

AARHUS SCHOOL OF ENGINEERING

SUNDHEDSTEKNOLOGI 3. SEMESTERPROJEKT

Dokumentation

Gruppe 1 Lise Skytte Brodersen (201407432) Nina Brkovic(201406458) Jakob Degn Christensen(201408532) Toke Tobias Aaris(201407321) Annsofie Randrup Wagner (201406360)

Anders Wiggers Birkelund (201404118)

Vejleder Studentervejleder Peter Johansen Aarhus Universitet

Indholdsfortegnelse

\mathbf{Kapite}	l 1 Kravspecifikation	1
1.1	Indledning	 . 1
1.2	Systembeskrivelse	 . 1
1.3	Funktionelle krav	 . 1
	1.3.1 Aktør-kontekstdiagram	 . 2
	1.3.2 Aktørbeskrivelse	 . 3
	1.3.3 Use case-diagram	 . 3
	1.3.4 Use Cases	 . 4
1.4	Ikke-funktionelle krav	 . 7
	1.4.1 Functionality	 . 7
	1.4.2 Usability	 . 8
	1.4.3 Reliability	 . 8
	1.4.4 Performance	 . 8
	1.4.5 Supportability	 . 8
	$1.4.6 \operatorname{Andre}(+) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $. 9
Kapite	l 2 Design	11
$\frac{1}{2.1}$	Systemarkitektur	 . 11
2.2	Grænseflader	 . 11
2.3	Hardware arkitektur	 . 11
2.4	Software arkitektur	 . 11
Kapite	13 Acceptest	13
3.1	Accepttest af Use Cases	
_	3.1.1 Use Case 1	
	3.1.2 Use Case 2	
	3.1.3 Use Case 3	
	3.1.4 Use Case 4	
	3.1.5 Use Case 5	
	3.1.6 Use Case 6	
3.2	Accepttest of ikke-funktionelle kray	

Kravspecifikation

Versionshistorik

Version	Dato	Ansvarlig	Beskrivelse
1.0	23-09-2015	Alle	Første udkast til Use Cases. I alt 4, hvor en af funktio- naliteterne var, at man kunne optage en lydsekvens
1.1	29-09-2015	Alle	Ændring af Use Cases efter møde med Peter. I alt 5, hvor funktionaliteterne kunne dækker over de opstillede krav til projektet.
1.2	30-09-2015	Alle	Små ændring af formuleringerne samt byttet om på UC1 og UC2 og tilføjet en UC6. De ikke-funktionelle krav er blevet tilføjet. Klar til Review
2.0	08-10-2015	Alle	Rettelser efter review møde

1.1 Indledning

Kravspecifikationen vil gennem seks Use Cases beskrive blodtryksmålerens funktionelle krav. Systemets ikke-funktionelle krav er udarbejdet på baggrund af (F)URPS+. Dertil vil der være aktør-kontekst- og Use Casesdiagram samt beskrivelse af de forskellige aktører, der intergerer med systemet.

1.2 Systembeskrivelse

Systemet skal kunne vise et blodtryksignal kontinuert i en graf. Derudover skal systemet kunne kalibrere, nulpunktsjustere samt gemme data for målingen i en lokal database. Systemet er udvilket som en prototype, der er mulig at teste udfra de givne rammer.

1.3 Funktionelle krav

De funktionelle krav vil nedenstående beskrives ud fra Aktør-kontekstdiagram, aktørbeskrivelse, Use Cases samt Use Case diagram.

1.3.1 Aktør-kontekstdiagram

Figur 1.1: Aktør-kontekstdiagram

Systemet består af en software- og en hardward-del. Softwaredelen er udarbejdet i Visual Studio C#. Hardwaredelen består af flere komponenter sat sammen. Tryktransducer, Instrumentationforstærker, et aktivt 2. ordens lavpasfilter af typen Sallen-Key med unity gain og en DAQ. Det er selve systemet.

Primær aktøren i dette projekt er en Forsker. Sekundære aktører er Database og Borger. Borger er en package af Physionet og Analog Discovery, som er eksterne aktører.

1.3. Funktionelle krav ASE

1.3.2 Aktørbeskrivelse

Aktørnavn Type Beskrivelse	Forsker Primær Person med relevant baggrundsviden inden for blodtryksanalyse
Aktørnavn Type Beskrivelse	Borger Sekundær Borger er en kombination af Physionet og Analog Discovery. Borger repræsenterer data fra Physionet leveret til blodtryksmålingssystemet igennem Analog Discovery
Aktørnavn Type Beskrivelse	Database Sekundær Database bruges i blodtryksmålingssystemet til at gemme data
Atørnavn Type Beskrivelse	Physionet Ekstern Physionet er en ekstern database, som indeholder blodtrykssignalet fra forskellige patienter
Aktørnavn Type Beskrivelse	Analog Discovery Ekstern Analog Discovery omdanner data fra Physionet til at analogt signal

Tabel 1.2: Aktørbeskrivelse

1.3.3 Use case-diagram

 $Figur\ 1.2:\ Use\ case-diagram$

Forskeren af systemet er den primære aktør i alle seks Use Cases. Det er Forskeren, der sætter alle Use Cases igang og styrer, hvad der skal ske og hvornår. Borgeren, som er den sekundære aktør, integrer i UC2, da det er her, blodtryksmålingen for Borgeren skal vises. For at få gemt data integrerer den sekundære aktør Database med UC6.

1.3.4 Use Cases

Use Case 1

Navn		Kalibrér
Use case ID		1
Samtidige forløb		1
Primær aktør		Forsker
Sekundære aktør		
Mål		Forsker ønsker at kalibrere blodtrykssignal
Initiering		Startes af Forsker
Forudsætninger		System er aktivt og tilgængeligt
Resultat		Blodtrykssignalet er kalibreret
Hovedforløb	1.	Kalibrering-vinduet vises, hvor system spørger om der skal foretages en kalibrering
	2.	Forsker trykker på "Ja"-knappen [2.a Forsker trykker på "Nej"-knappen]
	3.	System kalibrerer og Kalibrering-vinduet lukkes ned
Undtagelser	2.a	Forsker ønsker ingen kalibrering. UC1 afsluttes og Kalibrering- vinduet lukkes

Tabel 1.3: Fully dressed Use Case 1.

Use Case 2

Navn	Vis Måling
Use case ID	2
Samtidige forløb	1
Primær aktør	Forsker
Sekundære aktør	Borger

1.3. Funktionelle krav ASE

Mål		Forsker ønsker at vise blodtrykssignal med digitalt filter
Initiering		Startes af UC1
Forudsætninger		System er aktivt og tilgængeligt. Digitalt filter er aktivt. Borger er tilsluttet system
Resultat		Blodtrykssignalet udskrives
TT 10 1 1	1	Monitor-vinduet vises
Hovedforløb	1.	Tromfor vindae vises
Hovedforløb	1. 2.	Blodtryksignal udskrives på en graf i Monitor-vinduet
Hovedforløb		

Tabel 1.4: Fully dressed Use Case 2.

Navn		Nulpunktsjustér
Use case ID		3
Samtidige forløb		1
Primær aktør		Forsker
Sekundære aktør		
Mål		Forsker ønsker at nulpunktsjustere blodtrykssignal
Initiering		Startes af Forsker
Forudsætninger		System er aktivt og tilgængeligt. UC2 kører
Resultat		Blodtrykssignalet er nulpunktsjusteret
Hovedforløb	1.	Forsker trykker på "Nulpunktjustering"-knappen
	2.	System starter nulpunktsjusteringen
	3.	Det fremgår i Monitor-vinduet, at nulpunktsjustering er foretaget

Tabel 1.5: Fully dressed Use Case 3.

Use Case 4

 ${\bf Undtagelser}$

Use Case 3

Navn		Deaktivér filter
Use case ID		4
Samtidige forløb		1
Primær aktør		Forsker
Sekundære aktør		
Mål		Forsker ønsker at deaktivere det digitale filter
Initiering		Startes af Forsker
Forudsætninger		System er aktivt og tilgængeligt. UC2 kører
Resultat		Ufiltreret blodtrykssignal vises i Monitor-vindet
Hovedforløb	1. 2.	Forsker deaktiverer filter ved at markere i "Deaktivér digitalt filtre" System udskriver det ufiltreret blodtryksignal
		System daskriver det amtereret bloddryksighar
Undtagelser		

Tabel 1.6: Fully dressed Use Case 4.

Aktivér filter

Use Case 5

Navn

Use case ID		5
Samtidige forløb		1
Primær aktør		Forsker
Sekundære aktør		
Mål		Forsker ønsker at aktivere det digitale filter
Initiering		Startes af Forsker
Forudsætninger		System er aktivt og tilgængeligt. Det digitale filter er deaktiveret
Resultat		Filtreret blodtrykssignal vises i Monitor-vindet
Hovedforløb	1.	Forsker aktiverer filter ved at markere i "Aktivér digitalt filtre"
	2.	System udskriver det filtreret blodtryksignal

${\bf Undtagelser}$

Tabel 1.7: Fully dressed Use Case 5.

Use Case 6

Navn		Gem måling
Use case ID		6
Samtidige forløb		1.2*
Primær aktør		Forsker
Sekundære aktør		Database
Mål		Forsker ønsker at gemme data i Database
Initiering		Startes af Forsker
Forudsætninger		System er aktivt og tilgængeligt. UC2 kører
Resultat		Data er gemt i Database
Hovedforløb	1.	Forsker trykker på "Gem"-knappen [1.a Borgerens data er gemt fra forrige målinger]
	2.	System åbner Gem-vinduet
	3.	Forsker indtaster data for blodtryksmålingen
	4.	Forsker trykker på "OK"-knappen
	5.	System lukker Gem-vinduet og åbner Monitor-vinduet igen
	6.	System viser, at data er gemt i Monitor-vinduet
Undtagelser	1.a	UC6 forsættes ved punkt 6

Tabel 1.8: Fully dressed Use Case 6.

1.4 Ikke-funktionelle krav

De ikke-funktionelle krav er specificeret ved brug af redskabet (F)URPS+, der står for hhv. Functionality, Usability, Reliability, Performance, Supportability og andre krav til fx brugssituationer og interface.

1.4.1 Functionality

• System skal kunne vise en kontinuerlig blodtryksignal i Monitor-vinduet.

- System skal kunne vise Systole-, Diastole- og Pulsværdier med op til tre cifre.
- System skal kunne vise et blodtrykssignal med og uden et digitalt filter.
- System skal kunne nulpunktsjustere blodtrykssignalet.
- System skal kunne gemme en blodtryksmåling i en database.
- System skal kunne kalibreres.

1.4.2 Usability

- Monitor-vinduet skal indeholde en "Gem"-knap.
- Monitor-vinduet skal indeholde en "Nulpunktsjustér"-knap.
- Monitor-vinduet skal indeholde to radiobuttons til aktivering og deaktivering af digitalt filter.
- Kalibrering-vinduet skal indeholde en "Ja"-knap og en "Nej"-knap.
- Kalibrering-vinduet skal indeholde et datostempel for seneste kalibrering.
- Gem-vinduet skal indeholde tekstbokse til data indtastning for målingen.
- Gem-vinduet skal indeholde en "OK"-knap.
- Det skal være muligt at aflæse værdier på Monitor-vinduet fra 2 meters afstand med normalt syn.

1.4.3 Reliability

• Systemet skal have en effektiv MTBF (Mean Time Between Failure) på 20 minutter og en MTTR (Mean Time To Restore) på 1 minut.

$$Availability = \frac{MTBF}{MTBF + MTTR} = \frac{20}{20 + 1} = 0,952 = 95,2\% \tag{1.1}$$

1.4.4 Performance

- Blodtrykssignalet skal vises maksimalt 5 sekunder efter UC1 er afsluttet.
- Systemet skal vise en graf for blodtryksmålingen, hvor y-aksen er mmHg og x-aksen er tid i sekunder.
- Systemet skal kunne måle blodtryksværdier fra 0 til 300 mmHg.

1.4.5 Supportability

• Softwaren skal opbygges efter trelagsmodellen.

$1.4.6 \quad Andre(+)$

Brugssituationer

- Der skal være adgang til en computer med Windows 7 eller nyere computeren skal have minimum 4 GB RAM.
- Der skal være adgang til en computer, hvor National Instruments er installeret.

Interface

- Blodtryksdiagrammet skal fylde minimum 1/3 af Monitor-vinduet.
- Baggrunden i Monitor-vinduet skal være mørk.
- Blodtrykssignal og -værdier(systole og diastole) skal være røde, og puls skal være grøn.
- Systolisk og diastolisk blodtryk skal fremhæves øverst i højre hjørne ved større skriftstørrelse end andre værdier i Monitor-vinduet (fx værdier på akserne).

2.1 Systemarkitektur

BDD-diagram

Nedenfor ses BDD-diagrammet, som viser det overordnede blodtryksmålersystem. Her ses de forskellige komponenter, der interagerer med systemet. Derudover ses en beskrivelse af hver blok under BDD-diagrammet.

Indsæt billede af BDD-diagram

Blok	Beskrivelse		
Blodtryksmåler	Det overordnede system, som indeholder DAQ transducer, filter, computer og forstærker		
Computer	Indeholder software til systemet, som er kodet i Visual Studio C#. Brugeren af systemet kan kalibrere, nulpunktsjustere, aktivere, deaktiver filter, gemme og vise målinger		
DAQ	Konverterer et analogt signal fra transduceren til et digitalt signal		
Transducer	Registrerer det målte tryk, og omdanner det til en spænding, der læses som et analogt signal		
Forstærker	Forstærker det analoge signal fra transduceren. Dette gøres ved hjælp af instrumentationsforstærkeren		
Filter	Lavpasfilter		

2.2 Grænseflader

2.3 Hardware arkitektur

2.4 Software arkitektur

Acceptest 3

Versionshistorik

Version	Dato	Ansvarlig	Beskrivelse
1.0	30-09-2015	Alle	Første udkast. Klar til Review
2.0	08-10-2015	Alle	Rettelser efter review møde

3.1 Accepttest af Use Cases

3.1.1 Use Case 1

Kalibrér

	Test	Forventet resultat	Faktiske observationer	Godkendt
	$Hoved for l \emptyset b$			
1.	Start system	Kalibrering-vinduet vises, hvor system spørger om der skal foretages en kalibre- ring		
2.	Tryk på "Ja"-knappen	System kalibrerer og Kalibrering-vinduet lukkes ned		
	Undtagelse			
2a.	Tryk på "Nej"- knappen	Kalibrering-vinduet lukkes ned		

Tabel 3.2: Accepttest of Use Case 1.

3.1.2 Use Case 2

${f Vis}$ måling

	Test	Forventet resultat	Faktiske observationer	$\operatorname{Godkendt}$
	$Hoved for l \emptyset b$			
1.	System viser Monitor- vinduet	Blodtryksignal samt Systole-, Diastole- og pulsværdier udskrives i Monitor-vinduet		
	Undtagelse			

Tabel 3.3: Accepttest of Use Case 2.

3.1.3 Use Case 3

Nulpunktsjustér

	Test	Forventet resultat	Faktiske observationer	Godkendt
	$Hoved for l \emptyset b$			
1.	Tryk på "Nulpunktsjustering"- knappen	Blodtrykssignalet udskrives i Monitor- vinduet med en baseline ved 0		
	Undtagelser			

Tabel 3.4: Accepttest af Use Case 3.

3.1.4 Use Case 4

Deaktivér filter

Test	Forventet resultat	Faktiske observationer	$\operatorname{Godkendt}$
$Hoved for l \emptyset b$			

1.	Markér "Deaktivér di- gitalt filtre"	Filteret deaktiveres og det ufiltreret blod- tryksignal udskrives i Monitor-vinduet
	Undtagelser	

Tabel 3.5: Accepttest af Use Case 4.

3.1.5 Use Case 5

Aktivér filter

	Test	Forventet resultat	Faktiske observationer	Godkendt
	$Hoved for l \emptyset b$			
1.	Markér "Aktivér digi- talt filtre"	Filteret aktiveres og det filtreret blod- tryksignal udskrives i Monitor-vinduet		
	Undtagelser			

Tabel 3.6: Accepttest of Use Case 5.

3.1.6 Use Case 6

Gem måling

	Test		Forventet resultat		Faktiske observationer	$\operatorname{Godkendt}$
	$Hoved for l \emptyset b$					
1.	Tryk på knappen	"Gem"-	Gem-vinduet åbnes	5		
2.	Indtast data		Datafelterne er fyldt	ud-		

3.	Tryk p knappen	å "OK"-	Gem-vinduet lukkes ned og Monitor- vinduet åbnes. Gem- me tidspunktet vises i
	Undtagels	er	Monitor-vinduet
1a.	Tryk pa	å "Gem"-	Gemme tidspunktet vises i Monitor- vinduet

Tabel 3.7: Accepttest af Use Case 6.

3.2 Accepttest af ikke-funktionelle krav

Ikke-funktionelt krav	$\mathrm{Test}/\mathrm{handling}$	Forventet resultat	Faktiske vationer	obser-	Godkendt
Functionality					
System skal kunne vise et kontinuerligt blodtryksignal i Monitor-vinduet	Der ses om GUI'en viser et kontinuerligt blodtrykssignal	System viser et kontinuerligt blodtrykssignal			
System skal kun- ne vise Systole-, Diastole- og Pulsværdier med op til tre cifre	Der ses om GUI'en inde- holder Systole-, Diastole- og Pulsværdier med op til tre cifre	GUI'en inde- holder Systole-, Diastole- og Pulsværdier med op til tre cifre			
System skal kun- ne vise et blod- trykssignal med og uden et digi- talt filter	Der ses om GUI'en kan vise et blodtrykssig- nal med og uden digitalt filter	GUI'en kan vise et blodtrykssig- nal med og uden digitalt filter			
System skal kun- ne nulpunktsju- stere blodtryks- signalet	Der ses i GUI'en om blodtrykssig- nalet kan nul- punktsjusteres	Blodtrykssignalet kan nulpunktju- steres			

System skal kunne gemme en blodtryksmåling i en database	Der trykkes på "Gem"knappen i Monitor-vinduet og der indtastes gyldige værdier i Gem-vinduet og trykkes på "OK"-knappen	System gemmer data i en data- base og udskri- ver tidsstempel for gemt data i Monitor-vinduet
System skal kun- ne kalibreres	Der trykkes på "Ja"-knappen i kalibrering- vinduet	System er kali- breret
$\overline{Usability}$		
Monitor-vinduet skal indeholde en "Gem"-knap	Der ses i Monitor-vinduet om der er en "Gem"-knap	Der er en "Gem"- -knap i Monitor- vinduet
Monitor-vinduet skal indeholde en "Nulpunktsjustér"- -knap	Monitor-vinduet	Der er en "Nulpunktsjustér"- -knap i Monitor- vinduet
Monitor-vinduet skal indeholde to radiobuttons til aktivering og deaktivering af digitalt filter	Der ses i Monitor-vinduet om der er to radiobuttons til aktivering og deaktivering af digitalt filter	Der er to radio- buttons til akti- vering og deakti- vering af digitalt filter i Monitor- vinduet
Kalibrering- vinduet skal indeholde en "Ja"-knap og en "Nej"-knap	Der ses i kalibrering- vinduet om der er en "Ja"-knap og en "Nej"-knap	Der er en "Ja"knap og en "Nej"-knap i kalibrering- vinduet

Kalibrering- vinduet skal indeholde et datostempel for seneste kalibrering	Der ses i kalibrering- vinduet om der er et tidsstem- pel for seneste kalibrering	Der er et tids- stempel for se- neste kalibrering i kalibrering- vinduet
Gem-vinduet skal indeholde tekstbokse til data indtastning for målingen	Der ses i Gemvinduet, om der er tekstbokse til indtastning af data	Der er tekstbok- se til indtastning af data i Gem- vinduet
Gem-vinduet skal indeholde en "OK"-knap	Der ses i Gemvinduet om der er en "OK"-knap	Der er en "OK"-knap i Gem-vinduet
Det skal være muligt at aflæ- se værdier på Monitor-vinduet fra 2 meters afstand med normalt syn	Der testes af 5 personer med forskellige aldre med en syns- styrke på +/- 0,25, som place- res 2 meter fra Monitor-vinduet	Det er muligt for de 5 at aflæse værdierne på 2 meters afstand
Reliability		
v	Køre programmet i 20 minutter. Genstart derefter programmet, hvor der tages tid med et stopur	Programmet har kørt i 20 minut-ter og genstartes indenfor 1 minut
Performance		
Blodtrykssignalet skal vises maksi- malt 5 sekunder efter UC1 er afsluttet	UC1 afsluttes samtidig med startes et stopur på en iPhone 5s. Når blodtryks- signalet vises stoppes uret	Blodtryksignalet vises indenfor de 5 sekunder

Systemet skal vise en graf for blodtryks- målingen, hvor y-aksen er mm- Hg og x-aksen er tid i sekunder	Der ses på grafen for blodtryks- signalet, om y-aksen er mm- Hg og x-aksen er tid i sekunder	Blodtryksignalets y-akse er mmHg og x-aksen er tid i sekunder
Systemet skal kunne måle blodtryksværdi- er fra 0 til 300 mmHg	Der foretages målinger hvor trykket er hen- holdsvis 280-295 og +300 (?)	(?)
Supportability		
Softwaren skal opbygges efter trelagsmodellen	Der kigges i ko- den efter data- lag, logik-lag og GUI-lag	Data-lag, logik- lag og GUI-lag er at find i koden
-Andet(+)		
Der skal være adgang til en computer med Windows 7 eller nyere – computeren skal have minimum 4 GB RAM	Der ses om der er installeret Win- dows 7 eller nye- re og om der er minimum 4 GB RAM	Det ses at der er installeret Win- dows 7 eller nye- re og om der er minimum 4 GB RAM
Blodtryks-diagrammet skal fylde minimum $1/3$ af Monitor-vinduet	Der ses om blodtryksdia- grammet fylder minimum 1/3 af Monitor-vinduet	Blodtryksdiagrammet fylder minimum $1/3$ af Monitorvinduet
Baggrunden i Monitor-vinduet skal være mørk	Der ses i Monitor-vinduet om baggrunden er mørk	Baggrunden i Monitor-vinduet er mørk

Blodtrykssignal og - værdier(systole og diastole) skal være røde og puls skal være grøn	Der ses på blodtryksdia- grammet om blodtrykssignal og -værdier er røde og puls er grøn	Blodtrykssignal og - værdier(systole og diastole) er røde og puls er grøn
Systolisk og diastolisk blodtryk skal fremhæves ved større skriftstørrelse end andre værdier i Monitor-vinduet (fx værdier på akserne)	om det systoliske og det diasto- liske blodtryk er fremhævet	Det ses i Monitor-vinduet at det systoliske og det diasto- liske blodtryk er fremhævet ved større skrift- størrelse end andre værdier i Monitor-vinduet

 $Tabel \ 3.8: \ Accepttest \ af \ Ikke-funktionelle \ krav$