The Cocke-Kasawi-Younger algorithm Curien $\omega \in \Xi^*$ 2 G a CFG Want to know $\omega \in L(G)$?

We assume Gis in Chausky Normal Form. The parse trees are binary so for a string of length new will have a tree with (2n-1) variables. There are exponentially many such trees so we can generate them all, check if they are valid trees that generate w. Exponential time!

We can get this down to $O(n^3)$ using dynamic programming. Given $G = (V, \Sigma, P, S)$

Given $G = (V, \Sigma, P, S)$ Input $\omega = \alpha_1 - \alpha_n \in \Sigma^*$ $\alpha_i \in \Sigma$

We first ask have we got each individual symbol. Since G is in CNF we have to have used rules of the form $A \longrightarrow a$

We define inductively a 2-indexed family of subsets of V: $X_{ij} := \{ A \in V \mid A \Longrightarrow a_i \cdots a_j \}$

BASE CASE $X_{ii} = \{A \in V \mid A \Rightarrow a_i\}$ $X_{11}, X_{22}, \dots X_{nn}$

Next row will have X12, X23, ... Xi(i+i) ... X(n-1)n

Next row will have X13, X24, ... Xi(i+2) ... X61-2)n

so Xij will be in tow (j-i)+1.

We compute and fill in the table top bottom to top.
When we compute Xij we know Xik & Xk; for all & i < k < j

Now if $B \in Xik$, $C \in X(kn)j$ $A \rightarrow BC$ is a rule we know $A \in Xij$. Why? $B \stackrel{*}{\Rightarrow} a_i \cdots a_k$ $C \stackrel{*}{\Rightarrow} a_{kn} \cdots a_j$ so suice $A \rightarrow BC \stackrel{*}{\Rightarrow} a_i \cdots a_j$.

 $S \rightarrow AB|BC$ $A \rightarrow BA|a$ $B \rightarrow CC|b$ $C \rightarrow AB|a$ We want to know baaba $\in L(G)$?

 $\{A, S\}_{A}^{X_{15}}\}$ $\emptyset^{X_{14}}$ $\{S, A, C_{3}^{X_{25}}\}$ $\emptyset^{X_{13}}$ $\{B\}^{X_{24}}$ $\{B\}^{X_{35}}$ $\{A, S\}$ $\{A, S\}$ $\{A, C\}$ $\{A, C\}$ $\{A, C\}$ $\{A, C\}$ $\{A, C\}$

b a a b a

We see that $S \in X_{15} \approx S \Rightarrow a_1 - ... = a_5$ In general $w \in L(G)$ iff $S \in X_{4n}$

1

Size of table $O(n^2)$ The twine taken to compare X_{ij} is O(j-i)The twine taken to compare $X_{ik} + X_{(k+1)}j + f_{vird} = 1$ variable that generates them is O(i): it depends on the size of the grammar but not on \underline{n} . So time to compute each X_{ij} is O(n) is so overall $O(n^3)$.

There are better algorithms passible. Best is $O(n^{2.8})$.