Lecture 24: Non-linear dimensionality reduction techniques

Reading: ESL 14.5.4, 14.8, 14.9

STATS 202: Data mining and analysis

Sergio Bacallado November 18, 2013

Overview

- Methods for unsupervised learning or exploratory data analysis.
- PCA is a linear dimensionality reduction method.
- ▶ If the data show non-linear patterns, these will be difficult to discover by PCA.
- Non-linear dimensionality reduction methods are useful to analyze data with a high signal to noise ratio, for example, images of physical objects.

Example. Shells

All directions have equal variance: PCA wouldn't capture the obvious circular patterns.

Kernel PCA

- ▶ To make PCA non-linear, we transform the features through Φ .
- ▶ The feature map Φ gives rise to the kernel $\langle \Phi(x_i), \Phi(x_k) \rangle$.
- Kernel PCA:
 - 1. Find the vector g_1 , in the expanded feature space, which maximizes the variance of the projections:

$$\langle \Phi(x_1), g_1 \rangle, \langle \Phi(x_2), g_1 \rangle, \dots, \langle \Phi(x_n), g_1 \rangle$$

2. Find the vector g_2 , orthogonal to g_1 , which maximizes the variance of the projections:

$$\langle \Phi(x_1), g_2 \rangle, \langle \Phi(x_2), g_2 \rangle, \dots, \langle \Phi(x_n), g_2 \rangle$$

3. ...

Example. Shells

The 1st principal component using the RBF kernel with $c=1/\gamma=10$ captures the distance from the center and clearly separates the three clusters.

How to choose the right kernel?

- ▶ In Kernel PCA, we have to choose the right kernel to obtain a meaningful visualization.
- ► This choice is not always easy.
- ▶ There are methods which use the data to learn the right kernel.
- These methods exploit the local structure of the data (similarity is only meaningful among nearest neighbors).
- ▶ We will talk about two examples:
 - 1. Locally linear embeddings
 - 2. Isomap

Locally linear embeddings (LLE)

Idea:

1. Represent each sample as a linear combination of neighbors:

$$x_i \approx \sum_{k=1}^n x_j W_{ik}, \qquad W_{ik} > 0 \iff x_i, x_k \text{ are neighbors}$$

2. Map each sample x_i to a point $\Psi(x_i)$ in 2 or 3 dimensional space, such that the local linear representation holds approximately:

$$\Psi(x_i) \approx \sum_{k=1}^n \Psi(x_j) W_{ik}.$$

- ▶ In step 1, we find the weights W.
- ▶ In step 2, we fix W and find the optimal mapping Ψ .
- ▶ The second problem is solved by an eigendecomposition.

Locally linear embeddings (LLE)

From Roweis et al. (2000).

Example. Faces dataset

- ► 2000 images, 20×28 pixels.
- Number of features: p = 560.
- Applied LLE with 16 nearest neighbors to find a 2D projection.

Multidimensional scaling

Multidimensional scaling is a technique for projecting data onto a low-dimensional space, while preserving the distance between every pair of samples in the original dataset.

If d(i,j) is the distance between x_i and x_j , we try to find a 2D representation $\Psi(x_i)$ of every sample, which minimizes:

$$\sum_{i,j} (d(i,j) - |\Psi(x_i), \Psi(x_j)|)^2$$

The function d can be any distance, not just the Euclidean distance between two samples.

Isomap

- ► Suppose that the data are clustered on a low dimensional manifold embedded in a high dimensional space.
- ► The relevant distance between two samples may not be the Euclidean distance on the space of predictors, but the shortest distance on the manifold.
- ► This distance is called the **geodesic**.

Isomap

- We don't know the manifold a priori.
- ► However, a nearest neighbor graph gives an approximation.
- ► Idea:
 - 1. Use the length of the shortest path on the graph as a proxy for the geodesic distance.
 - 2. Apply multidimensional scaling to visualize the manifold in a 2D space.

Example. Hands dataset

Summary

- Non-linear dimensionality reduction allows us to visualize complex data in low dimensions.
- ► This is useful when the samples concentrate on a non-linear manifold in high-dimensional space.
- Most methods exploit the nearest neighbor graph in some form or another.
- ► The data must have a good signal to noise ratio and high density. This is common in artificial intelligence tasks:
 - 1. Digit and letter recognition.
 - 2. Facial expression analysis.
 - 3. 3D physical models.