Curve Repulsion - 1

Paul Kim

20/01/2023

1 Theory behind Discretization

Figure 1: Discretization process

We now consider a discretization of a curve. Index the points on the curve by $\mathcal{I} = \{1, 2, \cdots, M\}$, such that points are given by $\{\gamma_1, \gamma_2, \cdots, \gamma_M\}$ Using the similar notation to the paper by Yu, Schumacher, and Crane, for edge $I = \{\gamma_i, \gamma_j\} \in E$ and for function $u : \mathbb{R}^3 \to \mathbb{R}$

- $l_I := |\gamma_i \gamma_j|$
- $T_I := \frac{\gamma_j \gamma_i}{l_I}$
- $\mathbf{x}_I \coloneqq \frac{\gamma_i + \gamma_j}{2}$
- $u_I \coloneqq \frac{u_i + u_j}{2}$
 - Syntactic sugar: $u_i \equiv u(\gamma_i)$
- $u[I] := \begin{pmatrix} u_i \\ u_j \end{pmatrix}$

1.1 Discrete Energy

The naı̈ve discretization of $\mathcal{E}^{\alpha}_{\beta} \coloneqq \iint_{M^2} k^{\alpha}_{\beta} \left(\gamma \left(x \right), \gamma \left(y \right), T \left(x \right) \right) \, \mathrm{d}x_{\gamma} \, \mathrm{d}y_{\gamma}$ where $k^{\alpha}_{\beta} \left(p, q, T \right) \coloneqq \frac{|T \times (p-q)|^{\alpha}}{|p-q|^{\beta}}$ is given by

$$\sum_{I \in E} \sum_{J \in E} \int_{\bar{I}} \int_{\bar{J}} k_{\beta}^{\alpha} (\gamma(x), \gamma(y), T_I) \, dx_{\gamma} \, dy_{\gamma}$$
 (1)

However, in a polygonal curve (hence the discretized curve), (1) is ill-defined.

Figure 2: Near each vertex, the integrand is unbounded.

So resolve this by removing the two neighboring edges.¹ Also approximate the kernel by the average of the kernel evaluated at each pair of appropriate edges (total: 4)

$$\hat{\mathcal{E}}^{\alpha}_{\beta} := \sum_{I,J \in E, I \cap J = \emptyset} \left(\hat{k}^{\alpha}_{\beta} \right)_{I,J} l_I l_J \tag{2}$$

$$\left(\hat{k}_{\beta}^{\alpha}\right)_{I,J} := \frac{1}{4} \sum_{i \in J, j \in J} k_{\beta}^{\alpha} \left(\gamma_{i}, \gamma_{j}, T_{I}\right) \tag{3}$$

2 Discrete Gradient Flow in L^2 for Closed Loop

Suppose a curve is discretized as position vectors: x_1, x_2, \cdots, x_M (and $x_{M+1} \coloneqq x_1$).

Also denote the edge from x_i to x_{i+1} as I_i (as opposed to the previous section).

¹In the limit, the contribution from this removed edge goes to zero.

The **discretized energy** E can be expressed as:

$$E = \sum_{i=1}^{M} \sum_{\substack{j=1\\|j-i|>1}} k_{i,j} ||x_{i+1} - x_i|| ||x_{j+1} - x_j||$$

$$\tag{4}$$

$$k_{i,j} = \frac{1}{4} \left(k_{\beta}^{\alpha} \left(x_i, x_j, T_i \right) + k_{\beta}^{\alpha} \left(x_i, x_{j+1}, T_i \right) + k_{\beta}^{\alpha} \left(x_{i+1}, x_j, T_i \right) + k_{\beta}^{\alpha} \left(x_{i+1}, x_{j+1}, T_i \right) \right)$$
(5)

Figure 3: Kernel $k_{i,j}$ computation

Recall the definition of differential, gradient, and gradient flow.

Definition 1 (Differential). Given functional $\mathcal{E}(\gamma)$, the **differential** is defined as:

$$d\mathcal{E}|_{\gamma}(u) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(\mathcal{E} \left(\gamma + \epsilon u \right) - \mathcal{E} \left(\gamma \right) \right)$$
 (6)

Definition 2 (Gradient). Given functional $\mathcal{E}(\gamma)$ and space V, the **gradient** grad \mathcal{E} is the unique function satisfying the following for any function u:

$$\langle \langle \operatorname{grad} \mathcal{E}, u \rangle \rangle_V = d\mathcal{E}(u)$$
 (7)

Definition 3 (Gradient Flow). Given functional $\mathcal{E}(\gamma)$, the **gradient flow** equation is defined as:

$$\frac{d}{dt}\gamma = -\operatorname{grad}\mathcal{E}(\gamma) \tag{8}$$

Gradient flow equation in L^2 is given by:

$$\dot{x}_i = -\frac{\partial E}{\partial x_i} \tag{9}$$