## 实验 5 - CPU 设计—数据通路实验报告

#### ——IP 核设计 CPU/IP2CPU

| 姓名: 材 | 逸竹                  | 学号: 3160 | 0104229          | 专业: 计 | 算机科学与技  | 大术  |  |
|-------|---------------------|----------|------------------|-------|---------|-----|--|
| 课程名称  | 尔: <u>计算机组成与设计实</u> | 验        | 同组学生姓名: <u>无</u> |       |         |     |  |
| 实验时间  | il: 2018-4-16       | 实验地点:    | 紫金港东 4-509       | 指导老师  | ī: 施青松, | 黎全洪 |  |

# 一、实验目的和要求

- 1. 运用寄存器传输控制技术
- 2. 掌握 CPU 的核心: 数据通路组成与原理
- 3. 设计数据通路
- 4. 学习测试方案的设计
- 5. 学习测试程序的设计

# 二、实验内容和原理

### 2.1 实验任务

- 1. 设计 9+条指令的数据通路
  - □ 用逻辑原理图设计实现数据通路
    - □ALU 和 Regs 调用 Exp04 设计的模块
  - □ 替换 Exp04 的数据通路核
  - □ 此实验在 Exp04 的基础上完成
- 2. 设计数据通路测试方案:
  - □ 部件测试: ALU、Register Files
  - □ 通路测试: I-格式通路、R-格式通路
- 3. 设计数据通路测试程序法

# 三、主要仪器设备

#### 3.1 实验设备

- 1. 计算机(Intel Core i5 以上,4GB 内存以上)系统
- 2. 计算机软硬件课程贯通教学实验系统
- 3. Xilinx ISE14.4 及以上开发工具
- 3.2 材料

无

# 四、实验实现方法、步骤与调试

### 4.1 OExp05-Datapath

使用先前设计好的 ALU 等模块设计数据通路,替换 IP 核。



# 五、实验结果与分析

能够实现下表功能。

### □图形功能测试

| 开关      | 位置  | 功能                      |
|---------|-----|-------------------------|
| SW[1:0] | X0  | 七段码图形显示                 |
| SW[2]   | 0   | CPU全速时钟                 |
| SW[4:3] | 00  | 7段码从上至下亮点循环右移           |
| SW[4:3] | 11  | 7段码矩形从下到大循环显示           |
| SW[7:5] | 000 | 作为外设使用(E000000/FFFFE00) |

## □文本功能测试

| 开关       | 位置  | 功能                       |
|----------|-----|--------------------------|
| SW[1:0]  | 01  | 七段码文本显示(低16位)(Arduino有效) |
| 344[1.0] | 11  | 七权的义争亚小(尚1b世)            |
| SW[2]    | 0   | CPU全速时钟                  |
| SW[4:3]  | 01  | 7段码显示RAM数字               |
| SW[4:3]  | 10  | 7段码显示累加                  |
| SW[7:5]  | 000 | 作为外设使用(E000000/FFFFFE00) |



Figure 1 实验结果(1) 跑马灯



Figure 2 实验结果(2) 矩形



Figure 3 实验结果(3) RAM



Figure 4 实验结果(4) 累加

# 六、讨论、心得

#### 6.1 思考题

- 6.1.1 扩展下列指令,数据通路将作如何修改。
- 答: 见实验 7.
- 6.1.2 增加 I-Type 算术运算指令是否需要修改本章设计的数据通路?
- 答:不需要修改数据通路。
- 6.2 心得

重点理解数据通路图,将各个指令自己走一遍。