인공지능 오픈소스 프로젝트 발표

생성형 에이전트를 활용한 인간 유사 상호작용 시뮬레이션

서론

기존의 게임의 한계점

- 스크립트를 통해, 제한된 선택지 내에서 플레이가 가능
 - → 선형적인 플레이, 비교적 한정된 플레이가 강요
 - → 금새 플레이의 재미가 떨어짐
- NPC 간 상호작용은 스크립트에 의해, 부자연스럽게 진행
 - → 사용자가 불합리하게 느껴질 수 있는 상호작용이 일어남
 - → 사용자의 몰입도 저하

서론

생성형 AI를 활용한 게임

- 생성형 AI가 상대가 되어, 대화를 통해 진행하는 게임
- 대화를 통해 취조하여, AI의 자백(인정)을 받아내면 승리

유사 연구

GPT 모델을 이용한 게임 NPC 및 퀘스트 생성 모듈 구현

주제

• 생성형 AI를 활용하여, 인간과 유사한 상호작용이 가능한 에이전트 생성

목적

• 사용자의 게임에 대한 높은 몰입도와 플레이 다양성을 제고

목표

- 사용자와 NPC 간의 현실적인 상호작용
- 주기적 상호작용에 의한 현실과 유사한 NPC 데이터 갱신

배경 게임

- 여러 명의 NPC 구성된 가상 의 마을 'SmallVille'
- 마을은 여러 장소들(집, 공원, 카페, 바 등)과 길로 구성
- 장소는 여러 세부 구역으로 구성
- 각 장소와 구역에는 상호 작용 가능한 객체들(침대, 스토브, 식탁 등)이 존재
- 각각의 NPC는 주기마다 특 정 행동을 하거나, 다른 NPC 또는 객체와 상호작용

에이전트의 상호작용 종류

- 에이전트 객체 : 에이전트가 객체의 상태를 파악, 그 에 따른 객체 사용 및 제어
- 에이전트 에이전트 : 에이전트 간 대화
- 에이전트 사용자 : 내면의 목소리, 사용자 페르소나 와의 대화
- 에이전트 주위 환경 : 에이전트가 주위 환경(타 객체, 타 에이전트 등)을 관찰

에이전트 아키텍처

주위 환경 또는 상호 작용 과정에서 얻는 입력

에이전트 아키텍처

Memory Stream

주위 환경 또는 상호 작용 과정에서 얻은 입력 받아 저장

에이전트 아키텍처

Memory Stream 속에서 현재 상호작용과 관련된 기억을 과거 기억에서 검색

에이전트 아키텍처

Retrieved Memories

입력된 상호작용과 과거의 기억을 섞어 종합된 새로운 기억으로 업데이트

에이전트 아키텍처

개별 기억을 묶어 맥락을 만들고, 이를 통해 장기적인 계획을 세움

에이전트 아키텍처

장기적인 계획과 자기 인식을 형성하는 데 기여하며, 에이전트의 성향과 관계를 조정

에이전트 아키텍처

상대방에 대해 알고 있는 정보나 관계에 따른 기억을 통해 적절한 행동을 취함

생성형 에이전트의 메모리 구조

- scratch.json
- spatial_memory.json
- associative_memory
 - embeddings.json
 - kw_strength.json
 - nodes.json

생성형 에이전트의 메모리 구조

scratch.json

에이전트가 어떻게 하루를 보내며, 어떤 활동과 계획을 관리하는지를 매우 세부적으로 기술 특히 각 활동이 세부적으로 기록되고, 중요도와 같은 메커니즘으로 우선순위를 설정

생성형 에이전트의 메모리 구조

scratch.json

```
"daily plan req": "Isabella Rodriguez opens Hobbs Cafe at 8am everyday, and works at the counter until 8pm, at which point she closes the cafe."
"name": "Isabella Rodriguez",
"first name": "Isabella",
"last name": "Rodriguez",
"age": 34,
"innate": "friendly, outgoing, hospitable",
"learned": "Isabella Rodriguez is a cafe owner of Hobbs Cafe who loves to make people feel welcome. She is always looking for ways to make the ca
"currently": "Isabella Rodriguez is planning on having a Valentine's Day party at Hobbs Cafe with her customers on February 14th, 2023 at 5pm. She
"lifestyle": "Isabella Rodriguez goes to bed around 11pm, awakes up around 6am.",
"living area": "the Ville: Isabella Rodriguez's apartment: main room",
"concept forget": 100,
"daily reflection time": 180,
"daily reflection size": 5,
"overlap reflect th": 4,
"kw_strg_event_reflect_th": 10,
"kw_strg_thought_reflect_th": 9,
"recency w": 1,
"relevance w": 1,
"importance w": 1,
"recency decay": 0.995,
"importance trigger max": 150,
"importance trigger curr": 113,
"importance_ele_n": 19,
"thought count": 5,
```

생성형 에이전트의 메모리 구조

scratch.json

```
"attend to guests at the cafe from 8:00 am to 8:00 pm",
'f_daily_schedule": [
   "waking up and completing her morning routine (getting out of bed)",
   "waking up and completing her morning routine (brushing her teeth)",
  "waking up and completing her morning routine (taking a shower)",
   "waking up and completing her morning routine (leaving for Hobbs Cafe)"
```

생성형 에이전트의 메모리 구조

scratch.json

```
"f_daily_schedule_hourly_org": [
   "sleeping",
   "serving customers at the cafe counter",
   "taking a lunch break",
   "preparing the upcoming Valentine's Day party",
   "resting and preparing other admin tasks",
   "preparing the upcoming Valentine's Day party",
```

생성형 에이전트의 메모리 구조

spatial_memory.json

생성형 에이전트의 공간적 기억(Spatial Memory) 데이터를 저장

특정 위치와 그 하위 영역에 포함된 객체들을 기록

에이전트가 환경과 상호작용하거나 이동할 때, 해당 환경을 이해하고 사용할 수 있도록 함

생성형 에이전트의 메모리 구조

spatial_memory.json

```
{"the Ville": {"Hobbs Cafe": {"cafe": ["refrigerator", "cafe customer seating", "cooking area",
"kitchen sink", "behind the cafe counter", "piano"]}, "Isabella Rodriguez's apartment": {"main room":
["bed", "desk", "refrigerator", "closet", "shelf"], "bathroom": ["shower", "bathroom sink",
"toilet"]}, "The Rose and Crown Pub": {"pub": ["shelf", "refrigerator", "bar customer seating",
"behind the bar counter", "kitchen sink", "cooking area", "microphone"]}, "Harvey Oak Supply Store":
{"supply store": ["supply store product shelf", "behind the supply store counter", "supply store
counter"]}, "The Willows Market and Pharmacy": {"store": ["behind the pharmacy counter", "pharmacy
store shelf", "pharmacy store counter", "grocery store shelf", "behind the grocery counter", "grocery
store counter"]}, "Dorm for Oak Hill College": {"garden": ["dorm garden"], "common room": ["common
room sofa", "pool table", "common room table"]}, "Johnson Park": {"park": ["park garden"]}, "Ryan
Park's apartment": {"bathroom": ["shower", "bathroom sink", "toilet"], "main room": ["bed", "cooking"
area", "kitchen sink", "refrigerator", "closet", "computer desk"]}, "Giorgio Rossi's apartment":
{"bathroom": ["shower", "bathroom sink", "toilet"], "main room": ["bed", "desk", "blackboard",
"cooking area", "kitchen sink", "closet", "refrigerator"]}}}
```

생성형 에이전트의 메모리 구조

associative_memory

에이전트가 상황에 맞는 기억을 검색하고 연관 지어 행동을 계획 기억의 중요도를 관리하여 현실감 있는 행동 시뮬레이션 구현 임베딩을 사용해 유사한 사건 간 연관성 계산

생성형 에이전트의 메모리 구조

associative_memory

기억 생성

새로운 사건이나 생각이 발생할 때, nodes.json에 노드로 기록됨 사건의 임베딩은 embeddings.json에 저장되고, 연관된 키워드는 kw_strength.json에서 중요도를 관리

기억 검색

특정 상황에서 연관된 기억을 검색할 때, 다음 세 가지 요소를 고려:

임베딩 유사도: 사건 간 유사성을 비교

키워드 중요도: 관련 키워드의 점수를 기준으로 검색 우선순위 결정

중요도(poignancy): 노드 자체의 중요도를 기준으로 검색

기억 강화

자주 참조되거나 중요도가 높은 사건은 kw_strength.json에서 중요도를 증가시켜, 향후 검색에서 더 높은 우선순위를 가짐

기억 만료

오래되거나 중요도가 낮은 기억은 노드 만료(expiration) 설정을 통해 삭제 가능

생성형 에이전트의 메모리 구조

embeddings.json

특정 사건이나 상태에 대한 임베딩(Embedding) 데이터를 제공

임베딩은 고차원 벡터로 표현되며, 에이전트가 사건, 상태 또는 개념 간의 유사성을 계산하는 데 사용

벡터는 텍스트 기반 표현을 숫자로 변환한 것으로, 기억 검색 및 연관성 계산에 활용

두 사건(또는 상태)의 벡터 간 코사인 유사도를 계산하여 관련성 높은 기억을 빠르게 검색

비슷한 상태(예: "idle", "working") 간의 연관성을 강화

생성형 에이전트의 메모리 구조

kw_strength.json

사건이나 상태와 연관된 **키워드의 중요도**를 정의

kw_strength_event와 kw_strength_thought로 구분되며, 각 키워드에 대해 중요도 점수가 부여

중요도가 높은 키워드는 메모리 검색에서 우선순위를 가짐

특정 상황에서 자주 사용되는 키워드(예: "Valentine's Day party")는 관련된 사건이나 생각을 더 쉽게 참조할 수 있도록 우선순위가 조정

생성형 에이전트의 메모리 구조

nodes.json

사건(event) 또는 생각(thought)을 나타냄

각 노드는 다음과 같은 정보를 포함:

노드 유형: event 또는 thought

주제(subject), 행동(predicate), 객체(object): 사건이나 생각의 기본 구성 요소

임베딩 키: 관련 임베딩을 참조

중요도(poignancy): 사건의 중요도를 나타내는 값

키워드(Keywords): 노드와 연관된 주요 단어

참고문헌

프로젝트 참고 논문 - Generative Agents: Interactive Simulacra of Human Behavior 프로젝트 참고 깃허브 - https://github.com/joonspk-research/generative_agents.git

슬라이드 3 - https://m.news.nate.com/view/20240604n21613?mid=m05

슬라이드 4 - GPT 모델을 이용한 게임 NPC 및 퀘스트 생성 모듈 구현