CÁLCULO AVANZADO Segundo Cuatrimestre — 2019

Primer Parcial

APELLIDO Y NOMBRE: L.U.: HOJAS:
1. Muestre que si X es un espacio conexo y no acotado, entonces para todo $x \in X$ y todo $r > 0$ la esfera $\{y \in X : d(x, y) = r\}$ no es vacía.
<i>Solución.</i> Sean $x \in X$ y $r > 0$. Supongamos que X es conexo y que el conjunto del enunciado es vacío. Es entonces $X = B_r(x) \cup (X \setminus \overline{B}_r(x))$ y, como $B_r(x)$ y $X \setminus \overline{B}_r(x)$ son abiertos disjuntos de X y X es conexo, alguno de los dos tiene que ser vacío: el primero no lo es, ya que contiene a x , así que $X \setminus \overline{B}_r(x) = \emptyset$. Esto nos dice que $X = \overline{B}_r(x)$ y, particular, que X es acotado.
Solución. Sean $x \in X$ y $r > 0$. Como X no es acotado, $X \neq B_{2r}(x)$ y existe $y \in X$ tal que $d(x,y) > r$. La función $f: z \in X \mapsto d(x,z) \in \mathbb{R}$ es continua y tiene a $0 = f(x \text{ y a } d(x,y) = f(y)$ en su imagen, así que su imagen contiene a todo el intervalo $[0,d(x,y)]$: en particular, como r pertenece a ese intervalo, existe $u \in X$ tal que $d(x,u) = f(u) = r$. \square
<i>Solución.</i> Supongamos que X no es acotado y que $x \in X$ y $r > 0$ son tales que el conjunto $S = \{y \in X : d(x,y) = r\}$ es vacío. Es $\partial B_r(x) = \overline{B_r(x)} \setminus B_r(x)^\circ \subseteq \overline{B_r(x)} \setminus B_r(x) = S = \emptyset$, así que $B_r(x)$ tiene frontera vacía. Como $B_r(x)$ no es vacío, ya que contiene a x , y no es igual a X , porque X no es acotado, vemos que X no es conexo.
2. Determine los cardinales de los conjuntos \mathscr{I} y \mathscr{S} de todas las funciones $\mathbb{N} \to \mathbb{N}$ que son inyectivas y sobreyectivas, respectivamente.

Solución. Queremos probar que ambos conjuntos tiene cardinal c. Como ambos están contenidos en el conjunto $\mathbb{N}^{\mathbb{N}}$ de todas las funciones $\mathbb{N} \to \mathbb{N}$ y este tiene cardinal \mathfrak{c} , bastará —de acuerdo al teorema de Cantor-Schröder-Bernstein— que probemos que los dos tienen cardinal al menos igual a $\mathfrak c.$

Sea $\phi:\mathbb{N}^{\mathbb{N}}\to\mathscr{I}$ la función tal que $\phi(f)(n)=\sum_{i=1}^n f(i)$ para cada $i\in\mathbb{N}.$ Observemos que esta función está bien definida: si $f \in \mathbb{N}^{\mathbb{N}}$, entonces $\phi(f)$ es claramente una función $\mathbb{N} \to \mathbb{N}$ y es inyectiva, ya que es estrictamente creciente: si $n \in \mathbb{N}$, entonces $\phi(f)(n+1) = \phi(f)(x) + f(n+1) > \phi(f)(n)$. Más aún, la función ϕ es inyectiva. en efecto, si f y g son dos elementos de $\mathbb{N}^{\mathbb{N}}$ tales que $\phi(f) = \phi(g)$, entonces $f(1) = \phi(f)(1) = \phi(g)(1) = g(1)$ y para cada $n \in \mathbb{N}$

$$f(n+1) = \phi(f)(n+1) - \phi(f)(n) = \phi(g)(n+1) - \phi(g)(n) = g(n+1),$$

de manera que f = g. Esto implica que $\mathfrak{c} = \#(\mathbb{N}^{\mathbb{N}}) \leq \#\mathscr{I}$.

Sea, por otro lado, $\psi: \mathbb{N}^{\mathbb{N}} \to \mathscr{S}$ la función tal que para cada $f \in \mathbb{N}^{\mathbb{N}}$ es

$$\psi(f)(n) = \begin{cases} n/2 & \text{si } n \text{ es par;} \\ f((n+1)/2) & \text{si } n \text{ es impar.} \end{cases}$$

Esto está bien definido: si $f \in \mathbb{N}^{\mathbb{N}}$, entonces $\psi(f)$ es una función $\mathbb{N} \to \mathbb{N}$ que es sobreyectiva, ya que para cada $n \in \mathbb{N}$ es $\psi(f)(2n) = n$. La función ψ es inyectiva: en efecto, si f y g son elementos de $\mathbb{N}^{\mathbb{N}}$ tales que $\psi(f) = \psi(g)$, para todo $n \in \mathbb{N}$ tenemos que

$$f(n) = \psi(f)(2n-1) = \psi(g)(2n-1) = g(n),$$

П

de manera que f = g. Vemos así que $\mathfrak{c} = \#(\mathbb{N}^{\mathbb{N}}) \leq \#\mathscr{S}$.

Solución. Los conjuntos \mathscr{I} y \mathscr{S} están contenidos en el conjunto $\mathbb{N}^{\mathbb{N}}$ de todas las funciones $\mathbb{N} \to \mathbb{N}$, que tiene cardinal \mathfrak{c} : para probar que ambos tienen cardinal \mathfrak{c} , entonces, es suficiente con mostrar que el conjunto \mathscr{B} de todas las biyecciones $\mathbb{N} \to \mathbb{N}$ tiene cardinal mayor o igual que \mathfrak{c} , ya que tanto \mathscr{I} como \mathscr{S} continenen a \mathscr{B} .

Sea $c = (c_n)_{n \ge 1}$ un elemento de $\{0,1\}^{\mathbb{N}}$. Hay una función $f_c : \mathbb{N} \to \mathbb{N}$ tal que

$$f_c(n) = \begin{cases} n - c_{n/2} & \text{si } n \text{ es par;} \\ n + c_{(n+1)/2} & \text{si } n \text{ es impar.} \end{cases}$$

Esta función f_c es biyectiva: para verlo es suficiente con que mostremos que $f_c \circ f_c = \mathrm{id}_{\mathbb{N}}$, ya que esto implica que f_c es su propia función inversa. Si $n \in \mathbb{N}$, hay tres casos a considerar:

- Si n es par y $c_{n/2} = 0$ o n es impar y $c_{(n+1)/2} = 0$, entonces $f_c(n) = n$ y, por supuesto, $f_c(f_c(n)) = n$.
- Si n es par y $c_{n/2} = 1$, entonces $f_c(n) = n 1$ y $f_c(f_c(n)) = n 1 + c_{((n-1)+1)/2} = n$.
- Si *n* es impar y $c_{(n+1)/2} = 1$, entonces $f_c(n) = n+1$ y $f_c(f_c(n)) = n+1-c_{(n+1)/2} = n$.

Como f_c es un elemento de $\mathcal B$ para todo $c \in \{0,1\}^{\mathbb N}$, podemos definir una función $\phi: c \in \{0,1\}^{\mathbb N} \mapsto f_c \in \mathcal B$. Esta función es inyectiva: en efecto, si c y d son dos elementos de $\{0,1\}^{\mathbb N}$ tales que $f_c = f_d$, entonces para todo $n \in \mathbb N$ tenemos que

$$2n - c_n = f_c(2n) = f_d(2n) = 2n - d_n$$

de manera que $c_n = d_n$ y, por lo tanto, c = d.

Ahora bien, como la función ϕ es inyectiva, es $\mathfrak{c}=\#(\{0,1\}^{\mathbb{N}})\leq\#\mathscr{B}$, que es lo que queríamos probar.

3. Sea $((X_n, d_n))_{n \ge 1}$ una sucesión de espacios métricos, sea $X = \prod_{n \ge 1} X_n$ y consideremos la métrica $d: X \times X \to \mathbb{R}$ tal que

$$d(x,y) = \sum_{n>1} \frac{1}{2^n} \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)}$$

cada vez que $x=(x_n)_{n\geq 1}$ e $y=(y_n)_{n\geq 1}$ son elementos de X. Muestre que el espacio métrico (X,d) es separable si y solamente si para todo $n\in\mathbb{N}$ el espacio métrico (X_n,d_n) es separable.

Solución. Supongamos primero que para todo $n \in \mathbb{N}$ el espacio X_n es separable y sea D_n un subconjunto a lo sumo numerable de X_n que es allí denso. Queremos probar que el espacio X es separable; esto es evidente si alguno de los espacios X_n es vacío, porque en ese caso X mismo es vacío, así que podemos suponer que $X_n \neq \emptyset$ para todo $n \in \mathbb{N}$. En ese caso sabemos que existe un punto $(z_n)_{n\geq 1} \in X$.

Si $m \in \mathbb{N}$ sea E_m el conjunto de los puntos $(x_n)_{n \geq 1}$ de X tales que $x_i \in D_i$ para cada $i \in \llbracket m \rrbracket$ y $x_i = z_i$ siempre que i > m. La función $E_m \to D_1 \times \cdots \times D_m$ que proyecta en las primeras m coordenadas es biyectiva, así que el conjunto E_m es numerable. Se sigue de esto, claro, que el subconjunto $E = \bigcup_{m \geq 1} E_m$ de X es numerable. Mostremos que es denso.

Sea $x=(x_n)_{n\geq 1}$ un elemento de X, sea $\epsilon>0$ y fijemos $k\in\mathbb{N}$ tal que $1/2^k<\epsilon$. Si $i\in \llbracket k\rrbracket$, entonces D_i es denso en X_i , así que existe $p_i\in D_i$ tal que $d_i(x_i,p_i)<\epsilon/2$. Consideremos el punto $y=(y_n)_{n\geq 1}$ de X tal que

$$y_i = \begin{cases} p_i & \text{si } 1 \le i \le k; \\ z_i & \text{si } i > k. \end{cases}$$

Es claro que $y \in E_k \subseteq E$. Además tenemos que

$$d(x,y) = \sum_{i\geq 1} \frac{1}{2^i} \frac{d_i(x_i, y_i)}{1 + d_i(x_i, y_i)} \le \sum_{i=1}^k \frac{1}{2^i} \frac{d_i(x_i, y_i)}{1 + d_i(x_i, y_i)} + \sum_{i\geq k+1} \frac{1}{2^i},$$

porque $t/(1+t) \le 1$ cualquiera sea $t \in [0, +\infty)$, y esto es

$$\leq \sum_{i=1}^k \frac{1}{2^i} \frac{\epsilon}{2} + \sum_{i > k+1} \frac{1}{2^i} = \left(1 - \frac{1}{2^k}\right) \frac{\epsilon}{2} + \frac{1}{2^k} < \frac{\epsilon}{2} + \frac{1}{2^k} < \epsilon.$$

porque $d_i(x_i, y_i)/(1 + d_i(x_i, y_i)) \le d_i(x_i, y_i) < \epsilon/2$ para cada $i \in [\![k]\!]$. Esto prueba que el conjunto E es denso en X, como queríamos.

Supongamos ahora, para probar la afirmación recíproca, que el espacio X es separable y que D es un subconjunto denso y numerable de X, y fijemos $m \in \mathbb{N}$. La función $\pi: X \to X_m$ tal que $\pi(x) = x_m$ siempre que $\underline{x} = (x_n)_{n \geq 1} \in X$ es sobreyectiva. Si mostramos que es continua, entonces tendremos que $\overline{\pi(D)} \supseteq \pi(\overline{D}) = \pi(X) = X_m$, de manera que el conjunto $\pi(D)$, que es numerable, es denso en X_m .

Sea $\epsilon > 0$. Como la función $h: t \in [0,1) \mapsto t/(1-t) \in \mathbb{R}$ es continua y se anula en 0, existe $\delta > 0$ tal que $h(t) < \epsilon$ siempre que $0 \le t < \delta$. Sean ahora $x = (x_n)_{n \ge 1}$ e $y = (y_n)_{n \ge 1}$ dos elementos de X tales que $d(x,y) < 2^{-m}\delta$. Tenemos que

$$\frac{d_m(x_m, y_m)}{1 + d_m(x_m, y_m)} \le 2^m \sum_{n \ge 1} \frac{1}{2^n} \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)} = 2^m d(x, y) < \delta,$$

así que

$$d_m(\pi(x), \pi(y)) = d_m(x_m, y_m) = h\left(\frac{d_m(x_m, y_m)}{1 + d_m(x_m, y_m)}\right) < \epsilon.$$

П

Esto muestra que la función π es (uniformemente) continua, como queríamos.

4. Sea $f: \mathbb{R} \to \mathbb{R}^m$ una función uniformemente continua. Si A es un subconjunto acotado de \mathbb{R} , entonces f(A) es un subconjunto acotado de \mathbb{R}^m .

Solución. Sea A un subconjunto acotado de \mathbb{R} , de manera que existe R>0 tal que $A\subseteq [-R,R]$. Como f es uniformemente continua, existe $\delta>0$ tal que |f(x)-f(y)|<1 siempre que $|x-y|<\delta$. Sea $n\in\mathbb{N}$ tal que $2R/n<\delta$. Cada uno de los intervalos de la forma $I_n:=[-R+2R(i-1)/n,-R+2Ri/n]$ con $i\in[n]$ tiene diámetro menor que δ , así que la elección de δ implica que la imagen $f(I_i)$ tiene diámetro menor o igual que 1. Es

$$f(A) \subseteq f([-R,R]) = \bigcup_{i=1}^{n} f(I_u)$$

y este último conjunto es acotado porque es la unión de un número finito de conjuntos acotados: vemos así que f(A) es acotado.

Solución. Si A es un subconjunto acotado de \mathbb{R} , entonces su clausura \overline{A} es compacta y, como f es continua, tiene imagen $f(\overline{A})$ compacta: en particular, $f(\overline{A})$ es un subconjunto acotado de \mathbb{R}^n y, ya que claramente $f(A) \subseteq f(\overline{A})$, el conjunto f(A) también lo es.

5. Sea X un espacio métrico. Si toda función continua $X \to \mathbb{R}$ es uniformemente continua, entonces X es completo.

Solución. Supongamos que X satisface la condición del enunciado y, para llegar a un absurdo, que no es completo. Existe entonces una sucesión de Cauchy $(x_n)_{n\geq 1}$ en X que no tiene límite. Si $x\in X$, entonces la sucesión $(d(x,x_n))_{n\geq 1}$ es de Cauchy en \mathbb{R} , porque siempre que $n, m\in \mathbb{N}$ es $|d(x,x_n)-d(x,x_m)|\leq d(x_n,x_m)$: como \mathbb{R} es completo, vemos así que existe el límite $f(x):=\lim_{n\to\infty}d(x,x_n)$. Obtenemos de esta forma una función $f:X\to\mathbb{R}$.

Afirmamos que se trata de una función continua. Sea $\epsilon > 0$ y sean x y x' dos elementos de X tales que $d(x,x') < \epsilon/2$. Como $|d(x,x_n) - d(x',x_n)| \le d(x,x') < \epsilon$ para todo $n \in \mathbb{N}$ y las sucesiones $(d(x,x_n))_{n\ge 1}$ y $(d(x',x_n))_{n\ge 1}$ convergen por definición a f(x) y a f(x'), respectivamente, tenemos que

$$|f(x) - f(x')| = \lim_{n \to \infty} |d(x, x_n) - d(x', x_n)| \le \frac{\epsilon}{2} < \epsilon.$$

Por otro lado, la función f no se anula en X: si x fuese un punto tal que f(x) = 0, tendríamos que $\lim_{n \to \infty} d(x, x_n) = 0$, de manera que x sería un límite de la sucesión $(x_n)_{n \ge 1}$, que no tiene ninguno. Esto implica que la función $g: x \in X \mapsto 1/f(x) \in \mathbb{R}$ es continua. La hipótesis sobre X, entonces, nos dice que g es, de hecho, uniformemente continua. En particular, como $(x_n)_{n \ge 1}$ es una sucesión de Cauchy en X, la sucesión $(g(x_n))_{n \ge 1}$ es una sucesión de Cauchy en \mathbb{R} y, por lo tanto, es acotada: existe M > 0 tal que $g(x_n) < M$ para todo $n \in \mathbb{N}$.

Ahora bien, como la sucesión $(x_n)_{n\geq 1}$ es de Cauchy, existe n_0 tal que siempre que $n,\ m\geq n_0$ se tiene que $d(x_n,x_m)<1/2M$ y de esto se sigue que para cada $n\geq n_0$ es $f(x_n)=\lim_{m\to\infty}d(x_n,x_m)\leq 1/2M<1/M$ y, por lo tanto, que $g(x_n)=1/f(x_n)>M$. Esto es absurdo, porque contradice la elección de M y esta contradicción provino de suponer que X no es completo.

Solución. Supongamos que X satisface la condición del enunciado y que no es completo. Sea $\phi: X \to \tilde{X}$ una completación de X, de manera que \tilde{X} es un espacio métrico completo con respecto a una métrica \tilde{d} y ϕ es una inyección isométrica con imagen densa. Como X no es completo, la función ϕ no es sobreyectiva y existe $y \in \tilde{X} \setminus \phi(X)$. La función $h: z \in \tilde{X} \mapsto \tilde{d}(y,z) \in \mathbb{R}$ es continua y no se anula en la imagen de ϕ : esto implica que la función $f = h \circ \phi: X \to \mathbb{R}$ es continua y no nula y, por lo tanto, que la función $g = 1/f: X \to \mathbb{R}$ es continua. La hipótesis que hicimos sobre X nos dice entonces que g es uniformemente continua y la propiedad universal de la completación que g extiende a una función continua sobre \tilde{X} , es decir, que existe una función continua $\tilde{g}: \tilde{X} \to \mathbb{R}$ tal que $\tilde{g}(\phi(x)) = g(x)$ para todo $x \in X$. Como \tilde{g} es continua, es acotada en un entorno de cada uno de los puntos de \tilde{X} : en particular, existen r > 0 y M > 0 tales que para todo $z \in B_r(y,\tilde{d})$ es $|\tilde{g}(z)| < M$. Ahora bien, como la imagen de ϕ es densa en \tilde{X} , existe $x \in X$ tal que $\tilde{d}(\phi(x), y) < \min\{r, 1/M\}$ y entonces $\phi(x) \in B_r(y, \tilde{d})$ y

$$\tilde{g}(\phi(x)) = g(x) = \frac{1}{f(x)} = \frac{1}{h(\phi(x))} = \frac{1}{\tilde{d}(\phi(x), y)} > M.$$

Esto es absurdo.

Solución. Supongamos que X es un espacio que satisface la condición del enunciado y que $(x_n)_{n\geq 1}$ es una sucesión de Cauchy en X que no converge.

Definamos inductivamente una sucesión estrictamente creciente $(n_k)_{k\geq 1}$ en \mathbb{N} : ponemos $n_1\coloneqq 1$ y para cada $k\geq 1$ definimos

$$n_{k+1} := \min\{n \in \mathbb{N} : x_n \neq x_i \text{ para todo } i \in [n_k]\}.$$

Esto tiene sentido: en efecto, si $k \in \mathbb{N}$ y ya construimos el número n_k , entonces el subconjunto $\{n \in \mathbb{N} : x_n \neq x_i \text{ para todo } i \in \llbracket n_k \rrbracket \}$ de \mathbb{N} no es vacío: si lo fuera existiría $i \in \llbracket n_k \rrbracket$ tal que $\{n \in \mathbb{N} : x_n = x_i\}$ es infinito y la sucesión $(x_n)_{n \geq 1}$ tendría una subsucesión constante y, por lo tanto, convergente, lo que es imposible.

De esta forma obtenemos una subsucesión $(x_{n_k})_{k\geq 1}$ de $(x_n)_{n\geq 1}$ tal que $x_{n_k}\neq x_{n_l}$ siempre que $k\neq l$. Por supuesto, esta subsucesión es de Cauchy y no converge. Esto significa que podemos suponer, sin pérdida de generalidad, que la sucesión $(x_n)_{n\geq 1}$ con la que empezamos tiene la propiedad de que $x_n\neq x_m$ siempre que $n\neq m$: hagámoslo.

Consideremos ahora los conjuntos $A := \{x_{2n} : n \in \mathbb{N}\}$ y $B := \{x_{2n-1} : n \in \mathbb{N}\}$, que son claramente disjuntos en vista de la hipótesis que hicimos sobre la sucesión $(x_n)_{n\geq 1}$. Afirmamos que son cerrados de X. Como tanto $(x_{2n})_{n\geq 1}$ como $(x_{2n-1})_{n\geq 1}$ son sucesiones de Cauchy que no convergen, para verificarlo es suficiente que probemos el siguiente

Lema. Si $(z_n)_{n\geq 1}$ es una sucesión en X que es de Cauchy y que no converge, entonces el conjunto $Z=\{z_n:n\in\mathbb{N}\}$ es cerrado.

Demostración. Sea $z \in X \setminus Z$. Como z no es un límite de la sucesión $(z_n)_{n\geq 1}$, existe $\epsilon > 0$ tal que el conjunto $I := \{n \in \mathbb{N} : d(z,z_n) \geq \epsilon\}$ es infinito. Por otro lado, como la sucesión $(z_n)_{n\geq 1}$ es de Cauchy, existe $N \in \mathbb{N}$ tal que $d(z_r,z_s) < \epsilon/2$ siempre que $r,s\geq N$. Finalmente, como I es infinito, existe $n_0 \in I$ tal que $n_0 \geq N$. Con estas elecciones, tenemos que $d(z,z_n) \geq d(z,z_{n_0}) - d(z_n,z_{n_0}) \geq \epsilon - \epsilon/2 = \epsilon/2$ siempre que $n \geq n_0$. Si ponemos $\delta := \min\{\epsilon/2, d(z,z_1), \ldots, d(z,z_{n_0})\}$, que es un número positivo,

entonces es claro que $B_{\delta}(z) \cap (X \setminus Z) = \emptyset$. Esto nos dice que el conjunto $X \setminus Z$ es abierto en X.

6. Sean f, $g : \mathbb{R} \to \mathbb{R}$ funciones continuas tales que $\lim_{|t| \to \infty} (f(t) - g(t)) = 0$. Si f es uniformemente continua, entonces g también lo es.

Solución. Supongamos que la función f es uniformemente continua y sea $\epsilon>0$. Como $\lim_{|t|\to\infty}(f(t)-g(t))=0$, existe R>0 tal que si $|t|\geq R$ es $|f(t)-g(t)|<\epsilon/4$. Por otro lado, como f es uniformemente continua, existe $\delta_1>0$ tal que $|f(x)-f(y)|<\epsilon/4$ siempre que $x,y\in\mathbb{R}$ y $|x-y|<\delta_1$. Finalmente, como g es continua en [-R-1,R+1], existe $\delta_2>0$ tal que $|g(x)-g(y)|<\epsilon/4$ siempre que $x,y\in\mathbb{R}$ y $|x-y|<\delta_2$.

Sea $\delta = \min\{\delta_1, \delta_2, 1\}$ y sean x e y dos elementos de $\mathbb R$ tales que $x \le y$ y $|x-y| < \delta$. Claramente se cumple alguna de las tres designaldades

$$y \le -R, \qquad -R < y \le R+1, \qquad R+1 < y$$

y entonces, como $\delta \leq 1$, tenemos respectivamente que

$$x, y \in (-\infty, -R],$$
 $x, y \in [-R-1, R+1],$ $x, y \in [R, +\infty).$

Bastará, en consecuencia, que consideremos estos tres casos

• Si o bien $x, y \in (-\infty, -R]$ o bien $x, y \in [R, +\infty)$ entonces

$$|g(x) - g(y)| \le |g(x) - f(x)| + |f(x) - f(y)| + |f(y) - g(y)|$$

$$< \frac{\epsilon}{4} + \frac{\epsilon}{4} + \frac{\epsilon}{4} < \epsilon,$$

ya que $|x| \ge R$, $|x - y| < \delta_1$ y $|y| \ge R$.

• Si $x, y \in [-R-1, R+1]$, entonces $|g(x)-g(y)| < \epsilon/4 < \epsilon$, ya que $|x-y| < \delta_2$.

Como estos cuatro casos cubren todas las posibilidades porque $R > \delta$, vemos que es $|g(x) - g(y)| < \epsilon$: esto prueba que g es uniformemente continua, como queremos.

Solución. Sea $h = f - g : \mathbb{R} \to \mathbb{R}$. Se trata de una función continua y la hipótesis nos dice que $\lim_{|t| \to \infty} h(t) = 0$. De acuerdo a un ejercicio de la práctica, esto implica que h es uniformemente continua. Si además f es uniformemente continua, entonces g, que coincide con f - h, resulta ser uniformemente continua porque es una diferencia de funciones uniformemente continuas.