IR Drop: Solving Resistive Networks

Can you solve the circuit at right?

- A more systematic way:
 - Write circuit equation as G V = J
- R=2 R=2
- G is an nxn conductance matrix
- V is an nx1 vector of node voltages
- J is an nx1 vector of excitations
- Need to choose a ground node
- Can build the equations by inspection

Nodal Analysis

- "Stamps"
 - Conductance [1/resistor]: LHS only
 Current source: RHS only
 - Current source: RHS only

$$GV=J$$

- For every such branch in the circuit, superpose the contributions
 - (Can also build stamps for other elements, extend to general circuits – basically, that's how SPICE works)

Modified Nodal Analysis

- "Stamps"
 - Voltage source: Both sides additional rows and columns
 - -GV=J

	current introduced!				
	N+	N-	(i_k)	RHS	● N ₊
N+	0	0	Y	$\begin{bmatrix} 0 \end{bmatrix}$	i _k
N-	0	0	-1	0	$(+) v_{k}$
branch k	1	-1	0	$\lfloor v_k \rfloor$	
					■ N ₋

- For every such branch in the circuit, superpose the contributions
 - (Can also build stamps for other elements, extend to general circuits
 - basically, that's how SPICE works)

IR Drop: Back to the circuit

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0.5 & -0.5 \\ -0.5 & 0.5 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0.5 & -0.5 \\ -0.5 & \mathbf{1.0} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0.5 & -0.5 \\ -0.5 & 1.0 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$\Rightarrow V_1 = 4 \ V_2 = 2$$

So now you can solve any resistive network (or thermal network)

 Network of resistors and current sources, some nodes at a fixed voltage

 Power grid analysis and thermal analysis use the same core technology)