An-Najah National University Faculty of Engineering and IT

جامعة النجاج الوطنية علية المندسة وتعنولوجيا

Computer Engineering Department Microcontroller Lab (10636496) Report Grading Sheet

Instructor Name: Hikmat Darawsheh	Experi	ment: 9)	
Academic Year: 2024	Performed on:			
Semester:	Submitted on:			
Student Names:				
1- Wala' Essam Ashqar	2- Sadeen Hawash			
3-	4-			
5-	6-			
Evaluation Criterion		CLO	Grade	Points
Abstract and Aims				
Aims and idea of the experiment are clearly stated in sir	nple		10	
words	_			
Introduction, Apparatus and Procedures				
Introduction is complete and well-written, all grammar/				
correct, Appropriate background information related to			15	
principles of the experiment is provided. The list of app	aratus			
and procedures are also provided				
Experimental Results, Calculations and Discussion				
Results analyzed correctly. Experimental findings adequately				
and specifically summarized, in graphical, tabular, and/o	or	50		
written form. Comparison of theoretical predictions to			<u>50</u>	
experimental results, including discussion of accuracy and error				
analysis as needed.				
Conclusions				
Conclusions summarize the major findings from the			15	
experimental results with adequate specificity. Highligh	ting the		13	
most important results				
Appearance				
Title page is complete, page numbers applied, content is well				
organized, correct spelling, fonts are consistent, good visual			<mark>10</mark>	
appeal. You have also to use reference for the informati	on you			
provide				
Total			100	
			100	

An-Najah National University Faculty of Engineering and IT

جامعة النجاج الوطنية كلية المندسة وتكنولوجيا

Contents

<u>Abstract</u>	
Introduction	
Materials	
Experimental Results	
<u>Discussion</u>	
Conclusion	

Abstract

In this experiment we learnt how to use stepper motors and how they work and how to control them to move in a certain direction (clock wise or counter clock wise) or do full step or half step (180 degree or 360 degree).

Introduction

The stepper motor in this experiment is connected to the JA PORTB (RB7-RB10). It is a two-phase stepper, with a 1.8° stepping angle for the first phase (full step) and a 0.9° stepping angle for the second phase (half step). The activator can regulate the direction and delay of the object to change its speed.

Materials

- Material: ChipKITTM Pro MX7 processor board with USB cable.
- Microchip MPLAB R X IDE.
- MPLAB R XC32++ Compiler.
- MPLAB Harmony Framework.
- Tera Term.
- PmodSTEPTM
- Stepper Motor (5V-12V, 25 Ω , unipolar or bi-polar)

Methods

To conduct this experiment, we made a new project and adjusted the pin settings accordingly (RG6, RG7) to enable CN. we changed the Direction and the Step mode depending on the value of the two buttons as follows

Inputs		Control Modes	
BTN2	BTN1	Direction	Step Mode
OFF	OFF	CW	FS
OFF	ON	CW	HS
ON	OFF	CCW	HS
ON	ON	CCW	FS

Table 12: Task: Stepper motor controls.

An-Najah National University Faculty of Engineering and IT

جامعة النجاج الوطنية كلية المنحسة وتكنولوجيا

Experimental Results

We add these states on app.h

```
typedef enum

{     /* Application's state machine's initial state. */

APP_STATE_INIT=0,

APP_STATE_SERVICE_TASKS,

fullStep,

halfStep,

CWFS,

CWHS,

CCWHS,

CCWFS,

} APP_STATES;
```

We initialized both the arrays for 1.8 and 0.9 and their directions (CW and CCW):

```
APP_DATA appData;

int fullarr[4] ={0x08,0x01,0x04,0x02};

int halfarr[8] ={0x02,0x06,0x04,0x05,0x01,0x09,0x08,0x0A};

int i=0;int j=0;int k=0;
```


In the system_interrupt.c we configure the code when an interrupt happens on the buttons and depending on the values of the buttons, The state of the program (the direction and the step mode of the stepper motor) as follows:

```
void ISR( CHANGE NOTICE VECTOR, ipl1AUTO) IntHandlerChangeNotification(void)
  /* TODO: Add code to process interrupt here */
  int btn1 = PORTGbits.RG6;
  int btn2 = PORTGbits.RG7;
 if(btn1 == 0 \&\& btn2 == 0){
    appData.state = CWFS;
  }
  else if(btn1 == 1 \&\& btn2 == 0){
    appData.state = CWHS;
  }
  else if(btn1 == 0 \&\& btn2 == 1){
    appData.state = CCWHS;
  }
  else if(btn1 == 1 \&\& btn2 == 1){
    appData.state = CCWFS;
  PLIB INT SourceFlagClear(INT ID 0, INT SOURCE CHANGE NOTICE);
```

to match the table as follows:

Inputs		Control Modes	
BTN2	BTN1	Direction	Step Mode
OFF	OFF	CW	FS
OFF	ON	CW	HS
ON	OFF	CCW	HS
ON	ON	CCW	FS

Table 12: Task: Stepper motor controls.

and for the code in app.c as follows:

```
case fullStep:
    {
           i=0;j=0;k=0;
      for(j=0;j<50;j++){
        for(k=0;k<4;k++){
          PORTB = fullarr[k] << 7;
          for(i=0;i<500000;i++){}
        }
               }
      appData.state = APP_STATE_SERVICE_TASKS;
      break;
    case halfStep:
    {
      i=0;j=0;k=0;
      for(j=0;j<25;j++){
        for(k=0;k<8;k++){
          PORTB = halfarr[k] << 7;
          for(i=0;i<500000;i++){}
               }
      appData.state = APP_STATE_SERVICE_TASKS;
      break;
```


جامعة النجاح الوطنية كلية المندسة وتكنولوجيا

```
case CWFS:
{
       i=0;j=0;k=0;
  for(j=0;j<50;j++){
    for(k=0;k<4;k++){
      PORTB = fullarr[k] << 7;
      for(i=0;i<500000;i++){}
   }
  appData.state = APP_STATE_SERVICE_TASKS;
  break;
case CWHS:
       i=0;j=0;k=0;
  for(j=0;j<25;j++){
    for(k=0;k<4;k++){
      PORTB = fullarr[k] << 7;
      for(i=0;i<500000;i++){}
          }
   }
  appData.state = APP_STATE_SERVICE_TASKS;
  break;
case CCWHS:
       i=0;j=0;k=0;
  for(j=0;j<25;j++){
    for(k=0;k<8;k++){
      PORTB = halfarr[k] << 7;
      for(i=0;i<500000;i++){}
```



```
}
          }
  appData.state = APP_STATE_SERVICE_TASKS;
  break;
          }
case CCWFS:
{
       i=0;j=0;k=0;
  for(j=0;j<50;j++){
    for(k=0;k<8;k++){
      PORTB = halfarr[k] << 7;
      for(i=0;i<500000;i++){}
    }
  appData.state = APP_STATE_SERVICE_TASKS;
  break;
/* TODO: implement your application state machine.*/
/* The default state should never be executed. */
default:
           {
  break;
```

Discussion

We used interrupts handle the changes that happens to the buttons to Direction and the Step mode for the Stepper motor to either go CW or CCW or half step or full step.

Conclusion

This lab we learnt how to work with stepper motor and how to control its direction as well as the step mode by using buttons through interrupts.