First Hit

Previous Doc

Next'Doc ' Go to Doc#

L11: Entry 26 of 33

File: JPAB

Jul 9, 1990

PUB-NO: JP402175836A

DOCUMENT-IDENTIFIER: JP 02175836 A TITLE: CARBURIZING STEEL FOR BEARING

PUBN-DATE: July 9, 1990

INVENTOR-INFORMATION:

NAME

COUNTRY

TOMA, KAZUHISA

INT-CL (IPC): C22C 38/00; C22C 38/40

ABSTRACT:

PURPOSE: To obtain the <u>carburizing steel for a bearing</u> stock having suppressed generation and progress of fine fractures and having prolonged service life by specifying the contents of C, Si, Ni, Cr and S.

CONSTITUTION: The compsn. of a <u>carburizing steel</u> is constituted of, by weight, 0.1 to 0.25% C, 0.5 to 1.5% Si, 1.0 to 2.0% Ni, 0.5 to 1.5% Cr, \leq 0.03% S and the balance Fe with inevitable impurities. The <u>steel is carburized</u> to regulate the surface hardness to about 60 to 64 HRC and the surface C concn. to about 0.8 to 1.0%. In the <u>steel</u> having the above compsn., S which is the element forming A series inclusions regarded as the one of the main causes for the deterioration of the service life in a conventional <u>bearing</u> is utilized for the improvement of machinability, by which machinability equal to that of a <u>carburizing steel</u> contg. no <u>Si</u> and Ni can be obtd.

COPYRIGHT: (C) 1990, JPO& Japio

Previous Doc Next Doc Go to Doc#

⑩日本国特許庁(JP)

10 特 許 出 願 公 開

®公開特許公報(A) 平2-175836

@Int. Cl. 5 C 22 C

广内整理番号 識別配号 301 N. 7047-4K

平成2年(1990)7月9日 四公開

塞杏請求 未請求 請求項の数 2 (全4頁)

60発明の名称 軸受用浸炭鋼

> 金件 壐 昭63-330779 昭63(1988)12月27日 金出

大阪府大阪市南区競谷西之町 2 番地 光洋精工株式会社内 四発 明 者 H 赛

光洋精工株式会社 大阪府大阪市南区競谷西之町 2 番地 伊出 頭 人

外3名 和代 理 弁理士 岸本 英之助

1. 発明の名称

轴受用没炭纲 特許請求の範囲 実用新案登録請求の範囲

- (1) Cが0.1~0.25重量%、Siが0. 5~1.5重量%、Niが1.0~2.0世費 %、CrがO.5~1.5重量%、SがO.0 3 重量 % 以下で、残部が Fe と不可避不能物か らなることを特徴とする軸受用浸炭期。
- (2) 表面硬さがIIRC 60~64、表面C濃度が 0. 8~1. 0重量%になるように設良されて いることを特徴とする助求項(1) に記載の軸受 **用设块钢。**
- 3. 発明の詳細な説明

産業上の利用分野

この発明は、転がり疲労労命に若しく優れた 独受の素材として利用される没収制に関する。

従来の技術および発明の課題

転がり軸受の転がり疲労寿命(以下寿命とい う)は、一般に、転動部材から転がり接触を受

ける軌道面の剝離で終る。この劇雑の形態には、 使用中に发面に生じたきずなどを起点とする炎 面起点刺離と、上記軌道面の表面下級大剪断応 力位置付近に存在する非金属介在物を起点とす る内部起点剥離の2種類がある。寿命を長くす るためには、上記表面起点測離に対しては、硬 さを硬くして表面にきずが付きにくくし、内部 起点剥離に対しては、非金属介在物の含有量の 低減を図り、亀裂発生顔を少なくすることが有 効である。

しかし、上記の表面起点到離に関係する硬さ には限界があり、それ以上硬くすることができ、 ないという問題がある。また、内部起点剥離に 関係する非金國介在物の含有益の低減も、現在 の製顔法のもとではほぼ限界に近づきつつあり、 これ以上の大幅な非金属介在物の含有量の低減 が望めないという問題がある。

この発明の目的は、起点より微小無数が発生、 進展して剝離に至るプロセスに着目し、材料面 よりマトリックス(母相)の強靭化を図ること

により、上記数小亀数の発生、進展を抑制する ことができ、したがって、長寿命化ができる軸 受用後度額を提供することにある。

課題を解決するための手段

この免明による軸受用提供額は、CがO. 1~0. 25 単位%、Si がO. 5~1. 5 単位%、N! が 1. 0~2. 0 単位%、Cr が O. 5~1. 5 単位%、Sが O. 0 3 単位%以下で、

技部が Fe と不可避不鈍物からなることを特徴とするものである。

以下に各元素含有量の限定理由を述べる。 C: O. 1~O. 25重量%

本発明において、 C は没炭焼入後の中心部裂さと焼入性に影響を与える元素である。 通常、中心部硬さはHRC 30~45程度が望ましく、そのために、 C は 0 . 1~0 . 25 重量%必要である。しかし、 0 . 25 重量%以上になると初性が低下するので、上限を 0 . 25 重量%と

SI: 0. 5~1. 5 重量%

り、そのために 0. 5 重量 % 以上必要である。 しかし、あまり多くなると没良時に巨大良化物 を生じ、それが応力 集中 蔽となり、寿命低下を 招く。そのため、上限を 1. 5 重量 % とする。 S: 0. 0 3 重量 % 以下

Sは切削性を改善する元素である。本発明では、SI含有量が高いので、切削性を低下させることがある。その改善のために、Sを添加する。しかし、あまり多くなると、A系介在物が多くなる。一般に寄命に影響するのはB系、C系介在物であり、A系介在物の影響は小さい。しかし、A系介在物がO. 1重量%以上になるとその影響も無視できなくなるので、上限をO.03位量%とする。

初性と焼戻し軟化抵抗を改善することにより が命を向上させるものに、特公昭50-133 9号がある。しかし、これはSiとMnの相乗 効果によるものであり、本発明のSiとNiの 相乗効果によるものとは全く異なる。また、本 免明では、Mnはとくに添加せず、不可避不能 S1はマトリックス強化元素であり、かつ焼 戻し軟化低抗を増大させるため、労命向上には 有効な元素である。本発明では、後述のNIに よる初性改善さの相乗効果により、若しく労命 を向上させる。0.5重量%以下ではNIとの 相乗効果における向上効果が少なくなるので、 下段を0.5重量%とする。しかし、SIは没 災阻害作用を有するので、上限を1.5重量% とした。

N: 1.0~2.0重量%

N: は靭性向上に有効な元素であり、前述のS: による焼戻し飲化抵抗の改善との知果効果により、著しく野命を向上させる。 1. 0重量 %以下では和乗効果による野命向上効果が少なくなるので、下限を1. 0重量 %とする。また、N: は没炭時に中心部への C の拡散を促進するため、あまり多くなると表面 C 適度を低下させる。そのため、上限を2. 0重量 %とする。

Cr:0.5~1.5重量%

Crは焼入性と投炭性を向上させる元素であ

物としている。本発明では、切削性改善のためにSを添加することを特徴の1つとしており、このため、Mnを添加すると、A系介在物のMnSが増加して、寿命低下を生じるからである。また、Mnは研削性を低下する元素でもあるため、とくに添加しないほうがよい。

使用目的は異なるが、類似成分の類を提案しているものに、特公昭 6 3 - 1 1 4 2 3 号がある。しかし、これも M a を 0 . 2 ~ 2 . 0 重量% 含んでおり、上記と同じ理由で本発明とは異なる。

実 施 例

以下、この発明を実施例により詳細に説明す

表 1 および表 2 は、本発明鋼と比較鋼の化学 成分、複製品質および転がり 野命の結果を示す ものである。

これらの表において、サンブル1、サンブル 2、サンブル3、サンブル4は本発明期、サンブル5、サンブル6は比較類を示す。 これらのサンブルは切削加工で所定の形状に加工し、浸炭処理を実施した。転がり触受では、高い接触面圧による塑性変形を抑えるために通常必要な硬さはHRC 58~64程度といわれているが、好ましくは、HRC 60~64である。また、表面で設定は、0.8~1.0重量%が最適である。そこで、本実施例では、表面硬さがHRC 60~64、表面で設定処理を実施した。

(以下余白)

表 1

	/	化学成分(重量%)				
		С	SI	NI	Cr	s
_	サンプル1	0.20	₹0.61	1.21	1.01	0.02
兔明姆	サンプ(2	0.22	1.05	1.55	1.03	0.03
	サンプル3	0.21	1.45	1.91	1.01	0.02
	サンプル4	0.18	★0.59	1.18	1.49	0.03
比较期	サンプル5	0.19	√0.25	0.10	0.80	0.008
	サンブル6	0.21	0.17	0.06	0.75	0.008

麦 2

		提及	品質	転がり野命	
		表面硬さ	表面C違度	Bio野命	
		IEC	型型%	×107 417#	
発明網	サンプル1	61	0. 9	57. 1	
	サンプル2	62	1, 0	62. 3	
	サンプルろ	61	0. 9	63. 1	
	サンプルマ	60	0. 9	58. 3	
比较夠	サンプル5	60	0. 9	5. 6	
	サンプル6	61	0. 9	4. 9	

第1図は、本発明鋼サンプル2および比較鋼サンプル5について、労命試験結果を1例として示したものである。

この寿命試験は、直径が 2 0 mm、 長さが 2 0 mmの円筒ころ試験片を用いた転がり 疲労 寿命 試験であり、試験条件は、最大接触面圧 (P a a x) が 4 4 0 切 / mm²、応力線返数が 3 × 1 0 4 cp a である。

表2および第1図から明らかなように、本発明期は、比較額に比し、Bio寿命(サイクル)が飛躍的に向上することがわかる。この寿命向上は、SIとNIの相乗効果によるものといえる。

なお、本実施例では、切削加工により試験片を製作したが、熱闘報道、温闘報道、冷闘報道 のいずれにても製作することができる。

第2図は、本発明網サンプル2の切削性を比 牧網サンプル5と比較した試験結果の1例を示 すものである。

切削性試験は、超硬合金 P 2 O (JIS B4104)

よりなる工具を用いて、送り O. 3 mm / rev 、 切込量 1. 0 mm、切削速度 1 5 0 ~ 2 5 0 m / min 、切削油なしの条件で加工し、工具寿命を 比較することにより行なった。工具寿命基準 V B (削逃げ面平均取耗幅) は O. 3 mm である。

第2図の機軸は工具券命(ain)を、級勧は 切削速度(m/ain)を示している。これより、 本発明網は比較網と同等の切削性を有している ことがわかる。これは、Sを添加した効果を示 すものである。

以上述べたごとく、本発明類は、比較期に比し、SIとNIの効果で大幅な寿命向上が得られ、Sの効果で切削性の低下を妨げることがわかる。

発明の効果

以上より明らかなように、本発明の勧受用没 炭鋼は、 0 . 5 ~ 1 . 5 重量% の S i 、 1 . 0 ~ 2 . 0 重量% の N i 、 0 . 5 ~ 1 . 5 重量% の C r 、 0 . 0 3 重量%以下の S を含有してい るので、焼灰し飲化抵抗性およびマトリックス の初性が向上し、その相乗効果により、 色数の 免生、 進展を抑えて、 伝がり 疲労 寿命を 従来に 比べ 1 0 倍以上に 飛 盟的に 長くすることができるとともに、 従来、 軸受の 寿命低下 髪 因の 1つ とされる A 系介 在 物の 生成元素である S を 切 削 性の 改善に 利用することにより、 SI 、 NI を 含まない 没 與 と 同等の 切削性を 得ることができる。

4. 図面の簡単な説明

第1図は本発明制の寿命を比較期と比較した 試験結果の1例を示す図、第2図は本発明制の 切削性を比較期と比較した試験結果の1例を示 す図である。

-£1:- ⊢

特許出版人 光洋精工株式会社 代理人 岸本 琰之助(外3名)

