Интеграл Лебега для простых функций

Пусть (X, \mathcal{M}, μ) - измеримое пространство.

Опр: 1. Пусть функция $f: X \to \mathbb{R}$, тогда она называется <u>простой</u> в том и только в том случае, когда она измерима, принимает только конечное число значений и любое ненулевое значение принимается на множестве конечной меры. Формально это будет так:

$$f(x) = \sum_{l=1}^{r} a_l \cdot \chi_{F_l}(x), \quad \forall l, F_l \in \mathcal{M}, \quad \forall l_1 \neq l_2 \Rightarrow F_{l_1} \cap F_{l_2} = \varnothing, \quad \forall l, a_l \neq 0 \Rightarrow \mu(F_l) < \infty$$

Rm: 1. Ненулевые значения на множестве конечной меры необходимы только если у нас X σ -конечно. Для конечного измеримого пространства и так понятно, что ненулевые значения будут на множестве конечной меры. Также заметим, что по нашему определению, простая функция автоматически является измеримой.

Rm: 2. Если f(x) - простая, то её можно представить в виде:

$$f(x) = \sum_{k=1}^{n} c_k \cdot \chi_{E_k}(x)$$

где $c_1 < c_2 < \ldots < c_n$, $\forall k, E_k \in \mathcal{M}$ и $\bigsqcup_{k=1}^n E_k = X$, причем если $c_k \neq 0$, то $\mu(E_k) < \infty$.

Опр: 2. Пусть f(x) это простая функция, тогда интегралом Лебега называется сумма вида:

$$\int_{X} f(x)d\mu = \sum_{l=1}^{r} a_{l} \cdot \mu(F_{l})$$

где формально считаем, что: $0 \cdot \infty = 0$ (поскольку мера у нас σ -конечна).

Rm: 3. В тех местах, где нам потребуется различать интегралы Римана и интегралы Лебега, мы будем обозначать интеграл Лебега через (\mathcal{L}):

$$(\mathcal{L}) \int_{X} f(x) d\mu = \int_{X} f(x) d\mu$$

Попробуем понять в чем разность между интегралом Римана и интегралом Лебега.

Пример: Пусть у нас есть функция, которая принимает конечное число значений на отрезке [0,1].

Рис. 1: Функция принимающая конечное число значений.

Тогда по построениею интегралов:

- 1) <u>Интеграл Римана</u>: Надо разбить отрезок [0,1] на отдельные интервалы фиксированной длины, берём значение функции на этом интервале, умножаем и так для каждого интервала. Затем мы уменьшаем длину каждого интервала;
- 2) <u>Интеграл Лебега</u>: Надо посмотреть значения на оси *y*, а затем посмотрим какова мера прообразов этих значений. В нашем случае суммарная длина интервалов на которых функция принимает конкретные значения. Затем мы значения умножаем на меру интервала и складываем;

Утв. 1. Определение интеграла Лебега для простых функций корректно, то есть не зависит от способа представления функции.

 \square Пусть f(x) - простая и имеются представления:

$$f(x) = \sum_{l=1}^{r} a_l \cdot \chi_{F_l}(x) = \sum_{k=1}^{n} c_k \cdot \chi_{E_k}(x)$$

где все F_l, E_k - измеримые множества, $c_1 < c_2 < \ldots < c_n, \bigsqcup_{l=1}^r F_l = \bigsqcup_{k=1}^n E_l = X$ и ненулевые значения принимаются на множествах конечной меры. Заметим, что тогда:

$$\forall a_l, \exists c_k : a_l = c_k$$

поскольку значения складываться не могут и каждое принимается на своём множестве. Обозначим:

$$\Gamma_k = \{l \in \{1, 2, \dots, r\} : a_l = c_k\} \Rightarrow \bigsqcup_{l \in \Gamma_k} F_l = E_k \land \bigsqcup_{k=1}^n \Gamma_k = \{1, 2, \dots, r\}$$

где последнее верно в силу того, что все c_k у нас разные $\Rightarrow \Gamma_k$ не могут пересекаться между собой. Следовательно, рассмотрим следующую сумму:

$$\sum_{k=1}^{n} c_k \cdot \mu(E_k) = \sum_{k=1}^{n} c_k \sum_{l \in \Gamma_k} \mu(F_l) = \sum_{k=1}^{n} \sum_{l \in \Gamma_k} a_l \cdot \mu(F_l) = \sum_{l=1}^{r} a_l \cdot \mu(F_l)$$

Теорема 1. (Линейность интеграла Лебега) Пусть f(x) и g(x) - простые и $\alpha, \beta \in \mathbb{R}^1$, тогда линейная комбинация этих функций: $\alpha \cdot f(x) + \beta \cdot g(x)$ тоже простая функция и будет верно:

$$\int_{X} (\alpha \cdot f(x) + \beta \cdot g(x)) d\mu = \alpha \cdot \int_{X} f(x) d\mu + \beta \cdot \int_{X} g(x) d\mu$$

 \square Пусть: $f(x) = \sum_{k=1}^{n} c_k \cdot \chi_{E_k}(x)$ и $g(x) = \sum_{j=1}^{m} d_j \cdot \chi_{S_j}(x)$, где E_k , $S_j \in \mathcal{M}$, $\bigsqcup_{k=1}^{n} E_k = \bigsqcup_{j=1}^{m} S_j = X$ и любое ненулевое значение принимается на множестве конечной меры. Тогда:

$$\alpha \cdot f(x) + \beta \cdot g(x) = \sum_{k=1}^{n} \sum_{j=1}^{m} (\alpha \cdot c_k + \beta \cdot d_j) \cdot \chi_{E_k \cap S_j}(x)$$

Видно, что эта функция принимает конечное число значений (не больше, чем $n \cdot m$), каждое значение принимается на некотором измеримом множестве, кроме того нетрудно заметить:

$$\bigsqcup_{k=1}^{n} \bigsqcup_{j=1}^{m} E_k \cap S_j = X$$

Также заметим, что если $\alpha \cdot f(x) + \beta \cdot g(x) \neq 0$, то хотя бы одно из значений c_k или d_j не должны быть равны нулю \Rightarrow должна быть конечная мера у E_k или $S_j \Rightarrow$ конечная мера у пересечения. Следовательно, функция: $\alpha \cdot f(x) + \beta \cdot g(x)$ - простая. В силу того, что определение интеграла корректно, то:

$$\int_{X} (\alpha \cdot f(x) + \beta \cdot g(x)) d\mu = \sum_{k=1}^{n} \sum_{j=1}^{m} (\alpha \cdot c_k + \beta \cdot d_j) \cdot \mu(E_k \cap S_j) = \alpha \sum_{k=1}^{n} c_k \sum_{j=1}^{m} \mu(E_k \cap S_j) + \alpha \sum_{j=1}^{n} c_j \sum_{k=1}^{n} \mu(E_k \cap S_j) = \alpha \sum_{k=1}^{n} c_k \sum_{j=1}^{n} \mu(E_k \cap S_j) + \alpha \sum_{k=1}^{n} c_k \sum_{j=1}^{n} \mu(E_k \cap S_j) = \alpha \sum_{k=1}^{n} \mu$$

$$+\beta \sum_{j=1}^{m} d_{j} \sum_{k=1}^{n} \mu(E_{k} \cap S_{j}) = \alpha \sum_{k=1}^{n} c_{k} \mu(E_{k}) + \beta \sum_{j=1}^{m} d_{j} \mu(S_{j}) = \alpha \cdot \int_{X} f(x) d\mu + \beta \cdot \int_{X} g(x) d\mu$$

Утв. 2. Если f(x) простая и $f(x) \ge 0$, то $\int_{Y} f(x) dx \ge 0$.

🗆 Вытекает сразу из определения простой функции и интеграла Лебега:

$$f(x) = \sum_{k=1}^{n} a_k \cdot \chi_{F_k}(x) \ge 0 \land \forall k, \ \mu(F_k) \ge 0 \Rightarrow \int_X f(x) d\mu = \sum_{k=1}^{n} a_k \cdot \mu(F_k) \ge 0$$

Утв. 3. Если f(x) и g(x) - простые и $\forall x \in X, f(x) \geq g(x),$ то будет верно:

$$\int\limits_X f(x)d\mu \ge \int\limits_X g(x)d\mu$$

□ Сразу следует из предыдущего утверждения и линейности интеграла:

$$\forall x \in X, \ f(x) \ge g(x) \Rightarrow f(x) - g(x) \ge 0 \Rightarrow \int\limits_X (f(x) - g(x)) d\mu = \int\limits_X f(x) d\mu - \int\limits_X g(x) d\mu \ge 0$$

Утв. 4. Если f(x) - простая, то и |f(x)| - тоже простая функция, кроме того:

$$\left| \int_{X} f(x) d\mu \right| \le \int_{X} |f(x)| d\mu$$

 \square Исходная функция принимала не более конечного числа значений $\Rightarrow |f(x)|$ число значений может лишь уменьшиться. Кроме того верно:

$$\left| \sum_{k=1}^{n} c_k \cdot \mu(E_k) \right| \le \sum_{k=1}^{n} |c_k| \cdot \mu(E_k)$$

Утв. 5. Если $\mu(X) < \infty$, то $f(x) \equiv c$ это простая функция. Тогда:

$$\int_{X} f(x)d\mu = c \cdot \mu(X)$$

 \square Так как $\mu(X) < \infty$ и функция f(x) принимает лишь одно значение на всём $X \Rightarrow$ она простая. Тогда:

$$\int_X f(x)d\mu = \sum_{k=1}^n c \cdot \mu(E_k) = c \cdot \sum_{k=1}^n \mu(E_k) = c \cdot \mu\left(\bigsqcup_{k=1}^n E_k\right) = c \cdot \mu(X)$$

Опр: 3. Пусть $\{f_n(x)\}_{n=1}^{\infty}$ - последовательность функций на X, тогда скажем, что она монотонно не убывает на X в том и только в том случае, когда:

$$\forall x \in X, \, \forall n \in \mathbb{N}, \, f_{n+1}(x) \ge f_n(x)$$

Обозначение: $f_n(x) \uparrow$ или $f_n(x) \uparrow f(x)$ если известно к чему она сходится.

Теорема 2. Пусть $\{g_n(x)\}_{n=1}^{\infty}$, где $g_n(x)$ это простые неотрицательные функции на X, $g_n(x) \uparrow$ на X и кроме того:

$$\forall x \in X, \ g(x) \leq \lim_{n \to \infty} g_n(x)$$

Тогда будет верно неравенство:

$$\int\limits_{X} g(x)d\mu \le \lim_{n \to \infty} \int\limits_{X} g_n(x)d\mu$$

где справа возможно значение ∞ .

 \square Пусть $g(x) = \sum_{r=1}^{s} a_r \cdot \chi_{E_r}(x)$, где $E_r \in \mathcal{M}$, $E_{r_1} \cap E_{r_2} = \emptyset$ при $r_1 \neq r_2$ и $0 < a_1 < \ldots < a_s$. Обозначим:

$$F = \bigsqcup_{r=1}^{s} E_r \Rightarrow \mu(F) < \infty$$

где последнее верно в силу того, что все значения a_i ненулевые (даже если у нас σ -конечное пространство). Тогда $\forall \varepsilon > 0$ и для $\forall n$ определим множество:

$$F_n(\varepsilon) = \{ x \in F : g_n(x) < g(x) - \varepsilon \}$$

Так как $g_n(x) \uparrow$, то мы имеем: $F \supseteq F_1(x) \supseteq F_2 \supseteq \dots$, при этом, поскольку: $\lim_{n \to \infty} g_n(x) \ge g(x)$, то:

$$\bigcap_{n=1}^{\infty} F_n(\varepsilon) = \emptyset$$

Следовательно, по теореме о непрерывности меры (в силу $\mu(F) < \infty$), мы получим:

$$\mu(F_n(\varepsilon)) \xrightarrow[n\to\infty]{} 0$$

Заметим, что если: $X = A \sqcup B$, причём $A, B \in \mathcal{M}$ и h(x) это простая функция на X, то h(x) простая и на A, и на B. В результате:

$$h(x) = h(x) \cdot \chi_A(x) + h(x) \cdot \chi_B(x) \Rightarrow$$

$$\Rightarrow \int\limits_X h(x) d\mu = \int\limits_X h(x) \cdot \chi_A(x) d\mu + \int\limits_X h(x) \cdot \chi_B(x) d\mu = \int\limits_A h(x) d\mu + \int\limits_B h(x) d\mu$$

В конечном счёте, поскольку $g(x) \le a_s$, где a_s - максимальное значение для g(x), то тогда для любого n будет верно:

$$\int_{X} g(x)d\mu = \int_{F} g(x)d\mu = \int_{F_{n}(\varepsilon)} g(x)d\mu + \int_{F\backslash F_{n}(\varepsilon)} g(x)d\mu \leq \int_{F_{n}(\varepsilon)} a_{s}d\mu + \int_{F\backslash F_{n}(\varepsilon)} (g_{n}(x) + \varepsilon)d\mu \Rightarrow$$

$$\Rightarrow \int_{X} g(x)d\mu \leq a_{s} \cdot \mu(F_{n}(\varepsilon)) + \int_{X} g_{n}(x)d\mu - \int_{X\backslash (F\backslash F_{n}(\varepsilon))} g_{n}(x)d\mu + \varepsilon \cdot \mu(F\backslash F_{n}(\varepsilon)) \leq$$

$$\leq a_{s} \cdot \mu(F_{n}(\varepsilon)) + \varepsilon \cdot \mu(F) + \int_{X} g_{n}(x)d\mu \Rightarrow a_{s} \cdot \mu(F_{n}(\varepsilon)) \xrightarrow[n \to \infty]{} 0 \Rightarrow \int_{X} g(x)d\mu \leq \lim_{n \to \infty} \int_{X} g_{n}(x)d\mu + \varepsilon \cdot \mu(F)$$

Поскольку $\varepsilon > 0$ - произвольное, то мы получаем утверждение теоремы.

Интеграл Лебега

Пусть (X, \mathcal{M}, μ) это измеримое пространство.

Опр: 4. Пусть f(x) измерима и неотрицательна на X, тогда множеством минорантных функций для неё называется множество неотрицательных простых функций:

$$Q_f = \{$$
простые функции $\varphi(x) \colon 0 \le \varphi(x) \le f(x), \forall x \in X \}$

Rm: 4. Всегда функция $0 \in Q_f$ и следовательно: $Q_f \neq \emptyset$.

Опр: 5. Пусть f(x) измерима и неотрицательна на X, тогда <u>интегралом Лебега</u> функции f(x) по множеству X называется точная верхняя грань:

$$(\mathcal{L})\int\limits_X f(x)d\mu = \int\limits_X f(x)d\mu = \sup\limits_{\varphi \in Q_f} \int\limits_X \varphi(x)d\mu$$

При этом будем говорить, что $f(x) \in \mathcal{L}(X)$ (интегрируема по Лебегу на X) тогда и только тогда, когда интеграл конечен, то есть:

$$f(x) \in \mathcal{L}(X) \Leftrightarrow \int_{X} f(x)d\mu < \infty$$

Если функция f(x) измерима на X, то определим функции:

- 1) $f_{+}(x) = \max\{f(x), 0\};$
- 2) $f_{-}(x) = -\min\{f(x), 0\};$

Обе функции измеримые и неотрицательные. Заметим, что всегда будет верно равенство:

$$\forall x \in X, f(x) = f_+(x) - f_-(x)$$

Опр: 6. Пусть f(x) измерима на X, тогда скажем, что f(x) интегрируема по Лебегу на X, если интегрируемы функции: $f_+(x)$ и $f_-(x)$, то есть:

$$f(x) \in \mathcal{L}(X) \Leftrightarrow f_{+}(x) \in \mathcal{L}(X) \land f_{-}(x) \in \mathcal{L}(X)$$

Если это выполнено, то полагаем, что верно равенство:

$$(\mathcal{L}) \int_{X} f(x) d\mu = \int_{X} f(x) d\mu = \int_{X} f_{+}(x) d\mu - \int_{X} f_{-}(x) d\mu$$

Rm: 5. Есть разные способы ввдеения интеграла Лебега, в данном конкретном случае будет проще доказывать теоремы о предельном переходе, но будет сложнее доказывать теоремы о линейности интеграла Лебега по функции в общей ситуации.

Утв. 6. Для простых функций определения 5 и 6 дают то же значение интеграла, что и определение 2.

 \square В силу определения 6, если функция простая, то мы её должны разбить на две простые функции, обе из которых будут неотрицательными \Rightarrow достаточно доказать утверждение для простой и неотрицательной функции f(x). Заметим, что сама $f(x) \in Q_f$, поскольку она простая, тогда:

$$\sup_{\varphi \in Q_f} \int\limits_{X} \varphi(x) d\mu \ge \int\limits_{X} f(x) d\mu$$

в смысле определения 2, поскольку среди всех функций в Q_f есть и f. С другой стороны, если $\varphi(x) \in Q_f$, то (в смысле определения 2):

$$\int\limits_X \varphi(x) d\mu \leq \int\limits_X f(x) d\mu \Rightarrow \sup\limits_{\varphi \in Q_f} \int\limits_X \varphi(x) d\mu \leq \int\limits_X f(x) d\mu \Rightarrow \sup\limits_{\varphi \in Q_f} \int\limits_X \varphi(x) d\mu = \int\limits_X f(x) d\mu$$

Утв. 7. Пусть f(x) измерима и неотрицательна на X, $\{f_n(x)\}_{n=1}^{\infty}$ - простые неотрицательные функции на X и кроме того $f_n(x) \uparrow f(x)$ на X, тогда:

$$\int_{X} f(x)d\mu = \lim_{n \to \infty} \int_{X} f_n(x)d\mu$$

1) По условию: $\forall n, f_n(x) \in Q_f$, поскольку: $\forall n, f_n(x) \leq f(x)$, тогда мы получим неравенство:

$$\forall n, \int_X f(x)d\mu \ge \int_X f_n(x)d\mu \Rightarrow \int_X f(x)d\mu \ge \lim_{n \to \infty} \int_X f_n(x)d\mu$$

2) Предположим, что некоторая функция $\varphi(x) \in Q_f$, тогда по условию:

$$\lim_{n \to \infty} f_n(x) = f(x) \ge \varphi(x)$$

По теореме 2 тогда будет верно следующее:

$$\lim_{n \to \infty} \int\limits_X f_n(x) d\mu \ge \int\limits_X \varphi(x) d\mu \Rightarrow \lim_{n \to \infty} \int\limits_X f_n(x) d\mu \ge \sup_{\varphi \in Q_f} \int\limits_X \varphi(x) d\mu = \int\limits_X f(x) d\mu$$

Лемма о сходимости последовательности $f_n(x)$ к f(x)

Лемма 1. Пусть f(x) неотрицательна и измерима на X, тогда существует последовательность простых неотрицательных функций: $\{f_n(x)\}_{n=1}^{\infty} : f_n(x) \uparrow f(x)$ на X.

 \square Пусть $X=\coprod_{j=1}^{\infty}B_j$, где $\forall j,\,B_j\in\mathcal{M},\,\mu(B_j)<\infty.$ Если $\mu(X)<\infty,$ то полагаем, что:

$$B_1 = X, B_2 = B_3 = \ldots = \emptyset$$

Для любого n определим функции $f_n(x)$:

$$f_n(x) = 0 \cdot \mathbb{I}_{X \setminus F_n}(x) + 2^n \cdot \mathbb{I}_{F_n \cap G_n}(x) + \sum_{k=1}^{2^{2n}} \frac{k-1}{2^n} \cdot \mathbb{I}_{F_n \cap H_{k,n}}(x)$$

$$F_n = \bigsqcup_{j=1}^n B_j$$
, $G_n = \{x \in X : f(x) \ge 2^n\}$, $H_{k,n} = \{x \in X : \frac{k-1}{2^n} \le f(x) < \frac{k}{2^n}\}$, $\forall k = 1, 2, 3, \dots, 2^{2n}$

Очевидно, что $f_n(x)$ это простые функции, поскольку принимают конечное число значений $\forall n$ на измеримом множестве (поскольку F_n - измеримы, G_n и $H_{k,n}$ - измеримы для измеримой функции \Rightarrow пересечения тоже измеримы). Проверим, что: $f_n(x) \uparrow$ на X:

- 1) $\forall n, f_n(x) = 0 \Rightarrow f_{n+1}(x) \ge 0 = f_n(x);$
- 2) $\forall n, f_n(x) = 2^n \Rightarrow x \in F_n \subseteq F_{n+1} \land f(x) \ge 2^n$, тогда:

$$k = 2^{2n+1} + 1 \Rightarrow f(x) \ge \frac{2^{2n+1} + 1 - 1}{2^{n+1}} = 2^n \Rightarrow \dots \Rightarrow k = 2^{2n+2} \Rightarrow f(x) \ge 2^{n+1} - \frac{1}{2^{n+1}} \Rightarrow f(x) \in \{2^n, 2^n + \frac{1}{2^{n+1}}, \dots, 2^{n+1}\} \Rightarrow f_{n+1}(x) \ge f_n(x)$$

3)
$$\forall n, f_n(x) = \frac{k-1}{2^n}, k = 1, 2, 3, \dots, 2^{2n} \Rightarrow x \in F_n \subseteq F_{n+1} \land \frac{k-1}{2^n} \le f(x) < \frac{k}{2^n},$$
 тогда:
$$\frac{k-1}{2^n} = \frac{2k-2}{2^{n+1}} \le f(x) < \frac{2k}{2^{n+1}} = \frac{k}{2^n} \Rightarrow f_{n+1}(x) \in \{\frac{2k-2}{2^{n+1}}, \frac{2k-1}{2^{n+1}}\} \Rightarrow f_{n+1}(x) \ge f_n(x)$$

Проверим, что: $\forall x \in X, f_n(x) \xrightarrow[n \to \infty]{} f(x)$. Если $f(x) < \infty$, то будет верно:

$$\exists n_0: x \in F_{n_0} \land f(x) \leq 2^{n_0} \Rightarrow \forall n \geq n_0, \ 0 \leq f(x) - f_n(x) \leq \frac{1}{2^n} \Rightarrow f_n(x) \xrightarrow[n \to \infty]{} f(x)$$

Если $f(x) = \infty$, то будет верно:

$$\exists n_0 : x \in F_{n_0} \Rightarrow \forall n \ge n_0, f(x) \ge 2^n \Rightarrow f_n(x) = 2^n \xrightarrow[n \to \infty]{} \infty$$

Теорема 3. Пусть f(x) и g(x) измеримые и неотрицательные функции на X, тогда:

$$\int_{X} (f(x) + g(x))d\mu = \int_{X} f(x)d\mu + \int_{X} g(x)d\mu$$

где мы считаем, что: $\infty + \infty = \infty$ и $\infty + a = \infty$.

 \square Согласно лемме 1 существует последовательность простых неотрицательных функций: $\{f_n(x)\}_{n=1}^{\infty}$, которые монотонно неубывая сходятся к f(x): $f_n(x) \uparrow f(x)$. Аналогично, $\exists \{g_n(x)\}_{n=1}^{\infty}$: $g_n(x) \uparrow g(x)$. При этом, если мы просуммируем эти последовательности, то:

$$(f_n(x) + g_n(x)) \uparrow (f(x) + g(x))$$

Согласно утверждению 7 будет верно:

$$\int_X (f(x) + g(x))d\mu = \lim_{n \to \infty} \int_X (f_n(x) + g_n(x))d\mu = \lim_{n \to \infty} \int_X f_n(x)d\mu + \lim_{n \to \infty} \int_X g_n(x)d\mu$$

где последнее верно в силу того, что $f_n(x)$ и $g_n(x)$ - простые. Снова воспользуемся утверждением 7, тогда:

$$\int_{X} (f(x) + g(x))d\mu = \lim_{n \to \infty} \int_{X} f_n(x)d\mu + \lim_{n \to \infty} \int_{X} g_n(x)d\mu = \int_{X} f(x)d\mu + \int_{X} g(x)d\mu$$

Следствие 1. Если f(x) измерима и неотрицательна на X, а $X = A \sqcup B$, где $A, B \in \mathcal{M}$, то будет верно:

$$\int_{X} f(x)d\mu = \int_{A} f(x)d\mu + \int_{B} f(x)d\mu$$

□ Вытекает из равенства:

$$f(x) = f(x){\cdot}\chi_A(x) + f(x){\cdot}\chi_B(x)$$

и того, что согласно определениям 2 и 5 будет верно:

$$\int\limits_X f(x)\cdot \chi_A(x)d\mu = \int\limits_A f(x)d\mu$$

Подробнее, поскольку $A \subseteq X$, $A \in \mathcal{M}$, то $f(x) \in \mathcal{L}(A)$ тогда и только тогда, когда: $f(x)\chi_A(x) \in \mathcal{L}(X)$ и если $f(x) \in \mathcal{L}(A)$, то выполнено равенство выше. Очевидно, что это выполнено для простых функций. Пусть h(x) - простая неотрицательная, тогда:

$$\forall x \in A, \, 0 \leq h(x) \leq f(x) \Rightarrow \forall x \in X, \, 0 \leq h(x) \cdot \chi_A(x) \leq f(x) \cdot \chi_A(x)$$

Обратно будет верно:

$$\forall x \in X, \ 0 \leq h(x) \leq f(x) \cdot \chi_A(x) \Rightarrow \forall x \in X \setminus A, \ h(x) = 0 \Rightarrow$$

$$\Rightarrow h(x) = h(x) \cdot \chi_A(x) \Rightarrow \forall x \in A, \ 0 \leq h(x) \leq f(x)$$

Тогда:

$$\int\limits_X f(x)\cdot \chi_A(x)d\mu = \sup\limits_{h\in Q_f}\int\limits_X h(x)\cdot \chi_A(x)d\mu = \sup\limits_{h\in Q_f}\int\limits_A h(x)d\mu = \int\limits_A f(x)d\mu$$