Table 1

Examples of Autoimmune Disease or Disease Model Caused By Autoreactive B Cell Responses

	Disease	Pathogenic Antibody Specificity			
and the same of th	Myasthenia Gravis (MG)	Anti-acetylcholine receptor antibodies cause weakness in MG			
	Juvenile Onset Diabetes Mellitus (Type 1 Diabetes)	Anti-insulin antibodies and anti-islet cell antibodies mediate islet cell destruction			
	Graves' Disease	Anti-thyroid stimulating hormone receptor antibodies mediate the disease			
	Insulin Resistance in Diabetes Mellitus	Anti-insulin antibodies prevent treatment of diabetes with insulin			

TURNET SOLDER ON IE

Table 2

Examples Autoimmuine Diseases or Disease Models Caused by Autoreactive T Cell Responses

Experimental autoimmune uveoretinitis (EDU)	T cell responses against retinal S antigen cause eye damage
Experimental autoimmune encephalomyelitis (EAE)	T cell responses against myelin basic protein cause neuronal damage

Peptide Sequences Used In Chimpanzee Immunizations

F-T1-SP10111B(A) AVGIGALFLGFLKQIINMWQEVGKAMYACTRPNNNTRKSIRIQRGPGRAFVTI

KQIINMWQEVGKAMYACTRPNNNTRKSIRIQRGPG

T1SP10IIIB(A)

T1-SP10IIIB

Kaiinmwaevakamyactrpnnntrksiriargpgrafvti

Table 4

Tritiated Thymidine Incorporation of Peripheral Blood Mononuclear Cells Following In Vitro Stimulation With HIV Env gp120*

Post- Immunization	Acpm/106 cells (Post/Pre)	39,189 (232)	<u> </u>	12,256 (2)	22,719 (2)
Pre- Immunization	Acpm/106 ce	169	17,955	6,348	11,285
Immunogen		T1-SP10IIIB, then T1-SP10IIIB(A)	T1-SP10IIIB, then T1-SP10IIIB(A)	F-T1-SP10IIIB(A)	F-T1-SP10IIIB(A)
Chimpanzee No.		884	1028	1045	1070

*Data represent the peak gp120 responses observed during the immunization period. Data for animals 884,1028, and 1045 represent peak responses using from 2ug/ml to 0.5ug/ml of HIVIIIB(LAI) recombinant gp120. Data for animal 1070 represent peak responses using from 1ug/ml to 0.5ug/ml of native HIVIIIB(LAI) gpī20.

-

1. 1. 18.1

m . Allinia na .

Table 5 HIV Envelope gp41 Fusion Protein (F) Sequences From Multiple HIV Isolates

Isolate	Sequence
HIV-1	
BH10	AVG: IGALFLGFL
MN	λλ::
SC ·	T M
SF2	I V M
CDC4	M L M
WMJ2	T M
RF_	T M
ELI	· · I · : L · · M · · · ·
MAL	• I • : L • • M • • • •
26	. • I • : L • • M • • • •
2321	· I · M : · · F · · · ·
JY1	• I • : L • • V • • • •
WMJ-1	A M
HIV-2	
ROD	RGVFVLGFLGFL
NIHZ	real and a second

Sequences for BH10 are aa 519-530 from Ratner, L, et al. Nature 313: 277-284, 1985. Sequences for the remainder of the HIV-1 and HIV-2 isolates from Myers, et al. Human Retroviruses and AIDS, 1988, Los Alamos National Laboratory, Los Alamos, New Mexico, p. II-90. WMJ-1 sequence from ref.

Regions of the TSH Receptor to Which Patient Anti-TSH Receptor Autoantibodies Bind

Amino Acid No.	Sequence	Ref.
333-343 12-36 289-317	yvffreqedel Hoeedfrvickdioripslppstot Lrorksvnalnsplhoeyeenlgdsivgy	17 18 18
352-366	YYVFFEEQEDEIIGF	27
103-111	YKELPLLKFL	28

Amino acid numbers and sequence from the reference listed

Examples of Hybrid Peptide Constructs That Could Be Used To Treat Anti-HLA Immune Responses In AIDS

HIV gp120 homology with DP/DQ β chain gp120 aa261-270 VVSTQLLLNG HLA DP/DQ aa142-151 VVST*LI*NG

HIV gp41 homology with HLA DR & chain gp41 aa837-844 EGTDRVI HLA DR aa19-25 NGTERVR

Hybrid Immunogens: AVGIGALFLGFLVVSTQLLLNG

AVGIGALFLGFLVVSTLING AVGIGALFLGFLEGTDRVI AVGIGALFLGFLNGTERVR

HIV gp120 and gp41 homologies with HLA Class II are from refs. 25 and 26.

TABLE

Derived From Hiv MN and Hivilib Env gp120* Sequences of Synthetic Peptide Constructs

A(B cell) KQIINMWQEVGKAMYACTRPNNNTRKSIRIQRGPGRAFVTI AVGIGALFLGFLKQIINMWQEVGKAMYACTRPNNNTRKSIRIQRGPGRAFVTI KÕIINMMÕEVGKAMYACTRPNYNKRKRIHIGPGRAFYTTK Peptide Composition and Sequence (Epitope Type) kāiinmmoevgkamyactrpnnutrkririorgpg SP10(B cell) T1 (Th) Peptide Type Th-B F-Th-B F-T1-SP10IIIB(A) T1-SP10IIIB(A) T1-SP10IIIB Peptide Name

Th-B Th-B

TI-SPIOMN(A)

except for arginine (R), asparagine (N), glutamine (Q), glutamic acid (E), lysine (K), phenylalanine (F), tryptophan (W), tyrosine (Y), and aspartic acid (D). F (fusogenic domain) sequence is amino acids 519-530 from HIVIIIB (27). The sequence is amino acids 428-443 from HIVIIIB (27). SP10MN(A) sequence is amino acids 303-321 from HIVIIIB. (A) sequence is amino acids 320-324 from HIVMN (28) and amino acids 322-327 from HIVIIIB (27). Each amino acid is represented by a single-letter code that is the first letter of its name,

B cell = B cell neutralizing antibody determinant.

A = Additional HIV gp120 \(\) 100p sequences added to the original synthetic peptide (SP10)

A = Additional HIV gp120 \(\) 100p sequences added to the hiv B cell determinant sequence to add an additional neutralizing and CTL region to the HIV B cell determinant sequence to add an additional neutralizing and CTL region to the HIV B cell determinant T helper cell determinant. || = B cell neutralizing antibody determinant. of the hybrid peptide.

28 = Myers et al, Human Retroviruses and AIDS (1991), p, III 6-23 27 = Ratner et.al, Nature 313:277 (1985)

р этапл.

Time Course of Anti-Peptide Tibody Responses in Chimpanzees Immunized with HIV Envelope Tynthetle This of Mith HIV Envelope

	**************************************	Tmminoden	Chimpanzee Number	se Number	Immunoden	1045	107
Montn	Montn or study		884 Reciprocal of	1028 ELISA Tİter		Reciprocal	of ELISA TITEL
		•				0	0
			0	0		c	0
	(mh_m/TTTR) 6mg	0	0	_	o (C
	7		51,200	102,400	F-Th-B(IIIB) 6mg	>	o OB
	m ·		25.600	819,200	F-Th-B(IIIB) 6mg	0	
	7		25 KNO	204,800*	F-Th-B(IIIB) 6mg	1,600	000
	5	Th-B(IIIB) 6mg	000 1 67	100 400	F-Th-B(IIIB) 30mg	25,600	12,800
	9	Th-B(IIIB) 30mg	51,200	102,400	F-Th-B(IIIB) 30mg	25,600	12,800
	7	Th-B(IIIB) 30mg	204,800	102,400	_	6,400	12,800
	- α	Th-B(IIIB) 30mg	51,200	25,600			6,400
	o c		51,200	51,200		800	800
	ָּאַ א		12,800	25,600		800	1,600
7	0.1		51,200	25,600		1.600	800
· — • •	11		51,200	25,600		006 -	200
	12		25,600	25,600	1	007	400
• •	13		51,200	25,600	F-Th-B(IIIB) 1mg	007	008
• •	14	Th-B(lllb) omy	102 400	12,800		008))
•	15	•	005 201	12,800	Th-B(IIIB) 6mg	100	
• ***	16	Th-B(MN) 6mg	25,600	000/27	Th-B(MN) 6mg	1,600	3,200
•	17	Th-B(MN) 6mg	12,800	3,200		6,400	25,600
•	. 0		25,600	6,400	5m3 (1111) 5 5 5	6,400	51,200
	0 • •	משל (אא) פ אה	25,600	1,600		51,200	102,400#
	13		51,200	- 1	Th-B(MN) omq.	mh_B peptide,	티
	20	Jak priten +1+prs		E/C were	3.0) against the rest	# :	on site.
Titers	are endpo	e endpoint buish treaty the month 5		injection due to a	מופרידה מוני	•	Of suttantIV

^{*} Animal 1028 did not receive the month 5 injection due to a sterile abscess at the injection site. A injections in animal 1028 after month 5 were in PBS alone. # Animal 1070 did not receive the month 20 immunization due to the presence of high levels of anti-HIV

neutralize antibodies. For animals 884 and 1028, immunizations at months 2-5 were with Ti-SP10IIIB, months 6,7,8 and 14, Ti-SP10IIIB(A). SP10IIIB(A). For animals 1045 and 1070 immunization at month 16 was with Ti-SP10IIIB(A).

'u)**n**tp

Table #0

4

Mean Lymphodyte and Lymphodyte Subset Levels In Chimpenzess Before and During Immunization With HIV Envelope Synthetic Peptides*

	8 Change			2 05-1	-448#		-238	-368		
1020	During			27681296	1887±184		232122	306144		
	Before During & Change			39431885 27681296	1871184	40141666	302153	478+148 306144		
	8 Change			-5581		-5981	-4085	***	+904-	
	niring			31641397 14261116		1012482	175±15		6117	
Number	Before	+ SEM	31644397	1	24601253 1012182	203439	761667	112427 6147		
Chimpanzee Number		8 Change	Cells/mm3 t SEM	977	-	-218	•	ATT+	+688	
8	984 1028 During % Change Before During		4,0	32861660	35 CE 277 30274402		458147	434±128		
				3164±396 3286z660	yeer as ac	0/710007	4111103 458147	247+24 4341128	724/67	
		& Change			-268	•	-248	+38	ć	26-
		. 1			30461249		26294384 20541178	365±39	•	317143
		Before			4034+452 30461249		2629±384	156147		345±82 317±43
Leukogyte	and a contract			1	Total	гулфпосу сев	T cells	, ,	g certs	NK cells

**Before" samples were studied over a 5 month period prior to immunization with peptides; n = 5 for lymphocytes, n = 3 for lymphocytes, n = 1 for for Toells, B cells and NK cells. "During" samples Were taken from months 2-14 of immunization; n = 11 for lymphocytes, T,B, and NK cells. Unless noted, p values for percent change comparing "before" values with "during" values was not significant with p> .05 using student's t test.

+ + 001 * + P .001 * P .002

Neutralization of HIV LAI/IIIB and HIV MN in Syncytium Inhibition Assay in Chimpanzees Immunized with T1-SP10 Peptides

Month 20 IB MN	- (24) - (24) ++ (350)
Mor LAI/IIIB LIbition Assay Assay)	- (22) +/- (86)
Month 19 3 in Syncytium Int n RT Inhibition	- (23) + (96)
Month 19 MN LAI/IIIB MN LAI/IIIB Presence of Neutralization in Syncytium Inhibition Assay (Reciprocal Titer in RT Inhibition Assay)	- +/- (23) + (100)
Mont	- (20) - (23) - (22)
No. LAI/IIIB	+/- (92)
Animal No.	884 1028 1045

- = < 48% inhibition of syncytia. +/- = ≥ 49% and < 80% inhibition of syncytia. + = ≥ 80% inhibition of syncytia, titer 1:10. ++ = > 80% inhibition of syncytia, titer 1:20.

anging a solution of its

Table 🙎

Reactivity of Chimpanzee Serum with Truncated Forms of the Th-B Peptide T1-SP10IIIB#

Chimpanzee No.			d in ELISA Bi		CD1 07
(Bleed Date)	T1-SP10IIIB	Tl-flu	SP10C	SP10D	SP10E
	Enc	point liter	(> 3.0 E/C)	In ELISA Assa	I.A.
884 (Month 7)	204,800	800	> 102,400*	51,200	3,200
1028 (Month 7)	102,400	800	102,400	51,200	3,200

*Peptides used in ELISA Assay were:

T1-SP10IIIB - KQIINMWQEVGKAMYACTRPNNNTRKSIRIQRGPG

T1-flu - KQIINMWQEVGKAMYATYQRTRALVTG

SPIOC - (C)TRKSIRIQRGPGR(Y)

SP10D - (C)IRIQRGPGR
SP10E - (C)TRPNNNTRKSIR

ELISA assay performed as described in Methods.
Fluisequence (TYQRTRALVTG) is from influenza nucleoprotein, strain A PR/8/34 from Deres et al, Nature 342:561 (1989).

= at 1:102,400 = 6.0.

Table 13

Effect of Derivatizing T1-SP10IIIB(A) Peptide With the HIV gp41 Fusogenic (F) Domain on Peptide Ability to Bind to Human Cells

Peptide	Antibody	MFC 4 Degrees C, 1 Hr.	MFC 37 Degrees C, 21 Hr.
None	Anti-gp120	7.6	13.6
T1-SP10IIIB(A) 10ug/ml	Anti-gp120	14.7	14.0
F1-T1-SP10IIIB(A)	Anti-gp120	82.8	36.7

Anti-gp120 momoclonal antibody was 0.5beta from the NIAID AIDS Research and Reference Reagent Program (Matsushita et al J. Virol. 62:2107, 1988). Cells used were human JY B cells which were incubated either for 1 hour at 4 degrees C or for 21 hours at 37 degrees C and then reacted with saturating amounts of the anti-gp120IIIB mab, 0.5beta followed by FITC-conjugated goat antimouse Ig reagent. The amount of fluoresence was determined on a flow cytometer and fluoresence brightness was expressed as MFC-mean channel fluoresence.

Table shows that conjugation of the F domain on the T1-SP10IIIB(A) peptide confers on it the ability to bind to JY B cells better that the T1-SP10IIIB(A) peptide alone, and that after incubation at 37 degrees C, the F-T1-SP10IIIB(A) peptide is decreased on the surface of the cells.

Table 14

Reactivity of anti-gp120 Monoclonal Antibody with Acetone-Fixed JY B Cells That Had Been Incubated With F-T1-SP10IIIB(A) Peptide (10µg/ml) For 21 Hours at 37 Degrees C

Peptide	Antibody	% Intracytoplasmic Positive
T1-SP10IIIB(A)	Control	0
T1-SP10IIIB(A)	Anti-gp120	0
F-T1-SP10IIIB(A)	Control	0
F-T1-Sp10IIIB(A)	Anti-gp120	76 faint, 24 bright

Cells were incubated as descirbed in Table 13.

After 21 hours at 37 degrees C, cytocentrifuge preparations of cells were prepared, acetone fixed, and reacted either with control mab P3x63 Ag8 or with anti-gp120 mab 0.5beta. Slides were read for either faint or bright intracytoplasmic fluoresence on a fluoresence microscope. Data show that after incubation of 10 ug/ml of peptide for 21 hours at 37 degrees C, the F-T1-SP10IIIB(A) peptide could be detected inside the JY B cells whereas the T1-SP10MN(A) peptide could not be detected.

United States Patent & Trademark Office

Office of Initial Patent Examination - Scanning Division

Application deficiencies found during scanning:

□ Page(s)	of		were not present
for scanning.		(Document title)	
□ Page(s)	of		were not present
for scanning		(Document title)	

△ Scanned copy is best available.

Drawing Figure & is dork