Part 2: Image Acquisition

Tobias Lasser

Part 2: Image Acquisition

- Part 2: Goals & deadline
- Computed tomography: motivation
- Forward model
- Your task

Part 2: Flow-diagram

Part 2: Deadline

- Deadline for all 3 subprojects: Wednesday, February 1, 2017
- each team has been assigned a git repository Ws16Cpp/part2-team?
- your project has to build successfully using our gitlabCl runners!
- at final event on February 7, 2017 we will:
 - execute your main program on our build server computer
 - ./yourprogram mystery.edf
 - we expect to see:
 - visualization of geometry and simulated measurements
 - control of the reconstruction parameters and progress indicator of reconstruction process
 - volume visualization of the reconstruction results

Part 2: Reconstruction

- Part 2: Goals & deadline
- Computed tomography: motivation
- Forward model
- Your task

X-ray imaging and Computed Tomography

X-ray image of the hand of Anna Bertha Röntgen, 1895.

First clinical CT slice of a woman with a suspected brain lesion, 1972.

Copyright: The Nobel Foundation

A bit of physical background

Source: wikipedia, author: user Materialscientist, license: CC-by-sa/2.5

X-ray imaging and Computed Tomography

X-ray imaging for CT

Schematic rendering of CT scanner. Courtesy A. Duliu

Photograph of intra-operative C-arm. Courtesy L. Wang

How to compute tomographic reconstructions?

Model and inversion

Part 2: Reconstruction

- Part 2: Goals & deadline
- Computed tomography: motivation
- Forward model
- Your task

Motivation: X-ray transform

$$y = \int_L f(x) dx$$
, L line

Discretization & simplified model

Volume of interest $V = \{x_1, x_2, x_3, x_4\}$. $f: V \to \mathbb{R}$ attenuation coefficient.

 $X_1+X_2=y_1$ $X_1+X_2+X_3=y_2$ $X_1+X_2+X_4=y_3$

Discretization & simplified model

Volume of interest $V = \{x_1, x_2, x_3, x_4\}$. $f: V \to \mathbb{R}$ attenuation coefficient.

$$\underbrace{\begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}}_{\text{system matrix}} \underbrace{\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}}_{\text{volume}} = \underbrace{\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}}_{\text{measurements}}$$

On-the-fly system-matrix

- System matrix gets very very big (3D CT: up to several Exabyte)
- Does not fit into our memory!
- Compute multiplication with system-matrix A on the fly
 - Use raytracing
 - implement functions for computation of
 - Ax (called forward projection) and
 - A^Tz (called **back projection**)

Raytracing

- For all rays:
 - Compute entry point, i.e. first intersection of ray and volume [1]
 - iterate over all voxels hit by the ray [2]
 - Do something with those voxels (see next slides)

^[2] J. Amanatides and A. Woo, "A fast voxel traversal algorithm for ray tracing," Eurographics, 1987.

What to do with those voxels?

Forward projection: Computation of Ax

Accumulate all voxel values along the ray

What to do with those voxels?

Back projection: Computation of A^Tz

- Initial: Zero volume
- Successively add the element value of z to each value of a voxel hit by ray

Part 2: Reconstruction

- Part 2: Goals & deadline
- Computed tomography: motivation
- Forward model
- Your task

Your task

- implement volume handling (with .edf input/output)
- implement acquisition poses (source and detector position and orientation)
- implement ray-tracing
 - using ray/volume intersection and voxel traversal
- implement forward projection using ray-tracing
- do X-ray simulation using the forward projection
- visualize your acquisition poses and simulated X-ray images using Qt

Your task

- ask questions early and often!
- commit and push your code early and often!
- your code has to build successfully using all our gitlab CI runners!
- we are not automatically testing your code's functionality like in part 1!
 - this is your responsibility now

Demo

Questions?