What is a Database?

A database is an organized collection of structured data stored electronically in a computer system. Databases allow for efficient data storage, retrieval, updating, and management. They serve as the backbone for most modern applications, from simple websites to complex enterprise systems.

Real-world examples:

- Bank systems storing customer accounts and transactions
- E-commerce platforms managing product catalogs and orders
- Hospital systems maintaining patient records
- Social media networks storing user profiles and connections

Database Structure:

Types of Databases

Relational Databases (SQL Databases)

Relational databases organize data into tables (relations) with rows and columns, where relationships between tables are established through keys.

Basic Structure of a Relational Database:

Characteristics:

- Use Structured Query Language (SQL) for operations
- Data is stored in tables with strict schemas
- Support ACID properties (Atomicity, Consistency, Isolation, Durability)
- Excellent for complex queries and transactions

Popular relational databases:

1. MySQL (open-source, widely used for web applications)

- 2. PostgreSQL (advanced open-source RDBMS)
- 3. Oracle Database (enterprise-grade commercial database)
- 4. Microsoft SQL Server (Microsoft's enterprise RDBMS)
- 5. SQLite (lightweight, embedded database)

Example use cases:

- Financial systems requiring strict data integrity
- Inventory management systems
- Customer relationship management (CRM) systems

NoSQL Databases

NoSQL (Not Only SQL) databases provide flexible schemas and scale horizontally to handle large volumes of unstructured or semi-structured data.

Structure of a Non-Relational (NoSQL) Database : Document Database

```
{
    "_id": "customer1",
    "name": "John Doe",
    "age": 30
    orders: [
        "order_id": "order1",
        amount: 100.0
    ],
        "order_id": "order2",
        amount: 200.0
    }
}
```

Types of NoSQL databases:

- Document databases (MongoDB, CouchDB) Store data in JSON-like documents
- 2. **Key-value stores** (Redis, DynamoDB) Simple pairs of keys and values
- Wide-column stores (Cassandra, HBase) Use tables, rows, and dynamic columns
- 4. **Graph databases** (Neo4j, Amazon Neptune) Store data in nodes and relationships

Characteristics:

- Flexible schema design
- Horizontal scalability
- Optimized for specific data models and access patterns
- Often sacrifice some ACID properties for performance and scalability

Example use cases:

- Big data applications
- Real-time web applications
- Content management systems
- Social networks with complex relationships

Introduction to MySQL

MySQL

MySQL is the world's most popular open-source relational database

management system (RDBMS), originally developed by MySQL AB and now

owned by Oracle Corporation.

Key features:

• Free and open-source (under GNU GPL)

• Cross-platform (Windows, Linux, macOS)

High performance and reliability

• Works well with web applications (often used with PHP)

• Supports large databases (up to 50 million rows or more in a table)

Database Basics:

Creating a Database: CREATE DATABASE

The CREATE DATABASE statement is used to create a new database in your

5

database management system.

Syntax:

CREATE DATABASE database_name;

Real-world Example:

Let's create a database for an e-commerce application:

CREATE DATABASE ecommerce_store;

Important Notes:

- Database names are typically case-sensitive in Linux/Unix but not in Windows
- Avoid using spaces or special characters in database names
- In MySQL, you need appropriate privileges to create databases

Using a Database: USE database_name

The USE statement selects a specific database to work with for all subsequent operations.

Syntax:

USE database_name;

Real-world Example:

After creating our e-commerce database, we need to select it before creating tables:

USE ecommerce_store;

Why this is important:

- Most database systems allow multiple databases on a single server
- You must specify which database you're working with before creating tables or querying data
- Without USE, you would need to qualify every table reference with the database name (e.g., ecommerce_store.customers)

Practical Scenario:

1. Connect to MySQL server

- 2. Create database: CREATE DATABASE ecommerce_store;
- 3. Select database: USE ecommerce_store;
- 4. Now you can create tables within this database

Dropping a Database: DROP DATABASE

The DROP DATABASE statement permanently deletes an entire database, including all its tables, data, and associated files.

Syntax:

DROP DATABASE database_name;

Real-world Example:

To remove a test database that's no longer needed:

DROP DATABASE old_test_store;

Safety Considerations:

1. Use IF EXISTS to avoid errors if database doesn't exist:

DROP DATABASE IF EXISTS old_test_store;