CONCORDIA UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING

COMP 232: MATHEMATICS FOR COMPUTER SCIENCE FALL 2015

ASSIGNMENT 3

PROBLEM 1.

Let *A* and *B* be sets. Prove that $A \subseteq B$ if and only if $P(A) \subseteq P(B)$.

PROBLEM 2.

Let A, B, C, and D be sets. Prove or disprove the following:

$$(A \cap B) \cup (C \cap D) = (A \cap D) \cup (C \cap B).$$

PROBLEM 3.

Give an example of two uncountable sets A and B such that A - B is

- (a) Countably Infinite.
- (b) Uncountable.

PROBLEM 4.

Prove that $\lfloor 3x \rfloor = \lfloor x \rfloor + \lfloor x + 1/3 \rfloor + \lfloor x + 2/3 \rfloor$.

PROBLEM 5.

- (a) Give an example of a function from \mathbf{Z}^+ to \mathbf{Z}^+ that is neither one-to-one nor onto.
- (b) Let $g:A\to B$ and $f:B\to C$ be functions. Let $f\circ g$ be onto. Are both f and g necessarily onto?
- (c) Let f be a function from **R** to **R** defined by $f(x) = x^2$. Find $f^{-1}(\{x \mid 0 < x < 1\})$.

PROBLEM 6.

Draw the graph of $\lceil x/2 \rceil \cdot \lfloor x/2 \rfloor$.

PROBLEM 7.

Let a and b be integers, and m be a positive integer. Prove that

$$ab \equiv [(a \pmod{m}) \cdot (b \pmod{m})] \pmod{m}$$
.

PROBLEM 8.

Prove that $a^3 \equiv a \pmod{3}$ for every positive integer a.

PROBLEM 9.

Prove that if p is a prime number greater than 3, then $p^2 = 6k + 1$, for some integer k.

PROBLEM 10.

Let a, b, and d be integers such that $d \ge 2$ and $a \equiv b \pmod{d}$, then $\gcd(a, d) = \gcd(b, d)$.