Proof HW

Parker Whaley

February 28, 2016

1 Q1

Theorem.

The sum of two odd integers is even.

Proof.

Suppose A and B are odd integers. This means by definition $2 \nmid A$ and $2 \nmid B$. There exists a maximum integer k such that $k*2 \leq A$. We note that since $2 \nmid A$ it must follow that $k*2 \neq A$. Note that k*2 < A but that (k+1)*2 > A by our construction of k. We have thus bounded A as k*2 < A < k*2+2, note that there is only one integer in this range thus A = k*2+1.

There exists a maximum integer j such that $j*2 \leq B$. We note that since $2 \nmid B$ it must follow that $j*2 \neq B$. Note that j*2 < B but that (j+1)*2 > B by our construction of j. We have thus bounded B as j*2 < B < j*2 + 2, note that there is only one integer in this range thus B = j*2 + 1.

Now we note that A + B = 2 * k + 1 + 2 * j + 1 = 2 * k + 2 * j + 2 = 2 * (k + j + 1). We immediately note that (k + j + 1) is an integer and thus by definition $2 \mid (A + B)$. Thus by definition A+B is even.

2 Q2

Theorem.

If m and n are both divisible by k then m+n is divisible by k Proof.

Suppose m and n are both divisible by k. Since m is divisible by k by definition there exists some integer j such that j * k = m. Since n is divisible by k by definition there exists some integer i such that i * k = n. We note that m + n = j * k + i * k = k * (i + j). Noting that (i + j) is an integer we can state by definition m + n is divisible by k. \square

1

3 Q3

Theorem.

If n is a natural number then $15^n - 8^n$ is divisible by 7.

Proof.

We will proceed with a proof by induction.

Assume n=1. Note that $15^n - 8^n = 15 - 8 = 7 * 1$. Since 1 is an integer we conclude that $7 \mid 15^n - 8^n$ holds for this case.

Suppose $7 \mid 15^n - 8^n$. By definition there exist some integer, call it k, such that $7*k = 15^n - 8^n$. Note that $15^{n+1} - 8^{n+1} = 15*15^n - 8*8^n = 14*15^n - 7*8^n + 15^n - 8^n$. We also know that $7*k = 15^n - 8^n$ putting this in we see that $15^{n+1} - 8^{n+1} = 2*7*15^n - 7*8^n + 7*k = 7*(2*15^n - 8^n + k)$. Note that $(2*15^n - 8^n + k)$ is an integer and thus by definition $7 \mid 15^{n+1} - 8^{n+1}$.

By induction we conclude that for n being a natural number $15^n - 8^n$ is divisible by 7.