

A You must be enrolled in the course to see course content.

Additional Information for Week 1

What is Programming Competition? (*.pdf)

Rules of Programming Competitions (*.pdf)

Benefits of Participation (*.pdf)

Algorithmic Programming Competitions (*.pdf)

Problem Example. Training Resources And Online Contests (*.pdf)

Additional Information for Week 2

Big O Notation. Computational Complexity(*.pdf)

<u>Linear Data Structures Overview</u> (*.pdf)

Vector (*.pdf)

List (*.pdf)

Stack. Queue. Deque (*.pdf)

Additional Information for Week 3

Introduction to Sorting (*.pdf)

Insertion Sort (*.pdf)

When to Sort? Optimality to Sorted Sequences (*.pdf) Quicksort (*.pdf) **Quicksort Modifications** (*.pdf) Mergesort (*.pdf) **Additional Information for Week 4** Lower Bound. Stable Sorting. Comparators (*.pdf) Integer Sorting (*.pdf) Sorting: Guidelines for Standard Libraries (*.pdf) Introduction to Binary Search (*.pdf) <u>Implementations of Binary Search</u> (*.pdf) Priority Queue and Binary Heap (*.pdf) Additional Information for Week 5 <u>Introduction to Graphs</u> (*.pdf) <u>Graphs: Representations in Memory</u> (*.pdf) Introduction to Depth First Search (*.pdf) <u>Depth First Search with Timestamps</u> (*.pdf) <u>Topological Sort</u> (*.pdf) Introduction to Dynamic Programming (*.pdf)

Additional Information for Week 6

Eulerian Paths And Eulerian Tours (*.pdf)

Hamiltonian Paths And Hamiltonian Tours (*.pdf)

Breadth First Search (*.pdf)

Single Source Shortest Paths (*.pdf)

All Pair Shortest Paths (*.pdf)