MS&E 125: Intro to Applied Statistics Exploratory Data Analysis

Professor Udell

Management Science and Engineering Stanford

April 2, 2023

Announcements

Questions from forum

Why look at the data?

explore

- detect errors in data
- check assumptions
- select appropriate models
- understand relationships among the features
- understand relationships between features and labels

Why look at the data?

explore

- detect errors in data
- check assumptions
- select appropriate models
- understand relationships among the features
- understand relationships between features and labels

communicate

convince others of your findings

How to look at the data?

- ▶ inspect raw data
- summary statistics
- visualize

Python and Jupyter

- Python is a programming language: it parses human-readable code to machine-readable code, executes it, returns the answer
- Jupyter is a protocol for interacting with a programming language.
- Jupyter stores inputs and outputs as .ipynb files.
- Jupyter notebooks display inputs and outputs in a browser
- Google Colab is an interface to a webserver running Python

Python and Jupyter

- Python is a programming language: it parses human-readable code to machine-readable code, executes it, returns the answer
- Jupyter is a protocol for interacting with a programming language.
- Jupyter stores inputs and outputs as .ipynb files.
- Jupyter notebooks display inputs and outputs in a browser
- Google Colab is an interface to a webserver running Python

how to access?

- ▶ install VSCode with Python extension
- ▶ install Python with Anaconda distribution
- use Google Colab

Python 3.9–11 are all fine

Summary statistics

univariate

- mean, median, mode
- max, min, range
- variance

explore via Python + Jupyter notebook

https://colab.research.google.com/github/stanford-mse-125/demos/blob/main/sales.ipynb

Summary statistics

univariate

- mean, median, mode
- max, min, range
- variance

explore via Python + Jupyter notebook

https://colab.research.google.com/github/stanford-mse-125/demos/blob/main/sales.ipynb

multi- (but usualy just bi-)variate

- correlation, covariance

The perils of summary statistics

I		II		III		IV	
х	у	x	у	x	у	х	у
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

The perils of summary statistics

ı		II		III		IV	
x	у	x	у	х	у	х	у
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

same mean, variance, correlation, line of best fit...

The perils of summary statistics

The perils of summary statistics: modern update

https:

//www.autodeskresearch.com/publications/samestats

Choosing a plot type

- ▶ Beware of pie charts; bar charts make comparisons easier.
- Beware of line plots; if your data is not continuous, try scatter plot instead.
- Beware of scatter plots; if you've got a lot of data, visualize the density instead
 - histogram, heat map, or contour plot
 - or at least make points transparent
- Visualize uncertainty or spread.
 - error bars, box plots, violin plots
- ► Consider the scale of your axes. Log scale or not?
 - log scale axis, not log scale data

Plotting parameters

- plot type
- scale and order
- color
- annotations and labels
- orientation
- size and aspect ratio

▶ not just alphabetic!

> colorblindness is common!

▶ tell your story!

▷ avoid head tilting

Principles of visual communication

- make comparisons easy
- maximize data-to-ink ratio
- ▶ label everything (axes, legends, etc.)
- final plot should tell a story

Beware of bad data

Label: Number of Days Physical Health Not Good

Section Name: Healthy Days - Health Related Quality of Life

Core Section Number: 2

Question Number: 1

Column: 91-92

Type of Variable: Num SAS Variable Name: PHYSHLTH

Question Prologue:

Question: Now thinking about your physical health, which includes physical illness and injury, for how many days during the past 30 days was your physical health not good?

Value	Value Label	Frequency	Percentage	Weighted Percentage
1 - 30	Number of days	159,327	36.43	35.59
88	None	269,145	61.53	62.53
77	Don't know/Not sure	7,602	1.74	1.58
99	Refused	1,336	0.31	0.30
BLANK	Not asked or Missing	26		

Take away

- look at your data
- decide what you want to communicate

Questions?