

1. Таблиця Келі для σ_3 :

•	e	π_1	π_2	π_3	π_4	π_5
e	e	π_1	π_2	π_3	π_4	π_5
π_1	π_1	e	π_3	π_2	π_5	π_4
π_2	π_2	π_4	e	π_5	π_1	π_3
π_3	π_3	π_5	π_1	π_4	e	π_2
π_4	π_4	π_2	π_5	e	π_3	π_1
π_5	π_5	π_3	π_4	π_1	π_2	e

2. Порядки елементів σ_3 :

$$\pi_0 = e \Longrightarrow \operatorname{ord}(\pi_0) = 1, \quad \pi_1 \cdot \pi_1 = e \Longrightarrow \operatorname{ord}(\pi_1) = 2$$

$$\pi_2 \cdot \pi_2 = e \Longrightarrow \operatorname{ord}(\pi_2) = 2, \quad \pi_3 \cdot \pi_3 = \pi_4, \pi_4 \cdot \pi_3 = e \Longrightarrow \pi_3^3 = e \Longrightarrow$$

$$\operatorname{ord}(\pi_3) = 3, \quad \pi_4 \cdot \pi_4 = \pi_3, \pi_3 \cdot \pi_4 = e \Longrightarrow \operatorname{ord}(\pi_4) = 3,$$

$$\pi_5 \cdot \pi_5 = e \Longrightarrow \operatorname{ord}(\pi_5) = 2$$

3. Знайти усі підгрупи σ_3 :

Дві тривіальні підрупи це $\{e\}$ і σ_3 . Підгрупи порядку 2: $\{e,\pi_1\},\{e,\pi_2\},\{e,\pi_5\}$. Підгрупа порядку 3: $\{e,\pi_3,\pi_4\}$.

4. $\langle a \rangle_{18}$:

ord
$$(a^{1}) = \text{ ord } (a^{5}) = \text{ ord } (a^{7}) = \text{ ord } (a^{11}) = \text{ ord } (a^{13}) = \text{ ord } (a^{17}) = \frac{18}{1} = 18,$$

ord $(a^{2}) = \text{ ord } (a^{4}) = \text{ ord } (a^{8}) = \text{ ord } (a^{10}) = \text{ ord } (a^{14}) = \text{ ord } (a^{16}) = \frac{18}{2} = 9$
ord $(a^{3}) = \text{ ord } (a^{15}) = \frac{18}{3} = 6, \quad \text{ ord } (a^{6}) = \text{ ord } (a^{12}) = \frac{18}{6} = 3,$
ord $(a^{9}) = \frac{18}{9} = 2, \quad \text{ ord } (a^{18}) = \frac{18}{18} = 1$

Підгрупи: тривіальні $\{e=a_{18}\}, \langle a \rangle_{18}$, порядок 18: $\{a^1, a^5, a^7, a^{11}, a^{13}, a^{17}\}$, порядок 9: $\{e, a_2, a_4, a_8, a_{10}, a_{14}, a_{16}\}$, порядок 6: $\{e, a_3, a_{15}\}$, порядок 3: $\{e, a_6, a_{12}\}$, порядок 2: $\{e, a_9\}$.

 $\phi(18) = 6$, отже кількість твірних елементів 6 і їх порядок 18,

 $\varphi(9)=6$, у підгрупі порядку 9 - 6 твірних елементів, $\varphi(6)=2$, у підгрупі порядку 6 - 2 твірних елементів, $\varphi(3)=2$, у підгрупі порядку 3 - 2 твірних елементів, $\varphi(2)=1$, у підгрупі порядку 2 - 1 твірний елементів.

5.

[реф.] Нехай $a\in H\Longrightarrow aa^{-1}=e\in H,$ бо H підгрупа H. Тоді $a\equiv a\mod H\quad \forall a\in G.$ Відношення рефлексивне.

[сим.] $a,b\in G: a\equiv b \mod H \Longrightarrow ab^{-1}\in H \Longrightarrow (ab^{-1})^{-1}\in H \Longrightarrow ba^{-1}\in H \Longrightarrow b\equiv a \mod H$. Відношення симетричне.

[транз.] $\forall a,b,c\in G: a\equiv b \mod H, b\equiv c \mod H \Longrightarrow ab^{-1}\in H, bc^{-1}\in H\Longrightarrow (ab^{-1})^{-1}(bc^{-1})^{-1}\in H\Longrightarrow ac^{-1}\in H\Longrightarrow a\equiv c \mod H.$ Відношення транзитивне.

2