A Closer Look at the Glucose Transporter

- integral membrane proteins have a directionality and do not flip-flop
- ⇒ they cannot work as an ionophore (mobile carrier)!
 - > the erythrocyte glucose transporter:
 - ♣ 55 kD glycoprotein; 492 aa
 - four major domains:
 - (1) 12 membrane-spanning α -helices;
 - (2) large highly charged cytoplasmatic domain (between helices 6 & 7)
 - (3) smaller, carbohydrate bearing external domain (between helices 1 & 2)
 - (4) cytoplasmatic C-terminal domain
 - accounts for 2% of erythrocyte membrane proteins
 - > must be asymmetric:
 - galactose oxidase oxidizes oligosaccharide chain only on the outside;
 - * trypsin disrupts transport only from the inside of an erythrocyte ghost

Glucose Transporter: A Passive Gated Pore

> transport is passive:

How?

- (1) glucose is bound on the outside,
- (2) a conformational change occurs,
- (3) glucose is released on the inside
 - > transporter "only" equilibrates glucose concentration, but inside the cell glucose is rapidly consumed!

> But 15 min after insulin administration, $J_{max}(glucose)$ increases by 6- to 12-fold, while K_M stays constant

> 20 min to 2 h after insulin withdrawal, glucose uptake returns to normal

Exocytosis

Endocytosis

Endocytosis

Endocytosis

Membranous

vesicle

Plasma

membrane

Selectivity of K⁺ Channels and Aquaporines

ATP-Driven Active Transport

Categories of mediated transport:

Electroneutral: Simultaneous charge neutralization (symport of opposite charges or antiport of like charges)

Electrogenic: Transport results in charge separation across membrane

Active transport against a gradient is endergonic ⇒ often coupled to ATP hydrolysis

- **Examples:**
- ♣ P-type ATPases; in plasma membrane, directly phosphorylated by ATP; inhibited by vanadate (VO₄³⁻) as P_i analog
- **♣ F-type ATPases**; in mitochondrial membrane; important for oxidative phosphorylation
- **♣ V-type ATPases**; in plant vacuolar membranes; analogous to F-type ATPases

Nils Walter: Chem 451

The (Na⁺-K⁺)-ATPase of Plasma Membranes

binding sites

- > The facts:
- $(\alpha\beta)_2$ subunit composition
- \clubsuit α subunit: 110 kD, non-glycosylated; contains ATPase activity and ion-binding sites; 8 transmembrane α -helices
- * β subunit: 55 kD, glycosylated; 1 transmembrane α-helix
- electrogenic antiport
- ♣ also called (Na⁺-K⁺) "pump"
- * sequential kinetic mechanism accounts for coupling of active transport with ATP hydrolysis

03/14/22

Homoserine

2 Conformational **ATP** Mg^{2+} states: E4 • ATP • 3Na+ 1. ATP binding 2. formation of $3Na^{+}(in)$ "high-energy" aspartyl phosphate intermediate $2K^+(in) \leftarrow$ Inside 6. K+ transport and 3. Na* transport Nat binding Relaxation Outside → 3Na⁺(out) 5. phosphate 4. K+ binding hydrolysis H_2O 2K (out)

Chapter 20: What have we learned about transport?

- > Thermodynamics, kinetics, nomenclature (symport, antiport...)
- > Carrier and Channel-Forming Ionophores as models

	Non-mediated	Mediated	
		<u>Passive</u>	<u>Active</u>
Carrier	No	Yes	Yes
Transport direction	[High]→[Low]	[High]→[Low]	[Low]→[High]
Energy used?	No	No	Yes
Examples	O_2 , H_2O	Glucose	(Na ⁺ -K ⁺)-ATPase, Ca ²⁺ -ATPase, Translocation systems

Glycolysis Glucose Glucose-6-phosphate 2Glyceraldehyde-3-phosphate glyceraldehyde-- 2NAD+ 3-phosphate dehydrogenase 2NADH 2 1,3-Bisphosphoglycerate 2Pyruvate 2NAD+ pyruvate dehydrogenase 2NADH 2Acetyl-CoA 2NADH 20xaloacetate 2NAD+ 2Citrate 2Malate dehydrogenase 2lsocitrate Citric acid 2Fumarate cycle isocitrate 2NAD+ 2FADH₂ succinate dehydrogenase dehydrogenase 2NADH 2FAD 2Succinate α-ketoglutarate 2α-Ketoglutarate dehydrogenase 2Succinvl-CoA 2NAD+

Electron Transport and Oxidative Phosphorylation

Voet & Voet, Chapter 22

- ⇒ Complete glucose oxidation: $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O;$ $\Delta G^{0'} = -2,823 \text{ kJ/mol}$
 - > Oxidation = loss of electrons:

Two half-reactions:
$$C_6H_{12}O_6 + 6H_2O \rightarrow 6CO_2 + 24H^+ + 24e^-$$

 $6O_2 + 24H^+ + 24e^- \rightarrow 12H_2O$

➤ How can the energy of these electrons be transferred to ATP?

24 e⁻ are carried in 10 NADH and 2 FADH₂

Pass into electron-transport chain (participate in reduction-oxidation of >10 redox centers)

Reduce O₂ to H₂O, expel H⁺ from mitochondrion

H⁺ gradient drives ATP production

The Movie of Electron Transport and Oxidative Phosphorylation

Where it All Happens: The Mitochondrion

Outer membrane:
Outer face $(2806 \text{ particles} \bullet \mu\text{m}^{-2})$ Inner face $(770 \text{ particles} \bullet \mu\text{m}^{-2})$ Outer face $(2120 \text{ particles} \bullet \mu\text{m}^{-2})$ Inner face $(4208 \text{ particles} \bullet \mu\text{m}^{-2})$

The mitochondrion contains:

- > Pyruvate dehydrogenase
- > Citric acid cycle enzymes
- **Enzymes that catalyze fatty acid oxidation**
- Enzymes and redox proteins for electron transport and oxidative phosphorylation

⇒ The cellular "power plant"