Nhan Vo 017771388 HW#1 ANB = 3/ = ANB AUB= $P(A) = \frac{1}{3}, P(B) = \frac{1}{2}, P(AUB) = \frac{3}{4}$ P(AUB) = P(A)+P(B) - P(ANB) (a) =) $P(ANB) = -\frac{3}{4} + \frac{1}{3} + \frac{1}{2} = |\frac{1}{12}|$ (b) P(A'UB') =? P P(A'UB')=P(ANB)=1-P(ANB)

P(A'UB') = P(ADB) = 1 - P(ADB)(C) P(A'DB) = ?

PIANB)

$$P(B) = P((A \cap B) \cup (A' \cap B))$$

$$= P(A \cap B) + P(A' \cap B)$$

$$= P(A' \cap B) = P(B) - P(A \cap B)$$

$$= \frac{1}{12} = \boxed{12}$$

P(rabbit sell) = 15% | P(perch sell) = 20%

P(rabbit sell and perch sell) = 5%

P(rabbit sell or perch sell) = ?

P(rabbit sell U perch sell) = P(rabbit) + P(perch) - P(np)

= 15% + 20% - 5%

= 30%

4 Urn 4 blue 3 yellow

Remove 2
P(both blue) =?

P(first blue) =
$$\frac{4}{7}$$

P(Second blue) = $\frac{3}{6}$ = $\frac{1}{2}$

=) P(both blue) = $\frac{4}{7}$, $\frac{1}{2}$ = $\frac{4}{14}$

6
$$S = \{8,1,6,1,1,6\}$$
 determine:
a) $\mu = \frac{8\times 8}{N} = \frac{8+1+6+1+1+6}{6} = \frac{3.8}{3.83}$

1)		1, 1	
0	X	X-M	(X-M)2
4)	8.8	4.28	17.844
	6	21.28	4.8464
	1	-2.82	71.8414
		- 2.82	1176844
	6	2.28	4.8464
		-2.8	7.84

$$\sum (x-\mu)^2 = 50.848$$

$$\sigma = \sqrt{50.84} = 2.91$$
interval $[\mu - \sigma, \mu + \sigma] = (0.89, 6.71)$
dot plot of the data:

P(not 5 at all one dia) =
$$\frac{5}{6}$$

P(not 5 at all 4 dias) = $(\frac{5}{6})^4 = \frac{625}{1296}$

P(at least one 5 of 4 dias) = $1 - \frac{625}{1296}$

= $\frac{671}{1296}$