412707009 林幸舒

11.1.

$$= \frac{\beta_{1}}{1-d_{3}\cdot d_{1}} \times_{1} + \frac{\beta_{2}}{1-d_{3}\cdot d_{1}} \times_{2} + \frac{d_{2}\cdot e_{1}+e_{2}}{1-d_{3}\cdot d_{1}}$$

$$= \pi_{1} \times_{1} + \pi_{2} \times_{2} + V_{2}, \text{ where } \pi_{1} = \frac{\beta_{1}}{1-d_{3}\cdot d_{1}}, \pi_{2} = \frac{\beta_{2}}{1-d_{3}\cdot d_{1}}$$

$$V_{2} = \frac{d_{3}-e_{1}+e_{2}}{1-d_{3}\cdot d_{1}}$$

- b. Since both equation contain endogenous variablely, &y.)
 The OLS estimator won't be consistent.
- C. There are > equations, so there must be 2-1=1 variable be omitted to make the equation identitied, in in equation (1), there are > variables absent => identified while equation have no variable absent. Therefore, only y1=d,y2+e, is identified.
- d. Combine two equations we have $\bar{t}(x_i|v_2|x_jx_2)=\bar{t}(x_i|v_2|x_2)=\bar{t}(x_i|v_2|x_2$

While E(xik.e, |x,...xk)=0=E(xik.e, |x,...xk)

makes x, x, consistent

Q. OLS: min $\sum (y_2 - \pi_1 \pi_1 - \pi_2 \pi_2)^2 by F.O.$ Ove equivalent to 2 equations in part (d)

f. Equations in part of $\sum x_1y_2 - x_1 \cdot \sum x_1^2 - x_2 \cdot \sum x_1x_2 = 0$ $x_1 + 0x_2 \cdot 3$ $x_1 = 3$ $x_1 = 3$ $x_2 \cdot 4$ $x_2 \cdot 5$ $x_1 \cdot 5$ $x_2 \cdot 5$ $x_2 \cdot 5$ $x_1 \cdot 5$ $x_2 \cdot 5$ $x_2 \cdot 5$ $x_1 \cdot 5$ $x_2 \cdot 5$ $x_1 \cdot 5$ $x_2 \cdot 5$ $x_1 \cdot 5$ $x_2 \cdot 5$ $x_2 \cdot 5$ $x_1 \cdot 5$ $x_2 \cdot 5$ $x_2 \cdot 5$ $x_1 \cdot 5$ $x_2 \cdot 5$ $x_2 \cdot 5$ $x_1 \cdot 5$ $x_2 \cdot 5$ $x_2 \cdot 5$ $x_2 \cdot 5$ $x_1 \cdot 5$ $x_2 \cdot 5$ $x_2 \cdot 5$ $x_2 \cdot 5$ $x_1 \cdot 5$ $x_2 \cdot 5$ $x_2 \cdot$

g. Zýz (y, -2, yz)zo => d, = \frac{\subsetence \hat{y}_2\cdot \frac{\subset}{\subseteq} \frac{\subseteq \hat{y}_2\cdot \frac{\subseteq}{\subseteq} \frac{\subseteq \hat{y}_2\cdot \frac{\subseteq}{\subseteq} \frac{\subseteq}{\subseteq} \frac{\subseteq \hat{y}_2\cdot \frac{\subseteq}{\subseteq} \frac{\subseteq}{\subseteq} \frac{\subseteq \hat{y}_2\cdot \frac{\subseteq}{\subseteq} \frace{\subseteq} \frac{\subseteq}{\subseteq} \frac{\subseteq}{\subset

 $= \frac{2(x_1 - x_1 + x_2 + x_3)y_1}{\sum (x_1 - x_1 + x_2 + x_3)y_2} = \frac{3\sum (x_1 y_1) + 4\sum (x_2 y_1)}{3 \cdot \sum (x_1 \cdot y_2) + 4\sum (x_2 \cdot y_3)} = \frac{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)}{3 \cdot 2(x_1 \cdot y_2) + 4\sum (x_2 \cdot y_3)} = \frac{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)}{3 \cdot 2(x_1 \cdot y_2) + 4\sum (x_2 \cdot y_3)} = \frac{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)}{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)} = \frac{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)}{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)} = \frac{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)}{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)} = \frac{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)}{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)} = \frac{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)}{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)} = \frac{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)}{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)} = \frac{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)}{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)} = \frac{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)}{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)} = \frac{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)}{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)} = \frac{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)}{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)} = \frac{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)}{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)} = \frac{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)}{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)} = \frac{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)}{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)} = \frac{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)}{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)} = \frac{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)}{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)} = \frac{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)}{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)} = \frac{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)}{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)} = \frac{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)}{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)} = \frac{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)}{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)} = \frac{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)}{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)} = \frac{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)}{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)} = \frac{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)}{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)} = \frac{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)}{3 \cdot 2(x_1 y_1) + 4\sum (x_2 \cdot y_3)} = \frac{3 \cdot 2(x_1 y_1) + 4\sum (x_2 y_1) + 4\sum (x_2 \cdot y_3)}{3 \cdot 2(x_1 y_1) + 4\sum (x_2 y_2 y_1) + 4\sum (x_2 y_1) + 4\sum (x_2 y_2 y_1)} = \frac{3 \cdot 2(x_1 y_1) + 4\sum (x_2 y_2 y_1)$ This is consistent because

Condition of (yz, e,) make 2, consisten

h. V2 = y2 - y2, = y2, = y2, - v2, di, 2SLS = \(\frac{2\text{y}^2 - y_1}{\text{\text{y}}^2}\), so we need to prove = y2= = 1 y, y2 => 2y, (y2-y3) = 2y3.y, => 2 y, y, - 5 y, - 5 y, - 5 y, -y,, note that $\frac{1}{2}$ y_2 . y_3 = 0 if $cor(y_2, y_3)$ = 0 => = y = y = 0 = = y = y = #

11.16.

$$Q_i = \lambda_1 + \lambda_2 P_i + \ell d_i = \beta_1 + \beta_2 P_i + \beta_3 W_i + \ell g_i$$

$$\Rightarrow P_i = \frac{\beta_1 - \lambda_1}{\lambda_2 - \beta_2} + \frac{\beta_3}{\lambda_2 + \beta_2} W_i + \frac{\ell d_i + \ell g_i}{\lambda_2 - \beta_2} = \pi_i + \pi_2 W_i + V_i$$

$$Q_{1} = \lambda_{1} + \lambda_{2} \left(\lambda_{1} + \lambda_{2} W + V_{1} \right) + U_{0}i$$

$$= (\lambda_{1} + \frac{\lambda_{2}(\beta_{1} - \lambda_{1})}{\lambda_{2} - \beta_{2}}) + \frac{\lambda_{2} \cdot \beta_{2}}{\lambda_{2} - \beta_{2}} W_{i} + \left(e_{0}i + \frac{\lambda_{2}(e_{0}i + e_{0}i)}{\lambda_{2} - \beta_{2}} \right)$$

$$= \theta_{1} + \theta_{2} W_{i} + V_{2}$$

b. Only Demand Equation 15" identified because M=2, and there is zero variable being omitted in Supply equation, which require at least >-1=1 variable being omitted to make equation "identified" => 2, 22 coun be solved

C. Ito. 5 W = 2, 42 (2,4+W) => \$2-42,+2,=1 =>2,=3.8,220.1

d. p=2.4+W, ==44, Q=6

Sum 10 22 0 0 ψ 2 $\Rightarrow \hat{\lambda}_1 = \hat{Q} - \hat{\lambda}_2 \hat{\beta}$ $\Rightarrow \hat{b} = \frac{1}{2} - \psi + \psi \Rightarrow \hat{b}$ $\Rightarrow \hat{Q} = \hat{b} + \hat{b} + \hat{b} + \hat{b} = \hat{b} = \hat{b} + \hat{b} + \hat{b} = \hat{b} = \hat{b} + \hat{b} = \hat$

U-17.			
a. M=8, Endogenous =	8, Exogenous	= 8, at lease 8-	-12) varvable
should be omitted	to make eggs	tion identified.	
Consumption: I vous	iable included	, 11 omitted = 1	identified
Investment: 4	1 /	12 11 =>	identified
Waye : 4	(/	11 Y =>	idensified
b. consumption: 2 en	dogenous vario	rbles included inn	derdude l'exogen
Investment: 1	· //	Y	5 ~
A. M=8, Endogenous: Should be omitted Consumption: I vous Investment: 4 Wage : 4 b. consumption: 2 en Investment: 1 Wage : 1	Y	V	5 1
=> all satistied			
C. Wit = TitTalt +	$\pi_3 W_7 t_7 \pi_{W} + \pi_t$	+720TIMEt17	16 Pt-1+ Token
7708Et-1	<u> </u>		<u> </u>
d.from (c), we get when regress CN+ b	lit, and apply	same methed t	to obtain Pt,
then regress CN+ b	y OLS with	Wit and Po	
-			
e. Coesticient will be	the same, b	ud t-Values h	Ion't.
		2 0000000000 c	00 M 10 M