Solutions to Exercise Set 5

Problem 1

a) After numbering the rows and the columns of the matrix from v_1 to v_5 , we get the following graph:

b) incidence matrix

adjacency matrix

incidence function

$$V = \{v_1, v_2, v_3, v_4, v_5\}$$

$$E = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$

$$\frac{\psi | e_1 | e_2 | e_3 | e_4 | e_5 | e_6}{u(e) | v_1 | v_1 | v_2 | v_2 | v_1 | v_4}{v(e) | v_2 | v_3 | v_3 | v_4 | v_5 | v_5}$$

Problem 2

 ii) incidence matrix adjacency matrix v_6 v_2 v_2 -1 v_3 v_3 v_4 v_4 v_5 v_5

b) After numbering the rows from v_1 to v_5 and the columns from e_1 to e_7 for the matrix given in i and the rows from v_1 to v_6 and the columns from e_1 to e_8 for the matrix given in ii, we get the following graphs:

Problem 3

Problem 4

Let's first replace every edge by two arcs in opposite direction and let's add to each arc a duration of 3 minutes except at HomeCity and ImaCity. We get the following graph:

As the "weights" are non-negative, we can apply Dijkstra's algorithm:

It	i_{min}	Label (predecessor) at the end of the iteration								
		нС	a	b	c	d	e	f	g	IC
0		0	∞							
1	нС	0	5(HC)	∞	8(HC)	∞	∞	∞	∞	∞
2	a		5(HC)	14(a)	8(HC)	23(a)	∞	∞	∞	∞
3	c			12(c)	8(HC)	23(a)	∞	∞	25(c)	∞
4	b			12(c)		23(a)	21(b)	∞	25(c)	∞
5	e					23(a)	21(b)	35(e)	25(c)	∞
6	d					23(a)		35(e)	25(c)	∞
7	g							35(e)	25(c)	34(g)
8	IC							35(e)		34(g)
9	f							35(e)		

The optimal path is:

Anne needs 34 minutes to go from HomeCity to ImaCity.

Problem 5

We would like to determine the shortest path from v_1 to v_6 :

As this network contains edges with negative weights, we must apply the generic algorithm:

Iter.	v_i removed from L	Labels λ_i / Predecessors $p(i)$			Cand. L			
		v_1	v_2	v_3	v_4	v_5	v_6	
0		0/-	∞ /-	∞ /-	∞ /-	$\infty/$ -	∞ /-	$\{v_1\}$
1	v_1	0/-	$-2/v_1$	∞ /-	$4/v_1$	$\infty/$ -	∞ /-	$\{v_2,v_4\}$
2	v_2	0/-	$-2/v_1$	$3/v_2$	$-2/v_2$	$0/v_{2}$	$5/v_2$	$\{v_3, v_4, v_5, v_6\}$
3	v_3	0/-	$-2/v_1$	$3/v_2$	$-2/v_2$	$0/v_{2}$	$4/v_3$	$\{v_4, v_5, v_6\}$
4	v_4	0/-	$-2/v_1$	$3/v_2$	$-2/v_2$	$-1/v_4$	$4/v_3$	$\{v_5, v_6\}$
5	v_5	0/-	$-2/v_1$	$-3/v_5$	$-2/v_2$	$-1/v_4$	$-5/v_{5}$	$\{v_3, v_6\}$
6	v_3	0/-	$-2/v_1$	$-3/v_5$	$-2/v_2$	$-1/v_4$	$-5/v_{5}$	$\{v_{6}\}$
7	v_6	0/-	- $2/v_1$	- $3/v_5$	- $2/v_2$	$-1/v_4$	- $5/v_5$	Ø

The shortest path from v_1 to v_6 in R is unique and has a value of -5. It is given by:

$$v_1 \longrightarrow v_2 \longrightarrow v_4 \longrightarrow v_5 \longrightarrow v_6.$$

Problem 6

a) Shortest paths from α :

Vertex	k (top. sort)	$\lambda_k/p(k)$
α	1	0/NULL
A	2	$0/\alpha$
D	3	$0/\alpha$
N	4	$0/\alpha$
B	5	0.5/A
E	6	1/D
O	7	2/N
G	8	0.5/A
H	9	2.5/G
I	10	2.5/G
J	11	4.5/H
F	12	2/E
C	13	3.5/B
K	14	4.5/H
L	15	5/K
M	16	2.5/F
ω	17	3/O

b) Longest paths from α :

Vertex	k (top. sort)	$\lambda_k/p(k)$
α	1	0/NULL
A	2	$0/\alpha$
D	3	$0/\alpha$
N	4	$0/\alpha$
B	5	0.5/A
E	6	1/D
O	7	2/N
G	8	2/E
H	9	4/G
I	10	4/G
J	11	7/I
F	12	7/I
C	13	8/J
K	14	8/J
L	15	8.5/K
M	16	9.5/L
ω	17	13.5/M