Electric Sector Coupling: Promise and Pitfalls

EVOLVED ENERGY RESEARCH

- About Us
- Sector Coupling
- Electricity Balancing
- Flexible Loads SWOT Analysis
- Conclusions

About Evolved Energy Research

- Energy consulting firm focused on addressing key energy sector challenges posed by climate change
- Lead developers of EnergyPATHWAYS, a bottom-up energy system model used to explore the near-term implications of long-term deep decarbonization
- We advise clients on issues of policy implementation and target-setting, R&D strategy, technology competitiveness and impact investing

Sector Coupling Opportunities

- Development of renewable generation is often taking place in the context of broader energy system decarbonization efforts
- Those efforts have revealed the importance of electrification of energy end-uses, one of the threepillars of decarbonization including decarbonizing the grid and increasing efficiency of energy use

Three Pillars in Practice

United States

2050 U.S. Benchmarks

- 2x increase in the share of energy from electricity or electrically derived fuels
- ~99% decrease in the emissions intensity of electricity generation
- 3x drop in energy use per unit GDP

EVOLVEI ENERGY RESEARC

Three Pillars in Practice

China, India and United Kingdom

India

UK

Source: figures from <u>Deep Decarbonization Pathways Project country</u> reports (2015)

www.evolved.energy

Electrification Loads

EVOLVE ENERGY RESEARCE

Expanding Potential of Flexible Loads

- Flexible load is defined as load that responds to supply-side signals, not just to demand-side requirements
 - Ex. An EV owner arrives home. He'd like to have his battery full, but he's willing to delay that charging if he is charged less for it at a later hour
- Load growth in electrification scenario comes from sectors that are prime candidates to operate flexibly:
 - Thermal Loads: loads that have a thermal storage medium (i.e. water heater) that can operate within a range and allow for flexible operation without service degradation
 - Transportation Loads: loads that require battery storage which can allow for flexible charging and state of charge management without degrading service
- Electric fuel production (electrolysis; power-to-gas; power-to-liquids) are other types of potential load that can operate flexibly due to their high operating/capital cost ratio

EVOLVED ENERGY RESEARCH

Electricity Balancing

Electricity balancing has two components

1. Ensuring electricity supply matches demand through time

2. Ensuring power quality (voltage, frequency, reactive power)

PWM

https://www.allaboutcircuits.com/textbook/alternating-current/chpt-13/synchronous-motors/

How do renewables present unique challenges for balancing?

- Renewables have certain characteristics that make them difficult to manage in the context of today's electricity system
 - Variability output is not controllable and can change rapidly
 - **Uncertainty** future output can be difficult to predict
 - New locations deployment in locations not anticipated when the grid was built
 - Inverters vs. synchronous motors technical character of inverters are different

Seasonal energy imbalance

• Increasing the penetration of wind & solar beyond ~75% in temperate climates results in seasonal energy imbalances that become the dominate challenge for achieving deep decarbonization in electricity

U.S. Eastern Interconnect 2015 Load with simulated 40% Solar & 60% Onshore Wind by Energy

Flexible Load SWOT Analysis

STRENGTHS

WEAKNESSES

OPPORTUNITIES

THREATS

EVOLVED ENERGY RESEARCI

Flexible Loads (End-Use Loads) SWOT Analysis

- Flexibility without large new infrastructure needs
- Flexible end-use load offers potential to avoid infrastructure not substitute for it
- Flexible end-use loads have existing thermal or chemical storage mediums or demand for the end-use services themselves are flexible

- Requires customer participation
- Reliability as a resource will require further study as it grows
 - Very similar to DR generally, but with a different type of customer and potentially without longer-term contractual relationships
- End-use loads have a variety of unique operational constraints
 - Limited duration: Can't heat up water in April for use in June
 - Sit behind distribution infrastructure, limiting their flexibility to respond to system generation conditions
- Downside risk of flexible operation is considerable
 - The first time someone runs out of hot water in the shower may be the last time their load is flexible

- Distributed generation
- Electrification

- Cheap batteries reduce the incentive to pursue demand-side flexibility
- Rate design principles and processes
- Difficulty establishing price signal for fixed assets
- Electric fuel production

Flexible Loads (Electric Fuels) SWOT Analysis

- Can achieve some colocation benefits with renewables
- Can provide long-duration storage in two ways, by chemically storing energy or by changing the blending of a product (e.g. blending into the gas pipeline)
- High operating to capital cost ratio

- Needs exogenous demand for products or supporting policy changes
- High penetrations of renewables are required before they can operate at reasonable capacity factors if they're just soaking up overgeneration
- Low roundtrip efficiency

- High-hydro renewable systems that already have some seasonal imbalance
- Economy-wide carbon targets
- 100% renewable goals

- Cheap batteries reduce near-term opportunities for balancing and may out-compete demand for fuels (i.e. hydrogen)
- Cheap biofuels

EVOLVED ENERGY RESEARCH

Conclusions

Conclusions

- Renewable integration opportunities depend entirely on a system context
 - Renewable prices
 - Alternative balancing resource costs
 - Economy emissions targets
- Eventual role of flexible loads will be determined in a portfolio context
- Barriers to eventual deployment are economic, technical, and regulatory, but the opportunities are large

EVOLVED ENERGY RESEARCH