8) Steganography

Christian Cachin

Privacy and Data Security, 2021

(originally presented at CMS 2005)

Steganography # Cryptography

Cryptography hides the content of communication

Adversary knows that communication exists Conceals data

Steganography hides the existence of communication

Adversary should not discover existence of communication
Conceals also metadata

Information-hiding concepts

Embed information in a "cover" (carrier signal)

Steganography

Hide presence of hidden information To avoid censorship and surveillance Presence not known; can easily be removed

Watermarking

Hide information in a robust way To authenticate (multimedia) data, control ownership Presence is known; should be difficult to remove

Fingerprinting

Like watermarking, but hides user-specific information for tracing and litigation

Prisoner's problem

Alice and Bob want to coordinate their escape Communication through passive observer (warden, censor ...)

innocent communication is allowed talking about escape plans is forbidden

Formulated by Simmons (1983)

Steganography = hidden communication

How to be convinced that it is "really" hidden?

Many attacks

Correlation, histogram, transforms ...

Analogy to cryptology

Ages of broken cryptosystems until ~1980 Theory of cryptology with provably secure cryptosystems since ~1990

→ Formal model for steganography

Models for cryptosystems

Model of a cryptosystem

Adversary is passive

Security of cryptosystems

Perfect security (Shannon 1949)

$$I(X;Y) = H(X) - H(X|Y) = 0$$

Information-theoretic Unbounded adversary obtains no information Implies also that $H(K) \ge H(X)$ Ξ Ex. one-time pad

But ... practical cryptography uses block- and stream-ciphers with short keys.

Practical cryptosystems

Family of one-way permutations

$$\mathcal{F} = \{F_K\}, F_K : \mathcal{D} \to \mathcal{D}$$
 indexed by key K

Encryption and decryption are deterministic leaks information

Probabilistic encryption

Randomize input to encryption function

Ciphertext is (r, y)
does not repeat for same plaintext x
better protection

Probabilistic cryptosystems

Private random source R

Computational security for cryptosystems

```
Formal security model (Goldwasser-Micali, 1985)
Chosen-plaintext attacks (passive adversary)
Semantic security \Leftrightarrow indistinguishability of ciphertexts
Defined by experiment with adversary A, a
probabilistic polynomial-time (PPT) algorithm:

K \leftarrow KG(1^k)
(x_0,x_1) \leftarrow A_1(K)
b \in \mathbb{R} \{0,1\}
```

b* $\leftarrow A_2(x_0,x_1,c^*)$ Then

 $c^* \leftarrow E(K,x_b)$

 $\forall \ PPT \ A=(A_1,A_2) : Pr[\ b=b^*\] \le \frac{1}{2} + negl.$

Models for stegosystems

Model of a stegosystem

Covertext C and stegotext S over domain Y Adversary is passive

How to define security for stegosystems?

Attempt 1

Based on information theory and mutual entropy:

$$I(X;S|C) = 0$$

Fails to differentiate stegosystem from cryptosystem.

Attempt 2

Based on distortion measure $d(C,S) = \|Pc - Ps\|_2$: $d(c,s) \rightarrow 0$

Fails for some examples, e.g., when C is a random n-bit string, but S is a random n-bit string with even parity.

Information-theoretic security

Steganography as hypothesis testing (C. 1998) Adversary distinguishes stegotext from covertext

Quantified using relative entropy

Perfect security

$$D(Pc||Ps) = 0$$

Statistical security

$$D(Pc||Ps) < \varepsilon$$

Discrimination or relative entropy

$$D(Pc||Ps) = \sum_{y \in Y} Pc(y) \log (Pc(y)/Ps(y)) \ge 0$$

Bounds on detection

Adversary distinguishes stegotext S (H₁) from covertext C (H₀)

Deciding S with signal C is type-I error, prob. α Deciding C with signal S is type-II error, prob. β

Statistical security $D(Pc||Ps) < \epsilon$, $d(\alpha,\beta) \le \epsilon$ binary discrimination $d(\bullet,\bullet)$

For $\alpha = 0$, this implies

$$\beta > 2^{-\epsilon}$$

Modeling the covertext

Probabilistic source or channel

$$\mathbf{C} = C_0, C_1, C_2 \dots$$

Distribution known

C is a stochastic process

Random variable (i.i.d. → ergodic → ...)

Unrealistic in practice

Real-world communication does not come with specification of distribution

Universal stegosystems

What if distribution of C is not known?

- → Universal stegosystems
- → No knowledge of cover distribution needed

C is an algorithm, given as oracle Can be queried on arbitrary history $\mathbf{C}(h,n) = C_{|h|+1}, C_{|h|+2}, ..., C_{|h|+n}$

Synthetic cover signal C from machine learning

Example stegosystem

```
Known distribution Pc over domain Y
Message x \in \{0,1\}
Let
   Y_0 = \min_{Y' \subseteq Y} |Pr[C \in Y'] - Pr[C \notin Y']| (prob. =: \epsilon)
   Y_1 = Y \setminus Y_0
   Key sk \inR \{0,1\}
   RV Co is C restricted to Yo
   RV C1 is C restricted to Y1
Stego-encoder: SE(sk,x) = C_{x \oplus sk}
Stego-decoder: SD(sk,y) = 0 iff y \in Y_{sk}
```

Thm.: This is an ε^2 /ln 2-statistically secure stegosystem (in terms of relative entropy).

Computationally secure stegosystems

Analogous to computational security model for cryptosystems

```
Universal stegosystem
covertext given as oracle C
Chosen-plaintext attacks (CPA)
passive adversary
Indistinguishability of covertext and stegotext
```

Secret-key stegosystem: SKG, SE, SD

```
SKG(1^k) \rightarrow sk

SE(sk,x) \rightarrow c

SD(sk,c) \rightarrow x \text{ or } \bot
```

Computational stegosystems (2)

Robustness SD(sk, SE(sk,x)) = x

SS-CPA security defined by experiment with SA

```
K ← SKG(1^k)

(x^*,s) ← SA_1(K)

b ∈R {0,1}

if b=0 then c^* ← SE(K,x^*) else c^* ←R C fi

b^* ← SA_2(x^*,c^*,s)

Then

\forall PPT SA=(SA_1,SA_2) : Pr[b=b^*] \leq \frac{1}{2} + negl.
```

Stegotext and covertext are indistinguishable

Construction – Assumptions

Given

Sym. cryptosystem (KG,E,D) with pseudo-random ciphertexts & universal hash function G

SKG(1k)

Run KG(1k) \rightarrow sk and pick $g \in_R G \rightarrow (sk,g)$

Construction – Rejection sampler

```
SE(sk,m)
    z \leftarrow E(sk,x)
    for i = 1 ... |z| do
       repeat
           sample C_i \leftarrow_R C
       until g(C_i) = z_i
    output C_1 \dots C_{|z|}
SD(sk, C_1 \dots C_{|z|})
    for i = 1 ... |z| do
      z_i \leftarrow g(C_i)
    x \leftarrow D(sk,z)
```

Rejection sampler

If **C** has large enough min-entropy, then $\| \langle g, C_1, C_2 \dots C_{|y|} \rangle - \langle g, \mathbf{C}^{|y|} \rangle \| \leq \text{negl.}$

Public-key stegosystems

Bob has public-key/secret-key pair (PK,SK) Adversary is passive (CPA) or active (CCA)

Modeling active attacks

Adversary may ask Bob if he considers c to be stegotext Bob answers 0 (cover) or 1 (stego)

Analogous to adaptive chosen-ciphertext attacks for public-key cryptosystems

Practical steganography

Many tools for image and audio steganography Ca. 1990-2005

Starting from making imperceptible modifications to the least significant bit (LSB, in pixel or audio data)

Not relevant in practice today

Steganography is often very easy to detect with forensic image analysis tools

Recently – New ideas from machine learning

Stegosystems using ML

Meteor (2021)

https://meteorfrom.space

https://eprint.iacr.org/2021/686

Sampler uses ML to generate realistic covers

Natural-language text

Uses OpenAI's GPT-2 (Generative Pre-trained Transformer) that produces human-like texts

Meteor

- Examples 1-3
- Long explanation: https://meteorfrom.space

Summary

Definition of stegosystems

Security for (secret-key) stegosystems

Perfect → statistical → computational

Always relative to covertext distribution

Public-key stegosystems
Computational security

Realistic stegosystems using machine learning Automatically generate covertext Permitted covertext distribution is critical

Executive summary

Stegosystems are cryptosystems with prescribed distribution of ciphertext