Week 7.2 Assignment

- Joshua Burden
- Bellevue University
- DSC550 Data Mining
- Dr. Brett Werner
- 10/16/2022

Part 1: PCA and Variance Threshold in a Linear Regression

1. Import the housing data as a data frame and ensure that the data is loaded properly.

```
import pandas as pd
In [ ]:
         from sklearn.model selection import train test split
         from sklearn.preprocessing import StandardScaler
         from sklearn.decomposition import PCA
         from sklearn.linear_model import LinearRegression
         from sklearn import metrics
         from sklearn.feature selection import VarianceThreshold
         from sklearn.preprocessing import MinMaxScaler
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.model_selection import train_test_split
         from sklearn.metrics import accuracy_score
         from sklearn.metrics import confusion matrix
         import seaborn as sns
         import matplotlib.pyplot as plt
         from sklearn import tree as t
         from sklearn.feature selection import SelectKBest
         from sklearn.feature selection import chi2
         from numpy import array
In [ ]: df = pd.read_csv('./DATA/train.csv')
         df.head()
Out[ ]:
            Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour
                                                                                              Utilities
         0
            1
                       60
                                  RL
                                             65.0
                                                     8450
                                                            Pave
                                                                  NaN
                                                                             Reg
                                                                                          Lvl
                                                                                                AllPub
            2
                       20
                                  RL
                                             80.0
                                                     9600
                                                                                          Lvl
                                                                                                AllPub
         1
                                                            Pave
                                                                  NaN
                                                                             Reg
                                                                                               AllPub
         2
            3
                       60
                                  RL
                                             68.0
                                                    11250
                                                                             IR1
                                                                                          Lvl
                                                            Pave
                                                                  NaN
                                  RL
                                                                                                AllPub
         3
            4
                       70
                                             60.0
                                                     9550
                                                                  NaN
                                                                             IR1
                                                                                          Lvl
                                                            Pave
                       60
                                  RL
                                                    14260
                                                                             IR1
                                                                                          Lvl
                                                                                               AllPub
            5
                                             84.0
                                                            Pave
                                                                  NaN
        5 rows × 81 columns
```

2. Drop the "Id" column and any features that are missing more than 40% of their values.

Out[]:		column_name	percent_missing		
	MSSubClass	MSSubClass	0.0		
	MSZoning	MSZoning	0.0		
	LotFrontage	LotFrontage	0.0		
	LotArea	LotArea	0.0		
	Street	Street	0.0		
	•••				
	MoSold	MoSold	0.0		
	YrSold	YrSold	0.0		
	SaleType	SaleType	0.0		
	SaleCondition	SaleCondition	0.0		

SalePrice

80 rows × 2 columns

SalePrice

```
In []: # Drop the "Id" column
    df = df.drop(['Id'], axis=1)

# Validate the transformation was successful
    df.head()
```

0.0

Out[]:		MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	Lc
	0	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	AllPub	
	1	20	RL	80.0	9600	Pave	NaN	Reg	Lvl	AllPub	
	2	60	RL	68.0	11250	Pave	NaN	IR1	Lvl	AllPub	
	3	70	RL	60.0	9550	Pave	NaN	IR1	Lvl	AllPub	
	4	60	RL	84.0	14260	Pave	NaN	IR1	Lvl	AllPub	

5 rows × 80 columns

```
In []: # Establish a variable for the 40% threshold
    perc = 40.0

# Calculate the minimum non NaN values needed to remain in the dataset
    min_count = int(((100-perc)/100)*df.shape[0])

# Remove columsn with more than 40% NaN
    df = df.dropna(axis=1, thresh=min_count)

# Validate the transformation was successful
    df.head()
```

Out[]:		MSSubClass	MSZoning	LotFrontage	LotArea	Street	LotShape	LandContour	Utilities	LotConfi
	0	60	RL	65.0	8450	Pave	Reg	Lvl	AllPub	Inside
	1	20	RL	80.0	9600	Pave	Reg	Lvl	AllPub	FR
	2	60	RL	68.0	11250	Pave	IR1	Lvl	AllPub	Inside
	3	70	RL	60.0	9550	Pave	IR1	Lvl	AllPub	Corne
	4	60	RL	84.0	14260	Pave	IR1	Lvl	AllPub	FR

5 rows × 75 columns

```
In []: df.shape
Out[]: (1460, 80)
```

3. For numerical columns, fill any missing data with the median value

```
In [ ]: numerical_columns = df.select_dtypes(include=['number']).columns

for column in numerical_columns:
    median = df[column].median()
    df[column] = df[column].fillna(median)
```

4. For categorical columns, fill in any missing data with the most common value (mode).

```
In [ ]: cols = df.columns
    categorical_columns = list(set(cols)-set(numerical_columns))
    for column in categorical_columns:
        mode = df[column].mode()
        df[column] = df[column].fillna(mode)
```

5. Convert the categorical columns to dummy variables.

```
In [ ]: df_dummies = pd.get_dummies(df, columns=categorical_columns)
    df_dummies.head()
```

Out[]:		MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt	YearRemodAdd	MasVnrA
	0	60	65.0	8450	7	5	2003	2003	19
	1	20	80.0	9600	6	8	1976	1976	
	2	60	68.0	11250	7	5	2001	2002	16
	3	70	60.0	9550	7	5	1915	1970	
	4	60	84.0	14260	8	5	2000	2000	35
5 rows × 289 columns									
									>

6. Split the data into a training and test set, where the SalePrice column is the target.

```
In [ ]: # Create x & y arrays
x = df_dummies.drop('SalePrice', axis=1)
y = df_dummies['SalePrice']

# Create training & test datasets
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2)
```

7. Run a linear regression and report the R2-value and RMSE on the test set.

```
In []: # Create a model
    model = LinearRegression()
    model.fit(x_train, y_train)

# Build predictions
    test_predictions = model.predict(x_test)

# Calculate metrics
    print('Test Metrics:')
    print('R2', metrics.r2_score(y_test, test_predictions))
    print('RMSE', metrics.mean_squared_error(y_test, test_predictions, squared=False))

Test Metrics:
    R2 0.7336775561011084
    RMSE 37216.40898473487
```

8. Fit and transform the training features with a PCA so that 90% of the variance is retained (see section 9.1 in the Machine Learning with Python Cookbook).

```
In [ ]: scaler = StandardScaler()
    x_train_scaled = scaler.fit_transform(x_train)
    pca = PCA(n_components=0.9, whiten=True)
    x_train_pca = pca.fit_transform(x_train_scaled)
```

9. How many features are in the PCA-transformed matrix?

```
In [ ]: x_train_pca.shape
Out[ ]: (1168, 148)
```

There are 140 features

10. Transform but DO NOT fit the test features with the same PCA.

```
In [ ]: x_test_scaled = scaler.transform(x_test)
    x_test_pca = pca.transform(x_test_scaled)
```

11. Repeat step 7 with your PCA transformed data.

```
In []: # Create a model
    model_pca = LinearRegression()
    model_pca.fit(x_train_pca, y_train)

# Build predictions
    test_predictions_pca = model_pca.predict(x_test_pca)

# Calculate metrics
    print('Test Metrics:')
    print('R2', metrics.r2_score(y_test, test_predictions_pca))
    print('RMSE', metrics.mean_squared_error(y_test, test_predictions_pca, squared=False))

Test Metrics:
    R2 0.815661917786432
    RMSE 30962.64934955817
```

12. Take your original training features (from step 6) and apply a min-max scaler to them.

```
In [ ]: minmax = MinMaxScaler()
    x_train_minmax = minmax.fit_transform(x_train)
```

13. Find the min-max scaled features in your training set that have a variance above 0.1 (see Section 10.1 in the Machine Learning with Python Cookbook).

```
In [ ]: thresholder = VarianceThreshold(threshold = 0.1)
    x_train_high_var = thresholder.fit_transform(x_train_minmax)
```

14. Transform but DO NOT fit the test features with the same steps applied in steps 11 and 12.

```
In [ ]: x_test_minmax = minmax.transform(x_test)
    x_test_high_var = thresholder.transform(x_test_minmax)
```

15. Repeat step 7 with the high variance data.

```
In []: # Create a model
    model_high_var = LinearRegression()
    model_high_var.fit(x_train_high_var, y_train)

# Build predictions
    test_predictions_high_var = model_high_var.predict(x_test_high_var)

# Calculate metrics
    print('Test Metrics:')
    print('R2', metrics.r2_score(y_test, test_predictions_high_var))
    print('RMSE', metrics.mean_squared_error(y_test, test_predictions_high_var, squared=Fa

Test Metrics:
    R2 0.6899306944813162
    RMSE 44173.51616075865
```

16. Summarize your findings.

- The PCA transformation allowed the model to significantly reduce the number of features while still maintaining most of the model's performance.
- The High Variance model allowed for an even greater reduction in the number of features in the model, however the model's performance was impacted significantly.

Part 2: Categorical Feature Selection

1. Import the data as a data frame and ensure it is loaded correctly.

```
mdf = pd.read_csv(r'./DATA/mushrooms.csv')
In [ ]:
          mdf.head()
                                                                                                        stalk-
Out[]:
                                                                                                                 stalk-
                                                                     gill-
                                                                              gill-
                                                                                    gill-
                                                                                            gill-
                                                                                                      surface-
                                                                                                                 color-
              class
                                             bruises odor
                                                             attachment spacing
                                                                                           color
                     shape
                                                                                     size
                                                                                                       below-
                                                                                                                above-
                                                                                                          ring
                                                                                                                   ring
          0
                                                                        f
                                                                                               k
                 р
                         Χ
                                   S
                                                   t
                                                          р
                                                                                 C
                                                                                                                     W
                                                                                 C
                                                                        f
          2
                         b
                                                          1
                 е
                                   S
                                         W
                                                   t
                                                                                 C
                                                                                       b
          3
                                          g
                                                   f
                                                          n
                                                                                       b
                                                                                               k ...
          5 rows × 23 columns
```

2. Convert the categorical features (all of them) to dummy variables.

```
mdf class = mdf['class']
In [ ]:
         mdf = mdf.drop('class', axis=1)
         mdf_dummies = pd.get_dummies(mdf)
         mdf_dummies.head()
Out[ ]:
                cap-
                         cap-
                                  сар-
                                           cap-
                                                    cap-
                                                             сар-
                                                                        сар-
                                                                                  cap-
                                                                                            cap-
                                                                                                       сар-
                     shape_c shape_f shape_k shape_s shape_x surface_f surface_g
                                                                                        surface_s surface_y
             shape_b
         0
                   0
                            0
                                     0
                                              0
                                                       0
                                                                1
                                                                          0
                                                                                     0
                                                                                                          0
                   0
                                              0
                                                       0
                                                                          0
         1
                                     0
                                                                                     0
                                                                                                          0
         2
                   1
                            0
                                     0
                                              0
                                                       0
                                                                0
                                                                          0
                                                                                     0
                                                                                               1
                                                                                                          0
         3
                   0
                                              0
                                                       0
                                                                          0
                                                                                               0
                                     0
                                              0
                                                       0
                                                                          0
                                                                                     0
                                                                                                          0
         4
                   0
                                                                1
                                                                                               1
         5 rows × 117 columns
```

3. Split the data into a training and test set.

```
In []: # create variables for x,y
mx = mdf_dummies
my = mdf_class

# Create training & test datasets
mx_train, mx_test, my_train, my_test = train_test_split(mx, my, test_size = 0.2)
```

4. Fit a decision tree classifier on the training set.

```
In [ ]: decisiontree = DecisionTreeClassifier(random_state=0)
# Train model
dt_model = decisiontree.fit(mx_train, my_train)
```

5. Report the accuracy and create a confusion matrix for the model prediction on the test set.

```
In []: # Build predictions
    my_test_pred = dt_model.predict(mx_test)

# Calculate accuracy
    accuracy_score(my_test, my_test_pred)
1.0

# Create confusion matrix
    matrix = confusion_matrix(my_test, my_test_pred)

# Create pandas dataframe
    c_df = pd.DataFrame(matrix)

# Create heatmap
sns.heatmap(c_df, annot=True, cbar=None, cmap="Blues")
```

```
plt.title("Decision Tree Confusion Matrix"), plt.tight_layout()
plt.ylabel("True Class"), plt.xlabel("Predicted Class")
plt.show()
```


6. Create a visualization of the decision tree.

```
In [ ]: # Plot decision tree
plt.figure(figsize=(14,14))

t.plot_tree(dt_model, filled=True, fontsize=10)
plt.show()
```


7. Use a χ 2-statistic selector to pick the five best features for this data (see section 10.4 of the Machine Learning with Python Cookbook).

```
In [ ]: # Select 5 features with highest chi-squared statistics
    chi2_selector = SelectKBest(chi2, k=5)
    features_kbest = chi2_selector.fit_transform(mx_train, my_train)
```

8. Which five features were selected in step 7? Hint: Use the get_support function.

```
In [ ]: # Get all features
    features = array(mx_train.columns)

# Get selected features
    filter = chi2_selector.get_support()
```

```
# Print Features
print(features[filter])

['odor_f' 'odor_n' 'gill-color_b' 'stalk-surface-above-ring_k'
    'stalk-surface-below-ring k']
```

9. Repeat steps 4 and 5 with the five best features selected in step 7.

```
In [ ]: # Creat object
        decisiontree_5 = DecisionTreeClassifier(random_state=0)
        # Train model
        dt 5 model = decisiontree 5.fit(features kbest, my train)
        # Fit test data
        dt_5_test = chi2_selector.transform(mx_test)
        # Build predictions
        dt_5_test_pred = dt_5_model.predict(dt_5_test)
        # Calculate accuracy
        accuracy_score(my_test, dt_5_test_pred)
        0.9273846153846154
Out[]:
        # Create confusion matrix
In [ ]:
        dt_5_matrix = confusion_matrix(my_test, dt_5_test_pred)
        # Create pandas dataframe
        c_dt5 = pd.DataFrame(dt_5_matrix)
        # Create heatmap
        sns.heatmap(c_dt5, annot=True, cbar=None, cmap="Blues")
        plt.title("Five Best Features Confusion Matrix"), plt.tight_layout()
        plt.ylabel("True Class"), plt.xlabel("Predicted Class")
        plt.show()
```


10. Summarize your findings.

Using only the five best features allowed us to significantly reduce our dataset while only losing \sim 7% accuracy