eg Let (Sn) be a simple symutric RW on Z.

Let $T = \inf \{ n : S_n = 1 \}$. We know $P(T < \infty) = 1$,

and $E(T) = \infty$. Let $Y = \inf\{S_n : n \in T\}$.

y>-00 on {+<03, 50 P(y>-00)=1.

We claim $E(Y) = -\infty$.

For each $\omega \in \{ \top < \infty \}$, $\forall (\omega) = \min \{ S_n(\omega) : n \leq \top (\omega) \}$ $= \min \{ S_{n}(\omega) : n \geq 0 \}$

(where and = min {a, b3).

TAN is a Stopping time (it "doesn't involve booking into the future")

 $E(T_{\Lambda n}) < \infty$. So $E(S_{T_{\Lambda n}}) = E(S_1) \cdot E(T_{\Lambda \omega}) = O$ (for ωn).

So $\forall \omega \in \{T \langle \omega \}, S_T(\omega) = 1$.

And $\lim_{n\to\infty} S_{TAN}(\omega) = S_{T}(\omega)$.

So S_ - I almost surely.

For all n, Y & S_{TAN} & I.

So |STAN | = 1+ |Y|.

 $|f|E(y)>-\infty$, Then $E(|+|y|)<\infty$,

Page 1

So $E(S_{TAN}) \rightarrow E(1) = 1$ by the dominated convergence theorem. This contradicts the earlier finding that $E(S_{TAN}) = 0 \ \forall n$, So it must be the case that $E(y) = -\infty$.

Wald's Second Egn

Let (Sn) be a RW wrt a filtration (Tn).

Suppose $E(S_i^2) = \sigma^2 < \infty$ and $E(S_i) = 0$.

Let T be a stopping time with $E(T) < \infty$.

Then $E(S_T^2) = \sigma^2 E(T)$.

Let (γ_n) be an orthogonal sequence in L^2 . Suppose $\sum_{n=1}^{\infty} |\chi_n|^2 < \infty$, and $\sum_{n=1}^{\infty} \gamma_n$ converges a.s. to γ .

Then $Y \in L^2$, $\sum_{n=1}^{\infty} Y_n$ converges to Y in L_2 , and $\sum_{n=1}^{\infty} \|y_n\|_2^2 = \|y\|_2^2$.

Pf of Wald's Second Eqn

Let $X_n = S_n - S_{n-1}$ for all $n \ge 1$.

Let $\chi_n = S_n - S_{n-1}$ for our $n \gg 1$.

Let $y_n = x_n 1_{\xi_{T>n_3}}$. Then $\sum_{n=1}^{\infty} y_n$ converges to S_T pointwise on $\{T < \infty\}$ and hence a.s., since $E(T) < \infty$.

 $\|Y_n\|_2^2 = \mathbb{E}(Y_n^2) = \mathbb{E}[(X_n 1_{\{T>n\}})^2] = \mathbb{E}(X_n^2 1_{\{T>n\}}).$

Now $\{\top > n\} = \Omega \setminus \{T \leq n-1\} \in \mathcal{T}_{n-1}$.

So χ_n^2 and $1_{\{T>n\}}$ are independent.

So $\|y_n\|_2^2 = P(T \ge n) \cdot E(S_1^2) = \sigma^2 P(T \ge n)$

 $S_{0} \sum_{n=1}^{\infty} |Y_{n}|_{2}^{2} = \sigma^{2} \sum_{n=1}^{\infty} P(T \ge n)$ $= \sigma^{2} \left[\sum_{n=1}^{\infty} 1_{\{T \ge n\}} \right]$ $= \sigma^{2} \left[\sum_{n=1}^{\infty} 1_{\{T \ge n\}} \right]$

In particular, $\sum_{n=1}^{\infty} \|Y_n\|_2^2 < \infty$.

Now if m < n, then $E(Y_m Y_n) = E(X_m 1_{\{T > m\}} X_n 1_{\{T > m\}})$ $= E(X_m X_n 1_{\{T > m\}}).$

Now Xm 1 {T > n 3 is It - mble, so

Xn and Xm18+2n3 are independent, so

 $E(X_mX_n |_{T \ge n}) = E(X_m |_{T \ge n}) \underbrace{E(X_n)} = 0$

Thus (Y_n) is an orthogonal sequence in L^2 . So, by the lemma, with $Y = S_T$, we have $E(S_T^2) = \|Y\|_2^2 = \sum_{n=1}^\infty \|Y_n\|_2^2 = \sigma^2 E(T).$

Remark Mone is true. It can be shown that $E\left(\frac{\sup\left|S_{TAN}\right|^{2}}{n}\right)<\infty.$

eg let (5n) be a simple Symuetric RW on Z.

Let $a,b \in \mathbb{Z}$ with a < o < b. Let $N = \inf \{n : S_n \notin (a,b)\}$.

as we've seen, E(N) <∞.

Of course, $E(S_i) = 0$ and $E(S_i^2) = 1$.

Hence $E(S_N^2) = E(N)$.

But $P(S_N = a) = \frac{b}{b-a}$ and $P(S_N = b) = \frac{a}{a-b}$,

So $E(N) = a^2 \frac{b}{b-a} + b^2 \frac{a}{a-b} = \frac{ab(a-b)}{b-a} = -ab$.

In particular, if a=-6, then $E(N)=6^2$.

It remains to prove the lemma.

First, Ul's Prove the Riesz-Fischer Theorem.

The Riesz-Fischer Theorem (for p=2).

Let (X, a, u) be a measure space.

Let (fn) be a cauchy sequence in L'(u).

Then there exists $f \in L^2(n)$ such that $||f - f_n||_2 \longrightarrow 0$.

If By assumption, $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ st. for all $m, n \geqslant N$, $\|f_m - f_n\|_2 < \epsilon$.

Hence there exist natural numbers $n_i < n_2 < n_3 < \dots$ such that for each K and for all $i, j \ge n_K$, $\|f_i - f_j\|_2 < 2^{-K}$.

Then for all $\ell > K$, $\|f_{n_{\kappa}} - f_{n_{\ell}}\| < 2^{-\kappa}$.

It suffices to show that there exists $f \in L^2$ such that $\|f - f_{n_k}\|_2 \to 0$ as $k \to \infty$.

Let
$$g_{\kappa} = f_{\eta_{\kappa}}$$
. Let $h = |g_{i}| + \sum_{\kappa=2}^{\infty} |g_{\kappa} - g_{\kappa_{i}}|$

and
$$h_n = |g_1| + \sum_{k=2}^n |g_k - g_{k-1}|$$

$$\|h_{n}\|_{2} \leq \|g_{1}\|_{2} + \sum_{\kappa=2}^{\infty} \|g_{\kappa} - g_{\kappa-1}\|_{2}$$

$$\leq \|g_{1}\|_{2} + \sum_{\kappa=2}^{\infty} 2^{-(\kappa-1)}$$

$$= \|g_1\|_2 + | < \infty.$$

does not depend on n.

 $h_{n} \uparrow h_{s}$, so $h_{n}^{2} \uparrow h^{2}$, so $\int h_{n}^{2} d\mu \uparrow \int h^{2} d\mu$, so $\|h_{n}\|_{2} \uparrow \|h\|_{2}$.

So $\|h\|_{2} \leq \|g_{s}\|_{2} + 1 < \infty$.

Hence $\int_{1}^{2} du = \|h\|_{2}^{2} < \infty$. Thus $h < \infty$ almost weighbere. In other words $\|g_{1}\|_{+}^{2} + \sum_{k=2}^{\infty} |g_{k} - g_{k-1}| < \infty$ a. e.

Let $W = \{h < \infty\}$. $\mu(X \setminus W) = 0$ and for each $x \in W$, $|g_{i}(x)| + \sum_{k=0}^{\infty} |g_{k}(x) - g_{k-i}(x)| < \infty$, so $g_{i}(x) + \sum_{k=0}^{\infty} (g_{k}(x) - g_{k-i}(x))$ converges, $But g_{i}(x) + \sum_{k=0}^{\infty} (g_{k}(x) - g_{k-i}(x)) = g_{n}(x).$

Thus for each $\chi \in W$, $\lim_{n \to \infty} J_n(x)$ exists and is finite.

Define
$$f$$
 on X by $f(x) = \begin{cases} \lim_{n \to \infty} g_n(x) & x \in W \\ 0 & x \in X \setminus W \end{cases}$

Then $g_n \longrightarrow f$ a.e.

$$\text{Now} \quad \left| \mathcal{J}_n \right| \leq \left| \mathcal{J}_1 \right| + \sum_{k=2}^{r} \left| \mathcal{J}_{k} - \mathcal{J}_{k-1} \right| \leq h,$$

and
$$|f| \le h$$
, so $|f - g_n|^2 \le (|f| + |g_n|)^2 \le (h + h)^2 = 4h^2$.

Now $\int 4h^2 d\mu < \infty$ and $\left| f - g_n \right|^2 \longrightarrow 0$ a.e.,

dominated convergence Theorem. In other words,

$$\|f-g_n\|_2 \longrightarrow 0$$
 as $n \longrightarrow \infty$.

Corollary Let (f_n) be an orthogonal sequence in $L^2(\mu)$. Suppose $\sum_{n=1}^{\infty} \|f_n\|_2^2 < \infty$, and that $\sum_{n=1}^{\infty} f_n$ converges a.e. to f.

Then $f \in L^2(\mu)$, $\sum_{n=1}^{\infty} f_n \longrightarrow f$ in $L^2(\mu)$, and $\sum_{n=1}^{\infty} \|f_n\|_2^2 = \|f\|_2^2$.