Метрическая и топологическая свобода для секвенциальных операторных пространств

Норберт Немеш, Сергей Штейнер

Аннотация

В 2002 году году Ансельм Ламберт в своей диссертации [1] ввел определение секвенциального операторного пространства и доказал аналоги многих фактов теории операторных пространств. Говоря неформально, категория секвенциальных операторных пространств находится «между» категориями нормированных и операторных пространств. Цель данной статьи — описание свободных и косвободных объектов для различных версий гомологии в категории секвенциальных операторных пространств. Сначала мы покажем, что в этой категории теория двойственности во многом аналогична таковой для нормированных пространств. Затем, основываясь на этих результатах, мы дадим полное описание метрически и топологически свободных и косвободных объектов.

1 Секвенциальные операторные пространства.

1.1 Некоторые напоминания.

Далее все линейные пространства будут рассматриваться над полем комплексных чисел. Через B_E мы будем обозначать замкнутый единичный шар нормированного пространства E. Если E, F — два нормированных пространства, то $\mathcal{B}(E, F)$ — нормированное пространство ограниченных линейных операторов из E в F. Для заданного $1 \le p \le \infty$ через $\bigoplus_p^0 \{E_\lambda : \lambda \in \Lambda\}$ мы обозначаем \bigoplus_p^0 сумму семейства нормированных пространств $\{E_\lambda : \lambda \in \Lambda\}$. Это нормированное пространство, у которого каждый вектор имеет лишь конечное число ненулевых координат. Аналогично $\bigoplus_p \{E_\lambda : \lambda \in \Lambda\}$ обозначает \bigoplus_p -сумму банаховых пространств. Отметим, что \bigoplus_∞ -суммы являются произведениями, а \bigoplus_1 -суммы — копроизведениями в категории нормированных простанств. Через \mathbb{N}_n мы будем обозначать множество $\{1, \ldots, n\}$.

Пусть $n, k \in \mathbb{N}$, тогда через $M_{n,k}$ мы будем обозначать линейное пространство комплекснозначных матриц размера $n \times k$. Пространство $M_{n,k}$ по умолчанию наделяется операторной нормой $\|\cdot\|$, но нам также понадобится норма Гильберта-Шмидта. Пусть $\alpha \in M_{n,k}$, тогда норму Гильберта-Шмидта определим равенством $\|\alpha\|_{hs} = \operatorname{trace}(|\alpha|^2)^{1/2}$ где $|\alpha| = (\alpha^*\alpha)^{1/2}$. Отметим, что всегда выполнены соотношения $\|\alpha\| \le \|\alpha\|_{hs}$ и $\||\alpha|\|_{hs} = \||\alpha^*|\| = \|\alpha\|_{hs}$.

Для линейного пространства E через E^k будем обозначать пространство столбцов высоты k с элементами из E. Для $\alpha \in M_{n,k}$ и $x \in E^k$ через αx будем обозначать такой столбец из E^n , что $(\alpha x)_i = \sum_{j=1}^n \alpha_{ij} x_j$. Эта формула является естественным обощением матричного умножения. Теперь мы готовы дать два основных определения: определение секвенциального операторного пространства и определение секвенциально ограниченного оператора.

Определение 1.1.1[[1], 1.1.7] Пусть E — линейное пространство, и для каждого $n \in \mathbb{N}$ на пространстве E^n задана некоторая норма $\|\cdot\|_{\widehat{n}}$. Будем говорить, что семейство $X = (E^n, (\|\cdot\|_{\widehat{n}})_{n \in \mathbb{N}})$, задаёт на E структуру секвенциального операторного пространства, если выполнены следующие условия:

(i) $\|\alpha x\|_{\widehat{n}} \leq \|\alpha\| \|x\|_{\widehat{n}}$ для всех $m, n \in \mathbb{N}, x \in E^{\widehat{n}}, \alpha \in M_{m,n}$.

(ii)
$$\|(x,y)^{tr}\|_{\widehat{n+m}}^2 \leq \|x\|_{\widehat{n}}^2 + \|y\|_{\widehat{m}}^2$$
 для всех $m,n \in \mathbb{N}, x \in E^n, y \in E^m$

Пространство E^n с нормой $\|\cdot\|_{\widehat{n}}$ будем обозначать через $X^{\widehat{n}}$.

Легко заметить, что если X — секвенциальное операторное пространство, то каждое нормированное пространство $X^{\widehat{n}}$ наделено естественной структурой секвенциального операторного пространства: достаточно отождествить $(X^{\widehat{n}})^{\widehat{k}}$ с $X^{\widehat{nk}}$. Для любого нормированного пространства E можно задать семейство наименьших или наибольших норм, делающих E секвенциальным операторным пространством [[1], 2.1.1, 2.1.2]. Мы обозначим эти пространства $\min(E)$ и $\max(E)$ соответственно. Их нормы задаются равенствами

$$||x||_{\min(E)^{\hat{n}}} = \sup_{\xi \in B_{l_2^n}} \left\| \sum_{i=1}^n \xi_i x_i \right\| \qquad ||x||_{\max(E)^{\hat{n}}} = \inf_{x = \alpha \tilde{x}, \alpha \in M_{n,k}, \tilde{x} \in E^{\hat{k}}} ||\alpha||_{M_{n,k}} \left(\sum_{i=1}^k ||\tilde{x}_i||^2 \right)^{1/2}$$

Мы будем использовать обозначения $t_2^n = \min(\mathbb{C}^n)$, $l_2^n = \max(\mathbb{C}^n)$, причем здесь \mathbb{C}^n рассматривается как n-мерное гильбертово пространство. Отсюда, кстати, легко видеть, что \mathcal{C} обладает единственной секвенциальной операторной структурой.

Определение 1.1.2[[1], 1.2.1] Пусть X и Y — секвенциальные операторные пространства, а $\varphi: X \to Y$ — линейный оператор. Его размножением называется семейство операторов $\varphi^{\widehat{n}}: X^{\widehat{n}} \to Y^{\widehat{n}}, n \in \mathbb{N}$, определённых равенством $\varphi^{\widehat{n}}(x) = (\varphi(x_i))_{i \in \mathbb{N}_k}$. Будем называть оператор φ секвенциально ограниченным, если

$$\|\varphi\|_{sb} := \sup\{\|\varphi^{\widehat{n}}\|_{\mathcal{B}(X^{\widehat{n}}, Y^{\widehat{n}})} : n \in \mathbb{N}\} < \infty$$

Множество секвенциально ограниченных операторов между секвенциальными операторными пространствами X и Y будем обозначать через $\mathcal{SB}(X,Y)$. Это линейное подпространство в $\mathcal{B}(X,Y)$, которое также можно наделить структурой секвенциального операторного пространства [[1], 1.2.7] посредством отождествления $\mathcal{SB}(X,Y)^{\hat{n}} = \mathcal{SB}(X,Y^{\hat{n}})$. Теперь мы можем ввести две категории секвенциальных операторных пространств: SQNor и $SQNor_1$. Объекты обеих категорий — секвенциальные операторные пространства. Морфизмы в SQNor — секвенциально ограниченные операторы с $SQNor_1$ — секвенциально ограниченные

Теперь легко проверить что $\mathcal{SB}(-,-): SQNor \times SQNor \to SQNor$ задает бифунктор, ковариантный по первому аргументу и контравариантный по второму. Как и в случае нормированных пространств, логично рассмотреть действие этого функтора с пространством $\mathbb C$ в качестве второго аргумента. Мы получим функтор $^{\triangle} = \mathcal{SB}(-,\mathbb C)$, который логично называть функтором сопряжения для секвенциальных операторных пространств. Он действительно ведет себя подобно функтору банаховой сопряженности [[1], 1.3]. Категория $SQNor_1$ (как и категория операторных пространств с вполне сжимающими операторами в качестве морфизмов) обладает категорными произведениями и копроизведениями.

Определение 1.1.3[[1], 1.1.28] Пусть $\{X_{\lambda} : \lambda \in \Lambda\}$ — произвольное семейство секвенциальных операторных пространств. Их \bigoplus_{∞} -суммой называется секвенциальное операторное пространство $\bigoplus_{\infty} \{X_{\lambda}^{\hat{1}} : \lambda \in \Lambda\}$, с семейством норм, задаваемых отождествлениями

$$\left(\bigoplus{}_{\infty}\{X_{\lambda}:\lambda\in\Lambda\}\right)^{\widehat{n}}=\bigoplus{}_{\infty}\{X_{\lambda}^{\widehat{n}}:\lambda\in\Lambda\}$$

Определение 1.1.4 Пусть $\{X_{\lambda}:\lambda\in\Lambda\}$ — произвольное семейство секвенциальных операторных пространств. Их \bigoplus_1^0 -суммой называется секвенциальное операторное пространство $\bigoplus_1^0 \{X_{\lambda}^{\hat{1}}:\lambda\in\Lambda\}$, с нормами, индуцированными вложением

$$\bigoplus_{1}^{0} \{X_{\lambda} : \lambda \in \Lambda\} \hookrightarrow \left(\bigoplus_{\infty} \{X_{\lambda}^{\triangle} : \lambda \in \Lambda\}\right)^{\triangle}$$

Как и в случае операторных пространств, легко показать, что \bigoplus_{∞} -суммы являются произведениями, а \bigoplus_{1}^{0} -суммы — копроизведениями в $SQNor_{1}$. Более того, имеет место изоморфизм в $SQNor_{1}$:

$$\left(\bigoplus_{1}^{0} \{X_{\lambda} : \lambda \in \Lambda\}\right)^{\triangle} = \bigoplus_{\infty} \{X_{\lambda}^{\triangle} : \lambda \in \Lambda\}$$

1.2 Двойственность для секвенциально ограниченных операторов

Основные результаты этого раздела получены Н. Немешем. Для начала нам нужно напомнить некоторые определения и факты, касающиеся ограниченных линейных операторов.

Определение 1.2.1 Пусть $T:E\to F$ — ограниченный линейный оператор между нормированными пространствами, тогда T называется

- (i) c-топологически инъективным, если для каждого $x \in E$ выполнено $||x|| \le c||T(x)||$. Если упоминание константы c не нужно, будем говорить, что T топологически инъективен.
- (ii) (строго) c-топологически сюрьективным, если любого c' > c и любого $y \in F$ существует такой $x \in E$, что ($||x|| \le c||y||$) ||x|| < c'||y|| и T(x) = y. Если упоминание константы c не нужно то будем говорить, что T (строго) топологически сюръективен.
- (iii) (строго) коизометрическим, если он сжимающий и (строго) 1-топологически сюръективный

Предложение 1.2.2 Пусть $T:E \to F$ ограниченный оператор между нормированными пространствами и c>0, тогда

- (i) если T (строго) c-топологически сюръективен, то T^* c-топологически инъективен
- (ii) если T c-топологически инъективен, то T^* строго c-топологически сюръективен
- (iii) если T^* (строго) c-топологически сюръективен, то T c-топологически инъективен
- (iv) если T^* c-топологически инъективен и E полно, то T c-топологически сюръективен

Аналогичные определения можно дать и для секвенциально ограниченных операторов. Например, оператор $\varphi \in \mathcal{SB}(X,Y)$ между секвенциальными операторными пространствами X и Y называется секвенциально c-топологически инъективным, если для любого $n \in \mathbb{N}$ оператор $\varphi^{\widehat{n}}$ c-топологически инъективен.

Далее мы докажем несколько технических предложений, необходимых для описания двойственности между секвенциально ограниченными операторами.

Предложение 1.2.3[[1], 1.3.14] Пусть X, Y — секвенциальные операторные пространства и $\varphi \in \mathcal{SB}(X,Y)$. Тогда $\varphi^{\triangle} \in \mathcal{SB}(Y^{\triangle},X^{\triangle})$ и для каждого $n \in \mathbb{N}$ выполнено $\|(\varphi^{\triangle})^{\widehat{n}}\| = \|\varphi^{\widehat{n}}\|$. Как следствие, $\|\varphi^{\triangle}\|_{sb} = \|\varphi\|_{sb}$.

Определение 1.2.4[[1], 1.3.15] Пусть X — секвенциальное операторное пространство и $n \in \mathbb{N}$, тогда через $t_2^n(X)$ будем обозначть нормированное пространство X^n с нормой

$$||x||_{t_2^n(X)} := \inf \{ ||\tilde{\alpha}||_{hs} ||\tilde{x}||_{\hat{k}} : x = \tilde{\alpha}\tilde{x} \}$$

где $\tilde{\alpha} \in M_{n,k}, x \in X^k$ и $k \in \mathbb{N}$. Если Y — секвенциальное операторное пространство, и $\varphi \in \mathcal{SB}(X,Y)$, то через $t_2^n(\varphi)$ будем обозначать линейный оператор

$$t_2^n(\varphi): t_2^n(X) \to t_2^n(Y): x \mapsto \varphi^{\widehat{n}}(x)$$

Предложение 1.2.5 Пусть X — секвенциальное операторное пространство и $n \in \mathbb{N}$, тогда

$$||x||_{t_2^n(X)} = \inf \{ ||\alpha'||_{hs} ||x'||_{\widehat{k}} : x = \alpha' x' \}$$

где $\alpha' \in M_{n,n}$ — обратимая матрица, $x' \in X^n$.

Доказательство. Обозначим правую часть доказываемого равенства через $\|x\|'_{t_2^n(X)}$. Фиксируем $\varepsilon > 0$, тогда существуют $\tilde{\alpha} \in M_{n,k}$ и $\tilde{x} \in X^k$, $k \in \mathbb{N}$ такие, что $x = \tilde{\alpha}\tilde{x}$ и $\|\tilde{\alpha}\|_{hs}\|\tilde{x}\|_{\hat{k}} < \|x\|_{t_2^n(X)} + \varepsilon$. Рассмотрим полярное разложение $\tilde{\alpha} = |\tilde{\alpha}^*|\rho$ матрицы $\tilde{\alpha}$. Пусть p — ортогональный проектор на $\operatorname{Im}(|\tilde{\alpha}^*|)^{\perp}$. Тогда для любого $\delta \in \mathbb{R}$ матрица $\alpha'_{\delta} = |\tilde{\alpha}^*| + \delta p$ обратима так как $\operatorname{Ker}(\alpha'_{\delta}) = \{0\}$. Так как $\alpha'_0 = |\tilde{\alpha}|$ и функция $\|\alpha'_{\delta}\|_{hs}$ непрерывна при $\delta \in \mathbb{R}$, то существует такое значение δ_0 , что $\|\alpha'_{\delta_0}\|_{hs} < \||\tilde{\alpha}^*|\|_{hs} + \varepsilon \|\tilde{x}\|_{\hat{k}}^{-1} = \|\tilde{\alpha}\|_{hs} + \varepsilon \|\tilde{x}\|_{\hat{k}}^{-1}$. Обозначим $\alpha' = \alpha'_{\delta_0} \in M_{n,n}$ и $x' = \rho \tilde{x} \in Y^n$, тогда

$$\alpha' x' = (|\tilde{\alpha}^*| + \delta_0 p) \rho \tilde{x} = |\tilde{\alpha}^*| \rho \tilde{x} + \delta_0 p \rho \tilde{x} = \tilde{\alpha} \tilde{x}$$

По построению полярного разложения $\|\rho\| \leq 1$, поэтому с учетом определения $\|x\|'_{t_2^n(X)}$ получаем

$$||x||'_{t_2^n(X)} \le ||\alpha'||_{hs} ||x'||_{\widehat{n}} \le (||\tilde{\alpha}||_{hs} + \varepsilon ||\tilde{x}||_{\widehat{k}}) ||\rho|| ||\tilde{x}||_{\widehat{n}} \le ||\tilde{\alpha}||_{hs} ||\tilde{x}||_{\widehat{k}} + \varepsilon \le ||x||_{t_2^n(X)} + 2\varepsilon$$

Так как $\varepsilon > 0$ произвольно, то $||x||'_{t_2^n(X)} \le ||x||_{t_2^n(X)}$. Обратное неравенство очевидно, поэтому $||x||_{t_2^n(X)} = ||x||'_{t_2^n(X)}$.

Предложение 1.2.5 Пусть X, Y — секвенциальные операторные пространства, $\varphi \in \mathcal{SB}(X,Y)$ и $n,k \in \mathbb{N}$. Тогда

- (i) Для любых $\alpha \in M_{n,k}$ и $x \in t_2^k(X)$ выполнено $t_2^n(\varphi)(\alpha x) = \alpha t_2^k(\varphi)(x)$
- (ii) $t_2^n(\varphi) \in \mathcal{B}(t_2^n(X), t_2^n(Y))$, причем $||t_2^n(\varphi)|| \le ||\varphi^{\widehat{n}}||$
- (ііі) если $\varphi^{\hat{n}}$ (строго) c-топологически сюръективно, то $t_2^n(\varphi)$ так же (строго) c-топологически сюръективно
- (iv) если $\varphi^{\widehat{n}}$ c-топологически инъективно, то $t_2^n(\varphi)$ так же c-топологически инъективно

Доказательство. (i) Проверяется непосредственно.

(ii) Пусть $x \in t_2^n(X)$ и $x = \alpha' x'$, где $\alpha \in M_{n,n}$ — обратимая матрица и $x' \in X^n$, тогда $t_2^n(\varphi)(x) = \alpha' t_2^n(\varphi)(x') = \alpha' \varphi^{\widehat{n}}(x')$, поэтому из определения нормы в $t_2^n(Y)$ следует, что

$$||t_2^n(\varphi)(x)||_{t_2^n(Y)} \le ||\alpha'||_{hs} ||\varphi^{\widehat{n}}(x')||_{\widehat{n}} \le ||\alpha'||_{hs} ||\varphi^{\widehat{n}}|| ||x'||_{\widehat{n}}$$

Теперь возьмем инфимум по всем представлениям x описанным выше, тогда предложение 1.2 дает

$$||t_2^n(\varphi)(x)||_{t_2^n(Y)} \le ||\varphi^{\widehat{n}}|| ||x||_{t_2^n(X)}$$

Следовательно $||t_2^n(\varphi)|| \le ||\varphi^{\widehat{n}}||$ и $t_2^n(\varphi) \in \mathcal{B}(t_2^n(X), t_2^n(Y))$.

(iii) Пусть $\varphi^{\widehat{n}}$ с-топологически сюръективен. Пусть $y \in t_2^n(Y)$ и $y = \alpha' y'$, где $\alpha' \in M_{n,n}$ — обратимая матрица, $y' \in Y^n$. Пусть c < c'' < c'. Так как $\varphi^{\widehat{n}}$ с-топологически сюръективно, то существует $x' \in X^n$ такое что $\varphi^{\widehat{n}}(x') = y'$ и $\|x'\|_{\widehat{n}} < c''\|y'\|_{\widehat{n}}$. Рассмотрим $x := \alpha' x'$, тогда $t_2^n(\varphi)(x) = \alpha' t_2^n(\varphi)(x') = \alpha' \varphi^{\widehat{n}}(x') = \alpha' y' = y$. Из определения нормы в $t_2^n(X)$ получаем

$$||x||_{t_2^n(X)} \le ||\alpha'||_{hs} ||x'||_{\widehat{n}} \le ||\alpha'||_{hs} c'' ||y'||_{\widehat{n}}$$

Теперь возьмем инфимум по всем представлениям y описанным выше, тогда предложение 1.2 дает $\|x\|_{t_2^n(X)} \le c''\|y\|_{t_2^n(Y)} < c'\|y\|_{t_2^n(Y)}$ Таким образом, для любого $y \in t_2^n(Y)$ и любого c' > c существует $x \in t_2^n(X)$ такой что $t_2^n(\varphi)(x) = y$ и $\|x\|_{t_2^n(X)} < c'\|y\|_{t_2^n(Y)}$. Следовательно $t_2^n(\varphi)$ c-топологически сюръективен.

Пусть $\varphi^{\widehat{n}}$ строго c-топологически сюръективен. Пусть $y \in t_2^n(Y)$ и $y = \alpha' y'$, где $\alpha' \in M_{n,n}$ — обратимая матрица, $y' \in Y^n$. Так как $\varphi^{\widehat{n}}$ c-топологически сюръективно, то существует $x' \in X^n$ такое что $\varphi^{\widehat{n}}(x') = y'$ и $\|x'\|_{\widehat{n}} \le c\|y'\|_{\widehat{n}}$. Рассмотрим $x := \alpha' x'$, тогда $t_2^n(\varphi)(x) = \alpha' t_2^n(\varphi)(x') = \alpha' \varphi^{\widehat{n}}(x') = \alpha' y' = y$. Из определения нормы в $t_2^n(X)$ получаем

$$||x||_{t_2^n(X)} \le ||\alpha'||_{hs} ||x'||_{\widehat{n}} \le ||\alpha'||_{hs} c ||y'||_{\widehat{n}}$$

Теперь возьмем инфимум по всем представлениям y, описанным выше, тогда предложение 1.2 дает $||x||_{t_2^n(X)} \le c||y||_{t_2^n(Y)}$ Таким образом, для любого $y \in t_2^n(Y)$ существует $x \in t_2^n(X)$ такой что $t_2^n(\varphi)(x) = y$ и $||x||_{t_2^n(X)} \le c||y||_{t_2^n(Y)}$. Следовательно $t_2^n(\varphi)$ строго c-топологически сюръективен.

(iv) Пусть $x \in t_2^n(X)$, обозначим $y := t_2^n(\varphi)(x)$. Пусть имеется представление $y = \alpha' y'$, где $\alpha' \in M_{n,n}$ — обратимая матрица, $y' \in Y^n$. Тогда $y' = (\alpha')^{-1} y = (\alpha')^{-1} t_2^n(\varphi)(x) = t_2^n(\varphi)((\alpha')^{-1}x) \in \text{Im}(t_n^2(\varphi))$. Так как $\varphi^{\widehat{n}}$ c-топологически инъективен, то он инъективен, поэтому для $y' \in \text{Im}(t_2^n(\varphi))$ существует $x' \in X^n$ такой что $y' = t_2^n(\varphi)(x') = \varphi^{\widehat{n}}(x')$. Так как $\varphi^{\widehat{n}}$ c-топологически инъективен, то $\|x'\|_{\widehat{n}} \le c\|y'\|$. Из определения нормы в $t_2^n(X)$ следует, что

$$||x||_{t_2^n(X)} \le ||\alpha'||_{hs} ||x'||_{\widehat{n}} \le c ||\alpha'||_{hs} ||y'||_{\widehat{n}}$$

Теперь возьмем инфимум по всем представлениям y, описанным выше, тогда предложение 1.2 дает $\|x\|_{t_2^n(X)} \le c\|y\|_{t_2^n(Y)} = c\|t_2^n(\varphi)(x)\|_{t_2^n(Y)}$. Таким образом, для любого $x \in t_2^n(X)$ выполнено $\|t_2^n(\varphi)(x)\|_{t_2^n(Y)} \ge c^{-1}\|x\|_{t_2^n(X)}$. Следовательно, $t_2^n(\varphi)$ c-топологически инъективен.

Предложение 1.2.6[[1], 1.3.16] Пусть X — секвенциальное операторное пространство и $n \in \mathbb{N}$. Тогда имеют место изометрические изоморфизмы

$$\alpha_X^n: t_2^n(X^{\triangle}) \to (X^{\widehat{n}})^*: f \mapsto \left(x \mapsto \sum_{i=1}^n f_i(x_i)\right) \qquad \beta_X^n: (X^{\triangle})^{\widehat{n}} \to t_2^n(X)^*: f \mapsto \left(x \mapsto \sum_{i=1}^n f_i(x_i)\right)$$

Предложение 1.2.7 Пусть X, Y — секвенциальные операторные пространства, $\varphi \in \mathcal{SB}(X,Y)$ и $n \in \mathbb{N}$, тогда

(i) $(\varphi^{\triangle})^{\hat{n}}$ *с*-топологически инъективен (сюръективен) тогда и только тогда когда $t_2^n(\varphi)^*$ *с*-топологически инъективен (сюръективен)

- (ii) $t_2^n(\varphi^{\triangle})$ *с*-топологически инъективен (сюръективен) тогда и только тогда когда $(\varphi^{\widehat{n}})^*$ *с*-топологически инъективен (сюръективен)
- (iii) верны равенства $\|(\varphi^{\triangle})^{\widehat{n}}\| = \|t_2^n(\varphi)^*\|$ и $\|t_2^n(\varphi^{\triangle})\| = \|(\varphi^{\widehat{n}})^*\|$ и $\|t_2^n(\varphi)\| = \|\varphi^{\widehat{n}}\|$

Доказательство. Пусть $g \in (Y^{\triangle})^{\hat{n}}$ и $x \in t_2^n(X)$, тогда

$$(\alpha_X^n(\varphi^{\triangle})^{\widehat{n}})(g)(x) = \alpha_X^n((\varphi^{\triangle})^{\widehat{n}}(g))(x) = \sum_{k=1}^n (\varphi^{\triangle})^{\widehat{n}}(g)_k(x_k) = \sum_{k=1}^n (\varphi^{\triangle})(g_k)(x_k) = \sum_{k=1}^n g_k(\varphi(x_k))$$

$$(t_2^n(\varphi)^*\alpha_Y^n)(g)(x) = t_2^n(\varphi)^*(\alpha_Y^n(g))(x) = \alpha_Y^n(g)(t_2^n(\varphi)(x)) = \sum_{k=1}^n g_k(t_2^n(\varphi)(x)_k) = \sum_{k=1}^n g_k(\varphi(x_k))$$

Так как g и x произвольны, то $\alpha_X^n(\varphi^{\triangle})^{\widehat{n}} = t_2^n(\varphi)^*\alpha_Y^n$. Так как α_Y^n и α_X^n изометрические изоморфизмы, то мы получаем утверждение (i) и равенство $\|(\varphi^{\triangle})^{\widehat{n}}\| = \|t_2^n(\varphi)^*\|$. Пусть $g \in t_2^n(Y^{\triangle})$ и $x \in X^{\widehat{n}}$, тогда

$$((\varphi^{\widehat{n}})^*\beta_Y^n)(g)(x) = (\varphi^{\widehat{n}})^*(\beta_Y^n(g))(x) = \beta_Y^n(g)(\varphi^{\widehat{n}})(x) = \sum_{k=1}^n g_k(\varphi^{\widehat{n}})(x)_k = \sum_{k=1}^n g_k(\varphi(x_k))$$

Так как g и x произвольны, то $\beta_X^n t_2^n (\varphi^{\triangle}) = (\varphi^{\widehat{n}})^* \beta_Y^n$. Так как β_Y^n и β_X^n изометрические изоморфизмы, то мы получаем утверждение (ii) и равенство $||t_2^n (\varphi^{\triangle})|| = ||(\varphi^{\widehat{n}})^*||$.

Наконец, из предложений 1.2, 1.2 следует что $||t_2^n(\varphi)|| \leq ||\varphi^{\widehat{n}}|| = ||(\varphi^{\triangle})^{\widehat{n}}|| = ||t_2^n(\varphi)^*|| = ||t_2^n(\varphi)||$, т.е. $||t_2^n(\varphi)|| = ||\varphi^{\widehat{n}}||$.

Теорема 1.2.8 Пусть X, Y — секвенциальные операторные пространства и $\varphi \in \mathcal{SB}(X,Y)$, тогда

- $(i)\ \varphi$ (строго) секвенциально c-топологически сюръективен $\Longrightarrow \varphi^\triangle$ секвенциально c-топологически инъективен
- $(ii)\ \varphi$ секвенциально c-топологически инъективен \Longrightarrow строго φ^\triangle строго секвенциально c-топологически сюръективен
- (iii) φ^{\triangle} (строго) секвенциально c-топологически сюръективен $\Longrightarrow \varphi$ секвенциально c-топологически инъективен
- (iv) φ^{\triangle} секвенциально c-топологически инъективен \Longrightarrow φ строго секвенциально c-топологически сюръективен
- (v) φ секвенциально коизометричен $\Longrightarrow \varphi^{\triangle}$ секвенциально изометричен, если X полно, то верно и обратное
 - $(vi)\ arphi$ секвенциально изометричен $\iff arphi^{\triangle}$ секвенциально строго коизометричен

Доказательство. Для каждого натурального числа $n \in \mathbb{N}$ имеем цепочку импликаций

$$\varphi^{\widehat{n}}$$
 с-топологически инъективен $\Rightarrow t_2^n(\varphi)$ с-топологически инъективен 1.2 $\Rightarrow t_2^n(\varphi)^*$ строго с-топологически сюръективен 1.2 $\Rightarrow (\varphi^{\triangle})^{\widehat{n}}$ строго с-топологически сюръективен 1.2 $\Rightarrow t_2^n(\varphi^{\triangle})$ строго с-топологически сюръективен 1.2 $\Rightarrow (\varphi^{\widehat{n}})^*$ строго с-топологически сюръективен 1.2 $\Rightarrow \varphi^{\widehat{n}}$ строго с-топологически инъективен 1.2

Откуда мы получаем (ii) и (iii). Снова для любого $n \in \mathbb{N}$ мы имеем цепочку ипликаций

$$\varphi^{\widehat{n}}$$
 (строго) c -топологически сюръективен $t_2^n(\varphi)$ c -топологически сюръективен $t_2^n(\varphi)^*$ c -топологически инъективен $t_2^n(\varphi)^*$ $t_2^n(\varphi)^*$ $t_2^n(\varphi)^n$ $t_2^n(\varphi)^n$

Откуда мы получаем (i) и (iv). Пункты (v) и (vi) являются прямым следствием (i)—(iv) при c=1 если учесть что φ секвенциально сжимающий тогда и только тогда φ^{\triangle} секвенцильно сжимающий (см. предложение 1.2).

2 Свободные и косвободные объекты

Основные результаты этого раздела получены С. Штейнером. Все необходимые определения, связанные с общекатегорным подходом к проективности, можно найти в работе [2]. Категория полулинейных нормированных пространств описана в [3].

2.1 Метрически свободные секвенциальные пространства

Начнём с рассмотрения метрической версии свободы для секвенциальных операторных пространств. Рассмотрим функтор

$$\square_{sqMet} : SQNor_1 \to Set : X \mapsto \prod \{B_{X^{\widehat{n}}} : n \in \mathbb{N}\}$$
$$\varphi \mapsto \prod \{\varphi^{\widehat{n}}|_{B_{X^{\widehat{n}}}}^{B_{Y^{\widehat{n}}}} : n \in \mathbb{N}\}$$

отправляющий секвенциальное операторное пространство X в декартово произведение единичных шаров каждого из пространств $X^{\hat{n}}$. Легко заметить, что справедливо

Предложение 2.1.1 \square_{sqMet} -допустимыми эпиморфизмами являются в точности секвенциально строго коизометрические операторы.

Mempuчески свободными секвенциальными пространствами естественно называть \square_{sqMet} -свободные объекты. Обозначим через I_n элемент из $(t_2^n)^{\hat{n}} = \mathcal{B}(l_2^n, l_2^n)$, соответствующий тождественному оператору.

Предложение 2.1.2 Пусть X — произвольное секвенциальное операторное пространство и $x \in B_{X^{\widehat{n}}}$. Тогда существует единственный секвенциально сжимающий оператор $\psi_n \in \mathcal{SB}(t_2^n,X)$, такой что $\psi_n^{\widehat{n}}(I_n)=x$.

Доказательство. Итак, $I_n = (e_i)_{i \in \mathbb{N}_n}$, где $e_i - i$ -й орт подлежащего пространства t_2^n . Ясно, что есть только один линейный оператор ψ_n , удовлетворяющий условиям $\psi_n(e_i) = x_i$, $i \in \mathbb{N}_n$. Осталось проверить, что ψ_n является секвенциально сжимающим. Итак, пусть $k \in \mathbb{N}$ и $y \in B_{(t_2^n)^{\widehat{k}}}$, тогда $y_i = \sum_{j=1}^n \alpha_{ij} e_j$, $i \in \mathbb{N}_k$ для некоторой матрицы $\alpha \in M_{k,n}$. Тогда

$$\|\psi_n^{\widehat{k}}(y)\|_{\widehat{k}} = \|(\psi_n(y_i))_{i \in \mathbb{N}_k}\|_{\widehat{k}} = \left\|\left(\sum_{j=1}^n \alpha_{ij}\psi_n(e_j)\right)_{i \in \mathbb{N}_k}\right\|_{\widehat{k}} = \left\|\left(\sum_{j=1}^n \alpha_{ij}x_j\right)_{i \in \mathbb{N}_k}\right\|_{\widehat{k}}$$

$$= \|\alpha x\|_{\widehat{k}} \le \|\alpha\| \|x\|_{\widehat{n}} = \|y\|_{(t_2^n)^{\widehat{k}}} \|x\|_{\widehat{n}} \le 1$$

Предложение доказано.

Предложение 2.1.3 Метрически свободным секвенциальным операторным пространством с базой из одноточечного множества является пространство $t_2^{\infty} := \bigoplus_{1}^{0} \{t_2^n : n \in \mathbb{N}\}.$

Доказательство. Универсальную стрелку определим следующим образом $j:\{\lambda\} \to t_2^\infty: \lambda \mapsto (I_1,I_2,\ldots,I_n,\ldots)$. Пусть X — произвольное секвенциальное операторное пространство, и $\varphi:\{\lambda\} \to \prod_{n\in\mathbb{N}} B_{X^{\widehat{n}}}$. Обозначим $x=\varphi(\lambda)$. Тогда из предложения 2.1 и свойств копроизведения ясно, что существует единственный секвенциально сжимающий морфизм $\psi=\bigoplus_1^0 \{\psi_n:n\in\mathbb{N}\}\in\mathcal{SB}\left(\bigoplus_1^0 \{t_2^n:n\in\mathbb{N}\},X\right)$, такой что $\psi^{\widehat{n}}(i_n(I_n))=x$, для всех $n\in\mathbb{N}$. Здесь $i_n:t_2^n\to t_2^\infty$ — стандартное вложение.

$$\Box_{sqMet}(t_2^{\infty})$$

$$\downarrow j \qquad \qquad \Box_{sqMet}(\psi)$$

$$\{\lambda\} \xrightarrow{\varphi} \Box_{sqMet}(X)$$

В этом случае $\varphi = \square_{sqMet}(\psi)j$. Так как X и φ произвольны то t_2^{∞} метрически свободен и имеет одноточечную базу.

Итак, теперь мы готовы сформулировать итоговый результат, справедливость которого мгновенно вытекает из доказанного выше предложения.

Теорема 2.1.4 Метрически свободным секвенциальным операторным пространством с базой Λ является, с точностью до секвенциального изометрического изоморфизма, \bigoplus_{1}^{0} -сумма копий пространства t_{2}^{∞} , заиндексированных элементами множества Λ .

2.2 Топологически свободные секвенциальные пространства

Перейдём теперь к рассмотрению секвенциальной операторной версии топологической свободы. Рассмотрим функтор

$$\Box_{sqTop}: SQNor \to Nor_0: X \mapsto \bigoplus_{\infty} \{X^{\widehat{n}}: n \in \mathbb{N}\}\$$
$$\varphi \mapsto \bigoplus_{\infty} \{\varphi^{\widehat{n}}: n \in \mathbb{N}\},\$$

то есть секвенциальное операторное пространство X отображается в \bigoplus_{∞} -сумму своих размножений без аддитивной структуры.

Предложение 2.2.1 Пусть $\varphi: X \to Y$ — ограниченный оператор между нормиированными пространствами X и Y, тогда он c-топологически сюръективен тогда и только тогда когда существует ограниченный полулинейный оператор $\rho: Y \to X$ такой что $\|\rho\| \le c$ и $\varphi \rho = 1_Y$.

Доказательство. Допустим, что φ c-топологически сюръективен. Расссмотрим отношение \sim на S_Y определенное следующим образом: $e_1 \sim e_2$ тогда и только тогда когда существует $\alpha \in \mathbb{T}$ такое, что $e_1 = \alpha e_2$. Очевидно, \sim есть отношение эквивалентности, поэтому рассмотрим множество ненулевых представителей классов эквивалентностей, которое обозначим $\{r_\lambda : \lambda \in \Lambda\}$. По построению, для каждого $e \in S_Y$ сущетсвует единственные $\alpha(e) \in \mathbb{T}$ и $\lambda(e) \in \Lambda$ такие, что $e = \alpha(e)r_{\lambda(e)}$. Ясно, что для любых $z \in \mathbb{T}$ и $e \in S_Y$ выполнено $\alpha(ze) = z\alpha(e)$ и $\lambda(ze) = \lambda(e)$. Так как φ c-топологически сюръективен, то, в частности,

для каждого $\lambda \in \Lambda$ существует $x(\lambda) \in X$ такой что $||x(\lambda)|| \leq c||r_{\lambda}||$ и $\varphi(x(\lambda)) = r_{\lambda}$. Рассмотрим, отображение $\tilde{\rho}: S_Y \to X: e \mapsto \alpha(e)x(\lambda(e))$. Легко видеть, что для всех $z \in \mathbb{T}$ и $e \in S_Y$ выполнено $\tilde{\rho}(ze) = z\tilde{\rho}(e), ||\tilde{\rho}(e)|| \leq C$ и $\varphi(\tilde{\rho}(e)) = e$. Теперь рассмотрим отображение $\rho: Y \to X: y \mapsto ||y||\tilde{\rho}(||y||^{-1}y)$ и $\rho(0) = 0$. Используя свойства $\tilde{\rho}$ легко проверить, что ρ — полулинейный оператор такой, что $||\rho|| < C$ и $\varphi \rho = 1_Y$.

Обратно, допустим, что существует ограниченный полулинейный оператор $\rho: Y \to X$ такой, что $\|\rho\| \le c$ и $\varphi \rho = 1_Y$. Возьмем произвольный $y \in Y$ и рассмотрим $x = \rho(y)$, тогда $\|x\| \le C\|y\|$ и $\varphi(x) = y$. Следовательно φ c-топологически сюръективен.

Предложение 2.2.2 \square_{sqTop} -допустимыми эпиморфизмами являются в точности секвенциальные топологически сюрьективные операторы.

Доказательство. Для произвольного секвенциального операторного пространства Z через $i_n^Z:Z^{\widehat{n}}\to \square_{sqTop}(Z)$ обозначим стандартное вложение, а через $p_n^Z:\square_{sqTop}(Z)\to Z^{\widehat{n}}$ обозначим стандартную проекцию. Допустим что $\varphi:X\to Y$ c-секвенциально топологически сюръективен. Фиксируем $n\in\mathbb{N}$, тогда по предложению 2.2 существует ограниченный полулинейный оператор ρ^n такой, что $\varphi^{\widehat{n}}\rho^n=1_{Y^{\widehat{n}}}$ и $\|\rho^n\|\leq c$. Рассмотрим отображение $\rho=\bigoplus_{\infty}\{\rho^n:n\in\mathbb{N}\}$. Для любого $y\in\square_{sqTop}(Y)$ имеем

$$\|\rho(y)\| = \sup\{\|\rho^n(p_n^Y(y))\|_{\widehat{n}} : n \in \mathbb{N}\} \le c \sup\{\|p_n^Y(y)\|_{\widehat{n}} : n \in \mathbb{N}\} = c\|y\|$$

следовательно ρ — полулинейный ограниченый оператор. Более того, $\Box_{sqTop}(\varphi)\rho = 1_{\Box_{sqTop}(Y)}$, значит φ \Box_{sqTop} -допустимый эпиморфизм. Обратно, если φ \Box_{sqTop} -допустимый эпиморфизм, то существует ограниченный правый обратный полулинейный оператор ρ к $\Box_{sqTop}(\varphi)$. Тогда для любого $y \in Y^{\widehat{n}}$ выполнено $\Box_{sqTop}(\varphi)\rho(i_n^Y(y)) = i_n^Y(y)$. В частности $\varphi^{\widehat{n}}(p_n^X(\rho(i_n^Y(y)))) = y$. Положим $x = p_n^X(\rho(i_n^Y(y)))$ и $c = \|\rho\|$, тогда $\varphi^{\widehat{n}}(x) = y$ и $\|x\|_{\widehat{n}} \leq \|\rho(i_n^Y(y))\| \leq c\|i_n^Y(y)\| = c\|y\|_{\widehat{n}}$. Следовательно, φ секвенциально топологически сюръективен.

Топологически свободными секвенциальными пространствами естественно называть \Box_{sqTop} -свободные объекты. Сформулируем и докажем основное утверждение раздела.

Предложение 2.2.3 Пусть F — секвенциальное метрически свободное пространство с базой Λ . Тогда F является секвенциальным операторным топологически свободным с базой \mathbb{C}^{Λ} .

Доказательство. Пусть $j':\Lambda\to\Box_{sqMet}(F)$ — универсальная стрелка в диаграмме для секвенциальной метрической свободы. Определим полулинейный ограниченный оператор $j:\mathbb{C}^{\Lambda}\to\Box_{sqTop}(F):z_{\lambda}\mapsto z_{\lambda}j(\lambda)$. Рассмотрим произвольный ораниченный полулинейный оператор $\varphi:\mathbb{C}^{\Lambda}\to\Box_{sqTop}(X)$, где X — произвольное секвенциальное операторное пространство. Тогда для $\varphi':=\|\varphi\|_{sb}^{-1}\varphi$ существует единственный морфизм ψ' , такой что $\varphi'=\Box_{sqMet}(\psi')j$. Теперь, легко видеть что для морфизма $\psi:=\|\varphi\|_{sb}\psi'$ диаграмма

$$\Box_{sqTop}(F)$$

$$\uparrow j \qquad \qquad \downarrow j$$

$$\mathbb{C}^{\Lambda} \xrightarrow{\varphi} \Box_{sqTop}(X)$$

коммутативна.

Единственность ψ доказывается следующим образом. Пусть для диаграммы выше есть два различных подходящих морфизма ψ_1 и ψ_2 . Обозначим $C = \max(\|\varphi\|_{sb}, \|\psi_1\|_{sb}, \|\psi_2\|_{sb})$, тогда ясно что морфизмы $C^{-1}\psi_1$ и $C^{-1}\psi_2$ подходят для следующей диаграммы, соответствующей

секвенциальной метрической проективности:

$$\square_{sqMet}(F)$$

$$\uparrow^{j'} \qquad ?$$

$$\mathbb{C}^{\Lambda} \xrightarrow{C^{-1}\varphi'} \square_{sqMet}(X)$$

Это противоречит единственности морфизма ψ' , значит ψ единственен.

Как следствие мы получаем описание топологически свободных секвенциальных операторных пространств.

Теорема 2.2.4 Секвенциальное операторное пространство является топологически свободным тогда и только тогда, когда оно секвенциально топологически изоморфно \bigoplus_{1}^{0} -сумме пространств t_{2}^{∞} , заиндексированных элементами некоторого множества Λ .

2.3 Метрически косвободные секвенциальные пространства

Рассмотрим функтор

$$\Box_{sqMet}^{d}: SQNor_{1} \to Set^{o}: X \mapsto \prod \left\{ B_{(X^{\triangle})^{\widehat{n}}}: n \in \mathbb{N} \right\}$$
$$\varphi \mapsto \prod \left\{ (\varphi^{\triangle})^{\widehat{n}} \Big|_{B_{(Y^{\triangle})^{\widehat{n}}}}^{B_{(X^{\triangle})^{\widehat{n}}}}: n \in \mathbb{N} \right\}$$

Предложение 2.3.1 \square_{sqMet}^d -допустимыми мономорфизмами являются в точности секвенциально изометрические операторы.

Доказательство. Морфизм φ является \Box^d_{sqMet} -допустмым мономорфизмом только если $\Box^d_{sqMet}(\varphi)$ обратим слева как морфизм в Set^o . Это равносильно тому что $\Box^d_{sqMet}(\varphi^{\triangle})$ сюръективно. Последнее эквивалентно сюръективности $(\varphi^{\triangle})^{\widehat{n}}|_{B_{(X^{\triangle})}^{\widehat{n}}}^{B_{(Y^{\triangle})}^{\widehat{n}}}$ для всех $n \in \mathbb{N}$. Это означает, что $(\varphi^{\triangle})^{\widehat{n}}$ строго коизометрично для каждого $n \in \mathbb{N}$, т.е. φ^{\triangle} секвенциально строго коизометричен. По теореме 1.2.8 это равносильно тому, что φ секвенциально изометричен.

Mempuчески косвободными секвенциальными пространствами естественно называть \square_{sqMet}^d -косвободные объекты.

Теорема 2.3.2 Метрически косвободным секвенциальным операторным пространством с базой Λ является, с точностью до секвенциального изометрического изоморфизма, \bigoplus_{∞} сумма копий пространства $l_2^{\infty} := \bigoplus_{\infty} \{l_2^n : n \in \mathbb{N}\}$, заиндексированных элементами множества Λ .

Доказательство. Пусть Λ — произвольное множество. Рассмотрим коммутативную диаграмму

$$SQNor_{1}^{o} \xrightarrow{(\square_{sqMet}^{d})^{o}} Set$$

$$\nabla \downarrow \qquad \qquad \downarrow_{1_{Set}}$$

$$SQNor_{1} \xrightarrow{\square_{sqMet}} Set$$

Здесь $^{\nabla}$ есть ковариантная версия функтора $^{\triangle}$. Эта диаграмма коммутативна так как для произвольных секвенциальных операторных пространств X, Y и любого $\varphi \in \mathcal{SB}(X,Y)$

выполнено

$$1_{Set}((\square_{sqMet}^d)^o(\varphi)) = \prod_{n \in \mathbb{N}} (\varphi^{\triangle})^{\widehat{n}} |_{B_{(Y^{\triangle})^{\widehat{n}}}}^{B_{(X^{\triangle})^{\widehat{n}}}} = \square_{sqMet}(\nabla(\varphi))$$

Заметим, что функтор ∇ имеет левый сопряженный функтор, а именно Δ . Аналогично 1_{Set} сопряжен слева к самому себе. По теореме 2.1.4 объект $\bigoplus_{1}^{0} \{t_{2}^{\infty} : \lambda \in \Lambda\}$ \square_{sqMet} -свободен, поэтому по предложению [[2], 4.5] объект $(\bigoplus_{1}^{0} \{t_{2}^{\infty} : \lambda \in \Lambda\})^{\Delta} = \bigoplus_{\infty} \{l_{2}^{\infty} : \lambda \in \Lambda\}$ является $(\square_{sqMet}^{d})^{o}$ свободным, или что то же самое \square_{sqMet}^{d} -косвободным. Так как множество Λ произвольно, получаем, что все \square_{sqMet} -косвободные объекты с базой Λ секвенциально изометрически изоморфны пространствам указанного вида.

2.4 Топологически косвободные секвенциальные пространства

Рассмотрим функтор

$$\Box^d_{sqTop}: SQNor \to Nor_0^o, X \mapsto \bigoplus_{\infty} \{(X^{\triangle})^{\widehat{n}} : n \in \mathbb{N}\}$$
$$\varphi \mapsto \bigoplus_{\infty} \{(\varphi^{\triangle})^{\widehat{n}} : n \in \mathbb{N}\}$$

Предложение 2.4.1 \square_{sqTop}^d -допустимыми мономорфизмами являются в точности секвенциально топологически инъективные операторы.

Доказательство. Морфизм φ является \Box^d_{sqTop} -допустмым мономорфизмом только если $\Box^d_{sqTop}(\varphi)$ обратим слева как морфизм в Nor_0^o . Это равносильно тому что $\Box^d_{sqTop}(\varphi) = \Box_{sqTop}(\varphi^{\triangle})$ обратим справа в как морфизм в Nor_0 . По предложению 2.2.2 это эквивалентно секвенциальной топологической сюръективности φ^{\triangle} . По теореме 1.2.8 это равносильно тому, что φ секвенциально топологически инъективен.

Топологически косвободными секвенциальными пространствами естественно называть \square_{sqTop}^d -косвободные объекты.

Теорема 2.4.2 Секвенциальное операторное пространство является топологически косвободным тогда и только тогда, когда оно секвенциально топологически изоморфно \bigoplus_{∞} сумме пространств l_2^{∞} заиндексированных элементами множества Λ .

Доказательство. Пусть Λ произвольное множество. Рассмотрим коммутативную диаграмму

$$SQNor^{o} \xrightarrow{\left(\square_{sqTop}^{d}\right)^{o}} Nor_{0}$$

$$\nabla \downarrow \qquad \qquad \downarrow^{1_{Nor_{0}}}$$

$$SQNor \xrightarrow{\square_{sqTop}} Nor_{0}$$

Здесь ∇ есть ковариантная версия функтора \triangle . Эта диаграмма коммутативна, так как для произвольных секвенциальных операторных пространств X, Y и любого $\varphi \in \mathcal{SB}(X,Y)$ выполнено

$$1_{Nor_0}((\square_{sqTop}^d)^o(\varphi)) = \bigoplus_{\infty} \{(\varphi^{\triangle})^{\widehat{n}} : n \in \mathbb{N}\} = \square_{sqTop}(\nabla(\varphi))$$

Функтор $^{\nabla}$ имеет левый сопряженный функтор, а именно $^{\triangle}$. Аналогично 1_{Nor_0} сопряжен слева к самому себе. По теореме 2.2.4 объект $\bigoplus_{1}^{0} \{t_2^{\infty} : \lambda \in \Lambda\}$ \square_{sqTop} -свободен, поэтому по предложению [[2], 4.5] объект $(\bigoplus_{1}^{0} \{t_2^{\infty} : \lambda \in \Lambda\})^{\triangle} = \bigoplus_{\infty} \{l_2^{\infty} : \lambda \in \Lambda\}$ является $(\square_{sqTop}^{d})^{o}$ -свободным, или что то же самое \square_{sqTop}^{d} -косвободным. Получаем, что все \square_{sqTop} -косвободные объекты с базой \mathbb{C}^{Λ} секвенциально топологически изоморфны пространствам указанного вида.

Список литературы

- [1] Lambert A. Operatorfolgenräume. Eine Kategorie auf dem Weg von den Banach-Räumen zu den Operatorräumen. Dissertation zur Erlangung des Grades Doktor der Naturwissenschaften der Technisch-Naturwissenschaftlichen Fakultät I der Universität des Saarlandes. Saarbrücken, 2002.
- [2] Хелемский А. Я. Метрическая свобода и проективность для классических и квантовых нормированных модулей, Матем. сб., 204:7 (2013), 127–158
- [3] Штейнер С. М. Топологическая свобода для классических и квантовых нормированных модулей // Вестник СамГУ. 2013. № 9/1 (110). С.49–57.