PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

		THE THIE PROPERTY COUNTY OF TREATT (FCT)	
(51) International Patent Classification 6:	A1	(11) International Publication Number: WO 99/51753	
C12N 15/63, 15/31, C07K 14/245, C12N 15/62, C12P 21/02		(43) International Publication Date: 14 October 1999 (14.10.99)	
(21) International Application Number: PCT/CAS		Bankers Hall East, 855 - 2nd Street S.W., Calgary, Alberta	
(22) International Filing Date: 29 March 1999 (2	29.03.9	T2P 4K7 (CA).	
(30) Priority Data: 09/053,197 1 April 1998 (01.04.98) 09/085,761 28 May 1998 (28.05.98)	ບ ບ	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
(63) Related by Continuation (CON) or Continuation-in- (CIP) to Earlier Application US 09/085,76 Filed on 28 May 1998 (23	= -j - i - i - orp i arron of the time time for amending the		
(71) Applicant (for all designated States except US): THE G NORS OF THE UNIVERSITY OF ALBERTA [C			

(72) Inventors; and

2C2 (CA).

(75) Inventors/Applicants (for US only): WEINER, Joel, Hirsch [CA/CA]; 41 Fairway Drive, Edmonton, Alberta T6J 2C2 (CA). TURNER, Raymond, Joseph [CA/CA]; 3707 Centre B. Street N.W., Calgary, Alberta T2K 0W1 (CA).

(54) Title: COMPOSITIONS AND METHODS FOR PROTEIN SECRETION

2J2.27 Walter Mackenzie Center, Edmonton, Alberta T6J

(57) Abstract

The present invention relates to compositions and methods for secretion of functional proteins in a soluble form by host cells. In particular, the invention relates to membrane targeting and translocation proteins, MttA, MttB and MttC and to variants and homologs thereof. The membrane targeting and translocation proteins are useful in targeting protein expression to the periplasm of gram negative bacteria and to extracellular media of other host cells. Such expression allows secretion of expressed proteins of interest in a functional and soluble form, thus facilitating purification and increasing the yield of functional proteins of interest.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑÜ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DE	Denniark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

COMPOSITIONS AND METHODS FOR PROTEIN SECRETION

FIELD OF THE INVENTION

The present invention relates to compositions and methods for secretion of functional proteins in a soluble form by host cells. In particular, the invention relates to proteins involved in targeting expression of a protein of interest extracellularly and to the periplasm, thus facilitating generation of a functional soluble protein.

BACKGROUND OF THE INVENTION

10

5

Proteins having clinical or industrial value may be obtained using techniques which facilitate their synthesis in bacterial or in eukaryotic cell cultures. However, once synthesized, there are often problems in recovering these recombinant proteins in substantial yields and in a useful form. For example, recombinant proteins expressed in bacteria often accumulate in the bacterial cytoplasm as insoluble aggregates known as inclusion bodies [Marston, (1986) Biochem. J. 240:1-12; Schein (1989) Biotechnology 7:1141-1149]. Similarly, recombinant transmembrane proteins which contain both hydrophobic and hydrophilic regions are intractable to solubilization.

20

15

While transmembrane recombinant proteins and recombinant proteins which are expressed in the cytoplasm may be solubilized by use of strong denaturing solutions (e.g., urea, guanidium salts, detergents, Triton, SDS detergents, etc.), solubilization efficiency is nevertheless variable and there is no general method of solubilization which works for most proteins. Additionally, many proteins which are present at high concentrations precipitate out of solution when the solubilizing agent is removed. Yet a further drawback to solubilization of recombinant proteins is that denaturing chemicals (e.g., guanidium salts and urea) contain reactive primary amines which swamp those of the protein, thus interfering with the protein's reactive amine groups.

25

Thus, what is needed is a method for producing soluble proteins.

SUMMARY OF THE INVENTION

30

The present invention provides a recombinant polypeptide comprising at least a portion of an amino acid sequence selected from the group consisting of SEQ ID NO:47 and 49. SEQ ID NO:7 and variants and homologs thereof, and SEQ ID NO:8 and variants and homologs thereof.

This invention further provides an isolated nucleic acid sequence encoding at least a portion of an amino acid sequence selected from the group consisting of SEQ ID NOs:47 and 49, SEQ ID NO:7 and variants and homologs thereof, and SEQ ID NO:8 and variants and homologs thereof. In one preferred embodiment, the nucleic acid sequence is contained on a recombinant expression vector. In a more preferred embodiment, the expression vector is contained within a host cell.

5

10

15

20

25

30

BN60000 - MO 002122341 1 -

Also provided by the present invention is a nucleic acid sequence that hybridizes under stringent conditions to a nucleic acid sequence encoding an amino acid sequence selected from the group consisting of SEQ ID NO:7 and variants and homologs thereof, and SEQ ID NO:8 and variants and homologs thereof.

The invention additionally provides a method for expressing a nucleotide sequence of interest in a host cell to produce a soluble polypeptide sequence, the nucleotide sequence of interest when expressed in the absence of an operably linked nucleic acid sequence encoding a twin-arginine signal amino acid sequence produces an insoluble polypeptide, comprising: a) providing: i) the nucleotide sequence of interest encoding the insoluble polypeptide; ii) the nucleic acid sequence encoding the twin-arginine signal amino acid sequence; and iii) the host cell, wherein the host cell comprises at least a portion of an amino acid sequence selected from the group consisting of SEQ ID NO:47 and 49, SEQ ID NO:7 and variants and homologs thereof, and SEQ ID NO:8 and variants and homologs thereof; b) operably linking the nucleotide sequence of interest to the nucleic acid sequence to produce a linked polynucleotide sequence; and c) introducing the linked polynucleotide sequence into the host cell under conditions such that the fused polynucleotide sequence is expressed and the soluble polypeptide is produced.

Without intending to limit the location of the insoluble polypeptide, in one preferred embodiment, the insoluble polypeptide is comprised in an inclusion body. In another preferred embodiment, the insoluble polypeptide comprises a cofactor. In a more preferred embodiment, the cofactor is selected from the group consisting of iron-sulfur clusters, molybdopterin, polynuclear copper, tryptophan tryptophylquinone, and flavin adenine dinucleotide.

Without limiting the location of the soluble polypetide to any particular location, in one preferred embodiment, the soluble polypeptide is comprised in periplasm of the host cell. In an alternative preferred embodiment, the host cell is cultured in medium, and the soluble polypeptide is contained in the medium.

The methods of the invention are not intended to be limited to any particular cell. However, in one preferred embodiment, the cell is *Escherichia coli*. In a more preferred embodiment, the *Escherichia coli* cell is D-43.

It is not intended that the invention be limited to a particular twin-arginine signal amino acid sequence. In a preferred embodiment, the twin-arginine signal amino acid sequence is selected from the group consisting of SEQ ID NO:41 and SEQ ID NO:42.

The invention further provides a method for expressing a nucleotide sequence of interest encoding an amino acid sequence of interest in a host cell, comprising: a) providing: i) the host cell; ii) the nucleotide sequence of interest; iii) a first nucleic acid sequence encoding twin-arginine signal amino acid sequence; and iv) a second nucleic acid sequence encoding at least a portion of an amino acid sequence selected from the group consisting of SEQ ID NOs:47 and 49, SEQ ID NO:7 and variants and homologs thereof, and SEQ ID NO:8 and variants and homologs thereof; b) operably fusing the nucleotide sequence of interest to the first nucleic acid sequence to produce a fused polynucleotide sequence; and c) introducing the fused polynucleotide sequence and the second nucleic acid sequence into the host cell under conditions such that the at least portion of the amino acid sequence selected from the group consisting of SEQ ID NOs:47 and 49, SEQ ID NO:7 and variants and homologs thereof, and SEQ ID NO:8 and variants and homologs thereof is expressed, and the fused polynucleotide sequence is expressed to produce a fused polypeptide sequence comprising the twin-arginine signal amino acid sequence and the amino acid sequence of interest.

The location of the expressed amino acid sequence of interest is not intended to be limited to any particular location. However, in one preferred embodiment, the expressed amino acid sequence of interest is contained in periplasm of the host cell. In a particularly preferred embodiment, the expressed amino acid sequence of interest is soluble. Also without intending to limit the location of the expressed amino acid sequence of interest, in an alternative preferred embodiment, the host cell is cultured in medium, and the expressed amino acid sequence of interest is contained in the medium. In a particularly preferred embodiment, the expressed amino acid sequence of interest is soluble.

30

25

5

10

15

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows anaerobic growth of strain a) HB101 and b) D-43 in the presence of various electron acceptors: (Δ) 40 mM nitrate, (\Box) 35 mM fumarate, (\bigcirc) 100 mM TMAO or (\Diamond) 70 mM DMSO.

Figure 2 shows a Western blot analysis of washed membranes and soluble fractions of HB101 and D-43 harboring pDMS160 expressing DmsABC.

Figure 3 shows A) Nitrate-stained polyacrylamide gel containing periplasmic proteins, membrane proteins and cytoplasmic proteins from HB101 and D-43, B) Nitrite-stained polyacrylamide gel containing periplasmic proteins from HB101 and D-43, and C) TMAO-stained polyacrylamide gel containing periplasmic proteins from HB101 and D-43.

10

Figure 4 shows the results of a Western blot analysis of the cellular localization of DmsAB in A) HB101 expressing either native DmsABC (pDMS160), DmsABΔC (pDMSC59X), or FrdABΔCD, and B) equivalent lanes as in Figure 4A, but with the same plasmids in D-43.

15

Figure 5 shows a gene map of contig AE00459 noting the positions of the ORFs and the clones used in this investigation.

Figure 6 shows the amino acid sequence (SEQ ID NO:1) of MttA aligned with the amino acid sequence of YigT of *Haemophilus influenzae* (SEQ ID NO:2).

20

Figure 7 shows the nucleotide sequence (SEQ ID NO:3) of the *mttABC* operon which contains the nucleotide sequence of the three open reading frames, ORF RF[3] nucleotides 5640-6439 (SEQ ID NO:4), ORF RF[2] nucleotides 6473-7246 (SEQ ID NO:5), and ORF RF[1] nucleotides 7279-8070 (SEQ ID NO:6) which encode the amino acid sequences of MttA (SEQ ID NO:1), MttB (SEQ ID NO:7) and MttC (SEQ ID NO:8), respectively.

25

Figure 8 shows an alignment of the amino acid sequence of the *E. coli* MttA sequence (SEQ ID NO:1) with amino acid sequences of Hcf106-ZEAMA (SEQ ID NO:9), YBEC-ECOLI (SEQ ID NO:10), SYNEC (SEQ ID NO:11), ORF13-RHOER (SEQ ID NO:12), PSEST-ORF57 (SEQ ID NO:13), YY34-MYCLE (SEQ ID NO:14), HELPY (SEQ ID NO:15), HAEIN (SEQ ID NO:16), BACSU (SEQ ID NO:17), and ORF4-AZOCH (SEQ ID NO:18).

30

DISCOVIDE MAIO COSTESANT

Figure 9 shows an alignment of the amino acid sequence of the *E. coli* MttB sequence (SEQ ID NO:7) with amino acid sequences of YC43-PROPU (SEQ ID NO:19), YM16-MARPO (SEQ ID NO:20), ARATH (SEQ ID NO:21), Ymf16-RECAM (SEQ ID NO:22), Y194-SYNY3 (SEQ ID NO:23), YY33-MYCTU (SEQ ID NO:24), HELPY (SEQ ID

NO:25), YigU-HAEIN (SEQ ID NO:26), YebT-BACSU (SEQ ID NO:27), YH25-AZOCH (SEO ID NO:28) and ARCFU (SEQ ID NO:29).

Figure 10 shows an alignment of the amino acid sequence of the *E. coli* MttC sequence (SEQ ID NO:8) with amino acid sequences of YCFH-ECOLI (SEQ ID NO:30). YJJV-ECOLI (SEQ ID NO:31), METTH (SEQ ID NO:32), Y009-MYCPN (SEQ ID NO:33). YcfH-Myctu (SEQ ID NO:34), HELPY (SEQ ID NO:35), YCFH-HAEIN (SEQ ID NO:36), YABC-BACSU (SEQ ID NO:37), SCHPO (SEQ ID NO:38), CAEEL (SEQ ID NO:39) and Y218-HUMAN (SEQ ID NO:40).

Figure 11 shows the nucleotide sequence (SEQ ID NO:45) of the *mttABC* operon which contains the *mttA1* nucleotide sequence (SEQ ID NO:46) (from nucleic acid number 642 to nucleic acid number 953) encoding the amino acid sequence of MttA1 (SEQ ID NO:47), and the *mttA2* nucleotide sequence (SEQ ID NO:48) (from nucleic acid number 558 to nucleic acid number 1472) encoding the amino acid sequence of MttA2 (SEQ ID NO:49).

DEFINITIONS

5

10

15

20

25

30

To facilitate understanding of the invention, a number of terms are defined below.

The term "foreign gene" refers to any nucleic acid (e.g., gene sequence) which is introduced into a cell by experimental manipulations and may include gene sequences found in that cell so long as the introduced gene contains some modification (e.g., a point mutation, the presence of a selectable marker gene, etc.) relative to the naturally-occurring gene.

The term "gene" refers to a DNA sequence that comprises control and coding sequences necessary for the production of RNA or a polypeptide. The polypeptide can be encoded by a full length coding sequence or by any portion of the coding sequence.

The terms "gene of interest" and "nucleotide sequence of interest" refer to any gene or nucleotide sequence, respectively, the manipulation of which may be deemed desirable for any reason, by one of ordinary skill in the art. Such nucleotide sequences include, but are not limited to, coding sequences of structural genes (e.g., reporter genes, selection marker genes, oncogenes, drug resistance genes, growth factors, etc.), and of regulatory genes (e.g., activator protein 1 (AP1), activator protein 2 (AP2), Sp1, etc.). Additionally, such nucleotide sequences include non-coding regulatory elements which do not encode an mRNA or protein product, such as for example, a promoter sequence, an enhancer sequence, etc.

As used herein the term "coding region" when used in reference to a structural gene refers to the nucleotide sequences which encode the amino acids found in the nascent

polypeptide as a result of translation of an mRNA molecule. The coding region is bounded. in eukaryotes, on the 5' side by the nucleotide triplet "ATG" which encodes the initiator methionine and on the 3' side by one of the three triplets which specify stop codons (i.e., TAA, TAG, TGA).

5

Transcriptional control signals in eukaryotes comprise "promoter" and "enhancer" elements. Promoters and enhancers consist of short arrays of DNA sequences that interact specifically with cellular proteins involved in transcription [Maniatis, et al., Science 236:1237 (1987)]. Promoter and enhancer elements have been isolated from a variety of eukaryotic sources including genes in yeast, insect and mammalian cells and viruses (analogous control elements, i.e., promoters, are also found in prokaryotes). The selection of a particular promoter and enhancer depends on what cell type is to be used to express the protein of interest. Some eukaryotic promoters and enhancers have a broad host range while others are functional in a limited subset of cell types [for review see Voss, et al., Trends Biochem. Sci., 11:287 (1986) and Maniatis, et al., Science 236:1237 (1987)].

15

10

The term "wild-type" refers to a gene or gene product which has the characteristics of that gene or gene product when isolated from a naturally occurring source. A wild-type gene is that which is most frequently observed in a population and is thus arbitrarily designed the "normal" or "wild-type" form of the gene. In contrast, the term "modified" or "mutant" refers to a gene or gene product which displays modifications in sequence and or functional properties (*i.e.*, altered characteristics) when compared to the wild-type gene or gene product. It is noted that naturally-occurring mutants can be isolated; these are identified by the fact that they have altered characteristics when compared to the wild-type gene or gene product.

20

25

The term "expression vector" as used herein refers to a recombinant DNA molecule containing a desired coding sequence and appropriate nucleic acid sequences necessary for the expression of the operably linked coding sequence in a particular host cell. Nucleic acid sequences necessary for expression in prokaryotes include a promoter, optionally an operator sequence, a ribosome binding site and possibly other sequences. Eukaryotic cells are known to utilize promoters, enhancers, and termination and polyadenylation signals.

30

The terms "targeting vector" or "targeting construct" refer to oligonucleotide sequences comprising a gene of interest flanked on either side by a recognition sequence which is capable of homologous recombination of the DNA sequence located between the flanking recognition sequences into the chromosomes of the target cell or recipient cell. Typically, the targeting vector will contain 10 to 15 kb of DNA homologous to the gene to be recombined:

this 10 to 15 kb of DNA is generally divided more or less equally on each side of the selectable marker gene. The targeting vector may contain more than one selectable maker gene. When more than one selectable marker gene is employed, the targeting vector preferably contains a positive selectable marker (e.g., the neo gene) and a negative selectable marker (e.g., the Herpes simplex virus tk (HSV-tk) gene). The presence of the positive selectable marker permits the selection of recipient cells containing an integrated copy of the targeting vector whether this integration occurred at the target site or at a random site. The presence of the negative selectable marker permits the identification of recipient cells containing the targeting vector at the targeted site (i.e., which has integrated by virtue of homologous recombination into the target site); cells which survive when grown in medium which selects against the expression of the negative selectable marker do not contain a copy of the negative selectable marker. Integration of a replacement-type vector results in the insertion of a selectable marker into the target gene. Replacement-type targeting vectors may be employed to disrupt a gene resulting in the generation of a null allele (i.e., an allele incapable of expressing a functional protein; null alleles may be generated by deleting a portion of the coding region, deleting the entire gene, introducing an insertion and/or a frameshift mutation, etc.) or may be used to introduce a modification (e.g., one or more point mutations) into a gene.

5

10

15

20

25

30

The terms "in operable combination", "in operable order" and "operably linked" as used herein refer to the linkage of nucleic acid sequences in such a manner that a nucleic acid molecule capable of directing the transcription of a given gene and/or the synthesis of a desired protein molecule is produced. The term also refers to the linkage of amino acid sequences in such a manner so that a functional protein is produced.

As used herein, the terms "vector" and "vehicle" are used interchangeably in reference to nucleic acid molecules that transfer DNA segment(s) from one cell to another.

The term "recombinant DNA molecule" as used herein refers to a DNA molecule which is comprised of segments of DNA joined together by means of molecular biological techniques.

The term "recombinant protein" or "recombinant polypeptide" as used herein refers to a protein molecule which is expressed using a recombinant DNA molecule.

The term "transfection" as used herein refers to the introduction of a transgene into a cell. The term "transgene" as used herein refers to any nucleic acid sequence which is introduced into the genome of a cell by experimental manipulations. A transgene may be an

5

10

15

20

25

30

"endogenous DNA sequence," or a "heterologous DNA sequence" (i.e., "foreign DNA"). The term "endogenous DNA sequence" refers to a nucleotide sequence which is naturally found in the cell into which it is introduced so long as it does not contain some modification (e.g., a point mutation, the presence of a selectable marker gene, etc.) relative to the naturallyoccurring sequence. The term "heterologous DNA sequence" refers to a nucleotide sequence which is not endogenous to the cell into which it is introduced. Heterologous DNA includes a nucleotide sequence which is ligated to, or is manipulated to become ligated to, a nucleic acid sequence to which it is not ligated in nature, or to which it is ligated at a different location in nature. Heterologous DNA also includes a nucleotide sequence which is naturally found in the cell into which it is introduced and which contains some modification relative to the naturally-occurring sequence. Generally, although not necessarily, heterologous DNA encodes RNA and proteins that are not normally produced by the cell into which it is introduced. Examples of heterologous DNA include reporter genes, transcriptional and translational regulatory sequences, DNA sequences which encode selectable marker proteins (e.g., proteins which confer drug resistance), etc. Yet another example of a heterologous DNA includes a nucleotide sequence which encodes a ribozyme which is found in the cell into which it is introduced, and which is ligated to a promoter sequence to which it is not naturally ligated in that cell.

Transfection may be accomplished by a variety of means known to the art including calcium phosphate-DNA co-precipitation, DEAE-dextran-mediated transfection, polybrene-mediated transfection, electroporation, microinjection, liposome fusion, lipofection, protoplast fusion, retroviral infection, biolistics (*i.e.*, particle bombardment) and the like.

The term "stable transfection" or "stably transfected" refers to the introduction and integration of a transgene into the genome of the transfected cell. The term "stable transfectant" refers to a cell which has stably integrated one or more transgenes into the genomic DNA.

As used herein the term "portion" when in reference to a gene refers to fragments of that gene. The fragments may range in size from 5 nucleotide residues to the entire nucleotide sequence minus one nucleic acid residue. Thus, "an oligonucleotide comprising at least a portion of a gene" may comprise small fragments of the gene or nearly the entire gene.

The term "portion" when used in reference to a protein (as in a "portion of a given protein") refers to fragments of that protein. The fragments may range in size from four amino acid residues to the entire amino acid sequence minus one amino acid.

5

10

15

20

25

30

The term "isolated" when used in relation to a nucleic acid, as in "an isolated oligonucleotide" refers to a nucleic acid sequence that is identified and separated from at least one contaminant nucleic acid with which it is ordinarily associated in its natural source. Isolated nucleic acid is nucleic acid present in a form or setting that is different from that in which it is found in nature. In contrast, non-isolated nucleic acids are nucleic acids such as DNA and RNA which are found in the state they exist in nature. For example, a given DNA sequence (e.g., a gene) is found on the host cell chromosome in proximity to neighboring genes; RNA sequences, such as a specific mRNA sequence encoding a specific protein, are found in the cell as a mixture with numerous other mRNAs which encode a multitude of proteins. However, isolated nucleic acid sequences encoding MttA1, MttA2, MttB or MttC polypeptides include, by way of example, such nucleic acid sequences in cells ordinarily expressing MttA1, MttA2, MttB or MttC polypeptides, respectively, where the nucleic acid sequences are in a chromosomal or extrachromosomal location different from that of natural cells, or are otherwise flanked by a different nucleic acid sequence than that found in nature. The isolated nucleic acid or oligonucleotide may be present in single-stranded or doublestranded form. When an isolated nucleic acid or oligonucleotide is to be utilized to express a protein, the oligonucleotide will contain at a minimum the sense or coding strand (i.e., the oligonucleotide may be single-stranded). Alternatively, it may contain both the sense and anti-sense strands (i.e., the oligonucleotide may be double-stranded).

As used herein, the term "purified" or "to purify" refers to the removal of undesired components from a sample. For example, where recombinant MttA1, MttA2, MttB or MttC polypeptides are expressed in bacterial host cells, the MttA1, MttA2, MttB or MttC polypeptides are purified by the removal of host cell proteins thereby increasing the percent of recombinant MttA1, MttA2, MttB or MttC polypeptides in the sample.

As used herein, the term "substantially purified" refers to molecules, either nucleic or amino acid sequences, that are removed from their natural environment, isolated or separated, and are at least 60% free, preferably 75% free, and more preferably 90% free from other components with which they are naturally associated. An "isolated polynucleotide" is therefore a substantially purified polynucleotide.

The term "recombinant DNA molecule" as used herein refers to a DNA molecule which is comprised of segments of DNA joined together by means of molecular biological techniques.

The term "recombinant protein" or "recombinant polypeptide" as used herein refers to a protein molecule which is expressed using a recombinant DNA molecule.

The term "homology" when used in relation to nucleic acids refers to a degree of complementarity. There may be partial homology or complete homology (i.e., identity). A partially complementary sequence is one that at least partially inhibits a completely complementary sequence from hybridizing to a target nucleic acid is referred to using the functional term "substantially homologous." The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or Northern blot, solution hybridization and the like) under conditions of low stringency. A substantially homologous sequence or probe (i.e., an oligonucleotide which is capable of hybridizing to another oligonucleotide of interest) will compete for and inhibit the binding (i.e., the hybridization) of a completely homologous sequence to a target under conditions of low stringency. This is not to say that conditions of low stringency are such that non-specific binding is permitted; low stringency conditions require that the binding of two sequences to one another be a specific (i.e., selective) interaction. The absence of nonspecific binding may be tested by the use of a second target which lacks even a partial degree of complementarity (e.g., less than about 30% identity); in the absence of non-specific binding the probe will not hybridize to the second non-complementary target.

Low stringency conditions when used in reference to nucleic acid hybridization comprise conditions equivalent to binding or hybridization at 42°C in a solution consisting of 5X SSPE (43.8 g/l NaCl, 6.9 g/l NaH₂PO₄•H₂O and 1.85 g/l EDTA. pH adjusted to 7.4 with NaOH), 0.1% SDS, 5X Denhardt's reagent [50X Denhardt's contains per 500 ml: 5 g Ficoll (Type 400, Pharmacia), 5 g BSA (Fraction V; Sigma)] and 100 μg/ml denatured salmon sperm DNA followed by washing in a solution comprising 5X SSPE, 0.1% SDS at 42°C when a probe of about 500 nucleotides in length is employed.

High stringency conditions when used in reference to nucleic acid hybridization comprise conditions equivalent to binding or hybridization at 42°C in a solution consisting of 5X SSPE (43.8 g/l NaCl, 6.9 g/l NaH₂PO₄•H₂O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.5% SDS, 5X Denhardt's reagent and 100 μg/ml denatured salmon sperm DNA followed by washing in a solution comprising 0.1X SSPE, 1.0% SDS at 42°C when a probe of about 500 nucleotides in length is employed.

When used in reference to nucleic acid hybridization the art knows well that numerous equivalent conditions may be employed to comprise either low or high stringency conditions;

5

10

15

20

25

factors such as the length and nature (DNA, RNA, base composition) of the probe and nature of the target (DNA, RNA, base composition, present in solution or immobilized, etc.) and the concentration of the salts and other components (e.g., the presence or absence of formamide, dextran sulfate, polyethylene glycol) are considered and the hybridization solution may be varied to generate conditions of either low or high stringency hybridization different from, but equivalent to, the above listed conditions.

5

10

15

20

25

30

*1000000 4MO 006476944 1 -

As used herein, the terms "nucleic acid molecule encoding," "DNA sequence encoding," and "DNA encoding" refer to the order or sequence of deoxyribonucleotides along a strand of deoxyribonucleic acid. The order of these deoxyribonucleotides determines the order of ribonucleotides along the mRNA chain, and also determines the order of amino acids along the polypeptide (protein) chain. The DNA sequence thus codes for the RNA sequence and for the amino acid sequence.

"Nucleic acid sequence" and "nucleotide sequence" as used interchangeably herein refer to an oligonucleotide or polynucleotide, and fragments or portions thereof, and to DNA or RNA of genomic or synthetic origin which may be single- or double-stranded, and represent the sense or antisense strand.

"Amino acid sequence" and "polypeptide sequence" are used interchangeably herein to refer to a sequence of amino acids.

The term "antisense sequence" as used herein refers to a deoxyribonucleotide sequence whose sequence of deoxyribonucleotide residues is in reverse 5' to 3' orientation in relation to the sequence of deoxyribonucleotide residues in a sense strand of a DNA duplex. A "sense strand" of a DNA duplex refers to a strand in a DNA duplex which is transcribed by a cell in its natural state into a "sense mRNA." Sense mRNA generally is ultimately translated into a polypeptide. Thus an "antisense" sequence is a sequence having the same sequence as the non-coding strand in a DNA duplex. The term "antisense RNA" refers to a ribonucleotide sequence whose sequence is complementary to an "antisense" sequence. Alternatively, the term "antisense RNA" is used in reference to RNA sequences which are complementary to a specific RNA sequence (e.g., mRNA). Antisense RNA may be produced by any method, including synthesis by splicing the gene(s) of interest in a reverse orientation to a viral promoter which permits the synthesis of a coding strand. Once introduced into a cell, this transcribed strand combines with natural mRNA produced by the cell to form duplexes. These duplexes then block either the further transcription of the mRNA or its translation. In this manner, mutant phenotypes may be generated. The term "antisense strand" is used in

reference to a nucleic acid strand that is complementary to the "sense" strand. The designation (-) (i.e., "negative") is sometimes used in reference to the antisense strand, with the designation (+) sometimes used in reference to the sense (i.e., "positive") strand.

The term "biologically active" when made in reference to MttA1, MttA2, MttB or MttC refers to a MttA1, MttA2, MttB or MttC molecule, respectively, having biochemical functions of a naturally occurring MttA1, MttA2, MttB or MttC. Biological activity of MttA1, MttA2, MttB or MttC is determined, for example, by restoration of wild-type targeting of proteins which contain twin-arginine signal amino acid sequence to cell membranes and/or translocation of such proteins to the periplasm in cells lacking MttA. MttB or MttC activity (*i.e.*, MttA1, MttA2, MttB or MttC null cells). Cells lacking MttA1. MttA2. MttB or MttC activity may be produced using methods well known in the art (*e.g.*, point mutation and frame-shift mutation) [Sambasivarao et al (1991) J. Bacteriol. 5935-5943: Jasin et al (1984) J. Bacteriol. 159:783-786]. Complementation is achieved by transfecting cells which lack MttA1, MttA2, MttB or MttC activity with an expression vector which expresses MttA1, MttA2, MttB or MttC, a homolog thereof, or a portion thereof. Details concerning complementation of cells which contain a point mutation in MttA1. MttA2 is provided in Example 6 herein.

As used herein "soluble" when in reference to a protein produced by recombinant DNA technology in a host cell is a protein which exists in solution; if the protein contains a twin-arginine signal amino acid sequence the soluble protein is exported to the periplasmic space in gram negative bacterial hosts and is secreted into the culture medium by eukaryotic cells capable of secretion or by bacterial host possessing the appropriate genes (*i.e.*, the *kil* gene). Thus, a soluble protein is a protein which is not found in an inclusion body inside the host cell. Alternatively, a soluble protein is a protein which is not found integrated in cellular membranes. In contrast, an insoluble protein is one which exists in denatured form inside cytoplasmic granules (called an inclusion body) in the host cell. Alternatively, an insoluble protein is one which is present in cell membranes, including but not limited to, cytoplasmic membranes, mitochondrial membranes, chloroplast membranes, endoplasmic reticulum membranes, *etc.*

A distinction is drawn between a soluble protein (i.e., a protein which when expressed in a host cell is produced in a soluble form) and a "solubilized" protein. An insoluble recombinant protein found inside an inclusion body or found integrated in a cell membrane may be solubilized (i.e., rendered into a soluble form) by treating purified inclusion bodies or

5

10

15

20

25

cell membranes with denaturants such as guanidine hydrochloride, urea or sodium dodecyl sulfate (SDS). These denaturants must then be removed from the solubilized protein preparation to allow the recovered protein to renature (refold). Not all proteins will refold into an active conformation after solubilization in a denaturant and removal of the denaturant. Many proteins precipitate upon removal of the denaturant. SDS may be used to solubilize inclusion bodies and cell membranes and will maintain the proteins in solution at low concentration. However, dialysis will not always remove all of the SDS (SDS can form micelles which do not dialyze out); therefore, SDS-solubilized inclusion body protein and SDS-solubilized cell membrane protein is soluble but not refolded.

A distinction is also drawn between proteins which are soluble (*i.e.*, dissolved) in a solution devoid of significant amounts of ionic detergents (*e.g.*, SDS) or denaturants (*e.g.*, urea, guanidine hydrochloride) and proteins which exist as a suspension of insoluble protein molecules dispersed within the solution. A soluble protein will not be removed from a solution containing the protein by centrifugation using conditions sufficient to remove cells present in a liquid medium (*e.g.*, centrifugation at 5,000 x g for 4-5 minutes).

DESCRIPTION OF THE INVENTION

5

10

15

20

25

30

The present invention exploits the identification of proteins involved in a Secindependent protein translocation pathway which are necessary for the translocation of proteins which contain twin-arginine signal amino acid sequences to the periplasm of gram negative bacteria, and into the extracellular media of cells which do not contain a periplasm (e.g., gram positive bacteria, eukaryotic cells, etc.), as well as for targeting such proteins to cell membranes. The proteins of the invention are exemplified by the Membrane Targeting and Translocation proteins MttA1 (103 amino acids), MttA2 (161 amino acids), MttB (258 amino acids) and MttC (264 amino acids) of E. coli which are encoded by the mttABC operon. The invention further exploits the presence of a large number of proteins which are widely distributed in organisms extending from archaebacteria to higher eukaryotes.

The well characterized Sec-dependent export system translocates an unfolded string of amino acids to the periplasm and folding follows as a subsequent step in the periplasm and mediated by chaperones and disulfide rearrangement. In contrast to the Sec-dependent export pathway, the proteins of the invention translocate fully-folded as well as cofactor-containing proteins from the cytoplasm into the bacterial periplasm and are capable of translocating such proteins into extracellular medium. Such translocation offers a unique advantage over current

methodologies for protein purification. Because the composition of culture medium can be manipulated, and because the periplasm contains only about 3% of the proteins of gram negative bacteria, expressed proteins which are translocated into the extracellular medium or into the periplasm are more likely to be expressed as functional soluble proteins than if they were translocated to cellular membranes or to the cytoplasm. Furthermore, translocation to the periplasm or to the extracellular medium following protein expression in the cytoplasm allows the expressed protein to be correctly folded by cytoplasmic enzymes prior to its translocation, thus allowing retention of the expressed protein's biological activity.

The *mttABC* operon disclosed herein is also useful in screening compounds for antibiotic activity by identifying those compounds which inhibit translocation of proteins containing twin-arginine signal amino acid sequences in bacteria. For example, DMSO reductase has been found to be essential for the pathogenesis of *Salmonella* [Bowe and Heffron (1994) Methods in Enzymology 236:509-526]. Thus, compounds which inhibit targeting of DMSO reductase to *Salmonella* could result in conversion of a virulent bacterial strain to an avirulent nonpathogenic variant.

The invention is further described under (A) *mttA*, *mttB*, and *mttC* nucleotide sequences, (B) MttA, MttB, and MttC polypeptides, and (C) Methods for expressing polypeptides to produce soluble proteins.

20 A. mttA, mttB, and mttC nucleotide sequences

The present invention discloses the nucleic acid sequence of the *mttA*1 (SEQ ID NO:46), *mttA*2 (SEQ ID NO:48), mttB (SEQ ID NO:5) and *mttC* (SEQ ID NO:6) genes which form part of the *mttABC* operon (SEQ ID NO:45) shown in Figure 11. Data presented herein demonstrates that the MttA2 polypeptide encoded by *mttA*2 functions in targeting proteins which contain twin-arginine signal amino acid sequences to cell membranes, and in translocating such proteins to the periplasm of gram negative bacteria and to the extracellular medium of cells which do not contain a periplasm (*e.g.*, gram positive bacteria and eukaryotic cells). Data presented herein further shows that the MttB and MttC polypeptides which are encoded by *mttB* and *mttC*, respectively, also serve the same functions as MttA2. This conclusion is based on the inventors' finding that *mttA1*, *mttA2*, *mttB* and *mttC* form an operon which is expressed as a single polycistronic mRNA.

The function of MttB and MttC may be demonstrated by *in vivo* homologous recombination of chromosomal *mttB* and *mttC* by using knockouts in the *mttBC* operon by

5

10

15

25

5

10

15

20

25

30

utilizing insertion of mini-MudII as previously described [Taylor et al. (1994) J. Bacteriol. 176:2740-2742]. Alternatively, the function of MttB and MttC may also be demonstrated as previously described [Sambasivarao et al (1991) J. Bacteriol. 5935-5943; Jasin et al (1984) J. Bacteriol. 159:783-786]. Briefly, the mttABC operon (Figure 11) is cloned into pTZ18R and pBR322 vectors. In pBR322, the HindIII site in mttB is unique. The pBR322 containing mttB is then modified by insertion of a kanamycin gene cartridge at this unique site, while the unique Nrul fragment contained in mttC are replaced by a kanamycin cartridge. The modified plasmids are then be homologously recombined with chromosomal mttB and mttC in E. coli cells which contain either a recBC mutation or a recD mutation. The resulting recombinant are transferred by P1 transduction to suitable genetic backgrounds for investigation of the localization of protein expression. The localization (e.g., cytoplasm, periplasm, cell membranes, extracellular medium) of expression of proteins which contain twin-arginine signal amino acid sequences is compared using methods disclosed herein (e.g., functional enzyme activity and Western blotting) between homologously recombined cells and control cells which had not been homologously recombined. Localization of expressed proteins which contain twin-arginine signal amino acid sequences in extracellular medium or in the periplasm of homologously recombined cells as compared to localization of expression in other than the extracellular medium and the periplasm (e.g., in the cytoplasm, in the cell membrane, etc.) of control cells demonstrates that the wild-type MttB or MttC protein whose function had been modified by homologous recombination functions in translocation of the twin argining containing proteins to the extracellular medium or to the periplasm.

The present invention contemplates any nucleic acid sequence which encodes one or more of MttA1, MttA2, MttB and MttC polypeptide sequences or variants or homologs thereof. These nucleic acid sequences are used to make recombinant molecules which express the MttA1, MttA2, MttB and MttC polypeptides. For example, one of ordinary skill in the art would recognize that the redundancy of the genetic code permits an enormous number of nucleic acid sequences which encode the MttA1, MttA2, MttB and MttC polypeptides. Thus, codons which are different from those shown in Figure 7 may be used to increase the rate of expression of the nucleotide sequence in a particular prokaryotic or eukaryotic expression host which has a preference for particular codons. Additionally, alternative codons may also be used in eukaryotic expression hosts to generate splice variants of recombinant RNA transcripts which have more desirable properties (e.g., longer or shorter half-life) than transcripts generated using the sequence depicted in Figure 7. In addition, different codons may also be

desirable for the purpose of altering restriction enzyme sites or, in eukaryotic expression hosts, of altering glycosylation patterns in translated polypeptides.

The nucleic acid sequences of the invention may also be used for *in vivo* homologous recombination with chromosomal nucleic acid sequences. Homologous recombination may be desirable to, for example, delete at least a portion of at least one of chromosomal *mttA1*.

mttA2, mttB and mttC nucleic acid sequences, or to introduce a mutation in these chromosomal nucleic acid sequence as described below.

5

10

15

20

25

30

Variants of the nucleotide sequences which encode MttA1, MttA2, MttB and MttC and which are shown in Figure 7 and Figure 11 are also included within the scope of this invention. These variants include, but are not limited to, nucleotide sequences having deletions, insertions or substitutions of different nucleotides or nucleotide analogs.

This invention is not limited to the *mttA1*, *mttA2*, *mttB* and *mttC* sequences (SEQ ID NOs:46, 48. 5 and 6, respectively) but specifically includes nucleic acid homologs which are capable of hybridizing to the nucleotide sequence encoding MttA1, MttA2, MttB and MttC (Figures 11 and 7), and to portions, variants and homologs thereof. Those skilled in the art know that different hybridization stringencies may be desirable. For example, whereas higher stringencies may be preferred to reduce or eliminate non-specific binding between the nucleotide sequences of Figure 7 and other nucleic acid sequences, lower stringencies may be preferred to detect a larger number of nucleic acid sequences having different homologies to the nucleotide sequence of Figure 7.

Portions of the nucleotide sequence encoding MttA1, mttA2, MttB and MttC of Figures 11 and 7 are also specifically contemplated to be within the scope of this invention. It is preferred that the portions have a length equal to or greater than 10 nucleotides and show greater than 50% homology to nucleotide sequences encoding MttA1, mttA2, MttB and MttC of Figures 11 and 7.

The present invention further contemplates antisense molecules comprising the nucleic acid sequence complementary to at least a portion of the polynucleotide sequences encoding MttA1, mttA2, MttB and MttC (Figures 11 and 7).

The scope of this invention further encompasses nucleotide sequences containing the nucleotide sequence of Figures 11 and 7, portions, variants, and homologs thereof, ligated to one or more heterologous sequences as part of a fusion gene. Such fusion genes may be desirable, for example, to detect expression of sequences which form part of the fusion gene. Examples of a heterologous sequence include the reporter sequence encoding the enzyme

β-galactosidase or the enzyme luciferase. Fusion genes may also be desirable to facilitate purification of the expressed protein. For example, the heterologous sequence of protein A allows purification of the fusion protein on immobilized immunoglobulin. Other affinity traps are well known in the art and can be utilized to advantage in purifying the expressed fusion protein. For example, pGEX vectors (Promega, Madison WI) may be used to express the MttA1, MttA2, MttB and MttC polypeptides as a fusion protein with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. Proteins made in such systems are designed to include heparin, thrombin or factor XA protease cleavage sites so that the cloned polypeptide of interest can be released from the GST moiety at will.

The nucleotide sequences which encode MttA1, MttA2, MttB and MttC (Figures 11 and 7), portions, variants, and homologs thereof can be synthesized by synthetic chemistry techniques which are commercially available and well known in the art. The nucleotide sequence of synthesized sequences may be confirmed using commercially available kits as well as from methods well known in the art which utilize enzymes such as the Klenow fragment of DNA polymerase I, Sequenase®, *Taq* DNA polymerase, or thermostable T7 polymerase. Capillary electrophoresis may also be used to analyze the size and confirm the nucleotide sequence of the products of nucleic acid synthesis. Synthesized sequences may also be amplified using the polymerase chain reaction (PCR) as described by Mullis [U.S. Patent No. 4,683,195] and Mullis *et al.* [U.S. Patent No. 4,683,202], the ligase chain reaction [LCR; sometimes referred to as "Ligase Amplification Reaction" (LAR)] described by Barany, Proc. Natl. Acad. Sci., 88:189 (1991); Barany, PCR Methods and Applic., 1:5 (1991); and Wu and Wallace, Genomics 4:560 (1989).

25

30

5

10

15

20

It is readily appreciated by those in the art that the *mttA1*, *mttA2*, *mttB* and *mttC* nucleotide sequences of the present invention may be used in a variety of ways. For example, fragments of the sequence of at least about 10 bp, more usually at least about 15 bp. and up to and including the entire (*i.e.*, full-length) sequence can be used as probes for the detection and isolation of complementary genomic DNA sequences from any cell. Genomic sequences are isolated by screening a genomic library with all or a portion of the nucleotide sequences which encode MttA1, MttA2, MttB and MttC (Figures 11 and 7). In addition to screening genomic libraries, the *mttA1*, *mttA2*, *mttB* and *mttC* nucleotide sequences can also be used to screen cDNA libraries made using RNA.

The *mttA1*, *mttA2*, *mttB* and *mttC* nucleotide sequences of the invention are also useful in directing the synthesis of MttA1, MttA2, MttB, and MttC, respectively. The MttA1, MttA2, MttB, and MttC polypeptides find use in producing antibodies which may be used in, for example, detecting cells which express MttA1, MttA2, MttB and MttC. These cells may additionally find use in directing expression of recombinant proteins to cellular membranes or to the periplasm, extracellular medium. Alternatively, cells containing at least one of MttA1, MttA2, MttB and MttC may be used to direct expression of recombinant proteins which are engineered to contain twin-arginine signal amino acid sequences, or of wild-type proteins which contain twin-arginine signal amino acid sequences, to the periplasm or extracellularly (as described below), thus reducing the likelihood of formation of insoluble proteins.

B. MttA, MttB, and MttC polypeptides

This invention discloses the amino acid sequence of MttA1 (SEQ ID NO:47), and MttA2 (SEQ ID NO:49) which are encoded by the *mttA1* and *mttA2* genes, respectively. Data presented herein demonstrates that the protein MttA2 targets twin arginine containing proteins (*i.e.*, proteins which contain twin-arginine signal amino acid sequences), as exemplified by the proteins dimethylsulfoxide (DMSO) reductase (DmsABC) to the cell membrane (Examples 2 and 5). The function of MttA2 in membrane targeting of twin arginine containing proteins was demonstrated by isolating a pleiotropic-negative mutant in *mttA2* which prevents the correct membrane targeting of *Escherichia coli* dimethylsulfoxide reductase and results in accumulation of DmsA in the cytoplasm. DmsABC is an integral membrane molybdoenzyme which normally faces the cytoplasm and the DmsA subunit has a twin-arginine signal amino acid sequence. The mutation in *mttA2* changed proline 25 to leucine in the encoded MttA2, and was complemented by a DNA fragment encoding the *mttA2* gene.

Data presented herein further demonstrates that MttA2 also functions in selectively translocating twin arginine containing proteins, as exemplified by nitrate reductase (NapA) and trimethylamine N-oxide reductase (TorA), to the periplasm (Example 4). The mutation in the *mttA2* gene resulted in accumulation of the periplasmic proteins NapA and TorA in the cytoplasm and cell membranes. In contrast, proteins with a sec-dependent leader, as exemplified by nitrite reductase (NrfA), or which contain a twin-arginine signal amino acid sequence and which assemble spontaneously in the membrane, as exemplified by trimethylamine N-oxide (TMAO), were not affected by this mutation (Examples 2 and 4).

5

10

15

20

25

The isolation of mutant D-43 which contained a mutant *mttA2* gene was unexpected. The assembly of multisubunit redox membrane proteins in bacteria and eukaryotic organelles has been assumed to be a spontaneous process mediated by protein-protein interactions between the integral anchor subunit(s) and the extrinsic subunit(s) [Latour and Weiner (1987) J. Gen. Microbiol. 133:597-607; Lemire *et al.* (1983) J. Bacteriol. 155:391-397]. It has previously been shown that the extrinsic subunits of fumarate reductase, FrdAB, can be reconstituted to form the holoenzyme with the anchor subunits, FrdCD, in vitro without any additional proteins [Lemire *et al.* (1983) J. Bacteriol. 155:391-397]. Because the architecture of DMSO reductase is similar to that of fumarate reductase, it seemed likely that this protein assembled in a similar manner. However, data presented herein demonstrates that this was not the case. Thus, the isolation of mutant D-43 was unexpected and it suggests that the assembly of DmsABC needs auxiliary proteins for optimal efficiency. Alternatively, the assembly of DmsABC may be an evolutionary vestige related to the soluble periplasmic DMSO reductase found in several organisms [McEwan (1994) Antonie van Leeuwenhoek 66:151-164; McEwan *et al.* (1991) Biochem. J. 274:305-307].

5

10

15

20

25

30

Without limiting the invention to a particular mechanism, MttA2 is predicted to be a membrane protein with two transmembrane segments and a long periplasmic α-helix. Proline 25 is located after the second transmembrane helix and immediately preceding the long periplasmic α-helix suggesting the essential nature of this region of MttA2. Interestingly, the smallest complementing DNA fragment, pGS20, only encoded the amino terminal two thirds of MttA2. This suggests that the carboxy terminal globular domain is not necessary or can be substituted by some other activity. This conclusion is further supported by the observation that the carboxy terminal third of MttA2 is also the least conserved region of MttA2. While the amino terminal of MttA2 is homologous to YigT of Settles *et al.* (1997) Science 278:1467-1470, the YigT sequence was not correct throughout its length. Data presented herein shows that proteins which were homologous to MttA1 and MttA2 were identified by BLAST searches in a wide variety of archaebacteria, eubacteria, cyanobacteria and plants, suggesting that the sec-independent translocation system of which MttA1 and MttA2 are members is very widely distributed in nature.

The invention further discloses the amino acid sequence of MttB (SEQ ID NO:7) and MttC (SEQ ID NO:8). Without limiting the invention to any particular mechanism, MttB is an integral membrane protein with six transmembrane segments and MttC is a membrane protein with one or two transmembrane segments and a large cytoplasmic domain. Proteins

homologous to MttB were identified by BLAST searches in a wide variety of archaebacteria, eubacteria, cyanobacteria and plants, suggesting that the protein translocation system of which MttB is a member is very widely distributed in nature. The MttC protein was even more widely dispersed with homologous proteins identified in archaebacteria, mycoplasma, eubacteria, cyanobacteria, yeast, plants, *C. elegans* and humans. In all cases the related proteins were of previously unknown function.

5

10

15

20

25

30

BNS00010 - WO 995175341 I >

Without limiting the invention to any particular mechanism, the predicted topology of the MttABC proteins suggests that the large cytoplasmic domain of MttC serves a receptor function for twin arginine containing proteins, with the integral MttB protein serving as the pore for protein transport. Based on the observation that the MttA2 can form a long α -helix, this protein is predicted to play a role in gating the pore.

The present invention specifically contemplates variants and homologs of the amino acid sequences of MttA1, MttA2, MttB and MttC. A "variant" of MttA1, MttA2. MttB and MttC is defined as an amino acid sequence which differs by one or more amino acids from the amino acid sequence of MttA1 (SEQ ID NO:47), MttA2 (SEQ ID NO:49). MttB (SEQ ID NO:7) and MttC (SEQ ID NO:8), respectively. The variant may have "conservative" changes, wherein a substituted amino acid has similar structural or chemical properties, e.g., replacement of leucine with isoleucine. More rarely, a variant may have "nonconservative" changes, e.g., replacement of a glycine with a tryptophan. Similar minor variations may also include amino acid deletions or insertions (i.e., additions), or both. Guidance in determining which and how many amino acid residues may be substituted, inserted or deleted without abolishing biological or immunological activity may be found using computer programs well known in the art, for example, DNAStar software.

For example, MttA1, MttA2, MttB and MttC variants included within the scope of this invention include MttA1, MttA2, MttB and MttC polypeptide sequences containing deletions, insertion or substitutions of amino acid residues which result in a polypeptide that is functionally equivalent to the MttA1, MttA2, MttB and MttC polypeptide sequences of Figure 11 and Figure 7. For example, amino acids may be substituted for other amino acids having similar characteristics of polarity, charge, solubility, hydrophobicity, hydrophilicity and/or amphipathic nature. Alternatively, substitution of amino acids with other amino acids having one or more different characteristic may be desirable for the purpose of producing a polypeptide which is secreted from the cell in order to, for example, simplify purification of the polypeptide.

The present invention also specifically contemplates homologs of the amino acid sequences of MttA1, MttA2, MttB and MttC. An oligonucleotide sequence which is a "homolog" of MttA1 (SEQ ID NO:47), MttA2 (SEQ ID NO:49), MttB (SEQ ID NO:7) and MttC (SEQ ID NO:8) is defined herein as an oligonucleotide sequence which exhibits greater than or equal to 50% identity to the sequence of MttA1 (SEQ ID NO:47), MttA2 (SEQ ID NO:49), MttB (SEQ ID NO:7) and MttC (SEQ ID NO:8), respectively, when sequences having a length of 20 amino acids or larger are compared. Alternatively, a homolog of MttA1 (SEQ ID NO:47), MttA2 (SEQ ID NO:49), MttB (SEQ ID NO:7) and MttC (SEQ ID NO:8) is defined as an oligonucleotide sequence which encodes a biologically active MttA1, MttA2, MttB and MttC amino acid sequence, respectively.

5

10

15

20

25

30

The MttA1, MttA2, MttB and MttC polypeptide sequence of Figures 11 and 7 and their functional variants and homologs may be made using chemical synthesis. For example, peptide synthesis of the MttA1, MttA2, MttB and MttC polypeptides, in whole or in part, can be performed using solid-phase techniques well known in the art. Synthesized polypeptides can be substantially purified by high performance liquid chromatography (HPLC) techniques, and the composition of the purified polypeptide confirmed by amino acid sequencing. One of skill in the art would recognize that variants and homologs of the MttA1, MttA2, MttB and MttC polypeptide sequences can be produced by manipulating the polypeptide sequence during and/or after its synthesis.

MttA1, MttA2, MttB and MttC and their functional variants and homologs can also be produced by an expression system. Expression of MttA1, MttA2, MttB and MttC may be accomplished by inserting the nucleotide sequence encoding MttA1, MttA2. MttB and MttC (Figures 11 and 7), its variants, portions, or homologs into appropriate vectors to create expression vectors, and transfecting the expression vectors into host cells.

Expression vectors can be constructed using techniques well known in the art [Sambrook et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview NY; Ausubel et al. (1989) Current Protocols in Molecular Biology. John Wiley & Sons, New York NY]. Briefly, the nucleic acid sequence of interest is placed in operable combination with transcription and translation regulatory sequences. Regulatory sequences include initiation signals such as start (i.e., ATG) and stop codons, promoters which may be constitutive (i.e., continuously active) or inducible, as well as enhancers to increase the efficiency of expression, and transcription termination signals. Transcription termination signals must be provided downstream from the structural gene if the termination

signals of the structural gene are not included in the expression vector. Expression vectors may become integrated into the genome of the host cell into which they are introduced, or are present as unintegrated vectors. Typically, unintegrated vectors are transiently expressed and regulated for several hours (eg., 72 hours) after transfection.

The choice of promoter is governed by the type of host cell to be transfected with the expression vector. Host cells include bacterial, yeast, plant, insect, and mammalian cells. Transfected cells may be identified by any of a number of marker genes. These include antibiotic (e.g., gentamicin, penicillin, and kanamycin) resistance genes as well as marker or reporter genes (e.g., β -galactosidase and luciferase) which catalyze the synthesis of a visible reaction product.

Expression of the gene of interest by transfected cells may be detected either indirectly using reporter genes, or directly by detecting mRNA or protein encoded by the gene of interest. Indirect detection of expression may be achieved by placing a reporter gene in tandem with the sequence encoding one or more of MttA1, MttA2, MttB and MttC under the control of a single promoter. Expression of the reporter gene indicates expression of the tandem one or more MttA1, MttA2, MttB and MttC sequence. It is preferred that the reporter gene have a visible reaction product. For example, cells expressing the reporter gene β-galactosidase produce a blue color when grown in the presence of X-Gal, whereas cells grown in medium containing luciferin will fluoresce when expressing the reporter gene luciferase.

Direct detection of MttA1, MttA2, MttB and MttC expression can be achieved using methods well known to those skilled in the art. For example, mRNA isolated from transfected cells can be hybridized to labelled oligonucleotide probes and the hybridization detected. Alternatively, polyclonal or monoclonal antibodies specific for MttA1, MttA2, MttB and MttC can be used to detect expression of the MttA1, MttA2, MttB and MttC polypeptide using enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA) and fluorescent activated cell sorting (FACS).

Those skilled in the art recognize that the MttA1, MttA2, MttB and MttC polypeptide sequences of the present invention are useful in generating antibodies which find use in detecting cells that express MttA1, MttA2, MttB and MttC or proteins homologous thereto. Such detection is useful in the choice of host cells which may be used to target recombinant twin arginine containing protein expression to cellular membranes or to the periplasm or to the extracellular medium. Additionally, such detection is particularly useful in selecting host

5

10

15

20

25

cells for cytoplasmic or extracellular expression of recombinant twin arginine containing proteins by disrupting the function of at least one of MttA1, MttA2, MttB and MttC as described below.

C. Methods for expressing polypeptides to produce soluble proteins

5

10

15

20

25

30

This invention contemplates methods for targeting expression (e.g., to the periplasm, extracellular medium) of any gene of interest (e.g., to the cytoplasm, extracellular medium) thus reducing the likelihood of expression of insoluble recombinant polypeptides, e.g., in inclusion bodies. The methods of the invention are premised on the discovery of three proteins, MttA1, MttA2, MttB and MttC which function as part of a Sec-independent pathway, and which target expression of twin arginine containing proteins to cell membranes and which direct translocation of such proteins to the periplasm of gram negative bacteria and to the extracellular medium of cells which do not contain a periplasm. This discovery makes possible methods for expression of any gene of interest such that the expressed polypeptide is targeted to the periplasm or extracellular medium thereby allowing its expression in a soluble form and thus facilitating its purification. The methods of the invention contemplate expression of any recombinant polypeptide as a fusion polypeptide with a twin-arginine signal amino acid sequence as the fusion partner. Such expression may be accomplished by introducing a nucleic acid sequence which encodes the fusion polypeptide into a host cell which expresses wild-type MttA1, MttA2, MttB or MttC, or variants or homologs thereof, or which is engineered to express MttA1, MttA2, MttB or MttC, or variants or homologs thereof. While expressly contemplating the use of the methods of the invention for the expression of any polypeptide of interest, the methods disclosed herein are particularly useful for the expression of cofactor-containing proteins. The methods of the invention are further described under (i) Cofactor-containing proteins, (ii) Expression of fusion proteins containing twin-arginine signal amino acid sequences, and (iii) Construction of host cells containing deletions or mutations in at least a portion of the genes mttA1, MttA2, mttB and mttC.

i. Cofactor-containing proteins

A strong correlation has been reported between possession of a twin-arginine signal amino acid sequence in the preprotein and the presence of a redox cofactor in the mature protein; approximately 40 out of 135 preprotein amino acid sequences which contain a twin-arginine signal amino acid sequence have been found by Berks [Berks (1996) Molecular

Microbiology 22 393-104; http://www.blackwell-science.com/products/journals/contents/berks.htm] to result in a mature protein which binds, or can be inferred to bind, a redox cofactor. The entire contents of Berks are hereby expressly incorporated by reference.

The cofactors associated with a twin-arginine signal amino acid sequence include, but are not limited to, iron-sulfur clusters, at least two variants of the molybdopterin cofactor, certain polynuclear copper sites, the tryptophan tryptophylquinone (TTQ) cofactor, and flavin adenine dinucleotide (FAD). A representative selection of bacterial twin-arginine signal amino acid sequences is shown in Table 1.

10

15

20

25

5

TABLE 1

			Evidence	Length		
1.	PERIPLA:	SMIC PROTEINS BINDING IRON-SULFUR CLUS	TERS			
A. MauM family f	erredoxins					
P. denitrificans	MauM	MEARMTGRRKV TRR DAMADAARAVGVACLG GFSLAALVRTASPVDA	VH	46		
E. coli	NapG	MSRSAKPQNG RR RF L RDVVRTAGGLAAVGVA LGLQQQTARA	VH	41		
B. '16Fe' ferredox	in superfa	mily				
E. coli	NrfC	MTWSRRQFLTGVGVLAAVSGTAGRVVA	VH	27		
D. vulgaris	Hmc2	MDRRRFLTLLGSAGLTATVATAGTAKA	VH	27		
C. High potential in	ron proteii	n (HiPIP)	,			
T. ferrooxidans	Iro	MSEKDKMI TRR DALRNIAVVVGSVATTTMMG VGVADA	EX	37		
D. Periplasmically	-located F	el hydrogenase small subunits				
D. vulgaris	HydB	MQIVNL TRR G FLK AACVVTGGALISIRMTGKA VA	VH	34		
E. Periplasmically-located [NiFe] hydrogenase small subunits						
E. coli	НуаА	MNNEETFYQAMRRQGVTRRSFLKYCSLAATS LGLGAGMAPKIAWA	EX	45		
+M. mazei	VhoG	MSTGTTNLVRTLDSMDFLKMDRRTFMKAVSA LGATAFLGTYQTEIVNA	EX	48		
D. gigas	HynB	MKCYIGRGKNQVEERLERRGVSRRDFMKFCT AVAVAMGMGPAFAPKVAEA	EX	50		
E. coli	HybA	MNRRNFIKAASCGALLTGALPSVSHA	VH	26		
F. Membrane-anch	nored Ries	ke proteins				
P. denitrificans	FbcF	MSHADEHAGDHGATRRDFLYYATAGAGTVA AGAAAWTLVNQMNP				

				·
		<u></u>	Evidence	Lengt
+Synechocystis	PetC	MTQISGSPDVPDLGRRQFMNLLTFGTITGVAA GALYPAVKYLIP		
+S. acidocaldarius	SoxF	MDRRTFLRLYLLVGAAIAVAPVIKPALDYVGY		
II. PERI	PLASMIC	C PROTEINS BINDING THE MOLYBDOPTERIN	COFACTOR	
		linucleotide-binding proteins, an iron-sulfur cluster		
R. sphaeroides	DmsA	MTKLSGQELHAELSRRAFLSYTAAVGALGLCG TSLLAQGARA	EX	42
E. coli	BisZ	MTLTRREFIKHSGIAAGALVVTSAAPLPAWA	VH	31
T. pantotropha	NapA	MTISRRDLLKAQAAGIAAMAANIPLSSQAPA	VH	31
W. succinogenes	FdhA	MSEALSGRGNDRRKFLKMSALAGVAGVSQAV G	EX	32
E. voli	DmsA	MKTKIPDAVLAAEVSRRGLVKTTAIGGLAMAS SALTLPFSRIAHA	EX	45
H. influenzae	DmsA	MSNFNQI SRR DFV K ASSAGAALAVSNLTLPFN VMA	VH	35
S. typhimurium	PhsA	MSISRRSFLQGVGIGCSACALGAFPPGALA	VH	30
3. Molybdopterin c	ytosine d	inucleotide-binding proteins		
P. diminuta	lorB	MKTVLPSVPETVRL SRR G FL VQAGTITCSVAFG SVPA	VH	37
4. polyoxogenes	Ald	MGRLNRFRLGKDGRREQASLSRRGFLVTSLGA GVMFGFARPSSA	EX	44
III. P	ERIPLAS	SMIC ENZYMES WITH POLYNUCLEAR COPPER	SITES	
A. Nitrous oxide re	ductases			
P. stutzeri	NosZ	MSDKDSKNTPQVPEKLGL SRR GFLGASAVTGA AVAATALGGAVMTRESWA	EX	50
3. Multicopper oxid	lase super	rfamily		
P. syringae	CopA	MESRT SRR TFV K GLAAAGVLGGLGLWRSPSW A	VH	32
E. coli	Sufl	MSLSRRQFIQASGIALCAGAVPLKASA	VH	27
IV. MET	HYLAMI	NE DEHYDROGENASE SMALL SUBUNITS (TRY TRYPTOPHYLQUINONE COFACTOR)	PTOPHAN	
M. extorquens	MauA	MLGKSQFDDLFEKMSRKVAGHTS RR GFIGRVG TAVAGVALVPLLPVDRRGRVSRANA	EX	57
V. PERII	PLASMIC	PROTEINS BINDING FLAVIN ADENINE DINUC	CLEOTIDE	
C. vinosum	FccB	MTLNRRDFIKTSGAAVAAVGILGFPHLAFG	EX	30
+B. sterolicum	ChoB	MTDSRANRADATRGVASVSRRRFLAGAGLTA GAIALSSMSTSASA	EX	45

A more complete listing of bacterial twin-arginine signal amino acid sequences is available at http://www.blackwell-science.com/products/journals/mole.htm, the entire contents of which are incorporated by reference. Amino acids with identity to the most preferred (S/T)-RR-x-F-L-K consensus motif are indicated in bold. Signal sequences are from Proteobacterial preproteins except where indicated (+). 'Evidence' indicates the method used to determine the site of protease processing: EX, experimentally determined; VH, inferred using the algorithm of von Heijne (1987). [1] van der Palen et al. (1995); [2] Richterich et al. (1993); [3] Hussain et al. (1994); [4] Rossi et al. (1993); [5] Kusano et al. (1992); [6] Voordouw et al. (1989); [7] Menon et al. (1990); [8] Deppenmeier et al. (1995); [9] Li et al. (1987); [10] Menon et al. (1994); [11] Kurowski and Ludwig (1987); [12] Mayes and Barber (1991); [13] Castresana et al. (1995); [14] Hilton and Rajagopalan (1996); [15] Campbell and Campbell (1996); [16] Berks et al. (1995a); [17] Bokranz et al. (1991); [18] Bilous et al. (1988); [19] Fleischmann et al. (1995); [20] Heinzinger et al. (1995); [21] Lehmann et al. (1995); [22] Tamaki et al. (1989); [23] Viebrock and Zumft (1988); [24] Mellano and Cooksey (1988); [25] Plunkett (1995); [26] Chistoserdov and Lidstrom (1991); [27] Dolata et al. (1993); [28] Ohta et al. (1991).

In contrast to twin-arginine signal amino acid sequences, Sec signal sequences are associated with periplasmic proteins binding other redox cofactors, *i.e.*, iron porphyrins (including the cytochromes c), mononuclear type I or II copper centers, the dinuclear Cu_{Λ} center, and the pyrrolo-quinoline quinone (PQQ) cofactor.

Currently the assembly of cofactor-containing proteins is limited to the cytoplasm because the machinery to insert the cofactor is located in this compartment. The present invention offers the advantage of providing methods for periplasmic and extracellular expression of cofactor-containing proteins which contain a twin-arginine signal amino acid sequence, thus facilitating their purification in a functional and soluble form.

ii. Expression of fusion proteins containing twin-arginine signal amino acid sequences

The methods of the invention exploit the inventors' discovery of proteins MttA1, MttA2, MttB and MttC which are involved in targeting expression of proteins which contain a twin-arginine amino acid signal sequence to cell membranes and in translocation of such proteins to the periplasm of gram negative bacteria and the extracellular medium of cell that

5

10

15

20

25

do not contain a periplasm. The term "twin-arginine signal amino acid sequence" as used herein means an amino acid sequence of between 2 and about 200 amino acids, more preferably between about 10 and about 100 amino acids, and most preferably between about 25 and about 60 amino acids, and which comprises the amino acid sequence, from the Nterminal to the C-terminal, A-B-C-D-E-F-G, wherein the amino acid at position B is Arg, and the amino acid at position C is Arg. The amino acid at positions A, D, E, F, and G can be any amino acid. However, the amino acid at position A preferably is Gly, more preferably is Glu, yet more preferably is Thr, and most preferably is Ser. The amino acid at position D preferably is Gln, more preferably is Gly, yet more preferably is Asp, and most preferably is Ser. The amino acid at position E preferably is Leu and more preferably is Phe. The amino acid at position F preferably is Val, more preferably is Met, yet more preferably is Ile, and most preferably is Leu. The amino acid at position G preferably is Gln, more preferably is Gly and most preferably is Lys. In one preferred embodiment, the twin-arginine amino acid signal sequence is Ser-Arg-Arg-Ser-Phe-Leu-Lys (SEQ ID NO:41). In yet another preferred embodiment, the twin-arginine amino acid signal sequence is Thr-Arg-Arg-Ser-Phe-Leu-Lys (SEQ ID NO:42).

5

10

15

20

25

30

The invention contemplates expression of wild-type polypeptide sequences which contain a twin-arginine amino acid signal sequence as part of a preprotein. To date, 135 polypeptide sequences have been reported to contain a twin-arginine amino acid signal sequence motif [Berks (1996) Molecular Microbiology 22 393-104; http://www.blackwell-science.com/products/journals/contents/berks.htm the entire contents of which are incorporated by reference].

The invention further contemplates expression of recombinant polypeptide sequences which are engineered to contain a twin-arginine amino acid signal sequence as part of a fusion protein. Fusion protein containing one or more twin-arginine amino acid signal sequences may be made using methods well known in the art. For example, one of skill in the art knows that nucleic acid sequences which encode a twin-arginine amino acid signal sequence may be operably ligated in frame (directly, or indirectly in the presence of intervening nucleic acid sequences) to a nucleotide sequence which encodes a polypeptide of interest. The ligated nucleotide sequence may then be inserted in an expression vector which is introduced into a host cell for expression of a fusion protein containing the polypeptide of interest and the twin-arginine amino acid signal sequence.

Fusion proteins containing twin-arginine amino acid signal sequences are expected to be targeted to the periplasm or extracellular medium by the MttA1, MttA2, MttB and MttC proteins of the invention and by variants and homologs thereof; Keon and Voordouw [Keon and Voordouw (1996) Anaerobe 2:231-238] have reported that a fusion protein containing *E. coli* alkaline phosphatase (phoA) linked to a signal amino acid sequence from the Hmc complex of *Desulfovibrio vulgaris* subsp. *vulgaris* was exported to *E. coli* periplasm. Similarly, a fusion protein containing a hydrogenase signal peptide to β-lactamase from which the signal peptide had been removed led to export in *E. coli* under both aerobic and anaerobic conditions [Niviere et al. (1992) J. Gen. Microbiol. 138:2173-2183].

10

15

20

25

5

Fusion proteins which contain twin-arginine amino acid signal sequences are also expected to be cleaved to generate a mature protein from which the twin-arginine amino acid signal sequences has been cleaved. Two signal peptidases have so far been identified in E. coli: Signal peptidase I and signal peptidase II. The signal peptidase II which has a unique cleavage site involving a cystine residue at the cleavage site [Bishop et al. (1995) J. Biol. Chem. 270:23097-23103] is believed not to participate in cleavage of twin-arginine amino acid signal sequences. Rather, signal peptidase I, which cleaves Sec signal sequences has been suggested by Berks to cleave twin-arginine amino acid signal sequences. Berks also suggested that signal peptidase I has the same recognition site in Sec signal sequences as in twin-arginine amino acid signal sequences [Berks (1996)]. This suggestion was based on (a) the "-1/-3" rule for Sec signal peptidase in which the major determinant of signal peptidase processing is the presence of amino acids with small neutral side-chains at positions -1 and -3 relative to the site of cleavage, and (b) the good agreement between the cleavage site of twinarginine amino acid signal sequences as determined using the "-1/-3" rule (with the invariant arginine at the N-terminus of the signal sequence, i.e., position B in the A-B-C-D-E-F-G sequence, designated as position zero) and the experimentally determined amino terminus of the mature protein [Berks (1996)]. Evidence presented herein (Example 9) further confirms cleavage of twin-arginine amino acid signal sequences to release a mature protein which lacks the twin-arginine amino acid signal sequence.

30

iii. Construction of host cells containing deletions or mutations in at least a portion of the genes mttA, mttB and mttC

The function of any portion of *E. coli* MttA1, MttA2, MttB and MttC polypeptides and variants and homologs thereof, as well as the function of any polypeptide

which is encoded by a nucleotide sequence that is a variant or homolog of the mttA1. MttA2. mttB and mttC sequences disclosed herein may be demonstrated in any host cell by in vivo homologous recombination of chromosomal sequences which are variants or homologs of mttA1, MttA2, mttB and mttC using previously described methods [Sambasivarao et al (1991)] J. Bacteriol. 5935-5943; Jasin et al (1984) J. Bacteriol. 159:783-786]. Briefly, the nucleotide sequence whose function is to be determined is cloned into vectors, and the gene is mutated, e.g., by insertion of a nucleotide sequence within the coding region of the gene. The plasmids are then homologously recombined with chromosomal variants or homologs of mttA1, MttA2, mttB or mttC sequences in order to replace the chromosomal variants or homologs of mttA1, MttA2, mttB or mttC genes with the mutated genes of the vectors. The effect of the mutations on the localization of proteins containing twin-arginine amino acid signal sequences is compared between the wild-type host cells and the cells containing the mutated mttA1, MttA2, mttB or mttC genes. The localization (e.g., cytoplasm, periplasm, cell membranes, extracellular medium) of expressed twin arginine containing proteins is compared using methods disclosed herein (e.g., functional enzyme activity and Western blotting) between homologously recombined cells and control cells which had not been homologously recombined. Localization of expressed twin arginine containing proteins extracellularly, in the periplasm, or in the cytoplasm of homologously recombined cells as compared to localization of expression in cell membranes of control cells demonstrates that the wild-type MttA1, MttA2. MttB or MttC protein whose function had been modified by homologous recombination functions in targeting expression of the twin arginine containing protein to the cell membrane. Similarly, accumulation of expressed twin arginine containing proteins in extracellular medium, in the cytoplasm, or in cell membranes of homologously recombined cells as compared to periplasmic localization of the expressed twin arginine containing protein in control cells which had not been homologously recombined indicates that the protein (i.e., MttA1, MttA2, MttB or MttC) whose function had been modified by homologous recombination functions in translocation of the twin arginine containing protein to the periplasm.

30 **EXPERIMENTAL**

5

10

15

20

25

The following examples serve to illustrate certain preferred embodiments and aspects of the present invention and are not to be construed as limiting the scope thereof. The strains and plasmids used in this investigation are listed in Table 2.

TABLE 2
Bacteria and Plasmids used in this Investigation

5	Genotype or Strain/Plasmid Gene Combinations Present		Reference/Source		
	HB101	F-, $hsdS20(r_Bm_B)$, leu, $supE44$, $ara14$, $galK2$, $lacY1$, $proA2$, $rpsL20$, $xyl-5$, $mtl-1$, $recA13$, $mcrB$	Boyer and Roulland- Dussoix, 1969		
	TGI	K12Δ(lac-pro) sup EF' traD36 proAB lacl ⁴ ΔlacZM15	Amersham Corp.		
	D43	HB101; mttA	Bilous and Weiner, 1985		
	pBR322	cloning vector Tet, Ampr	Pharmacia		
10	pTZ18R	cloning vector Amp ^r , lacZ	Pharmacia		
	pJBS633	blaM fusion vector	Broome-Smith and Spratt, 1986		
	pFRD84	frdABCD cloned into pBR322	Lemire et al., 1982		
	pFRD117	ΔfrdCD version of pFRD84	Lemire <i>et al.</i> , 1982		
	pDMS160	dmsABC cloned into pBR322	Rothery and Weiner, 1991		
15	pDMS223	dmsABC operon in pTZ18R	Rothery and Weiner, 1991		
	pDMSL71	dmsABC::blaM in pJBS633 fusion after residue 12	Weiner et al., 1993		
	pDMSL5	dmsABC::blaM in pJBS633 fusion after residue 216	Weiner et al., 1993		
	pDMSL29	dmsABC::blaM in pJBS633 fusion after residue 229	Weiner <i>et al.</i> , 1993		
	pDMSL4	dmsABC::blaM in pJBS633 fusion after residue 267	Weiner <i>et al.</i> , 1993		
20	pDMSC59X	dmsC truncate after residue 59	Sambasivarao and Weiner, 1991		
	pDSR311	yigO,P, R, T and U in pBR322	This investigation		
	pGS20	b3835', b3836, b3837, and b3838' in pBR322	This investigation		
	pTZmttABC	region of ORF's b3836, b3838, yigU, yigW, cloned into pTZ18R	This investigation		
	pBRmttABC	region of ORF's b3836, b3838, yigU, yigW, cloned into pBR322	This investigation		
25	pTZb3836	ORF b3836 cloned into pTZ18R	This investigation		
	pBRb3836	ORF b3836 cloned into pBR322	This investigation		

EXAMPLE 1

Isolation And Properties of D-43 Mutants Defective In DmsABC Targeting

DMSO reductase is a "twin arginine" trimeric enzyme composed of an extrinsic membrane dimer with catalytic, DmsA, and electron transfer, DmsB, subunits bound to an intrinsic anchor subunit, DmsC. The DmsA subunit has a "twin arginine" leader but it has been exhaustively shown that the DmsA and DmsB subunits face the cytoplasm [Rothery and Weiner (1996) Biochem. 35:3247-3257; Rothery and Weiner (1993) Biochem. 32:5855-5861; Sambasivarao *et al.* (1990) J. Bacteriol. 172:5938-5948; Weiner *et al.* (1992) Biochem. Biophys. Acta 1102:1-18; Weiner *et al.* (1993) J. Biol. Chem. 268:3238-3244].

In order to isolate a *E. coli* mutant defective in membrane targeting of DmsABC, plieotropic mutants which were unable to grow on DMSO were produced by nitrosoguanidine mutagenesis of HB101 and the growth rates on DMSO of both the mutants and HB101 were determined. Mutant D-43, which grew anaerobically on fumarate and nitrate, nevertheless failed to grow on DMSO or TMAO. These results are further described in the following sections.

A. Isolation of mutant

5

10

15

20

25

DESCRIPTION OF TERMS IN

Nitrosoguanidine mutagenesis and ampicillin enrichment were as described by Miller (1992) in *A Short Course in Bacterial Genetics*, Cold Spring Harbor Laboratory Press. Sixteen mutants were isolated that were defective for anaerobic growth on DMSO but grew with nitrate or fumarate as the alternate electron acceptor. Each of the mutants was transformed with pDMS160 [Rothery and Weiner (1991) Biochem. 30:8296-8305] carrying the entire *dms* operon and again tested for growth on DMSO. All of the transformants failed to grow on DMSO. When tested for DMSO reductase activity 14 of the 16 transformants lacked measurable enzyme activity. Two of the mutants expressed high levels of DMSO reductase activity but the activity was localized in the cytoplasm rather than the membrane fraction. One of these mutants, D-43, was chosen for further study.

30 B. Anacrobic growth rates of HB101 and D-43

For growth experiments, bacteria were initially grown aerobically overnight at 37°C in LB plus 10 µg/ml⁻¹ vitamin B1. A 1% inoculum was added to 150 ml of minimal salts medium containing 0.8% (w/v) glycerol, 10 µg/ml⁻¹ each of proline, leucine, vitamin B1 and

0.15% peptone and supplemented with either DMSO 70 mM, fumarate 35 mM, nitrate 40 mM, or trimethylamine N-oxide (TMAO) 100mM. Cultures were grown anaerobically at 37°C in Klett flasks and the turbidity monitored in a Klett spectrophotometer with a No. 66 filter.

The rates of anaerobic growth of strains HB101 and D-43 with a range of electron acceptors and a nonfermentable carbon source, glycerol, were compared. The results are shown in Figure 1.

All the terminal electron acceptors tested supported the growth of the parent HB101 (Figure 1a). In contrast, only nitrate and fumarate stimulated the growth rate of the mutant (Figure 1b). However, even in the presence of nitrate and fumarate the growth yield was half that of strain HB101. The reduced growth rate may reflect the pleiotropic effects of the mutation of various metabolic reactions needed for optimal growth in addition to the terminal electron transfer reaction. Only DmsABC supports growth on DMSO whereas both DmsABC and the periplasmic TMAO reductase support growth on TMAO [Sambasivarao and Weiner (1991) J. Bacteriol. 173:5935-5943]. The observation that D-43 is unable to grow on either DMSO or TMAO indicates that both of these enzymes were non-functional.

EXAMPLE 2

DmsA Is Not Anchored To the Membrane In D-43

20

25

5

10

15

Previous studies have exhaustively shown that DmsABC is localized on the cytoplasmic membrane of wild-type *E. coli* strains with the DmsAB subunits anchored to the cytoplasmic surface [Rothery and Weiner (1996) Biochem. 35:3247-3257; Rothery and Weiner (1993) Biochem. 32:5855-5861; Sambasivarao *et al.* (1990) J. Bacteriol. 172:5938-5948; Weiner *et al.* (1992) Biochem. Biophys. Acta 1102:1-18; Weiner *et al.* (1993) J. Biol. Chem. 268:3238-3244]. In order to determine he localization of DmsABC in D-43 mutants, cell fractions were assayed for the presence of DmsA and DmsB by immunoblot analysis, and for DMSO reductase activity as follows.

30 A. Functional enzyme activity assays

Cell fractions were assayed for DMSO reductase activity by measuring the DMSO-dependent oxidation of reduced benzyl viologen at 23°C [Bilous and Weiner (1985) J. Bacteriol. 162:1151-1155]. This assay is dependent only on the presence of DmsAB.

To test the localization of DmsABC in D-43, enzyme activity in the soluble fraction and membrane band fraction of HB101/pDMS160 and of D-43/pDMS160 was determined. 250 ml anaerobic cultures of HB101/pDMS160 and D-43/pDMS160 were grown on Gly/Fum medium. HB101/pDMS160 yielded 114 mg total protein, 3240 units of membrane-bound TMAO reductase activity, and 2900 units of soluble activity. D-43/pDMS160 yielded 99 mg total protein, 320 units were membrane-bound and 4000 units were soluble. Thus, although the total DmsABC activity was lower in D-43, (4300 total units compared to 6200 for HB101/pDMS160) the vast majority was not targeted to the membrane. This suggested that D-43 was defective in targeting to the membrane rather than in a biosynthetic step.

10

15

20

25

30

5

B. Western blot analysis of DmsA and DmsB

To determine the cellular locations of DmsA and DmsB by Western blots. D-43/pDMS160 and HB101/pDMS160 were grown anaerobically on Gly/fumerate medium at 37°C in 19 I batches [Bilous and Weiner (1985) J. Bacteriol. 162:1151-1155]. Cultures were grown for 24hr, at 37°C and the cells harvested and membranes prepared by French pressure cell lysis at 16,000 psi followed by differential centrifugation as previously described [Rothery and Weiner (1991) Biochem. 30:8296-8305]. The crude membranes were washed twice with lysis buffer (50 mM MOPS, 5 mM EDTA pH 7.0). DmsABC was purified as described by Simala-Grant and Weiner (1996) Microbiology 142:3231-3229. For the determination of subunit anchoring to the membrane, membrane preparations were first washed with lysis buffer and then with lysis buffer containing 1 M NaCI. The osmotic shock procedure of Weiner and Heppel (1971) J. Biol. Chem. 246:6933-6941) was used to isolate the periplasmic fraction tested for fumarate and DMSO reductase polypeptides.

For Western blot analysis, antibodies to purified DmsA and DmsB were used [Sambasivarao *et al.* (1990) J. Bacteriol. 172:5938-5948]. Typically, samples were separated on 10% (w/v) SDS-PAGE and then blotted onto nitrocellulose. The protein bands were detected using the enhanced chemiluminescence detection system from Amersham and goat anti-rabbit lgG (H+L) horseradish peroxidase conjugate. The results are shown in Figure 2.

Figure 2 shows a Western blot of washed membranes and soluble fractions of HB101 and D-43 harboring pDMS160 expressing DmsABC. The blot was probed with either purified anti-DmsA or anti-DmsB. S; soluble fraction, M; Washed membranes, sM; salt washed membranes, sS; soluble fraction from the salt washed membranes, P; purified DmsABC. Figure 2 clearly shows that DmsA is not targeted to the membrane in D-43. The

DmsA polypeptide was expressed and was present in the cytoplasm at levels equivalent to the wild-type. Equivalent samples probed with anti-DmsB demonstrated that significant amounts of DmsB were targeted to the membrane. Membrane incorporation of DmsC in the absence of DmsAB is lethal [Turner *et al.* (1997) Prof. Engineering 10:285-290] and the presence of DmsB on the membrane may overcome the lethality normally associated with incorporation of DmsC in the absence of the catalytic subunits.

EXAMPLE 3

DmsC Is Anchored To the Membrane In D-43

10

15

20

25

30

5

Because polyclonal antibodies against DmsC could not successfully be raised [Sambasivarao *et al.* (1990) J. Bacteriol. 172:5938-5948; Turner *et al.* (1997) Prof. Engineering 10:285-290], three BlaM (β-lactamase) fusions were used to determine whether the anchor subunit is translated and correctly inserted into the membranes of D-43 [Weiner *et al.* (1993) J. Biol. Chem. 268:3238-3244]. These fusions were located after amino acid positions 216, 229 and 267 of DmsC. Fusion 216 was localized to the periplasm and mediated very high resistance. Fusions 229 and 267 were localized to the seventh and eighth transmembrane helices and mediated intermediate levels of resistance [Weiner *et al.* (1993) J. Biol. Chem. 268:3238-3244]. The minimal inhibitory concentrations of ampicillin. for each of these fusions expressed in D-43 under anaerobic growth conditions, were the same or within one plate dilution of the wild-type values. Additionally, Western blots, using antibody directed against BlaM, of cell fractions of membrane, cytoplasmic and osmotic shock fluids of D-43/pDMSL29 (fusion at amino acid 229) showed DmsC-BlaM in the membrane fractions (results not shown). These data suggest that the DmsC protein is translated and inserted into the membrane and has the same topology as that found in wild-type *E. coli* cells.

EXAMPLE 4

Enzyme Activity Of Nitrate Reductase and Trimethylamine N-Oxide Reductase With A Twin Arginine Signal Sequence Is Not Targeted To the Periplasm Of D-43 While Enzyme Activity of Nitrite Reductase With A Sec-Signal Sequence Is Present In the Periplasm Of D-43

In order to determine whether the mutation in D-43 (which resulted in failure to anchor DmsA and DmsB to the cell membrane as described above) selectively prevented

membrane targeting of proteins with a twin-arginine signal amino acid sequence, the enzyme activity of periplasmic enzymes having a twin-arginine signal amino acid sequence (*i.e.*, nitrate reductase (NapA) and trimethylamine N-oxide reductase (TorA)) and of a periplasmic enzyme having a Sec-leader sequence (*i.e.*, nitrite reductase (NrfA)) was determined in the periplasm of D-43 and HB101.

5

10

15

20

25

30

DNEDOCID: -WO 005175341 1 -

E. coli can reduce nitrate to ammonia using two periplasmic electron transfer chains, the Nap and Nrf pathways [Grove et al. (1996) Mol. Microbiol. 19:467-481; Cole (1996) FEMS Microbiol. Letts. 136:1-11]. The catalytic subunit of the periplasmic nitrate reductase, NapA. is a large molybdoprotein with similarity to DmsA and is synthesized with a twinarginine signal amino acid sequence. NrfA, the periplasmic nitrite reductase, is not a molybdoprotein but a c-type cytochrome and contains a Sec-leader peptide. Accumulation of both of these redox enzymes in the periplasm of strain D-43 was assayed by staining the periplasmic proteins separated by PAGE with reduced methyl viologen in the presence of nitrate and nitrite as follows.

Periplasmic proteins were released from washed bacterial suspensions as described by McEwan *et al.* (1984) Arch. Microbiol. 137:344-349 except that the EDTA concentration was 5 mM. The periplasmic fraction was dialyzed against two changes of a 20-fold excess of 10 mM Na+/K+ phosphate, pH 7.4 to remove sucrose and excess salt, freeze dried and dissolved in 10 mM phosphate pH 7.4 to a protein concentration of about 15 mg/ml⁻¹. Protein concentrations were determined by the Folin phenol method described previously [Newman and Cole (1978) J. Gen. Microbiol. 106:1-12]. The periplasmic proteins were separated on a 7.5% non-denaturing polyacrylamide gel. After electrophoresis, the 18 cm square gel was immersed in 5 µg ml⁻¹ methyl viologen containing 5 mM nitrate. Dithionite was added to keep the viologen reduced; bands of activity were detected as transparent areas against a dark purple background. The same protocol was used to detect periplasmic nitrite and TMAO reductase activity but 5 mM nitrate was replaced by 2.5 mM nitrite or 5 mM TMAO, respectively. The results are shown in Figure 3.

Figure 3a shows A nitrate-stained polyacrylamide gel containing periplasmic proteins, membrane proteins and cytoplasmic proteins from HB101 and D-43. Lanes 1) and 2) contain periplasmic proteins from HB101 and D-43, respectively. Lanes 3) and 4) contain membrane proteins from HB101 and D-43, respectively and lanes 5) and 6) contain soluble cytoplasmic proteins from HB101 and D-43, respectively. Figure 3b shows nitrite-stained polyacrylamide gel containing periplasmic proteins from 1) HB101 and 2) D-43. Approximately 30 µg of

protein was loaded into each lane. Figure 3c shows TMAO-stained polyacrylamide gel containing periplasmic proteins from 1) HB101 and 2) D-43.

The results in Figure 3 show that nitrate reductase activity due to NapA was present in the periplasmic proteins extracted from the parental strain HB101 but was not observed in periplasmic proteins prepared from strain D-43 (Figure 3a). In contrast, activity of NrfA, the *c*-type cytochrome nitrite reductase, was similar in periplasmic proteins prepared from both HB101 and D-43 (Figure 3b). Significantly, the nitrate reductase activity was higher in membranes prepared from strain D-43 than in membranes prepared from the parental strain HB101, suggesting that NapA protein was "stuck" in the membrane fraction. No nitrate reductase activity was detected in soluble cytoplasmic proteins prepared from either strain (data not shown).

Additionally, the rate of electron transfer from physiologic electron donors to NrfA was measured by assaying the rate of nitrite reduction by a suspension of whole cells in the presence of formate or glycerol. The effects of the mutation on periplasmic nitrite reductase activity provided a key control to test whether MttA2 plays a major role in protein targeting. Nrf activity can be assessed in two ways: by detecting the activity of the terminal nitrite reductase which is a *c*-type cytochrome secreted by the Sec pathway and assembled in the periplasm (Figure 3b) [Thony-Meyer and Kunzler (1997) Eur. J. Biochem. 246:794-799]. and by measuring the rate of nitrite reduction by washed bacteria in the presence of the physiologic substrate, formate. Only the latter activity requires the membrane-bound iron-sulfur protein, NrfC, which is synthesized with an N-terminal twin-arginine signal amino acid sequence.

The rate of nitrite reduction in suspensions of strain HB101 was 34 μ mol nitrite reduced/min⁻¹/ml⁻¹ while that measured with suspensions of D-43 was 11 μ mol nitrite reduced/min⁻¹/ml⁻¹. These results show that cytochrome c_{552} was correctly targeted in the mutant and able to catalyse nitrite reduction with dithionite-reduced methyl viologen as the artificial electron donor, but strain D-43 was deficient in formate-dependent nitrite reductase activity.

Loss of electron transport to NrfA from physiologic electron donors, but not from reduced methyl viologen was probably due to the presence of a twin-arginine signal amino acid sequence motif in either NrfC, which is a protein essential for the transfer of electrons from quinones to NrfA [Hussain et al. (1996) Mol. Microbiol. 12:153-163] or in FdnG which

5

10

15

20

25

contributes to the transfer of electrons from formate to nitrite [Darwin et al. (1993) J. Gen. Microbiol. 139:1829-1840].

Trimethylamine N-oxide reductase (TorA) is another periplasmic terminal reductase related to DmsA [Mejean *et al.* (1994) Mol. Microbiol. 11:1169-1179] which contains a twinarginine signal amino acid sequence. In strain D-43 this enzyme activity was not observed in the periplasmic protein fraction (Figure 3c).

EXAMPLE 5

MttA2 Protein Targets DmsAB To The Membrane And Does Not Translocate DmsAB To The Periplasm

In order to determine whether MttA2 is involved in targeting DmsAB to the membrane rather than in the translocation of DmsAB to the periplasm, and whether the role of DmsC is to prevent translocation of DmsAB to the periplasm, the intracellular location was examined in HB101 and D-43 for the DmsA and DmsB subunits expressed from a plasmid encoding the wild-type DmsABC operon as well as a truncated form lacking the anchor subunit DmsC. The results are shown in Figure 4.

Figure 4 shows a Western blot of DmsAB. Figure 4A shows HB101 expressing either native DmsABC (pDMS160), DmsABΔC (pDMSC59X), or FrdABΔCD. Figure 4B shows equivalent lanes as in Figure 4A, with the same plasmids in D-43. P; purified or enriched sample protein of either DmsABC or FrdAB, M; washed membranes. S; soluble fraction. O; osmotic shock fraction, 20; 2 fold osmotic shock fraction. Purified FrdAB was obtained from HB101/pFRD84 expressing high levels of the wild-type enzyme and purified by the method of [Dickie and Weiner (1979) Can. J. Biochem. 57:813-821; Lemire and Weiner (1986) Meth. Enzymol. 126:377-386]. All lanes had the equivalent concentration of protein loaded.

As shown in Figure 4A, (compare lanes 8 and 9 to lanes 4 and 5) significant amounts of DmsA and DmsB accumulated in the periplasm only when the DmsC subunit was absent. As a control for this experiment, plasmids carrying the intact *frdABCD* (pFRD84) (not shown) and truncated *frdAB* (pFRD117) [Lemire *et al.* (1982) J. Bacteriol. 152:1126-1131] lacking the anchor subunits of fumarate reductase were also expressed. As fumarate reductase does not have a twin-arginine signal amino acid sequence and assembles spontaneously in the membrane [Latour and Weiner (1987) J. Gen. Microbiol. 133:597-607] neither a Mtt

5

10

15

20

25

mutation. nor loss of the anchor subunits, FrdC and FrdD, should result in secretion of FrdAB into the periplasm. This was confirmed (lanes 13 and 14). In Figure 4B the same experiment is shown for strain D-43. As expected neither DmsA nor DmsB accumulated in the periplasm.

5

These results demonstrate that MttA is not involved in the translocation of DmsAB to the periplasm but in targeting them to the membrane. These results also suggest that the role of DmsC is to prevent translocation of DmsAB to the periplasm.

EXAMPLE 6

Plasmid Complementation Of D-43 And Sequencing Of The mttA Region

Complementation of the D-43 mutant with plasmid pDMS160 (which carries the wild-type DmsABC operon) was carried out to determine whether the mutation was located within or outside the DmsABC structural gene.

15

10

A. Plasmid complementation of mutant D-43

For initial complementation experiments, an *E. coli* DNA library was prepared by Hindll digestion of an *E. coli* HB101 chromosomal DNA preparation and ligated into the Hindll site of pBR322. The ligation mixture was transformed directly into D-43. The transformants were grown anaerobically on glycerol/DMSO (Gly/DMSO) plates and incubated anaerobically at 37°C for 72 hr. The complementing clone identified form this library, pDSR311, was isolated and restriction mapped. The map was compared with the integrated *E. coli* restriction map version 6 [Berlyn *et al.* (1996) Edition 9 in *Escherichia coli and Salmonella* 2:1715-1902, ASM Press, Washington DC].

25

30

20

A second gene bank was prepared using random 5-7 kb Sau3a fragments of *E. coli* W1485 ligated into the BamHI site of pBR322. This *E. coli* gene bank was a gift from Dr. P. Miller, Parke-Davis Pharmaceuticals, Ann Arbor, MI. D-43 was transformed with 2 μg of this library and transformants were plated onto Luria-Bertani (LB) broth plates containing 100 μg/ml⁻¹ ampicillin. After overnight growth at 37°C the cells were washed off the plates into 5 ml of LB broth and 20 μl of this suspension was diluted with 10 ml of Minimal A medium [Miller (1992) in *A Short Course in Bacterial Genetics*, Cold Spring Harbor Laboratory Press] containing 100 μg/ml⁻¹ ampicillin and 10 μg/ml⁻¹ vitamin B1, proline and leucine and grown aerobically at 37°C for 16 hr. The cells were washed twice in phosphate buffered

saline (PBS) and samples were serially diluted into PBS buffer. Each dilution (100 µl) was plated on Gly/DMSO plates and incubated anaerobically at 37°C for 72 hr. Colonies were further tested for anaerobic growth in 9 ml screw-top test tubes containing Gly/DMSO broth medium.

5

10

15

20

25

30

The location of the complementing clones in the *E. coli* chromosome obtained from both libraries was confirmed by DNA sequencing the ends of the clones using primers which flanked the HindIII and BamHI sites of pBR322. Subclones of the complementing clones from each of the libraries were constructed utilizing standard cloning methods [Sambrook *et al.* (1989)] and ligated into the cloning vector pTZ18R. DNA from subclones was restriction mapped to verify the insert. Positive subclones were tested for anaerobic growth in Gly/DMSO and Gly/Fumarate broth medium.

A single clone, pDSR311, which allowed growth on Gly/DMSO was identified. Through restriction map analysis and sequencing the ends of the insert, the clone was mapped to the 88 min region of the chromosome, within contig AE00459 covering the 4,013,851 - 4,022,411 bp region of the sequence of Blattner et al. [Blattner et al. (1997) Science 277:1453-1462]. The clone contained the previously undefined open reading frames *yigO*, *P*, *R*, *T*, and *U* (based on the original *yig* nomenclature for unidentified ORFs) (Figure 5).

All attempts to use available restriction sites to subclone this region into ORF groups yigOP, yigR, yigRTU, and yigTU were unsuccessful. Therefore, a second library consisting of $E.\ coli$ chromosomal DNA which had been partially-digested with Sau3a was ligated into BamHI- digested pBR322. This library generated a number of complementing clones. The smallest was pGS20 which encoded the 3' end of yigR and approximately three quarters of yigT as shown in Figure 5. This suggested that the products of the putative genes yigTUW were responsible for DmsA targeting to the membrane and Nap translocation to the periplasm and these genes were renamed mttABC (membrane targeting and translocation). This region was cloned from wild-type HB101 utilizing PCR as follows.

For PCR cloning of the *mttABC* region, the chromosomal DNA template for PCR was prepared from HB101. Bacteria from 1.5 ml of an overnight culture were pelleted in an Eppendorf tube and resuspended in 100 µl of water. The cells were frozen and thawed three times, pelleted by centrifugation and 5 µl of the supernatant was used as the PCR template.

The region of the putative mttABC operon was cloned utilizing PCR. The 5' primer was located at the end of the coding sequence for yigR(b3835) (position 5559-5573 of contig AE00459) and included the intervening sequence between yigR and mttA. The 3' primer

hybridized immediately after the stop codon of *mttC* (position 8090-8110). The primers contained the restriction sites EcoRI and SaII to facilitate cloning into the phagemid pTZ18R and recombinants were screened in *e. coli* strain TGI. The ends of the clones were sequenced to verify the region cloned.

Clones of the ORF region *mttABC* were subcloned utilizing standard cloning methods [Sambrook *et al.* (1989)] and ligated into the vector pBR322. Positive clones and subclones were transformed into D-43 and tested for anaerobic growth in Gly/DMSO and Gly/Fumarate broth medium.

The clone of *mttABC* was able to complement the D-43 mutation only when cloned into the lower copy number plasmid pBR322 (pBRmttABC) and no complementation (or growth) was observed when *mtt*ABC was cloned into the high copy number plasmid pTZ18R (pTZmttABC).

The D-43 mutant could not be complemented with plasmid pDMS160 carrying the wild-type DmsABC operon suggesting that the mutation mapped outside the structural genes. Interestingly, the mutant expressed nearly normal levels of DMSO reductase activity but the activity was soluble rather than membrane-bound. This was surprising given that the membrane anchor, DmsC, was expressed in these cells (see below) and this suggested that the mutant was defective in membrane targeting or assembly.

B. Sequencing the mttA region

We compared the sequence of clone pGS20 with the identical region of strain D-43 by PCR sequencing of both strands as follows. Chromosomal DNA from strains HB101 and D-43 was prepared as above. The 976 bp region which complements the D-43 mutation was amplified, the PCR products were sequenced directly and the DNA sequences of both strains were compared to the published sequence of *E. coli* [Blattner *et al.* (1997)]. As Taq DNA polymerase was used for PCR, two different reaction products, resulting from separately prepared templates, were sequenced to identify any mutations which may have resulted from the PCR reaction. Both strands were sequenced in the region of any identified mutations.

We identified only one nucleotide change altering a C to a T at position 743 of pGS20. When this region was compared to the sequence of contig AE00459 in the *E. coli* genome sequence [Blattner *et al.* (1997) Science 277:1453-1462], it appeared that the mutation mapped within the proposed ORF termed b3837. This ORF did not have a normal *E. coli* codon usage and so we determined the DNA sequence of this region of AE00459.

5

10

15

20

25

Several differences were identified and a revised ORF map of this contig is shown in Figure 5. This revision resulted in several changes: ORF b3836, b3837 and b3838 are no longer observed and are replaced by a polypeptide which is very similar throughout its length to the YigT protein of *H.influenzae* [Fleischmann *et al.* (1995) Science 269:496-512] (Figure 6).

5

Figure 6 shows the sequence (SEQ ID NO:1) of *E. coli* wild-type MttA aligned with YigT of *Haemophilus influenzae* (Fleischmann *et al.*, 1995) (SEQ ID NO:2). The two potential transmembrane segments are denoted as TMS1 and TMS2, respectively. a) denotes the position of the mutation in MttA which changes proline 25 to leucine. b) denotes the termination of MttA in clone pGS20. The potential α-helical region is indicated.

10

15

25

The mutation in D-43 resulted in the mutation of proline 25 of MttA2 to leucine. Interestingly, clone pGS20 did not encode the entire MttA polypeptide but terminated at amino acid 205. The MttA protein is composed of 277 amino acids and has a mass of -30.6 kDa. Without limiting the invention to any particular mechanism, the MttA protein has two potential transmembrane helices between residues 15-34 and 107-126. The most likely orientation is with the amino and carboxyl termini exposed to the periplasm. Residues 150 to 200 are predicted to form a very long α -helix. The mutation in D-43 altered the proline immediately after the second transmembrane helix and could disrupt this structure of the protein.

20 C. Proteins homologous to the MttA protein

A database search of sequences which are related to mttA (i.e., mttA1 and mttA2) identified a large family of related proteins whose function was previously unknown. In addition to the Zea mays protein of Settles et al. (1997) Science 278:1467-1470, related sequences were identified by BLAST searches in Azotobacter chroococcum, Bacillus subtilis. Heamophilus influenzae, Helicobacter pylori, Mycobacterium leprae, Mycobacterium tuberculosis, Pseudomonas stutzerii, Rhodococcus erythropolis, and Synechocystis PCC6803 as well as the Ybec sequence of E. coli (Figure 8).

5

10

15

20

25

30

EXAMPLE 7

E. coli mttB And mttC Form An Operon With mttA

A. The mttABC operon

Examination of the DNA sequence adjacent to *mttA* suggested that the upstream gene, *yigR*, encodes an aminoglycosyl transferase (BLAST search of the non-redundant data base). A potential transcription terminator at position 5590-5610 of contig AE00459 [Blattner *et al.* (1997) Science 277:1453-1462] separates *yigR* from *mttA*.

To test whether the adjacent genes mttB and mttC form an operon with mttA, mRNA was isolated from aerobically grown HB101 and RT-PCR was used with a primer within mttC to make a cDNA product. This cDNA was then amplified by PCR with primers within mttA and mttB giving the expected product of 270 bp., and mttA and mttC giving a product of 1091 bp. confirming a single polycistronic mRNA for the mttA, mttB. and mttC genes. To ensure that the PCR products were not the result of contaminating chromosomal DNA, the mRNA preparation was extensively digested with DNase prior to PCR and a control omitting the RT-PCR step did not give any products after PCR amplification.

The nucleotide sequence (SEQ ID NO:45) of the *mttABC* operon is shown in Figure 11. Figure 7 also shows the nucleotide sequence of the three open reading frames, ORF RF[3], ORF RF[2] and ORF RF[1], and the encoded amino acid sequences of MttA (SEQ ID NO:1). MttB (SEQ ID NO:7) and MttC (SEQ ID NO:8), respectively.

B. Proteins homologous to the MttB and MttC proteins

A database search of sequences which are related to *mttB* and *mttC* identified a large family of related proteins which are organized contiguously in several organisms. In all cases the function of these proteins was previously unknown.

The nucleotide sequence of mttB (SEQ ID NO:)5 is shown in Figure 7. mttB encodes an integral membrane protein of 258 amino acids with six predicted transmembrane segments. A large number of related sequences was identified in a BLAST search extending from the archaebacteria (Archeoglobus fulgidus), through the eubacteria (Azotobacter chroococcum, Bacillus subtilis, Heamophilus influenzae, Helicobacter pylori, Mycobacterium laprae, Mycobacterium tuberculosis), cyanobacteria (Synechocystis PCC6803) to mitochondria of algae (Reclimonas americana, Chondrus crispus) and plants (Arabidopsis thalania,

Marchantia polymorpha) as well as chloroplasts of *Porphyra purpurea* and *Odentella sinensis* (Figure 9).

The nucleotide sequence of the neighboring gene mttC (SEQ 1D NO:6) is shown in Figure 7. mttC encodes a polypeptide of 264 amino acids which is predicted to have at least one potential transmembrane segment (residues 24-41). The most likely orientation of this protein results in a large cytoplasmic domain extending from residue 41 to 264. Without limiting the invention to any particular mechanism, there is the possibility of a second transmembrane domain at residues 165-182. This possibility may be confirmed by a hluM gene fusion analysis. Like MttA and MttB, the MttC protein also is a member of a very large family of homologous proteins which includes two homologous sequences in E. coli (Yefh and Yjjv) as well as homologous sequences in archaebacteria (Methanobacterium thermoautotrophicum), Mycoplasma (Mycoplasma pneumoniae and Mycoplasma gentitaluium), eubacteria (Bacillus subtillis, Heamophilus influenzae, Helicobacter pylori, Mycohacterium tuberculosis), cyanobacteria (Synechocytis PCC6803), yeast (Schizosaccharomyces pombe and Saccharomyces cerevisae), C. elegans and humans (Figure 10). The human protein is notable in having a 440 amino acid extension at the amino terminus which is not found in the other proteins. This extension is not related to MttA or MttB.

20 EXAMPLE 8

5

10

15

25

30

DNICOCOD: -WO 005175341 ! >

Construction of host cells containing a deletion of at least a portion of the genes mttA, mttB and mttC

The function of MttA, MttB and MttC proteins in a host cell is demonstrated by *in vivo* homologous recombination of chromosomal *mttA*, *mttB* and *mttC* as previously described [Sambasivarao et al (1991) J. Bacteriol. 5935-5943; Jasin et al (1984) J. Bacteriol. 159:783-786]. Briefly, the *mttABC* operon is cloned into vectors, and the gene whose function is to be determined (*i.e.*, *mttA*, *mttB* or *mttC*) is mutated, *e.g.*, by insertion of a nucleotide sequence within the coding region of the gene. The plasmids are then homologously recombined with chromosomal *mttA*, *mttB* or *mttC* sequences in order to replace the chromosomal *mttA*, *mttB* or *mttC* genes with the mutated genes of the vectors. The effect of the mutations on the localization of proteins containing twin-arginine amino acid signal

sequences is compared between the wild-type host cells and the cells containing the mutated mttA, mttB or mttC genes. These steps are further described as follows.

A. Construction of plasmids carrying deletions or insertions in mttA, mttB and mttC genes

The *mttABC* operon (Figure 11) is cloned into pTZ18R and pBR322 vectors. In pBR322, the HindIII site in *mttB* is unique. The pBR322 containing *mttB* is then modified by insertion of a kanamycin gene cartridge at this unique site, while the unique NruI fragment contained in *mttC* is replaced by a kanamycin cartridge.

10

15

20

5

B. Homologous recombination and P1 transduction

The modified plasmids are homologously recombined with chromosomal mttA. mttB and mttC in E. coli cells which contain either a recBC mutation or a recD mutation. The resulting recombinant is transferred by P1 transduction to suitable genetic backgrounds for investigation of the localization of protein expression. The localization (e.g., cytoplasm, periplasm, cell membranes, extracellular medium) of expression of twin arginine containing proteins is compared using methods disclosed herein (e.g., functional enzyme activity and Western blotting) between homologously recombined cells and control cells which had not been homologously recombined. Localization of expressed twin arginine containing proteins extracellularly, in the periplasm, or in the cytoplasm of homologously recombined cells as compared to localization of expression in cell membranes of control cells demonstrates that the wild-type MttA, MttB or MttC protein whose function had been modified by homologous recombination functions in targeting expression of the twin arginine containing protein to the cell membrane. Similarly, accumulation of expressed twin arginine containing proteins in extracellular medium, in the cytoplasm, or in cell membranes of homologously recombined cells as compared to periplasmic localization of the expressed twin arginine containing protein in control cells which had not been homologously recombined indicates that the protein (i.e., MttA, MttB or MttC) whose function had been modified by homologous recombination functions in translocation of the twin arginine containing protein to the periplasm.

30

EXAMPLE 9

Wild-type and mutant twin-arginine amino acid signal sequences of preDmsA are cleaved to release mature DmsA

In this Example, the following numbering system for DmsA has been used: the mature protein starts at Val 46; the leader extends from Met1 to Ala 45 and the double Arg signal is at residues 15-21. In order to determine whether preproteins which contain twin-arginine amino acid signal sequences are cleaved to release a mature polypeptide as suggested by Berks [Berks (1996)], the two alanine amino acids at the -1 and -3 positions of the twin-arginine amino acid signal sequences of wild-type DmsA preprotein were replaced with asparagine, and cleavage of both the wild-type and the mutated twin-arginine amino acid signal sequences was investigated.

A. Cell culture conditions

5

10

15

20

25

30

Cells were grown anaerobically in Luria Broth [Sambrook (1989)] and these cultures were used for a 1% inoculum into glycerol minimal medium with 0.167% peptone and vitamin B1, proline, leucine at final concentrations of 0.005%.

All manipulations of plasmids and strains were carried out as described by Sambrook et al. (1989)].

The upstream untranslated region of DmsA was examined using software from the Center for Biological Analysis (http://www.cbs.dtu.dk/) to identify potential leader peptidase I cleavage sites. This analysis indicated that mutation of both Ala43 and Ala45 was needed to inhibit cleavage. An additional secondary cleavage site with low probability was identified between Thr36 and Leu37. The two Ala mutated in this study were Ala43 and Ala45 which are underlined in the following DmsA leader sequence (SEQ ID NO:43) that contains the twin-arginine amino acid signal sequence:

1 15 30 43 45

MKTKIPDAVLAAEV<u>SRRGLVK</u>TTIAFFLAMASSALTLPFSRI<u>A</u>H<u>A</u>VDSAI

Mutants were generated by site-directed mutagenesis of single stranded DNA of plasmid pDMS223 [Rothery and Weiner (1991) Biochemistry 30:8296-8305] using the Sculptor kit (Amersham) and mutagenic primers to generate the mutants A43N and A43N,A45N. The mutagenic primer (SEQ ID NO:44) 5'-TTAGTCGGATTAATCACAATGTCGATAGCG-3'

was used. Mutant DNA was subcloned into pDMS160 [Rothery and Weiner (1991)] using BgIII and EcoRI restriction sites, and resequenced to confirm the mutation.

B. Expression studies

5

10

15

20

25

30

Samples were removed from the cultures after 30-48 hours of anaerobic growth, the cells pelleted by centrifugation at 9500g for 10 min., resuspended and everted envelopes prepared by French Press lysis. The cytoplasm and membrane fractions were separated by differential centrifugation. Membranes were washed twice with 50mM MOPS pH7.0 prior to use. Membrane proteins were solubilized with 1% SDS and polyacrylamide gel electrophoresis was performed using the Bio-Rad minigel system with a discontinuous SDS buffer system [Laemmli (1970) Nature 227:680-685]. Western blotting was performed using affinity purified DmsA antibody with the ECL Western blotting detection reagents from Amersham Life Sciences.

The results (data not shown) demonstrated cleavage of both the preDmsA proteins which contained alanine and which contained asparagine in the twin-arginine amino acid signal sequence to release mature DmsA. These results suggest that twin-arginine amino acid signal sequences are cleaved by signal peptidase I which also cleaves Sec signal sequences. Alternatively, a signal peptidase which is different from signal peptidase I and signal peptidase II, and which has different specificity may be operative. This possibility is investigated by N-terminal amino acid sequencing.

C. N-terminal amino acid sequencing

N-terminal amino acid sequencing is carried out as previously described [Bilous et al (1988) Molec. Microbiol. 2:785-795] in order to determine the cleavage site in preDmsA and other preproteins which contain twin-arginine amino acid signal sequences, e.g., preTorA, and preNapA. A signal peptidase I temperature sensitive mutant is used to determine if preDmsA, preTorA and preNapA are cleaved at the restrictive temperature. Amino terminal sequences are determined by automated Edman degradation on an Applied Biosystems Model 470A gas phase sequenator. Subunits are separated by SDS PAGE and electroblotted onto polyvinylidene fluoride membranes and electroeluted as described by Cole et al. [J. Bacteriol. 170:2448-2456 (1988)].

The above-presented data shows that mttA1, MttA2, mttB and mttC encode proteins MttA1, MttA2, MttB and MttC which are essential in a Sec-independent pathway, and which function in targeting twin arginine containing proteins to cell membranes and in translocating twin arginine containing proteins to the periplasm and extracellular medium. The above-disclosed data further demonstrates that disruption of the function of any one or more of MttA1, MttA2, MttB and MttC results in translocation of twin arginine containing proteins to the periplasm, to extracellular medium, or to cellular compartments other than those compartments in which the twin arginine containing proteins are translocated in cells containing wild-type MttA1, MttA2, MttB and MttC. These results demonstrate that mttA1, MttA2, MttB and mttC are useful in translocating twin arginine containing proteins to the periplasm and extracellular medium. Such translocation is particularly useful in generating soluble proteins in a functional form, thus facilitating purification of such proteins and increasing their recovery.

15

20

10

5

All publications and patents mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in the art and related fields are intended to be within the scope of the following claims.

CLAIMS

- 1. A recombinant polypeptide comprising at least a portion of an amino acid sequence selected from the group consisting of SEQ ID NO:47. of SEQ ID NO:49. of SEQ ID NO:7 and variants and homologs thereof, and of SEQ ID NO:8 and variants and homologs thereof.
- 2. An isolated nucleic acid sequence encoding at least a portion of an amino acid sequence selected from the group consisting of SEQ ID NO:47. of SEQ ID NO:49. of SEQ ID NO:7 and variants and homologs thereof, and of SEQ ID NO:8 and variants and homologs thereof.
- 3. The nucleic acid sequence of Claim 2, wherein said nucleic acid sequence is contained on a recombinant expression vector.
- 4. The nucleic acid sequence of Claim 3, wherein said expression vector is contained within a host cell.
- 5. A nucleic acid sequence that hybridizes under stringent conditions to a nucleic acid sequence encoding an amino acid sequence selected from the group consisting of SEQ ID NO:7 and variants and homologs thereof, and SEQ ID NO:8 and variants and homologs thereof.
- 6. A method for expressing a nucleotide sequence of interest in a host cell to produce a soluble polypeptide sequence, said nucleotide sequence of interest when expressed in the absence of an operably linked nucleic acid sequence encoding a twin-arginine signal amino acid sequence produces an insoluble polypeptide. comprising:
 - a) providing:
 - i) said nucleotide sequence of interest encoding said insoluble polypeptide;
 - ii) said nucleic acid sequence encoding said twin-arginine signal amino acid sequence; and

5

10

15

20

25

iii) said host cell, wherein said host cell comprises at least a portion of an amino acid sequence selected from the group consisting of SEQ ID NO:47, of SEQ ID NO:49, of SEQ ID NO:7 and variants and homologs thereof, and of SEQ ID NO:8 and variants and homologs thereof;

5

- b) operably linking said nucleotide sequence of interest to said nucleic acid sequence to produce a linked polynucleotide sequence; and
- c) introducing said linked polynucleotide sequence into said host cell under conditions such that said fused polynucleotide sequence is expressed and said soluble polypeptide is produced.

10

- 7. The method of Claim 6, wherein said insoluble polypeptide is comprised in an inclusion body.
- 8. The method of Claim 6, wherein said insoluble polypeptide comprises a cofactor.
 - 9. The method of Claim 8, wherein said cofactor is selected from the group consisting of iron-sulfur clusters, molybdopterin, polynuclear copper, tryptophan tryptophylquinone, and flavin adenine dinucleotide.

20

15

- 10. The method of Claim 6, wherein said soluble polypeptide is comprised in periplasm of said host cell.
- 11. The method of Claim 6, wherein said host cell is cultured in medium, and wherein said soluble polypeptide is contained in said medium.
 - 12. The method of Claim 6, wherein said cell is Escherichia coli.
 - 13. The method of Claim 12, wherein said *Escherichia coli* cell is D-43.

30

14. The method of Claim 6, wherein said twin-arginine signal amino acid sequence is selected from the group consisting of SEO ID NO:41 and SEO ID NO:42.

15. A method for expressing a nucleotide sequence of interest encoding an amino acid sequence of interest in a host cell, comprising:

- a) providing:
 - i) said host cell;
 - ii) said nucleotide sequence of interest;
- iii) a first nucleic acid sequence encoding twin-arginine signal amino acid sequence; and
- iv) a second nucleic acid sequence encoding at least a portion of an amino acid sequence selected from the group consisting of SEQ ID NO:47, of SEQ ID NO:49, of SEQ ID NO:7 and variants and homologs thereof, and of SEQ ID NO:8 and variants and homologs thereof;
- b) operably fusing said nucleotide sequence of interest to said first nucleic acid sequence to produce a fused polynucleotide sequence; and
- c) introducing said fused polynucleotide sequence and said second nucleic acid sequence into said host cell under conditions such that said at least portion of said amino acid sequence selected from the group consisting of SEQ ID NO:47, of SEQ ID NO:49, of SEQ ID NO:7 and variants and homologs thereof, and of SEQ ID NO:8 and variants and homologs thereof is expressed, and said fused polynucleotide sequence is expressed to produce a fused polypeptide sequence comprising said twinarginine signal amino acid sequence and said amino acid sequence of interest.
- 16. The method of Claim 15, wherein said expressed amino acid sequence of interest is contained in periplasm of said host cell.
- 17. The method of Claim 16, wherein said expressed amino acid sequence of interest is soluble.
- 18. The method of Claim 15, wherein said host cell is cultured in medium, and wherein said expressed amino acid sequence of interest is contained in said medium.
- 19. The method of Claim 18, wherein said expressed amino acid sequence of interest is soluble.

5

10

15

20

25

FIG. 1

FIG. 2

FIG. 4

pDSR311 - pMttABC pGS20 HindIII (yigT) (yigU) (yigW) (yigO) ubiE HindIII yigN 4,013,851 dpn

6/21

FIC	G. 6	
MttA_ECOLI	10 20 MRLCLITIYHRGTC	TMS1 30 MIG G I S I W Q L L
YIGT_HAEIN	MAKKSIFRAKFFLFYRTEFITMS1	
MITA_ECOLI YIGT_HAEIN	40 50 I I A V I V V L L F G T K K L G S I G S I L V V I L L I F G T K K L R N A G S	
MitA_ECOLI YIGT_HAEIN	70 80 K A M S D D E P K Q D K T S Q D A D F T K A M K E D E K V K D A E F -	KS ID
MttA_ECOLI YIGT_HAEIN	TNQEQAKTEDAKRHDKEQGV NETASAKKGKYKRERNR L	
MtIA_ECOLI YIGT_HAEIN	TMS2 130 140 L L V F	
	α-helix	
MttA_ECOLI YIGT_HAEIN	160 170 L R S L A T T V Q N E L T Q E L K L Q E I R G L A A N V Q N E L K Q E L K L Q E	
	α-helix	
MttA_ECOLI YIGT_HAEIN	190 200 A S L T N L T P E L K A S M D E L R Q A L S P E L S K T V E E L K A Q	
	Ð	
MttA_ECOLI YIGT_HAEIN	D 220 230 N D P E K A S D E A H T I H N P V K A A Q A G T T V E D Q I K E I K S A A	240 V K D N E A A H E G E N A E K S Q N A I
	220 230 N D P E K A S D E A H T I H N P V K A A Q A G T T V E D Q I K E I K S A A 250 260	V K D N E A A H E G E N A E K S Q N A I

FIG. 7A

TOTAL CONTROL		~~~~	20	30 TACCAACGTT	40			60
11010	GC 1 GG	31600.	ACCAGA	TACCAACGII	GAAGAGIIC	GAMIIIG(CATICO	JIACGGI
	70		80	90	100	7	110	120
CTGTG.	AACCT	ATCTT'	TGAGA	ACCGCTGGCC	GAAATTTCG	TTTGGAC	TGTACT	TGTTAAA
	130		140	150	160	1	70	180
TCTGT'		ACGGC(CTTCAATATG				
	190		200	210	220		30 .	
GAAAA	CCCTG	CTCTA	CGTCGA	AGGGGTAGGA	CGCCAGCTT	TATCCGCA	ACTCG	ATTTATG
	250		260	270	280	2	90	300
GAAAA	CGGCGA	AAGCC:	TTTCCI	GGAGTCGTGG	ATTAAAGAT	CAGGTCGG	TATTC	TGCGCT
	24.0		200			_		
CCTCAC	310 באכראיז	נ <i>ע</i> ער טיטיט	320 444	330 AGCGCCGTTC	340 VGGTTCG		50 'AGA ACT	
GGTGA	JAGCA		10/11/11/1	AGCGCCG11C	10001CGAA	nana i de c	.AGAAC 1	GCCIGA
	370		380	390	400	4	10	420
ATTGG:	ODATTI	GACAG	rttgcg	CCAGGGCAAG!	PATTTACAG!	CACAGTGI	TGATAA	GATTGC
	430		440	450	460	4	70	480
CCGCGA		CAGTC		TGTACGTCAG				
00000	490				520		30	540
CGCTAC	_GTTAC	TATT	AG I GG	CACATTCTTG	PIGGICAGC	JGACCTGA	ATGGGG	GCTGAT
	550		560	570	580	5	90	600
GCCCGC	SCTGGI	TAATO	GCAGG	TGGTCTGATCC	SCCTGGTTT	STCGGTTG	GCGCAA	AACACG
	610		620	630	640	6	5.0	660
CTGATT		ATCGC		GCGGGCCGTG1				
						M R L	CL	, I I>
					-	ORF	RF[2]	>
	670		680	690	700	7	10	720
CATCTA				TATGGGTGGTA				
I Y	Н	R G		M G G				I A>
				ORF RF	[2]			>
	730		740	750	760	7	70	780
CGTCAT	CGTTG	TACTG		rggcaccaaaa			TTCCGA	TCTTGG
VI	V	V L	L F					L G>
				ORF RF[2]			>
	790		800	810	820	8	30	840
	GATCA	AAGGC	TTTAA	AAAAGCAATGA	GCGATGAT	SAACCAAA	GCAGGA	TAAAAC
A S	I	K G		K A M			Q D	K T>
				ORF RF[2]			>
	850		860	870	880	8	90	900
CAGTCA	GGATG	CTGAT	TTTACT	rgcgaaaacta	TCGCCGATA	AGCAGGC	GGATAC	GAATCA
S Q	D.	A D	F T	A K T	I A D	K Q A	D T	N Q>
				ORF RF[4J			>
				930				
	GGCTA	AAACA	GAAGAC	GCGAAGCGCC	ACGATAAAC	AGCAGGT	GAATCC	GTGTTT
	GGCTA	AAACA	GAAGAC		ACGATAAAG H D K	AGCAGGT E Q V	GAATCC N P	GTGTTT

8/21 FIG. 7B

		97	•							90								omo		
GATA I		GGT V					L	L	L	GTGT' V I RF [:	F	I	I	G	L	V	V	L	G	P>
										50										
		L	3	P	V	Α	V	K	${f T}$	GTAGO V 2 RF [2	Ą	G	W	I	R	Α	L	R	S	L>
		109	0			110	0		11:	10		1	120			113	0		11	40
GGCG A	OAE T	AAC T	GG:	J	Q	N	E	L	T	CAGG Q I RF [:	Ε	L	K	L	Q	E	F	Q	D	S>
										70										00
rcrg L					E	K	Α	S	L	ACTAI 1 T RF[1	N	L	T	P	E	L	K	Α	S	M>
~C > T	יר א	121	0 0		· A C	122	0	2G A (12	30 ATGA	A G(1 7GT	240 TCC	ጥልር	ىلىك.	125 rgc2	0 AAA	רבטר	12 CCT	60 GA
D	E	L	ACC I	3	Q	Α	Α	E	S	M I	K	R	S	Y	V	Α	N	D	P	E>
אאה	GC	127 GAG								90 CATA										20 'GC
	A	S	I)	E	Α	H	т	I	H I	N	P	V	V	K	D	N	E	Α	A>
TC A T	יה א	133 GGG		בבח	CG	134	o GCC	ccc	13.	50 CAAA(CGC	1 CAG	3 6 0 GCC	AGT	'TC	137	70 SGA	ACAC	13 SAAG	80 CC
Н	E	G	7	J	\mathbf{T}	P	Α	Α	Α	Q ? RF[:	Г	Q	Α	S	S	P	E	Q	K	P
AGAA	AC	139 CAC								10 CCTG								AAC		40 GC
Е	Т	Т	I	?	E	P	V	V	K	P Z RF[Ą	A	D	Α	E	P	K	Т	A	A:
ACCT	TC	145 CCC	0 TTC	GT	'CG	146 AGT	0 GA:	laa1	14' ACCG'	70 [AAA(CA!	1 rgt	480 CTG	TAC	AAG	149 GAT	O ACT	CAA	15 CCGC	00 TT
												1	S	V	E		${f T}$	Q	P	
			ORI	R	F [2]			P>	>										
	CG	CAT	СТС	зAТ	тG	AGC	TG	CGTA	AGC	30 GTCT(GC:	ГGA	ACI	'GCA	TT	ATC	GCG	GTG.	ATC	ЭTG
I	Т	H	L	I						R L RF[:										V> —
TAT	TC	157 CTG	rg:	CT	GG	TCT	'AT	TTC	CCA	90 ATGA	CA.	rct	ATC	ACC	TG	GTA:	rcc	GCG	1 CCA	rtg
I	F									N D RF[
ATCA	AG	163 CAG	rT(GCC	GC	AAG	GT:	rca.	CGA	50 TGAT	CG	CCA	CCC	ACC	TG	GCC'	rcg	CCG	TTC	580 TTT
I	K	Q	L	P		Q	G	S	T	M I RF[7	Ą	T	D	V	Α	s	P	F	F>

FIG. ^{9/21} 7C

200	3CC								'10 CGCT									
						F	М	V	S L RF{:	I	L	S	Α	P	V	Ι	L	Υ>
^ <u>A</u> C	cor								70 TGTA:									
Q	V	W	Α	F	I	Α	P	Α	L Y	K	Н	E	R	R	L	V	V	P>
ጉጥር	ירים	181 GGTT		ר א כו					30 'ATATO									
		V	S	S	S	L	L	F	Y I	G	М	A	F	Α	Y	F	V	V>
הטים	, ,								90 ATACO									
				F	G	F	L	A	N T	Α	P	Ε	G	V	Q	V	s	T>
GAC	:AT	193 CGCC	-	TAT					50 TGGCG									.98C
					L	S	F	V	M A RF[1	L	F	M	A	F	G	V	s	F>
GAA	GT	199 GCCG	•	.GC					10 GCTGG									040 TTF
E		P	V	_A	I	V	L	L _ORF	C W RF[1	м]	G	I	Т	s	P		D	L>
GC	'AA								70 GTGCA									
									G A RF[1									
CG	GA'	211 rgrc	-						30 CGATC									2160
					Q	\mathbf{T}	L	L.	A I RF[1	P	М	Y	С	L	F	E	I	
TC	TTC	217 CTTC	-						90 AAGGG									
v 	F —	F	s	R	F	Y ——			K G RF[1			Ř	E	E	E	N	D	A>
AA	GC <i>I</i>								50 AAATT									
								E> >										
									10									340
		Y I	R :	M	F I	D	I	g V	TAATT N RF[3	L	Т 5	5	S	Q	F	Α	·K	D>
		ATG	rtg'	TAG	CGT	GCG	CTT'	TTGA	70 70	GAC	AATTE	TG	GGC	TAC	TC		ACCC	
	ں —	7 a							A RF[3								Т	
		2410)		242	20		243	30		2440	,		24	50		2	460

FIG. 7D

CT.	AAC	CTC	GCG1	ΓGAÆ	AAGC	CAG	CAC	GCGCA	AAAG	CTG	GCG	CGI	CAG	TAT	TCG	TCC	TGI	TGGT
T	N	L	R					A Q ORF										
			70					24										
	T			V	H	P	H	GACAG D S ORF	S	Q	W	Q	A	Α	T	E	E	A>
								25										2580
	I I				Α	Q	P	GAAGT E V ORF	V	A	I	G	E	С	G	L	D	F>
		25	90		2	600		26	10		26	20		2	630			2640
	CGC R			S	Т	P	E	GAGCA E Q ORF	E	R	A	F	V	Α	Q	L	R	I>
			50		2	660		26	70		26	80		2	690			2700
Α	Α	D	L	N	M	P	V	TTTAT F M ORF	Н	C	R	D	A	Н	E	R	F	M>
			10					27.										
	L	Ļ	E	P	W	L	D	'AAACT' K L ORF	P	G	Α	V	L	H	С	F	Т	G>
		_	. •					27										
		E	E	M	Q	Α	С	GTGGC V A ORF	H	G	I	Y	I	G	I	T		
		28	30		2	840		28	50		28	60		2	870			
					R	G	L	GAGCTO E LORF	R	Ε	L	L	P	L	I	Þ		
		28	90					29:										2940
					T	D	Α	CCGTA: P Y ORF	L	L	P	R	D	L	T	P		P>
		29			2	960		29	70		29	80		2	990			3000
S	S	R	R	N	Ε	P	Α	CATCT(H L ORF	P	Н	I	L	Q	R	I	Α	H	W>
								303										
R	G	Ē	D	Α	A	W	L	GCTGC(A A ORF	Т	Т	D	A	N	V	K	${f T}$	L	F>
		30	70		3	080		309 AACTCO	90		31	00		3	110			3120
_		A																
								315 GAGCGA										

FIG. 7E

3190 GAAAGCCTTCGA				3230	3240
GAAAGCCIICGA	ACGCGCCTTCC	GTAATAATCA	CCTTATCACC	.CGGATAAGGC	-GTTGCCG
3250	3260	3270	3280	3290	3300
GATCGACAATGT	CTTTCGGTTTA	TATACCGATA	GCTGATGAAI	'AACCGCCGA'I	GGGACTA
224					
3310 TCGCTGGCGACG		3330			3360
1CGC1GGCGACG	CGCCAAAGCGC	ACGAAGTGGC			SATAGTCG
3370	3380	3390	3400	3410	3420
TGGTATGAATCA	CTTCTGGGTCA	AATTCCACAA	ACAGGTAGTT	GGGGAACAAT	GGCTCAC
		3450			3480
TGACTGCAGTAC	GTTTTCCACGC	ACGATTTTTT	CCAGGGTGAT	CATCGGTGCC	AGGCAAT
3490	3500	3510	3520	3530	3540
TCACAGCCTGTC					
			3580		
GTAAATACCAGG.	ATTGCATAATG	ACTCTTATCC	GTTTAATCGG	GGCGCAAGGA	TAGCAAA
3610	3620	3630	3640	3650	3660
AGCTTTACGCTA					
3670			3700		3720
ATTTAACAAATT	FACAGCATCGC	AAAGATGAAC	GCCGTATAAT	GGGCGCAGAT	TAAGAGG
3730	3740	3750	3760	3770	3780
CTACAATGGACG					
3790			3820		
AGGGTGAGCTAA	ACGTATCACG	CTCCCGGTGG	ATCCGCATCT	GGAAATCACT	GAAATTG
3850	3860	3870	3880	3890	3900
CTGACCGCACTT					
3910	3920	2220	3310	5550	3960
CAATGCCGGTGCT	GTGCAACCTG	TTCGGTACGC	CAAAGCGCGT	GCGATGGGC	ATGGGGC
3970	3980	3990	4000		
AGGAAGATGTTTC					

12/21

FIG. 8(A)

```
30
                        10
                                       20
MttA
Hcf106_ZEAMA MTFTANLLLPAPPFVPISDVRRLQLPPRVR
YBEC_ECOU
                                             MALTLVM
SYNEC
ORF13_RHOER
PSEST_ ORF57
YY34_MYCLE
HELPY
HAEIN
BACSU
ORF4_AZOCH
                                       50
MITA
                                            MRLCLIII
Hcf106_ZEAMA HCPRPCWKCVEWCSIQTRMVSSFVAVGSRT
YBEC_ECOU
          GAIAS PWV S V G T K L C Y S R L N E S F Y P S N P L T
SYNEC
ORF13_RHOER
PSEST_ ORF57
YY34_MYCLE
HELPY
HAEIN
                                   MAKKSIFRAKFFLF
BACSU
ORF4_AZOCH
                        70
          YHR - - - GTCMGGISIWQLLIIAVI
MILA
                                                VLLFG
          R R R N V I C A S L F G V G A P E A L V I G V V A L L V F G
Hcf106_ZEAMA
                        M GE I S I TK L L V VA A L V V L L F G
YBEC_ECOU
          APN - - - PMNIFGIGLPELGLIFVIALLVFG
SYNEC
                       M G A M S P W H W A I V A L V V V I L F G
ORF13_RHOER
                        MMGISVWQLLIILLIVVMLFG
PSEST_ ORF57
                       MGSLSPWHWVVLVVVVVLLF.G
YY34 MYCLE
                      MGGFTSIWHWVIVLLVIVLLFG
HELPY
          YRT - - - EFIMFGLSPAQLIILLVVILLIFG
HAEIN
                         MPIGPGSLAVIAI VALI I FG
BACSU
                    MGFGGISIWQLLIILLIVVMLFG
ORF4_AZOCH
                       100
                                      110
         TKKLG SIGS DLGAS I KGFKKAM SDDEPKQD
MttA
          PKGLAE VARNL GKIT L RAF QPT I R ELQID V S R
Hcf106 ZEAMA
         TKKLRTLGGDLGAAIKGFKKAMNDDD - AAA
YBEC_ECOU
          PKKLPEVGRSLGKALRGFQEASKEFETELK
SYNEC
          SKKLPDAARGLGRSLRIFKSEVKEMQNDNS
ORF13_RHOER
           KRLRGLGSDLGSAINGFRKSVSD-
PSEST_ ORF57
          AKKLPDAARSLGKSMRIFKSELREMQTEN -
YY34_MYCLE
HELPY
          AKKIPELAKGLGSGIKNFKKAVKDDE-EEA
         TKKLRNAGS DLGAAVKGFKKAMKEDE - - KV
PKKLPELGKAAGDTLREFKNATKG - - - - -
TKRLKSLGS DLGDAIKGFRKS MDNEENKAP
HAEIN
BACSU
ORF4_AZOCH
```

	FI	G	. 8	E)(E	3)																									
MITA Hcf106_ZEAMA YBEC_ECOLI SYNEC ORF13_RHOER PSEST_ORF57 YY34_MYCLE HELPY HAEIN BACSU ORF4_AZOCH	E R T · · K K	FKEP ND -	RGAA EA -	SAQP - PE -	TOXT F .	L·LA····	EVEQ QKK.	R	E	I	GDKS - ATS -	ILSA-QLI-	DQVP - ADD -	EAQP - SAN -	VEIP - AQE -	SKKQ-LATL	Q L A S · E T A T	SSEATOSS	DTH LP PTAD	K K K E A M K K E Q	Y H H H G O V K H	RSLENHGE	P K P T P E K K	TVTTSYK	P A T V S K K	M MOONER	STAQIED	Z STESKRQ	AN STAQSN	S A S R K R
									1	60									1	70									10	80
MttA Hcf106_ZEAMA YBEC_ECOU				A -						E	Q -	G •	v -	N -	P •	С -	L -	I -	s •	v •	L •	A •	N -	L •	L •	L -	v -	F -		I -
SYNEC	-	-	-	•	•	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	•	-	•	-	-	-
ORF13_RHOER	P	-	-	•	•	-	-	-	•	•	-	-	•	•	•	-	•	-	•	•	-	•	-	•	-	•	•	-	-	•
PSEST_ ORF57 YY34_MYCLE	•	-	•	•	-	-	-	-	•	•	•	•	•	•	•	-	-	•		•								-	-	-
HELPY	•	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	•	-	-	•	-	-	-
HAEIN BACSU	•	-	-	•	•	-	-	-	•	•	-	•	•	•	•	•	•	•	•	•	•	•	-	•	-	•	•		•	-
ORF4_AZOCH	М	F	D	I	G	-	-	-		-	-	-	-	-	-	-	-	-	-	•	F	S	E	L	L	L	V	G	L	V
MttA	G	L	v	v	L	G	P	Q	1 R	<i>90</i> L	P	v	A	v	ĸ	т	v	A	G	00 W	I	R	Α	L	R	s	L	A	T	10 T
Hc1106_ZEAMA YBEC_ECOLI	G -	L -	v -	v	L -	G -	P -	Q -	1 R -	90 L •	P -	v -	A -	v -	к -	T -	v -	A P	G	00 W A	I D	R P	AN	L V	R K	S P	L E	A R	T	T
Hc1106_ZEAMA YBEC_ECOLI SYNEC	G •	L -	v -	v -	L -	G -	P -	Q -	1 R	90 L -	P -	v .	A -	v -	к -	T -	v -	A P	G	w	I D	P	N.	·	K	P -	E .	R •	T A	T P
Hc1106_ZEAMA YBEC_ECOLI	G	L	v -	v -	L -	G -	P	Q -	1 R	90 L -	P -	v -	A -	v -	K -	T -	v -	A P 	G	w	I D -	P	N.	· ·	K	P P R	E - P S	R - A	T A P	T P · V
Hcf106_ZEAMA YBEC_ECOLI SYNEC ORF13_RHOER PSEST_ORF57 YY34_MYCLE	G	L	v	v -	L	G	P -	Q	1 R -	90 L -	P	v	A	v	K	T	v	A P	G	w	I D	P	N.	· ·	K	P P R	E - P S	R - A	T A	T P · V
Hd106_ZEAMA YBEC_ECOLI SYNEC ORF13_RHOER PSEST_ORF57 YY34_MYCLE HELPY	G	L	v	v -	L	G :	P	Q · · · · · ·	1 R	90 L -	P	v	A	v -	к	T	v	A P	G	w	I D	P	N	V V	TSV	P P R P	E - P S P -	R - A W	T A P	T P V
Hc1106_ZEAMA YBEC_ECOLI SYNEC ORF13_RHOER PSEST_ORF57 YY34_MYCLE	•								R	L								P	G A	W A	D	P	N	マ・マ・エ	KTSV	P P R P	E - P S P - C	R - A W - L	T A P S'	T P V T L
Hd106_ZEAMA YBEC_ECOLI SYNEC ORF13_RHOER PSEST_ORF57 YY34_MYCLE HELPY HAEIN	•								R	L								P	G A	w	D	P	N	マ・マ・エ	KTSV	P P R P	E - P S P - C	R - A W - L	T A P S'	T P V T L
Hd106_ZEAMA YBEC_ECOLI SYNEC ORF13_RHOER PSEST_ORF57 YY34_MYCLE HELPY HAEIN BACSU	•								R	L								P	G A L	w A w	D	P	N	マ・マ・エ	KTSV	P P R P	E - P S P - C	R - A W - L	T A P S'I N	T P V T L T
Hd106_ZEAMA YBEC_ECOLI SYNEC ORF13_RHOER PSEST_ORF57 YY34_MYCLE HELPY HAEIN BACSU ORF4_AZOCH		L	L	· · · · · · · · · · · · · · · · · · ·	L		P	E	R	L L	P	v		A	R	- - - - M	A	P	G A L	W A	D I	P	N	マ・マ・レ	K	P R P P R	E P S P C S	R - A W - L F	T A . P S' I N	T P V T L T
Hd106_ZEAMA YBEC_ECOLI SYNEC ORF13_RHOER PSEST_ORF57 YY34_MYCLE HELPY HAEIN BACSU ORF4_AZOCH MITA Hd106_ZEAMA		L	L	· · · · · · · · · · · · · · · · · · ·	L	G	P	E	R R	L L 20 K	P	v	A E	A	R			P G	G A L 2 K	w A w	D I	P	N R	V · V · L L	K	P . P R P . P R	E P S P · C S	R . A W . L F	TA.PS.IN	T P V T L T T 440 T
Hd106_ZEAMA YBEC_ECOLI SYNEC ORF13_RHOER PSEST_ORF57 YY34_MYCLE HELPY HAEIN BACSU ORF4_AZOCH MILA Hc1106_ZEAMA YBEC_ECOLI SYNEC ORF13_RHOER		L QT -	L	· · · · · · · · · · · · · · · · · · ·	L	G TL A	P Q M s	E	R	L	P	v QE	A E	A	R			P G	G A L 2 K	W A	D I	P	N R	V · V · L L	K	P . P R P . P R	E P S P · C S	R . A W . L F	TA.PS.IN	T P V T L T T 40 T
Hd106_ZEAMA YBEC_ECOLI SYNEC ORF13_RHOER PSEST_ORF57 YY34_MYCLE HELPY HAEIN BACSU ORF4_AZOCH MILA Hd106_ZEAMA YBEC_ECOLI SYNEC		L QT . P .	L	E E E S Q	LEKQD	- G TL AH		E E K	R	L			A E	A	R			P G	G A L 2 K	W A	D I	P	N R	V · V · L L	K	P . P R P . P R	E P S P · C S	R . A W . L F	TA.PS.IN	T P V T L T T 440 T
Hd106_ZEAMA YBEC_ECOLI SYNEC ORF13_RHOER PSEST_ORF57 YY34_MYCLE HELPY HAEIN BACSU ORF4_AZOCH MITA Hd106_ZEAMA YBEC_ECOLI SYNEC ORF13_RHOER PSEST_ORF57 YY34_MYCLE HELPY		L QT - P	L NS SQ EQ	E S QE	L LE KQ DS	G TL AH H		E E K	R	L			A E	A	R			P G	G A L 2 K	W A	D I	P	N R	V · V · L L	K	P . P R P . P R	E P S P · C S	R . A W . L F	TA.PS.IN	T P V T L T T 440 T
Hd106_ZEAMA YBEC_ECOLI SYNEC ORF13_RHOER PSEST_ORF57 YY34_MYCLE HELPY HAEIN BACSU ORF4_AZOCH MITA Hd106_ZEAMA YBEC_ECOLI SYNEC ORF13_RHOER PSEST_ORF57 YY34_MYCLE		L QT - P	L NS SQ EQ	E E E S Q	L LE KQ DS	G TL AH H		E E K	R	L			A E	A	R			P	G A L 2 K	W A	D I	P	N R	V · V · L L	K	P . P R P . P R	E P S P · C S	R . A W . L F	TA.PS.IN	T P V T L T T 440 T

270

14/21

FIG. 8(C) 250 260

MILA PELKASMDELRQAAESMKRSYVANDPEKAS

HC1106_ZEAMA QQQEEAPTTFR - SEDAPTSGGSSGPAAPAR

YBEC_ECOLI SYNEC

ORF13_RHOER

PSEST_ ORF57 YY34_MYCLE

HELPY HAEIN

BACSU

ORF4_AZOCH REMKQSLQPPAPSAPDETAASPATPPQPAS

280 290 300

MMA DEAHTIHNPVVKDNEAAHEGVTPAAAQTQA Hcf106_ZEAMA AESDSDPNQVNKSQKAEGER

YBEC_ECOU

SYNEC

ORF13_RHOER

PSEST_ ORF57

YY34_MYCLE

HELPY HAEIN

BACSU

ORF4_AZOCH PAAHSDKTPSP

310 320 330 MITA SSPEQKPETTPEPVVKPAADAEPKTAAPSP

MttA Hcf106_ZEAMA

YBEC ECOLI

SYNEC

ORF13_RHOER

PSEST_ ORF57

YY34_MYCLE

HELPY

HAEIN

BACSU

ORF4_AZOCH

340 350 360

MttA SSSDKP

Hcf106_ZEAMA YBEC ECOLI

SYNEC

ORF13_RHOER

PSEST_ ORF57

YY34_MYCLE

HELPY

HAEIN

BACSU

ORF4_AZOCH

FIG. 9

MttB_ECOLI YC43_PORPU YM16_MARPO ARATH Ymf16_RECAM Y194_SYNY3 YY33_MYCTU HELPY YigU_HAEIN YcbT_BACSU YH25_AZOCH ARCFU	TEKT FD V I TEV A	H L E I L C	E L E V E L E L E L E L	R Q 1 1 1 R I 1 R T 1 R T 1 R K 1 R	R V F RSV R I I R L L R L L R L L R L L	FVWIRIS	I I A F I F I F I F I F I F I F I F I F	F L I V I I V F V	L A T T T T G T A V V L V L V L I	- A - W - C - V T I - F - F	F C S V A C F G F L G C V A L I A C	F T W W Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	F S Y K F V Y F W F S L A	58 34 43 36 58 57 34 39 40
MttB_ECOLI YC43_PORPU YM16_MARPO ARATH Ymi16_RECAM Y194_SYNY3 YY33_MYCTU HELPY YigU_HAEIN YCbT_BACSU YH25_AZOCH ARCFU	T Q T D T A T A T N T F N T	L T E L I E P F D P I E I Q T D A S	Y F A L A F F F F Q V P F P L P F	F S S T F S S T F S S T F S S T F S S S T F S S S S	I K V T I K V K L K K I M Q F K	I A T S L S V A C V G I S L T L T L T L T L T L T L T L T L T L	FMVCLISCIA SIIVCIA SII	GI CF CS GI GI AI AI SL	Y F I Y L ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	T T F F F S Y S A C S M S M S A C S M S A C S M S A C S M S A C S M S A C S M S A C S M S M S A C S M S A C S M S A C S M S A C S M S A C S M S A C S M S M S A C S M S A C S M S A C S M S A C S M S A C S M S A C S M S M S A C S M S A C S M S A C S M S A C S M S A C S M S A C S M S M S A C S M S A C S M S A C S M S A C S M S A C S M S A C S M S M S A C S M S A C S M S A C S M S A C S M S A C S M S A C S M S M S A C S M S A C S M S A C S M S A C S M S A C S M S A C S M S M S A C S M S A C S M S A C S M S A C S M S A C S M S A C S M S M S A C S M S A C S M S A C S M S A C S M S A C S M S A C S M S M S A C S M S A C S M S A C S M S A C S M S A C S M S A C S M S M S A C S M S A C S M S A C S M S A C S M S A C S M S A C S M S M S A C S M S A C S M S A C S M S A C S M S A C S M S A C S M S M S A C S M S A C S M S A C S M S A C S M S M S A C S M S M S M S M S M S M S M S M S M S	PF CP L I F PF I P V W P V I P V V I P V V V I P V V V I P V V V V	V Y Y S Y L Y F W L Y L H	Q 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	106 87 95 83 106 125 81 92 90
MttB_ECOLI YC43_PORPU YM16_MARPO ARATH Ymf16_RECAM Y194_SYNY3 YY33_MYCTU HELPY YigU_HAEIN YcbT_BACSU YH25_AZOCH ARCFU	WAIL HWAH	L I L I I I I I I I I I I I I I I I I I	P - P - P - P - P - P -		LT CY FF LT LY LY LY	N K E C C C C C C C C C C C C C C C C C C	RT EKK ERR EKK EKK EKK EKK	VI KY LF LL VI MI VI IA	L P I N K I I I I I I I I I I I I I I I I I	L F F C V V L I M	I G S S Y L S S L G S F F S S S S S S S	G F I F S V S G T I L V L	LF CF LF LF MF LF	118 133 114 122 110 133 152 108 119 117 112 169
MttB_ECOLI YC43_PORPU YM16_MARPO arab thal mito Ymf16_RECAM Y194_SYNY3 YY33_MYCTU HELPY YigU_HAEIN YcbT_BACSU YH25_AZOCH ARCFU		E P K K L E Q V A I N A	LWS QPI QPI QAI LWS ALS NIS VIC MTI	F E F F F F F F F F F F F F F F F F F F	QY DY EY KY RY SY SY EY QY	F D F I M L I L I L I L I L I L I L I L I L I	T V V L L L V L	L L I R I L L I L L I L L I L I L I L I	L F S F I I F S C L L A C I L A C I F F A C I	TSSLTFF		FOOQQEEEQE	I P V P V P L P I P V P M P V P	187 173 181 170 187 206 162 173 171 160

FIG. 10

MttC	TEEAIIELAAQ PEVVAIGE CGLDFNRNF 104
YCFHLECOLI	DVEDLIR RLAAE EGVVALGE TGLDYYYTP 101
YUV_ECOLI	SLEQUOQALERRPAKVVAVGE IGLDLFGDD 106
METTH	LIGEVVSQIESNIDLIVAVGE TGMDFHHTR 107
Y009_MYCPN	AQATLKKLVSTHRSFISCIGEYGFDYHYTK 105
YcfH_Myctu	ARAELERLVAH PRVVAVGE TGIDMYWPG 102
HELPY	DESLFEKFVGH QKCVAIGE CGLDYYRLP 98
YCFH_HAEIN	DAERLILRILAQD PKVIAIGE IGLDYYYSA 104
YABD_BACSU	DLAWIKELSAH EKVVAIGE MOLDYHWDK 101
SOHPO	- EALANKGKAS - GKVVAFGE FGLDYDRLH 79
CAEEL	HISKMEQFFVEHERDIICVGECGLDHTISQ 211
Y218_HUMAN	QERNLLQALRH PKAVAFGE MGLDYSYKC 602

MITC

YCH-ECOU

YJIV_ECOU

H T R D A R A D T L A I L R E E K V T D C G - G V L H C F T E D 160

YJIV_ECOU

H S R R T H D K L A M H L K R H D L P R T G - V V H G F S G S 162

METH

Y009_MYCPN

YCH_Myctu

H N R Q A D R D V L D V L R A E G A P D T - V I L H C F S S D 163

HELPY

YCFH_HAEIN

YABD_BACSU

YABD_BACSU

YABD_BACSU

YCHER I Y E V V T I L K E E G A E A V G - G I M H C F T G S 158

SCHPO

CAEEL

Y218_HUMAN

H C R E A D E D L L E I M K K F V P P D Y K - I H R H C F T G S 660

ERRGLELRELLPLIPAEKLLIETDAPYLLP 213 MtC RN-AEQLRDAARYVPLDRLLVETDSPYLAP 209 RN - AEQ LRDAAR YVPL DRLL VET DS PYL APPR - ASK TRDVIAKLPLASLLLET DAPDMPLS - - · EHHMEL VRAIPLEGMLTET DS PYLS - KN - AKNLQAALS VIPTELLLSET DS PYL APRT - ARELREAVPLMPVEQLLVET DAPYLTPKN - AKRLVEILPKIPKNRLLLET DS PYLTPKN - AEAIREVIRYVPMERLLVET DS PYLTPKN - AKRPKEVIRYVPMERLLVET DS PYLTPKN - AKKPKEVVKEIPNDRLLIET DC PFLTPT - - · EENLEVVRAIPLEKMLLET DAPWCEVS - · · EET TOLIES IPLSQLLLET DS PALG - SS - AWEAR EALR QIPLER I IVET DAPYFLP YCFH ECOU 213 YWY_ECOLI 212 METTH 217 Y009_MYCPN 214 YcfH_Myctu 208 HELPY 212 YCFHLHAEIN 209 YABO_BACSU 187 SCHPO 330 CAEEL SS-AWEAREALR QIPLERIIVET DAPYFLP 713 Y218_HUMAN

17/21 FIG. 11A

	19	Ω		20	0		210			220			230	n		24
AGA	AAACCC'		CTA									TCC			CGA	
	25	0		26	0		270			280			290)		30
GGAA	AAACGG	_	\GCC	_				GGAI				GGT			rcc	
	310)		32	Λ		330			340			350	٦		3.0
TGGI	GAGAG		AAT					rcte				AAT(ACT	36 GCCI
	27/			3.0	^								:	_		
TTAA	370 GGTTT <i>I</i>		CAG	38 TTT:	-		390 GCA	AGTA		400 ACA		CAG	410 רקדים		רא אי	42 מארית
ددده	430 CGAGC		CTC	441	-		450			160		מתי א ב	470			48
					ı ÇA	IGIAC	JICF	1000	ACA	7 I C	GCG.	IIM.		. С 1 С	.GG,	MAII
	490		יא חייחי	500			510	a comm		20	200		530			54
ناكات	TACGTI	AGT	A11.	AAG'	1.000	JACAT"	rc ri	.'G'1"1'	GGTC	ZAG	CCGA	ACC'	l'GAA	ATGO	GG(GCTG
	550			560			570			80			590			60
rgcc	CGGCTG	GTT.	AAT	GGC	AGG:	rggtc:	rgai	CGC	CTGC	TT	rgro	GGT	TGG	CGC	'AA	AACA
	610			620			530			40			650			66
GCTG.	ATTTTT	TCA	TCG	CTC	AAG	CGGGG	CCGI	GTA	ACGI	'ATA						
											M			C E [3		I>
					_									-	• -	
ቦር ልጥ(670 CTACCA		AGG	086 404) מחכככ		ית איתי		00 יא ידיר		- A C	710 גישיייי		יחיתי	72 תחמים
ΙI					C				S				L			
						ORF	RF	[3]								
	730			740)	7	50		7	60			770			78
	CATCGT															
. V	I V	V	Ļ		_	G I ORF			L		_	Ι	G	S	D	L>
								-								
יייהרי	790 TCGAT		4.C.C.C			8			8 תיים אינה		א מבי	CCA	830		יר זיר	84
A						K A							AAG K		D.	
						ORF	RF	[3]								
	850			860		8	70		8	80			890			90
	CAGGA'			TTT	ACT	GCGAA	AAC'	TATO	CGCC	GAI	'AAG	CAG				
S	Q D	A	D	F	Т	A K ORF				D	K	Q	A	D	T	N>
								(0)								
CCA A	910 CAGGC	מממח		920			30 CCC	~~ ~ ~ ~		40 222	C N C		950		mcc	96
E	Q A	K	T	E		A K		H				CAG Q	۳۶. د۷	TAA	100	.GTG
				(ORF	RF[3]							>		
																V>
സമമസ	970 ATCGG1	ىئىشىلىد		980 GAA0			90 3070				GCC		010 GTC		CTC	102
D		F	S	E	L		V		I	I	G	L	V		L	ىقىق. G>
																
	1030		1	040		10	50		100	50		1	070			108
		-C-m				AAAAC										

FIG. 11B

A TO	111 AAA K 12GAA E 12GCG A	50 AAC K 10 CT1 L 70	GGT'V ACGGR	GC# CGA CCA TGA	110 110 122 122 123 128	ACC N 60 AGC K 20 CCC	GAAGCG	AGT L SAG S	GAC T 11 CCT L 12 GTC	CCA Q 70 CAC T	GGA E TAA N	CCT	AAA K 180 GAC	ACT	CCA C C CGA	119 ACT	AGT E 90	TT F	CAC Q 	120 STC	CA > 00 GA
A TG!	111 AAA K 12GAA E 12GCG A 13	T - 50 AAC K - 10 CTA L - 70 AGG	V SGT	TGA E CCA Q	110 AAA E 1 123 AGGG	60 AGC K 20 CCC	E GCG A	AG SAG S	T 11 CCT L 12 GTC	70 CAC T	TAA N	L 1 CCT L	180 GAC	L GCC	Ç CGA	119 ACT	E 90 rga	F	Q GCC	120 STC	> 00 GA
ATO AGO	12 GAA E 12 GCG A	AAC K 10 CT2 L 70 AGC	V ACGO R	TGA CCA C	12: 12: 13: 12: 12:	AG0 K 20 CC0 A	A A	SAG S	CCT L 12:	CAC T	TAA N	CCT L	GAC	GCC	CGA	AC:	rga	LAA	GCC	STC	GΑ
ATO AGO	12 GAA E 12 GCG A	AAC K 10 CT2 L 70 AGC	V ACGO R	TGA CCA C	12: 12: 13: 12: 12:	AG0 K 20 CC0 A	A A	SAG S	CCT L 12:	CAC T	TAA N	CCT L	GAC	GCC	CGA	AC:	rga	LAA	GCC	STC	GΑ
ATO AGO	12 GAA E 12 GCG A	10 CT2 L	V ACGO R	CCA C	12: 12: \GG()	20 CCC A	A GCG	SGA	L 12: GTC	т 30	N	L									
AGC	12 CG A	L 70	R CGA	CCA Q ———	128	CCC A	GCG	GA	GTC												
AGC	12 CG A	70 AGC	R CGA	Ç TGA	128	A.				~ > m		1	240			125	50			120	60
AGC C	12 CG A	70 AG0	GA:	TGA	128		A —	Ľ	_		GAA										ľG
(ATC	A 13	AGC	GA?	rga		B ()			s			R		Y	-		4	N —	D		>
(ATC	A 13				Mac					-						131			~ ~ ~	13:	
				-	E 7						N N)	N		A:	
		30			134	40			13!	50		1:	360			137	70			13	 80
1											AAC										
	E	G ——		T 	· I	P 	А —	A 		Q	т	Q 	A		<u>.</u>		?	E —	Q —	K:	>
		90														143				14	
LA.A																					
	14	50			146	50			74'	70		1.	480			149	90			15	0.0
TT			TCC				TA					ATG	rct	GTA(GAA	GA.	rac	TC	AAC	CG	CI
.	_	D	c	9		=	ח	v	D.		-										
										_>											
· > C			·m~ 1								~m~/	_									
								R	K	R	L	L									
				-	1													~-			
ייי		-																			
				L	V	Y	7	F	Α	N	D	I	Y	H	L	V	S	3	A	P	I
	16	30			164	10			165	50		1	560			167	70			16	80
K		Q 	L ——																		
P																					
																179	90				00
	ACT TT F	T 14 TTCC S 15 ACGC T 15 TTCC F 16 AAGC K 16 CCGA P	T T 1450 TTCCCCT S P 1510 ACGCATC T H 1570 TTCCTGT F L 1630 AAGCAGT K Q 1690 CCGATCA P I	T T P 1450 TTCCCCTTCC S P S 1510 ACGCATCTGA T H L 1570 TTCCTGTGTC F L C 1630 AAGCAGTTGC K Q L 1690 CCGATCAAGC P I K	1450 TTCCCCTTCGTC S P S S 1510 ACGCATCTGATT T H L I 1570 TTCCTGTGTCTG F L C L 1630 AAGCAGTTGCCG K Q L P 1690 CCGATCAAGCTG P I K L	1450 146 TTCCCCTTCGTCGAC S P S S 1510 152 ACGCATCTGATTGAC T H L I E 1570 158 TTCCTGTGTCTGGTC F L C L V 1630 164 AAGCAGTTGCCGCAA K Q L P Q 1690 170 CCGATCAAGCTGACC P I K L T	1450 1460 TTCCCCTTCGTCGAGTC S P S S S 1510 1520 ACGCATCTGATTGAGCT T H L I E I 1570 1580 TTCCTGTGTCTGGTCTA F L C L V Y 1630 1640 AAGCAGTTGCCGCAAGG K Q L P Q G 1690 1700 CCGATCAAGCTGACCTT P I K L T F	1450 1460 TTCCCCTTCGTCGAGTGAT S P S S D 1510 1520 ACGCATCTGATTGAGCTGC T H L I E L 1570 1580 TTCCTGTGTCTGGTCTATT F L C L V Y 1630 1640 AAGCAGTTGCCGCAAGGTT K Q L P Q G 1690 1700 CCGATCAAGCTGACCTTTA P I K L T F	1450 1460 TTCCCCTTCGTCGAGTGATAAA S P S S D K 1510 1520 ACGCATCTGATTGAGCTGCGTA T H L I E L R 1570 1580 TTCCTGTGTCTGGTCTATTTCC F L C L V Y F 1630 1640 AAGCAGTTGCCGCAAGGTTCAA K Q L P Q G S 1690 1700 CCGATCAAGCTGACCTTTATGC P I K L T F M	1450 1460 147 TTCCCCTTCGTCGAGTGATAAACCC S P S S S D K P: 1510 1520 153 ACGCATCTGATTGAGCTGCGTAAGC T H L I E L R K ORF 1570 1580 159 TTCCTGTGTCTGGTCTATTTCGCCA F L C L V Y F A ORF 1630 1640 169 AAGCAGTTGCCGCAAGGTTCAACGA K Q L P Q G S T ORF 1690 1700 173 CCGATCAAGCTGACCTTTATGGTGC P I K L T F M V ORF	1450 1460 1470 TTCCCCTTCGTCGAGTGATAAACCGTA S P S S D K P> 1510 1520 1530 ACGCATCTGATTGAGCTGCGTAAGCGTC T H L I E L R K R ORF RF 1570 1580 1590 TTCCTGTGTCTGGTCTATTTCGCCAATC F L C L V Y F A N ORF RF 1630 1640 1650 AAGCAGTTGCCGCAAGGTTCAACGATG K Q L P Q G S T M ORF RF 1690 1700 1710 CCGATCAAGCTGACCTTTATGGTGTCGC P I K L T F M V S ORF RF	1450 1460 1470 TTCCCCTTCGTCGAGTGATAAACCGTAAACC S P S S D K P> 1510 1520 1530 ACGCATCTGATTGAGCTGCGTAAGCGTCTGGT T H L I E L R K R L ORF RF[2] 1570 1580 1590 TTCCTGTGTCTGGTCTATTTCGCCAATGACA F L C L V Y F A N D ORF RF[2] 1630 1640 1650 AAGCAGTTGCCGCAAGGTTCAACGATGATCC K Q L P Q G S T M I ORF RF[2] 1690 1700 1710 CCGATCAAGCTGACCTTTATGGTGTCGCTGATGACACCTGATCAAGCTGACCTTTATGGTGTCGCTGATGATCACCAATGATCACCAATGATCACCAAGCTGACCAAGCTTCAAGCTGACCATGATCACCAAGCTGACCAAGCTTCAAGCTGACCTTTATGGTGTCGCTGACCAAGCTGACCTTTATGGTGTCGCTGACCAAGCTGACCTTTATGGTGTCGCTGACCAAGCTGACCTTTATGGTGTCGCTGACCAAGCTGACCTTTATGGTGTCGCTGACCAAGCTGACCTTTATGGTGTCGCTGACCAAGCTGACCTTTATGGTGTCGCTGACCAAGCTGACCTTTATGGTGTCGCTGACCAAGCTGACCTTTATGGTGTCGCTGACCAAGCTGACCTTTATGGTGTCGCTGACAAGCTGACCTTTATGGTGTCGCTGACAAGCTGACCTTTATGGTGTCGCTGACAAGCTGACCTTTATGGTGTCGCTGACAAGCTGACCTTTATGGTGTCGCTGACAAGCTGACCTTTATGGTGTCGCTGACAAGCTGACCTTTATGGTGTCGCTGACAAGCTGACCTTTATGGTGTCGCTGACAAGCTGACCTTTATGGTGTCGCTGACAAGCTGACCTTTATGGTGTCGCTGACAAGCTGACCTTTATGGTGTCGCTGACAAGCTGACCTTTATGGTGTCGCTGACAAGCTGACCTTTATGGTGTCGCTGACAAACAA	1450 1460 1470 14 TTCCCCTTCGTCGAGTGATAAACCGTAAACATG S P S S D K P> 1510 1520 1530 19 ACGCATCTGATTGAGCTGCGTAAGCGTCTGCTG T H L I E L R K R L L ORF RF[2] 1570 1580 1590 16 TTCCTGTGTCTGGTCTATTTCGCCAATGACATC F L C L V Y F A N D I ORF RF[2] 1630 1640 1650 16 AAGCAGTTGCCGCAAGGTTCAACGATGATCGCC K Q L P Q G S T M I A ORF RF[2] 1690 1700 1710 17 CCGATCAAGCTGACCTTTATGGTGTCGCTGATTC P I K L T F M V S L I ORF RF[2] 1750 1760 1770 17	1450 1460 1470 1480 TTCCCCTTCGTCGAGTGATAAACCGTAAACATGTCTC M S S P S S S D K P> 1510 1520 1530 1540 ACGCATCTGATTGAGCTGCGTAAGCGTCTGCTGAAC T H L I E L R K R L L N ORF RF[2] 1570 1580 1590 1600 TTCCTGTGTCTGGTCTATTTCGCCAATGACATCTATC F L C L V Y F A N D I Y ORF RF[2] 1630 1640 1650 1660 AAGCAGTTGCCGCAAGGTTCAACGATGATCGCCACC K Q L P Q G S T M I A T ORF RF[2] 1690 1700 1710 1720 CCGATCAAGCTGACCTTTATGGTGTCGCTGATTCTG P I K L T F M V S L I L ORF RF[2]	1450 1460 1470 1480 TTCCCCTTCGTCGAGTGATAAACCGTAAACATGTCTGTAG	1450 1460 1470 1480 TTCCCCTTCGTCGAGTGATAAACCGTAAACATGTCTGTAGAA M S V E ORF S P S S D K P> 1510 1520 1530 1540 ACGCATCTGATTGAGCTGCGTAAGCGTCTGCAGTTTT H L I E L R K R L L N C I ORF RF[2] 1570 1580 1590 1600 TTCCTGTGTCTGGTCTATTTCGCCAATGACATCTATCACCTGF L C L V Y F A N D I Y H L ORF RF[2] 1630 1640 1650 1660 AAGCAGTTGCCGCAAGGTTCAACGATGATCGCCCCGACGTGC K Q L P Q G S T M I A T D V ORF RF[2] 1690 1700 1710 1720 CCGATCAAGCTGACCTTTATGGTGTCGCTGATTCTGTCAGCG P I K L T F M V S L I L S A ORF RF[2]	1450 1460 1470 1480 149 TTCCCCTTCGTCGAGTGATAAACCGTAAACATGTCTGTAGAAGAT M S V E D ORF RF S P S S D K P> 1510 1520 1530 1540 159 ACGCATCTGATTGAGCTGCGTAAAGCGTCTGCTGAACTGCATTATC T H L I E L R K R L L N C I I ORF RF[2] 1570 1580 1590 1600 165 TTCCTGTGTCTGGTCTATTTCGCCAATGACATCTATCACCTGGTT F L C L V Y F A N D I Y H L V ORF RF[2] 1630 1640 1650 1660 167 AAGCAGTTGCCGCAAGGTTCAACGATGATCGCCACCGACGTGGCC K Q L P Q G S T M I A T D V A ORF RF[2] 1690 1700 1710 1720 173 CCGATCAAGCTGACCTTTATGGTGTCGCTGATTCTGTCAGCGCCC P I K L T F M V S L I L S A P ORF RF[2]	1450 1460 1470 1480 1490 TTCCCCTTCGTCGAGTGATAAACCGTAAACATGTCTGTAGAAGATAC M S V E D T ORF RF[2] S P S S S D K P> 1510 1520 1530 1540 1550 ACGCATCTGATTGAGCTGCGTAAGCGTCTGCTGAACTGCATTATCGC T H L I E L R K R L L N C I I P ORF RF[2] 1570 1580 1590 1600 1610 TTCCTGTGTCTGGTCTATTTCGCCAATGACATCTATCACCTGGTATC F L C L V Y F A N D I Y H L V S ORF RF[2] 1630 1640 1650 1660 1670 AAGCAGTTGCCGCAAGGTTCAACGATGATCGCCACCGACGTGGCCTC K Q L P Q G S T M I A T D V A S ORF RF[2] 1690 1700 1710 1720 1730 CCGATCAAGCTGACCTTTATGGTGTCGCTGATTCTGTCAGCGCCGGT P I K L T F M V S L I L S A P V ORF RF[2]	1450 1460 1470 1480 1490 TTCCCCTTCGTCGAGTGATAAACCGTAAACATGTCTGTAGAAGATACTC M S V E D T ORF RF[2] S P S S D K P> 1510 1520 1530 1540 1550 ACGCATCTGATTGAGCTGCGTAAACGTCTGTAGAACTGCATTATCGCGG T H L I E L R K R L L N C I I A ORF RF[2] 1570 1580 1590 1600 1610 TTCCTGTGTCTGGTCTATTTCGCCAATGACATCTATCACCTGGTATCCG F L C L V Y F A N D I Y H L V S ORF RF[2] 1630 1640 1650 1660 1670 AAGCAGTTGCCGCAAGGTTCAACGATGATCGCCACCGACGTGGCCTCGC K Q L P Q G S T M I A T D V A S ORF RF[2] 1690 1700 1710 1720 1730 CCGATCAAGCTGACCTTTATGGTGTCGCTGATTCTGTCAGCGCCGGTGA P I K L T F M V S L I L S A P V ORF RF[2]	1450 1460 1470 1480 1490 TTCCCCTTCGTCGAGTGATAAACCGTAAACATGTCTGTAGAAGATACTCAAC M S V E D T Q ORF RF[2] S P S S S D K P> 1510 1520 1530 1540 1550 ACGCATCTGATTGAGCTGGTAAACGTCGCATTATCGCGGTGATH L I E L R K R L L N C I I A V ORF RF[2] 1570 1580 1590 1600 1610 TTCCTGTGTCTGGTCTATTTCGCCAATGACATCTATCACCTGGTATCCGCGGT F L C L V Y F A N D I Y H L V S A ORF RF[2] 1630 1640 1650 1660 1670 AAGCAGTTGCCGAAGGTTCAACGATGATCGCCACCGACGTGGCCTCGCCGATGACTTGCCGCAAGGTTGCCGCAAGGTTCAACGATGATCGCCACCGACGTGGCCTCGCCGATGACTTGCCGCAAGGTTCAACGATGATCGCCACCGACGTGGCCTCGCCGATGACTGCCGAAGGTTCAACGATGATCGCCACCGACGTGGCCTCGCCGATGACTGCCGAAGGTTCAACGATGATCGCCACCGACGTGGCCTCGCCGATGACTGCCGAAGGTTCAACGATGATCGCCACCGACGTGGCCTCGCCGATGACTGCCGAAGCTTATGGTGTCGCTGATTCTGTCAGCGCCGGTGATTCCACCGATGACCTTTATGGTGTCCCTGATTCTGTCAGCGCCGGTGATTCCACCGATCAAGCTGACCTTTATGGTGTCCCTGATTCTGTCAGCGCCGGTGATTCCACCGATCAAGCTGACCTTTATGGTGTCCCTGATTCTGTCAGCGCCGGTGATTCCACCGATCAAGCTGACCTTTATGGTGTCCCTGATTCTGTCAGCGCCGGTGATTCCACCGATCAAGCTGACCTTTATGGTGTCCCTGATTCTGTCAGCGCCGGTGATTCCACCGATCAAGCTGACCTTTATGGTGTCCCTGATTCTGTCAGCGCCGGTGATTCCACCGATCAAGCTGACCTTTATGGTGTCCCTGATTCTGTCAGCGCCGGTGATTCCACCAAGCTGACCTTTATGGTGTCCCTGATTCTGTCAGCGCCGGTGATTCCACCAAGCTGACCTTTATGGTGTCCCTGATTCTGTCAGCGCCGGTGATTCCACCAAGCTGACCTTTATGGTGTCCCTGATTCTGTCAGCGCCGGTGATTCCACCAAGCTGACCTTTATGGTGTCCCTGATTCTGTCAGCGCCGGTGATTCCACCAAGCTGACCTTTATGGTGTCCCTGATTCTGTCAGCGCCGGTGATTCCACCAAGCTGACCTTTATGGTGTCAGCCCTGATTCTGTCAGCGCCGGTGATTCCACAAACAA	1450 1460 1470 1480 1490 15 TTCCCCTTCGTCGAGTGATAAACCGTAAACATGTCTGTAGAAGATACTCAACCG

FIG. 11C

Q —	V	W	A	F				A _ORF								L	v	v	P> >
								18: STTT:											
	L	V	S	S	s	L	L	F _ORF	Y	I	G	M	Α	F	Α	Y	F	V	V>
CTT**1								18: rgcc.							191 GTG				20 AC
F	P	L	Α	F	G	F	L	A _ORF	N	${f T}$	Α	P	E	G	V	Q	V	S	T>
CGAC								19: CGTT:											
D	I	A	S	Y	L	s	F	V _ORF	M RF[A [2]	L 	F	M	A	F	G	V	s —	F> >
	- Cm	1990	C III N	CC1	200	00	-cm/	20: CTG	10		2	020	አ ጥጥ	יא ריר	203	0	י אי אי	20	40
E	V	P ——	V	Α	I	V	L	L _ORF	С	W	M	G	I	T	S	Þ	E	D	L>
								20											.00
					Y	V	L	GTT V _ORF	G	A	F	v	V	G	M	L	L	T	P>
GCCG								21: STTG(
P	D	V	F	S	Q	Т	L	L ORF	A RF(I 2]	P 	М	Y	C 	L	F	E	I	G> >
TGTC	TT	CTTC	TCA	CGC	TTT	CTAC	GTT	219 rggt/	AAAG	GGC	GA	TA.A	CGG	GAA	GAG	GAA	AAC	GAC	20 CGC
								G _ORF											
_	GC A	AGAA E	AGC S	GA.F E	K K	LACI T	IGA E	225 AGAA E>	AAA										
								23:											
ATGG M	E E	Y :	GGA R	TG1 M	F	D	I	GCG: G \ ORF	J N	I	, :	r .	s	S	Q	F	Α	K	D>
CGTG	TA	2350 BATG	TTG	TAC	23 <i>6</i> SCG1	o GCC	CTI	237 TTG!	70 ACGC	:GGG	2: AG'	380 TTA	ATG	GGC	239 TAC	0 TCA	ATC!	24 ACC0	100 GC
R	D	D,	V '	V	Α	С	A	F I ORF) A		; ;	y :	N	G	L	L	I	T	G> >
1 C = 1		2410	CEC.	, , , ,	242	0	· » ~ ~	243	30		2	440	حست	אכיי	245	0	יירייי	24 1000	160 rcc
ACTA T	N	L	R.	E	S	Q	Q	A (ORF) K	I		Α :	R	Q	Y	S	S	С	W>
	2	2470			248	o		249	90		2!	500			251	.0		25	520
TCAA S	CGC T	A (G '	V	H	P	Н	D S ORF	SS	Q	7	N (Q	Α	A	\mathbf{T}	E	E	A>

20/21 FIG. 11D

		253	-					25										-	580
								GAAC											
I	I	E	L					E											
								_ORE	R	F[]]								>
		0.50											_					_	
		259	-					26					-			_		_	640
AA(GAGC											
N								E											
								_ORF	R	F(1]								>
		265	0		26	60		26	70			268	0		26	90		2	700
GC	CGC	AGAT	TTP	AAA	CATG	CCG	GTA	TTTA	TG	CAC	TG	TCGC	GAT	'GCC	CAC	GAG	CGG	TTT	ATG
Α	Α	D	L	N	M	P	V	F	M	H	С	R	D	Α	H	E	R	F	M>
								_ORF	R	F{1]								>
								_		•	•								
		271	0		27.	20		27	30			274	0		27	50		2	760
AC	ላ ጥጥ							AAAC											
		L						K											
_	_							_ORF											
									1		٠.								
		277	Λ		27	80		27	an			200	0		20	10		2	920
201								GTGG											
								V											
								_ORF	R.	F. [T	1.								>
			_										_					_	
		283	-					28							-			_	880
	-							GAGC						_				_	
V	С							E											
								_ORF	'RI	F[1] .								>
		289	0		29	00		29	10			292	0		29	30		2	940
AAA	TT.	ACTG	ATC	GA,A	ACT	GAT	'GCG	CCGI	'ATC	CTG	CT	CCCT	CGC	GAT	CTC	ACG	CCA	AAG	CCA
K	L	L	I	E	${f T}$	D	Α	P	Y	L	L	P	R	D	L	Т	Þ	K	P>
																			>
								_		•	•								
		295	O		29	60		29	70			298	n		29	90		3	000
тса	ነጥር (CATO										_	
								Н											
٥	_																		>
									1.1	. ι	٠.								
		301	Λ		30.	20		30	3.0			304	Λ		3.0	50		2	060
COTT			_	~~~				GCTG										-	
R	G	E						A											F'>
								_ORF	RI	:' [±	١.								>
								30											
GGG	AT.	rgcg	TTT	TAG	AGT'	ГTG	CGG.	AACT	'CG(STA'	TT	CTTC	ACA	CTG	TGC	TTA	ATC	TCT	\mathbf{ATT}
G	I	A	F>																
				>															
		313	0		314	40		31	50			316	0		31	70		3	180
TTA	LAT.	AAGA	TTA	AGC	AATA	AGC	ATG	GAGC	GAC	GCC'	TC	ACCA	TCG	GGT	TCG	GTG	AAA	ATG	GCC
		319	Ω		320	0.0		32	10			322	O		32	3.0		3	240
ጥርል	ΑΔΟ							GTAA										_	
107	~ ~~~								• •		`								
		325	^		774	50		27	70			328	n .		27	۹0		ר	300
~~-	m~-												-					_	
GGA	TCC	SACA	AIG	1 C 1	T.T.C.(T`ب	T.T.W.	TATA	. د د د	3A I'A	MG(_1GA	1.GA	AIA	MUU	حرر	GA'I	تانات	WC.I.
	•		_						٦.			224	^					-	3.55
_		331				-		33	_			334	-			50		_	360
ATC	GC?	rggc	GAC	GCG	CCA	٩AG	CGC.	ACGA	AG:	rgg	CT	JACA	CCG	CGG	GTC	GCG	TTG	ATA	GTC

FIG. 11E

3370 GTGGTATGAATC	3380 ACTTCTGGGT0				3420 TGGCTCA
3430 CTGACTGCAGTA	3440 CGTTTTCCACO				3480 CAGGCAA
3490 TTCACAGCCTGT	3500 CTTTCĢAGGTG				3540 GCAGTAC
3550 AGTAAATACCAG		3570 GACTCTTATC			3600 ATAGCAA
3610 AAGCTTTACGCT	3620 AAGTTAATTAT	3630 ATTCCCCGGT	3640 PTGCGTTATA	3650 CCGTCAGAGT	3660 TCACGCT
3670 AATTTAACAAAT		3690 CAAAGATGAA			3720 TTAAGAG
3730 GCTACAATGGAC	3740 GCCATGAAATA	3750 TAACGATTTA	3760 CGCGACTTCT	3770 TGACGCTGCT	3780 TGAACAG
3790 CAGGGTGAGCTAA	3800 AAACGTATCAC		3820 GATCCGCATC		3840 TGAAATT
3850 GCTGACCGCACTT	3860 PTGCGTGCCGG	3870 TGGGCCTGCG	3880 CTGTTGTTCG	3890 AAAACCCTAA	3900 AGGCTAC
3910 TCAATGCCGGTGC	3920 TGTGCAACCT	2230			3960 CATGGGG
3970 CAGGAAGATGTTT	3980 CGGCGCTGCG		4000 AATTATT		

WO 99/51753 PCT/CA99/00272

1

SEQUENCE LISTING

<110> Weiner, Joel H. Turner, Raymond J. <120> Compositions and Methods for Protein Secretion <130> UALB-03697 <140> PCT/CA99/00272 <141> 1999-03-29 <150> 09/053,197 <151> 1998-04-01 <150> 09/085,761 <151> 1998-05-28 <160> 49 <170> PatentIn Ver. 2.0 <210> 1 <211> 277 <212> PRT <213> Escherichia coli <400> 1 Met Arg Leu Cys Leu Ile Ile Ile Tyr His Arg Gly Thr Cys Met Gly Gly Ile Ser Ile Trp Gln Leu Leu Ile Ile Ala Val Ile Val Val Leu 20 Leu Phe Gly Thr Lys Lys Leu Gly Ser Ile Gly Ser Asp Leu Gly Ala Ser Ile Lys Gly Phe Lys Lys Ala Met Ser Asp Asp Glu Pro Lys Gln 50 60 Asp Lys Thr Ser Gln Asp Ala Asp Phe Thr Ala Lys Thr Ile Ala Asp Lys Gln Ala Asp Thr Asn Gln Glu Gln Ala Lys Thr Glu Asp Ala Lys Arg His Asp Lys Glu Gln Gly Val Asn Pro Cys Leu Ile Ser Val Leu 100 Ala Asn Leu Leu Val Phe Ile Ile Gly Leu Val Val Leu Gly Pro 120

140

Gln Arg Leu Pro Val Ala Val Lys Thr Val Ala Gly Trp Ile Arg Ala

135

130

WO 99/51753 PCT/CA99/00272

2

Leu Arg Ser Leu Ala Thr Thr Val Gln Asn Glu Leu Thr Gln Glu Leu 145 150 155 160

Lys Leu Gln Glu Phe Gln Asp Ser Leu Lys Lys Val Glu Lys Ala Ser 165 170 175

Leu Thr Asn Leu Thr Pro Glu Leu Lys Ala Ser Met Asp Glu Leu Arg 180 185 190

Gln Ala Ala Glu Ser Met Lys Arg Ser Tyr Val Ala Asn Asp Pro Glu 195 200 205

Lys Ala Ser Asp Glu Ala His Thr Ile His Asn Pro Val Val Lys Asp 210 215 220

Asn Glu Ala Ala His Glu Gly Val Thr Pro Ala Ala Ala Gln Thr Gln 225 230 235 240

Ala Ser Ser Pro Glu Gln Lys Pro Glu Thr Thr Pro Glu Pro Val Val
245 250 255

Lys Pro Ala Ala Asp Ala Glu Pro Lys Thr Ala Ala Pro Ser Pro Ser 260 265 270

Ser Ser Asp Lys Pro 275

<210> 2

<211> 284

<212> PRT

<213> Haemophilus influenzae

<400> 2

011000010: 3410 - 000175044 1 -

Met Ala Lys Lys Ser Ile Phe Arg Ala Lys Phe Phe Leu Phe Tyr Arg

1 10 15

Thr Glu Phe Ile Met Phe Gly Leu Ser Pro Ala Gln Leu Ile Ile Leu 20 25 30

Leu Val Val Ile Leu Leu Ile Phe Gly Thr Lys Lys Leu Arg Asn Ala 35 40 45

Gly Ser Asp Leu Gly Ala Ala Val Lys Gly Phe Lys Lys Ala Met Lys
50 60

Glu Asp Glu Lys Val Lys Asp Ala Glu Phe Lys Ser Ile Asp Asn Glu 65 70 75 80

Thr Ala Ser Ala Lys Lys Gly Lys Tyr Lys Arg Glu Arg Asn Arg Leu 85 90 95

Asn Pro Cys Leu Ile Leu Val Phe Gln Asn Leu Phe Tyr Xaa Met Val 100 105 110

Leu Gly Leu Val Val Leu Gly Pro Lys Arg Leu Pro Ile Ala Ile Arg

WO 99/51753 PCT/CA99/00272 3

115 125 Thr Val Met Asp Trp Val Lys Thr Ile Arg Gly Leu Ala Ala Asn Val 135 Gln Asn Glu Leu Lys Gln Glu Leu Lys Leu Gln Glu Leu Gln Asp Ser 150 155 Ile Lys Lys Ala Glu Ser Leu Asn Leu Gln Ala Leu Ser Pro Glu Leu 170 Ser Lys Thr Val Glu Glu Leu Lys Ala Gln Ala Asp Lys Met Lys Ala Glu Leu Glu Asp Lys Ala Ala Gln Ala Gly Thr Thr Val Glu Asp Gln 200 Ile Lys Glu Ile Lys Ser Ala Ala Glu Asn Ala Glu Lys Ser Gln Asn 215 Ala Ile Ser Val Glu Glu Ala Ala Glu Thr Leu Ser Glu Ala Glu Arg 225 230 235 Thr Pro Thr Asp Leu Thr Ala Leu Glu Thr His Glu Lys Val Glu Leu 245 250

Asn Thr His Leu Ser Ser Tyr Tyr Pro Pro Asp Asp Ile Glu Ile Ala 260 270

Pro Ala Ser Lys Ser Gln Ser Ser Lys Thr Lys Ser 275 280

<210> 3

<211> 22108

<212> DNA

<213> Escherichia coli

<400> 3

agtectgeag aatgaagggt gatttatgtg atttgeatea ettttggtgg gtaaatttat 60 gcaacgcatt tgcgtcatgg tgatgagtat cacgaaaaaa tgttaaaccc ttcggtaaag 120 tgtctttttg cttcttctga ctaaaccgat tcacagagga gttgtatatg tccaagtctg 180 atgtttttca tctcggcctc actaaaaacg atttacaagg ggctacgctt gccatcgtcc 240 ctggcgaccc ggatcgtgtg gaaaagatcg ccgcgctgat ggataagccg gttaagctgg 300 catctcaccg cgaattcact acctggcgtg cagagetgga tggtaaacct gttatcgtct 360 gctctaccgg tatcggcggc ccgtctacct ctattgctgt tgaagagctg gcacagctgg 420 gcattcgcac cttcctgcgt atcggtacaa cgggcgctat tcagccgcat attaatgtgg 480 gtgatgtcct ggttaccacg gcgtctgtcc gtctggatgg cgcgagcctg cacttcgcac 540 cgctggaatt cccggctgtc gctgatttcg aatgtacgac tgcgctggtt gaagctgcga 600 aatccattgg cgcgacaact cacgttggcg tgacagcttc ttctgatacc ttctacccag 660 gtcaggaacg ttacgatact tactctggtc gcgtagttcg tcactttaaa ggttctatgg 720 aagagtggca ggcgatgggc gtaatgaact atgaaatgga atctgcaacc ctgctgacca 780 tgtgtgcaag tcagggcctg cgtgccggta tggtagcggg tgttatcgtt aaccgcaccc 840 agcaagagat cccgaatgct gagacgatga aacaaaccga aagccatgcg gtgaaaatcg 900 tggtggaage ggegegtegt etgetgtaat tetettetee tgtetgaagg eegaegegtt 960 eggeettttg tatttttgeg tagegeeteg eaggaaatge ettteeaact ggaegtttgt 1020

acagcacaat tetattttgt gegggtaagt tgttgegtea ggaggegttg tggatttete 1080 aatcatggtt tacgcagtta ttgcgttggt gggtgtggca attggctggc tgtttgccag 1140 ttatcaacat gcgcagcaaa aagccgagca attagctgaa cgtgaagaga tggtcgcgga 1200 gttaagcgcg gcaaaacaac aaattaccca aagcgagcac tggcgtgcag agtgcgagtt 1260 actcaataac gaagtgegea geetgeaaag tattaacace tetetggagg eegatetgeg 1320 tgaagtaacc acgcggatgg aagccgcaca gcaacatgct gacgataaaa ttcgccagat 1380 gattaacage gageagegee teagtgagea gtttgaaaac etegeeaace gtatttttga 1440 gcacagcaat cgccgggttg atgagcaaaa ccgtcagagt ctgaacagcc tgttgtcgcc 1500 gctacgtgaa caactggacg gtttccgccg tcaggttcag gacagcttcg gtaaagaagc 1560 acaagaacgc cataccetga cecacgaaat tegcaatete cagcaactca acgegcaaat 1620 ggcccaggaa gcgatcaacc tgacgcgcg gctgaaaggc gacaataaaa cccagggcaa 1680 ctggggcgag gtagtattga cgcgggtgct ggaggcttcc ggtctgcgtg aagggtatga 1740 atatgaaacc caggtcagca tcgaaaatga cgcccgctcg cggatgcagc cggatgtcat 1800 cgtgcgcctg ccgcagggaa aagatgtggt gatcgacgcc aaaatgacgc tggtcgccta 1860 tgaacgctat tttaacgccg aagacgacta cacccgcgaa agcgcgctac aggaacatat 1920 cgcgtcggtg cgtaaccata tccgtttgct gggacgcaaa gattatcaac agctgccggg 1980 gctgcgaact ctggattacg tgctgatgtt tattcccgtt gaacccgctt ttttactggc 2040 gettgacege cageeggage tgateacega agegttgaaa aacaacatea tgetggttag 2100 cccgactacg ctgctggtgg cgctgcgcac tatcgccaac ctgtggcgtt atgagcatca 2160 aagccgcaac gcccagcaaa tcgccgatcg tgccagcaag ctgtacgaca agatgcgttt 2220 gttcatcgat gacatgtccg cgattggtca aagtctcgac aaagcgcagg ataattatcg 2280 gcaggcaatg aaaaaactct cttcagggcg cggaaatgtg ctggcgcagg cagaagcgtt 2340 tcgcggttta ggagtagaaa ttaaacgcga gattaatccg gatttggctg aacaggcggt 2400 gagccaggat gaagagtatc gacttcggtc ggttccggag cagccgaatg atgaagctta 2460 tcaacgcgat gatgaatata atcagcagtc gcgctagccc attgggagta gttaagccgg 2520 gtagaaatct agggcatcga cgcccaatct gttacacttc tggaacaatt ttttgatgag 2580 caggcattga gatggtggat aagtcacaag aaacgacgca ctttggtttt cagaccgtcg 2640 cgaaggaaca aaaagcggat atggtcgccc acgttttcca ttccgtggca tcaaaatacg 2700 atgtcatgaa tgatttgatg tcatttggta ttcatcgttt gtggaagcga ttcacgattg 2760 attgcagegg egtacgcegt gggcagaceg tgctggatet ggctggtggc accggegace 2820 tgacagegaa atteteeege etggteggag aaactggeaa agtggteett getgatatea 2880 atgaatccat gcccaaaatg ggccgcgaga agctgcgtaa tatcggtgtg attggcaacg 2940 ttgagtatgt tcaggcgaac gctgaggcgc tgccgttccc ggataacacc tttgattgca 3000 teaccattte gtttggtetg egtaaegtea eegacaaaga taaagcaetg egtteaatgt 3060 ategegtget gaaaccegge ggeegeetge tggtgettga gttetegaag ccaattateg 3120 agcegetgag caaageetat gatgeataet eetteeatgt getgeegegt attggeteae 3180 tggtcgcgaa cgacgccgac agctaccgtt atctggcaga atccatccgt atgcatcccg 3240 atcaggatac cctgaaagcc atgatgcagg atgccggatt cgaaagtgtc gactactaca 3300 atctgacggc aggggttgtg gcgctgcatc gtggttataa gttctgacag gagaccggaa 3360 atgeetttta aacetttagt gaeggeagga attgaaagte tgeteaacae etteetgtat 3420 cgctcacccg cgctgaaaac ggcccgctcg cgtctgctgg gtaaagtatt gcgcgtggag 3480 gtaaaagget tttegaegte attgattetg gtgtteageg aaegeeaggt tgatgtaetg 3540 ggcgaatggg caggcgatgc tgactgcacc gttatcgcct acgccagtgt gttgccgaaa 3600 cttcgcgatc gccagcagct taccgcactg attcgcagtg gtgagctgga agtgcagggc 3660 gatattcagg tggtgcaaaa cttcgttgcg ctggcagatc tggcagagtt cgaccctgcg 3720 gaactgctgg ccccttatac cggtgatatc gccgctgaag gaatcagcaa agccatgcgc 3780 ggaggcgcaa agttcctgca tcacggcatt aagcgccagc aacgttatgt ggcggaagcc 3840 attactgaag agtggcgtat ggcacccggt ccgcttgaag tggcctggtt tgcggaagag 3900 acggetgeeg tegagegtge tgttgatgee etgaceaaac ggetggaaaa actggagget 3960 aaatgacgcc aggtgaagta cggcgcctat atttcatcat tcgcactttt ttaagctacg 4020 gacttgatga actgatcccc aaaatgcgta tcaccctgcc gctacggcta tggcgatact 4080 cattattctg gatgccaaat cggcataaag acaaactttt aggtgagcga ctacgactgg 4140 ccctgcaaga actggggccg gtttggatca agttcgggca aatgttatca acccgccgcg 4200 atctttttcc accgcatatt gccgatcagc tggcgttatt gcaggacaaa gttgctccgt 4260 ttgatggcaa gctggcgaag cagcagattg aagctgcaat gggcggcttg ccggtagaag 4320 cgtggtttga cgattttgaa atcaagccgc tggcttctgc ttctatcgcc caggttcata 4380

					ccccatatt	4440
ccgcgcgatt	gaaatcgaat	ggtaaagagg	tggtgattaa	agtcatccgc	ataccacatt	4500
tgccggttat	taaagcggat	ctgaaactta	tctaccgtct	ggctcgctgg	gracegegee	4560
tgctgccgga	tggtcgccgt	ctgcgcccaa	ccgaagtggt	gcgcgagtac	gaaaagacat	4620
tgattgatga	actgaatttg	ctgcgggaat	ctgccaacgc	cattcagctt	agtgaagg	4680
ttgaagacag	cccgatgctc	tacatcccgg	aagtttaccc	tgactattgt	agrgaaggga	4740
tgatggtgat	ggagcgcatt	tacggcattc	cggtgtctga	tgttgcggcg	ctygagaaaa	4900
acggcactaa	catgaaattg	ctggcggaac	gcggcgtgca	ggtgttcttc	acttaggeet	4060
ttcgcgacag	ctttttccat	gccgatatgc	accctggcaa	catcttcgta	agetatgaac	4000
acccggaaaa	cccgaaatat	atcopcattg	attgcgggat	tgttggctcg	Cladacadag	7320
aagataaacg	ctatctqqca	gaaaacttta	tegeettett	taatcgcgac	Lattycaday	4900
tagcagaget	acacqtcqat	tctqqctqqq	tgccaccaga	taccaacytt	gaagageeeg	2020
aatttgccat	tcgtacggtc	tgtgaaccta	tctttgagaa	accgctggcc	gaaaccccgc	5160
ttggacatgt	actgttaaat	ctgtttaata	caacacarca	cttcaatatg	gaagtgcagt	5220
cacaactaat	gttactccag	aaaaccctgc	tctacgtcga	aggggtagga	egetagette	3220
atccccaact	coatttatoo	aaaacqqcqa	agcctttcct	ggagtcgtgg	accadagace	5200
aggregatat	tectacacta	gtgagagcat	ttaaagaaaa	agegeegete	LygyLCgaaa	2340
aaatgccaga	actocctoaa	ttggtttacg	acagtttgcg	ccagggcaag	caccacage	5400
acagtgttga	taagattgcc	cgcgagcttc	agtcaaatca	tgtacgtcag	ggacaaccgc	3400
ottattttct	cagaattagc	gctacgttag	tattaagtgg	cacattettg	Liggidaged	3320
gacctgaatg	ggggctgatg	cccqqctggt	taatggcagg	tggtctgatc	geetggtttg	3360
traattaaca	caaaacacqc	tgatttttc	atcgctcaag	gegggeegrg	taatgtataa	3040
tacaacttta	tttaatcatc	atctaccaca	gaggaacatg	tatgggtggt	attagtattt	3700
ggcagttatt	gattattgcc	gtcatcgttg	tactgctttt	tggcaccaaa	aageteggee	3700
ccatcoattc	cgatcttggt	gcgtcgatca	aaggctttaa	aaaagcaatg	agegatgatg	3620
aaccaaagca	ggataaaacc	agtcaggatg	ctgattttac	tgcgaaaact	ategeegata	3000
accadacada	tacqaatcaq	gaacaggcta	aaacagaaga	egegaagege	cacgacaaag	22.0
accacatosa	tecatattta	atatcqqttt	tagcgaactt	gctattggtg	Lication	0000
acct cat cat	tctaaaacca	caacqactgc	ctgtggcggt	aaaaacggca	9099900994	0000
ttagagagtt	acattcacta	acaacaa	tqcaqaacqa	actgacctag	gagicaaaac	0110
tecaggagtt	tcaggacagt	ctgaaaaagg	ttgaaaaggc	gageeteaet	aaccigacge	0100
cccaactcaa	agcatcaata	gatgaactac	gccaggccgc	ggagicgalg	aagegeeee	0210
acottocaaa	cgatectgaa	aaggcgagcg	atgaagcgca	caccatccat	aacccggcgg	0300
tassaatsa	taaaactaca	catgagggg	taacqcctgc	cgctgtataa	acgeaggeea	0000
atteacears	acagaageca	gaaaccacgc	cagageeggt	ggtaaaattt	geegegaeg	0120
ctcaaccgaa	aaccgctgca	ccttcccctt	cgtcgagtga	taaactytaa	acacycecyc	0 2 0 0
accacatact	caaccoctta	tcacqcatct	gattgagctg	cgraagegee	cgccgaaccg	
cattatcgcg	gtgatcgtga	tattcctgtg	tetggtetat	ttcgccaatg	tegeeseega	6660
cctggtatcc	gcgccattga	tcaagcagtt	gccgcaaggt	tcaacgatga	tasttata	6720
cgtggcctcg	ccgttcttta	cgccgatcaa	getgaeettt	atggtgtcgc	ataaccatca	6780
agcgccggtg	attctctatc	aggtgtgggc	atttategee	ccagcgctgt	teaageatga	6840
acateaceta	ataataccac	tactaatttc	cagctctctg	Cigilitata	2099000990	00-0
attcgcctac	tttgtggtct	ttccgctggc	atttggette	cttgccaata	cactatttat	6960
aggggtgcag	gtatccaccg	acatcgccag	ctatttaagc	ttcgttatgg	ggatggggat	7020
ggcgtttggt	gtctcctttg	aagtgccggt	agcaattgtg	ctgctgtgct	catteeteet	7080
tacctcgcca	gaagacttac	gcaaaaaacg	cccgtatgtg	ctggttggtg	tecegatata	7140
cgggatgttg	ctgacgccgc	cggatgtctt	ctcgcaaacg	ctgttggcga	ccccgaegea	7200
ctgtctgttt	gaaatcggtg	tettettete	acgettttac	gttggtaaag	ttcaacccc	7260
ggaagaggaa	aacgacgctg	aagcagaaag	cgaaaaaact	gaagaataaa	tttgaccagt	7320
ant congress	attataatat	ggagtacagg	atgtttgata	Leggegetaa	cccgaccage	
+	cdaaadaccd	tgatgatgtt	gtagcgtgcg	cttttgatgt	gggagttaat	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	traccooracac	taacctgcgt	gaaagccagc	aggcycaaaa	gerggegege	, ,110
andtatt cat	cctattaatc	aacaacaaac	gtacatcctc	acgacagcag	ccageggeau	
	aagaagcgat	tattgagctg	qccqcqcagc	: cagaagiggi	ggcgaccgg	
anntataata	troactttaa	ccacaacttt	tcgacgccgg	aagagcayya	acgegeeee	. ,
~++~~~~~~	tacgcattgc	cocadattta	aacatqccgg	tatttatge	Cegeegegae	. ,
gcccacgagc	ggtttatgac	attgctggag	ccgrggcrgg	ataaactgcc	95-955	,

cttcattgct ttaccggcac acgcgaagag atgcaggcgt gcgtggcgca tggaatttat 7800 ateggcatta ceggttgggt ttgcgatgaa cgacgcggac tggagctgcg ggaacttttg 7860 ccgttgattc cggcggaaaa attactgatc gaaactgatg cgccgtatct gctccctcgc 7920 gatotcacgo caaagccato atcocggogo aacgagocag cocatotgoo coatattttg 7980 caacgtattg cgcactggcg tggagaagat gccgcatggc tggctgccac cacggatgct 8040 aatgtcaaaa cactgtttgg gattgcgttt tagagtttgc ggaactcggt attcttcaca 8100 ctgtgcttaa tctctttatt aataagatta agcaatagca tggagcgagc ctcaccatcg 8160 ggttcggtga aaatggcctg aaagccttcg aacgcgcctt cggtaataat caccttatca 8220 cccggataag gggttgccgg atcgacaatg tctttcggtt tatataccga tagctgatga 8280 ataaccgccg atgggactat cgctggcgac gcgccaaagc gcacgaagtg gctgacaccg 8340 egggtegegt tgatagtegt ggtatgaate acttetgggt caaattecae aaacaggtag 8400 ttggggaaca atggctcact gactgcagta cgttttccac gcacgatttt ttccagggtg 8460 atcatcggtg ccaggcaatt cacagcctgt ctttcgaggt gttcctgggc acgttgaagt 8520 tgcccgcgct tgcagtacag taaataccag gattgcataa tgactcttat ccgtttaatc 8580 ggggcgcaag gatagcaaaa gctttacgct aagttaatta tattccccgg tttgcgttat 8640 accytcagag ttcacyctaa tttaacaaat ttacaycatc ycaaagatga acyccytata 8700 atgggcgcag attaagaggc tacaatggac gccatgaaat ataacgattt acgcgacttc 8760 ttgacgetge ttgaacagea gggtgageta aaacgtatea egeteeeggt ggateegeat 8820 ctggaaatca ctgaaattgc tgaccgcact ttgcgtgccg gtgggcctgc gctgttgttc 8880 gaaaacccta aaggctactc aatgccggtg ctgtgcaacc tgttcggtac gccaaagcgc 8940 gtggcgatgg gcatggggca ggaagatgtt tcggcgctgc gtgaagttgg taaattattg 9000 gcgtttctga aagagccgga gccgccaaaa ggtttccgcg acctgtttga taaactgccg 9060 cagtttaagc aagtattgaa catgccgaca aagcggctgc gtggtgcgcc ctgccaacaa 9120 aaaatcgtct ctggcgatga cgtcgatctc aatcgcattc ccattatgac ctgctggccg 9180 gaagatgccg cgccgctgat tacctggggg ctgacagtga cgcgcggccc acataaagag 9240 cggcagaatc tgggcattta tcgccagcag ctgattggta aaaacaaact gattatgcgc 9300 tggctgtcgc atcgcggcgg cgcgctggat tatcaggagt ggtgtgcggc gcatccgggc 9360 gaacgtttcc cggtttctgt ggcgctgggt gccgatcccg ccacgattct cggtgcagtc 9420 actcccgttc cggatacgct ttcagagtat gcgtttgccg gattgctacg tggcaccaag 9480 accgaagtgg tgaagtgtat ctccaatgat cttgaagtgc ccgccagtgc ggagattgtg 9540 ctggaagggt atatcgaaca aggcgaaact gcgccggaag ggccgtatgg cgaccacacc 9600 ggttactata atgaagtcga tagtttcccg gtatttaccg tgacgcatat tacccagcgt 9660 gaagatgcga tttaccattc cacctatacc gggcgtccgc cagatgagcc cgcggtgctg 9720 ggtgtcgcac tgaacgaagt gtttgtgccg attctgcaaa aacagttccc ggaaattgtc 9780 gatttttacc tgccgccgga aggctgctct tatcgcctgg cggtagtgac aatcaaaaaa 9840 cagtacgccg gacacgcgaa gcgcgtcatg atgggcgtct ggtcgttctt acgccagttt 9900 atgtacacta aatttgtgat cgtttgcgat gatgacgtta acgcacgcga ctggaacgat 9960 gtgatttggg cgattaccac ccgtatggac ccggcgcggg atactgttct ggtagaaaat 10020 acgcctattg attatctgga ttttgcctcg cctgtctccg ggctgggttc aaaaatgggg 10080 ctggatgcca cgaataaatg gccgggggaa acccagcgtg aatggggacg tcccatcaaa 10140 aaagatccag atgttgtcgc gcatattgac gccatctggg atgaactggc tatttttaac 10200 aacggtaaaa gcgcctgatg cgcgtttgtt ttgccctatt tatcgatccg acagagaaag 10260 cgcatgacaa ccttaagctg taaagtgacc tcggtagaag ctatcacgga taccgtatat 10320 cgtgtccgca tcgtgccaga cgcggccttt tcttttcgtg ctggtcagta tttgatggta 10380 gtgatggatg agcgcgacaa acgtccgttc tcaatggctt cgacgccgga tgaaaaaggg 10440 tttatcgagc tgcatattgg cgcttctgaa atcaaccttt acgcgaaagc agtcatggac 10500 cgcatcctca aagatcatca aatcgtggtc gacattcccc acggagaagc gtggctgcgc 10560 gatgatgaag agcgtccgat gattttgatt gcgggcggca ccgggttctc ttatgcccgc 10620 tegattttgc tgacagegtt ggegegtaac ecaaacegtg atateaceat ttactgggge 10680 gggcgtgaag agcagcatct gtatgatctc tgcgagcttg aggcgctttc gttgaagcat 10740 cctggtctgc aagtggtgcc ggtggttgaa caaccggaag cgggctggcg tgggcgtact 10800 ggcaccgtgt taacggcggt attgcaggat cacggtacgc tggcagagca tgatatctat 10860 attgccggac gttttgagat ggcgaaaatt gcccgcgatc tgttttgcag tgagcgtaat 10920 gcgcgggaag atcgcctgtt tggcgatgcg tttgcattta tctgagatat aaaaaaaccc 10980 gcccctgaca ggcgggaaga acggcaacta aactgttatt cagtggcatt tagatctatg 11040 acgtatctgg caaaagtcct gcagaatgaa gggtgattta tgtgatttgc atcacttttg 11100

gtgggtaaat		estttacatc	atootoatoa	otatcacqaa	aaaatgttaa	11160
gtgggtaaat acccttcggt	ttatgcaacg	tattegtgtt	ctcactaaac	cgattcacag	aggagttgta	11220
accetteggt tatgtecaag	aaagtgtctt	ttestetee	cctcactaaa	aacgatttac	aaggggctac	11280
gettgecate	tetgatgttt	receeses	tataaaaaa	atcgccgcgc	tgatggataa	11340
gcttgccatc	greeerggeg	accoggaccg	cactaccted	catacagage	tggatggtaa	11400
gccggttaag acctgttatc	ctggcatctc	accycyaarr	caccaccatct	acctctattq	ctqttgaaga	11460
acctgttatc gctggcacag	gtetgeteta	ceggiategg	costatosst	acaacggggg	ctattcagcc	11520
gctggcacag gcatattaat	ctgggcattc	gcaccttcct	caccacatat	arccatctag	atggcgcgag	11580
gcatattaat	gtgggtgatg	tectggttac	tataataat	ttcgaatgta	cgactgcgct	11640
cctgcacttc	gcaccgctgg	aatteeegge	agetgeegat	ggcgtgacag	cttcttctga	11700
ggttgaagct	gcgaaatcca	ttggcgcgac	tacttactct	ggtgggtag	ttcqtcactt	11760
taccttctac	ccaggtcagg	aacgttacga	cacctacte	aactatgaaa	tggaatctgc	11820
taaaggttct aaccctgctg	atggaagagt	ggeaggegat	cctacatacc	ggtatggtag	cgggtgttat	11880
aaccctgctg cgttaaccgc	accatgtgtg	caagicaggg	tactasasca	atgaaacaaa	ccgaaagcca	11940
cgttaaccgc	acccagcaag	agateeegaa	teatetacta	raattctctt	ctcctqtctg	12000
tgcggtgaaa	atcgtggtgg	aageggegeg	tacatacac	ct.cgcaggaa	atgcctttcc	12060
aaggccgacg	cgttcggcct	tetgtatitt	tratacaaat	aagttgttgc	gtcaggaggc	12120
aaggeegaegt	ttgtacagca	caattetatt	attattacat	taataaatat	ggcaattggc	12180
gttgtggatt	tctcaatcat	ggtttacgca	greategege	aggaattage	tgaacgtgaa	12240
tggctgtttg	ccagttatca	acatgcgcag	caaaaagccg	cccaaagcga	gcactggcgt	12300
gagatggtcg gcagagtgcg	cggagttaag	cgcggcaaaa	caccaacta	aaagtattaa	cacctctctg	12360
gcagagtgcg gaggccgatc	agttactcaa	taacgaagtg	atogaageege	cacagcaaca	tqctgacgat	12420
gaggccgatc aaaattcgcc	tgcgtgaagt	aaccacgcgg	cacctcaata	agcagtttga	aaacctcgcc	12480
aaaattcgcc	agatgattaa	cagegageag	attastasa	aaaaccqtca	gagtctgaac	12540
agcctgttgt	ttgagcacag	tanacata	gacgatttcc	gccgtcaggt	tcaggacagc	12600
agcctgttgt	egeegetacy	rgaacaaccg	ctgacccacg	aaattcqcaa	tctccagcaa aggcgacaat	12660
ttcggtaaag	aagcacaaga	acgecatace	aacctgacgc	gcgcgctgaa	aggcgacaat	12720
ctcaacgcgc	aaatggccca	casactacta	ttgacgcggg	tactagagge	ttccggtctg	12780
aaaacccagg	geaactgggg	aacccaddtc	agcatcgaaa	atgacgcccg	ctcgcggatg	12840
	++-	cctaccacaa	ddaaaadalu	Lyguyacuya	09000000	
		ctattttaac	occoaduacu	actacaces		
	-+-+cacata	antacataac	catatecqui	Lycugggaug		
		aactctddat	tacotuciua	Lacerace	-5	
	taacacttaa	ccaccaacca	gagetuatua	CCGaagegee	5	
	++-accccac	tacactacta	ataacactac	quactacege		
		~>>~~~~~~~~~	CAAALCUCCU	a,,		
		castascata	recocuation	q ccaaag ccc	450	
		2257722222	CECELLA	4444		
		+++>~~~	- daaallaaac	ucquque		
		~~=+~==~	- FATCGACLLC	446644666		
		castastass	Lataalcauc	aquogogoo		
		2565200003	- COACCCCC	a c c c g c c c c c		
		*******	GGALAAULLA	Candanaaaa		
		~~~~~~~~~	- OGALALUULL			
	<del></del>	+ ~ > > + ~ > + F	galdicall.	. 990000000		
		CCARARTECEC	ccacciual	, qqagaaac	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		~~~+~~~~~~	aa Luuuccu	. 90900900		
		> tattcaaac	DAACOCLUAU	1 464669669		
			TCLUCULAAC	, 400005		
		tactassacc	Caacaacca	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	
		trarraaarc	crardatute	Lacticities		
		~~~~~~~~~	roacauctat		,	
			anccaluali	1	, , , , , , , , , , , , , , , , , , , ,	
		caacaaaaa	Editadeact	4 Caccaca		•
acaggagacc	ggaaatgcct	tttaaacctt	tagtgacgg	c aggaattga	a agtetgetea	a 14460

acacetteet gtategetea eccgegetga aaacggeeeg etegegtetg etgggtaaag 14520 tattgcgcgt ggaggtaaaa ggcttttcga cgtcattgat tctggtgttc agcgaacgcc 14580 aggttgatgt actgggcgaa tgggcaggcg atgctgactg caccgttatc gcctacgcca 14640 gtgtgttgcc gaaacttcgc gatcgccagc agcttaccgc actgattcgc agtggtgagc 14700 tggaagtgca gggcgatatt caggtggtgc aaaacttcgt tgcgctggca gatctggcag 14760 agttcgaccc tgcggaactg ctggccctt ataccggtga tatcgccgct gaaggaatca 14820 gcaaagccat gcgcggaggc gcaaagttcc tgcatcacgg cattaagcgc cagcaacgtt 14880 atgtggcgga agccattact gaagagtggc gtatggcacc cggtccgctt gaagtggcct 14940 ggtttgcgga agagacggct gccgtcgagc gtgctgttga tgccctgacc aaacggctgg 15000 aaaaactgga ggctaaatga cgccaggtga agtacggcgc ctatatttca tcattcgcac 15060 ttitttaage taeggaettg atgaactgat eeceaaaatg egtateacee tgeegetaeg 15120 gctatggcga tactcattat tctggatgcc aaatcggcat aaagacaaac ttttaggtga 15180 gcgactacga ctggccctgc aagaactggg gccggtttgg atcaagttcg ggcaaatgtt 15240 atcaaccege egegatettt ttecacegea tattgeegat eagetggegt tattgeagga 15300 caaagttgct ccgtttgatg gcaagctggc gaagcagcag attgaagctg caatgggcgg 15360 cttgccggta gaagcgtggt ttgacgattt tgaaatcaag ccgctggctt ctgcttctat 15420 cgcccaggtt cataccgcgc gattgaaatc gaatggtaaa gaggtggtga ttaaagtcat 15480 ccgcccggat attttgccgg ttattaaagc ggatctgaaa cttatctacc gtctggctcg 15540 ctgggtgccg cgtttgctgc cggatggtcg ccgtctgcgc ccaaccgaag tggtgcgcga 15600 gtacgaaaag acattgattg atgaactgaa tttgctgcgg gaatctgcca acgccattca 15660 gcttcggcgc aattttgaag acagcccgat gctctacatc ccggaagttt accctgacta 15720 ttgtagtgaa gggatgatgg tgatggagcg catttacggc attccggtgt ctgatgttgc 15780 ggcgctggag aaaaacggca ctaacatgaa attgctggcg gaacgcggcg tgcaggtgtt 15840 cttcactcag gtctttcgcg acagcttttt ccatgccgat atgcaccctg gcaacatctt 15900 cgtaagctat gaacacccgg aaaacccgaa atatatcggc attgattgcg ggattgttgg 15960 ctcgctaaac aaagaagata aacgctatct ggcagaaaac tttatcgcct tctttaatcg 16020 cgactatcgc aaagtggcag agctacacgt cgattctggc tgggtgccac cagataccaa 16080 cgttgaagag ttcgaatttg ccattcgtac ggtctgtgaa cctatctttg agaaaccgct 16140 ggccgaaatt tcgtttggac atgtactgtt aaatctgttt aatacggcgc gtcgcttcaa 16200 tatggaagtg cagccgcaac tggtgttact ccagaaaacc ctgctctacg tcgaaggggt 16260 aggacgccag ctttatccgc aactcgattt atggaaaacg gcgaagcctt tcctggagtc 16320 gtggattaaa gatcaggtcg gtattcctgc gctggtgaga gcatttaaag aaaaagcgcc 16380 gttctgggtc gaaaaaatgc cagaactgcc tgaattggtt tacgacagtt tgcgccaggg 16440 caagtattta cagcacagtg ttgataagat tgcccgcgag cttcagtcaa atcatgtacg 16500 tcagggacaa tcgcgttatt ttctcggaat tggcgctacg ttagtattaa gtggcacatt 16560 cttgttggtc agccgacctg aatgggggct gatgcccggc tggttaatgg caggtggtct 16620 gatcgcctgg tttgtcggtt ggcgcaaaac acgctgattt tttcatcgct caaggcgggc 16680 cgtgtaacgt ataatgcggc tttgtttaat catcatctac cacagaggaa catgtatggg 16740 tggtatcagt atttggcagt tattgattat tgccgtcatc gttgtactgc tttttggcac 16800 caaaaagctc ggctccatcg gttccgatct tggtgcgtcg atcaaaggct ttaaaaaaagc 16860 aatgagcgat gatgaaccaa agcaggataa aaccagtcag gatgctgatt ttactgcgaa 16920 aactatcgcc gataagcagg cggatacgaa tcaggaacag gctaaaacag aagacgcgaa 16980 gcgccacgat aaagagcagg tgaatccgtg tttgatatcg gttttagcga acttgctatt 17040 ggtgttcatc atcggcctcg tcgttctggg gccgcaacga ctgcctgtgg cggtaaaaac 17100 ggtagcgggc tggattcgcg cgttgcgttc actggcgaca acggtgcaga acgaactgac 17160 ccaggagtta aaactccagg agtttcagga cagtctgaaa aaggttgaaa aggcgagcct 17220 cactaacctg acgcccgaac tgaaagcgtc gatggatgaa ctacgccagg ccgcggagtc 17280 gatgaagcgt tectacgttg caaacgatee tgaaaaggcg agcgatgaag cgcacaccat 17340 ccataacccg gtggtgaaag ataatgaagc tgcgcatgag ggcgtaacgc ctgccgctgc 17400 acaaacgcag gccagttcgc cggaacagaa gccagaaacc acgccagagc cggtggtaaa 17460 acctgctgcg gacgctgaac cgaaaaccgc tgcaccttcc ccttcgtcga gtgataaacc 17520 gtaaacatgt ctgtagaaga tactcaaccg cttatcacgc atctgattga gctgcgtaag 17580 cgtctgctga actgcattat cgcggtgatc gtgatattcc tgtgtctggt ctatttcgcc 17640 aatgacatct atcacctggt atccgcgcca ttgatcaagc agttgccgca aggttcaacg 17700 atgategeca cegaegtgge etegeegtte tttaegeega teaagetgae etttatggtg 17760 tegetgatte tgtcagegee ggtgattete tatcaggtgt gggcatttat egececageg 17820

atatataaa	atgaacgtcg	cctaataata	ccactactaa	tttccagctc	tctgctgttt	17880
totataage	tagaatgreg	ctactttata	atctttccac	togcatttgg	cttccttgcc	17940
catacoggea	cacacacac	acadetes	accoacated	ccagctattt	aagcttcgtt	18000
aacaccgcgc	ttataaaatt	tratatetee	tttgaagtgc	cootagcaat	tgtgctgctg	18060
testestes	grattacete	accadaacac	ttacccaaaa	aacacccata	tgtgctggtt	18120
tgetggatgg	ggattacctt	gccagaagac	ccaccacata	tettetegea	aacgctgttg	18180
ggtgcattcg	tegtegggat	gregergatg	ccgccggacg	teteacactt	ttacgttggt	18240
gegateeega	at coccepted	geeegaaace	ggtgtttta	aaagcgaaaa	aactgaagaa	18300
aaagggcgaa	accyggaaga	ggaaaacgac	atatogagta	caggatgttt	gatatcggcg	18360
taaatttaac	cacttoccas	tttacaaaa	accotoatoa	tattataaca	tgcgcttttg	18420
reactigat	taatooocta	ctcatcacco	gcactaacct	gcgtgaaagc	cagcaggcgc	18480
acgegggage	acatcaatat	teatectatt	gatcaacaac	gggcgtacat	cctcacgaca	18540
aaaagctggc	gegeeageae	actgaagaag	coattattoa	actaaccaca	cagccagaag	18600
teateacast	taataatat	ggtctcgact	ttaaccgcaa	cttttcgacg	ccggaagagc	18660
rggrggrgar	ttttattacc	cadctacdca	ttaccacaga	tttaaacatq	ccggtattta	18720
tacactata	castaccac	gagcggttta	tgacattgct	ggagccgtgg	ctggataaac	18780
tacctactac	cattetteat	tactttacca	gcacacgcga	agagatgcag	gcgtgcgtgg	18840
cacatagast	tratatoggo	attaccoatt	gggtttgcga	tgaacgacgc	ggactggagc	18900
tacacasact	tttaccatta	attecagea	aaaaattact	gatcgaaact	gatgcgccgt	18960
atotoctoco	togogatoto	acoccaaaoc	catcatcccq	gcgcaacgag	ccagcccatc	19020
trocccatat	tttgcaacgt	attgcgcact	gacatagaga	agatgccgca	tggctggctg	19080
cgccccacac	tactaatata	aaaacactgt	ttgggattgc	gttttagagt	ttgcggaact	19140
contattott	cacactgtgc	ttaatctctt	tattaataaq	attaaqcaat	agcatggagc	19200
cagcattatt	atcoggttco	gtgaaaatgg	cctgaaagcc	ttcgaacgcg	ccttcggtaa	19260
taatcacctt	atraccoga	taaggggttg	ccggatcgac	aatqtctttc	ggtttatata	19320
ccatactc	atgaataacc	gccgatggga	ctatcqctqq	cgacgcgcca	aagcgcacga	19380
actorctoac	accoccootc	gcgttgatag	tcataatata	aatcacttct	gggtcaaatt	19440
ccacaaacad	ataattaaaa	aacaatggct	cactgactgc	agtacgtttt	ccacgcacga	19500
tttttccag	gatgatcatc	ggtgccaggc	aattcacage	ctatctttcg	aggtgttcct	19560
adacacatta	aagttgcccg	cacttacaat	acagtaaata	ccaggattgc	ataatgactc	19620
tratecettt	aatcagaaca	caaggatagc	aaaaqcttta	cgctaagtta	attatattcc	19680
ccatttaca	ttataccgtc	agagttcacg	ctaatttaac	aaatttacag	catcgcaaag	19740
atgaacgcg	tataatgggc	gcagattaag	aggetacaat	ggacgccatg	aaatataacg	19800
atttacocoa	cttcttgacg	ctgcttgaac	agcagggtga	gctaaaacgt	atcacgctcc	19860
caataaatca	gcatctggaa	atcactgaaa	ttqctqaccq	cactttgcgt	gccggtgggc	19920
ctacactatt	gttcgaaaac	cctaaaggct	actcaatqcc	ggtgctgtgc	aacctgttcg	19980
gtacgccaaa	acacataaca	atgggcatgg	ggcaggaaga	tgtttcggcg	ctgcgtgaag	20040
ttggtaaatt	attogcottt	ctgaaagagc	cqqaqccgcc	aaaaggtttc	cgcgacctgt	20100
ttgataaact	accacaattt	aagcaagtat	tgaacatgcc	gacaaagcgg	ctgcgtggtg	20160
cacctacca	acaaaaaatc	atctctaaca	atgacgtcga	tctcaatcgc	attcccatta	20220
tgacctgctg	gccggaagat	accacaccac	tgattacctg	ggggctgaca	gtgacgcgcg	20280
gcccacataa	agagcggcag	aatctgggca	tttatcgcca	gcagctgatt	ggtaaaaaca	20340
aactgattat	acactaacta	tegeategeg	gcggcgct	ggattatcag	gagtggtgtg	20400
caacacatco	gggcgaacgt	ttcccqqttt	ctgtggcgct	gggtgccgat	cccgccacga	20460
ttctcaatac	agtcactccc	gttccggata	cgctttcaga	gtatgcgttt	gccggattgc	20520
tacataacac	caagaccgaa	gtggtgaagt	gtatctccaa	tgatcttgaa	gtgcccgcca	20580
atacagagatat	tatactagaa	gogtatatcg	aacaaqqcga	aactgcgccg	gaagggccgt	20640
ataacaacca	cacconttac	tataatgaag	tcgatagttt	cccggtattt	accgtgacgc	20700
atattaccca	gcgtgaagat	gcgatttacc	attccaccta	taccgggcgt	ccgccagatg	20760
agcccacaat	actagatata	gcactgaacg	aagtgtttgt	gccgattctg	caaaaacagt	20820
teceggaaat	totogatttt	tacctgccgc	cggaaggctq	ctcttatcgc	ctggcggtag	20880
tgacaatcaa	aaaacagtac	qccqqacacq	cgaagcgcgt	catgatgggc	gtctggtcgt	20940
tettacecea	gtttatgtac	actaaatttq	tgatcgtttq	cgatgatgac	gttaacgcac	21000
gcgactggaa	cgatgtgatt	tgggcgatta	ccacccgtat	ggacccggcg	cgggatactg	21060
ttctggtaga	aaatacocct	attgattatc	tggattttgc	ctcgcctgtc	tccgggctgg	21120
ottcaaaaa	agagetagat	qccacqaata	aatggccggg	ggaaacccag	cgtgaatggg	21180
7	2222-03240	J J				

```
gacgtcccat caaaaaagat ccagatgttg tcgcgcatat tgacgccatc tgggatgaac 21240
tggctatttt taacaacggt aaaagcgcct gatgcgcgtt tgttttgccc tatttatcga 21300
teegacagag aaagegeatg acaacettaa getgtaaagt gaceteggta gaagetatea 21360
cggataccgt atatcgtgtc cgcatcgtgc cagacgcggc cttttcttt cgtgctggtc 21420
agtatttgat ggtagtgatg gatgagcgcg acaaacgtcc gttctcaatg gcttcgacgc 21480
cggatgaaaa agggtttatc gagctgcata ttggcgcttc tgaaatcaac ctttacgcga 21540
aagcagtcat ggaccgcatc ctcaaagatc atcaaatcgt ggtcgacatt ccccacggag 21600
aagegtgget gegegatgat gaagagegte egatgatett gattgeggge ggeacegggt 21660
tetettatge cegetegatt ttgetgacag egttggegeg taacccaaac egtgatatea 21720
ccatttactg gggcgggcgt gaagagcagc atctgtatga tctctgcgag cttgaggcgc 21780
tttcgttgaa gcatcctggt ctgcaagtgg tgccggtggt tgaacaaccg gaagcgggct 21840
ggcgtgggcg tactggcacc gtgttaacgg cggtattgca ggatcacggt acgctggcag 21900
agcatgatat ctatattgcc ggacgttttg agatggcgaa aattgcccgc gatctgtttt 21960
gcagtgagcg taatgcgcgg gaagatcgcc tgtttggcga tgcgtttgca tttatctgag 22020
atataaaaaa accegeeett gacaggeggg aagaacggca actaaactgt tattcagtgg 22080
catttagatc tatgacgtat ctggcaaa
<210> 4
<211> 831
<212> DNA
<213> Escherichia coli
<400> 4
atgcggcttt gtttaatcat catctaccac agaggaacat gtatgggtgg tatcagtatt 60
tggcagttat tgattattgc cgtcatcgtt gtactgcttt ttggcaccaa aaagctcggc 120
tecateggtt cegatettgg tgegtegate aaaggettta aaaaagcaat gagegatgat 180
gaaccaaagc aggataaaac cagtcaggat gctgatttta ctgcgaaaac tatcgccgat 240
aagcaggcgg atacgaatca ggaacaggct aaaacagaag acgcgaagcg ccacgataaa 300
gagcaggtga atccgtgttt gatatcggtt ttagcgaact tgctattggt gttcatcatc 360
ggcctcgtcg ttctggggcc gcaacgactg cctgtggcgg taaaaacggt agcgggctgg 420
attegegegt tgegtteact ggegacaacg gtgeagaacg aactgaceca ggagttaaaa 480
ctccaggagt ttcaggacag tctgaaaaag gttgaaaagg cgagcctcac taacctgacg 540
cccgaactga aagcgtcgat ggatgaacta cgccaggccg cggagtcgat gaagcgttcc 600
tacgttgcaa acgatectga aaaggegage gatgaagege acaccateca taacceggtg 660
gtgaaagata atgaagctgc gcatgagggc gtaacgcctg ccgctgcaca aacgcaggcc 720
agttcgccgg aacagaagcc agaaaccacg ccagagccgg tggtaaaacc tgctgcggac 780
gctgaaccga aaaccgctgc accttcccct tcgtcgagtg ataaaccgta a
<210> 5
<211> 778
<212> DNA
<213> Escherichia coli
<400> 5
atgtctgtag aagatactca accgcttatc acgcatctga ttgagctgcg taagcgtctg 60
ctgaactgca ttatcgcggt gatcgtgata ttcctgtgtc tggtctattt cgccaatgac 120
atctatcacc tggtatccgc gccattgatc aagcagttgc cgcaaggttc aacgatgatc 180
gccaccgacg tggcctcgcc gttctttacg ccgatcaagc tgacctttat ggtgtcgctg 240
attetgteag egeeggtgat tetetateag gtgtgggeat ttategeece agegetgtat 300
aagcatgaac gtcgcctggt ggtgccgctg ctggtttcca gctctctgct gttttatatc 360
ggcatggcat tegectactt tgtggtettt eegetggcat ttggetteet tgccaatace 420
gegeeggaag gggtgeaggt atecacegae ategeeaget atttaagett egttatggeg 480
ctgtttatgg cgtttggtgt ctcctttgaa gtgccggtag caattgtgct gctgtgctgg 540
atggggatta cetegecaga agaettaege aaaaaaegee egtatgtget ggttggtgea 600
ttcgttgtcg ggatgttgct gacgccgccg gatgtcttct cgcaaacgct gttggcgatc 660
cegatgtact gtetgtttga aateggtgte ttetteteae gettttaegt tggtaaaggg 720
```

cgaaatcggg aagaggaaaa cgacgctgaa gcagaaagcg aaaaaactga agaataaa <210> 6 <211> 795 <212> DNA <213> Escherichia coli <400> 6 atggagtaca ggatgtttga tatcggcgtt aatttgacca gttcgcaatt tgcgaaagac 60 cgtgatgatg ttgtagcgtg cgcttttgac gcgggagtta atgggctact catcaccggc 120 actaacctgc gtgaaagcca gcaggcgcaa aagctggcgc gtcagtattc gtcctgttgg 180 tcaacggcgg gcgtacatcc tcacgacagc agccagtggc aagctgcgac tgaagaagcg 240 attattgagc tggccgcgca gccagaagtg gtggcgattg gtgaatgtgg tctcgacttt 300 aaccgcaact tttcgacgcc ggaagagcag gaacgcgctt ttgttgccca gctacgcatt 360 gccgcagatt taaacatgcc ggtatttatg cactgtcgcg atgcccacga gcggtttatg 420 acattgctgg agccgtggct ggataaactg cctggtgcgg ttcttcattg ctttaccggc 480 acacgcgaag agatgcaggc gtgcgtggcg catggaattt atatcggcat taccggttgg 540 gtttgcgatg aacgacgcgg actggagctg cgggaacttt tgccgttgat tccggcggaa 600 aaattactga tcgaaactga tgcgccgtat ctgctccctc gcgatctcac gccaaagcca 660 teatecegge geaacgagee ageceatetg ecceatattt tgeaacgtat tgegeactgg 720 cgtggagaag atgccgcatg gctggctgcc accacggatg ctaatgtcaa aacactgttt 780 gggattgcgt tttag <210> 7 <211> 258 <212> PRT <213> Escherichia coli <400> 7 Met Ser Val Glu Asp Thr Gln Pro Leu Ile Thr His Leu Ile Glu Leu 10 Arg Lys Arg Leu Leu Asn Cys Ile Ile Ala Val Ile Val Ile Phe Leu Cys Leu Val Tyr Phe Ala Asn Asp Ile Tyr His Leu Val Ser Ala Pro Leu Ile Lys Gln Leu Pro Gln Gly Ser Thr Met Ile Xaa Xaa Asp Val 50 Ala Ser Pro Phe Phe Thr Pro Ile Lys Leu Thr Phe Met Val Ser Leu Ile Leu Ser Ala Pro Val Ile Leu Tyr Gln Val Trp Ala Phe Ile Ala 90 Pro Ala Leu Tyr Lys His Glu Arg Arg Leu Val Val Pro Leu Leu Val 100 Ser Ser Ser Leu Leu Phe Leu Tyr Arg His Ala Phe Ala Tyr Phe Val 120 Val Phe Pro Leu Ala Phe Gly Phe Leu Ala Asn Thr Ala Pro Glu Gly 130 135

Val Gln Val Ser Thr Asp Ile Ala Ser Tyr Leu Ser Phe Val Met Ala 145 150 155 160

Leu Phe Met Ala Phe Gly Val Ser Phe Glu Val Pro Val Ala Ile Val 165 170 175

Leu Leu Cys Trp Met Gly Ile Thr Ser Pro Glu Asp Leu Arg Lys Lys
180 185 190

Arg Pro Tyr Val Leu Val Gly Ala Phe Val Val Gly Met Leu Leu Thr 195 200 205

Pro Pro Asp Val Phe Ser Gln Thr Leu Leu Ala Ile Pro Met Tyr Cys 210 215 220

Leu Phe Glu Ile Gly Val Phe Phe Ser Arg Phe Tyr Val Gly Lys Gly 225 230 235 240

Arg Asn Arg Glu Glu Glu Asn Asp Ala Glu Ala Glu Ser Glu Lys Thr
245 250 255

Glu Glu

<210> 8

<211> 264

<212> PRT

<213> Escherichia coli

<400> B

Met Glu Tyr Arg Met Phe Asp Ile Gly Val Asn Leu Thr Ser Ser Gln
1 5 10 15

Phe Ala Lys Asp Arg Asp Val Val Ala Cys Ala Phe Asp Ala Gly
20 25 30

Val Asn Gly Leu Leu Ile Thr Gly Thr Asn Leu Arg Glu Ser Gln Gln 35

Ala Gln Lys Leu Ala Arg Gln Tyr Ser Ser Cys Trp Ser Thr Ala Gly
50 55 60

Val His Pro His Asp Ser Ser Gln Trp Gln Ala Ala Thr Glu Glu Ala 65 70 75 80

Ile Ile Glu Leu Ala Ala Gln Pro Glu Val Val Ala Ile Gly Glu Cys
85 90 95

Gly Leu Asp Phe Asn Arg Asn Phe Ser Thr Pro Glu Glu Glu Arg

Ala Phe Val Ala Gln Leu Arg Ile Ala Ala Asp Leu Asn Met Pro Val 115 120 125

Phe Met His Cys Arg Asp Ala His Glu Arg Phe Met Thr Leu Leu Glu

PCT/CA99/00272 WO 99/51753

13 130 135 140 Pro Trp Leu Asp Lys Leu Pro Gly Ala Val Leu His Cys Phe Thr Gly 150 Thr Arg Glu Glu Met Gln Ala Cys Val Ala His Gly Ile Tyr Ile Gly Ile Thr Gly Trp Val Cys Asp Glu Arg Arg Gly Leu Glu Leu Arg Glu Leu Leu Pro Leu Ile Pro Ala Glu Lys Leu Leu Ile Glu Thr Asp Ala 200 Pro Tyr Leu Leu Pro Arg Asp Leu Thr Pro Lys Pro Ser Ser Arg Arg Asn Glu Pro Ala His Leu Pro His Ile Leu Gln Arg Ile Ala His Trp Arg Gly Glu Asp Ala Ala Try Leu Ala Ala Thr Thr Asp Ala Asn Val 250 Lys Thr Leu Phe Gly Ile Ala Phe <210> 9 <211> 243 <212> PRT <213> Zea mays <400> 9 Met Thr Pro Thr Ala Asn Leu Leu Pro Ala Pro Pro Phe Val Pro Ile Ser Asp Val Arg Arg Leu Gln Leu Pro Pro Arg Val Arg His Gln

Pro Arg Pro Cys Trp Lys Gly Val Glu Trp Gly Ser Ile Gln Thr Arg

Met Val Ser Ser Phe Val Ala Val Gly Ser Arg Thr Arg Arg Arg Asn 50

Val Ile Cys Ala Ser Leu Phe Gly Val Gly Ala Pro Glu Ala Leu Val

Ile Gly Val Val Ala Leu Leu Val Phe Gly Pro Lys Gly Leu Ala Glu

Val Ala Arg Asn Leu Gly Lys Thr Leu Arg Ala Phe Gln Pro Thr Ile 100

Arg Glu Leu Gln Asp Val Ser Arg Glu Phe Arg Ser Thr Leu Glu Arg 115 125 120

Glu Ile Gly Ile Asp Glu Val Ser Gln Ser Thr Asn Tyr Arg Pro Thr 135 Thr Met Asn Asn Asn Gln Gln Pro Ala Ala Asp Pro Asn Val Lys Pro 145 150 Glu Pro Ala Pro Tyr Thr Ser Glu Glu Leu Met Lys Val Thr Glu Glu 170 Gln Ile Ala Ala Ser Ala Ala Ala Ala Trp Asn Pro Gln Gln Pro Ala 185 180 Thr Ser Gln Gln Glu Glu Ala Pro Thr Thr Pro Arg Ser Glu Asp 200 Ala Pro Thr Ser Gly Gly Ser Asp Gly Pro Ala Ala Pro Ala Arg Ala Val Ser Asp Ser Asp Pro Asn Gln Val Asn Lys Ser Gln Lys Ala Glu 235 230 Gly Glu Arg <210> 10 <211> 67 <212> PRT <213> Escherichia coli <400> 10 Met Gly Glu Ile Ser Ile Thr Lys Leu Leu Val Val Ala Ala Leu Val Val Leu Leu Phe Gly Thr Lys Lys Leu Arg Thr Leu Gly Gly Asp Leu Gly Ala Ala Ile Lys Gly Phe Lys Lys Ala Met Asn Asp Asp Asp Ala Ala Ala Lys Lys Gly Ala Asp Val Asp Leu Gln Ala Glu Lys Leu Ser 55 His Lys Glu 65 <210> 11 <211> 126 <212> PRT <213> Mycobacterium tuberculosis Met Ala Leu Thr Leu Val Met Gly Ala Ile Ala Ser Pro Trp Val Ser 5 10

Val Gly Thr Lys Leu Cys Tyr Ser Arg Leu Asn Glu Ser Phe Tyr Pro 20 25 30

Ser Asn Pro Leu Thr Ala Pro Asn Pro Met Asn Ile Phe Gly Ile Gly 35 40 45

Leu Pro Glu Leu Gly Leu Ile Phe Val Ile Ala Leu Leu Val Phe Gly 50 55 60

Pro Lys Lys Leu Pro Glu Val Gly Arg Ser Leu Gly Lys Ala Leu Arg
65 70 75 80

Gly Phe Gln Glu Ala Ser Lys Glu Phe Glu Thr Glu Leu Lys Arg Glu 85 90 95

Ala Gln Asn Leu Glu Lys Ser Val Gln Ile Lys Ala Glu Leu Glu Glu 100 105 110

Ser Lys Thr Pro Glu Ser Ser Ser Ser Ser Glu Lys Ala Ser

<210> 12

<211> 98

<212> PRT

<213> Rhodococcus erythropolis

<400> 12

Met Gly Ala Met Ser Pro Trp His Trp Ala Ile Val Ala Leu Val Val 1 5 10 15

Val Ile Leu Phe Gly Ser Lys Lys Leu Pro Asp Ala Ala Arg Gly Leu 20 25 30

Gly Arg Ser Leu Arg Ile Phe Lys Ser Glu Val Lys Glu Met Gln Asn 35 40 45

Asp Asn Ser Thr Pro Ala Pro Thr Ala Gln Ser Ala Pro Pro Pro Gln 50 55 60

Ser Ala Pro Ala Glu Leu Pro Val Ala Asp Thr Thr Thr Ala Pro Val 65 70 75 80

Thr Pro Pro Ala Pro Val Gln Pro Gln Ser Gln His Thr Glu Pro Lys
85 90 95

Ser Ala

<210> 13

<211> 58

<212> PRT

<213> Pseudomonas stutzeri

<400> 13

WO 99/51753 PCT/CA99/00272

16

Met Met Gly Ile Ser Val Trp Gln Leu Leu Ile Ile Leu Leu Ile Val 1 5 10 15

Val Met Leu Phe Gly Thr Lys Arg Leu Arg Gly Leu Gly Ser Asp Leu 20 25 30

Gly Ser Ala Ile Asn Gly Phe Arg Lys Ser Val Ser Asp Gly Glu Thr 35 40 45

Thr Thr Gln Ala Glu Ala Ser Ser Arg Ser
50 55

<210> 14

<211> 88

<212> PRT

<213> Mycobacterium leprae

<400> 14

Met Gly Ser Leu Ser Pro Trp His Trp Val Val Leu Val Val Val 1 1 5 10 15

Val Leu Leu Phe Gly Ala Lys Lys Leu Pro Asp Ala Ala Arg Ser Leu 20 25 30

Gly Lys Ser Met Arg Ile Phe Lys Ser Glu Leu Arg Glu Met Gln Thr 35 40 45

Glu Asn Gln Ala Gln Ala Ser Ala Leu Glu Thr Pro Met Gln Asn Pro 50 55 60

Thr Val Val Gln Ser Gln Arg Val Val Pro Pro Trp Ser Thr Glu Gln
65 70 75 80

Asp His Thr Glu Ala Arg Pro Ala

<210> 15

<211> 79

<212> PRT

<213> Helicobacter pylori

<400> 15

Met Gly Gly Phe Thr Ser Ile Trp His Trp Val Ile Val Leu Leu Val
1 5 10 15

Ile Val Leu Leu Phe Gly Ala Lys Lys Ile Pro Glu Leu Ala Lys Gly
20 25 30

Leu Gly Ser Gly Ile Lys Asn Phe Lys Lys Ala Val Lys Asp Asp Glu 35 40 45

Glu Glu Ala Lys Asn Glu Pro Lys Thr Leu Asp Ala Gln Ala Thr Gln
50 55 60

Thr Lys Val His Glu Ser Ser Glu Ile Lys Ser Lys Gln Glu Ser 65 70 75

<210> 16

<211> 109

<212> PRT

<213> Haemophilus influenzae

<400> 16

Met Ala Lys Lys Ser Ile Phe Arg Ala Lys Phe Phe Leu Phe Tyr Arg

Thr Glu Phe Ile Met Phe Gly Leu Ser Pro Ala Gln Leu Ile Ile Leu
20 25 30

Leu Val Val Ile Leu Leu Ile Phe Gly Thr Lys Lys Leu Arg Asn Ala 35 40 45

Gly Ser Asp Leu Gly Ala Ala Val Lys Gly Phe Lys Lys Ala Met Lys
50 55 60

Glu Asp Glu Lys Val Lys Asp Ala Glu Phe Lys Ser Ile Asp Asn Glu 65 70 75 80

Thr Ala Ser Ala Lys Lys Gly Lys Tyr Lys Arg Glu Arg Asn Arg Leu 85 90 95

Asn Pro Cys Leu Ile Leu Val Phe Gln Asn Leu Phe Tyr 100 105

<210> 17

<211> 57

<212> PRT

<213> Bacillus subtilis

<400> 17

Met Pro Ile Gly Pro Gly Ser Leu Ala Val Ile Ala Ile Val Ala Leu
1 5 10 15

Ile Ile Phe Gly Pro Lys Lys Leu Pro Glu Leu Gly Lys Ala Ala Gly 20 25 30

Asp Thr Leu Arg Glu Phe Lys Asn Ala Thr Lys Gly Leu Thr Ser Asp 40 45

Glu Glu Lys Lys Lys Glu Asp Gln 50 55

<210> 18

<211> 192

<212> PRT

<213> Azotobacter chroococcum

WO 99/51753 PCT/CA99/00272

18

<400> 18 Met Gly Phe Gly Gly Ile Ser Ile Trp Gln Leu Leu Ile Ile Leu Leu Ile Val Val Met Leu Phe Gly Thr Lys Arg Leu Lys Ser Leu Gly Ser Asp Leu Gly Asp Ala Ile Lys Gly Phe Arg Lys Ser Met Asp Asn Glu Glu Asn Lys Ala Pro Pro Val Glu Glu Gln Lys Gly Gln Asp His Arg Gly Pro Gly Pro Gln Gly Arg Gly Thr Gly Gln Glu Arg Leu Ser Met Phe Asp Ile Gly Phe Ser Glu Leu Leu Val Gly Leu Val Ala Leu Leu Val Leu Gly Pro Glu Arg Leu Pro Val Ala Ala Arg Met Ala Gly 105 Leu Trp Ile Gly Arg Leu Lys Arg Ser Phe Asn Thr Leu Lys Thr Glu 115 Val Glu Arg Glu Ile Gly Ala Asp Glu Ile Arg Arg Gln Leu His Asn Glu Arg Ile Leu Glu Leu Glu Arg Glu Met Lys Gln Ser Leu Gln Pro 155

Pro Ala Pro Ser Ala Pro Asp Glu Thr Ala Ala Ser Pro Ala Thr Pro

Pro Gln Pro Ala Ser Pro Ala Ala His Ser Asp Lys Thr Pro Ser Pro 185

<210> 19 <211> 158

<212> PRT

<213> Proteus vulgaris

<400> 19

Thr Glu His Leu Glu Glu Leu Arg Gln Arg Thr Val Phe Val Phe Ile

Phe Phe Leu Leu Ala Ala Thr Ile Ser Phe Thr Gln Ile Lys Ile Ile 25

Val Glu Ile Phe Gln Ala Pro Ala Ile Gly Ile Lys Phe Leu Gln Leu

Ala Pro Gly Glu Tyr Phe Phe Ser Ser Ile Lys Ile Ala Ile Tyr Cys
50 55 60

Gly Ile Val Ala Thr Thr Pro Phe Gly Val Tyr Gln Val Ile Leu Tyr
65 70 75 80

Ile Leu Pro Gly Leu Thr Asn Lys Glu Arg Lys Val Ile Leu Pro Ile
85 90 95

Leu Ile Gly Ser Ile Val Leu Phe Ile Val Gly Gly Ile Phe Ala Tyr
100 105 110

Phe Val Leu Ala Pro Ala Ala Leu Asn Phe Leu Ile Ser Tyr Gly Ala 115 120 125

Asp Ile Val Glu Pro Leu Trp Ser Phe Glu Gln Tyr Phe Asp Phe Ile 130 135 140

<210> 20

<211> 168

<212> PRT

<213> Marchantia polymorpha

<400> 20

Lys Thr Ile Leu Glu Glu Val Arg Ile Arg Val Phe Trp Ile Leu Ile 1 5 10 15

Cys Phe Ser Phe Thr Trp Phe Thr Cys Tyr Trp Phe Ser Glu Glu Phe 20 25 30

Ile Phe Leu Leu Ala Lys Pro Phe Leu Thr Leu Pro Tyr Leu Asp Ser 35 40 45

Ser Phe Ile Cys Thr Gln Leu Thr Glu Ala Leu Ser Thr Tyr Val Thr 50 55 60

Thr Ser Leu Ile Ser Cys Phe Tyr Phe Leu Phe Pro Phe Leu Ser Tyr 65 70 75 80

Gin Ile Trp Cys Phe Leu Met Pro Ser Cys Tyr Glu Glu Gln Arg Lys 85 90 95

Lys Tyr Asn Lys Leu Phe Tyr Leu Ser Gly Phe Cys Phe Phe Leu Phe 100 105 110

Phe Phe Val Thr Phe Val Trp Ile Val Pro Asn Val Trp His Phe Leu 115 120 125

Tyr Lys Leu Ser Thr Thr Ser Thr Asn Leu Leu Ile Ile Lys Leu Gln
130 140

Pro Lys Ile Phe Asp Tyr Ile Met Leu Thr Val Arg Ile Leu Phe Ile

WO 99/51753 PCT/CA99/00272

20

145 150 155 160

Ser Ser Ile Cys Ser Gln Val Pro 165

<210> 21

<211> 167

<212> PRT

<213> Arabidopsis thaliana

<400> 21

Glu Thr Ile Leu Gly Glu Val Arg Ile Arg Ser Val Arg Ile Leu Ile
1 5 10 15

Gly Leu Gly Leu Thr Trp Phe Thr Cys Tyr Trp Phe Pro Glu Glu Leu 20 25 30

Ile Ser Pro Leu Ala Ser Pro Phe Leu Thr Leu Pro Phe Asp Ser Tyr
35 40 45

Phe Val Cys Thr Gln Leu Thr Glu Ala Phe Ser Thr Phe Val Ala Thr 50 55 60

Ser Ser Ile Ala Cys Ser Tyr Phe Val Phe Pro Leu Ile Ser Tyr Gln 65 70 75 80

Ile Trp Cys Phe Leu Ile Pro Ser Cys Tyr Gly Glu Gln Arg Thr Lys
85 90 95

Tyr Asn Arg Phe Leu His Leu Ser Gly Ser Arg Phe Phe Leu Phe Leu 100 105 110

Phe Leu Thr Pro Pro Arg Val Val Pro Asn Val Trp His Phe Pro Tyr 115 120 125

Phe Val Gly Ala Thr Ser Thr Asn Ser Leu Met Ile Lys Leu Gln Pro 130 135 140

Lys Ile Tyr Asp His Ile Met Leu Thr Val Arg Ile Ser Phe Ile Pro 145 150 155 160

Ser Val Cys Ser Gln Val Pro 165

<210> 22

<211> 163

<212> PRT

<213> Reclinomonas americana

<400> 22

Ser Ile Phe Leu Thr Cys Phe Cys Ser Tyr Gln Tyr Lys Glu Glu Ile

PCT/CA99/00272 WO 99/51753 21

30 20 25 Phe Tyr Leu Leu Phe Ile Pro Leu Ser Lys Asn Phe Ile Tyr Thr Asp 40 Leu Ile Glu Ala Phe Ile Thr Tyr Ile Lys Leu Ser Ile Ile Val Gly Ile Tyr Leu Ser Tyr Pro Ile Phe Leu Tyr Gln Ile Trp Ser Phe Leu Ile Pro Gly Phe Phe Leu Tyr Glu Lys Lys Leu Phe Arg Leu Leu Cys Leu Thr Ser Ile Phe Leu Tyr Phe Leu Gly Ser Cys Ile Gly Tyr Tyr 105 Leu Leu Phe Pro Ile Ala Phe Thr Phe Phe Leu Gly Phe Gln Lys Leu 115 120 Gly Lys Asp Gln Leu Phe Thr Ile Glu Leu Gln Ala Lys Ile His Glu 135 Tyr Leu Ile, Leu Asn Thr Lys Leu Ile Phe Ser Leu Ser Ile Cys Phe 155 Gln Leu Pro <210> 23 <211> 158 <212> PRT <213> Synechocystis sp. <400> 23 Phe Asp His Leu Asp Glu Leu Arg Thr Arg Ile Phe Leu Ser Leu Gly Ala Val Leu Val Gly Val Val Ala Cys Phe Ile Phe Val Lys Pro Leu Val Gln Trp Leu Gln Val Pro Ala Gly Thr Val Lys Phe Leu Gln Leu Ser Pro Gly Glu Phe Phe Val Ser Val Lys Val Ala Gly Tyr Ser

Gly Ile Leu Val Met Ser Pro Phe Ile Leu Tyr Gln Ile Ile Gln Phe

Val Leu Pro Gly Leu Thr Arg Arg Glu Arg Arg Leu Leu Gly Pro Val

Val Leu Gly Ser Ser Val Leu Phe Phe Ala Gly Leu Gly Phe Ala Tyr

Tyr Ala Leu Ile Pro Ala Ala Leu Lys Phe Phe Val Ser Tyr Gly Ala 115 120 125

Asp Val Val Glu Gln Leu Trp Ser Ile Asp Lys Tyr Phe Glu Phe Val 130 135 140

Leu Leu Met Phe Ser Thr Gly Leu Ala Phe Gln Ile Pro 145 150 155

<210> 24

<211> 178

<212> PRT

<213> Mycobacterium tuberculosis

-400> 24

Val Asp His Leu Thr Glu Leu Arg Thr Arg Leu Leu Ile Ser Leu Ala
1 \ 5 \ 10 \ 15

Ala Ile Leu Val Thr Thr Ile Phe Gly Phe Val Trp Tyr Ser His Ser 20 25 30

Ile Phe Gly Leu Asp Ser Leu Gly Glu Trp Leu Arg His Pro Tyr Cys 35 40 45

Ala Leu Pro Gln Ser Ala Arg Ala Asp Ile Ser Ala Asp Gly Glu Cys
50 55 60

Arg Leu Leu Ala Thr Ala Pro Phe Asp Gln Phe Met Leu Arg Leu Lys
70 75 80

Val Gly Met Ala Ala Gly Ile Val Leu Ala Cys Pro Val Trp Phe Tyr 85 90 95

Gln Leu Trp Ala Phe Ile Thr Pro Gly Leu Tyr Gln Arg Glu Arg Arg 100 105 110

Phe Ala Val Ala Phe Val Ile Pro Ala Ala Val Leu Phe Val Ala Gly
115 120 125

Ala Val Leu Ala Tyr Leu Val Leu Ser Lys Ala Leu Gly Phe Leu Leu 130 135 140

Thr Val Gly Ser Asp Val Gln Val Thr Ala Leu Ser Gly Asp Arg Tyr 145 150 155 160

Phe Gly Phe Leu Leu Asn Leu Leu Val Val Phe Gly Val Ser Phe Glu 165 170 175

Phe Pro

<210> 25

<211> 155

<212> PRT

<213> Helicobacter pylori

<400> 25

His Leu Gln Glu Leu Arg Lys Arg Leu Met Val Ser Val Gly Thr Ile
1 5 10 15

Leu Val Ala Phe Leu Gly Cys Phe His Phe Trp Lys Ser Ile Phe Glu 20 25 30

Phe Val Lys Asn Ser Tyr Lys Gly Thr Leu Ile Gln Leu Ser Pro Ile
35 40 45

Glu Gly Val Met Val Ala Val Lys Ile Ser Phe Ser Ala Ala Ile Val 50 55 60

Ile Ser Met Pro Ile Ile Phe Trp Gln Leu Trp Leu Phe Ile Ala Pro 65 70 75 80

Gly Leu Tyr Lys Asn Glu Lys Lys Val Ile Leu Pro Phe Val Phe Phe 85 90 95

Gly Ser Gly Met Phe Leu Ile Gly Ala Ala Phe Ser Tyr Tyr Val Val
100 105 110

Phe Pro Phe Ile Ile Glu Tyr Leu Ala Thr Phe Gly Ser Asp Val Phe 115 120 125

Ala Ala Asn Ile Ser Ala Ser Ser Tyr Val Ser Phe Phe Thr Arg Leu 130 135 140

Ile Leu Gly Phe Gly Val Ala Phe Glu Leu Pro 145 150 155

<210> 26

<211> 163

<212> PRT

<213> Haemophilus influenzae

<400> 26

Cys Val Val Leu Val Phe Val Ala Leu Val Tyr Phe Ser Asn Asp Ile 20 25 30

Tyr His Phe Val Ala Ala Pro Leu Thr Ala Val Met Pro Lys Gly Ala 35 40 45

Thr Met Ile Ala Thr Asn Ile Gln Thr Pro Phe Phe Thr Pro Ile Lys 50 55 60

Leu Thr Ala Ile Val Ala Ile Phe Ile Ser Val Pro Tyr Leu Leu Tyr
65 70 75 80

Gln Ile Trp Ala Phe Ile Ala Pro Ala Leu Tyr Gln His Glu Lys Arg

WO 99/51753 PCT/CA99/00272

24

85 90 95

Met Ile Tyr Pro Leu Leu Phe Ser Ser Thr Ile Leu Phe Tyr Cys Gly
100 105 110

Val Ala Phe Ala Tyr Tyr Ile Val Phe Pro Leu Val Phe Ser Phe Phe

Thr Gln Thr Ala Pro Glu Gly Val Thr Ile Ala Thr Asp Ile Ser Ser 130 135 140

Tyr Leu Asp Phe Ala Leu Ala Leu Phe Leu Ala Phe Gly Val Cys Phe 145 150 155 160

Glu Val Pro

<210> 27

<211> 161

<212> PRT

<213> Bacillus subtilis

<400> 27

Leu Glu His Ile Ala Glu Leu Arg Lys Arg Leu Leu Ile Val Ala Leu 1 5 10 15

Ala Phe Val Val Phe Phe Ile Ala Gly Phe Phe Leu Ala Lys Pro Ile 20 25 30

Ile Val Tyr Leu Gln Glu Thr Asp Glu Ala Lys Gln Leu Thr Leu Asn 35 40 45

Ala Phe Asn Leu Thr Asp Pro Leu Tyr Val Phe Met Gln Phe Ala Phe 50 55 60

Ile Ile Gly Ile Val Leu Thr Ser Pro Val Ile Leu Tyr Gln Leu Trp 65 70 75 80

Ala Phe Val Ser Pro Gly Leu Tyr Glu Lys Glu Arg Lys Val Thr Leu 85 90 95

Ser Tyr Ile Pro Val Ser Ile Leu Leu Phe Leu Ala Gly Leu Ser Phe 100 105 110

Ser Tyr Tyr Ile Leu Phe Pro Phe Val Val Asp Phe Met Lys Arg Ile 115 120 125

Ser Gln Asp Leu Asn Val Asn Gln Val Ile Gly Ile Asn Glu Tyr Phe 130 135 140

His Phe Leu Leu Gln Leu Thr Ile Pro Phe Gly Leu Leu Phe Gln Met 145 150 155 160

Pro

<210> 28

<211> 163

<212> PRT

<213> Azotobacter chroococcum

<400> 28

Val Ala His Leu Thr Glu Leu Arg Ser Arg Leu Leu Arg Ser Val Ala 1 5 10 15

Ala Val Leu Leu Ile Phe Ala Ala Leu Phe Tyr Phe Ala Gln Asp Ile 20 25 30

Tyr Ala Leu Val Ser Ala Pro Leu Arg Ala Tyr Leu Pro Glu Gly Ala 35 40 45

Thr Met Ile Ala Thr Gly Val Ala Ser Pro Phe Leu Ala Pro Phe Lys
50 55 60

Leu Thr Leu Met Ile Ser Leu Phe Leu Ala Met Pro Val Val Leu His 65 70 75 80

Gln Val Trp Gly Phe Ile Ala Pro Gly Leu Tyr Gln His Glu Lys Arg 85 90 95

Ile Ala Met Pro Leu Met Ala Ser Ser Val Leu Leu Phe Tyr Ala Gly
100 105 110

Met Ala Phe Ala Tyr Phe Val Val Phe Pro Ile Met Phe Gly Phe Phe 115 120 125

Ala Ser Val Thr Pro Glu Gly Val Ala Met Met Thr Asp Ile Gly Gln 130 135 140

Tyr Leu Asp Phe Val Leu Thr Leu Phe Phe Ala Phe Gly Val Ala Phe 145 150 155 160

Glu Val Pro

<210> 29

<211> 204

<212> PRT

<213> Archaeoglobus fulgidus

<400> 29

Ile Ala Leu Ile Val Ile Val Val Ser Ser Leu Phe Phe Thr Phe Gly
1 5 10 15

Ala Asn Ile Val Val Gly Lys Ile Ile Gly Asp Leu Phe Pro Gly Glu 20 25 30

Ala Val Ile Glu Asn Arg Asp Lys Ile Leu Ala Ile Ala Glu Glu Leu 35 40 45

Lys Lys Ile Ala Ser Asp Leu Glu Asn Tyr Ala Tyr His Pro Ser Glu 50 55 60

Ala Asn Arg Ser Ile Ala Phe Ala Ala Ser Lys Ser Leu Val Arg Ile
65 70 75 80

Ala Met Gln Leu Ser Thr Ser Pro Val Leu Leu Thr Pro Leu Glu Gly 85 90 95

Leu Leu Leu Tyr Leu Lys Ile Ser Leu Ala Val Gly Ile Ala Ala Ala 100 105 110

Leu Pro Tyr Ile Phe His Leu Val Leu Thr Ala Leu Arg Glu Arg Gly
115 120 125

Val Ile Thr Phe Ser Phe Arg Lys Thr Ser Ala Phe Lys Tyr Gly Met 130 135 140

Ala Ala Ile Phe Leu Phe Ala Leu Gly Ile Phe Tyr Gly Tyr Asn Met 145 150 155 160

Met Lys Phe Phe Ile Lys Phe Leu Tyr Leu Met Ala Val Ser Gln Gly 165 170 175

Ala Ile Pro Leu Tyr Ser Leu Ser Glu Phe Val Asn Phe Val Ala Leu 180 185 190

Met Leu Val Leu Phe Gly Ile Val Phe Glu Leu Pro 195 200

<210> 30

<211> 136

<212> PRT

<213> Escherichia coli

<400> 30

Asp Val Glu Asp Leu Arg Arg Leu Ala Ala Glu Glu Gly Val Val Ala 1 5 10 15

Leu Gly Glu Thr Gly Leu Asp Tyr Tyr Tyr Thr Pro Glu Thr Lys Val 20 25 30

Arg Gln Glu Ser Phe Ile His His Ile Gln Ile Gly Arg Glu Leu
35 40 45

Asn Lys Pro Val Ile Val His Thr Arg Asp Ala Arg Ala Asp Thr Leu 50 55 60

Ala Ile Leu Arg Glu Glu Lys Val Thr Asp Cys Gly Gly Val Leu His

Cys Phe Thr Glu Asp Arg Glu Thr Ala Gly Lys Leu Leu Asp Leu Gly 85 90 95

Phe Tyr Ile Ser Phe Ser Gly Ile Val Thr Phe Arg Asn Ala Glu Gln

100 105 110

Leu Arg Asp Ala Ala Arg Tyr Val Pro Leu Asp Arg Leu Leu Val Glu 115 120 125

Thr Asp Ser Pro Tyr Leu Ala Pro 130 135

<210> 31

<211> 137

<212> PRT

<213> Escherichia coli

<400> 31

Ser Leu Glu Gln Leu Gln Gln Ala Leu Glu Arg Arg Pro Ala Lys Val 1 5 10 15

Val Ala Val Gly Glu Ile Gly Leu Asp Leu Phe Gly Asp Asp Pro Gln
20 25 30

Phe Glu Arg Gln Gln Trp Leu Leu Asp Glu Gln Leu Lys Leu Ala Lys
35 40 45

Arg Tyr Asp Leu Pro Val Ile Leu His Ser Arg Arg Thr His Asp Lys
50 55 60

Leu Ala Met His Leu Lys Arg His Asp Leu Pro Arg Thr Gly Val Val 65 70 75 80

His Gly Phe Ser Gly Ser Leu Gln Gln  $\mathbb{Alg}$  Glu Arg Phe Val Gln Leu 85 90 95

Gly Tyr Lys Ile Gly Val Gly Gly Thr Ile Thr Tyr Pro Arg Ala Ser 100 105 110

Lys Thr Arg Asp Val Ile Ala Lys Leu Pro Leu Ala Ser Leu Leu Leu 115 120 125

Glu Thr Asp Ala Pro Asp Met Pro Leu

<210> 32

<211> 135

<212> PRT

<213> Methanobacterium thermoautotrophicum

<400> 32

Leu Ile Gly Glu Val Val Ser Gln Ile Glu Ser Asn Ile Asp Leu Ile
1 5 10 15

Val Ala Val Gly Glu Thr Gly Met Asp Phe His His Thr Arg Asp Glu 20 25 30

Glu Gly Arg Arg Gln Glu Glu Thr Phe Arg Val Phe Val Glu Leu

35 40 45

Ala Ala Glu His Glu Met Pro Leu Val Val His Ala Arg Asp Ala Glu
50 55 60

Glu Arg Ala Leu Glu Thr Val Leu Glu Tyr Arg Val Pro Glu Val Ile 65 70 75 80

Phe His Cys Tyr Gly Gly Ser Ile Glu Thr Ala Arg Arg Ile Leu Asp 85 90 95

Glu Gly Tyr Tyr Ile Ser Ile Ser Thr Leu Val Ala Phe Ser Glu His
100 105 110

His Met Glu Leu Val Arg Ala Ile Pro Leu Glu Gly Met Leu Thr Glu
115 120 125

Thr Asp Ser Pro Tyr Leu Ser

<210> 33

<211> 142

<212> PRT

<213> Mycoplasma pneumoniae

<400> 33

Ala Gln Ala Thr Leu Lys Lys Leu Val Ser Thr His Arg Ser Phe Ile 1 5 10 15

Ser Cys Ile Gly Glu Tyr Gly Phe Asp Tyr His Tyr Thr Lys Asp Tyr
20 25 30

Ile Thr Gln Gln Glu Gln Phe Phe Leu Met Gln Phe Gln Leu Ala Glu 35 40 45

Gln Tyr Gln Leu Val His Met Leu His Val Arg Asp Val His Glu Arg
50 55 60

Ile Tyr Glu Val Leu Lys Arg Leu Lys Pro Lys Gln Pro Val Val Phe
65 70 75 80

His Cys Phe Ser Glu Asp Thr Asn Thr Ala Leu Lys Leu Leu Thr Leu 85 90 95

Arg Glu Val Gly Leu Lys Val Tyr Phe Ser Ile Pro Gly Ile Val Thr 100 105 110

Phe Lys Asn Ala Lys Asn Leu Gln Ala Ala Leu Ser Val Ile Pro Thr 115 120 125

Glu Leu Leu Ser Glu Thr Asp Ser Pro Tyr Leu Ala Pro 130 135 140

<210> 34

<211> 140 <212> PRT <213> Mycobacterium tuberculosis

<400> 34

Ala Arg Ala Glu Leu Glu Arg Leu Val Ala His Pro Arg Val Val Ala 1 5 10 15

Val Gly Glu Thr Gly Ile Asp Met Tyr Trp Pro Gly Arg Leu Asp Gly
20 25 30

Cys Ala Glu Pro His Val Gln Arg Glu Ala Phe Ala Trp His Ile Asp 35 40 45

Leu Ala Lys Arg Thr Gly Lys Pro Leu Met Ile His Asn Arg Gln Ala 50 55 60

Asp Arg Asp Val Leu Asp Val Leu Arg Ala Glu Gly Ala Pro Asp Thr 65 70 75 80

Val Ile Leu His Cys Phe Ser Ser Asp Ala Ala Met Ala Arg Thr Cys 85 90 95

Val Asp Ala Gly Trp Leu Leu Ser Leu Ser Gly Thr Val Ser Phe Arg
100 105 110

Thr Ala Arg Glu Leu Arg Glu Ala Val Pro Leu Met Pro Val Glu Gln
115 120 125

Leu Leu Val Glu Thr Asp Ala Pro Tyr Leu Thr Pro 130 135 140

<210> 35

<211> 138

<212> PRT

<213> Helicobacter pylori

<400> 35

Asp Glu Ser Leu Phe Glu Lys Phe Val Gly His Gln Lys Cys Val Ala 1 5 10 15

Ile Gly Glu Cys Gly Leu Asp Tyr Tyr Arg Leu Pro Glu Leu Asn Glu 20 25 30

Arg Glu Asn Tyr Lys Ser Lys Gln Lys Glu Ile Phe Thr Lys Gln Ile 35 40 45

Glu Phe Ser Ile Gln His Asn Lys Pro Leu Ile Ile His Ile Arg Glu
50 55 60

Ala Ser Phe Asp Ser Leu Asn Leu Leu Lys Asn Tyr Pro Lys Ala Phe 65 70 75 80

Gly Val Leu His Cys Phe Asn Ala Asp Gly Met Leu Leu Glu Leu Ser 85 90 95

Asp Arg Phe Tyr Tyr Gly Ile Gly Gly Val Ser Thr Phe Lys Asn Ala 100 105 110

Lys Arg Leu Val Glu Ile Leu Pro Lys Ile Pro Lys Asn Arg Leu Leu 115 120 125

Leu Glu Thr Asp Ser Pro Tyr Leu Thr Pro 130 135

<210> 36

<211> 136

<212> PRT

<213> Haemophilus influenzae

<400> 36

Asp Ala Glu Arg Leu Arg Leu Ala Gln Asp Pro Lys Val Ile Ala 1 5 10 15

Ile Gly Glu Ile Gly Leu Asp Tyr Tyr Tyr Ser Ala Asp Asn Lys Ala
20 25 30

Ala Gln Gln Ala Val Phe Gly Ser Gln Ile Asp Ile Ala Asn Gln Leu
35 40 45

Asp Lys Pro Val Ile Ile His Thr Arg Ser Ala Gly Asp Asp Thr Ile 50 55 60

Ala Met Leu Arg Gln His Arg Ala Glu Lys Cys Gly Gly Val Ile His 65 70 75 80

Cys Phe Thr Glu Thr Met Glu Phe Xaa Lys Lys Ala Leu Asp Leu Gly 85 90 95

Phe Tyr Ile Ser Cys Ser Gly Ile Val Thr Phe Lys Asn Ala Glu Ala

Ile Arg Glu Val Ile Arg Tyr Val Pro Met Glu Arg Leu Leu Val Glu 115 120 125

Thr Asp Ser Pro Tyr Leu Ala Pro 130 135

<210> 37

<211> 136

<212> PRT

<213> Bacillus subtilis

<400> 37

Asp Leu Ala Trp Ile Lys Glu Leu Ser Ala His Glu Lys Val Val Ala

Ile Gly Glu Met Gly Leu Asp Tyr His Trp Asp Lys Ser Pro Lys Asp 20 25 30 Ile Gln Lys Glu Val Phe Arg Asn Gln Ile Ala Leu Ala Lys Glu Val 35 40 45

Asn Leu Pro Ile Ile Ile His Asn Arg Asp Ala Thr Glu Asp Val Val 50 55 60

Thr Ile Leu Lys Glu Glu Gly Ala Glu Ala Val Gly Gly Ile Met His
65 70 75 80

Cys Phe Thr Gly Ser Ala Glu Val Ala Arg Glu Cys Met Lys Met Asn 85 90 95

Phe Tyr Leu Ser Phe Gly Gly Pro Val Thr Phe Lys Asn Ala Lys Lys
100 105 110

Pro Lys Glu Val Val Lys Glu Ile Pro Asn Asp Arg Leu Leu Ile Glu 115 120 125

Thr Asp Cys Pro Phe Leu Thr Pro 130 135

<210> 38

<211> 135

<212> PRT

<213> Schizosaccharomyces pombe

<400> 38

Glu Ala Leu Ala Asn Lys Gly Lys Ala Ser Gly Lys Val Val Ala Phe 1 5 10 15

Gly Glu Phe Gly Leu Asp Tyr Asp Arg Leu His Tyr Ala Pro Ala Asp 20 25 30

Val Gln Lys Met Tyr Phe Glu Gln Leu Lys Val Ala Val Arg Val
35 40 45

Gln Leu Pro Leu Phe Leu His Ser Arg Asn Ala Glu Asn Asp Phe Phe 50 55 60

Ala Ile Leu Glu Lys Tyr Leu Pro Glu Leu Pro Lys Lys Gly Val Val 65 70 75 80

His Ser Phe Thr Gly Ser Ile Asp Glu Met Arg Arg Cys Ile Glu His 85 90 95

Gly Leu Tyr Val Gly Val Asn Gly Cys Ser Leu Lys Thr Glu Glu Asn 100 105 110

Leu Glu Val Val Arg Ala Ile Pro Leu Glu Lys Met Leu Leu Glu Thr

Asp Ala Pro Trp Cys Glu Val 130 135 <210> 39

<211> 149

<212> PRT

<213> Caenorhabditis elegans

<400> 39

His Ile Ser Lys Met Glu Gln Phe Phe Val Glu His Glu Arg Asp Ile
1 5 10 15

Ile Cys Val Gly Glu Cys Gly Leu Asp His Thr Ile Ser Gln Phe Lys
20 25 30

Leu Thr Thr Glu Asp Phe Glu Glu Glu Glu Thr Val Phe Lys Trp Gln 35 40 45

Ile Asp Leu Ala Lys His Phe Glu Lys Pro Leu Ile Leu Glu Ile Pro 50 55 60

Asp Ile Ser Arg Asn Val His Ser Arg Ser Ala Ala Arg Arg Thr Ile 65 70 75 80

Glu Ile Leu Leu Glu Cys His Val Ala Pro Asp Gln Val Val Leu His
85 90 95

Ala Phe Asp Gly Thr Pro Gly Asp Leu Lys Leu Gly Leu Glu Ala Gly
100 105 110

Tyr Leu Phe Ser Ile Pro Pro Ser Phe Gly Lys Ser Glu Glu Thr Thr 115 120 125

Gln Leu Ile Glu Ser Ile Pro Leu Ser Gln Leu Leu Glu Thr Asp 130 135 140

Ser Pro Ala Leu Gly

<210> 40

<211> 139

<212> PRT

<213> Homo sapiens

<400> 40

Gln Glu Arg Asn Leu Leu Gln Ala Leu Arg His Pro Lys Ala Val Ala 1 5 10 15

Phe Gly Glu Met Gly Leu Asp Tyr Ser Tyr Lys Cys Thr Thr Pro Val 20 25 30

Pro Glu Gln His Lys Val Phe Glu Arg Gln Leu Gln Leu Ala Val Ser

Leu Lys Lys Pro Leu Val Ile His Cys Arg Glu Ala Asp Glu Asp Leu 50 55 60

Leu Glu Ile Met Lys Lys Phe Val Pro Pro Asp Tyr Lys Ile His Arg

WO 99/51753 PCT/CA99/00272

33

65 70 75 80 His Cys Phe Thr Gly Ser Tyr Pro Val Ile Glu Pro Leu Leu Lys Tyr 90 85 Phe Pro Asn Met Ser Val Gly Phe Thr Ala Val Leu Thr Tyr Ser Ser 105 Ala Trp Glu Ala Arg Glu Ala Leu Arg Gln Ile Pro Leu Glu Arg Ile 120 Ile Val Glu Thr Asp Ala Pro Tyr Phe Leu Pro 135 <210> 41 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: synthetic generic organism. <400> 41 Ser Arg Arg Ser Phe Leu Lys 5 <210> 42 <211> 7 <212> PRT <213> Artificial Sequence <223> Description of Artificial Sequence: synthetic generic organism <400> 42 Thr Arg Arg Ser Phe Leu Lys - 5 <210> 43 <211> 50 <212> PRT <213> Artificial Sequence <223> Description of Artificial Sequence: synthetic Met Lys Thr Lys Ile Pro Asp Ala Val Leu Ala Ala Glu Val Ser Arg

Arg Gly Leu Val Lys Thr Thr Ile Ala Phe Phe Leu Ala Met Ala Ser

```
20
                                  25
                                                      30
 Ser Ala Leu Thr Leu Pro Phe Ser Arg Ile Ala His Ala Val Asp Ser
                              40
 Ala Ile
      50
<210> 44
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
<400> 44
ttagtcggat taatcacaat gtcgatagcg
                                                                   30
<210> 45
<211> 3120
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
<400> 45
attotggotg ggtgccacca gataccaacg ttgaagagtt cgaatttgcc attcgtacgg 60
tetgtgaace tatetttgag aaacegetgg cegaaattte gtttggacat gtactgttaa 120
atctgtttaa tacggcgcgt cgcttcaata tggaagtgca gccgcaactg gtgttactcc 180
agaaaaccct gctctacgtc gaaggggtag gacgccagct ttatccgcaa ctcgatttat 240
ggaaaacggc gaagcctttc ctggagtcgt ggattaaaga tcaggtcggt attcctqcqc 300
tggtgagagc atttaaagaa aaagcgccgt tctgggtcga aaaaatgcca gaactgcctq 360
aattggttta cgacagtttg cgccagggca agtatttaca gcacagtgtt gataagattg 420
cccgcgagct tcagtcaaat catgtacgtc agggacaatc gcgttatttt ctcggaattg 480
gcgctacgtt agtattaagt ggcacattct tgttggtcag ccgacctgaa tgggggctga 540
tgcccggctg gttaatggca ggtggtctga tcgcctggtt tgtcggttgg cgcaaaacac 600
gctgattttt tcatcgctca aggcgggccg tgtaacgtat aatgcggctt tgtttaatca 660
tcatctacca cagaggaaca tgtatgggtg gtatcagtat ttggcagtta ttgattattg 720
ccgtcatcgt tgtactgctt tttggcacca aaaagctcgg ctccatcggt tccgatcttg 780
gtgcgtcgat caaaggcttt aaaaaagcaa tgagcgatga tgaaccaaag caggataaaa 840
ccagtcagga tgctgatttt actgcgaaaa ctatcgccga taagcaggcg gatacgaatc 900
aggaacaggc taaaacagaa gacgcgaagc gccacgataa agagcaggtg taatccgtgt 960
ttgatatcgg ttttagcgaa ctgctattgg tgttcatcat cggcctcgtc gttctggqgc 1020
cgcaacgact gcctgtggcg gtaaaaacgg tagcgggctg gattcgcgcg ttgcgttcac 1080
tggcgacaac ggtgcagaac gaactgaccc aggagttaaa actccaggag tttcaggaca 1140
gtctgaaaaa ggttgaaaag gcgagcctca ctaacctgac gcccgaactg aaagcgtcga 1200
tggatgaact acgccaggcc gcggagtcga tgaagcgttc ctacgttgca aacgatcctg 1260
aaaaggcgag cgatgaagcg cacaccatcc ataacccggt ggtgaaagat aatgaagctg 1320
cgcatgaggg cgtaacgcct gccgctgcac aaacgcaggc cagttcgccg gaacagaagc 1380
cagaaaccac gccagagccg gtggtaaaac ctgctgcgga cgctgaaccg aaaaccgctg 1440
caccttcccc ttcgtcgagt gataaaccgt aaacatgtct gtagaagata ctcaaccgct 1500
tatcacgcat ctgattgagc tgcgtaagcg tctgctgaac tgcattatcg cggtgatcgt 1560
gatattectg tgtetggtet atttegecaa tgacatetat cacetggtat cegegecatt 1620
```

```
gatcaagcag ttgccgcaag gttcaacgat gatcgccacc gacgtggcct cgccgttctt 1680
tacgccgatc aagctgacct ttatggtgtc gctgattctg tcagcgccgg tgattctcta 1740
traggtgtgg gratttatcg coccageget gtataagcat gaacgtegee tggtggtgcc 1800
getgetggtt tecagetete tgetgtttta tateggeatg geattegeet actttgtggt 1860
ctttccgctg gcatttggct tccttgccaa taccgcgccg gaaggggtgc aggtatccac 1920
cgacatcgcc agetatttaa gettegttat ggegetgttt atggegtttg gtgteteett 1980
tgaagtgccg gtagcaattg tgctgctgtg ctggatgggg attacctcgc cagaagactt 2040
acgcaaaaaa cgcccgtatg tgctggttgg tgcattcgtt gtcgggatgt tgctgacgcc 2100
geoggatgte ttetegeaaa egetgttgge gateeegatg taetgtetgt ttgaaategg 2160
tgtcttcttc tcacgctttt acgttggtaa agggcgaaat cgggaagagg aaaacgacgc 2220
tgaagcagaa agcgaaaaaa ctgaagaata aattcaaccg cccgtcaggg cggttgtcat 2280
atggagtaca ggatgtttga tateggegtt aatttgacca gttegcaatt tgegaaagac 2340
cgtgatgatg ttgtagegtg cgcttttgac gcgggagtta atgggctact catcaccggc 2400
actaacctgc gtgaaagcca gcaggcgcaa aagctggcgc gtcagtattc gtcctgttgg 2460
tcaacggcgg gcgtacatcc tcacgacagc agccagtggc aagctgcgac tgaagaagcg 2520
attattgage tggeegegea gecagaagtg gtggegattg gtgaatgtgg tetegaettt 2580
aaccgcaact tttcgacgcc ggaagagcag gaacgcgctt ttgttgccca gctacgcatt 2640
geogragatt taaacatgcc ggtatttatg cactgtegeg atgcccacga geggtttatg 2700
acattgctgg agccgtggct ggataaactg cctggtgcgg ttcttcattg ctttaccggc 2760
acacgcgaag agatgcaggc gtgcgtggcg catggaattt atatcggcat taccggttgg 2820
gtttgcgatg aacgacgcgg actggagctg cgggaacttt tgccgttgat tccggcggaa 2880
aaattactga tcgaaactga tgcgccgtat ctgctccctc gcgatctcac gccaaagcca 2940
teatecegge geaaegagee ageceatetg ecceatattt tgeaaegtat tgegeaetgg 3000
cgtggagaag atgccgcatg gctggctgcc accacggatg ctaatgccaa aacactgttt 3060
gggattgcgt tttagagttt gcggaactcg gtattcttca cactgtgctt aatctcttta 3120
<210> 46
<211> 312
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
<400> 46
atgcggcttt gtttaatcat catctaccac agaggaacat gtatgggtgg tatcagtatt 60
tggcagttat tgattattgc cgtcatcgtt gtactgcttt ttggcaccaa aaagctcggc 120
tocatoggtt cogatottgg tgogtogato aaaggottta aaaaagcaat gagogatgat 180
gaaccaaagc aggataaaac cagtcaggat gctgatttta ctgcgaaaac tatcgccgat 240
aagcaggcgg atacgaatca ggaacaggct aaaacagaag acgcgaagcg ccacgataaa 300
gagcaggtgt aa
<210> 47
<211> 103
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
<400> 47
Met Arg Leu Cys Leu Ile Ile Ile Tyr His Arg Gly Thr Cys Met Gly
 1
Gly Ile Ser Ile Trp Gln Leu Leu Ile Ile Ala Val Ile Val Val Leu
                                 25
```

```
Leu Phe Gly Thr Lys Lys Leu Gly Ser Ile Gly Ser Asp Leu Gly Ala
                            40
Ser Ile Lys Gly Phe Lys Lys Ala Met Ser Asp Asp Glu Pro Lys Gln
                        55
Asp Lys Thr Ser Gln Asp Ala Asp Phe Thr Ala Lys Thr Ile Ala Asp
Lys Gln Ala Asp Thr Asn Gln Glu Gln Ala Lys Thr Glu Asp Ala Lys
                                   90
Arg His Asp Lys Glu Gln Val
            100
<210> 48
<211> 515
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
<400> 48
tgtttgatat cggttttagc gaactgctat tggtgttcat catcggcctc gtcgttctgg 60
cactggcgac aacggtgcag aacgaactga cccaggagtt aaaactccag gagtttcagg 180
acagtetgaa aaaggttgaa aaggegagee teactaaeet gaegeeegaa etgaaagegt 240
cgatggatga actacgccag gccgcggagt cgatgaagcg ttcctacgtt gcaaacgatc 300
ctgaaaaggc gagcgatgaa gcgcacacca tccataaccc ggtggtgaaa gataatgaag 360
ctgcgcatga gggcgtaacg cctgccgctg cacaaacgca ggccagttcg ccggaacaga 420
agccagaaac cacgccagag ccggtggtaa aacctgctgc ggacgctgaa ccgaaaaccg 480
ctgcaccttc cccttcgtcg agtgataaac cgtaa
<210> 49
<211> 161
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
<400> 49
Val Phe Asp Ile Gly Phe Ser Glu Leu Leu Leu Val Phe Ile Ile Gly
                                   10
Leu Val Val Leu Gly Pro Gln Arg Leu Pro Val Ala Val Lys Thr Val
            20
Ala Gly Trp Ile Arg Ala Leu Arg Ser Leu Ala Thr Thr Val Gln Asn
                           40
Glu Leu Thr Gln Glu Leu Lys Leu Gln Glu Phe Gln Asp Ser Leu Lys
```

Ala

Lys 65	Val	Glu	Lys	Ala	Ser 70	Leu	Thr	Asn	Leu	Thr 75	Pro	Glu	Lu	Lys	A1:
Ser	Met	Asp	Glu	Leu 85	Arg	Gln	Ala	Ala	Glu 90	Ser	Met	Lys	Arg	Ser 95	ту
Val	Ala	Asn	Asp 100	Pro	Glu	Lys	Ala	Ser 105	Asp	Glu	Ala	His	Thr 110	Ile	His
Asn	Pro	Val 115	Val	Lys	Asp	Asn	Glu 120	Ala	Ala	His	Glu	Gly 125	Val	Thr	Pro
Ala	Ala 130	Ala	Gln	Thr	Gln	Ala 135	Ser	Ser	Pro	Glu	Gln 140	Lys	Pro	Glu	Thi
Thr 145	Pro	Glu	Pro	Val	Val 150	Lys	Pro	Ala	Ala	Àsp 155	Ala	Glu	Pro	Lys	Th:

## INTERNATIONAL SEARCH REPORT

Int tional Application No PCT/CA 99/00272

				/ CR 33/ 002/2
A. CLASS	FICATION OF SUBJECT MATTER C12N15/63 C12N15/31 C07K14	1/245 C1	2N15/62	C12P21/02
According to	o International Patent Classification (IPC) or to both national class	sification and IPC		
	SEARCHED			
Minimum do IPC 6	ocumentation searched (classification system followed by classifi C12N C07K	cation symbols)		
Documentat	ion searched other than minimum documentation to the extent th	at such documents	are included in	the fields searched
Electronic da	ata base consulted during the international search (name of data	base and, where	practical, search	terms used)
C. DOCUME	NTS CONSIDERED TO BE RELEVANT	· · · · · · · · · · · · · · · · · · ·		
Category °	Citation of document, with indication, where appropriate, of the	relevant passages	· · · · · · · · · · · · · · · · · · ·	Relevant to claim No.
X	SETTLES, M. ET AL.: "Sec-indep protein translocation by the ma protein" SCIENCE.,	1,2		
	vol. 278, 21 November 1997 (199 pages 1467-1470, XP002113153 cited in the application figure 4	7-11-21),		
		-/		
<u> </u>	or documents are listed in the continuation of box C.	Paten	family members	are listed in annex.
"A" documen consider "E" earlier do filing dat "L" document which is citation of document other me "P" document later that	t which may throw doubts on priority claim(s) or cited to establish the publication date of another or other special reason (as specified) at referring to an oral disclosure, use, exhibition or eans a published prior to the international filing date but in the priority date claimed	or priority cited to un invention  "X" document or cannot be involve an "Y" document or cannot be document ments, suc in the art.  "&" document ments, suc in the art.	date and not in ciderstand the prinderstand the prinderstand the prinderstand the prinderstand the prinderstand to incomplete the combined with the combination becomes of the saiding of the internal	er the international filing date onflict with the application but ciple or theory underlying the ance; the claimed invention or cannot be considered to the the document is taken alone ance; the claimed invention over an inventive step when the one or more other such docuping obvious to a person skilled me patent family
	August 1999  illing address of the ISA  European Patent Office, P.B. 5818 Patentlaan 2  NL - 2280 HV Rijswijk  Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized	09/1999 officer	

1

## INTERNATIONAL SEARCH REPORT

Int tional Application No PCT/CA 99/00272

NIAN DOCUMENTS CONSIDERED TO BE RELEVANT	
Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
NIVIERE, V. ET AL.: "Site-directed mutagenesis of the hydrogenase signal peptide consensus box prevents export of a beta-lactamase fusion protein" JOURNAL OF GENERAL MICROBIOLOGY, vol. 138, 1992, pages 2173-2183, XP002113154	6,12
the whole document	7-11, 13-19
BERKS, B.: "A common export pathway for proteins binding redox cofactors ?" MOLECULAR MICROBIOLOGY., vol. 22, 1996, pages 393-404, XP002113155 cited in the application the whole document	6-19
SANTINI C L ET AL: "A novel sec - independent periplasmic protein translocation pathway in Escherichia coli." EMBO JOURNAL, (1998 JAN 2) 17 (1) 101-12., XP002113156 the whole document	6-19
WEINER J H ET AL: "A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins."  CELL, (1998 APR 3) 93 (1) 93-101.,  XP002113157 the whole document	1-5
SARGENT F ET AL: "Overlapping functions of components of a bacterial Sec - independent protein export pathway." EMBO JOURNAL, (1998 JUL 1) 17 (13) 3640-50., XP002113158 the whole document	1-5
DALBEY R E ET AL: "Protein translocation into and across the bacterial plasma membrane and the plant thylakoid membrane" TIBS TRENDS IN BIOCHEMICAL SCIENCES, vol. 24, no. 1, January 1999 (1999-01), page 17-22 XP004155514 ISSN: 0968-0004	1-5
	NIVIERE, V. ET AL.: "Site-directed mutagenesis of the hydrogenase signal peptide consensus box prevents export of a beta-lactamase fusion protein" JOURNAL OF GENERAL MICROBIOLOGY, vol. 138, 1992, pages 2173-2183, XP002113154 ISSN: 0001-2961 the whole document  BERKS, B.: "A common export pathway for proteins binding redox cofactors?" MOLECULAR MICROBIOLOGY,, vol. 22, 1996, pages 393-404, XP002113155 cited in the application the whole document  SANTINI C L ET AL: "A novel sec - independent periplasmic protein translocation pathway in Escherichia coli:" EMBO JOURNAL, (1998 JAN 2) 17 (1) 101-12., XP002113156 the whole document  WEINER J H ET AL: "A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins." CELL, (1998 APR 3) 93 (1) 93-101., XP002113157 the whole document  SARGENT F ET AL: "Overlapping functions of components of a bacterial Sec - independent protein export pathway." EMBO JOURNAL, (1998 JUL 1) 17 (13) 3640-50., XP002113158 the whole document  DALBEY R E ET AL: "Protein translocation into and across the bacterial plasma membrane and the plant thylakoid membrane" TIBS TRENDS IN BIOCHEMICAL SCIENCES, vol. 24, no. 1, January 1999 (1999-01), page 17-22 XP004155514

1