Corrigé partiel - TD $n^{\circ}12$: Signaux, ondes et spectres

IX Deux haut-parleurs

Au point O, milieu de $[O_1O_2]$, chacune des vibrations crée des variations de pression de l'air identiques $p_{1,O}=p_{2,O}=P_{\rm m}\cos(2\pi\nu t)$ avec $\nu=25$ kHz .

- 1. Il s'agit du domaine des ultrasons.
- 2. On note L la distance O_1O_2 . Les deux ondes s'écrivent respectivement :

$$s_{O_1} = A\cos\left(\omega t - kx\right)$$
 et $s_{O_2} = A\cos\left(\omega t + kx\right)$

L'onde résultante s'écrit donc :

$$s(x,t) = 2A\cos(\omega t)\cos(kx)$$

La pulsation spatiale k s'écrit d'après la relation de dispersion $k = \frac{\omega}{c} = 2\pi \frac{\nu}{c} = 476 \text{ rad.m}^{-1}$.

3. Un noeud correspond à une onde résultante d'amplitude nulle c'est-à-dire :

$$kx = \frac{\pi}{2} + p\pi$$

où $p \in \mathbb{Z}$. Les noeuds les plus proches de O correspondent à p = -2; -1; 0; 1. Ils sont situés en :

$$x = \pm 3, 3 \text{ mm}$$
 et $x = \pm 9, 9 \text{ mm}$

XI Déphasage

On lit directement sur la courbe en mode XY les amplitudes des deux signaux :

$$S_{m_A} = 3 \text{ V} \text{ et } S_{m_B} = 1,5 \text{ V}$$

Pour le déphasage on a de façon générale :

$$s_A(t) = S_{m_A} \cos(\omega t + \varphi_A)$$
 et $s_B(t) = S_{m_B} \cos(\omega t + \varphi_B)$

Par le changement de variable $t \to t - \varphi_A/\omega$ et donc un changement d'origine des temps, ceci peut aussi s'écrire :

$$s_A(t) = S_{m_A} \cos(\omega t)$$
 et $s_B(t) = S_{m_B} \cos(\omega t + \varphi_{B/A})$

A t=0, s_A est maximal et vaut S_{m_A} alors que $s_B(0)=S_{m_B}\cos\varphi_{B/A}=S_0=1$ V par lecture graphique. On a donc :

$$\varphi_{B/A} = \arccos\left(\frac{S_0}{S_{m_B}}\right) = 48.1 \,^{\circ}$$