

AN 922: Using the ECO Compilation Flow

Version: 2022.03.31

ID: 683873

Contents

1. AN	N 922: Using the ECO Compilation Flow	3
	1.1. Step 1: Open the Design Example Project	4
	1.2. Step 2: Run the ECO Flow	5
	1.3. Step 3: Implement Targeted ECOs	6
	1.3.1. Modify the Lutmask	
	1.3.2. Change Routing Connections	
	1.3.3. Tie Off Input Port to GND	
	1.3.4. Modify Slew Rate, Current Strength, and Delay Chain	10
	1.3.5. Place A Node in a New Location	11
	1.3.6. Create a Wire LUT Atom	14
	1.4. ECO Tcl Script Example	16
	1.5. ECO Command Limitations	16
	1.6. Document Revision History for AN 922: Using the ECO Compilation Flow	18

1. AN 922: Using the ECO Compilation Flow

In a typical FPGA project development cycle, the specification of the programmable logic portion of the design can change during the design process. The Intel® Quartus® Prime software supports these last-minute, targeted *engineering change orders* (ECOs), even after full compilation is complete. This application note demonstrates implementation of ECO's with an example design.

ECOs typically occur during the design verification stage. For example, during verification you may determine that the design requires a small change, such as a netlist connection change, correcting a LUT logic error, or placing a node in a new location. Implementing an ECO change, rather than changing RTL and fully recompiling the design, requires significantly less time, and changes only the affected logic.

You specify the ECO commands in a Tcl script using the ::quartus::eco package.

Table 1. ECO Command Quick Reference

ECO Change	ECO Commands
Route	<pre>make_connection -from <src> -to <dst> -port <port> remove_connection -from <src> -to <dst> -port <port></port></dst></src></port></dst></src></pre>
Tie-Off	make_connection -tieoff <vcc gnd=""> -to <node> -port <port></port></node></vcc>
Lutmask	modify_lutmask -to <node> [-eqn <lut equation="">] [-mask 0x00]</lut></node>
Slew Rate	modify_io_slew_rate <value> -to <pin_name></pin_name></value>
Current Strength	<pre>modify_io_current_strength <value> -to <pin_name></pin_name></value></pre>
Delay Chains	modify_io_delay_chain <value> -type <io_type> -to <pin_name></pin_name></io_type></value>
Update MIF	update_mif_files
IOPLL Ref Clock (Intel Stratix® 10 devices only)	adjust_pll_refclk -to <pll name=""> -refclk <freq></freq></pll>
Create New Node	create_new_node -type <lut ff> -name <name></name></lut ff>
Remove Node	remove_node -name <name></name>
Place Node	place_node -name <name> [-location <location>]</location></name>
Unplace Node	unplace_node -name <name></name>
Create Wirelut	create_wirelut -from <src> -to <dst> -port <port> [-location <location>]</location></port></dst></src>

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2015 Registered

The activities of this application note are divided into the following sections:

- Step 1: Open the Design Example Project on page 4
- Step 2: Run the ECO Flow on page 5
- Step 3: Implement Targeted ECOs on page 6

Note:

The Intel Quartus Prime Pro Edition software supports ECOs only for Intel Stratix 10 and Intel Agilex™ devices.

1.1. Step 1: Open the Design Example Project

This application note includes a design example and Tcl script files that demonstrate use of various ECO commands. You can download and restore the design example to follow along with the application note steps in the Intel Quartus Prime Pro Edition software.

1. Save the design example project archive file to hard drive:

an922 eco demo 20 3.gar

2. In the Intel Quartus Prime Pro Edition software version 20.3, click **Project** ➤ **Restore Archived Project**, and then specify the an922_eco_demo_20_3.qar design example archive for the **Archive name**.

This design example is verified with Intel Quartus Prime Pro Edition software version 20.3, but can be adapted for later versions with slightly different results.

3. For **Destination folder**, specify a new directory to contain the restored design example project files. The project directory also contains the eco_demo_1.tcl through eco_demo_6.tcl Tcl scripts for this design example.

Figure 1. Design Example Directory Structure

 The eco_demo project revision opens in the Intel Quartus Prime Pro Edition software.

Related Information

Using the ECO Compilation Flow, Intel Quartus Prime Pro Edition User Guide: Design Optimization

1.2. Step 2: Run the ECO Flow

The following steps describe how to setup, run, and view the results for any ECO command:

- Determine if ECO commands support a change you want to make in a compiled design, by reviewing the "ECO Command Quick Reference" table and ECO Command Limitations on page 16.
- 2. Create a Tcl script that calls the ECO command, as ECO Tcl Script Example on page 16 shows. The design example includes six eco_demo_<n>.tcl files for use with this example.
- 3. To run a full compilation, click **Processing ➤ Start Compilation**. ECO commands allow you make targeted changes even after a full compilation is complete. Close the Timing Analyzer that opens when full compilation is complete.
- 4. To run ECO commands, click **Processing** ➤ **Start** ➤ **Perform ECO Compilation**.

Figure 2. Perform ECO Compilation

- 5. Specify a Tcl Script to implement one or more ECOs, as Step 3: Implement Targeted ECOs on page 6 describes.
- 6. View the ECO results in post-fit analysis tools, such as the Compilation Report, Timing Analyzer, Netlist Viewer, or Chip Planner. To view ECO changes in the Fitter report, click **Processing ➤ Compilation Report ➤ Fitter ➤ ECO Changes**.

Figure 3. Example of ECO Changes Report

1.3. Step 3: Implement Targeted ECOs

Run the provided Tcl scripts to implement the following ECOs:

Table 2. ECO Commands and Tcl Scripts

ECO Modification	ECO Command Script
Modify the Lutmask on page 6	modify_lutmask eco_demo_1.tcl
Change Routing Connections on page 8	make_connection eco_demo_2.tcl
Tie Off Input Port to GND on page 9	modify_io_slew_rate eco_demo_3.tcl
Modify Slew Rate, Current Strength, and Delay Chain on page 10	modify_io_delay_chain eco_demo_4.tcl
Place A Node in a New Location on page 11	place_node eco_demo_5.tcl
Create a Wire LUT Atom on page 14	create_wirelut eco_demo_6.tcl

As an alternative to the GUI methods, you can use the following commands to run the ECO Tcl scripts:

```
$ quartus_fit -s
load_package eco
project_open project_name>
eco_load_design
...
eco_commit_design
project_close
```

1.3.1. Modify the Lutmask

You can specify the modify_lutmask command to modify the lutmask to invert a pin in your design.

Run the eco_demo_1.tcl Tcl script to modify node i16 with a lutmask hexadecimal value of 2. eco_demo_1.tcl makes changes regarding this RTL in eco_demo.v:

```
lab_and6 <= (inputa_6_reg[2] && inputa_6_reg[1] && inputa_6_reg[0] && \
   inputb_6_reg[2] && inputb_6_reg[1] && inputb_6_reg[0]);</pre>
```

- 1. To locate node i16, click **View** ➤ **Node Finder**, type i16 in the **Named** field, and then click **Search**. i16 appears in the **Nodes Found** results.
- 2. In the Node Finder, right-click the i16 in Nodes Found, and then click Locate Node ➤ Locate in Resource Property Viewer. The i16 node highlights in the Resource Property Viewer.

Figure 4. i16 in Resource Property Viewer Before Lutmask ECO

- 3. View the current LUT mask values in the **Bottom Combinational** tab, and then close Resource Property Viewer.
- 4. Click Processing ➤ Start ➤ Perform ECO Compilation.
- 5. For **ECO Tcl Script**, select eco_demo_1.tcl in the project directory, click **Open**, and then click **OK**. eco_demo_1.tcl contains the following modify_lutmask ECO commands. You can either modify the mask bits directly (line 2), or modify the equation (line 3).

6. Repeat steps 1 through 2 to view the change in Resource Property Viewer.

Figure 5. i16 in Resource Property Editor After Lutmask ECO Complete

1.3.2. Change Routing Connections

You can specify the remove_connection and make_connection commands to modify the routing of the compiled design.

Follow these steps to modify the routing of node i22 by running the eco_demo_2.tcl Tcl script:

1. In the **Node Finder**, find and right-click node i22, and then click **Locate Node** ➤ **Locate in Resource Property Viewer**.

Figure 6. i22 in Resource Property Viewer Before ECO

 Click Processing ➤ Start ➤ Perform ECO Compilation. Specify and run the eco_demo_2.tcl file.eco_demo_2.tcl contains the following remove_connection and make_connection ECO commands:

```
remove_connection -from inputa_6_reg[0] -to i22 -port DATAE remove_connection -from inputb_6_reg[2] -to i22 -port DATAD

make_connection -from inputb_6_reg[2] -to i22 -port DATAE make_connection -from inputa_6_reg[0] -to i22 -port DATAD
```

3. When ECO compilation is complete, repeat step 1 to view the change in Resource Property Viewer.

Figure 7. i22 in Resource Property Viewer After ECO Complete

4. In the Fitter section of the Compilation Report, view the Connection Changes report under the ECO Changes folder.

Figure 8. Connection Changes Report

1.3.3. Tie Off Input Port to GND

To tie off the DSP ENA[0] port to GND, follow these steps:

- In the Node Finder, find and right-click node my_dsp_inst0, and then click Locate Node ➤ Locate in Resource Property Viewer.
- 2. Click the **DSP Elements** tab. In the **Connectivity** pane, locate **ENA[2..0]** in the **Input Port Name** column. ENA[0] is set to VCC.

Figure 9. my dsp inst0 Before ECO Change

3. Click Processing ➤ Start ➤ Perform ECO Compilation. Specify and run eco_demo_3.tcl.eco_demo_3.tcl contains the following make_connection ECO command:

```
make_connection -tieoff GND -to {my_dsp_inst0|mult_inst|lpm_mult_0|\
    lpm_mult_component|auto_generated|mult_0~mac} -port {ENA[0]}
```

4. Repeat steps 1 and 2 to view the ECO change in Resource Property Viewer.

Figure 10. my_dsp_inst0 After ECO Change

1.3.4. Modify Slew Rate, Current Strength, and Delay Chain

You can use ECO commands to modify I/O slew rate, current strength, and delay chains. The following steps describe making all three modifications with the provided eco_demo_4.tcl script.

1. In the **Node Finder**, find nodes clk, the output pin LED, and the output pin reset_n.

Figure 11. Node Finder Options

 Right-click the multi-selected nodes, and then click Locate Node ➤ Locate in Resource Property Viewer. Note the existing values for current strength, slew rate, and delay chains. Turn on or off display of properties in the Node Selection pane.

Figure 12. Resource Property Editor Before ECO Changes

 Click Processing ➤ Start ➤ Perform ECO Compilation. Specify and run eco_demo_4.tcl. eco_demo_4.tcl contains the following ECO commands:

```
modify_io_slew_rate 1 -to LED
modify_io_current_strength 10mA -to LED
modify_io_delay_chain 7 -type input -to reset_n
modify_io_delay_chain 8 -type output -to LED
```

4. Repeat steps 1 through 2 to view the changes in the Resource Property Viewer. The **Pad** tab displays the **Current Strength** and **Output Delay Chain** for LED.

Figure 13. Change to Delay Chains, Current Strength, and Slew Rate

1.3.5. Place A Node in a New Location

You can specify the LAB location for a node by using the place_node command to place an existing node in a new location. In this example, the target coordinates for nodes ill and ill are (24, 63).

Note: ECO

ECO's pertain to the physical node. Therefore the physical names in this example, such as "i8", can change from software release to release.

Follow these steps to place ill and i8 in a new LAB location by running the eco_demo_5.tcl Tcl script.

- 1. Click **Tools** ➤ **Timing Analyzer**.
- To observe the location of the LAB in the Timing Analyzer, click Reports ➤
 Custom Reports ➤ Report Timing.
- 3. Under **Targets**, click the ... button to search for inputa_4_reg[1] with the **Collection** of **get_keepers**.

Figure 14. Report Timing for inputa_4_reg[1]

- For the Setup option, specify 10 for Report number of paths, and then click OK.
- 5. View the Report Timing report in the Timing Analyzer.

Figure 15. Node i8 in Path inputa_4_reg[1] to lab_and4 at Location (75,53)

Figure 16. Node i11 in Path inputa_4_reg[1] to lab_or4 at Location (75,53)

6. Click **Processing** ➤ **Start** ➤ **Perform ECO Compilation**, and select the eco_demo_5.tcl script. eco_demo_5.tcl contains the following place_node ECO commands:

```
place_node -name i11 -location "X24 Y63" place_node -name i8 -location "X24 Y63 X24 Y63"
```

7. Repeat step 1 through 5 to observe the new LAB location in the Timing Analyzer.

Figure 17. New Location of i8 at (24,63) in Timing Analyzer

Figure 18. New Location of i11 at (24,63) in Timing Analyzer

Pa	Path #1: Setup slack is 33.334								
Path Summary Statistics		stics	Data Path		Waveform				
Da	Data Arrival Path								
	Total	Incr	RF	Туре	Fanout	Location		Elemen	
1	0.000	0.000					launch edge time		
2	→ 2.191	2.191					clock path		
3	* 8.857	6.666					data path		
1	2.527	0.336	RR	uTco	2	FF_X78_Y53_N2	inputa_4_reg[1] q		
2	5.358	2.831	RR	IC	1	MLABCELL_X24_Y63_N0	i11 datad		
3	5.428	0.070	RR	CELL	1	MLABCELL_X24_Y63_N0	i11 combout		
4	8.857	3.429	RR	IC	1	FF_X75_Y53_N14	lab_or4 d		
5	8.857	00	RR	CELL	1	FF X75 Y53 N14	lab or4		

1.3.6. Create a Wire LUT Atom

You can specify the create_wirelut command to create a multiple of wire LUT atoms.

Follow these steps to create 3 wire LUTs from inputa_4_reg[0] by running the eco_demo_6.tcl Tcl script.

- 1. In the Timing Analyzer, click **Reports ➤ Custom Reports ➤ Report Timing**.
- 2. Under **Targets**, specify inputa_4_reg[0], inputb_4_reg[0], and inputa_4_reg[1] for **From**.

Figure 19. Report Timing Targets

 In the Timing Analyzer, right-click inputa_4_reg[0], and then click Locate Path > Locate in Resource Property Viewer.

Figure 20. Locate Path in Resource Property Viewer

Right-Click > Locate Path > Locate in Resource Property Viewer

4. In the Node Selection pane, select node ill under **Arrival Data**. You can view the node ill as the COMBOUT in the **Top Combinational** list. The inputa_4_reg[0] node connects with the DATAE port.

Figure 21. Nodes Found in Resource Property Viewer Before ECO

X	Input Port Name	Signal Name	Inverted	Output Port Name	
7	!DATAC	inputb_4_reg[1]	False	 Top Combinational 	
	!DATAD	inputa 4 reg[1]	False	SUMOUT	<disconnected></disconnected>
	!DATAE	inputa_4_reg[0]	False	COUT	<disconnected></disconnected>
₹	!DATAF	<disconnected></disconnected>	False	СОМВОИТ	i11 :
Ę	!DATAB	<disconnected></disconnected>	False	 Bottom Combinational 	
nectivity	!DATAA	inputb_4_reg[0]	False	COMBOUT	<disconnected></disconnected>

5. To add a wire LUT from the targeted node, click Processing ➤ Start ➤ Perform ECO Compilation. Specify and run eco_demo_6.tcl. eco_demo_6.tcl contains the following create_wirelut ECO command:

```
create_wirelut -name my_delay_wirelut_1 -from inputa_4_reg[0] \
    -to ill -port DATAA -location "X23 Y61 X23 Y61"
create_wirelut -name my_delay_wirelut_2 -from inputb_4_reg[0] -to ill \
    -port DATAD -location "X23 Y61 X23 Y61"
create_wirelut -name my_delay_wirelut_3 -from inputa_4_reg[1] -to ill \
    -port DATAC -location "X23 Y61 X23 Y61"
```

6. Repeat steps 1 through 4 to view the change in Resource Property Viewer.

Figure 22. New Wire LUT Atom After ECO Command

1.3.6.1. Running Incremental Flow with Signal Probe

You can route the internal signal to pins and remove the reserve pins to probe the signal with Signal Probe.

You can add assignments to route the internal signal to pins; for example:

```
set_global_assignment -name CREATE_SIGNALPROBE_PIN test_pinl set_instance_assignment -name CONNECT_SIGNALPROBE_PIN test_pinl -to addressr_reg
```

Recompile the design with the command: quartus_sh -flow recompile <design>

You can check the connection in the compilation report, or in the Fitter report, <design name>.fit.rpt.

Figure 23. Connections to Signal Probe Pins in Compilation Report

Figure 24. Connections to Signal Probe Pins in Fitter Report

1.4. ECO Tcl Script Example

The following shows an example ECO Tcl script that places existing nodes in new locations:

Figure 25. ECO Tcl Script Example

1.5. ECO Command Limitations

The ECO commands have the following limitations due to connection dependencies within Intel FPGA devices.

- You cannot use ECO commands to modify dedicated connections.
- You cannot modify dedicated connections within a single ALM. This limitation
 applies to direct connections between LUT and flip-flop nodes.
- You can connect from or to a Hyper-Register. However, you cannot remove connections from or to a Hyper-Register because removing a connection from a Hyper-Register would leave the routing dangling. As an alternative, you can use make_connection to change a Hyper-Register connection immediately, without removing the previous connection first.
- Use of the place_node command with location arguments does not overwrite Partial Reconfiguration region constraints.
- If a LAB already has the maximum number of legal connections where a node is placed, the place_node or make_connection commands can fail, preventing the connection to the first placed node that cannot be legalized. You can then either move the original node to a different location, or move other nodes from the LAB to free up routing resources.
- The Fitter may fail to apply some I/O related ECO modifications, such as modify_io_slew_rate, modify_io_current_strength, and modify_io_delay_chain, if called using a command-line Tcl script or in interactive context. That is, any case that calls the eco_load_design command directly. To ensure all I/O modifications are applied successfully, use the standard ECO Tcl script approach this document describes.

The recommended order for creating and placing new LUTs or new flipflops is:

- 1. Create the node by using the create new node command.
- Make connections to and from the node by using the make_connection command.
- 3. Update the lutmask by using the modify_lutmask command.
- 4. Place the node by using the place_node command.

This flow ensures that analysis includes all routing requirements when determining a legal placement for the new node. For example:

Create a new LUT in an exact location

```
set lut_name new_lut
create_new_node -name $lut_name -type lut
make_connection -from input1 -to $lut_name -port DATAA
make_connection -from input2 -to $lut_name -port DATAB
make_connection -from $lut_name -to output_dest -port DATAD
modify_lutmask -to $lut_name -eqn {A&B}
place_node -name $lut_name -location "X80 Y80 X85 Y95"
```

Create a new Flipflop in an exact location

```
set ff_name new_ff
create_new_node -name $ff_name -type ff
make_connection -from input1 -to $ff_name -port DATAA
make_connection -from input2 -to $ff_name -port DATAB
make_connection -from $ff_name -to output_dest -port DATAD
modify_lutmask -to $ff_name -eqn {A&B}
place_node -name $ff_name -location "X80 Y80 X85 Y95"
```


Note:

To minimize issues with name matching caused by escaped characters, it can be useful to surround entity names with $\{\}$ characters, instead of "". This technique is particularly useful if entity names contain backslashes or any other special characters.

1.6. Document Revision History for AN 922: Using the ECO Compilation Flow

Document Version	Changes
2022.03.31	 Added Running Incremental Flow with Signal Probe topic. Added Create a new FlipFlop in an exact location code sample to the ECO Command Limitations topic.
2020.09.28	Initial release.

