

# **Notice**

이 교육과정은 교육부 '성인학습자 역량 강화 교육콘텐츠 개발 ' 사업의 일환으로써 교육부로부터 예산을 지원 받아 고려사이버대학교가 개발하여 운영하고 있습니다. 제공하는 강좌 및 학습에 따르는 모든 산출물의 적작권은 교육부, 한국교육학술정보원, 한국원격대학협의외와 고려사이버대학교가 공동 소유하고 있습니다.

# 학습목표



Backspace

Enter

Shift

- ╱ 단어 임베딩이 사용되는 이유와 그 의미에 대해 설명할 수 있다.
- 2 단어 임베딩의 종류와 단어 임베딩을 통해 할 수 있는 일들에 대해 설명할 수 있다.
- 3 단어 임베딩의 유사도 평가 방식과 그 종류를 설명할 수 있다.
- 4 단어 임베딩의 유추 평가 방식과 시각화 방식을 설명할 수 있다.
- 5 단어 임베딩을 문장 수준 임베딩으로 확장하는 방법인 가중 임베딩에 대해 설명할 수 있다.
- 6 문장 단위로 임베딩이 이루어지는 문장 임베딩 방식에 대해 설명할 수 있다.

1 단어 임베딩의 의미와 역할
2 단어 유사도, 유추평가
3 단어 임베딩시각화
4 가중 임베딩, 문장 임베딩
5 실습
CONTENTS

# 학습내용



01 단어 임베딩의 의미

Artifusia: proviligance (All refer

# 단어 임베딩

°사람이 쓰는 자연어를 기계가 이해할 수 있는 숫자의 나열인 벡터로 바꾼 결과 혹은 그 일련의 과정 전체를 의미

# 임베딩에 자연어의 통계적 패턴 정보를 주면 자연어의 의미를 함축할 수 있다.

"

|     | 타다 | 다리 |
|-----|----|----|
| 개   | 1  | 4  |
| 고양이 | 1  | 3  |
| 버스  | 5  | 1  |





02 단어 임베딩에 쓰이는 3가지 철학

Artificial prolitigance (All retur

- BOW(bag of words) 가정 : 어떤 단어가 (많이) 쓰였는가
  - TF-IDF, Deep averaging network
- 언어 모델 : 단어가 어떤 순서로 쓰였는가
  - ELMo, GPT
- 분포 가정 : 어떤 단어가 같이 쓰였는가
  - PMI, Word2Vec



- 의미적, 문법적 정보 함축
- 전이 학습

**04** 단어 임베딩의 종류

uturni intelligence (All refere

행렬 분해 기반 방법

예측 기반 방법 토픽 기반 방법 말뭉치 정보가 들어있는 원래 행렬을

# 두 개 이상의 작은 행렬로 쪼개는 방식의 임베딩기법

- 분해 이후 둘 중 하나의 행렬만 쓰거나 둘을 더하거나 이어 붙여 임베딩으로 사용
- LSA, Glove, Swivel



#### **06** PMI

Artificial Indelligrance (ALI reduce to the annialization of human

#### PMI(점별 상호 정보량)

두 확률변수 사이의 상관성을 계량화하는 단위

 두 확률변수가 완전히 독립인 경우 그 값이 0이 됨
 예를 들어 단어 A, B가 있을 때 단어 A가 나타나는 것이 단어 B의 등장할 확률에
 전혀 영향을 주지 않고, 단어 B가 나타나는 것이 단어 A에 영향을 주지 않는 경우를 독립이라 함



• 두단어의 등장이 독립일 때에 대비해 얼마나 자주 같이 등장하는지를 수치화 한 것

- $PMI(A,B) = log \frac{P(A,B)}{P(A)X P(B)}$
- PMI 행렬은 단어 문맥 행렬에 위 수식을 적용한 결과

| 카페.    | 에서 | .뜨거운 | 커피.       | 를.마시 | 는,당신 |
|--------|----|------|-----------|------|------|
| 1 11 7 |    |      | , , , , , | _, , | -, - |

|                  |    | 7  | 5   | /  | .) |     |    |       |
|------------------|----|----|-----|----|----|-----|----|-------|
|                  | 카페 | 에서 | 뜨거운 | 커피 | 를  | 마시는 | 당신 | total |
| 카페<br><br>커피<br> |    | +1 | +1  |    | +1 | +1  |    | 20    |
| total            |    |    | 15  |    |    |     |    | 1000  |

$$PMI($$
커피, 뜨거운 $) = log rac{P($ 커피, 뜨거운 $)}{P($ 커피 $)XP($ 뜨거운 $)} = log rac{rac{10}{1000}}{rac{20}{1000}X rac{15}{1000}}$ 

**07** LSA

# LSA

- 커다란 행렬에 차원 축소 방법의 일종인 특이값 분해를 수행해 데이터의 차원 수를 줄여 계산 효율성을 키우는 한편 행간에 숨어있는 잠재 의미를 이끌어내기 위한 방법론
  - 단어-문서 행렬이나 단어-문맥 행렬 등에 특이값 분해를 시행한 뒤 그 결과로 도출되는 행 벡터들을 단어 임베딩으로 사용할 수 있음

# PPMI 행렬

- PMI는 두 단어의 등장이 독립이라 가정할 때 대비 얼마나 같이 자주 등장하는지를 수치화한 것
  - 그러나 수식 상 A, B 두 단어가 동시에 등장할 확률이 두 단어가 독립일 때보다 작으면 PMI는 음수가 됨

08 LSA에 사용되는 PPMI 행렬

Artifusia: proviligance (All refer

# PPMI 행렬

- PMI는 두 단어의 등장이 독립이라 가정할 때 대비 얼마나 같이 자주 등장하는지를 수치화한 것
  - ✓ 그러나 이러한 결과는 신뢰하기 힘든데, 말뭉치가 충분히 크지 않는 한 두 단어가 동시에 나타날 확률이 두 단어가 독립일 때보다 작기가 힘들기 때문임

PPMI(A,B) = max(PMI(A,B),0)

#### 특이값 분해(SVD)는 mxn 크기의 임의의 사각행렬 A를 아래와 같이 분해하는 것을 가리킴



**09** LSA의 행렬 분해

Artifusia: proviligance (All refer

#### Truncated SVD는 특이값 가운데 가장 큰 d개만 가지고, 해당 특이값에 대응하는 특이벡터들로 원래 행렬 A를 근사하는 기법



- Word2Vec과 잠재의미분석(LSA) 두 기법의 단점을 극복하고자 한 기법
- 임베딩된 두 단어 벡터의 내적이 말뭉치 전체에서의 동시 등장 빈도의 로그 값이 되도록 목적함수를 정의

$$\mathcal{J} = \sum_{i,j=1}^{|V|} f(A_{ij})(U_i \cdot V_j + b_i + b_j - \log A_{ij})^2$$

임베딩된 단어 벡터 간 유사도 측정을 수월하게 하면서도 말뭉치 전체의 통계정보를 좀더 잘 반영하고자 한 것이 GloVe의 핵심목표

# 10 GloVe

#### GloVe<sub>는</sub>

우선 학습 말뭉치를 대상으로 단어-문맥행렬 A를 만드는 것에서부터 학습을 시작

이후 목적함수를 최소화하는 임베딩 벡터를 찾기 위해 행렬 분해를 수행



 처음에 행렬 U, V를 랜덤으로 초기화한 뒤 목적함수를 최소화하는 방향으로 U,V를 조금씩 업데이트해 나가고, 학습 손실이 더 줄지 않거나 정해진 스텝 수만큼 학습했을 경우 학습을 종료. 이때 생긴 U를 단어 임베딩으로 쓸 수 있음

# 토픽 기반 방법

- 주어진 문서에 잠재된 주제를 추론하는 방식으로 임베딩을 수행하는 기법

  - **W** LDA

12 예측 기반 방법

Anthony intelligence (All refers

# 예측 기반 방법

- 아떤 단어 주변에 특정 단어가 나타날지 예측하거나, 이전 단어들이 주어졌을 떄 다음 단어가 무엇일지 예측하거나, 문장 내 일부 단어를 지우고 해당 단어가 무엇일지 맞추는 과정에서 학습하는 방법
  - Word2Vec, FastText, BERT, ELMo, GPT

#### Word2vec의 단점

- 학습 때 보지 못했던 단어에 대한 word vector를 분간하지 못하며, 자주 쓰이지 않는 단어들의 word vector 또한 학습을 잘 하지 못함
  - → 이러한 단점을 보완하기 위해 FastText가 제안됨

Subword embedding을 이용한 word embedding 방법으로, 등록되지 않은 단어와 자주 나오지 않는 단어에 대해 자주 쓰이는 단어와의 형태적 유사성을 고려한 word vector를 추정

# **14** FastText 기본 구조

Artificial prolitigance (All retur

#### 각 단어를 문자 단위 n-gram으로 표현

- Ex) 해바라기 : 〈해바, 해바라, 바라기, 라기〉, 〈해바라기〉
- 〈,〉는 단어의 경계를 나타내기 위해 FastText가 사용하는 특수 기호
- 단어를 문자 단위 n-gram 벡터의 합으로 나타냄  $u_t = \sum_{g \in G_t} z_g$

u해바라기 = +Z<해바 +Z해바라 +Z바라기 +Z라기> +Z<해바라기>

$$P(+or -|t,c) = \frac{1}{1 + \exp(-u_t v_c)} = \frac{1}{1 + \exp(-\sum_{g \in G_t} z_g^\top v_c)}$$

- 입력 단어 쌍(t,c)가 실제로 포지티브/네거티브 샘플이라면 모델이 해당 입력 쌍이 포지티브/네거티브라고 맞추도록 학습하는 방식
- Word2vec과 다르게 타깃단어(t), 문맥 단어(c) 쌍을 학습할 때 타깃 단어(t) 속한 문자 단위 n-gram 벡터(z)들을 모두 업데이트

# 15 네거티브 샘플링

Anthony intelligence (All refers

### 실제 포지티브 샘플을 모델이 포지티브 샘플링이라 맞출 때

- 포티지브 샘플이 주어졌을 때 수식을 최대화 하려면 분모를 최소화해야 함
  - 분모를 최소화하는 것 :  $v_c$ 와 z들 간 내적 값 높이는 것
  - 벡터의 내적은 코사인 유사도와 비례하기 때문에 결국 문자간 n-gram 벡터와 문맥 단어의 포지티브 샘플(c)에 해당하는 단어 벡터 간 유사도를 높여야 한다는 의미

# CHET FRATZING AND NATUTAL PANGUAGE TECCHOO

# 2 실제 네거티브 샘플을 모델이 네거티브 샘플링이라 맞출 때

- 네거티브 샘플이 주어졌을 때 수식을 최대화 하려면 분자를 최대화해야 함
  - 분모를 최소화하는 것 :  $v_c$ 와 z들 간 내적 값 낮추는 것
  - 벡터의 내적은 코사인 유사도와 비례하기 때문에 결국 문자간 n-gram 벡터와 문맥 단어의 포지티브 샘플(c)에 해당하는 단어 벡터 간 유사도를 낮춰야 한다는 의미

# 15 네거티브 샘플링

Anthony intelligence (All refers

FastText 모델이 최대화해야 할 로그 우도 함수

$$\mathcal{L}(\theta) = logP(+ \big| \boldsymbol{t}_p, \boldsymbol{c}_p) + \sum_{i=1}^{k} logP(- \mid (\boldsymbol{t}_{n_i}, \boldsymbol{c}_{n_i}))$$

모델을 한번 업데이트 할 때 1개의 포지티브샘플 $(t_p,c_p)$ 와 k개의 네거티브 샘플 $(t_{ni},\,c_{ni})$  을 학습한다는 의미





rtifurer intelligence (All refere

자연어 단어 간 통사적, 의미론적 관계가 얼마나 잘 녹아 있는지 정량적으로 평가

유사도 평가

유추 평가

DESTRIBATIONS AND NATIONAL LANGUAGE PROCESSING

#### 유사도 평가란?

• 자연어와 자연어 사이의 의미적 유사성을 점수화하는 일련의 과정

#### 활용분0;

정보검색 문서분류 의미의 모호성 해결

문서의 요약 번역 성능의 자동평가

문서의 일관성 측정

**02** 유사도 평가



- 자연어의 비교 및 평가를 위한 기반 마련
- 단어 관계로 구성된네트워크 데이터(온톨로지)를 활용하는 유사도 연구의 초석

# 유사도를 측정하는 데 있어 다양한 방식이 사용됨

#### 유사도 종류

코사인 유사도

유클리디안 유사도

자카드 유사도

맨하탄 유사도

03 유사도 종류

Artificial Intelligence (All refer

#### 코사인 유사도

- 일반적으로 성능이 좋기 때문에 유사도 측정에 가장 대표적으로 사용되는 유사도
- 두개의 벡터값에서 코사인 각도를 구하는 방법임
- 단순히 좌표상의 거리를 구하는 다른 유사도 측정과 달리 두 벡터의 각도를 구하기 때문에 방향성 또한 측정 가능함
- 두 문장이 유사하면 같은 방향을 가리키고, 그렇지 않으면 직교로 표현함

Similarity = 
$$\cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum_{i=1}^{n} A_i \times B_i}{\sum_{i=1}^{n} (A_i)^2 \times \sqrt{\sum_{i=1}^{n} (B_i)^2}}$$

#### 자카드 유사도

- 두 문장을 각각 단어의 집합으로 만든 뒤 두 집합을 통해 유사도를 측정함
- 두 집합의 교집합인 공통된 단어의 개수를 두 집합의 합집합인 전체 단어의 갯수로 나눔
- 공통의 원소의 개수에 따라 0~1 사이의 값이 나오며, 1에 가까울수록 유사도가 높음

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}$$

# 03 유사도 종류

Artificial Intelligence (All refere

#### 유클리디안 유사도

- 가장 기본적인 거리를 측정하는 방식
- L2 거리라고도 하며, N차원 공간에서 두 점 사이의 최단 거리를 구하는 접근법임
- 단순히 두 점 사이의 거리를 뜻하기 때문에 결과값에 제한이 없음
- 따라서 다른 유사도와 비교하려면 0과 1사이의 값으로 정규화가 필요함
- L1 정규화 방법: 벡터의 모든 값을 더한 후 이 값으로 각 벡터의 값을 나눔

$$\sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + \dots + (p_n - q_n)^2} = \sqrt{\sum_{i=1}^n (p_i - q_i)^2}$$

#### 맨하탄 유사도

- 사각형 격자로 이뤄진 지도에서 출발점에서 도착점까지를 가로지르지 않고 갈 수 있는 최단 거리를 구하는 공식임
- 맨하탄 유사도 역시 유클리디언 유사도와 마찬가지로 결과값에 제한이 없음
   → 따라서 다른 유사도와 비교하기 위해서는 정규화가 필요함

$$\sum_{i=1}^{k} |xi - yi|$$

04 유추 평가

Anthony intelligence (All refers

# 유추 평가

\* 유추 평가에서는 단어 임베딩이 단어 사이의 의미 관계를 얼마나 잘 학습했는지 평가

# "갑과 을의 관계는 병과 정의 관계와 같다"



"'갑'-'을'+'정'=?"이라는 질의에 대해 '병'을 도출해 낼 수 있는지를 평가







# 단어 임베딩 시각화

°의미가 유사한 단어를 사람이 쉽게 이해할 수 있는 형태의 그림으로 표현해 임베딩의 품질을 정성적, 간접적으로 확인하는 기법

# 단어 임베딩은 보통 고차원 벡터이기에 사람이 인식하는 2, 3차원으로 축소해 시각화를 하게 됨

PCA t-SNE 히트맵 이용

01 단어 임베딩 시각화

Artificial (stalligance (Al) refer

#### PCA

데이터의 분산을 최대한 보존하면서 서로 직교하는 새 기저(축)을 찾아고차원 공간의 표본들을 선형 연관성이 없는 저차원 공간으로 변환하는 기법



출처: https://stats.stackexchange.com/ questions/2691/making-senseof-principal-componentanalysis-eigenvectorseigenvalues

# PCA

- 특성들이 통계적으로 상관관계가 없도록 데이터셋을 회전시키는 기술임
- 특성들의 상관관계가 가장 큰 방향(분산이 가장 큰 방향)을 찾고 그 방향과 직각인 방향 중에서 가장 많은 정보를 담은 방향을 찾음
- 전형변환을 이용하기 때문에 비선형 특성을 가진 데이터에 대해서는 데이터의 특성을 잘 추출하지 못하는 한계가 있음



#### PCA를 이용한 시각화



출처: 퍼블릭에이아이(www.publicai.co.kr)

#### t-SNE

#### t-SNE

고차원의 원 공간에 존재하는 벡터 x에 이웃 간의 거리를 최대한 보존하는 저차원 벡터 y를 학습함으로써, 고차원의 데이터를 2차원의 지도로 표현

- 다른 알고리즘들보다 안정적인 임베딩 학습 결과를 보임
- t-SNE가 데이터 간 거리를 stochastic probability로 변환하여 임베딩에 이용하기 때문,
   이 값은 perplexity에 의해 조정됨



Artificial intelligence (All refer to the contestion of numer

#### t-SNE 알고리즘

p는 고차원 원공간에 존재하는 i 번째 개체  $x_i$ 가 주어졌을 때 j번째 이웃인  $x_i$  가 선택될 확률

$$p_{j|i} = \frac{e^{\frac{|x_i - x_j|^2}{2\sigma_i^2}}}{\sum_k e^{-\frac{|x_i - x_k|^2}{2\sigma_i^2}}}$$

q는 저차원에 임베딩된 i번째 개체  $y_i$ 가 주어졌을 때 j번째 이웃인  $y_j$ 가 선택될 확률

$$q_{j|i} = \frac{e^{-|y_i - y_j|^2}}{\sum_k e^{-|y_i - y_k|^2}}$$

#### t-SNE 알고리즘

- t-SNE는 p와 q의 분포차이를 최대한 작게 해서 차원축소가 잘 이루어지도록 함
- 두 확률 분포가 얼마나 비슷한지 확인하기 위해 KL-divergence 지표를 사용,
   두 분포가 완전히 다르면 1, 동일하면 0의 값을 가짐
- t-SNE는 아래 비용함수를 최소화 하는 방향으로 학습을 진행함

$$Cost = \sum_{i} KL(P_i||Q_i) = \sum_{i} \sum_{j} p_{j|i} log \frac{p_{j|i}}{q_{j|i}}$$

# 01 단어 임베딩 시각화

Anthony intelligence (All refers

#### t-SNE 알고리즘

- t-SNE는계산속도를 높이기 위해 p계산시 쓰이는  $\sigma_i$  계산을 생략
- 2 i번째 개체가 주어졌을 때 j번째 개체가 이웃으로 뽑힐 확률과 j번째 개체가 주어졌을 때 i번째 개체가 선택될 확률을 동일하다고 가정

$$p_{j|i} = \frac{p_{j|i} + p_{i|j}}{2}$$

$$Cost = \sum_{i} KL(P_i||Q_i) = \sum_{i} \sum_{j} p_{ij} log \frac{p_{ij}}{q_{ij}}$$

$$q_{j|i} = \frac{q_{j|i} + q_{i|j}}{2}$$

$$\frac{\partial C}{\partial y_i} = 4\sum_j (y_j - y_i)(p_{ij} - q_{ij})$$

#### t-SNE를 이용한 시각화



출처: 퍼블릭에이아이(www.publicai.co.kr)

02 단어 임베딩의 한계

Artificial Intelligence (All refer

#### 단어 임베딩 방식은

벡터에 해당 단어의 문맥적 의미를 함축은 하지만 동음이의어를 분간하기 어려움

단어의 형태가 같을 때 동일한 단어로 보고, 모든 문맥 정보를 해당 단어 벡터에 투영하기 때문

# 가중 임베딩

- ○단어 임베딩을 문장 수준 임베딩으로 확장하는 방법○단어의 등장은 저자가 생각한 주제에 의존한다고 가정,즉 주제에 따라 단어의 사용 양상이 달라질 것으로 예상
- - · 따라서 단어의 등장확률을 주제벡터가 주어졌을 때 해당 단어가 나타날 확률로 정의

03 가중 임베딩

Anthony intelligence (All refers

# 가중 임베딩

문장 등장 확률을 문장에 속한 모든 단어들이 등장할 확률의 가중누적 곱(로그를 취하여 덧셈)으로 나타냄 ex) CBoWModel

#### 단어가 아닌 문장 단위로 내용을 분류, 비교

#### 동음이의어 처리가 어려웠던 단어 임베딩의 한계 극복

#### 문장들을 각 문장을 표현하는 고정된 길이의 벡터로 변환 시 벡터 간 비교로 문장을 비교 가능

- ─ 문장벡터를 얻는 가장 간단한 방법은 문장에 존재하는 단어 벡터들의 평균을 구하는 것
- O Doc2Vec, LDA, ELMo, GPT, BERT

# 04 문장 임베딩

Artificial intelligence (All refuse to the contestion of human

- 행렬 분해 모델
  - LSA
- 확률 모형
  - LDA
- 🔛 뉴럴 네트워크 기반 모델
  - Doc2Vec, ELMo, GPT, BERT

# 05 Doc2Vec

#### 언어모델

- 우선 이전 단어 시퀀스 k개가 주어졌을 때 그 다음 단어를 맞추는 언어모델을 만듦
- 예시 문장: The cat sat on the mat



출처: Quoc V. Le, Tomas Mikolov, Distributed Representations of Sentences and Documents (ICML, 2014)

 이전 단어가 주어진 상태에서 다음 단어를 맞추는 것을 상정, 이 모델은 문장 전체를 처음부터 끝까지 이같이 한 단어씩 슬라이딩해 가면서 다음 단어가 무엇일지 예측함

# 05 Doc2Vec

#### Artificial intelligence (All refuse to the contestion of human

#### 기본 수식

• 
$$\mathcal{L} = \frac{1}{T} \sum_{t=k}^{T-k} logp(w_t|w_{t-k} \dots, w_{t+k})$$

• 이 값이 커질수록 모델에 이전 k개 단어를 입력했을 때 모델이 다음 단어를 잘 맞추게 됨

$$P(w_t|w_{t-k}\dots,w_{t-1}) = \frac{exp(y_{w_t)}}{\sum_i exp(y_i)}$$

• 
$$y = b + U \cdot h(w_{t-k} \dots, w_{t-1}; W)$$

# 05 Doc2Vec

#### PV-DM

- PV-DM: 아까와 같은 모델에 문서 ID를 추가해 아래와 같은 구조를 만들었는데,
   즉 이전 k개 단어들과 문서 ID를 넣어서 다음 단어를 예측한다는 뜻
- 이전 모델과 다른 점은 y를 계산할 때 D라는 문서 행렬에서 해당 문서 ID에 해당하는
   벡터를 참조해 h함수에 다른 단어 벡터들과 함께 입력하는 것이고 이외의 과정은 동일함



출처: Quoc V. Le, Tomas Mikolov, Distributed Representations of Sentences and Documents (ICML, 2014)



ristoria prioligance (All rations Di Osa ministration at human

#### PV-DM

PV-DM 방식으로 만들어진 문서 임베딩은 해당 문서의 주제정보를 함축한다고 함



문서 임베딩은 동일한 문서 내 존재하는 모든 단어와 함께 학습될 기회를 갖기 때문



PV-DM은 단어 등장 순서를 고려하는 방식으로 학습하기 때문에 순서 정보를 무시하는 백오브워즈 기법 대비 강점이 있음

# 05 Doc2Vec

#### PV-DBOW

 PV-DBOW 모델은 Word2Vec의 Skip-gram 모델을 본떠 만들었는데 Skip-gram 모델이 타깃 단어를 가지고 문맥 단어를 예측하는 과정에서 학습하는 것처럼 문서 ID를 가지고 문맥 단어를 맞추는 모델



출처: Quoc V. Le, Tomas Mikolov, Distributed Representations of Sentences and Documents (ICML, 2014)

06 문서 임베딩에 쓰이는 LSA

Anthony intelligence (All refers

잠재의미 분석은 단어-문서 행렬이나 TF-IDF 행렬, 단어-문맥 행렬 또는 PMI 행렬에 특이값 분해로 차원 축소를 시행하고, 여기에서 단어에 해당하는 벡터를 취해 임베딩을 만드는 방법

단어-문서 행렬이나 TF-IDF 행렬에 SVD를 시행, 축소된 이 행렬에서 문서에 대응하는 벡터를 취해 문서 임베딩을 만드는 방식

#### LDA란?

#### 잠재 디리클레 할당(LDA)

주어진 문서에 대하여 각 문서에 어떤 토픽이 존재하는지에 대한 확률 모형

- 말뭉치 이면에 잠재된 토픽을 추출한다는 의미에서 토픽 모델링이라고도 불림
- 문서를 토픽 확률 분포로 나타내 각각을 벡터화한다는 점에서 LDA를 임베딩 기법의 일종으로 이해할 수도 있음

# **07** LDA

th the montaction of human

#### LDA 개요

토픽별 단어의 분포, 문서별 토픽의 분포를 모두 추정하는 모델



출처: blei, Introduction to Probabilistic Topic Models (2011)

#### LDA의 가정

• LDA는 LDA가 가정하는 문서 생성과정에 따른 아키텍처를 갖고 있음

#### 글감/주제 선정 > 주제 내 단어 선정



- ~ LDA 이 과정의 역방향인, 현재 문서에 등장한 단어가 어떤 토픽에서 뽑혔는지 추론하는 과정
  - 명시적으로 라벨링이 되어있지 않은 말뭉치에 등장하는 단어 이면에 존재하는 정보(토픽)를 추론하는 것

# **07** LDA

#### LDA의 구조

D: 말뭉치 전체 문서 개수

• K:전체 토픽수(하이퍼파라미터)

• N:d번째 문서의 단어 수

• 네모칸은 해당 횟수만큼 반복하라는 의미, 동그라미는 변수



출처: blei, Introduction to Probabilistic Topic Models (2011)

# DEEP EARNING AND NATURAL LANGUAGE PROCESS

#### LDA의 구조

 $oldsymbol{eta}_k$ : k번째 토픽에 해당하는 벡터

| 단어  | 토픽1   | 토픽2   | 토픽3   |
|-----|-------|-------|-------|
| 개   | 0.269 | 0.000 | 0.267 |
| 빌딩  | 0.115 | 0.000 | 0.133 |
| 구름  | 0.231 | 0.313 | 0.400 |
| 아파트 | 0.000 | 0.312 | 0.400 |
| 하늘  | 0.000 | 0.312 | 0.000 |
| 고양이 | 0.192 | 0.063 | 0.000 |
| 버스  | 0.192 | 0.000 | 0.200 |



출처: blei, Introduction to Probabilistic Topic Models (2011)

# **07** LDA

#### LDA의 구조

•  $heta_d$  : d번째 문서가 가진 토픽비중

| 단어  | 토픽1   | 토픽2   | 토픽3   |
|-----|-------|-------|-------|
| 문서1 | 0.400 | 0.000 | 0.600 |
| 문서2 | 0.000 | 0.600 | 0.400 |
| 문서3 | 0.375 | 0.625 | 0.000 |
| 문서4 | 0.000 | 0.375 | 0.625 |
| 문서5 | 0.500 | 0.000 | 0.500 |
| 문서6 | 0.500 | 0.500 | 0.000 |
|     | Al-   |       |       |



출처: blei, Introduction to Probabilistic Topic Models (2011)

#### LDA의 구조

•  $\mathbf{Z}_{d,n}$  : d번째 문서 n번째 단어가 어떤 토픽인지 나타내는 변수

| 단어  | 토픽1   | 토픽2   | 토픽3   |
|-----|-------|-------|-------|
| 문서1 | 0.400 | 0.000 | 0.600 |
| 문서2 | 0.000 | 0.600 | 0.400 |
| 문서3 | 0.375 | 0.625 | 0.000 |
| 문서4 | 0.000 | 0.375 | 0.625 |
| 문서5 | 0.500 | 0.000 | 0.500 |
| 문서6 | 0.500 | 0.500 | 0.000 |

|                  |                   |                                 |                                                |                                                         | _                                                              |
|------------------|-------------------|---------------------------------|------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|
| •                | <b>▶</b> ◯        |                                 |                                                | <b>○</b>                                                | -(                                                             |
| $\theta_{\rm d}$ | Z <sub>d, n</sub> | W <sub>d,n</sub>                |                                                | $\boldsymbol{\beta}_{k}$                                | η                                                              |
|                  | $\theta_{\rm d}$  | $\theta_{\rm d}$ $Z_{\rm d, n}$ | $\theta_{\rm d}$ $Z_{\rm d, n}$ $W_{\rm d, n}$ | $\theta_{\rm d}$ $Z_{\rm d, n}$ $W_{\rm d, n}$ $NN$ $D$ | $\theta_{\rm d}$ $Z_{\rm d, n}$ $W_{\rm d, n}$ $\beta_{\rm k}$ |

출처: blei, Introduction to Probabilistic Topic Models (2011)

# **07** LDA

#### LDA의 구조

•  $w_{d,n}$ : d번째 문서 내에 n번째로 등장하는 단어

| 단어  | 토픽1   | 토픽2   | 토픽3   |
|-----|-------|-------|-------|
| 문서1 | 0.400 | 0.000 | 0.600 |
| 문서2 | 0.000 | 0.600 | 0.400 |
| 문서3 | 0.375 | 0.625 | 0.000 |
| 문서4 | 0.000 | 0.375 | 0.625 |
| 문서5 | 0.500 | 0.000 | 0.500 |
| 문서6 | 0.500 | 0.500 | 0.000 |



출처: blei, Introduction to Probabilistic Topic Models (2011)

#### LDA 수식

• LDA는 토픽의 단어 분포( $\beta$ )와 문서의 토픽 분포( $\theta$ )의 결합으로 문서 내 단어들이 생성된다고 가정, 즉 토픽의 단어 분포와 문서의 토픽 분포의 결합확률이 커질수록 LDA가 가정하는 문서 생성 과정이 합리적이라는 것을 의미

$$p(\beta_{1:K}, \theta_{1:D}, z_{1:D}w_{1:D})$$

$$= \prod_{i=1}^{K} p(\beta_{i}|\eta) \prod_{d=1}^{D} p(\theta_{d}|\alpha) \left\{ \prod_{n=1}^{N} p(z_{d,n}|\theta_{d}) p(w_{d,n}|\beta_{1:K}, z_{d,n}) \right\}$$

• 색이 다른 변수 제외 모두 미지수,  $p(z,\beta,\theta|w)$  를 최대로 하는  $z,\beta,\theta$  을 찾아야하며 즉 구해야 할 사후확률분포가  $p(z,\beta,\theta|w)$  =  $p(z,\beta,\theta,w)$  / p(w)

# **08** LDA와 깁스 샘플링

Artificial Intelligence (All refer

#### 깁스샘플링

나머지 변수는 고정시킨 채 하나의 랜덤변수만을 대상으로 표본을 뽑는 기법

- LDA에서는 사후확률분포  $p(z,\beta,\theta|w)$ 를 구할 때 토픽의 단어분포 $(\beta)$ 와 문서의 토픽 분포 $(\theta)$ 를 계산에서 생략하고 토픽(z)만을 추론
- $\mathbf{z}$ 만 알 수 있으면 나머지 변수 $(\boldsymbol{\beta}, \boldsymbol{\theta})$ 를 계산할 수 있도록 모델을 설계

#### d번째 문서 i번째 단어( $z_{d,i}$ )가 실제 j번째 토픽이 될 확률을 깁스샘플링을 적용해 도출

$$p(z_{d,i} = j | z_{-i}, w) = \frac{n_{d,k} + \alpha_j}{\sum_{i=1}^{K} (n_{d,i} + \alpha_i)} X \frac{v_{k,w_{d,n}} \beta_{w_{d,n}}}{\sum_{j=1}^{V} (v_{k,j} + \beta_j)} = AB$$

| 변수              | 내용                                     |
|-----------------|----------------------------------------|
| $n_{d,k}$       | k번째 토픽에 할당된 d번째 문서의 단어 빈도              |
| $v_{k,w_{d,n}}$ | 전체 말뭉치에서 k번째 토픽에 할당된 단어 $w_{d,n}$ 의 빈도 |
| $w_{d,n}$       | d번째 문서에 n번째로 등장한 단어                    |
| α               | 문서의 토픽 분포 생성을 위한 디리클레 분포 파라미터          |
| β               | 토픽의 단어 분포 생성을 위한 디리클레 분포 파라미터          |
| K               | 사용자가 지정하는 토픽 수                         |
| V               | 말뭉치에 등장하는 전체 단어 수                      |
| A               | d번째 문서가 k번째 토픽과 맺고 있는 연관성 정도           |
| В               | d번째 문서와 n번째 단어가 k번쨰 토픽과 맺고 있는 연관성 정도   |
|                 |                                        |

# 09 깁스 샘플링의 적용

Anthony intelligence (All refers

# 말뭉치 전체 문서 모든 단어에 토픽이 이미 할당 되었다고 가정

- LDA는 초기에 문서 전체 내 모든 단어의 주제를 랜덤하게 할당하고 학습을 시작
  - 문서의 단어별 토픽 분포: 단어 5개로 구성된 문서1의 모든 단어에 주제 할당

| $z_{1j}$  | 3   | 2  | 1  | 3 | 1  |
|-----------|-----|----|----|---|----|
| $W_{1,n}$ | 고양이 | 구름 | 나무 | 픨 | 겨울 |

|     | 1                  |                            |
|-----|--------------------|----------------------------|
| 토픽1 | 토픽2                | 토픽3                        |
| 1   | 0                  | 35                         |
| 50  | 0                  | 1                          |
|     |                    | •••                        |
|     | 토픽1<br>1<br>50<br> | 토픽1 토픽2<br>1 0<br>50 0<br> |

# 7

# 2 깁스 샘플링으로 잠재된 토픽이 무엇인지 추론

- 깁스 샘플링으로 문서1 두번째 단어의 잠재된 토픽이 무엇인지 추론
- 깁스 샘플링 적용을 위해 문서1의 두번째 단어의 토픽 정보를 지움
  - 문서1의 단어별 토픽 분포

| $z_{1j}$  | 3   | ?  | 1  | 3 | 1  |
|-----------|-----|----|----|---|----|
| $W_{1,n}$ | 고양이 | 구름 | 나무 | 별 | 겨울 |

| 단어  | 토픽1 | 토픽2 | 토픽3 |
|-----|-----|-----|-----|
| 고양이 | 1   | 0   | 35  |
| ••• | ••• |     |     |
| 구름  | 10  | 8-1 | 1   |

# 09 깁스 샘플링의 적용

Artificial Intelligence (All refer

# $oldsymbol{3}$ 토픽 추론 과정 그림으로 확인- 문서 내 단어들의 토픽 분포( heta)

깁스샘플링 수식의 A값은 같은 문서 내 단어들의 토픽 분포(θ)에 영향을 받는다.

| $z_{1j}$  | 3   | ?  | 1  | 3 | 1  |
|-----------|-----|----|----|---|----|
| $w_{1,n}$ | 고양이 | 구름 | 나무 | 별 | 겨울 |

토픽1

토픽2

토픽3

# 토픽 추론 과정 그림으로 확인 - 토픽 내 단어 분포(eta)

깁스샘플링 수식의 B값은 토픽 내 단어의 분포(β)에 영향을 받는다.

| 단어  | 토픽1 | 토픽2 | 토픽3 |
|-----|-----|-----|-----|
| 고양이 | 1   | 0   | 35  |
| *** | *** | *** | *** |
| 구름  | 10  | 8-1 | 1   |

토픽1 토픽2 토픽3



# 09 깁스 샘플링의 적용

# 5 토픽 추론 과정 그림으로 확인 - 토픽의 도출 : A와 B의 곱으로 도출

• 단어의 주제가 어떤 토픽이 될지 그 확률은 각각 넓이로 이해할 수 있다.



- ♦ 단어 임베딩의 의미와 필요성
- ♦ 단어 임베딩 종류와 알고리즘
- ♦ 단어 임베딩 평가 방식
- ♦ 단어 임베딩의 한계
- ♦ 단어 임베딩의 시각화
- ♦ 가중 임베딩, 문중 임베딩의 이해

EXPANSION

# 확장하기

- 단어 임베딩을 사용하는 이유는 무엇이고 그 종류에는 어떤 것들이 있을까요?
- 2. 단어 임베딩의 유사도 평가와 유추 평가는 무엇일까요?
- 3. 단어 임베딩의 유사도 평가 방법에는 어떤 것들이 있을까요?
- 4. 문장 임베딩은 무엇이고 어떤 모델들이 있을까요?

# 참고

REFERENCE

- ♦ 참고 사이트

  - 용어들에 대한 정의 : https://ko.wikipedia.org/wiki. 한국어 임베딩 저자 이기창님 블로그 : https://ratsgo.github.io 딥러닝을 이용한 자연어 처리 입문 : https://wikidocs.net/book/2155 퍼블릭에이아이(www.publicai.co.kr)
- ◆ 참고 서적- 이기창, 「한국어 임베딩」, 에이콘, 2019

♡ 서체 출처: 에스코어드림체-㈜에스코어, 나눔글꼴체-㈜네이버