32. A Knuth-Morris-Pratt algoritmus

A "nyers erőt" használó egyszerű mintaillesztés műveletigénye legrosszabb esetben m*n-es volt. A Knuth-Morris-Pratt algoritmus (KMP-vel rövidítjük) egyike azon mintaillesztő eljárásoknak, amelyek ügyes észrevételek és mélyebb megfontolások alapján hatékonyabb módon oldják meg az stringkeresés feladatát.

32.1. Az algoritmus elve

Amikor az egyszerű mintaillesztés során az illeszkedés elromlott, a mintát *egy pozícióval* eltoltuk és az elejétől újra kezdtük a minta és a lefedett szövegrész összehasonlítását. Nem biztos azonban, hogy a már megvizsgált szövegrész minden karakterén újra át kell haladni. Amennyiben az illeszkedés elromlik, akkor egy "hibás kezdetünk" van, de ez a kezdet ismert, mivel az elromlás előtti karakterig *egyezett* a mintával. Ezt az információt használjuk fel arra, hogy *elkerüljük* az állandó *visszalépést* a szövegben a minta kezdetére. Tekintsük a 32.1. ábrán látható illeszkedési feladatot.

32.1. ábra. Példa illeszkedésvizsgálatra (*KMP*)

A példában a minta 6. pozíciójánál romlik el az illeszkedés, hiszen a minta első 5 pozíciója illeszkedett. Kérdés, hogy *hová pozícionálhatjuk* a mintát a szövegben, és honnan vizsgáljuk tovább az illeszkedést, hogy a minta előfordulását megtaláljuk (ha létezik, át ne "ugorjuk") és az eddig megszerzett 5 illeszkedő karakternyi információt felhasználjuk.

Látható, hogy a minta illeszkedő részének (M[1..5]) van olyan valódi kezdőszelete (valódi prefixe), amely egyezik ezen illeszkedő rész egy valódi végszeletével (valódi szuffixével), hiszen M[1..3] = M[3..5] ('ABA' = 'ABA'). A vizsgálatot ezért úgy is folytathatjuk, hogy a kezdőszelete "rátoljuk" a vele megegyező végszeletre, ahogyan a 32.2. ábrán látható.

Α	В	Α	В	Α	В	Α	С
Α	В	A	В	Α	¢		
		Α	В	Α	В	A	C

32.2. ábra. A minta megfelelő eltolása (*KMP*)

(A továbbiakban inkább a karakterisztikusabb *pefix* és *szuffix* kifejezéseket használjuk a leírásban.) Egy *prefix* vagy *szuffix* valódi, ha hossza legalább 1, és kisebb, mint annak a sorozatnak a hossza, amelynek a prefixe vagy szuffixe.

Amennyiben a mintával akkorát ugrunk, hogy a minta eleje az említett szuffixnél kezdődjön, azaz az prefix a vele egyező szuffixszel kerüljön fedésbe, a *prefixet* már *nem kell újra vizsgálni*, mivel az azonos a szuffixel, ami megegyezik a szöveg lefedett részével, mivel az részsorozata az eredetileg illeszkedő M[1..5] = S[k+1..k+5] szövegrésznek. Ezek után az illeszkedés vizsgálatot a szöveg "elromlott" S[k+6] karakterével, és az említett *prefix utáni első karakterrel* lehet tovább folytatni.

Mi a teendő $t\ddot{o}bb$ ilyen egyező prefix és szuffix pár esetén? A példában is találhatunk egy másik párost, az M[1..1] = M[5..5] ('A'='A'). Ha annak megfelelően pozícionáljuk a mintát, ahogyan a 32.3. ábra is mutatja, majd a következő karaktertől kezdünk összehasonlítani, azt tapasztaljuk, hogy nem illeszkedik a minta a szövegre, mert "átugrottunk" egy illeszkedést.

Α	В	A	В	A	В	A	С	Α	Α	D
A	В	A	В	Α	c					
				Α	В	A	В	Α	С	
-	-	Α	В	A	В	A	С			

32.3. ábra. Nem megfelelő eltolás több egyező prefix és suffix pár esetén

Tehát a legkisebb olyan ugrást kell választanunk, ahol a minta M[1..5] részsorozatának egy prefixe illeszkedik a részsorozat egy szufixére. Akkor "ugrunk" a legkisebbet, ha a legnagyobb ilyen prefixet választjuk.

32.2. Az algoritmus helyessége

Ahhoz, hogy az algoritmus helyességét belássuk, a következő kérdéseket kell tisztáznunk. Tegyük fel, hogy a minta M[1..j] részsorozata illeszkedett a szöveg S[k+1..k+j] részsorozatára és az illeszkedés a következő pozíción romlott el, azaz

$$M[1..j] = S[k+1..k+j]$$
 és $M[j+1] \neq S[k+j+1]$

1. Ha létezik M[1..j] részsorozatnak olyan valódi prefixe (p = M[1..x]) és szuffixe (s = M[j-x+1..j]), hogy p = s, akkor valóban állítható-e, hogy az ugrás után biztosan nem kell újra vizsgálni az M[1..x] és az általa lefedett S[k+j-x+1..k+j] szövegrészt?

Biztosan nem kell, mivel p = s, azaz M[1..x] = M[j-x+1..j], továbbá az illeszkedés az M[j+1] pozíción romlott el, tehát M[1..j] = S[k+1..k+j], és ezek tetszőleges, jelenleg fedésben lévő részsorozatai is azonosak, azaz $S[k+j-x+1..k+j] = M[j-x+1..j] \Rightarrow M[1..x] = S[k+j-x+1..k+j]$. Érvelésünket alátámasztja a 32.4. ábra.

32.4. ábra. Példa egyező valódi prefix-szuffix párosra

2. Mit tegyünk, ha nincs ilyen egymással megegyező valódi prefix-szuffix páros?

Mivel M[1..j] illeszkedett és $M[j+1] \neq S[k+j+1]$, $\forall i \, (k < i < k+j)$ eltolásra a minta biztosan nem fog illeszkedni. Ahogyan a 32.5. ábrán is látszik, ahhoz hogy ilyen i eltolással illeszkedjen, az kellene, hogy legyen legalább 1 hosszú valódi, egymással azonos prefixszuffix páros (p = s), mert az M[1..x] = S[k+j-x+1..k+j] részsorozatoknak illeszkedniük kell (ekkor i = k+j-x) ahhoz, hogy teljes illeszkedés lehessen. Ebből pedig következik, hogy M[1..x] = M[j-x+1..j], mivel M[1..j] = S[k+1..k+j].

(Beláttuk tehát, hogy az M[1..j] = S[k+1..k+j] feltétel esetén, az i (k < i < k+j) érvényes eltolás szükséges feltételét is.)

Tehát a mintával "átugorhatjuk" a már vizsgált S[k+1..k+j] részt, és az illesztést a minta elejétől és a szöveg S[k+j+1] pozíciójától újra kezdhetjük. Ezt a konklúziót a 32.5. ábra is alátámasztja.

32.5. ábra. Példa nem egyező valódi prefix-szuffix párra

3. Mit tegyünk, ha több ilyen egymással megegyező, valódi prefix-szuffix páros is van?

Ha több ilyen prefix-szuffix páros is van, akkor a leghosszabbat kell venni, mert ekkor "ugrunk" a legkisebbet. Ilyenkor nem fordulhat elő, hogy átugrunk egy előfordulást.

Definiáljuk a *next* függvényt, amely megadja a minta egyes kezdőrészleteire a *leghosszabb* egymással egyező prefix-szuffix párok hosszát. Ezt felhasználva meg tudjuk adni a mintával való "ugrás" mértékét.

$$\forall j \in [1..m-1] \colon next(j) \coloneqq \max\{h \in [0..j-1]\} \text{ , ahol } M[1..h] = M[j-h+1..j]$$

A next függvénnyel kapcsolatban a következő megjegyzéseket tesszük.

- A *next* értelmezési tartományát elegendő (m-1)-ig definiálni, mert ha (j=m)-ig illeszkedik a minta, akkor találtunk egy érvényes eltolást, tehát készen vagyunk, és nem kell a mintával tovább lépkednünk.
- A h = 0 legkisebb értékét, akkor veszi fel a függvény, ha nincs a minta M[1..j] kezdőszeletében egymással megegyező, valódi prefix-szuffix páros. Továbbá, ha létezik ilyen prefix-szuffix páros, az attól lesz valódi, hogy a hosszát (j-1)-gyel felülről korlátozzuk.
- A *next* függvény *csak a mintától* függ, így értékeit a minta ismeretében a keresés előtt kiszámíthatjuk, és eltárolhatjuk egy next[1..m-1] vektorban.

32.3. A KMP algoritmus

A minta elejétől kezdjük összehasonlítani a szöveg és a minta egymással fedésben lévő karaktereit. Amennyiben a szöveg és minta karakterei azonosak, akkor a szövegben és a mintában egyaránt eggyel továbblépünk. Azonban, ha a karakterek különböznek, a következőket tesszük.

• Ha a minta elején állunk (j = 0 esetén): a szöveg következő pozíciójától (S[k + j + 2]) és a minta elejétől kezdve újra kezdjük az illeszkedés vizsgálatot, mivel a *next* függvény a valódi prefix-szuffix hosszát adja meg, de az 1 hosszú sorozatnak nincs valódi prefixe vagy szuffixe (next[1] = 0).

• Ha nem a minta elején állunk (j > 0 esetén), akkor a next függvényben rögzített eltolást hajtjuk végre: azt mondjuk, hogy eddig j hosszon illeszkedett a minta, továbbiakban next[j] hosszon illeszkedik. Az összehasonlítást a minta M[next[j]+1] karakterétől és a szöveg S[k + j + 1] karakterétől folytatjuk, azaz a szövegben onnan, ahol az illeszkedés elromlott.

Mivel a szövegben legfeljebb 1 hosszú lépésekkel haladunk végig, az egyszerűség kedvéért a k eltolásnak megfelelő változó helyett használjunk egy i változót, amellyel a szövegben szekvenciálisan haladunk (i = k + j), majd az algoritmus végén beállítjuk a k változó értékét. A KMP algoritmus a 32.6. ábrán látható.

32.6. ábra. A *KMP* algoritmus

Az *initnext* eljárás során töltjük fel a *next* vektort. A feltöltés ötlete: a *minta elcsúsztatott keresése önmagán (KMP* algoritmussal), miközben feljegyezzük a legnagyobb illeszkedő részek hosszát.

Nézzük meg egy példán a feltöltés menetét. Legyen a minta M = 'ABABAC'. Már korábban láttuk, hogy next[1] = 0. Ezután a next[2] értékét szeretnénk meghatározni. Ekkor az M[1..2] kezdőrészletnek keressük a legnagyobb egymással megegyező, valódi prefix-szuffix párját. A legnagyobb ilyen valódi prefix-szuffix 1 hosszúságú lehet. Tehát az a kérdés, hogy az M[1] = M[2] egyenlőség teljesül-e? Ehhez a mintát csúsztassuk el eggyel, és a fedésben lévő karaktereket vizsgáljuk (lásd: 32.7. ábra):

Α	В	Α	В	Α	С
	A	В	Α	В	A

32.7. ábra. A *next* vektor kiszámítása (1)

Látható, hogy a két karakter nem azonos, így next[2] = 0.

Most a next[3] meghatározása következik. Ekkor az M[1..3] kezdőrészletnek keressük a legnagyobb egymással megegyező, valódi prefix-szuffix párját. A legnagyobb ilyen valódi prefix-szuffix 2 hosszú lehet. Azaz M[1..2] = M[2..3] egyenlőség teljesül-e? Azonban ez nem teljesülhet, mivel már M[1] = M[2] sem teljesült. Ezt nem is vizsgáljuk, mivel már az előző menetben sem volt egyezés. Helyette a mintát eggyel jobbra csúsztatjuk, és az M[1] = M[3] egyenlőséget vizsgáljuk (lásd: 32.8. ábra):

Α	В	A	В	Α	С
		A	В	Α	В

32.8. ábra. A *next* vektor kiszámítása (2)

A vizsgált egyenlőség fennáll, ezért feljegyezzük, hogy next[3] = 1.

Ezután a next[4] kiszámítása a cél. Ekkor az M[1..4] kezdőrészletnek keressük a legnagyobb egymással megegyező, valódi prefix-szuffix párját. A legnagyobb ilyen valódi prefix-szuffix 3 hosszú lehetne, de M[1] = M[2] egyenlőséget már korábban is megvizsgáltuk és nem teljesült, így ez nem jöhet szóba. Azonban, az előző menetben M[1] = M[3] teljesült, így az ennek megfelelő elcsúsztatott pozíciót megtartva vizsgáljunk tovább, mert további karakter egyezés esetén ez lehetne a leghosszabb prefix-szuffix pár (lásd: 32.9. ábra):

A	В	Α	В	A	С
		Α	В	Α	В

32.9. ábra. A *next* vektor kiszámítása (3)

Valóban az M[2] = M[4] teljesül, így feljegyezzük next[4] = 2 értéket.

A *next*[5] meghatározásához, az előző menethez hasonlóan a mintát nem csúcstatjuk el, hanem a következő karaktert vizsgáljuk (lásd: 32.10. ábra):

A	В	A	В	Α	С
		Α	В	Α	В

32.10. ábra. A *next* vektor kiszámítása (4)

Azt látjuk, hogy M[3] = M[5], így feljegyezzük next[5] = 3.

Összefoglaljuk egy ábrán a *next* függvény kiszámítását (lásd: 32.11. ábra):

j	next[j]	A	В	A	В	A	C
1	0						
2	0		Α	В	A	В	A
3	1			A	В	A	В
4	2			A	В	A	В
5	3			Α	В	A	В

32.11. ábra. A *next* vektor kiszámítása (összefoglalás)

A *next* vektor kitöltésének részletes végigkövetése után már nem nehéz felírni az *initnext* eljárást, amely 32.12. ábrán látható. Ezzel teljessé vált a 32.6. ábrán megadott *KMP* mintaillesztő algoritmus, ugyanis az inicializáló eljárását is megalkottuk.

32.12. ábra. Az initnext algoritmus (*KMP*)

Az *initnext* eljárás különlegessége az, hogy a *KMP* mintaillesztés inicializálására szolgál, de a *next* vektor kitöltésére is lényegében a *KMP* algoritmust használjuk. Ezt az teszi lehetővé, hogy a kitöltés éppen olyan mértékben halad előre a *next* vektoron, mint ami a számítás továbblépéséhez szükséges, amivel egy saját belső inicializáló eljárást valósítunk meg.

A KMP algoritmus műveletigényének megállapításához vegyük figyelemben, hogy inicializáló tevékenység, az initnext eljárás lépésszáma $\Theta(m)$. Tegyük fel, hogy m << n; ekkor a keresés műveletigénye legjobb és legrosszabb esetben is egyaránt $\Theta(n)$. A KMP algoritmust ezért stabil eljárásnak mondhatjuk.

Mivel a *KMP* algoritmus működése során a szövegben csak legfeljebb egy pozícióval történő előre lépést teszünk (nincs visszalépés), így az algoritmus *puffer* használata nélkül is átírható *szekvenciális sorozat*, illetve *fájl* formában adott szövegre.