COSE212: Programming Languages

Lecture 11 — Type System (2) Design

Hakjoo Oh 2025 Fall

Language

Language

Types

Types are defined inductively:

$$\begin{array}{ccc} T & \rightarrow & \mathrm{int} \\ & | & \mathrm{bool} \\ & | & T \rightarrow T \end{array}$$

Examples:

- int
- bool
- int \rightarrow int
- bool \rightarrow int
- int \rightarrow (int \rightarrow bool)
- $(int \rightarrow int) \rightarrow (bool \rightarrow bool)$
- $(int \rightarrow int) \rightarrow (bool \rightarrow (bool \rightarrow int))$

Types of Expressions

In order to compute the type of an expression, we need type environment:

$$\Gamma: \mathit{Var} \to T$$

Notation:

 $\Gamma \vdash e: t \Leftrightarrow \mathsf{Under} \; \mathsf{type} \; \mathsf{environment} \; \Gamma$, expression e has $\mathsf{type} \; t$.

```
• |] ⊢ 3 : int
• [x \mapsto \mathsf{int}] \vdash x : \mathsf{int}
• [] \vdash 4 - 3 :
• [x \mapsto \mathsf{int}] \vdash x - 3:
• [] \vdash iszero 11:
• [] \vdash proc (x) (x - 11):
• | | \vdash \operatorname{proc}(x)  (let y = x - 11 in (x - y)):
• [] \vdash proc (x) (if x then 11 else 22):
• [] \vdash \operatorname{proc}(x) (\operatorname{proc}(y)) \text{ if } y \text{ then } x \text{ else } 11) :
• [] \vdash \operatorname{proc}(f) (if (f \ 3) then 11 else 22):
\bullet [] \vdash (proc (x) x) 1:
• [f \mapsto \text{int} \to \text{int}] \vdash (f (f 1)):
```

Typing Rules

Inductive rules for assigning types to expressions:

We say that a closed expression E has type t iff we can derive $[] \vdash E:t.$

$$\overline{[] \vdash \mathtt{iszero} \; (1+2) : \mathtt{bool}}$$

$$\boxed{[] \vdash \mathsf{proc}\; (x)\; (x-11) : \mathsf{int} \to \mathsf{int}}$$

 $| \vdash \operatorname{proc}(x) \text{ (if } x \text{ then } 11 \text{ else } 22) : \operatorname{bool} \to \operatorname{int} |$

$$\overline{[] \vdash (\mathsf{proc}\ (x)\ x)\ 1 : \mathsf{int}}$$

 $[\]boxed{ [] \vdash \texttt{proc} \ (x) \ (\texttt{proc} \ (y) \ \texttt{if} \ y \ \texttt{then} \ x \ \texttt{else} \ 11) : \texttt{int} \rightarrow (\texttt{bool} \rightarrow \texttt{int}) }$

Property 1 (Multiple Types)

Type assignment may not be unique:

• proc *x x*:

- proc (f) (f 3) has type $(int \rightarrow t) \rightarrow t$ for any t.
- ullet The type of proc (f) proc (x) (f (f x))?

Property 2 (Soundness)

The type system is sound:

ullet If a closed expression E is well-typed

$$[] \vdash E : t$$

for some $t \in T$, E does not have type error and produce a value:

$$[] \vdash E \Rightarrow v$$

- Furthermore, the type of v is t. In other words, if E has a type error, we cannot find t such that $[] \vdash E : t$.
- Examples:
 - ▶ (proc (x) x) 1
 - ▶ (proc (x) (x 3)) 4

Property 3 (Incompleteness)

The type system is incomplete: even though some programs do not have type errors, they do not have types according to the type system:

- if iszero 1 then 11 else (iszero 22))
- $(\operatorname{proc}(f)(f f))(\operatorname{proc} x x)$

Implementation

Implement a type checker according to the design:

- ullet The type checker accepts a program E only if $[] \vdash E:t$ for some t.
- ullet Otherwise, E is rejected.

Type Soundness Proof

Theorem. If a closed expression E is well-typed, i.e.,

$$[] \vdash E:t,$$

then there exists a value v such that

$$[] \vdash E \Rightarrow v,$$

and moreover v has the canonical shape of t:

- if t = int, then v is an integer n;
- if t = bool, then $v \in \{true, false\}$;
- ullet if $t=t_1 o t_2$, then v=(x,E',
 ho') (closure).

Interpretation. Well-typed closed programs do not get stuck (no type errors) and evaluate to values matching their types.

(c.f., Termination guarantee is only for a language without recursive functions.)

Key Lemmas

Environment Consistency. We write $\rho \models \Gamma$ to mean: for every $x \in \text{dom}(\Gamma)$, $\rho(x)$ is a value of type $\Gamma(x)$.

• Extension: If $\rho \models \Gamma$ and v:t, then $[x \mapsto v]\rho \models [x \mapsto t]\Gamma$.

Canonical Forms. If v is a value and $[] \vdash v : t$, then

- $t = \text{int} \Rightarrow v = n$ for some integer n;
- $t = bool \Rightarrow v \in \{true, false\};$
- $t = t_1 \rightarrow t_2 \Rightarrow v = (x, E, \rho')$ (closure).

Generalized Theorem. For all Γ, E, t, ρ ,

$$\Gamma \vdash E : t \land \rho \models \Gamma \implies \exists v. \ \rho \vdash E \Rightarrow v \land v : t.$$

We then specialize to $\Gamma = []$ and $\rho = []$.

Proof Sketch

By induction on the derivation of $\Gamma \vdash E : t$.

- n,x: Trivial by evaluation rules and $ho \models \Gamma$.
- ullet E_1+E_2 , iszero E: From IH: $ho dash E_i \Rightarrow n_i$; conclude by the evaluation rule.
- if E_1 then E_2 else E_3 : IH on guard gives a boolean b; case-split and apply IH on the selected branch.
- ullet let $x=E_1$ in E_2 : IH on E_1 yields $v_1:t_1$; extend environment via the extension lemma and apply IH to E_2 .
- proc x E': From typing $[x \mapsto t_1]\Gamma \vdash E' : t_2$; evaluation yields closure (x, E', ρ) which has type $t_1 \to t_2$.
- E_1 E_2 : IH gives $\rho \vdash E_1 \Rightarrow (x, E', \rho_c)$ and $\rho \vdash E_2 \Rightarrow v_2$ with $v_2: t_1$; extend ρ_c and apply IH to E'.

Selected Cases (Details)

Case $\Gamma \vdash$ if E_1 then E_2 else $E_3:t$.

$$\Gamma \vdash E_1 : \mathsf{bool}, \quad \Gamma \vdash E_2 : t, \quad \Gamma \vdash E_3 : t.$$

By IH, $\rho \vdash E_1 \Rightarrow b$ with $b \in \{true, false\}$.

- If b = true, IH on E_2 gives $\rho \vdash E_2 \Rightarrow v$ and v:t.
- If b = false, IH on E_3 gives $\rho \vdash E_3 \Rightarrow v$ and v : t.

By the evaluation rule, ho dash if E_1 then E_2 else $E_3 \Rightarrow v$.

Case $\Gamma \vdash E_1 E_2 : t_2$.

$$\Gamma \vdash E_1: t_1 \to t_2, \qquad \Gamma \vdash E_2: t_1.$$

- By IH, $\rho \vdash E_1 \Rightarrow (x, E', \rho_c)$, a closure, with typing guarantee $[x:t_1]\Gamma' \vdash E':t_2$ for some Γ' and $\rho_c \models \Gamma'$.
- By IH, $\rho \vdash E_2 \Rightarrow v_2$ with $v_2:t_1$.
- lacktriangle By the extension lemma, $[x\mapsto v_2]
 ho_c\models [x:t_1]\Gamma'$.
- lacktriangle Applying IH to E', we get $[x\mapsto v_2]
 ho_c \vdash E' \Rightarrow v$ and $v:t_2$.

Thus, by the application rule, $\rho \vdash E_1 E_2 \Rightarrow v$.

Summary

- By induction on typing derivations and the lemmas, any $[] \vdash E : t$ evaluates: $[] \vdash E \Rightarrow v$.
- ullet The resulting value v has the canonical form of t (no stuck states).
- Hence, the type system is sound.

Remark. Our language here has no general recursion; thus well-typed closed programs also terminate in this setting.