

CYBV 471 Assembly Programming for Security Professionals Week 1

Data Presentation, Number Systems, Boolean Operations

Agenda

- > Data Presentation
 - Decimal numbers
 - Binary numbers
 - > Floating point numbers
 - > Hexadecimal numbers
- > Floating-point (fraction) Presentation

Data Representation

- Decimal Number System
- Binary Numbers
 - What is a binary number?
 - Converting decimal numbers to binary numbers
 - Converting binary numbers to decimal numbers
- Hexadecimal numbers
 - Converting decimal numbers to hexadecimal numbers
 - Converting binary numbers to hexadecimal numbers
 - Converting binary numbers to hexadecimal numbers

Decimal Number System

- Each digit could have a value from 0 to 9 (10 different values)
- Since each digit could have 10 different values, the decimal number system is a base-10 number system
- Digits are normally combined together in groups to create larger numbers.
- A number represented in the base-10 system consists of multiple ordered digits.
 - Each digit to the left and right of the decimal point is given a name (ones, tens, hundreds, etc.) which identifies that digit's placeholder.
 - Each placeholder is a multiple of ten.

Decimal Number System

5 0 2 3.25
ひ
V

Weigh of each digit

The value of (5023.25) is calculated as follows:

5	0	2	3	.2	5
3 10	10	1 10	0 10	-1 10	10

$$5*10+0*10+2*10+3*10+2*10+5*10$$

$$5000 + 20 + 3 + 0.2 + 0.05 = 5023.25$$

Binary number, Bits and Bytes

- Each bit is either 1 (True) or 0 (False)
- The binary number system is base 2 system since each digit could be be 0 or 1.
- Byte: 8 Bits
- Byte = a unit of storage
 - $1KB = 2^{10} = 1024$ Bytes
 - $1MB = 2^{20} = 1,048,576$ Bytes
 - $1GB = 2^{30} = 1,099,511,627,776$ Bytes
 - Main memory (RAM) is measured in GB
 - Disk storage is measured in GB for small systems, TB (Tera Bytes = 2^{40}) for large systems

Binary Numbers

• Value of bit depends on the position of the bit in the binary number

Binary Bit Position Values.

2 ⁿ	Decimal Value	2 ⁿ	Decimal Value
20	1	28	256
21	2	29	512
22	4	2 ¹⁰	1024
2 ³	8	2 ¹¹	2048
24	16	2 ¹²	4096
2 ⁵	32	2 ¹³	8192
2 ⁶	64	2 ¹⁴	16384
27	128	2 ¹⁵	32768

Converting Binary to Decimal

• Example-1: What is the decimal value of 0101101?

2 ⁿ	Decimal Value	2 ⁿ	Decimal Value
20	1	28	256
21	2	29	512
22	4	2 ¹⁰	1024
23	8	2 ¹¹	2048
24	16	212	4096
2 ⁵	32	2 ¹³	8192
2 ⁶	64	2 ¹⁴	16384
27	128	215	32768

Total Decimal value = 32 + 8 + 4 + 1 = 45

Converting Binary to Decimal

• Example-3: What is the decimal value of 101.101?

2 ⁿ	Decimal Value	2 ⁿ	Decimal Value
2 ⁰	1	2 ⁸	256
21	2	29	512
2 ²	4	2 ¹⁰	1024
23	8	2 ¹¹	2048
2 ⁴	16	2 ¹²	4096
2 ⁵	32	2 ¹³	8192
2 ⁶	64	2 ¹⁴	16384
27	128	2 ¹⁵	32768

Value of each bit (1 or 0) 1 0 1 .1 0 1
Weight of each bit 2^2 2^1 2^0 2^{-1} 2^{-2} 2^{-3} Decimal value of 1-bit 4 1 1/2 1/8

Total Decimal value = 4+1+1/2+1/8=5.625

Converting Decimal to Binary

- What is the binary representation of 97?
- STEPS
 - 1- Divide the decimal number by 2 and calculate the "quotient" and the "reminder (1 or 0)".
 - 2- Keep the reminder in a separate column PS: The remainder column only has ones or zeros.
 - 3- If the quotient value greater than 1, repeat the previous step until the last quotient is 1 or 0.
 - 4- Read the 1s and 0s in the remainder column from the bottom to the top, we'll have our binary number!

Converting Decimal to Binary

Decimal Number=97			
Division Expression	Quotient	Remainder	Direction
97/2	48	1	
48/2	24	0	
24/2	12	0	
12/2	6	0	20
6/2	3	0	Read
3/2	1	1	
1/2	0	1	
	Binary Numb	per=1100001	

Floating-point (fraction) Presentation (Changing fractions to binary

• Multiply the fraction by 2,...

Example: Transform the fraction 0.875 to binary

Solution: Write the fraction at the left corner. Multiply the number continuously by 2 and extract the integer part as the binary digit. Stop when the number is 0.0.

$$0.875 \Rightarrow 1.750 \Rightarrow 1.5 \Rightarrow 1.0 \Rightarrow 0.0$$
0 1 1 1

Example: Transform the fraction 0.4 to a binary of 6 bits.

Write the fraction at the left cornet. Multiply the number continuously by 2 and extract the integer part as the binary digit.

If you can never get the exact binary representation. Stop when you have 6 bits.

Hexadecimal Number System

- Each digit could have a value from 0 to 15 (16 different values)
- The number system is base 16 system.
- It is easier to work with hexadecimal values than decimal or binary.
 - One Hexadecimal digit is represented by 4bits
 - Two hexadecimal digits is represented by 8 bits (one byte)
 - This makes conversions between hexadecimal and binary very easy

Hexadecimal Number System

Decimal	Hexadecimal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	Α
11	В
12	С
13	D
14	Е
15	F

Example: Convert 11A8 to decimal.

1	1	<u>A</u> =10	8	
16 ³	16 ²	16 ¹	16 ⁰	
4096*1	256*1	16*10	8*1	
4096	256	160	8	
	4096+256+160+8= 4520			

Hexadecimal number 11A8 = 4520

Example: Convert 11A8 to decimal.

1	1	<u>A</u> =10	8
16 ³	16 ²	16 ¹	16 ⁰
4096*1	256*1	16*10	8*1
4096	256	160	8
	4096+256+1	60+8= 4520	

Hexadecimal number 11A8 = 4520

Example: Convert 11A8 to decimal.

1	1	<u>A</u> =10	8
16 ³	16 ²	16 ¹	16 ⁰
4096*1	256*1	16*10	8*1
4096	256	160	8
	4096+256+1	60+8= 4520	

Hexadecimal number 11A8 = 4520

Example: Convert 11A8 to decimal.

1	1	<u>A</u> =10	8
16 ³	16 ²	16 ¹	16 ⁰
4096*1	256*1	16*10	8*1
4096	256	160	8
	4096+256+1	60+8= 4520	

Hexadecimal number 11A8 = 4520

1	1	<u>A</u> =10	8
16 ³	16 ²	16 ¹	16 ⁰
4096*1	256*1	16*10	8*1
4096	256	160	8
4096+256+160+8= 4520			

Converting Decimal to Hexadecimal

- What is the hexadecimal value of 4520?
- STEPS
 - 1- Divide the decimal number by 16 and calculate the "quotient" and the "reminder".
 - 2- Keep the reminder in a separate column PS: The remainder column could be between 0 to 15
 - 3- If the quotient value greater than 16, repeat the previous step until the last quotient is less than 16.
 - 4- Read the remainder column from the bottom to the top, we'll have our hexadecimal number!

Convert Decimal to Hexadecimal

4520					
Hexadecimal	Quotient	Reminder			
4520/16	282	8			
282/16	17	10=A			
			Read		
17/16	1	1	<u> </u>		
1/16	0	1			
	11A8				

- Quotient must be a whole number.
- Remainder must be a whole number.

Convert Binary to Hexadecimal

What is the hexadecimal value for 110101011?

- Divide the binary number into groups. Each group has 4 bits.
- (if necessary, add zeros to the left to make a complete 4-bit groups)
- Convert *each* 4-bit binary group into its *hexadecimal value*.
- 110101011 can be divided into 1 1010 1011
- Add zeros to the left group: 0001 1010 1011

Binary	0001	1010	1011		
Hex	1	10 =A	11= B		
1AB					

Convert Hexadecimal to Binary

What is the binary value for 1AB?

• Convert each digit to its 4-bit binary value.

Hex	1	A (=10)	B (=11)		
Binary	1	1010	1011		
10101011					

Hexadecimal vs other system numbers

- It is much easier to work with large numbers using hexadecimal values than decimal or binary.
 - One Hexadecimal digit = 4bits
 - Two hexadecimal digits = 8 bits
 - Eight bits=1 byte
 - This makes conversions between hexadecimal and binary very easy

Putting It All Together

You should know:

- ➤ How you convert from one number system to another number system. From example,
 - Decimal numbers to binary numbers
 - ➤ Binary numbers to decimal numbers
 - Hexadecimal numbers to binary numbers
 - Binary numbers to Hexadecimal numbers

Questions?

Coming Next Week x86 Processor Architecture