

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

Kl. 50 e - 3,20

Ans. nr. 949/45.

DANMARK

PATENT

Nr. 69708.

BESKRIVELSE

MED TILHØRENDE TEGNING

OFFENTLIGGJORT DEN 1. AUGUST 1949

AF

DIREKTORATET FOR PATENT- OG VAREMÆRKEVÆSENET.

AKTIEBOLAGET ENKÖPINGS VERKSTÄDER,
FANNA, ENKÖPING, SVERIGE.

Støvudskiller.

Patent udstedt den 18. juli 1949. Patenttiden løber fra den 15. maj 1945. Fortrinsret påberåbt fra den 15. maj 1944 (Sverige).

Den foreliggende opfindelse angår en støvudskiller, fortrinsvis til rensning af luft i fabriks- og værkstedslokaler, f. eks. til støvudskillelse ved støvfrembringende arbejdsmaskiner.

Støvudskilleren er endvidere af den art, ved hvilken der findes en med en motor sammenkoblet rotor med et flertal spalteformede gennemstrømningskanaler for luften, hvilke kanaler forløber i hovedsagen parallelt med rotorens lodrette rotationsakse og dannes mellem vægge, der har form som rotationsflader omkring nævnte akse, og af hvilken den længst fra rotationsaksen beliggende væg i hver kanal virker som opfangningsflade for de under luftens passage gennem den roterende rotors kanaler udcentrifugerede og af centrifugalkræfterne mod opfangningsfladerne trykkede forureninger.

Det karakteristiske for støvudskilleren ifølge opfindelsen er, at hver kanals udløbsende er anbragt i større radial afstand fra rotationsaksen end kanalens indløbsende. Herved opnås, at der under indvirkning af den større centrifugalkraft ved kanalernes udløbsender automatisk fremkaldes en sugning af luften gennem kanalerne under rotorens omløb.

De spalteformede, ringformede gennemstrømningsender er fri for medbringerorganer, således at den gennemstrømmende luft alene på

grund af friktionens indvirkning sættes i rotation.

Ifølge opfindelsen kan der efter kanalernes eller rotorens udløb, regnet i gennemstrømningsretningen, være anbragt en stationær ledeladekranse, i hvilken størstedelen af den fra rotoren udstrømmende lufts bevægelsesenergi omsættes til trykenergi, så at støvudskilleren får blæservirking, så at den selv kan suge luften fra f. eks. en slibesten til sig og efter rensningen blæse den fra sig igen.

Yderligere ejendommeligheder ved støvudskilleren ifølge opfindelsen vil fremgå af den følgende beskrivelse af nogle på medfølgende tegning viste udførelsesformer.

På tegningen viser
fig. 1 et lodret snit gennem en udførelsesform for støvudskilleren bestemt til tilslutning til en støvfrembringende maskine, f. eks. en slibemaskine,

fig. 2 et langs linien II-II i fig. 1 lagt perifert snit gennem ledeladekransen,

fig. 3 et lodret snit gennem en ændret udførelsesform for støvudskilleren,

fig. 4 et vandret snit langs linien IV-IV i fig. 3 gennem glidekoblingen,

fig. 5 i større målestok et delvis snit langs linjen V-V i fig. 3 gennem bremseindretningen,

fig. 6 et lodret snit gennem en tredie udførelsesform,

fig. 7 og 8 delvise snit henholdsvis langs linien VII—VII og VIII—VIII i fig. 6.

Støvudskillerens hoveddel består af en i det følgende nærmere beskrevet rotor 1, som er direkte koblet til en elektromotor 2 og anbragt i en fortrinsvis cylindrisk lodret kappe 3, som foruden bærer en aftagelig støvpåsamningsbeholder 4. Støvudskilleren er forbundet med en til forberedende udskillelse af de grovere forureninger bestemt cyklon 5, som er anbragt omkring og under rotoren 1's nedre del. Cyklonen 5 er forsynet med et i hovedsagen tangentialt til kappen 3 forbundet luftindgangsrør 6, så at den i cyklonen indstrømmende luft sættes i rotation. De ved hjælp af centrifugalkraften i cyklonen udskilte, tunge partikler falder ned i beholderen 4. Denne afskærmer på 1 og for sig kendt måde opadtil ved hjælp af en konisk skærm 7 til formindskelse af genophvirveling fra beholderen. Eventuelt kan andre kendte organer til forhindring af genophvirveling anvendes.

Det fine støv, som cyklonen ikke formår at udskille, føres med luftstrømmen ind i den nedre del af den som centrifugaludskiller udførmede rotor 1. Denne rotor består af et antal koniske i hinanden anbragte pladekonus'er 8, som udvider sig opadtil, og mellem hvilke der dannes snævre, spalteformede kanaler 9, med ringformet tværsnit. Idet luftfrikctionen i snævre kanaler er meget stor, medbringes luften i rotationen alene på grund af friktionen mod kanalvæggene, således at luften ved sin udtrædning fra rotoren foroven har på det nærmeste samme periferihastighed som denne. Der behøver derfor ikke at anbringes særlige medbringerorganer for luften i kanalerne 9. Idet kanalernes diameter tiltager opad, forøges centrifugalkraften mere og mere i retning opad, hvorved der opstår en kraftig sugning af luften gennem kanalerne. Bevægelsesenergien af luften fra rotoren forvandles for største delen til trykenergi i en stillestående ledeskovlkrans 10, som er anbragt umiddelbart oven over kanalerne 9's udlobsender 11. Apparatet får herved blæservirkning, således at det af sig selv suger luften fra f. eks. en silbemaskine gennem cyklonen 5 og blæserluften op ad gennem et gitter 12. Rotoren er således udformet og dimensioneret, at den selv transporterer en luftmængde, som er noget større end den, der kan beføres af ledeskovlkransen. Differencen mellem disse to luftmængder går tilbage til cyklonen 5 gennem den vanskeligt tilgængelige gennemgangsspalte 13 mellem rotoren 1 og kappen 3.

Dette er et vigtigt arrangement, idet støvhoidig luft fra cyklonen i modsat fald skulle udsuges gennem gennemgangsspalten 13 forbi rotoren (separatore) 1. Man opnår på grund af centrifugalkraften en blæservirkning, hvis størvirrelse bestemmes ved tilpasning af rotorens konicitet. Det har vist sig formålstjenligt at gøre differencen mellem rotorens øvre og nedre yderdiameter mellem $\frac{1}{8}$ og $\frac{1}{7}$ af rotorens højde. Gøres rotorens konicitet mindre end det angivne minimum, finder der overføring sted af støv-

holdig luft fra cyklonen forbi rotoren til det fri. Hvis derimod koniciteten er større end den angivne øvre grænse, bliver overføring af remset luft fra rotorens øvre ende tilbage til cyklonen umådlig stor. Koniciteten af rotoren skal derfor afpasses således, at dens blæservirkning er noget større end svarende til gennemstrømningsmodstanden i rotorens kanaler.

For at apparatet ikke skal blive alt for spøsamt for tilpasningen af rotorens konicitet, er der rundt omkring rotoren anbragt en foruden indsnævrrende konisk skærm 14, således at en snævre kanal 15 dannes mellem skærmene 14 og rotoren 1.

Støvudskilleren i rotoren foregår på den måde, at partiklerne, når luften i rotoren kommer i rotation, udseparerer på grund af centrifugalkraften og presses mod den ydre kanalvej i hver rotorkanal, hvor de fastholdes af centrifugalkraftet, så længe rotoren er i gang. Fordudsætningen herfor er imidlertid, at den aksiale lufthastighed i rotoren ikke er for stor, ikke over 10 m/sek, samt at der ikke opstår skadelig hvirveldannelse.

For opnåelse af så vidt mulig laminar strømning bør kanalvidden fortrinsvis vælges i et sådant forhold til hastigheden i kanalerne, at det reynoldske tal

$$Re = \frac{W \cdot d}{v} V 2300$$

idet W = den aksielle gennemstrømningshastighed (i m/sek) i rotorkanalerne

d = kanalvidden (i meter)

v = luftens kinematiske viskositet (i m^2/sek).

På grund af farem for tilstopning af kanalerne kan så snævre kanaler dog ikke altid anvendes. Absolut laminar strømning i kanalerne er imidlertid ikke påkrævet. Kanalerne kan derfor om formådnet dimensioneres til reynoldske tal op til 7000 à 8000.

De koniske elementer 8 i rotoren sammenholdes foroven af et antal radiale skruer 16 med afstandshylstre, som holder konus'erne i bestemt indbyrdes afstand. I den nedre ende findes der også nogle mindre afstandsstykker 17 i form af ombøjede pladeflige, som er således lejret, at de i mindst mulig grad hindrer luftgennemstrømningen. De er derfor vredet som propellblade og kan også udføres således, at de fremmer luftgennemstrømningen. Dette fører dog let til hvirveldannelse, hvorfor neutral stilling er at foretrekke. Når rotoren standses, falder det i denne udskilte støv på grund af sin vægt ned i opsamlingsbeholderen 4. Det falder derved i form af flager, som er dannet ved sammenpakning af partikler i rotoren.

For at lette støvets nedfald fra rotoren i tilfælde af at støvet er adhæsivt, er der i apparatet indbygget en bankeindretning bestående af en ring 18 og en bøjle 19, som holdes oppe af to fjedre 20. Ved hastigt at trykke den fjederbelastede bøjle 19 nedad, slår ringen 20 mod rotornavet. På grund af de vibrationer, som herved opstår, slipper det i rotoren sammenpakede støv og falder ned i beholderen.

Motoren og rotoren er fælles lejret i bløde gummiblokke 21, hvorfed rotoren i får mulighed for at rotere omkring en akse gennem sit tyngdepunkt.

Dette er meget vigtigt for opfindelsens praktiske anvendelse. Man må nemlig regne med, at støvet undertiden kan slippe kun i rotorens ene side, hvorfed rotoren kommer ud af balance. Dette ville være ødelæggende, hvis ikke rotoren var selvcentrerende indrettet.

Auftafløbet er gjort opadrettet, for at træk ikke skal mærkes fra apparatet. Støvbeholderen er aftagelig og bæres af fjedrende spændeorgane 22 og er tætter ved hjælp af en pakningsring 23.

Til slut må nævnes, at det til opnåelse af tilstrækkelig blæservirkning har vist sig nødvendigt, som vist i fig. 2, at udføre ledeskovlene 24 i ledeskovlkransen 20 således, at de overlapper hinanden. Det er således ikke tilstrækkeligt at udføre dem som skovlene i en propelblæser. Skovlene skal altså ligge så nær ved hinanden, at der dannes langstrakte kanaler 25 mellem dem, hvilke kanaler udvider sig diffusoragtigt i gennemstrømningsretningen. Kanalerne 25's udvidelsesvinkel bør ligge mellem 2 og 12°. I indløbsdelen af kanalerne bør udvidelsesvinklen ikke være større end 8°. Skovlene ombøjes passende så meget, at luften forlader apparatet i hovedsagen aksialt.

Udførelsesformen ifølge fig. 3—5 adskiller sig i hovedsagen fra den foran beskrevne derved, at den er udstyret med en automatisk baneindretning, der samtidig virker som glidekobling mellem motoren og rotoren.

Idet en rotor ifølge opfindelsen er forholdsvis tung, har det vist sig formålstjenligt at forsyne den med en glidekobling, for at motoren ikke skal blive overbelastet i starten. Glidningen udnyttes ifølge opfindelsen til bankning af rotoren derved, at glidekoblingsens glidebane 30 ikke er glat, men fortandet.

Idet motoren 2 startes, drejer denne to arme 31, som hver bærer en pladefjeder 32, på hvilken en vægt 33 er fastgjort. Af centrifugalkraften trykkes disse vægte 33 mod den fortandede glidebane 30. Inden rotoren er kommet i gang, glider vægtene mod den fortandede glidebane 30, hvorfed kraftige vibrationer opstår. Det har imidlertid vist sig, at den bedste effekt af bankningen opnås, hvis rotoren i holdes stille et øjeblik, idet motoren startes.

Ifølge opfindelsen er rotoren i derfor udstyret med en automatisk virkende bremse. Denne bremse består af en på rotoren i anbragt af en pladefjeder 34 belastet bremseklos 35, som trykker mod en fast bremsetromle 36. Fjederspændingen er således afpasset, at rotoren i fastholdes, indtil motoren er kommet op på et vist omløbstal. Senere opræder der glidning også på bremsetromlen 36, og rotoren begynder at rotere. Herved slynges bremseklosen 35 af centrifugalkraften udad, således at bremseningen af rotoren ophører, og denne kan rotere frit. Glidekoblingen 31, 32, 33, 30 går da i fast indgreb, således at rotoren opnår samme omløbstal som motoren.

Støvbeholderen er ved denne udførelsес-form på kendt måde udført med et antal cylindriske indsatser 37 for at forhindre hvirveldannelsen og genophvirving i cyklonen. Motoren er her omgivet af et rum 38 til udjævning af luftstrømningerne fra skovlkransen. Fra dette rum 38 strømmer luften opad til det fri.

Støvudskilleren kan også tilpasses til støvudskillelse i sådanne lokaler, hvor støvet ikke dannes på bestemte steder, hvorfra det kan bortsuges. I så fald skal støvudskilleren holde hele luftmassen i lokalet i bevægelse. Om lokalet ikke er alt for stort, anbringes udskilleren bedst i lokalets midte umiddelbart under taget, hvis taget er fladt, samt indrettes til at blæse den rensede luft radiale udad rundt omkring. Herved opnås en symmetrisk og trækfri cirkulation af luften i lokalet, således at hele luftmassen i lokalet kan passere gennem apparatet flere gange pr. time uden ubehagelig træk. Det bliver herved muligt om ønsket at opnå et støvindhold i lokalet, som endog er mindre end i den fri luft udenfor.

Den i fig. 6—8 viste udførelsес-form er bestemt til dette formål. Rotoren 40 er udført af et antal koniske cylindre 41 anbragt inden i hinanden, således at der dannes snævre kanaler 42 mellem dem. For at rotoren også i dette tilfælde kan få blæservirkning, er den foroven forsynet med to flanger 43 og 44, mellem hvilke der dannes en kanal 45, som er helt åben ved rotorens ydre periferi og indadtil er tilsluttet til de ringformede kanaler 42's øvre udløb. Kanalen 45's udløb har større yderdiameter end rotoren 40, således at centrifugalkraften fremkalder sugning gennem kanalerne 42, hvorfed rotoren får blæservirkning. Yderdiameteren tilpasses hensigtsmæssigt således, at rotorens blæservirkning bliver større end rotorens indre modstand. Blæservirkningen forstærkes yderligere ved hjælp af en vandret, stationær ledeskovlkrans 46 anbragt umiddelbart uden for kanalen 45's udløb. Der skal renses, indføres gennem et antal aksiale slidser 47 i den rotoren omgivende cylindriske kappe 48. Pladen mellem slidserne 47 er ombøjet og bukket således, at der opnås skrætstillede, bøjede skovle 49, som retter luftstrømmen tangentialt til samme side som rotorens rotationsretning. Denne forhastighed af luften nedsætter rotorens kraftforbrug og gør det muligt med et givet kraftforbrug at opnå højere periferihastighed. Da denne forhastighed opnås ved ved hjælp af skovlkransen 46 at udnytte den udløbsenergi i luften fra rotoren, som ellers ville gå tabt, opnås forhastigheden uden ekstra kraftforbrug. Den nedsættelse af friktionsmodstanden mod rotoren, som denne forhastighed indebærer, er altså i dette tilfælde en ren gevinst.

Apparatet er forsynet med en glidekobling 49, 50, der virker som automatisk baneanordning af samme konstruktion som ovenfor beskrevet. Det afbankede støv falder ned i en aftagelig beholder 51, som passende kan udføres af glas, så man kan se, når den er fuld. Glasbeholderen fastholdes af en fjedrende, svingbar bøjle 50' og trykkes mod en tætningsring af

gummi 52. Motoren 53 med rotor 40 er fjedrende ophængt i gummiklods 54, som er tilstrækkelig blyde til at gøre anordningen selvcenterende.

Uden at opfindelsens tanke fraviges, kan en rotor af den sidst beskrevne konstruktion indbygges i en kappe ifølge en af de to tidligere omtalte konstruktioner til tilslutning til en rørledning for støvholidg luft.

Patentkrav.

1. Støvudskiller fortrinsvis til rensning af luft i fabriks- og værkstedslokaler, f. eks. i nærligheden af en arbejdsmaskine, og ved hvilken der findes en med en motor sammenkoblet rotor med et flertal spalteformede gennemstrømningskanaler for luften, hvilke kanaler forløber i hovedsagen parallelt med rotorens lodrette rotationsakse og dannes mellem vægge, der har form som rotationsflader omkring nævnte akse, og af hvilke den længst fra rotationsaksen beliggende væg i hver kanal virker som opfangningsflade for de under luftens passage gennem den roterende rotors kanaler udcentrifugerede og af centrifugalkræfterne mod opfangningsfladerne trykkede forureninger, kendetegnet ved, at hver kanals udløbsende er anbragt i større radial afstand fra rotationsaksen end kanalens indløbsende.

2. Støvudskiller ifølge krav 1, kendetegnet ved, at en stationær ledefladekrans er anbragt, regnet i strømningsretningen, efter kanalernes eller rotorens udløb, i hvilken ledefladekrans største delen af den fra rotoren udstrømmende lufts bevægelsesenergi omsættes til trykenergi.

3. Støvudskiller ifølge krav 2, kendetegnet ved, at der mellem ledevæggene i ledeflade-

kransen findes kanaler, som i strømningsretningen udvider sig diffusoragtigt.

4. Støvudskiller ifølge krav 1—3, kendetegnet ved, at de kanalerne i rotoren dannende vægge er koniske og udvider sig i retning af udløbet.

5. Støvudskiller ifølge krav 2—4, kendetegnet ved, at kanalernes opadvendende udløscenter danner rotorens udløb, samt at ledefladekransen er indrettet til at bortlede luften i hovedsagen i aksial retning.

6. Støvudskiller ifølge krav 2—5, kendetegnet ved, at rotoren er indrettet til befordring af en større luftmængde end ledefladekransen, og at en spalte forefindes mellem rotoren og en denne omgivende skærm til tilbageførelse af renset luft til rotorens indløbsseite.

7. Støvudskiller ifølge krav 1—6, kendetegnet ved, at en mellem rotoren og en denne drivende elektromotor anbragt glidekobling, som samtidig er indrettet som automatisk virkende bankeindretning på rotoren i den periode, hvor glidekoblingen ikke fast forbinder motoren med rotoren.

8. Støvudskiller ifølge krav 7, kendetegnet ved en bremseindretning, som er indrettet til at bremse rotoren, inden glidekoblingen er helt indkoblet, og bankeindretningen således er i funktion.

9. Støvudskiller ifølge krav 8, kendetegnet ved, at bremseindretningen består af en eller flere på rotoren fjedrende anbragte bremsekłods, som virker mod en fast bremsetrone, hvorhos bremseindretningen er indrettet til at holde rotoren stille, indtil motoren har opnået et forud bestemt omløbstal, og til ved hjælp af centrifugalkraftens indvirkning på bremsekłodserne helt at opnæve bremsningen, når rotoren er kommet op på et vist omløbstal.

Henhører til brevettsættet d1
patent nr. 69708

Henhører til t
patent nr.

Fig.1.

Fig.2

Fig.4.

Fig.5.

Innherer til beskrivelsen til
patent nr. 69708

