SymPy generated orbital functions

$\phi_0 \to \phi_{0,0,0}$	
$\phi(\vec{r})$	1
$\vec{i} \cdot \nabla \phi(\vec{r})$	-2ax
$\vec{j} \cdot abla \phi(\vec{r})$	-2ay
$\vec{k} \cdot \nabla \phi(\vec{r})$	-2az
$\nabla^2 \phi(\vec{r})$	$2a(2ar^2-3)$

$\phi_1 \to \phi_{0,0,1}$	
$\phi(\vec{r})$	z
$\vec{i} \cdot \nabla \phi(\vec{r})$	-2axz
$\vec{j} \cdot abla \phi(\vec{r})$	-2ayz
$\vec{k} \cdot \nabla \phi(\vec{r})$	$-2az^2+1$
$\nabla^2 \phi(\vec{r})$	$2az\left(2ar^2-5\right)$

Table 2: Orbital expressions gaussians : 0, 0, 1. Factor e^{-ar^2} is omitted.

$\phi_2 \to \phi_{0,1,0}$	
$\phi(\vec{r})$	y
$\vec{i} \cdot \nabla \phi(\vec{r})$	-2axy
$\vec{j} \cdot \nabla \phi(\vec{r})$	$-2ay^2 + 1$
$\vec{k} \cdot \nabla \phi(\vec{r})$	-2ayz
$\nabla^2 \phi(\vec{r})$	$2ay\left(2ar^2-5\right)$

Table 3: Orbital expressions gaussians : 0, 1, 0. Factor e^{-ar^2} is omitted.

$\phi_3 \rightarrow \phi_{1,0,0}$	
$\phi(ec{r})$	x
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2ax^2 + 1$
$\vec{j} \cdot \nabla \phi(\vec{r})$	-2axy
$\vec{k} \cdot \nabla \phi(\vec{r})$	-2axz
$\nabla^2 \phi(\vec{r})$	$2ax\left(2ar^2-5\right)$

Table 4: Orbital expressions gaussians : 1, 0, 0. Factor e^{-ar^2} is omitted.

$\phi_4 \rightarrow \phi_{0,0,2}$	
$\phi(\vec{r})$	z^2
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-2axz^2$
$\vec{j} \cdot abla \phi(\vec{r})$	$-2ayz^2$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$2z\left(-az^2+1\right)$
$\nabla^2 \phi(\vec{r})$	$z^2 \left(4a^2r^2 - 14a\right) + 2$

Table 5: Orbital expressions gaussians : 0, 0, 2. Factor e^{-ar^2} is omitted.