Introduction

Mahendra Pratap Singh
Assistant Professor
Dept. of Computer Science and Engineering

Present Scenario

The different types of cyber attacks

Cyber crime worldwide cost \$400 billion in 2015 and is forecast to reach \$2 trillion in 2019*

Information Security Advice

- WhatsApp has become a common messenger now a days.
- With the help of mobile you can check the profile photo of the particular user.
- This may not be safe if the number falls into wrong hands.
- They may misuse your photo.
- To avoid this, set the privacy settings of your profile photo only to my contacts.

Why We Should Care about Security?

- We use internet for many things
 - Online banking
 - Online shopping
 - Booking tickets ...
- We store many things in computers
 - Photos
 - Files
 - Credit Card Number....

Vulnerability and Attack

- Vulnerability: a weakness in system which allows a malicious user to gain access.
- Attack: a successful strategy to exploit a vulnerability in order to gain illegal access.
 - · Active
 - Passive
- Attacker: someone who crafts an attack
 - Insider attacker- e.g., Employee, Vendor, Partner
 - Outside attacker- e.g., Cyber-criminals, Spies, Hackers, Malware, Nation-state intelligence agencies, etc.

Active Attack

 An active attack attempts to alter system resources or affect their operations.

Figure 1.7 Modification of Messages

Figure 1.7 Denial of Service (DoS)

Passive Attack

 A passive attack attempts to learn or make use of information from the system but does not affect system resources.

Figure 1.3 Release of Message Contents

Figure 1.3 Traffic Analysis

Threat

• A threat is a possible danger that might exploit a vulnerability to breach security.

Attacks	Passive/Active	Threatening
Snooping Traffic analysis	Passive	Confidentiality
Modification Masquerading Replaying Repudiation	Active	Integrity
Denial of service	Active	Availability

Network and System Attacks

- Information Gathering
- Buffer Overflow Attacks
- □ Format String Attacks
- SQL Injection Attacks
- Spoofing Attacks
- Phishing Attacks
- DoS Attacks
- □ Virus, Worms, Trojan Horse
- Session Hijacking
- Snooping and Sniffing
- OS and Unix System Security
- Botnets
- Spamming

Defense Mechanisms

- Antivirus
- Authentication
- Proxy Servers
- IDS
- □ Firewall
- Email Security
- Cryptography
- PGP
- Digital Signatures
- Kerberos
- IPsec
- Web Security

Types of Attackers

- Attacker Someone who can find an exploitable bug in a computer system.
- Cracker An attacker who exploit a system illegally.
- Script kiddies Uses tools available publicly.
- White hacker- People who discover vulnerabilities but does not exploit.
 - They help to fix it.
- Black hacker Bad people who want to exploit systems after discovery.
- Cyber terrorists Often have religious and fundamentalist mindset.
- Cyber army State sponsored attackers.
 - Work for nation's strategic security.

Who Are Vulnerable to Attacks?

- Financial institutions
- Defense organizations
- Government agencies
- Pharmaceutical companies
- IT companies
- Intellectual property management companies
- Academic institutions
- Everyone connected to internet

CIA Principles of Security

Information security is defined by an acronym CIA

- Confidentiality: Avoiding unauthorized disclosure of information.
- Integrity: An assurance that information is not altered midway of transmission.
- Availability: An assurance of information access and modification in a reasonable timeframe.

AAA Principles of Security

- AAA stand for Assurance, Authenticity and Anonymity
 - Assurance asks for guarantee.
 - Authenticity asks to tell you "who are you".
 - Anonymity asks not to reveal identity.

Bob, Alice want to communicate "securely"

Trudy is an enemy (intruder): "bad" guy

15

Who might Bob, Alice be?

... well, real-life Bobs and Alices!

- Web browser/server for electronic transactions (e.g., on-line purchases)
- on-line banking client/server
- DNS servers
- routers exchanging routing table updates

What is network security?

Goals of network security:

Confidentiality: Only sender, intended receiver should "understand" message contents

- sender encrypts message
- * receiver decrypts message

Authentication: Sender and receiver want to confirm identity of each other.

Integrity: Sender and receiver want to ensure message not altered (in transit, or afterwards) without detection.

Availability: Services must be accessible and available to users.

Roadmap

- Principles of cryptography
- Message integrity

Cryptography

Cryptography allows a sender to disguise a message so that an intruder can't gain information from it.

"confidentiality"

Types of cryptography

Symmetric key

- Both sender and receiver use identical key e.g., Sender A encrypts with the key Receiver B decrypts with same key

Public/private keys

 Two keys (public and private) are to be used e.g., Sender A encrypts with B's public key Receiver B decrypts with its Private key

Symmetric key cryptography

Symmetric key crypto: Bob and Alice share/know same (symmetric) key: K_{A-B}

Q: How do Bob and Alice agree on key value?

Public key cryptography

Symmetric key crypto

- Requires sender, receiver know shared secret key
- Q: How to agree on key in first place (particularly if never "met")?

Public key cryptography

- Radically different approach
- Two keys
 - * Public key: encryp. key
 - known to all
 - Private key: decryp. key known only to receiver
- Sender uses public key only to encryp
- Reciever uses both keys to decryp.

Public key cryptography

- Note: Only Bob is able to understand (decrypt) message m. Because only Bob has Bob's private key.
- This assures "confidentiality".

Public key encryption algorithms

Requirements:

- Need $K_B^{\dagger}(\cdot)$ and $_B^{\dagger}(\cdot)$ such that $K_B^{\dagger}(K_B^{\dagger}(m)) = m$
- Given public key K_B^+ , it should be impossible to compute private key K_B^-

RSA: Rivest, Shamir, Adleman algorithm

Roadmap

- Principles of cryptography
- Message integrity

Message Integrity/Authentication

Bob receives msg from Alice, wants to ensure:

- * Authentication: message originally came from Alice
- Integrity: message not changed since sent by Alice

Cryptographic Hashing:

What:

Takes input m and produces fixed length value H(m).
 e.g., as in Internet checksum

Properties of H:

- \bullet Given m = H(x), (x unknown), it is computationally infeasible to determine x.
- * Difficult to find x and y such that H(x) = H(y)
- Note: Internet checksum fails this requirement!

Examples

Widely used hash functions: MD5, SHA

MAC: Message Authentication Code

- Does MAC solve
 - Integrity ?? How ?? via Hashing
 - Authentication ?? How ??via secret key

- Any problem ??
 - Secret key distribution??
- So we can't really authenticate via MAC alone.

Digital Signatures via Public Key Crypto

Simple digital signature for message m:

Bob "signs" m by encrypting with his private key K_B , creating "signed" message, K_B (m)

<u>Digital Signatures via Public Key Crypto (more)</u>

- \circ Suppose Alice receives msg m, digital signature $K_B(m)$
- Alice verifies m signed by Bob by applying Bob's public key K_B^+ to $K_B^-(m)$ then checks $K_B^+(K_B^-(m)) = m$.
- \circ if $K_B(K_B(m)) = m$, whoever signed m must have used Bob's private key.

Alice thus verifies that:

- Bob signed m.
- ✓ No one else signed m.
- Bob signed m and not m'.

MAC via private/public keys

Alice's public key

- Alice's private key
 - Note: Only Alice would have had her private key
 - This assures "authentication".

<u>Digital Signatures via Public Key Crypto (more)</u>

Problem

- Signing data by encryption and decryption is computationally expensive.
- Imagine encrypting (signing) huge files of data !!!

Solution

- Sign hashed output of original msg (sign H(m) only).
- Recall hash algorithms turn large msgs into small, fixed length msg.
- ... signed MAC is the solution

<u>Digital signature = signed MAC</u> = <u>authentication + integrity</u>

Bob sends digitally signed message:

Alice verifies signature and integrity of digitally signed message:

Public Key Certification

- Problem with public key:
- When Alice obtains Bob's public key (from web site, e-mail, diskette), how does she know it is Bob's public key, not Trudy's?
- Solution:
- Trusted certification authority (CA)

Recap

So far:

- Cryptography & confidentiality
 - Symmetric key
 - * Public key: A wants to send msg m to B. What does A send? A sends $K_B^+(m)$; hence, ONLY B understands m by applying $K_B^-(K_B^+(m))$
 - => confidentiality
- Authentication & integrity
 - MAC (Msg Authen. Code): requires symmetric key
 - * Signed MAC: $A \rightarrow B$ A sends $(m, K_A^-(m))$ to B, Hence, All get m by applying $K_A^+(K_A^-(m))$; Comparison => authen. + integrity, but NOT confidentiality

Note: Sender applies receiver's public key

Note: Sender applies

its private key

Secure e-mail (confidentiality)

□ Alice wants to send confidential e-mail, m, to Bob.

Alice generates random symmetric private key, K_s.

Secure e-mail (authen. + integrity)

Alice wants to provide sender authentication/integrity.

- Alice digitally signs message.
- · sends both message (in the clear) and digital signature.

Again note that to provide authenticate/integrity, sender encrypts with its private (all can understand msg)

Secure e-mail (all: confid. + auth. + integrity)

 Alice wants to provide secrecy, sender authentication, message integrity.

Alice uses three keys: her private key, Bob's public key, and newly created symmetric key.

The end of class!