Adult Census Income

Harsh Navin Gupta
10 January 2020

Dataset Analysis

The Adult Census Income Dataset, contains features that are being used to predict whether a person, earns >50K or <=50K.

The dataset, contains an observation for every individual person, and the feature to be predicted is the *income*, which is composed of two values : <=50K, >50K.

The Adult Census Income Dataset contains the following features:

- 1. Age: Stores the age of the individual.
- 2. Workclass: Stores the type of employment of the individual, whether he/she is a federal emplyee, private employee, or has his/her own buisness.
- 3. **fnlwgt**: Stores the sampling weight.
- 4. Education: Stores the highest degree of education, held by the individual.
- 5. Education-Num: Stores the number of years of education completed by the individual.
- 6. **Marital-Status**: Stores the marital status of the individual, whether they are married, divorced.etc.
- 7. Occupation: Stores a short descriptor about the type of job of the individual.
- 8. **Relationship**: Stores the relationship which the individual holds, if he/she is a part of a family.
- 9. Race: Stores the race of the individual.
- 10. **Sex**: Stores the sex of an individual.
- 11. Capital-Gain
- 12. Capital-Loss
- 13. Hours-Per-Week: Stores the number of hours the individual works in a week.
- 14. Native-Country: Stores the country to which the individual natively belongs.

Dataset Download

The dataset consists of two files, that have to be downloaded.

- 1. adult.data: This is a CSV file, that contains the training data.
- 2. adult.test: This is a CSV file, that contains the testing data.

The link to download the adult.data file is:

https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data

The link to download the **adult.test** file is:

https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test

First, we check for the library that are required, and load the required libraries.

```
if(!require(tidyverse)) install.packages("tidyverse", repos = "http://cran.us.r-project.org")
## Loading required package: tidyverse
```

```
## Registered S3 methods overwritten by 'ggplot2':
## method from
## [.quosures rlang
```

```
##
                    rlang
     c.quosures
##
     print.quosures rlang
## Registered S3 method overwritten by 'rvest':
##
     method
                       from
##
    read_xml.response xml2
## -- Attaching packages -----
                                                ----- tidyverse 1.2.1 --
## v ggplot2 3.1.1
                      v purrr
                                 0.3.2
## v tibble 2.1.1
                     v dplyr
                                 0.8.3
## v tidyr
            0.8.3
                      v stringr 1.4.0
## v readr
            1.3.1
                      v forcats 0.4.0
## -- Conflicts ----- tidyverse conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
if(!require(caret)) install.packages("caret", repos = "http://cran.us.r-project.org")
## Loading required package: caret
## Loading required package: lattice
##
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
##
       lift
if(!require(ggthemes)) install.packages("ggthemes", repos = "http://cran.us.r-project.org")
## Loading required package: ggthemes
Now, we create a vector of column names, for the data frames to be used.
col_names <- c("age", "workclass", "fnlwgt", "education",</pre>
               "education_num", "marriage", "occupation",
               "relationship", "race", "sex", "capital-gain",
               "capital-loss", "hours",
               "country", "income")
Now, we first download the file adult.data and create our training set.
#Link To Download adult.data
train_link <- "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data"</pre>
train_set <- read_csv(train_link,col_names = FALSE)</pre>
## Parsed with column specification:
## cols(
    X1 = col_double(),
##
```

##

##

##

X2 = col_character(),

X4 = col_character(),

 $X3 = col_double(),$

```
X5 = col_double(),
##
     X6 = col_character(),
##
##
     X7 = col_character(),
     X8 = col_character(),
##
     X9 = col character(),
##
     X10 = col_character(),
##
##
     X11 = col double(),
##
     X12 = col_double(),
     X13 = col double(),
##
     X14 = col_character(),
##
     X15 = col_character()
##
## )
train_set <- setNames(train_set,col_names)</pre>
head(train_set)
## # A tibble: 6 x 15
       age workclass fnlwgt education education_num marriage occupation
##
##
     <dbl> <chr>
                      <dbl> <chr>
                                               <dbl> <chr>
## 1
        39 State-gov 77516 Bachelors
                                                  13 Never-m~ Adm-cleri~
## 2
        50 Self-emp~ 83311 Bachelors
                                                  13 Married~ Exec-mana~
                                                   9 Divorced Handlers-~
        38 Private
                     215646 HS-grad
## 3
## 4
        53 Private
                     234721 11th
                                                   7 Married~ Handlers-~
## 5
        28 Private
                     338409 Bachelors
                                                  13 Married~ Prof-spec~
        37 Private 284582 Masters
                                                  14 Married~ Exec-mana~
## # ... with 8 more variables: relationship <chr>, race <chr>, sex <chr>,
## #
       `capital-gain` <dbl>, `capital-loss` <dbl>, hours <dbl>,
## #
       country <chr>, income <chr>
Now, we proceed to download the file adult.test and create our testing set.
#Link To Download adult.test
test link <- "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test"
test_set <- read_csv(test_link,col_names = FALSE,skip = 1)</pre>
## Parsed with column specification:
## cols(
##
     X1 = col_double(),
##
     X2 = col_character(),
##
     X3 = col_double(),
##
     X4 = col_character(),
##
     X5 = col_double(),
     X6 = col_character(),
##
##
     X7 = col_character(),
     X8 = col_character(),
##
##
     X9 = col_character(),
     X10 = col_character(),
##
##
     X11 = col_double(),
##
     X12 = col_double(),
     X13 = col_double(),
##
```

```
X14 = col_character(),
##
##
    X15 = col_character()
## )
test_set <- setNames(test_set,col_names)</pre>
head(test set)
## # A tibble: 6 x 15
       age workclass fnlwgt education education num marriage occupation
                      <dbl> <chr>
##
     <dbl> <chr>
                                              <dbl> <chr>
                                                              <chr>
## 1
       25 Private
                     226802 11th
                                                  7 Never-m~ Machine-o~
## 2
       38 Private
                     89814 HS-grad
                                                  9 Married~ Farming-f~
## 3
       28 Local-gov 336951 Assoc-ac~
                                                 12 Married~ Protectiv~
       44 Private 160323 Some-col~
                                                10 Married~ Machine-o~
## 4
## 5
       18 ?
                     103497 Some-col~
                                                 10 Never-m~ ?
       34 Private 198693 10th
                                                  6 Never-m~ Other-ser~
## # ... with 8 more variables: relationship <chr>, race <chr>, sex <chr>,
       `capital-gain` <dbl>, `capital-loss` <dbl>, hours <dbl>,
## #
## #
       country <chr>, income <chr>
```

Data Preprocessing

The columns of the dataset, workclass, occupation, and native-country, contain unknown values.

First, we discard all observations with unknown values (represented by ?), from the training set.

```
train_set <- train_set %>%
  filter(workclass != "?") %>%
  filter(occupation != "?") %>%
  filter(country != "?")
```

Next, we discard all observations with unknown values (represented by ?), from the testing set.

```
test_set <- test_set %>%
  filter(workclass != "?") %>%
  filter(occupation != "?") %>%
  filter(country != "?")
```

First, we calculate the Average Weekly Working Hours of all the individuals.

```
mean_hours <- mean(train_set$hours)</pre>
```

Now create a new column named work hour group, which can have anyone of two values:

- 1. **Lower**: If the works hours per week of the individual are lower than the average weekly work hours.
- 2. **Higher**: If the works hours per week of the individual are higher than the average weekly work hours.

We initially make the changes to *Training Set*.

```
train_set <- train_set %>%
  mutate(work_hour_group = ifelse(hours < mean_hours, "Lower", "Higher"))</pre>
```

Then, we make the changes to the *Testing Set*.

```
test_set <- test_set %>%
  mutate(work_hour_group = ifelse(hours < mean_hours, "Lower", "Higher"))</pre>
```

Next, we categorise the countries in the dataset, as Developed Countries (D) or Under Development Countries.

The following countries are categorised as *Developed Countries*:

- * Germany
- * England
- * France
- * Japan
- * Canada
- * United-States
- * Ireland
- * Italy

The remaining countries are classified as *Under Development Countries (UD)*.

Initially we make changes to the *Training Set*.

```
train_set <- train_set %>%
  mutate(country_type = ifelse(country %in% dc,"D","UD"))
```

Then, we make changes to the *Testing Set*.

```
test_set <- test_set %>%
  mutate(country_type = ifelse(country %in% dc,"D","UD"))
```

For the purpose of ease of training ML Models on the training set, we add a new column y to both training and testing sets, which contains the following values:

- 1. $\mathbf{0}$: If the individual income is equal to ≤ 50 K
- 2. $\mathbf{1}$: If the individual income is equal to $>50\mathrm{K}$

Initially, we make changes to the *Training Set*.

```
#Creating New Column y
train_set <- train_set %>% mutate(y = ifelse(income == "<=50K",0,1))
train_set <- train_set %>% mutate(y = factor(y))
```

Then we make changes to the *Testing Set*.

```
#Creating New Column y
test_set <- test_set %>% mutate(y = ifelse(income == "<=50K.",0,1))
test_set <- test_set %>% mutate(y = factor(y))
```

Exploratory Data Analysis

```
#Total People In The Training Set
nrow(train_set)

## [1] 30162

#Total Countries In The Training Set
n_distinct(train_set$country)

## [1] 41

#Total Male & Females In The Training Set
train_set %>% group_by(sex) %>%
summarise(count = n()) %>% knitr::kable()
```

Income Over Sex

Here, we visualise the distribution of the income, over Males & Females, which are present in the training set.

9782

20380

Female

Male

```
train_set %>% group_by(sex,income) %>%
summarise(count = n()) %>% knitr::kable()
```

sex	income	count
Female	<=50K	8670
Female	>50 K	1112
Male	$\leq =50 \mathrm{K}$	13984
Male	>50K	6396

```
train_set %>% group_by(sex,income) %>%
  summarise(count = n()) %>%
  ggplot(aes(income,count,fill = sex)) +
  geom_bar(stat = "identity",position = position_dodge2()) +
  xlab("Sex") + ylab("Count") +
  theme_gdocs() + ggtitle("Income Over Sex")
```


Here, it is observed that, the proportion of people earning $<=50 \mathrm{K}$ is greater than people earning $>50 \mathrm{K}$ for both the genders.

It can also be clearly observed that total number of Males are greater than the total number of Females.

Income Over Different Races

Here, we analyse the distribution of the income, among individuals belonging to different races.

```
train_set %>% group_by(race,income) %>%
summarise(count = n()) %>% knitr::kable()
```

race	income	count
Amer-Indian-Eskimo	<=50K	252
Amer-Indian-Eskimo	> 50 K	34
Asian-Pac-Islander	<=50 K	647
Asian-Pac-Islander	>50K	248
Black	<=50 K	2451
Black	>50K	366
Other	<=50 K	210
Other	> 50 K	21
White	<=50 K	19094
White	>50 K	6839

```
train_set %>% group_by(race,income) %>%
  summarise(count = n()) %>%
  ggplot(aes(income,count,fill = race)) +
  geom_bar(stat = "identity",position = position_dodge2()) +
  theme_gdocs() +
  xlab("Income") + ylab("Count") +
  ggtitle("Income Over Different Races")
```


Here, it can clearly observed that the dataset is dominated by people belonging to the *White* race. But, it can be observed in general, that the people with income ≤ 50 K are greater in number than people with income ≥ 50 K, across all the races.

Income Over Education

Here we analyze the distribution of the income, in comparison to the highest degree of education held by an individual.

```
train_set %>% group_by(education,income) %>%
summarise(count = n()) %>% knitr::kable()
```

education	income	count
$\overline{10\mathrm{th}}$	<=50 K	761
10th	>50 K	59
11th	<=50K	989

education	income	count
11th	>50K	59
12th	<=50 K	348
12th	>50K	29
1st-4th	<=50 K	145
1st-4th	>50 K	6
5th- 6 th	<=50 K	276
5th- 6 th	>50K	12
7th- 8 th	<=50 K	522
7th- 8 th	>50 K	35
9th	<=50 K	430
9th	>50K	25
Assoc-acdm	<=50 K	752
Assoc-acdm	>50 K	256
Assoc-voc	<=50 K	963
Assoc-voc	>50 K	344
Bachelors	<=50 K	2918
Bachelors	>50 K	2126
Doctorate	<=50 K	95
Doctorate	>50 K	280
HS-grad	<=50 K	8223
HS-grad	>50 K	1617
Masters	<=50 K	709
Masters	>50 K	918
Preschool	<=50 K	45
Prof-school	<=50 K	136
Prof-school	>50 K	406
Some-college	$\leq =50 \mathrm{K}$	5342
Some-college	>50K	1336

```
train_set %>% group_by(education,income) %>%
  summarise(count = n()) %>%
  ggplot(aes(reorder(education,count),count,fill = income)) +
  geom_bar(stat = "identity",position = position_dodge2()) +
  coord_flip() +
  theme_gdocs() +
  xlab("Education") + ylab("Count") +
  ggtitle("Income Over Education")
```


Here it can be clearly observed, that the people who hold Master's degree, or a Doctrate, or have attended Prof-School, have higher proportion of them, earning >50K, in comparison to other degrees, where the proportion of people earning, <=50K is greater.

It can also be observed that most people, in the dataset, are *High School Graduates**.

Income Over Different Occupations

Here we analyse the distribution of incomes of the individuals in the database, on the basis of their occupation.

```
train_set %>% group_by(occupation,income) %>%
summarise(count = n()) %>% knitr::kable()
```

occupation	income	count
Adm-clerical	<=50 K	3223
Adm-clerical	>50 K	498
Armed-Forces	<=50 K	8
Armed-Forces	>50 K	1
Craft-repair	<=50 K	3122
Craft-repair	>50 K	908
Exec-managerial	<=50 K	2055
Exec-managerial	$> 50 {\rm K}$	1937
Farming-fishing	<=50K	874

occupation	income	count
Farming-fishing	>50K	115
Handlers-cleaners	<=50 K	1267
Handlers-cleaners	>50 K	83
Machine-op-inspct	<=50 K	1721
Machine-op-inspct	>50 K	245
Other-service	<=50 K	3080
Other-service	>50 K	132
Priv-house-serv	<=50 K	142
Priv-house-serv	>50 K	1
Prof-specialty	<=50 K	2227
Prof-specialty	>50 K	1811
Protective-serv	<=50 K	434
Protective-serv	>50 K	210
Sales	<=50 K	2614
Sales	>50K	970
Tech-support	<=50 K	634
Tech-support	>50K	278
Transport-moving	<=50 K	1253
Transport-moving	>50K	319

```
train_set %>% group_by(occupation,income) %>%
summarise(count = n()) %>%
ggplot(aes(reorder(occupation,count),count,fill = income)) +
geom_bar(stat = "identity",position = position_dodge2()) +
coord_flip() +
ggtitle("Income Over Different Occupations") +
xlab("Occupation") + ylab("Count") + theme_gdocs()
```


Here, in general, it is observed the people earning ≤ 50 K are greater than the number of people earning ≥ 50 K.

However, it can also be seen that occupations such as *Prof-speciality* and *Exec-managerial*, usually requiring a *Master's Degree/ Doctrate*, have a comparitively little difference in the number of people earning <=50 K & >50 K.

This observation, also acts as a supporter to the conclusion drawn using the Income Over Education visualisation.

Income Over Hours Per Week

In this section, we analyse the income distribution, for the people who work less than the average hours per week, and more than the average hours per week.

We also analyse the Hours Per Week, with respect to the Gender of the individual, to determine, whether there is difference in the trend, if considered on a gender basis.

```
train_set %>% group_by(work_hour_group,income) %>%
summarise(count = n()) %>% knitr::kable()
```

work_hour_group	income	count
Higher	<=50 K	5456
Higher	>50 K	3741
Lower	<=50 K	17198
Lower	>50K	3767

```
train_set %>% group_by(work_hour_group,income) %>%
  summarise(count = n()) %>%
  ggplot(aes(work_hour_group,count,fill = income)) +
  geom_bar(stat = "identity",position = position_dodge2()) +
  xlab("Work Hour Group") +
  ylab("Count") +
  ggtitle("Income Over Work Hour Group") +
  theme_gdocs()
```


It can be clearly observed that for the people who work Greater than the Average Hours Per Week, the proportion of people earning <=50K, still remains larger, than the people earning >50K. However, it can also be seen that for people working Greater than the Average Hours Per Week, the difference in numbers is very small, when compared to the people working Less Than The Average Hours Per Week.

Now, we compare this trend, by also considering, the gender of the individuals.

```
train_set %>% group_by(work_hour_group,income,sex) %>%
  summarise(count = n()) %>%
  ggplot(aes(work_hour_group,count,fill = income)) +
  geom_bar(stat = "identity",position = position_dodge2()) +
  xlab("Work Hour Group") +
  ylab("Count") +
  ggtitle("Income Over Work Hour Group & Sex") +
```


It can be seen that the *Gender* does not act as a *Bias*, in anyway, and the trend observed earlier, still remains true.

Income Over Maritial Status

Here, we analyse the distribution of income, based on the individual's maritial status.

```
train_set %>% group_by(marriage,income) %>%
summarise(count = n()) %>% knitr::kable()
```

marriage	income	count
Divorced	<=50K	3762
Divorced	>50K	452
Married-AF-spouse	<=50 K	11
Married-AF-spouse	>50K	10
Married-civ-spouse	<=50 K	7666
Married-civ-spouse	>50 K	6399
Married-spouse-absent	<=50 K	339
Married-spouse-absent	> 50 K	31
Never-married	<=50 K	9256
Never-married	> 50 K	470
Separated	<=50K	873

marriage	income	count
Separated	$> 50 {\rm K}$	66
Widowed	<=50 K	747
Widowed	$> 50 {\rm K}$	80

```
train_set %>% group_by(marriage,income) %>%
   summarise(count = n()) %>%
   ggplot(aes(marriage,count,fill = income)) +
   geom_bar(stat = "identity",position = position_dodge2()) +
   xlab("Maritial Status") +
   ylab("Count") +
   ggtitle("Income Over Maritial Status") +
   theme_gdocs() + coord_flip()
```


In the visualisaton, it can be clearly observed, that the chances of a person earning ≤ 50 K of not being married, are higher than that of being married.

The highest number of people earning <=50K, have never married.

Income Over Relationship

Here, we verify the observations that have been observed in the previous visulation.

```
train_set %>% group_by(relationship,income) %>%
summarise(count = n()) %>% knitr::kable()
```

relationship	income	count
Husband	<=50K	6784
Husband	>50K	5679
Not-in-family	<=50 K	6903
Not-in-family	> 50 K	823
Other-relative	<=50 K	854
Other-relative	>50K	35
Own-child	<=50 K	4402
Own-child	> 50 K	64
Unmarried	<=50 K	2999
Unmarried	> 50 K	213
Wife	<=50 K	712
Wife	> 50 K	694

```
train_set %>% group_by(relationship,income) %>%
  summarise(count = n()) %>%
  ggplot(aes(relationship,count,fill = income)) +
  geom_bar(stat = "identity",position = position_dodge2()) +
  xlab("Relationship") +
  ylab("Count") +
  ggtitle("Income Over Relationship") +
  theme_gdocs()
```


It can be clearly observed that the highest number of people earning <=50K, are current not in a family, confirming our previous conclusion, $Person\ earning\ <=50$ K, has a higher probability of being never married.

Income Over Country Type

Here, we analyse whether the distribution of incomes, difference in *Developed vs Under Development Countries*.

```
train_set %>% group_by(country_type,income) %>%
summarise(count = n()) %>%
ggplot(aes(country_type,count,fill = income)) +
geom_bar(stat = "identity",position = position_dodge2()) +
ggtitle("Income Over Country Type") +
xlab("Country Type") +
ylab("Count") + theme_gdocs()
```


Here, it can clearly be seen, that most of the individuals of the dataset, are native to a developed country.

Secondly, be it developed or under development country, the number of people earning <=50K are significantly higher than number of people earning >50K.

Model Fitting

Based on the *Exploratory Data Analysis*, we will use only the following columns for the training of the *ML Models*.

- 1. sex
- 2. **age**
- 3. occupation
- 4. education
- 5. relationship
- 6. race
- 7. marriage
- 8. hours
- 9. country
- 10. **y**

```
#Selecting Columns From Training Set
train_set <- train_set %>% select(selected_features)

#Selecting Columns From Testing Set
test_set <- test_set %>% select(selected_features)
```

Using Logistic Regression

First, we define K Fold Cross Validation. Here, we define, that only 10 Times (K = 10), will be performed, and the validation set will be 10% of the training set (p = 0.9).

```
control <- trainControl(method = "cv", number = 10,p = 0.9)</pre>
```

Now, we fit the *Logistic Regression Model*, to the training set, using the train() function of the caret package.

```
lga_fit <- train(y ~ .,data = train_set,method = "glm",trControl = control)</pre>
```

Now, we predict the income for the *Testing Set* by making of the predict() function.

```
y_hat <- predict(lga_fit,test_set)</pre>
```

We can analyse the performance of the Model, by making use of the Confusion Matrix.

```
confusionMatrix(y_hat,test_set$y)
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                  0
                     1651
            0 10412
##
                     2049
##
                948
##
##
                  Accuracy : 0.8274
##
                    95% CI: (0.8213, 0.8334)
##
       No Information Rate: 0.7543
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                     Kappa: 0.5025
##
   Mcnemar's Test P-Value : < 2.2e-16
##
##
##
               Sensitivity: 0.9165
##
               Specificity: 0.5538
            Pos Pred Value: 0.8631
##
##
            Neg Pred Value: 0.6837
##
                Prevalence: 0.7543
##
            Detection Rate: 0.6914
##
      Detection Prevalence: 0.8010
##
         Balanced Accuracy: 0.7352
```

```
## 'Positive' Class : 0 ##
```

The Accuracy for the Logistic Regression Model.

```
confusionMatrix(y_hat,test_set$y)$overall[1]
```

```
## Accuracy
## 0.8274236
```

Using Classifier Tree

Here, we make of tuneGrid argument, to fit the Classifier tree, for multiple cp (Complexity Parameter) values, and fit the model using the train() function of the caret package.

Now, we plot the *cp* (Complexity Parameter) VS Accuracy.

```
ggplot(tree_fit,highlight = TRUE) + theme_gdocs()
```


The best value of cp is:

tree_fit\$bestTune

```
## cp
## 2 0.002
```

Now, we plot the Best Fit Classifier Tree Model.

```
plot(tree_fit$finalModel,margin = 0.01)
text(tree_fit$finalModel,cex = 0.6)
```


Now, we predict the income for the *Testing Set* by making of the predict() function.

```
y_hat <- predict(tree_fit,test_set)</pre>
```

We can analyse the performance of the Model, by making use of the Confusion Matrix.

```
confusionMatrix(y_hat,test_set$y)
```

```
## Confusion Matrix and Statistics
##
             Reference
##
## Prediction
                   0
                         1
##
             0 10464
                      1755
                 896
                      1945
##
##
                   Accuracy: 0.824
##
```

```
##
                    95% CI: (0.8178, 0.83)
##
       No Information Rate: 0.7543
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa: 0.4847
##
##
##
    Mcnemar's Test P-Value : < 2.2e-16
##
##
               Sensitivity: 0.9211
##
               Specificity: 0.5257
##
            Pos Pred Value: 0.8564
##
            Neg Pred Value: 0.6846
                Prevalence: 0.7543
##
            Detection Rate: 0.6948
##
      Detection Prevalence: 0.8114
##
##
         Balanced Accuracy: 0.7234
##
          'Positive' Class : 0
##
##
```

The Accuracy for the Classifier Tree Model.

```
confusionMatrix(y_hat,test_set$y)$overall[1]
```

```
## Accuracy
## 0.8239708
```

Conclusion

For the Adult Census Income dataset, both the Logistic Regression & Classifier Tree models, perform equally good, by making use of Accuracy as the comparison parameter, and hence any of the model can be used for predicting the income of an individual.

Github Link

https://github.com/guptaharshnavin/Adult_Census_Income