3.3. Use nodal analysis to find both V_1 and V_o in the circuit in Fig. P3.3. $V_1 = \frac{2 \text{ mA}}{6 \text{ k}\Omega} = \frac{V_2}{2 \text{ k}\Omega} = \frac{0}{4 \text{ mA}}$ $4 \text{ mA} = \frac{3 \text{ k}\Omega}{3 \text{ k}\Omega} = \frac{12 \text{ k}\Omega}{3 \text{ k}\Omega} = \frac{2 \text{ k}\Omega}{3 \text{ k}\Omega} = \frac{12 \text{ k}\Omega$

3.6 Find Vo using nodal analysis.

3.14 Find Io using nodal analysis.

3.24. Find V_0 in the circuit in Fig. P3.24. In addition, find all branch currents and check your answers using KCL at every node.

3.26 Find Vo. In addition, find all branch currents and check your answers using KCL at every node.

3.34 Using loop analysis to find Io.

3.40. Use loop analysis to find V_o in the network in Fig. **P3.40.**

3.44. Use loop analysis to find V_o in the circuit in Fig. P3.44.

