\bigcirc	
-0	Nafis Abor EC 330 HW7
	In order for a graph to be bipartite, the graph G(V, E) has its vertex (V) set
	divided into V=LUR where Land Rare Disjoint and all Edges (E) go between
	Land R. Ang element of L does not have an edge connecting to another
	element in L. Psuedo ende to check br a bipartite:
	will be using a similare idea
	as broth first search bool Bipartite (G.S) \$11 s is starting node
	will color event vertex white for (each vertex $u \in G.V$)
	to indicate that they have not U. Color = white i
	been visited. Sicolor= RED'll source is red or in partition 1,
	C. adj[u] u EV, is Q=Ø; Enque ue (a,s);
	used to indicate all adjount while (a 7 d) {
	vertices of vertex u. u = Deque ue (a); // this emplies queue working
	- cotor Red refers to Partition! if Lany acadi [u] == u) // if there is ascelf hop.
	- Color Blue refer to partition 2 return Palse;
\bigcirc	- Run through every vertex for [each, G.adi [u] [1] loop through every neighbor
	and if it contains nepshbors if (v.color == white && u.color == Red) {
	that has already been assigned v.color = blue; //assign the openite
	the same color as itself, Enaueue (a, v); 3 // color
	return false. else if (v.Gbr==white 22 u.odor== Blue) }
	- If end of function is Vicolor = RED; / assign the opp. color
	reached, toturn true because Engineer (a,v); } // store in queue
	no adjacent vertexies of else if (Volor== u.color) // come tartition
	any given vertex was return false;
	the same color as itself.
	using an adjacents list
	will give a run time return true;
	of O(V+E). }
-	11'm the case v is already the opposite alor, the
	11 for loop just continues
-	11 pc_mp_100;
()	

Mobile Scanner

2)	A Eulerian Cycle 15 imassible as there are
	many edges (one for every vertex) that leads to the
	1 A colebrits, but in order to visit every edge come would
	have to reach each one of those edges. This is clearly
	imposible since you can't leave the celebrats rector once
	you reach it. In a cycle you must be able to come back to the
	Starting node once you leave it down one edge so its a closed loop
	Thered without "lifting off your pencil" you'd have to "lift your pencil"
· · ·	every time you reach adobity.
•	
	A hamiltonian Path would be possible
	by billowing the numbered edges, but a cucle
	1 is a closed loop that comes back to the storting
	node which is deads imperiable because no edge
	leads out of a celebrity. A hamiltonian Cycle for this reason
	impossible.
· · · · · · · · · · · · · · · · · · ·	
	Scanned with 🗸

Visiting every edge will require I to trace bouch on evers edge in a siven path Starting Eulenan code (ign possible wi delebrit order to have a enterior cycles the starting 2) where of celebrity 15 present, the celebrity node always the est node smale no edge leads out from -celebritis botause say/we do down path We stop at the celebrity and we herer set to visit party a. The for the fath 2 as we never hisit and obje in path ? Hamiltonian, cycle, Cimpossible we edglonty) Some/as/the exterior/cose/ in/order/to To louch and visit certain nucles again the un livited nodes 3) weight ev(p) of path (P) = sum of weights of its constituents $\frac{\omega(p)}{z} \stackrel{k}{\in} \omega(V_{i-1}, V_i)$ Shortest path weight of (u,v) from u to v is -S(U,V)= { min { w(P) ! Unov} if there is a rath for te to v Disk stra (a, u,s) Initialize sinole-suce (6,5) G.V

C(V) inside O(V) gives O(V2)+ 0(EV) went of the Q+O flow over of 1

U= extract-min (Q) -> O(V) - florus recreetex/for (indeed 1) to flow over of 1

3= SU 9U? S=Ø Q= G.V While Q + Ø \$ 0(U) 3= SU 9 43 for each vertex VE a. als [u] = /E times Relax (u,v,w) OCI) Scanned with

Mobile Scanner