Dijkstra 알고리즘

김태희 khy@jaen.kr

Dijkstra 알고리즘

Dijkstra알고리즘-0-a단계

방문하지 않은 정점들의 토탈최소가중치 중 최소 값을 찾은 후 방문 처리

f f f f

0 INF INF INF INF

j=0->min=0,current=0

min: max

 $j=1 \rightarrow min = 0$, current= 0

 $j=2 \rightarrow min = 0$, current= 0

 $j=3 \rightarrow min = 0$, current= 0

 $j=4 \rightarrow min = 0$, current= 0

t f f f f

Dijkstra알고리즘-0-b단계

방문하지 않은 각 정점들의 토탈최소가중치값을 A 단계에서 결정된 다음 방 문 정점을 경유했을 때의 가중치와 비교하여 반영

경유정점 current: 0

경유정점까지 토탈최소가중치 min: 0

출발점에서 C까지의 토탈 최소가중치 최소값 반영 시도

min + adj[current][c] < dis[c] 여부 판단

$$c=1->0+adj[0][1] < d[1]$$

$$c=2 -> 0 + adj[0][2] < d[2]$$

$$c=3 -> 0 + adj[0][3] < d[3]$$

c=4 -> 0 + adj[0][4] < d[4]

d 0 2 2 5 9

Dijkstra알고리즘-1-a단계

방문하지 않은 정점들의 토탈최소가중치 중 최소 값을 찾은 후 방문 처리

t f f f

0 2 2 5 9

j=0

min: max

 $j=1 \rightarrow min = 2$, current= 1

 $j=2 \rightarrow min = 2$, current= 1

 $j=3 \rightarrow min = 2$, current= 1

 $j=4 \rightarrow min = 2$, current= 1

t t f f f

Dijkstra알고리즘-1-b단계

5

9

방문하지 않은 각 정점들의 토탈최소가중치값을 A 단계에서 결정된 다음 방 문 정점을 경유했을 때의 가중치와 비교하여 반영

경유정점 current: 1

경유정점까지 토탈최소가중치 min: 2

min + adj[current][c] < dis[c] 여부 판단

$$c=0$$

$$c=1$$

$$c=2 \rightarrow 2+adj[1][2] < d[2]$$

3

$$c=3 -> 2+adj[1][3] < d[3]$$

 $c=4 \rightarrow 2+adj[1][4] < d[4]$

d 0 2 2 5 9

Dijkstra알고리즘-2-a단계

방문하지 않은 정점들의 토탈최소가중치 중 최소 값을 찾은 후 방문 처리

t t f f f 0 2 2

j=0 min: max

j=1

 $j=2 \rightarrow min = 2$, current= 2

 $j=3 \rightarrow min = 2$, current= 2

 $j=4 \rightarrow min = 2$, current= 2

t t t f f

Dijkstra알고리즘-2-b단계

방문하지 않은 각 정점들의 토탈최소가중치값을 A 단계에서 결정된 다음 방 문 정점을 경유했을 때의 가중치와 비교하여 반영

경유정점 current: 2

경유정점까지 토탈최소가중치 min: 2

min + adj[current][c] < dis[c] 여부 판단

$$c=1$$

$$c=2$$

$$c=3 -> 2+adj[2][3] < d[3]$$

$$c=4 -> 2+adj[2][4] < d[4]$$

d 0 2 2 5 8

0

9

Dijkstra알고리즘-3-a단계

방문하지 않은 정점들의 토탈최소가중치 중 최소 값을 찾은 후 방문 처리

t t f f 0 2 2 5 8

min: max

 $j=3 \rightarrow min = 5$, current= 3

 $j=4 \rightarrow min = 5$, current= 3

t t t f

Dijkstra알고리즘-3-b단계

방문하지 않은 각 정점들의 토탈최소가중치값을 A 단계에서 결정된 다음 방 문 정점을 경유했을 때의 가중치와 비교하여 반영

경유정점 current: 3 경유정점까지 토탈최소가중치 min: 5

min + adj[current][c] < dis[c] 여부 판단

$$c=0$$

$$c=1$$

$$c=2$$

$$c=4 -> 5+adj[3][4] < d[4]$$

0

8

0 2 2 5 8

Dijkstra알고리즘-4-a단계

방문하지 않은 정점들의 토탈최소가중치 중 최소 값을 찾은 후 방문 처리

t t t f 0 2 2 5 8

min: max

j=4 -> min = 8, current= 4

Dijkstra알고리즘-4-b단계

방문하지 않은 각 정점들의 토탈최소가중치값을 A 단계에서 결정된 다음 방 문 정점을 경유했을 때의 가중치와 비교하여 반영

경유정점 current: 4 경유정점까지 토탈최소가중치 min: 8

min + adj[current][c] < dis[c] 여부 판단

c=0

c=1

c=2

c=3

c=4

0 2 2 5 8

Dijkstra알고리즘-완성

최단거리:8

Simulation example

Min	Α	В	С	D	E	F	G	Н	I	J
	0	Χ	Χ	Χ	Χ	X	Χ	Χ	Χ	Χ

Min	Α	В	С	D	E	F	G	Н	I	J
	0	4	6	X	Χ	X	X	X	Χ	X

Min	Α	В	С	D	E	F	G	Н	I	J
	0	4	6	X	X	Χ	X	Χ	Χ	Χ

Min	Α	В	С	D	Е	F	G	Н	I	J
	0	4	6	13	12	X	Χ	X	Χ	X

Min	Α	В	С	D	E	F	G	Н	I	J
	0	4	6	13	12	Χ	Χ	Χ	Χ	Χ

Min	Α	В	С	D	E	F	G	Н	I	J
	0	4	6	13	8	9	Χ	Χ	Χ	X

Min	Α	В	С	D	Ε	F	G	Н	I	J
	0	4	6	13	8	9	Χ	Χ	Χ	X

Min	Α	В	С	D	Е	F	G	Н	I	J
	0	4	6	10	8	9	11	15	X	Χ

Min	Α	В	С	D	Е	F	G	Н	I	J
	0	4	6	10	8	9	11	15	Χ	X

Min	Α	В	С	D	E	F	G	Н	I	J
	0	4	6	10	8	9	11	13	17	X

Min	Α	В	С	D	Е	F	G	Н	I	J
	0	4	6	10	8	9	11	13	17	Χ

Min	Α	В	С	D	Е	F	G	Н	I	J
	0	4	6	10	8	9	11	13	17	X

Min	Α	В	С	D	Е	F	G	Н	I	J
	0	4	6	10	8	9	11	13	17	Χ

Min	Α	В	С	D	Е	F	G	Н	I	J
	0	4	6	10	8	9	11	13	17	24

Min	Α	В	С	D	Е	F	G	Н	I	J
	0	4	6	10	8	9	11	13	17	24

Min	Α	В	С	D	Е	F	G	Н	I	J
	0	4	6	10	8	9	11	13	17	22

Min	A	В	С	D	Е	F	G	Н	I	J
	0	4	6	10	8	9	11	13	17	22

Min	Α	В	С	D	Е	F	G	Н	I	J
	0	4	6	10	8	9	11	13	17	21

Min	Α	В	С	D	Е	F	G	Н	I	J
	0	4	6	10	8	9	11	13	17	21