Midterm 2 - AM 212

Dante Buhl

November 26, 2024

Problem 1

For each of the following 3 ODEs,

- a. Plot the numerical solution for $\epsilon=0.1,\,\epsilon=0.01,$ and $\epsilon=0.001$
- b. Explain in a few words of what method you plan to use the solve this asymptotically and why, based on the numerical solution
- c. Find the lowest order uniformly convergent analytical approximation to the solution for small positive ϵ .
- d. Compare the numerical and analytical solutions for $\epsilon = 0.01$.

ODE A:

$$\frac{d^2f}{dt^2} = -f - \epsilon f^2 \left(\frac{df}{dt}\right) \quad \text{with } f(0) = 1, \frac{df}{dt}(0) = 0$$

- a. See Figure 1
- b. For this problem, we will use the multiscale method as it seems that the amplitude of the sine wave seems to decay on a timescale which is dependent on epsilon (on a longer time series it is clear that all three solutions decay).
- c. To find the lowest order solution we first begin with the multiscale method.

$$t_{s} = \epsilon t, \quad t_{f} = t$$

$$\frac{\partial}{\partial t_{s}} = \frac{dt}{dt_{s}} \frac{\partial}{\partial t}, \quad \frac{\partial}{\partial t_{f}} = \frac{\partial}{\partial t}$$

$$\left(\epsilon \frac{\partial}{\partial t_{s}} + \frac{\partial}{\partial t_{f}}\right) \left(\epsilon \frac{\partial}{\partial t_{s}} + \frac{\partial}{\partial t_{f}}\right) [f_{0} + \epsilon f_{1} + \cdots] =$$

$$-(f_{0} + \epsilon f_{1} + \cdots) - \epsilon (f_{0} + \epsilon f_{1} + \cdots)^{2} \left(\epsilon \frac{\partial}{\partial t_{s}} + \frac{\partial}{\partial t_{f}}\right) [f_{0} + \epsilon f_{1} + \cdots]$$

$$f_{0}(0) = 1, \quad f_{i}(0) = 0, \quad \forall i \geq 1, \quad \frac{\partial f_{i}}{\partial t} = 0, \quad \forall i \geq 0$$

$$O(\epsilon^{0}): \quad \frac{\partial^{2} f_{0}}{\partial t_{f}^{2}} = -f_{0} \implies f_{0} = \cos(t_{f})g(t_{s})$$

$$O(\epsilon): \quad \frac{\partial^{2} f_{1}}{\partial t_{f}^{2}} - 2\frac{\partial g}{\partial t_{s}} \sin(t_{f}) = -f_{1} + \cos^{2}(t_{f})\sin(t_{f})g^{3}(t_{s})$$

Figure 1: Numerical Solution for differing ϵ using 'ode45'

The term $\cos^2(t_f)\sin(t_f)$ in the $O(\epsilon)$ equation produces a secular term. Using some trig identities we find that thie reduces to:

$$\cos^{2}(t_{f})\sin(t_{f}) = \frac{1}{4}\sin(t_{f}) + \frac{1}{4}\sin(3t_{f})$$

We solve for $g(t_s)$ in order to eliminate this secular term. (Notice that a partial derivative in this case becomes a regular derivative since g only depends on t_s).

$$-2\frac{dg}{dt_s}\sin(t_f) = \frac{1}{4}\sin(t_f)g^3(t_s)$$
$$\frac{dg}{g^3} = -\frac{dt_s}{8}$$
$$-\frac{1}{2g^2} = -\frac{t_s}{8} + c$$
$$g = \left(\frac{t_s}{4} + c\right)^{-1/2}$$
$$g = \left(\frac{t_s}{4} + 1\right)^{-1/2}, \quad \mathbf{IC}$$
$$f_0 = \left(\frac{t_s}{4} + 1\right)^{-1/2}\sin(t_f)$$

This choice of f_0 successfully eliminates the secular term allowing f_1 to be bounded and therefore producing a uniform expansion. Thus the lowest order solution needed is O(1).

d. Compare the numerical and analytical solutions for $\epsilon = 0.01$.

ODE B:

Comparison between numerical and asymptotic solutions for $\epsilon = 0.01$

$$\frac{d^2f}{dt^2} = -f - \epsilon f \left(\frac{df}{dt}\right)^4 \quad \text{with } f(0) = 1, \frac{df}{dt}(0) = 0$$

- a. See Figure 2
- b. I will solve this problem using the method of strained coordinates since the numerical solution suggests that ϵ will affect the periodicity of the solution rather than the amplitude.
- c. lowest order uniformly converging solution
- d. Compare the numerical and analytical solutions for $\epsilon = 0.01$.

ODE C:

$$\epsilon \frac{d^2 f}{dt^2} + \frac{df}{dt} + (t+1)f = 0$$
 with $f(0) = 1, f(1) = 2$

- a. See Figure 3
- b. For this problem, I will use the Boundary Layer method as this PDE has 2 (Boundary) conditions as well as the fact that the second order term in the ODE disappears as $\epsilon \to 0$ creating a Boundary Layer problem.
- c. lowest order uniformly converging solution
- d. Compare the numerical and analytical solutions for $\epsilon = 0.01$.

Figure 2: Numerical Solution for differing ϵ using 'ode45'

Problem 2

Find the eigenvalues and eigenfunctions of this eigenvalue problem, in the limite where the eigenvalue λ is very large and positive.

$$\frac{d^2f}{dt^2} + \lambda(x+1)^2 f = 0 \quad \text{with } f(1) = 0, f(2) = 0$$

We begin solving this proble using WKB theory and following the procedure described in the notes. First we put this problem in SL form.

$$\frac{d}{dt}\left(\frac{df}{dt}\right) = -\lambda(x+1)^2 f, \quad p(x) = 1, \quad q(x) = 0, \quad w(x) = (x+1)^2$$

Comparison between numerical and asymptotic solutions for $\epsilon=0.01$

Figure 3: Numerical Solution for differing ϵ obtained using the shooting method and 'ode45'

Comparison between numerical and asymptotic solutions for $\epsilon=0.01$