20104169 - SUMESH R

Importing Libraries

```
In [1]:
```

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

In [2]:

```
from google.colab import drive
drive.mount('/content/drive')
df=pd.read_csv("/content/drive/MyDrive/mydatasets/csvs_per_year/madrid_2010.csv")
df
```

Mounted at /content/drive

Out[2]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	O_3	PM10	PM25	PXY	SO_2
0	2010- 03-01 01:00:00	NaN	0.29	NaN	NaN	NaN	25.090000	29.219999	NaN	68.930000	NaN	NaN	NaN	10.15
1	2010- 03-01 01:00:00	NaN	0.27	NaN	NaN	NaN	24.879999	30.040001	NaN	NaN	NaN	NaN	NaN	12.24
2	2010- 03-01 01:00:00	NaN	0.28	NaN	NaN	NaN	17.410000	20.540001	NaN	72.120003	NaN	NaN	NaN	NaN
3	2010- 03-01 01:00:00	0.38	0.24	1.74	NaN	0.05	15.610000	21.080000	NaN	72.970001	19.410000	7.870000	NaN	10.06
4	2010- 03-01 01:00:00	0.79	NaN	1.32	NaN	NaN	21.430000	26.070000	NaN	NaN	24.670000	22.030001	NaN	10.68
209443	2010- 08-01 00:00:00	NaN	0.55	NaN	NaN	NaN	125.000000	219.899994	NaN	25.379999	NaN	NaN	NaN	NaN
209444	2010- 08-01 00:00:00	NaN	0.27	NaN	NaN	NaN	45.709999	47.410000	NaN	NaN	51.259998	NaN	NaN	7.26
209445	2010- 08-01 00:00:00	NaN	NaN	NaN	NaN	0.24	46.560001	49.040001	NaN	46.250000	NaN	NaN	NaN	NaN
209446	2010- 08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	46.770000	50.119999	NaN	77.709999	NaN	NaN	NaN	NaN
209447	2010- 08-01 00:00:00	0.92	0.43	0.71	NaN	0.25	76.330002	88.190002	NaN	52.259998	47.150002	26.860001	NaN	7.03

209448 rows × 17 columns

Data Cleaning and Data Preprocessing

191915 0.16 28079024 **191927** 0.25 28079099

```
In [3]:
df=df.dropna()
In [4]:
df.columns
Out[4]:
Index(['date', 'BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
       'PM10', 'PM25', 'PXY', 'SO 2', 'TCH', 'TOL', 'station'],
      dtype='object')
In [5]:
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 6666 entries, 11 to 191927
Data columns (total 17 columns):
   Column
             Non-Null Count Dtype
             _____
                           object
    date
             6666 non-null
1
   BEN
             6666 non-null float64
 2
    CO
             6666 non-null float64
   EBE
 3
             6666 non-null float64
 4 MXY
             6666 non-null float64
 5 NMHC
             6666 non-null float64
 6 NO 2
             6666 non-null float64
7 NOx
             6666 non-null float64
 8 OXY
             6666 non-null float64
 9 0 3
            6666 non-null float64
10 PM10
            6666 non-null float64
            6666 non-null float64
11 PM25
12 PXY
            6666 non-null float64
13 SO 2
             6666 non-null float64
             6666 non-null
14 TCH
                           float64
15 TOL
             6666 non-null
                           float64
16 station 6666 non-null
                           int64
dtypes: float64(15), int64(1), object(1)
memory usage: 937.4+ KB
In [6]:
data=df[['CO' ,'station']]
data
Out[6]:
       CO
            station
   11 0.18 28079024
   23 0.23 28079099
   35 0.17 28079024
   47 0.21 28079099
   59 0.16 28079024
191879 0.26 28079099
191891 0.16 28079024
191903 0.28 28079099
```

Line chart

```
In [7]:
```

```
data.plot.line(subplots=True)
Out[7]:
array([<Axes: >, <Axes: >], dtype=object)
  1.5
                                                              CO
 1.0
 0.5
      +2.8079e7
 100
  80
                                                           station
  60
  40
                          75000 100000 125000 150000 175000 200000
             25000
                    50000
```

Line chart

```
In [8]:
data.plot.line()
Out[8]:
<Axes: >

1e7
2.5 -
2.0 -
1.5 -
0.5 -
```

Bar chart

```
In [9]:
```

b=data[0:50]

In [10]:

b.plot.bar()

Out[10]:

<Axes: >

Histogram

```
In [11]:
```

```
data.plot.hist()
```

Out[11]:

<Axes: ylabel='Frequency'>

Area chart

```
In [12]:
```

```
data.plot.area()
Out[12]:
<Axes: >

le7

2.5

1.0

0.5

0.0

0 25000 50000 75000 100000 125000 150000 175000 200000
```

Box chart

```
In [13]:
data.plot.box()
Out[13]:
<Axes: >
```


Pie chart

In [14]:

```
b.plot.pie(y='station')
```

Out[14]:

<Axes: ylabel='station'>

Scatter chart

```
In [15]:
```

```
data.plot.scatter(x='CO', y='station')
```

Out[15]:

<Axes: xlabel='CO', ylabel='station'>

In [16]:

```
עונוע
             UUUU IIUII IIULL
                             LLUALUT
 2
    CO
             6666 non-null
                            float64
 3
    EBE
                            float64
             6666 non-null
    MXY
             6666 non-null
                            float64
 5
   NMHC
             6666 non-null float64
 6
             6666 non-null float64
   NO 2
 7
   NOx
             6666 non-null float64
 8
   OXY
             6666 non-null float64
 9
   0 3
             6666 non-null float64
10 PM10
             6666 non-null float64
11 PM25
             6666 non-null float64
             6666 non-null
                           float64
12 PXY
13 SO 2
             6666 non-null
                           float64
14 TCH
             6666 non-null
                            float64
             6666 non-null
15 TOL
                            float64
16 station 6666 non-null
                            int64
dtypes: float64(15), int64(1), object(1)
memory usage: 937.4+ KB
```

In [17]:

df.describe()

Out[17]:

	BEN	со	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	0_3
count	6666.000000	6666.000000	6666.000000	6666.000000	6666.000000	6666.000000	6666.000000	6666.000000	6666.000000
mean	0.648425	0.296280	0.840585	0.839959	0.243378	33.888744	47.540617	0.916668	56.246101
std	0.395346	0.133296	0.508031	0.382263	0.115730	23.465169	41.230578	0.192521	30.380535
min	0.170000	0.090000	0.140000	0.110000	0.000000	1.290000	2.760000	0.200000	0.600000
25%	0.380000	0.200000	0.470000	0.590000	0.180000	15.752500	19.442501	1.000000	31.740000
50%	0.540000	0.260000	0.755000	1.000000	0.220000	29.320000	36.770000	1.000000	57.750000
75%	0.810000	0.340000	1.000000	1.000000	0.280000	47.657500	62.102501	1.000000	79.489998
max	5.110000	1.590000	5.190000	6.810000	0.930000	133.399994	409.299988	2.760000	161.100006
4					1000000				·····•

In [18]:

```
df1=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3', 'PM10', 'PXY', 'SO 2', 'TCH', 'TOL', 'station']]
```

EDA AND VISUALIZATION

In [19]:

```
sns.pairplot(df1[0:50])
```

Out[19]:

<seaborn.axisgrid.PairGrid at 0x7f1221c9a0e0>

In [20]:

```
sns.distplot(df1['station'])
<ipython-input-20-4bc330f7257f>:1: UserWarning:
   `distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
   sns.distplot(df1['station'])
```

Out[20]:

<Axes: xlabel='station', ylabel='Density'>


```
0.00 0 20 40 60 80 100 120 station +2.8079e7
```

```
In [21]:
```

```
sns.heatmap(df1.corr())
```

Out[21]:

<Axes: >

TO TRAIN THE MODEL AND MODEL BULDING

```
In [22]:
```

In [23]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear Regression

In [24]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[24]:

```
▼ LinearRegression
LinearRegression()
```

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[26]:

	Co-efficient
BEN	-36.709145
co	187.134078
EBE	16.226167
MXY	-10.108055
NMHC	-71.228235
NO_2	0.279667
NOx	-0.647778
ОХҮ	31.635234
0_3	0.067167
PM10	-0.171634
PXY	-5.699804
SO_2	1.731514
TCH	42.565878
TOL	10.181513

In [27]:

```
prediction =lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[27]:

 ${\tt <matplotlib.collections.PathCollection}$ at ${\tt 0x7f1209b6c6a0>}$

30 40 50 60 70 80 90 100 +2.8079e7

```
ACCURACY
In [28]:
lr.score(x_test,y_test)
Out[28]:
0.3973996559206925
In [29]:
lr.score(x_train,y_train)
Out[29]:
0.439048183216168
Ridge and Lasso
In [30]:
from sklearn.linear model import Ridge,Lasso
In [31]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
Out[31]:
     Ridge
Ridge(alpha=10)
Accuracy(Ridge)
In [32]:
rr.score(x_test,y_test)
Out[32]:
0.4000976864620943
In [33]:
rr.score(x_train,y_train)
Out[33]:
```

la=Lasso(alpha=10)
la.fit(x_train, y_train)
Out[34]:
Lasso

0.4243968983294256

In [34]:

```
In [35]:
la.score(x train, y train)
Out[35]:
0.18330001884692382
Accuracy(Lasso)
In [36]:
la.score(x_test,y_test)
Out[36]:
0.1808772022742714
In [37]:
from sklearn.linear model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[37]:
▼ ElasticNet
ElasticNet()
In [38]:
en.coef
Out[38]:
                 , 0.22380028, 2.74088109, -1.33795864, -1.2035281 ,
array([-0.
         0.0106859 \ , \ -0.09520738, \quad 0.34663853, \ -0.02829414, \ -0.11197929, \\
            , 2.52733251, 0.
                                               7.14688317])
       -0.
In [39]:
en.intercept
Out[39]:
28079026.65612885
In [40]:
prediction=en.predict(x_test)
In [41]:
en.score(x_test,y_test)
Out[41]:
0.23395551898080547
Evaluation Metrics
In [42]:
from sklearn import metrics
print(metrics.mean absolute error(y test,prediction))
```

print(metrics.mean squared error(y test, prediction))

Lasso(arpna=10)

```
print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
30.841453990375623
1076.214814133815
32.80571313252945
Logistic Regression
In [43]:
from sklearn.linear model import LogisticRegression
In [44]:
feature_matrix=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
       PM10', 'PXY', 'SO_2', 'TCH', 'TOL']]
target vector=df[ 'station']
In [45]:
feature_matrix.shape
Out [45]:
(6666, 14)
In [46]:
target vector.shape
Out[46]:
(6666,)
In [47]:
from sklearn.preprocessing import StandardScaler
In [48]:
fs=StandardScaler().fit transform(feature matrix)
In [49]:
logr=LogisticRegression(max iter=10000)
logr.fit(fs, target vector)
Out[49]:
        LogisticRegression
LogisticRegression(max iter=10000)
In [50]:
observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
In [51]:
prediction=logr.predict(observation)
print(prediction)
[28079099]
In [52]:
logr.classes
Out[52]:
```

```
array([280/9024, 280/9099])
In [53]:
logr.score(fs, target vector)
Out[53]:
0.8660366036603661
In [54]:
logr.predict_proba(observation)[0][0]
Out[54]:
0.0
In [55]:
logr.predict_proba(observation)
Out[55]:
array([[0., 1.]])
Random Forest
In [56]:
from sklearn.ensemble import RandomForestClassifier
In [57]:
rfc=RandomForestClassifier()
rfc.fit(x train, y train)
Out [57]:
▼ RandomForestClassifier
RandomForestClassifier()
In [58]:
parameters={ 'max depth':[1,2,3,4,5],
            'min samples leaf':[5,10,15,20,25],
            'n estimators': [10,20,30,40,50]
In [59]:
from sklearn.model selection import GridSearchCV
grid_search =GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
Out[59]:
             GridSearchCV
 ▶ estimator: RandomForestClassifier
        RandomForestClassifier
In [60]:
grid search.best score
Out[60]:
0.9305615087869696
```

••••••

In [61]:

```
rfc best=grid search.best estimator
```

In [62]:

```
from sklearn.tree import plot_tree

plt.figure(figsize=(80,40))
plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['a','b','c','d'],f
illed=True)

Out[62]:

[Text(0.4375, 0.9166666666666666, 'TOL <= 1.085\ngini = 0.5\nsamples = 2929\nvalue = [229]
2.23691\nglass = b!)</pre>
```

```
8, 2368] \nclass = b'),
 Text(0.16145833333333334, 0.75, 'NOx <= 12.245 \ngini = 0.225 \nsamples = 992 \nvalue = [13]
70, 203]\nclass = a'),
 4, 13] nclass = a'),
 Text(0.041666666666666664, 0.41666666666666667, 'gini = 0.0 \nsamples = 178 \nvalue = [287, 197]
0] \nclass = a'),
 \nvalue = [367, 13] \setminus ass = a'),
 Text(0.04166666666666664, 0.25, 'NMHC <= 0.175 \ngini = 0.006 \nsamples = 190 \nvalue = [3]
07, 1] \setminus nclass = a'),
 Text(0.02083333333333333, 0.0833333333333333, 'qini = 0.245 \nsamples = 5 \nvalue = [6, ]
1] \setminus nclass = a'),
 a'),
 Text(0.125, 0.25, 'MXY \leq 0.945\ngini = 0.278\nsamples = 42\nvalue = [60, 12]\nclass = a
'),
 ] \nclass = a'),
 Text(0.145833333333333334, 0.083333333333333333, 'gini = 0.414 \nsamples = 27 \nvalue = [29, 1]
12] \nclass = a'),
 Text(0.2604166666666667, 0.5833333333333333334, 'TOL <= 0.735 \ngini = 0.331 \nsamples = 582 \nsamples
nvalue = [716, 190] \nclass = a'),
 Text(0.1875, 0.41666666666666666, 'NO 2 <= 10.115 \ngini = 0.127 \nsamples = 272 \nvalue = [
384, 28] \nclass = a'),
 Text(0.2083333333333333334, 0.25, 'NMHC <= 0.275 \neq 0.099 = 265 \neq 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 = 265 =
0, 21] \nclass = a'),
 = a'),
 01 \leq a'),
 nvalue = [332, 162] \nclass = a'),
 Text(0.29166666666666667, 0.25, 'NMHC <= 0.285 | mgini = 0.202 | msamples = 136 | mvalue = [194] | msamples = 136 | msample
, 25] \ln a = a'),
 25] \nclass = a'),
 ),
 Text(0.375, 0.25, '0 3 \leq 47.895\ngini = 0.5\nsamples = 174\nvalue = [138, 137]\nclass =
a'),
 Text(0.3541666666666667, 0.083333333333333333333, 'gini = 0.098 \nsamples = 37 \nvalue = [55, 1]
3] \nclass = a'),
 134] \nclass = b'),
 , 2165] \nclass = b'),
 Text(0.583333333333334, 0.583333333333333334, 'TCH <= 1.345 \ngini = 0.361 \nsamples = 1752
\nvalue = [662, 2139] \nclass = b'),
 Text(0.5, 0.416666666666666667, 'CO <= 0.225 \ngini = 0.495 \nsamples = 216 \nvalue = [198, 1]
62] \nclass = a'),
 Text(0.4583333333333333, 0.25, 'BEN <= 0.275 \ngini = 0.279 \nsamples = 86 \nvalue = [124, 124]
25] \nclass = a'),
 '),
```

```
Text(0.4791666666666667, 0.0833333333333333333, 'gini = 0.105 \nsamples = 76 \nvalue = [119, 100]
7] \nclass = a'),
   137] \setminus nclass = b'),
   23]\nclass = a'),
   = b'),
   Text(0.6666666666666666, 0.41666666666666667, 'NMHC <= 0.125 \ngini = 0.308 \nsamples = 153
6\nvalue = [464, 1977]\nclass = b'),
   Text(0.625, 0.25, 'SO 2 <= 10.805 \cdot \text{ngini} = 0.138 \cdot \text{nsamples} = 61 \cdot \text{nvalue} = [99, 8] \cdot \text{nclass} = 61 \cdot \text{nvalue} = [99, 8] \cdot \text{nclass} = 61 \cdot \text{nvalue} = [99, 8] \cdot \text{nclass} = 61 \cdot \text{nvalue} = [99, 8] \cdot \text{nclass} = 61 \cdot \text{nvalue} = [99, 8] \cdot \text{nclass} = 61 \cdot \text{nvalue} = [99, 8] \cdot \text{nclass} = 61 \cdot \text{nvalue} = [99, 8] \cdot \text{nclass} = 61 \cdot \text{nvalue} = [99, 8] \cdot \text{nclass} = 61 \cdot \text{nvalue} = [99, 8] \cdot \text{nclass} = 61 \cdot \text{nvalue} = [99, 8] \cdot \text{nclass} = 61 \cdot \text{nvalue} = [99, 8] \cdot \text{nclass} = 61 \cdot \text{nvalue} = [99, 8] \cdot \text{nclass} = 61 \cdot \text{nvalue} = [99, 8] \cdot \text{nclass} = 61 \cdot \text{nvalue} = [99, 8] \cdot \text{nclass} = 61 \cdot \text{nvalue} = [99, 8] \cdot \text{nclass} = 61 \cdot \text{nvalue} = [99, 8] \cdot \text{nclass} = 61 \cdot \text{nvalue} = [99, 8] \cdot \text{nclass} = 61 \cdot \text{nvalue} = [99, 8] \cdot \text{nclass} = 61 \cdot \text{nvalue} = [99, 8] \cdot \text{nclass} = 61 \cdot \text{nvalue} = [99, 8] \cdot \text{nclass} = 61 \cdot \text{nvalue} = [99, 8] \cdot \text{nclass} = 61 \cdot \text{nvalue} = [99, 8] \cdot \text{nclass} = 61 \cdot \text{nvalue} = [99, 8] \cdot \text{nclass} = 61 \cdot \text{nvalue} = [99, 8] \cdot \text{nclass} = 61 \cdot \text{nvalue} = [99, 8] \cdot \text{nclass} = 61 \cdot \text{nvalue} = [99, 8] \cdot \text{nclass} = 61 \cdot \text{nvalue} = [99, 8] \cdot \text{nclass} 
a'),
   8] \setminus nclass = a'),
   Text(0.645833333333334, 0.083333333333333333, 'gini = 0.0 \nsamples = 27 \nvalue = [51, 0]
\nclass = a'),
   Text(0.708333333333334, 0.25, 'EBE <= 0.765 \ngini = 0.264 \nsamples = 1475 \nvalue = [365]
, 1969]\nclass = b'),
   s = b'),
   Text(0.729166666666666, 0.08333333333333333, 'gini = 0.143\nsamples = 994\nvalue = [123
   1465] \nclass = b'),
   Text(0.84375, 0.5833333333333334, 'NO_2 <= 56.865 \neq 0.162 \Rightarrow 
 [266, 26] \nclass = a'),
   nvalue = [167, 8] \setminus nclass = a'),
   Text(0.75, 0.25, 'gini = 0.0 \setminus samples = 57 \setminus s = [92, 0] \setminus s = a'),
   ] \nclass = a'),
   Text(0.770833333333334, 0.083333333333333333, 'gini = 0.497 \nsamples = 7 \nvalue = [6, 7]
\nclass = b'),
   a'),
   Text(0.91666666666666666, 0.41666666666666667, 'BEN <= 1.3  ngini = 0.26 \nsamples = 74 \nval
ue = [99, 18] \setminus \text{nclass} = a'),
   Text(0.875, 0.25, 'NO 2 <= 64.29\ngini = 0.09\nsamples = 53\nvalue = [81, 4]\nclass = a'
   41 \times a = a'),
   \nclass = a'),
   Text(0.958333333333334, 0.25, 'CO \le 0.525 = 0.492 = 21 = 21 = [18, 14]
] \nclass = a'),
   1 \mid nclass = b')
```


Conclusion

Accuracy

```
In [63]:
```

```
print("Linear Regression:",lr.score(x_test,y_test))
print("Ridge Regression:",rr.score(x_test,y_test))
print("Lasso Regression",la.score(x_test,y_test))
print("ElasticNet Regression:",en.score(x_test,y_test))
print("Logistic Regression:",logr.score(fs,target_vector))
print("Random Forest:",grid_search.best_score_)
```

Linear Regression: 0.3973996559206925 Ridge Regression: 0.4000976864620943 Lasso Regression 0.1808772022742714

ElasticNet Regression: 0.23395551898080547 Logistic Regression: 0.8660366036603661 Random Forest: 0.9305615087869696

Random Forest is suitable for this dataset