Лабораторные задачи по теме: Циклы с контролем за монотонной величиной

Напишите программу приближенного просчета значения определенного интеграла функции < cmoлбец 2 > на промежутке [a; b] < cmoлбец 3 > методом < cmoлбец 4 > с точностью $\varepsilon <$ cmoлбец 5 >, если известна первообразная функции < cmoлбец 6 >.

Спецификация ввода:

 $ab \varepsilon$

Спецификация вывода:

h

количество точек приближенное значение интеграла

Таблица 1: Таблица заданий к лабораторной работе

<u>№</u> варианта	Подынтегральная функция	Промежуток интегрирования	Метод численного интегрирования	Точность вычислений	Точное значение первообразной
	$\mathbf{f}(\mathbf{x})$	[a, b]			$F(x) = \int_a^b f(x) dx$
1	2	3	4	5	6
1	$\frac{\ln x}{x\sqrt{1+\ln x}}$	[1; 3.5]	Левых прямоугольников	0.001	$\frac{2}{3}(\ln x + 1)^{3/2} - 2(\ln x + 1)^{\frac{1}{2}} + \frac{4}{3}$
2	$tg^2x + ctg^2x$	$[\pi/6; \pi/3]$	Трапеций	0.0001	$tg x - ctg x - 2x - tg \frac{\pi}{6} + ctg \frac{\pi}{6} + \frac{\pi}{6}$
3	$\frac{1}{x \lg x}$	[2; 3]	Симпсона	0.00001	$2.3026(\ln\ln x - \ln\ln 2)$
4	$\frac{ln^2x}{x}$	[1; 4]	Ньютона	0.000001	$\frac{1}{3} ln^3 x$

5	$\sqrt{e^x-1}$	[0; ln 2]	Правых прямоугольников	0.001	$2\sqrt{e^x-1}-2arctg\sqrt{e^x-1}$
6	$xe^x \sin x$	[0; 1]	Трапеций	0.0001	$\frac{x e^x(\sin x - \cos x) + e^x \cos x - 1}{2}$
7	$x \frac{e^x - e^{-x}}{2}$	[0; 2]	Симпсона	0.00001	$\frac{x(e^{x}+e^{-x})}{2}-\frac{e^{x}-e^{-x}}{2}$
8	$\frac{1}{\sqrt{9+x^2}}$	[0; 2]	Ньютона	0.000001	$\ln\left(x+\sqrt{x^2+9}\right) - \ln 3$
9	$\frac{1}{x^2}\sin\frac{1}{x}$	[1; 2.5]	Средних прямоугольников	0.001	$cos\frac{1}{x}-\cos 1$
10	x arctg x	$[0; \sqrt{3}]$	Трапеций	0.0001	$\frac{x^2}{2} \arctan x - \frac{x}{2} + \frac{1}{2} \arctan x$
11	$\arcsin \sqrt{\frac{x}{1+x}}$	[0; 3]	Симпсона	0.00001	$x \arcsin \sqrt{\frac{x}{1+x}} - \sqrt{x} + arctg \sqrt{x}$
12	$x^x \left(1 + \ln x\right)$	[1; 3]	Ньютона	0.000001	$x^x - 1$
13	$\frac{1}{\sqrt{1+3x+2x^2}}$	[0; 1]	Левых прямоугольников	0.001	$\frac{1}{\sqrt{2}} \ln \frac{x + 0.75 + \sqrt{(x + 0.75)^2 - 0.0625}}{0.75 + \sqrt{0.5}}$
14	$\frac{\sqrt{x^2 - 0.16}}{x}$	[1; 2]	Трапеций	0.0001	$\sqrt{x^2 - 0.16} - 0.4 \arccos \frac{0.4}{x} - \sqrt{0.84} + 0.4 \arccos 0.4$
15	2 ^{3*}	[0; 1]	Симпсона	0.00001	$\frac{1}{3 \ln 2} (2^{3^x} - 1)$

16	$\frac{x \ arctg \ x}{\sqrt{1+x^2}}$	[0; 1]	Ньютона	0.000001	$\sqrt{1+x^2} \arctan x - \ln(x+\sqrt{1+x^2})$
17	$\frac{e^{3x}+1}{e^x+1}$	[0; 2]	Правых прямоугольников	0.001	$\frac{e^{2x}}{2}-e^x+x+0.5$
18	sin²x	$[0; \pi/2]$	Трапеций	0.0001	$\frac{x}{2} - \frac{1}{4}\sin 2x$
19	$x^2\sqrt{4-x^2}$	[0; 1.9999]	Симпсона	0.00001	$2\arcsin\frac{x}{2} - \frac{1}{2}\sin(4\arcsin\frac{x}{2})$
20	$e^x \cos^2 x$	$[0;\pi]$	Ньютона	0.000001	$\frac{e^x}{2}\left(1+\frac{2\sin 2x+\cos 2x}{5}\right)-0.6$
21	$(x \ln x)^2$	[1; e]	Средних прямоугольников	0.001	$\frac{x^3}{27} \left(9 \ln^2 x - 6 \ln x + 2 \right) - \frac{2}{27}$
22	$arcsin\sqrt{\frac{x}{1+x}}$	[0; 3]	Трапеций	0.0001	$x \arcsin \sqrt{\frac{x}{1+x}} - \sqrt{x} + \arctan \sqrt{x}$
23	$\frac{x^2 - 1}{(x^2 + 1)\sqrt{x^4 + 1}}$	[0; 1]	Симпсона	0.00001	$-\frac{\sqrt{2}}{2}\arcsin\left(\frac{\sin 2 \ arctg \ x}{\sqrt{2}}\right)$
24	$\sin x \ln(tg \ x)$	[1; 1.5]	Ньютона	0.000001	$\ln\left(tg\frac{x}{2}\right) - (\cos x)(\ln(tgx)) -$ $\ln(tg0.5) + (\cos 1)\ln(tg1)$
25	$\frac{e^x(1+\sin x)}{1+\cos x}$	[0; 1.5]	Левых прямоугольников	0.001	$e^x tg \frac{x}{2}$

26	$\frac{1}{(x+1)\sqrt{x^2+1}}$	$\left[0; \frac{3}{4}\right]$	Трапеций	0.0001	$\frac{1}{\sqrt{2}} \left(\ln \left(\frac{1+\sqrt{2}}{2} \right) - \ln \frac{1-x+\sqrt{2}(x^2+1)}{2(x+1)} \right)$
27	$\frac{1}{(3\sin x + 2\cos x)^2}$	[0; 1]	Симпсона	0.00001	$\frac{3}{26} - \frac{3\cos x - 2\sin x}{13(2\cos x + 3\sin x)}$
28	$\left(\frac{\ln x}{x}\right)^3$	[1; 2]	Ньютона	0.000001	$-\frac{(\ln x)^3 + 3\frac{(\ln x)^2}{2} 3\frac{\ln x}{2} + \frac{3}{4}}{2x^3} + \frac{3}{8}$
29	$\frac{x^3}{3+x}$	[1; 2]	Правых прямоугольников	0.001	$9x - \frac{3x^2}{2} + \frac{x^3}{3} - 27\ln(3+x) - \frac{47}{6} + 27\ln 4$
30	$\frac{x}{x^4 + 3x^2 + 2}$	[1; 2]	Трапеций	0.0001	$\frac{1}{2}\ln\frac{x^2+1}{x^2+2} - \frac{1}{2}\ln\frac{2}{3}$

Таблица 2: Расчетные формулы

№ n/n	Метод численного интегрировани я	Малая формула	Большая формула		
Обозначения:		$x_0 = a; x_i = a + ih; x_n =$	$x_0 = a; \; x_i = a + ih; \; x_n = b, \; $ где $h = \frac{b-a}{n}; \; y_i = f(x_i), \; $ где $i = \overline{0, \; n}$.		

1	Левых прямоугольников	$I = y_0(b - a)$	$I = h \sum_{k=0}^{n-1} y_k, h = \frac{b-a}{n}$		
2	Средних прямоугольников	$I = y_{0.5}(b - a)$	$I = h \sum_{k=0}^{n-1} y_{k+0.5}, \ h = \frac{b-a}{n}$, где $y_{k+0.5}$ $= f\left(\frac{x_k + x_{k+1}}{2}\right).$		
3	Правых прямоугольников	$I = y_1(b - a)$	$I = h \sum_{k=0}^{n-1} y_{k+1}, \ h = \frac{b-a}{n}$		
4	Трапеций	$I = \frac{y_0 + y_1}{2}(b - a)$	$I = h\left(\frac{y_0 + y_n}{2} + \sum_{k=1}^{n-1} y_k\right), \ h = \frac{b-a}{n}$		
5	Симпсона	$I = \frac{h}{3} (y_0 + 4y_1 + y_2),$ $h = \frac{b-a}{2}, \text{ r. e. } n = 2$	$I = \frac{h}{3} \left[y_0 + y_{2m} + 2 \sum_{k=1}^{m-1} y_{2k} + 4 \sum_{k=1}^{m} y_{2k-1}, \right.$ $h = \frac{b-a}{n} = \frac{b-a}{2m}$		

$$I = \frac{3h}{8} \left[y_0 + 3(y_1 + y_2) + y_3 \right],$$
 $h = \frac{b-a}{3}$, т. е. $n = 3$
$$I = \frac{3h}{8} \left[y_0 + y_{3m} + 2 \sum_{k=2}^m y_{3k-3} + 3 \sum_{k=1}^m (y_{3k-2} + y_{3k-1}) \right],$$
 $h = \frac{b-a}{3}$

R-схема 1: Обобщенный алгоритм программы

Обобщенный алгоритм численного интегрирования

С# - псевдокод алгоритма программы

```
Обобщенный алгоритм численного интегрирования {

ввод а, b, точность
инициализация параметра п
просчет величины шага h
I = малаяФормулаМетода(a, h)
просчет значения первообразной F
while(| I - F | > точность) {
    h = h/2
    I = большаяФормулаМетода(a, h)
}
вывод h
вывод п
вывод I
}
```