

Interim Report:

Detecting Drug Consumption Risk

A machine learning project by Mirko Knoche and Nina Notman, by request of the *American* Psychology Association (APA)

REQUEST BY THE APA

REQUEST BY THE APA

66

I wish I could identify patients at risk for cannabis consumption so it won't influence therapy at a future time point.

REQUEST BY THE APA

DATASET BY ELAINE FEHRMAN

66

I wish I could identify patients at risk for cannabis consumption so it won't influence therapy at a future time point.

THE DATASET

FEATURES

DEMOGRAPHICS

Age, Gender, Education, Ethnicity, Country

NEO-FF-R

Neuroticism, Extraversion, Openness, Agreeableness, Conscientiousness

BIS-11 & ImpSS

Impulsiveness, Impulsiveness-Sensation-Seeking

LABELS

PSYCHOTIC DRUGS

Alcohol, Amphetamines, Amyl Nitrite, Benzodiazepines, Cannabis, Chocolate, Cocaine, Caffeine, Crack, Ecstasy, Heroin, Ketamine, Legal Highs, LSD, Methadone, Mushrooms, Nicotine, VSA

I wish I could identify patients at risk for cannabis consumption so it won't influence therapy at a future time point.

MODEL SELECTION

- K-nearest Neighbors
- Logistic Regression
- Random Forest Classifier
- Support Vector Classifier
- XGBoost

MODEL SELECTION

- K-nearest Neighbors
- Logistic Regression
- Random Forest Classifier
- Support Vector Classifier
- XGBoost

MODEL EVALUATION

- Classification Report
- Confusion Matrix
- ROC Curve & AUC Score

MODEL SELECTION

- K-nearest Neighbors
- Logistic Regression
- Random Forest Classifier
- Support Vector Classifier
- XGBoost

MODEL EVALUATION

- Classification Report
- Confusion Matrix
- ROC Curve & AUC Score

MODEL TUNING

- Grid Search (scorer = F1)
- Feature Importance

BEST MODEL

XGBoost after GridSearch

BEST MODEL

XGBoost after GridSearch

BEST MODEL

XGBoost after GridSearch

- Identify 4 out of 5 correctly as cannabis consumer.
- Fine. But let's not leave the one hanging.
 We can do better!

PREDICTION OF HIGHLY ADDICTIVE DRUG CONSUMPTION RISK

PREDICTION OF HIGHLY ADDICTIVE DRUG CONSUMPTION RISK

CHANGE LABEL

HIGHLY ADDICTIVE

PSYCHOTIC DRUGS

Ecstasy, Heroin, LSD, Meth, Cocaine

PREDICTION OF HIGHLY ADDICTIVE DRUG CONSUMPTION RISK

HIGHLY ADDICTIVE

PSYCHOTIC DRUGS

Ecstasy, Heroin, LSD, Meth, Cocaine

SAME FUNCTION

MODEL SELECTION

- K-nearest Neighbors
- Logistic Regression
- Random Forest Classifier
- Support Vector Classifier
- XGBoost

MODEL EVALUATION

- Classification Report
- Confusion Matrix
- ROC Curve & AUC
 Score

MODEL TUNING

- Grid Search (scorer = F1)
- Feature Importance

Request:

Identify patients that are likely to take highly addictive drugs and thus won't be able to focus on therapy...

BEST MODEL

SVM after GridSearch

Only 75% accuracy on predicting consumption of highly addictive drugs.

Future Work: Feature Engineering

WATCH OUT!

Age / Country / Ethnicity

COLLECT MORE DATA

Expand data collection to optimize and generalize model

DISTRIBUTION

Age / Country / Ethnicity

COLLECT MORE DATA

Expand data collection to optimize and generalize model

FEATURE ENGINEERING

GROUPING OF DRUGS

GROUPING OF DRUGS

LET'S TALK!

- Nina Notman
 nina.notman@gmx.net
- Mirko Knoche
 mirko.knoche@posteo.de

THANK YOU!

Questions?

Appendix

Distribution of drug use

