MI-FME Cvičení 9

Tomáš Chvosta

Březen 2020

Převeďte každou z následujících základních cest na formu SSA (Static Single Assignment Form) a zapište si její podmínku ověření. Zkontrolujte, zda platí podmínka ověření. Pokud platí, napište krátký důkaz. Pokud tomu tak není, najděte protipříklad, to znamená proměnné přiřazení, které ukazuje, že vzorec neplatí, a které zároveň představuje počáteční stav, který ale po následném provedení vede k chybě.

Cvičení 9a

Zadání:

Static Single Assignment forma:

V tomto případě není potřeba zavádět nové názvy proměnných, jelikož žádná z proměnných nenabývá podruhé nové hodnoty. SSA forma má tedy následující tvar:

Logická formule z SSA:

Logická formule z SSA vypadá následovně:

$$(\forall x, y, z)([x \ge 0 \land y = x \land z = y] \Rightarrow z \ge 0)$$

Ověřovací podmínky:

Pro důkaz použijeme metodu ručního dokazování z přednášky. Předpokládáme $x \geq 0, \ y = x, \ z = y$ a dokážeme $z \geq 0$. Kvůli předpokladu z = y stačí dokázat $y \geq 0$. Kvůli předpokladu y = x stačí dokázat $x \geq 0$, což je ale zároveň jeden z předpokladů, takže formule platí a můžeme tvrdit, že program je napsán korektně.

Cvičení 9b

Zadání:

Static Single Assignment forma:

Můžeme si všimnout, že ve druhém kroku přiřadíme hodnotu y do z a následně přiřadíme do y novou hodnotu x. Je tedy potřeba zavést nový název proměnné pro toto přiřazení. SSA forma má tedy následující tvar:

```
assume x \ge 0

z \leftarrow y

y_1 \leftarrow x

@ z \ge 0
```

Logická formule z SSA:

Logická formule z SSA vypadá následovně:

$$(\forall x, y, y_1, z)([x \ge 0 \land z = y \land y_1 = x] \Rightarrow z \ge 0)$$

Ověřovací podmínky:

Jelikož je na první pohled zřejmé, že formule nebude logicky platná, pokusíme se najít protipříklad a tím dokázat, že formule neplatí. Můžeme využít předpokladu z=y a dosadit ho do pravé strany formule. Získáme tedy závěr, že $y\geq 0$. Tedy pro y<0 závěr očividně neplatí. Protipříklad tedy může vypadat například takto:

$$\{x\mapsto 8, y\mapsto -5, y_1\mapsto 8, z\mapsto -5\}$$

Toto ohodnocení proměnných splňuje levou stranu formule, avšak nesplňuje pravou stranu. Z toho můžeme usoudit, že formule neplatí. Toto ohodnocení klidně může být i počátečním stavem. Můžeme si pro představu ukázat běh programu:

Krok	x	y	z
assume $x \ge 0$	8	-5	
$z \leftarrow y$	8	-5	-5
$y \leftarrow x$	8	8	-5
$ 0 z \ge 0 $	8	8	-5

Z tabulky si můžeme všimnout, že ve chvíli, kdy má být hodnota proměnné $z \geq 0$ je z = -5. Program tedy není korektní.

Cvičení 9c

Zadání:

Static Single Assignment forma:

Můžeme si všimnout, že na začátku předpokládáme nějakou hodnotu x<0 a poté ve druhém kroku přiřadíme hodnotu x-k do x. Je tedy potřeba zavést nový název proměnné pro toto přiřazení. SSA forma má tedy následující tvar:

Logická formule z SSA:

Logická formule z SSA vypadá následovně:

$$(\forall x, x_1, k)([x < 0 \land x_1 = x - k \land k \le 1] \Rightarrow x_1 \ge 0)$$

Ověřovací podmínky:

Při dokazování, že platí $x_1 \geq 0$ můžeme využít předpokladu $x_1 = x - k$ a dokazovat $x - k \geq 0$. To můžeme pomocí základních matematických pravidel upravit na tvar $x \geq k$. To znamená, že stačí najít protipříklad, který bude splňovat x < k. Protipříklad tedy může vypadat například takto:

$$\{x\mapsto -5, x_1\mapsto -1, k\mapsto -4\}$$

Toto ohodnocení proměnných splňuje levou stranu formule, avšak nesplňuje pravou stranu. Z toho můžeme usoudit, že formule neplatí. Můžeme si pro představu ukázat běh programu:

Krok	x	k
assume $x < 0$	-5	-4
$x \leftarrow x - k$	-1	-4
assume $k \leq 1$	-1	-4
$ 0 x \ge 0 $	-1	-4

Z tabulky si můžeme všimnout, že ve chvíli, kdy má být hodnota proměnné $x \geq 0$ je x = -1. Program tedy není korektní.

Cvičení 9d

Zadání:

Static Single Assignment forma:

Můžeme si všimnout, že ve druhém kroku přiřazujeme proměnné x novou hodnotu. Je tedy potřeba zavést nový název proměnné pro toto přiřazení. SSA forma má tedy následující tvar:

assume
$$k \le x$$

 $x_1 \leftarrow x - k$
@ $x_1 \ge 0$

Logická formule z SSA:

Logická formule z SSA vypadá následovně:

$$(\forall x, x_1, k)([k \le x \land x_1 = x - k] \Rightarrow x_1 \ge 0)$$

Ověřovací podmínky:

Pro důkaz použijeme metodu ručního dokazování z přednášky. Předpokládáme $k \leq x, \ x_1 = x - k$ a dokážeme $x_1 \geq 0$. Kvůli předpokladu $x_1 = x - k$ stačí dokázat $x - k \geq 0$, tedy $x \geq k$. To však triviálně dokazuje předpoklad $k \leq x$. Můžeme tedy tvrdit, že program je napsán korektně.

Cvičení 9e

Zadání:

$$\begin{aligned} x \leftarrow x - k \\ \textbf{assume} \ k \leq x \end{aligned}$$

Static Single Assignment forma:

Můžeme si všimnout, že v prvním kroku přiřazujeme proměnné x novou hodnotu. Je tedy potřeba zavést nový název proměnné pro toto přiřazení. SSA forma má tedy následující tvar:

$$x_1 \leftarrow x - k$$
assume $k \le x_1$
@ $x_1 > 0$

Logická formule z SSA:

Logická formule z SSA vypadá následovně:

$$(\forall x, x_1, k)([x_1 = x - k \land k \le x_1] \Rightarrow x_1 \ge 0)$$

Ověřovací podmínky:

Při dokazování, že platí $x_1 \geq 0$ můžeme využít předpokladu $x_1 = x - k$ a dokazovat $x - k \geq 0$. To můžeme pomocí základních matematických pravidel upravit na tvar $x \geq k$. Zároveň můžeme získat nový předpoklad složení předpokladů $x_1 = x - k$, $k \leq x_1$. Získáme předpoklad $k \leq x - k$ tedy $2k \leq x$. Máme tedy předpoklad $2k \leq x$ a závěr $x \geq k$. Můžeme si však všimnout, že nejspíše bude existovat nějaké x a nějaké k, pro které bude splněn předpoklad, ale nebude platit závěr. Pojďmě ho najít. Hledáme tedy protipříklad, kdy $2k \leq x \wedge x < k$ tedy $2k \leq x < k$. Pro úpravě získáme, že k < 0. Zvolme tedy například k = -1 a x tak, aby platilo $-2 \leq x < -1$, tedy například x = -2. Protipříklad tedy může vypadat například takto:

$$\{x\mapsto -2, x_1\mapsto -1, k\mapsto -1\}$$

Toto ohodnocení proměnných splňuje levou stranu formule, avšak nesplňuje pravou stranu. Z toho můžeme usoudit, že formule neplatí. Můžeme si pro představu ukázat běh programu:

Krok	x	k
initial state	-2	-1
$x \leftarrow x - k$	-1	-1
assume $k \leq x$	-1	-1
$ 0 x \ge 0 $	-1	-1

Z tabulky si můžeme všimnout, že ve chvíli, kdy má být hodnota proměnné $x \geq 0$ je x = -1. Program tedy není korektní.

Cvičení 9f

Zadání:

```
\begin{array}{l} \textbf{assume} \ k \geq 0 \\ x \leftarrow x - k \\ \textbf{assume} \ k \leq x \\ @ \ x \geq 0 \end{array}
```

Static Single Assignment forma:

Můžeme si všimnout, že ve druhém kroku přiřazujeme proměnné x novou hodnotu. Je tedy potřeba zavést nový název proměnné pro toto přiřazení. SSA forma má tedy následující tvar:

```
assume k \ge 0

x_1 \leftarrow x - k

assume k \le x_1

@ x_1 \ge 0
```

Logická formule z SSA:

Logická formule z SSA vypadá následovně:

$$(\forall x, x_1, k)([k \ge 0 \land x_1 = x - k \land k \le x_1] \Rightarrow x_1 \ge 0)$$

Ověřovací podmínky:

Předpokládáme $k\geq 0,\ x_1=x-k,\ k\leq x_1$ a dokážeme $x_1\geq 0.$ Spojením prvního a třetího předpokladu získáme předpoklad $0\leq k\leq x_1.$ Závěr $x_1\geq 0$ je ekvivalentní s $\neg\neg(x_1\geq 0).$ Jelikož dokazujeme negaci, můžeme předpokládat $\neg(x_1\geq 0)$ tedy $x_1<0$ a najít spor. Spojením předpokladu $0\leq k\leq x_1$ s předpokladem $x_1<0$ získáme předpoklad $0\leq k\leq x_1<0$ tedy po úpravě 0<0, což je spor. Formule tedy platí a můžeme tvrdit, že program je napsán korektně.

Cvičení 9g

Zadání:

```
\begin{array}{l} \textbf{assume} \ x \geq 0 \\ y \leftarrow x \\ \textbf{input} \ x \\ @ \ x \geq 0 \end{array}
```

Static Single Assignment forma:

Jelikož ve třetím kroku načítáme do x novou hodnotu, je potřeba zavést nový název proměnné. SSA forma má tedy následující tvar:

Logická formule z SSA:

Logická formule z SSA vypadá následovně:

$$(\forall x, x_1, y)([x \ge 0 \land y = x \land \top] \Rightarrow x_1 \ge 0)$$

Ověřovací podmínky:

Na pravé straně formule máme závěr $x_1 \ge 0$, nicméně v předpokladech není x_1 nijak omezeno. Je to způsobeno tím, že bezprostředně po načtení nové hodnoty do x_1 uživatelským vstupem, má být $x_1 \ge 0$. Můžeme tedy velmi snadno najít protipříklad, pro který formule neplatí, například:

$$\{x \mapsto 8, y \mapsto 8, x_1 \mapsto -1\}$$

Toto ohodnocení proměnných splňuje levou stranu formule, avšak nesplňuje pravou stranu. Z toho můžeme usoudit, že formule neplatí. Můžeme si pro představu ukázat běh programu:

Krok	x	y
assume $x \ge 0$	8	
$y \leftarrow x$	8	8
input x	-1	8
$ 0 x \ge 0 $	-1	8

Z tabulky si můžeme všimnout, že ve chvíli, kdy má být hodnota proměnné $x \geq 0$ je x = -1. Program tedy není korektní.

Cvičení 9h

Zadání:

$$\begin{aligned} y &\leftarrow x \\ \textbf{input} \ x \\ \textbf{assume} \ y &\geq 0 \\ @ \ y &\geq 0 \end{aligned}$$

Static Single Assignment forma:

Jelikož ve druhém kroku načítáme do x novou hodnotu, je potřeba zavést nový název proměnné. SSA forma má tedy následující tvar:

```
y \leftarrow x

input x_1

assume y \ge 0

@ y \ge 0
```

Logická formule z SSA:

Logická formule z SSA vypadá následovně:

$$(\forall x, x_1, y)([y = x \land \top \land y \ge 0] \Rightarrow y \ge 0)$$

Ověřovací podmínky:

Máme předpoklady $y=x,\ y\geq 0$ a máme dokázat $y\geq 0$. Vidíme, že $y\geq 0$ je zároveň předpoklad i závěr, formule je tedy triviálně dokázána a můžeme tvrdit, že program je napsán korektně.

Cvičení 9i

Zadání:

```
\begin{array}{l} y \leftarrow x \\ \textbf{input} \ x \\ \textbf{assume} \ x \geq 0 \\ @ \ y \geq 0 \end{array}
```

Static Single Assignment forma:

Jelikož ve druhém kroku načítáme do x novou hodnotu, je potřeba zavést nový název proměnné. SSA forma má tedy následující tvar:

```
y \leftarrow x

input x_1

assume x_1 \ge 0

@ y \ge 0
```

Logická formule z SSA:

Logická formule z SSA vypadá následovně:

$$(\forall x, x_1, y)([y = x \land \top \land x_1 \ge 0] \Rightarrow y \ge 0)$$

Ověřovací podmínky:

Máme předpoklady $y=x,\,x_1\geq 0$ a máme dokázat $y\geq 0$. Kvůli předpokladu y=x dokazujeme $x\geq 0$. Dále však nemáme žádný předpoklad, který by nějak omezoval x. Stačí tedy najít protipříklad takový, že x<0. Protipříklad tedy může vypadat například takto:

$$\{x \mapsto -1, y \mapsto -1, x_1 \mapsto 8\}$$

Toto ohodnocení proměnných splňuje levou stranu formule, avšak nesplňuje pravou stranu. Z toho můžeme usoudit, že formule neplatí. Můžeme si pro představu ukázat běh programu:

Krok	x	y
$y \leftarrow x$	-1	-1
input x	8	-1
assume $x \ge 0$	8	-1
$ 0 y \ge 0 $	8	-1

Z tabulky si můžeme všimnout, že ve chvíli, kdy má být hodnota proměnné $y \geq 0$ je y = -1. Program tedy není korektní.