Name:	Klasse:	FoTa Auflage:
-------	---------	---------------

Querschnittsprüfung Wärme

3. September 2010

	Hilfsmittel: Taschenrechner, FoTa, ein A4-Blatt Spick Darstellung:	frei
	formale Lösung herleiten - einsetzen mit Einheiten - ausrechnen, runden, Einheit dazu	lassen
	Viel Erfolg! Lehrkraft in der 2. Klasse:	
1a	Wie viele Gas-Teilchen sind in einem Wohnzimmer mit Abmessungen 5.25 m, 4.77 m und 2.37 m bei Normaldruck und 21.5 C enthalten?	
1b	Um wie viel Prozent ändert sich die mittlere Teilchengeschwindigkeit, wenn am Nachmittag die Zimmertemperatur 8.0 C steigt?	
2	Der Supercomputer Aquasar der ETH wird mit 30 Liter 60-grädigem Wasser pro Minute auf die Betriebstemperatur von 80 Grad Celsius gekühlt (ETH Globe 2/2010). Welche Heizleistung generieren die Prozessoren?	
3	Jemand behauptet, er trockne sich nach dem Duschen nie ab, denn durch die dem Körper entzogene Verdampfungswärme nehme er ab. Eine Messung (Lie. 17. 1. 2010) hat ergeben, dass beim Abtrocknen 50 g Wasser im Frottiertuch hängen bleiben.	
3а	Wie viel Wärme würde dem Körper (70 kg) durch Verdunstung entzogen?	/4
3b	Wie viel Gramm Schokolade enthält dieselbe Energiemenge? (Nährwert: 22 MJ/kg)	/4
4	In den Dampfmaschinen von James Watt wurden Drücke knapp über 0.2 bar erreicht.	
4a	Bestimmen Sie die Temperatur im Dampfkessel beim genannten Überdruck.	/3
4b	Wie viel Dampf (in Gramm) enthielt der Dampfzylinder mit 250 Liter Volumen maximal?	/3
5a	Die Sonne scheint voll auf ein Stück schmutziges Gletschereis. Wie schnell, in Zentimeter pro Stunde, schmilzt das Eis?	
5b	Nennen Sie die Annahmen, die sie für die Rechnung getroffen haben.	/4
6	Die Temperatur in einem Jet-Triebwerk liegt bei ca. 1400 °C, während die Aussentemperatur in 10 km Höhe -50 °C beträgt. Ein Airbus A300 benötigt 7.43 m³ (5.93 Tonnen) Kerosin pro Stunde auf Reiseflughöhe.	
6a	Wie gross wäre der maximale, thermodynamische Wirkungsgrad der Triebwerke?	/3
6b	Wie gross ist die Heizleistung der Verbrennung? (Kerosin ≈ Heizöl)	
7	Das schweizerische Eisenbahn-Schienennetz hat eine Länge von 5035 km (2004). Welche Länge hätte es noch, wenn es 30 °C abkühlen und schrumpfen könnte?	/4
8	Eis aus dem Tiefkühler (-18 °C) wird in lauwarmes Wasser (29 °C, 290 g) geworfen. Es stellt sich eine Mischtemperatur von 8.3 °C ein. Wie viel Eis wurde verwendet?	
9	1.0 mol flüssiges Helium wird erhitzt, bis 273.15 K und Normdruck herrschen. Dann wird das Gas isochor (bei konstantem Volumen) auf 546.30 K erwärmt. Dann wird das Gas isotherm (bei konstanter Temperatur) auf die Hälfte des Volumens komprimiert. Zeichnen Sie das p(V)-Diagramm des Gases für diesen Vorgang. Die Achsen müssen vollständig beschriftet sein. Zahlenwerte müssen kurz begründet werden.	/10

Lösungen zur Querschnittsprüfung Wärme 3. September 2010
1a)
$$pV = NkT \Rightarrow N = \frac{plbh}{kT} = \frac{101325 \text{ Pa} \cdot 5.25 \text{ m} \cdot 4.77 \text{ m} \cdot 2.37 \text{ m}}{1.38065 \cdot 10^{-23} \text{ J/K} \cdot (273.15 + 21.5) \text{ K}} = \frac{1.48 \cdot 10^{27}}{1.38065 \cdot 10^{-23}}$$

1b)
$$T \propto v^2 \Rightarrow \frac{v_2}{v_1} - 1 = \sqrt{\frac{T_2}{T_1}} - 1 = \sqrt{\frac{(273.15 + 21.5 + 8.0) \text{ K}}{(273.15 + 21.5) \text{ K}}} - 1 = \underline{1.3\%}$$

2)
$$\Delta Q = cm\Delta\vartheta \Rightarrow P = \frac{\Delta Q}{\Delta t} = c\rho \frac{\Delta V}{\Delta t} \Delta\vartheta \approx$$

4182 J/kgK· 977.76 kg/m³·
$$\frac{0.030 \text{ kg}}{60 \text{ s}}$$
· $(80-60)$ °C = $\frac{41 \text{ kW}}{100 \text{ kg}}$

3a)
$$Q = m_w L_V = 0.050 \text{ kg} \cdot 2.4 \cdot 10^6 \text{ J/kg} = \underline{0.12 \text{ MJ}}$$
 (L_V etwa bei Körpertemperatur, s. FoTa)

3b)
$$m_S H = m_W L_V \Rightarrow m_S = \frac{m_W L_V}{H} = \frac{0.050 \text{ kg} \cdot 2.4 \cdot 10^6 \text{ J/kg}}{22 \cdot 10^6 \text{ J/kg}} = \frac{5.5 \text{ g}}{20.80 \text{ kPa}} = \frac{5.5 \text{ g}}{10.80 \text{ kPa}} = \frac{105 \text{ °C}}{10.80 \text{ kPa}} = \frac{10.050 \text{ kPa}}{10.80 \text{ kPa}} = \frac{10.050 \text{ kg}}{10.80 \text{ kPa}} = \frac{10.050 \text{ kPa}}{10.80 \text{ kPa}} =$$

4a)
$$p_D = p_L + p_{ii} \approx 1.2$$
 bar ≈ 120 kPa Dampfdrucktabelle: $p_D = 120.80$ kPa $\Rightarrow \vartheta = 105$ °C

4b)
$$m = \rho_D V = 0.7045 \text{ kg/m}^3 \cdot 0.250 \text{ m}^3 = 0.176 \text{ kg}$$

5a)
$$Q = mL_f = \rho VL_f \Rightarrow \frac{Q}{A} = \rho \frac{V}{A}L_f = \rho hL_f \Rightarrow \frac{Q}{A\Delta t} \approx J_s = \rho \frac{h}{\Delta t}L_f \Rightarrow$$

$$\frac{\Delta h}{\Delta t} = \frac{J_s}{\rho L_f} = \frac{1366 \text{ W/m}^2}{917 \text{ kg/m}^3 \cdot 3.338 \cdot 10^5 \text{ J/kg}} = 4.463 \text{ } \mu \text{m/s} \cdot 3600 \text{ s/h} = \underline{1.61 \text{ cm/h}}$$

5b) Die Bestrahlungsstärke wurde durch die Solarkonstante nach oben abgeschätzt (senkr. Einfall..), das Eis ist schwarz und hat Schmelztemperatur, die Wärme wird nicht abgeleitet.

6a)
$$\eta = \frac{T_w - T_k}{T_w} = \frac{(1400 + 50) \text{ K}}{(1400 + 273.15) \text{ K}} = \underline{0.87}$$

6a)
$$\eta = \frac{T_w - T_k}{T_w} = \frac{(1400 + 50) \text{ K}}{(1400 + 273.15) \text{ K}} = \underline{0.87}$$

6b) $P = \frac{H \cdot \Delta m}{\Delta t} = \frac{4.27 \cdot 10^7 \text{ J/kg} \cdot 5.93 \cdot 10^3 \text{ kg}}{3600 \text{ s}} = \underline{70.3 \text{ MW}}$
7) $\Delta l = \alpha l_0 \Delta T \Rightarrow l_2 = l_1 \cdot (1 + \alpha \cdot \Delta \vartheta) = 5035 \text{ km} \cdot (1 + 12 \cdot 10^{-6} \text{ K}^{-1} \cdot (-30 \text{ K})) = \underline{5033 \text{ km}}$

7)
$$\Delta l = \alpha l_0 \Delta T \Rightarrow l_2 = l_1 \cdot (1 + \alpha \cdot \Delta \vartheta) = 5035 \text{ km} \cdot (1 + 12 \cdot 10^{-6} \text{ K}^{-1} \cdot (-30 \text{ K})) = \underline{5033 \text{ km}}$$

8)
$$c_E m_E (\vartheta_f - \vartheta_E) + m_E L_f + c_W m_E (\vartheta_M - \vartheta_f) + c_W m_W (\vartheta_M - \vartheta_W) = 0$$

$$m_{E} = \frac{-c_{W}m_{W}(\vartheta_{M} - \vartheta_{W})}{c_{E}(\vartheta_{f} - \vartheta_{E}) + L_{f} + c_{W}(\vartheta_{M} - \vartheta_{f})}$$

$$m_E = \frac{-4182 \text{ J/kgK} \cdot 0.290 \text{ kg} \cdot (8.3 \text{ °C} - 29 \text{ °C})}{2100 \text{ J/kgK} \cdot (0 \text{ °C} - (-18 \text{ °C})) + 3.338 \cdot 10^5 \text{ J/kg} + 4182 \text{ J/kgK} \cdot (8.3 \text{ °C} - 0 \text{ °C})} = \frac{62 \text{ g}}{62 \text{ g}}$$

9)
$$T_A \approx 0$$
 (4.21 K)
 $p_A = p_n$ (Siedebedingung)

$$V_{A} \approx 0 \left(= \frac{m}{\rho} = \frac{1.0 \text{mol} \cdot 4.0 \text{ g/mol}}{125 \text{ g/L}} = 0.032 \text{ L} \right)$$

$$p_{B} = p_{n} = 1.013 \text{ bar}$$

$$V_{B} = V_{mn} n = 22.4 \text{ L/mol} \cdot 1.0 \text{ mol} = 22.4 \text{ L}$$

$$p_{C} = p_{B} \frac{T_{C}}{T_{B}} = 1.013 \text{ bar} \cdot \frac{546.30 \text{ K}}{273.15 \text{ K}} = 2.027 \text{ bar}$$

$$V_{C} = V_{B} = 22.4 \text{ L}$$

$$p_{D} = p_{C} \frac{V_{C}}{V_{D}} = 2.027 \text{ bar} \cdot \frac{2}{1} = 4.053 \text{ bar}$$

$$p_D = p_C \frac{V_C}{V_D} = 2.027 \text{ bar} \cdot \frac{2}{1} = 4.053 \text{ bar}$$

$$V_D = \frac{V_C}{2} = \frac{22.4 \text{ L}}{2} = 11.2 \text{ L}$$

