

Prof. Dr. Alexander Struck Prof. Dr. Matthias Krauledat

Numerical Mathematics

13) Newton-Raphson

a) Use the Newton-Raphson algorithm to solve the system of equations

$$e^{-x_1} - x_2 = 0 (1)$$

$$x_1 + x_2^2 - 3x_2 = 0 (2)$$

using initial guesses $\vec{x}^{(0)} = 0$. Plot the values $x_1^{(k)}, x_2^{(k)}$ as a function of iteration number k.

b) Modify the program in a) for a switched order of equations and find the solution for the same initial guess. $x_1^{(k)}, x_2^{(k)}$ as a function of iteration number k.

14) Implicit Euler, but don't bother with Newton

Apply the backward (implicit) Euler method to solve the IVP

$$y' = -y^2, \quad y(0) = 1$$

Calculate y_i for i = 1, 2, 3 on paper and plot the graph with more points on the computer. Use h = 0.1. Note that you do not have to employ a fixed-point method to solve for y_{i+1} , there is an easier way!

15) Explicit Euler?

Consider the ODE

$$\frac{dy}{dx} = \sin\left(x\,\cos(y)\right) \tag{3}$$

with the IVP

$$y(x=0) = 0 (4)$$

- a) Apply the explicit Euler method to the IVP and write down the first three iterations on paper.
- **b)** Write a program to solve the IVP, using h = 0.01. Examine the solutions for $x \in [0, 2.5]$, for $x \in [0, 250]$ and for $x \in [0, 2500]$. Discuss the results.
- c) Repeat the task in b) for h = 0.001. Compare and discuss the results.
- **d)** Repeat b) to d) with the implicit Euler method.

(4)	ý	S —	y²	, u	(0)	<u>= 1</u>		ر ر	າ ≤ (D. 1			Х _ь ≤	0=	<i>≯</i>	s 1				
			Imp	licit	E	uler	-)	Yn+1	= <i>y</i>	′,+h	t ()	1+1)		<u> </u>	y ² =	Sd 1	× X +	- (1 ×+1	
		>	<i>y</i> _{n+1}	s 1	+(v.1(-	$-y_{n+1}^2$)					ct i	/ (0) s	<i>→</i> l <i>⇒</i>	y	1 =	Ϋ́s	<u> </u>	
		0.1	y ²	+ /,	<u>' _</u> 'H	1 =	= 0			V_{n+1}	-5+ /	35' =	0.9)160	8 /	, ,	y _{n+1} :	<u> </u>	0.916	08 /
Х		Yn		Yat						77.1									Cho	
0		1		0.0		08										'	Cose			
0-1			608				39	311				W	V		05.00				11	
0.2			724		-															
0.3	0.5	783	359	0.7	300	066	09	774	4											
0.4	0.5	7 <i>30</i> 0	06	0.	68	336		731	8											
							•													
	u																			
$15) \frac{d}{d}$	$\frac{3}{1}$	5 S	in(XC	o s(4	3)			4($(0) \leq$	0									
		Y	5	<u>y</u> .	+ h	t (x,	, Yn)					ass	ume	h =	0.1				
		·																		
		y _n	+1 =	Yn t	- h ·	Sin($x_n c$	05(yn))											
X		Yn			y	n+1														
0		0																		
0.1		0		9.9	383	334	XIO 3	3												
0.2	9,98	334	7 NO	nO.	02	998	49.	298	3											
0.3		2-	-	0.0	59	295	3													
0.4		E		0.0	999	326	54	2												
0.5				B.	14	59	96	158	5											
			l																	

