Assignment 2

EE599- Accelerated Computing Using FPGA

Spring 2020

GitHub Repo Link:

https://github.com/Aditya-

Pharande/EE599 Pharande 2739814954

- Aditya Rajendra Pharande

- USCID: 2739814954

- pharande@usc.edu

Task 1: Barrel Shifter

Barrel shifter take N clock cycles to shift 2^N elements by given shift value. We can shift input elements by 0 to 2^N-1 elements using an implementation similar to below where * elements (2^3) elements can be shifted by 0-7 elemenst

Figure 1: An Example Pipeline Barrel Shifter

I. 16 Elements Barrel Shifter Unit:

Simulation Result:

Given Input in hex = [0f, 0e, 0d, 0c, 0b, 0a, 09, 08, 07, 06,05,04,03,02,01,00]

Active high reset= resets all values to zero

00000010				
0f0e0d0c0b0	090807060	504030201	00	
9				
0000000	0000000000	0000000000	000000	

Two shift signals given back to back clock cycle: First was shift by 9 other was shift by 15(f)

Results gets after 3 clock cycles.

Elaborated Schematics:

Figure 1: Mux 2*1 Schematics

Figure 2: 16 Mux Array in a stage ->

Figure 3: Barrel shifter 16 element (4 stage, each stage with 16muxes)

Synthesized Schematics:

Figure 5: 16 element Barrel Shifter Synthesized Schematics

Figure 6: Mux Array in a stage of shifter

Used Resource Estimation:

1. Slice Logic

Site Type	Used	Fixed	Available	 Util%
Slice LUTs*	256	0	63400	0.40
LUT as Logic	256	0	63400	0.40
LUT as Memory	0	0	19000	0.00
Slice Registers	519	0	126800	0.41
Register as Flip Flop	519	0	126800	0.41
Register as Latch	0	0	126800	0.00
F7 Muxes	0	0	31700	0.00
F8 Muxes	0	0	15850	0.00
1				

4. IO and GT Specific

 	.	.	.	
Site Type	Used	Fixed	Available	Util%
Bonded IOB	262	0	210	124.76
Bonded IPADs	0	0	2	0.00
PHY CONTROL	0	0	6	0.00
PHASER REF	0	0	6	0.00
OUT_FIFO	0	0	24	0.00
IN_FIFO	0	0	24	0.00
IDELAYCTRL	0	0	6	0.00
IBUFDS	0	0	202	0.00
PHASER_OUT/PHASER_OUT_PHY	0	0	24	0.00
PHASER_IN/PHASER_IN_PHY	0	0	24	0.00
IDELAYE2/IDELAYE2_FINEDELAY	0	0	300	0.00
ILOGIC	0	0	210	0.00
OLOGIC	0	0	210	0.00
+	+	+	+	++

7. Primitives

4		
Ref Name	Used	Functional Category
FDRE LUT3 IBUF OBUF BUFG	519 512 134 128	Flop & Latch LUT IO IO Clock
+	- 	++

Timing Estimation:

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	8.293 ns	Worst Hold Slack (WHS):	0.152 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	515	Total Number of Endpoints:	515	Total Number of Endpoints:	520

Power Estimation:

invalid switching activity

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.174 W Design Power Budget: **Not Specified** N/A Power Budget Margin: 25.8°C Junction Temperature: Thermal Margin: 59.2°C (12.8 W) 4.6°C/W Effective &JA: Power supplied to off-chip devices: 0 W Confidence level: Low Launch Power Constraint Advisor to find and fix

II. 64 Element Barrel Shifter Unit:

Elaborated Schematics:

Figure 7: 2*1 Mux Schematics

Figure 8: 64 Element barrel Shifter with 6 stages

Figure 9: 64 Muxes array in given stage ->

Synthesized Schematics:

Figure 11: 2*1 Mux synthesized schematics

Figure 12: Barrel Shifter 64 elements synthesized schematics

Used Resource Estimation:

1. Slice Logic

+	+	+	L	++
	•	•	 Available 	Util%
Slice LUTs*	1538	•		2.43
LUT as Logic	1536	0	63400	2.42
LUT as Memory	2	0	19000	0.01
LUT as Distributed RAM	0	0	I	I I
LUT as Shift Register	2	0	I	I I
Slice Registers	3095	0	126800	2.44
Register as Flip Flop	3095	0	126800	2.44
Register as Latch	0	0	126800	0.00
F7 Muxes	0	0	31700	0.00
F8 Muxes	0	0	15850	0.00

t Warming! The First IIIT court often physical entimizations and full

4. IO and GT Specific

Site Type	Used	Fixed	Available	Util%
+	+	+	+	+
Bonded IOB	1032	0	210	491.43
Bonded IPADs	0	0	1 2	0.00
PHY_CONTROL	0	0	6	0.00
PHASER_REF	0	0	6	0.00
OUT_FIFO	0	0	24	0.00
IN_FIFO	0	0	24	0.00
IDELAYCTRL	0	0	6	0.00
IBUFDS	0	0	202	0.00
PHASER OUT/PHASER OUT PHY	0	0	24	0.00
PHASER IN/PHASER IN PHY	0	0	24	0.00
IDELAYE2/IDELAYE2_FINEDELAY	0	0	300	0.00
ILOGIC	0	0	210	0.00
OLOGIC	0	0	210	0.00

Primitives

+-		+-		+-	+
1	Ref Name		Used		Functional Category
+-		+-		+-	+
1	FDRE		3095		Flop & Latch
I	LUT3		3072		LUT
I	IBUF		520		IO
	OBUF		512		IO
	SRL16E		2		Distributed Memory
	BUFG		1		Clock
+-		+-		-+-	+

Timing Estimation:

Design Timing Summary

ир		Hold		Pulse Width	
Worst Negative Slack (WNS):	8.288 ns	Worst Hold Slack (WHS):	0.079 ns	Worst Pulse Width Slack (WPWS):	4.020 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	3085	Total Number of Endpoints:	3085	Total Number of Endpoints:	3098
l user specified timing constra	ints are me	et.			

Power Estimation:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.486 W Design Power Budget: **Not Specified** Power Budget Margin: N/A Junction Temperature: 27.2°C Thermal Margin: 57.8°C (12.5 W) Effective &JA: 4.6°C/W Power supplied to off-chip devices: 0 W Confidence level: Launch Power Constraint Advisor to find and fix invalid switching activity

Task 2: Systolic Array for Dense Matrix-Matrix Multiplication.

The Systolic Architecture consists of an array of processing elements, where data flows between neighboring elements, synchronously, from different directions. Processing element takes data from Top, Left, and output the results to Right, Bottom. Processing Unit for Matrix multiplication is Multiplier and Accumulator unit. Below diagram shows 3*3 matrix multiplication systolic array. The matrix inputs must be aligned in time space properly.

Figure 4: Example 3×3 Systolic Array

I. 16*16 Matrix Multiplication

Simulation Result:

To check the correctness, similar matrix generation unit is used in both Matlab and testbench file. And results are compared.

From Matlab: Matrix A:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96
97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112
113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128
129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144
145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176
177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192
193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208
209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224
225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	0

Matrix B:

16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17
48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33
64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49
80	79	78	77	76	75	74	73	72	71	70	69	68	67	66	65
96	95	94	93	92	91	90	89	88	87	86	85	84	83	82	81
112	111	110	109	108	107	106	105	104	103	102	101	100	99	98	97
128	127	126	125	124	123	122	121	120	119	118	117	116	115	114	115
144	143	142	141	140	139	138	137	136	135	134	133	132	131	130	129
160	159	158	157	156	155	154	153	152	151	150	149	148	147	146	145
176	175	174	173	172	171	170	169	168	167	166	165	164	163	162	161
192	191	190	189	188	187	186	185	184	183	182	181	180	179	178	177
208	207	206	205	204	203	202	201	200	199	198	197	196	195	194	193
224	223	222	221	220	219	218	217	216	215	214	213	212	211	210	209
240	239	238	237	236	235	234	233	232	231	230	229	228	227	226	225
0	255	254	253	252	251	250	249	248	247	246	245	244	243	242	241

Output Matrix= A*B:

19840	23800	23664	23528	23392	23256	23120	22984	22848	22712	22576	22440	22304	22168	22032	21896
50560	58360	57968	57576	57184	56792	56400	56008	55616	55224	54832	54440	54048	53656	53264	52872
15744	27384	26736	26088	25440	24792	24144	23496	22848	22200	21552	20904	20256	19608	18960	18312
46464	61944	61040	60136	59232	58328	57424	56520	55616	54712	53808	52904	52000	51096	50192	49288
11648	30968	29808	28648	27488	26328	25168	24008	22848	21688	20528	19368	18208	17048	15888	14728
42368	65528	64112	62696	61280	59864	58448	57032	55616	54200	52784	51368	49952	48536	47120	45704
7552	34552	32880	31208	29536	27864	26192	24520	22848	21176	19504	17832	16160	14488	12816	11144
38272	3576	1648	65256	63328	61400	59472	57544	55616	53688	51760	49832	47904	45976	44048	42120
3456	38136	35952	33768	31584	29400	27216	25032	22848	20664	18480	16296	14112	11928	9744	7560
34176	7160	4720	2280	65376	62936	60496	58056	55616	53176	50736	48296	45856	43416	40976	38536
64896	41720	39024	36328	33632	30936	28240	25544	22848	20152	17456	14760	12064	9368	6672	3976
30080	10744	7792	4840	1888	64472	61520	58568	55616	52664	49712	46760	43808	40856	37904	34952
60800	45304	42096	38888	35680	32472	29264	26056	22848	19640	16432	13224	10016	6808	3600	392
25984	14328	10864	7400	3936	472	62544	59080	55616	52152	48688	45224	41760	38296	34832	31368
56704	48888	45168	41448	37728	34008	30288	26568	22848	19128	15408	11688	7968	4248	528	62344
21888	18168	14448	10728	7008	3288	65104	61384	57664	53944	50224	46504	42784	39064	35344	3162

Note: Since each element of output matrix has 2N bit space, there can be possibility of overflow.

Output from Verilog Code:

Matrix A:

Matrix B:

√ /tb_systolic_array/MatA	{8'd1 8'd2 8'd3 8'	{1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16} {17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32}
/tb_systolic_array/MatB	{8'd16 8'd15 8'd1	
DESIGN CONTRACTOR OF THE PARTY		{16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1} {32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17}
₽ - → [0]	8'd16 8'd15 8'd14	16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
⊕ - 分 [1]	8'd32 8'd31 8'd30	32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17
	8'd48 8'd47 8'd46	48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
	8'd64 8'd63 8'd62	64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
₫-4 [4]	8'd80 8'd79 8'd78	80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65
由 - 分 [5]	8'd96 8'd95 8'd94	96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
⊕ - 分 [6]	8'd112 8'd111 8'd	112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97
±- /> [7]	8'd128 8'd127 8'd	128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113
± - ∕ → [8]	8'd144 8'd143 8'd	144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129
± - 分 [9]	8'd160 8'd159 8'd	160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145
<u>+</u> /> [10]	8'd176 8'd175 8'd	176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161
· - /> [11]	8'd192 8'd191 8'd	192 191 190 189 188 187 186 185 184 183 182 181 180 179 178 177
d - √ [12]	8'd208 8'd207 8'd	208 207 206 205 204 203 202 201 200 199 198 197 196 195 194 193
	8'd224 8'd223 8'd	224 223 222 221 220 219 218 217 216 215 214 213 212 211 210 209
d - → [14]	8'd240 8'd239 8'd	240 239 238 237 236 235 234 233 232 231 230 229 228 227 226 225
₫- (15]	8'd0 8'd255 8'd25	0 25\$ 254 253 252 251 250 249 248 247 246 245 244 243 242 241
⊢ ∜ /tb_systolic_array/MatOut	{16'd19840 16'd2	X 19840 23800 23664 23528 23392 23256 23120 22984 22848 22712 22576 22440 22304 2

Output Matrix= A*B:

Elaborated Schematics:

Figure 13: Processing Element (MAC) Schematics

Figure 14: Systolic array for 16*16 matrix multiplication. Total 256 PE

Synthesized Schematics:

Figure 15: Synthesized PE Schematics

Figure 16 Parts of Synthesized Schematics of Systolic Array

Used Resource Estimation:

1. Slice Logic

Site Type	İ		•		Available			İ
Slice LUTs*	1	22258		0			35.11	- -
LUT as Logic	I	22258	I	0	63400	1	35.11	
LUT as Memory	I	0	Ī	0	19000	1	0.00	
Slice Registers	I	7936	Ī	0	126800	1	6.26	I
Register as Flip Flop	1	7936	I	0	126800	1	6.26	I
Register as Latch	I	0		0	126800	1	0.00	
F7 Muxes	I	0	Ī	0	31700	1	0.00	I
F8 Muxes	I	0	I	0	15850	1	0.00	-

4. IO and GT Specific

+	+	+	+	++
Site Type	Used	Fixed	Available	Util%
Bonded IOB	4354	0	210	2073.33
Bonded IPADs	0	J 0	2	0.00
PHY CONTROL	0	J 0	6	0.00
PHASER REF	0	J 0	6	0.00
OUT_FIFO	0	J 0	24	0.00
IN_FIFO	0	J 0	24	0.00
IDELAYCTRL	0	J 0	6	0.00
IBUFDS	0	J 0	202	0.00
PHASER_OUT/PHASER_OUT_PHY	0	J 0	24	0.00
PHASER IN/PHASER IN PHY	0	J 0	24	0.00
IDELAYE2/IDELAYE2 FINEDELAY	0	J 0	300	0.00
ILOGIC	0	J 0	210	0.00
OLOGIC	0	J 0	210	0.00
+	+	+	+	++

7. Primitives

+	+	_+
Ref Name	Used	Functional Category
LUT2 LUT6 FDRE OBUF LUT4 CARRY4 LUT5 LUT3 IBUF BUFG	9728 9098 7936 4096 4096 3584 2304 630 258	10
•		'

Timing Estimation:

etup		Hold		Pulse Width	
Worst Negative Slack (WNS):	2.580 ns	Worst Hold Slack (WHS):	0.118 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	7680	Total Number of Endpoints:	7680	Total Number of Endpoints:	7937

Power Estimation:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 4.233 W

Design Power Budget: Not Specified

Power Budget Margin: N/A

Junction Temperature: 44.3°C

Thermal Margin: 40.7°C (8.8 W)

Effective &JA: 4.6°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix

invalid switching activity

I. 32*32 Matrix Multiplication

Elaborated Schematics:

Figure 17: Processing Element (MAC) Schematics

Figure 18: Systolic array for 32*32 matrix multiplication. Total 1024 PE

Synthesized Schematics:

Figure 19: Synthesized PE Schematics

Figure 20 Parts of Synthesized Schematics of Systolic Array

Used Resource Estimation:

1. Slice Logic

Site Type	Used	Fixed	Available	Util%
Slice LUTs* LUT as Logic	90048	0 0	63400 63400 19000	142.03 142.03 0.00
LUT as Memory Slice Registers Register as Flip Flop	32256 32256	0 0 0	126800 126800	0.00 25.44 25.44
Register as Latch F7 Muxes F8 Muxes	0 0	0 0	126800 31700 15850	0.00

4. IO and GT Specific

Site Type		Used	1	Fixed	Avail	able		Util%
Bonded IOB	1	 6898	-+	0	 	210	+- 	8046.6
Bonded IPADs	1	0	-1	0	I	2		0.0
PHY_CONTROL	1	0	- [0	1	6		0.0
PHASER_REF	1	0	-1	0	I	6		0.0
OUT_FIFO	1	0	- [0	1	24		0.0
IN_FIFO	1	0	-1	0	1	24		0.0
IDELAYCTRL	1	0	- [0		6		0.0
IBUFDS	1	0	-1	0	1	202		0.0
PHASER_OUT/PHASER_OUT_PHY	1	0	-1	0	I	24		0.0
PHASER IN/PHASER IN PHY	1	0	- [0	1	24		0.0
IDELAYE2/IDELAYE2_FINEDELAY	1	0	-1	0	I	300		0.0
ILOGIC	1	0	- [0	1	210		0.0
OLOGIC	1	0	- [0	1	210		0.0

7. Primitives

Functional Category		Ref Name
LU	40960	LUT2
LU	37888	LUT6
Flop & Latch	32256	FDRE
LU	21504	LUT4
I	16384	OBUF
CarryLogio	14336	CARRY4
LU	4096	LUT3
LU	3072	LUT5
I	514	IBUF
Clock	1	BUFG

Timing Estimation:

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	2.641 ns	Worst Hold Slack (WHS):	0.118 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	31744	Total Number of Endpoints:	31744	Total Number of Endpoints:	32257

All user specified timing constraints are met.

Power Estimation:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 16.817 W (Junction temp exceeded!)

Design Power Budget: Not Specified

Power Budget Margin: N/A

Junction Temperature: 101.7°C

Thermal Margin: -16.7°C (-3.5 W)

Effective &JA: 4.6°C/W
Power supplied to off-chip devices: 0 W
Confidence level: Low

Launch Power Constraint Advisor to find and fix

invalid switching activity

