CSE 191: Discrete Structures Introduction to Set Theory

Nasrin Akhter

Outline

- Set Basics
 - Definition
 - Universal Set
 - Cardinality
- Set Equality and Subsets
- Set Operations

Sets

Definition

A set is a collection of objects that do NOT have an order.

- Each object is called an **element or a member** of the set.
- We write
 - $e \in S$ if e is an element of S; and
 - $e \notin S$ if e is not an element of S.

Sets

How to describe a set:

- List all elements.
 - E.g., {1, 2, 3}.
 - This is called **roster notation** list all contents.
- Provide a description of what the elements look like.
 - E.g., $\{a \mid a > 2, a \in \mathbb{Z}\}.$
 - This is called **set builder notation** describe contained elements.

Common Sets

- $\mathbb{N} = \{1, 2, ...\}$: the set of **natural numbers**.
 - Sometimes 0 is considered a member, which some people do not agree with.
- $\mathbb{Z} = \{0, -1, 1, -2, 2, ...\}$: the set of **integers**.
- $\mathbb{Z}^+ = \{1, 2, 3, \ldots\}$: the set of **positive integers**.
- $\mathbb{Q} = \{p/q \mid p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0\}$: the set of **rational numbers**.
 - numbers that can be written as a fraction of integers.
- $\mathbb{Q}^+ = \{x \mid x \in \mathbb{Q}, x > 0\}$: the set of **positive rational numbers**.
- \mathbb{R} : the set of **real numbers**.
- $\mathbb{R}^+ = \{x \mid x \in \mathbb{R}, x > 0\}$: the set of **positive real numbers**.
- C: the set of **complex numbers**.

More Examples

- A = {Orange, Apple, Banana} is a set containing the names of three fruits.
- B = {Red, Blue, Black, White, Grey} is a set containing five colors.
- {x | x takes CSE191 at UB in Fall 2021} is a set of 202 students.
- $\{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}\}$ is a set containing four sets.
- $\{x \mid x \in \{1, 2, 3\} \text{ and } x > 1\}$ is a set of two numbers.

Outline

- Set Basics
 - Definition
 - Universal Set
 - Cardinality
- Set Equality and Subsets
- Set Operations

Universal Set

- When discussing sets, there is always a **universal set** *U* involved, which contains all objects under consideration.
 - E.g., for A={Orange, Apple, Banana}, the universal set might be the set of names of all fruits.
 - E.g., for B={Red, Blue, Black, White, Grey}, the universal set might be the set of all colors.
- In many cases, the universal set is implicit and omitted from discussion.

Universal *Universal Set*

Is there a universal set covering all universes? (Russell's Paradox)

- Consider a book *Book Titles* containing a list of titles of all books not containing their own title.
- Then does Book Titles contain a line for Book Titles?
 - If **Book Titles** lists the title "**Book Titles**" in its pages, then **Book Titles** is a book containing its own title and therefore it should not be listed.
 - If Book Titles doesn't list the title "Book Titles" in its pages, then Book Titles is a book not containing it's own title and therefore it should be listed.

Outline

- Set Basics
 - Definition
 - Universal Set
 - Cardinality
- Set Equality and Subsets
- Set Operations

Cardinality (for Finite Sets)

Definition

If a set A contains exactly n elements, where n is a non-negative integer, then A is a finite set.

- *n* is called **the cardinality of** *A*.
- Denoted by |A| = n.

Definition

The **empty set or null set** is the set that **contains no elements**.

- Denoted by Ø or {}.
- Has size 0.

Example:

The set of all positive integers that are greater than their squares.

Cardinality (for Finite Sets)

Definition

If a set A contains exactly n elements where n is a non-negative integer, then A is a finite set, and n is called the cardinality of A. We write |A| = n.

- Do we count duplicate items?
 - NO. We only count unique items for cardinality.
- The following sets are the same:
 - C = {Apple, Banana, Apple, Orange, Orange, Apple}, and
 - A = {Orange, Apple, Banana}
- Removing duplicates from C gives:
 - C = {Apple, Banana, Orange}.

Cardinality (for Finite Sets)

- $|\{x \mid -2 < x < 5, x \in \mathbb{Z}\}| = 6$, the elements -1, 0, 1, 2, 3, 4
- $|\emptyset| = 0$, no elements in the empty set
- $|\{x \mid x \in \emptyset \text{ and } x < 3\}| = 0$, because no x satisfies $x \in \emptyset$
- $|\{x \mid x \in \{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}\}\}| = 4$, the 4 sets $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$, and \mathbb{R}
- $|\{0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4\}| = 5$ (only count unique elements)

Cardinality: \emptyset vs $\{\emptyset\}$

Consider this shopping cart's contents:

|ShoppingCart| = 0 (represents \emptyset or $\{\}$)

Cardinality: \emptyset vs $\{\emptyset\}$

Consider this shopping basket's contents:

|ShoppingBasket| = 0 (also represents \emptyset or $\{\}$)

Cardinality: \emptyset vs $\{\emptyset\}$

Now, consider this shopping cart's contents:

This is representative of: {*Ø*}

|ShoppingCart| = |{ShoppingBasket}| = 1

{Ø} does not indicate an empty set; it contains an empty set as a member and thus has a cardinality of 1.

Cardinality (for Infinite Sets)

Definition

If A is not finite, then it is an **infinite set**.

- What is the cardinality (i.e., the size) of an infinite set?
- Do all infinite sets have the same size (i.e., ∞)?
 - Appears to not be the case.
 - Are there more rational numbers than integers?
 - Are there are more real numbers than rational numbers?
 - Only one of these is true.

Outline

- Set Basics
 - Definition
 - Universal Set
 - Cardinality
- Set Equality and Subsets
- Set Operations

Equal Sets

Definition

Two sets are equal if and only if they have the same elements.

Therefore, if A and B are sets, then A and B are equal if and only if $\forall x (x \in A \leftrightarrow x \in B)$.

- Denoted by A = B.
- Order of elements is irrelevant.

Examples:

- $\{1,2,3\} = \{2,1,3\}$
- $\{1, 2, 3, 4\} = \{x \mid x \in \mathbb{Z} \text{ and } 1 \le x < 5\}$
- {{}} = {Ø, {}}.

Venn Diagrams

Venn diagrams are a graphical way to represent sets.

- The universal set U is represented by a rectangle.
- Inside the rectangle, circles and other geometrical figures are used to represent sets.
- Sometimes points are used to represent the particular elements of the set.
- Venn diagrams are often used to indicate relationships between sets.

Venn diagram for the set of vowels

Outline

- Set Basics
- Set Equality and Subsets
 - Subsets
 - Set Equality
- Set Operations

Subsets

Definition

A set A is a subset of B if and only if every element of A is also in B.

- Denoted by $A \subseteq B$.
- If $A \subseteq B$, then $\forall x \in A$, $x \in B$.
- For any set A,
 - $\emptyset \subseteq A$ and
 - *A* ⊆ *A*.

Venn Diagram showing that A is a subset of B

Definition

If $A \subseteq B$ but $A \ne B$, then A is a proper subset of B.

• Denoted by $A \subset B$ or $A \subseteq B$.

Subsets

Showing that A is a subset of B:

• To show that $A \subseteq B$, show that if x belongs to A, then x also belongs to B.

Showing that A is not a subset of B:

• To show that $A \subseteq B$, find a single $x \in A$, such that $x \notin B$.

Venn Diagram showing that A is a subset of B

Subset examples

- $\{1, 2\} \subseteq \{2, 1, 3\}.$
 - Also, $\{1, 2\} \subset \{2, 1, 3\}$.
- $\{x \in \mathbb{Z} \mid x \text{ is even}\} \subseteq \{x \mid x \in \mathbb{Z}\}.$
 - Every even integer is an integer.
- $\{x \in \mathbb{Z} \mid x \text{ is even}\} \not\subseteq \{x \mid x \in \mathbb{Z} \text{ and } 1 \leq x < 5\}.$
 - We use $A \nsubseteq B$ to denote **not a subset of**.
 - Can still have overlap.
 - Both sets share 2 and 4. "Continue pattern"
- $\{2, 4, 6, 8, \dots\} \subseteq \{n \in \mathbb{N} \mid n \text{ is even}\}.$
 - We can use $A \subseteq B$ even in the case of equality.

Subset examples

True of False?

- $1.\ A\subseteq B$
- $2. A \subset B$
- $3. C \subset B$
- $4.\ C \subseteq C$
- 5. $\{b\} \subseteq \{a, \{b\}, c\}$
- 6. $\emptyset \subseteq \{a, \{b\}, c\}$

Outline

- Set Basics
- Set Equality and Subsets
 - Subsets
 - Set Equality
- Set Operations

Equal Sets

<u>Fact</u>

Suppose A and B are sets. Then A = B if and only if $A \subseteq B$ and $B \subseteq A$.

Proof of set equality:

Prove $A \subseteq B$:

Assume *x* in *A*.

• • • • • • •

•••••

 \therefore x belongs to B.

Conclude that $A \subseteq B$.

Next prove $B \subseteq A$:

Assume *y* in *B*.

•••••

•••••

 \therefore y belongs to A.

Conclude that $B \subseteq A$.

Conclude that since $A \subseteq B$ and $B \subseteq A$, A = B.

Equality via Subsets

Let $A = \{1, 2, 3, 4\}$ and $B = \{x \mid x \in \mathbb{Z} \text{ and } 1 \le x < 5\}$. Prove that A = B.

Proof of $A \subseteq B$:

Assume $x \in A$.

- Case $x = 1: 1 \in \mathbb{Z}$ and $1 \le 1 < 5$.
 - $\therefore x \in B$.
- Case x = 2: $2 \in \mathbb{Z}$ and $1 \le 2 < 5$.
 - ∴ *x* ∈ *B*.
- Case x = 3: $3 \in \mathbb{Z}$ and $1 \le 3 < 5$.
 - $\therefore x \in B$
- Case x = 4: $4 \in \mathbb{Z}$ and $1 \le 4 < 5$.
 - ∴ *x* ∈ *B*.
- $\therefore x \in B$. Thus, $A \subseteq B$.

Proof of $(B \subseteq A)$:

Assume $x \in B$.

- Then $x \in \mathbb{Z}$ and $1 \le x < 5$
 - So, x must be 1, 2, 3, or 4.
- If x is 1, 2, 3, or 4, then $x \in A$.
- $x \in A$. Thus, $B \subseteq A$.

Since $A \subseteq B$ and $B \subseteq A$, we get that A = B.

Equality vis Subsets

Let $E_1 = \{\{\}\}$ and $E_2 = \{\emptyset, \{\}\}$. Prove that $E_1 = E_2$.

Proof of $(E_1 \subseteq E_2)$:

Assume $x \in E_1$.

- $x = \{\}: \{\} \in E_{2}, \text{ so } x \in E_{2}.$
- This is the only element in E_1 .

Thus, $E_1 \subseteq E_2$.

Proof of $(E_2 \subseteq E_1)$:

Assume $x \in E_2$.

- $x = \emptyset : \emptyset = \{\} \in E_1, \text{ so } x \in E_1.$
- $x = \{\}: \{\} \in E_1, \text{ so } x \in E_1.$

Thus, $E_2 \subseteq E_1$.

Since $E_1 \subseteq E_2$ and $E_2 \subseteq E_1$, we get that $E_1 = E_2$.

This reiterates that multiplicity doesn't matter.

Outline

- Set Basics
- Set Equality and Subsets
- Set Operations
 - Basic Operators
 - Power Set
 - Cartesian Product
 - Partitions

Set Operations

- We have +, -, \times , \div , ... operators for numbers.
- We have $V, \Lambda, \neg, \rightarrow \dots$ operators for propositions.

Set Operation	Symbol	Idea	Logic
Union of A and B	$A \cup B$	in A or B	V
Intersection of A and B	$A \cap B$	in <i>A</i> and <i>B</i>	Λ
Complement of A	\overline{A}	not in A	_
Difference of A and B	$A \setminus B$	in A and not in B	$A \land \neg B$
Symm. difference of A and B	A O B	in A or B , not both	θ
Subsets: A is subset of B	$A \subseteq B$	members: $A \rightarrow B$	\rightarrow

Set Union

Definition

The **union of** two sets A and B is the set that contains exactly all elements that are in either A or B (or in both).

- Denoted by A UB.
- Formally, $A \cup B = \{x \mid x \in A \text{ or } x \in B\}.$

Venn Diagrams illustrate results of set operation(s):

AUB is shaded

AUBUC is shaded

Set Intersection

Definition

The **intersection of** two sets A and B is the set that contains exactly all the elements that are in both A and B.

- Denoted by $A \cap B$.
- Formally, $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$.

Venn Diagrams:

 $A \cap B$ is shaded

 $A \cap B \cap C$ is shaded

Set Intersection

Definition

The **intersection of** two sets A and B is the set that contains exactly all the elements that are in both A and B.

- Denoted by $A \cap B$.
- Formally, $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$.

Definition

Two sets are called disjoint if their intersection is the empty set.

Principle of inclusion-exclusion

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Set Complement

Definition

The **complement of** set A, is the set that contains exactly all the elements that are not in A.

- Denoted by \overline{A} .
- Formally, $\overline{A} = \{x \mid x \notin A\}$.

Venn Diagrams:

Set Difference

Definition

The **difference of** set A and set B is the set that contains exactly all elements in A but not in B.

- Denoted by A B (or $A \setminus B$).
- Formally, $A B = \{x \mid x \in A \land x \notin B\} = A \cap \overline{B}$.

Venn Diagrams:

$$A - B$$

$$A - (B \cup C)$$

Symmetric Difference

Definition

The **symmetric difference of** set A and set B is the set containing those elements in exactly one of A and B.

- Denoted by $A \oplus B$ (or A O B).
- Formally, $A \oplus B = (A B) \cup (B A)$.

Venn Diagrams:

$$A \oplus B$$

$$A \oplus B \oplus C$$

Those values in an odd number of sets, i.e., $\{x \mid x \in A \oplus x \in B \oplus x \in C \text{ is true}\}$.

Outline

- Set Basics
- Set Equality and Subsets
- Set Operations
 - Basic Operators
 - Examples
 - Generalized Set Operators
 - Power Set
 - Cartesian Product
 - Partitions

Operator examples

• Example 1:

Let the universe be \mathbb{Z}^+ . Write the contents of *A* in roster form where:

$$A = (\{x \mid x \text{ is even}\} - \{x \mid x \text{ is a multiple of 3}\}) \cap \{y \mid y \le 10\}$$

• Example 2:

Let the universe be the 7 colors in a rainbow. Write the contents of C and D in roster form where:

 $C = (\{c \mid \underline{c} \text{ is 6 letters}\} \ U \{c \mid c \text{ has odd length}\}) \ \# \{\text{Red, Blue, Yellow}\}$ and $D = \overline{C}$.

More Practice

Consider the universe {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

- $A \cap B = \{1, 2, 3, 4, 5\}$
- $A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- \overline{A} = {6, 7, 8, 9, 10}
- \overline{B} = {9, 10}
- $\bullet A B = \emptyset$
- $B A = \{6, 7, 8\}$
- $A \oplus B = (A B) \cup (B A) = \{6, 7, 8\}$

Outline

- Set Basics
- Set Equality and Subsets
- Set Operations
 - Basic Operators
 - Examples
 - Generalized Set Operators
 - Power Set
 - Cartesian Product
 - Partitions

Generalized Set Operators

We can simplify notation for operating on n sets.

Generalized Union

- Denoted by: $A_1 \cup A_2 \cup ... \cup A_n = \bigcup_{i=1}^n A_i$
- Formally: $\bigcup_{i=1}^n A_i = \{s \mid s \in A_1 \text{ or } s \in A_2 \text{ or } \dots \text{ or } s \in A_n\}$

Generalized Intersection

- Denoted by: $A_1 \cap A_2 \cap ... \cap A_n = \bigcap_{i=1}^n A_i$
- Formally: $\bigcap_{i=1}^{n} A_i = \{s \mid s \in A_1 \text{ and } s \in A_2 \text{ and } \dots \text{ and } s \in A_n\}$

Generalized Set Operators

Let $A_i = \{1, 2, \ldots, i\}$ for all positive integers i. Then compute:

a)
$$\bigcup_{i=1}^{n} A_i$$
 b)
$$\bigcap_{i=1}^{n} A_i$$

Generalized Set Operators

Let $B_i = \{i+1, i+2, ..., 2i\}$ for all positive integers i. Compute:

a)
$$\bigcup_{i=1}^n B_i$$
 b) $\bigcap_{i=1}^n B_i$

Let $C_i = \{i \}$ for all positive integers i. Compute:

a)
$$\bigcup_{i=1}^n C_i$$
 b) $\bigcap_{i=1}^n C_i$

c) Prove that
$$(\bigcup_{i=1}^n A_i) = (\bigcup_{i=1}^n C_i)$$

Outline

- Set Basics
- Set Equality and Subsets
- Set Operations
 - Basic Operators
 - Power Set
 - Cartesian Product
 - Partitions

Power Set

Definition

The **power set** of set A is the set of all subsets of A.

- Denoted by $\mathcal{P}(A)$.
- In general, $|\mathcal{P}(A)| = 2^{|A|}$.
- For any set A, we always have:
 - $\emptyset \in \mathcal{P}(A)$ (include 0 elements from A)
 - $A \in \mathcal{P}(A)$ (include every element from A)
- Example
- Power set of the set $\{0,1,2\}$: $\mathcal{P}(\{0,1,2\}) = \{\emptyset,\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\}$

Power Set

True or False?

$$A = \{a, \{a\}, \{a, b\}, b, \{c\}, d\}$$

1.
$$a \in A$$

$$2. \{b\} \subseteq A$$

$$3. c \in A$$

4.
$$\{a, d\} \in A$$

5.
$$\{a, b\} \in A$$

6.
$$\{b, d\} \subseteq A$$

7.
$$\{b, d\} \in \mathcal{P}(A)$$

$$\mathcal{P}(\emptyset) = ?$$

$$\mathcal{P}(\{\emptyset\}) = ?$$

$$\mathcal{P}(\{a\}) = ?$$

Outline

- Set Basics
- Set Equality and Subsets
- Set Operations
 - Basic Operators
 - Power Set
 - Cartesian Product
 - Partitions

Imposing Order on Elements

- How can we impose order on elements?
- Sometimes order is important.
 - Rankings, letters in words, etc.

Definition

An **ordered** n**-tuple** (a_1, a_2, \ldots, a_n) has a_1 as its first element, a_2 as its second element, \ldots, a_n as its n^{th} element.

- Order is important. Suppose $a_1 \neq a_2$,
 - $(a_1, a_2) \neq (a_2, a_1)$ (comparing tuples), but
 - $\{a_1, a_2\} = \{a_2, a_1\}$ (comparing sets).

Imposing Order on Elements: Cartesian Product

René Descartes

Definition

The Cartesian product of two sets A_1 , A_2 is defined as the set of ordered tuples (a_1 , a_2) where $a_1 \in A_1$, $a_2 \in A_2$.

- Denoted by $A_1 \times A_2$.
- Formally, $A_1 \times A_2 = \{(a_1, a_2) \mid a_1 \in A_1, a_2 \in A_2\}.$
- Say "A cross B" to mean $A \times B$.

How do we compute the Cartesian Product?

Example: $\{1, 2\} \times \{a, b, c\} = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$

Consider $A = \{1, 2\}$ and $B = \{a, b, c\}$.

	а	b	С
1	(1, a)	(1, b)	(1, c)
2	(2, a)	(2, b)	(2, c)

 $A \times B$ is the set of all elements in our table:

- $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}.$
- Usually maintain the order of table the rows.

How do we compute the Cartesian Product?

Consider $A = \{1, 2\}$ and $B = \mathbb{Z}^+$.

	1	2	3	
1	(1, 1)	(1, 2)	(1, 3)	
2	(2, 1)	(2, 2)	(2, 3)	

- $A \times B = \{(x, y) \mid x \in \{1, 2\}, y \in \mathbb{Z}^+\}.$
 - Note: (1, 2) and (2, 1) are unique elements in $A \times B$.

Example:

$$\mathbb{R} \times \mathbb{R} = \{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R} \}$$

The set of point coordinates in the 2D plane.

Cartesian Product Generalized

• Generalized Cartesian Product: Formally: (for $n \ge 2$): $A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \ldots, a_n) \mid a_1 \in A_1, a_2 \in A_2, \ldots, a_n \in A_n\}.$

- Cartesian Power • For any integer $n \ge 0$: $A^n = \begin{cases} \{(\)\} & \text{if } n = 0 \\ A & \text{if } n = 1 \\ \underbrace{A \times A \times ... \times A}_{n} & \text{if } n > 1 \end{cases}$
- Formally: $A^n = A \times A \times \cdots \times A = \{(a_1, a_2, \dots, a_n) \mid a_1, a_2, \dots, a_n \in A\}.$

Cartesian Product

```
A = \{x \mid x \text{ is odd integer and } x < 10\}
B = \{y \mid y \text{ is even integer and } y < 8\}
A \times B = ?
C = \{1, 2\}
C \times C = ?
|C \times C| = ?
D = \{0, 1\}
D_3 = .3
E = \{a\}
(C \times E) \times D = ?
```

Outline

- Set Basics
- Set Equality and Subsets
- Set Operations
 - Basic Operators
 - Power Set
 - Cartesian Product
 - Strings
 - Partitions

- How can we represent English words?
- Consider: $A = \{a, b, ..., z\}$.
 - (c, a, t), (d, o, g) $\in A^3$.
 - (f, r, o, g), (b, i, r, d) $\in A^4$.
- A is the English alphabet.
- Shorthand tuples as "words":
 - cat, dog $\in A^3$.
 - frog, bird $\in A^4$.

Strings: In Programming

```
s ='cat'
t ='frog'
```

Internally stored as a **null terminated** sequence of characters:

```
s = ('c','a','t','\0')
t = ('f','r','o','g','\0')
```

```
print(len(s)) #prints 3
print(len(t)) #prints 4
print(t[1]) #prints 'r'
print(s[1:3]) #prints 'at'
print(s + t) #prints 'catfrog'
print(s in t) #prints False
print('ro' in t) #prints True
```

Definition

An **alphabet** is a nonempty finite set of **symbols**.

- A string is a finite sequence of symbols from an alphabet written consecutively.
 - Shorthand for tuple from Cartesian power of an alphabet.
- The number of characters in a string is called the length of the string.
 - The length of a string s is denoted by |s|.

Example

The alphabet $\{0, 1\}$ is used to form **binary strings**.

E.g., 0001 and 110 are strings over the alphabet $\{0, 1\}$.

$$0001 \in \{0, 1\}^4$$
. $|0001| = 4$. $110 \in \{0, 1\}^3$. $|110| = 3$.

Q: What is the shortest string over any alphabet?

- The smallest Cartesian power is 0.
 - E.g., $\{a, b\}^0 = \{()\}.$
- How can we write the sequence of characters within ()?
 - We let λ denote the **empty string**.
 - Then $\{a, b\}^0 = \{\lambda\}$.
 - $|\lambda| = 0$.
 - E.g., s = ''#s is the empty string.
 print(len(s)) #prints 0.

Q: What is the shortest string over any alphabet?

- The smallest Cartesian power is 0.
 - E.g., $\{a, b\}^0 = \{()\}.$
- How can we write the sequence of characters within ()?
 - We let λ denote the **empty string**.
 - Then $\{a, b\}^0 = \{\lambda\}$.
 - $|\lambda| = 0$.
 - E.g., s = \' #s is the empty string. print(len(s)) #prints 0.
- Empty string can be formed over any alphabet Σ.
 - Take 0 characters from Σ.
- Many interesting operations: concatenation, substring, prefix, etc.

Strings: Concatenation

The **concatenation** of two strings *s* and *t* is formed by taking all symbols in *s* followed by all symbols in *t*.

- Concatenation of s and t is denoted by st.
- Formally, if $s = s_1 s_2 \dots s_m$ and $t = t_1 t_2 \dots t_n$, then $st = s_1 s_2 \dots s_m t_1 t_2 \dots t_n$.
- Similar s + t in Python.
- Example:
 - s = cat, t = dog, then st = catdog.
 - $s\lambda = \lambda s = \text{cat}$.

Strings: Substrings

t is a **substring** of s if all characters of t appear consecutively within s.

- Similar to t == s[i:i+n] in Python.
- A **prefix** of s is a substring that begins at the first character of s.
- A **proper substring** of s is a substring that is not equal to s.

Strings: Substrings

Let s = racecar, t = car, u = race, v = rar then:

- s is a substring of s and s is a prefix of s.
 - s is not a **proper substring** of s.
- t is a substring of s.
- *u* is a substring of *s* and is a prefix of *s*.
- *v* is not a substring of *s*.

Outline

- Set Basics
- Set Equality and Subsets
- Set Operations
 - Basic Operators
 - Power Set
 - Cartesian Product
 - Partitions

Pairwise Disjoint Sets

Definition

Two sets A and B are **disjoint** iff $A \cap B = \emptyset$.

We can extend this to multiple sets.

Definition

A sequence of sets A_1, A_2, \ldots, A_n are **pairwise disjoint** if for any $i, j \in \{1, 2, \ldots, n\}$, where $i \neq j$, we have $A_i \cap A_j = \emptyset$.

Symbolically, we write: $\forall i, j \in \{1, 2, ..., n\} : [(i \neq j) \rightarrow (A_i \cap A_j = \emptyset)]$

Pairwise Disjoint Sets Example

Consider the following sets:

- $A_1 = \{ cat, dog \}$
- $A_2 = \{apple, banana\}$
- $A_3 = \{ \text{carrot, celery} \}$
- Are A_1 , A_2 , A_3 pairwise disjoint?
- Each set is disjoint from the other so A_1 , A_2 , A_3 are pairwise disjoint.

Pairwise Disjoint Sets Example

- Consider the following sets:
 - $B_1 = \{x \mid x \in \mathbb{Z}^+, x \text{ is even}\}$
 - $B_2 = \{x \mid x \text{ is prime}\}$
 - $B_3 = \mathbb{Z} \mathbb{Z}^+$
- Are B_1 , B_2 , B_3 pairwise disjoint?
 - B_1 is disjoint from B_3 .
 - B_2 is disjoint from B_3 .
 - $B_1 \cap B_2 = \{2\} \neq \emptyset$, so B_1 and B_2 are not disjoint.
 - So B_1 , B_2 , B_3 are not pairwise disjoint.

Definition

A **partition** of a non-empty set *A* is a list of one or more non-empty subsets of *A* such that each element of *A* appears in exactly one of the subsets.

Consider partitioning students based on their academic level:

Formally, a partition of A is a list of sets A_1, A_2, \ldots, A_k ($k \ge 1$) s.t.:

- $\forall i \in [1, k] : A_i \neq \emptyset$ (non-empty sets)
- $\forall i \in [1, k] : A_i \subseteq A \text{ (subsets of } A)$
- $\forall i, j \in [1, k] : (i \neq j) \rightarrow A_i \cap A_j = \emptyset$ (pairwise disjoint sets)
- $A = \bigcup_{i=1}^{k} A_i$ (contain all elements of A)

Formally, a partition of A is a list of sets A_1 , A_2 , ..., A_k ($k \ge 1$) s.t.:

- $\forall i \in [1, k] : A_i \neq \emptyset$ (non-empty sets)
- $\forall i \in [1, k] : A_i \subseteq A \text{ (subsets of } A)$
- $\forall i, j \in [1, k] : (i \neq j) \rightarrow A_i \cap A_j = \emptyset$ (pairwise disjoint sets)
- $A = \bigcup_{i=1}^{k} A_i$ (contain all elements of A)

Formally, a partition of A is a list of sets $A_1, A_2, \ldots, A_k \ (k \ge 1)$ s.t.:

- $\forall i \in [1, k] : A_i \neq \emptyset$ (non-empty sets)
- $\forall i \in [1, k] : A_i \subseteq A \text{ (subsets of } A)$
- $\forall i, j \in [1, k] : (i \neq j) \rightarrow A_i \cap A_j = \emptyset$ (pairwise disjoint sets)
- $A = \bigcup_{i=1}^{k} A_i$ (contain all elements of A)

Formally, a partition of A is a list of sets $A_1, A_2, \ldots, A_k \ (k \ge 1)$ s.t.:

- $\forall i \in [1, k] : A_i \neq \emptyset$ (non-empty sets)
- $\forall i \in [1, k] : A_i \subseteq A \text{ (subsets of } A)$
- $\forall i, j \in [1, k] : (i \neq j) \rightarrow A_i \cap A_j = \emptyset$ (pairwise disjoint sets)
- $A = \bigcup_{i=1}^{k} A_i$ (contain all elements of A)

Formally, a partition of A is a list of sets A_1 , A_2 , ..., A_k ($k \ge 1$) s.t.:

- $\forall i \in [1, k] : A_i \neq \emptyset$ (non-empty sets)
- $\forall i \in [1, k] : A_i \subseteq A \text{ (subsets of } A)$
- $\forall i, j \in [1, k] : (i \neq j) \rightarrow A_i \cap A_j = \emptyset$ (pairwise disjoint sets)

Formally, a partition of A is a list of sets $A_1, A_2, \ldots, A_k \ (k \ge 1)$ s.t.:

- $\forall i \in [1, k] : A_i \neq \emptyset$ (non-empty sets)
- $\forall i \in [1, k] : A_i \subseteq A \text{ (subsets of } A)$
- $\forall i, j \in [1, k] : (i \neq j) \rightarrow A_i \cap A_j = \emptyset$ (pairwise disjoint sets)

Formally, a partition of A is a list of sets $A_1, A_2, \ldots, A_k \ (k \ge 1)$ s.t.:

- $\forall i \in [1, k] : A_i \neq \emptyset$ (non-empty sets)
- $\forall i \in [1, k] : A_i \subseteq A$ (subsets of A)
- $\forall i, j \in [1, k] : (i \neq j) \rightarrow A_i \cap A_j = \emptyset$ (pairwise disjoint sets)

Partitions Example

Suppose we have the set

COLORS = {red, orange, yellow, green, blue, indigo, violet} and consider the sets:

- C_1 = {red, orange, yellow}
- C_2 = {blue, violet, green}
- $C_3 = \{ indigo \}$

Exercise:

• Do C₁, C₂, C₃ partition COLORS?

Partitions Example

- Consider:
 - $O = \{x \mid x \in \mathbb{Z}, x \text{ is odd}\}$
 - $E = \{x \mid x \in \mathbb{Z}, x \text{ is even}\}$
- Do O and E partition \mathbb{N} ? No, $-1 \in O \cup E$ but $-1 \neq \mathbb{N}$.
- Do O and E partition \mathbb{Z} ? Yes, $O \cup E = \mathbb{Z}$.
- Do O and E partition \mathbb{Q} ? No, $\frac{1}{2} \notin O \cup E$, but $\frac{1}{2} \in \mathbb{Q}$.

Partitions Example

**Exercise

- Define the following sets:
 - $A = \{1, 2, 6\}$
 - $B = \{2, 3, 4\}$
 - $C = \{5\}$
 - $D = \{x \in \mathbb{Z} : 1 \le x \le 6\}$
- Do *A*, *B*, and *C* form a partition of *D*? If not, which condition of a partition is not satisfied?