AMENDMENTS TO THE CLAIMS

- 1. (Currently Amended) A multi-level recording device comprising:
 - a substrate; and
 - a memory material supported by the substrate, the memory material including a phase change alloy defined by: $In_x(Sb_nTe_{100-n})_{100-x}$ wherein x is 8.5-30 3-30, n is 63-82.
- 2. (Cancelled)
- 3. (Currently Amended) The device of claim 1, wherein x is 9-15 7-15.
- 4. (Original) The device of claim 1, wherein x is 9-13.
- 5. (Original) The device of claim 1, wherein the phase change alloy is In₉(Sb₇₂Te₂₈)₉₁.
- 6. (Original) The device of claim 1, wherein the phase change alloy is In₁₀(Sb₇₂Te₂₈)₉₀.
- 7. (Original) The device of claim 1, wherein the phase change alloy is In₁₁(Sb₇₂Te₂₈)₈₉.
- 8. (Original) The device of claim 1, wherein the phase change alloy has a peak with a substantial FWHM at around 2 theta=24-26 degrees of X-ray diffraction using $CuK\alpha$
- 9. (Previously Amended) A multi-level recording device comprising:

- a substrate; and
- a phase change alloy supported on the substrate, the phase change alloy lacking silver and having a cutetic base alloy composition with at least one element for providing a sigma-to-dynamic range of less than 2%.
- 10. (Original) The device of Claim 9, wherein the phase change alloy has a peak with a substantial FWHM at around 2 theta=24-26 degrees of X-ray diffraction using CuKα.
- 11. (Original) The device of Claim 9, wherein the alloy has at least two phases during data recording, one phase being a major phase and the other phase being a minor phase.
- 12. (Original) The device of Claim 10, wherein the device is an optical memory disk.
- 13. (Previously Amended) The device of Claim 10, wherein the device has 7 or more detectable levels.
- 14. (Previously Amended) The device of Claim 10, wherein the device has at least 11 detectable levels.
- 15. (Currently Amended) The device of Claim 11, wherein the memory material including a phase change alloy defined by: $M_x(Sb_nTe_{100-n})_{100-x}$ wherein x is 8.5-30 3-30, n is 63-82, where M is at least one main group metal.

- 16. (Cancelled)
- 17. (Currently Amended) The device of claim 15, wherein x is 9-15 7-15.
- 18. (Original) The device of claim 15, wherein x is 9-13.
- 19. (Original) The device of Claim 11, wherein the FWHM at around 2 theta=24-26 degrees of X-ray diffraction using $CuK\alpha$ is greater than that of AgIn(SbTe) at a corresponding concentration for M.