

AD-A080 709 WISCONSIN UNIV-MADISON DEPT OF STATISTICS P/B 12/1
AN INTRODUCTION TO APPLIED MULTIPLE TIME SERIES ANALYSIS. (U)
OCT 79 8 C TIAO, 8 E BOX DAA629-78-8-0166

UNCLASSIFIED

ARO-18734.1-N

ML

END
DATE
FILED
3 - 8C
DHC

ADA 080709
DDC FILE COPY

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM										
1. REPORT NUMBER <u>(1) 15734.1-M</u>	2. GOVT ACCESSION NO. <u>(18) ARB</u>	3. RECIPIENT'S CATALOG NUMBER										
4. TITLE (and Subtitle) <u>An Introduction to Applied Multiple Time Series Analysis,</u>		TYPE OF REPORT & PERIOD COVERED <u>Technical note.</u>										
5. AUTHOR(s) <u>(10) G. C. Tiao G. E. P. Box</u>		6. PERFORMING ORG. REPORT NUMBER <u>MDAAG29-78-G-0166</u>										
7. PERFORMING ORGANIZATION NAME AND ADDRESS <u>University of Wisconsin Madison, Wisconsin 53706</u>		8. CONTRACT OR GRANT NUMBER(S) <u>151-K0-H01-73-00-1531</u>										
9. CONTROLLING OFFICE NAME AND ADDRESS <u>U. S. Army Research Office P. O. Box 12211 Research Triangle Park, NC 27709</u>		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS <u>12 41</u>										
11. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		12. REPORT DATE <u>(11) Oct 1979</u>										
13. NUMBER OF PAGES <u>75</u>		14. SECURITY CLASS. (of this report) <u>Unclassified</u>										
15a. DECLASSIFICATION/DOWNGRADING SCHEDULE												
16. DISTRIBUTION STATEMENT (of this Report) <u>Approved for public release; distribution unlimited.</u>												
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		<i>D D C</i> <i>Declassified FEB 11 1980</i>										
18. SUPPLEMENTARY NOTES <u>The view, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.</u>												
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) <table><tr><td>multiple time series</td><td>canonical analysis</td></tr><tr><td>vector autoregressive moving average models</td><td>transfer function</td></tr><tr><td>exponential smoothing</td><td>econometric models</td></tr><tr><td>intervention analysis</td><td></td></tr><tr><td>principal components</td><td></td></tr></table>			multiple time series	canonical analysis	vector autoregressive moving average models	transfer function	exponential smoothing	econometric models	intervention analysis		principal components	
multiple time series	canonical analysis											
vector autoregressive moving average models	transfer function											
exponential smoothing	econometric models											
intervention analysis												
principal components												
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) <u>An approach to the modelling and analysis of multiple time series is proposed. Properties of a class of vector autoregressive moving average models are discussed. Modelling procedures consisting of tentative specification, estimation and diagnostic checking are outlined and illustrated by three real examples. Various eigenvalue-eigenvector analyses are presented and some alternative approaches to multiple time series are briefly discussed.</u>												

DD FORM 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

40243

TECHNICAL REPORT NO. 582

October 1979

AN INTRODUCTION TO APPLIED MULTIPLE
TIME SERIES ANALYSIS

by

G.C. Tiao and G.E.P. Box

An Introduction to Applied Multiple
Time Series Analysis
by
G.C. Tiao and G.E.P. Box
Department of Statistics
University of Wisconsin

Abstract

An approach to the modelling and analysis of multiple time series is proposed. Properties of a class of vector autoregressive moving average models are discussed. Modelling procedures consisting of tentative specification, estimation and diagnostic checking are outlined and illustrated by three real examples. Various eigenvalue-eigenvector analyses are presented and some alternative approaches to multiple time series are briefly discussed.

This research was supported partially by Bureau of Census, Washington, D.C. under grant no. KD-401-78-1531; Army Research Office, Durham, N.C. under grant no. DAAG29-78-G-0166; and the ALCOA Foundation. We wish to record our acknowledgement to M.R. Grude, G.B. Hudak, W.R. Bell, and J. Chang who have been responsible for developing the Wisconsin Multiple Time Series (WITS-1) Program, to S.C. Hillmer for help in the estimation algorithms, and to J. Antola for computing assistance.

Some key words: Multiple time series, vector autoregressive moving average models, exponential smoothing, intervention analysis, principal components, canonical analysis, transfer function, econometric models.

Accession For	
NTIS GENI	
DDC TAB	
Unannounced	
Justification	
By _____	
Distribution/	
Availability Codes	
Dist	Avail and/or special

A

1. Introduction

Business, economic, engineering and environmental data are often collected in roughly equally spaced time intervals e.g. hour, week, month or quarter. In many problems, such time series data may be available on several related variables of interest. For instance, in studying demand for telephones, one may have data on monthly telephone installations, housing starts and some index of business activity. As another example, to assess the trend in air pollution, time series data on air pollutants such as ozone or carbon monoxide, on input variables such as traffic count and speed, and on meteorological variables including inversion height, temperature, wind speed, etc. are usually collected. Reasons for analyzing and modeling these series jointly are:

- (i) to understand the dynamic relationships among these series. They may be contemporaneously related, one series may lead to others or there may be feedback relationships among some of the series. A better understanding of such relationships could, for example, in an air pollution study, lead to the design of an appropriate control strategy to improve air quality.
- (ii) to improve accuracy of forecasts. When there is information on one series contained in the historical data of another, better forecasts will result when the series are modelled jointly.
- (iii) to obtain potentially better results in intervention analysis, smoothing and seasonal adjustment.

Let

$$(z_1)_t, \dots, (z_k)_t, t = 0, 1, 2, \dots \quad (1.1)$$

be k series taken in equally spaced time intervals. Writing

$$z_t = (z_{1t}, \dots, z_{kt})' \quad (1.2)$$

we shall refer to the k series as a k-dimensional vector or multiple time series. This report sketches an approach to the modelling and analysis of $\{z_t\}$. Section 2 presents a short review of the widely used univariate ($k=1$) time series and transfer function models developed in [7].

Section 3 introduces a class of vector autoregressive moving average models.

Model building procedures for multiple time series are discussed in

Section 4 and applied to three actual examples in Section 5. Various canonical and principal component techniques are presented in Section 6. Finally, some alternative approaches to multiple time series modelling are briefly discussed in Section 7.

2. Univariate Time Series and Transfer Function Models

2.1 Univariate stochastic difference equation models

We shall write $z_t = z_t$ for $k = 1$ in (1.2). An important class of models for discrete univariate series originally proposed by Yule [18] and Slutsky [16], and developed by such authors as Bartlett, Kendall,

Walker, Holt and Yaglom are stochastic difference equations of the form

$$\varphi_p(B)z_t = \theta_q(B)a_t \quad (2.1)$$

where $\varphi_p(B) = 1 - \eta_1 B - \dots - \eta_p B^p$ and $\theta_q(B) = 1 - \theta_1 B - \dots - \theta_q B^q$. In (2.1) the

ϵ_t 's are independently identically and normally distributed random shocks (or white noise) with zero mean and variance σ^2 . B is the back shift operator such that $Bz_t = z_{t-1}$ and $z_t = z_{t-n}$ is the deviation of the observation z_t from some convenient location n . A representationally useful class of nonstationary models have d zeros of $\phi_p(B)$ on and $p_1 = p-d$ zeros outside the unit circle and all the zeros of $\theta_q(B)$ outside the unit circle where typically p, d and q are small numbers. For such models letting $\pi_p(B) = \phi_p(B)\theta_q(B)$ we have

$$\phi_{p_1}(B)\theta_d(B)z_t = \theta_q(B)a_t. \quad (2.2)$$

In the case $\phi_p(B) = (1-B)^d$, (2.2) is known as the autoregressive integrated moving average (ARIMA) process of order (p, d, q) . By writing $\theta_d(B)z_t = w_t$, (2.2) is reduced to the stationary ARMA process of order (p, q) for w_t .

$$\phi_{p_1}(B)w_t = \theta_q(B)a_t. \quad (2.3)$$

The π weights and the ψ weights

Assuming that the series starts at some remote past point of time, and as shown in [6], the models (2.1) may also be written

$$z_{t+2} = \hat{z}_t(t) + \epsilon_t(t) \quad (2.4)$$

where $\hat{z}_t(t) = \sum_{j=1}^{p-1} \pi_j^{(t)} z_{t-j+1}$ and $\epsilon_t(t) = \sum_{j=0}^{q-1} \psi_j z_{t+j+1}$.

In (2.4) $\pi_0 = 1$ and the ψ_j 's may be obtained by equating coefficients in

$$\phi_p(B)\pi(B) = \theta_q(B), \pi(B) = 1 + \psi_1 B + \psi_2 B^2 + \dots \quad (2.5)$$

Also, with $\pi_j^{(1)} = \pi_j$ the π_j 's may be similarly obtained from

$$z_t = (1-\theta_0)a_t \quad (2.6)$$

$$\theta_q(B)\pi(B) = \phi_p(B), \pi(B) = 1 - \psi_1 B - \psi_2 B^2 - \dots$$

and then

$$\pi_j^{(t)} = \pi_j^{(t-1)} + \psi_{t-1}\pi_j. \quad (2.6)$$

Forecasting future observations

Now from (2.4) the conditional distribution of z_{t+h} at some time origin t is normal with mean $\hat{z}_t(t)$ and variance $\sigma^2(t) = \sum_{i=0}^{h-1} \psi_i^2 \sigma^2$. We shall refer to $\hat{z}_t(t)$ as the forecast at origin t with lead h and $\epsilon_t(t)$ the corresponding forecast error. Also, regarded as a function of t , $\hat{z}_t(t)$ will be called the forecast function at origin t .

One rationalization of the model as defined in (2.1) is as follows.

Among all linear models of the form

$$\pi(B)z_t = a_t \quad (2.7)$$

the parsimonious subset of the form of (2.2) has the sensible property

(1) that the weights $\{\pi_j^{(t)}\}$ converge, and

(2) that for lead time $h > q-p$ the forecast function $\hat{z}_t(t)$ comes from a very rich class of smooth functions, namely mixtures of polynomials, non-explosive exponentials and cosine functions.

Some simple examples

(1) If in (2.2) $p_1 = 0$, $q = 1$ and $d = 0$, we have a stationary moving average model of order 1, MA(1).

In this case, z_t is a linear combination of the current shock ϵ_t and the previous shock ϵ_{t-1} . Here, $\psi_1 = -\theta$ and $\psi_j = 0$ for $j > 1$. Also, $\pi_j = -\theta^j$ for $j \geq 1$.

- (iii) When $p_1 = 1$, $q = 0$ and $d = 0$, we have a stationary autoregressive model of order 1, AR(1)

$$(1-\theta)\epsilon_t = z_t \quad (2.9)$$

In this case, $\psi_j = \theta^j$ for $j \geq 1$. Also, $\pi_1 = \theta$ and $\pi_j = 0$ for $j > 1$.

- (iv) A model which has been widely used to represent nonstationary series is obtained by setting $p_1 = 0$, $q = 1$, and $a_d(B) = 1 - \theta$,

$$(1-\theta)z_t = (1-\theta)\epsilon_t \quad (2.10)$$

i.e. the first difference $w_t = (1-\theta)z_t$ follows an MA(1) model. Here $\psi_1 = 1 - \theta$ and $\pi_j = (1-\theta)\theta^{j-1}$ for $j \geq 1$. In this case, $\hat{z}_t(\epsilon)$ in (2.4) becomes

$$\hat{z}_t(\epsilon) = (1-\theta) \sum_{j=1}^{\infty} \theta^{j-1} z_{t+1-j} \cdot (1-\theta) \sum_{j=1}^{\infty} \theta^{j-1} = 1, \quad (2.11)$$

so that forecast of all future observations is an exponentially decaying weighted average of current and past observations; this is commonly known as the method of "exponential smoothing".

Multiplicative seasonal models

By introducing terms of B^s in (2.2) is it possible to obtain parsimonious models for seasonal time series of period s . A useful type of model takes the multiplicative form

$$\phi_{p_s}(B^s)\psi_{p_1}(B)a_d(B)z_t = \theta_{q_s}(B^s)\eta_q(B)\epsilon_t \quad (2.12)$$

where $\phi_{p_s}(B^s)$ and $\theta_{q_s}(B^s)$ are polynomials in B^s analogous to $\phi_p(B)$ and $\theta_q(B)$ respectively. As an example, for $s = 12$, $p_s = p_1 = 0$, $q_s = q = 1$ and $a_d(B) = (1-B)(1-B^{12})$ we have

$$(1-B^{12})(1-B)z_t = (1-\theta)(1-B^{12})(1-\theta)\epsilon_t. \quad (2.13)$$

which has been widely used to represent many seasonal monthly time series.

Model building procedure

In [7] an iterative procedure for building models of the form

of (2.2) was proposed involving

- (a) Specification (Identification) - tentative choice of p_1 , d , q by study of the sample autocorrelation function (ACF) and sample partial autocorrelation function (PACF).
- (b) Estimation - of $\psi = (\psi_1, \dots, \psi_p)^T$ and $\theta = (\theta_1, \dots, \theta_q)^T$ by maximizing the likelihood.
- (c) Diagnostic checking - criticism of the fitted model by study of residuals.

In some contexts a linear model of the form of (2.2) more appropriately describes the behavior of some parametric transformation $z(\lambda)$ of z , where λ is a set of transformation parameters. The specific transformation may in some cases be suggested by the problem context; in others its parameter(s) may be estimated by maximum likelihood as for example is described in [4].

2.2 Transfer function models

When k series $\{z_1\}_t, \dots, \{z_k\}_t$ are of interest relationships sometimes exist which can be represented by linear transfer function models of the form

$$z_{0t} = \sum_{i=1}^{k-1} \frac{\omega_i(B)}{r_i(B)} z_{it} + \sum_{j=1}^b \frac{\theta_j(B)}{p_j(B)} e_{jt} \quad (2.14)$$

with $z_{0t} \equiv 0$, where $\omega_i(B)$, $r_i(B)$, $\varphi_p(B)$ and $\theta_q(B)$ are polynomials in B , the b_j 's are nonnegative integers, and $\{e_1\}_t, \dots, \{e_k\}_t$ are k independent Gaussian white noise processes with zero means and variances $\sigma_1^2, \dots, \sigma_k^2$.

A discussion of the building of elementary transfer function models was given in [7]. Also intervention models of this form with one or more of the z_i 's being indicator variables have proved useful in environmental and other problems, [9].

A transfer function model may sometimes be used to relate some series z_2 of interest to a leading indicator z_1 (or a number of such indicators). This (i) can throw light on the dynamic relationship, if any, between z_1 and z_2 and (ii) depending on the ability of the leading indicator z_1 to supply additional information not already supplied by the past of z_2 , can result in better forecasts of z_2 .

Transfer function models of the form (2.14) assume a triangular relationship between the time series. That is to say that there is some way of arranging the series such that in addition to its own past, z_2 depends only on the present and past of z_1 ; z_3 on the present and past of z_2 and z_1 and so on.

However if, for example, not only does z_1 depend on the past of z_2 , but z_2 depends on the past of z_1 , then we must have a model which allows for this feedback.

3. Multiple Stochastic Difference Equation Models

3.1 The vector ARMA model

More general multiple time series models allow such feedback to be taken into account. These models are generalizations of (2.1). For k series $\{z_t\}$, the vector ARMA model takes the form

$$\Phi_p(B)z_t = \Theta_q(B)e_t \quad (3.1)$$

where

$$\Phi_p(B) = I - \varphi_1 B - \dots - \varphi_p B^p, \quad \Theta_q(B) = I - \theta_1 B - \dots - \theta_q B^q$$

are matrix polynomials in B , the φ 's and θ 's are $k \times k$ matrices, $z_t = [z_t]^\top$ is the vector of deviations from some origin η which is the mean if the series is stationary, and $\{e_t\}$ with $e_t = (e_{1t}, \dots, e_{kt})'$ is a sequence of random shock vectors identically independently and normally distributed with zero mean and covariance matrix I . We shall suppose that the zeros of the determinantal polynomials $|\Phi_p(B)|$ and $|\Theta_q(B)|$ are on or outside the unit circle. The series z_t will be stationary when the zeros of $|\Phi_p(B)|$ are all outside the unit circle, and will be invertible when those of $|\Theta_q(B)|$ are all outside the unit circle. Properties of the model have been discussed in [13] and [15].

The φ and θ weights

Paralleling the results in (2.4), when the series is invertible, we can write

$$z_{t+1} = \hat{z}_t(\eta) + e_t(\eta) \quad (3.2)$$

where

$$\hat{z}_t(z) = \sum_{j=1}^p z_{t+j-1} \cdot \psi_j(z) = \sum_{j=0}^{p-1} \psi_j(z_{t+j-1})$$

The $\psi_j(z)$'s and ψ_j 's are link matrices obtained from the relations

$$\begin{aligned}\varphi_p(\theta) \psi_0(z) &= \psi_0(z), \quad \psi_0(z) = z_0 + \psi_1 z + \psi_2 z^2 + \dots, \quad z_0 = 1 \\ \varphi_q(\theta) \psi_0(z) &= \varphi_p(\theta), \quad \psi_0(z) = 1 - \psi_1 z - \psi_2 z^2 - \dots,\end{aligned}$$

and

$$\psi_j(z) = z_{j+1}^{(p-1)} + \psi_{j-1}(z), \text{ with } \psi_0(z) = z.$$

Forecasting future observations

Similarly, in (3.2) $\hat{z}_t(z)$ is the conditional expectation of z_{t+q} .

$$\begin{aligned}\hat{z}_t(z) &= E(z_{t+2}|z_t, z_{t-1}, \dots) \\ z_t(z) &= \hat{z}_t(z), \quad z = 1, \dots\end{aligned}\tag{3.3}$$

is the vector of forecast errors made at origin t . In practice, the forecast vector $\hat{z}_t(z)$ is obtained recursively using the formula

$$\hat{z}_t(z) = \varphi_1 E(z_{t+1}) + \dots + \varphi_p E(z_{t+p}) - \psi_1 E(z_{t+1-q}) - \dots - \psi_q E(z_{t+q})$$

where

$$E(z_{t+j}) = \begin{cases} \hat{z}_t(j) & j \geq 1 \\ z_{t+j} & \text{otherwise} \end{cases} \quad \text{and} \quad E(z_{t+j}) = \begin{cases} 0 & j \geq 1 \\ z_{t+j} & \text{otherwise} \end{cases}\tag{3.3a}$$

The error vector $e_t(z)$ is normally distributed with zero mean and covariance matrix

$$\text{Cov}(e_t(z)) = \begin{bmatrix} \psi_1 & & \\ & \ddots & \\ & & \psi_q \end{bmatrix}.\tag{3.4}$$

Some special cases

- (1) As a first example, consider the simple stationary vector MA(1) model ($p=0, q=1$).

$$z_t = (1-\theta) z_{t-1} + \varepsilon_t.\tag{3.5}$$

For $k = 2$, writing

$$\theta = \begin{bmatrix} \theta_{11} & \theta_{12} \\ \theta_{21} & \theta_{22} \end{bmatrix}$$

we have that

$$\begin{aligned}z_{1t} &= \theta_{11} z_{t-1} + \varepsilon_{1t} = \theta_{11} z_{t-1} + \theta_{12} z_{t-2} \\ z_{2t} &= \theta_{21} z_{t-1} + \varepsilon_{2t} = \theta_{21} z_{t-1} + \theta_{22} z_{t-2}\end{aligned}\tag{3.6}$$

Thus, the z_{jt} depends only on the current shock ε_{jt} and the elements of the shock vector one period ago, ε_{t-1} . It is easy to show that individually, each series follows a univariate MA(1) model, i.e.

$$z_{jt} = (1-\theta_j) c_{jt}, \quad j = 1, 2$$

where $\{c_{jt}\}$ is some Gaussian white noise process.

Figure 3.1 shows two series with 250 observations generated from the model in (3.5) with

$$\theta = \begin{bmatrix} .2 & .3 \\ .6 & 1.1 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 4 \\ 1 \end{bmatrix}.\tag{3.8}$$

Figure 3.1 Data generated from a bivariate MA(1) model in (3.5) with parameter values in (3.6).

(11) As a second example, we consider the vector AR(1) model ($p=1, q=0$),

$$(I - \Phi)z_t = \epsilon_t \quad (3.9)$$

Again for $k = 2$, with

$$\Phi = \begin{bmatrix} \varphi_{11} & \varphi_{12} \\ \varphi_{21} & \varphi_{22} \end{bmatrix}$$

we can write the model as

$$\begin{aligned} z_{1t} &= \varphi_{11}z_{1(t-1)} + \varphi_{12}z_{2(t-1)} + \epsilon_{1t} \\ z_{2t} &= \varphi_{21}z_{1(t-1)} + \varphi_{22}z_{2(t-1)} + \epsilon_{2t} \end{aligned} \quad (3.10)$$

If we regard z_{1t} and z_{2t} as dependent variables and $z_{1(t-1)}$ and $z_{2(t-1)}$ as input or independent variables, then (3.10) is in the form of a bivariate linear model, a point which will be discussed later in further detail. Now multiplying both sides of (3.9) by the adjoint of $(I - \Phi)$, we obtain, for $k = 2$,

$$[(I - \Phi_1\Phi) (I - \Phi_2\Phi^2) - \varphi_{12}\varphi_2\Phi^3] \begin{bmatrix} z_{1t} \\ z_{2t} \end{bmatrix} = \begin{bmatrix} 1 - \varphi_{22}^2 - \varphi_{12}^2 \\ -\varphi_2\Phi^2(1 - \varphi_{11}\Phi)^2 \end{bmatrix} \begin{bmatrix} \epsilon_{1t} \\ \epsilon_{2t} \end{bmatrix} \quad (3.11)$$

Thus, each series individually follows an ARMA (2,1) model.

Note, however, that this is the maximum order for each individual series and that the autoregressive parts need not be identical as would appear from (3.11). For example, suppose $\varphi_{12} = \varphi_{21} = 0$, then each would follow an AR(1) model.

Figure 3.2 Data generated from a bivariate AR(1) model 1 in (3.9) with parameter values in (3.12).

Figure 3.2 shows two series with 150 observations generated from (3.9) with

$$\varphi = \begin{bmatrix} .2 & .3 \\ -.6 & 1.1 \end{bmatrix} \quad \text{and} \quad \Gamma = \begin{bmatrix} 4 & 1 \\ 1 & 1 \end{bmatrix} \quad (3.12)$$

(iii) As a third example, consider the model

$$(1-\theta)z_t = (1-\eta\varphi)u_t \quad (3.13)$$

i.e. after differencing each series we obtain a vector MA(1) model. In this case $\psi_j = 1-\theta$ and, when the series is invertible, $z_j = (1-\theta)\varphi^{j-1}$, $j \geq 1$. Thus, the forecast $\hat{z}_t(k)$ takes the same form as in (2.11)

$$\hat{z}_t(k) = (1-\theta) \sum_{j=1}^k \theta^{j-1} z_{t+j-k} \quad (3.14)$$

except that the weights are now matrices. Since

$$(1-\theta) \sum_{j=1}^k \theta^{j-1} = \sum_{j=1}^k \psi_j = 1$$

it follows that each element of $\hat{z}_t(k)$ is a weighted linear combination of the elements of z_t, z_{t-1}, \dots with weights summing to one. Figure 3.3 shows the weight functions for $k = 2$

$$\psi_j = \begin{bmatrix} \psi_{j1} & \psi_{j2} \\ \psi_{j2} & \psi_{j1} \end{bmatrix} \quad \text{with} \quad \theta = \begin{bmatrix} .2 & .3 \\ -.6 & 1.1 \end{bmatrix} \quad (3.15)$$

It can in fact be shown that the elements of ψ_j when regarded as functions of j are mixtures of exponentials and cosine functions.

Finally it is readily shown that for the model in (3.13), each series z_{jt} individually follows a univariate exponential smoothing model of the form (2.10).

3.2 Vector ARMA model and transfer function model

For the vector model in (3.1), in general, all elements of \underline{z}_t are related to all elements of \underline{z}_{t-j} ($j=1, 2, \dots$) and there can be feedback relationships between all the series. However, if the \underline{z}_t 's can be arranged so that the coefficient matrices φ_j 's and θ 's are all lower triangular then so will be all the \underline{L}_j matrices and (3.1) can be written as a transfer function model of the form (2.14).

To illustrate, for the $\text{N}(1)$ model in (3.5) with $k = 2$, suppose θ is lower triangular, so that

$$\begin{bmatrix} z_{1t} \\ z_{2t} \end{bmatrix} = \begin{bmatrix} (1-\theta_{11}\beta) & \theta_{12} \\ -\theta_{21}\beta & (1-\theta_{22}\beta) \end{bmatrix} \begin{bmatrix} a_{1t} \\ a_{2t} \end{bmatrix} \quad (3.16)$$

Writing $a_{2t} = \beta a_{1t} + \epsilon_t$ where ϵ_t and a_{1t} are independent, we can express (3.16) in the alternate form

$$\begin{aligned} z_{1t} &= (1-\theta_{11}\beta)a_{1t} \\ z_{2t} &= \frac{\omega_0 + \beta}{1-\theta_{11}\beta} z_{1t} + (1-\theta_{22}\beta)\epsilon_t \end{aligned} \quad (3.16a)$$

where $\omega_0 = \beta$ and $\omega_1 = \beta\theta_{22} + \theta_{21}$, which is a special case of the transfer function model (2.14).

The transfer function form (2.14) can be generalized in a multiple time series setting by allowing the φ 's and θ 's to be all lower block triangular. As an illustration, sum: ⁹

$$\begin{bmatrix} z_{1t} \\ z_{2t} \end{bmatrix} = \begin{bmatrix} 1-\theta_{11}\beta & \cdot \\ -\theta_{21}\beta & 1-\theta_{22}\beta \end{bmatrix} \begin{bmatrix} a_{1t} \\ a_{2t} \end{bmatrix} \quad (3.17)$$

Figure 3.3 Elements of \underline{z}_t for the Bivariate Exponential Smoothing Model (3.13) with parameter values in (3.15).

where \underline{z}_{1t} and \underline{a}_{1t} are $k_1 \times k_1$ vectors, \underline{z}_{2t} and \underline{a}_{2t} are $k_2 \times k_2$ vectors and $\underline{\theta}_{11}, \underline{\theta}_{21}$ and $\underline{\theta}_{22}$ are matrices of appropriate dimensions. Thus, the input series $\{\underline{z}_{1t}\}$, as well as the output series $\{\underline{z}_{2t}\}$, themselves are allowed to have feedback relationships.

3.3 Relationship to structural equations in econometrics

In econometric literature, one often encounters linear structural equations of the form

$$\underline{A}(\underline{\theta})\underline{Y}_t + \underline{H}(\underline{\theta})\underline{X}_t = \underline{U}_t \quad (3.18)$$

where \underline{Y}_t is the $k_1 \times 1$ endogenous vector, \underline{X}_t the $k_2 \times 1$ exogenous vector,

\underline{U}_t the $k_1 \times 1$ error vector, $\underline{A}(\underline{\theta}) = A_0 + A_1 B + \dots + A_p B^p$ and $\underline{H}(\underline{\theta}) = H_0 + H_1 B + \dots + H_s B^s$ are, respectively, $k_1 \times k_1$ and $k_1 \times k_2$ matrix polynomials, and \underline{U}_t and \underline{X}_t are independent. This can be written as

$$\underline{Y}_t - A_1^* \underline{Y}_{t-1} - \dots - A_{p-t}^* \underline{Y}_1 + H_0^* \underline{X}_t + \dots + H_s^* \underline{X}_{t-s} = \varepsilon_t \quad (3.19)$$

where $A_j^* = A_0^{-1} A_j$, $H_i^* = H_0^{-1} H_i$ and $\varepsilon_t = A_0^{-1} U_t$. If, in addition, we suppose that \underline{X}_t follows an ARMA model, say

$$X_t - G_1 X_{t-1} - \dots - G_p X_{t-p} = b_t - M_1 b_{t-1} - \dots - M_q b_{t-q} \quad (3.20)$$

where the G 's and the M 's are $k_2 \times k_2$ matrices, and $\{b_t\}$ a sequence of random shock vectors, then writing $\underline{z}_t = [X_t, Y_t]$, it is clear that the model for \underline{z}_t will be of the ARMA type with lower block triangular φ 's and θ 's and, therefore, be in the transfer function form. We may thus regard (3.1) as a "reduced form" of (3.18) and (3.20). We shall discuss this point further in Section 7.

3.4 Cross covariance and correlation matrices

When the multiple time series $\{\underline{z}_t\}$ is stationary, with mean vector $\underline{\eta}_0$, then the lag 1 cross-covariance matrix is defined as the expectation

$$E(\underline{z}_{t-1} \underline{z}_t') = \underline{r}(t) = (r_{ij}(t)), \quad i = 0, 1, \dots, k; \quad j = 1, \dots, k \quad (3.21)$$

and the corresponding cross correlation matrix is

$$\underline{\rho}(t) = \{\rho_{ij}(t)\} \quad (3.22)$$

where

$$\rho_{ij}(t) = r_{ij}(t)/[r_{11}(0)r_{jj}(0)]^{1/2}.$$

Note that $\underline{r}(-t) = \underline{r}'(t)$ and $\underline{\rho}(-t) = \underline{\rho}'(t)$.

For the vector ARMA model in (3.1), assuming stationarity we can write $\underline{z}_t = \varphi^{-1}(\underline{\theta})\theta_q(\underline{\beta})a_t = \psi(\underline{\beta})a_t$ so that

$$E(\underline{z}_{t-1} \underline{z}_t') = \begin{cases} \psi'(\underline{\beta}) & t = 0 \\ \psi(\underline{\beta}) & t \geq 1 \\ 0 & t < 0 \end{cases} \quad (3.23)$$

Writing

$$\underline{z}_{t-1} \underline{z}_t' \underline{z}_{t-1} \underline{z}_t'^* \dots \underline{z}_{t-p} \underline{z}_t'^* = \underline{z}_{t-1} (\underline{z}_{t-1} \underline{z}_t'^*)^{p-1} \dots \underline{z}_{t-q} \underline{z}_t'^*$$

and taking expectation on both sides of the equation, we obtain

$$\underline{r}(t) = \begin{cases} \sum_{j=0}^{t-1} r_{ij}(t) \psi'(\underline{\beta}) - \sum_{j=0}^{t-1} \psi(\underline{\beta}) r_{ij}(t+1) & t = 0, \dots, r \\ \sum_{j=t-p}^{t-1} r_{ij}(t) \psi'(\underline{\beta}) - \sum_{j=t-p}^{t-1} \psi(\underline{\beta}) r_{ij}(t+1) & t > r \end{cases} \quad (3.24)$$

where $\beta_0 = -1$, $r = \max(p, q)$ and it is understood that (1) if $p < q$, $\beta_{pq} = \dots = \beta_{qr} = 0$, and (11) if $q < p$, $\beta_{q+1} = \dots = \beta_r = 0$.

In particular when $p = 0$, i.e. we have a vector MA(q) model, then

$$\begin{cases} \beta_{k+2} \\ \vdots \\ \beta_0 \\ \beta_1 \end{cases} = \begin{cases} 0 & k = 0, \dots, q \\ 1 & k > q \\ 0 & k \leq -1 \end{cases} \quad (3.25)$$

Thus, all auto and cross correlations will be zero when $k > q$.

Two examples

For the MA(1) model (3.5) with parameter values given in (3.8), we find

$$\begin{aligned} \underline{\Gamma}(0) &= \begin{bmatrix} .37 & .89 \\ .89 & 2.33 \end{bmatrix}, \quad \underline{\Gamma}(1) = -\begin{bmatrix} 1.1 & -1.3 \\ .5 & .5 \end{bmatrix} \\ \text{so that} \quad \underline{\rho}(1) &= \begin{bmatrix} -.25 & .41 \\ -.16 & -.21 \end{bmatrix} \end{aligned} \quad (3.26)$$

and $\rho_{11}(k) = 0$ for $k > 1$.

For the AR(1) model in (3.9), we have from (3.24)

$$\begin{cases} \underline{\Gamma}(0) = \Phi \underline{\Gamma}(0)\Phi' + I \\ \underline{\Gamma}(k) = \underline{\Gamma}(k-1)\Phi^k, \quad k > 1 \end{cases} \quad (3.27)$$

Note that for given Φ and $\Gamma(0)$, the first equation is linear in the elements of $\underline{\Gamma}(0)$. For $k = 2$ and the parameter values in (3.12), Figures 3.3(a)-(c) show the auto and cross correlations $\rho_{11}(k)$, $\rho_{22}(k)$ and $\rho_{12}(k)$, respectively. Unlike the moving average case, the correlations decay gradually to zero as $|k|$ increases.

FIGURE 3.3 Auto and Cross Correlations of a Bivariate AR(1) Model with Parameter Values in (3.12)

3.5 Partial correlation matrices

Analogous to the partial autocorrelation function in the univariate case, see e.g. [7], we may define a generalized partial cross correlation matrix function $P(z)$ in the following manner. If the series $\{z_t\}$ follows a stationary AR(2) model, we require that

$$P_k(z) = \Phi_{z^k}, k = 1, 2, \dots \quad (3.28)$$

From (3.24), and setting $\theta_j = 0$ for $j \geq 1$, we define $P_{\{2\}}$ in terms of the cross covariance matrices $R_{\{2\}}$'s as

$$P_n(\alpha) = \begin{cases} \Gamma^{-1}(0)\Gamma(1), & k=1 \\ \frac{\Gamma((k+1)/2)}{\Gamma(k/2)} \left(\frac{\alpha^2}{4} \right)^{(k+1)/2}, & k > 1 \end{cases} \quad (3.29)$$

四

$$A_2 = \begin{bmatrix} \Gamma(0) & \cdots & \Gamma(l-2) \\ \vdots & \ddots & \vdots \\ \Gamma(l-2) & \cdots & \Gamma(0) \end{bmatrix}, \quad b_2 = \begin{bmatrix} \Gamma'(1) \\ \vdots \\ \Gamma'(l-1) \end{bmatrix}, \quad c_2 = \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \\ \Gamma(l-1) \end{bmatrix}$$

It follows from this definition that if z_t follows an AR(p) model,

五

$$P(l) = 0 \text{ for } l > n$$

11

are:

4.1 Tentative specification

The aim here is to employ statistics which (a) can be readily calculated from the data and (b) allow the experimenter to select a

where \tilde{z}_1 is the sample mean of the 1st component series of \tilde{z}_t , or the matrices of appropriately differenced data.

4. Model Building Strategy for Multiple Time Series

The class of vector autoregressive moving average models (3.1) is very extensive. Given data in the form of a time series of length n , we attempt to find a model which, while containing as few parameters as possible, represents adequately the dependences in the data at hand. Extending the model building strategy developed in [7], a preliminary version of a computer package for the analysis of multiple time series has been completed. The package consists of three main programs:

- (i) Preliminary Analysis, (ii) Stepwise Autoregression and (iii) Estimation and Forecasting.

- (ii) estimates of the generalized partial cross correlation matrices obtained by fitting successive autoregressive models of increasing order.
- (iii) sample cross correlation matrices of the residual series from each fitted autoregressive model.

Sample cross correlations

The sample cross correlations $\hat{\rho}_{ij}(k)$'s are estimates of the theoretical values $\rho_{ij}(k)$'s. They are particularly useful in spotting low order vector moving average models since from (3.25) $\rho_{ij}(k) = 0$ for $k > q$.

For the data shown in Figure 3.1 generated from the bivariate MA(1) model in (3.8), Figures 4.1(a)-(c) show, respectively, the sample autocorrelations $\hat{\rho}_{11}(k)$ of z_{1t} , the sample autocorrelations $\hat{\rho}_{22}(k)$ of z_{2t} , and the sample cross correlations $\hat{\rho}_{12}(k)$ between these two series. As expected, large values (in magnitude) occur at $|k| = 1$, and one would be led to tentatively specify the model as a MA(1).

While graphs of this kind have proved useful in the analysis of one or two series, it will become increasingly cumbersome as the number of series is increased. For example, one would need to simultaneously inspect 10 graphs when $k = 4$ and 15 when $k = 5$.

For vector series, it seems more useful to list the sample cross correlation matrices $\hat{\rho}(k)$ themselves in sequence as a function of the lag k . The absence of large (in magnitude) elements after a certain lag would indicate directly the order of the moving average model.

For the data in Figure 3.1, the $\hat{\rho}(k)$ matrices are shown in Table 4.1(a) for $k = 1, \dots, 12$.

Figure 4.1 Sample Auto and Cross Correlations for the Data in Figure 3.1.

To summarize the structure of the cross correlation matrices, one may use the following device which is motivated from the consideration that if the series were white noise, then for large n , the $\hat{P}_{1j}(k)$'s would be normally distributed with mean 0 and variance n^{-1} . Thus, instead of the numerical values, a plus sign is used to indicate a value greater than $2n^{-1/2}$, a minus sign a value less than $-2n^{-1/2}$ and a dot to indicate a value in between $-2n^{-1/2}$ and $2n^{-1/2}$. This simple device greatly facilitates the user's comprehension of the mass of information contained in the matrices, as is illustrated in Table 4.1(b). Another useful summary is to list the symbols for each element in the matrix over all lags as shown in Table 4.1(c).

For the series shown in Figure 3.2 generated from an AR(1) model, the sample cross correlation matrices in terms of the plus, minus and dot symbols are given in Table 4.2. As expected, significant values occur over many lag values, indicating that an autoregressive model might be appropriate.

In summary, the pattern of symbols in the sequence of cross correlation matrices makes it very easy to choose between an autoregressive or a moving average model, and for the latter to tentatively select the appropriate order.

Sample generalized partial correlations and related summary statistics

Sample estimates of the generalized partial cross correlation matrices $\hat{P}(k)$ in (3.29) are useful in identifying the order of an autoregressive model. In our computer package, the estimates $\hat{P}(k)$ are

Table 4.1

(a) Sample cross correlation matrices $\hat{P}(k)$ for the data in Figure 3.1

$$\begin{array}{l} \text{Lag 1-6} \\ \left[\begin{array}{cccccc} -.28 & .37 & .03 & .08 & .04 & -.03 \\ .21 & -.19 & .02 & .01 & -.01 & .08 \end{array} \right] \left[\begin{array}{cccccc} -.11 & .04 & -.03 & .04 & -.02 & -.09 \\ .03 & .09 & .01 & -.03 & .02 & .01 \end{array} \right] \left[\begin{array}{cccccc} .10 & .07 & .01 & -.08 & .01 & .01 \end{array} \right] \\ \text{Lag 7-12} \\ \left[\begin{array}{cccccc} -.11 & .01 & -.09 & .12 & .01 & -.06 \\ .17 & -.06 & .03 & -.16 & .08 & .10 \end{array} \right] \left[\begin{array}{cccccc} .00 & .02 & .01 & .02 & .03 & .00 \\ .09 & .04 & .01 & -.01 & .08 & .09 \end{array} \right] \left[\begin{array}{cccccc} .06 & .04 & .01 & .01 & .01 & .01 \end{array} \right] \end{array}$$

(b) $\hat{P}(k)$ in term of plus, minus and dot symbols

$$\begin{array}{l} \text{Lag 1-6} \\ \left[\begin{array}{cccccc} + & + & - & + & + & - \\ - & - & + & - & - & + \end{array} \right] \left[\begin{array}{cccccc} + & + & - & + & + & - \\ - & - & + & - & - & + \end{array} \right] \left[\begin{array}{cccccc} + & + & - & + & + & - \\ - & - & + & - & - & + \end{array} \right] \end{array}$$

(c) Pattern of correlations for each element in the matrix over all lags

$$\begin{array}{c} z_1 \\ z_2 \\ \vdots \\ \vdots \\ z_1 \\ z_2 \\ \vdots \\ \vdots \end{array}$$

obtained by fitting autoregressive models of $k = 1, 2, \dots$ successively.
Specifically, a vector AR(p) model can be written

$$z_t^* = z_{t-p}^* + \dots + z_{t-p+1}^* + \varepsilon_t \quad (4.2)$$

Thus, if we have n observations, then ignoring the end effect, we can express the above in the form of a multivariate linear model

$$\underline{y} = \underline{x}\underline{\varphi}^* + \dots + \underline{x}_{p+1}\underline{\varphi}_p + \varepsilon \quad (4.3)$$

where

$$\underline{y} = \begin{bmatrix} z_{t-p+1} \\ \vdots \\ z_t \\ \vdots \\ z_{n-p} \end{bmatrix}, \quad \underline{x}_1 = \begin{bmatrix} z_p \\ \vdots \\ z_{n-1} \end{bmatrix}, \quad \dots, \quad \underline{x}_p = \begin{bmatrix} z_1 \\ \vdots \\ z_{n-p} \end{bmatrix}, \quad \text{and } \varepsilon = \begin{bmatrix} \varepsilon_{p+1} \\ \vdots \\ \varepsilon_t \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

and the least squared estimates $\hat{\varphi}_1, \dots, \hat{\varphi}_p$ can be readily determined.

Let p be the largest lag of the sample partial cross correlation matrices desired, then an estimate of $P(t)$ is

$$\hat{P}(t) = \hat{\Phi}_t \quad (4.4)$$

when an AR(1) model is fitted, $t = 1, 2, \dots, p$.

It is well known, see e.g. [1], that for a stationary AR(e) model, asymptotically the estimates $\hat{\varphi}_1, \dots, \hat{\varphi}_p$ have the same distributional properties as those in the traditional multivariate linear model in which the X 's are regarded as predetermined. Using standard normal linear model theory, we can compute the estimated standard errors of elements of $\hat{P}(t)$, and divide the estimates by their corresponding estimated

Table 4.2

Sample cross correlation matrices $\hat{\rho}(k)$ for the data in Figure 3.1 in terms of plus, minus and dot symbols

Lag 1-6

$$\begin{bmatrix} \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \end{bmatrix}$$

Lag 7-12

standard errors to obtain standardized coefficients. The pattern of the sample partial cross correlations can also be summarized by assigning a plus sign when a standardized coefficient is greater than 2, a minus sign when it is less than -2 and a dot for values between -2 and 2.

To help determine tentatively the order of an autoregressive model, we may also make reference to the likelihood ratio statistic corresponding to testing the null hypothesis $\varphi_t = 0$ against the alternative $\varphi_t \neq 0$ when an AR(t) model is fitted. Let

$$S(t) = (Y - X\hat{\beta})' (Y - X\hat{\beta}) \quad (4.5)$$

be the matrix of residual sum of squares and cross products after fitting an AR(t). Then with $S(0) = YY$, for $t = 1, \dots, p$ the likelihood ratio statistic is the ratio of the determinants

$$|S(t)| / |S(t-1)| \quad (4.6)$$

Using Bartlett's approximation [2], the statistic

$$M(t) = -(N/2-t-k) \log_e |S(t)| / |S(t-1)| \quad (4.7)$$

is, on the null hypothesis, asymptotically distributed as χ^2 with k^2 degrees of freedom where $N = n-p-1$ is the effective number of observations, assuming that a constant term is included in the model.

In addition to the $M(t)$ statistic (4.7), the diagonal elements of the residual covariance matrices S corresponding to the successive AR models may also be of interest since they show how the fit is improved as the order is increased.

For the generated series in Figure 3.2, the matrices of standardized coefficients and corresponding summary symbols, the $M(t)$ statistics in (4.7) and the diagonal elements of the residual covariance matrices are shown in Table 4.3 for $t = 1, \dots, 5$. They indicate that an AR(1) or at most an AR(2) would be adequate for the data.

The pattern of the generalized partial cross correlation matrices and related statistics are given in Table 4.4 for the series shown in Figure 3.1. Here, if we were to use an autoregressive model to represent the data, we would perhaps need one with order as high as 7. This is not surprising since the data were generated from an MA(1) model with parameter values given in (3.8). Writing $Z_t = z_{t-1} + z_{t-2} + \dots + z_5$, we find

$$\begin{aligned} S_1 &= \begin{bmatrix} .2 & .3 \\ .6 & -1.1 \end{bmatrix}, S_2 = \begin{bmatrix} .14 & -.39 \\ .78 & -1.03 \end{bmatrix}, \dots, S_6 = \begin{bmatrix} .23 & -.29 \\ .49 & -.51 \end{bmatrix} \\ |z_1| &= .4, |z_2| = .16, \dots, |z_6| = .0041 \end{aligned} \quad (4.8)$$

Although the determinants $|S_{ij}|$ decrease rapidly towards zero as j increases, the elements of γ_j converge to zero very slowly so that many autoregressive terms would be needed to provide an adequate approximation. On the other hand, recall that the sample cross correlation pattern in Table 4.1 indicated directly that a MA(1) model would be appropriate.

In summary, the pattern of the generalized partial cross correlation matrices, the related $M(t)$ statistic, and the diagonal elements of the residual covariance matrix would help distinguish between moving average or autoregressive models and, for the latter, tentatively select the appropriate order.

Table 4.3

Standardized Sample Partial Cross Correlations and Related Statistics
for the data in Figure 3.2

lag t	standardized coefficients	summary symbols	$H(t)$ (x_1^t)	Diagonal elements of
1	1.70	.59	+	5.30
	-16.28	32.90	-	356.96
			+	1.08
2	-1.68	1.98	-	5.16
	-1.64	2.39	+	7.04
			-	1.03
3	1.20	-.54	-	5.07
	.30	.10	-	2.63
			-	1.03
4	.90	-1.25	-	5.01
	-.85	.76	-	4.38
			-	1.02
5	.51	.10	-	4.95
	1.11	-.56	-	2.42
			-	1.01

Table 4.4

Pattern of Sample Partial Cross Correlations
and Related Statistics for Data in Figure 3.1

lag	pattern of $\Phi(t)$	$H(t)$ (x_1^t)	$H(t)$ (x_2^t)
1	- -	-	4.78
	+	-	123.2
2	- -	-	4.75
	+	-	75.9
3	+	-	1.43
	+	-	36.2
4	- -	-	4.63
	+	-	1.23
5	- -	-	4.63
	+	-	27.5
6	- -	-	4.53
	+	-	13.5
7	- -	-	4.38
	+	-	16.5
8	- -	-	4.31
	+	-	8.1
		-	.91

Sample residual cross correlation matrices after AR fit

After each AR(k) fit, $k = 1, \dots, p$, cross correlation matrices of the residuals \hat{e}_t 's, may be readily obtained. Table 4.5 shows pattern of the correlations after fitting AR(1) and AR(2) to the data in Figure 3.2, where a plus sign is used to indicate values greater than $2n^{-1/2}$, a minus sign for values less than $-2n^{-1/2}$ and a dot for in between values.

Again, they clearly indicate that there is no need to go beyond an AR(2) model.

For mixed vector autoregressive moving average models in general, both the population cross correlation matrices $\rho(z)$ and the generalized partial cross correlation matrices $\rho(z)$ will decay only gradually toward 0, making order determination using estimates of these quantities difficult in practice. In some situations, patterns in residual cross correlations after AR fit may help spot the orders.

Consider the case of a stationary ARMA(1,1) model

$$(1-\phi B)z_t = (1-\theta B)e_t. \quad (4.9)$$

If an AR(1) model is fitted to $\{z_t\}$, then the estimate $\hat{\phi}$ would be biased.

In fact, asymptotically $\hat{\phi}$ converges in probability to

$$\hat{\phi} + \phi_0 = \Gamma'(1)\Gamma(0)^{-1}. \quad (4.10)$$

Thus, approximately, the residuals $\hat{e}_t = z_t - \phi_0 z_{t-1}$ would follow the model

$$\hat{e}_t = (1-\phi_0 B)(1-\phi B)^{-1}(1-\theta B)z_t. \quad (4.11)$$

Table 4.5

Pattern of Residual Cross Correlations for the Data in Figure 3.2

$$\begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix}$$

$$\begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix}$$

AR(2) Lag 1-6

$$\begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix}$$

Lag 7-12

$$\begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix}$$

AR(2) Lag 1-6

$$\begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix}$$

Lag 7-12

For $k = 1$, \hat{z}_t follows an ARMA(1,2) model so that the autocorrelations of \hat{z}_t are

$$\rho_a(j) = \varphi \rho_a(j-1), \quad j > 2 \quad (4.12)$$

and $\rho_a(1)$ and $\rho_a(2)$ are functions of φ and θ . Table 4.6 gives values of $\rho_a(1)$ and $\rho_a(2)$ for various combinations of values of φ and θ . For each combination, the first value is $\rho_a(1)$ and the second, $\rho_a(2)$.

Table 4.6

Asymptotic values of $\rho_a(1)$ and $\rho_a(2)$

θ	-.95	-.50	.50	.95
φ				
-.95	-	.265	-.381	-.481
.09	-.085	-.03	-.036	
-.50	.049	-	-.223	-.321
-.222	-.221	-	-.201	-.267
.50	.321	.223	-	-.049
-.267	-.261	-	-.222	
.95	.481	.381	-.265	
-.036	-.03	-.085	-	

We see that if the true value of φ is large in magnitude, residual autocorrelations would lead to the choice of an MA(1) model for \hat{z}_t , and therefore the correct identification. For intermediate values of φ , a moving average of order 2 or higher might be selected resulting in overparametrization.

In a recent paper [12], procedures have been proposed to determine the order of univariate ARMA models using functions of the autocorrelations of z_t other than those discussed above. The vector situation is a subject for further study.

We are grateful to R.S. Tsay for computing this table.

4.2 Estimation

Once the order of the model in (3.1) has been tentatively selected, efficient estimates of the associated parameter matrices

$\varphi = (\varphi_1, \dots, \varphi_p)$, $\theta = (\theta_1, \dots, \theta_q)$ and Σ are then determined by maximizing the likelihood function. Approximate standard errors and correlation matrix of the estimates of elements of the φ 's and θ 's can also be obtained.

Conditional likelihood

For the ARMA (p,q) model, we can write

$$\hat{\theta}_t = z_t - \varphi_1 z_{t-1} - \dots - \varphi_p z_{t-p} + \theta_1 z_{t-1} + \dots + \theta_q z_{t-q} \quad (4.13)$$

As in the univariate case [7], the likelihood function can be approximated by a "conditional" likelihood function as follows. The series is regarded as consisting of the n-p vector observations z_{p+1}, \dots, z_n . The likelihood function is then determined from $\hat{z}_{p+1}, \dots, \hat{z}_n$ using the preliminary values z_1, \dots, z_p and conditional on zero values for $\hat{z}_{p+1}, \dots, \hat{z}_{q-1}$. Thus,

$$L_c(\varphi, \theta | z) = \prod_{t=p+1}^n \frac{n!}{2^{n-p}} \exp(-\frac{1}{2} \hat{z}_t^T S(\varphi, \theta)) \quad (4.14)$$

where

$$S(\varphi, \theta) = \sum_{t=p+1}^n \hat{z}_t^2.$$

It has been shown in [14] that this approximation can be seriously inadequate if n is not sufficiently large and one or more zeros of $|S(\varphi, \theta)|$ lie on or close to the unit circle. Specifically, this would lead to estimates of the moving average parameters with large bias.

This can be particularly troublesome with a seasonal model of the form

$$\Phi_p(\theta)z_t = \theta_q(\theta^s)z_t \quad (4.15)$$

for then the series can be approximately regarded as s separate component series each of length n/s . For example, for the simple univariate model

$$z_t = (1-\theta_0)z_t + \epsilon_t \text{ with } \sigma^2 = 1, \text{ the extent of the bias has been studied in}$$

[16] by considering the expected log likelihood

$$\frac{1}{s} \log(\theta|z) = f_n(\theta, \theta_0) \quad (4.16)$$

where θ_0 is the true value. Values of θ which maximize $f_n(\theta, \theta_0)$ for various values of n are as follows:

n	10	50	100	1000
maximizing value of θ	.72	.87	.90	.97

Exact likelihood function

Exact likelihood function for the stationary vector ARMA(p,q) model has been derived in [14]. It takes the form

$$L(\theta, \theta_0 | z) = L_C(\theta, \theta_0 | z)L_I(\theta, \theta_0 | z) \quad (4.17)$$

where L_I depends (i) only on z_1, \dots, z_p if $q = 0$ and (ii) on all the data vectors z_1, \dots, z_n . Estimation algorithms have been developed and incorporated in our computer package for the vector MA(q) model where $\theta_q(\theta)$ assumes the multiplicative seasonal form

$$\theta_q(\theta) = \theta_{q_1}(\theta)(1-\theta_s\theta^s) \quad (4.18)$$

For the general ARMA(p,q) model, it has been shown that a close approximation to the exact likelihood can be obtained by considering the transformation

$$w_t = (1-\theta_1\beta - \dots - \theta_p\beta^p)z_t \quad (4.19)$$

so that

$$w_t = \theta_q(\theta)z_t$$

and then apply the results for $I(A(q))$ to w_t , $t = p+1, \dots, n$.

In our computer package both conditional likelihood (4.14) and exact likelihood via the approximation (4.19) are made available for parameter estimation. While estimates of moving average parameters using exact likelihood are superior, the computing time for the exact likelihood is, however, usually several times larger than that required for the conditional likelihood. We presently employ the conditional method in the preliminary stages of iterative model building and switch to the exact method towards the end.

4.3 Diagnostic checking

An important phase in the iterative model building process is model criticism. To guard against model misspecification and to search for directions of improvement, a detailed diagnostic analysis of the residual series $\{\hat{e}_t\}$ where

$$\hat{e}_t = z_t - \hat{\theta}_1 z_{t-1} - \dots - \hat{\theta}_p z_{t-p} + \hat{\theta}_{p+1} z_{t-p+1} - \dots - \hat{\theta}_{q-1} z_{t-q} \quad (4.20)$$

should be performed. Our present computer package includes (a) plots of standardized residual series against time and (b) cross correlation matrices of the residuals \hat{e}_t . Again, the structure of the correlations

Table 4.7

Estimation and Diagnostic Checking for the Data in Figure 3.1
Corresponding to the MA(1) Model (4.21)

(a) Estimation results

Conditional likelihood estimates Exact likelihood estimates
(standard errors of estimates given in parenthesis)

$$\theta_0 = \begin{bmatrix} 17.12 \\ (.10) \\ 25.08 \\ (.08) \end{bmatrix}$$

$$\theta = \begin{bmatrix} .19 & .41 \\ (.04) & (.09) \\ -.57 & 1.12 \\ (.03) & (.07) \end{bmatrix}$$

$$t = \begin{bmatrix} 4.87 \\ 1.11 & 1.09 \\ 1.13 & 1.01 \end{bmatrix}$$

(b) Pattern of cross correlation of residuals after exact likelihood fit

are summarized by assigning a plus sign to values greater than $2n^{-1/2}$, a minus sign for values less than $-2n^{-1/2}$ and a dot for 1 in between cases.

As an illustration for the tools used in estimation and diagnostic checking, Table 4.7 gives the results for the series in Figure 3.1 using the tentatively specified MA(1) model

$$z_t = \theta_0 + (1 - \theta)t a_t \quad (4.21)$$

where θ_0 is the mean vector. Since the sample size is rather large, $n = 250$, there is scarcely any difference between the conditional likelihood estimates and the exact likelihood estimates. Also, the pattern of the symbols for the residual cross correlation indicates that the MA(1) model is adequate.

5. Analyses of Three Actual Examples

We now apply the model building approach introduced in the preceding section to three actual data sets

- (i) The Financial Time Ordinary Share Index, U.K. Car Production and the Financial Time Commodity Price Index: Quarterly Data 3/1952-4/1967, obtained from [11]. This will be referred to as the SEC data.
- (ii) The Gas Furnace Data given in [7].
- (iii) The monthly Census Housing Data analyzed earlier in [14].

Figure 5.1 The SCC Data

5.1 The SCC data

The three series are shown in Figure 5.1 where

- Z_{1t} : Financial Time Ordinary Share Index
- Z_{2t} : U.K. Car Production
- Z_{3t} : Financial Time Commodity Price Index

In [11], the authors were interested in the possibility of predicting Z_{1t} from lagged values of Z_{2t} and Z_{3t} using a standard regression analysis in which Z_{1t} was treated as a dependent variable and $Z_{2(t-6)}$ and $Z_{3(t-7)}$ as regressors or independent variables. For a discussion of this approach, see [8].

We now consider what structure is revealed by the present multiple time series analysis, in which the three series are jointly modelled.

Tentative specification

A condensed summary of the pattern of cross correlations for the first 20 lags is provided in Table 5.1 in terms of the plus, minus and dot symbols. The original series show high and persistent auto and cross correlations. The standardized generalized partial cross correlations and related statistics up to the 5th lag are given in Table 5.2. It is very clear from this analysis that little improvement occurs after lag $k = 2$. For $k > 2$, most of the elements of $\hat{P}(k)$ are small compared with their estimated standard errors, and the $M(k)$ statistic, which is approximately distributed as χ^2 with 9 degrees of freedom, fails to show significant improvement. Table 5.3 gives the patterns of the cross correlations of

Table 5: 1

Table 1. Summary of small cross correlations for the SCC Data

Z_1 Stocks	Z_2 Cars	Z_3 Commodities
++++++.....	-----	----
.....	-----	-----
.....	+++++.....	+++.....
.....	+++.....	+++.....
.....	-----	+++.....
.....	-----	+++.....
.....	-----	+++.....

the residuals after AR(1) and AR(2) fit. The pattern after AR(2) is such as would be expected from "estimates white noise". Thus, AR(2) model is suggested for the data. Alternately, note that the one large residual correlation at lag 1 after an AR(1) fit, suggests also the possibility of an ARMA(1,1) model.

Factum

Both an AR(2) and an ARMA(1,1) model were fitted using the exact likelihood method (although for this example, estimates from the conditional likelihood for the ARMA(1,1) case are very close to the exact results). The ARMA(1,1) model produced a marginally better representation, though only its results are given. Specifically we use the model

$$(1-68)Z_1 = 68 + (1-68)a \quad (5.1)$$

where θ_0 is a vector of constants. Table 5.4 shows the initial unrestricted fit and also the fits after setting to zero those coefficients whose estimates are small compared to their standard errors.

Table 5.2

Standardized Partial Cross Correlations and Related Statistics: SCC Data

Table 5.3

Pattern of Gross Correlation Matrices of Residuals: SCC Data

Table 5.4

Estimation Results for the Model (5.1): SCC Data
(Exact Likelihood)

\hat{a}_0	$\hat{\phi}$	$\hat{\theta}$	
(1) Full Model	$\begin{bmatrix} 1.11 \\ (.64) \\ (.07) \\ (.74) \\ (-.07) \\ (-.10) \\ (.10) \\ (.82) \\ (4.08) \\ (-.32) \\ (.18) \\ (.17) \end{bmatrix}$	$\begin{bmatrix} .15 \\ (.08) \\ (.09) \\ (.07) \\ (.06) \\ (.10) \\ (.05) \\ (.05) \\ (.22) \\ (.30) \\ (.08) \\ (.13) \end{bmatrix}$	$\begin{bmatrix} .29 \\ (.15) \\ (.11) \\ (.20) \\ (.17) \\ (.11) \\ (.11) \\ (.57) \\ (.76) \\ (.44) \\ (.28) \\ (.21) \end{bmatrix}$
(2) Restricted Model (Intermediate)	$\begin{bmatrix} .13 \\ (.09) \\ (.59) \\ (.05) \\ (.248) \\ (1.10) \end{bmatrix}$	$\begin{bmatrix} .90 \\ (.06) \\ (.92) \\ (.04) \\ (.85) \\ (.07) \end{bmatrix}$	$\begin{bmatrix} .15 \\ (.14) \\ (.31) \\ (.02) \\ (.22) \\ (.15) \end{bmatrix}$
(3) Restricted Model (Final)	$\begin{bmatrix} .12 \\ (.08) \\ (.24) \\ (-.10) \\ (2.76) \\ (1.07) \end{bmatrix}$	$\begin{bmatrix} .98 \\ (.03) \\ (.04) \\ (.04) \\ (.83) \\ (.06) \end{bmatrix}$	$\begin{bmatrix} .15 \\ (.10) \\ (.17) \\ (.17) \\ (.22) \\ (.23) \end{bmatrix}$

Diagnostic checking

Table 5.5 shows the pattern of residual cross correlations after the final restricted ARMA(1,1) fit. It suggests that the restricted model provide an adequate representation of the data.

Implication of the model

The final fitted results imply that the system is approximately represented by

$$(1 - .988Z_1t)Z_{1t} = a_{1t} \quad (5.2a)$$

$$(1 - .938Z_2t)Z_{2t} = -.2 + a_{2t} \quad (5.2b)$$

$$(1 - .838Z_3t)Z_{3t} = 2.8 + .40a_{1(t-1)} + (1 + .41B)a_{3t} \quad (5.2c)$$

Upon substituting (5.2a) in (5.2c), we get

$$(1 - .838Z_{3t})Z_{3t} = 2.8 + .40(1 - .988)Z_{1(t-1)} + (1 + .41B)a_{3t} \quad (5.2d)$$

Thus all three series behave approximately as random walks with slightly correlated innovations. From the point of view of forecasting, (5.2d) is of some interest since it implies that ordinary share $Z_{1(t-1)}$ is a leading indicator at lag 1 for the commodity index Z_{3t} . Its effect, however, is small as can be seen for example by the improvement achieved over the corresponding best fitting univariate model which was

\hat{a}_1	\hat{a}_2	\hat{a}_3
.....
.....
.....

Table 5.5
Pattern of Residual Cross Correlations After Final Restricted ARMA(1,1)
Model Fit: SCC Data

$$(1 - .788)Z_{3t} = 3.63 + (1 + .538)a_{1t}, \sigma^2 = .151 \quad (5.3)$$

Figure 5.2 The Gas Furnace Data

The residual variance of 0.151 from the univariate model is not much larger than the value 0.134 for α_3 obtained from the final vector model. Although the multiple time series analysis fails to reveal anything very surprising for this example, it shows what is there and does not mislead.

5.2 The Gas Furnace Data

The two series shown in Figure 5.2 consist of (1) input gas rate and (ii) output as CO₂ concentration at 9 second intervals from a gas furnace. We shall let Z_{1t} = gas rate + .057 and $Z_{2t} = CO_2 - 5.35$. This set of data was employed in [7] to illustrate a transfer function modelling procedure. The procedure was designed to model the dynamic relationship of two stochastic time series one of which is known to be input for the other. According to this approach, the appropriate model for the input Z_{1t} and that for the output Z_{2t} are, respectively

$$(1-1.97B+1.37B^2-.34B^3)Z_{1t} = \alpha_t, \quad \hat{\sigma}_\alpha^2 = .0353 \quad (5.4a)$$

and

$$Z_{2t} = v(B)Z_{1t} + (1-1.53B+.63B^2)^{-1}\alpha_t, \quad \hat{\sigma}_\alpha^2 = .0561 \quad (5.4b)$$

where $v(B)$ is the transfer function

$$v(B) = \frac{(-.53+37B-.51B^2)}{(1-.57B)} B^3. \quad (5.4c)$$

$B = 3$ is the delay and the $\{\alpha_t\}$ and $\{\alpha'_t\}$ series are assumed independent.

It will be of interest to analyze the data using the present approach where no distinction is made between an input and an output variable.

Tentative specification

In Table 5.6, part (a) shows that the auto and cross correlations of the original data are persistently large in magnitude as the lag increases ruling out low order vector moving average models; part (b) gives the $\chi^2(2)$ statistic, which should be compared with a χ^2 variable with 4 degrees of freedom, through the 11th lag, suggesting that an AR(6) model might be tentatively selected; and part (c) shows the residual cross correlation pattern after an AR(6) fit, confirming the appropriateness of this model.

Table 5.6

Tentative Identification for the Gas Furnace Data

(a) Pattern of cross correlations of the original data

	\hat{z}_{1t}	\hat{z}_{2t}
\hat{z}_{1t}	+++++
\hat{z}_{2t}	+++++

(b) H statistic for generalized partial cross correlations

Lag k	1	2	3	4	5	6	7	8	9	10	11
$H(k)$	1650	665	31.7	22.5	5.6	12.9	1.8	8.0	3.5	0	2.0

(c) Pattern of cross correlations of the residuals after AR(6) fit

	\hat{a}_{1t}	\hat{a}_{2t}
\hat{a}_{1t}
\hat{a}_{2t}

Estimation results

Estimation results corresponding to an unrestricted AR(6) model

$$(1 - \varphi_1 z - \dots - \varphi_6 z^6) L_t = a_t \quad (5.5)$$

are as follows:

$$\begin{matrix} \hat{\varphi}_1 & \hat{\varphi}_2 & \hat{\varphi}_3 & \hat{\varphi}_4 & \hat{\varphi}_5 & \hat{\varphi}_6 \\ \begin{bmatrix} 1.93 \\ (.06) \end{bmatrix} & \begin{bmatrix} -.05 \\ (.05) \end{bmatrix} & \begin{bmatrix} .20 \\ (.13) \end{bmatrix} & \begin{bmatrix} .10 \\ (.08) \end{bmatrix} & \begin{bmatrix} .08 \\ (.09) \end{bmatrix} & \begin{bmatrix} .03 \\ (.03) \end{bmatrix} \\ \hat{\varphi}_7 & \hat{\varphi}_8 & \hat{\varphi}_9 & \hat{\varphi}_{10} & \hat{\varphi}_{11} & \hat{\varphi}_{12} \\ \begin{bmatrix} .55 \\ (.06) \end{bmatrix} & \begin{bmatrix} -.55 \\ (.06) \end{bmatrix} & \begin{bmatrix} -.14 \\ (.16) \end{bmatrix} & \begin{bmatrix} -.59 \\ (.16) \end{bmatrix} & \begin{bmatrix} -.44 \\ (.11) \end{bmatrix} & \begin{bmatrix} .15 \\ (.19) \end{bmatrix} \\ \hat{\varphi}_{13} & \hat{\varphi}_{14} & \hat{\varphi}_{15} & \hat{\varphi}_{16} & \hat{\varphi}_{17} & \hat{\varphi}_{18} \\ \begin{bmatrix} .13 \\ (.11) \end{bmatrix} & \begin{bmatrix} .14 \\ (.11) \end{bmatrix} & \begin{bmatrix} .04 \\ (.10) \end{bmatrix} \\ \hat{\varphi}_{19} & \hat{\varphi}_{20} & \hat{\varphi}_{21} & \hat{\varphi}_{22} & \hat{\varphi}_{23} & \hat{\varphi}_{24} \\ \begin{bmatrix} .06 \\ (.06) \end{bmatrix} & \begin{bmatrix} .06 \\ (.06) \end{bmatrix} \end{matrix}$$

(5.6)

If we let

$$\hat{\varphi}_k = (\hat{\varphi}_k^{(t)})$$

then we see that $\hat{\varphi}_{12}^{(t)}$ are small compared with their standard errors over all lags, confirming (as in this case is known from the physical nature of the apparatus generating the data) that there is a unidirectional relationship between \hat{z}_{1t} and \hat{z}_{2t} involving no feedback. Also, $\hat{\varphi}_{21}^{(t)}$ is small for $t = 1, 2$, and the residuals \hat{a}_{1t} and \hat{a}_{2t} are essentially uncorrelated, implying a delay of 3 periods. It should be noted in addition, that the variances for \hat{a}_{1t} and \hat{a}_{2t} are very close to those for a_t and \hat{a}_t in (5.4).

To facilitate comparison with the previous results in (5.4), we set $\varphi_{11}^{(t)} = 0$ for $t > 3$, $\varphi_{12}^{(t)} = 0$ for all t , $\varphi_{21}^{(t)} = 0$ for $t = 1, 2$ and

$\psi_{22}^{(t)} = 0$ for $t = 5, 6$. Estimation results for this restricted AR(6) model are then

$$\begin{bmatrix} \hat{\phi}_1 \\ \hat{\phi}_2 \\ \hat{\phi}_3 \\ \hat{\phi}_4 \\ \hat{\phi}_5 \\ \hat{\phi}_6 \end{bmatrix} = \begin{bmatrix} .98 \\ .06 \\ 1.53 \\ -1.38 \\ (.10) \\ (.06) \end{bmatrix} \begin{bmatrix} .35 \\ (.06) \\ (.58) \\ (.11) \\ (.10) \\ (.07) \end{bmatrix} \begin{bmatrix} .14 \\ (.16) \\ (.10) \\ (.11) \\ (.17) \\ (.10) \end{bmatrix} \begin{bmatrix} .04 \\ (.04) \\ (.12) \\ (.17) \\ (.21) \\ (.11) \end{bmatrix}$$

$$\hat{\epsilon} = \begin{bmatrix} .059 & -.0029 \\ .056 \end{bmatrix} \cdot \hat{\alpha}_1, \hat{\alpha}_2 = 0 \quad (5.7)$$

Examination of the pattern of the cross correlations of the residuals suggest that the model is adequate.

Implication of the bivariate model

From (5.7), the equation for the input is

$$(1-1.988+1.388^2-.358^3)z_{1t} = a_{1t} \quad (5.8)$$

with $\text{Var}(a_{1t}) = .0559$, which is essentially the same as (5.4a). The output model is

$$z_{2t} = v_e(B) + (1-1.538+5.588^2+.148^3-.128^4)^{-1}a_{2t} \quad (5.9)$$

with $\text{Var}(a_{2t}) = .0561$, where the transfer function $v_e(B)$ is

$$v_e(B) = \frac{-538+118B+218B^2}{(1-1.538+5.588+148^2-.128^4)} \quad (5.10)$$

The noise model which is the second term on the right hand side of (5.9) is not very different from the corresponding one in (5.4b). Except for

the delay, the form of the transfer function $v_e(B)$ appears markedly different from that of $v(B)$ in (5.4c). However, if we expand these two ratios of polynomials, $v(B) = \sum_{j=0}^{\infty} v_j B^j$ and $v_e(B) = \sum_{j=0}^{\infty} v_e^j B^j$ the impulse response weights v_j 's and v_e^j 's are in fact quite similar as shown in the following table.

Table 5.7

Impulse Response Weights for the Gas Furnace Data

	1	2	3	4	5	6	7	8	9	10	11	12
v_j	.	.	-.53	-.67	-.89	-.51	-.29	-.17	-.09	-.05	-.03	-.02
v^*	.	.	-.53	-.70	-.77	-.48	-.26	-.09	-.01	.01	.00	-.01
j

Thus, the bivariate model (5.7) and the results in (5.4) are in essential agreement.

Further analysis of stepwise AR results

As mentioned earlier, in estimating the generalized partial cross correlations, autoregressive models of increasing order are successively fitted by least squares. For the gas furnace data, it is of interest to examine the changes in the fitting results as the order is increased. Table 5.8 shows the situation for $p = 1, \dots, 6$. Instead of giving the estimates, a plus [minus] sign is used when the estimate is greater (less) than 2 (-2) times its standard error and a blank for in between values. The residual covariance matrix for each order is also given.

Table 5.8

Order of AR	ϕ_1	ϕ_2	ϕ_3	ϕ_4	ϕ_5	ϕ_6	ϕ_7
1	[+]	[+]					
2	[+]	[+]	[+]				
3	[+]	[+]	[+]	[+]			
4	[+]	[+]	[+]	[+]	[+]		
5	[+]	[+]	[+]	[+]	[+]	[+]	
6	[+]	[+]	[+]	[+]	[+]	[+]	[+]

The following observations may be made.

- (i) If only AR(1) or AR(2) were contemplated, one might be lead to believe mistakenly that there was a feedback relationship between these two series.
- (ii) The dynamic transfer function relationship becomes clear when the order of the model, p, is increased to three. Since the input series z_{1t} essentially follows a univariate AR(3) model, this suggests that the present procedure would correctly identify the one-sided causal dynamic relationship after the input model were appropriately selected.
- (iii) The delay $b = 3$ emerges when the order p is increased to 4. Since only very marginal improvement in the fit occurs for $p > 4$, this is saying that the delay is correctly identified when the model is essentially correctly specified.

Implications on general transfer function model building

While the transfer function modelling procedure proposed in [7] has been found useful for one output and one input, it becomes rather complex when we have more than one input variable. The Gas Furnace example discussed above suggests that the present multiple time series procedure may provide a useful alternative. It seems to possess the following advantages.

- (i) Specification of a model seems more direct and straightforward. The one-sided causal relationship will emerge in the identification process, and the stochastic structures of the input as well as the transfer function relationship between input and output are modelled simultaneously.
 - (ii) More important, it can readily handle multiple input and multiple output situations, assuming that the inputs are stochastic.
- As mentioned earlier, writing $z_t = (z_{1t}^i \cdot z_{2t}^i)$ a general transfer function relationship between the input vector z_{1t} and the output vector z_{2t} occurs as a special case of (3.1) when all the ϕ_i 's and θ_i 's are lower block triangular.
- (iii) The data are allowed to shed light on the existence of the transfer function relationship in the specification process.
- In economic and business applications, this would provide a useful way to search for leading indicators. Conversely, this one-sided dynamic relationship may not exist between two time series even when one variable is known to be the input for the other. One reason for this phenomenon is the effect of temporal aggregation.

For example, suppose that on a monthly basis the output, say, consumption y_t is related to the input income x_t by

$$y_t = \varphi x_{t-1} + a_t \quad (5.11)$$

and that x_t follows the model

$$x_t = \psi x_{t-1} + a_t$$

where $\{a_t\}$ and $\{a_t\}$ are two white noise processes independent of each other. Now instead of monthly data suppose only quarterly totals of income and consumption are available. Writing $Z_T = (Z_{1T}, Z_{2T})'$ where Z_{1T} is the quarterly consumption and Z_{2T} the quarterly income, it is shown in [17] that Z_T follows the AR(1,1) model where neither φ nor ψ is triangular. In other words, pseudo feedback relationships could occur because of this temporal aggregation effect, and it would be a mistake to impose a transfer function model in such a situation.

5.3 Census housing data

As a third example, we consider the monthly Housing Starts Z_{1t} and Houses Sold Z_{2t} shown in Figure 5.3. These two series were obtained from the Bureau of the Census and an earlier analysis was given in [14].

Tentative specification

Because of the strong seasonal behavior of the series, one may very well be led to consider the seasonally differenced series $U_t = (U_{1t}, U_{2t})'$ where

$$U_{1t} = (1 - B^{12})Z_{1t}$$

$$U_{2t} = (1 - B^{12})Z_{2t}$$

Figure 5.3 Census Housing Data, Monthly January 1965-May 1975

Part (a) of Table 5.9 shows the pattern of the cross correlations of U_t indicating that 1st order vector MA model would not be appropriate.

Part (b) of the same table gives the W(k) statistics for $k = 1, \dots, 5$, and Part (c) shows the pattern of the cross correlations of the residuals after an AR(1) fit. These summaries suggest the tentative model

$$(1-0.9)(1-0.9^2)z_t = (1-0.9^2)a_t \quad (5.12)$$

Estimation and checking

Table 5.10 summarizes the estimation results corresponding to

- (1) the full model in (5.12), using the conditional likelihood method,
- (11) the full model using the exact likelihood method,
- (111) restricted model by setting "small" parameter estimates to zero.

Table 5.11 shows the pattern of the cross correlations of the residuals corresponding to the restricted case, showing that the model gives an adequate representation of the series.

Table 5.9

Tentative Identification for the Seasonally Differenced Housing Data U_t

(a) Pattern of cross correlations		U_{1t}	U_{2t}
U_{1t}	+++++	+++++
.....
.....
.....
U_{2t}
.....
.....
.....

(b) W(k) statistics corresponding to partial cross correlation matrices	
Lag k	1 2 3 4 5
W(k)	218.6 3.5 2.3 4.7 5.4
(c) Pattern of residual cross correlations after AR(1) fit	
a_{1t}
a_{2t}

Table 5.10

Estimation Results for the Model (5.12): Census Housing Data

		(1) Full model	(2) Full model	(3) Restricted model
		conditional likelihood	Exact likelihood	Exact likelihood
Φ_1	-	[.47 (.07) .14 (.05) -.05 (.08)]	[.89 (.13) .69 (.08) -.09 (.05)]	[.46 (.14) .10 (.09) -.04 (.05)]
Φ_2	-	[.75 (.07) .07 (.05) -.05 (.05)]	[.06 (.11) .69 (.08) -.07 (.05)]	[.01 (.12) .99 (.07) -.04 (.06)]
$\hat{\rho}(a_1, a_2)$.31	[.37 .51 6.29 15.15]	[.28 .09 4.98 11.13]	[.29 .75 5.89 11.83]

Table 5.11

Residual Cross Correlations for the Restricted Model: Census Housing Data

	a_{1t}	a_{2t}
a_{1t}
a_{2t}

Interpretation

for the full model, comparing the results of the conditional likelihood with those from the exact likelihood, we see that

- (i) there is a substantial increase in the estimated values of the diagonal elements of $\hat{\theta}$ to near unity, and a corresponding decrease in the variances of the residuals, when the exact method is used.

(ii) in contrast, little change occurs in the estimates of elements of $\hat{\theta}_2$. This is in agreement with the discussion earlier in Section 4.

Now from the restricted model, we can write, for the Houses Sold series Z_{2t}

$$(1 - .938)(1 - \theta^{12})Z_{2t} = (1 - \theta^{12})\hat{a}_{2t} \quad (5.13a)$$

or

$$(1 - .938)Z_{2t} = \hat{a}_{2t} + a_{2t} \quad (5.13b)$$

where \hat{a}_{2t} satisfies the relation $\hat{a}_{2t} = \hat{a}_{2(t-12)}$. Thus, Z_{2t} behaves nearly like a random walk with a deterministic seasonal component and does not depend on the past of Z_{1t} .

On the other hand, for the Housing Starts series Z_{1t} , we have that

$$(1 - .428)(1 - \theta^{12})Z_{1t} = 1.03(1 - \theta^{12})Z_{2(t-1)} + (1 - \theta^{12})a_{1t} \quad (5.14a)$$

so that the seasonal differencing operator $(1 - \theta^{12})$ again nearly cancels yielding approximately

$$(1 - .428)Z_{1t} = \hat{a}_{1t} + Z_{2(t-1)} + a_{1t} \quad (5.14b)$$

where $\hat{a}_{1t} = \hat{a}_{1(t-12)}$. Thus, Housing Starts Z_{1t} depends not only on its

own past, $Z_{1(t-1)}$, but also on the past of Houses Sold, $Z_{2(t-1)}$. It was quoted in [14] that an appropriate individual model for Z_{1t} was

$$(1 - \theta)(1 - \theta^{12})Z_{1t} = (1 - .288)(1 - .918^{12})c_t \quad (5.15a)$$

or approximately

$$(1 - \theta)Z_{1t} = \hat{a}_{1t} + (1 - .288)c_t, \quad \sigma_c^2 = 41.61 \quad (5.15b)$$

We see from (5.13b) and (5.15b) that the difference operator (1 - θ) in (5.15) indicating that Z_{1t} is nonstationary, arises because of the dependence of Z_{1t} on $Z_{2(t-1)}$. Also, by comparing the variance σ_c^2 in (5.15b) with the corresponding variance of a_{1t} in Table 4.10, we see a substantial reduction when the information $Z_{2(t-1)}$ is utilized.

In summary, this example shows that (i) the existence of a deterministic seasonal component can be detected when the exact likelihood method is employed and (ii) an appreciable reduction in the one step ahead forecast variance can occur by modelling several series jointly.

6. Eigenvalue-Eigenvector Analyses in Multiple Time Series

In this section, we describe several types of eigenvalue-eigenvector analyses which have been found useful in analyzing multiple time series. Writing (3.1) in the form

$$z_t = \hat{z}_{t-1}(1) + \hat{a}_t \quad (6.1)$$

where $\hat{z}_{t-1}(1)$ is the one step ahead forecast of z_t made at time $t-1$, and denoting, for stationary series,

$$\hat{z}_2(0) = E(\hat{z}_{t-1}(1)) \text{ and } \hat{z}_2(1) = E(\hat{z}_{t-1}(1)\hat{z}_{t-1}(1)').$$

It will often be informative to compute eigenvalues and eigenvectors of estimates of the following matrices

$$(a) \underline{\Gamma}_z(0), (b) \underline{\Gamma}_z(0)^{-1}\underline{\Gamma}_z'(0), (d) \underline{\Phi}_z \text{ and } \theta_z$$

Such analyses have two principal aims:

- (i) detection of exact linear relationships between series.
- (ii) to aid understanding and interpretation of the fitted model.

6.1 Exact contemporaneous linear relationship

Suppose there are n zero eigenvalues in $\underline{\Gamma}_z(0)$. This implies that there are n independent exact linear relationships of the form

$$\underline{c}_j \underline{z}_t = 0 \quad (6.2)$$

where $\underline{c}_j = (c_{j1}, \dots, c_{jn})$, existed between the elements of \underline{z}_t , $t = 1, \dots, n$.

Such relationships occur when one or more series is computed from contemporaneous values of the others. Ideally, the analyst should know his data sources sufficiently well that such relationships will be known in advance. However, experience shows that this check should always be made at the initial specification stage with multivariate data, [3]. In this way the form of such relationships are forced to the attention and also by limiting subsequent analysis to linearly independent series, estimation computations are not frustrated by singularities. Eigenvalues which are close to zero can also warn of approximate contemporaneous linear relationships in the data.

In our computer package, eigenvalues and eigenvectors of the estimates of $\underline{\Gamma}_z(0)$ are given in the output of the Preliminary Analysis Program.

6.2 Exact lagged linear relationship

Zero eigenvalues in the covariance matrix of $\underline{\epsilon}_t$ arise when there are linear relationships of the form

$$h_1^1 z_t + h_2^1 z_{t-1} + \dots + h_r^1 z_{t-r} = 0, \quad (6.3)$$

where the h_i^1 's are $k \times 1$ vector of constants, existed between elements in the series which are not concurrent. Equivalently, they indicate that the k series $\{z_t\}$ are driven by less than k innovation series. It is possible, for instance, for two series that look quite different to be generated by identical innovations passing through different filters.

In practice, $\underline{\epsilon}_t$ can be estimated initially by fitting an autoregressive model of suitably high order. Specifically, it can be readily shown that the relationship in (6.3) implies that the residual covariance matrix of an AR(p) model will only be singular for $p \geq r$.

Eigenvalues and eigenvectors of $\underline{\epsilon}_t$ are available after each AR fit. In the Stepwise Autoregression Program of our package, we now illustrate this by an example. Figure 6.1 shows 4 monthly industrial series, from January 1958 to July 1978, obtained from the Bureau of the Census. They are: z_{1t} - new orders, z_{2t} - shipments, z_{3t} - inventory and z_{4t} - unfilled orders. The new orders series were actually constructed from the shipments and unfilled orders series as follows

$$z_{1t} = z_{2t} + z_{4t} - z_{4(t-1)} \quad (6.4)$$

although initially this relationship was not revealed to us. For an AR(1) model

$$z_t = \varphi z_{t-1} + \epsilon_t \quad (6.5)$$

the estimate of $\hat{\Phi}$ is found to be

$$\hat{\Phi} = \begin{bmatrix} .23 & .75 & -.08 & -.02 \\ .14 & .51 & -.01 & .03 \\ -.05 & .03 & .95 & .04 \\ .09 & .24 & -.07 & .95 \end{bmatrix}$$

and the eigenvalues of $\hat{\Phi}$ are $(52.1, 10.7, 5.2, -5.6 \times 10^{-4})$. The eigenvector corresponding to the zero value $(-5.6 \times 10^{-4}$ because of roundoff errors) is proportional to $\mathbf{g}' = (-1, 1, 0, 1)$. Since $\mathbf{g}'\hat{\Phi}\mathbf{t} = 0$, we have that

$$\mathbf{g}'\mathbf{z}_t = \mathbf{g}'\mathbf{y}_t - \mathbf{b}_t \quad (6.6)$$

Substituting $\hat{\Phi}$ for Φ we obtain almost exactly the relationship in (6.4).

6.3 Canonical analysis

Assuming stationarity, we have from (6.1) that

$$\mathbf{z}_t(0) = \mathbf{z}_2(0) + \begin{cases} \dots \\ \dots \end{cases} \quad (6.7)$$

In [10], a canonical analysis of the general model (6.1) with $\mathbf{z}_2(0)$ and assumed positive definite leads to finding eigenvalues and eigenvectors of $\mathbf{z}_2(0)^{-1}\mathbf{z}_2(0)$ (or equivalently of $\mathbf{z}_2(0)^{-1}\mathbf{z}_2(0)$). Let $(\lambda_1, \dots, \lambda_k)$ be the eigenvalues ordered with λ_1 the smallest and the $k \times k$ matrix $N' = \begin{bmatrix} n_{11} & \dots & n_{1k} \\ \vdots & \ddots & \vdots \\ n_{k1} & \dots & n_{kk} \end{bmatrix}$ consists of the corresponding eigenvectors. Then the transformed process $\mathbf{y}_t = \mathbf{N}\mathbf{z}_t$ is such that

$$\begin{aligned} \mathbf{y}_t &= \hat{\mathbf{y}}_t(1) + \mathbf{b}_t \\ \text{with} \quad \hat{\mathbf{y}}_t(0) &= \mathbf{z}_2(0) + \begin{cases} \dots \\ \dots \end{cases} \quad (6.8) \end{aligned}$$

Figure 6.1 The Census Industry Series 1/58-7/78

where $\Gamma_2(0)$, $\Gamma_2'(0)$ and β_0 are all diagonal. Thus,

$$\lambda_t = \text{Var}(\hat{y}_{t-1}(1))/\text{Var}(\hat{y}_t) \quad t = 1, \dots, k$$

is a measure of forecastability of the series. Suppose there are k_1 eigenvalues close to unity, k_2 eigenvalues close to zero, and k_3 eigenvalues intermediate in size. This implies (a) there is a near nonstationary space of dimension k_1 accounting for the overall growth factors in the series, and (b) that there are k_3 stable relationships among the variables which vary independently about fixed means.

An application of this analysis to a 5-variate U.S. hog data is given in [10]. It was found that the structure of the five series are greatly simplified by the transformation and that the transformed series are scientifically meaningful.

This canonical analysis is presently included in our Stepwise Autoregression Program. We plan to incorporate it in the Estimation and Forecasting Program in the near future.

6.4 Decoupling canonical transformation

Consider first the vector AR(1) process

$$\underline{z}_t = Q\underline{z}_{t-1} + \underline{b}_t \quad (6.9)$$

If Q has k linearly independent eigenvectors, then there exists a $k \times k$ real matrix Q such that $QQ^{-1} = I$ where I is a block diagonal matrix with the block size being 1 corresponding to real eigenvalues or 2 for complex pair of eigenvalues. Writing $\underline{z}_t = \underline{Q}\underline{z}_{t-1}$ and $\underline{b}_t = \underline{Q}\underline{b}_t$ we obtain

$$\underline{z}_t = \underline{A}\underline{z}_{t-1} + \underline{b}_t \quad (6.10)$$

When an eigenvalue of Q is real, the corresponding transformed series is uncoupled in the sense that it may be optimally forecast from its own past. The existence of a complex pair of eigenvalues implies that only paired uncoupling is possible. That is that a pair of transformed series can be forecast by the past of only that pair. This procedure can be similarly applied to a MA(1) process. It can also be extended to cover the AR(p) model by first writing the k dimensional process as the AR(1) form for the $k \times p$ dimensional vector $(z_{t1}, \dots, z_{tp})'$. Properties of such an extension are being investigated.

7. Alternative Approaches to Modelling Multiple Time Series

In Sections 4 and 5, we have proposed an approach to modelling multiple time series illustrated by several examples. We shall conclude this report by briefly discussing some other approaches which have been proposed and used in practice.

7.1 Cross correlating prewhitened residuals

This approach, originally proposed in [5], consists of first building an individual time series model for each series, and then attempting to identify the relationships between the series via studying the dynamic structure of the individually whitened residuals. Specifically, for k series $\{z_{1t}\}, \dots, \{z_{kt}\}$, one first builds univariate models of the ARMA form

$$\phi_{p_j}(B)z_{jt} - \theta_{q_j}(B)c_{jt} \quad j = 1, \dots, k \quad (7.1)$$

and then cross correlates the k residual series $\{c_{1t}, \dots, c_{kt}\}$ to determine their dynamic structure from which the relationships among the $\{z_{jt}\}$ series are then deduced. This approach seems less satisfactory compared with the present one for two reasons:

- (i) Complexity in relationships between prewhitened residuals: It can be shown that even if the vector series $\{z_t\}$ follows a low order ARMA model (3.1), the corresponding model for the vector series $\{c_t\}$, where $c_t = (c_{1t}, \dots, c_{kt})'$ can be rather complex and difficult to identify in practice.
- (ii) Weakened relationships between prewhitened residuals: Intuitively, it seems clear that in general the relationships between the residual series $\{c_{jt}\}$ should in some sense be weaker than the relationship among the original $\{z_{jt}\}$, $j = 1, \dots, k$. This is essentially because when z_{jt} is individually related to its own past values $z_{j(t-1)}, z_{j(t-2)}, \dots$, as in (7.1), these past values serve to a certain extent as proxy variables of past values of other series. (This is indeed one reason why z_{jt} can be forecasted from its own past). Thus, the dynamic relationships between series are partially allowed for by the individual past values so that the structure between the residual series must be weaker. This suggests that it will be more efficacious to model z_t directly than through c_t .

7.2 Econometric models

We have seen earlier in (3.19) and (3.20) that the vector model (3.1) can be regarded as a reduced form of the structural linear simultaneous equation model commonly used in econometric literature. However,

the philosophy which is applied in building "econometric" and "time series" models had been different. On the one hand the structure of econometric models has usually been chosen to reflect economic theory which is believed to apply. On the other hand time series models have usually contained only that structure which was necessary to describe the data. More specifically, the sequential model building process for time series has been directed towards finding a transformation $\pi(B)z_t = g^{-1}(B^2(B))z_t = \hat{z}_t$ of the data to white noise uncorrelated with any other known input. Thought of as distinct entities each of these two approaches have points of strength and weakness.

Models derived from theory

- 1) can be directly related to fundamental mechanism and so, when they provide adequate approximations, can encourage scientific progress; however,
 - 2) economic theory is imperfect and hence certain aspects of such models may be badly wrong; and
 - 3) when there is little information from the data on such questionable aspects, imperfection can go uncorrected.
- There has, thus, been a tendency to produce overly elaborate econometric models containing questionable aspects some of which can neither be verified nor discredited by available data.

Empirical models

- 1) contain only those relationships supported by data; however,
- 2) they can establish only the existence of complex dynamic correlations which do not necessarily imply direct causation;
- 3) although they employ a sensible dynamic structure this does not necessarily relate directly to the mechanism; and

- 4) they necessarily omit external theoretical information which even though not verifiable by available data could be valid and essential to understanding.

In view of this, to the extent that the correlation structure of the system remains constant, empirical time series models can produce good forecasts of future behavior but they may not of themselves explain the mechanism of what is occurring.

The clear conclusion seems to be that the econometric and time series approaches are complementary. The time series approach can indicate inherent dynamic correlative structures in the data which directly or indirectly must be capable of explanation by valid economic theory.

Thus, as in other areas where theory and practice, or model and data, interact, progress not possible by the use of either entity alone may be possible by an iterative conversation between them.

References

- [1] Anderson, T.W. (1971). The Statistical Analysis of Time Series. Wiley: New York.
- [2] Bartlett, M.S. (1938). "Further aspects of the theory of multiple regression". Proc. Camb. Phil. Soc. 34, 33.
- [3] Box, G.E.P., Frljavec, J., Hunter, W.G. and MacGregor, J.F. (1973). "Some problems associated with the analysis of multiresponse data". Technometrics, 15, 33.
- [4] Box, G.E.P. and Cox, D.R. (1964). "An analysis of transformation". J. Roy. Statist. Soc. B, 26, 211.
- [5] Box, G.E.P. and Haugh, L. (1977). "Identification of dynamic regression models connecting two time series". J. Amer. Statist. Assoc. 72, 121.
- [6] Box, G.E.P., Hillmer, S. and Tiao, G.C. (1978). "Analysis and modelling of seasonal time series". In Seasonal Analysis of Economic Time Series. Department of Commerce, Bureau of the Census ER-1, A. Zellner, ed. 309-33.
- [7] Box, G.E.P. and Jenkins, G.M. (1970). Time Series Analysis Forecasting and Control. Holden-Day: San Francisco.
- [8] Box, G.E.P. and Newbold, P. (1970). "Some comments on a paper by Coen, Gamme and Kendall". J. Roy. Statist. Soc. A, 134, 229.
- [9] Box, G.E.P. and Tiao, G.C. (1975). "Intervention analysis with applications to environmental and economic problems". J. Amer. Statist. Assoc. 70, 70.
- [10] Box, G.E.P. and Tiao, G.C. (1977). "A canonical analysis of multiple time series". Biometrika, 64, 355.
- [11] Coen, P.G., Gomme, E.D. and Kendall, M.G. (1969). "Lagged relationships in economic forecasting". J. Roy. Statist. Soc. A, 132, 133.
- [12] Gray, H.L., Kelley, G.D., and McIntire, D.D. (1978). "A new approach to ARIMA modelling". Comm. in Stat. 87, 1.
- [13] Hannan, E.J. (1970). Multiple Time Series. Wiley: New York.
- [14] Hillmer, S.C. and Tiao, G.C. (1979). "Likelihood function of stationary multiple autoregressive moving average models". To appear in J. Amer. Statist. Assoc..

- [15] Quenouille, M.H. (1957). The Analysis of Multiple Time Series. Griffin: London.
- [16] Slutsky, E. (1937), "The summation of random causes as the source of cyclic processes", Econometrika, 5, 105.
- [17] Tiao, G.C. and Wei, W.S. (1976), "Effect of temporal aggregation on the dynamic relationship of two time series variables", Biometrika 63, 513.
- [18] Yule, G.D. (1927), "On a method of investigating periodicities in disturbed series, with special reference to Wolfer's sunspot numbers", Phil. Trans., A226, 267.

Appendix: Data

** MA/SERIES1 **
11,892431 20,476211 14,177125 17,758306 19,929189 10,961964 19,215164 16,384006
16,533004 18,014002 20,599139 13,634472 21,689646 15,427833 18,217524 14,637071
18,471996 13,683318 15,207767 22,437959 18,423503 14,330977 20,713228 16,092112
12,752509 18,046285 15,593545 13,827347 18,562726 14,331301 9,426718 21,504443
18,677275 17,333544 16,475653 15,466000 17,695092 22,304461 15,178016 21,998332
12,755474 15,019031 14,310565 18,781433 17,485580 15,270123 14,427924 17,723277
17,699132 18,302998 13,026323 20,467447 16,578313 18,402513 19,104452 15,626230
17,545390 20,151001 20,651659 16,599173 15,277420 15,710610 19,606784 12,797577
18,797153 15,471999 19,352127 17,299727 17,502302 19,196400 17,180264 17,530818
12,140811 17,426941 16,459136 17,432506 17,881354 15,713799 17,702698 18,623713
19,178451 14,275028 17,194481 17,707756 15,116962 19,155515 20,266768 14,996106
13,616592 15,276367 17,549953 14,335212 19,436909 15,468049 14,796132 17,635209
17,749225 12,548733 19,571478 17,598467 14,385500 16,2274130 20,337205 13,986159
20,187597 16,406279 16,250279 14,396787 16,313435 16,477469 20,7226595 13,514000
16,576778 17,440394 15,340536 19,790973 16,403132 14,257954 18,755335 18,817010
17,689083 15,251003 13,519662 17,375463 21,831059 15,947061 17,457845 18,703440
15,107669 17,224836 17,531460 18,730959 15,691207 15,066223 20,536892P 14,970959
17,547239 18,056434 13,795634 16,614248 11,760365 14,120020 18,040030 18,837307
17,405731 17,940837 17,259035 17,462500 22,485353 14,663418 20,305340 15,321001
16,577325 16,391626 15,015016 23,037149 17,519311 18,035711 16,354772 15,012848
15,999699 16,463719 19,422329 15,629343 17,520103 17,747774 13,857362 19,189962
20,455493 15,164585 17,957288 18,211224 15,089944 17,052711 18,077027 14,754314
14,941999 17,504-15 16,231918 17,455551 13,957045 18,466253 16,748367 17,934514
16,052127 22,335727 14,545342 16,721529 18,891933 14,329782 17,709268 14,143682
18,041827 16,347565 16,429702 17,597436 18,448914 15,953017 19,161314 11,766302
18,088107 15,690522 20,340832 19,521945 16,096701 19,899988 16,984158 18,099982
13,940941 18,410329 13,445764 13,279429 14,729442 18,323990 19,933746 21,724571
19,963279 17,542738 19,926497 17,078642 18,31239 17,122561 19,617421 15,377522
18,185206 15,853485 15,553340 18,316904 18,258959 17,555599 21,241123 15,601672
19,535979 16,975175 16,975257 15,384377 19,887494 14,756451 18,209124
17,831275 18,549447 18,683672 14,584975 16,034466 19,558120 13,200380 18,233313
18,645736 18,599473

** MA/SERIES2 **
26,046626 25,546622 22,811276 24,073537 25,814059 24,446776 25,705939 24,082478
22,851145 27,209705 25,879003 25,215001 24,012087 28,242994 22,980070 27,468452
24,243044 25,227159 20,723140 25,714481 27,960523 24,627311 27,172833 25,566029
23,023043 23,175556 26,014130 23,573882 23,403581 24,661253 22,777976 22,993146
23,926095 27,514516 24,458173 26,551991 23,142223 26,640559 26,294743 26,307438
25,900517 23,076784 23,737552 26,510305 26,917736 22,897708 24,029000 24,228299
23,744518 29,691536 21,849575 25,242535 24,949743 24,493911 25,675220 26,341197
24,418432 26,073280 27,840727 26,548903 24,827584 23,029416 24,921408 22,912229
25,676349 27,452591 26,821944 26,402639 24,095465 25,530463 25,758030 27,542534
22,286712 22,605645 24,708892 26,675655 22,987214 26,062911 24,148633 25,756072
26,821031 26,513334 22,867270 24,279416 25,714767 23,374731 28,360101 24,712240
25,976049 22,164530 25,545125 24,103072 24,626215 24,409049 25,414569 23,261413
25,217421 24,810439 23,784081 23,555656 27,043187 23,463145 25,532244 23,610356
26,762199 25,103208 25,592419 23,555298 23,513013 23,755027 28,496468 22,984957
25,170600 24,607664 22,847771 25,783711 27,047705 24,161492 21,740211 27,738531
24,775655 28,250906 20,953649 23,060250 27,104986 25,552433 25,331583 24,454383
28,120575 23,146370 24,578474 25,704901 23,970696 25,054880 24,994382 24,247801
25,579433 26,030400 23,864461 23,587671 24,841166 21,613353 23,410136 25,365785
26,190146 25,640707 25,587964 24,622770 27,648982 24,227677 23,267046 27,697107
25,078245 24,076030 22,524000 26,545712 25,962124 25,673177 25,109259 23,642311
26,225872 23,035477 25,600465 23,271904 26,319722 24,217168 26,561149 23,400723
26,500144 24,700500 24,862604 25,724008 27,416922 21,991016 26,233471 26,610931
23,170009 24,424153 25,753166 26,122762 21,800917 25,898000 23,805124 26,725069
23,470452 25,000526 27,404042 25,253178 23,426616 25,899988 28,706841 25,670438
24,070033 22,522052 27,358477 23,804672 25,276273 26,246319 25,122945 25,929327
24,730044 24,203211 23,708445 27,015004 28,493664 23,457794 27,488584 24,806505
25,477575 25,230871 23,104004 23,733041 23,062100 24,486115 24,488483 24,316015
29,351772 25,764771 27,298434 25,697779 26,614776 25,319584 25,333913 24,961272
25,823218 24,416003 23,416491 25,743477 23,925731 26,724740 27,052005 26,246518
25,128253 25,001986 24,054726 23,994653 24,259702 26,378099 23,717558 25,210339
25,442167 26,614483 25,334724 23,008538 26,050410 25,201568 23,773031 23,949900
24,303349 23,057976

**** AR/SERIFS1 ****

.818645	5.230414	3.364532	4.369497	6.982769	.850557	2.290049	3.661262
4.179512	0.412262	0.754697	3.826964	8.141701	4.112540	4.740042	1.008071
3.919423	1.613238	2.297223	9.165944	8.930532	3.893450	6.764202	5.348179
.902125	4.370588	3.197142	.917604	4.680186	2.722328	3.379120	5.977294
9.873422	8.303506	6.211211	3.405656	5.382010	10.079726	6.740796	9.909163
2.225499	.063128	3.174234	5.726194	6.057930	4.431266	1.662453	3.554474
5.167430	5.932471	2.446230	7.362465	6.752504	7.473092	4.401109	5.013220
4.932010	7.715212	9.747762	6.568653	5.096394	1.750152	4.432703	1.006443
3.722620	3.577487	6.301414	6.664465	7.575537	4.746181	4.702773	5.150693
.025195	2.108001	2.498431	3.403327	5.591526	3.440789	4.231731	5.570420
6.749353	2.633618	3.735401	4.976636	2.502461	5.395084	7.691623	4.127992
.552224	.227532	2.017070	1.722242	6.214941	5.054211	2.727774	5.071346
6.587349	1.940311	6.466329	7.773634	3.447679	3.062009	8.160621	4.640423
7.240718	4.152211	4.641903	2.345693	3.023676	4.057822	7.497021	4.483105
4.815473	6.684096	5.802826	8.541224	6.825943	3.693497	7.018754	7.771263
7.141472	3.450729	1.215390	3.377686	9.079969	6.684321	5.576341	6.383717
2.735143	4.124096	5.483447	7.114998	4.755922	1.629565	6.357476	4.154614
4.157238	5.268904	2.127995	2.794503	-1.326697	-1.150203	5.476046	9.764582
10.145023	10.396656	9.576961	9.053323	13.530212	8.025145		

**** AR/SFRIF52 ****

5.826490	10.094933	8.790906	8.431233	8.103038	4.017174	8.075621	9.662242
8.633091	9.554712	10.495790	7.971834	7.975064	6.144074	5.120579	5.292487
8.526885	10.013151	10.457019	12.335434	10.532402	6.918128	9.237776	9.063469
7.702763	9.245906	9.367434	9.593363	11.653168	11.119566	10.952010	17.248416
16.144350	13.573182	10.766282	10.724560	11.688403	12.972146	9.220657	9.096396
5.149182	5.584249	7.730937	9.426704	10.686616	9.300552	8.247785	9.743733
9.115194	11.680314	10.469078	12.655946	11.254296	11.051714	10.096943	8.221200
8.106866	8.831487	8.911471	6.752504	5.496749	5.060157	8.007108	6.281780
9.210712	8.963438	11.056635	12.235106	11.931648	10.594167	7.488198	7.884465
6.038302	7.245840	7.320343	9.363319	9.103345	7.861016	7.728064	7.673728
7.759572	7.268661	8.401319	8.247339	7.547201	7.766639	8.550004	5.902512
4.194365	4.863707	8.024857	9.560098	12.324655	11.074564	11.241252	12.699358
12.968059	11.776807	14.515920	12.514411	10.759463	11.549024	13.473410	10.504502
11.787075	10.493997	10.198823	9.832729	10.846182	11.089923	14.012116	12.797669
13.974940	15.501188	13.951351	14.057663	13.320204	12.858507	12.304706	11.702554
9.338863	9.587072	9.286538	10.249050	12.329593	9.477739	8.330220	7.236751
7.550345	9.442581	10.163954	10.373633	7.460520	7.019325	9.916503	7.875811
8.065826	9.315096	8.373829	9.371698	10.540309	14.320924	18.605076	20.257987
19.524306	18.578399	17.216337	15.381568	15.801648	11.373024		

FILE PLATE LS
RECD 10/10/81

**** SCC/FT SHARE ****

1.3780	1.4061	1.0844	1.4477	1.5003	1.5749	1.6592	1.8158
2.0224	2.1826	2.2902	2.3053	2.5090	2.3415	2.2376	2.2559
2.2144	2.1239	2.2469	2.4675	2.4210	2.0542	1.9759	2.0411
2.2559	2.5800	2.6692	2.4331	3.0250	3.6914	3.9592	3.8406
3.9250	3.8259	3.9580	4.2710	3.7953	3.6168	3.6429	3.4946
3.3222	3.4677	3.6156	3.7819	3.6156	4.1817	4.0974	4.2111
4.4128	4.2368	4.1646	4.1609	3.9531	4.2257	4.2710	4.3982
3.9127	3.6670	3.8944	4.1952	4.4116	4.8640		

**** SCC/COMMODITY ****

14.7545	10.2769	17.8148	16.8283	16.5600	16.8575	17.5555	18.4719
10.0215	10.0176	17.8694	17.4268	17.7525	17.5263	17.5749	16.9199
17.2455	17.6823	16.7737	16.5436	16.3015	15.9401	15.6038	15.5990
15.6350	15.6233	15.6790	16.1146	16.1400	16.1269	16.0796	15.9406
15.5395	15.1866	15.1320	15.3435	15.5030	15.2236	15.1183	15.0111
14.8668	15.2334	15.6721	15.9450	16.1450	16.5709	16.8283	16.7581
17.6901	10.0196	16.9979	16.6110	16.6586	17.1295	17.5380	17.5867
17.3313	16.2316	15.4339	15.5195	15.3445	15.8900		

**** SCC/CAR ****

1.0231	1.1790	1.2215	1.8051	1.5514	1.9832	1.7239	1.8110
1.8943	1.9276	2.2120	2.0435	2.2418	2.2621	2.0433	1.7917
1.4704	1.4107	1.0663	2.0472	2.3657	2.0186	2.0780	2.0454
2.5315	2.4120	2.3872	2.4351	2.7450	3.5433	3.6205	3.6152
3.4276	2.6100	1.9905	2.6040	2.7024	2.5410	1.0278	2.9113
3.1228	3.0250	3.9150	3.4505	4.0095	4.0620	4.0530	4.0472
4.2111	4.6038	4.2405	4.1700	3.8615	4.1401	4.2310	4.1271
3.8623	3.2368	3.5601	3.6100	3.6372	3.6924		

•• GASFURNACE/C02 ••

53,000	53,600	53,500	53,500	53,400	53,100	52,700	52,400	52,200	52,000
52,000	52,400	53,200	54,000	54,900	56,900	56,500	56,400	56,400	55,700
55,000	54,300	53,200	52,300	51,600	51,200	50,800	50,500	50,000	49,200
48,400	47,200	47,600	47,500	47,500	47,600	46,100	46,300	46,000	51,100
51,800	51,300	51,700	51,200	50,000	48,300	47,000	45,200	45,600	46,000
46,400	47,800	48,200	48,300	47,900	47,200	47,200	48,100	49,400	50,600
51,500	51,600	51,200	50,500	50,100	49,400	49,500	49,400	49,300	49,200
49,300	49,700	50,300	51,500	52,800	54,400	56,000	56,900	57,500	57,300
56,600	56,200	55,400	55,300	56,400	57,200	56,200	56,400	56,400	56,100
57,700	57,000	56,300	54,700	53,200	52,100	51,600	51,000	50,500	50,400
51,000	51,800	52,400	53,000	53,800	53,400	53,700	53,500	53,800	53,500
53,300	53,000	52,900	53,400	54,600	56,100	54,000	59,400	60,200	60,000
59,400	58,400	57,400	56,300	56,400	56,300	55,700	55,300	55,600	56,300
53,700	52,800	51,600	50,600	49,400	48,400	48,500	48,700	49,200	49,800
50,400	50,700	50,900	50,700	50,500	50,100	50,200	50,400	51,200	52,300
53,200	53,910	54,100	54,000	53,800	53,200	53,000	52,400	52,300	51,000
51,600	51,400	51,400	51,200	51,700	50,000	49,300	49,300	49,700	50,600
51,800	53,300	54,000	55,300	55,900	55,900	54,600	53,500	52,400	52,100
52,300	53,000	53,200	54,200	54,600	55,800	55,900	55,900	55,200	56,400
53,600	53,600	53,200	52,500	52,000	51,800	51,000	50,300	52,400	53,500
55,600	56,000	59,500	60,400	60,400	60,500	60,200	59,700	59,000	57,600
56,800	55,200	54,500	54,100	54,100	54,400	55,500	56,200	57,000	57,300
57,400	57,000	56,400	55,900	55,500	55,300	55,200	55,400	56,000	56,500
57,100	57,300	56,800	55,600	55,000	54,100	54,300	55,300	56,000	57,200
57,800	56,300	58,600	58,800	54,800	58,600	54,300	57,000	57,000	56,400
56,300	56,400	56,400	54,300	55,200	54,000	53,000	52,000	51,600	51,600
51,100	50,400	50,300	50,000	52,000	50,600	55,100	54,500	52,400	51,400
50,800	51,200	52,000	52,400	53,800	54,500	54,000	54,000	54,800	54,400
53,700	53,300	52,800	52,600	52,600	53,000	54,300	56,000	57,000	58,000
56,600	58,500	58,300	57,300	57,300	57,000	57,000	57,000	57,000	58,000

** HOUSING/STARTS **

52,1	87,2	82,2	100,9	98,8	97,8	96,5	88,8	80,9	85,8	72,4	61,2
46,6	59,4	43,2	94,3	84,7	79,8	69,1	64,4	59,4	53,5	50,2	39,0
48,2	80,3	55,6	79,8	87,3	87,6	82,3	83,7	78,2	81,7	69,1	47,0
45,2	55,4	79,3	95,0	86,8	81,1	86,4	82,5	80,1	85,6	64,8	53,8
51,3	47,9	71,9	95,0	91,3	82,7	73,5	67,5	71,5	84,0	55,1	42,0
33,4	41,4	61,4	75,8	74,6	83,0	75,5	77,3	70,8	70,4	67,4	60,0
54,9	58,3	91,6	116,0	115,6	116,9	107,7	111,7	102,1	102,9	97,9	80,6
76,2	76,3	111,4	119,4	135,2	131,9	110,1	131,3	120,5	117,0	97,1	73,2
77,1	73,6	105,1	120,8	131,6	114,8	114,7	106,4	84,5	84,6	71,5	46,6
43,3	57,6	77,3	102,3	96,4	99,6	99,9	79,8	73,4	69,5	67,9	41,0
44,0	80,2	62,6	77,9	92,8							

Digitized by srujanika@gmail.com

38,0	44,0	53,0	49,0	58,0	57,0	51,0	58,0	68,0	44,0	42,0	37,0
42,0	45,0	53,0	49,0	49,0	49,0	40,0	36,0	29,0	41,0	26,0	23,0
29,0	52,0	41,0	49,0	44,0	47,0	46,0	47,0	47,0	45,0	54,0	31,0
35,0	43,0	47,0	41,0	46,0	43,0	41,0	44,0	47,0	41,0	40,0	32,0
34,0	40,0	49,0	43,0	42,0	43,0	46,0	39,0	40,0	35,0	32,0	32,0
36,0	29,0	36,0	47,0	43,0	43,0	43,0	45,0	45,0	45,0	40,0	37,0
45,0	49,0	42,0	47,0	54,0	59,0	48,0	42,0	46,0	42,0	56,0	45,0
51,0	47,0	41,0	40,0	45,0	44,0	43,0	45,0	72,0	41,0	45,0	47,0
44,0	54,0	49,0	47,0	46,0	46,0	43,0	57,0	44,0	48,0	41,0	24,0
36,0	42,0	51,0	49,0	45,0	48,0	47,0	43,0	39,0	43,0	47,0	33,0
29,0	33,0	49,0	48,0	54,0	54,0	48,0	47,0	43,0	47,0	47,0	33,0

** INDUSTRY/NET ORDERS **												
293	306	302	336	288	324	301	351	350	336	349	353	
349	340	417	424	445	674	307	385	408	387	367	416	
402	411	415	419	406	381	349	376	303	301	291	291	
341	376	368	392	352	432	370	372	427	331	302	402	
337	471	454	455	392	451	399	368	399	376	340	401	
422	454	501	484	485	541	410	426	430	438	435	491	
491	512	542	597	524	569	526	500	517	426	508	524	
533	615	643	657	612	616	549	556	594	613	558	575	
628	694	752	702	711	704	625	577	549	634	591	545	
574	645	663	732	669	688	610	653	644	589	432	694	
694	651	684	750	779	734	649	650	756	731	699	642	
726	973	403	878	869	951	757	750	812	799	746	732	
846	924	902	878	801	874	706	704	832	736	637	719	
598	860	862	860	772	918	724	811	809	737	830		
868	919	1049	1006	970	1019	905	932	962	960	946	1012	
1165	1310	1423	1260	1260	1346	1277	1235	1257	1344	1280	1171	
1376	1429	1480	1895	1930	1959	2101	1796	1766	1754	1520	1463	
1590	1319	1650	1450	1466	1584	1418	1231	1328	1327	1393	1124	
1348	1329	1446	1415	1548	1764	1520	1566	1519	1532	1604	1553	
1673	1854	2094	1775	2006	2100	1809	2407	2000	2135	2168	2055	
2303	2410	2160	2662	2510	2403	2428						

** INDUSTRY/SHIPMENTS **												
312	348	344	357	322	349	310	327	347	342	348	365	
320	366	800	425	431	662	349	380	390	364	394		
363	408	407	441	412	401	372	372	365	335	316	309	
312	364	364	379	373	349	345	377	404	356	312	335	
305	363	348	445	452	449	343	406	393	342	374	356	
337	404	431	474	474	484	414	441	459	453	445	433	
426	455	518	549	546	564	506	507	530	503	499	469	
482	546	590	604	612	601	561	561	569	571	560	543	
557	630	649	685	665	698	612	605	622	624	590	589	
551	645	649	719	697	711	623	635	684	595	649	706	
620	647	688	734	750	784	694	654	727	714	693	649	
660	768	820	831	789	848	746	726	799	769	746	702	
787	866	829	820	791	848	730	759	814	723	647	647	
759	846	836	824	810	662	716	768	842	772	726	737	
846	922	930	978	910	980	890	922	956	935	915	903	
1003	1137	1144	1155	1126	1229	1075	1479	1114	1059	1010	993	
1096	1225	1320	1338	1311	1493	1334	1384	1544	1621	1556	1463	
1492	1649	1670	1665	1592	1693	1490	1526	1535	1595	1518	1519	
1449	1647	1664	1682	1693	1784	1614	1639	1755	1441	1595	1581	
1660	1880	1944	1942	1965	2060	1838	1647	2019	2033	2332	1948	
2087	2220	2270	2435	2337	2490	2305						

** INDUSTRY/TOTAL INVENTORIES **												
1233	1232	1228	1193	1166	1146	1124	1107	1096	1091	1083	1087	
1099	1136	1152	1156	1176	1196	1197	1148	1187	1191	1188	1222	
1249	1303	1312	1299	1279	1275	1229	1196	1179	1167	1165	1147	
1180	1143	1138	1132	1119	1111	1093	1074	1052	1048	1059	1046	
1116	1146	1174	1169	1162	1151	1147	1146	1152	1166	1178	1212	
1242	1249	1255	1236	1217	1203	1190	1181	1185	1184	1198	1246	
1260	1266	1246	1286	1243	1289	1245	1301	1316	1345	1347	1336	
1442	1450	1490	1493	1487	1493	1506	1517	1529	1542	1564	1604	
1643	1669	1641	1689	1704	1737	1744	1752	1820	1458	1911	1940	
1959	1992	2004	1993	1975	1953	1923	1900	1907	1911	1957	1978	
1976	2005	2029	2048	2042	2036	2000	1993	2019	2007	2137	2089	
2108	2169	2150	2196	2212	2204	2212	2231	2253	2281	2336	2399	
2413	2444	2443	2510	2537	2548	2560	2551	2514	2504	2563	2630	
2645	2648	2716	2730	2737	2771	2767	2759	2738	2737	2811	2925	
2806	2784	2762	2711	2722	2594	2664	2661	2679	2713	2400	2990	
3227	3155	3192	3124	3159	3165	3146	3226	3264	3321	3418	3561	
3676	3819	3933	3986	4072	4165	4245	4346	4489	4594	4766	5145	
5234	5833	5594	5690	5621	5650	5613	5595	5562	5560	5593	5594	
5620	5755	5819	5785	5710	5674	5626	5592	5555	5561	5681	5764	
5709	5812	5710	5636	5519	5467	5413	5428	5473	5492	5565	5493	
5950	6056	6119	6162	6190	6315	6376						

** INDUSTRY/UNFILLED ORDERS **												
962	920	478	457	423	802	793	817	820	810	809	797	
817	837	874	877	891	907	925	928	946	953	952	970	
1009	1032	1040	1019	1012	992	980	923	861	827	842	786	
813	825	429	482	621	464	489	884	903	878	868	935	
967	1175	1131	1139	1079	1061	1077	1439	1045	1039	1008	1150	
1135	1146	1255	1265	1272	1325	1330	1315	1295	1240	1270	1327	
1390	1447	1471	1519	1501	1516	1526	1519	1504	1529	1538	1573	
1624	1693	1764	1819	1819	1834	1862	1857	1862	1924	1924	1950	
2024	2196	2146	2197	2243	2253	2266	2234	2295	2211	2203	2199	
2272	2222	2215	2249	2220	2197	2144	2202	2202	2196	2179	2167	
2261	2245	2271	2267	2296	2250	2245	2241	2236	2247	2253	2246	
2352	2557	2540	2627	2707	2740	2751	2775	2794	2818	2840	2850	
2609	2647	3141	3194	3104	3134	3114	3154	3177	3190	3140	3112	
2947	2961	2467	3103	2965	3021	3027	3170	3039	3174	3180	3172	
3205	3197	3316	3344	3404	3443	3454	3464	3474	3494	3460	3478	
3880	3813	4272	4377	1511	4628	4630	4694	5129	5014	5088	5166	
6146	6350	6710	7267	7086	4352	4119	4554	4647	4784	4744	4744	
9466	9476	9496	7261	9115	9446	9473	4620	4622	4154	4029	7711	
7433	7315	7107	7333	8075	4605	6771	6899	6781	6754	6367	6139	
6552	6526	6411	6104	6349	6349	6360	6894	6861	6503	6697	6766	
6082	7173	7312	7551	7732	7645	7169						