Apellidos: Nombre: DNI:

Universidad de Oviedo Escuela de Ingeniería Informática Estructuras de Datos

DURACIÓN DEL EXAMEN: 90 minutos.

INSTRUCCIONES

- Incluya sus datos personales en las dos caras de todas las hojas.
- Se atenderán dudas solo durante los primeros 20 minutos del examen.
- No deje respuestas indicadas, deberá llegar hasta al menos un decimal en los cálculos numéricos.
- El uso de cualquier tipo de dispositivo electrónico está estrictamente prohibido.
- Sea breve. Toda anotación fuera del espacio previsto para la respuesta no será evaluada.
- Utilice la versión de los algoritmos y estructuras de datos vistas en clase de teoría (EXP).
- Deberá entregar el examen completo (incluso si está en blanco).

PARTE I: ESTRUCTURAS EN RED

1. [1 Punto] Dado el siguiente grafo G1 (construido sobre una matriz de adyacencias vacía e insertando los nodos en orden alfabético), ejecute el algoritmo de Dijkstra para mostrar la evolución del conjunto S, el pivote W y los vectores D y P para cada interacción partiendo del nodo 'e'.

$$G1 = (V, E, W)$$

 $V = \{a, b, c, d, e, f, g\}$

$$E = \{(a, b), (a, c), (b, d), (c, b), (c, d), (e, b), (e, d), (e, f), (f, d), (f, e), (f, g), (g, e)\}$$

$$W = \{3, 2, 2, 1, 4, 3, 1, 3, 2, 2, 3, 3\}$$

<u>I</u> †	S	W

		D							
S	W		а	b	С	d	е	f	g

۲		_	_	_	_	_	_
	а	b	С	d	е	f	g
							,

2. [1 Punto] Dada la matriz P(caminos) obtenida después de ejecutar Floyd sobre el grafo G2 definido a continuación, ejecute el algoritmo printPath sobre ella para mostrar el camino de coste mínimo entre los nodos 'a' and 'a'.

La matriz P guarda posiciones, donde -1 es camino directo o que no existe camino

$$G2 = (V, E, W)$$
 $V = \{a, b, c, d, e, f, g\}$

Ρ

	а	b	С	d	е	f	g
а	-1	-1	-1	6	-1	2	5
b	5	-1	-1	6	-1	2	5
С	5	5	-1	6	-1	-1	5
d	5	-1	-1	-1	-1	-1	5
е	6	-1	6	6	-1	6	-1
f	-1	0	6	6	-1	-1	-1
g	-1	3	3	-1	-1	3	-1

Apellidos:	Universidad de Oviedo
Nombre:	Escuela de Ingeniería Informática
DNI:	Estructuras de Datos

DURACIÓN DEL EXAMEN: 90 minutos.

3. **[1 Punto]** Dado el siguiente grafo G2, ejecute el algoritmo de recorrido en profundidad para el nodo 1.

$$G2 = (V, E, W)$$

$$V = \{1, 2, 3, 4, 5\}$$

$$E = \{(1, 2), (1, 5), (1, 4), (2, 2), (2,3), (3, 5), (4, 3)\}$$

$$W = \{1, 10, 2, 4, 5, 1, 2\}$$

Recorrido en profundidad: _____

Apellidos: Nombre: DNI:							Escuela	de Inge	niería Inf	e Oviedo formática de Datos
DURAC	DURACIÓN DEL EXAMEN: 90 minutos.									
PARTE I	: ESTRUCTU	RAS JERÁF	RQUICAS							
_	[3 Puntos] Crear un árbol B1 (árbol B de orden 1) y ejecute la siguiente serie de operaciones en orden secuencial. Dibuje la estructura al final de cada serie.									
a.	[1 Puntos]	Insertar la	a secuenc	cia: 10, 5, 8	3, 20, 15, 1	2, 25, 18,	14, 13, 11,	9		
b.	 a. [1 Puntos] Insertar la secuencia: 10, 5, 8, 20, 15, 12, 25, 18, 14, 13, 11, 9 b. [1.5 Puntos] Borrar los elementos: 15, 12, 18. 									
tar	5. [2 Puntos] Crear una cola de prioridad vacía (basada en un montículo binario de mínimos) de tamaño 10 y ejecute la siguiente serie de operaciones en orden secuencial. Dibuje la estructura al final de cada serie.									
a.	[0.5 Punto	os] Insertar	: 7, 3, 2, 9,	8, 4, 5, 0,	6, 1					
0	1	2	3	4	5	6	7	8	9	10
b. [0,75 Puntos] Sacar ()										
0	1	2	3	4	5	6	7	8	9	10
							,			
C.	[0,75 Pun	tos] Borrar	(6)	T	1	T	1	Ι		
	1		1]

Apellidos:	
Nombre:	Es
DNI:	

Universidad de Oviedo Escuela de Ingeniería Informática Estructuras de Datos

DURACIÓN DEL EXAMEN: 90 minutos.