МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС) INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ **ΓΟCT** 6032— 2017 (ISO 3651-1:1998, ISO 3651-2:1998)

СТАЛИ И СПЛАВЫ КОРРОЗИОННО-СТОЙКИЕ

Методы испытаний на стойкость против межкристаллитной коррозии

(ISO 3651-1:1998, Determination of resistance to intergranular corrosion of stainless steels — Part 1: Austenitic and ferritic-austenitic (duplex) stainless steels — Corrosion test in nitric acid medium by measurement of loss in mass (Huev test). MOD)

(ISO 3651-2:1998, Determination of resistance to intergranular corrosion of stainless steels — Part 2: Ferritic, austenitic and ferritic-austenitic (duplex) stainless steels — Corrosion test in media containing sulfuric acid, MOD)

Издание официальное

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0—2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2015 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 PA3PAБOTAH Межгосударственным техническим комитетом по стандартизации МТК 145 «Методы контроля металлопродукции», Акционерным обществом «Научно-исследовательский и конструкторский институт химического машиностроения» (АО «НИИхиммаш»)
 - 2 ВНЕСЕН Федеральным агентством по технологическому регулированию и метрологии
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 1 июня 2017 г. № 51)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стандартизации
	AM	Минэкономики Республики Армения
Беларусь	BY	Госстандарт Республики Беларусь
Казахстан	KZ	Госстандарт Республики Казахстан
Киргизия	KG	Кыргызстандарт
Россия	RU	Росстандарт
Таджикистан	TJ	Таджикстандарт
Узбекистан	UZ	Узстандарт

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 12.09.2017 г. № 1054-ст межгосударственный стандарт ГОСТ 6032—2017 введен в действие в качестве национального стандарта Российской Федерации с 1 августа 2018 г.
- 5 Настоящий стандарт включает в себя модифицированные основные нормативные положения следующих международных стандартов:
- ISO 3651-1:1998 «Определение стойкости к межкристаллитной коррозии нержавеющих сталей. Часть 1. Аустенитные и аустенито-ферритные (двухфазные) нержавеющие стали. Коррозионные испытания в азотной кислоте путем определения потери массы (испытания по Хью)» («Determination of resistance to intergranular corrosion of stainless steels Part 1: Austenitic and ferritic-austenitic (duplex) stainless steels Corrosion test in nitric acid medium by measurement of loss in mass (Huey test)», MOD) в части сущности метода и подготовки образцов;
- ISO 3651-2:1998 «Определение стойкости к межкристаллитной коррозии нержавеющих сталей. Часть 2. Ферритные, аустенитные и аустенито-ферритные (двухфазные) нержавеющие стали. Коррозионные испытания в средах, содержащих серную кислоту» («Determination of resistance to intergranular corrosion of stainless steels Part 2: Ferritic, austenitic and ferritic-austenitic (duplex) stainless steels Corrosion test in media containing sulfuric acid», MOD) в части компонентов растворов для испытаний, подготовки образцов и оценки стойкости к межкристаллитной коррозии.

Сведения о соответствии ссылочных межгосударственных стандартов международным стандартам, использованным в качестве ссылочных в примененных международных стандартах, приведены в дополнительном приложении ДК

6 B3AMEH FOCT 6032-2003

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

© Стандартинформ, 2017

Содержание

1	Область применения	
2	Нормативные ссылки	
3	Обозначения	
4	Подготовка образцов	
5	Испытание образцов в растворе серной кислоты и сернокислой меди в присутствии металлической	
	меди. Метод АМУ	
6	Испытание образцов в растворе серной кислоты и сернокислой меди в присутствии металлической	
	меди и фтористого натрия или фтористого калия. Метод АМУФ	
7	Испытание образцов в растворе серной кислоты и сернокислой меди в присутствии металлической	
_	меди. Метод AM	
8	Испытание образцов в растворе серной кислоты в присутствии сернокислого окисного железа. Ме-	
_	тод ВУ	
	Испытание образцов в 65 %-ной азотной кислоте. Метод ДУ	
) Протокол испытаний	
	Требования безопасности	
H	риложение ДА (рекомендуемое) Испытание образцов в растворе серной кислоты и цинкового порош-	
_	ка. Метод В	
	риложение ДБ (рекомендуемое) Анодное травление образцов в ингибированной серной кислоте. Метод Б	
_	оиложение ДВ (рекомендуемое) Размеры образцов	
	оиложение дь (рекомендуемое) Размеры образцов	
וייי	риложение ді (рекомендуемое) Реактивы и режимы травления шлифов для выявления межкристал- литной коррозии	
п.	риложение ДД (обязательное) Определение стойкости против межкристаллитной коррозии нержаве-	
' ''	ющих сталей. Аустенитные и аустенито-ферритные (двухфазные) нержавеющие ста-	
	ли. Коррозионные испытания в азотной кислоте путем определения потери массы	
	(испытания по Хью) (ИСО 3651-1:1998)	
Пι	риложение ДЕ (обязательное) Определение стойкости против межкристаллитной коррозии нержаве-	
	ющих сталей. Ферритные, аустенитные и аустенито-ферритные (двухфазные) нержа-	
	веющие стали. Коррозионные испытания в средах, содержащих серную кислоту	
	(ИСО 3651-2:1998)	
	риложение ДЖ (справочное) Перечень сталей, подлежащих контролю указанными методами 29	
ΠΙ	риложение ДИ (справочное) Сравнение метода испытаний настоящего стандарта с международны-	
	ми стандартами	
Π	риложение ДК (справочное) Сведения о соответствии ссылочных межгосударственных стандартов	
	международным стандартам, использованным в качестве ссылочных в примененных	
	международных стандартах	

СТАЛИ И СПЛАВЫ КОРРОЗИОННО-СТОЙКИЕ

Методы испытаний на стойкость против межкристаллитной коррозии

Corrosion-resistant steels and alloys. Test methods of intercrystalline corrosion resistance

Дата введения — 2018—08—01

1 Область применения

Настоящий стандарт устанавливает методы испытаний на стойкость против межкристаллитной коррозии (далее — МКК) металлопродукции из коррозионно-стойких сталей (аустенито-мартенситного, аустенито-ферритного, ферритного, аустенитного классов) и сплавов на железоникелевой основе, в том числе двухслойных, а также их сварных соединений и наплавленного металла.

МКК обусловлена обеднением границ зерен хромом в результате выпадения по границам зерен богатых хромом фаз: карбидов хрома, σ -фазы, интерметаллических включений при выдержке сталей или сплавов при температуре 500 °C—1000 °C.

В зависимости от химического состава стали и сплава и их назначения выбирают один из следующих методов испытаний на стойкость металла против МКК: АМУ, АМУФ, АМ, ВУ, ДУ, В, Б.

Выбор метода испытания определяется химическим составом металла и указаниями в нормативном документе на изготовляемое оборудование.

Методы испытания на стойкость против МКК Б и В, указанные в приложениях ДА и ДБ, являются рекомендуемыми.

Применение методов, приводимых в приложениях ДД и ДЕ, допускается наряду с основными методами испытания на стойкость против МКК настоящего стандарта.

Все вышеуказанные методы не могут быть использованы для определения коррозионной стойкости сталей и сплавов к другим видам коррозии (сплошной, питтинговой, язвенной, коррозионного растрескивания и т. д.).

В условных обозначениях методов АМУ, АМУФ, АМ, ВУ, ДУ, Б, В буквы обозначают:

А, Б, В, Д — буквенное наименование методов;

М — присутствие в растворе для испытаний металлической меди;

Ф — присутствие в растворе для испытаний иона фтора;

У — ускоренные испытания.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 859—2014 Медь. Марки

ГОСТ 1381—73 Уротропин технический. Технические условия

ГОСТ 2789—73 Шероховатость поверхности. Параметры и характеристики

ГОСТ 3118—77 Реактивы. Кислота соляная. Технические условия

ГОСТ 3652—69 Реактивы. Кислота лимонная моногидрат и безводная. Технические условия

ГОСТ 3769—78 Реактивы. Аммоний сернокислый. Технические условия

ГОСТ 3776—78 Реактивы. Хрома (VI) оксид. Технические условия

ГОСТ 4165—78 Реактивы. Медь (II) сернокислая 5-водная. Технические условия

ГОСТ 6032-2017

```
ГОСТ 4204—77 Реактивы. Кислота серная. Технические условия
```

ГОСТ 4461—77 Реактивы. Кислота азотная. Технические условия

ГОСТ 4463—76 Реактивы. Натрий фтористый. Технические условия

ГОСТ 4518—75 Реактивы. Аммоний фтористый. Технические условия

ГОСТ 6552—80 Реактивы. Кислота ортофосфорная. Технические условия

ГОСТ 6709—72 Вода дистиллированная. Технические условия

ГОСТ 6996—66 (ИСО 4136-89, ИСО 5173-81, ИСО 5177-81) Сварные соединения. Методы определения механических свойств

ГОСТ 9485—74 Реактивы. Железо (III) сернокислое 9-водное. Технические условия

ГОСТ 9940—81 Трубы бесшовные горячедеформированные из коррозионно-стойкой стали. Технические условия

ГОСТ 9941—81 Трубы бесшовные холодно- и теплодеформированные из коррозионно-стойкой стали. Технические условия

ГОСТ 11125—84 Кислота азотная особой чистоты. Технические условия

ГОСТ 12601—76 Порошок цинковый. Технические условия

ГОСТ 14019—2003 (ИСО 7438:1985) Материалы металлические. Метод испытания на изгиб

ГОСТ 19347—2014 Купорос медный. Технические условия

ГОСТ 20848—75 Реактивы. Калий фтористый 2-водный. Технические условия

ГОСТ 22180—76 Реактивы. Кислота щавелевая. Технические условия

Применяется в части, не затрагивающей эту ссылку.

3 Обозначения

В настоящем стандарте применены следующие обозначения:

D — наружный диаметр образца, мм;

b — ширина образца, мм;

с — толщина образца, мм;

h — длина трубчатого или цилиндрического образца,мм;

a — длина образца, мм;

 v_k — скорость сплошной коррозии, г/(м 2 ·ч);

 v_k' — скорость сплошной коррозии, мм/год;

 Δm — потеря массы образца, г;

S — поверхность образца, см²;

t — продолжительность испытаний, ч;

 ρ — плотность испытуемой стали, г/см³;

d — внутренний диаметр кольца, мм.

4 Подготовка образцов

4.1 Вырезка заготовок для образцов

Заготовки для образцов вырезают из следующих видов металлопродукции:

- листа толщиной не более 10 мм, ленты и проволоки из любого места в продольном направлении;
- листа толщиной более 10 мм из поверхностных слоев в продольном направлении. Допускается для испытаний методами АМУ, АМУФ, АМ, ВУ и В вырезать заготовки по сечению металла;
- сортового: круглого, квадратного, шестигранного, фасонного проката из осевой зоны в продольном направлении; из других видов проката — из любого места;
 - трубной заготовки из осевой зоны в продольном или поперечном направлении;
 - труб из любого места;
 - поковок из напусков или тела поковки;

- отливок из тела отливки, из приливов или отдельно отлитых образцов;
- наплавленного металла из поверхностных слоев;
- металла шва из осевой зоны в продольном или поперечном направлении.

Допускается отбор заготовок для образцов проводить из промежуточной передельной заготовки при условии последующей аустенизации и провоцирующего нагрева или аустенизации без провоцирующего нагрева, изготовляемых из нее образцов.

Размеры заготовок под образцы должны быть достаточными для изготовления требуемого количества образцов.

4.2 Изготовление образцов из заготовок

Образцы изготавливают из следующих видов металлопродукции:

- из листа, ленты, сортового и фасонного проката, трубной заготовки, поковок, отливок, металла шва, наплавленного металла плоские (таблица 1);
- из проволоки и сортового проката диаметром или толщиной не более 10 мм в исходном сечении.

Допускается изготовление цилиндрических образцов для испытания по методу ДУ — из всех видов металлопродукции:

- из труб — сегменты, кольца ($D \ge h$), патрубки (D < h) (таблица 1).

Таблица 1 — Образцы для испытаний

Вид	H	Сварной образец			
образца	Несварной образец	Тип 1	Тип 2		
Плос- кий	Направление проката	b a			
Патру- бок	200	c ØD	SD N		
Кольцо	ØD c	©D C	ØD c		

FOCT 6032-2017

Окончание таблицы 1

Вид		Сварной образец			
образца	Несварной образец	Тип 1	Тип 2		
Сег- мент	2	a de la constantia del constantia del constantia del constantia del constantia del constant			
Ци- линдр	<u>∞</u> 0	_	_		

Обозначения: \varnothing *D* — наружный диаметр образца; *b* — ширина образца; *c* — толщина образца; *h* — длина трубчатого или цилиндрического образца, высота образца или патрубка; *a* — длина образца.

Примечания

- 1 ¹Из наплавленного металла и металла шва изготавливают образцы, аналогичные плоскому несварному образцу.
- 2 При проведении испытаний методом А (приложение ДЕ) рекомендуется использовать образцы указанных типов, в том числе сегментов, патрубков, при испытании труб диаметром до 60 мм.

Допускается изготавливать плоские образцы из толстостенных труб большого диаметра, а также из труб толщиной стенки не более 1,5 мм путем сплющивания кольца или патрубка с последующей обрезкой сторон или путем развертки кольца или патрубка с последующим выпрямлением. В патрубках номинальным наружным диаметром не более 10 мм допускается удалять на 1/2 окружности стенку патрубка с одного из его концов или в средней части на 1/2 длины патрубка (таблица 1) при испытании всеми методами, кроме ДУ:

 из двухслойного проката и биметаллических труб — такие же, как из листового проката и труб соответственно.

Образцы изготавливают из плакирующего слоя после удаления механической обработкой основного и переходного слоев, а для испытания методом ДУ дополнительно удаляется и плакирующий слой на глубину не менее 0,5 мм со стороны, примыкающей к основному слою. Полноту удаления металла основного слоя определяют, выдерживая образец 3—5 мин при комнатной температуре в растворе по 4.2.2.

Требуемая толщина образцов из заготовок достигается механической обработкой:

- из листа одной из поверхностей, при наличии обработанной поверхности металл удаляют с этой поверхности;
 - из сортового и фасонного проката, поковок, отливок, трубной заготовки любой из поверхностей;
 - из тепло- и холоднодеформированных труб наружной поверхности;
 - из горячедеформированных труб одной или обеих поверхностей;
 - из наплавленного металла со стороны, обратной верхним валикам поверхности;
 - из металла шва со стороны корня шва.

При наличии данных относительно условий работы изделия удаление металла проводят со стороны, не соприкасающейся с рабочей средой.

4.3 Изготовление образцов из сварных стыковых соединений

Из сварных стыковых соединений изготавливают образцы следующих видов (таблица 1):

- из сварных соединений листа, сортового и фасонного проката, отливок и поковок плоские образцы типа 1 или 2;
 - из электросварных труб сегменты (тип 2) со сварным швом в центре, патрубки, кольца;
 - из кольцевых сварных соединений труб патрубки, кольца, сегменты типа 1;
- из сварных соединений двухслойных сталей после удаления основного и переходных слоев металла такие же, как из сварных соединений листа или труб.

Методами АМУ, АМУФ, АМ, ВУ, В испытывают сварные образцы типов 1 и 2, методом ДУ — образпы типа 2

В сварных образцах типов 1 и 2 усиление сварного шва удаляют механическим способом, при этом допускается обработка всей поверхности образца на глубину не более 1 мм, а для тонкостенных образцов — на глубину не более 0,1 мм.

Доводят сварное стыковое соединение или сварной образец до требуемой толщины путем механического удаления металла с поверхности, которая не соприкасается с коррозионной средой; при отсутствии данных — со стороны поверхности, на которой металл шва или наплавленный металл подвергается наименьшему нагреву при сварке.

Доведение до требуемой толщины сварных образцов из труб — по 4.2.

Нестыковые сварные соединения контролируют на стойкость против МКК на образцах, отобранных из стыковых контрольных соединений в соответствии с конструкторской документацией.

Покрытые электроды, сварочную проволоку и наплавочную ленту контролируют в соответствии с нормативными документами на их изготовление или другой руководящей документацией на изготовление изделий, где требуются испытания на стойкость против МКК.

Наплавленный металл испытывают на плоских образцах (таблица 1), вырезанных из верхних слоев многослойной наплавки или металла сварного шва, выполненного по ГОСТ 6996 контролируемыми сварочными материалами (нижние неиспользуемые слои наплавки допускается выполнять другими присадочными материалами аналогичного химического состава).

4.4 Размеры образцов для испытаний

Размеры образцов для испытаний методами АМУ, АМУФ, АМ, ВУ, В должны обеспечивать возможность:

- изгиба на угол $90^{\circ}\pm5^{\circ}$ плоского образца, сегмента, цилиндра или патрубка диаметром до 10 мм, проволоки;
 - сплющивания кольца;
- осмотра поверхности изгиба на участке, ширина которого позволяет выявить межкристаллитные трещины с учетом возможного влияния кромок.

Образцы для испытания методом ДУ должны удовлетворять следующим требованиям:

- наибольший размер образца должен быть в направлении проката;
- длина плоского образца, сегмента (*a*) или длина цилиндра и высота патрубка (*h*) должны быть не меньше двойной ширины или диаметра;
- площадь меньших боковых поверхностей для плоского образца и сегмента или площадь торцов для кольца, патрубка, цилиндра должна составлять не более 15 % общей поверхности образца.

Рекомендуемые размеры всех указанных видов образцов для испытаний приведены в приложении ДВ.

4.5 Количество образцов

Для испытания методами АМУ, АМУФ, АМ, ВУ, В изготавливают по четыре образца из основного и наплавленного металла и металла шва, два из которых являются контрольными.

Сварные образцы:

- типа 1 (таблица 1) изготавливаются в количестве 8 шт., четыре из которых являются контрольными;
 - типа 2 (таблица 1) в количестве 4 шт., два из которых являются контрольными.

В случае наличия данных по входному контролю (верификации) основного металла допускается из сварных соединений изготавливать четыре образца, при этом в протоколе испытаний необходимо указать, что проводился контроль основного металла.

Контрольные образцы не подвергают воздействию растворов. Они предназначены для определения реакции металла на изгиб без воздействия среды.

Допускается для металлопродукции из аустенитных сталей изготавливать два образца (без контрольных образцов).

FOCT 6032-2017

При отрицательных результатах или в сомнительных случаях производятся повторные испытания с контрольными образцами.

4.6 Провоцирующий нагрев

Стабилизированные стали и сплавы (содержащие титан и/или ниобий) и нестабилизированные стали и сплавы с содержанием углерода не более 0.03 %, поставляемые:

- в термически обработанном состоянии испытывают на образцах, изготовленных из заготовок, подвергнутых провоцирующему нагреву по режиму, указанному в таблице 2;
- без термической обработки испытывают на образцах, изготовленных из заготовок, подвергнутых термической обработке по режиму, указанному в нормативно-технической документации, а затем провоцирующему нагреву по режиму, указанному в таблице 2.

Допускается подвергать провоцирующему нагреву образцы. Образцы перед загрузкой в печь обезжириваются.

При разногласии между потребителем и изготовителем провоцирующему нагреву подвергают заготовки.

Допускается по согласованию потребителя с изготовителем проводить провоцирующий нагрев при других режимах.

Нестабилизированные стали (не содержащие титан и<mark>ли ниобий) с содержанием углерода более</mark> 0.03 %, поставляемые:

- без термической обработки испытываются на образцах, подвергнутых термической обработке по режиму, указанному в нормативно-технической документации, без провоцирующего нагрева, если нет дополнительных указаний в нормативных документах на металлопродукцию;
- в термически обработанном состоянии испытываются на образцах в состоянии поставки без провоцирующего нагрева, если нет дополнительных указаний в нормативных документах на металлопродукцию.

Таблица 2

	Режим і		
Марка стали или сплава	Температу ра , °С	Продолжительность выдержки, мин	Среда охлаждения
08X17T, 15X25T, 01-015X18T-ВИ, 01X18M2T-ВИ, 01X25ТБЮ-ВИ	1100 ± 20	30 ± 5	Вода
08X22H6T, 08X21H6M2T, 08X18F8H2T, 03X24H6AM3	550 ± 10	60 ± 5	Воздух
03ХН28МДТ, ХН30МДБ, 03Х21Н21М4ГБ	700 ± 10	60 ± 5	Воздух
06ХН28МДТ	700 ± 10	20 ± 5	Воздух
Все остальные стабилизированные и нестабилизированные стали с содержанием углерода не более 0,030 %**	650 ± 10	60 ± 5	Воздух

^{*} Предварительно обезжиренные заготовки загружают в печь, нагретую до температуры провоцирующего нагрева.

В случае применения металлопродукции после термообработки, отличающейся от состояния поставки, испытания проводят на образцах, изготовленных из заготовок, подвергнутых такой же термообработке и дополнительному провоцирующему нагреву.

Стали и сплавы, подвергнутые повторной термообработке, отличной от провоцирующего нагрева, рассматривают как новую партию металла.

Сварные соединения, наплавленный металл и металл шва провоцирующему нагреву не подвергают.

Стали, применяемые в нагартованном или полунагартованном состоянии, испытывают на образцах без провоцирующего нагрева. Это же относится к сталям, которые при изготовлении аппарата не будут подвергаться сварке.

^{**} При отсутствии иных требований потребителя стали марок 03X17H14M3, 03X24H6AM3, 02X25H22AM2, 03X22H6M2 испытывают методом ДУ на образцах без дополнительного провоцирующего нагрева, сталь марки 03X23H6 — на образцах после закалки и последующего отпуска при температуре 550 °C, выдержка — 60 мин.

Допускается вместо испытания образцов с провоцирующим нагревом испытывать стали и сплавы на сварных образцах.

При контроле сварных соединений для оборудования, которое в процессе изготовления подвергают термической обработке, испытания проводят на сварных образцах, подвергнутых такой же термической обработке.

4.7 Подготовка образцов к испытаниям

При испытании методами АМУ, АМУФ, АМ, ВУ, В окалина, образовавшаяся на поверхности образцов после сварки и термической обработки, включающей провоцирующий нагрев, до шлифовки или полировки должна быть удалена химическим или электрохимическим травлением или механической обработкой (строжкой, точением) на глубину не более 1,0 мм (на сторону), а для тонкостенных деталей толщиной до 1,5 мм — на глубину не более 0,1 мм (на сторону). При испытании методом ДУ окалину удаляют химическим травлением или механическим способом на глубину не более 1,0 мм.

Химическое травление образцов из сталей аустенитного, аустенито-ферритного и аустенито-мартенситного классов, а также сплавов на железоникелевой основе проводят при температуре (20 ± 5) °C в растворе:

```
азотная кислота по ГОСТ 4461 плотностью 1,35 г/см^3 — (620 \pm 3) см^3; аммоний фтористый по ГОСТ 4518 — (76 \pm 0,1) г; вода по ГОСТ 6709 (300 \pm 3) см^3.
```

Химическое травление сталей ферритного класса проводят при температуре 50 °C—60 °C в растворе:

```
соляная кислота по ГОСТ 3118 плотностью 1,19 г/см<sup>3</sup> — (50 \pm 1) см<sup>3</sup>; азотная кислота по ГОСТ 4461 плотностью 1,35 г/см<sup>3</sup> — (5,0 \pm 0,1) см<sup>3</sup>; вода по ГОСТ 6709 — (50 \pm 1) см<sup>3</sup>.
```

Травление всех вышеуказанных сталей и сплавов проводят электрохимическим методом при температуре $40 \, ^{\circ}\text{C}$ — $50 \, ^{\circ}\text{C}$ и плотности тока $(0.5 - 0.6) \, 10^4 \, \text{A/m}^2$ в растворе:

```
ортофосфорная кислота по ГОСТ 6552 плотностью 1,68 г/см<sup>3</sup> — (34 \pm 1) см<sup>3</sup>; азотная кислота по ГОСТ 4461 плотностью 1,35 г/см<sup>3</sup> — (11 \pm 1) см<sup>3</sup>; вода по ГОСТ 6709 — (955 \pm 3) см<sup>3</sup>.
```

Образцы травят до полного удаления окалины. После травления образцы тщательно промывают водой. На образцах после травления не должно наблюдаться растравливание границ зерен и/или точечной коррозии.

Допускается проводить химическое травление в других растворах и при других режимах, обеспечивающих полное удаление окалины.

При разногласиях в результатах испытаний травление проводят только в растворах, перечисленных выше.

Шероховатость поверхности образцов *Ra* перед испытанием должна быть не более 0,8 мкм по ГОСТ 2789. До указанной шероховатости доводят поверхности, контролируемые при изгибе образцов, испытываемых по методам АМУ, АМУФ, АМ, ВУ, В, и всю поверхность образцов, испытываемых по методу ДУ. Требуемая шероховатость поверхности достигается полированием и/или шлифованием, при этом перегрев поверхности не допускается.

Перед испытанием образцы маркируют ударным клеймом или электрокарандашом (на хрупких материалах) на одном или двух концах образцов на расстоянии 5—10 мм от торца и обезжиривают органическими растворителями: ацетоном, этанолом и др.

5 Испытание образцов в растворе серной кислоты и сернокислой меди в присутствии металлической меди. Метод АМУ

5.1 Сущность метода

Образцы сталей выдерживают в кипящем водном растворе сернокислой меди и серной кислоты в присутствии металлической меди (стружка или проволока).

Метод применяют для контроля сталей:

- ферритного класса марок 08X17T, 15X25T, 01-015X18T-BИ, 01X18M2T-BИ, 01X25TБЮ-ВИ, 15X28-ВИ;
- аустенито-ферритного класса марок 08X22H6T, 08X21H6M2T, 03X22H6M2, 02X24H6M2, 03X23H6:
- аустенитного класса марок 09X16H15M3Б; 03X16H15M3Б, 10X17H13M2T, 10X17H13M3T, 08X17H13M2T, 08X17H15M3T, 12X18H9, 12X18H9T, 04X18H10, 08X18H10, 08X18H10T, 12X18H10T,

12X18H10E, 06X18H11, 03X18H11, 02X18H11, 03X18H12, 08X18H12T, 12X18H12T, 08X18H12Б, 03X17H14M3.

Примечания

- 1 Для указанных выше сталей может быть применен метод A, приложение ДE, продолжительность испытаний 24 ч, или метод AM, продолжительность испытаний 24 ч.
- 2 Стали аустенито-мартенситного класса марок 20X13H4Г9, 09X15H8Ю1, 07X16H6, 09X17H7Ю, 09X17H7Ю1, 08X17H5М3, аустенито-ферритного класса марки 08X18Г8H2T и стали аустенитного класса марок 10X14Г14H3, 10X14Г14H4T, 10X14АГ15, 07X21Г7АH5, 12X17Г9АH4 и 10X13Г12БС2H2Д2 следует испытывать методом A, приложение ДЕ, продолжительность испытаний 15 ч, или методом AM, продолжительность 15 ч.

5.2 Реактивы и растворы

5.2.1 Для проведения испытаний применяют следующие реактивы:

медь сернокислую (CuSO $_4$ · 5H $_2$ O) по ГОСТ 4165, х. ч. или ч. д. а., или медный купорос по ГОСТ 19347, х. ч.;

кислоту серную по ГОСТ 4204 плотностью 1,83 г/см 3 , ч. д. а. или х. ч.; воду дистиллированную по ГОСТ 6709;

медь в виде стружки или проволоки с химическим составом по ГОСТ 859;

кислоту соляную по ГОСТ 3118 плотностью 1,19 г/см³, ч. д. а. или х. ч.;

кислоту азотную по ГОСТ 4461 плотностью 1,40 г/см³, ч. д. а. или х. ч.

5.2.2 Раствор для испытания

K (1000 \pm 3) см³ воды добавляют сернокислую медь (50 \pm 0,1) г, небольшими порциями серную кислоту (250 \pm 3) см³.

5.3 Проведение испытаний

5.3.1 Испытания проводят в стеклянной колбе с обратным холодильником.

Допускается загрузка образцов одной и той же марки стали в несколько рядов при условии, что ряды образцов, между которыми должна находиться медная стружка (проволока), не будут соприкасаться друг с другом.

Загрузка образцов различных марок сталей в одну и ту же колбу не допускается.

На дно реакционного сосуда насыпают слой медной стружки, поверх которой загружают образцы. Количество стружки должно обеспечивать всесторонний контакт стружки с образцами и отсутствие контакта между образцами. Допускается обматывать образцы медной проволокой.

Допускается проведение испытаний в бачках с крышками, снабженными обратными холодильниками. Для испытания образцов из хромистых и хромоникелевых сталей следует применять бачки, изготовленные из коррозионно-стойких низкоуглеродистых или стабилизированных хромоникелевых сталей, для испытания образцов из хромоникельмолибденовых сталей — бачки из коррозионно-стойких низкоуглеродистых или стабилизированных хромоникельмолибденовых сталей.

Количество раствора для испытаний должно составлять 4—8 см 3 на 1 см 2 поверхности образца. Уровень раствора должен быть не менее чем на 1,0—1,5 см выше поверхности образцов и слоя стружки (проволоки).

Реакционный сосуд с раствором и образцами для испытания нагревают и непрерывно кипятят, не допуская нагрева холодильника.

- 5.3.2 Продолжительность выдержки в кипящем растворе $(8,00 \pm 0,25)$ ч.
- 5.3.3 При вынужденном перерыве в испытаниях, при условии отсутствия испарения раствора, образцы могут оставаться в растворе до 48 ч.

Продолжительность испытаний определяют как суммарное количество часов кипения.

- 5.3.4 После выдержки в растворе образцы промывают водой и просушивают. При отложении на образцах слоя меди, не смываемого струей воды, его удаляют, промывая образцы в 20 %—30 %-ном растворе азотной кислоты при температуре 20 °C—25 °C.
- 5.3.5 Допускается многократное использование раствора для испытаний при условии сохранения его цвета, за исключением испытаний, проводимых при разногласиях.
- 5.3.6 Медную стружку (проволоку) используют неоднократно. В случае потемнения стружки (проволоки) при хранении ее промывают до осветления 20 %— 30 %-ным раствором азотной кислоты, а затем водой.

5.4 Обнаружение МКК

5.4.1~ По окончании испытаний для обнаружения МКК образцы изгибают на угол $90^{\circ}\pm5^{\circ}$ по ГОСТ 14019.

Радиус закругления оправки выбирают в зависимости от толщины образцов, класса стали и вида металлопродукции, из которой изготовлены образцы (таблица 3).

Если неизвестно, какая поверхность листа, из которого вырезан образец, является рабочей в действующем оборудовании, а также для обнаружения МКК, вызванной наличием науглероженного слоя на поверхности образца, проверяют обе поверхности, изгибая образец Z-образно. При невозможности Z-образного изгиба образца проводят изгиб двойного количества образцов: одну половину изгибают по одной из поверхностей, вторую — по другой.

Таблица 3

В миллиметрах

Вид металлопродукции и изделий	Аустенитные стали и спла- вы		Аустенитно-ферритные стали		Аустенитно-мартенситные, мартенситно-ферритные и ферритные стали	
из нее	Толщина образца	Радиус оправки	Толщина образца	Радиус оправки	Толщина образца	Радиус оправки
Лист, сортовой прокат, трубная заготовка, поковки, трубы	1,0 и менее	1,0	1,0 и менее	3,0	1,0 и менее	3,0
	Более 1,0	Не более толщины образца	Более 1,0	Не более трех толщин образца	Более 1,0	Не менее трех толщин образца
Отливки, сварные соединения, наплавленный металл, металл	1,0 и менее	2,0	1,0 и менее	3,0	1,0 и менее	3,0
шва	Более 1,0	Не более двух толщин	От 1,0 до 3,0 включ.	Не более трех толщин образца	От 1,0 до 5,0 включ.	Не менее трех толщин
		образца	Более 3,0	10		образца

При разногласиях в оценке наличия трещин на изогнутых образцах, т.е. в случае, когда на одном из параллельных образцов обнаружены трещины, а на другом — нет, или когда один исследователь видит трещины, а другой — нет, следует провести металлографическое исследование двух испытанных образцов. При обнаружении МКК только на одном из испытанных образцов испытания следует повторить на двойном количестве образцов.

5.4.2 Специфика обнаружения МКК в образцах

Образцы из труб:

- в образцах бесшовных труб при наличии требования контроля обеих поверхностей образец изгибают Z-образно;
- наружную поверхность патрубков, вырезанных из бесшовных труб наружным диаметром не более 10 мм, контролируют изгибом, а внутреннюю поверхность металлографическим методом или удалением части стенки патрубка (в соответствии с таблицей 1) и изгибом оставшейся части патрубка;
- кольца и патрубки, изготовленные из бесшовных труб по ГОСТ 9940 и ГОСТ 9941 диаметром более 8 мм, контролируют сплющиванием путем сближения сжимаемых плоскостей до расстояния H, мм, рассчитываемого по формуле

$$H = \frac{1,08DS}{0,08D + S'}$$
 (1)

где *D* — наружный диаметр трубы, мм;

S — толщина стенки трубы, мм.

При сплющивании образцов аустенито-ферритных или ферритных сталей расстояние H, мм, определяют по формуле

$$H = 0.5D + 2S.$$
 (2)

Внутреннюю поверхность колец и патрубков контролируют металлографическим методом. Допускается для аустенитных сталей контроль внутренней поверхности колец осуществлять отбортовкой до диаметра, определяемого по формуле

$$D_{\text{OTF}} \ge 1.5S + d,\tag{3}$$

где d — внутренний диаметр кольца, мм.

Сварные образцы после испытаний в растворе изгибают:

- тип 1 (таблица 1): два образца — по сварному шву, два образца — по зоне термического влияния при контроле сварного соединения в целом.

Два образца— по сварному шву при контроле металла шва, два образца— по зоне термического влияния при контроле основного металла стали или сплава;

- тип 2 (таблица 1): два образца — перпендикулярно к сварному шву при контроле металла шва, зоны термического влияния и сварного соединения в целом; в случае необходимости контроля обеих сторон образцы изгибают *Z*-образно.

В случае, когда затруднено выявление металла шва на сварных образцах, их следует протравить при комнатной температуре в течение 1—3 мин. Раствор для выявления сварных швов: в (20 ± 1) см³ воды растворяют сернокислую медь $(4\pm0,1)$ г и добавляют соляную кислоту плотностью 1,19 г/см³, объемом (20 ± 1) см³.

Изгиб проводят таким образом, чтобы сварной шов, обращенный к рабочей среде, находился на внешней стороне образца. Если неизвестна сторона шва, обращенная к рабочей среде, то на внешней стороне образца должен находиться шов, подвергавшийся максимальному числу нагревов.

Образцы в виде колец и патрубков с продольным или кольцевым швом сплющивают в соответствии с 5.4.2. Сплющивание проводят в соответствии с ГОСТ 6996, кольцевой шов следует располагать по оси приложения сжимающей нагрузки, а продольный — в диаметральной плоскости, перпендикулярной к действию сжимающей нагрузки.

5.5 Оценка результатов испытаний на МКК

5.5.1 Определение наличия МКК с помощью изгиба образца

Осмотр изогнутых образцов проводят с помощью лупы при увеличении 7—12 крат.

Отсутствие трещин на образцах, изогнутых после испытания, за исключением продольных трещин и трещин непосредственно на кромках, свидетельствует о стойкости стали или сплава против МКК.

Наличие трещин на образцах, изогнутых после испытания, и отсутствие трещин на изогнутых таким же образом контрольных образцах свидетельствует о склонности стали к МКК.

Если при изгибе контрольные образцы ломаются или на них обнаруживают трещины, следует провести металлографические исследования образцов после испытания.

5.5.2 Металлографический метод определения МКК

Для выявления МКК металлографическим методом из неизогнутого участка образца, прошедшего испытания, вырезают шлиф таким образом, чтобы плоскость реза была перпендикулярна к контролируемой поверхности образца. При вырезании шлифа из сварного образца линия реза должна проходить перпендикулярно к сварному шву и плоскость реза должна включать металл шва, зону термического влияния и основной металл.

Рекомендуемая длина шлифа по контролируемой поверхности должна быть не менее 15—20 мм. Плоскость реза должна быть плоскостью шлифа.

Способ изготовления шлифа должен обеспечить отсутствие завала кромок и заусенцев.

Наличие и глубину МКК устанавливают на протравленных шлифах при увеличении не менее 200 крат.

Травление проводят лишь до слабого выявления границ зерен.

Реактивы и режимы травления шлифов для выявления МКК приведены в приложении ДГ.

Шлиф просматривают со стороны контролируемой поверхности образца.

Определяют максимальную глубину разрушения, выявленную в шести полях зрения. В эти поля зрения должны быть включены участки с наибольшей глубиной МКК.

Признаком стойкости против МКК при металлографическом контроле считают разрушение границ зерен на максимальную глубину не более 30 мкм, в образцах из металлопродукции толщиной менее 1,5 мм — на глубину не более 10 мкм, если нет других указаний в нормативных документах на металлопродукцию и изделия из нее.

6 Испытание образцов в растворе серной кислоты и сернокислой меди в присутствии металлической меди и фтористого натрия или фтористого калия. Метод АМУФ

6.1 Сущность метода

Образцы стали выдерживают при температуре 20 °C—30 °C в водном растворе сернокислой меди, серной кислоты, фтористого натрия или калия в присутствии металлической меди. Метод применяют для контроля сталей марок по 5.1, за исключением марок сталей, указанных в примечании к 5.1.

Метод является ускоренным по сравнению с методами АМУ и АМ.

В случае разногласий в оценке качества металла испытания проводят методом АМУ или АМ.

6.2 Реактивы и растворы

6.2.1 Для проведения испытаний применяют реактивы по 5.2.1 с дополнениями:

фтористый натрий по ГОСТ 4463, ч. д. а. или х. ч.;

фтористый калий по ГОСТ 20848, ч. д. а. или х. ч.

6.2.2 Раствор для испытаний: в (1000 ± 3) см 3 воды растворяют $(50\pm0,1)$ г сернокислой меди, $(128,0\pm0,1)$ г фтористого натрия, затем небольшими порциями (для предотвращения разогрева раствора) добавляют (250 ± 1) см 3 серной кислоты. Допускается вместо фтористого натрия добавлять $(177,0\pm0,1)$ г фтористый калий.

Приготовление и хранение раствора следует проводить в полиэтиленовой посуде.

6.3 Проведение испытаний и оценка результатов

6.3.1 Всю подготовительную работу и испытания проводят в вытяжном шкафу в полиэтиленовом сосуде.

На дно реакционного сосуда насыпают слой медной стружки, на поверхность которой загружают образцы, и заполняют сосуд раствором для испытаний в количестве 8 cm^3 на 1 cm^2 поверхности образца на 1.0-1.5 cm выше поверхности образцов или слоя медной стружки и затем закрывают его крышкой.

- 6.3.2 Продолжительность испытаний для сталей без молибдена (2.0 ± 0.1) ч, содержащих молибден (3.0 ± 0.1) ч.
- 6.3.3 После выдержки в растворе образцы промывают водой и просушивают. При отложении на образцах слоя меди, не смываемого струей воды, его удаляют, промывая образцы в 20—30 %-ном растворе азотной кислоты при температуре 20 °C—25 °C.
 - 6.3.4 Допускается многократное использование раствора и металлической меди по 5.3.5, 5.3.6.
 - 6.3.5 Обнаружение МКК и оценку результатов испытаний проводят в соответствии с 5.4 и 5.5.

Осмотр изогнутых образцов допускается проводить с помощью лупы при увеличении в 7—12 крат.

7 Испытание образцов в растворе серной кислоты и сернокислой меди в присутствии металлической меди. Метод АМ

7.1 Сущность метода

Образцы стали выдерживают в кипящем водном растворе сернокислой меди и серной кислоты в присутствии металлической меди.

Метод применяется для контроля сталей и сплавов марок по п. 5.1.

7.2 Реактивы и растворы

7.2.1 Для проведения испытаний применяют следующие реактивы:

медь сернокислую (CuSO $_4\cdot 5H_2O$) по ГОСТ 4165, ч. д. а. или х. ч., или медный купорос по ГОСТ 19347;

кислоту серную по ГОСТ 4204 плотностью 1,83 г/см³, ч. д. а. или х. ч.;

кислоту соляную по ГОСТ 3118 плотностью 1,19 г/см³, ч. д. а. или х. ч.;

кислоту азотную по ГОСТ 4461 плотностью 1,41 г/см³, ч. д. а. или х. ч., раствор с массовой долей 20—30 %;

воду дистиллированную по ГОСТ 6709;

медь по ГОСТ 859 в виде стружки, проволоки или пластин.

7.2.2 Раствор для испытания

В воду объемом (1000 ± 3) см 3 добавляют сернокислую медь массой ($130\pm0,1$) г, затем небольшими порциями добавляют серную кислоту объемом (120 ± 3) см 3 .

- 7.2.3 Раствор для повторных испытаний: в воду объемом (1000 ± 3) см 3 добавляют сернокислую медь массой 110—160 г, а затем небольшими порциями добавляют серную кислоту объемом (100 ± 3) см 3 .
- 7.2.4 Раствор для выявления границ сварных швов: в воде объемом (20 ± 3) см³ растворяют сернокислую медь массой ($4,0 \pm 0,1$) г и добавляют соляную кислоту объемом (20 ± 1) см³.

7.3 Проведение испытаний и оценка результатов

- 7.3.1 Испытание проводят в стеклянной колбе с обратным холодильником или в бачке из коррозионно-стойкой стабилизированной хромоникелевой стали с крышкой, снабженной обратным холодильником. На дно реакционного сосуда насыпают слой медной стружки, поверх которой загружают образцы. Допускается:
- вместо медной стружки использовать медную проволоку с химическим составом по ГОСТ 859 (без лаковой пленки и защитной фторопластовой оболочки, предварительно обработанную раствором азотной кислоты. Проволока, как и стружка, пригодна для многократного использования) или ребристые медные пластины (со сквозными отверстиями диаметром 5—7 мм) на подвеске при условии их надежного (сверху и снизу) контакта с образцами, хорошего омывания образцов раствором и удаления продуктов коррозии. При разногласиях в оценке качества металла испытания проводят в присутствии медной стружки;
- загружать образцы в несколько рядов при условии всестороннего контакта с медной стружкой (медной проволокой) или двухстороннего контакта с медными пластинами;
 - совместная загрузка следующих сталей по следующим группам:

08X17T, 15X25T;

09X15H8Ю1, 07X16H6, 09X17H7Ю1, 08X17H5M3, 09X17H7Ю;

08X22H6T, 08X18F8H2T, 08X21H6M2T;

10X14F14H3, 10X14F14H4T, 10X14AF15, 12X17F9AH4; 07X21F7AH5;

12X18H9, 12X18H9T, 04X18H10, 08X18H10, 08X18H10T, 12X18H10T;

12X18H10E, 06X18H11, 08X18H12T, 12X18H12T, 08X18H12E;

09X16H15M35, 08X17H13M2T, 10X17H13M2T, 10X17H13M3T, 08X17H15M3T.

Реакционный сосуд заполняют раствором для испытания не менее чем на 2,0 см выше поверхности стружки (проволоки или пластин) и непрерывно кипятят. Нельзя допускать нагрева холодильника.

7.3.2 Продолжительность выдержки в кипящем растворе — (24,00 \pm 0,25) ч.

При вынужденном перерыве испытания образцы из раствора не извлекают, при условии отсутствия испарения раствора, образцы могут оставаться в растворе до 48 ч. Продолжительность испытания подсчитывается как суммарное количество часов испытания при кипении.

Для сталей марок 20X13H4Г9, 10X14Г14H3, 10X14Г14H4T, 10X14АГ15, 10X13Г12БС2H2Д2, 08X17H5M3, 09X15H8Ю1, 07X16H6, 09X17H7Ю, 09X17H7Ю1, 07X21Г7АH5, 12X17Г9АH4, 08X18Г8H2T продолжительность выдержки в растворе должна составлять (15,00 \pm 0,25) ч.

- 7.3.3 После выдержки в растворе образцы промывают водой и просушивают. При отложении на образцах слоя меди, не смываемого струей воды, его удаляют, промывая образцы в 20—30 %-ном растворе азотной кислоты при температуре 20 °C—25 °C.
- 7.3.4 При разногласиях в оценке результатов испытания проводят в стеклянной колбе непрерывно. При этом объем раствора должен быть не менее 10 см³ на 1 см² поверхности образца.
- 7.3.5 Допускается многократное использование раствора и медной стружки (проволоки или пластин) по 5.3.5, 5.3.6.
 - 7.3.6 Обнаружение МКК и оценку результатов испытаний проводят в соответствии с 5.4 и 5.5.

8 Испытание образцов в растворе серной кислоты в присутствии сернокислого окисного железа. Метод ВУ

8.1 Сущность метода

Образцы стали или сплава выдерживают в кипящем водном растворе сернокислого окисного железа и серной кислоты.

Метод применяют для контроля стали марок 03X21H21M4ГБ, 03X24H6AM3 и сплавов на железоникелевой основе марок: 06XH28MДT,03XH28MДT и XH30MДБ.

8.2 Реактивы и растворы

Кислота серная по ГОСТ 4204 плотностью 1,83 г/см³, ч. д. а. или х. ч. Железо (III) сернокислое [Fe $_2$ (SO $_4$) $_3 \cdot$ 9H $_2$ O] по ГОСТ 9485, ч. д. а. или х. ч.

Вода дистиллированная по ГОСТ 6709.

Из серной кислоты плотностью 1,83 г/см 3 готовят раствор массовой долей (50,0 \pm 0,2) %, плотностью 1,395 г/см 3 .

8.3 Проведение испытаний и оценка результатов

8.3.1 Испытания проводят в стеклянной колбе, снабженной обратным холодильником.

На дно реакционного сосуда укладывают бусы, стеклянные трубки или фарфоровые лодочки, поверх которых помещают образцы.

В фарфоровой ступке растирают сернокислое железо до порошка из расчета 40 г на 1000 см³ раствора серной кислоты плотностью 1,395 г/см³. Полученный порошок высыпают в колбу с образцами и заливают его холодным раствором серной кислоты.

Количество раствора — не менее 8 cm^3 на 1 cm^2 поверхности образца. Уровень раствора должен быть на 1,0—1,5 см выше поверхности образцов.

Совместная загрузка в колбу образцов сталей и сплавов различных марок не допускается.

- 8.3.2 Продолжительность выдержки в кипящем растворе должна составлять (48,0 \pm 0,25) ч.
- 8.3.3 Кипячение проводят непрерывно, не допуская нагрева холодильника.

При вынужденном перерыве в испытаниях образцы могут оставаться в растворе не более 8 ч. Продолжительность испытаний подсчитывают как суммарное количество часов при кипении.

8.3.4 Обнаружение МКК и оценку результатов испытаний проводят в соответствии с 5.4 и 5.5.

9 Испытание образцов в 65 %-ной азотной кислоте. Метод ДУ

9.1 Сущность метода

Образцы выдерживают в кипящем водном растворе 65 %-ной азотной кислоты.

Метод применяют для контроля сталей марок: 02X18H11, 03X18H11, 03X18H12, 03X17H14M3, 03X24H6AM3 и 02X25H22AM2.

9.2 Реактивы и растворы

Кислота азотная, ос. ч., по ГОСТ 11125 массовой долей (65,0 \pm 0,2) %, плотностью 1,391 г/см 3 . Вода дистиллированная по ГОСТ 6709.

9.3 Проведение испытаний

9.3.1 Перед испытанием образцов измеряют их длину, ширину (или диаметр) и толщину не менее чем в трех местах и определяют среднее значение для каждого из параметров. Погрешность измерений не должна превышать 0,1 мм.

Затем образцы обезжиривают органическим растворителем, промывают водой, просушивают и взвешивают на аналитических весах, погрешность измерения массы не должна превышать 0,1 мг.

Испытания проводят в стеклянной колбе с обратным холодильником.

На дно колбы кладут стеклянные бусы, трубки или фарфоровые лодочки, на которые помещают

В одной колбе испытывают образцы одной и то**й же марки стали, плавки и термообработки. Образ**цы заливают раствором азотной кислоты объемом 10 см³ на 1 см² поверхности образца и на 1,0—1,5 см выше поверхности образцов.

При разногласиях в оценке стойкости против МКК, в том числе между потребителем металлопродукции и ее изготовителем, испытания повторяют в растворе азотной кислоты объемом не менее 20 см^3 на 1 см^2 поверхности образца.

Испытание проводят при слабом равномерном кипении, не допускается выпаривание раствора и выделение окислов азота бурого цвета, что определяют с помощью индикаторной бумаги, помещаемой на выходе в верхней части обратного холодильника. В случае выпаривания раствора следует добавлять 65 %-ную азотную кислоту до первоначального уровня.

9.3.2 Продолжительность испытаний составляет 240 ч, пять циклов по (48,00 \pm 0,25) ч каждый со сменой раствора после каждого цикла.

Допускается по согласованию с потребителем для основного металла сталей марок 02X18H11, 03X18H11 и 03X18H12 после третьего цикла дальнейшее испытание не проводить, если скорость коррозии во втором и третьем циклах не превышает 0,30 мм/год.

- 9.3.3 После каждого цикла испытаний (48 ч) образцы извлекают из колбы, промывают водой, просушивают, взвешивают и определяют скорость коррозии в каждом из циклов.
- 9.3.4 При вынужденном перерыве кипячения образцы извлекают из колбы, промывают и просушивают. Раствор используют для продолжения цикла.

9.4 Оценка результатов испытаний на МКК

9.4.1 Для оценки МКК определяют скорость сплошной коррозии v_k , г/м 2 · ч, и v_k' , мм/год, по следующим формулам:

$$v_k = \frac{10000 \cdot \Delta m}{St};\tag{4}$$

$$v_k' = \frac{87600 \cdot \Delta m}{0 \, \text{St}} \,, \tag{5}$$

где Δm — потеря массы образца за данный цикл, г;

S — поверхность испытуемого образца, см²;

t — продолжительность испытания, ч;

ho — плотность испытуемой стали, г/см 3 .

Допускаемая погрешность скорости сплошной коррозии при испытании по методу ДУ составляет 1,5—2,0 %.

- 9.4.2 Образцы считают не выдержавшими испытание, если скорость коррозии стали, сварного соединения, наплавленного металла или металла шва после второго или последующих циклов более 0,5 мм/год и 0,3 мм/год для стали марки 02X25H22AM2, а также если скорость сплошной коррозии сварного соединения не более 0,5 мм/год, но околошовная зона или зона термического влияния, или металл шва подверглись повышенной травимости по сравнению с основным металлом. Осмотр образца следует проводить при увеличении не менее чем в 7 крат.
- 9.4.3 В сомнительных случаях при оценке качества сварного соединения допускается проведение металлографического анализа.

Образцы считают не выдержавшими испытание, если средняя глубина растравливания околошовной зоны или зоны термического влияния, или металла шва не менее чем на 30 мкм больше основного металла.

10 Протокол испытаний

В протоколе испытаний следует указывать:

- марку стали, вид металлопродукции, из которой изготовлен образец, номер плавки;
- маркировку образца;
- вид образца (основной металл, сварной образец, наплавленный металл, металл шва);
- режим термической обработки;
- метод испытания, продолжительность испытаний;
- результат испытания:
- 1) наличие или отсутствие трещин при изгибе образцов (испытания методами АМУ, АМУФ, АМ, ВУ, методом В приложение ДА, методом А приложение ДЕ);
- 2) наличие или отсутствие сетки травления на поверхности металлографического шлифа при испытаниях методом Б приложение ДБ;
 - 3) скорость коррозии (г/м² · ч, мм/год) в каждом из пяти циклов при испытании методом ДУ;
- оценку результатов испытания (сталь или сплав склонны к МКК; сталь или сплав не склонны к МКК).

11 Требования безопасности

Работа в химической лаборатории неизбежно связана с рядом опасных и вредных факторов. Сотрудники химической лаборатории должны пройти обучение и инструктирование по технике безопасности.

К работе допускаются лица не моложе 18 лет, прошедшие предварительный медосмотр, не имеющие противопоказаний по здоровью, а также прошедшие инструктаж и обучение безопасным методам работы.

Для обеспечения безопасности людей необходимо соблюдать определенные правила.

1 При работе с кислотами и солями необходимо не допустить содержание вредных веществ в воздухе рабочей зоны производственных помещений выше их предельно допустимой концентрации. Предельно допустимая концентрация:

- серной кислоты и серного ангидрида 1 мг/м³:
- азотной кислоты и ее паров 2 мг/м 3 (в пересчете на NO $_2$);
- фтористого натрия и фтористого калия (в пересчете на ϕ^{-} тор-ион) 1 мг/м³ (максимально разовая) и 0,2 мг/м³ (среднесменная);
 - хлористого водорода 5 мг/м³.
- 2 При работе с кислотами, фтористым натрием, фтористым калием и железом сернокислым окисным необходимо соблюдать правила предосторожности и использовать индивидуальные средства защиты: фильтрующий противогаз марки В, защитные очки (ПО-2 с резиновой полумаской), наголовный щиток ЩН-7 с экраном из органического стекла, сапоги, перчатки и кислотозащитные рукавицы, специальную кислотозащитную одежду.
 - 3 Избегать попадания кислот и солей внутрь организма и на кожу.
- 4 При попадании на кожу и слизистые оболочки кислоты необходимо сразу же обмыть пораженное место большим количеством воды, затем 2 %-ным раствором питьевой соды (кислый углекислый натрий NaHCO₃), смазать вазелином или специальной мазью от ожогов и перевязать.
- 5 При отравлении газообразными оксидами азота или парами азотной кислоты пострадавшего нужно вывести на свежий воздух, напоить молоком и отправить в медпункт.
- 6 Необходимо обеспечить герметизацию колб с кислотой. Процессы слива и налива для исключения попадания паров кислоты в воздушную среду производственного помещения проводить под тягой с использованием индивидуальных средств зашиты.
- 7 Помещения, в которых проводятся работы с кислотами и солями, должны быть оборудованы непрерывно действующей приточно-вытяжной вентиляцией.
- 8 В целях предотвращения электротравматизма в химической лаборатории электрооборудование должно быть заземлено, а также запрещается:
 - работать на неисправных электрических приборах;
 - переносить включенные приборы и оставлять их без присмотра;
 - работать вблизи открытых токоведущих частей электроустановок и прикасаться к ним;
 - загромождать подходы к электрическим устройствам.

Приложение ДА (рекомендуемое)

Испытание образцов в растворе серной кислоты и цинкового порошка. Метод В

ДА.1 Сущность метода

Образцы выдерживают в кипящем водном растворе сернокислой меди и серной кислоты с добавлением цинкового порошка.

Метод применяется для контроля стали марки 03X21H21M4ГБ и сплавов на железоникелевой основе марок 06XH28MДТ и 03XH28MДТ и является менее надежным, чем метод ВУ.

ДА.2 Реактивы и растворы

Медь сернокислая (CuSO $_4 \cdot 5H_2O$) по ГОСТ 4165, ч. д. а. или х. ч., или медный купорос по ГОСТ 19347, х. ч. Кислота серная по ГОСТ 4204 плотностью 1,83 г/см 3 , ч. д. а. или х. ч.

Вода дистиллированная по ГОСТ 6709.

Порошок цинковый по ГОСТ 12601, класс А.

Раствор для испытания: в (1000 ± 3) см³ воды растворяют $(110,0 \pm 0,2)$ г сернокислой меди, затем небольшими порциями добавляют $(55,0 \pm 0,3)$ см³ серной кислоты.

ДА.3 Проведение испытания и оценка результатов

ДА.3.1 Испытания проводят в стеклянной колбе с обратным холодильником.

На дно колбы укладывают бусы, стеклянные трубки или фарфоровые лодочки, поверх которых помещают образцы. Затем колбу заполняют раствором для испытания объемом не менее $8\,\mathrm{cm}^3$ на $1\,\mathrm{cm}^2$ поверхности образцов и на 1,0— $1,5\,\mathrm{cm}$ выше поверхности образцов и добавляют $(5,0\pm0,1)\,\mathrm{r}$ цинкового порошка на каждые $(1000\pm3)\,\mathrm{cm}^3$ объема раствора. Когда бурная реакция выделения водорода закончится, реакционный сосуд соединяют с холодильником.

ДА.3.2 Продолжительность выдержки в растворе — $(144,0\pm0,25)$ ч. Раствор кипятят непрерывно, не допуская нагрева холодильника. При вынужденном перерыве образцы могут оставаться в растворе не более 48 ч.

Продолжительность испытаний определяют как суммарное количество часов кипячения.

- ДА.3.3 Обработку образцов после испытаний проводят по 5.3.4 настоящего стандарта.
- ДА.3.4 Выявление межкристаллитной коррозии проводят по 5.4 и 5.5 настоящего стандарта.

Приложение ДБ (рекомендуемое)

Анодное травление образцов в ингибированной серной кислоте. Метод Б

ДБ.1 Сущность метода

Сталь подвергают анодному травлению в водном растворе ингибированной серной кислоты.

Метод применяют для контроля изделий и деталей, изготовленных сваркой, горячей штамповкой и гибкой из стали марок: 12X18H9, 12X18H9T, 04X18H10, 08X18H10T, 08X18H10T, 08X18H10T, 02X18H11, 03X18H11, 06X18H11, 08X18H12T, 12X18H12T и двухслойных сталей этих марок, для предварительной оценки стойкости против МКК металлопродукции, подлежащей контролю методами АМУ, АМУФ, АМ, А приложение ДЕ.

Металл сварного шва не контролируют этим методом.

ДБ.2 Аппаратура

Схема установки для контроля металла методом Б приведена на рисунке ДБ.1.

1 — свинцовый сосуд — катод; 2 — резиновая манжета; 3 — образец; 4 — источник постоянного тока; 5 — амперметр с ценой деления не более 0,1 A; 6 — реостат или магазин сопротивления; 7 — переключатель или ключ

Рисунок ДБ.1 — Схема установки для контроля металла методом Б

ДБ.3 Реактивы и растворы

Кислота серная по ГОСТ 4204 плотностью 1,83 г/см 3 , раствор с массовой долей (60,0 \pm 0,2) %.

Уротропин $(CH_2)_6N_4$ по ГОСТ 1381 или другой ингибитор для серной кислоты, раствор с массовой долей $(0,50\pm0,05)$ %.

Вода дистиллированная по ГОСТ 6709.

Раствор для испытаний содержит (20 ± 1) см³ раствора уротропина и (1000 ± 3) см³ раствора серной кислоты.

ДБ.4 Проведение испытания и оценка результатов

- ДБ.4.1 Поверхность участков, подлежащих контролю, шлифуют до шероховатости $Ra \le 0.8$ мкм. После шлифования контрольные участки обезжиривают органическими растворителями.
- ДБ.4.2 Испытание проводят анодным травлением контролируемых участков поверхности детали, которую включают в цепь постоянного тока при плотности тока $(0,65\pm0,01)~10^4~\text{A/m}^2$. Катодом является свинцовый сосуд (рисунок ДБ.1), который укрепляют на контролируемой поверхности испытуемого изделия или материала с помощью резиновой манжеты. В сосуд наливают от 3 до 5 см 3 раствора.

Допускается изготавливать сосуды из другого металла, коррозионно-стойкого в растворе для испытаний (ДБ.3).

Температура испытания — (20 ± 10) °C. При невозможности применения сосуда конструкции, приведенной на рисунке ДБ.2, допускается изменять его конструкцию применительно к контролируемым изделиям.

а — сосуд для испытаний горизонтальных поверхностей; б — сосуд для испытаний вертикальных поверхностей; 1 — резиновая манжета

Рисунок ДБ.2 — Рекомендуемые сосуды для испытаний

ДБ.4.3 При испытании сварных изделий контролируют зону термического влияния около сварного шва. При этом анодное пятно наносят с таким расчетом, чтобы край пятна захватывал не более 1 мм ширины наплавленного металла.

В местах, подлежащих контролю, усиление шва удаляют.

Испытания проводят по обеим сторонам шва в шахматном порядке. При длине сварного шва до 2 м зону термического влияния контролируют не менее чем в четырех точках.

ДБ.4.4 Изделия, имеющие перекрещивающиеся и Т-образные швы, испытывают по зоне термического влияния во всех местах пересечения швов (рисунок ДБ.3).

ДБ.4.5 Продолжительность испытания после включения тока — (5.0 ± 0.20) мин. При повышенной травимости опыт повторяют и продолжительность испытаний может быть сокращена до 1—2 мин.

По окончании испытаний ток выключают, сосуд и контрольную поверхность промывают водой, вытирают фильтровальной бумагой и протирают этиловым спиртом.

ДБ.5 Оценка результатов

Стойкость стали против МКК оценивают при осмотре анодного пятна на поверхности образца или изделии при увеличении 20 крат.

Отсутствие сетки свидетельствует о стойкости металла против МКК.

При наличии сетки (рисунок ДБ.4) или растравливания выпавшей вторичной фазы (рисунок ДБ.5) требуется испытание образцов методами АМУ, АМУФ или АМ, т. к. в условиях травления (положительный потенциал) возможно растравливание выпавших карбидов.

1 — сварной шов; 2 — места анодного травления

Рисунок ДБ.3

Рисунок ДБ.4

Рисунок ДБ.5

Примечание — На рисунках ДБ.4 и ДБ.5 образцы даны при увеличении в 50 крат.

Приложение ДВ (рекомендуемое)

Размеры образцов

Таблица ДВ.1

B	Толщина плоских образцов или диаметр цилиндрических образцов для методов			
Вид металлопродукции	(АМУ, АМУФ, АМ, ВУ, В) ^{1), 3)}	ДУ ^{2), 3)}		
Листовой прокат толщиной не более 10 мм	Толщина равна толщине металлопродукции. Допускается доведение толщины до 3—5 мм	Толщина равна толщине метал- лопродукции. Допускается доведе- ние толщины до 3—5 мм. Диаметр — 5—7 мм		
Листовой прокат толщиной св. 10 мм	Толщина— не более 10 мм. До- пускается доведение толщины до 3—5 мм	Толщина — 3—5 мм. Диаметр — 5—7 мм		
Двухслойный листовой прокат	Толщина равна толщине плакирующего (ко ррозионно-стойкого) слоя и менее			
Проволока диаметром не более 10 мм	Диаметр равен диаметру металл	опродукции		
Сортовой прокат диаметром или толщиной не более 10 мм	Диаметр или толщина равны диаметру или толщине металлопроду ции. Допускается доведение толщины или диаметра до 3—5 мм ³⁾ . При разногласиях в результатах испытаний повторные испытания пре водят на образцах, диаметр или толщина которых равны диаметру ил толщине металлопродукции			
Сортовой прокат диаметром или толщиной св. 10 мм	Толщина — 3—5 мм	Толщина — 3—5 мм Диаметр — 5—7 мм		
Трубные заготовки, поковки, от- ливки	Толщина — 3—5 мм	Толщина — 3—5 мм Диаметр — 5—7 мм		
Трубы бесшовные диаметром до 10 мм включ.	Толщина равна толщине металло	опродукции		
Трубы бесшовные диаметром более 10 мм	Толщина равна толщине металло	опродукции, но не более 5 мм		
Трубы электросварные	Толщина равна толщине металло	опродукции		
Сварные соединения листово- го, сортового проката, поковок и от- ливок	Толщина — 3—5 мм			
Кольцевые сварные соедине- ния труб толщиной: - до 5 мм включ.; - более 5 мм	Толщина равна толщине стенки металлопродукции. Толщина — 3—5 мм			
Сварные соединения двухслойного листового проката	Толщина равна толщине плакирующего слоя, но не более 5 мм			

¹⁾ Длина сварных образцов с поперечным швом и образцов основного металла — более 50 мм, ширина — 20 мм. Длина сварных образцов с продольным швом — не менее 80 мм, ширина — 30 мм.
2) Длина образцов — не менее 50 мм, ширина — 20—30 мм.
3) Допускается доведение толщины или диаметра образца для ферритных, мартенсито-ферритных, аустени-

то-мартенситных, аустенито-ферритных сталей до 3 мм.

Приложение ДГ (рекомендуемое)

Реактивы и режимы травления шлифов для выявления межкристаллитной коррозии

Таблица ДГ.1

Марка стали и сплава	Реактив и режим травления
12X18H9, 12X18H9T, 04X18H10, 08X18H10, 08X18H10T, 12X18H10T, 12X18H10E, 03X18H11, 06X18H11, 03X18H12, 08X18H12T, 12X18H12T, 08X18H12E, 02X18H11	Химическое травление в смеси: $(92\pm3)~{\rm cm}^3$ соляной кислоты плотностью 1,18 г/см 3 по ГОСТ 3118, $(5,0\pm0,1)~{\rm cm}^3$ серной кислоты плотностью 1,83 г/см 3 по ГОСТ 4204, $(3,0\pm0,1)~{\rm cm}^3$ азотной кислоты плотностью 1,4 г/см 3 по ГОСТ 11125. Температура 20 °C—30 °C. Реактивы наносят на поверхность шлифа ватным тампоном. Электролитическое травление в растворе щавелевой кислоты с массовой долей $(10,0\pm0,2)~\%$ по ГОСТ 22180. Температура 20 °C—30 °C. Плотность тока $(1,0\pm0,2)\cdot10^4~{\rm A/m}^2$
03X16H15M3, 08X16H15M3E, 09X16H15M3E, 03X17H14M3, 08X17H13M2T, 08X17H15M3E, 10X17H13M2T, 10X17H13M3T, 08X17H15M3T, 02X25H22AM2	Химическое травление в растворе: $(50\pm0,1)$ см 3 соляной кислоты плотностью 1,18 г/см 3 по ГОСТ 3118, $(5,0\pm0,1)$ см 3 азотной кислоты плотностью 1,41 г/см 3 по ГОСТ 11125, $(50\pm0,1)$ см 3 воды. Температура кипения. Электролитическое травление в растворе: $(8,50\pm0,05)$ г/дм 3 лимонной кислоты по ГОСТ 3652, $(8,50\pm0,05)$ г/дм 3 сернокислого аммония по ГОСТ 3769. Температура 20 °C—30 °C. Плотность тока $(1,0\pm0,2)\cdot10^4$ А/м 2
20X13H4Г9, 08X18Г8H2Т, 10X14Г14Т, 12X17Г9AH4, 07X21Г7АН5, 03X21H21M4ГБ, 06XH28MДТ, 03XH28MДТ, XH30MДБ, 10X14Г14H3, 10X14Г14H4T, 10X14AГ15, 10X13Г12БС2H2Д2	Химическое травление в растворе: $(50,0\pm0,1)~{\rm cm^3}$ соляной кислоты плотностью 1,18 г/см 3 по ГОСТ 3118, $(5,0\pm0,1)~{\rm cm^3}$ азотной кислоты плотностью 1,41 г/см 3 по ГОСТ 11125, $(50\pm1)~{\rm cm^3}$ воды. Температура кипения. Электролитическое травление в растворе: $(10,0\pm0,2)~\%$ щавелевой кислоты по ГОСТ 22180. Температура 20 °C—30 °C. Плотность тока $(1,0\pm0,2)\cdot10^4~{\rm A/m^2}$
09X15H8Ю, 07X16H6, 09X17H7Ю, 09X17H7Ю1, 08X17H5M3	Электролитическое травление в растворе: $(8,50\pm0,05)\ \text{г/дм}^3$ лимонной кислоты по ГОСТ 3652, $(8,50\pm0,05)\ \text{г/дм}^3$ сернокислого аммония по ГОСТ 3769. Температура 20 °C—30 °C. Плотность тока $(1,0\pm0,2)\cdot10^4\ \text{A/m}^2$. Электролитическое травление в растворе: $(10,0\pm0,2)\ \%$ хромового ангидрида по ГОСТ 3776. Температура 20 °C—30 °C. Плотность тока $(1,0\pm0,2)\cdot10^4\ \text{A/m}^2$
08X22H6T, 08X21H6M2T, 03X24H6AM3, 03X23H6, 03X22H6M2	Химическое травление в растворе: $(50\pm0,1)~{\rm cm}^3$ соляной кислоты плотностью 1,18 г/см 3 по ГОСТ 3118, $(5,0\pm0,1)~{\rm cm}^3$ азотной кислоты плотностью 1,41 г/см 3 по ГОСТ 11125, $(50,0\pm0,1)~{\rm cm}^3$ воды. Температура кипения. Электролитическое травление в растворе: $(8,50\pm0,05)~{\rm г/дm}^3$ лимонной кислоты по ГОСТ 3652, $(8,50\pm0,05)~{\rm г/дm}^3$ сернокислого аммония по ГОСТ 3769. Температура 20 °С—30 °С. Плотность тока $(1,0\pm0,2)\cdot10^4~{\rm A/m}^2$
08X17T, 15X25T, 01-015X18T-BИ, 01X18M2T-BИ, 01X25ТБЮ-ВИ	Химическое травление в растворе: (50 \pm 0,1) см 3 соляной кислоты плотностью 1,18 г/см 3 по ГОСТ 3118, (5,0 \pm 0,1) см 3 азотной кислоты плотностью 1,4 г/см 3 по ГОСТ 11125, (50 \pm 1) см 3 воды. Температура кипения

Приложение ДД (обязательное)

Определение стойкости против межкристаллитной коррозии нержавеющих сталей. Аустенитные и аустенито-ферритные (двухфазные) нержавеющие стали. Коррозионные испытания в азотной кислоте путем определения потери массы (испытания по Хью) (ИСО 3651-1:1998)

ДД.1 Область применения

Метод применяют для определения стойкости против межкристаллитной коррозии (МКК) путем испытания в азотной кислоте с измерением потери массы проката, поковок, труб и литья аустенитных и аустенито-ферритных (двухфазных) сталей, предназначенных для использования в сильно окислительных средах (например, в концентрированной азотной кислоте). Испытания по методу Хью не следует применять для сталей, содержащих молибден, если стали не предназначены для использования в качестве материала для оборудования, работающего с азотной кислотой.

Результаты испытания на МКК по методу Хью являются показательными только для определения стойкости стали против МКК в указанных средах и не могут быть использованы для определения стойкости стали к другим видам коррозионных разрушений (общей коррозии, питтинга, коррозионного растрескивания и т. д.).

ДД.2 Назначение испытаний

- ДД.2.1 Испытания на МКК проводят с целью обнаружения коррозионного воздействия среды на границы зерен, обусловленного одной или несколькими причинами:
 - выпадением по границам зерен карбидов хрома;
 - выпадением интерметаллических соединений, таких как σ -фаза, в сталях, содержащих молибден;
 - сегрегацией на границах зерен загрязняющих элементов.

Указанные процессы могут протекать при воздействии на аустенитные и аустенито-ферритные нержавеющие стали температур 500 °C—1000 °C, которым сталь может подвергаться при горячей обработке (ковка, прокатка), а также при сварке из-за технологических нарушений процесса.

Оценку результатов испытаний (например, максимально допустимая скорость коррозии) проводят по договоренности между потребителем и изготовителем.

ДД.3 Применение метода

ДД.3.1 Методом Хью контролируют аустенитные стали повышенной коррозионной стойкости против МКК, предназначенные для сильно окислительных сред. Контроль образцов сталей осуществляют после провоцирующей термообработки.

Образцы тонких листов не подвергают провоцирующему нагреву, поскольку в процессе изготовления оборудования тонкие листы быстро охлаждаются.

ДД.4 Провоцирующий нагрев

- ДД.4.1 Провоцирующему нагреву перед испытанием на МКК подвергают стабилизированные и низкоуглеродистые (С не более 0,03%) стали. С этой целью образец выдерживают 30 мин при температуре (700 ± 10) °C с последующим быстрым охлаждением в воде.
 - ДД.4.2 Продолжительность повышения температуры не должна превышать 10 мин.

Другие режимы провоцирующего нагрева возможны лишь по договоренности с заказчиком.

Сварные образцы не подвергают провоцирующему нагреву.

ДД.5 Коррозионные испытания

ДД.5.1 Сущность метода

Исследуемый образец, подготовленный по ДД.4 и ДД.5.2, взвешивают, затем погружают в кипящий раствор азотной кислоты на 5 циклов продолжительностью 48 ч каждый. Критерием оценки результатов испытаний является потеря массы, определяемая взвешиванием после каждого цикла испытаний.

ДД.5.2 Образцы для испытаний

ДД.5.2.1 Образец для исследования, взятый от обработанного давлением металла, должен иметь больший размер в направлении прокатки. Из обработанного давлением проката и литья вырезку образца следует проводить как можно ближе к поверхности проката. Размеры образца определяют в зависимости от взвешивающего устройства и объема используемого раствора.

Длина образца должна не менее чем в два раза превышать его ширину, а общая площадь поверхности сторон образца, перпендикулярных к направлению проката или волокнам образца, должна быть менее 15 % общей площади поверхности образца. При сравнительных испытаниях отношение общей площади поверхности образца к общей площади поверхности частей образца должно быть постоянным.

ДД.5.2.2 Обработка

В зависимости от целей испытаний (ДД.3) образцы, подвергнутые или не подвергнутые провоцирующему нагреву, должны соответствовать требованиям ДД.5.2.2.1 и ДД.5.2.2.2.

ДД.5.2.2.1 Механическая обработка

Образцы для испытаний следует обработать механически по всей поверхности путем зачистки поверхности абразивом № 120 на бумаге или ткани, не содержащим железа.

ДД.5.2.2.2 Химическая обработка

Окалину удаляют без предварительной механической обработки, погружая образцы на 1 ч в раствор: 50 объемов соляной кислоты ($\rho_{20} = 1,19 \, \text{г/см}^3$), 5 объемов азотной кислоты ($\rho_{20} = 1,40 \, \text{г/см}^3$) и 50 объемов воды при температуре $50 \, ^{\circ}\text{C}$ — $60 \, ^{\circ}\text{C}$ или в раствор: 50 объемов соляной кислоты и 50 объемов воды при температуре окружающей среды.

При такой обработке необходимо быть заранее уверенными, что она не вызывает МКК.

ДД.5.2.2.3 Обезжиривание

Перед погружением в коррозионный раствор образцы должны быть очищены растворителем, не содержащим ионов хлора.

ДД.6 Аппаратура

ДД.6.1 Колба Эрленмеера вместимостью 1 дм³, закрываемая либо погружным пальчиковым холодильником, либо четырехшариковым холодильником со шлифом, при использовании которого следует убедиться с помощью индикатора, что пары кислоты не выходят из аппарата в процессе испытания (рисунок ДД.1).

1 — стеклянная пробка-холодильник; 2 — приспособление для предотвращения задержки конденсата; 3 — колба Эрленмеера

Примечание — Скорость коррозии, полученная при использовании шарикового холодильника, несколько выше, чем при использовании холодильника пальчикового типа, вследствие большой потери пара.

ДД.6.2 Держатели для образцов обычно изготавливают из стекла.

При испытании нескольких образцов в одной и той же колбе держатели для образцов должны обеспечивать требование ДД.8.

ДД.6.3 Нагревательное устройство должно обеспечивать непрерывное кипение раствора.

ДД.7 Раствор для испытаний

Раствором для испытаний должен быть (65 \pm 0,2)%-ный (по массе) водный раствор азотной кислоты (ρ_{20} = 1,40 г/см³).

Применять следует продукт ч. д. а., содержащий суммарный твердый осадок ≤ 0,05 г/1000 г, а каждой из возможных добавок в количестве:

свинец (Pb) \leq 0,005 г/1000 г; железо (Fe) \leq 0,014 г/1000 г; марганец (Mn) (отрицательная реакция); мышьяк (As) \leq 0,001 г/1000 г; ион хлора (Cl⁻¹) \leq 0,003 г/1000 г; сульфат иона (SO₄)⁻² \leq 0,05 г/1000 г; фосфат иона (PO₄)⁻³ \leq 0,01 г/1000 г; ион фтора (F⁻¹) \leq 0,05 г/1000 г.

ДД.8 Проведение испытания

Используемый объем кислоты для коррозионных испытаний (ДД.7) должен быть не менее 20 см³/см². Обычно только один образец помещают в колбу.

Однако допускается загружать несколько образцов в одну колбу при условии, что все образцы одной марки стали изолированы друг от друга не менее чем на 0,5 см. Повышенная коррозия одного из образцов может повысить скорость коррозии остальных образцов, испытываемых вместе с ним.

ДД.9 Обработка результатов

Эффект воздействия раствора азотной кислоты определяют измерением потери массы каждого образца после каждого цикла и за все циклы испытаний.

Скорость коррозии v_k , г/м² · ч, или v'_k , мм/год, определяют по формулам:

$$v_k = \frac{10000 \cdot \Delta m}{St}; \tag{ДД.1}$$

$$v_{k}' = \frac{87600 \cdot \Delta m}{\rho St},\tag{ДД.2}$$

где *т* — средняя потеря массы после каждого цикла или за все циклы испытаний, г;

S — первоначальная поверхность образца для испытаний, см²;

 ρ — плотность исследуемого образца (8 г/см³ — для хромоникельмолибденовых сталей и 7,9 г/см³ — для хромоникелевых сталей), г/см³;

t — действительное время кипения.

ДД.10 Протокол испытаний

Протокол испытаний должен содержать:

- номер;
- марки сталей;
- режим термообработки;
- используемые типы холодильников;
- средние скорости коррозии;
- ситуации, способные влиять на результаты.

Приводят обычно средние результаты испытаний.

Результаты испытаний, в зависимости от требования заказчика, представляют либо средней скоростью коррозии, либо скоростью коррозии в каждом из циклов.

Приложение ДЕ (обязательное)

Определение стойкости против межкристаллитной коррозии нержавеющих сталей. Ферритные, аустенитные и аустенито-ферритные (двухфазные) нержавеющие стали. Коррозионные испытания в средах, содержащих серную кислоту (ИСО 3651-2:1998)

ДЕ.1 Область применения

Настоящий стандарт устанавливает методы определения стойкости против межкристаллитной коррозии (МКК) ферритных, аустенитных и аустенито-ферритных (двухфазных) нержавеющих сталей, выпускаемых в виде литья, проката, поковок и труб, предназначенных для слабо окислительных сред (например, серной и фосфорной кислот).

На стойкость против МКК проверяют либо низкоуглеродистые стали с содержанием углерода не более 0,03 %, либо стабилизированные стали. Металл контролируют после провоцирующего нагрева или после сварки. Тонкий лист незначительной толщины при достаточно быстрой скорости охлаждения контролируют в состоянии поставки, не подвергая предварительному провоцирующему нагреву.

ДЕ.2 Назначение испытаний

В зависимости от химического состава контролируемого металла (приложение ДЖ) применяют один из методов контроля МКК с использованием растворов серной кислоты:

метод А — 16 %-ная серная кислота и сульфат меди (метод Монипени-Штрауса);

метод В — 35 %-ная серная кислота и сульфат меди;

метод С — 40 %-ная серная кислота и сульфат железа (IV).

ДЕ.3 Провоцирующий нагрев

ДЕ.3.1 Для проверки стойкости против МКК необходимо провести провоцирующий нагрев стабилизированных сталей и сталей с низким содержанием углерода (не более 0,03 %). Для этого образцы, предназначенные для испытания, выдерживают в течение 30 мин при температуре нагрева T_1 (700 \pm 10) °C с последующим охлаждением в воде (режим T_1) или в течение 10 мин при температуре T_2 (650 \pm 10) °C с последующим охлаждением в воде (режим T_2).

Указанные выше провоцирующие режимы н**агрева применяют к аустенитным и двухфазным аустенито-фер**ритным сталям.

Тип провоцирующего нагрева определяют стандартом на металлопродукцию или регламентом (заказом). Если не указан режим провоцирующего нагрева, следует использовать режим T_1 .

ДЕ.3.2 Сварку образцов для испытаний можно применять как альтернативу провоцирующему нагреву (по договоренности между заинтересованными сторонами).

В этом случае образец после сварки не подвергают провоцирующему нагреву. Сварка как альтернатива провоцирующему нагреву применима ко всем сталям, указанным в приложении ДЕ.

ДЕ.4 Коррозионные испытания

ДЕ.4.1 Сущность метода

Образцы для испытаний, подготовленные по ДЕ.4.3, погружают в один из растворов серной кислоты методов А, В, С (Е.2) на указанное в ДЕ.6.1.2 время. Затем образцы подвергают изгибу. После изгиба выпуклую поверхность образца обследуют с целью выявления трещин. Наличие трещин свидетельствует о склонности к МКК.

Трубы диаметром не более 60 мм (диаметр труб должен быть меньше отверстия сосуда с раствором для испытаний) вместо испытания на изгиб расплющивают.

ДЕ.4.2 Образец для испытаний

ДЕ.4.2.1 Образец для испытаний должен иметь общую площадь поверхности от 15 до 35 см². В случае если толщина листа более 6,0 мм, то толщина образца должна быть доведена до 6,0 мм, при этом одна из сторон, подвергнутых прокатке, должна быть подвержена шлифованию или полированию.

Образцы для испытаний отбираются от металлопродукции, как указано в стандарте на продукцию. В случае возникновения разногласий плоские образцы, когда это возможно, должны быть использованы определенных размеров. Эти размеры должны быть выбраны в зависимости от конструкции оборудования (приспособления) для загиба:

- толщина от 2,0 мм до 6,0 мм;
- ширина не менее 10,0 мм;
- длина не менее 50,0 мм.

FOCT 6032-2017

Образцы указанных размеров подвергают изгибу.

ДЕ.4.2.2 Сварные образцы изготавливают следующим образом: из плоской пластины изготавливают два образца длиной по 100 мм, шириной по 50 мм и сваривают их между собой.

Из пластины вырезают образцы, как указано на рисунке ДЕ.1.

Для труб с круговым поперечным швом образцы вырезают в соответствии с рисунком ДЕ.2.

Когда четыре образца сваривают между собой перекрестным швом, первый шов кладут в продольном направлении на исследуемый образец, как указано на рисунке ДЕ.3.

При толщине материала более 6,0 мм образец для испытаний сострагивают до 6,0 мм с одной стороны. Нестроганная поверхность образца должна находиться на выпуклой стороне при его изгибе. Для сварных труб наружным диаметром свыше 60,0 мм образцы для испытаний изготавливают длиной 50 мм и шириной 20 мм, как указано на рисунке ДЕ.4.

где 1 — сварной шов; 2 — ось гиба

Рисунок ДЕ.1 — Образец для испытаний, сваренный встык

где 1 — сварной шов

Рисунок ДЕ.2 — Образец для испытаний из трубы, сваренный встык

где 1 — сварной шов; 2 — ось гиба

Рисунок ДЕ.3 — Образец для испытаний из пластины или полосы с перекрестным швом

Рисунок ДЕ.4 — Образец для испытаний с продольной сваркой из сварной трубы

ДЕ.4.3 Подготовка образцов для испытаний

Образцы, как подвергнутые провоцирующему нагреву, так и без него, готовят в соответствии с ДЕ.4.3.1 и ДЕ.4.3.2. Метод подготовки поверхности должен быть указан в протоколе испытаний.

ДЕ.4.3.1 Механическая подготовка

Для удаления окалины образец обрабатывают механически в продольном направлении со всех сторон, острие края обрабатывают абразивом № 120. Во время механической обработки следует избегать перегрева образ-

ДЕ.4.3.2 Химическая подготовка

Образец, поверхность которого не свободна от окислов и предварительно не подвергалась обработке для очистки от окалины, погружают полностью не более чем на 1 ч в раствор: 50 объемов соляной кислоты (ρ_{20} = 1,19 г/см³), 5 объемов азотной кислоты (ρ_{20} = 1,40 г/см³), 50 объемов воды при температуре раствора от 50 °C до 60 °C или в раствор: 50 объемов соляной кислоты и 50 объемов воды при температуре окружающей среды.

В случае химической подготовки поверхности образца необходимо быть уверенным, что МКК не появится в процессе обработки образца. Для этого после обработки проводят металлографическое исследование для каждой марки стали.

ДЕ.4.3.3 Обезжиривание

Образцы должны быть обезжирены любым подходящим и не содержащим хлора растворителем, очищены и высушены перед погружением в коррозионную среду.

ДЕ.5 Аппаратура

- ДЕ.5.1 Колба Эрленмеера вместимостью 1000 см³ или другая аналогичная колба с холодильником, имеющим не менее чем четыре шарика.
 - ДЕ.5.2 Держатель для образцов, обычно из стекла (для метода С).
 - ДЕ.5.3 Нагревательное устройство, обеспечивающее кипение раствора.

ДЕ.6 Методы испытаний

ДЕ.6.1 Метод А: испытание в 16 %-ной серной кислоте с сульфатом меди (метод Монипени-Штрауса)

ДЕ.6.1.1 Раствор для коррозионных испытаний

Для приготовления раствора следует использовать реактивы ч. д. а.

Растворяют 100 г пятигидрата сульфата меди (II) (CuSO₄ · $5H_2$ O) в 700 см³ дистиллированной воды. Затем в полученный раствор добавляют 184 г (100 см³) серной кислоты (ρ_{20} = 1,84 г/см³) и доводят объем раствора до 1000 см³ дистиллированной водой.

ДЕ.6.1.2 В каждой колбе можно испытывать более одного образца при обеспечении объема раствора не менее 8 см³ раствора на каждый см² суммарной поверхности образцов. Испытуемый образец должен быть полностью окружен кусочками электропроводной меди, находящейся на дне колбы. Количество меди должно быть не менее 50 г на 1 дм³ раствора. Испытуемые образцы должны находиться в контакте с медью, но не друг с другом.

Испытуемый образец сначала погружают в холодный раствор для испытаний, затем раствор нагревают и начало кипения раствора считают началом испытаний. Раствор должен кипеть в течение (20 ± 5) ч. В случае разногласий время испытаний должно быть 20 ч. Кусочки меди, после испытаний промытые горячей водой, можно использовать для следующих испытаний. Раствор используют только один раз.

ДЕ.6.2 Метод В: испытание в 35 %-ной серной кислоте с сульфатом меди

ДЕ.6.2.1 Раствор для коррозионных испытаний готовят из реактивов ч. д. а.: 250 см^3 серной кислоты ($\rho_{20} = 1,84 \text{ г/см}^3$) осторожно добавляют к 750 см^3 дистиллированной воды. Растворяют 110 г пятиводного сульфата меди (II) в теплом растворе.

ДЕ.6.2.2 В одной колбе можно испытывать более одного образца при условии, что количество раствора не менее чем 10 см³ на каждый см² суммарной поверхности испытуемых образцов. Испытуемый образец должен быть со всех сторон окружен медными опилками или стружкой. Количество медных опилок должно быть не менее 50 г/1000 см³ раствора. Испытуемые образцы должны находиться в контакте с медными опилками, но не должны касаться друг друга. Испытуемые образцы сначала помещают в холодный раствор для испытаний, затем раствор

нагревают и начало кипения раствора считают началом испытаний. Раствор должен кипеть в течение (20 ± 5) ч. В случае разногласий время испытаний должно быть 20 ч.

ДЕ.6.3 Метод С: испытание в 40 %-ной серной кислоте с сульфатом железа (III)

ДЕ.6.3.1 Раствор для коррозионных испытаний

Раствор для испытаний готовят из реактивов ч. д. а.: 280 см³ серной кислоты (ρ_{20} = 1,84 г/см³) осторожно добавляют к 720 см³ дистиллированной воды. Растворяют 25 г сульфата железа (III) [Fe₂(SO₄)₃ · 9H₂O], содержащего примерно 75 % сульфата железа в теплом растворе.

Примечание — Скорость коррозии увеличивается, если полностью используют сульфат железа.

ДЕ.6.3.2 Проведение испытаний

В одной колбе можно испытывать более одного образца при условии, что количество раствора, приходящегося на всю поверхность испытуемого образца, — не менее $10~{\rm cm}^3$ на каждый ${\rm cm}^2$ суммарной поверхности испытуемых образцов. Образцы помещают в холодный раствор, затем раствор нагревают до кипения и начало кипения считают началом испытаний. Раствор должен кипеть (20 ± 5) ч. В случае разногласий продолжительность испытаний должна быть $20~{\rm v}$. Раствор можно использовать один раз.

ДЕ.6.3.3 Испытания на изгиб

Цилиндрические и плоские образцы после коррозионных испытаний подвергают испытанию на изгиб (угол изгиба 90°) на оправке, радиус которой равен толщине образца. Образцы литых изделий испытывают на оправке, радиус которой в два раза превышает толщину образца для испытаний.

Трубы наружным диаметром до 60 мм исследуют после сплющивания. Расстояние между сжимающими плоскостями *H*, мм, после нагрузки вычисляют по формуле

$$H = \frac{1,09 \cdot D \cdot t}{0.09 \cdot D + t'}$$
 (ДЕ.1)

где D — наружный диаметр трубы, мм;

t — толщина стенки трубы, мм.

Сварные трубы с продольным швом имеют максимальное напряжение при изгибе поперек шва (рисунок ДЕ.2).

ДЕ.7 Оценка

Выпуклую поверхность изогнутого образца, прошедшего испытания, осматривают невооруженным глазом или при небольшом увеличении (не более 10 крат).

В случае получения сомнительных результатов испытаний на изгиб (угол изгиба 90°) подвергают изгибу второй образец, подготовленный по вышеуказанной методике, но не подвергнутый коррозионному испытанию.

Сравнительный анализ обоих образцов позволяет определить, являются ли трещины результатом МКК.

П р и м е ч а н и е — При сомнениях в оценке результатов испытаний образцы после испытаний следует подвергнуть металлографическому исследованию в соответствии с 5.5.2.

ДЕ.8 Протокол испытаний

Протокол испытаний должен содержать:

- используемый метод со ссылкой на настоящий стандарт;
- марки сталей;
- метод подготовки образцов (механический или химический);
- сортамент образцов для испытаний;
- применяемую термообработку;
- результаты испытаний;
- случайности, которые могут влиять на результаты испытаний.

Приложение ДЖ (справочное)

Перечень сталей, подлежащих контролю указанными методами

Применение метода зависит от свойств и агрессивности среды. Следующие примеры даны для информации. Только один метод может быть использован для каждой марки стали.

Метод А:

- аустенитные стали, содержащие более 16 % Сг и до 3 % Мо;
- ферритные стали, содержащие 16 %—20 % Cr и 0 %—1 % Mo;
- двухфазные стали, содержащие более 16 % Сг и до 3 % Мо.

Метод В:

- аустенитные стали, содержащие более 20 % Cr и 2 %—4 % Mo;
- двухфазные стали, содержащие более 20 % Сг и более 2 % Мо.

Метод С:

- аустенитные стали, содержащие более 17 % Ст и более 3 % Мо;
- аустенитные стали, содержащие более 25 % Ст и более 2 % Мо;
- ферритные стали, содержащие более 25 % Ст и более 2 % Мо;
- двухфазные стали, содержащие более 20 % Сг и 3 % и более Мо.

Приложение ДИ (справочное)

Сравнение метода испытаний настоящего стандарта с международными стандартами

Таблица ДИ.1

Национальный стандарт	Провоцирующий нагрев	Продолжитель- ность испытаний	Угол загиба	Радиус закругле- ния оправки	Увеличение при осмотре
EN ISO 3651-2	700 °C, 30 мин	20 ч	>90°	≤t	Approx.10×
ASTM A262:2014	650—675 °С, 60 мин	24 ч	180°	t	5—20×
JIS G0575:1999	650 °C, 120 мин	16 ч	180°	Approx. t	5—15×

Приложение ДК (справочное)

Сведения о соответствии ссылочных межгосударственных стандартов международным стандартам, использованным в качестве ссылочных в примененных международных стандартах

Обозначение ссылочного межгосударственного стандарта	Степень соответствия	Обозначение и наименование ссылочного международного стандарта
FOCT 6996—66 (ISO 4136—89, ISO 5173—81, ISO 5177—81)	IDT	ISO 4136—89 «Соединения стыковые стальные, выполненные сваркой плавлением. Испытания на растяжение образцов, вырезанных поперек шва»; ISO 5173—81 «Соединения стыковые стальные, выполненные сваркой плавлением. Испытания на изгиб корнем шва или его лицевой поверхностью наружу образцов, вырезанных поперек шва»; ISO 5177—81 «Соединения стыковые стальные, выполненные сваркой плавлением. Испытание на боковой изгиб образцов, вырезанных поперек шва»
ΓΟCT 14019—2003 (ISO 7438:1985)	IDT	ISO 7438:1985 «Материалы металлические. Испытания на изгиб»

П р и м е ч а н и е — В настоящей таблице использовано следующее условное обозначение степени соответствия стандартов:

⁻ IDT — идентичные стандарты.

FOCT 6032—2017

УДК 669.14:620.196.2:006.354

MKC 77.060

B09

ОКСТУ 0909

Ключевые слова: стали, сплавы, межкристаллитная коррозия, методы испытаний, коррозионная стой-кость

БЗ 9-2017/46

Редактор *Е.В. Таланцева* Технический редактор *И.Е. Черепкова* Корректор *Е.Д. Дульнева* Компьютерная верстка *А.Н. Золотаревой*

Сдано в набор 13.09.2017. Подписано в печать 09.10.2017. Формат $60 \times 84 \frac{V}{8}$. Гарнитура Ариал. Усл. печ. л. 4,18. Уч.-изд. л. 3,76. Тираж 28 экз. Зак. 1758. Подготовлено на основе электронной версии, предоставленной разработчиком стандарта