Project 2 Healthcare

October 4, 2021

```
Project 2 : Healthcare
                                  Name: Niyojita Arun Raje
                                                                Cohort: 1 (DEC 2020)
                                 WEEK 1: Data Exploration
[1]: import numpy as np,pandas as pd,matplotlib.pyplot as plt,seaborn as snss
[2]: data=pd.read_csv('G:/Simplilearn/Capstone Project/Project 2/Project 2/
      →Healthcare - Diabetes/health care diabetes.csv')
[3]: data.head()
[3]:
                              BloodPressure SkinThickness
                                                              Insulin
        Pregnancies
                     Glucose
                                                                         BMI
                  6
                          148
                                          72
                                                          35
                                                                        33.6
     1
                  1
                           85
                                                          29
                                                                        26.6
                                          66
                                                                     0
     2
                  8
                                                           0
                                                                     0
                                                                        23.3
                          183
                                          64
     3
                  1
                           89
                                          66
                                                          23
                                                                   94
                                                                        28.1
     4
                  0
                                                                       43.1
                          137
                                          40
                                                          35
                                                                   168
        DiabetesPedigreeFunction Age
                                        Outcome
     0
                            0.627
                                    50
                                               1
     1
                            0.351
                                    31
                                               0
     2
                            0.672
                                               1
                                    32
     3
                            0.167
                                    21
                                               0
     4
                            2.288
                                               1
                                    33
[4]: data.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 768 entries, 0 to 767
    Data columns (total 9 columns):
         Column
                                     Non-Null Count Dtype
                                    768 non-null
     0
         Pregnancies
                                                     int64
     1
         Glucose
                                     768 non-null
                                                     int64
         BloodPressure
                                    768 non-null
                                                     int64
```

int64

int64

float64

float64

768 non-null

768 non-null

768 non-null

DiabetesPedigreeFunction 768 non-null

SkinThickness

Insulin

4

7 Age 768 non-null int64 8 Outcome 768 non-null int64

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

[5]: data.describe()

[5]:		Pregnancies	Glucose	${ t BloodPressure}$	SkinThickne	ess :	Insulin	\
	count	768.000000	768.000000	768.000000	768.0000	000 768	.000000	
	mean	3.845052	120.894531	69.105469	20.5364	158 79	.799479	
	std	3.369578	31.972618	19.355807	15.9522	218 115	.244002	
	min	0.000000	0.000000	0.000000	0.0000	000 0	.000000	
	25%	1.000000	99.000000	62.000000	0.0000	000 0	.000000	
	50%	3.000000	117.000000	72.000000	23.0000	000 30	.500000	
	75%	6.000000	140.250000	80.000000	32.0000	000 127	.250000	
	max	17.000000	199.000000	122.000000	99.0000	000 846	.000000	
		BMI	DiabetesPedi	greeFunction	Age	Outcor	ne	
	count	768.000000		768.000000	768.000000 7	768.00000	00	
	mean	31.992578		0.471876	33.240885	0.34895	58	
	std	7.884160		0.331329	11.760232	0.47695	51	
	min	0.000000		0.078000	21.000000	0.00000	00	
	25%	27.300000		0.243750	24.000000	0.00000	00	
	50%	32.000000		0.372500	29.000000	0.00000	00	
	75%	36.600000		0.626250	41.000000	1.00000	00	
	max	67.100000		2.420000	81.000000	1.00000	00	

[6]: data.isnull().sum()

```
[6]: Pregnancies
                                     0
     Glucose
                                     0
     BloodPressure
                                     0
     SkinThickness
                                     0
                                     0
     Insulin
     BMI
                                     0
     {\tt DiabetesPedigreeFunction}
                                     0
                                     0
     Age
     Outcome
                                     0
     dtype: int64
```

[7]: data['Glucose'].values==0

```
[7]: array([False, False, Fals
```

```
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, True, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
True, False, False, False, False, False, True, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
```

```
False, False, False, False, False, False, False, False, False,
           False, False, False, False, False, False, True, False,
           False, False, False, False, False, False, False, False, False,
           False, False, False, False, False, False, False, False, False,
           False, False, False, False, False, False, False, False, False,
           False, False, False, False, False, False, False, False, False,
           False, False, False, False, False, False, False, False,
           False, False, False, False, False, False, False, False,
           False, False, False, False, False, False, False, False,
           False, False, False, False, False, False, False, False,
           False, False, False, False, False, False, False, False,
           False, False, False, False, False, False, False, False,
           False, False, False, False, False, False, False, False, False,
           False, False, False, False, False, False, False, False,
           False, False, False, False, False, False, False, False,
           False, False, False, False, False, False, False, False,
           False, False, False, False, False, False, False, False,
           False, False, False, False, False, False, False, False,
           False, False, False, False, False, False, False, False, False,
           False, False, False, False, False, False, False, False, False,
           False, False, False, False, False, False, False, False, False,
           False, False, False, False, False, False, False, False, False,
           False, False, False])
[8]: plt.xlabel('Glucose Class')
    data['Glucose'].plot.hist()
```

False, Fa

Datatype of Glucose is: int64

print("Datatype of Glucose is:",data['Glucose'].dtypes)

We can see that there are 0 value data and Glucose cannot be 0.Hence replacing 0 with mean of Glucose class

```
data['Glucose'] = data['Glucose'].replace(0,data['Glucose'].mean())
[9]:
     data['BloodPressure'].values==0
[10]: array([False, False, False, False, False, False, False, True, False,
            False, False, False, False, False, True, False, False,
            False, False, False, False, False, False, False, False,
            False, False, False, False, False, False, False, False,
            False, False, False, False, False, False, False, False, False,
            False, False, False, True, False, False, False, False,
            False, False, False, False, False, True, False, False,
            False, False, False, False, False, False, False, False, False,
            False, False, False, False, False,
                                                   True, False, False,
             True, False, False, False, False, False, False, False, False,
            False, False, False, False, False, False, False, False, False,
            False, False, False, False, False, False, False, False,
            False, False, False, False, False, False, False, False, False,
            False, False, False, False, False, False, False, False,
```

```
False, False, False, False, False, False, False, False, False,
       True, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, True, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
True, False, False, False, True, False, False, True,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, True, False, False, False,
False, False, False, False, False, True, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, True, False, False, True, False,
False, False, False, True, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, True, False, False, False, False, False,
False, False, False, False, False, False, False, False,
True, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, True, False,
False, False, False, False, False, False, False, True,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
True, False, False, False, False, False, False, False,
False, False, True, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
```

```
False, False, False, True, False, False, False, False,
False, False, False, False, False, False, True, False,
False, True, False, False, False, False, False, False, False,
False, False, False, False, False, False,
                                             True, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, True, False, False, False, False,
       True, False, False, True, False, False, False, False,
False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False])
```

```
[11]: plt.xlabel('Blood Pressure Class')
  data['BloodPressure'].plot.hist()
  print("Datatype of BloodPressure is:",data['BloodPressure'].dtypes)
```

Datatype of BloodPressure is: int64

We can see that there are 0 value data and BloodPressure cannot be 0.Hence replacing 0 with mean of BloodPressure class

[12]: | data['BloodPressure'] = data['BloodPressure'] .replace(0,data['BloodPressure'] .

```
\rightarrowmean())
     data['SkinThickness'].values==0
[13]:
[13]: array([False, False,
                         True, False, False, True, False, True, False,
            True,
                   True,
                         True, True, False, False, True, False,
                                True, True, False, False, False,
           False, False, False,
                                                                True,
           False, False, True, False, False, True, False, False,
            True, False, False, False, True, False, False,
                   True, False, False, True, False, False, False, False,
           False, False, False,
                                      True, False,
                                                  True,
                                                         True,
                   True, False, False, True, False, False, False, False,
            True, False, False, True, False, True, False, False,
            True, False, False, True, False, False, False, False, False,
            True, False, False, False, False, False, False, False,
           False, True, True, False, True, False, True, False,
           False, False, False, False, True, False, True,
            True, False, False, False, False, True, True, False,
           False, False, True, False, True, False, False, False,
           False, False, True, False, True, False, False,
           False, False, False, True, False, False, True, False,
                   True, False, False, False, False, False, False, False,
           False, False, True, False, False, True, True, False,
           False, False, False, False, True, False, True,
            True, False, False, True, True, False, False, False, False,
                   True, False, True, True, False, False, True, False,
           False, False, False, False, False, False, False, False,
            True, False, False, False, False, False, False, False,
           False, False, True, False, True, False, False,
                   True, False, False, True, False, False,
           False,
                                                                True,
           False, True, False, False, False, True, False, False,
           False, False, False, True, False, False, True,
           False, False, False, False, False, False, False, False,
            True, False, False, True, False, True, False, True,
           False, False, True, False, True, False, False, False,
                   True, False, False, True, True, False, False, False,
           False,
           False, False, False, False, False, True, False, False,
           False, False, True, True, False, False, True, True, False,
           False, False, False, False, False, False, False, False,
           False, False, True, False, True, False, False, False, False,
           False, False, False, True, False, False, False, False,
```

```
True, False, False, True, True, False, True, False, False,
             True, False, False, True, False, False,
       True,
True, False, False, True, True, False, False, False, False,
       True, False, True, False, False, True, False, False,
False,
False, False, False, False, False, False, False, False,
True, False, False, False, False, False, False, False,
False, False, False, True, False, False, True, False,
False, False, True, False, True, False, False, True,
             True, True, False, False, False, False,
       True,
False, False, False, True, False, False, False, False,
False, False, False, True, False, False, True, False,
       True, False, True, False, True, False, True, False,
False,
False, False,
             True, False, False, False, False, False,
       True, False, True, False, False, True, False, False,
False,
False, False, True, False, False, True, False, False,
True, False, False, False, True, True, False, False,
False, False, False, False, False, True, False,
False, False, False, True, False, False, False, False,
       True, False, False, False, False, False, False, False,
False,
       True, False, False, True, False, False,
True, False, False, True, True, False, False, False,
       True, True, False, False, False, True, False,
True,
True, False, True, False, True, True, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, True, False, False, False, True,
False, True, True, False, False, True, False, False,
False, False, False, True, True, False, False, False, False,
             True, False, False, False, True, False,
False,
       True,
False,
       True,
             True, False, True, False, False, True, False,
False, False,
             True, False, True, False, False,
                                             True, False,
       True, False, False, False, False, False, False, False,
False, False, False, True,
                          True, False, False,
                                             True, False,
       True, False, True, False, True, True, False,
True, False,
             True, False, True, True, False, False,
False, False, True, True, False, False, False, False,
False, False, False, False, True, False, False, False,
       True, False, True, False, False, False, False, False,
False,
False, False, False, False, False, False, False, False,
             True, True, False, False, False, True,
       True,
True, False, True, False, False, True, True, False,
       True, False, False, True, False, True, False, False,
False,
       True, False, False, True, False, True, False, False,
False, False, False, False, False, False, False, False,
False, False, False, True, False, False, True,
True, False, True, False, False, True, False, False, False,
False, True, False, False, True, False, False, False,
False, False, True, True, False, False, False, False, False,
```

```
False, True, True, False, False, True, False, False, False, True, False])
```

```
[14]: plt.xlabel('SkinThickness')
  data['SkinThickness'].plot.hist()
  print("Datatype of SkinThickness is:",data['SkinThickness'].dtypes)
```

Datatype of SkinThickness is: int64

False,

True,

True,

True,

We can see that there are 0 value data and SkinThickness cannot be 0.Hence replacing 0 with mean of SkinThickness class

```
[15]: data['SkinThickness']=data['SkinThickness'].replace(0,data['SkinThickness'].
       \rightarrowmean())
[16]: data['Insulin'].values==0
[16]: array([ True,
                     True,
                            True, False, False, True, False, True, False,
              True,
                            True,
                                   True, False, False, True, False,
                     True,
                                                 True, False, False,
             False, False, False,
                                   True,
                                          True,
             False, False,
                                   True, False, False, True, True, False,
                            True,
              True,
                     True,
                            True, False, False, True, True, False,
              True,
                                   True, True, False, False, False, False,
                     True,
                            True,
                                          True, False, True, True,
             False,
                     True, False, False,
```

True, False, False, False, False,

```
True, False,
              True,
                    True, True, True, True,
                                               True,
                    True, False, True, False, False,
True, False,
              True,
                                                     True,
True, False, False,
                    True, False, False, True, False, False,
       True,
              True,
                    True, False, True, False,
                                               True, False,
False,
False, False, False, False, True, False,
                                               True,
       True, False, False, True, False, True,
                                               True, False,
False, False, True, False, True, False, True, False,
False, False, True, False, True, False,
              True, False, True, True, False, True, False,
False,
       True,
False,
              True, False, False, False, True, False,
False.
       True, True, False, True, True, False,
       True, False, False, True, False, True,
False,
True, False, False,
                    True,
                           True, True, False, False, False,
       True, False,
                    True,
                           True,
                                 True, False, True, False,
False,
              True,
                           True, False, False, True, False,
False, False,
                    True,
True, False,
              True,
                    True,
                           True,
                                 True, False, False, False,
False, False,
              True,
                    True, False,
                                 True, True, False, False,
                                 True, False, False,
False,
       True,
              True, False, False,
                                                      True,
                    True, True, True, False,
False,
       True, False,
                                                     True,
                    True, False, False,
False, False,
              True,
                                       True,
                                              True,
                                                     True,
                    True, True,
False,
       True, False,
                                 True, False, False, False,
True,
             True, True, False, True,
                                       True, True,
       True,
              True, False, True, False, True, False,
True, False,
                                                     True,
       True, False, False, True, True, False, False, False,
False, False, False, False, False, True, False, False,
False, False, True, True, False, False, True, True, False,
False, False, False, True, False, False, False,
False, False, True, False, True, False, True, False,
True, False, False, True, False, False,
                                       True, False,
                    True,
                           True, False, True, False, False,
True, False, False,
True,
       True,
             True, False, False, True, False, True,
                    True, True, False,
                                        True, False, False,
       True, False,
True,
       True, True, True, False, False, True, True, False,
False,
False, False, False, False, False, False, False, False,
True, False, False, True, False, False, False, False,
True, False, False, False, True, False, False, True, False,
                    True, True, True, False, True,
False,
       True,
              True,
                                                     True,
                    True, False, True, False, False, False,
False,
       True,
              True,
False, False,
                    True, True, False, False, False, False,
              True,
True, False, False,
                    True, False, False, True, False,
       True,
              True,
                    True, True, True, True, True,
False,
False, False,
              True,
                    True, False, False, False, False, False,
False, True, False, True, False, True, False, False,
False, False,
              True, False, True, True, False, False, False,
True, False,
                    True,
                          True, True, True, False,
              True,
False, False,
              True, False, True, False, False, True, False,
False, False,
              True, True, False, True, True, False,
```

```
True, True, False, False, False, True, False,
             True,
                   True,
             True, False,
                          True, False, True, True, True, False, False,
                          True, False, False, False, False, False,
            False, False,
                   True, False, True, False, False, True, True,
             True,
                   True, True, False, False, False, True, False, False,
            False, False, False, True, True, False, False, False, False,
                   True,
                          True, True, True, True, True, False,
                          True, False, True, True, False, True, False,
             True.
                   True,
            False, False,
                          True, False, True, False, True, True, True,
                   True,
                          True, False, False, False, False, False,
            False,
                   True, False, True, True, False,
                                                           True, False,
            False,
                                                     True,
                   True, False, True, False, True,
             True,
                                                    True, True,
             True, False,
                          True, False,
                                       True, True, True, False, False,
            False, False, True, True, False, False, False, False,
                   True, False, False, False, True, False, False, False,
            False,
                   True, False, True, True, False, False, True, False,
            False,
                   True, False, False, True, False, False,
             True,
                                                                  True,
             True,
                   True,
                          True, True, False, False,
                                                    True, False,
             True, False, True, True, False, False,
                                                   True, True, False,
                   True, False, False, True, False, True, False,
            False,
                   True, False, True, True, False, True, False, False,
                   True, False, True, False, False, True, False,
             True, False, False, True, True, False, True,
                         True, False, False, True, True, False,
             True, False,
                                                                  True,
                   True, False, False, True, False, False,
            False,
                                                                  True,
            False, False,
                          True, True, False, True, False, True, False,
                                 True, False, True, True, False,
             True,
                   True,
                          True,
            False,
                   True,
                          True])
[17]: plt.xlabel('Insulin Class')
     data['Insulin'].plot.hist()
     print("Datatype of Insulin is:",data['Insulin'].dtypes)
```

True, False, False, False, True, True, False,

True, False, False, True, True, False,

True, False, False, True, True, False, False, False,

Datatype of Insulin is: int64

True,

We can see that there are 0 value data and Insulin cannot be 0.Hence replacing 0 with mean of Insulin class

```
data['Insulin'] = data['Insulin'].replace(0,data['Insulin'].mean())
[18]:
     data['BMI'].values==0
[19]: array([False, False, False, False, False, False, False, False, False,
             True, False, False, False, False, False, False, False,
            False, False, False, True, False, False, False, False,
            False, False, False, False, False, True, False, False,
            False, False, False, False, False, False, False, False, False,
            False, False, False, False, False, False, False, False,
             True, False, False, False, False, False, False, False, False,
            False, False, False, False, False, False, False, False,
            False, False, False, False, False, False, False, False,
            False, False, False, False, False, False, False, False, False,
            False, False, False, False, False, False, False, False,
            False, False, False, False, False, False, False, False, False,
            False, False, False, False, False, False, False, False,
            False, True, False, False, False, False, False, False, False,
            False, False, False, False, False, False, False, False,
```

```
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, True, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, True,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
True, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
```

```
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
True, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, True, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False])
```

```
[20]: plt.xlabel('BMI')
  data['BMI'].plot.hist()
  print("Datatype of BMI is:",data['BMI'].dtypes)
```

Datatype of BMI is: float64

We can see that there are 0 value data and BMI cannot be 0.Hence replacing 0 with mean of BMI class

```
[21]: data['BMI']=data['BMI'].replace(0,data['BMI'].mean())
[22]: data['Glucose'].value_counts().head(5)
[22]: 100.0
               17
      99.0
               17
      125.0
               14
      106.0
               14
      111.0
               14
      Name: Glucose, dtype: int64
[23]: data['SkinThickness'].value_counts().head(5)
[23]: 20.536458
                   227
      32.000000
                    31
      30.000000
                    27
      27.000000
                    23
      23.000000
                    22
      Name: SkinThickness, dtype: int64
[24]: data['Insulin'].value_counts().head(5)
[24]: 79.799479
                    374
      105.000000
                      11
      130.000000
                      9
      140.000000
                      9
      120.000000
                      8
      Name: Insulin, dtype: int64
[25]: data['BloodPressure'].value_counts().head(5)
[25]: 70.0
              57
      74.0
              52
      68.0
              45
      78.0
              45
      72.0
              44
      Name: BloodPressure, dtype: int64
[26]: data['BMI'].value_counts().head(5)
[26]: 32.000000
                   13
      31.600000
                   12
```

```
31.200000 12
31.992578 11
33.300000 10
```

Name: BMI, dtype: int64

```
[27]: data.dtypes.value_counts().plot(kind='bar')
plt.show()
```


We can see 6 float columns and 3 integer columns.

WEEK 2: Data Exploration

```
[28]: (data.Outcome).value_counts().plot(kind = 'bar')
plt.show()
```


Data is Imbalanced

1 Scatter plot

```
[29]: BloodPressure = data['BloodPressure']
   Glucose = data['Glucose']
   SkinThickness = data['SkinThickness']
   Insulin = data['Insulin']
   BMI = data['BMI']

[30]: plt.scatter(BloodPressure, Glucose)
   plt.xlabel('BloodPressure')
   plt.ylabel('Glucose')
   plt.title('Relationship between BloodPressure & Glucose')
   plt.show()
```



```
[31]: plt.scatter(BMI, Insulin)
   plt.xlabel('BMI')
   plt.ylabel('Insulin')
   plt.title('Relationship between BMI & Insulin')
   plt.show()
```



```
[32]: plt.scatter(SkinThickness, Insulin)
    plt.xlabel('SkinThickness')
    plt.ylabel('Insulin')
    plt.title('Relationship between SkinThickness & Insulin')
    plt.show()
```


[33]:	<pre># correlation matrix data.corr()</pre>							
[33]:		Pregnanci	es	Gluco	se	BloodPressure	SkinThickness	\
	Pregnancies	1.000000		0.127964		0.208984	0.013376	
	Glucose	0.1279	64	1.0000	00	0.219666	0.160766	
	BloodPressure	0.2089	84	0.2196	66	1.000000	0.134155	
	SkinThickness	0.0133	76	0.1607	66	0.134155	1.000000	
	Insulin	-0.0180	82	0.3965	97	0.010926	0.240361	
	BMI	0.021546		0.2314	78	0.281231	0.535703	
	DiabetesPedigreeFunction	-0.0335	23	0.1371	06	0.000371	0.154961	
	Age	0.544341		0.2666	00	0.326740	0.026423	
	Outcome	0.221898		0.4929	80	0.162986	0.175026	
		Insulin		BMI	Dia	abetesPedigreeF	unction \	
	Pregnancies	-0.018082	0.	021546		-0	0.033523	
	Glucose	0.396597	0.	231478		0.137106		
	BloodPressure	0.010926	0.	281231		0.000371		
	SkinThickness	0.240361	.240361 0.535703 0.154		.154961			
	Insulin	1.000000	0.	189856		0	.157806	
	BMI	0.189856	1.	000000		0	.153508	
	${\tt DiabetesPedigreeFunction}$	0.157806	0.	153508		1	.000000	
	Age	0.038652	0.	025748		0	0.033561	

0.173844 Outcome 0.179185 0.312254 Age Outcome Pregnancies 0.544341 0.221898 Glucose 0.266600 0.492908 BloodPressure 0.326740 0.162986 SkinThickness 0.026423 0.175026 Insulin 0.038652 0.179185 BMI 0.025748 0.312254 DiabetesPedigreeFunction 0.033561 0.173844 Age 1.000000 0.238356 Outcome 0.238356 1.000000

[34]: snss.heatmap(data.corr(),annot=True)

[34]: <AxesSubplot:>

[35]: data.corr().style.background_gradient()

```
WEEK 3: Data Modeling
[36]: data.head()
[36]:
         Pregnancies Glucose BloodPressure SkinThickness
                                                                Insulin
                                                                          BMT \
                                        72.0
                                                              79.799479 33.6
                   6
                        148.0
                                                  35.000000
                                        66.0
      1
                   1
                         85.0
                                                  29.000000
                                                              79.799479
                                                                         26.6
      2
                   8
                        183.0
                                        64.0
                                                  20.536458
                                                              79.799479
                                                                         23.3
      3
                   1
                         89.0
                                        66.0
                                                  23.000000
                                                              94.000000 28.1
                                        40.0
      4
                   0
                        137.0
                                                  35.000000
                                                             168.000000 43.1
         DiabetesPedigreeFunction Age
                                        Outcome
      0
                            0.627
                                    50
                            0.351
      1
                                    31
                                              0
      2
                            0.672
                                    32
                                              1
      3
                            0.167
                                    21
                                              0
      4
                            2.288
                                    33
                                              1
[37]: x=data.iloc[:,[0,1,2,3,4,5,6,7]].values
      y=data['Outcome'].values
[38]: from sklearn.model_selection import train_test_split
[39]: x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=0,test_size=0.2)
                                 LogisticRegression
[40]: from sklearn.linear_model import LogisticRegression
      model = LogisticRegression()
      model.fit(x_train,y_train)
     G:\Software\anaconda\lib\site-packages\sklearn\linear_model\_logistic.py:762:
     ConvergenceWarning: lbfgs failed to converge (status=1):
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max_iter) or scale the data as shown in:
         https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
         https://scikit-learn.org/stable/modules/linear_model.html#logistic-
       n_iter_i = _check_optimize_result(
[40]: LogisticRegression()
[41]: print(model.score(x_train,y_train))
      print(model.score(x_test,y_test))
```

[35]: <pandas.io.formats.style.Styler at 0x17064a4d550>

- 0.758957654723127
- 0.8311688311688312

```
[42]: from sklearn.metrics import classification_report print(classification_report(y,model.predict(x)))
```

	precision	recall	f1-score	support
0	0.80	0.87	0.83	500
1	0.71	0.59	0.64	268
accuracy			0.77	768
macro avg	0.76	0.73	0.74	768
weighted avg	0.77	0.77	0.77	768

DecisionTreeClassifier

```
[43]: from sklearn.tree import DecisionTreeClassifier
model2 = DecisionTreeClassifier(max_depth=5)
model2.fit(x_train,y_train)
```

- [43]: DecisionTreeClassifier(max_depth=5)
- [44]: print(model2.score(x_train,y_train))
 print(model2.score(x_test,y_test))
 - 0.8208469055374593
 - 0.7662337662337663
- [45]: from sklearn.metrics import classification_report print(classification_report(y,model2.predict(x)))

	precision	recall	f1-score	support
0	0.89	0.81	0.85	500
1	0.69	0.81	0.75	268
accuracy			0.81	768
macro avg	0.79	0.81	0.80	768
weighted avg	0.82	0.81	0.81	768

KNN

```
model3.fit(x_train,y_train)

[46]: KNeighborsClassifier(n_neighbors=7)

[47]: print(model3.score(x_train,y_train))
```

- print(model3.score(x_test,y_test))
 - 0.7899022801302932 0.7337662337662337
- [48]: from sklearn.metrics import classification_report print(classification_report(y,model3.predict(x)))

	precision	recall	f1-score	support
0	0.81	0.86	0.83	500
1	0.71	0.63	0.66	268
accuracy			0.78	768
macro avg	0.76	0.74	0.75	768
weighted avg	0.77	0.78	0.78	768

WEEK 4: Data Modeling

```
[49]: # ROC Curve KNN
      from sklearn.metrics import roc curve
      from sklearn.metrics import roc_auc_score
      probs = model3.predict_proba(x)
      # keep probabilities for the positive outcome only
      probs = probs[:, 1]
      # calculate AUC
      auc = roc_auc_score(y, probs)
      print('AUC: %.3f' % auc)
      # calculate roc curve
      fpr, tpr, thresholds = roc_curve(y, probs)
      print("True Positive Rate - {}, False Positive Rate - {} Thresholds - {}".
      →format(tpr,fpr,thresholds))
      # plot the roc curve for the model
      plt.plot([0, 1], [0, 1], linestyle='--')
      plt.plot(fpr, tpr, marker='.')
      plt.xlabel("False Positive Rate")
      plt.ylabel("True Positive Rate")
```

```
AUC: 0.845

True Positive Rate - [0. 0.05970149 0.25746269 0.45149254 0.62686567 0.80970149
```

```
0.91791045 0.99253731 1. ], False Positive Rate - [0. 0.004 0.014 0.064 0.14 0.27 0.474 0.7 1. ] Thresholds - [2. 1. 0.85714286 0.71428571 0.57142857 0.42857143 0.28571429 0.14285714 0. ]
```

[49]: Text(0, 0.5, 'True Positive Rate')


```
[50]: #Precision Recall Curve for Logistic Regression
      from sklearn.metrics import precision_recall_curve
      from sklearn.metrics import f1_score
      from sklearn.metrics import auc
      from sklearn.metrics import average_precision_score
      # predict probabilities
      probs = model.predict_proba(x)
      # keep probabilities for the positive outcome only
      probs = probs[:, 1]
      # predict class values
      yhat = model.predict(x)
      # calculate precision-recall curve
      precision, recall, thresholds = precision_recall_curve(y, probs)
      # calculate F1 score
      f1 = f1_score(y, yhat)
      # calculate precision-recall AUC
      auc = auc(recall, precision)
```

```
# calculate average precision score
ap = average_precision_score(y, probs)
print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
# plot no skill
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
# plot the precision-recall curve for the model
plt.plot(recall, precision, marker='.')
```

f1=0.643 auc=0.727 ap=0.728

[50]: [<matplotlib.lines.Line2D at 0x170652f4820>]


```
[51]: #Precision Recall Curve for KNN

from sklearn.metrics import precision_recall_curve
from sklearn.metrics import f1_score
from sklearn.metrics import auc
from sklearn.metrics import average_precision_score
# predict probabilities
probs = model3.predict_proba(x)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# predict class values
yhat = model3.predict(x)
# calculate precision-recall curve
precision, recall, thresholds = precision_recall_curve(y, probs)
```

```
# calculate F1 score
f1 = f1_score(y, yhat)
# calculate precision-recall AUC
auc = auc(recall, precision)
# calculate average precision score
ap = average_precision_score(y, probs)
print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
# plot no skill
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
# plot the precision-recall curve for the model
plt.plot(recall, precision, marker='.')
```

f1=0.664 auc=0.750 ap=0.713

[51]: [<matplotlib.lines.Line2D at 0x17065350a90>]


```
[52]: #Precision Recall Curve for Decission Tree Classifier

from sklearn.metrics import precision_recall_curve
from sklearn.metrics import f1_score
from sklearn.metrics import auc
from sklearn.metrics import average_precision_score
# predict probabilities
probs = model2.predict_proba(x)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
```

```
# predict class values
yhat = model2.predict(x)
# calculate precision-recall curve
precision, recall, thresholds = precision_recall_curve(y, probs)
# calculate F1 score
f1 = f1_score(y, yhat)
# calculate precision-recall AUC
auc = auc(recall, precision)
# calculate average precision score
ap = average_precision_score(y, probs)
print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
# plot no skill
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
# plot the precision-recall curve for the model
plt.plot(recall, precision, marker='.')
```

f1=0.749 auc=0.772 ap=0.779

[52]: [<matplotlib.lines.Line2D at 0x170653aad30>]

