Noise & Synthesis Dataset Survey

Presenter: Hao Wang

Advisor: Prof. Chia-Wen Lin

Outline

- Only dataset
 - PolyU
 - LLRVD
- Dataset and Synthesis
 - LRD
 - LRID
- Discussion

Real-world Noisy Image Denoising: A New Benchmark

Jun Xu¹, Hui Li¹, Zhetong Liang¹, David Zhang^{1,2}, Fellow, IEEE, and Lei Zhang^{1,*}, Fellow, IEEE

¹Department of Computing, The Hong Kong Polytechnic University, Hong Kong SAR, China

²School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China

arXiv 2018

Presenter: Hao Wang

Advisor: Prof. Chia-Wen Lin

Introduction

• Construct a large dataset of real-world noisy images with reasonably obtained corresponding "ground truth" images.

(g) 6400,6.7,1/60

(h) 6400,6.7,1/350

(i) 6400,16,1/60

good example

• bad example

Noise level estimation

- The noise levels in R, G, B channels are estimated via some noise estimation methods
 - Single-image noise level estimation for blind denoising. (IEEE TIP,2013)
 - An efficient statistical method for image noise level estimation. (ICCV, 2015)

Key insight

- 可以採用這個方式,反正我們的 Low-Light 與 noise condition 都可以量化去學,不用亮度剛好一樣
 - 但亮度調到相同時, noise 似乎都不明顯
 - 但這樣才反而是真實表現

Outline

- Only dataset
 - PolyU
 - LLRVD
- Dataset and Synthesis
 - LRD
 - LRID
- Discussion

Low-Light Raw Video Denoising With a High-Quality Realistic Motion Dataset

Ying Fu[®], Senior Member, IEEE, Zichun Wang, Tao Zhang[®], and Jun Zhang[®]

IEEE TOM 2023

Presenter: Hao Wang

Advisor: Prof. Chia-Wen Lin

Introduction

• collect a raw video denoising dataset in low-light with complex motion and high-quality ground truth

Data collection

- collect 70 high-quality 4 k videos from the internet, then play them on the DELL U2720QM monitor.
- Use a Sony Alpha 7R IV full-frame mirrorless camera.

Algorithm 1: Dataset Capture Protocol. **Require:** $t_b = 1 \ s, g_b = ISO \ 100;$ Posit camera until moire pattern disappears. Distance between the camera and monitor should ensure one monitor pixel is smaller than a camera sensor pixel; for Each Scene do Meter the scene to find the aperture size f that well exposes the video; Choose 3 out of 6 random low-light ratios r, $r \in [100, 320];$ for Each frame in the video do Take the reference frame at exposure setting $(f, t_b, g_b);$ for Each low light ratio r do Take the noisy frame at $(f, t_b/r, g_b)$; end Play the next frame of the video; end end

Key insight

- noise 要如何量化?
 - 1. pixel wise 表示:
 - ▶ 用 LLRVD 的放大亮度再相減?
 - 但噪音並不是線性關係
 - Unreal
 - 2. 數值表示:
 - ➤ 用現成的 paper Single-image noise level estimation for blind denoising. (IEEE TIP,2013) 或 An efficient statistical method for image noise level estimation. (ICCV, 2015)
 - ▶直接用相機的 aperture, shutter speed 與 ISO 做為參數(explosure value)

Outline

- Only dataset
 - PolyU
 - LLRVD
- Dataset and Synthesis
 - LRD
 - LRID
- Discussion

Towards General Low-Light Raw Noise Synthesis and Modeling

Feng Zhang¹ Bin Xu² Zhiqiang Li^{1,2} Xinran Liu¹ Qingbo Lu² Changxin Gao¹ Nong Sang^{1†}

¹National Key Laboratory of Multispectral Information Intelligent Processing Technology,

School of Artificial Intelligence and Automation, Huazhong University of Science and Technology

²DJI Technology Co., Ltd

{fengzhangaia, lxryx, cgao, nsang}@hust.edu.cn, {mila.xu, cristopher.li, qingbo.lu}@dji.com

ICCV 2023

Presenter: Hao Wang

Advisor: Prof. Chia-Wen Lin

Introduction

- Propose a general noise model to imitate accurate low-light raw noise on different sensors.
- Establish Fourier transformer discriminator (FTD), which encourages the generator to favor solutions.
- Collect a new large-scale dataset.

Framework

$$\mathcal{L}_1 = \parallel P(\hat{D}) - P(D_{rn}) \parallel_1,$$

$$\mathcal{L}_{per} = \parallel \phi(P(\hat{D}) - \phi(P(D_{rn}) \parallel_2^2,$$

ISO levels, exposure times, in-camera noise profiles

$$\mathcal{L}_{adv} = \underset{\hat{D} \sim \mathbb{P}_g}{\mathbb{E}} [D_F(\hat{D})] - \underset{D_{rn} \sim \mathbb{P}_r}{\mathbb{E}} [D_F(D_{rn})]$$
$$+ \lambda \underset{\tilde{x} \sim \mathbb{P}_{\tilde{x}}}{\mathbb{E}} \| (\nabla_{\tilde{x}} D_F(\tilde{x}) \|_2 - 1)^2], \quad \mathbf{20}$$

Data collection

- Clean
 - long-exposure image at ISO 100 to get a noise-free reference image
- Degraded
 - Total image: 1800 pairs (100 images × 6 ISO levels × 3 exposure value)
 - different ISO levels and Evs
 - 6 different ISO levels ranging from 200 to 6400

$$\mathrm{EV} = \log_2 rac{N^2}{t}$$

Data collection

Figure 4. Example images of the LRD dataset. First column: long exposure reference (ground truth) images. Second column: low-light images with -1EV. Third column: low-light images with -2EV. Fourth column: low-light images with -3EV.

Experiment

	Ratio	Physics-based		Real-noise-based	DNN-based	
Dataset		Poisson-Gaussian	ELD	Paired data	Noise Flow	Ours
		PSNR / SSIM	PSNR / SSIM	PSNR / SSIM	PSNR / SSIM	PSNR / SSIM
SID	×100	37.51 / 0.856	41.21 / 0.952	41.39 / 0.954	36.75 / 0.787	41.95 / 0.956
	$\times 250$	31.67 / 0.765	38.54 / 0.929	38.90 / 0.937	33.98 / 0.739	39.25 / 0.931
	$\times 300$	28.53 / 0.667	35.35 / 0.908	36.55 / 0.922	31.82 / 0.713	36.03 / 0.909
ELD	×100	39.46 / 0.785	45.06 / 0.975	43.80 / 0.963	38.68 / 0.793	44.95 / 0.979
	$\times 200$	33.81 / 0.615	43.21 / 0.954	41.54 / 0.918	36.30 / 0.713	43.32 / 0.966
LRD	-1EV	33.77 / 0.895	38.31 / 0.968	38.80 / 0.970	35.19 / 0.874	38.89 / 0.971
	-2EV	32.99 / 0.856	37.35 / 0.959	37.88 / 0.961	34.55 / 0.842	37.95 / 0.962
	-3EV	31.44 / 0.770	36.49 / 0.950	36.92 / 0.951	33.72 / 0.826	37.01 / 0.953

- Denoising models are optimized using the generated training pairs from the trained generator
- Even partially outperforms the denoiser trained with real paired data
 - the real image pairs still suffer from luminance misalignment and pixel misalignment

Experiment

Key insight

- 噪音採集方式跟 PolyU 差不多
 - 調整 ISO 與 Exposure Value, EV
 - Loss 的設計用 adversarial loss, 也不是直接使用 L1 Loss
- 有將 signal dependent 與 independent noise 分開處理

Outline

- Only dataset
 - PolyU
 - LLRVD
- Dataset and Synthesis
 - LRD
 - LRID
- Discussion

Learnability Enhancement for Low-Light Raw Image Denoising: A Data Perspective

Hansen Feng , Lizhi Wang , Member, IEEE, Yuzhi Wang , Haoqiang Fan , and Hua Huang , Senior Member, IEEE

IEEE TPAMI 2024

Presenter: Hao Wang

Advisor: Prof. Chia-Wen Lin

Introduction

• Introduce a learnability enhancement strategy for low-light raw image denoising by reforming paired real data.

Framework

Noisy w/o Dark Shading

Neural Network

Denoised

Framework

Experiment result

Dataset	Ratio	Input PSNR / SSIM	P-G [38] PSNR / SSIM	ELD [21] PSNR / SSIM	SFRN [46] PSNR / SSIM	Paired PSNR / SSIM	Ours PSNR / SSIM
ELD	$\begin{array}{r} \times 100 \\ \times 200 \\ \hline \text{Average} \end{array}$	30.85 / 0.5045 25.92 / 0.2607 28.38 / 0.3826	42.05 / 0.8721 38.18 / 0.7827 40.12 / 0.8274	45.45 / 0.9754 43.43 / 0.9544 44.44 / 0.9649	46.38 / 0.9793 44.38 / 0.9651 45.38 / 0.9722	44.47 / 0.9676 41.97 / 0.9282 43.22 / 0.9479	46.99 / 0.9840 44.85 / 0.9686 45.92 / 0.9763
SID	×100	29.10 / 0.5266	39.44 / 0.8995	41.95 / 0.9530	42.81 / 0.9568	42.06 / 0.9548	43.47 / 0.9606
	×250	23.95 / 0.3595	34.32 / 0.7681	39.44 / 0.9307	40.18 / 0.9343	39.60 / 0.9380	41.04 / 0.9471
	×300	22.00 / 0.2752	30.66 / 0.6569	36.36 / 0.9114	37.09 / 0.9175	36.85 / 0.9227	37.87 / 0.9344
	Average	24.81 / 0.3793	34.52 / 0.7666	39.05 / 0.9303	39.82 / 0.9349	39.32 / 0.9374	40.59 / 0.9465
LRID-Indoor	×64	32.81 / 0.6728	46.14 / 0.9872	48.19 / 0.9898	47.94 / 0.9899	48.77 / 0.9906	49.24 / 0.9916
	×128	29.10 / 0.4621	44.98 / 0.9809	46.55 / 0.9836	46.52 / 0.9854	47.00 / 0.9860	47.47 / 0.9868
	×256	25.07 / 0.2380	43.31 / 0.9682	44.39 / 0.9730	44.74 / 0.9789	44.74 / 0.9786	45.36 / 0.9804
	×512	20.53 / 0.0872	40.80 / 0.9429	41.56 / 0.9452	42.46 / 0.9652	42.40 / 0.9647	43.09 / 0.9671
	×1024	15.43 / 0.0241	37.74 / 0.8905	37.50 / 0.8915	40.10 / 0.9453	40.07 / 0.9437	40.20 / 0.9453
	Average	24.59 / 0.2968	42.59 / 0.9539	43.64 / 0.9566	44.35 / 0.9729	44.60 / 0.9727	45.07 / 0.9743
LRID-Outdoor	×64	33.25 / 0.7255	42.16 / 0.9796	45.00 / 0.9841	45.05 / 0.9850	45.84 / 0.9876	46.27 / 0.9884
	×128	29.49 / 0.5100	41.48 / 0.9709	43.48 / 0.9734	43.67 / 0.9766	44.50 / 0.9821	44.86 / 0.9834
	×256	25.26 / 0.2557	40.36 / 0.9525	41.31 / 0.9450	41.89 / 0.9591	42.66 / 0.9709	42.99 / 0.9703
	Average	29.33 / 0.4971	41.33 / 0.9677	43.26 / 0.9675	43.54 / 0.9736	44.33 / 0.9802	44.71 / 0.9807

The red color indicates the best results and the blue color indicates the second-best results.

Data collection

- Clean
 - ISO-100
 - Long exposure time
 - fusion of multiple raw images for various misalignments flexibly
- Degraded
 - ISO-6400
 - Short exposure time
- Exposure time ratios of long- and short-exposure images are 64, 128, 256, 512, and 1024

Key insight

- 噪音採集方式跟 PolyU 差不多
 - 調整 ISO 作為 noise 的主要來源
 - 再提供多種的 exposure time ration
- 一樣有將 signal dependent 與 independent noise 分開處理
 - 我們的模型需要也分開處理嗎?
- Synthesis 的兩篇都沒有特別提到亮度需要保持一致,可能在生成 noise 時,一 併處理?

Outline

- Only dataset
 - PolyU
 - LLRVD
- Dataset and Synthesis
 - LRD
 - LRID
- Discussion

Conclusion

- noise 如何得到
 - 1. 結論: 光暗 **ISO** 很大
 - 2. 收集 Noise 時,通常 exposure time 要 short,long exposure time 給 Clean image
 - 3. 但我們需要 blur, 所以長必須給 Degraded, 我們只能進而調 ISO 與 aperture光圈, 有的還將多張圖像都平均以減少 misalignment, 但我們是雙相機系統, 可以不用平均, 以免失真或是拉長曝光時間造成blur

Noise control

- noise 要如何量化?
 - 1. pixel wise 表示:
 - ▶ 用 LLRVD 的放大亮度再相减?
 - 但噪音並不是線性關係
 - Unreal

2. 數值表示:

- ▶ 用現成的 paper Single-image noise level estimation for blind denoising. (IEEE TIP,2013) 或 An efficient statistical method for image noise level estimation. (ICCV, 2015)
- ➤ 直接用相機的 aperture, shutter speed 與 ISO 做為參數

Blur map

- 随便一張新的 unseen sharp image
 並沒有 optical flow, 要如何用
 pixed-wise motion field map 來表達
 blur
 - 用 segmentation 來協助?
 - 用 depth estimation 來協助?
 - 單純用數字來表示, 不用 map

