

ACCELERATING PHASE FIELD SIMULATIONS USING

MACHINE LEARNING **SURGE -2023**

Anubhav Santra, Dept of Metallurgical and Material Engineering, Jadavpur University, Kolkata-700032, West Bengal, India Mentor: Dr. Somnath Bhowmick, Dept of Materials Science and Engineering, IIT Kanpur

INTRODUCTION

- Phase-field modelling is done by making use of the Cahn-Hiliard equation and it is an effective tool to study the microstructure evolution of a particular alloy.
- However, even though taking into account its highly accurate predictions, phase-field modelling itself is a computationally expensive tool.
- We focus on building an ML model, which consists of an autoencoder along with a ConvLSTM for microstructure evolution prediction based on already generated frames from the phasefield modelling.
- This ML model will help us skip 'n' phase-field steps and save computation time.

SPINODAL DECOMPOSITION

- "Spinodal decomposition" is a mechanism by which a single thermodynamic phase spontaneously separates into two phases without nucleation.
- The Cahn-Hilliard equation is used for the simulation of microstructures.
- Using this technique, 1000 images of 10 different compositions between the 2 points of inflection of the G vs X curve are generated.

Images generated from phase-field

OBJECTIVES

- Generate a dataset of 10,000 images consisting of 1000 images for 10 different compositions of a binary alloy.
- Develop an Autoencoder for encoding the images into smaller dimensions so that ConvLSTM will be fast.
- Next, pass the encoded images into a ConvLSTM model as input and train this network, which will take the previous 'm' previous frames and predict the next frame.
- Test the model on a different composition to predict the microstructure evolution.

WORKFLOW

Phase-field generated images sent to an encoder to reduce the dimensional complexity to a smaller "latent space".

For example - an RGB image of dimensions (256 x 256 x3) reduced to (32 x 32 x8)

Images are sent into a "ConvLSTM" (Long-Short term Memory) Network where the next image in the series is predicted

Images are decoded

We get our final predicted

image

HOW IS THE MICROSTRUCTURE EVOLUTION BEING PREDICTED?

Training Phase:

The 10,000 images were passed into the Encoder and the latent space was trained using a ConvLSTM network with 2 layers with a total of 24 cells. The activation functions used in that layer were - tanh and relu.

Predicted image was then passed into the decoder to get the final image.

Image Reconstruction using Auto-encoder

• For dataset - 3:

Original, T=410

RESULTS & DISCUSSIONS

Heatmap Difference

Next Frame Predictions using ConvLSTM

Iteration -1: We take frames 1 to 40 and predict the 41st

Iteration -2: We take frames 2 to 41 and predict the 42nd

Iteration -40: We take frames 40 to 79 and predict the 80th

Test Case:

We consider a case where we now take 3 types of datasets each with 10 different compositions and 1k images each:

Decoder

Now, we test our models on a different composition (46%) and compare the 1st, 10th, and 100th common predictions.

1st common image: T=410

• For dataset - 3: Original, T=510

• For dataset - 2:

Original, T=510

Predicted, T=510

2nd common image: T=420

3rd common image: T=510

• For dataset - 3:

Original, T=420

SURGE

Future Scope of Improvement

- We can use an adaptive dataset for training. For example in the initial changes, where the microstructural changes are significant, we take the images at 1 time step difference. After a certain time, say, 100-time steps, we can take images in 5-time steps and 10-time steps. This will make our dataset contain crucial features, that will help our ML model to learn properly.
- We can take not just 40 frames, but increase to more frames and train the datasets. e.g -80 frames.
- After predicting, let's say 40-time steps through ML, we must switch back to phase-field before the microstructures get distorted. Below is a flow diagram of the pipeline.

Acknowledgement & References

I would like to thank my mentor, Dr. Somnath Bhwomick for his constant support and invaluable guidance through the ups and downs of this research study. Also, I would like to thank Albert Linda, Naveen Kumar, Owais Ahmad, and other members of the Computational Materials Science Lab, without which, this project would not have been possible. Finally, I thank SURGE, IITK for this entire internship program.

References: Owais Ahmad, Naveen Kumar, Rajdip Mukherjee, and Somnath Bhowmick, "Accelerating microstructure modeling via machine learning: a new method combining Autoencoder and ConvLSTM," (2023), arXiv:2305.00938 [cond-mat.mtrl-sci]

