Correnti elettriche - Esercizi di introduzione

- 1) Definizioni di corrente elettrica, tensione elettrica e potenza.
 - a) Determinare la corrente che transita da un consumatore se in 25 ms sono fluiti $125 \mu C$.
 - b) Calcolare la potenza di un consumatore se in esso scorre una corrente di $2,5\,A$ quando è allacciato a un generatore di differenza di potenziale pari a $12,0\,V$.
 - c) Un consumatore ha potenza elettrica pari a 16W se allacciato a un generatore di differenza di potenziale pari a 12.0V. Quanta corrente scorre nel consumatore.

2) Leggi di Kirchhoff.

Considerate il circuito schematizzato nel disegno a lato. Sono note le seguenti grandezze: la differenza di potenziale del generatore vale $U_0=12,0V$, la caduta di potenziale sul consumatore 2 vale $U_2=4,8V$, la corrente che attraversa il consumatore 3 è pari a $I_3=0,400\,A$ e la corrente che passa per il filo che collega il nodo B con il generatore è pari a $0.600\,A$.

- a) Determinare la caduta di potenziale sul consumatore 1 e sul consumatore 3.
- b) Calcolare la corrente nel consumatore 1 e nel consumatore 2.
- c) Calcolare la potenza dissipata da ciascun consumatore.
- 3) Prima legge di Ohm.
 - a) Determinare il valore delle resistenze dei tre consumatori dell'esercizio 2.
 - b) Calcolare la potenza dissipata da un resistore di resistenza $R=75\Omega$ collegato a un generatore di differenza di potenziale $U_0=12,0V$.
 - c) Calcolare la potenza dissipata da un resistore di resistenza $R=48\Omega$ percorsa da una corrente pari a $I=0.750\,A$.
 - d) Calcolare la corrente elettrica che passa nel resistore della domanda (b) e la differenza di potenziale ai capi del resistore della domanda (c).
- 4) Seconda legge di Ohm e dipendenza dalla temperatura.
 - a) Determinare la Resistenza di un filo di rame di lunghezza l=12,0m e sezione $A=2,5mm^2$ sapendo che la resistività vale $\rho=1,68\cdot 10^{-8}\,\Omega m$.
 - b) Calcolare la resistività della costantana sapendo che la resistenza di un filo lungo l=1,20m, di diametro d=0,70mm fatto di costantana vale $R=1,528\Omega$.
 - c) Di quanto cambia la Resistenza calcolata in (a) se il filo viene riscaldato di $\Delta \vartheta = 60^{\circ}C$ $\left(\alpha = 3,9 \cdot 10^{-3} \frac{1}{^{\circ}C}\right)$.
 - d) Misurando la resistenza di una lampadina ad incandescenza quando si trova alla temperatura di $\vartheta_0=25^\circ C$ vale $R_0=65\Omega$. Nella stessa lampadina collegata alla tensione U=232V scorre una corrente pari a I=0,258A; in questa situazione la temperatura del filamento è pari a $\vartheta=2880^\circ C$. Calcolare il coefficiente di temperatura.