Approfondimento 3.10

Dimostrazione del Teorema 3.33

Dobbiamo per prima cosa verificare che M_{\min} è ben definito, cioè che la definizione di δ_{\min} non dipende dallo specifico stato scelto per rappresentare una classe di equivalenza: se q e q' sono indistinguibili, allora $\delta_{\min}([q],a)=[\delta(q,a)]=[\delta(q',a)]=\delta_{\min}([q'],a)$, per ogni $a\in\Sigma$. Se così non fosse, $\delta(q,a)$ e $\delta(q',a)$ sarebbero distinguibili (per il Teorema 3.32); sia w la stringa che li distingue. Ma allora aw distingue q da q', contro l'ipotesi.

Per dimostrare che $\mathcal{L}[M] = \mathcal{L}[M_{\min}]$ si dimostra, più in generale, che per ogni stringa $w \in \Sigma^*$, se r è lo stato in cui si porta M da q_0 consumando w, allora M_{\min} partendo dal suo stato iniziale $[q_0]$ e consumando la stessa w si porta in [r]. Ovvero, usando la funzione estesa $\hat{\delta}$: $\hat{\delta}_{\min}([q_0], w) = [\hat{\delta}(q_0, w)]$. La dimostrazione è una semplice induzione sulla lunghezza di w.

Rimane da dimostrare che il numero di stati di M_{\min} non è maggiore del numero di stati di un altro DFA che accetta lo stesso linguaggio. Supponiamo dunque che esista N con $\mathcal{L}[M] = \mathcal{L}[N]$, che N abbia il minimo numero di stati possibile, e che N abbia strettamente meno stati di M_{\min} . Applichiamo l'algoritmo della tabella a scala all'automa che si ottiene unendo M_{\min} e N (possiamo sempre supporre che gli insiemi degli stati siano disgiunti e che dunque non vi siano conflitti nella funzione di transizione). Uno stato è finale in questo automa unione se e solo se è finale nell'automa da cui proviene. La nozione di stato iniziale non ha alcun ruolo nel riempimento della tabella a scala e non abbiamo bisogno di specificare "lo" stato iniziale dell'automa unione. Gli stati iniziali di M_{\min} e N sono certo indistinguibili nell'automa unione, perché $\mathcal{L}[M_{\min}] = \mathcal{L}[N]$. Inoltre, se p (di M_{\min}) e q (di N) sono indistinguibili nell'automa unione, allora sono indistinguibili (nell'unione) anche i loro successori attraverso un qualsiasi simbolo a. Se infatti i successori fossero distinguibili (diciamo attraverso w), allora aw distinguerebbe p da q.

N non ha certo stati inaccessibili dal suo stato iniziale (altrimenti potrebbero essere rimossi, ottenendo un automa con un numero inferiore di stati che accetta lo stesso linguaggio). M_{\min} non ha stati inaccessibili per costruzione. Ne segue che ogni stato di M_{\min} è indistinguibile da (almeno) uno stato di N. Infatti, sia p uno stato di M_{\min} e sia v la stringa che porta M_{\min} in p partendo dallo

 $^{^7}$ Il Teorema 3.32 ci assicura che gli stati di M non possono essere raggruppati più di quello che già lo sono in M_{\min} , ma non esclude che possano esistere *altri* automi, completamente diversi da M e che accettano lo stesso linguaggio con un numero di stati minore di quello di M_{\min} .

2 Approfondimento 3.10

stato iniziale. Sia ora q lo stato in cui si trova N partendo dal suo stato iniziale iniziale consumando v: p e q sono indistinguibili (nell'unione) perché gli stati iniziali di M_{\min} e N sono indistinguibili, e i successori di stati indistinguibili sono indistinguibili (più formalmente, lo si dimostra per induzione sulla lunghezza |v|).

Siccome N ha strettamente meno stati di M_{\min} , due stati p e p' di M_{\min} devono essere indistinguibili da uno stesso stato di N. Ma la relazione di indistinguibilità è transitiva: anche i due stati p e p' devono essere indistinguibili, cosa impossibile perché M_{\min} è stato costruito in modo che i suoi stati siano a due a due distinguibili. Ne segue che N con le caratteristiche ipotizzate non può esistere.