bayesian networks

$$\neq$$
 $\rho(S=Y_{eS} | B=Bad) = (0.1)(0.8) + 0$

Mileage	Engine	Air Conditioner	No of Records with Car Value=Hi	No of Records with Car Value=Lo
Hi	Good	Working	3	4
Hi	Good	Broken	1	2
Hi	Bad	Working	1	5
Hi	Bad	Broken	0	4
Lo	Good	Working	9	0
Lo	Good	Broken	5	1
Lo	Bad	Working	1	2
Lo	Bad	Broken	0	2

$$\neq$$
 P(AirC=W) = $\frac{25}{40}$ = 0.625

FCEng = Good | N = High) =
$$\frac{10}{20}$$
 = 0.5

$$\neq$$
 P(Eng = Good | M= High) = $\frac{10}{20}$ = 0.5 \neq P(Eng = Good | M= Low) = $\frac{15}{20}$ = 0.75

$$\neq$$
 $P(Val = High \mid E = Good, Air(=w) = \frac{12}{16} = 0.75$

≯ P(V=High | E=G, A=B) =
$$\frac{6}{9}$$
 = 0.667

