

Lógica, teoría de números y conjuntos

Taller Nash #3

- 1. Considere la proposición: "Dados dos enteros hay uno menor o igual del otro".
 - a) Simbolice la proposición usando cuantificadores y letras indeterminadas.
 - b) Escriba la negación de la proposición de tal manera que la negación quede en el predicado y no en los cuantificadores.
- 2. Considere las proposiciones: "Todos los estudiantes de lógica aprobarán algún parcial" y "Algún estudiante de lógica aprobará todos los parciales".
 - a) Simbolice las proposiciones usando cuantificadores y letras indeterminadas.
 - b) Escriba la negación de las proposiciones de tal manera que la negación quede en el predicado y no en los cuantificadores.
- 3. Demuestre que $\mathcal{P}(A) \subseteq \mathcal{P}(B) \iff A \subseteq B$.
- 4. Sean A y B dos conjuntos. Si

$$|A| = 10,$$
 $|A \cup B| = 20,$ y $|A \cap B| = 3,$

encuentre |B|.

- 5. Demuestre o refute:
 - a) Si $A \cup B \neq \emptyset$ entonces $A \neq \emptyset$ y $B \neq \emptyset$.
 - b) Si $A \setminus B = A \setminus C$ entonces $B = C^1$.
 - c) $A \subseteq B$ si y sólo si $A \setminus B = \emptyset$.
- 6. Sean A, B y C conjuntos. Demuestre o refute: si $|A \times B| \leq |A \times C|$ entonces $B \subseteq C$.

 $^{^1}$ Acuerdése que $A\setminus B,$ como A-B, indica la diferencia entre el conjunto A y el conjunto B.