homework3-3

1 问题

设 $\hat{P}_1, \hat{P}_2 \in \{\sigma_x, \sigma_y, \sigma_z\}$, 计算:

$$f(\theta) = \langle 0 | e^{-i\theta/2\hat{P}_1} \hat{P}_2 e^{i\theta/2\hat{P}_1} | 0 \rangle$$

其中
$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
。

2 通用化简方法

利用泡利矩阵的旋转公式:

$$e^{-i\theta/2\hat{P}_1}\hat{P}_2e^{i\theta/2\hat{P}_1} = \hat{P}_2\cos\theta + i[\hat{P}_2,\hat{P}_1]\sin\theta$$

对易子 $[\hat{P}_2, \hat{P}_1] = \hat{P}_2 \hat{P}_1 - \hat{P}_1 \hat{P}_2$ 。

3 九种组合解析结果

\hat{P}_1	\hat{P}_2	$f(\theta)$ 化简	周期性
σ_x	σ_x	0	常数
σ_x	σ_y	$\sin heta$	2π
σ_x	σ_z	$\cos \theta$	2π
σ_y	σ_x	0	常数
σ_y	σ_y	0	常数
σ_y	σ_z	$\cos \theta$	2π
σ_z	σ_x	0	常数
σ_z	σ_y	0	常数
σ_z	σ_z	1	常数

4 性质分类

• 非零周期结果 (3 +): $\sin \theta$ 或 $\cos \theta$ 形式

恒为 1 结果 (1 种): (σ_z, σ_z) 组合

5 参数平移法

严格成立条件: $\tau = 2\sin\delta$, 对非常数情况成立. 其余情况所有 δ , 非零 τ