Universidade Federal de Ouro Preto BCC 325 - Inteligência Artificial Prova 2

- 1. Considere a solução de uma regressão linear obtida pelo método dos mínimos quadrados dada por $\mathbf{w} = (X^t X)^{-1} X^t \mathbf{y}$, e responda:
 - (a) O que represente o vetor w?
 - (b) O que represente a matriz **X**?
 - (c) O que representa o vetor y?
 - (d) Como essa equação é derivada?
 - (e) É possivel utilizar este método para resolver problemas em que a relação entre variável dependente (o alvo), y, e as variáveis independentes (atributos de entrada), \mathbf{x} , não é linear? Como?
- 2. Considere os dados representados na figura abaixo:

- (a) É possível resolver este problema com um aplicação direta do algoritmo de regresão logística? Explique.
- (b) O que poderia ser feito para que este problema possa ser resolvido com regressão logística?
- 3. Considere a base de dados abaixo:

Atributo1	Atributo2	Classe
1	2	Classe1
2	3	Classe1
3	4	Classe2
4	5	Classe2
5	20	Classe1
6	30	Classe1
7	40	Classe2
8	50	Classe2

Table 1: Exemplo de base de dados

- (a) Calcule o gini para a condição $Atributo1 \leq 4.5$. $I_G(p) = 1 \sum_{i=1}^{J} p_i^2$
- (b) Quais seriam condições ótimas, em relação ao gini, após selecionarmos como raíz da árvore de decisão o critério $Atributo1 \le 4.5$. Desenhe essa árvore.
- (c) Indique uma forma de controlar o overffiting de uma árvore de decisão e explique por quê o overfitting é reduzido com esta técnica.

- 4. Como escolhemos a função de custo (perda) de uma rede neural artificial? Justifique.
- 5. Quais as vantagens do algoritmo de busca em largura sobre o algoritmo de busca em profundidade? E quais as desvantagens?
- 6. Quando devemos utilizar o algoritmo de busca A^* ?