

Data Structures and Algorithm

Moazzam Ali Sahi

- the shortest path between the source and destination
- a subpath which is also the shortest path between its source and destination

Last Lecture

- Learn about graphs
- Discover how to represent graphs in computer memory
- Examine and implement various graph traversal algorithms

This Lecture

- Learn how to implement a shortest path algorithm
- Dijkstra's Algorithm
- Examine and implement the minimum spanning tree algorithm

The author: Edsger Wybe Dijkstra

"Computer Science is no more about computers than astronomy is about telescopes."

http://www.cs.utexas.edu/~EWD/

- May 11, 1930 August 6, 2002
- Received the 1972 A. M. Turing Award, widely considered the most prestigious award in computer science.
- The Schlumberger Centennial Chair of Computer Sciences at The University of Texas at Austin from 1984 until 2000
- Made a strong case against use of the GOTO statement in programming languages and helped lead to its deprecation.
- Known for his many essays on programming.

Single-Source Shortest Path Problem

<u>Single-Source Shortest Path Problem</u> - The problem of finding shortest paths from a source vertex *v* to all other vertices in the graph.

Dijkstra's algorithm

<u>Dijkstra's algorithm</u> - is a solution to the single-source shortest path problem in graph theory.

Works on both directed and undirected graphs. However, all edges must have nonnegative weights.

Approach: Greedy

Input: Weighted graph G={E,V} and source vertex *v*∈V, such that all edge weights are nonnegative

Output: Lengths of shortest paths (or the shortest paths themselves) from a given source vertex *v*∈V to all other vertices

Implementations and Running Times

The simplest implementation is to store vertices in an array or linked list. This will produce a running time of

$$O(|V|^2 + |E|)$$

For sparse graphs, or graphs with very few edges and many nodes, it can be implemented more efficiently storing the graph in an adjacency list using a binary heap or priority queue. This will produce a running time of

$$O((|E|+|V|)\log |V|)$$

Applications of Dijkstra's Algorithm

- Traffic Information Systems are most prominent use
- Mapping (Map Quest, Google Maps)
- Routing Systems

Conter Plaza

Conter St.

Lunden St.

Lund

From Computer Desktop Encyclopedia

3 1998 The Computer Language Co. Inc.

Applications of Dijkstra's Algorithm

- One particularly relevant this week: epidemiology
- O Prof. Lauren Meyers (Biology Dept.) uses networks to model the spread of infectious diseases and design prevention and response strategies.
- O Vertices represent individuals and edges their possible contacts. It is useful to calculate how a particular individual is connected to others.
- O Knowing the shortest path lengths to other individuals can be a relevant indicator of the potential of a particular individual to infect others.

More Examples

Example 2

[Node selected = 0]

	[0]	[1]	[2]	[3]	[4]
smallestWeight	0	16	~	2	3
	[0]	[1]	[2]	[3]	[4]
weightFound	Т	F	F	F	F

More Examples

