Text Classification

2/2565: FRA501 Introduction to Natural Language Processing with Deep learning
Week 06

Paisit Khanarsa, Ph.D.

Institute of Field Robotics (FIBO), King Mongkut's University of Technology Thonburi

Outlines

- Introduction to text classification task
- Bag of words model
 - Naïve Bayes (A traditional model)
 - Neural methods
 - Deep Averaging Networks(DAN)
 - Universal Sentence Encoder (USE)
 - Unsupervised pre-training
- Topic modeling

Introduction

- Wongnai Challenge
 - Predict star rating from review text

เขียนรีวิว ร้าน Farm Design Central Pinklao

โดนใจอย่างแรง

วันนี้เป็นครั้งแรกที่ได้ทานเค้กของ Farm Desing ครับ เดินผ่านหลายครั้งแล้วแต่ก็ไม่ ได้คิดที่จะ...อ่านต่อ

ธนพล พ่อลูกหมู @คุณJitprasong 55555 ต้องลองครับร้านนี้ สุดยอดจริงๆ Daungyeewa เดียวนะ เข้าไปทานเพราะ น้องเค้าน่ารักใช่ป่ะ

ธนพล พ่อลูกหมุ @คุณพืDaungyeewa อ่ะ จะว้ายยยย !! D ใช่ เอ้ยยยย ไม่ใช่คร้าบบบบ แฮ่ง

angoon 600 บาทแจกร่ม คุณธนพล ค่าเสีย หายเท่าไหร่คะเนี่ย

- Yelp reviews
- Document Modeling with Gated Recurrent Neural Network for Sentiment Classification

Corpus	#docs	#s/d	#w/d	V	#class	Class Distribution
Yelp 2013	335,018	8.90	151.6	211,245	5	.09/.09/.14/.33/.36
Yelp 2014	1,125,457	9.22	156.9	476,191	5	.10/.09/.15/.30/.36
Yelp 2015	1,569,264	8.97	151.9	612,636	5	.10/.09/.14/.30/.37
IMDB	348,415	14.02	325.6	115,831	10	.07/.04/.05/.05/.08/.11/.15/.17/.12/.18

	Yelp 2013		Yelp 2014		Yelp 2015		IMDB	
	Accuracy	MSE	Accuracy	MSE	Accuracy	MSE	Accuracy	MSE
Majority	0.356	3.06	0.361	3.28	0.369	3.30	0.179	17.46
SVM + Unigrams	0.589	0.79	0.600	0.78	0.611	0.75	0.399	4.23
SVM + Bigrams	0.576	0.75	0.616	0.65	0.624	0.63	0.409	3.74
SVM + TextFeatures	0.598	0.68	0.618	0.63	0.624	0.60	0.405	3.56
SVM + AverageSG	0.543	1.11	0.557	1.08	0.568	1.04	0.319	5.57
SVM + SSWE	0.535	1.12	0.543	1.13	0.554	1.11	0.262	9.16
JMARS	N/A	_	N/A	_	N/A	_	N/A	4.97
Paragraph Vector	0.577	0.86	0.592	0.70	0.605	0.61	0.341	4.69
Convolutional NN	0.597	0.76	0.610	0.68	0.615	0.68	0.376	3.30
Conv-GRNN	0.637	0.56	0.655	0.51	0.660	0.50	0.425	2.71
LSTM-GRNN	0.651	0.50	0.671	0.48	0.676	0.49	0.453	3.00

• Document classification

Туре	Focus	Example
Topic	Subject matter	Sport vs Technology
Sentiment/opinion	Emotion (current state)	Negative vs Positive
Intent	Action (future state)	Order vs Inquiry

Other classification application

- Spam filtering
- Authorship id
- Auto tagging (information retrieval)
- Trend analysis

- Text classification definition
 - Input
 - Set of documents: $D = \{d_1, d_2, d_3, \dots, d_M\}$
 - Each document is composed of words: $d_1 = [w_{11}, w_{12}, \dots, w_{1N}]$
 - Set of classes: $C = \{c_1, c_2, c_3, ..., c_m\}$
 - Output
 - The predicted class c_i from the set C

- Rule-based classification
 - Rule based on phrases or other features
 - Wongnai rating
 - "คร่อย" → ★ ★ ★
 - "ไม่อร่อย" → ★★
 - "สกปรก" → ★
 - ...

- Rule-based classification
 - Rule based on phrases or other features
 - Wongnai rating
 - "อร่อย" → ★ ★ ★
 - "ไม่อร่อย" → ★★
 - "สกปรก" → ★
 - •
 - What rating of this phase is "ไม่ค่อยอร่อย" → maybe ★ ★

- Rule-based classification
 - Rule based on phrases or other features
 - Wongnai rating
 - "อร่อย" → ★ ★ ★
 - "ไม่อร่อย" → ★ ★
 - "สกปรก" → ★
 - •
 - What rating of this phase is "ไม่ค่อยอร่อย" → maybe ★ ★
 - What rating of this phase is "ไม่ถูกแต่อร่อย" → ???

- Rule-based classification
 - Rule based on phrases or other features
 - Wongnai rating
 - "อร่อย" → ★ ★ ★
 - "ไม่อร่อย" → ★★
 - "สกปรก" → ★
 - •
 - What rating of this phase is "ไม่ค่อยอร่อย" → maybe ★ ★
 - What rating of this phase is "ไม่ถูกแต่อร่อย" → ????
- Pros: easy to implement, can yield very good results
- Cons: building and maintaining rules is expensive

- Text classification definition
 - Input
 - Set of documents: $D = \{d_1, d_2, d_3, \dots, d_M\}$
 - Labels: $Y = \{y_1, y_2, y_3, ..., y_M\}$
 - Each document is composed of words: $d_1 = [w_{11}, w_{12}, \dots, w_{1N}]$
 - Set of classes: $C = \{c_1, c_2, c_3, ..., c_m\}$
 - Output
 - The predicted class c_i from the set C
 - A classifier $H: d \rightarrow c$

Text classification definition

- Input

 - Labels: $Y = \{y_1, y_2, y_3, ..., y_M\}$
 - Each document is composed of wor
 - Set of classes: $C = \{c_1, c_2, c_3, ..., c_m\}$

Output

- The predicted class c_i from the set C
- A classifier $H: d \rightarrow c$

Classifiers

- k-NN
- Naïve Bayes
- Logistic regression
- SVM
- Neural networks

Bag of words representation

$$H\left(^{"$$
วันนี้เป็นครั้งแรกที่ได้ทานเค้กของ $Farm\ Desing\ ครับ\$ เดินผ่านหลายครั้งแล้วแต่ไม่ได้คิดที่จะ ..."

เขียนรีวิว ร้าน Farm Design Central Pinklao

โดนใจอย่างแรง

วันนี้เป็นครั้งแรกที่ได้ทานเค้กของ Farm Desing ครับ เดินผ่านหลายครั้งแล้วแต่ก็ไม่ ได้คิดที่จะ...อ่านต่อ

ธนพล พ่อลูกหมุ @คุณJitprasong 55555 ต้องลองครับร้านนี้ สุดยอดจริงๆ Daungyeewa เดี๋ยวนะ เข้าไปทานเพราะ น้องเค้าน่ารักใช่ป่ะ

ธนพล พ่อลูกหมุ @คุณพืDaungyeewa อ่ะ จะว้ายยยย !! 🛭 ใช่ เอ้ยยยย ไม่ใช่คร้าบบบบ แฮ่ง

angoon 600 บาทแจกร่ม คุณธนพล ค่าเสีย หายเท่าใหร่คะเนีย

Bag of words that just consider word or feature existence while ignoring word position and context

H(ชอบ, ชอบ, อร่อย, อร่อย, สะอาด, ไม่, ไม่, สุดยอด, $\dots)=4$

Bag of words

เขียนรีวิว ร้าน Farm Design Central Pinklao

โดนใจอย่างแรง

วันนี้เป็นครั้งแรกที่ได้ทานเค้กของ Farm Desing ครับ เดินผ่านหลายครั้งแล้วแต่ก็ไม่ ได้คิดที่จะ...อ่านต่อ

ธนพล พ่อลูกหมู @คุณJitprasong 55555 ต้องลองครับร้านนี้ สุดยอดจริงๆ Daungyeewa เดียวนะ เข้าไปทานเพราะ น้องเค้าน่ารักใช่ป่ะ

ธนพล พ่อลูกหมุ @คุณพีDaungyeewa อ่ะ จะว้ายยยย !! D ใช่ เอัยยยย ไม่ใช่คร้าบบบบ แฮ่ง

angoon 600 บาทแจกร่ม คุณธนพล ค่าเสีย หายเท่าใหร่คะเนี่ย

Count

$$H\left($$
"วันนี้เป็นครั้งแรกที่ได้ทานเค้กของ Farm Desing ครับ $\right)=4$ เดินผ่านหลายครั้งแล้วแต่ไม่ได้คิดที่จะ ..."

Bag of words that just consider word or feature existence while ignoring word position and context

<i>H</i> (ชอบ,	ขอบ,

	vvoru	Count
	ชอบ	2
,	อร่อย	2
	สะอาด	1
	ไม่	2
	ଖ୍ ଜଥବଜ	1
	•••	

เขียนรีวิว ร้าน Farm Design Central Pinklao

โดนใจอย่างแรง

วันนี้เป็นครั้งแรกที่ได้ทานเค้กของ Farm Desing ครับ เดินผ่านหลายครั้งแล้วแต่ก็ไม่ ได้คิดที่จะ...อ่านต่อ

ธนพล พ่อลูกหมู @คุณJitprasong 55555 ต้องลองครับร้านนี้ สุดยอดจริงๆ Daungyeewa เดียวนะ เข้าไปทานเพราะ น้องเค้าน่ารักใช่ป่ะ

ธนพล พ่อลูกหมุ @คุณพีDaungyeewa อ่ะ จะว้ายยยย !! 🛭 ใช่ เอัยยยย ไม่ใช่คร้าบบบบ แฮ่ง

angoon 600 บาทแจกร่ม คุณธนพล ค่าเสีย หายเท่าใหร่คะเนี่ย

Training

- สกปรก, แย่, เหม็น 🛨
- ถูก, กลางๆ, อร่อย ใช้ได้ 🛨 🛨 🛨
- อร่อย, มาก, สุดยอด, ยอดเยี่ยม 🖈 🖈 🖈 🖈

• ...

Testing

Rating ..?

ถูก, อร่อย, ใช้ได้, แย่

Bayes' Rule for classification

- A simple classification model
 - Set of documents: $D = \{d_1, d_2, d_3, \dots, d_M\}$
 - Set of classes: $C = \{c_1, c_2, c_3, ..., c_m\}$
 - The predicted class c_i from the set C
 - A classifier $H: d \rightarrow c$

$$Argmax_c P(c|d) = Argmax_c \frac{P(d|c)P(c)}{P(d)} \Rightarrow Argmax_c P(d|c)P(c) = Argmax_c P(x_1, x_2, x_3, ... x_n|c)P(c)$$

• The document is represented by features $x_1, x_2, x_3, ... x_n$

Graphical models

 χ_3

Bayes' Rule for classification (cont.)

- A simple classification model
 - Set of documents: $D = \{d_1, d_2, d_3, ..., d_M\}$
 - Set of classes: $C = \{c_1, c_2, c_3, ..., c_m\}$
 - The predicted class c_i from the set C
 - A classifier $H: d \rightarrow c$

 χ_2

 x_1

$$Argmax_c P(c|d) = Argmax_c \frac{P(d|c)P(c)}{P(d)} \Rightarrow Argmax_c P(d|c)P(c) =$$

 $Argmax_c P(x_1, x_2, x_3, ... x_n | c) P(c)$ Hard to train !!!

• The document is represented by features $x_1, x_2, x_3, ... x_n$

 χ_n

Bag of words assumption and Naïve Bayes

Conditional independence

$$Argmax_c P(x_1, x_2, x_3, ... x_n | c) P(c) = Argmax_c P(x_1 | c) P(x_2 | c) ... P(x_n | c) P(c)$$

Bag of words assumption and Naïve Bayes (cont.)

- Probability of drawing with replacement words from the bag of word distribution
- Example:

Word	Distribution of Class 5
ชอบ	0.3
อร่อย	0.3
ไม่	0.05
กลมกล่อม	0.25
ทานง่าย	0.1

$$P($$
ไม่อร่อยไม่ชอบ $|c=1)$
 $=P($ ไม่ $|c=1)P($ อร่อย $|c=1)P($ ไม่ $|c=1)P($ ชอบ $|c=1)$
 $=0.05\times0.3\times0.05\times0.3 imes rac{4!}{2!}$
 $=0.0027$

Naïve Bayes Learning

How to find?

Word	Distribution of Class 5
ชอบ	0.3
อร่อย	0.3
ไม่	0.05
กลมกล่อม	0.25
ทานง่าย	0.1

Naïve Bayes Learning (cont.)

How to find?

Word	Probability	Distribution of Class 5
ชอบ	P(ชอบ $ c=5)$	0.3
อร่อย	P(อร่อย $ c=5)$	0.3
ไม่	P(i c=5)	0.05
กลมกล่อม	P(กลมกล่อม $ c=5)$	0.25
ทานง่าย	P(ทานง่าย $ c=5)$	0.1

• P(x|c)

•
$$P(x = "nnu" | c = 5) = \frac{count(x = "nnu", c = 5)}{count(c = 5)}$$

 $\bullet P(c)$

•
$$P(c = 5) = \frac{count(c=5)}{count(all\ reviews)}$$

Naïve Bayes Learning (cont.)

How to find?

Word	Probability	Distribution of Class 5
ชอบ	P(ชอบ $ c=5)$	0.3
อร่อย	P(อร่อย $ c=5)$	0.3
ไม่	P(i c=5)	0.05
กลมกล่อม	P(กลมกล่อม $ c=5)$	0.25
ทานง่าย	P(ทานง่าย $ c=5)$	0.1

- P(x|c)
- $P(x = "ชอบ" | c = 5) = \frac{count(x = "ชอบ", c = 5)}{count(c = 5)}$
- $\bullet P(c)$
- $P(c = 5) = \frac{count(c=5)}{count(all\ reviews)}$

Problems !!!

$$P($$
อาหารร้านนี้รสชาติไม่กลมกล่อมเลย $|c=1)$
 $=P($ ไม่ $|c=1)$ $P($ กลมกล่อม $|c=1)$
 $=0$ Hard to appear

Naïve Bayes Learning (cont.)

How to find?

Word	Probability	Distribution of Class 5
ชอบ	P(ชอบ $ c=5)$	0.3
อร่อย	P(ବର୍ଷଥା $c=5)$	0.3
ไม่	P(i c=5)	0.05
กลมกล่อม	P(กลมกล่อม $ c=5)$	0.25
ทานง่าย	P(ทานง่าย $ c=5)$	0.1

Solution

Smoothing techniques

- Add-one estimation
- Back-off
- Interpolation
- Kneser-Ney Smoothing

• P(x|c)

•
$$P(x = "ชอบ" | c = 5) = \frac{count(x = "ชอบ", c = 5)}{count(c = 5)}$$

 $\bullet P(c)$

•
$$P(c = 5) = \frac{count(c=5)}{count(all\ reviews)}$$

Problems !!!

$$P($$
อาหารร้านนี้รสชาติไม่กลมกล่อมเลย $|c=1)$
 $=P($ ไม่ $|c=1)$ $P($ กลมกล่อม $|c=1)$
 $=0$ Hard to appear

Naïve Bayes

- Feature engineering: restaurant name, location, price range, reviewer id, date of review
- More 1000 features
- Pros: very fast, very small model
- Robust especially for small training data
- A good fast baseline. Always try Naive Bayes or logistic regression in model search.

Naïve Bayes vs Logistic regression

- Naïve Bayes are generative models
 - $\hat{c} = Argmax_c \frac{P(d|c)P(c)}{P(d)}$
- Logistic regression are discriminative models
 - $\hat{c} = Argmax_c P(c|d)$
- Logistic regression and Naive Bayes are linear models (linear decision boundary)
- They are quite interchangeable.

Naïve Bayes vs Logistic regression (cont.)

- Dashed line is logistic regression
- Solid line is Naïve Bayes

Ng, A., & Jordan, M. (2001). On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. Advances in neural information processing systems, 14.

https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf

Naïve Bayes vs Logistic regression (cont.)

- Features: n-grams (bag of phrases)
- Model: logistic regression
- Very competitive results

classification. arXiv preprint arXiv:1607.01759.

	Zhang and LeCun (2015)		Con	neau et al. (2	fastText	
	small char-CNN	big char-CNN	depth=9	depth=17	depth=29	h=10, bigram
AG	1h	3h	24m	37m	51m	1s
Sogou	-	-	25m	41m	56m	7s
DBpedia	2h	5h	27m	44m	1 h	2s
Yelp P.	-	-	28m	43m	1h09	3s
Yelp F.	-	-	29m	45m	1h12	4s
Yah. A.	8h	1d	1h	1h33	2h	5s
Amz. F.	2d	5d	2h45	4h20	7h	9s
Amz. P.	2d	5d	2h45	4h25	7h	10s

Table 2: Training time for a single epoch on sentiment analysis datasets compared to char-CNN and VDCNN.

Model	Yelp'13	Yelp'14	Yelp'15	IMDB
SVM+TF	59.8	61.8	62.4	40.5
CNN	59.7	61.0	61.5	37.5
Conv-GRNN	63.7	65.5	66.0	42.5
LSTM-GRNN	65.1	67.1	67.6	45.3
fastText	64.2	66.2	66.6	45.2

Table 3: Comparision with Tang et al. (2015). The hyperparameters are chosen on the validation set. We report the test accuracy.

Model	prec@1	Running time	
Wiodei		Train	Test
Freq. baseline	2.2	-	-
Tagspace, $h = 50$	30.1	3h8	6h
Tagspace, $h = 200$	35.6	5h32	15h
fastText, h = 50	31.2	6m40	48s
fastText, h = 50, bigram	36.7	7m47	50s
${\tt fastText}, h=200$	41.1	10m34	1m29
fastText, h = 200, bigram	1 46.1	13m38	1m37

Table 5: Prec@1 on the test set for tag prediction on YFCC100M. We also report the training time and test time. Test time is reported for a single thread, while training uses 20 threads for both models.

Naïve Bayes tricks for text classification

- Count words after "not" as a different word
 - I don't go there. \rightarrow I don't go_not there_not
- Upweighting: double counting words at important locations
 - Words in titles
 - First sentence of each paragraph
 - Sentences that contain title words

Neural methods: Deep Averaging Networks(DAN)

Deep Averaging Networks (DAN)

Universal Sentence Encoder (USE)

- A model focusing on sentence representation
- Use sentence piece tokenization
- Pre-trained then used anywhere
- Based on
 - (1) DAN (lite version)
 - (2) Transformer

https://ai.googleblog.com/2018/05/advances-in-semantic-textual-similarity.html

Pretraining USE

- Training USE done using multi-task
 - Skip-thought
 - Response prediction
 - Natural language inference (NLI)

https://amitness.com/2020/06/universal-sentence-encoder/

Pretraining USE: Skip-thought

- Similar to skip-gram
- Use the current sentence to predict the previous and next sentence
- Proposed by Kiros et al.

Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun, R., Torralba, A., & Fidler, S. (2015). Skip-thought vectors. *Advances in neural information processing systems*, 28.

Pretraining USE: Response prediction

- Predict the correct response for a given input among a list of correct responses
- Proposed by Henderson et al.

Henderson, M., Al-Rfou, R., Strope, B., Sung, Y. H., Lukács, L., Guo, R., ... & Kurzweil, R. (2017). Efficient natural language response suggestion for smart reply. *arXiv* preprint *arXiv*:1705.00652.

https://amitness.com/2020/06/universal-sentence-encoder/

Pretraining USE: Natural language inference (NLI)

Premise	Hypothesis	Judgement
A soccer game with multiple males playing	Some men are playing a sport	entailment
I love Marvel movies	I hate Marvel movies	contradiction
I love Marvel movies	A ship arrived	neutral

- Predict relationship between sentence
- Proposed by Conneau et al.

Conneau, A., Kiela, D., Schwenk, H., Barrault, L., & Bordes, A. (2017). Supervised learning of universal sentence representations from natural language inference data. *arXiv preprint arXiv:1705.02364*.

https://amitness.com/2020/06/universal-sentence-encoder/

Multilingual USE

 Can be trained to translate a presentation into several languages.

https://ai.googleblog.com/2019/07/multilingual-universal-sentence-encoder.html

Measuring distance between vectors

• Use angular similarity (arccos) rather than cosine similarity

$$sim(u, v) = (1 - \frac{arccoss(\frac{u \cdot v}{|u||v|})}{\pi})$$

Download USE

Search for models, collections & publishers

← Back

Model	Comments
<u>universal-sentence-encoder</u>	
universal-sentence-encoder-large	
universal-sentence-encoder-lite	
universal-sentence-encoder-qa	Question answering
universal-sentence-encoder-multilingual	16 languages
universal-sentence-encoder-multilingual-large	16 languages
universal-sentence-encoder-multilingual-qa	16 languages , Question answering

https://tfhub.dev/google/collect ions/universal-sentenceencoder/1

Unsupervised pre-training: Benchmarks

prachathai-67k: body_text

We benchmark prachathai-67k by using body_text as text features and construct a 12-label multi-label classification. The performance is measured by macro-averaged accuracy and F1 score. Codes can be run to confirm performance at this notebook. We also provide performance metrics by class in the notebook.

model	macro-accuracy	macro-F1
fastText	0.9302	0.5529
LinearSVC	0.513277	0.552801
ULMFit	0.948737	0.744875
USE	0.856091	0.696172

https://github.com/PyThaiNLP/classification-benchmarks

Unsupervised pre-training: Benchmarks (cont.)

truevoice-intent: destination

We benchmark truevoice-intent by using destination as target and construct a 7-class multi-class classification. The performance is measured by micro-averaged and macro-averaged accuracy and F1 score. Codes can be run to confirm performance at this notebook. We also provide performance metrics by class in the notebook.

model	macro-accuracy	micro-accuracy	macro-F1	micro-F1
LinearSVC	0.957806	0.95747712	0.869411	0.85116993
ULMFit	0.955066	0.84273111	0.852149	0.84273111
BERT	0.8921	0.85	0.87	0.85
USE	0.943559	0.94355855	0.787686	0.802455

https://github.com/PyThaiNLP/classification-benchmarks

Unsupervised pre-training: Benchmarks (cont.)

wongnai-corpus

Performance of wongnai-corpus is based on the test set of Wongnai Challenge: Review Rating Prediction. Codes can be run to confirm performance at this notebook.

Model	Public Micro-F1	Private Micro-F1
ULMFit Knight	0.61109	0.62580
ULMFit	0.59313	0.60322
fastText	0.5145	0.5109
LinearSVC	0.5022	0.4976
Kaggle Score	0.59139	0.58139
BERT	0.56612	0.57057
USE	0.42688	0.41031

https://github.com/PyThaiNLP/classification-benchmarks

Relationship to language modeling

How to find?

Word	Probability	Distribution of Class 5
ชอบ	P(ขอบ $ c=5)$	0.3
อร่อย	P(อร์อย $ c=5)$	0.3
ไม่	$P(\operatorname{lij} c=5)$	0.05
กลมกล่อม	P(กลมกล่อม $ c=5)$	0.25
ทานง่าย	P(ทานง่าย $ c=5)$	0.1

• P(x|c)

•
$$P(x = "nnu" | c = 5) = \frac{count(x = "nnu", c = 5)}{count(c = 5)}$$

- $\bullet P(c)$
- $P(c = 5) = \frac{count(c=5)}{count(all\ reviews)}$

- Looks like... n-grams
- Bag of words model for topic modeling (unigram with topic)

Relationship to language modeling (cont.)

Word	Distribution of Class 5	Distribution of Class 1
ชอบ	0.3	0.05
อร่อย	0.3	0.05
ไม่	0.05	0.6
กลมกล่อม	0.25	0.1
ทานง่าย	0.05	0.1
แต่	0.05	0.1

• Example: S = อร่อยทานง่ายแต่ไม่กลมกล่อม

•
$$P(S|c = 1) = 0.05 \times 0.1 \times 0.1 \times 0.6 \times 0.1$$

$$\bullet = 0.00003$$

•
$$P(S|c = 5) = 0.3 \times 0.05 \times 0.05 \times 0.05 \times 0.25$$

$$\bullet = 0.000009375$$

Topic Modeling

Word	Class = บรรยากาศ	Class = อาหาร
ชอบ	0.3	0.05
อร่อย	0.3	0.05
ไม่	0.05	0.6
กลมกล่อม	0.25	0.1
ทานง่าย	0.05	0.1
แต่	0.05	0.1

Topic

อาหารร้านนี้อร่อยทานง่ายแต่รสชาติยังไม่กลุ่มกลม กล่อม แต่ฉันชอบขนมมากรสชาติดีแต่ว่าให้น้อย

การบริการยังไม่น่าประทับใจ แต่ชอบการตกแต่งร้านที่ ทันสมัย

$$P(S|c = บรรยากาศ) = ?$$
 $P(S|c = อาหาร) = ?$

Naïve Bayes for Topic Modeling

- Old assumption is 1 document 1 topic (multi-classes).
- Let a document be a mixture of topics (multi-labels).
- Each word has its own topic (z)
- There are 2 different topics (A and B)

•
$$P(w) = P(z = A)P(w|z = A) + P(z = B)P(w|z = B)$$

•
$$P(z = A) + P(z = B) = 1$$

- Old assumption is 1 document 1 topic (multiclasses).
- Let a document be a mixture of topics (multi-labels).
- There are 2 different topics (A and B)

- P(w) = P(z = A)P(w|z = A) + P(z = B)P(w|z = B)
- P(z = A) + P(z = B) = 1, $\theta = P(z = A)$

- Old assumption is 1 document 1 topic (multiclasses).
- Let a document be a mixture of topics (multi-labels).
- There are 2 different topics (A and B)

- P(w) = P(z = A)P(w|z = A) + P(z = B)P(w|z = B)
- $P(z = A) + P(z = B) = 1, \ \theta = P(z = A), \beta_A = P(w|z = A)$

- Example: Given
 - θ ; P(z = A) = 0.3, P(z = B) = 0.7
 - β_A : P(w = cat|z = A) = 0.5, P(w = dog|z = A) = 0.5
 - β_B : P(w = movie | z = B) = 0.7, P(w = music | z = B) = 0.3

- Example: Given
 - θ ; P(z = A) = 0.3, P(z = B) = 0.7
 - β_A : P(w = cat|z = A) = 0.5, P(w = dog|z = A) = 0.5
 - β_B : P(w = movie | z = B) = 0.7, P(w = music | z = B) = 0.3
- What is the probability of $P(music\ movie\ dog, B, B\ A)$ and $P(music\ movie\ dog)$?

- Example: Given
 - θ ; P(z = A) = 0.3, P(z = B) = 0.7
 - β_A : P(w = cat|z = A) = 0.5, P(w = dog|z = A) = 0.5
 - β_B : P(w = movie | z = B) = 0.7, P(w = music | z = B) = 0.3
- What is the probability of $P(music\ movie\ dog, B, B\ A)$ and $P(music\ movie\ dog)$?
- $P(music\ movie\ dog, B, B\ A) = P(B)P(B)P(A)P(music|B)P(movie|B)P(dog|A)$
- $P(music\ movie\ dog) =$ $P(music\ movie\ dog, A, A, A) +$ $P(music\ movie\ dog, A, A, B) +$ $P(music\ movie\ dog, A, B, A) + \cdots +$ $P(music\ movie\ dog, B, B, B)$

Plate notation in Graphical model

• Summarize by using a square box with number

Plate notation in Graphical model (cont.)

Plate notation in Graphical model (cont.)

P(z =	บรรยากาศ) = 0.3
P(z =	อาหาร) = 0.7
•	

Word	Class = บรรยากาศ	Class = อาหาร
ชอบ	0.3	0.05
อร่อย	0.3	0.05
ไม่	0.05	0.6
กลมกล่อม	0.25	0.1
ทานง่าย	0.05	0.1
แต่	0.05	0.1

P(w|z)

Probabilistic Latent Semantic Analysis (pLSA)

Probabilistic Latent
Semantic Analysis
(pLSA)

P(z= บรรยากาศ)=0.3

Word	Class = บรรยากาศ	Class = อาหาร
ชอบ	0.3	0.05
อร่อย	0.3	0.05
ไม่	0.05	0.6
กลมกล่อม	0.25	0.1
ทานง่าย	0.05	0.1
แต่	0.05	0.1

P(w|z)

Probabilistic Latent Semantic Analysis (pLSA)

 β_A

 β_B

Probabilistic Latent
Semantic Analysis
(pLSA)

Probabilistic Latent Semantic Analysis (pLSA)

Probabilistic Latent Semantic Analysis (pLSA)

 θ

W

n

 \leftarrow How to find θ and β?

ø			
	Word	Class = บรรยากาศ	Class = อาหาร
	ชอบ	0.3	0.05
	อร่อย	0.3	0.05
	ไม่	0.05	0.6
	กลมกล่อม	0.25	0.1
	ทานง่าย	0.05	0.1
	แต่	0.05	0.1
•			

P(w|z)

		•		
~ 1	Inar	vised	laarr	unσ
JU	apci.	viscu	ıcaıı	IIIIK
				U

•
$$\rightarrow P(\text{van}|\text{ussunne}) = \frac{count(\text{van},\text{ussunne})}{count(\text{ussunne})}$$

• $\rightarrow P_1(\text{ussunne}) = \frac{count(\text{ussunne})}{count (all word in doc1)}$

Unsupervised learning (like word2vec, Skip-thought, etc.)???

Expectation maximization (EM)

- A method to iteratively maximize the likelihood of a model on training data
 - Initialize θ , β
 - Expectation step (E-step): guess latent variables from model parameters (get soft counts)
 - Maximization step (M-step): re-estimate model parameters from latent variables (counts)
 - Update θ, β
 - Repeat E and M step until satisfied (Likelihood of the whole training set using the model does not change much)

Expectation maximization (EM): E-step

- Find an estimate for the latent variable given parameters θ and β
- Iterative algorithm: assume distribution of heta and eta
- Try to find $P(z_{di}|w_{di},\theta,\beta)$ Parameter θ,β Topic of word i document d

Expectation maximization (EM): E-step (cont.)

- Find an estimate for the latent variable given parameters θ and β
- Iterative algorithm: assume distribution of θ and β
- Try to find $P(z_{di}|w_{di},\theta,\beta)$

Parameter
$$\theta$$
, β
Topic of word i document d

$$P(X|Y) = \frac{P(X \text{ and } Y)}{P(Y)}$$

Topic of word i document d

$$P(z_{di}|w_{di},\theta,\beta) = \frac{P(z_{di},w_{di},\theta,\beta)}{P(w_{di},\theta,\beta)} = \frac{P(z_{di},w_{di},\theta,\beta)}{\sum_{z'}^{k} P(z'_{di},w_{di},\theta,\beta)} = \frac{\theta_{z|d}\beta_{w|z}}{\sum_{z'}^{k} \theta_{z'|d}\beta_{w|z'}}$$

k: # of topic

Expectation maximization (EM): E-step (cont.)

- Find an estimate for the latent variable given parameters θ and β
- Iterative algorithm: assume distribution of heta and eta
- Try to find $P(z_{di}|w_{di},\theta,\beta)$

$$P(X|Y) = \frac{P(X \text{ and } Y)}{P(Y)}$$

Topic of word i document d

$$P(z_{di}|w_{di},\theta,\beta) = \frac{P(z_{di},w_{di},\theta,\beta)}{P(w_{di},\theta,\beta)} = \frac{P(z_{di},w_{di},\theta,\beta)}{\sum_{z'}^{k} P(z'_{di},w_{di},\theta,\beta)} = \frac{\theta_{z|d}\beta_{w|z}}{\sum_{z'}^{k} \theta_{z'|d}\beta_{w|z'}}$$

k: # of topic

Example: P(Word is from topic A| word is cat from document 1)

Expectation maximization (EM): M-step

- Instead of real counts by $P(z_{di})$ as the topic label
 - Example:

•
$$P(Cat|A) = \frac{count(Cat,A)}{count(A)} = \frac{\sum_{d'}^{d} P(Z_{d'i} = A|w_{d'i} = cat, \theta, \beta)}{\sum_{d'}^{d} \sum_{w'}^{n} P(Z_{d'i} = A|w'_{d'i}, \theta, \beta)}$$

• $P_1(A) = \frac{count(A)}{count(all\ words\ in\ doc1)} = \sum_{w'}^{n} P(Z_{d=1,i} = A|w_{d=1,i}, \theta, \beta)$

•
$$P_1(A) = \frac{count(A)}{count(all\ words\ in\ doc1)} = \sum_{w'}^{n} P(z_{d=1,i} = A | w_{d=1,i}, \theta, \beta)$$

Expectation maximization (EM): M-step (cont.)

- Instead of real counts by $P(z_{di})$ as the topic label
 - Example:

•
$$P(Cat|A) = \frac{count(Cat,A)}{count(A)} = \frac{\sum_{d'}^{d} P(Z_{d'i} = A|w_{d'i} = cat, \theta, \beta)}{\sum_{d'}^{d} \sum_{w'}^{n} P(Z_{d'i} = A|w_{d'i}, \theta, \beta)}$$

• $P_1(A) = \frac{count(A)}{count(all\ words\ in\ doc1)} = \sum_{w'}^{n} P(Z_{d=1,i} = A|w_{d=1,i}', \theta, \beta)$

•
$$P_1(A) = \frac{count(A)}{count(all\ words\ in\ doc1)} = \sum_{w'}^{n} P(z_{d=1,i} = A | w'_{d=1,i}, \theta, \beta)$$

pLSA

- Automatically learn document representation based on the learned topics.
- Nothing that ties all document together.
- A document from a document collection should be have topic distributions that are similar.

Solution → Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation (LDA)

General pLSA

Latent Dirichlet Allocation (LDA) (cont.)

n

 θ and β is called Multinomial distribution

LDA application

- Automatically learns topics
- Give the word distribution of each topic
- Easy for interpretability
- Requires number of topic
- Requires user to make sense of the learned topics

Used to explore and browse document collections

Chance and Statistical Significance in Protein and DNA Sequence Analysis

• Project: Chula x HOME dot TECH

คอนโดหรูสไตล์อังกฤษ แห่งแรกในเขาใหญ่ ที่ติด ถ.ธนะ รัชต์ มากที่สุด 1ห้องนอน 1 ห้องน้ำ 1 ห้องนั่งเล่นพร้อม ห้องครัวแยกเป็นสัดส่วนคอนโดหรูสไตล์อังกฤษ แห่งแรก ในเขาใหญ่ ที่ติด ถ.ธนะรัชต์ มากที่สุด 1 ห้องนอน 1 ห้องน้ำ 1 ห้องนั่งเล่น พร้อมห้องครัวแยกเป็นสัดส่วน

• Project: Chula x HOME dot TECH

```
Topic 28
0.068*"วิว" + 0.058*"ทะเล" + 0.038*"คอนโด" + 0.029*"ทั่ว" + 0.027*"คอนโดมิเนียม" + 0.025*"มองเห็น" + 0.023*"ทัศนียภาพ" + 0.
022*"ชายหาด"
```


• Project: Chula x HOME dot TECH

Project: Chula x HOME dot TECH

Niche of each project

LDA with deep learning

- Modified network structure and loss function to include LDA traits
 - Use like a neural network (just like how we use crf in neural networks)
 - LDA2vec (global information)

LDA with deep learning (cont.)

Add a loss term to include the Dirichlet loss which prefers sparse topics

Moody, C. E. (2016). Mixing dirichlet topic models and word embeddings to make lda2vec. arXiv preprint arXiv:1605.02019.

$$\mathcal{L}^d = \lambda \Sigma_{jk} (\alpha - 1) \log p_{jk}$$

$$\alpha = n^{-1}$$

n is number of topics

Demo: Naïve Bayes for text Classification

https://drive.google.com/file/d/1fBBM-ILOf5 lwxD4pLlyT-616GTP d6b/view?usp=share link