

NAGW-821

1N-91-CR

The Rate of Volcanism on Venus

148509

12P.

by

Bruce Fegley, Jr. and Ronald G. Prinn

Department of Earth, Atmospheric, and Planetary Sciences
Massachusetts Institute of Technology
Cambridge, MA 02139 USA

Submitted to

Nature

12 July 1988

(NASA-CR-183039) THE RATE OF VOLCANISM ON
VENUS (Massachusetts Inst. of Tech.) 12 p
CSCL 03B

N88-26281

Unclass

G3/91 0148509

The maintenance of the global H_2SO_4 clouds on Venus requires volcanism to replenish the atmospheric SO_2 which is continually being removed from the atmosphere by reaction with calcium minerals on the surface of Venus.¹⁻⁴ The first laboratory measurements of the rate of one such reaction, between SO_2 and calcite ($CaCO_3$) to form anhydrite ($CaSO_4$), are reported here. If the rate of this reaction is representative of the SO_2 reaction rate at the Venus surface, then we estimate that all SO_2 in the Venus atmosphere (and thus the H_2SO_4 clouds) will be removed in 1.9 million years unless the lost SO_2 is replenished by volcanism. The required rate of volcanism ranges from about 0.4 to about 11 km³ of magma erupted per year, depending on the assumed sulfur content of the erupted material. If this material has the same composition as the Venus surface at the Venera 13, 14 and Vega 2 landing sites^{5,6} then the required rate of volcanism is about 1 km³ per year. This independent geochemically estimated rate can be used to determine if either (or neither) of the two discordant (2 km³ yr⁻¹ vs. 200-300 km³ yr⁻¹) geophysically estimated rates⁷⁻⁹ is correct. The geochemically estimated rate also suggests that Venus is less volcanically active than the Earth.

The experiments utilized calcite, which is a net sink for SO_2 by incorporating it into the Venus crust via the net reaction¹⁻⁴

Calcite is also predicted by several authors to be present on the Venus surface because it appears capable of buffering the CO_2 abundance on Venus via the Urey reaction ($CaCO_3 + SiO_2 = CaSiO_3 + CO_2$).¹⁰⁻¹³ These predictions concerning possible roles for calcite on Venus, the exemplary nature of reaction (1), and the availability of high purity $CaCO_3$ in several forms led us to study reaction (1) as a paradigm for SO_2 removal. However, as Figure 1 illustrates, SO_2 also reacts with other calcium minerals (e.g., diopside $CaMgSi_2O_6$), which are believed to be present on the surface of Venus.^{14,15} The kinetics for these alternative reactions are also being measured and will be reported later.

Reaction (1) was studied by heating clear calcite crystals (Iceland spar) of known impurity

content (\sim 350 ppm total impurities by inductively coupled plasma emission spectroscopy), weight, and surface area in SO_2 -bearing gas streams for varying time periods at three different temperatures. Experiments were done at temperatures of 600-850°C and ambient atmospheric pressures with analyzed $SO_2 - CO_2$ gas mixtures nominally containing 1% (by volume) SO_2 . Thus, the SO_2 molecular number density is about the same as at the surface of Venus where the atmospheric pressure is about 100 times larger but the SO_2 volume mixing ratio is about 100 times smaller.¹⁶ The mixtures also typically contained < 1 ppm O_2 and \leq 10 ppm H_2O as impurities. Standard techniques were used to monitor and control gas flow and temperature (to better than \pm 5°C). The rate of reaction (1) was determined by three independent methods: (a) measuring the weight gain at the end of reaction, (b) using scanning electron microscopy (SEM) to measure the porosity and thickness of the reacted surface layers from micrographs of external and fracture surfaces (e.g., Fig. 1), and (c) SO_4^{2-} analyses of reacted samples by ion chromatography. SEM examination of many samples (in combination with X-ray line scans and energy dispersive spectroscopy (EDS) on the SEM) showed that $CaSO_4$ layers covered all external surfaces of the reacted samples. X-ray powder patterns of samples and standards confirmed that the layers are anhydrite (in particular, there is no evidence for calcium sulfite) and that unreacted calcite is the only other phase present in the samples. The ion chromatography also verified the absence of anion impurities at levels \geq 10 ppm.

The experimental run conditions and rate data are summarized in Table 1 and Figure 2. Rate data using the weight gain, SEM and SO_4^{2-} analysis methods for the same sample agree within the combined experimental uncertainties (1σ) shown in Table 1. A weighted linear least squares fit to the data gave the equation for the rate $R = 10^{19.64(\pm 0.28)} \exp(-15,248 (\pm 2970)/T)$ molecules $cm^{-2} s^{-1}$. The corresponding activation energy is 126.8 ± 5.4 kJ/mole. The rate of reaction (1) was extrapolated downward to Venus surface temperatures (\sim 660-750 K) using this equation and the Pioneer Venus radar altimetry data¹⁷ and atmospheric (P, T) profile¹⁸ to take the altitude dependence of the rate into account. The derived global mean SO_2 reaction rate is $\sim 4.6 \times 10^{10}$ molecules $cm^{-2} s^{-1}$.

Chemical analyses of the Venus surface by the Venera 13, 14 and Vega 2 spacecraft^{5,6} give a CaO content (by mass) of 7.90% (weighted mean). Assuming the experimental rate is repre-

sentative of the SO_2 depletion rate via reaction with calcium minerals on the Venus surface, the observed SO_2 column density (2.2×10^{23} molecules cm^{-2})¹⁶ would be removed from the Venus atmosphere in $\sim 1.9 \times 10^6$ years in the absence of a comparable sulfur source. However, maintenance of the global H_2SO_4 clouds, which are formed by the UV sunlight powered conversion of SO_2 into H_2SO_4 cloud particles,¹⁹ requires a comparable sulfur source. This source must be endogenic because infalling cosmic material cannot supply enough sulfur. The calculated SO_2 removal rate on Venus is equivalent to $\sim 2.8 \times 10^{13}$ grams sulfur per year. However, the measured terrestrial flux of infalling material, which is roughly applicable to Venus because of similar sizes and masses, is only $\sim 7.8 \times 10^{10}$ grams per year,²⁰ or only $\sim 4.6 \times 10^9$ grams sulfur per year assuming the most sulfur-rich C1 chondrite composition.²¹

The most plausible endogenic source is volcanism, which has occurred on Venus in the past,²² and which may have led to increased SO_2 levels above the Venus cloud tops observed by the PV orbiter.^{23,24} The rate of volcanism required to balance SO_2 depletion via reactions with calcium minerals on the Venus surface depends on the sulfur content of the erupted material (gas and magma). If this material has an overall S/Si mass ratio of 0.03, the weighted mean of the Venera 13, 14, and Vega 2 surface analyses,^{5,6} the corresponding rate of volcanism is $\sim 1 \text{ km}^3 \text{ yr}^{-1}$. Figure 3 illustrates that this rate is about 20 times smaller than the terrestrial value. Two other plausible models for the S/Si ratio of the erupted material on Venus are also shown: (a) $S/Si \sim 0.1$, as in ordinary chondrites,²¹ giving a rate of $\sim 0.4 \text{ km}^3 \text{ yr}^{-1}$, and (b) $S/Si \sim 0.004$ as in the Earth's crust,²⁵ giving a rate of $\sim 11 \text{ km}^3 \text{ yr}^{-1}$. All rates will scale as ϵ^{-1} , where ϵ is the S degassing efficiency for erupted material ($0 < \epsilon \leq 1$). However ϵ is likely to be close to unity because S gases are expelled directly into the atmosphere and hot, reactive S-bearing magmas will rapidly lose S to the atmosphere. Our experiments on a possible magma S-bearing mineral pyrite FeS_2 being chemically weathered by CO_2 indicate complete S loss in hours at sub-magmatic temperatures ($\sim 980^\circ\text{C}$).

Figure 3 also illustrates that widely discordant volcanism rates have been estimated by two different geophysical methods: (a) rates of $\sim 200\text{-}300 \text{ km}^3 \text{ yr}^{-1}$ by scaling terrestrial heat production to Venus and transporting the outward heat flux solely by volcanism^{8,9} and (b) an upper limit of $2 \text{ km}^3 \text{ yr}^{-1}$ by analysis of impact crater areal densities on Venera 15, 16 radar images⁷.

The present geochemically derived volcanism rate is independent of these two methods and in principle can be used to test if either (or neither) is correct. In particular, the values computed by geophysical method (a) do not agree with our geochemical values. Finally, this work also suggests that on average Venus is less volcanically active than the Earth.

We thank W. Zamechek for chemical analyses, and L. Rigione, S. Rowell, and A. Petropoulos for assistance in the laboratory. This work was supported by the NASA Innovative Research Program. The MIT UROP program also partially supported S.R. and A.P.

1. Prinn, R.G. in *Recent Advances in Planetary Meteorology* (ed. G.E. Hunt) 1-15 (Cambridge University Press, London, 1985).
2. Prinn, R.G. *Sci. Amer.*, **252**, 46-53 (1985).
3. Prinn, R.G. in *The Photochemistry of Atmospheres* (ed. J. Levine) 281-336 (Academic Press, NY, 1985).
4. Fegley, B., Jr. *Lunar Planet. Sci.*, **XIX**, 315-316 (1988).
5. Surkov, Yu.A., Barsukov, V.L., Moskalyova, L.P., Kharyukova, V.P., and Kemurdzhian, A.L. *Proc. Lunar Planet. Sci. Conf. 14th. J. Geophys. Res.*, **89**, B393-B402 (1984).
6. Surkov, Yu. A., Moskalyova, L.P., Kharyukova, V.P., Dudins, A.D., Smirnov, G.G., and Zaitseva, S.Ye. *Proc. Lunar Planet. Sci. Conf. 17th. J. Geophys. Res.*, **91**, E215-E218 (1986).
7. Grimm, R.E. and Solomon, S.C. *Geophys. Res. Lett.*, **14**, 538-541 (1987).
8. Turcotte, D.L. *Lunar Planet. Sci. XIX*, 1206-1207 (1988).
9. Solomon, S.C. and Head, J.W. *J. Geophys. Res.* **87**, 9236-9246 (1982).
10. Urey, H.C. (1959) in *Handbuch der Physik*, vol. 52, Springer-Verlag, Berlin, pp. 363-418.
11. Mueller, R.F. (1964) *Icarus*, **3**, 285-298.
12. Vinogradov, A.P. and Volkov, V.P. (1971) *Geochim. Intl.*, **8**, 463-467.
13. Lewis, J.S. *Earth Planet. Sci. Lett.*, **10**, 73-80 (1970).
14. Volkov, V.P., Zolotov, M.Yu., and Khodakovsky, I.L. in *Chemistry and Physics of Terrestrial Planets* (ed. S.K. Saxena) 136-190 (Springer-Verlag, NY, 1986).
15. Barsukov, V.L., Surkov, Yu. A., Dmitriyev, L.V., and Khodakovsky, I.L. *Geochem. Intl.*, **23**, 53-65 (1986).
16. Von Zahn, U., Kumar, S., Niemann, H., and Prinn, R.G. in *Venus* (eds. D.M. Hunten, L. Colin, T.M. Donahue, and V.I. Moroz) 299-430 (University of Arizona Press, Tucson, 1983).
17. Masursky, H., Eliason, E., Ford, P.G., McGill, G.E., Pettengill, G.H., Schaber, G.G., and Schubert, G. *J. Geophys. Res.*, **85**, 8232-8260 (1980).
18. Seiff, A. in *Venus* (eds. D.M. Hunten, L. Colin, T.M. Donahue, and V.I. Moroz) 1045-1048 (University of Arizona Press, Tucson, 1983).
19. Esposito, L.W., Knollenberg, R.G., Marov, M.Ya., Toon, O.B., and Turco, R.P. in *Venus* (eds.

D.M. Hunten, L. Colin, T.M. Donahue, and V.I. Moroz) 474-564 (University of Arizona Press, Tucson, 1983).

20. Kyte, F.T. and Wasson, J.T. *Science*, **232**, 1225-1229 (1986).
21. Mason, B. (ed). *Handbook of Elemental Abundances in Meteorites* (Gordon and Breach, NY, 1971).
22. Basilevsky, A.T. and Head, J.W. *Ann. Rev. Earth Planet. Sci.*, **23**, 295-317 (1988).
23. Esposito, L.W. *Science* **223**, 1072-1074 (1984).
24. Esposito, L.W., Copley, M., Eckert, R., Gates, L., Stewart, A.I.F., and Worden, H. *J. Geophys. Res.* **93**, 5267-5276 (1988).
25. Ronov, A.B. and Yaroshevsky, A.A. *Geochem. Intl.* **12**, 89-121 (1976).

TABLE 1
Rate Data Used to Calculate the Activation Energy

<u>Sample</u>	<u>$T(^{\circ}C)^a$</u>	<u>Duration (Hours)</u>	<u>Rate $\times 10^{-12}$ (molecules $cm^{-2} s^{-1}$)^b</u>
R44-1	602	95	1.67 ± 0.19^c
R45-1	602	314	0.85 ± 0.77
			1.05 ± 0.12^c
R45-3	602	314	1.01 ± 0.11^c
R45-4	602	314	1.20 ± 0.51
			0.68 ± 0.48^d
R36-1	746	96	8.43 ± 2.93
			13.6 ± 6.0^d
R36-2	746	96	23.2 ± 6.2
			19.9 ± 11.0^d
R50-1	747	192	9.19 ± 1.60
R50-3	747	192	10.5 ± 7.8
R51-1	748	96	13.2 ± 4.0
R51-2	748	96	10.3 ± 5.6
R43-1	848	91	60.4 ± 6.8
			57.1 ± 31.7^d
R43-2	848	91	53.2 ± 7.0
			67.2 ± 43.4^d
R43-3	848	91	58.1 ± 7.0
			48.4 ± 12.1^d

Notes to Table 1

^a The estimated temperature uncertainty is $\pm 5^{\circ}C$.

^b The number of SO_2 molecules reacted per cm^2 surface area per second. The rate is from weight gain measurements unless noted otherwise. The 1σ uncertainties are also listed.

^c The rate from ion chromatography analyses of SO_4^{2-} content of reacted sample.

^d The rate from scanning electron microscope (SEM) measurements of anhydrite layer thickness and porosity.

Figure Captions

Figure 1. Scanning electron micrographs of chemically reacted samples. a, Fracture surface showing a CaSO_4 (anhydrite) layer (A) completely covering a partially reacted calcite crystal (C) (850°C for 192 hours) b, Top surface showing CaSO_4 (A) growing on a partially reacted diopside crystal (D) (833°C for 48 hours).

Figure 2. Arrhenius plot of rate data from Table 1 vs. $1/T$. The line is a weighted linear least squares fit. Rates determined from independent methods (wt. gain, SEM, SO_4^{2-} analyses) for the same sample agree within the 1σ experimental uncertainties.

Figure 3. Geochemical and geophysical estimates of the rate of volcanism on Venus are compared to the terrestrial rate. Three plausible models for the S/S_i ratio of erupted material on Venus yield rates of ~ 0.4 to $\sim 11 \text{ km}^3 \text{ yr.}^{-1}$. Adopting the Venus surface S/S_i ratio from Venera 13, 14, and Vega 2 analyses^{5,6} yields a rate of $\sim 1 \text{ km}^3 \text{ yr.}^{-1}$, or about 20 times less than the rate of volcanism on Earth.

Figure 1A ORIGINAL PAGE IS
OF POOR QUALITY

Figure 1B

Figure 2

VOLCANISM RATES

Figure 3