print("Classifiaction report /n", classification_report(ytest, ypred)) print("Confusion matrix: /n", confusion_matrix(ytest, ypred)) from sklearn.metrics import confusion_matrix, classification_report

> ypred = model.predict(xtest)model. fit(xtrain, ytrain)

model = RandomForestClassifier(max_depth=2, random_state=0) from sklearn.ensemble import RandomForestClassifier

xtrain = lda.fit_transform(xtrain, ytrain) lda = LinearDiscriminantAnalysis(n_components=2) from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

xtest = lda.transform(xtest)

xtest = sc.transform(xtest)xtrain = sc.fit_transform(xtrain)

> sc = StandardScaler() from sklearn.preprocessing import StandardScaler

> > (8)AQJ

xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size=0.2, random_state=0)

 $\lambda = dataset. iloc[:,13]$ x = dataset. iloc[:,0:13] $dataset = pd.read_csv(r"/Users//Dataset/wine.csv")$ import pandas as pd

from sklearn.model selection import train_test_split

y = dataset.iloc[:,13]x = dataset.iloc[:,0:13]

dataset = pd.read_csv(r"/Users/shreygupta/Dataset/wine.csv") import pandas as pd MultiLayered Perceptron(9)

print("Accuracy: ", accuracy_score(ytest, ypred))

from sklearn.neural_network import MLPClassifier

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

ypred = model.predict(xtest)

model. fit(xtrain, ytrain)

xtest = sc.transform(xtest) xtrain = sc.fit_transform(xtrain)

sc = StandardScaler()

print("Confusion: \n", confusion_matrix(ytest, ypred))

from sklearn.metrics import accuracy_score, confusion_matrix

model = MLPClassifier(hidden_layer_sizes=(10,3,10), max_iter=10000)

xtrain, xtest, ytrain, ytest = train_test_split(x,y,test_size=0.2, random_state=0)

import seaborn as sns Text Analysis(6) import matplotlib.pyplot as plt from sklearn.datasets import fetch_2@newsgroups from sklearn.pipeline import make_pipeline from sklearn.naive baves import MultinomialNB from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import confusion_matrix, accuracy_score

data = fetch_20newsgroups() model = make_pipeline(TfidfVectorizer(), MultinomialNB())

for i in range(0, len(data.target_names), 5): cat = data.target_names [i:i+5] train = fetch_20newsgroups(subset="'train', categories=cat) test = fetch_20newsgroups(subset='test', categories=cat) model. fit(train.data, train.target) label = model.predict(test.data) print(f"\nAC: {i} to {i+5} ", accuracy_score(test.target, label)) cm = confusion_matrix(test.target, label) sns.heatmap(cm.T, square=True, annot = True, fmt = 'd', xticklabels=train.target_names, yticklabels=train.target plt.title(f"sample no. {i}") plt.xlabel("True Label") plt.ylabel('Predicted Label') plt.show()

import pandas as pd PCA (7) dataset = pd.read_csv(r"/Users/Machine Learning/Dataset/wine.csv") x = dataset. iloc[:,0,13]v = dataset. iloc[:13] from sklearn.model selection import train_test_split xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size=0.2, random_state=0)

from sklearn.preprocessing import StandardScaler sc = StandardScaler() xtrain = sc.fit transform(xtrain) xtest = sc.transform(xtest)

from sklearn.decomposition import PCA pca = PCA(n_components=2) xtrain = pca.fit_transform(xtrain) xtest = pca.transform(xtest)

from sklearn.linear_model import LogisticRegression model = LogisticRegression() model. fit(xtrain, ytrain) ypred = model.predict(xtest)

 $from \ sklearn.metrics \ import \ confusion_matrix, \ classification_report$ print("Confusion matrix: \n", confusion_matrix(ytest, ypred))
print("Classification report \n", classification_report(ytest, ypred))