O22. Simple Pendulin 7 ways

Equation to derive:
$$\theta + \theta \sin \theta = 0$$

d) Apply AMB.

$$EM_{10} = \vec{x} \times m\vec{a}$$

 $= \hat{l} \cdot \hat{e} \times (mg \otimes \theta \cdot \hat{e} - mg \sin \theta \cdot \hat{e} - T\hat{e}) = \hat{l} \cdot \hat{e} \times (m(\hat{l} \cdot \hat{\theta} \cdot \hat{e} - \hat{l} \cdot \hat{e} - \hat{e}))$
 $= \frac{1}{2} \cdot \frac$

(conservation =)
$$\frac{d}{dt} \left(EK + Ep \right) = 0$$

 $\frac{d}{dt} \left(EK + Ep \right) = 0$
 $\frac{d}{dt} \left(EK + Ep \right) = 0$

=)
$$\frac{d}{dt} \left(\frac{1}{2} m (l\dot{\Theta})^2 - mgl(\alpha \Theta) = 0 \right)$$

$$\Rightarrow$$
 mið $(\theta + 9 \sin \theta) = 0$

$$\frac{1}{\partial + \frac{9}{1} \sin \theta} = 6$$

$$\int \cos \theta = 0$$

$$=) \left[\frac{\ddot{\Theta} + 9 \sin \Theta = 0}{1} \right] \quad \text{for } \Theta \neq 0$$

g)
$$\chi = E_K - E_P = \frac{1}{2}m(l\dot{\theta})^2 + mg lcos\theta$$

Lagrangian $\frac{d}{dt}(\frac{\partial \dot{x}}{\partial \dot{\theta}}) - \frac{\partial \dot{x}}{\partial \theta} = 0$

=)
$$ml^2\theta + mglsin\theta = 0$$
 -) $\theta + \frac{9}{l}sin\theta = 0$