Calculus - Assignment 3 - Limit, Continuity and Differentiability

Last modified: December 14, 2020

Before trying to solve the assignments, you should see all the video lectures that I have uploaded in YouTube (particularly the lectures on Limit, Continuity and Differentiability):

Click here to get the YouTube Link for the playlist.

You may use the theorems (without giving the proofs) from the video lectures, but if I ask you to do in a particular method, then you should do in that way to understand that particular theory better.

- **1.** Let $a, b, c \in \mathbb{R}$ with a < c < b. Let $f, g : (a, b) \to \mathbb{R}$ be such that $\lim_{x \to c} f(x) = 0$. Prove or disprove the following statements. In case of disproving a statement, show that in general it is false, by providing particular example.
 - (i) $\lim_{x \to c} (fg)(x) = 0.$
 - (ii) $\lim_{x\to c} (fg)(x) = 0$, provided the function $g:(a,b)\to\mathbb{R}$ is bounded, i.e., there exists $M\in\mathbb{R}_{>0}$ such that $|g(x)|\leqslant M$ for all $x\in(a,b)$.
 - (iii) $\lim_{x \to c} (fg)(x) = 0$, if $\lim_{x \to c} g(x)$ exists.
- **2.** Prove the following:
 - (i) $\lim_{x\to 0} \left(\sin\frac{1}{x}\right)$ does not exist.
 - (ii) $\lim_{x \to 0} \left(x \sin \frac{1}{x} \right) = 0.$
 - (iii) $\lim_{x \to 0} \frac{\sin(x)}{x} = 1.$
- **3.** Prove the following statements.
 - (i) The function $f(x) = \sin(x)$ is continuous at every point $c \in \mathbb{R}$.
 - (ii) From 2iii and 3i, deduce that the function

$$g(x) = \begin{cases} \frac{\sin(x)}{x} & \text{if } x \neq 0\\ 1 & \text{if } x = 0. \end{cases}$$

from \mathbb{R} to itself is continuous.

- **4.** Let $f(x) = x^2 \sin(1/x)$ for $x \neq 0$ and f(0) = 0. Show that f is differentiable on \mathbb{R} , but f' is not continuous on \mathbb{R} .
- **5.** Compute $\frac{dy}{dx}$, given $y = f\left(\frac{2x-1}{x+1}\right)$ and $f'(x) = \sin(x^2)$.
- **6.** Show that the cubic $x^3 6x + 3$ has all roots real.
- 7. Consider the cubic $f(x) = x^3 + px + q$, where p and q are real numbers. Suppose that f(x) has three distinct real roots. Prove the following statement.

1

- (i) p < 0.
- (ii) The function f attains maximum/minimum at $x = \pm \sqrt{(-p)/3}$.
- (iii) The maximum/minimum values are of opposite signs.
- (iv) $4p^3 + 27q^2 < 0$.

- **8.** If $c_0 + \frac{c_1}{2} + \frac{c_2}{3} + \cdots + \frac{c_n}{n+1} = 0$, where c_0, c_1, \ldots, c_n are real numbers, show that the equation $c_0 + c_1 x + c_2 x^2 + \cdots + c_n x^n = 0$ has at least one real solution between 0 and 1.
- **9.** Use the Mean Value Theorem to prove that $|\sin(a) \sin(b)| \leq |a b|$ for all $a, b \in \mathbb{R}$.

First you should try on your own. If you need, then see the next page for some hints.

Hints

- 1. For (i), find counterexamples. The statement (ii) can be proved using $\epsilon \delta$ definition, while (iii) is proved in class (Lecture 20).
- 2. 2i. Use the definition of limit in terms of sequences (The sequential criterion).
 - 2ii Sandwich Theorem!
 - **2iii.** If $0 < x < \frac{\pi}{2}$, then $\sin(x) < x < \tan(x)$, hence $1 < \frac{x}{\sin(x)} < \frac{1}{\cos(x)}$. On the other hand, if $-\frac{\pi}{2} < x < 0$, then $\tan(x) < x < \sin(x)$, hence $1 < \frac{x}{\sin(x)} < \frac{1}{\cos(x)}$ as $\sin(x)$ is negative in this case. Thus if $x \in N'(0, \frac{\pi}{2})$ (deleted neighborhood of 0), then $1 < \frac{x}{\sin(x)} < \frac{1}{\cos(x)}$. Hence use Sandwich Theorem. You may assume the result that $\lim_{x \to 0} \cos(x) = \cos(0) = 1$ (which can be proved similarly as the proof of (3i) below).
- **3i** For every $c \in \mathbb{R}$, prove that $\lim_{x \to c} \sin(x) = \sin(c)$. You may use the $\epsilon \delta$ definition. Note that

$$|\sin(x) - \sin(c)| = 2 \left| \cos\left(\frac{x+c}{2}\right) \sin\left(\frac{x-c}{2}\right) \right|$$

$$\leq 2 \left| \sin\left(\frac{x-c}{2}\right) \right| \quad [\text{Since } |\cos(y)| \leq 1]$$

$$\leq |x-c| \quad [\text{Since } |\sin(y)| \leq |y|].$$

- 4.
- **5.** Use the chain rule of differentiation.
- 6.
- 7.
- **8.** Consider the suitable function $f:[0,1]\to\mathbb{R}$, and apply Rolle's Theorem.