Introduction to Quantum Computing

Paolo Cremonesi

Complex numbers mini recap

Complex number

$$z = x + iy = r(\cos \varphi + i \sin \varphi) = re^{i\varphi}$$
 with $r = \sqrt{x^2 + y^2}$

- A complex number can be **rotated by an angle** ψ by multiplying it with $e^{i\psi}$
- The **conjugate** of complex number z is

$$\bar{z} = x - iy = re^{-i\varphi}$$

The Hermitian of a vector of complex numbers

$$z = \begin{bmatrix} a \\ b \end{bmatrix}$$

is its conjugate transpose

$$z^H = [\bar{a} \quad \bar{b}]$$

Dirac's ket and bras

• In Dirac's notation (also know as **bra-ket** notation), a **ket** is a unitary column vector denoted by

$$|v\rangle \leftrightarrow \vec{v}$$

- it is used to represent a quantum state, that is, a complex unit vector (a vector of length 1)
- Example: if we have a quantum system with two possible states, which we label as $|0\rangle$ and $|1\rangle$, then any state of the system can be written as a linear combination of these two states:

$$|v\rangle = a|0\rangle + b|1\rangle$$

where a and b are complex numbers (amplitudes), and $|a|^2 + |b|^2 = 1$ to ensure normalization

- The ket $|v\rangle$ represents the state of the quantum system
- Kets are used in conjunction with bras, which are row vectors denoted by

$$\langle v | \leftrightarrow \vec{v}^H$$

The bra $\langle v |$ represents the conjugate transpose of the ket $|v\rangle$

Dirac's notation: multiplications

• The inner (scalar) product between two kets $|x\rangle$ and $|y\rangle$ (that is, between two vectors \vec{x}^H and \vec{y}) is represented with the following notation

$$\langle x|y\rangle \leftrightarrow \vec{x}^H \cdot \vec{y}$$

• We often need to multiply a ket \vec{v} (a column vector) with a matrix M. This is the notation

$$M|v\rangle \leftrightarrow M \cdot \vec{v}$$

• We can concatenate multiplications, for example

$$\langle x|M|y\rangle \leftrightarrow \vec{x}^H \cdot M \cdot \vec{y}$$

Single Qubit States

Photon's polarization

- Photon's polarization is described with a **unit** vector $|v\rangle$
 - *unit vector*: norm of the vector equal to one
- We write |→⟩ and |↑⟩ for unit vectors that represent horizontal and vertical polarization
- An arbitrary polarization can be expressed as a linear combination $|v\rangle = a| \rightarrow \rangle + b| \uparrow \rangle$
- Example: $|\mathcal{F}\rangle = \frac{1}{\sqrt{2}}|\rightarrow\rangle + \frac{1}{\sqrt{2}}|\uparrow\rangle$ is a unit vector representing polarization of 45° degrees

Photon's polarization and qubits

- The state of a photon can be represented by a unit vector of two complex numbers $|v\rangle = a|\rightarrow\rangle + b|\uparrow\rangle$
- Coefficients a and b are complex numbers and are called the amplitudes of $|v\rangle$ in the directions $|\to\rangle$ and $|\uparrow\rangle$
 - a^2 is the probability to **measure** the photon in polarization $|\rightarrow\rangle$
 - b^2 is the probability to **measure** the photon in polarization $|\uparrow\rangle$
- When a and b are both non-zero, $|v\rangle$ is said to be a **superposition** of $|\rightarrow\rangle$ and $|\uparrow\rangle$
- In the photon polarization example, $|\rightarrow\rangle$ and $|\uparrow\rangle$ are call the **basis**

The possible polarization states of a photon is an example of qubit

Photon's polarization and qubits

- What happens when a photon with no polarization $|v_0\rangle=a|\rightarrow\rangle+b|\uparrow\rangle$ emitted by light source (0) meets the polaroid (1) with axis $|\rightarrow\rangle$
 - the photon gets through with probability $|a|^2$
 - is absorbed with probability $|b|^2$
 - photons that passe through the polaroid are polarized in the direction of the polaroid's axis $| \rightarrow \rangle$ $| v_1 \rangle = 1 | \rightarrow \rangle + 0 | \uparrow \rangle = | \rightarrow \rangle$
 - (the photon is not in superposition any more with respect to $|\rightarrow\rangle$ and $|\uparrow\rangle$)
- What happens once polaroid (2) with polarization axis |↑⟩ is inserted?
 - any photons that pass through polaroid (1) will leave polarized in the direction of polaroid (1)'s axis, in this case horizontal, $|\rightarrow\rangle$
 - a horizontally polarized photon has no amplitude in the vertical direction, so it has no chance of passing through polaroid (2), which has a vertical orientation
 - no light reaches the screen

Photon's polarization and qubits

- What happens if polaroid (3) with polarization $| \nearrow \rangle$ is inserted between (1) and (2)?
 - the horizontally polarized photon's state $|v_1\rangle = | \rightarrow \rangle$ can be written as (think to this as a change of axis)

$$|v_1\rangle = | \rightarrow \rangle = \frac{1}{\sqrt{2}} | \nearrow \rangle + \frac{1}{\sqrt{2}} | \searrow \rangle$$

- the horizontally polarized photon passes through polaroid (3) with probability $\left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2}$
- photons that pass through polaroid (3) have polarization | ↗⟩
- the diagonally polarized photon's state $| \nearrow \rangle$ can be written as

$$|v_1\rangle = |\mathcal{F}\rangle = \frac{1}{\sqrt{2}}|\rightarrow\rangle + \frac{1}{\sqrt{2}}|\uparrow\rangle$$

- when these photons hit polaroid (2), they have amplitude in the vertical direction
 - some of them will pass thorough polaroid (2) and hit the screen with probability 1/2

Qubits

- A qubit is the unit of quantum information, analogous to a classical bit.
 - a qubit has an infinite possible values, differently from classical bits that can be either 0 or 1
- Its state is represented by a unit vector $|v\rangle$ of two complex numbers a and b

$$|v\rangle = \binom{a}{b} = a|0\rangle + b|1\rangle$$

• where we define the two vectors $|0\rangle$ and $|1\rangle$, also called the **standard basis**, as

$$|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \quad |0\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$$

- The complex numbers a and b are called the **amplitudes**
 - a^2 is the probability to **measure** the qubit in state $|0\rangle$
 - b^2 is the probability to **measure** the photon in state $|1\rangle$
- We will later explain what does it means to measure a qubit ...

Single qubits basis

• When describing the state qubit, it is possible to use any pair of **orthonormal basis** $|u\rangle$ and $|u^{\perp}\rangle$

$$|v\rangle = a|u\rangle + b|u^{\perp}\rangle$$

- two vectors $|u\rangle$ and $|u^{\perp}\rangle$ are orthonormal if they are orthogonal and both with unitary norm
- The most used basis are the standard basis denoted with labels $|0\rangle$ and $|1\rangle$

$$|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \quad |1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$$

• Another set of useful basis are the Hadamard basis with labels $|+\rangle$ and $|-\rangle$

$$|+\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad |-\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Single qubits measurement

- Any device that measures a qubit must have two preferred states $|u\rangle$ and $|u^{\perp}\rangle$
 - $|u\rangle$ and $|u^{\perp}\rangle$ form an orthonormal basis
 - throughout the course, when not specified differently, measurement is done with respect to the standard basis $|u\rangle=|0\rangle$ and $|u^{\perp}\rangle=|1\rangle$
 - the measurement outcome is always one of the two basis vectors $|u\rangle$ or $|u^{\perp}\rangle$
 - The state of qubit $|v\rangle=a|u\rangle+b|u^\perp\rangle$ is measured as $|u\rangle$ with probability $|a|^2$ and as $|u^\perp\rangle$ with probability $|b|^2$
- Measurement of a qubit changes its state
 - if qubit with state $|v\rangle=a|u\rangle+b\big|u^\perp\rangle$ is measured as $|u\rangle$, then the state changes to $|v\rangle=1|u\rangle+0\big|u^\perp\rangle=|u\rangle$
 - a second measurement with respect to the same basis will return $|u\rangle$ with probability 1
 - the same if the qubit is measured as $|u^{\perp}\rangle$
- This behavior of measurement is an axiom of quantum mechanics

Exercise

Show that the Hadamard basis are orthogonal

- we need to show that $\langle +|-\rangle = 0$
- remember that $|+\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $|-\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
- $\langle +|-\rangle = \frac{1}{\sqrt{2}}(1 \quad 1) \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix} = 0$

Exercise

- How to pass from one basis (standard) to another one (Hadamard)?
 - use a system of linear equations where the amplitudes of the basis states are the unknowns
- Standard:

$$a|0\rangle + b|1\rangle = a \begin{pmatrix} 1\\0 \end{pmatrix} + b \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} a\\b \end{pmatrix}$$

• Hadamard:

$$x|+\rangle + y|-\rangle = x \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} + y \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} x+y\\x-y \end{pmatrix}$$
$$\begin{cases} a = \frac{x+y}{\sqrt{2}} \\ b = \frac{x-y}{\sqrt{2}} \end{cases} \rightarrow \begin{cases} x = \frac{a+b}{\sqrt{2}} \\ y = \frac{a-b}{\sqrt{2}} \end{cases}$$

Single qubits measurement and superposition

- Superposition is basis-dependent: all states are in superpositions with respect to some bases and not with respect to others
 - example: $|v\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$ is in superposition with respect to the basis $|0\rangle$ and $|1\rangle$
 - but not with respect to the basis $|+\rangle$ and $|-\rangle$ for which we have $|v\rangle=1|+\rangle+0|-\rangle$
 - more in general, $|v\rangle = a|0\rangle + b|1\rangle$ (with $a \neq 0$ and $b \neq 0$)
 - is in superposition with respect to the basis $|0\rangle$ and $|1\rangle$
 - but not with respect to the basis $|x\rangle=a|0\rangle+b|1\rangle$ and $|y\rangle=\bar{b}|0\rangle-\bar{a}|1\rangle$
- If you measure qubit $|v\rangle$
 - with respect to the basis $|0\rangle$, $|1\rangle$ you have a probabilistic results
 - 50% of being |0>
 - 50% of being |1>
 - with respect to the basis $|+\rangle$, $|-\rangle$ you have a deterministic results
 - 100% of being |+>

Exercise

- Show that $|x\rangle = a|0\rangle + b|1\rangle$ is orthogonal to $|y\rangle = \bar{b}|0\rangle \bar{a}|1\rangle$
- An easy way to see why $|x\rangle$ is orthogonal to $|y\rangle$ is to compute their inner product $\langle x|y\rangle$ and check that it is zero
- The bra $\langle y |$ corresponding to $|y\rangle$ is

$$\langle y| = b\langle 0| - a\langle 1|$$

- since $\bar{\bar{a}}=a$ and $\bar{\bar{b}}=b$
 - why? $a = |a|e^{i\alpha}$, $\bar{a} = |a|e^{-i\alpha}$, $\bar{\bar{a}} = |a|e^{i\alpha}$
- Now compute the inner product

$$\langle w|v\rangle = (b\langle 0| - a\langle 1|)(a|0\rangle + b|1\rangle)$$

Expand term by term

$$\langle w|v\rangle = ba\langle 0|0\rangle + bb\langle 0|1\rangle - aa\langle 0|1\rangle - ab\langle 1|1\rangle = ba - ab = 0$$

• remember that $\langle 0|0\rangle = \langle 1|1\rangle = 1$, and $\langle 0|1\rangle = \langle 1|0\rangle = 0$

Interpretation of superposition

- Superposition is not just a probabilistic mixture of $|0\rangle$ and $|1\rangle$
 - an **erroneous interpretation** is that the state is either $|0\rangle$ or $|1\rangle$ and that we just do not happen to know which
 - $|v\rangle = a|0\rangle + b|1\rangle$ is a definite state, which, when measured in certain bases, gives deterministic results, while in others it gives random results
- States that are combinations of $|0\rangle$ and $|1\rangle$ in similar proportions but with different amplitudes represent different states that behave differently in many situations
 - the following fours states

$$\frac{|0\rangle + |1\rangle}{\sqrt{2}} \quad \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$
$$\frac{|0\rangle + i|1\rangle}{\sqrt{2}} \quad \frac{|0\rangle - i|1\rangle}{\sqrt{2}}$$

if measured with standard basis, give the same 0.5 probabilities for $|0\rangle$ and $|1\rangle$, although they behave differently with other measurement basis

Information carried by single qubits

- Qubits can take one of infinitely many states
- One might hope that a single qubit could store lots of classical information
- However ...
 - a single measurement yields at most a single classical bit of information
 - because measurement changes the state, one cannot make two measurements on the original state of a qubit
- If you have a qubit in state $|v\rangle=a|0\rangle+b|1\rangle$ with a and b unknown, it is impossible to measure a and b
- Quantum state cannot be cloned
 - it is not possible to measure a qubit's state twice, even indirectly by copying the qubit's state and measuring the copy

Global phase of a qubit

Let's consider two qubits

$$|v\rangle = a|0\rangle + b|1\rangle$$

and

$$|v'\rangle = e^{i\varphi}|v\rangle$$

- remember that $e^{i\varphi}$ is a unitary complex number (a complex number of length 1) and therefore the amplitudes of v' and v have the same "lengths"
- Two vectors $|v\rangle$ and $|v'\rangle$ describe **the same qubit**. We write $|v\rangle \sim |v'\rangle$
- $|v\rangle$ and $|v'\rangle$ differ only from a rotation φ which is called the **global phase**
- Demonstration (we will see this later more in detail)
 - measuring the rotated qubit v' leads to the same result as measuring the original qubit v' $\langle v'|M_k|v'\rangle = \langle e^{i\varphi}v|M_k|ve^{i\varphi}\rangle = e^{-i\varphi}e^{i\varphi}\langle v|M_k|v\rangle = \langle v|M_k|v\rangle$

Bloch sphere representation of qubit

• Apparently, there are four degrees of freedom in a qubit $|v\rangle = a|0\rangle + b|1\rangle$ as a and b are complex numbers

• One degree of freedom is removed by the **normalization** constraint $|a|^2 + |b|^2 = 1$

We can rewrite the qubit in this way

$$|v\rangle = e^{i\alpha}\cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\beta}\sin\left(\frac{\theta}{2}\right)|1\rangle$$

- we can multiply by $e^{-i\alpha}$ (global phase has no consequences)
- We can rewrite qubit $|v\rangle$ in spherical coordinates $|v\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\varphi}\sin\left(\frac{\theta}{2}\right)|1\rangle$
- The relative phase $\varphi=\beta-\alpha$ is meaningful

Exercise

- Describe qubits $|i\rangle$ and $|-i\rangle$ using the standard basis
 - $|i\rangle$ requires $\varphi = \frac{\pi}{2}$ and $\theta = \frac{\pi}{2}$
 - replacing in $\cos\left(\frac{\theta}{2}\right)|0\rangle+e^{i\varphi}\sin\left(\frac{\theta}{2}\right)|1\rangle$ and remembering that $e^{i\frac{\pi}{2}}=i$ we obtain

$$|i\rangle = \frac{\sqrt{2}}{2}|0\rangle + \frac{\sqrt{2}}{2}i|1\rangle = \frac{\sqrt{2}}{2}\binom{1}{i}$$

- $|-i\rangle$ requires $\varphi = -\frac{\pi}{2}$ and $\theta = \frac{\pi}{2}$
- replacing in $\cos\left(\frac{\theta}{2}\right)|0\rangle+e^{i\varphi}\sin\left(\frac{\theta}{2}\right)|1\rangle$ and remembering that $e^{-i\frac{\pi}{2}}=-i$ we obtain

$$|-i\rangle = \frac{\sqrt{2}}{2}|0\rangle - \frac{\sqrt{2}}{2}i|1\rangle = \frac{\sqrt{2}}{2}\binom{1}{-i}$$

Exercise

- Show that two qubits $|v\rangle$ and $|w\rangle$ on the opposite side of the Bloch sphere are orthogonal
 - $|v\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\varphi}\sin\left(\frac{\theta}{2}\right)|1\rangle$
 - the opposite point on the sphere has coordinates $(\pi \theta, \pi + \varphi)$
 - $|w\rangle = \cos\left(\frac{\pi-\theta}{2}\right)|0\rangle + e^{i(\pi+\varphi)}\sin\left(\frac{\pi-\theta}{2}\right)|1\rangle$
 - we can rewrite as
 - $|w\rangle = \sin\left(\frac{\theta}{2}\right)|0\rangle e^{i\varphi}\cos\left(\frac{\theta}{2}\right)|1\rangle$ • $\cos\left(\frac{\pi-\theta}{2}\right) = \sin\left(\frac{\theta}{2}\right), \sin\left(\frac{\pi-\theta}{2}\right) = \cos\left(\frac{\theta}{2}\right) \text{ and } e^{i(\pi+\varphi)} = -e^{i\varphi}$
 - the bra of $|w\rangle$ is
 - $\langle w | = \sin\left(\frac{\theta}{2}\right) \langle 0 | -e^{-i\varphi} \cos\left(\frac{\theta}{2}\right) \langle 1 |$
 - now compute the inner product
 - $\langle w|v\rangle = \sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right) \sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right) = 0$
 - remember that $\langle 0|0\rangle=\langle 1|1\rangle=1$, and $\langle 0|1\rangle=\langle 1|0\rangle=0$

