Applied Analysis

WANG SIBO September 3, 2022

Contents

Chapter 1.	Metric and Normed Spaces	1
Chapter 2.	Continuous Functions	3
Chapter 3.		5
Chapter 4.		7
Chapter 5.		9
Chapter 6.		11
Chapter 7.		13
Chapter 8.		15
Chapter 9.		17
Chapter 10.		19
Chapter 11.		21
Chapter 12.		23
Chapter 13		25

Metric and Normed Spaces

Exercise 1.1. [Exercise 1.5, Page 30]

Proof. Define

$$f: \mathbb{R}^+ \cup \{0\} \to \mathbb{R}$$

 $x \mapsto \frac{x}{1+x}$

It is obvious that f is an increasing function.

Exercise 1.2. [Exercise 1.6, Page 30]

Proof. Using $\epsilon - \delta$.

Proposition 1.3. Given topology space (X, \mathcal{T}) and $A \subseteq X$, if L(A) is the set of all limit points of A, then L(A) is closed.

Exercise 1.4. [Exercise 1.8, Page 31]

Proof. C is closed by Proposition 1.3. Therefore $\max C = \sup C$ and $\min C = \inf C$.

Because \mathbb{R} is complete, for each $n \in \mathbb{N}$ there exists $M(n) \in \mathbb{R}$ such that $M(n) = \sup_{i>n} \{x_i\}$. It is obvious that $M(n) \geq M(n+1)$ and there must exist $M \in \mathbb{R}$ such that $M = \inf_{n \in \mathbb{N}} \{M(n)\}$.

 $\forall c \in C, M(n) \geq c$. Thus $M \geq \max C$.

It suffices to show that $M \leq \max C$. We prove it by contradiction. Suppose that $M > \max C$, then $\exists \varepsilon \in \mathbb{R}^+$ such that $M = \max C + 2\varepsilon$. So $\forall n \in \mathbb{N}, M(n) > \max C + \varepsilon$. So we can construct a bounded subsequence $\{y_n\}$ in $\{x_n\}$ such that $\forall n \in \mathbb{N}, \max C + \varepsilon \leq y_n \leq M(1)$. By Bolzano-Weierstrass Theorem[Theorem 1.57, Page 23], there must exist a convergent subsequence $\{z_n\}$ in $\{y_n\}$. Define $z \coloneqq \lim_{n \to +\infty} z_n$, then $z \in \mathbb{R}$ and $z > \max C$, which violates the definition of C. Thus $M \leq \max C$.

Therefore $M = \max C$.

Proposition 1.5. (max-min inequality) For any function

$$f \colon A \times B \to \mathbb{R}$$

 $(a,b) \mapsto f(a,b)$

The following holds:

$$\sup_{a \in A} \inf_{b \in B} f(a, b) \le \inf_{b \in B} \sup_{a \in A} f(a, b)$$

Proof.

$$\forall a \in A, \forall b \in B, \inf_{b \in B} f(a, b) \leq f(a, b)$$

$$\Longrightarrow \forall b \in B, \sup_{a \in A} \inf_{b \in B} f(a, b) \leq \sup_{a \in A} f(a, b)$$

$$\Longrightarrow \sup_{a \in A} \inf_{b \in B} f(a, b) \leq \inf_{b \in B} \sup_{a \in A} f(a, b)$$

Exercise 1.6. [Exercise 1.10, Page 30]

Proof.

$$\begin{aligned} & \operatorname{left} = \limsup_{n \to +\infty} (\inf_{\alpha \in A} x_{n,\alpha}) \\ & = \inf_{i \in \mathbb{N}} \sup_{n > i} \{\inf_{\alpha \in A} x_{n,\alpha}\} \\ & = \inf_{i \in \mathbb{N}} \sup_{n > i} \{x_{n,\alpha}\}_{n > i} \\ & \leq \inf_{i \in \mathbb{N}} \inf_{n > i} \sup_{\alpha \in A} \{x_{n,\alpha}\}_{n > i} \\ & \leq \inf_{i \in \mathbb{N}} \inf_{\alpha \in A} \sup_{n > i} \{x_{n,\alpha}\}_{n > i} \\ & = \inf_{\alpha \in A} \inf_{i \in \mathbb{N}} \sup_{n > i} \{x_{n,\alpha}\}_{n > i} \\ & = \inf_{\alpha \in A} \inf_{i \in \mathbb{N}} \sup_{n > i} \{x_{n,\alpha}\} \\ & = \inf_{\alpha \in A} (\limsup_{n \to +\infty} x_{n,\alpha}) \\ & = \operatorname{right} \end{aligned}$$

Continuous Functions