上世 包存 年長 签字

哈尔滨工业大学 (深圳) 2022 年春学期

数学分析 B 试题 (A)

20		 =	Ξ	п	E	水	ŧ	ħ	+	总分
15										
10.00	人									

考生提知。本次考试为闭卷考试、考试时间为120分钟。总分形分。 を直隔り ~ (8.95 (ii) 限 x* x X*, 5 > 0、同也 x* 的主心包括U_(x*, 5) 的意义 (i) 写出二元值 数的程度 (km) f(x,y)= A的定义(3) 地位义证明 lim ay-1 1 (1) U,(2'. E) = { x | 0 < | 1 - 2 * | < 5 } (1) YESO 35 = 5(4 >0. Y (2.5) (-U/(a)) 5) が (は、06、11-01、4からくを) for 17 -1 < E (3) | xy-1 - 1 = | (x-1)(y-2)+14 127 2(2+1) = 2(2+1)(1-2)+1)-2-(2+1+2) 12641+41 2(1-0(9-1) +4(1-)+1(9-1) -(1-) 12(17) ++ 1 12(2-12(4-2)+3(2-1)+2(4-2) 2 | 1-2 | +3 |2-1 | +2 | 1-2 |

本题得分 二、(8分)。设二元函数 fin, fay, fyy $f(x,y) = \frac{xy}{x+y}.$ (1) 计算 f(x, y) 在点(1,1) 处的 Hessi 矩阵. (2) 求 f(x, y) 在点(1,1) 处的二阶 Taylor 多项式 +2 = [1+(2-0+4-1)+(2-019-1)]. 1 1+ (2+4/4) 1 Del fu.y1 in = 25 Taxlor 8 2 1/3 2 PULY) = 1 + {(2-1)+(1-1) - (2-1)+(1-1) } $+\left(\frac{(x+1)+(y+1)}{2}\right)+\left((x+1)+(y+1)\right)\left(-\frac{(x+1)+(y+1)}{2}\right)+(x+1)(x-1)$ =1+ = (1-1)+=(1-4) + (-+) } (1-1) + 2(1-1) + (1-1)] + (1-1) (1-1) - = (x-1) + = (x-1) (x-1) - = (x-1) = 1 (2-1, 74) - 1 = 1 | Y-1 | · Pull. y) = = + + 4 (1+ + + (4)

三、(8 分)。求椭圆柱体 $x^2+2y^2 \le 4$ 位于平面z=0及椭圆抛物面 $x^2+2y^2=16-z$ 之间 的立体的体积。

$$\frac{\partial(a,y)}{\partial(r,u)} = \begin{vmatrix} \omega_1 0 & r(-s,s_0) \\ \frac{1}{\sqrt{2}} r \omega_1 0 \end{vmatrix} = \sqrt{\frac{1}{2}} r$$

$$= 2\pi \int_{0}^{2} d\rho \left[\frac{16}{16} - \frac{1}{16} + \frac{1}{16} + \frac{1}{16} \right] dr$$

$$= 2\pi \int_{0}^{2} \left[\frac{16}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} \right] dr$$

$$= \sqrt{2\pi} \left[\frac{16}{2} + \frac{1}{16} +$$

本题得分 _____

四、(8 分). 已知y = f(x) 是定义在区间[0,1] 上的连续可导函数. (1) 设 Γ 是函数 y = f(x) 的图像。它是 \mathbb{R}^s 中的曲线、将第一型曲线积分 $\int_{\Gamma} \rho(x,y) dx$ 化成关于变量 x 的定积分. (2) 设 Γ 按照以 A(1,f(1)) 为起点。以 B(0,f(0)) 为终点定向成为定向曲线 Γ 、将第二型曲线积分 $\int_{\Gamma} P(x,y) dx + Q(x,y) dy$ 化为关于变量 x 的定积分.

(1)
$$\int_{0}^{1} p(x, f(x)) \sqrt{1+(f(x))^{2}} dx$$

(1) $\int_{0}^{1} [p(x, f(x)) + Q(x, f(x)) f(x)] dx$

$$= - \int_{0}^{1} [p + Q(x)] dx$$
 $= - \int_{0}^{1} [p + Q(x)] dx$

(经分地、任生)

五、(8 分). 设 $\vec{v}(x,y,z) = (P(x,y,z),Q(x,y,z),R(x,y,z))$ 是三维空间中的稳定流速场. 二元 函数

$$x = h(y, z), \quad (y, z) \in D_{yz}$$

具有连续的偏导数,其图像是 \mathbb{R}^3 中的曲面 Σ . 这里 D_{yz} 是 y-z 坐标平面上的有界闭区域。速度场 v(x,y,z) 产生的从x-轴正方向那一侧流向x-轴负方向那一侧流过曲面 Σ 的流体的体积记为W,推导出用 D 上的二重积分计算W 的公式

記为W. 推导出用
$$D_{in}$$
上的二重积分计算W的公式
$$\vec{r} = \begin{bmatrix} 1 \\ y \\ z \end{bmatrix} = \begin{bmatrix} h(y, z) \\ z \end{bmatrix}, \quad (y, z) \in D_{in}$$

$$\vec{r} = \begin{bmatrix} 1 \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ y \\ z \end{bmatrix}, \quad (y, z) \in D_{in}$$

$$\vec{r} = \begin{bmatrix} 1 \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ y \\$$

$$W = - SS | hy 1 0 | dydz$$

$$W = - SS | h'z 0 1 | dydz$$

$$\left(= - \int_{Qyz}^{1} \left(p - Q h y - R h z \right) dy dz \right)$$

$$= \int_{Qyz}^{1} \left(- p + Q h y + R h z \right) dy dz$$

$$= \int_{Qyz}^{1} \left(- p + Q h y + R h z \right) dy dz$$

各各

姓名

班号

松松

七、(8分)。(1) 什么是"函数序列 $\{f_n(x)\}$ 在区间I上不一致收敛于f(x)"? (2) 证明 $\{x^n\}$ 在区间[-0.8, 0.5] 上一致收敛. (3) 证明 {x"} 在区间(-1, 0.2] 上不一致收敛.

$$I \rightarrow x \in N \in \mathbb{N}$$
 $A \vee A \in I$

$$S \leq |S(x) - S(x)| \geq 2$$

(2)
$$\lim_{N \to \infty} x^{N} = 0$$
, $x \in (-1, 1)$

$$\pm \sup_{x \in [-0.8, 0.5]} |x^n - 0| = 0.8^n > 0$$

$$3) \quad \stackrel{\triangle}{=} \quad \sup_{x \in [-1, 0, 2]} |x'' - 0| = 1 \Rightarrow 0$$

或省由不一处以效如定义

姓名

本题得分

八、(8 分). (1) 证明函数项级数 $\sum_{n=1}^{\infty} \frac{a_n}{n}$ 在 $x \in [1,+\infty)$ 上一致收敛的充要条件是数项级数 $\sum_{n=1}^{\infty} \frac{a_n}{n}$ 收敛. (2)

写出

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\sum_{n=1}^{+\infty}u_n(x)\right) = \sum_{n=1}^{+\infty}\left(\frac{\mathrm{d}}{\mathrm{d}x}u_n(x)\right), \quad x \in [a,b]$$

$$\frac{1}{(1)} \Rightarrow \frac{1}{2} \chi_{-1} = \frac{1}{n^{\frac{1}{2}}} \frac{1}{n^{\frac{1}{2}}} = \frac{1}{n^{\frac{1}{2}}} \frac{1}{n} + \frac{1}{n} \frac{1}{n}$$

从Abel到别落在了区的(1)一时处处

$$\frac{d}{dx}\left(\sum_{n=1}^{+\infty}u_n(x)\right)=\sum_{n=1}^{+\infty}\left(\frac{d}{dx}u_n(x)\right)$$

本题得分

六、(8分)。设三维空间中以坐标原点为球心、半径为0.5米的球面上有非均匀的质量分布。在球面上的点 (x,y,z) 姓的而密度为 $p(x,y,z)=(x^2y)$ 于克/平方米。计算分布在该球面上的总质量.

M = S pa. y, 2) ds

dS = AllPx x Poll dxdo = x sinx dxdo 2 · M = Jody Sodo [rsisymo] [rsisysino] r'sisy = 1 dx 5 do (six a) 0 six r 4 cos x sinx = r4.2 Ti 10 cos2x d (-65x) = 211 ×4 (- = 1 wsx) |0 = = = (-1) (-1-1) 二年前十

或分成之下西部分,用重为坐去

M = 2 SS pdS (Zz: == \(\int_{0.0} \) - (1 +y) (2.)) E Day: 2 44 50.52

2 (((0.5)-(1+y)) N 1+(2x)+(2y) dxdy (第6页, 共页)

	本题得分
	九、 $(8 分)$ - (1) 什么是"函数序列 $\{f_n(x)\}$ 在开区间 (a,b) 上内闭一致收敛"? (2) 设级数 $\sum_{n=1}^{\infty} a_n 5$ "
	收敛, 证明幂级数 $\sum_{n=1}^{+\infty} a_n x^n$ 在开区间 $(-5,5)$ 上内闭绝对一致收敛.
	11) x + (上述) 区 (a, b), (h)
胜名	text [c,d] x-22 H2 3
	(2) 2岁(纪文闭区的 [c, d] c(-5.5)
	$\sum_{n=1}^{+\infty} a_n x^n = \sum_{n=1}^{+\infty} (a_n 5^n) \left(\frac{x}{5}\right)^n$
告会	# 29 + x = [c. d]
1	$\left \left(\frac{1}{5}\right)^{n}\right = \left(\frac{ \mathcal{A} }{5}\right)^{n} \leq \left(\max\left(\frac{ \mathcal{C} }{5}, \frac{ \mathcal{A} }{5}\right)\right)$
	由[c, d] c(-5.5) 2 n
班号	F < 1
	电影如如如如何有
	$ q_{n}5^{n} \leq M$ $n=1,2,\cdots$
松	the lange (s Mr" VX F [c, d]
	Be = (anxi) text-[c. d] z-22/2022

本題得分 _

十、(8 分), (1) 求幂級数 $\sum n(n+1)x^n$ 的和函数. (2) 给定函数

$$f(x) = \begin{cases} 0, & 0 \le x \le 1 \\ x - 1, & 1 \le x \le 3 \end{cases}$$

$$|| \int_{N}^{N} \sqrt{n(N+1)} | = | \int_{N}^{N} \sqrt{n$$

(第10页,共页)