

ETC5242 Class 1 Confidence Interval

授课老师: Joe

- Week 5
 - Central limited theorem
 - Bootstrapping for paired variables
 - Bootstrapping for independent variables
- Week 6
 - Maximum likelihood estimate (MLE)
 - Bootstrapping for model parameters

Central limited theorem

CLT describes the **sampling distribution** of \bar{X} , as the sample size **increases**

The (hypothetical) sampling distribution of the sample mean will become normally distributed

even if the data from the original population is **not** normally distributed

CLT approximation with n = 30

Sample standard deviation (measures the variation of the sample):

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}$$

Standard error (measures the variation of the standard deviation)

$$SE = \frac{s}{\sqrt{n}}$$

Different variables can take on different range of values, so we need to standardize

$$T = egin{array}{c} ar{X} - \mu & \stackrel{approx}{\sim} t_{n-1} \ \end{array}$$

Hypothesis testing with CLT

Use CLT to test H_0 : $\mu = \mu_0$ (= 'null value')

When H_0 is true: $T_0 = \frac{\bar{X} - \mu_0}{SE} \stackrel{approx}{\sim} t_{n-1}$ and we test against:

two-sided alternative: $H_1: \mu \neq \mu_0$

Reject H_0 if $|T_0| \ge t_{n-1,0.975}$

upper one-sided alternative: $H_1: \mu > \mu_0$

Reject H_0 if $T_0 \ge t_{n-1,0.975}$

lower one-sided alternative: $H_1: \mu < \mu_0$

Reject H_0 if $T_0 \le t_{n-1,0.025}$

Otherwise do not reject H_0 and conclude $\mu=\mu_0$

Confidence interval with CLT

Start with 95% sampling interval for \bar{X} :

$$\Pr\left(t_{n-1,0.025} < \frac{\bar{X} - \mu}{s/\sqrt{n}} < t_{n-1,0.975}\right) = 0.95$$

Rearrange expression:

$$\Rightarrow \Pr\left(\bar{X} + \frac{s}{\sqrt{n}} t_{n-1,0.025} < \mu < \bar{X} + \frac{s}{\sqrt{n}} t_{n-1,0.975}\right) = 0.95$$

'Plug in' observed: $\bar{X} = \bar{x}_{obs}$ and record observed interval \Rightarrow 95% confidence interval for μ :

$$\left[\bar{x}_{obs} + \frac{s}{\sqrt{n}} t_{n-1,0.025}, \ \bar{x}_{obs} + \frac{s}{\sqrt{n}} t_{n-1,0.975}\right]$$

The notation $t_{df,\alpha}$ refers to the lower α quantile of the student t distribution with df degrees of freedom:

$$\Pr\left(T \leq t_{df,\alpha}\right) = \alpha$$

If the degrees of freedom df is "large", then $t_{df,\alpha} \approx z_{\alpha}$, the lower α quantile of the N(0,1) distribution, i.e.

- ▶ $t_{0.025,n-1} \rightarrow z_{0.025} = -1.96$ as $n \rightarrow \infty$, and
- ► $t_{0.975,n-1} \rightarrow z_{0.975} = +1.96$ as $n \rightarrow \infty$

In **R**, use

ightharpoonup qt(0.025,(n-1)) for $t_{0.025,n-1}$, and qt(0.975,(n-1)) for $t_{0.975,n-1}$

And note that

• qnorm(0.025) is $z_{0.025}$, and qnorm(0.975) is $z_{0.975}$

Bootstrap

The basic idea: Replicate "hypothetical" data sets (Bootstrap samples) by re-sampling observed values with replacement

There are several Bootstrap approach variations. Here we consider one referred to the **Bootstrap percentile interval** approach

Bootstrap CI for single population mean base on x_bar (Week 5 lab)

- Generate a Bootstrap sample of B potential \bar{X} values
- Denote these as $\{\bar{x}^{[1]}, \bar{x}^{[2]}, \dots, \bar{x}^{[B]}\}$
- \blacksquare B = should be a large number (e.g. B = 1000)
- Use the empirical distribution from this Bootstrap sample to approximate the sampling distribution of \bar{X}
 - give each $\bar{x}^{[b]}$ equal weight= 1/B, and
 - approximate

$$\hat{\Pr}(\bar{X} \le c) = \frac{\text{number of } [\bar{x}^{[b]} \le c]}{B}$$

Construct an approximate 95% confidence interval by selecting interval from 2. with (empirical) probability (at least) 95%

Bootstrap CI for single population mean base on x_bar (Week 5 lab)

- How to calculate $\bar{x}^{[b]}$?
- For each b in 1 : B
 - resample n draws from the D_n set, with replacement

 - ► label these values as $\{x_1^{[b]}, x_2^{[b]}, \dots, x_n^{[b]}\}$ ► compute the average $\bar{x}^{[b]} = \frac{1}{n} \sum_{i=1}^{n} x_i^{[b]}$

- In R use (with replace = TRUE) either:
 - **sample()**, or


```
a <- c(1:10)
a
 [1] 1 2 3 4 5 6 7 8 9 10
mean(a)
[1] 5.5
atil <- sample(a, replace = TRUE)</pre>
atil
 [1] 5 8 7 7 2 10 8 10 10 5
```


- Take off 2.5% from each tail of the Bootstrap empirical distribution
- Just sort the $\{\bar{x}_{obs}^{[b]}\}$ values and find
 - ► the lower 2.5% quantile $\Rightarrow L_{\bar{x}_{obs}}$
 - ▶ the lower 97.5% quantile $\Rightarrow U_{\bar{x}_{obs}}$
- And then $[L_{\bar{X}_{obs}}, U_{\bar{X}_{obs}}]$ is an approximate 95% confidence interval for μ

Confidence interval for difference between two means – paired samples (correlated data)

Like with the CLT, we can apply the Bootstrap to paired data

$$\{(X_{1,i},X_{2,i}), \text{ for } i=1,2,\ldots,n\}$$

First calculate the sample of paired differences:

$$DD_n = \{Diff_i = X_{1,i} - X_{2,i}, \text{ for } i = 1, 2, ..., n\}$$

Then apply the **single population Bootstrap** method to the DD_n sample

- for each b in 1 : B
 - \star resample *n* draws from the DD_n set, with replacement
 - \star compute the average $Diff^{[b]}$
- Use the empirical sample of $\{D\overline{i}ff^{[b]}, \text{ for } b=1,2,\ldots,B\}$ to obtain a confidence interval for $\mu_{Diff}=\mu_1-\mu_2$

Confidence interval for difference between two means – independent variables

For unpaired data $D1_{n_1} = \{X_{1,i}, \text{ for } i = 1, 2, ..., n_1\}$ and $D2_{n_2} = \{X_{2,j}, \text{ for } j = 1, 2, ..., n_2\}$, we can use the Bootstrap to build the relevant confidence interval

For each b,

- resample with replacement n_1 observations from $D1_{n_1}$ to produce $\bar{x}_{1,obs}^{[b]}$,
- resample with replacement n_2 observations from $D2n_2$ to produce $\bar{x}_{2,obs}^{[b]}$, and
- calculate $(\bar{x}_{1,obs}^{[b]} \bar{x}_{2,obs}^{[b]})$

And compute an approximate 95% confidence interval using the lower 2.5% and 97.5% quantiles of

$$\{(\bar{x}_{1,obs}^{[b]} - \bar{x}_{2,obs}^{[b]}), \text{ for } b = 1, 2, \dots, B\}$$

Again we will not attempt hypothesis tests using a Bootstrap approach in this setting.

However, there is one question related to bootstrap hypothesis testing in the assignment!

- Which distributions might fit this data?
 - ▶ A normal distribution? An exponential? A gamma distribution? Something else?

- Assuming the data are a random sample, we need to **choose a model** $F_X(x \mid \theta)$
 - We fit models using the sample and well-established distributional families
- \blacksquare Once we choose a model, we'll need to **estimate** the parameter θ
 - use the maximum likelihood estimation (MLE) method
- A fitted model will imply an estimate of the population mean
 - and other features

Likelihood Function

If $x_1, x_2, ..., x_n \overset{i.i.d.}{\sim} F_X(x \mid \theta)$, then the likelihood function is

$$\mathcal{L}_n(\theta) = \prod_{i=1}^n f_X(x_i \mid \theta)$$

And the **MLE** for θ is

$$\hat{\theta}_{MLE} = \arg \max_{\theta \in \Theta} \mathcal{L}_n(\theta)$$

Gaussian density function (normal distribution)

$$P(x; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Likelihood(Probability) of observing the three data points, 9, 9.5 and 11 given a particular gaussian density function, But we don't know the two parameters yet

We want to maximise this joint probability

$$P(9, 9.5, 11; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(9-\mu)^2}{2\sigma^2}\right) \times \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(9.5-\mu)^2}{2\sigma^2}\right) \times \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(11-\mu)^2}{2\sigma^2}\right) \times \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(11-\mu)^2}{2\sigma^2}\right)$$

Optimising the likelihood function

It is often easier to maximise the log-likelihood function

$$\ell_n(\theta) = \ln \mathcal{L}_n(\theta) = \left[\sum_{i=1}^n \ln f_X(x_i|\theta)\right]$$

- The **same** $\hat{\theta}_{MLE}$ maximises $\mathcal{L}_n(\theta)$ and $\ell_n(\theta)$
- In simple cases we can solve for $\hat{\theta}_{MLE}$ through differentiation
 - set first derivative of $\ell_n(\theta)$ equal to zero and solve
 - then check the second derivative of $\ell_n(\theta)$ is negative at $\hat{\theta}_{MLE}$
- More generally MLE is found using numerical optimisation on a computer

Very handy in R

```
fit <- fitdistr(x, "gamma")
fit

    shape    rate
    3.4697    1.1235
    (0.4690) (0.1634)</pre>
```

Bootstrapping for confidence interval of model parameters

- Generate a Bootstrap sample of B potential $\hat{ heta}$ values
 - For each b in 1 : B
 - resample *n* draws from the observed data values, with replacement
 - label these values as $\{x_1^{[b]}, x_2^{[b]}, \dots, x_n^{[b]}\}$
 - compute the MLE $\hat{\theta}^{[b]}$ by maximising $\mathcal{L}_n^{[b]}(\theta)$, constructed from the bootstrap sample
 - Bootstrap sample: $\{\hat{\theta}^{[1]}, \hat{\theta}^{[2]}, \dots, \hat{\theta}^{[B]}\}$
- Use the empirical distribution from this Bootstrap sample to approximate the sampling distribution of $\hat{\theta}_{\textit{MLE}}$
- Construct an approximate 95% confidence interval by selecting interval from 2. with (empirical) probability (at least) 95%
- (lower) 2.5% quantile to 97.5% quantile