Lab5 Report

t2330016056 Bohan YANG

Introduction

The fetch-decode-execute cycle, also known as the instruction cycle, is the fundamental operational process of a computer's central processing unit (CPU). During each cycle, the CPU retrieves an instruction from memory (fetch), interprets what needs to be done (decode), and performs the necessary actions to complete the instruction (execute). In this report, we analyze the fetch-decode-execute cycle for a sample ADD instruction using a simplified instruction set architecture (ISA) model.

Chosen Instruction and Initial States

Instruction: ADD R6, R2, R6

This instruction adds the values in registers R2 and R6 and stores the result in register R6.

Initial Register and Memory States:

Control Registers						
PC: 3000	IR: 0000	MAR: 0000	MDR: 0000			
N: 0	Z: 0	P: 0				
General Purpose Registers						
RO: 0000	R1: 0000	R2: 0000	R3: 0000			
R4: 0000	R5: 0000	R6: 0000	R7: 0000			

Detailed Cycle Analysis

Fetch Phase

PC becomes PC + 1

Load contents of PC into MAR, MAR become 3000

Control Registers	,		
PC: 3001	IR: 0000	MAR: 3000	MDR: 0000
N: 0	Z: 0	P: 0	

Send a "read" signal from MAR to memory to fetch the instruction, MDR become 1c86

Store the fetched instruction into the Instruction Register (IR).

IR become 1c86 (ADD R6, R2, R6).

Control Registers			
PC: 3001	IR: 1c86	MAR: 3000	MDR: 1c86
N: 0	Z: 0	P: 0	

Decode Phase

The control unit decodes the instruction in the IR (ADD R6, R2, R6), identifying it as an addition operation involving registers R2 and R6, with the result to be stored in R6.

Control signals are configured to access the ALU for an addition operation and to route the outputs to R1.

Execute Phase

The ALU retrieves the values from registers R2 and R6, performs the addition (0 + 0), and produces the result (0), and set Z = 1.

Result

The result from the ALU (0) is stored in the destination register R6 (0). And Z is set to 1.

Control Registers

PC: **3001** IR: **1c86** MAR: **3000** MDR: **1c86**

N: **0** Z: **1** P: **0**

General Purpose Registers –

R0: 0000 R1: 0000 R2: 0000 R3: 0000

R4: 0000 R5: 0000 R6: 0000 R7: 0000