6.3. ANALITIČKI MODELI OSVJETLJAVANJA

Postupak isijavanja (engl. Radiosity)

- Cook i Torrance načinili su model osvjetljavanja
- ambijentna komponenta zamijenjena je točnijim proračunom globalnog utjecaja
- u Phong-ovom modelu proračun zrcalne komponente nije točan za male kutove (npr. papir)
- ovisnost zrcalno reflektirane svjetlosti o valnim duljinama

Osnovni pojmovi

- fizikalno zasnovan model osvjetljavanja
- interakcija svjetlosti s površinom

svjetlosni tok (eng. flux) Φ - [lm] lumeni

• mjera emitiranja svjetlosne energije u jedinici vremena (količina svjetlosne energije što je promatrani izvor isijava u okolni prostor)

prostorni kut (eng. solid angle) - [sr] steradian

• mjeri dio površine polukugle koju obuhvaća konus s vrhom u središtu

(površina cijele kugle je $4\pi r^2$) cijela polukugla je 2π

$$d\omega = \frac{dA}{r^2}$$

gustoća svjetlosnog toka, rasvijetljenost - [lux] luks

• osvjetljenje plohe kojoj na svaki kvadratni metar površine dolazi jednoliko raspoređen svjetlosni tok jednog lumena [lm/m²] (eng. iluminosity)

Radiometrijske i fotometrijske veličine

Naziv	Definicija	Oznaka radi/foto	Jedinice	Radiometrijski	Jedinice	Fotometrijski
energija		Q _e , Q _v	[J = Ws] Joule	energija isijavanja radiant energy	[talbot]	energija svjetlosti luminous energy
tok Flux	dQ/dt	$\Phi_{ m e},\Phi_{ m v}$	[W = J/s]	tok isijavanja radiant flux	[lm = talbot/s] lumen	svjetlosni tok luminous flux
gustoća toka Flux density	dQ/(dt dA)	E _e , E _v	$[E = W/m^2]$	emisivnost irradiance	$[lux = lm/m^2]$	iluminance
		$B_{e}=M_{e},$ $B_{v}=M_{v}$	[W/ m ²]	isijavanje radiosity	[lux]	rasvijetljenost iluminosity
	$dQ/(dA^{\Phi}d\omega dt)$	L_{e}, L_{v}	[W/m ² sr]	radiance	[lm/ m ² sr]	luminance
intenzitet Intensity	dQ/dwdt	$I_{\rm e}$, $I_{ m v}$	[W/sr]	intenzitet intensity	[cd = lm/sr] kandela	intenzitet svj. intensity

Model osvjetljavanja s ravnotežom energije u sceni

energija koja osvjetljava površinu = energija koja se odbija od površine + energija koja se lomi

$$\Phi_i = \Phi_r + \Phi_t$$

Goralov model – 1984. adaptirao je postupak isijavanja iz termalnog inženjerstva

$$I_{v} = I_{l} + r_{d} \int_{0}^{2\pi} I_{i}(\theta, \varphi) \left(\vec{l}_{i} \cdot \vec{n}\right) d\omega$$

 I_{v} intenzitet promatrane površine

 I_l emisivnost površine (ukoliko je površina izvor svjetlosti)

 I_i intenzitet isijavanja pojedinih ostalih površina

 $d\omega$ prostorni kut

 r_d koeficijent difuzne refleksije

Koraci postupka isijavanja:

Opis scene

geometrijski opis scene

- omeđenost tijela površinama koja imaju položaj i orijentaciju
- omeđenost scene (zbog ravnoteže energije) tj. ako je vanjski prostor omeđimo ga fizikalni opis scene
 - podaci o refleksivnosti, boji, uzorku površine

http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/exploratories/applets/radiositySVG/radiosity_shooting_vs_gathering_java_browser.html

- funkcija **BRDF** (engl. *Bidirectional Reflectance Distribution Function*) određuje koliko je svjetla koje dolazi iz smjera k do točke i na površini reflektirano u smjeru j (funkcija može biti različita za valne duljinu λ svjetla RGB) $f(k \rightarrow i \rightarrow j, \lambda)$
- 1. Umrežavanje scene
- 2. Izračunavanje faktora utjecaja
- 3. Rješavanje sustava jednadžbi
- 4. Prikaz rezultata

1. Umrežavanje scene, aproksimacija sa sumom i krpica

k - promatrana krpica, I_{vk} - ukupni intenzitet promatrane krpice I_{lk} - emisivnost promatrane krpice

 I_i – intenzitet drugih krpica

$$I_{vk} = I_{lk} + r_{dk} \sum_{i=1}^{n} I_{i} F_{i, j}$$

n broj krpica F_{ij} faktori utjecaja (engl. Form factor)

Podjela na elemente

- približno jednaki poligoni (ili hijerarhijski, adaptivno) koji zadržavaju svojstva površine kojoj pripadaju
- površine izvora sadržavaju početnu energiju
- što je podjela finija rezultat je točniji

2. Proračun faktora utjecaja (proračun geometrijskih odnosa između elemenata)

faktor utjecaja između dva elementa određuje koliki dio energije koju isijava prvi element dolazi do drugog.

Razmjena svjetlosne energije među elementima u sceni

- energija se prenosi među elementima u sceni tako da se više energije predaje elementima koji se vide pod većim prostornim kutom
- ukoliko su zaklonjeni energija se uopće ne predaje
- svaki element je idealni difuzni element

faktor utjecaja

- geometrijski odnos između dva elementa
- specificira koji dio ukupne energije jedan element predaje nekom drugom elementu
- za svaki par elemenata u sceni treba odrediti F_{i,j}
- odrede se jednom na početku (zahtjevno računanje) za ravnotežno stanje
- promjena pogleda, gašenje izvora nije potrebno ponovo računati

Faktori utjecaja (eng. form factor)

- veliki dio proračuna
- potrebno odrediti za svaki par krpica u sceni
- $d\omega_i$ diferencijalni prostorni kut
- $\bullet \quad dF_{dAidAj} \qquad \quad dio \ svjetlosne \ energije \ koji \ napušta \ dA_i \ i \ dolazi \ do \ dA_j \\$
- http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/exploratories/applets/radiosityFormFactor/radiosity_form_factor_java_browser.html

$$dF_{dAi\ dAj} = \frac{\cos\Theta_i}{\pi} d\omega_j = \frac{\cos\Theta_i\cos\Theta_j}{\pi r^2} dA_j$$

$$F_{Ai Aj} = \frac{1}{A_i} \int_{A_i A_j} \frac{\cos \Theta_i \cos \Theta_j}{\pi r_{i,j}^2} V_{ij} dA_i dA_j$$

$$V_{ij} = \begin{cases} 0 & \text{površina je zaklonjena} \\ 1 & \text{površina je vidljiva} \end{cases}$$

http://nis-lab.is.s.u-tokyo.ac.jp/~haga/applet/Radiosity/color/MainAppletC.html

3. Rješavanje sustava jednadžbi

$$I_{vk} = I_{lk} + r_{dk} \sum_{i=1}^{n} I_{i} F_{i,j}, \quad k - krpica$$

$$I_{vk} - r_{dk} \sum_{i=1}^{n} I_{i} F_{i,j} = I_{lk}$$

$$\begin{bmatrix} 1 - \rho_{1} F_{1,1} & -\rho_{1} F_{1,2} & . & . & -\rho_{1} F_{1,n} \\ -\rho_{2} F_{2,1} & 1 - \rho_{2} F_{2,2} & . & . & -\rho_{2} F_{2,n} \end{bmatrix} \begin{bmatrix} B_{1} \\ B_{2} \\ . & . & . \\ -\rho_{n-1} F_{n-1,1} & -\rho_{n-1} F_{n-1,2} & . & . & -\rho_{n-1} F_{n-1,n} \\ -\rho_{n} F_{n,1} & -\rho_{n} F_{n,2} & . & . & 1 - \rho_{n} F_{n,n} \end{bmatrix} \begin{bmatrix} B_{1} \\ B_{2} \\ . \\ B_{n-1} \\ B_{n} \end{bmatrix} = \begin{bmatrix} E_{1} \\ E_{2} \\ . \\ E_{n-1} \\ E_{n} \end{bmatrix}$$

 $F_{i,j}$ faktori utjecaja (između elemenata i ,j)

 B_{i} nepoznanice – vrijednosti isijavanja koje svaki element ima u stanju ravnoteže

 $E_{\rm i}$ početna isijavanja (izvori)

ρ_i refleksivnost elemenata

http://www.gris.uni-tuebingen.de/grisalt/projects/grdev/applets/progressiverefinement/html/index_en.htm

