Linear Regression without Correspondences through a computational lens

Liangzu Peng
School of Information Science and Technology
ShanghaiTech University
penglz@shanghaitech.edu.cn

November 9, 2019

Motivation: a Subspace Learning perspective

When learning a d-dimensional subspace $\mathcal V$ from corrupted data, we have routinely encountered data corruptions such as:

Motivation: a Subspace Learning perspective

When learning a d-dimensional subspace $\mathcal V$ from corrupted data, we have routinely encountered data corruptions such as:

dense noise
$$(\tilde{X} = X + \mathcal{E}, X \text{ clean data}, \mathcal{E} \text{ noise})$$

$$\min_{\mathcal{V}} \|\tilde{X} - \mathbb{P}_{\mathcal{V}} \tilde{X}\|_{\mathsf{F}}, \mathbb{P}_{\mathcal{V}} \text{ is a projection on } \mathcal{V}. \tag{1}$$

Motivation: a Subspace Learning perspective

When learning a d-dimensional subspace $\mathcal V$ from corrupted data, we have routinely encountered data corruptions such as:

dense noise

sparse corruption
$$(\tilde{X}=L+E,\,L \text{ low-rank},\,E \text{ sparse})$$

$$\min_{L,E}\|L\|_*+\tau\,\|E\|_1\,,\,\text{s.t. }\tilde{X}=L+E. \tag{2}$$

Motivation: a Subspace Learning perspective

When learning a d-dimensional subspace $\mathcal V$ from corrupted data, we have routinely encountered data corruptions such as:

sparse corruption

dense noise

outliers
$$(\tilde{X}=[XO]\Gamma,\ O \ \text{outliers},\ \Gamma \ \text{permutation})$$

$$\min_{L,E}\|L\|_*+\lambda\,\|E\|_{2,1}\,,\ \text{s.t.}\ \tilde{X}=L+E. \tag{3}$$

Motivation: a Subspace Learning perspective

When learning a $d\text{-}\mathrm{dimensional}$ subspace $\mathcal V$ from corrupted data, we have routinely encountered data corruptions such as:

dense noise

sparse corruption

outliers

missing entries (Matrix Completion)

Motivation: a Subspace Learning perspective

When learning a d-dimensional subspace $\mathcal V$ from corrupted data, we have routinely encountered data corruptions such as:

dense noise

sparse corruption

outliers

missing entries

Question:

are these formulations feasible when corruptions **arbitrarily large**? e.g., when no entries observed (Matrix Completion).

Motivation: a Subspace Learning perspective

When learning a d-dimensional subspace $\mathcal V$ from corrupted data, we have routinely encountered data corruptions such as:

dense noise

sparse corruption

outliers

missing entries

Question:

are these formulations feasible when corruptions **arbitrarily large**? no, e.g., when no entries observed (Matrix Completion).

Motivation: a Subspace Learning perspective

When learning a d-dimensional subspace $\mathcal V$ from corrupted data, we have routinely encountered data corruptions such as:

dense noise

sparse corruption

outliers

missing entries

Question:

no, e.g., when no entries observed (Matrix Completion). yes, with some special corruption (e.g., without correspondences).

Motivation: a Subspace Learning perspective

Principle Component Analysis without Correspondences?

Linear Regression without Correspondences

→ this lecture

Linear Regression.

$$y=Ax+\epsilon,\ y\in\mathbb{R}^m,x\in\mathbb{R}^n,\epsilon$$
 noise find x from y,A .

Example

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = Ax + \epsilon.$$

Linear Regression.

$$y=Ax+\epsilon,\ y\in\mathbb{R}^m,x\in\mathbb{R}^n,\epsilon$$
 noise find x from y,A .

Example

$$\begin{vmatrix} y_1 \\ y_2 \\ y_3 \end{vmatrix} = Ax + \epsilon.$$

without Correspondences?

unknown correspondences between y's entries and A's rows

Example

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = Ax + \epsilon? \begin{bmatrix} y_2 \\ y_1 \\ y_3 \end{bmatrix} = Ax + \epsilon? \begin{bmatrix} y_2 \\ y_3 \\ y_1 \end{bmatrix} = Ax + \epsilon?$$

Linear Regression.

$$y = Ax + \epsilon$$
, $y \in \mathbb{R}^m, x \in \mathbb{R}^n, \epsilon$ noise find x from y, A .

Example

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = Ax + \epsilon.$$

without Correspondences?

unknown correspondences between y's entries and A's rows

Example

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = Ax + \epsilon? \begin{bmatrix} y_2 \\ y_1 \\ y_3 \end{bmatrix} = Ax + \epsilon? \begin{bmatrix} y_2 \\ y_3 \\ y_1 \end{bmatrix} = Ax + \epsilon?$$

 $\iff \Pi y = Ax + \epsilon$, Π unknown $m \times m$ permutation matrix.

Model:

$$y = \Pi A x^* + \epsilon$$
, where $y \in \mathbb{R}^m, x^* \in \mathbb{R}^n$, (4)

and Π belongs to the set ${\mathcal P}$ of $m\times m$ permutation matrices.

Model:

$$y = \Pi A x^* + \epsilon$$
, where $y \in \mathbb{R}^m, x^* \in \mathbb{R}^n$, (4)

and Π belongs to the set $\mathcal P$ of $m\times m$ permutation matrices. such a problem is also known as

Linear Regression with Permuted Data Linear Regression with Shuffled Labels Linear Regression with (Partially) Mismatched Data

Shuffled Linear Regression

Model:

$$y = \Pi A x^* + \epsilon$$
, where $y \in \mathbb{R}^m, x^* \in \mathbb{R}^n$, (4)

and Π belongs to the set $\mathcal P$ of $m\times m$ permutation matrices. such a problem is also known as

Linear Regression with Permuted Data

Linear Regression with Shuffled Labels

Linear Regression with (Partially) Mismatched Data

Shuffled Linear Regression

Thematic Question:

can linear regression be robust to permutation corruptions?

Context

(we are not alone)

$$y = \Pi A x^* + \epsilon$$
, where $y \in \mathbb{R}^m, x^* \in \mathbb{R}^n$. (5)

Is (5) identifiable? ($\epsilon = 0$).

not identifiable if two different signals $x_1, x_2 \in \mathbb{R}^n$ cause the same observations, i.e.,

$$x_1 \neq x_2 \Rightarrow \Pi_1 A x_1 = \Pi_2 A x_2. \tag{6}$$

unique recovery of x_1 or x_2 is impossible if (6) happens.

$$y = \Pi A x^* + \epsilon$$
, where $y \in \mathbb{R}^m, x^* \in \mathbb{R}^n$. (5)

Is (5) identifiable? ($\epsilon = 0$).

not identifiable if two different signals $x_1, x_2 \in \mathbb{R}^n$ cause the same observations, i.e.,

$$x_1 \neq x_2 \Rightarrow \Pi_1 A x_1 = \Pi_2 A x_2. \tag{6}$$

unique recovery of x_1 or x_2 is impossible if (6) happens.

Hence we ask, <u>under what conditions</u> the following holds:

$$\forall x_1, x_2, \Pi_1, \Pi_2 : x_1 \neq x_2 \Rightarrow \Pi_1 A x_1 \neq \Pi_2 A x_2?$$
 (7)

unique recovery of x^* is possible if (7) holds. in Linear Regression (7) holds if $m \ge n \& A$ full rank.

$$y = \Pi A x^* + \epsilon$$
, where $y \in \mathbb{R}^m, x^* \in \mathbb{R}^n$. (5)

Is (5) identifiable? ($\epsilon = 0$).

not identifiable if two different signals $x_1, x_2 \in \mathbb{R}^n$ cause the same observations, i.e.,

$$x_1 \neq x_2 \Rightarrow \Pi_1 A x_1 = \Pi_2 A x_2. \tag{6}$$

unique recovery of x_1 or x_2 is impossible if (6) happens.

Hence we ask, <u>under what conditions</u> the following holds:

$$\forall x_1, x_2, \Pi_1, \Pi_2 : x_1 \neq x_2 \Rightarrow \Pi_1 A x_1 \neq \Pi_2 A x_2?$$
 (7)
or $x_1 = x_2 \Leftarrow \Pi_1 A x_1 = \Pi_2 A x_2?$

unique recovery of x^* is possible if (7) holds. in Linear Regression (7) holds if $m \ge n \& A$ full rank.

$$y = \Pi A x^* + \epsilon$$
, where $y \in \mathbb{R}^m, x^* \in \mathbb{R}^n$. (5)

Is (5) identifiable? ($\epsilon = 0$).

not identifiable if two different signals $x_1, x_2 \in \mathbb{R}^n$ cause the same observations, i.e.,

$$x_1 \neq x_2 \Rightarrow \Pi_1 A x_1 = \Pi_2 A x_2. \tag{6}$$

unique recovery of x_1 or x_2 is impossible if (6) happens.

Hence we ask, <u>under what conditions</u> the following holds:

$$\forall x_1, x_2, \Pi_1, \Pi_2 : x_1 \neq x_2 \Rightarrow \Pi_1 A x_1 \neq \Pi_2 A x_2?$$
 (7)
or $x_1 = x_2 \Leftarrow \Pi_1 A x_1 = \Pi_2 A x_2?$

unique recovery of x^* is possible if (7) holds. in Linear Regression (7) holds if $m \ge n \& A$ full rank.

Theorem (Unnikrishan-TIT18) Theorem (Tsakiris-TIT19) (7) holds if $m \ge 2n$ & A random. (7) holds if m > n & A, x random.

From unique recovery conditions to computation

$$y = \Pi A x^* + \epsilon$$
, with $y \in \mathbb{R}^m, x^* \in \mathbb{R}^n, \Pi \in \mathcal{P}$. (8)

	recovery conditions	$ \mathcal{P} $
Linear Regression	$m \geq n \ \& \ A$ full rank	1
Linear Regression without Corr.	$m \geq 2n \ \& \ A \ { m random}$	m!
Linear Regression without Corr.	m>n & A,x random	m!

Good news: m does not increase exponentially as $|\mathcal{P}|$.

 $From\ unique\ recovery\ conditions\ to\ computation$

$$y = \Pi A x^* + \epsilon$$
, with $y \in \mathbb{R}^m, x^* \in \mathbb{R}^n, \Pi \in \mathcal{P}$. (8)

	recovery conditions	$\mid \mathcal{P} $
Linear Regression	$m \geq n \ \& \ A$ full rank	1
Linear Regression without Corr.	$m \geq 2n \ \& \ A \ { m random}$	m!
Linear Regression without Corr.	m>n & A,x random	m!

Good news: m does not increase exponentially as $|\mathcal{P}|$.

question: an intuitive justification for this phenomenon?

 $From\ unique\ recovery\ conditions\ to\ computation$

$$y = \Pi A x^* + \epsilon$$
, with $y \in \mathbb{R}^m, x^* \in \mathbb{R}^n, \Pi \in \mathcal{P}$. (8)

	recovery conditions	$\mid \mathcal{P} $
Linear Regression	$m \geq n \ \& \ A$ full rank	1
Linear Regression without Corr.	$m \geq 2n \ \& \ A \ { m random}$	m!
Linear Regression without Corr.	m>n & A,x random	m!

Good news: m does not increase exponentially as $|\mathcal{P}|$.

question: an intuitive justification for this phenomenon?

But: does it imply computational easiness?

From unique recovery conditions to computation

$$y = \Pi A x^* + \epsilon$$
, with $y \in \mathbb{R}^m, x^* \in \mathbb{R}^n, \Pi \in \mathcal{P}$. (8)

	recovery conditions	$\mid \mathcal{P} $
Linear Regression	$m \geq n \ \& \ A$ full rank	1
Linear Regression without Corr.	$m \geq 2n \ \& \ A \ { m random}$	m!
Linear Regression without Corr.	m>n & A,x random	m!

Good news: m does not increase exponentially as $|\mathcal{P}|$.

question: an intuitive justification for this phenomenon?

But: does it imply computational easiness?

Theorem (Pananjady-TIT18)
$$\min_{x \in \mathbb{R}^n, \Pi \in \mathcal{P}} \|y - \Pi Ax\|_2. \tag{9}$$

There is an $\mathcal{O}(m \log m)$ algorithm (Exercise: find it) to compute (9) when n = 1, otherwise (9) is NP-hard to compute.

Linear Regression without Correspondences Brute Force

$$y = \Pi A x^* + \epsilon$$
, with $y \in \mathbb{R}^m, x^* \in \mathbb{R}^n$, (10)

Brute Force. for each possible permutation $\Pi \in \mathcal{P}$, solve for x the least-squares problem

$$\min_{x \in \mathbb{R}^n} \|y - \Pi Ax\|_2, \text{ and?} \tag{11}$$

Linear Regression without Correspondences Brute Force

$$y = \Pi A x^* + \epsilon, \text{ with } y \in \mathbb{R}^m, x^* \in \mathbb{R}^n, \tag{10}$$

Brute Force. for each possible permutation $\Pi \in \mathcal{P}$, solve for x the least-squares problem

$$\min_{x \in \mathbb{R}^n} \|y - \Pi A x\|_2, \text{ and} \tag{11}$$

take as the output the solution \hat{x} with the smallest error

$$\min_{\Pi \in \mathcal{P}} \|y - \Pi A \hat{x}\|_2. \tag{12}$$

Linear Regression without Correspondences Brute Force

$$y = \Pi A x^* + \epsilon, \text{ with } y \in \mathbb{R}^m, x^* \in \mathbb{R}^n, \tag{10}$$

Brute Force. for each possible permutation $\Pi \in \mathcal{P}$, solve for x the least-squares problem

$$\min_{x \in \mathbb{R}^n} \|y - \Pi Ax\|_2, \text{ and} \tag{11}$$

take as the output the solution \hat{x} with the smallest error

$$\min_{\Pi \in \mathcal{P}} \|y - \Pi A \hat{x}\|_2. \tag{12}$$

Exercise: design an algorithm to solve (12) (note that \hat{x} is given), prove its correctness. When is the solution unique?

Now we know that:

given x, the optimal Π_x can be computed by your algorithm:

$$\underset{\Pi \in \mathcal{P}}{\operatorname{argmin}} \|y - \Pi A x\|_2. \tag{13}$$

given Π , the optimal x_{Π} can be obtained via least-squares:

$$\underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \|y - \Pi A x\|_2. \tag{14}$$

Now we know that:

given x, the optimal Π_x can be computed by your algorithm:

$$\underset{\Pi \in \mathcal{P}}{\operatorname{argmin}} \|y - \Pi A x\|_2. \tag{13}$$

given Π , the optimal x_{Π} can be obtained via least-squares:

$$\underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \|y - \Pi A x\|_2. \tag{14}$$

Alternating Minimization. with an initialization $x^{(0)}$, recursively: solve (13) for $\Pi^{(k)}$ with $x^{(k)}$, and

solve (14) for $x^{(k+1)}$ with $\Pi^{(k)}$, until convergence.

Now we know that:

given x, the optimal Π_x can be computed by your algorithm:

$$\underset{\Pi \in \mathcal{P}}{\operatorname{argmin}} \|y - \Pi A x\|_2. \tag{13}$$

given Π , the optimal x_Π can be obtained via least-squares:

$$\underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \|y - \Pi A x\|_2. \tag{14}$$

Alternating Minimization. with an initialization $x^{(0)}$, recursively:

solve (13) for $\Pi^{(k)}$ with $x^{(k)}$, and solve (14) for $x^{(k+1)}$ with $\Pi^{(k)}$, until convergence.

Pros: (a) low-complexity? (b) easy to implement? (Exercise)

Now we know that:

given x, the optimal Π_x can be computed by your algorithm:

$$\underset{\Pi \in \mathcal{P}}{\operatorname{argmin}} \|y - \Pi A x\|_2. \tag{13}$$

given Π , the optimal x_Π can be obtained via least-squares:

$$\underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \|y - \Pi A x\|_2. \tag{14}$$

Alternating Minimization. with an initialization $x^{(0)}$, recursively:

solve (13) for $\Pi^{(k)}$ with $x^{(k)}$, and solve (14) for $x^{(k+1)}$ with $\Pi^{(k)}$, until convergence.

Pros: (a) low-complexity? (b) easy to implement? (Exercise) Challenges: (a) reliable initialization? (b) theoretical guarantees?

Robust Regression

difficult to solve in the presence of exponential cardinality of ${\mathcal P}$

$$\min_{x \in \mathbb{R}^n, \Pi \in \mathcal{P}} \|y - \Pi Ax\|_2. \tag{15}$$

Robust Regression

difficult to solve in the presence of exponential cardinality of ${\mathcal P}$

$$\min_{x \in \mathbb{R}^n \mid \Pi \in \mathcal{P}} \|y - \Pi Ax\|_2. \tag{15}$$

resort to the subset S_r of P, $r \leq m$ (partially shuffled data):

$$S_r := \{ \Pi \in \mathcal{P} : d_H(\Pi, I_m) \le r \}, \tag{16}$$

where $d_H(\Pi, I_m) := |\{i : \Pi_{ii} = 0\}|.$

Linear Regression without Correspondences Robust Regression

resort to the subset S_r of P, $r \leq m$ (partially shuffled data):

$$S_r := \{ \Pi \in \mathcal{P} : d_H(\Pi, I_m) \le r \}, \tag{15}$$

where $d_H(\Pi, I_m) := |\{i : \Pi_{ii} = 0\}|.$

Important observations:

$$(a)\frac{|\mathcal{S}_r|}{|\mathcal{P}|}=?$$
 (Exercise)

resort to the subset S_r of P, $r \leq m$ (partially shuffled data):

$$S_r := \{ \Pi \in \mathcal{P} : d_H(\Pi, I_m) \le r \}, \tag{15}$$

where $d_H(\Pi, I_m) := |\{i : \Pi_{ii} = 0\}|.$

Important observations:

(a)
$$\frac{|\mathcal{S}_r|}{|\mathcal{P}|} = ?$$
 (Exercise)

(b) if $\Pi \in \mathcal{S}_r$, $\leq r$ rows and entries of A, y are mismatched treat mismatches as outliers and the rest as inliers \rightsquigarrow robust ℓ_0/ℓ_1 norm minimization, e.g., when noiseless:

$$\leadsto \min_{x \in \mathbb{R}^n} \|y - Ax\|_0 \tag{16}$$

$$\leadsto \min_{x \in \mathbb{R}^n} \|y - Ax\|_1. \tag{17}$$

resort to the subset S_r of P, $r \leq m$ (partially shuffled data):

$$S_r := \{ \Pi \in \mathcal{P} : d_H(\Pi, I_m) \le r \}, \tag{15}$$

where $d_H(\Pi, I_m) := |\{i : \Pi_{ii} = 0\}|.$

Important observations:

(a)
$$\frac{|\mathcal{S}_r|}{|\mathcal{P}|}$$
 =? (Exercise)

(b) if $\Pi \in \mathcal{S}_r$, $\leq r$ rows and entries of A, y are mismatched treat mismatches as outliers and the rest as inliers \rightsquigarrow robust ℓ_0/ℓ_1 norm minimization, e.g., when noiseless:

$$\leadsto \min_{x \in \mathbb{R}^n} \|y - Ax\|_0 \tag{16}$$

$$\leadsto \min_{x \in \mathbb{P}^n} \|y - Ax\|_1$$
 (17)

question: why this formulation is a good choice?

$$y = \Pi A x^* + \epsilon, \text{ with } y \in \mathbb{R}^m, x^* \in \mathbb{R}^n$$

$$\mathcal{S}_r = \{ \Pi \in \mathcal{P} : d_H(\Pi, I_m) \le r \}$$

$$\ell_1 \text{ norm minimization (noiseless): (Candes-TIT05)}$$

$$\min_{x \in \mathbb{R}^n} \|y - Ax\|_1$$
(20)

$$y = \Pi A x^* + \epsilon$$
, with $y \in \mathbb{R}^m, x^* \in \mathbb{R}^n$ (18)

$$S_r = \{ \Pi \in \mathcal{P} : d_H(\Pi, I_m) \le r \}$$
(19)

 ℓ_1 norm minimization (noiseless): (Candes-TIT05)

$$\min_{x \in \mathbb{R}^n} \|y - Ax\|_1 \tag{20}$$

 ℓ_1 norm minimization (noisy):

$$(\hat{x}, \hat{e}) = \underset{x \in \mathbb{R}^{n}, e \in \mathbb{R}^{m}}{\operatorname{argmin}} \frac{1}{m} \|y - Ax - \sqrt{m}e\|_{2}^{2} + \lambda \|e\|_{1}, \lambda > 0.$$
 (21)

$$y = \Pi A x^* + \epsilon, \text{ with } y \in \mathbb{R}^m, x^* \in \mathbb{R}^n$$
 (18)

$$S_r = \{ \Pi \in \mathcal{P} : d_H(\Pi, I_m) \le r \}$$
(19)

 ℓ_1 norm minimization (noiseless): (Candes-TIT05)

$$\min_{x \in \mathbb{R}^n} \|y - Ax\|_1 \tag{20}$$

 ℓ_1 norm minimization (noisy):

$$(\hat{x}, \hat{e}) = \underset{x \in \mathbb{R}^{n}, e \in \mathbb{R}^{m}}{\operatorname{argmin}} \frac{1}{m} \|y - Ax - \sqrt{m}e\|_{2}^{2} + \lambda \|e\|_{1}, \lambda > 0. \quad (21)$$

Theorem (Slawski-JoS19, informal)

 $\|\hat{x} - x^*\|_2 \le c_1 + rc_2$ w.h.p. for some λ if $r \le c_3 \frac{m-n}{\log(m/r)}$. c_1, c_2 are well-behaved data-dependent quantities and c_3 constant.

$$y = \Pi A x^* + \epsilon, \text{ with } y \in \mathbb{R}^m, x^* \in \mathbb{R}^n$$
 (18)

$$S_r = \{ \Pi \in \mathcal{P} : d_H(\Pi, I_m) \le r \}$$
 (19)

 ℓ_1 norm minimization (noiseless): (Candes-TIT05)

$$\min_{x \in \mathbb{R}^n} \|y - Ax\|_1 \tag{20}$$

 ℓ_1 norm minimization (noisy):

$$(\hat{x}, \hat{e}) = \underset{x \in \mathbb{R}^{n}, e \in \mathbb{R}^{m}}{\operatorname{argmin}} \frac{1}{m} \|y - Ax - \sqrt{m}e\|_{2}^{2} + \lambda \|e\|_{1}, \lambda > 0.$$
 (21)

Theorem (Slawski-JoS19, informal)

$$\|\hat{x} - x^*\|_2 \le c_1 + rc_2$$
 w.h.p. for some λ if $r \le c_3 \frac{m-n}{\log(m/r)}$. c_1, c_2 are well-behaved data-dependent quantities and c_3 constant.

Experimentally this method fails if r/m > 0.5

 \rightsquigarrow algorithms for more than 50% shuffled data?

$$y = \Pi Ax^* + \epsilon$$
, with $y \in \mathbb{R}^m, x^* \in \mathbb{R}^n$. (22)

RANSAC?

$$y = \Pi A x^* + \epsilon$$
, with $y \in \mathbb{R}^m, x^* \in \mathbb{R}^n$. (22)

RANSAC?

(a) Take a subvector $\bar{y} \in \mathbb{R}^n$ of y, and compute

$$x_i = \underset{x}{\operatorname{argmin}} \|\bar{y} - A_i x\|_2$$
 (by least squares) (23)

for all possible A_i , where A_i is a $n \times n$ submatrix of A.

$$y = \Pi A x^* + \epsilon$$
, with $y \in \mathbb{R}^m, x^* \in \mathbb{R}^n$. (22)

RANSAC?

(a) Take a subvector $\bar{y} \in \mathbb{R}^n$ of y, and compute

$$x_i = \underset{x}{\operatorname{argmin}} \|\bar{y} - A_i x\|_2$$
 (by least squares) (23)

for all possible A_i , where A_i is a $n \times n$ submatrix of A.

(b) Take as the output the solution x_i with the smallest error

$$\min_{\Pi \in \mathcal{P}} \|y - \Pi A x_i\|_2 \text{ (by your algorithm)}. \tag{24}$$

$$y = \Pi A x^* + \epsilon$$
, with $y \in \mathbb{R}^m, x^* \in \mathbb{R}^n$. (22)

RANSAC?

(a) Take a subvector $\bar{y} \in \mathbb{R}^n$ of y, and compute

$$x_i = \underset{x}{\operatorname{argmin}} \|\bar{y} - A_i x\|_2$$
 (by least squares) (23)

for all possible A_i , where A_i is a $n \times n$ submatrix of A.

(b) Take as the output the solution x_i with the smallest error

$$\min_{\Pi \in \mathcal{P}} \|y - \Pi A x_i\|_2 \text{ (by your algorithm)}. \tag{24}$$

Exercises: (a) the complexity of this algorithm? (b) compare it to **Brute Force** (c) describe this algorithm using the language of RANSAC (d) implement this algorithm.

The algebraic method

We assume m > 1.

Let
$$q(z) := q(z_1, \dots, z_m) = \sum_{i=1}^m z_i^i$$
 be a polynomial.

Question: under what conditions on Π we have for any $z \in \mathbb{R}^n$

$$q(z) = q(\Pi z)? \tag{25}$$

The algebraic method

We assume m > 1.

Let $q(z) := q(z_1, \dots, z_m) = \sum_{i=1}^m z_i^i$ be a polynomial.

Question: under what conditions on Π we have for any $z \in \mathbb{R}^n$

$$q(z) = q(\Pi z)? \tag{25}$$

Answer: the only possibility is $\Pi = I_m$.

The algebraic method

We assume m > 1.

Let $q(z) := q(z_1, \dots, z_m) = \sum_{i=1}^m z_i^i$ be a polynomial.

Let $p_k(z) = \sum_{i=1}^m z_i^k$ be a polynomial.

Question: under what conditions on Π we have for any $y \in \mathbb{R}^n$

$$p_k(z) = p_k(\Pi z)? \tag{26}$$

The algebraic method

We assume m > 1.

Let $q(z) := q(z_1, \ldots, z_m) = \sum_{i=1}^m z_i^i$ be a polynomial.

Let $p_k(z) = \sum_{i=1}^m z_i^k$ be a polynomial.

Question: under what conditions on Π we have for any $y \in \mathbb{R}^n$

$$p_k(z) = p_k(\Pi z)? \tag{26}$$

Answer: Π can be any permutation.

The algebraic method

We assume m > 1.

Let $q(z) := q(z_1, \dots, z_m) = \sum_{i=1}^m z_i^i$ be a polynomial.

Let $p_k(z) = \sum_{i=1}^m z_i^k$ be a polynomial.

Definition (symmetric polynomials)

A polynomial f in m variables satisfying $f(z) = f(\Pi z)$ for any $z \in \mathbb{R}^m$ and $\Pi \in \mathcal{P}$ is called *symmetric*. Note that p_k is symmetric.

The algebraic method

We assume m > 1.

Let $q(z) := q(z_1, \dots, z_m) = \sum_{i=1}^m z_i^i$ be a polynomial.

Let $p_k(z) = \sum_{i=1}^m z_i^k$ be a polynomial.

Definition (symmetric polynomials)

A polynomial f in m variables satisfying $f(z) = f(\Pi z)$ for any $z \in \mathbb{R}^m$ and $\Pi \in \mathcal{P}$ is called *symmetric*. Note that p_k is symmetric.

Remark: the polynomial p_k is symmetric for any k > 0, but q not.

The algebraic method: the noiseless case

$$y = \Pi A x^*, \text{ with } y \in \mathbb{R}^m, x^* \in \mathbb{R}^n$$
 (27)

$$p_k(z) = \sum_{i=1}^m z_i^k, k \in \{1, 2, \dots, n\} =: [n]$$
 (28)

Given a symmetric polynomial f in m variables, we have

$$f(Ax^*) = f(\Pi Ax^*) = f(y).$$
 (29)

The algebraic method: the noiseless case

$$y = \Pi A x^*, \text{ with } y \in \mathbb{R}^m, x^* \in \mathbb{R}^n$$
 (27)

$$p_k(z) = \sum_{i=1}^m z_i^k, k \in \{1, 2, \dots, n\} =: [n]$$
 (28)

Given a symmetric polynomial f in m variables, we have

$$f(Ax^*) = f(\Pi Ax^*) = f(y).$$
 (29)

Hence the parameter vector x^* satisfies:

$$p_k(Ax^*) - p_k(y) = 0, k \in [n].$$
 (30)

The algebraic method: the noiseless case

$$y = \Pi A x^*, \text{ with } y \in \mathbb{R}^m, x^* \in \mathbb{R}^n$$
 (27)

$$p_k(z) = \sum_{i=1}^m z_i^k, k \in \{1, 2, \dots, n\} =: [n]$$
 (28)

Given a symmetric polynomial f in m variables, we have

$$f(Ax^*) = f(\Pi Ax^*) = f(y).$$
 (29)

Hence the parameter vector x^* satisfies:

$$p_k(Ax^*) - p_k(y) = 0, k \in [n].$$
(30)

It suggests to solve for x the polynomial system:

$$p_k(Ax) - p_k(y) = 0, k \in [n],$$
 (31)

to which x^* has to be a solution.

The algebraic method: the noiseless case

$$y = \Pi A x^*, \text{ with } y \in \mathbb{R}^m, x^* \in \mathbb{R}^n$$
 (27)

$$p_k(z) = \sum_{i=1}^m z_i^k, k \in \{1, 2, \dots, n\} =: [n]$$
 (28)

Given a symmetric polynomial f in m variables, we have

$$f(Ax^*) = f(\Pi Ax^*) = f(y).$$
 (29)

Hence the parameter vector x^* satisfies:

$$p_k(Ax^*) - p_k(y) = 0, k \in [n].$$
 (30)

It suggests to solve for x the polynomial system:

$$p_k(Ax) - p_k(y) = 0, k \in [n],$$
 (31)

to which x^* has to be a solution.

Theorem (Tsakiris-TIT19)

With the model (27), the polynomial system (31) has l complex solutions with $1 \le l \le n!$ if A is random.

The algebraic method: the noisy case

$$y = \Pi A x^* + \epsilon$$
, with $y \in \mathbb{R}^m, x^* \in \mathbb{R}^n$ (32)

$$p_k(z) = \sum_{i=1}^{m} z_i^k, k \in \{1, 2, \dots, n\} =: [n]$$
(33)

ideally we would like to solve for x the polynomial system

$$p_k(Ax) - p_k(y - \epsilon) = 0, k \in [n],$$
 (34)

that x^* satisfies, but we have no access to ϵ .

The algebraic method: the noisy case

$$y = \Pi A x^* + \epsilon$$
, with $y \in \mathbb{R}^m, x^* \in \mathbb{R}^n$ (32)

$$p_k(z) = \sum_{i=1}^{m} z_i^k, k \in \{1, 2, \dots, n\} =: [n]$$
(33)

ideally we would like to solve for x the polynomial system

$$p_k(Ax) - p_k(y - \epsilon) = 0, k \in [n],$$
 (34)

that x^* satisfies, but we have no access to ϵ . Instead, for finding an suitable estimate, we dare to solve

$$p_k(Ax) - p_k(y) = 0, k \in [n],$$
 (35)

The algebraic method: the noisy case

$$y = \Pi A x^* + \epsilon$$
, with $y \in \mathbb{R}^m, x^* \in \mathbb{R}^n$ (32)

$$p_k(z) = \sum_{i=1}^{m} z_i^k, k \in \{1, 2, \dots, n\} =: [n]$$
(33)

ideally we would like to solve for x the polynomial system

$$p_k(Ax) - p_k(y - \epsilon) = 0, k \in [n],$$
 (34)

that x^* satisfies, but we have no access to ϵ . Instead, for finding an suitable estimate, we dare to solve

$$p_k(Ax) - p_k(y) = 0, k \in [n], \text{ because}$$
 (35)

Theorem (Tsakiris-TIT19)

With the model (36), the polynomial system has l complex solutions with $1 \le l \le n!$ if A is random.

Linear Regression without Correspondences The algebraic method

$$y = \Pi A x^* + \epsilon$$
, with $y \in \mathbb{R}^m, x \in \mathbb{R}^n$ (36)

$$p_k(z) = \sum_{i=1}^m z_i^k, k \in \{1, 2, \dots, n\} =: [n]$$
(37)

The Algorithm.

(a) solve the polynomial system

$$p_k(Ax) - p_k(y) = 0, k \in [n],$$
 (38)

which gives l complex roots x_1, \ldots, x_l $(1 \le l \le n!)$.

Linear Regression without Correspondences The algebraic method

$$y = \Pi A x^* + \epsilon$$
, with $y \in \mathbb{R}^m, x \in \mathbb{R}^n$ (36)

$$p_k(z) = \sum_{i=1}^m z_i^k, k \in \{1, 2, \dots, n\} =: [n]$$
(37)

The Algorithm.

(a) solve the polynomial system

$$p_k(Ax) - p_k(y) = 0, k \in [n],$$
 (38)

which gives l complex roots x_1, \ldots, x_l $(1 \le l \le n!)$.

(b) Let $x^{(0)}$ be the real part $(x_i)_{\mathbb{R}}$ of x_i that causes the smallest error $\min_{\Pi \in \mathcal{P}} \|y - \Pi A(x_i)_{\mathbb{R}}\|_2$ among all roots.

Linear Regression without Correspondences The algebraic method

$$y = \Pi A x^* + \epsilon, \text{ with } y \in \mathbb{R}^m, x \in \mathbb{R}^n$$
 (36)

$$p_k(z) = \sum_{i=1}^m z_i^k, k \in \{1, 2, \dots, n\} =: [n]$$
 (37)

The Algorithm.

(a) solve the polynomial system

$$p_k(Ax) - p_k(y) = 0, k \in [n],$$
 (38)

which gives l complex roots x_1, \ldots, x_l $(1 \le l \le n!)$.

- (b) Let $x^{(0)}$ be the real part $(x_i)_{\mathbb{R}}$ of x_i that causes the smallest error $\min_{\Pi \in \mathcal{P}} \|y \Pi A(x_i)_{\mathbb{R}}\|_2$ among all roots.
- (c) run the alternating minimization algorithm initialized by $x^{(0)}$ to produce the final estimate.

Linear Regression without Correspondences Branch and bound

The branch-and-bound technique can be employed to compute the global solution of the NP-hard problem

$$\min_{x \in \mathbb{R}^n, \Pi \in \mathcal{P}} \|y - \Pi Ax\|_2 = \min_{x \in \mathbb{R}^n} g(x), \tag{39}$$

where $g(x) = \min_{\Pi} \|y - \Pi Ax\|_2$.

g(x) can be considered as a continuous **black-box** function: we have only access to the values of g

Linear Regression without Correspondences Branch and bound

The branch-and-bound technique can be employed to compute the global solution of the NP-hard problem

$$\min_{x \in \mathbb{R}^n, \Pi \in \mathcal{P}} \|y - \Pi Ax\|_2 = \min_{x \in \mathbb{R}^n} g(x), \tag{39}$$

where $g(x) = \min_{\Pi} \|y - \Pi Ax\|_2$.

g(x) can be considered as a continuous **black-box** function: we have only access to the values of g we study this algorithm on the board.

Linear Regression without Correspondences Algorithm Remark

brute force: only for educational purpose

alt. min. : sensitive to initialization, no theoretical results

 ℓ_1 norm min. : scalable, only for $\leq 50\%$ shuffled data

RANSAC: limited $n \leq 4$.

algebraic method : limited in $n \le 6$. branch-and-bound : limited in $n \le 4$

concave min. : limited in $n \le 8$

Recap.

we start by discussing whether the problem is well-posed or not, is it solvable? <u>under what conditions</u> if yes?

Recap.

we start by discussing whether the problem is well-posed or not, is it solvable? <u>under what conditions</u> if yes? then the hardness of the problem,

Recap.

we start by discussing whether the problem is well-posed or not, is it solvable? <u>under what conditions</u> if yes? then the hardness of the problem, and finally the algorithms.

Future Research

Can we do better for this problem?

what do you learn for your research?

(a) General Idea.

1. $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$? f is a function encountered in your research

(b) Deep Learning.

- Learning permutation invariance via symmetric polynomials? computer vision flavor,
 - can we produce some permutation-invariant features?

(b) Deep Learning.

2. Learning to select samples $(A_i \in \mathbb{R}^{n \times n})$ in RANSAC? reinforcement learning flavor

(b) Deep Learning.

3. Permutation learning? perform least-squares with the learned permutation

(c) Deep Learning.

Learning to identify shuffled and unshuffled data?
 the simplest case: train a 0-1 classifier
 → remove the identified outliers, perform least-squares

(c) Deep Learning.

- 2. Learning to reweight shuffled and unshuffled data? attention mechanism
 - wish: the learned weights are small for shuffled data
 - → perform least-squares with the learned weight.

(d) Algorithmic Ideas.

Any robust regression algorithms are applicable to our problem shuffled data as outliers and the rest as inliers

where theoretical guarantees should:

→→ take into account permutation constraints

(e) Theoretical Development?

There are a lot.

need some background to introduce them.

(f) New Topic?

Can Subspace Learning be robust to permutation corruptions? It is underway.