Notatki z Algorytmów i Struktur Danych

Jakub Kogut

$10~\mathrm{marca}~2025$

Spis treści

1	Wstęp
	1.1 Informacje
	1.2 Ocenianie
2	Wykład 2025-03-03
	2.1 Przykładowy Problem
	2.2 Jak mierzyć złożoność algorytmów
	2.3 Przykład algorytmu
3	Wykład 2025-03-10
	3.1 Notacja Asypmtotyczna
	3.2 Rekurencja
4	Ćwiczenia
	4.1 Lista 2
	4.1.1 zadanie 1
	4.1.2 zadanie 2
	4.1.3 zadanie 3
5	Podsumowanie

1 Wstęp

To będa notatki z przedmiotu Algorytmy i struktury danych na Politechnice Wrocławskiej na kierunku Informatyka Algorytmiczna rok 2025 semestr letni.

1.1 Informacje

Prowadzący Przedmiot: Zbychu Gołębiewski

- Należy kontaktować się przez maila: mail
- Konsultacje **216/D1**:
 - Wtorek 13:00-15:00
 - Środa 9:00-11:00
- Wiecej info na stronie przedmiotu
- Literatura
 - Algorithms, Dasgupta, Papadimitriou, Vazirani
 - Algorithms, Sedgewick, Wayne (strona internetowa książki)
 - Algorithms Designs, Jon Kleinberg and Eva Trados
 - Wprowadzenie do algorytmów, Cormen, Leiserson, Rivest, Stein
 - Sztuka programowania (wszystkie tomy), Donald E. Knuth

1.2 Ocenianie

Ocena z kursu składa się z:

- Oceny z egzaminu E
- Oceny z ćwiczeń C
- Oceny z laboratorium L

Wszystkie oceny są z zakresu [0, 100]. Ocena końcowa jest wyliczana ze wzoru:

$$K = \frac{1}{2}E + \frac{1}{4}C + \frac{1}{4}L$$

2 Wykład 2025-03-03

2.1 Przykładowy Problem

Sortowanie:

- Input: n liczb $a_1, a_2, \ldots, a_n, |A|$, gdzie |A| to długośc tablicy
- Output: permutacja a_1', a_2', \dots, a_n' taka, że $a_1' \leq a_2' \leq \dots \leq a_n'$

Najważniejsze w algorytmach jest to, żeby były POPRAWNE: edge case, ...

2.2 Jak mierzyć złożoność algorytmów

- 1. Worst Case Analysis T(n) ← stosowane najcześciej
- 2. Average Case Analysis
 - zakładamy pewnien rozkład prawdopodobieństwa na danych wejściowych
 - \bullet T zmienna losowa liczby operacji wykonanych przez algorytm

$$T(n) = \max\{\#\text{operacji dla danego wejścia}\}$$

 $\bullet~E[T]$ – wartość oczekiwana $T \rightarrow$ średnia liczba operacji, to co nas interesuje

2.3 Przykład algorytmu

W tej sekcji mamy pokazany przykład jak pisać pseudo kod:

Algorithm 1 Merge Sort

```
1: procedure MergeSort(A, 1, n)
2: if |A[1..n]| == 1 then
3: return A[1..n]
4: else
5: B = \text{MergeSort}(A, 1, \lfloor n/2 \rfloor)
6: C = \text{MergeSort}(A, \lfloor n/2 \rfloor, n)
7: return \text{Merge}(B, C)
8: end if
9: end procedure
```

Algorithm 2 Merge

```
1: procedure MERGE(X[1..k], Y[1..n])
        if X = \emptyset then
            return Y
3:
        else if Y = \emptyset then
 4:
            return X
5:
        else if X[1] \leq Y[1] then
6:
            return [X[1]] \times \text{Merge}(X[2..k], Y[1..n])
7:
8:
            \textbf{return} \ [Y[1]] \times \text{Merge}(X[1..k], Y[2..n])
9:
        end if
10:
11: end procedure
```

3 Wykład 2025-03-10

3.1 Notacja Asypmtotyczna

Na wykładzie będziemy omawiali:

- Notację dużego O O(n) //ograniczenie górne
 - Definicja O(n):

$$O(g(n)) = \{ f(n) \mid \exists c > 0, \exists n_0 \in \mathbb{N}, \forall n \ge n_0, 0 \le f(n) \le c \cdot g(n) \}$$

Uwaga!Jeśli

$$\limsup_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$

to

$$\limsup_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f(n)}{g(n)}$$

- Przykład:
 - * $2n^2 = O(n^3)$ dla $n_0 = 2, c = 1$ Definicja jest spełniona
 - * $f(n) = n^3 + O(n^2)$ jest to jeden z sposobów użycia O(n)

$$\exists h(n) = O(n^2)$$
 takie, że $f(n) = n^3 + h(n)$

• Notację omega //ograniczenie dolne

Definicja

$$\Omega(g(n)) = \{ f(n) \mid \exists c > 0, \exists n_0 \in \mathbb{N}, \forall n \ge n_0, 0 \le c \cdot g(n) \le f(n) \}$$

- Przykład
 - $* n^3 = \Omega(2n^2)$
 - $* n = \Omega(\log n)$
- Notację theta $\theta(n)$ //ograniczenie z dwóch stron
 - Definicja

$$\Theta(g(n)) = \{ f(n) \mid \exists c_1, c_2 > 0, \exists n_0 \in \mathbb{N}, \forall n \ge n_0, 0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \}$$

- Przykład
 - $* n^3 = \Theta(n^3)$
 - $* n^3 = \Theta(n^3 + 2n^2)$
 - * $log n + 8 + \frac{1}{12n} = \Theta(\log n)$
- Uwaga!

$$f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \land f(n) = \Omega(g(n))$$

Można to zapisać jako klasy funkcji:

$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$

• Patologiczny przykład: mamy funkcje g(n)=n oraz $f(n)=n^{1+\sin\frac{\pi n}{2}},$ a więc

$$f(n) = \begin{cases} n^2 & \text{dla n parzystych} \\ n & \text{dla n nieparzystych} \end{cases}$$

wtedy

$$\limsup_{n \to \infty} \frac{f(n)}{g(n)} = \infty \limsup_{n \to \infty} \frac{g(n)}{f(n)} = \infty$$

zatem $f \neq O(g)$ oraz $g \neq O(f)$

- o małe
 - Definicja

$$o(g(n)) = \{ f(n) \mid \forall c > 0, \exists n_0 \in \mathbb{N}, \forall n \ge n_0, 0 \le f(n) < c \cdot g(n) \}$$

Równoważnie

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$$

- Przykład

*
$$n^2 = o(n^3)$$
i $n^2 O(n^3)$ ale $n^2 \neq o(n^2)$

$$* n = o(n^2)$$

3.2 Rekurencja

- Metoda podstawienia (metoda dowodu indukcyjnego)
 - 1. Zadnij Odpowiedź (bez stałych)
 - 2. Sprawdź przez indukcję czy odpowiedź jest poprawna
 - 3. Wylicz stałe
 - Przykład

- * $T(n) = T(\frac{n}{2}) + n$
- * Pierwotny strzał: $T(n) = O(n^3)$
- * cel: Pokazać, że $\exists c > 0 : T(n) \le c \cdot n^3$
 - · warunek początowy: $T(1) = 1 \le c$
 - · krok indukcyjny: załóżmy, że $\forall k \leq n : T(k) \leq ck^3$

$$T(n) = 4T(\frac{n}{2}) + n \le 4c(\frac{n}{2})^3 + n = \frac{1}{2}cn^3 + n \le cn^3$$
 dla $c \ge 2$

jednakże "Przestrzeliliśmy" znacznie, spróbojmy wzmocnić założenie indukcyjne:

$$T(n) \le c_1 k^2 - c_2 k, k < n$$

wtedy mamy:

$$T(n) = 4T(\frac{n}{2}) + n \le 4(c_1(\frac{n}{2})^2 - c_2(\frac{n}{2})) + n = c_1n^2 - 2c_2n + n \le c_1n^2 - c_2n$$

zatem
$$c_1 = 1, c_2 = 1 \text{ i } T(n) = O(n^2)$$

- Przykład

* $T(n) = 2T(\sqrt{n}) + \log n$ załóżmy, że n jest potęgą liczby 2, czyli $n = 2^m$

$$T(2^m) = 2T(2^{\frac{m}{2}}) + m$$

Co implikuje

$$T(2^{\frac{m}{2}}) \to S(m)$$

wtedy

$$S(m) = 2S(\frac{m}{2}) + m$$

rozwiązując rekurencję otrzymujemy

$$S(m) = m \log m$$

zatem

$$T(n) = \log n \log \log n$$

4 Ćwiczenia

tu beda pojawialy sie notatki z cwiczen do przedmiotu Algorytmy i struktury danych na Politechnice Wrocławskiej na kierunku Informatyka Algorytmiczna rok 2025 semestr letni.

4.1 Lista 2

robiona na zajęciach 2025-03-10

4.1.1 zadanie 1

Wylicz ile linijek wypisze poniższy program (podaj wynik będacy funkcją od n
 w postaci asymptotycznej $\Theta(\cdot)$). Można założyć, że n jest potęgą liczby 3. w pseudo kodzie pojawia sie nastepujaca rekurencja:

$$T(n) = 2T(\frac{n}{3}) + 1$$

rozwiąże ją używając metody podstawienia. Niech $n=3^k, k=\log_3 n$, wtedy:

$$T(3^k) = 2T(3^{k-1}) + 1$$

```
1: function f(n)
2: if n > 1 then
3: print_line('still going')
4: f(n/3)
5: f(n/3)
6: end if
```

Zatem przyjmując $S(k) = T(3^k)$ mamy:

$$S(k) = 2S(k-1) + 1$$

rozwiązując rekurencję otrzymujemy:

$$S(k) = 2^k - 1$$

zatem

$$T(n) = 2^{\log_3 n} - 1 = n^{\log_3 2} - 1 = \Theta(n^{\log_3 2})$$

analogicznie liczmy jaka jest wykonana "praca" wykonana przez program w drzweie rekursji.

4.1.2 zadanie 2

Niech f(n) i g(n) będą funkcjami asymptotycznie nieujemnymi (tzn. nieujemnymi dla dostatecznie dużego n). Korzystając z definicji notacji Θ , udowodnij, że:

$$\max\{f(n),g(n)\} = \Theta(f(n) + g(n)).$$

Dowód. Z definicji notacji Θ mamy:

$$f(n) = \Theta(g(n)) \iff \exists c_1, c_2 > 0, \exists n_0 \in \mathbb{N}, \forall n \ge n_0, 0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$$

skoro f(n) i g(n) są asymptotycznie nieujemne to:

$$\exists n_f : \forall n \geq n_f, f(n) \geq 0$$

$$\exists n_q : \forall n \geq n_q, g(n) \geq 0$$

zatem

$$n_0 = \max\{n_f, n_g\}$$

a więc

$$f(n) \le \max\{f(n), g(n)\}\$$

$$g(n) \le \max\{f(n), g(n)\}$$

dodając obie nierówności otrzymujemy:

$$f(n) + g(n) \le 2 \cdot \max\{f(n), g(n)\}\$$

zatem

$$\forall n \ge n_0 : \max\{f(n), g(n)\} \le f(n) + g(n) \le 2 \cdot \max\{f(n), g(n)\}$$

a więc z definicji mamy

$$\max\{f(n), g(n)\} = \Theta(f(n) + g(n))$$

Algorithm 3 Pierwszy fragment kodu

```
1: for i = 1 to n do
2: j = i
3: while j < n do
4: sum = P(i, j)
5: j = j + 1
6: end while
7: end for
```

Algorithm 4 Drugi fragment kodu

```
1: for i = 1 to n do
2: j = i
3: while j < n do
4: sum = R(i, j)
5: j = j + j
6: end while
7: end for
```

4.1.3 zadanie 3

Wylicz asymptotyczną złożoność (używając notacji Θ) poniższych fragmentów programów: Gdzie:

- koszt wykonania procedury P(i, j) wynosi $\Theta(1)$,
- koszt wykonania procedury R(i, j) wynosi $\Theta(j)$.

Dowód. • Pierwszy fragment kodu

- Wewnętrzna pętla wykonuje się n-i razy
- Koszt wykonania procedury P(i, j) wynosi $\Theta(1)$
- Zatem koszt wykonania wewnętrznej pętli wynosi $\Theta(n-i)$
- Zatem koszt wykonania całego fragmentu wynosi

$$\sum_{i=1}^{n} \Theta(n-i) = \Theta(n^2)$$

- Drugi fragment kodu
 - Wewnętrzna pętla wykonuje się $\log_2 n$ razy
 - Koszt wykonania procedury R(i,j) wynosi $\Theta(j)$
 - Zatem koszt wykonania wewnętrznej pętli wynosi $\Theta(\log_2 n)$
 - Zatem koszt wykonania całego fragmentu wynosi

$$\sum_{i=1}^{n} \Theta(\log_2 n) = \Theta(n \log_2 n)$$

5 Podsumowanie

Podsumowanie lub zakończenie notatek.