Clase 11.1

III CONTINUIDAD DE FUNCIONES

Introducción.

Intuitivamente la continuidad de una función y = f(x) significa que, si x está próximo a un punto x_0 , entonces f(x) está muy cercano a $f(x_0)$ tanto como nosotros queremos; es decir, no se producen saltos bruscos de la función en el punto x_0 .

Figura a: Función continua en x₀

Figura b: Función discontinua en x₀

Figura c: Función discontinua en x₀

Figura d: Función discontinua en x_0

Definición de continuidad de una función en un punto x₀.

Una función f(x) se dice que es continua en un punto x_0 si se verifica a la vez las siguientes condiciones:

- 1. $\lim_{x \to x_0} f(x)$ existe y es propio
- 2. $f(x_0)$ existe

3.
$$\lim_{x \to x_0} f(x) = f(x_0)$$

Observación. Para que exista el $\lim_{x\to x_0} f(x)$ no necesariamente f debe estar definida en x_0 .

Ejemplos de funciones continuas

- 1. La función constante es continua en todo punto. En efecto si f(x) = K, entonces:
 - $a. \quad \lim_{x \to x_0} K = K$
 - b. $f(x_0) = K$
 - c. K = K
- 2. La función identidad es continua en todo punto de su dominio que son los reales.
- 3. Las funciones polinómicas son continuas en todo su dominio que son los reales.
- 4. Las funciones racionales $f(x) = \frac{p(x)}{q(x)}$ son continuas, excepto en los puntos donde q(x) = 0.
- 5. Las funciones sen(x) y cos(x) son continuas en todo los reales.
- 6. La función exponencial es continua en todo los reales
- 7. La función logarítmica es continua en x > 0

Ejemplos

- 1. Estudiar la continuidad de la función $f(x) = \frac{x^2 1}{x 1}$ en x = 1
 - a. $\lim_{x \to 1} \frac{x^2 1}{x 1} = \frac{1^2 1}{1 1} = \frac{0}{0}$ indeterminado

$$\lim_{x \to 1} \frac{(x-1)(x+1)}{(x-1)} = \lim_{x \to 1} (x+1) = 1+1=2 \text{ existe y es propio}$$

b.
$$f(1) = \frac{1^2 - 1}{1 - 1} = \frac{0}{0}$$
 no existe

c. No se puede ni comparar

Por tanto, la función dada no es continua en x = 1

2. Estudiar la continuidad x = 0 y en x = 2 de la siguiente función:

$$f(x) = \begin{cases} x^2 - 1 & \text{si } x \le 0\\ 2x - 1 & \text{si } 0 < x \le 2\\ x + 5 & \text{si } x > 2 \end{cases}$$

En x = 0

a.
$$\lim_{x \to 0} f(x) \to \to \to \to \lim_{x \to 0^{-}} (x^{2} - 1) = 0^{2} - 1 = -1$$

$$\lim_{x \to 0^{+}} (2x - 1) = 2(0) - 1 = -1$$
Entonces $\lim_{x \to 0} f(x) = -1$
b. $f(0) = 0^{2} - 1 = -1$

b.
$$f(0) = 0^2 - 1 = -1$$

c.
$$-1 = -1$$

f(x)es continua en x = 0

En x = 2

a.
$$\lim_{x \to 2} f(x) \to \to \to \lim_{x \to 2^{-}} (2x - 1) = 2(2) - 1 = 3$$

$$\lim_{x \to 2^{+}} (x + 5) = 2 + 5 = 7$$
 Entonces
$$\lim_{x \to 2} f(x)$$
 no existe

Por tanto, la función no es continua en x = 2

EJERCICIOS PROPUESTOS

- 1. Estudiar la continuidad de la siguiente función $f(x) = |x^2 2x| + 3$
- 2. Halle el valor de k para que la siguiente función sea continua en todo los reales

$$f(x) = \begin{cases} -x^2 + 2 & \text{si } x \le -2\\ kx & \text{si } x > -2 \end{cases}$$

Clase 11.2

Teoremas sobre continuidad de funciones

Teo.1. Sea f y g dos funciones continuas en un punto x_0 , entonces:

- a. $(f \pm g)$ es continua en x_0
- b. (f.g) es continua en x_0
- c. $\left(\frac{f}{g}\right)$ con $g(x) \neq 0$ es continua en x_0

(la demostración que omitimos se hace con propiedades de los límites)

Teo.2. PRINCIPIO DE INTERCALACIÓN (TEOREMA DEL SANDWICH)

Si f, g ,h son funciones tales que $f(x) \leq g(x) \leq h(x)$, $\forall x \in N(x_0, \delta)$ y si además $\lim_{x \to x_0} f(x) = A = \lim_{x \to x_0} h(x)$, entonces $\lim_{x \to x_0} g(x) = A$

Teo.3. Si f es continua en x_0 y g es continua en $f(x_0)$, entonces gof es continua en x_0

Teo.4. Sifes continua en Ly $\lim_{x\to a} g(x) = L$, entonces $\lim_{x\to x_0} f(g(x)) = f(L)$

Teo.5. La inversa de una función continua, si existe, es continua

Teo.6. Si f es continua en [a, b] entonces, f es acotada en [a, b]

Teo.7. Si f es continua en [a, b], entonces f toma sus valores máximos y mínimos en [a, b]

Teo. 9, de Bolzano. Si f es continua en [a, b]. Si f(a) y f(b) tiene diferente signo, existe al menos un $c \in [a, b]$ tal que f(c) = 0

Teo. 10. Del valor intermedio. Sea f continua en [a, b], $si\ f(a) \neq f(b)$, entonces f toma todos los valores comprendidos entre f(a) y f(b)

DEFINICIÓN. F es continua en un intervalo [a,b] ssi f es continua en cada punto de [a,b]. En a y b se considera continuidad por la derecha y por la izquierda respectivamente.

Ejemplos

1. Demostrar que $h(x) = (x^2 + x + 1)^{\frac{3}{2}}$ es continua en todos los reales

Considerando $f(x) = x^{\frac{3}{2}}$ y $g(x) = x^2 + x + 1$ y que las dos son funciones existen y son continuas en todos los reales, entonces por el teo.3 h = fog también es continua en todos los reales.

2. Demostrar que la función $f(x) = x^3 - 2x^2 - 2$ tiene al menos una raíz en el intervalo [2,3]

Como el dominio de f(x) es polinómica, es continua en todos los reales; entonces:

$$f(2) = 2^3 - 2 \cdot 2^2 - 2 = -2 < 0$$

$$f(3) = 3^3 - 2 \cdot 3^2 - 2 = 7 > 0$$

Distinto signo, por el teorema de Bolzano existe un c tal que f(c)= 0, el c es la raíz que habrá que calcular.

EJERCICIOS PROPUESTOS

- 1. Demostrar que $f(x) = (\log x)^3$ es continua en todo punto x > 0
- 2. Demostrar que $f(x) = \sqrt[3]{\cos^2 x + 1}$ es continua en todos los reales.

Discontinuidad de funciones. Tipos.

Una función f(x) se dice que es discontinua en x_0 si f(x) no es continua. En este caso se puede distinguir dos posibilidades.

- a. Si no existe el $\lim_{x\to x_0} f(x)$ o su límite es impropio, se dice que la discontinuidad es esencial o **inevitable**.
- b. Si existe el $\lim_{x \to x_0} f(x)$ y es propio, se dice que la discontinuidad **es evitable**

Figura a. No existe límite. Disc. Inevitable

Figura b. Existe límite. Disc. Evitable

Observación: La discontinuidad se dice evitable, porque se puede redefinir la función para que sea continua.

Ejemplos

1.

- a) Determinar si la función $f(x) = 2\frac{x^2 x}{x 1}$ es continua o discontinua.
- b) ¿Si es discontinua de qué tipo es?
- c) Si es evitable, redefina para que sea continua
 - a) **El dominio de f(x) es $\mathbb{R}-\{1\}$, por lo que el problema de continuidad está en x = 1

Entonces:
$$\lim_{x \to 1} 2 \frac{x^2 - x}{x - 1} = 2 \frac{1^2 - 1}{1 - 1} = \frac{0}{0}$$
 indeterminado
$$\lim_{x \to 1} \frac{2x(x - 1)}{x - 1} = \lim_{x \to 1} 2x = 2(1) = 2$$

$$f(1) = 2 \frac{(1^2 - 1)}{1 - 1} = \frac{0}{0}$$
 no existe

Por tanto la función no es continua en $x = 1$

- b) Como existe el límite (es 2) la continuidad es de tipo evitable
- c) Al redefinir, pongo el valor del límite en el valor de la función en el punto donde no existe, de la siguiente manera:

$$f(x) = \begin{cases} 2\frac{x^2 - x}{x - 1} & \text{si } x \neq 1\\ 2 & \text{si } x = 1 \end{cases}$$

De esta manera ya podemos probar que la función redefinida es continua.

Continuidad lateral. Definiciones

- a. Se dice que f(x) es continua en x₀ por la izquierda si $\lim_{x \to x_0^-} f(x) = f(x_0)$ b. Se dice que f(x) es continua en x₀ por la derecha si $\lim_{x \to x_0^+} f(x) = f(x_0)$

Observación. Se dice que f(x) es continua en x_0 si y solo si f es continua por la derecha y por la izquierda y sus límites son iguales.

Ejemplos.

1. Determinar la continuidad de la función $f(x) = \begin{cases} 2 & \text{si } x < 3 \\ 3 & \text{si } x > 3 \end{cases}$ en x = 3

 $\lim_{x\to 3^-} f(x) = \lim_{x\to 3^-} 2 = 2$, entonces es continua por la izquierda en x=3

 $\lim_{x\to 3^+} f(x) = \lim_{x\to 3^+} 3 = 3$, entonces es continua por la derecha en x=3

Pero como $2 \neq 3$, entonces f(x) no es continua en x = 3

Clase 11.3 PAE

- 1. Estudiar la continuidad de $f(x) = \begin{cases} \frac{x}{x^2 1} & si \ x < 0 \\ 3x + 1 & si \ x \ge 0 \end{cases}$ 2. Estudiar la continuidad de $f(x) = \begin{cases} \frac{x^2 1}{x + 1} & si \ x \le 1 \\ \frac{1 x}{x} & si \ 1 < x \le 3 \\ \frac{2x}{x 5} & si \ x > 3 \end{cases}$

Trabajo Autónomo TA 2.1

Resolver los ejercicios propuestos esta semana