Домашнее задание №5

№1. Марковская цепь в дискретном времени имеет следующую матрицу переходных вероятностей:

$$\begin{pmatrix} 1 & 0 & 0 & ? \\ 0.1 & 0 & 0.9 & ? \\ 0.1 & 0 & 0 & ? \\ 0.1 & 0.9 & 0 & ? \end{pmatrix}$$

Заполните последний столбец и ответьте на вопросы:

- а) Достижимо ли состояние 4 из состояния 2?
- б) Сообщаются ли состояния 2 и 4?
- в) Является ли эта цепь неразложимой?
- г) Каков период состояния 2?
- д) Является ли цепь эргодической?

№2. Рассмотрим марковскую цепь в дискретном времени с двумя состояниями, $\{X_t\}$, t=0,1,2,...

Вектор начальных вероятностей: $\binom{p_1^{(0)}}{p_2^{(0)}}$. Матрица переходов: $\binom{a}{b} \quad 1-a \\ b$, $a,b \in (0;1)$.

- а) Найдите стационарные вероятности p_1 и p_2 .
- б) Выпишите разностные уравнения, которые выражают $p_j^{(t)}$, j=1,2 через $p_j^{(t-1)}$. Здесь $p_j^{(t)}$ означает вероятность быть в состоянии j на шаге t.
- в) Решите эти уравнения и получите аналитическое выражение для $p_i^{(t)}$, j=1,2.
- г) Покажите, что $\lim_{t\to +\infty} p_j^{(t)} = p_j$.

№3. Марковская цепь в дискретном времени может находиться в трёх состояниях. Вектор исходных вероятностей:

 $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$

Матрица вероятностей переходов:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0.2 & 0.6 & 0.2 \\ 0 & 0 & 1 \end{pmatrix}$$

- а) Сообщаются ли состояния 1 и 2?
- б) Найдите распределение

$$\begin{pmatrix} p_1^{(t)} \\ p_2^{(t)} \\ p_3^{(t)} \end{pmatrix}$$

в) Найдите предельное распределение при $t \to +\infty$.