CS174A Lecture 3

Announcements & Reminders

- 10/02/22: A1 due by Sunday midnight
- 10/16/22: A2 due; will be discussed during this week's TA session
- 10/27/22: Midterm Exam: 6:00 7:30 PM PST, in person, in class
- Start forming your project teams (team size: 3-4)
 - Project expectations scale with team size
 - 11/8/22: project proposals & teams due
 - 11/22/22: final proposals due

Last Lecture Recap

A Basic Graphics System

- Input devices: keyboard, mouse, tablet, touchscreens
- CPU/GPU
- Frame Buffer: resolution, single vs. double buffering, color depth, interlaced vs. noninterlaced, refresh rate
- Output devices: CRT (random-scan & raster), flat-panel (LED, LCD, Plasma), printers, plotters, head-mounted devices, stereo displays

Linear Algebra

- Vectors: magnitude, unit vector, normalizing, addition, multiplication, properties.
- Linear combination of vectors: affine, convex, linear independence (today)

Next Up

- Coordinate systems
- Finish up vectors: basis vectors, dot product, cross product
- Matrices: square, zero, identity, symmetric, matrix operations
- Homogeneous representations of points and vectors
- Representing shapes: lines, circles
- Transformations: translation, scaling, rotation, shear

Summary of Scalar, Point & Vector Ops

Red font = makes sense for affine, does not make sense for linear operations

Operands	Operands	Add (+)	Subtract (-)	Multiply (*)
Scalar-Scalar	s ₁ , s ₂	$s = s_1 + s_2$	$s = s_1 - s_2$	$s = s_1 * s_2$
Point-Point	P ₁ , P ₂	$P = a_1^* P_1 + a_2^* P_2$	$V = P_2 - P_1$	X
Vector-Vector	V ₁ , V ₂	$V = V_1 + V_2$	$V = V_1 - V_2$	X
Scalar-Point	s, P ₁	X	X	$P = s * P_1$
Scalar-Vector	s, v ₁	X	X	v = s * v ₁
Point-Vector	P ₁ , v ₁	$P_2 = P_1 + V_1$	$P_2 = P_1 - v_1$	X

Affine & Convex Combinations

Parametric form of lines

- Line: infinite in both directions
- Ray: infinite in one direction
- Edge (or line segment): limited in both directions
- Affine combination of points
- Convex combination of points

Parametric form of planes

- Affine combination of points
- Convex combination of points

Generators and Base Vectors

How many vectors are needed to generate a vector space?

- Any set of vectors that generate a vector space is called a generator set
- Given a vector space Rⁿ we can prove that we need minimum n
 vectors to generate all vectors v in Rⁿ
- A generator set with minimum size is called a basis for the given vector space

Standard Unit Vectors

```
\mathbf{v} = (x_1, \dots, x_n), \ x_i \in \Re
(x_1, x_2, \dots, x_n) = x_1(1, 0, 0, \dots, 0, 0)
+x_2(0, 1, 0, \dots, 0, 0)
\dots
+x_n(0, 0, 0, \dots, 0, 1)
```

Standard Unit Vectors

For any vector space Rⁿ:

$$\mathbf{i}_1 = (1, 0, 0, \dots, 0, 0)$$

 $\mathbf{i}_2 = (0, 1, 0, \dots, 0, 0)$
 \dots
 $\mathbf{i}_n = (0, 0, 0, \dots, 0, 1)$

The elements of a vector v in \mathbb{R}^n are the scalar coefficients of the linear combination of the basis vectors

Standard Unit Vectors in 2D & 3D

$$\mathbf{i} = (1,0)$$

$$j = (0,1)$$

$$i = (1, 0, 0)$$

$$j = (0, 1, 0)$$

$$\mathbf{k} = (0, 0, 1)$$

Right handed

Left handed

Right & Left Hand Coordinate Systems

Representation of Vectors Through Basis Vectors

Given a vector space R^n , a set of basis vectors B { b_i in R^n , i=1,...n} and a vector v in R^n we can always find scalar coefficients such that:

$$\mathbf{v} = a_1 \mathbf{b}_1 + ... + a_n \mathbf{b}_n$$

So, vector \mathbf{v} expressed with respect to B is:

$$\mathbf{v}_{B} = (a_{1}, ..., a_{n})$$

Dot Products in Graphics

- Another problem dot products solve: Comparing Vectors
 - Trig measurements!

Dot (Scalar) Product

Definition:

$$\mathbf{w}, \mathbf{v} \in \mathbb{R}^n$$

$$\mathbf{w} \cdot \mathbf{v} = \sum_{i=1}^n w_i v_i$$

Properties

- 1. Symmetry: $a \cdot b = b \cdot a$
- 2. Linearity: $(a + b) \cdot c = a \cdot c + b \cdot c$
- 3. Homogeneity: $(sa) \cdot b = s(a \cdot b)$
- 4. $|b|^2 = b \cdot b$
- 5. $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\theta)$

Dot Product and Perpendicularity

From Property 5:

Perpendicular Vectors

Definition

Vectors **a** and **b** are perpendicular iff **a** ·**b**=0

Also called "normal" or "orthogonal" vectors

It is easy to see that the standard unit vectors form an orthogonal basis:

$$\mathbf{i} \cdot \mathbf{j} = 0$$
, $\mathbf{j} \cdot \mathbf{k} = 0$, $\mathbf{i} \cdot \mathbf{k} = 0$

Dot Product: Projection

$$u \cdot v = |u||v|\cos(\theta)$$

$$|\mathbf{u}|\cos(\theta) = \frac{u \cdot v}{|v|}$$

= projection of vector u on unit vector v

= projection of vector u in v's direction

Dot Products in Graphics

- The problem dot products solve in graphics:
 - Dot with a vector of coefficients. Now you have a linear function that maps a point onto a scalar

$$3x + 4y + 5z = ?$$

Predictable effect as you adjust a coordinate

Dot Products and Matrices

- What if we want a function that produces not a scalar, but a new point?
 - This would become a tool for moving points somewhere new!
- How do we generate three scalar outputs instead of one?

Cross (Vector) Product

Defined only for 3D vectors and with respect to the standard unit vectors

Definition

$$\mathbf{a} \times \mathbf{b} = (a_y b_z - a_z b_y)\mathbf{i} + (a_z b_x - a_x b_z)\mathbf{j} + (a_x b_y - a_y b_x)\mathbf{k}$$

$$\mathbf{a} imes \mathbf{b} = \left| egin{array}{cccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \ a_x & a_y & a_z \ b_x & b_y & b_z \end{array}
ight|$$

Properties of the Cross Product

- 1. $\mathbf{i} \times \mathbf{j} = \mathbf{k}$, $\mathbf{i} \times \mathbf{k} = -\mathbf{j}$, $\mathbf{j} \times \mathbf{k} = \mathbf{i}$
- 2. Antisymmetry: $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$
- 3. Linearity: $a \times (b + c) = a \times b + a \times c$
- 4. Homogeneity: $(sa) \times b = s(a \times b)$
- 5. The cross product is normal to both vectors: $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = 0$
- 6. $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin(\theta)$

Direction of Cross Product

Right-Hand Rule ("Thumb's Up")

Your index finger is the positive *x*-axis
Your arm is the positive *y*-axis
Your thumb is the

positive z-axis

Geometric Interpretation of the Cross Product

Matrices

Rectangular arrangement of scalar elements

$$\begin{array}{l} \begin{array}{l} \text{Matrix:} \\ \text{Bold upper-case} \\ \text{A}_{3\times3} = \begin{pmatrix} -1 & 2.0 & 0.5 \\ 0.2 & -4.0 & 2.1 \\ 3 & 0.4 & 8.2 \end{pmatrix} \\ \text{A} = (\mathbf{A}_{ij}) \end{array}$$

Special Square $(n \times n)$ Matrices

Zero matrix: $A_{ij} = 0$ for all i,j

Identity matrix:
$$I_n =$$

$$\mathbf{I}_{ij} = 1 \text{ for all } i$$

$$\mathbf{I}_{ij} = 0 \text{ for } i \neq j$$

Symmetric matrix: $(A_{ij}) = (A_{ji})$

Operations with Matrices

Addition:

$$\mathbf{A}_{m \times n} + \mathbf{B}_{m \times n} = (a_{ij} + b_{ij})$$

Properties:

- 1. A + B = B + A
- 2. A + (B + C) = (A + B) + C
- 3. f(A + B) = fA + fB
- 4. Transpose: $A^{T} = (a_{ij})^{T} = (a_{ji})$

Multiplication

Definition:

$$C_{m \times r} = \mathbf{A}_{m \times n} \mathbf{B}_{n \times r}$$
$$(C_{ij}) = (\sum_{k=1}^{n} a_{ik} b_{kj})$$

Properties:

- 1. $AB \neq BA$
- 2. A(BC) = (AB)C
- 3. f(AB) = (fA)B
- 4. A(B+C) = AB + AC, (B+C)A = BA + CA
- 5. $(AB)^T = B^T A^T$

Inverse of a Square Matrix

Definition

$$MM^{-1} = M^{-1}M = I$$

Important property

$$(AB)^{-1}=B^{-1}A^{-1}$$

Dot Product as a Matrix Multiplication

Representing vectors as column matrices:

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^T \mathbf{b}$$

$$= (a_1 \ a_2 \ a_3) \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

$$= a_1 b_1 + a_2 b_2 + a_3 b_3$$