

A Remark on a Paper of M. Hironaka

Author(s): Maurice Auslander

Source: American Journal of Mathematics, Vol. 84, No. 1 (Jan., 1962), pp. 8-10

Published by: The Johns Hopkins University Press Stable URL: http://www.jstor.org/stable/2372801

Accessed: 10/12/2014 23:56

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

The Johns Hopkins University Press is collaborating with JSTOR to digitize, preserve and extend access to American Journal of Mathematics.

http://www.jstor.org

A REMARK ON A PAPER OF M. HIRONAKA.*

By Maurice Auslander.

In [4] H. Hironaka quoted and used, but did not prove, a theorem I had communicated to him which he called Theorem 0 in his paper. In this note I present a proof of this theorem.

We begin with a brief summary of some pertinent homological facts. The reader is referred to [1] for a more complete exposition.

Let R be a local ring and M a finitely generated non-zero R-module. A sequence of non-units x_1, \dots, x_t in R is said to be an M-sequence if x_i is not a zero divisor in $M/(x_1, \dots, x_{i-1})M$ for all $i=1, \dots, t-1$. It is well known that if x_1, \dots, x_t is an M-sequence, then $t \leq \dim(M) = \dim(R/\mathfrak{a}(M))$ where $\mathfrak{a}(M)$ is the annihilator of M. Thus it makes sense to talk about maximal M-sequences. It can be shown that all maximal M-sequences have the same length and this length is called the codimension of M (notation: $\operatorname{codim}_R M$). For an R-module M we define $d(M) = \dim(M) - \operatorname{codim} M$. It follows from our previous remark that $d(M) \geq 0$.

Now if R is a regular local ring, then it is well known that the hd M + codim M = dim R for any finitely generated non-zero R-module M. Therefore $d(M) = \dim(M) - (\dim R - \operatorname{hd} M) = \operatorname{hd} M - \operatorname{rank} M$ where rank M = rank($\mathfrak{a}(M)$) by definition.

Proposition 1. Let R be a regular local ring, M a non-zero finitely generated R-module and t an integer greater than or equal to 0. Then $d(M) \ge t$ if and only if there exist integers $i \ge 0$ and $k \ge t$ such that $\operatorname{Ext}^{i}_{R}(M,R) \ne 0$ and $\operatorname{Ext}^{i+h}_{R}(M,R) \ne 0$.

Proof. We first recall a result of D. Rees (see [3]).

If S is a noetherian ring, M a finitely generated S-module and i the smallest integer such that $\operatorname{Ext}^i{}_S(M,S) \neq 0$, then i is the length of the largest S-sequence contained in the $\alpha(M)$. If S is a regular local ring, then we have that $i = \operatorname{rank}(\alpha(M))$ (see [1, Proposition 2.7]).

Now we return to the proof of the proposition. Suppose that $d(M) \ge t$. Then we have that the hd $M \ge \operatorname{rank}(M) + t$. By the previous remark we

^{*} Received April 10, 1961.

know that if we set $i = \operatorname{rank}(M)$, then $\operatorname{Ext}^i(M,R) \neq 0$. But it is well known that the hd M is the largest integer k such that $\operatorname{Ext}^k(M,R) \neq 0$ (see [2; VI, Exercise 9]). Therefore setting $h = k - i \geq t$ we have the desired integers i and h.

On the other hand suppose that $\operatorname{Ext}^{i_R}(M,R) \neq 0$ and $\operatorname{Ext}^{i+h_R}(M,R) \neq 0$ with $h \geq t$. Then it follows from what has been observed before that the rank $(M) \leq i$ and that the hd $M \geq i + h$. Therefore

$$d(M) = \operatorname{hd} M - \operatorname{rank} M \ge h \ge t.$$

We say that a noetherian ring R is regular if $R_{\mathfrak{p}}$ is a regular local ring for each prime ideal \mathfrak{p} in R and dim R is finite.

THEOREM 2. Let R be a regular ring, M a finitely generated, non-zero R-module. For each integer $t \geq 0$, there exists an ideal $\mathfrak{c}_t \supset \mathfrak{a}(M)$ such that a prime ideal $\mathfrak{p} \supset \mathfrak{c}_t$ if and only if $d(M_{\mathfrak{p}}) \geq t$.

Proof. Let $\alpha_i = \alpha(\operatorname{Ext}^i_R(M,R))$ for all $i \geq 0$. It is clear that each $\alpha_i \supset \alpha(M)$ and only a finite number of $\alpha_i \neq R$ since only a finite number of $\operatorname{Ext}^i_R(M,R) \neq 0$. For each pair of integers $i \geq 0$ and $k \geq 0$ define $\mathfrak{b}(i,k) = (\alpha_i,\alpha_{i+k})$. It should be observed that only a finite number of the $\mathfrak{b}(i,k) \neq R$ and that each $\mathfrak{b}(i,k) \supset \alpha(M)$.

For each integer $t \geq 0$ define c_t to be $\bigcap_{h \geq t} \mathfrak{b}(i,h)$. The fact that $c_t \supset \mathfrak{a}(M)$ is trivial. Since $\bigcap_{h \geq t} \mathfrak{b}(i,h)$ is really a finite intersection, we know that a prime ideal \mathfrak{p} in R contains c_t if and only if $\mathfrak{p} \supset \mathfrak{b}(i,b)$ for some i and some $h \geq t$. But $\mathfrak{p} \supset \mathfrak{b}(i,h)$ if and only if $R_{\mathfrak{p}} \otimes \operatorname{Ext}^{i_R}(M,R) \neq 0$ and $R_{\mathfrak{p}} \otimes \operatorname{Ext}^{i_{+h}}(M,R) \neq 0$. Since $R_{\mathfrak{p}}$ is R-flat, it follows from [2; VI, Exercise 11] that $R_{\mathfrak{p}} \otimes \operatorname{Ext}^{i_R}(M,R) = \operatorname{Ext}^{i_R}(M_{\mathfrak{p}},R_{\mathfrak{p}})$ for all j. Therefore applying Proposition 1, we have that $\mathfrak{p} \supset c_t$ if and only if $d(M_{\mathfrak{p}}) \geq t$.

The following module theoretic version of Theorem 0 of [4] is an easy consequence of Theorem 2.

COROLLARY 3. Let S be a noetherian ring which is a factor ring of a regular ring and let M be a finitely generated non-zero S-module. Then for each integer $t \geq 0$, the set of all prime ideals $\mathfrak{p} \in \operatorname{Spec}(S)$ such that $d(M_{\mathfrak{p}}) \geq t$ forms a closed set.

Proof. Let $f: R \to S$ be the canonical ring epimorphism. Let \mathfrak{p} be a prime ideal in S and \mathfrak{P} the prime ideal $f^{-1}(\mathfrak{p})$ in R. Then it is well known that $\dim(M_{\mathfrak{P}}) = \dim(M_{\mathfrak{p}})$ and $\operatorname{codim}(M_{\mathfrak{P}}) = \operatorname{codim}(M_{\mathfrak{p}})$. Therefore we have that $d(M_{\mathfrak{P}}) = d(M_{\mathfrak{p}})$.

Now given an integer $t \geq 0$ we have by Theorem 2 that there exists an ideal \mathfrak{c}_t in R which contains $\mathfrak{a}(M)$, and therefore the Ker f, such that a prime ideal \mathfrak{P} in R contains \mathfrak{c}_t if and only if $d(M_{\mathfrak{P}}) \geq t$. It therefore follows by standard arguments that a prime ideal \mathfrak{p} in S contains $f(\mathfrak{c}_t)$ if and only if $d(M_{\mathfrak{p}}) \geq t$.

REFERENCES.

- M. Auslander and D. Buchsbaum, "Homological dimension in local rings," Transactions of the American Mathematical Society, vol. 85 (1957), pp. 390-405.
- [2] H. Cartan and S. Eilenberg, Homological Algebra, Princeton, 1956.
- [3] D. Rees, "The grade of an ideal or module," Proceedings of the Cambridge Philosophical Society, vol. 52 (1957), pp. 28-42.
- [4] H. Hironaka, "A generalized theorem of Krull Seidenberg on parameterized algebras of finite type," American Journal of Mathematics, vol. 82 (1960), pp. 831-850.