A quick guide to caracas

Mikkel Meyer Andersen (mikl@math.aau.dk, Dept Math Sci, Aalborg U, Denmark) and Søren Højsgaard (sorenh@math.aau.dk, Dept Math Sci, Aalborg U, Denmark)

What is caracas?

caracas is an R package that gives symbolic mathematics in R. caracas is based on SymPy (a computer algebra system for Python).

Function names are kept the same as in R if the function does the same, but have been given a postfix $_$ if the functionality is different (e.g. $sum_{_}()$).

Creating symbols

k <- symbol("k")	k
$def_sym(a, b)$	a
	b
<pre>def_sym_vec(c("a", "b"))</pre>	a
	b
<pre>v <- vector_sym(2, "v")</pre>	[[v1, v2]] ^T
$M < - matrix_sym(2, 2, "m")$	[[m11, m12],
	[m21, m22]]
<pre>D <- matrix_sym_diag(2)</pre>	[[v1, 0],
	[0, v2]]

Coerce R objects to symbols

T2 <- matrix(c("a", "b", "b"	, "a"), nrow = 2)
T3 <- toeplitz(c("a", "b", "	0"))
$T2 <- as_sym(T2)$	[[a, b],
	[b, a]]
T3 <- as_sym(T3)	[[a, b, 0],
	[b, a, <mark>b],</mark>
	[0, b, a <mark>]]</mark>

Standard R functions

<pre>c(v, v) cbind(v) rbind(v)</pre>	output omitted output omitted output omitted
sum(v)	v1 + v2
cumsum(v)	$[[v1, v1 + v2]]^T$
rep(v, times = 2)	output omitted
rep(v, each = 2)	output omitted
rev(v)	[[v2. v1]]^T

Algebra

<pre>simplify(cos(a)^2 + sin(a)^2) solve_sys(a^2, -1, a)</pre>	1 a = -1i
	a = 1i
inv(T2)	output omitted
solve(T2)	output omitted
factor_(a^3 - a^2 + a - 1)	$(a - 1)*(a^2 + 1)$
$expand((a - 1) * (a^2 + 1))$	a^3 - a^2 + a - 1

Calculus

$der(3 * a + a^2, a)$	2*a + 3
sum_(1/a^2, a, 1, Inf)	pi^2/6
s <- sum_(1/a^2, a, 1, Inf,	doit = FALSE)
S	$\sum_{a=1}^{\infty} \frac{1}{a^2}$
doit(s)	pi^2/6
lim((1 + a)^(1/a), a, 0)	exp(1)
$f \leftarrow taylor(cos(a), x0 = 0,$	n = 3 + 1
drop_remainder(f)	1 - a^2/2

Subsetting

T3[1:2, 2:3]	[[b, 0],
	[a, b]]
T3[1:2]	[[a, b]] ^T
T3[2]	b
T3[2,]	[[b, a, b]] ^T

Linear algebra

rankMatrix_(T2) rref(T2)	2 \$mat
	[[1, 0], [0, 1]] \$pivot_vars
	[1] 1 2
T2i <- solve(T2)	
<pre>scale_matrix(T2i, det(T2i))</pre>	1/(a^2 - b^2)*[
	[a, -b],
	[-b, a]]
QRdecomposition(D)	output omitted
LUdecomposition(D)	output omitted
<pre>chol(D, hermitian = FALSE)</pre>	output omitted
svd_(D)	output omitted

Substitution and evaluation

subs(T2, "b", "b-k")	[[a, b - k],
	[b - k, a]]
subs(T2, c("a", "b"), c(1, 2))	[[1, 2],
	[2, 1]]

Coercion to R objects

```
T2e <- as.expression(T2) # or as_expr()
T2e

## expression(matrix(c(a, b, b, a), nrow = 2))
```

```
T2f <- as.function(T2) # or as_func()
```

```
\begin{array}{lll} & \text{eval}(\text{T2e, list}(a=1, \ b=2)) & \textit{output omitted} \\ & \text{T2f}(a=1, \ b=2) & \textit{output omitted} \\ & \text{T2f2} <- \ as.function(\text{T2, vec\_arg} = \text{TRUE}) \\ & \text{T2f2}(\text{c}(a=1, \ b=2)) & \textit{output omitted} \end{array}
```

Extending caracas

SymPy documentation at https://docs.sympy.org/.

With helper function sympy_func():

```
sympy_func(T2, "inverse_BLOCK") output omitted
sympy_func(T2, "upper_triangular") output omitted
```

Calling SymPy directly via reticulate:

```
get_sympy()$diff("2*a*x**2", "x") |> as.character()
## [1] "4*a*x"
```

Output

Functions: tex(), print(..., method = "prettyascii") and others. Chunk type rtex for e.g. rmarkdown/Quarto.

Online docs https://r-cas.github.io/caracas/

Updated Nov 2023 caracas v. 2.1.1