

DW_fp_i2flt

Integer to Floating-Point Converter

Version, STAR and Download Information: IP Directory

Features and Benefits

- The precision format is parameterizable for either IEEE single, double precision, or a user-defined custom format
- Accuracy conforms to IEEE 754 Floating-point standard¹
- DesignWare datapath generator is employed for better timing and area

i2flt z a status rnd

Description

DW_fp_i2flt is an integer to floating-point converter that takes an integer number, a, to produce a floating-point number, z. The input rnd is a 3-bit rounding mode value (see Rounding Modes in the *Datapath Floating-point Overview*).

Table 1-1 Pin Description

Pin Name	Width	Direction	Function
а	isize bits	Input	Signed/unsigned integer number
rnd	3 bits	Input	Rounding mode
z	sig_width + exp_width + 1 bits	Output	Floating-point number
status	8 bits	Output	See STATUS Flags in the Datapath Floating-Point Overview

Table 1-2 Parameter Description

Parameter	Values	Description
sig_width	2 to 253 Default: 23	Word length of fraction field of floating-point number, z
exp_width	3 to 31 Default: 8	Word length of biased exponent of floating-point number, z
isize	(3 + <i>isign</i>) ≤ <i>isize</i> ≤ 512 Default: 32	Word length of integer number, a
isign	0 or 1 Default: 1	Unsigned integer number, Signed two's complement integer number

1. For more information, see "IEEE 754 Compatibility" in the *Datapath Floating-Point Overview*.

Table 1-3 Synthesis Implementations

Implementation Name	Function	License Feature Required
rtl	Area-optimized synthesis model	DesignWare
str	Delay-optimized synthesis model	DesignWare

Table 1-4 Simulation Models

Model	Function		
DW02.DW_FP_I2FLT_CFG_SIM	Design unit name for VHDL simulation		
dw/dw02/src/DW_fp_i2flt_sim.vhd	VHDL Simulation Model Source Code		
dw/sim_ver/DW_fp_i2flt.v	Verilog Simulation Model Source Code		

Table 1-5 Truth Table ($sig_width = 10$, $exp_width = 5$, isize = 16, isign = 1)

Description	a (Integer Format)	rnd	status	z (FP Format)
Zero	0000_0000_0000_0000	any	0000_0001	0000_0000_0000_0000
Normal Number	0001_1111_1111_1111	0	0010_0000	0111_0000_0000_0000
	0001_1111_1111_1111	1	0010_0000	0110_1111_1111_1111
	0001_1111_1111_1111	2	0010_0000	0111_0000_0000_0000
	0001_1111_1111_1111	3	0010_0000	0110_1111_1111_1111
	0001_1111_1111_1111	4	0010_0000	0111_0000_0000_0000
	0001_1111_1111_1111	5	0010_0000	0111_0000_0000_0000

DW_fp_i2flt block toggles 4 status bits among 8 bit: Zero flag, Infinity flag, Huge flag and Inexact flag.

Related Topics

- Datapath Floating-Point Overview
- DesignWare Building Block IP Documentation Overview

HDL Usage Through Component Instantiation - VHDL

```
library IEEE, DWARE;
use IEEE.std logic 1164.all;
use DWARE.DW_Foundation_comp.all;
-- If using numeric types from std logic arith package,
-- comment the preceding line and uncomment the following line:
-- use DWARE.DW_Foundation_comp_arith.all;
entity DW_fp_i2flt_inst is
  generic (
    inst_sig_width : POSITIVE := 23;
    inst_exp_width : POSITIVE := 8;
    inst_isize
                 : POSITIVE := 32;
    inst isign
                  : INTEGER := 1
  );
 port (
    inst a
                : in std logic vector(inst isize-1 downto 0);
    inst_rnd
                : in std_logic_vector(2 downto 0);
                : out std_logic_vector(inst_sig_width+inst_exp_width downto 0);
    z inst
    status_inst : out std_logic_vector(7 downto 0)
  );
end DW_fp_i2flt_inst;
architecture inst of DW_fp_i2flt_inst is
begin
  -- Instance of DW_fp_i2flt
  U1 : DW fp i2flt
  generic map (
    sig_width => inst_sig_width,
    exp width => inst exp width,
    isize => inst_isize,
    isign => inst isign
  )
  port map (
    a => inst_a,
    rnd => inst_rnd,
    z \Rightarrow z_{inst}
    status => status inst
  );
end inst;
-- pragma translate_off
configuration DW_fp_i2flt_inst_cfg_inst of DW_fp_i2flt_inst is
   for inst
```

end for;
end DW_fp_i2flt_inst_cfg_inst;
-- pragma translate_on

HDL Usage Through Component Instantiation - Verilog

```
module DW_fp_i2flt_inst( inst_a, inst_rnd, z_inst, status_inst );

parameter sig_width = 23;
parameter exp_width = 8;
parameter isize = 32;
parameter isign = 1;

input [isize-1 : 0] inst_a;
input [2 : 0] inst_rnd;
output [sig_width+exp_width : 0] z_inst;
output [7 : 0] status_inst;

// Instance of DW_fp_i2flt
DW_fp_i2flt #(sig_width, exp_width, isize, isign)
U1 ( .a(inst_a), .rnd(inst_rnd), .z(z_inst), .status(status_inst) );
endmodule
```

Copyright Notice and Proprietary Information

© 2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use, reproduction, modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and to comply with them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks

Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at https://www.synopsys.com/company/legal/trademarks-brands.html.

All other product or company names may be trademarks of their respective owners.

Third-Party Links

Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse and is not responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc. 690 E. Middlefield Road Mountain View, CA 94043

www.synopsys.com