

# DIPARTIMENTO DI INGEGNERIA INFORMATICA, MODELLISTICA, ELETTRONICA E SISTEMISTICA (DIMES)

## Architetture Programmazione dei Sistemi di Elaborazione

Relazione progetto a.a 2018/19

Algoritmo "Product Quantization for Nearest Neighbor Search" in linguaggio NASM x86-32+SSE e x86-64+AVX

Professore Fabrizio Angiulli Studenti Gianmarco Magnone 204920 Lorenzo Morelli 207038 Antonio Piluso 204865

### 1. Introduzione

Obiettivo del progetto è mettere a punto un'implementazione dell'algoritmo "Product Quantization for Nearest Neighbor Search" (PQNN) in linguaggio C e di migliorarne le prestazioni utilizzando le tecniche di ottimizzazione basate sull'organizzazione dell'hardware. L'ambiente sw/hw di riferimento è costituito dal linguaggio di programmazione C (gcc), dal linguaggio NASM x86-32+SSE e dalla sua estensione x86-64+AVX (nasm) e dal sistema operativo Linux (ubuntu). In particolare, il codice deve consentire di effettuare sia la ricerca ANN esaustiva (parametro -exaustive, default) che la ricerca ANN non esaustiva (parametro -noexaustive). Inoltre, deve permettere di scegliere la distanza approssimata da utilizzare, ovvero la distanza simmetrica (parametro -sdc, default) oppure la distanza asimmetrica (parametro -adc). Come consigliato dalla traccia si è deciso di andare prima ad implementare una versione base e stabile del codice in linguaggio C, per poi andare ad analizzare i vari metodi computazionalmente meno efficienti e convertirli in NASM sfruttando le tecniche di ottimizzazione studiate durante il corso. Lo sviluppo del progetto è stato registrato e documentato grazie all'utilizzo del sistema di versioning Git e dalla piattaforma github. Le versioni riportate nel documento sono un sottoinsieme delle versioni che è possibile consultare sulla repository dal link: https://github.com/Lory999555/project-C-nasm dove è anche possibile analizzare in dettaglio tutte le modifiche apportate. I test in generale sono stati effettuati in maniera esaustiva su diversi Dataset e diverse dimensioni che variano dai 1.000 \* 16 a 40.000\*2.000 (punti\*dim) testando un ampio range di valori dei parametri. Grazie ad una fase di testing esaustiva è stato possibile rilevare e fixare molti bug e comprendere al meglio i pregi ed i difetti delle nostre implementazioni. Nell'immagine di seguito sono rappresentate le versioni del progetto:



Figura 1: Versioni realizzate

Successivamente vedremo nel dettaglio le maggiori differenze tra le varie versioni motivandone il perché di alcune scelte e documentandone i miglioramenti sui tempi e sulla memoria.

## 2. Scelte implementative

L'implementazione dell'intero progetto si è basata sul paper¹ fornito dal professore, cercando di rimanere il più fedele possibili alle procedure e agli algoritmi descritti al suo interno, con l'aggiunta di alcune modifiche necessarie ai fini del miglioramento delle prestazioni. È stata quindi effettuata un'attenta analisi dei pro e contro dell'algoritmo, soffermandosi in modo particolare sui calcoli da effettuare sulle principali strutture dati quali Dataset, Queryset e Centroids (con il termine "Centroids" indicheremo d'ora in avanti la struttura dati contenente i centroidi). Da questa analisi è emerso che se le

<sup>&</sup>lt;sup>1</sup> Product quantization for nearest neighbor search - Hervé Jégou, Matthijs Douze, Cordelia Schmid

dimensioni del Dataset fossero proporzionali al fattore di parallelismo "p", allora sarebbe stato indifferente (rispetto alla località degli accessi) salvare il Dataset per righe ( $row\ major\ order$ ) o per colonne ( $column\ major\ order$ ), mentre se il fattore "p" non fosse stato proporzionale alle dimensioni, allora sarebbe stato conveniente effettuare un salvataggio per colonne. Le scelte implementative sono state fatte prima della scrittura del codice C in modo da improntare l'algoritmo verso una direzione ben precisa: per prima cosa si è studiato affondo come tale algoritmo doveva essere implementato e quindi quali erano le computazioni più dispendiose da fare sulle varie strutture descritte in precedenza. Da questa analisi è emerso che la struttura Dataset, che contiene al suo interno tutti i punti y, vettorizzata per colonna avrebbe garantito un minor numero di miss nella cache e il calcolo parallelo di più punti per un solo centroide. In più tale scelta si adatta meglio alla struttura dei Dataset in quanto, essendo solitamente le dimensioni più piccole rispetto al numero dei punti, un eventuale calcolo su Dataset non perfettamente parallelizzabili (es: 8001 punti con 129 dimensioni) agevola la computazione in quanto si evita di dover effettuare il ciclo resto (ipotizzando il fattore p = 4)  $8001*num\_centroidi$  volte nella versione per riga rispetto a doverlo effettuare  $129*num\_centroidi$  volte. In più dai calcoli effettuati è emerso che il numero di miss nelle due varianti, ipotizzando che la cache riesca a caricare "p" elementi, sia:

Colonna = 
$$\left(128 + \frac{128}{4}\right) * \frac{8000}{4} * 256 = 81.920.000 \ miss$$
  
Riga =  $\frac{128}{4} * 2 * 256 * 8000 = 131.072.000 \ miss$ 

Quindi da queste verifiche si è scelto di utilizzare il Dataset per colonna e ovviamente basare tutto il calcolo del *k-means* su questa scelta progettuale. Le altre due strutture hanno invece la caratteristica di effettuare molti accessi in memoria utilizzando il centroide più vicino ad un dato punto. Questo comportamento non è compatibile con la parallelizzazione per colonna in quanto i punti non risulterebbero contigui in memoria, mentre utilizzandoli per riga, le dimensioni di tali punti risultano contigue in memoria e quindi compatibili con varie ottimizzazioni. Alla luce di ciò si è quindi deciso di effettuare il salvataggio del Dataset per colonne, mentre quello di Queryset e Centroids per righe. Altra importante scelta implementativa è stata quella di utilizzare un Maxheap, come suggerito nel paper<sup>1</sup>, che permette di mantenere i *knn* punti. In tale struttura viene utilizza una gestione particolare degli elementi al suo interno per minimizzare gli accessi e soprattutto gli spostamenti interni. La logica implementata è la seguente:

Figura 2: Metodo maxHeap

-utilizzo di una variabile *bool* per decidere se la struttura deve essere popolata, e quindi utilizzare una gestione diversa per l'inserimento dei primi *knn* elementi.

-la funzione interagisce con la struttura andando ad esportare una variabile dislocata dalla struttura stessa che mantiene sempre il valore del massimo corrente in modo da poter interrogare tale variabile per decidere se entrare o meno al suo interno.

-se l'entrata è obbligatoria il metodo selezionerà il primo elemento che corrisponde alla distanza massima corrente e verrà sostituito con il nuovo valore entrante, in modo da non dover effettuare nessun riposizionamento. Nel mentre l'algoritmo calcola quale sarà il nuovo massimo corrente restituendolo, il tutto ciclando una sola volta la struttura.

-i risultati vengono caricati in ANN direttamente dalla struttura senza un ordine ben preciso e senza utilizzare il massimo corrente in modo da non doverlo ricalcolare *ng* volte.

Non essendo l'ordine esplicitamente richiesto dalla traccia, tale scelta è stata presa per una questione puramente di ottimizzazione in quanto la struttura assicura che i risultati siano effettivamente i *knn* più vicini ma non dà alcuna sicurezza sull'ordine e soprattutto non dà priorità ai primi elementi entranti piuttosto che agli ultimi.

Per quanto riguarda l'utilizzo del *k-means*, si è provato ad implementare una versione ottimizzata che evita il calcolo di distanze superflue applicando la disuguaglianza triangolare e tenendo traccia di lower bounds e upper bounds per le

distanze tra punti e centroidi (come suggerito nel paper²). L'algoritmo risultava però troppo complesso e ci si è resi conto che era possibile applicare poche ottimizzazioni in NASM rispetto a quelle che si potevano applicare sull'implementazione classica del *k-means*. Proprio per questo motivo si è scelto di utilizzare l'algoritmo base del *k-means*, andando poi ad applicare diverse ottimizzazioni in NASM. La scelta alla fine è ricaduta su un *k-means* standard perché si è ritenuto più opportuno far prevalere la velocità dettata dalle ottimizzazioni effettuate e studiate a lezione, piuttosto che ottenere un algoritmo più veloce ma meno "lavorato" a basso livello, in quanto avrebbe obbligato il team a non poter utilizzare molte delle tecniche implementate nella versione base. Di seguito sono riportati frammenti di codici del *triangle k-means* e del *k-means* standard.

Figura 3: standard k-means

Figura 4: Triangle k-means

L'algoritmo è stato testato andando a selezionare il numero dei centroidi pari al numero dei punti, così da verificare se le distanze ottenute combaciavano con le distanze fornite dal professore nel file *matlab*. Di seguito vengono riportati i risultati effettuati sull'ultima versione per andare ad evidenziare la bontà dell'algoritmo che nel caso sopracitato calcola le distanze corrette. Gli altri due casi sono approssimazioni effettuate con un basso numero di centroidi (a sinistra) e con un numero leggermente più elevato (immagine centrale).



Figura 5: -exaustive -adc -k 256

| query | #0: | 6361 | 7016 | 4832 | 115 | 2723 | 4881 | 6727 | 3827 |
|-------|-----|------|------|------|-----|------|------|------|------|
| query |     |      |      |      |     |      |      |      |      |
| query |     |      |      |      |     |      |      |      |      |
| query |     |      |      |      |     |      |      |      |      |
| query |     |      |      |      |     |      |      |      |      |
| query |     |      |      |      |     |      |      |      |      |
| query |     |      |      |      |     |      |      |      |      |
| query |     |      |      |      |     |      |      |      |      |
| query |     |      |      |      |     |      |      |      |      |
| query |     |      |      |      |     |      |      |      |      |
| query |     |      |      |      |     |      |      |      |      |

Figura 6: -exaustive -adc -k 512

Figura 7: -exaustive -adc -8000

|    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    |
|----|------|------|------|------|------|------|------|------|
| 1  | 4882 | 7017 | 3853 | 3487 | 5648 | 2724 | 7383 | 12   |
| 2  | 6938 | 5312 | 3310 | 2969 | 1568 | 7009 | 5908 | 7193 |
| 3  | 1732 | 1064 | 7818 | 3324 | 1110 | 6315 | 6769 | 2229 |
| 4  | 624  | 6227 | 4953 | 378  | 5630 | 7916 | 362  | 7081 |
| 5  | 7595 | 3948 | 4267 | 7212 | 447  | 2245 | 6793 | 2327 |
| 6  | 1329 | 7124 | 6731 | 1058 | 5081 | 2488 | 3813 | 355  |
| 7  | 6541 | 1230 | 4591 | 1735 | 4969 | 6060 | 6238 | 698  |
| 8  | 6888 | 7128 | 1386 | 3921 | 468  | 7648 | 2038 | 1345 |
| 9  | 5794 | 1666 | 7584 | 7309 | 5457 | 2944 | 6533 | 5795 |
| 10 | 7176 | 307  | 6414 | 5211 | 5245 | 3109 | 5890 | 6148 |

Figura 8: risultati matlab

N.B. nelle immagini, i risultati in matlab partono da indice 1 anziché indice 0 come invece avviene nell'algoritmo

<sup>&</sup>lt;sup>2</sup> Using the Triangle Inequality to Accelerate k-Means - Charles Elkan

### 3. Versioni

Si riportano di seguito tutti i miglioramenti e le modifiche apportate da una versione all'altra. La prima versione funzionante, versione 1, è stata scritta interamente in linguaggio C senza apportare ottimizzazioni in NASM. In questa versione è stato implementato il Maxheap (non presente nelle versioni precedenti), e sono state vettorizzate tutte le strutture dati. Nelle versioni successive, fino alla versione 5, ci sono varie prove di vettorizzazione delle strutture e varie prove sul *k-means* ed il *triangle k-means* fino ad arrivare ad una versione stabile e definitiva in C.

Significativa è stata la versione 6, ovvero la versione finale nel linguaggio C, in cui è stato modificato il metodo del Maxheap effettuando un riempimento automatico delle prime knn posizioni. Altra sostanziale modifica consiste nell'implementazione del mapping tramite il quale era possibile salvare solo  $\frac{k(k-1)}{2}$  elementi nella matrice delle distanze, in quanto matrice simmetrica e con elementi della diagonale pari a zero.

Figura 9: mapping

Le prime ottimizzazioni in NASM sono presenti dalla versione 7 in cui si ha avuto un miglioramento dei tempi di indexing. Questo è dovuto, in particolare, all'implementazione del metodo *colDistance32*, utilizzato nell'algoritmo del *k-means* tramite il quale si è andati a parallelizzare il calcolo delle distanze tra punti e centroidi sfruttando le istruzioni SSE.

```
for (i = 0; i < n; i+=p) {    //per ogni punto del ds
    //identify the closest cluster
    min_distance[0] = FLT_MAX;
    min_distance[1] = FLT_MAX;
    min_distance[2] = FLT_MAX;
    min_distance[3] = FLT_MAX;

for (j = 0; j < k; j++) { // per ogni centroide
    coldistance32(data,centroids,distance,i,j,d,n);

    //printVectorfloat(distance,p);
    for(int k=0;k<p;k++){
        if (distance[k] < min_distance[k]) {
            labels[i+k] = j;
            min_distance[k];
        }
    }
}</pre>
```

Figura 10: estratto k-means

```
fork:

printregps xmm7

mov esi.[ebp+dataset] ;dataset

mov edi.[ebp+n] ;n

imul edi.ecx ; 44k*n

add esi.edi ;dataset + 4*k*n

movaps xmm0, [eax+esi]; DS[i.i*p-1][k] = DS[4*i+4*k*n..4*(i**k*n*p-1)]

mov esi.[ebp+c] ;centroids

mov edi.[ebp+dimension] ;d

imul edi.ebx ; 4*j*d

add esi.edi ; centroids + 4*j*d

movss xmm1, [ecx+esi]; C[j][k] = C[4*k+4*j*d]

shufps xmm1, xmm1, 0

;printregps xmm1

subps xmm0, xmm1

subps xmm0, xmm1

subps xmm0, xmm0

;tmp[i.i*p-1] rispetto al j-esimo centroide

addps xmm0, xmm0

;thirtegps xmm0
```

Figura 11: colDistance32

Più nello specifico, con questo metodo, si andavano a prendere in considerazione la prima dimensione di 4 punti differenti e ci si andava a calcolare la distanza con la prima dimensione del centroide. Tale processo veniva poi iterato per ogni dimensione riuscendo così a calcolare la distanza di 4 punti alla volta con un centroide.

Un sostanziale miglioramento della fase di searching si è ottenuto dalla versione 9 nella quale è stato implementato un metodo, chiamato *dist32*, che è molto simile al *colDistance32* precedentemente analizzato ma con una sostanziale differenza: nel *colDistance32* il risultato sarà un vettore contenente "p" distanze e quindi sono state utilizzate solo le istruzioni *addps* mentre in *dist32* il risultato è la singola distanza tra 2 punti con l'utilizzo dell'istruzione *haddps* secondo la struttura vista a lezione. La traduzione in NASM di questo metodo ha portato una notevole diminuzione del tempo di searching in quanto viene utilizzato nella fase dei pre-calcoli, calcolando la distanza tra centroidi (nella ricerca simmetrica) o la distanza tra centroidi e punti del Queryset (nella ricerca asimmetrica).

```
movaps xmm0, [eax****esi] :x[]

subps xmm0, (eax***esi] :x[]-y[]

mulps xmm0, xmm0

;rrintregps xmm0

addps xmm1, xmm0

;rrintregps xmm1

add esi,4

movaps xmm0, [eax**esi]

subps xmm0, [eax**esi]

subps xmm0, [eax**esi]

mprintregps xmm0

addps xmm1, xmm0

imprintregps xmm1

add esi,4

jmp ciclo

fine:

movaps xmm0, [eax**esi]

subps xmm1, xmm1

intregps xmm1
```

Figura 12: dist32

```
float* pre_adc(MATRIX x, float* centroids,int d,int m, int k ){
    //float* result=(float**)get_block(sizeof(float*),m);
    float* result= alloc_matrix(m,k);
    int sub=d/m;
    int i,];
    float distance;
    MATRIX uj_x;
    for(j=0; j<m; j++){
        uj_x = Uj_x(x, j, m, 1, d);
        //result[j]=alloc_matrix(k,1);
    for(i = 0; i < k; i++){
            //result[j*k+1] = dist(uj_x, &centroids[j*k*sub+i*sub],sub);
            distance = 0;</pre>
```

Figura 13: pre-calcoli adc

Nella versione 11 del progetto c'è stata un'analisi dei tempi di tutti i metodi, andando a contornare i vari metodi con

l'istruzione per la gestione del clock, in modo da avere un quadro completo di cosa potesse essere ottimizzato e quanto la sua traduzione in NASM potesse apportare delle tangibili migliorie. Grazie a ciò ci si è infatti accorti che il calcolo degli indici per il salvataggio della diagonale superiore era troppo dispendioso nonostante la traduzione del metodo in NASM (la maggiore perdita di tempo era probabilmente dovuta ad operazioni di divisione necessarie ai fini del calcolo dell'indice, gestite in maniera ottimizzata dal gcc di C ed implementate con la divisione in NASM). Proprio per queste ragioni si è scelto di evitare il mapping e salvare banalmente l'intera matrice, con l'accortezza di inserire manualmente il valore anche nella posizione simmetrica e di porre ogni elemento della diagonale pari a 0. Questa semplice modifica ha portato una notevole diminuzione del tempo di completamento del searching, ottenendo un miglioramento di tale tempo del 67%.

Figura 14: pre-calcolo sdc

```
tmp=0;
for(z=0; z < input->m; z++){
    /*t=mapping(c_x|z],L_i(ind*nodo+1+z],input->k,mapping_n);
    if (t!=-1) {
        tmp+= stored_distance[z*mapping_n+t];
    }*/
    tmp+= stored_distance[z*k_2+c_x[z]*input->k+L_i[ind*nodo+1+z]];
    //cont++;
}
```

Figura 15: eliminazione mapping

Per quanto riguarda l'indexing, è stato implementato un unroll direttamente in C che ha apportato piccoli miglioramenti consentendo all'algoritmo di calcolare 16 distanze contemporaneamente.

```
for (i = 0; i < n; i+*p*unroll){    //per ogni punto del ds
    //identify the closest cluster
    assignValue(min_distance.FLT_MAX.p);
    assignValue(min_distance.FLT_MAX.p;
    assignValue(min_distance.FLT_MAX.p*2);
    assignValue(min_distance.FLT_MAX.p*3);

//clock_t ti1 = clock();

for (j = 0; j < k; j++){ // per ogni centroide

    coldistance32(data_centroids_distance.i,j.d.n);
    coldistance32(data_centroids_distance[p].i+p.j.d.n);
    coldistance32(data_centroids_distance[p*3].i+p*2,j.d.n);
    coldistance32(data_centroids_distance[p*3].i+p*3,j.d.n);
    coldistance32(data_centroids_distance[p*3].i+p*3,j.d.n);</pre>
```

Figura 16: unroll in C

Le versioni 12-13-14 sono in qualche modo collegate tra di loro in quanto c'è stato un tentativo di implementazione del cache blocking che, purtroppo, non ha portato ai risultati sperati. Nella prima delle 3 versioni, l'idea era quella di andare a dividere la struttura del Dataset e quella dei centroidi in blocchi non eccedenti la cache. Tali blocchi riuscivano a catturare al loro interno un insieme di punti e un sottoinsieme delle loro reali dimensioni e l'ottimizzazione consisteva nel calcolare le distanze tra i punti e tutti i centroidi appartenenti ad un blocco, per poi andare a sommare tali distanze con le distanze calcolate nelle computazioni dei blocchi successivi.

Figura 17: estratto k-means con cache blocking

Figura 18: colDistance32Block

Questo idealmente permetteva di effettuare meno miss all'interno della struttura Dataset, perché prima del cache blocking, essendo il Dataset salvato per colonne, una chiamata del metodo *colDistance32* generava 128 miss (esempio su prova.ds)

in quanto lo spostamento della dimensione comportava un salto nella struttura Dataset di "n" posizioni, perdendo dunque il vantaggio dettato dalla località degli accessi. Con l'ottimizzazione del cache blocking la speranza era quella di abbattere questi costi in quanto si riutilizzavano delle dimensioni che entravano in cache e quindi il calcolo di una porzione di Dataset con una porzione di centroidi non comportava ulteriori miss oltre quelle necessarie. Tale strategia è stata implementata secondo la figura 17 ma, effettuando dei test, la fase di indexing al contrario delle aspettative andava a peggiorare i tempi e si è arrivati alla conclusione che l'accesso alla struttura Dataset, in numero di miss, migliorava ma andava ad aumentare il numero di miss nella struttura dei centroidi (cosa che nella versione precedente veniva invece gestita in maniera ottimale). Questo tentativo di ottimizzazione ha fatto emergere una cattiva gestione dell'unrolling in quanto, effettuato in C, si andava a richiamare 4 volte la funzione colDistance32 perdendo quella che era la località degli accessi sul Dataset. Per questo motivo, nella versione 13, l'unrolling è stato gestito completamente in NASM, andando così a caricare 16 elementi in vari registri XMM, come si può notare dalle

immagini del nuovo metodo colDistance32Optimazed:

Figura 19: ottimizzazione unrolling in C

Figura 20: colDistance32Optimized

Tale codice ha apportato un grosso miglioramento nella fase di indexing e ha spinto a riprovare l'ottimizzazione del cache blocking andando ad implementare un nuovo metodo colDistance32OptimazedBlock che ha la stessa logica del metodo descritto precedentemente. Nonostante ciò, anche in questo caso, non c'è stato un riscontro positivo in termini di prestazioni per le motivazioni precedentemente discusse.

```
for (i = 0; i < n; i = BLOKSIZE){    //per ogni punto del ds
//identify the closest closter
assignValue(ein, distance, RLT_MA, BLOCKSIZE);
//printVector*laat(adistance, BLOCKSIZE);

for (j = 0; j < k; j ==BLOCKSIZE){
    assignValue(distance, DLOCKSIZE);

    for (b=0; b < d; b==BLOCKSIZE)

        for (z = 0; z < BLOCKSIZE){
        //clock_t ti = clock();

            for (z = 0; z < BLOCKSIZE);
            //clock_t ti = clock();

            colDistance32OptimizedBlock(data,centroids, &distance[z*BLOCKSIZE], i, j*z, d, n, b);
            //colDistance32OptimizedBlock(data,centroids, &distance[z*BLOCKSIZE], i, j*z, d, n, b);
            //colDistance32Delock(data,centroids, &distance[z*BLOCKSIZE], i, j*z, d, n, b);
            //colDistance32Delock(data,centroids, &distance[z*BLOCKSIZE + p!, l*p, l*z, d, n, b);
            //colDistance32Delock(data,centroids, &distance[z*BLOCKSIZE + p!, l*p, l*z, d, n, b);
            //colDistance32Delock(data,centroids, &distance[z*BLOCKSIZE + p!, l*p, l*z, d, n, b);
            //colDistance32Delock(data,centroids, &distance[z*BLOCKSIZE + p!, l*p, l*z, d, n, b);
            //colDistance32Delock(data,centroids, &distance[z*BLOCKSIZE + p!, l*p, l*z, d, n, b);
            //colDistance32Delock(data,centroids, &distance[z*BLOCKSIZE + p!, l*p, l*z, d, n, b);
            //colDistance32Delock(data,centroids, &distance[z*BLOCKSIZE + p!, l*p, l*z, d, n, b);
            //colDistance32Delock(data,centroids, &distance[z*BLOCKSIZE + p!, l*p, l*z, d, n, b);
            //colDistance32Delock(data,centroids, &distance[z*BLOCKSIZE + p!, l*p, l*z, d, n, b);
            //colDistance32Delock(data,centroids, &distance[z*BLOCKSIZE + p!, l*p, l*z, d, n, b);
            //colDistance32Delock(data,centroids, &distance]z*BLOCKSIZE + p!, l*p, l*z, d, n, b);
            //colDistance32Delock(data,centroids, &distance]z*BLOCKSIZE + p!, l*z, d, n, b);
            //colDistance32Delock(data,centroids, &distance]z*BLOCKSIZE + p!, l*z, d, n, b);
            //colDistance32Delock(data,centroids,
```

Figura 21: 2° tentativo cache blocking

Le ultime due versioni che andremo ad analizzare sono la versione 16 e la 18. La prima è caratterizzata da un notevole miglioramento nell'utilizzo della memoria. A causa di alcune strutture dati, non opportunamente deallocate, è stato infatti notato un eccessivo utilizzo della memoria da parte dell'algoritmo che in alcuni casi arrivava ad occupare ben 4 Gb di memoria RAM (prova effettuata sul Dataset di dimensione 40.000 per 1.000), causando il blocco dell'algoritmo. Si è quindi risolto il problema modificando leggermente il codice e passando così ad un dispendio di memoria di poche centinaia di Mb.

| Name                                             | CPU   | Memory ~ | Download | Upload | PID  |
|--------------------------------------------------|-------|----------|----------|--------|------|
| lollo@lollo-pc:~/Desktop/Versioning/Progetto32_1 | 12.9% | 2.3 GB   |          |        | 4917 |
| Name                                             | CPU   | Memory ~ | Download | Upload | PID  |
| Iollo@lollo-pc:~/Desktop/Versioning/Progetto32_1 | 12.5% | 249.3 MB |          |        | 5817 |

Altra importante modifica effettuata in questa versione riguarda invece la ricerca non esaustiva. Fino a quel momento veniva infatti effettuata una fase di indexing utilizzando "nr" punti del Dataset e ciò comportava l'utilizzo solo di un suo sottoinsieme andando di conseguenza ad abbassarne drasticamente i tempi. L'algoritmo è stato modificato in modo da implementare il corretto funzionamento della ricerca non esaustiva, andandolo a dividere in due blocchi dove il primo lavora solo su gli "nr" punti calcolandone i centroidi, mentre il secondo viene eseguito alla fine delle iterazioni del k-means, quindi quando i centroidi sono già calcolati sugli "nr" punti, e si occupa di andare ad associare ai restanti punti i centroidi più vicini. Tale implementazione ovviamente porta con sé più computazioni, e quindi nel grafico riportato nelle conclusioni emerge un aumento del tempo dovuto appunto alla correzione di questa gestione. Un'altra modifica apportata è stata la divisione dei metodi che interagiscono con le strutture in Alligned (metodoA) ed Unalligned (metodoU), in modo da poter richiamare le rispettive funzioni NASM riscritte a loro volta per supportare tale modifica.

Nella seconda delle 2 versioni (versione 18) è stato modificato il caso di uscita come descritto dal professore. Questa semplice modifica ha apportato una sostanziale diminuzione dei tempi di indexing in quanto permette all'algoritmo di effettuare quasi sempre al più 10 iterazioni, rispetto alla media di 50 iterazioni effettuate con il vecchio caso di uscita.

Figura 22: exit case

Nella versione consegnata (versione 22) sono stati corretti alcuni bug che portavano a dei problemi di deallocazione, andando a modificare dei metodi per l'aggiornamento dei centroidi in alcuni file NASM che presentavano delle inesattezze sul calcolo parallelizzato. Dalla versione 16 è stata implementata anche la variante a 64 bit che è stata sottoposta anch'essa a tutte le ottimizzazioni precedentemente descritte. Tale variate non ha apportato quasi nessuna modifica in C, se non l'accortezza di allocare le strutture allineate a 32 bit. Tutti i metodi NASM sono stati convertiti utilizzando le nuove istruzioni fornite dall'estensione del repertorio AVX, che quindi ha permesso di portare il fattore di parallelismo da 4 a 8 e di conseguenza il calcolo delle varie distanze da 16 a 32. Grazie alla presenza del doppio dei registri, si sono anche riusciti ad implementare in maniera più agevole alcuni metodi come il *colDistance64Optimazed*, che risultava abbastanza articolato nella versione SSE.

```
Figura 23: versione SSE
```

Figura 24: versione AVX

Anche le distanze per riga sono state convertite a 64 bit andando a migliorare i tempi soprattutto con dimensioni molto grandi in quanto, con dimensioni ridotte, si va ad aumentare il numero di esecuzione del ciclo resto. Da svariate prove, la versione 64 bit risulta essere molto più prestante nella fase di indexing su tutti i tipi di Dataset, e risulta essere molto più prestante nella fase di searching soprattutto con Dataset che presentano un elevato numero di dimensioni. L'ultima variante implementata è quella che sfrutta l'ottimizzazione *OpenMP* andando ad esportare delle direttive per il preprocessore, che rendono parallelo (distribuito su più thread), ad esempio, il calcolo dei for. Tale ottimizzazione è stata applicata sul ciclo presente nel metodo productQuantization in quanto vengono richiamati in maniera indipendente i *k-means* sui vari sottogruppi dettati dal fattore "m". Grazie a questa implementazione c'è stato un ulteriore abbassamento

dei tempi, che per quanto riguarda l'indexing, ha evidenziato un miglioramento di quasi il 50% rispetto alla versione a 64 bit, che a sua volta va a migliorare di un 40% la versione già ottimizzata a 32bit, come si può vedere nei grafici in conclusione.

## Conclusioni

In conclusione, vengono riportati i test documentati e gli andamenti grafici relativi a tali test per apprezzarne le migliorie apportate nelle varie versioni. In seguito, vengono riportate le tabelle contenenti tutti i tempi in secondi delle varie versioni testate su prova.ds e Dataset.ds (Dataset home-made con 20.000 punti di dimensione 1.000 e utilizzato anche come Queryset). Per rendere omogeneo il tutto, i test sono stati effettuati solo sulla versione a 32 bit, ad eccezione degli ultimi 3 test rappresentati nella seconda tabella, dove viene specificata la versione utilizzata, e della "(19) versione OpenMP/x64" in cui è stata utilizzata la variante a 64 bit.

| Versioni                            | Esaust   | iva sdc   | Esaust   | iva adc   | Non-esa  | ustiva sdc | Non-esa  | ustiva adc |        |          | 2000*128<br>prova.qs<br>Knn=4<br>M=8<br>K=256<br>Kc=256<br>W=8<br>nr=n/20 |
|-------------------------------------|----------|-----------|----------|-----------|----------|------------|----------|------------|--------|----------|---------------------------------------------------------------------------|
|                                     | indexing | searching | indexing | searching | indexing | searching  | indexing | searching  |        | 8000*128 | 2000°128                                                                  |
| (0.1) basic senza max heap          | 152.478  | 8.903     | 158.438  | 3.185     | 305.953  | 13.315     | 306.74   | 13.164     | 32 bit | prova.ds | prova.qs                                                                  |
| (0.2) versione base                 | 161.879  | 3.237     | 162.276  | 1.837     | 305.01   | 13.485     | 305.948  | 13.638     | 32 bit |          |                                                                           |
| (0.3) versione pulita IL multindexi | 159.4    | 3.397     | 159.262  | 1.703     | 299.015  | 10.884     | 298.386  | 11.043     | 32 bit | Knn=4    | Knn=4                                                                     |
| (1) versione ottimizzata IL         | 158.055  | 4.162     | 157.97   | 2.037     | 299.937  | 13.455     | 299.956  | 13.371     | 32 bit | M=8      | M=8                                                                       |
| (2) ottimizzazione IL and vectoriza | 160.104  | 4.683     | 160.151  | 2.162     | 301.299  | 13.166     | 301.426  | 12.834     | 32 bit | K=256    | K=256                                                                     |
| (3) semi vectorization IL           | 157.925  | 3.161     | 157.804  | 1.723     | 298.725  | 10.962     | 299.921  | 10.894     | 32 bit | Kc=256   | Kc=256                                                                    |
| (4) unrolling dist                  | 158.923  | 3.261     | 157.828  | 1.98      | 298.536  | 11.083     | 297.623  | 10.982     | 32 bit | W=8      | W=8                                                                       |
| (5) versione con kmeans triangle    | 158.652  | 3.168     | 158.012  | 1.842     | 298.236  | 11.125     | 297.236  | 10.562     | 32 bit | nr=n/20  | nr=n/20                                                                   |
| (6) versione extract_col            | 155.183  | 3.004     | 154.723  | 1.625     | 9.722    | 11.487     | 9.4      | 11.764     | 32 bit |          |                                                                           |
| (7) code vectorization kmeans       | 4.378    | 3.326     | 4.493    | 1.743     | 0.208    | 10.859     | 0.135    | 10.987     | 32 bit |          |                                                                           |
| (8) versione update centroids       | 4.221    | 3.296     | 4.314    | 1.804     | 0.204    | 11.136     | 0.137    | 11.454     | 32 bit |          |                                                                           |
| (9) versione dist32 nasm            | 4.203    | 2.082     | 4.429    | 0.559     | 0.131    | 1.944      | 0.128    | 1.732      | 32 bit |          |                                                                           |
| (10) versione code vectorization    | 4.322    | 1.797     | 4.506    | 0.532     | 0.153    | 1.547      | 0.144    | 1.744      | 32 bit |          |                                                                           |
| (11) versione loop unrolling        | 3.553    | 0.78      | 3.729    | 0.472     | 0.127    | 0.526      | 0.124    | 0.551      | 32 bit |          |                                                                           |
| (12) versione cache blocking        | 4.391    | 0.591     | 4.4      | 0.48      | 0.15     | 0.534      | 0.154    | 0.433      | 32 bit |          |                                                                           |
| (13) versione loop unrolling optim  | 2.573    | 0.601     | 2.761    | 0.467     | 0.085    | 0.398      | 0.084    | 0.446      | 32 bit |          |                                                                           |
| (14) versione cache + optimized     | 4.543    | 0.7       | 4.533    | 0.466     | 0.155    | 0.572      | 0.152    | 0.444      | 32 bit |          |                                                                           |
| (15) versione noexaustive fixed     | 2.546    | 0.696     | 2.535    | 0.542     | 0.28     | 0.398      | 0.269    | 0.486      | 32 bit |          |                                                                           |
| (16) versione memory optimized      | 2.356    | 0.598     | 2.345    | 0.48      | 0.463    | 0.574      | 0.442    | 0.519      | 32 bit |          |                                                                           |
| (17) versione introduzione x64      | 2.301    | 0.542     | 2.378    | 0.51      | 0.226    | 0.316      | 0.226    | 0.575      | 32 bit |          |                                                                           |
| (18) versione exit case             | 0.727    | 0.553     | 0.715    | 0.536     | 0.212    | 0.321      | 0.21     | 0.59       | 32 bit |          |                                                                           |
| (19) versione OpenMP/x64            | 0.419    | 0.556     | 0.452    | 0.446     | 0.127    | 0.284      | 0.139    | 0.379      | 64 bit |          |                                                                           |

Figura 25: tabella tempi di esecuzione su prova.ds

| Versioni                           | Esaustiva sdc |           | Esaustiva adc |           | Non-esaustiva sdc |           | Non-esaustiva adc |           |        |            |            |
|------------------------------------|---------------|-----------|---------------|-----------|-------------------|-----------|-------------------|-----------|--------|------------|------------|
|                                    | indexing      | searching | indexing      | searching | indexing          | searching | indexing          | searching |        |            |            |
| (7) code vectorization kmeans      | 55.207        | 121.497   | 55.28         | 105.997   | 3.64              | 300       | 3.047             | 300       | 32 bit |            |            |
| (9) versione dist32 nasm           | 55.056        | 31.008    | 55.818        | 11.069    | 3.272             | 116.803   | 3.257             | 115.559   | 32 bit |            |            |
| (10) versione code vectorization   | 56.346        | 29.798    | 56.532        | 10.788    | 3.196             | 115.421   | 3.267             | 114.333   | 32 bit | 20000*1000 | 20000*1000 |
| (11) versione loop unrolling       | 52.479        | 11.334    | 52.551        | 9.549     | 3.117             | 17.922    | 3.291             | 17.528    | 32 bit | dataset.ds | dataset.qs |
| (12) versione cache blocking       | 84.247        | 10.27     | 83.994        | 8.652     | 2.416             | 18.315    | 2.836             | 17.045    | 32 bit |            |            |
| (13) versione loop unrolling optim | 33.727        | 9.759     | 33.782        | 8.635     | 2.042             | 14.535    | 1.849             | 12.731    | 32 bit | Knn=4      | Knn=4      |
| (14) versione cache + optimized    | 66.651        | 9.975     | 65.563        | 8.424     | 2.387             | 14.242    | 2.645             | 12.525    | 32 bit | M=5        | M=5        |
| (16) versione memory optimized     | 34.959        | 10.165    | 34.961        | 8.784     | 4.922             | 21.331    | 4.618             | 21.994    | 32 bit | K=256      | K=256      |
| (18) versione exit case            | 12.333        | 10.52     | 12.28         | 9.486     | 4.496             | 20.818    | 4.017             | 21.7      | 32 bit | Kc=256     | Kc=256     |
| (19) versione OpenMP/x64           | 6.701         | 9.541     | 6.689         | 8.06      | 2.521             | 15.055    | 2.467             | 14.303    | 32 bit | W=8        | W=8        |
|                                    |               |           |               |           |                   |           |                   |           |        | nr=n/20    | nr=n/20    |
| Last version x32                   | 10.784        | 9.143     | 10.808        | 8.237     | 3.856             | 17.917    | 3.873             | 18.547    | 32 bit |            |            |
| Last version x64                   | 6.234         | 8.63      | 6.282         | 7.472     | 2.385             | 13.282    | 2.397             | 13.03     | 64 bit |            |            |
| Last version OPENMP                | 2 512         | 8 736     | 2 432         | 7 624     | 1 287             | 13 026    | 1 224             | 12 785    | 64 OMP |            |            |

Figura 26: tabella tempi di esecuzione su dataset.ds

Di seguito vengono riportati i grafici relativi alla tabella "test" su dataset.ds per evidenziarne l'andamento:



Di seguito vengono riportati i grafici relativi alla tabella "test" su prova.ds per evidenziarne l'andamento:

