BACHELOR'S DEGREE IN COMPUTER SCIENCE AND ENGINEERING

BACHELOR DEGREE IN APPLIED MATHMATICS AND COMPUTING

OPERATING SYSTEMS

Presentation

- □ Motivation and objectives
- Subject description
- Information sources
- Course organization
- Evaluation process

Motivation

- Why study operating systems?
 - Exist in almost any computer device
 - E.g. PCs, servers, mobiles, embedded computers
- It is the system interface seen by the application and system programmers.
 - Virtual machine vision
 - Hides the underlying hardware complexity
 - Knowledge necessary to exploit the system functionalities.
 - They are in constant evolution.

Some examples: small scale

Some examples: large scale

32 Node Cards

Node Card

(32 chips 4x4x2) 16 compute, 0-2 IO cards

180/360 TF/s

2.8/5.6 TF/s 512 GB

32 TB

Compute Card

2 chips, 1x2x1

16 GB

Chip

2 processors

5.6/11.2 GF/s 1.0 GB

Operating Systems Presentation

Objectives

- □ To understand the basic concepts related with OS.
 - What is an OS
 - What is this for?
 - How does it work?

- □ To know OS functionalities
 - What services do they offer?
 - How are OS related with the rest of the software and hardware?

- Motivation and objectives
- □ Subject description
- Information sources
- Course organization
- Evaluation process

Syllabus

Theoretical part

- Introduction to Operating Systems
- Processes
- Memory management
- Concurrency
- File systems

Practical part

- System calls
- Implementation of a command shell
- 3. Concurrent systems

Exercises

- Autotest
- Exercises

- Motivation and objectives
- Subject description
- □ Information sources
- Course organization
- Evaluation process

Bibliography

 OPERATING SYSTEM CONCEPTS 9TH EDITION

SILBERSCHATZ, PETER GALVIN, GAGNE, Wiley 2012

Complementary bibliography

Operating Systems: Principles and Practice
 Thomas Anderson , Michael Dahlin
 Amazon Press. Kindle Edition. 2015.

- Modern Operating Systems.
 A. S. Tanenbaum
 Pearson Education, 2003 (2^a ed).
- Operating Systems (3^a ed).
 Gary J. Nutt,
 Pearson Education, 2003
- Operating Systems: Internals and Design Principles. (7th Ed),
 William Stallings,
 Prentice Hall, 2012

Other resources

- □ Aula Global
 - Official information source
- The slides are a mere guide for the teacher and students and are not designed to be the main material of the subject.
- The knowledge contained in the slides doesn't guarantee the students will acquire the subject objectives.
- It is highly recommended to use the basic and complementary resources that are available: books, articles, etc..

- Motivation and objectives
- Subject description
- Information sources
- □ Course organization
- Evaluation process

Class distribution

- □ 18 weeks
 - 14 weeks of theoretical and practical classes
 - 8 hours of student work per week
 - 1 week for extra classes and tutor time
 - 2 weeks for preparing the final exam
 - 1 week for exam

Detailed chronogram in Aula Global

Activities

- □ Theoretical classes
 - One per week (2 hours)
 - Theoretical concepts
- □ Practical classes
 - Practical examples
 - Exercises, lab practices, quizzes.
- □ Extra practical classes
 - Complementary lab practice. Virtual aula.

Student activities

- □ Tutor time
 - Resolve questions
- □ Student personal work
 - Theoretical contents
 - Exercises
 - Lab assignments
 - Complementary reading and exam preparation

Lab assignments

- □ Assignments (mandatory):
 - 3 lab assignments
 - Groups of three students

- Other activities
 - Required during the teaching time
 - Information search, additional problems and practical work.

Teachers

- □ Coordinator: Jesús Carretero Pérez
- □ Groups 88,89
 - MAG Carlos Tessier
 - SMALL Angel Hernández, Simón Esteban
- Group 121
 - MAG Carlos Tessier
 - SMALL Antonio Pérez, Simón Esteban
- □ Tutor time: check Aula Global

- Motivation and objectives
- Subject description
- Information sources
- Course organization
- □ Evaluation process

Student rules

- Continuous evaluation
- □ Based on:

Continous evaluation

- A student follows the continuous evaluation if and only if he/she:
 - has completed the partial exams.
 - ▶ AND has completed the three lab practices with a minimum grade.

Copying will be cause to loose the continuous evaluation grade

Rules

- Continuous evaluation (CE)
- □ Exams (60%)
 - Partial exams (20%).
 - Not all mandatory, but you loose the points if do't do them. No minimum score.
 - Final exam (40%): includes all the subject contents.
 - Important: the exam grade must be >= 3.5 to consider CE
- □ Lab assignments (40%)
 - 3 assignments
 - Compulsory
 - Important: the final minimum grade per assignment must be ≥ 2 and the average grade must be ≥ 4
 - Weight: (%): Lab 1 25, Lab2 40, Lab3 35

Without continuous evaluation

- Without continuous evaluation:
 - Final grade = 0,6 * Final exam grade
 - You need more than 8.33 out of 10.

UC3M rules

- □ Important:
 - Follow the continuous evaluation

Resit exam

- □ Resit exam
- Case 1: Student has the continuous evaluation
 - Exam 35% and continuous evaluation 65%.
 - \blacksquare the resit exam grade must be >=3.5
- Case 2: Student does not have the continuous evaluation
 - Exam 100%
 - It includes all the subject contents

The best case is always applied

Lab extra advices

- □ In your computer:
 - Install Linux physically
 - Install a virtual machine
 - Install first Virtualbox or VMWare tool
 - Install Ubuntu Linux image
 - https://www.linuxvmimages.com/images/ubuntu-1804/
 - https://vitux.com/how-to-install-vmware-workstation-on-ubuntu/
 - https://linuxhint.com/install_ubuntu_18-04_virtualbox/

To learn C

- Virtual portal to learn C
 - www.learn-c.org/
- □ C Course:
 - https://www.tutorialspoint.com/cprogramming/index.htm
- □ C for Python programmers:

http://www.toves.org/books/cpy/