Taller de Lógica Digital - Parte 2

Organización del Computador 1 Primer Cuatrimestre 2023

Ejercicios

1. Componentes de 3 estados

a) Completar la siguiente tabla:

Α	Aen	В	Ben	С	Cen	Estimado	Obtenido
0	0	0	0	0	0	No	No
						Conectado	Conectado
0	1	1	1	0	0	Error	Error
1	0	1	0	1	0	No	No
						conectado	conectado
1	1	0	0	0	1	Error	Error
0	1	0	1	0	1	0	0
0	1	1	1	1	1	Error	Error
1	0	1	1	1	0	1	1

b) Completar la siguiente tabla:

Color	Interpretación		
Gris	Cables sin ningún conexión.		
Verde claro	La señal es 1.		
Verde	La señal es 0.		
oscuro			
Azul	La señal es indefinida o desconocida.		
Rojo	Están pasando dos valores distintos por el mismo cable.		

c) Enunciar la regla:

La condición o regla seria la siguiente:

Si dos o más componentes de 3 estados están dejando pasar la señal entonces esas señales deben tener el mismo valor.

d) Explicar cuáles son y por qué:

Las combinaciones basura son aquellas que tienen más de un componente de 3 estados activo al mismo tiempo. Esta se debe a que son lógicamente inútiles (y la misma lógica podría ser representado con menos compuertas de forma más simple).

2. Transferencia entre registros

a) Detallar entradas y salidas:

Entradas:			
ckl: control que determina cuando se guarda el dato de entrada Force_input			
Force_input: data a almacenar en los registros			
en_Force_input: control para almacenar un valor arbitrario en el circuito			
Salidas:			
R0, R1, R2: de monitoreo de dato almacenado en los registros			

b) Secuencia de señales:

- I. Habilito en_Force_input en 1,
- II. Habilito la escritura(W) de R1 en 1,
- III. Habilito Force_input en 1,
- IV. Hago un clk (franco ascendente).

c) Secuencia de señales:

- I. en_out R0 en 1,
- II. w de R2 en 1,
- III. clk(franco ascendente),
- IV. desactivo w de R1
- V. y desactivo en_out R0,
- VI. ---- en_out de R2 en 1,
- VII. w de R0 en 1,
- VIII. clk(franco ascendente),
 - IX. desactivo w de RO,
 - X. desactivo en_out de R2
- XI. --- activo w de R2,
- XII. activo en_out de R1,
- XIII. clk(franco ascendente).

3. Máquina de 4 registros con suma y resta.

a) Detallar entradas y salidas:

Entradas Control:				
OP: señal de control de operaciones de la ALU				
clk: señal de control para guardar en los registros				
De Reg0_WriteReg3_Write : señal de control que habiilita la escritura				
De Reg0_EnableOutReg3_EnableOut: señal de control que habilita la salida de los registros 00 a 03				
ALU_A_Write y ALU_B_Write : señal de control que habilita a la escritura de los registros de la ALU A y B				
ALU_EnableOut: señal de control que habilita al calculo almacenado en la ALU_regs				
en_Force_input: señal de control que habilita la entrada de un valor abitrario a los registros de 00 a 03				
Entrada:				
Force_input: ingresa un valor arbitrario en los registros 00 al 03				
Salidas:				
FLAGS de la ALU:				
N : Indica si el valor almacenado es negativo				
Z: Indica si el valor almacenado es 0				
V: Indicar si hubo overflow				
C: en el caso de la suma indica si hubo carry -out y en el caso de la resta indica si hubo borrow.				

b) Detallar el contenido de cada display:

Displays	Funcionalidad
Displays de registros 00 hasta 03	Todos representan el valor almacenado en su
	registro de 4 bits correspondiente.
Displays conectados A y B debug	representan el valor almacenado en los registros
	A y B de la ALU_regs.
Display S-debug	representa el valor almacenado resultante de la
	operación realizada por la ALU_regs.

Como observación final todos los displays interpretan la información almacenada como sin signo y en base hexadecimal.

- *c*) Secuencia de señales:
 - I. Activar Reg2_Write de R2,
 - II. Activar en_Force_input,
 - III. En el Force input ingreso 0100 (4),
 - IV. Realizar un clk(franco ascendente),
 - V. Volver a clk (0),
 - VI. ---- Desactivar Reg2_Write de R2,
 - VII. Activar Reg3_Write R3,
 - VIII. Ingresar en el Force input 1101 (-3),
 - IX. clk (franco ascendente).

Los números están interpretados en complemento a 2.

d) Completar la siguiente tabla:

Los resultados interpretados en sin signo y en complemento a 2.

Valor inicial	Resultado operación 1	Flags	Resultado operación 2	Flags
(4,0)	C2: 4 Sin-signo: 4	N:0, Z :0, V :0, C :0	C2: 4 Sin-signo: 4	N :0, Z :0, V :0, C :0
(7, -1)	C2: -8 Sin-signo: 8	N:1,Z:0,V:1,C:1	C2: 7 Sin-signo: 7	N :0, Z :0, V :0, C :0
(-8, -2)	C2 : 6 Sin-signo : 6	N:0,Z:0,V:1,C:1	C2: -6 Sin-signo: 10	N:1,Z:0,V:1,C:1
(8, -9)	C2: Sin-signo:		C2: Sin-signo:	

Secuencia de señales de primer caso:

Almacenamos los datos en el R1 y R0:

- I. Activar en_Force_input,
- II. Cargar en Force_input el numero 0100(4),
- III. Habilitar Reg0_Write de R0,
- IV. clk(franco ascendente),
- V. Desactivar RegO_Write de RO,en_Force_input,
- VI. Activar Reg1_Write de R1,
- VII. Desactivar en_Force_input,
- VIII. clk(franco ascendente).
- IX. -- Habilitar la salida de RO,
- X. Activar w de Alu_A_WRITE,
- XI. clk(franco ascendente),
- XII. Desactivar w de Alu A Write,
- XIII. Desactivar la salida de RO,
- XIV. Activar la salida de R1,
- XV. Activar W ALU_B_WRITE,
- XVI. clk(franco ascendente).
- --- Ahora realizar la operaciones:
- XVII. Operación: "OR" en op(11),
- XVIII. clk(franco ascendente),
 - XIX. Activar la salida de alu_regs,activo Reg2_Write de R2,

XX. clk(franco ascendente),
XXI. desactivo la Reg2_Write R2,
XXII. Operación: "sub" en op(01),
XXIII. clk(franco ascendente),
XXIV. Habilitar Reg3_Write de R3,
XXV. clk(franco ascendente).

e) Explicar

Corrección

Integrantes:

Nombre y Apellido: LU: Nombre y Apellido: LU:

Para uso de los docentes:

1	2	3