DATA SCIENCE

AULA 3 - ESTATÍSTICA

PROF^a. ANA CAROLINA B. ALBERTON

INTRODUÇÃO

- Montgomery (2004) em seu livro Estatística Aplicada a Engenharia descreve que: "Engenheiros resolvem problemas de interesse da sociedade pela aplicação eficiente de princípios científicos".
- O campo da estatística lida com a coleta, a apresentação, a análise e o uso de dados para tomar decisões e resolver problemas.
- Métodos estatísticos são usados para nos ajudar a entender a variabilidade.
- Todos nós encontramos variabilidade em nosso dia-a-dia e o julgamento estatístico pode nos dar uma maneira útil para incorporar essa variabilidade em nossos processos de tomada de decisão.

EDA - Exploratory Data Analisys

Exploratory Data Analisys - Análise de Dados Exploratória

Busca obter informações ocultas sobre os dados:

- Variação
- Anomalias
- Distribuição
- Tendências
- Padrões
- Relações

A EDA faz parte do pipeline de qualquer processo de análise de dados, mesmo que informal

EDA - Exploratory Data Analisys

Elementos que compõem a EDA:

Limpeza e Tratamento

Estatística I

Regressão Linear e Logística

Series Temporais

Visualização, Gráficos e Dashboards

Estatística II

Estatística II

Machine Learning e ANN

Grafos

Grafos

- Montgomery (2004) em seu livro Estatística Aplicada a Engenharia descreve que: "Engenheiros resolvem problemas de interesse da sociedade pela aplicação eficiente de princípios científicos".
- O campo da estatística lida com a coleta, a apresentação, a análise e o uso de dados para tomar decisões e resolver problemas.
- Métodos estatísticos são usados para nos ajudar a entender a variabilidade.
- Todos nós encontramos variabilidade em nosso dia-a-dia e o julgamento estatístico pode nos dar uma maneira útil para incorporar essa variabilidade em nossos processos de tomada de decisão.

Principais Divisões

- Descritiva
- Probabilística
- Inferencial

- Descritiva
 - Organizar demonstrar e resumir dados
- Probabilidade
 - Analisar situações sujeitas ao acaso
- Inferência
 - Obter respostas sobre um fenômeno com dados representativos

- Amplamente utilizada em pesquisas, estudos etc.
- Faz parte do dia a dia de um Cientista de Dados

População: alvo do estudo

Amostra: subconjunto da população

Censo: pesquisa com toda a população

PEQUENAS AMOSTRAS

Se eu jogar um dado 6x, qual a possivel média de resultados:

$$1+2+3+4+5+6 = 21/6 = 3,5$$

```
#Exemplo de pequenas amostras:
x = random.choices(range(1, 7), k=6)
print(np.mean(x))

3.333333333333333333
```

```
#Exemplo de pequenas amostras:
    x = random.choices(range(1, 7), k=6)
    print(np.mean(x))

3.166666666666666665
```

```
#Exemplo de pequenas amostras:

x = random.choices(range(1, 7), k=6)

print(np.mean(x))

3.0
```

```
#Exemplo de pequenas amostras:
x = random.choices(range(1, 7), k=6)
print(np.mean(x))
```

```
3.66666666666666
```

```
#Exemplo de pequenas amostras:
    x = random.choices(range(1, 7), k=6)
    print(np.mean(x))

3.66666666666666666665
```


Porque Amostra?

Pode ser caro ou impossível inferir sobre toda a população (censo)

- É possível inferir sobre uma amostra
- Uma amostra feita corretamente deve representar as mesmas características da população de onde foi retirada.
- Se ela não representa a população, dizemos que ele é enviesada

Enviesamento

Você subestima ou superestima o parâmetro da população

Causas:

Pesquisa de pessoas próximas ou de fácil acesso

Pesquisas pela Internet

Sem uso de mecanismo de seleção aleatório

- Principais tipos de amostras
 - Aleatória Simples
 - Estratificada
 - Sistemática

AMOSTRA

Amostras Aleatórias Simples

- Um determinado número de elementos é retirado da população de forma aleatória
- Todos os elementos da população alvo do processo de amostragem, devem ter as mesmas chances de serem selecionados para fazer parte da amostra

AMOSTRA

 As vezes as populações estão divididas nos chamados estratos.

Amostra Estratificada

AMOSTRA

- Amostra sistemática
 - Nesse tipo de amostragem é escolhido um elemento aleatório e a partir daí a cada N elementos um novo membro é escolhido

MÉDIA

- Quando falamos de variáveis quantitativas, os conjuntos de dados possuem medidas estatísticas que podem nos auxiliar a tomar decisões básicas sobre um comportamento ou uma tendência sobre os dados que possuímos;
- A partir desse momento vamos chamar essas medidas de características dos seus conjuntos de dados e vamos falar sobre as características mais básicas da estatística;
- A característica mais básica de um conjunto de dados é a sua **média**. Porém estatisticamente o seu uso é mais raro, apesar de que no dia-a-dia é comum que utilizamos a média para parâmetros, como notas de escola ou até decisões estratégicas.

MÉDIA

- O seu uso é raro no planejamento de experimentos porque a média pode esconder grandes alterações entre as observações;
- Num exemplo hipotético, em um observação que sempre repete o padrão valor 1000 no tempo X e 2 no tempo Y e assim sucessivamente, traria ao seu observador uma média 501, que é muito longe de qualquer observação que ele vai ter ao longo do seu experimento.

MÉDIA

- Isso porque a média é um valor calculado, que pode não existir dentro da sua distribuição, um outro exemplo são as próprias notas de classe, é muito provável que a sua média não seja igual a nenhuma das notas que você tenha tirado ao longo do semestre;
- Portanto, se o seu objetivo é identificar como um fenômeno se comporta que sentido faz utilizar um recurso matemático, cujo o resultado irá retornar um valor que existe uma probabilidade alta de não acontecer;
- Talvez seja novidade para alguns, mas mesmo a média pode se subdividida, temos a média aritmética, a média ponderada, a média geométrica, entre outras.

MEDIANA

- Uma outra característica de dados muito importante é a Mediana. Que, segundo a literatura, é a medida de tendência central, que divide os dados em duas partes iguais, metade abaixo da mediana e metade acima.
- O seu cálculo é bem simples: No conjunto de dados conta-se a quantidade de registros apresentados, e caso a quantidade seja impar, pega-se exatamente o registro que divide o conjunto no meio para a ser a mediana:
 - Ex: 45 Registros, a mediana será o registro de número 23. Pois assim teremos 22 dois registros para um lado e para o outro.

MEDIANA

- No caso do conjunto de dados possuir uma quantidade par, pega-se o número do registro que corresponde a metade do conjunto e o registro superior para calcular a mediana.
- Com esses dois registros selecionados, eles são somados e divididos por 2, o resultado então é
 a mediana do conjunto.
 - Ex: Um conjunto com 44 registros, o registro de número 22 e 23 serão somados e divididos por dois, o seu resultado será a mediana do conjunto.
- Aqui pode parecer um contrassenso apontar que para achar a mediana, calcule-se a média de algo, sendo que falamos que a média pode nos levar à decisões erradas;
- Porém, para o cálculo da mediana (e de todas as medidas estatísticas que veremos ao longo dessa aula), se faz necessário que os dados numéricos da distribuição sejam ordenados em ordem crescente.

•	Isso nos mostrará que mesmo utilizando uma média entre dois valores, nesse caso, o cálculo da media nos traz muito mais
	próximo da realidade da nossa distribuição, que é o nosso principal foco.

- Vejamos o seguinte exemplo ao lado, temos uma distribuição de 20 números que estão aparentemente desordenados;
- A sua média é 65.45, o que se a gente olhar atentamente para a distribuição podemos ver que ela não se relaciona muito com os dados;
- Porém agora vamos calcular a sua mediana.

130
53
300
32
50
74
5
200
50
52
4
32
75
46
48
56
10
43
0
49

65.45 Média

- Ordenamos nosso dado, só nessa situação já conseguimos visualizar um padrão;
- 8 dos nossos 20 casos ficam entre valores de 43 e 53, o que nos dá 40% de chance que, se estivermos em processo de repetição, no futuro teremos o mesmo padrão;
- Voltemos a mediana, no caso pegamos os 10° e 11° valores da distribuição (49, 50) e calculamos o seu valor;
- Agora eu lhes pergunto quais das duas características está mais próxima da realidade da distribuição?

130	
53	65.45
300	Média
32	Wicaia
50	
74	
5	
200	
50	
52	
4	
32	
75	
46	
48	
56	
10	
43	
0	
49	

0
4
5
10
32
32
43
46
48
49
50
50
52
53
56
74
75
130
200
300

49.5 Mediana

MODA

- Ok, já sabemos que entre a média e a mediana, já saberíamos dizer o que mais nos seria útil se a gente fosse tentar encontrar uma característica para tentar emular futuros comportamentos do nosso fenômeno;
- Uma outra característica bem básica do conjunto de dados é a moda, que pode ser representada com o termo que aparece o maior número de vezes dentro do conjunto de dados.
- Exemplo, qual a moda?
 - {1,2,3,5,7,8,9}
 - {1,2,2,5,7,8,8}

EXEMPLO I

Apesar da semelhança entre moda, mediana e média, a apresentação desses valores podem variar consideravelmente dependendo do conjunto de dados. Vejamos o exemplo a seguir.

32 32

363943

46

48

495052

5356

57

6465

75

- Dado o conjunto ao lado, calcule:
 - A média (Aritmética);
 - A moda;
 - A mediana;
- · Apesar de ser as vezes bem sedutora a ideia de calibrar um modelo simplesmente ao utilizar o número que mais ocorre;
- Podemos ver pelo exemplo que nem sempre, isso é o mais correto a ser utilizado.

EXEMPLO 2: EM PYTHON

- Duas outras medidas de dispersão, que são mais usadas no contexto estatístico, são elas:
 - Variância;
 - Desvio Padrão.
- Ambas as medidas são utilizadas para medir a mesma coisa: O quanto as medidas do conjunto de dados se afastam da média aritmética. Porém uma acaba sendo meio que interpretada como uma evolução da outra.
- Começaremos pela variância. É uma medida mais básica nesse contexto. A fórmula para o cálculo da variância pode ser escrita com a fórmula a seguir.

VARIÂNCIA

- Onde:
 - V Variância.
 - n Número de registros
 - Xi Registro de índice i
 - Ma Média aritmética.

$$V = \frac{\sum_{i=1}^{n} (x_i - M_A)^2}{n}$$

- Então vejamos, ainda utilizando o conjunto anterior (exemplo 1), calculamos a variância.
- Conjunto: [20, 32, 32, 36, 39, 43, 46, 48, 49, 50, 52, 53, 56, 57, 63, 64, 65, 74, 75, 90]

VARIÂNCIA

- Quanto maior for a variância, mais distante os pontos do conjunto de dados estão da média. O mesmo acontece com o inverso, quanto menor a variância, mais próximos serão os dados da sua média.
- Não existe uma escala de variância, o que pode ser considerado muito alto ou muito baixo e isso vai variar sempre do conjunto de dados. E o seu conhecimento sobre os dados (contexto), vai fazer a diferença quando formos determinar o que é uma variância alta ou baixa.
- No nosso resultado, tivemos uma variância de 266.36, o que alinhado com o nosso conhecimento dados, podemos caracterizar como alta, pois no nosso conjunto temos muitos pontos longe da média do conjunto.

DESVIO PADRÃO

- Porém, temos uma deficiência na variância que pode nos atrapalhar quando estamos realizando alguma análise estatística.
- Como as diferenças entre o valor representado e a média é elevada ao quadrado, os pontos mais longe da média acabam por elevar de forma as vezes tendenciosa a variância.
- Isso pode ser perigoso, principalmente quando temos outliers extremos, comprometendo então as nossas decisões.
- E ai é que entra o desvio padrão.

DESVIO PADRÃO

- O desvio padrão é uma medida que indica o quando o conjunto de dados é uniforme, considerando o quanto os dados se afastam da sua média.
- Sendo assim, a fórmula para o cálculo do desvio padrão é a seguinte:

$$D_P = \sqrt{\frac{\sum_{i=1}^{n} (x_i - M_A)^2}{n}}$$

- Basicamente, o cálculo do desvio padrão é a raiz quadrada da variância. Vamos ao cálculo então.
- Conjunto: [20, 32, 32, 36, 39, 43, 46, 48, 49, 50, 52, 53, 56, 57, 63, 64, 65, 74, 75, 90]

EXEMPLO 2

CALCULAR A VARIÂNCIA E O DESVIO PADRÃO DO SEGUINTE CONJUNTO:

[446, 458, 470, 482, 494, 506, 518, 530, 542, 554]

PROBABILIDADE

- Probabilidade (P): 0 <= P <= I
- P=I evento certo
- P=0 evento impossível
- Probabilidade: 0,5 ~1/2
- Impossível: -0,5 ou -20% ou 2/1

PROBABILIDADE - CONCEITOS

- Experimento: o que está sendo estudado
- Espaço Amostral: todas as possibilidades de ocorrência do evento
- Evento: resultados ocorridos

Jogar uma moeda Cara ou coroa Deu coroa

PROBABILIDADE

Eventos Excludentes:

Quando não podem ocorrer ao mesmo tempo.

Exemplo: Jogar um dado e ser I e par.

PROBABILIDADE

Eventos Não Excludentes:

Quando podem ocorrer ao mesmo tempo.

Exemplo: Jogar um dado e ser 2 e par.

Eventos Dependentes:

A ocorrência de um evento afeta o outro.

Um tem que ocorrer para que depois o outro ocorra.

Eventos Não Dependentes:

Um único evento

P = Ocorrência Esperada/Número de Eventos Possíveis

Exemplo I: Jogar uma moeda e dar cara:

$$P = \frac{1}{2}$$

$$P = 0.5$$

Um único evento

P = Ocorrência Esperada/Número de Eventos Possíveis

Exemplo: Jogar um dado e dar 6:

$$P = \frac{1}{6}$$

$$P = 0,16$$

Um único evento

P = Ocorrência Esperada/Número de Eventos Possíveis

Exemplo: Jogar um dado e dar 1, 2, 3, 4, 5 ou 6:

P = 6/6

P=1

Um único evento

P = Ocorrência Esperada/Número de Eventos Possíveis

Exemplo: Jogar um dado e dar 1 ou 6:

$$P = 2/6$$

$$P = 0.33$$

Um único evento

P = Ocorrência Esperada/Número de Eventos Possíveis

Exemplo: Jogar um dado e dar **impar ou maior que 4**:

$$P = 4/6$$

$$P = 0.67$$

Eventos Excludentes

Soma-se as probabilidades

P = Ocorrência Esperada/Número de Eventos Possíveis

Exemplo: Jogar um dado e ser I ou par:

$$P = \frac{1}{6} + \frac{3}{6}$$

$$P = 0.67$$

Eventos Não Excludentes

Soma-se as probabilidades, diminui-se as sobreposições

P = Ocorrência Esperada/Número de Eventos Possíveis

Exemplo: Jogar um dado e ser 2 ou par:

$$P = \frac{1}{6} + \frac{3}{6} - \frac{1}{6}$$

$$P = 0.5$$

Eventos Independentes

Mais de um evento, eles se relacionam com Multiplicação

Exemplo: Qual a probabilidade de jogar dois dados e dar 1 e 6?

(Dois eventos independentes)

$$P = \frac{1}{6} * \frac{1}{6} = 0,028$$

Eventos Dependentes

Mais de um evento, eles se relacionam com Multiplicação

Exemplo: Com 6 cartas na mão, qual a probabilidade de tirar primeiro

um A e depois um 4?

(Dois eventos dependentes)

$$P = \frac{1}{6} * \frac{1}{5} = 0.028$$

REFERÊNCIAS

- FÁVERO, Luiz Paulo; BELFIORE, Patrícia. **Manual de Análise de Dados:** Estatística e Modelagem Multivariada com Excel, SPSS e Stata. Rio de Janeiro: Ltc, 2020.
- CIFERRI, Cristina Dutra de Aguiar; CIFERRI, Ricardo Rodrigues. **Modelagem Multidimensional.** São Paulo: Usp, 2020. 14 slides, color. Disponível em: http://wiki.icmc.usp.br/images/6/6a/SCC5911-02-ModelagemMultidimensional.pdf. Acesso em: 10 jan. 2020.
- RESENDE, Tânia. **Modelagem multidimensional conceitos básicos.** São Paulo: Slideshare, 2016. 28 slides, color. Disponível em: https://pt.slideshare.net/TANIARESENDE/modelagem-multidimensional-conceitos-bsicos. Acesso em: 18 fev. 2020.
- JARDIM, Edgar Silveira; OLIVEIRA, Marcus Vinícius Abreu de; MORAVIA, Rodrigo Vitorino. Diferença Entre Banco de Dados Relacional e Banco de Dados Dimensional. **Revista Pensar Tecnologia**, Belo Horizonte, v. 2, n. 4, p. 1-17, julho 2015. Mensal. Disponível em: http://revistapensar.com.br/tecnologia/pasta_upload/artigos/a122.pdf>. Acesso em: 18 fev. 2020.
- SERGENTI, Alexsandro. **Modelagem Relacional e Multidimensional:** uma análise envolvendo Sistemas de Apoio a decisão. 2015. Disponível em: https://www.linkedin.com/pulse/modelagem-relacional-e-multidimensional-uma-an%C3%A1lise-de-sergenti/. Acesso em: 18 fev. 2020.