ELEC 425 Assignment 3

AUSTIN AMANN VAUGHAN 10101667 NOV 28TH, 2018

Question 1

The solution for question 1 is shown in Figure 1 below:

425 Assignment 3

Question!

Given:
$$P(1|F) = \frac{1}{6}$$
 $P(1|L) = \frac{1}{10}$ $P(z_1 = F) = \frac{1}{2}$
 $P(2|F) = \frac{1}{6}$ $P(2|L) = \frac{1}{10}$ $P(z_1 = L) = \frac{1}{2}$
 $P(3|F) = \frac{1}{6}$ $P(2|L) = \frac{1}{10}$ $P(F|F) = \frac{3}{5}$ $P(L|L) = \frac{3}{5}$
 $P(3|F) = \frac{1}{6}$ $P(2|L) = \frac{1}{10}$ $P(F|F) = \frac{3}{5}$ $P(L|L) = \frac{3}{5}$
 $P(5|F) = \frac{1}{6}$ $P(5|L) = \frac{1}{20}$ $P(F|L) = \frac{2}{5}$ $P(L|F) = \frac{1}{2}$
 $P(x,z) = \frac{1}{2} \times P(1|F) \times P(F|F) \times P(2|F) \times P(F|L) \times P(6|L) \times P(3|F) \times P(F|F) \times P(6|F)$
 $P(x,z) = \frac{1}{2} \times \frac{1}{6} \times \frac{3}{5} \times \frac{1}{6} \times \frac{3}{5} \times \frac{1}{6} \times \frac{3}{5} \times \frac{1}{6}$
 $P(2|F) = \frac{1}{6} \times \frac{1}{6} \times \frac{3}{5} \times \frac{1}{6} \times \frac{3}{5} \times \frac{1}{6} \times \frac{3}{5} \times \frac{1}{6}$
 $P(2|F) = \frac{1}{6} \times \frac{1}{6} \times \frac{3}{6} \times \frac{1}{6} \times \frac{1}{6}$

Figure 1

Question 2

The solution for question 2 is shown in Figure 2 below:

Figure 2

Question 3

The tanh activation function was implemented in activation_tanh.m, the function implemented was:

$$f(x) = \frac{2}{1 + e^{-2x}} - 1$$

The tanh gradient was implemented in activation_tanh_gradient.m, the gradient implemented was:

$$f'(x) = 1 - f(x)^2$$

feedforward_network_tanh.m was created as a modified version of feedforward_network_sigmoid.m where the activation function and gradient functions used were changed to be the newly created tanh activation and gradient functions shown above. The output of feedforward_network_tanh.m is shown in Figure 3 below:

Figure 3

Out of curiosity I also ran feedforward_network_tanh.m with 2000 iterations to see if it completely converged on the provided wave. The output for 2000 iterations is shown in Figure 4 below:

Figure 4