SEMAINE DU 18/10 AU 22/10

1 Cours

Espaces vectoriels normés

Normes Définition. Rappel sur les normes euclidiennes. Normes usuelles sur \mathbb{K}^n :

$$||x||_1 = \sum_{i=1}^n |x_i| \qquad ||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2} \qquad ||x||_\infty = \max_{1 \le i \le n} |x_i|$$

Norme de la convergence uniforme sur l'espace des applications bornées sur un ensemble X à valeurs dans \mathbb{K} . Normes usuelles sur $\mathcal{C}^0([a,b],\mathbb{K})$:

$$||f||_1 = \int_a^b |f(t)| \, \mathrm{d}t \qquad \qquad ||f||_2 = \sqrt{\int_a^b |f(t)|^2 \, \mathrm{d}t} \qquad \qquad ||f||_\infty = \max_{[a,b]} |f|$$

Distance associée à une norme. Distance à une partie. Boules et sphères. Convexité des boules. Equivalence de normes. Toutes les normes d'un espace vectoriel de dimension finie sont équivalentes. Partie bornée, application bornée. Produit d'espaces vectoriels normés : norme produit.

Suites à valeurs dans un espace vectoriel normé Convergence/divergence. Unicité de la limite. Toute suite convergente est bornée. Opérations algébriques. Suites extraites et valeurs d'adhérence.

Séries à termes dans un espace vectoriel normé Convergence/divergence. Divergence grossière. Somme d'une série. Série télescopique. Convergence absolue. La convergence absolue implique la convergence en **dimension finie**.

Groupes

Généralités Définition. Puissance, inverse d'un élément d'un groupe. Exemples classiques : (\mathbb{K}^*, \times) où \mathbb{K} est un corps, $(S(E), \circ)$ (groupe des permutations de [1, n]), groupes linéaires $GL_n(\mathbb{K})$ et GL(E). Groupe produit.

Sous-groupes Définition. Exemples classiques : $\mathbb U$ est un sous-groupe de $(\mathbb C^*,\times)$, $\mathbb U_n$ est un sous-groupe de $(\mathbb U,\times)$, $O_n(\mathbb R)$ et O(E) sont respectivement des sous-groupes de $GL_n(\mathbb R)$ et GL(E) (E espace euclidien). Intersection de sous-groupes. Sous-groupe engendré par une partie/un élément. Les transpositions engendrent S_n . Sous-groupes de $(\mathbb Z,+)$.

Morphismes de groupes Définition. Image de l'élément neutre, d'une puissance, d'un inverse par un morphisme. Une composée de morphismes est un morphisme. L'image directe/réciproque d'un sous-groupe par un morphisme est un sous-groupe. Noyau et image d'un morphisme. Caractérisation de l'injectivité et de la surjectivité. Isomorphisme. La réciproque d'un isomorphisme est un automorphisme. Groupe des automorphismes d'un groupe.

Le groupe $\mathbb{Z}/n\mathbb{Z}$ Définition. Structure de groupe additif. Générateurs de $\mathbb{Z}/n\mathbb{Z}$.

2 Méthodes à maîtriser

- Pour montrer qu'une application est une norme, on peut essayer de l'exprimer à l'aide d'une norme connue.
- Calculer une norme uniforme d'une suite ou d'une fonction part étude de cette suite ou de cette fonction.
- Pour montrer que deux normes N_1 et N_2 ne sont pas équivalentes, on exhibe une suite u tel que $\frac{N_1(u_n)}{N_2(u_n)}$ tende vers 0 ou $+\infty$.
- Pour montrer qu'une suite diverge, on peut extraire deux suites convergeant vers des limites différentes.
- Pour montrer qu'une série à valeurs dans un espace vectoriel normé converge, on peut montrer qu'elle converge absolument. On est alors ramené à l'étude d'une série **numérique**.
- Pour montrer qu'un ensemble muni d'une loi est un groupe, on peut montrer que c'est un sous-groupe d'un groupe connu.
- Caractériser l'injectivité ou la surjectivité d'un morphisme par le noyau ou l'image.

3 Questions de cours

Série géométrique On admet l'existence d'une norme d'algèbre $\|\cdot\|$ sur $\mathcal{M}_n(\mathbb{K})$. Soit $A \in \mathcal{M}_n(\mathbb{K})$ telle que $\|A\| < 1$. Montrer que la série $\sum_{p \in \mathbb{N}} A^p$ converge absolument, que $I_n - A$ est inversible et que $\sum_{p=0}^{+\infty} A^p = (I_n - A)^{-1}$.

Sous-groupes de $(\mathbb{Z},+)$ Soit H un sous-groupe de $(\mathbb{Z},+)$. Montrer qu'il existe $a\in\mathbb{Z}$ tel que $H=a\mathbb{Z}$.

Générateurs de $\mathbb{Z}/n\mathbb{Z}$ Soit $k \in \mathbb{Z}$. Montrer que la classe de k dans $\mathbb{Z}/n\mathbb{Z}$ engendre le groupe $\mathbb{Z}/n\mathbb{Z}$ si et seulement si $k \wedge n = 1$.

Banque CCP Exercices 61, 78, 84.