1. D'Alambert's Ratio Test:

Assume that $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = k$

• If
$$k > 1$$
, then $\sum_{n=1}^{\infty} a_n = \infty$.

• If
$$k < 1$$
, then $\sum_{n=1}^{\infty} a_n < \infty$.

2. Cauchy's Root Test:

Assume that $\lim_{n\to\infty} \sqrt[n]{a_n} = k$

• If
$$k > 1$$
, then $\sum_{n=1}^{\infty} a_n = \infty$.

If
$$k < 1$$
, then $\sum_{n=1}^{\infty} a_n < \infty$.

3. Raabe's Test:

Let $\sum_{n=1}^{\infty} a_n$ be a positive series.

Assume that
$$K_n := n \left(\frac{a_n}{a_{n+1}} - 1 \right)$$
, and $\lim_{n \to \infty} K_n = K$.

Then

• If
$$K > 1$$
, then $\sum_{n=1}^{\infty} a_n < \infty$.

• If
$$K < 1$$
, then $\sum_{n=1}^{\infty} a_n = \infty$.

4. Kummer's Test:

Given a series $\sum_{n=1}^{\infty} a_n$.

Let
$$c_n$$
 be positive such that $\sum_{n=1}^{\infty} \frac{1}{c_n} = \infty$.

Define
$$K_n := c_n \left(\frac{a_n}{a_{n+1}} \right) - c_{n+1}$$
.

Assume that
$$\lim_{n\to\infty} K_n = K$$
.

Then

• If
$$K > 0$$
, then $\sum_{n=1}^{\infty} a_n < \infty$.

• If
$$K < 0$$
, then $\sum_{n=1}^{\infty} a_n = \infty$.