Теория и реализация языков программирования. Задание 5: Регулярные грамматики

Сергей Володин, 272 гр. задано 2013.10.02

Упражнение 1

- 1. Докажем, что $\forall G_1 \Pi P \Gamma \ \exists G_2 \Pi \Gamma$: $L(G_1) = L(G_2)$: каждая $\Pi P \Gamma$ является $\Pi \Gamma$, так как $T \subset T^*$, $\varepsilon \in T^*$. Поэтому можно взять $G_2 \stackrel{\text{def}}{=} G_1$.
- 2. Докажем, что $\forall G_2 \Pi\Gamma \; \exists G_1 \Pi P\Gamma \colon L(G_1) = L(G_2)$:
 - 1. Построим по G_2 НКА \mathcal{A} : $L(\mathcal{A}) = L(G_2)$ (алгоритм и доказательство в задаче 2).
 - 2. По НКА \mathcal{A} построим ПРГ $G_1: L(G_1) = L(\mathcal{A})$ (алгоритм и доказательство в задаче 1).

Это доказывает, что ПРГ и ПГ порождают одно и то же множество языков.

Упражнение 2

Задача 1

Нет, предложенный алгоритм может построить грамматику, которая не будет праволинейной регулярной. Например, для автомата \mathcal{A}_0 из условия переход $q_0 \stackrel{\varepsilon}{\longrightarrow} q_1$ по алгоритму должен соответствовать правилу $q_0 \longrightarrow \varepsilon q_1$, но это правило не имеет вид $A \longrightarrow xB$ ($\varepsilon = x \notin \Sigma$) или $A \longrightarrow x$ или $A \longrightarrow \varepsilon$.

Далее $\mathcal{A}-$ абстрактный входной автомат

Заметим, что проблему можно решить, преобразовав НКА \mathcal{A} в ДКА \mathcal{B} . Тогда ε -переходов не будет. Остается один случай, в котором $q_0 \in F$, и в q_0 есть переходы из других состояний: $\exists q_1 \colon \delta(q_1, \sigma) = q_0$. Соответствующими правилами были бы $q_0 \longrightarrow \varepsilon$, $q_1 \longrightarrow \sigma q_0$, которые не подходят для праволинейной регулярной грамматики (аксиома q_0 встречается в правой части при том, что есть переход $q_0 \longrightarrow \varepsilon$)

Алгоритм:

- 1. Преобразуем данный НКА \mathcal{A} в ДКА \mathcal{B} . $L(\mathcal{A}) = L(\mathcal{B})$.
- 2. По ДКА $\mathcal{B} = (Q, \Sigma, \delta, q_0, F)$ построим другой ДКА $\mathcal{C} = (Q', \Sigma, \delta', q_s, F')$:
 - (a) $Q' \stackrel{\text{def}}{=} Q \cup \{q_s\}$ (добавим состояние q_s)
 - (b) $\delta'(q,\sigma) \stackrel{\text{def}}{=} \begin{cases} \delta(q_0,\sigma), & q=q_s \\ \delta(q,\sigma), & \text{иначе} \end{cases}$ (добавим такие же переходы из q_s , как из q_0)
 - (c) $F'\stackrel{\text{\tiny def}}{=} F\cup \left(q_0\in F\, ?\, \{q_s\}\, :\, \varnothing\right)$ (если $q_0\in F$, то сделаем q_s принимающим)

Пример построения:

Докажем, что $L(\mathcal{B}) = L(\mathcal{C})$:

- а. $L(\mathcal{B}) \subset L(\mathcal{C})$. Пусть $w \in L(\mathcal{B})$.
 - a. $|w| = 0 \Rightarrow w = \varepsilon \Rightarrow q_0 \in F \Rightarrow q_s \in F' \Rightarrow w \in L(\mathcal{C}) \blacksquare$
 - b. $|w|>0\Rightarrow w=\sigma x,\,\sigma\in\Sigma,\,x\in\Sigma^*$. Тогда $\delta'(q_s,w)\equiv\delta'(q_s,\sigma x)=\delta'(\delta'(q_s,\sigma),x)$. Обозначим $q_i\stackrel{\text{def}}{=}\delta'(q_s,\sigma)\stackrel{\text{def}}{=}\delta'(q_0,\sigma)$. Очевидно, что $q_i\neq q_s$ (иначе получим переход $q_0\stackrel{\sigma}{\longrightarrow}q_s$ в \mathcal{B} , но $q_s\notin F$). Значит, $\delta'(q_i,x)=\delta(q_i,x)\Rightarrow\delta'(q_s,w)\equiv\delta'(q_i,x)\equiv\delta(q_0,\sigma x)\equiv\delta(q_0,\sigma x)\equiv\delta(q_0,w)\in F$, т.к. $w\in L(\mathcal{B})\Rightarrow w\in L(\mathcal{C})\blacksquare$
- b. $L(\mathcal{C}) \subset L(\mathcal{B})$. Пусть $w \in L(\mathcal{C})$.
 - a. $|w| = 0 \Rightarrow w = \varepsilon \Rightarrow q_s \in F \Rightarrow q_0 \in F \Rightarrow \delta(q_0, w) \equiv \delta(q_0, \varepsilon) = q_0 \in F \Rightarrow w \in L(\mathcal{B}) \blacksquare$
 - b. $|w| > 0 \Rightarrow w = \sigma x, \ \sigma \in \Sigma, \ x \in \Sigma^*. \ F' \ni \delta'(q_s, w) \equiv \delta'(q_s, \sigma x) \equiv \delta'(\delta'(q_s, \sigma), x)$. Аналогично $q_i \stackrel{\text{def}}{=} \delta'(q_s, \sigma) \equiv \delta(q_0, \sigma) \in Q \Rightarrow \delta'(q_i, x) = \delta(q_i, x)$ Получаем $F' \ni \delta(q_s, w) = \delta(q_i, x) = \delta(q_0, w) \Rightarrow \delta(q_0, w) \in F \Rightarrow w \in L(\mathcal{B})$
- 3. По \mathcal{C} построим ПРГ $G = (Q', \Sigma, P, q_s)$:
 - 1. $P = \underbrace{\{q_a \longrightarrow \sigma q_b \big| \delta'(q_a, \sigma) = q_b\}}_{(1)} \cup \underbrace{\{q_a \longrightarrow \sigma \big| \delta'(q_a, \sigma) = q_b \in F'\}}_{(2)} \cup \underbrace{(q_s \in F ? \{q_s \longrightarrow \varepsilon\} : \varnothing)}_{(3)}.$

То есть, каждому переходу $q_a \xrightarrow{\sigma} q_b$ в \mathcal{C} соответствует правило $q_a \longrightarrow \sigma q_b | \sigma$, причем вторая часть имеется тогда и только тогда, когда $q_b \in F'$. Если q_s — принимающее, то добавляется правило $q_s \longrightarrow \varepsilon$.

2. $G-\Pi P\Gamma$. Действительно, правила имеют один из видов $(\sigma \in \Sigma)$ $A \longrightarrow \sigma B$, $A \longrightarrow \sigma$. Поскольку переходов в q_s в \mathcal{C} нет, то аксиома q_s не будет встречаться в правых частях.

Также отметим некоторые свойства правил:

- а. По построению $\forall P \ni p \equiv (\alpha, \beta) \hookrightarrow |\beta|_{\Sigma} |\alpha|_{\Sigma} \in \overline{0, 1}$, то есть, количество нетерминальных символов справа либо такое же, как слева, либо на 1 больше. Действительно, для групп правил (1) и (2) эта разница равна 1, а для (3) (если там есть правила) разница равна 0.
- b. Также по построению $\mathcal C$ для всех правил справа нет q_s , так как в противном случае в $\mathcal C$ были бы переходы в q_s , что невозможно.
- с. В правилах слева всегда один нетерминал.
- d. Если $w_1...w_n \equiv w \in L(G)$, n > 0, $\forall i \in \overline{1,n} \hookrightarrow w_i \in \Sigma$, то есть, $q_s \Longrightarrow^* w_1...w_n$, то оно было получено применением n-1 правил из (1), а затем одного правила из (2), то есть, $q_s \Longrightarrow w_1q_1 \Longrightarrow w_1w_2q_2 \Longrightarrow ... \Longrightarrow w_1w_2...w_{n-1}q_{n-1} \Longrightarrow w_1...w_n$.

Действительно,

- а. Количество нетерминальных символов в конце равно n, значит, было применено n правил из (1) и (2)
- b. Если первым было применено правило из (3), то количество нетерминалов стало равно 0, и далее ни одно правило не могло быть применено (см. 3(2)с). При этом количество нетерминалов осталось бы равно $0 \neq n$ противоречие.
- с. Правило из (3) не могло быть применено и далее, так как тогда бы получили q_s в правой части некоторого (предыдущего по выводу) правила.
- d. Из 3(2)db и 3(2)dc получаем, что применялись только правила из (1) и (2), а из 3(2)da что всего таких применений было n.

- е. Применение правила из (2) ранее, чем на последнем шаге привело бы к тому, что количество нетерминальных символов стало бы равно 0, после чего (см. 3(2)с) правила бы применяться не могли. Однако, количество нетерминальных символов было бы меньше n— противоречие.
- 3. Докажем, что $L(G) = L(\mathcal{C})$, т.е. $\forall w \in \Sigma^* \hookrightarrow w \in L(G) \Leftrightarrow w \in L(\mathcal{C})$:
 - a. $|w| = 0 \Rightarrow w = \varepsilon$
 - а. $w \in L(\mathcal{C}) \Rightarrow q_s \in F \Rightarrow$ правило $q_s \longrightarrow \varepsilon \in P$. Значит, $\varepsilon \equiv w \in L(G)$
 - b. $w \in L(G) \Rightarrow$ правило $q_s \longrightarrow \varepsilon \in P$. Тогда $q_s \in F' \Rightarrow w \in L(\mathcal{C}) \blacksquare$
 - b. $n \stackrel{\text{def}}{=} |w| > 0 \Rightarrow w = w_1...w_n, \forall i \in \overline{1,n} \hookrightarrow w_i \in \Sigma.$
 - а. $w \in L(\mathcal{C}) \Rightarrow (q_s, w) \equiv (q_s, w_1...w_n) \vdash (q_1, w_2...w_n) \vdash (q_2, w_3...w_n) \vdash ... \vdash (q_{n-1}, w_n) \vdash (q_n, \varepsilon), q_n \in F'$. Тогда, по построению G имеем $P \ni q_s \longrightarrow w_1q_1, q_1 \longrightarrow w_2q_2, ..., q_{n-1} \longrightarrow w_n$. Значит,
 - $q_s \longrightarrow w_1q_1 \longrightarrow w_1w_2q_2 \longrightarrow \ldots \longrightarrow w_1w_2\ldots w_{n-1}q_{n-1} \longrightarrow w_1\ldots w_n \in \Sigma^* \Rightarrow w \in L(G) \blacksquare$
 - b. $w \in L(G) \stackrel{3(2)d}{\Rightarrow} q_s \longrightarrow w_1q_1 \longrightarrow w_1w_2q_2 \longrightarrow \dots \longrightarrow w_1w_2...w_{n-1}q_{n-1} \longrightarrow w_1...w_n$, и были применены правила $q_s \Rightarrow w_1q_1, ..., q_{n-1} \Rightarrow w_n$ (также см. 3(2)d).
 - Отсюда $\delta'(q_s,w_1)=q_1,\,\delta'(q_1,w_2)=q_2,\,...,\,\delta'(q_{n-1},w_n)\in F\Rightarrow \delta'(q_s,w)\in F\Rightarrow w\in L(\mathcal{C})$

Применим описанный алгоритм для автомата \mathcal{A}_0 из условия:

1. Построим по \mathcal{A}_0 ДКА \mathcal{B}_0 :

\mathcal{A}_0	Построение	\mathcal{B}_0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(отмечены начальная и принимающие)	$Q_1 \xrightarrow{b} Q_3$ $Q_1 \xrightarrow{b} Q_3$ $Q_2 \xrightarrow{b} Q_4$

2. Построим C_0 по B_0 , как описано в алгоритме:

3. Определим грамматику $G = (\Sigma, Q, P, Q_s)$. Выпишем правила $p \in P$:

Q	ε	a	b
Q_s	$Q_s \longrightarrow \varepsilon$	$Q_s \longrightarrow aQ_1 a$	$Q_s \longrightarrow bQ_2$
Q_0		$Q_0 \longrightarrow aQ_1 a$	$Q_0 \longrightarrow bQ_2$
Q_1		$Q_1 \longrightarrow aQ_1 a$	$Q_1 \longrightarrow bQ_3 b$
Q_2			$Q_2 \longrightarrow bQ_4 b$
Q_3		$Q_3 \longrightarrow aQ_0 a$	$Q_3 \longrightarrow bQ_4 b$
Q_4		$Q_4 \longrightarrow aQ_0 a$	

Задача 2

- 1. Пусть дана ПГ G=(N,T,P,S). Построим по ней НКА $\mathcal{A}=(Q,T,\delta,q_0,F)$: $L(\mathcal{A})=L(G)$.
 - 1. Определим
 - a. $Q = N \cup \{q_f\}$
 - b. $q_0 \stackrel{\text{\tiny def}}{=} S$
 - c. $F \stackrel{\text{def}}{=} \{q_f\}$
 - d. $\delta \stackrel{\text{\tiny def}}{=} \emptyset$
 - 2. Рассмотрим переходы $P \ni p_i = A \longrightarrow xB$ (правила типа 1). Для них добавим
 - а. Состояния $q_1^i, ..., q_{|x|-1}^i$, если |x| > 1.
 - b. Переходы:
 - 1. $A \xrightarrow{\varepsilon} B$, если $x = \varepsilon$.
 - 2. $A \xrightarrow{x_1} B$, если |x| = 1, $x_1 \equiv x$.
 - 3. $A \xrightarrow{x_1} q_1^i \xrightarrow{x_2} q_2^i \longrightarrow \dots \longrightarrow q_{n-1}^i \xrightarrow{x_n} B$, если |x| > 1, $x = x_1...x_n$.
 - 3. Рассмотрим переходы $P \ni p_i = A \longrightarrow x$ (правила типа 2). Для них добавим
 - а. Состояния $q_1^i, ..., q_{|x|-1}^i$, если |x| > 1.
 - b. Переходы:
 - 1. $A \xrightarrow{\varepsilon} q_f$, если $x = \varepsilon$.
 - 2. $A \xrightarrow{x_1} q_f$, если |x| = 1, $x_1 \equiv x$.
 - 3. $A \xrightarrow{x_1} q_1^i \xrightarrow{x_2} q_2^i \longrightarrow \dots \longrightarrow q_{n-1}^i \xrightarrow{x_n} q_f$, если |x| > 1, $x = x_1...x_n$.
- 1.5. Докажем, что L(G) = L(A)
 - а. Пусть $w \in L(G), n = |w| > 0, w \equiv w_1...w_n$. Правила типа 1 не изменяют количество нетерминальных символов, а правила типа 2 уменьшают на 1. Аксиома один нетерминал. В левой части каждого правила один нетерминал. Поэтому вывод слова w имеет следующий вид: m-1 применений правил типа 1, затем применение правила типа 2 т.к. после правила (2) нельзя применить никакое правило. Также каждое правило не уменьшает количество нетерминальных символов. То есть, $S = q_0 \longrightarrow w_1 w_2...w_{i_1} q_1 \longrightarrow w_1 w_2...w_{i_1}...w_{i_2} q_2 \longrightarrow ... \longrightarrow w_1...w_{i_{m-1}} q_{m-1} \longrightarrow w_1...w_n$. По построению имеем $(q_0, w) \vdash^* (q_1, w_{i_1+1}...w_n) \vdash^* (q_2, w_{i_2+1}...w_n) \vdash^* (q_{m-1}, w_{i_{m-1}}...w_n) \vdash (q_f, \varepsilon), q_f \in F \Rightarrow w \in L(\mathcal{A})$.
 - b. Пусть $w \in L(G), |w| = 0 \Rightarrow w = \varepsilon$. Тогда во всех m примененных правилах $x_i = \varepsilon$, а последнее типа 2: $q_0 \longrightarrow q_{i_1} \longrightarrow ... \longrightarrow q_{i_{m-1}}\varepsilon$. По построению, $\delta(q_0, \varepsilon) = q_{i_1}, ..., \delta(q_{i_{m-1}}, \varepsilon) = q_f$. Получаем $w \in L(\mathcal{A})$
 - с. Пусть $w \in L(\mathcal{A})$. Тогда $F \ni \delta(q_0, w) = q_f$ (т.к. $F = \{q_f\}$). Рассмотрим цепочку конфигураций $(q_0, w) \vdash^* (q_f, \varepsilon)$. Выпишем оттуда все состояния $A_i \colon A_i \in N$. Тогда переходы $A_i \xrightarrow{x_i} A_{i+1}$ между ними были добавлены на шагах 1(2)b, а последний переход $A_m \xrightarrow{x_m} q_f$ на шаге 1(3)b. Поэтому в грамматике есть правила $S \Rightarrow x_1A_1, ..., A_m \Rightarrow x_m$. Отсюда $w \in L(G)$.
 - 2. Построим НКА \mathcal{A} по грамматике $G: S \longrightarrow abaA|abB|\varepsilon, A \longrightarrow aB|aa, B \longrightarrow bA|aS$

- 3. Запишем систему уравнений: $\begin{cases} (1) & S = abaA + abB + \varepsilon \\ (2) & A = aB + aa \\ (3) & B = bA + aS \end{cases}$. Подставим (3) в (2), получим A = abA + aaS + aa. Отсюда
 - $A = (ab)^*(aaS + aa)$. Подставим в (3): $B = b(ab)^*(aaS + aa) + aS$. Подставим A, B в (1):
 - $S = aba(ab)^*(aaS + aa) + ab(b(ab)^*(aaS + aa) + aS) + \varepsilon \equiv aba(ab)^*aaS + aba(ab)^*aa + abb(ab)^*aaS + abb(ab)^*aa + abaS + \varepsilon \equiv aba(ab)^*aaS + aba(ab)^*aaS + abb(ab)^*aaS + aba(ab)^*aaS + aba(ab)^*aa$
 - $\equiv (aba(ab)^*aa + abb(ab)^*aa + aba)S + aba(ab)^*aa + abb(ab)^*aa + \varepsilon \Rightarrow$
 - $S = (aba(ab)^*aa + abb(ab)^*aa + aba)^*(aba(ab)^*aa + abb(ab)^*aa + \varepsilon).$
- 4. Het: $S \longrightarrow abaA \longrightarrow abaaa$, $S \longrightarrow abaA \longrightarrow abaaB \longrightarrow abaaaS \longrightarrow abaaa$.

Задача 3

Для приведенного мной алгоритма это неверно. Возьмем грамматику $G\colon P=\{S\longrightarrow a,S\longrightarrow aa\}$. Она будет праволинейной (все правила имеют вид $S\longrightarrow x,\ x\in\Sigma^*$) и однозначной: она порождает язык $\{a,aa\}$, каждое слово может быть получено единственным способом. Но алгоритм построит автомат $\mathcal A$, который не будет детерминированным, так как $\delta(q_0,a)=\{q_f,q_1^2\}$.

Задача 4

Рассмотрим грамматику $G \colon P = \{S \longrightarrow 0S1, S \longrightarrow \varepsilon\}$. $L \stackrel{\text{def}}{=} \{0^n 1^n \big| n \geqslant 0\}$. Докажем, что $w \in L(G) \Leftrightarrow w \in L$.

- 1. $w \in L \Rightarrow w = 0^n 1^n$
 - a. $n = 0 \Rightarrow w = \varepsilon$. Ho $P \ni S \longrightarrow \varepsilon \Rightarrow w \equiv \varepsilon \in L(G)$.
 - b. n>0. Применим первое правило n раз, после чего применим второе: $S\longrightarrow 0S1\longrightarrow 00S11\longrightarrow \ldots \longrightarrow \underbrace{0...0}_{n}S\underbrace{1...1}_{n}\longrightarrow 0^{n}1^{n}\Rightarrow w\in L(G)$
- 2. $w \in L(G)$. Первое правило сохраняет количество нетерминалов, второе уменьшает на 1. Поэтому в выводе сначала n применений первого правила, а затем одно применение второго. Количество терминалов не уменьшается. Вывод имеет вид $S \longrightarrow 0S1 \longrightarrow ... \longrightarrow 0...0 S1...1 \longrightarrow 0^n1^n \in L$

G — линейная, так как в правых частях правил не более одного нетерминала. Но $L \equiv L(G) \notin \mathsf{REG}$ — было доказано на семинаре. Поэтому получаем, что утверждение $\forall G$ — линеная $\hookrightarrow L(G) \in \mathsf{REG}$ — неверно.

Задача 5

Пусть $\Sigma = \{\sigma_1, ... \sigma_n\} \supseteq L, L_{\sigma_1}, ..., L_{\sigma_n} \in \mathsf{REG}$. Докажем, что подстановка $L_{\sigma_1}, ..., L_{\sigma_n}$ в L $L' = \{L_{w_1}...L_{w_k} | w_1...w_k \in L\} \in \mathsf{REG}$ индукцией по $R_3(L)$ — количеству применений третьего пункта определения при получении языка L (см. решение предыдущего задания)

- 1. $R_3(L) = 0 \Rightarrow$
 - (a) $L=\varnothing$. Тогда $L'=\varnothing$, так как ни одно слово w не в L. Получаем $L'\in\mathsf{REG}\,\blacksquare$
 - (b) $L = \{\varepsilon\}$. Тогда $L' = \varepsilon$ (конкатенация из 0 строк). Получаем $L' \in \mathsf{REG} \blacksquare$
 - (c) $L = \{\sigma\}$. Тогда $L' = L_{\sigma} \in \mathsf{REG} \blacksquare$
- 2. Пусть $\forall L \colon R_3(L) \leqslant n \hookrightarrow L' \in \mathsf{REG}$. Докажем для n+1. Варианты:
 - (a) $L = XY, X, Y \in \mathsf{REG}$. Тогда подстановка в $X \, L_X' \in \mathsf{REG}$ по предположению индукции. Аналогично для L_Y' . Но $L' = L_X' L_Y'$: $L' = \{L_{w_1} ... L_{w_k} \big| w_1 ... w_k \in XY\} = \{L_{w_1} ... L_{w_m} ... L_{w_k} \big| w_1 ... w_m \in X, w_{m+1} ... w_k \in Y\} = \{L_{w_1} ... L_{w_m} \big| w_1 ... w_m \in X\} \cdot \{L_{w_{m+1}} ... L_{w_k} \big| w_{m+1} ... w_k \in Y\} = L_X' L_Y'$, поэтому $L' \in \mathsf{REG}$.
 - (b) $L = X|Y, X, Y \in \mathsf{REG}$. Аналогично $L'_X, L'_Y \in \mathsf{REG}$. Но $L' = \{L_{w_1}...L_{w_k} \big| w_1...w_k \in X|Y\} = \{L_{w_1}...L_{w_k} \big| w_1...w_k \in X\} \cup \{L_{w_1}...L_{w_k} \big| w_1...w_k \in Y\} = L'_X L'_Y \in \mathsf{REG} \blacksquare$
 - (c) $L = X^*, X \in \mathsf{REG}$. По предположению, $L_X' \in \mathsf{REG}$. Но $L' = \{L_{w_1}...L_{w_k} \big| w_1...w_k \in X^*\} = \{(L_{w_1}...L_{w_k})^* \big| w_1...w_k \in X\} = L_X'^* \in \mathsf{REG}$ ■

Задача 6

Задача 7