Question	Scheme	Marks
2(a)	$2(x+1) < 5x - 2 \Rightarrow 2x + 2 < 5x - 2 \Rightarrow 3x > 4 \Rightarrow x > \frac{4}{3}$	M1A1 [2]
(b)	$3x^2 - x - 10 = 0 \Rightarrow (3x + 5)(x - 2) = 0 \Rightarrow x = -\frac{5}{3}, 2$	M1
	$-\frac{5}{3} \le x \le 2$ allow $-\frac{5}{3} \le x \le 2$	dM1
	$-\frac{5}{3} \leqslant x \leqslant 2$	A1 [3]
(c)	$\frac{4}{3}$ < $x \le 2$	B1ft [1]
Total 6 marks		

Part	Mark	Notes			
(a)	M1	Attempts to solve the inequality with no more than one arithmetical			
		error.			
	A1	For the correct inequality.			
(b)	M1	For attempting to solve the QE to find two critical values.			
	For the d	For the dM and A marks allow any acceptable notation.			
	For exam	tample; $-\frac{5}{3} \leqslant x \cap x \leqslant 2$ or, $-\frac{5}{3} \leqslant x$ and $x \leqslant 2$			
	The region	on must however indicate an INSIDE region			
	dM1	Forms an inside region with their cv's			
		This mark is dependent on the first M mark in (b)			
	A1	For the correct region with the correct inequalities.			
(c)	B1ft	For the correct combined inside region.			
		Penalise the incorrect inequality from part (b) $<$ in place of \le only			
		once.			
		Even if the correct inequality does not follow from their work, award this mark.			