Logarithm

Definition:-

If $a^x = y$ then then 'x' is called as logarithm of 'y' to the base 'a' and it is written as $x = \log_a y$

For Example,

If
$$2^3 = 8$$
 then $3 = \log_2 8$

Note:-

- 1) Exponent form:- $a^x = y$
- 2) Logarithmic Form:- $x = \log_a y$

Ex: Write the following in logarithmic form

a)
$$5^3 = 125$$

Solution: - Logarithmic Form: $3 = \log_5 125$

Ex: Write the following in Exponential form

b)
$$\log_3 81 = 4$$

Solution: - Exponential form: $3^4 = 81$

Exercise

1) Write the following in Logarithmic form.

a)
$$4^5 = 1024$$
 b) $5^{-2} = \frac{1}{25}$ c) $0.001 = 10^{-3}$

2) Write the following in Exponential form.

a)
$$\log_3 27 = 3$$
 b) $\log_4 \left(\frac{1}{16}\right) = -2$ c) $\log_{0.01} (0.0001) = 2$

<u>Answer</u>

1) a)
$$5 = \log_4 1024$$

1) a)
$$5 = \log_4 1024$$
 b) $-2 = \log_5 \left(\frac{1}{25}\right)$ c) $-3 = \log_{10} \left(0.001\right)$

c)
$$-3 = \log_{10}(0.001)$$

2) a)
$$3^3 = 27$$

b)
$$4^{-2} = \frac{1}{16}$$

2) a)
$$3^3 = 27$$
 b) $4^{-2} = \frac{1}{16}$ c) $(0.01)^2 = 0.0001$

Types of Logarithm

1) Natural Logarithm: - If base of logarithm is Napier's number 'e', then it is called as 'Natural Logarithm'.

E.g.
$$\log_e 7 = \log 7 = \ln 7$$

2) Common Logarithm:- If base of logarithm is '10', then it is called as 'Common Logarithm'.

E.g.
$$\log_{10} 3$$
, $\log_{10} 5$

3) General Logarithm:- If base of logarithm is any number except 'e' and '10', then it is called as 'General Logarithm'

E.g.
$$\log_4 5$$
, $\log_3 9$

Laws of Logarithm

Standard Law

1) If
$$a^0 = 1$$
 then $\log_a 1 = 0$, for any $a \ne 0$

2) If
$$a^1 = a$$
 then $\log_a a = 1$, for any $a \neq 0$, $a > 1$

E.g.
$$\log_3 3 = 1$$
, $\log_8 8 = 1$

General Law

3) Addition Rule:- $\log_a m + \log_a n = \log_a (m \times n)$

E.g. $\log_2 3 + \log_2 5 = \log_2 (3 \times 5) = \log_2 15$, $\log_3 (4 \times 5) = \log_3 4 + \log_3 5$

4) Subtraction Rule: $\log_a m - \log_a n = \log_a \left(\frac{m}{n}\right)$

E.g.
$$\log_2 9 - \log_2 3 = \log_2 \left(\frac{9}{3}\right) = \log_2 3$$
, $\log_2 \left(\frac{3}{5}\right) = \log_2 3 - \log_2 5$

- 5) If m = 1, in 4^{th} rule

 - $-\log_a n = \log_a \left(\frac{1}{n}\right) \qquad (As \log_a 1 = 0)$

Hence, $-\log_a n = \log_a \left(\frac{1}{n}\right)$

E.g.
$$-\log_2 5 = \log_2 \left(\frac{1}{5}\right)$$
, $\log_3 \left(\frac{1}{4}\right) = -\log_3 4$

6) Multiple of logarithm:- $n \cdot \log_a m = \log_a (m^n)$

E.g. $4 \log_2 3 = \log_2 (3^4) = \log_2 81$

$$\log_5(3^2) = 2\log_5 3$$

7) Change of Base Property:

$$\implies$$
 $\log_n m = \frac{\log_a m}{\log_a n}$, where 'a' is any convenient base

E.g.
$$\log_2 3 = \frac{\log_{10} 3}{\log_{10} 2} = \frac{\log_4 3}{\log_4 2} = \frac{\log 3}{\log 2}$$

8) If a = m in 7^{th} law,

$$\Rightarrow \log_n m = \frac{\log_m m}{\log_m n} = \frac{1}{\log_m n} , (As \log_m m = 1)$$

Hence,
$$\log_n m = \frac{1}{\log_m n}$$

E.g.
$$\log_2 3 = \frac{1}{\log_3 2}$$

$$\frac{1}{\log_5 4} = \log_4 5$$

Solved Example

1) Evaluate Value of following logarithm, using law of logarithm

a)
$$\log_{81} 3$$

a)
$$\log_{81} 3$$
 b) $\log_{10} (\sqrt[3]{1000})$

Solution:- a) Let assume that, $\log_{81} 3 = x$

Express this equation in exponent form

$$\implies$$
 81^x = 3

$$\implies$$
 $(3^4)^x = 3^1$ (Use $81 = 3^4$)

$$\Rightarrow 3^{4x} = 3^1 \qquad (As \left(a^m\right)^n = a^{m \times n})$$

As we know, If $a^x = a^y \implies x = y$

$$\rightarrow$$
 $4x = 1$

$$\Rightarrow$$
 $x = \frac{1}{4} \text{ Or } \log_{81} 3 = \frac{1}{4}$

Solution: - b) Let assume that, $\log_{10}(\sqrt[3]{1000}) = x$

In exponent form, $10^x = \sqrt[3]{1000}$

$$\rightarrow$$
 $10^x = 10^1$ (Since, $\sqrt[3]{1000} = 10$)

$$x = 1$$
 Or $\log_{10}(\sqrt[3]{1000}) = 1$

2) Simplify following logarithmic expression & find value of it.

a)
$$\log\left(\frac{145}{8}\right) - 3\log\left(\frac{3}{2}\right) + \log\left(\frac{54}{29}\right)$$

Solution:-

$$\log\left(\frac{145}{8}\right) - 3\log\left(\frac{3}{2}\right) + \log\left(\frac{54}{29}\right) = \log\left(\frac{145}{8}\right) - \log\left(\frac{3}{2}\right)^3 + \log\left(\frac{54}{29}\right) \text{ (using, } n.\log_a m = \log_a\left(m^n\right)\text{)}$$

$$= \log\left(\frac{145}{8}\right) - \log\left(\frac{27}{8}\right) + \log\left(\frac{54}{29}\right)$$

$$= \log\left(\frac{145}{8}\right) + \log\left(\frac{54}{29}\right) \text{ (using, } \log_a m - \log_a n = \log_a\left(\frac{m}{n}\right)\text{)}$$

$$= \log\left(\frac{145}{27}\right) + \log\left(\frac{54}{29}\right)$$

$$= \log\left(\frac{145}{27} \times \frac{54}{29}\right) \text{ (using, } \log_a m + \log_a n = \log_a(m \times n)\text{)}$$

$$= \log(5 \times 2)$$

$$= \log(10)$$

b)
$$\frac{1}{\log_5 10} + \frac{1}{\log_{20} 10}$$

Solution:-

$$\frac{1}{\log_5 10} + \frac{1}{\log_{20} 10} = \log_{10} 5 + \log_{10} 20 \quad (\text{using, } \frac{1}{\log_m n} = \log_n m)$$

$$= \log_{10} (5 \times 20) \quad (\text{using, } \log_a m + \log_a n = \log_a (m \times n))$$

$$= \log_{10} (100)$$

$$= \log_{10} (10^2)$$

$$= 2 \cdot \log_{10} (10) \quad (\text{using, } \log_a (m^n) = n \cdot \log_a (m))$$

$$= 2 \times 1 \quad (\text{As } \log_a a = 1)$$

$$\frac{1}{\log_5 10} + \frac{1}{\log_{20} 10} = 2$$

3) Find Value of 'x' from following logarithmic equations.

a)
$$\log_2(x-3) = 3$$
 b) $\log_3(x-4) + \log_3(x-2) = 1$
Solution:- a) $\log_2(x-3) = 3$ $(x-3) = 2^3$ (In exponential form)

$$(x-3)=8$$
$$x=8+3$$
$$x=11$$

Solution:-b)
$$\log_3(x-4) + \log_3(x-2) = 1$$

 $\log_3\{(x-4) \times (x-2)\} = 1$
 $\log_3\{x^2 - 6x + 8\} = 1$
 $x^2 - 6x + 8 = 3^1$
 $x^2 - 6x + 8 - 3 = 0$
 $x^2 - 6x + 5 = 0$
 $(x-5)(x-1) = 0$
Either $(x-5) = 0$ or $(x-1) = 0$
Values are, $x = 5,1$

4) Prove that,
$$\frac{1}{\log_2 8} + \frac{1}{\log_{64} 8} + \frac{1}{\log_4 8} = 3$$

Proof:- L.H.S. =
$$\frac{1}{\log_2 8} + \frac{1}{\log_4 8} + \frac{1}{\log_4 8}$$

= $\log_8 2 + \log_8 64 + \log_8 4$ (using, $\frac{1}{\log_m n} = \log_n m$)
= $\log_8 (2 \times 64 \times 4)$ (using, $\log_a m + \log_a n = \log_a (m \times n)$)

=
$$\log_8(512)$$

= $\log_8(8^3)$
= $3.\log_8(8)$ (using, $\log_a(m^n) = n.\log_a(m)$)
= 3×1 (As $\log_a a = 1$)

L.H.S. = 3 = R.H.S. Hence, result is proved.

Exercise

- 1) Evaluate value of following logarithms.
- a) $\log_3 243$ b) $\log_3 81$ c) $\log_5 625$ d) $\log_{12} (2\sqrt{3})^5$
- 2) Simplify following logarithmic expression & find value of it.

a)
$$\log_2 14 - \log_2 7$$
 b) $2 \log \left(\frac{16}{15}\right) + \log \left(\frac{25}{24}\right) - \log \left(\frac{32}{27}\right)$

3) Find Value of 'x' from following logarithmic equations.

a)
$$\log_3(x+4) = 4$$
 b) $\log(x+3) + \log(x-3) = \log 27$

4) Prove that,
$$\frac{1}{\log_{ab} abc} + \frac{1}{\log_{bc} abc} + \frac{1}{\log_{ac} abc} = 2$$

Answers

1) a) 5 b) 4 c)
$$\frac{5}{2}$$

3) a)
$$x = 77$$
 b) $x = \pm 6$

Logarithm Introduction video link: https://youtu.be/Z5myJ8dg_rM

Logarithm Evaluation video link: https://youtu.be/eTWCARmrzJ0

Log & Exponential conversion link: https://youtu.be/Obch1OP5QyA

Laws of logarithm video 1 link: https://youtu.be/PupNgv49_WY

Laws of logarithm video 2 links: https://youtu.be/TMmxKZaCqe0