

Projekt Ausarbeitung

Kamerakalibrierung anhand eines Punktgitters

geschrieben von

Vera Brockmeyer (Matrikelnr. 11077082) Artjom Schwabski (Matrikelnr. 11113320)

Weiterführende Themen der Bildverarbeitung in SS 2017

Betreuer:

Prof. Dr. Dietmar Kunz Institute for Media- and Phototechnology

Inhaltsverzeichnis

1	Abs	strakt		3
2	Einleitung			
	2.1	Motiv	ration	. 4
3	Sta	nd der	Wissenschaft	5
	3.1	Kame	rakalibrierung mit Punktraster	. 5
4	Ma	terialie	e n	6
	4.1	Hardy	vare	. 6
	4.2	Softwa	are	. 6
		4.2.1	Klassen	. 6
		4.2.2	ImageJ	. 7
5	Me	thode		8
		5.0.3	Levenberg-Marquard-Approximation	. 8
		5.0.4	Affine Transformation	. 8
		5.0.5	Kamerakalibierung	. 8
6	Auswertung			9
7	Ref	lexion		10
8	Zusammenfassung			

1 ABSTRAKT 3

1 Abstrakt

2 EINLEITUNG 4

2 Einleitung

Vera

2.1 Motivation

Vera

3 Stand der Wissenschaft

???

3.1 Kamerakalibrierung mit Punktraster

4 MATERIALIEN 6

4 Materialien

XXX

4.1 Hardware

4.2 Software

4.2.1 Klassen

Artjom

Im folgenden werden die Methoden der einzelnen Klassen erläutert. Die vollständige UML zur besseren Verständlichkeit der Klassenbeziehungen ist der Abb. 1 zu entnehmen.

point_grid_radial_affin_distor_ Hauptklasse der Anwendung. Implementiert das Interface *PluginFilter* um über ImageJ aufgerufen werden zu können.

Die Klasse besitzt folgende Methoden und deren Funktion:

run	Main-Methode des PlugIns in der die Optimierung aufge-				
	rufen wird				
setup	Konstruktor-Methode des PlugIns in dem die Bildreferenz				
	gespeichert wird				
readData	Liest aus einer in ImageJ geöffneten Textdatei Punkt-Paare				
	ein für Start- und Ziel-Koordinten				
computeDrawRadialTrans	computeDrawRadialTransformation				
drawTargets	Zeichnet Punkte an den übergebenen Ziel-Koordinaten in				
	das übergebene Bild				
computeDrawAffineTransformation					
computeRadius2Center	Berechnet anhand der Parameter den Abstand zum Git-				
	termittelpunkt				
compute_radial_dist_ko	ompute_radial_dist_koefBerechnet mit dem LevenbergMarquadt Optimierer die				
	Koeffizienten der Radialen Verzerrung der übergebenen				
	Punkt und gibt die Koeffizienten zurück				

Tabelle 1: Methoden der point grid radial affin distor Klasse

SimplePair Eine Einfache Klasse zum Speichern der Vorgabe- und Ziel Koordinaten und des Abstandes zum Mittelpunkt.

RadialDistFunction Klasse zum Erzeugen der Funktionen für den Optimierer.

4 MATERIALIEN 7

RadialDistFunction	Konstruktor der Klasse. Es wird ein SimplePoint Array erwartet welcher Koordinaten-Paare für Start- und Ziel-
	Koordinaten enthält.
realTargetPoints	Gibt ein Array aus welches nur die Ziel-Koordinaten ent-
	hält. Dieses wird für den Optimierer benötigt.
retMVF	Funktion zur Modellierung der Radialen Verzerrung für den
	Optimierer. BErechnet zu den Vorgegeben Koeffizienten
	und einer Start-Koordinate die Ziel-Koordinate
retMMF	Jacobi-Matrix-Funktion zur Berechnung der Ableitung
	nach den einzelnen vom Optimierer vorgegebenen Koeffizi-
	enten

Tabelle 2: Methoden der RadialDistFunction Klasse

 ${\bf Abbildung\ 1:\ UML\ Klassendiagramm}$

4.2.2 ImageJ

5 METHODE 8

5 Methode

- ${\bf 5.0.3}\quad {\bf Levenberg\text{-}Marquard\text{-}Approximation}$
- 5.0.4 Affine Transformation
- 5.0.5 Kamerakalibierung

6 AUSWERTUNG 9

6 Auswertung

7 REFLEXION 10

7 Reflexion

Vera

8 Zusammenfassung

Vera