

Основы теории надежности Резервирование

Основные понятия теории надежности

Резервирование - способ обеспечения надежности объекта за счет использования дополнительных средств и (или) возможностей, избыточных по отношению к минимально необходимым для выполнения требуемых функций.

Резерв - совокупность дополнительных средств и (или) возможностей, используемых для резервирования основного элемента объекта или его самого.

Кратность резерва - отношение числа резервных элементов к числу резервируемых ими элементов, выраженное несокращенной дробью.

Дублирование - способ резервирования с различной кратностью резерва, при котором одновременно функционируют и основные объекты и резервные.

Классификация

Классификация резервированных систем производится по нескольким принципам

Таблица 1 - Классификация резервированных систем

По способу включения резервных элементов	По принципу резервирования объекта
 постоянное резервирование, при котором резервные элементы работают в том же режиме, что и основной элемент или с меньшей нагрузкой; включение резервных элементов путем замещения основного, вышедшего из строя; скользящее резервирование, при котором резервные элементы заменяют любой элемент такого же типа в любой части объекта 	- общее резервирование, когда элемент или объект резервируется целиком; - раздельное резервирование, при котором резервируются элементы объекта, или группы элементов; - мажоритарное резервирование - используется в электронных объектах для ликвидации сбоев;

Резервирование

Внутренние

Рисунок 1 – Схема общего резервирования цепи

Рисунок 2 – Схема раздельного резервирования цепи

Рисунок 3 – Схема мажоритарного резервирования

Логико-вероятностный метод

Для рисунка 4 компонентами, отвечающими за безотказную работу, будут следующие: p1 x2 x3 p4 x5, x1 p2 x3 x4 p5, p1 x2 p3 x4 p5, x1 p2 p3 p4 x5

```
P_{06\mu} = p1 p2 p3 p4 p5 + p1 p2 p3 p4 q5 + 
+ p1 q2 q3 p4 q5 + p1 p2 q3 p4 p5 + p1 q2 p3 p4 p5 + q1 p2 q3 p4 p5 + q1 p2 p3 p4 q5 + q1 p2 p3 p4 p5 + 
+ p1 p2 q3 p4 q5 + q1 p2 q3 q4 p5 + p1 q2 p3 q4 p5 + 
+ p1 p2 p3 q4 p5 + q1 p2 p3 q4 p5 + p1 q2 q3 p4 p5 + 
+ p1 q2 p3 p4 q5 + p1 p2 q3 q4 p5.
```


Рисунок 4 — Схема смешанного соединения элементов

Логико-вероятностный метод

Тогда для последовательного соединения из трех блоков:

$$F_{\pi}=a \wedge b \wedge c$$
, $F_{a}=abc=>P_{\text{obss}}=p_{1}p_{2}p_{3}$.

Для параллельного соединения трех блоков цепь рассуждений выглядит следующим образом:

$$F_{\pi} = a \lor b \lor c \lor ab \lor ac \lor bc \lor abc = a(1 \lor b \lor bc) \lor b(1 \lor a \lor ac) \lor c(1 \lor a \lor ab) = a \lor b \lor c,$$
$$F_{\pi} = (a + b + c) - (ab + ac + bc) + abc.$$

Отсюда:

$$P_{\text{общ}} = (p_1 + p_2 + p_3) - (p_1 p_2 + p_1 p_3 + p_2 p_3) + p_1 p_2 p_3.$$

Метод минимальных путей

Тогда система сохранит работоспособность при следующем условии:

$$F_{\pi} = (a \land d) \lor (b \land e) \lor (a \land c \land e) \lor (b \land c \land d)$$

и, раскрывая скобки с использованием выражений, получим:

$$F_a = ad + be - adbe + ace + bcd - acebcd - (ad + be -$$

- adbe)(ace + bcd -acebcd).

Или сразу можно получить:

$$P_{06\mu}$$
 = 1- (1 - p1 p4)(1 - p2 p5)(1 - p1 p3 p5)(1 - p2 p3 p4).

Рисунок 4 – Схема смешанного соединения элементов

Преобразование структур

Рисунок 5 – Преобразование структуры при методе минимальных сечений

Рисунок 6 — Преобразование структур "треугольник" \to "звезда"

Классификация воздействий и воздействующих факторов

Климатические воздействия

Рисунок 8 - Среднемесячные суточные значения суммарной солнечной радиации при безоблачном небе в зависимости от широты местности и времени года (I-XII - месяцы года)

Рисунок 9 - Внутренний влагооборот на ограниченной территории

Климатические воздействия

Таблица 2 - Группы климатов, значения факторов естественных климатических воздействий и категории применения элементов ЭС

Группа климата	Минимальная темпе- ратура, °C	Максимальная тем- пература, °С	Максимальная тем- пература при отно- сительной влажности, равной нли превышающей 95 %, °C	Максимальная аб- солютная влажность воздуха, г-см ³	Максимальное изменение температуры воздуха за 8 ч, °C	Максимальная интегральная плотность потока солнечной радиации, Вг	Максимальная ин- тенсивность дождя, мм мин- ¹	Категория применения
Теплый	-20	+35	+25	22	40	1125	3	Ограниченное
умеренный								
Холодный умеренный, теплый сухой	-33	+40	+27	24	40	1125	3	Общее
Все климаты Земли, за исключением экстремально холодного и экстремально теплого	-50	+40	+33	36	40	1125	5	Универсальное
Все климаты Земли	-65	+55	+33	36	40	1125	5	В любой точке земного шара

Климатические воздействия

Таблица 3 - Допустимые значения факторов естественных климатических воздействий при эксплуатации элементов ЭС

Воздействующий фактор	умеренный			холодный			тропический					
	1	2	3	4	1	2	3	4	1	2	3	4
Температура воздуха, °C:	+40	+40	+40	+35	+40	+40	+40	+35	+45	+45	+45	+45
Максимальная												
Минимальная	-40	-40	-40	+1	-60	-60	-60	+1	-10	-10	-10	+1
Отн. влажность воздуха (макс. значение) %	100	100	98	80	100	100	98	80	100	100	98	98
Температура, °С	25	25	25	25	25	25	25	25	35	35	35	35
Максимальная интегральная плотность потока солнечной ра- диации, Вт*м ⁻²	1125	-	-	-	1125	-	-	-	1125	-	-	-
Максимально возможная температура нагрева черной матовой поверхности, °C	+80	-	-	-	+80	-	-	-	+90	-	-	-
Колебания температуры воздуха за 8 ч, °C	+40	+30	+20	-	+40	+39	+20	-	+40	+30	+20	-
Максимальная интенсивность дождя, мм*мнн ⁻¹	3	-	-	-	3	-	-	-	5	-	-	-

Анализ биоповреждений позволяет выделить четыре их вида:

- 1) механическое разрушение при контакте организмов с ЭС;
- 2) ухудшение эксплуатационных параметров;
- 3) биохимическое разрушение;
- 4) биокоррозия.

Таблица 4 - Измерение параметров атмосферы Земли с высотой

Высота,	Давление,	Плотность,	Темпе-	Концентра-	Характе-
KM	Па	г/cм ³	ратура,	ция частиц,	ристика
			К	см ⁻³	вакуума
Уровень	1,33*10 ⁵	1,2*10 ⁻³	293	2,7*10 ¹⁹	
моря					-
2*10 ²	8,5*10 ⁵	3*10 ⁻¹³	1200	7*10 ⁹	
$3*10^{2}$	1*10-5	2,5*10 ⁻¹⁴	1500	8*10 ⁸	Глубокий
5*10 ²	4*10 ⁻⁷	3*10 ⁻¹⁶	1600	$2,5*10^7$	
1*10 ³	4*10 ⁻⁹	1,5*10 ⁻¹⁸	1600	1,5*10 ⁵	
2*10 ³	8*10 ⁻¹⁰	2*10-19	1800	2*10 ⁴	Очень
3*10 ³	5*10 ⁻¹⁰	1*10 ⁻¹⁹	2000	1*10 ⁴	глубокий
5*10 ³	4*10 ⁻¹⁰	4*10 ⁻²⁰	3000	4*10 ³	
10*10 ³	2,5*10 ⁻¹⁰	1*10-20	15000	1*10 ³	
20*10 ³	1*10-10	2*10-21	50000	1*10 ²	C
30*10 ³	2,5*10 ⁻¹¹	6*10-22	1*10 ⁵	10	Сверхглубокий
60*10 ³	1,5*10-11	2,5*10 ⁻²²	2*10 ⁵	3-4	