数学

試験時間:50分

令和2年度筑波大附属高校

大問は 1 から 5 まであります 解答は解答用紙に記入して下さい

$m{1}$ 2個以上のさいころを投げたとき、出た目すべての積の値を a とし、 a の正の約数の個数について考える。このとき、次の ① \sim ③の にあてはまる数を求めなさい。
(1) 2 個のさいころを投げるとき, a の正の約数の個数が $\boxed{ ① - ア }$ 個となる確率が最も大きく, その確率は
① - イ である.
$\overline{}$ また, a の正の約数の個数が奇数個となる確率は $\overline{}$ である.

2 AB=3cm, BC=4cm, CA=5cm である \triangle ABC がある. 3 点 P, Q, R はそれぞれの頂点 A, B, C を同時に出発して, 点 P は毎秒 3cm の速さで, $A \rightarrow B \rightarrow C \rightarrow A \rightarrow \cdots$ 点 Q は毎秒 2cm の速さで, $B \rightarrow C \rightarrow A \rightarrow B \rightarrow \cdots$ 点 R は毎秒 1cm の速さで, $C \rightarrow A \rightarrow B \rightarrow C \rightarrow \cdots$ のようにすべて同じ向きに進み, 3 点がそれぞれの最初の位置に同時に戻ったとき, 3 点とも止まる. 3 点が出発してからの時間を x 秒とするとき 次の 4

 \sim $\stackrel{\frown}{}$ \bigcirc

さい.

(1) x>0 のとき、3 点が動いている間に $P,\ Q,\ R$ がつくる三角形 \triangle ABC と合同になるときの x の値と、3 点が 止まるときの x の値を求めると、x= のある.

(2) 3 点 P, Q, R のうち, 2 つの点が重なることは ⑤ 回ある.

にあてはまる数または式を求めな

(3) 3 点 P, Q, R が三角形をつくらない時間すべてを, x についての等式または不等式で表すと, ⑥ のある.

3 右の図のように、線分 BC 上に点 D を BD : DC = 2:3 となるようにとり、線分 BC に垂直な線分 DA を \angle BAC=45° となるように引く.

このようにしてできた $\triangle ABC$ に対して頂点 B から辺 AC に垂直な線分 BE を引き, AD と BE の交点を H とする.

このとき、次の⑦ \sim ⑨ の にあてはまる三角形または数を求めなさい.

- (1) \triangle BCE と相似な三角形のうち, \triangle BCE 以外のものを 2 つあげると, \bigcirc である.
- (2) 線分 AH の長さは, 線分 BD の長さの **8** 倍である.

(3) AH=10cm であるとき, $\triangle ABC$ の面積は, \bigcirc cm^2 である.

4 ふたがついた大きさの異なる 2 つの直方体の箱 X, Y がある. X には半径 rcm の球が 5 個, Y には半径 4cm の球が 4 個, 底面に接するように入っている.

下の図1の長方形 ABCD, EFGH はそれぞれ X, Y の平面図であり, AD=EH である.

(図1)

図 1 のように、隣り合う球は互いに接しており、それぞれの箱の 4 個の球は側面に接している。このとき、次に \bigcirc ~ \bigcirc の にあてはまる数または辺を求めなさい。

(1) $r = \boxed{0}$ cm cas 3.

(2) 辺 AB と辺 EF の長さを比べると、辺 $\boxed{ ① - 7 }$ の方が $\boxed{ ① - 1 }$ cm だけ長い.

(3) 右の図 2 のように、X には半径 rcm の球、Y には半径 4cm の球をそれぞれの 3 個の球と接するように 1 個ずつ置き、ふたをして直方体にしたところ、どちらのふたも置いた球と接した.

このとき, X の体積は, Y の体積の 12 倍である.

