SEL0620 - Controle Digital

Projeto de Controladores - Parte 1

(uma entrega por grupo, peso 1)

Importante: Os valores numéricos a serem utilizados estão na Tabela 1, o grupo deve utilizar a linha correspondente ao número do seu grupo no Moodle.

O sistema que será utilizado é um sistema de segunda ordem composto por dois circuitos RC em série separados por um isolador, de acordo com a Figura 1. Nesse sistema, a entrada é um sinal de tensão limitado entre $-10V \le u(t) \le +10V$. A saída do sistema é a tensão medida no segundo capacitor y(t). O sistema possui dois estados dados pela tensão $x_1(t)$ e $x_2(t)$ medida nos pontos indicados na figura.

Figura 1: Sistema Dinâmico

Este é um sistema de uso didático, que pode ser construído com facilidade em bancada, e que vai permitir que se teste o projeto de controladores ao longo do curso. É importante lembrar que vários sistemas reais podem ser modelados como sistemas de segunda-ordem. Portanto, o projeto desenvolvido com essa planta didática, poderá servir de exemplo para projetos de controle que o aluno possa ter contato.

Modelagem do Sistema

O isolador faz com que a corrente que passa pelo resistor R_1 seja a mesma que passa pelo capacitor C_1 , e a corrente que passa em R_2 é a mesma que passa em C_2 :

$$i_{R_1} = i_{C_1}$$

 $i_{R_2} = i_{C_2}$

Aplicando a Lei de Kirchhoff das correntes no nó indicado por $x_1(t)$:

$$\frac{u - x_1}{R_1} = C_1 \frac{dx_1}{dt}$$
$$\frac{x_1 - x_2}{R_2} = C_2 \frac{dx_2}{dt}$$

Considerando as variáveis de estado como sendo $\mathbf{x} = [x_1 \ x_2]^T$:

$$\dot{x}_1 = \frac{-x_1}{R_1 C_1} + \frac{u}{R_1 C_1}$$
$$\dot{x}_2 = \frac{x_1}{R_2 C_2} - \frac{x_2}{R_2 C_2}$$

A saída do sistema foi escolhida como sendo $y = x_2$.

Portanto, a representação em espaço de estados do sistema é dada por:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{R_1C_1} & 0 \\ \frac{1}{R_2C_2} & \frac{-1}{R_2C_2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} \frac{1}{R_1C_1} \\ 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 0u$$

Aplicando a Transformada de Laplace nas equações de espaço de estado, obtém-se:

$$sX_1(s) = \frac{-X_1(s)}{R_1C_1} + \frac{U(s)}{R_1C_1}$$
$$sX_2(s) = \frac{X_1(s)}{R_2C_2} - \frac{X_2(s)}{R_2C_2}$$

Reorganizando os termos e substituindo $X_2(s) = Y(s)$:

$$(R_1C_1s + 1)X_1(s) = U(s)$$

 $(R_2C_2s + 1)Y(s) = X_1(s)$

Portanto, a função de transferência do sistema é dada por:

$$G_p(s) = \frac{Y(s)}{U(s)} = \frac{1}{(R_1C_1s + 1)(R_2C_2s + 1)} = \frac{1}{(R_1C_1R_2C_2)s^2 + (R_1C_1 + R_2C_2)s + 1}$$

Pode-se escrever a função de transferência do sistema de segunda ordem na forma:

$$G_p(s) = K \frac{w_n^2}{s^2 + 2\zeta w_n s + w_n^2}$$

onde para este sistema:

$$K = 1$$

$$w_n = \sqrt{\frac{1}{(R_1 C_1 R_2 C_2)}}$$

$$\zeta = \frac{(R_1 C_1 + R_2 C_2)}{2\sqrt{R_1 C_1 R_2 C_2}}$$

Responda as seguintes questões:

- 1. Mostre no relatório a função de transferência contínua do sistema para os valores numéricos do seu grupo. Quais os pólos do sistema de segunda ordem contínuo? Qual a classificação do sistema de segunda ordem (sobreamortecido, criticamente amortecido ou subamortecido)?
- 2. Encontre um período de amostragem adequado baseado na largura de banda do sistema. Mostre no relatório como você chegou no valor para o período de amostragem, mostre a largura de banda em rad/s e em Hz, mostre também a frequência de amostragem em rad/s e em Hz.
- 3. A partir da função de transferência contínua do sistema, encontre e mostre no relatório a função de transferência discreta do sistema considerando um retentor de ordem zero. Para isso, considerando que a função de transferência contínua já foi definida como sendo G, e o período de amostragem foi definido como sendo T0, utilize o seguinte comando no Scilab:

```
Gz = ss2tf(dscr(tf2ss(G),T0))
```

- 4. Quais os pólos e zeros da função de transferência discreta?
- 5. Elabore um diagrama no xcos para simular em malha aberta: (i) a resposta da função de transferência contínua (FTC); (ii) a resposta da função de transferência discreta obtida no item 2 (FTD); (iii) a resposta de um bloco amostrador com holder (sample/holder) colocado na saída da função de transferência contínua (FTCD2). Para todos os três casos, aplique uma entrada degrau a partir de t = 0 com amplitude u dada pela Tabela 1. No relatório, mostre o diagrama xcos construído e as saídas obtidas pelas três simulações sobrepostas. Utilize tempo de simulação igual a 10 segundos.
- 6. Para a resposta do sistema contínuo, encontre o tempo de acomodação (t_s) com critério de $\pm 5\%$.

		Tabela 1: Parâmetros do sistema.					
Grupo	$R_1 (k\Omega)$	$C_1 (\mu F)$	$R_2 (k\Omega)$	$C_2 (\mu F)$	u(V)	d(V)	t_1 (s)
1	748	2.20	564	2.20	1.01	-0.12	12
2	740	2.20	496	2.20	1.02	0.26	12
3	725	2.20	445	2.20	1.03	-0.13	12
4	709	2.20	403	2.20	1.04	0.27	12
5	692	2.20	369	2.20	1.05	-0.16	12
6	675	2.20	339	2.20	1.06	0.24	12
7	659	2.20	313	2.20	1.07	-0.15	12
8	644	2.20	291	2.20	1.08	0.26	12
9	630	2.20	271	2.20	1.09	-0.17	12
10	616	2.20	254	2.20	1.1	0.28	12
11	455	2.20	343	2.20	1.11	-0.1	12
12	505	2.20	338	2.20	1.12	0.24	12
13	553	2.20	339	2.20	1.13	-0.14	12
14	603	2.20	343	2.20	1.14	0.27	12
15	656	2.20	349	2.20	1.15	-0.11	12
16	713	2.20	358	2.20	1.16	0.25	12
17	776	2.20	369	2.20	1.17	-0.13	12
18	845	2.20	382	2.20	1.18	0.24	12
19	923	2.20	398	2.20	1.19	-0.17	12
20	1012	2.20	417	2.20	1.2	0.22	12
21	582	2.20	438	2.20	1.21	-0.13	12
22	529	2.20	355	2.20	1.22	0.21	12
23	505	2.20	310	2.20	1.23	-0.15	12
24	861	2.20	490	2.20	1.24	0.25	12
25	778	2.20	415	2.20	1.25	-0.18	12
26	855	2.20	429	2.20	1.26	0.24	12
27	942	2.20	448	2.20	1.27	-0.12	12