Análisis Estadístico con R

Importancia de definir el problema

Objetivos / hipótesis de trabajo

¿Cuál es el problema detectado?

¿Está validado que sea un problema?

¿Por qué?

¿Para qué?

Aportes potenciales

Metodología

Duración y etapas del proyecto

Presupuesto

Media

Es el valor característico de la serie de datos resultado de la suma de todas las observaciones dividido por el número total de datos

Ventajas:

- Es muy usado y fácil de comprender
- Es útil como medida de comparación entre datos.

Desventajas:

- se ve fuertemente afectado por los valores extremos No es recomendable emplearla en distribuciones muy asimétricas

Media

Ejemplo:

$$\bar{x}$$
 = $\frac{1+1+1+3+3+4+4+6+6}{9}$ = $\frac{3.22}{9}$

Media

- Es muy usado y fácil de comprender Es útil como medida de comparación entre datos.

Desventajas:

- se ve fuertemente afectado por los valores extremos No es recomendable emplearla en distribuciones muy asimétricas

Mediana

Es el número de la mitad en un conjunto de números ordenado de menor a mayor.

Mediana

Ejemplo:

$$\widetilde{\chi}$$
 = 0.5*(9+1) = !

50% 50% mediana

nos da la posición que tenemos que mirar en la tabla

Mediana

Ventajas:

- No se ve afectado por valores extremos
- Es fácil de comprender
- Es la medida de tendencia central más representativa en el caso de variables que solo admiten la escala ordinal.

Desventajas:

- Hay que ordenar los datos antes de determinarla
- No pondera cada valor por el número de veces que se ha repetido.

Moda

Es el valor con mayor frecuencia en una de las distribuciones de datos

Moda

Ejemplo:

Valor	Cant de veces que aparece 3 2 2	
1		
3		
4		
6	2	

Moda

- No requiere cálculos.
- Fácil de interpretar. No se ve influenciada por valores extremos.

Desventajas:

- No siempre existe, si los datos no se repiten. Muchas veces no existe moda (distribución amodal). No tiene un uso tan frecuente como la media.

Varianza

Mide la variabilidad de los datos alrededor de la media.

Es decir, es la distancia de c/ valor de la media

Varianza

Ejemplo:

$$s^{2} = \frac{(1-3.22)^{2} + (1-3.22)^{2} + (1-3.22)^{2} + (3-3.22)^{2} + (3-3.22)^{2} + (3-3.22)^{2} + (3-3.22)^{2} + (4-3.22)^{2} + (4-3.22) + (6-3.22)^{2} + (6-3.22)^{2}}{=} = \frac{3.94}{2}$$

Desvío Estándar

Indica qué tan dispersos están los datos con respecto a la media. Mientras mayor sea la desviación estándar, mayor será la dispersión de los datos.

Desvío Estándar

$$S = 1.98$$

Ejemplo:

$$S = \sqrt{\frac{(1-3.22)^2 + (1-3.22)^2 + (3-3.22)^2 + (3-3.22)^2 + (3-3.22)^2 + (3-3.22)^2 + (4-3.22)^2 + (4-3.22) + (6-3.22)^2 + (6-3.22)^2}{9-1}} = \frac{1.98}{9-1}$$

Cuartiles

Son valores que dividen una muestra en partes iguales

Cuartiles

Son valores que dividen una muestra en partes iguales

Cuartiles

Ejemplo:

	Cálculo	Posición en la tabla	Valor de la tabla
Q1	0.25*(9+1)	2.5	1
Q2	0.50*(9+1)	5	3
Q3	0.75*(9+1)	7.5	4
	0.95*(9+1)	9.5	6

Rango Intercuartil

Es la diferencia entre el tercer y el primer cuartil

IQR = Q3-Q1

Rango Intercuartil

Ejemplo:

$$IQR = 4 - 1 = 3$$

Boxplot

Es un tipo de gráfico que muestra un resumen de una gran cantidad de datos en cinco medidas descriptivas, además de intuir su morfología y simetría.

Nos permite identificar valores atípicos y comparar distribuciones.

Boxplot

OUTLIERS

OUTLIERS

Son observaciones numéricamente distante del resto de los datos

Métodos para lidiar con outliers:

- Media podada
- Eliminarlos a partir de un umbral de interés
- Reemplazar por la media los que están debajo del umbral y por la mediana los que están por encima del umbral

Correlación

Indica la fuerza y la dirección de una relación lineal y proporcionalidad entre dos variables estadísticas

Correlación

Regresión Lineal

Se utiliza para **predecir** el valor de y (variable objetivo, dependiente) dados los valores de x (denominadas variables explicativas, independientes o regresores)

Regresión Lineal

Ahora les toca a uds...

¿Qué análisis deberían hacer para la validación de datos?