Name:	
Student number:	

- 1. What is the derivative of the function: $f(x) = \sin(nx + n)$, with respect to x; n is an integer number. [Total Marks 3]
 - [1 Mark] Define the change of variable
 - [1 Mark] Compute the change of variable, $\frac{du(x)}{dx}$
 - [1 Mark] Correct derivative

$$u(x) = nx + n$$
, where $\frac{du(x)}{dx} = n$ (1)

$$f(u(x)) = \sin(u(x)) \tag{2}$$

$$\frac{d f(x)}{d x} = \frac{d \sin(u(x))}{d u} \frac{du(x)}{d x} = \cos(u(x)) \ n = n \cos(nx + n)$$
(3)

Answer:

2. Compute the total derivative (or total differential) of the following state function,

$$f(T,P) = a_0 + b_0 P + (a_1 + b_1 P)T + (a_2 + b_2 P)T^{-2}$$

[Total Marks 4]

- [1 Mark] Define the total derivative without the partial derivatives
- [2 Marks] Compute $\frac{\partial f(T,P)}{dT}$, and $\frac{\partial f(T,P)}{dP}$
- [1 Mark] Correct answer

Total derivative:
$$df(T, P) = \left(\frac{\partial f(T, P)}{dT}\right)_P dT + \left(\frac{\partial f(T, P)}{dP}\right)_T dP$$
 (4)

$$\frac{\partial f(T,P)}{\partial T} = (a_1 + b_1 P) + (a_2 + b_2 P) \left(\frac{\partial T^{-2}}{\partial T}\right) \quad \text{where} \quad \frac{\partial T^{-2}}{\partial T} = \frac{-2}{T^3} \quad (5)$$

$$= (a_1 + b_1 P) - \frac{2(a_2 + b_2 P)}{T^3} \tag{6}$$

$$\frac{\partial f(T,P)}{dP} = b_0 + b_1 T + \frac{b_2}{T^2} \tag{7}$$

$$df(T,P) = \left((a_1 + b_1 P) - \frac{2(a_2 + b_2 P)}{T^3} \right) dT + \left(b_0 + b_1 T + \frac{b_2}{T^2} \right) dP$$
 (8)

3. What is the value of the following integral? $\int \text{ReLU}(x) dx$ The ReLU function is defined as,

$$ReLU(x) = \begin{cases} 0 & \text{if} \quad x < 0 \\ x & \text{if} \quad x \ge 0 \end{cases}$$

• (Tip) split the integral into two integrals each with a different integration range.

[Total Marks 3]

- [1 Mark] Split the integration range
- [1 Mark] Compute each integral
- [1 Mark] Correct answer

$$\int \operatorname{ReLU}(x)dx = \int_{-\infty}^{0} \operatorname{ReLU}(x)dx + \int_{0}^{\infty} \operatorname{ReLU}(x)dx$$
(9)

$$\int_{-\infty}^{0} \text{ReLU}(x) dx = \int_{-\infty}^{0} 0 \, dx = C_1 = 0$$
 (10)

$$\int_{-\infty}^{0} \text{ReLU}(x)dx = \int_{0}^{\infty} x \, dx = \frac{x^2}{2} + C$$

$$\tag{11}$$

$$\int \text{ReLU}(x)dx = \frac{x^2}{2} + C \tag{12}$$

Answer:

- 4. Consider the following matrices and vectors with their specified dimensions:
 - **A** is a (3,2) matrix
 - **B** is a (2,2) matrix
 - **C** is a (4,3) matrix
 - \bullet **v** is a column vector with 2 elements
 - w is a column vector with 3 elements
 - u is a column vector with 4 elements

Mark all expressions that are **valid operations** (multiplication, addition, or subtraction) based on their dimensions:

A) Av B) I

 $\mathbf{B}) \mathbf{B} \mathbf{v} + \mathbf{w}$

C) Cu

D) A v - B v

 $\mathbf{E}) \mathbf{w} + \mathbf{u}$

[Total Marks 1]

- A $\mathbf{v} \to (3,2)(2,1) \to (3,1)$, valid operation
- $\mathbf{B}\mathbf{v} + \mathbf{w} \to (2,2)(2,1) + (3,1) \to (2,1) + (3,1)$, not valid operation
- $\mathbf{C}\mathbf{u} \to (4,3)(4,1)$, not valid operation
- $\mathbf{A}\mathbf{v} \mathbf{B}\mathbf{v} \to (3,1) + (2,1)$, not valid operation
- $\mathbf{A}\mathbf{v} \mathbf{B}\mathbf{v} \to (3,1) + (2,1)$, not valid operation
- $\mathbf{w} + \mathbf{u} \to (3,1) + (4,1)$, not valid operation

Answer:_

5. Let's consider a function of two variables, f(x,y). Select the option that contains all the unique second order partial derivatives.

A)
$$\left[\frac{\partial^2 f(xy)}{\partial^2 x^2}, \frac{\partial^2 f(xy)}{\partial^2 y^2}\right]$$

$$\mathbf{B})\ \left[\frac{\partial^2 f(xy)}{\partial^2 y^2}, \frac{\partial^2 f(xy)}{\partial x \partial y}, \frac{\partial^2 f(xy)}{\partial y \partial x}\right]$$

C)
$$\left[\frac{\partial^2 f(xy)}{\partial y \partial x}, \frac{\partial^2 f(xy)}{\partial^2 y^2}, \frac{\partial^2 f(xy)}{\partial^2 x^2}\right]$$

$$\mathbf{D}) \ \left[\frac{\partial^2 f(xy)}{\partial^2 y^2}, \frac{\partial^2 f(xy)}{\partial x \partial y}, \frac{\partial^2 f(xy)}{\partial^2 x^2}, \frac{\partial^2 f(xy)}{\partial y \partial x} \right]$$

(Tip): You can use $f(xy) = f_0(x)f_1(y)$ or $f(xy) = f_0(x) + f_1(y)$ to help you in this question; f_0 and f_1 are functions of single variable.

[Total Marks 2]

• Correct answer is C)

$$\frac{\partial^2 f(xy)}{\partial x \partial y} = \frac{\partial^2 f(xy)}{\partial y \partial x} \tag{13}$$

Answer:_

6. The **trace** of a matrix, $Tr(\cdot)$, is defined as sum of the elements of the diagonal. Compute $Tr(\mathbf{A})$ for,

$$\mathbf{A} = \begin{bmatrix} 2 & -3 & -2 & 0 & -2 \\ -2 & -2 & 2 & 1 & -3 \\ -2 & 0 & -2 & -1 & 0 \\ -1 & 2 & 2 & 0 & -3 \\ -3 & -2 & 2 & 2 & -2 \end{bmatrix}$$

[Total Marks 2]

$$\operatorname{Tr}(\mathbf{A}) = \sum_{i=1}^{5} a_{ii} = \underbrace{2}_{a_{11}} + \underbrace{(-2)}_{a_{22}} + \underbrace{(-2)}_{a_{33}} + \underbrace{(-2)}_{a_{44}} + \underbrace{(-2)}_{a_{55}} = -4$$
(14)

Answer:____

7. Compute the determinant of the matrix C,

$$\mathbf{C} = \begin{bmatrix} -2 & -3 \\ 0 & -1 \end{bmatrix}$$

[Total Marks 2]

$$\det(\mathbf{C}) = (-2)(-1) - (0)(-3) = 2 \tag{15}$$

8. What are the number of rows and columns and the result of $\mathbf{u}\mathbf{v}^{\top}$, given

$$\mathbf{u} = \begin{pmatrix} 5\\10 \end{pmatrix} \quad \mathbf{v} = \begin{pmatrix} 1\\2\\3 \end{pmatrix}$$

[Total Marks 2]

• [1 Mark] $\mathbf{u}\mathbf{v}^{\top} \to (2,1)(1,3) \to (2,3)$

$$\mathbf{u}\mathbf{v}^{\top} = \begin{bmatrix} 5\\10 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 10 & 15\\10 & 20 & 30 \end{bmatrix}$$
 (16)

Answer:____

9. Solve the following system of linear equations using any method.

$$\begin{array}{rcl}
 x_0 - 7x_1 & = & 11 \\
 5x_0 + 2x_1 & = & -18
 \end{array}$$

[Total Marks 4]

$$x_0 = 11 + 7x_1 \tag{17}$$

$$5(11+7x_1) + 2x_1 = -18 (18)$$

$$37x_1 = -18 - 55 = -73\tag{19}$$

$$x_1 = -\frac{73}{37} = -1.973\tag{20}$$

$$x_0 = 11 + 7(1.973) = \frac{37 \times 11 - 7 \times 73}{37} = -\frac{104}{37} = -2.81$$
 (21)

Answer

- 10. Select the correct answer. For a state function in thermodynamics, if the system returns to its initial state, the change in the state function is always greater than zero.
 - A) True B) False

[Total Marks 1]

• B) is the correct answer.

State functions are path independent, and only depend between the initial and final state.

- 11. According to the second law of thermodynamics, which of the following must be true for a process to be spontaneous?
 - A) $\Delta S_{\text{system}} > 0$
 - **B)** $\Delta S_{\text{surroundings}} > 0$
 - C) $\Delta S_{\text{universe}} > 0$
 - **D)** $\Delta S_{\text{system}} = 0$

[Total Marks 1]

• C) is the correct answer.

The $\Delta S_{\text{universe}}$ should always increase for a process to be spontaneous.

Answer:____

- 12. Which of the following thermodynamic quantities are **not** state functions?
 - **A)** *H* (Enthalpy)
 - **B)** G (Gibbs free energy)
 - **C)** T (Temperature)
 - **D)** q (Heat)
 - **E)** S (Entropy)
 - \mathbf{F}) P (Pressure)
 - **G)** W (Work)
 - **H)** U (Internal energy)
 - I) V (Volume)

[Total Marks 2]

• **D**) and **G**) are the correct answers.

Answer:_____

- 13. Which of the following statements about isobaric, isochoric, and isothermal processes is **True**?
 - A) In an isobaric process, the pressure remains constant while the volume changes.
 - B) In an isochoric process, both temperature and pressure remain constant.
 - C) In an isothermal process, the volume remains constant and temperature changes.
 - **D)** In an isobaric process, the internal energy of the system does not change.

[Total Marks 1]

• A) is the correct answer.

An an isobaric process means, there is no change in the pressure.

14. Which of the following is true for a reversible adiabatic process?

The first law of thermodynamics is given by $\Delta U = q + w$, where ΔU is the change in internal energy, q is the heat added to the system, and w is the work done on the system.

- **A)** q = 0, so $\Delta U = w$
- **B)** w = 0, so $\Delta U = q$
- C) $\Delta U = 0$, so q = -w
- **D)** $\Delta U = q + w$, as both heat and work are nonzero

[Total Marks 1]

• A) is the correct answer.

An adiabatic process means, there is no exchange of heat, $\delta q = 0$, therefore, $\Delta U = w$.

Answer:_

15. Let the matrix \mathbf{A} be defined as:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 0 & 4 \\ 5 & 0 \end{bmatrix}$$

Answer the following

[Total Marks 5]

• What is \mathbf{A}^{\top} and its number of rows and columns?

[1 Mark] $\mathbf{A}^{\top} \rightarrow (2,3)$

$$\mathbf{A}^{\top} = \begin{bmatrix} 1 & 0 & 5 \\ 2 & 4 & 0 \end{bmatrix} \tag{22}$$

- \bullet Compute $\mathbf{A}^{\top}\mathbf{A}$, and state the number of rows and columns of this matrix-matrix multiplication.
- [1 Mark] $\mathbf{A}^{\top} \mathbf{A} \to (2,3)(3,2) \to (2,2)$
- [1 Mark]

$$\mathbf{A}^{\top} \mathbf{A} = \begin{bmatrix} 26 & 2\\ 2 & 20 \end{bmatrix} \tag{23}$$

- \bullet Compute $\mathbf{A} \ \mathbf{A}^{\top}$, and state the number of rows and columns of this matrix-matrix multiplication.
- [1 Mark] $\mathbf{A} \mathbf{A}^{\top} \to (3,2)(2,3) \to (3,3)$
- 1 Mark

$$\mathbf{A} \, \mathbf{A}^{\mathsf{T}} = \begin{bmatrix} 5 & 8 & 5 \\ 8 & 16 & 0 \\ 5 & 0 & 25 \end{bmatrix} \tag{24}$$

Answer: