Quiz, 10 questions

✓ Cong	gratulations! You passed!	Next Item
•	1 / 1 points	
the	ppose you learn a word embedding for a vocabulary of 10000 e embedding vectors should be 10000 dimensional, so as to c I range of variation and meaning in those words.	
	True	
(False	
•	Correct	
•	1/1 points	
2. Wh	nat is t-SNE?	
	A linear transformation that allows us to solve analogies vectors	s on word
	A non-linear dimensionality reduction technique	
•	Correct	
	A supervised learning algorithm for learning word embe	eddings
	An open-source sequence modeling library	

Natural Language Processing & Word Embeddings

9/10 points (90%)

Quiz, 10 questions

points

3.

Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You then use this word embedding to train an RNN for a language task of recognizing if someone is happy from a short snippet of text, using a small training set.

x (input text)	y (happy?)
I'm feeling wonderful today!	1
I'm bummed my cat is ill.	0
Really enjoying this!	1

Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label \$\$y = 1\$\$.

0	True			
Corr	ect			
	False			
~	1 / 1 points			

4.

Which of these equations do you think should hold for a good word embedding? (Check all that apply)

Correct

Natural Lang

Quiz, 10 questions

9/10 points (90%)

	e Processing & Word Embeddings elected is correct		
	\$\$e_{boy} - e_{brother} \approx e_{girl} - e_{sister}\$\$		
Corre	ect		
Un s	\$\$e_{boy} - e_{brother} \approx e_{sister} - e_{girl}\$\$		
011-3	elected is correct		
~	1/1 points		
vector	E\$\$ be an embedding matrix, and let \$\$e_{1234}\$\$ be a one-hot corresponding to word 1234. Then to get the embedding of word why don't we call \$\$E * e_{1234}\$\$ in Python?		
0	It is computationally wasteful.		
Correct			
	The correct formula is \$\$E^T* e_{1234}\$\$.		
	This doesn't handle unknown words (<unk>).</unk>		
	None of the above: Calling the Python snippet as described above is fine.		

1/1 points When learning word embeddings, we create an artificial task of estimating

\$\$P(target \mid context)\$\$. It is okay if we do poorly on this artificial
Natural Language: Processing is bowardy from beddings k is that we learn a 9/10 points (90%) Q

uiz, 10 questions	useful	set of word embeddings.
	0	True
	Corr	ect
		False
	~	1 / 1 points
	7.	
	target	word2vec algorithm, you estimate \$\$P(t \mid c)\$\$, where \$\$t\$\$ is the word and \$\$c\$\$ is a context word. How are \$\$t\$\$ and \$\$c\$\$ chosen he training set? Pick the best answer.
		\$\$c\$\$ is the one word that comes immediately before \$\$t\$\$.
		\$\$c\$\$ is the sequence of all the words in the sentence before \$\$t\$\$.
		\$\$c\$\$ is a sequence of several words immediately before \$\$t\$\$.
	0	\$\$c\$\$ and \$\$t\$\$ are chosen to be nearby words.
	Corr	ect

0/1 points

8.

Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following

Natural Language Processing & Word Embeddings

9/10 points (90%)

Quiz, 10 questions

1/1 points

9.

Suppose you have a 10000 word vocabulary, and are learning 500dimensional word embeddings. The GloVe model minimizes this objective:

 $\mbox{$$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_j + b_i' - \log X_{ij})^2$$}$

Which of these statements are correct? Check all that apply.

Natural Language Processing & Word Embeddings

9/10 points (90%)

Quiz, 10 questions

Un-selected is correct

\$\$\theta_i\$\$ and \$\$e_j\$\$ should be initialized randomly at the beginning of training.

Correct

\$\$X_{ij}\$\$ is the number of times word i appears in the context of word j.

Correct

The weighting function \$\$f(.)\$\$ must satisfy \$\$f(0) = 0\$\$.

Correct

The weighting function helps prevent learning only from extremely

common word pairs. It is not necessary that it satisfies this function.

1/1 points

10.

You have trained word embeddings using a text dataset of \$\$m_1\$\$ words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of \$\$m_2\$\$ words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstance would you expect the word embeddings to be helpful?

\$\$m_1\$\$ >> \$\$m_2\$\$

Correct

\$\$m_1\$\$ << \$\$m_2\$\$