Project 4 - Diffusion on the percolating cluster

FYS4460 - Disordered systems and percolation

Anders Johansson 18th January 2019

All files for this project are available at https://github.com/anjohan/fys4460-4.

In this project I study the motion of a random walker who is only allowed to move on the percolating cluster. The holes in the percolating cluster mean that the walker will be slowed down relative to a walker moving freely, resulting in anomalous diffusion. A free random walker behaves according to normal diffusion, i.e.

$$\langle r^2 \rangle \propto Dt$$
,

where *D* is the diffusion constant. A random walker on the percolating cluster, on the other hand, should move more slowly,

$$\langle r^2 \rangle \propto t^{2k'}$$
,

where k' is expected to be smaller than 1/2. This should, however, only hold for motion on small scale, i.e. when the collisions with obstacles make up a considerable part of the motion. When the walker has moved over distances much greater than the typical size of the obstacles ξ , the diffusion medium looks homogeneous to the walker. Consequently, the motion should become similar to that of an ordinary random walker when $\langle r^2 \rangle \gg \xi^2$, i.e.

$$\langle r^2 \rangle \propto Dt$$
.

The diffusion coefficient should depend on the size of the holes, which again is proportional to some power of $p - p_c$, $\xi \propto |p - p_c|^{-\nu}$. In fact the diffusion coefficient itself can be shown to be proportional to another power of $p - p_c$, so in conclusion

$$\langle r^2 \rangle \propto \begin{cases} t^{2k'}, & \langle r^2 \rangle \ll \xi^2 \\ (p - p_c)^{\mu} t, & \langle r^2 \rangle \gg \xi^2 \end{cases}.$$

This can be summarised in an ordinary scaling ansatz,

$$\langle r^2 \rangle \propto t^{2k'} f((p-p_c)t^x).$$

By comparison with the expected behaviour, f(u) must be approximately constant for $u \ll 1$, while $f(u) = u^{\mu}$ for $u \gg 1$. The latter requirement gives

$$t^{2k'+x\mu} = t \implies 2k' + x\mu = 1.$$

From these considerations, the following procedure can be used to calculate exponents and other interesting quantities.

- Find $\langle r^2 \rangle$ for $p = p_c$. Now $\xi \to \infty$, so $\langle r^2 \rangle \propto t^{2k'}$. A double logarithmic plot of $\langle r^2(p_c) \rangle$ vs. t will give 2k' as the slope.
- Find $\langle r^2 \rangle$ for several values of $p > p_c$. Departure from the simulation with $p = p_c$ marks the crossover between the two behaviours of $\langle r^2 \rangle$. The time coordinate for this crossover is called t_0 , while ξ^2 is the corresponding mean squared displacement, giving ξ .
- There are now two main methods to determine μ or x:
 - The slope of $\langle r^2 \rangle \propto D(p)t \propto (p-p_c)^{\mu}t$ after the crossover time gives the diffusion coefficient for different values of p. This can be plotted logarithmically as a function of $p-p_c$, giving μ as the slope.
 - The scaling ansatz gives $t^{-2k'}\langle r^2\rangle=f((p-p_c)t^x)$, showing that all the graphs of $t^{-2k'}\langle r^2\rangle$ for different values of p should overlap when $(p-p_c)t^x$ is used as the x-axis. Finding x can therefore be done by trying multiple values and finding the one which minimises the deviation from overlap.

a) Mean squared displacement at $p = p_c$

When $p = p_c$, the mean squared displacement behaves according to

$$\langle r^2 \rangle \propto t^{2k'}$$
.

Figure 1: The mean squared displacement as a function of time with $p = p_c$, when it is expected that the mean squared displacement is proportional to some power of t which is smaller than 1. The nonlinearity confirms the deviation from normal diffusion.

b) Mean squared displacement for $p \ge p_c$

The results are averaged over 20 systems (L=512), with 500 walkers on each system who do 10^6 steps each.

Figure 2: Mean squared displacement as a function of time for probabilities above the percolation threshold. A crossover time time is expected where the mean squared displacement becomes linear in time. As the mean squared displacement is proportional to a power smaller than unity before the crossover time, the crossover time is when the mean squared displacement starts deviating from the behaviour at $p = p_c$. The dots are positioned at (t_0, ξ^2) , and mark the point where the graphs deviate significantly (by a factor of 2) from the behaviour at $p = p_c$.

Figure 3: Characteristic cluster size ξ as a function of probability calculated from the dots in the figure above. Theory predicts $\xi \propto (p-p_c)^{-\nu}$ with $\nu=4/3$. The approximation $\nu=1.291$ obtained from linear regression on a logarithmic scale is consistent with this.

Figure 4: Characteristic crossover time t_0 as a function of probability calculated from the dots in the figure above.

Figure 5: Diffusion coefficient calculated from the slope after the dots in the figure above. Theory predicts $D \propto (p-p_c)^{\mu}$. The approximation $\mu=1.085$ obtained from linear regression on a logarithmic scale fits well with the numerical results.

Figure 6: Data collapse of mean squared displacement.

c) Probability distribution for $p = p_c$

Figure 7: Probability distribution for $p = p_c$.

Figure 8: Probability distribution for $p = p_c$.

Figure 9: Probability distribution for $p = p_c$.