Partie 1 : forme linéaire et hyperplan.

N.Auxire

31 décembre 2016

Partie 1: forme linéaire et hyperplan. \sqsubseteq Sommaire

1.1- Forme linéaire et hyperplan vectoriel.

 \mathbb{K} désigne un corps de nombres : \mathbb{R} , parfois \mathbb{C} .

Définition

Soit E, un \mathbb{K} -espace vectoriel.

Toute application f définie sur E linéaire et à valeurs dans \mathbb{K} est appelée **forme linéaire*** **sur** E.

On note : $f \in \mathcal{L}(E, \mathbb{K})$.

3/1

1.1- Forme linéaire et hyperplan vectoriel.

 \mathbb{K} désigne un corps de nombres : \mathbb{R} , parfois \mathbb{C} .

Définition

Soit E, un \mathbb{K} -espace vectoriel.

Toute application f définie sur E linéaire et à valeurs dans \mathbb{K} est appelée **forme linéaire*** **sur** E.

On note : $f \in \mathcal{L}(E, \mathbb{K})$.

Exemple

Formes linéaires coordonnées* sur
$$\mathbb{R}^2$$
.
$$\begin{pmatrix} e_1^* & \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & x \end{pmatrix} \qquad \begin{pmatrix} e_2^* & \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & y \end{pmatrix}$$

$$\begin{pmatrix} e_1^* + 3.e_2^* & \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & x + 3y \end{pmatrix}$$

1.1- Forme linéaire et hyperplan vectoriel.

Définition

Soit F un sous-espace vectoriel de E.

F est un **hyperplan*** de E si et seulement si F est le noyau d'une forme linéaire non nulle sur cet E.

4/1

1.1- Forme linéaire et hyperplan vectoriel.

Définition

Soit F un sous-espace vectoriel de E.

F est un **hyperplan*** de E si et seulement si F est le noyau d'une forme linéaire non nulle sur cet E.

Exemple

*Ex.1. Soit
$$f \mid \mathbb{R}^3 \to \mathbb{R}$$
 $(x, y, z) \mapsto x - y$.

$$\ker(f) = \text{Vect}((1, 1, 0), (0, 0, 1))$$

1.1- Forme linéaire et hyperplan vectoriel.

Définition

Soit F un sous-espace vectoriel de E.

F est un **hyperplan*** de E si et seulement si F est le noyau d'une forme linéaire non nulle sur cet E.

Exemple

*Ex.1. Soit
$$f \mid \mathbb{R}^3 \to \mathbb{R}$$
 $(x,y,z) \mapsto x-y$.

$$ker(f) = Vect((1, 1, 0), (0, 0, 1))$$

 \star Ex.2. Soit G = Vect((1,2,3)) un s.-e. v. de \mathbb{R}^3 .

Une caractérisation cartésienne de G est :

$$G = \left\{ (x, y, z) \in \mathbb{R}^3 / \left\{ \begin{array}{ccc} 2x - y & = & 0 \\ 3x - z & = & 0 \end{array} \right\} \right\}$$

└_1.1- Forme linéaire et hyperplan vectoriel.

Exemple

*Ex.3. Soit
$$h \mid \begin{array}{ccc} \mathbb{R}[X] & \to & \mathbb{R} \\ P & \mapsto & h(P) = P(1) \end{array}$$

 $\ker(h) = \{(X-1)Q, Q \in \mathbb{R}[X]\}$

Exemple

*Ex.3. Soit
$$h \mid \mathbb{R}[X] \to \mathbb{R}$$
 $P \mapsto h(P) = P(1)$

$$\ker(h) = \{(X-1)Q, Q \in \mathbb{R}[X]\}$$

Conclusion : soit F s.-e.-v. de E. On peut caractériser F :

- \star par un système de p équations cartésiennes indépendantes : F est l'intersection de p hyperplan(s).
- \star par une base (suite de vecteurs indépendants) : F est l'ensemble des C.L. de ses vecteurs de base.

Théorème

Soit E un \mathbb{K} -e.-v. de dimension n et $\mathcal{B} = (e_1, \dots, e_n)$ une base.

- (1) Toute forme linéaire sur E est un polynôme homogène* de **degré 1** par rapport aux coordonnées vectorielles dans \mathcal{B} .
- (2) $\mathcal{L}(E, \mathbb{K})$ est un $\mathbb{K}-e$ -v. de dimension n.
- (3) Soit F un s.-e.-v. de E. F est un hyperplan de E si et seulement si : dim(F) = dim(E) - 1.

1.2-Caractérisation d'une forme linéaire en dimension finie.

Exemple

Ex.1. Soit $F = \{(x, y, z) \in \mathbb{R}^3 / x + 2y + 3z = 0\}.$

Vérifions que F est un plan de \mathbb{R}^3 .

$$F=\mathrm{Vect}((-2,1,0),(-3,0,1))\ \mathrm{et}\ \boxed{\dim(F)=2}$$

1.2-Caractérisation d'une forme linéaire en dimension finie.

Exemple

Ex.1. Soit $F = \{(x, y, z) \in \mathbb{R}^3 / x + 2y + 3z = 0\}.$

Vérifions que F est un plan de \mathbb{R}^3 .

$$F = Vect((-2, 1, 0), (-3, 0, 1)) et dim(F) = 2$$

Ex.2. Soit
$$G = \text{Vect}(\underbrace{(1,1,-1)}_{v_1},\underbrace{(0,-1,5)}_{v_2}).$$

Vérifions que G est hyperplan de \mathbb{R}^3 .

 \star dans une base complétée de \mathbb{R}^3 , (v_1, v_2, v_3) :

$$G = \{u = x.v_1 + y.v_2 + z.v_3 \in \mathbb{R}^3 / z = 0\}$$

 \star dans la base canonique de \mathbb{R}^3 :

$$G = \{u = (x, y, z) \in \mathbb{R}^3 \ / \ -4x + 5y + z = 0\}$$