CS 250 Midterm 1 - Fall 2022

schari

September 2022

1 Sections of textbook to review

- Chapter 3
- Chapter 4
- Chapter 2.17
- Chapter 5.1-5.10

2 What is Computer Architecture?

3 Information Representation

- Computers use a representation defined by a pair of symbols to represent all kinds of information
 - This is known as a bit, where a bit is defined as either a 0 or a 1
 - A bit string is an ordered sequence of bits
 - A byte is an 8-bit bit string
 - Ex: 01101001 is a byte and a bit string
- The reason computers use a 2-symbol representation is because it is easy to do so by controlling voltage; on is a 1 and off is a 0
- How do you represent a bit string electrically?
 - To represent a k-bit string electrically, you'll want k wires to each hold one bit of the string
 - A bunch of k wires carrying k bits for a k-bit string is a k-bit **bus**.
 - On a diagram, you typically see a bus represented as a single line.
 - A k-bit string can represent 2^k unique sequences
- Hexadecimal Notation

Table 1: Table between hexadecimal, binary, and decimal values

Hexadecimal	Binary	Decimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
A	1000	10
В	1011	11
\mathbf{C}	1100	12
D	1101	13
${f E}$	1100	14
F	1111	15

- To shorten the binary data that computers read, we usually use hexadecimal notation to view binary data
- 4 bits map to one hexadecimal digit
- Prefixes for 2^k
 - Kibi is $2^{10} \approx 10^3$ (which is kilo)
 - Mebi is $2^{20} \approx 10^6$ (which is mega)
 - Gibi is $2^{30} \approx 10^9$ (which is giga)
 - Tebi is $2^{40} \approx 10^{12}$ (which is tera)
 - Note: you drop the last two letters of the 10^k prefix and add bi (for binary) to approximate the 2^k prefix
 - $-2^{10} = 1024$ and $10^3 = 1000$

4 Computer Memory

- **Memory** is computer hardware that functions can write data to and read data from
- Memory contains locations where data is stored, as well as unique addresses that point to those locations
 - $-\,$ How do we define 2^k unique "points" in physical memory with k bits?

- We delegate $2^{k/2}$ wires of the bit string as "horizontal" wires and the other $2^{k/2}$ wires of the bit string as "vertical" wires
- This creates a grid with 2^k individual locations defined by k bits
- With this, we can define a pointer-mapping circuit that takes a k-bit pointer that maps to 2^k locations in memory
- What actually goes at each of these "locations"?
 - You would use a piece of circuitry called a **register**.
 - The register is made up of 4 parts: k 1-bit latches (1 latch for each bit), an enable line, an input bus, and an output bus
 - The output bus returns the contents of the latches (which each store one bit in the bit string)
 - The enable line tells the latch when to accept new values for each bit through the input bus (the latches won't change in value until we tell it to change)

• Pointing

- To actually receive data from memory, we use a circuit called a $\bf de-\bf coder$
- The decoder has k wires as an input and 2^k wires as an output
- Based on the input wires, the decoder will have one of the output wires carrying voltage, while the rest of them have no voltage
- One of the applications of a decoder is to use the decoder as a pointer-mapping circuit that points a k-bit address to one of 2^k locations in memory

• The multiplexer (mux)

- The multiplexer is a circuit that takes in an address and returns the contents of the location in memory that address points to
- It is used to read data from memory
- It has 2 inputs: an n-bit bus that represents the address of the register you want the data of, and 2^n k-bit buses that represent the wires connecting from the memory to the mux
- The mux is given the address as input, then the mux retrieves the data from the corresponding bus
- The mux then outputs the data through its k-bit bus

• The demultiplexer (demux)

 The demultiplexer is a circuit that takes in an address and some data and writes that data to the location in memory that address points to

- It has 2 inputs: an n-bit bus that represents the address of the register you want to write to, and a k-bit bus that represents the new data you want to store the value of
- The demux points to one of the corresponding 2^n k-bit output buses and outputs the k-bit string to write the string to the corresponding location in memory
- Essentially the inverse of the mux function; mux function reads information, while the demux function writes information
- When a bit string is transported from memory to the processor, it's called a fetch.
- 5 Processors
- 6 Machine Instructions
- 7 Why Assembly?