Lecture 6

Aakash Jog

Thursday 13th November, 2014

Contents

1	Theorem: Derivative of Inverse Functions	2
	1.1 Examples	
	1.1.1 Example 1	2
2	Chain Rule	2
	2.1 Proof	2
3	Fermat Theorem	3
	3.1 Proof	3
4	Rolle Theorem	4
	4.1 Proof	4
5	Lagrange Theorem	4
6	Theorem	4

1 Theorem: Derivative of Inverse Functions

Let f(x) be invertible and continuous in an open interval about x_0 . If $\exists f'(x_0) \neq 0$, then, the inverse function x = g(y) is differentiable at $y = f(x_0)$ and

$$g'(y_0) = \frac{1}{f'(x_0)}$$

1.1 Examples

1.1.1 Example 1

$$y = f(x) = \tan x$$

$$\therefore (\tan^{-1})' y = \frac{1}{\tan' x}$$

$$= \frac{1}{\frac{1}{\cos^2 x}}$$

$$= \frac{1}{1 + \tan^2 x}$$

$$= \frac{1}{1 + y^2}$$

Similarly,

$$(\cot^{-1})'x = -\frac{1}{1+x^2}$$

2 Chain Rule

Let y = f(u) be differentiable at u_0 , and u = g(x) be differentiable at x_0 , s.t. $u_0 = g(x_0)$. Then, y = f(g(x)) is differentiable at x_0 , and,

$$y'(x_0) = f'(u_0) \cdot g'(x_0)$$

2.1 Proof

$$g'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x}$$

Therefore, by Theorem 2,

$$\therefore \frac{\Delta u}{\Delta x} = g'(x_0) + \alpha_1(\Delta x); \alpha_1(\Delta x) \to 0 \text{ if } \Delta x \to 0$$

$$\therefore \frac{\Delta y}{\Delta u} = f'(u_0) + \alpha_2(\Delta u); \alpha_1(\Delta u) \to 0 \text{ if } \Delta u \to 0$$

Therefore,

$$\Delta u = (g'(x_0) + \alpha_1)\Delta x$$

$$\Delta y = (f'(u_0) + \alpha_2)\Delta u$$

$$\therefore \Delta y = (f'(u_0) + \alpha_2)(g'(x_0) + \alpha_1)\Delta x$$

$$\therefore \frac{\Delta y}{\Delta x} = (f'(u_0) + \alpha_2)(g'(x_0) + \alpha_1)$$

$$\Delta x \to 0 \Rightarrow \Delta u \to 0, \alpha_1 \to 0$$

$$\Rightarrow \alpha_2 \to 0$$

Substituting,

$$y'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \left(f'(u_0) + a_2 \right) \left(g'(x_0) + \alpha_1 \right) = f'(u_0) \cdot g'(x_0)$$

3 Fermat Theorem

Let f(x) be defined on an open interval (a, b) and differentiable at $x_0 \in (a, b)$. If f(x) has its extremum at x_0 , then, $f'(x_0) = 0$

3.1 Proof

Assume that $f(x_0)$ is the maximum value of f(x) on (a, b). Then, $\forall \Delta x, f(x_0 + \Delta x) \leq f(x_0)$.

Case I: $\Delta x > 0$

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \le 0$$

$$\therefore \text{RHD} = \lim_{\Delta x \to 0^+} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \le 0$$

Case II: $\Delta x < 0$

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \ge 0$$

$$\therefore \text{LHD} = \lim_{\Delta x \to 0^-} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \ge 0$$

$$\exists f'(x_0) \Rightarrow \text{LHD} = \text{RHD}$$

 $\therefore 0 \le f'(x_0) \le 0$
 $\therefore f'(x_0) = 0$

4 Rolle Theorem

Let f(x) be defined on [a, b], s.t.

- (1) f is continuous on [a, b]
- (2) f is differentiable on (a, b)
- $(3) \ f(a) = f(b)$

Then, $\exists c \in (a, b)$, s.t. f'(c) = 0.

4.1 Proof

By Weirstrauss Theorem, as f(x) is continuous on [a, b], f(x) has its maximum M and minimum m on [a, b].

Case I: m = M

$$f(x) = \text{constant}$$

$$\therefore f'(x) = 0 \text{ on } [a, b]$$

Case II: m < M

At least one of m and M must be in (a, b), otherwise $f(a) \neq f(b)$, which contradicts (3).

Let $M = c \in (a, b)$. Therefore, by Theorem 3, f'(c) = 0

5 Lagrange Theorem

Let f(x) be defined on [a, b], s.t.

- (1) f is continuous on [a, b]
- (2) f is differentiable on (a, b)

Then,
$$\exists c \in (a, b)$$
, s.t. $f'(c) = \frac{f(b) - f(a)}{b - a}$

6 Theorem

Let f(x) be continuous on $(x_0 - \delta, x_0 + \delta)$ and differentiable on $(x_0 - \delta, x_0) \cup (x_0, x_0 + \delta)$.

If
$$\lim_{x \to x_0^+} f'(x) = \lim_{x \to x_0^-} f'(x) = L$$
, then, $\exists f'(x_0) = L$.