Introdução à Ciência da Computação: armazenamento de dados

Parte 3 – Imagens

Prof. Danilo Medeiros Eler danilo.eler@unesp.br

Conteúdo

- Representação e Armazenamento de Dados
 - Texto
 - Imagem
 - Número

Armazenamento e Representação de Imagens

- Imagens são armazenadas em computadores utilizando-se duas diferentes maneiras:
 - Imagens rasterizadas
 - Gráficos bitmaps (mapa de bits)
 - Imagens vetoriais
 - Primitivas geométricas para formar a imagem
 - Ex: linhas, círculos, quadrados

Rasterizadas

unesp

Rasterizadas

Vetoriais

Vetoriais

Vetoriais

Imagens Rasterizadas

- Conhecidos como gráficos bitmaps ou gráficos rasterizados
 - Utilizados para armazenar uma imagem como uma fotografia
- Podemos ver uma imagem como uma matriz
 - Em que cada célula contém uma cor
 - Essa célula é chamada de pixel, que é a menor unidade de uma imagem

Mosaico

 $https://i.pinimg.com/originals/05/e5/6d/05e56da303c1be44a5f6010ed03006c0.jpg \\ https://solardorosario.com.br/wp-content/uploads/2015/01/Arara-4-2.jpg$

Imagens Rasterizadas

Cada pixel da imagem contém uma informação de cor

http://1.bp.blogspot.com/_NtG3CYd5NIQ/TGNy2frG4PI/AAAAAAAAAB6U/UwJXpdF7Toc/s1600/bitmap.png

Imagens Rasterizadas

- Cada informação de cor é representada por um padrão binário
- A quantidade de cores que podemos representar em uma imagem é dada pelo número de bits utilizado para formar o padrão binário
 - Esse número é conhecido como Profundidade de Cor

Profundidade de cor

Exemplos:

- Profundidade 1 = 1 bit $= 2^1 = 2$ cores
 - Ex.: Preto e Branco
- Profundidade 8 = 8 bits = 2⁸ = 256 cores
 - Ex.: Tons de cinza
- Profundidade 24 = 24 bits = $2^{24} = 16.776.216$ cores
 - Ex.: Imagens Coloridas (True Color)

Imagem Preto e Branco

Profundidade 1 = 1 bit = 2 cores

0	0	0	0	0	Ī	0	0	0	0	0	0
0	0	0	0	ı	I	ŀ	0	0	0	0	0
0	0	0	1	ı	ı	I	ì	0	0	0	0
0	0	ŀ	Ī	ŀ	Ī	ī	ī	ī	0	0	0
0	0	I	0	0	0	0	0	I	0	0	0
0	0	Ī	0	0	0	0	0	1	0	0	0
0	0	ı	0	0	0	0	0	1	0	0	0
0	0	1	0	0	0	0	0	ı	Ð	0	0
0	0	1	ı		ŧ	Ī	Ī	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

Profundidade 8 = 8 bits = 256 cores

Profundidade 8 = 8 bits = 256 cores

https://www.heypoorplayer.com/wp-content/uploads/2016/07/nesgraphics.png

Profundidade 8 = 8 bits = 256 cores

A combinação dos três canais RGB formaria uma determinada cor

https://www.heypoorplayer.com/wp-content/uploads/2016/07/nesgraphics.png

- Profundidade 8 = 8 bits = 256 cores
 - Exemplo de tabela com um número limitado de cores

https://i1.wp.com/www.hisour.com/wp-content/uploads/2018/04/8-bit-color.jpg?fit=960%2C744&ssl=1&resize=1280%2C720

Profundidade 24 = 24 bits = 16.776.216 cores

Exemplo de padrão binário 00101011011011011111111110

Profundidade 24 = 24 bits = 16.776.216 cores

Exemplo de padrão binário 00101011011011011111111111

R

G

B

00101011

01011011

11111110

Profundidade 24 = 24 bits = 16.776.216 cores

Exemplo de padrão binário 00101011011011011111111111

R	G	В		
00101011	01011011	11111110		
43	91	254		

Profundidade 24 = 24 bits = 16.776.216 cores

Exemplo de padrão binário 00101011011011011111111110

Profundidade 24 = 24 bits = 16.776.216 cores

 Cada pixel da imagem contém uma informação de cor representada por um padrão binário

http://1.bp.blogspot.com/_NtG3CYd5NIQ/TGNy2frG4PI/AAAAAAAAAB6U/UwJXpdF7Toc/s1600/bitmap.png

 Cada pixel da imagem contém uma informação de cor representada por um padrão binário

25	X	25	=	625	pixe	ls
----	---	----	---	-----	------	----

Nº do Pixel	Padrão Binário
001	111111111111111111111111
002	111111111111111111111111
003	111111111111111111111111
028	00000001111110000000000
029	00000001111110000000000
030	00000001111110000000000
624	11111111111111111111111
625	111111111111111111111111

http://1.bp.blogspot.com/_NtG3CYd5NIQ/TGNy2frG4PI/AAAAAAAAAB6U/UwJXpdF7Toc/s1600/bitmap.png

Resolução de uma imagem

- Resolução da imagem é o tamanho da imagem
 - Representa a quantidade de que pixels serão utilizados para compor a imagem
 - Por exemplo, 10 Mega Pixels significa que a imagem possui 10 milhões de pixel de resolução
- Quanto maior a resolução, melhor a qualidade da imagem
- Quanto maior a resolução, maior será o espaço requerido para armazenar a imagem

Resolução de uma imagem

- Exemplos
 - 10 Mega Pixel (10 milhões de pixels)
 - Imagem de 1 bit
 - 10.000.000 de pixels x 1 bit por pixel
 - 10.000.000 de bits (≅ 1.19 MB)
 - Imagem de 8 bits
 - 10.000.000 de pixels x 8 bits por pixel
 - 80.000.000 de bits (≅ 9.53 MB)
 - Imagem de 24 bits
 - 10.000.000 de pixels x 24 bits por pixel
 - 240.000.000 de bits (≅28.61 MB)

Bibliografia

BIBLIOGRAFIA BÁSICA

- BROOKSHEAR, J. G. Ciência da computação: uma visão abrangente. 5ª ed., Bookman Editora, 2000. 499p.
- FOROUZAN, B. A., MOSHARRAF, F. Fundamentos da Ciência da Computação. 2ª ed., São Paulo: Cengage Learning, 2011. 560p.

BIBLIOGRAFIA COMPLEMENTAR

- BROOKSHEAR, J. G. Ciência da computação: uma visão abrangente. 5ª ed., Bookman Editora, 2000. 499p.
- CORMEN, T.H., Leiserson, C.E., Rivest R.L., Stein, C. Algoritmos: teoria e Prática. Rio de janeiro: Editora Campus, 2002. 916p.
- PLAUGER, P. L. A Biblioteca Standard C. Rio de Janeiro: Editora Campus, 1994. 614p.
- 4. PRATA, S. C primer plus, 4ª ed. SAMS Publishing, 2002. 931p.

