Universidade do Minho

Cálculo

------ folha 10 -

2017'18 —

Integrais Impróprios

MIEInf

1. Estude os seguintes integrais impróprios

(a)
$$\int_{0}^{+\infty} \frac{1}{x-1} dx$$

(c)
$$\int_{2}^{+\infty} \frac{1}{x^2 - 1} dx$$

(e)
$$\int_{1}^{+\infty} \frac{1}{x^2} dx$$

(a)
$$\int_{2}^{+\infty} \frac{1}{x-1} dx$$
 (c) $\int_{2}^{+\infty} \frac{1}{x^2-1} dx$ (e) $\int_{1}^{+\infty} \frac{1}{x^2} dx$ (g) $\int_{e}^{+\infty} \frac{1}{x \ln x} dx$

(b)
$$\int_{-\infty}^{0} x e^{-x^2} dx$$

(d)
$$\int_{1}^{+\infty} x^2 dx$$

(f)
$$\int_{1}^{+\infty} \cos(\pi x) \, dx$$

(b)
$$\int_{-\infty}^{0} x e^{-x^2} dx$$
 (d) $\int_{1}^{+\infty} x^2 dx$ (f) $\int_{1}^{+\infty} \cos(\pi x) dx$ (h) $\int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx$

- 2. Mostre que o integral impróprio $\int_{1}^{+\infty} x^{\alpha} dx$ é convergente quando $\alpha < -1$ e é divergente se $\alpha \geq -1$.
- 3. Mostre que o integral $\int_0^{+\infty} e^{-rx} dx$ é convergente se r > 0 e divergente se $r \le 0$.

(Sug.: comece por estudar o caso r = 0.)

- **4.** Seja ${\mathcal R}$ a região definida por $y=e^{-x}$ com $x\geq 0$ e o eixo das abcissas.
 - (a) Esboce \mathcal{R} e calcule, se possível, a área de \mathcal{R} .
 - (b) Determine, se possível, o comprimento da curva que limita $\mathcal R$ superiormente.

5. Sabendo que
$$\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}$$
 e que $a,b \in \mathbb{R}$, calcule $\int_{-\infty}^{+\infty} e^{\frac{-(x-a)^2}{b}}$

$$\int_{-\infty}^{+\infty} e^{\frac{-(x-a)^2}{b}} dx$$

6. Indique, justificando, se cada um dos seguintes integrais é convergente ou divergente.

(a)
$$\int_0^{+\infty} e^{-x} \cos \sqrt{x} \ dx;$$
 (b)
$$\int_{-\infty}^{+\infty} e^{-|x|} \ dx.$$

(b)
$$\int_{-\infty}^{+\infty} e^{-|x|} dx.$$

(Sug.: escreva o integral como soma de dois integrais.)

- **7.** Seja f uma função tal que $\lim_{c \longrightarrow +\infty} \int_{-c}^{c} f(x) \, dx = 0$. O que se pode, nestas condições, dizer sobre $\int_{-\infty}^{\infty} f(x) dx$?
- 8. Estude a natureza dos seguintes integrais

(a)
$$\int_0^1 \frac{1}{x} \, dx$$

(c)
$$\int_0^1 \ln x \, dx$$

(e)
$$\int_{1}^{2} \frac{1}{\sqrt{x-1}} dx$$

(b)
$$\int_0^1 \frac{1}{1-x} \, dx$$

(d)
$$\int_0^1 x \ln x \, dx$$

(f)
$$\int_{-3}^{1} \frac{1}{x^2 - 4} dx$$

9. Considere a função f definida por $f(x) = \frac{e^{-x}}{\sqrt{x}}$.

Indique o domínio de f e estude a natureza do integral $\int_{0}^{+\infty} \frac{e^{-x}}{\sqrt{x}} dx$.

10. Seja f uma função contínua em $\mathbb R$ e tal que $\int_0^{+\infty} f(x) \, dx$ converge. Com $a \in \mathbb R^+$, quais das seguintes afirmações são falsas e quais as verdadeiras? Justifique a sua resposta

(a)
$$\int_0^{+\infty} a f(x) dx$$
 converge.

(c)
$$\int_0^{+\infty} f(a+x) dx$$
 converge.

(b)
$$\int_0^{+\infty} f(ax) dx$$
 converge.

(d)
$$\int_0^{+\infty} (a+f(x)) dx$$
 converge.