

3-State Potts model and automorphism of vertex operator algebra of order 3

Masahiko Miyamoto

Institute of Mathematics
 University of Tsukuba
 Tsukuba 305, Japan

Abstract

In [M2], the author has defined an automorphism τ of a vertex operator algebra (VOA) of order 2 using a sub VOA isomorphic to Ising model $L(\frac{1}{2}, 0)$. We here define an automorphism of VOA of order 3 by using a sub VOA isomorphic to a direct sum of 3-state Potts models $L(\frac{4}{5}, 0)$ and an its module $L(\frac{4}{5}, 3)$. If V is the moonshine VOA V^\natural , the defined automorphism is a 3A element of the monster simple group.

1 Introduction

In the research of the Griess algebra V_2^\natural , Conway [C] found several idempotents called axes of the Griess algebra corresponding to elements of the monster simple group $\mathbf{M} = \text{Aut}(V^\natural)$. It was discovered that the Griess algebra is the second primary part $(V^\natural)_2$ of the moonshine VOA V^\natural constructed in [FLM].

It was proved in [M2] that idempotents in the Griess algebra are halves of conformal vectors (or Virasoro elements of sub VOAs). In particular, every idempotent in the Conway's list is a half of the Virasoro element of a sub VOA isomorphic to one of the minimal discrete series of Virasoro VOA $L(n, 0)$ with central charge n for some $0 < n < 1$. For example, a 2A-involution of the monster simple group is a half of the Virasoro element of a sub VOA isomorphic to the Ising model $L(\frac{1}{2}, 0)$ with central charge $\frac{1}{2}$. We note that a sub VOA W in this paper does not usually have the same Virasoro element of V . Conversely, the author showed that if a VOA V contains a sub VOA W isomorphic to the Ising model $L(\frac{1}{2}, 0)$, then it defines an automorphism τ_W of V of order at most 2, which is a 2A-element of the monster simple group if V is the moonshine VOA V^\natural . The definition

is very simple and done as follows:

Let e be a Virasoro element of W . As we will prove the general case in Theorem 5.1, V is a direct sum of (possibly infinite number of) irreducible W -modules since $W \cong L(\frac{1}{2}, 0)$ is rational. It is well known that $L(\frac{1}{2}, 0)$ has the exactly three irreducible modules $L(\frac{1}{2}, 0)$, $L(\frac{1}{2}, \frac{1}{2})$ and $L(\frac{1}{2}, \frac{1}{16})$. We can define an automorphism τ_e by

$$\tau_e : \begin{cases} 1 & \text{on } W\text{-submodules isomorphic to } L(\frac{1}{2}, 0) \text{ or } L(\frac{1}{2}, \frac{1}{2}) \\ -1 & \text{on } W\text{-submodules isomorphic to } L(\frac{1}{2}, \frac{1}{16}) \end{cases}.$$

Throughout this paper, we will use the similar notation in order to define an endomorphism of V by a sub VOA W and we will omit " W -submodules isomorphic to" from the definition of automorphisms in order to simplify the notation. In the Conway's list, an idempotent for a 3A element is a half of the Virasoro element of a sub VOA isomorphic to $L(\frac{4}{5}, 0)$ with central charge $\frac{4}{5}$. So it is natural for us to expect an automorphism g (of order 3) defined by a sub VOA isomorphic to $L(\frac{4}{5}, 0)$, where $L(\frac{4}{5}, 0)$ is the third of the discrete series of minimal Virasoro vertex operator algebras called 3-state Potts model. It is a rational VOA and has the exactly ten irreducible modules :

$$\begin{aligned} & L(\frac{4}{5}, 0), L(\frac{4}{5}, \frac{1}{8}), L(\frac{4}{5}, \frac{2}{3}), L(\frac{4}{5}, \frac{13}{8}), L(\frac{4}{5}, 3), \\ & L(\frac{4}{5}, \frac{2}{5}), L(\frac{4}{5}, \frac{1}{40}), L(\frac{4}{5}, \frac{1}{15}), L(\frac{4}{5}, \frac{21}{40}), L(\frac{4}{5}, \frac{7}{5}). \end{aligned}$$

As we showed in [M2], if a VOA V contains a sub VOA $W \cong L(\frac{4}{5}, 0)$, then we can define an automorphism σ_W of at most 2 given by

$$\sigma_W : \begin{cases} 1 & \text{on } L(\frac{4}{5}, 0), L(\frac{4}{5}, 3), L(\frac{4}{5}, \frac{13}{8}), L(\frac{4}{5}, \frac{2}{5}), L(\frac{4}{5}, \frac{1}{15}), L(\frac{4}{5}, \frac{7}{5}) \\ -1 & \text{on } L(\frac{4}{5}, \frac{1}{8}), L(\frac{4}{5}, \frac{13}{8}), L(\frac{4}{5}, \frac{1}{40}), L(\frac{4}{5}, \frac{21}{40}) \end{cases}.$$

We note that we can't observe this automorphism in the moonshine VOA. Namely, V^\natural does not contain any submodules of the second lines. Under such a situation, we want to define a 3A automorphism τ_W of V by a sub VOA W isomorphic to $L(\frac{4}{5}, 0)$. It is clear that it is not enough to think of only $L(\frac{4}{5}, 0)$ because there is no difference between the eigenspaces of τ with eigenvalues $e^{2\pi i/3}$ and $e^{4\pi i/3}$. Namely, let V^1 and V^2 be eigenspaces of τ with eigenvalue $e^{2\pi i/3}$ and $e^{4\pi i/3}$, then they are isomorphic as $L(\frac{4}{5}, 0)$ -modules. However, Dong and Mason [DM] showed a wonderful result that V^1 and V^2 are not isomorphic as $V^{<\tau_W>}$ -modules, where $V^{<\tau_W>}$ is the space of τ_W -invariants. So we have to think of a bigger sub VOA. What is the difference between $V^{<\tau_W>}$ and $L(\frac{4}{5}, 0)$? Recently, Kitazume, Yamada and the author have constructed a new class of VOAs by using codes over \mathbb{Z}_3 in [KMY]. The interesting point is that they used a VOA isomorphic to $L(\frac{4}{5}, 0) \oplus L(\frac{4}{5}, 3)$ as a sub VOA corresponding to $0 \in \mathbb{Z}_3$.

This is our key point and the main result in this paper is to show that if V contains a sub VOA W isomorphic to $L(\frac{4}{5}, 0) \oplus L(\frac{4}{5}, 3)$, we can define a triality automorphism τ_W of V (of order 3 or possibly 1).

In order to define the automorphism, we need quote several results from [KMY]. They classified the irreducible modules of $W(0) = L(\frac{4}{5}, 0) \oplus L(\frac{4}{5}, 3)$. Namely,

Theorem 1.1 ([KMY]) $L(\frac{4}{5}, 0) \oplus L(\frac{4}{5}, 3)$ is a rational VOA and it has the exactly six irreducible modules:

$$W(0), W\left(\frac{2}{5}\right), W\left(\frac{2}{3}, +\right), W\left(\frac{1}{15}, +\right), W\left(\frac{2}{3}, -\right), W\left(\frac{1}{15}, -\right).$$

Here h in $W(h)$ or $W(h, \pm)$ denotes the lowest degree and $W(k, -)$ is a contragredient (dual) module of $W(k, +)$ for $k = \frac{2}{3}, \frac{1}{15}$. In particular,

$$\begin{aligned} W(0) &\cong L(\frac{4}{5}, 0) \oplus L(\frac{4}{5}, 3), \\ W\left(\frac{2}{5}\right) &\cong L(\frac{4}{5}, \frac{2}{5}) \oplus L(\frac{4}{5}, \frac{7}{5}), \\ W\left(\frac{2}{3}, +\right) &\cong L(\frac{4}{5}, \frac{2}{3}), \\ W\left(\frac{2}{3}, -\right) &\cong L(\frac{4}{5}, \frac{2}{3}), \\ W\left(\frac{1}{15}, +\right) &\cong L(\frac{4}{5}, \frac{1}{15}), \\ W\left(\frac{1}{15}, -\right) &\cong L(\frac{4}{5}, \frac{1}{15}), \end{aligned}$$

as $L(\frac{4}{5}, 0)$ -modules.

Using the notation in the above theorem, we have:

Theorem A If a VOA V contains a sub VOA W isomorphic to $L(\frac{4}{5}, 0) \oplus L(\frac{4}{5}, 3)$, then an endomorphism τ_W of V defined by

$$\tau_W : \begin{cases} 1 & \text{on } W(0) \text{ and } W\left(\frac{2}{5}\right) \\ e^{2\pi i/3} & \text{on } W\left(\frac{2}{3}, +\right) \text{ and } W\left(\frac{1}{15}, +\right) \\ e^{4\pi i/3} & \text{on } W\left(\frac{2}{3}, -\right) \text{ and } W\left(\frac{1}{15}, -\right) \end{cases}$$

is an automorphism of V .

In order to tell the difference between $W(h, +)$ and $W(h, -)$ for $h = \frac{2}{3}, \frac{1}{15}$, we have to explain the actions of the lowest degree vector of $L(\frac{4}{5}, 3)$ since both $W(h, \pm)$ are isomorphic to $L(\frac{4}{5}, h)$ as $L(\frac{4}{5}, 0)$ -modules. However, we will take an easier way to avoid such a complicated job. We only note that if we fix $W\left(\frac{2}{3}, +\right)$, then $W\left(\frac{1}{15}, \pm\right)$ and $W\left(\frac{2}{3}, -\right)$ are uniquely determined by the fusion rule

$$W\left(\frac{2}{3}, \pm\right) \times W\left(\frac{2}{5}\right) = W\left(\frac{1}{15}, \pm\right).$$

We don't distinguish between $W(\frac{2}{3}, +)$ and $W(\frac{2}{3}, -)$, but if we switch them then we shall define τ_W^{-1} .

Let T be a sub VOA of W isomorphic to $L(\frac{4}{5}, 0)$. If $\tau = 1$, then all T -submodules of V are isomorphic to $L(\frac{4}{5}, 0)$, $L(\frac{4}{5}, 3)$, $L(\frac{4}{5}, \frac{2}{5})$ or $L(\frac{4}{5}, \frac{7}{5})$. In this case, we can define another automorphism μ_T of V as follows:

Theorem B *Assume that V contains a sub VOA T isomorphic to $L(\frac{4}{5}, 0)$ and all T -submodules of V are isomorphic to $L(\frac{4}{5}, 0)$, $L(\frac{4}{5}, 3)$, $L(\frac{4}{5}, \frac{2}{5})$ or $L(\frac{4}{5}, \frac{7}{5})$. Then the endomorphism μ_T defined by*

$$\mu_T : \begin{cases} 1 & \text{on } L(\frac{4}{5}, 0) \text{ and } L(\frac{4}{5}, \frac{7}{5}) \\ -1 & \text{on } L(\frac{4}{5}, 3) \text{ and } L(\frac{4}{5}, \frac{2}{5}) \end{cases}$$

is an automorphism of V .

The proofs of these theorems are based on Theorem 2.1 (Proposition 4.4 in [M1]). Namely, it is sufficient to show that the fusion rules among the irreducible $L(\frac{4}{5}, 0) \oplus L(\frac{4}{5}, 3)$ -modules commutes with τ_W . For an example, we know the fusion rules among irreducible $L(\frac{4}{5}, 0)$ -modules (Table A), which proves Theorem B. Therefore, the main thing we will do in this paper is to determine the fusion rules among the irreducible $L(\frac{4}{5}, 0) \oplus L(\frac{4}{5}, 3)$ -modules.

In this paper, we often view V as a W -module (or an infinite direct sum of W -modules) if V contains a sub VOA W . This is not obvious since one of the axioms of VOA-modules expects the grade keeping operator e_1 of Virasoro element e of W to act on V diagonally. We will prove in §4 that this is generally true for a rational sub VOA W .

2 Preliminary results and a generalized VOA constructed from a lattice

Throughout this paper, $W(0)$ denotes a VOA isomorphic to $L(\frac{4}{5}, 0) \oplus L(\frac{4}{5}, 3)$. Since we will treat only a rational VOA V isomorphic to $L(\frac{4}{5}, 0)$ or $W(0)$, the tensor products of two V -modules M^1 and M^2 are always well-defined and it is isomorphic to $\bigoplus_U N_{M^1, M^2}^U U$, where U runs over the all irreducible V -modules. Therefore, it is equal to the fusion rule in our case and so we will use the same notation $M^1 \times M^2$ to denote the tensor product.

Since $L(\frac{4}{5}, 0) \subseteq W(0)$, all $W(0)$ -modules are $L(\frac{4}{5}, 0)$ -modules. Using this fact, we will give an upperbound of the fusion rules of $W(0)$ -modules. Using exactly the same proof, we can modify Proposition 11.9 in [DL] into the following theorem.

Theorem 2.1 ([DL]) Let W^1, W^2, W^3 be V -modules and assume that W^1, W^2 have no proper submodules containing v^1 and v^2 , respectively. Let $I \in I\begin{pmatrix} W^3 \\ W^1 & W^2 \end{pmatrix}$. If $I(v^1, z)v^2 = 0$, then $I(\cdot, z) = 0$.

In the case where $W^1 = W(h,+) \oplus W(h,-)$ for $h = \frac{1}{15}, \frac{2}{3}$, W^1 has no proper submodule containing $U^1 = \{(v, \phi(v)) \in W(h,+) \oplus W(h,-)\}$, where $\phi : W(h,+) \rightarrow W(h,-)$ is a $L(\frac{4}{5}, 0)$ -isomorphism. Therefore, we have the following theorem:

Lemma 2.1 *The maps*

$$\begin{aligned} \phi^1 &: I_{W(0)} \begin{pmatrix} W^3 \\ W(i) & W(j) \end{pmatrix} \rightarrow I_{L(\frac{4}{5},0)} \begin{pmatrix} W^3 \\ L(\frac{4}{5},i) & L(\frac{4}{5},j) \end{pmatrix}, \\ \phi^2 &: I_{W(0)} \begin{pmatrix} W^3 \\ W(h,+) \oplus W(h,-) & W(k,+) \oplus W(k,-) \end{pmatrix} \rightarrow I_{L(\frac{4}{5},0)} \begin{pmatrix} W^3 \\ L(\frac{4}{5},h) & L(\frac{4}{5},k) \end{pmatrix} \end{aligned}$$

and

$$\phi^3 : I_{W(0)} \begin{pmatrix} W^3 \\ W(h,+) \oplus W(h,-) & W(i) \end{pmatrix} \rightarrow I_{L(\frac{4}{5},0)} \begin{pmatrix} W^3 \\ L(\frac{4}{5},h) & L(\frac{4}{5},j) \end{pmatrix}$$

induced by the restrictions are all injective for $i, j = 0, \frac{2}{5}$ and $h, k = \frac{2}{3}, \frac{1}{15}$.

Throughout this paper, $N_{W^1, W^2}^{W^3}$ denotes $\dim I\begin{pmatrix} W^3 \\ W^1 & W^2 \end{pmatrix}$.

It is known that

$$N_{W^1, W^2}^{W^3} = N_{W^2, W^1}^{W^3} = N_{W^2, (W^3)'}^{(W^1)'}$$

where W' denotes the contragredient (dual) module of W , (see Proposition 5.5.2 in [FHL]). We note that $N_{W(0), W^1}^{W^1} = 1$ and $N_{W(0), W^1}^{W^2} = 0$ for $W^1 \not\simeq W^2$. Let $k' = 3, \frac{7}{5}$ for $k = 0, \frac{2}{5}$, respectively. Namely, $W(k) \cong L(\frac{4}{5}, k) \oplus L(\frac{4}{5}, k')$ as $L(\frac{4}{5}, 0)$ -modules. By the above lemma and the fusion rules of the irreducible $L(\frac{4}{5}, 0)$ -modules (see Table A), we have the following lemma.

Lemma 2.2

$$\begin{aligned} N_{W(i), W(j)}^{W(k)} &\leq N_{L(\frac{4}{5},i), L(\frac{4}{5},j)}^{L(\frac{4}{5},k) \oplus L(\frac{4}{5},k')} \leq 1 \\ N_{W(i), W(j)}^{W(k, \pm)} &\leq N_{L(\frac{4}{5},i), L(\frac{4}{5},j)}^{L(\frac{4}{5},k)} = 0 \\ N_{W(i,+) \oplus W(i,-), W(j,+) \oplus W(j,-)}^{W(k)} &\leq N_{L(\frac{4}{5},i), L(\frac{4}{5},j)}^{L(\frac{4}{5},k) \oplus L(\frac{4}{5},k')} \leq 2 \\ N_{W(i,+) \oplus W(i,-), W(j,+) \oplus W(j,-)}^{W(k, \pm)} &\leq N_{L(\frac{4}{5},i), L(\frac{4}{5},j)}^{L(\frac{4}{5},k)} \leq 1 \end{aligned}$$

Let's explain how we determine the fusion rules of $W(0)$ -modules. Since all VOAs in this paper are rational, we identify the fusion product and the tensor product. Namely,

we will see $W^1 \times W^2$ as a $W(0)$ -module for $W(0)$ -modules W^1 and W^2 . Let T be a sub VOA of $W(0)$ isomorphic to $L(\frac{4}{5}, 0)$. For a $W(0)$ -module W , it is also a T -module and we denote them by $(W)_T$. As $W(0)$ -modules, we have a fusion product $W^1 \times W^2$. Also viewing W^1 and W^2 as $L(\frac{4}{5}, 0)$ -modules, we have a fusion product $(W^1)_T \times (W^2)_T$. The above two lemmas tell that there is an injective $W(0)$ -homomorphism π of $(W^1 \times W^2)$ into $(W^1)_T \times (W^2)_T$. We note that all fusion rules $N_{L(\frac{4}{5}, j), L(\frac{4}{5}, h)}^{L(\frac{4}{5}, i)}$ are less than or equal to 1. We will next show $N_{W^2, W^3}^{W^1} \neq 0$ for desired $W(0)$ -modules W^1, W^2, W^3 so that the above injection π of $(W^1 \times W^2)$ into $(W^1)_T \times (W^2)_T$ is an isomorphism. Therefore, we can determine the fusion rules.

In order to show $N_{W^2, W^3}^{W^1} \neq 0$ for some W^1, W^2, W^3 , we will use a (generalized) VOA V_L constructed from a lattice $L = \frac{\sqrt{2}}{3}A_2$. First, we quote a construction of V_S for $S \subseteq \mathbb{R}L$ for [FLM]. We note that we don't need a group extension here since all the values of inner products of elements of L are in $2\mathbb{Z}[1/3]$.

Let L be a lattice. Viewing $H = \mathbb{C}L$ as a commutative Lie algebra with a bilinear form $\langle \cdot, \cdot \rangle$, we define the affine Lie algebra

$$\hat{H} = H[t, t^{-1}] + \mathbb{C}k$$

associated with H and the symmetric tensor algebra $M(1) = S(\hat{H}^-)$ of \hat{H}^- , where $\hat{H}^- = H[t^{-1}]t$. As in [FLM], we shall define the Fock space $V_L = \bigoplus_{a \in L} M(1)\mathbf{e}^a$ with the vacuum $\mathbf{1} = \mathbf{e}^0$ and the vertex operators $Y(*, z)$ as follows:

The vertex operator of \mathbf{e}^a is given by

$$Y(\mathbf{e}^a, \mathbf{z}) = \exp \left(\sum_{\mathbf{n} \in \mathbb{Z}_+} \frac{\mathbf{a}(-\mathbf{n})}{\mathbf{n}} \mathbf{z}^\mathbf{n} \right) \exp \left(\sum_{\mathbf{n} \in \mathbb{Z}_+} \frac{\mathbf{a}(\mathbf{n})}{-\mathbf{n}} \mathbf{z}^{-\mathbf{n}} \right) \mathbf{e}^a \mathbf{z}^a.$$

and that of $a(-1)\mathbf{e}^0$ is

$$Y(a(-1)\mathbf{e}^0, \mathbf{z}) = \mathbf{a}(\mathbf{z}) = \sum \mathbf{a}(\mathbf{n}) \mathbf{z}^{-\mathbf{n}-1}.$$

The vertex operators of other elements are defined by the n -th normal product:

$$Y(a(n)v, z) = a(z)_n Y(v, z) = \text{Res}_x \{(x - z)^n a(x) Y(v, z) - (-z + x)^n Y(v, z) a(x)\}.$$

Here the operator of $a \otimes t^n$ on $M(1)\mathbf{e}^b$ are denoted by $a(n)$ and

$$\begin{aligned} a(n)\mathbf{e}^b &= \mathbf{0} \text{ for } \mathbf{n} > \mathbf{0}, \\ a(0)\mathbf{e}^b &= \langle \mathbf{a}, \mathbf{b} \rangle \mathbf{e}^b, \\ e^a \mathbf{e}^b &= \mathbf{e}^{a+b}, \\ z^a \mathbf{e}^b &= \mathbf{e}^b \mathbf{z}^{<\mathbf{a}, \mathbf{b}>}, \\ (x+y)^n &= \sum_{i=0}^{\infty} \binom{n}{i} x^{n-i} y^i \text{ and} \\ \binom{n}{i} &= \frac{n(n-1)\cdots(n-i+1)}{i!}. \end{aligned}$$

We note that the above definition of vertex operator is very general, that is, it is well defined for any $v \in V_{\mathbb{R} \otimes L}$ and so we may think

$$Y(v, z) \in \text{End}(V_{\mathbb{R} \otimes L})((z, z^{-1}))$$

for $v \in V_{\mathbb{R} \otimes \mathbb{Z}L}$, where $P((z, z^{-1}))$ denotes $\{\sum_{n \in \mathbb{C}} a_n z^n : a_n \in P\}$ for any set P . In particular,

$$Y(v, z)u \in V_{\mathbb{R} \otimes L}[[z, z^{-1}]]z^{\langle a, b \rangle}$$

for $v \in M(1)e^a$ and $u \in M(1)e^b$ and $a, b \in \mathbb{R}L$. Set $\mathbf{1} = \mathbf{e}^0$. It is worth to note that if we set $Y(v, z) = \sum_{n \in \mathbb{R}} v_n z^{-n-1}$, then $v_{-1}\mathbf{e}^0 = \mathbf{v}$ for any $v \in \mathbb{R} \otimes L$. Also, for the Virasoro element, we set

$$w = \sum v^i (-1)^i e^0$$

where $\{v^1, \dots, v^k\}$ is an orthonormal basis of $\mathbb{R}L$.

For any subset S of $\mathbb{R}L$, we can define

$$V_S = \bigoplus_{a \in S} M(1)\mathbf{e}^a.$$

The followings are obtained in Chapter 4 of [FLM].

Lemma 2.3 ([FLM])

$$\begin{aligned} [\sum a(n)x^{-n-1}, Y(\mathbf{e}^b, z)] &\sim \mathbf{0} && \text{for any } a, b \in L, \\ Y(\mathbf{e}^a, x)Y(\mathbf{e}^b, z) &\sim Y(\mathbf{e}^b, z)Y(\mathbf{e}^a, x) && \text{for } \langle a, b \rangle \equiv 2 \pmod{2}, \\ Y(\mathbf{e}^a, x)Y(\mathbf{e}^b, z) &\sim -Y(\mathbf{e}^b, z)Y(\mathbf{e}^a, z) && \text{for } \langle a, b \rangle \equiv 1 \pmod{2}. \end{aligned}$$

where $a(x, z) \sim b(x, z)$ means $(z-x)^m(a(x, z) - b(x, z)) = 0$ for some $m \in \mathbb{Z}$. Especially, if $\langle a, b \rangle \in 2\mathbb{Z}$, then $[Y(v, z), Y(u, x)] \sim 0$ for $v \in M(1)e^a, u \in M(1)e^b$.

In [KMY], they studied the structure of the VOA $M^0 = V_L$ and its modules for the lattice $L = \sqrt{2}A_2$. Namely, let $\langle x, y \rangle = -2$, $\langle x, x \rangle = \langle y, y \rangle = 4$ and set $L = \mathbb{Z}x + \mathbb{Z}y$ be a lattice (of type $\sqrt{2}A_2$). It is easy to see that $M^1 = V_{\frac{x+2y}{3}+L}$ and $M^2 = V_{\frac{2x+y}{3}+L}$ are V_L -modules. Set

$$M = M^0 \oplus M^1 \oplus M^2.$$

We note that M is closed under the operators u_n of $u \in M$. It is proved by [DLMN] that the Virasoro element w of V_L is an orthogonal sum of three conformal vectors w^1 , w^2 , and w^3 with central charges $\frac{1}{2}$, $\frac{7}{10}$, and $\frac{4}{5}$, respectively. Namely, V_L contains a sub VOA T isomorphic to $L(\frac{1}{2}, 0) \otimes L(\frac{7}{10}, 0) \otimes L(\frac{4}{5}, 0)$. Viewing V as a T -module, it is a direct sum of irreducible modules of T and each irreducible T -module is isomorphic to

$L(\frac{1}{2}, h_1) \otimes L(\frac{7}{10}, h_2) \otimes L(\frac{4}{5}, h_3)$ for some h_1, h_2, h_3 .

In the following argument, we recall the study in [KMY].

It is clear that $(V_L)_1 = \mathbb{C}x(-1)e^0 + \mathbb{C}y(-1)e^0$. The sum of all subspaces of $M^0 = V_L$ isomorphic to $L(\frac{1}{2}, 0) \otimes L(\frac{7}{10}, k^1) \otimes L(\frac{4}{5}, k^2)$ for any k^1, k^2 is isomorphic to a direct sum of

$$T^1 = L(\frac{1}{2}, 0) \otimes L(\frac{7}{10}, 0) \otimes \left(L(\frac{4}{5}, 0) \oplus L(\frac{4}{5}, 3) \right)$$

and

$$T^2 = L(\frac{1}{2}, 0) \otimes L(\frac{7}{10}, \frac{3}{5}) \otimes \left(L(\frac{4}{5}, \frac{2}{5}) \oplus L(\frac{4}{5}, \frac{7}{5}) \right).$$

Also, the sum of subspaces of M^1 isomorphic to $L(\frac{1}{2}, 0) \otimes L(\frac{7}{10}, k^1) \otimes L(\frac{4}{5}, k^2)$ is a direct sum of

$$\begin{aligned} T^{3+} &= L(\frac{1}{2}, 0) \otimes L(\frac{7}{10}, 0) \otimes L(\frac{4}{5}, \frac{2}{3}) \\ T^{4+} &= L(\frac{1}{2}, 0) \otimes L(\frac{7}{10}, \frac{3}{5}) \otimes L(\frac{4}{5}, \frac{1}{15}). \end{aligned}$$

Similarly, the sum of subspaces of M^2 isomorphic to $L(\frac{1}{2}, 0) \otimes L(\frac{7}{10}, k^1) \otimes L(\frac{4}{5}, k^2)$ is a direct sum of

$$\begin{aligned} T^{3-} &= L(\frac{1}{2}, 0) \otimes L(\frac{7}{10}, 0) \otimes L(\frac{4}{5}, \frac{2}{3}) \\ T^{4-} &= L(\frac{1}{2}, 0) \otimes L(\frac{7}{10}, \frac{3}{5}) \otimes L(\frac{4}{5}, \frac{1}{15}). \end{aligned}$$

It is easy to see that $T^{n\pm}$ are contragredient (dual) modules of $T^{n\mp}$ by the natural inner product of $V_{\mathbb{Z}(\frac{x+2y}{3})+L}$.

Since $\langle L, \frac{x+2y}{3} + L \rangle \subseteq 2\mathbb{Z}$, for $v \in M^g$ with $g \in \mathbb{Z}_3$, the vertex operator $Y(v, z)$ satisfies $L(-1)$ -derivative property and the local commutativity with all vertex operators $Y(u, z)$ of $u \in V_L$. By applying it to M^h for $h \in \mathbb{Z}_3$, we have an intertwining operator $Y(*, z) \in I \begin{pmatrix} M^{h+g} \\ M^g & M^h \end{pmatrix}$.

When we view these intertwining operators as intertwining operators among $L(\frac{1}{2}, 0) \otimes L(\frac{7}{10}, 0) \otimes \{L(\frac{4}{5}, 0) \oplus L(\frac{4}{5}, 3)\}$ -submodules and then as intertwining operators among $L(\frac{4}{5}, 0) \oplus L(\frac{4}{5}, 3)$ -modules, the following theorem is very useful.

Theorem 2.2 ([M1]) *Let W be a sub VOA of V which may have a different Virasoro element $e \in V_2$. Assume that W is rational. Let M^1 and M^2 be irreducible W -submodules of V . Set*

$$M(M^1, M^2) = \sum_{v \in M^1, u \in M^2, m \in \mathbb{Z}} \mathbb{C}v(m)u.$$

Then $M(M^1, M^2)$ is a W -module and we have $I_W \begin{pmatrix} M^3 \\ M^1 & M^2 \end{pmatrix} \neq 0$ for any irreducible W -submodule M^3 of $M(M^1, M^2)$. In particular, let $\{W^i : i \in I\}$ be the set of distinct

irreducible W -modules and $V = \bigoplus V^i$ be the decomposition into the direct sum of homogeneous W -modules V^i , where V^i is the sum of all irreducible W -submodules of V isomorphic to W^i . For $u \in V$, let $u = \sum_{V^k} u^i$, where $u^i \in V^i$. If there are $v \in V^i$, $u \in V^j$, $n \in \mathbb{Z}$ such that $(v_n u)^k \neq 0$, then $I \begin{pmatrix} V^k \\ V^i & V^j \end{pmatrix} \neq 0$.

We should note that by Theorem 2.2 and the fusion rules $L(\frac{1}{2}, 0) \times L(\frac{1}{2}, 0) = L(\frac{1}{2}, 0)$, $T^1 \oplus T^2 \oplus T^{3+} \oplus T^{3-} \oplus T^{4+} \oplus T^{4-}$ is closed by the products.

Since $W(h, -)$ and $W(i)$ are contragredient (dual) modules of $W(h, +)$ and $W(i)$, respectively, we have:

$$N_{W(h,\pm), W(h,\pm)}^{W(0)} \neq 0 \quad \text{and} \quad N_{W(i), W(i)}^{W(0)} \neq 0. \quad (2.1)$$

for $h = 0, \frac{2}{5}$ and $i = \frac{2}{3}, \frac{1}{15}$.

It is easy to check that

$$\begin{aligned} (T^2)_1 &= \mathbb{C}(x+2y)(-1)e^0 \\ (T^1)_2 &= \mathbb{C}(3x(-1)^2e^0 + (x+2y)(-1)^2e^0) \\ (T^{3+})_{2/3} &= \mathbb{C}(e^{(x+2y)/3} + e^{(x-y)/3} + e^{(-2x-y)/3}) \\ (T^{4+})_{2/3} &= \mathbb{C}(2e^{(x+2y)/3} - e^{(x-y)/3} - e^{(-2x-y)/3}) \end{aligned}$$

Since

$$((x+2y)(-1)e^0)_{-1}(x+2y)(-1)e^0 = (x+2y)(-1)^2e^0 \notin (T^1)_2$$

we have

$$N_{W(\frac{2}{5}), W(\frac{2}{5})}^{W(\frac{2}{5})} \neq 0. \quad (2.2)$$

Also, since

$$(x+2y)(-1)\{\lambda e^{(x+2y)/3} + \mu(e^{(x-y)/3} + e^{(-2x-y)/3})\} = 4\lambda e^{(x+2y)/3} - 2\mu(e^{(x+2y)/3} + e^{(-2x-y)/3}),$$

we have :

$$N_{W(\frac{2}{5}), W(\frac{2}{3}, +)}^{W(\frac{1}{15}, +)} = N_{W(\frac{2}{3}, +), W(\frac{1}{15}, -)}^{W(\frac{2}{5})} = N_{W(\frac{2}{5}), W(\frac{1}{15}, -)}^{W(\frac{2}{3}, -)} \neq 0 \quad (2.3)$$

and

$$N_{W(\frac{2}{5}), W(\frac{1}{15}, +)}^{W(\frac{1}{15}, +)} = N_{W(\frac{1}{15}, +), W(\frac{1}{15}, -)}^{W(\frac{2}{5})} \neq 0. \quad (2.4)$$

Similarly,

$$N_{W(\frac{2}{5}), W(\frac{2}{3}, -)}^{W(\frac{1}{15}, -)} = N_{W(\frac{2}{3}, -), W(\frac{1}{15}, +)}^{W(\frac{2}{5})} = N_{W(\frac{2}{5}), W(\frac{1}{15}, +)}^{W(\frac{2}{3}, +)} \neq 0 \quad (2.5)$$

and

$$N_{W(\frac{2}{5}), W(\frac{1}{15}, -)}^{W(\frac{1}{15}, -)} = N_{W(\frac{1}{15}, -), W(\frac{1}{15}, +)}^{W(\frac{2}{5})} \neq 0. \quad (2.6)$$

It follows from the direct calculations that $e^{(x+2y)/3} + e^{(x-y)/3} + e^{(-2x-y)/3}$ and $2e^{(x+2y)/3} - (e^{(x-y)/3} + e^{(-2x-y)/3})$ are lowest degree vectors of $L(\frac{1}{2}, 0) \otimes L(\frac{7}{10}, 0) \otimes L(\frac{4}{5}, \frac{2}{3}) \subseteq M^1$ and $L(\frac{1}{2}, 0) \otimes L(\frac{7}{10}, \frac{3}{5}) \otimes L(\frac{4}{5}, \frac{1}{15}) \subseteq M^1$, respectively. Similarly, $e^{(-x-2y)/3} + e^{(-x+y)/3} + e^{(2x+y)/3}$ and $2e^{(-x-2y)/3} - (e^{(-x+y)/3} + e^{(2x+y)/3})$ are lowest degree vectors of $L(\frac{1}{2}, 0) \otimes L(\frac{7}{10}, 0) \otimes L(\frac{4}{5}, \frac{2}{3}) \subseteq M^2$ and $L(\frac{1}{2}, 0) \otimes L(\frac{7}{10}, \frac{3}{5}) \otimes L(\frac{4}{5}, \frac{1}{15}) \subseteq M^2$, respectively. Also, for $u = \alpha e^{(x+2y)/3} + \beta(e^{(x-y)/3} + e^{(-2x-y)/3})$ and $v = \lambda e^{(x+2y)/3} + \mu(e^{(x-y)/3} + e^{(-2x-y)/3})$, we have $u_{-1/3}v = 2\beta\mu e^{(x+2y)/3} + \beta\lambda + \alpha\mu(e^{(x-y)/3} + e^{(-2x-y)/3})$, where $u_{-1/3}$ is the grade keeping operator of u . Hence, we have

$$N_{W(\frac{2}{3}, \pm), W(\frac{2}{3}, \pm)}^{W(\frac{2}{3}, \mp)} \neq 0, \quad (2.7)$$

$$N_{W(\frac{1}{15}, \pm), W(\frac{1}{15}, \pm)}^{W(\frac{2}{3}, \mp)} = N_{W(\frac{1}{15}, \pm), W(\frac{2}{3}, \pm)}^{W(\frac{1}{15}, \mp)} \neq 0, \quad (2.8)$$

$$N_{W(\frac{1}{15}, \pm), W(\frac{1}{15}, \pm)}^{W(\frac{1}{15}, \mp)} \neq 0. \quad (2.9)$$

3 Fusion rule

We first list the fusion rules among $L(\frac{4}{5}, 0)$ -modules $L(\frac{4}{5}, 0)$, $L(\frac{4}{5}, 3)$, $L(\frac{4}{5}, 2/5)$, $L(\frac{4}{5}, 7/5)$, $L(\frac{4}{5}, \frac{2}{3})$ and $L(\frac{4}{5}, \frac{1}{15})$, which are the only irreducible modules we need in this section. For the fusion rules for the remaining cases, see Appendix.

Table A

0	$\frac{2}{5}$	$\frac{7}{5}$	$\frac{1}{15}$	3	$\frac{2}{3}$
$\frac{2}{5}$	$0 : \frac{7}{5}$	$\frac{2}{5} : 3$	$\frac{1}{15} : \frac{2}{3}$	$\frac{7}{5}$	$\frac{1}{15}$
$\frac{7}{5}$	$\frac{2}{5} : 3$	$0 : \frac{7}{5}$	$\frac{2}{3} : \frac{1}{15}$	$\frac{2}{5}$	$\frac{1}{15}$
$\frac{1}{15}$	$\frac{1}{15} : \frac{2}{3}$	$\frac{2}{3} : \frac{1}{15}$	$0 : \frac{7}{5} : \frac{2}{3} : \frac{1}{15} : 3 : \frac{2}{5}$	$\frac{1}{15}$	$\frac{2}{5} : \frac{1}{15} : \frac{7}{5}$
3	$\frac{7}{5}$	$\frac{2}{5}$	$\frac{1}{15}$	0	$\frac{2}{3}$
$\frac{2}{3}$	$\frac{1}{15}$	$\frac{1}{15}$	$\frac{2}{5} : \frac{1}{15} : \frac{7}{5}$	$\frac{2}{3}$	$0 : \frac{2}{3} : 3$

In the table, the number h denotes $L(\frac{4}{5}, h)$ and $h : \dots : k$ denotes $L(\frac{4}{5}, h) + \dots + L(\frac{4}{5}, k)$.

By (2.5) and (2.6), $N_{W(h, \pm), W(h, \pm)}^{W(h, \mp)} \neq 0$. Hence, by the fusion rules $L(\frac{4}{5}, \frac{2}{3}) \times L(\frac{4}{5}, \frac{2}{3}) = L(\frac{4}{5}, 0) + L(\frac{4}{5}, 3) + L(\frac{4}{5}, \frac{2}{3})$ of $L(\frac{4}{5}, 0)$ -modules and (2.1) and (2.7), we have

$$\begin{aligned} W(\frac{2}{3}, \pm) \times W(\frac{2}{3}, \pm) &= W(\frac{2}{3}, \mp) \\ W(\frac{2}{3}, \pm) \times W(\frac{2}{3}, \mp) &= W(0). \end{aligned} \quad (3.1)$$

Similarly, by the fusion rules $L(\frac{4}{5}, \frac{1}{15}) \times L(\frac{4}{5}, \frac{1}{15}) = L(\frac{4}{5}, 0) + L(\frac{4}{5}, 3) + L(\frac{4}{5}, \frac{2}{3}) + L(\frac{4}{5}, \frac{1}{15}) + L(\frac{4}{5}, \frac{2}{5}) + L(\frac{4}{5}, \frac{7}{5})$ of $L(\frac{4}{5}, 0)$ -modules and (2.1), (2.4), (2.8) and (2.9), we have

$$\begin{aligned} W(\frac{1}{15}, \pm) \times W(\frac{1}{15}, \pm) &= W(\frac{1}{15}, \mp) + W(\frac{2}{3}, \mp) \\ W(\frac{1}{15}, \pm) \times W(\frac{1}{15}, \mp) &= W(0) + W(\frac{2}{5}) \end{aligned} \quad (3.2)$$

By the fusion rules $L(\frac{4}{5}, \frac{2}{5}) \times L(\frac{4}{5}, \frac{2}{3}) = L(\frac{4}{5}, \frac{1}{15})$ and (2.3) and (2.5), we have

$$W\left(\frac{2}{5}\right) \times W\left(\frac{2}{3}, \pm\right) = W\left(\frac{1}{15}, \pm\right). \quad (3.3)$$

By the fusion rules $L(\frac{4}{5}, \frac{2}{5}) \times L(\frac{4}{5}, \frac{1}{15}) = L(\frac{4}{5}, \frac{1}{15}) + L(\frac{4}{5}, \frac{2}{3})$ and (2.3) \sim (2.6), we have

$$W\left(\frac{2}{5}\right) \times W\left(\frac{1}{15}, \pm\right) = W\left(\frac{1}{15}, \pm\right) + W\left(\frac{2}{3}, \pm\right). \quad (3.4)$$

By the fusion rules $L(\frac{4}{5}, \frac{2}{5}) \times L(\frac{4}{5}, \frac{2}{5}) = L(\frac{4}{5}, 0) + L(\frac{4}{5}, \frac{7}{5})$ and (2.1) and (2.2), we have

$$W\left(\frac{2}{5}\right) \times W\left(\frac{2}{5}\right) = W(0) + W\left(\frac{2}{5}\right). \quad (3.5)$$

By the fusion rules $L(\frac{4}{5}, \frac{2}{3}) \times L(\frac{4}{5}, \frac{1}{15}) = L(\frac{4}{5}, \frac{2}{5}) + L(\frac{4}{5}, \frac{7}{5}) + L(\frac{4}{5}, \frac{1}{15})$ and (2.3),(2.5) and (2.8), we have

$$\begin{aligned} W\left(\frac{2}{3}, \pm\right) \times W\left(\frac{1}{15}, \pm\right) &= W\left(\frac{1}{15}, \mp\right) \\ W\left(\frac{2}{3}, \pm\right) \times W\left(\frac{1}{15}, \mp\right) &= W\left(\frac{2}{5}\right). \end{aligned} \quad (3.6)$$

We put the above fusion rules in the following table.

Table B

$W(0)$	$W\left(\frac{2}{5}\right)$	$W\left(\frac{2}{3}, +\right)$	$W\left(\frac{1}{15}, +\right)$	$W\left(\frac{2}{3}, -\right)$	$W\left(\frac{1}{15}, -\right)$
$W\left(\frac{2}{5}\right)$	$W(0) : W\left(\frac{2}{5}\right)$	$W\left(\frac{1}{15}, +\right)$	$W\left(\frac{1}{15}, +\right) : W\left(\frac{2}{3}, +\right)$	$W\left(\frac{1}{15}, -\right)$	$W\left(\frac{1}{15}, -\right) : W\left(\frac{2}{3}, -\right)$
$W\left(\frac{2}{3}, +\right)$	$W\left(\frac{1}{15}, +\right)$	$W\left(\frac{2}{3}, -\right)$	$W\left(\frac{1}{15}, -\right)$	$W(0)$	$W\left(\frac{2}{5}\right)$
$W\left(\frac{1}{15}, +\right)$	$W\left(\frac{1}{15}, +\right) : W\left(\frac{2}{3}, +\right)$	$W\left(\frac{1}{15}, -\right)$	$W\left(\frac{1}{15}, -\right) : W\left(\frac{2}{3}, -\right)$	$W\left(\frac{2}{5}\right)$	$W(0) : W\left(\frac{2}{5}\right)$
$W\left(\frac{2}{3}, -\right)$	$W\left(\frac{1}{15}, -\right)$	$W(0)$	$W\left(\frac{2}{5}\right)$	$W\left(\frac{2}{3}, +\right)$	$W\left(\frac{1}{15}, +\right)$
$W\left(\frac{1}{15}, -\right)$	$W\left(\frac{1}{15}, -\right) : W\left(\frac{2}{3}, -\right)$	$W\left(\frac{2}{5}\right)$	$W(0) : W\left(\frac{2}{5}\right)$	$W\left(\frac{1}{15}, +\right)$	$W\left(\frac{1}{15}, +\right) : W\left(\frac{2}{3}, +\right)$

4 Automorphisms

As we showed in [M2], if a VOA contains $L(\frac{4}{5}, 0)$, then we have an automorphism σ of at most 2 given by

$$\sigma : \begin{cases} 1 & \text{on } L(\frac{4}{5}, 0), L(\frac{4}{5}, 3), L(\frac{4}{5}, \frac{2}{3}), L(\frac{4}{5}, \frac{2}{5}), L(\frac{4}{5}, \frac{1}{15}), L(\frac{4}{5}, \frac{7}{5}) \\ -1 & \text{on } L(\frac{4}{5}, \frac{1}{8}), L(\frac{4}{5}, \frac{13}{8}), L(\frac{4}{5}, \frac{1}{40}), L(\frac{4}{5}, \frac{21}{40}) \end{cases}.$$

So we next think about the case $\sigma = 1$ or the space V^σ of σ -invariants. In this case, there are no $L(\frac{4}{5}, 0)$ -submodules isomorphic to $L(\frac{4}{5}, \frac{1}{8}), L(\frac{4}{5}, \frac{13}{8}), L(\frac{4}{5}, \frac{1}{40})$ or $L(\frac{4}{5}, \frac{21}{40})$. We next assume that V contains $L(\frac{4}{5}, 0) \oplus L(\frac{4}{5}, 3)$. We should note that if V contains $L(\frac{4}{5}, 0) \oplus L(\frac{4}{5}, 3)$, then there are no $L(\frac{4}{5}, 0)$ -submodules in V isomorphic to $L(\frac{4}{5}, \frac{1}{8}), L(\frac{4}{5}, \frac{13}{8}), L(\frac{4}{5}, \frac{1}{40})$

or $L(\frac{4}{5}, \frac{21}{40})$.

Theorem A *If a VOA V contains $L(\frac{4}{5}, 0) \oplus L(\frac{4}{5}, 3)$, then an endomorphism τ of V defined by*

$$\tau : \begin{cases} 1 & \text{on } W(0) \text{ and } W(\frac{2}{5}) \\ e^{2\pi i/3} & \text{on } W(\frac{2}{3}, +) \text{ and } W(\frac{1}{15}, +) \\ e^{4\pi i/3} & \text{on } W(\frac{2}{3}, -) \text{ and } W(\frac{1}{15}, -) \end{cases}$$

is an automorphism of V .

[Proof] Replacing $W(i)$ and $W(h, +)$ and $W(k, -)$ in the table (B) by 1 and $e^{2\pi i/3}$ and $e^{4\pi i/3}$, we have

1	1	$e^{2\pi i/3}$	$e^{2\pi i/3}$	$e^{4\pi i/3}$	$e^{4\pi i/3}$
1	1 : 1	$e^{2\pi i/3}$	$e^{2\pi i/3} : e^{2\pi i/3}$	$e^{4\pi i/3}$	$e^{4\pi i/3} : e^{4\pi i/3}$
$e^{2\pi i/3}$	$e^{2\pi i/3}$	$e^{4\pi i/3}$	$e^{4\pi i/3}$	1	1
$e^{2\pi i/3}$	$e^{2\pi i/3} : e^{2\pi i/3}$	$e^{4\pi i/3}$	$e^{4\pi i/3} : e^{4\pi i/3}$	1	1 : 1
$e^{4\pi i/3}$	$e^{4\pi i/3}$	1	1	$e^{2\pi i/3}$	$e^{2\pi i/3}$
$e^{4\pi i/3}$	$e^{4\pi i/3} : e^{4\pi i/3}$	1	1 : 1	$e^{2\pi i/3}$	$e^{2\pi i/3} : e^{2\pi i/3}$

which is compatible with the products. Hence, by Theorem 2.2, τ is an automorphism of V .

Q.E.D.

If $\tau_W = 1$, then all T -submodules of V are isomorphic to $L(\frac{4}{5}, 0)$, $L(\frac{4}{5}, 3)$, $L(\frac{4}{5}, \frac{2}{5})$ or $L(\frac{4}{5}, \frac{7}{5})$ for $T \subseteq W$ and $T \cong L(\frac{4}{5}, 0)$. In this case, we can define another automorphism μ_T of V as follows:

Theorem B *Assume that V contains a sub VOA T isomorphic to $L(\frac{4}{5}, 0)$ and all T -submodules of V are isomorphic to $L(\frac{4}{5}, 0)$, $L(\frac{4}{5}, 3)$, $L(\frac{4}{5}, \frac{2}{5})$ or $L(\frac{4}{5}, \frac{7}{5})$. Then the endomorphism μ_T defined by*

$$\mu_T : \begin{cases} 1 & \text{on } L(\frac{4}{5}, 0) \text{ and } L(\frac{4}{5}, \frac{7}{5}) \\ -1 & \text{on } L(\frac{4}{5}, 3) \text{ and } L(\frac{4}{5}, \frac{2}{5}) \end{cases}$$

is an automorphism of V .

5 V as a sub VOA-module

The notion of sub VOAs of V in this paper is not the same as in [FZ], where they expected sub VOA W to have the same Virasoro element with V . Our definition of sub VOAs is:

$(W = \bigoplus W_n, Y^W, w_W, \mathbf{1}_W)$ is a sub VOA of V if

- (1) $(W, Y^W, w_W, \mathbf{1}_W)$ is a VOA,
- (2) $W \subseteq V$ and $W_n = W \cap V_n$,
- (3) $\mathbf{1}_W = \mathbf{1}_V$ and
- (4) $Y^W(v, z) = Y(v, z)|_W$ for $v \in W$.

There are several definitions for VOA-modules, but we will include an infinite direct sum of irreducible modules as a VOA-module M . Namely, we don't assume $\dim M_n < \infty$.

Let W be a sub VOA of V and e a Virasoro element of W . Different from the ordinary algebras, it is not obvious that V is a W -module. The problem is whether e_1 acts on V diagonally or not.

The purpose of this section is to show that V is a W -module for W in our cases.

Let V be a VOA and W a sub VOA. Let w and e be Virasoro elements of V and W , respectively.

In particular, $e \in V_2$ and so e_1 keeps the grade of V . By the assumption, $f_1 = w_1 - e_1$ acts on W as 0. Furthermore, for $v \in W$ $Y(e_0 v, z)|_W = \frac{d}{dz} Y(v, z)|_W = Y(w_0 v, z)|_W$ and so $Y(w_0 v - e_0 v, z)|_W = 0$. In particular, $w_0 v - e_0 v = (w_0 v - e_0 v)_{-1} \mathbf{1} = 0$ and so, $f_0 = w_0 - e_0$ acts on W as 0. Hence we have:

Lemma 5.1 *Both f_1 and f_0 commutes v_m on V for $v \in W$ and $m \in \mathbb{Z}$.*

[**Proof**] It follows from $[f_0, v_m] = (f_0 v)_m = 0$ and $[f_1, v_m] = (f_0 v)_{m+1} + (f_1 v)_m = 0$.

Q.E.D.

The main purpose in this section is to prove the following theorem:

Theorem 5.1 *If W is rational, then V is a W -module.*

[**Proof**] Define a module vertex operator $Y^V(v, z)$ of $v \in W$ by the vertex operator of $v \in V$. Clearly, they satisfy the local commutativity and the e_0 -derivative property:

$$Y^V(e_0 v, z) = Y^V((f_0 + e_0)v, z) = Y(w_0 v, z) = \frac{d}{dz} Y(v, z)$$

for $v \in W$. Hence, what we have to do is to prove that V is a direct sum of eigenspaces of e_1 . Suppose false. Since f_1 commutes with all v_n for $v \in W$, the eigenspace V_λ and the generalized eigenspace $T_\lambda = \{v \in V \mid \exists n \in \mathbb{Z} \quad (f_1 - \lambda)^n v = 0\}$ of f_1 with eigenvalue λ is invariant under the actions v_n of $v \in W$. We first prove that the eigenspace V_λ is a direct sum of irreducible W -modules. Since f_1 keeps the grade, it acts on V_n and so we have $V_\lambda = \bigoplus (V_\lambda)_n$, where $(V_\lambda)_n = V_n \cap V_\lambda$. Since $e_1 = (w_1 - f_1)$ acts on $(V_\lambda)_n$ as $n - \lambda$, V_λ is a W -module. Since W is rational by the assumption, V_λ is a direct sum of irreducible W -modules.

Since f_1 acts on each finite dimensional homogenous spaces V_n , V is a direct sum of generalized eigenspaces of f_1 . Hence, there are λ and n such that $T_\lambda \cap V_n \neq V_\lambda \cap V_n$. Take n as a minimal one.

As we explained as above, v_n acts on T_λ/V_λ for $v \in W$ and the eigenspace X_λ of f_1 in T_λ/V_λ is a W -module. By the choice of n , $(X_\lambda)_n \neq 0$. Let \bar{X} be an irreducible W -submodule of X_λ whose lowest degree is n . We should note that since V_λ is an eigenspace of f_1 and $e_1 = w_1 - f_1$, the lowest eigenspace of w_1 in V_λ is the lowest eigenspace of e_1 .

Hence there is an irreducible W -submodule \bar{B} of T_λ/V_λ whose lowest degree space \bar{B}_0 is in $(V_n + V_\lambda)/V_\lambda$ since W is rational. Let B be its inverse image. Clearly, B contains V_λ and f_1 does not act on B diagonally. Let S is a submodule of V_λ generated by W -submodules which are not isomorphic to \bar{B} . Since $(f_1 - \lambda)B \neq 0$ and all submodule of $(f_1 - \lambda)B$ is isomorphic to \bar{B} , all composition factors of B/S is isomorphic to \bar{B} as W -modules and we have $S \neq V_\lambda$. In particular, $(B/S) \cap (V_m + S/S) = 0$ for all $m < n$. We next show that Zhu-algebra $A(W)$ acts on the top module $(B_n + S)/S$ of B/S .

In order to prove the above assertion, we will use an idea for Zhu-algebra in [Z]. We will treat a general case for a while. Let $A(V) = V/O(V)$ be the Zhu-algebra of V . For $v \in V$, $o(v)$ denotes the grade keeping operator of v . For a homogeneous element $v \in V_m$, if $Y^M(v, z) = \sum v_i z^{-i-1}$ is a module vertex operator, then $o(v) = v_{m-1}$. It actually depends on the module M , but we write $o(v) = v_{m-1}$ formally.

Let R be the ring generated by all $o(v)$ of $v \in V$. Let I be a subspace of R generated by the elements $\sigma = v_{i_1}^1 \cdots v_{i_r}^r \in R$ satisfying that $v_{i_s}^s \cdots v_{i_r}^r$ decreases the grade for some $1 \leq s \leq r$. We permit an infinite sum of such elements if it is well-defined in R . Clearly, I is a two-sided ideal of R . It is known that $A(V) = R/I$, see [Z].

Let's go back to the proof. Since W is rational, $A(W)$ is a semi-simple. Let $\phi = v_{i_1}^1 \cdots v_{i_t}^t \in R$ and assume that $v_{i_s}^s \cdots v_{i_t}^t$ decreases the grade on W . Since the grade on W is the same as that on V , ϕ acts on $(B_n + S)/S$ trivially. Hence $A(W)$ acts on $(B_n + S)/S$. Since $A(W)$ is semi-simple, $(B_n + S)/S$ is a direct sum of irreducible $A(W)$ -modules. By the definition of B and S , $(B_n + S)/S$ is a homogeneous $A(W)$ -module. Since e_1 is in the

center of $A(W)$, e_1 acts on $(B_n + S)/S$ as a scalar times and so does f_1 , which contradicts to the facts that $(f_1 - \lambda)(B_n + S)/S \neq 0$.

Hence, V is a direct sum of eigenspaces of f_1 and so e_1 acts on V diagonally. This completes the proof of Theorem 5.1.

Q.E.D.

6 Appendix

6.1 Fusion rules of irreducible $L(\frac{4}{5}, 0)$ -modules

For $L(\frac{4}{5}, 0)$, the following fusion rules are known, see [W]. In the following table, the numbers h denote $L(\frac{4}{5}, h)$ and $h_1 : \dots : h_t$ denotes $L(\frac{4}{5}, h_1) + \dots + L(\frac{4}{5}, h_t)$.

Table C

0	$\frac{2}{5}$	$\frac{1}{40}$	$\frac{7}{5}$	$\frac{21}{40}$	$\frac{1}{15}$	3	$\frac{13}{8}$	$\frac{2}{3}$	$\frac{1}{8}$
$\frac{2}{5}$	$0 : \frac{7}{5}$	$\frac{1}{8} : \frac{21}{40}$	$\frac{2}{5} : 3$	$\frac{1}{40} : \frac{13}{8}$	$\frac{1}{15} : \frac{2}{3}$	$\frac{7}{5}$	$\frac{21}{40}$	$\frac{1}{15}$	$\frac{1}{40}$
$\frac{1}{40}$	$\frac{1}{8} : \frac{21}{40}$	$0 : \frac{7}{5} : \frac{2}{3} : \frac{1}{15}$	$\frac{1}{40} : \frac{13}{8}$	$\frac{2}{5} : 3 : \frac{1}{15} : \frac{2}{3}$	$\frac{1}{40} : \frac{13}{8} : \frac{21}{40} : \frac{1}{8}$	$\frac{21}{40}$	$\frac{7}{5} : \frac{1}{15}$	$\frac{21}{40} : \frac{1}{40}$	$\frac{1}{15} : \frac{2}{5}$
$\frac{7}{5}$	$\frac{2}{5} : 3$	$\frac{1}{40} : \frac{13}{8}$	$0 : \frac{7}{5}$	$\frac{1}{8} : \frac{21}{40}$	$\frac{2}{3} : \frac{1}{15}$	$\frac{2}{5}$	$\frac{1}{40}$	$\frac{1}{15}$	$\frac{21}{40}$
$\frac{21}{40}$	$\frac{1}{40} : \frac{13}{8}$	$\frac{2}{5} : 3 : \frac{1}{15} : \frac{2}{3}$	$\frac{1}{8} : \frac{21}{40}$	$0 : \frac{7}{5} : \frac{2}{3} : \frac{1}{15}$	$\frac{1}{8} : \frac{21}{40} : \frac{13}{8} : \frac{1}{40}$	$\frac{1}{40}$	$\frac{2}{5} : \frac{1}{15}$	$\frac{1}{40} : \frac{21}{40}$	$\frac{1}{15} : \frac{7}{5}$
$\frac{1}{15}$	$\frac{1}{15} : \frac{2}{3}$	$\frac{1}{40} : \frac{13}{8} : \frac{21}{40} : \frac{1}{8}$	$\frac{2}{3} : \frac{1}{15}$	$\frac{1}{8} : \frac{21}{40} : \frac{13}{8} : \frac{1}{40}$	$0 : \frac{7}{5} : \frac{2}{3} : \frac{1}{15} : \frac{1}{5} : \frac{2}{5}$	$\frac{1}{15}$	$\frac{1}{40} : \frac{21}{40}$	$\frac{2}{5} : \frac{1}{15} : \frac{7}{5}$	$\frac{1}{40} : \frac{21}{40}$
3	$\frac{7}{5}$	$\frac{21}{40}$	$\frac{2}{5}$	$\frac{1}{40}$	$\frac{1}{15}$	0	$\frac{1}{8}$	$\frac{2}{3}$	$\frac{13}{8}$
$\frac{13}{8}$	$\frac{21}{40}$	$\frac{7}{5} : \frac{1}{15}$	$\frac{1}{40}$	$\frac{2}{5} : \frac{1}{15}$	$\frac{1}{40} : \frac{21}{40}$	$\frac{1}{8}$	$0 : \frac{2}{3}$	$\frac{1}{8} : \frac{13}{8}$	$\frac{2}{3} : 3$
$\frac{2}{3}$	$\frac{1}{15}$	$\frac{21}{40} : \frac{1}{40}$	$\frac{1}{15}$	$\frac{1}{40} : \frac{21}{40}$	$\frac{2}{5} : \frac{1}{15} : \frac{7}{5}$	$\frac{2}{3}$	$\frac{1}{8} : \frac{13}{8}$	$0 : \frac{2}{3} : 3$	$\frac{1}{8} : \frac{13}{8}$
$\frac{1}{8}$	$\frac{1}{40}$	$\frac{1}{15} : \frac{2}{5}$	$\frac{21}{40}$	$\frac{1}{15} : \frac{7}{5}$	$\frac{1}{40} : \frac{21}{40}$	$\frac{13}{8}$	$\frac{2}{3} : 3$	$\frac{1}{8} : \frac{13}{8}$	$0 : \frac{2}{3}$

References

- [B] R.E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Natl. Acad. Sci. USA 83 (1986), 3068–3071.
- [C] J.H. Conway, A simple construction of the Fischer-Griess monster group, Invent. Math. 79 (1985), no. 3, 513–540.
- [CS] J.H. Conway and N.J.A. Sloane: "Sphere Packings, Lattices and Groups", Springer-Verlag, 1988.
- [DL] C. Dong and J. Lepowsky, *Generalized vertex algebras and relative vertex operators*, Progress in Mathematics, 112. Birkhäuser Boston, Inc., Boston, 1993.

[DLMN] C. Dong, H. Li, G. Mason and S. Norton, Associative subalgebras of the Griess algebra and related topics, preprint.

[DM] C. Dong and G. Mason, On quantum Galois theory, *Duke Math. J.* **86** (1997), no.2, 305–321.

[DMZ] C. Dong, G. Mason and Y. Zhu, Discrete series of the Virasoro algebra and the moonshine module, *Proc. Symp. Pure. Math., American Math. Soc.* **56** II (1994), 295–316.

[FHL] I. Frenkel, Y.-Z. Huang and J. Lepowsky, ”*On axiomatic approaches to vertex operator algebras and modules*”, Memoirs Amer. Math. Soc. 104, 1993.

[FLM] I.B. Frenkel, J. Lepowsky, and A. Meurman, *Vertex Operator Algebras and the Monster*, Pure and Applied Math., Vol. 134, Academic Press, 1988.

[FZ] I. Frenkel and Y. Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, *Duke Math. J.* **66** (1992), 123-168.

[KMY] M. Kitazume, M. Miyamoto and H. Yamada, Ternary codes and VOA, preprint

[Li1] Hai-sheng Li, An approach to tensor product theory for representations of a vertex operator algebra, to appear.

[M1] M. Miyamoto, Griess algebras and conformal vectors in vertex operator algebras, *J. Algebra* **179**, (1996) 523-548

[M2] M. Miyamoto, Binary codes and vertex operator (super)algebras, *J. Algebra* **181**, (1996) 207-222

[M3] M. Miyamoto, Representation theory of code VOA, *J. Algebra*, to appear.

[W] W. Wang, Rationality of Virasoro vertex operator algebra, *Duke Math. J. IMRN*, **Vol. 71**, No. 1 (1993), 197-211.

[Z] Y.-C. Zhu, Vertex operator algebra, elliptic functions and modular forms, Ph.D. thesis, Yale University, 1990.