

시스템 프로그래밍 기초

Introduction to System Programming

ICT융합학부 조용우

3. The Fundamental Data Types

선언(Declaration)

- ■모든 변수는 사용전에 선언.
- ■목적:메모리 공간 확보, 올바른 연산 수행
- ■올바른 연산자의 선택
 - → int a, b, c; a = b + c; /* 정수 + 연산 */
 - →float d, e, f; d = e + f; /* 실수 + 연산 */

선언 예제

```
#include <stdio.h>
int main(void)
                /* declaration */
  int a, b, c;
  float x, y = 3.3, z = -7.7; /* declaration with
                             initializations */
  printf("Input two integer: "); /* function call */
  a = b + c;
                       /* assignment */
                           /* assignment */
  x = y + z;
```

수식(Expression)

- 상수, 변수, 연산자, 함수 호출 등의 의미있는 결합
- 상수, 변수, 함수 호출은 그 자체가 수식임

```
\rightarrowa + b
```

/* 변수의 연산 */

→ sqrt(7.333)

/* 함수 호출 */

→5.0 * x - tan(9.0 / x) /* 함수호출과 변수연산 */

배정(Assignment)

■문장: 수식 뒤에 세미콜론이 오면, 수식은 문장이 됨

```
→i = 7 /* 배정 수식 */
```

- → 3.777; /* 문법은 문제 없으나 용도가 없음 */
- →a + b; /* 문법은 문제 없으나 용도가 없음 */
- 배정 수식 vs. 수학 등식

3.2 The Fundamental Data Types

기본 자료형

Fundamental types grouped by functionality							
Integral types	char signed char unsigned c		unsigned char				
	<pre>short (signed short int)</pre>	<pre>int (signed int)</pre>	<pre>long (signed long int)</pre>				
	<pre>unsigned short (unsigned short int)</pre>	<pre>unsigned (unsigned int)</pre>	<pre>unsigned long (unsigned long int)</pre>				
Floating types	float	double	long double				
Arithmetic types	Integral types + Floating types						

declaration ::= type identifier $\{$, identifier $\}_{0+}$;

문자 및 char 자료형

Some character constants and their corresponding integer values						
Character constants	'a'	'b'	'c'	•••	'z'	
Corresponding values	97	98	99	•••	112	
Character constants	'A'	'B'	'C'	•••	'Z'	
Corresponding values	65	66	67	•••	90	
Character constants	'0'	'1'	'2'	•••	'9'	
Corresponding values	48	49	50	•••	57	
Character constants	'&'	'* '	'+'			
Corresponding values	38	42	43			

ASCII Table (1972)

b, Β	5 -					° ° °	° 0 ,	0	0 1	00	0	10	1 1
B	D 4 •	b 3	p ⁵	b i	Column	0	_	2	3	4	5	6	7
•	0	0	0	0	0	NUL .	DLE	SP	0	0	Р	```	Р
	0	0	0	ı	1	SOH	DC1	!	1	Α.	O ·	O	q
	0	0	1	0	2	STX	DC2	11	2	В	R	Ь	r
	0	0	1	1	3	ETX	DC3	#	3	С	S	С	\$
	0	1	0	0	4	EOT	DC4	\$	4	D	Т	đ	1
	0	_	0		5	ENQ	NAK	%	5	Ε	U	е	U
	0	1	1	0	6	ACK	SYN	a	6	F	V	f	٧
	0	_	1	1	7	8EL	ETB	•	7	G	W	g	w
	1	0	0	0	8	BS	CAN	(8	н	×	ħ	×
		0	0		9	нТ	EM)	9	1	Y	i	у
	1	0	1	0	10	LF	SUB	*	:	J	Z	j	Z
		0	1	1	11	VT	ESC	+	;	K	C	k .	{
		1	0	0	12	FF	FS	•	<	L	\	l	1
	1	1	0	1	13	CR	GS	-	#	М	כ	E	}
	1	1	I	0	14	so	RS	•	>	N	^	n	>
		I	I	1	15	Sl	υs	/	?	0		0	DEL

3.3 문자 및 char 자료형

Written in C	Integer value
\a	7
\\	92
\b	8
\r	13
\"	34
\f	12
\t	9
\n	10
\0	0
\'	39
\v	11
\?	63
	\a \\\ \b \r \" \f \t \n \0 \' \v

CSE2

확장문자열

- ■단일 문자코드로 사용: ' ', '\n'
- 문자열 안에서의 확장 문자열 : "\tabcde\tXYZ\n" (그냥 쓴다)
- ■(예)

```
→ printf("%c", '\a'); /* causes the bell to ring */
```

```
→ printf("\"abc\""); /* "abc" is printed */
```

- →printf("\'abc\'"); /* 'abc' is printed */
- → printf("'abc'"); /* 'abc' is printed */

(예) 문자 → 정수 취급, 정수 → 문자 취급

```
char c = 'a';
printf("%c", c);
                           /* a is printed */
printf("%d", c);
                           /* 97 is printed */
printf("%c%c%c", c, c + 1, c + 2);  /* abc is printed */
char c;
int i;
for(i = 'a'; i <= 'z'; ++i)
                                  /* abc ... z is printed */
     printf("%c", i);
for(c=65; c<=90; ++c)
      printf("%c", c);
                                  /* ABC ... Z is printed */
for(c='0'; c<='9'; ++c)
     printf("%d", c);
                                  /* 48 49 ... 57 is printed */
```

int 자료형

■int 형

```
→(32bit): -2<sup>31</sup> ~ 2<sup>31</sup>-1 (-21억 ~ 21억)

→(16bit): -2<sup>16</sup> ~ 2<sup>16</sup>-1 (-3만2천 ~ 3만2천)

#define BIG 2000000000 /* 2billion */

int main(void)

{

int a, b = BIG, c = BIG;

a = b + c; /* out of range? */
```

- ■a: 부정확한 값 (integer overflow)
 - →프로그램은 계속 실행되지만, 논리적으로 부정확한 값이 배정됨
 - → 따라서 프로그래머는 변수별로 적절한 범위를 항상 고려해야함

3.5 The Integral Types short, long, and unsigned

정수적형(Integral Type): short, long, unsigned

- short 형
 - → (16bit): 2¹⁵ ~ 2¹⁵-1 (-3만2천 ~ 3만2천)
- ■long 형
 - → (32bit): -2³¹ ~ 2³¹-1 (-21억 ~ 21억)
- ■unsigned 형
 - → (32bit): 0 ~ 2³²-1 (0 ~ 42억)
 - → (16bit): 0 ~ 2¹⁶-1 (0 ~ 6만5천)

3.6 The Floating Types

부동형

■ 부동형: float, double, long double

Suffix	Туре	Example
f or F	float	3.7F
1 or L	long double	3.7L

- 기본적으로 접미사가 없는 부동형은 double형으로 간주
- float (4 bytes): 10³⁸ ~ 10⁻³⁸ ,유효숫자 6자리
- double (8 bytes): 10³⁰⁸ ~ 10⁻³⁰⁸ ,유효숫자 15자리

3.6 The Floating Types

(예) 부동형 상수의 예

```
3.14159
314.159e-2F /* of type float */
0e0 /* equivalent to 0.0 */
1. /* equivalent to 1.0, but harder to read */
```

3.6 The Floating Types

(예) 부동형 상수가 아닌 예

- 3.14,159 /* comma not allowed */
- 314159 /* decimal point or exponential part needed */
- •.e0 /* integer part(0) or fractional part(.77) is needed */

3.7 The Use of typedef

typedef의 사용

■ typedef : 식별자를 특정한 형과 연관

```
→ typedef char uppercase;

→ typedef int INCHES, FEET;

→ typedef unsigned long size_t; /* found in stddef.h */
```

- 변수, 함수 선언시 사용
 - → uppercase u;
 - → INCHES length, width;
 - → 긴 선언문을 축약해 쓸 수 있음
 - → 목적에 따라 형 이름을 사용
 - → 사용하는 컴퓨터에 따라 형의 메모리 할당 byte 수가 달라질 경우, 이식하기 쉽게 만듦

3.8 The sizeof Operator

sizeof 연산자 (Not function)

- sizeof : 객체 저장시 메모리 할당 byte 수 알기 위해 사용
 - → sizeof(object)
- sizeof(char)=1
- sizeof(short) ≤ sizeof(int) ≤ sizeof(long)
- sizeof(signed) = sizeof(unsigned) = sizeof(int)
- sizeof(float) ≤ sizeof(double) ≤ sizeof(long double)

3.9 The Use of getchar() and putchar()

getchar()와 putchar()의 사용

- ■<stdio.h>에 정의된 매크로
- getchar()
 - →키보드에서 문자 읽는 매크로
- putchar()
 - →화면에 문자 출력하는 매크로

3.9 The Use of getchar() and putchar()

(예) double_out.c (EOF는 ctrl-d)

```
#include <stdio.h>
int main(void)
    int c;
   while ((c = getchar()) != EOF) {
        putchar(c);
        putchar(c);
    return 0;
```

3.9 The Use of getchar() and putchar()

(예) capitalize.c

```
#include <stdio.h>
int main(void)
    int c;
   while ((c = getchar()) != EOF)
        if (c >= 'a' && c <= 'z')
            putchar(c + 'A' - 'a');
        else
            putchar(c);
    return 0;
```

3.10 Mathematical Functions

수학 함수

- ■C에는 내장 수학함수가 없다.
- ■수학 Library에서 제공 <math.h>
- sqrt() pow() exp() log() sin() cos() tan()
- ■절대값 함수
 - → abs()
 - ▶ int, <stdlib.h>
 - → fabs()
 - ▶ double, <math.h>

(예) power_square.c

```
#include <math.h>
#include <stdio.h>
int main(void)
   double x;
    printf("/n%s",
       "The following will be computed:\n"
       "\n"
            The square root of x\n"
            x raised to the power x\n"
       "\n");
```

(예) power_square.c

```
while (1) {
    printf("Input x: ");
    if (scanf("%lf", &x) != 1)
        break;
    if (x >= 0.0)
        printf("\n%15s%22.15e\n%15s%22.15e\n\n",
            "x = ", x,
            "sqrt(x) = ", sqrt(x),
            "pow(x, x) = ", pow(x, x));
    else {
        printf("\nSorry, your number must be nonnegative.\n");
       break;
printf("\nBye!\n\n");
return 0;
```

3.10 Mathematical Functions

실행 결과

```
The following will be computed:
  The square root of x
  x raised to the power x
Input x: 2
        sqrt(x) = 1.414213562373095e+000
  Input x:
```

변환과 캐스트

- 정수적 승격 (the integral promotions)
 - → signed 혹은 unsigne의 char, short, 또는 열거형을 int나 unsigned int형이 사용될 수 있는 수식에서 대신 사용 가능
 - →이 경우, 이들 형들 중 모든 값을 int로 표현할 수 있으면 int로 변환되고, 그렇지 않으면 unsigned int로 변환됨
 - → char c = 'A'; printf("%d\n", c); /* c는 승격이 일어나 int형이 됨 (65출력) */

3.11 Conversions and Casts

변화과 캐스트

- 일반적 자동 변환 (the usual arithmetic conversions)
 - → 수식에서 제일 큰 형으로 변환한다.
 - → long double, double, float
 - → unsigned long, long, unsigned, int의 순서
 - → long과 unsigned의 경우, 모든 값을 long으로 표현할 수 있으면 long으로 변환되고, 그렇지 않으면 unsigned long으로 변환됨

일반적 자동 변화 예제

```
• char c; short s; int i; long l; unsigned u;
 unsigned long ul; float f; double d; long double ld;
•c - s / i (int)
■u * 2.0 - i (double)
 c + 3  (int)
• c + 5.0 (double)
\bullet d + s (double)
■ 2 * i / 1 (long)
```

3.11 Conversions and Casts

일반적 자동 변화 예제

	Alla		
u	*	_	1

(unsigned)

(float)

(unsigned long)

(long double)

(unsigned long)

(system-dependent)

캐스트(casts) - 명시적 변환

- 캐스트 예
 - → (double) i
 - \rightarrow (long) ('A' + 1.0)
 - \rightarrow f = (float) ((int) d + 1)
 - \rightarrow d = (double) i / 3
 - \rightarrow (double) (x = 77)
- 틀린 예
 - \rightarrow (double) x = 77 /* equivalent to ((double) x) = 77, error */
- (float) i + 3 <==> ((float) i) + 3
 - → (float)가 + 보다 우선순위 높음

Homework

Homework

Exercise #7, 8, 10, 17

