

Universidad Nacional Autónoma de México Facultad de Ciencias Cálculo I

Función exponencial Elías López Rivera elias.lopezr@ciencias.unam.mx

1. Exponencial racional

Definición 1

Sea $a \in \mathbb{R}$ tal que a > 1 definimos $exp_a : \mathbb{Q} \to \mathbb{R}$, una función como:

$$exp_a(r) = \begin{cases} \left(a^{\frac{1}{n}}\right)^m, & \text{si } r = \frac{m}{n} \\ \\ \frac{1}{exp_a(-r)}, & \text{si } r = -\frac{m}{n} \end{cases}$$

$$1, & \text{si } r = 0$$

Donde $m, n \in \mathbb{N}$

En clase ya se demostro que la definición anterior no causa problemas en torno a las múltiples representaciones de un racional como fraccíon, a continuación presentaremos algunas propiedades de esta función.

Proposicioón 1

Sea $exp_a : \mathbb{Q} \to \mathbb{R}$, esta cumple que:

1.
$$exp_a(r) > 0 \ \forall r \in \mathbb{Q}$$

2.
$$exp_a(r) exp_a(s) = exp_a(r+s) \ \forall r, s \in \mathbb{Q}$$

3.
$$(exp_a(r))^s = exp_a(rs) \ \forall r, s \in \mathbb{Q}$$

4.
$$r, q \in \mathbb{Q}$$
 $r < q \implies exp_a(r) < exp_a(q)$

Demostración.

1) Tomemos $r = \frac{m}{n} \in \mathbb{Q}^+$ tal que $m, n \in \mathbb{N}$, por la definición tenemos que:

$$exp_a(r) = \left(a^{\frac{1}{n}}\right)^m = \underbrace{\left(a^{\frac{1}{n}}\right)\cdots\left(a^{\frac{1}{n}}\right)}_{\text{m veces}}$$

Tenemos que como a>0, entonces por propiedades de la raíz enésima $a^{\frac{1}{n}}>0$, luego por la definición de la exponencial se sigue que estamos multiplicando m veces un número necesariamente mayor a 0, por propiedades de los números reales se concluye que $exp_a(r)>0 \ \forall \ r\in\mathbb{Q}^+$, luego por la definición de la exponencial para racionales negativos se pude notar que $\exp_a(-r)=\frac{1}{\exp_a(r)}>0$, de donde se concluye que $\exp_a(s)>0 \ \forall \ s\in\mathbb{Q}^-$, finalmente si r=0 se tiene que $a^r=1>0$, por tanto la propiedad 1) es cierta

2) Tomemos $r = \frac{m}{n}, s = \frac{p}{q} \in \mathbb{Q}^+$ tal que $m, n, p, q \in \mathbb{N}$, haciendo una pequeña manipulación algebráica tenemos que $r = \frac{mq}{nq}$ y $s = \frac{pn}{qn}$, aplicando la definición tenemos que

$$exp_a(r) \exp_a(s) = exp_a\left(\frac{mq}{nq}\right) \exp_a\left(\frac{pn}{nq}\right) = \left(a^{\frac{1}{qn}}\right)^{mq} \left(a^{\frac{1}{qn}}\right)^{pn}$$

Como tenemos la misma raź enésima en el termino $a^{\frac{1}{qn}}$, podemos expandir de la siguiente manera:

$$exp_a(r) \exp_a(s) = \underbrace{\left(a^{\frac{1}{qn}}\right) \cdots \left(a^{\frac{1}{qn}}\right)}_{\text{mq veces}} \underbrace{\left(a^{\frac{1}{qn}}\right) \cdots \left(a^{\frac{1}{qn}}\right)}_{\text{pn veces}} = \left(a^{\frac{1}{qn}}\right)^{mq+pn} = a^{\frac{mq+pn}{qn}} = exp_a(r+s)$$

Podemos aplicar la definición y lo anterior a:

$$exp_a(-r)exp_a(-s) = \frac{1}{exp_a(r)exp_a(s)} = \frac{1}{exp(r+s)} = exp(-r-s)$$

Ahora notemos lo siguiente:

$$exp_a(s) exp_a(-r) = \frac{exp_a(s)}{\exp(r)}$$

De aqui se puede notar que si r = s, entonces $exp_a(s)exp_a(-r) = 1 = \exp_a(s-r)$, ahora supongamos que r < s, por tanto s - r > 0, por tanto:

$$exp_a(s) exp_a(-r) = \frac{exp_a(s-r+r)}{\exp(r)} = \frac{exp_a(s-r) exp_a(r)}{exp_a(r)} = exp_a(s-r)$$

De forma similar tenemos que si s < r, entonces 0 < r - s, por tanto:

$$exp_a(s) exp_a(-r) = \frac{exp_a(s)}{\exp(r - s + s)} = \frac{exp_a(s)}{exp_a(r - s) exp_a(s)} = \frac{1}{\exp(r - s)} = exp_a(s - r)$$

Finalmente se tiene que si r=0 y $q\in\mathbb{Q}$, entonces, $exp_a(q)\,exp_a(r)=exp_a(q)\,1=\exp(q+r)$, se concluye que la proposición 2) es cierta

3) Tomemos $r, s \in \mathbb{N}$, tenemos que:

$$(exp_a(r))^s = \underbrace{(a \cdots a)}_{\mathbf{r} \text{ veces}} \underbrace{(a \cdots a)}_{\mathbf{r} \text{ veces}} = exp_a(rs)$$

Ahora definimos $l = (a^{\frac{1}{r}})^{\frac{1}{s}}$, calculemos l^{rs} :

$$l^{rs} = \underbrace{\left[\left(a^{\frac{1}{r}}\right)^{\frac{1}{s}} \cdots \left(a^{\frac{1}{r}}\right)^{\frac{1}{s}}\right]}_{\mathbf{s} \text{ veces}} \cdots \underbrace{\left[\left(a^{\frac{1}{r}}\right)^{\frac{1}{s}} \cdots \left(a^{\frac{1}{r}}\right)^{\frac{1}{s}}\right]}_{\mathbf{r} \text{ veces}} = \underbrace{\left(a^{\frac{1}{r}}\right) \cdots \left(a^{\frac{1}{r}}\right)}_{\mathbf{r} \text{ veces}} = a$$

Aplicando propiedades de la raíz n-esíma, tenemos que $(a^{\frac{1}{r}})^{\frac{1}{s}}=l=a^{\frac{1}{rs}}$

Por tanto hemos demostrado que para todo $r,q\in\mathbb{Q},$ tal que $r=\frac{m}{n}$ y $q=\frac{a}{b},$ donde $a,b,m,n\in\mathbb{N},$ se cumple que:

$$(exp_a(r))^q = exp_a(rq)$$

De forma similar tenemos que:

$$(exp_a(-r))^s = \left(\frac{1}{exp_a(r)}\right)^s = \frac{1}{(exp_a(r))^s} = \frac{1}{exp_a(rs)} = exp_a(-rs)$$

$$(exp_a(r))^{-s} = \frac{1}{exp_a(r)^s} = \frac{1}{exp_a(rs)} = exp_a(-rs)$$

$$(exp_a(-r))^{-s} = \frac{1}{\left(\frac{1}{exp_a(r)}\right)^s} = (exp_a(r))^s = exp_a(rs)$$

Finalmente si r = 0, la propiedad es trivial pues $(exp_a(l))^r = (exp_a(r))^l = 1 = exp_a(0)$, por tanto la propiedad 3) es cierta.

4) Tomemos $r, q \in \mathbb{Z}^+$ tal que $q < r \implies r - q > 0$ ademas se tiene que $exp_a(q) > 0$, se tiene que:

$$1 < a \le exp_a(r-q) \implies exp_a(q) < exp_a(r-q) exp_a(q) = \exp(r)$$

Sea -r < q, tenemos que $exp_a(r+q) > 0$ y por tanto:

$$1 < exp_a(r+q) \implies 1 < exp_a(r) exp_a(q) \implies \frac{1}{exp_a(r)} < exp_a(q) \implies exp_a(-r) < exp_a(q)$$

De la misma manera tenemos que $q < r \implies -r < -q$ y por tanto:

$$exp_a(q) < exp_a(r) \implies \frac{1}{exp_a(r)} < \frac{1}{exp_a(q)} \implies exp_a(-r) < exp_a(-q)$$

Hemos demostrado que $\forall p, q \in \mathbb{Z}$ tal que p < q, entonces $exp_a(p) < exp_a(q)$

Tomemos $s = \frac{m}{n}, t = \frac{a}{c} \in \mathbb{Q}$ tal que $\frac{m}{n} < \frac{a}{c}$, como podemos tomar que $n, c \in \mathbb{N}$ se sigue que mc < an, como tanto mc, an son números enteros entonces:

$$exp_a(mc) < exp_a(an)$$

Como la raíz nc-esíma preseva la desigualdad tenemos que:

$$exp_a(mc)^{\frac{1}{nc}} < exp_a(an)^{\frac{1}{nc}} \implies exp_a\left(\frac{m}{n}\right) < exp_a\left(\frac{a}{c}\right)$$

Se concluye que la propiedad 4) es cierta.

2. Exponencial definida sobre \mathbb{R}

La definición anterior de la función exponencial pareciera ser util para trabajar con una gran cantidad de casos, sin embargo es necesario poder extender esta función para definirla sobre todo R, a continuación construiremos los pasos necesarios para realizarlo.

Proposición 2

Sea $a \in \mathbb{R}$ tal que a > 1, definimos el conjunto $A_x := \{a^r : r \in \mathbb{Q} \ y \ r < x\}$ para $x \in \mathbb{R}$, entonces existe $Sup A_x \in \mathbb{R}$

Demostración.

Primero demostraremos que $A_x \neq \emptyset \ \forall x \in \mathbb{R}$, procedemos por dos casos si x > 0, entonces $a^0 = 1 \in A_x$, en cambio si $x \leq 0$, entonces $-x \geq 0$, por propiedad arquimediana existe $n \in \mathbb{N}$ tal que n > -x y por tanto -n < x, se sigue que $a^{-n} \in A_x$, se concluye la tesís.

Luego demostraremos que A_x esta acotado superiormente para todo $x \in \mathbb{R}$, tomemos $r \in \mathbb{Q}$ tal que r < x, si $x \le 0$, entonces r < 0, por la propiedades de la exponencial racional y del hecho que a > 1 se tiene que $a^r < 1$, entonces 1 es cota superior de A_x , luego si x > 0, por propiedad arquimediana se tiene que existe $n \in \mathbb{N}$ tal que n > x, por tanto r < n, y de nuevo por propiedades de la exponencial racional se concluye que $a^r < a^n$, por tanto es cota superior de A_x

Como A_x siempre es no vacio y acotado superiormente se concluye que existe $Sup A_x$ para todo $x \in \mathbb{R}$

Definición 2

Sea $a \in \mathbb{R}$ tal que a > 1, definimos $exp_a : \mathbb{R} \to \mathbb{R}$ como:

$$exp_a(x) = Sup A_x$$

Proposición 3

Sea $exp_a : \mathbb{R} \to \mathbb{R}$, esta cumple que:

- 1. $exp_a(r) > 0 \ \forall r \in \mathbb{R}$
- 2. $exp_a(r) exp_a(s) = exp_a(r+s) \ \forall r, s \in \mathbb{R}$
- 3. $r, q \in \mathbb{R}$ $r < q \implies exp_a(r) < exp_a(q)$

Demostración.

1) Directamente de la definición tenemos que $exp_a(x) \ge exp_a(r)$, para todo $r \in \mathbb{Q}$ tal que r < x, por propiedad de la exponencial racional se sigue que $exp_a(x) \ge exp_a(r) > 0$

2) Sean $x, y \in \mathbb{R}$, definimod los conjuntos $A_y A_x := \{a^{rs} : r \in A_x \ s \in A_y\}$, $A_{y+x} := \{a^r : r \in \mathbb{Q} \ y \ r < x + y\}$, tenemos que como tanto A_x y A_y cumplen los axiomas del supremo, entonces $A_x A_y$ también los cumplen, ademas de que $Sup A_x A_y = Sup A_x Sup A_y = exp_a(x) exp_a(y)$, por tanto bata demostrar que $A_y A_x = A_{x+y}$, para asegurar la propiedad:

$$A_x A_y \subset A_{x+y}$$

Tomemos $a^r \in A_x A_y$, tenemos entonces que existen $m, n \in \mathbb{Q}$ tal que r = mn y $a^m \in A_y$ y $a^n \in A_x$, luego $m \le y$ y $n \le x$ por tanto $m + n \le x + y$, ademas por propiedades de la exponencial racional se tiene que $a^r = a^{mn} = a^{m+n}$, por tanto $a^r \in A_{x+y}$

$$A_{x+y} \subset A_x A_y$$

Tomemos $r \in A_{x+y}$, entonces r < x + y, luego x + y - r > 0, por propiedad arquimediana $\exists n \in \mathbb{N}$ tal que $\frac{1}{n} < x + y - r$, por tanto $r < x + y - \frac{1}{n}$, luego aplicando la densidad de los racionales cosntruimos $m \in \mathbb{Q}$ tal que $x - \frac{1}{n} < m < x$, definimos t = r - s, por cerradura $t \in \mathbb{Q}$, ademas r = t + s, aplicando propiedades de la exponencial racional tenemos que $a^r = a^{t+s} = a^t a^s$, donde s < x y

$$t = r - s < \left(x + y - \frac{1}{n}\right) - x + \frac{1}{n} = y$$

Tenemos que $a^s \in A_x$, $a^t \in A_y$, luego $a^r = a^s a^t \in A_x A_y$

De ambas contenciones se concluye que $A_x A_y = A_{x+y}$, se tiene que la propiedad 2) es cierta

3) Aplicando la propiedad de densidad de los racionales construimos $r \in \mathbb{Q}$ tal que x < r < y, tenemos que $a^r \in A_x$ pero $a^r \notin A_y$, por tanto $a^x \leq a^r \leq a^y$, sin emabrgo usando de nuevo la densidad de los racionales construimos $s \in \mathbb{Q}$ tal que r < s < y, luego por propiedades de la exponencial racional necesariamente $a^x \leq a^r < a^s \leq a^y$, por tanto $a^x < a^y$, la propiedad 3) es cierta

Proposición 4

Sea $a \in \mathbb{R}$ tal que a > 1 y $B_x := \{a^x : x \in \mathbb{Q} \ y \ x < r\}$ con $x \in \mathbb{R}$, entonces se cumple que:

$$exp_a(x) = Inf B_x$$

Demostración.

Llamemos $\alpha = Sup A_x$ y $\beta = Inf B_x$, si $x \in \mathbb{Q}$ la igualdad es obvia si no tenemos que como a > 0, entonces la sucesión $(a^{\frac{1}{n}})_{n=1}^{\infty}$, converge a 1, por tanto aplicando la definición de convergencia tenemos que, sea $\frac{\epsilon_0}{\alpha} > 0$:

$$\exists K_0 \in \mathbb{N} : n \ge K_0 \implies |a^{\frac{1}{n}} - 1| < \frac{\epsilon_0}{\alpha}$$

Tomemos nx con $n \geq K_0$, tenemos que existe $z \in \mathbb{Z}$ tal que z < nx < z + 1, luego como n > 0 se

sigue que $\frac{z}{n} < x < \frac{z+1}{n}$, por tanto:

$$a^{\frac{z+1}{n}} \in B_x \ a^{\frac{z}{n}} \in A_x$$

Por la definicón tenemos que $\beta \leq a^{\frac{z+1}{n}}$ y $a^{\frac{z}{n}} \leq \alpha \implies -\alpha \leq -a^{\frac{z}{n}}$, sumando ambas desigualdades y aplicando propiedades de la exponencial racional obtenemos que:

$$\beta - \alpha \le a^{\frac{z}{n}} \left(a^{\frac{1}{n}} - 1 \right) \implies 0 \le |\beta - \alpha| \le |a^{\frac{z}{n}}| |a^{\frac{1}{n}} - 1| < \alpha \frac{\epsilon_0}{\alpha} = \epsilon_0$$

Como $\epsilon_0 > 0$ es arbitraria se concluye que necesariamente $|\beta - \alpha| = 0$ y por tanto $\beta = \alpha$

Proposición 5

Sea $exp_a : \mathbb{R} \to \mathbb{R}$, esta es continua en todo punto de \mathbb{R}

Demostración.

1) Primero probaremos la continuidad en $x_0 = 0$, sabemos que las sucesiones $(a^{\frac{1}{n}})_{n=1}^{\infty}$ y $(a^{-\frac{1}{n}})_{n=1}^{\infty}$ convergen ambas a 1, por tanto sea ϵ_0 entonces $\exists K_0 \in \mathbb{N}$, tal que si $n \geq K_0$ se cumple que $|a^{\frac{1}{n}} - 1| < \epsilon_0$ y $\exists K_1 \in \mathbb{N}$, tal que si $n \geq K_1$ cumple que $|a^{-\frac{1}{n}} - 1| < \epsilon_0$, tomamos $\delta := min\{\frac{1}{K_0}, -\frac{1}{K_1}\}$, tenemos que si $|x| < \delta$, se tiene que:

$$-\frac{1}{K_1} < x < \frac{1}{K_0}$$

Por las propiedades de la exponencial real se sigue que:

$$a^{-\frac{1}{K_1}} < a^x < a^{\frac{1}{K_0}} \implies a^{-\frac{1}{K_1}} - 1 < a^x - 1 < a^{\frac{1}{K_0}} - 1 \implies -\epsilon_0 < a^{-\frac{1}{K_1}} - 1 < a^x - 1 < a^{\frac{1}{K_0}} - 1 < \epsilon_0 \implies |a^x - 1| < \epsilon_0 \implies$$

Por tanto hemos hemostrado que:

$$\lim_{x \to 0} exp_a(x) = exp_a(0) = 1$$

Sea $x \in \mathbb{R}$, podemos excribir $exp_a(x)$ de la siguiente manera:

$$exp_a(x) = exp_a(x_0)(exp_a(x - x_0) - 1) + exp_a(x_0)$$

Aplicando teoremas de límites tenemos que:

$$\lim_{x \to x_0} exp_a(x) = exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) = exp_a(x_0) (1 - 1) + exp_a(x_0) = exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a(x_0) \left(\lim_{x \to x_0} exp_a(x - x_0) - 1 \right) + \exp_a($$

Por tanto la función exponencial es continua en todo $\mathbb R$

2) Por la proposición 4 se tiene que:

$$exp_a(x_0) = Sup A_x = Inf B_x$$

Sea $\epsilon > 0$. Por la definición de infimo y supremos, existen número racionales $r_1 < x < r_2$ tales que:

$$a^{x_0} - \epsilon < a^{r_1} < a^{x_0} < a^{r_2} < a^{x_0} + \epsilon_0$$

Sea $\delta:=\{x_0-r_1,r_2-x_0\}$, claramente $\delta>0$. Sea $x\in\mathbb{R}$ tal que $0<|x-x_0|<\delta$, hay dos casos si $x< x_0$, entonces $r_1< x< x_0$

$$a^{r_1} < a^x < a^{x_0} \implies a^{x_0} - \epsilon_0 < a^x \implies a^{x_0} - a^x < \epsilon_0$$

Si $x > x_0$ entonces $x_0 < x < r_2$; luego

$$a^{r_2} > a^x > a^{x_0} \implies a^{x_0} + \epsilon > a^x \implies a^x - a^{x_0} < \epsilon_0$$

En ambos $|a^x - a^{x_0}| < \epsilon_0$, por tanto la función exp_a es continua en todo su dominio

Definición 3

Sea $a \in \mathbb{R}$ tal que 0 < a < 1, definimos $exp_a : \mathbb{R} \to \mathbb{R}$ como:

$$exp_a(x) = \frac{1}{exp_{\left(\frac{1}{a}\right)}(x)}$$

A su vez definimos $exp_1 : \mathbb{R} \to \mathbb{R}$ de tal manera:

$$exp_1(x) = 1$$

Proposición 6

Sea $a \in \mathbb{R}$ tal que $0 < a \le 1$, entonces $exp_a : \mathbb{R} \to \mathbb{R}$, es continua

Demostración.

Si a = 1, exp_1 , es la función constante 1, por tanto esta es continua, si 0 < a < 1, de la definición de exp_a se tiene que:

$$\lim_{x \to x_0} exp_a(x) = \lim_{x \to x_0} \frac{1}{exp_{\left(\frac{1}{a}\right)}(x)} = \frac{1}{\frac{1}{exp_a(x_0)}} = exp_a(x_0)$$

3. Función Logaritmo

Teorema de la inversa continua

Sea $I \subset \mathbb{R}$ un intervalo y sea $f: I \to \mathbb{R}$ estrictamente mónotona y continua en I. Entonces la función g inversa de f es estrictamente mónotona y continua

Como $exp_a : \mathbb{R} \to \mathbb{R}^+$, donde $a \in \mathbb{R}^+$, es continua y monotona entonces existe exp_a^{-1} , la definimoc a continuación

Logaritmo

Definition $log_a : \mathbb{R}^+ \to \mathbb{R}$ como:

$$log_a = exp_a^{-1}$$

Por el teorema de la inversa continua tenemos que $log_a : \mathbb{R}^+ \to \mathbb{R}$ es continua