

**INSTALLATION AND OPERATION OF PARTICLE TRANSPORT
SIMULATION PROGRAMS TO MODEL THE DETECTION AND
MEASUREMENT OF SPACE RADIATION BY SPACE-BORNE
SENSORS**

Stanley Woolf

**ARCON CORPORATION
260 Bear Hill Road
Waltham, MA 02451-1080**

6 February 2003

Scientific Report No. 3

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

**AIR FORCE RESEARCH LABORATORY
Space Vehicles Directorate
29 Randolph Rd
AIR FORCE MATERIEL COMMAND
Hanscom AFB, MA 01731-3010**

20030812 047

This technical report has been reviewed and is approved for publication.

Bronislaw K. Dicht

Contract Manager

Branch Chief

This document has been reviewed by the ESC Public Affairs Office and has been approved for release to the National Technical Information Service.

Qualified requestors may obtain additional copies from the Defense Technical Information Center (DTIC). All others should apply to the National Technical Information Service.

If your address has changed, if you wish to be removed from the mailing list, or if the addressee is no longer employed by your organization, please notify AFRL/VSIM, 29 Randolph Rd., Hanscom AFB, MA 01731-3010. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document require that it be returned.

REPORT DOCUMENTATION PAGE

**Form Approved
OMB NO. 0704-0188**

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188,) Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank)		2. REPORT DATE February 6, 2003	3. REPORT TYPE AND DATES COVERED Interim Scientific Report #3 01 Aug. 2001 - 31 July 2002
4. TITLE AND SUBTITLE Installation and Operation of Particle Transport Simulation Programs to Model the Detection and Measurement of Space Radiation by Space-borne Sensors		5. FUNDING NUMBERS F19628-99-C-0077 PR - 2822 TA - GC WU - AR	
6. AUTHOR(S) Dr. Stanley Woolf		7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) ARCON Corporation, 260 Bear Hill Rd., Waltham, MA 02451-1080	
8. PERFORMING ORGANIZATION REPORT NUMBER		9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory 29 Randolph Road Hanscom AFB, MA 01731-3010 AFRL Contract Manager: Dr. Bronislaw K. Dichter, AFRL/VSBXR	
10. SPONSORING / MONITORING AGENCY REPORT NUMBER AFRL-VS-TR-2003-1547			
11. SUPPLEMENTARY NOTES			
12 a. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release, distribution unlimited		12 b. DISTRIBUTION CODE	
13. ABSTRACT (Maximum 200 words) This document is a report of the technical progress made during the period 01 Aug. 2001 - 31 July 2002 in the areas of: (1) research, evaluation and adaptation of particle transport simulation programs for modeling the detection and measurement of space radiation by space-borne sensors; (2) construction of realistic flight sensor computer models; (3) performance of particle transport calculations; (4) space-borne dosimeter simulation studies; (5) studies of scattering of grazing incidence protons from surfaces of material constituents of space-borne X-ray telescopes. The computer programs ITS/ACCEPT and MCNPX were applied to the modeling of the CEASE and HEP sensors. Shown in this report are listings of input and output files, with geometry/materials drawings, for the various simulation programs, annotated computer code listings showing program modifications, and partial listings of computer code outputs.			
14. SUBJECT TERMS Electron and proton transport; Monte Carlo simulation; Space-borne sensor modeling; ITS/ACCEPT Code; MCNPX Code; Dosimeters; grazing angle proton scatter		15. NUMBER OF PAGES 58	
		16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED	20. LIMITATION OF ABSTRACT SAR

Contents

	Page
1. Introduction	1
2. Electron Transport Modeling	1
2.1 CRRES Dosimeter Models – MCNPX and ITS/ACCEPT	1
2.1.1 CRRES_D1 MCNPX Calculations	5
2.1.2 CRRES_D1 ITS/ACCEPT Calculations	7
2.2 HEP- Electron Transport Modeling	12
3. Proton Transport	12
3.1 CEASE – MCNPX Proton Transport Modeling	12
3.2 Grazing Angle Proton Scattering Calculations	12
4. Summary	21
5. References	21
Appendix 1	
Subroutine HIST for Cosine-Weighted Dome Source	21
Appendix 2	
CRRES_D1 Sample Input File for ACCEPT Run	29
Appendix 3	
CEASE Telescope - MCNPX Flat Disk Proton Source Runs	33
Appendix 4	
MCNPX Output File for Grazing Angle Proton Scattering Study	
250 keV Proton Beam Incident on Iridium Slab, Angle of Incidence = 0.1°	39
Appendix 5	
MCNPX Source Subroutine for Grazing Angle Proton Scattering Study	47
Appendix 6	
PHILOOK, Program for Extraction and Conversion to Histogram Form of Emergent Proton Azimuthal Distributions from MCNPX PTRAC File	
Output Produced in the Grazing Angle Proton Scattering Study	49

List of Figures

	Page
Figure 1. CRRES_D1 Dosimeter run file, LANL Version for MCNP.	2
Figure 2. CRRES_D2 Dosimeter run file, LANL Version for MCNP.	3
Figure 3. VISED rendering of MCNP cell geometry configuration for CRRES_D1, corresponding to the listing shown in Figure 1.	4
Figure 4. VISED rendering of MCNP surface geometry configuration for CRRES_D1, corresponding to the listing shown in Figure 1.	4
Figure 5. Angular orientation diagram for cosine-weighted source incident on CRRES dosimeter dome at (x_o, y_o, z_o) . Θ is the angle of rotation about the x -axis. θ' is the polar angle between the source electron direction and the z' axis.	8
Figure 6. Comparison of Flux and Dose Response functions calculated with ITS/ACCEPT and as reported in [1].	10
Figure 7. Problem geometry – proton beam incident on material slab.	12
Figure 8. Sample plots of probability density $P_{E_{in}}((\theta_{out} - 90^\circ)/(\theta_{in} - 90^\circ); E_{out})$ of emergent protons with exit polar angle θ_{out} , for incident angle $\theta_{in} = 90.5^\circ$, for source energy $E_{in} = 250$ keV and exit energy bins $E_{out} = 0-12.5, 12.5-25.0, 25.0-37.5, 37.5-50.0, 50.0-62.5$ keV.	15
Figure 9. Emergent proton pulse-height distribution $N(E_{out}, \theta_{out}; E_{in}, \theta_{in})$ for 250 keV protons incident on Iridium slab at $\theta_{in} = 91.0^\circ$. Results are shown for $0 \leq \theta_{out} < 85^\circ$ in 5° increments.	16
Figure 10. Emergent proton pulse-height distribution $N(E_{out}, \theta_{out}; E_{in}, \theta_{in})$ for 250 keV protons incident on Iridium slab at $\theta_{in} = 91.0^\circ$. Results are shown for $85^\circ \leq \theta_{out} \leq 90^\circ$ in 0.1° increments.	17
Figure 11. Pulse-height energy spectrum $N(E_{out}; E_{in}, \theta_{in})$ for protons emerging from iridium slab. $E_{in}=250$ keV, $\theta_{in}=90.5^\circ$.	18
Figure 12. Emergent proton azimuthal (ϕ_{out}) distribution (normalized) from protons incident on iridium slab. $\phi_{in} = 90.0^\circ$; $E_{in}=500$ keV; $\theta_{in}= 91.0^\circ$.	19
Figure 13. Maximum value of the probability density $P_{\max}(E_{out}; E_{in}, \theta_{in})$ vs. E_{out} for protons of energy $E_{in}=1.0$ MeV incident on iridium at $\theta_{in} = 90.1^\circ$.	20
Figure 14. $\theta_{out}/\theta_{in} _{P_{\max}}$ vs. E_{out} for protons of energy $E_{in}=1.0$ MeV incident on iridium at $\theta_{in} = 90.1^\circ$.	20

List of Tables

	Page
Table 1. Energy Deposition (MeV) in CRRES_D1 Dosimeter (Cell #1, Figures 1,3)	6
Table 2. Comparison of ITS/ACCEPT and MCNPX Energy Deposition (MeV) Calculations for CRRES_D1 Dosimeter (ALL CELLS, Figures 1,3) for Four Source Energies	11

1. INTRODUCTION

The effort to be described in this report was performed as partial fulfillment of two primary objectives: (1) perform computer simulations of charged particle transport, energy and charge deposition in satellite-borne instrumentation used in research efforts of the Air Force Research Laboratory/Space Weather Center of Excellence (AFRL/VSBXR) to detect and characterize (by type, energy, intensity, *etc.*) particles associated with ionizing radiation in space; (2) transfer this simulation capability to AFRL/VSBXR and provide advice to Air Force researchers on its use; and (3) perform studies of transport code predictions of grazing angle proton scattering. In the following sections, we provide descriptions and examples of particle transport simulations and their application to problems of interest to AFRL/VSBXR.

2. ELECTRON TRANSPORT MODELING

2.1 CRRES Dosimeter Models – MCNPX and ITS/ACCEPT

A series of flux and dose response functions for electrons and protons were calculated by Auchampaugh and Cayton [1] for electron, secondary photon and proton transport in the CRRES (Combined Release and Radiation Effects Satellite) dosimeters. The calculations were made in 1992 using the then current versions of MCNP[2] for electron and photon transport and LAHET[3] for the proton transport. Since that time, the MCNP and LAHET codes have been superceded by MCNPX[4]. Also, our experience has shown that the electron transport calculations can in general be performed more efficiently using ITS/ACCEPT[5] rather than MCNPX. For this reason, as well as recognition of significantly (since 1992) reduced computation cost, we undertook to repeat some of the electron/photon transport calculations of [1] using both the MCNPX and ACCEPT codes, thus providing an “in-house” Air Force capability to perform these and other simulations as may be needed in the future.

The original MCNP geometry files from [1] for the CRRES_D1, D2, D3 and D4 dosimeters were supplied by D. Brautigam (AFRL)[6]. The D1 and D2 files are shown in Figures 1 and 2, respectively.

We used the visual editor program VISED[7]for MCNP input files to assist in the interpretation of the geometry files shown in Figures 1 and 2. This visualization is shown in Figures 3 and 4, which are the diagrams for the CRRES_D1 cell and surface configurations, respectively. VISED provides the color rendering to distinguish among the five materials specified by the “mX” (X=1-Si; 2-Al; 3-Al₂O₃; 4-Ni; 5-W,Fe alloy). records in the geometry files.

```

Geometry for CRRES dosimeter dome 1      11  pz 0.00000
-- 11 Feb 92                            12  pz -0.07620
1  1 -2.33 11 -10 -3                   13  pz -0.10668
2  1 -2.33 11 -10 3 23 -24 25 -26     14  pz -0.15748
3  0 11 -10 (-23:24:-25:26) -2       15  pz -0.31496
4  0 10 -2                                16  pz -0.94996
5  2 -2.700 2 -1 10                   17  pz -1.58496
6  2 -2.700 2 -1 11 -10                 18  so 1.46812
7  0 12 -11 -22                          19  so 1.32000
8  0 13 -12 -5                           20  so 50.0
9  3 -3.700 12 -11 22 -8                21  pz -0.0000001
10 2 -2.700 12 -11 8 -7                 22  cz 0.06350
11 2 -2.700 13 -12 5 -7                 23  px -0.09525
12 4 -8.900 14 -13 -5                  24  px 0.09525
13 2 -2.700 14 -13 5 -7                 25  py -0.09525
14 2 -2.700 15 -14 -7                  26  py 0.09525

15 5 -18.30 17 -15 -6
16 2 -2.700 17 -15 6 -7
17 2 -2.700 17 -16 7 -9
18 0 16 -11 7 -9
19 0 11 1 -18
20 0 ((11 18):(-11 9):-17) -20
21 0 20
22 0 21

mode p e
imp:p,e 1 19r 0 1
m1 14000 1.
m2 13000 1.
m3 8000 -0.47075 13000 -0.52925
m4 28000 1.
m5 74000 -0.95 26000 -0.05
sdef sur=19 ccc=22 nrm=-1. dir=d1
par=3 erg=5.0
sb1 -21 1
sp1 -21 1
f108:p,e 1
e108 0. .049 .051 .125 .193 .263 .336
.408 .480 .549 .622 .694 .765
.839 .910 0.979 1.020 1.28 1.91 2.56
3.20 3.84 4.48 5.12 5.74
6.37 7.01 7.67 8.30 8.94 9.57 10.1
41.2 104. t
phys:e 25.5

```

Figure 1. CRRES_D1 Dosimeter run file, LANL Version[1], for MCNP[2].

```

Geometry for CRRES dosimeter dome 2
-- 11 Feb 92
1 1 -2.33 11 -10 -3
2 1 -2.33 11 -10 3 23 -24 25 -26
3 0 11 -10 (-23:24:-25:26) -2
4 0 10 -2
5 2 -2.700 2 -1 10
6 2 -2.700 2 -1 11 -10
7 0 12 -11 -22
8 0 13 -12 -5
9 3 -3.700 12 -11 22 -8
10 2 -2.700 12 -11 8 -7
11 2 -2.700 13 -12 5 -7
12 4 -8.900 14 -13 -5
13 2 -2.700 14 -13 5 -7
14 2 -2.700 15 -14 -7
15 5 -18.30 17 -15 -6
16 2 -2.700 17 -15 6 -7
17 2 -2.700 17 -16 7 -9
18 0 16 -11 7 -9
19 0 11 1 -18
20 0 ((11 18):(-11 9):-17) -20
21 0 20
22 0 21

1 so 1.74498
2 so 1.15443
3 cz 0.12741
4 cz 0.76200
5 cz 0.32385
6 cz 1.54813
7 cz 1.74498
8 cz 1.14300
9 cz 1.90500
10 pz 0.04340
11 pz 0.00000
12 pz -0.07620

13 pz -0.10668
14 pz -0.15748
15 pz -0.31496
16 pz -0.94996
17 pz -1.58496
18 so 1.90500
19 so 1.76000
20 so 50.0
21 pz -0.0000001
22 cz 0.12700
23 px -0.19685
24 px 0.19685
25 py -0.19685
26 py 0.19685

mode p e
imp:p,e 1 19r 0 1
m1 14000 1.
m2 13000 1.
m3 8000 -0.47075 13000 -0.52925
m4 28000 1.
m5 74000 -0.95 26000 -0.05
sdef sur=19 ccc=22 nrm=-1. dir=d1
par=3 erg=2.00
sb1 -21 1
sp1 -21 1
f108:p,e 1
e108 0 .051 .066 .134 .217 .287 .356
.434 .507 .579 .655 .735 .807
.885 .955 1.035 1.26 1.95 2.58 3.23
3.87 4.51 5.13 5.75
6.38 7.02 7.66 8.28 8.91 9.83 10.21
42.1 104. t
phys:e 5.5

```

Figure 2. CRRES_D2 Dosimeter run file, LANL Version [1],for MCNP[2].

Figure 3. VISED [7] rendering of MCNP cell geometry configuration [1] for CRRES_D1, corresponding to the listing shown in Figure 1.

Figure 4. VISED [7] rendering of MCNP surface geometry configuration [1] for CRRES_D1, corresponding to the listing shown in Figure 1.

2.1.1 CRRES_D1 MCNPX Calculations

The authors[1] used a cosine-weighted source (as specified by the "sdef, sb1 and sp1" records of Figures 1 and 2). A cosine-weighted current source corresponds to an isotropic flux of electrons incident on the dome surface. In general, the relationship between current j and flux ϕ is

$$j(\mu) = \mu\phi(\mu) \quad (1)$$

where μ is the cosine of the polar angle between the particle direction and the normal to the surface of incidence.

In the LANL calculations[1] it was assumed that the source particles originated on a hemispherical surface concentric with, but slightly larger than, the dosimeter dome. The CRRES_D1 input file (Figure 1) was used to perform energy deposition calculations in the silicon dosimeter (cell #1 as defined in Figure 1) with MCNPX for four electron source energies, 2, 5, 10, 25 MeV, and the results were compared with those obtained in [1]. These comparisons are shown in Table 1. We computed the energy deposition using two methods: 1) the energy deposition tally supplied by MCNPX; and 2) the method used in [1], a summation over the pulse height distribution of energy deposited. The energy deposition tally capability had not yet been incorporated into MCNP when the calculations of [1] were made. Only the pulse height distribution summation method was available at that time.

Table 1. Energy Deposition (MeV) in CRRES_D1 Dosimeter (Cell #1, Figures 1,3)

SOURCE ENERGY (MEV)	MCNPX METHOD 1 COSINE WEIGHTED	MCNPX METHOD 2 COSINE WEIGHTED	ACCEPT METHOD 1 COSINE WEIGHTED	ACCEPT METHOD 2 COSINE WEIGHTED	AUCHAM-PAUGH & CAYTON [1] ¹	ACCEPT METHOD 1 ISOTROPIC IN COSINE	ACCEPT METHOD 2 ISOTROPIC IN COSINE
0.2			2.232e-8	8.791e-9	5.90e-10	0	0
0.3			1.108e-8	0	1.41e-9	9.512e-9	0
0.5			2.698e-8	8.791e-9	3.81e-9	1.708e-8	8.791e-9
1			4.445e-8	2.258e-8	2.33e-7	6.560e-8	2.468e-8
1.5			6.059e-5	6.017e-5	4.27e-5	4.615e-5	4.581e-5
2	1.790e-4	1.856e-4	1.975e-4	1.984e-4	1.07e-3	1.627e-4	1.610e-4
3			3.114e-4	3.106e-4	1.86e-4	2.580e-4	2.558e-4
4			3.060e-4	3.054e-4	2.09e-4	2.477e-4	2.459e-4
5	2.898e-4	3.193e-4	2.668e-4	2.732e-4	2.56e-4	2.166e-4	2.185e-4
6			2.604e-4	2.678e-4	2.73e-4	1.951e-4	2.009e-4
7			2.454e-4	2.564e-4	2.73e-4	1.805e-4	1.861e-4
7.5			2.467e-4	2.552e-4	2.50e-4	1.829e-4	1.893e-4
10	2.828e-4	2.846e-4	2.380e-4	2.899e-4	2.69e-4	1.679e-4	1.737e-4
12.5			2.324e-4	2.415e-4	2.77e-4	1.570e-4	1.689e-4
15			2.261e-4	2.431e-4	2.73e-4	1.572e-4	1.676e-4
20			2.156e-4	2.372e-4	2.63e-4	1.523e-4	1.583e-4
25	2.729e-4	3.222e-4	2.215e-4	2.433e-4	2.60e-4	1.497e-4	1.648e-4

¹ Ref. 1 (Energy Deposition) / Ω

2.1.2 CRRES_D1 ITS/ACCEPT Calculations

The CRRES_D1 geometry and materials data given in Figure 1, along with the VISED diagrams for the cells and surface definitions were used to generate input data files for the ITS/ACCEPT coupled electron/photon Monte Carlo program. The cosine-weighted current source is a standard source option in the ITS/ACCEPT program. It is implemented by sampling the incident polar cosine of the source particle as follows:

With μ defined as in Eq. 1 (above), then

$$\mu = \sqrt{\xi} \quad (2)$$

where ξ is a pseudo-random number uniformly distributed between 0 and 1. This is equivalent to sampling

$$\mu^2 = \xi \quad (3)$$

which then corresponds to the weighting of the sampled cosine, μ , by μ itself. It can be readily shown that for the weighting function $f(\mu) \equiv \mu$ the cosine-weighted source has, for a negatively or inward-directed normal, an average cosine given by

$$\langle \mu \rangle = \frac{\int_0^0 \mu f(\mu) d\mu}{\int_{-1}^0 f(\mu) d\mu} = -\frac{2}{3}, \quad (4)$$

and an average incident polar angle given by

$$\langle \theta \rangle = \frac{\int_{-1}^0 \cos^{-1} \mu f(\mu) d\mu}{\int_{-1}^0 f(\mu) d\mu} = \frac{3\pi}{4}, \quad (5)$$

a necessary condition for uniform angular distribution (isotropic flux) with respect to the normal to the surface of impingence.

The cosine-weighted source option is coded into the original version of ITS/ACCEPT for source particles incident on a plane surface. To apply the cosine-weighted current source methodology to the dome geometry, we modified the dome source option that we had previously written for the ITS/ACCEPT code [8]. In Figure 5 we define the (x,y,z) axes to be the inertial reference frame for the standard velocity direction cosines (α, β, γ) as defined in ITS/ACCEPT, *i.e.* in terms of the polar and azimuthal angles θ and ϕ of the particle trajectory,

$$\begin{aligned} \alpha &= \sin \theta \cos \phi, \\ \beta &= \sin \theta \sin \phi, \\ \gamma &= \cos \theta. \end{aligned} \quad (6)$$

The primed coordinate system is defined by a rotation through angle Θ about the x -axis, as shown in Figure 5. The velocity direction cosines $(\alpha', \beta', \gamma')$ of the source electron in the primed system are correspondingly

$$\begin{aligned}\alpha' &= \sin \theta' \cos \phi', \\ \beta' &= \sin \theta' \sin \phi', \\ \gamma' &= \cos \theta'.\end{aligned}\quad (7)$$

The procedure to determine the orientation, expressed in the unprimed or inertial system, of the individual source electrons is as follows:

- 1) choose the point of particle incidence (x_o, y_o, z_o) to specify the rotation angle Θ by random uniform sampling on the hemispherical surface (Figure 5);
- 2) sample $\cos \theta' = -\sqrt{\xi}$, where as before, ξ is a pseudo-random number uniformly distributed between 0 and 1;
- 3) sample ϕ' uniformly on the interval $(0, 2\pi)$;
- 4) compute the direction cosines (α, β, γ) as

$$\begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \Theta & \sin \Theta \\ 0 & -\sin \Theta & \cos \Theta \end{bmatrix} \begin{bmatrix} \alpha' \\ \beta' \\ \gamma' \end{bmatrix}. \quad (8)$$

Figure 5. Angular orientation diagram for cosine-weighted source incident on CRRES dosimeter dome at (x_o, y_o, z_o) . Θ is the angle of rotation about the x -axis. θ' is the polar angle between the source electron direction and the z' axis.

ITS/ACCEPT was modified (subroutine HIST) to perform the above source sampling procedure. The code modifications are shown in Appendix 1.

Two sets of 17 ITS/ACCEPT runs, 10^7 histories each, were made for the 17 source energies (see Table 1, column 1) listed in [1]. Comparisons of our results with [1]

are shown in Table 1. In our ITS/ACCEPT and MCNPX runs, the calculations of energy deposition were made using two methods: 1) the standard method of ACCEPT and MCNPX – (energy entering cell – energy exiting cell)[Table 1, columns 2,4,7]; and 2) summation over several energy bins, $\sum_i N(E_i)E_i$ where $N(E_i)$ is the pulse height in energy bin i and E_i is the average energy of the bin [Table 1, columns 3,5,6,8]. This second method was employed in [1], because the direct energy deposition calculation had apparently not been installed in the MCNP version available at the time (1993).

The first set of runs employed the source sampling procedure described above. A sample input file for ITS/ACCEPT is listed in Appendix 2. For comparison purposes, the runs in the second set were made for the same energies, but without cosine source weighting. The data shown in column 6 of Table 1 are the results given in [1] adjusted to correspond to the energy deposition units (MeV) produced by the ITS/ACCEPT and MCNPX calculations. In [1], the energy deposition results are given in units of MeV-cm²-steradian per source electron, with the solid angle Ω factor for the CRRES_D1 geometry taken as 34.39 cm²-steradian. The data of column 6 are the raw results given in [1] divided by this solid angle factor.

In Figure 6 we plot the silicon dosimeter (cell 1, Figure 3) flux response vs. source electron energy and dose response vs. source electron energy curves obtained with our calculations on the same graphs as the Ref. 1 data for comparison. The flux and dose response functions are defined as

$$\text{Flux Response} = \Omega \sum_i N(E_i), \quad \text{Dose Response} = \Omega \sum_i E_i N(E_i),$$

with their respective units of cm²-steradian and MeV-cm²-steradian per source electron. The designations **LOLET** and **HILET** refer to the contributions to the response functions from electrons with energy below and above 1 MeV in the dosimeter (cell 1, Figure 3), respectively.

Table 2 shows a comparison of ITS/ACCEPT and MCNPX energy deposition results in all cells (Figure 3) for the four source energies (2, 5, 10, 25 MeV) for which both programs were run.

RFF 1 - Auchincloss & Cawley

Figure 6. Comparison of Flux and Dose Response functions calculated with ITS/ACCEPT[5] and as reported in [1].

Table 2. Comparison of ITS/ACCEPT and MCNPX Energy Deposition (MeV) Calculations for CRRES_D1 Dosimeter (ALL CELLS, Figures 1,3) for Four Source Energies.

MCNPX CELL # (FIGURE 3)	SOURCE ENERGY = 2 MEV		SOURCE ENERGY = 5 MEV		SOURCE ENERGY = 10 MEV		SOURCE ENERGY = 25 MEV	
	ACCEPT	MCNPX	ACCEPT	MCNPX	ACCEPT	MCNPX	ACCEPT	MCNPX
1	1.975E-04	1.790E-04	2.668E-04	2.898E-04	2.380E-04	2.828E-04	2.215E-04	2.729E-04
2	6.491E-04	6.471E-04	9.164E-04	1.033E-03	7.997E-04	9.973E-04	7.458E-04	9.013E-04
5+6	1.308E+00	1.225E+00	1.875E+00	1.687E+00	2.124E+00	1.836E+00	2.205E+00	1.862E+00
10	6.332E-02	1.054E-01	1.908E-01	2.311E-01	1.943E-01	2.447E-01	1.732E-01	2.360E-01
9	4.008E-02	3.273E-02	8.126E-02	7.564E-02	6.787E-02	7.610E-02	6.147E-02	7.020E-02
11	1.204E-02	2.445E-02	8.851E-02	9.467E-02	8.759E-02	1.057E-01	7.540E-02	1.029E-01
17	6.120E-06	9.523E-03	2.737E-03	1.738E-02	1.665E-02	3.348E-02	1.342E-02	5.948E-02
16	4.050E-05	5.399E-03	1.559E-02	3.233E-02	6.323E-02	7.084E-02	1.204E-01	1.209E-01
15	3.602E-03	5.721E-03	2.902E-01	3.011E-01	1.530E+00	1.397E+00	4.161E+00	4.130E+00
12	2.292E-03	2.124E-03	4.812E-02	3.726E-02	3.963E-02	4.343E-02	3.353E-02	4.116E-02
13	7.183E-03	2.261E-02	1.440E-01	1.457E-01	1.450E-01	1.662E-01	1.216E-01	1.622E-01
14	1.394E-03	2.126E-02	4.484E-01	4.224E-01	4.907E-01	5.142E-01	3.895E-01	4.866E-01
TOTAL	1.439E+00	1.455E+00	3.186E+00	3.046E+00	4.760E+00	4.488E+00	7.355E+00	7.273E+00

2.2 HEP- Electron Transport Modeling

Extensive testing was performed on the ITS/ACCEPT input file written[9] for the HEP instrument. This file contains a complete, blueprint matching, geometry description for the in-flight model. It was felt that, due to the complicated geometry structure of the model, it would be advisable to run an extensive series of Monte Carlo calculations for model validation. To that end four sets, each consisting of ten source positions, of (50000 history) electron transport runs were made. The first of these consisted of pencil beam, 15 MeV, sources normally incident on the “top” ($x = 5.0$ cm) at ten uniformly distributed positions along z . The second and third sets were similarly distributed along z but were positioned on the side ($y = 4.0$ cm) and bottom ($x = -3.0$ cm). The fourth set consisted of calculations made with a 6-component energy (max. energy = 20 MeV) spectrum, point isotropic source embedded at ten uniformly spaced positions along the central (z) axis. In all cases run, there were no “lost particles” attributable to geometry specification errors.

3. PROTON TRANSPORT

3.1 CEASE – MCNPX Proton Transport Modeling

Two proton transport runs were made with the CEASE telescope model [10] for MCNPX, as requested by the Air Force sponsor, for 9 MeV proton flat disk sources, located at $z = 0.457$ cm on the telescope axis, at 40 degree slant incidence with respect to the z -axis. Partial listings of the run outputs are shown in Appendix 3. The geometry portions of these files, previously listed in [11] were omitted for brevity.

3.2 Grazing Angle Proton Scattering Calculations

An extensive series of proton transport calculations were made using MCNPX for protons beams incident on aluminum and iridium ($6 \times 5 \times 1$ cm) at shallow (grazing) angles of incidence ($\theta_{in} = 90.1, 90.5, 91.0^\circ$, $\phi = 90.0^\circ$ as shown in Figure 7).

Figure 7. Problem geometry – proton beam incident on material slab

The motivation for this work was an investigation into the occurrence of unexpected radiation damage to one of the Chandra X-Ray Telescope cameras by grazing incidence protons. Standard Monte Carlo codes, such as Geant4[12], the program used to predict radiation damage in the Chandra, produced erroneous results. In our calculations we set out to investigate the treatment by standard Monte Carlo programs such as MCNPX of

the energy loss and relationship between the beam angle of incidence and the emergent angular distribution (from the top surface or vacuum interface of a material medium) for protons with grazing incident angles. To accomplish this, we ran MCNPX for 0.25 MeV protons incident on aluminum and 0.05, 0.25, 0.5, 1.0 MeV protons incident on iridium slabs at grazing angles. All of the Monte Carlo calculations were made using 10^8 case histories to ensure statistical reliability. High angular resolution emergent proton spectra were obtained, and plots made, for energy-angle, total energy, and azimuthal distributions.

The MCNPX proton transport results were analyzed from several aspects. Programs were written to convert the raw Monte Carlo data to histograms detailing:

- (1) probability density $P_{E_{in}}\left(\frac{(\theta_{out} - 90^\circ)}{(\theta_{in} - 90^\circ)}; E_{out}\right)$ of emergent protons with exit polar angle θ_{out} , for every fixed incident angle θ_{in} , for every source energy E_{in} and exit energy bin width $\Delta E_{out} = 0.05E_{in}$. Representative plots of the probability density function for 0.25 MeV($=E_{in}$) protons incident on iridium with incident angle 90.5 degrees($=\theta_{in}$), are shown in Figure 8. The five plots represent the emergent proton probability densities for the five emergent energy intervals 0-12.5, 12.5-25.0, 25.0-37.5, 37.5-50.0, 50.0-62.5 keV.
- (2) emergent proton pulse-height distribution histogram plots $N(E_{out}, \theta_{out}; E_{in}, \theta_{in})$; Representative plots are shown in Figures 9 and 10 for 0.25 MeV($=E_{in}$) protons incident on iridium with incident angle 91.0 degrees($=\theta_{in}$). The emergent proton pulse-height distributions were calculated using 5 degree coarse resolution emergent angle(θ_{out}) bins in the range $0 \leq \theta_{out} < 85^\circ$ (Figure 9) and 0.1 degree high resolution bins in the range $85^\circ \leq \theta_{out} \leq 90^\circ$ (Figure 10). The pulse-height distributions, expressed as the number of emergent protons per energy-angle bin, per incident proton, are normalized to unit proton incidence.
- (3) emergent proton pulse-height energy spectra $N(E_{out}; E_{in}, \theta_{in})$
 $[= \sum_{\theta_{out}} N(E_{out}, \theta_{out}; E_{in}, \theta_{in})]$. The plot shown in Figure 11 is the pulse-height energy spectrum of emergent protons resulting from a 0.25 MeV proton beam incident on iridium with angle 91.0 degrees($=\theta_{in}$).
- (4) emergent proton azimuthal (ϕ_{out}) distribution. The plot shown in Figure 12 is the distribution of ϕ_{out} for 0.5 MeV protons incident on iridium with $\theta_{in} = 91.0$ degrees. The emergent azimuthal distribution is strongly peaked in the incident azimuthal direction, $\phi_{in}=90.0$ degrees. This was found to be true for all 15 cases studied.

Additionally, plots were made for each incident energy-angle combination, of the maximum value of the probability density $P_{\max}(E_{out}; E_{in}, \theta_{in})$ (Figure 13) and its corresponding $\left. \frac{\theta_{out}}{\theta_{in}} \right|_{P_{\max}}$ ratio vs. E_{out} (Figure 14).

The results obtained with the MCNPX model do not exhibit specular, or near-specular, reflection[13] as may have been expected from experimental results [14,15]. Preliminary conclusions also reveal that the computed proton energy loss resulting from scatter of grazing incidence protons is an overestimation and are significantly larger than experimental observation [14,15]. In MCNPX and Geant4, proton energy loss calculations in the energy range studied are based on the assumption that the continuous slowing-down approximation applied in conjunction with the bulk material stopping power is appropriate. Pfandzelter *et al.*[15] have derived, from a study of the physics of surface potentials, expressions for the effective stopping power that applies in this situation.

Sample MCNPX output is shown in Appendix 4 for a 250 keV proton beam incident on iridium at 0.1° ($\theta_{in} = 90.1^\circ$ as shown in Figure 7). The energy and angular bin structures of output emergent proton current tallies shown are as defined in items 1-3, above. For these investigations, a specialized source subroutine, listed in Appendix 5, was written for MCNPX. The azimuthal (ϕ_{out}) distribution of the emergent proton current was extracted from PTRAC files produced in the MCNPX runs. A program (PHILOOK) was written to extract the azimuthal distribution data and convert them to the histogram form exemplified by the polar plot of Figure 12.

Figure 8. Sample plots of probability density $P_{E_m} \left(\frac{(\theta_{out} - 90^\circ)}{(\theta_{in} - 90^\circ)}; E_{out} \right)$ of emergent protons with exit polar angle θ_{out} , for incident angle $\theta_{in} = 90.5^\circ$, for source energy $E_{in} = 250$ keV and exit energy bins $E_{out} = 0\text{-}12.5, 12.5\text{-}25.0, 25.0\text{-}37.5, 37.5\text{-}50.0, 50.0\text{-}62.5$ keV.

Figure 9. Emergent proton pulse-height distribution $N(E_{out}, \theta_{out}; E_{in}, \theta_{in})$ for 250 keV protons incident on Iridium slab at $\theta_{in} = 91.0^\circ$. Results are shown for $0 \leq \theta_{out} < 85^\circ$ in 5° increments.

Figure 10. Emergent proton pulse-height distribution $N(E_{out}, \theta_{out}; E_{in}, \theta_{in})$ for 250 keV protons incident on Iridium slab at $\theta_{in} = 91.0^\circ$. Results are shown for $85^\circ \leq \theta_{out} \leq 90^\circ$ in 0.1° increments.

Figure 11. Pulse-height energy spectrum $N(E_{out}; E_{in}, \theta_{in})$ for protons emerging from iridium slab. $E_{in}=250$ keV, $\theta_{in}=90.5^\circ$.

Figure 12. Emergent proton azimuthal (ϕ_{out}) distribution (normalized) from protons incident on iridium slab. $\phi_{in} = 90.0^\circ$; $E_{in} = 500$ keV; $\theta_{in} = 91.0^\circ$.

Figure 13. Maximum value of the probability density $P_{\max}(E_{out}; E_{in}, \theta_{in})$ vs. E_{out} for protons of energy $E_{in}=1.0$ MeV incident on iridium at $\theta_{in} = 90.1^\circ$.

Figure 14. $\left. \frac{\theta_{out}}{\theta_{in}} \right|_{P_{\max}}$ vs. E_{out} for protons of energy $E_{in}=1.0$ MeV incident on iridium at $\theta_{in} = 90.1^\circ$.

4. SUMMARY

During the period covered by this report, the technical activity and progress achieved consisted primarily of: 1) modeling and verification of earlier calculations of electron transport and energy deposition in CRRES dosimeters; 2) model validation of electron transport simulations in the HEP instrument; 3) modeling proton transport in the CEASE instrument; 4) the beginning of a study of the scattering of grazing incidence protons from material surfaces; and 5) providing computer code enhancements and advice on Monte Carlo simulation code implementation to AFRL.

References

1. Auchampaugh, G., Cayton, T., April 1993, *CRRES Dosimeter Simulations*, Los Alamos National Laboratory Report No. LA-12511-MS.
2. Briesmeister, J. F., Ed., September 1986, *MCNP – A General Monte Carlo Code for Neutron and Photon Transport*, Los Alamos National Laboratory Report LA-7396-M, Rev. 2.
3. Prael, R. E., Lichtenstein, H., September 1989, *User Guide to LCS: The LAHET Code System*, Los Alamos National Laboratory Report LA-UR-89-3014.
4. Waters, L. S., Ed., November 14, 1999, *MCNPX™, Version 2.1.5 User's Manual*, Los Alamos Radiation Transport Group(X-6).
5. Halbleib, J. A. et al., *ITS - Integrated TIGER Series of Coupled Electron /Photon Monte Carlo Code System*, ORNL RSICC Computer Code Package CCC-467.
6. Brautigam, D., May 15, 2002, AFRL/VSBXR, private communication.
7. Carter, L. L., Schwarz, R. A. *MCNP-VISED 26f- A Visual Editor for Creating MCNP4 Input Files*, ORNL RSICC Computer Code Package PSR-358.
8. Woolf, S., January 3, 2002, *Installation and Operation of Particle Transport Simulation Programs to Model the Detection and Measurement of Space Radiation by Space-borne Sensors*, ARCON Corp. Interim Scientific Report #2 (01 Aug. 2000 – 31 July 2001), Chapter 4, AFRL Contract #F19628-99-C-0077 (AD # not yet assigned).
9. Woolf, S., January 3, 2002, *Installation and Operation of Particle Transport Simulation Programs to Model the Detection and Measurement of Space Radiation by Space-borne Sensors*, ARCON Corp. Interim Scientific Report #2 (01 Aug. 2000 – 31 July 2001), Appendix 1, AFRL Contract #F19628-99-C-0077 (AD # not yet assigned).
10. B. Dichter, et al., Compact Environmental Anomaly Sensor (CEASE): A Novel Spacecraft Instrument for *In Situ* Measurements of Environmental Conditions, *IEEE Trans. Nucl. Sci.* **45**(6), 2758, Dec. 1998.
11. Woolf, S., December 29, 2000, *Installation and Operation of Particle Transport Simulation Programs to Model the Detection and Measurement of Space Radiation by Space-borne Sensors*, Air Force Research Laboratory Report, Appendix 3, AFRL –VS-TR-2001-1605, AD # 398366.
12. Geant4 Collaboration [Online]. <http://wwwinfo.cern.ch/asd/geant4/geant4.html>
13. Firsov, O. B., 1967, *Reflection of fast ions from a dense medium at glancing angle*, Sov. Phys.- Doklady, vol. 11, No. 8, pp.732-733.
14. Winter, H., Wilke, M., Bergomaz, M., 1997, *Energy loss of fast protons in grazing scattering from an Al(111)-surface*, NIM B125, pp.124-127.
15. Pfandzelter, R., Stolzle, F., 1992, *Probing the stopping power near the surface by specular reflection of protons from graphite*, NIM B72, pp.163-175.

APPENDIX 1

Subroutine HIST for Cosine-Weighted Dome Source

```

SUBROUTINE HIST                                HIST      00007
C *****                                         HIST      00009
C                                               HIST      00010
C SUBROUTINE HIST IS CALLED BY                 HIST      00011
C                                               ITS       00012
C SUBROUTINE HIST CALLS                         HIST      00013
C     INTRINSIC FUNCTIONS                      HIST      00014
C         SQRT, RANF                           HIST      00015
C         REAL                               (CYLTRAN) 00016
C     EXTERNAL FUNCTIONS                       HIST      00017
C         CLASS, ECROS, EHIST, TIMER, PHIST   HIST      00018
C         RANINT, RANSAV                      HIST      00019
C         ZONE                               (CYLTRAN) 00020
C         FOLD, ZONEA                          (ACCEPT) 00021
C         PLTDAT                            (M-CODES) 00022
C
C ORIGINATION DATE    16 JAN 68.                HIST      00023
C LAST MODIFIED       30 MAY 91                  HIST      00024
C
C FUNCTION             HIST      00025
C     THIS PROGRAM SAMPLES PHASE SPACE PARAMETERS FOR
C     SOURCE PARTICLES. SUBSEQUENTLY CALLS EITHER EHIST OR
C     PHIST. RETRIEVES "BANKED" ELECTRONS AND CALLS EHIST.
C     TALLIES PULSE HEIGHT DISTRIBUTION.          HIST      00026
C
C *****                                         HIST      00027
C *** COMMON BLOCKS CNSTNT, PARAMS, OUT, CALC, XPED, STOR, STTS,
C     (PAREM)-ACCEPT                         HIST      00028
C$ LIST(S=0)                                 HIST      00029
CDIR$ NOLIST                                HIST      00030
IMPLICIT DOUBLE PRECISION (A-H,O-Z)          HIST      00031
SAVE                                         CNSTNT  00032
                                              CNSTNT  00033
                                              HIST      00034
                                              HIST      00035
                                              HIST      00036
                                              HIST      00037
                                              CNSTNT  00081
                                              CNSTNT  00082
                                              CNSTNT  00083
                                              CNSTNT  00084

```

**CNSTNT common block is identical to that given in Reference 3
– listing omitted for brevity.**

```

PARAMETER (CT1M12 = 1.0D-12, CT1EM8 = 1.0D-8, CT1EM7 = 1.0D-7) CNSTNT 00083
C ----- CNSTNT 00084

```

PARAMS common block is identical to that given in Appendix 2, Reference 4.

```

C -----
PARAMETER (INLAST = 50)                         PARAMS  00086
PARAMETER (INUMK = 3, INGP = INMT)               PARAMS  00089
COMMON /EXTSORC/ IRECTS, IDISKS, XLWS, XHIGHS, YLWS, YHIGHS, ZLWS,
$ ZHIGHS, XCENT, ZCENT, XCIR, YCIR, ZCIR, KPERPYZ, KPREPXZ, KPERPXY,
$ IDOME, RDOME
LOGICAL RRKILL, FLMTEL
COMMON /OUT/

```

OUT	00002
OUT	00003

1 FLMTEL(INGP) OUT 00004

**OUT common block is identical to that given in Reference 3 –
listing omitted for brevity.**

C \$ FLESCP, FLNOK, FLNEL, FLBAD, FLINIT, FLGSEC OUT 00095
COMMON /CALC/ CALC 00002
CALC 00003 04

1 **CALC common block is identical to that given in Reference 3 –
listing omitted for brevity.**

C C COMMON /XPED/ XPED 00002
1 DETOUR(INMT), RHO(INMT), MT, MTP, MTP0 XPED 00003
C LOGICAL DMPFLG, FLMC STTS 00002
DOUBLE PRECISION IRSAV STTS 00010
COMMON /STTS/ IB, NB, NSORS, IBT, BOLD, BATCH, KPUTMX, DMPFLG STTS 00017
\$, IHIST, IRSAY, KPUT, FLMC STTS 00018
C C CHARACTER*3 OTYPE(10), OBODY PAREM 00002
LOGICAL FLDBG, FLDBGL PAREM 00003
COMMON /PAREM/ PAREM 00004
\$ XB(3), WT(3), RIN, ROUT, PINF, DIST, IR, PAREM 00009
\$ FLDBG, IRPRIM, ICALL, LSURF, NBO, LRI, LRO, PAREM 00013
\$ KLOOP, LOOP, ITYPE, FLDBGL PAREM 00014
COMMON /PAREMO/ OTYPE PAREM 00015
PAREM 00016

C COMMON /HITS/EDPR(10),EDNK(10),EDSC(10),EDTL(10),LHCL(10),NINDV,
\$ IHSTRY,COFSRC(6,25,10),COFLEGY(6,25),COFLEG(6)

C\$ LIST(S=1) HIST 00047
CDIR\$ LIST HIST 00048
COMMON /STOR/ STOR 00002
1 CTHS(NLAST), TS(NLAST), WS(NLAST), ZS(NLAST), IPRS(NLAST), STOR 00003
2 LBS(NLAST), NTS(NLAST) STOR 00004
\$,XS(NLAST), YS(NLAST), STHS(NLAST), STOR 00006
3 CPHS(NLAST), SPHS(NLAST) STOR 00007
4 ,LBCS(NLAST) STOR 00009
C EXTERNAL RAN HIST 00050
RANNUM 00003
C CIMAX = IMAX HIST 00090
IF (FLSPEC) THEN HIST 00091
TAV = CZERO HIST 00092
ELSE HIST 00093
TAV = CIMAX*TIN HIST 00094
END IF HIST 00095

C CALL RANINT(IRA) HIST 00096
C ----- HIST 00097
----- HIST 00098
IF (IB .EQ. 1) INRAN = IRA HIST 00101
DO 130 I = 1, IMAX HIST 00103
IHSTRY=I
DO 1301 JJJ=1,10
EDPR(JJJ)=0.
EDNK(JJJ)=0.
EDSC(JJJ)=0.
1301 EDTL(JJJ)=0.
IHIST = I HIST 00104
MODTMJ = MIN(10000,IMAX)
IF(I.EQ.MODTMJ*(I/MODTMJ)) THEN LAHEY 00017
LAHEY 00018

```

CALL TOTTIM(XTMJ)                               LAHEY    00019
WRITE(*,'(/'' HISTORY'',I8,'', ELAPSED MINUTES'',F10.2'')') LAHEY    00020
11,XTMJ/60.                                     LAHEY    00021
ENDIF                                           LAHEY    00022
   W      = CONE                                HIST     00105
   CWCF   = W                                   HIST     00106
   LAST   = 0                                    HIST     00107
C      CALL RANSAV(IRSAV)                         HIST     00108
C -----
C -----
C -----
C ... SOURCE ENERGY                            HIST     00109
C -----
IF (FLSPEC) THEN                             HIST     00110
  RA = RAN(IRAN)                             HIST     00111
  DO 14 JHIST = 2,JSPEC                      HIST     00112
    IF ( RA .GT. SPECIN(JHIST) ) GO TO 16
14  CONTINUE                                     HIST     00113
16  $    T = ESP(JHIST-1) + ( RA -SPECIN(JHIST-1) )*( ESP(JHIST)
      - ESP(JHIST-1) )/( SPECIN(JHIST) - SPECIN(JHIST-1) )
      TAV = TAV + T                           HIST     00114
      IF ( (FLESRC .AND. (T .GT. TCUT )) .OR.
      (.NOT. FLESRC .AND. (T .GT. TPCUT)) ) THEN
      GO TO 20                                 HIST     00115
    ELSE                                         HIST     00116
      NTREJ = NTREJ + 1                        HIST     00117
      TREJ  = TREJ + W*T                      HIST     00118
      GO TO 1299                               HIST     00119
    END IF                                       HIST     00120
  END IF                                         HIST     00121
  T = TIN                                      HIST     00122
20  NT = NTFST                                  HIST     00123
C      CALL CLASS (T,NT)                         HIST     00124
C -----
IF (IDOME.EQ.0)THEN                           HIST     00125
C ... SOURCE DIRECTION                         HIST     00126
C -----
IF (ICTH .EQ. 2) THEN                         HIST     00127
  RA = RAN(IRAN)                             HIST     00128
  COM = CTHIN+ RA*(CONE-CTHIN)                HIST     00129
ELSE IF (ICTH .EQ. 3) THEN                     HIST     00130
  RA = RAN(IRAN)                             HIST     00131
  COM = SQRT(CTHIN+RA*(CONE-CTHIN))          HIST     00132
ELSE IF (ICTH .EQ. 1) THEN                     HIST     00133
  CTH(1) = CTSR                             HIST     00134
  STH(1) = STSR                             HIST     00135
  CPH(1) = CPSR                             HIST     00136
  SPH(1) = SPSR
  GO TO 69
END IF                                         HIST     00137
C      IF (CTSR .EQ. CONE) THEN                 HIST     00138
        CTH(1) = COM                          HIST     00139
        STH(1) = SQRT(CONE-COM*COM)           HIST     00140
        RA   = RAN(IRAN)                      HIST     00141
        JAZ  = RA*C360                         HIST     00142
        CPH(1) = CCH(JAZ+1)                   HIST     00143
        SPH(1) = SCH(JAZ+1)                   HIST     00144
      ELSE
        CALL FOLD(CTSR,STSR,CPSR,SPSR,COM,CTH(1),STH(1),CPH(1),SPH(1))HIST
      END IF
    END IF
C -----

```

```

C ... SOURCE POSITION
C -----
69   IF (SORCIN .NE. CZERO) THEN
      RA = RAN(IRAN)
      R = SQRT(RA)*SORCIN
      RA = RAN(IRAN)
      JAZ = RA*C360
      SCHR = SCH(JAZ+1)*R
      CCHR = CCH(JAZ+1)*R
      IF (IDISK5 .EQ. 0) THEN
         X = XSR + CCHR*W1X+SCHR*W2X
         Y = YSR+CCHR*W1Y+SCHR*W2Y
         Z = ZSR+CCHR*W1Z+SCHR*W2Z
      ELSE
         IF (KPERPXY.EQ.1)THEN
            X = XCENT + CCHR
            Y = YCENT + SCHR
            Z = ZCENT
         END IF
         IF (KPERPXZ.EQ.1)THEN
            X = XCENT + CCHR
            Y = YCENT
            Z = ZCENT + SCHR
         END IF
         IF (KPERPYZ.EQ.1)THEN
            X = XCENT
            Y = YCENT + CCHR
            Z = ZCENT + SCHR
         END IF
      END IF
      ELSE
         IF (IRECTS .EQ. 0 .AND. IDOME.EQ.0)THEN
            X = XSR
            Y = YSR
            Z = ZSR
         ELSE
            IF (IRECTS.NE.0)THEN
               RRAA1 = RAN(IRAN)
               RRAA2 = RAN(IRAN)
               IF (KPERPXY .EQ. 1) THEN
                  X = XLOWS + RRAA1*(XHIGHS-XLOWS)
                  Y = YLOWS + RRAA2*(YHIGHS-YLOWS)
                  Z = ZLOWS
               END IF
               IF (KPERPXZ. EQ. 1) THEN
                  X = XLOWS + RRAA1*(XHIGHS-XLOWS)
                  Y = YLOWS
                  Z = ZLOWS + RRAA2*(ZHIGHS-ZLOWS)
               END IF
               IF (KPERPYZ .EQ.1) THEN
                  X = XLOWS
               END IF
            END IF
         END IF
      END IF

```

$Y = YLOWS + RRAA1 * (YHIGHS - YLOWS)$
 $Z = ZLOWS + RRAA2 * (ZHIGHS - ZLOWS)$
 END IF
 END IF

C DOME SOURCE
 IF (IDOME.NE.0) THEN
 STHDM=RAN (IRAN)
 CTHDM=SQRT (1.-STHDM*STHDM)
 PPHDM=C2PI*RAN (IRAN)
 CPPHDM=COS (PPHDM)
 SPPHDM=SIN (PPHDM)
 ALDM=STHDM*CPPHDM
 BTDM=STHDM*SPPHDM
 X=RDOME*ALDM
 Y=RDOME*BTDM
 Z=RDOME*CTHDM
 PHSDM=C2PI*RAN (IRAN)

C 106 COSINE-WEIGHTED SOURCE
 CTHSDM=-SQRT (RAN (IRAN))
 STHSDM=SQRT (1.-CTHSDM*CTHSDM)
 SPHSDM=SIN (PHSDM)
 CPHSDM=COS (PHSDM)
 UUUD=STHSDM*CPHSDM
 VVVD=STHSDM*SPPHDM
 WWWD=CTHSDM
 AAAD=SQRT (UUUD**2+VVVD**2+WWWD**2)
 UUUD=UUUD/AAAD
 VVVD=VVVD/AAAD
 WWWD=WWWD/AAAD
 ALPDD=UUUD
 BETDD=VVVD*CTHDM+WWWD*STHDM
 GAMDD=-VVVD*STHDM+WWWD*CTHDM
 PRODD=ALDM*ALPDD+BTDM*BETDD+CTHDM*GAMDD
 IF (PRODD.GT.0.0) GO TO 106
 STH(1)=SQRT (1.-GAMDD**2)
 CTH(1)=GAMDD
 IF (STH(1).LT.1.E-6) GO TO 106
 SPH(1)=BETDD/STH(1)
 CPH(1)=ALPDD/STH(1)
 END IF
 END IF

C
 END IF
 XB(1) = X
 XB(2) = Y
 XB(3) = Z
 WT(1) = STH(1)*CPH(1)
 WT(2) = STH(1)*SPH(1)
 WT(3) = CTH(1)

C
CALL ZONEA
 C

 LB = IR
 LBCZ = IPRIM
 IPR = 1

C
 C
... CALL TRACKING ROUTINES
 C

 70 IF (FLESRC .OR. (IPR .NE. 1)) THEN
 C
... PARTICLE TO BE TRACKED IS AN ELECTRON
 C

 IF (MT .NE. MAT(LB)) THEN
 MT = MAT(LB)
 END IF
 C
... CALL EHIST
 C

 ELSE
 C
... PARTICLE TO BE TRACKED IS A PHOTON
 C

 LPCZ = LBCZ
 C
... CALL PHIST(X,Y,Z,LB,CTH(1),STH(1),CPH(1),SPH(1),T,W,1)
 C

 END IF
 C

	HIST	00212
	HIST	00213
	HIST	00220
	HIST	00221
	HIST	00222
	HIST	00223
	HIST	00224
	HIST	00225
	HIST	00226
	HIST	00227
	HIST	00228
	HIST	00229
	HIST	00230
	HIST	00232
	HIST	00233
	HIST	00234
	HIST	00235
	HIST	00236
	HIST	00237
	HIST	00238
	HIST	00239
	HIST	00240
	HIST	00241
	HIST	00242
	HIST	00248
	HIST	00249
	HIST	00250
	HIST	00251
	HIST	00252
	HIST	00253
	HIST	00254
	HIST	00255
	HIST	00262
	HIST	00265
	HIST	00266
	HIST	00267
	HIST	00269
	HIST	00270
	HIST	00271

New
Code

```

C ... REMOVE SECONDARY ELECTRONS FROM STORAGE FOR TRANSPORT          HIST  00272
C -----
      IF (LAST .NE. 0) THEN                                         HIST  00273
        LB      = LBS(LAST)                                         HIST  00274
        Z       = ZS(LAST)                                         HIST  00275
        T       = TS(LAST)                                         HIST  00276
        NT      = NTS(LAST)                                         HIST  00277
        CTH(1) = CTHS(LAST)                                         HIST  00278
        W       = WS(LAST)                                         HIST  00280
        IPR     = IPRS(LAST)                                         HIST  00281
C
        X       = XS(LAST)                                         HIST  00283
        Y       = YS(LAST)                                         HIST  00284
        STH(1) = STHS(LAST)                                         HIST  00285
        CPH(1) = CPHS(LAST)                                         HIST  00286
        SPH(1) = SPHS(LAST)                                         HIST  00287
C
        LBCZ   = LBCS(LAST)                                         HIST  00288
        KLOOP  = KLOOP+1                                           HIST  00289
        LAST   = LAST-1                                           HIST  00291
        GO TO 70                                           HIST  00292
      END IF
C
      IF (.NOT. FLPHD) GO TO 1299                                     HIST  00294
C
C -----
C ... SCORE PULSE-HEIGHT DISTRIBUTION                                HIST  00295
C -----
      EABST  = CZERO                                         HIST  00296
      DO 100 LS=LPHDB,LPHDE                                     HIST  00297
        EABST   = EABST+PHDD(LS)                                 HIST  00298
100    PHDD(LS) = CZERO                                         HIST  00299
      DO 110 JS=1,JSMAX                                         HIST  00300
        IF(SMARK(JS) .LE. EABST) GO TO 120                      HIST  00301
110    CONTINUE                                         HIST  00302
        NPHD  = NPHD+1                                         HIST  00303
        GO TO 1299                                         HIST  00304
120    ABE(JS) = ABE(JS)+CWCF                                 HIST  00305
1299   IF(NINDV.EQ.0)GO TO 130                               HIST  00306
      DO 1298 NIND=1,NINDV                                     HIST  00307
        EDTL(NIND)=EDPR(NIND)+EDNK(NIND)+EDSC(NIND)
1298   CONTINUE                                         HIST  00308
        WRITE(44)(EDPR(NIND),EDNK(NIND),EDSC(NIND),EDTL(NIND),NIND
$    =1,NINDV)                                         HIST  00309
        130 CONTINUE                                         HIST  00310
C
        CALL RANSV(IRC)                                         HIST  00311
C -----
        RETURN                                         HIST  00312
        END                                             HIST  00313

```

APPENDIX 2
CRRES_D1 Sample Input File for ACCEPT Run

```

TITLE
 15 MEV DOME SOURCE on CRRES DOME 1
***** GEOMETRY *****
GEOMETRY
*1
  RCC  0.0  0.0  0.0  0.0      0.00000  0.04030  .05093
*2
  RCC  0.0  0.0 -0.07620  0.0     .00000  0.07620  .06350
*3
  RPP  -.09525  .09525 -.09525  .09525  .00000  0.04030
*4
  RCC  0.0  0.0 -0.07620  0.0     .00000  0.07620  0.5080
*5
  RCC  0.0  0.0 -0.07620  0.0     .00000  0.07620  1.22936
*6
  RCC  0.0  0.0 -0.07620  0.0     .00000  0.07620  1.46812
*7
  RCC  0.0  0.0 -0.10668  0.0     .00000  0.03048  0.32385
*8
  RCC  0.0  0.0 -0.10668  0.0     .00000  0.03048  1.22936
*9
  RCC  0.0  0.0 -0.10668  0.0     .00000  0.03048  1.46812
*10
   RCC  0.0  0.0 -0.15748  0.0     .00000  0.05080  0.32385
*11
   RCC  0.0  0.0 -0.15748  0.0     .00000  0.05080  1.22936
*12
   RCC  0.0  0.0 -0.15748  0.0     .00000  0.05080  1.46812
*13
   RCC  0.0  0.0 -0.31496  0.0     .00000  0.15748  1.22936
*14
   RCC  0.0  0.0 -0.31496  0.0     .00000  0.15748  1.46812
*15
   RCC  0.0  0.0 -0.94996  0.0     .00000  0.635    1.11125
*16
   RCC  0.0  0.0 -0.94996  0.0     .00000  0.635    1.22936
*17
   RCC  0.0  0.0 -0.94996  0.0     .00000  0.635    1.46812
*18
   RCC  0.0  0.0 -1.58496  0.0     .00000  0.635    1.11125
*19
   RCC  0.0  0.0 -1.58496  0.0     .00000  0.635    1.22936
*20
   RCC  0.0  0.0 -1.58496  0.0     .00000  0.635    1.46812
*21
   RCC  0.0  0.0  0.0     0.0     .00000  1.01981  1.01981
*22
   RCC  0.0  0.0  0.0     0.0     .00000  1.22936  1.22936
*23
   RCC  0.0  0.0  0.0     0.0     .00000  1.46812  1.46812
*24
   SPH  0.0  0.0  0.0  1.01981
*25
   SPH  0.0  0.0  0.0  1.22936
*26
   SPH  0.0  0.0  0.0  1.46812
*27
   RCC  0.0  0.0 -2.58496  0.0     0.0    1.0  1.46812
*28
   SPH  0.0  0.0  0.0  1.005
*29
   RCC  0.0  0.0  0.0  0.0  0.0  1.005  1.005
*30
   SPH  0.0  0.0  0.0  5.0
*31
   SPH  0.0  0.0  0.0        10.0

```

```

    END
*SI
  Z01 +1
  Z02 +3 -1
*VOID
  Z03 +29 +28 -1 -3
*AL
  Z04 +25 -24 +22
  Z05 +5 -4 -2
*VOID
  Z06 +6 -5 -4 -2
*AL203
  Z07 +4 -2
*VOID
  Z08 +2
*AL
  Z09 +8 -7
*VOID
  Z10 +9 -8 -7
  Z11 +7
  Z12 +12 -11 -10
*AL
  Z13 +11 -10
*Ni
  Z14 +10
*AL
  Z15 +13
*VOID
  Z16 +14 -13
  Z17 +17 -16
*AL
  Z18 +16 -15
  Z19 +19 -18
*W-Fe
  Z20 +15
  Z21 +18
*AL
  Z22 +20 -19
*VOID
  Z23 +24 -28 +21
  Z24 +23 -25 +26
  Z25 +23 -26
  Z26 +27
  Z27 +29 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15
               -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 -27 -28
  Z28 +30 -29
  END
*MATERIAL
1
1
0
2
2
0
3
0
2
0
0
2
4
2
0
0
2
2
5
5
2
0
0

```

0
0
0
0
***** SOURCE *****
ELECTRONS
ENERGY 15.0
***** OPTIONS *****
PULSE-HEIGHT 1 1
NBINE 34 USER
14.99999 10.1 9.57 8.94 8.3 7.67 7.01 6.37 5.74 5.12 4.48 3.84
3.2 2.56 1.91 1.28
1.020 0.979 0.910 0.839 0.765 0.694 0.622 0.549 0.480
0.408 0.336 0.263 0.193 0.125 0.051 0.049 0.00001 0.0
ELECTRON-FLUX 1 1
NBINE 19 USER
14.99999 1.020 0.979 0.910 0.839 0.765 0.694 0.622 0.549 0.480
0.408 0.336 0.263 0.193 0.125 0.051 0.049 0.00001 0.0
DOME-SOURCE 0. 0. 0. 0. 1.25
***** OPTIONS *****
CUTOFFS 0.1 0.01
HISTORIES 10000000

APPENDIX 3

CEASE Telescope - MCNPX Flat Disk Proton Source Runs

MCNPX Run 1. Disc source located at z=0.457 cm along telescope axis;
disk source radius = 0.025 cm;

9 MeV proton source

10,000 histories

Partial listing of output file: input file image, pulse height, flux, and energy deposition for
cells 67 (DFT) and 88 (DBT)

```

1-      Test for protons  CEASE Flight Sensor 9 MeV rad=0.025cm
2-      C
3-      C   Proton
4-      C   transport - disk source, 9 MeV proton 40 deg slant  at z=.4572

```

GEOMETRY FILE DETAILS SAME AS SHOWN IN [FIRST YEAR REPORT]APPENDIX 3 OMITTED HERE FOR
BREVITY

```

462-      C
463-      C   Transport protons, neutrons, muons, photons, pions, kaons,
464-      c   deuterons, alphas
465-
466-      mode h
467-      cut:h 1.e+8 0.05
468-      c   mode h n | p /
469-      c   Source definition, proton source (par=9), located on surface
470-      c   #47 which is the plane at z=0.4572, centered at 0.,0.,0.4572,
471-      c   with radius 0.025 cm, energy 9 MeV, 40deg slant incidence (along z)
472-      SDEF    sur=47 pos=0. 0. 0.4572 rad=D1 ERG=9. WGT=1.0 par=9
473-      dir=0.7660444
474-      SI1 .025
475-      VOL   45J 0.144715 3J 4.501818 27J 0.1311943 21J 0.1333961
476-           2J 0.1129316 0.4679637 14J 19.61581 61.74832 5J
477-           139.2479 139.2432 103.1126 103.1126 103.1126
478-           103.1126 42J
479-      c   No. of histories
480-      NPS  10000
481-      C
482-      C   Materials
483-      C
484-      C   Brass
485-      M1  29000 -.3 28000 -.7
486-      C   Aluminum
487-      M2  13027 -1.0
488-      C   Tungsten
489-      M3  74000 -.95 29000 -.015 28000 -.035
490-      C   Gold
491-      M4  79197 -1.0
492-      C   Stainless Steel
493-      M5  26000 -.71 29000 -.17 25055 -.065 28000 -.005 14000 -.05
494-      C   Conductive Silicone Elastomer
495-      M6  28000 -.377 47000 -.373 14000 -.0947
496-           6000 -.0810 8016 -.0539 1001 -.0204
497-      C   PMMA
498-      M7  6000 -.59985 8016 -.31961 1001 -.080538
499-      C   Silicon
500-      M8  14000 -1.0
501-      C   Copper
502-      M9  29000 -1.0
503-      C
504-      C
505-      C
506-      C   maximum proton energy(MeV) required for cross section table
507-      PHYS:h 10.
508-      C   maximum neutron energy(MeV) required for cross section table
509-      PHYS:n 10.
510-      C   maximum muon energy(MeV) required for cross section table
511-      PHYS:p 10.
512-      C   maximum photon energy(MeV) required for cross section table
513-      PHYS:p 10.
514-      C   maximum pion energy(MeV) required for cross section table
515-      PHYS:/ 10.
516-      C

```

```

517-      c   Tallies
518-      c   proton pulse height tallies
519-      F8:h 67
520-      E8 0 1.e-5 .5 1. 1.5 2. 2.3 3. 3.5 4. 4.5 5. 5.5 6. 6.5
521-          7. 7.5 8. 8.5 8.99999 9.
522-      F38:h 88
523-      E38 0 1.e-5 .5 1. 1.5 2. 2.3 3. 3.5 4. 4.5 5. 5.5 6. 6.5
524-          7. 7.5 8. 8.5 8.99999 9.
525-      c   proton energy deposition tallies
526-      *F18:h 67 88
527-      c   proton flux tallies
528-      F44:h 67 88
529-      c   c   proton energy flux tallies
530-      *F104:h 67 88
531-      c   cell importances for protons
532-      imp:h 1 165R 0 6R
533-      c   cell importances for photons
534-      c   imp:p 1 165R 0 6R
535-      c   cell importances for neutrons
536-      c   imp:n 1 165R 0 6R
537-      c   cell importances for muons
538-      c   imp:| 1 165R 0 6R
539-      c   cell importances for pions
540-      c   imp:/ 1 165R 0 6R
541-

Itally 8      nps =    10000
           tally type 8      pulse height distribution.          units   number
           particle(s): proton

cell 67
      energy
      0.0000E+00  0.00000E+00  0.0000
      1.0000E-05  0.00000E+00  0.0000
      5.0000E-01  1.00000E-03  0.3161
      1.0000E+00  3.20000E-03  0.1765
      1.5000E+00  2.90000E-03  0.1854
      2.0000E+00  5.13000E-02  0.0430
      2.3000E+00  2.71000E-02  0.0599
      3.0000E+00  3.41000E-02  0.0532
      3.5000E+00  1.62000E-02  0.0779
      4.0000E+00  1.22000E-02  0.0900
      4.5000E+00  1.03000E-02  0.0980
      5.0000E+00  3.90000E-03  0.1598
      5.5000E+00  1.10000E-03  0.3013
      6.0000E+00  1.00000E-04  0.9999
      6.5000E+00  0.00000E+00  0.0000
      7.0000E+00  0.00000E+00  0.0000
      7.5000E+00  0.00000E+00  0.0000
      8.0000E+00  0.00000E+00  0.0000
      8.5000E+00  0.00000E+00  0.0000
      9.0000E+00  0.00000E+00  0.0000
      9.5000E+00  0.00000E+00  0.0000
      total 1.63400E-01 0.0226          units   mev
           tally type 8*   energy deposition
           particle(s): proton

cell 67      4.15596E-01 0.0243

cell 88      2.61874E-02 0.1198
           tally type 8      pulse height distribution.          units   number
           particle(s): proton

cell 88
      energy
      0.0000E+00  0.00000E+00  0.0000
      1.0000E-05  0.00000E+00  0.0000
      5.0000E-01  2.00000E-04  0.7070
      1.0000E+00  8.00000E-04  0.3534
      1.5000E+00  7.00000E-04  0.3778
      2.0000E+00  3.00000E-04  0.5773
      2.3000E+00  5.00000E-04  0.4471
      3.0000E+00  1.40000E-03  0.2671
      3.5000E+00  1.20000E-03  0.2885
      4.0000E+00  1.00000E-03  0.3161
      4.5000E+00  8.00000E-04  0.3534
      5.0000E+00  6.00000E-04  0.4081
      5.5000E+00  5.00000E-04  0.4471
      6.0000E+00  4.00000E-04  0.4999
      6.5000E+00  1.00000E-04  0.9999
      7.0000E+00  0.00000E+00  0.0000
      7.5000E+00  0.00000E+00  0.0000

```

```

8.0000E+00 0.00000E+00 0.0000
8.5000E+00 0.00000E+00 0.0000
9.0000E+00 0.00000E+00 0.0000
9.0000E+00 0.00000E+00 0.0000
total 8.50000E-03 0.1080
      tally type 4 track length estimate of particle flux. units 1/cm**2
      particle(s): proton

      volumes
      cell:   67          88
              7.61920E-03 4.23017E-02
cell 67           3.57828E-01 0.0241
cell 88           2.20099E-03 0.1326
      tally type 4* track length estimate of energy flux. units mev/cm**2
      particle(s): proton
      volumes
      cell:   67          88
              7.61920E-03 4.23017E-02
cell 67           2.02689E+00 0.0268
cell 88           5.68473E-03 0.1553Test for protons CEASE Flight Sensor 9 MeV
rad=0.025cm
C

```

MCNPX Run 2. Disc source located at z=0.457 cm along telescope axis;
disk source radius = 0.050 cm;
9 MeV proton source
40,000 histories

Partial listing of output file: input file image, pulse height, flux, and energy deposition for cells 67 (DFT) and 88 (DBT)

```

1-      Test for protons CEASE Flight Sensor 9 MeV rad=0.05cm
2-      C
3-      C  Proton
4-      C  transport - disk source, 9 MeV proton 40 deg slant at z=.4572
5-      C
462-      C
463-      c  Transport protons, neutrons, muons, photons, pions, kaons,
464-      c  deuterons, alphas
465-
466-      mode h
467-      cut:h 1.e+8 0.05
468-      c  mode h n | p /
469-      c  Source definition, proton source (par=9), located on surface
470-      c  #47 which is the plane at z=0.4572, centered at 0.,0.,0.4572,
471-      c  with radius 0.05 cm, energy 9 MeV, 40deg slant incidence (along z)
472-      SDEF    sur=47 pos=0. 0. .4572 rad=D1 ERG=9. WGT=1.0 par=9
473-      dir=0.7660444
474-      SI1 .05
475-      VOL  45J 0.144715 3J 4.501818 27J 0.1311943 21J 0.1333961
476-                  2J 0.1129316 0.4679637 14J 19.61581 61.74832 5J
477-                  139.2479 139.2432 103.1126 103.1126 103.1126
478-                  103.1126 42J
479-      c  No. of histories
480-      NPS  40000
481-      C

```

```

482-      C  Materials
483-      C
484-      C    Brass
485-      M1   29000 -.3  28000  -.7
486-      C    Aluminum
487-      M2   13027 -1.0
488-      C    Tungsten
489-      M3   74000 -.95 29000 -.015  28000 -.035
490-      C    Gold
491-      M4   79197 -1.0
492-      C    Stainless Steel
493-      M5   26000 -.71 29000 -.17 25055 -.065 28000 -.005 140000 -.05
494-      C    Conductive Silicone Elastomer
495-      M6   28000 -.377 47000 -.373 14000 -.0947
496-          6000 -.0810 8016 -.0539 1001 -.0204
497-      C    PMMA
498-      M7   6000 -.59985 8016 -.31961 1001 -.080538
499-      C    Silicon
500-      M8   14000 -1.0
501-      C    Copper
502-      M9   29000 -1.0
503-      C
504-      C
505-      C
506-      c    maximum proton energy(MeV) required for cross section table
507-      PHYS:h 10.
508-      c    maximum neutron energy(MeV) required for cross section table
509-      PHYS:n 10.
510-      c    maximum muon energy(MeV) required for cross section table
511-      PHYS:l 10.
512-      c    maximum photon energy(MeV) required for cross section table
513-      PHYS:p 10.
514-      c    maximum pion energy(MeV) required for cross section table
515-      PHYS:/ 10.
516-      c
517-      c    Tallies
518-      c    proton pulse height tallies
519-      F8:h 67
520-      E8 0 1.e-5 .5 1. 1.5 2. 2.3 3. 3.5 4. 4.5 5. 5.5 6. 6.5
521-          7. 7.5 8. 8.5 8.99999 9.
522-      F38:h 88
523-      E38 0 1.e-5 .5 1. 1.5 2. 2.3 3. 3.5 4. 4.5 5. 5.5 6. 6.5
524-          7. 7.5 8. 8.5 8.99999 9.
525-      c    proton energy deposition tallies
526-      *F18:h 67 88
527-      c    proton flux tallies
528-      F44:h 67 88
529-      c    c    proton energy flux tallies
530-      *F104:h 67 88
531-      c    cell importances for protons
532-      imp:h 1 165R 0 6R
533-      c    cell importances for photons
534-      c    imp:p 1 165R 0 6R
535-      c    cell importances for neutrons
536-      c    imp:n 1 165R 0 6R
537-      c    cell importances for muons
538-      c    imp:l 1 165R 0 6R
539-      c    cell importances for pions
540-      c    imp:/ 1 165R 0 6R
541-
1tally  8      nps =      40000
tally type 8      pulse height distribution.          units      number
particle(s): proton
cell 67
energy
0.0000E+00  0.00000E+00  0.0000
1.0000E-05  0.00000E+00  0.0000
5.0000E-01  5.75000E-04  0.2085
1.0000E+00  1.45000E-03  0.1312
1.5000E+00  1.90000E-03  0.1146
2.0000E+00  1.49500E-02  0.0406
2.3000E+00  1.01750E-02  0.0493
3.0000E+00  1.61250E-02  0.0391
3.5000E+00  7.27500E-03  0.0584
4.0000E+00  5.50000E-03  0.0672
4.5000E+00  4.72500E-03  0.0726
5.0000E+00  1.80000E-03  0.1177
5.5000E+00  2.00000E-04  0.3535
6.0000E+00  0.00000E+00  0.0000

```

```

6.5000E+00 0.00000E+00 0.0000
7.0000E+00 0.00000E+00 0.0000
7.5000E+00 0.00000E+00 0.0000
8.0000E+00 0.00000E+00 0.0000
8.5000E+00 0.00000E+00 0.0000
9.0000E+00 2.50000E-05 1.0000
9.0000E+00 0.00000E+00 0.0000
total 6.47000E-02 0.0190
      tally type 8* energy deposition          units    mev
      particle(s): proton
cell 67           1.69238E-01 0.0202
cell 88           1.30129E-02 0.0846
      tally type 8 pulse height distribution.   units    number
      particle(s): proton
cell 88
      energy
0.0000E+00 0.00000E+00 0.0000
1.0000E-05 0.00000E+00 0.0000
5.0000E-01 2.50000E-04 0.3162
1.0000E+00 3.00000E-04 0.2886
1.5000E+00 3.00000E-04 0.2886
2.0000E+00 5.00000E-04 0.2236
2.3000E+00 2.50000E-04 0.3162
3.0000E+00 9.25000E-04 0.1643
3.5000E+00 4.75000E-04 0.2294
4.0000E+00 3.00000E-04 0.2886
4.5000E+00 3.25000E-04 0.2773
5.0000E+00 3.00000E-04 0.2886
5.5000E+00 2.50000E-04 0.3162
6.0000E+00 2.00000E-04 0.3535
6.5000E+00 7.50000E-05 0.5773
7.0000E+00 0.00000E+00 0.0000
7.5000E+00 0.00000E+00 0.0000
8.0000E+00 0.00000E+00 0.0000
8.5000E+00 0.00000E+00 0.0000
9.0000E+00 0.00000E+00 0.0000
9.0000E+00 0.00000E+00 0.0000
total 4.45000E-03 0.0748
      tally type 4 track length estimate of particle flux.   units  1/cm**2
      particle(s): proton
      volumes
          cell: 67           88
          7.61920E-03 4.23017E-02
cell 67           1.35987E-01 0.0203
cell 88           1.08395E-03 0.0956
      tally type 4* track length estimate of energy flux.   units  mev/cm**2
      particle(s): proton
      volumes
          cell: 67           88
          7.61920E-03 4.23017E-02
cell 67           7.09309E-01 0.0227
cell 88           2.81644E-03 0.1149

```


APPENDIX 4

MCNPX Output File for Grazing Angle Proton Scattering Study 250 keV Proton Beam Incident on Iridium Slab, Angle of Incidence = 0.1°

```

1mcmcpx version 2.1.5 Id:Fri May 21 09:49:28 MDT 1999 11/21/01 11:48:39
***** imp=1rd250p1 out=oir250p1 probd = 11/21/01 11:48:39

*
*
*
*
*
C Grazing incident proton beam on Iridium slab 250 keV
C Cells
C Iridium slab
C 1 -22.42 1 -2 3 -4 5 -6
C Void region above slab
C 2 0 2 -7 3 -4 5 -6
C escape
C 3 0 -1:7:-3:4:-5:6
C Surfaces
C 1 pz -1.0
C 2 pz 0.0
C 3 px -3.0
C 4 px 3.0
C 5 py -1.0
C 6 py 4.0
C 7 pz 1.0
C Transport protons
C mode h
C Source defined by subroutine srccbld.F is a monodirectional
C beam source grazing incidence 90.1 degrees off normal
C Energy is 0.25 MeV
C no. of histories

```

```

nps 100000000
c proton cutoff energy 1.0 keV
cut:h 1.e+10 0.001
c materials
c iridium
M1 77000 -1.0
c maximum proton energy(MeV) needed for cross sections
c phys:h 2.
c tallies
c proton current (reflected) emerging from surface 2 (z=0.0)
F1:h 2
c emergent polar angle cosine bins
C1 0.0 0.17453E-02 0.34906E-02 0.52352E-02 0.69812E-
0.87265E-02 0.10472E-01 0.12217E-01 0.13962E-01 0.15707E-
0.17452E-01 0.19197E-01 0.20942E-01 0.22687E-01 0.24432E-
0.26177E-01 0.27922E-01 0.29665E-01 0.31411E-01 0.33155E-
0.34899E-01 0.36644E-01 0.38388E-01 0.40132E-01 0.41876E-
0.43619E-01 0.45363E-01 0.47106E-01 0.48850E-01 0.50593E-
0.52363E-01 0.54079E-01 0.55821E-01 0.57564E-01 0.59306E-
0.61048E-01 0.62790E-01 0.64532E-01 0.66274E-01 0.68015E-
0.69756E-01 0.71497E-01 0.73238E-01 0.74979E-01 0.76719E-
0.78459E-01 0.80199E-01 0.81933E-01 0.836778E-01 0.85417E-
0.87156E-01 0.17365E+00 0.25882E+00 0.34202E+00 0.42262E+
0.50000E+00 0.57358E+00 0.64279E+00 0.70711E+00 0.76604E+
0.81915E+00 0.86603E+00 0.90631E+00 0.93969E+00 0.96593E+
0.98481E+00 0.99619E+00 0.10000E+01
c emergent energy bins (MeV)
E1 .0125 .025 .0375 .05 .0625 .075 .0875 .1 .1125 .125 .1375
.15 .1625 .175 .1875 .2 .2125 .225 .2375 .25
F1:h 2
E11 .0125 .025 .0375 .05 .0625 .075 .0875 .1 .1125 .125 .1375
.15 .1625 .175 .1875 .2 .2125 .225 .2375 .25
c cell importances for protons
imp:h 1.1 0
ptrac file=asc write-all
filter=-1.e-10 1.e-10,z 0,1,w max=100000 nps=1.100000

```

warning: no cross-section tables are called for in this problem.

LAHET energy cutoff settings:

```

emin() = 1.00000E-03 1.00000E+30 1.00000E+30 1.00000E+30 1.00000E+30
          1.00000E+30 1.00000E+30 1.00000E+30 1.00000E+30 1.00000E+30
          1.00000E+30 1.00000E+30 1.00000E-03 1.00000E+30 1.00000E+30
          1.00000E+30 1.00000E+30

```

LAHET physics options:

```

lca ielas ipreq iexisa ichoic jcoul nexite npidk noact icem
lca 2 1 1 23 1 0 1 0
lcb flenb(i) i=1,6
lcb 3.4900E+03 3.4900E+03 2.4900E+03 2.4900E+03 8.0000E+02 8.0000E+02 -1.0000E+00 -1.0000E+00
lea ipht icc nobalc nobale ifbrk ilvden ievap nofis
lea 1 4 1 0 1 0 0 1
leb yzere bzere yzero bzero
leb 1.5000E+00 8.0000E+00 1.5000E+00 1.0000E+01

```

1cells

cell	mat	atom	gram	density	volume	mass	pieces	proton	importance
1	1	7.02409E-02	2.24200E+01	3.00000E+01	6.72600E+02	0	1.0000E+00		
2	2	0.00000E+00	0.00000E+00	3.00000E+01	0.00000E+00	0	1.0000E+00		
3	3	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0	0.0000E+00		

total 6.00000E+01 6.72600E+02

1 warning message so far.

decimal words of dynamically allocated storage

general	37806
tallies	31228
bank	19703
cross sections	0

total available (mdas)	81009 = 324036 bytes
available (mdas)	4000000

1problem summary
run terminated when 100000000 particle histories were done.

+ Grazing incident proton beam on Iridium slab 250 kev
0 proton creation tracks weight energy proton loss tracks weight energy
(per source particle) (per source particle)

probid = 11/21/01 11:48:39

print table 41
print table 60

computer time so far in this run 1596.25 minutes
 computer time in mcrun 1596.23 minutes
 source particles per minute 6.2647E-04
 random numbers generated 53634305610
 maximum number ever in bank 0
 bank overflows to backup file 0
 dynamic storage 81013 words,
 most random numbers used was 4326 in history 70074867

44

```

surface 2
cosine bin: -1.
energy      1.2500E-02  0.00000E+00  0.0000
            2.5000E-02  0.00000E+00  0.0000
            3.7500E-02  0.00000E+00  0.0000
            5.0000E-02  0.00000E+00  0.0000
            6.2500E-02  0.00000E+00  0.0000
            7.5000E-02  0.00000E+00  0.0000
            8.7500E-02  0.00000E+00  0.0000
            1.0000E-01  0.00000E+00  0.0000
            1.2500E-01  0.00000E+00  0.0000
            1.5000E-01  0.00000E+00  0.0000
            1.7500E-01  0.00000E+00  0.0000
            2.0000E-01  0.00000E+00  0.0000
            2.2500E-01  0.00000E+00  0.0000
            2.5000E-01  0.00000E+00  0.0000
            2.7500E-01  0.00000E+00  0.0000
            3.0000E-01  0.00000E+00  0.0000
            3.2500E-01  0.00000E+00  0.0000
            3.5000E-01  0.00000E+00  0.0000
            3.7500E-01  0.00000E+00  0.0000
            4.0000E-01  0.00000E+00  0.0000
            4.2500E-01  0.00000E+00  0.0000
            4.5000E-01  0.00000E+00  0.0000
            4.7500E-01  0.00000E+00  0.0000
            5.0000E-01  0.00000E+00  0.0000
            5.2500E-01  0.00000E+00  0.0000
            5.5000E-01  0.00000E+00  0.0000
            5.7500E-01  0.00000E+00  0.0000
            6.0000E-01  0.00000E+00  0.0000
            6.2500E-01  0.00000E+00  0.0000
            6.5000E-01  0.00000E+00  0.0000
            6.7500E-01  0.00000E+00  0.0000
            7.0000E-01  0.00000E+00  0.0000
            7.2500E-01  0.00000E+00  0.0000
            7.5000E-01  0.00000E+00  0.0000
            7.7500E-01  0.00000E+00  0.0000
            8.0000E-01  0.00000E+00  0.0000
            8.2500E-01  0.00000E+00  0.0000
            8.5000E-01  0.00000E+00  0.0000
            8.7500E-01  0.00000E+00  0.0000
            9.0000E-01  0.00000E+00  0.0000
            9.2500E-01  0.00000E+00  0.0000
            9.5000E-01  0.00000E+00  0.0000
            9.7500E-01  0.00000E+00  0.0000
            1.0000E+00  0.00000E+00  0.0000

```

	surface	2	c cosine bin:	0.00000E+00	to	1.74530E-03
			energy			
7.5000E-02			1.2500E-02	2.00000E-07	0.22336	
8.7500E-02			2.5000E-02	3.80000E-07	0.16222	
1.0000E-01			3.7500E-02	4.40000E-07	0.1508	
1.1250E-01			5.0000E-02	4.20000E-07	0.1543	
1.2500E-01			6.2500E-02	2.50000E-07	0.2000	
1.3750E-01			7.5000E-02	4.60000E-07	0.1474	
1.5000E-01			8.7500E-02	3.20000E-07	0.1768	
1.6250E-01			1.0000E-01	5.30000E-07	0.1374	
1.7500E-01			1.1250E-01	5.30000E-07	0.1374	
1.8750E-01			1.2500E-01	7.10000E-07	0.1187	
2.0000E-01			1.3750E-01	9.00000E-07	0.1054	
2.1250E-01			1.5000E-01	1.37000E-06	0.0854	
2.2500E-01			1.6250E-01	2.15000E-06	0.0682	
2.3750E-01			1.7500E-01	3.09000E-06	0.0569	*
2.5000E-01			1.8750E-01	4.77000E-06	0.0458	*
total			2.0000E-01	8.66000E-06	0.0340	*
			2.1250E-01	1.58700E-05	0.0251	*
			2.2500E-01	4.20900E-05	0.0154	*
			2.3750E-01	1.69720E-04	0.0077	*
			2.5000E-01	5.60627E-03	0.0013	*
			total	5.85913E-03	0.0013	*

Angle bin #1, 0° - 0.1°
(cosine shown is $\cos(\pi/2 - \theta)$)

20 energy bins

surface	2	cosine bin:	9.84810E-01	to	9.96190E-01
energy					
1.2500E-02	1.56000E-05	0.0253			
2.5000E-02	7.27300E-05	0.0117			
3.7500E-02	1.13430E-04	0.0094			
5.0000E-02	1.30160E-04	0.0088			
6.2500E-02	1.20160E-04	0.0091			
7.5000E-02	9.04100E-05	0.0105			
8.7500E-02	5.75000E-05	0.0132			
1.0000E-01	2.97200E-05	0.0183			
1.1250E-01	1.18700E-05	0.0290			
1.2500E-01	3.82000E-06	0.0512			
1.3750E-01	9.30000E-07	0.1037			
1.5000E-01	1.10000E-07	0.3015			
1.6250E-01	1.00000E-08	1.0000			
1.7500E-01	0.00000E+00	0.0000			
1.8750E-01	0.00000E+00	0.0000			
2.0000E-01	0.00000E+00	0.0000			
2.1250E-01	0.00000E+00	0.0000			
2.2500E-01	0.00000E+00	0.0000			
2.3750E-01	0.00000E+00	0.0000			
2.5000E-01	0.00000E+00	0.0000			
total	6.46450E-04	0.0039			

surface	2	cosine bin:	9.96190E-01	to	1.00000E+00
energy					
1.2500E-02	5.49000E-06	0.0427			
2.5000E-02	2.38600E-05	0.0205			
3.7500E-02	3.82600E-05	0.0162			
5.0000E-02	4.36400E-05	0.0151			
6.2500E-02	4.06900E-05	0.0157			
7.5000E-02	2.92400E-05	0.0185			
8.7500E-02	1.79560E-05	0.0236			
1.0000E-01	8.39000E-06	0.0345			
1.1250E-01	3.58000E-06	0.0529			
1.2500E-01	9.50000E-07	0.1026			
1.3750E-01	1.80000E-07	0.2357			
1.5000E-01	4.00000E-08	0.5000			
1.6250E-01	0.00000E+00	0.0000			
1.7500E-01	0.00000E+00	0.0000			
1.8750E-01	0.00000E+00	0.0000			
2.0000E-01	0.00000E+00	0.0000			
2.1250E-01	0.00000E+00	0.0000			
2.2500E-01	0.00000E+00	0.0000			
2.3750E-01	0.00000E+00	0.0000			

Angle bin #68,
85°-90°

2.5000E-01 0.000000E+00 0.0000
total 2.12280E-04 0.0069

* * * * *

tally type 1 number of particles crossing a surface.
particle(s) : proton

surface 2
cosine bin: -1. to 0.00000E+00
energy
1.2500E-02 0.00000E+00 0.0000
2.5000E-02 0.00000E+00 0.0000
3.7500E-02 0.00000E+00 0.0000
5.0000E-02 0.00000E+00 0.0000
6.2500E-02 0.00000E+00 0.0000
7.5000E-02 0.00000E+00 0.0000
8.7500E-02 0.00000E+00 0.0000
1.0000E-01 0.00000E+00 0.0000
1.1250E-01 0.00000E+00 0.0000
1.2500E-01 0.00000E+00 0.0000
1.3750E-01 0.00000E+00 0.0000
1.5000E-01 0.00000E+00 0.0000
1.6250E-01 0.00000E+00 0.0000
1.7500E-01 0.00000E+00 0.0000
1.8750E-01 0.00000E+00 0.0000
2.0000E-01 0.00000E+00 0.0000
2.1250E-01 0.00000E+00 0.0000
2.2500E-01 0.00000E+00 0.0000
2.3750E-01 0.00000E+00 0.0000
2.5000E-01 1.00000E+00 0.0000
total 1.00000E+00 0.0000

surface 2
cosine bin: 0.00000E+00 to 1.00000E+00
energy
1.2500E-02 6.56210E-04 0.0039
2.5000E-02 2.65809E-03 0.0019
3.7500E-02 4.23233E-03 0.0015

Sum over all
angle bins

5.0000E-02	4.96509E-03	0.0014
6.2500E-02	5.44576E-03	0.0014
7.5000E-02	5.55055E-03	0.0013
8.7500E-02	5.79733E-03	0.0013
1.0000E-01	5.91880E-03	0.0013
1.1250E-01	6.39339E-03	0.0012
1.2500E-01	6.80390E-03	0.0012
1.3750E-01	7.32951E-03	0.0012
1.5000E-01	8.16091E-03	0.0011
1.6250E-01	9.29315E-03	0.0010
1.7500E-01	1.08095E-02	0.0010
1.8750E-01	1.28450E-02	0.0009
2.0000E-01	1.61703E-02	0.0008
2.1250E-01	2.21435E-02	0.0007
2.2500E-01	3.40218E-02	0.0005
2.3750E-01	6.65577E-02	0.0004
2.5000E-01	6.17654E-01	0.0001
total	8.53407E-01	0.0000
	*	*
	*	*
	*	*
	*	*

run terminated when 100000000 particle histories were done.

computer time = 1596.25 minutes

mcrpx version 2.1.5 Fri May 21 09:49:28 MDT 1999

probid = 11/22/01 18:52:55

probid = 11/21/01 11:48:39

APPENDIX 5

MCNPX Source Subroutine for Grazing Angle Proton Scattering Study

```
c_deck so source
so      1
      subroutine source
so      2
c   user supplied source subroutine
#include "cm.h"
c
c   This is the source routine for oblique proton beams
c   incident on Al or Ir slab
c   The name of this deck is srcoblq.F
c
data pin/3.14159265/
data komin/0/
if(komin.eq.0)then
komin=1
open(47,form='unformatted',status='scratch')
write(jtty,20)
20  format(1x,'Enter source energy (MeV) and incident
obliquity (deg.)
$')
c   example, 2 degree obliquity means enter 92.0 deg (i.e.
92 deg off normal)
read(jtty,*)erg,obliq
write(47)erg,obliq
write(jtty,21)erg,obliq
write(iuo,21)erg,obliq
21  format(1x,'Source energy (MeV)=',e12.5,2x,'Incident
obliquity (deg
$.)=',e12.5)
rewind 47
end if
wgt=1.0
tme=0.0
read(47)erg,obliq
rewind 47
c
c   The source energy
c   erg= 0.1
c   ipt=9 denotes proton source.
c
ipt=9
c   incident grazing obliquity 92 degrees off normal (2
degrees off surface)
ths=obliq/180.*pin
sths=sin(ths)
cth=cos(ths)
c   incident azimuth = 90 degrees
phs=0.5*pin
sphs=1.0
cphs=0.0
```

```
c      direction cosines of incident beam
      uuu=sthc*cphc
      vvv=sthc*sphc
      www=cthc
      aa=sqrt(uuu**2+vvv**2+www**2)
      uuu=uuu/aa
      vvv=vvv/aa
      www=www/aa
c      point of source incidence
      xxx=0.0
      yyy=-0.99
      zzz=yyy*cthcs/sthcs
      jsu=0
      icl=2
      do 50 ispr=1,3
50      spare(ispr)=0.0
      return
      end
```

APPENDIX 6

PHILOOK, Program for Extraction and Conversion to Histogram Form of Emergent Proton Azimuthal Distributions from MCNPX PTRAC File Output Produced in the Grazing Angle Proton Scattering Study

```
implicit real*8 (a-h,o-z)
dimension phibin(60),count(60),a(200),b(200)
character*120 line
data pye/3.14159265/
data count/60*0./
open(2,file='lookit',status='unknown')
open(7,file='bin1',status='unknown')
write(6,1)
1      format(1x,'Enter number of phi bins and number of
histories')
      read(5,*)nbins,hists
      dphi=360./nbins
      write(6,17)nbins
17     format(1x,i5)
      phibin(1)=dphi
      do 10 n=2,nbins
10     phibin(n)=phibin(n-1)+dphi
      fac=180./pye
      open(1,file='ptrac',status='old')
      do 20 i=1,10
20     read(1,2)line
2      format(a)
100    read(1,2,end=200)line
      read(1,2)line
      read(1,*)x,y,z,u,v,w,e,wt,t
      sth=sqrt(1.-w*w)
      if(sth.eq.0.)go to 100
      cphi=u/sth
      sphi=v/sth
      if(cphi.ge.0. .and. sphi.ge.0.)kq=1
      if(cphi.ge.0. .and. sphi.lt.0.)kq=4
      if(cphi.lt.0. .and. sphi.ge.0.)kq=2
      if(cphi.lt.0. .and. sphi.lt.0.)kq=3
      if(abs(sphi-1.0).le.1.e-5)kq=5
      if(kq.eq.5)phi=0.5*pye
      if(kq.eq.1)phi=asin(abs(sphi))
      if(kq.eq.2)phi=pye-asin(abs(sphi))
      if(kq.eq.3)phi=pye+asin(abs(sphi))
      if(kq.eq.4)phi=2.*pye-asin(abs(sphi))
      phid=fac*phi
      do 30 n=1,nbins
```

```

if(phid.gt.phibin(n))go to 30
ibin=n
if(ibin.eq.1)write(7,77)x,y,z,u,v,w,sphi,cphi
77  format(1x,8e16.9)
count(ibin)=count(ibin)+1.
go to 100
30  continue
200  do 210 n=1,nbins
      count(n)=count(n)/hists
210  write(2,4)n,phibin(n),count(n)
4      format(1x,'bin no.=',i5,1x,'upper
bound(deg.)=',f7.2,1x,'count=',e
      $12.5)
      i=1
      a(1)=0.
      b(1)=count(1)
      nb1=nbins-1
      do 215 n=1,nb1
      i=i+1
      a(i)=phibin(n)
      b(i)=count(n)
      i=i+1
      a(i)=phibin(n)
215  b(i)=count(n+1)
      ii=i+1
      a(ii)=360.
      b(ii)=b(1)
      do 220 i=1,ii
220  write(2,5)a(i),b(i)
5      format(1x,f7.1, 2x,e12.5)
      close (1)
      close (2)
      stop
      end

```