Formelsammlung Mathe 1.Semester

Mengen

Schnittmenge	Enthält alle gemeinsamen Elemente der Menge A und der Menge B	$A \cap B$
Vereinigung	Enthält alle Elemente der Menge A und der Menge B	$A \bigcup B$
Differenz Menge der Elemente, die in A , aber nicht in B enthalten		$A \setminus B$
Komplement Differenz \sim Komplement; Alle Elemente von B , die nicht in A liegen		$\overline{A} = B \setminus A$

Aussagenlogik

Negation	$\neg A$
Und-Verknüpfung	$A \wedge B$
Oder-Verknüpfung	$A \lor B$
Implikation	$A \Longrightarrow B$
Äquivalenz	$A \equiv B$
De Morgan	$\neg (A \land B) = \neg A \lor \neg B$
	$\neg (A \lor B) = \neg A \land \neg B$

Beweismethoden

Direkter Beweis	Aus mehreren Aussagen eine neue Aussage durch Implikation
	$A_1 \wedge A_2 \wedge \ldots \wedge A_m \implies B$
Indirekter Beweis	Aus dem Gegenteil der Behauptung den Widerspruch herstellen
	$\neg B \implies \neg A_1 \vee \neg A_2 \vee \ldots \vee \neg A_m$
Konstruktiver Beweis	Schritt für schritt zeigen, wie man aus Aussagen $A_1 \dots A_m$ zur Aussage kommt
vollst. Induktion	Nur bei Behauptungen der Art $A_1 \wedge A_2 \wedge \ldots \wedge A_m \implies B_n$ für jedes n aus N.
	Behauptung – Induktionsanfang – Induktionsschritt

Vektoren

Eigenschaften von Vektoren

äquivalent	Länge und Richtung stimmen überein	$\vec{a} = \vec{b}$
Senkrechte	2 Vektoren stehen senkrecht, wenn ihr	
Senkredite	Skalarprodukt 0 ergibt.	

Mathematische Operationen im Vektorraum

Addition	$ec{a} + ec{b}$	$\begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix}$
Subtraktion	$ec{a}-ec{b}$	$\begin{pmatrix} a_1 - b_1 \\ a_2 - b_2 \\ a_3 - b_3 \end{pmatrix}$
Skalare Multipl.	$\lambda \cdot ec{a}$	$\begin{pmatrix} \lambda \cdot a_1 \\ \lambda \cdot a_2 \\ \lambda \cdot a_3 \end{pmatrix}$
Abstand PUrpsr.		
Betrag (Norm)	$ \vec{a} $	$ \vec{a} = \sqrt{a_1^2 + a_2^2 + a_3^2}$
Skalarprodukt	$ec{a}\cdotec{b}$	$a_1 \cdot b_1 + \ldots + a_n \cdot b_n = x$
Kreuzprodukt	$ec{a} imesec{b}$	$\begin{pmatrix} a_2 \cdot b_3 - a_3 \cdot b_2 \\ a_3 \cdot b_1 - a_1 \cdot b_3 \\ a_1 \cdot b_2 - a_2 \cdot b_1 \end{pmatrix}$
Spatprodukt	$u \cdot (v \times w)$	
Winkel		$\cos \alpha = \frac{\vec{a} \cdot \vec{b}}{ \vec{a} \cdot \vec{b} }$
Rotationsmatrix		$ \begin{pmatrix} \cos \alpha - \sin \alpha \\ \sin \alpha \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} $

Matrizen

Arten der Matrizen

Spaltenmatrix R^{mx1}	$\begin{pmatrix} 5 \\ -2 \\ 1 \end{pmatrix}$
Zeilenmatrix R^{1xn}	(5-21)
Skalar R^{1x1}	$\begin{pmatrix} 1 & 2 & 4 \\ 0 & 5 & 7 \\ 9 & -1 & -2 \end{pmatrix}$
Nullmatrix	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
Quadratische Matrix	$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$
Transponierte Matrix $A^T = [a_{ji}]$	$\begin{pmatrix} 1 & 4 \\ 8 & -2 \\ -3 & 5 \end{pmatrix}^{T} = \begin{pmatrix} 1 & 8 & -3 \\ 4 & -2 & 5 \end{pmatrix}$

Spezielle quadratische Matrizen

- Diagonalmatrix $d_{ij} = 0, i \neq j$
- Einheitsmatrix E_n (Alle Werte auf Hauptdiag. = 1)
- Obere/Untere Dreieckdiagonalmatrix
- Orthogonale Matrix: $A \cdot A^T = E$
- Symmetrische Matrix $A = A^T$
- Schiefsymmetrische Matrix $A = -A^T$

Operatoren

Gleich	A = B	$(a_{ij}) = (b_{ij})$
Addition	C = A + B	$(c_{ij}) = (a_{ij}) + (b_{ij})$
Differenz	C = A - B	$(c_{ij}) = (a_{ij}) - (b_{ij})$
Multiplikation Skalar	$c \cdot A$	$cA \in R^{m \times n}$
Multiplikation Matrizen	$A \cdot B$	$AB = \sum_{j} a_{ij} b_{ij}$

Multiplikation

$$\begin{pmatrix} a_{11} \ a_{12} \ a_{13} \\ a_{21} \ a_{22} \ a_{23} \end{pmatrix} \cdot \begin{pmatrix} b_{11} \ b_{12} \\ b_{21} \ b_{22} \\ b_{31} \ b_{32} \end{pmatrix} = \begin{pmatrix} c_{11} \ c_{12} \\ c_{21} \ c_{22} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} \ a_{12} \ a_{13} \\ a_{21} \ a_{22} \ a_{23} \end{pmatrix} \cdot \begin{pmatrix} b_{11} \ b_{12} \\ b_{21} \ b_{22} \\ b_{31} \ b_{32} \end{pmatrix} = \begin{pmatrix} c_{11} \ c_{12} \\ c_{21} \ c_{22} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} \ a_{12} \ a_{13} \\ a_{21} \ a_{22} \ a_{23} \end{pmatrix} \cdot \begin{pmatrix} b_{11} \ b_{12} \\ b_{21} \ b_{22} \\ b_{31} \ b_{32} \end{pmatrix} = \begin{pmatrix} c_{11} \ c_{12} \\ c_{21} \ c_{22} \end{pmatrix}$$

Inverse bilden

$$A \cdot A^{-1} = I | A = (a_{ij}), A^{-1} = (a_{ij})$$

 $A\cdot A^{-1}=I|A=(a_{ij}),A^{-1}=(a_{ij})$ Multiplikation aus A und A^{-1} ergeben Einheitsmatrix:

$$\begin{pmatrix} a_{11} \dots a_{1n} \\ \vdots & \vdots \\ a_{n1} \dots a_{nn} \end{pmatrix} \cdot \begin{pmatrix} \hat{a}_{11} \dots \hat{a}_{1n} \\ \vdots & \vdots \\ \hat{a}_{n1} \dots \hat{a}_{nn} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \ddots \\ 0 & 0 \end{pmatrix}$$

Inverse kann mit Gauß-Jordan berechnet werden.

Koeffizientenmatrix A umd Einheitsmatrix I erweitern.

$$(A|I) = \begin{pmatrix} a_{11} \dots a_{1n} & 1 & 0 \\ \vdots & \vdots & \ddots \\ a_{n1} \dots a_{nn} & 0 & 0 \end{pmatrix}$$

Matrix A mit elementarer Zeilenumformung auf obere Dreiecksgestalt bringen, wobei Einheitsmatrix I mit umgeformt wird:

$$(D|B) = \begin{pmatrix} * \dots * | * \dots * \\ \vdots & \vdots \\ 0 & * | * \dots * \end{pmatrix}$$

Matrix A ist nur invertierbar, wenn D keine Null auf Hauptdiagonale D mit elementarer Zeilenumformung auf Diagonalgestalt und durch Skalierung in Einheitsmatrix. Rechte Seite enthält die Inverse.

$$(I|A^{-1}) = \begin{pmatrix} 1 & 0 & a_{11} & \dots & a_{1n} \\ & \ddots & & & \vdots \\ 0 & 1 & \hat{a}_{n1} & \dots & \hat{a}_{nn} \end{pmatrix}$$

Determinante bilden

$$det(A) = |A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} & a_{31} & a_{32} \\ = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{31}a_{22}a_{13} - a_{32}a_{23}a_{11} - a_{33}a_{21}a_{12} \end{vmatrix}$$

Eigenwerte & -vektoren

- 1. Auf Hauptdiagonale λ subtrahieren
- 2. Determinante bestimmen
- 3. Nullstellen des Polynoms sind die Eigenwerte der Matrix
- 4. Eigenwerte jeweils in A bei $A \cdot X_n = 0_n$ einsetzen und LGS lösen. Matrix ist immer det(0)

Diagonalisierbarkeit

- Charakteristisches Polynom zerfällt vollst. in Linearfaktoren $\det(A-\lambda\cdot E)=0$
- geometrische & algebraische Vielfachheit der Eigenwerte muss gleich sein

Linearkombination

Die n Vektoren a_1, a_2, \ldots, a_n aus dem m-dimensionalen Raum R_m heißen linear unabhängig, wenn die lineare Kombination

$$\lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_n a_n = 0$$

nur für $\lambda_1 = \lambda_2 = \ldots = \lambda_n = 0$ erfüllt werden kann. Andernfalls sind sie linear abhängig. $(det(A) = 0 \implies linear abhängig)$

Lösbarkeitskriterien (allgemein)

 $Ax = b \text{ mit } A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^{n \times 1}, b \in \mathbb{R}^{m \times 1}$

	$b \neq 0$	b = 0
$Rg(A) \neq Rg(A b)$	Unlösbar	-
Rg(A) =		
Rg(A b) = r		
r = n	Eindeutig lösbar	x=0 (triviale Lsg)
r < n	Mehrdeutig lösbar;	
1 < 11	Freiheitsgrad n-r	

Lösbarkeit für quadratische LGS

$$Ax = b \text{ mit } A \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^{n \times 1}, b \in \mathbb{R}^{n \times 1}, b \neq 0$$

Kriterium	Lösung	Lösungsmethode
det(A) = 0	Keine Lösung oder unendlich viele Lösungen.	KF
$det(A) \neq 0$	Eindeutige Lösung	KF, Cramersche Regel

Lösbarkeit für quadratische LGS (Homogenes System)

$$Ax = 0 \text{ mit } A \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^{n \times 1}$$

Kriterium	Lösung	Lösungsmethode
det(A) = 0	Eindeutige Lösung	KF
$det(A) \neq 0$	Triviale Lösung $x = 0$	-

Basics

pq-Formel
$$\begin{array}{c|c} x^2+px+q=0\\ x_{1,2}=-\frac{p}{2}\pm\sqrt{(\frac{p}{2})^2-q} \end{array}$$

Ableitungsregeln & Ableitungen

		(
		(
Funktion $f(x)$	Ableitung $f'(x)$	
Faktorregel		-
$c \cdot u$	$c \cdot u'$	Logar
Summenregel		li
u + v	u' + v'	
Produktregel		ln(
$u \cdot v$	$u' \cdot v + u \cdot v'$	_
Quotientenregel		lo
u	u'v - uv'	
$\frac{-}{v}$	v^2	log_c
Kettenregel		Trigo
u(v(x))	$v'(x) \cdot u'(v(x))$	si
		co
		ta
		tu
		co
		arc
		arc

D 1:: ((/)	A11:
Funktion $f(x)$	Ableitung $f(x)'$
The basics TM	
c = const	0
x	1
$a \cdot x$	a
x^n	$n \cdot x^{n-1}$
ax^n	anx^{n-1}
ax^2	2ax
1	n
$\overline{x^n}$	$-rac{-x^{n+1}}{1}$
\sqrt{x}	
•	$\frac{\overline{2\sqrt{x}}}{e^x}$
e^x	e^x
a^x	$lna \cdot a^x$
Logarithmische	Funktionen
ln(x)	1
m(x)	\bar{x}
ln(g(x))	$\frac{g'(x)}{g(x)}$
in(g(x))	g(x)
1 ()	ì
$log_a(x)$	$\frac{\overline{lna \cdot x}}{g'(x)}$
$log_a(g(x))$	g'(x)
	$g(x)ln \ a$
Trigonometrische Funktionen	
sin(x)	cosx
cos(x)	-sinx
` '	$\frac{1}{1} = 1 + tan^2x$
tan(x)	${\cos^2 x} = 1 + \tan^2 x$
cot(x)	1
000(11)	sin^2x
arcsin(x)	-
	$\frac{\sqrt{1-x^2}}{-1}$
arccos(x)	_
	$\sqrt{1-x^2}$
arctan(x)	1
()	$\frac{1+x^2}{-1}$
arccot(x)	-
	$1 + x^2$