

IRF630 IRF630FP

N-channel 200V - 0.35Ω - 9A TO-220/TO-220FP Mesh overlay™ II Power MOSFET

General features

Туре	V _{DSS}	R _{DS(on)}	I _D
IRF630	200V	<0.40Ω	9A
IRF630FP	200V	<0.40Ω	9A

- Extremely high dv/dt capability
- Very low intrinsic capacitances
- Gate charge minimized

Description

This power MOSFET is designed using the company's consolidated strip layout-based MESH OVERLAY™ process. This technology matches and improves the performances compared with standard parts from various sources.

Applications

■ Switching application

Internal schematic diagram

Order codes

Part number	Marking	Package	Packaging
IRF630	IRF630	TO-220	Tube
IRF630FP	IRF630FP	TO-220FP	Tube

Contents IRF630 - IRF630FP

Contents

1	Electrical ratings 3
2	Electrical characteristics 4
	2.1 Electrical characteristics (curves)
3	Test circuit9
4	Package mechanical data10
5	Revision history13

IRF630 - IRF630FP Electrical ratings

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Valu	e	- Unit
Symbol	Farameter	TO-220	TO-220FP	Onn
V _{DS}	Drain-source voltage (V _{GS} = 0)	200		٧
V_{DGR}	Drain-gate voltage ($R_{GS} = 20 \text{ k}\Omega$)	200		٧
V _{GS}	Gate-source voltage	± 20)	V
I _D	Drain current (continuous) at T _C = 25°C	9	9 ⁽¹⁾	Α
I _D	Drain current (continuous) at T _C =100°C	5.7	5.7 ⁽¹⁾	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	36	36 ⁽¹⁾	Α
P _{TOT}	Total dissipation at T _C = 25°C	75	30	W
	Derating factor	0.6	0.24	W/°C
dv/dt (3)	Peak diode recovery voltage slope	5		V/ns
V _{ISO}	Insulation winthstand voltage (DC) 2000		V	
T _J T _{stg}	Operating junction temperature Storage temperature	-65 to 150 150		°C

^{1.} Limited only by maximum temperature allowed

Table 2. Thermal data

Symbol	Parameter	Value	Unit	
Symbol	raidilletei	TO-220	TO-220FP	Oiiit
R _{thj-case}	Thermal resistance junction-case Max	1.67	°C/W	
R _{thj-a}	Thermal resistance junction-ambient Max	62.5	°C/W	
Rthc-sink	Thermal resistance case-sink typ	0.5	°C/W	
T _I	Maximum lead temperature for soldering purpose	300		°C

Table 3. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by Tj Max)	9	Α
E _{AS}	Single pulse avalanche energy (starting Tj=25°C, Id=lar, Vdd=50V)	160	mJ

^{2.} Pulse width limited by safe operating area

^{3.} ISD $\$ A, di/dt $\$ 00A/ μ s, VDD \le V(BR)DSS, Tj \le TJMAX

Electrical characteristics IRF630 - IRF630FP

2 Electrical characteristics

(T_{CASE}=25°C unless otherwise specified)

Table 4. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0$	200			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V_{DS} = Max rating, V_{DS} = Max rating @125°C			1 50	μ Α μ Α
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = ±20V			± 100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10V, I _D = 4.5A		0.35	0.40	Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
9 _{fs} ⁽¹⁾	Forward transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max},$ $I_{D} = 4.5A$	3	4		S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} =25V, f=1 MHz, V _{GS} =0		540 90 35	700 120 50	pF pF pF
t _{d(on)} t _r	Turn-on Delay Time Rise Time	V_{DD} = 100V, I_D = 4.5A, R_G = 4.7 Ω , V_{GS} = 10V (see Figure 14)		10 15	14 20	ns ns
$\begin{array}{c} Q_{g} \\ Q_{gs} \\ Q_{gd} \end{array}$	Total gate charge Gate-source charge Gate-drain charge	V _{DD} =160V, I _D = 9A V _{GS} =10V		31 7.5 9	45	nC nC nC

^{1.} Pulsed: pulse duration=300µs, duty cycle 1.5%

Table 6. Source drain diode

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
I _{SD}	Source-drain current				9	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)				36	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} =9A, V _{GS} =0			1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} =9A, di/dt = 100A/μs, V _{DD} =50V, Tj=150°C (see Figure 16)		170 0.95 11		ns μC A

^{1.} Pulse width limited by safe operating area

^{2.} Pulsed: pulse duration=300µs, duty cycle 1.5%

Electrical characteristics IRF630 - IRF630FP

2.1 Electrical characteristics (curves)

Figure 1. Safe operating area for TO-220 Figur

Figure 2. Thermal impedance for TO-220

Figure 3. Safe operating area for TO-220/FP Figure 4. Thermal impedance for TO-220/FP

Figure 5. Output characterisics

Figure 6. Transfer characteristics

6/14

Figure 7. Transconductance

Figure 8. Static drain-source on resistance

Figure 9. Gate charge vs gate-source voltage Figure 10. Capacitance variations

Figure 11. Normalized gate threshold voltage Figure 12. Normalized on resistance vs vs temperature temperature

577

Electrical characteristics IRF630 - IRF630FP

Figure 13. Source-drain diode forward characteristics

IRF630 - IRF630FP Test circuit

3 Test circuit

Figure 14. Switching times test circuit for resistive load

Figure 15. Gate charge test circuit

Figure 16. Test circuit for inductive load switching and diode recovery times

Figure 17. Unclamped Inductive load test circuit

Figure 18. Unclamped inductive waveform

Figure 19. Switching time waveform

577

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

TO-220 MECHANICAL DATA

DIM.		mm.			inch	
DINI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.15		1.70	0.045		0.066
С	0.49		0.70	0.019		0.027
D	15.25		15.75	0.60		0.620
E	10		10.40	0.393		0.409
е	2.40		2.70	0.094		0.106
e1	4.95		5.15	0.194		0.202
F	1.23		1.32	0.048		0.052
H1	6.20		6.60	0.244		0.256
J1	2.40		2.72	0.094		0.107
L	13		14	0.511		0.551
L1	3.50		3.93	0.137		0.154
L20		16.40			0.645	
L30		28.90			1.137	
øΡ	3.75		3.85	0.147		0.151
Q	2.65		2.95	0.104		0.116

577

TO-220FP MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.4		4.6	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
Е	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.7	0.045		0.067
F2	1.15		1.7	0.045		0.067
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
Н	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	.0385		0.417
L5	2.9		3.6	0.114		0.141
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
Ø	3		3.2	0.118		0.126

IRF630 - IRF630FP Revision history

5 Revision history

Table 7. Revision history

Date	Revision	Changes
09-Sep-2004	8	Complete version
03-Aug-2006	9	New template, no content change

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

