המשפט היסודי

נערך ע"י אמיר קסיס

תזכורת:

- . רציפה $F\left(x
 ight)=\int_{a}^{x}f\left(t
 ight)dt$ אזי אינטגרבילית. פונקציה פונקציה $f:\left[a,b\right]
 ightarrow\mathbb{R}$ תהי
- F'(x)=f(x) המשפט היסודי: תהי $F(x)=\int_a^x f(t)\,dt$ אזי רציפה. אזי $f:[a,b] o\mathbb{R}$ גזירה ו־ F(x)=f(x) בפרט, ל־ f יש פונקציה קדומה.

הכללה (בהנחות הנכונות):

$$\frac{d}{dx} \int_{B(x)}^{A(x)} f(t) dt = f(A(x)) \cdot A'(x) - f(B(x)) \cdot B'(x)$$

אזי שלה. קדומה קדומה F פונקציה רציפה, ותהי ווהי $f:[a,b] o \mathbb{R}$ ההי קדומה שלה. אזי •

$$\int_{a}^{b} f(t) dt = F(b) - F(a)$$

ניסוח אחר שימושי:

$$\int_{a}^{b} F' = F(b) - F(a)$$

אז: [a,b] בי נגזרות רציפות יש נגזרות אם ב' בחלקים): אם סשפט (אינטגרציה בחלקים): אם יש

$$\int_{a}^{b} uv' = uv \mid_{a}^{b} - \int_{a}^{b} u'v$$

משפט (שינוי משתנים): תהי $f:[a,b] o \mathbb{R}$ רציפה ותהי לאו דווקא $\phi:[a,b] o [a,b]$ רציפה ותהי לאו דווקא • $\phi:[a,b] o [a,b]$ אזי:

$$\int_{a}^{b} f(x) dx = \int_{a}^{\beta} f(\phi(t)) \phi'(t) dt$$

תרגילים:

 $\int_0^1 f = f\left(c
ight)$ כך ש־ כך סכך אז קיימת קיימת הוכח\הפרך: אם אינטגרבילית רימן ב־ $f:\left[0,1
ight]$ אינטגרבילית אינטגרבילית רימן ב־ 1. <u>פתרון:</u>

$$.f=\chi_{\left[rac{1}{2},1
ight]}$$
 לא נכון. ניקח

עבור איזה ערך של x לאינטגרל 2.

$$\int_{x}^{x+3} t \left(5 - t\right) dt$$

יש ערך מקסימלי?

נגדיר $\lim_{|x|\to\infty}f=-\infty$ כמו כן, כמו $\lim_{|x|\to\infty}f=-\infty$ זו פונקציה גזירה לכל $f(x)=\int_x^{x+3}t\,(5-t)\,dt$ לכן יש לה מקסימום גלובלי. נגזור:

$$f'(x) = (x+3)(5-x-3) \cdot 1 - x(5-x) \cdot 1$$

f אם ואק אם x=1 לכן זהו בהכרח המקסימייזר של x=1

3. חשבו את

$$\lim_{x \to 0} \frac{\int_0^{x^2} \tan(t) dt}{\int_0^{\sin x} t^2 dt}$$

פתרון:

ע"י לופיטל (מונה ומכנה שואפים לאפס), נגזור מונה ומכנה, ונקבל:

$$\frac{\tan(x^2) \cdot 2x}{\left(\sin x\right)^2} \qquad \qquad \blacksquare$$

0 אם לוקחים x o 0 אם לוקחים אם

4. הוכיחו ש־

$$\int_0^{\frac{\pi}{2}} \sin^{2n}(x) \, dx = \frac{\pi}{2} \cdot \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n}$$

פתרון:

נבצע אינטגרציה בחלקים:

$$\int_0^{\frac{\pi}{2}} \sin^{2n}(x) \, dx = \int_0^{\frac{\pi}{2}} \sin^{2n-1}x \sin x dx = (2n-1) \int_0^{\frac{\pi}{2}} \left(1 - \sin^2x\right) \sin^{2n-2}x dx$$

נסמן ב־ I_n את האינטגרל הנתון ואז ע"י העברת אגפים:

$$I_n = \frac{2n-1}{2n} I_{n-1}$$

ולכן:

$$I_n = \frac{2n-1}{2n} \cdot \frac{2n-3}{2n-2} \cdot \dots \cdot \frac{1}{2} I_0, \ I_0 = \frac{\pi}{2}$$

.[1,2] אינטגרבילית רימן בי ווxשר הקודם האינו בי בתרגול \star .5 חשבו את הגבול

$$\lim_{n\to\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n} \right)$$

פתרון:

בתרגול הקודם, הוכחנו ש־ $\frac{1}{x}$ אינטגרבילית בקטע [1,2]. מסכומי דרבו היגענו לסכום ואמרנו שאם היינו יודעים מה האינטגרל שווה, היינו יודעים לאן סכום הזה מתכנס. עכשיו אנחנו יודעים מהו האינטגרל: יודעים מהו האינטגרל שווה, היינו שכקחנו שם, P_n , ואז:

$$U(P_n) = \sum_{i=1}^{n} \frac{1}{1 + \frac{i-1}{n}} \frac{1}{n} = \sum_{i=1}^{n} \frac{1}{n + (i-1)} = \sum_{i=0}^{n-1} \frac{1}{n+k} = \sum_{k=1}^{n} \frac{1}{n+k} + \frac{1}{n} - \frac{1}{2n}$$

ידוע ש־ $U\left(P_{n}
ight)
ightarrow\ln2$, ומכאן

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{n+k}$$

נשאלת השאלה אין היינו "מנחשים" שצריך להשתמש ב־ $\ln x$ מה שבאמת עושים זה שמתחילים עם השכום וממנו מנסים להגיע לסכום דרבו \setminus סכומי רימן. למשל כאן:

$$\sum_{k=1}^{n} \frac{1}{n+k} = \sum_{k=1}^{n} \frac{1}{n} \frac{1}{1 + \frac{k}{n}}$$

ונדוקות $P_n=\left\{0,\frac{1}{n},\dots,1\right\}$ עם חלוקה עם $g\left(x\right)=\frac{1}{1+x}$ ונדוקות את הפונקציה לקחת כדאי לקחת למשל רואים רואים: ונדוקות המתאים:

$$\sum_{k=1}^{n} g(c_k) \triangle x_k = \sum_{k=1}^{n} \frac{1}{1 + \frac{k}{n}} \cdot \frac{1}{n}$$

 $\int_{0}^{1} rac{dx}{1+x} = \ln{(1+1)} - \ln{(1+0)}$ ווה מתכנס ל־

 $\lim_{n o \infty} rac{1^5 + 2^5 + \dots + (3n+7)^5}{n^6}$ את השבו את. 6. פתרון:

נשים לב ש־

$$\frac{1^5 + 2^5 + \dots + (3n+7)^5}{n^6} = \sum_{k=1}^{3n} \left(\frac{k}{n}\right)^5 \frac{1}{n} + \sum_{k=1}^7 \frac{(3n+k)^5}{n^6}$$

הסכום הוא סכום סופי של 7 בקטע [0,3] בקטע בקטע השני הוא סכום סופי של 7 סדרות הסכום הראשון הוא סכום רימן של $\int_0^3 x^5 dx = \frac{3^6}{6}$ המתכנסות ל־ 0. לכן הגבול הוא סך הכל:

 $\{y^2 = x^3, x \in [0,4]\}$. חשבו את אורך העקום: .7

פתרון:

נשתמש בכך שאם γ עקום הנתון ע"י גרף של פונקציה $\{(x,f\left(x\right))\,,\,x\in\left[a,b\right]\}$ גזירה ברציפות אז

$$L(\gamma) = \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} dx$$

אורך העקום הוא: . $a=0,\,b=4$, $f\left(x
ight)=x^{rac{3}{2}}$ אצלינו: ניקח

$$2 \cdot \int_0^4 \sqrt{1 + \frac{9}{4}x} dx = 2 \cdot \left(\frac{2}{3}\right)^3 \left(10^{\frac{3}{2}} - 1\right)$$

x=1 והישר, e^{-x} ור פונקציות ע"י שתי החסום ע"י שתי החסום את .8

<u>פתרון:</u>

ע"י ציור הפונקציות, קל להבחין שהשטח המבוקש הוא:

$$\int_0^1 e^x - e^{-x} dx$$

:N-L וחישוב בעזרת

$$\int_0^1 e^x - e^{-x} dx = e^x + e^{-x} \Big|_{x=0}^{x=1} = \left(e + \frac{1}{e}\right) - 2 = 2\left(\cosh 1 - 1\right)$$

9. יהיו p,q>1 פך ש־ $\frac{1}{p}+\frac{1}{q}=1$ הוכיחו שאם פp,q>1 אז

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

 $b = a^{p-1} \iff$ ושיוויון

הפונקציה ביטוי $\frac{a^p}{p}$ מזכיר את $\int_0^a x^{p-1} dx$. נסמן נסמן $y=x^{p-1}$. נסמן $\int_0^a x^{p-1} dx$ מזכיר את מזכיר את ב־ $\int_0^a x^{p-1} dx$

נהפוך את הפונקציה $y^{\frac{1}{p-1}}dy=\frac{b^q}{q}$ שווה ל־y בי y בין הרגף לציר בין הרגף ואז השטח אווה ל $x=y^{\frac{1}{p-1}}$ וקל מאוד לראות שאכן זה יותר מאשר שטח המלבן $[0,a]\times[0,b]$ והוא בדיוק המלבן אמ"ם

 $\lim_{n\to\infty}\int_n^{n+1}\frac{\sin x}{x}dx$ חשבו את .10

קיימת סדרה $\{x_n\}$ כך ש־ $x_n\in[n,n+1]$ כך ש־ $x_n\in[n,n+1]$ לכן זה שואף ל־ $x_n\in[n,n+1]$ לכן זה שואף ל־ $x_n\in[n,n+1]$ לכן $x_n\in[n,n+1]$

$$\lim_{x \downarrow 0} x \int_{x}^{1} \frac{f(t)}{t} dt$$

פתרון:

 $0\cdot\int_0^1rac{f}{t}dt=0$ אז קל הוא שהגבול צוברת־שטח" פונצקיה איז קל לראות אז קל לראות לפי רציפות או נניח כעת $f\left(t\right)>\epsilon$ שר כך הפס ו־ של אפס לש סביבת זו. כמו כן לכן הל $f\left(0\right)>0$ כעת נניח כעת לכן של סביבת אפס אפס ו־ N-L מונוטוניות האינטגרל וי

$$\int_{x}^{\delta} \frac{f(t)}{t} dt \ge \epsilon \left(\ln \delta - \ln x \right) \xrightarrow{x \setminus 0} \infty$$

לכן נשתמש בלופיטל ("אם הגבול קיים"):

$$\lim_{x \downarrow 0} x \int_{x}^{1} \frac{f(t)}{t} dt = \lim_{x \downarrow 0} f(x) x = 0$$

f(0) < 0 באופן דומה אם

.12 הוכיחו שאינטגרל של פונקציה רציפה, אי זוגית, בתחום סימטרי הוא אפס.

והוכיחו שאם $\mathbb{R} o [-a,a] o \mathbb{R}$ והוכיחו שאם

$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$

הסיקו ש־

$$\int_{-R}^{R} \frac{2x}{x^2 + 1} dx = 0, \, \forall R > 0$$

פתרון:

נובע ישירות מהחלפת משתנים.

f אינטגרבילית רימן למחשבה: האם הטענה נכונה אם מניחים רק שי

הפרך: f אינטגרבילית אינטגרבילית פונקציה f יש פונקציה אוכח * .13

ולא אינטגרבילית רימן שם, הרי חיא ווא וו $\ln x$ שהיא ב־ (0,1) שהיה קדומה לה פונקציה למשל \Longrightarrow

 \Longrightarrow תקחו את פונקצית המדרגה. ראיתם בהרצאה שאין לה פונקציה קדומה (בגלל משפט דרבו) אבל היא רציפה פרט לנקודה אחת, ולפי התרגול הקודם היא אינטגרבילית רימן. פרט $F^{'}(x)=f\left(x
ight)$ פונקציה אינטגרבילית ב־ [a,b] ותהי ותהי [a,b] קיים פרט (מו בינקציה אינטגרבילית ב־ אולי למספר סופי. הוכיחו:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

 $\int_a^b g f = c \in [a,b]$ כך אזי קיימת קבוע, אזי קיימת g ור ק[a,b] כך אם 15. 15 ור אם $f\left(c\right)\int_a^b g$