

2023~2024 学年秋季学期《大学物理实验》

实验报告

得 分	评阅人

题	目:	实验九 RLC 串联电路的暂态过程研究
学	院:	先进制造学院
专业班	E级:	智能制造工程 221 班
学生姓	名:	<u>朱紫华</u>
学	号:	5908122030
指导老	治师:	全祖赐老师

二〇二三年九月制

RLC串联电路的暂态过程

一、 实验目的

- 1、研究当方波电源加于 RC、RL 串联电路时产生的暂态放电曲线及用示波器测量电路半衰期的方法,加深对电容充、放电规律的认识。
- 2、了解当方波电源加于 RLC 串联电路时产生的阻尼衰减振荡的特性及测量 方法。

二、 实验仪器

信号发生器、双踪数字存储示波器、电阻、电感、电容、面包板、导线若干。

图 1 示波器

图 2 函数信号发生器

三、实验原理

1、RC 串联电路暂态过程(描述电容两端加电源后,其两个极板上分别聚集起等量异号的电荷,在介质中建立起电场,并储存电场能量的性质)

图 3 RC 电路

充电过程:

$$RC\frac{dU_C}{dt} + U_C = E$$

再根据初始条件t=0, $U_c=0$,解得:

$$iR + U_C = E i = \frac{dq}{dt} \begin{cases} U_C = E \left(1 - e^{-\frac{t}{RC}}\right) \\ U_C = E \left(1 - e^{-\frac{t}{RC}}\right) \end{cases}$$

$$R\frac{dq}{dt} + \frac{q}{C} = E U_C = \frac{q}{C} U_R = Ee^{-\frac{t}{RC}}$$

放电过程:

图 4 RC 电路

$$RC\frac{dU_C}{dt} + U_C = 0$$

再根据初始条件t=0, $U_c=E$ 解得

$$\begin{cases} U_C = Ee^{-\frac{t}{RC}} \\ U_R = -Ee^{-\frac{t}{RC}} \end{cases}$$

$$E \rightarrow Ee^{-1}$$
 时间常数 $\tau = RC$

$$E \rightarrow \frac{E}{2}$$
 $+ \approx \pi$ $T_{1/2} = \tau \ln 2$

图 5 放电曲线

不同 τ 值的 RC 电路电容充放电示意图如上所示 。

2. RL 串联电路暂态过程(描述线圈通有电流时产生磁场、储存磁场能量的性质。)

图 6 RL 电路
充电过程
$$iR + L\frac{di}{dt} = E$$
 放电过程 $iR + L\frac{di}{dt} = 0$

$$U_L = L \frac{di}{dt}$$

时间常数
$$\tau = L/R$$

半衰期

$$T_{1/2} = \tau \ln 2$$

图 7 示波器示意图

3. RLC 串联电路暂态过程

图 8 RLC 串联电路

$$iR + L\frac{di}{dt} + U_C = 0$$
 $i = \frac{dq}{dt} = C\frac{dU_C}{dt}$

$$LC\frac{d^2U_C}{dt^2} + RC\frac{dU_C}{dt} + U_C = E$$

令
$$eta$$
 = $R/2L$, ω_0 = $1/\sqrt{LC}$, 则有

$$\frac{d^2U_C}{dt^2} + 2\beta \frac{dU_C}{dt} + \omega_0^2 U_C = E$$

图 9 解的情况

解分为三种情况,即图中1、2、3分别对应欠阻尼、过阻尼和临界阻尼状态。

当 $R < 2\sqrt{L/C}$ 时,为欠阻尼状态;当 $R = 2\sqrt{L/C}$ 时,为临界状态;当 $R > 2\sqrt{\frac{L}{C}}$ 时,为过阻尼状态。 $U_C = \frac{1}{\sqrt{1 - \frac{C}{4L} \cdot R^2}} \cdot E \cdot e^{-\frac{t}{\tau}} \cdot \sin(\omega t + \varphi)$

$$U_C = \frac{1}{\sqrt{1 - \frac{C}{4L} \cdot R^2}} \cdot E \cdot e^{-\frac{t}{\tau}} \cdot \sin(\omega t + \varphi)$$

$$U_{C} = \frac{1}{\sqrt{\frac{C}{4L} \cdot R^{2} - 1}} \cdot E \cdot e^{-\frac{t}{\tau}} \cdot ch(\omega t + \varphi)$$

$$U_{C} = (1 + \frac{t}{\tau})E \cdot e^{-\frac{t}{\tau}}$$

$$\tau = \frac{L}{R}$$

图 10 实验结果

四、实验内容

- 1. RC 电路暂态过程的观测
- (1)选择合适的 R 和 C 值,根据时间常数 τ ,选择合适的方波频率,一般要求方波的周期 T>10 τ ,这样能较完整地反映暂态过程,并且选用合适的示波器扫描速度,以完整地显示暂态过程。
 - (2) 把方波信号发生器、电阻 R、电容 C, 示波器按图 1 接线。
- (3)选取不同的电阻 R,观察 Uc的波形。并记录二组电阻和电容取不同值时 Uc的波形(可拍照反映其差别)。
- (4) 测量相应的二组半衰期 $T_{1/2}$, 求出 τ 和 R 的实验值, 并与理论值 R 进行比较。

图 11 实验接线图

图 12 实验接线图

图 13 实验接线图

图 14 实验接线图

- 2. RL 电路暂态过程的观测(选做)
- (1) 把方波信号发生器(选取恰当频率使得波形合适)、电阻 R、电感 L, 示波器按图接线。
 - (2) 选取不同的电阻 R, 观察 UL 的波形。
 - (3) 记录一组电阻和电感的 U_L的波形(拍照)。
- (4) 测量相应的一组半衰期 $T_{1/2}$, 求出 τ 和 R 的实验值,并与理论值 R 进行比较。

图 15 实验接线图

图 16 实验接线图

- 3. RLC 电路暂态过程的观测
 - (1) 根据实验选用的电容和电感的值,算出临界电阻的阻值 R_0 。
- (2) 按图 3 接线, 电阻取小于和大于 R_0 ,观测欠阻尼状态和过阻尼状态下电容上 Uc 的波形。(拍照)

图 17 实验接线图

图 18 实验接线图

图 19 实验接线图

五、实验数据及数据分析处理

一、RC 串联电路的暂态过程

R (理论值)	(理论值)	て (理论值)	$T_{\frac{1}{2}}$	
1 κΩ	1 μF	1.0×10 ⁻³	0.65ms	Tek JL Trott MPss 400.58 CORSON 类型 重要
10 κΩ	1 μF	1.0×10 ⁻²	6.7ms	TOS 1002 TOS 1002 TOS

τ (实际值) = $T_{\frac{1}{2}} \times \ln \frac{1}{2}$	$R($ 实际值 $)=\frac{\tau}{C}$
9.4×10^{-4}	940 Ω
9.7×10^{-3}	9700Ω

二、RLC串联电路的暂态过程

	С	L	R_0	R	
欠					TOX IT BION M POS \$200.65 AUTOSET
阻	0. $022 \mu F$	10mH	1348 Ω	100Ω	4444
尼					OC: 经收益7.28V 平均值-141mV 取消目 周期 20.6ss 须率 2.38es; 动设置 cm 260 Co 260V M (8bs Coc / 2-34m) 5.3353es
过					Tektronix TDS 1002 Indicated Incidence Test
阻	0. $022 \mu F$	10mH	1348 Ω	5000Ω	1
尼					CH2 4年日 3-579 平均第 33-789 双语目 45-785 - CA2 7379 - 村238 - CA2 7379 - 村238 - CA2 7379 - 村238 - CA2 7379 - CA2 73

六、误差分析

- 1. 欠阻尼振荡状态下的电感和电容存在着附加损耗电阻,并且其阻值随着振荡频率的升高而增大. 故实际上电路中的等效阻值大于 R 与用万用表测出的电感阻值之和, 故实际测出的时间常数会偏小.
- 2. 数字示波器记录的数据精确度有限,且有时无法显示细微的区别,可能会出现多个时间对应同一个电压值的情况
 - 3. 数字示波器系统存在内部系统误差.
 - 4. 外界扰动信号会对示波器产生影响.
- 5. 电器元件使用时间过长,可能造成相应的参数有误差,例如定值电阻阻值可能变大.
 - 6. 电源电压不稳定

七、附上原始数据

1	1	4	1
	7		
	-	NI	"

南昌大学物理实验报告

学生 学号:			专业班级:				
学生姓名:		_+ 4			#4年始日.	成绩:	
实验时间:	_时分	第周	星期	座位号:	_教师编号:		

一、又C事联电路的暂态过程

1 7	C	T	Ti	T 初格信,	及份例	周期
(理花飯)		(理论值)		9.4×/0-4		zoms
1KM	IMF	1.0×10-2		9.7×10-3	9700	30m5

二、ZLC串联电路的暂态过程。

	C	1	之。()临界强心	R
欠阻尼	0.022 MF	Jomk	134854	100 st.
过阻尼	0.022 MF	Jomh	1348-2	5000A

八、实验心得与体会

这次实验可以说是做的非常坎坷吧,最开始函数信号发生器没按output,导致一直收到的是杂波,而我当时一直以为是电路问题,一直在调,直到一小时后才注意到没按output,然后由于没搞懂半衰期的公式,浪费了很多时间,现在想起来,怎么那么傻,如果是按我那种读法,半衰期会比周期还大。不过在第二次实验中我们成功做出来了,并且调出了不错的波形。在这里需要强调的是,这个实验难的不是电路,而是对周期的把控,要想调出上面欠阻尼的波形,需要周期很小很小,不然不会是那种波形。