STAT 448 Homework1

Name: Zixin Ouyang

Exercise1

(a)

Variable: Weight

Moments						
N	110	Sum Weights	110			
Mean	415.730909	Sum Observations	45730.4			
Std Deviation	319.994944	Variance	102396.764			
Skewness	0.5688731	Kurtosis	-1.0364528			
Uncorrected SS	30172788.1	Corrected SS	11161247.3			
Coeff Variation	76.9716509	Std Error Mean	30.5103208			

Basic Statistical Measures					
Location Variability					
Mean	415.7309	Std Deviation	319.99494		
Median	295.0000	Variance	102397		
Mode	700.0000	Range	1100		
		Interquartile Range	555.00000		

The mean and median of weight is 415.73 and 295, with standard deviation 319.99. Since mean is greater than median, the distribution is likely to have a long tail to the right. The negative skewness 0.57 supports it. Range is summarized as 1100.

(b)

1. Species=Bream

Moments						
N	34	Sum Weights	34			
Mean	626	Sum Observations	21284			
Std Deviation	206.604585	Variance	42685.4545			
Skewness	0.19191733	Kurtosis	-0.7105166			
Uncorrected SS	14732404	Corrected SS	1408620			
Coeff Variation	33.0039273	Std Error Mean	35.432394			

Basic Statistical Measures					
Location Variability					
Mean	626.0000	Std Deviation	206.60459		
Median	615.0000	Variance	42685		
Mode	500.0000	Range	758.00000		
		Interquartile Range	245.00000		

2. Species=Perch

Moments						
N	56	Sum Weights	56			
Mean	382.239286	Sum Observations	21405.4			
Std Deviation	347.617717	Variance	120838.077			
Skewness	0.84436769	Kurtosis	-0.869673			
Uncorrected SS	14828079.1	Corrected SS	6646094.25			
Coeff Variation	90.9424359	Std Error Mean	46.4523714			

Basic Statistical Measures					
Location Variability					
Mean	382.2393	Std Deviation	347.61772		
Median	207.5000	Variance	120838		
Mode	130.0000	Range	1094		
		Interquartile Range	575.00000		

3. Species=Roach

Moments						
N	20	Sum Weights	20			
Mean	152.05	Sum Observations	3041			
Std Deviation	88.828916	Variance	7890.57632			
Skewness	0.97149967	Kurtosis	1.76776364			
Uncorrected SS	612305	Corrected SS	149920.95			
Coeff Variation	58.4208589	Std Error Mean	19.8627495			

Basic Statistical Measures					
Location Variability					
Mean	152.0500	Std Deviation	88.82892		
Median	147.5000	Variance	7891		
Mode	120.0000	Range	390.00000		
		Interquartile Range	76.00000		

Now we repeat the analysis by species. Firstly mean values for Bream, Perch and Roach are 626, 382.24 and 152.05, and the median values are 615, 347.62 and 147.5, respectively. The Bream has heavier weight than Perch, while Perch has heavier weight than Roach. The standard deviation and range for Bream, Perch and Roach are (206.6, 758), (347.62, 1094) and (88.83, 390), respectively. It can be seen that fish species with larger weight has larger standard deviation and range. There seems to be greater variation within Bream and Perch as compared to Roach.

For the skewness, Bream, Perch and Roach have skewness measure as 0.19, 0.84 and 0.97. Generally, positive measure indicates right long tail, and right-skewness.

Exercise2

(a)

Variable: Weight

Tests for Normality					
Test Statistic p Value					
Shapiro-Wilk	W	0.894113	Pr < W	<0.0001	
Kolmogorov-Smirnov	D	0.159381	Pr > D	<0.0100	
Cramer-von Mises	W-Sq	0.722376	Pr > W-Sq	<0.0050	
Anderson-Darling	A-Sq	4.282585	Pr > A-Sq	<0.0050	

Weight does not seem to follow normal distribution. We can see the histogram is not symmetric and the line in the QQ-plot is not straight. The quantitative test results agree. Shapiro-Wilk, Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling test (H0: normal distribution fits data) show p-value less than 0.05, thus null hypothesis is rejected. We should not assume normality for the weight.

(b)1. Species=Bream

Tests for Normality					
Test	Test Statistic p Value				
Shapiro-Wilk	W	0.961518	Pr < W	0.2691	
Kolmogorov-Smirnov	D	0.111376	Pr > D	>0.1500	
Cramer-von Mises	W-Sq	0.058693	Pr > W-Sq	>0.2500	
Anderson-Darling	A-Sq	0.423242	Pr > A-Sq	>0.2500	

2. Species=Perch

Tests for Normality						
Test			Statistic			p Value
Shapiro-Wilk	w		0.816849	Pr < W		<0.0001
Kolmogorov-Smirnov	D		0.239184	Pr > D		<0.0100
Cramer-von Mises	W-Sq		0.810687	Pr > W	-Sq	<0.0050
Anderson-Darling	A-Sq		4.362138	Pr > A-	Sq	<0.0050

3.Species=Roach

	Tests for Normality						
Test Statistic p Value							
Shapiro-Wilk	W	0.932277	Pr < W	0.1708			
Kolmogorov-Smirnov	D	0.176514 Pr > D		0.0986			
Cramer-von Mises	W-Sq	0.102833	Pr > W-Sq	0.0968			
Anderson-Darling	A-Sq	0.572359	Pr > A-Sq	0.1243			

For Bream and Roach, All test p-values are greater than 0.05, so conclude that we do not have evidence to reject normality assumption. Although histograms do not have perfect symmetric shapes, they are not very bad. The observations in the QQ-plots are almost in a line.

For Perch, distribution of weight shows statistically significant difference from normal distribution. All test results give p- values less than 0.05, so we reject normality for Perch.

In conclusion, the distribution of weight for Perch is significantly different from normal distribution, but the distributions of weight for two other species, Bream and Roach, are normal.

Exercise 3

(a)

Wilcoxon Scores (Rank Sums) for Variable Weight Classified by Variable Species							
Species	N	Sum of Scores	Expected Under H0	Std Dev Under H0			
Bream	34	1991.0	1547.0	120.131821	58.558824		
Perch	56	2104.0	2548.0	120.131821	37.571429		
Average scores were used for ties.							

Wilcoxon Two-Sample Test					
Statistic	1991.0000				
Normal Approximation					
Z	3.6918				
One-Sided Pr > Z	0.0001				
Two-Sided Pr > Z	0.0002				
t Approximation					
One-Sided Pr > Z	0.0002				
Two-Sided Pr > Z	0.0004				
Z includes a continu	nity correction of 0.5.				

In Exercise 2(b) we found that weight for Bream can be assumed as normal, but weight for Perch was significantly different from normal. Since we do not have normality for one group, we perform non-parametric tests to compare weight of two groups. Wilcoxon one-sided two-sample test gives p-value less than 0.05, and we can conclude that Bream fish have significantly heavier weight than Perch fish.

We can see this in the box plot as well, which shows generally higher ranks for Bream fish. Since the question asked about whether Bream's weight is greater than Perch's, we use the one-sided normal approximation (since the sample size is greater than 30). The p-value from the one-sided t-approximation is <0.0001, therefore we reject the null

hypothesis that the two species' weight come from the same distribution, and conclude that Bream's weight is stochastically heavier than Perch's.

Exercise 4

From the scatter plot, we can find linear relationships between each variables. all pairs of variables show strong linear associations. In addition, (length1, length2), (length2, length3) and (length1, length3) shows nearly perfect linear relationships.

Exercise 5

Pearson Correlation Coefficients, N = 34 Prob > r under H0: Rho=0						
	Weight	Length1	Length2	Length3	Height	Width
Weight	1.00000	0.95458 <.0001	0.96204 <.0001	0.96394 <.0001	0.97080 <.0001	0.93415 <.0001
Length1	0.95458 <.0001	1.00000	0.99776 <.0001	0.99636 <.0001	0.94169 <.0001	0.89994 <.0001
Length2	0.96204 <.0001	0.99776 <.0001	1.00000	0.99825 <.0001	0.95204 <.0001	0.91597 <.0001
Length3	0.96394 <.0001	0.99636 <.0001	0.99825 <.0001	1.00000	0.95492 <.0001	0.92171 <.0001
Height	0.97080 <.0001	0.94169 <.0001	0.95204 <.0001	0.95492 <.0001	1.00000	0.92632 <.0001
Width	0.93415 <.0001	0.89994 <.0001	0.91597 <.0001	0.92171 <.0001	0.92632 <.0001	1.00000

Spearman Correlation Coefficients, N = 34 Prob > r under H0: Rho=0						
	Weight	Length1	Length2	Length3	Height	Width
Weight	1.00000	0.96013 <.0001	0.95748 <.0001	0.95730 <.0001	0.95747 <.0001	0.92841 <.0001
Length1	0.96013 <.0001	1.00000	0.99809 <.0001	0.99702 <.0001	0.96775 <.0001	0.92327 <.0001
Length2	0.95748 <.0001	0.99809 <.0001	1.00000	0.99809 <.0001	0.96779 <.0001	0.92387 <.0001
Length3	0.95730 <.0001	0.99702 <.0001	0.99809 <.0001	1.00000	0.96469 <.0001	0.92586 <.0001
Height	0.95747 <.0001	0.96775 <.0001	0.96779 <.0001	0.96469 <.0001	1.00000	0.91688 <.0001
Width	0.92841 <.0001	0.92327 <.0001	0.92387 <.0001	0.92586 <.0001	0.91688 <.0001	1.00000

Firstly, both Pearson and Spearman correlations show that all pairs of variables have statistically significant correlations. And all have positive relationships with positive Pearson and Spearman coefficients.

Secondly, when it comes to the magnitude of the correlation, for Pearson coefficients, the correlation between (length1, length2), (length2, length3) and (length1, length3) are among the top three strongest with the measures more than 0.99. For the rest of pairs, correlation measures are between 0.90 to 0.97. We find similar result in the Spearman coefficients. Again, the pairs (length1, length2), (length2, length3) have the top three strongest positive relationships, and their estimated magnitudes are all more than 0.99. The other pairs have correlation coefficients around 0.92-0.97, which is almost similar to Pearson result.