Indian Institute of Technology Kanpur

MTH-101AA QUIZ I, 11-12-2020, 6:00-6:10PM

(1) For $n \ge 1$, let $x_n = 1 + \frac{1}{3} + \frac{1}{5} + \cdots + \frac{1}{2n-1}$. Does the sequence (x_n) converge? Justify your answer. (Do not use statements of the problems appeared in the Assignments or Practice Problems for justifications). [5]

Indian Institute of Technology Kanpur

$\begin{array}{c} {\rm MTH\text{-}101AA} \\ {\rm QUIZ~I,~11\text{-}12\text{-}2020,~6:10\text{-}6:20PM} \end{array}$

(2) Let $f: \mathbb{R} \to \mathbb{R}$ satisfy f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. If f is continuous at $x_0 = 1$, show that f is continuous at $y_0 = 2$. [5]

MTH-101AA QUIZ I, 11-12-2020, 6:20-6:30PM

(3) Let $f:[0,1]\to\mathbb{R}$ be continuous and (x_n) be a sequence in [0,1]. Suppose

$$\lim_{n \to \infty} \frac{f(x_1) + f(x_2) + \dots + f(x_n)}{n} = \alpha$$

for some $\alpha \in \mathbb{R}$. Show that there exists $x_0 \in [0,1]$ such that $f(x_0) = \alpha$.

[5]