Assignment 2: Cardinality (Draft)

Frank Tsai

October 8, 2024

6.13

1. Proof. Consider the following functions

$$f(a, (b, c)) = ((a, b), c)$$

 $g((a, b), c) = (a, (b, c))$

This pair of functions are inverses of each other since f(g((a,b),c)) = f(a,(b,c)) = ((a,b),c) and g(f(a,(b,c))) = g((a,b),c) = (a,(b,c)), so we have the required bijection.

2. Proof. Consider the following functions

$$\operatorname{curry}(f)(a)(b) = f(a,b)$$

$$\operatorname{uncurry}(g)(a,b) = g(a)(b)$$

This pair of functions are inverses of each other because $\operatorname{curry}(\operatorname{uncurry}(g))(a)(b) = \operatorname{uncurry}(g)(a,b) = g(a)(b)$. Functional extensionality implies that $\operatorname{curry}(\operatorname{uncurry}(g)) = g$. We also have $\operatorname{uncurry}(\operatorname{curry}(g))(a,b) = \operatorname{curry}(g)(a)(b) = g(a,b)$. Functional extensionality implies that $\operatorname{uncurry}(\operatorname{curry}(g)) = g$. We have the required bijection.

6.33

Proof. There is an obvious injection, namely the inclusion $A \hookrightarrow A \cup B$, so $\mathbb{N} \leq A \cup B$. It suffices to construct an injection $A \cup B \to \mathbb{N}$. Consider the following function

$$h(c) = \begin{cases} 2f(c) & \text{if } c \in A, \\ 2g(c) + 1 & \text{o.w.} \end{cases}$$

blah blah so this is an injection.

6.37

Proof. It suffices to rule out $X < \mathbb{N}$. Suppose that $X < \mathbb{N}$. Let $f: X \to \mathbb{N}$ be an injection witnessing this fact. Consider $ran(f) \subseteq \mathbb{N}$. If ran(f) is infinite, then we have $X \approx ran(f) \approx \mathbb{N}$. This is a contradiction.

If ran(f) is finite, then X is finite, but this contradicts the assumption that X is infinite.