In [1]:

```
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
```

Step 1: Reading and Understanding the data

In [2]:

```
master_df = pd.read_csv("CarPrice_Assignment.csv")
master_df.set_index('car_ID', inplace = True)
master_df.rename(columns = {"symboling" : "Insuranceriskfactor"}, inplace = True)
```

In [3]:

```
master_df.head()
```

Out[3]:

	Insuranceriskfactor	CarName	fueltype	aspiration	doornumber	carbody	drivewh
car_ID							
1	3	alfa-romero giulia	gas	std	two	convertible	
2	3	alfa-romero stelvio	gas	std	two	convertible	
3	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	
4	2	audi 100 ls	gas	std	four	sedan	
5	2	audi 100ls	gas	std	four	sedan	4

5 rows × 25 columns

In [4]:

master_df.dtypes

Out[4]:

Insuranceriskfactor	int64
CarName	object
fueltype	object
aspiration	object
doornumber	object
carbody	object
drivewheel	object
enginelocation	object
wheelbase	float64
carlength	float64
carwidth	float64
carheight	float64
curbweight	int64
enginetype	object
cylindernumber	object
enginesize	int64
fuelsystem	object
boreratio	float64
stroke	float64
compressionratio	float64
horsepower	int64
peakrpm	int64
citympg	int64
highwaympg	int64
price	float64
dtype: object	

In [5]:

master_df.describe()

Out[5]:

	Insuranceriskfactor	wheelbase	carlength	carwidth	carheight	curbweight	enç
count	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205
mean	0.834146	98.756585	174.049268	65.907805	53.724878	2555.565854	126
std	1.245307	6.021776	12.337289	2.145204	2.443522	520.680204	41
min	-2.000000	86.600000	141.100000	60.300000	47.800000	1488.000000	61
25%	0.000000	94.500000	166.300000	64.100000	52.000000	2145.000000	97
50%	1.000000	97.000000	173.200000	65.500000	54.100000	2414.000000	120
75%	2.000000	102.400000	183.100000	66.900000	55.500000	2935.000000	141
max	3.000000	120.900000	208.100000	72.300000	59.800000	4066.000000	326

Step 2: Visualizing the data

Visualizing the Numerical columns

In [69]:

```
import matplotlib.pyplot as plt
import seaborn as sns

numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
num_columns_list = list(master_df.select_dtypes(include=numerics).columns)

plt.figure(figsize = (20,12))
sns.pairplot(master_df[num_columns_list])
plt.show()
```

<Figure size 1440x864 with 0 Axes>

Visualizing the categorical variables

Restructuring CarName to have on ly the company name

In [7]:

```
def strip_car_model(car_name):
    company_name = car_name.split()
    return company_name[0]

master_df.CarName = master_df.CarName.apply(strip_car_model)
master_df.head()
```

Out[7]:

	Insuranceriskfactor	CarName	fueltype	aspiration	doornumber	carbody	drivewhe
car_ID							
1	3	alfa- romero	gas	std	two	convertible	rw
2	3	alfa- romero	gas	std	two	convertible	rw
3	1	alfa- romero	gas	std	two	hatchback	rw
4	2	audi	gas	std	four	sedan	fw
5	2	audi	gas	std	four	sedan	4w

5 rows × 25 columns

In [8]:

```
non_num_columns_list = list(master_df.select_dtypes(exclude=numerics).columns)

## Visualize the CarName first
sns.boxplot(x= 'CarName', y = 'price', data = master_df)
plt.xticks(rotation='vertical')
plt.show()

subplot_cnt = 1
plt.figure(figsize = (15,15))

for each_cat_var in non_num_columns_list:
    if each_cat_var != 'CarName':
        plt.subplot(3,3,subplot_cnt)
        sns.boxplot(x= each_cat_var, y = 'price', data = master_df)
        subplot_cnt = subplot_cnt+1

plt.show()
```


In [9]:

```
## Visualize the carbody and driveweheel impact on the price
plt.figure(figsize = (10, 5))
sns.boxplot(x = 'carbody', y = 'price', hue = 'drivewheel', data = master_df)
plt.show()

## Visualize the carbody and enginelocation impact on the price
plt.figure(figsize = (10, 5))
sns.boxplot(x = 'carbody', y = 'price', hue = 'enginelocation', data = master_df)
plt.show()
```


Step 3 : Data Preparation

In [10]:

```
import sklearn
from sklearn import preprocessing
from sklearn.preprocessing import LabelEncoder

## Create a copy of df
master_df_le = master_df.copy()

## Apply Lable enabler on all the categorical variables
le = preprocessing.LabelEncoder()

for each_item in non_num_columns_list:
    le.fit(master_df_le[each_item])
    master_df_le[each_item] = le.transform(master_df_le[each_item])

master_df_le.head()
```

Out[10]:

	Insuranceriskfactor	CarName	fueltype	aspiration	doornumber	carbody	drivewheel
car_ID							
1	3	1	1	0	1	0	2
2	3	1	1	0	1	0	2
3	1	1	1	0	1	2	2
4	2	2	1	0	0	3	1
5	2	2	1	0	0	3	0

5 rows × 25 columns

Step 4: Splitting the training and test data

In [11]:

```
import numpy as np
from sklearn.model_selection import train_test_split

np.random.seed(0)
master_df_train, master_df_test = train_test_split(master_df_le, train_size = 0.7, test
_size = 0.3, random_state = 100)
master_df_train.head()
```

Out[11]:

	Insuranceriskfactor	CarName	fueltype	aspiration	doornumber	carbody	drivewheel
car_ID							
123	1	16	1	0	0	3	1
126	3	18	1	0	1	2	2
167	1	22	1	0	1	2	2
2	3	1	1	0	1	0	2
200	-1	26	1	1	0	4	2

5 rows × 25 columns

Re-sclaing the parameters

In [12]:

```
## Scale and transform all the numerical values
## especially the car dimentions, wheelbase and price are on very hig scale in comparis
on to the
## let us use minmaxmethod - as it helps normalize the outliers

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()
master_df_train[num_columns_list] = scaler.fit_transform(master_df_train[num_columns_list])
master_df_train[non_num_columns_list] = scaler.fit_transform(master_df_train[non_num_columns_list])
master_df_train.head()
```

Out[12]:

	Insuranceriskfactor	CarName	fueltype	aspiration	doornumber	carbody	drivewheel
car_ID							
123	0.6	0.592593	1.0	0.0	0.0	0.75	0.5
126	1.0	0.666667	1.0	0.0	1.0	0.50	1.0
167	0.6	0.814815	1.0	0.0	1.0	0.50	1.0
2	1.0	0.037037	1.0	0.0	1.0	0.00	1.0
200	0.2	0.962963	1.0	1.0	0.0	1.00	1.0

5 rows × 25 columns

In [13]:

master_df_train.describe()

Out[13]:

	Insuranceriskfactor	CarName	fueltype	aspiration	doornumber	carbody	dri
count	143.000000	143.000000	143.000000	143.000000	143.000000	143.000000	143
mean	0.559441	0.517742	0.909091	0.181818	0.440559	0.666084	0
std	0.239200	0.276478	0.288490	0.387050	0.498199	0.209678	0
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0
25%	0.400000	0.259259	1.000000	0.000000	0.000000	0.500000	0
50%	0.600000	0.518519	1.000000	0.000000	0.000000	0.750000	0
75%	0.600000	0.777778	1.000000	0.000000	1.000000	0.750000	1
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1

8 rows × 25 columns

Calculating the corelation between different parameters of the dataframe.

In [14]:

```
plt.figure(figsize = (20, 20))
sns.heatmap(master_df_train.corr(), annot = True, cmap="YlGnBu")
plt.show()
```


Step 5: Building a linear model

In [15]:

```
## Prepare the X and y train data

cols_list = list(master_df_train.columns)
cols_list.remove('price')

y_train = master_df_train['price']
X_train = master_df_train[cols_list]
```

In [16]:

```
y_train.head()
```

Out[16]:

```
car_ID
```

Name: price, dtype: float64

In [17]:

```
X_train.head()
```

Out[17]:

	Insuranceriskfactor	CarName	fueltype	aspiration	doornumber	carbody	drivewheel
car_ID							
123	0.6	0.592593	1.0	0.0	0.0	0.75	0.5
126	1.0	0.666667	1.0	0.0	1.0	0.50	1.0
167	0.6	0.814815	1.0	0.0	1.0	0.50	1.0
2	1.0	0.037037	1.0	0.0	1.0	0.00	1.0
200	0.2	0.962963	1.0	1.0	0.0	1.00	1.0

5 rows × 24 columns

Model 1: Adding all the parameters (predictors) to build the model

In [18]:

```
import statsmodels.api as sm
X_train_lm = sm.add_constant(X_train)
lr_1 = sm.OLS(y_train, X_train_lm).fit()
lr_1.summary()
```

Out[18]:

OLS Regression Results 0.886 Dep. Variable: price R-squared: Model: OLS Adj. R-squared: 0.863 Method: Least Squares F-statistic: 38.15 Wed, 02 Oct 2019 Date: Prob (F-statistic): 1.45e-44 Time: 10:34:06 Log-Likelihood: 172.11 No. Observations: 143 AIC: -294.2 **Df Residuals:** 118 BIC: -220.2 Df Model: 24 **Covariance Type:** nonrobust std err coef t P>|t| [0.025 0.975] const -0.2899 0.302 -0.959 0.340 -0.889 0.309 Insuranceriskfactor 0.0232 0.049 0.475 0.635 -0.073 0.120 CarName -0.1349 0.031 -4.397 0.000 -0.196 -0.074 fueltype 0.1255 0.253 0.496 0.621 -0.3760.627 0.031 0.712 aspiration 0.0115 0.370 -0.050 -0.0134 0.023 -0.597 0.552 -0.058 doornumber carbody -0.0628 0.055 -1.150 0.252 -0.171 drivewheel 0.0525 0.038 1.376 0.172 -0.023 enginelocation 0.3261 0.095 3.449 0.001 0.139 wheelbase 0.0696 0.627 0.532 -0.150 0.111

0.073 0.031 0.045 0.128 0.513 0.290 -0.0765 -0.631 0.529 -0.317 0.164 carlength 0.121 carwidth 0.2379 0.126 1.886 0.062 -0.012 0.488 carheight 0.0897 0.055 1.638 0.104 -0.019 0.198 curbweight 0.2757 1.893 0.061 0.564 0.146 -0.013 enginetype 0.0280 0.049 0.565 -0.068 0.124 0.577 cylindernumber 0.0449 0.072 0.624 0.534 -0.098 0.187 enginesize 0.4803 0.160 3.008 0.003 0.164 0.796 0.872 fuelsystem 0.0302 0.035 0.385 -0.038 0.099 boreratio -0.0124 0.054 -0.2290.819 -0.119 0.095 stroke -0.1081 0.061 -1.774 0.079 -0.2290.013 compressionratio 0.1755 0.292 0.602 0.548 -0.402 0.753 horsepower 0.1702 0.157 1.087 0.279 -0.140 0.480 0.0537 0.056 0.968 0.335 -0.056 0.164 peakrpm -0.0530 0.211 -0.251 0.802 -0.471 0.365 citympg

Omnibus: 44.657 **Durbin-Watson:** 1.814

0.0851

highwaympg

0.199

0.428

0.669

-0.308

0.479

Prob(Omnibus): 0.000 Jarque-Bera (JB): 245.736

 Skew:
 0.933
 Prob(JB):
 4.36e-54

 Kurtosis:
 9.145
 Cond. No.
 184.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [19]:

```
## Calculate the VIF
from statsmodels.stats.outliers_influence import variance_inflation_factor

vif = pd.DataFrame()
vif['Features'] = X_train.columns
vif['VIF'] = [variance_inflation_factor(X_train.values, i) for i in range(X_train.shape
[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[19]:

	Features	VIF
2	fueltype	157.95
23	highwaympg	155.34
22	citympg	152.24
9	carlength	104.38
12	curbweight	94.01
10	carwidth	83.98
8	wheelbase	56.21
15	enginesize	45.88
20	horsepower	43.08
19	compressionratio	32.77
5	carbody	32.47
11	carheight	20.26
18	stroke	20.26
0	Insuranceriskfactor	18.48
17	boreratio	17.16
14	cylindernumber	16.77
6	drivewheel	16.13
13	enginetype	14.34
21	peakrpm	13.53
16	fuelsystem	9.69
1	CarName	6.78
4	doornumber	4.99
3	aspiration	2.81
7	enginelocation	1.40

Model 2 - Dropping the fueltype predictor as it has the highest P value (insignificane)

In [20]:

```
X = X_train.drop('fueltype',1)
X_train_lm = sm.add_constant(X)
lr_2 = sm.OLS(y_train, X_train_lm).fit()
lr_2.summary()
```

D>I+I [0.025

Out[20]:

OLS Regression Results

Dep. Variable: price R-squared: 0.886 Model: OLS Adj. R-squared: 0.863 Method: Least Squares F-statistic: 40.05 Date: Wed, 02 Oct 2019 Prob (F-statistic): 2.54e-45 Time: 10:34:06 Log-Likelihood: 171.96 No. Observations: 143 AIC: -295.9 **Df Residuals:** 119 BIC: -224.8 Df Model: 23 **Covariance Type:** nonrobust

coof std orr

	coef	std err	t	P> t	[0.025	0.975]
const	-0.1494	0.105	-1.423	0.157	-0.357	0.058
Insuranceriskfactor	0.0202	0.048	0.419	0.676	-0.075	0.116
CarName	-0.1302	0.029	-4.481	0.000	-0.188	-0.073
aspiration	0.0035	0.026	0.132	0.895	-0.049	0.056
doornumber	-0.0131	0.022	-0.585	0.560	-0.058	0.031
carbody	-0.0622	0.054	-1.144	0.255	-0.170	0.045
drivewheel	0.0548	0.038	1.452	0.149	-0.020	0.129
enginelocation	0.3239	0.094	3.440	0.001	0.137	0.510
wheelbase	0.0581	0.108	0.536	0.593	-0.156	0.272
carlength	-0.0686	0.120	-0.573	0.568	-0.306	0.169
carwidth	0.2515	0.123	2.049	0.043	0.008	0.495
carheight	0.0887	0.055	1.626	0.107	-0.019	0.197
curbweight	0.2624	0.143	1.839	0.068	-0.020	0.545
enginetype	0.0253	0.048	0.526	0.600	-0.070	0.121
cylindernumber	0.0550	0.069	0.800	0.425	-0.081	0.191
enginesize	0.4927	0.157	3.135	0.002	0.181	0.804
fuelsystem	0.0264	0.034	0.785	0.434	-0.040	0.093
boreratio	-0.0194	0.052	-0.372	0.710	-0.122	0.084
stroke	-0.1207	0.055	-2.186	0.031	-0.230	-0.011
compressionratio	0.0330	0.049	0.679	0.498	-0.063	0.129
horsepower	0.1762	0.156	1.132	0.260	-0.132	0.484
peakrpm	0.0599	0.054	1.112	0.268	-0.047	0.167
citympg	-0.0492	0.210	-0.234	0.816	-0.466	0.367
highwaympg	0.0885	0.198	0.447	0.656	-0.303	0.480

 Omnibus:
 40.492
 Durbin-Watson:
 1.821

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 199.345

 Skew:
 0.859
 Prob(JB):
 5.16e-44

 Kurtosis:
 8.523
 Cond. No.
 105.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [21]:

```
vif = pd.DataFrame()
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[21]:

Features	VIF
highwaympg	153.12
citympg	143.50
carlength	98.53
curbweight	92.30
carwidth	83.72
wheelbase	55.66
enginesize	45.58
horsepower	43.02
carbody	31.89
stroke	20.17
carheight	19.69
boreratio	17.01
Insuranceriskfactor	16.72
cylindernumber	16.19
drivewheel	15.74
enginetype	12.85
peakrpm	11.61
fuelsystem	9.69
CarName	6.44
doornumber	4.97
compressionratio	4.17
aspiration	2.79
enginelocation	1.39
	highwaympg citympg carlength curbweight carwidth wheelbase enginesize horsepower carbody stroke carheight boreratio Insuranceriskfactor cylindernumber drivewheel enginetype peakrpm fuelsystem CarName doornumber compressionratio aspiration

In []:

Model 3 - Dropping the fueltype predictor as it has the highest P value (insignificane)

In [22]:

```
X = X.drop('Insuranceriskfactor',1)
X_train_lm = sm.add_constant(X)
lr_3 = sm.OLS(y_train, X_train_lm).fit()
lr_3.summary()
```

Out[22]:

OLS Regression Results

3						
Dep. Variable:	price		R-squared:		ared:	0.885
Model:	OLS		Adj.	Adj. R-squared:		0.864
Method:	Least Squares F-statis		stic:	42.15		
Date:	Wed, 02	Oct 2019	Prob	(F-statis	stic): 4	.20e-46
Time:		10:34:07	Log	-Likelih	ood:	171.86
No. Observations:		143			AIC:	-297.7
Df Residuals:		120)		BIC:	-229.6
Df Model:		22	!			
Covariance Type:		nonrobust	t			
	coef	std err	t	P> t	[0.025	0.975]
const	-0.1332	0.097	-1.369	0.174	-0.326	0.059
CarName	-0.1312	0.029	-4.548	0.000	-0.188	-0.074
aspiration	0.0034	0.026	0.130	0.897	-0.049	0.055
doornumber	-0.0094	0.021	-0.458	0.648	-0.050	0.031
carbody	-0.0656	0.054	-1.222	0.224	-0.172	0.041
drivewheel	0.0544	0.038	1.447	0.150	-0.020	0.129
enginelocation	0.3287	0.093	3.531	0.001	0.144	0.513
wheelbase	0.0405	0.100	0.407	0.685	-0.156	0.238
carlength	-0.0670	0.119	-0.561	0.576	-0.303	0.169
carwidth	0.2628	0.119	2.201	0.030	0.026	0.499
carheight	0.0877	0.054	1.615	0.109	-0.020	0.195
curbweight	0.2681	0.142	1.894	0.061	-0.012	0.548
enginetype	0.0210	0.047	0.448	0.655	-0.072	0.114
cylindernumber	0.0610	0.067	0.909	0.365	-0.072	0.194
enginesize	0.4882	0.156	3.124	0.002	0.179	0.798
fuelsystem	0.0287	0.033	0.868	0.387	-0.037	0.094
boreratio	-0.0185	0.052	-0.357	0.722	-0.121	0.084
stroke	-0.1209	0.055	-2.197	0.030	-0.230	-0.012
compressionratio	0.0323	0.048	0.669	0.505	-0.063	0.128
horsepower	0.1623	0.152	1.071	0.286	-0.138	0.462
peakrpm	0.0605	0.054	1.127	0.262	-0.046	0.167
citympg	-0.0592	0.208	-0.284	0.777	-0.472	0.353

 Omnibus:
 38.950
 Durbin-Watson:
 1.816

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 181.348

 Skew:
 0.838
 Prob(JB):
 4.18e-40

0.0934

highwaympg

0.197

0.474 0.636 -0.296

0.483

Kurtosis: 8.256 **Cond. No.** 101.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [23]:

```
vif = pd.DataFrame()
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[23]:

	Features	VIF
21	highwaympg	151.28
20	citympg	143.39
7	carlength	97.12
10	curbweight	88.96
8	carwidth	79.46
6	wheelbase	45.55
13	enginesize	45.40
18	horsepower	40.86
3	carbody	31.54
16	stroke	20.01
9	carheight	19.67
15	boreratio	16.75
4	drivewheel	15.73
12	cylindernumber	15.11
11	enginetype	12.76
19	peakrpm	11.29
14	fuelsystem	9.29
0	CarName	6.43
17	compressionratio	4.00
2	doornumber	3.97
1	aspiration	2.78
5	enginelocation	1.37

In []:

Model 4 - Dropping the carlength predictor as it has the highest P value and VIF (insignificane)

In [24]:

```
X = X.drop('carlength',1)
X_train_lm = sm.add_constant(X)
lr_4 = sm.OLS(y_train, X_train_lm).fit()
lr_4.summary()
```

Out[24]:

OLS Regression Results

OLO Negression Ne	Suits					
Dep. Variable	:	price		R-squa	ared:	0.885
Model	:	OLS Adj		R-squared:		0.865
Method	Leas	st Squares		F-stati	istic:	44.40
Date	Wed, 02	2 Oct 2019	Prob	(F-statis	stic):	7.24e-47
Time		10:34:07	Log	-Likelih	ood:	171.67
No. Observations:		143			AIC:	-299.3
Df Residuals:		121			BIC:	-234.2
Df Model:		21				
Covariance Type:	1	nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
const	-0.1460	0.094	-1.548	0.124	-0.333	0.041
CarName	-0.1313	0.029	-4.566	0.000	-0.188	-0.074
aspiration	0.0057	0.026	0.222	0.825	-0.045	0.057
doornumber	-0.0081	0.020	-0.397	0.692	-0.048	0.032
carbody	-0.0752	0.051	-1.484	0.140	-0.176	0.025
drivewheel	0.0536	0.037	1.430	0.155	-0.021	0.128
enginelocation	0.3252	0.093	3.511	0.001	0.142	0.509
wheelbase	0.0294	0.097	0.302	0.763	-0.163	0.222
carwidth	0.2381	0.111	2.152	0.033	0.019	0.457
carheight	0.0835	0.054	1.557	0.122	-0.023	0.190
curbweight	0.2565	0.140	1.837	0.069	-0.020	0.533
enginetype	0.0282	0.045	0.628	0.531	-0.061	0.117
cylindernumber	0.0556	0.066	0.840	0.403	-0.075	0.187
enginesize	0.4787	0.155	3.090	0.002	0.172	0.785
fuelsystem	0.0239	0.032	0.751	0.454	-0.039	0.087
boreratio	-0.0228	0.051	-0.446	0.656	-0.124	0.078
stroke	-0.1203	0.055	-2.192	0.030	-0.229	-0.012
compressionratio	0.0306	0.048	0.637	0.526	-0.065	0.126
horsepower	0.1826	0.147	1.244	0.216	-0.108	0.473
peakrpm	0.0622	0.053	1.163	0.247	-0.044	0.168
citympg	-0.0352	0.203	-0.173	0.863	-0.438	0.367
highwaympg	0.0886	0.196	0.451	0.652	-0.300	0.477
Omnibus:	35.678	Durbin-W	/atson:	1.8	311	
Prob(Omnibus):	0.000	larque-Ber	a (JB):	153.0)22	
Skew:	0.776	Pro	ob(JB):	5.91e-	-34	

Cond. No.

96.9

Kurtosis:

7.824

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [25]:

```
vif = pd.DataFrame()
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[25]:

	Features	VIF
20	highwaympg	150.28
19	citympg	139.60
9	curbweight	84.59
7	carwidth	67.10
12	enginesize	44.83
6	wheelbase	44.36
17	horsepower	38.03
3	carbody	27.64
15	stroke	19.98
8	carheight	18.95
14	boreratio	15.99
4	drivewheel	15.65
11	cylindernumber	14.54
10	enginetype	12.17
18	peakrpm	11.28
13	fuelsystem	8.46
0	CarName	6.42
16	compressionratio	3.99
2	doornumber	3.95
1	aspiration	2.73
5	enginelocation	1.37

In []:

Model 5 - Dropping the fuelsystem predictor as it has the highest P value (insignificane)

In [26]:

```
X = X.drop('fuelsystem',1)
X_train_lm = sm.add_constant(X)
lr_5 = sm.OLS(y_train, X_train_lm).fit()
lr_5.summary()
```

Out[26]:

OLS Regression Results

Dep. Variable:		price		R-squa	red:	0.885
Model:		OLS	Δdi	R-squa		0.866
Method:	امما	st Squares	Auj.	F-stati		46.76
Date:		2 Oct 2019	Prob	F-statis		.37e-47
Time:	vveu, oz	10:34:07		Likelih	•	171.34
No. Observations:		10.34.07	Log		AIC:	
						-300.7
Df Residuals:		122			BIC:	-238.5
Df Model:		20				
Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
const	-0.1310	0.092	-1.424	0.157	-0.313	0.051
CarName	-0.1258	0.028	-4.533	0.000	-0.181	-0.071
aspiration	0.0093	0.025	0.365	0.716	-0.041	0.059
doornumber	-0.0070	0.020	-0.345	0.730	-0.047	0.033
carbody	-0.0794	0.050	-1.580	0.117	-0.179	0.020
drivewheel	0.0537	0.037	1.435	0.154	-0.020	0.128
enginelocation	0.3221	0.092	3.487	0.001	0.139	0.505
wheelbase	0.0407	0.096	0.425	0.672	-0.149	0.231
carwidth	0.2275	0.110	2.076	0.040	0.011	0.444
carheight	0.0814	0.053	1.522	0.131	-0.024	0.187
curbweight	0.2621	0.139	1.882	0.062	-0.014	0.538
enginetype	0.0275	0.045	0.614	0.540	-0.061	0.116
cylindernumber	0.0499	0.066	0.761	0.448	-0.080	0.180
enginesize	0.4754	0.155	3.075	0.003	0.169	0.781
boreratio	-0.0241	0.051	-0.472	0.637	-0.125	0.077
stroke	-0.1192	0.055	-2.177	0.031	-0.228	-0.011
compressionratio	0.0293	0.048	0.610	0.543	-0.066	0.124
horsepower	0.2009	0.144	1.390	0.167	-0.085	0.487
peakrpm	0.0598	0.053	1.122	0.264	-0.046	0.165
citympg	-0.0725	0.197	-0.369	0.713	-0.462	0.317
highwaympg	0.1113	0.193	0.575	0.566	-0.272	0.494
Omnibus:	35.529	Durbin-W	/atson:	1.8	14	
Prob(Omnibus):		Jarque-Ber		147.2		
Skew:	0.786	-	bb(JB):	1.05e-		
Kurtosis:	7.717		nd. No.		2.9	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [27]:

```
vif = pd.DataFrame()
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[27]:

	Features	VIF
19	highwaympg	144.56
18	citympg	133.13
9	curbweight	83.21
7	carwidth	66.48
12	enginesize	44.80
6	wheelbase	43.65
16	horsepower	37.27
3	carbody	27.48
14	stroke	19.84
8	carheight	18.95
13	boreratio	15.98
4	drivewheel	15.64
11	cylindernumber	14.47
10	enginetype	12.15
17	peakrpm	11.28
0	CarName	5.89
15	compressionratio	3.91
2	doornumber	3.89
1	aspiration	2.61
5	enginelocation	1.37

Model 6 - Dropping the cylindernumber predictor as it has the highest P value (insignificane)

In [28]:

```
X = X.drop('cylindernumber',1)
X_train_lm = sm.add_constant(X)
lr_6 = sm.OLS(y_train, X_train_lm).fit()
lr_6.summary()
```

Out[28]:

OLS Regression Results

0.884 Dep. Variable: price R-squared: Model: OLS Adj. R-squared: 0.866 Method: Least Squares F-statistic: 49.36 Wed, 02 Oct 2019 Date: Prob (F-statistic): 2.55e-48 Time: 10:34:07 Log-Likelihood: 171.00 No. Observations: 143 AIC: -302.0 **Df Residuals:** 123 BIC: -242.7 Df Model: 19 **Covariance Type:** nonrobust coef std err t P>|t| [0.025 0.975] -0.1165 0.090 -1.297 0.197 -0.294 const

0.061 CarName -0.1239 0.028 -4.491 0.000 -0.179 -0.069 aspiration 0.0028 0.024 0.118 0.906 -0.044 0.050 -0.330 doornumber -0.0067 0.020 0.742 -0.047 0.033 -0.0746 -1.499 carbody 0.050 0.136 -0.1730.024 0.0609 0.036 1.688 0.094 -0.011 drivewheel 0.132 enginelocation 0.3205 0.092 3.477 0.001 0.138 0.503 wheelbase 0.0556 0.094 0.593 0.554 -0.130 0.241 0.054 -0.004 carwidth 0.1912 0.098 1.942 0.386 carheight 0.0688 0.051 1.356 0.178 -0.032 0.169 2.011 0.046 curbweight 0.2768 0.138 0.004 0.549 1.035 enginetype 0.0420 0.041 0.303 -0.038 0.122 enginesize 0.4369 0.146 2.997 0.003 0.148 0.725 boreratio -0.0255 0.051 -0.501 0.617 -0.1260.075 -0.1112 0.054 -2.073 0.040 -0.217 stroke -0.005 compressionratio 0.0365 0.047 0.778 0.438 -0.056 0.130 horsepower 0.2358 0.137 1.724 0.087 -0.035 0.507 0.0570 0.053 1.074 0.285 -0.048 peakrpm 0.162 citympg -0.0622 0.196 -0.317 0.751 -0.450 0.326

Omnibus: 37.735 **Durbin-Watson:** 1.819 Prob(Omnibus): 0.000 Jarque-Bera (JB): 155.443 Skew: 0.851 Prob(JB): 1.76e-34 Kurtosis: 90.0 7.816 Cond. No.

0.192

0.490

0.625

-0.286

0.473

0.0939

highwaympg

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [29]:

```
vif = pd.DataFrame()
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[29]:

	Features	VIF
18	highwaympg	143.64
17	citympg	131.82
9	curbweight	78.98
7	carwidth	54.81
6	wheelbase	42.19
11	enginesize	39.92
15	horsepower	33.82
3	carbody	26.73
13	stroke	18.45
8	carheight	17.50
12	boreratio	15.97
4	drivewheel	14.30
16	peakrpm	11.28
10	enginetype	8.93
0	CarName	5.80
2	doornumber	3.87
14	compressionratio	3.85
1	aspiration	2.36
5	enginelocation	1.36

Model 7 - Dropping the citympg predictor as it has the highest P value (insignificane) and VIF

In [30]:

```
X = X.drop('citympg',1)
X_train_lm = sm.add_constant(X)
lr_7 = sm.OLS(y_train, X_train_lm).fit()
lr_7.summary()
```

Out[30]:

OLS Regression Results

Dep. Variable: price R-squared: 0.884 Model: OLS 0.867 Adj. R-squared: Method: Least Squares F-statistic: 52.47 Date: Wed, 02 Oct 2019 Prob (F-statistic): 3.64e-49 Time: 10:34:07 Log-Likelihood: 170.94 No. Observations: -303.9 143 AIC: **Df Residuals:** 124 BIC: -247.6 Df Model: 18 **Covariance Type:** nonrobust coef std err P>|t| [0.025 0.975] t const -0.1208 0.089 -1.365 -0.296 0.175 0.054 CarName -0.1242 0.027 -4.520 0.000 -0.179 -0.070 aspiration 0.0009 0.023 0.040 0.968 -0.045 0.046 doornumber -0.0075 0.020 -0.377 0.707 -0.047 0.032 carbody -0.0748 0.050 -1.508 0.134 -0.1730.023 0.086 drivewheel 0.0619 0.036 1.730 -0.009 0.133 enginelocation 0.3226 0.092 3.521 0.001 0.141 0.504 wheelbase 0.0526 0.093 0.566 0.572 -0.131 0.236 carwidth 0.1921 0.098 1.958 0.052 -0.002 0.386 carheight 0.0677 0.050 1.342 0.182 -0.0320.168 curbweight 2.046 0.043 0.009 0.2799 0.137 0.551 enginetype 0.0428 0.040 1.061 0.291 -0.037 0.123 enginesize 0.4219 0.137 3.070 0.003 0.150 0.694 0.657 boreratio -0.0220 0.049 -0.445-0.1200.076 -0.1057 0.051 -2.090 0.039 -0.206 stroke -0.0060.046 compressionratio 0.0344 0.742 0.459 -0.057 0.126 horsepower 0.2502 0.129 1.945 0.054 -0.004 0.505 0.0554 0.295 -0.049 peakrpm 0.053 1.052 0.160 highwaympg 0.0396 0.087 0.458 0.648 -0.132 0.211 Omnibus: 38.156 **Durbin-Watson:** 1.819

 Omnibus:
 38.156
 Durbin-Watson:
 1.819

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 157.707

 Skew:
 0.862
 Prob(JB):
 5.68e-35

 Kurtosis:
 7.847
 Cond. No.
 58.2

Warnings:

In [31]:

```
vif = pd.DataFrame()
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[31]:

	Features	VIF
9	curbweight	78.96
7	carwidth	54.79
6	wheelbase	41.86
11	enginesize	35.81
15	horsepower	29.88
3	carbody	26.69
8	carheight	17.34
13	stroke	16.85
12	boreratio	15.44
17	highwaympg	15.24
4	drivewheel	14.25
16	peakrpm	11.00
10	enginetype	8.93
0	CarName	5.77
14	compressionratio	3.82
2	doornumber	3.74
1	aspiration	2.18
5	enginelocation	1.36

Model 8 - Dropping the aspiration predictor as it has the highest P value (insignificane) and VIF

In [32]:

```
X = X.drop('aspiration',1)
X_train_lm = sm.add_constant(X)
lr_8 = sm.OLS(y_train, X_train_lm).fit()
lr_8.summary()
```

Out[32]:

OLS Regression Results

Dep. Variable:		price		R-squa	red:	0.884
Model:		OLS	Adj.	R-squa	red:	0.868
Method:	Leas	st Squares		F-stati	stic:	56.01
Date:	Wed, 02	2 Oct 2019	Prob ((F-statis	stic): 4.	78e-50
Time:		10:34:07	Log	-Likelih	ood:	170.94
No. Observations:		143			AIC:	-305.9
Df Residuals:		125			BIC:	-252.6
Df Model:		17				
Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
const	-0.1203		-1.378	0.171	-0.293	0.053
CarName	-0.1243		-4.564	0.000	-0.178	-0.070
doornumber	-0.0075		-0.377	0.707	-0.047	0.032
carbody	-0.0748		-1.514	0.133	-0.173	0.023
drivewheel	0.0615	0.034	1.804	0.074	-0.006	0.129
enginelocation	0.3227	0.091	3.536	0.001	0.142	0.503
wheelbase	0.0530	0.092	0.578	0.565	-0.129	0.235
carwidth	0.1918	0.097	1.969	0.051	-0.001	0.385
carheight	0.0675	0.050	1.352	0.179	-0.031	0.166
curbweight	0.2806	0.135	2.078	0.040	0.013	0.548
enginetype	0.0427	0.040	1.065	0.289	-0.037	0.122
enginesize	0.4193	0.120	3.485	0.001	0.181	0.657
boreratio	-0.0220	0.049	-0.446	0.656	-0.119	0.075
stroke	-0.1053	0.049	-2.132	0.035	-0.203	-0.008
compressionratio	0.0350	0.044	0.802	0.424	-0.051	0.121
horsepower	0.2520	0.120	2.107	0.037	0.015	0.489
peakrpm	0.0549	0.051	1.080	0.282	-0.046	0.155
highwaympg	0.0392	0.086	0.458	0.648	-0.130	0.209
Omnibus:	38.092	Durbin-W	lateon:	1.8	18	
Prob(Omnibus):		arque-Ber				
Skew:	0.860	-				
Kurtosis:	7.843		nd. No.		4.8	

Warnings:

In [33]:

```
vif = pd.DataFrame()
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[33]:

	Features	VIF
8	curbweight	75.77
6	carwidth	54.53
5	wheelbase	41.35
10	enginesize	27.51
2	carbody	26.67
14	horsepower	26.22
7	carheight	17.19
12	stroke	15.80
11	boreratio	15.36
16	highwaympg	15.24
3	drivewheel	13.18
15	peakrpm	10.50
9	enginetype	8.93
0	CarName	5.74
1	doornumber	3.71
13	compressionratio	3.48
4	enginelocation	1.36

Model 9 - Dropping the highwaympg predictor as it has the highest P value (insignificane) and VIF

In [34]:

```
X = X.drop('highwaympg',1)
X_train_lm = sm.add_constant(X)
lr_9 = sm.OLS(y_train, X_train_lm).fit()
lr_9.summary()
```

Out[34]:

OLS Regression Results

Dep. Variable:		price		R-squa	red:	0.884
Model:		OLS	Adj.	. R-squared:		0.869
Method:	Leas	st Squares		F-stati	stic:	59.87
Date:	Wed, 02	Oct 2019	Prob	(F-statis	stic): 6	.73e-51
Time:		10:34:07	Log	-Likelih	ood:	170.82
No. Observations:		143			AIC:	-307.6
Df Residuals:		126			BIC:	-257.3
Df Model:		16				
Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
const	-0.0922	0.062	-1.489	0.139	-0.215	0.030
CarName	-0.1241	0.027	-4.572	0.000	-0.178	-0.070
doornumber	-0.0078	0.020	-0.395	0.694	-0.047	0.031
carbody	-0.0714	0.049	-1.467	0.145	-0.168	0.025
drivewheel	0.0625	0.034	1.842	0.068	-0.005	0.130
enginelocation	0.3216	0.091	3.537	0.001	0.142	0.502
wheelbase	0.0470	0.091	0.519	0.605	-0.132	0.226
carwidth	0.1959	0.097	2.026	0.045	0.005	0.387
carheight	0.0682	0.050	1.372	0.172	-0.030	0.167
curbweight	0.2444	0.109	2.240	0.027	0.028	0.460
enginetype	0.0371	0.038	0.975	0.332	-0.038	0.113
enginesize	0.4359	0.114	3.812	0.000	0.210	0.662
boreratio	-0.0243	0.049	-0.497	0.620	-0.121	0.072
stroke	-0.1054	0.049	-2.142	0.034	-0.203	-0.008
compressionratio	0.0455	0.037	1.230	0.221	-0.028	0.119
horsepower	0.2440	0.118	2.069	0.041	0.011	0.477
peakrpm	0.0513	0.050	1.024	0.308	-0.048	0.150
Omnibus:	39.127	Durbin-V	Vatson:	1.8	25	
Prob(Omnibus):	0.000 J	arque-Be	ra (JB):	162.9	54	
Skew:	0.886	Pro	ob(JB):	4.12e-	36	
Kurtosis:	7.920	Co	nd. No.	49	9.3	

Warnings:

In [35]:

```
vif = pd.DataFrame()
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[35]:

	Features	VIF
8	curbweight	58.78
6	carwidth	52.85
5	wheelbase	38.52
14	horsepower	24.44
10	enginesize	24.11
2	carbody	22.15
7	carheight	16.35
11	boreratio	15.18
12	stroke	14.06
3	drivewheel	12.37
15	peakrpm	10.32
9	enginetype	8.92
0	CarName	5.49
1	doornumber	3.49
13	compressionratio	2.96
4	enginelocation	1.35

Model 10 - Dropping the boreratio predictor as it has the highest P value (insignificane) and VIF

In [36]:

```
X = X.drop('boreratio',1)
X_train_lm = sm.add_constant(X)
lr_10 = sm.OLS(y_train, X_train_lm).fit()
lr_10.summary()
```

Out[36]:

OLS Regression Results

_						
Dep. Variable:		price)	R-squa	red:	0.884
Model:		OLS	Adj.	Adj. R-squared:		0.870
Method:	Leas	Least Squares		F-stati	stic:	64.23
Date:	Wed, 02	Wed, 02 Oct 2019		(F-statis	stic): 9.	.29e-52
Time:		10:34:07	' Log	-Likelih	ood:	170.68
No. Observations:		143	3		AIC:	-309.4
Df Residuals:		127	,		BIC:	-262.0
Df Model:		15	5			
Covariance Type:		nonrobus	t			
	coef	std err	t	P> t	[0.025	0.975]
const	-0.1002	0.060	-1.678	0.096	-0.218	0.018
CarName	-0.1282	0.026	-4.980	0.000	-0.179	-0.077
doornumber	-0.0080	0.020	-0.403	0.688	-0.047	0.031
carbody	-0.0725	0.048	-1.496	0.137	-0.169	0.023
drivewheel	0.0601	0.033	1.794	0.075	-0.006	0.126
enginelocation	0.3150	0.090	3.512	0.001	0.137	0.492
wheelbase	0.0495	0.090	0.549	0.584	-0.129	0.228
carwidth	0.1862	0.094	1.972	0.051	-0.001	0.373
carheight	0.0699	0.049	1.413	0.160	-0.028	0.168
curbweight	0.2357	0.107	2.195	0.030	0.023	0.448
enginetype	0.0372	0.038	0.979	0.330	-0.038	0.112
enginesize	0.4385	0.114	3.850	0.000	0.213	0.664
stroke	-0.0983	0.047	-2.094	0.038	-0.191	-0.005
compressionratio	0.0471	0.037	1.283	0.202	-0.026	0.120
horsepower	0.2424	0.118	2.062	0.041	0.010	0.475

 Omnibus:
 37.208
 Durbin-Watson:
 1.820

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 146.946

 Skew:
 0.853
 Prob(JB):
 1.23e-32

 Kurtosis:
 7.664
 Cond. No.
 47.7

0.049

0.0568

Warnings:

peakrpm

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

1.168 0.245 -0.039

0.153

In [37]:

```
vif = pd.DataFrame()
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[37]:

	Features	VIF	
8	curbweight	57.32	
6	carwidth	49.41	
5	wheelbase	37.95	
13	horsepower	24.42	
10	enginesize	24.11	
2	carbody	21.44	
7	carheight	16.35	
11	stroke	13.49	
3	drivewheel	11.69	
14	peakrpm	10.09	
9	enginetype	8.87	
0	CarName	4.58	
1	doornumber	3.43	
12	compressionratio	2.93	
4	enginelocation	1.33	

Model 11 - Dropping the carwidth predictor as it has the highest VIF value

In [38]:

```
X = X.drop('carwidth',1)
X_train_lm = sm.add_constant(X)
lr_11 = sm.OLS(y_train, X_train_lm).fit()
lr_11.summary()
```

Out[38]:

OLS Regression Results

Dep. Variable:		price)	R-squa	red:	0.880
Model:		OLS		Adj. R-squared:		0.867
Method:	Leas	Least Squares		F-statistic:		67.02
Date:	Wed, 02	Oct 2019	Prob	(F-statis	stic): 7	.36e-52
Time:		10:34:08	Log	-Likelih	ood:	168.52
No. Observations:		143	}		AIC:	-307.0
Df Residuals:		128	}		BIC:	-262.6
Df Model:		14	ļ			
Covariance Type:		nonrobust	t			
	coef	std err	t	P> t	[0.025	0.975]
const	-0.0742	0.059	-1.261	0.210	-0.191	0.042
CarName	-0.1305	0.026	-5.018	0.000	-0.182	-0.079
doornumber	-0.0128	0.020	-0.647	0.519	-0.052	0.026
carbody	-0.0980	0.047	-2.074	0.040	-0.192	-0.005
drivewheel	0.0441	0.033	1.342	0.182	-0.021	0.109
enginelocation	0.2856	0.089	3.194	0.002	0.109	0.463
wheelbase	0.1456	0.077	1.897	0.060	-0.006	0.298
carheight	0.0652	0.050	1.304	0.195	-0.034	0.164
curbweight	0.2720	0.107	2.543	0.012	0.060	0.484
enginetype	0.0587	0.037	1.597	0.113	-0.014	0.132
enginesize	0.4367	0.115	3.792	0.000	0.209	0.664
stroke	-0.0941	0.047	-1.984	0.049	-0.188	-0.000
compressionratio	0.0662	0.036	1.847	0.067	-0.005	0.137
horsepower	0.3232	0.111	2.901	0.004	0.103	0.544

 Omnibus:
 29.586
 Durbin-Watson:
 1.847

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 110.726

 Skew:
 0.652
 Prob(JB):
 9.04e-25

 Kurtosis:
 7.109
 Cond. No.
 43.3

0.049

0.0677

peakrpm

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

1.384 0.169 -0.029

0.164

In [39]:

```
vif = pd.DataFrame()
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[39]:

	Features	VIF
7	curbweight	55.51
5	wheelbase	27.95
9	enginesize	24.07
12	horsepower	22.00
2	carbody	20.65
6	carheight	16.35
10	stroke	13.17
3	drivewheel	11.30
13	peakrpm	9.71
8	enginetype	7.57
0	CarName	4.57
1	doornumber	3.43
11	compressionratio	2.73
4	enginelocation	1.29

Model 12 - Dropping the wheelbase predictor as it has the highest VIF value

In [40]:

```
X = X.drop('wheelbase',1)
X_train_lm = sm.add_constant(X)
lr_12 = sm.OLS(y_train, X_train_lm).fit()
lr_12.summary()
```

Out[40]:

OLS Regression Results

Covariance Type:

Dep. Variable:	price	R-squared:	0.877
Model:	OLS	Adj. R-squared:	0.864
Method:	Least Squares	F-statistic:	70.48
Date:	Wed, 02 Oct 2019	Prob (F-statistic):	4.94e-52
Time:	10:34:08	Log-Likelihood:	166.54
No. Observations:	143	AIC:	-305.1
Df Residuals:	129	BIC:	-263.6
Df Model:	13		

nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	-0.0924	0.059	-1.574	0.118	-0.208	0.024
CarName	-0.1291	0.026	-4.917	0.000	-0.181	-0.077
doornumber	-0.0177	0.020	-0.890	0.375	-0.057	0.022
carbody	-0.0847	0.047	-1.794	0.075	-0.178	0.009
drivewheel	0.0650	0.031	2.079	0.040	0.003	0.127
enginelocation	0.2560	0.089	2.878	0.005	0.080	0.432
carheight	0.0964	0.048	2.024	0.045	0.002	0.191
curbweight	0.3783	0.092	4.113	0.000	0.196	0.560
enginetype	0.0541	0.037	1.458	0.147	-0.019	0.127
enginesize	0.4488	0.116	3.865	0.000	0.219	0.679
stroke	-0.0840	0.048	-1.766	0.080	-0.178	0.010
compressionratio	0.0655	0.036	1.810	0.073	-0.006	0.137
horsepower	0.2718	0.109	2.490	0.014	0.056	0.488
peakrpm	0.0770	0.049	1.568	0.119	-0.020	0.174

 Omnibus:
 25.502
 Durbin-Watson:
 1.848

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 97.498

 Skew:
 0.514
 Prob(JB):
 6.74e-22

 Kurtosis:
 6.912
 Cond. No.
 40.1

Warnings:

In [41]:

```
vif = pd.DataFrame()
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[41]:

	Features	VIF
6	curbweight	40.27
8	enginesize	24.06
11	horsepower	20.91
2	carbody	20.48
5	carheight	14.86
9	stroke	13.14
3	drivewheel	10.25
12	peakrpm	9.69
7	enginetype	7.41
0	CarName	4.56
1	doornumber	3.28
10	compressionratio	2.73
4	enginelocation	1.25

Model 13 - Dropping the carheight predictor as it has the highest VIF value

In [42]:

```
X = X.drop('carheight',1)
X_train_lm = sm.add_constant(X)
lr_13 = sm.OLS(y_train, X_train_lm).fit()
lr_13.summary()
```

Out[42]:

OLS Regression Results

Covariance Type:

price	R-squared:	0.873
OLS	Adj. R-squared:	0.861
Least Squares	F-statistic:	74.25
Wed, 02 Oct 2019	Prob (F-statistic):	4.10e-52
10:34:08	Log-Likelihood:	164.31
143	AIC:	-302.6
130	BIC:	-264.1
12		
	OLS Least Squares Wed, 02 Oct 2019 10:34:08 143 130	OLS Adj. R-squared: Least Squares F-statistic: Wed, 02 Oct 2019 Prob (F-statistic): 10:34:08 Log-Likelihood: 143 AIC: 130 BIC:

nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	-0.0654	0.058	-1.132	0.260	-0.180	0.049
CarName	-0.1226	0.026	-4.647	0.000	-0.175	-0.070
doornumber	-0.0188	0.020	-0.939	0.350	-0.059	0.021
carbody	-0.0483	0.044	-1.093	0.276	-0.136	0.039
drivewheel	0.0585	0.031	1.860	0.065	-0.004	0.121
enginelocation	0.2907	0.088	3.292	0.001	0.116	0.465
curbweight	0.4590	0.084	5.472	0.000	0.293	0.625
enginetype	0.0413	0.037	1.116	0.266	-0.032	0.114
enginesize	0.4227	0.117	3.620	0.000	0.192	0.654
stroke	-0.0887	0.048	-1.844	0.068	-0.184	0.006
compressionratio	0.0641	0.037	1.752	0.082	-0.008	0.137
horsepower	0.2008	0.105	1.920	0.057	-0.006	0.408
peakrpm	0.0712	0.050	1.435	0.154	-0.027	0.169

 Omnibus:
 28.781
 Durbin-Watson:
 1.808

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 101.345

 Skew:
 0.652
 Prob(JB):
 9.85e-23

 Kurtosis:
 6.912
 Cond. No.
 38.5

Warnings:

In [43]:

```
vif = pd.DataFrame()
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[43]:

	Features	VIF
5	curbweight	32.65
7	enginesize	23.94
10	horsepower	18.16
2	carbody	14.68
8	stroke	13.11
3	drivewheel	10.23
11	peakrpm	9.69
6	enginetype	7.35
0	CarName	4.31
1	doornumber	3.26
9	compressionratio	2.73
4	enginelocation	1.20

Model 14 - Dropping the enginetype predictor as it has the high P Value

In [44]:

```
X = X.drop('enginetype',1)
X_train_lm = sm.add_constant(X)
lr_14 = sm.OLS(y_train, X_train_lm).fit()
lr_14.summary()
```

Out[44]:

OLS Regression Results

Dep. Variable:	price	R-squared:	0.871
Model:	OLS	Adj. R-squared:	0.861
Method:	Least Squares	F-statistic:	80.73
Date:	Wed, 02 Oct 2019	Prob (F-statistic):	8.22e-53
Time:	10:34:08	Log-Likelihood:	163.62
No. Observations:	143	AIC:	-303.2
Df Residuals:	131	BIC:	-267.7
Df Model:	11		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	-0.0402	0.053	-0.754	0.452	-0.146	0.065
CarName	-0.1248	0.026	-4.741	0.000	-0.177	-0.073
doornumber	-0.0165	0.020	-0.826	0.410	-0.056	0.023
carbody	-0.0443	0.044	-1.005	0.317	-0.131	0.043
drivewheel	0.0542	0.031	1.734	0.085	-0.008	0.116
enginelocation	0.2978	0.088	3.378	0.001	0.123	0.472
curbweight	0.4602	0.084	5.481	0.000	0.294	0.626
enginesize	0.4231	0.117	3.620	0.000	0.192	0.654
stroke	-0.0993	0.047	-2.103	0.037	-0.193	-0.006
compressionratio	0.0654	0.037	1.786	0.076	-0.007	0.138
horsepower	0.1995	0.105	1.906	0.059	-0.008	0.407
peakrpm	0.0731	0.050	1.472	0.143	-0.025	0.171

 Omnibus:
 28.581
 Durbin-Watson:
 1.820

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 90.054

 Skew:
 0.691
 Prob(JB):
 2.79e-20

 Kurtosis:
 6.634
 Cond. No.
 37.1

Warnings:

In [45]:

```
vif = pd.DataFrame()
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[45]:

	Features	VIF
5	curbweight	32.60
6	enginesize	23.79
9	horsepower	17.95
7	stroke	13.09
2	carbody	12.50
3	drivewheel	10.22
10	peakrpm	9.37
0	CarName	4.25
1	doornumber	2.94
8	compressionratio	2.73
4	enginelocation	1.20

Model 15 - Dropping the curbweight predictor as it has the high VIF Value

In [46]:

```
X = X.drop('curbweight',1)
X_train_lm = sm.add_constant(X)
lr_15 = sm.OLS(y_train, X_train_lm).fit()
lr_15.summary()
```

Out[46]:

OLS Regression Results

Dep. Variable:	price	R-squared:	0.842
Model:	OLS	Adj. R-squared:	0.830
Method:	Least Squares	F-statistic:	70.33
Date:	Wed, 02 Oct 2019	Prob (F-statistic):	6.10e-48
Time:	10:34:08	Log-Likelihood:	148.86
No. Observations:	143	AIC:	-275.7
Df Residuals:	132	BIC:	-243.1
Df Model:	10		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	-0.0191	0.059	-0.326	0.745	-0.135	0.097
CarName	-0.1180	0.029	-4.064	0.000	-0.175	-0.061
doornumber	-0.0473	0.021	-2.234	0.027	-0.089	-0.005
carbody	-0.0074	0.048	-0.154	0.878	-0.103	0.088
drivewheel	0.0986	0.033	2.959	0.004	0.033	0.165
enginelocation	0.1909	0.095	2.010	0.046	0.003	0.379
enginesize	0.6842	0.118	5.804	0.000	0.451	0.917
stroke	-0.0836	0.052	-1.606	0.111	-0.187	0.019
compressionratio	0.1165	0.039	2.977	0.003	0.039	0.194
horsepower	0.4464	0.104	4.278	0.000	0.240	0.653
peakrpm	0.0402	0.054	0.739	0.461	-0.067	0.148

 Omnibus:
 18.335
 Durbin-Watson:
 1.848

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 37.844

 Skew:
 0.538
 Prob(JB):
 6.06e-09

 Kurtosis:
 5.279
 Cond. No.
 36.0

Warnings:

In [47]:

```
vif = pd.DataFrame()
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[47]:

	Features	VIF
5	enginesize	19.38
8	horsepower	14.68
6	stroke	12.97
2	carbody	11.67
3	drivewheel	9.40
9	peakrpm	9.27
0	CarName	4.22
1	doornumber	2.70
7	compressionratio	2.55
4	enginelocation	1.14

Model 16 - Dropping the carbody predictor as it has the high P Value

In [48]:

```
X = X.drop('carbody',1)
X_train_lm = sm.add_constant(X)
lr_16 = sm.OLS(y_train, X_train_lm).fit()
lr_16.summary()
```

Out[48]:

OLS Regression Results

Dep. Variable:	price	R-squared:	0.842
Model:	OLS	Adj. R-squared:	0.831
Method:	Least Squares	F-statistic:	78.72
Date:	Wed, 02 Oct 2019	Prob (F-statistic):	6.74e-49
Time:	10:34:08	Log-Likelihood:	148.85
No. Observations:	143	AIC:	-277.7
Df Residuals:	133	BIC:	-248.1
Df Model:	9		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	-0.0250	0.044	-0.566	0.572	-0.113	0.062
CarName	-0.1180	0.029	-4.080	0.000	-0.175	-0.061
doornumber	-0.0453	0.017	-2.732	0.007	-0.078	-0.012
drivewheel	0.0992	0.033	3.009	0.003	0.034	0.164
enginelocation	0.1932	0.093	2.067	0.041	0.008	0.378
enginesize	0.6841	0.117	5.825	0.000	0.452	0.916
stroke	-0.0832	0.052	-1.606	0.111	-0.186	0.019
compressionratio	0.1160	0.039	2.986	0.003	0.039	0.193
horsepower	0.4457	0.104	4.291	0.000	0.240	0.651
peakrpm	0.0396	0.054	0.733	0.465	-0.067	0.147

 Omnibus:
 18.131
 Durbin-Watson:
 1.847

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 37.161

 Skew:
 0.534
 Prob(JB):
 8.52e-09

 Kurtosis:
 5.257
 Cond. No.
 33.3

Warnings:

In [49]:

```
vif = pd.DataFrame()
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[49]:

	Features	VIF
4	enginesize	18.41
7	horsepower	14.33
5	stroke	11.78
2	drivewheel	9.37
8	peakrpm	7.58
0	CarName	3.44
6	compressionratio	2.50
1	doornumber	2.15
3	enginelocation	1.11

Model 17 - Dropping the peakrpm predictor as it has the high P Value and VIF Value

In [50]:

```
X = X.drop('peakrpm',1)
X_train_lm = sm.add_constant(X)
lr_17 = sm.OLS(y_train, X_train_lm).fit()
lr_17.summary()
```

Out[50]:

OLS Regression Results

Dep. Variable:		price)	R-squa	red:	0.841
Model:		OLS	Adj.	Adj. R-squared:		0.832
Method:	Leas	t Squares	5	F-stati	stic:	88.80
Date:	Wed, 02	Oct 2019	Prob	(F-statis	stic):	9.01e-50
Time:		10:34:08	B Log	-Likelih	ood:	148.56
No. Observations:		143	3		AIC:	-279.1
Df Residuals:		134	ļ		BIC:	-252.5
Df Model:		8	3			
Covariance Type:		nonrobus	t			
	coef	std err	t	P> t	[0.02	5 0.975]
const	-0.0078	0.037	-0.209	0.835	-0.082	2 0.066
CarName	-0.1218	0.028	-4.288	0.000	-0.178	3 -0.066
doornumber	-0.0441	0.016	-2.679	0.008	-0.077	7 -0.012
drivewheel	0.1010	0.033	3.077	0.003	0.036	0.166

CarName	-0.1218	0.028	-4.288	0.000	-0.178	-0.066
doornumber	-0.0441	0.016	-2.679	0.008	-0.077	-0.012
drivewheel	0.1010	0.033	3.077	0.003	0.036	0.166
enginelocation	0.2028	0.092	2.196	0.030	0.020	0.385
enginesize	0.6361	0.097	6.539	0.000	0.444	0.828
stroke	-0.0759	0.051	-1.495	0.137	-0.176	0.024
compressionratio	0.1071	0.037	2.907	0.004	0.034	0.180
horsepower	0.4818	0.091	5.278	0.000	0.301	0.662

 Omnibus:
 19.584
 Durbin-Watson:
 1.843

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 39.832

 Skew:
 0.586
 Prob(JB):
 2.24e-09

 Kurtosis:
 5.305
 Cond. No.
 26.6

Warnings:

In [51]:

```
vif = pd.DataFrame()
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[51]:

	Features	VIF
4	enginesize	14.16
7	horsepower	12.00
2	drivewheel	8.84
5	stroke	7.55
0	CarName	3.31
6	compressionratio	2.28
1	doornumber	2.06
3	enginelocation	1.09

Model 18 - Dropping the enginesize predictor as it has the high P Value and VIF Value

In [52]:

```
X = X.drop('enginesize',1)
X_train_lm = sm.add_constant(X)
lr_18 = sm.OLS(y_train, X_train_lm).fit()
lr_18.summary()
```

Out[52]:

OLS Regression Results

Dep. Variable:		price		R-squa	red:	0.791
Model:		OLS	Adj.	Adj. R-squared:		0.780
Method:	Leas	t Squares		F-statistic:		72.84
Date:	Wed, 02	Oct 2019	Prob (Prob (F-statistic):		9.67e-43
Time:		10:34:08	Log	-Likeliho	ood:	128.76
No. Observations:		143			AIC:	-241.5
Df Residuals:		135		I	BIC:	-217.8
Df Model:		7				
Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
const	0.0024	0.043	0.056	0.955	-0.082	0.087
CarName	-0.1464	0.032	-4.543	0.000	-0.210	-0.083
doornumber	-0.0741	0.018	-4.097	0.000	-0.110	-0.038
drivewheel	0.1334	0.037	3.590	0.000	0.060	0.207
enginelocation	0.1833	0.106	1.735	0.085	-0.026	0.392
stroke	-0.0218	0.057	-0.380	0.705	-0.135	0.092
compressionratio	0.1700	0.041	4.176	0.000	0.089	0.250
horsepower	0.9549	0.064	14.984	0.000	0.829	1.081

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 72.555

 Skew:
 1.054
 Prob(JB):
 1.76e-16

 Kurtosis:
 5.780
 Cond. No.
 19.3

Durbin-Watson:

Omnibus: 34.934

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

1.640

In [53]:

```
vif = pd.DataFrame()
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[53]:

	Features	VIF
2	drivewheel	8.58
4	stroke	7.01
6	horsepower	4.47
0	CarName	3.25
5	compressionratio	2.13
1	doornumber	1.90
3	enginelocation	1.09

Model 19 - Dropping the stroke predictor as it has the high P Value and VIF Value

In [54]:

```
X = X.drop('stroke',1)
X_train_lm = sm.add_constant(X)
lr_19 = sm.OLS(y_train, X_train_lm).fit()
lr_19.summary()
```

Out[54]:

OLS Regression Results

Dep. Variable	:	price		R-squa	red:	0.790
Model	:	OLS	Adj.	Adj. R-squared:		0.781
Method	: Leas	st Squares		F-stati	stic:	85.50
Date	: Wed, 02	Oct 2019	Prob	Prob (F-statistic):		.07e-43
Time		10:34:08	Log	-Likelih	ood:	128.69
No. Observations		143			AIC:	-243.4
Df Residuals		136			BIC:	-222.6
Df Model		6				
Covariance Type	:	nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
const	-0.0092	0.030	-0.307	0.759	-0.068	0.050
CarName	-0.1440	0.032	-4.570	0.000	-0.206	-0.082
doornumber	-0.0743	0.018	-4.121	0.000	-0.110	-0.039
drivewheel	0.1336	0.037	3.609	0.000	0.060	0.207
enginelocation	0.1881	0.105	1.800	0.074	-0.019	0.395
compressionratio	0.1664	0.039	4.214	0.000	0.088	0.245
horsepower	0.9516	0.063	15.119	0.000	0.827	1.076
Omnibus:	34.637	Durbin-V	Vatson:	1.6	34	

0.000 Jarque-Bera (JB):

Warnings:

Prob(Omnibus):

Skew:

Kurtosis:

1.046

5.768

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Prob(JB): 2.64e-16

Cond. No.

71.741

17.9

In [55]:

```
vif = pd.DataFrame()
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[55]:

	Features	VIF
2	drivewheel	7.68
5	horsepower	4.30
0	CarName	2.74
4	compressionratio	1.96
1	doornumber	1.76
3	enginelocation	1.05

Model 20 - Dropping the drivewheel predictor as it has the high P Value and VIF Value

In [56]:

```
X = X.drop('drivewheel',1)
X_train_lm = sm.add_constant(X)
lr_20 = sm.OLS(y_train, X_train_lm).fit()
lr_20.summary()
```

Out[56]:

OLS Regression Results

Dep. Variable:		price)	R-squa	red:	0.770
Model:		OLS	Adj.	R-squa	red:	0.762
Method:	Leas	st Squares	3	F-stati	stic:	91.93
Date:	Wed, 02	Oct 2019	Prob	(F-statis	stic):	5.06e-42
Time:		10:34:08	B Log	Log-Likelihood:		122.15
No. Observations:		143	3		AIC:	-232.3
Df Residuals:		137	,	I	BIC:	-214.5
Df Model:		5	5			
Covariance Type:		nonrobust	t			
	coef	std err	t	P> t	[0.02	5 0.975]
const	0.0390	0.028	1.398	0.164	-0.016	0.094
CarName	-0.1487	0.033	-4.529	0.000	-0.214	1 -0.084
doornumber	-0.0669	0.019	-3.582	0.000	-0.104	4 -0.030
enginelocation	0.1807	0.109	1.658	0.100	-0.03	0.396
compressionratio	0.2180	0.038	5.675	0.000	0.142	0.294
horsepower	1.0733	0.055	19.365	0.000	0.964	1.183
Omnibus:	36.381	Durbin-V	Watson:	1.5	59	

0.000 Jarque-Bera (JB):

Warnings:

Prob(Omnibus):

Skew:

Kurtosis:

1.079

5.923

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Prob(JB): 8.21e-18

Cond. No.

78.682

15.8

In [57]:

```
vif = pd.DataFrame()
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[57]:

	Features	VIF
0	CarName	2.36
4	horsepower	2.32
1	doornumber	1.57
3	compressionratio	1.48
2	enginelocation	1.05

Model 21 - Dropping the enginelocation predictor as it has the high P Value

In [58]:

```
X = X.drop('enginelocation',1)
X_train_lm = sm.add_constant(X)
lr_21 = sm.OLS(y_train, X_train_lm).fit()
lr_21.summary()
```

Out[58]:

OLS Regression Results

Dep. Variable:		price		R-squa	red:	0.766
Model:		OLS	Adj.	R-squa	red:	0.759
Method:	Leas	t Squares		F-statis	stic:	112.8
Date:	Wed, 02	Oct 2019	Prob (F-statis	tic):	1.72e-42
Time:		10:34:08	Log-	Likeliho	ood:	120.73
No. Observations:		143		1	AIC:	-231.5
Df Residuals:		138		ļ	BIC:	-216.6
Df Model:		4				
Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0.025	5 0.975]
const	0.0316	0.028	1.141	0.256	0.000	3 0.086
			1.171	0.250	-0.023	0.000
CarName	-0.1443	0.033	-4.381	0.000	-0.209	
CarName doornumber	-0.1443 -0.0640					9 -0.079
		0.033	-4.381	0.000	-0.209	9 -0.079 1 -0.027
doornumber	-0.0640	0.033 0.019	-4.381 -3.419	0.000	-0.209 -0.101	9 -0.079 1 -0.027 4 0.297

 Omnibus:
 31.024
 Durbin-Watson:
 1.583

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 61.723

 Skew:
 0.954
 Prob(JB):
 3.95e-14

Kurtosis: 5.592 **Cond. No.** 8.19

Warnings:

In [59]:

```
vif = pd.DataFrame()
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[59]:

	Features	VIF
0	CarName	2.35
3	horsepower	2.25
1	doornumber	1.57
2	compressionratio	1.48

Step 7: Residual Analysis of the error data (train)

In [60]:

```
y_train_residual = lr_21.predict(X_train_lm)

# Plot the histogram of the error terms
fig = plt.figure()
sns.distplot((y_train - y_train_residual), bins = 20)
fig.suptitle('Error Terms', fontsize = 20)
plt.xlabel('Errors', fontsize = 18)
plt.show()
```

Error Terms

Step 8: Making the predictions using test data

In [61]:

```
master_df_test[num_columns_list] = scaler.fit_transform(master_df_test[num_columns_list
])
master_df_test[non_num_columns_list] = scaler.fit_transform(master_df_test[non_num_columns_list])
master_df_test.describe()
```

Out[61]:

	Insuranceriskfactor	CarName	fueltype	aspiration	doornumber	carbody	drivewh
count	62.000000	62.000000	62.000000	62.000000	62.000000	62.000000	62.0000
mean	0.583871	0.566532	0.887097	0.177419	0.435484	0.625000	0.701€
std	0.271724	0.311481	0.319058	0.385142	0.499868	0.225205	0.2633
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0000
25%	0.400000	0.375000	1.000000	0.000000	0.000000	0.500000	0.5000
50%	0.600000	0.562500	1.000000	0.000000	0.000000	0.750000	0.5000
75%	0.800000	0.833333	1.000000	0.000000	1.000000	0.750000	1.0000
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.0000

8 rows × 25 columns

In [62]:

```
## Dividing between x_test and y_test

test_columns = list(master_df_test.columns)

y_test = master_df_test['price']

test_columns.remove('price')
x_test = master_df_test[test_columns]
```

In [63]:

```
y_test.head()
```

Out[63]:

```
car_ID

161 0.058474

187 0.077398

60 0.086148

166 0.097473

141 0.055099
```

Name: price, dtype: float64

In [64]:

```
x_test.head()
```

Out[64]:

	Insuranceriskfactor	CarName	fueltype	aspiration	doornumber	carbody	drivewheel
car_ID							
161	0.4	0.833333	1.0	0.0	0.0	0.75	0.5
187	0.8	0.958333	1.0	0.0	0.0	0.75	0.5
60	0.6	0.375000	1.0	0.0	1.0	0.50	0.5
166	0.6	0.833333	1.0	0.0	1.0	0.75	1.0
141	0.8	0.791667	1.0	0.0	1.0	0.50	0.0

5 rows × 24 columns

In [65]:

```
## add constant variable to x_test
x_test_sm = sm.add_constant(x_test)

## Keeping only the relevant predictors from the final lr_20 model
x_test_pred = x_test_sm[['const', 'CarName', 'doornumber', 'compressionratio', 'horsepo wer']]

## Making the predictions on the test set
y_test_pred = lr_21.predict(x_test_pred)
```

In [66]:

```
y_test_pred.head()
```

Out[66]:

```
car_ID
161 0.065901
187 0.153693
60 0.161308
166 0.303734
141 0.024957
dtype: float64
```

Step 9 : Model Evaluation

In [67]:

```
# Plotting y_test and y_pred to understand the spread

fig = plt.figure()
plt.scatter(y_test, y_test_pred)
fig.suptitle('y_test vs y_test_pred', fontsize = 20)
plt.xlabel('y_test', fontsize = 18)
plt.ylabel('y_test_pred', fontsize = 16)
plt.show()
```


Step 10 : Calculate the R-square value

In [68]:

```
from sklearn.metrics import r2_score
r2_score(y_test, y_test_pred)
```

Out[68]:

0.07040807219687462

In []: