Performance Comparison of Reversible Vision Transformer Models

Models of ViT-small, Reversible ViT-small and ViT-small with BDIA

Presented by:

Haolun Yang

Presentation time:

6/8/2024

Topics

1	Background and Introduction
2	Research Questions

3 Objectives and Methodology

4 Model Explanation

5 Experiment Design and Results

6 Conclusion and Next step

Background & & Introduction

What is a
Vision Transformer
(ViT)?

A class of models that leverage self-attention mechanisms to process visual data

Advantages of ViT

* GLOBAL CONTEXTUAL UNDERSTANDING

long-range dependencies in images better representation learning compared to CNNS

* SCALABILITY

Easier to scale up and receptive field size

* TRANSFER LEARNING

Effective in leveraging pre-trained models

Background & & Introduction

What are Reversible Architecture Models?

Reversible models avoid the need to store these activations, thereby reducing memory usage significantly.

^{*} Source: Aidan N. Gomez, Mengye Ren, Raquel Urtasun, Roger B. Grosse, "The Reversible Residual Network: Backpropagation Without Storing Activations," 2017. Available at: https://arxiv.org/abs/1707.04585

Advantages of Using Reversiable Architecture

* REDUCED MEMORY FOOTPRINT

Enables training deeper networks with the same amount of memory.

* PARTICULARLY USEFUL FOR LARGE-SCALE VISION TASKS

Easier to trace the flow of data through the network.

* IMPROVED SCALABILITY

Allows more layers or parameters to be added, thus supporting more complex models.

Background & & Introduction

What is Momentum and How Momentum Works?

An optimization technique in deep learning

Update Formula:

$$v_t = \beta v_{t-1} + (1-\beta) \nabla L(\theta_t)$$
 $ext{} ext{} ext{}$

- v_t is the momentum term.
- β is the momentum hyperparameter (typically around 0.9).
- $\nabla L(\theta_t)$ is the current gradient.
- α is the learning rate.

Advantages of Using Momentum

* ACCELERATED CONVERGENCE

Reaches the minimum of the objective function faster.

Reduces oscillations in gradient descent

* IMPROVED STABILITY

Helps prevent the optimizer from getting stuck in local minima

* REDUCES RANDOMNESS

Smoothes out the impact of noisy data and enhance overall optimization effectiveness

Research Questions

 How can we find the optimal Vision Transformer model that balances performance and resource consumption?

 What techniques can enhance the performance of Reversible Vision Transformers?

Objectives

- * Evaluate and compare the performance and resource consumption of ViT-small, Reversible ViT-small and ViT-small with BDIA models.
 - Performance Metrics: Accuracy, Speed.
 - Resource Consumption: Memory, GFLOPs, Parameters.
- ***** Explore the application of momentum in Reversible ViT.
 - Try to analyse the impact of momentum on convergence speed and stability.

Methodology

- **★ Use the Same Dataset CIFAR-10**
- * Same Base Model, Same Data Augmentation, Preprocessing and Hyperparameters.
- * Train and Validate on the Same Testing Platform NVIDIA GeForce RTX 4060 Laptop GPU(8GB, CUDA).
- * Testing performances of different models.

Model Explanation

* ViT small

* Reversible ViT small

* ViT small with BDIA

Vision Transformer small

- A specialized transformer model (for small datasets) designed for image classification tasks.
- It utilizes a unique approach of processing images as sequences of patches instead of relying on traditional convolutions like CNNs.

ViT small Architecture

* PATCH EMBEDDING
Images are divided into patches, which are then embedded into vectors.

* TRANSFORMER ENCODER

- Utilizes multi-head self-attention to analyze different aspects of the image simultaneously.
- Includes **feed-forward layers** to enhance feature extraction.

* MLP HEAD

The multi-layer perceptron complete the image classification task.

^{*} Source: Veiga, B., Pinto, T., Teixeira, R., Ramos, C. (2023). Vision Transformers Applied to Indoor Room Classification. In: Moniz, N., Vale, Z., Cascalho, J., Silva, C., Sebastião, R. (eds) Progress in Artificial Intelligence. EPIA 2023. Lecture Notes in Computer Science(), vol 14116. Springer, Cham. https://doi.org/10.1007/978-3-031-49011-8_44

Reversible Vision Transformer small

A new architecture based on the Vision Transformers small

Reversibility:

- Reversible layers inside of standard blocks allow for the reconstruction of input data without the need to store all intermediate activations.
- Significantly reduces memory footprint during training.

Reversiable ViT small Architecture

Customed Reversible Block

Including both attention and feedforward layers wrapped in a reversible framework.

FORWARD PASS:
$$y = x + \text{LSA}(\text{LayerNorm}(x))$$

 $z = y + \text{FFN}(\text{LayerNorm}(y))$

BACKWARD PASS:

Reconstruction Process:
$$y = z - \text{FFN}(\text{LayerNorm}(y))$$
 $x = y - \text{LSA}(\text{LayerNorm}(x))$

Backward Propagation Formulas:

$$\frac{\partial \mathcal{L}}{\partial y} = \frac{\partial \mathcal{L}}{\partial z} \cdot \left(1 + \frac{\partial \text{FFN}(\text{LayerNorm}(y))}{\partial y} \right) \qquad \frac{\partial \mathcal{L}}{\partial x} = \frac{\partial \mathcal{L}}{\partial y} \cdot \left(1 + \frac{\partial \text{LSA}(\text{LayerNorm}(x))}{\partial x} \right)$$

Vision Transformer with Bidirectional Integration Approximation (BDIA)

- A technique designed to achieve bit-level reversibility in deep learning models without changing their architectures.
- Improve the model's performance through the regularization effect of BDIA.

- Exact bit-level reversibility.
- Use of activation quantization for precise computation.
- Introducing randomness with the hyper-parameter y.

How BDIA Works in Vision Transformer

• BDIA employs a method of approximating the forward and backward integration for each transformer block.

Original Transformer Update:

$$x_{k+1} = x_k + f_k(x_k) + g_k(x_k + f_k(x_k))$$

BDIA Update with Random Parameter γ

$$x_{k+1} = \gamma x_{k-1} + (1 - \gamma)x_k + (1 + \gamma)h_k(x_k)$$

where $\gamma \in \{-0.5, 0.5\}$ is randomly chosen for each training sample and transformer block.

Quantization:

$$Q_l[y] = \operatorname{round}[y/2^{-l}]2^{-l}$$

which I is the precision level.

Reversiability in ViT with BDIA

FORWARD PASS:

Bidirectional Integration Approximation

when
$$k = 0$$
: $x_1 = x_0 + h_0(x_0)$

for N-1
$$\geqslant$$
 k $>$ 0: $x_{k+1} = \gamma x_{k-1} + (1-\gamma)x_k + (1+\gamma)h_k(x_k)$

BACKWARD PASS:

- Exact Reversibility
- Recomputing intermediate activations on-the-fly

$$x_{k-1} = rac{x_{k+1}}{\gamma} - rac{1-\gamma}{\gamma} x_k - rac{1+\gamma}{\gamma} h_k(x_k)$$

Model	Memory (MB/img)	GFLOPs	Param(M)
ViT-small	11.78	1.237	9.59
Reversiable ViT-small	5.71	1.237	9.59
ViT-small BDIA	7.10	1.237	9.59

Conclusion

ViT Small:

- Advantages: Simple and straightforward architecture.
- Disadvantages: Higher memory usage compared to the other two models.

ViT Reverse:

- Advantages: Best in memory efficiency, suitable for environments with limited resources.
- Disadvantages: Higher training complexity due to the intricate backpropagation mechanism and lower accuracy.

ViT BDIA:

Provides a balance between performance and resource consumption.

NEXTSTEP

- Momentum Reversible ViT Model:
 - Integrate momentum into the reversible ViT model to accelerate convergence, enhance training stability, and improve overall performance.
 - Address issues that arise when implementing momentum mechanisms, such as vanishing or exploding gradients and instabilities during training.
- Explore and Compare Other Reversible Models
- Practical Applications

Thank You!

For questions and concerns, feel free to get in touch.

Presented by:

Haolun Yang

Email:

hy383@exeter.ac.uk

Presentation Video Link

OneDrive:

https://universityofexeteruk-

<u>my.sharepoint.com/:v:/g/personal/hy383 exeter ac uk/EYDFIL38EyFGlxIhjDzB4goBMSh8v1UEDkt9Q</u> <u>Vd3iQN8yg?</u>

<u>nav=eyJyZWZlcnJhbEluZm8iOnsicmVmZXJyYWxBcHAiOiJPbmVEcml2ZUZvckJ1c2luZXNzliwicmVmZXJyYWxBcHBQbGF0Zm9ybSl6lldlYiIsInJlZmVycmFsTW9kZSl6lnZpZXciLCJyZWZlcnJhbFZpZXciOiJNeUZpbGVzTGlua0NvcHkifX0&e=7Nzlbl</u>

Youtube:

https://youtu.be/kbNW3p PTJ4