SS 2013

Zentralübung Diskrete Wahrscheinlichkeitstheorie (zur Vorlesung Prof. Esparza)

Dr. Werner Meixner

Fakultät für Informatik TU München

http://www14.in.tum.de/lehre/2013SS/dwt/uebung/

14. Juni 2013

ZÜ VI

Übersicht:

- 1. Thema: Kontinuierliche Zufallsvariable
- 2. Tipps zu HA Blatt 8

1. Thema: Kontinuierliche Zufallsvariable

Diskrete (reelle) Zufallsvariable X:

Diskreter W'keitsraum (Ω, Pr) , Ω ist abzählbar. Abbildung $X:\Omega\to\mathbb{R}$,

Kontinuierliche (reelle) Zufallsvariable X:

W'keitsraum $(\Omega, \mathcal{A}, Pr)$, messbare Abbildung $X: \Omega \to \mathbb{R}$, Diskrete (reelle) Zufallsvariable X haben einen abzählbaren Wertebereich $W_X\subseteq\mathbb{R}$ innerhalb \mathbb{R} .

Kontinuierliche (reelle) Zufallsvariable X haben einen kontinuierlichen Wertebereich $W_X\subseteq\mathbb{R}$ innerhalb $\mathbb{R}.$

Bemerkung:

Genau genommen stimmt das nur ungefähr und man muss die Definitionen natürlich in allen Teilen beachten.

Genauere Betrachtung der Definition:

 $\mathbb R$ wird zusammen mit der σ -Algebra der Borelschen Mengen über $\mathbb R$ als "Messraum $(\mathbb R,\mathcal B(\mathbb R))$ " betrachtet.

 (Ω, \mathcal{A}) ist ein Messraum mit der σ -Algebra \mathcal{A} .

 $X:(\Omega,\mathcal{A})\to(\mathbb{R},\mathcal{B})$ messbar heißt: für jede Menge $A\in\mathcal{B}$ ist das Urbild $X^{-1}(A)$ aus der σ -Algebra \mathcal{A} .

Bemerkung: Mit der Eigenschaft der Messbarkeit kann man oft geeignete W-Räume auf dem Definitionsbereich der Zufallsvariablen konstruieren.

Da $(\Omega, \mathcal{A}, \Pr)$ ein W-Raum ist, kann man auf dem Wertebereich \mathbb{R} der Zufallsvariablen X auch einen Wahrscheinlichkeitsraum $(\mathbb{R}, \mathcal{B}, \Pr_X)$ mit Bild-W'keitsmaß \Pr_X definieren.

Wahrscheinlichkeitsraum $(\mathbb{R}, \mathcal{B}, \Pr_X)$ mit Bild-W'keitsmaß \Pr_X :

$$\Pr_X[A] = \Pr[X^{-1}(A)], \quad \text{für } A \in \mathcal{B}.$$

Dieser Wahrscheinlichkeitsraum $(\mathbb{R}, \mathcal{B}, \Pr_X)$ wird informell als Verteilung der Variablen X bezeichnet.

Das W-Maß \Pr kann durch die Verteilungsfunktion F_X und im stetigen Fall meist durch eine Dichtefunktion f_X dargestellt werden.

Eine Zufallsvariable $X:\Omega\to\mathbb{R}$ nennt man stetig, falls sich das Bild-W'keitsmaß \Pr_X durch eine (messbare) Dichtefunktion $f_X:\mathbb{R}\to\mathbb{R}_0^+$ darstellen lässt (,,Dichte von X"):

$$\Pr_X[A] = \int\limits_A^{(\mathcal{L})} f(x) \, dx \quad ext{für } A \in \mathcal{B} \, .$$

Das Zeichen $\mathcal L$ über dem Integralzeichen soll ausdrücken, dass hier das Lebesgue-Integral gemeint ist. Andernfalls wäre das Riemann-Integral gemeint.

Man beachte: Falls das Riemann-Integral existiert, dann ist es gleich dem Lebesgue-Integral (Satz der Vorlesung).

Man beachte (auch im Hinlick auf HA 8.1):

Ohne Bezug auf eine Zufallsvariable spricht man bei einer Funktion f von einer Wahrscheinlichkeitsdichte f über einem Intervall $\Omega \subseteq \mathbb{R}^n$, wenn

- $ullet f:\Omega o\mathbb{R}_0^+$,
- f ist messbar,
- $\oint_{\Omega} f(x) dx = 1.$

Satz 13 von Teil II der Vorlesung zeigt, dass man mit einer W'keitsdichte f einen W'keitsraum $(\Omega, \mathcal{B}(\Omega), \Pr)$ definieren kann:

$$\Pr: \mathcal{B}(\Omega) \to \mathbb{R}_0^+$$
, mit $\Pr[A] = \int_A^{(\mathcal{L})} f(x) \, dx$.

Nun kann man die Funktionen X_i betrachten mit $X_i((x_1,\ldots,x_i,\ldots,x_n))=x_i$ für alle $(x_1,\ldots,x_i,\ldots,x_n)\in\Omega$.

Dann sind alle X_i Zufallsvariablen über den oben konstruierten W-Raum $(\Omega, \mathcal{B}(\Omega), \Pr)$ und f ist die gemeinsame Dichte der X_i .

Die Verteilung einer Variablen X_i heißt dann auch Randverteilung.

2. Tipps zu HA Blatt 8

Die folgenden Hinweise und Tipps zu Hausaufgaben sind für die Bearbeitung nicht notwendig, möglicherweise aber hilfreich. Man sollte zunächst versuchen, die Hausaufgaben ohne Hilfestellung zu lösen.

2.1 Tipps zu HA 8.1

Aufgabenstellung

Bestimmen Sie die Konstante c so, dass es sich bei $f(x) = \frac{c}{1+x^2}$ um eine Dichte über $\mathbb R$ handelt.

Hinweis: Verwenden Sie die Substitution $x = \tan \phi$ für $\phi \in (-\pi/2, \pi/2)$.

Weiterer Hinweis: \arctan ist Stammfunktion von f.

Tipps

In der Aufgabenstellung ist Vieles unausgesprochen, was zunächst ergänzend überlegt werden muss!

Überlegen Sie, inwiefern man f als Wahrscheinlichkeitsdichte gemäß Definition 12 in Teil II der Vorlesung auffassen kann (siehe Thema):

- f ist eine Abbildung $\Omega:\to\mathbb{R}$ über dem Messraum $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ in den Messraum $(\mathbb{R},\mathcal{B}(\mathbb{R}))$.
- Die Messbarkeit von f ist eine Konsequenz der (Riemann-)Integrierbarkeit von f.

Weitere Eigenschaften einer Dichte:

Nichtnegativität,

Wert des Integrals über den gesamten Definitionsbereich ist 1.

Welchen Wahrscheinlichkeitsraum $(\Omega, \mathcal{B}(\Omega), \Pr)$ kann man mit Hilfe von f nach Satz 13 in Teil II definieren? (siehe Thema)

$$\Pr: \mathcal{B}(\Omega) o \mathbb{R}_0^+ \,, \quad \mathsf{mit} \quad \Pr[A] = \int_A^{(\mathcal{L})} f(x) \, dx \,.$$

Beachten Sie, dass f hier nicht als Dichtefunktion einer Zufallsvariablen betrachtet wird.

Wie könnte eine Zufallsvariable X definiert werden, so dass $f=f_X$ gilt?

Antwort:

Sei X die identische Abbildung von \mathbb{R} (siehe Thema), d.h.

$$X(x) = x$$
 für alle $x \in \Omega = \mathbb{R}$.

2.2 Tipps zu HA 8.2

Aufgabenstellung

Seien Φ bzw. Θ unabhängige ZV mit Φ gleichverteilt auf $[-\pi,\pi)$ bzw. [0,1]. Dann ist durch

$$G(\Phi, \Theta) := \{(x, y) \in \mathbb{R}^2 \mid x \cos \Phi + y \sin \Phi = \Theta\}$$

eine zufällige Gerade im \mathbb{R}^2 beschrieben, wobei Θ den Abstand der Geraden vom Ursprung angibt.

(a) Für ein festes $r \in [0, \infty)$ sei $K_r = \{(x, y) \in \mathbb{R}^2 \mid \sqrt{x^2 + y^2} = r\}$.

Bestimmen Sie die Wahrscheinlichkeit

$$\Pr[G(\Phi,\Theta) \cap K_r \neq \emptyset]$$
.

(b) Für ein festes $\rho \in [0, \pi]$ sei

$$L_{\rho} = \{(\cos \alpha, \sin \alpha) \in \mathbb{R}^2 \mid \alpha \in [-\rho/2, \rho/2)\}.$$

Bestimmen Sie wiederum die Wahrscheinlichkeit

$$\Pr[G(\Phi,\Theta) \cap L_{\rho} \neq \emptyset]$$
.

(Hinweis beachten)

Tipps

Wenn Φ und Θ unabhängige Zufallsvariable sind, dann müssen beide Abbildungen auf einer gemeinsamen Ergebnismenge Ω eines Wahrscheinlichkeitsraums $(\Omega, \mathcal{A}, \Pr)$ definiert sein, mithin die Funktionalität $\Omega \to \mathbb{R}$ haben.

Für
$$\Omega$$
 kommt $[-\pi,\pi) \times [0,1]$ in Frage mit $\Phi((x,y)) = x$ und $\Theta((x,y)) = y$.

 \Pr kann man aufgrund der genannten Unabhängigkeit aus den gegebenen Randdichten von Φ bzw. Θ herleiten.

Das führt zur Gleichverteilung auf der Fläche Ω , wobei $\Pr[A]$ durch das Flächenverhältnis von A zu Ω gegeben ist.

Man beachte, dass sowohl durch

$$G(\Phi,\Theta)\cap K_r\neq\emptyset$$

als auch durch

$$G(\Phi,\Theta) \cap L_{\rho} \neq \emptyset$$

Ereignisse für Punkte $(\phi, \vartheta) \in \Omega$ definiert werden.

- (a) Man bestimme zunächst die Menge
 - $A = \{ (\phi, \vartheta) \mid G(\phi, \vartheta) \cap K_r \neq \emptyset \}.$
 - (siehe Zeichnungen an der Tafel!)
 - In welcher Beziehung steht die Fläche von A zu der gesuchten Wahrscheinlichkeit?
- (b) Der prinzipielle Zugang zur Lösung ist gleich wie in (a). (siehe Zeichnungen an der Tafel!)

2.3 Tipps zu HA 8.3 und 8.4

ad HA 8.3:

(a) Ω hat als Fläche die Gestalt eines gleichseitigen Dreiecks mit Kantenlänge $\sqrt{2}$.

Welche Stücke davon überdeckt A? Flächenmäßiger Anteil?

ad HA 8.4:

Siehe TA 7.3.

