Double categories and structured categories

Charles Ehresmann

EHRESMANN, C. "Catégories doubles et catégories structurées". C. R. Acad. Sc. 256 (1963), 1198–1201.

Abstract

Definition of structured categories; the particular case of double categories, which admit a **TO-DO** as a quotient category.

1 Double categories

p. 1

Definition. We define a *double category* to be a class \mathscr{C} endowed with two composition laws, denoted \bullet and \bot , satisfying the following conditions:

- 1. (\mathscr{C}, \bullet) is a category, denoted \mathscr{C}^{\bullet} ; the right and left **TO-DO** of $f \in \mathscr{C}$ will be denoted by $\alpha^{\bullet}(f)$ and $\beta^{\bullet}(f)$ respectively, and the class of **TO-DO** by $\mathscr{C}_{0}^{\bullet}$;
- 2. (\mathscr{C}, \perp) is a category, denoted \mathscr{C}^{\perp} ; the **TO-DO** of $f \in \mathscr{C}^{\perp}$ will be denoted by $\alpha^{\perp}(f)$ and $\beta^{\perp}(f)$ respectively, and the class of **TO-DO** by \mathscr{C}_0^{\perp} ;
- 3. The maps α^{\bullet} and β^{\bullet} (resp. α^{\perp} and β^{\perp}) are functors from \mathscr{C}^{\perp} to \mathscr{C}^{\perp} (resp. from \mathscr{C}^{\bullet} to \mathscr{C}^{\bullet}):
- 4. Axiom of permutability. If the composites $k \cdot h$, $g \cdot f$, $k \perp g$, and $h \perp f$ are defined, then

$$(k \bullet h) \perp (g \bullet f) = (k \perp g) \bullet (h \perp f).$$

Let $\mathscr C$ be a class endowed with two composition laws \bullet and \bot satisfying axioms 1 and 2; consider the following axioms:

- 3'. \mathscr{C}_0^{\bullet} (resp. \mathscr{C}_0^{\perp}) is stable with respect to \perp (resp. to \bullet);
- 4'. If the composites $k \cdot h$, $g \cdot f$, $k \perp g$, and $h \perp f$ are defined, then both $(k \cdot h) \perp (g \cdot f)$ and $(k \perp g) \cdot (h \perp f)$ are defined and are equal to one another.
- 5. For all $f \in \mathcal{C}$, we have

$$\alpha^{\bullet}(\alpha^{\perp}(f)) = \alpha^{\perp}(\alpha^{\bullet}(f)), \qquad \beta^{\bullet}(\beta^{\perp}(f)) = \beta^{\perp}(\beta^{\bullet}(f));$$

$$\alpha^{\bullet}(\beta^{\perp}(f)) = \beta^{\perp}(\alpha^{\bullet}(f)), \qquad \alpha^{\perp}(\beta^{\bullet}(f)) = \beta^{\bullet}(\alpha^{\perp}(f)).$$

Proposition. For $(\mathscr{C}, \bullet, \bot)$ to be a double category, it is necessary and sufficient that conditions 1, 2, 3', 4', and 5 be satisfied. In this case, \mathscr{C}_0^{\bullet} (resp. \mathscr{C}_0^{\bot}) is a subcategory of \mathscr{C}^{\bullet} (resp. \mathscr{C}^{\bot}).

A *double subcategory* of a double category $\mathscr C$ is a subclass $\mathscr C'$ of $\mathscr C$ that is a subcategory of $\mathscr C^{\bullet}$ and of $\mathscr C^{\perp}$; then $\mathscr C'$ is a double category for the composition laws induced by \bullet and \perp .

 $\textbf{Definition}. \ Let$