Erstellung

von Überlappungs- und Hamiltonintegralen auf Basis der Symmetrieeigenschaften von Young-Tableaus

hier für die Permutationsgruppe: 0

30. Mai 2024

1 Young-Tableaus

Die möglichen (Standard-)Young-Tableaus zur Gruppe 2 lauten:

[2]: $\boxed{1}$ $\boxed{2}$

 $[1^2]: \frac{\boxed{1}}{2}$

2 Ausmultiplizierte Young-Tableaus

2.1 Raum-Funktionen

 a, b, c, \dots = allgemeine Funktionen, die beispielsweise p-Orbitale repräsentieren könnten

[2]:

$$\boxed{1 \quad 2} \quad \frac{1}{\sqrt{2}} \left(+a_1 \cdot b_2 + a_2 \cdot b_1 \right)$$

 $[1^2]:$

$$\boxed{\frac{1}{2}} \quad \frac{1}{\sqrt{2}} \left(+a_1 \cdot b_2 - a_2 \cdot b_1 \right)$$

2.2 Spin-Funktionen

Die möglichen Kombinationen $|S\>M_S\rangle$ für die Tableaus der Permutationsgruppe 2 lauten:

[2]:

$$\boxed{1 \quad 2} \qquad |1 \quad +0\rangle = \frac{1}{\sqrt{2}} \left(+\alpha_1 \cdot \beta_2 + \alpha_2 \cdot \beta_1 \right)$$

$$\boxed{1 \quad 2} \qquad |1 \quad -1\rangle = (+\beta_1 \cdot \beta_2)$$

 $\left[1^{2}\right]$:

$$\boxed{\frac{1}{2}} \qquad |0 + 0\rangle = \frac{1}{\sqrt{2}} \left(+\alpha_1 \cdot \beta_2 - \alpha_2 \cdot \beta_1 \right)$$

3 Überlappungsintegrale

3.1 Raumfunktionen

(nur nicht verschwindende Kombinationen gezeigt)

Identische Tableaus ergeben (aufgrund der normierten Funktionen darin) automatisch 1 und werden daher hier nicht aufgelistet.

3.2 Spinfunktionen

(nur nicht verschwindende Kombinationen gezeigt)

Überlapp zw. versch. Tableaus ist 0 (wird hier ausgelassen), Überlapp zwischen gleichen Tableaus mit gleichem m_S -Wert ist 1 (wird hier ausgelassen)

hier informale Darstellung der Tableaus mit Spinfunktionen nach dem Schema:

$$\langle \, \text{Tableau 1} \, | \, \text{Tableau 2} \, \rangle = \left\langle \underbrace{S \quad m_S}_{\text{von Tableau 1}} \, | \, \underbrace{S \quad m_S}_{\text{von Tableau 2}} \, \right\rangle = \underbrace{\dots}_{\text{Überlapp der Tableaus 1 und 2}}$$

4 Hamiltonmatrixelemente

4.1 Raum-Funktionen

$$\left\langle \boxed{1 \ 2} \middle| \hat{H} \middle| \boxed{1 \ 2} \right\rangle_{\Phi} = +2 \cdot \left\langle a_1 \cdot b_2 \middle| \hat{H} \middle| a_1 \cdot b_2 \right\rangle$$

4.2 Spin-Funktionen

Achtung: Der Hamiltonoperator ist unabhängig vom Spin, daher werden die Hamiltonintegrale der Spin-Tableaus zu den Überlappungsintegralen und werden hier nicht erneut aufgeführt. (s. Kapitel 4.2)

Inhaltsverzeichnis

1	You	ıng-Tableaus	1
2	Aus	smultiplizierte Young-Tableaus	2
	2.1	Raum-Funktionen	2
	2.2	Spin-Funktionen	2
3	Übe	erlappungsintegrale	3
	3.1	Raumfunktionen	3
	3.2	Spinfunktionen	3
4	Har	miltonmatrixelemente	4
	4.1	Raum-Funktionen	4
	12	Spin-Funktionen	1