

f

in

digg

G+

6

Υ

Hadoop Cheat Sheet

Jesse+ by | Mar 24, 2016 | Blog, Business, Data Engineering | 0 comments

f	Facebook 0	y	Twitter 5	in	LinkedIn 0	digg	Digg 2
G+	Google+ 1	6	reddit 0	Υ	Hacker Ne ws 2	٩	Delicious 0

Hadoop has a vast and vibrant developer community. Following the lead of Hadoop's name, the projects in the Hadoop ecosystem all have names that don't correlate to their function. This makes it really hard to figure out what each piece does or is used for. This is a cheat sheet to help you keep track of things. It is broken up into their respective general functions.

Distributed Systems

Name	What It Is	What It Does	How It Helps		
HDFS	A Distributed Filesystem for Hadoop	Acts as the filesystem or storage for Hadoop.	Improves the data input performance of MapReduce jobs with data locality. Creates a replicated, scalable file system.		
Cassandra	A NoSQL database	A highly scalable database.	Allows you to scale a database in linear fashion. Can handle huge databases without bogging down.		

HBase	A NoSQL database	Uses HDFS to create a highly scalable database.	Allows high scalability. Allows you to do random reads and writes with HDFS.		
Zookeeper	A Distributed Synchronization Service	Provides synchronization of data amongst distributed nodes.	Allows a cluster to maintain consistent, distributed data across all nodes in a cluster.		

Processing Data

f

in

G+

6

Υ

Name	What It Is	What It Does	How It Helps
MapReduce	Distributed Programming Model and Software Framework	Breaks up a job into multiple tasks and processes them simultaneously.	Framework abstracts the difficult pieces of distributed systems. Allows vast quantities of data to be processed simultaneously.
Spark	General Purpose Processing Framework	Breaks up a job into multiple tasks and processes them simultaneously.	Framework abstracts the difficult pieces of distributed systems. Has more built-in funcntionality than MapReduce, like SQL.
Hive	Data Warehouse System	Allows use of query language to process data.	Helps SQL programmers harness MapReduce by creating SQL-like queries.
Pig	Data Analysis Platform	Processes data using a scripting language	Helps programmers use a scripting

f in digg G+ Y •				language to harness MapReduce power.
	Mahout	Machine Learning Library	Use a prewritten library to run machine learning algorithms on MapReduce.	Prevents you from having to rewrite machine learning algorithms to use MapReduce. Speeds up development time by using existing code.
	Giraph	Graph Processing Library	Use a prewritten library to run graph algorithms on MapReduce.	Prevents you from having to rewrite graph algorithms to use MapReduce. Speeds up development time by using existing code.
	MRUnit	Unit Test Framework for MapReduce	Run tests to verify your MapReduce job functions correctly.	Run programmatic tests to verify that a MapReduce program acts correctly. Has objects that allow you to mock up inputs and assertions to verify the results.

Getting Data In/Out

Name	What It Is	What It Does	How It Helps		
Avro	Data Serialization System	Gives an easy method to input and output data from MapReduce or Spark jobs.	Creates domain objects to store data. Makes easier data serialization and		

f
y
in
digg
G+
•
Υ
•

			deserialization for MapReduce jobs.
Sqoop	Bulk Data Transfer	Moves data between Relational Databases and Hadoop.	Allows data dumps from the Relational Database to be placed in Hadoop for processing later. Moves data output from a MapReduce job to be placed back in a Relational Database.
Flume	Data Aggregator	Handles large amounts of log data in a scalable fashion.	Moves large amounts of log data into HDFS. Since Flume scales so well, it can handle a lot of incoming data.
Kafka	Distributed Publish/Subscribe	Handles very high throughput and low latency message passing in a scalable fashion.	Decouples systems to allow many subscribers of published data.

Administration

Name	What It Is	What It Does	How It Helps
Hue	Browser Based Interface for Hadoop	Allows users to interact with the Hadoop cluster over a web browser.	Makes it easier for users to interact with the Hadoop cluster. Granular permissions allow administrators to configure users'
Oozie	Workflow Engine for Hadoop	Makes creating complex workflows in Hadoop easier to create.	Allows you to create a complex workflow that leverages other

f				projects like Hive, Pig, and MapReduce. Built- in logic allows users to handle failures of steps gracefully.
y	Cloudera	Browser Based	Allows easy	Eases the burden of
in	Manager	Manager for Hadoop	configuration and configuration of Hadoop	dealing with and monitoring a large
digg G +			cluster.	Hadoop Cluster. Helps install and
•				configuration the Hadoop software.

The easiest way to install all of these programs is via CDH or Cloudera Distribution for Hadoop. The free edition of Cloudera Manager makes it even easier to create your cluster.

f	Facebook 0	y	Twitter 5	in	LinkedIn 0	digg	Digg 2
G+	Google+ 1	Ó	reddit 0	Υ	Hacker Ne ws 2	٩	Delicious 0

Become a Data Engineer

Υ

Are you tired of materials that don't go beyond the basics of data engineering? Become a Data Engineer

AWS Screencast

in

f

Subscribe \$\bar{\text{\text{\$\infty}\$}}\$ \$\div \$

G+

digg

GitHub

6

Υ

٠,

eljefe6a @ GitHub

incubator-beam

Mirror of Apache Beam (Incubating)

RemarkMacros

Some macros I've created for Remark.

beamexample

An example Apache Beam project.

KafkaRESTHelper

Helper JavaScript code to make it easier to interface with the Kafka REST server and JQuery.

CodePreprocessor

Python based code pre-processor to include source code and highlight it with asterisks.

kafkainitd

Init.d scripts for Kafka. Will work out of the box with Confluent Data Platform.

incubator-beam-site

Mirror of Apache Beam site (Incubating)

demos

Stream processing demo

decktape

PDF exporter for HTML presentation frameworks

kafka

Mirror of Apache Kafka

f pipeline

Complete Pipeline Training at Big Data Scala By the Bay

hbase-1.0-api-examples

in Examples for upgrading HBase applications to 1.0 APIs

digg nfldata

G+ Combining datasets with MapReduce on NFL play by play data.

FinancialMapReduce

Some examples of using financial data in MapReduce programs.

Y kite

Kite SDK

UnoExample

MapReduce/Hadoop example that uses regular playing cards to show mapping and reducing.

cdk-examples

Cloudera Development Kit Examples

BoggleMapReduce

A program to use MapReduce and Graph Theory to efficiently and scalably find all words in a Boggle roll.

HBaseThrift

Sample code for working with HBase Thrift.

HBaseREST

Sample Python code for working with the HBase REST interface

BreadthFirstSearch

A very simple implementation of the Breadth First Search algorithm using Hadoop

CardSecondarySort

Hadoop Secondary Sort example using playing cards

renocosts

Taking open data from the city of Reno to merge payroll, fire and police data.

Designed by **Elegant Themes** | Powered by **WordPress**

About Me · Contact © JESSE ANDERSON ALL RIGHTS RESERVED 2017-2018

f

Y

in

digg

G+

ф

Υ

٠,