SQL

Relational Databases

- From IBM ~ 1970s
- Data stored in Tabular format:
 - Columns of tables: fields (name, address, department, ...)
 - Rows of tables: individual entries (student1, student2, ...)
- Key: unique way of accessing a given row

Relational Databases

- From IBM ~ 1970s
- Data stored in Tabular format:
 - Columns of tables: fields (name, address, department, ...)
 - Rows of tables: individual entries (student1, student2, ...)
- Key: unique way of accessing a given row
 - Primary key: important for fast access on large databases

Relational Databases

- From IBM ~ 1970s
- Data stored in Tabular format:
 - Columns of tables: fields (name, address, department, ...)
 - Rows of tables: individual entries (student1, student2, ...)
- Key: unique way of accessing a given row
 - Primary key: important for fast access on large databases
 - Foreign key: connect to a different table Relationships

Queries

• Retrieve data from the database:

eg. "Find students with name beginning with A"

"Find all courses offered in 2021"

Structured Query Language (SQL)

- English like, but structured
- Quite verbose
- Specific mathematical operations:
 - Inner Join
 - Outer Join

Example: Inner Join

Name	IDNumber	hostellD
Sunil Shashi	MAD001	1
Chetana Anantha	MAD002	2
Madhur Prakash	MAD003	2
Nihal Surya	MAD004	3
Shweta Lalita	MAD005	2
Raghu Balwinder	MAD006	3
Gulshan Kuldeep	MAD007	1
Kishan Shrivatsa	MAD008	1
Purnima Sunil	MAD009	2
Nikitha Madhavi	MAD010	1
Lilavati Prabhakar	MAD011	3
Rama Yamuna	MAD012	3

ID	Name	Capacity
1	Jamuna	300
2	Ganga	300
3	Brahmaputra	500

Student - Hostel mapping

```
select Students.name, Hostels.name
from Students
inner join Hostels
on Students.hostelID = Hostels.ID
```

Student - Hostel mapping

```
select Students.name, Hostels.name
  from Students
  inner join Hostels
  on Students.hostelID = Hostels.ID
```

Sunil Shashi, Jamuna Chetana Anantha, Ganga

Cartesian Product

- N entries in table 1
- M entries in table 2
- M x N combinations filter on them

Powerful SQL queries can be constructed

- Find ID number for course
- Look up StudentsCourses table to find all entries with this course ID
- Look up Students to find names of students with these IDs

- Find ID number for course
- Look up StudentsCourses table to find all entries with this course ID
- Look up Students to find names of students with these IDs

SELECT s.name FROM Students s

- Find ID number for course
- Look up StudentsCourses table to find all entries with this course ID
- Look up Students to find names of students with these IDs

```
SELECT s.name
FROM Students s
JOIN StudentsCourses sc ON s.IDNumber = sc.studentID
```

- Find ID number for course
- Look up StudentsCourses table to find all entries with this course ID
- Look up Students to find names of students with these IDs

```
SELECT s.name
  FROM Students s
  JOIN StudentsCourses sc ON s.IDNumber = sc.studentID
  JOIN Courses c ON c.ID = sc.courseID
```

- Find ID number for course
- Look up StudentsCourses table to find all entries with this course ID
- Look up Students to find names of students with these IDs

```
SELECT s.name
   FROM Students s
   JOIN StudentsCourses sc ON s.IDNumber = sc.studentID
   JOIN Courses c ON c.ID = sc.courseID
   WHERE c.name='Calculus'
```

Summary

- Models persistent data storage
- Mechanisms:
 - CSV, Spreadsheets, SQL, NoSQL
- Entities and Relationships
 - Different ways of representing

No details on display, views, or what kind of updates permitted