Exercício 1

1.A.1

Resolução.

Parâmetros do Decripto

- 1. 64 é o número de bits em cada variável (i.e., cada posição de memória);
- 2. 12 é o número de iterações (rounds);
- 3. 8 é o número de bytes na chave.

1.A.2

Resolução.

Operações básicas:

- 1. $v \boxplus u$ é a soma dos inteiros v,u de 64 bits, resultando um valor de 64 bits (*i.e.*, soma mod 264);
- 2. $v \oplus u$ é o ou-exclusivo (XOR) de v,u de 64 bits, resultando um valor de 64 bits;
- 3. $v \gg t$ é o deslocamento circular (i.e., rotação) de t
 posições para a direita dos bits em v.

1.A.3

Resolução.

Algoritmo Decripto

Entrada: chave de 8 bytes, texto criptografado de 2×64 bits (A, B);

Saída: legível de 2×64 bits (A, B);

- 1. Calcular $2 \times 12 + 2$ subchaves $K_0, K_1, K_2, ... K_{2 \times 12 + 1}$ (* Usando o algoritmo dado *)
- 2. **para** $i = K_{2 \times 12+1}, K_{2 \times 12}, K_{2 \times 11+1}, ... K_0$: Achar K_i^{-1} , tal que $K_i \boxplus K_i^{-1} == 0$ $\overline{K_i} \leftarrow K_i^{-1}$

3. para
$$j=12,11,10,...1$$
 faça: $B \leftarrow ((A \boxplus \overline{K_{2j+1}}) \gg A) \oplus A; A \leftarrow ((A \boxplus \overline{K_{2j}}) \gg B) \oplus B$

4.
$$B \leftarrow B \boxplus \overline{K_1}; A \leftarrow A \boxplus \overline{K_0}$$

1.B

Sendo (A', B') os textos ilegíveis, (A, B) os textos legíveis e $overlineK_0$, $overlineK_1$, $overlineK_2$, ... $overlineK_3$ as subchaves complementares às subchaves $K_0, K_1, K_2, ...K_{2\times 12+1}$ em relação à \boxplus : Provando uma iteração:

1.
$$B' = ((B \oplus A) \ll A) \boxplus K_{2j+1}$$

2.
$$B' \boxplus \overline{K_{2_i+1}} = (((B \oplus A) \ll A) \boxplus K_{2_i+1}) \boxplus \overline{K_{2_i+1}}$$

3.
$$B' \boxplus \overline{K_{2_j+1}} = ((B \oplus A) \ll A)$$

4.
$$(B' \boxplus \overline{K_{2_j+1}}) \gg A = ((B \oplus A) \ll A) \gg A$$

5.
$$(B' \boxplus \overline{K_{2j+1}}) \gg A = (B \oplus A)$$

6.
$$((B' \boxplus \overline{K_{2_j+1}}) \gg A) \oplus A = (B \oplus A) \oplus A$$

7.
$$((B' \boxplus \overline{K_{2_i+1}}) \gg A) \oplus A = B$$

1.
$$A' = ((A \oplus B) \ll B) \boxplus K_{2j}$$

2.
$$A' \boxplus \overline{K_{2j}} = (((A \oplus B) \ll B) \boxplus K_{2j}) \boxplus \overline{K_{2j}}$$

3.
$$A' \boxplus \overline{K_{2j}} = ((A \oplus B) \ll B)$$

4.
$$(A' \boxplus \overline{K_{2j}}) \gg B = ((A \oplus B) \ll B) \gg B$$

5.
$$(A' \boxplus \overline{K_{2j}}) \gg B = (A \oplus B)$$

6.
$$((A' \boxplus \overline{K_{2j}}) \gg B) \oplus B = (A \oplus B) \oplus B$$

7.
$$((A' \boxplus \overline{K_{2i}}) \gg B) \oplus B = A$$

A operação inicial antes das iterações:

1.
$$B' = B \boxplus K_1$$

2.
$$(B' \boxplus \overline{K_1}) = B \boxplus K_1 \boxplus \overline{K_1})$$

3.
$$(B' \boxplus \overline{K_1}) = B \boxplus K_1$$

1.
$$A' = A \boxplus K_0$$

2.
$$(A' \boxplus \overline{K_0}) = A \boxplus K_0 \boxplus \overline{K_0}$$

3.
$$(A' \boxplus \overline{K_0}) = B \boxplus K_0$$

2

2.1

Calcular T para $p=7,\,S=2,$ e executar o Crip para k=3,x=2,obtendo (y,z)

Resolução.

$$T = 2, y = 6, z = 2$$

2.2

Justifique porque k=0, e k=1 devem ser evitados no Passo (1) do Crip.

Resolução.

K=0 deve ser evitado, pois $z=xT^0$ então z=x o texto vai ser enviado sem estar criptografado.

K=1 deve ser evitado, pois T é público e é fácil descobrir T^{-1} e consequentemente descobrir x.

2.3

Resolução.

Algoritmo Decriptografia do Crip

Entrada (y, z) criptografados da alice

1.
$$y \leftarrow y^{-1}$$

2.
$$y \leftarrow y^S$$

3.
$$x \leftarrow z \times y$$

4. A saída é o valor de x

2.4

Resolução.

Executando o algoritmo obtenho x=2.

2.5

Resolução.

- 1. $z \times y^- S \mod p$
- 2. $xT^k \times y^- S \mod p$
- 3. $x(g^S)^k \times y^- S \mod p$
- 4. $x(g^S)^k \times (g^k)^- S \mod p$
- 5. $x(g^S)^k \times g^{-kS} \mod p$
- 6. $x(g^{Sk}) \times g^{-kS} \mod p$
- 7. $xg^{Sk} \times g^{-kS} \mod p$
- 8. $x \mod p$

2.6

Resolução.

Ele é mais rápido, pois ele consiste em uma exponenciação e uma inversa, enquanto a criptogrfia consiste em duas exponenciações.

2.7

Resolução.

A definição do problema que faz essa criptografia computacionalmente segura é o Problema do Logaritmo Discreto. Se esse problema fosse de fácil solução o atacante poderia descobrir o valor de k e assim descobrir o valor de T^k e descobrir x com a equação $z(T^-k)$.

2.8

Resolução.

A razão de existir o NONCE k no Passo 1 é que caso o atacante consiga x_1 e x_2 que foram criptografados com um mesmo k, é possível obter x_2 usando x_1 na equação:

 $\frac{z_1}{z_2} = \frac{x_1}{x_2}$

2.9

2.10

Resolução.

Autenticação do Rementente de Y é o destinatário ter a certeza de quem foi que mandou a mensagem. Ela não garante a autenticação do remetente, pois qualquer um pode forjar e se passar por Beto.

2.11

Resolução.

Autenticação do Destinatário de Y é apenas a pessoa que recebeu a informação consiga ler a mensagem. Ela garante a Autenticação do Destinatário pois, a chave secreta S é conhecida apenas pela Alice.

2.12

Resolução.