

Forouzan

第13章

有线局域网: 以太网

本章主要内容

- pIEEEE标准
- p标准以太网
- p标准的变化
- p快速以太网
- p千兆以太网

13-1 IEEEE标准

p局域网有多种类型,如以太网、令牌环网、令牌总线、FDDI和ATM LAN等,某些技术只生存了一段时间,如今最普遍应用的是以太网:

p1985年,IEEE(Institute of Electrical and Electronics Engineers,电气与电子工程师学会)开始了一个802项目(Project 802),以设定标准使得不同制造商生产的设备之间能相互通信;

p项目802并不旨在代替OSI或者因特网模式,相反,它说明了大多数局域网协议的物理层和数据链路层的功能。

图13.1 局域网的IEEE标准

LLC: Logical link control
MAC: Media access control

Upper layers	Upper layers					
Data link layer	LLC					
	Ethernet MAC	Token Ring MAC	Token Bus MAC	•••		
Physical layer	Ethernet physical layers (several)	Token Ring physical layer	Token Bus physical layer	•••		
Transmission medium	Transmission medium					
OSI or Internet model	IEEE Standard					

逻辑链路控制层LLC

p在IEEE 802中,流量控制、差错控制和部分成帧的职能都被集中到LLC子层中(LLC和MAC两者都进行成帧处理);

pLLC为所有IEEE局域网提供一个单一的数据链路控制协议,它不同于MAC子层,后者为不同的局域网提供不同的协议;

p一个单一的LLC协议能使不同的局域网之间进行相互 交换,因为它使MAC子层变得透明

图13.2 HDLC帧与LLC及MAC帧的比较

pLLC PDU中的控制字段用于流量控制和差错控制,协议的其他字段被移入到MAC子层中(P265);

pHDLC中定义的帧被分为LLC子层的PDU和MAC子层的一个帧

LLC的需求和MAC层

pLLC的目的是为需要流量控制和差错控制的上层协议提供这些服务,然而,多数上层协议诸如IP(第20章)并不需要LLC的服务;

pIEEE 802创造了介质访问控制层为每个局域网定义特定的访问方法;例如,CSMA/CD是以太网介质访问方法,令牌传递是令牌环和令牌总线局域网的介质访问方法:

pMAC子层包含了一些独特的模块,每个模块都为相应的局域网协议定义了访问方法和成帧的格式。

物理层

p物理层取决于网络的实现和使用的物理介质; pIEEE为每个局域网的实现定义了详细的规范;例如, 在标准以太网中虽然只有一个MAC子层,但是每种以 太网的实现都有不同的物理层规范

13-2 标准以太网

p以太网最初由施乐(Xerox)公司的Palo Alto研究中心(PARC)于1976年创建的;

p以太网经历了四代的发展:标准或传统以太网(Standard Ethernet, 10Mbps),快速以太网(Fast Ethernet, 100Mbps),千兆以太网(Gigabit Ethernet, 1Gbps)和10千兆以太网(Ten-Gigabit Ethernet, 10Gbps)

图13.3 以太网的四代发展

图13.4 IEEE 802.3的MAC帧

前导符: 0和1交替出现的56位

- p包括7个字段:前导符、SFD、DA、SA、协议数据单元PDU的长度/类型、上层数据和CRC;
- p对接收到的帧,以太网不提供确认的任何机制,所以将它称做不可靠的介质,确认必须在其高层完成。

802.3 MAC帧的字段

- p前导符:7个字节(56位),1和0交替出现,通知接收系统有帧的到来并使其与输入的时钟同步,56位模式容许站点在帧的开始可以错过(miss)一些位;实际上前导符(preamble)是在物理层上加进去的,并不是帧的一部分;
- p起始帧分界符(SFD): 10101011, 说明帧的开始;
- p目的地址(DA):6个字节,包含目的站点或接收该分组的站点的物理地址;
- p源地址(SA):6个字节,包含分组的发送方的物理地址;
- p长度/类型:最初的以太网(Ethernet-II,商业广泛使用)作为类型字段来定义使用MAC帧的上层协议,IEEE标准使用它作为长度字段来定义数据字段的字节数;
- p数据:上一层协议封装的数据,最少46字节,最大1500字节;
- pCRC: 差错检测信息,CRC-32

Ethernet-II帧格式

帧类型:

0x0800 — IP数据报

0x0806 — ARP请求/响应

0x8035 — RARP请求/响应

图13.5 802.3 MAC帧的最小长度和最大长度

帧的长度:

最小值: 64字节 (512位)

最大值: 1518字节(12144位)

寻址

p以太网每个站点都有网卡,网卡安在站点内部并给该站点提供一个6字节的物理地址;

p通常用十六进制表示法,字节间以冒号断开;

pQ1: 如何查看自己网卡的物理地址?

pQ2: 如何修改自己网卡的物理地址?

06:01:02:01:2C:4B

6 bytes = 12 hex digits = 48 bits

单播地址、多播地址和广播地址

- p源地址永远是一个单播地址——帧只来自一个站点,然而目的地址可以是单播地址、多播地址或广播地址;
- p如果目的地址字段第一个字节的最低位是0,是单播地址,否则便是多播地址;
- p单播目的地址限定了只有一个接收方,发送方和接收方一对一;多播目的地址定义了一组地址,发送方和接收方之间的关系是一对多;
- p广播地址是多播地址的一个特例:接收方是整个局域网中的所有站点,地址为全1。

第一个字节的最低位决定了物理地址的类型;如果该位是0,地址是单播地址,否则便是多播地址。

广播目的地址是多播地址的一个特例,它的所有位都是1。

例13.1

确定下列目的MAC地址的类型:

a. 4A:30:10:21:10:1A b. 47:20:1B:2E:08:EE

c. FF:FF:FF:FF:FF

解:

为了知道地址的类型,我们必须看左边第二个十六进制数字。如果是偶数,那么地址是单播地址;如果是奇数,那么地址是多播地址;如果所有的数字都是F,那么地址是广播地址。因此,得到以下答案:

- a. 单播地址,(A)16 = (1010)2
- b. 组播地址, (7)16 = (0111)2
- c. 广播地址。

写出MAC地址 47:20:1B:2E:08:EE 在线路上的发送次序。

解:

地址被一个字节一个字节地从左向右发送,每个字节是一位一位地从右向左发送的,如下所示:

-

11100010 00000100 11011000 01110100 00010000 01110111

p访问方法:标准以太网使用1-持续的CSMA/CD方法(结合二进制指数退避策略);

p时隙:在以太网络中,一个帧从最大长度网络的一端到另一端之间往返所需的时间(准确的说应该是帧的第一个比特,即往返传播时间)加上发送干扰序列所需的时间(传输时间还是传播时间?)称为时隙;p以太网的时隙以位来定义,它是一个站点发送512位所需的时间,这就意味着实际的时隙取决于数据速率,对于传统的10Mbps以太网来说是51.2us;

- p时隙必须小于发送方发送最小的512位帧所需的时间,发送方必须在它发送整个帧之前意识到冲突的存在,否则,就太迟了;
- p发送方只需要在发送第一个512位的时间内"听"是否有冲突发生就可以了(?);
- p如果有站点不遵循CSMA/CD协议,则假设不成立

时隙和最大网络长度

- p时隙和最大网络长度(冲突域)之间有关联,这取决于在一个特定的介质中信号的传播速度;
- p在大多数传输介质中,信号以2×108m/s传播(是在空气中传播速度的2/3);
- p对传统的以太网而言,计算如下:

最大长度 = 传播速度 × (时隙/2)

最大长度 = $(2 \times 10^8) \times (51.2 \times 10^{-6}/2) = 5120$ m

p实际需要考虑中继器和接口的延迟,及发送干扰序列所需的时间,这些将传统以太网的最大长度减少为2500米,仅仅是理论上的48%(最大长度=2500米)。

图13.8 物理层-标准以太网的分类

图13.9 标准以太网实现中的编码

- p使用10Mbps的数字信号(基带);在发送方,使用曼彻斯特方案将数据转换成数字信号,在接收方,信号又被转译成曼彻斯特码并被解码成数据;
- p曼彻斯特编码是自我同步的,在每一位的间隙提供一次转换

图13.10 10Base5: 粗缆以太网

- p第一个以太网规范,使用一个有外部收发器的总线拓扑,并通过一个外接口与粗轴电缆相连接;
- p收发器负责传输、接收和检测冲突,收发器通过收发器电缆与站点连接,收发器电缆能为发送和接收提供独立的路径,意味着冲突只会发生在粗轴电缆中;
- p粗轴电缆长度不能超过500米,否则,便会出现信号的过分衰减;如果长度超过500米,最多分五个分段,使用中继器连接。

图13.11 10Base2: 细缆以太网

p第二个以太网规范,使用总线拓扑,电缆细且电缆可以被弯曲以离站点很近,收发器通常是网卡的一部分,被安装在站点内部; p注意:冲突发生在细轴电缆中;

p比10Base5的成本效益高, 因为细轴电缆便宜,且T型接口比分接头便宜,安装也简单; 因为高度衰减,分段长度不超过185米 (接近200米)

图13.12 10Base-T: 双绞线以太网

- p第三个以太网规范,或称为双绞线以太网,星型拓扑结构,站点通过双绞线连接到一个网络集线器上;
- p双绞线在站点和网络集线器之间形成了两条路径(一条发送一条接收),冲突发生在网络集线器中;
- p双绞线的最大长度是100米

图13.13 10Base-F: 光纤以太网

p使用一种星型拓扑将站点与网络集线器相连接,站点使用两条 光纤与网络集线器相连接

表13.1 标准以太网实现的总结

Characteristics	10Base5	10Base2	10Base-T	10Base-F
Media	Thick coaxial cable	Thin coaxial cable	2 UTP	2 Fiber
Maximum length	500 m	185 m	100 m	2000 m
Line encoding	Manchester	Manchester	Manchester	Manchester

13-3 标准的变化

p10Mbps标准以太网在运行更高的传输速率之前已经 经历了一些变化,这些变化事实上为以太网的发展开 辟了一条新路,使得与其它高传输速率的局域网相比, 以太网变得更有竞争力。

桥接以太网

p以太网发展的第一步是将局域网用网桥(bridge)分割;

p在以太局域网中, 网桥有两个作用: 提高带宽和分割冲突域。

图13.14 带宽共享

p如果一个以上站点使用网络,能力就被共享了;

p例如,如果有两个站点要发送大量的帧,它们可能会轮流使用;当一个站点发送时,另一个站点停止发送,可以认为平均每个站点发送的速度是5Mbps。

a. First station

b. Second station

图13.15 一个带有网桥的网络和不带网桥的网络

- p网桥将网络分成两个或更多的网络,基于带宽,每个网络都是独立的;
- p例如一个有12个站点的网络被分成两个网络,每个网络有6个站点,每个网络的能力都是10Mbps; 10Mbps的能力在每个网络中被6个站点(实际上7个)共享,而并非12个。

a. Without bridging

b. With bridging

图13.16 一个带有网桥和不带有网桥网络的冲突域

p另一个优势是分割冲突域,有桥接时冲突域会变得更小且冲突概率大幅度减少;如果没有桥接,则有12个站点竞争访问介质,有了桥接之后,就只有3个站点竞争访问。

a. Without bridging

13.35

图13.17 交换式以太网

- p桥接LAN的概念进一步扩展为交换LAN;
- p将网络分割成N个网络,N是LAN上站点的个数,带宽仅由站点和交换机共享;
- p冲突域也就分为N个;
- p一个2层交换机(switch)就是一个N个端口的网桥,该网桥带有允许快速处理分组的附加功能;
- p从桥接以太网到 交换式以太网是一 个大进步。

图13.18 全双工交换式以太网

p10Base5和10Base2的一个局限就是它们的通信是半双工的;

p全双工模式将每一个域的能力 从10Mbps增加到20Mbps;

p在站点与交换机之间使用两条 [链路;

P不需要CSMA/CD方法,每个站点都通过两条分离的链路连接到交换机,每个站点或交换机都能够独立地发送或接收而不必考虑冲突;在站点和交换机之间的每一条链路都是点到点的专用链路,它们不再需要载波检测,也不再需要冲突检测

问题?

p组建局域网可以用集线器,也可以用二层交换机:

Q1: 用交换机连接的一组工作站属于同一个冲突域吗?

Q2: 用集线器连接的一组工作站属于同一个冲突域吗?

13-4 快速以太网

- p设计快速以太网是为了与诸如FDDI或光纤通道等的局域网协议相竞争;
- pIEEE在名为802.3u下创造了快速以太网;
- p快速以太网是标准以太网的后向兼容,但是传输速度是100Mbps,快了10倍;
- p快速以太网的目标是:
 - Ø1. 将数据速率升级为100Mbps;
 - Ø2. 使它能与标准以太网兼容;
 - Ø3. 保留48位地址;
 - Ø4. 保留相同的帧格式;
 - Ø5. 保留帧长度的最大值和最小值。

MAC子层

- p放弃总线拓扑而只保留星型拓扑;
- p在星型拓扑中,有两种选择: 半双工和全双工; 半双工中站点通过集线器连接,全双工中通过每个端口都带有缓冲区的交换机来进行连接;
- p对于半双工说,访问方法是相同的(CSMA/CD);对于全双工快速以太网而言,CSMA/CD是不必要的,然而,在实现时还是保留了CSMA/CD,以便于和标准以太网向后兼容;
- p快速以太网增加了一个新特性:自动协商-autonegotiation,允许两个设备协商它们的运行模式(半/全双工)和传输速率(10/100M自适应)

图13.19 快速以太网物理拓扑

p如果只有两个站点,可以点到点;三个或三个以上的站点就需要中间有一个集线器或交换机来连接,呈星型拓扑结构。

a. Point-to-point

b. Star

图13.20 快速以太网的物理层实现-两线或四线

图13.21 快速以太网实现的编码

pMLT-3有同步问 题(长0时), 4B/5B块编码实现位 的同步并阻止了一 长串0和1情形; pNRZ-I对于一长 串的0或1有位同步 问题, 4B/5B解决; p100Base-T4用4条 (或对) 双绞线, 发送和接收都用三 对,故两对是双向 传输

表13.2 快速以太网实现的总结

Characteristics	100Base-TX	100Base-FX	100Base-T4
Media	Cat 5 UTP or STP	Fiber	Cat 4 UTP
Number of wires	2	2	4
Maximum length	100 m	100 m	100 m
Block encoding	4B/5B	4B/5B	
Line encoding	MLT-3	NRZ-I	8B6T

13-5 千兆以太网

- p对传输速度更高的需求使得千兆以太网(1000 Mbps)应运而生,IEEE 802.3z;
- p设计目标:
 - Ø1. 将数据速率升级到1 千兆。
 - Ø2. 使其与标准以太网或快速以太网相兼容。
 - Ø3. 使用相同的48 位地址。
 - Ø4. 使用相同的帧格式。
 - Ø5. 保留帧长度的最大值和最小值。
 - Ø6. 支持快速以太网中定义的自动协商。

MAC子层

- p千兆以太网在介质访问方面有两个独特的方法: 半 双工或全双工方法;
- p几乎所有的千兆以太网的实现都采用了全双工方法

全双工模式

- p全双工模式中,有一个中心交换机将所有的电脑或其他交换机连接起来;
- p每个交换机的每个进入端口都有缓存区,使数据在传输前得以存储,不存在冲突,CSMA/CD是不必要的;
- p缺少冲突意味着电缆长度的最大值取决于电缆中信号的衰减程度,而不是冲突检测过程。

半双工模式

- p千兆以太网也使用半双工模式,但很少用到;
- p交换机被集线器替代,集线器作为普通电缆的一部分便可能有冲突产生;
- p半双工方法使用CSMA/CD,网络的最大长度完全取决于帧大小的最小值,定义了三种方法:
 - Ø传统方法:保留与传统以太网相同的帧长度的最小值(512位):
 - Ø载波扩展方法: 帧长度的最小值是512字节(4096位);
 - Ø帧突发方法:为了提高效率,发送成倍的帧而不是给每个帧增加扩展;为了使成倍的帧看上去像一个帧,在帧间加以填充

图13.22 千兆以太网的拓扑结构

b. Star

c. Two stars

d. Hierarchy of stars

图13.23 千兆以太网的实现-两线或四线

图13.24 千兆以太网实现中的编码

表13.3 千兆以太网实现的总结

Characteristics	1000Base-SX	1000Base-LX	1000Base-CX	1000Base-T
Media	Fiber short-wave	Fiber long-wave	STP	Cat 5 UTP
Number of wires	2	2	2	4
Maximum length	550 m	5000 m	25 m	100 m
Block encoding	8B/10B	8B/10B	8B/10B	
Line encoding	NRZ	NRZ	NRZ	4D-PAM5

10千兆以太网

PIEEE 802.3ae;

p只在全双工模式下运行,不存在竞争,也不使用CSMA/CD; p10千兆以太网物理层的设计目标是在长距离内使用光纤,最常见的三种实现是: 10GBase-S, 10GBase-L, 10GBase-E

Characteristics	10GBase-S	10GBase-L	10GBase-E
Media	Short-wave 850-nm multimode	Long-wave 1310-nm single mode	Extended 1550-mm single mode
Maximum length	300 m	10 km	40 km