HMMA307

Modèles linéaires avancés

Cours: Joseph Salmon

Scribes: Vitus Kirchberger, Samuel Valiquette et Arielle Gantelet

1 Anova (Analyse of variance)

Exemples

Rendement

FIGURE 1 – todo improve use subfigure + sorties graphiques du notebook (en pdf)

- $\bullet\,$ Nombre de modalités : I .
- \bullet Nombre total d'observations : n .
- $\bullet\,$ Nombre d'observations de la ie modalité : n_i .

Si on a I modalités, le nombre d'observations vaut $n=n_1+\cdots+n_I$. Le modèle s'écrit alors :

$$y_{i,j} = \mu_i^* + \varepsilon_{i,j} , \qquad (1)$$

avec $\varepsilon_{i,j} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$ et $Cov(\varepsilon_{i,j}, \varepsilon_{i'j'}) = \delta_{ii'}\delta_{jj'}\sigma^2$.

HMMA307

Ici la quantité $y_{i,j}$ est la j^e observation de la i^e modalité. La notation $\delta_{ii'}$ représente le symbole de Kronecker, c'est-à-dire

$$\delta_{ii'} = \begin{cases} 1 & \text{si } i = i', \\ 0 & \text{sinon.} \end{cases}$$
 (2)

On note la moyenne globale des observations : $\overline{y}_n = \frac{1}{n} \sum_{i=1}^{I} \sum_{j=1}^{n_i} y_{i,j}$, et pour tout $i \in [\![1,I]\!]$: on note la moyenne selon les modalités par $\overline{y}_{i,:} = \frac{1}{n_i} \sum_{j=1}^{n_i} y_{i,j}$.

Il est commun d'écrire le modèle comme :

$$\mu_i^* = \underbrace{\mu^*}_{\text{effet moyen}} + \underbrace{\alpha_i^*}_{\text{effet spécifique}} \tag{3}$$

Remarque 1.1. Si l'on dispose d'estimateurs de μ^* et α_i^* notés $\hat{\mu}$ et $\hat{\alpha}_i$, alors un estimateur de μ_i^* est $\hat{\mu}_i = \hat{\alpha}_i + \hat{\mu}$. De plus, $\hat{\mu}_i$ est alors la prédiction du niveau d'expression de la modalité i. Au sens du risque quadratique, l'estimateur $\hat{\mu}_i = \overline{y}_{i,:}$ est le meilleur estimateur possible :

$$\underset{(\mu_1,\dots,\mu_I)\in\mathbb{R}^I}{\arg\min} \sum_{i=1}^I \sum_{j=1}^{n_i} (y_{i,j} - \mu_i)^2 = \begin{pmatrix} \hat{\mu}_1 \\ \vdots \\ \hat{\mu}_I \end{pmatrix} = \begin{pmatrix} \overline{y}_{1,:} \\ \vdots \\ \overline{y}_{I,:} \end{pmatrix}$$

On peut donc reformuler le modèle : $y_{i,j} = \mu_i^* + \varepsilon_{i,j} = \alpha_i^* + \mu^* + \varepsilon_{i,j}$

1.1 Somme des effets individuels est nulle

Hypothèse: $\sum_{i=1}^{I} \alpha_i^* = 0$, où l'on note $\alpha = (\alpha_1, \dots, \alpha_I)^{\top}$. (XXX dire pourquoi on impose cette contrainte.)

Estimateurs associés:

$$\underset{(\mu,\alpha)\in\mathbb{R}\times\mathbb{R}^{I}}{\operatorname{arg\,min}} \quad \frac{1}{2} \sum_{i=1}^{I} \sum_{j=1}^{n_{i}} (y_{i,j} - \mu - \alpha_{i})^{2}$$
s.c.
$$\sum_{i=1}^{I} \alpha_{i} = 0 .$$
(4)

Pour trouver ces estimateurs, on pose le Lagrangien suivant :

$$\mathcal{L}(\mu, \alpha, \lambda) = \frac{1}{2} \sum_{i=1}^{I} \sum_{j=1}^{n_i} (y_{i,j} - \mu - \alpha_i)^2 + \lambda \sum_{i=1}^{I} \alpha_i .$$
 (5)

Ensuite on calcule le gradient pour chaque composante à maximiser. On note que pour n'importe quelles contraintes sur α , la dérivée par rapport à μ ne dépend pas de celles-ci. Ainsi, on a :

HMMA307 3

$$\frac{\partial \mathcal{L}}{\partial \mu} = 0 \implies \sum_{i=1}^{I} \sum_{j=1}^{n_i} (\hat{\mu} + \hat{\alpha}_i - y_{i,j}) = 0$$

$$\implies \hat{\mu} \underbrace{\sum_{i=1}^{I} n_i}_{=n} + \sum_{i=1}^{I} n_i \hat{\alpha}_i - n \overline{y}_n = 0$$

$$\implies \hat{\mu} + \frac{1}{n} \sum_{i=1}^{I} n_i \hat{\alpha}_i = \overline{y}_n. \tag{6}$$

Equation (6) est utile pour ce cas et pour d'autres contraintes sur α . Maintenant, pour $i_0 \in [1, I]$ fixé, évaluons l'estimateur de α_{i_0} .

$$\frac{\partial \mathcal{L}}{\partial \alpha_{i_0}} = 0 \implies \sum_{j=1}^{n_{i_0}} (\hat{\alpha}_{i_0} + \hat{\mu} - y_{i_0,j}) + \hat{\lambda} = 0$$

$$\implies n_{i_0} (\hat{\alpha}_{i_0} + \hat{\mu} - \overline{y}_{i_0,i}) + \hat{\lambda} = 0.$$
(7)

On somme maintenant Equation (7) pour tous les $i_0 \in [1, I]$, on obtient :

$$0 = \sum_{i_0=1}^{I} n_{i_0} \left(\hat{\alpha}_{i_0} + \hat{\mu} - \overline{y}_{i_0,:} \right) + I \hat{\lambda}$$

$$0 = \sum_{i_0=1}^{I} n_{i_0} \hat{\alpha}_{i_0} + n \hat{\mu} - \sum_{i_0=1}^{I} n_{i_0} \overline{y}_{i_0,:} + I \hat{\lambda}$$

$$0 = \underbrace{\sum_{i_0=1}^{I} n_{i_0} \hat{\alpha}_{i_0}}_{\mathbf{n}} + \hat{\mu} - \underbrace{\sum_{i_0=1}^{I} n_{i_0} \overline{y}_{i_0,:}}_{\overline{y}_n} + \frac{I \hat{\lambda}}{n}$$

$$0 = \frac{I \hat{\lambda}}{n}$$

$$0 = \hat{\lambda}.$$
(8)

Ainsi, en substituant la valeur de $\hat{\lambda}$ dans Equation (7), on obtient que $\hat{\alpha}_{i_0} + \hat{\mu} = \overline{y}_{i_0}$. En sommant cette nouvelle équation et en utilisant notre contrainte, on conclut que les estimateurs vérifient :

$$\sum_{i_0=1}^{I} \hat{\alpha}_{i_0} + \sum_{i_0=1}^{I} \hat{\mu} = \sum_{i_0=1}^{I} \overline{y}_{i_0,:}$$

$$\implies \hat{\mu} = \frac{\sum_{i_0=1}^{I} \overline{y}_{i_0,:}}{I}$$

$$\implies \hat{\alpha}_{i_0} = \overline{y}_{i_0,:} - \frac{\sum_{i_0}^{I} \overline{y}_{i_0,:}}{I}.$$

HMMA3074

Ainsi, le résultat précédent est vrai pour tout $i_0 \in [1, I]$. Il est aussi important de noter que $\hat{\mu}$ est la moyenne des moyennes.

 \hat{L} : $\hat{\mu} \neq \frac{1}{n} \sum_{i=1}^{I} \sum_{j=1}^{n_i} y_{i,j}$ quand il existe $i, i' : n_i \neq n_{i'}$ (classes déséquilibrées).

La somme pondérée des effets individuels est nulle

Hypothèse : $\sum_{i_0=1}^{I} n_{i_0} \alpha_{i_0} = 0$.

Estimateurs associés:

$$\underset{(\mu,\alpha)\in\mathbb{R}\times\mathbb{R}^{I}}{\operatorname{arg\,min}} \quad \frac{1}{2} \sum_{i=1}^{I} \sum_{j=1}^{n_{i}} (y_{i,j} - \mu - \alpha_{i})^{2}$$
s.c.
$$\sum_{i_{0}=1}^{I} n_{i_{0}} \alpha_{i_{0}} = 0 .$$
(9)

Le Lagrangien est pour ce problème :

$$\mathcal{L}(\mu, \alpha, \lambda) = \frac{1}{2} \sum_{i=1}^{I} \sum_{j=1}^{n_i} (y_{i,j} - \mu - \alpha_i)^2 + \lambda \sum_{i_0=1}^{I} n_{i_0} \alpha_{i_0} .$$
 (10)

Comme mentionné précédemment, l'équation (6) est encore valable pour ce cas. Il suffit donc de regarder pour α_{i_0} avec $i_0 \in \llbracket 1, I \rrbracket$ fixé.

$$\frac{\partial \mathcal{L}}{\partial \alpha_{i_0}} = 0$$

$$\sum_{j=1}^{n_{i_0}} (\hat{\alpha}_{i_0} + \hat{\mu} - y_{i_0,j}) + \hat{\lambda} n_{i_0} = 0$$

$$n_{i_0} \hat{\alpha}_{i_0} + n_{i_0} \hat{\mu} - n_{i_0} \overline{y}_{i_0,:} + n_{i_0} \hat{\lambda} = 0$$

$$\hat{\alpha}_{i_0} + \hat{\mu} - \overline{y}_{i_0,:} + \hat{\lambda} = 0.$$

On note que la condition (6) donne $\hat{\mu} = \overline{y}_n$ avec notre contrainte. Ainsi, de la même manière que précédemment, en sommant (8) sur les k on obtient :

$$\hat{\lambda} = 0.$$

En substituant les valeurs obtenues dans (8), on conclut que nos estimateurs sont :

$$\begin{split} & \underline{\text{Condition}}: \hat{\alpha}_{i_0} + \hat{\mu} = \overline{y}_{i_0,:}. \\ \text{Ainsi, on obtient}: \hat{\mu} = \overline{y}_n, \\ & \hat{\alpha_{i_0}} = \overline{y}_{i_0,:} - \overline{y}_n. \end{split}$$

Remarque 1.2. L'estimateur de prédiction reste le même : $\hat{\mu}_{i_0} = \overline{y}_{i_0,:}$

Niveau de référence " $\alpha_{i_0} = 0$ " 1.3

Interprétation : On choisit un modèle i_0 comme référence.

HMMA307 5

Estimateur associé:

$$\underset{(\mu,\alpha)\in\mathbb{R}\times\mathbb{R}^{I}}{\operatorname{arg\,min}} \quad \frac{1}{2} \sum_{i=1}^{I} \sum_{j=1}^{n_{i}} (y_{i,j} - \mu - \alpha_{i})^{2}$$
s.c.
$$\alpha_{i_{0}} = 0 .$$
(11)

Le Lagrangien:

$$\mathcal{L}(\mu, \alpha, \lambda) = \frac{1}{2} \sum_{i=1}^{I} \sum_{i=1}^{n_i} (y_{i,j} - \alpha_i - \mu)^2 + \lambda \alpha_{i_0}.$$

Calcul de $\frac{\partial \mathcal{L}}{\partial \alpha_i}$ pour $i \neq i_0, \frac{\partial \mathcal{L}}{\partial \lambda}$ et $\frac{\partial \mathcal{L}}{\partial \alpha_{i_0}}$:

Tout d'abord, en repartant de Equation (6) : $\hat{\mu} + \frac{1}{n} \sum_{i=1}^{I} n_i \hat{\alpha_i} = \overline{y}_n$. On fixe $i \in [1, I]$ et $i \neq i_0$,

$$\frac{\partial \mathcal{L}}{\partial \alpha_i} = \sum_{j=1}^{n_i} (\mu + \alpha_i - y_{i,j}) . \tag{12}$$

En posant $\frac{\partial \mathcal{L}}{\partial \alpha_i} = 0$, on a $\forall i \neq i_0$:

$$\sum_{j=1}^{n_i} (n_i \hat{\alpha}_i + n_i \hat{\mu} - y_{i,j}) = 0$$

$$n_i \hat{\alpha}_i + n_i \hat{\mu} - n_i \overline{y}_{i,:} = 0$$

$$\hat{\alpha}_i + \hat{\mu} - \overline{y}_{i::} = 0 .$$
(13)

Dérivons l'expression du Lagrangien par λ :

$$\frac{\partial \mathcal{L}}{\partial \lambda} = \alpha_{i_0} \quad . \tag{14}$$

On en déduit directement que :

$$\hat{\alpha}_{i_0} = 0. \tag{15}$$

Pour $i_0 \in [1, I]$, on a:

$$\frac{\partial \mathcal{L}}{\partial \alpha_{i_0}} (\hat{\mu}, \hat{\alpha}, \hat{\lambda}) = 0$$

$$\sum_{j=1}^{n_{i_0}} (\hat{\alpha}_{i_0} + \hat{\mu} - y_{i_0,j}) + \hat{\lambda} = 0$$

$$n_{i_0} \hat{\mu} - \sum_{j=1}^{n_{i_0}} y_{i_0,j} + \hat{\lambda} = 0$$

$$\hat{\mu} = \overline{y}_{i_0:} + \frac{\hat{\lambda}}{n_0} .$$
(16)

HMMA307 6

En sommant sur $i \neq i_0$ (XXX to finish) toutes les équations de type (13) avec Equation (6), on obtient que $\hat{\lambda} = 0$.

Cela assure donc que $\hat{\mu} = \overline{y}_{i_0}$, d'après la dernière équation.

$$\overline{y}_{i_0,:} = \hat{\alpha}_{i_0} + \overline{y}_{i_0:} \implies \hat{\alpha}_{i_0} = \overline{y}_{i_0,:} - \overline{y}_{i_0:}$$
 (17)

En conclusion, les solutions sont :

$$\begin{cases}
\hat{\alpha}_{i_0} = 0, \\
\hat{\mu} = y_{i_0}, \\
\forall i \neq i_0, \quad \hat{\alpha}_i = \overline{y}_{i,:} - \overline{y}_{i_0,:}.
\end{cases}$$
(18)

où $\overline{y}_{i,:}$ représente le niveau moyen de la modalité i et $\overline{y}_{i_0:}$ représente le niveau moyen de la modalité de référence i_0

Remarque 1.3. Quid de l'estimation de σ^2 ?

$$\widehat{\sigma^2} = \frac{1}{n-I} \sum_{i=1}^{I} \sum_{j=1}^{n_i} (y_{i,j} - \overline{y}_{i,:})^2 \quad (variance \ r\'{e}siduelle) \quad . \tag{19}$$

Concernant l'estimateur du niveau de bruit on peut le voir comme : $\widehat{\sigma^2} = \frac{1}{n - rg(X)} \|y - X\hat{\beta}\|^2$,

$$avec \ X = \begin{bmatrix} \mathbbm{1}_{C_1}, \dots, \mathbbm{1}_{C_I} \end{bmatrix} \ où \ \mathbbm{1}_{C_i(j)} = \begin{cases} 1 \ si \ j \in C_i \\ 0 \ sinon \end{cases} \ , \ \hat{y} = \begin{bmatrix} \hat{\mu}_1 \\ \hat{\mu}_2 \\ \vdots \\ \hat{\mu}_I \end{bmatrix} \ et \ \mathrm{rang}(X) = I.$$