

Vectors:

Any quantity having n-components is called a vector of order n.

Therefore, the coefficients in linear equation or the elements in a row matrix or column matrix will form a vector. Thus, any n numbers x_1, x_2, \dots, x_n written in a particular order, constitute a vector x.

Linear dependent vectors:

The vectors $x_1,x_2,....,x_n$ are said to be linearly dependent, if there exist n numbers $\lambda_1,\,\lambda_2,....,\lambda_n$ not all zero, such that

$$\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n = 0$$
. (i)

Linear independent vectors:

If no such numbers, other than zero, exist, then the vectors are said to be linearly independent.

Now let us suppose vectors x_1, x_2, \ldots, x_n are said to be linearly dependent, then there exist r numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$ not all zero.

Let us suppose $\lambda_1 \neq 0$, then we write (i) in the form

$$x_1 = -\frac{1}{\lambda_1} [\lambda_2 x_2 + \lambda_3 x_3 + \dots + \lambda_n x_n]$$

$$\Rightarrow x_1 = \mu_2 x_2 + \mu_3 x_3 + \dots + \mu_n x_n$$

This means that the vector \boldsymbol{x}_1 is said to be a linear combination of the vectors $\boldsymbol{x}_2,....,\boldsymbol{x}_n$.

Now let us solve some problems:

Q.No.1.: Are the vectors $x_1 = (1, 3, 4, 2)$, $x_2 = (3, -5, 2, 2)$ and $x_3 = (2, -1, 3, 2)$ linearly dependent? If so express one of these as a linear combination of the others.

Sol.: Since we know that, the vectors x_1, x_2, x_3 are said to be L.D., if \exists numbers $\lambda_1, \lambda_2, \lambda_3$ not all zero s.t. $\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 = 0$.

The relation $\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 = 0$.

$$\Rightarrow \lambda_1(1,3,4,2) + \lambda_2(3,-5,2,2) + \lambda_3(2,-1,3,2) = 0,$$

$$\Rightarrow \lambda_1 + 3\lambda_2 + 2\lambda_3 = 0 \,, \quad 3\lambda_1 - 5\lambda_2 - \lambda_3 = 0 \,, \quad 4\lambda_1 + 2\lambda_2 + 3\lambda_3 = 0 \,, \quad 2\lambda_1 + 2\lambda_2 + 2\lambda_3 = 0 \,.$$

$$\approx \begin{bmatrix} 1 & 3 & 2 \\ 3 & -5 & -1 \\ 4 & 2 & 3 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

Operating $R_2 \rightarrow R_2 - 3R_1$, $R_3 \rightarrow R_3 - 4R_1$, $R_4 \rightarrow R_4 - 2R_1$, we get

$$\begin{bmatrix} 1 & 3 & 2 \\ 0 & -14 & -7 \\ 0 & -10 & -5 \\ 0 & -4 & -2 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

Operating
$$R_3 \to 7R_3 - 5R_2$$
, $R_4 \to 5R_4 - 2R_2$, we get
$$\begin{bmatrix} 1 & 3 & 2 \\ 0 & -14 & -7 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

Operating
$$R_2 \to \left(-\frac{1}{7}\right) R_2$$
, we get $\begin{bmatrix} 1 & 3 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

$$\Rightarrow \lambda_1 + 3\lambda_2 + 2\lambda_3 = 0,$$

$$2\lambda_2 + \lambda_3 = 0.$$

$$\Rightarrow \lambda_3 = -2\lambda_2$$
 and $\lambda_1 = \lambda_2$

$$\Rightarrow \lambda_1 = \lambda_2 = -\frac{1}{2}\lambda_3.$$

Now these are satisfied by the values $\lambda_1 = 1$, $\lambda_2 = 1$ and $\lambda_3 = -2$, which are not zero.

Thus, the given vectors are linearly dependent.

Relation: Substituting these values in (i), we get $x_1 + x_2 - 2x_3 = 0$,

 \Rightarrow Any of the given vectors can be expressed as a linear combination of the others.

e.g.
$$x_1 = 2x_3 - x_2$$
.

Thus x_1 is a linear combination of x_2 and x_3

Remarks:

Applying elementary row operations to the vectors x_1 , x_2 , x_3 , we see that the matrices

$$A = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \text{ and } B = \begin{bmatrix} x_1 \\ x_2 \\ x_1 + x_2 - 2x_3 \end{bmatrix},$$

have the same rank. The rank of B being 2, the rank of A is also 2.

Moreover, x_1 , x_2 are linearly independent and x_3 can be expressed as a linear combination of x_1 and $x_2 \left[\because x_3 = \frac{1}{2} (x_1 + x_2) \right]$.

Similar results will hold for column operations and for any matrix. In general, we have the following results:

If a given matrix has r linearly independent vectors (rows or columns) and the remaining vectors are linear combinations of these r vectors, then rank of the matrix is r. Conversely, if a matrix is of rank r, it contains r linearly independent vectors and remaining vectors (if any) can be expressed as a linear combination of these vectors.

Q.No.2: Are the following vectors linearly dependent. If so, find the relation between them:

(i)
$$(3,2,7)$$
, $(2,4,1)$, $(1,-2,6)$,

(iii)
$$x_1 = (1, 2, 4), x_2(2, -1, 3), x_3 = (0, 1, 2), x_4 = (-3, 7, 2).$$

Sol.: (i). Let
$$x_1 = (3, 2, 7)$$
, $x_2 = (2, 4, 1)$, $x_3 = (1, -2, 6)$.

Then
$$\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 = 0$$
. (i)

$$\Rightarrow \lambda_1(3, 2,7) + \lambda_2(2, 4, 1) + \lambda_3(1, -2, 6) = 0$$
,

which is equivalent to

$$3\lambda_1 + 2\lambda_2 + \lambda_3 = 0$$
, $2\lambda_1 + 4\lambda_2 - 2\lambda_3 = 0$, $7\lambda_1 + \lambda_2 + 6\lambda_3 = 0$.

$$\Rightarrow \begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & -2 \\ 7 & 1 & 6 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Operating
$$R_2 \to R_2 - \frac{2}{3}R_1$$
, $R_3 \to R_3 - \frac{7}{3}R_1$, we get $\begin{bmatrix} 3 & 2 & 1 \\ 0 & \frac{8}{3} & -\frac{8}{3} \\ 0 & -\frac{11}{3} & \frac{11}{3} \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

Operating
$$R_3 \to R_3 + \frac{11}{8}R_2$$
, we get $\begin{bmatrix} 3 & 2 & 1 \\ 0 & \frac{8}{3} & -\frac{8}{3} \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

$$\Rightarrow 3\lambda_1 + 2\lambda_2 + \lambda_3 = 0$$
 and $\frac{8}{3}\lambda_2 - \frac{8}{3}\lambda_3 = 0 \Rightarrow \lambda_2 = \lambda_3$.

Thus
$$3\lambda_1 + 3\lambda_3 = 0 \Rightarrow \lambda_1 = -\lambda_3$$
.

$$\therefore \lambda_1 = -\lambda_2 = -\lambda_3.$$

Putting $\lambda_1 = 1$, $\lambda_2 = -1$, $\lambda_3 = -1$, which are not zero.

Thus, the given vectors are linearly dependent.

Relation: Putting these values in (i), we get $x_1 - x_2 - x_3 = 0$.

Hence $x_1 = x_2 + x_3$.

Hence, x_1 can be expressed in terms of x_2 and x_3 .

(ii). Let
$$x_1 = (1, 1, 1, 3)$$
, $x_2 = (1, 2, 3, 4)$, $x_3 = (2, 3, 4, 9)$

Then
$$\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 = 0$$
. (i)

$$\lambda_1(1,1,1,3) + \lambda_2(1,2,3,4) + \lambda_3(2,3,4,9) = 0$$

which is equivalent to

$$\lambda_1 + \lambda_2 + 2\lambda_3 = 0 \,,$$

$$\lambda_1 + 2\lambda_2 + 3\lambda_3 = 0,$$

$$\lambda_1 + 3\lambda_2 + 4\lambda_3 = 0,$$

$$3\lambda_1 + 4\lambda_2 + 9\lambda_3 = 0.$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 3 & 4 \\ 3 & 4 & 9 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

Operating $R_2 \rightarrow R_2 - R_1$, $R_3 \rightarrow R_3 - R_1$, $R_4 \rightarrow R_4 - R_1$, we get

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

Operating
$$R_3 \to R_3 - 2R_2$$
, $R_4 \to R_4 - R_2$, we get $\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$.

$$\Rightarrow \lambda_1 + \lambda_2 + 2\lambda_3 = 0 \;,\; \lambda_2 + \lambda_3 = 0 \;\; \text{ and } \;\; 2\lambda_3 = 0 \;.$$

$$\Rightarrow \lambda_3 = 0 \; , \;\; \lambda_2 = 0 \;\; \text{and} \;\; \lambda_1 = 0 \; .$$

Thus λ_1 , λ_2 and λ_3 have value equal to 0.

Hence, it is linearly independent.

Relation: Since vectors are linearly independent, so there is no relation between them.

(iii).
$$x_1 = (1, 2, 4), x_2 = (2, -1, 3), x_3 = (0, 1, 2), x_4 = (-3, 7, 2).$$

Then
$$\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 + \lambda_4 x_4 = 0$$
. (i)

$$\Rightarrow \lambda_1(1,2,4) + \lambda_2(2,-1,4) + \lambda_3(0,1,2) + \lambda_4(-3,7,2) = 0$$

which is equivalent to

$$\lambda_1 + 2\lambda_2 - 3\lambda_4 = 0,$$

$$2\lambda_1 - \lambda_2 + \lambda_3 + 7\lambda_4 = 0,$$

$$4\lambda_1 + 3\lambda_2 + 2\lambda_3 + 2\lambda_4 = 0.$$

$$\Rightarrow \begin{bmatrix} 1 & 2 & 0 & -3 \\ 2 & -1 & 1 & 7 \\ 4 & 3 & 2 & 2 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Operating
$$R_2 \to R_2 - 2R_1$$
, $R_3 \to R_3 - 4R_1$, we get $\begin{bmatrix} 1 & 2 & 0 & -3 \\ 0 & -5 & 1 & 13 \\ 0 & -5 & 2 & 14 \end{bmatrix} \begin{vmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \end{vmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

Operating
$$R_3 \to R_3 - R_2$$
, we get $\begin{bmatrix} 1 & 2 & 0 & -3 \\ 0 & -5 & 1 & 13 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

$$\Rightarrow \lambda_1 + 2\lambda_2 - 3\lambda_4 = 0, -5\lambda_2 + \lambda_3 - 13\lambda_4 = 0, \lambda_3 + \lambda_4 = 0.$$

By solving
$$\lambda_1 = \frac{9}{5}\lambda_4$$
, $\lambda_2 = -\frac{12}{5}\lambda_4$, $\lambda_3 = -\lambda_4$.

Putting
$$\lambda_4 = 1$$
, we get $\lambda_1 = \frac{9}{5}$, $\lambda_2 = -\frac{12}{5}$, $\lambda_3 = -1$.

Thus, the given vectors are linearly dependent.

Relation: Now
$$\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 + \lambda_4 x_4 = 0$$

$$\Rightarrow \frac{9}{5}x_1 + \left(-\frac{12}{5}\right)x_2 + \left(-1\right)x_3 + (1)x_4 = 0$$

$$\Rightarrow 9x_1 - 12x_2 - 5x_3 + 5_4 = 0$$

which is the required relation between these vectors.

Home Assignments

Q.No.1.: Are the following vectors linearly dependent? If so, find a relation between them.

(i).
$$x_1 = (1,3,2), x_2 = (5,-2,1), x_3 = (-7,13,4)$$

(ii).
$$x_1 = (1,-1,3,2), x_2 = (1,3,4,2), x_3 = (3,-5,2,2)$$

(iii).
$$x_1 = (2,3,1,-1), x_2 = (2,3,1,-2), x_3 = (4,6,2,1).$$

Ans.: (i). Yes, Relation: $3x_1 - 2x_2 - x_3 = 0$.

- (ii). Yes, Relation: $2x_1 x_2 x_3 = 0$.
- (iii). Yes, Relation: $5x_1 3x_2 x_3 = 0$.

*** *** *** ***

*** *** ***
