

씨 단국대학교

신경계통

→ 신경계를 가진 모든 생명체가 '마음'이 있다고 말하기 어려움

신경계통의 존재의의는 무엇일까요?

→ 신경계통과 뇌의 유무가 동·식물을 나누는 기준이라면, 가장 큰 차이점은 움직임

생존에 유리한 정교한 움직임을 조절하기 위해 생긴 <mark>감각계가 신경계로 발달되었음</mark>

감각계

생존을 위해 유리한 움직임에 도움이 되는 정보 제공

- ➡ 낮은 수준의 감각계는 단순화된 반응인
 반사(reflex)를 중심으로 신경계가 이루어짐
- → 과거에 경험한 일을 기억하거나, 앞으로 어떤 일이 일어날지 예측하는 것이 필요

진화과정을 통하여 덧씌워진 결과물이 뇌를 포함한 신경계통이라고 봄

외부 환경에 대한 정보와 변화 (<mark>감각계통</mark>)

사람의 신경계통

생존에 유리한 반응 결정 (중추신경계통)

생존에 적합한 개체의 반응

씨 단국대학교

대노 (cerebrum)

- 가장 큰 부피를 가지며 많은 주름으로 구성
- 주름들은 뇌가 머리뼈라는 한정된 공간 속에서 표면적을 최대한 늘리기 위해 진화한 결과
- 주름진 뇌의 표면

튀어나온 부위 : 뇌이랑(gyrus)

들어간 부위: 뇌고랑(sulcus)

소뇌(cerebellum)

• 대뇌의 뒤에 위치 • 움직임을 제어하는데 주요한 역할 수행

뇌줄기 (brainstem, 뇌간)

- 척수와 연결되는 부위에 위치
- 생명유지에 필요한 다양한 기능을 수행하며, 맛과 같은 특수감각의 처리도 일부 담당
- 중간뇌, 다리뇌 및 숨뇌로 구분

뇌줄기 (brainstem, 뇌간)

씨 단국대학교

뇌와 척수를 제외한 모든 신경계통

신경(nerve)

- 축삭(axon)이 섬 유성결합조직에 의해 둘러쌓인 것
- 머리뼈와 척주에 있는 구멍들을 통해 중추신경계통에서 나옴

신경절(ganglion)

- 중추신경계통 밖에 위치 한 신경세포체
- 신경에서 도톰하게 팽창해 있는 모습으로 보이거나, 신경에 매달린 매듭모양

핵(nucleus)은 중추신경계통 안에 위치하며, 중추신경계통에 속함

씨 단국대학교

2

몸 감각갈래

내장감각갈래

피부, 근육, 뼈 등의 감각

가슴과 배 안의 장기의 감각 운동신경갈래 (motor division)

몸 운동갈래

뼈대근육으로 신호 전달하여 근육 수축 가능 내장운동갈래

샘, 심장근육, 민무늬근육으로 신호 전달하여 내장 작용 조절

교감신경갈래

부교감신경갈래

- 심장 박동이 빨라짐
- 호흡 증가시킴
- 소화 억제

- 심장 박동을더 느리게 함
- 호흡 감소시킴
- 소화 자극

신경세포(neuron)

신경아교세포 (neural glial cell)

뇌의 각 부분간의 의사소통을 담당 신경세포가 제대로 기능을 하도록 도와주는 역할

약 1000억 개의 신경세포가 존재하며, 신경세포의 약 10배에 해당하는 신경아교세포 존재

신경세포가 다른 신경세포와 만나는 연접(synapse)으로 정보처리(신경통합) 가능

신경세포

• 세포핵과 핵소체(nucleolus)이 위치하는 신경세포체(nerve cell body)와 돌기로 이루어짐

수상돌기

● 짧은 나뭇가지 모양

축삭돌기

• 길고 일정한 두께를 가짐

신경세포 neuron

- ✔ 가장 중요한 형태의 뇌세포
- ✔ 다른 신경세포에 신속하게 메시지를 전달
 - 단순한 전기 신호이거나 신경전달 물질의 작용
 - 뇌 과학자들은 이 과정 현상을 밝히려 매진

신경세포의발견

- ✔ 얀 푸르키니에 : 신경세포 현미경으로 최초 관찰
- ✔ 카밀로 골지
 - → 1872년 신경세포 염색 기술 개발
 - → 뇌는 그물처럼 광대하고 연속적인 신 경세포의 네트워크라 함

- → 신경세포는 불연속적인 독립된 단위로 서로에게 아주 가깝게 붙어있다는 의견 제시
- → 뇌는 그물처럼 광대하고 연속적인 신경세포의 네트워크라 함

골지염색 한 신경세포

신경세포체 (대부분 0.01mm보다 작음) 축삭돌기 (1m이상 이어질 수 있음)

대뇌에서부터 발끝까지 아주 작은 수의 연접만으로도 정보 전달 가능

축삭돌기 내에서 어떻게 정보전달이 될까요?

축삭돌기의 세포막의 전위차의 전달은 세포체에서 가까운 곳에서부터 먼 곳으로 전달

- 만약 축삭돌기에서 누전 전기 신호의 전달 손실이 일어나면 어떻게 될까요?
 - → 중간에 애써 만든 전기 신호가 사라지게 됨

전기 신호는 화학 신호로 바뀐 뒤 시냅스를 건너 다시 전기 신호로 바뀜

- ✓ 신경근육이음부(neuromuscular junction)
 - → 신경세포와 근육섬유의 만나는 연접
- ✓ 전기적 시냅스(electrical synapse)
 - → 두 신경세포 사이가 직접적으로 세포질 연결

흥분성

- 환경 변화에 반응하는 능력
- 이온통로를 통한 활동 전위 형성

전도성

- 다른 세포에게 빠르게 전달할 전기 신호를 형성하는 능력
- 축삭돌기를 통한 활동 전위 전달

분비능 력

- 축삭돌기 끝에서 신경전달물질을 분비하여 다른 신경세포에 정보 전달
- 신경전달물질의 전달을 통한 신경세포간의 정보전달

신경세포의 신호전달과 관련된 질병

✓ 이온 통로의 이상으로 신경세포가 흥분을 너무 많이 해서 발생

다발성 경화증 ★ 축삭돌기 이상으로 세포체에서 말단까지 정보 전달이 잘 안될 때 말이집 손상

신경세포의 신호전달과 관련된 질병

✓ 축삭돌기내의 구조물인 미세소관 손상

✓ 신호전달물질 중 도파민(dopamine)이 줄어들 경우

✔ 세로토닌(serotonin)이 줄어들 경우

질병 치료는 해당 신경전달물질의 양을 높여 주는 화학물질 사용

신경세포는 수많은 연접을 형성할 수 있으며, 엄청난 <mark>정보처리 능력을 가짐</mark>

- ✓ 척수 운동 신경세포
 - → 약 8000개의 연접접촉을 받으며, 세포체에서는 2000개를 받음
- ✓ 소뇌: 하나의 신경세포가 최대 10만개의 연접 형성
- ✓ 대뇌겉질:약 10조의 신경연접
 - 1초에 2개의 연접일 결우 160만년 걸림

신경아교세포_{neuroglia}

✓ 신경세포 보호, 기능을 보조하는 버팀세포(supporting cells)

- ✔ 아교세포
 - → '아교(glue)'를 의미
 - → 신경세포를 결합시키는 역할

신경아교세포neuroglia

- ✓ 태아의 미성숙한 신경세포를 목적지까지 이동할 수 있도록 발판 제시
- ✓ 성숙한 신경세포는 말이집을 형성하여 신경세포가 연접하지 않는 부위들을 덮음
- ✓ 신경세포바깥의 칼륨이온의 농도 유지, 신경세포의 연접활동 후 전달물질의 재흡수 등의 중요한 역할

큰아교세포 (macroglia) 미세아교세포 (microglia)

큰아교세포 macroglia

별아교세포 (astrocyte)

- ✔ 중추신경계통의 회백질에 분포
- ✓ 신경조직의 구조적 지지 제공 및 신경세포의 이동 유도
- ✓ 신경세포 바깥의 칼륨이온의 적절한 농도 유지
- ✓ <u>혈액뇌장벽(brain barrier)</u> 구성

혈관내의 분자들이(혈관을 구성하는) 모세혈관의 상피세포를 뚫고 이동하는 것을 지연

큰아교세포 macroglia

희소돌기 아교세포 (oligodendrocyte)

- ✔ 백색질에 주로 분포
- ✓ 팔 같은 돌기를 뻗어내어 신경세포의 축삭돌기를 강하게 감쌈
- ✓ 말이집을 형성하여 축삭돌기를 두르는 절연체 구성
- ✓ 말초신경계통
 - → 슈반세포(schwann cells)가 말이집 형성

미세아교세포(microglia)

- 뇌와 척수를 돌아다니며 침입자(세균) 감지하고 파괴하는 역할 수행
- 뇌나 척수의 어떤 영역이 손상되거나 감염되었을 때 활성화되고 손상부위로 이동하여 세포 잔해를 제거
- 외부침입자로부터 신경계통을 보호하는
 매우 중요한 역할

시냅스이전신경 세포 신경전달물질을 분비하여 시냅스틈새로 유리시킴

확산된 신경전달물질은 시냅스이후신경 세포에 결합

글루탐산(glutamate)

아세틸콜린(acetylcholine)

시냅스이후신경세포를 흥분시킴

GABA (Gamma-AminoButyric Acid)

글리신(glycin)

시냅스이후신경세포를 억제시킴

도파민(dopamine)

세로토닌(serotonin)

일부 신경세포는 흥분시키고 일부 신경세포는 억제시킴

신경전달물질의 효과가 차단 또는 항진되기도 하며, 신경전달물질과 관련된 다양한 질병 치료에 응용

도파민과 세로토닌의 분비와 뇌에 미치는 영역

신경전달물질의 <mark>적절한 생성과 작용에 문제가</mark> 생기면 근육의 움직임, 기억, 정서, 학습 등에도 문제가 생김

아세틸콜린 acetylcholine

- ✓ 1914년 헨리 데일(Sir Henry Hallet Dale)이 착수신경에서 방출되는 물질이 근육을 수축시킨다는 사실을 발견
- ✔ 화학적 시냅스 이론을 증명하는 최초의 신경전달물질

아세틸콜린 acetylcholine

- ✓ 근육수축작용
 - → 신경근육이음부에서 신경세포의 축삭돌기에 분포, 근육섬유에 작용하는 말초신경계통의 현상

아세틸콜린의 말초에서의 기전

아세틸콜린_{acetylcholine}

- ✔ 중추신경계통에서도 신경전달물질로 사용
 - → 뇌 안쪽 깊숙한 부분 (Meynert 바닥앞뇌핵과 사이막핵)에 있는 일부 신경세포의 축삭돌기는 대뇌피질, 해마 부위와 연결
 - ★숙삭돌기에서 분비된 아세틸콜린은 대뇌피질과 해마에 영향을 미침