Neural Networks

Neural networks are a class of machine learning models inspired by the brain. They are non-linear models that can be used for regression and classification.

Definition

- Inspired by biological neurons;
- An artificial neuron is a function $f: \mathbb{R}^d \to \mathbb{R}$;
 - It receives a **vector** of **inputs** $x \in \mathbb{R}^d$, **weights** $w \in \mathbb{R}^d$ and a **bias** $b \in \mathbb{R}$:

$$z(x) = w^T x + b = \sum_{i=1}^{d} w_i x_i + b$$

The activation function g is a function that transforms the output of the neuron:

$$h(x) = g(z(x)) = g(w^Tx + b), whereg: \mathbb{R} \rightarrow \mathbb{R}$$

Activation Functions

The typical activation functions are:

- Linear: g(z) = z;
 - No squashing;
- Sigmoid: $g(z) = \sigma(z) = \frac{1}{1+e^{-z}}$;
 - Squashes z to [0,1];
 - Output can be interpreted as a **probability**;
 - Positive, bounded and strictly increasing;

- Hyperbolic tangent: $g(z) = tanh(z) = \frac{e^z e^{-z}}{e^z + e^{-z}}$;
 - Squashes z to [-1, 1];
 - Bounded and strictly increasing;
- Rectified Linear Unit (ReLU): g(z) = relu(z) = max(0, z);
 - Non-negative, increasing but not upper bounded;
 - Not differentiable at z = 0;
 - Leads to neurons with sparse activities-

Later, we will see:

- Softmax: $g(z) = \frac{e^{z_i}}{\sum_{j=1}^d e^{z_j}};$
- Sparsemax: $g(z) = argmin_{p \in \Delta_d} ||p z||_2^2$;
- Max-pooling: g(z) = max(z).

Feedforward Neural Networks

- To solve non-linear problems, we can **stack** several **neurons**;
- Multi-layer neural networks: use intermediate layers between the input and the output layers;
- Each hidden layer computes a representation of the input and propagates it to the next layer **feedforward neural networks**.

Single Hidden Layer

- Consider a task that involves several inputs $x \in \mathbb{R}^d$ and a single output $y \in 0, 1$;
- Include an **intermediate layer** of K hidden units $(h \in \mathbb{R}^K)$ between the input and the output layers;
- Hidden layer pre-activation: $z(x) = W^{(1)}x + b^{(1)}$, with $W^{(1)} \in \mathbb{R}^{K \times d}$ and $b^{(1)} \in \mathbb{R}^{K}$;
- Hidden layer activation: h(x) = g(z(x)), with g being the activation function $g: \mathbb{R}^{\mathbb{K}} \to \mathbb{R}^{\mathbb{K}}$;
- Output layer activation: $y(x) = \sigma(w^{(2)}h(x) + b^{(2)})$, with $w^{(2)} \in \mathbb{R}^{\mathbb{K}}$ and $b^{(2)} \in \mathbb{R}$.

Multiple Classes

- Multiple output units, one for each class;
- Each output estimates the conditional probability of the input belonging to that class **softmax** activation function:

$$o(z) = softmax(z) = \begin{bmatrix} \frac{e^{z_1}}{\sum_{j=1}^d e^{z_j}} \\ \vdots \\ \frac{e^{z_d}}{\sum_{j=1}^d e^{z_j}} \end{bmatrix}$$

- Hidden layer pre-activation: $z^{(l)}(x) = W^{(l)}h^{(l-1)}(x) + b^{(l)}$, with $W^{(l)} \in \mathbb{R}^{K^{(l)} \times K^{(l-1)}}$ and $b^{(l)} \in \mathbb{R}^{K^{(l)}}$;
- Hidden layer activation: $h^{(l)}(x) = g(z^{(l)}(x))$, with g being the activation function $g: \mathbb{R}^{\mathbb{K}^{(l)}} \to \mathbb{R}^{\mathbb{K}^{(l)}}$;
- Output layer activation: $y(x) = softmax(w^{\ell}L)h^{\ell}L 1)(x) + b^{\ell}L),$ with $w^{\ell}L \in \mathbb{R}^{\mathbb{K}^{\ell}\mathbb{L}}$ and $b^{\ell}L \in \mathbb{R}$.

Universal Approximation Theorem

A Neural Network with a single hidden layer and a linear output layer can approximate any continuous function to arbitrary accuracy if the hidden layer has enough units. - Cybenko, 1989

- Deeper networks (with more hidden layers) can approximate functions more efficiently;
- The number of linear regions carved out by a deep neural network with D inputs, depth L and K hidden units per layer is $O((\frac{K}{D})^{D(L-1)}K^D)$;
- So neural networks can approximate any function with a single hidden layer: we only need to find the right parameters training.

Training Neural Networks

Training a neural network means finding the right parameters for the weights and biases of the neurons, learning them from data - samples of inputs and outputs.

Empirical Risk Minimization

• Goal: choose parameters $\theta := (W^{(l)}, b^{(l)})_{l=1}^{L+1}$ that minimize the empirical risk:

$$\mathcal{L}(\theta) := \lambda \Omega(\theta) + \frac{1}{N} \sum_{i=1}^{N} L(f(x_i; \theta), y_i)$$

- $x_i, y_{i=1}^N$ is the **training set**;
- $L(f(x_i;\theta),y_i)$ is the loss function;
- $\omega(\theta)$ is the **regularization term**;
- λ is the regularization constant.
- **Gradient descent** is **too slow**, because it requires a full pass over the data to update the weights;
- Stochastic gradient descent is faster, because it updates the weights after each sample;
- Mini-batch stochastic gradient descent is even faster, because it updates the weights after each mini-batch of samples;
 - A mini-batch is a subset of the training set, j_1, \ldots, j_B , with B samples, $B \ll N$:

$$\nabla_{\theta} \mathcal{L}(\theta) = \lambda \nabla_{\theta} \omega(\theta) + \frac{1}{B} \sum_{i=1}^{B} \nabla_{\theta} L(f(x_{j_i}; \theta), y_{j_i})$$

The weights are updated as follows:

$$\theta^{(t+1)} = \theta^{(t)} - \eta \frac{1}{B} \sum_{i=1}^{B} \nabla_{\theta} L_{j_i}(\theta^{(t)})$$

- Loss function L should match as possible what we want to optimize;
 - Should be well-behaved continuous and smooth;
 - Squared loss is a good choice for regression;
 - Cross-entropy loss is a good choice for multi-class classification: $L(f(x;\theta),y) = -log((softmax(f(x;\theta)))_y);$
 - Sparsemax loss is a good choice for multi-class and multi-label classification.

Backpropagation

We need to find a **procedure** to **compute the gradients** of the **loss function** with respect to the **weights** and **biases** of the **neurons**: $\nabla_{\theta} L(f(x;\theta), y)$.

- The gradient backpropagation algorithm is a recursive algorithm that computes the gradients of the loss function with respect to the weights and biases of the neurons;
- It is based on the **chain rule** of **calculus**:

$$h(x) = f(g(x)) \Rightarrow \frac{dh}{dx} = \frac{df}{dg}\frac{dg}{dx}$$

Automatic Differentiation

- Automatic differentiation is a technique for computing derivatives of functions;
- Forward propagation can be represented as a **computation graph** a **directed acyclic graph** (DAG) that represents the **computation** of the **function**;
 - Each box can be an object with a fprop method that computes the forward pass;
 - Calling the fprop method of each box in the topological order of the graph computes the forward pass;
- Backpropagation is also implemented as a computation graph a directed acyclic graph (DAG) that represents the computation of the gradients;
 - Each box can be an object with a bprop method that computes the loss gradient w.r.t. its parents, given the loss gradient w.r.t. to the output of the box;
 - Calling the bprop method of each box in the reverse topological order of the graph computes the backward pass.

There are several **Autodiff** strategies:

- Symbol-to-Number Differentiation
 - Take a computational graph and numerical inputs;
 - Returns a set of numerical outputs describing the gradient at those inputs;
 - Advantage: simpler to implement and debug;

- Disadvantage: only works for first-order derivatives;
- Example: Caffe, Torch, PyTorch, ...

• Symbol-to-Symbol Differentiation

- Take a computational graph and add additional nodes to the graph that provide a symbolic description of the gradient;
- **Advantage**: works for higher-order derivatives;
- **Disadvantage**: more complex to implement and debug;
- **Example**: Theano, TensorFlow, ...

Regularization

Recall the **empirical risk minimization** problem:

$$\mathcal{L}(\theta) := \lambda \Omega(\theta) + \frac{1}{N} \sum_{n=1}^{N} L(f(x_i; \theta), y_i)$$

• It remains to define the **regularizer** $\Omega(\theta)$ and its **gradient** $\nabla_{\theta}\Omega(\theta)$;

\updownarrow_2 Regularization

- Only the **weights** are regularized: $\Omega(\theta) = \sum_{l=1}^{L+1} ||W^{(l)}||^2$;
- Equivalent to Gaussian prior on the weights;
- Gradient of the regularizer w.r.t. the weights: $\nabla_{W^{(l)}}\Omega(\theta) = W^{(l)}$;
- Weight decay effect: the weights are shrunk towards zero: $W^{(l)} \leftarrow (1 \eta \lambda)W^{(l)}$;

\uparrow_1 Regularization

- Only the weights are regularized: $\Omega(\theta) = \sum_{l} ||W^{(l)}||_1 = \sum_{l} \sum_{i,j} |W^{(l)}_{ij}|;$
- Equivalent to Laplace prior on the weights;
- Gradient of the regularizer w.r.t. the weights: $\nabla_{W^{(l)}}\Omega(\theta) = sign(W^{(l)});$
- Promotes sparsity in the weights: many weights are zeroed out.

Dropout Regularization

- During training, randomly drop some of the neurons in the hidden layers;
- Each hidden unit output is set to zero with probability p this prevents hidden units to **co-adapt** to each other, forcing them to be more generally useful:
- At test time, keep all units with the **outputs multiplied by** 1 p;
- Usually implemented using random binary masks;
- The hidden layer activations becomes: $h^{(\updownarrow)}(x) = g(z^{(\updownarrow)}(x)) \odot m^{(\updownarrow)}$, where $m^{(\updownarrow)} \in \{0,1\}^{K^{(\updownarrow)}}$ is a **random binary mask** with p probability of being 1:

Tricks of the Trade

Initialization

- Biases: set to zero;
- Weights:
 - Cannot be zero with **tanh** activation function;
 - Cannot be all the same value use random initialization Gaussian or uniform;
 - For **ReLU**, the mean should be a small positive number;
 - Variance cannot be too high;

Training, Validation and Test Sets

- Training set: used to train the model;
- Validation set: used to tune the hyperparameters (e.g. learning rate, regularization constant, etc.);
 - Grid search specify a set of values to test for each hyperparameter, and try all combinations;
 - Random search specify a distribution for each hyperparameter, and sample from it;
 - Bayesian optimization specify a prior distribution for each hyperparameter, and update it after each experiment;

• Test set: used to evaluate the final model.

Early stopping is a regularization technique that stops training when the validation error starts to increase, in order to prevent overfitting.

Input Normalization

- Subtract the mean and divide by the standard deviation;
- It makes each input dimension have zero mean and unit variance;
- It speeds up the training;
- Does not work for **sparse data**;

Decaying the Learning Rate

- Learning rate η is a hyperparameter that controls the step size in the gradient descent algorithm;
- In SGD, as we get closer to the minimum, we want to **reduce the step** size:
 - Start with a large learning rate (e.g. 0.1);
 - Keep it fixed while the **validation error** is **decreasing**;
 - Divide by 2 and repeat.

Mini-Batches

- Instead of updating after a single sample, update after a **mini-batch** of samples (e.g. 50 200 samples), and compute the average gradient for the entire mini-batch;
- Less noisy than SGD;
- Can leverage matrix-matrix computations.

Gradient Checking

- If the training loss is **not decreasing**, there might be a **bug** in the **gradient computation**;
- To debug, we can compute the **numerical gradient** and compare it with the **analytical gradient**:

$$\frac{\partial f}{\partial x} \approx \frac{f(x+\epsilon) - f(x-\epsilon)}{2\epsilon}$$

Better Optimization

There are several improvements to basic **gradient descent** and **stochastic gradient descent**:

- Momentum;
- Adaptive gradient (AdaGrad);
- Root mean square propagation (RMSProp);
- Adaptive moment estimation (Adam).

Momentum

- Momentum is a technique that accelerates gradient descent in the relevant direction and dampens oscillations;
- It means: remember the **previous gradients** and use them to **update** the **current gradient**: $\theta_t = \theta_{t-1} \alpha_t g(\theta_{t-1}) + \gamma_t (\theta_{t-1} \theta_{t-2})$;
 - $g(\theta_t)$ is the **gradient estimate** at time t;
- Advantages: reduces the update in irrelevant directions and accelerates the update in relevant directions.

Adaptive Gradient (AdaGrad)

- AdaGrad is a technique that adapts the learning rate to the parameters, performing smaller updates for frequent parameters and larger updates for infrequent parameters;
- Scale the update of each component (ϵ for numerical stability): $\theta_{j,t} = \theta_{j,t-1} \frac{\alpha}{\sqrt{G_{j,t-1} + \epsilon}} g_j(\theta_{t-1});$
 - $G_{j,t}$ is the sum of squares of the gradients w.r.t. θ_j up to time t: $G_{j,t} = \sum_{i=1}^t g_{j,i}^2$;
- Advantages: robust to choice of α and learning rate decay;
- **Disadvantages**: step size vanishes, because $G_{j,t}$ is monotonically increasing.

Root Mean Square Propagation (RMSProp)

- RMSProp addresses the vanishing learning issue;
- Same scaled update for each component: $\theta_{j,t} = \theta_{j,t-1} \frac{\alpha}{\sqrt{G_{j,t-1}+\epsilon}} g_j(\theta_{t-1});$
- Use a forgetting factor γ to decay the sum of squares of the gradients (typically $\gamma = 0.9$): $G_{j,t} = \gamma G_{j,t-1} + (1-\gamma)g_{j,t}^2$ now the sum of squares of the gradients is decaying.

Adaptive Moment Estimation (Adam)

- Adam is a combination of momentum and RMSProp;
- Separate moving averages of gradient and squared gradient;
- Bias correction is used to initialize the moving averages to zero;
- Hyperparameters: α , β_1 , β_2 , ϵ ;
- Advantages: computationally efficient, low memory requirements, well suited for problems with large datasets and/or parameters;
- **Disadvantages**: possible convergence issues and noisy gradient estimates.