

Qu'elle est la relation entre le machine learning et classifieur bayisien naif?

Transmino Tasks

hypothése!

les descripteurs (Xj) sont deux à deux indépendants conditionnellement aux valeurs de la variable à prédire (Y).

Deux événements A et B sont dits indépendants (par rapport à P) si :

$$P(A \cap B) = P(A)P(B).$$

chills	runny nose	headache	fever	flu?
Υ	N	Mild	Υ	N
Υ	Υ	No	N	Ŷ
Y	N	Strong	Y	Υ
N	Y	Mild	Υ	Y
N	N	No	N	N
N	Y	Strong	Υ	(Y)
N	Y	Strong	N	N
Υ	Y	Mild	Y	(Ž)

Do I believe that a patient with the following symptoms has the flu?

chills	runny nose	headache	fever	flu?
Υ	N	Mild	Υ	?

Do I believe that a patient with the following symptoms has the flu?

chills	runny nose	headache	fever	flu?
Y	N	Mild	Y	?

P(Flu=Y)	0.625	P(Flu=N)	0.375
P(chills=Y flu=Y)	0.6	P(chills=Y flu=N)	0.333
P(chills=N flu=Y)	0.4	P(chills=N flu=N)	0.666
P(runny nose=Y flu=Y)	0.8	P(runny nose=Y flu=N)	0.333
P(runny nose=N flu=Y)	0.2	P(runny nose=N flu=N)	0.666
P(headache=Mild flu=Y)	0.4	P(headache=Mild flu=N)	0.333
P(headache=No flu=Y)	0.2	P(headache=No flu=N)	0.3333
P(headache=Strong flu=Y)	0.4	P(headache=Strong flu=N)	0.333
P(fever=Y flu=Y)	8.0	P(fever=Y flu=N)	0.333
P(fever=N flu=Y)	0.2	P(fever=N flu=N)	0.666

And then decide:

```
argmaxP(flu = Y)P(chills = Y|flu = Y)P(runny \ nose = N|flu = Y)P(headache = Mild|flu = Y)P(fever = N|flu = Y)
= 0.006
vs.
argmaxP(flu = N)P(chills = Y|flu = N)P(runny \ nose = N|flu = N)P(headache = Mild|flu = N)P(fever = N|flu = N)
= 0.0185
```

GAUSSIAN

CLASSIFIER

Gaussian because this is a normal distribution

 $P(class | data) = P(data | class) \times P(class)$

p (data)

We don't calculate this in naive bayes classifiers

ChrisAlbon

This is our prior

$$\hat{y}(\omega) = y_{k^*} \Leftrightarrow y_{k^*} = \arg\max_{k} P[Y = y_k / \aleph(\omega)]$$

 $\hat{y}(\omega) = y_{k^*} \iff y_{k^*} = \arg\max_{k} P(Y = y_k) \times P[\aleph(\omega)/Y = y_k]$

TEXT CLASSIFICATION IMPLEMENTATION

Texte

Catégorie

je fais la natation sport

je cours chaque matin sport

elle est occupé au pas de sport

travaille

Elle est fais du fitnes sport

il part en voyage pas de sport

Prédire je cours chaque jeudi

P(je / sport) = 2/11 P(cours/ sport) = 1/11 P(chaque/ sport) = 1/11 P(jeudi /sport) = ? Si n_k est le nombre d'individu de la modalité y_k dans un échantillon de n observations, nous utilisons

$$\hat{P}(Y = y_k) = p_k = \frac{n_k + \lambda}{n + \lambda \times K}$$

Lorsque λ = 0, nous avons la fréquence relative usuelle. Lorsque nous fixons λ = 1, nous obtenons l'estimateur laplacien des probabilités.

P(jeudi / sport) =
$$0 + 1$$

11 + 1* 14

