Aula 14

Professor:

Geraldo Xexéo DCC/IM/UFRJ PESC/COPPE/UFRJ

Conteúdo:

IDEF0

Sumário

Criação do Modelo

IDEF0

- ICAM Definition
- Versão simplificada do SADT

Professor:

Geraldo Xexéo

Conteúdo:

IDEF0

Introdução

IDEF0

- Uma forma de representar sistemas e empresas por meio de uma rede de atividades interconectadas.
 - Esses modelos representam funções do sistema, relacionamentos funcionais e dados que suportam a integração do sistema.

Exemplo Inicial

Princípios Originais do IDEF0

- O método deve representar de forma precisa a área do problema.
- O modelo deve ter uma estrutura top-down, modular e hierárquica.
- O modelo deve separar claramente "o que" o sistema faz do "como" o sistema faz.
- O modelo deve representar simultaneamente objetos e ações coisas e acontecimentos.
- O modelo deve ser gráfico.
- O modelo deve ser o produto de um esforço disciplinado e coordenado do trabalho de equipe.
- O modelo deve representar toda a informação obtida por escrito.

IDEFO - IFIPS 183

um modelo IDEF0 é composto por uma série hierárquica de diagramas que apresentam, gradativamente, um nível maior de detalhe, descrevendo funções e suas interfaces no contexto de um sistema....".

Exemplo (original)

IDEF0 - Sintaxe

Os componentes da sintaxe de IDEF0 são

- Diagramas
 - Caixas,
 - Setas,
 - Linhas
- Textos
- Glossários.

Professor:

Geraldo Xexéo

Conteúdo:

IDEF0

Semântica

IDEF0 - Significado

Funções

Informações fluindo entre as funções

Funções (1/2)

- As funções, definidas como atividades, processos ou transformações
 - Representadas por caixas
 - Conectadas uma às outras por meio de setas com significados distintos, representado dados ou objetos relacionados a cada função

Funções (2/2)

Caixas denotam atividades, por isso devem ser ou conter verbos em seu nome.

Identificação por

- Um texto centralizado formado por um verbo ou um verbo-objeto
- Um número, no canto inferior direito, representando a identificação ("número") do rótulo.

Função - Modelo

Nome da Função

1

Função - Exemplo

Selecionar Profissionais

2

Função - Conexões

Função - Conexões

Setas (ICOM)

A função de cada uma das setas é dada pelo seu posicionamento ao redor da caixa da atividade, como descrito na figura a seguir.

Setas (ICOM)

A função de cada uma das setas é dada pelo seu posicionamento ao redor da caixa da atividade, como descrito na figura a seguir.

ICOM?

Input - Entrada

Control - Controle

Output - Saída

Mechanism - Mecanismo

Entradas

Entradas (setas entrando pela direita) são dados ou objetos que são <u>necessariamente</u> transformados ou consumidos na saída pelo processo.

Entradas Típicas

Informações Processadas

- Pedido
- Ordem de Serviço

Objetos Processados

- Matérias Primas
 - Papel em uma gráfica

Controles

Controles (setas entrando por cima) são condições necessárias para produzir a saída correta, podendo ou não ser transformados na saída. Controles são restrições na operação do processo.

São obrigatórios

Controles Típicos

Catálogos

Regras e regulamentos

Leis

Qualquer entrada

Controles x Entradas?

Controles

- Obrigatórios em toda função
- Não precisam
 ser transformados
- São sempre informação
- Na dúvida,é um controle

Entradas

- Podem aparecer ou não
- Devem ser transformados ou consumidos
- São informação ou objeto

Saída

Uma **saída** (setas saindo pela esquerda) apresenta um resultado do processo, um artefato ou informação criada ou transformada por ele, ou ainda um dejeto.

Saídas Típicas

Produtos da empresa

Fatura, Nota Fiscal, ...

Informações de preço

. . .

Mecanismos

Os **mecanismos** ou recursos (setas entrando por baixo) são os meios necessários para a realização da função, porém não são consumidos para produzir a saída.

Mecanismos Típicos

Equipamentos de produção

- Prensa
- Torno

Equipamentos de processamento de informação

- Computador
- Telefone
- Rádio

Chamada de Função

É possível que uma seta saia da parte de baixo do diagrama. Isso indica uma "chamada de função", que na verdade representa que o processo chamador é explicado pelo processo chamado.

Significado das Setas (1/3)

As setas **não** representam chamada, invocação, interrupção ou qualquer seqüência

Significado das Setas (2/3)

As setas indicam responsabilidades e necessidades

As setas não indicam obrigatoriedade.

- Dados que entram e que saem podem não ser utilizados ou produzidos em uma execução específica da função.
 - Porém, em alguma vez que a função for executada, o dado pode ser usado ou ser gerado

Significado das Setas (3/3)

Produz Mantém É responsável por Utiliza Consome Usa Consulta

Exemplo do Termômetro

Quem funciona

primeiro?

Medir invoca

Monitorar?

Monitorar chama

Medir?

Não temos

como saber!

Termômetro: O que sabemos?

Monitorar usa a temperatura

Monitorar é controlado pela tolerância

Monitorar emite o alarme

Termômetro: outros mistérios

alarme?

Qual a tolerância?

Como o ambiente vira temperatura?

Não temos como saber!

Como saber mais?

Fazendo uma descrição mais detalhada da função

- Um texto
- Um diagrama mais detalhado

Mantendo um dicionário de dados

"Explodindo Funções"

- Uma função, descrita em uma caixa, pode ser explicada de duas formas
 - Um texto
 - Outro diagrama IDEF0!
- "Explodir" uma caixa significa criar uma representação mais detalhada de uma função
- Ao explodir, as setas devem ser "conservadas"
 - Não se criam ou destroem setas entre uma função e o diagrama que a descreve

Explosão: Diagrama de Contexto (A-0)

Representa o sistema como uma função

Explosão do Contexto (A0)

Consorcio Ceder

Consorcio cederi

A explosão conserva setas

A explosão conserva setas

Professor:

Geraldo Xexéo

Conteúdo:

IDEF0
Sintaxe

Diagrama - Formulário

ed at	Author	Date:	THE RESIDENCE	READER	DATE	TE Confect
	Project: Notes: 1 2 3 4 1 6 7 6 8 19	Rev:	DRAFT			
			RECOMMENDED	M 2 E		
			PUBLICATION	1 1		
	1122000				-	
	Title.				Num	bes:
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				100000	Secretary Secretary

kedat	Author Project: Nows: 1 2 1 4 5 4 7 8 5 31	Date: Rev:	TISAST BSCCMMENDED FUBLICATION	REALIPH	DATE	Coptext:
			unção			
					Nus	

Fronteiras?

- É interessante notar que em cada diagrama não sabemos de onde vêm e para onde vão os dados
 - Só temos alguma informação sobre isso no diagrama superior
- Em relação contexto, não sabemos que agentes externos usam o sistema!

Regras Sintáticas (1/9)

Regras Sintáticas (2/9)

- Diagramas IDEF0 são construídos de forma hierárquica, a partir de um diagrama inicial, chamado A-0 (A menos zero)
 - que sempre contém uma única atividade, numerada 0, a partir do qual são feitos detalhamentos sucessivos.
 - A caixa 0, do diagrama A-0, é expandida no diagrama A0
 - Pode existir, opcionalmente, um diagrama que coloque o diagrama A-0 dentro de um contexto maior, chamado A-1 (A menos 1).

Consorcio Cederi

Regras Sintáticas (3/9)

- Um diagrama pode ser FEO para explicar ou conter apenas texto ou glossário.
 - Nesse caso, o nó recebe o seu identificador seguido respectivamente das letras F, T ou G.
- Os diagramas são desenhados em formulários padronizados
- A cada revisão deve ser marcado um número de revisão (no diagrama, ver NOTES 1 2 3...).

Regras Sintáticas (4/9)

Caixas são retangulares com cantos arredondados.

- As caixas dos diagramas são numeradas 1, 2, 3,...
- As caixas são indicadas pelo nome do diagrama adicionadas do número da caixa (a caixa 1 do diagrama A1 se chama A1.1)
- Quando uma caixa é detalhada em outro diagrama, é colocada uma referência a esse diagrama abaixo do canto inferior esquerdo. Essa referência é conhecida como DRE.

Regras Sintáticas (5/9)

- Cada diagrama deve conter todas as setas que entram e saem do seu diagrama superior, que podem ser indicadas pela seguinte notação (conhecida como ICOM):
 - Controle: C1, C2, C3..., contados da esquerda para a direita na caixa explodida.
 - Entradas: I1, I2, I3, contadas de cima para baixo na caixa explodida.
 - Saídas: O1, O2, O3, contadas de cima para baixo na caixa explodida.
 - Mecanismos: M1, M2,... contados da esquerda para a direita na caixa explodida.

IDEF0: Numeração ICOM

Regras Sintáticas (6/9)

Setas não representam fluxo, mas sim como os dados e objetos necessários para o funcionamento de uma função são obtidos.

Setas

Setas

Setas

Regras Sintáticas (7/9)

Uma seta pode ser dividida ou setas podem ser agregadas.

Os segmentos resultantes devem ser nomeados adequadamente para representar as partes.

- Por exemplo, uma seta "identificação de usuário" e uma seta "solicitação de serviço" podem ser unificadas na seta "solicitação identificada".
- O inverso também pode acontecer.

Dividindo e Juntando Setas

Regras Sintáticas (8/9)

Uma caixa possui

- No mínimo 1 seta de controle
- No mínimo 1 seta de saída
- No máximo 1 seta de chamada
- Zero ou mais setas de entrada e mecanismo

Regras Sintáticas (9/9)

Abreviações, jargão, etc., devem ser colocados em um glossário (único para o modelo).

O número de um diagrama é formado pelas iniciais do autor e um número seqüencial.

Diagramas FEO

- Diagramas FEO não precisam seguir as regras de sintaxe do IDEF0
- Diagramas FEO são numerados com um F no final de seu código, ou seja, do código que teriam se fossem um diagrama normal.

Notação de Referência	Significado
2 1	Caixa 2 Entrada 1
02	A seta cujo código ICOM é O2 (Saída 2)
202 para 3C1 ou 2o2 para 3c1	A seta de 202 para 3C1 (I, C, O ou M podem ser maiúsculas ou minúsculas).
l2 para 2l3 para 202 para (3C1 e 4C2)	Da seta com código ICOM I2 para a caixa 2, entrada 3, através da ativação da caixa 2 que fornece a saída 2, para a disponibilidade (por meio de um <i>fork</i>) dessa saída como controle 1 na caixa 3 e controle 2 na caixa 4.
A21.3C2	No diagrama A21 nesse modelo, veja o controle 2 da caixa 3. O ponto significa "olhe especificamente para"
A42.3	No diagrama A32, veja a nota de modelo 3.
A42. 3	Notação opcional para "No diagrama A32, veja a nota de modelo 3", usando barras verticais em vez de uma caixa para identificar a nota.
A42.3	No diagrama A42 desse modelo, veja a caixa 3.
MFG/A42.1	NO diagrama A42 do modelo MFG veja a caixa 1

Formato de Publicação

This smaller diagram is the parent for the current diagram.

Construindo

Um modelo IDEF0 deve ser construído normalmente da forma *top-down*,

O método top-down permite que nos preocupemos primeiro com questões gerais do sistema, como a sua justificativa, que funções deve realizar e, mais tarde, com sua realização.

Deve delimitar o escopo de análise e descrição do sistema

Professor:

Geraldo Xexéo

Conteúdo:

IDEF0

Criação do Modelo

Perguntas a Responder

Um conjunto de diagramas IDEF0, conhecido como um kit IDEF0, tem que responder a duas perguntas:

- para que serve o sistema
- como ele funciona.

Preparandos para Modelar

Objetivo

Pontos de Vista

Escopo

Contexto

Objetivo

- Para começar a modelagem IDEF0 o analista deve primeiro determinar e descrever de forma clara:
 - qual o objetivo do modelo,
 - em que ponto de vista as atividades serão descritas e
 - em que contexto isso é feito.
- Isso funciona como uma especificação de requisitos do modelo que está sendo feito.
- Quando o objetivo do modelo é atingido, o modelo está completo.

Objetivo

- Um objetivo possível é, por exemplo, "identificar oportunidades para consolidar funções já existentes de forma a melhorar o desempenho da organização".
 - Claro que esse objetivo sofre de um excesso de "linguagem de negócios" que pode ofuscar sua verdadeira utilidade.
 - Normalmente devemos preferir termos mais diretos como "identificar as funções da organização em busca de estudá-las e propor um plano de melhoria de desempenho com possível reestruturação das mesmas".

Ponto de Vista

Descreve a perspectiva tomada na construção, revisão e leitura do modelo,

Define os limites do modelo e como as atividades do sistemas sendo descrito serão abstraídas ou idealizadas.

Permite controlar o escopo e o nível de detalhe

Ponto de Vista

- É sempre único, apesar das sessões de modelagem incluírem normalmente diferentes participantes com múltiplos pontos de vista.
- Uma forma de imaginar um ponto de vista e melhor descrevê-lo:
 - é entender o IDEF0 como parte de um manual destinado a descrever o funcionamento do sistema para alguma pessoa ou algum grupo no contexto do negócio.

Escopo

O escopo do modelo é dividido em duas partes: a profundidade e a extensão.

- A profundidade define o nível de detalhe esperado do modelo
 - Objetivo e Ponto de Vista
- A extensão define as fronteiras do sistema sendo analisado.
 - Contexto

Contexto

É importante a definição inicial do contexto

- Mesmo tendo consciência que ele pode sofrer alterações (intencionais) durante o curso do processo de modelagem.
- O contexto é representado fortemente no diagrama de contexto (A-0)
 - Principalmente pela definição de fronteira do sistema indicada pelas entradas (incluindo controles) e saídas.

A partir desse ponto, sempre que for necessário expandir uma função será criado outro diagrama filho, mantendo as seguintes regras

Os sub-sistemas de uma função devem suportar diretamente a função.

As saídas indicam:

- um valor agregado as entradas e controles,
- resultados colaterais,
- sub-produtos, ou
- "dejetos" dos processos.

- Cada seta que entra ou sai de uma função deve ser encontrada em seu diagrama de expansão.
 - As setas podem entrar ou sair de uma ou mais funções
 - As setas pode ser divididas de forma a transportar parte de informação para uma função e parte para outra.
 - Em casos especiais as setas podem não aparecer em um diagrama superior, em um processo conhecido como tunelamento, destinado a abstrair informações.

Só devem ser mencionados os elementos necessários para o objetivo da construção do modelo

- Todas as atividades são realizadas nas "folhas", isto é, na última atividade modelada (mais detalhada).
- As atividades superiores são apenas abstração que não desempenham nenhum procedimento real.

Passos da construção do modelo

Defina objetivo e motivação

- Responda as seguintes perguntas
 - Por que o processo está sendo modelado?
 - O que esse modelo vai mostrar?
 - O que os leitores desse modelo poderão fazer com ele?
- Exemplo: "Identificar as tarefas de cada funcionário da loja, entendendo como elas se relacionam em detalhe suficiente para desenvolver um manual de treinamento"

Passos da construção do modelo

Exemplos: "Quais as tarefas do atendente?", "Quais as tarefas do arrumador?", "Como os produtos circulam na loja?"

Passos (1/6)

Desenvolva o ponto de vista

Defina o escopo do sistema

Dê um nome ao sistema

- Use um nome condizente com o escopo definido
 - Normalmente o nome de um sistema utiliza termos bastante genéricos

Passos (2/6)

Defina os ICOMs principais...

- Defina as saídas, incluindo as saídas que acontecem quando o processo não acontece de forma satisfatória
 - Todas as saídas possíveis do processo devem estar presente no modelo

Passos (3/6)

Defina as entradas

- As entradas devem ser processadas para gerar as saídas
- Normalmente o nome de uma entrada não permanece o mesmo na saída
 - Algumas vezes entradas recebem adjetivos como "simples" ou saídas recebem adjetivos como "verificada" para demonstrar que apesar de não haver uma modificação houve um processamento da entrada para a saída.

Passos (4/6)

Defina os mecanismos

Defina os controles

- Lembre que todas as atividades possuem ao menos um controle
- Controle existem na forma de regras, políticas, procedimentos, padrões, etc.
- No caso de indecisão entre entrada e controle, modele como controle.

Passos (5/6)

Numere as atividades e diagramas

Se necessário, decomponha as atividades

 Repita o processo de modelagem, mantendo a consistência

Passos (6/6)

- - Se necessário, construa modelos FEO (apenas para informação)
 - Por exemplo, para indicar outro ponto de vista
 - Para ilustrar detalhes que não são suportados pela notação IDEF0
- Controle o tamanho do diagrama a partir do escopo (principalmente controlando a extensão do diagrama)
- Controle a profundidade do diagrama a partir do detalhe necessário para o objetivo do modelo.

Heurísticas

Questione as fronteiras.

Essa atividade cai dentro do escopo da atividade superior?

Esta atividade está conforme o escopo e o ponto de vista estabelecido no projeto?

Heurísticas

Observe os limites numéricos do modelo (3 a 6 sub-funções por diagrama)

- Não procure sempre 6 atividade, descreve as atividades como elas aparecem no mundo real.
- Cuidado com excesso de ligação entre as atividades (teia de aranha), que indica a falta de organização dos nível de abstração das atividades

Aula 14

Professor:

Geraldo Xexéo DCC/IM/UFRJ PESC/COPPE/UFRJ

Conteúdo:

IDEF0: FIM

