MATH H113: Honors Introduction to Abstract Algebra

2016-02-12

• Subgroups

No homework due next week (Study for the midterm!)

Exam on 2016-02-17:

Covers Chapters 0 and 1

Closed book: no notes, no calculators

Subgroups (continued)

 $H \subseteq G$

- i. $H \neq \emptyset$
- ii. closed under the group operation
- iii. closed under inversion

More Examples of Subgroups:

- 3. For any group G, $\{1\}$ is a subgroup, called the *trivial subgroup*
- 4. For any group $G, G \leq G$
- 5. For any group G, \emptyset is *not\$ a subgroup
- 6. \mathbb{N} is *not\$ a subgroup of \mathbb{Z} (not closed under inversion).
- 7. If $N \leq H$ and $H \leq G$ then $N \leq G$
- 8. Let $\phi: G \to G'$ be a homomorphism:
 - a. For all $H' \leq G'$, $\phi^{-1}(H') = \{g \in G : \phi(g) \in H'\}$ is a subgroup of G $\phi(1_G) = 1_{G'} \in H'$ so $\phi^{-1}(H') \ni 1_G$, $\phi^{-1}(H') \neq \emptyset$. $x, y \in \phi^{-1}(H') \implies phi(x), \phi(y) \in H' \implies \phi(x)\phi(y) = \phi(xy) \in H' \implies xy \in \phi^{-1}(H')$ Similarly $x^{-1} \in \phi^{-1}(H')$ In particular, $\ker \phi = \phi^{-1}(1_{G'})$ is a subgroup (take H' = the trivial subgroup).
 - b. If $H \leq G$, then $\phi(H) = \{\phi(x) \cdot x \in H\}$ is a subgroup of G' Similar proof
- 9. A linear subspace of a vector space is a subgroup (of its additive group)

Proposition: Let G be a group and let H be a subset of G. Then the following are equivalent (TFAE):

- i. $H \leq G \ (H \neq \emptyset, x, y \in H \implies xy \in H, x \in H \implies x^{-1} \in H)$
- ii. $H \neq \emptyset$ and $xy^{-1} \in H \ \forall x, y \in H$
- iii. H is a group, and the group operation on H is the restriction of the group operation on G

Proof:

- (i) \Longrightarrow (ii): clearly $H \neq \emptyset$. Let $x, y \in H$. Then $y^{-1} \in H$, so $xy^{-1} \in H$
- (ii) \Longrightarrow (i): Again $H \neq \emptyset$. Then $\exists x \in H$, so $1 = xx^{-1} \in H$. Then give $x \in H$, $1 \cdot x^{-1} \in H$, so $x^{-1} \in H$. Finally, $x, y \in H \implies x, y^{-1} \in H$, so $x(y^{-1})^{-1} = xy \in H$
- (i) \implies (iii): exercise
- (iii) \Longrightarrow (i): Write $G = (G, \cdot)$ and $H = (H, \star)$. Then $x \star y = x \cdot y \ \forall x, y \in H$. H has an identity element, so $H \neq \emptyset$. The identity element of H = identity of G, because

 $1_H \cdot 1_H = 1_H \star 1_H = 1_H = 1_H \cdot 1_G.$

Now cancel 1_H to get $1_H = 1_G$

Similarly, for all $x \in H$, its inverse in H = inverse in G ($x \cdot x^{-1_H} = x \star x^{-1_H} = 1_G$, $x \cdot x^{-1_G} = 1_G$)\$ $\therefore x \cdot x^{-1_H} = x \cdot x^{-1_G}$ now cancel x. In particular $x^{-1_G} \in H \ \forall x \in H$.

 $x \cdot y = x \star y \in H \ \forall x, y \in H. \therefore H \text{ is closed under } \cdot.$

Definition: Let G be a group and let $x \in G$. Then $\phi : \mathbb{Z} \to G$, given by $\phi(n) = x^n$, is a homomorphism, so its image is a subgroup of G. This image is called the *cyclic subgroup generated by* x, and is written (denoted) $\langle x \rangle$. (This is similar to the idea of generators and relations, except the relations come from G)

Suppose $|x| = \infty$.

Then $x^m \neq x^n \ \forall m \neq n$ because otherwise we can assume m < n, so $x^m = x^m \cdot x^{n-m}$, and we get $x^{n-m} = 1$, so $|x| \leq n-m$, contradiction. $\therefore \phi$ is 1-1, and its onto $\langle x \rangle$, so ϕ gives an isomorphism: $\langle x \rangle \cong \mathbb{Z}$.

(In particular, if G is finite, then all $x \in G$ have finite order since G can't contain an infinite subset $\langle x \rangle$.)

So suppose x has finite order: $|x| = n < \infty$.

Then $\langle x \rangle = \{1, x, x^2, \dots, x^{n-1}\}.$

Clearly all of these elements are in $\langle x \rangle$, they are all different $(- \le i < j < n \implies x^i = x^j \implies x^{j-i} = 1 \text{ with } 0 < j-i < n, \text{ contradiction}).$

Also every element of $\langle x \rangle$ lies in this set because $\forall m \in \mathbb{Z}$, write $m = qn + r, 0 \le r < n$, then $x^m = (x^n)^q x^r = x^r \in \{1, x, x^2, \dots x^{n-1}\}.$

So $\langle x \rangle$ is a subgroup of order n: $|\langle x \rangle| = |x|$.

Also $\phi: \mathbb{Z}/n\mathbb{Z} \to \langle x \rangle$ given by $\phi(\bar{m}) = x^m$ is an isomorphism, so $\langle x \rangle \cong \mathbb{Z}/n\mathbb{Z}$ (need to check that this is well defined: $\bar{m} = \bar{k} \implies x^m = x^k$, and this is a

homomorphism $\phi(\bar{m}) \cdot \phi(\bar{k}) = x^m x^k = x^{m+k}$, $\phi(\bar{m} + \bar{k}) = \phi(\overline{m+k}) = x^{m+k}$). Also, ϕ is 1-1, and onto (by definition).

Subgroups of S_3 :

Elements of S_3 : 1 = (1), x = (1 2), y = (1 3), z = (2 3), w = (1 2 3), $w^2 = w^{-1} = (3\ 2\ 1)$.

Easy subgroups (1), S_3 Nontrivial cyclic subgroups: $\langle x \rangle$, $\langle y \rangle$, $\langle z \rangle$, $\langle w \rangle$ ($\langle w^2 \rangle = \langle w \rangle$).

 $\langle w \rangle = \{1, w, w^2\}$

 $w^2 = w^{-1}$ has order 3 so, $\langle w^2 \rangle = \{1, w^2, w^4\} = \{1, w^2, w\} = \langle w \rangle$.

Let $H < S_3$.

Look at $|H \cap \{x, y, z\}|$.

If $|H \cap \{x, y, z\}| = 3$, then $H = S_3$, because $1 \in H$ (always), $x, y, z \in H$, and yx = w is in H (1 3)(1 2) = (1 2 3). $\therefore w^2 \in H$, so $S_3 \subseteq H$. If $|H \cap \{x, y, z\}| = 2$, then if $H \cap \{x, y, z\} = \{x, y\}$ then yx = w is in H, $\therefore z = wy$ is in H, contradiction.

 $= \{x, y\}$ then $zx = w \dots y = wx \dots$

 $= \{y, z\}$ then $yz = w \dots x = wz \dots$