Controlli automatici

■ Sistemi dinamici

Variabili di ingresso: rappresentano le azioni che vengono compiute su un sistema in modo indipendente da esso.

$$\mathbf{u} \in \mathbb{R}^m$$

Variabili di uscita: rappresentano quanto del comportamento del sistema in esame è, per qualche ragione, di interesse.

$$\mathbf{v} \in \mathbb{R}^p$$

Variabili di stato: descrivono la situazione interna del sistema da modellare quanto basta per permettere il calcolo delle variabili di uscita.

$$\mathbf{x} \in \mathbb{R}^n$$

Il numero n delle variabili di stato si dice ordine del sistema.

$$\dot{x}(t) = f(x(t), u(t), t)$$
 equazione di stato

$$y(t) = g(x(t), u(t), t)$$
 trasformazione di uscita

Ci limitiamo a studiare sistemi con un numero finito di variabili.

Tipi di sistemi dinamici

SISO: Single Input Single Output

<u>MIMO</u>: Multiple Input Multiple Output Strettamente proprio: se g non dipende da u

Proprio: altrimenti

Improprio: se g dipende dagli ingressi futuri (non rappresentabili)

Statico: se g non dipende da x

<u>Invariante</u>: se f e g non dipendono esplicitamente da t

Lineare: se f e g sono funzioni lineari in x e u

Sistemi lineari tempo invariante (LTI)

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

A, B, C, D sono matrici di dimensioni:

$$A: m \times n \quad B: n \times m \quad C: p \times n \quad D: p \times m$$

Sistemi a dimensione infinita: ritardo puro

$$y(t) = u(t - \tau)$$

In un nastro trasportatore, per sapere l'uscita in un certo istante compreso tra 0 e τ bisogna sapere la quantità di materiale sul nastro in ogni punto: si necessita quindi un numero infinito di stati. Una soluzione potrebbe essere quella di considerare il nastro libero all'istante 0.

Sistemi non lineari

Per lo studio dei sistemi non lineari, che può risultare molto complicato, è possibile utilizzare sviluppi in serie di Taylor pur tenendo conto dell'errore che ne deriva, riconducendo quindi il modello a un sistema lineare. Ciò non è più possibile quando il termine trascurato diventa di rilevanza significativa.

Movimento di sistemi LTI

Con movimento si intende la soluzione dell'equazione differenziale.

Formula di Lagrange

$$\begin{cases} x(t) = e^{A(t-t_0)} x_{t_0} + \int_{t_0}^t e^{A(t-\tau)} B \cdot u(\tau) \ d\tau \\ \\ y(t) = C \cdot e^{A(t-t_0)} x_{t_0} + C \int_{t_0}^t e^{A(t-\tau)} B \cdot u(\tau) \ d\tau + D \cdot u(t) \end{cases}$$

L'ostacolo principale consiste nella presenza della matrice A all'esponente. Come si nota dalla formula, il risultato è la somma di due contributi: il **movimento libero** $x_{\rm L}(t) = e^{A(t-t_0)}x_{t_0}$ e il **movimento forzato** $x_{\rm F}(t) = \int_{t_0}^t e^{A(t-\tau)}B\ u(\tau)\ d\tau$.

Movimenti di equilibrio $(\overline{x}, \overline{u})$ è un equilibrio del sistema se e solo se: $f(\overline{x}, \overline{u}) = 0$

• Stabilità

Definizione 1.1. Dato un sistema dinamico, un punto di equilibrio \overline{x} si dice **stabile** se $\forall \varepsilon > 0 \ \exists \delta > 0$ tale che per tutti gli stati iniziali x_0 che soddisfano la relazione:

$$||x_0 - \overline{x}|| \le \delta \quad \forall t > 0$$
 risulti $||x(t) - \overline{x}|| \le \varepsilon \quad t > 0$

Definizione 1.2. Un equilibrio \overline{x} si dice **instabile** se non è stabile

Definizione 1.3. Un equilibrio \overline{x} si dice **asintoticamente stabile** se è stabile e inoltre vale il limite:

$$\lim_{t \to \infty} \|x(t) - \overline{x}\| = 0$$

Nei sistemi meccanici un equilibrio è stabile se ha energia potenziale minima; invece è instabile quando l'energia potenziale è massima.

Teoria di Lyapunov

Definizione 1.4. Una funzione $V(\bullet)$ si dice **definita positiva** (o **negativa**) se esiste un intorno circolare dell'origine in cui V(x) > 0 (o V(x) < 0) per $x \neq 0$ e V(0) = 0.

Definizione 1.5. Una matrice quadrata e simmetrica P si dice **definita positiva** (o **negativa**) se V(x) = x'Px è una funzione definita positiva (o negativa).

Teorema 1.1. Condizione necessaria e sufficiente affinché una matrice quadrata simmetrica sia definita positiva è che siano positivi tutti i suoi minori principali D_1, \ldots, D_n da essa estraibili.

Teorema 1.2 (Teorema di Lyapunov). Sia x = 0 un punto di equilibrio per $\dot{x} = f(x)$. Sia $V: D \subset \mathbb{R}^n - > \mathbb{R}$ una funzione differenziabile con continuità tale che V sia definita positiva, allora x = 0: 1. Se $\dot{V}(x) \leq 0$ (semidefinita negativa) è un punto di equilibrio stabile; 2. Se $\dot{V}(x) < 0$ (definita negativa) è un punto di equilibrio asintoticamente stabile; 3. Se $\dot{V}(x) > 0$ (definita positiva) è un punto di equilibrio instabile.

Il limite del teorema di Lyapunov è che rappresenta solo una condizione sufficiente: in alcuni casi per confermare la stabilità asintotica di un punto di equilibrio dobbiamo ricorrere quindi alla sua definizione.

Stabilità nei sistemi LTI con il metodo di Lyapunov

Teorema 1.3. Uno stato di equilibrio di un sistema LTI si dice stabile, asintoticamente stabile o instabile se e solo se tutti gli stati di equilibrio del sistema sono rispettivamente stabili, asintoticamente stabili o instabili. Per questo si può parlare di stabilità, stabilità asintotica o instabilità del sistema.

Teorema 1.4 (Teorema di Lyapunov per i sistemi lineari). Un sistema LTI è asintoticamente stabile se e solo se per ogni matrice simmetrica definita positiva Q esiste una matrice simmetrica definita positiva P che soddisfa l'equazione di Lyapunov:

$$PA + A'P = -Q$$

Inoltre, se il sistema è asintoticamente stabile, allora P è l'unica soluzione.

Si noti che V(x) = x'Px è una funzione di Lyapunov e: $\dot{V}(x) = -x'Qx < 0$ (definita negativa)

Metodo degli autovalori

Detta λ una variabile complessa, ad una matrice quadrata A di ordine n si possono associare il polinomio caratteristico di grado n:

$$\phi(\lambda) = \det(\lambda I - A) = \lambda_n + a_1 \lambda_{n-1} + \dots + a_n$$

e l'equazione caratteristica:

$$\phi(\lambda) = 0$$

Stabilità SISTEMI DINAMICI

Le n soluzioni dell'equazione caratteristica si dicono *autovalori* di A; se A è costituita da numeri reali anche i coefficienti ai sono reali oppure complessi coniugati a coppie.

Stabilità nei sistemi LTI con il metodo degli autovalori

Teorema 1.5. Un sistema LTI è asintoticamente stabile se e solo se tutti i suoi autovalori hanno parte reale negativa.

Teorema 1.6. Un sistema LTI è instabile se almeno uno dei suoi autovalori ha parte reale positiva.

Teorema 1.7. Un sistema LTI con autovalori con parte reale negativa e nulla è instabile se e solo se, tra gli autovalori con parte reale nulla, ce n'è almeno uno cui corrisponde almeno un miniblocco di Jordan di dimensioni maggiori di 1.

Linearizzazione nell'intorno di un equilibrio

La linearizzazione è un ottimo modo per studiare gli intorni dei punti di equilibrio: per lo studio del sistema non lineare bisogna tener conto degli infinitesimi trascurati che, con questo metodo, per valori di $\delta u(t)$ elevati, porterebbero a un cambiamento radicale dell'uscita.

Teorema 1.8. Lo stato di equilibrio \overline{x} relativo all'ingresso \overline{u} di un sistema non lineare è asintoticamente stabile se tutti gli autovalori del sistema linearizzato hanno parte reale negativa.

Teorema 1.9. Lo stato di equilibrio \overline{x} relativo all'ingresso \overline{u} di un sistema non lineare è instabile se almeno uno degli autovalori del sistema linearizzato ha parte reale positiva.

Studio del polinomio caratteristico

Dato il polinomio caratteristico $\phi(x)$ con $\phi_0 \neq 0$, se il sistema ad esso associato è asintoticamente stabile, allora i coefficienti del polinomio caratteristico hanno tutti lo stesso segno. Per $n \leq 2$ la condizione è anche sufficiente.

Criterio di Routh-Hurwitz

A partire dai coefficienti del polinomio caratteristico $\phi(\lambda)$ è possibile contruire la Tabella di Routh: essa possiede n+1 righe e ha una struttura triangolare in quanto ogni due righe, con esclusione della prima se n è pari, il numero di elementi diminuisce di uno.

$$\begin{pmatrix} \phi_{0} & \phi_{2} & \phi_{4} & \dots \\ \phi_{1} & \phi_{3} & \phi_{5} & \dots \\ \vdots & \vdots & \vdots \\ h_{1} & h_{2} & h_{3} \\ k_{1} & k_{2} & k_{3} \\ l_{1} & l_{2} & l_{3} \\ \vdots & \vdots & \vdots \end{pmatrix}$$

$$l_{i} = -\frac{1}{k_{1}} \cdot det \begin{pmatrix} h_{1} & h_{i+1} \\ k_{1} & k_{i+1} \end{pmatrix} = h_{i+1} - \frac{h_{1} \cdot k_{i+1}}{k_{1}}$$

Inoltre, se risulta $k_1 = 0$, la tabella si dirà non ben definita.

Teorema 1.10. Il sistema è asintoticamente stabile se e solo se la tabella di Routh relativa al suo polinomio caratteristico è ben definita e tutti gli elementi della sua prima colonna hanno lo stesso segno.

• Rappresentazioni equivalenti

Si consideri una matrice costante $T \in \mathbb{R}^{n \times n}$ non singolare: chiamo

$$\hat{x}(t) = T \cdot x(t) \quad \Rightarrow \quad x(t) = T^{-1} \cdot \hat{x}(t)$$

$$\dot{\hat{x}}(t) = TAT^{-1} \cdot \hat{x}(t) + TB \cdot u(t) \qquad \hat{A} = TAT^{-1} \qquad \hat{B} = TB$$

$$\hat{y}(t) = CT^{-1} \cdot \hat{x}(t) + D \cdot u(t) \qquad \hat{C} = CT^{-1} \qquad \hat{D} = D$$

Il sistema $(\hat{A}, \hat{B}, \hat{C}, \hat{D})$ è **equivalente** al sistema (A, B.C, D), nel senso che per un ingresso u(t) con $t \geq 0$ e due stati iniziali x_0 e \hat{x}_0 legati dalla condizione $\hat{x}_0 = T \cdot x_0$, i movimenti dello stato sono legati dalla relazione $\hat{x}(t) = T \cdot x(t)$ con t > 0 e i movimenti dell'uscita sono identici.

Si noti che le matrici A e \hat{A} sono simili e quindi hanno gli stessi autovalori.

Se gli autovalori $\lambda_1, ..., \lambda_n$ sono tutti distinti tra loro si può presupporre T_D^{-1} come la matrice avente per colonne gli *autovettori* di A, in modo che:

$$\hat{A}_{\mathrm{D}} = TA_{\mathrm{D}}T^{-1} = diag(\lambda_{1}, ..., \lambda_{\mathrm{n}})$$

• Movimenti liberi e forzati nei sistemi LTI

Movimento libero

$$\begin{cases} x_{\mathbf{L}}(t) = e^{A_{\mathbf{D}}t} \cdot x_0 = T_{\mathbf{D}}^{-1} \cdot \hat{x}_{\mathbf{L}}(t) = T_{\mathbf{D}}^{-1} \cdot diag(e^{\lambda_1 t}, ..., e^{\lambda_n t}) \cdot T_{\mathbf{D}} \cdot x_0 \\ y_{\mathbf{L}}(t) = CT_{\mathbf{D}}^{-1} \cdot diag(e^{\lambda_1 t}, ..., e^{\lambda_n t}) \cdot T_{\mathbf{D}} \cdot x_0 \end{cases}$$

I valori $e^{\lambda_i t}$ sono detti **modi del sistema** e il movimento libero è quindi una combinazione lineare dei modi del sistema.

Un sistema LTI può avere un movimento libero oscillatorio solo se ha autovalori complessi coniugati, altrimenti sarà combinazione lineare di esponenziali: in particolare, se gli autovalori sono negativi (asintoticamente stabile) tenderanno a 0, mentre se sono positivi a $+\infty$.

Movimento forzato

Dato l'impulso:

$$imp(t) = \begin{cases} +\infty & t = 0\\ 0 & t \neq 0 \end{cases}$$

$$\int_{-\infty}^{+\infty} imp(t) \ dt = 1$$

per u(t) = imp(t) si puó calcolare la risposta impulsiva:

$$x_{\mathrm{F}}(t) = \int_{0}^{t} e^{A(t-\tau)} \cdot B \cdot u(\tau) \ d\tau = \int_{0}^{t} e^{A(t-\tau)} \cdot B \cdot imp(\tau) \ d\tau = e^{At} \cdot B$$
 risposta impulsiva dello stato
$$g_{\mathrm{v}}(t) = C \cdot e^{At} \cdot B + D \cdot imp(t)$$
 risposta impulsiva dell'uscita

Queste relazioni mettono in evidenza l'effetto di un qualsiasi ingresso sull'uscita: tuttavia non tengono conto degli stati iniziali, ossia del movimento libero. Nei sistemi asintoticamente stabili il movimento libero tende ad annullarsi nel tempo: per questo motivo si può tener conto dell'errore all'inizio e avere un modello praticamente perfetto dopo.

Proprietà dei sistemi asintoticamente stabili

- $\lim_{t\to +\infty} x(t)$ è indipendente dallo stato iniziale
- La risposta impulsiva tende asintoticamente a 0
- Dato che $det(A) \neq 0$, $\overline{x} = -A^{-1}B\overline{u}$
- Stabilità esterna: produce un movimento forzato dell'uscita limitato in corrispondenza d ogni ingresso limitato

• Raggiungibilità e osservabilità

Raggiungibilità

Definizione 1.6. Uno stato \tilde{x} si dice **raggiungibile** se esistono un tempo fissato $\tilde{t} > 0$ e un ingresso \tilde{u} , definito tra 0 e \tilde{t} , tale che, detto $\tilde{x}_{\rm F}(t)$ con $0 \le t \le \tilde{t}$ il movimento forzato dello stato generato da \tilde{u} , risulti $\tilde{x}_{\rm F}(t) = \tilde{x}$.

Un sistema i cui stati siano tutti raggiungibili si dice **completamente raggiungibile**; la raggiungibilità dipende solo dalle matrici A e B.

Matrice di raggiungibilità

$$M_{\mathrm{R}} = \begin{bmatrix} B & AB & A^2B & \dots & A^{n-1}B \end{bmatrix} \in \mathbb{R}^{n \times m}$$

Teorema 1.11. Il sistema è completamente raggiungibile se e solo se il rango della matrice di raggiungibilità è pari a n, ossia: $rg(M_R) = n$

Osservabilità

Definizione 1.7. Uno stato $\tilde{x} \neq 0$ del sistema si dice **non osservabile** se, qualunque sia $\tilde{t} > 0$ finito, detto $\tilde{y}_{L}(t)$ con $\tilde{t} > 0$ il movimento libero dell'uscita generato da \tilde{x} , risulti $\tilde{y}_{L}(t) = 0$ con $0 \leq t \leq \tilde{t}$.

Un sistema privo di stati non osservabili si dice **completamente osservabile**; l'osservabilità è influenzata dalle matrici A e C..

Matrice di osservabilità

$$M_{\mathrm{O}} = \begin{bmatrix} C' & A'C' & A'^2C' & \dots & A'^{n-1}C' \end{bmatrix} \in \mathbb{R}^{n \times pn}$$

Teorema 1.12. Il sistema è completamente osservabile se e solo se il rango della matrice di osservabilità è pari a n, ossia: $rg(M_O) = n$

Scomposizione canonica

Figura 1: Scomposizione canonica di un sistema lineare

Un sistema completamente raggiungibile e osservabile si dice essere in **forma minima** in quanto non è possibile adoperare un numero di variabili di stato minore del suo ordine per descrivere la relazione tra ingresso e uscita che esso stabilisce.

Figura 2: Sistema in forma minima

Teorema 1.13. Si assuma che il sistema sia in forma minima, allora esso è esternamente stabile se e solo se è asintoticamente stabile.

■ Risposta in frequenza

• Trasformata di Laplace

Definizione 2.1. Sia data una funzione complessa f della variabile reale t, sia poi

$$s = \sigma + j\omega \in \mathbb{C}$$

una variabile complessa con parte reale σ e coefficiente dell'unitá immaginaria j pari a ω . Se la funzione

$$F(s) = \int_{-\infty}^{+\infty} f(t) \cdot e^{-st} dt$$

esiste almeno per qualche valore di s, essa si dice **trasformata di Laplace** di f(t).

$$F(s) = \mathcal{L}[f(t)]$$
 $f(t) = \mathcal{L}^{-1}[F(s)]$

Proprietá

• <u>Linearitá</u>. Si abbiano due funzioni $f \in g$. Allora $\forall \alpha, \beta \in \mathbb{C}$

$$\mathcal{L}\left[\alpha f(t) + \beta g(t)\right] = \alpha F(s) + \beta G(s)$$

• Traslazione nel dominio del tempo. Per qualunque $\tau > 0$ si consideri la funzione $\tilde{f}(t) = \overline{f(t-\tau)}$ ottenuta traslando in avanti la funzione f(t), supposta nulla per tempi negativi, di un tempo pari a τ . Si trova

$$\mathcal{L}\left[\tilde{f}(t)\right] = \mathcal{L}\left[f(t-\tau)\right] = e^{-\tau s} \cdot F(s)$$

• Derivazione nel dominio del tempo. Si supponga che la funzione f(t) sia derivabile nel senso delle funzioni generalizzate per tutti i $t \ge 0$ e almeno dotata di derivata sinistra (per t > 0) e destra. Risulta allora

$$\mathcal{L}\left[\dot{f}(t)\right] = s \cdot F(s) - f(0)$$

• Integrazione nel dominio del tempo. Si supponga che la funzione f(t) sia integrabile tra $0 e + \infty$. Allora

$$\mathcal{L}\left[\int_0^t f(\tau) \ d\tau\right] = \frac{F(s)}{s}$$

Teorema 2.1 (<u>Teorema del valore iniziale</u>). Se una funzione reale f ha trasformata razionale F con grado del denominatore maggiore del grado del numeratore, allora

$$f(0) = \lim_{s \to +\infty} s \cdot F(s)$$

Se la funzione é discontinua di prima specie in t = 0, f(0) si intende come $f(0^+)$.

Teorema 2.2 (Teorema del valore finale). Se una funzione reale f ha trasformata razionale F con grado del denominatore maggiore del grado del numeratore e poli nulli o a parte reale negativa, allora

$$\lim_{tto+\infty} f(t) = \lim_{s \to 0} s \cdot F(s)$$

Tabella delle trasformate

f(t)	F(s)
imp(t)	1
sca(t)	$\frac{1}{s}$
ramp(t)	$\frac{1}{s^2}$
$e^{\alpha t} \cdot sca(t)$	$\frac{1}{s-\alpha}$
$t \cdot e^{\alpha t} \cdot sca(t)$	$\frac{1}{(s-\alpha)^2}$
$sen(\omega t) \cdot sca(t)$	$\frac{\omega}{s^2 + \omega^2}$

f(t)	F(s)
$t \cdot sen(\omega t) \cdot sca(t)$	$rac{2\omega s}{(s^2+\omega^2)^2}$
$cos(\omega t) \cdot sca(t)$	$\frac{s}{s^2 + \omega^2}$
$t \cdot cos(\omega t) \cdot sca(t)$	$\frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}$
$e^{\sigma t} \cdot sen(\omega t) \cdot sca(t)$	$\frac{\omega}{(s-\sigma)^2+\omega^2}$
$t \cdot e^{\sigma t} \cdot sen(\omega t) \cdot sca(t)$	$\frac{2\omega(s-\sigma)}{\left[(s-\sigma)^2+\omega^2\right]^2}$
$e^{\sigma t} \cdot cos(\omega t) \cdot sca(t)$	$\frac{s-\sigma}{(s-\sigma)^2+\omega^2}$

• Funzione di trasferimento

$$\begin{cases} \mathcal{L}[\dot{x}(t)] = s \cdot X(s) - x(0) = \dot{A(X)}(s) + BU(s) \\ \mathcal{L}[y(t)] = Y(s) = CX(s) + DU(s) \end{cases}$$

È utile studiare i sistemi dinamici nel dominio della trasformata solo per i sistemi LTI.

$$\begin{cases} X(s) = (sI - A)^{-1}BU(s) + (sI - A)^{-1} \cdot x(0) \\ Y(s) = (C(sI - A)^{-1}B + D) \cdot U(s) + C(sI - A)^{-1} \cdot x(0) \end{cases}$$

Le espressioni trovate sono nuovamente dovute alla somma di due termini: il primo rappresenta il movimento forzato, il secondo il movimento libero. Questo sistema fornisce le stesse informazioni dalla formula di Lagrange: decido quindi di chiamare funzione di trasferimento

$$G(s) = C(sI - A)^{-1}B + D$$

Considero quindi solo il movimento forzato e la **relazione ingresso-uscita**, cioé la parte del sistema *raggiungibile e osservabile*. Ció non é un problema se il sistema é asintoticamente stabile o anche se solo le parti del sistema che non considero lo sono. Piú gli autovalori sono piccoli in valore assoluto, piú lento é lo smorzamento e quindi sará piú complicato trascurare queste parti del sistema.

La funzione di trasferimento \acute{e} invariante per sistemi equivalenti: a due sistemi lineari tra loro equivalenti corrisponde dunque la stessa funzione di trasferimento G(s).

Risposta impulsiva dell'uscita

$$u(t) = imp(t) \Rightarrow U(s) = \mathcal{L}[imp(t)] = 1$$

 $Y(s) = G(s) \cdot U(s) = G(s) = \mathcal{L}[g_y(t)]$

Formule generali delle funzioni di trasferimento

$$G(s) = \frac{N_{G}(s)}{D_{G}(s)} = \frac{\beta_{\nu}s^{\nu} + \beta_{\nu-1}s^{\nu-1} + \dots + \beta_{1}s + \beta_{0}}{\alpha_{\nu}s^{\nu} + \alpha_{\nu-1}s^{\nu-1} + \dots + \alpha_{1}s + \alpha_{0}} \qquad \nu \le n$$

In particolare se $\beta_{\nu}=0 \implies D=0$ sistema strettamente proprio Generalmente si considererá $\alpha_{\nu}=1$

Per **grado relativo** si intende la differenza tra il grado del denominatore e quello del numeratore. Le radici del numeratore sono dette **zeri** di G(s), mentre le radici del denominatore sono dette **poli**; i poli di G(s) sono autovalori di A, e in particolare corrispondono solo a quelli relativi alla parte del sistema raggiungibile e osservabile.

Teorema 2.3. Si assuma che il sistema sia in forma minima. Allora esso é asintoticamente stabile se e solo se i poli di G(s) sono tutti a parte reale negativa, é instabile se almeno un polo ha parte reale positiva o se almeno un polo a parte reale nulla ha molteplicitá maggiore di 1.

$$G(s) = \frac{\rho \cdot \prod_{i} (s + z_{i}) \cdot \prod_{i} (s^{2} + 2\zeta_{i}\alpha_{ni}s + \alpha_{ni}^{2})}{s^{g} \cdot \prod_{i} (s + p_{i}) \cdot \prod_{i} (s^{2} + 2\xi_{i}\omega_{ni}s + \omega_{ni}^{2})} \qquad G(s) = \frac{\mu \cdot \prod_{i} (1 + \tau_{i}s) \cdot \prod_{i} (1 + \frac{2\zeta_{i}s}{\alpha_{ni}} + \frac{s^{2}}{\alpha_{ni}^{2}})}{s^{g} \cdot \prod_{i} (1 + T_{i}s) \cdot \prod_{i} (1 + \frac{2\xi_{i}s}{\alpha_{ni}} + \frac{s^{2}}{\alpha_{ni}^{2}})}$$

 ρ : costante di trasferimento

g: tipo

 μ : guadagno

 $z_i \neq 0$ e $p_i \neq 0$ sono gli zeri e i poli reali non nulli di segno cambiato

 $\alpha_{\rm ni} > 0$ e $\omega_{\rm ni} > 0$ sono dette **pulsazioni naturali** delle coppie di zeri e poli complessi $\zeta_{\rm i}$ e $\xi_{\rm i}$ sono gli **smorzamenti** e sono entrambi in modulo < 1

 $\tau_i \neq 0$ e $T_i \neq 0$ sono le **costanti di tempo**

$$\mu = \frac{\rho \cdot \prod_{\mathbf{i}} z_{\mathbf{i}} \cdot \prod_{\mathbf{i}} \alpha_{\mathbf{n}\mathbf{i}}^2}{\prod_{\mathbf{i}} p_{\mathbf{i}} \cdot \prod_{\mathbf{i}} \omega_{\mathbf{n}\mathbf{i}}^2} \qquad \qquad \rho = \frac{\mu \cdot \prod_{\mathbf{i}} \tau_{\mathbf{i}} \cdot \prod_{\mathbf{i}} \omega_{\mathbf{n}\mathbf{i}}^2}{\prod_{\mathbf{i}} T_{\mathbf{i}} \cdot \prod_{\mathbf{i}} \alpha_{\mathbf{n}\mathbf{i}}^2} \qquad \qquad \tau_{\mathbf{i}} = \frac{1}{z_{\mathbf{i}}} \qquad \qquad T_{\mathbf{i}} = \frac{1}{p_{\mathbf{i}}}$$

Guadaqno

Sia dato un sistema asintoticamente stabile di tipo 0 (ossia con g=0) e con $u(t)=\overline{u}$ per t>0

$$\lim_{t \to +\infty} y(t) = \lim_{s \to 0} s \cdot Y(s) = s \cdot G(s) \frac{\overline{u}}{s} = \mu \overline{u} \qquad \qquad \mu = \frac{\overline{y}}{\overline{u}}$$

Nel caso $g \neq 0$, μ viene chiamato guadagno generalizzato $\mu = \lim_{s \to 0} s^g \cdot G(s)$