CMPE493 - Introduction to Information Retrieval Term Project Presentation

Text Classification for Covid19 Scientific Literature

Emin Güre 2020700252 Ozan Kılıç 2016400144 Barış Mutlu 2016400192

The tools used

BioBert & SciBert

Libraries we used

!pip install fasttext pandas numpy tqdm

Preprocessing Function

Takes raw string and returns processed string

- -Taking columns
- -Making words lower case
- -Clearing punctuations
- -Clearing stopwords

```
# Preprocess
punc = '''!()-[]{};:'",<>./?@#$%^&* ~'''
stopWords = []
stopFile = open("stopwords.txt",encoding='latin-1')
lines = stopFile.readlines()
for line in lines:
    stopWords.append(line.replace("\n",""))
def preprocessFun(input):
    input = input.lower()
    for ele in input:
        if ele in punc:
            input = input.replace(ele, " ")
    ssplit = input.split()
    for word in ssplit:
        if word in stopWords:
            replaceWord = " " + word + " "
            input = input.replace(replaceWord, " ")
    return input
```

Preprocessing Results

Total Word Count:

```
totalWordCount = 0
     for dicline in dataDict:
          words = dataDict[dicline].split()
         for word in words :
              totalWordCount = totalWordCount+1
              if word in wordsCount:
                  wordsCount[word] = wordsCount[word]+1
                  wordsCount[word] = 1
     print(totalWordCount)
      for dicline in dataDict > for word in words
main 🧼
 /usr/local/bin/python3 /Users/barismutlu/PycharmProjects/csvPa
 Process finished with exit code 0
```

Unique Word Count:

```
uniqueWordCount = 0
   for dicline in dataDict:
       words = dataDict[dicline].split()
       for word in words :
           if word in wordsCount:
               wordsCount[word] = wordsCount[word]+1
               uniqueWordCount = uniqueWordCount + 1
               wordsCount[word] = 1
   print(uniqueWordCount)
/usr/local/bin/python3 /Users/barismutlu/PycharmProjects/csv
57448
```

Most Frequent Words:

WORD	COUNT
19	106881
covid	106025
2	55925
patients	53211
sars	40387
cov	39217
coronavirus	31528
disease	30266
pandemic	25205
infection	18872
health	18213
2019	17707
clinical	17064
severe	16746
respiratory	16276
care	16142

After first presentation:

-Decided to improve by NLTK library.

-Library has more stopwords to remove them, and let us to stemming the raw data.

```
nltk.download()
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
from nltk.tokenize import word_tokenize
ps = PorterStemmer()
punc = '''!()-[]{};:'",<>./?@#$%^&*_~'''
def preprocessFun(input):
    input = input.lower()
    for ele in input:
        if ele in punc:
                                                      #Removing Punctiontions
            input = input.replace(ele, " ")
    stop_words = set(stopwords.words('english'))
    word_tokens = word_tokenize(input)
                                                      #Tokenizing Text
    filtered_sentence = [w for w in word_tokens if not w.lower() in stop_words]
    filtered_sentence = []
    for w in word_tokens:
        if w not in stop_words:
                                                       #Removing stopwords by NLTK
            filtered_sentence.append(ps.stem(w))
                                                           #Stemming and adding to array..
    return filtered_sentence...
```

import nltk

Training

- -Train data splitted into train(7x) and validation sets(2x)
- -We used fastText with default parameters and autotuning as baseline approach

Training

```
biobert = DeepModel(
    "bert",
    "dmis-lab/biobert-v1.1",
    5,
    load_path="./biobert-5epoch-npp"
# biobert.train(train_st, eval_df=valid_st, save_path="./biobert-5epoch-pp/")
biobert.evaluate(test_df, save_path="./biobert-5-npp-results.csv")
scibert = DeepModel(
   "bert",
   "allenai/scibert_scivocab_uncased",
   5,
    load_path="scibert-5epoch-npp"
# scibert.train(train_st, eval_df=valid_st, save_path="./scibert-5epoch-pp/")
scibert.evaluate(test df, save path="./scibert-5-npp-results.csv")
```

Test Results - FastText

	precision	recall	f1-score	support
Treatment	0.9502	0.5356	0.6850	2207
Diagnosis	0.9373	0.6087	0.7380	1546
Prevention	0.9520	0.8658	0.9069	2750
Mechanism	0.9692	0.4101	0.5763	1073
Transmission	0.8852	0.2109	0.3407	256
Epidemic Forecasting	0.8987	0.3698	0.5240	192
Case Report	0.8805	0.7946	0.8353	482
•				
micro avg	0.9436	0.6410	0.7634	8506
macro avg	0.9247	0.5422	0.6580	8506
weighted avg	0.9437	0.6410	0.7472	8506
samples avg	0.8739	0.7338	0.7791	8506

Test Results - SciBert

	precision	recall	f1-score	support
Treatment	0.8458	0.9148	0.8790	2207
Diagnosis	0.7983	0.8984	0.8454	1546
Prevention	0.9338	0.9131	0.9233	2750
Mechanism	0.8550	0.8518	0.8534	1073
Transmission	0.5423	0.6016	0.5704	256
Epidemic Forecasting	0.7300	0.7604	0.7449	192
Case Report	0.8882	0.8900	0.8891	482
micro avg	0.8543	0.8890	0.8713	8506
macro avg	0.7991	0.8329	0.8151	8506
weighted avg	0.8574	0.8890	0.8722	8506
samples avg	0.8926	0.9123	0.8860	8506

Test Results - BioBert

	precision	recall	f1-score	support	
Treatment	0.8523	0.9098	0.8801	2207	
Diagnosis	0.8179	0.8829	0.8491	1546	
Prevention	0.9138	0.9291	0.9214	2750	
Mechanism	0.8179	0.8621	0.8394	1073	
Transmission	0.5535	0.5859	0.5693	256	
Epidemic Forecasting	0.7054	0.8229	0.7596	192	
Case Report	0.9277	0.8257	0.8738	482	
micro avg	0.8516	0.8887	0.8698	8506	
macro avg	0.7983	0.8312	0.8132	8506	
weighted avg	0.8535	0.8887	0.8703	8506	
samples avg	0.8905	0.9116	0.8849	8506	

Model Comparison

Gap between precision and recall values of the FastText is greater

Model Comparison

Macro and micro average changes of

F1 - Scores:

%18 FastText Model

%6 Bert Models

-FastText is affected from minority classes more.

Effect of Stemming and NLTK library

Although the difference is not sharp, stemming decreases the f1 scores of Bert models while it does not affect the FastText model

How to improve the models?

In our data set, while some classes are estimated successfully, some are failed.

The difference between these classes are data sizes.

Ways to improve this unbalanced learning:

-Random over-sampling

Duplicate random data from minority classes

-Random under-sampling

Removing random data from majority classes

How to improve the models?

-Fast text has high precision scores while recall scores are low.

Threshold value can be decreased to make a tradeoff between precision and recall scores.