Logika dla informatyków

Egzamin końcowy (pierwsza część)

10 lutego 2022 czas pisania: 120 minut

Zadanie 1 (3 punkty). Czy dla wszystkich takich formuł φ i ψ , że formuła $\varphi \Rightarrow \psi$ jest spełnialna a formuła ψ sprzeczna, formuła $\neg \varphi$ jest spełnialna? Uzasadnij odpowiedź.

TAK. Wystarczy pokazać, że wartościowanie spełniające $\varphi \Rightarrow \psi$ spełnia także $\neg \varphi$. [...]

Zadanie 2 (2 punkty). Niech $\varphi = (p \land q \land r \land s \land t \land u \land v \land w \land x \land y \land z) \lor \neg (p \land q \land r \land s \land t \land u \land v \land w \land x \land y \land z)$. Jeśli formuła φ jest tautologią, to w prostokąt poniżej wpisz dowód tego faktu. W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

Weźmy dowolne wartościowanie σ . Z lematu o podstawianiu mamy $\hat{\sigma}(\varphi) = \hat{\sigma'}(p \vee \neg p)$, gdzie $\sigma'(p) = \hat{\sigma}(p \wedge q \wedge r \wedge s \wedge t \wedge u \wedge v \wedge w \wedge x \wedge y \wedge z)$. Ponieważ $p \vee \neg p$ jest tautologią, $\hat{\sigma'}(p \vee \neg p) = \mathsf{T}$, a stąd $\hat{\sigma}(\varphi) = \mathsf{T}$. Zatem φ jest tautologią.

Zadanie 3 (2 punkty). Jeżeli poniższe zbiory spójników są zupełne, to w odpowiedni prostokąt wpisz słowo TAK. W przeciwnym razie wpisz w prostokąt przykład formuły, która nie jest równoważna żadnej formule zbudowanej ze zmiennych zdaniowych i spójników z tego zbioru.

$$\{\neg\} \qquad \qquad p \lor q \qquad \qquad \{\Rightarrow,\neg\} \qquad \qquad \text{TAK} \qquad \qquad \{\Rightarrow\} \qquad \qquad \bot$$

Zadanie 4 (2 punkty). Czy formuła $\neg p$ jest logiczną konsekwencją zbioru $A = \{q \lor r, q \Rightarrow \neg p, \neg r\}$? Uzasadnij odpowiedź.

Tak. Weźmy dowolne wartościowanie σ spełniające zbiór A. Wtedy $\sigma(r)=\mathsf{F},$ zatem $\sigma(q)=\mathsf{T}$ i stąd $\hat{\sigma}(\neg p)=\mathsf{T}.$

CNF: $(\neg p \lor \neg q) \land (\neg p \lor \neg r)$ DNF:

Zadanie 6 (2 punkty). Jeśli zbiór klauzul $\{p \lor \neg q, q \lor r, p \lor \neg r, \neg p \lor q, \neg q \lor \neg p\}$ jest sprzeczny, to w prostokąt poniżej wpisz rezolucyjny dowód sprzeczności tego zbioru. W przeciwnym przypadku wpisz wartościowanie spełniające ten zbiór.

Zadanie 7 (3 punkty). W tym zadaniu wartościowanie $\sigma: V \to \{\mathsf{T},\mathsf{F}\}$ nazwiemy jednostkowym jeśli $\sigma(v) = \mathsf{T}$ dla dokładnie jednej zmiennej $v \in V$. Uzupełnij poniższy tekst tak, aby otrzymać poprawny dowód następującego twierdzenia: Każda formula zbudowana ze zmiennych zdaniowych ze zbioru V i spój $nika \Rightarrow jest \ spełniona \ przez \ jednostkowe \ wartościowanie.$

Dowód. Dowód przeprowadzimy przez indukcję strukturalną. Niech $\mathcal F$ oznacza zbiór formuł zbudowanych ze zmiennych zdaniowych ze zbioru V i spójnika \Rightarrow . Skorzystamy z następującej zasady indukcji. Jeśli zbiór X spełnia warunki

- dla wszystkich oraz
- $\varphi \Rightarrow \psi \in X$ dla wszystkich $\varphi, \psi \in X$

to X zawiera wszystkie formuły ze zbioru \mathcal{F} .

 $\{\varphi \mid \text{istnieje jednostkowe wartościowanie } \sigma \text{ spełniające } \varphi\}$ Niech X =

 $Podstawa\ indukcji$: Weźmy dowolne $p \in V$. Niech $\sigma: V \to \{\mathsf{T},\mathsf{F}\}$ będzie zdefiniowane wzorem

Wtedy σ jest jednostkowym wartościowaniem spełniającym p, a zatem

 $p \in X$

Krok indukcyjny: Weźmy dowolne

 $\varphi, \psi \in X$

Z założenia indukcyjnego istnieje takie jednost-

kowe wartościowanie σ , że

Wtedy

, a zatem $\sigma \models \varphi \Rightarrow \psi$

 $\varphi \Rightarrow \psi \in X$

Z zasady indukcji X zawiera wszystkie formuły ze zbioru \mathcal{F} , czyli dla każdej formuły φ zbudowanej ze zmiennych zdaniowych ze zbioru V i spójnika \Rightarrow istnieje jednostkowe wartościowanie spełniające φ .

Numer indeksu:

WZORCOWY

Zadanie 8 (1 punkt). W prostokąt poniżej wpisz formułę logiki pierwszego rzędu, która interpretowana w zbiorze liczb naturalnych mówi, że liczby x i y mają wspólny dzielnik większy od 5. W rozwiązaniu możesz korzystać z symboli mnożenia \cdot , dodawania +, równości =, mniejszości <, większości >, zmiennych oraz stałych 0,1,2,3,4 i 5.

$$\exists d\exists k\exists l\ (d>5) \land (x=k\cdot d) \land (y=l\cdot d).$$

Zadanie 9 (2 punkty). Jeśli formuła $(\forall x \forall y \ p(x,y)) \Rightarrow (\forall x \exists y \ p(x,y))$ jest tautologią logiki pierwszego rzędu, to w prostokąt poniżej wpisz dowód tej tautologii w systemie naturalnej dedukcji. W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

Zbyt czasochłonne by złożyć w LaTeXu.

Zadanie 10 (1 punkt). Dla $r \in \mathbb{R}$ oraz $n \in \mathbb{N}$ niech $A_{r,n} = \{x \in \mathbb{R} \mid r \leq x \land x < n\}$. W prostokąty poniżej wpisz, odpowiednio, najmniejszy i największy element zbioru X zdefiniowanego poniżej lub słowo "BRAK", jeśli odpowiedniego elementu nie ma.

$$X = \bigcap_{r>42} \bigcup_{n=2022}^{\infty} A_{r,n}$$

$$\min X = \boxed{ BRAK}$$

 $\max X = \boxed{ \quad \quad \text{BRAK} }$

Zadanie 11 (2 punkty). Niech $A = \{0, 1, 2, 3\}$. Rozważmy relację binarną $R \subseteq A \times A$ zdefiniowaną wzorem $R = \{\langle 0, 0 \rangle, \langle 0, 2 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 2, 3 \rangle\}$. W prostokąt poniżej wpisz wyliczoną wartość przechodniego domknięcia relacji R.

$$\{\langle 0,0\rangle, \langle 0,1\rangle, \langle 0,2\rangle, \langle 0,3\rangle, \langle 1,1\rangle, \langle 1,2\rangle, \langle 1,3\rangle, \langle 2,1\rangle, \langle 2,2\rangle, \langle 2,3\rangle\}$$

Zadanie 12 (1 punkt). Jeśli istnieje taka funkcja $f: \mathbb{N} \to \mathbb{N}$, że $|f^{-1}[\{n\}]| = 2022$ dla wszystkich $n \in \mathbb{N}$, to w prostokąt poniżej wpisz dowolną taką funkcję. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taka funkcja nie istnieje.

$$f(n) = \lfloor n/2022 \rfloor$$

Zadanie 13 (1 punkt). Jeśli istnieje taka funkcja $f: \mathbb{N} \to \mathbb{N}$, że $|f[\{n\}]| = 2022$ dla wszystkich $n \in \mathbb{N}$, to w prostokąt poniżej wpisz dowolną taką funkcję. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taka funkcja nie istnieje.

Nie istnieje. Obraz zbioru jednoelementowego przez dowolną funkcję jest jednoelementowy.

Zadanie 14 (1 punkt). Rozważmy zbiory barów B i soków S oraz relacje $Podajq \subseteq B \times S \times \mathbb{R}$ informujące odpowiednio o tym jakie jakie bary podają jakie soki w jakiej cenie. Niech Jagódka oznacza jeden z barów, a jagodowy jeden z podawanych w tym barze soków. W prostokąt poniżej wpisz taką formulę φ , że $\{b \in B \mid \varphi\}$ oznacza zbiór barów, w których wszystkie podawane soki są tańsze od soku jagodowy podawanego w barze Jagódka.

 $\exists c Podaja(\mathsf{Jag\'odka}, \mathsf{jagodowy}, c) \land \forall s \forall c' (Podaja(b, s, c') \Rightarrow c' < c)$

Zadanie 15 (2 punkty). Jeśli istnieje bijekcja $F: \mathbb{N}^{\mathbb{Z} \times \mathbb{Q}} \to (\mathbb{N}^{\mathbb{Z}})^{\mathbb{Q}}$, to w prostokąt poniżej wpisz dowolną taką bijekcję. W przeciwnym razie wpisz uzasadnienie, dlaczego taka bijekcja nie istnieje.

dla $f \in \mathbb{N}^{\mathbb{Z} \times \mathbb{Q}}$ definiujemy $F(f) : \mathbb{Q} \to \mathbb{N}^{\mathbb{Z}}$ wzorem $(F(f))(q) : \mathbb{Z} \to \mathbb{N}, ((F(f))(q))(z) = f(z,q)$

Zadanie 16 (1 punkt). W tym zadaniu relację binarną R na niepustym zbiorze A nazwiemy liniowa jeśli dla wszystkich $a,b \in A$ spełniony jest warunek $\langle a,b \rangle \in R \vee \langle b,a \rangle \in R$. Jeśli istnieją dwie liniowe relacje równoważności R_1 i R_2 , których zbiory ilorazowe nie są równoliczne, to w prostokąt poniżej wpisz dowolne dwie takie relacje. W przeciwnym przypadku wpisz moc zbioru ilorazowego A/R.

Numer indeksu:

WZORCOWY

Zadanie 17 (1 punkt). Rozważmy relację równoważności R na zbiorze $\{0,1,2,3,4,5\}$ zadaną wzorem $\langle x,y\rangle\in R \iff 4|x^2-y^2$. W prostokąt poniżej wpisz wszystkie elementy zbioru ilorazowego $\{0,1,2,3,4,5\}/_R$

$$\{0,2,4\},\,\{1,3,5\}$$

Zadanie 18 (1 punkt). Wpisz w puste pola poniższej tabelki moce podanych zbiorów.

$(\mathbb{R} \times \mathbb{Z})^{\mathbb{N}}$	$\mathcal{P}(\{0,1,2\}) \times (\{3\}^{\{4,5,6\}})$	$\mathbb{Q}\setminus\mathbb{N}$	$\mathbb{Q} \setminus \mathbb{R}$	$\{2022\} \cap (\mathbb{R} \setminus \mathbb{N})$	$\mathbb{R}^{\{\emptyset\}}$	$\mathbb{N} \times \mathbb{Z} \times \mathbb{Q}$
c	8	ℵ₀	0	0	c	ℵ ₀

Zadanie 19 (1 punkt). Rozważmy dwa równoliczne zbiory A i B. Jeśli z założenia, że $f:A\to B$ jest różnowartościowa wynika, że f jest "na", to w prostokąt poniżej wpisz dowód tego faktu. W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

$$A = \mathbb{N}, \ B = \mathbb{Z}, \ f(n) = n$$

Zadanie 20 (1 punkt). Jeśli istnieje taki trójelementowy zbiór uporządkowany, w którym są dwa elementy minimalne i dwa maksymalne, to w prostokąt poniżej wpisz dowolny przykład takiego zbioru uporządkowanego. W przeciwnym przypadku wpisz dowód, że taki zbiór nie istnieje.

```
\langle \{2,4,5\}, | 
angle
```

Zadanie 21 (2 punkty). Rozważmy porządek \sqsubseteq na zbiorze $\mathbb{N} \times \mathbb{N}$ zdefiniowany wzorem

$$\langle m_1, n_1 \rangle \sqsubseteq \langle m_2, n_2 \rangle \iff m_1 \le m_2 \land n_1 \le n_2.$$

Niech X będzie niepustym podzbiorem zbioru $\mathbb{N} \times \mathbb{N}$. W prostokąty poniżej wpisz wzory definiujące liczby m_0 i n_0 tak, aby para $\langle m_0, n_0 \rangle$ była minimalnym elementem zbioru X. Jeśli S jest niepustym podzbiorem \mathbb{N} , możesz użyć notacji min S do oznaczenia najmniejszego elementu zbioru S.

$$m_0 = \boxed{ \min\{m \in \mathbb{N} \mid \exists n \ \langle m, n \rangle \in X\} }$$
 $n_0 = \boxed{ \min\{n \in \mathbb{N} \mid \langle m_0, n \rangle \in X\} }$

Zadanie 22 (2 punkty). Jeśli porządek $\langle \mathbb{Z} \times \{0,1\}, \leq_{lex} \rangle$ jest izomorficzny z $\langle \mathbb{Z}, \leq \rangle$ to w prostokąt poniżej wpisz odpowiedni izomorfizm. W przeciwnym przypadku wpisz uzasadnienie, dlaczego izomorfizm nie istnieje.

$$f: \mathbb{Z} \times \{0,1\} \to \mathbb{Z}, \, f(n,x) = 2n + x$$

Zadanie 23 (2 punkty). Czy porządek $\langle \mathbb{Z} \times \mathbb{Z}, \leq_{lex} \rangle$ jest regularny? Uzasadnij odpowiedź.

Nie. Zbiór $\{\langle -n, -n \rangle \mid n \in \mathbb{N} \}$ nie ma elementu minimalnego.

Zadanie 24 (2 punkty). W tym zadaniu f,g są symbolami funkcyjnymi, a jest symbolem stałej, natomiast x,y i z są zmiennymi. W prostokąty obok tych spośród podanych par termów, które są unifikowalne, wpisz najogólniejsze unifikatory tych termów. W prostokąty obok termów, które nie są unifikowalne, wpisz słowo "NIE".

$$f(x,a) \stackrel{?}{=} f(f(y,a),z)$$
 $[x/f(y,a), z/a]$

$$f(g(x,x),x) \stackrel{?}{=} f(y,a)$$
 $[x/a, y/g(a,a)]$

$$f(z,g(x,x)) \stackrel{?}{=} f(a,a)$$
 NIE

$$f(x,g(x,y)) \stackrel{?}{=} f(f(x,x),y)$$

NIE

	Numer indeksu:	WZORCOWY
Oddane zadania:	·	

Logika dla informatyków

Egzamin końcowy (część druga)

6 lutego 2020 czas pisania: 120 minut

Każde z poniższych zadań będzie oceniane w skali od -4 do 20 punktów. 1

Zadanie 25. Udowodnij, że dla każdej spełnialnej formuły φ istnieje takie podstawienie ρ , że $\varphi \rho$ jest tautologią.

Zadanie 26. Rozważmy relację równoważności \approx na zbiorze $\mathcal{P}(\mathbb{N})$ zdefiniowaną wzorem

$$X \approx Y \iff \exists m \in \mathbb{N} \ \forall n > m \ (n \in X \Leftrightarrow n \in Y).$$

Wyznacz moc zbioru ilorazowego $\mathcal{P}(\mathbb{N})/_{\approx}$.

 $Wskaz \acute{o}wka$. Zbiór $\mathbb N$ można podzielić na nieskończenie wiele nieskończonych zbiorów rozłącznych. Rozważ sumy tych zbiorów.

Zadanie 27. Dla funkcji $f:\mathbb{N}\to\mathbb{N}$ niech $R_f\subseteq\mathbb{N}\times\mathbb{N}$ będzie relacją równoważności zdefiniowaną wzorem

$$R_f = \{ \langle m, n \rangle \mid f(m) = f(n) \}.$$

Udowodnij, że każda relacja równoważności na zbiorze $\mathbb N$ jest postaci R_f dla pewnej funkcji f.

 $^{^1{\}rm Algorytm}$ oceniania oddanych zadań jest następujący: najpierw zadanie jest ocenione w skali od 0 do 24 punktów, a następnie od wyniku zostają odjęte 4 punkty. Osoba, która nie oddaje rozwiązania zadania otrzymuje za to zadanie 0 punktów.