ECEN452 Ultra High Frequency Lab1

Q1. Demonstrate the operation of Python installation by running the plotting program.

Figure 1. Python simulation result plotting

- Q2. Already setup and email GitHub account (tim721w) to instructor.
- Q3. Simulating the files provided in GitHub.

Figure 2. ECEN_452_Lab1a.zov simulation

Name: Chung-Huan Huang UIN:125001543

Figure 3. ECEN 452 Lab1b.zov simulation

Figure 4. ECEN 452 Lab1.hfss simulation

Name: Chung-Huan Huang UIN:125001543

Q4. Calculate the two-port S and ABCD matrices for a series impedance Z = 10 + j25 with system impedance 50 Ω and simulate in Z0lver. The circuit model is show in Figure 2. The S parameters are corresponded for both calculation and simulation results which is $|S_{11}| = |S_{22}| \cong 0.886$ and $|S_{12}| = |S_{21}| \cong 0.2386$

$$[S] = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} = \begin{bmatrix} \frac{Z}{Z + 2Z_0} & \frac{2Z_0}{Z + 2Z_0} \\ \frac{2Z_0}{Z + 2Z_0} & \frac{Z}{Z + 2Z_0} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{10 + j25}{(10 + j25) + 2 \times 50} & \frac{2 \times 50}{(10 + j25) + 2 \times 50} \\ \frac{2 \times 50}{(10 + j25) + 2 \times 50} & \frac{10 + j25}{(10 + j25) + 2 \times 50} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{2+j5}{22+j5} & \frac{20}{22+j5} \\ \frac{20}{22+j5} & \frac{2+j5}{22+j5} \end{bmatrix} \approx \begin{bmatrix} 0.239e^{j55.39^{\circ}} & 0.886e^{-j12.8^{\circ}} \\ 0.886e^{-j12.8^{\circ}} & 0.239e^{j55.39^{\circ}} \end{bmatrix}$$

Since system impedance Z_0 is 50 Ω , therefore ABCD matrix can be written as:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 1 & Z \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 10 + j25 \\ 0 & 1 \end{bmatrix}$$

Figure 5. S₁₁ simulation result plot in Z0lver

Name: Chung-Huan Huang

UIN:125001543

Q5. Shift the reference planes with a length 0.8 λ at Port 1 and 0.25 λ at Port 2.

$$\begin{split} [S'] &= \begin{bmatrix} S_{11}{}' & S_{12}{}' \\ S_{21}{}' & S_{22}{}' \end{bmatrix} = \begin{bmatrix} S_{11}e^{-j2\theta_1} & S_{12}e^{-j(\theta_1+\theta_2)} \\ S_{21}e^{-j(\theta_1+\theta_2)} & S_{22}e^{-j2\theta_2} \end{bmatrix} \\ &= \begin{bmatrix} 0.239e^{\mathrm{j}55.39^\circ}e^{-j3.2\pi} & 0.886e^{-\mathrm{j}12.8^\circ}e^{-j2.1\pi} \\ 0.886e^{-\mathrm{j}12.8^\circ}e^{-j2.1\pi} & 0.239e^{\mathrm{j}55.39^\circ}e^{-j\pi} \end{bmatrix} \\ &= \begin{bmatrix} 0.239e^{-\mathrm{j}16~66~1^\circ} & 0.886e^{\mathrm{j}30.8^\circ} \\ 0.886e^{\mathrm{j}30.8^\circ} & 0.239e^{-\mathrm{j}124.6~1} \end{bmatrix} \end{split}$$

The circuit model is shown in Figure 3.

Figure 6. S₁₁ simulation result plot in Z0lver

Q6. Create two separate plots comparing analytical, Z0lver and HFSS results.

The analytical results turn out that $|S_{11}| \cong 0.239 \cong -12.43 \, dB$ and $|S_{21}| \cong 0.886 \cong -1.05 \, dB$.

The Z0lver results turn out that $|S_{11}| \cong -14.3258 \ dB$ and $|S_{21}| \cong -1.20492 \ dB$.

The HFSS results turn out that $|S_{11}| \cong -12.1605 \ dB$ and $|S_{21}| \cong -1.1961 \ dB$.

Name: Chung-Huan Huang

UIN:125001543

Figure 7. $|S_{11}|$ plotting

Figure 8. $|S_{21}|$ plotting

Name: Chung-Huan Huang UIN:125001543 ECEN452-PreLab2

Q7. Fill out the table below.

	FR4	Duroid 5880	Duroid 6006	Duroid 6010.2
\mathcal{E}_r	~4.4	~2.2	~6.15	~10.2
Tan δ	0.018	0.0009	0.0027	0.0023

Q8. Fill out the table below.

	Type N	SMA	3.5 mm	2.92 mm	2.4 mm	1.85 mm
Type N	Y	N	N	N	N	N
SMA	N	Y	Y	Y	N	N
3.5 mm	N	Y	Y	Y	N	N
2.92 mm	N	Y	Y	Y	N	N
2.4 mm	N	N	N	N	Y	Y
1.85 mm	N	N	N	N	Y	Y