Gene-wide selection analysis using a branch-site method (BUSTED), HIV-1 env

Model fits

Model	log L	#. params	AICc	Branch set	ω ₁	ω ₂	ω3	
Unconstrained model	-2040.0	45	4170.9	Test	0.58 (85.37%)	0.73 (12.50%)	93.41 (2.13%)	<u>.111</u>
Constrained model	-2076.6	44	4242.1	Test	0.00 (29.28%)	1.00 (54.27%)	1.00 (16.45%)	<u>.iil</u>

This table reports a statistical summary of the models fit to the data. Here, **Unconstrained model** refers to the BUSTED alternative model for selection, and **Constrained model** refers to the BUSTED null model for selection.

hyphy busted --srv No --alignment HIV-sets.fas --starting-points 5

Produces *HIV-sets.fas.BUSTED.json* file View in http://vision.hyphy.org/BUSTED

BUSTED site-level inference

- Because BUSTED is a random-effects method, it pools information across multiple sites and branches to gain power
- The cost to this pooling is lack of site-level **resolution**, i.e., it is not immediately obvious which sites and/or branches drive the signal
- Standard ways to extract individual site contributions to the overall signal is to perform a post-hoc analysis, such as empirical Bayes, or "category loading"
- For BUSTED, "category loading" is faster and experimentally better