

US006301967B1

(12) United States Patent Donskoy et al.

(10) Patent No.:

US 6,301,967 B1

(45) Date of Patent:

Oct. 16, 2001

(54)	METHOD AND APPARATUS FOR ACOUST		
• •	DETECTION AND LOCATION OF DEFECTS		
	IN STRUCTURES OR ICE ON STRUCTURES		

- (75) Inventors: Dimitri M. Donskoy; Alexander M. Sutin, both of Hoboken, NJ (US)
- (73) Assignee: The Trustees of the Stevens Institute of Technology, Hoboken, NJ (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/239,133

(22) Filed: Jan. 28, 1999

Related U.S. Application Data

(60) Provisional application No. 60/073,567, filed on Feb. 3, 1998.

(56) References Cited

U.S. PATENT DOCUMENTS

3,705,381 *	12/1972	Pipkin 340/3 R
3,898,840	8/1975	McElroy 73/67.9
4,233,843 *	11/1980	Thompson et al 73/579
4,281,547 *	8/1981	Hinshaw et al 73/579
4,381,674 *	5/1983	Abts 73/599
4,461,178	7/1984	Chamuel 73/599
4,502,329 *	3/1985	Fukunaga et al 73/573
4,611,492	9/1986	Koosmann 73/579
4,689,993	9/1987	Slettemoen 73/579
4,944,185	7/1990	Clark, Jr. et al 73/579
5,024,090 *	6/1991	Pettigrew et al 73/572
5,144,838	9/1992	Tsuboi 73/579
5,170,666	12/1992	Larsen 73/571
5,179,860	1/1993	Tsuboi 73/579
5,206,806	4/1993	Gerardi et al 364/424.06
5,214,960	6/1993	Tsuboi 73/579
5,284,058	2/1994	Jones 73/579
5,355,731	10/1994	Dixon et al 73/579
5,425,272	6/1995	Rhodes et al 73/579

n et al. 73/597 rchersky 73/579 jjid et al. 73/24.06 dan 73/592 rbi 340/962 gnon 250/225 st et al. 73/602 m 340/583
nnally 244/134

^{*} cited by examiner

Primary Examiner—Helen Kwok (74) Attorney, Agent, or Firm—Wolff & Samson

57) ABSTRACT

The invention relates to a method and apparatus for nondestructive testing and evaluation of materials and mechanical structures to determine their integrity reducing contact-type flaws such as cracks, fractures, delamination, unbondings, etc. and also presence of ice on a structure. The invention employs an ultrasonic probing signal and a low frequency vibration applied to a structure tested. In a structure without flaws or ice, these signals propagate independently without any interaction. If the structure contains a defect or ice thereon, the vibration varies the contact area of the defect or ice/structure interface, modulating the phase and amplitude of the higher frequency ultrasonic probing signal passing through the structure. In the frequency domain the result of this modulation manifests itself as sideband spectral components with respect to frequency of the probe wave. This can be considered as a new signal generated by a defect, so that the defect can be detected more easily when such a signal is observed. There are three modes of detection including, vibro-modulation, impact-modulation and selfmodulation. The location of defects can be determined in two modes. In a first mode defect is located by moving the low frequency signal about the structure and triggering the high frequency signal immediately after the low frequency signal. Defects can be located in a second mode with a sequence of short burst high frequency signal and a signalprocessing algorithm which selects the sequences reflected from various areas of the tested structure. A defect can be quantitatively analyzed by sweeping the high frequency signal over a defined frequency range and measuring, averaging and normalizing the amplitudes of the side bands.

39 Claims, 10 Drawing Sheets

