1) + labs(x = "number of subordinates",
   y = "territory quality") + theme(axis.title.x = element_text(size = rel(2)),
    axis.title.y = element_text(size = rel(2)), axis.text = element_text(size = rel(1.5))) +
    annotate("text", size = 5, y = -1.9, x = 7, label = "n=6") +
    annotate("text", size = 5, y = -1.9, x = 6, label = "n=10") +
    annotate("text", size = 5, y = -1.9, x = 5, label = "n=32") +
    annotate("text", size = 5, y = -1.9, x = 4, label = "n=83") +
```

```
annotate("text", size = 5, y = -1.9, x = 3, label = "n=203") + annotate("text", size = 5, y = -1.9, x = 2, label = "n=295") + annotate("text", size = 5, y = -1.9, x = 1, label = "n=234") + ylim(-2.01, 2.01)
```

- ## Warning: `fun.y` is deprecated. Use `fun` instead.
- ## Warning: Ignoring unknown parameters: mult
- ## Warning: Removed 7 rows containing missing values (geom_segment).

Per mother, the number of offspring produced is not influenced by territory quality (estimate= 0.039, SE= 0.068, p= 0.566), by the number of helping subordinates (estimate= 0.0610, SE= 0.068, p= 0.566), or by non-helping subordinates in the breed group (estimate= 0.003, SE= 0.035, p= 0.938), whether she is dominant or subordinate (estimate= 0.032, SE= 0.102, p= 0.756), or the field period length in which sampling took place (estimate<0.001, SE= 0.002, p= 0.893)

```
mmm <- glmer(ClutchSize ~ GelmanTerritoryQuality + nHelpers +
    Dominant + NonHelpers + PeriodLength + (1 | TerritoryID) +
    (1 | MumID), data = subset(Mumstatusgroupstat), family = poisson)</pre>
```

boundary (singular) fit: see help('isSingular')

```
summary(mmm)
```

```
## Generalized linear mixed model fit by maximum likelihood (Laplace
    Approximation) [glmerMod]
## Family: poisson (log)
## Formula:
## ClutchSize ~ GelmanTerritoryQuality + nHelpers + Dominant + NonHelpers +
##
      PeriodLength + (1 | TerritoryID) + (1 | MumID)
##
     Data: subset(Mumstatusgroupstat)
##
##
       AIC
                BIC
                      logLik deviance df.resid
##
    1784.4
             1821.8
                      -884.2
                               1768.4
                                           784
##
## Scaled residuals:
      Min 1Q Median
                               3Q
                                      Max
## -0.2992 -0.1709 -0.1462 -0.1230 2.4009
##
## Random effects:
## Groups
               Name
                           Variance Std.Dev.
                                    0
## MumID
               (Intercept) 0
## TerritoryID (Intercept) 0
                                    0
## Number of obs: 792, groups: MumID, 331; TerritoryID, 115
## Fixed effects:
##
                          Estimate Std. Error z value Pr(>|z|)
                         0.0969561 0.1533686
## (Intercept)
                                                0.632
                                                         0.527
## GelmanTerritoryQuality 0.0391033 0.0681551
                                                0.574
                                                         0.566
## nHelpers
                        0.0609382 0.0618746
                                                0.985
                                                         0.325
## Dominant1
                         0.0318834 0.1024194
                                                0.311
                                                         0.756
## NonHelpers
                         0.0027912 0.0356963
                                                0.078
                                                         0.938
## PeriodLength
                         0.0002029 0.0015071 0.135
                                                         0.893
##
## Correlation of Fixed Effects:
##
              (Intr) GlmnTQ nHlprs Dmnnt1 NnHlpr
## GlmnTrrtryQ -0.050
## nHelpers
              -0.197 -0.033
## Dominant1
              -0.562 -0.017 0.303
## NonHelpers -0.242 -0.145 -0.081 0.144
## PeriodLngth -0.705 0.116 -0.123 -0.107 -0.028
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
```

53.2% (453/851) of offspring disperse after one year, 85.9% (556/647) after two years and 92.1% (468/508) after three years

```
table(AllYearLater$YearsLater, AllYearLater$DispersalStatus)
```

Rates of offspring dispersal from the natal territory increases when offspring natal territory quality is higher and when more offspring are born in the breed group (table 2, Fig. 2).

```
m2 <- glmer(DispersalStatus ~ Sex + GelmanTerritoryQuality +</pre>
    nOffspringBreedGroup * YearsLater + nAdults + (1 | BreedGroupID) +
    (1 | FieldPeriodx) + (1 | TerritoryIDx) + (1 | MumID) + (1 |
    DadID), data = AllYearLater, family = binomial)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.513228 (tol = 0.002, component 1)
summary(m2)
## Generalized linear mixed model fit by maximum likelihood (Laplace
     Approximation) [glmerMod]
## Family: binomial (logit)
## Formula:
## DispersalStatus ~ Sex + GelmanTerritoryQuality + nOffspringBreedGroup *
      YearsLater + nAdults + (1 | BreedGroupID) + (1 | FieldPeriodx) +
##
##
       (1 | TerritoryIDx) + (1 | MumID) + (1 | DadID)
##
     Data: AllYearLater
##
       AIC
##
              BIC
                      logLik deviance df.resid
     1806.3
            1873.4 -891.1
                              1782.3
##
##
## Scaled residuals:
              1Q Median
                               3Q
##
      Min
                                      Max
## -6.1557 -0.2150 0.1422 0.4026 6.2420
##
## Random effects:
## Groups
            Name
                            Variance Std.Dev.
## BreedGroupID (Intercept) 2.716379 1.64814
               (Intercept) 2.060371 1.43540
                (Intercept) 0.499726 0.70691
## DadID
## TerritoryIDx (Intercept) 0.001011 0.03179
## FieldPeriodx (Intercept) 0.511887 0.71546
## Number of obs: 1986, groups:
## BreedGroupID, 694; MumID, 353; DadID, 347; TerritoryIDx, 110; FieldPeriodx, 26
## Fixed effects:
##
                                  Estimate Std. Error z value Pr(>|z|)
                                               0.5162 -5.500 3.79e-08 ***
## (Intercept)
                                   -2.8395
## Sex
                                    0.1812
                                               0.2115 0.857 0.39163
## GelmanTerritoryQuality
                                    0.3203
                                               0.3304 0.969 0.33241
## nOffspringBreedGroup
                                    0.5707
                                               0.2385 2.392 0.01674 *
## YearsLater
                                    2.7598
                                               0.3029
                                                        9.110 < 2e-16 ***
## nAdults
                                    0.1378
                                               0.1046 1.318 0.18751
## nOffspringBreedGroup:YearsLater -0.3473
                                               0.1228 -2.828 0.00468 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
              (Intr) Sex
                            GlmnTQ nOffBG YrsLtr nAdlts
##
## Sex
              -0.196
## GlmnTrrtryQ 0.064 -0.015
## nOffsprngBG -0.741 -0.047 -0.055
```

```
## YearsLater -0.744 0.032 0.015 0.619
## nAdults -0.245 0.009 -0.042 -0.075 0.077
## nOffspBG:YL 0.663 -0.002 0.004 -0.773 -0.824 -0.035
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.513228 (tol = 0.002, component 1)
AllYearLater$nOffspringBreedGroupMerged <- AllYearLater$nOffspringBreedGroup
AllYearLater$nOffspringBreedGroupMerged[AllYearLater$nOffspringBreedGroupMerged >
    2] <- "3+"
ggplot(data = subset(AllYearLater, YearsLater != 0), aes(x = factor(nOffspringBreedGroupMerged),
    y = (DispersalStatus), color = factor(YearsLater))) + stat_summary(fun.data = mean_sdl,
    mult = 1, geom = "point", line = "dotted", size = 3) + stat_summary(aes(group = 1,
    color = factor(YearsLater)), fun.data = mean_sdl, mult = 1,
    geom = "line") + geom_jitter(alpha = 0.25, width = 0.3, height = 0.05) +
    geom_smooth(method = "lm", se = F) + ylim(-0.15, 1) + labs(x = "offspring born",
    y = "dispersal status", color = "years later") + theme(legend.direction = "vertical") +
    guides(color = guide_legend(reverse = TRUE)) + theme(axis.title.x = element_text(size = rel(1.5)),
    axis.title.y = element_text(size = rel(1.5)), axis.text = element_text(size = rel(1)),
   legend.text = element_text(size = rel(1.5)), legend.title = element_text(size = rel(1.5))) +
   theme(legend.background = element_blank()) + annotate("text",
    size = 5, x = 1, y = -0.15, label = "n=1145") + annotate("text",
    size = 5, x = 2, y = -0.15, label = "n=561") + annotate("text",
    size = 5, x = 3, y = -0.15, label = "n=300")
## Warning: Ignoring unknown parameters: mult, line
## Warning: Ignoring unknown parameters: mult
## Warning: Computation failed in `stat_summary()`:
## Computation failed in `stat_summary()`:
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 737 rows containing missing values (geom_point).
```



```
##
## Random effects:
## Groups
                           Variance Std.Dev.
## MumID
                (Intercept) 7.730e-02 2.780e-01
## DadID
                (Intercept) 1.083e-01 3.291e-01
## TerritoryIDx (Intercept) 2.659e-09 5.156e-05
## FieldPeriodx (Intercept) 2.767e-01 5.260e-01
## Number of obs: 1986, groups:
## MumID, 353; DadID, 347; TerritoryIDx, 110; FieldPeriodx, 26
##
## Fixed effects:
##
                        Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                         0.30063
                                    0.10141
                                             2.965 0.00303 **
## Sex
## GelmanTerritoryQuality 0.25213
                                   0.15001
                                             1.681 0.09281 .
## nOffspringBreedGroup -0.04169
                                    0.05851 -0.712 0.47619
                                    0.06896 -0.878 0.38017
                        -0.06052
## nAllABx
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Correlation of Fixed Effects:
              (Intr) Sex
                           GlmnTQ nOffBG
##
## Sex
              -0.276
## GlmnTrrtryQ 0.087 -0.005
## nOffsprngBG -0.496 -0.069 -0.062
## nAllABx
              -0.198 -0.018 -0.003 -0.139
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
89.6\% (241/269) of sons becoming dominant and 82.8\% (198/239) of daughters be-
coming dominant three years later
table(AllYearLater$YearsLater, AllYearLater$Dominant, AllYearLater$Sex)
## , , = 0
##
##
##
        0 1
    1 293 115
##
##
    2 87 214
##
    3 41 198
##
##
  , , = 1
##
##
##
        0
            1
    1 303 140
##
##
    2 74 272
    3 28 241
```

-2.1968 -1.0147 0.5995 0.8166 1.4117

[1] 0.8284519

241/(241 + 28)

[1] 0.8959108

198/(198 + 41) # daughters

sons

There is no impact of natal territory quality (estimate = 0. 252, SE= 0.150, p= 0.093), the number of offspring co-born in the natal territory (estimate = -0.042, SE= 0.059, p= 0.476) or the number of adult subordinates in the natal territory (estimate = -0.061, SE= 0.069, p= 0.380) on whether offspring established dominancy in subsequent years.

```
summary(m)
```

```
## Generalized linear mixed model fit by maximum likelihood (Laplace
    Approximation) [glmerMod]
## Family: binomial (logit)
## Formula: Dominant ~ Sex + GelmanTerritoryQuality + nOffspringBreedGroup +
##
      nAllABx + (1 | TerritoryIDx) + (1 | FieldPeriodx) + (1 |
##
      MumID) + (1 | DadID)
     Data: AllYearLater
##
##
       AIC
##
                     logLik deviance df.resid
##
    2644.4
             2694.7 -1313.2
                              2626.4
                                         1977
##
## Scaled residuals:
     Min 1Q Median
                              3Q
## -2.1968 -1.0147 0.5995 0.8166 1.4117
##
## Random effects:
## Groups
                           Variance Std.Dev.
               Name
## MumID
                (Intercept) 7.730e-02 2.780e-01
                (Intercept) 1.083e-01 3.291e-01
## TerritoryIDx (Intercept) 2.659e-09 5.156e-05
## FieldPeriodx (Intercept) 2.767e-01 5.260e-01
## Number of obs: 1986, groups:
## MumID, 353; DadID, 347; TerritoryIDx, 110; FieldPeriodx, 26
##
## Fixed effects:
##
                         Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                         0.30063
                                    0.10141
                                             2.965 0.00303 **
## GelmanTerritoryQuality 0.25213
                                    0.15001
                                             1.681 0.09281 .
## nOffspringBreedGroup -0.04169
                                    0.05851 -0.712 0.47619
## nAllABx
                         -0.06052
                                    0.06896 -0.878 0.38017
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Correlation of Fixed Effects:
                           GlmnTQ nOffBG
##
             (Intr) Sex
## Sex
              -0.276
## GlmnTrrtryQ 0.087 -0.005
## nOffsprngBG -0.496 -0.069 -0.062
## nAllABx
              -0.198 -0.018 -0.003 -0.139
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
```

Dominant mothers male-bias offspring sex ratios when increasing the number of offspring produced, despite even mean offspring sex-ratios (0.48) (table 3, Fig. 3a)... There is no influence of territory quality or the number of adult subordinates in the territory on offspring sex-ratios

```
m <- glmer(cbind(nMale, nFem) ~ ClutchSize + Dominant + GelmanTerritoryQuality +
    nHelpers + cvTQbetweenyears + (1 | MumID) + (1 | FieldPeriodID) +
    (1 | TerritoryID), data = subset(Mumstatusgroupstat, !is.na(cvTQbetweenyears)),
    family = binomial)
## boundary (singular) fit: see help('isSingular')
## Generalized linear mixed model fit by maximum likelihood (Laplace
    Approximation) [glmerMod]
## Family: binomial (logit)
## Formula: cbind(nMale, nFem) ~ ClutchSize + Dominant + GelmanTerritoryQuality +
      nHelpers + cvTQbetweenyears + (1 | MumID) + (1 | FieldPeriodID) +
##
##
      (1 | TerritoryID)
     Data: subset(Mumstatusgroupstat, !is.na(cvTQbetweenyears))
##
##
##
       AIC
                BIC
                      logLik deviance df.resid
##
    1181.6
             1223.6
                      -581.8 1163.6
##
## Scaled residuals:
      Min
           1Q Median
## -2.4026 -0.9377 -0.1406 1.0413 1.4666
## Random effects:
## Groups
                             Variance Std.Dev.
## MumID
                 (Intercept) 0.000e+00 0.000e+00
## TerritoryID (Intercept) 2.748e-02 1.658e-01
## FieldPeriodID (Intercept) 9.359e-10 3.059e-05
## Number of obs: 784, groups: MumID, 324; TerritoryID, 107; FieldPeriodID, 26
##
## Fixed effects:
                         Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                         ## ClutchSize
                         0.28612
                                    0.11662 2.453
                                                      0.0142 *
## Dominant1
                         -0.52219
                                    0.21225 - 2.460
                                                     0.0139 *
## GelmanTerritoryQuality 0.13164
                                    0.13622
                                             0.966
                                                     0.3338
                                    0.12768 0.080
                         0.01018
## nHelpers
                                                     0.9364
## cvTQbetweenyears
                         -0.27263
                                    0.22248 -1.225
                                                     0.2204
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
              (Intr) CltchS Dmnnt1 GlmnTQ nHlprs
##
## ClutchSize -0.415
## Dominant1 -0.618 -0.022
## GlmnTrrtryQ 0.027 -0.075 -0.024
              -0.275 -0.120 0.314 -0.010
## nHelpers
## cvTQbtwnyrs -0.572 -0.082 0.001 0.041 0.028
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
```

```
Mumstatusgroupstat$ClutchSizeMerged <- Mumstatusgroupstat$ClutchSize
Mumstatusgroupstat$ClutchSizeMerged[Mumstatusgroupstat$ClutchSizeMerged >
    2] <- "3+"
lables <- c(`1` = "Dominant", `0` = "Subordinate")</pre>
dat_text <- data.frame(Dominant = c("1", "1", "1", "0", "0",</pre>
    "0"), lables = c("n=577", "n=95", "n=13", "n=93", "n=10",
    "n=4"), x = c(1, 2, 3, 1, 2, 3), y = c(-0.1, -0.1, -0.1,
    -0.1, -0.1, -0.1)
ggplot(subset(Mumstatusgroupstat), aes(x = ClutchSizeMerged,
    y = OffspringSexRatio, color = Dominant, group = Dominant)) +
    geom_jitter(width = 0.4, height = 0.01) + geom_smooth(method = lm,
    se = F) + stat_summary(geom = "point", fun.y = "mean", col = "black",
    size = 3, shape = 21, fill = "black") + facet_grid(col = vars(Dominant),
    labeller = labeller(Dominant = lables)) + geom_hline(data = filter(Mumstatusgroupstat,
    Status == "BrF"), aes(yintercept = mean(Mumstatusgroupstat$OffspringSexRatio[Mumstatusgroupstat$Status
    "BrF"])), linetype = "dashed", size = 1, width = 0.5, colour = "#00CCCC") +
    geom_hline(data = filter(Mumstatusgroupstat, Status != "BrF"),
        aes(yintercept = mean(Mumstatusgroupstat$OffspringSexRatio[Mumstatusgroupstat$Status !=
            "BrF"])), linetype = "dashed", size = 1, width = 0.5,
        colour = "#FF3333") + labs(x = "offspring produced",
    y = "offspring sex ratio") + theme(axis.title.x = element_text(size = rel(2)),
    axis.title.y = element_text(size = rel(2)), axis.text = element_text(size = rel(1.5)),
    legend.title = element_text(size = rel(1.5)), legend.text = element_text(size = rel(1.5)),
    strip.background = element_blank(), strip.text.x = element_blank()) +
    scale_color_discrete(name = "mother status", breaks = c("0",
        "1"), labels = c("subordinate", "dominant")) + geom_text(size = 5,
    data = dat_text, aes(x = x, y = y, label = lables), show.legend = FALSE)
## Warning: `fun.y` is deprecated. Use `fun` instead.
## Warning: Ignoring unknown parameters: width
## Ignoring unknown parameters: width
```

`geom_smooth()` using formula 'y ~ x'

maintaining a male-biased mean offspring sex-ratio of 0.62 (78/126, two-tailed binomial test= 0.009)

```
binom.test(x = 78, n = 126, p = 1/2, alternative = "two.sided")
```

```
##
## Exact binomial test
##
## data: 78 and 126
## number of successes = 78, number of trials = 126, p-value = 0.009503
## alternative hypothesis: true probability of success is not equal to 0.5
## 95 percent confidence interval:
## 0.5282941 0.7040691
## sample estimates:
## probability of success
## 0.6190476
```