

上海交通大學

最优化方的

SHANGHAI JIAO TONG UNIVERSITY 12002091

阁资格

800 DONG CHUAN ROAD SHANGHAI 200240, THE PEOPLE'S REPUBLIC OF CHINA

Problem 1.

$$f(x_1, x_2, x_3) = X_2^{\frac{1}{2}} = [x_1 \times x_2 \times x_3] \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, Q = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow positive semi-define$$

$$f(x_1, x_2, x_3) = X_1^{\frac{1}{2}} + 2X_2^{\frac{1}{2}} - X_1 X_3 = X_1^{\frac{1}{2}} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix} X, Q_0 = \begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 2 & 0 \\ -\frac{1}{2} & 0 & 0 \end{bmatrix} \rightarrow \lambda_1 = -0.20$$

$$i \neq i \leq i \text{ incle fine}.$$

$$f(x_1, \chi_2, \chi_3) = \chi_1^2 \chi_3^2 + 2\chi_1 \chi_2 + 2\chi_1 \chi_3 + 2\chi_2 \chi_3 = \chi^T \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \times Q = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \rightarrow \lambda_1 = -1 \quad \lambda_2 = 1 \quad \lambda_3 = 2$$
em.

Problem 2.

$$\frac{1}{1+2\lambda(1-\lambda)} + \frac{1}{1+2\lambda(1-\lambda)} + \frac{1}{1+2\lambda$$

Problem 3.

I don't know how to prove that. Could you please upload the solution to the canvas! thx.

上海交通大學

SHANGHAI JIAO TONG UNIVERSITY

800 DONG CHUAN ROAD SHANGHAI 200240, THE PEOPLE'S REPUBLIC OF CHINA

Problem T:
$$f(x) = \chi_1^{\zeta} + 2\chi_1^2 \chi_2^2 + \chi_2^{\zeta} \qquad \nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial y_2} \end{bmatrix} = \begin{bmatrix} 4\chi_1^2 + 4\chi_1 \chi_2 \\ 4\chi_2^2 + 4\chi_1^2 \chi_2 \end{bmatrix}$$

$$\nabla^2 f(x) = \begin{bmatrix} 12\chi_1^2 + 4\chi_2^2 & 8\chi_1 \chi_2 \\ 8\chi_1 \chi_2 & 12\chi_2^2 + 4\chi_1^2 \end{bmatrix}$$

$$f(x) = 4 + \begin{bmatrix} 8 \\ 8 \end{bmatrix}^T \begin{bmatrix} x_{i-1} \\ x_{k-1} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} x_{i-1} \\ x_{k-1} \end{bmatrix}^T \begin{bmatrix} 16 & 8 \\ 8 & 16 \end{bmatrix} \begin{bmatrix} x_{i-1} \\ x_{k-1} \end{bmatrix}$$

$$= 8x_1^2 + 8x_2^2 - 16x_1 - 16x_2 + 8x_1x_2 + 12$$

S.t.
$$12x_1+10x_2+25x_3+20x_4 \le 6000$$

 $8x_1+6x_2+2x_3+4x_4 \le 2000$

$$\chi_i \ge 0$$
, $\hat{b} = 1, 2, 3, 4$.

Problem 9.

$$Xa=[0.5,0.5]^T$$
 is feasible, on the boundary $Xb=[1,1]^T$ is infeasible.

Problem 10.

min χ_1 is -2, $\chi_2=0$.