Lógica de predicados

Clase 05

IIC 1253

Prof. Cristian Riveros

Lógica proposicional y sus limitaciones

Todos los hombres son mortales.

Sócrates es hombre.

Por lo tanto, Sócrates es mortal.

¿cómo podemos modelar esta deducción en lógica proposicional?

Lógica proposicional y sus limitaciones

Todo número natural es par o impar

2 no es impar

Por lo tanto, 2 es par

¿cómo podemos modelar esta deducción en lógica proposicional?

¿qué le falta a la lógica proposicional?

- objetos (no solo proposiciones).
- predicados.
- cuantificadores: **para todo** (\forall) o **existe** (\exists) .

Lógica de predicados

Lógica de predicados \subseteq Lógica de primer orden

Lógica nos permitirá expresar propiedades de estructuras como:

- Números naturales, enteros, racionales, reales, . . .
- Conjuntos, relaciones, . . .
- Grafos, árboles, palabras, ...

Podremos definir propiedades como:

- Para todo hombre x, x es mortal.
- Para todo número n, existe un m tal que $n \ge m$.

Outline

Predicados

Cuantificadores

Outline

Predicados

Cuantificadores

Ejemplos

- 1. x es par
- $2. x \le y$
- 3. x + y = z

¿cuál de estos ejemplos son proposiciones?

Ninguno!!

Pero, si reemplazamos las variables por objetos obtenemos proposiciones:

- 1. 2 es par, 3 es par, ...
- 2. $2 \le 3$, $6 \le 0$, $10 \le 5$, ...
- $3. 10 + 5 = 15, 3 + 8 = 1, \dots$

Definición

Un predicado P(x) es una proposición abierta, cuyo valor de verdad depende del objeto en el cual es evaluado.

Ejemplos

- P(x) := x es par
- R(x) := x es primo
- M(x) := x es mortal

Definición

- Un predicado P(x) es una proposición abierta, cuyo valor de verdad depende del objeto en el cuál es evaluado.
- Para un predicado P(x) y un valor a, la valuación P(a) es el valor de verdad del predicado P(x) en a.

$$P(x) := x \text{ es par}$$
 x
 $P(x)$
 $P(1) = 0$
 1 (True)

 $P(4) = 1$
 2 1 (True)

 3 0 (False)
 : :

Definición

- Un predicado P(x) es una proposición abierta, cuyo valor de verdad depende del objeto en el cuál es evaluado.
- Para un predicado P(x) y un valor a, la valuación P(a) es el valor de verdad del predicado P(x) en a.

P(x) := x es par	
R(y) := y es primo	
R(31) = 1	

у	R(y)
0	0
1	0
2	1
	1
4	0
:	:

Definición

- Un predicado P(x) es una proposición abierta, cuyo valor de verdad depende del objeto en el cuál es evaluado.
- Para un predicado P(x) y un valor a, la valuación P(a) es el valor de verdad del predicado P(x) en a.

$$P(x) := x \text{ es par}$$

$$R(y) := y \text{ es primo}$$

$$M(z) := z$$
 es mortal

$$M(Socrates) = 1$$

 $M(Zeus) = 0$

Z	M(z)
Socrates	1
Zeus	0
Maradona	0
:	:

Predicados n-arios

Definición

- Un predicado n-ario $P(x_1,...,x_n)$ es una prop. abierta con n variables, cuyo valor de verdad depende de los objetos en el cual es evaluado.
- Para un predicado $P(x_1,...,x_n)$ y valores $a_1,...,a_n$, la valuación $P(a_1,...,a_n)$ es el valor de verdad de P en $a_1,...,a_n$.

Predicados n-arios

Definición

- Un predicado n-ario $P(x_1,...,x_n)$ es una prop. abierta con n variables, cuyo valor de verdad depende de los objetos en el cual es evaluado.
- Para un predicado $P(x_1,...,x_n)$ y valores $a_1,...,a_n$, la valuación $P(a_1,...,a_n)$ es el valor de verdad de P en $a_1,...,a_n$.

- $O(x,y) := x \le y$
- S(x,y,z) := x + y = z

$$S(5,10,14) = 1$$

Predicados n-arios

Definición

- Un predicado n-ario $P(x_1,...,x_n)$ es una prop. abierta con n variables, cuyo valor de verdad depende de los objetos en el cual es evaluado.
- Para un predicado $P(x_1,...,x_n)$ y valores $a_1,...,a_n$, la valuación $P(a_1,...,a_n)$ es el valor de verdad de P en $a_1,...,a_n$.

¿cuál es el valor de verdad de las siguientes valuaciones?

- $O(x,y) := x \le y$
- S(x, y, z) := x + y = z
- Padre(x, y) := x es padre de y

Padre(Homero, Bart) = 1

¿cuál es el valor de verdad de $O(\frac{2}{3}, \frac{4}{3})$? ¿O(Homero, Bart)?

Predicados y dominio

Definición

- Un predicado n-ario $P(x_1,...,x_n)$ es una prop. abierta con n variables, cuyo valor de verdad depende de los objetos en el cuál es evaluado.
- Para un predicado $P(x_1,...,x_n)$ y valores $a_1,...,a_n$, la valuación $P(a_1,...,a_n)$ es el valor de verdad de P en $a_1,...,a_n$.
- Todos los predicados están restringidos a un dominio de evaluación.

Ejemplos depredicados y sus dominios

$$O(x,y) := x \le y$$

sobre N

$$S(x,y,z) := x + y = z$$

sobre $\mathbb Q$

Padre(x, y) := x es padre de y

sobre todas las personas

Predicados y dominio

Definición

- Un predicado n-ario $P(x_1,...,x_n)$ es una prop. abierta con n variables, cuyo valor de verdad depende de los objetos en el cuál es evaluado.
- Para un predicado $P(x_1,...,x_n)$ y valores $a_1,...,a_n$, la valuación $P(a_1,...,a_n)$ es el valor de verdad de P en $a_1,...,a_n$.
- Todos los predicados están restringidos a un dominio de evaluación.

Notación

- Para un predicado $P(x_1,...,x_n)$, diremos que $x_1,...,x_n$ son las variables libres de P.
- Un predicado 0-ario ("caso degenerado") es un predicado sin variables y tiene valor de verdad verdadero o falso sin importar la valuación.

Predicados compuestos (o formulas)

Definición

Un predicado es **compuesto** si es un predicado básico, o la negación (\neg) , conjunción (\land) , disyunción (\lor) , condicional (\rightarrow) , bicondicional (\leftrightarrow) de predicados compuestos sobre el **mismo dominio**.

El **valuación** de un predicado **compuesto** corresponde a la valuación recursiva de sus conectivos lógicos y predicados básicos.

Ejemplos

$P'(x) := \neg P(x)$		P(x)		
	0	1	0	
$ O'(x,y,z) := O(x,y) \wedge O(y,z) $	1	1 0	1	
$P''(x,y) := (P(x) \land P(y)) \to O(x,y)$	2	1	0	
$F(x,y) := (F(x) \land F(y)) \rightarrow O(x,y)$	3	0	1	
	÷	:	÷	

Outline

Predicados

Cuantificadores

Cuantificador universal

Sea $P(x, y_1, ..., y_n)$ un predicado compuesto con dominio D.

Definición

Definimos el cuantificador universal:

$$P'(y_1,\ldots,y_n) := \forall x. P(x,y_1,\ldots,y_n)$$

donde x es la variable cuantificada y y_1, \ldots, y_n son las variables libres.

Para b_1, \ldots, b_n en D, definimos la valuación:

$$P'(b_1,\ldots,b_n) = 1$$

si para todo a en D se tiene que $P(a, b_1, ..., b_n) = 1$, y 0 en otro caso.

Cuantificador universal

Definición

Para b_1, \ldots, b_n en D y $P'(y_1, \ldots, y_n) := \forall x. P(x, y_1, \ldots, y_n)$, definimos:

$$P'(b_1,\ldots,b_n) = 1$$

ssi

si para todo a en D se tiene que $P(a, b_1, ..., b_n) = 1$, y 0 en otro caso.

<i>y</i> ₁	y ₂	•••	Уn	P'_
:	:	:	÷	- i
b_1	b_2	•••	b_n	1
:	:	:	÷	:

¿cuándo ocurre que
$$P'(b_1, ..., b_n) = 0$$
?

Definición

Para b_1, \ldots, b_n en D y $P'(y_1, \ldots, y_n) := \forall x. P(x, y_1, \ldots, y_n)$, definimos:

$$P'(b_1,\ldots,b_n) = 1$$

si para todo a en D se tiene que $P(a, b_1, ..., b_n) = 1$, y 0 en otro caso.

Ejemplos

$O'(y) := \forall x. \ O(x,y)$	X	у	O(x,y)
	÷	:	:
$O'(2) = \forall x. \ O(x,2) = 0$	0	2	1
() ()	1	2	1
	2	2	1
	3	2	0
	4	2	0
	÷	:	÷

Definición

Para b_1, \ldots, b_n en D y $P'(y_1, \ldots, y_n) := \forall x. P(x, y_1, \ldots, y_n)$, definimos:

$$P'(b_1,\ldots,b_n) = 1$$

si para todo a en D se tiene que $P(a, b_1, ..., b_n) = 1$, y 0 en otro caso.

Ejemplos

$O'(y) := \forall x. \ O(x,y)$	X	у	O(x,y)
(,,,,,	:	÷	:
$ O''(x) \coloneqq \forall y. \ O(x,y) $	0	0	1
	0	1	1
$O''(0) = \forall y. \ O(0,y) = 1$	0	2	1
	0	3	1
	0	4	1

Definición

Para b_1, \ldots, b_n en D y $P'(y_1, \ldots, y_n) := \forall x. P(x, y_1, \ldots, y_n)$, definimos:

$$P'(b_1,\ldots,b_n) = 1$$

si para todo a en D se tiene que $P(a, b_1, ..., b_n) = 1$, y 0 en otro caso.

Ejemplos

Para los predicados P(x) := x es par y $O(x,y) := x \le y$ sobre \mathbb{N} :

- $O'(v) := \forall x. O(x, v)$
- $O''(x) := \forall y. O(x, y)$
- $P_0 := \forall x. P(x)$

X	P(x)
0	1

Definición

Para b_1, \ldots, b_n en D y $P'(y_1, \ldots, y_n) := \forall x. P(x, y_1, \ldots, y_n)$, definimos:

$$P'(b_1,\ldots,b_n) = 1$$

si para todo a en D se tiene que $P(a, b_1, ..., b_n) = 1$, y 0 en otro caso.

Ejemplos

$O'(y) := \forall x. \ O(x,y)$	X	P(x)	$\neg P(x)$	$P(x) \vee \neg P(x)$
,	0	1	0	1
$ O''(x) \coloneqq \forall y. \ O(x,y) $	1	0	1	1
- D . V. D(.)	2	1	0	1
$ P_0 := \forall x. P(x) $	3	0	1	1
$ P_0' := \forall x. (P(x) \vee \neg P(x)) $	4	1	0	1
	:	:	÷	:

Cuantificador existencial

Sea $P(x, y_1, ..., y_n)$ un predicado compuesto con dominio D.

Definición

Definimos el cuantificador existencial:

$$P'(y_1,\ldots,y_n) := \exists x. P(x,y_1,\ldots,y_n)$$

donde x es la variable cuantificada y y_1, \ldots, y_n son las variables libres.

Para b_1, \ldots, b_n en D, definimos la valuación:

$$P'(b_1,\ldots,b_n)=1$$

si existe a en D tal que $P(a, b_1, ..., b_n) = 1$, y 0 en otro caso.

Cuantificador existencial

Definición

Para b_1, \ldots, b_n en D y $P'(y_1, \ldots, y_n) := \exists x. P(x, y_1, \ldots, y_n)$, definimos:

$$P'(b_1,\ldots,b_n) = 1$$

si existe a en D tal que $P(a, b_1, ..., b_n) = 1$, y 0 en otro caso.

y_1	<i>y</i> ₂	•••	y_n	P'	ssi	X	y_1	y ₂	•••	y_n	P
÷	:	:	:	- :		:	:	:	:	÷	- :
b_1	b_2	•••	b_n	1		а	b_1	b_2	•••	b_n	1
÷	÷	÷	÷	:		÷	÷	÷	÷	÷	:

¿cuándo ocurre que
$$P'(b_1, ..., b_n) = 0$$
?

Cuantificador existencial (ejemplos)

Definición

Para b_1, \ldots, b_n en D y $P'(y_1, \ldots, y_n) := \exists x. P(x, y_1, \ldots, y_n)$, definimos:

$$P'(b_1,\ldots,b_n) = 1$$

si existe a en D tal que $P(a, b_1, ..., b_n) = 1$, y 0 en otro caso.

Ejemplos

$O'(y) := \exists x. \ O(x,y)$	X	У	O(x,y)
(, , , ,	:	÷	:
$O'(2) = \exists x. \ O(x,2) = 1$	0	2	1
· · · · · · · · · · · · · · · · · · ·	1	2	1
	2	2	1
	3	2	0
	4	2	0
	÷	÷	:

Cuantificador existencial (ejemplos)

Definición

Para b_1, \ldots, b_n en D y $P'(y_1, \ldots, y_n) := \exists x. P(x, y_1, \ldots, y_n)$, definimos:

$$P'(b_1,\ldots,b_n) = 1$$

si existe a en D tal que $P(a, b_1, ..., b_n) = 1$, y 0 en otro caso.

Ejemplos

$O'(y) := \exists x. \ O(x,y)$	X	У	O(x,y)
	:	:	:
$ O''(x) \coloneqq \exists y. \ O(x,y) $	2	0	: 0
	2	1	n

Cuantificador existencial (ejemplos)

Definición

Para b_1, \ldots, b_n en D y $P'(y_1, \ldots, y_n) := \exists x. P(x, y_1, \ldots, y_n)$, definimos:

$$P'(b_1,\ldots,b_n) = 1$$

si existe a en D tal que $P(a, b_1, ..., b_n) = 1$, y 0 en otro caso.

Ejemplos

Interpretación de cuantificadores

Sea P(x) un predicado compuesto sobre el dominio $D = \{a_1, a_2, \ldots\}$.

Los cuantificadores universal y existencial se pueden "interpretar" como:

$$\forall x. P(x) := P(a_1) \wedge P(a_2) \wedge P(a_3) \wedge \dots = \bigwedge_{i=1}^{\infty} P(a_i)$$

$$\exists x. P(x) := P(a_1) \vee P(a_2) \vee P(a_3) \vee \dots = \bigvee_{i=1}^{\infty} P(a_i)$$

SOLO interpretar. **NO** lo usen en ejercicios.

Es posible combinar cuantificadores

¿cuál es el valor de verdad de las siguientes formulas?

Para los predicados P(x) := x es par y $O(x, y) := x \le y$ sobre \mathbb{Z} :

- $\forall x. \forall y. O(x,y)$
- $\exists x. \exists y. O(x,y)$
- $\forall x. \exists y. O(x,y)$
- $\exists x. \ \forall y. \ O(x,y)$

Predicados compuestos (con cuantificadores)

(re)Definición

Decimos que una predicado es compuesto (o también formula) si es:

- un predicado básico,
- la negación (¬), conjunción (∧), disyunción (∨), condicional (→), bicondicional (↔) de predicados compuestos sobre el mismo dominio o
- la cuatificación universal (\forall) o existencial (\exists) de un pred. compuesto.

El valuación de un predicado compuesto corresponde a la valuación recursiva de sus cuantificadores, conectivos lógicos y predicados básicos.

Predicados compuestos (mas ejemplos)

¿qué representan las siguientes formulas?

Para los predicados $x \le y$, x = y, e x + y = z sobre \mathbb{Z} :

$$C(x) := x + x = x$$

$$L(x,y) := x \le y \land \neg(x = y)$$

$$S(x,y) := L(x,y) \land \neg \exists z. (L(x,z) \land L(z,y))$$

$$U(x) := \exists y. S(y,x) \land C(y)$$

$$I := \forall x. \exists y. \exists z. \ C(z) \land x + y = z$$