Building a Simple Recommendation System for Health Tips

Context: You are tasked with building a simple recommendation system that suggests personalized health tips based on user profiles (age, gender, medical conditions, etc.).

Task Overview:

1. Dataset Creation:

- Use platforms like Kaggle or Hugging Face to either simulate or find a suitable dataset containing user profiles with attributes such as age, gender, medical history, and a list of recommended health tips.
- Ensure the dataset has at least 1000 rows of data with a variety of health conditions and user demographics.

2. Model Building:

- Build a Content-based Recommendation System using Cosine Similarity or k-Nearest Neighbors (k-NN) in Python.
- The system should suggest the top 3 health tips for each user based on similar profiles.

3. Model Evaluation:

- Provide a brief evaluation of how well the recommendations align with common health advice, using real-life examples if possible.
- Suggest ways to improve the recommendations by incorporating more user data or using collaborative filtering.

4. Theoretical Task:

 Explain the basic principle behind Cosine Similarity or k-NN and why it is suitable for this type of recommendation task.

Deliverables:

Code:

- Submit a Python notebook (.ipynb) with all your code, from data preprocessing to model evaluation.
- Make sure the notebook is well-documented, with comments explaining each step.

• Report (Max 2 Pages):

- A brief report covering:
 - Key preprocessing steps taken.
 - Model choice and the rationale behind it.
 - Performance metrics of the model.
 - Theoretical explanation of the chosen model and how it translates mathematical formulas into algorithms.
 - Suggested improvements to your model and why they might work.

Bonus (Optional, but encouraged):

• If you're familiar with cloud platforms (AWS, Google Cloud, etc.), try deploying your model on a cloud service and provide a URL where we can see it in action. A simple API endpoint is sufficient.