OPIS TECHNICZNY

Cel opracowania:

Celem jest zaprojektowanie jazu stałego na rzece Kamienna na kilometrze 3+400,000.

Zakres opracowania. W zakres opracowania wchodzą:

- a) Obliczenia wydatku rzeki na podstawie przekroju poprzecznego
- b) Obliczenie światła jazu
- c) Obliczenie parametrów niecki wypadowej
- d) Określenie wymaganej długości ścianek szczelnych
- e) Sprawdzenie stateczności płyty na wypłynięcie
- f) Sprawdzenie stateczności budowli na przesunięcie
- g) Określenie parametrów ujęcia brzegowego wody
- h) Rysunki zaprojektowanego jazu stałego

Założenia projektowe:

- a) Spadek podłużny zwierciadła wody: I= 0,85‰
- b) Grunty podłoża: piaski średnie
- c) Dopuszczalna wysokość napiętrzenia przy przepływie obliczeniowym: z= 0,80m
- d) Rzędna warstwy nieprzepuszczalnej: 4,8 m p.p.t.

Dane techniczne:

Konstrukcja monolityczna żelbetowa

Wysokość piętrzenia: z= 0,8m

Światło jazu: $b_i = 49,44m$

Długość niecki wypadowej: L_w= 11m

Długość progu: L_{pr}= 4,76m

Wysokość progu: Pg= 2,45m

Głębokość niecki wypadowej: d= 0,5m

Długość ścianek szczelnych: $S_1 = 3.9$ m, $S_2 = 3.7$ m

Położenie obiektu:

Jaz na 3+400,000 kilometrze rzeki Kamiennej.

Cel budowy obiektu:

Przeznaczeniem jazu jest spiętrzenie wody dla potrzeb elektrowni wodnej.

Opis rozwiązań technicznych

Roboty budowlane polegać będą na:

- Wykonaniu wykopu szerokoprzestrzennego oraz przygotowaniu terenu pod budowę i zapewnienie dobrych warunków gruntowych pod posadowienie jazu
- Odpowiednim przygotowanie i zabezpieczenie nabrzeża
- Zapewnieniu odpowiedniej drogi filtracji poprzez zastosowanie ścianek szczelnych
- Budowie żelbetowego jazu stałego
- Budowie ujęcia wody do elektrowni wodnej

Obliczenia:

			I: n ₁ =0,035				II: n ₂ =0,04				III: n ₃ =0,05				suma
	Н	h	A ₁	U_1	V_1	Q_1	A ₂	U ₂	V ₂	Q ₂	A ₃	U ₃	V ₃	Q_3	Q
Lр	[m n.p.m.]	[m]	$[m^2]$	[m]	[m/s]	[m ³ /s]	$[m^2]$	[m]	[m/s]	[m ³ /s]	$[m^2]$	[m]	[m/s]	[m ³ /s]	[m3/s]
		0													0,000
1	37,65	0,5	7,320	22,407	0,395	2,892	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	2,892
2	38,15	1	20,998	32,425	0,624	13,092	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	13,092
3	38,65	1,5	39,240	39,701	0,827	32,433	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	32,433
4	39,15	2	59,988	43,519	1,032	61,891	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	61,891
5	39,65	2,5	82,109	45,689	1,231	101,100	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	101,100
6	40,15	3	105,119	47,387	1,417	148,937	0,000	0,000	0,000	0,000	0,366	3,622	0,127	0,046	148,984
7	40,65	3,5	128,617	48,327	1,600	205,753	0,000	0,000	0,000	0,000	4,380	12,626	0,288	1,261	207,014
8	41,15	4	152,487	49,184	1,771	270,072	0,000	0,000	0,000	0,000	13,293	23,473	0,399	5,306	275,378
9	41,65	4,5	176,703	50,037	1,932	341,340	0,000	0,000	0,000	0,000	27,352	29,994	0,548	14,998	356,338
10	42,45	5,3	216,091	51,083	2,179	470,816	2,463	10,957	0,269	0,664	52,013	32,053	0,805	41,881	513,361
11	43,335	6,185	259,626	51,083	2,462	639,299	26,779	44,023	0,523	14,013	81,103	34,328	1,034	83,888	737,200

Dane:

$$Q_m = 356,338 \frac{m^3}{s}$$

$$h_{m} = 4.5 \text{ m}$$

$$Q_{\text{śr}} = 32,433$$

$$h_{\text{sr}} = 1.5 \text{ m}$$

B_r = 49 m szerokość głównego koryta rzeki

$$A_{WMsp.} = 270,567 \text{ m}^2$$

Obliczenia:

$$P_g = 2.9 \text{ m}$$

$$h_z = h_m - P_g = 4.5 - 2.9 = 1.6 \text{ m}$$

$$h = h_z + z = 1.6 + 0.8 = 2.4 \text{ m}$$

$$v_0 = \frac{Q_m}{A_{WMSn}} = \frac{356,338}{270,567} = 1,317 \frac{m}{s}$$

$$h_0 = h + \frac{v_0^2}{2g} = 2.4 + \frac{1.317^2}{2*9.81} = 2.49 m$$

$$\frac{h_0}{Pg} = \frac{2,49}{2,9} = 0,859$$

m =
$$f(\frac{h_0}{Pg}) = 0,484$$
 (z tabeli)

$$\varepsilon = 0.95$$
 (zakładam)

$$\sigma_k = 0.95 \text{ (zakładam)}$$

$$\frac{h_z}{h_0} = \frac{1.6}{2.49} = 0.643$$

$$\sigma_z = f(\frac{h_z}{h_0}) = 0,948$$
 (z tabeli)

$$b_{j} = \frac{Q_{m}}{m\sqrt{2g} * \varepsilon * \sigma_{z}\sigma_{k}*h^{\frac{3}{2}}} = \frac{356,338}{0,484\sqrt{2*9,81} * 0,95*0,948*0,95*2,49^{\frac{3}{2}}} = 49,44 \text{ m}$$

$$b_i \approx B_r$$

 ζ_p = 1,0 dla ściany prostokątnej

$$\varepsilon = 1 - 0.2 * \zeta_p * \frac{h_0}{b_j} = 1 - 0.2 * 1.0 * \frac{2.49}{49.44} = 0.99$$

$$Q_p = Q(P_g) = 140 \frac{m^3}{s} z$$
 wykresu

$$h_{0p} = \left(\frac{Q_p}{mb_j\sqrt{2g}*\ \varepsilon*\ \sigma_z\sigma_k}\right)^{\frac{2}{3}} = \left(\frac{140}{0,484*49,44*\sqrt{2*9,81}*0,99*0,95*1}\right)^{\frac{2}{3}} = 1,25\ m$$

Współrzędne profilu Creagera:

Х	Υ
0,00	0,158
0,13	0,045
0,25	0,009
0,38	0,000
0,50	0,008
0,63	0,034
0,75	0,075
0,88	0,125
1,00	0,183
1,13	0,248
1,25	0,320
1,38	0,401
1,50	0,493
1,63	0,594
1,75	0,705

Χ	Υ
1,88	0,826
2,00	0,956
2,13	1,091
2,25	1,234
2,38	1,385
2,50	1,544
2,63	1,711
2,75	1,885
2,88	2,066
3,00	2,255
3,13	2,450
3,25	2,653
3,38	2,849
3,50	3,078
3,63	3,300

$$\alpha_1 = 41^{\circ}$$

$$\alpha_2 = 50^{\circ}$$

$$\frac{AB}{Pg} = \frac{2,74}{2,9} = 0,945$$

$$\sigma_k = 0.975 \text{ (z tabeli)}$$

$$Q = b_j m \sqrt{2g} * \varepsilon * \sigma_z \sigma_k * h^{\frac{3}{2}} =$$

=
$$49,44 * 0,484 * \sqrt{2 * 9,81} * 0,99 * 0,948 * 0,975 * 2,4 $\frac{3}{2}$ = 360,61 $\frac{m^3}{s}$$$

$$360,61 \frac{m^3}{s} > 356,338 \frac{m^3}{s}$$

$$Q > Q_m$$

$$q = \frac{Qm}{b_i} = \frac{356,338}{49,44} = 7,21 \frac{m^2}{s} < 30 \frac{m^2}{s}$$

bj	σ_k	Pg	ζp	Q(P _q)								
49,44	0,975	2,9	1	140								
[m]		[m]		[m ³ /s]								
h	A(Pg+h)	V 0	h_0	m	ε	Q_1	V 0	h ₀	m	ε	Q ₂	Q ₂ -Q ₁ /
[m]	$[m^2]$	$[m/s^2]$	[m]			[m ³ /s]	$[m/s^2]$	[m]			[m ³ /s]	Q_2
0,05	102,978	0	0,050	0,494	1,000	1,179	0,011	0,050	0,494	1,000	1,179	0,00
0,15	108,024	0,011	0,150	0,493	0,999	6,112	0,057	0,150	0,493	0,999	6,122	0,00
0,25	113,212	0,057	0,250	0,493	0,999	13,158	0,116	0,251	0,493	0,999	13,199	0,00
0,35	118,638	0,116	0,351	0,492	0,999	21,785	0,184	0,352	0,492	0,999	21,881	0,00
0,45	124,226	0,184	0,452	0,492	0,998	31,836	0,256	0,453	0,492	0,998	32,007	0,01
0,55	130,024	0,256	0,553	0,491	0,998	43,056	0,331	0,556	0,491	0,998	43,318	0,01
0,65	136,035	0,331	0,656	0,491	0,997	55,501	0,408	0,658	0,491	0,997	55,869	0,01
0,75	142,245	0,408	0,758	0,49	0,997	68,899	0,484	0,762	0,49	0,997	69,372	0,01
0,85	148,684	0,484	0,862	0,49	0,997	83,431	0,561	0,866	0,49	0,996	84,027	0,01
0,95	155,343	0,561	0,966	0,49	0,996	98,951	0,637	0,971	0,49	0,996	99,663	0,01
1,05	162,24	0,637	1,071	0,489	0,996	115,172	0,710	1,076	0,489	0,996	115,978	0,01
1,15	169,401	0,71	1,176	0,489	0,995	132,468	0,782	1,181	0,489	0,995	133,392	0,01
1,25	176,807	0,782	1,281	0,489	0,995	150,624	0,852	1,287	0,489	0,995	151,648	0,01

Przykładowe obliczenia

$$P_g = 2.9 \text{ m}$$

$$b_j = 49,44 \text{ m}$$

$$\sigma_k = 0.975$$

$$v_0 = 0$$

$$h_0 = h = 0.05 \text{ m}$$

$$\frac{h_0}{Pg} = \frac{0.05}{2.9} = 0.017$$

$$m = f(\frac{h_0}{P_q}) = 0,494$$
 (z tabeli)

 ζ_p = 1,0 dla ściany prostokątnej

$$\varepsilon = 1 - 0.2 * \zeta_p * \frac{h_0}{b_j} = 1 - 0.2 * 1.0 * \frac{0.05}{49.44} = 1$$

$$\mathsf{Q}^{(1)} = b_j * m * \sqrt{2g} * h_0^{\frac{3}{2}} * \varepsilon * \sigma_k \sigma_z =$$

=
$$49,44 * 0,494 * \sqrt{2 * 9,81} * 0,05^{\frac{3}{2}} * 1 * 0,975 * 1 = 1,179 \frac{m^3}{s}$$

$$A(h+P_g)=102,978 \text{ m}^2$$

$$v_0 = \frac{Q^{(1)}}{A(h+Pg)} = \frac{1,179}{102,978} = 0,011\frac{m}{s}$$

$$h_0 = h + \frac{v_0^2}{2g} = 0.05 + \frac{0.011^2}{2*9.81} = 0.05 m$$

$$\frac{h_0}{Pg} = \frac{0.05}{2.9} = 0.017$$

$$m = f(\frac{h_0}{Pg}) = 0,494$$
 (z tabeli)

$$\varepsilon = 1 - 0.2 * \zeta_p * \frac{h_0}{h_j} = 1 - 0.2 * 1.0 * \frac{0.05}{49.44} = 1$$

$$Q^{(2)} = b_j * m * \sqrt{2g} * h_0^{\frac{3}{2}} * \varepsilon * \sigma_k \sigma_z =$$

=
$$49,44 * 0,494 * \sqrt{2 * 9,81} * 0,05^{\frac{3}{2}} * 1 * 0,975 * 1 = 1,179 \frac{m^3}{s}$$

$$|\frac{Q^{(2)} - Q^{(1)}}{Q^{(2)}}| = |\frac{1,179 - 1,179}{1,179}| = 0 < 0.03$$

α	β	d					
1,1	1,05	0,5 [m]					
h [m]	h _d [m]	E ₁ [m]	q [m²/s]	h ₁ [m]	h ₂ [m]	η	L _w [m]
0,05	0,1	3,450	0,024	0,011	0,104	5,76	0,56
0,15	0,5	3,550	0,124	0,015	0,460	2,17	2,67
0,25	0,8	3,651	0,267	0,030	0,699	1,86	4,02
0,35	1,2	3,752	0,443	0,055	0,846	2,01	4,74
0,45	1,5	3,853	0,647	0,080	1,019	1,96	5,63
0,55	1,65	3,956	0,876	0,106	1,196	1,80	6,54
0,65	1,8	4,058	1,130	0,135	1,357	1,69	7,34
0,75	2,1	4,162	1,403	0,166	1,512	1,72	8,08
0,85	2,4	4,266	1,700	0,199	1,665	1,74	8,79
0,95	2,5	4,371	2,016	0,234	1,813	1,66	9,47
1,05	2,7	4,476	2,346	0,271	1,955	1,64	10,11
1,15	2,8	4,581	2,698	0,309	2,097	1,57	10,73
1,25	3	4,687	3,067	0,348	2,236	1,57	11,33

L_w= 11 m

d= 0,5 m

Przykładowe obliczenia

P_g= 2,9 m

α= 1,1 przyjęto

β= 1,05 przyjęto

 $b_j = 49,44 \text{ m}$

h= 0,95 m

 $h_d = 2,5 \text{ m}$

$$h_0 = 0.971 \text{ m}$$

$$d = 0.5 m$$

Q= 99,663
$$\frac{m^3}{s}$$

$$E_1 = d + P_g + h_0 = 0.5 + 2.9 + 0.971 = 4.371 m$$

$$q = \frac{Q}{B_i} = \frac{99,663}{49,44} = 2,016 \frac{m^2}{s}$$

$$h_1^3 - E_1 * h_1^2 + \frac{\alpha * q^2}{2a} = 0$$

$$h_1^3 - 4{,}371 * h_1^2 + \frac{1{,}1 * 2{,}016^2}{2 * 9.81} = 0$$

$$\frac{\beta * q^2}{q * h_1} + \frac{h_1^2}{2} = \frac{\beta * q^2}{q * h_2} + \frac{h_2^2}{2}$$

$$\frac{1,05 * 2,016^2}{9,81 * 0,234} + \frac{0,234^2}{2} = \frac{1,05 * 2,016^2}{9,81 * h_2} + \frac{h_2^2}{2}$$

$$\eta = \frac{h_d + d}{h_2} \ge 1,05$$

$$\eta = \frac{2,5+0,5}{1,813} = 1,66 \ge 1,05$$

$$L_w = 6 * (h_2 - h_1) = 6 * (1,813 - 0,234) = 9,47 m$$

Ścianki szczelne – metoda Lane'a

$$P_g = 2.9 \text{ m}$$

C_L = 6 dla piasków średnich

$$L_{pr} = 4,76 \text{ m}$$

$$L_{w} = 11 \text{ m}$$

t = 1 m zakładam

$$Q_{SR} = 32,433 \frac{m^3}{s}$$

$$Q_{SNW} = 0.18 * Q_{SR} = 0.18 * 32.433 = 5.838 \frac{m^3}{s}$$

$$h_d(Q_{SNW}) = h_d(5,838) = 0.6 \text{ m z wykresu}$$

$$h(Q_{SNW}) = h(5,838) = 0.15 \text{ m z wykresu}$$

$$H_p = P_g + h (Q_{SNW}) - h_d (Q_{SNW}) = 2.9 + 0.15 - 0.6 = 2.45 \text{ m}$$

$$L_{12} = H_p = 2,45 \text{ m przyjęto}$$

 $L_{01} = 1 \text{ m przyjęto}$

$$L_{45} = L_{pr} = 4,76 \text{ m}$$

$$L_{56} = L_w = 11 \text{ m}$$

 L_1 – pionowe, L_2 - poziome

$$L_2 = L_{12} + L_{45} + L_{56} = 2,45 + 4,76 + 11 = 18,21 \text{ m}$$

$$L_1 = C_L * H_p - \frac{1}{3} * L_2 = 6 * 2,45 - \frac{1}{3} * 18,21 = 8,63 m$$

$$L_1 = L_{23} + L_{34} + L_{67} + L_{78} = L_{23} + S_1 - 1,5 \text{ m} + L_{67} + S_2 = 8,63 \text{ m}$$

$$S_2 = L_{67} + 1.5 \text{ m} > L_{67} = S_2 - 1.5 \text{ m}$$

$$S_1 = L_{23} + 2.5 \text{ m} > L_{23} = S_1 - 2.5 \text{ m}$$

$$L_{23} + S_1 - 1.5 \text{ m} + L_{67} + S_2 = S_1 - 2.5 \text{ m} + S_1 + S_2 - 1.5 \text{ m} + S_2 = 8.63 \text{ m}$$

$$S_1 + S_2 = 6,32 \text{ m}$$

$$S_1: S_2 = 3:2$$

Przyjęto długość ścianek

$$S_1 = 3.9 \text{ m}$$

$$S_2 = 2,6 \text{ m}$$

Stateczność płyty na wypłynięcie

$$m * E_{stab} > \gamma_n * E_{dest}$$

$$m = 0.8 * 0.9 = 0.72$$

$$v_{M} = 1.05$$

$$\gamma_{\rm W} = 1000 * 9.81 = 9810 \left[\frac{kg}{m^2 * s^2} \right]$$

$$\gamma_b = 2400 * 9,81 = 23544 \left[\frac{kg}{m^2 * s^2} \right]$$

h_d = 0,6 m z poprzednich obliczeń

$$d = 0.5 m$$

H_p = 2,45 m z poprzednich obliczeń

 $h_{0s} = 1,01 \text{ m (odczyt z Autocada)}$

Zakładam t = 1 m

$$E_{stab} = t * \gamma_B + (h_d + d) * \gamma_W = 1 * 23544 + (0.6 + 0.5) * 9810 = 34.34 \text{ kPa}$$

$$E_{dest} = (t + d + h_d + h_{0s}) * \gamma_w = (1 + 0.5 + 0.6 + 0.88) * 9810 = 29.23 \text{ kPa}$$

$$\frac{E_{stab}}{E_{dest}} = \frac{\gamma_M}{m} = \frac{1,05}{0,72} = 1,46$$

$$\frac{E_{stab}}{E_{dest}} = \frac{34,34}{29,23} = 1,17 < 1,46$$
 zwiększam t = 1,7 m

$$E_{stab} = t * \gamma_B + (h_d + d) * \gamma_w = 1,7 * 23544 + (0,6 + 0,5) * 9810 = 51,82 \text{ kPa}$$

$$E_{dest} = (t + d + h_d + h_{0s}) * \gamma_w = (1.7 + 0.5 + 0.6 + 0.88) * 9810 = 35.1 \text{ kPa}$$

$$\frac{E_{stab}}{E_{dest}} = \frac{51,82}{35,1} \approx 1,47$$

Warunek spełniony

W przypadku remontu jazu zalecam dodatkowo obciążyć płytę.

Stateczność jazu na przesunięcie

$$\frac{(\sum G - W) * f + E_{bd}}{Pg + E_{cg} - P_d} = n \ge 1.5$$

$$\frac{(G_1 + G_2 + G_w - W) * f + E_{bd}}{Pg + E_{ca} - P_d} = n \ge 1.5$$

 $A_1 = 16,94 \text{ m}^2$ (wyznaczone z autocada)

 $A_2 = 19,08 \text{ m}^2$ (wyznaczone z autocada)

 $A_w = 12,91 \text{ m}^2$ (wyznaczone z autocada)

 $A_u = 49,11 \text{ m}^2$ (wyznaczone z autocada)

$$G_w = 1 * 12,91 * 9810 = 126,65 kN$$

f = 0.52 z normy

 $y'_{g} = 18,35 \text{ kN/m}^{3} \text{ z normy}$

 $kat \Phi = 35^{\circ} z normy$

$$Pg = \frac{1}{2} * (P_g + d + t) * (\gamma_w * (t+d+P_g+h) + \gamma_w * h) * 1 = \frac{1}{2} * (2,9+0,5+1,7) * (9810*(1,7+0,5+2,9+0,15)+9810*0,15)* 1= 135,08 kN$$

$$Pd = \frac{1}{2}*(h_d + t + d)*(\gamma_w*(t + d + h_d))*1 = \frac{1}{2}*(0.6 + 1.7 + 0.5)*(9810*(1.7 + 0.5 + 0.6))*1 = 38.46 kN$$

$$E_{cg} = \frac{1}{2}*(t+d)^2*\gamma'_g*tg^2(45-\varphi/2) = \frac{1}{2}*(1.7+0.5)^2*18.35*tg(27.5) = 12.03~kN$$

$$E_{bd} = \frac{1}{2} * (t+d)^2 * \gamma'_g * tg^2 (45 + \phi/2) = \frac{1}{2} * (1.7 + 0.5)^2 * 18.35 * tg(62.5) = 163.87 \text{ kN}$$

$$\frac{(G_1 + G_2 + G_w - W) * f + E_{bd}}{Pg + E_{cg} - P_d} = \frac{(398,84 + 449,22 + 126,65 - 481,77) * 0,52 + 163,87}{135,08 + 12,03 - 38,46}$$
$$= 3.87 > n = 1.5$$

Warunek spełniony

Ujęcie wody

$$Q_u = Q_{\acute{s}r} - Q_{nn}$$

$$Q_{nn} = 1,5*Q_{SNW}$$

$$Q_{sr} = 32,433 \text{ m}^3/\text{s}$$

$$Q_{SNW} = 5.838 \text{ m}^3/\text{s}$$

$$Q_u = 32,433 - 1,5*5,838 = 23,676 \text{ m}^3/\text{s}$$

Przyjmuję $Q_u = 10 \text{ m}^3/\text{s}$

$$\mathsf{F}_{\mathsf{kr}} = \frac{Q_u}{v_w * \eta_1 * \eta_2 * \eta_3}$$

 $v_w = 0.8 \text{ m/s przyjmuję}$

$$\eta_1 = 0.8$$

$$\eta_2 = \frac{b}{b+s} = \frac{100}{100+10} = 0.9091$$

Gdzie b i s to wymiary krat. Przyjmuję b=100mm, s=10mm

$$\eta_3 = 0.7$$

$$F_{kr} = \frac{10}{0.8*0.8*0.9091*0.7} = 24,55 \ m^2$$

$$H_{kr} = Pg + h - p_k$$

$$Pg = 2.9 \text{ m}$$

$$h = f(Q_j) = 0.45 \text{ m}$$

$$p_k = 0.5 \text{ m}$$

$$H_{kr} = 2,9+0,45-0,5=2,85 \text{ m}$$

$$B_{kr} = \frac{F_{kr}}{H_{kr}} = \frac{24,55}{2,85} = 8,61 m$$

Przyjmuję $B'_{kr} = 9 \text{ m}$

$$F'_{kr} = B'_{kr} * H_{kr} = 9 * 2,85 = 25,65 m^2$$

$$v_{w} = \frac{Q_{u}}{F'_{kr} * \eta_{1} * \eta_{2} * \eta_{3}} = \frac{10}{25,65 * 0,8 * 0,9091 * 0,7} = 0,77 \text{ m/s}$$

$$h_{\text{str,wl}} = \xi * \frac{v_w^2}{2g}$$

$$\xi = \beta_k * \sin \alpha_k (\frac{s}{b})^{\frac{4}{3}}$$

$$\beta_k = 2,43$$

$$\alpha_k = 65^{\circ} \text{ przyjmuję}$$

$$\xi = 2,43*\sin65(\frac{10}{100})^{\frac{4}{3}} = 0,102$$

$$h_{str,wl} = 0.102 * \frac{0.77^2}{2*9.81} = 0.0031 \text{ m}$$