Coq - Fiche

October 26, 2023

THEVENET Louis

Table des matières

1.	Déduction naturelle	1
2.	Spécificité de Coq	1
	Logique des prédicats	
	Preuves de programmes fonctionnels	
	4.1. Types inductifs	
	Documentation utile	

1. Déduction naturelle

Exemple: Exemples utiles

Nom	Tactique	Utilité
$I_{ ightarrow}$	intro H.	
$I_{orall}$	intro x.	Se débarasser du \forall , x devient une hypothèse, marche aussi pour les \rightarrow
	intros.	Fait des intro. jusqu'à ne plus pouvoir, à faire au début d'une preuve
E_{\forall}	generalize y.	généraliser une formule
$I_{=}$	reflexivity.	Axiome égalité
$E_{=}$	$\text{rewrite} \to \mathbf{H}$	Si on a $a=b$ en hypothèse, on peut remplacer a par b

2. Spécificité de Coq

Définition 2.1: Coq permet de travailler à la fois sur les conclusions (ce qu'on prouve) **et** sur les hypothèses. Par exemple on *casse* l'hypothèse :

Exemple:

destruct H as (Hpsi, Hpsi) permet de réaliser

$$\frac{\Gamma, \operatorname{Hpsi}: \varphi \vdash \chi, \operatorname{Hpsi}: \psi \vdash \chi}{\Gamma, H: \varphi \land \psi \vdash \chi}$$

 $\mbox{\tt destruct H as [Hpsi] permet de r\'ealiser une disjonction de cas, on obtient deux choses à prouver.}$

$$\frac{\Gamma, \operatorname{Hpsi}: \varphi \vdash \chi, \operatorname{Hpsi}: \psi \vdash \chi}{\Gamma, H: \varphi \lor \psi \vdash \chi}$$

 $Exemple : \mathsf{cut} \ (\varphi)$

Pour prouver ψ , on peut montrer $\varphi \wedge \varphi \to \psi$

$$\frac{\Gamma \vdash \varphi \to \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi}(\text{cut }(\varphi))$$

3. Logique des prédicats

Ici on commence à quantifier et à utiliser des règles comme generalize x, voir $coq_formulaire.pdf$

Définition 3.1: pose proof H as (x_1, H1)

Si l'hypothèse H est du type $\exists x_1 : A, \varphi$, on applique cette hypothèse et on obtient $x_1 : A$ et $\exists x_1 : A \in A$ et $\exists x_2 \in A$ et $\exists x_3 \in A$ et $\exists x_4 \in A$ et $\exists x_4$

Si H est du type $\forall x : A, \exists y : A, \varphi$:

- pose proof H as (y, H1) va prendre un x qui n'existe pas forcément
- pose proof (H x) as (y, H1) on a $\operatorname{donn\'e} \operatorname{le} x$

Définition 3.2: exists x1

Si on veut prouver un exists x : A, $P \times y$, et qu'on a un x1, on peut l'exhiber pour n'avoir plus qu'à prouver $P \times 1$ y. On dit à Coq « voilà le x que tu veux »

Définition 3.3: apply H ou apply (H x y)

On applique un lemme avec ou sans hypothèses. Par exemple, si on a une équivalence, on peut passer de d'un côté à l'autre en fournissant si besoin les variables à utiliser

4. Preuves de programmes fonctionnels

Définition 4.1: rewrite H

Applique une hypothèse de la forme G=D en remplaçant les termes, de gauche à droite (rewrite \leftarrow H pour l'autre sens)

4.1. Types inductifs

Définition 4.1.1: induction x démarre une preuve par induction sur x

5. Documentation utile

• https://le.qun.ch/en/blog/coq/