UGC/MATH (2018 Dec-Math set-a) Q.104

Lanka Prasanna

CS20BTECH11029

Topics covered

Prerequisites:

- Chi-square distribution
- Weak law of large numbers with its proof
- Strong law of large numbers
- Almost sure convergence
- Central limit theorem
- Properties of mean and variance

UGC NET problem

- Question
- Solution

Chi-square distribution

If X_1, X_2, \cdots are independent normally distributed random variables with mean 0 and variance 1. Then $\chi = X_1^2 + X_2^2 + \cdots + X_n^2$ is chi-square distributed with n degrees of freedom.

$$E(\chi) = n \tag{1}$$

$$Var(\chi) = 2n \tag{2}$$

Weak law of large numbers

Let X_1, X_2, \cdots be i.i.d random variables with same expectation(μ) and finite variance(σ^2).Let $S_n = X_1 + X_2 + \cdots + X_n$, Then as $n \to \infty$

$$\frac{S_n}{n} \xrightarrow{i.p} \mu,$$
 (3)

in probability

Proof:

Define a new variable

$$X \equiv \frac{X_1 + X_2 + \cdots + X_n}{n} \tag{4}$$

Then, as $n \to \infty$

$$E(X) = E\left(\frac{X_1 + X_2 + \cdots + X_n}{n}\right)$$

$$= \frac{E(X_1) + \cdots + E(X_n)}{n}$$
(6)

$$=\frac{n\mu}{n}\tag{7}$$

$$=\mu \tag{8}$$

In addition,

$$Var(X) = Var\left(\frac{X_1 + X_2 + \dots + X_n}{n}\right)$$

$$= Var\left(\frac{X_1}{n}\right) + \dots + Var\left(\frac{X_n}{n}\right)$$
(10)

$$= Var\left(\frac{\Lambda_1}{n}\right) + \cdots Var\left(\frac{\Lambda_n}{n}\right) \tag{10}$$

$$n\sigma^2$$

$$=\frac{nc}{n^2} \tag{11}$$

$$=\frac{o}{n} \tag{12}$$

(6)

5/19

Therefore, by Chebyshev inequality, for all $\epsilon > 0$,

$$\Pr(|X - \mu| \ge \epsilon) \le \frac{Var(X)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}$$
 (13)

As $n \to \infty$, it follows that

$$\lim_{n \to \infty} \Pr(|X - \mu| \ge \epsilon) = 0 \tag{14}$$

Stated other way as $n \to \infty$

$$\frac{S_n}{n} \xrightarrow{i.p} \mu, \tag{15}$$

in probability

Strong law of large numbers

Let X_1, X_2, \cdots be i.i.d random variables with same expectation(μ) and finite variance(σ^2).Let $S_n = X_1 + X_2 + \cdots + X_n$, Then as $n \to \infty$

$$\frac{S_n}{n} \xrightarrow{a.s} \mu,$$
 (16)

almost surely.

Almost sure convergence

A sequence of random variables X_n where $n \in N$ is said to converge almost surely or with probability 1 (denoted by a.s or w.p 1) to X if

$$\Pr\left(\omega|X_n(\omega)\to X(\omega)\right)=1$$
 (17)

Central limit theorem

The Central limit theorem states that the distribution of the sample approximates a normal distribution as the sample size becomes larger, given that all the samples are equal in size, regardless of the distribution of the individual samples.

Properties of mean and variance

If X is a random variable with a probability density function of f(x). If a and b are constants.

$$E(X) = \int_{R} x f(x) dx \tag{18}$$

$$E(X+Y) = E(X) + E(Y)$$
(19)

$$E(aX + b) = aE(X) + b, (20)$$

$$Var(X) = E(X^2) - E(X)^2$$
 (21)

$$Var(X + Y) = Var(X) + Var(Y)$$
 (22)

$$Var(aX + b) = a^{2}Var(X)$$
 (23)

Question

UGC/MATH (2018 Dec-Math set-a) Q.104

Let X_1, X_2, \cdots be i.i.d. N(0,1) random variables. Let $S_n = X_1^2 + X_2^2 + \cdots + X_n^2 . \forall n \geq 1.$ Which of the following statements are correct?

Solution

Given X_1, X_2, \cdots follow normal distribution with mean 0 and variance 1.

$$f_{X_i}(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, i \in 1, 2, \cdots$$
 (24)

Option A

From definition of chi-square distribution S_n is a chi-distributed function with n degrees of freedom.

From (1)

$$E(S_n) = n (25)$$

From (25) and (20)

$$E\left(\frac{S_n - n}{\sqrt{2}}\right) = \frac{E(S_n) - n}{\sqrt{2}} \tag{26}$$

$$=\frac{n-n}{\sqrt{2}}\tag{27}$$

$$=0 (28)$$

From (2)

$$Var(S_n) = 2n \tag{29}$$

Option A contd.

From (29) and (23)

$$Var\left(\frac{S_n - n}{\sqrt{2}}\right) = Var\left(\frac{S_n}{\sqrt{2}}\right) \tag{30}$$

$$=\frac{Var(S_n)}{2} \tag{31}$$

$$=\frac{2n}{2}\tag{32}$$

$$= n \tag{33}$$

Hence, from central limit theorem

$$\left(\frac{S_n-n}{\sqrt{2}}\right) \sim N(0,n) \tag{34}$$

Hence Option A is false.

Option B

Given

$$S_n = X_1^2 + X_2^2 + \dots + X_n^2 . \forall n \ge 1$$
 (35)

Assume that For all $\epsilon>0$, $\Pr\left(\left|\frac{S_n}{n}-2\right|>\epsilon\right)\to 0$ as $n\to\infty$ is true Let

$$X \equiv \frac{X_1^2 + X_2^2 + \dots + X_n^2}{n} \tag{36}$$

From (25) and (20)

$$E(X) = E\left(\frac{S_n}{n}\right) \tag{37}$$

$$=\frac{E(S_n)}{n}\tag{38}$$

$$=\frac{n}{n}\tag{39}$$

$$=1 \tag{40}$$

Option B contd.

From weak law of large numbers

$$\frac{S_n}{n} \xrightarrow{i.p} E\left(\frac{S_n}{n}\right) \tag{41}$$

$$\lim_{n \to \infty} \Pr\left(\left|\frac{S_n}{n} - 1\right| > \epsilon\right) = 0 \tag{42}$$

This means for all $\epsilon > 0$, $\Pr\left(\left|\frac{S_n}{n} - 1\right| > \epsilon\right) \to 0$ as $n \to \infty$. But this is contradiction to our assumption.

Hence **Option B** is false.

Option C

Given

$$S_n = X_1^2 + X_2^2 + \dots + X_n^2 . \forall n \ge 1$$
 (43)

Hence from Strong law of large numbers we can write

$$\frac{S_n}{n} \xrightarrow{a.s} E\left(\frac{S_n}{n}\right) \tag{44}$$

From (40)

$$\frac{S_n}{n} \xrightarrow{a.s} 1 \tag{45}$$

almost surely.

$$\Pr\left(\lim_{n\to\infty}\frac{S_n}{n}=1\right)=1\tag{46}$$

Option C contd.

From definition of Almost sure convergence and (46) we can write,

$$\frac{S_n}{n} \xrightarrow{w.p.1} 1 \tag{47}$$

with probability 1.

Hence **Option C** is true.

Option D

Let

$$Y = \frac{S_n - n}{\sqrt{n}} \tag{48}$$

Using (25) and (20)

$$E\left(\frac{S_n - n}{\sqrt{n}}\right) = \frac{E(S_n) - n}{\sqrt{n}} \tag{49}$$

$$=\frac{n-n}{\sqrt{n}}\tag{50}$$

$$=0 (51)$$

using (25) and (20)

$$Var\left(\frac{S_n - n}{\sqrt{n}}\right) = \frac{Var(S_n)}{n} \tag{52}$$

$$=\frac{2n}{n}\tag{53}$$

$$= 2 \tag{54}$$

Option D contd.

Hence, from central limit theorem

$$Y \sim N(0,2) \tag{55}$$

$$\Pr\left(\frac{S_n - n}{\sqrt{n}} \le x\right) = \Pr\left(S_n \le n + \sqrt{n}x\right) \tag{56}$$

Therefore,

$$\Pr\left(S_n \le n + \sqrt{n}x\right) \to \Pr\left(Y \le x\right) \forall x \in R \tag{57}$$

Hence, Option D is true.