The proof that if the set $\{cx \in \mathbb{R} \mid x \in \mathcal{P}(A, b)\}$ is nonempty and bounded above, then there is an optimal solution $p \in \mathcal{P}(A, b)$, is not as trivial as it might seem. It relies on the fact that a polyhedral cone is closed, a fact that was shown in Section 44.3.

We also use a trick that makes the proof simpler, which is that a Linear Program (P) with inequality constraints $Ax \leq b$

maximize
$$cx$$

subject to $Ax \le b$ and $x \ge 0$,

is equivalent to the Linear Program (P_2) with equality constraints

maximize
$$\widehat{c} \widehat{x}$$

subject to $\widehat{A}\widehat{x} = b$ and $\widehat{x} > 0$,

where \widehat{A} is an $m \times (n+m)$ matrix, \widehat{c} is a linear form in $(\mathbb{R}^{n+m})^*$, and $\widehat{x} \in \mathbb{R}^{n+m}$, given by

$$\widehat{A} = \begin{pmatrix} A & I_m \end{pmatrix}, \quad \widehat{c} = \begin{pmatrix} c & 0_m^{\top} \end{pmatrix}, \quad \text{and} \quad \widehat{x} = \begin{pmatrix} x \\ z \end{pmatrix},$$

with $x \in \mathbb{R}^n$ and $z \in \mathbb{R}^m$.

Indeed, $\widehat{A}\widehat{x} = b$ and $\widehat{x} \ge 0$ iff

$$Ax + z = b$$
, $x > 0$, $z > 0$,

iff

$$Ax \le b, \quad x \ge 0,$$

and $\widehat{c} \, \widehat{x} = cx$.

Definition 45.5. The variables z are called *slack variables*, and a linear program of the form (P_2) is called a linear program in *standard form*.

The result of converting the linear program of Example 45.4 to standard form is the program shown in Example 45.5.

Example 45.5.

maximize
$$\frac{1}{6}x_1 + x_2$$

subject to
$$x_2 - x_1 + z_1 = 1$$

$$x_1 + 6x_2 + z_2 = 15$$

$$4x_1 - x_2 + z_3 = 10$$

$$x_1 \ge 0, x_2 \ge 0, z_1 \ge 0, z_2 \ge 0, z_3 \ge 0.$$