

Lecture 23: Simulation Based Inference

Simulation Based Inference

Simulation-based inference (SBI)

We can generate samples from a simulator $x \sim p(x \mid \theta)$

Inference:

- Likelihood $p(x \mid \theta) = dz p(x, z \mid \theta)$ is intractable
- Inference is challenging

Poisson Fluctuation

Poisson flucutate a func

"Traditional" SBI: Approximate Bayesian Computation

[Rubin 1984]

Importance Sampling

Normalizing Flow

$$z \sim p_{ heta}(z) = N(z;0,1) \ x = f_{ heta}(z) = f_K \circ \ldots f_2 \circ f_1(z) \ each \ f_i \ is \ invertible$$

How Does it Work?

$$egin{aligned} f:Z
ightarrow X, \ f \ is \ invertible \ p_{ heta}(z) \ defined \ over \ z \ \epsilon \ Z \ p_{ heta}(x)
eq p_{ heta}(f_{ heta}^{-1}(x))) \end{aligned}$$

Change of variable formula:

$$p_{ heta}(x) = p_{ heta}(f_{ heta}^{-1}(x))) \left| det(rac{\partial f^{-1}(x))}{\partial x})
ight| \ p_{ heta}(x) = p_{ heta}(z)) \left| det(rac{\partial z}{\partial x})
ight|$$

$$\log\left(p_{ heta}(x)
ight) = \log\left(p_{ heta}(z)
ight) \,+\, \sum_{i=1}^K \log\left|det(rac{\partial f_i^{-1}}{\partial z_i})
ight|$$

exact likelihood evalutation

Exmple

....

Data space \mathcal{X}

Latent space Z

Inference

$$x \sim \hat{p}_X$$
$$z = f(x)$$

Generation

$$z \sim p_Z$$
$$x = f^{-1}(z)$$

Diffusion

Exmple

Combo

Part 1: Normalizing Flows

Importance Sampling

