AAI_510_FinalProject_Team2

June 23, 2025

1 MS AAI - 510 - MACHINE LEARNING FUNDAMENTALS

2 Final Project - Diabetes Predictor based on CDC Health Indicators

2.1 Team 2 - Santosh Kumar, Michael Domingo, Israel Romero Olvera

This notebook contains our analysis and model for the selected dataset. Source: https://archive.ics.uci.edu/dataset/891/cdc+diabetes+health+indicatorsA

2.1.1 Data understanding

Variable Name	Role Type Demog	gra phis cription	Units Missing Values
ID	ID Integer	Patient ID	no
$Diabetes_{_}$	_b liangy Binary	0 = no diabetes 1 = prediabetes or diabetes	no
HighBP	Featurary	0 = no high BP 1 = high BP	no
HighChol	Featurary	0 = no high cholesterol 1 = high cholesterol	no
CholCheo	ckFeatu ß inary	0 = no cholesterol check in 5 years 1 = yes cholesterol check in 5 years	no
BMI	Featu le teger	Body Mass Index	no
Smoker	Featu le inary	Have you smoked at least 100 cigarettes in your entire life? [Note: 5 packs = 100 cigarettes] $0 = \text{no}$ $1 = \text{yes}$	no
Stroke	Feature inary	(Ever told) you had a stroke. $0 = \text{no } 1 = \text{yes}$	no
HeartDisc	ea SeatAlla inakry	Coronary heart disease (CHD) or myocardial infarction (MI) $0 = \text{no } 1 = \text{yes}$	no
PhysActi	viF@atu R inary	Physical activity in past 30 days - not including job $0 = \text{no } 1 = \text{yes}$	no
Fruits	Featu R inary	Consume fruit 1 or more times per day $0 = \text{no } 1 = \text{yes}$	no
Veggies	Featu R inary	Consume vegetables 1 or more times per day $0 =$ no $1 = yes$	no
HvyAlcol	no FeatusBiimp ary	Heavy drinkers (adult men >14 drinks/week, women >7 drinks/week) $0 = \text{no } 1 = \text{yes}$	no
AnyHealt	h Fær ætu r Binary	Any kind of health care coverage (insurance, HMO, etc.) $0 = \text{no } 1 = \text{yes}$	no

Variable Name	Role Type Demogra	a ples cription	Units Missing Values
NoDocbc	C Be atu B inary	In past 12 months, needed to see doctor but could not because of cost? $0 = \text{no } 1 = \text{yes}$	no
GenHlth	Featu le teger	General health $(1 = \text{excellent}, 2 = \text{very good}, 3 = \text{good}, 4 = \text{fair}, 5 = \text{poor})$	no
MentHlth	Featulenteger	Days mental health not good in past 30 days (1-30)	no
PhysHlth	Featu le teger	Days physical health not good in past 30 days (1-30)	no
DiffWalk	Featu ® inary	Serious difficulty walking or climbing stairs? $0 = \text{no } 1 = \text{yes}$	no
Sex	Featureinar Sex	0 = female 1 = male	no
Age	Featu le tege A ge	13-level age category ($_AGEG5YR$ see codebook): $1 = 18-24$, $9 = 60-64$, $13 = 80+$	no
Education	Featu le tege E ducation	DEducation level (EDUCA see codebook): 1 =	no
	Level	Never attended/Kindergarten, 2 = Grades 1-8, 3 = Grades 9-11, 4 = HS/GED, 5 = College 1-3 yrs, 6 = College grad	
Income	Featulentegelincome	Income scale (INCOME2 see codebook): $1 = $ < $10k$, $5 = $	no

Note:
_AGEG5YR is a calculated variable for a fourteen-level age category, derived from AGE.

Value	Age Group	Description		
1	Age 18 to 24	Respondents with age between 18 and 24 years (18	AGE	24)
2	Age 25 to 29	Respondents with age between 25 and 29 years (25	AGE	29)
3	Age 30 to 34	Respondents with age between 30 and 34 years (30	AGE	34)
4	Age 35 to 39	Respondents with age between 35 and 39 years (35	AGE	39)
5	Age 40 to 44	Respondents with age between 40 and 44 years (40	AGE	44)
6	Age 45 to 49	Respondents with age between 45 and 49 years (45	AGE	49)
7	Age 50 to 54	Respondents with age between 50 and 54 years (50	AGE	54)
8	Age 55 to 59	Respondents with age between 55 and 59 years (55	AGE	59)
9	Age 60 to 64	Respondents with age between 60 and 64 years (60	AGE	64)
10	Age 65 to 69	Respondents with age between 65 and 69 years (65	AGE	69)
11	Age 70 to 74	Respondents with age between 70 and 74 years (70	AGE	74)
12	Age 75 to 79	Respondents with age between 75 and 79 years (75	AGE	79)
13	Age 80 or older	Respondents with age between 80 and 99 years (80	AGE	99)
14	Don't	Respondents who didn't know, were not sure, or refuse	ed to 1	report
	know/Refused/Missing			

2.2 Problem statement and justification for the proposed approach.

According to the CDC, 11.6% of the population in the United States from all age groups had diabetes in 2021. That's 38.4 million Americans from which 39.7 million were diagnosed and an estimated 8.7 million are unaware they have the deadly condition. About 1.2 million Americans

get diagnosed with diabetes every year. Diabetes is expensive, underdiagnosed, and when caught too late, often irreversible.

The solution isn't more doctors or more clinics, it's smarter systems, systems that can detect risk before complications arise. That's where our model fits in. We have built a machine learning pipeline powered by CDC health indicators, cloud native API first and fully compatible with modern EHR environments.

2.2.1 Imports

```
[6]: # Standard libraries
     import os
     import warnings
     import joblib
     # Data handling
     import numpy as np
     import pandas as pd
     # Visualization
     import matplotlib.pyplot as plt
     import seaborn as sns
     import shap
     # Data source
     from ucimlrepo import fetch_ucirepo
     # Scikit-learn: Preprocessing and Model Selection
     from sklearn.model_selection import train_test_split, GridSearchCV
     from sklearn.preprocessing import StandardScaler
     # Scikit-learn: Models
     from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier
     from sklearn.linear_model import LogisticRegression
     # XGBoost
     from xgboost import XGBClassifier as XGBoostClassifier
     # Scikit-learn: Metrics and Evaluation
     from sklearn.metrics import (
         accuracy_score, precision_score, recall_score, f1_score,
         confusion_matrix, ConfusionMatrixDisplay,
         roc_auc_score, average_precision_score,
         roc_curve, auc, RocCurveDisplay,
         precision_recall_curve, make_scorer
     )
     # Scikit-learn: Warnings
```

```
from sklearn.exceptions import ConvergenceWarning

# Sampling
from imblearn.under_sampling import RandomUnderSampler
from imblearn.over_sampling import SMOTE
from IPython.display import display
```

2.2.2 Config & Warnings

<IPython.core.display.HTML object>

Instead of writing everything in one long script, we broke down into separate reusable functions for each step like data loading, pre-processing, EDA model training, evaluation, and plotting.

2.2.3 Data Loading & Preprocessing

After bringing in the CDC diabetes dataset, one of the first things we did was visualize the distribution of our target variable, Diabetes_binary, with a simple bar plot. This chart basically counts up how many people in our data do or do not have diabetes. Right away, you'll notice a huge imbalance: the vast majority of individuals are not diabetic, and only a smaller fraction are.

```
[8]: def load and prepare data():
         cdc_diabetes_health_indicators = fetch_ucirepo(id=891)
         df = cdc_diabetes_health_indicators.data.original.dropna()
         X = cdc_diabetes_health_indicators.data.features.loc[df.index]
         y = cdc_diabetes_health_indicators.data.targets.loc[df.index]
         return df, X, y
     def data_count(df):
         df['Diabetes_binary'].value_counts().sort_index().plot(kind='bar', title = ___

¬'Diabetes')
         plt.xticks(rotation = 0)
         plt.ylabel('Frequency')
         plt.tight_layout()
         plt.show()
         print(f"Data count: {df['Diabetes_binary'].value_counts()}")
     def split_data(X, y, test_size=0.2, random_state=RANDOM_SEED):
         return train_test_split(X, y, test_size=test_size,_
      →random_state=random_state)
```

```
def select_features(X, columns):
    return X[columns]
```

2.2.4 Run EDA

Moving into exploratory data analysis, we used a correlation heatmap, which is basically a colored grid that shows how every feature in our dataset relates to every other feature—including our target. Each square in the grid tells us whether two features move together or not. For example, a strong positive value between "HighBP" and "Diabetes_binary" means people with high blood pressure are more likely to be diabetic. Meanwhile, values close to zero mean there's little to no connection. This heatmap is a great tool for spotting which features might help our predictions and for warning us if some features are too similar and could cause problems in modeling.

```
[9]: def run_eda(df):
         print("\n===== Data Head =====")
         print(df.head())
         print("\n===== Data Description =====")
         print(df.describe())
         print("\n===== Data Info =====")
         print(df.info())
         # print("\n===== Value Counts for Each Column =====")
         # for col in df.columns:
               print(f"\n{col} value counts:")
               print(df[col].value_counts())
         # Correlation heatmap
         plt.figure(figsize=(14, 8))
         sns.heatmap(df.drop(columns=['ID'], errors='ignore').corr(), cmap='BrBG', u
      ⇔linewidths=2, annot=True, fmt=".1f")
         plt.title('Correlation Heatmap')
         plt.show()
         # Bar chart: feature correlation with target
         if 'Diabetes_binary' in df.columns:
             corr_matrix = df.drop(columns=['ID'], errors='ignore').corr()
             target_corr = corr matrix['Diabetes binary'].drop('Diabetes binary')
             plt.figure(figsize=(10, 5))
             target_corr.sort_values(ascending=False).plot(kind='bar', color='teal')
             plt.title('Feature Correlation with Diabetes binary')
             plt.ylabel('Correlation Coefficient')
             plt.xlabel('Feature')
             plt.xticks(rotation=45, ha='right')
             plt.tight_layout()
             plt.show()
         # Feature distributions
         features = df.drop(columns=['Diabetes binary', 'ID'], errors='ignore')
         plt.figure(figsize=(20, 16))
         for i, col in enumerate(features.columns):
             plt.subplot(6, 4, i + 1)
```

```
sns.histplot(features[col])
plt.xlabel(col)
plt.ylabel('count')
plt.grid()
plt.tight_layout()
plt.show()
```

2.2.5 Resampling Utilities

```
def resample_data(X, y, method=None):
    if method == 'under':
        sampler = RandomUnderSampler(random_state=RANDOM_SEED)
        X_res, y_res = sampler.fit_resample(X, y)
        return X_res, y_res
    elif method == 'smote':
        sampler = SMOTE(random_state=RANDOM_SEED)
        X_res, y_res = sampler.fit_resample(X, y)
        return X_res, y_res
    else:
        return X, y
```

2.2.6 Model Training & Evaluation

We compared several different scenarios to understand how data balance and hyperparameter tuning affect our results. Here's what we did: Original Data with Tuning: We trained each model—Logistic Regression, Random Forest, XGBoost, and Gradient Boosting—on the original, imbalanced data, using grid search to tune their parameters. Undersampling: Since our data has way more non-diabetic cases than diabetic, we used random undersampling to reduce the size of the majority class, making the classes balanced. Then we trained and tuned the same models. SMOTE (Synthetic Minority Oversampling Technique): Here, we used a technique to increase the minority class by generating synthetic diabetic samples, again training and tuning our models. Models Without Tuning: We also wanted to see how much tuning matters, so we trained all four models again—on all three data versions—using their default hyperparameters.

After training our models, we use confusion matrices to really see how each one is performing. Each confusion matrix is a simple 2x2 table that tells us not just how many predictions were right, but what kind of mistakes the model made. The top left cell counts the people correctly identified as not diabetic, and the bottom right shows the correctly identified diabetics. The off-diagonal cells tell us about false alarms and, more importantly, the missed real cases—which is a big concern in healthcare. By comparing these grids across different models, we get a much clearer picture than we'd get from accuracy alone.

The ROC curve is a classic way to see how well our models distinguish between diabetic and non-diabetic cases at various thresholds. It plots the true positive rate against the false positive rate, and the closer the curve hugs the top-left corner, the better the model is. If the curve follows the diagonal, it's basically guessing. We also get an AUC score, which tells us, in one number, how good the model is overall—where 1 is perfect and 0.5 is random. For our best models, an AUC around 0.83 is really strong, especially given the difficulty of the task.

Because diabetes cases are rare in the data, the precision-recall curve is another super important graph. Here, we're balancing two things: how many real cases we're catching (recall), and how many of the cases we label as diabetic are actually correct (precision). When the data is imbalanced, this curve gives a much more honest look at performance than ROC curves alone. A high area under this curve means our model isn't just accurate overall, but it's actually catching diabetics without too many false alarms—a crucial tradeoff in real-world healthcare. A value of 0.43 on the precision-recall curve means that, on average, 43% of the positive predictions made by our model are actually correct, when balancing both precision and recall across all possible thresholds.

```
[11]: def get_models():
          return {
              'Logistic Regression': LogisticRegression(random_state=RANDOM_SEED,_
       \rightarrowmax iter=1000),
              'Random Forest': RandomForestClassifier(random_state=RANDOM_SEED),
              'XG Boost Classifier': XGBoostClassifier(random_state=RANDOM_SEED, ___
       ⇔eval_metric='logloss'),
              'Gradient Boosting Classifier':
       →GradientBoostingClassifier(random_state=RANDOM_SEED),
          }
      def get_param_grids():
          return {
              'Logistic Regression': {
                   'C': [0.1, 1, 10, 100],
                   'solver': ['liblinear', 'lbfgs'],
                   'class_weight': ['balanced', {0: 1, 1: 2}, {0: 1, 1: 3}]
              },
               'Random Forest': {
                   'n_estimators': [100, 200, 300],
                   'max_depth': [10, 20, None],
                   'min_samples_split': [2, 5, 10],
                   'class_weight': ['balanced', 'balanced_subsample']
              },
              'XG Boost Classifier': {
                   'n_estimators': [100, 200, 300],
                   'max_depth': [3, 6, 10],
                   'learning_rate': [0.01, 0.1, 0.2],
                   'subsample': [0.8, 1.0],
                   'scale_pos_weight': [1, 2, 3]
              },
               'Gradient Boosting Classifier': {
                   'n estimators': [100, 200],
                   'max depth': [3, 5, 7],
                   'learning_rate': [0.01, 0.1, 0.2],
                   'subsample': [0.8, 1.0]
              }
          }
```

```
def tune_model(model, param_grid, X_train, y_train):
    scorer = make_scorer(roc_auc_score)
    grid_search = GridSearchCV(
       model,
       param_grid,
       cv=3,
       scoring=scorer,
       n jobs=-1,
       verbose=1
   grid_search.fit(X_train, y_train.squeeze())
   print(f"Best parameters: {grid_search.best_params_}")
   print(f"Best CV score: {grid_search.best_score_:.4f}")
   return grid_search.best_estimator_
def evaluate_model(model, X_test, y_test):
   y_pred = model.predict(X_test)
   accuracy = accuracy_score(y_test, y_pred)
   precision = precision_score(y_test, y_pred, average='weighted',_
 ⇔zero_division=0)
   recall = recall_score(y_test, y_pred, average='weighted')
   f1 = f1_score(y_test, y_pred, average='weighted')
   cm = confusion_matrix(y_test, y_pred)
   return accuracy, precision, recall, f1, cm, y_pred
def save_model(model, name, save_dir='../models'):
   os.makedirs(save_dir, exist_ok=True)
   filename = os.path.join(save_dir, f"{name.replace(' ', '_')}_model.pkl")
   joblib.dump(model, filename)
   print(f"Saved {name} to {filename}")
def plot_shap_feature_importance(model, X, max_display=11, title="SHAP Feature_
 # Ensure X is a DataFrame and columns match model training
   feature names = list(X.columns)
   X_array = X.values
   # Use TreeExplainer for tree-based models
   if hasattr(model, "feature_importances_"):
        explainer = shap.TreeExplainer(model)
        shap_values = explainer.shap_values(X_array)
        # For tree models, shap_values is (n_samples, n_features)
        shap.summary_plot(shap_values, X, feature_names=feature_names,_
 →plot_type="bar", max_display=max_display, show=False)
    else:
        explainer = shap.Explainer(model, X)
```

```
shap_values = explainer(X)
        shap.plots.bar(shap_values, max_display=max_display, show=False)
   plt.title(title)
   plt.show()
def plot_all_confusion_matrices(trained_models, X_test, y_test):
   n = len(trained_models)
    cols = 2
   rows = (n + cols - 1) // cols
   fig, axes = plt.subplots(rows, cols, figsize=(6 * cols, 5 * rows))
   axes = axes.flatten()
   for i, (model_name, model) in enumerate(trained_models.items()):
       y_pred = model.predict(X_test)
        cm = confusion_matrix(y_test, y_pred)
        disp = ConfusionMatrixDisplay(confusion matrix=cm, display labels=model.
 ⇔classes_)
        disp.plot(ax=axes[i], cmap='Blues', colorbar=False)
        axes[i].set_title(f"{model_name} (Acc: {accuracy_score(y_test, y_pred):.
 for j in range(i + 1, len(axes)):
       fig.delaxes(axes[j])
   plt.tight_layout()
   plt.show()
def plot_all_roc_pr_curves(trained_models, X_test, y_test):
   plt.figure(figsize=(12, 10))
   for model_name, model in trained_models.items():
        if hasattr(model, "predict_proba"):
            y_score = model.predict_proba(X_test)[:, 1]
        else:
            y_score = model.decision_function(X_test)
        # ROC Curve
        fpr, tpr, _ = roc_curve(y_test, y_score)
       roc_auc = auc(fpr, tpr)
       plt.subplot(2, 1, 1)
       plt.plot(fpr, tpr, lw=2, label=f'{model_name} (AUC = {roc_auc:.2f})')
        # PR Curve
       precision, recall, _ = precision_recall_curve(y_test, y_score)
        avg_precision = average_precision_score(y_test, y_score)
       plt.subplot(2, 1, 2)
       plt.plot(recall, precision, lw=2, label=f'{model_name} (AP =__

¬{avg_precision:.2f})')
   plt.subplot(2, 1, 1)
   plt.title('ROC Curve')
   plt.xlabel('False Positive Rate')
   plt.ylabel('True Positive Rate')
```

```
plt.legend(loc='lower right')
plt.subplot(2, 1, 2)
plt.title('Precision-Recall Curve')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.legend(loc='lower left')
plt.tight_layout()
plt.show()
```

2.2.7 Main Experiment Pipeline

```
[12]: def model_training_with_tuning(X_train, y_train, X_test, y_test,__
       →resample_method=None, axes_cmap='Greens'):
          models = get models()
          param_grids = get_param_grids()
          X_res, y_res = resample_data(X_train, y_train, method=resample_method)
          results = []
          trained_models = {}
          num_models = len(models)
          cols = 2
          rows = (num models + cols - 1) // cols
          for i, (model_name, model) in enumerate(models.items()):
              print(f"\nTraining {model_name} ({'resampled' if resample_method else_u

¬'original'})...")
              tuned_model = tune_model(model, param_grids[model_name], X_res, y_res)
              trained_models[model_name] = tuned_model
              acc, prec, rec, f1, cm, y pred = evaluate model(tuned model, X test, |

y_test)

              if hasattr(tuned_model, "predict_proba"):
                  y_score = tuned_model.predict_proba(X_test)[:, 1]
              else:
                  y_score = tuned_model.decision_function(X_test)
              roc_auc = roc_auc_score(y_test, y_score)
              avg_precision = average_precision_score(y_test, y_score)
              results.append([model_name, acc, prec, rec, f1, roc_auc, avg_precision])
              save_model_name = model_name.replace(' ', '_') + ('_resampled_' +__
       Gresample_method if resample_method else '_original')
              save_model(tuned_model, save_model_name)
          results_df = pd.DataFrame(results, columns=['Model', 'Test Accuracy', |
       →'Precision', 'Recall', 'F1-Score', 'ROC-AUC', 'Avg Precision'])
          print(results_df.sort_values(by='Test Accuracy', ascending=False))
          # All confusion matrices in a grid
          plot_all_confusion_matrices(trained_models, X_test, y_test)
          # All ROC and PR curves in a grid
          plot_all_roc_pr_curves(trained_models, X_test, y_test)
          # SHAP plots
          # for model_name, model in trained_models.items():
```

```
print(f"SHAP Feature Importance for {model_name}:")
         plot_shap_feature_importance(model, X_test, title=f"SHAP Feature_
 → Importance: {model_name}")
   return results df, trained models
def model training with no tuning(X train, y train, X test, y test, ...
 →resample_method=None, axes_cmap='Oranges'):
   models = get_models()
   X_res, y_res = resample_data(X_train, y_train, method=resample_method)
   results = []
   trained_models = {}
   num_models = len(models)
   cols = 2
   rows = (num_models + cols - 1) // cols
   for i, (model_name, model) in enumerate(models.items()):
       print(f"\nTraining {model_name} (no tuning, {'resampled' if_
 →resample_method else 'original'})...")
       model.fit(X_res, y_res.squeeze())
        acc, prec, rec, f1, cm, y_pred = evaluate_model(model, X_test, y_test)
        if hasattr(model, "predict_proba"):
            y_score = model.predict_proba(X_test)[:, 1]
        else:
            y score = model.decision function(X test)
        roc_auc = roc_auc_score(y_test, y_score)
       avg_precision = average_precision_score(y_test, y_score)
       results.append([model_name, acc, prec, rec, f1, roc_auc, avg_precision])
       trained_models[model_name] = model
       save_model_name = model_name.replace(' ', '_') + '_no_tuning' +_
 →('_resampled_' + resample_method if resample_method else '_original')
        save_model(model, save_model_name)
   results_df = pd.DataFrame(results, columns=['Model', 'Test Accuracy', |

¬'Precision', 'Recall', 'F1-Score', 'ROC-AUC', 'Avg Precision'])
   print(results df.sort values(by='Test Accuracy', ascending=False))
   # All confusion matrices in a grid
   plot_all_confusion_matrices(trained_models, X_test, y_test)
    # All ROC and PR curves in a grid
   plot_all_roc_pr_curves(trained_models, X_test, y_test)
   # SHAP plots
   # for model_name, model in trained_models.items():
         print(f"SHAP Feature Importance for {model name} (no tuning):")
          plot_shap_feature_importance(model, X_test, title=f"SHAP Feature_
 → Importance: {model_name} (no tuning)")
   return results df, trained models
```

2.2.8 Main

Data count: Diabetes_binary

0 218334 1 35346

Name: count, dtype: int64

==== Data Head =====

		Dava noaa							
	ID	Diabetes_binary	HighBP	HighChol	CholCheck	BMI	Smoker	Stroke	\
0	0	0	1	1	1	40	1	0	
1	1	0	0	0	0	25	1	0	
2	2	0	1	1	1	28	0	0	
3	3	0	1	0	1	27	0	0	
4	4	0	1	1	1	24	0	0	

Не	artDis	seaseorAtta	ck PhysAc	tivity	<i>y</i>	AnyH	ealth	care	NoDoc	bcCo	st	\	
0			0	Č		•		1			0		
1			0	1	1			0			1		
2			0	()			1			1		
3			0	1	1			1			0		
4			0	1	1			1			0		
Ge	nHlth	MentHlth	PhysHlth	DiffV	Valk	Sex	Age	Educa	ation	Inc	ome		
0	5	18	15		1	0	9		4		3		
1	3	0	0		0	0	7		6		1		
2	5	30	30		1	0	9		4		8		
3	2	0	0		0	0	11		3		6		
4	2	3	0		0	0	11		5		4		
[5 rd	ws x 2	23 columns]											
=====	= Data	Description	on =====										
		ID	Diabetes_	binary	I		HighB	P	Hig	hCho	1 \		
count	2536	80.000000	253680.				00000		3680.0				
mean		339.500000		139333			42900			2412			
std		231.252481		346294			49493			9421			
min		0.000000		000000			00000			0000			
25%	634	19.750000		000000			00000			0000			
50%		339.500000		000000			00000			0000			
75%		259.250000		000000			00000			0000			
max		379.000000		000000			00000			0000			
											•		
		CholCheck		BMI		Sm	oker		Str	oke	\		
count	2536	80.000000	253680.00	0000	25368	80.00	0000	25368	30.000	000			
mean		0.962670	28.38	32364		0.44	3169		0.040	571			
std		0.189571	6.60	8694		0.49	6761		0.197	294			
min		0.000000	12.00	0000		0.00	0000		0.000	000			
25%		1.000000	24.00	0000		0.00	0000		0.000	000			
50%		1.000000	27.00			0.00			0.000				
75%		1.000000	31.00				0000		0.000				
max		1.000000	98.00				0000		1.000				
	Hear	rtDiseaseor	Attack P	hysAct	tivit	у	AnyH	ealth	care	No	Docb	cCost	\
count	;	253680.	000000 25	3680.0	00000	0	2536	80.000	0000	2536	80.0	00000	
mean		0.	094186	0.7	75654	4		0.951	1053		0.0	84177	
std		0.	292087	0.4	12916	9		0.215	5759		0.2	77654	
min		0.	000000	0.0	00000	0		0.000	0000		0.0	00000	
25%		0.	000000	1.0	00000	0		1.000	0000		0.0	00000	
50%			000000		00000			1.000				00000	
75%			000000		00000			1.000				00000	
max			000000		00000			1.000				00000	
									•				

	${\tt GenHlth}$	${ t MentHlth}$	PhysHlth	DiffWalk	\
count	253680.000000	253680.000000	253680.000000	253680.000000	
mean	2.511392	3.184772	4.242081	0.168224	
std	1.068477	7.412847	8.717951	0.374066	
min	1.000000	0.000000	0.000000	0.000000	
25%	2.000000	0.000000	0.000000	0.000000	
50%	2.000000	0.000000	0.000000	0.000000	
75%	3.000000	2.000000	3.000000	0.000000	
max	5.000000	30.000000	30.000000	1.000000	
	Sex	Age	Education	Income	
count	253680.000000	253680.000000	253680.000000	253680.000000	
mean	0.440342	8.032119	5.050434	6.053875	
std	0.496429	3.054220	0.985774	2.071148	
min	0.000000	1.000000	1.000000	1.000000	
25%	0.000000	6.000000	4.000000	5.000000	
50%	0.000000	8.000000	5.000000	7.000000	
75%	1.000000	10.000000	6.000000	8.000000	
max	1.000000	13.000000	6.000000	8.000000	
шал	1.000000	13.000000	0.00000	0.00000	

[8 rows x 23 columns]

==== Data Info =====

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 253680 entries, 0 to 253679

Data columns (total 23 columns):

Dava	COTUMNED (COURT ZO COT	umiib).	
#	Column	Non-Null Count	Dtype
0	ID	253680 non-null	int64
1	Diabetes_binary	253680 non-null	int64
2	HighBP	253680 non-null	int64
3	HighChol	253680 non-null	int64
4	CholCheck	253680 non-null	int64
5	BMI	253680 non-null	int64
6	Smoker	253680 non-null	int64
7	Stroke	253680 non-null	int64
8	${\tt HeartDiseaseorAttack}$	253680 non-null	int64
9	PhysActivity	253680 non-null	int64
10	Fruits	253680 non-null	int64
11	Veggies	253680 non-null	int64
12	HvyAlcoholConsump	253680 non-null	int64
13	AnyHealthcare	253680 non-null	int64
14	NoDocbcCost	253680 non-null	int64
15	GenHlth	253680 non-null	int64
16	MentHlth	253680 non-null	int64
17	PhysHlth	253680 non-null	int64
18	DiffWalk	253680 non-null	int64
19	Sex	253680 non-null	int64

 20 Age
 253680 non-null int64

 21 Education
 253680 non-null int64

 22 Income
 253680 non-null int64

dtypes: int64(23) memory usage: 44.5 MB

None


```
[14]: all_results = []
```

2.2.9 Train model on original (unbalanced) data

```
Training Logistic Regression (original)...
Fitting 3 folds for each of 24 candidates, totalling 72 fits
Best parameters: {'C': 100, 'class_weight': 'balanced', 'solver': 'liblinear'}
Best CV score: 0.7446
Saved Logistic_Regression_original to
```

```
Training Random Forest (original)...
Fitting 3 folds for each of 54 candidates, totalling 162 fits
/Users/santoshkumar/envs/ai/lib/python3.11/site-
packages/joblib/externals/loky/process_executor.py:782: UserWarning: A worker
stopped while some jobs were given to the executor. This can be caused by a too
short worker timeout or by a memory leak.
  warnings.warn(
Best parameters: {'class_weight': 'balanced_subsample', 'max_depth': 10,
'min_samples_split': 2, 'n_estimators': 300}
Best CV score: 0.7467
Saved Random Forest_original to ../models/Random Forest_original model.pkl
Training XG Boost Classifier (original)...
Fitting 3 folds for each of 162 candidates, totalling 486 fits
Best parameters: {'learning_rate': 0.2, 'max_depth': 3, 'n_estimators': 300,
'scale_pos_weight': 3, 'subsample': 0.8}
Best CV score: 0.7188
Saved XG Boost Classifier original to
../models/XG_Boost_Classifier_original_model.pkl
Training Gradient Boosting Classifier (original)...
Fitting 3 folds for each of 36 candidates, totalling 108 fits
Best parameters: {'learning rate': 0.2, 'max_depth': 7, 'n estimators': 200,
'subsample': 0.8}
Best CV score: 0.5754
Saved Gradient_Boosting_Classifier_original to
../models/Gradient_Boosting_Classifier_original_model.pkl
                        Model Test Accuracy Precision
                                                          Recall F1-Score
3 Gradient Boosting Classifier
                                    0.863213
                                              XG Boost Classifier
2
                                    0.815437
                                               0.854490 0.815437 0.830569
1
                 Random Forest
                                    0
           Logistic Regression
                                              0.864292 0.729659 0.769289
                                    0.729659
   ROC-AUC Avg Precision
3 0.824097
                 0.399565
2 0.833676
                 0.430903
1 0.832213
                 0.428342
0 0.826169
                 0.403896
```

../models/Logistic_Regression_original_model.pkl

2.2.10 Training model with Undersampling

Training Random Forest (resampled)...
Fitting 3 folds for each of 54 candidates, totalling 162 fits

../models/Logistic_Regression_resampled_under_model.pkl

```
/Users/santoshkumar/envs/ai/lib/python3.11/site-
packages/joblib/externals/loky/process_executor.py:782: UserWarning: A worker
stopped while some jobs were given to the executor. This can be caused by a too
short worker timeout or by a memory leak.
  warnings.warn(
Best parameters: {'class_weight': 'balanced_subsample', 'max_depth': 10,
'min_samples_split': 2, 'n_estimators': 300}
Best CV score: 0.7475
Saved Random Forest resampled under to
../models/Random_Forest_resampled_under_model.pkl
Training XG Boost Classifier (resampled)...
Fitting 3 folds for each of 162 candidates, totalling 486 fits
Best parameters: {'learning_rate': 0.1, 'max_depth': 3, 'n_estimators': 100,
'scale_pos_weight': 1, 'subsample': 0.8}
Best CV score: 0.7489
Saved XG_Boost_Classifier_resampled_under to
../models/XG_Boost_Classifier_resampled_under_model.pkl
Training Gradient Boosting Classifier (resampled)...
Fitting 3 folds for each of 36 candidates, totalling 108 fits
Best parameters: {'learning_rate': 0.1, 'max_depth': 5, 'n_estimators': 100,
'subsample': 0.8}
Best CV score: 0.7494
Saved Gradient_Boosting_Classifier_resampled_under to
../models/Gradient_Boosting_Classifier_resampled_under_model.pkl
                         Model Test Accuracy Precision
                                                            Recall F1-Score \
0
           Logistic Regression
                                     0.729778
                                                0.864208 0.729778 0.769375
1
                 Random Forest
                                      0.721421
                                                0.867826 0.721421 0.763077
2
           XG Boost Classifier
                                      0.720140
                                                 0.868014 0.720140 0.762074
3 Gradient Boosting Classifier
                                      0.718188
                                                 0.868119 0.718188 0.760531
   ROC-AUC Avg Precision
0 0.826145
                 0.403732
1 0.831684
                 0.423721
2 0.833451
                 0.427346
3 0.833096
                 0.425647
```


2.2.11 Training model with SMOTE Oversampling

```
Training Logistic Regression (resampled)...

Fitting 3 folds for each of 24 candidates, totalling 72 fits

Best parameters: {'C': 100, 'class_weight': 'balanced', 'solver': 'lbfgs'}

Best CV score: 0.7285

Saved Logistic_Regression_resampled_smote to
../models/Logistic_Regression_resampled_smote_model.pkl
```

Training Random Forest (resampled)...
Fitting 3 folds for each of 54 candidates, totalling 162 fits

```
/Users/santoshkumar/envs/ai/lib/python3.11/site-
packages/joblib/externals/loky/process_executor.py:782: UserWarning: A worker
stopped while some jobs were given to the executor. This can be caused by a too
short worker timeout or by a memory leak.
  warnings.warn(
Best parameters: {'class_weight': 'balanced', 'max_depth': None,
'min_samples_split': 2, 'n_estimators': 200}
Best CV score: 0.8299
Saved Random Forest resampled smote to
../models/Random_Forest_resampled_smote_model.pkl
Training XG Boost Classifier (resampled)...
Fitting 3 folds for each of 162 candidates, totalling 486 fits
Best parameters: {'learning_rate': 0.2, 'max_depth': 10, 'n_estimators': 300,
'scale_pos_weight': 1, 'subsample': 0.8}
Best CV score: 0.8077
Saved XG_Boost_Classifier_resampled_smote to
../models/XG_Boost_Classifier_resampled_smote_model.pkl
Training Gradient Boosting Classifier (resampled)...
Fitting 3 folds for each of 36 candidates, totalling 108 fits
Best parameters: {'learning_rate': 0.2, 'max_depth': 7, 'n_estimators': 200,
'subsample': 0.8}
Best CV score: 0.7652
Saved Gradient_Boosting_Classifier_resampled_smote to
../models/Gradient Boosting Classifier resampled smote model.pkl
                         Model Test Accuracy Precision
                                                            Recall F1-Score \
1
                 Random Forest
                                     0.755026
                                               0.822327 0.755026 0.781205
2
           XG Boost Classifier
                                     0.743949
                                                0.834492 0.743949 0.776123
3 Gradient Boosting Classifier
                                                0.856053 0.719174 0.760408
                                     0.719174
           Logistic Regression
                                     0.714778
                                                0.864019 0.714778 0.757560
   ROC-AUC Avg Precision
1 0.737856
                 0.274315
2 0.760215
                 0.317412
3 0.801388
                 0.374479
0 0.818402
                 0.391368
```


2.2.12 Training model NO TUNING (original)

Training Logistic Regression (no tuning, original)...

Saved Logistic_Regression_no_tuning_original to
../models/Logistic_Regression_no_tuning_original_model.pkl

Training Random Forest (no tuning, original)...

Saved Random_Forest_no_tuning_original to
../models/Random_Forest_no_tuning_original_model.pkl

Training XG Boost Classifier (no tuning, original)...

Saved XG_Boost_Classifier_no_tuning_original to ../models/XG_Boost_Classifier_no_tuning_original_model.pkl

Training Gradient Boosting Classifier (no tuning, original)... Saved Gradient_Boosting_Classifier_no_tuning_original to

 $... / {\tt models/Gradient_Boosting_Classifier_no_tuning_original_model.pkl}$

	Model	Test Accuracy	Precision	Recall	F1-Score	\
3	Gradient Boosting Classifier	0.868259	0.838736	0.868259	0.836574	
2	XG Boost Classifier	0.866623	0.835077	0.866623	0.833748	
0	Logistic Regression	0.865500	0.832645	0.865500	0.832315	
1	Random Forest	0.847781	0.818857	0.847781	0.828931	

	ROC-AUC	Avg Precision
3	0.833852	0.431416
2	0.831047	0.422183
0	0.825852	0.405894
1	0.768715	0.326992

2.2.13 Training model NO TUNING (undersampling)

Training Logistic Regression (no tuning, resampled)...

Saved Logistic_Regression_no_tuning_resampled_under to
../models/Logistic_Regression_no_tuning_resampled_under_model.pkl

Training Random Forest (no tuning, resampled)...

Saved Random_Forest_no_tuning_resampled_under to
../models/Random_Forest_no_tuning_resampled_under_model.pkl

Training XG Boost Classifier (no tuning, resampled)...

Saved XG_Boost_Classifier_no_tuning_resampled_under to
../models/XG_Boost_Classifier_no_tuning_resampled_under_model.pkl

Training Gradient Boosting Classifier (no tuning, resampled)... Saved Gradient_Boosting_Classifier_no_tuning_resampled_under to

Random Forest

0.697256

0.852157 0.697256 0.742892

	ROC-AUC	Avg Precision
0	0.826143	0.403705
3	0.833664	0.428798
2	0.828054	0.408295
1	0.784448	0.329619

1

2.2.14 Training model NO TUNING (SMOTE)

Training Logistic Regression (no tuning, resampled)...

Saved Logistic_Regression_no_tuning_resampled_smote to
../models/Logistic_Regression_no_tuning_resampled_smote_model.pkl

Training Random Forest (no tuning, resampled)...

Saved Random_Forest_no_tuning_resampled_smote to
../models/Random_Forest_no_tuning_resampled_smote_model.pkl

Training XG Boost Classifier (no tuning, resampled)...

Saved XG_Boost_Classifier_no_tuning_resampled_smote to ../models/XG_Boost_Classifier_no_tuning_resampled_smote_model.pkl

Training Gradient Boosting Classifier (no tuning, resampled)... Saved Gradient_Boosting_Classifier_no_tuning_resampled_smote to

 $... / {\tt models/Gradient_Boosting_Classifier_no_tuning_resampled_smote_model.pkl}$

	Model	Test Accuracy	Precision	Recall	F1-Score	\
1	Random Forest	0.754730	0.822063	0.754730	0.780938	
0	Logistic Regression	0.714877	0.864091	0.714877	0.757643	
2	XG Boost Classifier	0.709555	0.862509	0.709555	0.753315	
3	Gradient Boosting Classifier	0.703288	0.866970	0.703288	0.748534	

	ROC-AUC	Avg Precision
1	0.736533	0.273552
0	0.818376	0.391358
2	0.814232	0.389631
3	0.823528	0.404243

Finally, all the numbers come together in our results table. This table lists out every model we tried—Logistic Regression, Random Forest, XGBoost, and Gradient Boosting—under all the different training scenarios, like original data, undersampling, SMOTE, with and without tuning. It shows each one's accuracy, precision, recall, F1-score, ROC-AUC, and more. What's really helpful here is how you can instantly spot which setup performed best—like Gradient Boosting on the original, unbalanced data with no tuning, hitting 86.8% accuracy and an AUC of 0.83.

```
[21]: final_results_df = pd.concat(all_results, ignore_index=True)
  final_results_df.sort_values(by='Test Accuracy', ascending=False, inplace=True)
  display(final_results_df)
```

```
Model
                                    Test Accuracy
                                                   Precision
                                                                 Recall
15
    Gradient Boosting Classifier
                                         0.868259
                                                     0.838736
                                                               0.868259
14
             XG Boost Classifier
                                         0.866623
                                                     0.835077
                                                               0.866623
             Logistic Regression
12
                                         0.865500
                                                     0.832645
                                                               0.865500
3
    Gradient Boosting Classifier
                                         0.863213
                                                     0.829818
                                                               0.863213
13
                    Random Forest
                                         0.847781
                                                     0.818857
                                                               0.847781
```

```
2
             XG Boost Classifier
                                         0.815437
                                                     0.854490
                                                               0.815437
9
                    Random Forest
                                         0.755026
                                                    0.822327
                                                               0.755026
21
                    Random Forest
                                         0.754730
                                                     0.822063
                                                               0.754730
10
             XG Boost Classifier
                                         0.743949
                                                     0.834492
                                                               0.743949
1
                    Random Forest
                                         0.732931
                                                     0.866623
                                                               0.732931
16
             Logistic Regression
                                         0.729916
                                                     0.864233
                                                               0.729916
4
             Logistic Regression
                                         0.729778
                                                     0.864208
                                                               0.729778
0
             Logistic Regression
                                         0.729659
                                                     0.864292
                                                               0.729659
5
                    Random Forest
                                         0.721421
                                                     0.867826
                                                               0.721421
    Gradient Boosting Classifier
19
                                         0.720514
                                                     0.868052
                                                               0.720514
6
             XG Boost Classifier
                                         0.720140
                                                     0.868014
                                                               0.720140
    Gradient Boosting Classifier
11
                                         0.719174
                                                     0.856053
                                                               0.719174
7
    Gradient Boosting Classifier
                                         0.718188
                                                     0.868119
                                                               0.718188
20
             Logistic Regression
                                         0.714877
                                                     0.864091
                                                               0.714877
8
             Logistic Regression
                                         0.714778
                                                     0.864019
                                                               0.714778
18
             XG Boost Classifier
                                         0.714601
                                                     0.866735
                                                               0.714601
22
             XG Boost Classifier
                                         0.709555
                                                     0.862509
                                                               0.709555
23
    Gradient Boosting Classifier
                                         0.703288
                                                     0.866970
                                                               0.703288
17
                    Random Forest
                                         0.697256
                                                     0.852157
                                                               0.697256
    F1-Score
               ROC-AUC
                         Avg Precision Resampling
                                                        Tuning
                                          Original
                                                     No Tuning
15
    0.836574
              0.833852
                               0.431416
    0.833748
              0.831047
                              0.422183
                                          Original
                                                    No Tuning
              0.825852
                              0.405894
                                          Original
                                                    No Tuning
12 0.832315
3
    0.833201
              0.824097
                              0.399565
                                          Original
                                                         Tuned
                                          Original
13
    0.828931
              0.768715
                              0.326992
                                                    No Tuning
2
    0.830569
                                          Original
                                                         Tuned
              0.833676
                              0.430903
9
                                                         Tuned
    0.781205
              0.737856
                              0.274315
                                             SMOTE
21
                                             SMOTE
                                                     No Tuning
    0.780938
              0.736533
                              0.273552
    0.776123
              0.760215
                              0.317412
                                             SMOTE
                                                         Tuned
    0.772041
              0.832213
                              0.428342
                                          Original
                                                         Tuned
1
16
    0.769484
              0.826143
                              0.403705
                                             Under
                                                    No Tuning
4
    0.769375
              0.826145
                              0.403732
                                             Under
                                                         Tuned
0
    0.769289
              0.826169
                              0.403896
                                          Original
                                                         Tuned
5
                              0.423721
                                             Under
                                                         Tuned
    0.763077
              0.831684
    0.762374
19
              0.833664
                              0.428798
                                             Under
                                                    No Tuning
                                             Under
                                                         Tuned
6
    0.762074
              0.833451
                              0.427346
11
    0.760408
              0.801388
                              0.374479
                                             SMOTE
                                                         Tuned
7
    0.760531
              0.833096
                                                         Tuned
                              0.425647
                                             Under
20
    0.757643
              0.818376
                              0.391358
                                             SMOTE
                                                    No Tuning
              0.818402
8
    0.757560
                              0.391368
                                             SMOTE
                                                         Tuned
18 0.757590
                                             Under
                                                    No Tuning
              0.828054
                              0.408295
22
    0.753315
              0.814232
                              0.389631
                                             SMOTE
                                                    No Tuning
                                                     No Tuning
23
    0.748534
              0.823528
                              0.404243
                                             SMOTE
    0.742892
              0.784448
                              0.329619
                                             Under
                                                     No Tuning
```

2.2.15 Model Deployment

Now it's time to deploy a trained model. Model is deployed and used in production, as shown in this diagram.

- 1. The process begins with the user which could be a real person or another application—interacting with an API server.
- 2. This server acts as the gateway, receiving the user's input data and passing it along to the model inference component, where the actual prediction happens using a trained model.
- 3. The model inference step is powered by the latest version of the trained model, which is registered and tracked in the model registry for version control and easy updates.
- 4. Behind the scenes, whenever we want to improve the model, the training pipeline kicks in. It takes in new training data, processes it with feature engineering to create better inputs, and retrains the model as needed.
- 5. The newly trained model is then sent back to the registry and used for future inferences.

This pipeline ensures that user inputs flow smoothly all the way from the user interface to a smart prediction and back, while keeping the system flexible, updatable, and robust for real-world use.

2.2.16 Discussion and conclusions

In this project, we set out to address the serious challenge of underdiagnosed and costly diabetes in the United States by building a machine learning model capable of predicting diabetes risk based on widely available CDC health indicators. Our results show that modern ML models, especially Gradient Boosting and XGBoost, are effective at detecting diabetes risk even when trained on real-world, highly imbalanced datasets. Through systematic experiments with data balancing (using undersampling and SMOTE) and hyperparameter tuning, we found that Gradient Boosting performed best, achieving a test accuracy of 86.8% and a strong ROC-AUC of 0.83 on the original unbalanced dataset, even without parameter tuning.

The analysis of our model's confusion matrices, ROC curves, and precision-recall curves demonstrates that our solution can detect a significant portion of true diabetes cases while controlling for false positives—a crucial balance in healthcare. However, the moderate average precision score (around 0.43) also highlights the ongoing challenge of identifying rare cases in a sea of healthy individuals. Data imbalance remains a critical issue in this domain, but resampling methods like

SMOTE and robust ensemble algorithms help mitigate its effects.

We recommend that healthcare providers and public health organizations consider integrating such predictive models into their workflows, particularly for early screening and outreach programs. The model can be exposed as an API and deployed in cloud-native environments for real-time risk prediction, as demonstrated in our deployment pipeline. For future work, we suggest periodic retraining of the model with new data and continuous monitoring of prediction quality to ensure long-term effectiveness. Ultimately, predictive analytics like this have strong potential to complement traditional screening, prioritize high-risk individuals, and help reduce the overall burden of diabetes in society.