Задача 1

Пусть $|\mathbf{a}| = 4$, $|\mathbf{b}| = 2$ и угол между векторами \mathbf{a} и \mathbf{b} равен $\varphi = \pi/3$.

Найти скалярное и векторное произведения векторов **c** и **d** если

- 1) c = a 2b и d = a + 2b;
- 2) c = 2b 2a и d = a b.

Ответ:

- 1) $(\mathbf{c}, \mathbf{d}) = 0$ $\mu [\mathbf{c}, \mathbf{d}] = 4[\mathbf{a}, \mathbf{b}];$
- 2) $(\mathbf{c}, \mathbf{d}) = -24$ и $[\mathbf{c}, \mathbf{d}] = \mathbf{O}$.

Залача 2

Найти скалярное и векторное произведения векторов **a** и **b**, имеющих в декартовой прямоугольной системе координат следующие координаты:

- 1) $\mathbf{a} = \{1, 2, 0\}$ и $\mathbf{b} = \{0, 1, 2\}$;
- 2) $\mathbf{a} = \{1, -2, 1\}$ и $\mathbf{b} = \{2, 1, 2\}$.

Ответ:

- 1) $(\mathbf{a}, \mathbf{b}) = 2 \text{ } \text{и } [\mathbf{a}, \mathbf{b}] = \{4, -2, 1\};$
- 2) $(\mathbf{a}, \mathbf{b}) = 2 \text{ } \text{и } [\mathbf{a}, \mathbf{b}] = \{-5, 0, 5\}.$

Залача 3

Найти ортогональную проекцию вектора \mathbf{b} на вектор \mathbf{a} и угол между ними, если в декартовой прямоугольной системе координат $\mathbf{a} = \{1, 2\}, \ \mathbf{b} = \{-3, 4\}.$

Ответ:
$$Pr_a(\mathbf{b}) = \sqrt{5}$$
 и $cos(\varphi) = 1/\sqrt{5}$.

Задача 4

Найти площадь треугольника ABC, координаты вершин которого в декартовой прямоугольной системе координат равны A(1,1,1), B(2,2,1) и C(0,1,3).

Otbet: $S_{ABC} = 3/2$.

Задача 5

Векторы **a** , **b** и **c** в декартовой прямоугольной системе координат имеют координаты: $\mathbf{a} = \{1, 2, 3\}$, $\mathbf{b} = \{4, 5, 6\}$ и $\mathbf{c} = \{7, 8, 9\}$. Определить ориентацию тройки векторов **abc** и вычислить V — объём параллелепипеда, построенного на приведённых к общему началу векторах \mathbf{a} , \mathbf{b} и \mathbf{c} .

Ответ: V = 0, векторы **a**, **b** и **c** компланарны, поэтому ориентация тройки векторов **abc** не определена.

Задача 6

Доказать свойства скалярного, векторного и смешанного произведений векторов:

- 1) $(\mathbf{a}, \mathbf{b}) = 0$ тогда и только тогда, когда векторы \mathbf{a} и \mathbf{b} ортогональны;
- 2) $(\mathbf{a}, \mathbf{b}) > 0$ тогда и только тогда, когда угол φ между векторами \mathbf{a} и \mathbf{b} острый; $(\mathbf{a}, \mathbf{b}) < 0$ тогда и только тогда, когда угол φ между векторами \mathbf{a} и \mathbf{b} тупой;
- 3) (a,b) = (b,a);
- 4) $(\lambda \mathbf{a}, \mathbf{b}) = \lambda(\mathbf{a}, \mathbf{b})$ и $(\mathbf{a}, \lambda \mathbf{b}) = \lambda(\mathbf{a}, \mathbf{b})$;
- 5) (a+b,c) = (a,c)+(b,c) u(a,b+c) = (a,b)+(a,c);
- 6) Для $\forall a \neq 0$ (a,a) > 0 и (a,a) = 0 тогда и только тогда, когда a = 0;
- 7) [a,a] = 0 для любого вектора a;
- 8) $[\lambda \mathbf{a}, \mathbf{b}] = \lambda [\mathbf{a}, \mathbf{b}]$ и $[\mathbf{a}, \lambda \mathbf{b}] = \lambda [\mathbf{a}, \mathbf{b}]$;
- 9) [a+b,c] = [a,c] + [b,c] $\mathbb{I}[a,b+c] = [a,b] + [a,c]$;
- 10) ($[\mathbf{a}, \mathbf{b}], \mathbf{c}$) = 0 тогда и только тогда, когда векторы \mathbf{a} , \mathbf{b} и \mathbf{c} компланарны.

15.09.2014 20:30:28 стр. 1 из 2

Задача 7 (*)

Доказать, что площадь треугольника с вершинами $A(x_A,y_A)$, $B(x_B,y_B)$ и $C(x_C,y_C)$

может быть вычислена по формуле
$$S_{ABC} = \frac{1}{2} \begin{vmatrix} x_B - x_A & y_B - y_A \\ x_C - x_A & y_C - y_A \end{vmatrix}$$
 .

Задача 8 (*)

Доказать, что каковы бы ни были три вектора ${\bf a}$, ${\bf b}$, ${\bf c}$ и числа α , β и γ , векторы ${\bf f}=\alpha {\bf a}-\beta {\bf b}$, ${\bf g}=\gamma {\bf b}-\alpha {\bf c}$ и ${\bf h}=\beta {\bf c}-\gamma {\bf a}$ являются линейно зависимыми.

15.09.2014 20:30:28 стр. 2 из 2