CLAIMS

What is claimed is:

1.	A method for consolidating nanophase metal powder, comprising the steps of:
	consolidating said powder by applying pressure to said powder at a first temperature;
	encompassing said powder with a flowable pressure transmitting medium that is
	heated to a second temperature that is higher than said first temperature; and

compressing said heated medium and thereby further consolidating said powder.

- 2. The method according to claim 1, wherein said second temperature ranges between about 700 °F and about 1000 °F.
- 3. The method according to claim 2, wherein said second temperature ranges between about 775 °F and about 875 °F.
- 4. The method according to claim 1, wherein said first temperature ranges between about 700 °F and about 1000 °F.
- 5. The method according to claim 4, wherein said first temperature is about 700 °F.
- 6. The method according to claim 1, wherein said compressing step comprises mechanically compacting said heated medium to thereby further consolidate said powder.

UTILITY PATENT APPLICATION ATTORNEY DOCKET NO. 024.0043 (03-0476)

- 7. The method according to claim 6, wherein said mechanically compacting is performed using a hydraulic press to thereby further consolidate said powder.
- 8. The method according to claim 1, wherein said powder is enclosed in a container during said encompassing step, said container also being encompassed with said medium.
- 9. The method according to claim 8, wherein said container is formed of a material that is sufficiently thin to have a negligible effect on consolidating said powder when said medium is compressed.
- 10. The method according to claim 1, further comprising:prior to said consolidating step, cryomilling and degassing said powder.
- 11. The method according to claim 1, wherein said powder is a nanophase metal selected from the group consisting of aluminum, iron, aluminum alloys, and iron alloys.
- 12. The method according to claim 10, wherein said powder is nanophase aluminum.

UTILITY PATENT APPLICATION ATTORNEY DOCKET NO. 024.0043 (03-0476)

- 13. A method for consolidating nanophase metal powder, comprising the steps of:
 - encompassing said nanophase metal powder with a flowable pressure transmitting medium that is heated to a first temperature;
 - compressing said heated medium at said first temperature and thereby consolidating said powder;
 - heating said medium to a second temperature that is higher than said first temperature; and
 - compressing said heated medium at said second temperature and thereby further consolidating said powder.
- 14. The method according to claim 13, wherein said second temperature ranges between about 700 °F and about 1000 °F.
- 15. The method according to claim 14, wherein said second temperature ranges between about 775 °F and about 875 °F.
- 16. The method according to claim 13, wherein said first temperature ranges between about 700 °F and about 1000 °F.
- 17. The method according to claim 16, wherein said first temperature is about 700 °F.
- 18. The method according to claim 13, wherein said each compressing step comprises mechanically compacting said heated medium to consolidate said powder.

UTILITY PATENT APPLICATION ATTORNEY DOCKET NO. 024.0043 (03-0476)

- 19. The method according to claim 18, wherein said mechanically compacting is performed using a hydraulic press.
- 20. The method according to claim 13, wherein said powder is enclosed in a container during said encompassing step, said container also being encompassed with said medium.
- 21. The method according to claim 20, wherein said container is formed of a material that is sufficiently thin to have a negligible effect on consolidating said powder when said medium is compressed.
- 22. The method according to claim 13, further comprising:
 - prior to said consolidating step, cryomilling and degassing said powder.
- 23. The method according to claim 13, wherein said powder is a nanophase metal selected from the group consisting of aluminum, iron, aluminum alloys, and iron alloys.
- 24. The method according to claim 23, wherein said powder is nanophase aluminum.