Potenzreihen Begriff

Die Reihe
$$\sum_{n=0}^{\infty} a_n (x-x_0)^n$$
 heißt Potenzreihe mit dem Mittelpunkt x_0 .

Sie ist für jedes feste $x \in \mathbb{R}$ eine Zahlenreihe.

Mit Hilfe des Quotienten- bzw. Wurzelkriteriums für Zahlenreihen ergibt sich, dass eine Potenzreihe in einem symmetrisch um \mathbf{x}_0 gelegenen sogenannten

Konvergenzintervall $I := (x_0 - r; x_0 + r)$ absolut konvergent ist. Dabei ist r der

Konvergenzradius:
$$r = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}}$$
 (1).

Satz 1: Die Potenzreihe $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ ist absolut konvergent für alle x mit

 $|x-x_0| < r$, d.h. für $x \in \overline{I}$. Sie ist divergent für alle x mit $|x-x_0| > r$.

- Achtung: Die Formel (1) nicht verwechseln mit dem Quotienten- bzw. Wurzelkriterium, dort Zahlenreihen $\sum a_n$, hier Potenzreihen $\sum a_n(x-x_0)^n$, d.h., a_n ist hier nur der Faktor von $(x-x_0)^n$!
- Falls die Grenzwerte in (1) nicht existieren, gibt es trotzdem einen Konvergenzradius, der dann auf andere Weise, z.B. mittels Substitution berechenbar ist.
- Der Satz 1 gibt keine Auskunft über das Verhalten an den Randpunkten des Konvergenzintervalls. Hier sind gesonderte Untersuchungen notwendig, um den

Konvergenzbereich
$$K = \{x \in R \mid \sum_{n=0}^{\infty} a_n (x - x_0)^n \text{ ist konvergent} \}$$
 zu erhalten.

Beispiel: Gegeben sei die Potenzreihe $\sum_{n=1}^{\infty} \frac{x^n}{n}$, d.h. es ist $x_0 = 0$, $a_n = 1/n$.

 $\begin{aligned} &\text{Man erhält z.B. mit der Quotientenformel aus (1): } \left| \frac{a_n}{a_{n+1}} \right| = \frac{1/n}{1/(n+1)} = \frac{n+1}{n} \underset{n \to \infty}{\longrightarrow} 1, \\ &\text{also } r = 1 \implies I = (x_0 - r \ ; x_0 + r) = (-1 \ ; 1) \, . \end{aligned}$

Randpunkte: x = -1 ergibt die Zahlenreihe $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$, dies ist konvergent auf

Grund des Leibniz-Kriteriums für alternierende Reihen.

x=1 ergibt die Zahlenreihe $\sum_{n=1}^{\infty} \frac{1}{n}$, diese ist divergent (harmonische Reihe bzw.

Vergleichsreihe $\sum 1/n^{\alpha}$ mit $\alpha = 1$). Damit Konvergenzbereich: K = [-1; 1).

Satz 2: Die Grenzfunktion jeder Potenzreihe ist im Konvergenzbereich stetig.