Stroke Prediction of Adult Women

Matthew Galvez Rayna Sevilla

What is the Dataset about?

This dataset is used to predict whether a patient is likely to get a stroke based on the input parameters like gender, age, various diseases, and smoking status.

Each row in the data provides relevant information about the patient.

Research Question:

What are the factors for adult women that are most likely to result in a stroke?

Data Overview

- 5110 patients
- Patient information
 - Age
 - o Bmi
 - Heart Disease
 - Smoking Status
 - o Etc...

If the patient suffered a stroke (ischemic or hemorrhagic)

www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset/code?resource=download

Risk Factors for Stroke¹

Risk Factors Include, but not limited to:

- High blood pressure. (Hypertension)
- Heart disease. Heart disease and stroke have many of the same risk factors.
- **Smoking.** Smoking almost doubles your risk for an ischemic stroke.
- Obesity
- Older age. For each decade of life after age 55, your chance of having a stroke more than doubles.
- Gender. Stroke occurs more often in men.

Expectations:

We believe 'Age', 'bmi', 'heart_disease', 'hypertension', and smoking 'smoking_status' to produce the best logistic regression model

Evaluation Process:

We will split our data into train/test sets and then see if our logistic regression models produce a high accuracy

We expect our 'ideal' group of independent variables to produce a high accuracy

Loading the Data

```
In [5]: # Load the data
stroke_data = pd.read_csv('healthcare-dataset-stroke-data.csv')
stroke_data
```

Out[5]:

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
0	9046	Male	67.0	0	1	Yes	Private	Urban	228.69	36.6	formerly smoked	1
1	51676	Female	61.0	0	0	Yes	Self-employed	Rural	202.21	NaN	never smoked	1
2	31112	Male	80.0	0	1	Yes	Private	Rural	105.92	32.5	never smoked	1
3	60182	Female	49.0	0	0	Yes	Private	Urban	171.23	34.4	smokes	1
4	1665	Female	79.0	1	0	Yes	Self-employed	Rural	174.12	24.0	never smoked	1
									•••			
5105	18234	Female	80.0	1	0	Yes	Private	Urban	83.75	NaN	never smoked	0
5106	44873	Female	81.0	0	0	Yes	Self-employed	Urban	125.20	40.0	never smoked	0
5107	19723	Female	35.0	0	0	Yes	Self-employed	Rural	82.99	30.6	never smoked	0
5108	37544	Male	51.0	0	0	Yes	Private	Rural	166.29	25.6	formerly smoked	0
5109	44679	Female	44.0	0	0	Yes	Govt_job	Urban	85.28	26.2	Unknown	0

5110 rows x 12 columns

Data Cleanup

```
In [6]: # Filter out men from the 'gender' column
    print('Len Before: ')
    print(len(stroke_data))
    indexes = stroke_data.loc[(stroke_data["gender"] == 'Male')]
    indexes = indexes.index

    stroke_data_women = stroke_data.drop(labels=indexes, axis=0)
    print('Len After: ')
    print(len(stroke_data_women))
    stroke_data_women
```

Len Before: 5110
Len After: 2995

Data Cleanup - II

2577

```
In [7]: # Filter out under 18 from the 'age' column
        print('Len Before: ')
        print(len(stroke data women))
        indexes = stroke data women.loc[(stroke data women["age"] < 18)]
        indexes = indexes.index
        stroke data women = stroke data women.drop(labels=indexes, axis=0)
        print('Len After: ')
        print(len(stroke data women))
        stroke data women
        Len Before:
        2995
        Len After:
```

Data Cleanup - III

2065

```
In [8]: # Filter out those who have 'Unknown' as a smoking status
        print('Len Before: ')
        print(len(stroke data women))
        indexes = stroke data women.loc[(stroke data women["smoking status"] == 'Unknown')]
        indexes = indexes.index
        stroke data women = stroke data women.drop(labels=indexes, axis=0)
        print('Len After: ')
        print(len(stroke data women))
        stroke data women
        Len Before:
        2577
        Len After:
```

Data Cleanup - IV

Len After:

1995

```
In [9]: # We will filter out those who have a NaN value for the 'bmi' column
    print('Len Before: ')
    print(len(stroke_data_women))

stroke_data_women = stroke_data_women.dropna()
    print('Len After: ')
    print(len(stroke_data_women))
    stroke_data_women

Len Before:
    2065
```

Final Product

Out[9]:

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
;	60182	Female	49.0	0	0	Yes	Private	Urban	171.23	34.4	smokes	1
	1665	Female	79.0	1	0	Yes	Self-employed	Rural	174.12	24.0	never smoked	1
	10434	Female	69.0	0	0	No	Private	Urban	94.39	22.8	never smoked	1
1	12109	Female	81.0	1	0	Yes	Private	Rural	80.43	29.7	never smoked	1
1	12095	Female	61.0	0	1	Yes	Govt_job	Rural	120.46	36.8	smokes	1
508	53525	Female	72.0	0	0	Yes	Private	Urban	83.89	33.1	formerly smoked	0
508	26214	Female	63.0	0	0	Yes	Self-employed	Rural	75.93	34.7	formerly smoked	0
510	45010	Female	57.0	0	0	Yes	Private	Rural	77.93	21.7	never smoked	0
510	44873	Female	81.0	0	0	Yes	Self-employed	Urban	125.20	40.0	never smoked	0
510	19723	Female	35.0	0	0	Yes	Self-employed	Rural	82.99	30.6	never smoked	0

1995 rows x 12 columns

Implementation

Imported Libraries

```
In [4]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
%matplotlib inline
```

Reminder

Out[9]:

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
3	60182	Female	49.0	0	0	Yes	Private	Urban	171.23	34.4	smokes	1
4	1665	Female	79.0	1	0	Yes	Self-employed	Rural	174.12	24.0	never smoked	1
7	10434	Female	69.0	0	0	No	Private	Urban	94.39	22.8	never smoked	1
10	12109	Female	81.0	1	0	Yes	Private	Rural	80.43	29.7	never smoked	1
11	12095	Female	61.0	0	1	Yes	Govt_job	Rural	120.46	36.8	smokes	1
5085	53525	Female	72.0	0	0	Yes	Private	Urban	83.89	33.1	formerly smoked	0
5087	26214	Female	63.0	0	0	Yes	Self-employed	Rural	75.93	34.7	formerly smoked	0
5102	45010	Female	57.0	0	0	Yes	Private	Rural	77.93	21.7	never smoked	0
5106	44873	Female	81.0	0	0	Yes	Self-employed	Urban	125.20	40.0	never smoked	0
5107	19723	Female	35.0	0	0	Yes	Self-employed	Rural	82.99	30.6	never smoked	0
1995 ı	ows ×	12 colum	nns									

Fitting our Logistic Regression Model

```
In [10]: #Prepare the data set
         Age = stroke data women['age']
         Hypertension = stroke data women['hypertension']
         BMI = stroke data women['bmi']
         Smoking Status = stroke data women['smoking status']
         Target = stroke data women['stroke']
         # Change Smoking Status from string values into ints
         Smoking Status = Smoking Status.replace('never smoked',0)
         Smoking Status = Smoking Status.replace('formerly smoked',1)
         Smoking Status = Smoking Status.replace('smokes',2)
         data = { 'Age': Age,
                 'Hypertension': Hypertension,
                 'BMI':BMI,
                 'Smoking Status': Smoking Status
         data = pd.DataFrame(data)
         X = data
         y = Target
         # Split data into 80% Training and 20% Testing
         X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=123)
```

Fitting our Logistic Regression Model - II

```
In [11]: # Fit the model
    model = LogisticRegression(penalty='none', fit_intercept=False)
    model.fit(X_train,y_train)

y_pred = model.predict(X_test)
    print(accuracy_score(y_test,y_pred))

0.9473684210526315
```

Confusion Matrix & Classification Report

```
In [74]: # Confusion matrix
             from sklearn.metrics import confusion matrix
             confusion matrix(y test, y pred)
     Out[74]: array([[377, 0],
                   [ 21, 1]], dtype=int64)
In [12]: # Classification Report
```

•	<pre># Recheck this to see about 'zero divsion' print(classification_report(y_test,y_pred, zero_division='warn'))</pre>									
		precision	recall	f1-score	support					
	0 1	0.95 1.00	1.00 0.05	0.97 0.09	377 22					
	accuracy macro avg weighted avg	0.97 0.95	0.52 0.95	0.95 0.53 0.92	399 399 399					

Improving The Model - I

```
## Our logistic model had an accuracy rate of 94.7% which is very accurate.
## To improve on this model we will add avg glucose level to our x values and see our results.
#Prepare the data set
Age = stroke data women['age']
Hypertension = stroke data women['hypertension']
BMI = stroke data women['bmi']
Smoking Status = stroke data women['smoking status']
Avg Glucose Level = stroke data women['avg glucose level']
Target = stroke data women['stroke']
# Change Smoking Status from string values into ints
Smoking Status = Smoking Status.replace('never smoked',0)
Smoking Status = Smoking Status.replace('formerly smoked',1)
Smoking Status = Smoking Status.replace('smokes',2)
data = { 'Age': Age,
        'Hypertension': Hypertension,
        'BMI':BMI,
        'Smoking Status': Smoking Status,
        'Average Gluclose Level': Avg Glucose Level
data = pd.DataFrame(data)
X = data
y = Target
# Split data into 80% Training and 20% Testing
X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=123)
```

Improving The Model - II

```
# Fit the new model
model = LogisticRegression(penalty='none', fit_intercept=False)
model.fit(X_train,y_train)

y_pred = model.predict(X_test)
print(accuracy_score(y_test,y_pred))
```

0.9473684210526315

We saw no change in accuracy when adding Average Glucose Level to our logistic model.

Improving The Model - III

```
# To improve on this model we will try adding Residence Type to our x values and see our results.
#Prepare the data set
Age = stroke data women['age']
Hypertension = stroke data women['hypertension']
BMI = stroke data women['bmi']
Smoking Status = stroke data women['smoking status']
Residence Type = stroke data women['Residence type']
Target = stroke data women['stroke']
# Change Residence Type from string values into ints
Residence Type = Residence Type.replace('Rural',0)
Residence Type = Residence Type.replace('Urban',1)
# Change Smoking Status from string values into ints
Smoking Status = Smoking Status.replace('never smoked',0)
Smoking Status = Smoking Status.replace('formerly smoked',1)
Smoking Status = Smoking Status.replace('smokes',2)
data = {'Age':Age,
        'Hypertension': Hypertension,
        'BMI':BMI,
        'Smoking Status': Smoking Status,
        'Residence Type': Residence Type
data = pd.DataFrame(data)
X = data
y = Target
# Split data into 80% Training and 20% Testing
```

Improving The Model - IV

```
# Fit the new model
model = LogisticRegression(penalty='none', fit_intercept=False)
model.fit(X_train,y_train)

# Test for a better accuracy score
y_pred = model.predict(X_test)
print(accuracy_score(y_test,y_pred))
```

0.9448621553884712

We saw no change in accuracy when adding Residence_Type to our logistic model.

Conclusion

- Our logistic model had an accuracy rate of 94.7% which is very accurate, when using age, hypertension, bmi, and smoking_status as independent variables.
- We have no false positives and very few false negatives for predicting that a patient WILL have a stroke.

References

1. *Risk factors for stroke*. Johns Hopkins Medicine. (2021, November 15). Retrieved July 8, 2022, from https://www.hopkinsmedicine.org/health/conditions-and-diseases/stroke/risk-factors-for-stroke