EDO de primer orden

Prof. Jhon Fredy Tavera Bucurú

2025

EDO de primer orden Lineal

EDO de primer orden de Variable Separable

EDO (sustitución)
Homogénea (variable separable)
Coeficientes lineales

Exactas

Factor integrante

Definición: Ecuación Diferencial Lineal de Primer Orden

Forma General

Sea una ecuación diferencial ordinaria (EDO) de primer orden

$$y' = f(x, y)$$

si f es lineal con respecto a la variable y, es decir se puede escribir de la forma

$$\frac{dy}{dx} + p(x)y = g(x),$$

donde p(x) y g(x) son funciones dadas, continuas en un intervalo de la variable independiente x. Decimos que es una EDO lineal de primer orden.

Ejemplo: EDO Lineal de Primer Orden

$$\frac{dy}{dx} + \frac{1}{2}y = \frac{3}{2},$$

$$\frac{\frac{dy}{dx}}{y - 3} = -\frac{1}{2}$$

$$\frac{d}{dx} \ln|y - 3| = -\frac{1}{2}$$

$$\ln|y - 3| = -\frac{x}{2} + C,$$

$$|y - 3| = e^{C} e^{-x/2}$$

$$y = 3 + ce^{-x/2}$$

Observación

Note que si multiplicamos a $y = 3 + ce^{-x/2}$ por $e^{\frac{x}{2}}$ obtenemos

$$y e^{\frac{x}{2}} = 3 e^{\frac{x}{2}} + c,$$

y al derivar con respecto a x, se obtiene

$$(y' + \frac{1}{2}y) e^{x/2} = \frac{3}{2}e^{x/2}$$
$$\frac{dy}{dx} + \frac{1}{2}y = \frac{3}{2},$$

lo que muestra que $e^{\frac{x}{2}}$ actúa como **factor integrante** adecuado. Integrando, se llega a la solución de la ecuación original. Este procedimiento es aplicable a toda ecuación lineal de primer orden, multiplicando por $\mu(x) = \exp(\int p(x) dx)$.

Factor Integrante en EDO Lineal de Primer Orden

Planteamiento General

Considérese la ecuación diferencial

$$y'+p(x)y=g(x).$$

Multiplicamos ambos lados por una función $\mu(x)$, el **factor integrante**, de modo que

$$\mu(x) y' + \mu(x) p(x) y = \mu(x) g(x).$$

El objetivo es que el lado izquierdo sea la **derivada** de $\mu(x)$ y:

$$\frac{d}{dx}(\mu(x)y) = \mu'(x)y + \mu(x)y'.$$

Note que si sumamos y restamos en el término de la izquierda

$$\mu(x) \left[y' + p(x) y \right] = \mu(x) y' + \mu(x) p(x) y$$

$$= \underbrace{\left[\mu(x) y' + \mu'(x) y \right]}_{\text{derivada de } \mu(x) y} - \underbrace{\left[\mu'(x) y - \mu(x) p(x) y \right]}_{\text{término agregado y restado}}.$$

Para que el segundo corchete sea cero, se impone

$$\mu'(x) y - \mu(x) p(x) y = 0 \implies \mu'(x) = p(x) \mu(x).$$

De esta forma,

$$\mu(x)[y'+p(x)y] = \mu(x)y'+\mu'(x)y = \frac{d}{dx}[\mu(x)y],$$

cumpliendo así la condición que hace integrable el primer miembro de la ecuación.

Factor Integrante

si asumimos $\mu(x) > 0$. Entonces,

$$\frac{\mu'(x)}{\mu(x)} = p(x)$$

$$\frac{d}{dx} \ln \mu(x) = p(x)$$

$$\ln \mu(x) = \int p(x) \, dx + k$$

donde k es una constante. Al elegir k=0 para simplificar, se obtiene

$$\mu(x) = \exp\left(\int p(x) dx\right).$$

Observaciones

▶ Bajo esta forma, $\mu(x)$ permanece **positiva** para todo x, tal como se supuso y Cualquier otra elección de k solo multiplicaría $\mu(x)$ por una constante positiva, sin afectar el resultado final de la integración en la ecuación lineal

Reemplazo en la Ecuación Original

De esta forma, el lado izquierdo se convierte en la derivada:

$$\frac{d}{dx}[\mu(x)y] = \mu(x)g(x).$$

Integración e Inserción del Factor Integrante

Integrando ambos lados respecto a x:

$$\mu(x) y = \int \mu(x) g(x) dx + C.$$

Finalmente, se despeja y:

$$y = \frac{1}{\mu(x)} \Big(\int \mu(x) g(x) dx + C \Big).$$

Esta expresión representa la **solución general** de la ecuación lineal de primer orden.

Ejemplo de Problema de Valor Inicial (PVI)

Ecuación y Condición Inicial

$$\frac{dy}{dx} + 2y = e^{-x}, \quad y(0) = 0.75.$$

Solución General EDO lineal primer orden

$$\mu(x) = \exp(\int 2 dx) = e^{2x}.$$

luego,

$$y = \frac{1}{e^{2x}} \int e^{2x} e^{-x} dx + C = e^{-x} + C e^{-2x}.$$

Solución Particular

Impuesta la condición y(0) = 0.75:

$$y(0) = e^0 + C e^0 = 1 + C = 0.75 \implies C = -0.25.$$

Por lo tanto, la solución del PVI es

$$y(x) = e^{-x} - 0.25 e^{-2x}$$
.

Solución Particular EDO lineal primer orden

Dado el problema de valor inicial $y(x_0) = y_0$ tome convenientemente a x_0 como el limite inferior en la integral del factor integrante.

$$\mu(x) = \exp\left(\int_{x_0}^x p(t) dt\right) \tag{6}$$

Entonces $\mu(x_0) = 1$, es así que evaluando en x_0

$$y(x) = \frac{\int_{x_0}^x \mu(s)g(s)\,ds + c}{\mu(x)}$$

se tiene $y(x_0) = c$.

$$y = \frac{\int_{x_0}^{x} \mu(s)g(s) \, ds + y_0}{\mu(x)} \tag{7}$$

1 2

1_{decmos}

²calculadora EDO

Ecuaciones de Variables Separables

Una EDO de primer orden

$$\frac{dy}{dx} = f(x, y),$$

A menudo es conveniente reescribirla en la forma

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0.$$

Siempre es posible hacer lo anterior estableciendo que M(x,y)=-f(x,y) y N(x,y)=1. En caso de que M sea una función sólo de x y N sea una función sólo de y, entonces queda

$$M(x) + N(y)\frac{dy}{dx} = 0.$$

Se dice que una ecuación de ese tipo es **separable**, porque se escribe en la forma diferencial

$$N(y)dy = -M(x)dx$$

$$\int N(y)dy = \int -M(x)dx + c$$

Este abuso de notación es motivado por el siguiente argumento. Si renombramos a -M(x) = f(x) y N(y) = p(y).

$$p(y)\frac{dy}{dx} = f(x)$$

Sea P una primitiva de p con respecto a y, entonces P'(y) = p(y), por notación de Leibniz

$$\int p(y) \ dy = P(y)$$

Además, si derivamos P con respecto a x, se tiene por regla de la cadena

$$P'(y(x)) = p(y)y'$$

Por tanto (P(y(x)))' = f(x), es decir P es una primitiva de f, por notación de Leibniz

$$\int f(x) \ dx = P(y(x))$$

igualando ambas expresiones

$$\int p(y) dy = \int f(x) dx + c$$

Ejemplo

Resuelva
$$(e^{2y} - y)\cos x \frac{dy}{dx} = e^y \sin 2x$$
, $y(0) = 0$.

SOLUCIÓN Dividiendo la ecuación entre $e^y \cos x$ se obtiene

$$\frac{e^{2y} - y}{e^y} dy = \frac{\sin 2x}{\cos x} dx.$$

usamos la identidad trigonométrica $\sin 2x = 2 \sin x \cos x$ en el lado derecho.

$$\int (e^y - ye^{-y})dy = 2 \int \sin x \, dx.$$

integración de partes \rightarrow

$$e^{y} + ye^{-y} + e^{-y} = -2\cos x + c.$$

Resolviendo el PVI y(0) = 0, se obtiene c = 4.

Homogénea

Una EDO de primer orden

$$\frac{dy}{dx} = f(x, y),$$

es homogenea si f(x, y) = f(tx, ty). Se reduce a una EDO de variable separable.

Transformación y separación de variables

Nos permite hacer t = 1/x y obtener así

$$f(x,y) = f(1,y/x) = f(1,z).$$

Entonces, puesto que y = zx y

$$\frac{dy}{dx} = z + x \frac{dz}{dx},$$

la ecuación (1) se convierte en

$$z + x \frac{dz}{dx} = f(1, z).$$

Ecuaciones de primer orden

Y podemos separar las variables:

$$\frac{dz}{f(1,z)-z}=\frac{dx}{x}.$$

Ejemplo

$$x \cos\left(\frac{y}{x}\right) \frac{dy}{dx} = y \cos\left(\frac{y}{x}\right) - x$$

Con coeficientes lineales

Consideremos la ecuación:

$$(a_1x + b_1y + c_1)dx + (a_2x + b_2y + c_2)dy = 0.$$

con
$$c_1 \neq 0$$
, $c_2 \neq 0$. (2.19)

Para resolverla consideremos los siguientes casos:

Caso I. Si $a_1b_2=a_2b_1$, la ecuación se puede escribir de la forma

$$\frac{dy}{dx} = a\frac{x + by + d_1}{x + by + d_2},$$

donde $a=-a_1/a_2$, $b=b_1/a_1=b_2/a_2$ y $d_i=c_i/a_i$ (i=1,2). El cambio de variable u=x+by reduce esta ecuación a una de variables separables.

Caso II. Si $a_1b_2 \neq a_2b_1$, la ecuación se hace homogénea mientras tomemos una traslación de ejes de la forma x = u + h y y = v + k, donde h y k son constantes.

En efecto, tomando diferenciales tenemos que dx = du y dy = dv. Por lo tanto, $\frac{dy}{dx} = \frac{dv}{du}$. Sustituyendo

$$\frac{dv}{du} = -\frac{a_1(u+h) + b_1(v+k) + c_1}{a_2(u+h) + b_2(v+k) + c_2}.$$

$$\frac{dv}{du} = -\frac{a_1u + b_1v + (a_1h + b_1k + c_1)}{a_2u + b_2v + (a_2h + b_2k + c_2)}.$$

Como $a_1b_2 \neq a_2b_1$, el sistema

$$\begin{cases} a_1 h + b_1 k + c_1 = 0 \\ a_2 h + b_2 k + c_2 = 0 \end{cases}$$

(2.21)

tiene solución. Así la ecuación se reduce a una homogénea.

Ejemplo

$$6x + 4y - 8)dx + (x + y - 1)dy = 0$$

Exactas

Definición, EDO de primer orden exacta

Una ecuación diferencial de la forma

$$M(x, y)dx + N(x, y)dy = 0$$

es llamada **exacta**, si existe una función F(x,y) de dos variables con derivadas parciales continuas hasta de segundo orden en un dominio Ω , tal que:

$$dF(x,y) = M(x,y)dx + N(x,y)dy.$$

En este caso se tendrá que

$$\frac{\partial F}{\partial x} = M(x, y), \quad \frac{\partial F}{\partial y} = N(x, y).$$

Si la ecuación M(x,y)dx + N(x,y)dy = 0 es exacta, entonces podemos encontrar F(x,y) tal que

$$dF = M(x, y)dx + N(x, y)dy = 0,$$

es decir, F(x,y)=k, con $k\in\mathbb{R}$. De esta forma, una vez encontrada F, la solución de la ecuación en forma implícita es

$$F(x,y)=k$$
.

Teorema, Criterio de exactitud

Sean M(x,y) y N(x,y) funciones continuas y con derivadas parciales de primer orden continuas en una región rectangular R definida por a < x < b, c < y < d.

La ecuación diferencial

$$M(x,y)dx + N(x,y)dy = 0$$

es exacta si y solamente si

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}.$$

Demostración

La demostración es en dos partes.

1. Supongamos que la ecuación es exacta: entonces existirá una función F(x,y) tal que

$$\frac{\partial F}{\partial x} = M(x, y), \quad \frac{\partial F}{\partial y} = N(x, y).$$

Derivando en estas igualdades respecto a x y y respectivamente, se tiene

$$\frac{\partial^2 F}{\partial y \partial x} = \frac{\partial M}{\partial y}, \quad \frac{\partial^2 F}{\partial x \partial y} = \frac{\partial N}{\partial x}.$$

Puesto que $\frac{\partial M}{\partial y}$ y $\frac{\partial N}{\partial x}$ son continuas, entonces $\frac{\partial^2 F}{\partial x \partial y}$ y $\frac{\partial^2 F}{\partial y \partial x}$ también lo son. Luego, el teorema de Clairaut-Schwarz garantiza la igualdad

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

2. Ahora demostremos el reciproco. Se quiere determinar la existencia de una función F(x, y) tal que

$$dF = Mdx + Ndy$$
.

Si esta función existe, se debe verificar que

$$\frac{\partial F}{\partial x} = M(x, y), \quad \frac{\partial F}{\partial y} = N(x, y).$$

Integrando la primera ecuación con respecto a x, y manteniendo a y como constante, se obtiene que

$$F(x,y) = \int M(x,y)dx + g(y).$$

Donde la función arbitraria g(y) es la constante de integración.

Ahora debemos determinar g(y). Para ello derivamos con respecto a y:

$$\frac{\partial F}{\partial y} = \frac{\partial (\int (M(x,y)dx)}{\partial y} + \frac{dg(y)}{dy}.$$

como M es continua y sus derivadas de primer orden continuas, por la regla de Leibniz, derivación bajo el signo de integral.

$$\frac{\partial F}{\partial y} = \int \left(\frac{\partial M(x,y)}{\partial y}\right) dx + \frac{dg(y)}{dy}.$$

ya que $\frac{\partial F}{\partial y} = N(x, y)$ y despejando g'(y), se tiene

$$g'(y) = N(x, y) - \int \left(\frac{\partial M(x, y)}{\partial y}\right) dx$$

Note que g' depende solo de y puesto que, por hipotesis

$$\frac{d}{dx}g'(y) = \frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y}$$
$$= 0$$

Por tanto integrando con respecto a y y sustituyendo

$$k = F(x,y) = \int M(x,y)dx + \int \left[N(x,y) - \frac{\partial \left(\int M(x,y)dx\right)}{\partial y}\right]dy.$$

Ejemplo

$$(y^3 - x)e^x dx + 3y^2(e^x + y)dy = 0$$
 $y(0) = 0$

Factor Integrante

$$M(x,y)dx + N(x,y)dy = 0$$

una ecuación diferencial que no es exacta.

Si multiplicamos esta ecuación por una función $\mu(x,y)$ adecuada que haga que la ecuación resultante

$$\mu(x,y)M(x,y)dx + \mu(x,y)N(x,y)dy = 0$$

sea exacta, llamaremos a μ como el **factor de integración** de la ecuación.

Para determinar la función $\mu(x, y)$, verificamos el criterio de exactitud en la ecuación transformada:

$$\frac{\partial \left(\mu(x,y)M(x,y)\right)}{\partial y} = \frac{\partial \left(\mu(x,y)N(x,y)\right)}{\partial x}.$$

Factor Integrante solo variable x

Suponga que el factor integrante depende solo de x, $\mu = \mu(x)$, Entonces

$$\frac{\partial (\mu(x)M(x,y))}{\partial y} = \frac{\partial (\mu(x)N(x,y))}{\partial x}$$
$$0 + \frac{\partial (M(x,y))}{\partial y}\mu(x) = \frac{\partial (\mu(x))}{\partial x}N(x,y) + \frac{\partial (N(x,y))}{\partial x}\mu(x)$$
$$\frac{\partial \mu}{\partial x} = \left[\frac{\partial M/\partial y - \partial N/\partial x}{N}\right]\mu$$

donde

$$\frac{\partial M/\partial y - \partial N/\partial x}{N}$$

depende solo de x. Entonces, el factor integrante es

$$\mu(x) = \exp\left(\int \left[\frac{\partial M/\partial y - \partial N/\partial x}{N}\right] dx\right).$$

Factor Integrante solo variable y

Suponga que el factor integrante depende solo de y, $\mu=\mu(y)$, Entonces por un proceso analogo, de

$$\frac{\partial \left(\mu(y)M(x,y)\right)}{\partial y} = \frac{\partial \left(\mu(y)N(x,y)\right)}{\partial x}$$

se deduce que el factor integrante es

$$\mu(x) = \exp\left(\int \left[\frac{\partial N/\partial x - \partial M/\partial y}{M}\right] dx\right).$$

Métodos Adicionales

EDO de Bernoulli

Una ecuación de Bernoulli es una EDO de primer orden

$$\frac{dy}{dx} + P(x) y = Q(x) y^n, \qquad n \in \mathbb{R}.$$

- Si n = 0 o n = 1, la ecuación es *lineal* (y se resuelve directamente).
- Para $n \neq 0, 1$ es *no lineal*, pero se reduce a lineal con el cambio

$$u=y^{1-n}.$$

Nota: al dividir por y^n asumimos $y \neq 0$; además $y \equiv 0$ es solución cuando n > 0.

Bernoulli \rightarrow lineal

$$u = y^{1-n},$$
 $\frac{du}{dx} = (1-n)y^{-n}\frac{dy}{dx},$ donde $\frac{dy}{dx} = \frac{1}{1-n}y^n\frac{du}{dx}$

y reemplazando en la ecuación, tenemos:

$$\frac{1}{1-n}y^n\frac{du}{dx}+P(x)y=Q(x)y^n, \qquad n\in\mathbb{R}.$$

Ahora multiplicamos la ecuación por $(1 - n) y^{-n}$:

$$\frac{du}{dx} + (1-n)P(x)y^{1-n} = (1-n)Q(x)$$

y sustituimos $u = y^{1-n}$:

$$\frac{du}{dx} + (1-n)P(x)u = (1-n)Q(x)$$

la cual es una ecuación diferencial lineal.

Ecuación de Riccati

Se denomina ecuación diferencial de Riccati a una ecuación diferencial de primer orden de la forma

$$\frac{dy}{dx} = P(x) + Q(x) y + R(x) y^{2}.$$

Tal ecuación se puede resolver con dos sustituciones consecutivas siempre que conozcamos una solución particular y_1 de dicha ecuación. Esto es,

$$\frac{dy_1}{dx} = P(x) + Q(x) y_1 + R(x) y_1^2.$$

Para resolverla tomamos la sustitución $y = y_1 + u$, la cual reduce la ecuación a una de tipo Bernoulli.

Riccati \rightarrow Bernoulli

Primero derivamos con respecto a x:

$$y = y_1 + u,$$
 $\frac{dy}{dx} = \frac{dy_1}{dx} + \frac{du}{dx}.$

Reemplazamos en la ecuación :

$$\frac{dy_1}{dx} + \frac{du}{dx} = P(x) + Q(x)(y_1 + u) + R(x)(y_1 + u)^2.$$
 (2.32)

Agrupando términos semejantes nos queda:

$$\frac{dy_1}{dx} + \frac{du}{dx} = P(x) + Q(x)y_1 + Q(x)u + R(x)y_1^2 + R(x)2y_1u + R(x)u^2.$$

Sustituimos y simplificamos:

$$\frac{du}{dx} = \left(Q(x) + R(x) 2y_1\right) u + R(x) u^2 \iff \frac{du}{dx} - \left(Q(x) + R(x) 2y_1\right) u = R(x) u^2.$$

Esto es una ecuación de Bernoulli con n = 2.

