

AI CAREER SCOPE

An End-to-End Data Analysis on Al Jobs

This project explores AI job market trends using deep data analysis. Key insights on salaries, skills, automation, and growth projections are uncovered.

Niranjan

# **Project Overview: -**

- This project explores the AI job market by analysing trends in job titles, industries, required skills, salaries, remote work options, and future growth projections.
- The aim is to generate valuable insights for job seekers, companies, and analysts to better understand the evolving landscape of AI careers.

# **Problem Statement: -**

As Artificial Intelligence rapidly grows across industries, both job seekers and organizations face uncertainty about AI job trends.

This project addresses the following questions:

- Which industries are leading in AI adoption?
- What are the common required skills for AI roles?
- How does company size relate to salaries in Al jobs?
- What is the distribution between remote and onsite Al jobs?
- · Which job titles are at higher automation risk?
- What is the projected growth for AI-related roles?

# **Data Collection: -**

- Source: Kaggle
- The data set includes 10 key columns:
  - Job Title
  - Industry
  - Company Size
  - Location
  - Al Adoption Level
  - Automation Risk
  - Required Skills
  - Salary (in USD)
  - Remote Friendly (Yes/No)
  - Job Growth Projection

# **Data Exploration: -**

- Rows: 500
- Columns; 10
- Continuous: Salary\_USD
- <u>Categorical</u>: Job\_Title, Industry, Company\_Size, Location, AI\_Adoption\_Level, Automation\_Risk, Required\_Skills, Remote\_Friendly, Job\_Growth\_Projection
- Count: There was count data.

# Data Cleaning: -

- No null values available in the data set.
- There is do duplicate rows in the data set.

# **Exploratory Data Analysis (EDA): -**

## Univariate Analysis: -

#### **Job Title**

#### What are the most common Job Titles?



- 1. "Data Science" is the most frequent job title, with the highest count (~ 60)
- 2. "HR Manager" follows closely behind "Data Scientist", indicating significant representation in both technical and management roles.
- 3. Roles like "Cybersecurity Analyst," "UX Designer," "AI Researcher," and "Software Engineer" have strong counts, highlighting a tech-focused dataset.
- 4. Titles such as "HR Manager," "Sales Manager," "Operations Manager," and "Product Manager" show that leadership and organizational roles are equally valued.
- 5. The frequency of job titles steadily decreases from left to right, suggesting a balanced but slightly skewed distribution.
- 6. "Product Manager" is the least frequent among the listed titles, with the lowest count (~39).
- 7. Titles like "AI Researcher," "Sales Manager," and "Marketing Specialist" have relatively similar counts, indicating a balanced presence of research, sales, and marketing roles.
- 8. There is no extreme outlier; the difference between the highest and lowest counts is moderate.
- 9. The dataset represents a mix of technical, research, managerial, creative, and marketing roles, implying diverse industry coverage.
- 10. Slight right skewness can be observed, where fewer job titles have lower counts.

#### **Industry**

## Which Industry dominates in the dataset?



40.0

## **Observations made: -**

Transportation

0

1. "Manufacturing" has the highest count (~58), suggesting it is the most represented sector.

20

10

- 2. "Education" and "Technology" follow closely behind Manufacturing, indicating strong representation in these fields too.
- 3. Industries like "Finance" and "telecommunications" also show significant counts, emphasizing a focus on finance and communication services.

30

Count

40

50

60

- 4. "Energy" and "Entertainment" industries have moderately high counts, showing a healthy but slightly lesser presence compared to top industries.
- 5. "Transportation" has the lowest count (~39), indicating it is least represented sector in the dataset.
- 6. There's a gradual and consistent decline from the top to bottom industries, without any about drops.
- 7. The data set covers a wide range of sectors from Manufacturing and Technology to HealthCare and Retail implying good diversity.
- 8. Both Healthcare and Retail industries have lower but still notable representation, hinting at growing but not dominant roles in the dataset.
- 9. The colour bar indicates count intensity: higher counts are associated with brighter colors (yellow), while lower counts trend towards darker shades (blue/purple).
- 10. The counts show a fairly even spread across industries, with no single sector overwhelmingly dominating.

## What is the distribution of Company\_Size?

#### Distribution of Company Sizes



- 1. Small-sized companies have the largest share at **34.2**% of the total.
- 2. The difference between the shares of Small (34.2%), Large (33.2%), and Medium (32.6%) companies is minimal, suggesting a very **balanced distribution**.
- 3. Large-sized companies contribute **33.2**%, almost equally to small companies, indicating significant representation.
- 4. Medium-sized companies make up 32.6%, slightly lower but still close to the others.
- 5. All three company sizes (Small, Medium, Large) are **almost equally represented** with less than a 2% variation among them.
- 6. Different colors (blue for Small, green for Medium, red for Large) make the categories easily distinguishable in the pie chart.
- 7. No single company size type (small, medium, large) overwhelmingly dominates the dataset.
- 8. The dataset is well-balanced across company sizes, providing a diverse perspective for further analysis.

#### Location

## What are the top Locations for jobs?





- 1. San Francisco has the highest count among all locations with over 60 entries.
- 2. There is a noticeable gap between San Francisco and the second-highest, Singapore.
- 3. Singapore, Sydney, Dubai, and Tokyo have very close counts, all slightly above 50.
- 4. After Tokyo, the counts gradually decline across New York, Berlin, London, and Paris.
- 5. Toronto has the lowest number of entries, with a count slightly above 40.
- 6. San Francisco, Singapore, Sydney, Dubai, and Tokyo form the **top 5 locations** with the highest representation.
- 7. The color bar clearly shows the **gradient from highest to lowest counts**, making it easy to spot the distribution visually.
- 8. Locations span **multiple continents** North America, Asia, Europe, and Australia, suggesting **global data coverage**.
- 9. The distribution is **slightly skewed toward San Francisco**, but otherwise relatively balanced across other cities.

## **Distribution of Al Adoption Levels**

# What is the distribution of Al\_Adoption\_Level across jobs?

# Distribution of Al Adoption Levels



- 1. The **Medium** level of Al adoption is the most common, making up **36.0**% of the total.
- 2. **Low** adoption follows closely at **34.7**%, indicating that a significant portion of companies are still in early stages.
- 3. **High** adoption is the least common at **29.3**%, suggesting fewer organizations have fully embraced AI so far.
- 4. The distribution is **relatively balanced** across all three categories, with no extreme dominance.
- 5. The lower percentage of high adopters could hint at **barriers or challenges** companies face in moving beyond medium/low AI adoption.
- 6. Together, Medium and Low adoption levels account for about **70**% of the companies indicating most are still in early-to-moderate phases of AI integration.

## **Automation Risk**

# What is the distribution of Automation\_Risk?

## Distribution of Automation Risk



- 1. The distribution of automation risk levels is relatively balanced across the three categories: Medium, High, and Low.
- 2. The **Medium risk** category has the **highest count**, indicating that a slightly larger portion of roles or tasks fall under a moderate risk of automation.
- 3. The **High risk** category follows closely behind, suggesting a significant number of roles are highly susceptible to automation.
- 4. The **Low risk** category has the **lowest count**, but still represents a substantial proportion, reflecting that a notable number of roles are relatively secure from automation.
- 5. The variation in counts between the categories is **not drastic**, highlighting a fairly even spread of automation risk across the dataset.

## **Distribution of Required Skills**

## What are the most common Required\_Skills?



- 1. **Project Management** is the most demanded skill, accounting for **12.1**% of the total requirements.
- 2. Cybersecurity and Python both have significant demand at 11.7% each.
- 3. Machine Learning also features strongly at 10.5%, showing the growing importance of AI-related skills.
- 4. **UX/UI Design**, **Sales**, and **Data Analysis** each represent **9.7**%, underlining a strong need for creative, customer-facing, and analytical expertise.
- 5. Marketing skills are required in 9.1% of cases, and JavaScript slightly less at 8.9%.
- 6. **Communication** skills, while the least mentioned at **6.9**%, are still a key part of the skillset mix, suggesting technical skills are prioritized, but interpersonal skills are not ignored.
- 7. The spread is relatively even across a broad range of disciplines, indicating that companies seek a **multidisciplinary talent pool**.

## Salary in USD

## What is the distribution of Salary\_USD?



- 1. Salaries range approximately from \$40,000 to \$140,000 USD.
- 2. The median (middle line of the box) appears to be around \$90,000 USD.
- 3. The box (middle 50% of data) spans roughly from **\$80,000** to **\$100,000**, indicating that most salaries fall in this range.
- 4. The lower whisker reaches down to about \$40,000, and the upper whisker extends up to around \$140,000.
- 5. No obvious outliers (extreme points beyond whiskers) are visible, meaning the salary distribution is quite **even** without extreme deviations.
- 6. Salaries are **well-distributed** with a healthy spread but a slightly **right-skewed tendency** (a few higher salaries pulling the maximum upward).

# **Remote Friendly Job**

# How many jobs are Remote\_Friendly?





- 1. Remote Jobs: 248 (50.1%)
- 2. Non-Remote Jobs: 247 (49.9%)
- 3. The split between remote and non-remote opportunities is almost perfectly balanced practically 50/50.
- 4. Remote work is clearly widely accepted in the market you're analyzing.
- 5. Candidates looking for remote roles have just as many opportunities as those looking for on-site jobs.

# Job Growth Projection

# What is the distribution of Job\_Growth\_Projection?



- 1. The distribution across the three categories **Growth**, **Decline**, and **Stable** is relatively balanced, with only minor variations in count.
- 2. The Growth and Decline categories have slightly higher counts compared to the Stable category.
- 3. The **Stable** category shows a **slightly lower** number of job roles, indicating fewer jobs are expected to remain unchanged in terms of growth.
- 4. The overall distribution suggests that the job market is **dynamic**, with a significant number of roles either expanding or shrinking rather than remaining static.
- 5. A smooth trend line has been overlaid to highlight the distribution pattern, although the main interpretation is based on the height of the bars.

# Bivariate Analysis: -

# Salary\_USD vs Industry

## How does Salary\_USD vary by Industry?



- 1. Salaries vary noticeably across different industries, but the **overall median salaries** are relatively close to each other.
- 2. The **Finance** industry shows a **higher salary range**, with a wider spread and a relatively higher upper quartile, indicating greater earning potential.
- 3. **Entertainment, Healthcare**, and **Retail** industries also show **relatively higher median salaries** compared to others.
- 4. **Transportation** and **Manufacturing** industries display **lower median salaries** and a more compressed salary range.
- 5. **Outliers** are present in almost all industries, indicating a few exceptionally high or low salaries, particularly in **Telecommunications** and **Technology** sectors.
- 6. Most industries exhibit a **broad interquartile range (IQR)**, suggesting significant variability in salary within each sector.

# Salary\_USD vs Company Size

## Does Company\_Size affect Salary\_USD?



- 1. Salaries across **small**, **medium**, and **large companies** are fairly similar in terms of **median values**, suggesting company size does not drastically impact average salary levels.
- 2. Small companies show a slightly higher median salary compared to large and medium-sized companies.
- 3. **Medium-sized companies** exhibit a **wider salary range** with a few very high salary outliers, indicating greater variability in pay.
- 4. Outliers are present in all categories, but **medium companies** have more extreme high-end salaries.
- 5. The **interquartile range (IQR)** is relatively similar across all three company sizes, indicating consistent salary distribution patterns.
- 6. **Lower-end salaries** appear slightly more common in **large companies**, as shown by a longer lower whisker and more outliers on the lower end.

What is the relationship between Automation\_Risk and Al\_Adoption\_Level?

# Relationship Between Automation Risk and Al Adoption Level



- 1. **Medium Al Adoption** is the most common across all automation risk categories (high, medium, and low).
- 2. For **high automation risk** jobs, **medium Al adoption** dominates, but **low Al adoption** is also quite significant.
- 3. In **low automation risk** jobs, **low Al adoption** slightly exceeds medium adoption, suggesting that jobs less at risk from automation may not prioritize Al integration as heavily.
- 4. **High Al adoption** consistently shows the lowest counts across all automation risk categories, indicating that widespread high-level Al adoption is still relatively rare.
- 5. Overall, there is no sharp distinction in AI adoption based on automation risk the distributions are fairly balanced, with some slight variations.

# Job Tittle vs AI Salary\_USD

## Which Job Titles have the highest Salary\_USD?



Top 10 Job Titles with Highest Average Salary USD

- 1. Operations Manager holds the highest average salary, followed closely by AI Researcher.
- 2. Al Researcher ranking second highlights the growing value and demand for Al expertise.
- 3. Traditional business roles like **Sales Manager** and **Marketing Specialist** also appear among the highest salaries, not just tech-centric roles.
- 4. **Data Scientist** and **Product Manager** maintain strong positions, showing the critical need for data-driven and product development skills.
- 5. **Software Engineer**, while still earning a solid salary, ranks 10th slightly lower compared to leadership and niche specialized roles like cybersecurity and AI.

# Remote\_Friendly vs AI Salary\_USD

How does Remote\_Friendly relate to Salary\_USD?



No

# Observations made: -

1. The **median salary** for remote-friendly jobs and non-remote jobs is **very similar** — slightly higher for remote-friendly roles.

Yes

2. **Remote-friendly jobs** show a **wider range** in salaries, with both **lower minimums** and **higher maximums** compared to non-remote jobs.

Remote Friendly

- 3. There are **more outliers** (both high and low) among remote-friendly jobs, suggesting greater variability in those positions.
- 4. Overall, **remote work opportunities** do **not negatively impact salary levels** in fact, some remote roles even offer the highest salaries.

# **Location vs Remote Friendly Jobs**

Which Locations have more remote-friendly jobs?





- 1. San Francisco has the highest number of remote-friendly jobs, tied equally with non-remote jobs.
- 2. Paris and London show a clear preference for remote-friendly roles (more remote jobs than non-remote).
- 3. Sydney and Singapore have more non-remote jobs compared to remote-friendly ones.
- 4. In Toronto and Tokyo, the counts are almost balanced between remote and non-remote jobs.
- **5.** Overall, **most major cities** now offer **significant remote-friendly opportunities**, though the balance varies by location.

## AI\_Adoption\_Level vs Automation Risk

Do industries with higher Al\_Adoption\_Level have lower Automation\_Risk?



- 1. Industries like **Retail and Healthcare** have a **high AI adoption level** with low to medium automation risk suggesting they embrace AI but jobs might still be relatively safe.
- 2. **Entertainment** shows **medium AI adoption** but faces a **high automation risk**, meaning jobs could be easily automated even with moderate AI usage.
- 3. **Telecommunications** and **Manufacturing** are at a **low AI adoption** level with **medium to high automation risk**, possibly indicating future disruption risks.
- 4. Energy is at medium AI adoption with low automation risk, suggesting stability despite moderate AI use.
- 5. Different industries cluster differently there's **no universal trend** between Al adoption and automation risk across sectors.

# Multivariate Analysis: -

# Salary Distribution by Industry and Company Size

# How does Salary\_USD vary by Industry and Company\_Size together?



- Cities like Sydney, San Francisco, and New York show higher remote salaries compared to non-remote roles.
- 2. In places like Berlin and Tokyo, non-remote jobs seem to dominate the higher salary range.
- 3. London and Singapore have a relatively even spread of salaries for both remote and non-remote jobs.
- 4. Paris shows slightly lower salaries overall compared to others, regardless of remote status.
- 5. Remote jobs can command competitive (even higher) salaries especially in tech-forward cities.
- 6. Location still matters even for remote jobs!

## Automation Risk by Job tittle and AI Adoption Level

## What is the interaction between Job\_Title, Al\_Adoption\_Level, and Automation\_Risk?

Automation Risk by Job Title and Al Adoption Level



- For many roles (like AI Researcher, HR Manager, Product Manager), higher AI adoption is actually associated with lower automation risk — suggesting AI complements these jobs rather than replaces them.
- 2. Some jobs, like **Marketing Specialist** and **Sales Manager**, show **higher automation risk** when Al adoption is high possibly because automation can easily replace some repetitive marketing and sales tasks.
- 3. **Technical roles** like **Software Engineer** and **Data Scientist** remain relatively **low risk** across all levels of Al adoption.
- 4. **Cybersecurity Analyst** maintains a low automation risk no matter the AI level probably because security threats evolve faster than automation can handle!
- 5. The vertical lines show **variability/uncertainty** some jobs (like AI Researcher) have larger spreads, meaning predictions are less certain for them.
- 6. Al doesn't always mean job loss in many cases, it shifts job tasks or makes roles more resilient to automation, especially in tech-heavy roles.

# Salary Distribution by Industry, Remote Friendliness and Location.

# How does Remote\_Friendly, Industry, and Location together affect Salary\_USD?

## Salary Distribution by Industry, Remote Friendliness, and Location



## **Observations made: -**

- 1. Remote-friendly jobs (blue) often **pay slightly higher** or have a wider salary spread compared to non-remote jobs.
- 2. The **remote-friendly advantage is less obvious** salaries for remote and non-remote roles overlap more.
- 3. **Technology and Finance** jobs almost everywhere show **higher salaries**, remote or not.
- 4. **Education** salaries are generally **lower across all cities**, with smaller differences between remote and non-remote roles.
- 5. **Dubai**: Very tight salary ranges for remote-friendly jobs less variability.
- 6. San Francisco: Big spread, especially for remote jobs, possibly reflecting startup vs. big tech culture.
- 7. Remote-friendliness often brings a salary premium, but how big it is depends on the city and industry.

## Automation Risk vs Job Growth Projection by Top Required Skills.

## For top Required\_Skills, how does Automation\_Risk and Job\_Growth\_Projection behave?



- Cybersecurity is the strongest and safest field based on both low automation risk and high growth.
- 2. Machine Learning is promising but requires continuous adaptation to remain relevant.
- Project Management and UX/UI Design could face higher risks unless complemented with additional skills like data literacy, AI management, or strategic thinking.

# Salary Distribution & Job Growth Projection across AI adoption levels

## How does Al\_Adoption\_Level impact both Salary\_USD and Job\_Growth\_Projection?



#### **Observation made: -**

- 1. Higher AI adoption doesn't automatically lead to higher salaries in fact, it might push average salaries slightly lower.
- 2. Job growth prospects are not heavily influenced by AI adoption alone; other factors like role, skills, and industry matter more.

#### **Key Observations: -**

- Certain sectors emerge as leaders in Al adoption, signaling where talent demand and innovation are concentrated.
- High-paying roles exhibit distinct regional clustering, offering strategic insights for both job seekers and employers targeting competitive markets.
- Remote-compatible positions demonstrate measurable financial advantages, underscoring the economic value of flexible work arrangements in this sector.
- Our methodology—applying rigorous outlier removal and trend-focused analysis—yields a validated perspective on market dynamics. These findings equip stakeholders with actionable intelligence to:
  - Guide career development decisions for AI professionals
  - Inform corporate talent acquisition and retention strategies
  - Identify high-potential investment areas in Al-driven industries

This analysis provides a evidence-based foundation for navigating the rapidly transforming AI employment ecosystem, highlighting pathways for professional advancement and organizational growth.