USER MANUAL

© 2018 Enter your company name Enter your company name This page is intentionally left blank. Remove this text from the manual template if you want it completely blank.

1. (О программе	5	
2. (Состояния		
3. (Окрестность		
4. 4	Функции окрестности	11	
5. Г	Теременные	13	
6. Г	Травила	15	
7. þ	Формула	17	
7.1	Числовые операторы	18	
7.1	1.1 ==	18	
7.1	1.2 !=	18	
7.1	1.3 <	18	
7.1	1.4 <=	18	
7.1	1.5 >	18	
7.1	1.6 >=	18	
7.2	Логические операторы	18	
7.2	2.1 AND	18	
7.2	2.2 OR	19	
7.2	2.3 NAND	19	
7.2	2.4 NOR	19	
7.2	2.5 XOR	19	
7.2	2.6 XNOR	19	
7.3	Особый оператор =	19	
7.4	Арифметические операторы	19	
7.4	4.1 +	19	
7.4	1.2	19	
7.4	4.3 *	19	
7.4	1.4 /	19	
7.4	4.5 //	20	
7.4	4.6 %	20	
7.5	Функции без аргументов	20	
7.5	5.1 STEP	20	
7.5	5.2 BANNED_FUNCTIONS	20	
7.5	5.3 ALLOWED_FUNCTIONS	20	
7.5	5.4 CURRENT STEP	20	

Table of Contents

7.6	Функции с аргументами	20
7.6.1	COND_IN_R	20
7.6.2	COUNT	20
7.6.3	SLCOUNT	21
7.6.4	CHANCE	21
7.6.5	RAND	21
7.6.6	TERN	21
7.6.7	NOT	21
7.7	Действия	21
7.7.1	SET	21
7.7.2	SET_BY_F	21
7.7.3	BAN	21
7.7.4	ALLOW	22
Index		0

1 О программе

Automate builder - программа для создания клеточных автоматов и наблюдения над ними. Она предоставляет широкие возможности для настройки автомата благодаря легкому языку оперирования с состояниями. Создание автомата происходит через определение набора возможных состояний и описание правил. Данная программа гарантирует локальность правил, однородность системы, а также единовременное просчитывание всех клеток.

Автомат представляет собой поле из некоторого количества ячеек, каждая из которых имеет собственное состояние и набор правил, по которым эти состояния сменяются. В режиме симуляции, каждый шаг автомат считает глобальные переменные и правила (так называемый global-time), после чего приступает к локальным (итерационным), которые отдельно рассчитываются для каждой клетки.

Каждый автомат имеет неограниченное количество возможных конфигураций (полей), каждая из которых автономна от других.

2 Состояния

Каждая клетка автомата обладает каким-нибудь состоянием. Состояние имеет: имя, номер - число в диапазоне (-2^31; 2^31), а также графическое представление - спрайт или рисунок.

3 Окрестность

Окрестность автомата определяет набор клеток, которые находятся от в радиусе 1 от данной. Стандартно определена окрестность по Муру (8 клеток, имеющих общую вершину с данной). Она определяется набором allowed- функций. Окрестность можно изменять как во время создания автомата, так и непосредственно во время исполнения (Подробнее - в главах "Функции окрестности" и соответствующих команд).

4 Функции окрестности

Функция окрестности представляет собой числовую функцию, которая ссылается на некоторую клетку относительно данной и возвращает номер клетки, на которую ссылается. Она задается парой координат х и у, которые означают координаты необходимой клетки в случае, когда текущая клетка - (0; 0). К примеру, функция, которая ссылается на клетку, находящуюся ровно над текущей (U стандартно), определяется как {0; -1} (Заметьте: координаты возрастают от верхнего левого угла вниз и вправо).

Также, функция окрестности может быть allowed (определяет окрестность) или banned (не входит в определение окрестности). Данный флаг меняется как в режиме создания автомата, так и во время симуляции соответствующими командами.

Если функция ссылается на клетку за пределами поля, вернет значение NaN, не равное ничему.

5 Переменные

Переменные - именованные хранилища значений, которые применяются для оптимизации вычислений и упрощения написания правил. Они бывают логические и числовые и задаются одной формулой. Также, переменные могут быть глобальными и локальными. Глобальные переменные считаются один раз за каждый шаг, после чего сохраняют свое значение. Локальные же считаются каждый раз для каждой клетки.

Переменные не могут использовать в своих формулах другие переменные. Исключение - локальные переменные могут использовать глобальные (о других ограничениях в глобальных и локальных формулах см. в разделе "Формулы").

6 Правила

Правило - основная единица автомата, обеспечивающая его работу. Правило состоит из условия, которое задается логической формулой, а также двумя наборами действий, соединенных знаком & (количество действий произвольно, в том числе 0). Первое выполняется, если условие истинно, второе - если ложно.

При этом, правила бывают глобальными и локальными. Кроме стандартных ограничений, глобальные правила не могут использовать локальные переменные, а также команды SET и SET_BY_F

7 Формула

Формула - некоторое сочетание функций, переменных, фиксированных значений и операторов, дающее на выходе числовое или логическое значение. Формула задается либо одной функцией, переменной или значением, либо тройкой формула-оператор-формула, где формулы по бокам от оператора задаются рекурсивно. Если они также состоят из такой тройки, то должны обязательно обрамляться в скобки ().

Формулы, которые используются в глобальных правилах или переменных (считаются в т. н. global-time), не могут содержать функции окрестности, CURRENT_CELL, COND_IN_R и COUNT.

Примечание: одиночное число или значение, как 3 или false - тоже формулы.

7.1 Числовые операторы

Числовые операторы принимают на вход две числовые формулы и возвращают логическое значение.

7.1.1 ==

Возвращает true, если два аргумента равны друг другу.

7.1.2

Возвращает true если два аргумента не равны друг другу.

7.1.3 <

Возвращает true, если левый аргумент строго меньше правого.

7.1.4 <=

Возвращает true, если левый аргумент меньше или равен правому

7.1.5 >

Возвращает true, если левый аргумент строго больше правого.

7.1.6 >=

Возвращает true, если левый аргумент больше либо равен правому.

7.2 Логические операторы

Принимают на вход две логические формулы и возвращают логическое значение.

7.2.1 AND

Возвращает true, если оба аргумента истинны.

7.2.2 OR

Возвращает true, если хотя бы один аргумент истиннен.

7.2.3 NAND

Возвращает false, если оба выражения истинны, иначе - true.

7.2.4 NOR

Возвращает true, если оба выражения ложны

7.2.5 XOR

Возвращает true, если выражения не равны друг другу.

7.2.6 XNOR

Возвращает true, если оба выражения равны друг другу.

7.3 Особый оператор =

Синтаксис: <Функция окрестности или функция CURRENT_CELL> = "имя состояния". Возвращает true, если в клетке, определяемой левой функций, состояние с именем справа. (пример - U = "empty"). Рекомендуется использовать для получения значения состояния, т. к. в случае переименования состояния, правый аргумент будет изменен на корректный, а в случае удаления - пометит формулу как недействительную, чего не произойдет в случае сравнения функций слева с числом.

7.4 Арифметические операторы

Принимают на вход две числовые формулы и возвращают число. !Т. к. программа оперирует со знаковыми 32-битными числами, в случае выхода за диапазон, случается переполнение без постановления пользователя в известность.

7.4.1 +

Возвращает результат сложения двух аргументов.

7.4.2

Возвращает результат вычитания двух аргументов.

7.4.3 *

Возвращает результат умножения двух аргументов.

7.4.4 /

Возвращает результат деления двух аргументов с отбрасыванием дробной части результата.

7.4.5 //

Возвращает результат деления двух аргументов с округлением дробной части результата.

7.4.6 %

Возвращает остаток от деления левого аргумента на правый.

7.5 Функции без аргументов

Представляют собой обычные сочетания символов, возвращающих какоелибо значение.

7.5.1 STEP

Возвращает число - номер текущего шага (начиная с 1).

7.5.2 BANNED_FUNCTIONS

Возвращает число - количество banned (не участвующих в определении окрестности) функций окрестности.

7.5.3 ALLOWED_FUNCTIONS

Возвращает число - количество allowed (участвующих в определении окрестности) функций окрестности.

7.5.4 CURRENT STEP

Возвращает число - номер состояния в данной клетке.

7.6 Функции с аргументами

В отличие от обычных функций, эти выделяются в квадратные скобки []. Если аргументом функции является формула, состоящая из тройки формула-операторформула, он выделяется в скобки ().

7.6.1 COND IN R

Синтаксис: [COND_IN_R <r> FR <a> TO <числовой оператор> <n>]. Возвращает логическое значение - true, если не меньше а и не больше b клеток в радиусе r отвечают условию, представленному числовым оператором, где левый аргумент - номер состояния клетки, а правый - n.

a, b и n представлены числовыми формулами. r представленно числовой формулой, выполняющейся в global-time переменных.

7.6.2 **COUNT**

Синтаксис: [COUNT <r> <числовой оператор> <n>]. Возвращает количество клеток в радиусе r, которые отвечают условию, представленному числовым

оператором, где левый аргумент - номер состояния клетки, а правый - n. п представлено числовой формулой. r представленно числовой формулой, выполняющейся в global-time переменных.

7.6.3 SLCOUNT

Синтаксис: [SLCOUNT <r> <числовой оператор> <n>]. Работает аналогично COUNT с той лишь разницей, что r - представленно числовой формулой без ограничений global-time'a, но при этом данная функция работает намного медленнее, чем COUNT, так что используйте только при необходимости.

7.6.4 CHANCE

Синтаксис: [CHANCE <n>]. Возвращает true с вероятностью n%. n - числовая формула. Допустимо, чтобы n был меньше 0 или больше 100

7.6.5 **RAND**

Синтаксис: [RAND <a> TO]. а и b - числовые формулы. Возвращает случайное число в диапазоне [a, b].

7.6.6 TERN

Синтаксис: [TERN <cond> Y <a> N]. cond - логическая формула, а и b - числовые формулы. Возвращает число - а, если cond истинно, и b - если cond ложно.

7.6.7 NOT

Синтаксис: [NOT <a>]. а - логическая формула. Возвращает логическое значение - true, если а ложно и false, если а истинно.

7.7 Действия

Команды, выполняющие то или иное действие. Для выполнения больше одного, разделяются знаком &. Результат всех действий отражается лишь на следующем ходе.

7.7.1 **SET**

Синтаксис: SET "<имя>". Ставит в данную клетку состоянием с именем имя. Более безопасный аналог SET_BY_F, т. к. гарантируется существование данного состояния.

7.7.2 SET BY F

Синтаксис: SET_BY_F <n>, где n - числовая формула. Ставит в данную клетку состояние с номером n. Если данного состояния не существует, игнорируется.

7.7.3 BAN

Синтаксис: BAN <имя функции окрестности>. Выводит данную функцию из определения окрестности.

7.7.4 ALLOW

Синтаксис: ALLOW <имя функции окрестности>. Вводит данную функцию в определение окрестности.