(12) PATENT (11) Application No. AU 199946519 B2 (19) AUSTRALIAN PATENT OFFICE (10) Patent No. 758789 (54)Thiobenzimidazole derivatives $(51)^7$ International Patent Classification(s) C07D 235/28 A61K 031/415 Application No: 199946519 (21) (22)Application Date: 1999.07.14 WIPO No: WO00/03997 (87) Priority Data (30)(31) Number (32) Date (33) Country 10-200250 1998.07.15 JP (43)Publication Date: 2000.02.07 (43) Publication Journal Date: 2000.04.20 (44)Accepted Journal Date: 2003.03.27 Applicant(s) (71)**Teijin Limited** (72)Inventor(s) Yoshiyuki Matsumoto; Susumu Takeuchi; Naoki Hase (74)Agent/Attorney DAVIES COLLISON CAVE,1 Little Collins Street, MELBOURNE VIC 3000

PCT -

世界知的所有権機関 国際事務局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 C07D 235/28, A61K 31/415

(11) 国際公開番号 A1

WO00/03997

(43) 国際公開日

2000年1月27日(27.01.00)

(21) 国際出願番号

PCT/JP99/03799

(22) 国際出願日

1999年7月14日(14.07.99)

(30) 優先権データ

特願平10/200250

1998年7月15日(15.07.98)

(71) 出願人(米国を除くすべての指定国について) 帝人株式会社(TEIJIN LIMITED)[JP/JP]

〒541-0054 大阪府大阪市中央区南本町1丁目6番7号 Osaka, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

松本由之(MATSUMOTO, Yoshiyuki)[JP/JP]

竹内 進(TAKEUCHI, Susumu)[JP/JP]

長谷直樹(HASE, Naoki)[JP/JP]

〒191-0065 東京都日野市旭が丘4丁目3番2号

帝人株式会社 東京研究センター内 Tokyo, (JP)

(74) 代理人

前田純博(MAEDA, Sumihiro)

〒100-0011 東京都千代田区内幸町2丁目1番1号

帝人株式会社 知的財産センター内 Tokyo, (JP)

(81) 指定国 AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS,

LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO. RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI,

FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), ARIPO特

許 (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), ユーラシア特

許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM)

添付公開書類

国際調査報告書

(54)Title: THIOBENZIMIDAZOLE DERIVATIVES

(54)発明の名称 チオペンズイミダゾール誘導体

Thiobenzimidazole derivatives represented by general formula (1) or pharmaceutically acceptable salts thereof which have a potent human chymase inhibitory activity and, therefore, are usable as clinically applicable preventives and/or remedies for various diseases in which human chymase participates.

- 1 -

DESCRIPTION

THIOBENZIMIDAZOLE DERIVATIVES

5 Technical Field

The present invention relates to thiobenzimidazole derivatives represented by the formula (1) and, more specifically, thiobenzimidazole derivatives useful as inhibitors of human chymase activity.

10

15

20

25

30

35

Background Art

Chymase is one of the neutral proteases present in mast cell granules, and is deeply involved in a variety of biological processes in which mast cells participate. Various effects have been reported including, for example, the promotion of degranulation from mast cells, the activation of interleukin-1 β (IL-1 β), the activation of matrix protease, the decomposition of fibronectin and type IV collagen, the promotion of the release of transforming growth factor- β (TGF- β), the activation of substance P and vasoactive intestinal polypeptide (VIP), the conversion of angiotensin I (Ang I) to Ang II, the conversion of endothelin, and the like.

The above indicates that inhibitors of said chymase activity may be promising as preventive and/or therapeutic agents for diseases of respiratory organs such as bronchial asthma, inflammatory/allergic diseases, for example allergic rhinitis, atopic dermatitis, and urticaria; diseases of circulatory organs, for example sclerosing vascular lesions, intravascular stenosis, disturbances of peripheral circulation, renal failure, and cardiac failure; diseases of bone/cartilage metabolism such as rheumatoid arthritis and osteoarthritis, and the like.

As inhibitors of chymase activity, there are known triazine derivatives (Japanese Unexamined Patent

Publication (Kokai) No. 8-208654); hydantoin derivatives (Japanese Unexamined Patent Publication (Kokai) No. 9-31061); imidazolidine derivatives (PCT Application WO 96/04248); quinazoline derivatives (PCT Application WO 97/11941); heterocyclic amide derivatives (PCT Application WO 96/33974); and the like. However, the structures of these compounds are entirely different from those of the compounds of the present invention.

On the other hand, an art related to the compounds of the present invention is disclosed in U.S. Pat. No. 5,124,336. Said specification describes thiobenzimidazole derivatives as having an activity of antagonizing thromboxane receptor. The specification, however, makes no mention of the activity of said compounds to inhibit human chymase.

Disclosure of the Invention

1. A thiobenzimidazole derivative represented by the following formula (1):

wherein,

R¹ and R², simultaneously or independently of each other, represent a hydrogen atom, a halogen atom, a trihalomethyl group, a cyano group, a hydroxy group, an

^

5

10

15

20

alkyl group having 1 to 4 carbons or an alkoxy group having 1 to 4 carbons, or R¹ and R² together form -O-CH₂-O-, -O-CH₂-CH₂-O- or -CH₂-CH₂-CH₂-, in which the carbons may be substituted with one or a plurality of alkyl groups having 1 to 4 carbons;

A represents a single bond, a substituted or unsubstituted, linear or branched alkylene group having 1 to 6 carbons, a substituted or unsubstituted arylene group having 6 to 11 carbons, or a substituted or unsubstituted heteroarylene group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms in the ring, in which the substituent represents a halogen atom, OH, NO2, CN, a linear or branched alkyl group having 1 to 6 carbons, a linear or branched alkoxy group having 1 to 6 carbons (the substituents may be joined to each other at adjacent sites via an acetal bond), a linear or branched alkylthio group having 1 to 6 carbons, a linear or branched alkylsulfonyl group having 1 to 6 carbons, a linear or branched acyl group having 1 to 6 carbons, a linear or branched acylamino group having 1 to 6 carbons, a trihalomethyl group, a trihalomethoxy group, a phenyl group, an oxo group, or a phenoxy group that may be substituted with one or more halogen atoms, and in which the substituents may be independently substituted at any one or more sites of the ring or the alkylene group;

E represents COOR³, SO₃R³, CONHR³, SO₂NHR³, a tetrazole group, a 5-oxo-1,2,4-oxadiazole group or a 5-oxo-1,2,4-thiadiazole group in which R³ represents a hydrogen atom, or a linear or branched alkyl group having 1 to 6 carbons;

G represents a substituted or unsubstituted, linear or branched alkylene group having 1-6 carbons that may be interrupted with one or a plurality of O, S, SO_2 , and NR^3 , in which R^3 is as defined above and the substituent represents a halogen atom, OH, NO_2 , CN, a linear or branched alkyl group having 1 to 6 carbons, a linear or

PAT PAZ

5

10

15

20

25

branched alkoxy group having 1 to 6 carbons (the substituents may be joined to each other at adjacent sites via an acetal bond), a trihalomethyl group, a trihalomethoxy group, a phenyl group, or an oxo group;

m represents an integer of 0 to 2;

when m is 0 and A is a substituted or unsubstituted, linear or branched alkylene group having 1 to 6 carbons, then J represents a substituted or unsubstituted, linear, cyclic or branched alkyl group having 3 to 6 carbons, a substituted or unsubstituted aryl group having 7 to 9 carbons, a substituted aryl group having 10 to 11 carbons, a substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms in the ring;

when m is 0 and A is a substituted or unsubstituted arylene group having 6 to 11 carbons or a substituted or unsubstituted heteroarylene group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms in the ring, then J represents a substituted or unsubstituted, linear, cyclic or branched alkyl group having 1 to 6 carbons, a substituted or unsubstituted aryl group having 6 to 11 carbons, or a substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms in the ring; or

when m is 0 and A is a single bond or when m is 1 or 2, then J represents a substituted or unsubstituted, linear, cyclic or branched alkyl group having 1 to 6 carbons, a substituted or unsubstituted aryl group having 6 to 11 carbons, or a substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms in the ring, in which the substituent represents a halogen atom, OH, NO₂, CN, a linear or branched alkyl group having 1 to 6 carbons, a linear or branched alkoxy group having 1 to 6 carbons (the substituents may be

5

10

15

20

25

joined to each other at adjacent sites via an acetal bond), a linear or branched alkylthio group having 1 to 6 carbons, a linear or branched alkylsulfonyl group having 1 to 6 carbons, a linear or branched acyl group having 1 to 6 carbons, a linear or branched acylamino group having 1 to 6 carbons, a substituted or unsubstituted anilide group, a trihalomethyl group, a trihalomethoxy group, a phenyl group, an oxo group, a COOR³ group, or a phenoxy group that may be substituted with one or more halogen atoms, and in which the substituents may be independently substituted at any one or more sites of the ring or the alkylene group; and

X represents CH or a nitrogen atom;

5

10

15

20

25

30

or a medically acceptable salt thereof (hereinafter referred to as "the thiobenzimidazole derivative of the present invention").

- 2. The thiobenzimidazole derivative characterized in that, in the above formula (1), A is a substituted or unsubstituted, linear or branched alkylene group having 1 to 6 carbons, a substituted or unsubstituted arylene group having 6 to 11 carbons, or a substituted or unsubstituted heteroarylene group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms in the ring, or a medically acceptable salt thereof.
- 3. The thiobenzimidazole derivative characterized in that, in the above formula (1), A is a substituted or unsubstituted heteroarylene group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms in the ring, or a medically acceptable salt thereof.
- 4. The thiobenzimidazole derivative characterized in that, in the above formula (1), m is 1, or a medically acceptable salt thereof.
- 5. The thiobenzimidazole derivative characterized in that, in the above formula (1), m is 2, or a medically acceptable salt thereof.

- 6. The thiobenzimidazole derivative characterized in that, in the above formula (1), m is 0, A is a substituted or unsubstituted, linear or branched alkylene group having 1 to 6 carbons, and J is a substituted or unsubstituted aryl group having 7 to 9 carbons, a substituted aryl group having 10 to 11 carbons, or a substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms in the ring, or a medically acceptable salt thereof.
- 7. The thiobenzimidazole derivative characterized in that, in the above formula (1), m is 0, A is a substituted or unsubstituted arylene group having 6 to 11 carbons or a substituted or unsubstituted heteroarylene group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms in the ring, and J is a substituted or unsubstituted aryl group having 6 to 11 carbons or a substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms in the ring, or a medically acceptable salt thereof.
- 8. The thiobenzimidazole derivative characterized in that, in the above formula (1), G is $-CH_2-$, $-CH_2-CH_2-$, $-CH_2CO-$, $-CH_2CH_2O-$, $-CH_2CONH-$, -CO-, $-SO_2-$, $-CH_2SO_2-$, $-CH_2S-$ or $-CH_2CH_2S-$, or a medically acceptable salt thereof.
- 9. The thiobenzimidazole derivative characterized in that, in the above formula (1), R¹ and R² simultaneously represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbons or an alkoxy group having 1 to 4 carbons, or R¹ and R², independently of each other, represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbons, an alkoxy group having 1 to 4 carbons, a trihalomethyl group, a cyano group, or a hydroxy group, or a medically acceptable salt thereof.
- 10. The thiobenzimidazole derivative characterized in that, in the above formula (1), E represents COOH or a tetrazole group, or a medically acceptable salt thereof.

5

10

15

20

25

- 11. The thiobenzimidazole derivative characterized in that, in the above formula (1), X represents CH, or a medically acceptable salt thereof.
- 12. A thiobenzimidazole derivative characterized by having an activity of inhibiting human chymase, or a medically acceptable salt thereof.
- 13. A pharmaceutical composition comprising an at least one thiobenzimidazole derivative or a medically acceptable salt thereof and a pharmaceutically acceptable carrier.
- 14. A pharmaceutical composition which is a preventive and/or therapeutic agent for a disease.
- 15. A preventive and/or therapeutic agent wherein said disease is an inflammatory disease, an allergic disease, a disease of respiratory organs, a disease of circulatory organs, or a disease of bone/cartilage metabolism.

Best Mode for Carrying Out the Invention

5

10

15

The present invention will now be explained in more detail below.

The above definitions concerning the substituents of the compounds of formula (1) of the present invention are as follows:

25 R1 and R2, simultaneously or independently of each other, represent a hydrogen atom, a halogen atom, a trihalomethyl group, a cyano group, a hydroxy group, an alkyl group having 1 to 4 carbons or an alkoxy group having 1 to 4 carbons, or R1 and R2 together form $-O-CH_2-O-$, $-O-CH_2-CH_2-O-$ or $-CH_2-CH_2-CH_2-$, in which the 30 carbons may be substituted with one or a plurality of alkyl groups having 1 to 4 carbons. As the alkyl group having 1 to 4 carbons, there can be mentioned a methyl group, an ethyl group, a (n, i-) propyl group and a (n, 35 i, s, t-) butyl group, and preferably a methyl group may be mentioned. Preferably R¹ and R² simultaneously represent a hydrogen atom, a halogen atom, an alkyl group

_ - - _

having 1 to 4 carbons or an alkowy group having 1 to 4 carbons, or R^1 and R^2 , independently of each other, represent a hydrogen atom, a halogen atom, a trihalomethyl group, a cyano group, a hydroxy group, an alkyl group having 1 to 4 carbons, or an alkoxy group having 1 to 4 carbons. As the halogen atom, as used herein, there can be mentioned a fluorine atom, a chlorine atom, a bromine atom and the like, and preferably a chlorine atom and a fluorine atom may be mentioned. As the alkyl group having 1 to 4 carbons, there can be mentioned a methyl group, an ethyl group, a (n, i-) propyl group and a (n, i, t-) butyl group, and preferably a methyl group may be mentioned. alkoxy group having 1 to 4 carbons, there can be mentioned a methoxy group, an ethoxy group, a (n, i-)propyloxy group and a (n, i, s, t-) butyloxy group, and preferably a methoxy group may be mentioned.

A represents a single bond, a substituted or unsubstituted, linear or branched alkylene group having 1 to 6 carbons, a substituted or unsubstituted arylene group having 6 to 11 carbons, or a substituted or unsubstituted heteroarylene group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms in the ring (sometimes referred to as being on the ring). Preferably, there can be mentioned a substituted or unsubstituted, linear or branched alkylene group having 1 to 6 carbons, a substituted or unsubstituted arylene group having 6 to 11 carbons, or a substituted or unsubstituted heteroarylene group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms in the ring. As the substituted or unsubstituted, linear or branched alkylene group having 1 to 6 carbons, there can be mentioned a methylene group, an ethylene group, a (n, i-) propylene group and a (n, i, t-) butylene group, and preferably an ethylene group may be mentioned. As the substituted or unsubstituted arylene group having 6 to 11 carbons, there can be mentioned a phenylene group, an

NUSTRALIAN

5

10

15

20

25

30

indenylene group and a naphthylene group etc., and preferably a phenylene group may be mentioned. As the substituted or unsubstituted heteroarylene group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms in the ring, there can be mentioned a pyridilene group, a furanylene group, a thiophenylene group, an imidazolene group, a thiazolene group, a pyrimidilene group, an oxazolene group, an isoxazolene group, a benzphenylene group, a benzimidazolene group, a quinolilene group, an indolene group, a benzothiazolene group and the like, and preferably a pyridilene group, a furanylene group, and a thiophenylene group may be mentioned.

Furthermore, as the substituent, as used herein, there can be mentioned a halogen atom, OH, NO2, CN, a linear or branched alkyl group having 1 to 6 carbons, a linear or branched alkoxy group having 1 to 6 carbons in which the substituent may be joined to each other at adjacent sites via an acetal bond, a linear or branched alkylthio group having 1 to 6 carbons, a linear or branched alkylsulfonyl group having 1 to 6 carbons, a linear or branched acyl group having 1 to 6 carbons, a linear or branched acylamino group having 1 to 6 carbons, a trihalomethyl group, a trihalomethoxy group, a phenyl group, or a phenoxy group that may be substituted with one or more halogen atoms. They may be independently substituted at any one or more sites of the ring or the alkylene group. Specifically, there can be mentioned OH, a chloro group, a bromo group, a nitro group, a methoxy group, a cyano group, a methylenedioxy group, a trifluoromethyl group, a methyl group, an ethyl group, a (n, i-) propyl group, a (n, i, t-) butyl group, and the like.

As E, there can be mentioned COOR³, SO₃R³, CONHR³, SO₂NHR³, a tetrazole group, a 5-oxo-1,2,4-oxadiazole group or a 5-oxo-1,2,4-thiadiazole group, and preferably COOR³ or a tetrazole group may be mentioned. As R³ as

D Z

5

10

15

20

25

30

used herein, there can be mentioned a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbons, and preferably a hydrogen atom, a methyl group, an ethyl group, or a t-butyl group may be mentioned, and most preferably a hydrogen atom may be mentioned.

5

10

15

20

25

30

35

G represents a substituted or unsubstituted, linear or branched alkyl group having 1 to 6 carbons that may be interrupted with one or a plurality of O, S, SO₂, and NR³, in which R³ is as defined above and the substituent represents a halogen atom, OH, NO₂, CN, a linear or branched alkyl group having 1 to 6 carbons, a linear or branched alkoxy group having 1 to 6 carbons (the substituents may be joined to each other at adjacent sites via an acetal bond), a trihalomethyl group, a trihalomethoxy group, a phenyl group, or an oxo group. Specifically, there can be mentioned -CH₂-, -CH₂CH₂-, -CH₂CO-, -CH₂CH₂O-, CH₂CONH-, -CO-, -SO₂-, -CH₂SO₂-, -CH₂S-, -CH₂CH₂S- and the like, and preferably -CH₂-, -CH₂CH₂-, -CH₂CO- or -CH₂CH₂O- may be mentioned.

m represents an integer of 0 to 2, and preferably 0 or 2 may be mentioned.

When m is 0 and A is a substituted or unsubstituted, linear or branched alkylene group having 1 to 6 carbons, then J represents a substituted or unsubstituted, linear, cyclic or branched alkyl group having 3 to 6 carbons, a substituted or unsubstituted aryl group having 7 to 9 carbons, a substituted aryl group having 10 to 11 carbons, a substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms in the ring. Preferably, a substituted aryl group having 10 to 11 carbons and a substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms in the ring may be mentioned. As the substituted or unsubstituted, linear, cyclic or branched alkyl group having 1 to 6 carbons, there can be mentioned

a (n, i-) propyl group, a (n, i, s, t-) butyl group, a (n, i, ne, t-) pentyl group and a cyclohexyl group. the substituted or unsubstituted aryl group having 7 to 9 carbons, there can be mentioned an indenyl group, and as the substituted aryl group having 10 to 11 carbons, there can be mentioned a naphthyl group. As the substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms in the ring, there can be mentioned a pyridyl group, a furanyl group, a thiophenyl group, an imidazole group, a thiazole group, a pyrimidine group, an oxazole group, an isoxazole group, a benzofurane group, a benzimidazole group, a quinoline group, an isoquinoline group, a quinoxaline group, a benzoxadiazole group, a benzothiadiazole group, an indole group, a N-methylindole group, a benzothiazole group, a benzothiophenyl group, a benzisoxazole group and the like, and preferably a benzothiophenyl group or a N-methylindole group may be mentioned.

5

10

15

20

25

30

35

When m is 0 and A is a substituted or unsubstituted arylene group having 6 to 11 carbons or a substituted or unsubstituted heteroarylene group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms in the ring, then J represents a substituted or unsubstituted, linear, cyclic or branched alkyl group having 1 to 6 carbons, a substituted or unsubstituted aryl group having 6 to 11 carbons, or a substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms in the ring, and preferably a substituted or unsubstituted aryl group having 6 to 11 carbons and a substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms in the ring may be mentioned. As the substituted or unsubstituted aryl group having 6 to 11 carbons, there

can be mentioned a phenyl group, an indenyl group, a naphthyl group and the like, and preferably a phenyl group or a naphthyl group may be mentioned. substituted or unsubstituted, linear, cyclic or branched alkyl group having 1 to 6 carbons and as the substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms in the ring, there can be mentioned those described above. As the substituent as used herein, there can be mentioned a halogen atom, OH, NO, CN, a linear or branched alkyl group having 1 to 6 carbons, a linear or branched alkoxy group having 1 to 6 carbons (the substituents may be joined to each other at adjacent sites via an acetal bond), a linear or branched alkylthio group having 1 to 6 carbons, a linear or branched alkylsulfonyl group having 1 to 6 carbons, a linear or branched acyl group having 1 to 6 carbons, a linear or branched acylamino group having 1 to 6 carbons, a substituted or unsubstituted anilide group, a trihalomethyl group, a trihalomethoxy group, a phenyl group, or a phenoxy group that may be substituted with one or more halogen atoms. They may be independently substituted at any one or more sites of the ring or the alkyl group. Specifically, there can be mentioned OH, a chloro group, a bromo group, a nitro group, a methoxy group, a cyano group, a methylenedioxy group, a trifluoromethyl group, a trifluoromethoxy group, a methyl group, an ethyl group, a (n, i-) propyl group, a (n, i, s, t-) butyl group, an anilide group and the like.

X represents CH or a nitrogen atom, and preferably CH may be mentioned.

As the compound of formula (1), specifically those described in Tables 1 to 40 are preferred. Most preferred among them are compounds Nos. 37, 50, 63, 64, 65, 84, 115, 117, 119, 121, 123, 130, 143, 147, 168, 174, 256, 264, 272, 311, 319, 320, 321, 324, 349, 352, 354, 355, 358, 364, 380, 392, 395, 398, 401, 402, 444, 455,

JUSTRA

5

10

15

20

25

459, 460, 506, 863, 866, and 869.

Al to A21 and Jl to J85 described in Tables 1 to 40 are the groups shown below, in which E and G are as described above.

\bigcirc _G	CG	ÇG	Q ^G	F C G	ÇG F	\mathbb{Q}_{F}^{G}	
Jì	J2	13	J4	Jš	16	J7	
CI C	ÇI CI	C _{CI}	$_{Br}$ \bigcap^{G}	G Br	\bigcirc_{Br}^{G}		
J8	19	110	J11	J12.	J13		
F ₃ C	CF ₃	CF₃	MeO G	G OMe	\bigcirc_{OMe}^{G}		
J14	J15	J16	J17	118	J19		
F ₃ CO G	OCF₃	©G _{OCF3}	NC G	CN CN	(CN CN		
J20	J21	J22	J23	J24	J25		
EtO G	OEt	GOEt	O_2N G	NO ₂	$\bigcirc_{NO_2}^G$		
J26	J27	J28	J29	J30	J3 l		
HO G	⊖ OH	€ OH	\mathcal{G}_{G}	∏ G	M _C		
J32	J33	J34 .	J35	136	J37		
G	G CI	CI CI	CI CI	CI	\mathbb{C}_{G}		
138	139	J40	J41	J42	J43		
MeO OMe	G OMe	MeO G OMe	MeO GON	MeO OM	G G e G	Me	G OMe
J44	J45	J46	J47	J48	J 49	, .	J50

GHN ON C	HN O	O H	J ^G	G C	G	
J51	J52	J53		J54	J55	
$\mathbb{Q}_{\mathbb{Q}}^{\mathbb{Q}}$,G (~)	G O	ÇG.	\C\c\c\c\c\c\c\c\c\c\c\c\c\c\c\c\c\c\c\	S G
J56	J57	Ţ	58	J59 [°]	J60	J61
G	G	SJG	-N G	JG G	G	OMe G
J62	J63	J64	J65	J66	J67	168
J69	J70	CI G N J71	G N √ J72	G N N·S J73	G N 77 O N J74	N → G S J75
 ← G	, G	o G	,	. G	,	373
J76	N J77	N J	N I G	s in		
∫ _e	,,, G	J78	J79 _G	√_G J80		
J81	J82	\bigcup	۲۵,	J		
301	102	J83	J84	J85		

Table 1

Compound No.	R'	R'	SCH ₂ -A	E	G	J	m	Х
l	Н	Н	ΑI	СООН	сн,сн,	JI	0	СН
2	Н	Н	ΑI	СООН	CH,	J2	0	СН
3	Н	Н	AI	СООН	CH,	J3	0	СН
4	Н	Н	ΑI	СООН	CH,	J4	0	СН
5	Н	Н	A1	СООН	CH,	J5	. 0	СН
6	Н	Н	A1	СООН	CH,	J6	0	СН
7	Н	Н	A1	СООН	CH,	J7	0	СН
8	Н	Н	A 1	СООН	CH,	J8	0	СН
9	Н	Н	Al	СООН	CH,	J 9	0	СН
10	Н	Н	Al	СООН	CH,	J10	0	СН
11	Н	Н	Al	СООН	CH,	JII	0	СН
12	Н	Н	A1	СООН	CH,	J12	0	СН
13	Н	Н	A1	СООН	CH,	J13	0	СН
14 ·	Н	Н	Al	СООН	CH,	J14	0	СН
15	Н	Н	Al	СООН	CH,	J15	0	СН
16	Н	Н	Al	СООН	CH,	J16	0	СН
17	Н	Н	AI	СООН	CH,	J17	0	СН
18	Н	Н	A1	СООН	CH ₂	J18	0	СН
19	Н	Н	A1	СООН	CH,	J19	0	СН
20	Н	Н	A1	СООН	CH,	J20	0	СН
21	Н	Н	A1	СООН	CH,	J21	0	СН
22	Н	Н	Al	СООН	CH,	J 2 2	0	СН
23	Н	Н	Al	COOH	CH,	J23	0	СН
24	Н	Н	Al	СООН	CH,	J24	0	СН
25	Н	Н	ΑI	СООН	CH,	J 25	0	СН

Table 2

Compound No.	R'	R²	SCH,-A	E	G	J	m	Х
26	Н	Н	Al	СООН	CH,	J26	0	СН
27	Н	Н	Al	СООН	CH,	J27	0	СН
28	Н	Н	AI	СООН	CH,	J28	0	СН
29	Н	Н	Al	СООН	CH,	J29	0	СН
30	Н	Н	A1	СООН	CH,	J30	0	СН
31	Н	Н	AI	СООН	CH,	J31	0	СН
32	Н	Н	Al	СООН	CH,	J32·	0	СН
33	Н	Н	AI	СООН	CH,	J33	0	СН
34	Н	Н	A1	СООН	CH,	J34	0 .	· CH
35	Н	Н	AI	СООН	CH,	J35	0	СН
36	Н	Н	Al	СООН	CH,	J36	0	СН
37	Н	Н	A1	СООН	CH,	J37	0	СН
38	Н	Н	.A1	СООН	CH,	J38	0	СН
39	H	Н	AI	СООН	CH,	139	0	СН
40	Н	Н	Al	СООН	CH,	J40	0	СН
41	Н	Н	Al	СООН	CH,	J41	0	СН
42	Н	Н	Al	СООН	CH,	J42	0	СН
43	Н	Н	Al	СООН	CH,	J43	0	СН
44	Н	Н	Al	С00Н	CH,	J44	0	СН
45	Н	Н	Al	СООН	CH,	J45	0	СН
46	Н	Н	Al	СООН	CH,	J46	0	СН
47	Н	Н	Al	СООН	CH,	147	0	СН
48	Н	H	Al	COOH	CH,	J48	0	СН
49	Н	Н	A1 ·	СООН	CH,	J49		СН
50	Н	Н	Al	СООН	CH,	J50	0	CH

Table 3

	- 1							
Compound No.	R'	R ^z	SCH,-A	3	G	J	m	Х
51	Н	Н	A1	COOH	CH,	J51	0	СН
52	Н	Н	Al	СООН	CH,	J 5 2	0	СН
53	Н	Н	Al	СООН	CH,	J53	0	СН
54	Н	Н	A1	СООН	CH,	J54	0	СН
55	Н	Н	Al	СООН	CH,	J55	0	СН
56	Н	Н	Al	СООН	CH,	J56	0	СН
57	Н	Н	Al	СООН	CH,	J57	0	СН
58	Н	Н	Al	СООН	CH,	J58	0	СН
59	Н	Н	Al	СООН	CH,	J59	0	СН
60	Н	Н	AI	COOH	CH,	J60	0	СН
61	Н	Н	Al	СООН	CH,	J61	0	СН
62	Н	Н	Al	С00Н	CH,	J62	0	СН
63	Н	Н	Al	СООН	CH,	J63	0	СН
64	Н	Н	Al	СООН	CH,	J64	0	СН
65	Н	Н	Al	СООН	CH,	J65	0	СН
66	Н	Н	Al	СООН	CH,	J66	0	СН
67	Н	Н	Al	СООН	CH,	J67	0 .	СН
68	Н	Н	Ai	СООН	CH,	J68	0	СН
69	Н	Н	IA	СООН	CH,	J69	0	СН
70	Н	Н	Al	СООН	CH,	J70	0	СН
71	Н	Н	Αl	СООН	CH,	J71	0	СН
72	Н	Н	Al	СООН	CH,	J72	0	CH
73	Н	Н	Al	СООН	CH,	J73	0	СН
74	H	Н	Al	СООН	CH,	J74	0	СН
75	Н	Н	A1	СООН	CH,	J75	0	СН

Table 4

	Compound	R'	DZ	0.017					
	No.		R²	SCH,-A	Е	G	J	m	X
_	76	Н	Н	AI	COOH	CH,	J76	0	СН
_	77	H	Н	Al	С00Н	CH,	J77	0	СН
-	78 —————	Н	Н	AI	С00Н	CH,	J78	0	СН
_	79 	Н	Н	Al	СООН	CH,	J79	0	СН
_	80	Н	Н	Al	СООН	CH,	180	0	СН
_	18	Ме	Ме	ΑI	COOH	CH,	JI	0	СН
_	82	Ме	Ме	Al	СООН	CH,	J 2	0	СН
	83	Ме	Ме	A 1	С00Н	CH,	J3	0	СН
-	84	Me	Me	Al	COOH	CH,	J4	0	СН
_	85	Ме	Ме	ΑI	С00Н	CH,	J5	0	СН
	86	Ме	Ме	AI	C00H	CH,	J6	0	СН
	87	Me	Ме	AI	C00H	CH,	J7	0	СН
	88	Me	Ме	Al	СООН	CH,	J8	0	СН
	89	Ме	Me	Al	СООН	CH,	J9	0	СН
_	90	MÀ	Ме	A1	СООН	CH,	J10	0	СН
	91	Ме	Me	A1	СООН	CH,	J11	0	СН
	92	Ме	Ме	A1	СООН	CH,	J12	0	СН
	93	Ме	Me	Al	СООН	CH,	J13	0	СН
	94	Ме	Me	A1	СООН	CH,	J14	0	CH
	95	Me	Ме	Al	СООН	CH,	J15	0	CH
_	96	Me	Ме	Al	COOH	CH,	J16	0	CH
	97	Ме	Me	A1	СООН	CH,	J17	0	·CH
	98	Ме	Me	A1	СООН	CH,	J18	0	CH
	99	Me	Me	A1	СООН	CH,	J19	0	СН
	100	Ме	Me	Αl	СООН	CH,	J 2 0	0	СН
				· · · · · · · · · · · · · · · · · · ·					

Table 5

Compound No.	R'	R²	SCH,-A	E	G	. J	m	χ
101	Me	Ме	Al	СООН	CH,	J21	0	СН
102	Me	Me	Al	СООН	CH,	J22	0	СН
103	Ме	Me	ΑI	СООН	CH,	J23	0	СН
104	Me	Me	Αl	СООН	CH,	J24	0	СН
105	Me	Ме	AI	СООН	CH,	J 25	0	СН
106	Ме	Me	Al	COOH	CH,	J26	0	СН
107	Me	Me	Al	СООН	CH,	J27	0	СН
108	Me	Me	AI	COOH.	CH,	J28	0	СН
109	Me	Ме	AI	СООН	CH,	J 29	0	СН
110	Me	Ме	Al	C00H	CH,	J 30	0	СН
111	Ме	Me	Al	СООН	CH,	J31	0	СН
112	Me	Me	Al	СООН	CH,	J 32	0	СН
113	Ме	Ме	Al	СООН	CH,	133	0	СН
114	Ме	Me	Al	СООН	CH,	J 34	0	СН
115	Ме	Ме	AI	СООН	CH,	J 35	0	СН
116	Ме	Me	Al	СООН	CH,	J 36	0	СН
117	Ме	Me	Αl	СООН	CH,	J37	0	СН
118	Ме	Me	Al	СООН	CH,	J38	0	СН
119	Ме	Me	Al	СООН	CH,	139	0	СН
120	Me	Ме	Al	СООН	CH,	J40	0	СН
121	Ме	Ме	AI	СООН	CH,	J41	0	СН
122	Me	Ме	Al	СООН	CH,	J 4 2	0	СН
123	Me	Me	Al	СООН	CH,	J43	0	СН
124	Me	Me	A1	С00Н	CH,	J44	0	СН
125	Me	Me	Al	СООН	CH,	J45 ·	0	CH
								

Table 6

Compound No.	R'	R²	SCH,-A	Ε	G	J	m	χ
126	Me	Me	ΑI	СООН	CH,	J46	0	СН
127	Ме	Me	ΑI	СООН	CH,	J47	0	СН
128	Ме	Me	AI	СООН	CH,	J48	0	СН
129	Ме	Me	A 1	СООН	CH,	J49	0	СН
130	Me	Ме	A1	СООН	CH,	J50	0	СН
131	Me	Me	Al	СООН	CH,	J51	0	СН
132	Me	Ме	Al	СООН	CH,	J52	0	СН
133	Me	Me	Al	СООН	CH,	J53	0	СН
134	Ме	Ме	Al	СООН	CH,	J54	0	СН
135	Me	Ме	A 1	С00Н	CH,	J55	0	СН
136	Ме	Ме	Al	COOH	CH,	J56	0	СН
137	Me	Ме	Al	COOH	CH,	J57	0	СН
138	Me	Me	Al	СООН	CH,	J58	0	СН
139	Me	Ме	Αl	СООН	CH,	J59	0	СН
140	Ме	Ме	Al	СООН	CH,	J60	0	СН
141	Ме	Ме	AI	СООН	CH,	J61	0	СН
142	Ме	Ме	Al	СООН	CH,	J62	0	СН
143	Ме	Me	Al	СООН	CH,	J63	0	СН
144	Ме	Me	Al	СООН	CH,	J64	0	СН
145	Ме	Ме	Al	СООН	CH,	J65	0	СН
146	Ме	Ме	AI	СООН	CH,	J66	0	СН
147	Me	Me	Al	C00H	CH,	J67	0	СН
148	Me	Ме	Al	СООН	CH,	J68	0	СН
149	Me	Ме	A1	СООН	CH,	J69	0	СН
150	Me	Ме	Al	СООН	CH,	J70	0	СН

Table 7

Compound No.	Ľ,	R²	SCH,-A	E	G	J	m	Х
151	Me	Me	AI	СООН	CH_i	J71	0	СН
152	Ме	Ме	AI	СООН	CH,	J72	0	СН
153	Me	Me	Al	СООН	CH,	J73	0	СН
154	Me	Ме	AI	С00Н	CH,	J74	0	СН
155	Ме	Ме	AI	С00Н	CH,	J 75	0	СН
156	Ме	Me	AI	СООН	CH,	J76	0	СН
157	Ме	Ме	Al	СООН	CH,	J77	0	СН
158	Ме	Ме	ΑI	СООН	CH,	J78	0	СН
159	Me	Me	Al	СООН	CH,	J79	0	СН
160	Ме	Me	Al	СООН	CH,	J80	0	СН
161	CI	Cl	Al	СООН	СН,СН,	J1	0	СН
162	CI	Cl	Al	СООН	CH,	J4	0	СН
163	Cl	Cl	Al	СООН	CH,	J10	0	СН
164	CI	Cl	Al	СООН	CH,	J18	0	СН
165	CI	Cl	Al	СООН	CH,	J21	0	СН
166	Cl	CI	Al	СООН	CH,	J28	0	СН
167	Cl	Cl	Al	С00Н	CH,	J35	0	СН
168	Cl	CI	A1	C00H	CH,	J37	0	СН
169	Cl	Cl	Al	C00H	CH,	139	0	СН
170	CI	Cl	Al	С00Н	CH,	J43	0	СН
171	CI	Cl	Al	C00H	CH,	J46	0	СН
172	CI	Cl	Al	СООН	CH,	J50	0	СН
173	Cl	Cl	Al	СООН	CH,	J54	0	СН
174	CI	Cl	Al	C00H	CH,	J63	0	СН
175	Cl	Cl	Al	С00Н	CH,	J64	0 .	СН

Table 8

Compound No.	R'	R¹	SCH,-A	E	G	J	m	χ
176	CI	Cl	Al	СООН	CH,	J65	0	СН
177	Cl	CI	A1	СООН	CH,	J66	0	СН
178	CI	Cl	Al	СООН	CH,	J67	0	CH
179	CI	CI	ΑI	СООН	CH,	J71	0	СН
180	-CH,C	н,сн,-	ΑI	СООН	СН,СН,	J1	0	СН
181	-CH,CI	н,сн,-	Αl	СООН	CH,	J4	0	СН
182	-CH,CI	I,CH,-	Al	СООН	CH,	J10	0	СН
183	-CH,C	I,CH,-	ΑI	СООН	CH,	J18	0	СН
184	-CH,CH	I,CH,-	A 1	СООН	CH,	J 2 1	0	СН
185	-СН,СН	I,CH,-	A1	СООН	CH,	J28	0	СН
186	-СН,СН	I,CH,-	Αl	СООН	CH,	J35	0	СН
187	-СН,СН	CH ₁ -	Al	СООН	CH,	J37	0	СН
188	-СН,СН	,CH,-	ΑI	СООН	CH,	J39	0	CH
189	-СН,СН	,CH,-	A 1	СООН	CH,	J43	0	СН
190	-СН,СН	,CH,-	A I	СООН	CH,	J46	0	СН
191	-СН,СН	,CH,-	Al	СООН	CH,	J50	0	СН
192	-СН,СН	,CH,-	A 1	СООН	CH,	J54	0	CH
193	-СН,СН	,СН,-	Al	СООН	CH,	J63	0	СН
194	-СН,СН	,CH,-	A1	СООН	CH,	J64	0	CH
195	-СН,СН	,CH,-	A1	СООН	CH,	J65	0	СН
196	-СН,СН	,CH,-	Αl	СООН	CH,	J66	0	СН
197	-СН,СН	,CH,-	A 1	СООН	CH,	J67	0	СН
198	-СН,СН	,CH,-	Al	СООН	CH,	J71	0	СН
199	-0СН,	0-	Αl	СООН	CH,CH,	JI	0	СН
200	-0CH,	,0-	AI	СООН	CH,	J4	0	СН
					-			

Table 9

Compound No.	R'	R ¹	SCH,-A	E	G	J	m	Х
201	-осн	,0-	AI	СООН	CH,	J10	0	СН
202	-осн,	0-	A1	СООН	CH,	J18	0	СН
203	-ОСН,	0-	Al	СООН	CH,	J21	0	СН
204	-0CH,	0-	AI	СООН	CH,	J 28	0	СН
205	-0CH,	0-	Al	COOH	CH,	J35	0	СН
206	-0CH,	0-	A1	СООН	CH,	J37	0	СН
207	-0CH,()-	ΑI	COOH	CH,	139	0	СН
208	-0CH,C)-	Al	C00H	CH,	J43	0	СН
209	-0CH,C)-	A1	C00H	CH,	J46	0	СН
210	-0CH,0)-	Al	С00Н	CH,	J50	0	СН
211	-0CH,0	-	A1	C00H	CH,	J54	0	СН
212	-0CH,0	_	AI	COOH	CH,	J63	0	СН
213	-0CH,0	_	Al	COOH	CH,	J64	0	СН
214	-0CH ₂ 0		A1	СООН	CH,	J65	0	СН
215	-0CH,0	-	Al	COOH	CH,	J66	0	СН
216	-0CH,0	_	Al	СООН	CH,	J67	0	СН
217	-0CH,0	-	ΑI	СООН	CH,	J71	0	СН
218	-ОСН,СН,	0-	Al	СООН	CH,CH,	J1	0	СН
219	-осн,сн,	0-	A1	СООН	CH,	J4	0	СН
220	-осн,сн,	0-	Αl	C00H	CH,	J10	0	СН
221	-OCH,CH,	0-	Al	СООН	CH,	J18	0	СН
222	-OCH,CH,	0-	Al	СООН	CH,	J35	0	СН
223	-осн,сн,	0-	AI	СООН	CH,	J 37	0	СН
224	-осн,сн,	0-	Al	СООН	CH,	139	0	СН
225	-ОСН,СН,	0-	Al	СООН	CH,	J50	0	СН

Table 10

Compound	R'	R ¹	0011					
No.	<u> </u>		SCH,-A	E	G 	J	m	X
226		Н,СН,0-	1 A	СООН	CH,	J63	0	СН
227		H,CH,0-	Al	СООН	CH,	J64	0	СН
228	-0C	Н,СН,О-	Al	соон	CH,	J65	0	СН
229	-0CI	Н,СН,О-	A 1	СООН	CH,	J67	0	СН
230	-OCI	1,CH,0-	Al	СООН	CH,	J71	0	СН
231	0Me	ОМе	AI	СООН	CH,CH,	J1	0	СН
232	0Me	ОМе	Al	СООН	CH,	J4 .	0	СН
233	0Me	ОМе	AI	СООН	CH,	J10	0	СН
234	0Me	ОМе	Al	COOH	CH,	J18	0	СН
235	0Me	ОМе	AI	C00H	CH,	J35	0	СН
236	0Me	ОМе	A1	C00H	CH,	J37	0	СН
237	0Me	ОМе	Al	C00H	CH,	139	0	СН
238	OMe	ОМе	Al	C00H	CH,	J50	0	СН
239	ОМе	ОМе	Al	COOH	CH,	J63	0	СН
240	0Me	ОМе	A1	COOH	CH,	J64	0	СН
241	0Me	OMe	Al	COOH	CH,	J65	0	СН
242	0Me	ОМе	AI	СООН	CH,	J67	0	СН
243	0Me	ОМе	Al	C00H	CH,	J71	0	СН
244	F	F	A1	СООН	CH,	J 35	0	СН
245	F	F	Al	СООН	CH,	J37	0	СН
246	F	F	AI	С00Н	CH,	J39	0	СН
247	F	F	Al	СООН	CH,	J50	0	СН
248	F	F	Al	C00H	CH,	J63	0	CH
249	F	F	Al	C00H	CH,	J64	0 ·	CH
250	F	F	Al	С00Н	CH,	J65	0	CH
					41	, , ,	U	CH

Table 11

Compound No.	R¹	R'	SCH,-A	E	G	J	m	χ
251	F	F	Al	СООН	CH,	J 67	0	СН
252	Н	Н	Al	СООН	CH,	J35	0	N
253	Н	Н	AI	СООН	CH,	J37	0	N
254	Н	Н	Al	СООН	CH,	J39	0	N
255	Н	Н	Al	СООН	CH,	J50	0	N
256	Н	Н	Al	COOH	CH,	J63	0	N
257	Н	Н	Al	COOH	CH,	J64	0	N
258	Н	Н	A1	COOH	CH,	J65	0	N
259	Н	Н	Al	COOH	CH,	J67	0	Ŋ
260	Ме	Н	Al	СООН	CH,	J35	0	СН
261	Me	Н	Al	COOH	CH,	J37	0	СН
262	Ме	Н	A1	COOH	CH,	J39	0	СН
263	Me	Н	Al	СООН	CH,	J50	0	СН
264	Ме	Н	Al	СООН	CH,	J 63	0	СН
265	Ме	Н	A1	СООН	CH,	J64	0	СН
266	Ме	Н	A1	СООН	CH,	J 65	0	СН
267	Me	Н	Al	C00H	CH,	J 6 7	0	СН
268	ОМе	H	AI	COOH	CH,	J 35	0	СН
269	ОМе	Н	Al	COOH	CH,	J37	0	СН
270	ОМе	Н	A1	COOH	CH,	J39	0	СН
271	ОМе	Н	Al	COOH	CH,	J50	0	СН
272	ОМе	Н	Al	СООН	CH,	J 6 3	0	СН
273	0Me	Н	Al	C00H	CH,	J64	0	СН
274	ОМе	Н	Al	C00H	CH,	J 65	0	СН
275	OMe	Н	Al	C00H	CH,	J67	0	СН

Table 12

Compound No.	R¹	R'	SCH ₁ -A	Е	G	J	m	χ
276	0E t	Н	A 1	СООН	CH,	J63	0	СН
277	0E t	Н	A 1	СООН	CH,	J 64	0	СН
278	0E t	Н	Al	СООН	CH,	J65	0	СН
279	CF3	Н	Al	СООН	CH,	J63	0	СН
280	CF3	Н	Al	СООН	CH,	J64	0	СН
281	CF3	Н	A1 .	СООН	CH,	J 65	0	СН
282	CN	Н	Al	СООН	CH,	J 6 3	0	СН
283	CN	Н	Al	СООН	CH,	J 64	0	СН
284	CN	Н	Al	СООН	CH,	J 65	0	СН
285	Cl	Н	Al	СООН	CH,	J63	0	N
286	Cl	Н	Al	СООН	CH,	J64	0	N
287	Cl	Н	Ai	СООН	CH,	J 65	0	Ŋ
288	Ме	Me	A2	СООН	CH,	J 35	0	СН
289	Ме	Ме	A2	СООН	CH,	J37	0	СН
290	Ме	Me	A2	СООН	CH,	J39	0	СН
291	Ме	Ме	A2	СООН	CH,	J63	0	СН
292	Ме	Ме	A2	СООН	CH,	J 6 4	0	СН
293	Ме	Me	A2	СООН	CH,	J65	0	СН
294	Ме	Me	A2	СООН	СН,СН,	J1	0	СН
295	Ме	Me	A3	СООН	CH,	JI	0	СН
296	Me	Ме	A3	СООН	CH,	J35	0	СН
297	Ме	Ме	A3	СООН	CH,	J37	0	СН
298	Me	Me	A3	СООН	CH,	139	0	СН
299	Ме	Me	A3	СООН	CH,	J50	0	СН
300	Ме	Ме	A3	СООН	CH,	J63	0	СН

Table 13

Compound No.	R¹	R²	SCH,-A	E	G	J	m	Х
301	Me	Ме	А3	СООН	CH,	J64	0	СН
302	Ме	Me	А3	СООН	CH,	J65	0	СН
303	Me	Me	A3	СООН	CH,	J67	0	СН
304	Me	Ме	А3	СООН	сн,сн,	J1	0	СН
305	Ме	Me	А3	СООН	CH,CH,	J63	0	СН
306	Me	Me	A4	СООН	CH,	JI	0	СН
307	Me	Me	A4	СООН	CH,	J35	0	СН
308	Me	Ме	A4	СООН	CH,	J37	0	СН
309	Me	Me	A4	СООН	CH,	139	0	СН
310	Me	Ме	A4	СООН	CH,	J50	0	CH
311	Ме	Ме	A4	СООН	CH,	J63	0	CH
312	Me	Me	A4	СООН	CH,	J64	0	СН
313	Me	Me	A4	СООН	CH,	J65	0	СН
314	Me	Me	A4	СООН	CH,	J67	0	СН
315	Me	Me	A4	COOH	СН,СН,	JI	0	СН
316	Me	Me	A4	СООН	CH,CH,	J63	0	СН
317	Н	Н	A4	СООН	CH,	J37	0	СН
318	Н	Н	A4	COOH	CH,	J39	0	СН
319	Н	Н	A4	COOH	CH,	J63	0	СН
320	Н	Н	A4	СООН	CH,	J64	0	СН
321	Н	Н	A4	СООН	CH,	J65	0	СН
322	CI	Cl	A4	СООН	CH,	J37	0	СН
323	Cl	CI	A4	СООН	CH,	J39	0	СН
324	CI	Cl	A4	COOH	CH,	J63	0	СН
325	CI	Cl	A4	COOH	CH,	J64	0	СН

Table 14

Compound No.	R¹	R	SCH,-A	Е	G	J	m	Х
326	CI	CI	A4	СООН	CH,	J65	0	СН
327	Н	Н	A4	СООН	CH,	J37	0	N
328	Н	Н	A4	СООН	CH,	J 3 9	0	N
329	Н	Н	A4	СООН	CH,	J63	0	N
330	Н	Н	A4	СООН	CH,	J 6 4	0	N
331	H	Н	A4	СООН	CH,	J 65	0	N
332	Ме	Me	A5	СООН	CH,	J1	0	СН
333	Ме	Ме	A5	СООН	CH,CH,	J1	0	СН
334	Me	Me	A6	СООН	CH,	J1	0	СН
335	Me	Me	A6	СООН	CH, CH,	JI	0	СН
336	Ме	Ме	A7	СООН	CH,	J1	0	СН
337	Ме	Ме	A7	СООН	сн,сн,	J1	0	СН
338	Ме	Ме	A8	СООН	CH,	J1	0	СН
339	Me	Ме	A8	СООН	CH,CH,	Л1	0	СН
340	Ме	Ме	A9	СООН	CH,	ЛI	0	СН
341	Ме	Ме	A9	СООН	CH,CH,	J 1	0	СН
342	Ме	Me	A10	СООН	CH,	ЛI	0	СН
343	Me	Me	A10	СООН	CH,CH,	JI	0	СН
344	Ме	Me	All	СООН	CH,	J37	0	СН
345	Me	Me	- A11	СООН	CH,	J39	0	СН
346	Me	Me	All	СООН	CH,	J50	. 0	СН
347	Me	Me	All	СООН	CH,	J 6 3	0	СН
348	Me	Me	All	СООН	CH,	J 64	0	СН
349	Н	Н	AİI	COOH	CH,	J37	0	СН
350	Н	Н	All	COOH	CH,	J 39	0	СН

Table 15

Compound No.	R'	R	SCH,-A	E	G	J	m	X
351	Н	Н	All	СООН	CH,	J 50	0	СН
352	Н	Н	All	СООН	CH,	J63	0	СН
353	Н	Н	All	СООН	CH,	J 64	0	СН
354	Н	H	A11	СООН	CH,	J 65	0	СН
355	CI	Cl	All	СООН	CH,	J37	0	СН
356	CI	CI	All	СООН	CH,	J 39	0	СН
357	Cl	Cl	All	СООН	CH,	J50	0	СН
358	CI	CI	All	СООН	CH,	J63	0	СН
359	Cl	CI	All	COOH	CH,	J64	0	СН
360	CI	CI	All	СООН	CH,	J65	0	СН
361	Н	Н	A11	COOH	CH,	J37	0	N
362	Н	Н	A11	C00H	CH,	J39	0	N
363	Н	Н	All	C00H	CH,	J50	0	N
364	Н	Н	All	С00Н	CH,	J63	0	N
365	H	Н	All	С00Н	CH,	J 64	0	N
366	Н	Н	A11	СООН	CH,	J 65	0	N
367	Me	Me	A12	C00H	CH,	JI	0	СН
368	Ме	Me	A12	С00Н	CH,CH,	JI	0	СН
369	Ме	Ме	A13	СООН	CH,	JI	0	СН
370	Ме	Me	A13	C00H	СН,СН,	J1	0	CH
371	Me	Ме	A14	C00H	CH,	JI	0	CH
372	Ме	Ме	A14	СООН	CH,CH,	JI	0	СН
373	Me	Me	A15	С00Н	CH,	JI	0	СН
374	Ме	Me	A15	СООН	CH,CH,	JI	0	СН
375	Ме	Ме	A16	COOH	CH,	JĮ	0	CH

Table 16

Compound No.	R'	R ²	SCH,-A	E	G	J	m	Х
376	Ме	Me	A16	СООН	СН,СН,	JI	0	СН
377	Ме	Me	A16	СООН	CH,	J37	0	
378	Me	Ме	A16	СООН	CH,	J 39	0	СН
379	Me	Me	A16	СООН	CH,	J50	0	СН
380	Me	Me	A16	СООН	CH,	J63	0	CH
381	Me	Me	A16	СООН	CH,	J 64	0	CH
382	Me	Me	A16	СООН	CH,	J65	0	СН
383	Н	Н	A16	СООН	CH,	J37	0	СН
384	Н	Н	A16	СООН	CH,	J39	0	СН
385	Н	Н	A16	СООН	CH,	J50		CH
386	<u>н</u>	Н	A16	СООН	CH,	J63	0	СН
387	Н	Н	A16	COOH	····		0	СН
388	Н	— <u>н</u>	A16		CH,	J64	0	СН
389	Me			COOH	CH,	J65	0	CH
		Me	A17	C00H	CH,	JI	0	СН
390	Me	Me 	A17	СООН	CH,CH,	JI	0	СН
391	Me	Me	A18	СООН	СН,СН,	J1	0	СН
392	Ме	Me	A18	СООН	CH,	J37	0	СН
393	Me	Ме	A18	СООН	CH,	J39	0	СН
394	Me	Ме	A18	СООН	CH,	J50	0	СН
395	Ме	Ме	A18	СООН	CH,	J63	0	СН
396	Ме	Ме	A18	СООН	CH,	J64	0	СН
397	Ме	Ме	A18	СООН	CH,	J65	0	СН
398	Н	Н	A18	СООН	CH,	J37	0	CH
399	Н	Н	A18	СООН	CH,	J39	0	CH
400	Н	Н	A18	СООН	CH,	150	0	CH
							•	011

Table 17

			·				_	
Compound No.	R'	R ¹	SCH,-A	E	G	J	m	Х
401	Н	Н	A18	COOH	CH,	J63	0	СН
402	Н	Н	A18	COOH	CH,	J 64	0	СН
403	H	H	A18	COOH	CH,	J65	0	СН
404	CI	CI	A18	COOH	CH,	J37	0	СН
405	CI	Cl	8 i A	COOH	CH,	J63	0	СН
406	CI	Cl	A18	СООН	CH,	J64	0	СН
407	CI	CI	A18	C00H	CH,	J65	0	СН
408	Н	Н	A18	C00H	CH,	J37	0	N
409	Н	Н	A18	COOH	CH,	139	0	N
410	Н	Н	A18	С00Н	CH,	J63	0	N
411	Н	Н	A18	С00Н	CH,	J64	0	N
412	Н	Н	A18	С00Н	CH,	J65	0	N
413	Ме	Н	A18	С00Н	CH,	137	0	СН
4 1.4	Me	Н	A18	C00H	CH,	J39	0	СН
415	Me	Н	A18	C00H	CH,	J63	0	СН
416	Me	H	A18	СООН	CH,	J64	0	СН
417	Me	Н	A18	СООН	CH,	J65	0	СН
418	OMe	Н	A18	СООН	CH,	J37	0	СН
419	ОМе	Н	A18	СООН	CH,	J39	0	СН
420	OMe	Н	A18	СООН	CH,	J63	0	СН
421	ОМе	Н	A18	СООН	CH,	J64	0	СН
422	ОМе	Н	A18	СООН	CH,	J65	0	СН
423	0E t	Н	A18	СООН	CH,	J63	0	СН
424	0E t	Н	A18	СООН	CH,	J64	0	СН
425	0E t	Н	A18	СООН	CH,	J65	0 .	СН
					<u> </u>			

Table 18

Compound No.	R'	R ²	SCH,-A	Е	G	J	m	χ
426	CF3	Н	A18	С00Н	CH,	J63	0	СН
427	CF3	Н	A18	C00H	CH,	J64	0	СН
428	CF3	Н	A18	СООН	CH,	J65	0	СН
429	CN	Н	A18	C00H	CH,	J63	0	СН
430	CN	Н	A18	COOH	CH,	J64	0	СН
431	CN	Н	A18 ·	СООН	CH,	J65	0	СН
432	F	Н	. A18	СООН	CH,	J63	0	СН
433	F	Н	A18	СООН	CH,	J64	0	СН
434	F	Н	A18	COOH	CH,	J 65	0	СН
435	CI	Н	A18	СООН	CH,	J63	0	N
436	CI	Н	A18	СООН	CH,	J64	0 ·	N
437	CI	Н	A18	COOH	CH,	J65	0	N
438	Н	Н	A18	СООН	CH,	J37	0	N
439	Ме	Me	A19	СООН	CH,	J I	0	СН
440	Ме	Me	A19	СООН	CH,CH,	J1	0	СН
441	Ме	Ме	A19	СООН	CH,	J37	0	СН
442	Ме	Ме	A19	СООН	CH,	J39	0	СН
443	Me	Ме	A19	СООН	CH,	J50	0	СН
444	Me	Ме	A19	СООН	CH,	J63	0	СН
445	Me	Ме	A19	СООН	CH,	J64	0	СН
446	Me	Me	A19	СООН	CH,	J65	0	СН
447	Н	Н	A19	COOH	CH,	J1	0	СН
448	Н	H	A19	СООН	CH,CH,	Ji	0	СН
449	Н	H	A19	СООН	CH,	J37	0	СН
450	Н	Н	A19	СООН	CH,	J39	0	СН

Table 19

Compound No.	R'	R ⁱ	SCH,-A	Ε	G	J	m	χ.
451	Н	Н	A19	СООН	CH,	J50	0	СН
452	Н	Н	A19	СООН	CH,	J63	0	СН
453	Н	Н	A19	СООН	CH,	J64	0	СН
454	Н	Н	A19	СООН	CH,	J 65	0	СН
455	Ме	Me	A20	СООН	CH,	J64	0	СН
456	Ме	Ме	A20	СООН	CH,	J65	0	СН
457	Ме	Ме	A20	СООН	CH,	J67	0	СН
458	Ме	Ме	A20	СООН	CH,	J71	0	СН
459	Н	Н	A20	СООН	CH,	J64	0	СН
460	Н	Н	A20	СООН	CH,	J65	0	СН
461	Н	Н	A20	COOH	CH,	J67	0	СН
462	Н	Н	A20	С00Н	CH,	J71	0	СН
463	Cl	Cl	A20	СООН	CH,	J64	0	СН
464	Cl	Cl	A20	COOH	CH,	J 65	0	СН
465	CI	CI	A20	СООН	CH,	J67	0	СН
466	CI	Cl	A20	СООН	CH,	J71	0	CH
467	Н	Н	A20	СООН	CH,	J64	0	N
468	Н	Н	A20	СООН	CH,	J65	0	И
469	Н	Н	A20	СООН	CH,	J67	0	N
470	Н	H	A20	СООН	CH,	J71	0	N
471	Ме	Н	A20	СООН	CH,	J64	0	СН
472	Me	Н	A20	СООН	CH,	J65	0	СН
473	Ме	Н	A20	СООН	CH,	J67	0	СН
474	Me	Ħ	A20	СООН	CH,	J71	0	СН
475	OMe	H	A20	СООН	CH,	J64	0	СН
				·				

Table 20

Compound No.	R'	R'	SCH,-A	Е	G	J	m	Х
476	0Me	Н	A20	СООН	CH,	J65	0	СН
477	OMe	Н	A20	СООН	CH,	J67	0	СН
478	OMe	Н	A20	СООН	CH,	J71	0	СН
479	0E t	Н	A20	СООН	CH,	J64	0	СН
480	0E t	Н	A20	СООН	CH,	J65	0	СН
481	0E t	Н	A20	СООН	CH,	167	0	СН
482	0E t	Н	A20	СООН	CH,	J71	0	СН
483	F	Н	A20	СООН	CH,	J64	0	СН
484	F	Н	A20	СООН	CH,	J65	0	СН
485	F	Н	A20	СООН	CH,	J 6 7	0	СН
486	F	Н	A20	СООН	CH,	J71	0	СН
487	CF3	Н	A20	СООН	CH,	J64	0	СН
488	CF3	Н	A20	СООН	CH,	J65	0	СН
489	CF3	Н	A20	СООН	CH,	J67	0	СН
490	CF3	Н	A20	СООН	CH,	J71	0	СН
491	CN	Н	A20	СООН	CH,	J64	0	СН
492	CN	Н	A20	СООН	CH,	J65	0	СН
493	CN	Н	A20	СООН	CH,	J67	0	СН
494	CN	Н	A20	СООН	CH,	J71	0	СН
495	Cl	Н	A20	СООН	CH,	J 64	0	И
496	Cl	Н	A20	СООН	CH,	J 65	0	И
497	Cl	Н	A20	СООН	CH,	167	0	N
498	Cl	Н	A20	СООН	CH,	J71	0	N
499	H	Н	A21	СООН	CH,	163	0	СН
500	Н	Н	A21	СООН	CH,	J65	0	СН
								

Table 21

Compound No.	R'	R²	SCH,-A	£	G	J	m	χ
501	Me	Me	Αl	СООН	СН,СН,	J1	0	СН
502	Me	Ме	ΑI	СООН	СН,СН,	J37	0	СН
503	Ме	Me	ΑI	СООН	СН,СН,	J39	0	СН
504	Ме	Me	A1-	СООН	СН,СН,	J50	0	СН
505	Me	Ме	ΑI	СООН	СН,СН,	J62	0	СН
506	Ме	Ме	AI	COOH	СН,СН,	J63	0	СН
507	Ме	Me	Al	COOH	CH,CH,	J64	0	СН
508	Me	Ме	AI	СООН	СН,СН,	J65	0	СН
509	Н	Н	A1	C00H	СН,СН,	JI	0	СН
510	Н	Н	A 1	С00Н	СН,СН,	J37	0	СН
511	Н	Н	Al	C00H	сн,сн,	J39	0	СН
512	Н	Н	Al	С00Н	CH,CH,	J50	0	СН
513	Н	Н	Al	C00H	СН,СН,	J62	0	СН
514	Н	Н	Al	C00H	СН,СН,	J63	0	СН
515	Н	Н	Al	C00H	сн,сн,	J 64	0	СН
516	Н	Н	Al	C00H	сн,сн,	J 65	0	CH
517	Ме	Ме	A4	C00H	CH,CH,	J 37	0	СН
518	Ме	Ме	A4	C00H	сн,сн,	J39	0	СН
519	Ме	Me	A4	C00H	сн,сн,	J67	0	СН
520	Ме	Ме	A4	C00H	CH,CH,	J64	0	СН
521	Ме	Ме	A4	COOH	CH,CH,	J 65	0	СН
522	Н	Н	A4	COOH	CH, CH,	J37	0	СН
523	Н	Н	A4	СООН	CH,CH,	J39	0	СН
524	Н	Н	A4	C00H	CH,CH,	J 63	0	СН
525	Н	Н	A4	СООН	CH,CH,	J 64	0	СН

Table 22

526 H 527 H 528 H 529 H 530 H 531 H 532 H 533 H 534 H	H H H H H H H	A4 A11 A11 A11 A11 A18 A18	COOH COOH COOH COOH COOH	CH,CH, CH,CH, CH,CH, CH,CH,	J65 J37 J39 J63 J64 J65 J37	0 0 0 0 0	CH CH CH CH CH
528 H 529 H 530 H 531 H 532 H 533 H 534 H	H H H H H	A11 A11 A11 A18 A18	COOH COOH COOH	CH,CH, CH,CH, CH,CH, CH,CH,	J39 J63 J64 J65 J37	0 0 0	CH CH CH
529 H 530 H 531 H 532 H 533 H 534 H	H H H H	A11 A11 A18 A18	COOH COOH COOH	CH,CH, CH,CH, CH,CH,	J63 J64 J65 J37	0 0	CH CH
530 H 531 H 532 H 533 H 534 H	H H H H	A11 A11 A18 A18	COOH COOH	CH,CH, CH,CH,	J64 J65 J37	0	СН
531 H 532 H 533 H 534 H	Н Н Н	A11 A18 A18	СООН	СН,СН,	J65 J37	0	СН
532 H 533 H 534 H	Н Н	A18	соон	СН,СН,	J37		
533 H 534 H	Н	A 1 8				0	СН
534 Н	Н		СООН	CILCII			
		A18		CH,CH,	J39	0	СН
	Н		СООН	CH,CH,	J 6 3	0	СН
535 H		A18	СООН	сн,сн,	J64	0	СН
536 H	Н	A18	СООН	CH, CH,	J65	0	СН
537 Me	Me	A20	СООН	CH, CH,	J37	0	CH
538 Me	Me	A20	СООН	СН,СН,	J39	0	СН
539 Me	Me	A20	СООН	CH,CH,	J63	0	СН
540 Me	Me	A20	COOH	Сн,сн,	J 64	0	СН
541 Me	Me	A20	СООН	СН,СН,	J65	0	СН
542 H	Н	A20	СООН	СН,СН,	J 3 7	0	СН
543 H	Н	A20	СООН	СН,СН,	J 39	0	СН
544 H	Н	A20	СООН	сн,сн,	J 63	0	СН
545 H	Н	A20	СООН	CH,CH,	J64	0	СН
546 H	Н	A20	СООН	CH,CH,	J65	0	CH
547 Me	Me	Al	СООН	CO	J1	0	СН
548 Me	Ме	Al	СООН	CO	J 6 3	0	CH
549 H	Н	AI	СООН	CO	Jį	0	СН
550 H	H	Al	СООН	CO	163	0	СН

Table 23

Compound No.	R'	R'	SCH,-A	Ε	G	J	m	Х
551	Ме	Ме	A4	СООН	CO	J1	0	СН
552	Ме	Me	A4	СООН	CO	J63	0	СН
553	Н	Н	A4	СООН	CO	JI	0	СН
554	Н	Н	A4	СООН	CO	J63	0	СН
555	Н	Н	All	СООН	CO	J1	0	СН
556	Н	Н	All	СООН	CO	J63	0	СН
557	Н	Н	A18	СООН	CO	J1	0	СН
558	Н	Н	A18	СООН	CO	J 6 3	0	СН
559	Н	Н	A20	СООН	CO	Ji	0	СН
560	Н	Н	A20	СООН	CO	J63	0	СН
561	Ме	Ме	Al	COOH	SO,	JĮ	0	CH ·
562	Ме	Me	A1	СООН	SO,	J63	0	СН
563	Н	Н	Al	СООН	SO,	J 1	0	СН
564	Н	Н	A1	СООН	SO,	J63	0	СН
565	Н	Н	A4	СООН	SO,	J 1	0	СН
566	Н	Н	A4	СООН	SO,	J63	0	СН
567	Н	Н	A11	COOH	SO,	J1	0	СН
568	Н	Н	A11	COOH	SO,	J63	0	СН
569	Н	Н	A18	COOH	SO,	Jl	0	СН
570	H	Н	A18	СООН	SO,	J63	0	СН
571	Н	Н	A20	СООН	SO,	Jl	0	CH
572	Н	Н	A20	COOH	SO,	J63	0	СН
573	Н	Н	Al	СООН	CH,CO	JI	0	СН
574	Н	Н	Al	СООН	CH,CO	J 2	0	СН
575	Н	Н	Al	СООН	CH,CO	J 3	0	СН

Table 24

Compound No.	R'	R'	SCH,-A	Е	G	J	m	Х
576	Н	Н	Al	СООН	CH,CO	J4	0	СН
577	Н	Н	Al	СООН	CH,CO	J5	0	СН
578	Н	Н	Al	СООН	CH,CO	J6	0	СН
579	Н	Н	Al	СООН	CH,CO	J7	0	СН
580	Н	Н	Al	СООН	CH,CO	18	0	СН
581	Н	Н	Al	СООН	CH,CO	J 9	0	СН
582	Н	Н	Al	СООН	CH,CO	J10	0	СН
583	Н	Н	A1	СООН	CH,CO	J11	0	СН
584	Н	Н	A1	СООН	CH,CO	J12	0	СН
585	Н	Н	AI	СООН	CH,CO	J13	0	СН
586	Н	Н	Al	СООН	CH,CO	J17	0	СН
587	Н	Н	AI	СООН	CH,CO	J18	0	CH
588	Н	Н	Al	СООН	CH, CO	J19	0	СН
589	Н	Н	Al	СООН	CH,CO	J 23	0	CH
590	Н	Н	Al	СООН	CH,CO	J24	0	СН
591	Н	Н	Al	СООН	CH,CO	J 25	0	СН
592	Н	H	Al	СООН	CH,CO	J36	0	СН
593	Н	Н	Al	СООН	CH,CO	J47	0	СН
594	Н	Н	Al	СООН	CH,CO	J57	0	СН
595	Н	Н	Al	СООН	CH,CO	J 62	0	СН
596	Ме	Ме	Αl	СООН	CH,CO	JI	0	СН
597	Ме	Me	A1	СООН	CH,CO	J 2	0	СН
598	Ме	Me	A1	СООН	CH,CO	J 3	0	СН
599	Ме	Me	ΑI	СООН	CH,CO	J 4	0	СН
600	Me	Me	Al	СООН	CH,CO	J 5	0	СН

Table 25

Compound No.	R'	R'	SCH,-A	Е	G	J	m	Х
601	Ме	Me	ΑI	СООН	CH,C0	J 6	0	СН
602	Me	Me	Al	СООН	CH,C0	17	0	СН
603	Ме	Me	AI	СООН	CH,C0	18	0	СН
604	Ме	Me	A1	СООН	CH,C0	J 9	0	СН
605	Ме	Me	ΑI	СООН	CH,CO	J10	0	СН
606	Ме	Ме	Al	СООН	CH,C0	J11	0	СН
607	Ме	Ме	Al	СООН	CH,CO	J12	0	СН
608	Ме	Ме	ΑI	СООН	CH,CO	J13	0	СН
609	Ме	Ме	Al	СООН	CH,CO	J17	0	СН
610	Me	Ме	Al	СООН	CH,CO	J18	0	СН
611	Me	Ме	A1	СООН	CH,CO	J19	0	СН
612	Ме	Me	Al	СООН	CH,CO	J 23	0	СН
613	Me	Me	Al	СООН	CH,CO	J 24	0	СН
614	Ме	Me	A1	СООН	CH,CO	J 25	0	СН
615	Me	Me	ΑI	СООН	CH,CO	J36	0	СН
616	Ме	Ме	Al	СООН	CH,CO	J47	0	СН
617	Ме	Ме	Al	COOH	CH,CO	J57	0	СН
618	Me	Me	Al	СООН	CH,CO	J 6 2	0	СН
619	Н	Н	Al	СООН	СН,СОИН	Ji	0	СН
620	Н	Н	Al	СООН	CH,CONH	J 2	0	СН
621	Н	Н	Al	СООН	СН,СОМН	13	0	СН
622	Н	H	Ai	COOH	СН,СОМН	J4	0	СН
623	Н	Н	Al	СООН	CH, CONH	J5	0	СН
624	Н	H	ΑI	СООН	CH, CONH	J 6	0	СН
625	Н	H	Αl	СООН	CH,CONH	J7	0	СН
								

Table 26

Compound No.	R'	R ²	SCH,-A	Е	G	J	m	Х
626	Н	Н	Al	СООН	CH,CONH	18	0	СН
627	Н	Н	AI	СООН	CH,CONH	19	0	СН
628	Н	Н	AI	СООН	CH,CONH	J10	0	СН
629	Н	Н	Al	СООН	CH,CONH	J11	0	СН
630	Н	Н	A1	COOH	CH,CONH	J12	0	СН
631	Н	Н	A1	СООН	CH,CONH	J13	0	СН
632	Н	Н	A 1	СООН	CH,CONH	J14	0	СН
633	Н	Н	A1	СООН	CH,CONH	J15	0	СН
634	Н	Н	A1	СООН	CH,CONH	J16	0	СН
635	H	Н	A1	СООН	CH,CONH	J17	0	СН
636	Н	Н	Αl	COOH	CH,CONH	J18	0	СН
637	H	Н	Αl	СООН	CH,CONH	J19	0	СН
638	Н	Н	Al	COOH	CH,CONH	J20	0	СН
639	Н	Н	Al	СООН	CH,CONH	J21	0	СН
640	Н	Н	Al	СООН	CH,CONH	J 2 2	0	СН
641	Н	Н	Al	СООН	CH,CONH	J23	0	CH
642	Н	Н	A1	СООН	CH, CONH	J24	0	СН
643	Н	H	Al	СООН	CH,CONH	J 25	0	СН
644	Н	Н	AI	СООН	CH,CONH	J26	0	СН
645	Н	Н	A 1	СООН	СН,СОЙН	J27	0	СН
646	H	Н	Al	СООН	CH,CONH	J28	0	СН
647	Н	Н	Al	СООН	CH,CONH	J29	0	СН
648	Н	Н	Al	СООН	CH,CONH	J30	0	СН
649	Н	Н	A1	СООН	CH,CONH	J31	0	СН
650	Н	H	Αl	СООН	CH,CONH	J32	0	СН

Table 27

Compound No.	R'	R^{i}	SCH,-A	E	G	J	m	χ
651	Н	Н	Al	СООН	CH, CONH	133	0	СН
652	Н	Н	Al	COOH	CH,CONH	J34	0	СН
653	Н	Н	Al	СООН	CH,CONH	J35	0	СН
654	Н	Н	Al	COOH	CH, CONH	J37	0	СН
655	Н	Н	Al	COOH	CH, CONH	139	0	СН
656	Н	Н	Al	СООН	CH,CONH	J62	0	СН
657	Н	Н	A1	СООН	CH,CONH	J63	0	СН
658	Ме	Me	ΑI	СООН	CH,CONH	Jl	0	СН
659	Ме	Me	Al	СООН	CH,CONH	12	0	СН
660	Me	Ме	Al	COOH	CH,CONH	13	0	СН
661	Me	Ме	Al	СООН	CH,CONH	J 4	0	СН
662	Me	Ме	Al	СООН	CH,CONH	J5	. 0	СН
663	Ме	Ме	Al	COOH	CH,CONH	J6	0	СН
664	Ме	Ме	A1	СООН	CH,CONH	J 7	0	СН
665	Ме	Me	Al	СООН	CH,CONH	18	0	СН
666	Me	Me	Al	СООН	CH,CONH	19	0	СН
667	Me	Me	Al	СООН	CH,CONH	J10	0	СН
668	Me	Ме	Al	COOH	CH, CONH	J11	0	СН
669	Me	Me	Al	СООН	CH,CONH	J12	0	СН
670	Me	Me	ΑI	СООН	СН,СОЙН	J13	0	СН
671	Ме	Me	Al	COOH	CH,CONH	J14	0	СН
672	Me	Me	AI	СООН	CH, CONH	J15	0	СН
673	Me	Me	AI	СООН	CH, CONH	J16	0	СН
674	Me	Me	Al	СООН	CH,CONH	J17	0	СН
675	Me	Me	Al	СООН	CH,CONH	J18	0	СН

Table 28

Compound No.	R¹	R ²	SCH,-A	E	G	J	m	Х
676	Ме	Ме	A1	СООН	CH, CONH	J19	0	СН
677	Me	Me	Al	СООН	CH, CONH	120	0	СН
678	Me	Me	Αl	СООН	CH,CONH	J21	0	СН
679	Ме	Me	Al	СООН	CH, CONH	J 2 2	0	СН
680	Mė	Ме	ΑI	СООН	СН,СОИН	J 2 3	0	СН
681	Ме	Me	Al	СООН	CH, CONH	J24	0	СН
682	Me	Me	AI	СООН	СН,СОМН	J 25	0	СН
683	Me	Ме	Al	СООН	CH,CONH	J26	0	СН
684	Me	Me	Al	СООН	CH, CONH	J 2 7	. 0	СН
685	Me	Me	A1	СООН	CH,CONH	J28	0	СН
686	Me	Ме	A1	СООН	CH, CONH	J 2 9	0	СН
687	Ме	Me	A 1	СООН	CH, CONH	130	0	СН
688	Ме	Me	Al	СООН	CH,CONH	J31	0	СН
689.	Me	Me	AI	СООН	CH,CONH	J 3 2	0	СН
690	Ме	Ме	Αl	СООН	CH,CONH	J 3 3	0	СН
691	Me	Me	Al	СООН	CH, CONH	J 34	0	СН
692	Ме	Ме	Al	СООН	CH, CONH	J 35	0	СН
693	Me	Ме	A1	СООН	CH, CONH	J 37	0	СН
694	Ме	Me	A1	СООН	CH, CONH	139	0	СН
695	Me	Ме	A 1	СООН	CH,CONH	J 6 2	0	СН
696	Me	Me	Al	СООН	CH, CONH	J63	0	СН
697	Н	Н	Al	СООН	CH,CH,O	JI	0	СН
698	Н	Н	Al	СООН	CH,CH,O	J 2	0	СН
699	Н	Н	Al	СООН	CH,CH,O	13	0	СН
700	H	Н	ΑI	СООН	CH,CH,O	J4	0	СН

Table 29

Compound No.	R¹	R'	SCH,-A	E	G	J	m	χ
701	Н	Н	A1	СООН	CH,CH,0	J5	0	СН
702	Н	Н	ΑI	СООН	CH,CH,O	J6	0	СН
703	Н	Н	Al	СООН	CH,CH,O	J7	0	СН
704	Н	Н	Al	СООН	CH,CH,O	18	0	СН
705	Н	Н	Al	СООН	CH,CH,O	19	0	СН
706	Н	Н	Al	соон	CH,CH,O	J10	0	СН
707	Н	Н	AI	СООН	CH,CH,O	JII	0	СН
708	Н	Н	Al	СООН	CH,CH,O	J12	0	СН
709	Н	Н	AI	СООН	CH,CH,O	J13	0	СН
710	Н	Н	Al	СООН	CH,CH,O	J14	0	СН
711	Н	Н	Al	СООН	CH,CH,O	J15	0	СН
712	Н	Н	Al	СООН	CH,CH,O	J16	0	СН
713	Н	Н	Αl	COOH	CH,CH,O	J17	0	СН
714	Н	Н	Αl	СООН	CH,CH,O	J18	0	СН
715	Н	Н	A1	СООН	CH,CH,0	J19	0	СН
716	Н	Н	A1	СООН	CH,CH,O	J20	0	СН
717	Н	Н	Al	СООН	CH,CH,0	J21	0	СН
718	Н	Н	Αl	СООН	CH,CH,O	J 2 2	0	СН
719	Н	Н	Al	СООН	CH,CH,O	J 2 3	0	СН
720	Н	Н	Al	СООН	Сн,сн,о	J24	0	СН
721	. H	Н	Αl	СООН	CH,CH,0	J 2 5	0	СН
722	Н	Н	Al	СООН	CH,CH,O	J 26	0	СН
723	Н	Н	A1 _.	СООН	CH,CH,O	J 27	0	СН
724	Н	H	Al	СООН	CH,CH,0	J 28	0	СН
725	Н	Н	Al	СООН	CH,CH,0	J 2 9	0	СН

Table 30

Compound No.	R¹	·R²	SCH,-A	Е	G	J	m	X
726	Н	Н	AI	C00H	сн,сн,о	J 30	0	СН
727	Н	Н	Al	C00H	CH,CH,O	J31	0	СН
728	Н	Н	Al	С00Н	сн,сн,о	J 3 2	0	СН
729	Н	Н	Al	C00H	CH,CH,O	J33	0	СН
730	Н	Н	Al	C00H	CH,CH,O	J 3.4	0	СН
731	Н	Н	Al	СООН	CH,CH,O	J 35	0	СН
732	Н	Н	Al	C00H	CH, CH, O	J37	0	СН
733	Н	Н	AI	СООН	CH, CH, O	J39	0	СН
734	Н	Н	Al	СООН	CH, CH, O	J 6 2	0	СН
735	Н	Н	Αl	СООН	CH,CH,O	J 63	0	СН
736	Ме	Ме	A1	СООН	СН,СН,О	JI	0	СН
737	Me	Ме	Al	СООН	СН,СН,О	J 2	0	СН
738	Ме	Ме	A1	C00H	CH,CH,O	13	0	СН
739	Ме	Me	A 1	COOH	CH, CH, O	J4	0	СН
740	Ме	Me	A 1	C00H	CH,CH,O	J 5	0	CH
741	Ме	Me	A 1	C00H	CH,CH,O	J 6	0	СН
742	Me	Me	A 1	C00H	CH,CH,O	J7	0	СН
743	Ме	Me	Al	C00H	CH,CH,O	18	0	СН
744	Ме	Me	A1	C00H	CH,CH,O	19	0	СН
745	Me	Me	A1	C00H	CH,CH,O	J10	0	СН
746	Me	Ме	A 1	COOH	CH,CH,O	JH	0	СН
747	Me	Me	Al	СООН	CH,CH,O	J12	0	СН
748	Me	Me	Al	СООН	CH,CH,O	J13	0	СН
749	Me	Me	Al	C00H	CH,CH,O	J 1 4	0	СН
750	Me	Me	Al	COOH	CH,CH,O	J15	0	СН

Table 31

Compound No.	R'	R.	SCH,-A	3	G	J	m	χ
751	Me	Me	AI	СООН	CH,CH,O	J15	0	СН
752	Ме	Me	Al	СООН	CH,CH,O	J16	0	СН
753	Me	Ме	Al	СООН	Сн,сн,о	J17	0	СН
754	Ме	Me	Al	СООН	CH,CH,O	J18	0	СН
755	Me	Ме	AI	СООН	CH,CH,O	J19	0	СН
756	Me	Me	A1	СООН	CH,CH,O	J20	0	СН
757	Ме	Me	A1	СООН	CH,CH,O	J21	0	СН
758	Ме	Me	A1	СООН	Сн,сн,о	J22	0	СН
759	Ме	Ме	Αl	СООН	сн,сн,о	J23	0	СН
760	Ме	Ме	AI	СООН	CH,CH,O	J24	0	СН
761	Ме	Me	Al	СООН	CH,CH,O	J25	0	СН
762	Ме	Ме	A1	СООН	CH,CH,O	J26	0	СН
763	Me	Ме	Al	СООН	CH,CH,O	J27	0	СН
764	Me	Me	Al	СООН	CH,CH,O	J28	0	СН
765	Me	Me	A1	СООН	CH,CH,O	J29	0	СН
766	Me	Me	Al	СООН	CH,CH,O	J30	0	СН
767	Ме	Me	Al	СООН	CH,CH,O	J31	0	CH
768	Me	Me	ΑI	СООН	CH,CH,O	J32	0	СН
769	Me	Ме	Al	СООН	CH,CH,O	133	0	СН
770	Me	Me	Al	СООН	CH,CH,O	J34	0	СН
771	Me	Ме	Al	СООН	CH,CH,O	J35	0	СН
772	Ме	Me	Al	СООН	CH,CH,O	J37	0	СН
773	Ме	Me	Al	СООН	CH,CH,O	J39	0	СН
774	Ме	Me	Al	СООН	CH,CH,O	J62	0	СН
775	Me	Ме	Al	СООН	CH,CH,O	J63	0	СН

Table 32

Compound No.	R'	R'	SCH,-A	Е	G	J	m	χ
776	H	H	AI	СООН	CH,S	JI	0	СН
777	H	11	Al	СООН	CH,S	J2	0	СН
778	Н	Н	AI	СООН	CH,S	13	0	СН
779	Н	Н	AI	СООН	CH,S	J 4	0	СН
780	Н	Н	ΑI	СООН	CH,S	18	0	СН
781	Н	Н	Al	С00Н	CH,S	19	0	СН
782	Н	Н	A 1	СООН	CH,S	J10	0	СН
783	Ме	Ме	AI	СООН	CH,S	JI	0	СН
784	Ме	Me	Al	СООН	CH,S	J 2	0	СН
785	Me	Ме	A1	СООН	CH,S	13	0	СН
786	Ме	Me	Al	СООН	CH,S	J4	0	СН
787	Ме	Me	Al	СООН	CH,S	18	0	СН
788	Me	Me	Al	СООН	CH,S	19	0	СН
789	Me	Me	Al	СООН	CH,S	J10	0	СН
790	Н	Н	Al	СООН	CH,SO,	JI	0	СН
791	Н	Н	A1	СООН	CH,SO,	J 2	0	СН
792	Н	Н	Al	СООН	CH,SO,	J3	0	СН
793	Н	Н	Al	СООН	CH,SO,	J 4	0	СН
794	Н	Н	Al	СООН	CH,SO,	18	0	СН
795	Н	Н	Al	СООН	CH,SO,	J 9	0	CH
796	Н	Н	AI	СООН	CH,SO,	J10	0	CH
797	Ме	Me	Al	СООН	CH,SO,	JI	0	CH
798	Ме	Me	Al	СООН	CH,SO,	J 2	0	CH
799	Ме	Me	ΑI	СООН	CH,SO,	13	0	СН
800	Ме	Ме	Al	COOH	CH,SO,	J 4	0	СН
					-			

Table 33

Compound No.	R'	R'	SCH,-A	E	G	J	m	Х	
801	Me	Me	Al	СООН	CH,SO,	18	0	СН	
802	Me	Me	A1	СООН	CH,SO,	J9	0	СН	_
803	Me	Me	Al	СООН	CH,SO,	J10	0	СН	_
804	Me	Ме	Al	СООН	CH,	J81	0	CH	
805	Ме	Me	A1	СООН	CH,	J82	0	СН	_
806	Ме	Me	A1	СООН	CH,	J83	0	СН	_
807	Me	Me	A1	СООН	CH,	J84	0	СН	_
808	Me	Me	Al	СООН	CH,	J 85	0	СН	_
809	Н	H	A1	СООН	CH,	J81	0	СН	-
810	Н	Н	Al	СООН	CHz	J82	0	СН	– :
811	Н	Н	A1	СООН	CH,	183	0	СН	-
812	Н	H	A1	СООН	CH,	J84	0	СН	- ·
813	Н .	Н	AI	СООН	CH,	J 85	0	СН	- :
814	Ме	Ме	AI	СООН	сн,сн,	JI	1	СН	-
815	Ме	Me	Al	СООН	CH,	Jl	1	СН	_
816	Ме	Me	Al	СООН	CH,	J37	1	СН	- • •
817	Ме	Me	Al	СООН	CH,	J39	1	СН	- :
818	Ме	Me	Ai	СООН	CH,	J50	i	СН	- :
819	Me	Me	Al	C00H	CH,	163	1	СН	- :
820	Me	Me	A1	СООН	CH,	J64	1	СН	_
821	Ме	Me	Αl	СООН	CH,	J 65	1	СН	-
822	Н	H	Al	СООН	CH,	J37	1	СН	-
823	H	Н	Al	СООН	CH,	J 39	1	CH	
824	Н	Н	Al	СООН	CH,	J50	1	СН	_
825	Н	Н	A1	СООН	CH,	J63	l	СН	

Table 35

Compound No.	R'	R²	SCH,-A	Е	G	J	m	χ
851	Н	Н	A18	СООН	CH,	J 65	i	СН
852	Н	Н	A20	СООН	CH ₂	J37	I	СН
853	Н	Н	A20	СООН	CH,	139	l	СН
854	Н	Н	A20	СООН	CH,	J50	1	СН
855	Н	Н	A20	COOH	CH,	J63	1	СН
856	Н	Н	A20	СООН	CH,	J64	ı	СН
857	Н	Н	A20	COOH	CH,	J65	1	СН
858	Ме	Me	Al	СООН	CH,CH,	ЛI	2	СН
859	Me	Me	A1	СООН	CH,	J1	2	СН
860	Me	Me	Al	СООН	CH,	J 3 7	2	СН
861	Me	Me	Al	СООН	CH ₂	J39	2	СН
862	Me	Me	Al	СООН	CH,	J50	2	СН
863	Me	Me	Al	СООН	CH,	J 6 3	2	СН
864	Me	Ме	A1	СООН	CH,	J64	2	СН
865	Me	Me	Al	СООН	CH,	J 65	2	СН
866	Н	Н	A1	СООН	CH,	J 37	2	СН
867	Н	Н	. A1	СООН	CH,	J39	2	СН
868	Н	Н	A1	СООН	CH _z	J50	2	СН
869	Н	Н	A1	СООН	CH,	J63	2	СН
870	Н	Н	A1	СООН	CH,	J64	2	СН
871	Н	Н	Al	СООН	CH,	J65	2	СН
872	CI	Cl	A1	СООН	CH,	J37	2	СН
873	Cl	Cl	Al	COOH	CH,	J39	2	СН
874	CI	Cl	Αl	СООН	CH,	J 5 0	2	СН
875	Cl	Cl	Ai	СООН	CH,	J 63	2	CH

Table 36

Compound No.	R'	R²	SCH,-A	E	G	J	m	Х
876	CI	Cl	Al	СООН	CH,	J64	2	СН
877	CI	Cl	Al	СООН	CH,	J65	2	СН
878	Н	Н	Al	СООН	CH,	J37	2	N
879	Н	Н	A1	СООН	CH,	J39	2	N
880	Н	Н	ΑI	СООН	CH,	J50	2	N
881	Н	Н	Al	СООН	CH,	J63	2	N
882	Н	Н	Al	СООН	CH,	J 64	2	И
883	Н	Н	Al	СООН	CH,	J65	2	N
884	Ме	Н	ΑĻ	СООН	CH,	J37	2	СН
885	Ме	Н	Al	СООН	CH,	J63	2	СН
886	Me	Н	Al	СООН	CH,	J64	2	СН
887	Me	Н	A1	СООН	CH,	J65	2	СН
888	Н	Н	A4	СООН	CH,	J37	2	СН
889	Н	Н	A4	СООН	CH,	J63	2	СН
890	Н	Н	A4	СООН	CH,	J64	2	СН
891	Н	Н	A4	СООН	CH,	J65	2	СН
892	Me	Me	A4	СООН	CH,	J37	2	СН
893	Me	Ме	A4	СООН	CH,	J63	2	СН
894	Me	Me	A4	СООН	CH,	J64	2	СН
895	Me	Me	A4	СООН	CH,	J65	2	СН
896	CI	Cl	A4	СООН	CH,	J37	2	СН
897	CI	Cl	A4	СООН	CH,	J63	2	СН
898	Cl	Cl	A4	СООН	CH,	J64	2	СН
899	CI	Cl	A4	СООН	CH,	J 65	2	СН
900	Н	Н	A4	СООН	CH,	J37	2	N

Table 37

Compound No.	R'	R²	SCH ₂ -A	E	G	J	m	χ
901	Н	Н	A4	COOH	CH,	J63	2	Ŋ
902	Н	Н	A4	С00Н	CH,	J 6 4	2	N
903	Н	Н	A4	СООН	CH,	J65	2	N
904	Н	Н	A11	СООН	CH,	J37	2	СН
905	Н	Н	A11	СООН	CH,	J63	2	СН
906	Н	Н	All	СООН	CH,	J64	2	СН
907	H'	Н	All	СООН	CH,	J 65	2	СН
908	Ме	Ме	All	СООН	CH,	J37	2	СН
909	Ме	Ме	All	СООН	CH,	J63	2	СН
910	Ме	Ме	All	СООН	CH,	J64	2	СН
911	Ме	Ме	A11	СООН	CH,	J65	2	СН
912	CI	CI	A11	СООН	CH,	J37	2	СН
913	Cl	Cl	A11	СООН	CH,	J63	2	СН
914	Cl	Cl	All	СООН	CH,	J64	2	СН
915	Cl	CI	All	СООН	CH,	J65	2	CH
916	Н	Н	Ali	СООН	CH,	J37	2	Й
91,7	Н	Н	A11	СООН	CH,	J63	2	N
918	Н	Н	All	СООН	CH,	J64	2	N
919	Н	Н	A11	СООН	CH,	J65	2	N .
920	Me	Me	A18	СООН	CH,	J37	2	СН
921	Me	Me	A18	СООН	CH,	J63	2	СН
922	Me	Me	A18	СООН	CH,	J 6 4	2	СН
923	Ме	Me	A18	СООН	CH,	J65	2	СН
924	Н	Н	A18	СООН	CH,	J37	2	СН
925	Н	H	A18	СООН	CH,	J63	2	СН
					-			

Table 38

Compound No.	R'	R ^z	SCH,-A	Е	G	J	m	χ
926	Н	Н	A18	СООН	CH,	J64	2	СН
927	Н	Н	A18	СООН	CH,	J65	2	СН
928	Cl	CI	A18	СООН	CH,	J37	2	СН
929	CI	Cl	A18	СООН	CH,	J63	2	СН
930	Cl	CI	A18	СООН	CH,	J64	2	СН
931	CI	Cl	A18	СООН	CH,	J65	2	СН
932	H ;	Н	A18	СООН	CH,	J37	2	N
933	Н	Н .	A18	СООН	CH,	J63	2	N
934	Н	Н	A18	СООН	CH,	J64	2	N
935	Н	Н	A18	СООН	CH,	J65	2	N
936	Ме	Ме	A20	СООН	CH,	J37	2	СН
937	Ме	Ме	A20	СООН	CH,	J63	2	СН
938	Ме	Me	A20	СООН	CH,	J64	2	СН
939	Ме	Ме	A20	COOH	CH,	J65	2	СН
940	Н	Н	A20	СООН	CH,	J37	2	СН
941	Н	Н	A20	СООН	CH,	J63	2	СН
942	Н	Н	A20	СООН	CH,	J64	2 .	СН
943	Н	Н	A20	СООН	CH,	J65	2	СН
944	CI	Cl	A20	СООН	CH,	J37	2	СН
945	Cl ,	Cl	A20	СООН	CH,	J63	2	СН
946	Cl	Cl	A20	СООН	CH,	J64	2	СН
947	CI	CI	A20	СООН	CH,	J65	2	СН
948	H	Н	A20	СООН	CH,	137	2	N
949	Н	Н	A20	СООН	CH,	J63	2	N
950	H	Н	A20	СООН	CH,	J64	2	N

Table 39

Compound No.	R'	R	SCH,-A	E	G	J	m	X
951	Н	Н	A20	СООН	CH,	J65	2	Ŋ
952	Me	Me	Al	letrazol	CH,	J37	0	СН
953	Ме	Me	AI	tetrazol	CH,	J 63	0	СН
954	Ме	Me	Al	tetrazol	CH,	J64	0	СН
955	Ме	Ме	AI	letrazol	CH,	J65	0	СН
956	H ·	Н	Al	tetrazol	CH,	J37	0	СН
957	Н	Н	Al	tetrazol	CH,	J63	0	СН
958	Н	Н	Al	tetrazol	CH,	J64	0	СН
959	H	Н	Al	tetrazol	CH,	J65	0	СН
960	CI	CI	A1	tetrazol	CH,	J37	0	СН
961	Cl	Cl	AI	tetrazol	CH,	J63	0	СН
962	Cl	CI	Al	tetrazol	CH,	J64	0	СН
963	CI	CI	Al	tetrazol	CH,	J 65	0	СН
964	H	Н	Al	tetrazol	CH,	J37	0	N
965	Н	Н	Al	tetrazol	CH,	J63	0	N
966	Н	Н	Al	tetrazol	CH,	J64	0	N
967	Н	Н	Al	lelrazol	CH,	J65	0	N
968	Н	Н	A4	tetrazol	CH,	J37	0	СН
969	H :	Н	A4	tetrazol	CH,	J 6 3	0	СН
970	Н	Н	A4	tetrazol	CH,	J64	0	СН
971	Н	Н	A4	letrazol	CH,	J65	0	СН
972	Н	Н	A18	letrazol	CH,	J37	0	СН
973	Н	Н	A18	tetrazol	CH,	J63	0	СН
974	Н	Н	A18	leirazol	CH,	J64	0	СН
975	Н	Н	A18	tetrazol	CH,	J65	0	СН

Table 40

Compound No.	R'	R'	SCH,-A	Е	G	J	m	X
976	Me	Me	A19	tetrazol	CH,	J37	0	СН
977	Ме	Me	A19	tetrazol	CH,	J63	0	СН
978	Ме	Me	A19	tetrazol	CH,	J64	0	СН
979	Ме	Me	A19	letrazol	CH,	J65	0	СН
980	Н	Н	A19	tetrazol	CH,	J37	0	СН
981	Н	Н	A19	tetrazol	CH,	J63	0	СН
982	Н	Н	A19	tetrazol	CH,	J64	0	СН
983	Н	Н	A19	tetrazol	CH,	J65	0	СН
984	Ме	Me	A20	tetrazol	CH,	J37	0	СН
985	Ме	Me	A20	tetrazol	CH,	J 6 3	0	СН
986	Me	Me	A20	tetrazol	CH,	J 6 4	0	СН
987	Me	Me	A20	tetrazol	CH,	J65	0	СН
988	Н	Н	A20	tetrazol	CH,	J 37	0	СН
989	Н	Н	A20	tetrazol	CH,	J 63	0	СН
990	Н	Н	A20	tetrazol	CH,	J64	0	СН
991	Н	Н	A20	tetrazol	CH,	J65	0	СН

The thiobenzimidazole derivative (1) of the present invention in which E is COOH and m is 0 can be prepared by the synthetic method (A) or (B) shown below:

Synthetic method (A)

5

10

15

20

$$R^1$$
 NO_2
 NH_2
 NH_2
 R^2
 NH_2
 NH

$$\begin{array}{c|c}
z & A - COOR^3 \\
\hline
 & (a4) & \\
\hline
 & R^2 & \\
\hline
 & N \\
N \\
N \\
N \\
A \\
COOR^3 \\
(a5)$$

wherein Z represents a halogen, R^1 , R^2 , R^3 , A, G, J, and X are as defined above.

Thus, the nitro group of a 2-nitroaniline derivative (a1) is reduced to give an orthophenylene diamine (a2). CS₂ is reacted with this diamine to produce a compound (a3), with which a halide ester derivative (a4) is reacted to obtain (a5). A halide derivative (a6) is reacted therewith to obtain (a7), which is hydrolyzed to yield a benzimidazole derivative (a8) of the present invention.

The reduction of the nitro group may be carried out under a standard condition for catalytic reduction. For example, a reaction is carried out with hydrogen gas in the presence of a catalyst such as Pd-C at a temperature of room temperature to 100°C. Alternatively, a method of treatment using zinc or tin under an acidic condition, or a method of using zinc powder at a neutral or alkaline condition can be used.

The reaction of an orthophenylene diamine derivative (a2) with CS₂ may be carried out using, for example, a method as described in J. Org. Chem. 19: 631-637, 1954, or J. Med. Chem. 36: 1175-1187, 1993 (EtOH solution).

The reaction of a thiobenzimidazole (a3) and a halide ester (a4) may be carried out according to the condition of the conventional S-alkylation, for example in the presence of a base such as NaH, $\rm Et_3N$, NaOH, or $\rm K_2CO_3$ at a temperature of 0°C to 200°C under stirring.

The reaction of a thiobenzimidazole (a5) and a halide derivative (a6) may be carried out according to the condition for the conventional N-alkylation or N-acylation, for example in the presence of a base such as NaH, Et₃N, NaOH, or K_2CO_3 at a temperature of 0°C to 200°C under stirring.

As the elimination reaction of the carboxy protecting group R³, preferably a method of hydrolysis is employed using an alkali such as lithium hydroxide or an acid such as trifluoroacetic acid.

20 Synthetic method (B)

5

10

Thus, the amino group of a 2-nitroaniline derivative (al) can be protected with L to give (b1). A halide derivative (a6) is reacted therewith to obtain (b2), from which L is deprotected to obtain (b3). The nitro group of (b3) is reduced to obtain an orthophenylene diamine derivative (b4). CS2 is reacted therewith to yield a compound (b5), with which a halide ester derivative (a4) is reacted to obtain (a7) which may be hydrolyzed to yield a benzimidazole derivative of the present invention. Alternatively, it is also possible to obtain a compound (b3) directly by allowing the 2-nitroaniline derivative (al) as it is unprotected to be reacted to a halide derivative (a6) or an aldehyde derivative (b6).

15

- 10

As the protecting group L, there can be mentioned a trifluoroacetic acetyl group, an acetyl group, a t-butoxycarbonyl group, a benzyl group, and the like. The reaction of the 2-nitroaniline derivative (al) and the aldehyde derivative (b6) may be carried out according to the conditions of the conventional reductive amination using a reducing agent such as a complex hydrogen compound, for example LiAlH₄, NaBH₄, NaB₃CN, NaBH(OAC)₃, etc. or diborane, in a solvent such as ethanol, methanol, and dichloromethane at a temperature condition of 0°C to 200°C. The other reactions may be carried out as in the Synthetic method (A).

The thiobenzimidazole derivative (1) of the present invention in which E is COOH, m is 0, and G is an amide bond can be prepared by the synthetic method (C) shown below:

Synthetic method (C)

5

10

15

20

25

R1 A COOR3
$$Z$$
 COOtBu Z COOtBu Z COOtBu Z COOR3 Z COOtBu Z COOR3 Z COOR3

wherein Q represents a methylene group, a phenylene group, etc., and Z represents a halogen. R¹, R², R³, A, J, and X are as defined above, provided that R³ is a protecting group such as an ethyl group, a methyl group, etc. inactive in an acid.

Thus, a tert-butyl ester halide derivative (c1) is reacted with a thiobenzimidazole compound (a5) to obtain

a compound (c2), which is subjected to hydrolysis under an acidic condition to yield (c3). An amine derivative (c4) is reacted therewith to yield (c5), which is subjected to hydrolysis to obtain the benzimidazole derivative of the present invention.

The condensation amidation may be carried out by a conventional method using a condensing agent. As the condensing agent, there can be mentioned DCC, DIPC, EDC=WSCI, WSCI+HCl, BOP, DPPA, etc., which may be used alone or in combination with HONSu, HOBt, HOOBt, etc. The reaction may be carried out in a appropriate solvent such as THF, chloroform, t-butanol, etc. at a temperature condition of 0°C to 200°C. The other reactions may be carried out as in the Synthetic method (A).

The thiobenzimidazole derivative (1) of the present invention in which E is COOH, m is 0, and G is an ether bond can be prepared by the synthetic method (D) shown below:

Synthetic method (D)

5

10

15

25

wherein Z represents a halogen, R^1 , R^2 , R^3 , A, J, and X are as defined above.

Thus, a thiobenzimidazole compound (a5) is reacted with, for example, a halide alcohol derivative (d1) to yield a compound (d2). A phenol derivative (d3) is

reacted therewith to yield an ether (d4), which is subjected to hydrolysis to yield a benzimidazole derivative (a8) of the present invention.

The etherification may be carried out using a phosphine compound such as triphenyl phosphine and tributyl phosphine and an azo compound such as DEAD and TMAD in a suitable solvent such as N-methylmorpholine and THF at a temperature of 0°C to 200°C in a Mitsunobu reaction or a related reaction thereof. The other reactions may be carried out as in the Synthetic method (A).

The thiobenzimidazole derivative (1) of the present invention in which E is a tetrazole and m is 0 can be prepared by the synthetic method (E) shown below:

Synthetic method (E)

wherein R¹, R², A, G, J, and X are as defined above.
A nitrile (el) is reacted with various azi compounds
to be converted to a tetrazole (e2).

As the azi compound, there can be mentioned a trialkyltin azide compound such as trimethyltin azide, and hydrazoic acid or an ammonium salt thereof. When an organic tin azide compound is used, 1-4 fold molar amount is used relative to the compound (el). When hydrazoic acid or an ammonium salt thereof is used, 1-5 fold molar amount of sodium azide or a tertiary amine such as ammonium chloride and triethylamine may be used relative to the compound (el). Each reaction may be carried out at at temperature of 0°C to 200°C in a solvent such as

30

5

10

15

20

toluene, benzene and DMF.

(f1)

The thiobenzimidazole derivative (1) of the present invention in which m is 1 or 2 can be prepared by the synthetic method (F) shown below:

Synthetic method (F)

$$R^{1}$$
 R^{2}
 X
 N
 S
 G

(a7)

 R^{1}
 R^{2}
 X
 N
 S
 N

wherein R^1 , R^2 , R^3 , A, G, J, and X are as defined above.

(f2)

Thus, a thiobenzimidazole compound (a7) may be reacted with a peroxide compound in a suitable medium to yield a sulfoxide derivative (f1) and/or a sulfone derivative (f2). As the peroxide compound used, there can be mentioned perbenzoic acid, m-chloroperbenzoic acid, peracetic acid, hydrogeny peroxide, and the like, and as the solvent used, there can be mentioned chloroform, dichloromethane, and the like. The ratio of the compound (a7) to the peroxide compound used is selected from, but not limited to, a broad range as appropriate, and generally 1.2 to 5 fold molar amount, for example, may be preferably used. Each reaction is carried out generally at about 0 to 50°C, and preferably at 0°C to room temperature, and is generally complete in about 4-20 hours.

The benzimidazole derivatives of the present invention can be converted, as needed, to medically

5

10

15

20

acceptable non-toxic cation salts. As such a salt, there can be mentioned an alkali metal ion such as Na⁺ and K⁺; an alkaline earth metal ion such as Mg²⁺ and Ca²⁺; a metal ion such as Al³⁺ and Zn²⁺; or an organic base such as ammonia, triethylamine, ethylenediamine, propanediamine, pyrrolidine, piperidine, piperadine, pyridine, lysine, choline, ethanolamine, N,N-diethylethanolamine, 4-hydroxypiperidine, glucosamine, and N-methylglucamine. Among them, Na⁺, Ca²⁺, lysine, choline, N,N-dimethylethanolamine and N-methylglucamine are preferred.

5

10

15

20

25

30

35

The benzimidazole derivatives of the present invention inhibit human chymase activity. Specifically, their IC50 is not greater than 1000, preferably not smaller than 0.01 and less than 1000, and more preferably not smaller than 0.05 and less than 500. The benzimidazole derivatives of the present invention having such excellent inhibitory action on human chymase can be used as clinically applicable preventive and/or therapeutic agents for various diseases.

The benzimidazole derivatives of the present invention can be administered as pharmaceutical compositions together with pharmaceutically acceptable carriers by oral or parenteral routes after being shaped into various dosage forms. As the parenteral administration, there can be mentioned intravenous, subcutaneous, intramuscular, percutaneous, rectal, nasal, and eye drop administration.

Dosage forms for said pharmaceutical compositions include the following. For example, in the case of oral administration, there can be mentioned dosage forms such as tablets, pills, granules, powders, solutions, suspensions, syrups, and capsules.

As used herein, tablets are shaped by a conventional method using a pharmaceutically acceptable carrier such as an excipient, a binder, and a disintegrant. Pills, granules, and powders can also be shaped by a conventional method using an excipient etc. Solutions,

suspensions, and syrups may be shaped by a conventional method using glycerin esters, alcohols, water, vegetable oils, and the like. Capsules can be shaped by filling a granule, a powder, and a solution into a capsule made of gelatin etc.

5

10

15

20

25

30

35

Among the parenteral preparations, those for intravenous, subcutaneous, and intramuscular administration can be administered as an injection. As injections, a benzoic acid derivative is dissolved in a water soluble liquid such as physiological saline, or in a non-water soluble liquid comprising an organic ester such as propylene glycol, polyethylene glycol, and a vegetable oil.

In the case of percutaneous administration, dosage forms such as ointments and creams can be used.

Ointments can be prepared by mixing a benzoic acid derivative with a fat or lipid, vaseline, etc., and creams can be prepared by mixing a benzoic acid derivative with an emulsifier.

In the case of rectal administration, gelatin soft capsules can be used to prepare suppositories.

In the case of nasal administration, they can be used as a formulation comprising a liquid or powder composition. As the base for liquid formulations, water, saline, a phosphate buffer, an acetate buffer etc. can be used, and furthermore they may include a surfactant, an antioxidant, a stabilizer, a preservative, and a thickening agent. As the base for powder formulations, there can be mentioned polyacrylic acid salts that are readily solubule in water, cellulose lower alkyl ethers, polyethylene glycol, polyvinylpyrrolidone, amylose, pullulan, etc. that are water-absorptive, or celluloses, starches, proteins, gums, crosslinked vinyl polymers, etc. that are hardly water-soluble, and preferably they are water-absorptive. Alternatively, they may be combined. Furthermore, for powder formulations, an antioxidant, a colorant, a preservative, a disinfectant,

a corrigent, etc. can be added. Such liquid formulations and powder formulations can be administered using, for example, a spraying device etc.

For eye drop administration, they can be used as aqueous or non-aqueous eye drops. For the aqueous eye drops, sterile purified water, physiological saline etc. can be used as a solvent. When sterile purified water is used as the solvent, a suspending agent such as a surfactant and a polymer thickener may be added to prepare an aqueous eye drop suspension. Alternatively, a solubilizing agent such as a nonionic surfactant may be added to prepare a soluble eye drop solution. The non-aqueous eye drop can use a non-aqueous solvent for injection as a solvent, and can be used as a non-aqueous eye drop solution.

In the case where administration to the eye is performed by a method other than the eye drop, dosage forms such as an eye ointment, an application solution, an epipastic, and an insert can be used.

In the case of nasal or oral inhalation, they are inhaled as a solution or a suspension of the benzimidazole derivatives of the present invention with a commonly used pharmaceutical excipient using, for example, an aerosol spray for inhalation, etc.

Alternatively, the benzimidazole derivatives of the

present invention in a lyophilized powder form can be administered to the lung using an inhaling device that permits direct contact to the lung.

To such various formulations, pharmaceutically acceptable carriers such as an isotonic agent, a preservative, a disinfectant, a wetting agent, a buffering agent, an emulsifier, a dispersant, a stabilizer, etc. can be added as needed.

To these formulations, blending of an antimicrobial agent, a treatment such as filtration through a bacteria-retaining filter, heating, radiation, etc. can be carried out for sterilization. Alternatively, sterile solid

AUSTRALLES

5

10

15

20

25

30

formulations can be prepared, which may be used by dissolving or suspending them in an appropriate sterile solution immediately prior to use.

The dosages of the benzimidazole derivatives of the present invention vary depending on the type of diseases, route of administration, the condition, age, sex, body weight etc. of the patient, but they are generally in the range of about 1 to 500 mg/day/patient for oral administration, and preferably 1 to 300 mg/day/patient. In the case of parenteral administration such as intravenous, subcutaneous, intramuscular, percutaneous, rectal, nasal, eye drop, and inhalation administration, they are about 0.1 to 100 mg/day/patient, and preferably 0.3 to 30 mg/day/patient.

When the benzimidazole derivatives of the present invention are used as a preventive agent, they can be administered according to a known method depending on each condition.

As the target diseases for the preventive and/or therapeutic agents of the present invention, there can be mentioned, for example, diseases of respiratory organs such as bronchial asthma, inflammatory/allergic diseases such as allergic rhinitis, atopic dermatitis, and urticaria; diseases of circulatory organs such as sclerosing vascular lesions, intravascular stenosis, disturbances of peripheral circulation, renal failure, and cardiac failure; diseases of bone/cartilage metabolism such as rheumatoid arthritis and osteoarthritis.

Examples

5

10

15

20

25

30

The present invention will now be explained in more detail with reference to Preparation Examples, Working Examples, and Test Examples. It should be noted, however, that these examples do not limit the scope of the invention in any way.

Reference Example 1. Preparation of 5.6dimethylbenzimidazole-2-thiol

To 5,6-dimethylorthophenylene diamine (4.5 g, 33 mmol) in pyridine (40 ml) was added carbon disulfide (40 ml, 0.66 mol). The resulting solution was heated to reflux under stirring for 18 hours, to which was added water, followed by extraction with ethyl acetate. After drying the ethyl acetate phase with anhydrous magnesium sulfate, it was concentrated, and dried under reduced pressure at 80°C for 6 hours to obtain the title compound (4.1 g, yield 70%).

Reference Example 2. Preparation of 2-((5,6-dimethylbenzimidazole-2-ylthio)methyl)benzoic acid methylester

To the resulting 5,6-dimethylbenzimidazole-2-thiol (89 mg, 0.50 mmol) in dimethylformamide (2 ml), triethylamine (84 µl, 0.6 mmol) and 2-bromomethyl benzoic acid methyl ester (137 mg, 0.6 mmol) were added. After the resulting solution was stirred at 80°C for 1.5 hours, water was added, followed by extraction with ethyl acetate. After drying the ethyl acetate phase with anhydrous magnesium sulfate, it was concentrated, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3:1) to obtain the title compound (146 mg, yield 90%). The compound was confirmed by identification of molecular weight using LC-MS. Calculated M = 326.11, measured (M+H)* = 327.2 Reference Example 3.

In a similar manner to Reference Example 2, the following compounds were synthesized. The compounds were confirmed by identification of molecular weight using LC-MS.

3-((5,6-dimethylbenzimidazole-2ylthio)methyl)pyridine-2-carboxylic acid ethyl ester Calculated M = 341.12, found (M+H)⁺ = 342.2 2-((5,6-dimethylbenzimidazole-2-

35

5

10

15

20

```
ylthio)methyl)furane-3-carboxylic acid methyl ester
           Calculated M = 316.09, found (M+H)^{+} = 317.2
            3-((5,6-dimethylbenzimidazole-2-
      ylthio)methyl)thiphene-2-carboxylic acid methyl ester
           Calculated M = 332.07, found (M+H)^{+} = 333.2
 5
           2-(benzimidazole-2-ylthiomethyl)benzoic acid methyl
      ester
           Calculated M = 298.08, found (M+H)^{+} = 299.2
           3-(benzimidazole-2-ylthiomethyl)pyridine-2-
10
      carboxylic acid ethyl ester
           Calculated M = 313.09, found (M+H)^{+} = 314.2
           3-(benzimidazole-2-ylthiomethyl)thiophene-2-
      carboxylic acid methyl ester
           Calculated M = 304.03, found (M+H)^{+} = 305.2
15
           2-(benzimidazole-2-ylthiomethyl)furane-3-carboxylic
      acid methyl ester
           Calculated M = 288.06, found (M+H)^+ = 289.2
           4-benzimidazole-2-ylthiobutanoic acid methyl ester
           Calculated M = 264.09, found (M+H)^{+} = 265.2
20
           2-((5,6-dichlorobenzimidazole-2-ylthio)methyl)-5-
      chlorobenzoic acid methyl ester
           Calculated M = 399.96, found (M+H)^+ = 401.2
           2-(benzimidazole-2-ylthiomethyl)-5-chlorobenzoic
      acid methyl ester
25
           Calculated M = 332.04, found (M+H)^+ = 333.2
           4-((5,6-dimethylbenzimidazole-2-ylthio)butanoic acid
      ethyl ester
           Calculated M = 292.12, found (M+H)^+ = 293.40
           2-((5,6-dichlorobenzimidazole-2-ylthio)methyl)-
      benzoic acid methyl ester
30
           Calculated M = 366.00, found (M+H)^{+} = 367.0
           2-((5,6-dichlorobenzimidazole-2-
      ylthio)methyl)pyridine-3-carboxylic acid methyl ester
           Calculated M = 366.99, found (M+H)^+ = 368.0
35
      Example 1 Preparation of compound No. 143
            Sodium hydride (11 mg, 0.306 mmol) and 2 ml of
       etrahydrofuran was added to a previously dried reaction
```

To the mixture were added 2-((5.6vessel. dimethylbenzimidazole-2-ylthio)methyl)benzoic acid methyl ester (50 mg, 0.153 mmol) and 1-chloromethylnaphthalene (69 μ l, 0.459 mmol), which was then stirred at 60°C for 5 45 minutes. Water was added thereto, followed by extraction with ethyl acetate. After drying the ethvl acetate phase with anhydrous sodium sulfate, it was concentrated, and the residue was purified by silica gel column chromatography (hexane : ethyl acetate = 4 : 1) to obtain 2-((5,6-dimethyl-1-(1-10 naphthylmethyl)benzimidazole-2-ylthio)methyl)benzoic acid methyl ester (yield 32%).

To 2-((5,6-dimethyl-1-(1naphthylmethyl)benzimidazole-2-ylthio)methyl)benzoic acid
methyl ester (23 mg, 0.08 mmol) in tetrahydrofuran (1 ml)
and methanol (0.5 ml), 4N aqueous sodium hydroxide
solution (0.25 ml) was added. After stirring at room
temperature for 5 hours, 6N hydrochloric acid was added
to stop the reaction, followed by extraction with ethyl
acetate. The ethyl acetate phase was washed with
saturated saline, and then dried in anhydrous sodium
sulfate. The solvent was evaporated under reduced
pressure to obtain the title compound (24 mg, yield
quantitative).

The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 452.16, found $(M+H)^+ = 453.2$ Example 2.

In a similar manner to Working Example 1, the compounds in Tables 41 to 45 were synthesized using the compounds in Reference Examples 2 or 3 and various halide derivatives. The compounds were confirmed by identification of molecular weight using LC-MS.

15

20

25

Table 41

Compound No.	Calculated M	Found (M+H) †	Recovery of (overall)
390	406. 14	407. 2	29
391	422.11	423. 2	16
315	417. 15	418. 2	32
376	406. 14	407. 2	25
333	417. 15	418. 2	6
82	416. 16	417. 2	12
83	416. 16	417. 2	9
84	416. 16	417. 2	33
97	432. 15	433. 2	18
98	432. 15	433. 2	26
99	432. 15	433. 2	8
94	470. 13	471. 2	14
95	470. 13	471. 2	10
96	470. 13	471. 2	13
100	486. 12	487. 2	26
101	486. 12	487. 2	8
85	420. 13	421. 2	9
86	420. 13	421. 0	12
87	420. 13	421. 2	44
88	436. 10	437. 2	42
89	436. 10	437. 2	40
90	436. 10	. 437. 2	28
91	480. 07	481.0	12
103	427.14	428. 2	12
104	427.14	428. 2	6
105	427.14	428. 2	11
. 784	434. 11	435. 2	36

- 71 -

Table 42

Compound No.	Calculated M	Found (M+H) †	Recovery (overall)	
787	468. 07	469. 2	31	
112	418. 14	419. 2	40	
141	480. 12	481.0	72	
138	494. 17	495. 2	34	
135	446. 13	447. 2	19	
137	478. 17	479. 2	6	
143	452. 16	453. 2	35	
142	452.16	453. 0	30	
139	428. 16	429. 4	22	
140	458. 20	459. 2	5	
63	424.12	425. 2	25	
311	453. 15	454. 5	21	
115	430. 17	431. 5	68	
116	430. 17	431. 5	52	
117	430. 17	431. 5	41	
118	430. 17	431. 5	56	
125	462. 16	463. 0	59	
126	462. 16	463. 0	25	
128	492. 17	493. 0	27	
134	446. 13	447. 0	34	
108	446. 17	447. 0	75	
107	446. 17	447. 0	57	
119	470. 06 471. 0		36	
120	0 470 00		57	
121	470. 06			
122	470. 06	471. 0	37	
123	430. 17	431. 3	57	

Table 43

Compound No.	Calculated M	Found (M+H) [†]	Recovery (overall)
124	462.16	463. 3	67
127	462.16	463. 3	62
129	446. 17	447. 3	47
130	446. 17	447. 3	40
319	425. 12	426. 3	30
506	466. 17	467. 2	16
505	466. 17	467. 0	14
93	480. 07	481.0	45
136	478. 17	479. 2	60
37	402.14	403. 4	25
39	442.03	443. 0	51
317	403. 14	404. 0	56
318	443. 03	444. 0	46
380	442. 14	443. 2	51
377	420. 15	421. 2	34
378	460. 04	461.0	30
386	414. 10	415. 2	37
383	392. 12	393. 2	30
384	432.01	433. 0	29
395	458. 11	459. 2	23
392	436. 13	437. 2	15
393	476. 02	477. 0	15
401	430. 08	431. 2	50
398	408. 10	409. 2	20
399	447. 99	449. 0	7

Table 44

Compound No.	Calculated M	Found (M+H) +	Recovery of (overall)
544	476. 18	377. 2	62
50.	418. 14	419. 2	42
459	382. 08	383. 2	65
402	436. 04	437. 2	50
l	388. 12	389. 0	38
161	456. 05	457. 0	54
. 81	402. 14	403. 3	57
154	444. 13	445. 0	32
160	408. 10	409. 0	72
159	421.15	422. 2	84
148	482. 17	483. 5	64
149	453. 15	454. 5	71
155	459. 11	460. 0	64
150	453. 15	454. 2	36
151	487. 11	488. 1	62
153	460. 10	461. 0	69
152	454. 15	455. 0	62
64	430. 08	431. 2	.85
455	410. 11	411. 2	17
596	430. 14	. 431. 2	56
539	418. 17	419. 2	20
349	436. 10	437. 1	50
352	458. 09	459. 2	74
168	470. 06	471. 1	57
355	504. 02	505. 0	26
174	492. 05	493. 0	89
358	526. 01	527. 1	38

- 74 -

Table 45

Compound No.	Calculated M	Found (M+H) [†]	Recovery (
324	493. 04	494. 2	32
320	431.08	432. 1	15
147	466. 17	467. 2	72
616	490. 16	491. 2	22
805	382. 17	383. 2	52
804	368. 16	369. 2	56
66	438. 14	440. 2	5.4
592	430. 14	432. 3	5
811	380. 16	382. 2	72
582	436. 06	437. 1	59
580	436. 06	437. 1	59
584	480. 03	483. 1	37
583.	480. 03	483. 0	52
578	420. 09	421. 2	30
574	416.12	417. 2	39
595	452. 12	453. 2	22
594	478. 14	479. 1	23
588	432. 11	433. 1	65
587	432. 11	433. 2	48
586	432.11	433. 1	50
590	427. 10	428. 2	24
589	427. 10	428. 3	17

Example 3. Preparation of compound No. 547

5

10

25

30

35

Triethylamine (276 μ l, 1.98 mmol) and 2- (bromoethyl)benzoic acid t-butyl ester (538 mg, 1.99 mmol) were added to 5,6-dimethylbenzimidazole-2-thiol (236 mg, 1.32 mmol) in 2 ml of dimethylformamide, which was then stirred at 80°C for 3 hours. After the reaction was complete, water was added, followed by extraction with ethyl acetate. After drying the ethyl acetate phase with anhydrous sodium sulfate, it was concentrated, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3:1) to obtain 2-((5,6-dimethylbenzimidazole-2-ylthio)methyl)benzoic acid t-butyl ester (288 mg, yield 59%).

2-((5,6-dimethylbenzimidazole-2-

ylthio)methyl)benzoic acid t-butyl ester (30 mg, 0.082 mmol) was dissolved in 3 ml of chloroform, to which triethylamine (17 μ l, 0.123 mmol) and benzoyl chloride (14 μ l, 0.123 mmol) were sequentially added and the mixture was stirred at room temperature for 2 hours. After the reaction was complete, water was added,

followed by extraction with ethyl acetate. After drying the ethyl acetate phase with anhydrous sodium sulfate, it was concentrated, and 2-((5,6-dimethyl-1-(phenylcarbonyl)benzimidazole-2-ylthio)methyl)benzoic acid t-butyl ester was obtained (38 mg, yield quantitative).

2-((5,6-dimethyl-1-(phenylcarbonyl)benzimidazole-2-ylthio)methyl)benzoic acid t-butyl ester was dissolved in 1 ml of dichloromethane, to which trifluoroacetic acid (1 ml) was added and the mixture was stirred at room temperature for 6 hours. After the reaction was complete, the solvent was evaporated under reduced pressure and dried overnight to obtain the title compound (33 mg, yield quantitative).

The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 416.12, found (M+H)* = 417.0 Example 4. Preparation of compound No. 561

5

10

15

20

25

30

35

The title compound was obtained in a similar manner to Working Example 3.

The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 452.09, found (M+H)* = 453.2

Reference Example 4. Preparation of 3
(naphthylmethyl)imidazolo(5,4b)pyridine-2-thiol

To 2-amino-3-nitropyridine (1680 mg, 12 mmol) in a dimethylformamide (20 ml), sodium hydride (75 mg, 0.55 mmol) and 1-chloromethylnaphthalene (74 μ l, 0.55 mmol) were added. After the resulting solution was stirred at 80°C for 17 hours, water was added thereto, followed by extraction with ethyl ether. After drying the ethyl ether phase with anhydrous magnesium sulfate, it was concentrated, and the residue was purified by silica gel column chromatography (hexane : ethyl acetate = 4 : 1) to obtain of naphthylmethyl(3-nitro(2-pyridil))amine (903 mg, yield 27%).

To naphthylmethyl(3-nitro(2-pyridil))amine (900 mg, 3.2 mmol) in ethanol (40 ml), 90.0 mg of 10% Pd-C was added. After the resulting solution was stirred in a hydrogen atmosphere at 50°C for 8 hours, it was filtered through celite to remove Pd-C. The resulting solution was concentrated to obtain (3-amino(2pyridil))naphthylmethylamine (860 mg, yield 99%). resulting (3-amino(2-pyridil))naphthylmethylamine (860 mg, 3.2 mmol) in ethanol (20 ml), carbon disulfide (6.1 ml, 102 mmol) was added. After the resulting solution was heated to reflux under stirring for 12 hours, it was allowed to stand at room temperature for 5 hours. precipitate that deposited was filtered, and was washed three times with ethanol (5 ml). It was dried at 80°C under reduced pressure for 5 hours to obtain the title compound (555 mg, yield 56%)

The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 291.08, found $(M+H)^+ = 292.3$

Reference Example 5. Preparation of 3-((2,5-

dimethylphenyl)methyl)imidazolo(5,4 -b)pyridine-2-thiol

The title compound was synthesized in a similar manner to Reference Example 4.

The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 269.01, found $(M+H)^{+} = 270.2$

Example 5. Preparation of compound No. 256

Using 3-(naphthylmethyl)imidazolo(5,4-b)pyridine-2-thiol (30 mg, 0.1 mmol) obtained in Reference Example 4 in a similar manner to Reference Example 2, 2-((3-(naphthylmethyl)imidazolo(5,4-b)pyridine-2-ylthio)methyl)benzoic acid methyl ester was obtained (30 mg, yield 70%).

The 2-((3-(naphthylmethyl)imidazolo(5,4-b)pyridine-2-thio)methyl)benzoic acid methyl ester (30 mg, 0.068 mmol) thus obtained was subjected to hydrolysis in a similar manner to Example 1 to obtain the title compound (18.3 mg, yield 66%).

The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 425.12, found $(M+H)^+ = 426.1$ Example 6.

The compounds in Table 46 were synthesized using the compounds obtained in Reference Examples 4 and 5 and various halide ester derivatives in a similar manner to Example 5.

The compounds were confirmed by identification of molecular weight using LC-MS.

5

10

15

20

25

Table 46

Compound No.	Calculated M	Found (M+H) +	Yield (Overall) %
253	403.14	407.2	67
327	404.13	423.2	46
329	426.12	418.2	58
361	437.10	438.0	52
364	459.08	460.0	66

Table 47

Compound No.	Calculated M	Found (M+H) *	Yield (Overall) %
321	428.13	429.2	27
354	461.10	462.2	20
460	379.14	380.2	19

Table 48

5

10

15

20

25

Compound No.	Calculated M	Found (M+H) +	Yield (Overall) %
52	493.15	494.2	12
53	493.15	494.2	11

Example 7. Preparation of compound No. 264

4-methyl-2-nitroaniline (913 mg, 6 mmol) was dissolved in acetonitrile (18 ml), to which anhydrous trifluoroacetic acid (1.00 ml, 7.2 mmol) was added and the mixture was subjected to reflux for 1.5 hours. After cooling to room temperature, it was concentrated under reduced pressure and dried to obtain 4-methyl-2-nitro trifluoroacetanilide (1.396 g, yield 94%).

4-methyl-2-nitro trifluoroacetanilide (1.396 g, 5.63 mmol) was dissolved in dimethylformamide (14 ml), and then potassium carbonate (940 mg, 6.80 mmol) and 1-chloromethylnaphthalene (1.15 g, 6.51 mmol) were sequentially added at room temperature and heated to 100°C. After 1 hour and 40 minutes, 5N aqueous sodium hydroxide solution (7.5 ml) was added and refluxed as it was for 15 minutes. After 15 minutes, it was cooled to room temperature, and water (180 ml) was added and stored at 4°C overnight. The crystals that deposited were filtered and were dried to obtain ((1-naphthyl)methyl)(4-

methyl-2-nitro-phenyl)amine (1.587 g, yield 96%).

5

10

15

20

25

30

35

To (1-naphthyl)methyl)(4-methyl-2-nitro-phenyl)amine (1.0021 g, 3.43 mmol), ethanol (5 ml) and 1,4-dioxane (5 ml) were added, and 2.058 M aqueous sodium hydroxide solution (1 ml) was further added, and refluxed in an oil bath. After 15 minutes, it was removed from the oil bath, and zinc powder (897 mg, 13.72 mmol) was fed thereto in portions. Then it was refluxed again in the oil bath for 2 hours. After 2 hours, it was concentrated under reduced pressure, and dissolved in ethyl acetate (50 ml), and washed twice with saturated saline (25 ml). After drying with magnesium sulfate, it was concentrated under reduced pressure and dried to obtain a brown oil of ((1-naphthyl)methyl)(2-amino-4-methyl-phenyl)amine (943.1 mg).

Subsequently, ((1-naphthyl)methyl)(2-amino-4-methyl-phenyl)amine (943.1 mg, 3.59 mmol) was dissolved in ethanol (6.4 ml), to which carbon bisulfide (7 ml, 116 mmol) was added, and then refluxed. After 10 hours, it was returned to room temperature, concentrated under reduced pressure. Ethanol (2 ml) was added to the residue, which was stirred at room temperature for 30 minutes, and was further stirred on ice for 30 minutes. The resulting crystals were filtered, and dried to obtain 1-((1-naphthyl)methyl)-6-methyl-benzimidazole-2-thiol (459.1 mg, yield 44%, 2 steps).

1-((1-naphthyl)methyl)-6-methyl-benzimidazole-2-thiol (431.1 mg, 1.42 mmol) was dissolved in dimethylformamide (12 ml), to which triethylamine (0.296 ml, 2.12 mmol) and 2-bromomethyl benzoic acid methyl ester (390.1 mg, 1.70 mmol) were added and heated to 80°C. After 5 hours and 50 minutes, triethylamine (0.296 ml, 2.12 mmol) and 2-bromomethyl benzoic acid methyl ester (325 mg, 1.42 mmol) were added, and heated for 1 hour and 10 minutes. Thereafter, it was concentrated under reduced pressure, and dissolved in ethyl acetate (80 ml), washed twice with water (30 ml), and dried in

magnesium sulfate. The solvent was concentrated under reduced pressure. The residue was crystallized in ethyl acetate-hexane to obtain 410 mg, and the mother liquor was purified by silica gel column chromatography (hexane : ethyl acetate = 6:1) to recover 87 mg of the same fraction as the crystals, with a total of 497 mg of 2-((1-((1-naphthyl)methyl)-6-methyl-benzimidazole-2-ylthio)methyl)benzoic acid methyl ester (yield 78%).

5

10

15

20

25

30

35

2-((1-((1-naphthyl)methyl)-6-methyl-benzimidazole-2ylthio)methyl)benzoic acid methyl ester (497 mg, 1.098 mmol) was dissolved in methanol (10 ml) and tetrahydrofuran (10 ml), to which 4N aqueous lithium hydroxide solution (6.86 ml) was added. After stirring at room temperature for 2 hours and 30 minutes, saturated aqueous citric acid solution (10 ml) was added thereto to stop the reaction, and the mixture was concentrated under reduced pressure to reduce the amount of the solvent to about 1/3, which was dissolved in ethyl acetate (80 ml) and washed five times with water (20 ml). After concentrating the organic layer under reduced pressure, acetonitrile (10 ml) was added to the residue, which was again concentrated under reduced pressure, and the resulting crystals were filtered off and dried to obtain the title compound (439.1 mg, yield 91%).

The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 438.14, found (M+H)⁺ = 439.3 Example 8. Preparation of compound No. 272

In a similar method to Working Example 7, the title compound was obtained.

The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 454.14, found $(M+H)^+ = 455.3$ Example 9. Preparation of compound No. 65

2-nitroaniline (829 mg, 6 mmol) and 1-methylindole carboxaldehyde (1242 mg, 7.8 mmol) were dissolved in 20 μ l of tetrahydrofuran, to which acetic acid (200 μ l) and

NaBH(OAc)₃ (5087 mg, 24 mmol) were sequentially added and stirred at room temperature overnight. A saturated aqueous sodium hydrogen carbonate solution was added thereto, followed by extraction with ethyl acetate, dried with anhydrous sodium sulfate, and the solvent was evaporated. After purification by silica gel column chromatography (hexane: ethyl acetate = 95:5), ((1-methylindole-3-yl)methyl)(2-nitrophenyl)amine was obtained (264 mg, yield 18%).

5

10

15

20

25

30

35

((1-methylindole-3-yl)methyl)(2-aminophenyl)amine (264 mg, 0.939 mmol) was dissolved in ethanol (10 ml), and Pd-C (50 mg, 10% Pd, 0.047 mmol) was added thereto, and stirred in hydrogen atmosphere at room temperature for 6 hours. After the reaction was complete, Pd-C was filtered off and the solvent was evaporated to obtain ((1-methylindole-3-yl)methyl)(2-aminophenyl)amine (212 mg, yield 90%).

((1-methylindole-3-yl)methyl)(2-aminophenyl)amine (212 mg, 0.845 mmol) was dissolved in pyridine (1 ml), and carbon bisulfide (1 ml, 16.9 mmol) was added thereto. The mixture was refluxed in nitrogen atmosphere for 1 hour. After the solvent was evaporated, it was purified by silica gel column chromatography (hexane: ethyl acetate = 2:1) to obtain ((1-methylindole-3-yl)methyl)benzimidazole-2-thiol (96 mg, yield 39%).

Sodium hydride (12 mg, 0.342 mmol) and dimethylformamide (2 ml) were added to a previously dried reaction vessel. To the mixture were added ((1-methylindole-3-yl)methyl)benzimidazole-2-thiol (50 mg, 0.171 mmol) and 2-bromomethyl benzoic acid methyl ester (59 mg, 0.257 mmol), and then the mixture was stirred at 60°C for 1 hour. Water was added thereto, followed by extraction with ethyl acetate. After the ethyl acetate phase was dried with anhydrous sodium sulfate, it was concentrated, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 2:1) to obtain 2-((1-((-methylindole-3-yl)methyl)benzimidazole-2-

ylthio)methyl)benzoic acid methyl ester (54 mg, yield 74%).

5

10

15

20

25

30

35

To 2-((1-((1-methylindole-3-yl)methyl)benzimidazole-2-ylthio)methyl)benzoic acid methyl ester (54 mg, 0.122 mmol) in tetrahydrofuran (2 ml) and methanol (1 ml), 4N aqueous lithium hydroxide solution (0.5 ml) was added. After stirring at room temperature overnight, 6N hydrochloric acid was added to stop the reaction, followed by extraction with ethyl acetate. After washing the ethyl acetate phase with saturated saline, it was dried with anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to obtain the title compound (48 mg, yield 92%).

The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 427.14, found $(M+H)^+ = 428.2$ Example 10.

The compounds in the above Table 47 were synthesized using various halide ester derivatives in a similar manner to Working Example 9. The compounds were confirmed by identification of molecular weight using LC-MS.

Example 11. Preparation of compound No. 51

Sodium hydride (104 mg, 2.86 mmol) and tetrahydrofuran (16 ml) were added to a previously dried reaction vessel. To the mixture were added 2- (benzimidazole-2-ylthiomethyl)benzoic acid methyl ester (428 mg, 1.43 mmol) and 2-(bromomethyl)benzoic acid tbutyl ester (466 mg, 3.46 mmol), and then the mixture was stirred at 60°C for 50 minutes. Water was added thereto, followed by extraction with ethyl acetate. After the ethyl acetate phase was dried with anhydrous sodium sulfate, it was concentrated, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3:1) to obtain 2-((1-((2-((t-butyl)oxycarbonyl)phenyl)methyl)benzimidazole-2-ylthio)methyl)benzoic acid methyl ester (495 mg, yield

71%).

5

10

15

20

25

30

35

To 2-((1-((2-((t-

butyl)oxycarbonyl)phenyl)methyl)benzimidazole-2-ylthio)methyl)benzoic acid methyl ester (248 mg, 0.51 mmol), 4N hydrochloric acid in dioxane (1.28 ml, 5.1 mmol) was added, and stirred at room temperature overnight. After the solvent was evaporated, it was dried under reduced pressure to obtain 2-((2-((2-(methoxycarbonyl)phenyl)methylthio)benzimidazolyl)methyl) benzoic acid (220 mg, yield quantitative).

2-((2-((2-

(methoxycarbonyl)phenyl)methylthio)benzimidazolyl)methyl) benzoic acid (180 mg, 0.42 mmol) was dissolved in chloroform (6 ml), to which HOBT (68 mg, 0.504 mmol), aniline (46 μ l, 0.504 mmol), t-butanol (1.2 ml) and EDCI (97 mg, 0.504 mmol) were sequentially added and stirred overnight at room temperature. Water was added thereto, followed by extraction with dichloromethane. After drying with anhydrous sodium sulfate, it was filtered, and the solvent was evaporated. It was purified by silica gel column chromatography (hexane : ethyl acetate = 3:2) to obtain 2-((1-((2-(N-phenylcarbamoyl)phenyl)methylthio)benzimidazole-2-ylthio)methyl)benzoic acid methyl ester (86 mg, yield 40%).

To the thus obtained 2-((1-((2-(N-phenylcarbamoyl)phenyl)methylthio)benzimidazole-2-ylthio)methyl)benzoic acid methyl ester (86 mg, 0.169 mmol) in tetrahydrofuran (2 ml) and methanol (1 ml), 4N aqueous lithium hydroxide solution (0.5 ml) was added, and stirred at 60°C for about 2 hours. 6N aqueous hydrochloric acid solution was added to stop the reaction, which was extracted with ethyl acetate. After washing the ethyl acetate phase with saturated saline, it was dried with anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to obtain the title compound (83 mg, yield quantitative).

The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 493.15, found $(M+H)^+ = 494.2$ Example 12.

In a similar method to Working Example 11, the compounds shown in the above Table 48 were obtained using various benzoic acid ester derivatives.

The compounds were confirmed by identification of molecular weight using LC-MS.

10 Example 13. Preparation of compound No. 619

Sodium hydride (400 mg, 10.0 mmol) and dimethylformamide (30 ml) were added to a previously dried reaction vessel. To the mixture were added 2-(benzimidazole-2-ylthiomethyl)benzoic acid methyl ester (1500 mg, 5.0 mmol) and bromoacetate t-butyl ester (1463 mg, 7.5 mmol), and the mixture was stirred at 80°C for 2 hours. Water was added thereto, followed by extraction with ether. After the ether phase was dried with anhydrous sodium sulfate, it was concentrated, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 5:1) to obtain 2-(2-((2-(methoxycarbonyl)phenyl)methylthio)benzimidazolyl)acetic acid t-butyl ester (1298 mg, yield 63%).

To
$$2-(2-((2-$$

5

15

20

35

(methoxycarbonyl)phenyl)methylthio)benzimidazolyl)acetic acid t-butyl ester (1290 mg, 3.13 mmol), trifluoroacetic acid (15 ml) was added, and stirred at room temperature overnight. After the solvent was evaporated, it was dried under reduced pressure to obtain 2-(2-((2-(methoxycarbonyl)phenyl)methylthio)benzimidazolyl)acetic acid (715 mg, yield 64%).

(methoxycarbonyl)phenyl)methylthio)benzimidazolyl)acetic acid (35 mg, 0.1 mmol) was dissolved in tetrahydrofuran (3 ml), to which aniline (11.2 mg, 0.12 mmol) and EDCI (23 mg, 0.12 mmol) were added, and then the mixture was stirred overnight at room temperature. Water was added

thereto, followed by extraction with ethyl acetate. After drying with anhydrous sodium sulfate, it was filtered, the solvent was evaporated. The residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3:2) to obtain 2-((1-((N-phenylcarbamoyl)methyl)benzimidazole-2-ylthio)methyl)benzoic acid methyl ester (27.5 mg, yield 64%).

2-((1-((N-phenylcarbamoyl)methyl)benzimidazole-2-ylthio)methyl)benzoic acid methyl ester (20 mg, 0.046 mmol) thus obtained was subjected to hydrolysis as in Working Example 1 to obtain the title compound (6.9 mg, yield 36%).

The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 417.11, found $(M+H)^+$ = 418.0 Example 14

In a similar method to Example 13, the compounds shown in the above Table 49 were obtained using various aniline derivatives.

The compounds were confirmed by identification of molecular weight using LC-MS.

Table 49

Compound No.	Calculated M	Found (M+H) *	Yield (Overall) %
622	431.13	432.3	5
621	431.13	432.3	5
620	431.13	432.3	21
637	447.13	448.2	13 .
636	117.13	448.1	23
635	447.13	448.3	44
642	442.11	443.2	27
657	467.13	488.1	19

25

5

10

15

Table 50

Compound No.	Calculated M	Found (M+H) +	Yield (Overall) %
765	457.15	458.2	5
767	457.15	458.2	32

Table 51

Compound No.	Calculated M	Found (M+H) +	Yield (Overall) %
866	434.13	435.2	76
869	456.11	457.3	83
904	468.09	469.1	52
937	436.15	437.2	61

Table 52

Compound No.	Calculated M	Found (M+H) *	Yield (Overall) %
953	476.18	477.2	36
985	428.18	429.2	67
977	400.15	401.4	2

5

Reference Example 6. Preparation of 2-((1-(2-hydroxyethyl)-5,6-dimethylbenzimidazole-2-ylthio)]methyl)benzoic acid methyl

<u>ester</u>

10

15

To 2-((5,6-dimethylbenzimidazole-2-ylthio)methyl) benzoic acid methyl ester (326 mg, 1 mmol) obtained in Reference Example 2 in dimethylformamide, potassium carbonate (207 mg, 1.5 mmol) and 2-bromoethanol (150 mg, 1.2 mmol) were added, and the resulting solution was stirred at 80°C for 12 hours. After the reaction was complete, it was extracted with ether and the solvent was evaporated. The residue was purified by a flash column chromatography (hexane: ethyl acetate = 4:1) to obtain the title compound (248 mg, yield 67%).

20

The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 370.14, found $(M+H)^+ = 371.2$ Example 15. Preparation of compound No. 736

25

To 2-((1-(2-hydroxyethyl)-5,6-dimethylbenzimidazole-2-ylthio)methyl)benzoic acid methyl ester (45 mg, 0.23 mmol) in N-methylmorpholine (3 ml), Pph₃ (62 mg, 0.24 mmol) and DEAD (10.6 ml, 40% in toluene, 0.24 mmol) were added and the mixture was stirred at room temperature.

After 10 minutes, phenol (11.3 mg, 0.12 mmol) was added thereto, which was stirred at room temperature for 12 hours. The solvent was evaporated and the residue was purified by thin layer chromatography (hexane: ethyl acetate = 1:1) to obtain 2-((5,6-dimethyl-1-(2-phenoxyethyl)benzimidazole-2-ylthio)methyl)benzoic acid methyl ester (44 mg, yield 81%).

Using 2-((5,6-dimethyl-1-(2-phenoxyethyl)benzimidazole-2-ylthio)methyl)benzoic acid methyl ester (35 mg, 0.078 mmol) in a similar method to Example 1, a hydrolysis reaction was carried out to obtain the title compound (31 mg, yield 94%). The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 432.15, found $(M+H)^+ = 433.2$ Example 16.

In a similar method to Example 15, the compounds shown in the above Table 50 were obtained using various phenol derivatives.

The compounds were confirmed by identification of molecular weight using LC-MS.

Example 17.

5

10

15

20

25

30

35

Preparation of compound No. 825

To an ester (33 mg, 0.075 mmol) of compound No. 68 obtained in Example 2 in dichloromethane, 50 to 60% m-chloroperbenzoic acid (26 mg, 0.083 mmol) was added while cooling on ice. After the resulting solution was stirred on ice for 2 hours, a saturated sodium hydrogen carbonate solution was poured and the solution obtained was extracted with chloroform. After washing the chloroform phase with water, it was concentrated and the residue was purified by thin layer chromatography (hexane: ethyl acetate = 1:1) to obtain 2-(((5,6-dimethyl-1-(1-naphthylmethyl)benzimidazole-2-yl)sulfinyl)methyl)benzoic acid methyl ester (7.1 mg, yield 21%).

In a manner similar to Example 1, this was subjected to hydrolysis to obtain the title compound (5.2 mg, yield

76%).

5

10

15

20

25

30

35

The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 440.12, found $(M+H)^+$ = 441.3 Example 18. Preparation of compound No. 869

To an ester (39 mg, 0.094 mmol) of compound No. 37 obtained in Example 2 in dichloromethane (5 ml), 50 to 60% m-chloroperbenzoic acid (64 mg, 0.374 mmol) was added while cooling on ice. After the resulting solution was stirred at room temperature for 4 hours, a saturated sodium hydrogen carbonate solution was poured and the solution obtained was extracted with chloroform. After washing the chloroform phase with water, it was concentrated and the residue was purified by flash layer chromatography (hexane: ethyl acetate = 5:1) to obtain 2-(((1-((2,5-dimethylphenyl)methyl)benzimidazole-2-yl)sulfonyl)methyl)benzoic acid methyl ester (37 mg, yield 87%).

In a manner similar to Example 1, 2-(((1-((2,5-dimethylphenyl)methyl)benzimidazole-2-yl)sulfonyl)methyl)benzoic acid methyl ester (64 mg, 0.14 mmol) was subjected to hydrolysis to obtain the title compound (53 mg, yield 87%).

The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 434.13, measured (M+H)⁺ = 435.2Example 19.

In a manner similar to Example 18, the compounds shown in the above Table 51 were synthesized using the esters of the compounds obtained in Working Example 2. The compounds were confirmed by identification of molecular weight using LC-MS.

Example 20. Preparation of compound No. 952

To 5,6-dimethylbenzimidazole-2-thiol (713 mg, 4 mmol) in dimethylformamide (10 ml), triethylamine (836 µl, 6 mmol) and 2-bromomethylbenzonitrile (1176 mg, 6 mmol) were added. After stirring at 80°C overnight,

water was added to the mixture, followed by extraction with ethyl acetate. After the ethyl acetate phase was dried with anhydrous sodium sulfate, it was concentrated and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3:2) to obtain 2-((5,6-dimethylbenzimidazole-2-

ylthio)methyl)benzenecarbonitrile (1159 mg, yield 99%).

5

10

15

20

25

30

Sodium hydride (178 mg, 4.90 mmol) and tetrahydrofuran (30 ml) were added to a previously dried reaction vessel. To the mixture were added 2-((5,6-dimethylbenzimidazole-2-ylthio)methyl)benzenecarbonitrile (719 mg, 2.45 mmol) and 2,5-dichlorobenzyl chloride (543 µl, 4.90 mmol), and the mixture was stirred at 60°C for 40 minutes. Water was added thereto, followed by extraction with ethyl acetate. After the ethyl acetate phase was dried with anhydrous sodium sulfate, it was concentrated, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3:1) to obtain 2-((1-((2,5-dimethylphenyl)methyl)-5,6-dimethylbenzimidazole-2-ylthio)methyl)benzenecarbonitrile (370 mg, yield 37%).

2-((1-((2,5-dimethylphenyl)methyl)-5,6-dimethylbenzimidazole-2-ylthio)methyl)benzenecarbonitrile (165 mg, 0.401 mmol) was dissolved in toluene (3 ml), to which Me₃SnN₃ (124 mg, 0.602 mmol) was added, and refluxed in nitrogen atmosphere overnight. After the reaction was complete, the solvent was evaporated, and the residue was purifed by silica gel column chromatography (dichloromethane: methanol = 19:1) to obtain the title compound (75 mg, yield 41%).

The compound was confirmed by identification of molecular weight using LC-MS.

Calculated M = 454.19, found $(M+H)^+ = 455.2$ Example 21.

In a manner similar to Example 20, the compounds shown in the above Table 52 were obtained.

The compounds were confirmed by identification of

molecular weight using LC-MS.

Example 22. Preparation of recombinant human mast cell chymase

Recombinant pro-type human mast cell chymase was prepared according to the method reported by Urada et al. (Journal of Biological Chemistry 266: 17173, 1991). Thus, a culture supernatant of the insect cell (Tn5) infected with a recombinant baculovirus containing cDNA encoding human mast cell chymase was purified by heparin Sepharose (Pharmacia). After it was further activated by the method reported by Murakami et al. (Journal of Biological Chemistry 270: 2218, 1995), it was purified with heparin Sepharose to obtain an activated human mast cell chymase.

15 Example 23. Determination of the activity of inhibiting recombinant human mast cell chymase

After a DMSO solution (2 μ l) containing the compound of the present invention was added to 50 μ l of buffer A (0.5-3.0 M NaCl, 50 mM Tris-HCl, pH 8.0) containing 1-5 ng of the activated human mast cell chymase obtained in Working Example 22, 50 μ l of buffer A containing, as a substrate, 0.5 mM succinyl-alanyl-histidyl-prolyl-phenylalanylparanitroanilide (Bacchem) was added thereto and the mixture was allowed to react at room temperature for 5 minutes. Changes in absorbance at 405 nm with time were measured to evaluate the inhibitory activity.

As a result, IC50 = not smaller than 1 nM and less than 10 nM was observed in compounds No. 63, 64, 65, 143, 174, 256, 264, 272, 311, 354, 319, 349, 358, 395, 401, and 402, and IC50 = not smaller than 10 nM and not greater than 100 nM was observed in compounds No. 37, 50, 84, 115, 117, 119,, 121, 123, 130, 147, 168, 256, 320, 321, 324, 352, 355, 364, 380, 392, 398, 444, 455, 459, 460, 506, 863, 866, and 869.

As hereinabove described, the benzimidazole derivatives of the present invention exhibit a potent

5

10

20

25

chymase inhibitory activity. Thus, it was revealed that the benzimidazole derivatives of the present invention are clinically applicable inhibitory substances for human chymase activity and can be used for prevention and/or therapy of various diseases in which human chymase is involved.

Example 24. Manufacture of tablets

Tablets comprising, per tablet, the following were manufactured:

10	Compound (No. 37)	50 m
	Lactose	230 m
	Potato starch	80 m
	Polyvinylpyrrolidone	11 m
	Magnesium stearate	5 m

15

20

5

The compound of the present invention (the compound in Working Example 2), lactose and potato starch were mixed, and the mixture was evenly soaked in 20% polyvinylpyrrolidone in ethanol. The mixture was filtered through a 20 nm mesh, dried at 45°C, and filtered again through a 15 nm mesh. Granules thus obtained were mixed with magnesium stearate and were compressed into tablets.

25 Industrial Applicability

The thiobenzimidazole derivatives of the present invention and the medically acceptable salts thereof exhibit a potent activity of inhibiting human chymase. Thus, said thiobenzimidazole derivatives and the medically acceptable salts thereof can be used, as a human chymase inhibitor, as clinically applicable preventive and/or therapeutic agents for inflammatory diseases, allergic diseases, diseases of respiratory organs, diseases of circulatory organs, or diseases of bone/cartilage metabolism.

35

Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

The reference to any prior art in this specification is not, and should not be taken as, an acknowledgment or any form or suggestion that that prior art forms part of the common general knowledge in Australia.

It would be appreciated by a person skilled in the art the numerous variations and/or modifications may be made to the invention as shown the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A thiobenzimidazole derivative represented by the following formula (1):

wherein,

5

10

15

20

25

30

R¹ and R², simultaneously or independently of each other, represent a hydrogen atom, a halogen atom, a trihalomethyl group, a cyano group, a hydroxy group, an alkyl group having 1 to 4 carbons or an alkoxy group having 1 to 4 carbons, or R¹ and R² together form -O-CH₂-O-, -O-CH₂-CH₂-O- or -CH₂-CH₂-CH₂-, in which the carbons may be substituted with one or a plurality of alkyl groups having 1 to 4 carbons;

A represents a single bond, a substituted or unsubstituted, linear or branched alkylene group having 1 to 6 carbons, a substituted or unsubstituted arylene group having 6 to 11 carbons, or a substituted or unsubstituted heteroarylene group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms in the ring, in which the substituent represents a halogen atom, OH, NO2, CN, a linear or branched alkyl group having 1 to 6 carbons, a linear or branched alkoxy group having 1 to 6 carbons (the substituents may be joined to each other at adjacent sites via an acetal bond), a linear or branched alkylthio group having 1 to 6 carbons, a linear or branched alkylsulfonyl group having 1 to 6 carbons, a linear or branched acyl group having 1 to 6 carbons, a linear or branched acylamino group having 1 to 6 carbons, a trihalomethyl group, a trihalomethoxy group, a phenyl group, an oxo group, or a phenoxy group that may be

substituted with one or more halogen atoms, and in which the substituents may be independently substituted at any one or more sites of the ring or the alkylene group;

E represents COOR³, SO₃R³, CONHR³, SO₂NHR³, a tetrazole group, a 5-oxo-1,2,4-oxadiazole group or a 5-oxo-1,2,4-thiadiazole group in which R³ represents a hydrogen atom, or a linear or branched alkyl group having 1 to 6 carbons;

G represents a substituted or unsubstituted, linear or branched alkylene group having 1 to 6 carbons that may be interrupted with one or a plurality of 0, S, SO₂, and NR³, in which R³ is as defined above and the substituent represents a halogen atom, OH, NO₂, CN, a linear or branched alkyl group having 1 to 6 carbons, a linear or branched alkoxy group having 1 to 6 carbons (the substituents may be joined to each other at adjacent sites via an acetal bond), a trihalomethyl group, a trihalomethoxy group, a phenyl group, or an oxo group;

m represents an integer of 0 to 2;

when m is 0 and A is a substituted or unsubstituted, linear or branched alkylene group having 1 to 6 carbons, then J represents a substituted or unsubstituted, linear, cyclic or branched alkyl group having 3 to 6 carbons, a substituted or unsubstituted aryl group having 7 to 9 carbons, a substituted aryl group having 10 to 11 carbons, a substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms in the ring;

when m is 0 and A is a substituted or unsubstituted arylene group having 6 to 11 carbons or a substituted or unsubstituted heteroarylene group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms in the ring, then J represents a substituted or unsubstituted, linear, cyclic or branched alkyl group having 1 to 6 carbons, a substituted or unsubstituted aryl group having 6 to 11 carbons, or a

5

10

15

20

25

30

substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms in the ring; or

5

10

15

20

25

30

when m is 0 and A is a single bond or when m is 1 or 2, then J represents a substituted or unsubstituted. linear, cyclic or branched alkyl group having 1 to 6 carbons, a substituted or unsubstituted aryl group having 6 to 11 carbons, or a substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms in the ring, in which the substituent represents a halogen atom, OH, NO2, CN, a linear or branched alkyl group having 1 to 6 carbons, a linear or branched alkoxy group having 1 to 6 carbons (the substituents may be joined to each other at adjacent sites via an acetal bond), a linear or branched alkylthio group having 1 to 6 carbons, a linear or branched alkylsulfonyl group having 1 to 6 carbons, a linear or branched acyl group having 1 to 6 carbons, a linear or branched acylamino group having 1 to 6 carbons, a substituted or unsubstituted anilide group, a trihalomethyl group, a trihalomethoxy group, a phenyl group, an oxo group, a COOR³ group, or a phenoxy group that may be substituted with one or more halogen atoms, and in which the substituents may be independently substituted at any one or more sites of the ring or the alkylene group; and

X represents CH or a nitrogen atom;

or a medically acceptable salt thereof (hereinafter referred to as "the thiobenzimidazole derivative of the present invention").

2. The thiobenzimidazole derivative according to claim 1 wherein, in the above formula (1), A is a substituted or unsubstituted, linear or branched alkylene group having 1 to 6 carbons, a substituted or unsubstituted arylene group having 6 to 11 carbons, or a substituted or unsubstituted heteroarylene group having 4 to 10 carbons that may contain one or a plurality of

owygen, nitrogen and sulfur atoms in the ring, or a medically acceptable salt thereof.

3. The thiobenzimidazole derivative according to claim 1 or 2 wherein, in the above formula (1), A is a substituted or unsubstituted heteroarylene group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms in the ring, or a medically acceptable salt thereof.

5

10

15

20

25

30

- 4. The thiobenzimidazole derivative according to any one of claims 1, 2 and 3 wherein, in the above formula (1), m is 1, or a medically acceptable salt thereof.
 - 5. The thiobenzimidazole derivative according to anv one of claims 1, 2 and 3 wherein, in the above formula (1), m is 2, or a medically acceptable salt thereof.
 - 6. The thiobenzimidazole derivative according to any one of claims 1, 2 and 3 wherein, in the above formula (1), m is 0, A is a substituted or unsubstituted, linear or branched alkylene group having 1 to 6 carbons, and J is a substituted or unsubstituted aryl group having 7 to 9 carbons, a substituted aryl group having 10 to 11 carbons, or a substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms in the ring, or a medically acceptable salt thereof.
 - 7. The thiobenzimidazole derivative according to any one of claims 1, 2 and 3 wherein, in the above formula (1), m is 0, A is a substituted or unsubstituted arylene group having 6 to 11 carbons or a substituted or unsubstituted heteroarylene group having 4 to 10 carbons that may contain one or a plurality of oxygen, nitrogen and sulfur atoms in the ring, and J is a substituted or unsubstituted aryl group having 6 to 11 carbons or a substituted or unsubstituted heteroaryl group having 4 to 10 carbons that may contain one or a

plurality of oxygen, nitrogen and sulfur atoms in the ring, or a medically acceptable salt thereof.

5

10

15

20

25

- 8. The thiobenzimidazole derivative according to any one of claims 1 to 7 wherein, in the above formula (1), G is -CH₂-, -CH₂-CH₂-, -CH₂CO-, -CH₂CO-, -CH₂CONH-, -CO-, -SO₂-, -CH₂SO₂-, -CH₂S- or -CH₂CH₂S-, or a medically acceptable salt thereof.
- 9. The thiobenzimidazole derivative according to any one of claims 1 to 8 wherein, in the above formula (1), R¹ and R² simultaneously represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbons or an alkoxy group having 1 to 4 carbons, or R¹ and R², independently of each other, represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbons, an alkoxy group having 1 to 4 carbons, a trihalomethyl group, a cyano group, or a hydroxy group, or a medically acceptable salt thereof.
 - 10. The thiobenzimidazole derivative according to any one of claims 1 to 9 wherein, in the above formula (1), E represents COOH or a tetrazole group, or a medically acceptable salt thereof.
 - 11. The thiobenzimidazole derivative according to any one of claims 1 to 10 wherein, in the above formula (1), X represents CH, or a medically acceptable salt thereof.
 - 12. The thiobenzimidazole derivative according to any one of claims 1 to 11 having an activity of inhibiting human chymase, or a medically acceptable salt thereof.
 - 13. A pharmaceutical composition comprising at least one thiobenzimidazole derivative according to any one of claims 1 to 12 or a medically acceptable salt thereof and a pharmaceutically acceptable carrier.
 - 14. The pharmaceutical composition according to claim 13 which is a preventive and/or therapeutic agent of a disease.
 - 15. A preventive and/or therapeutic agent according

to claim 14 wherein said disease is an inflammatory disease, an allergic disease, a disease of respiratory organs, a disease of circulatory organs, or a disease of bone/cartilage metabolism.

- 5 16. The thiobenzimidazole derivative according to claim 1 substantially as hereinbefore described with reference to the Examples.
- 10 DATED this 28th day of November, 2002
 Teijin Limited

by DAVIES COLLISON CAVE
Patent Attorneys for the Applicant

<u>ABSTRACT</u>

The present invention is a thiobenzimidazole derivative represented by the following formula (1)

or a medically acceptable salt thereof wherein said thiobenzimidazole derivative and a medically acceptable salt thereof have a potent activity of inhibiting human chymase. Thus, they are potential preventive and/or therapeutic agents clinically applicable to various diseases in which human chymase is involved.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER: ____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.