2.) multiple ways to solve this problem:

1: assume some initial distribution T(x, y, t = 0), advance forward in time until system reaches steady state (when $\partial T/\partial t = 0$ across domain)

advection-diffusion equation:
$$\frac{\partial T}{\partial t} = -v \frac{\partial T}{\partial x} + \kappa \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right)$$

separately, advection and diffusion equations can be solved

$$\frac{\partial T}{\partial t} = -v \frac{\partial T}{\partial x} \Rightarrow T^{n+1} = \mathcal{U}^{a}(T^{n}) \qquad \qquad \frac{\partial T}{\partial t} = \kappa \left(\frac{\partial^{2} T}{\partial x^{2}} + \frac{\partial^{2} T}{\partial y^{2}}\right) \Rightarrow T^{n+1} = \mathcal{U}^{d}(T^{n})$$

$$(\mathcal{U}^{x} \text{ is some scheme that updates } T^{n} \text{ to } T^{n+1})$$

strategy to solve combined advection-diffusion equation:

solve advection piece:
$$\widetilde{T} = \mathcal{U}^a(T^n)$$

use perturbed \widetilde{T} to solve diffusion piece: $T^{n+1} = \mathcal{U}^d(\widetilde{T})$

alternating direction implicit algorithm for diffusion equation:

$$x = x_{i}: i = 1, ..., N; y = y_{j}: j = 1, ..., K$$

$$\frac{T_{i,j}^{n+1/2} - T_{i,j}^{n}}{\Delta t/2} = \frac{\kappa}{\Delta^{2}} \left(\delta_{x}^{2} T_{i,j}^{n+1/2} + \delta_{y}^{2} T_{i,j}^{n} \right); \qquad \frac{T_{i,j}^{n+1} - T_{i,j}^{n+1/2}}{\Delta t/2} = \frac{\kappa}{\Delta^{2}} \left(\delta_{x}^{2} T_{i,j}^{n+1/2} + \delta_{y}^{2} T_{i,j}^{n+1} \right)$$
where: $\delta_{x}^{2} T_{i,j} = T_{i+1,j} - 2T_{i,j} + T_{i-1,j}; \qquad \delta_{y}^{2} T_{i,j} = T_{i,j+1} - 2T_{i,j} + T_{i,j-1}$

$$\Delta x = \Delta y = \Delta$$

let $\alpha = \kappa \Delta t / \Delta^2$

$$T_{i,j}^{n+1/2} - T_{i,j}^{n} = \frac{\alpha}{2} \left(T_{i+1,j}^{n+1/2} - 2T_{i,j}^{n+1/2} + T_{i-1,j}^{n+1/2} + T_{i,j+1}^{n} - 2T_{i,j}^{n} + T_{i,j-1}^{n} \right)$$

$$-\frac{\alpha}{2}T_{i+1,j}^{n+1/2} + (1+\alpha)T_{i,j}^{n+1/2} - \frac{\alpha}{2}T_{i-1,j}^{n+1/2} = \frac{\alpha}{2}T_{i,j+1}^{n} + (1-\alpha)T_{i,j}^{n} + \frac{\alpha}{2}T_{i,j-1}^{n}$$

let l = (j-1)N + i

$$-\frac{\alpha}{2}T_{l+1}^{n+1/2} + (1+\alpha)T_l^{n+1/2} - \frac{\alpha}{2}T_{l-1}^{n+1/2} = \frac{\alpha}{2}T_{l+N}^n + (1-\alpha)T_l^n + \frac{\alpha}{2}T_{l-N}^n$$

this is a tridiagonal system: $A \cdot x = d$

$$\begin{bmatrix} b_1 & c_1 & & & & \\ a_2 & b_2 & c_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & a_{L-1} & b_{L-1} & c_{L-1} \\ & & & a_L & b_L \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{L-1} \\ x_L \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_{L-1} \\ d_L \end{bmatrix}$$

where:
$$a_l = c_l = -\frac{\alpha}{2}$$
; $b_l = 1 + \alpha$; $x_l = T_l^{n+1/2}$; $d_l = \frac{\alpha}{2} T_{l+N}^n + (1 - \alpha) T_l^n + \frac{\alpha}{2} T_{l-N}^n$

Dirichlet boundary conditions are straight forward to implement

for
$$i = 1$$
: $T_l^{n+1/2} = T_l^n = 65$
 $a_l = c_l = 0$; $b_l = 1$; $d_l = T_l^n$
for $i = N$: $T_l^{n+1/2} = T_l^n = 25$
 $a_l = c_l = 0$; $b_l = 1$; $d_l = T_l^n$
for $j = K$: $T_l^{n+1/2} = T_l^n = 25$
 $a_l = c_l = 0$; $b_l = 1$; $d_l = T_l^n$

for Neumann b.c. at j = 1, imagine a row of ghost zones exists outside the domain at y_j with j = 0

$$\frac{\partial T}{\partial y} = 0 \rightarrow \frac{T_{i,j+1} - T_{i,j-1}}{2\Delta} = 0 \Rightarrow T_{i,0} = T_{i,2} -\frac{\alpha}{2} T_{i+1,1}^{n+1/2} + (1+\alpha) T_{i,1}^{n+1/2} - \frac{\alpha}{2} T_{i-1,1}^{n+1/2} = \alpha T_{i,2}^{n} + (1-\alpha) T_{i,1}^{n}$$

therefore:
$$a_l = c_l = -\frac{\alpha}{2}$$
; $b_l = 1 + \alpha$; $d_l = \alpha T_{l+N}^n + (1 - \alpha) T_l^n$

use Thomas algorithm to find $T^{n+1/2}$. a similar analysis can be performed to construct a tridiagonal equation for the second half of the timestep, mapping $T_{i,j} \to T_m$ with m = (i-1)K + j. integrate forward in time until $|T^{n+1} - T^n|$ is less than some tolerance at all points throughout the domain

2: solve advective and diffusive terms both through ADI.

$$v\frac{\partial T}{\partial x} = \kappa \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}\right)$$

during 1st half step treat the derivatives w.r.t. x as implicit and the derivatives w.r.t. y as explicit. let $\beta = 2\kappa/v\Delta$

$$T_{i+1,j}^{n+1/2} - T_{i-1,j}^{n+1/2} - \beta \left(T_{i+1,j}^{n+1/2} - 2T_{i,j}^{n+1/2} + T_{i-1,j}^{n+1/2} \right) = \beta \left(T_{i,j+1}^n - 2T_{i,j}^n + T_{i,j-1}^n \right)$$

$$(1 - \beta)T_{i+1,j}^{n+1/2} + 2\beta T_{i,j}^{n+1/2} - (1 + \beta)T_{i-1,j}^{n+1/2} = \beta \left(T_{i,j+1}^n - 2T_{i,j}^n + T_{i,j-1}^n \right)$$

for second half step, exchange implicit and explicit variables

$$\beta \left(T_{i,j+1}^{n+1} - 2T_{i,j}^{n+1} + T_{i,j-1}^{n+1} \right) = (1-\beta)T_{i+1,j}^{n+1/2} + 2\beta T_{i,j}^{n+1/2} - (1+\beta)T_{i-1,j}^{n+1/2}$$

a tridiagonal matrix equation can be set up for each half step as above. repeat until $|T^{n+1} - T^n|$ is less than some tolerance at all points throughout the domain