Synchronous Sequential Circuits

Chun-Jen Tsai National Chiao Tung University 11/01/2012

Sequential Circuits

- ☐ A sequential circuit has the following features:
 - A feedback path
 - Memory of the state of the sequential circuit
 - The logic function maps (inputs, current state) to (outputs, next state)
- ☐ There are two types of signal changes
 - Synchronous: transition happens at discrete instants of time
 - Asynchronous: at any instant of time

Synchronous Sequential Circuits

- ☐ A synchronous sequential circuits use a master-clock generator to generate a periodic train of clock pulses
 - The clock pulses are distributed throughout the system; signals are only "used" when timing is right
- □ A memory element in a digital circuit keeps a binary state indefinitely, until it is directed to switch state
- ☐ There two types of memories: latches and flip-flops
 - Latches switches state according to input level; not practical for synchronous sequential circuits
 - Flip-flops are constructed using latches; and they switch states only at signal edges → make precise signal synchronization possible

Clocked Sequential Circuit

□ A synchronous clocked sequential circuit has the following basic architecture:

SR Latches (1/2)

☐ SR Latches built with two NOR gates:

- Under normal conditions, both inputs remain at 0 unless the state has to be changed, as follows:
 - (S, R) = (0, 1): reset (Q = 0, the clear state)
 - (S, R) = (1, 0): set (Q = 1, the set state)
- The forbidden case put the latch into unpredictable states

SR Latches (2/2)

- ☐ SR latches can also be built with two NAND gates:
 - Also called the S'R' (or \$\overline{S}\$\overline{R}\$) latches

□ Note: variations in gate delays may cause jitters in digital signals
1 2 3 4 5

SR Latches with Control Input

- □ SR latch with control input:
 - The En signal controls whether a state change can happen, regardless of what the levels of S and R are

En	S	R	Next state of Q
0 1 1 1 1	X 0 0 1 1	X 0 1 0 1	No change No change Q = 0; reset state Q = 1; set state Indeterminate

(b) Function table

□ In reality, an SR latch is difficult to use due to the existence of an indeterminate state

D Latch (Transparent Latch)

☐ To eliminate the undesirable condition of the indeterminate state in the SR latch, we can use a single input to set the state:

 \square When the En signal is active, the data line D is passed to the output transparently

Graphic Symbols for Latches

☐ The graphic symbols for latches are as follows:

Flip-Flops

- ☐ For digital design, the state of a memory device only changes when a control signal triggers the switch
 - Level triggered latches
 - Edge triggered flip-flops

Level Trigger vs. Edge Trigger

- ☐ If level-triggered flip-flops are used
 - the feedback path may cause instability problem
- □ Edge-triggered flip-flops
 - the state transition happens only at the edge
 - eliminate the multiple-transition problem

Edge-triggered D-type Flip-Flop

- □ A D-type flip-flop is constructed with two D latches arranged in master-slave configuration
 - A positive edge-triggered D flip-flop changes Q at the negative edge $(1\rightarrow 0)$ of the Clk signal
 - The master latch samples *D* at positive-level of *Clk*
 - The slave latch samples *Y* at negative-level of *Clk*

■ How to design a D flip-flip triggered at the negative edge?

Alternative Design of D Flip-flop

□ A D-type positive-edge-triggered flip-flop can also be implemented using three SR latches:

D Flip-Flop Properties

- ☐ There are several important parameters of a flip-flip:
 - The *setup time* is the time period the *D* input must be maintained at a constant value prior to the occurrence of the clock transition
 - The *hold time* is the time period the *D* input must not change after the trigger edge of the clock
 - The *propagation delay time* is defined as the interval between the trigger edge and the stabilization of the output to a new state
- ☐ In a synchronous digital system, all flip-flops belongs to the same clock domain must make their state transition at the same time

Graphic Symbols for D Flip-Flop

- ☐ For a D flip-flop, the characteristic equation is:
 - Q(t+1) = D
- ☐ There are two symbols for D flip-flop, one for positiveedge trigger and one for negative edge trigger
 - The arrowhead symbol designates a dynamic input that triggers the flip-flop at edge transisitons

JK Flip-Flops

□ A JK flip-flop has the following characteristic equation:

$$Q(t+1) = JQ' + K'Q$$

JK Flip-Flop characteristic table

J	K	Q(t + 1))
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

T Flip-Flops

□ A T flip-flop has following characteristic equation:

$$Q(t+1) = T \oplus Q = TQ' + T'Q$$

T Flip-Flop	characteristic	table

T	Q(t + 1)	
0	Q(t)	No change
1	Q'(t)	Complement

■ Circuit diagram:

Asynchronous Reset/Set (1/2)

☐ Some flip-flop has a asynchronous set/reset line that forces the flip-flop to a particular state regardless of the clock

Asynchronous Reset/Set (2/2)

☐ The graphic symbol of a D flip-flop with asynchronous reset/set is as follows:

R	Clk	D	Q	Q'
0 0 0	X ↑	X 0 1	0 0 1	1 1 0

Analysis of Sequential Circuit

 □ A zero-detector in a sequence of binary numbers can be implemented as:

State Equations

- □ The behavior of a clocked sequential circuit can be described by state equations
- ☐ Example of state equations:

■
$$A(t+1) = A(t)x(t) + B(t)x(t)$$
 (or $A(t+1) = Ax + Bx$)

■
$$B(t+1) = A(t)'x(t)$$
 (or $B(t+1) = A'x$)

☐ The output equations:

$$y(t) = [A(t) + B(t)] x'(t)$$
 (or $y = (A + B)x'$)

State Table (1/2)

☐ Example of the state table of previous circuit:

Present State		Input	Next State		Output	
A	В	X	A	В	<i>y</i>	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	1	
0	1	1	1	1	0	
1	0	0	0	0	1	
1	0	1	1	0	0	
1	1	0	0	0	1	
1	1	1	1	0	0	

State Table (2/2)

□ A more condensed form of the state table is as follows:

Second Form of the State Table

Present State		Next State				Output	
		x = 0		<i>x</i> = 1		x = 0	<i>x</i> = 1
A	В	A	В	A	В	y	y
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

State Diagram

- □ A state transition diagram illustrates the transition of state and the corresponding output based on the current state and input:
 - Each circle represents a state
 - The numbers on each link represents input/output
- ☐ Example:

Present		Next State			Output		
	ate	x =	0	X :	= 1	x = 0	<i>x</i> = 1
A	В	A	В	A	В	У	y
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

Flip-Flop Input Equations

- ☐ The part of circuit that generates the inputs to flip-flops is called the input equations
 - Also called excitation functions
- Example of the previous circuit
 - $D_Q = x + y$

 - $D_B = A'x$

Analysis with D Flip-Flops

- ☐ Analyze the circuit with a D flip-flop:
 - Input equation: $D_A = A \oplus x \oplus y$
 - State equation: $A(t+1) = A \oplus x \oplus y$

Present state	Inputs	Next state
\boldsymbol{A}	x y	A
0	0 0	O
0	0 1	1
0	1 0	1
0	1 1	O
1	0 0	1
1	0 1	0
1	1 0	0
1	1 1	1

(b) State table

Analysis with JK Flip-Flops (1/3)

- ☐ Steps of sequential circuit analysis
 - Determine the flip-flop input functions in terms of the present state and input variables
 - Use the flip-flop characteristic table to get the next state

Analysis with JK Flip-Flops (2/3)

- ☐ Input functions:
- ☐ State table:

State Table for Sequential Circuit with JK Flip-Flops

	sent ate	Input		ext ate		Flip-Flop Inputs		
A	В	X	A	В	J _A	K _A	J _B	K _B
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

Analysis with JK Flip-Flops (3/3)

- ☐ Derive the state equations using characteristic eq.
 - \blacksquare A(t+1) = JA' + K'A = BA' + (Bx')'A = A'B + AB' + Ax
 - $B(t+1) = x'B + (A \oplus x)'B = B'x + ABx + A'Bx'$.
- ☐ The state transition diagram:

Analysis with T Flip-Flops (1/2)

- ☐ The characteristic equation of a binary counter:
 - $Q(t+1) = T \oplus Q' = TQ' + T'Q$
- ☐ Input functions:
 - \blacksquare $T_A = Bx$
 - $\blacksquare \quad T_B = x$
- □ Output functions:

Analysis with T Flip-Flops (2/2)

- ☐ State equations:
 - = A(t+1) = (Bx)'A + (Bx)A' = AB' + Ax' + A'Bx
 - \blacksquare $B(t+1) = x \oplus B$
- ☐ State table and state diagram:

State Table for Sequential Circuit with T Flip-Flops

				, ,	
Present State		Input		ext ate	Output
A	В	X	A	В	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	1

Mealy and Moore Models (1/2)

- ☐ The Mealy model: the outputs are functions of both the present state and inputs
 - The outputs are combinational circuits of the input; the outputs may have momentary false values unless the inputs are synchronized with the clocks
- ☐ The Moore model: the outputs are functions of the present state only
 - The outputs are synchronized with the clocks

Mealy and Moore Models (2/2)

☐ Block diagrams of Mealy and Moore models:

Moore Machine

State Reduction

- ☐ Often, we want to reduce the number of flip-flops and the number of gates
- □ A reduction in the number of states may result in a reduction in the number of flip-flops and gates

State Reduction Principle

- ☐ Two circuits are equivalent if they
 - Have identical outputs for all input sequences
 - The number of states is not important
- ☐ Example: if the initial state is *a*
 - Input: $0 \rightarrow 1 \rightarrow 0 \rightarrow 1 \rightarrow 0 \rightarrow 1 \rightarrow 0 \rightarrow 1 \rightarrow 0 \rightarrow 0$
 - $\bullet \text{Out: } 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 1 \rightarrow 1 \rightarrow 0 \rightarrow 1 \rightarrow 0 \rightarrow 0$
 - State: $a \rightarrow a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \rightarrow f \rightarrow g \rightarrow f \rightarrow g \rightarrow a$
- □ Two state are equivalent if
 - For each member of the set of inputs, they give exactly the same output and send the circuit to the same state or to an equivalent state.

Equivalent State Example (1/3)

- ☐ Initial state table:
 - Since $e \equiv g$, we can replace all g by e

	Next	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
b	c	d	0	0	
С	a	d	0	0	
d	e	f	0	1	
е	a	f	0	1	
f	g	f	0	1	
g	a	f	0	1	

- □ 2nd state table:
 - Since $d \equiv f$, we can replace all f by d

Present State	Next State		Output	
	x = 0	x = 1	x = 0	x = 1
а	а	b	0	0
b	c	d	0	0
c	a	d	0	0
d	e	f	0	1
e	a	f	0	1
f	e	f	0	1

Equivalent State Example (2/3)

☐ The reduced finite state machine:

	Next	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
b	\mathcal{C}	d	0	0	
$\boldsymbol{\mathcal{C}}$	a	d	0	0	
d	е	d	0	1	
e	a	d	0	1	

☐ Input-output behavior:

 $\blacksquare \quad \mathsf{Input:} \ 0 \rightarrow 1 \rightarrow 0 \rightarrow 1 \rightarrow 0 \rightarrow 1 \rightarrow 0 \rightarrow 1 \rightarrow 0 \rightarrow 0$

■ State: $a \rightarrow a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \rightarrow d \rightarrow e \rightarrow d \rightarrow e \rightarrow a$

Equivalent State Example (3/3)

- □ Checking of each pair of states for equivalence can be done systematically via an implication table
- ☐ State reduction may not be necessary in practice!

State Assignment (1/2)

- ☐ For circuit implementation, each state must be assigned a binary value
- ☐ There are three possible ways to encode state values:

Three Possible Binary State Assignments

State	Assignment 1, Binary	Assignment 2, Gray Code	Assignment 3, One-Hot
a	000	000	00001
b	001	001	00010
С	010	011	00100
d	011	010	01000
e	100	110	10000

State Assignment (2/2)

- □ Any binary number assignment is satisfactory as long as each state is assigned a unique number
 - One-hot may be simpler because we do not need an extra decoder to decode the state value
- □ Example: binary assignment

Reduced State Table with Binary Assignment 1

	Next	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
000	000	001	0	0	
001	010	011	0	0	
010	000	011	0	0	
011	100	011	0	1	
100	000	011	0	1	

Design Procedure for Large Circuits

- ☐ To design VLSI, we do not concern with the type of flip-flops or gates used in the implementation; instead, we focus on describing the "behaviors" to EDA tools
- □ However, it is still good to know the manual methods to design a sequential behavior
 - The word description of the circuit behavior (a state diagram)
 - State reduction if necessary
 - Assign binary values to the states
 - Obtain the binary-coded state table
 - Choose the type of flip-flops to be used
 - Derive the flip-flop input equation and output equations
 - Draw the logic diagram

Synthesis Using D Flip-Flops (1/3)

□ A sequence detector that detects a sequence of three or more consecutive 1's in a binary stream can be described by the following state diagram and table:

State Table for Sequence Detector

Present State		Input	Ne Sta	xt ate	Output	
A	В	X	A	В	У	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	0	
0	1	1	1	0	0	
1	0	0	0	0	0	
1	0	1	1	1	0	
1	1	0	0	0	1	
1	1	1	1	1	1	

Synthesis Using D Flip-Flops (2/3)

☐ The flip-flop input equations and the output equation

■
$$A(t+1) = D_A(A, B, x) = \Sigma(3, 5, 7)$$

■
$$B(t+1) = D_B(A, B, x) = \Sigma(1, 5, 7)$$

■
$$y(A, B, x) = \Sigma(6, 7)$$

□ Logic minimization

$$D_B = Ax + B'x$$

$$\blacksquare$$
 $y = AB$

Synthesis Using D Flip-Flops (3/3)

□ Logic diagram (Moore-type machine):

Synthesis with Other Flip-Flops

- □ The mapping between the input functions of the state machine and the input functions of flip-flops is trivial only when D-type flip-flops are used
- ☐ For other flip-flops, we need to use the excitation tables to design the input functions to flip-flops:

Flip-Flop Excitation Tables

Q(t)	Q(t=1)	J	K	Q	(t)	Q(t=1)	T
0	0	0	X	()	0	0
0	1	1	X	()	1	1
1	0	X	1	1	L	0	1
1	1	X	0	1		1	0

(a) JK Flip-Flop

(b) T Flip-Flop

Synthesis Using JK Flip-Flops (1/3)

☐ The behavior of the sequence detector using JK flip-flops can be described by the following state table:

State Table and JK Flip-Flop Inputs

Present State				Next State		Flip-Flop Inputs			
A	В	X	A	В	J _A	K _A	J _B	K _B	
0	0	0	0	0	0	X	0	X	
0	0	1	0	1	0	X	1	X	
0	1	0	1	0	1	X	X	1	
0	1	1	0	1	0	X	X	0	
1	0	0	1	0	X	0	0	X	
1	0	1	1	1	X	0	1	X	
1	1	0	1	1	X	0	X	0	
1	1	1	0	0	X	1	X	1	

Synthesis Using JK Flip-Flops (2/3)

☐ Input functions:

- y = AB

Synthesis Using JK Flip-Flops (3/3)

☐ The logic diagram:

Synthesis Using T Flip-Flops (1/3)

☐ The state diagram and state table of a 3-bit binary counter are as follows; there is no input, only output

State Table for Three-Bit Counter

Pre	sent S	tate	Ne	xt Sta	ate	Flip-Flop		Inputs	
A ₂	A ₁	A_0	A ₂	A ₁	A_0	T _{A2}	<i>T</i> _{A1}	T _{A0}	
0	0	0	0	0	1	0	0	1	
0	0	1	0	1	0	0	1	1	
0	1	0	0	1	1	0	0	1	
0	1	1	1	0	0	1	1	1	
1	0	0	1	0	1	0	0	1	
1	0	1	1	1	0	0	1	1	
1	1	0	1	1	1	0	1	1	
1	1	1	0	0	0	1	1	1	

Synthesis Using T Flip-Flops (2/3)

☐ Simplified functions:

■
$$T_{A_0} = 1$$

$$\blacksquare T_{A_1} = A_0$$

$$\blacksquare \quad T_{A_2} = A_1 A_2$$

Synthesis Using T Flip-Flops (3/3)

☐ The logic diagram:

