Neurodegenerative diseases of the CNS Parkinson's Disease

Dr. sc. Linard Filli
Department of Neurology
University Hospital Zürich

Contact: Ifilli@ethz.ch

Schedule: «Disease of the central nervous system»

Diseases of the CNS: Introduction, Stroke	13.11.2017
Neurodegenerative diseases of CNS: Parkinson's Disease	20.11.2017
Autoimmune diseases of the CNS: Multiple Sclerosis	27.11.2017

Handout & Lecture

Purves: Chapter 18

Diseases of the Central Nervous System

Neurodegeneration:

- Alzheimer's Disease (AD)
- Parkinson's Disease (PD)
- Amyotrophic Lateral Sclerosis (ALS)
- Huntington's Disease (HD)

Traumatic:

- Concussion
- Spinal cord injury

Neuroinfection:

- Meningitis (viral or bacterial)
- Encephalitis (viral or bacterial)

Autoimmune:

- Multiple Sclerosis (MS)
- Myasthenia gravis

Psychiatric disorders:

- Bipolar disorder
- Schizophrenia
- Autism

Neurodegenerative disorders

- Similar pathomechanisms among neurodegenerative diseases of CNS
- Different symptoms and deficits (dementia, motor deficits etc.)
- Age is major risk factor for neurodegenerative diseases (in 2030, 25% of people >65 years)
- Etiology of neurodegenerative diseases still poorly understood

Mostly symptomatic treatments. Cause of the diseases cannot be targeted yet.

Parkinson's Disease: Epidemiology

- 2nd most frequent **neurodegenerative disorder** after Alzheimer's Disease
- chronic, slowly progressive, neurodegenerative disease
- 0.3% prevalence in total US population
 - 1-2% prevalence in people >65 years of age
 - 4-5% prevalence in people >85 years of age
- Only around 10% of all PD cases occur in people <45 years of age

Wood-Kaczmar et al., 2006

- Parkinson's Disease:
 - 95% without genetic etiology (sporadic/idiopathic PD)
 - 5% with genetic origin

Parkinson's Disease: history

James Parkinson

"Shaking Palsy" = loss of muscle function associated with tremor Galen, 175 AD

"Paralysis agitans" = progressing loss of muscle function James Parkinson, 1817

Parkinson's Disease (Morbus Parkinson)

Jean Martin Charcot, 1877

AN

ESSAY

ON THE

SHAKING PALSY.

 $\mathbf{B}\mathbf{Y}$

JAMES PARKINSON,

MEMBER OF THE ROYAL COLLEGE OF SURGEONS.

LONDON:

PRINTED BY WHITTINGHAM AND ROWLAND

Gorwell Street.

FOR SHERWOOD, NEELY, AND JONES,
PATERNOSTER ROW.

1817.

۲

Parkinson's Disease: Symptoms and course of disease

Motor features:

Parkinsonism: (Parkinsonian Syndrome)

- > neurological syndrome that shares symptoms of PD (syndrome = association of symptoms)
- common criteria is bradykinesia and at least one of the symptoms including tremor, postural instability of rigidity,.
- > ~ 80% of patients showing parkinsonisms indeed are diagnosed with PD

4 cardinal motor manifestations

- 1. Bradykinesia (slowness of movements and reflexes)
- 2. Resting tremor
- 3. Postural instability
- 4. Muscular rigidity

Parkinsonism (Parkinsonian syndrome)

Early motor symptoms:

- asymmetrical onset of deficits -> gradual spread to contralateral side
- asymmetric resting tremor (3-6 Hz)
 - ->tremor at rest; decreased during voluntary movements
- Developing bradykinesia

Motor symptoms in progressed PD:

- Pronounced bradykinesia representing the <u>most disabling motor symptom</u>
- Muscular rigidity (propulsion during walking, and stiff arms without swing, cogwheel)
- Postural instability at later stages during PD: -> risk of falling
- Hypokinesia (decreased amplitude of movement) and akinesia (absence of movement)

Parkinsonian Gait

- Propulsion of upper body (festination)
- > Reduced arm swing
- > Reduced walking speed
- > Reduced step length
- > Hypoextension of hip and knee joints
- > Shuffling steps
- > Tripping gait

Parkinsonian Gait

Visual cueing improves walking function in PD patients

Lewis et al., 2000

Parkinson's Disease: non-motor deficits

Non-motor features:

- Usually occur at <u>progressed stages</u> of PD
- Most frequent non-motor consequence of PD is <u>depression</u> (ca. 50% of patients)
- Further non-motor deficits are dementia, psychosis
- Loss of <u>olfactory function</u> (70-100% of patients -> useful biomarker)
- Sleep disorders (prevalence is 60-90% at some time over the course of PD)
- Do not respond to dopaminergic treatment

Parkinson's Disease: Diagnosis

3-step approach to identify idiopathic PD (iPD):

Step 1: Identification of Parkinsonism (Parkinsonian syndrome).

Idiopathic Parkinson's Disease: ca. 80% of cases showing parkinsonism

Step 2: Exclusion of other causes of Parkinsonism.

Symptomatic form:
 (Secondary Parkinsonism)

drug-induced (e.g. Risperidone) parkinsonism, metabolic dysfunction leading to parkinsonism, post-infectious parkinsonism, post-traumatic parkinsonism, toxin-induced parkinsonism (e.g. MPTP).

Atypical form: (Parkinson-plus Syndromes)

Parkinsonian syndrome in the context of other neurological diseases (e.g. Alzheimer's Disease, multiple system atrophy etc.)

Step 3: *Identification of supportive features:*

- 1. response to application of levodopa (L-Dopa)
- 2. smell test to prove olfactory dysfunction often observed in PD

Parkinson's Disease: risk factors

- Only proven risk factor of PD is age
- Genetic predisposition
- Environmental hypothesis (never proven)

Modifiable (lifestyle) factors:

- Rural living
- Exposure to pesticides and herbicides
- Well-water drinking

Consumption of coffee and cigarettes seem to lower the risk for PD

Marmosets of different age injected with neurotoxin leading to parkinsonism

Parkinson's Disease: Neuropathological features

- Depigmentation of melanin-rich neurons in Substantia Nigra pars compacta (SNpc)
 - symptoms only start after >60% of neurons
 in SNpc are degenerated
 - dying-back process: degeneration of nigrostriatal terminals?

2. Formation of intracytoplasmic inclusions consisting of aggregated proteins in nigrostriatal neurons (Lewy Bodies). Lewy Bodies are not specific for PD, but occur also in e.g. Alzheimer's disease.

Dauer and Przedborski, 2003

Parkinson's Disease: Neuropathological features

3. Moderate neurodegeneration of cells in ventral tegmental area (VTA; dopaminergic) and in the locus coeruleus (noradrenergic cells in brain stem)

Reward system, motivation, emotions, memory, Addiction, schizophrenia-like symptoms (e.g. hallucinations)

Motor control Parkinson's disease

Mesolimbocortical pathway: ventral tegmental area (VTA) to nucleus accumbens, cortex (including the insula), and hippocampus

Nigrostriatal pathway: substantia nigra to striatum (caudate and putamen)

Parkinson's Disease: Loss of Dopamine

Positron-Emission-Tomography Scan: dopaminergic metabolism

1. Misfolding and aggregation of proteins

1. Misfolding and aggregation of proteins

2. Mitochondrial dysfunction leading to oxidative stress

1. Misfolding and aggregation of proteins

2. Mitochondrial dysfunction leading to oxidative stress

Misfolding and aggregation of proteins

PD-linked genes (PARK-genes):

α-Synuclein (autosomal dominant)

Parkin (autosomal recessive)

Ubiquitin C-terminal hydrolase L1

act on ubiquitinproteasome pathway

PINK1 (Mitochondrial kinase)

e.g. neurotoxins, genetic disorders

Parkinson's Disease: Lewy Bodies

α -Synuclein

Physiological role:

- synaptic plasticity / NT release
- Mainly found in dopaminergic neurons

α –Synuclein:

- main constituent of Lewy Bodies (LB) in PD
- is modified within LB (post-translational modifications)

MPTP
Rotenone

Complex 1 inhibition

A30P/A53T \alpha-synuclein overexpression

Witochondrion

A30P/A53T \alpha-synuclein overexpression

A-synuclein oligomers

Apoptosis
Cytotoxicity

Dopamine neuron death

Cell survival

(Brundin et al., 2008)

Misfolding (Amyloidation) -> fibrils -> inclusion bodies

Synucleinopathy leading to cell death of dopaminergic neurons?

Parkinson's Disease: amyloidogenic proteins

Amyloid-β deposits in AD (senile plaques)

Tau inclusions in AD (neurofibrillary tangle)

 α -Synuclein inclusions in PD (Lewy body)

TDP-43 inclusion in ALS (TAR DNA-binding protein-43))

Spread along neuroanatomical pathways

Jucker and Walker, 2013

Experimental seeding of amyloidogenic protein aggregates:

Single unilateral injection of α -Syn PFF (preformed fibrils) into striatum.

Parkinson's Disease: α - Synucleinopathy

Single unilateral injection of α -Syn PFF (preformed fibrils) into striatum. of wildtype mice

Induction of neurodeg. Cascade

PBS 180d

- > Formation of Lewy bodies in DA cells
- > Selective degeneration of DA cells
- > Loss of function in PFF injected wt mice

Parkinson's Disease: pathogenesis and MPTP

A breakthrough for PD research

The frozen addicts: (BBC Horizon Awakening the Frozen Addicts)

- 4 young adults with severe symptoms of PD
- all 4 consumed a new form of heroin

Chronic Parkinsonism in Humans Due to a Product of Meperidine-Analog Synthesis Science, 1983

MPTP (1-Methyl-4-phenyl-1,2,3,6,-tetrahydropyridine)

Parkinson's Disease: pathogenesis and MPTP

Blood brain barrier

MPTP

MAOB 1

MPDP 7

MPP+

MPP+

Dopamine neurons

MPP+

- 1. Inhibition of respiratory chain (complex I) during oxidative phosphorylation
- -> bioenergetic failure (low ATP, high oxidative and nitrative stress)
 - -> Dopamine leaks from vesicles into cytosol -> ROS

Mice overexpressing superoxide dismutase1 (SOD1) are resistant to MPTP

- 2. Sequestration of MPP+ into vesicles (by vesicular monoamine transporter; VMAT)
- -> ratio VMAT to DAT
- 3. Interactions with negatively charged molecules in cytosol

Parkinson's Disease: MPTP as gold standard for animal research of PD

MPTP in different monkeys led to Parkinson's-like syndrome including bradykinesia, paucity of movements, rigidity AND tremor, postural instability.

MPTP-induced symptoms improve when L-DOPA is applied; oversupply of L-DOPA leads to dyskinesia (e.g. chorea)

MPTP leads to greater degeneration of neurons in putamen than of dopaminergic cell terminals in caudate MPTP leads to greater cell loss in SNpc than in VTA.

MPTP leads to greater damage in melanin-rich dopaminergic cells

MPTP leads to similar protein inclusions as seen with Lewy Bodies in human PD

mimics human PD

Gold standard for behavioral, pharmacological and pathological model

Striatum (caudate and putamen)

- Major input relay of basal ganglia
- Input nearly from all cortical areas and from dopaminergic SNpc fibers
- Striatum sends direct inhibitory output to GPi
 - Direct striatopallidal pathway
- Striatum sends indirect inhibitory output to GPe
 - Indirect striatopallidal pathway

Subthalamic nucleus (STN)

- The STN receives excitatory input from the frontal cortex and inhibitory input from the GPe
- Excitatory output to GPi

Substantia Nigra pars compacta (SNpc)

- Sends dopaminergic input to striatum and receives gabaergic input from striatum (reciprocal connections)
- D1 receptor family expressed on striatal neurons projecting to

the direct striatopallidal pathway

 D2 receptor family expressed on striatal cells projecting to indirect striatopallidal pathway

Parkinson's Disease: Treatments

Levodopa, L-DOPA

Arvid Carlsson

Arvid Carlsson discovered dopamine in 1958 and measured peak values in the basal ganglia system

L-Phenylalanine 6-BH, → Phenylalanine hydroxylase L-Tyrosine 6-BH₄ → Tyrosine hydroxylase L-Dopa L-Aromatic amino acid Pyridoxal phosphate → Dopamine decarboxylase Ascorbate → Dopamine-B-hydroxylase Norepinephrine Phenylethanolamine-S-Adenosyl methionine -N-methyltransferase

Epinephrine

- before the development of dopaminergic treatments, PD led to severe disability within < 10 years
- Effect of dopaminergic treatment on long-term outcome of PD is unknown
- PD is not lethal: life expectancy is approx. 10 years shorter with PD
- Death in late progressed PD is caused by secondary complications (pneumonia, thrombosis etc.).

Parkinson's Disease: L-DOPA

L-DOPA is often transiently efficient and can induce severe dyskinesia when chronically applied

Dyskinesia: involuntary movements

PD PD with L-DOPA Frontal cortex Frontal cortex Striatum Striatum L-DOPA GPe **¹** GPi GPe GPi Substantia nigra Substantia nigra Thalamus STN STN Thalamus 0 Reduced Involuntary voluntary movement movement

Parkinson's Disease: Deep Brain Stimulation (DBS)

Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson's disease

Alessandro Stefani,^{I,2} Andres M. Lozano,⁶ Antonella Peppe,² Paolo Stanzione,^{I,2} Salvatore Galati,^I Domenicantonio Tropepi,^I Mariangela Pierantozzi,^I Livia Brusa,⁴ Eugenio Scarnati³ and Paolo Mazzone⁵

Parkinson's Disease: Deep Brain Stimulation (DBS)

Parkinson's Disease: animal research using optogenetics

Stimulation and inhibition of **subthalamic nucleus (STN)**:

PD condition Cortex Putamen SNc GPe) STN GPi **Brainstem**

unilateral 6-OHDA injection

channelrhodopsin-2

Blue Light www...

extracellular

intracellular

Figure 2.

Action Potentials

Thy1::ChR2 STN Behavior

HFS: inactivation

LFS: activation

Stimulation of D1- (direct pathway) and D2-postivive (indirect pathway) striatal neurons

Parkinson's Disease: future PD treatments?

So far, no treatment can change the natural course of the disease once it has started

Adenosine A2a Receptor Agonists

Transcranial magnetic stimulation

mGluR5 modulators

Cell replacement

Gene therapies

