

Программирование в среде R

Шевцов Василий Викторович, директор ДИТ РУДН, shevtsov-vv@rudn.ru

Операторы

x=a	Присваивания (справа)
x<- a	Присваивания (справа)
a->x	Присваивания (слева)
x==a	Сравнение. Равно
x!=a	Сравнение. Не равно
x>a	Сравнение. Больше чем
x <a< th=""><th>Сравнение. Меньше чем</th></a<>	Сравнение. Меньше чем
x>=a	Сравнение. Больше или равно
x<=a	Сравнение. Меньше или равно
!x	Not x
x y	x OR y
x & y	x AND y
isTRUE(x)	test if X is TRUE

Операторы сравнения

$$a == 5$$

$$a <= 10$$

[1] FALSE

[1] TRUE

[1] TRUE

> a > 7

[1] TRUE

TRUE / FALSE

Классы данных в R

Объект	Возможные типы данных	Использование в объекте нескольких типов данных
vector	числовой, символьный, комплексный, логический	Нет
factor	числовой, символьный	Нет
array	числовой, символьный, комплексный, логический	Нет
matrix	числовой, символьный, комплексный, логический	Нет
data.frame	числовой, символьный, комплексный, логичный	Да
Ts	числовой, символьный, комплексный, логический	Да
List	числовой, символьный, комплексный, логический, функция, выражение, формула	Да

Классы данных в R

Векторы

Создание вектора

```
> my_vector <- c(1,2,3,-5,-6)
> my_vector
[1] 1 2 3 -5 -6
```

Values	
a	10
my_vector	num [1:5] 1 2 3 -5 -6

```
my_vector_2 <- c('a','b','c')
my_vector_3 <- c(F,TRUE,FALSE)
my_vector_4 <- c(1.23,3.45,10.43)
```

Values	
a	10
my_vector	num [1:5] 1 2 3 -5 -6
my_vector_2	chr [1:3] "a" "b" "c"
my_vector_3	logi [1:3] FALSE TRUE FALSE
my_vector_4	num [1:3] 1.23 3.45 10.43

Создание числовых последовательностей

Если элементы числовой последовательности отличаются друг от друга на единицу (возрастающая последовательность), или на -1 (убывающая последовательность), то можно задать только начальное а и конечное b значения искомой последовательности — a:b (разделяется двоеточием)

```
> x<-1:10;x
[1] 1 2 3 4 5 6 7 8 9 10
> x<-10:1;x
[1] 10 9 8 7 6 5 4 3 2 1
> y<-2:10;y
[1] 2 3 4 5 6 7 8 9 10
> y<-2.1:10;y
[1] 2.1 3.1 4.1 5.1 6.1 7.1 8.1 9.1
> y<--3.5:3.4;y
[1] -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5
> |
```


Обратите внимание на поведение построения последовательности при задании различных начальных и конечных значений

Создание числовых последовательностей. rep()

Функция rep() создает вектор с одинаковыми элементами:

```
> x<-rep(1,5);x
[1] 1 1 1 1 1
> |
```

 rep(a:b, times=n) создает вектор с повторяющимися последовательностями:

```
> x<-rep(2:5,times=2);x
[1] 2 3 4 5 2 3 4 5
> |
```

■ rep(a:b, each=n) создает вектор с повторяющимися элементами:

```
> x<-rep(2:5,each=3);x
[1] 2 2 2 3 3 3 4 4 4 5 5 5
> x<-rep(2:5,each=3,times=2);x
[1] 2 2 2 3 3 3 4 4 4 5 5 5 2 2 2 3 3 3 4 4 4 5 5 5
> |
```


Создание числовых последовательностей. seq()

- seq(from, to) аналогично a:b
- seq(from, to, by=) задаются начальное, конечное значения и шаг последовательности
- seq(from, to, length.out=) задаются начальное, конечное значения последовательности, а также общее число элементов последовательности. Шаг последовательности определяется самостоятельно by = ((to from)/(length.out 1))
- seq(x) последовательность строится от 1 до x.

```
> x<-seq(2,6);x
[1] 2 3 4 5 6
> x<-seq(2,6,by=0.5);x
[1] 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
> x<-seq(2,6,length.out = 10);x
[1] 2.000000 2.444444 2.888889 3.333333 3.777778 4.222222 4.666667 5.111111 5.555556
[10] 6.000000
> x<-seq(10);x
[1] 1 2 3 4 5 6 7 8 9 10
> |
```


Создание символьных последовательностей

- letters[from_idx : to_idx]
- LETTERS[from_idx : to_idx]

```
> letters[1:10]
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"
> LETTERS[1:10]
[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J"
> |
```


Векторы. Адресация

x[n]	n-ый элемент
x[-n]	все элементы, кроме n-го
x[1:n]	первые n элементов

```
> x<-2:11;x
[1] 2 3 4 5 6 7 8 9 10 11
> x[5]
[1] 6
> x[-5]
[1] 2 3 4 5 7 8 9 10 11
> x[1:4]
[1] 2 3 4 5
> |
```


Векторы. Адресация

x[-(1:n)]	все элементы, кроме первых n
x[c(1,4,2)]	элементы с заданными индексами
x["name"]	элемент с заданным именем

```
> x[-(1:4)]

[1] 6 7 8 9 10 11

> x[c(3,6,9)]

[1] 4 7 10

> |
```

```
> names(x)<-c("i1","i2","i3","i4","i5","i6","i7","i8","i9","i10")
> x["i3"]
i3
    4
> |
```

```
> x<-1:10;x
[1] 1 2 3 4 5 6 7 8 9 10
> a<-length(x);a
[1] 10
> names(x)<-c(letters[1:a]);x
a b c d e f g h i j
1 2 3 4 5 6 7 8 9 10</pre>
```


Векторы. Операторы сравнения

```
> X <- 1:10
> X
[1] 1 2 3 4 5 6 7 8 9 10
> X > 5
[1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
> X > 5 & X != 7
[1] FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE
> |
```


Векторы. Адресация

```
x[x > 3] все элементы, большие 3 x[x > 3 \& x < 5] все элементы между 3 и 5 x[x == 3] все элементы, равные 3 x[x \%in\% \ c(2,3,4)] все элементы из заданного множества x[c(logical_1, logical_2,...logical_n,)] с помощью logical вектора. n=length(x)
```

```
> x[x>4]
i4 i5 i6 i7 i8 i9 i10
               9
                  10 11
> x[x>4&x<=10]
i4 i5 i6 i7 i8 i9
 [1] 2 2 2 3 3 3 4 4 4 5 5 5 2 2 2 3 3 3 4 4 4 5 5 5
> x[x==3]
[1] 3 3 3 3 3 3
> x[x %in% c(2,3,4)]
 [1] 2 2 2 3 3 3 4 4 4 2 2 2 3 3 3 4 4 4
> x<-1:10; x
 [1] 1 2 3 4 5 6 7 8 9 10
> y<-c(TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE)
> x[y]
        6 7 8 9 10
```


Векторы. Операторы сравнения

```
> x <- 1:10
> X
 [1]
     1 2 3 4 5 6 7 8 9 10
> x > 5
 [1] FALSE FALSE FALSE FALSE TRUE
                                           TRUE
                                                  TRUE
                                                        TRUE
                                                              TRUE
> x > 5 & x != 7
 [1] FALSE FALSE FALSE FALSE TRUE FALSE
                                                  TRUE
                                                        TRUE
                                                              TRUE
                3
                                           7
                              5
                                                  8
                                                               10
                       4
                                    6
                                                        9
   F
          F
                F
                       F
                                                               Т
                              F
                                    Т
                                           Т
                                                  Т
                                                        Т
  нет
               нет
         нет
                      нет
                             нет
                                    да
                                          да
                                                 да
                                                        да
                                                              да
   F
          F
                F
                       F
                              F
                                    Т
                                           F
                                                  Т
                                                        Т
                                                               Т
  нет
         нет
               нет
                      нет
                             нет
                                    да
                                          нет
                                                 да
                                                              да
                                                        да
```



```
> x <- 1:10
> x
[1] 1 2 3 4 5 6 7 8 9 10
> x <- x + 10
> x
[1] 11 12 13 14 15 16 17 18 19 20
```

```
> x <- x + 'a'
Error in x + "a": non-numeric argument to binary operator
```



```
> x <- 1:10
> X
 [1] 1 2 3 4 5 6 7 8 9 10
> x <- as.character(x)</pre>
> X
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"
> x <- paste(x,'a')
> X
 [1] "1 a" "2 a" "3 a" "4 a" "5 a" "6 a" "7 a" "8 a" "9 a" "10 a"
> x <- 1:10
> X
[1] 1 2 3 4 5 6 7 8 9 10
> x <- paste(x,'a')
> X
```

```
> x <- paste(x,'a',sep='!')
> x
[1] "1!a" "2!a" "3!a" "4!a" "5!a" "6!a" "7!a" "8!a" "9!a" "10!a"
```

[1] "1 a" "2 a" "3 a" "4 a" "5 a" "6 a" "7 a" "8 a" "9 a" "10 a"

 Два вектора одинаковой длины могут быть добавлены, вычитания, умножения или разделить дает результат в виде вектора вывода

```
> x<-c(3.5,7.9,2.4)
> y < -c(5,7,0,3,5,6)
> Z<-X+Y; Z
[1] 8 12 7 12 7 10
> x<-c(3,5,7,9,2,4)
> y<-c(5,7,0,3,5,6)
> Z<-y-x; Z
[1] 2 2 -7 -6 3 2
> x<-c(3.5.7.9.2.4)
> y<-c(5,7,0,3,5,6)
> Z<-y*x; Z
[1] 15 35 0 27 10 24
> x<-c(3,5,7,9,2,4)
> y<-c(5,7,0,3,5,6)
> z < -y/x; z
[1] 1.6666667 1.4000000 0.0000000 0.3333333 2.5000000 1.5000000
```



```
> x <- 0:9
> y <- 10:15
> z <- x + y
Warning message:
In x + y : longer object length is not a multiple of shorter object length
> z
[1] 10 12 14 16 18 20 16 18 20 22
```

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	10	11	12	13
10	12	14	16	18	20	16	18	20	22

 Если применить арифметические операции с двумя векторами разной длины, то элементы более короткого вектора переработаны для завершения операции.

```
> x<-c(3,5,7,9) 3,5
> y<-c(5,7,0,3,5,6)
> z<-y+x;z
Warning message:
In y + x : longer object length is not a multiple of shorter object length
[1] 8 12 7 12 8 11
> z<-y-x;z</pre>
```

```
> z<-y-x;z
Warning message:
In y - x : longer object length is not a multiple of shorter object length
[1] 2 2 -7 -6 2 1
> z<-y*x;z
Warning message:
In y * x : longer object length is not a multiple of shorter object length
[1] 15 35 0 27 15 30
> z<-y/x;z
Warning message:
In y/x : longer object length is not a multiple of shorter object length
[1] 1.6666667 1.4000000 0.0000000 0.3333333 1.6666667 1.2000000</pre>
```


Манипуляция данными

- по индексу
- по имени
- по условию

```
> x<-1:10
> names(x)<-letters[1:10]
> x
    a b c d e f g h i j
    1 2 3 4 5 6 7 8 9 10
> x[3]<-300
> x[3]<-300
> x[3]
    c
300
> x["c"]<-400
> x["c"]
    c
400
> x[3]
    c
400
```

```
> x[x>5]<-100
> x
a b c d e f g h i j
1 2 100 4 5 100 100 100 100
```

```
> x<-1:10
> names(x)<-letters[1:10]
> x[x>5]<-x[x>5]*100
> x
    a    b    c    d    e    f    g    h    i    j
    1    2    3    4    5  600  700  800  900  1000
```


Манипуляция вектором

 Изменение размерности вектора, вставка значений через оператор с()

Манипуляция вектором

Изменение размерности вектора

```
> x<-1:10
> names(x)<-letters[1:10];x
 abcdefgh
> y<-c(x[1:5],100,x[6:10]);y
          C
                  e
                  5 100
> x<-1:10
> names(x)<-letters[1:10]</pre>
> y<-100; names(y)<-"ee"
> z < -c(x[1:5],y,x[6:10]);z
                  e ee f
                  5 100
> z<-append(z,200);z
                   e ee f g h i
5 100 6 7 8 9
> z<-append(z,300,after=3);z</pre>
                       e ee
          C
                       5 100
           3 300
                                            9 10 200
```

```
RUDN university
```

```
> names(z)[4]<-"c1"; z
a b c c1 d e ee f g h i j
1 2 3 300 4 5 100 6 7 8 9 10 200
> names(z)[13]<-"k"; z
a b c c1 d e ee f g h i j k
1 2 3 300 4 5 100 6 7 8 9 10 200</pre>
```

Ошибки

```
> x <- 1:10
> x[100]
[1] NA
> x[c(1:10,15,20)]
[1] 1 2 3 4 5 6 7 8 9 10 NA NA
```


Матрицы

Матрицы (matrix). 2-мерный массив

- Матрица в R это специальный тип вектора, обладающий некоторыми добавочными свойствами (атрибутами), позволяющими интерпретировать его как совокупность строк и столбцов.
- Создание матрицы
 m <- matrix(x, nrow = i, ncol = j)

Матрицы (matrix). 2-мерный массив

Создание матрицы через атрибут dim

```
> x<-1:6;x
[1] 1 2 3 4 5 6
> attr(x,"dim")<-c(2,3);x
       [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
> x<-1:6;x
[1] 1 2 3 4 5 6
> attr(x,"dim")<-c(2,2);x
Error in attr(x, "dim") <- c(2, 2) :
    dims [product 4] do not match the length of object [6]</pre>
```


Матрицы (matrix). 2-мерный массив

- Создание матрицы командами cbind(), rbind()
- Параметрами cbind()
 должны быть или
 векторы любой
 длины, или матрицы
 с одинаковым
 размером столбца,
 который является
 одинаковым числом
 строк.
- rbind() аналогично,
 формируются строки

```
> ma<-cbind(0:5,5:10,10:15);ma</pre>
     [,1] [,2] [,3]
Γ1. ]
[2,]
                   11
[3.]
                  12
[4,]
                  13
[5.]
                  14
[6.]
             10
                  15
> ma<-cbind(0:5,5:9,10:13);ma</pre>
Warning message:
In cbind(0:5, 5:9, 10:13):
  number of rows of result is not a multiple of vector length (arg 2)
[1,]
                   10
[2,]
                  11
[3.]
                  12
Γ4.1
                  13
[5.]
                  10
                  11
> x<-0:5; y<-5:10; z<-10:15
> ma<-cbind(x,y,z);ma</pre>
        5 10
        8 13
[6,] 5 10 15
> x<-0:5; y<-5:9; z<-10:13
> ma<-cbind(x,y,z);ma</pre>
Warning message:
In cbind(x, y, z):
  number of rows of result is not a multiple of vector length (arg 2)
[1,] 0 5 10
[2,] 1 6 11
[3,] 2 7 12
[4.] 3 8 13
```


Матрица. Адресация

ma[n,m]	Значение элемента матрицы
ma[,m]	Значение столбца
ma[n,]	Значение строки
ma[1:n,2:m]	Диапазон значений с по для строк и столбцов
ma[-(1:n),m]	Кроме диапазона…
ma[c(1,2,4), c(1,2)]	Элементы с заданными индексами
ma["RowName", "ColName"]	Значение элемента матрицы
ma[ma > 3]	все элементы, большие 3
ma[ma > 3 & ma < 5]	все элементы между 3 и 5
ma[ma == 3]	все элементы, равные 3
ma[ma %in% c(2,3,4)]	все элементы из заданного множества

Элементы матриц

```
> dimnames(m1)<-list(c("row1","row2"),c("col1","col2","col3"))</pre>
    col1 col2 col3
row1
      20 100
row2
                60
> m1["row1","col2"]
\lceil 1 \rceil 3
> m1["row1",]
col1 col2 col3
> m1[,"col2"]
row1 row2
    3 100
> m1["row1",c("col2","col3")]
col2 col3
    3
          5
```


Спасибо за внимание!

Шевцов Василий Викторович

shevtsov-vv@rudn.ru +7(903)144-53-57

