Department of Computer Science & Engineering Program: B.Sc.(Engg.) in CSE Final Examination, Spring-2019 Course Title: Theory of

	Co	de: CSE-3609/2 425 Course Title: Theory of Computi	
Cour	e: 2 ho	our and 50 mms.	ng • 50
11111	[Ans	wer any two questions from Group A and	: 30
		Separate answer script must be used for Group-A and Group-B.]	
		Group-A	
1.	a)	Construct a Deterministic Finite Automata, $\sum = \{a,b\}$ and $L(M) = \{\omega \omega\}$ starts and ends with different symbol $\}$.	5
	b)	Construct a NFA with state transition table, where second symbol from RHS (right hand side) is 'a' and also convert from NFA to DFA. Assume the input alphabets are a,b.	5
2.	a)	Define Grammar.	2+3=5
		Suppose, L (G) = $\{a^mb^n \mid m \ge 0 \text{ and } n > 0\}$. We have to find out the grammar G which produces L(G)	
	b)	According to Noam Chomosky, mention the types of Grammar with examples.	5
3.	a)	Construct push down automaton from the following grammar: $S \rightarrow aTb \mid b$ $T \rightarrow Ta \mid \epsilon$	4
	b)	Using the pumping lemma show that the following languages are not context free: i) $\{a^nb^nc^n \mid n \ge 0\}$	3+3
		ii) $\{a^ib^jc^k \mid 0 \le i \le j \le k\}$	
		Group-B	
4.	a)	Describe the <i>Church Turing thesis</i> ? Let $\Sigma = \{0,1\}$. Draw the state transition diagram for a Turing Machine whose language is $L=\{w \in \Sigma^* \mid w \text{ contains } 01 \text{ as substring}\}$	5
	b)	Remove null production from the following grammar: S>ABAC, A \rightarrow aA \in , B- \rightarrow bB \in , C \rightarrow c	5
5.	a) b)	Show that E_{DFA} and EQ_{DFA} are decidable languages. Show that the set of rational numbers is countable.	3+3 4
6.	a)	Differentiate among finite state machine, pushdown automata and turing machine. Write down the rules of operation for turing machine.	2+3=5
	b)	Define ambiguous gramman Design a turing machine which recognizes the language, L=01*0	2+3=5
7.	a)	V. 111 m 1 34 11 1	. 5
	b)		5