04. Relaciones entre esfuerzos y deformaciones

sección 2.8

Michael Heredia Pérez mherediap@unal.edu.co

Universidad Nacional de Colombia sede Manizales Departamento de Ingeniería Civil Mecánica de sólidos

2023a

Advertencia

Estas diapositivas son solo una herramienta didáctica para guiar la clase, por si solas no deben tomarse como material de estudio y el estudiante debe dirigirse a la literatura recomendada (Álvarez, 2022).

- 1 4.8. Particularización de tres a dos dimensiones
- 2 4.8.1. Tensión plana Caso isótropo Caso ortótropo
- **3** 4.8.2. Deformación plana Caso isótropo
- 4.8.3. Relación entre los esfuerzos principales obtenidos en el análisis bidimensional y tridimensional
- 5 Ejemplos
- 6 Referencias

- 1 4.8. Particularización de tres a dos dimensiones
- 2 4.8.1. Tensión plana Caso isótropo Caso ortótropo
- 3 4.8.2. Deformación plana Caso isótropo
- 4.8.3. Relación entre los esfuerzos principales obtenidos en el análisis bidimensional y tridimensional
- 6 Ejemplos
- Referencias

Particularización de tres a dos dimensiones

Existen 3 casos de particularización:

- Tensión plana
- Deformación plana
- Caso axisimétrico

Tensión y deformación plana se conocen como los **casos de elasticidad plana**. wikipedia/elasticidad_plana.

Particularización de tres a dos dimensiones

Existen 3 casos de particularización:

- Tensión plana
- Deformación plana
- Caso axisimétrico

Tensión y deformación plana se conocen como los **casos de elasticidad plana**. wikipedia/elasticidad_plana.

Particularización de tres a dos dimensiones

Existen 3 casos de particularización:

- Tensión plana
- Deformación plana
- Caso axisimétrico

Tensión y deformación plana se conocen como los **casos de elasticidad plana**. wikipedia/elasticidad_plana.

- 1 4.8. Particularización de tres a dos dimensiones
- 2 4.8.1. Tensión plana Caso isótropo Caso ortótropo
- 3 4.8.2. Deformación plana Caso isótropo
- 4.8.3. Relación entre los esfuerzos principales obtenidos en el análisis bidimensional y tridimensional
- 6 Ejemplos
- Referencias

En elementos estructurales en los cuales una dirección es muy pequeña comparada con las otras dos, es decir, cuando un elemento es muy delgado.

Supondremos que:

- El elemento no tiene cargas aplicadas en la dirección z ni sobre la superficie ortogonal al eje z.
- Las cargas están aplicadas en el contorno del cuerpo, ortogonal al eje z, distribuidas uniformemente en su espesor.

$$\sigma_z = \tau_{xz} = \tau_{yz} = 0$$

Supondremos que:

- El elemento no tiene cargas aplicadas en la dirección z ni sobre la superficie ortogonal al eje z.
- Las cargas están aplicadas en el contorno del cuerpo, ortogonal al eje z, distribuidas uniformemente en su espesor.

$$\sigma_z = \tau_{xz} = \tau_{yz} = 0$$

Supondremos que:

- El elemento no tiene cargas aplicadas en la dirección z ni sobre la superficie ortogonal al eje z.
- Las cargas están aplicadas en el contorno del cuerpo, ortogonal al eje z, distribuidas uniformemente en su espesor.

$$\sigma_z = \tau_{xz} = \tau_{yz} = 0$$

Supondremos que:

- El elemento no tiene cargas aplicadas en la dirección z ni sobre la superficie ortogonal al eje z.
- Las cargas están aplicadas en el contorno del cuerpo, ortogonal al eje z, distribuidas uniformemente en su espesor.

$$\sigma_z = \tau_{xz} = \tau_{yz} = 0$$

tensión plana

$$\sigma_z = 0$$

$$\tau_{xz} = 0$$

$$\tau_{xz} = 0$$
$$\tau_{yz} = 0$$

- 1 4.8. Particularización de tres a dos dimensiones
- 2 4.8.1. Tensión plana Caso isótropo
- **3** 4.8.2. Deformación plana
- 4.8.3. Relación entre los esfuerzos principales obtenidos en el análisis bidimensional y tridimensional
- 5 Ejemplos
- 6 Referencias

Tensión plana

(complementar)

Ley de Hooke generalizada para un material isótropo, tensión plana

$$\sigma_x = \frac{E}{1 - \nu^2} (\varepsilon_x + \nu \varepsilon_y)
\sigma_y = \frac{E}{1 - \nu^2} (\varepsilon_y + \nu \varepsilon_x)
\sigma_z = 0
xy = G\gamma_{xy}
xz = 0
yz = 0$$

Tensión plana

(complementar)

Ley de Hooke generalizada para un material isótropo, tensión plana

$$\sigma_x = \frac{E}{1 - \nu^2} (\varepsilon_x + \nu \varepsilon_y)$$

$$\sigma_y = \frac{E}{1 - \nu^2} (\varepsilon_y + \nu \varepsilon_x)$$

$$\sigma_z = 0$$

$$\tau_{xy} = G \gamma_{xy}$$

$$\tau_{xz} = 0$$

$$\tau_{yz} = 0$$

Tensión plana

Representación matricial

$$\begin{pmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{pmatrix} = \begin{pmatrix} \frac{E}{1-\nu^2} & \frac{E\nu}{1-\nu^2} & 0 \\ \frac{E\nu}{1-\nu^2} & \frac{E}{1-\nu^2} & 0 \\ 0 & \frac{E}{2(1+\nu)} \end{pmatrix} \begin{pmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{pmatrix}$$

Las matrices de esfuerzos y deformaciones simplificadas al caso de tensión plana:

$$\underline{\underline{\sigma}} = \underbrace{\begin{pmatrix} \sigma_x & \tau_{xy} & 0 \\ \tau_{xy} & \sigma_y & 0 \\ 0 & 0 & 0 \end{pmatrix}}_{\det \underline{\sigma} = 0} \qquad \underline{\underline{\varepsilon}} = \begin{pmatrix} \varepsilon_x & \gamma_{xy} & 0 \\ \gamma_{xy} & \varepsilon_y & 0 \\ 0 & 0 & \varepsilon_z \end{pmatrix}$$

Tensión plana

Representación matricial

$$\begin{pmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{pmatrix} = \begin{pmatrix} \frac{E}{1-\nu^2} & \frac{E\nu}{1-\nu^2} & 0 \\ \frac{E\nu}{1-\nu^2} & \frac{E}{1-\nu^2} & 0 \\ 0 & \frac{E}{2(1+\nu)} \end{pmatrix} \begin{pmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{pmatrix}$$

Las matrices de esfuerzos y deformaciones simplificadas al caso de tensión plana:

$$\underline{\underline{\sigma}} = \underbrace{\begin{pmatrix} \sigma_x & \tau_{xy} & 0 \\ \tau_{xy} & \sigma_y & 0 \\ 0 & 0 & 0 \end{pmatrix}}_{\det \underline{\underline{\sigma}} = 0} \qquad \underline{\underline{\varepsilon}} = \begin{pmatrix} \varepsilon_x & \gamma_{xy} & 0 \\ \gamma_{xy} & \varepsilon_y & 0 \\ 0 & 0 & \varepsilon_z \end{pmatrix}$$

- 1 4.8. Particularización de tres a dos dimensiones
- 2 4.8.1. Tensión plana

Caso isotropo

Caso ortótropo

- 3 4.8.2. Deformación plana
 - Caso Isotropo
- 4.8.3. Relación entre los esfuerzos principales obtenidos en el análisis bidimensional y tridimensional
- 5 Ejemplos
- 6 Referencias

TP Caso ortótropo

(complementar)

Ley de Hooke generalizada para un material ortótropo TP

$$\sigma_x = \frac{E_x}{1 - \nu_{xy}\nu_{yx}} (\varepsilon_x + \nu_{yx}\varepsilon_y)$$

$$\sigma_y = \frac{E_y}{1 - \nu_{xy}\nu_{yx}} (\varepsilon_y + \nu_{xy}\varepsilon_x)$$

$$\sigma_z = 0$$

$$\tau_{xy} = G_{xy}\gamma_{xy}$$

$$\tau_{xz} = 0$$

$$\tau_{yz} = 0$$

Caso ortótropo

Tensión plana

Representación matricial

$$\begin{pmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{pmatrix} = \frac{1}{1 - \nu_{xy}\nu_{yx}} \begin{pmatrix} E_x & E_x\nu_{yx} & 0 \\ E_y\nu_{xy} & E_y & 0 \\ 0 & (1 - \nu_{xy}\nu_{yx})G_{xy} \end{pmatrix} \begin{pmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{pmatrix}$$

Caso ortótropo

Tensión plana

Si las direcciones de los ejes de ortotropía x', y' están inclinadas un ángulo θ con respecto a los ejes globales x, y de la estructura, la matriz constitutiva para el material ortótropo en coordenadas globales \boldsymbol{D}_{TP} es:

$$oldsymbol{D}_{TP} = oldsymbol{T}_{oldsymbol{arepsilon},2D}^T oldsymbol{D}_{TP}^\prime oldsymbol{T}_{arepsilon,2D}$$

Recuerde:

$$\sigma = \underbrace{T_{arepsilon}^T D' T_{arepsilon}}_{D} arepsilon$$

- 1 4.8. Particularización de tres a dos dimensiones
- 2 4.8.1. Tensión plana Caso isótropo Caso ortótropo
- **3** 4.8.2. Deformación plana Caso isótropo
- 4.8.3. Relación entre los esfuerzos principales obtenidos en el análisis bidimensional y tridimensional
- 6 Ejemplos
- Referencias

En elementos estructurales en los cuales una dimensión es mucho más grande que las otras dos.

- Dadas las condiciones geométricas, la deformación en la dirección de la dimensión más larga no se puede efectuar.
- El elemento es cargado mediante fuerzas perpendiculares a la dirección longitudinal: independientes de z.
- Basta con analizar una rebanada la cual se supone confinada entre dos planos rígidos y lisos, de modo que el desplazamiento en la dirección axial no sea posible.

$$\varepsilon_z = \gamma_{xz} = \gamma_{yz} = 0.$$

- Dadas las condiciones geométricas, la deformación en la dirección de la dimensión más larga no se puede efectuar.
- El elemento es cargado mediante fuerzas perpendiculares a la dirección longitudinal: independientes de z.
- Basta con analizar una rebanada la cual se supone confinada entre dos planos rígidos y lisos, de modo que el desplazamiento en la dirección axial no sea posible.

$$\varepsilon_z = \gamma_{xz} = \gamma_{yz} = 0.$$

- Dadas las condiciones geométricas, la deformación en la dirección de la dimensión más larga no se puede efectuar.
- El elemento es cargado mediante fuerzas perpendiculares a la dirección longitudinal: independientes de z.
- Basta con analizar una rebanada la cual se supone confinada entre dos planos rígidos y lisos, de modo que el desplazamiento en la dirección axial no sea posible.

$$\varepsilon_z = \gamma_{xz} = \gamma_{yz} = 0.$$

- Dadas las condiciones geométricas, la deformación en la dirección de la dimensión más larga no se puede efectuar.
- El elemento es cargado mediante fuerzas perpendiculares a la dirección longitudinal: independientes de z.
- Basta con analizar una rebanada la cual se supone confinada entre dos planos rígidos y lisos, de modo que el desplazamiento en la dirección axial no sea posible.

$$\varepsilon_z = \gamma_{xz} = \gamma_{yz} = 0.$$

- Dadas las condiciones geométricas, la deformación en la dirección de la dimensión más larga no se puede efectuar.
- El elemento es cargado mediante fuerzas perpendiculares a la dirección longitudinal: independientes de z.
- Basta con analizar una rebanada la cual se supone confinada entre dos planos rígidos y lisos, de modo que el desplazamiento en la dirección axial no sea posible.

$$\varepsilon_z = \gamma_{xz} = \gamma_{yz} = 0.$$

deformación plana

$$\varepsilon_z = 0$$

$$\gamma_{xz} = 0$$

$$\gamma_{xz} = 0 \\
\gamma_{yz} = 0$$

- 1 4.8. Particularización de tres a dos dimensiones
- 2 4.8.1. Tensión plana

Caso isotropo Caso ortótropo

- **3** 4.8.2. Deformación plana Caso isótropo
- 4.8.3. Relación entre los esfuerzos principales obtenidos en el análisis bidimensional y tridimensional
- 5 Ejemplos
- 6 Referencias

Deformación plana

(complementar)

Ley de Hooke generalizada para un material isótropo, deformación plana

$$\sigma_x = \frac{E}{(1+\nu)(1-2\nu)}((1-\nu)\varepsilon_x + \nu\varepsilon_y)$$

$$\sigma_y = \frac{E}{(1+\nu)(1-2\nu)}(\nu\varepsilon_x + (1-\nu)\varepsilon_y)$$

$$\sigma_z = \frac{\nu E}{(1+\nu)(1-2\nu)}(\varepsilon_x + \varepsilon_y)$$

$$\tau_{xy} = G\gamma_{xy}$$

$$\tau_{xz} = 0$$

$$\tau_{yz} = 0$$

Deformación plana

(complementar)

Ley de Hooke generalizada para un material isótropo, deformación plana

$$\sigma_x = \frac{E}{(1+\nu)(1-2\nu)}((1-\nu)\varepsilon_x + \nu\varepsilon_y)$$

$$\sigma_y = \frac{E}{(1+\nu)(1-2\nu)}(\nu\varepsilon_x + (1-\nu)\varepsilon_y)$$

$$\sigma_z = \frac{\nu E}{(1+\nu)(1-2\nu)}(\varepsilon_x + \varepsilon_y)$$

$$\tau_{xy} = G\gamma_{xy}$$

$$\tau_{xz} = 0$$

$$\tau_{yz} = 0$$

Deformación plana

Representación matricial

$$\begin{pmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{pmatrix} = \frac{E}{(1+\nu)(1-2\nu)} \begin{pmatrix} 1-\nu & \nu & 0 \\ \nu & 1-\nu & 0 \\ 0 & \frac{1-2\nu}{2} \end{pmatrix} \begin{pmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{pmatrix}$$

Las matrices de esfuerzos y deformaciones simplificadas al caso de deformación plana:

$$\underline{\underline{\sigma}} = \underbrace{\begin{pmatrix} \sigma_x & \tau_{xy} & 0 \\ \tau_{xy} & \sigma_y & 0 \\ 0 & 0 & 0 \end{pmatrix}}_{\sigma_z = \nu(\sigma_x + \sigma_y)} \qquad \underline{\underline{\varepsilon}} = \underbrace{\begin{pmatrix} \varepsilon_x & \gamma_{xy} & 0 \\ \gamma_{xy} & \varepsilon_y & 0 \\ 0 & 0 & \varepsilon_z \end{pmatrix}}_{\text{det } \underline{\varepsilon} = 0}$$

Deformación plana

Representación matricial

$$\begin{pmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{pmatrix} = \frac{E}{(1+\nu)(1-2\nu)} \begin{pmatrix} 1-\nu & \nu & 0 \\ \nu & 1-\nu & 0 \\ 0 & \frac{1-2\nu}{2} \end{pmatrix} \begin{pmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{pmatrix}$$

Las matrices de esfuerzos y deformaciones simplificadas al caso de deformación plana:

$$\underline{\underline{\sigma}} = \underbrace{\begin{pmatrix} \sigma_x & \tau_{xy} & 0 \\ \tau_{xy} & \sigma_y & 0 \\ 0 & 0 & 0 \end{pmatrix}}_{\sigma_z = \nu(\sigma_x + \sigma_y)} \qquad \underline{\underline{\varepsilon}} = \underbrace{\begin{pmatrix} \varepsilon_x & \gamma_{xy} & 0 \\ \gamma_{xy} & \varepsilon_y & 0 \\ 0 & 0 & \varepsilon_z \end{pmatrix}}_{\det \underline{\varepsilon} = 0}$$

- 1 4.8. Particularización de tres a dos dimensiones
- 2 4.8.1. Tensión plana Caso isótropo Caso ortótropo
- 3 4.8.2. Deformación plana Caso isótropo
- **4**.8.3. Relación entre los esfuerzos principales obtenidos en el análisis bidimensional y tridimensional
- 6 Ejemplos
- Referencias

Relación entre los esfuerzos principales obtenidos en el análisis bidimensional y tridimensional

Deformación plana

$$\begin{split} \sigma_1 &= \text{máx} \left((\sigma_1)_{xy}, (\sigma_2)_{xy}, \nu(\sigma_x + \sigma_y) \right) \\ \sigma_2 &= \text{mediana} \left((\sigma_1)_{xy}, (\sigma_2)_{xy}, \nu(\sigma_x + \sigma_y) \right) \\ \sigma_3 &= \text{min} \left((\sigma_1)_{xy}, (\sigma_2)_{xy}, \nu(\sigma_x + \sigma_y) \right) \\ \tau_{máx} &= \text{máx} \left(\frac{|(\sigma_1)_{xy} - \nu(\sigma_x + \sigma_y)|}{2}, \frac{|(\sigma_2)_{xy} - \nu(\sigma_x + \sigma_y)|}{2}, \frac{|(\sigma_1)_{xy} - (\sigma_2)_{xy}|}{2} \right) \end{split}$$

Relación entre los esfuerzos principales obtenidos en el análisis bidimensional y tridimensional

Tensión plana

$$\sigma_1 = \max \left((\sigma_1)_{xy}, (\sigma_2)_{xy}, 0 \right)$$

$$\sigma_2 = \operatorname{mediana} \left((\sigma_1)_{xy}, (\sigma_2)_{xy}, 0 \right)$$

$$\sigma_3 = \min \left((\sigma_1)_{xy}, (\sigma_2)_{xy}, 0 \right)$$

$$\tau_{m\acute{a}x} = \max \left(\frac{|(\sigma_1)_{xy}|}{2}, \frac{|(\sigma_2)_{xy}|}{2}, \frac{|(\sigma_1)_{xy} - (\sigma_2)_{xy}|}{2} \right)$$

- 1 4.8. Particularización de tres a dos dimensiones
- 2 4.8.1. Tensión plana Caso isótropo Caso ortótropo
- 3 4.8.2. Deformación plana Caso isótropo
- 4.8.3. Relación entre los esfuerzos principales obtenidos en el análisis bidimensional y tridimensional
- 6 Ejemplos
- Referencias

Ejemplo 2.9.4

Ejemplo: esfuerzos y direcciones principales 2D

Considere un punto sujeto a los esfuerzos $\sigma_x=-1Pa4$, $\sigma_y=2Pa$ y $\tau_{xy}=-3Pa$; encuentre los esfuerzos principales (y su dirección) para el punto en consideración.

Código

02_09_04_ejemplo.ipynb

Ejemplo 4.8.3

Ejemplo: esfuerzos y direcciones 3D

Solucionar el Ejemplo 2.9.4 considerando que el sólido es tridimensional. Aplicar simplificaciones de 3D a 2D.

Código

- 04_08_03_ejemplo_DP.ipynb
- 04_08_03_ejemplo_TP.ipynb

- 1 4.8. Particularización de tres a dos dimensiones
- 2 4.8.1. Tensión plana Caso isótropo Caso ortótropo
- 3 4.8.2. Deformación plana Caso isótropo
- 4.8.3. Relación entre los esfuerzos principales obtenidos en el análisis bidimensional y tridimensional
- 6 Ejemplos
- 6 Referencias

Referencias I

Álvarez, D. A. (2022). *Teoría de la elasticidad*, volume 1. Universidad Nacional de Colombia.

Links

• Repositorio del curso: github/medio_continuo