# TEXT MINING for PRACTICE

Python을 활용한 비정형 데이터 분석 - WEEK 11 비정형데이터와 머신러닝

연세대학교 | 서중원

#### Deep Learning이란?

- ▶ 인공 신경망의 확장 버전으로 많은 (깊은) Hidden layer로 이루어진 Deep Neural Network (DNN)을 이용한 학습
- ▶ 기존에는 사람이 유의미한 특징을 추출한뒤 학습시켜왔다면, DNN에서는 그 과정이 생략됨.
- ▶ 전처리가 (Preprocessing) 생략되는 것은 아님



#### 선형 회귀 (Linear Regression)

▶ 선형 회귀는 종속변수 y와 한 개 이상의 독립 변수X와의 선형 상관 관계를 모델링하는 회귀분석 기법 이다.



#### 로지스틱 회귀 (Logistic Regression)

- ▶ 범주형 데이터 셋의 경우 선형 회귀로 분류 하기에는 한계가 있음
- ▶ Regression이라는 이름과 다르게 Classification으로 보는게 더 적합



#### 로지스틱 회귀 (Logistic Regression)의 한계

- ▶ Non-linearity (비선형성)을 만들기 위해서는 많은 수의 변수 조합이 필요함
  - $x1, x2 = x1, x2, x1x2, \cdots$

 $y = a_1 x_1 + a_2 x_2 + b$ 

- x1, x2, x3 = x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3, ...
- 1024x1024픽셀 이미지 데이터의 경우?



 $y = a_1 x_1 + a_2 x_2 + a_3 x_1 x_2 + b$ 

### 인공신경망 (Artificial Neural Networks)

- ▶ Non-linearity (비선형성)를 제공하기 위해, 변수의 조합이 아닌, 노드의 조합을 이용
  - 각각의 단일 노드 (hidden) 는 하나의 logit과 동일
  - 매 학습 당 독립변수에 곱해지는 파라미터 (weight)를 조정
- ▶ 모델이 학습되는 과정에서 값들이 레이어 간의 전파를 통해 이루어 진다고 해서 Feed Forward Neural Networks (FNNs)라고 도 불림

Input Output

**Logistic Regression** 



### 깊은 신경망 (Deep Neural Networks)

- ▶ 기존 인공 신경망에 더 많은 Hidden Layer의 수 를 추가해서 깊게 (Deep) 만든 신경망 모델
  - 처음 제시된 시점에 비해 (1970년대) 유명세를 얻기까지 시간이 걸림
  - 효율적인 알고리즘과 컴퓨팅 성능의 향상으로 2010년 대부터 각광을 받기 시작함



[ Deep Neural Networks ]

#### Convolutional Neural Networks (CNNs)

- ▶ 이미지 데이터에서 큰 효과를 보여준 모델
- ▶ 기존 FNNs의 한계를 보완함
  - 벡터화에 의한 이미지 형태 정보 손실 -> 이미지 원본 형태를 (행렬) 유지한채 학습
  - 벡터화에 의한 기하급수적 모델 파라미터 증가 -> Pooling 레이어로 축소된 이미지 처리



#### Recurrent Neural Networks (RNNs)

- ▶ 기존 Feed Forward Neural Networks (FNNs) 계열의 경우 시계열 또는 순서를 고려하지 못함
- ▶ 순서가 중요한 텍스트 데이터의 경우 RNN류의 모델을 쓰는게 적합
  - LSTM 또는 GRU



[RNNs 의 다이어그램]

#### Recurrent Neural Networks (RNNs)

▶ 목적에 따라 다른 구조를 사용



<sup>\*</sup> Source: Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks, 2015.05.21, http://karpathy.github.io/2015/05/21/rnn-effectiveness/.

### Performance Comparison

#### Accuracy



|                       | FNN  | CNN  | RNN  | LSTM | BILSTM |
|-----------------------|------|------|------|------|--------|
| Training Acc. (%)     | 58   | 87   | 80   | 82   | 85     |
| Kaggle Acc. (%)       | 48.7 | 65.2 | 58.5 | 63.7 | 65.7   |
| # of Epochs           | 34   | 6    | 161  | 165  | 175    |
| Training Time (hours) | 1.5  | 1.6  | 14   | 15   | 17.7   |

Table 3: Result of candidate models

E.O.D