2015年下学期 2012 级《网络设计》项目

一、阅读以下说明,回答问题 1 至问题 5

【说明】

图 1-1 所示的具有冗余的交换网布线拓扑结构中,每一交换机使用 rapid-pvst 生成树模式。分布层交换机 DLSW1, DLSW2 为多层交换,接入层交换机 ALSW1, ALSW2、ALSW3 为层二交换。无线用户通过无线接入点 AP1、AP2 访问网络。

图 1-1

图 1-1 所示的交换网络互连部署如下。

1. 按网络用户所在部门、使用场所等将交换网络划分多个 VLAN 和子网。如本案例中将所有无线用户置于 VLAN 110 中,而职员培训教室的用户终端置于 VLAN 120 中。每个 VLAN 处于一个 IP 子网中,根据需要采用静态、动态、或两者结合的寻址方式,如表 1-1。

VLAN 编号	命名	寻址方式	网络		
1	default	静态	10.1.1.0/24		
110	VLAN110	DHCP (地址池 wlan)	10.1.110.0/24		
120	VLAN120	DHCP (地址池 class)	10.1.120.0/24		

表 1-1 VLAN 划分与寻址

- 2. 对交換机实施 STP 配置。保持 VLAN 1、VLAN 110 的生成树恰好以 DLSW1 作为主根, DLSW2 作为备根,而保持 VLAN 120 的生成树恰好以 DLSW2 作为主根,以 DLSW1 作为备根。
- 3. 使用 VTP 简化 VLAN 配置和管理。以 EXAMNET 作为 VTP 管理域名,分布层交换机作为 VTP 服务器,接入交换机作为 VTP 客户。
- 4. 在分布层交换机上对于每个 VLAN 配置 HSRP。以每个 VLAN 对应的生成树主根作为默认的激活路由器,其优先级为 150,以其对应的生成树备根作为为备份路由器。
 - 5. 网络中的交换设备端口分配如表 2-2。

表 2-2 交换设备端口分配

(网络设计 第 1 页 共 13 页)

设备	端口	VLAN	
DLSW	Gig0/1 - 2	802.1Q Trunk 和 EtherChannel Group 12	
DLSWI	Fa0/22 - 24	802.1Q Trunk	
DLSW2	Gig0/1 - 2	802.1Q Trunk 和 EtherChannel Group 12	
	Fa0/22 - 24	802.1Q Trunk	
ALSW	1 Fa0/21	VLAN 110	
ALSW	2 Fa0/1 - 20	VLAN 120	
ALSW	3 Fa0/21	VLAN 110	

6. 网络中的设备接口 IP 地址分配如表 2-3。

表 2-3 设备接口 IP 地址分配

10.1.110.253 10.1.120.253

设备	接口	IP Address	默认网关
DLSW1	VLAN 1	10.1.1.251/24	10.1.1.253/24
	VLAN 110	10.1.110.251/24	10.1.1.253/24
	VLAN 120	10.1.120.252/24	10.1.1.253/24
DLSW2	VLAN 1	10.1.1.252/24	10.1.1.253/24
	VLAN 110	10.1.110.252/24	10.1.110.253/24
	VLAN 120	10.1.120.251/24	10.1.120.253/24
PC1	NIC	DHCP pool class	DHCP pool class
PC2	NIC	DHCP pool class	DHCP pool class
LT1	NIC	DHCP pool wlan	DHCP pool wlan
LT2	NIC	DHCP pool wlan	DHCP pool wlan

【问题1】

在 32768、16384、12288 中选择合适的优先值,在 DLSW1 上配置 STP,使 VLAN 1和 VLAN 110 的生成树以 DLSW1 作为主根,而 VLAN 120 的生成树以 DLSW1 作为备根。 最小的最优先

DLSW1#

DLSW1#configure terminal

DLSW1(config)#spanning-tree vlan 1, 110 priority 12288

DLSW1(config)#spanning-tree vlan 120 priority 16384

DLSW1(config)#end

【问题 2】

请根据图 1-1 以及上述说明,在 DLSW1 上完成以下 VTP 配置。

DLSW1#

DLSW1#configure terminal

DLSW1(config)#vtp mode __sersyer

DLSW1(config)#vtp domain **_EXAMNET**

DLSW1(config)#vlan 110

DLSW1(config-vlan)#end

【问题3】

请根据图 1-1 以及上述说明,在 DLSW1 上完成以下 EtherChannel 和 Trunk 配置。

DLSW1#

DLSW1#configure terminal

DLSW1(config)#interface range GigabitEthernet0/1 - 2

DLSW1(config-if-range)#switchport trunk encapsulation dot1Q

DLSW1(config-if-range)#switchport mode trunk

(网络设计 第2页共13页)

```
12
   DLSW1(config-if-range)#channel-group
                                                mode on
   DLSW1(config-if-range)#exit
   DLSW1(config)#interface range FastEthernet0/22 - 24
   DLSW1(config-if-range)#switchport trunk encapsulation dot/1Q
   DLSW1(config-if-range)#switchport mode trunk
   DLSW1(config-if-range)#end
【问题 4】
   请根据图 1-1 以及上述说明,在 DLSW1 上完成以下 HSRP 配置并启用路由。
   DLSW1#
   DLSW1#configure terminal
   DLSW1(config)#ip default-gateway 10.1.1.253
   DLSW1(config)#interface Vlan110
   DLSW1 (config-if) \#ip \ address \qquad \underline{ 10)1.110.254}5.255.0
   DLSW1(config-if)#standby 110 ip 10 110.253
   DLSW1(config-if)#standby 110 priority 150
   DLSW1(config-if)#standby 110 preempt
   DLSW1(config-if)#exit
   DLSW1(config)#interface Vlan120
   DLSW1(config-if)#ip address 10/21.120.255255.255.0
   DLSW1(config-if)#standby 120 ip 10(1),120.253
   DLSW1(config-if)#standby 120 preempt
   DLSW1(config-if)#end
【问题 5】
   分布层交换机 DLSW1 可以作为 DHCP 服务器使用,请根据图 1-1 以及上述说明,
在 DLSW1 上完成以下对于 DHCP 地址池 wlan 的配置。
   DLSW1#
   DLSW1#configure terminal
   DLSW1(config)#ip dhcp excluded-address 10.1.110.1 10.1.110.10
   DLSW1(config)#ip dhcp excluded-address 10.1.110.251 10.1.110.255
   DLSW1(config)#ip dhep excluded-address 10.1.120.1 10.1.120.10
   DLSW1(config)#ip dhcp excluded-address 10.1.120.251 10.1.120.255
   DLSW1(config)#ip dhep pool wlan
   DLSW1 (dhcp-config) \# network \\ 10 (1).110.0255.255.255.0
   DLSW1(dhcp-config)#default-router 1011.110.253
   DLSW1(dhcp-config)#end
```

(网络设计 第3页共13页)

三、阅读以下说明,回答问题 1 至问题 5。

【说明】

某公司的网络互连拓扑如图 2-1。

图 2-1

公司总部、分支机构、Internet之间的网络互连部署如下。

1. 公司总部与各分支机构之间通过 Frame Relay 链路连接, 形成以公司总部为中心的点到多点的多路接入网络, 并使用 RIPv2 协议实现公司总部网络与各分支机构网络之间的互连。Frame Relay 交換设备的接口 DLCI 分配分配如表 2-1。

表 2-1 Frame Relay 交换设备的接口 DLCI 分配

From Port	Sublink DLCI	To Port	Sublink DLCI
Serial1	102	Serial2	201
Serial1	103	Serial3	301

- 2. 公司总部通过 PPP 链路连接到 Internet, 公司总部与各分支机构的网络用户都必须通过该链路访问 Internet。
- 3. 针对公司总部的公用服务器与内部服务器之间的通信安全,划分 2 个 VLAN。 所有内部服务器置于 VLAN 10 中,对应的 IP 子网为 172.16.1.0/24。所有公用服务器置于 VLAN 20,对应的 IP 子网为 172.16.2.0/24。交换机经 802.1Q Trunk 与路由器连接。
- 4. ISP 分配给公司可用的公用 IP 地址块 ________9.165.202.128/30。为了让公司内部所有网络用户获得访问 Internet 的公用 IP 地址, 以公用 IP 地址块的前两地址作为地址池, 在路由器 HQ-RT 中配置带 PAT 的动态 NAT, 实现内部地址到公用 IP 地址的动态转换。为了让 Internet 用户访问公司的公用 Web 服务器, 在路由器 HQ-RT 中配置静态 NAT, 将公用 Web 服务器内部地址(172.16.2.240)映射到外部地址(209.165.202.131)。
 - 5. 路由器 HQ-RT 上对主机名、接口及 IP 地址所作配置如下。

```
hostname HQ-RT
!
interface FastEthernet0/0
no ip address
!
interface FastEthernet0/0.1
```

(网络设计 第 4 页 共 13 页)

```
ip address 172.16.1.250 255.255.255.0
interface FastEthernet0/0.2
 ip address 172.16.2.250 255.255.255.0
interface Serial0/0/0
 no ip address
 encapsulation frame-relay ietf
 frame-relay lmi-type q933a
interface Serial0/0/0.100 multipoint
 ip address 172.30.0.1 255.255.255.248
interface Serial0/0/1
 ip address 209.165.200.2 255.255.255.252
6. 路由器 BR1-RT 上对主机名、接口及 IP 地址所作配置如下。
hostname BR1-RT
interface FastEthernet0/0
 ip address 172.16.11.250 255.255.255.0
interface Serial0/0/0
 no ip address
 encapsulation frame-relay ietf
 frame-relay lmi-type q933a
interface Serial0/0/0.200 multipoint
 ip address 172.30.0.2 255.255.255.248
7. 路由器 BR2-RT 上对主机名、接口及 IP 地址所作配置如下。
hostname BR2-RT
interface FastEthernet0/0
 ip address 172.16.12.250 255.255.255.0
interface Serial0/0/0
 no ip address
 encapsulation frame-relay ietf
 frame-relay lmi-type q933a
interface Serial0/0/0.300 multipoint
 ip address 172.30.0.3 255.255.255.248
```

(网络设计 第 5 页 共 13 页)

【问题1】 请根据图 2-1 以及上述说明,并结合已有的主机名、接口及 IP 地址配置,在路由器 HQ-RT 上完成接口 FastEthernet0/0 的子接口配置。 HQ-RT# HQ-RT#configure terminal HQ-RT(config)#interface FastEthernet0/0.1 10 HQ-RT(config-subif)#encapsulation dot1Q (1) HQ-RT(config-subif)#exit HQ-RT(config)#interface FastEthernet0/0.2 HQ-RT(config-subif)#encapsulation dot1Q (2) 20 HQ-RT(config-subif)#end 【问题 2】 请根据图 2-1 以及上述说明,并结合已有的主机名、接口及 IP 地址配置,在路由器 HQ-RT 上完成 Frame Relay 多点子接口静态映射配置。 HO-RT# HQ-RT#configure terminal HQ-RT(config)#interface Serial0/0/0.100 multipoint HQ-RT(config-subif)#frame-relay map ip172.30.0.2br20dcast HQ-RT(config-subif)#frame-relay map ip_ (4) 172.30.0.3 301 HQ-RT(config-subif)#end 【问题3】 请根据图 2-1 以及上述说明,并结合已有的主机名、接口及 IP 地址配置,以到达 Internet 为默认路由,以 RIP 为动态路由,在路由器 HO-RT 上完成以下路由配置。 HO-RT# HQ-RT#configure terminal HQ-RT(config)#ip route 0.0\0.000.000.0000/0/1 HQ-RT(config)#router rip HQ-RT(config-router)#version 2 $HQ\text{-}RT (config\text{-}router) network \qquad \underline{\hspace{0.5cm}} (6) \underline{172.30.0.0}$ HQ-RT(config-router)network (7) 172.16.0.0 HQ-RT(config-router)default-information originate HQ-RT(config-router)no auto-summary HQ-RT(config-router)#end 【问题 4】 路由器 HQ-RT 到 Internet 的 PPP 链路采用 CHAP 认证,口令为 passppp。请根据图 2-1 以及上述说明,并结合已有的主机名、接口及 IP 地址配置,在路由器 HQ-RT 上完 成以下 PPP 配置。 HQ-RT# HQ-RT#configure terminal HQ-RT(config)#username ISP secret D&SSDDD HQ-RT(config)#interface Serial0/0/1 HQ-RT(config-if)#encapsulation ppp HQ-RT(config-if)#ppp authentication (9) chap HQ-RT(config-if)#end 【问题 5】

(网络设计 第 6 页 共 13 页)

请根据图 2-1 以及上述说明,并结合已有的主机名、接口及 IP 地址配置,在路由器

```
HQ-RT 上完成以下 NAT 配置。
    HQ-RT#
    HQ-RT#configure terminal
    HQ-RT(config)#ip nat pool ipnatpool 2091\(\frac{165}{165}\)ne\(\frac{209}{20}\) 255.269.251 65. 202. 1\(\frac{1}{3}\)0
    HQ-RT(config)#ip nat inside source list 10 pool ip#atpoodrload
    HQ-RT(config)#ip nat inside source static 170.16.2.240 209.165.202.131
    HQ-RT(config)#interface FastEthernet0/0.1
    HQ-RT(config-subif)#ip nat inside
    HQ-RT(config-subif)#exit
    HQ-RT(config)#interface FastEthernet0/0.2
    HQ-RT(config-subif)##ip nat inside
    HQ-RT(config-subif)##exit
    HQ-RT(config)#interface Serial0/0/0.100 multipoint
    HQ-RT(config-subif)#ip nat ___(14)__i nsi de
    HQ-RT(config-subif)##exit
    HQ-RT(config-if)#interface Serial0/0/1
    HQ-RT(config-if)#ip nat ___(15)_outside
    HQ-RT(config-if)#end
```

(网络设计 第7页共13页)

三、阅读以下说明,回答问题1至问题5。

【说明】

某网络互连拓扑如图 3-1。网络 NET1、网络 NET2、路由器 RT1 到路由器 RT2 之间的网络使用 OSPF 协议。网络 NET3、路由器 RT3 到路由器 RT1 之间的网络使用 RIPv2 协议。网络 NET4、路由器 RT4 到 RT2 之间的网络使用静态路由或默认路由。为了在不同的路由协议之间共享路由信息,需要运行多种路由协议的路由器上 RT1、RT2 实施重分发。

图 3-1

网络中各路由器的主机名、接口及 IP 地址配置如下。

1, 路由器 RT1 上对主机名、接口及 IP 地址所作配置如下。

```
! hostname RT1 ! interface Loopback0 ip address 192.168.255.1 255.255.255.255 ! interface FastEthernet0/0 ip address 172.16.10.251 255.255.255.0 ! interface Serial0/0/0 ip address 172.31.0.1 255.255.255.252 ! interface Serial0/0/1 ip address 172.31.0.5 255.255.255.252 ! 2. 路由器 RT2 上对主机名、接口及 IP 地址所作配置如下。! hostname RT2
```

(网络设计 第 8 页 共 13 页)

```
interface Loopback0
    ip address 192.168.255.2 255.255.255.255
   interface FastEthernet0/0
    ip address 172.16.20.251 255.255.255.0
   interface Serial0/0/0
    ip address 172.31.0.2 255.255.255.252
   interface Serial0/0/1
    ip address 172.31.0.9 255.255.255.252
    3. 路由器 RT3 上对主机名、接口及 IP 地址所作配置如下。
   hostname RT3
   interface FastEthernet0/0
    ip address 172.16.30.251 255.255.255.0
   interface Serial0/0/0
    ip address 172.31.0.6 255.255.255.252
    4. 路由器 RT4 上对主机名、接口及 IP 地址所作配置如下。
   hostname RT4
   interface FastEthernet0/0
    ip address 172.16.40.251 255.255.255.0
   interface Serial0/0/0
    ip address 172.31.0.10 255.255.255.252
【问题1】
    请根据图 3-1 以及上述说明,并结合已有的主机名、接口及 IP 地址配置,在路由器
RT1 上配置 OSPF 和 RIPv2。将 OSPF 获悉的路由以度量值 1 重分发到 RIP 中, 而将 RIP
获悉的路由以度量值 10 重分发到 OSPF 中,并且重分发子网路由。
   RT1#
   RT1#configure terminal
   RT1(config)#router ospf 100
                                 redistribute rip subnets
   RT1(config-router)#redistribute rip1) metric 10
   RT1(config-router)#network <u>172.3</u>1.0.0 0.0.0.3 area 0
   RT1(config-router)#network <u>172.16.20.0 0.0.0.255</u> area 0
   RT1(config-router)#exit
   RT1(config)#router rip
   RT1(config-router)#version 2
```

(网络设计 第9页共13页)

```
RT1(config-router)#passive-interface default
   RT1(config-router)#no passive-interface $0\f\( 0/1 \)
   RT1(config-router)#network 172.31.0.4
   RT1(config-router)#no auto-summary
   RT1(config-router)#end
【问题 2】
   请根据图 3-1 以及上述说明,并结合已有的主机名、接口及 IP 地址配置,在路由器
RT2 上配置静态路由和 OSPF,将静态路由或直连路由以默认度量值 20、默认度量值类
型2重分发到OSPF中,并且重分发子网路由。
   RT2#
   RT2#configure terminal
   RT2(config)#ip route 172.16.40.0 255.255.255.0 172.31.0.10
   RT2(config)#router ospf 100
   RT2(config-router)#redistribute static metric 20
                             static metric 2
   RT2(config-router)#redistribute
   RT2(config-router)#network <u>172.16.20.0 0.0.0.255 area0</u>
   RT2(config-router)#end
【问题3】
   请根据图 3-1 以及上述说明,并结合已有的主机名、接口及 IP 地址配置,在路由器
RT3 上配置 RIP 路由协议。
   RT3#
   RT3#configure terminal
   RT3(config)#router rip
   RT3(config-router)#version 2
   RT3(config-router)#network 172\(\text{2}\)31.0.4
   RT3(config-router)#no auto-summary
   RT3(config-router)#end
【问题 4】
   请根据图 3-1 以及上述说明,并结合已有的主机名、接口及 IP 地址配置,在路由器
   RT4#
   RT4#configure terminal RT4(config)#ip route 172416.20.0 255.255.255.0 172.31.0.9
```

RT4上配置默认路由。

RT4(config)#end

【问题 5】

用一句话概括环回接口(Loopback)在 OSPF 配置环境中的可能用途。 减少重新建立毗邻关系 和通告链路状态的开销

(网络设计 第 10 页 共 13 页)

四、阅读以下说明,回答问题1至问题2。 【说明】 某公司决定利用公用 Internet 实现公司总部与分支机构之间的互连,如图 4-1。 BGP AS 65002 BGP AS 65001 GRE Tunnel: 172.31.0.0/30 172.16.1.0/24 172.16.9.0/24 HO-SW BR1-SW BR-RT HQ-RT Laptop Private server 202.103.101.192/30 202. 103. 100. 168/30 Internet 图 4-1 针对网络连通性及通信安全的作以下部署。 1. 在总部路由器 HQ-RT 与分支机构路由器 BR-RT 经过 Internet 的连接之间构建 GRE 隧道,使用外部网关协议 BGP 实现位于 GRE 隧道两端的网络的连通性。 2. 在总部路由器 HQ-RT 与分支机构路由器 BR-RT 经过 Internet 的连接之间构建 IPsec 安全信道,对所有传输数据进行加密。 3. 构建 IPsec 安全信道所使用的 ISAKMP 策略参数和 IPsec 变换集如下。 ISAKMP 认证方法: 预共享密钥 ISAKMP 预共享密钥: ikepsk ISAKMP 加密算法: AES 256 ISAKMP 哈希算法: SHA ISAKMP 密钥交换: DH 组 5 IPsec 加密变换: ESP 使用 AES 256 加密算法 IPsec 认证变换: ESP 使用 SHA 认证算法 总部与各分支机构形成的每一对 IPsec 对等方分别采用不同的预共享密钥。 4. 总部路由器 HQ-RT 上对主机名、接口及 IP 地址所作配置如下。 hostname HQ-RT interface Tunnel 0 ip address 172.31.0.1 255.255.255.252 tunnel mode gre ip interface FastEthernet0/0 ip address 172.16.1.250 255.255.255.0 interface Serial0/0/0 ip address 202.103.100.170 255.255.255.252 5. 分支机构路由器 BR-RT 上对主机名、接口及 IP 地址所作配置如下。 hostname BR-RT

(网络设计 第 11 页 共 13 页)

```
interface Tunnel0
    ip address 172.31.0.2 255.255.255.252
    tunnel mode gre ip
   interface FastEthernet0/0
    ip address 172.16.9.250 255.255.255.0
   interface Serial0/0/0
    ip address 202.103.101.194 255.255.255.252
【问题 1】
   为了在总部路由器 HQ-RT 和分支机构路由器 BR-RT 之间构建 GRE 隧道,并使用
外部网关协议 BGP 实现 GRE 隧道两端的网络的连通性。根据图 4-1 以及上述说明,并
结合已有的主机名、接口及 IP 地址配置, 在总部路由器 HQ-RT 上完成下列配置。
   HO-RT#
   HQ-RT#configure terminal
   HQ-RT(config)#interface Tunnel 0
   HQ-RT(config-if)#tunnel source Serial0/0/0
   HQ-RT(config-if)# tunnel destination __(1)__
   HQ-RT(config-if)#exit
   HQ-RT(config)# ip route __(2)__ 255.255.255 Serial0/0/0
   HQ-RT(config)#router bgp 65001
   HQ-RT(config-router)#neighbor __(3)__ remote-as 65002
   HQ-RT(config-router)#network __(4)__ mask 255.255.255.0
   HQ-RT(config-router)#end
【问题 2】
    为了在总部路由器 HO-RT 和分支机构路由器 BR-RT 之间构建 IPsec 安全隧道,对
所有传输数据进行加密。根据图 4-1 以及上述说明,并结合已有的主机名、接口及 IP 地
址配置,在总部路由器 HQ-RT 上完成下列配置。
   HQ-RT#
   HQ-RT#configure terminal
   HQ-RT(config)#crypto isakmp policy 1
   HQ-RT (config-isakmp)#encryption (5)
   HQ-RT (config-isakmp)#authentication pre-share
   HQ-RT (config-isakmp)#hash __(6)_
   HQ-RT (config-isakmp)#group 5
   HQ-RT (config-isakmp)#lifetime 86400
   HQ-RT (config-isakmp)#exit
   HQ-RT(config)#crypto isakmp key ikepsk address ___(7)_
   HQ-RT(config)#crypto ipsec transform-set ipsec-set __(8)_
   HQ-RT(config)#access-list 101 permit gre host ___(10)__ host ___(1)_
   HQ-RT(config)#crypto map ipsec-map 10 ipsec-isakmp
   HQ-RT(config-crypto-map)#set peer (12)
   HQ-RT(config-crypto-map)#set pfs group5
   HQ-RT(config-crypto-map)#set security-association lifetime seconds 7200
   HQ-RT(config-crypto-map)#set transform-set (13)
```

(网络设计 第 12 页 共 13 页)

HQ-RT(config-crypto-map)#match address	(14)
HQ-RT(config-crypto-map)#exit	
HQ-RT(config)#interface Serial0/0/0	
HQ-RT(config-if)#crypto map(15)	
HQ-RT(config-if)#end	

(网络设计 第 13 页 共 13 页)