

Department of Computer Engineering

Aim: To study Edge detection with Canny

Objective: Perform Canny Edge detector using Noise reduction using Gaussian filter, Gradient calculation along the horizontal and vertical axis Non-Maximum suppression of false edges, Double thresholding for segregating strong and weak edges, Edge tracking by hysteresis

Theory:

The Canny edge detector is an edge detection operator that uses a multi-stage algorithm to detect a wide range of edges in images. It was developed by John F. Canny in 1986. Canny also produced a computational theory of edge detection explaining why the technique works.

What are the three stages of the Canny edge detector To fulfill these objectives, the edge detection process included the following stages.

Department of Computer Engineering

- Stage One Image Smoothing.
- Stage Two Differentiation.
- Stage Three Non-maximum Suppression.

The basic steps involved in this algorithm are:

- Noise reduction using Gaussian filter
- Gradient calculation along the horizontal and vertical axis
- Non-Maximum suppression of false edges
- Double thresholding for segregating strong and weak edges
- Edge tracking by hysteresis

Now let us understand these concepts in detail:

1. Noise reduction using Gaussian filter

This step is of utmost importance in the Canny edge detection. It uses a Gaussian filter for the removal of noise from the image, it is because this noise can be assumed as edges due to sudden intensity change by the edge detector. The sum of the elements in the Gaussian kernel is 1, so the kernel should be normalized before applying convolution to the image. In this Experiment, we will use a kernel of size 5 X 5 and sigma = 1.4, which will blur the image and remove the noise from it. The equation for Gaussian filter kernel is

Department of Computer Engineering

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

$$K_x = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix}, K_y = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{pmatrix}.$$

after applying these kernel we can use the gradient magnitudes and the angle to further process this step. The magnitude and angle can be calculated as

$$|G| = \sqrt{I_x^2 + I_y^2},$$

$$\theta(x, y) = \arctan\left(\frac{I_y}{I_x}\right)$$

Non-Maximum Suppression

This step aims at reducing the duplicate merging pixels along the edges to make them uneven. For each pixel find two neighbors in the positive and negative gradient directions, supposing that each neighbor occupies the angle of pi /4, and 0 is the direction straight to the right. If the magnitude of the current pixel is greater than the magnitude of the neighbors, nothing changes, otherwise, the magnitude of the current

(1)

Vidyavardhini's College of Engineering & Technology

Department of Computer Engineering

pixel is set to zero.

4. Double Thresholding

The gradient magnitudes are compared with two specified threshold values, the first one is lower than the second. The gradients that are smaller than the low threshold value are suppressed, the gradients higher than the high threshold value are marked as strong ones and the corresponding pixels are included in the final edge map. All the rest gradients are marked as weak ones and pixels corresponding to these gradients are considered in the next step.

5. Edge Tracking using Hysteresis

Since a weak edge pixel caused by true edges will be connected to a strong edge pixel, pixel W with weak gradient is marked as edge and included in the final edge map if and only if it is involved in the same connected component as some pixel S with strong gradient. In other words, there should be a chain of neighbor weak pixels connecting W and S (the neighbors are 8 pixels around the considered one). We will make up and implement an algorithm that finds all the connected components of the gradient map considering each pixel only once. After that, you can decide which pixels will be included in the final edge map. Below is the implementation.

Code:

```
import numpy as np
import os
import cv2
import matplotlib.pyplot as plt
```



```
# defining the canny detector function
# here weak_th and strong_th are thresholds for
# double thresholding step
def Canny detector(img, weak th = None, strong th = None):
  # conversion of image to grayscale
 img = cv2.cvtColor(img, cv2.COLOR BGR2GRAY)
  # Noise reduction step
 img = cv2.GaussianBlur(img, (5, 5), 1.4)
  # Calculating the gradients
 gx = cv2.Sobel(np.float32(img), cv2.CV 64F, 1, 0, 3)
 gy = cv2.Sobel(np.float32(img), cv2.CV_64F, 0, 1, 3)
  # Conversion of Cartesian coordinates to polar
 mag, ang = cv2.cartToPolar(gx, gy, angleInDegrees = True)
  # setting the minimum and maximum thresholds
  # for double thresholding
 mag max = np.max(mag)
 if not weak th:weak th = mag max * 0.1
 if not strong th:strong th = mag max * 0.5
  # getting the dimensions of the input image
 height, width = img.shape
```



```
# Looping through every pixel of the grayscale
# image
for i x in range(width):
 for i y in range(height):
   grad ang = ang[i y, i x]
   grad ang = abs(grad ang-180) if abs(grad ang)>180 else abs(grad ang)
    # selecting the neighbours of the target pixel
    # according to the gradient direction
    # In the x axis direction
    if grad ang<= 22.5:</pre>
     neighb 1 x, neighb 1 y = i_x-1, i_y
     neighb 2 x, neighb 2 y = i x + 1, i y
    # top right (diagonal-1) direction
    elif grad ang>22.5 and grad ang\leq (22.5 + 45):
     neighb 1 x, neighb 1 y = i_x-1, i_y-1
     neighb 2 x, neighb 2 y = i x + 1, i y + 1
    # In y-axis direction
    elif grad ang>(22.5 + 45) and grad ang<=(22.5 + 90):
     neighb 1 x, neighb 1 y = i_x, i_y-1
     neighb 2 x, neighb 2 y = i x, i y + 1
    # top left (diagonal-2) direction
   elif grad ang>(22.5 + 90) and grad ang<=(22.5 + 135):
     neighb 1 x, neighb 1 y = i x-1, i y + 1
```



```
neighb 2 x, neighb 2 y = i x + 1, i y-1
    # Now it restarts the cycle
    elif grad ang>(22.5 + 135) and grad ang<=(22.5 + 180):
      neighb 1 x, neighb 1 y = i x-1, i y
      neighb 2 x, neighb 2 y = i x + 1, i y
    # Non-maximum suppression step
    if width>neighb 1 x \ge 0 and height>neighb 1 y \ge 0:
      if mag[i_y, i_x]<mag[neighb_1_y, neighb_1_x]:</pre>
       mag[i_y, i_x] = 0
        continue
    if width>neighb 2 x \ge 0 and height>neighb 2 y \ge 0:
      if mag[i y, i x] < mag[neighb 2 y, neighb 2 x]:</pre>
       mag[i_y, i_x] = 0
weak ids = np.zeros like(img)
strong ids = np.zeros like(img)
ids = np.zeros like(img)
# double thresholding step
for i x in range(width):
 for i y in range(height):
    grad mag = mag[i y, i x]
    if grad mag<weak th:</pre>
     mag[i y, i x] = 0
```



```
elif strong th>grad mag>= weak th:
       ids[i y, i x] = 1
      else:
       ids[i y, i x] = 2
 # finally returning the magnitude of
 # gradients of edges
 return mag
frame = cv2.imread('/content/mvc.jfif')
# calling the designed function for
# finding edges
canny img = Canny detector(frame)
# Displaying the input and output image
plt.figure()
f, plots = plt.subplots(2, 1)
plots[0].imshow(frame)
plots[1].imshow(canny_img)
```

Department of Computer Engineering

Output:

Conclusion: The Canny edge detection methodology is an effective method for finding edges in images and locating significant boundaries when employed in a range of applications, such as lane detection, object recognition, and others. Gaining insight into how the algorithm works internally and how it may be modified to satisfy particular requirements comes from understanding the underlying concepts and creating the algorithm from the ground up. Canny wins out in the end. Detection is still a key technology in computer vision, and its potent technology enables us to extract relevant information from images for further processing and analysis.