Отчет

Шилов Максим

Постановка задачи

Пусть на отрезке [a,b] задана непрерывная функция f(x) и требуется решить уравнение

$$f(x) = 0. (1)$$

Любое решение $x^* \in [a,b]$ этого уравнения будем называть корнем (нулем) функции f(x). Отметим, что каких-либо общих правил анализа расположения корней произвольной функции f(x) на отрезке [a,b] не существует.

Методы решения

1. Метод деления пополам (бисекций)

Пусть дано уравнение (1), в котором функция f(x) непрерывна на [a,b] и f(a)f(b) < 0. Для нахождения корня уравнения (1), принадлежащего отрезку [a,b], делим этот отрезок пополам. Если $f(\frac{a+b}{2}) = 0$, то $x^* = \frac{a+b}{2}$ является корнем. Если $f(\frac{a+b}{2}) \neq 0$, то выбираем ту из половин $[a,\frac{a+b}{2}]$ или $[\frac{a+b}{2},b]$, на концах которой функция f(x) имеет противоположные знаки. Новый суженный отрезок обозначим $[a_1,b_1]$. Его снова делим пополам и проводим то же рассуждение и т.д. В результате получаем на каком-то этапе или точный корень уравнения (1), или последовательность вложенных друг в друга отрезков $[a_n,b_n]$ таких, что

$$f(a_n)f(b_n) < 0, \quad n = 1, 2, ..., n, ...,$$
 (2)
$$b_n - a_n = \frac{1}{2^n}(b - a). \quad (3)$$

Очевидно, что левые концы a_n образуют монотонную неубывающую, а правые концы b_n - монотонную невозрастающую ограниченные последовательности. Поэтому каждая их таких последовательностей имеет предел, а из равенства (3) следует, что

$$x^* = \lim_{n \to \infty} b_n = \lim_{n \to \infty} (a_n + \frac{1}{2^n}(b - a)) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} \frac{1}{2^n}(b - a) = \lim_{n \to \infty} a_n$$

Переходя в формуле (2) к пределу при $n \to \infty$, в силу непрерывности функции f(x) ($f(a_n) \to f(x^*)$ и $f(b_n) \to f(x^*)$ при $n \to \infty$) получаем $(f(x^*))^2 \le 0$. Отсюда $f(x^*) = 0$, т.е. x^* является корнем.

В качестве приближений к корню x^* уравнения (1) следует выбирать середины $x_n = \frac{a_n + b_n}{2}$ интервалов $[a_n, b_n]$. Так как x_n и x^* принадлежат $[a_n, b_n]$, то для них справедлива оценка $|x_n - x^*| \le b_n - a_n$, позваляющая оценить точность получаемых приближений:

$$|x_n - x^*| \le b_n - a_n = \frac{1}{2^n}(b - a)$$

2. Метод простой итерации

Пусть известно, что корень x^* уравнения (1) лежит на отрезке G = [a, b].

- 1. Уравнение (1) равносильным преобразованием привести к виду $x = \varphi(x)$. Это преобразование может быть осуществлено различными путями, но для сходимости нужно обеспечить выполнение условия $|\varphi'(x)| \leq C < 1$ (C некоторая константа). При этом задача сводится к нахождению абсциссы точки пересечения прямой y = x и кривой $y = \varphi(x)$.
- 2. Задать начальное приближение $x^{(0)} \in [a,b]$ и малое положительное число ε . Положить k=0.
 - 3. Вычислить следующее приближение: $x^{(k+1)} = \varphi(x^{(k)})$.
- 4. Если $|x^{(k+1)}-x^{(k)}|\leqslant \varepsilon$, итерации завершаются и $x^*\cong x^{(k+1)}$. Если $|x^{(k+1)}-x^{(k)}|>\varepsilon$, положить k=k+1 и перейти к п.3.

Теорема 1 (о сходимости метода простых итераций и единственности получаемого численного решения).

Пусть выполнены условия:

- 1. Нелинейное уравнение $x = \varphi(x)$ имеет решение $x^* \in G$.
- 2. Отображение $\varphi(x)$ является сжимающим в области G с некоторым коэффициентом C (0 \leq C < 1).

Тогда:

- а) решение x^* является единственным решением в области G;
- б) последовательность $x^{(0)}, x^{(1)}, \dots, x^{(k+1)}, \dots$, определяемая по отображению на основе итерационного процесса, сходится к решению x^* со скоростью геометрической прогрессии, т.е. при выборе $x^{(0)}$ из условия $|x^*-x^{(0)}| < C_1$, где $C_1 > 0$ некоторое малое число, справедливо неравенство

$$|x^* - x^{(k)}| \le C^k \cdot |x_* - x^{(0)}|, \quad k = 0, 1, 2, \dots$$

Теорема 2 (о достаточном условии сходимости метода простых итераций). Пусть выполнены условия:

- 1. Функция $\varphi(x)$ имеет производные для всех $x \in G$.
- 2. Существует число C ($0 \le C < 1$, C = const), такое, что $|\varphi'(x)| \le C$ для всех $x \in G$.

Тогда отображение $\varphi(x)$ является сжимающим в G с коэффициентом сжатия x и последовательность $x^{(0)}, x^{(1)}, \ldots, x^{(k+1)}, \ldots$, определяемая на основе итерационного процесса, сходится K решению K, то есть K0 K1 при K2 K2 при K3 K4 при K5 K6 газарание K8 газарание K8 газарание K9 газарание K1 газарание K1 газарание K1 газара

Результаты численных экспериментов

Найти численно с точностью 10^{-6} и 10^{-12} все решения уравнения $x^2-\sin x-1=0$ на интервале [-5,5]

- $x^2-\sin x-1=0$ \Rightarrow $x^2=\sin x+1$ \Rightarrow $0\leq x^2\leq 2$ \Rightarrow $-\sqrt{2}\leq x\leq \sqrt{2}$ все корни уравнения принадлежат отрезку $[-\sqrt{2},\sqrt{2}]$
- $(x^2-\sin x-1)'=0$ \Rightarrow $2x=\cos x$ \Rightarrow $-\frac{1}{2}\leq x\leq \frac{1}{2}$ т.е. экстремум принадлежит отрезку $[-\frac{1}{2},\frac{1}{2}]$
- Первый корень лежит в отрезке $[-\sqrt{2},-\frac{1}{2}],$ а второй в $[\frac{1}{2},\sqrt{2}]$

Метод дихотомии (биссекции)

Точность:	$x_0 \in \left[-\sqrt{2}, -\frac{1}{2}\right]$	$x_1 \in \left[\frac{1}{2}, \sqrt{2}\right]$	Итерации для x_0 :	Итерации для x_1 :
10^{-6}	-0.636732808748845	1.409623644904916	21	21
10^{-12}	-0.636732650805259	1.409624004002460	41	41
10^{-14}	-0.636732650805282	1.409624004002593	48	48

Метод простой итерации

$$x^2 = \sin x + 1 \quad \Rightarrow \quad x = \pm \sqrt{\sin x + 1}$$

 $\Rightarrow \varphi_0(x) = -\sqrt{\sin x + 1}, \ \varphi_1(x) = \sqrt{\sin x + 1}, \$ сжимающие отображения для отрицательного и положительного корней, удовлетворяющие 1 и 2 теореме.

Точность:	$x_0 \in [-\sqrt{2}, -\frac{1}{2}]$	$x_1 \in \left[\frac{1}{2}, \sqrt{2}\right]$	Итерации для x_0 :	Итерации для x_1 :
10^{-6}	-0.636732982701924	1.409623959692583	30	6
10^{-12}	-0.636732650805620	1.409624004002569	60	11
10^{-14}	-0.636732650805285	1.409624004002596	70	13

1 Метод дихотомии (биссекции)

```
import numpy as np
def f(x):
    return (x**2)-np.sin(x)-1
interval = [[-np.sqrt(2), -1/2], [1/2, np.sqrt(2)]]
e = 1e-12
roots = []
iterations = []
for i in interval:
    iteration = 0
    a = i[0]
    b = i[1]
    while True:
        iteration+=1
        c = (a+b)/2
        if f(c) == 0:
            roots.append(c)
            break
        elif np.abs(b-a) <= e:
            roots.append(c)
            break
        if f(c)*f(a) < 0:
            b = c
        elif f(c)*f(b) < 0:
            a = c
    iterations.append(iteration)
print('Accuracy:', e)
for i in range(len(roots)):
    print('x{} = {}, {} iteration'.format(i, roots[i], iterations[i]))
```

2 Метод простой итерации

```
import numpy as np
def phi(x):
   return np.sqrt(np.sin(x)+1)
interval = [[-np.sqrt(2), -1/2], [1/2, np.sqrt(2)]]
e = 1e-12
roots = []
iterations = []
for i in interval:
    x0 = (i[0]+i[1])/2
    sign = np.sign(x0)
    xn = 0
    iteration = 0
    while True:
        iteration+=1
        xn = sign*phi(x0)
        if np.abs(x0-xn) \le e:
            roots.append(xn)
            iterations.append(iteration)
            break
        x0 = xn
print('Accuracy:', e)
for i in range(len(roots)):
    print('x{} = {}, {} iteration'.format(i, roots[i], iterations[i]))
```