GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA Diseño de Circuitos Electrónicos

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Quinto Semestre	4052	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Otorgar al participante el conocimiento, la habilidad y la aptitud para el análisis y diseño de circuitos electrónicos con base en diodos, transistores, BJT, FET y MOSFET, y amplificadores operacionales.

TEMAS Y SUBTEMAS

1. Introducción a la electrónica

1.1 Importancia del diseño de los circuitos electrónicos en la Ingeniería electrónica.

2. Semiconductores

- 2.1 La unión PN.
- 2.2 Las características del diodo.
- 2.3 Diodos Zener, diodos emisores de luz y fotodiodos.
- 2.4 Análisis de circuitos con diodos
- 2.5 Aplicaciones.

3. Transistores de unión bipolar (BJT)

- 3.1 Estructura y teoría de los transistores de unión (BJT).
- 3.2 Métodos para estabilizar el punto de operación.
- 3.3 Amplificadores de emisor común, colector común y base común.
- 3.4 Diseño y análisis de circuitos con base en transistores bipolares.
- 3.5 Aplicaciones en la Ingeniería.

4. Transistores de efecto de campo

- 4.1 Estructura y teoría de operación.
- 4.2 Métodos para estabilizar el punto de operación.
- 4.3 Clases de amplificadores.
- 4.4 El FET como interruptor.
- 4.5 Aplicaciones en la Ingeniería

5. Amplificadores operacionales

- 5.1 Características ideales y no ideales del amplificador operacional
- 5.2 Amplificadores diferenciales y de etapas múltiples.
- 5.3 Respuesta en frecuencia.
- 5.4 Aplicaciones del amplificador operacional en la Ingeniería.

ACTIVIDADES DE APRENDIZAJE

Diseñar y armar circuitos con diodos para su verificación experimental en el laboratorio. Investigación bibliográfica en libros de texto.

Uso de simuladores de circuitos para la verificación y modelado de los diferentes componentes.

Diseñar y armar circuitos con transistores bipolares para su verificación experimental en el laboratorio.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN 3 Exámenes parciales 30% 1 Examen final 30% Proyecto final 20% Tareas 5% Practicas de laboratorio 15%

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL, AÑO Y N° DE EDICIÓN)

Libros Básicos:

Microelectronic Circuits. Sedra, A., Smith, K. Editorial Saunders College Publishing E.U.A. 1991.

Electronic Circuit Design. Savant, C., Carpenter, R. Editorial The Benajamin/Cummings Publishing Company, Inc. E.U.A. 1987.

Microelectronic Circuits and Devices. Horestein, M. Editorial: Prentice Hall. México 1990.

Análisis y Diseño de Circuitos Electrónicos, Neamen, Donald A. México: McGraw-Hill Interamericana, 1999.

Libros de Consulta:

Analog Filter Design. Van Valkenburg, M. Holt, Rinehart and Winston. E.U.A. 1982.

Student Reference Manual for Electronic Instrumentation Laboratories. Stanley, W., Smith, R. Prentice Hall. México 1990.

Dispositivos Electrónicos y Amplificación de Señales, Sedra, Adel S. Smith Kenneth C. México: McGraw-Hill, 1992.

PERFIL PROFESIONAL DEL DOCENTE

Ingeniero en Electrónica con Maestría en Electrónica y Doctorado en Electrónica, Especialidad en Diseño de Circuitos.