

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería en Física Aplicada

00100

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA		
Transferencia de Calor		

SEMESTRE CLAVE DE LA ASIGNATURA TOTAL DE HORAS			
Octavo	172083	101	

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al participante los conocimientos para enfrentar problemas industriales que involucren fenómenos de conducción, convección y radiación de calor dentro de la ingeniería eléctrica, química y mecánica.

TEMAS Y SUBTEMAS

1. Introducción: Conceptos básicos de transferencia de calor.

- 1.1. Termodinámica y transferencia de calor.
- 1.2. Conducción. Ley de Fourier. Conductividad térmica.
- 1.3. Convección. Ley de enfriamiento de Newton.
- 1.4. Radiación. Ley de Stefan-Boltzmann.
- 1.5. Combinación de convección y radiación.

2. Conducción.

- 2.1. Ecuación general de conducción de calor. Difusividad térmica.
- 2.2. Conducción estacionaria.
 - 2.2.1. Solución en lozas, cilindros y esferas.
 - 2.2.2. Resistencia térmica por contacto.
 - 2.2.3. Radio crítico de aislamiento.
 - 2.2.4. Sistemas con fuentes de calor.
 - 2.2.5. Sistemas conducción convección.
 - 2.2.6. Conductividad dependiente de la temperatura.
- 2.3. Conducción transitoria.
 - 2.3.1. Sistemas concentrados. Número de Biot.
 - 2.3.2. Soluciones aproximadas. Gráficas de Heisler.
 - 2.3.3. Solución de sistemas multidimensionales. Solución producto.
 - 2.3.4. Conducción bidimensional. Factor de forma.
 - 2.3.5. Conducción en una placa. Soluciones analítica y numérica.
- 2.4. Laboratorio.

3. Convección.

- 3.1. Ecuaciones de momento y energía.
- 3.2. Parámetros adimensionales. Reynolds, Prandtl, Nusselt, Stanton y Eckert.
- 3.3. Concepto de capa límite.
- 3.4. Convección forzada dentro de ductos.
 - 3.4.1. Flujo laminar desarrollado térmicamente e hidrodinámicamente.
 - 3.4.2. Flujo turbulento dentro de conductos.
 - 3.4.3. Analogías entre transferencia de calor y momento en el flujo turbulento.
- 3.5. Convección forzada sobre cuerpos.
 - 3.5.1. Coeficiente de arrastre en el flujo sobre una placa.
 - 3.5.2. Coeficiente de transferencia en el flujo sobre una placa.
 - 3.5.3. Flujo sobre otro tipo de formas.

Universidad Tecnológica de la Mixteca

00101

Clave DGP: 200089

Ingeniería en Física Aplicada

PROGRAMA DE ESTUDIOS

3.6. Convección libre.

- 3.6.1. Análisis aproximado para una placa vertical.
- 3.6.2. Convección libre sobre superficies.
- 3.6.3. Convecciones libre y forzada combinadas.
- 3.7. Laboratorio.

4. Radiación.

- 4.1. Absorción, reflexión y transmisión de radiación.
- 4.2. Ley de Kirchhoff y cuerpo negro.
- 4.3. Intercambio de radiación entre superficies negras.
- 4.4. Flujo de radiación entre superficies grises.
- 4.5. Radiación solar.
- 4.6. Factor de visión.
- 4.7. Radiación en cavidades.
- 4.8. Radiación en medios absorbentes y emisores.
- 4.9. Laboratorio

5. Intercambiadores.

- 5.1. Tipos de intercambiadores.
- 5.2. El coeficiente de transferencia de calor global.
- 5.3. Análisis de intercambiadores.
- 5.4. Selección de intercambiadores.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora y los proyectores. Asimismo se desarrollarán programas de cómputo sobre los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrán una equivalencia del 50% y un examen final que tendrá 50%. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso; la suma de estos dos porcentajes dará la calificación final

Además, se considerará el trabajo extra-clase, la participación durante las sesiones del curso y la asistencia a las asesorías.

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería en Física Aplicada

00102

PROGRAMA DE ESTUDIOS

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- Transferencia de Calor y Masa, Cengel Y.A. y Ghajar Afshin, Ed. McGraw Hill, 2011.
- 2. Transferencia de Calor, Ozisik, Necati, McGraw Hill, 2000.
- 3. Procesos de Transferencia de Calor, Kern D.Q., CECSA, 1992.
- 4. Problemas de Transferencia de Calor, Valiente B.A., Limusa, 1988.

Consulta:

- Principios de Transferencia de Calor, Kreith F. y Bohn M.S., Thompson, 2001.

 Transferencia de Calor, Holman J.P., McGraw Hill, 1998.

 Fundamentos de Transferencia de Calor, Incropera F.P., Dewitt, Prentice Hall, 1999.
- 2.
- Transferencia de Calor, Mills A.F., McGraw Hill, 1997.
- Transferencia de Calor, Manrique J.A., Harla, 2000.

PERFIL PROFESIONAL DEL DOCENTE

Maestría y/o Doctorado en Física

JÉFATURA DE CARRERA

INGENIERIA EN FÍSICA APTICADA DR. SALOMÓN GONZÁLEZ MARTÍNEZ JEFE DE CARRERA

DR. AGUSTIN SANTIAGO ALVARADO VICE-RECTOR ACADÉMICO