

Assignment 1:

Memory-based CF for Rating Prediction

Overview

- Programming
 - UCF or ICF for rating prediction
- Requirements
 - Project report
 - Executable source code
 - Prediction results

Project Report

- Main Content
 - Detailed implementation introduction
 - Key code explanation
 - Result analysis
 - Hyper-parameter influence
 - Table or plot
 - How to run your code
 - Environments (E.g., python 2.X or python 3.x, c++?)
 - Dependency libraries

Source Code

- Programming Language
 - Python is preferred.
- Terminal Command
 - E.g., python2.7 xxx.py test.file output.file
- Source code files
 - How the method is implemented

Data Format

- Train set
 - With rating scores

```
train.csv x

user_id,business_id,date,stars

A2JGzkvNjckSmps_4FbKWw,Xg5qEQiB-7L6kGJ5F4K3bQ,2014-03-18 01:14:10,5.0

rypcWiSNGM0suWsiSLh9xA,4RoTEeqB_MNn6yaqZmlZHg,2015-08-29 18:32:15,4.0

Dgk0Wdoh7HPjhKQEPBU_jQ,ZOmf-3NN4Z59b2Fw6VAM7g,2015-09-14 16:33:03,3.0

FIk4lQQu1eTe2EpzQ4xhBA,HK2Ki-PvnNN-YMTlX1uSVA,2012-09-29 02:03:42,4.0

VizhcyMWWPz3UDXEBeix4w,UPIYuRaZvknINOd1w8kqRQ,2011-06-10 20:35:42,3.0

ZEuPAGalYnP7eSxPgFCNDg,E83nSU_y9zedOzQnkTjV1g,2017-08-14 18:56:00,2.0

WXlxViTwXHPBvhioljN9PQ,IRzY7yoBqoHaZNNo8WiWQQ,2016-04-30 14:42:50,4.0

cMEtAiW60I5wE_vLfTxoJQ,DESv2ys6SjBKA4SyDtJvxw,2012-06-26 00:44:03,4.0
```

- Test set
 - Without rating scores

```
test.csv x

user_id,business_id,date

PfpRvMAESbC2bC8FUIMdNg,Kbbm6Vd5UdbP10dwjBghRw,2018/10/15 0:52

oaaEXgQ3x51cXE3GTXrT1Q,2GmGT-7QjowR1ihup3FbVA,2011/11/27 9:12

yT_QCcnq-QGipWWuzIpvtw,p0EL97ld-FJMK08Ki8JmYg,2016/3/11 19:09

fRVNHAl2RjosC67Y67G3cA,UkWme3kwg6L9rd4tCNB15w,2016/9/11 15:53

48vRThjhuhiSQINQ2KV8Sw,LNGBEEelQx4zbfWnlc66cw,2011/3/23 3:22

q5FQmuXxzPEsvEtA_Mvd1w,fSBhe0A6Dfa8JCYccfpMog,2013/8/9 22:06

W0VE9M7Dikrpol8j1_QqyQ,3oTVApC-eUzpGjr0VxIr5g,2017/9/7 2:27

avmRUkWovTsaDqKiNKdivQ,wUKzaS1MHg94RGM6z8u9mw,2012/10/25 19:31
```

Prediction Results

- A file containing prediction results
 - Format: each line corresponds to one prediction tuple
 - User_id, Business_id, Rating_score
 - E.g., A2JGzkvNjckSmps_4FbKWw, Xg5qEQiB-7L6kGJ5F4K3bQ, 4.0

Submission

- File Name
 - zip file, named with 'Name+ID+Assignment No.'
- Submission URL
 - http://xzc.cn/J7knNdne0x

How to evaluate?

- Code
 - Executable
 - Clear, easy-to-understood
- Prediction Results
 - Effectiveness
 - How is the predicted score compared with ground-truth?
 - RMSE
- Report
 - Integrity
 - Readability
 - Highlights

Report Example

数据挖掘第一次编程作业

——实现数据挖掘 Apriori 算法

2018年3月26日

目录

1	算法	简介	;
	1.1	简介	
	1.2	伪代码描述	
	1.3	实现过程描述	
9	核心	代码注解	,
-	2.1	1-項集的产生	
	2.2	计时	
		Apriori gen 过程	
	2.0	Apriori_gen At 1 = 1	
3	结果	分析	4
	3.1	頻繁集发掘	
	3.2	关联规则发摇	į
4	代码	运 行	4
	4.1	 环境	
	4.2	依赖	
	4.3	命令行命令	
	4.4	Apriori.pv	
	4.5	asso_gen.py	
_		- A. Al William	
5		文件列表	1
	5.1	Apriori.py	
	5.2	asso_gen.py	
	5.3	out 目录	
		2002	1
		5.3.2 关联规则文件 association_rules.dat	
		5.3.3 关联规则二进制中间文件 fdict.pkl	

2 核心代码注解

以上的 Apriori 算法过程易于理解,但是实现时还是存在一些 python 语言层面的问题,比如,数据结构的选择,以及相应的操作选择。故以下对核心代码做必要说明,余下部分不做过多赘述。

2.1 1-项集的产生

对于算法中项集 -频数形式的 k-v 对, 在 python 中采用 diet 存储, 但是 diet 中 key 值不能为 set 和 list 等无法哈希的数据类型, 故此处采用 forzenset 这一类似的集合结构。

```
titimer
def generate_1_items_dict(translit):
    """ insert and count 1-items occurrences in a hash tree """
    11 = {}
    for trans in translit:
        for item in trans.
```

不同支持度下各项集元素个数

图 2: 不同支持度下各项集元素个数变化。随着最小支持度的变大,各项集元素个数也总体下降。而当最小支持度较小时,项集元素个数会非常大,例如上图中最高点达到近 3500 项。

Data and Deadline

Data

- https://pan.baidu.com/s/1nc63rbYsU58PyvoZJtLgBQ
- 提取码: pgqe

Deadline

- 24:00, 2020-05-5
- Submission after that time might be penalized