

CS 559: Machine Learning Fundamentals and Applications

Lecture 8

Lecturer: Xinchao Wang

xinchao.wang@stevens.edu

Teaching Assistant: Yiding Yang

yyang99@stevens.edu

Overview

- Minimum Squared Error (MSE)
- Support Vector Machines (SVM)
 - Introduction
 - Linear Discriminant
 - Linearly Separable Case
 - Linearly Non Separable Case
 - Kernel Trick
 - Non Linear Discriminant
 - Multi-class SVMs

Minimum Squared-Error Procedures

Minimum Squared-Error Procedures

• Idea: convert to easier and better understood problem

- MSE procedure
 - Choose positive constants b₁, b₂,..., b_n
 - Try to find weight vector **a** such that $\mathbf{a}^t \mathbf{y_i} = \mathbf{b_i}$ for all samples $\mathbf{y_i}$
 - If we can find such a vector, then ${\bf a}$ is a solution because the ${\bf b_i}$'s are positive
 - Consider all the samples (not just the misclassified ones)

MSE Margins

- If a^ty_i = b_i, y_i must be at distance b_i from the separating hyperplane (normalized by ||a||)
- Thus **b**₁, **b**₂,..., **b**_n give relative expected distances or "*margins*" of samples from the hyperplane
- Should make $\mathbf{b_i}$ small if sample \mathbf{i} is expected to be near separating hyperplane, and large otherwise
- In the absence of any additional information, set $b_1 = b_2 = ... = b_n = 1$

MSE Matrix Notation

- Need to solve n equations
- In matrix form Ya=b

$$\begin{cases} a^t y_1 = b_1 \\ \vdots \\ a^t y_n = b_n \end{cases}$$

Exact Solution is Rare

- Need to solve a linear system Ya = b
 - **Y** is an **n**×(**d** +**1**) matrix
- Exact solution only if Y is non-singular and square (the inverse Y⁻¹ exists)
 - $a = Y^{-1} b$
 - (number of samples) = (number of features + 1)
 - Almost never happens in practice
 - Guaranteed to find the separating hyperplane

Approximate Solution

- Typically Y is overdetermined, that is it has more rows (examples) than columns (features)
 - If it has more features than examples, should reduce dimensionality
- Need Ya = b, but no exact solution exists for an over-determined system of equations
 - More equations than unknowns
- Find an approximate solution
 - Note that approximate solution a does not necessarily give the separating hyperplane in the separable case
 - But the hyperplane corresponding to **a** may still be a good solution, especially if there is no separating hyperplane

MSE Criterion Function

• Minimum squared error approach: find **a** which minimizes the length of the error vector **e**

$$e = Ya - b$$

• Thus minimize the minimum squared error criterion function:

$$J_s(a) = ||Ya - b||^2 = \sum_{i=1}^n (a^t y_i - b_i)^2$$

 Unlike the perceptron criterion function, we can optimize the minimum squared error criterion function analytically by setting the gradient to 0

Computing the Gradient

$$J_s(a) = ||Ya - b||^2 = \sum_{i=1}^n (a^t y_i - b_i)^2$$

$$\nabla J_{s}(a) = \begin{bmatrix} \frac{\partial J_{s}}{\partial a_{0}} \\ \vdots \\ \frac{\partial J_{s}}{\partial a_{d}} \end{bmatrix} = \frac{dJ_{s}}{da} = \sum_{i=1}^{n} \frac{d}{da} (a^{t}y_{i} - b_{i})^{2}$$

$$= \sum_{i=1}^{n} 2(a^{t}y_{i} - b_{i}) \frac{d}{da} (a^{t}y_{i} - b_{i})$$

$$= \sum_{i=1}^{n} 2(a^{t}y_{i} - b_{i})y_{i}$$

$$= 2Y^{t}(Ya - b)$$

Pseudo-Inverse Solution

$$\nabla J_s(a) = 2Y^t(Ya - b)$$

Setting the gradient to 0:

$$2Y^{t}(Ya-b)=0 \Rightarrow Y^{t}Ya=Y^{t}b$$

- The matrix Y^tY is square (it has d +1 rows and columns) and it is often non-singular
- If Y^tY is non-singular, its inverse exists and we can solve for a uniquely:

$$a = (Y^{t}Y)^{-1}Y^{t}b$$
pseudo inverse of Y
$$((Y^{t}Y)^{-1}Y^{t})Y = (Y^{t}Y)^{-1}(Y^{t}Y) = I$$

MSE Procedures

- Only guaranteed separating hyperplane if Ya > 0
 - That is if all elements of vector **Ya** are positive

$$\mathbf{Ya} = \begin{bmatrix} \mathbf{b}_1 + \mathbf{\varepsilon}_1 \\ \vdots \\ \mathbf{b}_n + \mathbf{\varepsilon}_n \end{bmatrix}$$

- where $\boldsymbol{\varepsilon}$ may be negative
- If $\varepsilon_1,..., \varepsilon_n$ are small relative to $b_1,..., b_n$, then each element of Ya is positive, and a gives a separating hyperplane
 - If the approximation is not good, ε_i may be large and negative, for some i, thus $b_i + \varepsilon_i$ will be negative and a is not a separating hyperplane
- In linearly separable case, least squares solution a does not necessarily give separating hyperplane

MSE Procedures

- We are free to choose b. We may be tempted to make b large as a way to ensure Ya =b > 0
 - Does not work
 - Let β be a scalar, let's try βb instead of b
- If \mathbf{a}^* is a least squares solution to $\mathbf{Ya} = \mathbf{b}$, then for any scalar β , the least squares solution to $\mathbf{Ya} = \beta \mathbf{b}$ is $\beta \mathbf{a}^*$

$$\arg\min_{a} \|\mathbf{Y}a - \boldsymbol{\beta}b\|^{2} = \arg\min_{a} \beta^{2} \|\mathbf{Y}(a/\beta) - b\|^{2} = \boldsymbol{\beta}a^{*}$$

- Thus if the i th element of Ya is less than 0, that is y_ita < 0, then y_it (βa) < 0,
 - The relative difference between components of **b** matters, but not the size of each individual component

- Class 1: (6 9), (5 7)
- Class 2: (5 9), (0 4)
- Add extra feature and "normalize"

$$\mathbf{y}_1 = \begin{bmatrix} \mathbf{1} \\ \mathbf{6} \\ \mathbf{9} \end{bmatrix} \quad \mathbf{y}_2 = \begin{bmatrix} \mathbf{1} \\ \mathbf{5} \\ \mathbf{7} \end{bmatrix} \quad \mathbf{y}_3 = \begin{bmatrix} -\mathbf{1} \\ -\mathbf{5} \\ -\mathbf{9} \end{bmatrix} \quad \mathbf{y}_4 = \begin{bmatrix} -\mathbf{1} \\ \mathbf{0} \\ -\mathbf{4} \end{bmatrix}$$

$$Y = \begin{bmatrix} 1 & 6 & 9 \\ 1 & 5 & 7 \\ -1 & -5 & -9 \\ -1 & 0 & -4 \end{bmatrix}$$

- Choose **b=[1 1 1 1]**^T
- In Matlab, a=Y\b solves the least squares problem

$$a = \begin{bmatrix} 2.66\\ 1.045\\ -0.944 \end{bmatrix}$$

- Note a is an approximation to Ya = b, since no exact solution exists
- This solution gives a separating hyperplane since Ya >0

$$Ya = \begin{bmatrix} 0.44 \\ 1.28 \\ 0.61 \\ 1.11 \end{bmatrix}$$

- Class 1: (6 9), (5 7)
- Class 2: (5 9), (0 10)
- The last sample is very far compared to others from the separating hyperplane

$$\mathbf{y}_1 = \begin{bmatrix} \mathbf{1} \\ \mathbf{6} \\ \mathbf{9} \end{bmatrix} \quad \mathbf{y}_2 = \begin{bmatrix} \mathbf{1} \\ \mathbf{5} \\ \mathbf{7} \end{bmatrix} \quad \mathbf{y}_3 = \begin{bmatrix} -\mathbf{1} \\ -\mathbf{5} \\ -\mathbf{9} \end{bmatrix} \quad \mathbf{y}_4 = \begin{bmatrix} -\mathbf{1} \\ \mathbf{0} \\ -\mathbf{10} \end{bmatrix}$$

$$Y = \begin{bmatrix} 1 & 6 & 9 \\ 1 & 5 & 7 \\ -1 & -5 & -9 \\ -1 & 0 & -10 \end{bmatrix}$$

- Choose **b=[1 1 1 1]**^T
- In Matlab, a=Y\b solves the least squares problem

$$a = \begin{bmatrix} 3.2 \\ 0.2 \\ -0.4 \end{bmatrix}$$

$$Ya = \begin{bmatrix} 0.2 \\ 0.9 \\ -0.04 \\ 1.16 \end{bmatrix} \neq \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

• This solution does not provide a separating hyperplane since $a^ty_3 < 0$

- MSE pays too much attention to isolated "noisy" examples
 - such examples are called outliers

- No problems with convergence
- Solution ranges from reasonable to good

- We can see that the 4th point is vary far from separating hyperplane
 - In practice we don't know this
- A more appropriate **b** could be b =
- In Matlab, solve a=Y\b

$$a = \begin{bmatrix} -1.1 \\ 1.7 \\ -0.9 \end{bmatrix}$$

$$Ya = \begin{bmatrix} 0.9 \\ 1.0 \\ 0.8 \\ 10.0 \end{bmatrix} \neq \begin{bmatrix} 1 \\ 1 \\ 1 \\ 10 \end{bmatrix}$$

 This solution gives the separating hyperplane since Ya > 0

Gradient Descent for MSE

$$J_s(a) = ||Ya - b||^2$$

- May wish to find MSE solution by gradient descent:
 - 1. Computing the inverse of **Y**^t**Y** may be too costly
 - 2. Y'Y may be close to singular if samples are highly correlated (rows of Y are almost linear combinations of each other) computing the inverse of Y'Y is not numerically stable
- As shown before, the gradient is:

$$\nabla J_s(a) = 2Y^t(Ya - b)$$

Widrow-Hoff Procedure

$$\nabla J_s(a) = 2Y^t(Ya - b)$$

Thus the update rule for gradient descent is:

$$a^{(k+1)} = a^{(k)} - \eta^{(k)} Y^{t} (Ya^{(k)} - b)$$

- If η^(k)=η⁽¹⁾/k, then a^(k) converges to the MSE solution a, that is Y^t(Ya-b)=0
- The Widrow-Hoff procedure reduces storage requirements by considering single samples sequentially

$$a^{(k+1)} = a^{(k)} - \eta^{(k)} y_i (y_i^t a^{(k)} - b_i)$$

LDF Summary

Perceptron procedures

- Find a separating hyperplane in the linearly separable case,
- Do not converge in the non-separable case
- Can force convergence by using a decreasing learning rate, but are not guaranteed a reasonable stopping point

MSE procedures

- Converge in separable and not separable case
- May not find separating hyperplane even if classes are linearly separable
- Use pseudoinverse if Y^tY is not singular and not too large
- Use gradient descent (Widrow-Hoff procedure) otherwise

Support Vector Machines

SVM Resources

- Burges tutorial
 - http://research.microsoft.com/enus/um/people/cburges/papers/SVMTutorial.pdf
- Shawe-Taylor and Christianini tutorial
 - http://www.support-vector.net/icml-tutorial.pdf
- Lib SVM
 - http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- LibLinear
 - http://www.csie.ntu.edu.tw/~cjlin/liblinear/
- SVM Light
 - http://svmlight.joachims.org/
- Power Mean SVM (very fast for histogram features)
 - https://sites.google.com/site/wujx2001/home/power-mean-svm

SVMs

- One of the most important developments in pattern recognition in the last decades
- Elegant theory
 - Has good generalization properties
- Have been applied to diverse problems very successfully

Linear Discriminant Functions

A discriminant function is linear if it can be written as

which separating hyperplane should we choose?

Linear Discriminant Functions

- Training data is just a subset of all possible data
 - Suppose hyperplane is close to sample x_i
 - If we see new sample close to $\mathbf{x_i}$, it may be on the wrong side of the hyperplane

Poor generalization (performance on unseen data)

Linear Discriminant Functions

Hyperplane as far as possible from <u>any</u> sample

- New samples close to the old samples will be classified correctly
- Good generalization

SVM

• Idea: maximize distance to the *closest* example

- For the optimal hyperplane
 - distance to the closest negative example = distance to the closest positive example

SVM: Linearly Separable Case

• SVM: maximize the margin

- The *margin* is twice the absolute value of distance **b** of the closest example to the separating hyperplane
- Better generalization (performance on test data)
 - in practice
 - and in theory

SVM: Linearly Separable Case

- **Support vectors** are the samples closest to the separating hyperplane
 - They are the most difficult patterns to classify
 - Recall perceptron update rule
- Optimal hyperplane is completely defined by support vectors
 - Of course, we do not know which samples are support vectors without finding the optimal hyperplane

SVM: Formula for the Margin

$$g(x) = w^t x + w_0$$

Absolute distance between x and the boundary g(x) = 0

$$\frac{\left|\boldsymbol{w}^{t}\boldsymbol{X}+\boldsymbol{w}_{0}\right|}{\left\|\boldsymbol{w}\right\|}$$

Distance is unchanged for hyperplane

$$\frac{\mathbf{g}_{1}(\mathbf{X}) = \alpha \mathbf{g}(\mathbf{X})}{\|\alpha \mathbf{w}\|} = \frac{\left|\mathbf{w}^{t} \mathbf{X} + \alpha \mathbf{w}_{0}\right|}{\|\mathbf{w}\|}$$

• Let \mathbf{x}_i be an example closest to the boundary (on the positive side). Set:

$$\left| \boldsymbol{w}^t \boldsymbol{X}_i + \boldsymbol{W}_0 \right| = 1$$

Now the largest margin hyperplane is unique

SVM: Formula for the Margin

- For uniqueness, set $|\mathbf{w}^T\mathbf{x}_i+\mathbf{w}_0|=1$ for any sample \mathbf{x}_i closest to the boundary
- The distance from closest sample $\mathbf{x_i}$ to

$$g(x) = 0$$
 is

$$\frac{\left| \mathbf{w}^t \mathbf{X}_i + \mathbf{w}_0 \right|}{\| \mathbf{w} \|} = \frac{1}{\| \mathbf{w} \|}$$

Thus the margin is

$$m = \frac{2}{\|\mathbf{w}\|}$$

SVM: Optimal Hyperplane

- Maximize margin $m = \frac{2}{\|w\|}$
- Subject to constraints

$$\begin{cases} w^t X_i + W_0 \ge 1 & \text{if } X_i \text{ is positive example} \\ w^t X_i + W_0 \le -1 & \text{if } X_i \text{ is negative example} \end{cases}$$

- Let $\begin{cases} z_i = 1 & \text{if } x_i \text{ is positive example} \\ z_i = -1 & \text{if } x_i \text{ is negative example} \end{cases}$
- Can convert our problem to minimize

minimize
$$J(w) = \frac{1}{2} ||w||^2$$

constrained to $z_i (w^t x_i + w_o) \ge 1 \quad \forall i$

• **J(w)** is a quadratic function, thus there is a single global minimum

SVM: Optimal Hyperplane

- Use Kuhn-Tucker theorem to convert our problem to:
 - Also know as the Karush–Kuhn–Tucker theorem, i.e., the KKT theorem

maximize
$$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j z_i z_j x_i^t x_j$$

constrained to $\alpha_i \ge 0 \ \forall i \ and \ \sum_{i=1}^n \alpha_i z_i = 0$

- $a = \{a_1, ..., a_n\}$ are new variables, one for each sample
- Optimized by quadratic programming

SVM: Optimal Hyperplane

- After finding the optimal $\mathbf{a} = \{a_1, ..., a_n\}$
- Final discriminant function:

$$g(x) = \left(\sum_{x_i \in S} \alpha_i z_i x_i\right)^t x + W_0$$

where S is the set of support vectors

$$S = \{x_i \mid \alpha_i \neq 0\}$$

SVM: Optimal Hyperplane

maximize
$$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j z_i z_j x_i^t x_j$$

constrained to $\alpha_i \ge 0 \ \forall i \ and \ \sum_{i=1}^n \alpha_i z_i = 0$

- L_D(a) depends on the number of samples, not on dimension
 - samples appear only through the dot products $x_i^t x_i$
- This will become important when looking for a nonlinear discriminant function, as we will see soon

• Data are most likely to be not linearly separable, but linear classifier may still be appropriate

- Can apply SVM in non linearly separable case
- Data should be "almost" linearly separable for good performance

- Use slack variables ξ_{ν} ..., ξ_{n} (one for each sample)
- Change constraints from $z_i(w^t x_i + w_o) \ge 1 \quad \forall i$ to

$$\mathbf{z}_{i}(\mathbf{w}^{t}\mathbf{x}_{i}+\mathbf{w}_{o})\geq\mathbf{1}-\boldsymbol{\xi}_{i}\quad\forall\,\mathbf{i}$$

- ξ_i is a measure of deviation from the ideal for x_i
 - $\xi_i > 1$: x_i is on the wrong side of the separating hyperplane
 - $0 < \xi_i < 1$: x_i is on the right side of separating hyperplane but within the region of maximum margin
 - $\xi_i < 0$: is the ideal case for x_i

• We would like to minimize

$$J(w,\xi_1,...,\xi_n) = \frac{1}{2} ||w||^2 + \beta \sum_{i=1}^n I(\xi_i > 0)$$
 # of samples not in ideal location

- where $I(\xi_i > 0) = \begin{cases} 1 & \text{if } \xi_i > 0 \\ 0 & \text{if } \xi_i \le 0 \end{cases}$
- Constrained to $z_i(w^t x_i + w_0) \ge 1 \xi_i$ and $\xi_i \ge 0 \ \forall i$
- ullet eta is a constant that measures the relative weight of first and second term
 - If β is small, we allow a lot of samples to be in not ideal positions
 - If β is large, few samples can be in non-ideal positions

- Unfortunately this minimization problem is NP-hard due to the discontinuity of $I(\xi_i)$
- Instead, we minimize

$$J(w,\xi_1,...,\xi_n) = \frac{1}{2} ||w||^2 + \beta \sum_{i=1}^n \xi_i$$
a measure of wisclassified examples

Subject to

$$\begin{cases} \mathbf{z}_{i} (\mathbf{w}^{t} \mathbf{x}_{i} + \mathbf{w}_{0}) \geq 1 - \xi_{i} & \forall i \\ \xi_{i} \geq 0 & \forall i \end{cases}$$

• Use Kuhn-Tucker theorem to convert to:

maximize
$$L_{D}(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{i} \mathbf{z}_{i} \mathbf{z}_{j} \mathbf{x}_{i}^{t} \mathbf{x}_{j}$$
constrained to $\mathbf{0} \leq \alpha_{i} \leq \boldsymbol{\beta} \quad \forall i \quad and \quad \sum_{i=1}^{n} \alpha_{i} \mathbf{z}_{i} = \mathbf{0}$

• w is computed using:

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i \mathbf{z}_i \mathbf{x}_i$$

Remember that

$$g(x) = \left(\sum_{x_i \in S} \alpha_i z_i x_i\right)^t x + W_0$$

Nonlinear Mapping

- Cover's theorem: "a pattern-classification problem cast in a high dimensional space non-linearly is more likely to be linearly separable than in a low-dimensional space"
- One dimensional space, not linearly separable

• Lift to two dimensional space with $\phi(x)=(x,x^2)$

Nonlinear Mapping

- To solve a non linear classification problem with a linear classifier
- 1. Project data x to high dimension using function $\phi(x)$
- 2. Find a linear discriminant function for transformed data $\phi(x)$
- 3. Final nonlinear discriminant function is $g(x) = w^t \phi(x) + w_0$

• In 2D, the discriminant function is linear

$$g\left(\begin{bmatrix} \mathbf{X}^{(1)} \\ \mathbf{X}^{(2)} \end{bmatrix}\right) = \begin{bmatrix} \mathbf{W}_1 & \mathbf{W}_2 \end{bmatrix} \begin{bmatrix} \mathbf{X}^{(1)} \\ \mathbf{X}^{(2)} \end{bmatrix} + \mathbf{W}_0$$

• In 1D, the discriminant function is not linear

$$g(x) = W_1 x + W_2 x^2 + W_0$$

Nonlinear Mapping

 However, there always exists a mapping of N samples to an N-dimensional space in which the samples are separable by hyperplanes

Nonlinear SVM

- Can use any linear classifier after lifting data to a higher dimensional space. However we will have to deal with the curse of dimensionality
 - Poor generalization to test data
 - Computationally expensive
- SVM avoids the curse of dimensionality problems
 - Enforcing largest margin permits good generalization
 - It can be shown that generalization in SVM is a function of the margin, independent of the dimensionality
 - Computation in the higher dimensional case is performed only implicitly through the use of *kernel functions*

Kernels

SVM optimization:

maximize

$$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_i \mathbf{z}_i \mathbf{z}_j \mathbf{x}_i^t \mathbf{x}_j$$

- Note this optimization depends on samples x_i only through the dot product $\dot{x}_i^t x_i$
- If we lift x_i to high dimension using $\varphi(x)$, we need to compute high dimensional product $\varphi(x_i)^t \varphi(x_i)$

maximize

$$L_{D}(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{i} z_{i} z_{j} \varphi(x_{i})^{t} \varphi(x_{j})$$

$$K(x_{i}, x_{j})$$

• Idea: find kernel function $K(x_i, x_i)$ s.t. $K(x_i, x_i) = \varphi(x_i)^t \varphi(x_i)$

$$K(X_i,X_j) = \varphi(X_i)^t \varphi(X_j)$$

Kernel Trick

- Then we only need to compute $K(x_i,x_i)$ instead of $\phi(x_i)^t \phi(x_i)$
- "kernel trick": do not need to perform operations in high dimensional space explicitly

Kernel Example

- Suppose we have two features and $K(x,y) = (x^ty)^2$
- Which mapping $\phi(x)$ does this correspond to?

$$K(x,y) = (x^{t}y)^{2} = \left[\begin{bmatrix} x^{(1)} & x^{(2)} \end{bmatrix} \begin{bmatrix} y^{(1)} \\ y^{(2)} \end{bmatrix} \right]^{2} = (x^{(1)}y^{(1)} + x^{(2)}y^{(2)})^{2}$$

$$= (x^{(1)}y^{(1)})^{2} + 2(x^{(1)}y^{(1)})(x^{(2)}y^{(2)}) + (x^{(2)}y^{(2)})^{2}$$

$$= \left[(x^{(1)})^{2} \sqrt{2}x^{(1)}x^{(2)} (x^{(2)})^{2} \right] \left[(y^{(1)})^{2} \sqrt{2}y^{(1)}y^{(2)} (y^{(2)})^{2} \right]^{t}$$

$$\varphi(x) = [(x^{(1)})^2 \sqrt{2}x^{(1)}x^{(2)} (x^{(2)})^2]$$

Choice of Kernel

- How to choose kernel function $K(x_i,x_i)$?
 - $K(x_i,x_j)$ should correspond to $\phi(x_i)^t \phi(x_j)$ in a higher dimensional space
 - Mercer's condition tells us which kernel function can be expressed as dot product of two vectors
 - If K and K' are kernels aK+bK' is a kernel
- Intuitively: Kernel should measure the similarity between $\mathbf{x_i}$ and $\mathbf{x_j}$
 - As inner product measures similarity of unit vectors
 - May be problem-specific

Choice of Kernel

- Some common choices:
 - Polynomial kernel

$$K(x_i, x_j) = (x_i^t x_j + 1)^p$$

Gaussian radial Basis kernel

$$K(x_i, x_j) = \exp\left(-\frac{1}{2\sigma^2} ||x_i - x_j||^2\right)$$

Hyperbolic tangent (sigmoid) kernel

$$K(x_i,x_j) = tanh(k x_i^t x_j + c)$$

• The mappings $\phi(x_i)$ never have to be computed!!

Intersection Kernel

Feature vectors are histograms

$$K(x_i, x_j) = \sum_{k=1}^{n} \min(x_{ik}, x_{jk})$$

- When $K(x_i,x_j)$ is small, x_i and x_j are dissimilar
- When $K(x_i,x_j)$ is large, x_i and x_j are similar
- The mapping $\phi(x)$ does not exist

More Additive Kernels

• χ² kernel

$$K_{\chi^2} = \sum_{k=1}^{n} \frac{2x_k y_k}{x_k + y_k}$$

• Hellinger's kernel

$$K_H = \sum_{k=1}^n \sqrt{x_k y_k}$$

- Designed for feature vectors that are histograms
 - Can be used for other feature vectors
- Offer very large speed-ups

The Kernel Matrix

• a.k.a the Gram matrix

	K(1,1)	K(1,2)	K(1,3)		K(1,m)
	K(2,1)	K(2,2)	K(2,3)		K(2,m)
K=					
	K(m,1)	K(m,2)	K(m,3)	•••	K(m,m)

- Contains all necessary information for the learning algorithm
- Fuses information about the data and the kernel (similarity measure)

Bad Kernels

- The kernel matrix is mostly diagonal
 - All points are orthogonal to each other
- Bad similarity measure
- Too many irrelevant features in high dimensional space

We need problem-specific knowledge to choose appropriate kernel

Nonlinear SVM Step-by-Step

- Start with data x₁,...,x_n which live in feature space of dimension d
- Choose kernel $K(x_i,x_j)$ or function $\varphi(x_i)$ which lifts sample x_i to a higher dimensional space
- Find the maximum margin linear discriminant function in the higher dimensional space by using quadratic programming package to solve:

maximize
$$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_i z_i z_j K(x_i, x_j)$$

constrained to $0 \le \alpha_i \le \beta \ \forall i \ and \sum_{i=1}^n \alpha_i z_i = 0$

Nonlinear SVM Step-by-Step

Weight vector w in the high dimensional space:

$$\mathbf{W} = \sum_{\mathbf{x}_i \in S} \alpha_i \mathbf{Z}_i \varphi(\mathbf{x}_i)$$

- where S is the set of support vectors
- Linear discriminant function of maximum margin in the high dimensional space:

$$g(\varphi(\mathbf{x})) = \mathbf{w}^t \varphi(\mathbf{x}) = \left(\sum_{\mathbf{x}_i \in S} \alpha_i \mathbf{z}_i \varphi(\mathbf{x}_i)\right)^t \varphi(\mathbf{x})$$

• Non linear discriminant function in the original space:

$$g(\mathbf{x}) = \left(\sum_{\mathbf{x}_i \in S} \alpha_i \mathbf{z}_i \varphi(\mathbf{x}_i)\right)^t \varphi(\mathbf{x}) = \sum_{\mathbf{x}_i \in S} \alpha_i \mathbf{z}_i \varphi^t(\mathbf{x}_i) \varphi(\mathbf{x}) = \sum_{\mathbf{x}_i \in S} \alpha_i \mathbf{z}_i K(\mathbf{x}_i, \mathbf{x})$$

• decide class 1 if g(x) > 0, otherwise decide class 2

Nonlinear SVM

Nonlinear discriminant function

$$g(x) = \sum_{x_i \in S} \alpha_i z_i K(x_i, x)$$

$$g(x) = \sum_{\substack{\text{weight of support } \\ \text{vector } x_i \text{ }}} \text{ weight of support } \text{ from } x \text{ to } \text{ support vector } x_i \text{ }}$$

$$\text{most important training samples, } \text{ i.e. support vectors }}$$

$$K(x_i, x) = \exp\left(-\frac{1}{2\sigma^2} \|x_i - x\|^2\right)$$

- Class 1: $x_1 = [1,-1], x_2 = [-1,1]$
- Class 2: $x_3 = [1,1], x_4 = [-1,-1]$
- Use polynomial kernel of degree 2:

$$K(X_i, X_j) = (X_i^t X_j + 1)^2$$

This kernel corresponds to the mapping

$$\varphi(x) = \begin{bmatrix} 1 & \sqrt{2}x^{(1)} & \sqrt{2}x^{(2)} & \sqrt{2}x^{(1)}x^{(2)} & (x^{(1)})^2 & (x^{(2)})^2 \end{bmatrix}^{T}$$

Need to maximize

$$L_{D}(\alpha) = \sum_{i=1}^{4} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{4} \sum_{j=1}^{4} \alpha_{i} \alpha_{i} \mathbf{z}_{i} \mathbf{z}_{j} (\mathbf{x}_{i}^{t} \mathbf{x}_{j} + \mathbf{1})^{2}$$

constrained to

$$0 \le \alpha_i \quad \forall i \quad and \quad \alpha_1 + \alpha_2 - \alpha_3 - \alpha_4 = 0$$

- After some manipulation ...
- The solution is $a_1 = a_2 = a_3 = a_4 = 0.25$
 - satisfies the constraints

$$\forall i, \ 0 \le \alpha_i \ and \ \alpha_1 + \alpha_2 - \alpha_3 - \alpha_4 = 0$$

All samples are support vectors

$$\varphi(x) = \begin{bmatrix} 1 & \sqrt{2}x^{(1)} & \sqrt{2}x^{(2)} & \sqrt{2}x^{(1)}x^{(2)} & (x^{(1)})^2 & (x^{(2)})^2 \end{bmatrix}^{t}$$

• The weight vector **w** is:

$$W = \sum_{i=1}^{4} \alpha_i \mathbf{z}_i \varphi(\mathbf{x}_i) = 0.25(\varphi(\mathbf{x}_1) + \varphi(\mathbf{x}_2) - \varphi(\mathbf{x}_3) - \varphi(\mathbf{x}_4))$$
$$= \begin{bmatrix} 0 & 0 & 0 & -\sqrt{2} & 0 & 0 \end{bmatrix}$$

Thus the nonlinear discriminant function is:

$$g(x) = w\varphi(x) = \sum_{i=1}^{6} w_i \varphi_i(x) = -\sqrt{2} \left(\sqrt{2} x^{(1)} x^{(2)} \right) = -2 x^{(1)} x^{(2)}$$

SVM Summary

Advantages:

- Based on very strong theory
- Excellent generalization properties
- Objective function has no local minima
- Can be used to find non linear discriminant functions
- Complexity of the classifier is characterized by the number of support vectors rather than the dimensionality of the transformed space

Disadvantages:

- Directly applicable to two-class problems
- Quadratic programming is computationally expensive
- Need to choose kernel

Multi-Class SVMs

- One against all
- Pairwise

 These ideas apply to all binary classifiers when faced with multi-class problems

One-Against-All

- SVMs can only handle two-class outputs
- What can be done?
- Answer: learn N SVM's
 - SVM 1 learns "Output==1" vs "Output != 1"
 - SVM 2 learns "Output==2" vs "Output != 2"
 - ...
 - SVM N learns "Output==N" vs "Output != N"

One-Against-All

• Original idea (Vapnik, 1995): classify x as ω_i if and only if the corresponding SVM accepts x and all other SVMs reject it

One-Against-All

• Modified idea (Vapnik, 1998): classify x according to the SVM that produces the highest value (use more than sign of decision function)

Pairwise SVMs

- Learn N(N-1)/2 SVM's
 - SVM 1 learns "Output==1" vs "Output == 2"
 - SVM 2 learns "Output==1" vs "Output == 3"
 - •
 - SVM M learns "Output==N-1" vs "Output == N"

Pairwise SVMs

 To classify a new input, apply each SVM and choose the label that "wins" most often

