Part E: Regression Discontinuity

E1: RDD Basics

Kirill Borusyak

ARE 213 Applied Econometrics

UC Berkeley, Fall 2023

E1 Outline

- RDD idea and identification
- 2 Visualization, estimation, and inference
- Falsification tests
- A cautionary tale

Reading: Cattaneo, Idrobo, Titiunik ("Practical introduction: Foundations" 2019)

• Lit.review: Cattaneo and Titiunik (Annual Review of Economics 2022)

For code in Stata, R, and Python, see https://rdpackages.github.io/

Setting

Sharp regression discontinuity design involves:

- Scalar continuous score (a.k.a. running variable, forcing variable) X_i
- Scalar **cutoff** c (with non-zero density of X_i on both sides)
- Binary treatment $D_i = \mathbf{1} [X_i \geq c]$
 - Fully determined by the score, no discretion
 - Rule is discontinuous in X_i at c
- Continuity of (expected) potential outcomes $\mathbb{E}\left[Y_i(0)\mid X_i\right], \mathbb{E}\left[Y_i(1)\mid X_i\right]$ at $X_i=c$
 - ▶ No other determinant of Y_i jumps at $X_i = c$
 - Score cannot be precisely (and endogenously) manipulated

Identification

Then
$$\lim_{x\downarrow c} \mathbb{E}[Y_i \mid X_i = x] - \lim_{x\uparrow c} \mathbb{E}[Y_i \mid X_i = x] = \mathbb{E}[Y_i(1) - Y_i(0) \mid X_i = c]$$

• Discontinuity of regression $\mathbb{E}[Y_i \mid X_i]$ at c identifies a local causal parameter

(Cattaneo and Titiunik 2019, Figure 2)

3

Examples

- Effects of financial aid on college enrollment (van der Klaauw 2002)
 - Score $X_i = \omega_1 SAT_i + \omega_2 GPA_i$
- Effects of class size on educational achievement (Angrist and Lavy 1999)
 - $X_i = \text{number of students in a school cohort}$
 - ▶ "Maimonides rule": max class size in Israel = 40; with $X_i = 41$ classes are small

4

Examples (2)

- Incumbency advantage in a two-party system (Lee 2008)
 - Y_i = Democratic candidate elected to U.S. House in district i in election t
 - X_i = vote share of Democratic candidate in election t-1; c=0.5
 - $ightharpoonup D_i = \mathsf{Democrat}$ is incumbent; $Y_i(1) Y_i(0)$: incumbency advantage
- Effect of displayed Yelp rating on restaurant sales (Anderson and Magruder 2012)
 - $ightharpoonup X_i = \text{actual restaurant rating, e.g. } 3.24 \text{ or } 3.26$
 - $ightharpoonup D_i = ext{displayed rating which is rounded to the nearest } 0.5$

Is RDD a special case of something?

• Is RDD like selection on observables, with X_i as a control?

• Is RDD like IV, with X_i as instrument?

• Is RDD like a RCT in the neighborhood of $X_i = c$?

Is RDD a special case of something?

- Is RDD like selection on observables, with X_i as a control?
 - No. By construction, there is no overlap: no value of X_i where both $D_i = 0$ and $D_i = 1$ are observed
- Is RDD like IV, with X_i as instrument?
 - No. Exogeneity of X_i is not assumed, e.g. higher vote share in election t-1 correlates with higher vote share in t
- Is RDD like a RCT in the neighborhood of $X_i = c$?
 - Yes. Continuity of potential outcomes implies their balance around $X_i = c$
 - No. This only holds in an infinitesimal neighborhood. So we need to be careful with estimation

Checklist for sharp RD

- Visualization: "RD plot"
- Estimation and inference
- Falsification tests

- ▶ Balance tests: RD plots and estimates for covariates and placebo outcomes
- McCrary test for continuous density of X_i around the cutoff

Outline

- RDD idea and identification
- 2 Visualization, estimation, and inference
- Falsification tests
- A cautionary tale

RD plot

(Cattaneo and Titiunik 2019, Figure 11, Meyersson (2014) data)

(Lee 2008, Figure 2a)

g

RD plot: Details

Shows discontinuity in regression $\mathbb{E}[Y_i \mid X_i]$ in two ways:

- Parametric fit: shows the *global* shape and nonlinearity of the regression
 - ▶ Separately on the left and right of *c*, fitted values from

$$Y_i = \alpha_0 + \alpha_1(X_i - c) + \cdots + \alpha_p(X_i - c)^p + \text{error}$$

e.g. with quartic polynomial (p=4)

- Binscatter: a local/nonparametric estimator of the regression
 - ▶ Separately on each side, for some bins of X_i : average Y_i against bin's midpoint
 - ▶ Bins with similar numbers of observations (splitting by quantile) are more informative. But equal width is also common
 - ▶ Calonico, Cattaneo, Titiunik (2015) propose data-driven optimal number of bins

Binscatter vs. scatterplot

Few bins \Longrightarrow doesn't trace $\mathbb{E}[Y_i \mid X_i]$ (bias); many bins (e.g. scatterplot) \Longrightarrow noisy

(Figure 8, integrated MSE-optimal number of bins)

 $(\mathsf{Figure}\ 5\colon\,\mathsf{Scatterplot})$

Estimation

RD plots yield two estimates of the causal effect $\tau = \mathbb{E}[Y_i(1) - Y_i(0) \mid X_i = c]$:

Estimation (2)

Are these estimators good?

- Global extrapolation using higher-order polynomials has bad properties at the border (*Gelman and Imbens 2019*):
 - Noisy and highly sensitive to the order of the polynomial
- Difference in outcome means between the nearest bin on the right vs. on the left?
 - This "local constant regression" is too biased
 - ▶ Instead, use **local polynomial regression**, e.g. **local linear** (p = 1)

Local linear regression

• Estimate $\lim_{x\downarrow c} \mathbb{E}\left[Y_i \mid X_i = x\right]$ by $\hat{\alpha}_+$ from

$$(\hat{\alpha}_+, \hat{\beta}_+) = \arg\min_{\alpha_+, \beta_+} \sum_{i: c \leq X_i \leq c + h_+} (Y_i - \alpha_+ - \beta_+ (X_i - c))^2 \kappa \left(\frac{X_i - c}{h_+}\right)$$

where $h_+>0$ is some **bandwidth** and $\kappa(\cdot)$ is a kernel function, e.g.

- ▶ Uniform kernel: $\kappa(x) = \mathbf{1}[|x| \le 1]$ (uses all obs. in the neighborhood)
- ▶ Triangular kernel: $\kappa(x) = \max\{1 |x|, 0\}$ (weights obs. closer to c more)

Local linear regression (2)

• Estimate $\lim_{x \uparrow c} \mathbb{E} [Y_i \mid X_i = x]$ by $\hat{\alpha}_-$ from

$$(\hat{\alpha}_{-}, \hat{\beta}_{-}) = \arg\min_{\alpha_{-}, \beta_{-}} \sum_{i: c-h_{-} \leq X_{i} \leq c} (Y_{i} - \alpha_{-} - \beta_{-}(X_{i} - c))^{2} \kappa \left(\frac{X_{i} - c}{h_{-}}\right)$$

(with
$$h_-=h_+$$
 or $h_-
eq h_+$)

- Estimate au by $\hat{ au} = \hat{lpha}_+ \hat{lpha}_-$
 - ► Can implement by a single regression (on $X_i \in [c h_-, c + h_+]$ and with kernel weights):

$$Y_i = \tau D_i + \gamma_0 + \gamma_1 (X_i - c) + \gamma_2 (X_i - c) D_i + \text{error}$$

(but don't treat it like a true model, and be careful with SE!)

Local linear regression (3)

(Figure 15. Note more narrow range of scores)

Bandwidth choice

• Bandwidth choice is much more important the choice of kernel:

Optimal bandwidth choice

For local polynomial of order p,

$$\mathsf{bias}(\hat{\tau}) \approx B \cdot h^{p+1}, \qquad \mathsf{Var}\left[\hat{\tau}\right] \approx \frac{V}{\mathsf{N}h}$$

- ▶ B is determined by the curvature $d^{p+1}\mathbb{E}[Y \mid X = x]/dx^{p+1}|_{x=c}$ (on each side)
- ▶ V is determined by the variance of Y_i and density of X_i
- Thus, $\mathit{MSE} \approx (\mathit{Bh^{p+1}})^2 + \frac{\mathit{V}}{\mathit{Nh}}$ is minimized at $\mathit{h}^* = \left(\frac{2(\mathit{p}+1)\mathit{B}^2}{\mathit{V}}\mathit{N}\right)^{-1/(2\mathit{p}+3)}$
 - ▶ E.g. $\propto N^{-1/5}$ when p=1
 - ▶ $h^* \uparrow$ when bias is less important: $|B| \downarrow$, $p \uparrow$
 - ▶ $h^* \downarrow$ when variance is less important: $V \downarrow$, $N \uparrow$
- If we can estimate V (easy) and B, we can compute h^*
 - ▶ Calonico, Cattaneo, Titiunik (2014): to estimate B, run local polynomial estimation with order $q \ge p+1$ (with a larger "pilot" bandwidth)

Inference and bias correction

- Problem: h* minimizes MSE by trading off bias² and variance
 - ▶ At h^* , bias and SE of the same order \Longrightarrow conventional conf. intervals are wrong!

$$\sqrt{Nh^*} (\hat{\tau} - \tau) \stackrel{d}{\rightarrow} \mathcal{N} (B^*, V^*), \qquad B^* \neq 0$$

- One solution: "undersmoothing"
 - ▶ Use bandwidth h much smaller than h^* . Then inference is fine (bias \ll SE)
 - ▶ But unclear how to choose *h*, and would a higher-MSE estimator
- Better solution: "robust bias correction" (Calonico et al. 2014, rdrobust)
 - lacktriangle We already estimated the bias \Longrightarrow let's subtract it from $\hat{ au}$
 - ▶ Adjust SE for noise in bias estimation ⇒ "Robust bias-corrected conf. interval"
 - ightharpoonup Curiously, they recommend using this conf.interval for the original $\hat{\tau}$

rdrobust with default options

(Cattaneo and Titiunik 2019, Code snippet 21)

If you insist to report bias-corrected estimate

Call: rdrobust				
Number of Obs.	2629 mserd			
BW type Kernel				
	Triangular			
VCE method	NN			
Number of Obs.	2314	315		
Eff. Number of Ob				
		266		
Order est. (p)	1	1		
Order bias (p)	2	2		
BW est. (h)	17.239	17.239		
BW bias (b)	28.575	28.575		
rho (h/b)	0.603	0.603		
Method	Coef. Std. Err.	z	P> z	[95% C.I.]
Conventional	3.020 1.427	2.116	0.034	[0.223 , 5.817]
Bias-Corrected	2.983 1.427	2.090	0.037	[0.186 , 5.780]
Robust	2.983 1.680	1.776	0.076	[-0.309 , 6.276]
				- ,

(Cattaneo and Titiunik 2019, Code snippet 22)

Robustness to bandwidth choice

While we know the optimal bandwidth, checking sensitivity to this choice is also useful:

Outline

- RDD idea and identification
- Visualization, estimation, and inference
- Falsification tests
- A cautionary tale

Falsification tests

- The assumption of continuity of potential outcomes is not testable
- But a slightly stronger assumption "that X_i is influenced partially by random chance" (Lee 2008) has two testable implications:
 - 1. Balance: distribution of predetermined variables W_i (lagged covariates or outcomes) should be continuous at the cutoff
 - 2. Density of X_i should be continuous at the cutoff
- *Note*: contextual knowledge, e.g. on how easy it is to manipulate X_i , is still indispensible

Placebo RD plots and estimates

Dependent variable	Vote share $t+1$	Vote share $t+1$	(3) Vote share $t+1$	(4) Vote share $t+1$	(5) Vote share $t+1$	(6) Res. vote share $t+1$	(7) 1st dif. vote share $t+1$	(8) Vote share t - 1
Victory, election t	0.077	0.078	0.077	0.077	0.078	0.081	0.079	-0.002
	(0.011)	(0.011)	(0.011)	(0.011)	(0.011)	(0.014)	(0.013)	(0.011)

Permutation test for balance of distributions

- Instead of comparing average W_i on the left and right, compare distributions
- Canay and Kamat (2018) propose a **permutation test**
 - ▶ I.e. randomization test based on permuting something
 - ▶ Take values of W_i from Q observations with X_i just above the cutoff, W_1, \ldots, W_Q
 - lacksquare And from Q observations with X_i just below the cutoff, W_{-1},\ldots,W_{-Q}
 - ▶ Compute distance between corresponding CDFs $\hat{F}_W^+(\cdot)$ and $\hat{F}_W^-(\cdot)$, e.g. Cramer-von Mises statistic

$$T = \frac{1}{2Q} \sum_{q=\pm 1,...,\pm Q} (\hat{F}_{W}^{+}(W_{q}) - \hat{F}_{W}^{-}(W_{q}))^{2}$$

- ▶ Obtain one-sided critical value as the 95th quantile of the distribution of T by randomly allocating the 2Q observations of W_q into the above and below groups
- Usually randomization tests are used in RCTs: finite-sample valid
 - lacktriangle Here they are approximate. Canay–Kamat prove validity as $N o\infty$ but Q is fixed

Permutation test: Application

For the balance of lagged vote shares in Lee (2008):

- The standard placebo test (with robust bias-corrected inference) can't reject
- But the permutation test rejects

(Canay and Kamat 2018, Fig. 2b)

Discontinuity of density ("bunching") test

McCrary (2008): Discontinuity of density of X_i around $X_i = c$ suggests manipulation

Discontinuity of density in practice

A real issue in the literature on the effect of unionization, using close elections RDD:

Modern implementation

Cattaneo, Jansson, Ma (2020), rddensity package:

 \bullet Density is the derivative of CDF \Longrightarrow estimate from a local polynomial approximation to the CDF

Outline

- RDD idea and identification
- 2 Visualization, estimation, and inference
- Falsification tests
- A cautionary tale

A cautionary tale

• We have discussed an algorithm for estimating causal effects in RDDs

Plots, estimators, inference methods, tests

But blindly following the algorithm is not enough to get to the truth

▶ Illustration following Andrew Gelman's blog posts in 2019 and 2020 in the RDD context but the lesson is broader

Gilraine (2020): Effect of air filters on student achievement

- Filters installed in all schools within 5 miles of a big gas leak in Los Angeles
- "Once the distance to the gas leak exceeds five miles we see a substantial drop in test score growth in both math and English. This provides clear and convincing evidence that air filters substantially raised test scores."

Chen et al. (PNAS 2013): Effect of pollution on life expectancy

Barfort et al. (2021)

- Study the effects of a candidate winning gubernationial election on GUESS WHAT?
- Significant local linear regression estimates $\hat{\tau} \approx$ 2000–3000 days
 - ▶ Report placebo outcomes, robustness to bandwidth and polynomial order, etc.

Barfort et al. (2021)

- Study the effects of a candidate winning gubernationial election on life expectancy
- Significant local linear regression estimates $\hat{\tau} \approx$ 2000–3000 days
 - Report placebo outcomes, robustness to bandwidth and polynomial order, etc.

Lessons from Barfort et al. (2021)?

- Gelman tries to replicate it from scratch and finds it difficult
 - Many choices during data cleaning not be captured by robustness checks
 - "The garden of forking paths"
- The effect magnitude is entirely implausible
 - But how should we use our priors?
- Raw data is noisy
 - ▶ Different models can fit them in different ways. "No smoking gun"
 - But should we give up on small effects?

Lessons from Barfort et al. (2021)?

(Gelman's reanalysis of the raw data)