天津大学 2018~2019 学年第一学期研究生课程考试试卷

课程名称: 工程数学基础 课程编号: S131A305

题号	1	2	3	4	5	6	7	8	9	10	平时成绩	成绩	
细八													1

一 判断 (10分)

一. 判断 (10 分)
1. 设
$$A, B \in \mathbb{C}^{n \times n}$$
, 则 $||A + B||_F^2 + ||A - B||_F^2 = 2(||A||_F^2 + ||B||_F^2)$.

2. 设有算子
$$T: X \to Y$$
,则 $T(0) = 0$.

2. 设有算子
$$T: X \to Y$$
,则 $T(0) = 0$.
3. $A \in \mathbb{C}^{n \times n}$,定义 $T: C^n \to C^n$ 为 $Tx = Ax(\forall x \in C^n)$ 则 T 是连续算子. ()

4. Legendre 多项式
$$\{p_0(x), p_1(x), ..., p_n(x)...\}$$
 线性无关.

5.设
$$A \in \mathbb{C}^{n \times n}$$
, A 是正定矩阵, 则 A 可酉对角化.

6. 若求积公式为
$$\int_1^1 f(x)dx \approx A_0 f(x_0) + A_1 f(x_1)$$
, 则此求积公式必为

7. 设
$$A \in \mathbb{C}^{n \times n}$$
, $A^H = A \perp A$ 非奇异,则 $cond_2 A = \rho(A)\rho(A^{-1})$.

8. 改进的 Euler 格式的局部截断误差
$$\varepsilon_{n+1} = O(h^2)$$
 .

9. Newton-Cotes 公式
$$\int_a^b f(x) dx \approx (b-a) \sum_{k=0}^{10} C_k^{(10)} f(x_k)$$
 的代数精度至少为

10 次.
10. 设
$$A \in \mathbb{R}^{n \times n}$$
,若 A 为对称矩阵,则 A 的最小多项式无重零点.
(

二、填空 (10分)

1. 已知
$$A(t) = \begin{bmatrix} e^t & 2 \\ 2t^2 & te^{2t} \end{bmatrix}$$
,则 $\int_0^t A(t)dt = \underline{\qquad}$.

3. 已知
$$\sin At = \begin{bmatrix} \sin t + 4t \cos t & -4t \cos t \\ 4t \cos t & \sin t - 4t \cos t \end{bmatrix}$$
, 则 $A =$ ______.

4. 设求积公式为
$$\int_{1}^{1} f(x)dx \approx f(-\sqrt{3}/3) + f(\sqrt{3}/3)$$
 , 则其余项

$$R(f) = A$$
 , $\det(\lambda E - A) = (\lambda - 2)^3$ 则 $\lambda E - A$ 不变因子 $d_1(\lambda) = A$. $d_1(\lambda) = A$. $d_2(\lambda) =$

天津大学 2018~2019 学年第一学期研究生课程考试试卷

课程名称:工程数学基础 课程编号: S131A305

四. (10 分) 设
$$\mathbf{A} = \begin{bmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$
, 求 $e^{\mathbf{A}t}$

六.(8分)由下列插值条件

x	3.0	3.1	3.2	3.3	3.4
f(x)	1.09861	1.13140	1.16315	1.19392	1.22378

用三次Newton插值多项式计算 f(3.27) 的近似值(结果保留至小数点后第 5 位)

天津大学 2018~2019 学年第一学期研究生课程考试试卷

课程名称: 工程数学基础 课程编号: S131A305

学院名並	
位, 好名:	

用 Legendre 多项式求函数 $f(x) = \sin x$ 在 $P_2[0,\pi]$ 上的二次最佳 平方逼近 $S_2^*(x)$, 并求 $\delta^2 = \|f - S_2^*\|_2^2$ (结果保留到小数点后第 5 位)

七. (10 分) 用 Romberg 算法求积分 $\int_0^1 \frac{4}{1+x^2} dx$ 的近似值,并将计算结果 列于下表(计算结果保留至小数点后第5位)

E CANAL	k	T_{2^k}	$S_{2^{k-1}}$	$C_{2^{k-2}}$	$R_{2^{k-3}}$
	0				
	1				
STORE STORE	2				
	3				
	4				

课程名称: 工程数学基础 课程编号: S131A305

九.(8分) 写出用标准 Runge-Kutta 方法求解下列初值问题的计算格式:

$$\begin{cases} y'' = 2(y')^2 + 3xy + 4x \\ y(0) = y'(0) = 1 \end{cases}$$

天津大学 2018~2019 学年第一学期研究生课程考试试卷

十. (10分) 证明

1. 设 $l_k(x)$, $(k=0,1,\cdots n)$ 是以 Gauss 点 x_k $(k=0,1,\cdots n)$ 为节点的 n 次 Lagrange

插值基函数,则 $\int_a^b l_k(x)dx > 0$.

