Технологіі розробки алгоритмів розв'язання інженерних задач

Лекція №5

Викладач: Дрєєв Олександр Миколайович

- 5. Жадібні алгоритми.
- 5.1. Задача на розмін монет.
- 5.2. Гра «Постав короля в кут» поле NxM.
- 5.3. Задача складання розкладу роботи програміста.
- 5.4. Часткова оптимізація та наближенні розв'язки.
- 5.5. Коли жадібний алгоритм не працює. Пошук шляху, заповнення рюкзаку.

Жадібні алгоритми Що таке "жадібний алгоритм"

Жадібний алгоритм — алгоритм, який виконується покроково, де кожен крок вибирається оптимально лише для цього конкретного кроку. Іноді цей крок може зіпсувати подальшу ситуацію, тому жадібний алгоритм не завжди дає розв'язок.

Приклад: якщо група ділить цінні речі, то для отримання максимального прибутку потрібно кожного разу брати найціннішу річ.

Задача видачі решти найменшою кількістю монет

- Задача після оплати товару, автомат повинен видати решту найменшою кількістю монет вартістю 1 грн., 50 коп., 25 коп., 10 коп., 5 коп., 2 коп., 1 коп.,
- Вхідні данні: ціле число, кількість копійок до решти.
- Вихідні данні: список вартості монет, які повинен видати автомат.
- Приклад. Вхід: 317; вихід: 100 коп., 100 коп., 100 коп., 100 коп., 5 коп., 2 коп..

Задача видачі решти найменшою кількістю монет

Алгоритм — кожного разу видавати монету максимально допустимої вартості, доки сума решти не стане рівна нулеві.

Задача бармена — є рештки напоїв: 100 гр. за 200 грн./літр, 50 гр. за 300 грн./літр, 75 гр. за 50 грн./літр, 20 гр. за 500 грн/літр. Скласти рецепт коктейлю максимальної вартості в 200 грамовій склянці.

Задача шляху короля

Задача шляху короля — дане поле МхN кліток. В клітинці (1,1) стоїть шаховий король. Визначте алгоритм, за яким король дістанеться з верхнього лівого кута в правий нижній кут за найменшу кількість ходів.

Задача шляху короля

Алгоритм — для всіх можливих ходів короля порахувати відстань до мети, вибрати хід, який призводить до мінімальної відстані. Повторювати, доки відстань не стане рівною 0.

Задача шляху короля

Алгоритм — для всіх можливих ходів короля порахувати відстань до мети, вибрати хід, який призводить до мінімальної відстані. Повторювати, доки відстань не стане рівною 0.

Задача шляху короля

Алгоритм НЕЗАСТОСОВНИЙ

Жадібні алгоритми Задача розкладу

Задача — програмісту поставлено и задач. Для кожної задачі i поставлені строки виконання d_i та сума винагородження s_i . Скласти розклад роботи так, щоб зароблена сума була максимальною.

								8		
S_{i}	10	20	5	8	6	7	7	20	3	8
$d_{_{i}}$	6	4	2	5	1	3	2	1	5	6

Жадібні алгоритми Задача розкладу

Алгоритм — Шукаємо завдання з найбільшою вартістю й ставимо його на початок списку. Далі зі списку беремо із завдань, які залишилися знову з найбільшою вартістю, якщо за строками не встигаємо, дивимося чи можна відкласти одне з попередніх і міняємо їх місцями. Повторити до кінця списку.

i	1	2	3	4	5	6	7	8	9	10
		20								
d_{i}	6	4	2	5	1	3	2	1	5	6

Задача розкладу

i	2	1	3	4	5	6	7	8	9	10
								20		
$d_{_{i}}$	4	6	2	5	1	3	2	1	5	6
i	2	8	3	4	5	6	7	1	9	10
S_{i}	20	20	5	8	6	7	7	10	3	8
$d_{_i}$	4	1	2	5	1	3	2	6	5	6
i	8	2	3	4	5	6	7	1	9	10
S_{i}	20	20	5	8	6	7	7	10	3	8
$d_{_i}$	1	4	2	5	1	3	2	6	5	6

Задача розкладу

i	8	2	3	4	5	6	7	1	9	10
S_{i}	20	20	5	8	6	7	7	10	3	8
$d_{_i}$	1	4	2	5	1	3	2	6	5	6
i	8	2	1	4	5	6	7	3	9	10
S_{i}	20	20	10	8	6	7	7	5	3	8
$d_{_i}$	1	4	6	5	1	3	2	2	5	6
i	8	2	1	4	10	6	7	3	9	5
S_{i}	20	20	10	8	8	7	7	5	3	6
$d_{_i}$	1	4	6	5	6	3	2	2	5	1

Часткова оптимізація, наближені розв'язки

Знайти шлях Мінімізація кількості пересадок

Часткова оптимізація, наближені розв'язки

 $\frac{3}{6}$ адача — задана функція f(x). Знайти мінімум (або максимум).

Алгоритм — з довільної точки x_0 шукаємо значення функції в точках x_0+a , x_0-a . Беремо нову опорну точку з найменшим значенням. Якщо в нових точках функція не менша, то зменшуємо крок a. Продовжуємо уточнення до потрібної точності:

Часткова оптимізація, наближені розв'язки

Часткова оптимізація, наближені розв'язки

Задача — В рюкзак вміщується 50 кг. Помістити в рюкзак предмети, щоб сума їх вартості була максимальною.

Жадібний алгоритм — доки є місце кладемо предмети з максимальною вартістю на 1 кг.

Список предметів: 1) 26 кг. по 120 грн. - 8 штук, 2) 25 кг. по 80 грн. - 5 штук, 3) 1 кг. по 1 грн. - 20 шт.