Глава 3

Лекция 6. Нейроэволюционные алгоритмы

Оглавление

3 Лекция 6. Нейроэволюционные алгоритмы				1	
	6.1	Косвет	нное кодирование	2	
		6.1.1	Веса связей	3	
		6.1.2	Структура	4	
		6.1.3	Веса и структура	4	
	6.2	Опера	торы	5	
		6.2.1	Прямое кодирование	5	
		6.2.2	Косвенное кодирование	6	

6.1 Косвенное кодирование

В абстрактном виде. Элементы:

- \bullet Конечный алфавит \mathcal{A} .
- Выражения с использованием символов из A.
- Операции по преобразованию выражений.
- \bullet Семантика алфавита \mathcal{A} .

В простейшем случае можно провести такие аналогии:

- Конечный алфавит A набор символов¹.
- Выражения с использованием символов из \mathcal{A} описание целой ИНС или ее части (слой, модуль и т.д.).
- Операции по преобразованию выражений операции изменения ИНС, а также составления выражений.
- Семантика алфавита \mathcal{A} соответствия между символами и, собственно, элементами ИНС. Довольно часто подразумевается, что семантика неотрывно связана с алфавитом, но в общем случае это не так².

 $^{^{1}}$ Причем не только букв и цифр, но и символов для операций, а также всяких вспомогательных символов, например, скобки, знаки препинания и т.д.

 $^{^2}$ Аналогично, в семиотике, науке о знаках, отдельно рассматривают синтаксис (алфавит и операции) и семантику (какая ИНС или ее часть соответствует выражению/символу). Есть еще прагматика, но в данном случае она обозначала бы, что можно сделать с помощью данной ИНС.

По большому счету, можно изменять два из этих элементов: операции и семантику. В первом случае смысл выражений не меняется, но меняются действия и преобразования, соответствующие операциям («эволюционируют» операции). А во втором – изменению подлежит процесс декодирования выражения.

6.1.1 Веса связей

AOP

Ищется не вес связи, а распределение, характеризующее вес.

HyperNEAT

Является развитием алгоритма NEAT [5] и одна из первых публикаций относится к 2006 г. [3]. Особенностью алгоритма является использование **Композиционных сетей, генерирующих паттерны** (Compositional Pattern Producing Networks, CPPNs), которые по сути представляют собой эволюционирующие нейронные сети³, в которых возможна настройка структуры, весов связей и функций активации. В качестве последних могут выступать и «нестандартные» функции, например, синусоида или «пила». Но сейчас речь не о нем, а о том, как с помощью этой сети определяются связей ИНС.

Для этого используют понятие *субстрата*, в котором располагаются узлы ИНС в соответствии с некоторой «геометрической» схемой, рис. 6.1. СРРN применяется, чтобы определить вес связи между двумя узлами, которые задаются своими координатами в субстрате. Координаты обычно двумерные, хотя можно рассмотреть и трехмерный субстрат. Одно из любопытных свойств заключается в том, что при таком подходе учитывается взаимное расположение узлов целевой ИНС в субстрате. Т.е. если переместить два узла, то изменятся и веса связей. Кроме этого, можно довольно эффективно масштабировать ИНС по количеству входов без переобучения СРРN ??.

Puc. 6.1: Кодирование весов с использованием алгоритма HyperNEAT. Изображение с сайта http://eplex.cs.ucf.edu/hyperNEATpage/HyperNEAT.html

 $^{^3{\}rm X}$ отя сам К. Стенли будет протестовать, если при нем так сказать :).

4 $O\Gamma \Pi AB \Pi E H H E$

6.1.2 Структура

Варианты:

1. Кодирование параметров структуры ИНС (количество слоев, число нейронов в каждом слое).

2. Введение специализированной грамматики, описывающей правила построения структуры ИНС. В данном варианте возможны два случая: (а) последовательность применения правил задана, но сами правила кодируются в хромосоме и отличаются у различных особей [2] (рис. 6.2); (б) в хромосоме кодируется последовательность применения правил, общих для всех особей, при этом набор правил и последовательность их применения для разных особей могут различаться [1] (рис. 6.3).

Алгоритм Китано

Иллюстративный пример эволюции правил построения структуры ИНС представлен на рис. 6.2. Матрица смежности определяется в результате 3-шаговой итерационной процедуры, начиная с некоторого исходного состояния S (рис. 6.2в). На первом шаге происходит декодирование символа S в матрицу четырех других символов, каждый из которых затем также декодируется в соответствующую ему матрицу согласно правилам (рис. 6.26), закодированным в хромосоме особи (рис. 6.2а) и т.д. Результатом является матрица смежности, определяющая структуру ИНС (рис. 6.2в). В хромосоме кодируются только правила, определяющие 1-й и 2-й шаги построения структуры ИНС, а 16 различных правил, применяемых на 3-м шаге, задающие все возможные бинарные матрицы 2х2 и обозначенные последовательно первыми 16-ю символами латинского алфавита (от «а» до «р»), определяются до начала работы алгоритма и не изменяются. Таким образом, какова бы ни была матрица смежности, сохраняется возможность закодировать ее содержимое в матрице 4х4, содержащей символы от «а» до «р», которая затем может быть закодирована четырьмя символами {A, B, C, D} в матрице 2x2. Тем самым обеспечивается возможность представить в хромосоме любую структуру ИНС. Ограничениями описываемого способа эволюции правил является фиксированное количество шагов построения матрицы смежности, а также невозможность использования рекурсивных декодирующих правил (например,).

Hyper-NEAT

Алгоритм Hyper-NEAT можно использовать и для кодирования структуры ИНС. В этом случае CPPN используется для определения существует ли связь между двумя данными точками, ничего не говоря о весе этой связи. Некоторые примеры этого приведены в статье [4]

6.1.3 Веса и структура

Cellular Encoding

Пример для эволюции последовательности применения правил для построе-ния ИНС с бинарными весами связей, алгоритм «Клеточного кодирования» (Cellular encoding)

6.2. ОПЕРАТОРЫ 5

Фредерика Груо [1], показан на рис. 6.3. Сами правила определяются до начала работы алгоритма, а в хромосоме кодируется дерево, соответствующее последовательности выполнения этих правил. Количество шагов декодирования и их последовательность зависят от структуры дерева правил.

Для примера, изображенного на рис. 6.3, используются следующие правила [1]:

- «S» последовательное деление нейрона;
- «Р» параллельное деление нейрона;
- «А» увеличение порога активационной функции нейрона;
- «Е» символ-терминатор, обозначающий окончание развития нейрона;
- «-» установка веса связи равным «-1».

На каждом шаге декодирования выполняется одно правило, записанное в узле дерева. Так, для примера на рис. 6.3, на первом шаге, в соответствии с правилом, обозначенным символом «S», нейрон делится последовательно, а на шаге 2 — параллельно, согласно правилу, обозначенному символом «Р». После выполнения шагов 3, 4 и 5 два нейрона заканчивают развитие, а один делится последовательно и т.д.

Результатом является ИНС с 3-мя скрытыми слоями, в которой изменены значение порога функции активации одного скрытого нейрона (показано черным цветом) и величина одной связи (показано пунктиром). Кодирование в хромосоме дерева правил позволяет использовать рекурсивные операции для построения структуры ИНС.

6.2 Операторы

Рассматриваем операторы скрещивания и мутации, т.к. остальные операторы (селекция, формирование следующего поколения и т.д.) в гораздо меньшей степени зависят от специфики НЭ алгоритмов.

Два уровня применения операторов:

- 1. Генотипы.
- 2. Фенотипы.

В литературе встречаются оба варианта, хотя использование операторов уровня фенотипов предпочтительнее, т.к. позволяет проще контролировать корректность решений.

6.2.1 Прямое кодирование

Скрещивание

Веса Структура Веса+структура

Мутация

Веса Структура Веса+структура 6 ОГЛАВЛЕНИЕ

6.2.2 Косвенное кодирование

Здесь принципиальных сложностей нет, как правило, имеется либо строка (выражение на некотором языке), либо дерево или орграф (другие формы представления выражений). Нужно придумать, как эти представления скрещивать и мутировать.

Есть такой нюанс. При косвенном кодировании операторы чаще всего работают на уровне генотипов. Дело в том, что если операторы будут работать на уровне фенотипов, то полученные нейросети-потомки должны быть описаны с использованием косвенного кодирования, что не всегда легко осуществимо. Например, в алгоритме HyperNEAT получили в результате скрещивания новую ИНС, с новыми весами, но нужно теперь найти CPPN, которая генерирует такую ИНС, что само по себе является отдельной задачей, точное решение которой может занять очень много времени.

К чему, вообще, мучаться с косвенным кодированием?⁴. Можно выдвинуть следующие аргументы:

- 1. Переход к другой структуре пространства поиска может обеспечить большую эффективность и гибкость. Например, при прямом кодировании рост ИНС будет, скорее всего, «понейронным» (1 скрытый нейрон, затем 2, 3 и т.д.), а в косвенном кодировании изменение генотипа может вылиться в более существенное изменение фенотипа. Это может оказаться более полезным для избежания локальных экстремумов. Или для улучшение ИНС с помощью прямого кодирования может потребоваться временное ухудшение сети, которое будет препятствовать эволюции, в то время как в косвенном способе ландшафт пространства поиска меняется.
- 2. Возможность компактного представления сложных HC структур. К примеру, небольшую сеть CPPN можно использовать для кодирования ИНС со сложной структурой и сотнями или тысячами связей.

Недостатки также имеются, и в первую очередь они связаны с тем, что разработать эффективный НЭ алгоритм с косвенным кодированием часто сложнее, т.к. помимо собственно самого алгоритма необходимо продумать еще и способ кодирования и операторы для него. При этом количество настраиваемых параметров как правило растет, что осложняет настройку алгоритма. Кроме этого, преобразование генотип →фенотип может занять немало времени и потребовать дополнительных вычислений, по сравнению с прямыми способами кодирования. Еще одним недостатком может являться то, что при косвенном кодировании размер пространства поиска может быть больше. Тем не менее, считается, что использование косвенного кодирования решений более перспективно ⁵. Однако, потенциал прямого кодирования еще не раскрыт до конца.

⁴Помимо того, что это просто интересная задача ;)

⁵В конце концов, генетическая информация тоже хранится в косвенном виде.

6.2. ОПЕРАТОРЫ 7

ABCDaaaaiiiaiaacaeae

a)

$$S \longrightarrow \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

$$A \longrightarrow \begin{pmatrix} a & a \\ a & a \end{pmatrix} \quad B \longrightarrow \begin{pmatrix} i & i \\ i & a \end{pmatrix} \quad C \longrightarrow \begin{pmatrix} i & a \\ a & c \end{pmatrix} \quad D \longrightarrow \begin{pmatrix} a & e \\ a & e \end{pmatrix}$$

$$a \longrightarrow \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \quad c \longrightarrow \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \quad e \longrightarrow \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad i \longrightarrow \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

$$6)$$

$$S \quad \stackrel{\text{1 mar}}{\Longrightarrow} \quad \stackrel{\text{2 mar}}{\Longrightarrow} \quad \stackrel{\text{3 mar}}{\Longrightarrow} \quad \stackrel{\text{0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{3 mar}}{\Longrightarrow} \quad \stackrel{\text{0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 mar}}{\Longrightarrow} \quad \stackrel{\text{3 mar}}{\Longrightarrow} \quad \stackrel{\text{0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 mar}}{\Longrightarrow} \quad \stackrel{\text{2 mar}}{\Longrightarrow} \quad \stackrel{\text{3 mar}}{\Longrightarrow} \quad \stackrel{\text{3 mar}}{\Longrightarrow} \quad \stackrel{\text{0 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0 0 0 0 0 0 0 0 0}}{\Longrightarrow} \quad \stackrel{\text{1 0 0 0$$

B)

0 0 0 0 1 0 1 0

5

L)

Рис. 6.2: Пример кодирования структуры ИНС с использованием специализированной грамматики и эволюцией правил: а) пример хромосомы; б) декодированные правила; в) декодирование структуры ИНС (определение матрицы смежности); г) структура ИНС, соответствующая примеру хромосомы [2]. Более подробное описание кодирования приведено в тексте

8 ОГЛАВЛЕНИЕ

Рис. 6.3: Пример построения структуры ИНС с использованием специализированной грамматики и эволюцией последовательностей применения правил [1]. Описание операций, используемых при декодировании хромосомы, приведено в тексте.

Литература

- [1] F. Gruau. Neural network synthesis using cellular encoding and the genetic algorithm: Unpublished PhD thesis. PhD thesis, l'Universite Claude Bernard, Lyon, 1994.
- [2] H. Kitano. Designing neural network using genetic algorithm with graph generation system. *Complex Systems*, (4):461–476, 1990.
- [3] Kenneth O. Stanley. Exploiting regularity without development. In *Proceedings of the AAAI Fall Symposium on Developmental Systems*. Menlo Park, CA: AAAI Press, 2006.
- [4] Kenneth O. Stanley, David B. D'Ambrosio, and Gauci Jason. A hypercube-based encoding for evolving large-scale neural networks. *Artificial Life*, 15(2):185–212, 2009.
- [5] K.O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topologies. *Evolutionary Computation*, 10(2):99–127, 2002.