深圳市优信电子科技有限公司

<<<字符型液晶显示模块>>>

非常感谢您关注和使用我们的字符型液晶显示模块,欢迎您提出您的要求、意见和建议,我们将竭诚为您服务!您可以使用下列方式获取具体的技术咨询与服务。

目 录

	、概述	
二、	、主要参数	3
三、	、接口引脚说明	3
	、时序说明	
• • •	1、写操作时序与时序图: (MCU à LCM)	
	2、读操作时序与时序图: (LCM à MCU)	
Ŧi	· LCM 内部结构	
<i>—</i> \	· LCM (1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
	2、忙标志位 BF	
	3、地址计数器(AC)	
	4、显示数据寄存器 (DDRAM)	
	5、字符发生器 ROM	
	6、字符发生器 RAM	
六、	、指令说明	
, , ,	1、Clear display (清显示)	
	2、Return home (归位)	
	3、Entry mode set (设置输入模式)	
	4、Display on/off control (显示开/关控制)	
	5、Cursor or display shift (光标或显示移位)	
	6、Function set (功能设置)	
	7、Set CGRAM address (CGRAM 地址设置)	
	8、Set DDRAM address (DDRAM 地址设置)	14
	9、Read busy flag and address (读忙标志 BF和 AC)	15
	10. Write data to CGRAM or DDRAM	
	(写数据到 CGRAM 或 DDRAM)	15
	11. Read data from CGRAM or DDRAM	
	(从CGRAM或DDRAM中读数据)	15
七、	、复位功能	16
	1、8位控制电路初始化程序	16
	2、4位控制电路初始化程序	17
八、	.应用举例	18
	1、硬件方面电路	
	2、软件举例	
九、	、注意事项	

一、概述:

字符型液晶显示模块是专门用于显示字母、数字、符号等的点阵型液晶显示模块。分4位和8位数据传输方式。提供5×7点阵+光标和5×10点阵+光标的显示模式。提供显示数据缓冲区 DDRAM、字符发生器 CGROM 和字符发生器 CGRAM,可以使用 CGRAM 来存储自己定义的最多8个5×8点阵的图形字符的字模数据。提供了丰富的指令设置:清显示;光标回原点;显示开/关;光标开/关;显示字符闪烁;光标移位;显示移位等。提供内部上电自动复位电路,当外加电源电压超过+4.5V时,自动对模块进行初始化操作,将模块设置为默认的显示工作状态。

字符发生器RAM可根据客户需求, 订做中日文、俄文等12种不同国家的字符。

二、主要参数:

项 目	参 考 值
逻辑工作电压(Vdd)	+4.5 ~ +5.5V
LCD 驱动电压(Vdd-Vo)	0 ~ +5.0V
工作温度 (Ta)	0~+50℃(常温)/-20~+70℃(宽温)
储存温度(Tsto)	-10~+60℃(常温)/-30~+80℃(宽温)

三、接口引脚说明:(以下接口定义为常规品)

引脚	名 称	方向	说明
1	VSS	1	电源负端(0V)
2	VDD	1	电源正端(+5V)
3	V0		LCD 驱动电压(外接可调电阻调节对比度)
4	RS	I	RS=0: 当 MPU 进行读模块操作,指向地址计数器。 当 MPU 进行写模块操作,指向指令寄存器。 RS=1: 无论 MPU 读/写操作,均指向数据寄存器。
5	R/W	I	R/W=0 写操作; R/W=1 读操作
6	Е	I	读操作时,信号下降沿有效; 写操作时,高电平有效
7-14	DB0 ~ DB7	I/O	MPU 与模块之间的数据传送通道, 4 位总线模式下 DB0~DB3 脚断开
15	LEDA		背光电源正端(+5V)
16	LEDK		背光电源负端(0V)

四、时序说明:

1、写操作时序与时序图: (MCUàLCM)

	,				
项 目	符号	条件	最小值	最大值	单位
E周期	tcycE		1000	1	
E脉宽	Pweh	VDD=5V ±	450	-	
E上升/下降时间	Ter,Tef	5%	-	25	
地址设置时间	Tas	VSS=0V	140		nS
地址保持时间	Tah	Ta=25°C	10		
数据设置时间	Tdsw	1 a-25 C	195		
数据保持时间	Th		10		

2、读操作时序与时序图: (LCMà MCU)

项 目	符号	条件	最小值	最大值	单位
E周期	tcycE		1000		
E脉宽	Pweh	VDD=5V ±	450		
E上升/下降时间	Ter,Tef			25	
地址设置时间	Tas	5% VSS=0V	140		nS
地址保持时间	Tah	V35=0 V Ta=25 °C	20		
数据设置时间	Tdsw	1 a-25 C		320	
数据保持时间	Th		10		

第 4 页, 共 23 页

五、LCM 内部结构:

字符型液晶显示模块组件内部主要由 LCD 显示屏(LCD PANEL)、控制器(controller)、驱动器(driver)和偏压产生电路构成。

控制器主要由指令寄存器 IR、数据寄存器 DR、忙标志 BF、地址计数器 AC、DDRAM、CGROM、CGRAM 以及时序发生电路组成:

1、指令寄存器(IR)和数据寄存器(DR)

本系列模块内部具有两个 8 位寄存器: 指令寄存器(IR)和数据寄存器(DR)。用户可以通过 RS 和 R/W 输入信号的组合选择指定的寄存器,进行相应的操作。下表中列出了组合选择方式:

E	RS	R/W	说明
1		0	将 DB0~DB7 的指令代码写入指令寄存器中。
1 à 0	0	1	分别将状态标志 BF 和地址计数器(AC)内容读到 DB7
140		1	和 DB6~DB0。
1		0	将 DB0~DB7 的数据写入数据寄存器中, 模块的内部操作
1			自动将数据写到 DDRAM 或者 CGRAM 中。
	0		将数据寄存器内的数据读到 DB0~DB7, 模块的内部操作
1 à 0		1	自动将 DDRAM 或者 CGRAM 中的数据送入数据寄存器
			中。

2、忙标志位 BF

忙标志 BF=1 时,表明模块正在进行内部操作,此时不接受任何外部指令和数据。当 RS=0、R/W=1 以及 E 为高电平时,BF 输出到 DB7。每次操作之前最好先进行状态字检测,只有在确认 BF=0 之后,MPU 才能访问模块;

3、地址计数器 (AC)

AC 地址计数器是 DDRAM 或者 CGRAM 的地址指针。随着 IR 中指令码的写入,指令码中携带的地址信息自动送入 AC 中,并做出 AC 作为 DDRAM 的地址指针还是 CGRAM 的地址指针的选择。

AC 具有自动加 1 或者减 1 的功能。当 DR 与 DDRAM 或者 CGRAM 之间完成一次数据传送后,AC 自动会加 1 或减 1。在 RS=0、R/W=1 且 E 为高电平时,AC 的内容送到 DB6 ~ DB0。

Hight order bits				Low or	der bits	
AC6	AC5	AC4	AC3	AC2	AC1	AC0

4、显示数据寄存器(DDRAM)

DDRAM 存储显示字符的字符码,其容量的大小决定着模块最多可显示的字符数目。DDRAM 地址与 LCD 显示屏上的显示位置的对应关系如下:

(1)显示一行:

字符列地址	1	2	3	 78	79	80
DDRAM 地址	00H	01H	02H	 4DH	4EH	4FH

①执行显示移位操作时,对应的 DDRAM 地址也发生移位,以每行 8 个字符的显示为例,(如 RT0801 系列),移位前的地址对应关系如下:

字符列地址	1	2	3	4	5	6	7	8	
DDRAM 地址	00H	01H	02H	03H	04H	05H	06H	07H	
左移一位:									
字符列地址	1	2	3	4	5	6	7	8	
DDRAM 地址	01H	02H	03H	04H	05H	06H	07H	08H	
右移一位:									
字符列地址	1	2	3	4	5	6	7	8	
DDRAM 地址	4FH	00H	01H	02H	03H	04H	05H	06H	

②执行显示移位操作时,对应的 DDRAM 地址也发生移位,以每行 16 个字符的显示为例,(如 RT1601 系列),移位前的地址对应关系如下:

字符列地址	1	2		8	9	10		16	
DDRAM 地址	00H	01H		07H	40H	41H		47H	
左移一位:									
字符列地址	1	2	1	8	9	10	I	16	
DDRAM 地址	01H	02H		08H	41H	42H	-	48H	
右移一位:									
字符列地址	1	2		8	9	10		16	
DDRAM 地址	27H	00H		06H	67H	40H		46H	

(2)显示二行:

字符列:	地址	1	2	3	 38	39	40
DDRAM	第1行	00H	01H	02H	 25H	26H	27H
地址 第2行		40H	41H	42H	 65H	66H	67H

①执行显示移位操作时,对应的 DDRAM 地址也发生移位,以每行 8 个字符的显示为例,(如 RT0802 系列),移位前的地址对应关系如下:

	字符列地址		1	2	3	4	5	6	7	8
	DDRAM	第1行	00H	01H	02H	03H	04H	05H	06H	07H
	地址	第2行	40H	41H	42H	43H	44H	45H	46H	47H
Z	生移一位:									
	字符列地址		1	2	3	4	5	6	7	8
	DDRAM	第1行	01H	02H	03H	04H	05H	06H	07H	08H
	地址	第2行	41H	42H	43H	44H	45H	46H	47H	48H
A	古移一位:									
	字符列是	地址	1	2	3	4	5	6	7	8
	DDRAM	第1行	27H	00H	01H	02H	03H	04H	05H	06H
	地址	第2行	67H	40H	41H	42H	43H	44H	45H	46H

②执行显示移位操作时,对应的 DDRAM 地址也发生移位,以每行 16 个字符的显示为例,(如 RT1602 系列),移位前的地址对应关系如下:

		(/ - 212 2	002 71.7	1)/ 0	I 111 11 11 11 11 11 11 11 11 11 11 11 1				
	字符列:	地址	1	2	3		14	15	16
	DDRAM	第1行	00H	01H	02H		0DH	0EH	0FH
	地址	第2行	40H	41H	42H		4DH	4EH	4FH
1	上移一位:								
	字符列:	地址	1	2	3		14	15	16
	DDRAM	第1行	01H	02H	03H		0EH	0FH	10H
	地址	第2行	41H	42H	43H		4EH	4FH	51H
7	右移一位:								
	字符列:	地址	1	2	3		14	15	16
	DDRAM	第1行	27H	00H	01H		0CH	0DH	0EH
	地址	第2行	67H	40H	41H		4CH	4DH	4EH

③执行显示移位操作时,对应的 DDRAM 地址也发生移位,以每行 20 个字符的显示为例,(如 RT2002 系列),移位前的地址对应关系如下:

字符列:	地址	1	2	3	 18	19	20
DDRAM	第1行	00H	01H	02H	 11H	12H	13H
地址	第2行	40H	41H	42H	 51H	52H	53H

左移一位:

字符列:	地址	1	2	3	 18	19	20
DDRAM	第1行	01H	02H	03H	 12H	13H	14H
地址	第2行	41H	42H	43H	 52H	53H	54H

右移一位:

字符列:	地址	1	2	3	 18	19	20
DDRAM	第1行	27H	00H	01H	 10H	11H	12H
地址	第2行	67H	40H	41H	 50H	51H	52H

(3)显示四行:

字符列	地址	1	2	3	 18	19	20
	第1行	00H	01H	02H	 11H	12H	13H
DDRAM	第2行	40H	41H	42H	 51H	52H	53H
地址	第3行	14H	15H	16H	 25H	26H	27H
	第4行	54H	55H	56H	 65H	66H	67H

执行显示移位操作时,对应的 DDRAM 地址也发生移位,以每行 20 个字符的显示为例,(如 RT204 系列),移位前的地址对应关系如下:

字符列:	地址	1	2	3	 18	19	20
	第1行	00H	01H	02H	 11H	12H	13H
DDRAM	第2行	40H	41H	42H	 51H	52H	53H
地址	第3行	14H	15H	16H	 25H	26H	27H
	第4行	54H	55H	56H	 65H	66H	67H

左移一位:

字符列:	地址	1	2	3	 18	19	20
	第1行	01H	02H	03H	 12H	13H	14H
DDRAM	第2行	41H	42H	43H	 52H	53H	54H
地址	第3行	15H	16H	17H	 26H	27H	28H
	第4行	55H	56H	57H	 66H	67H	68H

右移一位:

字符列	地址	1	2	3	 18	19	20
	第1行	27H	00H	01H	 10H	11H	12H
DDRAM	第2行	67H	40H	41H	 50H	51H	52H
地址	第3行	13H	14H	15H	 24H	25H	26H
	第4行	53H	54H	55H	 64H	65H	66H

5、字符发生器 ROM

在 CGROM 中,模块已经以 8 位二进制数的形式,生成了 5×8 点阵的字符字模组字符字模 (一个字符对应一组字模)。字符字模是与显示字符点阵相对应的 8×8 矩阵位图数据 (与点阵行相对应的矩阵行的高三位为"0"),同时每一组字符字模都有一个由其在 CGROM 中存放地址的高八位数据组成的字符码对应。

字符码地址范围为 00H~FFH, 其中 00H~07H 字符码与用户在 CGRAM 中生成的自定义图形字符的字模组相对应。

6、字符发生器 RAM

在CGRAM中,用户可以生成自定义图形字符的字模组。可以生成 5×8 点阵的字符字模 8 组,相对应的字符码从 CGROM 的 00H~0FFH 范围内选择。

CGROM 中,字符码与字符字模之间的对应关系表(英日文)

Upper 4 bit Lower 4 bit	LLLL	LLLH	LUHL	LLHH	LHILL	LHLH	LHHL	LHHH	HLLL	HILH	HLHL	HLHH	HHLL	ннин	HHHL	нннн
LLLL																
LLLH																
LLHL																
LLHH																
LHLL																
LHLH																
LHHL																
L Н Н Н																
HLLL																
HLLH																
HLHL																
нгнн																
HHLL																
ннгн																
HHHL																
нннн																

5×8点阵字符的 CGROM 地址、字符字模和字符码三者之间的关系如下图:

CGROM Add:	res	5				Γ)ata	н		
A11A10A9 A8 A7 A6 A5 A4	A3	A2	: A1	Α0	□4	03	02	Π1		
	0	0	0	0		0	0	0	0	
	0	0	0	1	93	0	0	0	0	
	0	0	1	0	63	0			0	
	0	0	1	1		43	0	0	71	
	0	1	0	0		0	0	0		
	U	1	U	1		U	U	U		
	0	1	1	0		1/	/1/		0	C
0 1 1 0 0 0 1 0	0	1	1	1	0	0	0	0	0-	Cursor position
		0	0	0	0	0	0	0	Ō	光标位置
	1	0	0	1	0	0	0	0	0	
	1	0	1	0	0	0	0	0	0	
	1	0	1	1	0	0	0	0	0	
	1	1	0	0	0	0	0	0	0	
	1	1	0	1	0	0	0	0	0	
	1	1	1	0	0	0	0	0	0	
	1	1	1	1	0	0	0	0	0	

Character code Line position

字符码

行地址

注释: ● 高八位 CGROM 地址 A11~A4 组合形成字符码;

- 低四位 CGROM 地址 A3~A0 定义字模数据存储行地址;
- 数据 D4~D0 为字符字模数据;
- 必须将高三位数据 D5~D7 赋值为 0;
- 对应数据1的位置为显示位(黑);
- 对于 5×8 点阵字体, 第九行以下(包括第九行)数据值为 0。

					ode ata))					R/N ress								ttern ata)			
b7	b6	b5	b4	b3	b2	b1	bθ	b5	64	b3	b2	bil	bO	b7	b6	b5	b4	b3	b2	b1	bO	
											0	0	0	ΞΞ		ΞΞ	1	1	1	1	1	
											0	0	1	ΕΞ	ΕĒ	ĒΞ	0	0	1	0	0	Character
											0	1	0	ĖΞ	ĖΞ		0	0	1	0	0	Pattern
0	o	0	0	×	0	6	6	<i>1</i> 63	6	0	0	1	1	ĘŢ	E X	E E	0	0	1	0	0	Example (1)
ľ	0	0		^	//	//		17	//		1	0	0	EΞ	-	<u> </u>	0	0	1	0	0	
											1	0	1	ΕΞ		ΕĒ	0	0	1	0	0	
											1	1	0				0	0	1	0	O	Cursor Position
											1	1	1	==	ĒΞ	ΕĒ	0	0	0	0	0	i Fosition ◀
											0	0	0		ΕΞ	E	0	1	1	1	0	
											0	0	1		E		0	0	1	0	0	Character
											0	1	0	ΕΞ	×		0	0	1	0	0	Pattern
0	0	0	1)	x	0	0		V_0	1/1		0	1	1	= = 	E =		0	0	1	0	0	Example (2)
			11		<i>77</i>			17			1	0	0	===		ΕΞ	0	0	1	0	0	
											1	0	1	 			0	0	1	0	0	
											1	1	0	==	==		0	1	1	1	0	
											1	1	1	-			0	0	0	0	0	

用户自定义 5×8 点阵字符的 CGRAM 地址、字符码和字符字模间关系如下图:

注释: ● 字符码 0~2 位与 CGRAM 地址 3~5 位对应;

- CGRAM 地址 0~2 位生成字模数据行位置。第八行是光标位置,因此构成字符字模数据时,在设置光标显示的情况下,应赋值为 0;如果赋值为 1,不论光标显示与否,第八行均处于显示状态;
- 字符字模数据 0~4位的赋值状态构成了自定义字符的位图数 据;
- 从图中可以看出,字符码 3 位的赋值状态并不影响用户自定义 字符在 CGROM 中的字符码,用户自定义字符码的范围为 00H~07H或者 08H~0FH,也就是说字符码 00H与 08H 对应同一组用户自定义字符字模;
- CGRAM 数据为 1 时,处于显示状态。

六、指令说明:

由于 MPU 可以直接访问模块内部的 IR 和 DR,作为缓冲区域,IR 和 DR 在模块进行内部操作之前,可以暂存来自 MPU 的控制信息。这样就给用户在 MPU 和外围控制设备的选择上,增加了余地。模块的内部操作由来自 MPU 的 RS、R/W、E以及数据信号 DB0~DB7 决定,这些信号的组合形成了模块的指令。

本系列模块向用户提供了11条指令,大致可以分为四大类:

- 模块功能设置,诸如:显示格式、数据长度等;
- 设置内部 RAM 地址:
- 完成内部 RAM 数据传送;
- 完成其他功能。

一般情况下,内部 RAM 的数据传送的功能使用最为频繁,因此,RAM 中的地址指针所具备的自动加一或减一功能,在一定程度上减轻了 MPU 编程负担。此外,由于数据移位指令与写显示数据可同时进行,这样用户就能以最少系统开发时间,达到最高的编程效率。

有一点需特别注意:在每次访问模块之前,MPU 应首先检测忙标志 BF,确认BF=0 后,访问过程才能进行。

1、Clear display (清显示)

指令码:

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	0	1
清显示	指令将空	区位字符	码 20H i	送入全部	S DDRA	M 地址	中,使I	DDRAM	中的内
	+ -1 -	- 11.1	.1 .1 .	1 .00 1017 .	~ ~ /	-1 112 -	114 15 5	1. N	

客全部清除,显示消失;地址计数器 AC=0,自动增1模式;显示归位,光标或者闪烁回到原点(显示屏左上角);但并不改变移位设置模式。

2、Return home (归位)

指令码:

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	1	*

归位指令置地址计数器 AC=0;将光标及光标所在位的字符回原点;但 DDRAM 中的内容并不改变。

3、Entry mode set (设置输入模式)

指令码:

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	1	I/D	S

I/D: 字符码写入或读出 DDRAM 后 DDRAM 地址指针 AC 变化方向标志: I/D=1,完成一个字符码传送后,光标右移,AC 自动加 1;

I/D=0, 完成一个字符码传送后, 光标左移, AC 自动减 1;

S: 显示移位标志:

S=1, 将全部显示向右(I/D=0)或者向左(I/D=1)移位;

S=0,显示不发生移位;

S=1 时,显示移位时,光标似乎并不移位;此外,读 DDRAM 操作以及对 CGRAM 的访问,不发生显示移位。

4、Display on/off control (显示开/关控制)

指令码:

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	1	D	С	В

D: 显示开/关控制标志: D=1, 开显示; D=0, 关显示; 关显示后, 显示数据仍保持在 DDRAM 中, 立即开显示可以再现;

DB7 DB6 DB5 DB4

C: 光标显示控制标志: C=1, 光标显示; C=0, 光标不显示; 不显示光标并不影响模块其它显示功能; 显示 5×8 点阵字符时, 光标在第八行显示, 显示 5×10 点阵字符时, 光标在第十一行显示;

B: 闪烁显示控制标志: B=1,光标所指位置上,交替显示全黑点阵和显示字符,产生闪烁效果,Fosc=250kHz时,闪烁频率为0.4ms左右;通过设置,光标可以与其所指位置的字符一起闪烁。

5、Cursor or display shift (光标或显示移位)

R/W

指令码: RS

0	0	0	0	0	1	S/C	R/L	*	*
光标或	显示移位	指令可	使光标单		没有读	写显示数)据的情	况下, 向	」左或向
右移动;	运用此	指令可	以实现显	尼示的查	找或替扣	奂;在双	行显示	方式下,	第一行
和第二征	行会同时	 移位;	当移位起	述第一	行第四-	十位时,	光标会	从第一行	F跳到第
二行, 信	旦显示数	据只在	本行内力	火平移位	,第二征	于的显示	决不会	移进第-	一行;倘
若仅执行	行移位排	操作,地	址计数器	w SAC的	内容不	会发生改	文变。		

DB3

DB2

DB1

DB0

S/C	R/L	说明
0	0	光标向左移动,AC 自动减 1
0	1	光标向右移动,AC 自动加 1
1	0	光标与显示一起向左移动,AC 值不变
1	1	光标与显示一起向右移动,AC 值不变

6、Function set (功能设置)

指令码:

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	DL	N	F	*	*

功能设置指令设置模块数据接口宽度和 LCD 显示屏显示方式,即 MPU 与模块接口数据总线为 4 位或者是 8 位、LCD 显示行数和显示字符点阵规格;所以建议用户最好在执行其它指令设置(读忙标志指令除外)之前,在程序的开始,进行功能设置指令的执行。

DL: 数据接口宽度标志:

DL=1, 8 位数据总线 DB7~DB0;

DL=0, 4 位数据总线 DB7 ~ DB4, DB3 ~ DB0 不用, 使用此方式传送数据, 需分两次进行;

N: 显示行数标志:

N=1,两行显示模式; N=0,单行显示模式;

F: 显示字符点阵字体标志:

F=1: 5×10 点阵 + 光标显示模式; F=0: 5×7 点阵 + 光标显示模式。

7、Set CGRAM address (CGRAM 地址设置)

指令码:

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
0	0	0	1	ACG5	ACG4	ACG3	ACG2	ACG1	ACG0	
CGRAM 地址设置指令设置 CGRAM 地址指针,它将 CGRAM 存储用户自定										
义显示字符的字模数据的首地址 ACG5~ACG0 送入 AC中,于是用户自定义										
字符字模就可以写入 CGRAM 中或者从 CGRAM 中读出。										

8、Set DDRAM address (DDRAM 地址设置)

指令码:

									DB1	
	0	0	1	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0
DDRAM 地址设置指令设置 DDRAM 地址指针,它将 DDRAM 存储显示字符										
的字符码的首地址 ADD6~ADD0 送入 AC中,于是显示字符的字符码就可以										
	写入 DDRAM 中或者从 DDRAM 中读出;									

值得注意的是:在LCD显示屏一行显示方式下,DDRAM的地址范围为:00H~4FH;两行显示方式下,DDRAM的地址范围为:第一行00H~27H,第二行40H~67H。

9、Read busy flag and address (读忙标志 BF 和 AC)

指令码:

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0

当 RS=0 和 R/W=1 时,在 E 信号高电平的作用下,BF 和 AC6~AC0 被读到数据总线 DB7~DB0 的相应位;

BF: 内部操作忙标志, BF=1, 表示模块正在进行内部操作, 此时模块不接收任何外部指令和数据, 直到 BF=0 为止;

AC6~AC0: 地址计数器 AC 内的当前内容,由于地址计数器 AC 为 CGROM、CGRAM 和 DDRAM 的公用指针,因此当前 AC 内容所指区域由前一条指令操作区域决定;故只有 BF=0 时,送到 DB7~DB0 的数据 AC6~AC0 才有效。

10、Write data to CGRAM or DDRAM (写数据到 CGRAM 或 DDRAM) 指令码:

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
1	0	D7	D6	D5	D4	D3	D2	D1	D0	
写数据到 CGRAM 或 DDRAM 指令,是将用户自定义字符的字模数据写到已										
经设置好的 CGRAM 的地址中,或者是将欲显示字符的字符码写到 DDRAM										
中; 欲写入的数据 D7~D0 首先暂存在 DR中,再由模块的内部操作自动写入										
地址指针所指定的 CGRAM 单元或者 DDRAM 单元中。										

11、Read data from CGRAM or DDRAM (从 CGRAM 或 DDRAM 中读数据) 指令码:

	RS	R/W	DB'	DB6	DB5	DB4	DB3	DB2	DBI	DB0	
	1	1	D7	D6	D5	D4	D3	D2	D1	D0	
,	从 CGRAM 或 DDRAM 中读数据指令,是从地址计数器 AC 指定的 CGRAM										
	或者 DDRAM 单元中,读出数据 D7~D0;读出的数据 D7~D0 暂存在 DR中,										
	再由模块的内部操作送到数据总线 DB7 ~ DB0 上; 需要注意的是, 在读数据										
	之前,	应先通过	比地址计	数器 AC	正确指	定读取	单元的地	2址。			

七、复位功能:

上电时,字符型液晶显示模块起动内部自动复位电路和外部初始程序,初始化程序如下。

1、8位控制电路初始化程序:

2、4位控制电路初始化程序:

八、应用举例:

此例程为 RT204 系列(20 字符×4 行)。

当 DDRAM 变更时,可运用于 RT0801、RT0802、RT1601、RT1602、RT2002 系列。

1、硬件方面电路:

2、软件举例: (汇编程序举例)

ORG 000H; LJMP MAIN; ORG 0100H; RS EQU P3.1; RW EQU P3.4; E EQU P3.5;

DATA1 EQU 30H;

COMMAND EQU 31H;

;写指令子程序(检查忙标志位)

WW_COMMAND:LCALL RR_BF;

CLR RS;

CLR RW;

SETB E;

MOV P1, COMMAND;

CLR E;

RET;

```
:写指令子程序(不检查忙标志位)
WW_COMMAND1:CLR RS;
          CLR RW;
           SETB E;
           MOV P1, COMMAND;
           CLR E;
           RET;
:写数据子程序
WW_DATA:LCALL RR_BF;
       SETB RS;
       CLR RW;
       SETB E;
       MOV P1, DATA1;
       CLR E;
       RET;
;读忙标志指令子程序
RR_BF:MOV P1,#0FFH;
     CLR RS;
     SETB RW;
     SETB E;
RR_BF1:NOP;
     JB P1.7,RR_BF1;
     CLR E;
     RET:
;延时 5mS
DELAY5MS:MOV R7,#10;
     L1:MOV R6,#250;
     L2:DJNZ R6,L2;
        DJNZ R7,L1;
        RET;
;延时 500MS
DELAY500MS:MOV R7,#5;
    L3:MOV R6,#200;
    L4:MOV R5,#250;
    L5:DJNZ R5,L5;
       DJNZ R6,L4;
```

```
DJNZ R7,L3;
RET;
```

;清屏

CLEAR:MOV COMMAND,#01H:清屏

LCALL WW_COMMAND;

MOV COMMAND,#0CH;显示开、光标显示、光标闪烁

LCALL WW COMMAND:

RET;

MAIN:MOV COMMAND,#30H;

LCALL WW_COMMAND1;

LCALL DELAY5MS;

LCALL DELAY5MS:

LCALL DELAY5MS;

MOV COMMAND,#30H;

LCALL WW COMMAND1;

LCALL DELAY5MS;

MOV COMMAND,#30H;

LCALL WW_COMMAND1;

LCALL DELAY5MS;

MOV COMMAND.#38H:

LCALL WW_COMMAND;

MOV COMMAND,#01H;清屏

LCALL WW_COMMAND;

MOV COMMAND,#02H;光标复位

LCALL WW_COMMAND;

MOV COMMAND,#06H;光标右移 1bit,显示不移

LCALL WW_COMMAND;

MOV COMMAND.#0CH:显示开、光标不显示、光标不闪烁

LCALL WW_COMMAND;

MOV COMMAND,#14H;光标右移,显示不移动

LCALL WW_COMMAND;

MOV COMMAND,#38H;8 位数据线,两行,5×7点阵

LCALL WW_COMMAND;

:第1行显示

MOV R1,#14H;

MOV COMMAND,#80H;

MOV DATA1,#2CH;

```
M1:LCALL WW_COMMAND;
  LCALL WW_DATA;
  INC COMMAND;
  INC DATA1;
  DJNZ R1,M1
;第2行显示
  MOV R1,#14H;
  MOV COMMAND,#0C0H;
  MOV DATA1,#41H;
M2:LCALL WW_COMMAND;
  LCALL WW_DATA;
  INC COMMAND;
  INC DATA1;
  DJNZ R1,M2
;第3行显示
  MOV R1,#14H;
  MOV COMMAND,#94H;
  MOV DATA1,#61H;
M3:LCALL WW_COMMAND;
  LCALL WW_DATA;
  INC COMMAND;
  INC DATA1;
  DJNZ R1,M3
;第4行显示
  MOV R1,#14H;
  MOV COMMAND,#0D4H;
  MOV DATA1,#0A1H;
M4:LCALL WW_COMMAND;
  LCALL WW DATA;
  INC COMMAND;
  INC DATA1;
  DJNZ R1,M4
  LCALL DELAY500MS;
  LCALL DELAY500MS;
LCALL CLEAR:
LJMP MAIN;
END;
```

九、注意事项:

- 1、模块的使用与保养:
 - ①液晶显示模块为易碎品,模块内有玻璃屏,不能由高处跌落或机械震动。
 - ②如果显示屏破裂,有液晶流出,应避免入口,因为液晶是有毒物质。如果皮肤或衣服上粘上液晶,请立即用肥皂和水冲洗。
 - ③不要用外力压迫显示屏表面,这样会引起颜色变化。不要扭曲液晶显示模块, 这样会引起缺划等缺陷。
 - ④显示屏表面有一层较软的偏光片, 易被硬物划伤, 应注意保护。
 - ⑤如果显示屏表面玷污,可以用软的干布或脱脂棉轻轻擦拭。如果还不干净,可蘸正乙烷溶剂擦拭。除此之外的溶剂可能会伤害到偏光片,尤其是下列溶剂不能使用:水、丙酮、甲苯、异丙醇。
 - ⑥严禁拆解液晶显示模块,不能扭动模块的金属框脚。对于使用热压胶纸或带 柔性电缆的模块,严禁反复扭曲或撕扯胶纸和电缆。
 - ⑦NC 脚为空脚,必须悬空,不能接地。在逻辑电路的电源关闭后,应马上停止向模块输入信号。
 - ⑧模块中的控制、驱动电路是低压、微功耗的 CMOS 电路,极易被静电击穿,而 人体有时会产生高达几十伏或上百伏的高压静电,所以,在操作、装配、以 及使用中都应极其小心,要严防静电。
 - a、当用手拿液晶显示模块时,注意身体必须接地。
 - b、焊接工具,如电烙铁,必须接地良好,没有漏电。
 - c、操作用的电动改锥等工具必须良好地接地,没有漏电。
 - d、不得使用真空吸尘器进行清洁处理。因为它会产生很强的静电。
 - e、为了减少总的静电,不要在过于干燥的环境中进行装配工作,推荐相对湿度 50%~60%RH。
 - f、地面、工作台、椅子、架子、推车及工具之间都应形成电阻接触,以保持 其在相同电位上,否则也会产生静电。
 - g、液晶显示屏表面贴有一层保护膜,撕下这层保护膜时可能会产生静电,须 小心。
 - ⑨在液晶显示模块上焊接引线或电缆时,须注意:
 - a、烙铁温度: 280℃±10℃。
 - b、焊接时间: 3~4秒。
 - c、焊接材料: 共晶型、低熔点。
 - d、不要使用酸性助焊剂。
 - e、重复焊接不要超过3次,且每次重复需间隔5分钟。
 - ⑩通电使用前应注意:
 - a、模块使用接入电源及断开电源时,必须在正电源(5±0.25V或3.3±0.25V, 具体电源电压根据具体模块来定)稳定接人后,才能输入信号电平。如在电

源稳定接人前,或断开后就输人信号电平,将会损坏模块中的集成电路,使模块损坏。

- b、点阵模块是高路数液晶显示器件,显示时的对比度、视角与温度、驱动电压关系很大。所以应调整 VO 至最佳对比度、视角时为止。如果 VO 调整过高,不仅会影响显示,还会缩短液晶示器件的寿命。
- c、在规定工作温度范围下限以下使用时,显示响应很慢,而在规定工作温度 范围上限上使用时,整个显示面又会变黑,这不是损坏,只需恢复规定温 度范围,一切又将恢夏正常。
- d、用力按压显示部位,会产生异常显示。这时切断电源,等待几分钟后,重新接入,即可恢复正常。
- e、液晶显示器件或模块表面结雾时,不要通电工作,因为这将引起电极化学 反应,产生断线。
- f、长期用于阳光及强光下时,被遮部位会产生残留影像。
- 2、储存液晶显示模块应注意以下几个事项:
 - ① 放置暗处,避免日光或其他光源直接照射处。
 - ②防止静电。
 - ③长期储存时,环境温度和相对湿度应控制在0℃~35℃和≤80%RH。
 - ④防止与酸性、碱性物质或具有腐蚀性的物质相接触。
 - ③不能在液晶显示模块表面压放任何物品。
 - ⑥严格避免极限温/湿度条件下存放。特殊条件下必须存放时,也可在 40℃、 85%RH 时,或 60℃,小于 60%RH条件下存放,但不宜超过 168 小时。

3、运输

液晶显示模块在运输途中不能剧烈震动或跌落,不能有外力压迫,并且无水、无尘也无日光直射。