Differentially Private Learning of Hawkes Processes

Mohsen Ghassemi*

Eleonora Kreačić*

Niccolò Dalmasso

Vamsi K. Potluru

Tucker Balch

Manuela Veloso

J.P. Morgan AI Research

{mohsen.ghassemi, eleonora.kreacic, niccolo.dalmasso}@jpmchase.com

2022-arkiv.org

Reporter: Jiajia Sun

Outline

- DP modeling of sequential events data
- Private Estimation parameters of Hawkes process
- Sample complexity
- Experiments

DP modeling of sequential events data

• Goal: learn the parameters of the Hawkes process while **preserving the privacy** of the individuals whose data (events) are present in the stream

• ϵ – differentially private

$$\frac{\Pr[A(D) = O]}{\Pr[A(D') = O]} \le \exp(\varepsilon)$$

• randomly differentially private $\mathbb{P}\Big(\forall \mathcal{C} \subset \mathcal{Y}, \quad \mathbb{P}\left(\mathfrak{M}(\mathcal{D}) \in \mathcal{C}\right) \leq e^{\epsilon}\mathbb{P}\left(\mathfrak{M}(\mathcal{D}') \in \mathcal{C}\right)\Big) \geq 1 - \gamma$

DP modeling of sequential events data

- sequence of events $S(t) = \{e_i = (x_i, t_i) | t_i < t\}$
- parent-child relation

We can define a cluster as a group of individuals whose events forms a tree of parent-child relations

• "neighboring" sequence

$$S(t)$$
 and $S_{-j}(t)$

they differ only in the presence of the events that **belong to the same cluster** as event j

Definition 4. Let $\mathcal{S}_{\mathbf{P}}^T$ be the set of all possible realizations of a temporal point process $\mathbf{P}(t)$ until time T. A randomized mechanism $\mathfrak{M}: \mathcal{S}_{\mathbf{P}}^T \to \mathcal{Y}$ is (ϵ, γ) -randomly differentially private if

$$\mathbb{P}\Big(\forall \mathcal{C} \subset \mathcal{Y}, \quad \mathbb{P}\left(\mathfrak{M}(S(T)) \in \mathcal{C}\right) \leq e^{\epsilon} \mathbb{P}\left(\mathfrak{M}(S_{-i}(T)) \in \mathcal{C}\right)\Big) \geq 1 - \gamma$$

where the inner probability is over the randomness of the mechanism, and the outer probability is over neighboring streams $S(T), S_{-i}(T) \in \mathcal{S}^t_{\mathbf{p}}$ drawn from point process $\mathbf{P}(t)$ until time T.

Estimating parameters of Hawkes process

• Hawkes process
$$\lambda_t^* = \mu + \sum_{t_i < t} \alpha e^{-\beta(t_i - t)}$$
, $\beta = 1$
$$\lambda_\infty \coloneqq \lim_{t \to \infty} \mathbb{E}[\lambda_t^*] = \frac{\mu}{1 - \alpha}$$

- The count series with interval size Δ $Y_i(\Delta) = \mathbf{N}(i\Delta) \mathbf{N}((i-1)\Delta)$ $Y_1(\Delta), Y_2(\Delta), \cdots, Y_K(\Delta)$
- Standard stationarity assumption [1]

$$\eta \coloneqq \mathbb{E}[Y_i(\Delta)] = \frac{\mu \Delta}{(1-\alpha)}$$

$$\sigma^2 \coloneqq \operatorname{Var}[Y_i(\Delta)] = \frac{\mu \Delta}{(1-\alpha)^3} + \frac{\alpha^2 \mu \left(1 - e^{-2(1-\alpha)\Delta}\right)}{2(1-\alpha)^4} - \frac{2\alpha \mu \left(1 - e^{-(1-\alpha)\Delta}\right)}{(1-\alpha)^4}$$

One can compute μ and α given the values of η and σ^2

Sensitivity

- Suppose that the maximum number of correlated events is B
- maximal amount of change in the sample mean $\hat{\eta}$ is $\frac{B}{K}$
- maximal amount of change in the sample variance $\widehat{\sigma^2}$ is upper bounded by

$$\frac{B^2}{K} + \frac{2B^{3/2}\sqrt{\Delta}C_1}{(K-1)}$$
 where $C_1 = \sqrt{\frac{1.1 \cdot \mu_{upper}}{(1-\alpha_{upper})^3} \cdot \frac{1}{\gamma}}$. with probability at least $1-\gamma$

Lemma 1. Consider a Hawkes process H(t) defined by intensity function 1 observed until time T. For any $0 < \gamma \le 1$ and $T \ge \left(\frac{\mu \cdot e^2}{\gamma}\right)^{5/2}$, with probability at least $1 - \gamma$, all existing trees contain at most $\frac{3 \log T}{(1-\alpha)^2}$ individuals.

$$B = C_2 \log T$$
, where $C_2 = \frac{3}{(1 - \alpha_{upper})^2}$

DP sample mean and sample variance

• Laplace mechanism

$$M_{Lap}(\mathcal{D}, f(.), \epsilon) = f(\mathcal{D}) + \Lambda(0, \Delta_f/\epsilon)$$
 where $\Delta_f = \max_{\mathcal{D}, \mathcal{D}'} \|f(\mathcal{D}) - f(\mathcal{D}')\|_1$

$$\begin{split} \hat{\eta}_{\text{private}} &= \hat{\eta} + \Lambda \Big(\frac{C_2 \log T}{K \cdot \epsilon} \Big) \\ \hat{\sigma}_{\text{private}}^2 &= \hat{\sigma}^2 + \Lambda \Big(\frac{C_2^2 (\log T)^2 + 2C_2^{3/2} C_1 \cdot \frac{K}{K-1} (\log T)^{3/2} \sqrt{\Delta}}{K \cdot \epsilon} \Big) \end{split}$$

 $\hat{\mu}_{private}$ and $\hat{\alpha}_{private}$ can be solved with $\hat{\eta}_{private}$ and $\hat{\sigma}_{private}$

Sample complexity

The minimum length of sequence required for the **non-private** estimator

Theorem 1.

If
$$T \ge \frac{\sigma^2}{\xi} \max \left\{ \frac{C_9^2 \Psi (1 - \frac{\delta}{8})^2}{\xi \Delta}, \frac{9C_9^2 \Psi (1 - \frac{\delta}{16})^2 (\eta_4 - \sigma^2)}{\xi \Delta}, 3C_9 \Psi (1 - \frac{\delta}{16})^2, \frac{24C_9}{\delta} \right\}$$
 (11) for some $0 < \delta \le 1$ $0 < \xi < \frac{C_9 \mu_{lower}}{6}$

 $\Psi(\cdot)$ denote the inverse CDF of the standard normal distribution.

$$C_9 = \max\{\frac{8}{\mu_{lower}(1-\alpha_{upper})}, 1 + \frac{8\mu_{upper}}{\mu_{lower}(1-\alpha_{upper})^2} + \frac{4}{3(1-\alpha_{upper})}\}$$

Then
$$\mathbb{P}(|\alpha - \hat{\alpha}| > \xi) \leq \delta \text{ and } \mathbb{P}(|\mu - \hat{\mu}| > \xi) \leq \delta$$

Proof sketch.
$$\mathbb{P}(|\hat{\eta} - \eta| > \frac{\xi \Delta}{C_9}) < \delta/2 \text{ and } \mathbb{P}(|\hat{\sigma}^2 - \sigma^2| > \frac{\xi \Delta}{C_9}) < \delta/2$$

And employing Berry-Essen theorem

Sample complexity

The minimum length of sequence required for the **private** estimator

Theorem 2.

If
$$T \ge \frac{C_9^2 \mu_{upper}}{(1 - \alpha_{upper})^3 \xi^2} \max \left\{ \Psi (1 - \frac{\delta}{16})^2, \ 9C_9^2 \Psi (1 - \frac{\delta}{32})^2 (\eta_4 - \sigma^2) \right\} \quad and$$
 (12)

$$\frac{T}{\log T} \ge \frac{c\mu_{upper}}{(1 - \alpha_{upper})^3 \xi} \max\left\{3C_9 \Psi (1 - \frac{\delta}{32})^2, \frac{48C_9}{\delta}\right\} \quad and \tag{13}$$

$$\frac{T}{(\log T)^{5/2}} > \frac{4\sqrt{c}C_1C_2^2C_9}{\epsilon\xi}\log\left(\frac{4}{\delta}\right) \tag{14}$$

Then
$$\mathbb{P}(|\hat{\mu}_{private} - \mu| > \xi) \leq \delta \text{ and } \mathbb{P}(|\hat{\alpha}_{private} - \alpha| > \xi) \leq \delta$$

condition (14) is required to bound the tail of Laplace distribution

Cost of privacy

For the inverse CDF function
$$\Psi(\cdot)$$
 $\lim_{x\to 0} \Psi(1-x) = \sqrt{2\log\frac{1}{x}}$

$$0 < \xi < \frac{C_9 \mu_{lower}}{6}$$

T can be simplified to

- Non-private estimate $T = O(\frac{1}{\delta \xi})$
- Private estimate $T = O(\frac{\log(1/\delta\xi)}{\delta\xi})$

non-private estimates $(\hat{\mu}, \hat{\alpha})$ have a convergence rate of $O(\frac{1}{T})$ private estimates $(\hat{\mu}_{\text{private}}, \hat{\alpha}_{\text{private}})$ is $O(\frac{\log T}{T})$

Experiments

set $\alpha_{\rm upper}=0.75$, $\mu_{\rm upper}=2.0$, $\gamma=0.05$ and the Hawkes process decay $\beta=1.0$

• Synthetic Data

A larger privacy budget corresponds to a lower estimation error

For a given privacy budget, the smaller estimation error the smaller the maximum tree length B

Experiments

set $\alpha_{\rm upper}=0.75$, $\mu_{\rm upper}=2.0$, $\gamma=0.05$ and the Hawkes process decay $\beta=1.0$

- Real Data
 - 1. MathOverflow: user interactions in a question-answering website
 - **2. MOOC**: user interactions in open online course
 - 3. 911 Calls: medical emergency calls, fire and traffic-related emergency calls

ground truth: non-private estimates

Conclusion

- differentially private version for estimating the parameters of a Hawkes process
- provide sample complexity results for estimating the parameters of a Hawkes process

Thank you!