PROJET 8

DÉPLOYEZ UN MODÈLE DANS LE CLOUD

PLAN

01	Contexte, mission et jeu de données
02	LE BIG DATA
03	Architecture retenue et chaîne de traitement
04	CONCLUSION

CONTEXTE

- « Fruits! » : start-up de l'AgriTech
- Proposer des solutions innovantes pour la récolte des fruits (robot cueilleur intelligent)
- Mettre à disposition du grand public une application mobile permettant d'afficher les informations sur un fruit en le prenant en photo

MISSION

Développer une chaîne de traitement d'images incluant preprocessing et réduction de dimension dans un environnement Big Data

OBJECTIF: Anticiper le passage à l'échelle dans un contexte d'adoption massive

LES DONNÉES

Origine: Kaggle

- Images de 131 variétés de fruits et légumes labélisés (Fruits 360)
- Plusieurs variétés du même fruit (exemple : pomme « red » et « golden »)

Caractéristiques:

- Images 100x100 JPEG RGB
- Photos sur fond blanc centrée sur le fruit
- Photos sous tous les angles (rotation tri-axiales)
- Total: 90 483 images
- Jeu d'entraînement : 67 692 images
- Jeu de Test : 22 688 images
- Jeu multi fruits non labellisé : 103 images

02

LE BIG DATA

LE BIG DATA C'EST QUOI ?

En français : données massives

Les 3V du Big Data:

☐ Volume : énormes quantités de données

☐ Variété : différents types de données

☐ Vélocité : vitesse de circulation des

données (latence à minimiser)

SOLUTIONS DE STOCKAGE BIG DATA

Google

Cloud Storage

Microsoft Azure

Blob Storage

Amazon Web Services

Apache Hadoon

SOLUTION: UNE INFRASTRUCTURE DISTRIBUÉE

LE STOCKAGE DISTRIBUÉ

Volume : passage à l'échelle possible

Variété: capacité d'évolution

Vélocité : partitionnement

Résilience:

- redondance
- tolérance aux pannes

SOLUTION : UNE INFRASTRUCTURE DISTRIBUÉE

CALCULS DISTRIBUÉS

- ☐ Diviser les opérations en micro opérations distribuables entre différentes machines, réalisables en parallèle
- ☐ Agréger les résultats sur une même machine

CLUSTER DE CALCUL (FONCTIONNEMENT)

- RDD (Resilient Distributed Datasets): principale innovation de Spark.
- Permettent d'effectuer des calculs parallèles en mémoire sur un cluster de façon complètement tolérante aux pannes
- Job Spark = ensemble d'étapes et étape = ensemble de tâches
- Chaque tâche s'exécute sur une partition différente des données et ces partitions sont crées par les RDD

Täche

RAPPEL MISSION

Objectif : mettre en place les premières briques de traitement des images qui serviront lorsqu'il faudra passer à l'échelle en termes de volume de données

Preprocessing

Réduction de dimension

ARCHITECTURE BIG DATA

TECHNOLOGIES UTILISÉES

SPARK (PYSPARK)

Framework open source de calcul distribué (pour la parallélisation des calculs – Pyspark = API python)

BOTO3

SDK pour accéder au bucket S3 afin d'éffectuer des opérations de lecture et écriture de fichiers

PARQUET

Format de fichier pour une exploitation optimisée en mode distribué conçue pour les données massives

CHAÎNE DE TRAITEMENT

Stockage des images initiales

Stockage de la sortie de la réduction de dimension

[Fichier au format parquet]

Réduction de

[Résultats stoqués

dans un Spark

dataframel

VGG16, PCA (RAPPELS)

Transfer Learning (VGG16)

Modèle de Réseaux Neuronal Convolutif pré-entraîné sur plus d'un million d'images de 1000 catégories différentes provenant de la base de données <u>ImageNet</u>.

Il comprend 16 couches profondes.

PCA

Méthode largement utilisée en réduction de dimension qui cherche à représenter les données dans un sous-espace de plus petite dimension de sorte à conserver au maximum la variance du nuage de données.

QUELQUES CAPTURES

données.

RÉCAPITULATIF

Stockage fichiers sur S3:

- Upload via AWS CLI ou Interface Web
- Lecture des fichiers depuis Spark
- Enregistrement de fichiers depuis Spark vers S3

Instance EC2: T2.medium (8GO RAM, 30GO SSD) /

OS Ubuntu Server 18.04

Configuration: Python 3.9.7 / Java 8 / Spark 3.2.1 / Pillow

Configuration sur machine distante : accès via SSH

- Chargement clés IAM / AWS
- Installation des logiciels et packages
- Mise en place d'un Notebook Jupyter accessible à distance contenant les scripts en Pyspark exécutables

DÉMO

Accéder à AWS

Notebook Jupyter (ps: lancer PuTTY)

CONCLUSION

Notions apprises

- Prise en main Pyspark
- Découverte de l'écosystème AWS
- Administration d'un serveur Linux par SSH

Difficultés rencontrées

- Nombreuses possibilités techniques : choix complexes
- Débug complexe dû à des erreurs peu explicites (SSL: WRONG_VERSION_NUMBER lors de la mise en place du Notebook Jupyter)

MERCI

Des questions?

