Física dos Semicondutores e Nanoestruturas

Introdução geral

Considerações prévias-Contextualização

Consideremos uma placa de **cobre**, um pedaço de **silício monocristalino** e um **cristal de quartzo**.

Algumas das diferenças mais marcantes dos sólidos citados são, por exemplo,

a cor, o brilho,

dureza e a ductilidade (deformabilidade plástica).

A cor e o brilho são obviamente propriedades que têm que ver com a absorção e reflexão da luz

A dureza e a ductilidade são propriedades mecânicas.
Têm a ver com a **estrutura atómica e molecular**

São propriedades de carácter electromagnético, ou seja têm que ver com interacções entre a radiação electromagnética e a matéria.

Estão associadas ao conceito de ligação química.

Estes sólidos possuem também grandes diferenças na sua resistência eléctrica

• o cobre é um metal típico e por isso um bom condutor. A sua resistividade, à temperatura ambiente, é da ordem do $\mu\Omega$ cm. Se medirmos a resistividade eléctrica a várias temperaturas, verifica-se que ela aumenta quando se aumenta a temperatura.

o silício (puro), é um semicondutor.

Tem uma resistividade da ordem de $10^5 \,\Omega$ cm, à temperatura ambiente. Se medirmos a resistividade eléctrica a várias temperaturas, verifica-se que esta **diminui** quando se aumenta a temperatura.

o quartzo é um isolador.

A sua resistividade é muito elevada.

É da ordem de 10^{14} - $10^{16}\,\Omega$ cm, à temperatura ambiente.

? O que é a resistividade, ρ , (ou a condutividade, $\sigma = 1/\rho$)?

Sabemos que a corrente eléctrica significa movimento "ordenado" de portadores de carga (electrões nos metais) -na presença de um campo eléctrico-.

Experimentalmente, num condutor e para campos não muito intensos, é válida a lei de Ohm;

J- densidade de corrente; E- campo eléctrico; σ- condutividade

• Esta lei pode também escrever como: J = nqv

q- carga elementar; n- densidade de portadores por unidade de volume; v- velocidade média dos portadores

O que origina a corrente eléctrica é o campo aplicado.

Este provoca nos eletrões uma velocidade orientada, a qual, no modelo de Drude, que iremos rever, se sobrepõe à velocidade caótica resultante das colisões com os iões positivos do sólido (cuja resultante é nula).

Note-se que, segundo a lei de Ohm, as cargas não são aceleradas.

O campo eléctrico equilibra o atrito das colisões e a velocidade média dos eletrões mantém-se constante.

- Qual significado físico de n (número de cargas por unidade de volume); como se determina?
- Qual significado físico de v (velocidade média dos electrões no sólido, sob a acção do campo exterior); como se determina?

? Qual significado físico de n (número de cargas por unidade de volume); como se determina?

Implica a escolha de um modelo

Podemos, por exemplo, admitir que nos sólidos existem electrões livres e que n representa o número de electrões livres por unidade de volume.

Assim, para explicar os valores típicos de resistividade:

- o cobre teria muitos electrões livres por unidade de volume,
- o silício teria muito menos e
- os sólidos isoladores, como o quartzo, não teriam quase nenhuns.

? Serão os eletrões, de facto, livres?

Se o fossem, seriam acelerados, e a condutividade aumentaria com o tempo. (F=ma; F=qE; v=vo+at)

Consideremos, então que n é o número de eletrões que de uma maneira ou de outra, se podem mover (e não propriamente livres).

? Como medir ou calcular esse número?

Por outro lado sabemos que nos metais, como o cobre, ρ aumenta com T, enquanto que nos semicondutores, como o silício, ρ diminui com T.

? Então será que o número de eletrões varia com a temperatura?

- ? Ou será a velocidade que varia com a temperatura?
- ? Ou ambos?
- ? De que modo?

Introdução: Propriedades dos materiais

Algumas propriedades importantes dos Materiais:

- podem ou não conduzir corrente eléctrica (metais ou isolantes);
- conduzem calor com diferentes graus de eficiência (condutividade térmica);
- condutividade térmica e condutividade eléctrica estão fortemente correlacionadas;
- a variação do calor especifico com a temperatura é muito diferente para metais e isolantes;
- metais -brilham e os isolantes não.
- alguns materiais apresentam propriedades magnéticas;

Experimentalmente medem-se propriedades macroscópicas, como sendo:

- módulo de elástico;
- condutividade eléctrica;
- condutividade térmica;
- índice de refracção e coeficiente de absorção; ...

Estas propriedades são normalmente bem explicadas pelo **modelo clássico contínuo do sólido**

Assume que as propriedades são uniformes, obtendo-se um valor para σ; K, n, ...

Este modelo não considera a estrutura interna do material em termos de natureza dos átomos, eletrões e suas distribuições

Não descreve a anisotropia das propriedades

As propriedades macroscópicas são o que interessa para a sua utilização,

Para compreender o comportamento das várias propriedades é necessário conhecer a estrutura atómica e electrónica dos materiais.

são as que interessam do ponto de vista de aplicações (na maioria dos dispositivos) e são as que são mesuráveis são importantes pois
permitem explicar e
compreender
as propriedades
macroscópicas, ou seja
permitem perceber
porque é que as
propriedades
macroscópicas variam de
material para material.

As propriedades microscópicas estão directamente relacionadas com a estrutura (microscópica) do material

Como se quantificam as propriedades Materiais?

Resistividade varia muito: $1/\sigma=\rho$ ρ diamante= $10^{16}\,\Omega$ m ρ Al =2.8 x10⁻⁸ Ω m

 ρ Si = 2.3x10³ Ω m

n= c/velocidade da luz no material n@500nm nAl= 1.2; k = 12.4 nCu=0.44; k=8.5 E= Stress aplicado/strain resultante= σ/ϵ EAI= $7x10^{10}$ Pa Eaço= $2x10^{11}$ Pa EFe= $2.1x10^{11}$ Pa K varia :

KAI= 237 W/(mK)

Kvidro= 0.8 W/(mK)

Kdiamante=1000 W/(mK)

Q1: As propriedades macroscópicas dos materiais estão relacionadas umas com as outras?

Ou seja:

Existe relação entre propriedades eléctricas, térmicas e ópticas?

Sim, existe um mecanismo comum entre várias propriedades: regra geral um material bom condutor térmico também o é electricamente e regra geral também é opticamente bom.

R1: Lei de Hagen-Rubens

Relaciona as propriedades eléctricas e ópticas num material

A reflectividade, R, é a razão entre a intensidade de luz reflectida e a intensidade de luz incidente

É uma prop. muito importante para a escolha de materiais por ex. para painéis solares. Parâmetro importante para $\lambda>3$ um (R =1)

R2: Lei de Wiedeman-Franz

Relação entre as propriedades eléctricas e térmicas num material (metal)

$$\frac{K}{\sigma xT} = 2.4x10^{-8} J\Omega K^{-2} s^{-1}$$

Bom condutor eléctrico é geralmente bom condutor térmico, pois se K aumenta, então σ também tem que aumentar (para uma dada T)

Physics of Semiconductor Nanostructures

Why study the physics?
What's interesting physics?
How to study the physics?
Understand better the
physics, then...

What's SC? Why SC?

What's "structure"? What's "nano-scale"? Why nanostructures?

Metal, Insulator and Semiconductor

	Conductor	Semiconductor	Insulator
	(Cu, Ag)	(Si, GaAs)	(SiO2,)
Resistivity ρ(Ohm.cm)	$10^{-6} \sim 10^{-2}$	$10^{-2} \sim 10^9$	$10^{14} \sim 10^{22}$

$$\rho_{metal} < \rho_{SC} << \rho_{ins}$$