Chapter 1

実数の連続性

ε-δ論法によって微分積分の理論を再定義しても、その議論は実数の連続性に依存している。 この章では、「実数は連続である」、平たく言えば「数直線には穴がない」という表現を観察する。

Contents

1	実数	の連続	性	1
	1.1	区間の)限界を表す	3
		1.1.1	上界と下界	4
		1.1.2	上限と下限	5
		1.1.3	上限定理	5
	1.2	数列の)極限再訪	6
		1.2.1	アルキメデスの公理	6
		1.2.2	収束列の有界性	6
		1.2.3	単調数列	6
		1.2.4	有界な単調数列の収束性	6
	1.3	区間網	备小法	7
	1.4	収束す	「る部分列	8
		1.4.1	部分列	8
		1.4.2	収束する数列の部分列の極限	8
		1.4.3	ボルツァーノ・ワイエルシュトラスの定理	8
	1.5	コーシ	/一列と実数の完備性	9
		1.5.1	コーシー列	9
		1.5.2	実数の完備性	9
	16	上限年	7理再計	10

1.1 区間の限界を表す

区間の最大値や最小値は、その区間の中で最大もしくは最小となる数を指す。

閉区間の場合は、区間の端点が最大値・最小値となるが、開区間では端点を含まないため、「区間 の中で」最大(もしくは最小)といえる数は存在しないことになる。

しかし、「最大値(最小値)がない=区間は限りなく続く」というわけではない。 もしそうだとしたら、次の3つの開区間が区別できないことになる。

そこで、最大値・最小値とは別に、区間に限界があることを表す概念を導入する。

1.1.1 上界と下界

区間内の数がとりうる値に「限界が有る」ことを、有界という概念で表す。

上界、上に有界

ある区間に属するどの数も、ある数M以下であるとき、この区間は上に有界であるといい、このMを上界という。

1.1. 区間の限界を表す 5

下界、下に有界

ある区間に属するどの数も、ある数 N 以上であるとき、この区間は下に有界であるといい、この Nを下界という。

有界

ある区間が上にも下にも有界であるとき、この区間は有界であるという。

1.1.2 上限と下限

1.1.3 上限定理

② [Todo 1: 公理 3.1]

1.2 数列の極限再訪

1.2.1 アルキメデスの公理

[Todo 2: 命題 3.2]

\$

1.2.2 収束列の有界性

[Topo 3: 定理 2.11]

1.2.3 単調数列

[Todo 4: 定義 5.1]

1.2.4 有界な単調数列の収束性

[Todo 5: 定理 5.4]

1.3. 区間縮小法 7

区間縮小法 1.3

全 [Todo 6: 定理 5.11]

1.4 収束する部分列

1.4.1 部分列

[Topo 7: 定義 6.5]

1.4.2 収束する数列の部分列の極限

[Todo 8: 定理 6.7]

1.4.3 ボルツァーノ・ワイエルシュトラスの定理

[Todo 9: 定理 6.8]

1.5 コーシー列と実数の完備性

1.5.1 コーシー列

全 [Todo 10: 定義 6.9]

1.5.2 実数の完備性

全 [Topo 11: 定理 6.11]

1.6 上限定理再訪

[Topo 12: 定理 6.12]

1.6. 上限定理再訪 11

Zebra Notes

Туре	Number	
todo	12	