A DSL for Specifying and Model Checking Mobile Ring Robot Algorithms

Anonymous Author(s)

1 Appendix

This appendix gives fully the theory including proofs of the propositions and lemmas used in the paper.

1.1 Sequences

Let **Elt** be the set of (concrete) elements, **EV** be the set of element variables and **SV** be the set of sequence variables.

Definition 1.1 (Sequence Patterns). The set **SP** of sequence patterns are inductively defined as follows:

- 1. $\varepsilon \in SP$ (the empty sequence);
- 2. For each element $e \in Elt$, $e \in SP$;
- 3. For each element variable $E \in EV$, $E \in SP$;
- 4. For each sequence variable $S \in SV$, $S \in SP$;
- 5. For any sequence patterns $SP_1, SP_2 \in SP, SP_1 SP_2 \in SP$.

The binary juxtaposition operator used in SP_1 SP_2 is associative, namely that $(SP_1$ $SP_2)$ $SP_3 = SP_1$ $(SP_2$ $SP_3)$ for any sequence patterns SP_1 , SP_2 , $SP_3 \in SP$. ε is an identity of the binary juxtaposition operator, namely that ε SP = SP and SP $\varepsilon = SP$ for any sequence patterns $SP \in SP$.

Sequence patterns that do not have any variables at all are called sequences. Let $Seq \subseteq SP$ be the set of all sequences.

A substitution σ is a function from the disjoint union $EV \uplus SV$ of EV and SV to the disjoint union $Seq \uplus EV \uplus SV$ of Seq, EV and SV. For $E \in EV$, $\sigma(E)$ is an element $e \in Elt$ or E and for $S \in SV$, $\sigma(S)$ is a sequence $seq \in Seq$ or S. The domain of a substitution σ can be naturally extended to SP such that $\sigma(\varepsilon)$ is ε , for an element $e \in Elt$, $\sigma(e)$ is e and for a sequence pattern $SP_1, SP_2 \in SP$, $\sigma(SP_1 SP_2)$ is $\sigma(SP_1) \sigma(SP_2)$.

Definition 1.2 (Sequence pattern match). Pattern match between $sp \in SP$ & $seq \in Seq$ is to find all substitutions σ such that $\sigma(sp) = seq$. Let sp = ?= seq be the set of all such substitutions.

Elements, element variables and sequence variables used in sequence patterns are called components in the sequence patterns. For $sp \in SP$, let |sp| be the number of components in it. $sp \in SP$ can be in the form $ES_1 ES_2 \ldots ES_{|sp|}$, where each ES_i is an element, an element variable or a sequence variable. For $sp \in SP$, let sp(i), where $i \in \{1, 2, \ldots, |sp|\}$, be the ith element ES_i in sp. Let $e, e_1, e_2, \ldots \in Elt$, $E, E_1, E_2, \ldots \in EV$, $S, S_1, S_2, \ldots \in SV$ and $ES, ES_1, ES_2, \ldots \in Elt \oplus EV \oplus SV$. A binary construct sv(S, I) that is not in SV, where S is a sequence variable and S is either 0 or 1, is used as an extra

sequence variable. Let SSV be $\{sv(S, I) \mid S \in SV, I \in \{0, 1\}\}$. $SV \cup SSV$ may be used as the set of sequence variables instead of SV.

Definition 1.3 (Split sequence patterns). For $sp \in SP$, split(sp) is a sequence pattern such that each sequence variable S in sp is replaced with sv(S,0) sv(S,1). $split(\varepsilon) = \varepsilon$, split(e) = e for $e \in Elt$, split(E) = E for $E \in EV$, split(S) = sv(S,0) sv(S,1) for $S \in SV$ and $split(SP_1 SP_2) = split(SP_1)$ $split(SP_2)$ for $SP_1, SP_2 \in SP$.

Definition 1.4 (Joining split sequence variables). For $sp \in SP$ and $seq \in Seq$, let σ be in (split(sp) =?= seq). join(σ) is the substitution σ' such that for each sequence variable S in $sp \ \sigma'(S) = \sigma(sv(S,0)) \ \sigma(sv(S,1))$ and for any other variables $X \ \sigma'(X) = \sigma(X)$. The domain of join can be naturally extended to the set of substitutions such that join(split(sp) = 2seq) is $\{join(\sigma) \mid \sigma \in (split(sp) = 2seq)\}$.

rtt (that stands for rotate) takes a sequence pattern sp and returns the sequence pattern obtained by rotating sp clockwise. rev (that stands for reverse) takes a sequence pattern sp and returns the sequence pattern obtained by reversing sp. Let sp be $ES_1 ES_2 ... ES_{|sp|-1} ES_{|sp|}$. rtt(sp) = $ES_{|sp|} ES_1 ES_2 ... ES_{|sp|-1}$ and rev(sp) = $ES_{|sp|} ES_{|sp|-1} ... ES_2 ES_1$. Let us suppose that a subscript exp of exp used as an element in exp is interpreted as exp mod exp had exp had exp interpreted as exp mod exp had exp

Definition 1.5 (Reversing substitutions). σ_{rev} is defined as follows: for an element $e \in \text{Elt } \sigma_{\text{rev}}(e) = \sigma(e) = e$, for an element variable $E \in (E) \sigma_{\text{rev}}(E) = \sigma(E)$ and for a sequence variable $S \in (SV) \sigma_{\text{rev}}(S) = \text{rev}(\sigma(S))$.

Given two sequence patterns $sp, sp' \in SP$, $sp \cup sp'$ holds if there exists a natural number n such that $sp = \operatorname{rtt}^n(sp')$, namely that sp is obtained by rotating sp' finitely many times; $sp \cup sp'$ holds if there exists a natural number n such that $sp = \operatorname{rtt}^n(\operatorname{rev}(sp'))$, namely that sp is obtained by reversing sp' once and rotating it finitely many times. For example, let sp and sp' be $e_1 S_1 e_2$ and $e_1 e_2 S_1$ (= $\operatorname{rtt}(sp)$) and then ($sp \cup sp'$) holds, while ($sp \cup sp'$) does not; let sp and sp' be $e_1 S_1 e_2$ and $e_2 e_1 S_1$ (= $\operatorname{rtt}(\operatorname{rev}(sp))$) and then ($sp \cup sp'$) does not, while ($sp \cup sp'$) holds; let sp and sp' be $e_1 S_1 e_2$ and $e_2 e_1 S_1$ (= $\operatorname{rtt}(\operatorname{rev}(sp))$) and then both ($sp \cup sp'$) and ($sp \cup sp'$) hold.

Definition 1.6 (Sequence pattern contexts). A sequence pattern context is a sequence pattern $sp \in SP$ in which one component (say, ith component, where $1 \le i \le |sp|$) is replaced with a special symbol \square called a hole, denoted $sp_{(i)}\{\square\}$. A

hole \square is treated as an element. Let sp be $ES_1 \dots ES_i \dots ES_{|sp|}$ and then $sp_{(i)}\{\square\}$ is $ES_1 \dots \square \dots ES_{|sp|}$.

For a sequence pattern or a sequence pattern context spc and a sequence pattern sp, $spc_{(i)}\{sp\}$ is spc in which the ith component in spc is replaced with sp. $(sp_{(i)}\{\Box\})_{(i)}\{sp(i)\} = sp_{(i)}\{sp(i)\} = sp$.

Definition 1.7 (Correspondent components). Let $sp \in SP$ be $ES_1 \dots ES_{i-1} ES_i ES_{i+1} \dots ES_{|sp|}$, where $1 \le i \le |sp|$ and $sp' \in SP$ be $ES'_1 \dots ES'_{j-1} ES'_j ES_{j+1} \dots ES'_{|sp'|}$, where $1 \le j \le |sp'|$. If $ES_i ES_{i+1} \dots ES_{|sp|} ES_1 \dots ES_{i-1} = ES'_j ES'_{j+1} \dots ES'_{|sp'|} ES'_1 \dots ES'_{j-1}$ or $ES_i ES_{i+1} \dots ES_{|sp|} ES_1 \dots ES_{i-1} = ES'_j ES'_{j-1} \dots ES'_{1} ES'_{|sp'|} \dots ES'_{j+1}$, then ES'_j is the corresponding component in sp' to ES_i in sp.

Proposition 1.8. For any sequence patterns $sp, sp' \in SP$ and any natural numbers $i \in \{1, ..., |sp|\}$ and $j \in \{1, ..., |sp'|\}$ such that the jth component sp'(j) in sp' is the corresponding component in sp' to sp(i) in sp, (1) $(sp \cup sp') \Leftrightarrow sp_{(i)}\{\Box\} \cup sp'_{(i)}\{\Box\}$ and (2) $(sp \cup sp') \Leftrightarrow sp_{(i)}\{\Box\} \cup sp'_{(i)}\{\Box\}$.

Proof. (1) (\Rightarrow) There exists a natural number m such that $\mathsf{rtt}^m(sp)$ is $sp(i) sp(i+1) \dots sp(i-1)$ and there exits a natural number *n* such that $rtt^n(sp')$ is $sp'(j) sp'(j+1) \dots sp'(j-1)$ 1). Because of $sp \cup sp'$, $rtt^m(sp) = rtt^n(sp')$ and then $(\mathsf{rtt}^m(sp))_{(1)} \, \{\Box\} = (\mathsf{rtt}^n(sp'))_{(1)} \{\Box\}.\, \mathsf{rtt}^{-m}((\mathsf{rtt}^m(sp))_{(1)} \{\Box\}) =$ $sp_{(i)}\{\Box\}$ and $\operatorname{rtt}^{-n}((\operatorname{rtt}^n(sp'))_{(1)}\{\Box\}) = sp'_{(j)}\{\Box\}$. Therefore, $sp_{(i)}\{\Box\} \cup sp'_{(i)}\{\Box\}.$ (\Leftarrow) There exists a natural number m such that $\operatorname{rtt}^m(sp_{(i)}\{\Box\})$ is $\Box sp(i+1)\dots sp(i-1)$ and there exits a natural number n such that $\mathrm{rtt}^n(sp'_{(i)}\{\Box\})$ is \square $sp'(j+1) \dots sp'(j-1)$. Because of $sp_{(i)}\{\square\} \cup sp'_{(i)}\{\square\}$, $\operatorname{rtt}^m(sp_{(i)}\{\Box\}) = \operatorname{rtt}^n(sp'_{(i)}\{\Box\}) \text{ and then } (\operatorname{rtt}^m(sp_{(i)}\{\Box\}))_{(1)}$ $\{sp(i)\} = (rtt^n(sp'_{(i)} \{\Box\}))_{(1)} \{sp(i)\}.$ Because sp'(j) in sp' is the corresponding component to sp(i) in sp, sp'(j) = sp(i). Therefore, $(\operatorname{rtt}^{m}(sp_{(i)} \{\Box\}))_{(1)} \{sp(i)\} = (\operatorname{rtt}^{n}(sp'_{(i)} \{\Box\}))_{(1)}$ $\{sp'(j)\}\$ and then rtt^{-m} $((\operatorname{rtt}^m(sp_{(i)}\{\Box\}))_{(1)}\{sp(i)\})=sp$ and $\operatorname{rtt}^{-n}((\operatorname{rtt}^n(sp'_{(j)}\{\Box\}))_{(1)}\{sp'(j)\}) = sp'. \text{ Thus, } sp \circlearrowleft sp'.$

(2) (\Rightarrow) There exists a natural number m such that $\operatorname{rtt}^m(sp)$ is sp(i) $sp(i+1) \dots sp(i-1)$ and there exits a natural number n such that $\operatorname{rtt}^n(\operatorname{rev}(sp'))$ is sp'(j) $sp'(j-1) \dots sp'(j+1)$. Because of $sp \circlearrowleft sp'$, $\operatorname{rtt}^m(sp) = \operatorname{rtt}^n(\operatorname{rev}(sp'))$ and then $(\operatorname{rtt}^m(sp))_{(1)} \{\Box\} = (\operatorname{rtt}^n(\operatorname{rev}(sp')))_{(1)} \{\Box\}. \operatorname{rtt}^{-m}((\operatorname{rtt}^m(sp))_{(1)} \{\Box\}) = sp_{(i)} \{\Box\} \text{ and } \operatorname{rtt}^{-n}((\operatorname{rtt}^n(\operatorname{rev}(sp')))_{(1)} \{\Box\}) = (\operatorname{rev}(sp'))_{(j)} \{\Box\}.$ Therefore, $sp_{(i)} \{\Box\} \circlearrowleft sp'_{(j)} \{\Box\}.$ (\Leftarrow) There exists a natural number m such that $\operatorname{rtt}^m(sp_{(i)} \{\Box\})$ is $\Box sp(i+1) \dots sp(i-1)$ and there exits a natural number n such that $\operatorname{rtt}^n(\operatorname{rev}(sp'_{(j)} \{\Box\}))$ is $\Box sp'(j-1) \dots sp'(j+1)$. Because of $sp_{(i)} \{\Box\} \circlearrowleft sp'_{(j)} \{\Box\}$, $\operatorname{rtt}^m(sp_{(i)} \{\Box\}) = \operatorname{rtt}^n(\operatorname{rev}(sp'_{(j)} \{\Box\}))_{(1)} \{sp(i)\}$. Because sp'(j) in sp' is the corresponding component to sp(i) in sp, sp'(j) = sp(i). Therefore, $(\operatorname{rtt}^m(sp_{(i)} \{\Box\}))_{(1)} \{sp(i)\} = (\operatorname{rtt}^n(\operatorname{rev}(sp'_{(j)} \{\Box\}))_{(1)} \{sp(i)\} = (\operatorname{rtt}^n(\operatorname{rev}(sp'_{$

sp and $\operatorname{rtt}^{-n}((\operatorname{rtt}^n(\operatorname{rev}(sp'_{(j)}\{\Box\})))_{(1)}\{sp'(j)\}) = \operatorname{rev}(sp')$. Thus, $sp \circlearrowleft sp'$.

1.2 Rings

Definition 1.9 (Rings). For $sp \in SP$, [sp] is called a ring pattern and satisfies (1) the rotative law ([sp] = [rtt(sp)]) and (2) the reversible law ([sp] = [rev(sp)]). When sp is a sequence $seq \in Seq$, [seq] is called a ring.

Proposition 1.10. For any sequence patterns $sp, sp' \in SP$ and natural numbers m, n, if [sp] = [sp'], then (1) $[sp] = [rtt^m(sp')]$ and (2) $[sp] = [rev^n(sp')]$.

Proof. Let us suppose [sp] = [sp']. (1) By induction on m. (1.1) Base case (m = 0) can be discharged from the assumption [sp] = [sp']. (1.2) Induction case (m = k + 1). From Definition 1.9, $[\operatorname{rtt}^k(sp')] = [\operatorname{rtt}^{k+1}(sp')]$. From this and the induction hypothesis $[sp] = [\operatorname{rtt}^k(sp')]$, $[sp] = [\operatorname{rtt}^{k+1}(sp')]$. (2) By induction on n. (2.1) Base case (n = 0) can be discharged from the assumption [sp] = [sp']. (2.2) Induction case (n = k + 1). From Definition 1.9, $[\operatorname{rev}^k(sp')] = [\operatorname{rev}^{k+1}(sp')]$. From this and the induction hypothesis $[sp] = [\operatorname{rev}^k(sp')]$, $[sp] = [\operatorname{rev}^{k+1}(sp')]$. □

For any sequence patterns $sp, sp' \in SP$, if $([sp] = [sp']) \Rightarrow [sp] = [rtt(sp')] \land [sp] = [rev(sp')]$, then [sp] = [rtt(sp)] and [sp] = [rev(sp)] because the equivalence relation is reflexive, namely [sp] = [sp]. Therefore, Definition 1.9 can be rephrased as follows:

Definition 1.11 (Another definition of rings). For $sp, sp' \in SP$, [sp] = [sp'] is inductively defined as follows: (1) [sp] = [sp] and (2) if [sp] = [sp'], then [sp] = [rtt(sp')] and [sp] = [rev(sp')].

Let sp be ES_1 ES_2 ... $ES_{|sp|-1}$ $ES_{|sp|}$. $rtt^{-1}(sp)$ is ES_2 ... $ES_{|sp|-1}$ $ES_{|sp|}$ ES_1 and $rev^{-1}(sp)$ is $ES_{|sp|}$ $ES_{|sp|-1}$... ES_1 ES_2 . Therefore, $rtt^{-1} = rev \circ rtt \circ rev$ and $rev^{-1} = rev$.

Proposition 1.12. For any sequence patterns $sp, sp' \in SP$, if [sp] = [sp'], then $[sp] = [rtt^{-1}(sp')]$ and $[sp] = [rev^{-1}(sp')]$.

Proof. This is derived from $rtt^{-1} = rev \circ rtt \circ rev, rev^{-1} = rev$ and Proposition 1.10,

Definition 1.13 (Ring pattern match). For $sp \in SP$ and $seq \in Seq$, pattern match between [sp] and [seq] is to find all substitutions σ such that $[\sigma(sp)] = [seq]$. Let [sp] = ?= [seq] be the set of all such substitutions.

Definition 1.14 (Sequences rotated and/or reversed). For $sp \in SP$, [[sp]] is the set of sequences inductively defined as follows: (1) $sp \in [[sp]]$ and (2) if $sp' \in [[sp]]$, then $\mathrm{rtt}(sp') \in [[sp]]$ and $\mathrm{rev}(sp') \in [[sp]]$.

Proposition 1.15. For any sequence patterns $sp, sp' \in SP$, if $sp' \in [[sp]]$, then $rtt^{-1}(sp') \in [[sp]]$ and $rev^{-1}(sp') \in [[sp]]$.

Proof. This is derived from $rtt^{-1} = rev \circ rtt \circ rev$, $rev^{-1} = rev$ and Definition 1.14.

Proposition 1.16. For any sequences $seq, seq', seq'' \in SP$ and any natural number $i \in \{1, \ldots, |seq|\}$ and $j \in \{1, \ldots, |seq'|\}$ such that seq'(j) is the correspond component to seq(i), seq is $e_1 \ldots e_{i-1}$ e_i $e_{i+1} \ldots e_{|sp|}$ and seq' is $e_1' \ldots e_{j-1}' e_j' e_{i+1}' \ldots e_{|sp'|}$, (1) if $seq_{(i)} \{\Box\} \cup seq'_{(j)} \{\Box\}$, then $[seq_{(i)} \{seq''\}] = [seq'_{(j)} \{seq''\}]$, and (2) if $seq_{(i)} \{\Box\} \cup seq'_{(j)} \{\Box\}$, then $[seq_{(i)} \{seq''\}]$ = $[seq'_{(i)} \{rev(seq'')\}]$.

Lemma 1.17. For sequence patterns $sp, sp' \in SP$, $(sp' \in [[sp]]) \Leftrightarrow ([sp] = [sp'])$.

Proof. $(sp' \in [[sp]]) \Rightarrow ([sp] = [sp'])$ is proved by induction on Definition 1.14. (1) Base case in which $sp \in [[sp]]$ holds. [sp] = [sp] holds because of Definition 1.15. (2) Induction case in which $\mathsf{rtt}(sp') \in [[sp]]$ and $\mathsf{rev}(sp') \in [[sp]]$ hold. $sp' \in [[sp]]$ holds from Proposition 1.15. From the induction hypothesis ([sp] = [sp']) and Definition 1.11, therefore, $[sp] = [\mathsf{rtt}(sp')]$ and $[sp] = [\mathsf{rev}(sp')]$ hold.

 $(sp' \in [[sp]]) \Leftarrow ([sp] = [sp'])$ is proved by induction on Definition 1.11. (1) Base case in which [sp] = [sp] holds. $sp \in [[sp]]$ holds because of Definition 1.14. (2) Induction case in which $[sp] = [\operatorname{rtt}(sp')]$ and $[sp] = [\operatorname{rev}(sp')]$ hold. [sp] = [sp'] holds from Proposition 1.12. From the induction hypothesis $(sp' \in [[sp]])$ and Definition 1.14, therefore, $\operatorname{rtt}(sp') \in [[sp]]$ and $\operatorname{rev}(sp') \in [[sp]]$ hold.

Let sp be e_1 S_1 e_4 S_2 and sp' be $\operatorname{rev}(sp)$, namely S_2 e_4 S_1 e_1 . Clearly, $sp' \in [[sp]]$ and [sp] = [sp']. Let us consider a substitution σ such that $\sigma(S_1) = e_2$ e_3 , $\sigma(S_2) = e_5$ e_6 and $\sigma(X) = X$ for any other variable X. $\sigma(sp)$ is e_1 e_2 e_3 e_4 e_5 e_6 and $\sigma(sp')$ is e_5 e_6 e_4 e_2 e_3 e_1 . Clearly, $\sigma(sp') \notin [[\sigma(sp)]]$ and $[\sigma(sp)] \neq [\sigma(sp')]$. If $sp \cup sp'$ does not hold but $sp \cup sp'$ holds, we need to reverse the sequence that replaces each sequence variable. $\sigma_{\operatorname{rev}}(sp')$ is e_6 e_5 e_4 e_3 e_2 e_1 . Therefore, $\sigma_{\operatorname{rev}}(sp') \in [[\sigma(sp)]]$ and $[\sigma(sp)] = [\sigma_{\operatorname{rev}}(sp')]$.

Lemma 1.18. For any sequence pattern $sp \in SP$ and any substitution σ , for each $sp' \in [[sp]]$ if $sp \cup sp'$, then $[\sigma(sp)] = [\sigma(sp')]$; if $sp \cup sp'$, then $[\sigma(sp)] = [\sigma_{rev}(sp')]$.

Proof. By induction on the number of element and sequence variable occurrences in *sp*.

(1) Base case in which the number is 0. Because sp does not have any variables, $\sigma(sp) = sp$, $\sigma(sp') = sp'$ and $\sigma_{rev}(sp') = sp'$. From Lemma 1.17, $\lceil sp \rceil = \lceil sp' \rceil$.

(2) Induction case in which the number is k + 1. Let us arbitrarily choose a component that is a variable in sp and the component be the ith component sp(i) in sp. Let sp be $sp_1 sp(i) sp_2 . sp'$ can be obtained by rotating and/or reversing sp and then must have the correspondent component in sp' to sp(i) in sp. Then, sp' can be $sp'_1 sp(i) sp'_2$.

(2.1) Let us suppose that $sp \cup sp'$ holds. From Proposition 1.8, $(sp_1 \Box sp_2) \cup (sp'_1 \Box sp'_2)$. By induction hypothesis, $[\sigma(sp_1 \Box sp_2)] = [\sigma(sp'_1 \Box sp'_2)]$ and then $[\sigma(sp_1) \Box \sigma(sp_2)] = [\sigma(sp'_1) \Box \sigma(sp'_2)]$. From Lemma 1.16, $[\sigma(sp_1) \sigma(sp(i)) \sigma(sp_2)] = [\sigma(sp'_1) \sigma(sp(i)) \sigma(sp'_2)]$. Hence, $[\sigma(sp_1 sp(i) sp_2)] = [\sigma(sp'_1 sp(i) sp'_2)]$.

(2.2) Let us suppose that $sp \cup sp'$ holds. From Proposition 1.8, $(sp_1 \square sp_2) \cup (sp'_1 \square sp'_2)$. By induction hypothesis, $[\sigma(sp_1 \square sp_2)] = [\sigma_{rev}(sp'_1 \square sp'_2)]$ and then $[\sigma(sp_1) \square \sigma(sp_2)] = [\sigma_{rev}(sp'_1) \square \sigma_{rev}(sp'_2)]$. From Lemma 1.16, $[\sigma(sp_1) \square \sigma(sp(i)) \square \sigma(sp_2)] = [\sigma_{rev}(sp'_1) \square \sigma(sp(i)) \square \sigma(sp(i)) \square \sigma(sp(i)) = [\sigma_{rev}(sp'_1) \square \sigma(sp(i)) \square \sigma(sp(i))] = [\sigma_{rev}(sp(i)), [\sigma(sp_1 sp(i)) \square \sigma(sp(i))] = [\sigma_{rev}(sp'_1) \square \sigma(sp(i)) \square \sigma(sp'_2)]$.

Definition 1.19 (Ring pattern match simulated (1)). For $sp \in SP$ and $seq \in Seq$, pattern match between sp and [[seq]] is to find all substitutions σ such that $\sigma(sp) = seq'$ for some $seq' \in Seq$. Let sp =?= [[seq]] be the set of all such substitutions.

Lemma 1.20. For any sequence pattern $sp \in SP$ and any sequence $seq \in Seq$, ([sp] =?= [seq]) = (sp =?= [[seq]]).

Proof. Let $\sigma \in ([sp] = ?= [seq])$. $[\sigma(sp)] = [seq]$ by Definition 1.13. $\sigma(sp) \in [[seq]]$ due to Lemma 1.17. Thus, $\sigma \in (sp = ?= [[seq]])$.

Let $\sigma \in (sp = ?= [[seq]])$. Let $seq' \in [[seq]]$ such that $\sigma(sp) = seq'$. [seq'] = [seq] due to Lemma 1.17 and then $[\sigma(sp)] = [seq]$. Hence, $\sigma \in ([sp] = ?= [seq])$

Definition 1.21 (Ring pattern match simulated (2)). For $sp \in SP$ and $seq \in Seq$, pattern match between [[sp]] and seq is to find all substitutions σ such that $\sigma'(sp') = seq$ for some substitution σ' and some $sp' \in [[sp]]$ and if $sp \cup sp'$, then $\sigma = \sigma'$ and if $sp \cup sp'$, then $\sigma = \sigma'_{rev}$. Let [[sp]] = ?= seq be the set of all such substitutions.

Note that $([[sp]] =?= seq) \subset ([sp] =?= [seq])$ but $([sp] =?= [seq]) \not\subset ([[sp]] =?= seq)$.

Lemma 1.22. For any sequence pattern $sp \in SP$, any sequence $seq \in Seq$ and any substitution $\sigma \in (sp =?= [[seq]])$, there exist σ' and a sequence $seq' \in [[seq]]$ such that $\sigma = join(\sigma'), \sigma'(split(sp)) = seq'$ and there exists $sp' \in [[split(sp)]]$ such that $\sigma'(sp') = seq$. Besides, $\sigma \in join([[split(sp)]] =?= seq)$.

Proof. Let sp be $ES_1 ES_2 ... ES_m$ and seq be $e_1 e_2 ... e_n$.

If there exists $i \in \{1, ..., m\}$ such that $\sigma(ES_i)$ is ... e_n e_1 ... or ... e_1 e_n ..., ES_i is a sequence variable S that is replaced with sv(S, 0) sv(S, 1) in split(sp).

If $\sigma(S)$ is . . . e_n e_1 . . . , then $\sigma'(\operatorname{sv}(S,0))$ is . . . e_n , $\sigma'(\operatorname{sv}(S,1))$ is e_1 . . . and $\sigma'(\operatorname{sv}(S',0))$ is $\sigma(S')$ and $\sigma'(\operatorname{sv}(S',1))$ is ε for any other sequence variable S' in sp, and $\sigma'(E) = \sigma(E)$ for any element variable E in sp. By the construction of σ' , $\sigma = \operatorname{join}(\sigma')$ and $\sigma'(\operatorname{split}(sp)) = \sigma(sp)$, where $\sigma(sp) \in [[seq]]$. Let sp' be $\operatorname{sv}(S,1)$ split (ES_{i+1}) . . . split (ES_{i-1}) sv(S,0). Then, $sp' \in [[\operatorname{split}(sp)]]$ and $\sigma'(sp') = seq$. Therefore, $\sigma' \in ([[\operatorname{split}(sp)]] = seq)$ because of $sp \cup sp'$ from Definition 1.21. Hence $\sigma \in \operatorname{join}([[\operatorname{split}(sp)]] = seq)$ from Definition 1.4.

If $\sigma(S)$ is ... e_1 e_n ..., then $\sigma'(\operatorname{sv}(S,0))$ is $\operatorname{rev}(\ldots e_1)$, $\sigma'(\operatorname{sv}(S,1))$ is $\operatorname{rev}(e_n$...) and $\sigma'(\operatorname{sv}(S',0))$ is $\operatorname{rev}(\sigma(S'))$ and $\sigma'(\operatorname{sv}(S',1))$ is ε for any other sequence variable S' in sp, and $\sigma'(E) = \sigma(E)$ for any element variable E in sp. By the construction of σ' , $\sigma = \operatorname{join}(\sigma'_{\operatorname{rev}})$ and $\sigma'_{\operatorname{rev}}(\operatorname{split}(sp)) = \sigma(sp)$, where $\sigma(sp) \in [[seq]]$. Let sp' be $\operatorname{rev}(\operatorname{sv}(S,1) \operatorname{split}(ES_{i+1}) \ldots \operatorname{split}(ES_{i-1}) \operatorname{sv}(S,0))$. Then, $sp' \in [[\operatorname{split}(sp)]]$ and $\sigma'_{\operatorname{rev}}(sp') = seq$. Therefore, $\sigma'_{\operatorname{rev}} \in ([[\operatorname{split}(sp)]] = ?= seq)$ because of $sp \cup sp'$ from Definition 1.21. Hence $\sigma \in \operatorname{join}([[\operatorname{split}(sp)]] = ?= seq)$ from Definition 1.4.

If there exists no $i \in \{1, \ldots, m\}$ such that $\sigma(ES_i)$ is $\ldots e_n e_1 \ldots$ or $\ldots e_1 e_n \ldots$, there must be $i \in \{1, \ldots, m\}$ such that $\sigma(ES_i)$ is $e_1, e_1 \ldots$ or $\ldots e_1$. If $\sigma(ES_i)$ is e_1 , there are two possible cases: (1) $\sigma(ES_i ES_{i+1} \ldots ES_{i-1}) = seq$ and (2) $\sigma(ES_i ES_{i-1} \ldots ES_{i+1}) = seq$.

Case (1) can be treated in the same way as the case in which $\sigma(ES_i)$ is $e_1 \ldots$ In either case, $\sigma'(\operatorname{sv}(S',0))$ is $\sigma(S')$ and $\sigma'(\operatorname{sv}(S',1))$ is ε for any sequence variable S' in sp, and $\sigma'(E) = \sigma(E)$ for any element variable E in sp. By the construction of σ' , $\sigma = \operatorname{join}(\sigma')$ and $\sigma'(\operatorname{split}(sp)) = \sigma(sp)$, where $\sigma(sp) \in [[seq]]$. Let sp' be $\operatorname{split}(ES_i)$ $\operatorname{split}(ES_{i+1}) \ldots$ $\operatorname{split}(ES_{i-1})$. Then, $sp' \in [[\operatorname{split}(sp)]]$ and $\sigma'(sp') = seq$. Therefore, $\sigma' \in ([[\operatorname{split}(sp)]] =?= seq)$ because of $sp \cup sp'$ from Definition 1.21. Hence $\sigma \in \operatorname{join}([[\operatorname{split}(sp)]] =?= seq)$ from Definition 1.4.

Case (2) can be treated in the same way as the case in which $\sigma(ES_i)$ is . . . e_1 . In either case, $\sigma'(\operatorname{sv}(S',0))$ is $\operatorname{rev}(\sigma(S'))$ and $\sigma'(\operatorname{sv}(S',1))$ is ε for any sequence variable S' in sp, and $\sigma'(E) = \sigma(E)$ for any element variable E in sp. By the construction of σ' , $\sigma = \operatorname{join}(\sigma'_{\operatorname{rev}})$ and $\sigma'_{\operatorname{rev}}(\operatorname{split}(sp)) = \sigma(sp)$, where $\sigma(sp) \in [[seq]]$. Let sp' be $\operatorname{rev}(\operatorname{split}(ES_{i+1}) \dots \operatorname{split}(ES_{i-1})$ split (ES_i) . Then, $sp' \in [[\operatorname{split}(sp)]]$ and $\sigma'_{\operatorname{rev}}(sp') = seq$. Therefore, $\sigma'_{\operatorname{rev}} \in ([[\operatorname{split}(sp)]] = ?= seq)$ because of $sp \cup sp'$ from Definition 1.21.

Lemma 1.23. For any sequence pattern $sp \in SP$, any sequence $seq \in Seq$ and any substitution $\sigma \in join([[split(sp)]] = ?= seq)$, $\sigma \in ([sp] = ?= [seq])$.

Proof. Let sp be $ES_1 ES_2 ... ES_m$ and seq be $e_1 e_2 ... e_n$. Let σ' be an arbitrary substitution in ([[split(sp)]] = ? = seq) from which σ is constructed, namely that σ = join(σ'). Let $sp' \in$ [[split(sp)]] such that $\sigma''(sp') = seq$, if split(sp) \cup sp',

```
then \sigma' = \sigma'' and if \operatorname{split}(sp) \cup sp', then \sigma' = \sigma''_{\operatorname{rev}}. There are four possible cases: (1) sp' is \operatorname{split}(E_i) \operatorname{split}(ES_{i+1}) \dots \operatorname{split}(ES_{i-1}), (2) sp' is \operatorname{rev}(\operatorname{split}(E_i)) \operatorname{rev}(\operatorname{split}(ES_{i-1})) \dots \operatorname{rev}(\operatorname{split}(ES_{i+1})). (3) sp' is \operatorname{sv}(S,1) \operatorname{split}(ES_{i+1}) \dots \operatorname{split}(ES_{i-1}) \operatorname{sv}(S,0) and (4) sp' is \operatorname{sv}(S,0) \operatorname{rev}(\operatorname{split}(ES_{i-1})) \dots \operatorname{rev}(\operatorname{split}(ES_{i+1})) \operatorname{sv}(S,1).
```

(1) For each ES_j for $j=1,2,\ldots,m$, we calculate $\sigma''(\operatorname{split}(ES_j))$ and $\sigma(ES_j)$. There are three possible cases: (1.1) ES_j is an element e, (1.2) ES_j is an element variable E and (1.3) ES_j is a sequence variable S. (1.1) $\sigma''(\operatorname{split}(e)) = e$ and $\sigma(e) = e = \sigma''(\operatorname{split}(e))$. (1.2) $\sigma''(\operatorname{split}(E)) = \sigma''(E)$ and $\sigma(E) = (\operatorname{join}(\sigma''))(E) = \sigma''(E) = \sigma''(\operatorname{split}(E))$. (1.3) $\sigma''(\operatorname{split}(S))$ and $\sigma(S)$ are calculated as follows:

```
\sigma''(\operatorname{split}(S)) = \sigma''(\operatorname{sv}(S,0) \operatorname{sv}(S,1))
\sigma(S) = (\operatorname{join}(\sigma''))(S) = \sigma''(\operatorname{sv}(S,0)) \sigma''(\operatorname{sv}(S,1))
= \sigma''(\operatorname{split}(S))
```

Therefore, $\sigma(ES_j) = \sigma''((\operatorname{split}(ES_j)))$ and then $\sigma(ES_i ES_{i+1} \dots ES_{i-1})$ is calculated as follows:

```
\sigma(ES_i ES_{i+1} \dots ES_{i-1}) = \sigma(ES_i) \sigma(ES_{i+1}) \dots \sigma(ES_{i-1})
= \sigma''((\operatorname{split}(ES_i))) \sigma''((\operatorname{split}(ES_{i+1}))) \dots \sigma''((\operatorname{split}(ES_{i-1})))
= \sigma''(\operatorname{split}(ES_i) \operatorname{split}(ES_{i+1}) \dots \operatorname{split}(ES_{i-1}))
= \sigma''(\operatorname{sp}')
```

Because $\sigma''(sp') = seq$ from the assumption, $\sigma(ES_i ES_{i+1} ... ES_{i-1}) = seq$. Because $sp \cup ES_i ES_{i+1} ... ES_{i-1}$, $[\sigma(sp)] = [\sigma(ES_i ES_{i+1} ... ES_{i-1})]$ from Lemma 1.18. Thus, $[\sigma(sp)] = [seq]$ and then $\sigma \in ([sp] =?= [seq])$.

(2) For each ES_j for j = 1, 2, ..., m, we calculate σ'' (rev(split(ES_j))) and $\sigma(ES_j)$. There are three possible cases: (2.1) ES_j is an element e, (2.2) ES_j is an element variable E and (2.3) ES_j is a sequence variable E. (2.1) σ'' (rev(split(e))) = E and E and E and E and E (split(E))) = E and E (rev(split(E))) = E and E (rev(split(E))) = E (rev(split(E))) = E (rev(split(E))) = E (rev(split(E))) = E (rev(split(E))) and E (rev(split(E))) and E (rev(split(E))) and E (rev(split(E))) are calculated as follows:

```
\sigma''(\text{rev}(\text{split}(S))) = \sigma''(\text{rev}(\text{sv}(S, 0) \text{ sv}(S, 1)))
= \sigma''(\text{sv}(S, 1) \text{ sv}(S, 1))
\sigma(S) = (\text{join}(\sigma''_{\text{rev}}))(S) = \sigma''_{\text{rev}}(\text{sv}(S, 0)) \sigma''_{\text{rev}}(\text{sv}(S, 1))
= \text{rev}(\sigma''(\text{sv}(S, 0))) \text{ rev}(\sigma''(\text{sv}(S, 1)))
= \text{rev}(\sigma''(\text{sv}(S, 1)) \sigma''(\text{sv}(S, 0))) = \text{rev}(\sigma''(\text{rev}(\text{split}(S))))
```

Therefore, $\sigma(ES_j) = \text{rev}(\sigma''(\text{rev}(\text{split}(ES_j))))$ and then $\sigma(ES_{i+1} \dots ES_{i-1} ES_i)$ is calculated as follows:

```
\sigma(ES_{i+1} \dots ES_{i-1} ES_i) = \sigma(ES_{i+1}) \dots \sigma(ES_{i-1}) \sigma(ES_i)
= \operatorname{rev}(\sigma''(\operatorname{rev}(\operatorname{split}(ES_{i+1})))) \dots
\operatorname{rev}(\sigma''(\operatorname{rev}(\operatorname{split}(ES_{i-1})))) \operatorname{rev}(\sigma''(\operatorname{rev}(\operatorname{split}(ES_i))))
= \operatorname{rev}(\sigma''(\operatorname{rev}(\operatorname{split}(ES_i)))
\sigma''(\operatorname{rev}(\operatorname{split}(ES_{i-1}))) \dots \sigma''(\operatorname{rev}(\operatorname{split}(ES_{i+1}))))
= \operatorname{rev}(\sigma''(\operatorname{sp}'))
```

```
Because \sigma''(sp') = seq from the assumption, \sigma(ES_{i+1}...
441
        ES_{i-1} ES_i) = rev(seq). Because sp \bigcup ES_{i+1} ... ES_{i-1} ES_i,
442
        [\sigma(sp)] = [\sigma(ES_{i+1} \dots ES_{i-1} ES_i)] from Lemma 1.18. More-
443
        over, [seq] = [rev(seq)] from Proposition 1.10. Thus, [\sigma(sp)] =
444
        [seq] and then \sigma \in ([sp] = ?= [seq]).
           (3) rtt(sp') is calculated as follows:
446
447
        rtt(sp')
448
        = sv(S, 0) sv(S, 1) rev(split(ES_{i+1})) \dots rev(split(ES_{i-1}))
449
        = \operatorname{split}(ES_i) \operatorname{rev}(\operatorname{split}(ES_{i+1})) \dots \operatorname{rev}(\operatorname{split}(ES_{i-1}))
450
451
        Because \sigma''(sp') = seq, there exists a natural number k such
        that \sigma''(\text{rtt}(sp')) = \text{rtt}^k(seq). As what has been done for
452
        case (1), we have \sigma(ES_i ES_{i+1} \dots ES_{i-1}) = \operatorname{rtt}^k(seq). Because
453
        sp \cup ES_i ES_{i+1} \dots ES_{i-1}, [\sigma(sp)] = [\sigma(ES_i ES_{i+1} \dots ES_{i-1})]
454
455
        from Lemma 1.18. Moreover, [seq] = [rtt^k(seq)] from Propo-
456
        sition 1.10. Thus, [\sigma(sp)] = [seq] and then \sigma \in ([sp] = ?=
457
458
           (4) rtt(sp') is calculated as follows:
459
        rtt(sp')
460
        = sv(S, 1) sv(S, 0) rev(split(ES_{i-1})) . . . rev(split(ES_{i+1}))
461
        = rev(split(ES_i)) rev(split(ES_{i-1})) ... rev(split(ES_{i+1}))
462
        Because \sigma''(sp') = seq, there exists a natural number k such
463
        that \sigma''(\operatorname{rtt}(sp')) = \operatorname{rtt}^k(seq). As what has been done for case
464
        (2), we have \sigma(ES_{i+1} \dots ES_{i-1} ES_i) = \text{rev}(\text{rtt}^k(seq)). Because
465
466
        sp \cup ES_{i+1} \dots ES_{i-1} ES_i, [\sigma(sp)] = [\sigma(ES_{i+1} \dots ES_{i-1} ES_i)]
467
        from Lemma 1.18. Moreover, [seq] = [rev(rtt^k(seq))] from
468
        Proposition 1.10. Thus, [\sigma(sp)] = [seq] and then \sigma \in ([sp] =
469
470
        Theorem 1.24. For any sequence pattern sp \in SP and any
471
        sequence seq \in Seq, join([[split(sp)]] =?= seq) = ([sp] =?=
472
473
474
        Proof. It is derived from Lemma 1.20, Lemma 1.22 and
475
        Lemma 1.23.
                                                                                  476
477
478
480
481
482
484
486
488
489
490
491
492
```