Ecommerce And Retail B2B Case Study

Done By: Swapnil Johri

Background

Company Overview: Schuster is a multinational retail company specializing in sports goods and accessories.

Challenges Faced

- Significant business conducted with numerous vendors under credit arrangements.
- Frequent late payments from vendors impacting cash flow and operational efficiency.
- Manual efforts required to chase payments, resulting in time and resource inefficiencies.

Objective

- Analyze customer transaction data to understand payment behaviors.
- Segment customers based on historical payment patterns.
- Predict the likelihood of delayed payments against open invoices to optimize collection strategies.

01

Implementation

Data Preparation

Data Cleaning:

- Remove duplicate rows.
- Handled missing values:
 - Replaced missing document numbers with "Unknown".
 - Dropped rows with missing receipt dates.

Data Transformation:

- Converted receipt date to datetime format.
- Extracted year and month from receipt date.

Customer Type	Customer_Name	Customer Account No	Transaction Number	Transaction Date	Payment Term	Due Date	Transaction Currency
3rd Party	GIVE Corp	49144.0	1.0021E+11	2021-12-21	Immediate	2021- 12-21	AED
Related Party	AL J Corp	23152.0	1.0022E+11	2022-01-02	30 Days from Inv Date	2022- 03-03	USD
Related Party	AL J Corp	23152.0	1.0022E+11	2022-03-24	30 Days from Inv Date	2022- 04-23	USD
Related Party	AL R Corp	23312.0	1.0022E+11	2022-04-01	15 Days from Inv Date	2022- 01-19	AED
Related Party	ALLI Corp	7530.0	1.0022E+11	2022-03-03	30 Days from EOM	2022- 04-30	AED

Due Date	Transaction Currency	Local Amount	Transaction Class	AGE	USD Amount	INV_CREATION_DATE
2021- 12-21	AED	-3,088	CREDIT NOTE	105	-3088	2021-12-21 12:53:00
2022- 03-03	USD	2,000	INVOICE	33	2000	2022-02-01 14:09:00
2022- 04-23	USD	2,000	INVOICE	-18	2000	2022-03-24 17:46:00
2022- 01-19	AED	2,415	INVOICE	76	2415	2022-01-05 11:49:00
2022- 04-30	AED	3,800	INVOICE	-25	3800	2022-03-03 22:30:00

Feature Engineering

Derive Payment Terms Feature:

Calculate payment terms as the difference between due date and invoice creation date for both received payment data and open invoices data.

Calculate Customer Payment Statistics - Received Payment Data:

- Group received payment data by customer name.
- Compute mean and standard deviation of payment time.

	avg_payment_time	std_payment_time
CUSTOMER_NAME		
3D D Corp	32.372093	15.387431
6TH Corp	78.44444	7.264832
A3 D Corp	26.600000	2.190890
ABC Corp	90.000000	0.000000
ABDU Corp	70.941406	30.821187

Perform Clustering on Customer Segments:

 Utilize K Means clustering to segment customers based on payment behavior.

	avg_payment_time	std_payment_time	segment
CUSTOMER_NAME			
3D D Corp	32.372093	15.387431	2
6TH Corp	78.44444	7.264832	0
A3 D Corp	26.600000	2.190890	2

Add Features to Training Data:

Merge customer payment statistics with received payment data based on customer name.

Integrate average and standard deviation of payment time as features for machine learning models.

Model Building And Evaluation

Model Selection:

Trained and evaluated various machine learning models, including:

Logistic Regression Random Forest Gradient Boosting

Model Evaluation:

- Random Forest model achieved the highest accuracy of 90.72% with balanced precision and recall for both classes.
- Logistic Regression model showed poor performance with an accuracy of 65.86% due to low precision and recall for class 0.
- Gradient Boosting model performed well with an accuracy of 81.28%, showing a good balance between precision and recall for both classes.

Random Fo	rst	Classificat	ion Report	:	
		precision	recall	f1-score	support
	0	0.89	0.83	0.86	9532
	1	0.91	0.95	0.93	18650
accur	acy			0.91	28182
macro	avg	0.90	0.89	0.89	28182
weighted	avg	0.91	0.91	0.91	28182
Logistic	Regr	ession Clas	sification	Report:	
		precision	recall	f1-score	support
	0	0.00	0.00	0.00	9532
	1	0.66	1.00	0.79	18650
accur	асу			0.66	28182
macro	avg	0.33	0.50	0.40	28182
weighted	avg	0.44	0.66	0.53	28182
Gradient	Boos	ting Classi	fication R	eport:	
	precision		recall	f1-score	support
	0	0.80	0.59	0.68	9532
	1	0.82	0.93	0.87	18650

02

Visualization

Customer Segmentation Based on Payment Patterns

Insight: Segment 0 (Purple): These customers exhibit high variability in payment behavior.

Average Payment Time: Approximately -500 days (early payments).

Standard Deviation: Around 400 days (inconsistent payments).

1) **Segment 1 (Pink):** Customers in this segment consistently make late payments.

Average Payment Time: Approximately 75 days (late payments).

Standard Deviation: Low, around 25 days.

2) **Segment 2 (Brown):**Largest segment with consistent, on-time payments.

Average Payment Time: Near zero (on-time payments).

Standard Deviation: Low variability.

Distribution of Predicted Late Payments

- 1) Late Payment Risk: The majority of predictions fall into the "1" category, indicating a high risk of late payments. This suggests that a substantial portion of the population is likely to delay payments.
- 2) On-Time Payments: The "0" category, representing on-time payments, has a much smaller count. This implies that a smaller proportion of individuals consistently make payments on time.

3) Imbalanced Distribution:

- a) Skewed distribution highlights the need for targeted strategies to manage late payments.
- b) Actionable steps include personalized reminders, flexible payment options, and credit counseling.

List of all customer that has more than 80% chances of Late Payment.

562 Customers are at High Risk of Late Payments.

Numbe	r of (Customers	at Hig	gh Risk	of Late	Payments:	562	AL W	Corp	ASIA Co	rp BLUE	Corp	DANU	
Corp)							AL Y	Corp	ASSI Co	rp BOSC	Corp	DAR	Corp
6TH	Corp							AL Z	Corp	ASWA Co	rp BOTT	Corp	DARS	Corp
A3 D	Corp							AL-B	Corp	AT K Co	rp BOUT	Corp	DARW	Corp
AALA	Corp							ALAM	Corp	ATEL Co	rp BRAN	Corp	DAS	Corp
ABC	Corp							ALBU	Corp	ATLA Co	rp BRIT	Corp	DASH	Corp
ABU	Corp							ALDA	Corp	AVEN Co	rp BRUS	Corp	DCLA	Corp
ABWA	Corp							ALEZ	Corp	AXEL Co	rp C EA	Corp	DEBE	Corp
ACQU	Corp							ALFA	Corp	AYAN Co	rp CAIR	Corp	DELH	Corp
ACTO	Corp							ALGH	Corp	AZHA Co	rp CANA	Corp	DFS	Corp
ADAM	Corp							ALIC	Corp	B8TA Co	rp CAPS	Corp	DGL	Corp
ADEL	Corp							ALL	Corp	BACC Co	rp CARO	Corp	DH S	Corp
AFAQ	Corp							ALLI	Corp	BAHA Co	rp CARR	Corp	DIFF	Corp
AHAD	Corp							ALMA	Corp	BAHR Co	rp CART	Corp	DIGI	Corp
AHIA	Corp							ALNE	Corp	BAM Co	rp CASH	Corp	DIWA	Corp
AHLA	Corp							ALRA	Corp	BAND Co	rp CDAL	Corp	DOLC	Corp
AHME	Corp							ALRY	Corp	BARC Co	rp CDC	Corp	DOME	Corp
AIN	Corp							ALSH	Corp	BASE Co	rp CELI	Corp	DORA	Corp
AISH	Corp							AMAT	Corp	BASM Co	rp CG B	Corp	DR M	Corp
AJIA	Corp							AMER	marina - E	BAWA Co	rp CGT	Corp	DUBA	Corp
AMA	Corp							AMI	Corp	BAZL Co	rp CHAL	Corp	DUFR	Corp
AL D	Corp							AMOU		BEAU Co	rp CHAN	Corp	DURR	Corp
AL E	Corp							ANFA	1	BECC Co	rp CHAU	Corp	DUSI	Corp
AL F	Corp							ANSA		BEHB Co	rp CHER	Corp	DUVA	Corp