Plataforma Interativa com Parsons Puzzles para o Ensino de Programação em C

Júlio César P. Cuencas Sistemas de Informação – UFSM Orientadora: Prof. Andrea S. Charão 12/05/2025

Introdução

 \bullet O

Contexto e Problema

- Aprender programação em C é desafiador e exige uma carga cognitiva muito alta.
- Métodos tradicionais nem sempre engajam ou ajudam na estruturação de algoritmos.
- Muitos alunos se frustram ao tentar programar sem uma base sólida.

Proposta

- Utilizar a técnica Parsons Puzzles, que envolve reorganizar blocos de código.
- Focar no desenvolvimento da lógica antes da codificação completa.

Avaliação

Conclusão

Objetivo

Objetivo Geral

• Criar uma plataforma web interativa com Parsons Puzzles em C, voltada para inciantes na programação.

Objetivos Específicos

- Adaptar o js-parsons à sintaxe da linguagem C.
- Desenvolver a interface com Vue.js.
- Testar a plataforma com estudantes reais e avaliar seu impacto.

Ensino de Programação

Dificuldades Comuns

- Sintaxe rígida da linguagem C dificulta o aprendizado inicial.
- Iniciantes têm dificuldades com abstrações como variáveis, estruturas de controle e lógica.
- Apesar disso, a linguagem C é fundamental para o entendimento de conceitos de programação.

Estratégias Didáticas

- Aplicação da técnica de Parsons Puzzles como abordagem baseada em problemas.
- Abordagens construtivistas, com foco na experimentação e na manipulação de blocos de código.
- Uso de ferramentas visuais que auxiliam na compreensão da lógica de programação.

Parsons Puzzles

O que são

00

Exercícios onde o aluno organiza linhas de código embaralhadas para resolver um problema.

Benefícios

- Reforçam o raciocínio lógico sem exigir digitação ou memorização de sintaxe.
- Ajudam a desenvolver compreensão da estrutura de algoritmos.
- Reduzem a carga cognitiva para iniciantes.

Aplicações

- Usados em diversas plataformas educacionais para introdução à programação.
- Eficazes para avaliar entendimento da lógica sem distratores sintáticos.

Abordagem de Desenvolvimento

- Continuação e aprimoramento de projetos anteriores desenvolvidos por Beltrame (2023) e Izidoro (2024).
- Refatoração completa da interface utilizando Vue.js, com integração ao backend via Google Apps Script.
- Utilização de práticas ágeis, com sprints quinzenais e validação contínua com professores.

Etapas do Projeto

- 1. Estudo dos trabalhos anteriores e definição dos requisitos.
- 2. Adaptação da plataforma para suportar exercícios em linguagem ©.
- 3. Implementação da nova interface com **V**.
- 4. Planejamento e aplicação de testes com alunos do CTISM.
- 5. Coleta e análise de dados (quantitativos e qualitativos).

12/05/2025

Tecnologias e Ferramentas

Frontend

00

- Vue.js para construção modular da interface.
- Vite para build e publicação via GitHub Pages.
- Integração com biblioteca js-parsons.

Backend

- Google Apps Script para API e persistência de dados no Google Sheets.
- Autenticação via conta Google (OAuth2).

Execução de Código C

- Integração com OneCompiler via iframe.
- Escolha baseada em custo zero, simplicidade e ausência de login obrigatório.

Estrutura da Plataforma

00

- O usuário acessa a interface desenvolvida em Vue.js, hospedada via GitHub Pages.
- A plataforma envia dados das respostas para o backend com Google Apps Script.
- Os dados são armazenados automaticamente em Google Sheets.

Conclusão

Estratégia de Avaliação

- Sessão de testes realizada com alunos do curso técnico em Informática (CTISM).
- Aplicação da plataforma em laboratório, com instrução e formulário de avaliação.
- Coleta de feedback:

00

- Quantitativo: perguntas objetivas sobre uso e usabilidade.
- Qualitativo: respostas abertas e observações em tempo real.

Roteiro de avaliação:

- Introdução Apresentação do projeto (5 min).
- Teste Usuários utilizam a plataforma (20 min).
- Feedback Coleta de opiniões e sugestões (5 min).s

Metodologia

Interface e usabilidade

Fundamentação Teórica

11

Avaliação

5

Conclusão

As categorias com mais ocorrências ajudaram a identificar prioridades de melhoria.

Nada a mudar / Satisfeitos

Introdução e Objetivo

12/05/2025 11 / 17

Diretrizes de Melhoria

Conteúdo

00

- Incluir mais exercícios e temas variados (vetores, funções, etc).
- Adicionar níveis de dificuldade: iniciante, intermediário, avançado.

Feedbacks

- Oferecer mensagens de erro mais claras e específicas.
- Apontar onde está o erro e como corrigir.

Interface e Usabilidade

- Eliminação de bugs e melhorias na navegação.
- Melhorar a interface para torná-la mais intuitiva.

Outras Sugestões e Conclusão

Funcionalidades sugeridas

- Sistema de vidas, tempo limite e dicas graduais.
- Recursos inspirados em jogos para aumentar o engajamento.

Conclusão

00

- As sugestões reforçam que o projeto é bem aceito.
- Melhorias previstas:
 - Interface mais amigável;
 - Exercícios mais diversos:
 - Feedbacks mais úteis para o aprendizado.

As respostas servirão como base para a próxima versão da plataforma.

Conclusão

0000

O que já foi feito

Etapas concluídas até o momento

- Estudo dos trabalhos anteriores e definição dos requisitos.
- Adaptação da plataforma para suportar exercícios em linguagem C.
- Implementação da nova interface com Vue.js.
- Planejamento e aplicação de testes com alunos do CTISM.
- Coleta e análise de dados (quantitativos e qualitativos).

Etapas futuras

- Integração do OneCompiler para execução de código C.
- Melhorias conforme feedback dos usuários.
- Implementação de um CRUD de exercícios direto na plataforma.
- Adição de lógica de adaptação de exercícios conforme o número de tentativas.
- Aprimoramento do feedback de erros, com mensagens mais detalhadas e úteis.
- Nova rodada de testes. Comparação dos resultados e validação da eficácia das mudanças.

Metodologia

Avaliação

Fundamentação Teórica

Tarofa

Nova rodada de testes

Status	laleia	Prioridade
Em andamento	Integração com OneCompiler para execução de código C	Alta
Planejado	Melhorias na interface com base no feedback	Alta
Planejado	Implementação de CRUD de exercícios	Alta
Planejado	Adição de lógica de adaptação por tentativas	Média
soon Planejado	Aprimoramento do feedback de erros	Média

Introdução e Objetivo

Status

➡ Planejado

Conclusão

Drioridado

Alta

Próximos Passos

Melhorias

00

- Aprimorar a interface com foco em usabilidade.
- Implementar CRUD de exercícios na própria plataforma.
- Adicionar adaptação automática de exercícios conforme desempenho.
- Melhorar o feedback de erros, com mensagens explicativas e orientativas.

Validação Futura

- Nova rodada de testes será realizada com:
 - Outro grupo de estudantes ou
 - As mesmas turmas, após as melhorias.
- O teste do CRUD de exercícios será aplicado com professores.

O objetivo é comparar os resultados e validar a eficácia das mudanças, consolidando a plataforma como uma ferramenta de apoio ao ensino de programação em C.

Metodologia

00000

Agradeço pela atenção e pela oportunidade de apresentar este trabalho.

Avaliação

000

Sigo à disposição para perguntas, sugestões e contribuições.

Introdução e Objetivo

00

Fundamentação Teórica

00

12/05/2025

Conclusão

000•