2.5.2 调和探索模型

采用上一小节的记号,记 Ω 为一个 Jordan 区域, $a,b \in \partial \Omega$ 。 $\Omega_{\delta} = \delta \mathcal{T} \cap \Omega$ 。 ab 表示沿着逆时针方向在 $\partial\Omega$ 上从 a 到 b 的弧; ba 表示沿着逆时针方向在 $\partial\Omega$ 上从 b 到 a 的弧。将与 ab 相邻的 Ω_{δ} 上的顶点染为黑色,将与 ba 相邻的 Ω_{δ} 上 的顶点染为红色。而其他的点染色与逾渗模型不一样。我们要构造一条探索曲线, 具体如下。记 $\Delta c_0 d_0 e_0$ 为与 a 相邻的位于 Ω_δ 中的三角形,其中 c_0, d_0 为分别被 染成黑色和红色的顶点。记 $\gamma^{\delta}(0)$ 为 $\Delta c_0 d_0 e_0$ 的中心,考虑定义在 Ω_{δ} 上的函数 f_{k}^{0} ,在黑色顶点上取值 1,在红色顶点上取值 0,在其他未染色的顶点上调和。于 是以 $f_{\delta}^{0}(e_{0})$ 的概率将 e_{0} 染成黑色。如果 e_{0} 为黑色,则选取以 $e_{0}d_{0}$ 为边的三角 形 $\Delta c_1 d_1 e_1(c_1 = e_0, d_1 = d_0)$ 的中心为 $\gamma^{\delta}(1)$; 如果 e_0 为红色,则选取以 $e_0 c_0$ 为 边的三角形 $\Delta c_1 d_1 e_1 (c_1 = c_0, d_1 = e_0)$ 的中心为 $\gamma^{\delta}(1)$ 。再考虑 e_1 的染色……。假 定已经得到 $\gamma_{\delta}(n)$, 其所在的三角形为 $\Delta c_n d_n e_n$, 并且 c_n 已经被染成黑色, d_n 已 经被染成红色。考虑定义在在 Ω_δ 上的函数 f^n_δ ,在黑色顶点上取值 1,在红色顶 点上取值 0, 在其他未染色的顶点上调和。于是依概率 $f_s^n(e_n)$ 将 e_n 染成黑色,以 $1 - f_{\delta}^{n}(e_{n})$ 的概率将 e_{n} 染成红色。当 e_{n} 为黑色时,取 $\gamma^{\delta}(n+1)$ 为以 $e_{n}d_{n}$ 为边 的三角形 $\Delta c_{n+1}d_{n+1}e_{n+1}(c_{n+1}=e_n,d_{n+1}=d_n)$; 当 e_n 为红色时,取 $\gamma^{\delta}(n+1)$ 为 以 $e_n c_n$ 为边的三角形 $\Delta c_{n+1} d_{n+1} e_{n+1} (c_{n+1} = c_n, d_{n+1} = e_n)$ 。一直进行下去,直到 $\gamma^{\delta}(n)$ 位于与 b 相邻的三角形的中心。这样产生了一条探索曲线 γ_{δ} ,称为 Ω_{δ} 上的 调和探索曲线。

自然其同样诱导了 C 上的概率测度。我们有定理: