DESIGN AND CONSTRUCTION OF A WIRELESS SENSOR BASED LIGHTING SYSTEM

\mathbf{BY}

ADESOJI RIDWANLAHI BOLUWATIFE	2018702020035
ADESODUN OLUWASEUN EMMANUEL	2015070202023
ADENIJI TEMITOPE MOSHOOD	2015232070008
ÁDESIYAN KEHINDE ISRAEL	2018702020034

A PROJECT REPORT SUBMITTED TO THE DEPARTMENT OF COMPUTER ENGINEERING, IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE AWARD OF HIGHER NATIONAL DIPLOMA (HND) IN COMPUTER ENGINEERING, THE POLYTECHNIC IBADAN

JUNE, 2024

CERTIFICATION

We confirm that the project titled Design of a Wireless sensor-based lighting system was conducted by the individuals listed above, along with their respective Matriculation numbers. It has been thoroughly reviewed under the supervision and guidance of Engineer O.K Adejumobi and has been deemed acceptable by the Department of Computer Engineering Technology for the conferral of Higher National Diploma (HND).

Engr. O.K Adejumobi	
Project Supervisor	Signature/Date
Engr. D.A Oladosu	••••••
Head of Department	Signature/Date

DEDICATION

We would like to dedicate this project to God Almighty and to our families. They instilled in us the desire to learn and made sacrifices so we can have access to high quality education from an early age. We also want to dedicate this project to our close friend and class mates who have supported us through the years of study.

ACKNOWLEDGEMENT

We express our sincere gratitude to Almighty God for the knowledge, wisdom, and understanding He bestowed upon us, enabling us to successfully carry out this project.

ABSTRACT

This project explores the development and implementation of a wireless sensor-based lighting system designed to enhance energy efficiency and user convenience in residential and commercial environments. The system integrates various sensors, including motion detectors, CC1101 Transceivers and Microcontrollers, to automate lighting control based on occupancy. By intelligently managing the lighting, the system reduces electricity consumption, thus contributing to energy conservation and cost savings. The core components of the sensor-based lighting system include microcontroller units (such as Arduino), Transmitter and Receiver Circuit, which process sensor data and control the lighting fixtures accordingly. Motion sensors detect human presence, triggering lights to turn on or off based on occupancy, while the transmitter and receiver circuit enable the circuit to communicate wirelessly. Additional features, such as adjustable sensitivity and delay timers, enhance the system's adaptability to various environments and user preferences.

Through a series of experiments and tests conducted in different settings, the project demonstrates significant energy savings and improved user satisfaction. The findings indicate that sensor-based lighting systems can reduce energy consumption by up to 40% compared to traditional manual lighting controls. Moreover, the system's modular design allows for easy integration with existing smart home infrastructures, providing a scalable solution for modern energy-efficient buildings. This project not only highlights the technical feasibility of sensor-based lighting systems but also underscores their potential impact on sustainable living practices. Future work will focus on optimizing sensor algorithms, expanding compatibility with diverse lighting technologies, and exploring additional applications in industrial and outdoor environments.

TABLE OF CONTENTS

TITLE PAGE		I
CERTIFICATION		II
DED	DICATION	III
ACK	KNOWLEDGEMENT	IV
ABS	STRACT	V
TAB	BLES OF CONTENT	VI
LIST	Γ OF FIGURES	VIII
CHA	APTER ONE	
1.0	Introduction	1
1.1	Background of The Study	1
1.2	Statement of Problem	2
1.3	Aim and Objectives	2
1.4	Significance of study	3
1.5	Scope of Study	4
1.6	Methodology	4
CHA	APTER TWO	
2.0	Literature Review	5
2.1	Introduction	5
2.2	Evolution of Lighting System	5
2.3	Related Systems	6
2.4	Wireless Communication Protocols	8
2.5	Sensor Technology	8
2.6	Integration with IoT and Smart Buildings	9
2.7	Previous Implementations of Lighting system	9
2.8	Lighting control	10
CHA	APTER THREE	
3.0	Methodology	12
3.1	Overview	12
3.2	Design Considerations	12

3.3	Units of system	12
3.4	Component Selection	15
СНА	APTER FOUR	
4.0	Results and Discussions	20
4.1	Implementation and Testing	20
4.2	System Performance	20
4.3	Detection and Transmission Unit	20
4.4	Control and Receiver Unit	21
СНА	APTER FIVE	
5.0	Conclusion and Discussion	24
5.1	Conclusion	24
5.2	Recommendation	25
REFI	RENCES	26
APPE	ENDIX	27

LIST OF FIGURES

Figure. 3.0	Block Diagram of Wireless Sensor based lighting system	12
Figure. 3.1	Block Diagram of Detection and Transmitter unit	13
Figure. 3.2	Schematic Diagram of detection and Transmitter unit	13
Figure 3.3	Block Diagram of Control and Receiver Unit	14
Figure 3.4	Schematic Diagram of Control / Receiver Unit	14
Figure 3.5	PIR Motion sensor front and back view	15
Figure 3.6	2s Battery Management System	16
Figure 3.7	3.7 volts Lithium Ion Battery	16
Figure 3.8	Arduino Nano	17
Figure 3.9	Bulk Converter	18
Figure 4.0	Light Bulb	18
Figure 4.1	CC1101 Transceiver	19
Figure 4.2	Detection Unit / Transmitter Unit	20
Figure 4.3	Image of Control Unit	22
Figure 4.4	Internal Wiring of Control Unit	22