Our Ref.: KOY-15

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

K. Nakano, et al

Serial No.:

Filed: Concurrently herewith

For: RADIOGRAPHIC IMAGE CONVERSION PANEL

January 23, 2004

Commissioner of Patents P.O. BOX 1450 Alexandria VA 222313-1450

Sir:

With respect to the above-captioned application, Applicant(s) claim the priority of the attached application(s) as Provided by 35 U.S.C. 119.

Respectfully submitted,

MUSERLIAN, LUCAS AND MERCANTI

Attorneys for Applicants 475 Park Avenue South New York, NY 10016

(212) 661-8000

Enclosed:

CERTIFIED PRIORITY DOCUMENT, JAPANESE PATENT APPLICATION

No.: JP2003-018564 filed January 28, 2003.

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 1月28日

出願番号

特願2003-018564

Application Number: [ST. 10/C]:

[JP2003-018564]

出 願 人
Applicant(s):

コニカミノルタホールディングス株式会社

2003年10月2~9日

ζ

特許庁長官 Commissioner, Japan Patent Office 今井康

ページ: 1/E

【書類名】

特許願

【整理番号】

DKT2407043

【あて先】

特許庁長官殿

【国際特許分類】

G21K 4/00

【発明者】

【住所又は居所】

東京都日野市さくら町1番地コニカ株式会社内

【氏名】

中野 邦昭

【発明者】

【住所又は居所】

東京都日野市さくら町1番地コニカ株式会社内

【氏名】

本田 哲

【発明者】

【住所又は居所】

東京都日野市さくら町1番地コニカ株式会社内

【氏名】

森川 修

【特許出願人】

【識別番号】

000001270

【氏名又は名称】 コニカ株式会社

【代表者】

岩居 文雄

【手数料の表示】

【予納台帳番号】

012265

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 放射線画像変換パネル及び放射線画像変換パネルの製造方法 【特許請求の範囲】

【請求項1】 支持体上に、少なくとも輝尽性蛍光体層を有する放射線画像変換パネルにおいて、該輝尽性蛍光体層が柱状結晶構造を有する輝尽性蛍光体を有し、且つ、前記輝尽性蛍光体層の表面100μm²当たりの柱状結晶の本数Nが下記一般式(1)を満たすことを特徴とする放射線画像変換パネル。

一般式(1)

 $5.0 \le N \le 4.0.00$

【請求項2】 柱状結晶の本数Nが下記一般式(2)を満たすことを特徴とする請求項1に記載の放射線画像変換パネル。

一般式(2)

 $1 \ 0 \ 0 \le N \le 2 \ 0 \ 0 \ 0$

【請求項3】 柱状結晶構造を有する輝尽性蛍光体層が気相堆積法により形成されたことを特徴とする請求項1または2に記載の放射線画像変換パネル。

【請求項4】 輝尽性蛍光体層が、下記一般式(3)で表される組成を有する輝尽性蛍光体を含有することを特徴とする請求項1~3のいずれか1項に記載の放射線画像変換パネル。

一般式(3)

 $M^{I}X \cdot a M^{II}X' \cdot 2 \cdot b M^{III}X'' \cdot 3 : e A$

〔式中、 M^I はLi、Na、K、RbおよびCsから選ばれる少なくとも一種のアルカリ金属であり、 M^{II} はBe、Mg、Ca、Sr、Ba、Zn、CdおよびNi からなる群から選ばれる少なくとも一種の二価金属であり、 M^{III} はSc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、GaおよびInから選ばれる少なくとも一種の三価金属であり、X、X およびX はF、Cl、BrおよびIからなる群から選ばれる少なくとも一種のハロゲンである。AはEu、Tb、In、Ga、Cs、Ce、Tm、Dy、Pr、Ho、Nd、Yb、Er、Gd、Lu、Sm、Y、Tl、Na、Ag、Cu Q0VMgからなる群から選ばれる少なくとも一種の金属

【請求項 5 】 前記一般式(3)の M^{I} は、K、R b およびC s から選ばれる少なくとも一種のアルカリ金属であることを特徴とする請求項 4 に記載の放射線画像変換パネル。

【請求項6】 前記一般式(3)のXは、BrまたはIであることを特徴とする請求項4または5に記載の放射線画像変換パネル。

【請求項7】 前記一般式(3)のMIIは、Be、Mg、Ca、Sr及びBaからなる群から選ばれる少なくとも一種の二価金属であることを特徴とする請求項4~6のいずれか1項に記載の放射線画像変換パネル。

【請求項8】 前記一般式 (3) の M^{III} は、Y、La、Ce、Sm、Eu、Gd、Lu、Al、 $Gaおよび Inから選ばれる少なくとも一種の三価金属であることを特徴とする請求項 <math>4\sim7$ のいずれか 1 項に記載の放射線画像変換パネル。

【請求項9】 前記一般式(3)のbが、 $0 \le b \le 10^{-2}$ であることを特徴とする請求項 $4 \sim 8$ のいずれか 1 項に記載の放射線画像変換パネル。

【請求項10】 前記一般式(3)のAが、Eu、Cs、Sm、Tl及びNaからなる群から選択される少なくとも1種の金属であることを特徴とする請求項4~9のいずれか1項に記載の放射線画像変換パネル。

【請求項11】 前記一般式(3)で表される組成を有する輝尽性蛍光体が下記一般式(4)で表される輝尽性蛍光体であることを特徴とする請求項4~10のいずれか1項に記載の放射線画像変換パネル。

一般式(4)

CsBr:yEu

〔式中、vは、 $1\times10^{-7}\sim1\times10^{-2}$ までの数値を表す。〕

【請求項12】 請求項1~11のいずれか1項に記載の放射線画像変換パネルを製造するに当たり、輝尽性蛍光体層が気相堆積法により形成される工程を有することを特徴とする放射線画像変換パネルの製造方法。

【請求項13】 輝尽性蛍光体層を形成しようとする支持体面の法線方向に

対して、輝尽性蛍光体または該輝尽性蛍光体の原料を特定の入射角で入射させることにより、前記支持体面の法線方向に対して特定の傾きを有し、且つ、独立した柱状結晶から構成される輝尽性蛍光体層を形成することを特徴とする請求項12に記載の放射線画像変換パネルの製造方法。

【請求項14】 入射角を、0°~80°の範囲に調整することを特徴とする請求項13に記載の放射線画像変換パネルの製造方法。

【請求項15】 入射角を、0°~70°の範囲に調整することを特徴とする請求項13に記載の放射線画像変換パネルの製造方法。

【請求項16】 請求項12~15のいずれか1項に記載の放射線画像変換パネルの製造方法を用いて製造されたことを特徴とする放射線画像変換パネル。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、放射線画像変換パネル及び放射線画像変換パネルの製造方法に関する。

[0002]

【従来の技術】

近年、輝尽性蛍光体を利用した放射線像変換パネルにより放射線像を画像化する方法が用いられるようになってきた。

[0003]

このような例としては、支持体上に輝尽性蛍光体層を形成した放射線像変換パネル(例えば、特許文献1、2参照。)を使用するものがある。

[0004]

このような放射線像変換パネルの輝尽性蛍光体層に被写体を透過した放射線をあてて被写体各部の放射線透過度に対応する放射線エネルギーを輝尽性蛍光体層に蓄積させて潜像(蓄積像)を形成し、この輝尽性蛍光体層を輝尽励起光(レーザ光が用いられる)で走査することによって各部に蓄積された放射線エネルギーを放射させて光に変換し、この光の強弱を読みとって画像を得る。この画像はCRT等各種のディスプレイ上に再生してもよいし、又ハードコピーとして再生し

てもよい。

[0005]

この放射線像変換方法に用いられる放射線像変換パネルの輝尽性蛍光体層には 、放射線吸収率及び光変換率が高いこと、画像の粒状性がよく、高鮮鋭性である ことが要求される。

[0006]

通常、放射線感度を高くするには輝尽性蛍光体層の膜厚を厚くする必要があるが、余り厚くなりすぎると、輝尽性蛍光体粒子間での輝尽発光の散乱のため発光が外部に出てこなくなる現象があり限界がある。

[0007]

又鮮鋭性については、輝尽性蛍光体層を薄層化するほど向上するが、薄すぎる と感度の現象が大きくなる。

[(8000)]

又粒状性についても画像の粒状性は放射線量子数の場所的ゆらぎ(量子モトル)或いは放射線像変換パネルの輝尽性蛍光体層の構造的乱れ(構造モトル)等によって決定されるので、輝尽性蛍光体層の層厚が薄くなると輝尽性蛍光体層に吸収される放射線量子数が減少してモトルが増加したり、構造的乱れが顕在化して構造モトルが増加したりして画質の低下を生ずる。従って画像の粒状性を向上させるためには輝尽性蛍光体層の層厚が厚い必要があった。

[0009]

この様に様々な要因から放射線像変換パネルを用いた放射線像変換方法の画質 及び感度は決定される。これらの感度や画質に関する複数の因子を調整して感度 、画質を改良するため、これまで様々な検討がされてきた。

[0010]

それらの内放射線画像の鮮鋭性改善の為の手段として、例えば形成される輝尽性蛍光体の形状そのものをコントロールし感度及び鮮鋭性の改良を図る試みがされている。

$[0\ 0\ 1\ 1]$

これらの試みの1つとして、微細な凹凸パターンを有する支持体上に輝尽性蛍

光体を堆積させ形成した微細な擬柱状ブロックからなる輝尽性蛍光体層を用いる方法(例えば、特許文献3参照。)がある。又、微細なパターンを有する支持体上に、輝尽性蛍光体を堆積させて得た柱状ブロック間のクラックをショック処理を施して更に発達させた輝尽性蛍光体層を有する放射線像変換パネル(例えば、特許文献4参照。)を用いる方法、更には、支持体の面に形成された輝尽性蛍光体層にその表面側から亀裂を生じさせ擬柱状とした放射線像変換パネル(例えば、特許文献5参照。)を用いる方法、更には、支持体の上面に蒸着により空洞を有する輝尽性蛍光体層を形成した後、加熱処理によって空洞を成長させ亀裂を設ける方法(例えば、特許文献6参照。)等も提案されている。

[0012]

最近では、支持体上に輝尽性蛍光体層を気相堆積法を用いての作製時、輝尽性 蛍光体成分の蒸気流の流線と支持体面との交角を特定の範囲に調節しながら、輝 尽性蛍光体層を所定の厚みに形成する方法(例えば、特許文献7参照。)が開示 され、また、気相堆積法によって支持体上に、支持体の法線方向に対し一定の傾 きをもった細長い柱状結晶が形成された輝尽性蛍光体層を有する放射線像変換パ ネル(例えば、特許文献8参照。)が提案されている。

[0013]

これらの蛍光体層の形状をコントロールする試みにおいては、蛍光体層を柱状結晶構造にすることにより、画質向上を目途としている。特に、柱状にすることにより、輝尽励起光(又輝尽発光)の横方向への拡散を抑える(クラック(柱状結晶)界面において反射を繰り返しながら支持体面まで到達する)ことができるため、輝尽発光による画像の鮮鋭性を著しく増大させることができるという特徴があるとされている。

[0014]

しかしながら、上記記載の気相成長(堆積)により形成した輝尽性蛍光体層を 有する放射線像変換パネルにおいても、より一層の高画質化が求められている。

[0015]

【特許文献1】

米国特許第3,859,527号明細書

[0016]

【特許文献2】

特開昭55-12144号公報

[0017]

【特許文献3】

特開昭 6 1 - 1 4 2 4 9 7 号公報

[0018]

【特許文献4】

特開昭 6 1 - 1 4 2 5 0 0 号公報

[0019]

【特許文献5】

特開昭62-3973号公報

[0020]

【特許文献6】

特開昭62-110200号公報

[0021]

【特許文献7】

特開昭62-157600号公報

[0022]

【特許文献8】

特許第2899812号明細書

[0023]

【発明が解決しようとする課題】

本発明の目的は、発光強度に優れ、且つ、高鮮鋭性を示す放射線画像変換パネル及び放射線画像変換パネルの製造方法を提供することである。

[0024]

【課題を解決するための手段】

本発明の上記目的は下記の構成1~16により達成された。

[0025]

- 1. 支持体上に、少なくとも輝尽性蛍光体層を有する放射線画像変換パネルにおいて、該輝尽性蛍光体層が柱状結晶構造を有する輝尽性蛍光体を有し、且つ、前記輝尽性蛍光体層の表面 $100 \mu m^2$ 当たりの柱状結晶の本数 N が前記一般式
 - (1)を満たすことを特徴とする放射線画像変換パネル。

[0026]

2. 柱状結晶の本数Nが前記一般式(2)を満たすことを特徴とする前記1に 記載の放射線画像変換パネル。

[0027]

3. 柱状結晶構造を有する輝尽性蛍光体層が気相堆積法により形成されたこと を特徴とする前記1または2に記載の放射線画像変換パネル。

[0028]

4. 輝尽性蛍光体層が、前記一般式(3)で表される組成を有する輝尽性蛍光体を含有することを特徴とする前記1~3のいずれか1項に記載の放射線画像変換パネル。

[0029]

5. 前記一般式(3)のM^Iは、K、RbおよびCsから選ばれる少なくとも 一種のアルカリ金属であることを特徴とする前記4に記載の放射線画像変換パネル。

[0030]

6. 前記一般式 (3) のXは、BrまたはIであることを特徴とする前記4または5に記載の放射線画像変換パネル。

[0031]

7. 前記一般式(3)の M^{II} は、Be、Mg、Ca、Sr 及 UBa からなる群から選ばれる少なくとも一種の二価金属であることを特徴とする前記 $4\sim6$ のいずれか 1 項に記載の放射線画像変換パネル。

[0032]

8. 前記一般式(3)の M^{III} は、Y、La、Ce、Sm、Eu、Gd、Lu、Al、Gaおよび <math>In から選ばれる少なくとも一種の三価金属であることを特徴とする前記 $4\sim7$ のいずれか 1 項に記載の放射線画像変換パネル。

[0033]

9. 前記一般式(3)のbが、 $0 \le b \le 10^{-2}$ であることを特徴とする前記 4 < 8 のいずれか 1 項に記載の放射線画像変換パネル。

[0034]

10. 前記一般式(3)のAが、Eu、Cs、Sm、Tl及びNaからなる群から選択される少なくとも1種の金属であることを特徴とする前記 $4\sim9$ のいずれか1項に記載の放射線画像変換パネル。

[0035]

11. 前記一般式(3)で表される組成を有する輝尽性蛍光体が前記一般式(4)で表される輝尽性蛍光体であることを特徴とする前記4~10のいずれか1項に記載の放射線画像変換パネル。

[0036]

12. 前記1~11のいずれか1項に記載の放射線画像変換パネルを製造するに当たり、輝尽性蛍光体層が気相堆積法により形成される工程を有することを特徴とする放射線画像変換パネルの製造方法。

[0037]

13.輝尽性蛍光体層を形成しようとする支持体面の法線方向に対して、輝尽性蛍光体または該輝尽性蛍光体の原料を特定の入射角で入射させることにより、前記支持体面の法線方向に対して特定の傾きを有し、且つ、独立した柱状結晶から構成される輝尽性蛍光体層を形成することを特徴とする前記12に記載の放射線画像変換パネルの製造方法。

[0038]

14.入射角を、0°~80°の範囲に調整することを特徴とする前記13に 記載の放射線画像変換パネルの製造方法。

[0039]

15.入射角を、0°~70°の範囲に調整することを特徴とする前記13に 記載の放射線画像変換パネルの製造方法。

[0040]

16. 前記12~15のいずれか1項に記載の放射線画像変換パネルの製造方

[0041]

以下、本発明を詳細に説明する。

本発明者等は、上記記載の問題点を種々検討した結果、請求項1に記載のように、支持体上に、少なくとも輝尽性蛍光体層を有する放射線画像変換パネルにおいて、該輝尽性蛍光体層が柱状結晶構造を有する輝尽性蛍光体を有し、且つ、前記輝尽性蛍光体層の表面100 μ m²当たりの柱状結晶の本数Nが前記一般式(1)を満たすように調整することにより、発光強度に優れ、且つ、高鮮鋭性を示す放射線画像変換パネルを得ることが出来る。

[0042]

《輝尽性蛍光体層》

本発明に係る輝尽性蛍光体層について説明する。

[0043]

本発明に係る輝尽性蛍光体層に用いられる輝尽性蛍光体としては、前記一般式(3)、前記一般式(4)で表される組成を有するアルカリハライド型輝尽性蛍光体が好ましく、特に好ましく用いられるのは、前記一般式(4)で表される組成を有する輝尽性蛍光体は、X線吸収が大きく、更なる高感度化が可能であり、柱状結晶を精密に制御して形成することにより、高感度、高鮮鋭性を両立させることが出来る。

[0044]

前記一般式(3)、(4)等、上記の輝尽性蛍光体の作製は、特公平7-84 589号、同7-74334号、同7-84591号、同5-01475号等に 記載の材料を蛍光体製造の為に用いることが出来る。

[0045]

本発明に係る輝尽性蛍光体層は、柱状結晶構造を有するが、前記柱状結晶は各々が独立し、ある間隔を隔てて結晶成長した結晶構造を有することが好ましい、ここで、各々の結晶がある間隙をおいて独立に柱状結晶構造を持つように成長させる方法は、例えば、特許第2899812号に記載された方法を参照することが出来る。また、本発明に記載の効果を得るためには、本発明に係る柱状結晶構

造は、輝尽性蛍光体層の表面 $100 \mu m^2$ 当たりの柱状結晶の本数 N が前記一般式 (1) を満たすを満たすことが必須要件であり、好ましくは、前記一般式 (2) を満たすものである。

[0046]

上記のような柱状結晶構造を有し、且つ、輝尽性蛍光体層の表面 $100 \mu m^2$ 当たりの柱状結晶の本数 Nが前記一般式(1)を満たすような、輝尽性蛍光体層の作製には、気相堆積法による輝尽性蛍光体層の作製が好ましい。

[0047]

《気相堆積法による輝尽性蛍光体層の作製》

輝尽性蛍光体を気相成長(気相堆積法)させ、柱状結晶に成長させる方法としては蒸着法、スパッタ法及びCVD法等が好ましく用いられる。

[0048]

気相堆積法とは、支持体上に特定の入射角で輝尽性蛍光体の蒸気または該原料を供給し、結晶を気相成長(気相堆積法と呼ぶ)させる方法によって独立した細長い柱状結晶構造を有する輝尽性蛍光体層を得ることが出きる。また、蒸着時の輝尽性蛍光体の蒸気流の入射角に対し約半分の成長角で柱状結晶を結晶成長させることができる。

[0049]

輝尽性蛍光体または輝尽性蛍光体原料の蒸気流を支持体面に対しある入射角をつけて供給する方法には、支持体を蒸発源を仕込んだ坩堝に対し互いに傾斜させる配置を取る、或いは、支持体と坩堝を互いに平行に設置し、蒸発源を仕込んだ坩堝の蒸発面からスリット等により斜め成分のみ支持体上に蒸着させる様規制する等の方法をとることができる。

[0050]

これらの場合において、支持体と坩堝との最短部の間隔は輝尽性蛍光体の平均 飛程に合わせて概ね10cm~60cmに設置するのが好ましい。

[0051]

(支持体温度、支持体の表面粗さ、真空度等の設定)

前記柱状結晶の太さは支持体温度、真空度、蒸気流入射角度等によって影響を

受け、これらを制御することによって所望の太さの柱状結晶を作製することが可能である。

[0052]

(a) 支持体温度

[0053]

(b) 真空度

真空度については、 5×10^{-5} Pa ~ 1 Pa の範囲が好ましく、更に好ましくは、 1×10^{-4} Pa ~ 0 . 5 Pa の範囲である。

[0054]

(c) 支持体の表面粗さRa(JIS B 0601に規定された値)

支持体の表面粗さについては、平滑性が高くなるにつれて前記柱状結晶の太さが細くなる傾向にあるが、好ましくは、Raが0.5以下であり、更に好ましくは、0.1以下である。

(0055)

また、蒸着中に、上記の支持体温度、真空度等を適宜組み合わせを変更することによって、輝尽性蛍光体層の表面 $100 \mu m^2$ 当たりの柱状結晶の本数Nをより最適に制御することが可能である。

[0056]

これらの柱状結晶からなる輝尽性蛍光体層において変調伝達関数(MTF)をよくするためには、柱状結晶の大きさ(柱状結晶を支持体と平行な面から観察したときの各柱状結晶の断面積の円換算した直径の平均値であり、少なくとも100 の個以上の柱状結晶を視野中に含む顕微鏡写真から計算する)は 1μ m~ 50μ m程度がよく、更に好ましくは、 1μ m~ 30μ mである。即ち、柱状結晶が 1μ mより細い場合は、柱状結晶により輝尽励起光が散乱される為にMTFが低下するし、柱状結晶が 50μ m以上の場合も輝尽励起光の指向性が低下し、MTFは低下する。

[0057]

又各柱状結晶間の間隙の大きさは 30μ m以下がよく、更に好ましくは 5μ m 以下がよい。即ち、間隙が 30μ mを越える場合は蛍光体層中の蛍光体の充填率が低くなり、感度が低下してしまう。

[0058]

(蒸着法)

蒸着法は支持体を蒸着装置内に設置したのち、装置内を排気して1.0×10-4 P a 程度の真空とし、次いで、輝尽性蛍光体の少なくとも1つを抵抗加熱法、エレクトロンビーム法などの方法で加熱蒸発させて支持体表面に輝尽性蛍光体を所望の厚みに斜め堆積させる。この結果、結着剤を含有しない輝尽性蛍光体層が形成されるが、前記蒸着工程では複数回に分けて輝尽性蛍光体層を形成することも可能である。また、前記蒸着工程では複数の抵抗加熱器或いはエレクトロンビームを用いて蒸着を行うことも可能である。また蒸着法においては、輝尽性蛍光体原料を複数の抵抗加熱器或いはエレクトロンビームを用いて蒸着し、支持体上で目的とする輝尽性蛍光体を合成すると同時に輝尽性蛍光体層を形成することも可能である。更に蒸着法においては、蒸着時に必要に応じて被蒸着物を冷却或いは加熱してもよい。蒸着終了後、輝尽性蛍光体層を加熱処理してもよい。

[0059]

また、蒸着装置の排気バルブの開口の絞りを調節する、窒素ガス、アルゴンガス等のガスを蒸着時に導入し、 1×10^{-4} Pa ~1 Pao真空度で蒸着しても良い。

[0060]

(スパッタ法)

スパッタ法は前記蒸着法と同様に支持体をスパッタ装置内に設置した後、装置内を一旦排気して1.333×10-4Pa程度の真空度とし、次いでスパッタ用のガスとしてAr、Ne等の不活性ガスを装置内に導入して1.333×10-1Pa程度のガス圧とする。次に、前記輝尽性蛍光体をターゲットとして、斜めにスパッタリングすることにより支持体表面に輝尽性蛍光体を所望の厚さに斜めに堆積させる。このスパッタ工程では蒸着法と同様に複数回に分けて輝尽性蛍光体

層を形成することも可能であるし、それぞれを用いて同時或いは順次、前記ターゲットをスパッタリングして輝尽性蛍光体層を形成することも可能である。また、スパッタ法では、複数の輝尽性蛍光体原料をターゲットとして用い、これを同時或いは順次スパッタリングして、支持体上で目的とする輝尽性蛍光体層を形成する事も可能であるし、必要に応じてO2、H2等のガスを導入して反応性スパッタを行ってもよい。更に、スパッタ法においては、スパッタ時必要に応じて被蒸着物を冷却或いは加熱してもよい。また、スパッタ終了後に輝尽性蛍光体層を加熱処理してもよい。

$[0\ 0\ 6\ 1]$

(CVD法)

CVD法は、目的とする輝尽性蛍光体或いは輝尽性蛍光体原料を含有する有機 金属化合物を熱、高周波電力等のエネルギーで分解することにより、支持体上に 結着剤を含有しない輝尽性蛍光体層を得るものであり、いずれも輝尽性蛍光体層 を支持体の法線方向に対して特定の傾きをもって独立した細長い柱状結晶に気相 成長させることが可能である。

$[0\ 0\ 6\ 2\]$

(輝尽性蛍光体層の膜厚)

これらの方法により形成した輝尽性蛍光体層の膜厚は目的とする放射線像変換パネルの放射線に対する感度、輝尽性蛍光体の種類等によって異なるが、 10μ m $\sim 1000\mu$ mの範囲が好ましく、更に好ましくは、 20μ m $\sim 800\mu$ mの範囲である。

[0063]

また、上記記載の気相堆積法を用いて輝尽性蛍光体層の作製時、蒸発源となる輝尽性蛍光体は、均一に溶解させるか、プレス、ホットプレスによって成形して坩堝に仕込まれる。この際、脱ガス処理を行うことが好ましい。蒸発源から輝尽性蛍光体を蒸発させる方法は電子銃により発した電子ビームの走査により行われるが、これ以外の方法にて蒸発させることもできる。

[0064]

また、蒸発源は必ずしも輝尽性蛍光体である必要はなく、輝尽性蛍光体原料を

混和したものであってもよい。

[0065]

また、賦活剤は母体(basic substance)に対して賦活剤(actibator)を混合したものを蒸着してもよいし、母体のみを蒸着した後、あとから賦活剤をドープしてもよい。例えば、母体であるRbBrのみを蒸着した後、例えば賦活剤であるTlをドープしてもよい。即ち、結晶が独立しているため、膜が厚くとも充分にドープ可能であるし、結晶成長が起こりにくいので、MTFは低下しないからである。

[0066]

ドーピングは形成された蛍光体の母体層中にドーピング剤(賦活剤)を熱拡散 、イオン注入法によって行うことが出来る。

$[0\ 0\ 6\ 7\]$

ここで、本発明に係る輝尽性蛍光体層の形成を図1を用いて説明する。

図1は、本発明に係る柱状結晶構造を有する輝尽性蛍光体層の模式図である。

[0068]

図1は、支持体上に柱状結晶1が直立状に形成された場合であり、Tは柱状結晶1の長さ、0.1Tは、支持体上から柱状結晶1の長さTの1/10だけ離れている部位を表す。D2は、柱状結晶1の最表面での柱状結晶1の大きさ(柱の太さを表す)であり、D1は、支持体から上記0.1Tの距離だけ離れた部位での柱状結晶1の太さを表す。また、図1のように、直立状に柱状結晶が成長する場合の輝尽性蛍光体原料の蒸気流の支持体面への入射角は0度である。

[0069]

この様にして支持体上に形成した輝尽性蛍光体層は、結着剤を含有していないので、指向性に優れており、輝尽励起光及び輝尽発光の指向性が高く、輝尽性蛍光体を結着剤中に分散した分散型の輝尽性蛍光体層を有する放射線画像変換パネルより層厚を厚くすることができる。更に輝尽励起光の輝尽性蛍光体層中での散乱が減少することで像の鮮鋭性が向上する。

[0070]

又、柱状結晶間の間隙に結着剤等充填物を充填してもよく、輝尽性蛍光体層の

補強となる。又高光吸収率の物質、高光反射率の物質等を充填してもよい。これにより前記補強効果をもたせるほか、輝尽性蛍光体層に入射した輝尽励起光の横 方向への光拡散をほぼ完全に防止できる。

[0071]

高光反射率の物質とは、輝尽励起光(500nm~900nm、特に600nm~800nm)に対する反射率の高いものをいい、例えばアルミニウム、マグネシウム、銀、インジウムその他の金属など、白色顔料及び緑色から赤色領域の色材を用いることができる。

[0072]

白色顔料は輝尽発光も反射することができる。白色顔料として、 TiO_2 (アナターゼ型、ルチル型)、MgO、 $PbCO_3$ ・Pb(OH) $_2$ 、 $BaSO_4$ 、 Al_2O_3 、M(II)FX(但し、M(II)はBa、Sr及びCaの中の少なくとも一種であり、<math>XはCl、 $及びBrのうちの少なくとも一種である。)、<math>CaCO_3$ 、ZnO、 Sb_2O_3 、 SiO_2 、 ZrO_2 、 $Jトポン(<math>BaSO_4$ · ZnS)、珪酸マグネシウム、塩基性珪硫酸鉛、塩基性燐酸鉛、珪酸アルミニウムなどが挙げられる。これらの白色顔料は隠蔽力が強く、屈折率が大きいため、光を反射したり、屈折させることにより輝尽発光を容易に散乱し、得られる放射線画像変換パネルの感度を顕著に向上させうる。

[0073]

又、高光吸収率の物質としては、例えば、カーボン、酸化クロム、酸化ニッケル、酸化鉄など及び青の色材が用いられる。このうちカーボンは輝尽発光も吸収する。

[0074]

又、色材は、有機若しくは無機系色材のいずれでもよい。有機系色材としては、ザボンファーストブルー3G(ヘキスト製)、エストロールブリルブルーNー3RL(住友化学製)、D&CブルーNo.1(ナショナルアニリン製)、スピリットブルー(保土谷化学製)、オイルブルーNo.603(オリエント製)、キトンブルーA(チバガイギー製)、アイゼンカチロンブルーGLH(保土ヶ谷化学製)、レイクブルーAFH(協和産業製)、プリモシアニン6GX(稲畑産

業製)、ブリルアシッドグリーン6BH(保土谷化学製)、シアンブルーBNR CS(東洋インク製)、ライオノイルブルーSL(東洋インク製)等が用いられる。又カラーインデクスNo.24411、23160、74180、74200、22800、23154、23155、24401、14830、15050、15760、15707、17941、74220、13425、13361、13420、11836、74140、74380、74350、74460等の有機系金属錯塩色材も挙げられる。無機系色材としては群青、コバルトブルー、セルリアンブルー、酸化クロム、TiO2-ZnO-Co-NiO系顔料が挙げられる。

[0075]

また、本発明では本発明の放射線画像変換パネルに用いられる輝尽性蛍光体と しては、例えば、特開昭48-80487号に記載されているBaSO4:Ax で表される蛍光体、特開昭48-80488号に記載のMgSO4:Axで表さ れる蛍光体、特開昭 4 8 - 8 0 4 8 9 号に記載されているSrSO4:A x で表 される蛍光体、特開昭 5 1 - 2 9 8 8 9 号に記載されている N a 2 S O4、 C a S O4及びBaSO4等にMn、Dy及びTbの中少なくとも1種を添加した蛍光体 、特開昭52-30487号に記載されているBeO、LiF、MgSO4及び CaF₂等の蛍光体、特開昭53-39277号に記載されているLi₂B₄O₇: Cu, Ag等の蛍光体、特開昭54-47883号に記載されているLi₂O・ (Be₂O₂) x:Cu, Ag等の蛍光体、米国特許第3, 859, 527号に記 載されているSrS:Ce,Sm、SrS:Eu,Sm、La2О2S:Eu,S m及び(Zn, Cd)S:Mnxで表される蛍光体が挙げられる。又、特開昭5 5-12142号に記載されているZnS:Cu, Pb蛍光体、一般式がBaO ・x A l₂O₃:E u で挙げられるアルミン酸バリウム蛍光体、及び、一般式がM (II) O·xSiO2: Aで表されるアルカリ土類金属珪酸塩系蛍光体が挙げら れる。

[0076]

又、特開昭 55-12143 号に記載されている一般式が(Ba_{1-x-y} M g_x C a_y) F_x : Eu^{2+} で表されるアルカリ土類フッ化ハロゲン化物蛍光体、特開昭 5

5-12144号に記載されている一般式がLnOX:xAで表される蛍光体、特開昭 55-12145号に記載されている一般式が($Ba_{1-x}M$ (II) $_x$) F_x : yAで表される蛍光体、特開昭 55-84389号に記載されている一般式が BaFX:xCe, yAで表される蛍光体、特開昭 55-160078号に記載されている一般式がM (II) $FX\cdot x$ A: yLnで表される希土類元素賦活二価金属フルオロハライド蛍光体、一般式 ZnS:A、 CdS:A、 (Zn, Cd) S:A, Xで表される蛍光体、特開昭 59-38278号に記載されている下記いずれかの一般式

 $x M_3 (P O_4) 2 \cdot N X_2 : y A$

 $x M_3 (P O_4) 2 : y A$

で表される蛍光体、特開昭 59-155487号に記載されている下記いずれかの一般式

n R e X3 · m A X′ 2: x E u

n R e X3 · m A X′ 2: x E u, y S m

で表される蛍光体、特開昭61-72087号に記載されている下記一般式

M (I) $X \cdot aM$ (II) $X' \cdot 2 \cdot bM$ (III) $X'' \cdot 3 : cA$

で表されるアルカリハライド蛍光体、及び特開昭61-228400号に記載されている一般式M(I)X:xBiで表されるビスマス賦活アルカリハライド蛍光体等が挙げられる。

[0077]

特に、アルカリハライド蛍光体は、蒸着、スパッタリング等の方法で柱状の輝 尽性蛍光体層を形成させやすく好ましい。

[0078]

又、前述のように、アルカリハライド蛍光体の中でもCsBr系蛍光体が高輝度、高画質である点で好ましい。

[0079]

《支持体》

本発明に係る支持体について説明する。

[0080]

支持体としては、各種高分子材料、ガラス、セラミックス、金属、カーボン繊維、カーボン繊維を含む複合材料等が用いられ、例えば、石英、ホウ珪酸ガラス、化学的強化ガラス、結晶化ガラスなどの板ガラス、あるいはアルミナ、窒化珪素等のセラミックス、セルロースアセテートフィルム、ポリエステルフィルム、ポリエチレンテレフタレートフィルム、ポリアミドフィルム、ポリイミドフィルム、トリアセテートフィルム、ポリカーボネートフィルム等のプラスチックフィルム、アルミニウム、鉄、銅、クロム等の金属シートあるいは親水性微粒子の被覆層を有する金属シートが好ましい。これら支持体の表面は滑面であってもよいし、輝尽性蛍光体層との接着性を向上させる目的でマット面としてもよい。また、本発明においては、支持体と輝尽性蛍光体層の接着性を向上させるために、必要に応じて支持体の表面に予め接着層を設けてもよい。

[0081]

(支持体の膜厚)

[0082]

【実施例】

以下、本発明を実施例により説明するが、本発明はこれらに限定されない。

[0083]

実施例1

《放射線画像変換パネル1の作製》:比較例

以下に記載の方法に従って、蒸着型蛍光体層を有する放射線画像変換パネル1 を作製した。

[0084]

(支持体1の作製)

厚さ 5 0 0 μ m厚の透明結晶化ガラス上の下記のようにして光反射層を設け、 支持体 1 を作製した。支持体 1 の表面粗さ(Ra)は、0.01であった。

[0085]

(光反射層の形成)

フルウチ化学社製酸化チタンとフルウチ化学社製酸化ジルコニウムとを、400nmでの反射率が85%、660nmでの反射率が20%となるように、蒸着装置を用いて支持体表面に膜形成を行った。

[0086]

(輝尽性蛍光体プレート1の作製)

上記作製した支持体 1 を 2 4 0 $\mathbb C$ 加温し、真空チャンバー中に窒素ガスを導入し、真空度を 0 . 2 7 P a とした後、支持体の一方の面に、当該業者公知の蒸着装置を用いて、 $\mathbb C$ s B r : 0 . 0 0 1 E $\mathfrak u$ からなるアルカリハライド蛍光体を支持体表面の法線方向に対して $\mathfrak O$ 。の入射角度で、アルミニウム製のスリットを用いて、支持体とスリット(蒸着源)の距離を $\mathfrak O$ $\mathfrak C$ m として、支持体と平行な方向に支持体を搬送しながら蒸着を行って、 $\mathfrak O$ $\mathfrak O$ $\mathfrak W$ m 厚の柱状構造を有する蛍光体層を形成した。

[0087]

上記形成した蛍光体層のヘイズ率を、ASTMD-1003に記載の方法により測定した結果、蛍光体層のヘイズ率は50%であった。

[0088]

上記で作製した輝尽性蛍光体プレート1を用いて放射線画像変換パネル1を作製した。詳しくは、輝尽性蛍光体層を有するガラス状の側縁部にスペーサを介して、各輝尽性蛍光体層と保護層として用いるガラスとの間に、低屈折率層として空気層が100μmの厚みになるように、ガラス製の保護層を設けた。なお、スペーサとしてはガラスセラミックス製で、支持体及び保護層ガラスの間に輝尽性蛍光体層及び低屈折率層(空気層)が所定の厚みとなるように厚みを調整したものを用い、ガラス支持体及びガラス製の保護層の側縁部は、エポキシ系接着剤を用いて接着し、放射線画像変換パネル1を作製した。

[0089]

《放射線画像変換パネル2の作製》:比較例

放射線画像変換パネル1の作製において、表1に記載のように蒸着条件を変更 した以外は同様にして放射線画像変換パネル2を各々作製した。 [0090]

《放射線画像変換パネル3~6の作製》:本発明

放射線画像変換パネル1の作製において、表1に記載のように蒸着条件を変更 した以外は同様にして放射線画像変換パネル3~6を各々作製した。

[0091]

尚、表1に記載の蒸着条件において、支持体の温度、真空度の変更のタイミングは、支持体上に形成された柱状結晶の長さが図1に記載の、予め設定している柱状結晶の長さTの約50%(±5%)に成長した時点で行った。また、変更の時点(タイミングともいう)は、予め結晶成長の速度を電子顕微鏡等を用いた経過観察により得られた実験データを基に決定した。

[0092]

得られた放射線画像変換パネル $1\sim 6$ の各々について、発光輝度と鮮鋭性を評価した。

[0093]

《鮮鋭性評価》

鮮鋭性については、変調伝達関数(MTF)を求め評価した。

[0094]

各放射線画像変換パネルにCTFチャートを貼りつけた後、80 k V pのX線を10 m R(被写体までの距離;1.5 m)照射した後、蛍光体層 A を有する面側から半導体レーザ光(690 n m、パネル上でのパワー40 m W)を照射して、直径 $100 \mu \text{ m} \phi$ の半導体レーザ光でCTFチャートを走査し、読みとって求めた。表1の記載の値は、0.51 p / mmにおける放射線画像変換パネル5のMTF値を1.00 とし、各パネルについて相対値で求めたものである。

[0095]

《輝度(感度)評価》

放射線画像変換パネル1~6の各々について、以下のようにして輝度測定を行った。

[0096]

輝度の測定は、各放射線画像変換パネルについて、管電圧80kVpのX線を

蛍光体シート支持体の裏面側から照射した後、パネルをHe-Neレーザー光(633nm)で操作して励起し、蛍光体層から放射される輝尽発光を受光器(分光感度S-5の光電子像倍管)で受光して、その強度を測定して、これを輝度と定義し、放射線画像変換パネル5の輝度を1.00とした、相対値で表示した。

[0097]

得られた結果を表1に示す。

[0098]

【表1】

本数(N) 輝度	海馬	Hи	鮮鋭性		蒸着条件	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	葡
				表面粗さ(Ra)	支持体温度(°C)	真空度(Pa)	
6000 0.54			1.56	0.20	25	0.27	比較例
20 1.67 0			0.45	0.50	300	1.33	比較例
55 1.33 0		0	97.0	0.20	200	0.13	本発明
200 1.24 0		0	98.0	0.02	200	0.13	本発明
925 1.00	Ĺ.		00.1	0.20	100	1.33	本発明
3800 0.88 1			1.32	0.02	100	0.13	本発明
本数(N):獨民性带半体層の表面 100 ""	つき面 100	100	2 " " "	2 当たりの柱状結晶の本数	島の木数		

[0099]

表1から、比較に比べて、本発明の試料は、発光輝度、鮮鋭性共に優れている ことが明らかである。

[0100]

【発明の効果】

ページ: 23/E

本発明により、発光強度に優れ、且つ、高鮮鋭性を示す放射線画像変換パネル 及び放射線画像変換パネルの製造方法を提供することが出来た。

【図面の簡単な説明】

【図1】

柱状結晶構造を有する輝尽性蛍光体層の一態様を示す模式図である。

【符号の説明】

- 1 柱状結晶
- T 柱状結晶の長さ
- D2 柱状結晶の太さ

【書類名】

図面

【図1】

【書類名】

要約書

【要約】

【課題】 発光強度に優れ、且つ、高鮮鋭性を示す放射線画像変換パネル及び放 射線画像変換パネルの製造方法を提供する。

【解決手段】 支持体上に、少なくとも輝尽性蛍光体層を有する放射線画像変換 パネルにおいて、該輝尽性蛍光体層が柱状結晶構造を有する輝尽性蛍光体を有し 、且つ、前記輝尽性蛍光体層の表面 1 0 0 μ m²当たりの柱状結晶の本数 N が下 記一般式(1)を満たすことを特徴とする放射線画像変換パネル。

一般式(1)

 $5.0 \le N \le 4.0.00$

【選択図】 なし

ページ: 1/E

認定 · 付加情報

特許出願の番号 特願2003-018564

受付番号 50300131258

書類名 特許願

担当官 第一担当上席 0090

作成日 平成15年 1月29日

<認定情報・付加情報>

【提出日】 平成15年 1月28日

次頁無

特願2003-018564

出願人履歴情報

識別番号

[000001270]

1. 変更年月日

1990年 8月14日

[変更理由]

新規登録

住 所

東京都新宿区西新宿1丁目26番2号

氏 名 コニカ株式会社

2. 変更年月日

2003年 8月 4日

[変更理由]

名称変更

住 所 氏 名 東京都新宿区西新宿1丁目26番2号

コニカミノルタホールディングス株式会社

3. 変更年月日 [変更理由]

2003年 8月21日

2田」 任

住所変更

住 所

東京都千代田区丸の内一丁目6番1号

氏 名 コニカミノルタホールディングス株式会社