DSA5103 Optimization Problem for Data Modelling

Nonlinear Programming A general nonlinear programming problem (NLP) is to minimize/maximize a function f(x), subject to equality constraints $g_i(x) = 0$, $i \in [m]$, and inequality constraints $h_j(x) \leq 0$, $j \in [p]$. Here, f, g_i , and

 h_i are functions of the variable $x = (x_1, \dots, x_n)^T \in \mathbb{R}^n$. The term definitions are as follows:

- f: Objective function
- $g_i(x) = 0$: Equality constraints
- $h_i(x) < 0$: Inequality constraints

It suffices to discuss minimization problems since minimizing f(x) is equivalent to maximizing -f(x).

Feasible Set

$$S = \{x \in \mathbb{R}^n \mid g_1(x) = 0, \dots, g_m(x) = 0, h_1(x) < 0, \dots, h_p(x) < 0\}.$$

A point in the feasible set is a feasible solution or feasible point where all constraints are satisfied; otherwise, it is an infeasible solution or infeasible point. When there is no constraint, $S = \mathbb{R}^n$, we say the NLP is unconstrained.

Local and Global Minimizer Let S be the feasible set. Define $B_{\epsilon}(y) = \{x \in \mathbb{R}^n \mid ||x - y|| < \epsilon\}$ to be the open ball with center y and radius ϵ . Here, $||x|| = \sqrt{x_1^2 + \cdots + x_n^2}$

1. A point $x^* \in S$ is said to be a **local minimizer** of f if there exists $\epsilon > 0$ such that

$$f(x^*) \le f(x) \quad \forall x \in S \cap B_{\epsilon}(x^*).$$

2. A point $x^* \in S$ is said to be a **global minimizer** of f if

$$f(x^*) \le f(x) \quad \forall x \in S.$$

Interior point Let $S \subseteq \mathbb{R}^n$ be a nonempty set. An point $x \in S$ is called an interior point of S if

$$\exists \epsilon > 0 \quad s.t. \quad B_{\epsilon}(x) \subseteq S.$$

Gradient Vector Let $S \subseteq \mathbb{R}^n$ be a nonempty set. Suppose $f: S \to \mathbb{R}$, and x is an interior point of S such that f is differentiable at x. Then the gradient vector of f at x is

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(x) \\ \vdots \\ \frac{\partial f}{\partial x_n}(x) \end{bmatrix}.$$

Hessian Matrix Let $S \subseteq \mathbb{R}^n$ be a nonempty set. Suppose $f: S \to \mathbb{R}$, and x is an interior point of S such that f has second-order partial derivatives at x. Then the **Hessian** of f at x is the $n \times n$ matrix:

$$H_f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(x) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(x) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(x) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(x) & \frac{\partial^2 f}{\partial x_2^2}(x) & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(x) & \frac{\partial^2 f}{\partial x_n \partial x_2}(x) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(x) \end{bmatrix}.$$

- The *ij*-entry of $H_f(x)$ is $\frac{\partial^2 f}{\partial x_i \partial x_j}(x)$.
- In general, $H_f(x)$ is not symmetric. However, if f has continuous second-order derivatives, then the Hessian matrix is symmetric since ∂x_i and ∂x_j are interchangeable.

Positive (Semi)Definite Let A be a real $n \times n$ matrix.

- 1. A is said to be positive semidefinite if $x^T Ax > 0, \forall x \in \mathbb{R}^n$.
- 2. A is said to be **positive definite** if $x^T A x > 0$, $\forall x \neq 0$.
- 3. A is said to be **negative semidefinite** if -A is positive (semi)definite.
- 4. A is said to be **negative definite** if -A is positive definite.
- 5. A is said to be **indefinite** if A is neither positive nor negative semidefinite.

Eigenvalue Test Theorem Let A be a real symmetric $n \times n$ matrix.

- 1. A is positive semidefinite iff every eigenvalue of A is nonnegative
- 2. A is **positive definite** iff every eigenvalue of A is positive.
- A is negative semidefinite iff every eigenvalue of A is nonpositive. 4. A is negative definite iff every eigenvalue of A is negative.
- 5. A is indefinite iff it has both a positive eigenvalue and a negative eigenvalue.

Proof for: A is positive semidefinite iff every eigenvalue of A is nonnegative

(Forward) Suppose A is positive semidefinite, show that its eigenvalues are nonnegative. By definition, a Hermitian matrix A is positive semidefinite if for all nonzero vectors $x \in \mathbb{C}^n$

$$x^*Ax \ge 0$$

Let λ be an eigenvalue of A with corresponding eigenvector x such tha $Ax = \lambda x$. Taking the inner product of both sides

$$x^* A v = v^* (\lambda x) = \lambda (x^* x)$$

Since v^*v (the squared norm of v) is always positive for nonzero v, the above equation implies $\lambda \geq 0$

(Backward) Since A is Hermitian, it has an orthonormal basis of eigenvectors $\{q_1, q_2, \ldots, q_n\}$ with corresponding real eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$.

For any vector x, we can express it in terms of the eigenvectors as:

$$x = \sum_{i=1}^{n} c_i q_i$$

for some scalars c_i , and compute the quadratic form

$$x^* A x = \left(\sum_{i=1}^n c_i^* q_i^*\right) A \left(\sum_{j=1}^n c_j q_j\right)$$

Expanding the expression using the orthonormality of the eigenvectors

$$x^*Ax = \sum_{i=1}^n \lambda_i |c_i|^2$$

Since we are given that all eigenvalues $\lambda_i \geq 0$, and the squared magnitudes $|c_i|^2$ are nonnegative, it follows that:

$$x^*Ax > 0 \quad \forall x \neq 0$$

Thus, A is positive semidefinite.

Necessary and Sufficient Conditions

 $\mathbb{R}^n \to \mathbb{R}$ is nonlinear and differentiable. A point x^* is called a **stationary point** of f if $\nabla f(x^*) = 0$. Necessary condition: Confine our search for global minimizers within the set of stationary points If x^* is a local minimizer of f, then

- 1. x^* is a stationary point, i.e., $\nabla f(x^*) = 0$ 2. The Hessian $H_f(x^*)$ is positive semidefinite

Sufficient condition: Verify that a point is indeed a local minimizer If the following conditions hold, then x^* is a local minimizer of f. 1. x^* is a stationary point, i.e., $\nabla f(x^*) = 0$ 2. The Hessian $H_f(x^*)$ is positive definite,

- Convex set A set $D \in \mathbb{R}^n$ is said to be a convex set if for any two points x and y in D, the line segment joining x and u also lies in D. That is.

$$x, y \in D \Rightarrow \lambda x + (1 - \lambda)y \in D \quad \forall \lambda \in [0, 1].$$

Strictly convex function

Let $D \subseteq \mathbb{R}^n$ be a convex set. Consider a function $f: D \to \mathbb{R}$.

- 1. The function f is said to be **convex** if $f(\lambda x + (1 \lambda)y) \le \lambda f(x) + (1 \lambda)f(y)$, $\forall x, y \in D$, $\lambda \in [0, 1]$. 2. The function f is said to be **strictly convex** if $f(\lambda x + (1 \lambda)y) < \lambda f(x) + (1 \lambda)f(y)$, for all distinct $x, y \in D$, $\lambda \in (0, 1).$

For a convex f It holds that

- 1. any local minimizer is a global minimizer.
- 2. if f is strictly convex, then the global minimizer is unique

Test for convexity of a differentiable function

- Suppose that f has continuous second partial derivatives on an open convex set D in \mathbb{R}^n
 - 1. The function f is convex on D iff the Hessian matrix $H_f(x)$ is positive semidefinite at each $x \in D$.
 - 2. If $H_f(x)$ is positive definite at each $x \in D$, then f is strictly convex on D.
 - 3. If $H_f(\hat{x})$ is indefinite at some point $\hat{x} \in D$, then f is not a convex nor a concave function on D.

Eigenvalue Decomposition: The eigenvalue decomposition of $A \in \mathbb{S}^n$ is given by:

$$A = Q\Lambda Q^T = \begin{bmatrix} Q_{\cdot 1} & \cdots & Q_{\cdot n} \end{bmatrix}^{\lambda_1} \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix} \begin{bmatrix} Q_{\cdot 1} & \cdots & Q_{\cdot n} \end{bmatrix}^T$$

where Q is an orthogonal matrix whose **columns** are eigenvectors of A, Λ is a diagonal matrix with eigenvalues of A or

Change of bases using eigenvectors Denote the ith column of orthogonal matrix Q as q_i . Change the bases to $\{q_1, q_2\}$

• For any vector x, $x = Q(Q^T x)$, so its representation becomes

$$\tilde{x} = Q^T x = \begin{bmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{bmatrix}$$

• Since $y = Ax = Q\Sigma Q^T x$, the representation of y is

$$\tilde{y} = \Sigma \tilde{x} = \begin{bmatrix} \lambda_1 \tilde{x}_1 \\ \lambda_2 \tilde{x}_2 \end{bmatrix}$$

Hence, the linear transformation results in a scaling of λ along the eigenvector associated with λ .

Statistical Properties Let $x_1,\ldots,x_n\in\mathbb{R}^p$ be n observations of a random variable x.

• Mean vector: $\mu=\bar{x}=\frac{1}{n}\sum_{i=1}^nx_i\in\mathbb{R}^p$

- (Sample/Empirical) Covariance matrix: $\Sigma = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \mu)(x_i \mu)^T \in \mathbb{R}^{p \times p}$ (Covariance matrices are symmetric and positive semidefinite)
- Standard deviation (for p=1): $\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i \mu)^2}$

PCA

- PCA is often used to reduce the dimensionality of large data sets while preserving as much information as
- possible.PCA allows us to identify the principal directions in which the data varies.

Let $x_1, \ldots, x_n \in \mathbb{R}^p$ be n observations of a random variable x and

$$X = \begin{bmatrix} x_1^T \\ \vdots \\ x_n^T \end{bmatrix}.$$

The mean vectors of x_i and $Q^T x_i$ (for i = 1, ..., n) are, respectively,

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} Q^T x_i = Q^T \mu.$$

Consequently, the associated covariance matrices are, respectively.

$$\Sigma = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)(x_i - \mu)^T,$$

$$\hat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} (Q^T x_i - Q^T \mu) (Q^T x_i - Q^T \mu)^T = Q^T \Sigma Q.$$

Optimization problem of PCA

$$\max_{Q \in \mathbb{R}^{p \times k}, \ Q^T Q = I} \operatorname{trace}(Q^T \Sigma Q).$$

Let the eigenvalue decomposition of Σ be

$$\Sigma = \begin{bmatrix} q_1 & \cdots & q_p \end{bmatrix} \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_p \end{bmatrix} \begin{bmatrix} q_1 & \cdots & q_p \end{bmatrix}^T,$$

where

$$\lambda_1 \geq \cdots \geq \lambda_p \geq 0$$

Then

$$Q = [q_1 \quad \cdots \quad q_k]$$
.

Standard PCA workflow

- 1. Make sure the data X are rows = observations and columns = variables.
- Standardize the columns of X.
- $3. \ \ \mathrm{Run} \ [Q, X_{\mbox{new}}, d, \mbox{tsquared}, \mbox{explained}] = \mathrm{pca}(X).$
- 4. Using the variance in "explained", choose k (usually 1, 2, or 3) components for visual analysis.
 - For example, if d = (1.9087, 0.0913), explained= (95.4, 4.6), one may choose k = 1 as the first principal component carries 95.4% of the information.
 - For example, if d = (2.9108, 0.9212, 0.1474, 0.0206), explained = (72.8, 23.0, 3.7, 0.5), one may choose k=2 as the first two principal components carry 95.8% of the information.
- 5. Plot $X_{\text{new}}(:, 1), \ldots, X_{\text{new}}(:, k)$ on a k-dimensional plot.

Lecture 2

Gradient Descent Method Given $x_0 \in \mathbb{R}^n$, for $k = 0, 1, 2, \ldots$ do:

$$\begin{split} r_k &= Ax_k - b, \\ \alpha_k &= \frac{(r_k, r_k)}{(Ar_k, r_k)}, \\ k+1 &= x_k - \alpha_k r_k. \end{split}$$

Gradient Descent Method Example: Ax = b where A is Symmetric Positive Definite

$$f(x) = \|x - x_{\star}\|_{A}^{2} = (A(x - x_{\star}), (x - x_{\star})) = (x - x_{\star})^{T} A(x - x_{\star}),$$

where x_{\star} is the solution of

$$Ax = b$$
.

It is obvious that

$$f(x) = 0$$
 if and only if $x = x_{\star}$.

Denote

$$x = x_0 + \delta_0$$

Then.

$$\begin{split} f(x) &= f(x_0) + (A\delta_0, \delta_0) + 2\delta_0^T (Ax_0 - b) \\ &= f(x_0) + \delta_0^T A\delta_0 + 2\delta_0^T r_0, \end{split}$$

$$r_0 = Ax_0 - b.$$

It is clear that

$$f(x) \le f(x_0)$$

only if

$$\delta_0^T r_0 \le 0,$$

in particular,

$$-r_0 = b = Ar_0$$

is the negative of the gradient direction $-\nabla f$ at the point x_0 . The negative of the gradient direction is locally the direction that yields the fastest rate of decrease for f. Hence, we can

$$\delta_0 = -\alpha_0 r_0$$

so that

$$\begin{split} f(x) &= f(x_0) + \alpha_0^2 (Ar_0, r_0) - 2\alpha_0 r_0^T r_0 \\ &= f(x_0) + \alpha_0^2 r_0^T Ar_0 - 2\alpha_0 r_0^T r_0 \leq f(x_0), \end{split}$$

provided

$$\alpha_0 \geq 0$$
.

It is obvious, we have

$$f(x) \le f(x_0), \quad \forall 0 \le \alpha \le \frac{2(r_0, r_0)}{(Ar_0, r_0)}.$$

The optimal α shall satisfy

$$f(x) = \min_{\alpha_0 \in \mathbb{R}} f(x_0) + \alpha_0^2 (Ar_0, r_0) - 2\alpha_0 r_0^T r_0,$$

$$\alpha_0 = \frac{(r_0, r_0)}{(Ar_0, r_0)} \ge 0.$$

Therefore, we conclude

If
$$x = x_0 - \alpha_0 r_0$$
, then $f(x) \le f(x_0)$.

Kantorovich Inequality Let B be any Symmetric Positive Definite real matrix and λ_{\max} and λ_{\min} its largest and

$$\frac{(Bx,x)(B^{-1}x,x)}{(x,x)^2} \leq \frac{(\lambda_{\max} + \lambda_{\min})^2}{4\lambda_{\max}\lambda_{\min}}, \quad \forall x \neq 0.$$

Kantorovich Inequality Proof

Clearly, it is equivalent to show that the result is true for any unit vector x. Since B is symmetric, we have

$$B = Q^T DQ,$$

where Q is orthogonal and

$$D = \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix},$$

$$\lambda_{\max} = \lambda_1 \ge \cdots \ge \lambda_n = \lambda_{\min} > 0.$$

We have

$$(Bx, x)(B^{-1}x, x) = (DQx, Qx)(D^{-1}Qx, Qx).$$

Setting

$$y = Qx = \begin{bmatrix} y_1 & \cdots & y_n \end{bmatrix}^T, \quad \beta_i = y_i^2$$

Note that $\sum_{i=1}^{n} \beta_i = 1$, and

$$\lambda = (Dy, y) = \sum_{i=1}^{n} \beta_i \lambda_i$$

is a convex combination of the eigenvalues $\lambda_i,\ i=1,\cdots,n$, and furthermore, the following relation holds,

$$(Bx, x)(B^{-1}x, x) = \lambda \psi(y),$$

with

$$\psi(y) = (D^{-1}y, y) = \sum_{i=1}^{n} \beta_i \frac{1}{\lambda_i}.$$

Noting that

$$\psi(y) \leq \frac{1}{\lambda_1} + \frac{1}{\lambda_n} - \frac{\lambda}{\lambda_1 \lambda_n}, \quad \text{(since } \sum_{i=1}^n \beta_i = 1, \text{proved later)}$$

therefore,

$$(Bx, x)(B^{-1}x, x) = \lambda \psi(y) \le \lambda \left(\frac{1}{\lambda_1} + \frac{1}{\lambda_n} - \frac{\lambda}{\lambda_1 \lambda_n}\right)$$

The maximum of the right-hand side is reached for

$$\lambda = \frac{\lambda_1 + \lambda_n}{2}$$

yielding

$$(Bx, x)(B^{-1}x, x) = \lambda \psi(y) \le \lambda \left(\frac{1}{\lambda_1} + \frac{1}{\lambda_n} - \frac{\lambda}{\lambda_1 \lambda_n}\right)$$
$$\le \frac{\lambda_1 + \lambda_n}{4} \left(\frac{1}{\lambda_1} + \frac{1}{\lambda_n}\right)$$

Proof for $\psi(y) \leq \frac{1}{\lambda_1} + \frac{1}{\lambda_n} - \frac{\lambda}{\lambda_1 \lambda_n}$

$$0 < \lambda_n \le \cdots \le \lambda_i \le \cdots \le \lambda_1, \quad i = 1, \dots, n,$$

we have for any $i = 1, \ldots, n$ that

$$\lambda_1 \ge \lambda_i > 0, \quad \lambda_i - \lambda_n \ge 0, \quad i = 1, \dots, n,$$

which gives

$$\lambda_1(\lambda_i - \lambda_n) \ge \lambda_i(\lambda_1 - \lambda_n),$$

i.e.,

$$\lambda_1 \lambda_n \leq \lambda_i (\lambda_1 + \lambda_n - \lambda_i),$$

and

$$\frac{1}{\lambda_i} \leq \frac{\lambda_1 + \lambda_n - \lambda_i}{\lambda_1 \lambda_n}.$$

Note that

$$\beta_i \ge 0, \quad \sum_{i=1}^n \beta_i = 1,$$

we get

$$\beta_i \frac{1}{\lambda_i} \le \beta_i \frac{\lambda_1 + \lambda_n - \lambda_i}{\lambda_1 \lambda_n},$$

and so.

$$\sum_{i=1}^{n} \beta_i \frac{1}{\lambda_i} \le \sum_{i=1}^{n} \beta_i \frac{\lambda_1 + \lambda_n - \lambda_i}{\lambda_1 \lambda_n}$$
$$= \frac{1}{\lambda_1} + \frac{1}{\lambda_n} - \frac{\sum_{i=1}^{n} \beta_i \lambda_i}{\lambda_1 \lambda_n}.$$

This lemma helps to establish the following result regarding the convergence rate of the method. **Theorem** Let A be a Symmetric Positive Definite matrix. Then, the A-norms of the error vectors

$$d_{L} = x_{\star} - x_{L} = -A^{-1}r_{L}$$

generated by the Gradient Descent Algorithm satisfy the relation

$$\|d_{k+1}\|_A \leq \frac{\lambda_{\max} - \lambda_{\min}}{\lambda_{\max} + \lambda_{\min}} \|d_k\|_A,$$

and so,

$$\lim_{k\to\infty} \|d_k\|_A = 0,$$

which gives

$$\lim_{k \to \infty} d_k = 0,$$

i.e., the algorithm converges for any initial guess x_0

Proof First, we have

$$\|d_k\|_A^2 = (Ad_k, d_k) = (-r_k, d_k) = (r_k, A^{-1}r_k).$$

Then we have

$$\|d_{k+1}\|_A^2 = (Ad_{k+1}, d_{k+1}) = (-r_{k+1}, d_{k+1})$$

and by simple substitution

$$\begin{split} d_{k+1} &= d_k + \alpha_k r_k, \\ \|d_{k+1}\|_A^2 &= (-r_{k+1}, d_k + \alpha_k r_k), \\ &= (-r_{k+1}, d_k) - \alpha(r_{k+1}, r_k), \\ &= (-r_{k+1}, d_k), \end{split}$$

$$(r_{k+1}, r_k) = 0.$$

Thus.

$$\begin{split} \|d_{k+1}\|_A^2 &= (-r_{k+1}, d_k), \\ &= (-r_k + \alpha_k A r_k, d_k), \\ &= (-r_k, d_k) + \alpha_k (A r_k, d_k), \\ &= (r_k, A^{-1} r_k) - \alpha_k (A r_k, A^{-1} r_k), \\ &= (r_k, A^{-1} r_k) - \frac{(r_k, r_k)^2}{(A r_k, r_k)}, \\ &= \|d_k\|_A^2 \left(1 - \frac{(r_k, r_k)}{(A r_k, r_k)} \times \frac{(r_k, r_k)}{(r_k, A^{-1} r_k)}\right). \end{split}$$

The result follows by applying the Kantorovich inequality

Unconstrained problem

To minimize a differentiable function f

$$\min_{x \in \mathbb{R}^n} f(x)$$

Recall that a global minimizer is a local minimizer, and a local minimizer is a stationary point.

• We may try to find stationary points x, i.e., $\nabla f(x) = 0$ for solving an unconstrained problem.

• When it is difficult to solve $\nabla f(x) = 0$, we look for an approximate solution via iterative methods.

A general algorithmic framework

Choose $x^{(0)}$ and repeat

$$x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)}, \quad k = 0, 1, 2, \dots$$

until some stopping criteria is satisfied.

- x⁽⁰⁾ initial guess of the solution.
 α_k > 0 is called the step length/step size/learning rate.
- p(k) is a search direction.

Descent Direction
The search direction $p^{(k)}$ should be a descent direction at $x^{(k)}$

• We say $p^{(k)}$ is a descent direction at $x^{(k)}$ if

$$\nabla f(x^{(k)})^T p^{(k)} < 0$$

• The function value f can be reduced along this descent direction with "appropriate" step length

$$\exists \delta > 0$$
 such that $f(x^{(k)} + \alpha_k p^{(k)}) < f(x^{(k)}) \quad \forall \alpha_k \in (0, \delta)$