Thomas C. H. Lux

thomas.ch.lux@gmail.com

linkedin.com/in/thomas-ch-lux

Current Address

Sample Work

Permanent Address

available upon request

github.com/tchlux tchlux.info

available upon request

Education

Ph.D. Computer Science, (Expected) May 2020

Virginia Tech, Blacksburg, VA

- Areas: Numerical Analysis, Approximation Theory, Machine Learning
- Python (for data science), Fortran, OpenMP/ACC, JavaScript + HTML + CSS
- 12 paper publications, (6 publications currently under review)

B.S. Computer Science Cum Laude with Honors in Major, May 2016

Roanoke College, Salem, VA

- Minors: Physics, Mathematics
- Python, C++, and Bash programming languages
- Phi Beta Kappa, Upsilon Pi Epsilon, Pi Mu Epsilon, Omicron Delta Kappa

Skills

Research • Leadership • Team Building • Public Speaking • Algorithms

Machine Learning • Optimization • Data Science • Data Collection • Data Visualization

Approximation Theory • Nonparametric Statistics • Parallel Programming

Open Source Software • Mathematical Software • Python • C++ • Fortran

Research Experience

Graduate Research Assistantship: Computer Performance Modeling

NSF funded project: VarSys - Managing Variability for HPC, Cloud Computing, and Computer Security Virginia Polytechnic Institute and State University (Virginia Tech)

- Hermite Quintic Spline Interpolation Math Software: Jun. 2019 present
 Polynomial interpolation, splines, Fortran, Mathematical software
- Nonparametric Modeling and Analysis: Jun. 2017 May 2019
 LSHEP, Delaunay, SVR, MARS, NN, interpolation, regression, cross validation
- Meshes for multivariate approximation: Jun. 2017 Feb. 2018
 Box-Splines, Voronoi, CDF interpolation, Fortran, Mathematical software
- Web-based visualization and analysis of data: Sept. 2016 May 2017
 Python Django, JavaScript, HTML+CSS, RESTful API

NSF REU: Medical Informatics Experiences in Undergraduate Research

DePaul University and University of Chicago

Thresholded Hierarchical Itemset Clustering: Summer 2015
 SciKit learn, Matlab, SPSS, Python Qt, feature selection, itemset mining, decision trees, neural networks, evaluation metrics (Silhouette, AUC, MCC)

Undergraduate Funded Research and Independent Studies

Roanoke College Department of Math, Computer Science, and Physics

- Machine learning: Topical overview, single/multi-layer perceptron, SVM's
 Parallel computing: Multi-threading, forking, CUDA and MPI programming
 Sample based blob detection and tracking in computer vision:
 Summer 2014
- Key point detection (SIFT, SURF, FAST), optical flow tracking, blob detection

Analysis of Sensors for Robotic Localization and Mapping: Summer 2013
 Stochastic mapping, Kalman Filters, SLAM, Kinect / Ultrasonic sensors

Honors, Awards, and Achievements	 Twice invited Alumni Panelist for Roanoke College Open House Thrice invited Speaker: at Salem Rotary Club, Roanoke College Society of 1842 Banquet, Roanoke College Math, Computer Science, Thrice Roanoke College Outstanding Achievement in Computer Science 1st place of 30 in Southeastern CCSC programming competition Twice 1st place in Southeastern CCSC Research competition 	•
Leadership at Virginia Tech	Treasurer, Computer Science Graduate Council Student Representative, Graduate Program Committee Vice President / Cofounder, Computer Science Graduate Council	May 2019 - present Sep. 2018 - May 2019 Nov. 2017 - May 2018
Leadership at Roanoke College	Resident Advisor, Residence Life Staff (3 academic years) President / Cofounder, Upsilon Pi Epsilon Nu Chapter (CS honor society) President, Student Government Association (2 years, re-elected) Treasurer, Student Chapter ACM (2 years, re-elected)	Aug. 2013 - May 2016 Apr. 2015 - Apr. 2016 Dec. 2013 - Dec. 2015 May 2013 - May 2015
Selected Publications	Lux, T.C.H., et al. (under review). Interpolation of sparse high-dimensional data. <i>Numerical Algorithms</i> (pp 1-26). Springer.	
	Lux, T.C.H., et al. (under review). Metric Principle Component Analysis: On Identifying Important Subspaces for Approximation. <i>Spring Simulation Multiconference, High Performance Computing Symposium 2020</i> (p. 1-10). IEEE.	
	Lux, T.C.H., et al. (under review). Analytic Test Functions for Generalizable Evaluation of Convex Optimization Techniques. <i>SoutheastCon 2020</i> (pp. 1-7). IEEE.	
	Lux, T.C.H., et al. (2019, November). A case study on a sustainable framework for ethically aware predictive modeling. <i>Proceedings of the International Symposium on Technology and Society 2019</i> (pp. 1-6). IEEE.	
	Lux, T.C.H., et al. (2019, November). Least squares solutions to polynomial systems of equations	

Career Objective

I am passionate about artificial intelligence and yearn to do significant research and experimentation towards creating economically useful generalized AI. My work in approximation theory, computational science, and black-box optimization have uniquely prepared me for *any role that requires predictive modeling and analysis*. Although my interests are in AI, I am ready to serve any role that requires my skills. I value the ability to contribute meaningfully to a team, so long as I may be of service I will be happy.

with quantum annealing. Quantum Information Processing (pp. 1-16). Springer.

Personal Statement

I value my abilities to listen, learn, and adapt more than anything. I hope that this document demonstrates my deep interest in *improving my surroundings* and *building community* while solving important problems. In my eyes, *quality teamwork* and *clear communication* are necessary for success. My skills are best demonstrated in action and I welcome personal conversations, tests, challenges, and interviews through any medium. Thank you for considering me for your team.