Conférence ETEX nº 10

Courbes de fonctions et de données expérimentales

Denis Bitouzé

denis.bitouze@lmpa.univ-littoral.fr
http://gte.univ-littoral.fr/members/dbitouze/pub/latex

Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville http://www-lmpa.univ-littoral.fr

&

IUT Génie Thermique et Énergie de Dunkerque http://gte.univ-littoral.fr/

Plan

1 Courbes, graphiques et surfaces avec pgfplots

Ce que nous détaillons maintenant

- 1 Courbes, graphiques et surfaces avec pgfplots
 - Introduction
 - Système de coordonnées et unités
 - Première approche
 - Représentation graphique de fonctions
 - Représentation graphique de données
 - Exemple grandeur nature
 - Autres graphiques
 - Graphiques 3D
 - Divers
 - Configuration (semi-)globale
 - Pour aller plus loin

Description du package pgfplots

- pgfplots permet de créer aisément des graphiques 2D ou 3D :
 - soit de fonctions
 - soit de données (notamment expérimentales)
- pgfplots s'appuie sur pgf, package dédié à la création de dessins ¹

Remarque

Dans la suite, pgfplots est supposé systématiquement chargé

Code source

\usepackage{pgfplots}

1. Au sens large

Ce que nous détaillons maintenant

- 1 Courbes, graphiques et surfaces avec pgfplots
 - Introduction
 - Système de coordonnées et unités
 - Première approche
 - Représentation graphique de fonctions
 - Représentation graphique de données
 - Exemple grandeur nature
 - Autres graphiques
 - Graphiques 3D
 - Divers
 - Configuration (semi-)globale
 - Pour aller plus loin

Système de coordonnées

Par défaut, le système de coordonnées est le système cartésien :

- l'origine d'un graphique est en bas à gauche
- l'axe des abscisses est horizontal orienté de gauche à droite
- l'axe des ordonnées est vertical orienté de bas en haut
- chaque point est repéré par un couple de coordonnées (x, y)

Système de coordonnées

Remarque

L'unité par défaut est le cm

Ainsi, le point de coordonnées (2,1) est situé à 2 cm à droite et à 1 dr

Ce que nous détaillons maintenant

- 1 Courbes, graphiques et surfaces avec pgfplots
 - Introduction
 - Système de coordonnées et unités
 - Première approche
 - Représentation graphique de fonctions
 - Représentation graphique de données
 - Exemple grandeur nature
 - Autres graphiques
 - Graphiques 3D
 - Divers
 - Configuration (semi-)globale
 - Pour aller plus loin

Création d'un graphique

Tout graphique est crée à l'intérieur des 2 environnements tikzpicture et axis emboîtés l'un dans l'autre :

```
Syntaxe
```

```
\begin{tikzpicture}
  \begin{axis}
      ⟨commandes de création du graphique⟩; % point-virgule !
  \end{axis}
\end{tikzpicture}
```

Attention!

Tout graphique ¹ doit se terminer par un point-virgule

1. Et plus généralement toute déclaration

Création d'un graphique

Code source 1 \begin{tikzpicture} 2 \begin{axis} 3 \end{axis}

4 \end{tikzpicture}

Remarque

Si les $\langle commandes \ de \ création \ du \ graphique \rangle$ sont absentes, le graphique obtenu est un carré « vide » de côté 1×1

Création d'un graphique

Code source

- 1 \begin{tikzpicture}
- 2 \begin{axis}[grid=major]
- 3 \end{axis}
- 4 \end{tikzpicture}

Remarque

Si les $\langle commandes \ de \ création \ du \ graphique \rangle$ sont absentes, le graphique obtenu est un carré « vide » de côté 1×1 (pas tout à fait carré et légèrement augmenté)

Ce que nous détaillons maintenant

- 1 Courbes, graphiques et surfaces avec pgfplots
 - Introduction
 - Système de coordonnées et unités
 - Première approche
 - Représentation graphique de fonctions
 - Représentation graphique de données
 - Exemple grandeur nature
 - Autres graphiques
 - Graphiques 3D
 - Divers
 - Configuration (semi-)globale
 - Pour aller plus loin

Code source

\end{tikzpicture}

Remarque

Domaine des abscisses : [-5,5] par défaut

Domaine des ordonnées : en conséquence

Intervalle pour les abscisses autre que par défaut

Code source \begin{tikzpicture}

```
\begin{axis}[domain=-1:3]
```

3 % Courbe d'éq. 4 % $y = 10 - x^2$

 $\frac{10-x^2}{1}$;

6 \end{axis}

7 \end{tikzpicture}

Remarque

Domaine des abscisses : [a,b]? Option domain=a:b de axis

Domaine des ordonnées : en conséquence

Syntaxe

```
Syntaxe (fonction d'1 variable)
```

```
\addplot {\langle expression mathématique \rangle};
```

```
Dans l'(expression mathématique), on peut utiliser les :
```

```
variable: x
```

puissance: ^

constantes: e et pi

fonctions: abs, round, floor, mod, max, min, sin, cos, tan, deg, rad,

atan, asin, acos, cot, sec, cosec, exp, ln, sqrt,

factorial, rand 1, rnd 1, etc.

1. Nombres aléatoires entre −1 (resp. 0) et 1

Fonctions trigonométriques : en degrés par défaut

Attention!

Les fonctions trigonométriques opèrent en degrés et non en radians!

```
Code source
  \begin{tikzpicture}
    \begin{axis}[
3
      domain=0:360
      \addplot {sin(x)};
8
    \end{axis}
  \end{tikzpicture}
```


Fonctions trigonométriques : en degrés par défaut

Attention!

Les fonctions trigonométriques opèrent en degrés et non en radians!

```
Code source

1 \begin{tikzpicture}
2 \begin{axis}[
3 domain=0:360,
4 no markers,
5 %
6 ]
7 \addplot {\sin(x)};
8 \end{axis}
```


\end{tikzpicture}

Fonctions trigonométriques : en degrés par défaut

Attention!

Les fonctions trigonométriques opèrent en degrés et non en radians!

Code source

```
\begin{tikzpicture}
    \begin{axis}[
3
      domain=0:360.
      no markers,
      samples=60 % compil. + 1g
      \addplot {sin(x)};
8
    \end{axis}
  \end{tikzpicture}
```


Fonctions trigonométriques : en degrés par défaut, mais radians possibles

Remarque

Les fonctions trigonométriques opèrent en radians si deg est utilisée

Code source

```
1 \begin{tikzpicture}
2 \begin{axis}[
3    domain=0:2*pi,
4    no markers,
5    samples=60 % compil. + lg
6    ]
7    \addplot {sin(deg(x))};
8    \end{axis}
9 \end{tikzpicture}
```


Ce que nous détaillons maintenant

- 1 Courbes, graphiques et surfaces avec pgfplots
 - Introduction
 - Système de coordonnées et unités
 - Première approche
 - Représentation graphique de fonctions
 - Représentation graphique de données
 - Exemple grandeur nature
 - Autres graphiques
 - Graphiques 3D
 - Divers
 - Configuration (semi-)globale
 - Pour aller plus loin

Lecture directe

```
Code source

1 \begin{tikzpicture}
2 \begin{axis}
3 \addplot coordinates {
4 (0,1) (1,10) (2,100)
5 };
6 \end{axis}
7 \end{tikzpicture}
```


Remarque

Domaine des abscisses : automatiquement adapté aux données

Domaine des ordonnées : automatiquement adapté aux données

Lecture directe: syntaxe

Syntaxe (lecture directe des données)

\addplot coordinates {\langle donn\(es \rangle \)};

où les (données) sont à l'un des formats 1 suivants :

Syntaxe

$$(x_1, y_1) (x_2, y_2) \dots$$

Syntaxe

$$(x_1, y_1)$$
$$(x_2, y_2)$$

1. Équivalents (espace ← retour chariot unique)

Lecture directe versus à partir d'un fichier

Remarque

La méthode \addplot coordinates $\{\langle donn\acute{e}s \rangle\}$ est une méthode de lecture directe : les $\langle donn\acute{e}s \rangle$ figurent 1 dans le source .tex

Attention!

Il est possible et préférable ² que ces ⟨données⟩ soient : stockées dans un ⟨fichier⟩ externe importées depuis ce ⟨fichier⟩ externe par pgfplots

^{1.} La plupart du temps par « copié-collé »

^{2.} Sauf cas particuliers

Lecture à partir d'un fichier

Fichier externe (data1.txt)

```
0 1
1 10
```

2 100

Code source

```
\begin{tikzpicture}
\begin{axis}
   \addplot table
   %
   {data1.txt};
   \end{axis}
\end{tikzpicture}
```


Lecture à partir d'un fichier en exploitant les tableaux

Attention!

La commande \addplot table permet plus que cela : exploiter des données sous forme de tableaux avec :

- nombre arbitraire de colonnes
- choix arbitraire des colonnes représentées

Lecture à partir d'un tableau : exemple

Fichier externe (data2.txt)

```
Temps Rep1 Rep2
0 1 1
1 10 0.1
2 100 0.01
```

Code source

```
1 \begin{tikzpicture}
2 \begin{axis}
3 \addplot table[
4 x=Temps,y=Rep1
5 ]{data2.txt};
6 \end{axis}
7 \end{tikzpicture}
```


Lecture à partir d'un tableau : exemple (autre choix de colonne)

Fichier externe (data2.txt)

```
Temps Rep1 Rep2
0 1 1
1 10 0.1
2 100 0.01
```

Code source

```
1 \begin{tikzpicture}
2 \begin{axis}
3 \addplot table[
4 x=Temps,y=Rep2
5 ]{data2.txt};
6 \end{axis}
7 \end{tikzpicture}
```


Lecture à partir d'un tableau: syntaxe

Syntaxe (lecture des données à partir d'un tableau)

```
\addplot table[x=\langle entête i \rangle, y=\langle entête j \rangle] {\langle fichier \rangle};
```

où, dans le \(\langle \fichier \rangle\), les données doivent par défaut être au format :

Syntaxe (format des données dans un fichier externe (tableau))

```
# ... (ligne optionnelle ignorée)
% ... (ligne optionnelle ignorée)
\langle ent \hat{e}te \ 1 \rangle \langle ent \hat{e}te \ 2 \rangle \langle ent \hat{e}te \ 3 \rangle \ldots
x_{11} x_{12} x_{13} \ldots
x_{21} x_{22} x_{23} \ldots
```

Université

Fonctionnalités de Texstudio

Insertion de graphiques

Remarque

Rien concernant pgfplots dans les menus ou boutons de TeXstudio

Mais...

Attention!

TeXstudio propose un puissant système d'auto-complétion pour les environnements et commandes de base de pgfplots

Par exemple, si on souhaite créer un graphique à partir de données expérimentales sous forme de tableau, on a besoin d'un code semblable à celui ci-après

■ Fonctionnalités de TeXstudio

Insertion de graphiques - suite

```
Code source (souhaité)

1 \begin{tikzpicture}
2 \begin{axis}
3 \addplot table[x=...,y=...] {...};
4 \end{axis}
5 \end{tikzpicture}
```

Pour obtenir un tel code, il suffit de :

■ Fonctionnalités de TeXstudio

Insertion de graphiques - suite

```
Code source (obtenu)

1 \begin{tikzpicture}% table
2 \begin{axis}[xlabel=x axis label], ylabel=y axis label]
3 \addplot table[x=column header], y=column header] {file};
4 \end{axis}
5 \end{tikzpicture}
```

```
Dans ce code, les éléments encadrés indiquent des « paramètres fictifs » <sup>1</sup> de TeXstudio
```


1. En anglais, « placeholders »

Fonctionnalités de Texstudio

Insertion de graphiques – suite (paramètres fictifs)

Définition

Dans Texstudio, les paramètres fictifs sont des éléments :

signalés par des boîtes les encadrant

atteignables par Ctrl + → ou Ctrl + ← successifs

remplaçables 1 par ce qui est souhaité directement 2

^{1.} Une fois atteints, le fond de leur boîte étant alors colorée en cyan

Lecture à partir d'un tableau : avantages

Autres fonctionnalités de la méthode de lecture à partir d'un tableau :

- possibilité d'autres séparateurs de colonnes que l'espace
- transformations à la volée sur les données
- etc.

Lecture à partir d'un tableau : autres séparateurs de colonnes que l'espace

Fichier externe (data3.txt)

```
1 Temps, Rep1, Rep2
2 0,1,1
3 1,10,0.1
4 2,100,0.01
```

Code source (sép. = virgule)

```
1 \begin{tikzpicture}
2 \begin{axis}
3 \addplot table[
4 x=Temps,y=Rep1,
5 col sep=comma
6 ]{data3.txt};
7 \end{axis}
8 \end{tikzpicture}
```


Lecture à partir d'un tableau : transformations à la volée sur les données

Fichier externe (data2.txt)

```
Temps Rep1 Rep2
0 1 1
1 10 0.1
2 100 0.01
```

Code source $(x \mapsto x + 3)$

```
1 \begin{tikzpicture}
2 \begin{axis}
3 \addplot table[%
4 x expr = \thisrow{Temps}+3,
5 y = Rep1
6 ]{data2.txt};
7 \end{axis}
8 \end{tikzpicture}
```


Ce que nous détaillons maintenant

- 1 Courbes, graphiques et surfaces avec pgfplots
 - Introduction
 - Système de coordonnées et unités
 - Première approche
 - Représentation graphique de fonctions
 - Représentation graphique de données
 - Exemple grandeur nature
 - Autres graphiques
 - Graphiques 3D
 - Divers
 - Configuration (semi-)globale
 - Pour aller plus loin

Données stockées dans un tableur

Pour représenter des données expérimentales stockées dans un tableur, la procédure suivante est à la fois simple, rapide et efficace

Remarque

Cette procédure est valable pour TeXstudio mais devrait l'être également pour tout autre éditeur de texte orienté [ATEX, moyennant éventuellement quelques légères adaptations

Données stockées dans un tableur : procédure

- Dans le tableur, ouverture du fichier et copie des données (Ctrl)+ C)
- ② Dans TeXstudio:
 - stockage des données dans un fichier de texte brut :
 - ① création d'un nouveau fichier vide (Ctrl + N) pour les données
 - 2 collage des données dans ce fichier vide (Ctrl + V)
 - 3 remplacement de toutes les virgules par des points 1 (Ctrl)+ R
 - enregistrement de ce fichier (Ctrl)+S) sous un nom au choix mais avec l'extension .txt, par exemple tp.txt
 - ② création d'un fichier .tex pour visualiser ces données :
 - Fichier Nouveau à partir d'un modèle Article (French)
 - chargement du package pgfplots (\usepackage{pgfplots})
 - utilisation de tikzpicture, axis et \addplot table
 - enregistrement de ce fichier (Ctrl)+S) sous un nom au choix, par exemple tp.tex
 - **5** compilation (F5) ou F1 avant la version 2.9.4 de TeXstudio)
- Admiration du résultat

1. Le séparateur décimal des données doit être le point, et non pas la virgule

Données stockées dans un tableur : pas idéal!

Attention!

Stocker ses données dans un tableur est rarement la bonne solution!

Mieux : faire exporter dans un fichier externe les données obtenues si elles proviennent de :

```
programmes informatiques: C, C++, Python, Java, etc.
```

logiciels de calcul: Scilab, MATLAB®, etc.

logiciels d'acquisition de données : TANGO, etc.

Remarque

Le format d'export est souvent :

- l'un de ceux acceptés par pgfplots :
 - lignes de commentaire débutant par # ou %
 - données en colonnes, séparées par des espaces/tabulations
- paramétrable (si nécessaire)

Ce que nous détaillons maintenant

- 1 Courbes, graphiques et surfaces avec pgfplots
 - Introduction
 - Système de coordonnées et unités
 - Première approche
 - Représentation graphique de fonctions
 - Représentation graphique de données
 - Exemple grandeur nature
 - Autres graphiques
 - Graphiques 3D
 - Divers
 - Configuration (semi-)globale
 - Pour aller plus loin

Graphique de départ

(Sans option)

```
Code source

1 \begin{tikzpicture}
2 \begin{axis}
3 \addplot coordinates {
4 (0,1) (1,10) (2,100)
5 };
6 \end{axis}
7 \end{tikzpicture}
```


Graphique de départ → nuages de points

Option only marks

```
Code source

1 \begin{tikzpicture}
2 \begin{axis}[only marks]
3 \addplot coordinates {
4 (0,1) (1,10) (2,100)
5 };
6 \end{axis}
7 \end{tikzpicture}
```


Graphique de départ → diagrammes en rectangles Option ybar

Code source 1 \begin{tikzpicture} 2 \begin{axis}[ybar] 3 \addplot coordinates { 4 (0,1) (1,10) (2,100) 5 }; 6 \end{axis} 7 \end{tikzpicture}

Attention!

Diagrammes en rectangles ≠ histogrammes. Mais vrais histogrammes possibles (cf. option hist)

Graphique de départ

(Sans option)

```
Code source

1 \begin{tikzpicture}
2 \begin{axis}
3 \addplot coordinates {
4 (0,1) (1,10) (2,100)
5 };
6 \end{axis}
7 \end{tikzpicture}
```


Remarque

Question : existe-t-il une relation liant les ordonnées aux abscisses des ces points?

Graphique de départ → échelle logarithmique

Environnement axis → semilogxaxis, semilogyaxis ou loglogaxis

```
Code source

1 \begin{tikzpicture}
2 \begin{semilogyaxis} % <-
3 \addplot coordinates {
4 (0,1) (1,10) (2,100)
5 };
6 \end{semilogyaxis} % <-
7 \end{tikzpicture}</pre>
```


Remarque

Échelles logarithmiques possibles, selon les x, les y ou les 2 à la fois : environnement axis \rightarrow semilogxaxis, semilogyaxis ou loglogaxis

Ce que nous détaillons maintenant

- 1 Courbes, graphiques et surfaces avec pgfplots
 - Introduction
 - Système de coordonnées et unités
 - Première approche
 - Représentation graphique de fonctions
 - Représentation graphique de données
 - Exemple grandeur nature
 - Autres graphiques
 - Graphiques 3D
 - Divers
 - Configuration (semi-)globale
 - Pour aller plus loin

Graphiques 3D

Syntaxe

```
Syntaxe (fonction de 2 variables)

\addplot3 \quad \{\langle expression math\(\epsilon\) math\(\epsilon\) \quad \{\langle expression math\(\epsilon\) math\(\epsilon\) \quad \qq \quad \quad \quad \quad \quad \quad \quad \qquad \quad \quad \q
```

```
Syntaxe (données tri-dimensionnelles)
```

```
\addplot3 coordinates \{\langle donn\acute{e}es \rangle\}; \addplot3 table \{\langle donn\acute{e}es \rangle\};
```


1. Les variables à utiliser sont x et y

Graphiques 3D: représentation de surface

Fonction de 2 variables

Code source

3

6

8

```
\begin{tikzpicture}
     \begin{axis}
       \addplot3[
       surf,
       domain=0:360,
       samples=40
       \{\sin(x)*\sin(y)\};
     \end{axis}
9
10 \end{tikzpicture}
```


Graphiques 3D: représentation de surface

Fonction de 2 variables (bis)

Code source \begin{tikzpicture} \begin{axis}[colorbar] \addplot3[

```
3 \addplot3[
4 surf,
```

- 5 domain=0:360,
- 6 samples=40
- 7]

2

- 9 \end{axis}
- 10 \end{tikzpicture}

Graphiques 3D : représentation de courbes

Données pas sous forme de matrice (pas de maillage) : en général non souhaité

Fichier externe (3d-1.dat) sans lignes vides

Code source (courbe 3D unique)

```
\begin{tikzpicture}\begin{axis}
\addplot3     table {3d-1.dat};
\end{axis}\end{tikzpicture}
```


Graphiques 3D : représentation de courbes/surface

Données sous forme de matrice (pour le maillage) : lignes vides

Code source (courbes 3D multiples)

\begin{tikzpicture}\begin{axis}
\addplot3 table {3d-2.dat};
\end{axis}\end{tikzpicture}

UCO Université

Graphiques 3D: représentation de courbes/surface

Données sous forme de matrice (pour le maillage) : lignes vides

Code source (surface)

0.8

\begin{tikzpicture}\begin{axis}
\addplot3[surf] table {3d-2.dat};
\end{axis}\end{tikzpicture}

UCO Iniversité

Graphiques 3D: représentation de courbes/surface

Données sous forme de matrice : sans lignes vides mais maillage via mesh/rows

Code source

```
\begin{tikzpicture}\begin{axis}
\addplot3[surf,mesh/rows=3]
  table {3d-1.dat};
\end{axis}\end{tikzpicture}
```


UCO Université

Ce que nous détaillons maintenant

- 1 Courbes, graphiques et surfaces avec pgfplots
 - Introduction
 - Système de coordonnées et unités
 - Première approche
 - Représentation graphique de fonctions
 - Représentation graphique de données
 - Exemple grandeur nature
 - Autres graphiques
 - Graphiques 3D
 - Divers
 - Configuration (semi-)globale
 - Pour aller plus loin

Graphiques avec incertitudes ou métadonnées

Les 2 méthodes de lecture des données :

- directe
- à partir d'un fichier sous forme de tableau

permettent de traiter, en plus des 2 ou 3 coordonnées, 2 « données » supplémentaires :

- une indication d'incertitude pour des graphiques avec barres d'erreur (cf. +-, +=, -=)
- une métadonnée permettant p. ex. de représenter les points avec des styles (p. ex. des couleurs) différents (cf. point meta)

Remarque

Ceci n'est pas traité dans ce cours

Changement d'échelle

Option scale=(facteur) ou styles prédéfinis

Code source

```
1 \newcommand{\myplot}{%
 2
     \addplot coordinates {
 3
       (0,1) (1,10) (2,100) };
 4
 5 \begin{tikzpicture}
 6
     \begin{axis}[scale=0.5]
       \myplot
 8
     \end{axis}
   \end{tikzpicture}
10
   \begin{tikzpicture}
12
     \begin{axis}[tiny]
13
       \myplot
14
     \end{axis}
15 \end{tikzpicture}
```


Points masqués (fonctions)

Option no markers

Code source

7 \end{tikzpicture}

Points masqués (données expérimentales)

Option no markers

```
Code source

1 \begin{tikzpicture}
2 \begin{axis}[no markers]
3 \addplot
4 coordinates {
5 (0,1) (1,10) (2,100)
6 };
7 \end{axis}
```


\end{tikzpicture}

Courbes lissées

Option smooth (ajoutée aux options par défaut)

Code source

```
1 \begin{tikzpicture}
2 \begin{axis}[no markers]
3 \addplot+[smooth]
4 coordinates {
5 (0,1) (1,10) (2,100)
6 };
7 \end{axis}
8 \end{tikzpicture}
```


Courbes lissées

Option smooth (remplaçant les options par défaut)

Code source

```
1 \begin{tikzpicture}
2 \begin{axis}[no markers]
3 \addplot[smooth]
4 coordinates {
5 (0,1) (1,10) (2,100)
6 };
7 \end{axis}
```


\end{tikzpicture}

Axes (presque) classiques

Options axis lines ... et extra x ticks

Code source

```
1 \begin{tikzpicture}
2 \begin{axis}[
3 axis lines=center,
4 extra x ticks=0
5 ]
```


8 \addplot {x^2-10};

9 \end{axis}

10 \end{tikzpicture}

Graphiques multiples

Fonctions

```
Code source
```

```
\begin{tikzpicture}
    \begin{axis}
       % Courbe d'éq.
 3
       y = 10 - x^2
      \addplot \{10-x^2\};
       % Courbe d'éq.
6
       y = x^3/20 - 10
       \addplot {x^3/20-10};
8
     \end{axis}
9
10 \end{tikzpicture}
```


Graphiques multiples

Données expérimentales

```
Code source
  \begin{tikzpicture}
    \begin{axis}
       \addplot coordinates {
 3
         (0,1) (1,10) (2,100)
      }
 5
       \addplot coordinates {
6
         (0,1) (1,0.1) (2,0.01)
       }
8
     \end{axis}
9
10 \end{tikzpicture}
```


Graphiques multiples

Données expérimentales en diagrammes en rectangles

```
Code source
  \begin{tikzpicture}
 2
    \begin{axis}[ybar]
       \addplot coordinates {
 3
         (0,1) (1,10) (2,100)
      }
 5
       \addplot coordinates {
6
         (0.4) (1.17) (2.86)
8
       }
     \end{axis}
9
10 \end{tikzpicture}
```


Valeurs affichées sur le graphique

Exemple (diagrammes en rectangles)

```
Code source
  \begin{tikzpicture}
    \begin{axis}[ybar,
       nodes near coords,
 3
       nodes near coords align
      ={vertical}]
      \addplot coordinates {
6
         (0,1) (1,10) (2,100)
       };
8
     \end{axis}
9
10 \end{tikzpicture}
```


Légende

Commande \legend

```
Code source
 \begin{tikzpicture}
   \begin{axis}
      \addplot coordinates {
3
        (0,1) (1,0.1) (2,0.01)
     }
5
     \legend{Réponse}
6
   \end{axis}
8 \end{tikzpicture}
```


Légendes et graphiques multiples

Commande \legend: occurrence unique

Code source

Attention!

- \addplot : occurrences multiples
- \legend : occurrence unique

Légendes et graphiques multiples

Commande \legend: occurrence unique

Code source 1 \begin{tikzpicture} 2 \begin{axis}[ybar] 3 \addplot coordinates { 4 (0,100) (1,10) (2,1) 5 }; 6 \addplot coordinates { 7 (0,86) (1,17) (2,4) 8 }; 9 \legend{Réponse \no1, Réponse \no4} 10 \end{axis}

Attention!

11 \end{tikzpicture}

- \addplot : occurrences multiples
- \legend : occurrence unique

Label(s)

Options xlabel et ylabel

Code source

```
1 \begin{tikzpicture}
2 \begin{axis}[
3    xlabel=Temps,
4    ylabel=Réponse \no1
5    ]
6    \addplot coordinates {
7      (0,1) (1,10) (2,100)
8    };
9    \end{axis}
10 \end{tikzpicture}
```


Titre Option title

Code source

```
1 \begin{tikzpicture}
2 \begin{axis}[
3    title=Réponse \no1
4   ]
5   \addplot coordinates {
6    (0,1) (1,10) (2,100)
7   };
8   \end{axis}
9 \end{tikzpicture}
```


Attention!

Bien mieux : faire flotter le graphique. Ainsi : emplacement optimisé, légende possible (\caption), listage possible (\listoffigures)

Titre

Mieux: image flottante

```
Code source
```

```
1 \begin{figure}[ht]
 2
     \centering
 3
     \begin{tikzpicture}
       \begin{axis}
 5
         \addplot coordinates {
 6
            (0,1) (1,10) (2,100)
         };
 8
       \end{axis}
 9
     \end{tikzpicture}
10
     \caption{Réponse \no1}
     \label{rep1}
11
12 \end{figure}
```


FIGURE 1 – Réponse nº 1

Ce que nous détaillons maintenant

- 1 Courbes, graphiques et surfaces avec pgfplots
 - Introduction
 - Système de coordonnées et unités
 - Première approche
 - Représentation graphique de fonctions
 - Représentation graphique de données
 - Exemple grandeur nature
 - Autres graphiques
 - Graphiques 3D
 - Divers
 - Configuration (semi-)globale
 - Pour aller plus loin

Configuration (semi-)globale

Réglages (semi-)globaux possibles au moyen de :

Syntaxe

 $\protect{réglages}$

Réglage de compatibilité

Pour bénéficier des fonctionnalités les plus récentes, on effectuera systématiquement au moins le réglage ¹ :

Code source

\pgfplotsset{compat = 1.15} % ou 1.14 ou...

^{1.} Remplacer 1.15 par 1.14, etc. en cas de versions moins récentes de pgfplots

Séparateurs décimal et de milliers

```
Code source
%
%
%
%
%
%
\begin{tikzpicture}
  \begin{axis}
    \addplot coordinates {
      (2950,0)
      (3000, 0.2)
      (3015, 0.7)
    }:
  \end{axis}
\end{tikzpicture}
```


3

Séparateurs décimal et de milliers à la française

Code source

```
\pgfplotsset{%
  /pgf/number format/.cd,
  use comma,
  1000 sep = {\,},
  min exponent for 1000 sep = 4
}
```

```
1 \begin{tikzpicture}
2 \begin{axis}
3 \addplot coordinates {
4 (2950,0)
5 (3000,0.2)
6 (3015,0.7)
7 };
8 \end{axis}
9 \end{tikzpicture}
```


Emplacement parfois convenable

```
Code source
 2
 3
 6
   \begin{tikzpicture}
 8
     \begin{axis}[ybar]
 9
       \addplot coordinates {
10
         (0,100) (1,10) (2,1)
11
12
       \addplot coordinates {
13
         (0.86) (1.17) (2.4)
14
       \legend{Réponse \no1, Réponse \no4}
15
16
     \end{axis}
17 \end{tikzpicture}
```


Emplacement parfois gênant...

```
Code source
 2
 3
 5
 6
   \begin{tikzpicture}
 8
     \begin{axis}[ybar]
 9
       \addplot coordinates {
10
         (0,1) (1,10) (2,100)
11
12
       \addplot coordinates {
13
         (0,4) (1,17) (2,86)
14
       \legend{Réponse \no1, Réponse \no5}
15
16
     \end{axis}
17 \end{tikzpicture}
```


Emplacement parfois gênant...

Emplacement parfois gênant... mais modifiable

```
Code source
1 \pgfplotsset{%
 2
     every axis legend/.append style ={%
       anchor = south.%
       at = \{(0.5, 1.03)\}\%
 5
6
   \begin{tikzpicture}
8
     \begin{axis}[ybar]
9
       \addplot coordinates {
10
         (0,1) (1,10) (2,100)
11
12
       \addplot coordinates {
13
         (0,4) (1,17) (2,86)
14
       }
15
       \legend{Réponse \no1, Réponse \no5}
16
     \end{axis}
   \end{tikzpicture}
```


Axes classiques: position de la marque « 0 »?

Code source

```
\begin{tikzpicture}
     \begin{axis}[
       axis lines=center,
 3
       extra x ticks=0.
 5
       extra x tick style={
         tick label style={
            anchor=north east.
 8
           xshift=-.5*\pgfkeysvalueof{%
              /pgfplots/major tick length%
10
11
12
13
14
       % Courbe d'éq. y = x^2 - 10
15
16
       \addplot {x^2-10};
17
     \end{axis}
18 \end{tikzpicture}
```


Ce que nous détaillons maintenant

- 1 Courbes, graphiques et surfaces avec pgfplots
 - Introduction
 - Système de coordonnées et unités
 - Première approche
 - Représentation graphique de fonctions
 - Représentation graphique de données
 - Exemple grandeur nature
 - Autres graphiques
 - Graphiques 3D
 - Divers
 - Configuration (semi-)globale
 - Pour aller plus loin

Documents à consulter

Bien d'autres fonctionnalités et possibilités de personnalisation n'ont pas pu être abordées. On consultera

- « Comment faire de beaux graphiques avec Tikz et PGFPLOTS » sur le site « Les fiches de Bébert (pour une véritable Publication Assistée par Ordinateur) »
- un site répertoriant un certain nombre de réalisations au moyen du package pgfplots
- la documentation du package :

```
en ligne de commandes: texdoc pgfplots
```

dans TeXstudio : Aide Aide sur les packages... puis saisir

« pgfplots », puis taper « Entrée »

