UF – ENI RECHERCHE OPERATIONNELLE

# PROGRAMMATION LINEAIRE - EXERCICES RESOLUS

### EXERCICE 1: Programme linéaire sous forme standard

$$\begin{cases} 2x_1 + 3x_2 \le 8 \\ 2x_2 + 5x_3 \le 10 \\ 3x_1 + 2x_2 + 4x_3 \le 15 \end{cases} \Rightarrow \begin{cases} 2x_1 + 3x_2 + x_4 = 8 \\ 2x_2 + 5x_3 + x_5 = 10 \\ 3x_1 + 2x_2 + 4x_3 + x_6 = 15 \end{cases}$$

$$MAX (Z = 3x_1 + 5x_2 + 4x_3) \qquad MAX (3x_1 + 5x_2 + 4x_3 + 0x_4 + 0x_5 + 0x_6)$$

#### SOLUTION

| 2010    | TION            |        |                |                |                |                |                |                      |              |
|---------|-----------------|--------|----------------|----------------|----------------|----------------|----------------|----------------------|--------------|
| $C_{i}$ | i               | $A_1$  | $\mathbf{A}_2$ | $A_3$          | $A_4$          | $\mathbf{A}_5$ | $A_6$          | $A_0$                | $x_k/x_{kj}$ |
| 0       | 4               | 2      | 3              | 0              | 1              | 0              | 0              | 8                    | 2,66         |
| 0       | 5               | 0      | 2              | 5              | 0              | 1              | 0              | 10                   | 5            |
| 0       | 6               | 3      | 2              | 4              | 0              | 0              | 1              | 15                   | 7,5          |
|         | Cj              | 3      | 5              | 4              | 0              | 0              | 0              |                      |              |
|         | $\Delta_{ m j}$ | 3      | 5              | 4              | 0              | 0              | 0              | Z = 0                |              |
|         | ,               |        |                | •              | •              |                | •              |                      |              |
| $C_i$   | i               | $A_1$  | $A_2$          | $A_3$          | $A_4$          | $A_5$          | $A_6$          | $A_0$                | $x_k/x_{kj}$ |
| 5       | 2               | 2/3    | 1              | 0              | 1/3            | 0              | 0              | 8/3                  | $\infty$     |
| 0       | 5               | - 4/3  | 0              | 5              | - 2/3          | 1              | 0              | 14/3                 | 0,93         |
| 0       | 6               | 5/3    | 0              | 4              | - 2/3          | 0              | 1              | 29/3                 | 2,41         |
|         | $C_j$           | 3      | 5              | 4              | 0              | 0              | 0              |                      |              |
|         | $\Delta_{ m j}$ | - 1/3  | 0              | 4              | - 5/3          | 0              | 0              | Z = 40/3             |              |
|         |                 |        |                |                |                |                |                |                      |              |
| $C_{i}$ | i               | $A_1$  | $A_2$          | $A_3$          | $A_4$          | $A_5$          | $A_6$          | $A_0$                | $x_k/x_{kj}$ |
| 5       | 2               | 2/3    | 1              | 0              | 1/3            | 0              | 0              | 8/3                  | 4            |
| 4       | 3               | - 4/15 | 0              | 1              | - 2/15         | 1/5            | 0              | 14/15                | -            |
| 0       | 6               | 41/15  | 0              | 0              | - 2/15         | - 4/5          | 1              | 89/15                | 2,17         |
|         | $C_j$           | 3      | 5              | 4              | 0              | 0              | 0              |                      |              |
|         | $\Delta_{ m j}$ | 11/15  | 0              | 0              | - 17/15        | - 4/5          | 0              | Z = 256/3            | 15           |
| ~       |                 |        |                |                |                |                |                |                      |              |
| Ci      | i               | $A_1$  | $A_2$          | A <sub>3</sub> | A <sub>4</sub> | A <sub>5</sub> | A <sub>6</sub> | $A_0$                |              |
| 5       | 2               | 0      | 1              | 0              | 15/41          | 8/41           | - 10/41        | 50/41                |              |
| 4       | 3               | 0      | 0              | 1              | - 6/41         | 5/41           | 4/41           | 62/41                |              |
| 3       | 1               | 1      | 0              | 0              | - 2/41         | - 12/41        | 15/41          | 89/41                |              |
|         | Cj              | 3      | 5              | 4              | 0              | 0              | 0              |                      |              |
|         | $\Delta_{ m j}$ | 0      | 0              | 0              | - 45/41        | - 24/41        | - 11/41        | $\mathbf{Z} = 765/4$ | 41           |

RESULTAT :  $x_1 = 89/41$   $x_2 = 50/41$   $x_3 = 62/41$  Z = 765/41

### EXERCICE 1: Programme linéaire sous forme standard

Une entreprise pharmaceutique fabrique trois types de médicaments : des euphorisants, des analgésiques et des somnifères, dont les bénéfices de production escomptés sont respectivement de 25, 60 et 30 milliers d'euros par kilo.

Pour fabriquer chacun de ces médicaments, trois matières premières sont utilisées : morphine, caféine et aspirine. Les quantités nécessaires de ces produits pour fabriquer un kilo de médicaments sont résumées dans le tableau suivant:

|          | euphorisant | analgésique | somnifère |
|----------|-------------|-------------|-----------|
| Morphine | 2           | 4           | 4         |
| Caféine  | 1           | 2           | 0         |
| Aspirine | 2           | 5           | 4         |

Par ailleurs les quantités de morphine, caféine et aspirine sont limitées par leur production à respectivement 20, 6 et 14 unités par jour. Le but de l'exercice est de plannifier les quantités de médicaments à produire afin de maximiser le bénéfice quotidien.

$$\begin{cases} 2x_1 + 4x_2 + 4x_3 \le 20 \\ x_1 + 2x_2 \le 6 \\ 2x_1 + 5x_2 + 4x_3 \le 14 \end{cases} \Rightarrow \begin{cases} 2x_1 + 4x_2 + 4x_3 + x_4 = 20 \\ x_1 + 2x_2 + x_5 = 6 \\ 2x_1 + 5x_2 + 4x_3 + x_6 = 14 \end{cases}$$

$$MAX (Z = 25x_1 + 60x_2 + 30x_3) \qquad 5x MAX (5x_1 + 12x_2 + 6x_3 + 0x_4 + 0x_5 + 0x_6)$$

#### SOLUTION

| Ci      | i               | $A_1$          | $A_2$ | $A_3$          | $A_4$ | $A_5$ | $A_6$          | $A_0$    | $x_k/x_{kj}$ |
|---------|-----------------|----------------|-------|----------------|-------|-------|----------------|----------|--------------|
| 0       | 4               | 2              | 4     | 4              | 1     | 0     | 0              | 20       | 5            |
| 0       | 5               | 1              | 2     | 0              | 0     | 1     | 0              | 6        | 3            |
| 0       | 6               | 2              | 5     | 4              | 0     | 0     | 1              | 14       | 2,8          |
|         | Cj              | 5              | 12    | 6              | 0     | 0     | 0              |          |              |
|         | $\Delta_{ m j}$ | 5              | 12    | 6              | 0     | 0     | 0              | Z = 0    |              |
|         |                 |                |       |                |       |       |                | •        |              |
| $C_{i}$ | i               | $A_1$          | $A_2$ | $A_3$          | $A_4$ | $A_5$ | $A_6$          | $A_0$    | $x_k/x_{kj}$ |
| 0       | 4               | 2/5            | 0     | 4/5            | 1     | 0     | - 4/5          | 44/5     |              |
| 0       | 5               | 1/5            | 0     | - 8/5          | 0     | 1     | - 2/5          | 2/5      |              |
| 12      | 2               | 2/5            | 1     | 4/5            | 0     | 0     | 1/5            | 14/5     |              |
|         | $C_{j}$         | 5              | 12    | 6              | 0     | 0     | 0              | _        |              |
|         | $\Delta_{ m j}$ | 1/5            | 0     | - 18/5         | 0     | 0     | - 12/5         | Z = 168/ | 5            |
|         |                 |                |       |                |       |       |                | -        |              |
| $C_i$   | i               | $\mathbf{A}_1$ | $A_2$ | A <sub>3</sub> | $A_4$ | $A_5$ | A <sub>6</sub> | $A_0$    | $x_k/x_{kj}$ |
| 0       | 4               | 0              | 0     | 4              | 2     | - 2   | 0              | 8        |              |
| 5       | 1               | 1              | 0     | - 8            | 0     | 5     | - 2            | 2        |              |
| 12      | 2               | 0              | 1     | 4              | 0     | - 2   | 1              | 2        |              |
|         | $C_j$           | 5              | 12    | 6              | 0     | 0     | 0              | -        |              |
|         | $\Delta_{ m j}$ | 0              | 0     | - 2            | 0     | - 1   | - 2            | Z = 34   |              |

PROGRAMMATION LINEAIRE PAGE 2 **EXERCICES RESOLUS**  RESULTAT:  $x_1 = 2$   $x_2 = 2$   $x_3 = 0$  Z = 170

# EXERCICE 2: Programme linéaire sous forme standard

Trois tailles de minerais  $t_1$ ,  $t_2$  et  $t_3$  sont respectivement susceptibles de fournir une extraction maximale journalière de 200, 500 et de 300 tonnes.

La production journalière est d'abord stockée dans un local abrité d'une contenance maximale de 1800 m<sup>3</sup> et l'on indique les volumes spécifiques respectifs des trois catégories de produits : 1,8 ; 2 et 2,2 m<sup>3</sup>/t.

Le lendemain, les minerais sont lavés : la laverie débite respectivement 80, 90 et 100 tonnes à l'heure pour les produits extraits des tailles t<sub>1</sub>, t<sub>2</sub> et t<sub>3</sub> ; en outre, son horaire journalier est limité à 10 heures de travail.

Enfin, les profits unitaires réalisés sont, respectivement :  $p_1 = 4$ ,  $p_2 = 5$ ,  $p_3 = 6$  unités monétaires.

- 1. Formuler ce problème sous forme de programme linéaire.
- 2. En utilisant la méthode de simplexe, trouver la meilleure répartition des quantités à extraire ?

# SOLUTION

$$\begin{vmatrix} x_1 \leq 200 \\ x_2 \leq 500 \\ x_3 \leq 300 \\ \begin{vmatrix} 1,8x_1 + 2x_2 + 2,2x_5 \leq 1800 \\ \frac{1}{80}x_1 + \frac{1}{90}x_2 + \frac{1}{100}x_5 \leq 10 \end{vmatrix} = \begin{vmatrix} x_1 \leq 200 \\ x_2 \leq 500 \\ x_3 \leq 300 \end{vmatrix} \Rightarrow \begin{vmatrix} x_1 + 10x_2 + 11x_5 \leq 9000 \\ 45x_1 + 40x_2 + 36x_5 \leq 36000 \end{vmatrix} = \begin{vmatrix} x_1 + 10x_2 + 11x_5 + x_7 = 9000 \\ 45x_1 + 40x_2 + 36x_5 \leq 36000 \end{vmatrix} = \begin{vmatrix} x_1 + 10x_2 + 11x_5 + x_7 = 9000 \\ 45x_1 + 40x_2 + 36x_5 + x_8 = 36000 \end{vmatrix} = \begin{vmatrix} x_1 + 10x_2 + 11x_5 + x_7 = 9000 \\ 45x_1 + 40x_2 + 36x_5 + x_8 = 36000 \end{vmatrix} = \begin{vmatrix} x_1 + 10x_2 + 11x_5 + x_7 = 9000 \\ 45x_1 + 40x_2 + 36x_5 + x_8 = 36000 \end{vmatrix} = \begin{vmatrix} x_1 + 10x_2 + 11x_5 + x_7 = 9000 \\ 45x_1 + 40x_2 + 36x_5 + x_8 = 36000 \end{vmatrix} = \begin{vmatrix} x_1 + 10x_2 + 11x_5 + x_7 = 9000 \\ 45x_1 + 40x_2 + 36x_5 + x_8 = 36000 \end{vmatrix} = \begin{vmatrix} x_1 + 10x_2 + 11x_5 + x_7 = 9000 \\ 45x_1 + 40x_2 + 36x_5 + x_8 = 36000 \end{vmatrix} = \begin{vmatrix} x_1 + 10x_2 + 11x_5 + x_7 = 9000 \\ 45x_1 + 40x_2 + 36x_5 + x_8 = 36000 \end{vmatrix} = \begin{vmatrix} x_1 + 10x_2 + 11x_5 + x_7 = 9000 \\ 45x_1 + 40x_2 + 36x_5 + x_8 = 36000 \end{vmatrix} = \begin{vmatrix} x_1 + 10x_2 + 11x_5 + x_7 = 9000 \\ 45x_1 + 40x_2 + 36x_5 + x_8 = 36000 \end{vmatrix} = \begin{vmatrix} x_1 + 10x_2 + 11x_5 + x_7 = 9000 \\ 45x_1 + 40x_2 + 36x_5 + x_8 = 36000 \end{vmatrix} = \begin{vmatrix} x_1 + 10x_2 + 11x_5 + x_7 = 9000 \\ 45x_1 + 40x_2 + 36x_5 + x_8 = 36000 \end{vmatrix} = \begin{vmatrix} x_1 + 10x_2 + 11x_5 + x_7 = 9000 \\ 45x_1 + 40x_2 + 36x_5 + x_8 = 36000 \end{vmatrix} = \begin{vmatrix} x_1 + 10x_2 + 11x_5 + x_7 = 9000 \\ 45x_1 + 40x_2 + 36x_5 + x_8 = 36000 \end{vmatrix} = \begin{vmatrix} x_1 + 10x_2 + 11x_5 + x_7 = 9000 \\ 45x_1 + 40x_2 + 36x_5 + x_8 + 36000 \end{vmatrix} = \begin{vmatrix} x_1 + 10x_2 + 11x_5 + x_7 = 9000 \\ 45x_1 + 40x_2 + 36x_5 + x_8 + 36000 \end{vmatrix} = \begin{vmatrix} x_1 + 10x_2 + 11x_5 + x_7 = 9000 \\ 45x_1 + 40x_2 + 36x_5 + x_8 + 36000 \end{vmatrix} = \begin{vmatrix} x_1 + 10x_2 + 11x_5 + x_7 = 9000 \\ 45x_1 + 40x_2 + 36x_5 + x_8 + 36000 \end{vmatrix} = \begin{vmatrix} x_1 + 10x_2 + 11x_5 + x_7 = 9000 \\ 45x_1 + 40x_2 + 36x_5 + x_8 + 36000 \end{vmatrix} = \begin{vmatrix} x_1 + 10x_2 + 11x_5 + x_7 = 9000 \\ 45x_1 + 40x_2 + 36x_5 + x_8 + 36000 \end{vmatrix} = \begin{vmatrix} x_1 + 10x_2 + 11x_5 + x_7 + 9000 \\ 2000 & 300 & 300 \end{vmatrix} = \begin{vmatrix} x_1 + 10x_2 + 11x_5 + x_7 + 9000 \\ 300 & 300 & 300 \end{vmatrix} = \begin{vmatrix} x_1 + 10x_2 + 11x_5 + x_7 + 8x_5 + x_8 + 36000 \end{vmatrix} = \begin{vmatrix} x_1 + 1x_2 + x_1 + x_2 + x_3 + x_4 + x_4 + x_2 + x_3 + x_4 + x_4$$

PROGRAMMATION LINEAIRE PAGE 3 EXERCICES RESOLUS

| 5                | 2                     |   | 0                     | 1                | 0                | 0                | 1                              | 0                              | 0                             | 0                | 500 ∞                                                                |
|------------------|-----------------------|---|-----------------------|------------------|------------------|------------------|--------------------------------|--------------------------------|-------------------------------|------------------|----------------------------------------------------------------------|
| 6                | 3                     |   | 0                     | 0                | 1                | 0                | 0                              | 1                              | 0                             | 0                | 300 ∞                                                                |
| 0                | 7                     |   | 9                     | 0                | 0                | 0                | - 10                           | - 11                           | 1                             | 0                | 700 77,77                                                            |
| 0                | 8                     |   | 45                    | 0                | 0                | 0                | - 40                           | - 36                           | 0                             | 1                | 5200 115,55                                                          |
|                  | Cj                    |   | 4                     | 5                | 6                | 0                | 0                              | 0                              | 0                             | 0                | <u> </u>                                                             |
|                  | $\Delta_{ m j}$       |   | 4                     | 0                | 0                | 0                | - 5                            | - 6                            | 0                             | 0                | Z = 4300                                                             |
|                  | ,                     | L |                       |                  | l                | l .              | l                              |                                |                               |                  |                                                                      |
| $C_{i}$          | i                     |   | Α.                    | ٨                | A                | A                | A                              | A                              | A                             | A .              | A /                                                                  |
| $\mathcal{C}_1$  | 1                     |   | $\mathbf{A}_1$        | $A_2$            | $A_3$            | $A_4$            | $A_5$                          | $A_6$                          | $A_7$                         | $A_8$            | $A_0 	 x_k/x_{kj}$                                                   |
| 0                | 4                     |   | $\frac{A_1}{0}$       | $\frac{A_2}{0}$  | A <sub>3</sub>   | A <sub>4</sub>   | $\frac{A_5}{10/9}$             | $\frac{A_6}{11/9}$             | - 1/9                         | $\frac{A_8}{0}$  | $\begin{array}{c c} A_0 & x_k/x_{kj} \\ \hline 1100/9 & \end{array}$ |
|                  |                       |   |                       |                  |                  | 1<br>0           |                                |                                |                               |                  |                                                                      |
| 0                | 4                     |   | 0                     | 0                | 0                | 1                |                                | 11/9                           | - 1/9                         | 0                | 1100/9                                                               |
| 5                | 4 2                   |   | 0                     | 0                | 0                | 1 0              | 10/9                           | 11/9                           | - 1/9<br>0                    | 0                | 1100/9<br>500                                                        |
| 0<br>5<br>6      | 4<br>2<br>3           |   | 0                     | 0<br>1<br>0      | 0 0 1            | 1<br>0<br>0      | 10/9<br>1<br>0                 | 11/9<br>0<br>1                 | - 1/9<br>0<br>0               | 0<br>0<br>0      | 1100/9<br>500<br>300                                                 |
| 0<br>5<br>6<br>4 | 4<br>2<br>3<br>1<br>8 |   | 0<br>0<br>0<br>1      | 0<br>1<br>0<br>0 | 0<br>0<br>1<br>0 | 1<br>0<br>0<br>0 | 10/9<br>1<br>0<br>- 10/9       | 11/9<br>0<br>1<br>- 11/9       | - 1/9<br>0<br>0<br>1/9        | 0<br>0<br>0      | 1100/9<br>500<br>300<br>700/9                                        |
| 0<br>5<br>6<br>4 | 4<br>2<br>3<br>1      |   | 0<br>0<br>0<br>1<br>0 | 0<br>1<br>0<br>0 | 0<br>0<br>1<br>0 | 1<br>0<br>0<br>0 | 10/9<br>1<br>0<br>- 10/9<br>10 | 11/9<br>0<br>1<br>- 11/9<br>19 | - 1/9<br>0<br>0<br>1/9<br>- 5 | 0<br>0<br>0<br>0 | 1100/9<br>500<br>300<br>700/9                                        |

<u>RESULTAT</u>:  $x_1 = 700/9 = 77,77$   $x_2 = 500$   $x_3 = 300$  Z = 41500/9 = 4611,11

### EXERCICE 3: Programme linéaire sous forme standard

Un atelier peut fabriquer trois types d'articles : l'article  $A_1$  à la cadence de 35 objets à l'heure ; l'article  $A_2$  à la cadence de 45 objets à l'heure et l'article  $A_3$  à la cadence de 20 objets à l'heure. Cette fabrication utilise une machine-outil unique, disponible 200 heures par mois.

Ces objets sont vendus en totalité à des grossistes ; on a observé qu'on ne pouvait écouler, par mois, plus de 4 900 objets du type A<sub>1</sub>, ni plus de 5 400 objets du type A<sub>2</sub>, ni plus de 2 000 objets du type A<sub>3</sub>.

Le bénéfice unitaire pour l'article  $A_1$  est de 60 u.m. par objet, pour  $A_2$  de 40 u.m., pour  $A_3$  de 80 u.m. Quels sont alors les nombres des objets à fabriquer pour avoir du bénéfice maximal ?

#### SOLUTION

 $C_i$ 

 $\Delta_{\mathsf{i}}$ 

$$\begin{cases} x_1 \leq 4900 \\ x_2 \leq 5400 \\ x_3 \leq 2000 \\ \frac{1}{35}x_1 + \frac{1}{45}x_2 + \frac{1}{20}x_5 \leq 200 \end{cases} \Rightarrow \begin{cases} x_1 \leq 4900 \\ x_2 \leq 5400 \\ x_3 \leq 2000 \\ 36x_1 + 28x_2 + 63x_5 \leq 252000 \end{cases} \Rightarrow \begin{cases} x_1 + x_4 = 4900 \\ x_2 + x_5 = 5400 \\ x_3 + x_6 = 2000 \\ 36x_1 + 28x_2 + 63x_5 + x_7 = 252000 \end{cases}$$

$$MAX (Z = 60x_1 + 40x_2 + 80x_2) \qquad 20 \text{ x MAX } (3x_1 + 2x_2 + 4x_2 + 0x_4 + 0x_5 + 0x_6 + 0x_7)$$

$$\frac{C_i}{0} = \frac{i}{0} \quad \frac{A_1}{0} \quad \frac{A_2}{0} \quad \frac{A_3}{0} \quad \frac{A_4}{0} \quad \frac{A_5}{0} \quad \frac{A_6}{0} \quad \frac{A_7}{0} \quad \frac{A_0}{0} \quad \frac{x_k/x_{kj}}{0} \\ \frac{A_1}{0} \quad \frac{A_1}{0} \quad \frac{A_2}{0} \quad \frac{A_3}{0} \quad \frac{A_4}{0} \quad \frac{A_5}{0} \quad \frac{A_6}{0} \quad \frac{A_7}{0} \quad \frac{A_0}{0} \quad \frac{x_k/x_{kj}}{0} \\ \frac{A_1}{0} \quad \frac{A_1}{0} \quad \frac{A_1}{0} \quad \frac{A_2}{0} \quad \frac{A_3}{0} \quad \frac{A_4}{0} \quad \frac{A_5}{0} \quad \frac{A_6}{0} \quad \frac{A_7}{0} \quad \frac{A_9}{0} \quad \frac{x_k/x_{kj}}{0} \\ \frac{A_1}{0} \quad \frac{A_1}{0} \quad \frac{A_1}{0} \quad \frac{A_1}{0} \quad \frac{A_2}{0} \quad \frac{A_3}{0} \quad \frac{A_4}{0} \quad \frac{A_5}{0} \quad \frac{A_6}{0} \quad \frac{A_7}{0} \quad \frac{A_9}{0} \quad \frac{x_k/x_{kj}}{0} \\ \frac{A_1}{0} \quad \frac{A_1}{0} \quad \frac{A_1}{0} \quad \frac{A_1}{0} \quad \frac{A_1}{0} \quad \frac{A_1}{0} \quad \frac{A_2}{0} \quad \frac{A_1}{0} \quad \frac{A_1}{0} \quad \frac{A_1}{0} \quad \frac{A_2}{0} \quad \frac{A_1}{0} \quad \frac{A_1}{0} \quad \frac{A_1}{0} \quad \frac{A_2}{0} \quad \frac{A_1}{0} \quad \frac{A_1}{0} \quad \frac{A_2}{0} \quad \frac{A_1}{0} \quad \frac{A_1}{0} \quad \frac{A_1}{0} \quad \frac{A_2}{0} \quad \frac{A_1}{0} \quad \frac{A_1}{0$$

Z = 0

PROGRAMMATION LINEAIRE PAGE 4 EXERCICES RESOLUS

| $\begin{array}{c cc} C_i & i \\ \hline 0 & 4 \\ \hline 0 & 5 \\ \hline 4 & 3 \\ \hline 0 & 7 \\ \hline \\ C_i & i \\ \hline 0 & 4 \\ \hline 0 & 5 \\ \hline 4 & 3 \\ \hline 3 & 1 \\ \hline \\ C_j \\ \hline \end{array}$ | $\begin{array}{c c} A_1 \\ \hline 1 \\ \hline 0 \\ \hline 0 \\ \hline 36 \\ \hline 3 \\ \hline A_1 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 1 \\ \hline 3 \\ \end{array}$ | $\begin{array}{c c} A_2 & & & & \\ 0 & & & & \\ 1 & & & & \\ 0 & & & & \\ 28 & & & & \\ 2 & & & & \\ A_2 & & & & \\ -7/9 & & & \\ 1 & & & & \\ 0 & & & & \\ 7/9 & & & \\ 2 & & & \\ \end{array}$ | A <sub>3</sub> 0 0 1 0 4 0 A <sub>3</sub> 0 0 1 0 4 0 4 4 0 4 4 4 4 4 4 4 | A <sub>4</sub> 1  0  0  0  0  A <sub>4</sub> 1  0  0  0  0  0  0  0  0  0  0  0  0 | A <sub>5</sub> 0 1 0 0 0 0 A <sub>5</sub> 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | A <sub>6</sub> 0 0 1 -63 0 -4 A <sub>6</sub> 7/4 0 1 -7/4 0 | A <sub>7</sub> 0  0  0  1  0  A <sub>7</sub> -1/36  0  1/36  0 | $\begin{array}{c} A_0 \\ \hline 4900 \\ 5400 \\ \hline 2000 \\ \hline 126000 \\ \\ Z = 8\ 000 \\ \hline A_0 \\ \hline 1400 \\ \hline 5400 \\ \hline 2000 \\ \hline 3500 \\ \\ \end{array}$ | $x_k/x_{kj}$ 4900 $\infty$ $\infty$ 3500 $x_k/x_{kj}$ 800 $\infty$ 2000 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| $\Delta_{ m j}$                                                                                                                                                                                                           | 0                                                                                                                                                                              | - 1/3                                                                                                                                                                                            | 0                                                                         | 0                                                                                  | 0                                                                               | 5/4                                                         | - 1/12                                                         | Z = 18500                                                                                                                                                                                  | )                                                                       |
| $\begin{array}{c cc} C_i & i \\ \hline 0 & 6 \\ \hline 0 & 5 \\ \hline 4 & 3 \\ \hline 3 & 1 \\ \hline \\ C_j \\ \Delta_j \end{array}$                                                                                    | A <sub>1</sub> 0 0 0 1 3                                                                                                                                                       | A <sub>2</sub> - 4/9 1 4/9 0 2 2/9                                                                                                                                                               | A <sub>3</sub> 0 0 1 0 4 0                                                | A <sub>4</sub> 4/7 0 - 4/7 1 0 - 5/7                                               | A <sub>5</sub> 0 1 0 0 0 0 0                                                    | A <sub>6</sub> 1 0 0 0 0 0 0                                | A <sub>7</sub> - 1/63 0 1/63 0 0 - 4/63                        | $ \begin{array}{r} A_0 \\ 800 \\ 5400 \\ 1200 \\ 4900 \end{array} $ $ Z = 19 500 $                                                                                                         | $x_k/x_{kj}$ - 5400 2700 $\infty$                                       |
| $\begin{array}{c cc} C_i & i \\ \hline 0 & 6 \\ \hline 0 & 5 \\ \hline 2 & 2 \\ \end{array}$                                                                                                                              | $\begin{array}{c c} A_1 \\ \hline 0 \\ \hline 0 \\ \end{array}$                                                                                                                | A <sub>2</sub> 0 0                                                                                                                                                                               | A <sub>3</sub> 1 - 9/4 9/4                                                | A <sub>4</sub> 0 9/7 - 9/7                                                         | A <sub>5</sub> 0 1 0                                                            | A <sub>6</sub> 1 0 0                                        | A <sub>7</sub> 0 - 1/28 1/28                                   | $\begin{array}{c c} A_0 \\ \hline 2000 \\ 2700 \\ \hline 2700 \\ \end{array}$                                                                                                              |                                                                         |

<u>RESULTAT</u>:  $x_1 = 4900$   $x_2 = 2700$   $x_3 = 0$  Z = 402000

### EXERCICE 4: Programme linéaire sous forme standard

Pour mettre en valeur un espace de 40 ha, un agriculteur dispose d'un montant de 63 000 unités monétaires (u.m.), de 840 journées de travail et se propose de semer du maïs, du blé et du soja.

La préparation à la culture coûte : 1500 u.m. par ha pour le maïs, 1800 u.m. par ha pour le blé et 1050 u.m. par ha pour le soja. La culture d'un ha nécessite : 18 journées de travail pour le maïs, 27 journées pour le blé et 15 journées pour le soja.

Les rapports espérés sont respectivement proportionnels à : 420 u.m. pour le maïs, 510 u.m. pour le blé et 360 u.m. pour le soja. Quel seront les choix de l'agriculture ? <u>Indication</u> : x1, x2, x3 : superficies à cultiver respectivement du maïs, du blé et du soja pour rendre maximum le profit.

### SOLUTION

PROGRAMMATION LINEAIRE PAGE 5 EXERCICES RESOLUS

$$\begin{cases} x_1 + x_2 + x_3 \leq 40 \\ 1500 \, x_1 + 1800 \, x_2 + 1050 \, x_5 \leq 63000 & (/150) \\ 18 \, x_1 + 27 \, x_2 + 15 \, x_3 \leq 840 & (/3) \\ MAX \, (Z = 420 \, x_1 + 510 \, x_3 + 360 \, x_2) & (/30) \\ MAX \, (Z = 420 \, x_1 + 510 \, x_3 + 360 \, x_2) & (/30) \\ MAX \, (14 \, x_1 + 17 \, x_2 + 12 \, x_3 + 0 \, x_4 + 0 \, x_5 + 0 \, x_6) \\ \hline C_i \quad i \quad A_1 \quad A_2 \quad A_3 \quad A_4 \quad A_5 \quad A_6 \quad A_0 \quad x_k / x_{k_j} \\ \hline 0 \quad 4 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 0 \quad 0 \quad 0 \\ \hline 0 \quad 5 \quad 10 \quad 12 \quad 7 \quad 0 \quad 1 \quad 0 \\ \hline 0 \quad 6 \quad 6 \quad 9 \quad 5 \quad 0 \quad 0 \quad 1 \quad 0 \\ \hline C_j \quad 14 \quad 17 \quad 12 \quad 0 \quad 0 \quad 0 \quad 0 \\ \hline C_i \quad i \quad A_1 \quad A_2 \quad A_3 \quad A_4 \quad A_5 \quad A_6 \quad A_0 \quad x_k / x_{k_j} \\ \hline 0 \quad 4 \quad 17 \quad 12 \quad 0 \quad 0 \quad 0 \quad 0 \\ \hline C_i \quad i \quad A_1 \quad A_2 \quad A_3 \quad A_4 \quad A_5 \quad A_6 \quad A_0 \quad x_k / x_{k_j} \\ \hline 0 \quad 4 \quad 17 \quad 12 \quad 0 \quad 0 \quad 0 \quad 0 \\ \hline C_i \quad 14 \quad 17 \quad 12 \quad 0 \quad 0 \quad 0 \quad 0 \\ \hline C_i \quad 14 \quad 17 \quad 12 \quad 0 \quad 0 \quad 0 \quad 19 \\ \hline C_j \quad 14 \quad 17 \quad 12 \quad 0 \quad 0 \quad 0 \quad 1/9 \\ \hline C_j \quad 14 \quad 17 \quad 12 \quad 0 \quad 0 \quad 0 \quad 1/9 \\ \hline C_j \quad 14 \quad 17 \quad 12 \quad 0 \quad 0 \quad 0 \quad 0 \\ \hline C_i \quad 1 \quad A_1 \quad A_2 \quad A_3 \quad A_4 \quad A_5 \quad A_6 \quad A_0 \quad x_k / x_{k_j} \\ \hline 0 \quad 4 \quad 17 \quad 12 \quad 0 \quad 0 \quad 0 \quad 1/9 \\ \hline C_i \quad 1 \quad A_1 \quad A_2 \quad A_3 \quad A_4 \quad A_5 \quad A_6 \quad A_0 \quad x_k / x_{k_j} \\ \hline 0 \quad 4 \quad 17 \quad 12 \quad 0 \quad 0 \quad 0 \quad 1/9 \\ \hline C_i \quad 1 \quad A_1 \quad A_2 \quad A_3 \quad A_4 \quad A_5 \quad A_6 \quad A_0 \quad x_k / x_{k_j} \\ \hline 14 \quad 1 \quad 1 \quad 0 \quad 1/6 \quad 0 \quad 1/2 \quad -2/3 \\ \hline 17 \quad 2 \quad 0 \quad 1 \quad 4/9 \quad 0 \quad -1/3 \quad 5/9 \\ \hline C_j \quad 14 \quad 17 \quad 12 \quad 0 \quad 0 \quad 0 \quad 0 \\ \hline C_j \quad 14 \quad 17 \quad 12 \quad 0 \quad 0 \quad 0 \quad 0 \\ \hline C_j \quad 14 \quad 17 \quad 12 \quad 0 \quad 0 \quad 0 \quad 0 \\ \hline C_j \quad 14 \quad 17 \quad 12 \quad 0 \quad 0 \quad 0 \quad 0 \\ \hline C_j \quad 14 \quad 17 \quad 12 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \\ \hline C_j \quad 14 \quad 17 \quad 12 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \\ \hline C_j \quad 14 \quad 17 \quad 12 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \\ \hline C_j \quad 14 \quad 17 \quad 12 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \\ \hline C_j \quad 14 \quad 17 \quad 12 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \\ \hline C_j \quad 14 \quad 17 \quad 12 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \\ \hline C_j \quad 14 \quad 17 \quad 12 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \\ \hline C_j \quad 14 \quad 17 \quad 12 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \\ \hline C_j \quad 14 \quad 17 \quad 12 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \\ \hline C_j \quad 14 \quad 17 \quad 12 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \\ \hline C_j \quad 14 \quad 17 \quad 12 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \\ \hline C_j \quad 14 \quad 17 \quad 12 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \\ \hline C_j \quad 14 \quad 17 \quad 12 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad$$

RESULTAT:  $x_1 = 160/7$   $x_2 = 100/7$   $x_3 = 20/7$   $Z = (4180 \times 30) / 7 = 17914,28$ 

### EXERCICE 5: Programme linéaire sous forme standard

Une menuiserie fabrique des tables, des chaises et des armoires. Elle est ouverte 45 semaines par an, et peut produire 5 tables ou 8 chaises ou 3 armoires par semaine. Mais, une étude de marché permet de déterminer que la production annuelle ne doit pas dépasser : 100 tables, 150 chaises et 50 armoires.

La production d'une table donne un profit net de 15 000 Ar, 7 000 Ar pour une chaise et 30 000 pour une armoire. Trouver la répartition de la capacité de production entre les trois produits, de manière à obtenir le profit maximal.

PROGRAMMATION LINEAIRE PAGE 6 EXERCICES RESOLUS

$$\begin{cases} \frac{1}{5}x_1 + \frac{1}{8}x_2 + \frac{1}{3}x_3 \le 45 \\ x_1 \le 100 \\ x_2 \le 150 \\ x_3 \le 50 \end{cases} \Rightarrow \begin{cases} 24x_1 + 15x_2 + 40x_3 \le 5400 \\ x_1 \le 100 \\ x_2 \le 150 \\ x_3 \le 50 \end{cases} \Rightarrow \begin{cases} 24x_1 + 15x_2 + 40x_3 + x_4 = 5400 \\ x_1 + x_5 = 100 \\ x_2 + x_6 = 150 \\ x_3 + x_7 = 50 \end{cases}$$

MAX ( $Z = 15000 x_1 + 7000 x_2 + 30000 x_3$ ) MAX ( $15 x_1 + 7 x_2 + 30 x_3 + 0 x_4 + 0 x_5 + 0 x_6 + 0 x_7$ )

| $\begin{array}{c cc} C_i & i \\ \hline 0 & 4 \\ \hline 0 & 5 \\ \hline 0 & 6 \\ \hline 0 & 7 \\ \hline \\ C_j \\ \Delta_j \\ \end{array}$ | $\begin{array}{c c} A_1 \\ \hline 24 \\ \hline 1 \\ 0 \\ \hline 0 \\ 15 \\ \hline 15 \\ \end{array}$        | A <sub>2</sub> 15 0 1 0 7 7 | A <sub>3</sub> 40 0 0 1 30 30 | A <sub>4</sub> 1 0 0 0 0 0 0 0        | A <sub>5</sub> 0 1 0 0 0 0 0 0             | $egin{array}{c} A_6 \\ \hline 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ \end{array}$                    | A <sub>7</sub> 0 0 0 1 0 0 0 0 0 0 0                  | $ \begin{array}{c c} A_0 \\ \hline 5400 \\ 100 \\ \hline 150 \\ 50 \\ \end{array} $ $ Z = 0 $       | $x_k/x_{kj}$ 135 $\infty$ $\infty$ 50           |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------|---------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------|
| $\begin{array}{c cc} C_i & i \\ \hline 0 & 4 \\ \hline 0 & 5 \\ \hline 0 & 6 \\ \hline 30 & 3 \\ \hline C_j \\ \Delta_j \\ \end{array}$   | A <sub>1</sub> 24 1 0 0 15 15                                                                               | A <sub>2</sub> 15 0 1 0 7 7 | A <sub>3</sub> 0 0 0 1 30 0   | A <sub>4</sub> 1 0 0 0 0 0 0 0        | A <sub>5</sub> 0 1 0 0 0 0 0               | A <sub>6</sub> 0 0 1 0 0 0 0 0 0 0                                                     | A <sub>7</sub> - 40 0 0 1 0 - 30                      | $ \begin{array}{c c} A_0 \\ \hline 3400 \\ 100 \\ \hline 150 \\ 50 \end{array} $ $ Z = 1 500 $      | $x_k/x_{kj}$ 141,66 100 $\infty$ $\infty$       |
| $\begin{array}{c cc} C_i & i \\ \hline 0 & 4 \\ \hline 15 & 1 \\ \hline 0 & 6 \\ \hline 30 & 3 \\ \hline C_j \\ \Delta_j \\ \end{array}$  | $\begin{array}{c c} A_1 \\ \hline 0 \\ \hline 1 \\ \hline 0 \\ \hline 0 \\ \hline 15 \\ \hline \end{array}$ | A <sub>2</sub> 15 0 1 0 7 7 | A <sub>3</sub> 0 0 0 1 30 0   | A <sub>4</sub> 1 0 0 0 0 0 0 0        | A <sub>5</sub> - 24  1  0  0  - 15         | $egin{array}{c} A_6 \\ \hline 0 \\ 0 \\ \hline 1 \\ 0 \\ \hline 0 \\ 0 \\ \end{array}$ | A <sub>7</sub> - 40 0 0 1 0 - 30                      | $ \begin{array}{c c} A_0 \\ \hline 1000 \\ 100 \\ \hline 150 \\ 50 \\ \end{array} $ $Z = 3\ 000$    | $x_k/x_{kj}$ <b>66,66</b> $\infty$ 150 $\infty$ |
| $\begin{array}{c cc} C_i & I \\ \hline 7 & 2 \\ \hline 15 & 1 \\ \hline 0 & 6 \\ \hline 30 & 3 \\ \hline C_j \\ \Delta_j \\ \end{array}$  | $\begin{array}{c c} A_1 \\ \hline 0 \\ \hline 1 \\ \hline 0 \\ \hline 0 \\ \hline 15 \\ \hline \end{array}$ | $A_2$ 1 0 0 7 0             | A <sub>3</sub> 0 0 0 1 30     | A <sub>4</sub> 1/15 0 -1/15 0 0 -7/15 | A <sub>5</sub> - 24/15 1 24/15 0 0 - 57/15 | A <sub>6</sub> 0 0 1 0 0 0 0 0 0 0 0 0 0                                               | A <sub>7</sub>   - 40/15   0   40/15   1   0   - 34/3 | $ \begin{array}{c c} A_0 \\ \hline 200/3 \\ 100 \\ 250/3 \\ \hline 50 \\ \end{array} $ $Z = 10 400$ | 0/3                                             |

<u>RESULTAT</u>:  $x_1 = 100$   $x_2 = 200/3 = 66,66$   $x_3 = 50$  Z = (10 400/3) x 1000 = 10 400 000 / 3 = 3 466 666,66

EXERCICE 6: Application de la dualité

$$\begin{cases} 3x_1 + 2x_2 \ge 6 \\ 6x_1 + x_2 \ge 6 \\ x_2 \ge 1 \end{cases} \qquad \begin{cases} 3y_1 + 6y_2 \le 15 \\ 2y_1 + y_2 + y_3 \le 33 \end{cases} \Rightarrow \begin{cases} 3y_1 + 6y_2 + y_4 = 15 \\ 2y_1 + y_2 + y_3 \le 33 \end{cases} \Rightarrow \begin{cases} 3y_1 + 6y_2 + y_4 = 15 \\ 2y_1 + y_2 + y_3 + y_5 = 33 \end{cases}$$

$$MAX \overline{Z} = 6y_1 + 6y_2 + y_3$$

|   | $C_{i}$ | I                     |   | $A_1$          | $A_2$ | $A_3$          | $A_4$      | $A_5$                 |   | $A_0$               | $y_k/y_{kj}$ |
|---|---------|-----------------------|---|----------------|-------|----------------|------------|-----------------------|---|---------------------|--------------|
|   | 0       | 4                     |   | 3              | 6     | 0              | 1          | 0                     |   | 15                  | 5            |
|   | 0       | 5                     |   | 2              | 1     | 1              | 0          | 1                     |   | 33                  | 16,5         |
| , |         | Cj                    | _ | 6              | 6     | 1              | 0          | 0                     |   |                     |              |
|   |         | $\Delta_{\rm j}$      |   | 6              | 6     | 1              | 0          | 0                     |   | $\overline{Z} = 0$  |              |
|   | $C_{i}$ | I                     | _ | $A_1$          | $A_2$ | A <sub>3</sub> | $A_4$      | <b>A</b> <sub>5</sub> |   | $A_0$               | $y_k/y_{kj}$ |
|   | 6       | 1                     |   | 1              | 2     | 0              | 1/3        | 0                     |   | 5                   | 5            |
|   | 0       | 5                     |   | 0              | - 3   | 1              | - 2/3      | 1                     |   | 23                  | 23           |
| , |         | Cj                    | _ | 6              | 6     | 1              | 0          | 0                     |   |                     |              |
|   |         | $\Delta_{\rm j}$      |   | 0              | - 6   | 1              | - 2        | 0                     |   | $\overline{Z} = 30$ |              |
|   |         |                       | _ |                | •     | •              | •          |                       |   |                     |              |
|   | $C_{i}$ | I                     | _ | $\mathbf{A}_1$ | $A_2$ | $A_3$          | <b>A</b> 4 | $A_5$                 |   | $A_0$               |              |
|   | 6       | 1                     |   | 1              | 2     | 0              | 1/3        | 0                     |   | 5                   |              |
|   | 1       | 3                     | Ī | 0              | - 3   | 1              | - 2/3      | 1                     |   | 23                  |              |
|   |         | Cj                    | _ | 6              | 6     | 1              | 0          | 0                     | • |                     |              |
|   |         | $\Delta_{\mathrm{j}}$ |   | 0              | - 3   | 0              | - 4/3      | - 1                   |   | $\overline{Z} = 53$ |              |
|   |         |                       | L |                |       |                |            |                       |   |                     |              |

RESULTAT : 
$$y_1 = 5$$
  $y_2 = 0$   $y_3 = 23$   $x_1 = (-\Delta_4) = 4/3$   $x_2 = (-\Delta_5) = 1$   $Z = 53$ 

#### Résolution directe en introduisant des variables artificielles

| $C_{i}$ | I            |   | $\mathbf{A}_1$ | $A_2$        | $A_3$ | $A_4$ | $A_5$ | $A_6$ | $A_7$ | $A_8$ | $A_0$    | $x_k/x_{kj}$ |
|---------|--------------|---|----------------|--------------|-------|-------|-------|-------|-------|-------|----------|--------------|
| - M     | 6            |   | 3              | 2            | - 1   | 0     | 0     | 1     | 0     | 0     | 6        | 2            |
| - M     | 7            |   | 6              | 1            | 0     | - 1   | 0     | 0     | 1     | 0     | 6        | 1            |
| - M     | 8            |   | 0              | 1            | 0     | 0     | - 1   | 0     | 0     | 1     | 1        | $\infty$     |
|         | Cj           | _ | - 15           | - 33         | 0     | 0     | 0     | - M   | - M   | - M   |          | _            |
|         | $\Delta_{j}$ |   | - 15 +<br>9M   | - 33 +<br>4M | - M   | - M   | - M   | 0     | 0     | 0     | Z = -13M | M            |

| $C_{i}$ | I | $\mathbf{A}_1$ | $A_2$ | $A_3$ | $A_4$ | $A_5$ | $A_6$ | $A_7$ | $A_8$ | $A_0$ | $x_k/x_{kj}$ |
|---------|---|----------------|-------|-------|-------|-------|-------|-------|-------|-------|--------------|
| - M     | 6 | 0              | 3/2   | - 1   | 1/2   | 0     | 1     | - 1/2 | 0     | 3     | 2            |
| - 15    | 1 | 1              | 1/6   | 0     | - 1/6 | 0     | 0     | 1/6   | 0     | 1     | 6            |
| - M     | 8 | 0              | 1     | 0     | 0     | - 1   | 0     | 0     | 1     | 1     | 1            |

PROGRAMMATION LINEAIRE PAGE 8 EXERCICES RESOLUS

|         | Cj                    | - 15  | - 33             | 0                     | 0              | 0                | - M   | - M            | - M            |           |              |
|---------|-----------------------|-------|------------------|-----------------------|----------------|------------------|-------|----------------|----------------|-----------|--------------|
|         | $\Delta_{\rm j}$      | 0     | - 61/2 +<br>5M/2 | - M                   | - 5/2 +<br>M/2 | - M              | 0     | 5/2 –<br>3M/2  | 0              | Z = -15 - | 4M           |
|         |                       |       |                  |                       |                |                  |       |                |                |           |              |
| $C_i$   | i                     | $A_1$ | $A_2$            | $A_3$                 | $A_4$          | $A_5$            | $A_6$ | $A_7$          | $A_8$          | $A_0$     | $x_k/x_{kj}$ |
| - M     | 6                     | 0     | 0                | - 1                   | 1/2            | 3/2              | 1     | - 1/2          | - 3/2          | 3/2       | 1            |
| - 15    | 1                     | 1     | 0                | 0                     | - 1/6          | 1/6              | 0     | 1/6            | - 1/6          | 5/6       | 5            |
| - 33    | 2                     | 0     | 1                | 0                     | 0              | - 1              | 0     | 0              | 1              | 1         | -            |
|         | C <sub>j</sub>        | - 15  | - 33             | 0                     | 0              | 0                | - M   | - M            | - M            | <u> </u>  |              |
|         | $\Delta_{\mathrm{j}}$ | 0     | 0                | - M                   | - 5/2 +<br>M/2 | - 61/2 +<br>3M/2 | 0     | -              | -              | Z = -91/2 | 2 - 3M/2     |
| $C_{i}$ | i                     | $A_1$ | A <sub>2</sub>   | <b>A</b> <sub>3</sub> | <b>A</b> 4     | A <sub>5</sub>   | $A_6$ | A <sub>7</sub> | A <sub>8</sub> | $A_0$     | $x_k/x_{kj}$ |
| 0       | 5                     | 0     | 0                | - 2/3                 | 1/3            | 1                | 2/3   | - 1/3          | - 1            | 1         | 3            |
| - 15    | 1                     | 1     | 0                | 1/9                   | - 2/9          | 0                | - 1/9 | 2/9            | 0              | 2/3       | -            |
| - 33    | 2                     | 0     | 1                | - 2/3                 | 1/3            | 0                | 2/3   | - 1/3          | 0              | 2         | 6            |
|         | C <sub>j</sub>        | - 15  | - 33             | 0                     | 0              | 0                | - M   | - M            | - M            | <u> </u>  |              |
|         | $\Delta_{ m j}$       | 0     | 0                | - 61/3                | 23/3           | 0                | -     | -              | -              | Z = -76   |              |
|         |                       |       |                  |                       | I.             | Į.               |       |                | I.             |           |              |
| $C_{i}$ | i                     | $A_1$ | $A_2$            | $A_3$                 | $A_4$          | $A_5$            | $A_6$ | A <sub>7</sub> | $A_8$          | $A_0$     |              |
| 0       | 4                     | 0     | 0                | - 2                   | 1              | 3                | 2     | - 1            | - 3            | 3         |              |
| - 15    | 1                     | 1     | 0                | - 1/3                 | 0              | 2/3              | 1/3   | 0              | - 2/3          | 4/3       |              |
| - 33    | 2                     | 0     | 1                | 0                     | 0              | - 1              | 0     | 0              | 1              | 1         |              |
|         | $C_j$                 | - 15  | - 33             | 0                     | 0              | 0                | - M   | - M            | - M            |           |              |
|         | $\Delta_{\mathrm{j}}$ | 0     | 0                | - 5                   | 0              | - 23             | -     | -              | -              | Z = -53   |              |

RESULTAT :  $x_1 = 4/3$   $x_2 = 1$  Z = 53

# EXERCICE 7 : Application de la dualité



|         |                       |       |       | •              |        | •              |                         |
|---------|-----------------------|-------|-------|----------------|--------|----------------|-------------------------|
| 0       | 5                     | 22    | 0     | 0              | - 14   | 1              | 21 0,95                 |
|         | $C_j$                 | 1     | 2     | 0              | 0      | 0              |                         |
|         | $\Delta_{\rm j}$      | 5     | 0     | 0              | - 2    | 0              | $\overline{Z} = 2$      |
|         |                       |       |       |                |        |                |                         |
| $C_{i}$ | i                     | $A_1$ | $A_2$ | A <sub>3</sub> | $A_4$  | A <sub>5</sub> | $A_0$ $y_k/y_k$         |
| 0       | 3                     | 0     | 0     | 1              | 19/11  | 1/11           | 76/11 <b>4</b>          |
| 2       | 2                     | 0     | 1     | 0              | - 3/11 | 1/11           | 32/11 -                 |
| 1       | 1                     | 1     | 0     | 0              | - 7/11 | 1/22           | 21/22 -                 |
|         | $C_j$                 | 1     | 2     | 0              | 0      | 0              |                         |
|         | $\Delta_{\mathrm{j}}$ | 0     | 0     | 0              | 13/11  | - 5/22         | $\overline{Z} = 149/22$ |
| $C_{i}$ | i                     | $A_1$ | $A_2$ | $A_3$          | $A_4$  | $A_5$          | $A_0$                   |
| 0       | 4                     | 0     | 0     | 11/19          | 1      | 1/19           | 4                       |
| 2       | 2                     | 0     | 1     | 3/19           | 0      | 2/19           | 4                       |
| 1       | 1                     | 1     | 0     | 7/19           | 0      | 3/38           | 7/2                     |
|         | Cj                    | 1     | 2     | 0              | 0      | 0              |                         |
|         | $\Delta_{j}$          | 0     | 0     | - 13/19        | 0      | - 11/38        | $\overline{Z} = 23/2$   |

### Résolution directe en introduisant des variables artificielles

- 4

 $\Delta_{\mathsf{i}}$ 

0

- 4

Z = -23/2

- 7/2

# 

| $\int 2x_1$                      | + 2 x <sub>2</sub> -      | $-x_3 \ge 2$   |                    | $2x_1 + 2x$    | $x_2 - x_3 - x$ | $x_4 + x_7 = 1$ | 2                              |                |                   |                   |
|----------------------------------|---------------------------|----------------|--------------------|----------------|-----------------|-----------------|--------------------------------|----------------|-------------------|-------------------|
| $\begin{cases} 3x_1 \end{cases}$ | $-4x_2 \le$               | ≤ 3            | $\Rightarrow$ $\{$ | $3x_1 - 4x$    | $_2 + x_5 = 3$  | }               |                                |                |                   |                   |
| $x_2$                            | $+3x_3 \leq$              |                |                    | $x_2 + 3x_3$   |                 |                 |                                |                |                   |                   |
| MAX                              | X(Z=5)                    | $x_1 - 2x_2 +$ | $-3x_3$ )          | MAX (5         | $x_1 - 2x_2$    | $+3x_3+0$       | $\mathbf{x}_4 + 0\mathbf{x}_5$ | $+0x_6-N$      | $(1\mathbf{x}_7)$ |                   |
| $C_{i}$                          | i                         | $A_1$          | $A_2$              | $A_3$          | $A_4$           | $A_5$           | $A_6$                          | $A_7$          | $A_0$             | $x_k / x_{kj} \\$ |
| - M                              | 7                         | 2              | 2                  | - 1            | - 1             | 0               | 0                              | 1              | 2                 | 1                 |
| 0                                | 5                         | 3              | - 4                | 0              | 0               | 1               | 0                              | 0              | 3                 | 1                 |
| 0                                | 6                         | 0              | 1                  | 3              | 0               | 0               | 1                              | 0              | 5                 | $\infty$          |
|                                  | $C_j$                     | 5              | - 2                | 3              | 0               | 0               | 0                              | - M            |                   |                   |
|                                  | $\Delta_{j}$              | 5 + 2M         | - 2 + 2M           | 3 - M          | - M             | 0               | 0                              | 0              | Z = -2M           |                   |
| $C_{i}$                          | i                         | $A_1$          | $A_2$              | $A_3$          | $A_4$           | $A_5$           | $A_6$                          | $A_7$          | $A_0$             | $x_k/x_{kj}$      |
| 5                                | 1                         | 1              | 1                  | - 1/2          | - 1/2           | 0               | 1                              | 1/2            | 1                 | -                 |
| 0                                | 5                         | 0              | - 7                | 3/2            | 3/2             | 1               | 0                              | - 3/2          | 3                 | $2\epsilon/3$     |
| 0                                | 6                         | 0              | 1                  | 3              | 0               | 0               | 1                              | 0              | 5                 | 5/3               |
|                                  | Cj                        | 5              | - 2                | 3              | 0               | 0               | 0                              | - M            | <u> </u>          |                   |
|                                  | $\Delta_{\rm j}$          | 0              | - 7                | 11/2           | 5/2             | 0               | 0                              | - M - 5/2      | Z = 5             |                   |
| $C_{i}$                          | i                         | $A_1$          | $A_2$              | $A_3$          | $A_4$           | $A_5$           | $A_6$                          | $A_7$          | $A_0$             | $x_k/x_{kj}$      |
| 5                                | 1                         | 1              | - 4/3              | 0              | 0               | 1/3             | 0                              |                | 1                 | -                 |
| 3                                | 3                         | 0              | - 14/3             | 1              | 1               | 2/3             | 0                              |                | 2ε/3              | -                 |
| 0                                | 6                         | 0              | 15                 | 0              | - 3             | - 2             | 1                              |                | 5                 | 1/3               |
|                                  | $\mathbf{C}_{\mathbf{j}}$ | 5              | - 2                | 3              | 0               | 0               | 0                              | <del>,</del>   |                   |                   |
|                                  | $\Delta_{\mathrm{j}}$     | 0              | 56/3               | 0              | - 3             | - 11/3          | 0                              |                | Z = 5             |                   |
| $C_{i}$                          | i                         | $A_1$          | $A_2$              | $A_3$          | $A_4$           | $A_5$           | $A_6$                          | $A_7$          | $\mathbf{A}_0$    | $x_k/x_{kj}$      |
| 5                                | 1                         | 1              | 0                  | 0              | - 4/15          | 7/45            | 4/45                           |                | 13/9              | -                 |
| 3                                | 3                         | 0              | 0                  | 1              | 1/15            | 2/45            | 14/45                          |                | 14/9              | 70/3              |
| - 2                              | 2                         | 0              | 1                  | 0              | - 1/5           | - 2/15          | 1/15                           |                | 1/3               | -                 |
|                                  | $C_j$                     | 5              | - 2                | 3              | 0               | 0               | 0                              | <del>,</del>   |                   |                   |
|                                  | $\Delta_{ m j}$           | 0              | 0                  | 0              | 11/15           | - 53/45         | - 56/45                        |                | Z = 101/9         |                   |
|                                  | ,                         |                |                    |                |                 |                 |                                |                |                   |                   |
| Ci                               | i                         | $A_1$          | $A_2$              | $A_3$          | $A_4$           | $\mathbf{A}_5$  | $A_6$                          | A <sub>7</sub> | $A_0$             |                   |
| 5                                |                           | A <sub>1</sub> | 0                  | A <sub>3</sub> | A <sub>4</sub>  | A <sub>5</sub>  | 4/3                            | A <sub>7</sub> | 23/3              |                   |
|                                  | i                         |                |                    |                |                 |                 |                                | A <sub>7</sub> | 23/3<br>70/3      |                   |
| 5                                | i<br>1                    | 1              | 0                  | 4              | 0               | 1/3             | 4/3                            | A <sub>7</sub> | 23/3              |                   |

PROGRAMMATION LINEAIRE PAGE 11 EXERCICES RESOLUS

| $\Delta_{\mathrm{j}}$ | 0 | 0 | - 11 | 0 | - 5/3 | - 14/3 | Z = 85/3 |
|-----------------------|---|---|------|---|-------|--------|----------|

RESULTAT:

$$x_1 = 23/3 = 7.66$$
  $x_2 = 5$   $x_3 = 0$   $Z = 85/3 = 28.33$ 

EXERCICE 9 : Exemple de résolution d'un programme linéaire sous forme générale

On désire faire un mélange de trois gaz combustibles dans les conditions suivantes :

- Le volume total doit atteindre 250 000 m<sup>3</sup>;
- Le volume calorifique doit être compris ente 2 200 mth/m<sup>3</sup> et 2 600 mth/m<sup>3</sup>;
- La teneur en soufre ne doit pas dépasser 3 grammes/m³;
- La proportion du troisième gaz ne doit pas excéder 28 % du volume total.

Les teneurs respectifs en soufre sont de 7, ½, et 2 grammes par m³. Les pouvoirs calorifiques respectifs se montent à 1 000, 2 000 et 6 000 mth/m³.

Déterminer le mélange le moins coûteux, en admettant que les prix respectifs sont de 12, 36 et 10 unités monétaires par millier de m<sup>3</sup>.

#### SOLUTION

Résolution sur ordinateur

$$\begin{cases} x_{1} + x_{2} + x_{3} = 250 \\ x_{1} + 2x_{2} + 6x_{3} \le 650 \\ x_{1} + 2x_{2} + 6x_{3} \ge 550 \\ 14x_{1} + x_{2} + 4x_{3} \le 1500 \\ x_{3} \le 70 \end{cases} \Rightarrow \begin{cases} x_{1} + x_{2} + x_{3} \le 250 \\ x_{1} + 2x_{2} + 6x_{3} \le 650 \\ x_{1} + 2x_{2} + 6x_{3} \le 550 \\ 14x_{1} + x_{2} + 4x_{3} \le 1500 \\ x_{3} \le 70 \end{cases} \Rightarrow \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 250 \\ x_{1} + 2x_{2} + 6x_{3} \le 650 \\ x_{1} + 2x_{2} + 6x_{3} \ge 550 \\ 14x_{1} + x_{2} + 4x_{3} \le 1500 \\ x_{3} \le 70 \end{cases} \Rightarrow \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 250 \\ x_{1} + 2x_{2} + 6x_{3} - x_{5} + x_{10} = 250 \\ x_{1} + 2x_{2} + 6x_{3} + x_{6} = 650 \\ x_{1} + 2x_{2} + 6x_{3} - x_{7} + x_{11} = 550 \\ 14x_{1} + x_{2} + 4x_{3} + x_{4} = 250 \end{cases}$$

MIN 
$$(Z=12x_1 + 36x_2 + 10x_3)$$
  
 $\Rightarrow -MAX (-12x_1 - 36x_2 - 10x_3 + 0x_4 + 0x_5 + 0x_6 + 0x_7 + 0x_8 + 0x_9 - Mx_{10} - Mx_{11})$ 

|   | $C_{i}$ | i                     |   | $\mathbf{A}_1$ | $A_2$        | $A_3$        | $A_4$ | $A_5$ | $A_6$ | $A_7$ | $A_8$ | $A_9$ | $A_{10}$ | $A_{11}$ |    | $A_0$     |
|---|---------|-----------------------|---|----------------|--------------|--------------|-------|-------|-------|-------|-------|-------|----------|----------|----|-----------|
|   | 0       | 4                     |   | 1              | 1            | 1            | 1     | 0     | 0     | 0     | 0     | 0     | 0        | 0        |    | 250       |
|   | - M     | 10                    | - | 1              | 1            | 1            | 0     | - 1   | 0     | 0     | 0     | 0     | 1        | 0        |    | 250       |
|   | 0       | 6                     |   | 1              | 2            | 6            | 0     | 0     | 1     | 0     | 0     | 0     | 0        | 0        |    | 650       |
|   | - M     | 11                    |   | 1              | 2            | 6            | 0     | 0     | 0     | - 1   | 0     | 0     | 0        | 1        |    | 550       |
|   | 0       | 8                     |   | 14             | 1            | 4            | 0     | 0     | 0     | 0     | 1     | 0     | 0        | 0        |    | 1500      |
|   | 0       | 9                     |   | 0              | 0            | 1            | 0     | 0     | 0     | 0     | 0     | 1     | 0        | 0        |    | 70        |
| - |         | Cj                    |   | - 12           | - 36         | - 10         | 0     | 0     | 0     | 0     | 0     | 0     | - M      | - M      | _' |           |
|   |         | $\Delta_{\mathrm{j}}$ |   | - 12 +<br>2M   | - 36 +<br>3M | - 10 +<br>7M | 0     | - M   | 0     | - M   | 0     | 0     | 0        | 0        | Z  | z = -800M |

Résolution manuelle

- 13/55

-2/11

1

0

13/55

2/11

- 1

0

130/11

1200/11

0

0

0

- 1/55

- 1/11

0

0

0

- 13

6

| Cj              | - 1 | - 13 | 0 | 0       | 0        | 0 | - M | - M |                 |
|-----------------|-----|------|---|---------|----------|---|-----|-----|-----------------|
| $\Delta_{ m j}$ | 0   | 0    | 0 | - 61/55 | - 133/55 | 0 | -   | ı   | Z = -16510 / 11 |

RESULTAT: 
$$x_1 = 910/11$$
  $x_2 = 1200/11$   $x_3 = 640/11$   $Z = 60520/11$ 

<u>VERIFICATION</u>: -16510/11 - 1250 = -(16510 + 13750) / 11 = -30260 / 11 à multiplier par 2 = -60520 / 11

### EXERCICE 10 : Exemple de résolution d'un programme linéaire sous forme générale

On désire déterminer la composition, à coût minimal, d'un aliment pour bétail qui est obtenu en mélangeant au plus trois produits : orge, arachide, sésame. L'aliment ainsi conditionné devra comporter au moins 22 % de protéines et 3,6 % de graisses, pour se conformer aux exigences de la clientèle.

On a dans le tableau ci-dessous les pourcentages de protéines et de graisses contenus, respectivement, dans l'orge, les arachides et le sésame, ainsi que le coût par tonne de chacun des produits bruts :

| Produit brut             | orge | arachides | sésame |
|--------------------------|------|-----------|--------|
| Pourcentage de protéines | 12 % | 52 %      | 42 %   |
| Pourcentage de graisses  | 2 %  | 2 %       | 10 %   |
| Coût par tonne           | 25 F | 41 F      | 39 F   |

On notera  $x_i$  (i = 1,2,3) la fraction de tonne de produit brut i contenu dans une tonne d'aliment. Trouver les quantités  $x_1$ ,  $x_2$  et  $x_3$  respectant les contraintes ci-dessus et en minimisant le coût de l'aliment.

Résolution sur ordinateur

$$\begin{cases} x_1 + x_2 + x_3 = 1 \\ 12x_1 + 52x_2 + 42x_3 \ge 22 \\ 2x_1 + 2x_2 + 10x_3 \ge 3,6 \end{cases} \Rightarrow \begin{cases} x_1 + x_2 + x_3 \le 1 \\ x_1 + x_2 + x_3 \ge 1 \\ 12x_1 + 52x_2 + 42x_3 \ge 22 \\ 2x_1 + 2x_2 + 10x_3 \ge 3,6 \end{cases} \Rightarrow \begin{cases} x_1 + x_2 + x_3 \le 1 \\ x_1 + x_2 + x_3 \ge 1 \\ 12x_1 + 52x_2 + 42x_3 \ge 22 \\ 2x_1 + 2x_2 + 10x_3 \ge 3,6 \end{cases} \Rightarrow \begin{cases} x_1 + x_2 + x_3 + x_4 = 1 \\ x_1 + x_2 + x_3 - x_5 + x_8 = 1 \\ 12x_1 + 52x_2 + 42x_3 - x_6 + x_9 = 22 \\ 2x_1 + 2x_2 + 10x_3 - x_7 + x_{10} = 3,6 \end{cases}$$

MIN 
$$(Z = 25x_1 + 41x_2 + 39x_3)$$

$$\Rightarrow -MAX \left(-25 x_{1}-41 x_{2}-39 x_{3}+0 x_{4}+0 x_{5}+0 x_{6}+0 x_{7}-M x_{8}-M x_{9}-M x_{10}\right)$$

| _( | Çi | i               |   | $A_1$ | $A_2$ | $A_3$ | $A_4$ | $A_5$ | $A_6$ | <b>A</b> 7 | $A_8$ | $A_9$ | $A_{10}$ | $A_0$  | $x_k/x_{kj}$ |
|----|----|-----------------|---|-------|-------|-------|-------|-------|-------|------------|-------|-------|----------|--------|--------------|
| (  | )  | 4               |   | 1     | 1     | 1     | 1     | 0     | 0     | 0          | 0     | 0     | 0        | 1      | 1            |
| -  | M  | 8               |   | 1     | 1     | 1     | 0     | - 1   | 0     | 0          | 1     | 0     | 0        | 1      | 1            |
| -  | M  | 9               |   | 12    | 52    | 42    | 0     | 0     | - 1   | 0          | 0     | 1     | 0        | 22     | 22/42        |
| -  | M  | 10              |   | 2     | 2     | 10    | 0     | 0     | 0     | - 1        | 0     | 0     | 1        | 3,6    | 3,6/10       |
|    |    | Cj              | - | - 25  | - 41  | - 39  | 0     | 0     | 0     | 0          | - M   | - M   | - M      |        | •            |
|    |    |                 |   | - 25  | - 41  | - 39  |       |       |       |            |       |       |          |        |              |
|    |    | $\Delta_{ m j}$ |   | +     | +     | +     | 0     | - M   | - M   | - M        | 0     | 0     | 0        | Z = -2 | 21M          |
|    |    | ·               |   | 12M   | 32M   | 47M   |       |       |       |            |       |       |          |        |              |

Résolution manuelle

$$\begin{cases} x_1 + x_2 + x_3 = 1 \\ 12x_1 + 52x_2 + 42x_3 \ge 22 \\ 2x_1 + 2x_2 + 10x_3 \ge 3,6 \end{cases} \Rightarrow \begin{cases} 6x_1 + 26x_2 + 21(1 - x_1 - x_2) \ge 11 \\ 5x_1 + 5x_2 + 25(1 - x_1 - x_2) \ge 9 \end{cases}$$

$$MIN(Z = 25x_1 + 41x_2 + 39x_3) \qquad MIN(Z = 25x_1 + 41x_2 + 39(1 - x_1 - x_2))$$

$$\begin{cases} -15x_1 + 5x_2 \ge -10 \\ -20x_1 - 20x_2 \ge -16 \end{cases} \Rightarrow \begin{cases} 3x_1 - x_2 \le 2 \\ 5x_1 + 5x_2 \le 4 \end{cases} \Rightarrow \begin{cases} 3x_1 - x_2 + x_3 = 2 \\ 5x_1 + 5x_2 + x_4 = 4 \end{cases}$$

$$MIN(Z = -14x_1 + 2x_2 + 39) \Rightarrow -MAX(7x_1 - x_2 + 0x_3 + 0x_4)$$

| $C_{i}$  | i               | $\mathbf{A}_1$ | $A_2$ | $A_3$ | $A_4$ |       | $X_k/X_{kj}$ |
|----------|-----------------|----------------|-------|-------|-------|-------|--------------|
| 0        | 3               | 3              | - 1   | 1     | 0     | 2     | 2/3          |
| 0        | 4               | 5              | 5     | 0     | 1     | 4     | 4/5          |
| <u> </u> | C <sub>j</sub>  | 7              | - 1   | 0     | 0     |       | <u> </u>     |
|          | $\Delta_{ m i}$ | 7              | - 1   | 0     | 0     | Z = 0 |              |

| $C_{i}$ | i               | A | 1 | $A_2$ | $A_3$ | $A_4$ |          |          | $x_k/x_{kj}$ |
|---------|-----------------|---|---|-------|-------|-------|----------|----------|--------------|
| 7       | 1               |   |   | - 1/3 | 1/3   | 0     |          | 2/3      | -            |
| 0       | 4               | ( | ) | 20/3  | - 5/3 | 1     |          | 2/3      | 1/10         |
|         | Cj              |   | 7 | - 1   | 0     | 0     | <u> </u> |          | •            |
|         | $\Delta_{ m j}$ | ( | ) | 4/3   | - 7/3 | 0     |          | Z = 14/3 |              |

| $C_{i}$ | i               | $\mathbf{A}_1$ | $A_2$ | $A_3$ | $A_4$ |          |
|---------|-----------------|----------------|-------|-------|-------|----------|
| 7       | 1               | 1              | 0     | 1/4   | 1/20  | 7/10     |
| - 1     | 2               | 0              | 1     | - 1/4 | 3/20  | 1/10     |
|         | Cj              | 7              | - 1   | 0     | 0     |          |
|         | $\Delta_{ m j}$ | 0              | 0     | - 2   | - 1/5 | Z = 24/5 |

RESULTAT:  $x_1 = 7/10 = 0.7$   $x_2 = 1/10 = 0.1$   $x_3 = 2/10 = 0.2$  Z = 147/5

VERIFICATION:  $-24/5 \times 2 + 39 = -48/5 + 195/5 = 147/5$ 

# EXERCICE 11: Programme linéaire sous forme standard

Une entreprise fabrique trois pièces mécaniques dont chacune nécessite les procédés de fabrication suivants : usinage, fraisage et assemblage. Les temps opératoires requis, en minutes, pour chaque type de pièces avec les différents procédés, sont les suivants :

| Pièces                          | Usinage        | fraisage       | Assemblage     |
|---------------------------------|----------------|----------------|----------------|
| Pièce S <sub>1</sub>            | 5              | 4              | 2              |
| Pièce S <sub>2</sub>            | 6              | 3              | 4              |
| Pièce S <sub>3</sub>            | 2              | 5              | 5              |
| Disponibilités en temps machine | 1 500 min/jour | 1 200 min/jour | 1 400 min/jour |

PROGRAMMATION LINEAIRE PAGE 15 EXERCICES RESOLUS

L'étude du marché révèle que la production journalière ne devrait pas excéder : 100 unités du type  $S_1$ , 150 unités pour le type  $S_2$ , 70 unités pour le type  $S_3$ .

La contribution au bénéfice pour chaque type de pièces est : pièces  $S_1$  :  $8 \notin$  / unité, pièces  $S_2$  :  $10 \notin$  / unité, pièces  $S_3$  :  $9 \notin$  / unité.

Déterminer à l'aide des tableaux du simplexe, le programme de fabrication qui maximise les bénéfices.

#### SOLUTION

$$\begin{cases} 5x_1 + 6x_2 + 2x_5 \le 1500 \\ 4x_1 + 3x_2 + 5x_5 \le 1200 \\ 2x_1 + 4x_2 + 5x_5 \le 1400 \\ x_1 \le 100 \\ x_2 \le 150 \\ x_3 \le 70 \end{cases} \Rightarrow \begin{cases} 5x_1 + 6x_2 + 2x_5 + x_4 = 1500 \\ 4x_1 + 3x_2 + 5x_5 + x_5 = 1200 \\ 2x_1 + 4x_2 + 5x_5 + x_6 = 1400 \\ x_1 + x_7 = 100 \\ x_2 + x_8 = 150 \\ x_3 + x_9 = 70 \end{cases}$$

MAX 
$$(Z=8x_1+10x_2+9x_2)$$
 MAX  $(8x_1+10x_2+9x_3+0x_4+0x_5+0x_6+0x_7+0x_8+0x_9)$   
C<sub>i</sub> i A<sub>1</sub> A<sub>2</sub> A<sub>3</sub> A<sub>4</sub> A<sub>5</sub> A<sub>6</sub> A<sub>7</sub> A<sub>8</sub> A<sub>9</sub> A<sub>0</sub> x<sub>4</sub>

| $C_{i}$ | i            |
|---------|--------------|
| 0       | 4            |
| 0       | 5            |
| 0       | 6<br>7       |
| 0 0     | 7            |
| 0       | 8            |
| 0       | 9            |
| '       | Cj           |
|         | $\Delta_{j}$ |

|   | $\mathbf{A}_1$ | $A_2$ | $A_3$ | $A_4$ | $A_5$ | $A_6$ | $A_7$ | $A_8$ | $A_9$ |
|---|----------------|-------|-------|-------|-------|-------|-------|-------|-------|
|   | 5              | 6     | 2     | 1     | 0     | 0     | 0     | 0     | 0     |
|   | 4              | 3     | 5     | 0     | 1     | 0     | 0     | 0     | 0     |
| Ī | 2              | 4     | 5     | 0     | 0     | 1     | 0     | 0     | 0     |
| Ī | 1              | 0     | 0     | 0     | 0     | 0     | 1     | 0     | 0     |
| Ī | 0              | 1     | 0     | 0     | 0     | 0     | 0     | 1     | 0     |
| Ī | 0              | 0     | 1     | 0     | 0     | 0     | 0     | 0     | 1     |
| - | 8              | 10    | 9     | 0     | 0     | 0     | 0     | 0     | 0     |
|   | 8              | 10    | 9     | 0     | 0     | 0     | 0     | 0     | 0     |
| _ |                |       |       |       |       |       |       |       |       |

| $A_0$ | $x_k/x_{kj}$ |
|-------|--------------|
| 1500  | 250          |
| 1200  | 400          |
| 1400  | 350          |
| 100   | $\infty$     |
| 150   | 150          |
| 70    | $\infty$     |
|       |              |

Z = 0

| $C_i$ | i                                            |
|-------|----------------------------------------------|
| 0     | 4                                            |
| 0     | 5                                            |
| 0     | 6                                            |
| 0     | 7                                            |
| 10    | 2                                            |
| 0     | 9                                            |
|       | Cj                                           |
|       | $egin{aligned} C_j \ \Delta_j \end{aligned}$ |

| _ | $\mathbf{A}_1$ | $A_2$ | $A_3$ | $A_4$ | $A_5$ | $A_6$ | $A_7$ | $A_8$ | <b>A</b> 9 |
|---|----------------|-------|-------|-------|-------|-------|-------|-------|------------|
|   | 5              | 0     | 2     | 1     | 0     | 0     | 0     | - 6   | 0          |
|   | 4              | 0     | 5     | 0     | 1     | 0     | 0     | - 3   | 0          |
|   | 2              | 0     | 5     | 0     | 0     | 1     | 0     | - 4   | 0          |
|   | 1              | 0     | 0     | 0     | 0     | 0     | 1     | 0     | 0          |
|   | 0              | 1     | 0     | 0     | 0     | 0     | 0     | 1     | 0          |
|   | 0              | 0     | 1     | 0     | 0     | 0     | 0     | 0     | 1          |
|   | 8              | 10    | 9     | 0     | 0     | 0     | 0     | 0     | 0          |
|   | 8              | 0     | 9     | 0     | 0     | 0     | 0     | - 10  | 0          |

| $A_0$ | $x_k/x_{kj}$ |
|-------|--------------|
| 600   | 300          |
| 750   | 150          |
| 800   | 160          |
| 100   | $\infty$     |
| 150   | $\infty$     |
| 70    | 70           |
|       |              |

Z = 1500

| Ci | i               |
|----|-----------------|
| 0  | 5               |
| 0  | 5               |
| 0  | 6               |
| 0  | 7               |
| 10 | 2               |
| 9  | 3               |
|    | Cj              |
|    | $\Delta_{ m j}$ |

| $A_1$ | $A_2$ | $A_3$ | $A_4$ | $A_5$ | $A_6$ | $A_7$ | $A_8$ | <b>A</b> 9 |
|-------|-------|-------|-------|-------|-------|-------|-------|------------|
| 5     | 0     | 0     | 1     | 0     | 0     | 0     | - 6   | - 2        |
| 4     | 0     | 0     | 0     | 1     | 0     | 0     | - 3   | - 5        |
| 2     | 0     | 0     | 0     | 0     | 1     | 0     | - 4   | - 5        |
| 1     | 0     | 0     | 0     | 0     | 0     | 1     | 0     | 0          |
| 0     | 1     | 0     | 0     | 0     | 0     | 0     | 1     | 0          |
| 0     | 0     | 1     | 0     | 0     | 0     | 0     | 0     | 1          |
| 8     | 10    | 9     | 0     | 0     | 0     | 0     | 0     | 0          |
| 8     | 0     | 0     | 0     | 0     | 0     | 0     | - 10  | - 9        |

| $A_0$ | $x_k/x_{kj}$ |
|-------|--------------|
| 460   | 92           |
| 400   | 100          |
| 450   | 225          |
| 100   | 100          |
| 150   | $\infty$     |
| 70    | $\infty$     |
|       | ="           |

Z = 2 130

PROGRAMMATION LINEAIRE PAGE 16 EXERCICES RESOLUS

| $C_{i}$ | i            |   | $\mathbf{A}_1$ | $A_2$ | $A_3$ | $A_4$ | $A_5$ | $A_6$ | $A_7$ | $A_8$ | $\mathbf{A}_9$ |   | $A_0$    |
|---------|--------------|---|----------------|-------|-------|-------|-------|-------|-------|-------|----------------|---|----------|
| 8       | 1            |   | 1              | 0     | 0     | 1/5   | 0     | 0     | 0     | - 6/5 | - 2/5          |   | 92       |
| 0       | 5            |   | 0              | 0     | 0     | - 4/5 | 1     | 0     | 0     | 9/5   | - 17/5         |   | 32       |
| 0       | 6            |   | 0              | 0     | 0     | - 2/5 | 0     | 1     | 0     | - 8/5 | -21/5          | Ī | 266      |
| 0       | 7            |   | 0              | 0     | 0     | - 1/5 | 0     | 0     | 1     | 6/5   | 2/5            | Ī | 8        |
| 10      | 2            |   | 0              | 1     | 0     | 0     | 0     | 0     | 0     | 1     | 0              | Ī | 150      |
| 9       | 3            |   | 0              | 0     | 1     | 0     | 0     | 0     | 0     | 0     | 1              | Ī | 70       |
|         | Cj           | - | 8              | 10    | 9     | 0     | 0     | 0     | 0     | 0     | 0              |   |          |
|         | $\Delta_{j}$ |   | 0              | 0     | 0     | - 8/5 | 0     | 0     | 0     | - 2/5 | -29/5          |   | Z = 2866 |

RESULTAT:  $x_1 = 92$   $x_2 = 150$   $x_3 = 70$  Z = 2866

### EXERCICE 11 bis: Programme linéaire sous forme standard

Une entreprise fabrique trois pièces mécaniques dont chacune nécessite les procédés de fabrication suivants : usinage, fraisage et assemblage. Les temps opératoires requis, en minutes, pour chaque type de pièces avec les différents procédés, sont les suivants :

| Pièces                          | Usinage       | fraisage     | Assemblage   |
|---------------------------------|---------------|--------------|--------------|
| Pièce S <sub>1</sub>            | 5             | 4            | 2            |
| Pièce S <sub>2</sub>            | 6             | 3            | 4            |
| Pièce S <sub>3</sub>            | 2             | 5            | 5            |
| Disponibilités en temps machine | 7 50 min/jour | 600 min/jour | 700 min/jour |

L'étude du marché révèle que la production journalière ne devrait pas excéder : 100 unités du type S<sub>1</sub>, 150 unités pour le type  $S_2$ , 70 unités pour le type  $S_3$ .

La contribution au bénéfice pour chaque type de pièces est : pièces S₁ : 8 € / unité, pièces S₂ : 10 € / unité, pièces S<sub>3</sub> : 9 € / unité.

Déterminer à l'aide des tableaux du simplexe, le programme de fabrication qui maximise les bénéfices.

### SOLUTION

$$\begin{cases} 5x_1 + 6x_2 + 2x_5 \le 750 \\ 4x_1 + 3x_2 + 5x_5 \le 600 \\ 2x_1 + 4x_2 + 5x_5 \le 700 \\ x_1 \le 100 \\ x_2 \le 150 \\ x_3 \le 70 \end{cases} \Rightarrow \begin{cases} 5x_1 + 6x_2 + 2x_5 + x_4 = 750 \\ 4x_1 + 3x_2 + 5x_5 + x_5 = 600 \\ 2x_1 + 4x_2 + 5x_5 + x_6 = 700 \\ x_1 + x_7 = 100 \\ x_2 + x_8 = 150 \\ x_3 + x_9 = 70 \end{cases}$$

| $C_1$ | 1 | $A_{1}$ | A2 | A3 | <b>A</b> 4 | $A_5$ | $A_0$ | $P\mathbf{L}'$ | A8 | A9 | A0  | $\Lambda_{K}/\Lambda_{K}$ |
|-------|---|---------|----|----|------------|-------|-------|----------------|----|----|-----|---------------------------|
| 0     | 4 | 5       | 6  | 2  | 1          | 0     | 0     | 0              | 0  | 0  | 750 | 125                       |
| 0     | 5 | 4       | 3  | 5  | 0          | 1     | 0     | 0              | 0  | 0  | 600 | 200                       |
| 0     | 6 | 2       | 4  | 5  | 0          | 0     | 1     | 0              | 0  | 0  | 700 | 175                       |
| 0     | 7 | 1       | 0  | 0  | 0          | 0     | 0     | 1              | 0  | 0  | 100 | $\infty$                  |

PROGRAMMATION LINEAIRE **PAGE 17 EXERCICES RESOLUS** 

| 0 | 8            |   | 0 | 1  | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 150   | 150      |
|---|--------------|---|---|----|---|---|---|---|---|---|---|-------|----------|
| 0 | 9            |   | 0 | 0  | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 70    | $\infty$ |
|   | Cj           | - | 8 | 10 | 9 | 0 | 0 | 0 | 0 | 0 | 0 |       | •        |
|   | $\Delta_{j}$ |   | 8 | 10 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | Z = 0 |          |
|   |              | - |   |    |   |   |   |   |   |   |   |       |          |

| $C_{i}$ | i            | $A_1$ | $A_2$ | $A_3$ | $A_4$ | $A_5$ | $A_6$ | $A_7$ | $A_8$ | $A_9$ | $A_0$    | $x_k/x_{kj}$ |
|---------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|--------------|
| 10      | 2            | 5/6   | 1     | 1/3   | 1/6   | 0     | 0     | 0     | 0     | 0     | 125      | 375          |
| 0       | 5            | 3/2   | 0     | 4     | -1/2  | 1     | 0     | 0     | 0     | 0     | 225      | 56,25        |
| 0       | 6            | -4/3  | 0     | 11/3  | -2/3  | 0     | 1     | 0     | 0     | 0     | 200      | 54,54        |
| 0       | 7            | 1     | 0     | 0     | 0     | 0     | 0     | 1     | 0     | 0     | 100      | $\infty$     |
| 0       | 8            | -5/6  | 0     | -1/3  | -1/6  | 0     | 0     | 0     | 1     | 0     | 25       | -            |
| 0       | 9            | 0     | 0     | 1     | 0     | 0     | 0     | 0     | 0     | 1     | 70       | 70           |
|         | Cj           | 8     | 10    | 9     | 0     | 0     | 0     | 0     | 0     | 0     |          |              |
|         | $\Delta_{j}$ | -1/3  | 0     | 17/3  | -5/3  | 0     | 0     | 0     | 0     | 0     | Z = 1.25 | 50           |

| $C_{i}$ | i               | $\mathbf{A}_{1}$ | $A_2$ | $A_3$ | $A_4$ | $A_5$ | $A_6$  | $A_7$ | $A_8$ | <b>A</b> 9 | $A_0$   | $x_k/x_{kj}$ |
|---------|-----------------|------------------|-------|-------|-------|-------|--------|-------|-------|------------|---------|--------------|
| 10      | 2               | 21/22            | 1     | 0     | 5/22  | 0     | -1/11  | 0     | 0     | 0          | 1175/11 | 111,98       |
| 0       | 5               | 65/22            | 0     | 0     | 5/22  | 1     | -12/11 | 0     | 0     | 0          | 75/11   | 2,30         |
| 9       | 3               | -4/11            | 0     | 1     | -2/11 | 0     | 3/11   | 0     | 0     | 0          | 600/11  | -            |
| 0       | 7               | 1                | 0     | 0     | 0     | 0     | 0      | 1     | 0     | 0          | 100     | 100          |
| 0       | 8               | -21/22           | 0     | 0     | -5/22 | 0     | 1/11   | 0     | 1     | 0          | 475/11  | ] -          |
| 0       | 9               | 4/11             | 0     | 0     | 2/11  | 0     | -3/11  | 0     | 0     | 1          | 170/11  | 42,5         |
|         | Cj              | 8                | 10    | 9     | 0     | 0     | 0      | 0     | 0     | 0          |         |              |
|         | $\Delta_{ m j}$ | 19/11            | 0     | 0     | -7/11 | 0     | -17/11 | 0     | 0     | 0          | Z = 171 | 50/11        |

| $C_{i}$ | i                     | $A_1$ | $A_2$ | $A_3$ | $A_4$  | $A_5$  | $A_6$  | $A_7$ | $A_8$ | $A_9$ | $A_0$             |
|---------|-----------------------|-------|-------|-------|--------|--------|--------|-------|-------|-------|-------------------|
| 10      | 2                     | 0     | 1     | 0     | 2/13   | -21/65 | 17/65  | 0     | 0     | 0     | 1360/13           |
| 8       | 1                     | 1     | 0     | 0     | 1/13   | 22/65  | -24/65 | 0     | 0     | 0     | 30/13             |
| 9       | 3                     | 0     | 0     | 1     | -2/13  | 8/65   | 9/65   | 0     | 0     | 0     | 720/13            |
| 0       | 7                     | 0     | 0     | 0     | -1/13  | -22/65 | 24/65  | 1     | 0     | 0     | 1270/13           |
| 0       | 8                     | 0     | 0     | 0     | -2/13  | 21/65  | -17/65 | 0     | 1     | 0     | 590/13            |
| 0       | 9                     | 0     | 0     | 0     | 2/13   | -8/65  | -9/65  | 0     | 0     | 1     | 190/13            |
|         | Cj                    | <br>8 | 10    | 9     | 0      | 0      | 0      | 0     | 0     | 0     |                   |
|         | $\Delta_{\mathrm{j}}$ | 0     | 0     | 0     | -10/13 | -38/65 | -59/65 | 0     | 0     | 0     | $Z = 20 \ 320/13$ |

RESULTAT:  $x_1 = 30/13 = 2,3076$   $x_2 = 1360/13 = 104,6153$   $x_3 = 720/13 = 55,3846$   $Z = 20 \ 320/13 = 1563,0769$ 

# EXERCICE 12 : Programme linéaire sous forme standard avec résolution graphique

PROGRAMMATION LINEAIRE PAGE 18 EXERCICES RESOLUS

$$\begin{cases} x_1 - x_2 \le 3 \\ x_1 + 2x_2 \le 6 \\ -x_1 + 2x_2 \le 2 \end{cases} \Rightarrow \begin{cases} x_1 - x_2 + x_3 = 3 \\ x_1 + 2x_2 + x_4 = 6 \\ -x_1 + 2x_2 + x_5 = 2 \end{cases}$$

| $C_{i}$ | i  |
|---------|----|
| 0       | 3  |
| 0       | 4  |
| 0       | 5  |
|         | Cj |

| $\mathbf{A}_1$ | $A_2$ | $A_3$ | $A_4$ | $A_5$ |
|----------------|-------|-------|-------|-------|
| 1              | - 1   | 1     | 0     | 0     |
| 1              | 2     | 0     | 1     | 0     |
| - 1            | 2     | 0     | 0     | 1     |
| 2              | 1     | 0     | 0     | 0     |
| 2              | 1     | 0     | 0     | 0     |

| $A_0$ | $x_k/x_{kj}$ |
|-------|--------------|
| 3     | 3            |
| 6     | 6            |
| 2     | -            |
|       | _            |

 $\mathbf{Z} = \mathbf{0}$ 

$$\begin{array}{c|cc} C_i & i \\ \hline 2 & 1 \\ \hline 0 & 4 \\ \hline 0 & 5 \\ \hline C_j \\ \end{array}$$

 $\Delta_{\rm j}$ 

| $\Lambda_1$ | $\Lambda 2$ | $\Lambda_{\mathfrak{I}}$ | $\Lambda$ 4 | $\Lambda\mathfrak{I}$ |
|-------------|-------------|--------------------------|-------------|-----------------------|
| 1           | - 1         | 1                        | 0           | 0                     |
| 0           | 3           | - 1                      | 1           | 0                     |
| 0           | 1           | 1                        | 0           | 1                     |
| 2           | 1           | 0                        | 0           | 0                     |
| 0           | 3           | - 2                      | 0           | 0                     |

| $A_0$ | $x_k/x_{kj}$ |
|-------|--------------|
| 3     | -            |
| 3     | 1            |
| 5     | 5            |
|       | •            |

$$\begin{array}{c|cc} C_i & i \\ \hline 2 & 1 \\ \hline 1 & 2 \\ \hline 0 & 5 \\ \hline & C_j \\ \Delta_j \\ \end{array}$$

| $\mathbf{A}_1$ | $A_2$ | $A_3$ | $A_4$ | $A_5$ |
|----------------|-------|-------|-------|-------|
| 1              | 0     | 2/3   | 1/3   | 0     |
| 0              | 2     | - 1/3 | 1/3   | 0     |
| 0              | 0     | 4/3   | - 1/3 | 1     |
| 2              | 1     | 0     | 0     | 0     |
| 0              | 0     | - 1   | - 1   | 0     |

| $A_0$ |  |
|-------|--|
| 4     |  |
| 1     |  |
| 4     |  |
|       |  |

Z = 9

Z = 6

$$\underline{\text{RESULTAT}}: \quad x_1 = 4 \quad x_2 = 1 \quad Z = 9$$

| $x_1 - x_2 = 3$   | (2, 0) | (1, 4) |  |
|-------------------|--------|--------|--|
| $x_1 + 2 x_2 = 6$ |        |        |  |
| $-x_1 + 2x_2 = 2$ |        |        |  |
| $2 x_1 + x_2 = 0$ |        |        |  |



 $A_6$ 

0

0

0

 $A_7$ 

0

0

# EXERCICE 13: Programme linéaire sous forme standard avec résolution graphique

$$\begin{cases} 2x_1 - 3x_2 \le 2 \\ 2x_1 + x_2 \le 11 \\ -x_1 + x_2 \le 3 \\ x_1 \le 4 \\ x_2 \le 5 \end{cases} \implies \begin{cases} 2x_1 - 3x_2 + x_3 = 2 \\ 2x_1 + x_2 + x_4 = 11 \\ -x_1 + x_2 + x_5 = 3 \\ x_1 + x_6 = 4 \\ x_2 + x_7 = 5 \end{cases}$$

MAX 
$$(Z = x_1 + x_2)$$
 MAX  $(x_1 + x_2 + 0x_3 + 0x_4 + 0x_5 + 0x_6 + 0x_7)$ 

| $C_{i}$ | i            | $A_1$ | $A_2$ | $A_3$ | $A_4$ | $A_5$ |
|---------|--------------|-------|-------|-------|-------|-------|
| 0       | 3            | 2     | - 3   | 1     | 0     | 0     |
| 0       | 4            | 2     | 1     | 0     | 1     | 0     |
| 0       | 5            | - 1   | 1     | 0     | 0     | 1     |
| 0       | 6            | 1     | 0     | 0     | 0     | 0     |
| 0       | 7            | 0     | 1     | 0     | 0     | 0     |
|         | Cj           | 1     | 1     | 0     | 0     | 0     |
|         | $\Delta_{i}$ | 1     | 1     | 0     | 0     | 0     |

| $A_0$            | $x_k/x_{kj}$ |
|------------------|--------------|
| 2                | 1            |
| 11               | 11/2         |
| 3                | -            |
| 4                | 4            |
| 5                | $\infty$     |
|                  | •            |
| $\mathbf{Z} = 0$ |              |

| $C_{i}$ | i            | $\mathbf{A}_1$ | $A_2$ | $A_3$ | $A_4$ |
|---------|--------------|----------------|-------|-------|-------|
| 1       | 1            | 1              | - 3/2 | 1/2   | 0     |
| 0       | 4            | 0              | 4     | - 1   | 1     |
| 0       | 5            | 0              | - 1/2 | 1/2   | 0     |
| 0       | 6            | 0              | 3/2   | - 1/2 | 0     |
| 0       | 7            | 0              | 1     | 0     | 0     |
|         | Cj           | <br>1          | 1     | 0     | 0     |
|         | $\Delta_{j}$ | 0              | 5/2   | - 1/2 | 0     |
|         |              |                |       |       |       |

| $\mathbf{A}_1$ | $A_2$ | $A_3$ | $A_4$ | $A_5$ | $A_6$ | $A_7$ |
|----------------|-------|-------|-------|-------|-------|-------|
| 1              | - 3/2 | 1/2   | 0     | 0     | 0     | 0     |
| 0              | 4     | - 1   | 1     | 0     | 0     | 0     |
| 0              | - 1/2 | 1/2   | 0     | 1     | 0     | 0     |
| 0              | 3/2   | - 1/2 | 0     | 0     | 1     | 0     |
| 0              | 1     | 0     | 0     | 0     | 0     | 1     |
| 1              | 1     | 0     | 0     | 0     | 0     | 0     |
| 0              | 5/2   | - 1/2 | 0     | 0     | 0     | 0     |

| $A_0$ | $x_k/x_{kj}$ |
|-------|--------------|
| 1     | -            |
| 9     | 9/4          |
| 4     | -            |
| 3     | <b>2</b> 5   |
| 5     | 5            |
|       | •            |

 $\mathbf{Z} = \mathbf{1}$ 

| $C_{i}$ | i  |
|---------|----|
| 1       | 1  |
| 0       | 4  |
| 0       | 5  |
| 1       | 2  |
| 0       | 7  |
|         | Cj |

 $\Delta_{\mathsf{j}}$ 

| _ | _ | •     | • | • | _     |   |
|---|---|-------|---|---|-------|---|
| 0 | 0 | 1/3   | 1 | 0 | - 8/3 | 0 |
| 0 | 0 | 1/3   | 0 | 1 | 1/3   | 0 |
| 0 | 1 | - 1/3 | 0 | 0 | 2/3   | 0 |
| 0 | 0 | 1/3   | 0 | 0 | - 2/3 | 1 |
| 1 | 1 | 0     | 0 | 0 | 0     | 0 |
| 0 | 0 | 1/3   | 0 | 0 | - 5/3 | 0 |
|   | • |       |   |   | •     |   |

| $A_0$ | $x_k/x_k$   |
|-------|-------------|
| 4     | $\infty$    |
| 1     | <b>3</b> 15 |
| 5     | 15          |
| 2     | -           |
| 3     | 9           |
|       | •           |

$$\mathbf{Z} = \mathbf{6}$$

PROGRAMMATION LINEAIRE **EXERCICES RESOLUS** PAGE 20

| $C_{i}$ | i                     | $\mathbf{A}_1$ | $A_2$ | $A_3$ | $\mathbf{A}_4$ | $A_5$ | $A_6$ | $A_7$ | $A_0$ | $x_k / x_{kj} \\$ |
|---------|-----------------------|----------------|-------|-------|----------------|-------|-------|-------|-------|-------------------|
| 1       | 1                     | 1              | 0     | 0     | 0              | 0     | 1     | 0     | 4     | 4                 |
| 0       | 3                     | 0              | 0     | 1     | 3              | 0     | - 8   | 0     | 3     | ] -               |
| 0       | 5                     | 0              | 0     | 0     | - 1            | 1     | 3     | 0     | 4     | 4/3               |
| 1       | 2                     | 0              | 1     | 0     | 1              | 0     | - 2   | 0     | 3     | -                 |
| 0       | 7                     | 0              | 0     | 0     | - 1            | 0     | 2     | 1     | 2     | 1                 |
|         | C <sub>j</sub>        | 1              | 1     | 0     | 0              | 0     | 0     | 0     |       | 1                 |
|         | $\Delta_{\mathrm{j}}$ | 0              | 0     | 0     | - 1            | 0     | 1     | 0     | Z = 7 |                   |
|         |                       |                | •     | •     | •              |       |       |       |       |                   |
| $C_{i}$ | i                     | $A_1$          | $A_2$ | $A_3$ | $A_4$          | $A_5$ | $A_6$ | $A_7$ | $A_0$ |                   |
| 1       | 1                     | 1              | 0     | 0     | 1/2            | 0     | 0     | - 1/2 | 3     |                   |
| 0       | 3                     | 0              | 0     | 1     | - 1            | 0     | 0     | 4     | 11    |                   |
| 0       | 5                     | 0              | 0     | 0     | 1/2            | 1     | 0     | - 3/2 | 1     |                   |
| 1       | 2                     | 0              | 1     | 0     | 0              | 0     | 0     | 1     | 5     |                   |
| 0       | 6                     | 0              | 0     | 0     | - 1/2          | 0     | 1     | 1/2   | 1     | 1                 |
|         | Ci                    | 1              | 1     | 0     | 0              | 0     | 0     | 0     |       | 1                 |

- 1/2

0

0

- 1/2

Z = 8

0

 $\label{eq:resultat} \underbrace{\text{RESULTAT}}: \quad x_1 = 3 \quad x_2 = 5 \quad Z = 8$ 

0

 $\Delta_{j}$ 

0



EXERCICE 14: Programme linéaire sous forme générale avec résolution graphique

$$\begin{cases} 4x_1 + x_2 \ge 8 \\ x_1 + 4x_2 \ge 8 \\ \Rightarrow \begin{cases} 4x_1 + x_2 - x_3 + x_6 = 8 \\ 7x_1 + 10x_2 \ge 47 \end{cases} \\ NIN\left(Z = 2x_1 + 3x_2\right) - MAX\left(-2x_1 - 3x_2 + 0x_3 + 0x_4 + 0x_5 - Mx_6 - Mx_7 - Mx_8\right) \\ C_1 & i & A_1 & A_2 & A_3 & A_4 & A_5 & A_6 & A_7 & A_8 & A_9 & x_6/x_3 \\ -M & 6 & 4 & 1 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\ -M & 7 & 10 & 0 & 0 & -1 & 0 & 0 & 1 & 0 \\ -M & 8 & 7 & 10 & 0 & 0 & -1 & 0 & 0 & 1 & 0 \\ -2 & -3 & 0 & 0 & 0 & -M & -M & -M \\ -2 & -3 & 0 & 0 & 0 & -M & -M & -M \\ -M & 15M & 15M & -M & -M & 0 & 0 & 0 & 0 & 0 \\ -M & 8 & 9/2 & 0 & 0 & 5/2 & -1 & 0 & -5/2 & 1 \\ -3 & 2 & -3 & 0 & 0 & 0 & -M & -M & -M \\ -3 & 2 & -3 & 0 & 0 & 0 & -M & -M & -M \\ -3 & 2 & -3 & 0 & 0 & 0 & -M & -M & -M \\ -3 & 3 & 3MM & 0 & -M & -M/11M/4 & -M & 0 & 15M/4 & 0 \\ -2 & -3 & 0 & 0 & 0 & -M & -M & -M \\ -3 & 2 & -3 & 0 & 0 & 0 & -M & -M & -M \\ -2 & -3 & 0 & 0 & 0 & -M & -M & -M \\ -2 & -3 & 0 & 0 & 0 & -M & -M & -M \\ -3 & 2 & -0 & 1 & 1/15 & 0 & -1/15 & 0 & 3/4 & 0 \\ -2 & -3 & 0 & 0 & 0 & -M & -M & -M \\ -3 & 2 & 0 & 1 & 1/15 & -4/15 & 0 & -1/15 & 0 & 8/5 \\ -2 & -1 & 1 & 0 & -4/15 & 1/15 & 0 & 4/15 & 0 & -M \\ -2 & 1 & 1 & 0 & -4/15 & 1/15 & 0 & 4/15 & 0 & -M \\ -2 & 1 & 1 & 0 & -4/15 & 1/15 & 0 & -M & -M \\ -3 & 2 & 0 & 1 & 1/15 & -4/15 & 0 & -1/15 & 0 & 0 \\ -2 & -3 & 0 & 0 & 0 & -M & -M & -M \\ -3 & 2 & 0 & 1 & 1/15 & -4/15 & 0 & -1/15 & 0 & 0 \\ -2 & -3 & 0 & 0 & 0 & -M & -M & -M \\ -2 & 1 & 1 & 0 & -10/33 & 0 & 1/33 & -1/33 & 1 \\ 0 & 4 & 0 & 0 & 6/31 & 11/35 & -M & 11/35 & 0 & -M \\ -2 & 1 & 1 & 0 & -10/33 & 0 & 1/33 & -1/33 & 1 \\ 0 & 4 & 0 & 0 & 6/11 & 1 & -5/11 & -5/11 & -5/11 & 9 & 16,5 \\ -2 & -3 & 0 & 0 & 0 & -M & -M \\ -2 & 1 & 1 & 0 & 0 & 5/9 & -2/9 & -M \\ -3 & 2 & 0 & 1 & 0 & 0 & 7/18 & 1/18 & -M & -1/23 \\ 0 & 3 & 0 & 0 & 1 & 10/16 & -5/6 & -M \\ -2 & 1 & 1 & 0 & 0 & 0 & -7/18 & 1/18 & -M & -1/23 \\ 0 & 3 & 0 & 0 & 1 & 10/16 & -5/6 & -M \\ -2 & 1 & 0 & 0 & 0 & -1/18 & 5/18 & -M & -M & -M \\ -2 & 1 & 0 & 0 & 0 & -1/18 & 5/18 & -M & -M & -M \\ -2 & 1 & 0 & 0 & 0 & -1/18 & 5/18 & -M & -M & -M \\ -2 & 1 & 0 & 0 & 0 & -1/18 & 5/18 & -M & -M & -M & -M \\ -2$$

**RESULTAT:**  $x_1 = 6$   $x_2 = 1/2$  Z = 27/2

 $x_k/x_{kj}$  **0,28** 0,30

# Résolution graphique :

# Coordonnées pour tracer les droites

| $4x_1 + x_2 = 8$    | (1,4)   | (2,0)  | (1/2,6) |
|---------------------|---------|--------|---------|
| $x_1 + 4x_2 = 8$    | (0,2)   | (4,1)  | (6,1/2) |
| $7x_1 + 10x_2 = 47$ | (0,4.7) | (1,4)  | (2,3.3) |
| $2x_1 + 3x_2 = 0$   | (0,0)   | (3,-2) | (-3,2)  |

# Résolution par dualité :

$$\begin{cases} 4x_1 + x_2 \ge 8 \\ x_1 + 4x_2 \ge 8 \\ 7x_1 + 10x_2 \ge 47 \end{cases} \Rightarrow \begin{cases} 4y_1 + y_2 + 7y_3 \le 2 \\ y_1 + 4y_2 + y_3 \le 3 \end{cases} \Rightarrow \begin{cases} 4y_1 + y_2 + 7y_3 + y_4 = 2 \\ y_1 + 4y_2 + y_3 + y_5 = 3 \end{cases}$$

MIN (  $Z = 2 x_1 + 3 x_2$  ) MAX (  $8 y_1 + 8 y_2 + 47 y_3$  )

| $C_{i}$ | i               | $\mathbf{A}_1$ | $A_2$ | $A_3$ | $A_4$ | $A_5$ | $A_0$            |
|---------|-----------------|----------------|-------|-------|-------|-------|------------------|
| 0       | 4               | 4              | 1     | 7     | 1     | 0     | 2                |
| 0       | 5               | 1              | 4     | 10    | 0     | 1     | 3                |
|         | Cj              | 8              | 8     | 47    | 0     | 0     | <u> </u>         |
|         | $\Delta_{ m j}$ | 8              | 8     | 47    | 0     | 0     | $\mathbf{Z} = 0$ |

|   | $C_{i}$ | i  |   | $\mathbf{A}_1$ | $A_2$ | $A_3$ | $A_4$  | $A_5$ |   | $A_0$    | $x_k/x_{kj}$ |
|---|---------|----|---|----------------|-------|-------|--------|-------|---|----------|--------------|
|   | 47      | 3  |   | 4/7            | 1/7   | 1     | 1/7    | 0     |   | 2/7      | 2            |
|   | 0       | 5  |   | - 33/7         | 18/7  | 0     | - 10/7 | 1     |   | 1/7      | 1/18         |
| , |         | Cj | , | 8              | 8     | 47    | 0      | 0     | 3 |          |              |
|   |         | Λi |   | - 132/7        | 9/7   | 0     | - 47/7 | 0     |   | Z = 94/7 |              |

| $C_{i}$ | i                | $A_1$  | $A_{21}$ | $A_3$ | $A_4$ | $A_5$  | $A_0$    | $x_k/x_{kj}$ |
|---------|------------------|--------|----------|-------|-------|--------|----------|--------------|
| 47      | 3                | 5/6    | 0        | 1     | 2/9   | - 1/18 | 5/18     |              |
| 8       | 2                | - 11/6 | 1        | 0     | - 5/9 | 7/18   | 1/18     |              |
|         | Cj               | 8      | 8        | 47    | 0     | 0      |          |              |
|         | $\Delta_{\rm j}$ | - 33/2 | 0        | 0     | - 6   | - 1/2  | Z = 27/2 |              |

# EXERCICE 15 : Programme linéaire sous forme générale avec résolution graphique

PROGRAMMATION LINEAIRE PAGE 23 EXERCICES RESOLUS

$$\begin{bmatrix} x_2 \leq 1000 \\ 2x_1 + 3x_2 \leq 4500 \\ x_1 \geq 600 \\ x_2 \geq 600 \end{bmatrix} \Rightarrow \begin{bmatrix} x_2 + x_3 = 1000 \\ 2x_1 + 3x_2 + x_4 = 4500 \\ x_1 - x_5 + x_7 = 600 \\ x_2 - x_6 + x_8 = 600 \end{bmatrix}$$

$$MAX (Z = 4x_1 + 5x_2) \Rightarrow \begin{bmatrix} x_2 + x_3 = 1000 \\ x_1 - x_5 + x_7 = 600 \\ x_2 - x_6 + x_8 = 600 \end{bmatrix}$$

$$MAX (Z = 4x_1 + 5x_2) \Rightarrow \begin{bmatrix} x_3 + x_3 = 1000 \\ x_1 - x_5 + x_7 = 600 \\ x_2 - x_6 + x_8 = 600 \end{bmatrix}$$

$$MAX (Z = 4x_1 + 5x_2) \Rightarrow \begin{bmatrix} x_3 + x_3 = 1000 \\ x_1 - x_3 + x_7 = 600 \\ x_2 - x_6 + x_8 = 600 \end{bmatrix}$$

$$MAX (Z = 4x_1 + 5x_2) \Rightarrow \begin{bmatrix} x_3 + x_3 = 1000 \\ x_1 - x_3 + x_7 = 600 \\ x_2 - x_6 + x_8 = 600 \end{bmatrix}$$

$$MAX (Z = 4x_1 + 5x_2) \Rightarrow \begin{bmatrix} x_3 + x_3 = 1000 \\ x_1 - x_3 + x_3 = 600 \\ x_2 - x_6 + x_8 = 600 \end{bmatrix}$$

$$MAX (Z = 4x_1 + 5x_2) \Rightarrow \begin{bmatrix} x_3 + x_3 = 1000 \\ x_1 - x_3 + x_3 = 600 \\ x_2 - x_1 + x_2 + x_3 = 600 \end{bmatrix}$$

$$MAX (Z = 4x_1 + 5x_2) \Rightarrow \begin{bmatrix} x_1 + x_2 + x_3 = 4x_3 \\ x_1 + x_2 + x_3 = 600 \\ x_2 - x_1 + x_2 + x_3 = 600 \end{bmatrix}$$

$$MAX (Z = 4x_1 + 5x_2) \Rightarrow \begin{bmatrix} x_1 + x_2 + x_3 = 4x_3 \\ x_1 + x_2 + x_3 = 600 \\ x_2 - x_1 + x_2 + x_3 = 600 \end{bmatrix}$$

$$MAX (Z = 4x_1 + 5x_2) \Rightarrow \begin{bmatrix} x_1 + x_2 + x_3 = 4x_3 \\ x_1 + x_2 + x_3 = 600 \\ x_2 - x_1 + x_2 + x_3 = 600 \end{bmatrix}$$

$$MAX (Z = 4x_1 + 5x_2) \Rightarrow \begin{bmatrix} x_1 + x_2 + x_3 = 600 \\ x_1 - x_1 + x_2 + x_3 = 600 \\ x_2 - x_1 + x_2 + x_3 = 600 \end{bmatrix}$$

$$MAX (Z = 4x_1 + 5x_2) \Rightarrow \begin{bmatrix} x_1 + x_2 + x_3 = 600 \\ x_1 - x_1 + x_2 + x_3 = 600 \\ x_2 - x_1 + x_2 + x_2 = 600 \end{bmatrix}$$

$$MAX (Z = 4x_1 + 5x_2 + x_3 = 600 \\ x_1 - x_1 + x_2 + x_3 = 600 \\ x_2 - x_1 + x_2 + x_2 = 600 \\ x_2 - x_1 + x_2 + x_3 = 600 \\ x_3 - x_1 + x_3 = 600 \\ x_1 - x_1 + x_2 + x_3 = 600 \\ x_2 - x_1 + x_2 + x_3 = 600 \\ x_3 - x_1 + x_2 + x_3 = 600 \\ x_1 - x_1 + x_2 + x_3 = 600 \\ x_2 - x_1 + x_2 + x_3 = 600 \\ x_1 - x_1 + x_2 + x_3 = 600 \\ x_2 - x_1 + x_2 + x_3 = 600 \\ x_1 - x_1 + x_2 + x_3 = 600 \\ x_2 - x_1 + x_2 + x_3 = 600 \\ x_1 - x_1 + x_2 + x_3 = 600 \\ x_2 - x_1 + x_2 + x_3 = 600 \\ x_1 - x_1 + x_2 + x_3 = 600 \\ x_2 - x_1 + x_2 + x_2 + x_3 = 600 \\ x_1 - x_1 + x_2 + x_3 = 600 \\ x_2 - x_1 + x_2 + x_3 = 600 \\ x_1 - x_1 + x_2 + x_2 + x_3 = 600 \\ x_2 - x_1 + x_2 + x_2 + x_3 = 600 \\ x_1 - x_1 + x_2 + x_2 + x_3 = 600 \\ x_1 - x_1 + x_2 + x_2 + x$$

0

150

1

1/2

0

0

0

- 3/2

| -            | 750      |          |       | 0     | 0     | 1/2   | - 3/2 | 0     | 1     | 1                     | 4       |
|--------------|----------|----------|-------|-------|-------|-------|-------|-------|-------|-----------------------|---------|
| 1000         | 1000     |          |       | 0     | 0     | 0     | 1     | 1     | 0     | 2                     | 5       |
|              | <u> </u> |          |       | 0     | 0     | 0     | 0     | 5     | 4     | Cj                    |         |
|              | Z = 8000 |          |       | 0     | 0     | - 2   | 1     | 0     | 0     | $\Delta_{\mathrm{j}}$ |         |
|              |          |          |       |       |       |       |       |       |       |                       |         |
| $x_k/x_{kj}$ | $A_0$    | $A_8$    | $A_7$ | $A_6$ | $A_5$ | $A_4$ | $A_3$ | $A_2$ | $A_1$ | i                     | $C_{i}$ |
|              | 400      |          |       | 1     | 0     | 0     | 1     | 0     | 0     | 3                     | 0       |
|              | 750      |          |       | 3/2   | 1     | 1/2   | 0     | 0     | 0     | 5                     | 0       |
|              | 1350     |          |       | 3/2   | 0     | 1/2   | 0     | 0     | 1     | 1                     | 4       |
|              | 600      |          |       | - 1   | 0     | 0     | 1     | 1     | 0     | 2                     | 5       |
|              |          | <u>'</u> |       | 0     | 0     | 0     | 0     | 5     | 4     | C <sub>j</sub>        |         |
|              | 7 - 9400 |          |       | _ 1   | 0     | - 2   | 0     | 0     | 0     | Λ.                    |         |

**RESULTAT:**  $x_1 = 1350$   $x_2 = 600$  Z = 8400



# EXERCICE 16: Programme linéaire sous forme générale avec résolution graphique

$$\begin{cases} 2x_1 + x_2 \le 6 \\ x_1 + x_2 \le 4 \end{cases} \Rightarrow \begin{cases} 2x_1 + x_2 + x_3 = 6 \\ x_1 + x_2 + x_4 = 4 \\ x_1 + 2x_2 \ge 1 \end{cases}$$

$$MAX (Z = 5x_1 + x_2) \qquad MAX (5x_1 + x_2 + 0x_3 + 0x_4 + 0x_5 - Mx_6)$$

UF – ENI RECHERCHE OPERATIONNELLE

| $C_i$ i                                                                                                                                                                            | $\mathbf{A}_1$                                           | $A_2$                                                  | $\mathbf{A}_3$                                                 | $A_4$                                             | $A_5$                                              | $A_6$          | $A_0$                                                                                                                               | $x_k/x_{kj}$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 0 3                                                                                                                                                                                | 2                                                        | 1                                                      | 1                                                              | 0                                                 | 0                                                  | 0              | 6                                                                                                                                   | 6            |
| 0 4                                                                                                                                                                                | 1                                                        | 1                                                      | 0                                                              | 1                                                 | 0                                                  | 0              | 4                                                                                                                                   | 4            |
| - M 6                                                                                                                                                                              | 1                                                        | 2                                                      | 0                                                              | 0                                                 | - 1                                                | 1              | 1                                                                                                                                   | 0,5          |
| $C_j$                                                                                                                                                                              | 5                                                        | 1                                                      | 0                                                              | 0                                                 | 0                                                  | - M            |                                                                                                                                     |              |
| $\Delta_{ m j}$                                                                                                                                                                    | 5 + M                                                    | 1 + 2M                                                 | 0                                                              | 0                                                 | - M                                                | 0              | Z = -M                                                                                                                              |              |
|                                                                                                                                                                                    |                                                          |                                                        |                                                                |                                                   |                                                    | <u> </u>       |                                                                                                                                     |              |
| $C_i$ i                                                                                                                                                                            | $\mathbf{A}_1$                                           | $A_2$                                                  | $A_3$                                                          | $A_4$                                             | $A_5$                                              | $A_6$          | $A_0$                                                                                                                               | $x_k/x_{kj}$ |
| 0 3                                                                                                                                                                                | 3/2                                                      | 0                                                      | 1                                                              | 0                                                 | 1/2                                                | - 1/2          | 11/2                                                                                                                                | 11/3         |
| 0 4                                                                                                                                                                                | 1/2                                                      | 0                                                      | 0                                                              | 1                                                 | 1/2                                                | - 1/2          | 7/2                                                                                                                                 | 7            |
| 1 2                                                                                                                                                                                | 1/2                                                      | 1                                                      | 0                                                              | 0                                                 | - 1/2                                              | 1/2            | 1/2                                                                                                                                 | 1            |
| $C_j$                                                                                                                                                                              | 5                                                        | 1                                                      | 0                                                              | 0                                                 | 0                                                  | - M            | <u> </u>                                                                                                                            |              |
| $\Delta_{ m j}$                                                                                                                                                                    | 9/2                                                      | 0                                                      | 0                                                              | 0                                                 | 1/2                                                | - M - 1/2      | $Z = \frac{1}{2}$                                                                                                                   |              |
|                                                                                                                                                                                    |                                                          |                                                        | •                                                              |                                                   |                                                    |                |                                                                                                                                     |              |
|                                                                                                                                                                                    |                                                          |                                                        |                                                                |                                                   |                                                    |                |                                                                                                                                     |              |
| $C_i$ i                                                                                                                                                                            | $A_1$                                                    | $A_2$                                                  | $A_3$                                                          | $A_4$                                             | $\mathbf{A}_{5}$                                   | $A_6$          | $A_0$                                                                                                                               | $x_k/x_{kj}$ |
| $C_i$ $i$ $0$ $3$                                                                                                                                                                  | $A_1$                                                    | A <sub>2</sub>                                         | A <sub>3</sub>                                                 | A <sub>4</sub>                                    | A <sub>5</sub>                                     | $A_6$          | 4                                                                                                                                   | 2            |
| 0 3 0 4                                                                                                                                                                            |                                                          |                                                        |                                                                |                                                   |                                                    | A <sub>6</sub> |                                                                                                                                     |              |
| 0 3                                                                                                                                                                                | 0 0 1                                                    | - 3                                                    | 1                                                              | 0                                                 | 2                                                  |                | 4                                                                                                                                   | 2            |
| 0 3 0 4                                                                                                                                                                            | 0                                                        | - 3<br>- 1                                             | 1 0                                                            | 0                                                 | 2                                                  | A <sub>6</sub> | 3                                                                                                                                   | <b>2</b> 3   |
| 0 3<br>0 4<br>5 1                                                                                                                                                                  | 0 0 1                                                    | - 3<br>- 1<br>2                                        | 1<br>0<br>0                                                    | 0<br>1<br>0                                       | 2<br>1<br>- 1                                      |                | 3                                                                                                                                   | <b>2</b> 3   |
| 0 3<br>0 4<br>5 1<br>C <sub>j</sub>                                                                                                                                                | 0 0 1 5                                                  | - 3<br>- 1<br>2<br>1                                   | 1<br>0<br>0                                                    | 0<br>1<br>0<br>0                                  | 2<br>1<br>-1<br>0                                  |                | 4<br>3<br>1                                                                                                                         | <b>2</b> 3   |
| 0 3<br>0 4<br>5 1<br>C <sub>j</sub>                                                                                                                                                | 0 0 1 5                                                  | - 3<br>- 1<br>2<br>1                                   | 1<br>0<br>0                                                    | 0<br>1<br>0<br>0                                  | 2<br>1<br>-1<br>0                                  |                | 4<br>3<br>1                                                                                                                         | <b>2</b> 3   |
| $\begin{array}{c cccc} 0 & 3 & \\ \hline 0 & 4 & \\ \hline 5 & 1 & \\ \hline & C_j & \\ \Delta_j & \\ \end{array}$                                                                 | 0<br>0<br>1<br>5<br>0                                    | - 3<br>- 1<br>2<br>1<br>- 9<br>A <sub>2</sub><br>- 3/2 | 1<br>0<br>0<br>0<br>0<br>0<br>A <sub>3</sub><br>1/2            | 0<br>1<br>0<br>0<br>0<br>0                        | 2<br>1<br>-1<br>0<br>5                             | - M            | $ \begin{array}{c c} 4 \\ \hline 3 \\ \hline 1 \end{array} $ $Z = 5$ $A_0$ $2$                                                      | <b>2</b> 3   |
| $\begin{array}{c cc} 0 & 3 \\ \hline 0 & 4 \\ \hline 5 & 1 \\ \hline & C_j \\ \Delta_j \\ \hline \\ C_i & i \\ \hline 0 & 5 \\ \hline 0 & 4 \\ \hline \end{array}$                 | $\begin{bmatrix} 0 \\ 0 \\ 1 \\ 5 \\ 0 \\ \end{bmatrix}$ | - 3<br>- 1<br>2<br>1<br>- 9                            | 1<br>0<br>0<br>0<br>0                                          | 0<br>1<br>0<br>0<br>0                             | 2<br>1<br>-1<br>0<br>5                             | - M            | $ \begin{array}{c c} 4 \\ \hline 3 \\ \hline 1 \end{array} $ $Z = 5$ $ \begin{array}{c c} A_0 \\ \hline 2 \\ \hline 1 \end{array} $ | <b>2</b> 3   |
| $\begin{array}{c cc} 0 & 3 \\ \hline 0 & 4 \\ \hline 5 & 1 \\ \hline & C_j \\ \Delta_j \\ \hline \\ C_i & i \\ \hline 0 & 5 \\ \hline 0 & 4 \\ \hline 5 & 1 \\ \hline \end{array}$ | 0<br>0<br>1<br>5<br>0<br>A <sub>1</sub><br>0<br>0        | - 3<br>- 1<br>2<br>1<br>- 9<br>A <sub>2</sub><br>- 3/2 | 1<br>0<br>0<br>0<br>0<br>A <sub>3</sub><br>1/2<br>- 1/2<br>1/2 | 0<br>1<br>0<br>0<br>0<br>44<br>0<br>1             | 2<br>1<br>-1<br>0<br>5<br>A <sub>5</sub><br>1<br>0 | - M            | $ \begin{array}{c c} 4 \\ \hline 3 \\ \hline 1 \end{array} $ $Z = 5$ $A_0$ $2$                                                      | <b>2</b> 3   |
| $\begin{array}{c cc} 0 & 3 \\ \hline 0 & 4 \\ \hline 5 & 1 \\ \hline & C_j \\ \Delta_j \\ \hline & C_i & i \\ \hline 0 & 5 \\ \hline 0 & 4 \\ \hline \end{array}$                  | $\begin{bmatrix} 0 \\ 0 \\ 1 \\ 5 \\ 0 \\ \end{bmatrix}$ | - 3 - 1 2 1 - 9  A <sub>2</sub> - 3/2 1/2              | 1<br>0<br>0<br>0<br>0<br>0<br>A <sub>3</sub><br>1/2<br>- 1/2   | 0<br>1<br>0<br>0<br>0<br>0<br>A <sub>4</sub><br>0 | 2<br>1<br>-1<br>0<br>5<br>A <sub>5</sub><br>1      | - M            | $ \begin{array}{c c} 4 \\ \hline 3 \\ \hline 1 \end{array} $ $Z = 5$ $ \begin{array}{c c} A_0 \\ \hline 2 \\ \hline 1 \end{array} $ | <b>2</b> 3   |

 $\underline{\mathtt{RESULTAT}}: \quad x_1 = 3 \quad x_2 = 0 \quad Z = 15$ 

| $x_1 + x_2 = 4$ |   |   |  |
|-----------------|---|---|--|
| 1               | 2 | 3 |  |
| 3               | 2 | 1 |  |

| $x_1 + 2x_2 = 6$ |   |   |  |
|------------------|---|---|--|
| - 3              | 1 |   |  |
| 2                | 1 | 0 |  |

| 5x <sub>1</sub> |       |   |                |
|-----------------|-------|---|----------------|
| 0               | 0 1 - |   | $\mathbf{x}_1$ |
| 0               | - 5   | 5 | <b>X</b> 2     |



$$\begin{cases} 2x_1 + x_2 \le 6 \\ x_1 + x_2 \le 4 \end{cases} \Rightarrow \begin{cases} 2x_1 + x_2 \le 6 \\ x_1 + x_2 \le 4 \end{cases} \Rightarrow \begin{cases} 2x_1 + x_2 + x_3 = 6 \\ x_1 + x_2 \le 4 \end{cases} \Rightarrow \begin{cases} 2x_1 + x_2 + x_3 = 6 \\ x_1 + x_2 + x_4 = 4 \\ -x_1 - 2x_2 \le -1 \end{cases}$$

$$MAX (Z = 5x_1 + x_2) \qquad MAX (5x_1 + x_2 + 0x_3 + 0x_4 + 0x_5)$$

| $C_{i}$ | i  |
|---------|----|
| 0       | 3  |
| 0       | 4  |
| 0       | 5  |
|         | Ci |

 $\Delta_{i}$ 

| $A_1$ | $A_2$ | $A_3$ | $A_4$ | $A_5$ |
|-------|-------|-------|-------|-------|
| 2     | 1     | 1     | 0     | 0     |
| 1     | 1     | 0     | 1     | 0     |
| - 1   | - 2   | 0     | 0     | 1     |
| <br>5 | 1     | 0     | 0     | 0     |
| 5     | 1     | 0     | 0     | 0     |
|       |       |       |       |       |

| $x_k/x_{kj}$ |
|--------------|
| 3            |
| 4            |
| 1            |
|              |
|              |

| $C_{i}$ | i |
|---------|---|
| 0       | 3 |
| 0       | 4 |
| 5       | 1 |

| $A_1$ | $A_2$ | $A_3$ | $A_4$ | $A_5$ |
|-------|-------|-------|-------|-------|
| 0     | - 3   | 1     | 0     | 2     |
| 0     | - 1   | 0     | 1     | 1     |
| 1     | 2     | 0     | 0     | - 1   |

| $A_0$ | $x_k/x_{kj}$ |
|-------|--------------|
| 4     | 2            |
| 3     | 3            |
| 1     | - 1          |

UF – ENI RECHERCHE OPERATIONNELLE

0

0

|         | $\Delta_{ m j}$       | U              | - 9   | U     | U     | 3     | L-3    |
|---------|-----------------------|----------------|-------|-------|-------|-------|--------|
|         |                       |                |       |       |       |       |        |
| $C_{i}$ | i                     | $\mathbf{A}_1$ | $A_2$ | $A_3$ | $A_4$ | $A_5$ | $A_0$  |
| 0       | 5                     | 0              | - 3/2 | 1/2   | 0     | 1     | 2      |
| 0       | 4                     | 0              | 1/2   | - 1/2 | 1     | 0     | 1      |
| 5       | 1                     | 1              | 1/2   | 1/2   | 0     | 0     | 3      |
|         | Cj                    | 5              | 1     | 0     | 0     | 0     |        |
|         | $\Delta_{\mathrm{j}}$ | 0              | - 3/2 | - 5/2 | 0     | 0     | Z = 15 |
|         |                       |                |       |       |       |       |        |

0

# Contraintes contradictoires

$$\begin{cases} x_1 \le 1 \\ x_1 + x_2 \ge 6 \\ -x_1 + x_2 = 3 \end{cases}$$
Max  $(x_1 + 2x_2)$ 

Cj