

SEQUENCE LISTING

<110> Daniel E.H. ~~Ara~~
Arthur B. Raitano
Rene S. Hubert
Steve Chappell Mitchell
Aya Jakobovits

<120> NOVEL GENE UPREGULATED IN CANCERS OF THE PROSTATE

<130> 129.21-US-U1

<140> 09/697,206
<141> 2000-10-26

<150> 60/162,364
<151> 1999-10-28

<160> 26

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 3585
<212> DNA
<213> *Homo Sapiens*

<400> 1
cttttggga tcactgctgg ggccaccggg gccaagctag gctcgatga gaaggagttg 60
atcctgctgt tctggaaagt cgtggatctg gccaacaaga agtgtggaca gttgcacgaa 120
gtcttagtta gacggatca gttggactg acggaggact gcaaagaaga aactaaaata 180
gacgtcgaaa gcctgtcctc ggcgtcgcaag ctggaccaag ccctccgaca gtttaaccag 240
tcagtgagca atgaactgaa tattggagta gggacttcct tctgtctctg tactgatggg 300
cagcttcatg tcaggcaa at cctgcaccc gaggcttcca agaagaatgt actattacct 360
aatgtcttctt attccctttt tgatcttoga aaagaattca agaaaatgtt ccctggcca 420
cctgatattt acaaactgga cggtgccaca atgacagat atttaaattt tgagaagagt 480
agttcagttt ctcgatatgg agcctctcaa gttgaagata tggggatata aatttttagca 540
atgatttccatg agccttataa tcacagggtt tcagatccag agagagtgaa ttacaagttt 600
gaaagtggaa cttgcagcaa gatggaaattt attgatgata acaccgtagt cagggcacga 660
ggtttaccat ggcagtcttc agatcaagat attgcaagat tcctcaaagg actcaatatt 720
gccaaggggag gtgcagcaact ttgtctgaat gtcagggtc gaaggAACCG agaagctctg 780
gttaggtttt taagtggagga gcaccgagac ctgcactac agaggcacaa acatcacatg 840
gggaccgggtt atattggat ttacaaagca acagggtgaag attcccttaa aattgctgtt 900
ggtaacttccatg atgagggtac ccagttctc tcacaggaaa atcaagtcat tggtcgatg 960
ccccgggctcc ctccacggc cacagctgaa gaagtggtgg cttcttttg acagcatctg 1020
cctattactg gggggaaaggaa aggcatcttc ttgtcaccat acccagatgg taggccaaca 1080
ggggacgctt ttgtctctt tgcctgtgaat gaatgcac agaatgcgtt gaggaagcat 1140
aaagacttgtt tgggtaaaag atacattgaa ctcttcaggaa gcacagcage tgaaggcttag 1200
cagggtctga atcgatttcc ctccggccccc ctcatccac ttccaaacccc tcccattatt 1260
ccagactac ctcagcaatt tgcggccccc acaaattttt gagactgtat acgccttcgaa 1320
ggcttcctt atgcagccac aattgaggac atccctggatt tccctggggaa gttcgccaca 1380
gatattctgat ctcatgggtt tcacatgggtt tgaatcacc agggccgccc atcaggagat 1440
gcctttatcc agatgaagtc tgcggacaga gcatttatgg ctgcacagaa gtgtcataaaa 1500
aaaaacatga aggacagata tgcggacaga ttccatgtt cagctgagga gatgaacttt 1560
gtgttaatgg ggggcactttt aaatcgaaat ggcttatccc caccgcccgtt cctgtctctt 1620
ccctcttacaca cattttccac ccctgtctgca gttattcttca cagaagctgc cattttaccag 1680
ccctctgtgtt ttttgaatcc acgagactg cagccctcca cagcgtacta cccagcaggc 1740
actcagctt tcatgtactt ctcacccatc ctcacccatc tatccctggcc cccctgggtt gcctaataatgt 1800
cttggctact tccctacagc tgctaatctt agccgggttcc ctccacagcc tggcacgtt 1860
gtcagaatgc agggcctggc ctacaataact ggagtttaagg aaattcttaa cttcttccaa 1920
ggtttaccatg atgcacccatc qqatggactt atacacacaa atqaccaqqc caqgactctt 1980

cccaaagaat gggtttgtat ttaagggccc cagcagttag aacatcctca gaaaagaagt 2040
 gtttgaaga tgatggta tccttgcacc tcacaca agaaaaacttc tagcaaattc 2100
 aggggaagtt tgcctcacact caggctgcag tattttcagc aaacttgatt ggacaaacgg 2160
 gcctgtgcct tatcttttgg tggagtgaaa aaatttgagc tagtgaagcc aaatcgtaac 2220
 ttacagcaag cagcatgcag catacctggc tctttgctga ttgcaaataag gcatttaaaa 2280
 tgtaatttgc gaatcagat tctccattac ttccagttaa agtggcatca tagtgtttc 2340
 ctaatgttta agtcttggat aaaaactcca ccagtgtcta ccatctccac catgaactct 2400
 gttaaggaag cttcattttt gtatattccc getctttctt cttcatttcc ctgtcttctg 2460
 cataatcatg ccttcttgc aagtaattca agcataagat cttggaaataa taaaatcaca 2520
 atcttaggaa aaagaataaa attgttattt tcccagttc ttggccatga tgatatctta 2580
 tgattaaaaaa caaatttaaat tttaaaacac ctgaagataa attagaagaa atttgtgcacc 2640
 ctccacaaaaa catacaaaagt ttaaaagttt ggatctttt ctcagcaggt atcagttgt 2700
 aataatgaat taggggccaa aatgcaaaac gaaaaatgaa gcagctacat gtagttgt 2760
 atttctagtt tgaactgtaa ttgaatattt tgcttcata tgcattttt tatattgtac 2820
 tttttcattt attgtatggtt tggactttaa taagagaaat tccatagttt ttaatatccc 2880
 agaagtgaga caatttgaac agtgtattctt agaaaaacaat acactaactg aacagaagtg 2940
 aatgcttata tatattatga tagccttaaa ccttttcctt ctaatgcctt aactgtcaaa 3000
 taatttataac cttttaaagc ataggactat agtcagcatg cttagactgag agttaaacac 3060
 tgcattttt attgtatggtt tggactttaa taagagaaat tccatagttt ttaatatccc 3120
 atgctataaa agtgcataat tagacactag ctgtactgc tgcctcatgt aactccaaag 3180
 aaaacaggat ttcattaagt gcattgaatg tggatatttc tctaaggatc tcatattgtc 3240
 ctttgcatttgc atgcaatgcc gtgcagattt atgaggctgc tatttttattt ttctgtgcatt 3300
 tactttaaca ccttaaaggg agaagcaaac atttccttct tcaagctgact ggcaatggcc 3360
 ctttaactgc aataggaaga aaaaaaaaaa ggtttggatg aaaaattggatg ataactggca 3420
 cttaagatgc aaaagaaaatt tctgtatact tgatgcctta agatgccccaa agctgccccaa 3480
 agctctgaaa gactttaaga taggcagttaa tgcttactac aatactactg agtttttgta 3540
 gagttAACAT ttgataataa aacttgcctg tttaatctca aaaaa 3585

<210> 2
 <211> 517
 <212> PRT
 <213> Homo Sapiens

<400> 2
 Met Thr Glu Tyr Leu Asn Phe Glu Lys Ser Ser Ser Val Ser Arg Tyr
 1 5 10 15
 Gly Ala Ser Gln Val Glu Asp Met Gly Asn Ile Ile Leu Ala Met Ile
 20 25 30
 Ser Glu Pro Tyr Asn His Arg Phe Ser Asp Pro Glu Arg Val Asn Tyr
 35 40 45
 Lys Phe Glu Ser Gly Thr Cys Ser Lys Met Glu Leu Ile Asp Asp Asn
 50 55 60
 Thr Val Val Arg Ala Arg Gly Leu Pro Trp Gln Ser Ser Asp Gln Asp
 65 70 75 80
 Ile Ala Arg Phe Phe Lys Gly Leu Asn Ile Ala Lys Gly Gly Ala Ala
 85 90 95
 Leu Cys Leu Asn Ala Gln Gly Arg Arg Asn Gly Glu Ala Leu Val Arg
 100 105 110
 Phe Val Ser Glu Glu His Arg Asp Leu Ala Leu Gln Arg His Lys His
 115 120 125
 His Met Gly Thr Arg Tyr Ile Glu Val Tyr Lys Ala Thr Gly Glu Asp
 130 135 140
 Phe Leu Lys Ile Ala Gly Gly Thr Ser Asn Glu Val Ala Gln Phe Leu
 145 150 155 160
 Ser Lys Glu Asn Gln Val Ile Val Arg Met Arg Gly Leu Pro Phe Thr
 165 170 175
 Ala Thr Ala Glu Glu Val Val Ala Phe Phe Gly Gln His Cys Pro Ile
 180 185 190
 Thr Gly Gly Lys Glu Gly Ile Leu Phe Val Thr Tyr Pro Asp Gly Arg
 195 200 205
 Pro Thr Gly Asp Ala Phe Val Leu Phe Ala Cys Glu Glu Tyr Ala Gln
 210 215 220
 Asn Ala Leu Arg Lys His Lys Asp Leu Leu Gly Lys Arg Tyr Ile Glu

225 230 235 240
 Leu Phe Arg Ser Thr Ala Ala Glu Val Gln Gln Val Leu Asn Arg Phe
 245 250 255
 Ser Ser Ala Pro Leu Ile Pro Leu Pro Thr Pro Pro Ile Ile Pro Val
 260 265 270
 Leu Pro Gln Gln Phe Val Pro Pro Thr Asn Val Arg Asp Cys Ile Arg
 275 280 285
 Leu Arg Gly Leu Pro Tyr Ala Ala Thr Ile Glu Asp Ile Leu Asp Phe
 290 295 300
 Leu Gly Glu Phe Ala Thr Asp Ile Arg Thr His Gly Val His Met Val
 305 310 315 320
 Leu Asn His Gln Gly Arg Pro Ser Gly Asp Ala Phe Ile Gln Met Lys
 325 330 335
 Ser Ala Asp Arg Ala Phe Met Ala Ala Gln Lys Cys His Lys Lys Asn
 340 345 350
 Met Lys Asp Arg Tyr Val Glu Val Phe Gln Cys Ser Ala Glu Glu Met
 355 360 365
 Asn Phe Val Leu Met Gly Gly Thr Leu Asn Arg Asn Gly Leu Ser Pro
 370 375 380
 Pro Pro Cys Leu Ser Pro Pro Ser Tyr Thr Phe Pro Ala Pro Ala Ala
 385 390 395 400
 Val Ile Pro Thr Glu Ala Ala Ile Tyr Gln Pro Ser Val Ile Leu Asn
 405 410 415
 Pro Arg Ala Leu Gln Pro Ser Thr Ala Tyr Tyr Pro Ala Gly Thr Gln
 420 425 430
 Leu Phe Met Asn Tyr Thr Ala Tyr Tyr Pro Ser Pro Pro Gly Ser Pro
 435 440 445
 Asn Ser Leu Gly Tyr Phe Pro Thr Ala Ala Asn Leu Ser Gly Val Pro
 450 455 460
 Pro Gln Pro Gly Thr Val Val Arg Met Gln Gly Leu Ala Tyr Asn Thr
 465 470 475 480
 Gly Val Lys Glu Ile Leu Asn Phe Phe Gln Gly Tyr Gln Tyr Ala Thr
 485 490 495
 Glu Asp Gly Leu Ile His Thr Asn Asp Gln Ala Arg Thr Leu Pro Lys
 500 505 510
 Glu Trp Val Cys Ile
 515

<210> 3
 <211> 14
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Primer

<400> 3
 ttttgatcaa gctt

14

<210> 4
 <211> 42
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Adaptor

<400> 4
 ctaatacgcac tcactatagg gctcgagcgg ccgccccggc ag

42

<210> 5
 <211> 12
 <212> DNA

D E S C R I P T I O N

<213> Artificial Sequence

<220>

<223> Adaptor

<400> 5

ggccccgtcct ag

12

<210> 6

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> Adaptor

<400> 6

gtaatacgcac tcactatagg gcagcggtggt cgcgcccgag

40

<210> 7

<211> 10

<212> DNA

<213> Artificial Sequence

<220>

<223> Adaptor

<400> 7

cggctccctag

10

<210> 8

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 8

ctaatacgcac tcactatagg gc

22

<210> 9

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 9

tcgagcggcc gccccggcag ga

22

<210> 10

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 10

agcgtggtcg cggccgagga

20

<210> 11
<211> 25
<212> DNA
<213> Homo Sapiens

<400> 11
ataatcgccgc gctcgtcgac gacaa 25

<210> 12
<211> 26
<212> DNA
<213> Homo Sapiens

<400> 12
agccacacgc agtcatttgt agaagg 26

<210> 13
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 13
tcttggaaacc tccagacaca agaa 24

<210> 14
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 14
ggagatggta gacactggtg gagt 24

<210> 15
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 15
tcttggaaacc tccagacaca agaa 24

<210> 16
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 16
aagttacgat ttggcttcac tgg 23

<210> 17
<211> 9
<212> PRT

<213> Homo Sapiens

<400> 17
Phe Leu Gly Glu Phe Ala Thr Asp Ile
1 5

<210> 18
<211> 9
<212> PRT
<213> Homo Sapiens

<400> 18
Val Leu Phe Ala Cys Glu Glu Tyr Ala
1 5

<210> 19
<211> 9
<212> PRT
<213> Homo Sapiens

<400> 19
Leu Leu Gly Lys Arg Tyr Ile Glu Leu
1 5

<210> 20
<211> 9
<212> PRT
<213> Homo Sapiens

<400> 20
Gln Gln Phe Val Pro Pro Thr Asn Val
1 5

<210> 21
<211> 9
<212> PRT
<213> Homo Sapiens

<400> 21
Cys Ser Ala Glu Glu Met Asn Phe Val
1 5

<210> 22
<211> 9
<212> PRT
<213> Homo Sapiens

<400> 22
Phe Leu Ser Lys Glu Asn Gln Val Ile
1 5

<210> 23
<211> 9
<212> PRT
<213> Homo Sapiens

<400> 23
Ser Leu Gly Tyr Phe Pro Thr Ala Ala
1 5

<210> 24
<211> 9
<212> PRT