표준강의계획서

* 강의계획서 입력이 되지 않은 경우 공란으로 표시될 수 있습니다.

과목정보					
연도 및 학기	2016학년도 1학기		교과목명	논리호	회로
교과목코드	EA0027 분반		3	학점	3
수강대상학년(학과)	2(컴퓨터과학과)			팀티칭여부	N
강의시간	월9,10,화5,6(G517)			이수구분	1전선

과목개요			
*주강의언어	KR		
*교과목개요	Electrical engineering과 Computer engineering 양쪽 분야 모두의 기초 과목으로, 이진수, Boolean algebra와 Digital logic의 개념을 이해하고 구현할 수 있게 한다. 더 나아가서 gate-level minimization과 combinational logic, sequential logic을 이해하고 실제 digital system 구현에 활용할 수 있도록 한다.		
*교과목 목표	 디지털 논리회로의 구조를 이해하고 분석할 수 있는 능력을 기른다. 디지털 논리회로의 설계 방법을 익히고, 실제 회로를 구현할 수 있는 능력을 기른다. 디지털 산업의 시사적 논점을 이해하고 인지할 수 있는 능력을 기른다. 		
*주교재	Fundamentals of Digital Logic with VHDL Design, 3rd Edition, S. Brown and Z. Vranesic, McGraw-Hill, 2009		
부교재	Digital Design, 3rd Edition, M, Morris Mano, Prentice Hall, 2002년		
참고자료	Digital Fundamentals, 9th Edition, Thoma	s, L. Floyd, Prentice Hall, 200)3년
선수과목명	필수여부		
장애학생 수업 안내			
교강사전달사항			
기타연락처	소프트웨어대학관 G507호	상담요일 및 시간	강의종료후 30분 및 선약후 면담

교강사정보				
교수명	소속	연구실(전화)	연구실(위치)	이메일
민승욱	컴퓨터과학과	0222875339		swmin@smu.ac.kr

교과유형			
항목	내용		
*수업유형	 ♂ 강의형 ✓ 실험/실습/실기 ✓ 발표형 □ 토론형 ♡ 프로젝트형 □ 세미나형 □ 사이버(e/b-learning) □ PBL □ 산학협력 □ 전문가 특강 □ 멀티미디어 활용 □ 신문읽기 □ 기타 		
수업유형(기타)	이론: 2시간/주, 실습.설계 : 2시간/주		
*과목유형	□ 융복합 ☞ 전공기초 □ 전공핵심 □ 전공심화 □ 현장실습 □ 캡스톤디자인 □ 계량연계		
과목유형(기타)			

성적평가				
평가문항	반영비율(%)	평가문항	반영비율(%)	평가유형
*중간고사	40	*발표	5	
*기말고사	40	*참여도		
*과제물	10	*퀴즈		상대평가
*출석	5	*프로젝트		
*기타평가				

상명인이 갖추어야 할 5大 핵심역량별 비율 체계			
핵심역량	핵심역량 핵심역량 개요		
① 전문지식 탐구 역량	한 분야의 전문가가 되기 위해 전문적인 지식을 탐구하고 연마할 수 있는 역량		
② 다양성 존중 역량	다양성의 가치를 존중하며 자신과 다른 모든 사람을 배려 및 존중하는 역량		
③ 융복합 역량	자원/정보를 창의적, 효율적인 방법으로 융합하여 새로운 시너지를 창출할 수 있는 역량	Ο	
④ 윤리실천 역량	다양한 사회와 영역에 관심을 가지며, 윤리의식과 정의감을 실행할 수 있는 역량		
⑤ 창의적 문제해결 역량	지식과 정보 기술이 중요한 사회에서 자원을 활용하여 창의적으로 문제를 해결하는 역량		

Career Development Roadmap(전문직군명)

네트워크 보안개발자,임베디드소프트웨어개발자

주차볔	스언게	회

주차	날짜	항목	내용
1	2016.03.07(월)	*학습목표	Digital system
	2016.03.08(화)	*주요학습내용 및 방법	Digital system을 이해하고 이진수의 기본에 대해서 배운다.
2	2016.03.14(월)	*학습목표	Boolean algebra의 정의와 특성
	2016.03.15(화)	*주요학습내용 및 방법	이진수와 16진수, 이들의 변환, 이진 코드에 대해서 배운다. Boolean algebra의 정의와 특성, Boolean function에 대해서 배운다.
3	2016.03.21(월)	*학습목표	Canonical form
	2016.03.22(화)	*주요학습내용 및 방법	Canonical form과 Standard form, Digital logic gate에 대해서 배운다.
4	2016.03.28(월)	*학습목표	Karnaugh Map
	2016.03.29(화)	*주요학습내용 및 방법	Karnaugh Map등을 이용한 Gate-level minimization의 기본적인 방법을 위 아본다.
5	2016.04.04(월)	*학습목표	NAND와 NOR gate
	2016.04.05(화)	*주요학습내용 및 방법	NAND와 NOR gate 등을 배우고 이들을 활용해서 어떻게 logic을 구현하지 알아본다.
6	2016.04.11(월)	*학습목표	Adder와 Multiplier
	2016.04.12(화)	*주요학습내용 및 방법	Adder와 Multiplier등 기본적인 combinational logic을 공부한다.
7	2016.04.18(월)	*학습목표	combinational logic
	2016.04.19(화)	*주요학습내용 및 방법	Decoder와 Encoder, Multiplexer등 좀 더 복잡한 combinational logic을 부한다.
8	2016.04.25(월)	*학습목표	중간고사
	2016.04.26(화)	*주요학습내용 및 방법	중간고사 시행
9	2016.05.02(월)	*학습목표	디지털 산업의 시사적 논점
	2016.05.03(화)	*주요학습내용 및 방법	디지털 산업의 시사적 논점들에 대해 공부하고 토론한다.
10	2016.05.09(월)	*학습목표	synchronous sequential logic
	2016.05.10(화)	*주요학습내용 및 방법	Latch와 Flip-Flop등 기본적인 synchronous sequential logic에 대해서 공한다.
11	2016.05.16(월)	*학습목표	sequential logic 시스템 구현
	2016.05.17(화)	*주요학습내용 및 방법	State machine등을 이용한 실제 sequential logic 시스템 구현의 procedu를 이해한다.
12	2016.05.23(월)	*학습목표	register
	2016.05.24(화)	*주요학습내용 및 방법	Shift Register 등 register에 대해서 배우고 이를 실제 시스템에서 활용하 방법을 알아본다.
13	2016.05.30(월)	*학습목표	memory
	2016.05.31(화)	*주요학습내용 및 방법	RAM, ROM 등 기본적인 memory에 대해서 배운다.
14	2016.06.06(월)	*학습목표	프로젝트 결과물을 발표(1)
	2016.06.07(화)	*주요학습내용 및 방법	프로젝트 결과물을 발표하고, 평가받는다.
15	2016.06.20(월)	*학습목표	프로젝트 결과물을 발표(2)
2016.06.21(화)	*주요학습내용 및 방법	프로젝트 결과물을 발표하고, 평가받는다.	