L'énoncé de cette épreuve, particulière aux candidats du concours **MP**, comporte 7 pages : 6 pages de texte et 1 page de figures. L'usage de la calculatrice est autorisé.

ÉTOILE DOUBLE

Le problème propose l'étude de quelques propriétés ainsi que quelques moyens d'observation d'une étoile double constituée de deux composantes A₁ et A₂ (système binaire).

Après une étude mécanique succincte de l'étoile double considérée comme un système isolé (1^{ère} partie), on aborde le problème de l'observation de l'étoile à l'aide d'un télescope (2^{ème} partie). On s'intéresse en particulier aux causes de limitation du pouvoir de résolution. La 3^{ème} et 4^{ème} partie proposent respectivement une méthode interférométrique puis spectroscopique pour l'étude du système binaire.

Les différentes parties du problème sont largement indépendantes entre elles et comportent chacune plusieurs questions indépendantes. Les différentes parties peuvent être traitées dans un ordre quelconque, toutefois avant d'aborder l'une des parties du problème il est conseillé de lire celles qui la précédent.

On veillera à une présentation claire et soignée des copies ; il convient en particulier de rappeler avec précision les références exactes des questions abordées.

Données utiles

• Données numériques

- \rightarrow Célérité de la lumière dans le vide $c_0#3,0~10^8~\text{m.s}^{-1}$.
- → Constante de gravitation universelle G#6,7 10⁻¹¹ N.m².kg⁻².

• Formulaire

- → Équations de conjugaison
 - * pour un miroir sphérique de centre C et de sommet S : $\frac{1}{\overline{SA_i}} + \frac{1}{\overline{SA_o}} = \frac{2}{\overline{SC}}$,
 - * pour une lentille mince de centre O et de distance focale image f_i : $\frac{1}{\overline{OA_i}} \frac{1}{\overline{OA_o}} = \frac{1}{f_i}$.

Les grandeurs algébriques sont comptées positivement dans le sens de propagation de la lumière incidente, A_i est l'image de A_o .

 $\rightarrow \cos(a+b) = \cos a \cos b - \sin a \sin b$

<u>1^{ère} Partie</u> Étude mécanique succincte

L'étoile double est constituée de deux composantes, considérées ponctuelles, A_1 de masse m_1 et A_2 de masse m_2 . On admet que chaque composante n'est soumise qu'à la seule action gravitationnelle exercée par l'autre composante.

Le référentiel d'étude \mathcal{R} est supposé galiléen. O est un point fixe par rapport à \mathcal{R} .

1.1. Mouvement du centre d'inertie

Soit G le centre d'inertie de l'étoile double.

- **1.1.1.** Exprimer \overrightarrow{OG} en fonction de m_1 , m_2 , \overrightarrow{OA}_1 et \overrightarrow{OA}_2 . En déduire la relation qui existe entre \overrightarrow{GA}_1 et \overrightarrow{GA}_2 .
- **1.1.2.** Exprimer la vitesse $^{\mathfrak{R}}\vec{v}(G)$ de G par rapport à \mathfrak{R} en fonction de $m_1, m_2, ^{\mathfrak{R}}\vec{v}(A_1)$ et $^{\mathfrak{R}}\vec{v}(A_2)$.
- **1.1.3.** Déterminer, en le justifiant, la nature du mouvement de G relativement au référentiel \mathcal{R} .
- **1.1.4.** En déduire que, dans ce cas, le référentiel barycentrique \mathcal{R}^* de l'étoile double, relativement à \mathcal{R} , est galiléen. On rappellera auparavant la définition du référentiel barycentrique.

1.2. Mobile fictif

On définit le mobile fictif M_f par $\overrightarrow{GM_f} = \overrightarrow{A_1A_2}$ et on l'affecte de la masse réduite de l'étoile double $\mu = \frac{m_1m_2}{m_1+m_2}.$

- **1.2.1.** Exprimer les quantités de mouvement barycentriques \vec{p}_1 et \vec{p}_2 des deux composantes en fonction de la vitesse relative $\vec{v}=^{\mathcal{R}}\vec{v}_2-^{\mathcal{R}}\vec{v}_1$ de A_2 par rapport à A_1 et de μ . On montrera au préalable que $^{\mathcal{R}}\vec{\mathbf{v}}_{2}-^{\mathcal{R}}\vec{\mathbf{v}}_{1}\overset{*}{=}^{*}\vec{\mathbf{v}}_{2}-^{*}\vec{\mathbf{v}}_{1}.$
- **1.2.2.** Calculer la vitesse barycentrique ${}^*\vec{v}(M_{\rm f})$ du mobile fictif.
- 1.2.3. Montrer que le moment cinétique \tilde{L} en G de l'étoile double est égal à celui de M_f au même point par rapport à \mathcal{R}^* .
- 1.2.4. Montrer que l'énergie cinétique barycentrique *K de l'étoile double est égale à celle de M_f par rapport à
- **1.2.5.** Montrer que tout se passe comme si M_f était soumis, dans \mathcal{R}_{+}^* , à une force égale à celle exercée par A_1 sur A2.
- 1.2.6. Montrer que si on connaît la trajectoire de M_f on peut en déduire celles de A₁ et A₂. Pour cela on exprimera GA₁ et GA₂ en fonction de GM_f. On pourra s'aider d'un schéma.

1.3. Mouvement du mobile fictif

1.3.1. En appliquant le théorème du moment cinétique, montrer que la trajectoire du mouvement de M_f est

Dans la suite du problème on repérera M_f dans le plan de sa trajectoire par ses coordonnées polaires (r,θ) et on notera Gz l'axe passant par G et perpendiculaire à ce plan (figure 1).

1.3.2. Appliquer le théorème de l'énergie cinétique et en déduire une intégrale première du mouvement de M_f relativement à \mathcal{R}^* sous la forme

$$E_{\rm M} = \frac{1}{2} \mu \left(\frac{dr}{dt}\right)^2 + U_{\rm eff}(r).$$

Que représente E_M ? Exprimer U_{eff} en fonction de r, $L=L.\vec{u}_z$, m_1 , m_2 , μ et G (constante de gravitation universelle). U_{eff}(r) est appelé potentiel efficace ; on prendra U_{eff}=0 pour r très grand.

- **1.3.3.** Représenter graphiquement U_{eff} en fonction de r.
- 1.3.4. L'étoile double correspond à un système lié (E_M<0). En déduire, en utilisant une discussion graphique, les différents types de trajectoire possibles.
- **1.3.5.** On se place dans le cas particulier d'un mouvement circulaire.
 - **1.3.5.1.** Montrer qu'il est uniforme. On note T sa période.
 - 1.3.5.2. À partir de U_{eff} déterminer le rayon R de la trajectoire de M_f et montrer qu'il vérifie la relation

$$\frac{R^3}{T^2} = \frac{G(m_1 + m_2)}{4\pi^2}.$$

- **1.3.5.3.** Donner les expressions des rayons R_1 et R_2 des trajectoires de A_1 et A_2 .
- **1.3.5.4.** On prend m₁=3m₂. Tracer sur un même graphe les deux trajectoires de A₁ et A₂, dans le référentiel barycentrique. On représentera R par une distance de 4 cm et on indiquera les positions des deux étoiles à un même instant donné t quelconque.

<u>2^{ème} partie</u> <u>Observation visuelle à l'aide d'un télescope</u>

L'œil humain ainsi que d'autres détecteurs optiques ne peuvent distinguer des détails dont l'écart angulaire est inférieur à une certaine valeur limite α_{lim} . Par exemple pour l'œil α_{lim} #3 10^{-4} (rad). Pour pouvoir mettre en évidence et mesurer l'écart angulaire entre les composantes d'une étoile double on utilise des instruments grossissants tels que les lunettes astronomiques et les télescopes.

Dans cette partie, on se propose d'étudier quelques propriétés d'un télescope du type Cassegrain. Il comporte un objectif constitué de deux miroirs, l'un parabolique concave Mp (miroir primaire) de sommet S1, de rayon de courbure au sommet R₁=27 m et de diamètre d'ouverture D=3,6 m, l'autre hyperbolique convexe M_h (miroir secondaire) de sommet S_2 et de rayon de courbure au sommet $R_2=19$ m $^{(1)}$ (figure 2). Les deux miroirs possèdent le même axe optique principal z'z et leurs faces réfléchissantes sont en regard. Les dimensions de Mh sont suffisamment petites pour laisser arriver sur M_p la quasi-totalité de la lumière provenant de l'astre à observer. D'autre part, M_p est percé en son sommet d'un petit trou circulaire permettant à la lumière de passer sans changer

¹Ces données correspondent approximativement aux caractéristiques du télescope CFH (Canada-France-Hawaï) installé au sommet du mont Mauna-Kea sur l'île d'Hawaï.

de propriétés. Ce trou peut recevoir un oculaire pour l'observation visuelle ou la pupille d'entrée d'un détecteur de lumière.

Les deux miroirs sont disposés de sorte qu'un rayon lumineux incident parallèle à l'axe optique principal passe par S_1 après réflexion sur M_p puis M_h .

2 1

- **2.1.1.** Quels sont les points de l'espace pour lesquels le miroir parabolique et le miroir hyperbolique constituent des surfaces réfléchissantes parfaites ?
- **2.1.2.** En déduire la position des foyers objet F_{ho} et image F_{hi} du miroir M_h par rapport au sommet S_1 et le foyer F_p du miroir M_p . On représentera ces points sur un schéma ainsi que le cheminement d'un rayon lumineux parallèle à l'axe optique et subissant une réflexion sur chacun des deux miroirs.
- **2.1.3.** Citer deux autres exemples d'instruments qui exploitent la propriété de stigmatisme de la surface parabolique.
- **2.2.** Pour des rayons lumineux voisins de l'axe optique principal on peut modéliser l'objectif Cassegrain (constitué de M_p et M_h) par deux miroirs sphériques :
 - M_1 sphère tangente à M_p en S_1 , de rayon R_1 ,
 - M_2 sphère tangente à M_h en S_2 , de rayon R_2 .
 - **2.2.1.** Déterminer la position relative des deux miroirs, caractérisée par la distance optique $e = \overline{S_2S_1}$, afin que tout rayon incident parallèle à l'axe optique principal et réfléchi une fois par chacun des deux miroirs, passe par S_1 .
 - **2.2.2.** Déterminer la position, par rapport à S₁, des foyers objet F₀ et image F_i de l'objectif Cassegrain.
 - **2.2.3.** Un calcul non demandé ici montre que l'objectif Cassegrain est équivalent à une lentille mince convergente unique. Déterminer la position par rapport à S₁ du centre de la lentille équivalente ainsi que sa distance focale image.
 - **2.2.4.** Sachant que l'indice de réfraction du verre dépend en général de la longueur d'onde $n(\lambda)$ et que pour les observations astronomiques on est amené à fabriquer des télescopes de grand diamètre d'ouverture (paragraphe 2.5.5.), citer deux avantages à utiliser le système à deux miroirs plutôt que le système équivalent à une seule lentille.

Dans toute la suite du problème et sauf mention explicite du contraire, l'objectif Cassegrain sera remplacé par une lentille unique convergente L_1 de centre O_1 , de distance focale image f_{1i} =25 m et de même diamètre d'ouverture D que le miroir M_p (D=3,6 m).

- **2.3.** Pour pouvoir faire une observation visuelle on adjoint au système précédent un oculaire qu'on peut schématiser par une lentille mince convergente L_2 de centre O_2 et de distance focale image f_{2i} =2,5 cm. L_2 est disposée de façon à ce que le système obtenu (objectif+oculaire) soit réglé à l'infini : l'image d'un objet à l'infini est rejetée à l'infini (système afocal).
 - 2.3.1. Quel est l'intérêt d'un tel réglage pour l'œil ?
 - **2.3.2.** Déterminer O_1O_2 .
- **2.4.** On observe avec le télescope précédent une étoile double (A_1,A_2) d'écart angulaire ε centrée sur l'axe optique principal du télescope.
 - **2.4.1.** Construire l'image géométrique <u>intermédiaire</u> B₁B₂ de l'étoile double donnée par l'objectif.
 - **2.4.2.** Déterminer la taille de cette image B_1B_2 en fonction de ε et f_{1i} .
 - **2.4.3.** Déterminer, en fonction de f_{1i} et f_{2i}, le grandissement angulaire G_a du télescope de Cassegrain (objectif+oculaire), défini comme le rapport des angles sous lesquels on voit un objet, placé à l'infini, à travers le télescope et à l'œil nu. Faire l'application numérique.
 - **2.4.4.** L'écart angulaire de l'étoile double Sirius de la constellation "Grand Chien", est ε#3,8 10⁻⁵ (rad). Calculer la taille de l'image intermédiaire ainsi que l'angle ε' sous lequel on voit les deux composantes à travers le télescope.
 - Les deux composantes de Sirius sont elles vues séparées à l'œil nu ? À travers le télescope ?

2.5. Influence de la diffraction

En réalité, dans l'étude précédente nous n'avons pas tenu compte de l'influence de la diffraction. En effet, la limitation du front d'onde, principalement par la monture du miroir primaire (parabolique M_p), est à l'origine du phénomène de diffraction. L'image d'un objet ponctuel n'est plus un point mais une tache centrée sur l'image géométrique. On se propose d'aborder sur un modèle simple quelques aspects de la limitation du pouvoir de résolution par la diffraction.

- **2.5.1.** Décrire une expérience simple, facilement réalisable au laboratoire, permettant de mettre en évidence l'influence de la diffraction sur le pouvoir de résolution.
- 2.5.2. Considérons d'abord un diaphragme plan opaque D percé d'une ouverture carrée de centre O et de côtés

a. On choisit un système de coordonnées cartésiennes où les vecteurs directeurs \vec{u}_x et \vec{u}_y sont parallèles aux côtés de l'ouverture carrée et où \vec{u}_z oriente l'axe optique dans le sens de la lumière (figure 3).

L'écran est éclairé avec une onde plane monochromatique de longueur d'onde dans le vide λ se

propageant dans la direction (α_0,β_0) c'est-à-dire parallèlement au vecteur directeur \vec{u}_0 β_0 ; α_0 , β_0 <<1.

- **2.5.2.1.** Dans quelles conditions observe-t-on une diffraction de Fraunhöffer ?
- **2.5.2.2.** Démontrer que dans les conditions d'observation de la diffraction de Fraunhöffer, l'intensité lumineuse diffractée dans la direction (α, β) s'exprime par

$$I(\alpha, \beta) = I_0 \left[\operatorname{sinc} \frac{\pi(\alpha - \alpha_0)a}{\lambda} \right]^2 \left[\operatorname{sinc} \frac{\pi(\beta - \beta_0)a}{\lambda} \right]^2$$

où sinc représente la fonction sinus cardinal telle que $\operatorname{sinc}(X) = \frac{\sin X}{X}$.

- **2.5.2.3.** Décrire le phénomène observé sur un écran perpendiculaire à l'axe optique disposé dans les conditions de validité de la diffraction de Fraunhöffer. Comparer en particulier les symétries de la figure de diffraction et de l'ouverture diffractante. On fera un schéma de la figure observée.
- **2.5.2.4.** On appelle demi-largeur angulaire, la distance angulaire séparant le maximum de la figure de diffraction du premier minimum nul dans une direction donnée. Déterminer les demi-largeurs angulaires $\Delta\alpha_{1/2}$ suivant Ox et $\Delta\beta_{1/2}$ suivant Oy.
- **2.5.3.** Dans un télescope du type Cassegrain c'est le miroir primaire de diamètre d'ouverture circulaire D qui limite le front d'onde et joue le rôle d'une pupille diffractante.
 - **2.5.3.1.** En s'appuyant sur les propriétés de symétrie de cette pupille, décrire qualitativement et succinctement sans faire aucun calcul l'aspect de la figure de diffraction dans le plan focale image du télescope.
 - **2.5.3.2.** Un calcul, **non demandé ici**, montre qu'on peut obtenir le rayon angulaire $\Delta\delta$ de la tache centrale de diffraction à partir du résultat établi en 2.5.2.4. en remplaçant a par R/0,61 ; où R est le rayon de la pupille diffractante.

Exprimer $\Delta\delta$ en fonction de la longueur d'onde λ du rayonnement incident supposé monochromatique et du diamètre d'ouverture D du miroir primaire.

2.5.4. Le télescope est orienté vers une étoile double d'écart angulaire ε. La monture du miroir primaire de diamètre D (ou de la lentille équivalente de même diamètre) joue alors le rôle de pupille diffractante. Le télescope est éclairé par deux ondes planes de directions respectives (α₀₁,β₀₁) et (α₀₂,β₀₂) provenant des deux composantes d'une étoile double d'écart angulaire ε. À cause de la diffraction l'objectif Cassegrain donne de ce système une image intermédiaire sous forme de deux taches de diffraction centrées sur les images géométriques intermédiaires B₁ et B₂. On propose de déterminer à quelle condition ces deux taches seront vues séparément. On adopte pour cela le critère de Rayleigh: La limite de résolution d'un système optique est la séparation de deux objets donnant dans l'espace image deux taches de diffraction telles que le maximum central de l'une coïncide avec le premier minimum nul de l'autre.

Dans la suite on ne tiendra compte que de la tache centrale de diffraction.

- **2.5.4.1.** En l'absence de diffraction, sous quel angle voit-on depuis le centre O_1 de L_1 les deux images intermédiaires B_1 et B_2 . On pourra s'aider du schéma tracé en 2.4.1.
- **2.5.4.2.** En utilisant le critère de Rayleigh, montrer que le pouvoir de résolution imposé par la diffraction, appelé aussi pouvoir de résolution théorique, est donné par

$$\Delta \varepsilon_{th} = 1,22 \frac{\lambda}{D}$$
.

- **2.5.4.3. Application** : La diffraction empêche-t-elle les deux composantes de Sirius d'être vues séparées ? Justifier la réponse. On rappelle que D=3,6 m et on prendra λ =0,55 μ m.
- **2.5.5.** Du fait la turbulence atmosphérique, les plans d'onde du rayonnement émis par une étoile sont perturbés. Ce phénomène est à l'origine de la scintillation des étoiles. Il en résulte que le pouvoir de résolution effectif descend rarement en dessous de $\Delta \epsilon_{\rm eff}$ =0,2" (seconde d'angle).
 - **2.5.5.1.** Calculer numériquement la valeur D_{eff} du diamètre d'ouverture D permettant d'atteindre la résolution effective. On prendra λ =0,55 μ m.

On se propose d'expliquer pourquoi on construit dans différentes régions du monde des télescopes dont le diamètre d'ouverture dépasse largement la valeur limite D_{eff} calculée en 2.5.5.1.

Le télescope est orienté vers l'étoile Sirius. On suppose que l'onde reçue est plane et monochromatique de longueur d'onde λ =0,55 μ m. L'intensité correspondante vaut à la surface de la Terre I_0 # 10^{-9} W.m $^{-2}$.

- **2.5.5.2.** Exprimer le vecteur de Poynting moyen $\vec{\Pi}$ en fonction de I_0 .
- **2.5.5.3.** En déduire la puissance électromagnétique \mathcal{P} reçue par un œil humain quand il regarde cette étoile. On donne le diamètre moyen de la pupille de l'œil ϕ_m =5 mm. Faire l'application numérique.

On regarde à présent la même étoile à travers un télescope de type Cassegrain.

- **2.5.5.4.** On appelle cercle oculaire, l'image que donne la lentille L_2 de la monture de la lentille L_1 de diamètre D. Déterminer la position du cercle oculaire et faire l'application numérique. On pourra s'aider d'une construction géométrique.
- **2.5.5.5.** Montrer qu'en disposant correctement la pupille de l'œil dans le plan contenant le cercle oculaire, on peut recueillir la totalité du flux lumineux intercepté par l'objectif. Pour cela on calculera d'abord le diamètre ϕ_c du cercle oculaire.
- **2.5.5.6.** Quelle est alors la puissance \mathcal{P}' reçue par l'œil regardant à travers le télescope dans les conditions d'observation citées en 2.5.5.5.
- **2.5.5.7.** Calculer numériquement de rapport $\rho = \mathcal{P}'/\mathcal{P}$ et en déduire l'intérêt de construire des télescopes de grand diamètre d'ouverture.

3^{ème} Partie Synthèse d'ouverture

Pour améliorer le pouvoir de résolution on peut utiliser une méthode interférentielle appelée synthèse d'ouverture. On se propose dans cette partie d'étudier le principe de cette méthode.

On place devant l'objectif d'un télescope de Cassegrain de focale f_{1i} , un écran percé de deux trous S_1 et S_2 distants de a ainsi qu'un système de quatre miroirs (M_1, M_2, M_3, M_4) . Les miroirs extrêmes M_1 et M_4 peuvent subir des translations ce qui permet de faire varier la distance b (figure 4) : interféromètre stellaire de Fizeau-Michelson.

Pour pouvoir effectuer des enregistrements, <u>on remplace</u> la lentille oculaire L_2 par un détecteur optique dont la pupille d'entrée est placée dans le plan focal image de l'objectif L_1 du télescope.

Les trous S_1 et S_2 sont supposées identiques et suffisamment fins pour pouvoir considérer la diffraction qu'ils provoquent comme uniforme.

3.1. Étude préliminaire : Observation d'une étoile simple

Le dispositif est éclairé par l'onde plane monochromatique de longueur d'onde λ en provenance d'une étoile A située dans une direction faisant un angle ε avec l'axe optique principal du système.

3.1.1. Démontrer que la différence de marche $\delta = \left(\overline{AS_2M}\right) - \left(\overline{AS_1M}\right)$ est donnée par (figure 4)

$$\delta = \left(\overline{IJ}\right) + \left(\overline{S_2H}\right).$$

- **3.1.2.** Exprimer δ en fonction de a, b, ϵ , f_{1i} et x.
- **3.1.3.** En déduire l'expression de l'éclairement \mathcal{E} produit dans le plan focal image du télescope. On appellera $2\mathcal{E}_0$ l'éclairement maximum.
- **3.1.4.** Exprimer l'interfrange i de la figure d'interférence obtenue.

3.2. Observation d'une étoile double

On observe avec le dispositif interférentiel précédent, une étoile double d'écart angulaire ϵ . Les deux composantes A_1 et A_2 , incohérentes entre elles, émettent des ondes planes de même intensité, de longueur d'onde λ . Les deux composantes A_1 et A_2 sont situées dans deux directions faisant des angles $+\epsilon/2$ et $-\epsilon/2$ respectivement avec l'axe optique principal du télescope.

- **3.2.1.** En utilisant le résultat établi à la question 3.1.2., calculer les différences de marche δ_1 et δ_2 correspondant respectivement aux composantes A_1 et A_2 .
- **3.2.2.** Déterminer, en le justifiant, l'expression de l'éclairement \mathcal{E} produit dans le plan focal image du télescope et montrer que les franges disparaissent pour certaines valeurs de b.
- **3.2.3. Application**: On observe à l'aide de ce dispositif une étoile double dont on veut mesurer l'écart angulaire ε. Le contraste des franges s'annule pour la première fois lorsque b=567 cm. En déduire l'écart angulaire ε. On prendra λ=0,55 μm.

4^{ème} Partie Spectroscopie Doppler

4.1. Préliminaire : effet Doppler

Aucun calcul n'est demandé dans le paragraphe 4.1. qui ne comporte aucune question.

Considérons une onde électromagnétique émise par une source S et se propageant dans le vide à la célérité c_0 . On note v sa fréquence et λ sa longueur d'onde dans le référentiel de la source. Dans le cadre de la cinématique non relativiste on montre qu'un observateur en mouvement par rapport à S reçoit une onde électromagnétique de fréquence v' donnée par

$$\mathbf{v}' = \mathbf{v} \left(1 + \frac{\mathbf{v} \cdot \mathbf{v}_{\mathrm{S}} \cdot \mathbf{u}}{\mathbf{c}_{0}} \right),$$

οù

- ${}^{O}\vec{V}_{S}$ est la vitesse relative de la source S par rapport à l'observateur O supposée négligeable devant c_{0} (hypothèse non relativiste),
- \vec{u} est le vecteur unitaire directeur de la direction de propagation orienté dans le sens de propagation de l'onde.
- **4.2.** Les deux composantes d'une étoile double émettent des ondes lumineuses de longueur d'onde λ relativement au référentiel de chacune des deux composantes.

Pour simplifier l'étude on considère le cas où les deux trajectoires sont circulaires (période T) et situées dans un plan perpendiculaire au plan d'observation. Le plan d'observation est défini comme étant le plan perpendiculaire à la ligne de visée (figure 5).

On appelle vitesse radiale de fuite de la source S la quantité $v_{Sf} = -{}^{O}\vec{v}_{S} \cdot \vec{u}$.

- **4.2.1.** Exprimer les vitesses de fuite v_{1f} (respectivement v_{2f}) de la composante A_1 (respectivement A_2) en fonction de la vitesse de fuite v_{Gf} du centre d'inertie G, du module v_1 (respectivement v_2) de la vitesse de v_1 (respectivement v_2) de la vitesse de v_1 (respectivement v_2) dans le référentiel barycentrique et de l'angle v_1 (figure 5).
- **4.2.2.** Exprimer les longueurs d'onde λ_1 et λ_2 des radiations émises par A_1 et A_2 relativement au référentiel de l'observateur en fonction de λ , c_0 , v_{Gf} , v_1 , v_2 et v_3 .
- **4.3.** Les deux radiations, supposées de même intensité I_0 et de longueurs d'onde λ_1 et λ_2 éclairent un interféromètre de Michelson à travers un télescope du type Cassegrain muni de son oculaire L_2 .

L'interféromètre de Michelson est constitué principalement de deux miroirs plans \mathcal{M}_1 et \mathcal{M}_2 et d'une lame semi-réfléchissante L_s , supposée d'épaisseur négligeable, jouant le rôle de séparatrice (figure 6).

Dans toute la suite l'interféromètre de Michelson sera utilisé dans la configuration où les deux miroirs \mathcal{M}_1 et \mathcal{M}_2 sont perpendiculaires entre eux. On note d= $|SI_1-SI_2|$ l'épaisseur de la lame d'air équivalente.

Le détecteur à photomultiplicateur (PM) est disposé dans le plan focal image de la lentille mince convergente de sortie L. La fenêtre d'entrée du PM est centrée sur le foyer image de L.

- **4.3.1.** Exprimer les éclairements lumineux \mathcal{E}_1 et \mathcal{E}_2 produits par les deux radiations ainsi que l'éclairement total \mathcal{E} en F.
- **4.3.2.** Les vitesses v_1 , v_2 et v_{Gf} étant très petites devant la célérité c_0 de la lumière dans le vide, faire un développement limité de l'expression précédente et la mettre sous la forme,

$$\mathcal{E}(t) = A + B\cos\frac{2\pi t}{T}.$$

On prendra $\theta(t=0)=0$ et on exprimera A et B en fonction de I_0 , d, λ , v_{Gf} , v_1 , v_2 et v_2

- **4.3.3.** La figure 7 reproduit un enregistrement de l'éclairement normalisé $e(t)=\mathcal{E}(t)/I_0$ en fonction du temps pour l'étoile α de la "Couronne Boréale" (Gemma ou la pierre précieuse).
 - **4.3.3.1.** Comment, en agissant sur d, peut-on accéder à I₀ ?
 - **4.3.3.2.** En utilisant l'enregistrement fourni (figure 7), déterminer la période de révolution relative T.
 - **4.3.3.3.** Déterminer de même v_{Gf} ainsi que $|v_2 v_1|$; on prendra d=1 μ m et λ =0,55 μ m.

FIN DE L'ÉPREUVE

Figures

Attention: sur l'axe des ordonnées est reporté 1000 e(t).

343,2

343 L

10

t/jour

20

30