(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 4. August 2005 (04.08.2005)

PCT

(10) Internationale Veröffentlichungsnummer WO 2005/071390 A1

- (51) Internationale Patentklassifikation⁷: G01N 21/53, G08B 17/107, 29/04
- (21) Internationales Aktenzeichen: PCT/EP2004/014632
- (22) Internationales Anmeldedatum:

22. Dezember 2004 (22.12.2004)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

- (30) Angaben zur Priorität: 10 2004 004 098.2 27. Januar 2004 (27.01.2004) DE
- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): WAGNER ALARM- UND SICHERUNGSSYSTEME GMBH [DE/DE]; Schleswigstrasse 5, 30853 Langenhagen (DE).

- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): SIEMENS, Andreas [DE/DE]; Grosser Berg 5, 30880 Laatzen (DE).
- (74) Anwälte: RUPPRECHT, Kay usw.; Meissner, Bolte & Partner, Widenmayerstrasse 48, 80538 München (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW,

[Fortsetzung auf der nächsten Seite]

- (54) Title: METHOD FOR EVALUATION OF A SCATTERED LIGHT SIGNAL AND SCATTERED LIGHT DETECTOR USED FOR CARRYING OUT SAID METHOD
- (54) Bezeichnung: VERFAHREN ZUR AUSWERTUNG EINES STREULICHTSIGNALS UND STREULICHTDETEKTOR ZUR DURCHFÜHRUNG DES VERFAHRENS

(57) Abstract: The invention relates to method for evaluating a scattered light signal which is generated by a scattered light receiver during detection of especially fine particles in a support medium. The scattered light signal passes through a calibration step, a drift-compensation step, a temperature compensation step, a sensitivity adjusting step or a filter algorithm step either optionally or one after the other in a random order. The invention also relates to a scattered light detector for carrying out the inventive method. Said detector comprises a housing, an inlet opening and an outlet opening in the housing, between which the support medium flows through the housing on a flow path, a light source which directs the light to a scattered light center lying on the flow path, a scattered light receiver for a part of the light scattered on particles in the scattered light center, and a scattered light signal amplifier for amplifying the scattered light signal. According to the invention, the scattered light signal amplifier is configured as an integration amplifier.

VO 2005/071390

WO 2005/071390 A1

GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

— mit geänderten Ansprüchen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Veröffentlicht:

mit internationalem Recherchenbericht

(57) Zusammenfassung: Die Erfindung betrifft ein Verfahren zur Auswertung eines Streulichtsignals, welches von einem Streulichtempfänger beim Detektieren von insbesondere feinen Partikeln in einem Trägermedium erzeugt wird. Das Streulichtsignal durchläuft dabei wahlweise oder nacheinander in beliebiger Reihenfolge eine Kalibrierstufe, eine Driftkompensationsstufe, eine Temperaturkompensationsstufe, eine Sensibilitätseinstellungsstufe oder eine Filteralgorithmusstufe. Des weiteren betrifft die Erfindung einen Streulichtdetektor zur Durchführung des des obigen Verfahrens, mit einem Gehäuse, mit einer Einlassöffnung und einer Auslassöffnung in dem Gehäuse, zwischen denen das Trägermedium das Gehäuse auf einem Strö mungspfad durchströmt, mit einer Lichtquelle, die Licht auf ein auf dem Strömungspfad liegendes Streulichtzentrum richtet, mit einem Streulichtempfänger für einen Teil des im Streulichtzentrum an Partikeln gestreuten Lichts, und mit einem Streulichtsignalverstärker zum Verstärken des Streulichtsignals, wobei der Streulichtsignalverstärker als Integrationsverstärker ausgebildet ist.

"Verfahren zur Auswertung eines Streulichtsignals und Streulichtdetektor zur Durchführung des Verfahrens"

Beschreibung

Die Erfindung betrifft ein Verfahren zur Auswertung eines Streulichtsignals, welches von einem Streulichtempfänger beim Detektieren von insbesondere feinen Partikeln in einem Trägermedium erzeugt wird.

Darüber hinaus betrifft die Erfindung einen Streulichtdetektor zur Durchführung oben genannten Verfahrens mit einem Gehäuse, einer Einlassöffnung und einer Auslassöffnung in dem Gehäuse, zwischen denen das Trägermedium das Gehäuse auf einem Strömungspfad durchströmt, mit einer Lichtquelle, die Licht auf ein auf dem Strömungspfand liegendes Streulichtzentrum richtet, mit einem Streulichtempfänger für einen Teil des im Streulichtzentrum an Partikeln gestreuten Lichts, und mit einem Streulichtsignalverstärker zum Verstärken des Streulichtsignals.

Derartige Verfahren und Vorrichtungen zur Auswertung eines Streulichtsignals sind bekannt und finden insbesondere bei Streulichtdetektoren in aspirativen Brandmeldeanlagen ihre Anwendung. Diese dienen dem Detektieren von Feststoff- oder Flüssigkeitspartikeln, wobei das Trägermedium aus einer repräsentativen Teilmenge der Raumluft eines zu überwachenden Raumes oder der Gerätekühlluft eines zu überwachenden Gerätes besteht. Bei einer aspirativen Brandmeldeanlage wird diese repräsentative Luftmenge aktiv mittels eines Lüfters angesaugt und in die Einlassöffnung des Streulichtdetektors eingespeist. Bei zu überwachenden Geräten, wie beispielsweise EDV Anlagen oder ähnlichen elektroni-

15

20

2

schen Einrichtungen, wie Mess-, Steuer-, und Regelanlagen, ist es grundsätzlich auch möglich, die Eigenströmung der Gerätekühlluft dazu zu verwenden, eine repräsentative Teilmenge der Gerätekühlluft als Trägermedium in die Einlassöffnung des Streulichtdetektors einzuspeisen. In diesem Fall ist kein aktiv ansaugender Lüfter nötig.

5

10

15

Ein Streulichtdetektor der eingangs genannten Art arbeitet dabei üblicherweise folgendermaßen:

Während das Trägermedium das Streulichtzentrum auf seinem Strömungspfad durch das Gehäuse des Streulichtdetektors durchströmt, durchquert das Licht der Lichtquelle das Streulichtzentrum und somit das dort durchströmende Trägermedium und wird, sofern es nicht an Partikeln in dem Trägermedium gestreut wird, in einer gegenüberliegenden Lichtfalle absorbiert. Das ist der normale und vorwiegend vorliegende Betriebszustand. Trifft der Lichtstrahl der Lichtquelle auf ein Partikel, beispielsweise ein Rauchpartikel oder ein Rauchaerosol, welches einen ersten Hinweis auf einen Entstehungsbrand liefert, lenkt dieses Partikel einen Bruchteil des Lichts als Streulicht aus seiner ursprünglichen Richtung ab. Dieses Streulicht wird dann durch einen höchst lichtempfindlichen Empfänger, den sogenannten Streulichtempfänger, aufgenommen und mittels einer nachfolgenden Auswertschaltung in seiner Intensität gemessen. Ist ein gewisser Schwellwert der Lichtintensität überschritten, wird ein Alarm ausgelöst.

20

25

Damit ein derartiges optisches System fehlerfrei und hochempfindlich arbeitet, ist sowohl eine genaue Adaption an Umgebungsvariablen, Ausführungsbesonderheiten als auch eine adäquate Signalauswertung nötig. So muss beispielsweise je nach Einbauort des Streulichtempfängers die Sensibilität des Detektors verändert werden. So ist in Reinsträumen, wie sie beispielsweise bei der Chipherstellung zu finden sind, eine sehr viel höhere Sensibilitätseinstellung des Detektors nötig als in Büroräumen, da hier schon die Existenz von geringsten Mengen an in der Luft enthaltenen Staubpartikeln und Schwebeteilchen einen Alarm auslösen muss.

30

Da im die von der Lichtquelle des Detektors abgestrahlte Lichtintensität in direktem Zusammenhang mit der Temperatur steht, ist es ebenfalls nötig, den Detektor mit einer Temperaturüberwachung auszubilden. Es ist vielmehr theoretisch nötig, bei steigender Temperatur die Lichtleistung der Lichtquelle, beispielsweise durch Erhöhung des Be-

3

triebsstroms, zu erhöhen. Neben den hohen Energiekosten führt dies allerdings gerade bei Laser Dioden zu einer unproportionalen Verkürzung der Lebensdauer. Auch wenn der maximale Betriebsstrom einer LD nicht erreicht ist, verringert der Betrieb an der maximalen Stromobergrenze deren Lebensdauer immens.

5 Generell macht die Ausbildung von hochempfindlichen optischen Streulichtdetektoren eine präzise und adaptierte Signalauswertung nötig.

10

15

20

25

30

Aus dem Stand der Technik ist diesbezüglich die Druckschrift EP 0 733 894 B1 bekannt, die sich mit der Temperaturadaption eines fotoelektrischen Sensors zur Detektion von Feinstpartikeln, wie beispielsweise Rauch oder Staub in der Luft, befasst. Dieser Detektor weist dabei eine Lichtquelle und ein Lichtempfangsmittel auf, dass eine Sensorausgabe auf die Feststellung einer Lichtstreuung hin erzeugt. Diese wird durch die Gegenwart von Feinstpartikeln in dem von der Lichtquelle abgestrahlten Licht hervorgerufen. Der Detektor weist dabei ein Steuerungsmittel auf, dass die Menge des von der Lichtquelle abgestrahlten Lichts auf Basis eines Temperaturmesswertes steuert. Die Lichtquelle ist dabei gepulst geschaltet. Überschreitet deren Temperatur einen bestimmten Schwellenwert, verändert das Steuerungsmittel die Zeitspanne zwischen den einzelnen Lichtimpulsen. Dadurch wird eine verstärkte Abkühlung der Lichtquelle ermöglicht. Diese Regelungsschleife wird so lange ausgeführt, bis ein oberster Schwellenwert überschritten wird, wobei dann ein Alarmsignal ausgelöst wird, da entweder eine Fehlfunktion des Detektors oder der Temperaturanstieg auf den Anstieg der Umgebungstemperatur in Folge eines Brandes zurückzuführen ist.

Der Nachteil dieser Vorrichtung liegt allerdings darin, dass durch die Vergrößerung des Abstandes zwischen den jeweiligen Lichtimpulsen, der Todbereich des Detektors vergrößert wird. Dies geht zu Lasten der Genauigkeit. Zwar löst diese Vorrichtung im wesentlichen das Problem der Abhängigkeit zwischen Temperatur und Lichtleistung der Lichtquelle, sie zeigt aber keine Möglichkeit der Änderung der Sensibilität des Detektors entgegenzuwirken, den Detektor zu Kalibrieren oder das erhaltene Streulichtsignal gemäß bestimmter Vorgaben auszuwerten.

Die Kalibrierung eines handelsüblichen Streulichtdetektors erfolgt üblicherweise mittels eines Referenzsignals. Zur sachgerechten Projektierung und Überprüfung sowie zur De-

4

monstration von Brandmeldesystemen ist es bekannt, mit einem Verfahren zum Erzeugen von Rauchaerosolen, bei dem ein Prüfling durch Erwärmung pyrolisiert wird, Rauchversuche durchzuführen. Diese Versuche dienen dabei unter anderem der Feststellung, wo die Detektoren in einer elektronischen Anlage oder einem Raum anzuordnen sind. Um dabei eine möglichst realistische Überprüfung zu ermöglichen, werden Verfahren zum Erzeugen von Rauchaerosolen verwendet, mit deren Hilfe ein Referenzwert für eine Rauchentwicklung erzeugt werden kann, um daran die Rauchdetektoren zu überprüfen bzw. zu kalibrieren.

5

25

Die deutsche Patentschrift DE 4 329 847 C1 beschreibt ein Verfahren zum Erzeugen von Rauchaerosolen zur sachgerechten Projektierung und Überprüfung sowie zur Demonstration der Effektivität von Brandmeldesystemen sowie ein Pyrolysegerät zu Durchführung dieses Verfahrens. Bei dem Verfahren wird ein Prüfling, beispielsweise ein elektrisches Kabel oder dergleichen über eine definierte Zeitspanne auf einer konstanten oder nahezu konstanten Temperatur gehalten. Die Vorrichtung und das damit verbundene Verfahren arbeitet dabei in der sogenannten Pyrolysephase, in der energiearme und unsichtbare Rauchaerosole freigesetzt werden. Der Detektionsbereich von modernen Brandfrüherkennungssystemen ist in dieser ersten Phase eines entstehenden Brandes angeordnet. Je nach Anforderungen an die Detektionsgenauigkeit muss es dann u.a. möglich sein, eine auf dieses Referenzsignal bezogene Adaption des Streulichtdetektors vorzunehmen.

Auf Grund der oben genannten Punkte stellt sich vorliegende Erfindung die Aufgabe ein Verfahren zur Auswertung eines Streulichtsignals derart weiter zu entwickeln, dass es effektiver, vielseitiger und genauer ist. Darüber hinaus stellt sich die Erfindung die Aufgabe einen Streulichtdetektor zur Durchführung des oben genannte Verfahren zu stellen, dessen Funktionsweise in Bezug auf die aus dem Stand der Technik bekannten Streulichtdetektoren genauer, vielseitiger, weniger fehleranfällig und preiswerter ist.

Diese Aufgabe wird durch ein Verfahren nach Patentanspruch 1 bzw. durch eine Vorrichtung nach Patentanspruch 12 gelöst. Insbesondere wird diese Aufgabe also durch ein Verfahren zur Auswertung eines Streulichtsignals, welches von einem Streulichtempfänger
beim Detektieren von insbesondere feinen Partikeln in einem Trägermedium erzeugt
wird, gelöst, wobei das Streulichtsignal wahlweise oder nacheinander in beliebiger Reihen-

5

folge eine Kalibrierungsstufe, eine Driftkompensationsstufe, eine Temperaturkompensationsstufe, eine Sensibilitätseinstellungsstufe oder eine Filteralgorithmusstufe durchläuft.

Insbesondere wird diese Aufgabe auch durch einen Streulichtdetektor gelöst, der aufweist: ein Gehäuse, mit einer Einlassöffnung und einer Auslassöffnung in dem Gehäuse, zwischen denen das Trägermedium das Gehäuse auf einem Strömungspfad durchströmt, mit einer Lichtquelle, die Licht auf ein auf dem Strömungspfad liegendes Streulichtzentrum richtet, mit einem Streulichtempfänger für einen Teil des im Streulichtzentrum an Partikeln gestreuten Lichts, und mit einem Streulichtsignalverstärker zum Verstärken des Streulichtsignals, wobei der Streulichtverstärker als Integrationsverstärker ausgebildet ist.

Ein wesentlicher Punkt der Erfindung liegt darin, dass durch das Durchlaufen der verschiedenen Kalibrierungs- und Kompensationsstufen eine genaue Anpassung des Streulichtsignals möglich ist. Je nach Erfordernissen der Streulichtsignaldetektion, der Genausigkeit und der vorliegenden Umgebungsvariablen ist es also möglich, den Streulichtdetektor derart zu adaptieren, dass eine genaue und fehlerfreie Streulichtdetektion möglich ist.

In den einzelnen der oben genannten Stufen werden dabei folgende Anpassung durchgeführt:

20

5

10

15

In der Kalibrierstufe wird der Streulichtdetektor anhand eines Referenzsignals geeicht. Durch diese Anpassung wird u.a. den jeweiligen Umgebungsbedingungen Rechnung getragen, da je nach Einbauort das Trägermedium unter Normalbetrieb einen anderen "Grundverschmutzungsgrad" aufweisen kann.

25

30

In der Driftkompensationsstufe erfolgt die oben genannte Kalibrierung über einen längeren Zeitraum, dass heisst meist 2 bis 3 Tage. Die Mittelung des Kammerwertes zu einem nachgeführten Kammerwert, wobei der Kammerwert das Streulichtsignal ist, das vom Streulichtdetektor empfangen wird, wenn kein Rauch oder Rauchaerosol im Streulichtzentrum vorhanden ist, verbessert dabei die Genauigkeit des Streulichtdetektors, da dessen Sensibilitätseinstellung unter Berücksichtigung dieses Mittelwertes erfolgen kann.

6

Die Temperaturkompensationsstufe dient der Adaption des Streulichtdetektors auf das Abhängigkeitsverhältnis Temperatur und Lichtabstrahlleistung. Hier wird der Tatsache Rechnung getragen, das bei steigender Temperatur die tatsächlich von einer Lichtquelle emittierte Lichtleistung abnimmt und umgekehrt.

5

15

20

25

Die Sensibilitätseinstellungsstufe ermöglicht die Anpassung des Streulichtdetektors an geforderte Sensibilitätsstufen, wie sie je nach Anwendungsgebiet des Detektors erforderlich sind.

Die Filteralgorithmusstufe schließlich ermöglicht die Analyse eines Streulichtsignals in Abhängigkeit bestimmter Filteralgorithmen, um eine sichere und fehlerfreie Alarmausgabe zu gewährleisten.

Eine derartige Kombination unterschiedlicher Adaptions- und Kalibrierungsstufen führt zu einem Detektionsverfahren, dass äußerst präzise, vielseitig anwendbar und darüber hinaus besonders fehlerfrei arbeitet. Natürlich ist es denkbar die ein oder andere Adaptionsstufe wegzulassen, wenn sie nicht ausdrücklich nötig ist, um Kosten zu sparen.

Ein Verfahren zur Auswertung eines Streulichtsignals, wobei der Streulichtdetektor einen Integrationsverstärker als Streulichtsignalverstärker aufweist, in dem in der Kalibrierungsstufe die Integrationszeit des Integrationsverstärkers so eingestellt wird, dass das Streulichtsignal einem Referenzsignal eines Referenzmelders entspricht ist eine vorteilhafte Weiterbildung des eingangsgenannten Verfahrens. Durch die Veränderung der Integrationszeit ist eine sehr kostengünstige und automatisierbare Adaption des Streulichtdetektors an ein Referenzsignal möglich. Es ist u.a. auch möglich diese Adaption durch eine Anpassung des Treiberstroms der Lichtquelle vorzunehmen - so dass die abgestrahlte Lichtenergie verändert wird -, was allerdings zu Lasten der Lebensdauer der Lichtquelle und einem erhöhten Energiebedarf erfolgt. Bei diesem erfindungsgemäßen Verfahren bleibt der Treiberstrom der Lichtquelle konstant.

30

Die Sensibilität eines Streulichtdetektors kann erfindungsgemäß durch verschiedene Verfahren verändert werden. Zum einen durch die Änderung der Impulsbreite des Treiber-

7

stroms der Lichtquelle. Unter Impulsbreite versteht man dabei die Dauer eines Lichtimpulses. Durch Verringerung der Impulsbreite wird die Sensibilität des Streulichtdetektors verringert, durch Vergrößerung der Impulsbreite wird die Sensibilität heraufgesetzt. Die andere Möglichkeit ist die Veränderung der Integrationszeit eines eventuell vorhandenen Integrationsverstärkers, der als Streulichtsignalverstärker fungiert. Auch bei diesem Verfahren führt die Vergrößerung der Integrationszeit des Integrationsverstärkers zu einer höheren Sensibilität und die Verringerung der Integrationszeit zu einem Streulichtdetektor mit weniger empfindlichem Ansprechverhalten. Beide Verfahren zur Veränderung der Sensibilität eines Streulichtdetektors sind sehr kostengünstig und Material schonend und erlauben beispielsweise auf einfache Weise eine Anpassung des Streulichtdetektors an veränderte. Dabei ist es natürlich möglich das sowohl die Änderung der Integrationszeit als auch die Änderung der Impulsbreite stufenweise oder stufenlos erfolgt. Stufenweise, bedeutet hier beispielsweise eine feststehende Rasterung der Sensibilität in Prozentstritten, so dass der Streulichtdetektor auf 25, 50, 75 und 100 % Sensibilität arbeitet. Die Einstellung dieser Sensibilitätsstufen erfolgt vorteilhafter Weise mittels Schaltmittel, z. B. einem DIL-Schalter. Es ist natürlich auch möglich die Anpassung der Sensibilität über eine Kommunikationsschnittstelle, beispielsweise mittels eines PC oder in einem Netzwerk, durchzuführen. Auf diese Art und Weise ist eine Anpassung von Streulichtdetektoren bzw. eine Anpassung von gesamten Brandmeldeanlagen über eine Steuerungszentrale möglich.

Ob das Verfahren eine stufenweise oder stufenlose Anpassung der Integrationszeit oder der Impulsbreite erlaubt, hängt von den Randbedingungen der Überwachungsanlage ab. Um eine besonders effektive und sensible Überwachung zu gewährleisten, wie dies beispielsweise in Reinsträumen nötig ist, müssen Streulichtdetektoren schon bei der Gegenwart geringster Partikelmengen in der Luft ein Detektionssignal liefern, was demzufolge eine sehr feine Sensibilitätsanpassung nötig macht. Die Anpassung der Sensibilität kann neben herkömmlichen Schaltern oder mittels Kommunikationsschnittstellen für PC oder Netzwerke natürlich auch drahtlos folgen.

30

25

5

10

15

20

Der Zusammenhang zwischen Temperatur und Lichtemission der Lichtquelle ist eingangs schon näher beschrieben worden. In der Temperaturkompensationsstufe wird daher ein im Strömungspfad des Trägermediums angeordneter Temperatursensor zur Temperatur-

8

kompensation des Streulichtsignals verwendet. Das bedeutet, dass kontinuierlich oder gepulst die Temperatur des Trägermediums bzw. der Umgebung ermittelt wird, um eine Adaption der Lichtquelle, die im Streulichtdetektor Licht emittiert, vorzunehmen. Wird also ein Temperaturanstieg beim Trägermedium im Strömungspfad festgestellt, kann eine direkte Anpassung der Lichtquelle erfolgen, um eine konstante Lichtabstrahlung zu gewährleisten. Vorteilhafterweise wird diese Temperaturkompensation durch die Änderung der Impulsbreite des Treiberstroms der dem Streulichtempfänger zugeordneten Lichtquelle vorgenommen. Das bedeutet, dass bei einem vom Temperatursensor erfassten Temperaturanstieg des Trägermediums, die Impulsbreite des Treiberstroms der Lichtquelle verringert wird. Das hat eine geringere Erhitzung der Lichtquelle und somit auch des Trägermediums zur Folge. Wird statt dessen ein Temperaturabfall festgestellt, kann die Impulsbreite des Treiberstroms der Lichtquelle vergrößert werden, was eine Temperaturerhöhung nach sich zieht. In allen Fällen bleibt jedoch der Treiberstrom der Lichtquelle konstant.

15

20

25

10

5

Es ist von Vorteil, das Streulichtsignal vor dem Vergleich mit voreingestellten Schwellwerten, insbesondere Alarmschwellwerten, in Abhängigkeit seiner Steilheit unterschiedlich zu filtern. Auf diese Art und Weise können Täuschungsgrößen erkannt, eliminiert und eine Fehlalarmierung verhindert werden, da nur tatsächlich vorhandene Alarmgrößen, dass sind Größen die über einem betreffenden Schwellwert liegen zu einem Alarmausgangssignal führen. Dabei wird beispielsweise berücksichtigt über welchen Zeitraum das Streulichtsignal einen Schwellenwert, insbesondere Alarmschwellenwert überschreitet. Erst ab einer festgelegten Zeitspanne erfolgt dann die Ausgabe eines Alarmsignals. Die Tiefpassfilterung des Eingangssignals sobald dessen Steilheit einen vordefinierten Schwellwert überschreitet führt darüber hinaus zu einer Streulichtdetektorvorrichtung mit einer sehr guten Signal-to-noise-ratio, da kurze, schnelle Ausschläge im Eingangssignal, wie sie häufig durch Luftverunreinigungen, d.h. geringe Mengen an Staubpartikeln im zu überwachenden Luftstrom, verursacht werden, nicht als Alarmwerte erkannt werden.

30 Eine weitere Möglichkeit bei einem Streulichtdetektor einen verbesserten Detektionsalgorythmus und weniger Fehlalarmierungen zu erlangen, ist die Bildung eines nachgeführten Kammerwertes. Dieser nachgeführte Kammerwert wird über einen längeren Zeitraum aus dem Kammerwert des Streulichtdetektors gemittelt. Die erfolgt in der Driftkompensati-

9

onsstufe. Der Kammerwert ist das Streulichtsignal, dass sich ergibt, wenn kein Rauch im Streulichtzentrum des Streulichtdetektors vorhanden ist. Dieses Streulichtsignal bildet sich dabei vorzugsweise sowohl an Eigenrefflektionsflächen des Detektors als auch auf Grund von Luftverunreinigungen aus. Die Mittelung dieses Kammerwertes in der Driftkompensationsstufe über mehrere, d. h. vorzugsweise 2 bis 3 Tage, führt also zu einer sehr genauen Eichung des Gerätes. Dieser gemittelte nachgeführte Kammerwert kann dann unter Betriebsbedingungen vom Streulichtsignal abgezogen werden. Man erhält somit ein Streulichtsignal ohne Fehler aus Luftverunreinigungen, Umgebungsbedingungen bzw. Eigenrefflektionswerten des Detektors usw..

10

15

20

5

Zur Durchführung der oben genannten Verfahrensschritte wird ein Streulichtdetektor dargeboten, mit einem Gehäuse, mit einer Einlassöffnung und einer Auslassöffnung in dem Gehäuse, zwischen denen das Trägermedium das Gehäuse auf einem Strömungspfad durchströmt, mit einer Lichtquelle, die Licht auf ein auf dem Strömungspfad liegendes Streulichtzentrum richtet, mit einem Streulichtempfänger für einen Teil des im Streulichtzentrum an Partikeln gestreuten Lichts, und mit einem Streulichtsignalverstärker zum Verstärken des Streulichtsignals, wobei der Streulichtsignalverstärker als Integrationsverstärker ausgebildet ist. Die Verstärkung des Streulichtsignals hat natürlich den Vorteil, dass schon geringe Streulichtsignaländerungen detektiert werden können, wobei die Ausbildung des Streulichtsignalverstärkers als Integrationsverstärker die Anpassung der Streulichtdetektion ohne die Verwendung zusätzlicher Bauteile ermöglicht. Bezüglich des Punktes Temperaturkompensation, ermöglicht es der Integrationsverstärker durch die Verlängerung der Beobachtungszeiträume - also der Integrationszeit - die, bei einem Temperaturanstieg im Streulichtdetektor nachlassende Lichtleistung der Lichtquelle zu kompensieren. Diese Möglichkeit ist zum einen preisgünstig, zum andern verlängert sie die Lebensdauer der Lichtquelle, da deren Lichtabstrahlleistung nicht durch einen vergrößerten Treiberstrom erzeugt werden muss. Folglich führt die Verwendung des Integrationsverstärkers als Streulichtverstärker bei einem Streulichtdetektor zu einer Vorrichtung, die sehr energieeffizient arbeitet.

30

25

Um eine Sensibilitätseinstellung am Streulichtempfängers vorzunehmen, sind vorzugsweise am Streulichtdetektor Schaltmittel vorgesehen. Um ein möglichst einfaches Umschalten am Gerät zu ermöglichen können diese Schaltmittel beispielsweise DIL-Schalter sein.

10

Es ist jedoch auch möglich diese Schaltmittel als preisgünstige Jumperverbindungen auszuführen. Um die Anwenderfreundlichkeit und die Überwachungsmöglichkeiten zu erhöhen, ist es sinnvoll eine Kommunikationsschnittstelle, insbesondere zu einem PC oder einem Netzwerk vorzusehen. Dies erlaubt die zentralisierte Überwachung mehrerer Streulichtdetektoren bzw. deren Fehlerdiagnose. Dabei können die Kommunikationswege sowohl drahtlos als auch drahtgebunden zur Verfügung gestellt werden. Ebenfalls sinnvoll ist es daher einen Schalteingang zum Umschalten der Sensibilität des Streulichtempfängers vorzusehen.

5

30

- Die Anordnung eines Temperatursensors im Strömungspfad des Trägermediums ermöglicht die eingangsgenannte Temperaturkompensation. Die Anordnung eines Strömungsmessers im Strömungspfad des Trägermediums, ermöglicht die zusätzliche Überwachung des Strömungsdetektors. Beispielsweise ist es nun möglich bei Detektion von starken Strömungsschwankungen ein Signal auszugeben; da diese auf eine Fehlfunktion des Detektors bzw. der Ansaugvorrichtung schließen lassen. Die Ausbildung des Luftstromsensors und/oder des Temperatursensors als thermoelektrische Bauteile stellt dabei eine kostengünstige und größenoptimierte Möglichkeit dar, den Streulichtdetektor mit hoch präzise arbeitenden Sensoren zu versehen.
- 20 Weitere Ausführungsformen der Erfindung ergeben sich aus den Unteransprüchen.

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen beschrieben, die durch die Abbildungen näher erläutert werden. Hierbei zeigen:

- 25 Fig. 1 Eine geschnittene Seitenansicht eines Streulichtdetektors einer ersten Ausführungsform;
 - Fig. 2 Eine Draufsicht auf den entlang der Linie A-A geschnittenen Streulichtdetektor der Ausführungsform aus Fig. 1
 - Fig. 3 Eine Draufsicht auf einen geschnittenen Streulichtdetektor einer zweiten Ausführungsform;

11

Fig. 4 Eine Draufsicht auf einen geschnittenen Streulichtdetektor einer dritten Ausführungsform.

Fig. 5 Ein Eingangs-/Ausgangssignaldiagramm eines Streulichtdetektors;

5

10

15

Fig. 6 Ein Diagramm, dass die Veränderung der Impulsbreite des Treiberstroms einer Lichtquelle in Abhängigkeit der Temperatur darstellt.

In der nachfolgenden Beschreibung werden für gleiche und gleichwirkende Teile die selben Bezugsziffern verwendet.

Die im Folgenden beschriebenen drei Ausführungsbeispiele für einen Streulichtdetektor 1 sind darauf ausgerichtet, als Teil einer aspirativen Brandmeldeanlage zu dienen. Somit ist das in den Patentansprüchen beschriebene Trägermedium Luft. Diese Luft wird wie bei einer aspirativen Brandmeldeanlage üblich, mittels eines Lüfters angesaugt. Dabei ist es denkbar den Lüfter direkt am Gehäuse 10 des Streulichtdetektors 1 anzuordnen oder aber auch innerhalb eines Luftkanalsystems vom Streulichtdetektor 1 entfernt anzubringen. Die in den Patentansprüchen formulierten Verfahren und Vorrichtungen sind in den folgenden drei Ausführungsformen implementiert bzw. verwendet.

20

25

30

Fig. 1 zeigt eine geschnittenen Seitenansicht eines Streulichtdetektors. Dieser umfasst ein Gehäuse 10 und damit verbunden eine Platine 40. Das Gehäuse 10 bildet dabei eine Einlassöffnung 3 und eine Auslassöffnung 5 aus. An die Einlassöffnung 3 ist ein Lüftergehäuse 6 angebunden, dass einen Lüfter enthält (nicht dargestellt) der für einen Luftstrom 8 sorgt, der den Detektor 1 entlang einem Strömungspfad 7 durchströmt. In diesem Fall wird ein Luftstrom 8 erzeugt, der den Streulichtdetektor 1 von der Einlassöffnung 3 zur Auslassöffnung 5 durchströmt. Es ist natürlich auch denkbar, dass der im Lüftergehäuse 6 vorgesehene Lüfter die Luft ansaugt und somit ein Luftstrom 8' erzeugt wird der in entgegengesetzter Richtung den Streulichtdetektor 1 durchströmt. Um den Einfall von Fremdlicht von außen zu vermeiden, weist der Streulichtdetektor 1 auf beiden Seiten Lichtfallen 30; 32 auf. Weiter ist der Streulichtdetektor 1 mit einer Lichtquelle 9 ausgestattet die einen Lichtkegel 20 auf ein Streulichtzentrum 11 richtet, welches auf dem Strömungspfad 7 liegt. Des weiteren umfasst der Detektor 1 einen Empfänger 13 in Form ei-

12

ner Fotodiode. Des weiteren ist eine Blende 26 zwischen Leuchtdiode 9 und Streulichtempfänger 13 vorgesehen, die verhindert, dass das von der Lichtquelle 9 ausgestrahlte Licht direkt auf den Streulichtempfänger 13 trifft.

5 In Fig. 2 ist das erste Ausführungsbeispiel aus Fig. 1 in einer geschnittenen Draufsicht dargestellt. Die Schnittführung entspricht dabei der in Fig. 1 dargestellten Schnittlinie A-A. Luft, die den Streulichtdetektor 1 von der Einlassöffnung 3 zur Auslassöffnung 5 durchströmt, passiert dabei das Streulichtzentrum 11. Eventuell im Luftstrom 8 vorhandene Kleinstpartikel reflektieren dabei das von der Lichtquelle 9, in diesem Fall einer LED, emittierte Licht auf den Streulichtempfänger 13, was dann nach überschreiten vor-10 her festgelegter Schwellenwerte ein Detektionssignal bewirkt. Im Strömungspfad 7 des Streulichtdetektors 1 ist zusätzlich ein Luftstromsensor 25 und ein Temperatursensor 23 angeordnet. Der Luftstromsensor 25 dient dabei der Überprüfung ob ein kontinuierlicher oder sonst irgendwie bestimmter Luftstrom 8 den Streulichtdetektor 1 durchströmt. Bei 15 Luftstromschwankungen ist es beispielsweise möglich, ein dementsprechendes Alarmsignal auszugeben. Der Temperatursensor 23 überwacht die Temperatur im Luftstrom 8, der den Streulichtdetektor 1 entlang des Strömungspfades 7 durchströmt, um beispielsweise eine Temperaturkompensation zu ermöglichen. Auf die Temperaturkompensation wird in Fig. 6 noch näher eingegangen.

20

25

30

Die Figuren 3 und 4 zeigen beide eine geschnittene Draufsicht auf je einen weiteren Streulichtdetektor. Diese beiden Ausführungsformen sind als Ausführungsform zwei und drei bezeichnet. Der hier dargestellte geschnittene Streulichtdetektor weist wiederum die Lichtquelle 9 und den Empfänger 13, wobei der Lichtkegel 20 der Lichtquelle 9 und ein Empfängerkegel 22 des Streulichtempfängers 13 überkreuz (wie beim ersten Ausführungsbeispiel) und für einen bestimmten Abschnitt auf der Mittellinie 58 des Strömungspfades 7 verlaufen. Der den Strömungspfad 7 leitende Strömungskanal weist dabei sowohl vor dem Streulichtzentrum 11 als auch hinter dem Streulichtzentrum 11 eine Biegung auf. Die so gebildeten Lichtfallen 30 und 32 verhindern, wie schon beim ersten Ausführungsbeispiel, das Eindringen von Fremdlicht von außen. Darüber hinaus weist die zweite Ausführungsform in Fig. 3 Blenden 26 und 28 auf, die die Reflektion des von der Lichtquelle 9 emittierten Lichts direkt in den Streulichtempfänger 13 verhindern. Ein Temperatursensor 23 und ein Luftstromsensor 25 sind hier ebenfalls auf der Mittellinie

13

58 des Strömungspfades 7 angeordnet, um die für die Detektion relevanten Kalibrierungsund Überwachungsdaten zu sammeln.

Die in Fig. 11 gezeigte dritte Ausführungsform eines Streulichtdetektors weist wie die zuvor gezeigten Ausführungsformen Lichtfallen 30 und 32 auf. Die Lichtquelle 9 bzw. der Empfänger 13 sind mit ihren Mittelachsen 18 bzw. 14 so ausgerichtet, dass diese für einen bestimmten Abschnitt – nämlich bis zu den beiden Biegungen 30;32 des Strömungspfades 7 – parallel zu oder auf der Mittellinie 58 des Strömungspfades 7 verlaufen. Wiederrum sind bei dieser Ausführungsform Blenden 26 und 28 vorgesehen, die die Detektion von Fehlgrößen verhindern. Im Bereich der Einlassöffnung 3 sind in dem dort ausgebildeten Strömungskanal ebenfalls wieder ein Luftstromsensor 25 und ein Temperatursensor 23 angeordnet. Ein Luftstrom 8, der den Streulichtdetektor 1 durchströmt, wird so vor Erreichen des Streulichtzentrum 11 auf seine Temperatur und seine Strömungsgeschwindigkeit überprüft.

15

20

25

30

10

5

Die Verfahrensschritte wie sie in den vorliegenden Patentansprüchen beschrieben sind, finden in den vorgehend beschriebenen Streulichtdetektoren 1 ihre Anwendung. Dabei ist es möglich, dass das von dem Streulichtempfänger 13 empfangene Streulichtsignal in beliebiger Reihenfolge eine Kalibrierstufe, Driftkompensationsstufe, eine Temperaturkompensationsstufe, eine Sensibilitätseinstellungsstufe oder eine Filteralgorithmusstufe durchläuft. Die Kalibrierstufe und die Driftkompensationsstufe dienen dabei der Adaption des jeweiligen Streulichtempfängers, u.a. an unterschiedliche Trägermedien, die den Strömungsdetektor durchströmen, wobei zur Kalibrierung von einem Luftstrom 8 auszugehen ist, wie er am jeweiligen Einsatzort unter Normalbedingungen vorzufinden ist. Natürlich muss ein Streulichtdetektor der in Büroräumen verwendet wird auf einen anderen Luftstrom 8 kalibriert werden als ein Streulichtdetektor, der in Reinsträumen verwendet wird. In der Kalibrierungsstufe und/oder der Driftkompensationsstufe wird dem Rechnung getragen. Der Unterschied zwischen beiden Stufen ist, dass bei der Driftkompensationsstufe der sogenannte Kammerwert, das Streulichtsignal das vom Streulichtempfänger 13 detektiert wird wenn kein Rauch oder ähnliche Fremdstoffe, die einen Alarm auslösen könnten, im Streulichtzentrum 11 vorhanden ist, über einen längeren Zeitraum, dass bedeutet meist zwei bis drei Tage, gemittelt wird. Dieser sogenannte nachgeführte Kammerwert wird dann um eine Kalibrierung des Streulichtdetektors 1 zu erreichen vom detektierten

Streulichtsignal abgezogen. Eine Anpassung an die Temperatur des Luftstroms 8 ist in Folge des vom Temperatursensor 23 empfangenen Temperatursignals möglich. Hier wird wie Eingans erwähnt, der Tatsache Rechnung getragen, dass bei steigender Temperatur die von der Lichtquelle 9 emittierte Lichtleistung nachlässt. Um nun eine, von der Temperatur unabhängige, Detektionsleistung des Streulichtdetektors 1 zu erzielen, wird in der Temperaturkompensationsstufe eine dementsprechende Anpassung vorgenommen. Das bei den verschiedenen Ausführungsformen vom Streulichtempfänger 13 detektierte Streulichtsignal wird darüber hinaus in einer Filteralgorithmusstufe unterschiedlich gefiltert. Dabei ist es denkbar das Streulichtsignal vor dem Vergleich mit den voreingestellten Schwellenwerten, die zu einem Alarmsignal führen, in Abhängigkeit seiner Steilheit zu filtern um eventuell vorhandene Fehlsignale zu eliminieren.

Um bei allen drei Streulichtdetektoren eine möglichst genaue und sensible Überwachung des Luftstroms 8 zu gewährleisten, sind die verschiedenen Ausführungsbeispiele mit einem Streulichtverstärker versehen (nicht dargestellt), der beispielsweise in Form eines Integrationsverstärkers das vom Streulichtempfänger 13 detektierte Streulichtsignal verstärkt. Dieser Integrationsverstärker ermöglicht dabei beispielsweise durch die Veränderung der Integrationszeit eine Veränderung der Sensibilität des Streulichtempfängers 1. Je größer die Integrationszeit dabei gewählt ist, desto sensibler arbeitet der Streulichtdetektor 1. Diese Änderung kann dabei stufenweise oder stufenlos erfolgen.

Fig. 5 zeigt ein Signaleingangs/-Ausgangsdiagramm. Das Eingangssignal 2 entspricht dabei einem ungefilterten Signal, wie es vom Streulichtempfänger 13 im Streulichtdetektor 1 detektiert wird. Das Ausgangssignal 4 entspricht dagegen einem bereits unter Verwendung spezieller Filteralgorithmen veränderten Signal. Zu Erkennen sind hier im Eingangssignal 2 vier Spitzenwerte A, B, C, D, wobei nur der Spitzenwert C über einen längeren Zeitraum den Schwellenwert "1" überschreitet, wodurch ein Alarm bzw. ein Detektionssignal ausgelöst wird. Die sogenannten Täuschungsgrößen A, B und D werden dagegen vom Filteralgorithmus gekappt und führen nicht zu einem Alarmsignal. Dabei ist zu beachten dass die Täuschungsgrößen B und D zwar auch den Schwellenwert "1" überschreiten, diese Überschreitung allerdings nicht lange genug vorliegt und so vom internen Filter nicht als Alarmgröße erkannt und somit gekappt wird. Durch eine angepasste Fil-

15

teraufstellung kann so ein Streulichtdetektor optimal an Umgebungsbedingungen o.ä. abgestimmt werden.

In Fig. 6 ist eine Möglichkeit für die Temperaturkompensation der drei Strömungsdetektoren aus den Figuren 1 bis 3 dargestellt. Gezeigt ist dabei zum einen in Bild 6.1 ein Diagramm des gepulsten Betriebs der Lichtquelle 9. Unter Normalbetrieb weist dies eine Impulsphase 50 mit einer Impulsbreite von beispielsweise drei Milisekunden, gefolgt von einer Ruhephase 52 von einer Sekunde auf. In dieser Ruhephase 52 kühlt sich die, während der Impulsphase 50 erwärmte Lichtquelle 9 ab, so dass unter Normalbedingungen eine gleichmäßige Temperaturentwicklung im Luftstromkanal zu erwarten ist. Wird allerdings vom Luftstromsensor 25 eine Temperaturerhöhung festgestellt, ist es möglich, wie dies in den Figuren 6.2 und 6.3 dargestellt ist, die Impulsbreite der Impulsphase 50 sukzessive zu verringern, um eine geringere Wärmeentwicklung der Lichtquelle 9 zu bewirken: Die Veränderung der Impulsbreite der Lichtemittierung – diese entspricht einer Änderung der Impulsbreite des Treiberstroms der Lichtquelle 9, bewirkt natürlich auch eine Verringerung der Sensibilität, die folglich in der Sensibilitätseinstellungsstufe oder einer anderen Kalibrierungsstufe kompensiert werden kann.

An dieser Stelle sei darauf hingewiesen, dass alle oben beschriebenen Teile für sich alleine gesehen und in jeder Kombination, insbesondere die in den Zeichnungen dargestellten Details als erfindungswesentlich beansprucht werden. Abänderungen hiervon sind dem Fachmann geläufig.

5

10

15

WO 2005/071390

Bezugszeichenliste

	1	Detektor	
5	2	Eingangss	ignal
	3	Einlassöff	nung
	4	Ausgangss	ignal
	5	Auslassöff	nung
	6	Lüftergeh	iuse
10	7	Strömungs	spfad
	8	Luftstrom	
	9	Lichtquell	e
	10	Gehäuse	
	11 "	Streulichtz	entrum
15	13	Streulichte	empfänger
	14	Mittelachs	e
	17	Streulichts	ignalverstärker
	18	Mittelachs	e
	19	Schaltmitt	el
20	20	Lichtkegel	•
	21	Schaltmitt	el
	22	Empfänge	rkegel
	23	Temperati	irsensor
	25	Strömungs	smesser
25	26	Blende	
	28	Blende	
	30	Lichtfalle	
	32	Lichtfalle	
	40	Platine	
30	50	Impulspha	se
	52	Ruhephase	
	58	Mittellinie	des Strömungspfades

"Verfahren zur Auswertung eines Streulichtsignals und Streulichtdetektor zur Durchführung des Verfahrens"

Ansprüche

1. Verfahren zur Auswertung eines Streulichtsignals, welches von einem Streulichtempfänger beim Detektieren von insbesondere feinen Partikeln in einem Trägermedium erzeugt wird,

dadurch gekennzeichnet, dass

das Streulichtsignal wenigstens eine Kalibrierstufe, zur Eichung und Anpassung an vorhandene Umgebungsbedingungen, und/oder eine Driftkompensationsstufe, zur · Eichung und Anpassung an vorhandene Umgebungsbedingungen über einen Zeitraum von mindestens 24 Stunden, und/oder eine Temperaturkompensationsstufe, zur Kompensation der Temperaturabhängigkeit der Lichtabstrahlleistung einer Lichtquelle, und/oder eine Sensibilitätseinstellungsstufe, zur Anpassung einer geforderten Sensibilität und/oder eine Filteralgorithmusstufe, zur Auswertung des Streulichtsignals in Abhängigkeit bestimmter Filteralgorithmen, durchläuft, und das Streulichtsignal vor dem Vergleich mit voreingestellten Schwellwerten in Abhängigkeit seiner Steilheit unterschiedlich gefiltert wird.

15

10

5

2. Verfahren nach Anspruch 1, mit einem Integrationsverstärker als Streulichtsignalverstärker,

dadurch gekennzeichnet, dass

in der Kalibrierstufe die Integrationszeit des Integrationsverstärkers so eingestellt wird, dass das Streulichtsignal einem Referenzsignal eines Referenzmelders entspricht.

5 3. Verfahren nach Anspruch 1 oder 2,

dadurch gekennzeichnet, dass in der Sensibilitätseinstellungsstufe die Sensibilität des Streulichtempfängers (13) durch Änderung der Impulsbreite des Treiberstroms einer dem Streulichtempfän-

ger (13) zugeordneten Lichtquelle (9) erfolgt.

10

4. Verfahren nach Anspruch 1 oder 2,

dadurch gekennzeichnet, dass

in der Sensibilitätseinstellungsstufe die Sensibilität des Streulichtempfängers durch Änderung der Integrationszeit eines als Streulichtsignalverstärker fungierenden Integrationsverstärkers erfolgt.

5. Verfahren nach Anspruch 4,

dadurch gekennzeichnet, dass

die Änderung der Integrationszeit stufenweise oder stufenlos erfolgt.

20

15

6. Verfahren nach Anspruch 3,

dadurch gekennzeichnet, dass

die Änderung der Impulsbreite stufenweise oder stufenlos erfolgt.

25 7. Verfahren nach einem der Ansprüche 1 bis 6,

dadurch gekennzeichnet, dass

in der Temperaturkompensationsstufe ein im Strömungspfad (7) des Trägermediums angeordneter Temperatursensor (23) zur Temperaturkompensation des Streulichtsignals verwendet wird.

30

8. Verfahren nach Anspruch 7,

dadurch gekennzeichnet, dass

die Temperaturkompensation durch Änderung der Impulsbreite des Treiberstroms einer dem Streulichtempfänger (13) zugeordneten Lichtquelle (9) erfolgt.

9. Verfahren nach einem der Ansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t, dass das Streulichtsignal tiefpass-gefiltert wird, wenn dessen Steilheit einen vordefinierten Schwellwert überschreitet.

5

30

- 10. Verfahren nach einem der Ansprüche 1 bis 9,
 10 da durch gekennzeichnet, dass in der Driftkompensationsstufe über einen längeren Zeitraum ein Kammerwert zur Bildung eines nachgeführten Kammerwertes gemittelt wird.
- 11. Streulichtdetektor zur Durchführung des Verfahrens nach einem der Ansprüche 1
 bis 9, mit einem Gehäuse (1), mit einer Einlassöffnung (3) und einer Auslassöffnung (5) in dem Gehäuse (1), zwischen denen das Trägermedium das Gehäuse (1)
 auf einem Strömungspfad (7) durchströmt, mit einer Lichtquelle (9), die Licht auf ein auf dem Strömungspfad (7) liegendes Streulichtzentrum (11) richtet, mit einem Streulichtempfänger (13) für einen Teil des im Streulichtzentrum (11) an Partikeln gestreuten Lichts, und mit einem Streulichtsignalverstärker (17) zum Verstärken des Streulichtsignals, wobei der Streulichtsignalverstärker (17) als Integrationsverstärker ausgebildet ist, g e k e n n z e i c h n e t d u r c h eine Filteralgorithmusstufe zur Filterung des Streulichtsignals in Abhängigkeit seiner Steilheit.
 - 12. Streulichtdetektor nach Anspruch 11,
 dadurch gekennzeichnet, dass
 Schaltmittel (19, 21) zum Einstellen der Sensibilität des Streulichtempfängers (13)
 vorgesehen sind.
 - 13. Streulichtdetektor nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass

eine Kommunikationsschnittstelle, insbesondere zu einem PC oder einem Netzwerk, vorgesehen ist.

- 14. Streulichtdetektor nach einem der Ansprüche 11 bis 13,
 d a d u r c h g e k e n n z e i c h n e t, dass
 ein Schalteingang zum Umschalten der Sensibilität des Streulichtempfängers (13)
 vorgesehen ist.
- 15. Streulichtdetektor nach einem der Ansprüche 11 bis 14,

 gekennzeichnet durch
 einen Temperatursensor (23) im Strömungspfad (7) des Trägermediums.

5

15

- 16. Streulichtdetektor nach einem der Ansprüche 11 bis 15, gekennzeichnet durch einen im Strömungspfad (7) des Trägermediums angeordneten Strömungsmesser (25).
- 17. Streulichtdetektor nach Anspruch 16,
 dadurch gekennzeichnet, dass
 20 der Strömungsmesser (25) aus einem thermoelektrischen Luftstromsensor und einem thermoelektrischen Temperatursensor besteht.

GEÄNDERTE ANSPRÜCHE

[beim Internationalen Büro am 01. Juni 2005 (01.06.05) eingegangen; ursprüngliche Ansprüche 1-17 durch geänderte Ansprüche 1-18 ersetzt (4 Seiten)]

"Verfahren zur Auswertung eines Streulichtsignals und Streulichtdetektor zur Durchführung des Verfahrens"

(Neue) Patentansprüche

- Verfahren zur Auswertung eines Streulichtsignals, welches von einem Streulichtempfänger beim Detektieren von insbesondere feinen Partikeln in einem Trägermedium erzeugt wird, dadurch gekennzeichnet, dass
- das Streulichtsignal eine Filteralgorithmusstufe zur Auswertung des
 Streulichtsignals in Abhängigkeit bestimmter Filteralgorithmen durchläuft,
 und das Streulichtsignal in der Filteralgorithmusstufe vor dem Vergleich mit
 voreingestellten Schwellwerten in Abhängigkeit seiner Steilheit unterschiedlich
 gefiltert wird.
- 2. Verfahren nach Anspruch 1,

5

10

15

20

- da durch gekennzeichnet, dass
 das Streulichtsignal weiter eine Kalibrierstufe zur Eichung anhand eines
 Referenzsignals, und/oder eine Driftkompensationsstufe zur Anpassung an
 vorhandene Umgebungsbedingungen über einen Zeitraum von mindestens 24
 Stunden, und/oder eine Temperaturkompensationsstufe zur Kompensation der
 Temperaturabhängigkeit der Lichtabstrahlleistung einer Lichtquelle, und/oder eine
 Sensibilitätseinstellungsstufe zur Anpassung einer geforderten Sensibilität
 durchläuft.
 - 3. Verfahren nach Anspruch 2, mit einem Integrationsverstärker als Streulichtsignalverstärker, dadurch gekennzeichnet, dass

GEÄNDERTES BLATT (ARTIKEL 19)

in der Kalibrierstufe die Integrationszeit des Integrationsverstärkers so eingestellt wird, dass das Streulichtsignal einem Referenzsignal eines Referenzmelders entspricht.

4. Verfahren nach Anspruch 2 oder 3,
d a d u r c h g e k e n n z e i c h n e t, dass
in der Sensibilitätseinstellungsstufe die Sensibilität des Streulichtempfängers (13)
durch Änderung der Impulsbreite des Treiberstroms einer dem
Streulichtempfänger (13) zugeordneten Lichtquelle (9) erfolgt.

10

15

20

30

35

- 5. Verfahren nach Anspruch 2 oder 3, da durch gekennzeichnet, dass in der Sensibilitätseinstellungsstufe die Sensibilität des Streulichtempfängers durch Änderung der Integrationszeit eines als Streulichtsignalverstärker fungierenden Integrationsverstärkers erfolgt.
- 6. Verfahren nach Anspruch 5,
 d a d u r c h g e k e n n z e i c h n e t, dass
 die Änderung der Integrationszeit stufenweise oder stufenlos erfolgt.
- 7. Verfahren nach Anspruch 4,
 d a d u r c h g e k e n n z e i c h n e t, dass
 die Änderung der Impulsbreite stufenweise oder stufenlos erfolgt.
- 25 8. Verfahren nach einem der Ansprüche 2 bis 7,
 d a d u r c h g e k e n n z e i c h n e t, dass
 in der Temperaturkompensationsstufe ein im Strömungspfad (7) des
 Trägermediums angeordneter Temperatursensor (23) zur Temperaturkompensation
 des Streulichtsignals verwendet wird.
 - 9. Verfahren nach Anspruch 8,
 d a d u r c h g e k e n n z e i c h n e t, dass
 die Temperaturkompensation durch Änderung der Impulsbreite des Treiberstroms
 einer dem Streulichtempfänger (13) zugeordneten Lichtquelle (9) erfolgt.
 - 10. Verfahren nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, dass

GEÄNDERTES BLATT (ARTIKEL 19)

das Streulichtsignal tiefpass-gefiltert wird, wenn dessen Steilheit einen vordefinierten Schwellwert überschreitet.

5

25

30

35

- 11. Verfahren nach einem der Ansprüche 2 bis 10,
 d a d u r c h g e k e n n z e i c h n e t, dass
 in der Driftkompensationsstufe über einen längeren Zeitraum ein Kammerwert zur
 Bildung eines nachgeführten Kammerwertes gemittelt wird.
- 12. Streulichtdetektor zur Durchführung des Verfahrens nach einem der Ansprüche 1 10 bis 11, mit einem Gehäuse (1), mit einer Einlassöffnung (3) und einer Auslassöffnung (5) in dem Gehäuse (1), zwischen denen das Trägermedium das Gehäuse (1) auf einem Strömungspfad (7) durchströmt, mit einer Lichtquelle (9), die Licht auf ein auf dem Strömungspfad (7) liegendes Streulichtzentrum (11) richtet, mit einem Streulichtempfänger (13) für einen Teil des im Streulichtzentrum (11) an Partikeln 15 gestreuten Lichts, und mit einem Streulichtsignalverstärker (17) zum Verstärken des Streulichtsignals, wobei der Streulichtsignalverstärker (17) als Integrationsverstärker ausgebildet ist, gekennzeichnet durch eine Filteralgorithmusstufe zur Filterung des Streulichtsignals in Abhängigkeit 20 seiner Steilheit.
 - 13. Streulichtdetektor nach Anspruch 12, dadurch gekennzeichnet, dass Schaltmittel (19, 21) zum Einstellen der Sensibilität des Streulichtempfängers (13) vorgesehen sind.
 - 14. Streulichtdetektor nach Anspruch 12 oder 13,
 d a d u r c h g e k e n n z e i c h n e t, dass
 eine Kommunikationsschnittstelle, insbesondere zu einem PC oder einem
 Netzwerk, vorgesehen ist.
 - 15. Streulichtdetektor nach einem der Ansprüche 12 bis 14,
 dadurch gekennzeichnet, dass
 ein Schalteingang zum Umschalten der Sensibilität des Streulichtempfängers (13)
 vorgesehen ist.

- 16. Streulichtdetektor nach einem der Ansprüche 12 bis 15, gekennzeichnet durch einen Temperatursensor (23) im Strömungspfad (7) des Trägermediums.
- 5 17. Streulichtdetektor nach einem der Ansprüche 12 bis 16, gekennzeichnet durch einen im Strömungspfad (7) des Trägermediums angeordneten Strömungsmesser (25).
- 18. Streulichtdetektor nach Anspruch 17,
 dadurch gekennzeichnet, dass
 der Strömungsmesser (25) aus einem thermoelektrischen Luftstromsensor und
 einem thermoelektrischen Temperatursensor besteht.

FIG. 2

FIG. 5

RNATIONAL SEARCH REPORT

onal Application No PCT/EP2004/014632

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 G01N21/53 G08B17/107 G08B29/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

 $\begin{array}{ccc} \text{Minimum documentation searched} & \text{(classification system followed by classification symbols)} \\ \text{IPC} & 7 & \text{G01N} & \text{G08B} \\ \end{array}$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of	the relevant passages	Relevant to claim No.
Υ	US 6 184 537 B1 (KNOX RONALD 6 February 2001 (2001-02-06) column 3, line 61 - column 4, figure 1	1,11	
Y A	US 2003/001746 A1 (BERNAL BRI) AL) 2 January 2003 (2003-01-02) paragraph '0047! - paragraph figures 3,8,9	1,11 3-5,9,13	
A	US 5 117 219 A (TICE ET AL) 26 May 1992 (1992-05-26) column 4, line 41 - column 5, figure 2	1,11	
		-/	
X Furth	ner documents are listed in the continuation of box C.	Y Patent family members are listed	in annex.
° Special ca "A" docume consid "E" earlier of filing d "L" docume which i citation "O" docume other n	tegories of cited documents: and defining the general state of the art which is not ered to be of particular relevance locument but published on or after the international ate int which may throw doubts on priority claim(s) or is cited to establish the publication date of another or other special reason (as specified) and referring to an oral disclosure, use, exhibition or	, 	ernational filing date the application but eory underlying the claimed invention t be considered to comment is taken alone claimed invention iventive step when the ore other such docu- us to a person skilled
A" docume consid E" earlier of filing d L" docume which i citatior O" docume other n P" docume later th	tegories of cited documents: ant defining the general state of the art which is not ered to be of particular relevance document but published on or after the international ate in the which may throw doubts on priority claim(s) or is cited to establish the publication date of another in or other special reason (as specified) and referring to an oral disclosure, use, exhibition or neans int published prior to the international filing date but	"T" later document published after the interpretation or priority date and not in conflict with cited to understand the principle or the invention "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the description of particular relevance; the cannot be considered to involve an indocument is combined with one or ments, such combination being obvious the art.	ernational filing date the application but eory underlying the claimed invention t be considered to ocument is taken alone claimed invention wentive step when the ore other such docu- us to a person skilled family
"A" docume consid "E" earlier of filing d "L" docume which in citation "O" docume other n "P" docume later th	tegories of cited documents : ant defining the general state of the art which is not ered to be of particular relevance locument but published on or after the international attempts of the state of the special reason (as specified) or or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means and published prior to the international filing date but an the priority date claimed	"T" later document published after the integration or priority date and not in conflict with cited to understand the principle or the invention "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the document of particular relevance; the cannot be considered to involve an indocument is combined with one or ments, such combination being obvious in the art. "&" document member of the same patent	ernational filing date the application but eory underlying the claimed invention t be considered to ocument is taken alone claimed invention wentive step when the ore other such docu- us to a person skilled family

International Application No
PCT/EP2004/014632

0.10	Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT					
C.(Continu	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.				
Category	oration of decoment, with indication, where appropriate, or the relevant passages	Helevant to claim No.				
A	US 5 831 537 A (MARMAN ET AL) 3 November 1998 (1998-11-03) column 5, line 36 - column 7, line 34; figures 1-3	1,11				
A	figures 1-3 US 4 266 219 A (FOSTER ET AL) 5 May 1981 (1981-05-05) column 1, line 37 - line 56 column 3, line 4 - line 50; figures 2,3	1,11				

Continuation of Box II.2

Claims: 1 (in part), 2, 7, 8, 10

The current claim 1 relates to an inordinately large number of possible methods. In fact, they comprise so many alternatives, possible permutations and/or restrictions that they appear unclear or too broadly worded to the extent that it was impossible to conduct a meaningful search. The search was therefore directed to the parts of the claims which can be considered clear and concise, namely the embodiment disclosed in independent device claim 11.

In other words, in independent claim 1, a search was carried out only for the method step "that the scattered light signal passes through a filter algorithm stage for evaluation..., and the scattered light signal...is filtered". The claims that are dependent on this partial claim were also searched.

The applicant is advised that claims relating to inventions in respect of which no international search report has been established cannot normally be the subject of an international preliminary examination (PCT Rule 66.1(e)). In its capacity as International Preliminary Examining Authority the EPO generally will not carry out a preliminary examination for subjects that have not been searched. This also applies to cases where the claims were amended after receipt of the international search report (PCT Article 19) or where the applicant submits new claims in the course of the procedure under PCT Chapter II. After entry into the regional phase before the EPO, however, an additional search can be carried out in the course of the examination (cf. EPO Guidelines, C-VI, 8.5) if the defects that led to the declaration under PCT Article 17(2) have been remedied.

IN RNATIONAL SEARCH REPORT

Information on patent family members

International Application No PCT/EP2004/014632

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 6184537	B1	06-02-2001	AU	717038 B2	2 16-03-2000
05 0104557	DI	00 02 2001	AU	2375597 A	26-11-1997
			WO	9742485 A1	
			DE	19781742 TO	
			GB	2326711 A	
			JP 	2000509503 T	25-07-2000
US 2003001746	A1	02-01-2003	US	6396405 B1	
			US	6501810 B1	
			US	5821866 A	13-10-1998
			US	5546074 A	13-08-1996
			US	5936533 A	10-08-1999
			AT	207646 T	15-11-2001
			AU	7715094 A	14-03-1995
			CA	2169741 A1	23-02-1995
			DE	69428800 D1	29-11-2001
			DE	69428800 T2	
			EP	0714541 A1	
			ES	2166785 T3	
			WO	9505648 A2	
			US	5708414 A	13-01-1998
US 5117219	Α	26-05-1992	US	4916432 A	10-04-1990
			CA	1299269 C	21-04-1992
			DE	3852482 D1	
			DE	3852482 T2	
			DK	305489 A	20-06-1989
			EP	0339081 A1	02-11-1989
			Ē\$	2011164 A6	
			FΪ	893018 A	20-06-1989
			GB	2211329 A	
			NO	892557 A	20-06-1989
			WO	8904032 A1	05-05-1989
US 5831537	Α	03-11-1998	AU	1105699 A	17-05-1999
			TW	413800 B	01-12-2000
			WO	9922351 A1	06-05-1999

INTERNATIONA RECHERCHENBERICHT

onales Aktenzeichen

PCT/EP2004/014632 A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 G01N21/53 G08B17/107 G08B29/04 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) G01N G08B Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal, WPI Data, PAJ C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Kategorie⁴ Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. Υ US 6 184 537 B1 (KNOX RONALD ET AL) 1,11 6. Februar 2001 (2001-02-06) Spalte 3, Zeile 61 - Spalte 4, Zeile 25; Abbildung 1 US 2003/001746 A1 (BERNAL BRIAN ANDREW ET 1,11 AL) 2. Januar 2003 (2003-01-02) Absatz '0047! - Absatz '0058!; Abbildungen Α 3-5,9,133,8,9 Α US 5 117 219 A (TICE ET AL) 1,11 26. Mai 1992 (1992-05-26) Spalte 4, Zeile 41 - Spalte 5, Zeile 9; Abbildung 2 -/--Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen ΧI Siehe Anhang Patentfamilie "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werder soll oder die aus einem anderen besonderen Grund angegeben ist (wie Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung lür einen Fachmann naheliegend ist ausgeführt) ausgetunn)
"O" Veröffentlichung, die sich auf eine mündliche Olfenbarung,
eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
"P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach
dem beanspruchten Prioritätsdatum veröffentlicht worden ist *&" Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts 8. April 2005 18/04/2005 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2

Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016

Stuebner, B

Internationales Aktenzeichen
PCT/EP2004/014632

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN Kategorie® Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile A US 5 831 537 A (MARMAN ET AL) 3. November 1998 (1998–11–03) Spalte 5, Zeile 36 – Spalte 7, Zeile 34; Abbildungen 1–3	Betr. Anspruch Nr.
A US 5 831 537 A (MARMAN ET AL) 3. November 1998 (1998-11-03) Spalte 5, Zeile 36 - Spalte 7, Zeile 34;	
3. November 1998 (1998-11-03) Spalte 5, Zeile 36 - Spalte 7, Zeile 34;	1,11
US 4 266 219 A (FOSTER ET AL) 5. Mai 1981 (1981-05-05) Spalte 1, Zeile 37 - Zeile 56 Spalte 3, Zeile 4 - Zeile 50; Abbildungen 2,3	1,11

INTERNATIONALER RECHERCHENBERICHT

Feld II Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt 1
Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:
Ansprüche Nr. weil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich
2. X Ansprüche Nr. 1 (teilweise), 2, 7, 8, 10 well sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich siehe BEIBLATT PCT/ISA/210
3. Ansprüche Nr. weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.
Feld III Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)
Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:
Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche.
2. Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
3. Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.
4. Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen er-faßt:
Bemerkungen hinsichtlich eines Widerspruchs Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt. Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2004 /014632

WEITERE ANGABEN

PCT/ISA/ 210

Fortsetzung von Feld II.2

Ansprüche Nr.: 1 (teilweise), 2, 7, 8, 10

Der geltende Patentanspruch 1 bezieht sich auf eine unverhältnismässig grosse Zahl möglicher Verfahren. In der Tat umfassen sie so viele Wahlmöglichkeiten, mögliche Permutationen und/oder Einschränkungen, dass sie im Sinne von Artikels 6 PCT in einem solche Masse unklar oder zu weitläufig gefasst erscheinen, als dass sie eine sinnvolle Recherche ermöglichten. Daher wurde die Recherche auf die Teile der Patentansprüche gerichtet, die als klar und knapp gefasst gelten können, nämlich das Ausführungsbeispiel, das im unabhängigen Vorrichtungsanspruch 11 offenbart ist.

D.h., im unabhängigen Anspruch 1 wurde nur der Verfahrensschritt "dass das Streulichtsignal eine Filteralgorithmusstufe, zur Auswertung... durchläuft, und das Streulichtsignal... gefiltert wird" recherchiert. Ausserdem wurden auch die von diesem Teilanspruch abhängigen Ansprüche recherchiert.

Der Anmelder wird darauf hingewiesen, dass Patentansprüche auf Erfindungen, für die kein internationaler Recherchenbericht erstellt wurde, normalerweise nicht Gegenstand einer internationalen vorläufigen Prüfung sein können (Regel 66.1(e) PCT). In seiner Eigenschaft als mit, der internationalen vorläufigen Prüfung beauftragte Behörde wird das EPA also in der Regel keine vorläufige Prüfung für Gegenstände durchführen, zu denen keine Recherche vorliegt. Dies gilt auch für den Fall, dass die Patentansprüche nach Erhalt des internationalen Recherchenberichtes geändert wurden (Art. 19 PCT), oder für den Fall, dass der Anmelder im Zuge des Verfahrens gemäss Kapitel II PCT neue Patentanprüche vorlegt. Nach Eintritt in die regionale Phase vor dem EPA kann jedoch im Zuge der Prüfung eine weitere Recherche durchgeführt werden (Vgl. EPA-Richtlinien C-VI, 8.5), sollten die Mängel behoben sein, die zu der Erklärung gemäss Art. 17 (2) PCT geführt haben.

INTERNATIONAL RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen
PCT/EP2004/014632

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US 6184537 B1	06-02-2001	AU AU WO DE GB JP	717038 B2 2375597 A 9742485 A1 19781742 T0 2326711 A ,B 2000509503 T	16-03-2000 26-11-1997 13-11-1997 08-04-1999 30-12-1998 25-07-2000
US 2003001746 A1	02-01-2003	US US US US AT AU CA DE EP ES WO US	6396405 B1 6501810 B1 5821866 A 5546074 A 5936533 A 207646 T 7715094 A 2169741 A1 69428800 D1 69428800 T2 0714541 A1 2166785 T3 9505648 A2 5708414 A	28-05-2002 31-12-2002 13-10-1998 13-08-1996 10-08-1999 15-11-2001 14-03-1995 23-02-1995 29-11-2001 08-05-2002 05-06-1996 01-05-2002 23-02-1995 13-01-1998
US 5117219 A	26-05-1992	US CA DE DK EP ES FI GB NO WO	4916432 A 1299269 C 3852482 D1 3852482 T2 305489 A 0339081 A1 2011164 A6 893018 A 2211329 A ,B 892557 A 8904032 A1	10-04-1990 21-04-1992 26-01-1995 27-07-1995 20-06-1989 02-11-1989 16-12-1989 20-06-1989 28-06-1989 20-06-1989
US 5831537 A	03-11-1998	AU TW WO	1105699 A 413800 B 9922351 A1	17-05-1999 01-12-2000 06-05-1999
US 4266219 A	05-05-1981	KEINE		