Problem set
Sebastián Caballero
Axiomatization

Problem 1.

Determine the fibers of the projections p_j

Solution. Let $A = \{X_1, \dots X_n\}$ be an indexed collection of sets over n, the projection p_j is a function from $\prod_{i=1}^n X_i$ to X_j and assigns to a tuple (a_1, a_2, \dots, a_n) the element a_j . Now, the fibers for an element $x \in X_j$ is the set of all tuples which j-th element is x. That means that:

$$f^{-1}(x) = \{(a_1, a_2, \dots, a_n) : a_j = x\}$$

Or in a simple way, the product $X_1 \times X_2 \times \cdots \times \{x\} \times \ldots X_n$.

Problem 2.

Prove that, for each nonempty set X the function

$$\begin{array}{ccc} f: & \mathcal{P}(X) & \to & \{0,1\}^X \\ & A & \mapsto & \chi_A \end{array}$$

is a bijection.

Solution. We need to prove two things, that f is injective and surjective.

- Injective: Suppose $A, B \in \mathcal{P}(X)$ are sets, such that f(A) = f(B). That means that $\chi_A = \chi_B$. So if $x \in A$, $\chi_A(x) = 1$, but it implies that $\chi_B(x) = 1$ so $x \in B$. It proves that $A \subseteq B$ and in a similar way you can prove that $B \subseteq A$, therefore A = B.
- Surjective: Let $g: X \to \{0,1\}$ be a function. Define the set A as:

$$A := \{ x \in X : g(x) = 1 \}$$

By definition, $A \subseteq X$ so $A \in \mathcal{P}(X)$. Now, if you do f(A) which is χ_A by definition it is the same function g.

Problem set Set Theory Caballero 2 of ??

Problem 3.

Let $f: X \to Y$ be a function and $i: A \to X$ the inclusion function of a subset A in X. Show that:

- 1. $f|_A = f \circ i$
- 2. $(f|_A)^{-1}(B) = A \cap f^{-1}(B), B \subseteq Y$

Solution. Let $f: X \to Y$ be a function and $i: A \to X$ the inclusion function of a subset A in X.

- 1. First, remember that $f|_A$ is defined from A to Y, and by definition of composition, the function $f \circ i$ is defined also from A to Y. Now, if you take $x \in A$, then $(f \circ i)(x) = f(i(x))$, but we know that i(x) = x so it is f(x), which is $f|_A(x)$ since $x \in A$. Therefore, both functions are the same.
- 2. By definition, $(f|_A)^{-1}(B)$ is the set

$$\{x \in A : f(x) \in B\}$$

But if $f(x) \in B$, then $x \in f^{-1}(B)$, so $x \in A \cap f^{-1}(B)$. If $x \in A \cap f^{-1}(B)$ then $x \in A$ and $x \in f^{-1}(B)$, which means that $f(x) \in B$. So, by definition, $x \in (f|_A)^{-1}(B)$, so they are the same.

Problem set Set Theory Caballero 3 of ??

Problem 4.

Let $f: X \to Y$ be a function. Show that the following are equivalent:

- 1. f is injective
- $2.\ f^{-1}(f(A))=A,\, A\subseteq X$
- 3. $f(A \cap B) = f(A) \cap f(B)$ for all $A, B \subseteq X$

Solution. First, suppose that f is injective, so for any $x, y \in X$, f(x) = f(y) implies that x = y. Take $x \in A$, then $f(x) \in f(A)$ and by definition, $x \in f^{-1}(f(A))$. If $x \in f^{-1}(f(A))$ then $f(x) \in f(A)$. It implies then that $x \in A$, thanks to the properties of f, because there is not other element in X such that its image is f(x). Now, suppose that f is not injective, then f(x) = f(y) but $x \neq y$ for some $x, y \in X$. So, $f(x) \in f(\{x\})$ and $x \in f^{-1}(f(\{x\}))$ but also $y \in f^{-1}(f(\{x\}))$ but it is evident that $y \notin \{x\}$, so $f^{-1}(f(A)) \neq A$ for at least one $A \subseteq X$.

Finally, suppose that f is not injective. Then there are two values $x, y \in X$ such that f(x) = f(y) but $x \neq y$. Now, the sets $\{x\}$ and $\{y\}$ are disjoint, so

$$f(\{x\} \cap \{y\}) = f(\emptyset)$$
$$= \emptyset$$

But $f(x) \in f(\{x\})$ and also $f(x) \in f(\{y\})$, so their intersection is not empty and hence $f(\{x\} \cap \{y\}) \neq f(\{x\}) \cap f(\{y\})$. Suppose also that f is injective. If $f(x) \in f(A \cap B)$ then $x \in A \cap B$ since x is the unique value in X such that its image is f(x). So, $x \in A$ and $x \in B$, therefore $f(x) \in f(A)$ and $f(x) \in f(B)$ and we conclude that $f(x) \in f(A) \cap f(B)$. If $f(x) \in f(A) \cap f(B)$ then $f(x) \in f(A)$ and $f(x) \in f(B)$, and we conclude that $x \in A$ and $x \in B$, so $x \in A \cap B$ and $f(x) \in f(A \cap B)$, so $f(A \cap B) = f(A) \cap f(B)$.

Problem 5.

An operation \odot on a set X is called *anticommutative* if it satisfies the following:

- 1. There is a right identity element $r := r_X$, that is, $\exists r \in X : x \otimes r = x$ for all $x \in X$.
- 2. $x \odot y = r \Leftrightarrow (x \odot y) \odot (y \odot x) = r \Leftrightarrow x = y \text{ for all } x, y \in X.$

Show that, whenever X has more than one element, an anticommutative operation \odot on X is not commutative and has no identity element.

Solution. Suppose that X has at least two element or more and \odot has a right element r. Suppose that $x \odot y = y \odot x$ for some x, y. Then we have:

$$x \odot y = y \odot x$$
$$(x \odot y) \odot (y \odot x) = (y \odot x) \odot (y \odot x)$$

And by the property 2, we conclude that:

$$(x \odot y) \odot (y \odot x) = r$$

But this also implies that x = y. So, if they are different, $x \odot y \neq y \odot x$ and therefore the operation is not commutative. Now, suppose it has an identity element e, it is easy to see that e = r. Now, we know that at least we can pick a different element of e, name it x. But by definition, $e \odot x = x \odot e = x$, which implies that e = x but we have picked them different. So, it cannot have an Identity element.

Problem set Set Theory Caballero 5 of ??

Problem 6.

Let \odot and \circledast anticommutative operations on X and Y. Further, let $f: X \to Y$ satisfy:

$$f(r_X) = r_Y, \quad f(x \odot y) = f(x) \circledast f(y), \quad x, y \in X$$

Prove that:

- 1. $x \sim y$ if and only if $f(x \odot y) = r_Y$ defines an equivalence relation on X.
- 2. The function

$$\overline{f}: \quad X/\sim \quad \rightarrow \quad Y \\ [x] \quad \mapsto \quad f(x)$$

is well defined and injective. If, in addition, f is surjective, then \overline{f} is bijective.

Solution.

- 1. To prove that, we need to prove that the relation is reflexive, symmetric and transitive.
 - Reflexive: Since $x \odot x = r_X$ for all $x \in X$ and $f(r_X) = r_Y$ it is easy to see that $x \sim x$.
 - Symmetry: Suppose that $x \sim y$. That means that $f(x \odot y) = r_Y$. We know that $f(x \odot y) = f(x) \circledast f(y) = r_Y$, so we conclude that f(x) = f(y) and therefore $f(y) \circledast f(x) = f(y \odot x) = r_Y$, so $y \sim x$.
 - Transitivity: Suppose that $f(x \odot y) = f(y \odot z) = r_Y$. Since $f(x) \circledast f(y) = r_Y$ and $f(y) \circledast f(z) = r_Y$ then f(x) = f(y) = f(z). So, $f(x) \circledast f(z) = f(x \odot z) = r_Y$ and we conclude that $x \sim y$.

so we have proved that it defines an equivalence relation.

2. Since we have proved this is an equivalence relation and since f is a function, \overline{f} is well defined. Suppose that we have two classes such that $\overline{f}([x]) = \overline{f}([y])$. By definition, f(x) = f(y), so we have that $f(x) \circledast f(y) = r_Y$ which is that $f(x \odot y) = r_Y$, and therefore $x \sim y$, so [x] = [y]. We have concluded that the function is injective.

Suppose that f is surjective. That means, that for any element $y \in Y$, there is $x \in X$ such that f(x) = y. Now, we can assure then the existence of [x] and therefore we know that $\overline{f}([x]) = f(x) = y$, so we know that \overline{f} is Surjective and then bijective.

_

Problem 7.

Let R be a relation on X and S a relation on Y. Define a relation $R \times S$ on $X \times Y$ by

$$(x,y)(R \times S)(u,v) \iff (xRu) \wedge (ySv)$$

for $(x,y),(u,v)\in X\times Y$. Prove that if R and S are equivalence relations, then so is $R\times S$.

Solution. First, the order pair (x, y) is related to itself since R and S are equivalence relations and xRx and ySy. Now, if $(x, y)(R \times S)(u, v)$ then xRu and ySv, but then uRx and vRy so $(u, v)(R \times S)(x, y)$. At last, if $(x, y)(R \times S)(u, v)$ and $(u, v)(R \times S)(a, b)$ then xRu, ySv, uRa and vSb, and by transitivity of both relations xRa and ySb, so $(x, y)(R \times S)(a, b)$.

Problem set Set Theory Caballero 7 of ??