THE WIS OREGINED TO	ANUS AND TA	ITER, SIKSHA 'O' ANUSANDHAN (Deemed to be University)						Assignment	
Brancl	Branch Computer Science and Engineering Programme						B.Tec		
Course	e Name	Digital Logic Design	<u> </u>	Semeste	r		I	II	
Cours	e Code	EET1211		Academi	c Year		20	22/Odd	
Assig	nment-1	Topic-Number System, Boolean Al				GP-1			
Learni	ing Level	L1: Remembering	L3: Applying L5:				Evaluating		
(LL)		L2: Understanding	L4: Analysing		reating	eating			
			·						
Q's			stions			COs		LL	
1	Decimal 43 in hexadecimal and BCD number system is, respectively, (a) B2, 01000011 (b) 2B, 01000011 (c) 2B, 0011 0100 (d) B2, 0100 0100 Gate[2005]							L1	
2	The number of bytes required to represent the deci-							L3	
3	A. 11 B. 16 C. 4 D. 6 In which base system 24 + 17 = 40 holds good? CO1 L3							L3	
4	The code where all successive numbers differ from their preceding number by single bit is A. Binary Code B. Gray Code C. BCD D. Excess - 3						L1		
5	A function $F(A, B, C)$ defined by three Boolean variables A, B and C when expressed as sum of products is given by $F = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot \overline{C} + A \cdot \overline{B} \cdot \overline{C}$ Where, $\overline{A}, \overline{B}$ and \overline{C} are the complements of the respective variables. The product of sums (POS) form of the function F is. [2018] (A) $F = (A + B + C) (A + \overline{B} + C) (\overline{A} + B + C)$ (B) $F = (\overline{A} + \overline{B} + \overline{C}) (\overline{A} + B + \overline{C}) (A + \overline{B} + \overline{C})$ (C) $F = (A + B + \overline{C}) \cdot (A + \overline{B} + \overline{C}) \cdot (\overline{A} + B + \overline{C}) \cdot (\overline{A} + B + \overline{C})$ (D) $F = (\overline{A} + \overline{B} + C) \cdot (\overline{A} + B + C) \cdot (A + \overline{B} + C) \cdot (A + \overline{B} + C)$ (D) $F = (\overline{A} + \overline{B} + C) \cdot (\overline{A} + B + C) \cdot (A + \overline{B} + C) \cdot (A + \overline{B} + C)$						L3		
6	The Boolean expression $F(X, Y, Z) = \overline{XYZ} + X\overline{YZ} + X\overline{YZ} + XY\overline{Z} + XYZ$ converted into the canonical product of sum (POS) form is [2015]							L3	

	(A) $(X+Y+Z)(X+Y+\overline{Z})(\overline{X}+Y+\overline{Z})$		
	(B) $(X + \overline{Y} + Z)(\overline{X} + Y + \overline{Z})(\overline{X} + \overline{Y} + Z)$		
	$(\overline{X} + \overline{Y} + \overline{Z})$		
	(C) $(X+Y+Z)(\overline{X}+Y+\overline{Z})(X+\overline{Y}+Z)$		
	$(\overline{X} + \overline{Y} + \overline{Z})$		
	(D) $(X + \overline{Y} + \overline{Z})(\overline{X} + Y + Z)(\overline{X} + \overline{Y} + Z)$		
	(X+Y+Z)(X+Y+Z)(X+Y+Z)		
	A function of Boolean variables X, Y and Z is expressed in terms of the min-terms as		
	$F(X, Y, Z) = \Sigma (1, 2, 5, 6, 7)$		
	Which one of the product of sums given below is equal to the function $F(X, Y, Z)$? [2015]		
	(A) $(\overline{X} + \overline{Y} + \overline{Z}).(\overline{X} + Y + Z).(X + \overline{Y} + \overline{Z})$		
7	(B) $(X+Y+Z).(X+\overline{Y}+\overline{Z}).(\overline{X}+Y+Z)$	CO2	L3
	(C) $(\overline{X} + \overline{Y} + Z) \cdot (\overline{X} + Y + \overline{Z}) \cdot (X + \overline{Y} + Z)$		
	$(X+Y+\overline{Z})\cdot (X+Y+Z)$		
	(D) $(X+Y+\overline{Z})\cdot(\overline{X}+Y+Z)\cdot(\overline{X}+Y+\overline{Z})$.		
	$(\overline{X} + \overline{Y} + Z) \cdot (\overline{X} + \overline{Y} + \overline{Z})$		
	The Boolean expression		
8	$(X+Y)(X+\overline{Y}) + \overline{(\overline{X}\overline{Y})} + \overline{X}$ simplifies to (a) X	CO2	L3
	(b) Y (c) XY	332	20
	(d) X+Y [2014]		
	For an <i>n</i> -variable Boolean function, the maximum number of prime implicants is		
9	(a) $2(n-1)$ (b) $n/2$ (c) 2^n (d) $2^{(n-1)}$ [2014]	CO2	L1
	(c) 2 (d) 2 7 [2014]		
	In the sum of products function $f(X, Y, Z) = \Sigma(2, 3, 4, 5)$ the prime implicates are		_
40	(a) $\bar{\chi}_{Y}, \chi \bar{\gamma}$		
10	(b) $\overline{X}Y$, $X\overline{Y}\overline{Z}$, $X\overline{Y}Z$	CO2	L3
	(c) $\overline{X}Y\overline{Z}$, $\overline{X}YZ$, $X\overline{Y}$ (d) $\overline{X}Y\overline{Z}$, $\overline{X}YZ$, $X\overline{Y}Z$, $X\overline{Y}Z$ [2012]		
	The Boolean function $Y = AB + CD$ is to be realized		
11	using only 2-input NAND gates. The minimum number of gates required is	CO2	L3
''	(a) 2 (b) 3	002	LJ
1	(c) 4 (d) 5 [2007]		
	The locical expression — in a suite last to		
	The logical expression $y = A + \overline{A}B$ is equivalent to (a) $y = AB$ (b) $y = \overline{A}B$		
12	The logical expression $y = A + \overline{A}B$ is equivalent to (a) $y = AB$ (b) $y = \overline{A}B$ (c) $y = \overline{A} + B$ (d) $y = A + B$ [1999]	CO2	L3

	The K-map fure. The nun							
13	function is AB CD 00 01 11 10 (a) 4 (c) 6	00 1 1 1		0 0 0 (b) 5 (d) 8	10 1 1 0 1	[1998]	CO2	L3
14	Which one of the following gives the simplified sum of products expression for the Boolean function $F = m_0 + m_2 + m_3 + m_4$, where m_0 , m_2 , m_3 and m_5 are minterms corresponding to the inputs A , B and C with A as the MSB and C as the LSB? [2017] (A) $\overline{A}B + \overline{ABC} + \overline{ABC}$ (B) $\overline{AC} + \overline{AB} + \overline{ABC}$ (C) $\overline{AC} + \overline{AB} + \overline{ABC}$ (D) $\overline{ABC} + \overline{AC} + \overline{ABC}$						CO2	L3
15	If $X=1$ in the logic equation $ [X+Z\{\overline{Y}+(\overline{Z}+X\overline{Y})\}]\{\overline{X}+\overline{Z}(X+Y)\}=1, $ Then (a) $Y=Z$ (b) $Y=\overline{Z}$ (c) $Z=1$ (d) $Z=0$ [2009]						CO2	L2
16	A. AB+B B. (A+B) C. A'B+A D. (A+C)	C (A + C) AB'C	+BC is	a reduceo	d form of	f	CO2	L3
17	The complement of the Boolean Function F=x' y z' + x 'y' z gives us: A. X y' z + x y z' B. (x' + y + z')(x' + y' + z) C. (x + y' + z)(x + y + z') D. x' y z' + x' y' z						CO2	L2
18	A. Σ B. Σ C. ∏	(1, 4, 5 (0, 2, 3,	, 6, 7) 5, 6)	functio	on F = A	+ B' C as a sum of minterms we get:	CO2	L3

	Ir	puts	Outputs		
	×	Y	Z		
	О	0	0		
	0	1	1		
	1		1		
19	1	1	0	CO2	L3
	A B. C. D				
	How many	two-ing	ut AND and OR gates as	=CD+EF+G	
	A. 2,	3			
	B. 3,				
20	C. 2,			CO2	L4
	D. 5,				
	٠, ٠, ٠,	•			

Assignment 1	Topic: Number Systems, Binary Codes	Date of Assignment1:	Date of Submission:	
	and Boolean Algebra	1.11.2022	12.11.2022	

Note:

- 1. assignment carries weightage of 20 marks out of 100
- 2. Course outcome CO1 to CO2 was covered.

	CO1	Able to State and explain different number systems, binary codes
	CO2	Able to apply the principles of Boolean algebra and Karnaugh map to simplify logic expressions and implement it using gates
Course	CO3	Able to Analyse and design various combinational circuits
Outcomes	CO4	Able to Analyse and design different synchronous and asynchronous sequential circuits
	CO5	Able to Analyse and design various Memory, Programmable Logic circuits and register transfer level
	CO6	Able to implement various digital circuits using HDL and Standard ICs.