UNCLASSIFIED

AD NUMBER AD234776 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; May 1959. Other requests shall be referred to Director, Wright Air Development Center, Wright-Patterson AFB, OH 45433. **AUTHORITY** AFAL ltr, 17 Aug 1979

WADC TECHNICAL REPORT 53-173
PART VI

DO NOT DESTROY
RETURN TO
WWAD-LIBRARY

FILE COPY

A STUDY OF RAIN EROSION TESTING METHODS FOR SUPERSONIC SPEED

Donald E. Hurd Roy F. Holmes Wright-Patierson

1900micol Library
Wrarb, Umo 45433

Thermodynamics Laboratories
Convair, A Division of General Dynamics Corporation

JANUARY 1960

20030620001

This report is not to be announced or distributed automatically to foreign governments (AFR 205-43A, paragraph 6d).

Statement A Approved for Public Release

WRIGHT AIR DEVELOPMENT CENTER

Best Available Copy

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified requesters may obtain copies of this report from the Armed Services Technical Information Agency, (ASTIA), Arlington Hall Station, Arlington 12, Virginia.

Copies of WADC Technical Reports and Technical Notes should not be returned to the Wright Air Development Center unless return is required by security considerations, contractual obligations, or notice on a specific document.

vano chimina

A STUDY OF RAIN EROSION TESTING METHODS FOR SUPERSONIC SPEEDS

Donald E. Hurd Roy F. Holmes

Thermodynamics Laboratories
Convair, A Division of General Dynamics Corporation

JANUARY 1960

Materials Laboratory Contract No. AF 33(616)-3421 Project No. 7340

WRIGHT AIR DEVELOPMENT CENTER
AIR RESEARCH AND DEVELOPMENT COMMAND
UNITED STATES AIR FORCE
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

FOREWORD

This report was prepared by the Convair Division of General Dynamics under United States Air Force Contract No. AF 33(616)-3421. This contract was initiated under Project No. 7340, "Non-Metallic and Composite Materials," Task No. 73400, "Organic and Inorganic Plastics." The Materials Laboratory, Directorate of Laboratories, Wright Air Development Center, directed the project with Mr. S. A. Marolo as Project Engineer. Work at the Convair Thermodynamics Laboratories was under the direction of Mr. R. F. Holmes.

This report covers the work period of October 1957 through May 1959.

ABSTRACT

To better understand the mechanism by which materials passing through rain at supersonic speeds are damaged, the results of numerous types of impacts on metals were analyzed.

An equation which relates total energy of impact to the volume of metal displaced was derived and found adequate to explain damage in the velocity range from less than one foot per hour to greater than Mach 3. This equation together with results of incidence angle tests led to an overall damage equation which was successfully applied to the problem of multiple drop rain damage. Principal parameters are target material tensile strength; impacting material shape and mass; angle of incidence; and the velocity of impact.

Facility improvements and test method refinements are described.

PUBLICATION REVIEW

This report has been reviewed and is approved.

FOR THE COMMANDER:

W. E. DIRKES

Chief, Plastics Branch

Non-Metallic Materials Division

TABLE OF CONTENTS

		Page
OBJE	CTIVE	1
INTRO	DDUCTION	2
I.	IMPROVEMENT OF THE SINGLE DROP CAPTURED PROJECTILE FACILITY	3
п.	DAMAGE CONTOUR STUDY	5
III.	ANGLE STUDY	7
IV.	DAMAGE EQUATION DEVELOPMENT	8
V.	INFLUENCE OF HIGH STRAIN RATES ON THE EFFECTIVE TARGET YIELD STRENGTH	23
VI.	MULTIPLE DROP RAIN DAMAGE STUDY	26
VII.	SUMMARY	29
VШ.	BIBLIOGRAPHY	30
	APPENDIX I - ANGLE STUDY DATA AND CALCULATIONS	93
	APPENDIX II - DERIVATION OF EQUATIONS USED IN THE COMPUTATION OF ENERGIES AND	
	VOLUMES	QΛ

LIST OF TABLES

Table		Page
I.	Low Velocity Data - Steel Ball Brinell Tests on Lead	31
II.	Low Velocity Data - Steel Ball Brinell Tests on Polyethylene	34
III.	Moderate Velocity Data - Steel Indenter Drop Tests on 1100-0 Aluminum	36
IV.	High Velocity Impact Data - Mercury Drops	39
V.	High Velocity Impact Data - Steel Balls and Water Drops	49

LIST OF ILLUSTRATIONS

Figure		Page
1.	Time Delay Generator and Drop Release System	. 50
2.	Schematic Diagram	51
3.	Drop Tester	. 52
4.	Damage Mark Contour - Cylindrical Indenter	. 53
5	Normalized Damage Mark Contour - Cylindrical Indenter	54
6.	Normalized Damage Mark Contour - Conical Indenter - 90° Included Angle	55
7.	Depth vs Travel Cylinder Radius	56
8.	Drop Height vs Penetration Depth for Drop Tester - Cylindrical Indenter	57
9.	Drop Height vs Penetration Depth for Drop Tester - Conical and Spherical Indenters	58
10.	Impact Energy vs Volume Displaced for Drop Tester - Cylindrical Indenter	59
11.	Impact Energy vs Volume Displaced for Drop Tester - Conical and Spherical Indenters	60
12.	Slope M of "Energy vs Displace Volume Curve" vs Target Tensile Strength	61
13.	$v_0^2 - v^2$ vs An Expression Containing Gamma	62
14.	Energy vs Volume - Low Velocity - Lead No. 1	63
15.	Energy vs Volume - Low Velocity - Lead No. 2	64
16.	Energy vs Volume - Low Velocity - Polyethylene	65
17.	Energy vs Volume - 1100-0 Aluminum - 1.0 mm Mercury	66

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
18.	Energy vs Volume - 1100-0 Aluminum - 1.5 mm Mercury	67
19.	Energy vs Volume - 1100-0 Aluminum - 1.6 mm Mercury	68
20.	Energy vs Volume - 1100-0 Aluminum - 1.0 mm Steel Ball	69
21.	Energy vs Volume - 2024 Aluminum - 1.0 mm Mercury	70
22.	Energy vs Volume - 2024 Aluminum - 2.0 mm Mercury	71
23.	Energy vs Volume - 2024 Aluminum - 2.0 mm Water	72
24.	Energy vs Volume - 7075-T4 Aluminum - 1.5 mm Mercury	73
25.	Energy vs Volume - Copper - 1.0 mm Mercury	74
26.	Energy vs Volume - Copper - 2.0 mm Mercury	7 5
27.	Energy vs Volume - Lead - 1.5 mm Mercury	76
28.	Energy vs Volume - Lead - 2.85 mm Mercury	77
29.	Energy vs Volume - Lead - 2.0 mm Water	78
30.	Energy vs Volume - Cold Rolled Steel (Annealed) 1.5 mm Mercury	79
31.	Energy vs Volume - Stainless Steel - 1.50 mm Mercury	80
32.	Gamma vs Impact Velocity - 1100-0 Aluminum - 1.6 mm Mercury	81
33.	Gamma vs Impact Velocity - 1100-0 Aluminum - 1.0 mm Stainless Steel Sphere	. 82
34.	Gamma vs Impact Velocity - 2024 Aluminum - 1.0 mm Mercury.	. 83
35	Gamma vs Impact Velocity - 2024 Aluminum - 2, 0 mm Mercury.	. 84

LIST OF ILLUSTRATIONS (Continued)

Figure			Page
36.	Gamma vs Impact Velocity - 2024 Aluminum 2.0 mm Water.	٠	. 85
37.	Gamma vs Impact Velocity - Copper - 1.0 mm Mercury		. 86
3 8.	Gamma vs Impact Velocity - Copper - 2.0 mm Mercury	•	. 87
39.	Gamma vs Impact Velocity - Lead - 1.5 mm Mercury	•	. 88
40.	Gamma vs Impact Velocity - Lead - 2.85 mm Mercury	•	. 89
41.	Gamma vs Impact Velocity - Cold Rolled Steel (Annealed) - 1.5 mm Mercury	•	. 90
42.	Gamma vs Impact Velocity - 321 Stainless Steel - 1.5 mm Mercury		. 91
43.	Dynamic Yield Stress/Static Yield Stress vs Average Rate of Strain - Mild Steel		. 92

OBJECTIVE

This study was undertaken to develop practical methods for testing materials
for rain erosion resistance at supersonic speeds, to determine the mechanisms
through which this erosion takes place, and to conduct an evaluation of materials
and specimen shapes using the methods developed.

Manuscript released by the authors 9 June 1959 for publication as a WADC Technical Report.

INTRODUCTION

A program of study of supersonic rain erosion testing techniques and material evaluation has been active at the Convair Thermodynamics Laboratories since 1952. This program has for the past three years concentrated on the free ballistics method for material evaluation; the captured projectile method for single drop impacts; and the rocket sled method for full scale radome erosion studies.

This report describes the activity on the captured projectile single drop impact phase and certain theoretical free ballistics tests during the period of October 1957 through July 1958.

I. IMPROVEMENT OF THE SINGLE DROP CAPTURED PROJECTILE FACILITY

To improve the accuracy with which single drop impacts were made and to improve the reliability of the data obtained therewith, several changes were made in the facility and testing method. First, to obtain specimen recovery over a greater velocity range, the length of the steel capture tube was increased from 100 to 200 feet in length. In addition, the projectile design was changed so that weight was minimized by both projectile construction and material. The projectiles are now of 7075-T6 aluminum instead of steel with washers made of the same material instead of copper. Nitrocellulose rifle power (Dupont No. 4227) was found to increase the velocity range to greater than 5000 feet per second. To increase timing accuracy of the magnetic pickups used to determine velocities, it was necessary to use a Berkley counter which measured time to 10^{-6} second one significant figure greater than had been used formerly.

All the above improvements were made to increase the velocity range and velocity measuring capabilities of the system. To obtain usable data, however, it was now necessary to develop a method for producing large numbers of accurately measured drops to be hit by the passing projectile. After many tries at developing a multiple drop system for obtaining accurately measured and rigorously controlled drop sizes, the conclusion was drawn that this system would not be possible without adding extreme complexity and additional expense. Even when individual drop sizes could be detected by various pressure pickup means, the sizes were not reproducible to the extent that the drops could be used on the firing range without a large probability of size variance. The decision was made to utilize a single drop method which employed the use of a cadmium selenide photo cell. The single drops are individually weighed in small test tubes on an analytical balance and dropped in the path of a sample tipped projectile. To coordinate the position of the drop at any given instant, and the point at which the drop would be hit by the projectile, a time delay generator was developed. During a firing sequence, a test tube containing one of the weighed drops is allowed to tilt allowing its drop to fall through a tube containing a light source and cadmium selenide photo cell. When the light beam is interrupted by the passing drop, an electrical pulse is sent to the time delay generator. This generator then waits for a set time delay period, and introduces a firing pulse to the gun. The time delay necessary to fire the gun at just the proper moment so that the sample will strike the passing mercury drop can be determined by calibrating the system.

Summarizing, therefore, the equipment was designed to, first, detect the passing of a falling particle through a given point; and second, to generate a delay equal to the time required for the droplet to reach a second given point and then to cause the firing of a squib so that the fired projectile and the particle collide at the second given point.

The time delay generator, designed in Convair's Electronic Laboratories, is housed in a 5" x 3" x 9" cabinet, and is sturdily built for the rigorous conditions on a firing range. The generator is completely self-contained with lights to indicate the state of charge of internal capacitors, safety switches, calibration charts and time delay controls. One switch is available which completely isolates the firing circuit from the photo cell tripping circuit so that the apparatus may be operated safely until such time as it is desired to fire the gun. Electronic circuitry consists of a two stage amplifier for raising the level of the photo cell signal, a screen-coupled phantastron tube for generating the linear time delay and a thyratron for firing the squib. A power transformer, silicon rectifiers, and gas tube regulator comprise the power supply. A picture showing the photo cell dripper system and electronic "black box" will be found in Figure 1. Figure 2 is a schematic circuit diagram of the box.

II. DAMAGE CONTOUR STUDY

Study of the shape or contour of damage marks was desired to provide a basis for later statistical analysis of multiple drop impacts within a given small area. A volcano-shaped contour was obtained in every case of solid spherical drop impacts, even at low velocities. Tests were made with solid indenters of varying shapes in the drop tester shown in Figure 3. By means of an optical micrometer, it was possible to take readings of depth and distance traveled along the surface of a given sample and thereby plot the exact contour of a given damage site. Such contours are shown in Figure 4. The volcanoes in some cases are actually at a slight angle to the original planar surface. By taking careful note of the scales to which these contours are plotted, this inclined angle is seen to be extremely small - only about 20 minutes for most. These curves could be changed to make an equivalent damage mark perpendicular to the planar surface by means of a combination of rotations and translations of the optical micrometer data (see Figures 5 and 6). These transformation equations may be given in the following form:

$$x = x_0 \cos \theta - y_0 \sin \theta + p \sin \theta - p \sin 2\theta$$

 $y = y_0 \cos \theta + x_0 \sin \theta - p \cos \theta + p \cos 2\theta$

where (x, y) = transformed coordinates, (x_0, y_0) = original "tilted" coordinates, Θ = angle of tilt, and p = vertical distance of volcano surface to the undamaged sample planar surface.

From these normalized curves, some suitable correlation was hoped to be found between the volcano shape and the indenter shape as well as with depth and penetration.

A brief study was made of the contour of impact marks made by cylindrical indenters in the drop test machine. The overall appearance of these damage marks was a cylindrical hole in the target metal with a volcano-like rim of displaced metal. From the two samples tested the volcano shape could be plotted as a straight line function on a semi-log paper, i.e., the logarithm of the height from the original planar surface was directly proportional to the ratio of the distance from the impact center to the radius of the impact mark. As shown in Figure 7, the slope of this straight-line logarithmic relation was the same for impact sites created by two cylindrical indenters of widely differing radii. This slope is undoubtedly proportional to the target material strength and/or the shape of the indenter. Further work should be done to establish this relation. When this particular volcano shape (now known from this curve) was integrated around the hole to obtain the volume of metal "pushed up," this volume was found to be nearly equal to the volume displaced from the cylindrical holes in the metal. There is, therefore, only a small amount of material compression indicated in the damage process. From this and other relations,

not only the depth of penetration, but also the exact contour of the damage mark (data actually restricted to cylindrical indenters used on 1100-0 aluminum) can be determined.

If we denote y_0 as the peak height of the volcano, "r" as the radius of the hole in question and "m" the slope of the curve, we may write the relation for the volume of material in this volcano shape as follows:

$$V = \frac{\pi y_{o}'}{r^{2}} \left\{ \frac{e^{kr}}{K^{2}} \left[1 - e^{-Ky_{o}'} \right] \left[(Kr - 1)^{2} + 1 \right] + \frac{e^{Kr - Ky_{o}'}}{K^{2}} \left[(Ky_{o}' - 1)^{2} - 1 \right] \right\}$$

where $K = \frac{mr}{0.4345}$

We have utilized a convenient variable which may prove important in a further study. This variable is the maximum height, y_o', of the volcano above the planar surface. Equations of the form

$$y = k^{mx}$$

were also found, when semi-log graphs were made for conical and spherical indentations. Although the equations obtained for the three indenter shapes were of the same general form, the exact correlation of plotting parameters was not evident after brief investigation.

III. ANGLE STUDY

To study the effect of change in incidence angle on impact damage severity, several copper samples were fabricated in conical configurations of from 30° to 150° included angle. An attempt was made to fire these at 1.50 mm mercury drops; however, due to the excess weight of the copper specimens, they continually broke away from the adapter when it decelerated in the capture tube. Most of the specimens continued through the capture tube and were either lost or damaged so badly that impacts could not be measured. Work was temporarily suspended on these copper cones until a suitable adapter could be developed.

A better approach to the problem was then tried by using 1100-0 aluminum wedges of various included angles. The configurations used in these tests were 15°, 30°, 45°, 60°, 75° half-angle wedges together with some 90° (i.e., flat plate) aluminum samples. These tests utilized both 1 mm steel ball bearings of close tolerance and accurately measured mercury drops of about 1.50 mm diameter. Complete data on these tests will be found in Appendix I. Damage received by the angled specimens was found to be exactly that which would correspond to a flat plate impact at the normal component velocity. To do a proper analysis of this damage, it was necessary to determine what the damage would be at this component velocity. Such damages were taken from previously worked out depth versus velocity curves. Such velocities should be calculable from energy-volume theory (see "Damage Equation Development," Section IV). Up to this time, however, the energy-volume work has not been extended to cover angle study implications.

IV. DAMAGE EQUATION DEVELOPMENT

During the period October 1957 to August 1958, primary emphasis was placed on theoretical studies of single drop impacts. At the end of the previous contractual period, several theoretical problems remained to be solved. These problems included the effect of varying the impact incidence angle on severity of erosion and many aspects concerning the prediction of erosion damage from known physical parameters. In addition, the comparison between liquid and solid drop impacts was still to be made.

To gain a full understanding of the mechanisms involved, some brief physical tests were made using solid steel indenters. An apparatus similar to that shown in Figure 3 was used together with two steel weights which held various sizes of cylindrical, conical and spherical indenter tips. By means of this machine, it was possible to drop a given shape and weight of indenter from heights up to 30 centimeters. One of the weights used was 447.1 grams, the other 1125 grams. Most of the tests were done on 1100-0 aluminum which had formerly been prepared for 20 mm single drop impacts. The points shown in Figures 8 and 9 were obtained by carefully measuring the penetration depth and the drop height of the indenter. These curves indicate that when cylindrical indenters were used, a different "drop height versus penetration depth" slope was obtained for each radius; when conical or spherical indenters were used, a characteristic slope was found for each shape. Parallel lines were obtained from the data of the two indenter weights. Considerable calculation led to the conclusion that the volume of material displaced was directly proportional to the impact energy. Although the curves obtained (see Figures 10 and 11) do not exhibit perfectly straight lines, the indenter "bounce" is assumed to be responsible for varying small amounts of energy loss and resultant deviations from straight line curves.

In our former analysis of damage parameters, (WADC TR 53-173 Part IV) we considered such variables as the impact velocity, depth of penetration, drop size, drop liquid density, and the density of the target material as well as its tensile strength. Energy versus volume type curves, presently being studied, inherently include such variables as impact velocity, drop density (to obtain drop mass), depth of penetration and original drop radius. This energy versus displaced volume relation encompasses a much larger field of impact shapes than the former equations which assumed perfectly spherical impacting drops. Measurements indicate that although liquid drops remain nearly spherical under high velocity impact conditions, they do deform slightly into approximately ellipsoidal shapes. Even steel ball bearings under high-impact conditions are known to deform to a certain extent through natural elastic processes. This ellipsoidal damage shape may be seen in crosssectional photos appearing in WADC TR 53-192 Part XII, by Dr. Olive Engel of the National Bureau of Standards. The pictures, which are magnified ten times and show mercury drop damage marks in lead, 1100 aluminum and copper clearly indicate that the craters have approximately ellipsoidal bottoms with nearly straight

sides. The 1100-0 aluminum exhibits the unusual property of allowing the mercury liquid to form a subsurface cavity of larger diameter than the entrance holes. For calculation purposes, however, it is believed that only slight errors would result in assuming the damage shape previously mentioned.

Due to these effects, a damage equation which takes into account such variations in drop shape or solid particle shape to predict "erosion" damage is highly desirable. Such an extension could conceivably lead to the prediction of damage from irregularly shaped meteorites on ballistic missiles, satellites, etc.

Because this energy-volume relation worked so well with solid indenter impacts, the relation was also applied to the mercury and water drop impact data. The equations worked exceedingly well on this data. Because of the extensive calculations which had to be done in order to properly present these data, they were not included in previous reports. In this energy-volume relation, we use "total energy." The change in potential energy plus the change in kinetic energy is equal to the "total energy" transferred in displacing a given volume of metal. In the case of most mercury drop impacts, we have extremely high velocities, i.e., extremely large changes in kinetic energy and a relatively insignificant change in potential energy. In the case of the drop testing techniques using the solid indenters, we had much lower velocities -- about 8 feet per second. Several tests were made to determine a Brinell hardness of lead. The method used was such that a considerable amount of data could be applied to this study of energy versus volume displaced. Low velocities of about 0.002 mm per second were involved. In this case, kinetic energy was negligible compared to the potential energy contribution. Correlation of all this data was found to be excellent, and that the energy-volume relation holds equally well through the entire velocity range to Mach 3.

Discovery was made during remeasurement with our optical micrometer that many of the damage depths and diameters formerly measured for mercury drop impacts were erroneous. The micrometer makes possible the measurement of depths to within ± 0.0001 inch. A recalculation of a large mass of this data was done by the Convair Computer Lab. Also found was that the method used for drop size measurement was somewhat crude in 1955. At that time, a large number of drops were counted and weighed and an average drop size was taken for calculation purposes. These statistically determined sizes were not representative for individual impacts, however, because the size varied widely from drop to drop and with testing conditions. At present, mercury drop sizes to within ± 0.0001 mm can be determined because the drops are individually weighed on an analytical balance. Specimens for which the least precisely determined values of drop size and impact velocity are available are given an accuracy index of 3. Data obtained while using the latest control techniques are given a measurement accuracy index rating of 1.

In continuing the analytical study of damage, relation of the energy-volume slope with some target material property such as tensile strength was desired. This strength property may or may not be the one of absolute physical significance. In former work (WADC TR 53-173 Pt IV) with mercury drops, however, it was found that tensile strength measurements gave reasonable correlation with the apparent dynamic molecular bond strengths. On plotting the slopes of the energy versus volume curves versus the tensile strength of test materials, a straight line was obtained which passed through the origin (Figure 12). We are now led to the relation that the impact energy divided by the volume displaced and by the material tensile strength is constant. Although dimensionless, this constant appears not to be equal to one. The value of the constant possibly depends upon the drop liquid (or solid) physical properties or even upon the apparent increase in target material yield strength due to high rates of strain (see Section V).

Inasmuch as it has been determined that impact energy is proportional to volume displaced, it would be desirable, in a theoretical instance, to know the damage area shape in order to determine what the displaced volume should be. (Actually, the E versus V line does not pass through the origin when plotting high velocity impact data – the reason will be shown in the coming section.) As formerly stated, an impacting sphere, whether of steel, mercury, water, etc., will not remain spherical during these high velocity impacts. On examining the impact marks of many samples, the bottom of the "crater" is found to be approximately ellipsoidal. We shall, therefore, assume a hypothetical impact process wherein a spherical drop hits the target material and is deformed into a perfectly ellipsoidal drop which then proceeds through the material until coming to rest. To find a relationship between drop shape and some function of energy or volume, the ratio of "a" (ellipse major axis) to "b" (ellipse minor axis) was defined as a drop shape parameter.

The following derivation shows that the energy-volume equation outlined above may be broken down into a form which includes the impact velocity (v_0) , material tensile strength (S_t) , liquid drop density (ρ_{ℓ}) , and this new shape parameter (γ) as well as the depth of penetration (x), and the damage radius (r), drop mass (m_0) , drop diameter (δ) .

Starting with the basic energy-volume equation:

(1)
$$E_{\alpha} = k S_t V$$

where E_{α} = kinetic deformation energy,

k = proportionality constant,

V = volume of displaced target material, and

$$E_o - E_A = \frac{m_o}{2} (v_o^2 - v_A^2)$$

$$E_{\alpha} = \frac{m_o}{2} (v_{\alpha}^2 - v^2)$$

where $E_0 = \text{total impact kinetic energy}$,

 E_{Δ} = elastic potential energy,

 v_{Λ} = minimum velocity necessary for permanent deformation

v = velocity of drop at any point in the damage process

 v_{α} = drop velocity at time of first permanent deformation.

For all cases of practical interest, v = 0.

$$\therefore \quad \mathbf{E}_{\alpha} = \frac{\mathbf{m}_{o} \mathbf{v}_{\alpha}^{2}}{2}$$

In addition to the above energies, some kinetic energy, ${\tt E}$, is imparted to the target material.

$$E' = -\int_{0}^{0} v' d(m'v') = -m \int_{0}^{0} v' dv' = \frac{m'v_{\alpha}^{2}}{2}$$

$$v_{\alpha}$$

where $m' = \text{effective target mass at } v = v_{\alpha}$ (the mass of target material enclosed by the initial impact shock wave at time of first permanent deformation).

$$E_0 = E_A + E_{\alpha} + E^{-} = E_A + E_{\alpha} \left(1 + \frac{m}{m_0}\right)$$

$$\therefore \quad E_{\alpha} = (E_{o} - E_{A}) \quad \frac{m_{o}}{m_{o} + m}$$

As would be expected, m $\mbox{'}$ increases and E $_{\alpha}$ decreases with the target material sound velocity.

$$m_0 = \frac{\pi}{6} \delta^3 \rho_{\ell}$$

when

 $x \leq b$:

$$V = \pi \int_{b-x}^{b} X^2 dY$$

$$\frac{X^2}{a^2} + \frac{Y^2}{b^2} = 1$$

$$x^2 = a^2 \left(1 - \frac{Y^2}{b^2} \right)$$

$$\therefore \quad V = \pi a^2 \int_{b-x}^{b} \left(1 - \frac{Y^2}{b^2}\right) dY$$

$$= \pi a^2 \left[Y - \frac{Y^3}{3b^2} \right]_{b-x}^b$$

$$V = \frac{\pi a^2 x^2}{b} - \frac{\pi a^2 x^3}{3 b^2}$$

but
$$R^3 = a^2 b$$

$$\therefore V = \pi R^3 \frac{x^2}{b^2} - \pi R^3 \frac{x^3}{3b^3}$$

Now
$$b^3 = \frac{R^3}{\gamma^2}$$

and
$$V = \pi R \gamma^{4/3} x^2 - \frac{\pi}{3} \gamma^2 x^3$$
 $(x \le b)$

Substituting ~

$$\frac{2}{3} \pi R^3 \rho_{\ell} (v_{\alpha}^2 - v^2) = \frac{\pi}{3} k S_t (3 R \gamma^{4/3} x^2 - \gamma^2 x^3)$$

(2) or
$$v_{\alpha}^2 - v^2 = \frac{2 k S_t}{\delta^3 \rho_{\ell}} x^2 (3 \delta \gamma^{4/3} - 2 \gamma^2 x)$$

for $x \le b$

When $x \ge b$:

$$V = \frac{2}{3} \pi R^3 + \pi a^2 (x - b)$$

but
$$R^3 = a^2 b$$
 and $a = r$

$$\therefore V = \frac{2}{3} \pi R^{3} + \pi r^{2} x - \pi R^{3}$$

and
$$V = \pi r^2 x - \frac{\pi}{3} R^3$$
 $(x \ge b)$

Substituting ~

(3)
$$\frac{2 \pi}{3}$$
 $R^3 \rho_{\ell} (v_{\alpha}^2 - v^2) = \frac{k \pi S_t}{3}$ (3 $r^2 x - R^3$)

also
$$r^2 = \gamma^{2/3} R^2$$

$$v_{\alpha}^{2} - v^{2} = \frac{k S_{t}}{2 R^{3} \rho_{\ell}} (3 \gamma^{2/3} R^{2} x - R^{3})$$

(4) or
$$v_{\alpha}^2 - v^2 = \frac{k S_t}{2 \delta \rho_{\ell}} (6 \gamma^{2/3} x - \delta)$$

for
$$x \ge b$$

In Figure 13 is shown a plot of velocity squared versus a term including gamma. The points on this curve include 1.0 mm, 1.5 mm and 2 mm sized mercury drop impacts on copper and indicate a straight line slope exactly equal to the energy-volume constant times the material tensile strength divided by twice the liquid density. The copper specimens used were of two different tensile strengths -thus the two slopes, see equation page 14.

To physically determine the γ obtained in any given damage site, it was necessary to make the assumption that the drop volume remained the same. From the following derivation, an equation may be obtained which relates γ to the depth of penetration, original drop radius and measured damage radius. The equation, though somewhat complex may be solved for γ readily by Newton's method in only two approximations (see Figures 32-42).

By assuming that the volume of the drop remains constant and the shape changes to a perfect ellipsoid:

$$V = \frac{4}{3} \pi a^2 b = \frac{4}{3} \pi R^3$$

or
$$a^2b = R^3$$

again a = ellipsoid major axis

b = ellipsoid minor axis

R = original sphere drop radius

$$\gamma = \frac{a}{b}$$
 $a = \gamma b$

$$R^3 = \gamma^2 b^3 \quad \text{or} \quad b = \gamma^{-2/3} R$$

Now
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

At a point
$$X = r$$
 and $Y = b - x$,

$$\frac{r^2}{v^2 b^2} + \frac{(b-x)^2}{b^2} = 1$$

$$\gamma^2 x^2 - 2 \gamma^2 b x + r^2 = 0$$

(5)
$$\therefore \quad \gamma^2 x^2 - 2 \gamma^{4/3} R x + r^2 = 0$$
 for $x \le b$

When $x \geqslant b$, a = r

$$a^3 = \gamma R^3 = r^3$$

(6) or
$$\gamma = \left(\frac{r}{R}\right)^3$$

This relation can be used to rearrange equation (3) $-x \ge b$

$$r^2 = \frac{\gamma R^3}{r}$$

$$2 \rho_{\ell} (v_{\ell}^2 - v^2) = k S_t \left(\frac{3 \gamma x}{r} - 1 \right)$$

or
$$\frac{v_{\alpha}^{2} - v^{2}}{\left(\frac{3 \gamma x}{r} - 1\right)} = \frac{k S_{t}}{2 \rho_{\ell}}$$

When $x \geqslant b$, $v_{\alpha} \cong v_{o}$

The slope, M, of the "energy versus displaced volume" curve is equal to k S (equation 1). The slope of $(v_{\alpha}^2 - v^2)$ vs $(\frac{3 \gamma x}{r} - 1)$, plotted in Figure 13,

equals M/2 ρ_{ℓ} as predicted and illustrates the agreement between test data and theory.

Although an equation was given which relates v_{α} (not directly measurable) to the impact velocity, v_{α} , and the velocity of minimum deformation, v_{A} , it was not used in the above damage equations. This relation,

$$E_{\alpha} = (E_{O} - E_{A}) \frac{m_{O}}{m_{O} + m^{2}}$$

or
$$v_{\alpha}^{2} = (v_{0}^{2} - v_{A}^{2}) \frac{m_{0}}{m_{0} + m^{2}}$$
,

only developed recently, adds a great deal of complexity to the otherwise straightforward damage equations. It should not be inferred that the relation is not practical – the true damage equation is incomplete without the relation. The combined form of damage equation has not been analyzed sufficiently to allow a simplified expression. The linear equation in x (when $x \ge b$) may be used to demonstrate the application.

$$v_{\alpha}^{2} = \frac{k S_{t}}{2 \rho_{\ell}} \left(\frac{3 \gamma^{2/3} x}{R} - 1 \right)$$

$$\vdots \qquad v_{o}^{2} = v_{A}^{2} + \left(1 + \frac{m^{2}}{m_{o}} \right) \frac{k S_{t}}{2 \rho_{\ell}} \left(\frac{3 \gamma^{2/3} x}{R} - 1 \right)$$
but
$$m_{o} = \frac{4}{3} \pi^{3} \rho_{\ell}$$

$$m^{2} = \frac{2}{3} \pi^{2} (x^{2/3} - x_{\alpha}^{3}) \rho_{m}$$

where $x' = \text{depth of the impact shock wave in the target material when } v = v_{\alpha}$

 x_{α} = depth of drop when $v = v_{\alpha}$

 $\rho_{\rm m}$ = target material density

It will later be shown that $v_A^2 = \frac{s_o}{\rho_{\ell}}$ for liquid drop impacts and

$$v_A^2 = 9 \frac{s_o^3}{\rho_\ell Y}$$
 for solid drop impacts (s_o = dynamic yield strength of target

material, and Y = elastic modulus of target material). For a liquid drop, therefore, the damage equation for the region $x \ge b$ may be given by the following:

$$v_{0}^{2} = \frac{s_{0}}{\rho_{\ell}} + \left[1 + \frac{(x^{3} - x_{\alpha}^{3})}{2R^{3}} + \frac{\rho_{m}}{\rho_{\ell}}\right] \left[\frac{3\gamma^{2/3}x}{R} - 1\right] \frac{kS_{t}}{2\rho_{\ell}}$$

It is obvious that the damage equation, $E = k S_{t} V$, is not strictly linear when dealing with impact velocities. Deviations from linearity will be noted on many of the E vs V curves of the accompanying figures (14-31). Other mechanisms may be partially responsible for this nonlinear behavior, for example, interaction of shock waves within the target.

INITIAL DAMAGE VELOCITY - LIQUID SPHERES

At the damage initiating velocity, \mathbf{v}_{A} , the contact area between sample and liquid drop is small. For this reason the shock may be considered as planar across the cylinder (shown by dotted lines) extending from the contact area.

$$P_{0} - P_{s} - \rho_{0} v_{0} (v_{s} - v_{0}) = 0$$

From continuity:

$$\rho_{o} v_{o} = \rho_{s} v_{s}$$

$$\therefore P_{o} + \rho_{o} v_{o}^{2} = P_{s} + \rho_{s} v_{s}^{2}$$

On the assumption that initial damage occurs through a total transfer of momentum, we shall let the liquid behind the shock (in contact with the sample) come to rest - i.e. $v_s = 0$.

Thus
$$v_A^2 = \frac{P_s - P_o}{\rho_o}$$

But since this pressure behind the shock caused the initial yielding, we shall set pressure equal to the dynamic yield strength, $S_{\rm O}$. Because any tensile or yield strength values are normally reported in terms of "gauge pressure" rather than "absolute pressure,"

$$P_s - P_o = S_o$$

$$v_A^2 = \frac{S_o}{\rho_\ell} \quad \text{or} \quad v_A = \sqrt{\frac{S_o}{\rho_\ell}}$$

Target	Liquid Drop (Dia. not)	s	$\mathbf{s}_{\mathbf{t}}$	$v_{A}^{}$ (Calculated)	v _A (Observed)
<u>Material</u>	Specified Specified	o (psi)	(psi)	(ft/sec)	(ft/sec)
1100-0 A1	Hg	16,700	18,500	303	200-430
Cu	Hg	31,000	31,000	414	375-425
Pb	Hg	5,600	2,700	175	130-210
Mild C.R. Steel	Hg	120,000	46,500	813	600-950
Pb	H_2^0	5,600	2,700	646	400-800

INITIAL DAMAGE VELOCITY - SOLID SPHERES

Assume the surface molecules of target material were stretched from position "B $_1$ " to position "B $_2$ " thereby increasing the chain length from r to s.

Strain =
$$\frac{\triangle L}{L} = \frac{s-r}{r} = \frac{R \Theta - r}{r} = \left(\frac{R}{r}\right) \Theta - 1$$

Since we shall operate entirely in the elastic region (until first permanent deformation), Hooke's law should be obeyed. In addition, elastic penetration will be very small and the ball should remain very nearly spherical.

$$Y = Youngs Modulus = \frac{Stress}{Strain}$$

Because we are primarily interested in the point at which the first permanent deformation takes place, the stress may be taken as the dynamic yield strength, S_0 . At this point, $r=r_0$,

Strain =
$$\frac{\text{Stress}}{Y} = \frac{S_o}{Y} = \left(\frac{R}{r_o}\right) \Theta_o - 1$$

But $\Theta_o = \sin^{-1}\left(\frac{r_o}{R}\right) = \left(\frac{r_o}{R}\right) + \frac{1}{6}\left(\frac{r_o}{R}\right)^3 + \frac{3}{40}\left(\frac{r_o}{R}\right)^5 + \dots$

$$\left(\frac{R}{r_o}\right)\Theta_o - 1 = 1 + \frac{1}{6}\left(\frac{r_o}{R}\right)^2 + \frac{3}{40}\left(\frac{r_o}{R}\right)^4 + \dots - 1$$

$$\therefore \frac{S_o}{Y} = \frac{1}{6}\left(\frac{r_o}{R}\right)^2 + \frac{3}{40}\left(\frac{r_o}{R}\right)^4 + \dots$$

However, for these small elastic penetrations, $r_0 \ll R$.

$$\therefore \frac{S_0}{Y} \cong \frac{1}{6} \left(\frac{r_0}{R}\right)^2$$
 at the point of permanent deformation

or
$$\frac{F/A}{Y} \cong \frac{1}{6} \left(\frac{r}{R}\right)^2$$
 in general.

F = total force acting on the indented surface area, A, at the depth, x (corresponding to radius, r). It may be seen from the diagram that

$$R^2 = (R - x)^2 + r^2 = R^2 - 2Rx + x^2 - r^2$$

or
$$x^2 - 2Rx + r^2 = 0$$

$$\therefore \frac{r^2}{R^2} = \left(\frac{r}{R}\right)^2 = \frac{2 R x - x^2}{R^2}$$

Since the surface area

$$A = 2 \pi R x,$$

$$F = \frac{A Y}{6} \left(\frac{r}{R}\right)^2 = \frac{2 \pi R \times Y}{6} \left(\frac{2 R \times x^2}{R^2}\right) = \frac{\pi}{3} R^3 Y \left[\frac{2 R \times^2 - x^3}{R^4}\right]$$

The energy, E, expended in stopping the drop follows:

$$E = \int_{0}^{x_{0}} F dx = \frac{m_{0} v_{A}^{2}}{2} = \frac{2}{3} \pi R^{3} \rho_{\ell} v_{A}^{2}$$

where $x_0 = \text{critical depth}$ (when first permanent deformation is made)

m_o = drop mass

 v_A = critical velocity

 ρ_{ℓ} = density of drop material

Then

$$E = \frac{\pi R^{3}Y}{3} \int_{0}^{x_{0}} \frac{2Rx^{2} - x^{3}}{R^{4}} dx$$

$$= \frac{\pi R^{3} Y}{3} \left[\frac{2 x_{0}^{3}}{3 R^{3}} - \frac{x_{0}^{4}}{4 R^{4}} \right]$$

From the equation $x^2 - 2R x + r^2 = 0$, we find that

$$x_{o} = R \left[1 - \sqrt{1 - \left(\frac{r_{o}}{R}\right)^{2}} \right]$$

which on expansion becomes:

$$x_0 = R \left[\frac{1}{2} \left(\frac{r_0}{R} \right)^2 + \frac{1}{8} \left(\frac{r_0}{R} \right)^4 + \dots \right]$$

But $r_0 \ll R$

$$x_0 \cong \frac{R}{2} \left(\frac{r_0}{R}\right)^2 = \frac{r_0^2}{2R}$$

Substituting this value into the energy equation above:

$$E = \frac{\pi R^3 Y}{3} \left[\frac{r_0}{R} \right]^6 \left[\frac{1}{12} - \frac{1}{64} \left(\frac{r_0}{R} \right)^2 \right]$$

By equating this energy to the kinetic energy and substituting $\left(\frac{r_o}{R}\right)^2 = \frac{6 \text{ S}_o}{Y}$, one obtains the damage initiating velocity, v_A :

$$\frac{2}{3} \pi R^{3} \rho_{\ell} v_{A}^{2} = \frac{\pi R^{3}}{3} Y \left[216 \frac{S_{0}^{3}}{Y^{3}} \right] \left[\frac{1}{12} - \frac{1}{64} \times \frac{6 S_{0}}{Y} \right]$$

$$v_{A}^{2} = \frac{S_{o}^{3}}{Y^{2} \rho_{a}} \left[9 - \frac{81}{8} \frac{S_{o}}{Y} \right]$$

We may assume for most metals that S $_{\odot} <<\ Y$ and simplify the velocity expression:

$$v_A^2 = 9 \frac{S_o^3}{Y^2 \rho_{\ell}}$$

or $v_A = \frac{3 S_0}{Y} \sqrt{\frac{S_0}{\rho_{\ell}}}$ in any consistent units.

Alternately, for v_A in ft/sec, S_o and Y in psi and ρ_ℓ as specific gravity (dimensionless):

$$v_A = 25.8 \frac{S_o}{Y} \sqrt{\frac{S_o}{\rho_{\ell}}}$$

To provide a rough check of this relationship, a one millimeter diameter steel ball bearing was dropped on a specimen of 1100-0 aluminum from various heights. The values S = 17,450 psi, Y = 10.0 x 10^6 psi, and ρ_{ℓ} = 7.86 indicated that v_A should equal 2.12 ft/sec. The ball was dropped from as low as 1.00 to 1.25 inches above the sample corresponding to 2.31 to 2.58 ft/sec impact velocities. Slight indentations were detected under the microscope.

V. INFLUENCE OF HIGH STRAIN RATES ON THE EFFECTIVE TARGET YIELD STRENGTH

For some time it has been known that the apparent strength of certain materials, particularly body centered cubic metals, is increased when they are strained rapidly. To the author's knowledge, a complete theoretical treatment of the mechanism of this phenomenon has not been done although both empirical and theoretical studies have been made. For purposes of this report, however, it is desired to show only that the high velocity impact data obtained with mercury drops, etc. yield dynamic strength values similar to those of other investigators. In addition, the damage data for mild cold rolled steel is brought into full accord with the predicted values.

We may take
$$t \cong \frac{x_0}{\sqrt{2} v_A} = \frac{r_0^2}{2 R v_A \sqrt{2}}$$
 (see previous derivations)

for velocities near \boldsymbol{v}_A , where t = time for impinging drop of velocity \boldsymbol{v}_A to reach a depth $\boldsymbol{x}_{_{O}}$.

...
$$L = c t = \frac{r_0^2}{2 R v_A^2}$$
, where $L = unstrained molecular "chain" length$

and c =speed of sound in the target material.

Strain =
$$\frac{\triangle L}{L} = \frac{x}{c t}$$
, and Strain Rate = $\xi = \frac{\triangle L}{L t}$

$$\therefore \quad \xi = \frac{x}{c t^2} = \frac{8 R^2 v_0^2 x}{r_0^4 c}$$

Since
$$x_0 \approx \frac{r_0^2}{2 R} = \frac{R}{2} \left(\frac{r_0}{R}\right)^2 \approx \frac{R}{2} \left(\frac{6 S_0}{Y}\right)$$

$$\frac{x_0}{p} \cong \frac{3 S_0}{v}$$

$$\xi = \frac{8}{c} \times v_0^2 \times \frac{x}{R^2} \left(\frac{R}{r_0}\right)^4$$

$$= \frac{8}{c} \times \frac{\frac{S_o}{\rho_l}}{\rho_l} \times \frac{\frac{3 S_o}{YR}}{\frac{3 S_o}{Q}} \left(\frac{\frac{Y}{6 S_o}}{\frac{S_o}{Q}}\right)^2$$

$$\xi = \frac{2 Y}{3 R c \rho_{\rho}}$$

For cold rolled steel, using 1.5 mm Hg drops, Y = 30 x 10 6 psi, c = 5.13 x 10 5 cm/sec, and ρ_{ℓ} = 13.546

$$\xi = \frac{30.0 \times 10^6 \times 703.1 \times 10^{-1} \sqrt{2} \sqrt{2}}{3 \times 0.075 \times 5.13 \times 10^5 \times 13.546} = 2700 \text{ sec}^{-1}$$

In many cases, as seen on page 17, the dynamic yield strength is about equal to the tensile strength. A reasonable damage relation may be

$$E = k S_0 V$$

rather than the form using \mathbf{S}_{t} . The slope of the E vs V curve for mild C.R. steel (Figure 30) leads to:

$$kS_0 = 190,300 \text{ psi}$$

For many other metals (which do not exhibit yield strength increases with strain rate), the value of $k \approx 2.7$ (reason unknown). Using this k value for steel also

$$S_0 \cong 71,500 \text{ psi}$$

Since the static yield strength, S_0 , of this material is 29,400 psi:

$$\frac{S_0}{S_0} = \frac{71,500}{29,400} = 2.44$$

As may be seen in Figure 43, this ratio of yield strengths agrees exceptionally well, at the calculated strain rate, with values obtained by other investigators³. The validity of the above is further demonstrated by calculating the initial damage velocity:

$$v_A = 8.605 \sqrt{\frac{71,500}{13.546}} = \sqrt{\frac{S_o}{\rho_{\ell}}} = 625 \text{ ft/sec.}$$

A velocity of similar magnitude is obtained by extrapolation of the E vs V curve to zero volume. Even the γ vs impact velocity curve (Figure 41) indicates such a value at $\gamma\cong 1$.

A second example of apparent yield strength increase due to high strain rates is given by E vs V curve slopes for lead at low and high velocities. The average low velocity slope is 0.460×10^9 dynes/cm² (Brinell Ball data - Figures 14 and 15). The average high velocity slope is 1.30×10^9 dynes/cm² (mercury drop impacts - Figures 27 and 28). The ratio of these two values corresponds to the ratio of the dynamic and static yield strengths:

$$\frac{S_0}{S_0} = \frac{1.30}{0.460} = 2.82$$

This ratio value agrees well with the results of Whiffin 13 and Taylor 11.

VI. MULTIPLE DROP RAIN DAMAGE STUDY

Extension of the theoretical work to a case of practical application - statistical rain drop damage on materials was desired. The theory as well as applications to all previous rain damaged samples is reported in WADC TR $58-427^6$. As seen in the derivation to follow the energy-volume equation may be extended to angle impacts by inserting the sine squared of the incidence angle. Because of the many variables involved, it has not been possible, heretofore, to compare damage observed on the different configurations of samples traveling through rains of different intensity at various speeds and at different exposures. From theoretical considerations it has been found that the product of the impact energy and the sine squared of the incidence angle is proportional to the volume of damaged material displaced. To apply this relation to a physical situation involving water drops of many sizes and materials of different tensile strengths, certain assumptions were necessary. First, to assume that the rainfall drop size distribution in each of the three artificial rain erosion ranges was constant and identical. We, naturally, have the conditions that the drop density (being water) is constant and that, in any practical rain erosion test, the sample is fired through a statistical number of rain drops. One may, therefore, consider that all of the rain damage caused in the Convair ranges is caused by drops of uniform size. Also assumed was that the tensile strength of any given sample or of several samples of similar composition may be constant or nearly so. Based on these assumptions, we may now derive the simple expression used to calculate the "correction factors" applied to the damage indices found in Tables II, III and IV of WADC TR 58-427.

(1)
$$E \sin^2 \emptyset = k_1 V$$

where E = kinetic energy of impact, \emptyset is the angle of incidence (equal to half the included angle of a cone or wedge), $k_1 = constant$ of proportionality, and V = displaced volume.

(2)
$$E = \frac{mv_0^2}{2}$$

where $m = the drop mass and v_0 = the impact velocity.$

If the water drop sphere remains relatively rigid during impact, the volume displaced would be that of a spherical segment.

(3)
$$V = \frac{\pi}{3} \times x^2 (3 R - x)$$

where x = penetration depth and R = drop radius.

Because average water drop penetrations at 2240 feet per second are quite shallow compared to the drop radius,

$$3 R >> x$$
 and $(3 R - x) \cong Constant$
 $V = k_2 x^2$

If the drop had been deformed to a hemisphere by the impact before any "damage" occurred,

$$V = k_3 x$$
 instead.

Substituting expressions for E and V into equation (1.):

when
$$V \propto x^2$$
, $v_0^2 \sin^2 \emptyset = K^2 x^2$

(4) or
$$v_0 \sin \emptyset = Kx$$
,
when $V \propto x$,

(5)
$$v_0^2 \sin^2 \emptyset = Kx$$
.

The true equation governing this water erosion is probably a compromise of these two. Water drop impact marks in metals such as copper indicate some distortion from an original spherical shape although far from the hypothesized hemispherical shape.

Dividing equation (4) through by a standard conditions equation:

$$\frac{v_o}{2240} \frac{\sin \emptyset}{1.0000} = \frac{K x}{K x'}$$
or $x' = \frac{2240}{v_o \sin \emptyset} x$

Of course the damage is directly proportional to the distance traveled through one inch per hour standard rainfall (equivalent exposure = T).

$$x' = \frac{2240 \cdot 1.0 \text{ nautical mile}}{v_0 \sin \emptyset \text{ T (nautical miles)}} x$$

$$= \frac{2240 \cdot 6076.1}{\text{v} \sin \emptyset \text{ T (feet)}} \quad x$$

(6)
$$x' = \frac{13.61 \cdot 10^6}{v_0 T \sin \emptyset} x$$

In applying these factors to the various specimen shapes, the assumption was made that the tips of conical samples received approximately the damage that a flat plate specimen would have received under similar circumstances. Therefore, when calculating the tip "correction factors," the sine of 90° (= 1.0000) would be used.

For simplicity and because only negligible errors were introduced (compared to the approximated damage indices) equation 4 was used in WADC TR 58-427. To use this expression to correct actual penetrations to the equivalent penetration, this expression was "set up" under the arbitrary standard conditions of:

- a) 1.0 nautical mile exposure,
- b) 1 inch per hour rainfall intensity,
- c) 2240 feet per second velocity, and
- d) 90° incidence angle.

VII. SUMMARY

The single drop captured projectile method for theoretical damage studies has been extended to allow more accurate measurement of drop size and projectile velocity. For precision and accuracy in size measurements, each test drop is weighed individually on an analytical balance. Speeds up to Mach 5 are now attainable with nitrocellulose rifle powder.

A great number of single impact water and mercury drop tests have been done by the new method with a degree of precision not formerly possible. The data from these tests correlates very well with that of previous tests and in some cases provides a means for statistical correction of old data where there was some doubt as to values.

An equation which relates total energy of impact to the volume of metal displaced was derived and found adequate to explain damage in the velocity range from less than one foot per hour to greater than Mach 3. This equation together with results of incidence angle tests led to an overall damage equation which was successfully applied to the problem of multiple drop rain damage.

Reasonable preliminary equations were derived for the surface contours of certain impact marks.

The apparent increase in material yield strengths, due to the high strain rates present in ballistic impacts, was studied as an influencing parameter in the energy-volume damage equations. The ratio of dynamic to static yield strengths obtained for mercury drop impacts on steel was found to agree very well with ratios obtained by other investigators.

Though much of this work is unfinished, the way is open for complete correlation and unification of impact results. This unification would include a correct prediction of damage for impacts by single given drops or by a statistical number of these drops on any material of known physical properties.

BIBLIOGRAPHY

- 1. Aluminum Company of America. Alcoa Aluminum Handbook. Pittsburgh. 1956.
- 2. American Society for Metals. Metals Handbook. 1939.
- 3. Belsheim, R. O. "Delayed-Yield Time Effects in Mild Steel Under Oscillatory Axial Loads," <u>Transactions of the ASME</u>. Vol. 79, No. 7. Easton. October 1957.
- 4. Hurd, D. E., "High Density Liquid Erosion," A Study of Rain Erosion Testing

 Methods for Supersonic Speeds. WADC Tech. Report 53-173, Part IV.

 January 1957.
- 5. Hurd, D. E., "High Density Liquid Study," A Study of Rain Erosion Testing

 Methods for Supersonic Speeds. WADC Tech. Report 53-173, Part V.

 October 1957.
- 6. Hurd, D. E., et al. <u>Summary Compilation of Supersonic Rain Erosion Results.</u>
 WADC Tech. Report 58-427. June 1958.
- 7. Lange, Norbert A., Ph. D., <u>Handbook of Chemistry</u>. Handbook Publishers, Inc., Sandusky. 1946.
- 8. Marks, Lionel S., <u>Mechanical Engineers' Handbook.</u> McGraw-Hill Book Co., Inc., New York. 1950.
- 9. Nadai, A., <u>Theory of Flow and Fracture of Solids</u>. McGraw-Hill Book Co., Inc., New York. 1950.
- 10. Sneed, R. J. H. and Kornblum, H. N., The Pre-Yield Transient Behavior of Molybdenum. Convair, Pomona. May 1958. Tech. Memo 332-127.
- 11. Taylor, Geoffrey, Sir, F.R.S. "The Use of Flat-Ended Projectiles for Determining Dynamic Yield Stress," <u>Proc. Roy. Soc.</u> Vol. 194A. Pg. 306. 1948.
- 12. United States Steel Corporation. Fabrication. Aduco. 1957.
- 13. Whiffin, A. C., Proc. Roy. Soc. Vol. 194A. Pg. 300. 1948.
- 14. Engel, Olive G. Mechanism of Rain Erosion Part XII. Pits in Metals Caused by Collision with Liquid Drops. National Bureau of Standards. WADC Technical Report 53-192, Part XII. ASTIA Document No. 155756.

TABLE I LOW VELOCITY DATA - STEEL BALL BRINELL TESTS ON LEAD

VOLUME DISPLACED $(cm^3 \times 10^3)$		0.204	0.739	1.453	2,555	3,955	5.600	7.621	9:756	11.743	14.826	17.842	25.819	28.089	29.847	31.854	32.879	33.919	34.972	36.254	37.447	38,656	40.444	41.922	43.655	45.298
ENERGY (ergs $\times 10^{-6}$)		0.094	0.315	0.659	1.149	1.748	2.505	3.378	4.423	5.515	6.779	8.202	12.368	13.452	14.266	15.170	15.622	16.074	16.525	17.068	17.565	18.063	18.785	19.372	20.050	20.685
LOADING RATE (dynes/sec X 10^{-6})		2.6739	2.6739	2,6739	2.6739	2,6739	2.6739	2.6739	2,6739	2.6739	2.6739	2,6739	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{array}{c} \text{LOAD} \\ \text{(dynes X 10}^{-6} \end{array}$		16.043	29.413	42.515	56.152	69.254	82.891	96.260	110.160	123.000	136.370	150.010	177.940	177.940	177.940	177.940	177.940	177.940	177.940	177.940	177.940	177.940	177.940	177.940	177.940	177.940
DEPTH OF PENETRATION (cm X 10^2)		1.143	2.184	3.073	4,089	5.105	6.096	7.137	8.103	8,915	10.058	11.074	13.437	14.046	14.503	15.011	15.265	15.519	15.773		16.357	16.637			17.754	18.110
TIME (sec)		6.00		15.90	21.00	25.90	31.00	36,00	41.20	48.00	51,00	56.10	67.40	70.60	76.10	81.10	86.10	89.90	96.20	101.00	106.40	118.20	138.20	153.10	183.20	225.50
TEST NO.	·)	L5																								

TABLE I (Continued)
LOW VELOCITY DATA - STEEL BALL BRINELL TESTS ON LEAD

rest No.	TIME (sec)	DEPTH OF PENETRATION (cm X 10 ²)	$\begin{array}{c} \text{LOAD} \\ \text{(dynes X 10}^{-6}) \end{array}$	LOADING RATE (dynes/sec $\times 10^{-6}$)	ENERGY (ergs X 10 ⁻⁶)	VOLUME DISPLACED $(cm^3 \times 10^3)$
L5	243.60	18.389	177.940	0	21.180	46.608
	267.90	18.694	177.940	0	21.723	48.055
	301.30	18.923	177.940	0	22.131	49.151
	312.30	19.075	177.940	0	22.401	49.888
L11	5.91	2.032	25.438	4.3042	0.253	0.640
	8.43	2.870	36.284	4.3042	0.509	1.269
	12.25	4.115	52.726	4.3042	1.086	2.587
	16.20	5.410	69, 728	4.3042	1.899	4.432
	19.94	6.629	85.826	4.3042	2.876	6.598
	23.71	7.899	102.050	4.3042	4.067	9.286
	27.21	9.169	117.120	4.3042	5.357	12.333
	30.89	10.414	132.960	4.3042	6.903	15.853
	34.66	11.709	149.180	4.3042	8.690	19.856
	38.29	12.954	164.810	4.3042	10.607	24.083
	41.88	14.224	180.260	4.3042	12.722	28.767
	45.41	15.469	195.450	4.3042	14.917	33.710
	49.11	16.764	211.380	4.3042	17.448	39, 211
	54.32	18.567	222.420	0	21.940	47.450
	57.31	19.329	222.420	0	23.634	51.126
	59.59	19.837	222.420	0	24.764	53,639
	62.94	20.345	222.420	0	25.894	56.202
	66.56	20.828	222.420	0	26.990	58.680
	71.33	21.361	222.420	0	28.154	61.469
	77.34	21.844	222.420	0	29, 228	64.037

TABLE I (Continued)
LOW VELOCITY DATA - STEEL BALL BRINELL TESTS ON LEAD

$\begin{array}{c} \text{VOLUME} \\ \text{DISPLACED} \\ \text{(cm}^3 \text{ X } 10^3) \end{array}$	66.784	69.577	72.556	75.437	78.214	81.177	83.276	85.546	88.916	90.463	93.743	96.746
ENERGY (ergs X 10 ⁻⁶)	30.358	31.488	32.674	33.804	34.878	36.007	36.779	37.647	38.888	39,453	40.641	41.712
LOADING RATE (dynes/sec X 10^{-6})	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{array}{c} \text{LOAD} \\ \text{(dynes X 10^{-6})} \end{array}$	222.420	222.420	222.420	222.420	222.420	222.420	222.420	222.420	222.420	222.420	222.420	222.420
DEPTH OF PENETRATION (cm X 10 ²)	22.352	22.860	23.393	23.901	24.384	24.892	25.248	25.629	26.187	26.441	26.975	27.457
TIME (sec)	84.07	93.13	103.42	116.86	133.35	148.93	162.70	178.22	212.39	227.62	269.91	303.82
TEST NO.	L11											

LOW VELOCITY DATA - STEEL BALL BRINELL TESTS ON POLYETHYLENE TABLE II

VOLUME DISPLACED $(cm^3 \times 10^3)$	0.502	1.378	2.378	3.848	4.832	6.190	7.760	8.990	11,090	12.860	14.510	16.220	17.990	20.100	21.610	23.370	25.840	61.350	62.320	63.670	65.040	66.480	67.490	69.370	70.820
ENERGY (ergs X 10 ⁻⁶)	0.218	0.627	1.120	1.840	2.380	3,110	3.900	4.630	5.790	6.990	8.050	9.140	10.030	11.880	13.170	14.670	16.980	26.570	26.810	27.140	27.480	27.820	28.060	28.500	28.840
LOADING RATE (dynes/sec X 10^{-6})	3.577	3.577	3.577	3.577	3.577	3.577	3.577	3.577	3.577	3.577	3.577	3.577	3.577	3.577	3.577	3.577	0	0	0	0	0	0	0	0	0
LOAD (dynes X 10 ⁻⁶)	15.13	25.61	35.30	43.85	49.86	57.05	63.85	69.61	77.84	85.56	91.75	94.80	102.45	111.50	117.39	123.87	133.50	133.50	133.50	133.50	133.50	133.50	133.50	133.50	133.50
DEPTH OF PENETRATION (cm X 10 ²)	2.87	4.83	6.43	8.30	9.40	10.77	12.22	13.28	14.99	16.36	17.60	18.85	20.12	21.62	22.68	23.93	25.70	26.29	26.47	26.72	26.97	27.23	27.41	27.74	27.99
TIME (sec)	4.23	7.16	9.59	12.26	13.94	15.95	17.85	19.46	21.76	23.92	25.65	27.34	28.64	31.17	32.82	34.63	37.26	39.34	40.62	41.93	44.62	47.11	49.82	59.94	65.46
TEST NO.	P 3																	•							

TABLE II (Continued)
LOW VELOCITY DATA - STEEL BALL BRINELL TESTS ON POLYETHYLENE

VOLUME DISPLACED $(cm^3 \times 10^3)$	72.280	73.820	75.190	76.590	79.980	80.800	81.620
ENERGY (ergs X 10 ⁻⁶)	29.180	29.520	29.820	30.130	30.870	31.040	31.210
LOADING RATE (dynes/sec X 10 ⁻⁶)	0	0	0	0	0	0	0
$\begin{array}{c} \text{LOAD} \\ \text{(dynes X } 10^{-6}) \end{array}$	133.50	133.50	133.50	133.50	133.50	133.50	133.50
DEPTH OF PENETRATION (cm $ ext{X}$ 10 ²)	28.24	28.50	28.73	28.96	29.51	29.64	29.77
TIME (sec)	74.26	86.92	105.46	140.01	231.04	258.76	293.27
TEST NO.							

TABLE III MODERATE VELOCITY DATA - STEEL INDENTER DROP TESTS ON 1100-0 ALUMINUM

SAMPLE MATERIAL	INDENTER RADIUS (cm)	DROP HEIGHT (cm)	INDENTER SHAPE	IMPACT VELOCITY (cm/sec X 10 ⁻²)	INDENTER MASS (g)	PENETRATION DEPTH (cm X 10 ²)	$\begin{array}{c} {\rm BASE} \\ {\rm AREA} \\ {\rm (cm^2~X~10^4)} \end{array}$	ENERGY (ergs X 10 ⁻⁶)	VOLUME DISPLACED (cm ³ X 10 ⁶)
1100-0 AL	0.015	5.385 7.925 10.465 13.005 15.545 18.085	Cylinder (Steel)	1. 0273 1. 2463 1. 4322 1. 5965 1. 7455 1. 8827	447.1	5.1054 7.4930 9.2710 10.1350 10.4390	45.603	2, 3593 3, 4724 4, 5852 5, 6983 6, 8111 7, 9242	232.82 341.70 422.78 462.19 476.05
1100-0 AL	0.025	5.3848 5.4864 7.925 8.0264	Cylinder (Steel)	1. 0273 1. 0370 1. 2462 1. 2543	447.1	2.0066 1.8796 2.7432 2.8956	126.68	2. 3590 2. 4038 3. 4720 3. 5169	254. 20 238. 11 347. 51 366. 81
		10.566 10.566 13.005 13.106 13.106 15.545 15.545 15.545 16.625 20.726 23.266 23.266 23.266 28.245 28.346		1. 4391 1. 4391 1. 5965 1. 6027 1. 6027 1. 7455 1. 7455 1. 7455 2. 0106 2. 0106 2. 0155 2. 0155 2. 1354 2. 1354 2. 1354 2. 3529 2. 3529 2. 3529		3.5306 4.7752 4.3942 4.3942 5.1308 5.4610 5.6134 7.0358 7.0358 7.3152 7.4168 8.9660 8.8390 8.8390 8.9410		4. 6295 4. 6295 5. 6980 5. 7425 6. 8410 6. 8110 6. 8554 7. 9240 7. 9680 9. 0370 9. 0813 9. 0813 10. 1940 11. 263 12. 376 12. 420	447.26 489.09 604.92 556.66 598.49 649.97 691.80 711.10 730.41 801.20 862.34 891.73 997.48 1029.60 1135.80 1116.50 11116.50
		28.346 29.616		2.3571 2.4093		10,1850 9,4230		i2.420 12.976	1290.20 1193.80

TABLE III (Continued) MODERATE VELOCITY DATA - STEEL INDENTER DROP TESTS ON 1100-0 ALUMINUM

VOLUME DISPLACED ($cm^3 \times 10^6$)	2895.80 5791.70 4633.40 7529.20 6370.90 8687.60 9266.70 11873.00	261.97 439.14 621.64 716.38 982.02	309.16 591.52 907.17 1140.48 1245.29	206.08 301.62 526.22 855.21 735.75	440.55 729.47 1073.80 1412.50 1736.30
ENERGY (ergs X 10 ⁻⁶)	3, 4724 5, 6983 6, 6811 7, 9242 9, 0370 10, 1498 11, 2630 12, 3757 12, 3750	3,4520 5,6940 7,9359 10,1770 12,4190	8.8910 14.5010 20.1100 25.7200 31.3300	3,5971 5,8317 8,0658 10,3000 12,5340	9. 7925 15. 4040 21. 0160 26. 6280 32. 2400
$\begin{array}{c} \text{BASE} \\ \text{AREA} \\ \text{(cm}^2 \text{ X 10}^4\text{)} \end{array}$	1140, 1				
PENETRATION OBEPTH (cm X 10 ²)	0,2540 0,5080 0,4064 0,6604 0,5580 0,7620 0,8128 1,0414	1,3208 1,7272 2,0574 2,2098 2,5908	1, 4478 2, 0066 2, 4892 2, 7940 2, 9210	5.8166 6.6040 7.9502 9.3472 8.8900	7,4930 8,8646 10,0840 11,0490 11,8360
INDENT ER MASS (g)	447.1	450.3	1126.8	448.8	1127.2
IMPACT VELOCITY (cm/sec X 10 ⁻²)	1, 2463 1, 5965 1, 7455 1, 8827 2, 0106 2, 2446 2, 3529 2, 3529 2, 4052	1, 2383 1, 5903 1, 8774 2, 1261 2, 3486	1, 2562 1, 6043 1, 8893 2, 1366 2, 3581	1. 2661 1. 6121 1. 8959 2. 1424 2. 3634	1. 3181 1. 6532 1. 9310 2. 1736 2. 3917
IND ENTER SHAPE	Cylinder (Steel)	Sphere (Steel)	Sphere (Steel)	Cone (Stee1)	Cone (Steel)
DROP HEIGHT (cm)	7, 9248 13, 0050 15, 545 18, 085 20, 625 23, 165 25, 705 28, 245 28, 245 29, 515	7,8233 12,9030 17,9830 23,0630 28,1430	8,0518 13,1320 18,2120 23,2920 28,3720	8, 1788 13, 2590 18, 3390 23, 4190 28, 4990	8.8646 13.9450 19.0250 24.1050 29.1850
INDENTER RADIUS (cm)	0.075	0.18675	0.18675	90° incl. Angle	90° incl. Angle
SAMPLE MATERIAL	1100-0 AL	11000 AL	1100-0 AL	1100-0 AL	1100-0 AL

TABLE III (Continued)
MODERATE VELOCITY DATA - STEEL INDENTER DROP TESTS ON 1100-0 ALUMINUM

VOLUME DISPLACED (cm ³ X 10 ⁶)	260.77 387.62 556.77 620.20 824.58 930.30 1000.80 1134.70 1332.00 1381.40	732.96 1212.20 1740.80 1966.30 2255.30 2466.70	195.06 244.54 489.08 746.48 810.84 926.67 939.54 1119.70 1184.10 1145.50 1248.40 1248.40 1287.00 1402.90
BASE AREA ENERGY $(cm^2 X 10^4)$ (ergs X 10^{-6})	2, 4374 3, 5502 4, 6632 5, 7763 6, 8891 8, 0020 9, 1150 11, 3410 12, 4520 13, 0100	9. 6334 15. 2340 20. 8350 26. 4360 32. 0370 32. 0370	2. 4038 2. 4038 4. 6295 5. 7425 6. 8554 7. 9682 7. 9682 9. 0813 10. 1940 10. 1940 11. 3070 12. 420
$\begin{array}{c} \text{BASE} \\ \text{AREA} \\ \text{(cm}^2 \text{ X } 10^4) \end{array}$	277. 47	277.47	506.71
PENETRATION DEPTH (cm \times 10 2)	0.9398 1.3970 2.0066 2.2352 2.9718 3.3528 3.6068 4.0894 4.9784	2.6416 4.3688 6.2738 7.0866 8.1280 8.8900	0.3810 0.4826 0.9652 1.4732 1.6002 1.8542 2.2098 2.3368 2.2606 2.4638 2.5400 2.7686 3.1242
INDENTER MASS (g)	447.1	1125.0	447.1
IMPACT VELOCITY (cm/sec X 10 ⁻²)	1. 0442 1. 2602 1. 4443 1. 6074 1. 7555 1. 8919 2. 0192 2. 1390 2. 225 2. 3601 2. 4124	1. 3087 1. 6457 1. 9246 2. 1679 2. 3865	1. 0370 1. 0370 1. 4391 1. 6027 1. 6027 1. 7512 1. 8880 2. 0155 2. 1354 2. 1354 2. 1354 2. 1354 2. 1354 2. 1354 2. 1354
INDENT ER SHAPE	Cylinder (Steel)	Cylinder (Steel)	Cylinder (Steel)
DROP HEIGHT (cm)	5. 563 8. 103 10. 643 13. 183 15. 723 18. 263 20. 803 25. 883 28. 423 29. 693	8.7376 13.818 18.898 23.978 29.058	5. 486 5. 486 10. 566 13. 106 13. 106 15. 646 18. 186 20. 726 23. 266 23. 266 23. 266 23. 266 23. 266 25. 806
INDENTER RADIUS (cm)	0.0375	0.0375	0.050
SAMPLE MATERIAL	1100-0 AL	1100-0 AL	1100-0 AL

TABLE IV
HIGH VELOCITY IMPACT DATA - MERCURY DROPS

MEASURED ACCURACY INDEX		
>	1. 424 2. 361 1. 203 2. 191 1. 438 2. 193 1. 814 2. 145 2. 399 2. 399 2. 341 1. 926 1. 926 1. 926 1. 492 1. 492 1. 492 1. 492 1. 492 1. 363 3. 363 3. 537 3. 537	1. 844 1. 454 1. 898 1. 962 1. 962 1. 726 2. 810 3. 423 3. 131 2. 024 1, 881 1. 951
VOLUME DISPLACED $(cm^3 \times 10^3)$	0.0013 0.0011 0.0032 0.0011 0.0087 0.056 0.047 0.111 0.127 0.273 0.350 0.495 0.350 0.350 0.353 1.234 1.262 2.257 2.257 2.788	0.0039 0.012 0.040 0.040 0.034 0.320 1.393 1.672 2.020 2.923
ENERGY (ergs X 10 ⁻⁶)	0.397 0.697 0.709 0.932 0.943 1.555 1.614 2.119 2.698 2.740 4.744 7.413 8.121 10.322 11.894 12.400 13.179 14.668 18.040	1. 323 2. 312 2. 353 3. 183 3. 183 5. 218 5. 224 7. 152 9. 248 11. 682 11. 682 22. 897 27. 060
DAMAGE RADIUS (cm X 10 ³)	20.57 26.28 22.86 26.28 33.15 59.05 50.67 63.50 68.58 60.96 60.96 60.96 57.15 59.69 57.15 59.69	34.29 38.10 57.15 59.43 54.86 89.15 101.85 113.03 109.73 94.86 92.58 93.72
DEPTH OF PENETRATION (cm X 10 ³)	2. 79 2. 54 4. 32 2. 54 7. 62 16. 51 15. 24 22. 60 24. 13 35. 05 30. 48 60. 96 83. 82 90. 67 98. 81 121. 92 104. 14 124. 46 135. 38	3.81 6.35 10.92 10.16 11.43 44.45 26.67 45.72 55.88 88.90 91.44 121.92
DROP MASS (g)	0.0071	0.0239
IMPACT VELOCITY (cm/sec X 10 ⁻⁴)	1. 058 1. 402 1. 414 1. 622 1. 622 2. 094 2. 758 2. 758 2. 758 4. 572 4. 572 4. 572 5. 394 5. 394 6. 096 6. 431 7. 132 8. 047	1. 051 1. 390 1. 402 1. 631 1. 631 2. 103 2. 444 2. 780 3. 124 3. 124 4. 374 4. 374
DROP	Sphere (Hg)	Sphere (Hg)
DROP DIAMETER (mm)	1.0	1.5
SAMPLE MATERIAL	AL 1100-0	AL 1100-0

TABLE IV (Continued)
HIGH VELOCITY IMPACT DATA - MERCURY DROPS

MEASURED ACCURACY INDEX	တက္ကက္ ကုက္) m		ကကက က	തെതത തെതത	2
4	2. 580 2. 580 2. 667 2. 940 2. 580 2. 504	3.539	2. 824 2. 623 3. 624 3. 624 4. 241 4. 291 4. 334 4. 367 4. 286	2. 949 1. 483 1. 265 1. 890	2. 174 2. 900 2. 460 1. 415 1. 368	1.000
VOLUME DISPLACED (cm ³ X 10 ³)	4.118 5.849 6.810 7.572 6.989 7.074	11.547 2.550 3.016	3.016 6.066 8.050 8.634 9.038 13.725 13.440 14.242 21.180 20.575	0.0020 0.038 0.0505 0.0711	0.554 1.253 2.199 4.171 4.852 5.343	0.011
ENERGY (ergs X 10 ⁻⁶)	29.907 32.135 33.665 46.729 46.729 55.793	75.167	17.156 35.619 45.155 46.280 43.195 66.279 65.774 84.948 88.522	2.958 5.080 5.080 7.129	11.854 16.202 20.951 33.358 43.522 49.470	45.410
DAMAGE RADIUS (cm X 10 ³)	102.87 102.87 104.01 107.44 102.87 101.85	114.30	1108.20 112.40 119.38 121.67 119.13 135.26 126.75 127.76 125.73 132.08	44.58 59.44 54.86	111.88 141.86 135.00 112.14 110.99 110.99	110.01
DEPTH OF PENETRATION (cm X 10 ³)	137.16 189.23 213.36 220.98 223.52 226.06	292.10 292.10 80.77 95.76	95.76 167.13 191.52 196.85 213.61 249.43 264.67 287.53 436.88 335.03	2.54 11.43 12.70	30.48 43.18 55.88 132.1 152.40 165.1	110.33
DROP MASS (g)	0.0239	0.0297	0.0275 0.0377 0.0384 0.0283 0.0283 0.0263 0.0275 0.0275 0.0307	0.0526	0.0567	
IMPACT VELOCITY (cm/sec X 10-4)	4, 998 5, 182 5, 303 6, 248 6, 827 6, 827	3. 139 3. 139	3.536 4.816 5.639 5.730 6.462 6.949 7.437 7.620	1. 060 1. 390 1. 390 1. 622	2. 091 2. 444 2. 780 3. 429 3. 917 4. 176	4.1/0
DROP	Sphere (Hg)	Sphere	(HB)	Sphere (Hg) Sphere	(Hg) Sphere (Hg)	
DROP DIAMETER (mm)	1.5	1.612	1.571 1.630 1.588 1.584 1.548 1.671 1.571 1.630 1.630	1.95	5.0	
SAMPLE MATERIAL	AL 1100-0	AL	11000-0	AL 1100-0 AL	1100-0 1100-0	

TABLE IV (Continued) HIGH VELOCITY IMPACT DATA - MERCURY DROPS

MEASURED ACCURACY INDEX	ന ന	ဧ	က	က	2	က	က	က	63	က	2	63	23	67	က	က	ಣ	က	п	-					-	-		-		- 4 ·	7
~	1.415	1.680	1.881	2.114	1.271	1.388	1.0	1.151	2.204	5.747	1.270	1.088	1.314	1.108	1.908	6.472	2.438	2, 536	1.738	2.242	3, 104	3.123	3, 264	2.913	3.174	3, 236	3.018	2.877	2.882	2, 555	2.878
VOLUME DISPLACED $(cm^3 \times 10^3)$	5.977	11.525	16.791	0.0027	0.022	0.189	0.341	0.821	1.195	7.376	0.064	0.192	1.718	6,455	5.488	11.992	10.175	11.581	0.021	0.084	0.116	0.157	0.460	0.773	0.749	0.565	0.939	0.929	0.735	1.072	1.118
ENERGY (ergs X 10 ⁻⁶)	53.522 63.323	86,349	141.865	2.700	5.986	10.704	10.704	15.456	24.226	42.817	4.035	9.130	15.859	22.075	35.578	49.056	63,436	63, 436	1.506	1.865	2,336	3.254	3.842	5.119	5,688	4.610	7.366	7.920	6.762	9.957	9.388
DAMAGE RADIUS (cm X 10 ³)	112.14	118.87	123, 32	41.14	48.26	68.58	59.44	91.44	160.02	173.9	38.10	44.45	86.36	105.41	173.99	219.7	191.77	194.3	40.00	57.15	66.04	71.12	72.39	71.12	76.20	73.66	74.93	71.76	67.31	71.12	71.12
DEPTH OF PENETRATION (cm X 10 ³)	177.8	283.2	373.3	2.54	7.62	17.78	22.86	33.02	60.19	90.66	3.81	6.60	20.06	39,88	76.20	90.66	114.30	123.19	80.01	20.07	23.36	25.62	35.31	44.69	49.02	46.10	61.47	67.56	59.44	76.71	77.22
DROP MASS (g)	0.0567			0.1108	3						0.1642								0.0078	0.0062	0.0059	0.0078	0,0066	0.0070	0,0079	0,0070	0.0079	0.0073	0,0060	0800.0	0.0071
IMPACT DROP VELOCITY SHAPE (cm/sec X 10 ⁻⁴)	4.343	5 517	7.071	808	1 039	1,390	1,390	1,670	2, 091	2.780	0.701	1,055	1.390	1.640	2,081	2,444	2, 780	2.780	1.966	2,454	2.816	2,890	3,413	3, 627	3,797	3,822	4, 322	4.669	4.745	4.995	5,145
DROP SHAPE	Sphere	(Hg)		Suboro	(Ha)	/9rr)					Spharo	(Ho)	(9**)						Sphere	(Hg)	ò										
DROP DIAMETER (mm)	2.0			c n	6.0						9								1 039	0.956	0.940	1.032	0.976	966 0	1.037	966 0	1.037	1 009	0.946	1.041	1,000
SAMPLE MATERIAL	AL	1100-0		-	1100 0	1100-0					1	1100-0	0-0011						ΔT	2024											

TABLE IV (Continued) HIGH VELOCITY IMPACT DATA - MERCURY DROPS

MEASURED ACCURACY INDEX	ппппппппппппппппппп		
>	2. 988 2. 615 3. 676 3. 603 3. 602 2. 943 3. 314 3. 676 4. 421 4. 316 4. 813 5. 249 6. 086 4. 992 6. 151	1. 390 2. 160 2. 878 2. 048 2. 677 1. 967 3. 423	1.872 2.208 2.032 2.184 2.569 2.162 5.123
VOLUME DISPLACED $(cm^3 \times 10^3)$	1.555 1.327 1.628 1.534 1.841 2.088 2.125 2.031 2.624 2.759 3.489 3.489 3.489 3.384 4.417 4.417 3.384	0.014 0.215 0.230 1.223 1.549 1.486 1.820	0.058 0.323 0.738 1.242 1.248 2.658 5.018
ENERGY (ergs X 10 ⁻⁶)	12. 783 12. 231 11. 670 11. 543 15. 233 17. 481 16. 073 22. 074 24. 776 26. 391 24. 104 27. 514 31. 052 25. 388 27. 230 34. 642	2.133 6.023 10.766 14.324 14.451 14.962 18.792 26.371	8.133 13.427 18.454 20.781 21.024 25.730 29.762 30.735
DAMAGE RADIUS (cm X 10 ³)	76. 20 69. 85 73. 66 74. 93 73. 66 72. 39 74. 93 81. 28 85. 09 82. 55 86. 36 86. 36 86. 36 86. 36 88. 35	39.37 84.45 106.7 95.25 104.1 100.3 93.98	71.12 106.68 116.84 128.27 135.89 144.78 165.10
DEPTH OF PENETRATION (cm X 10 ³)	93. 73 95. 50 99. 06 96. 77 112. 52 130. 80 124. 08 149. 86 13. 33 146. 56 159. 77 148. 84 166. 50 176. 27 162. 81 163. 57	7.24 22.86 26.16 58.42 58.42 60.96 81.28	12.44 27.18 38.35 48.39 49.02 55.88 71.12 85.60
DROP MASS (g)	0.0084 0.0074 0.0065 0.0063 0.0074 0.0077 0.0077 0.0079 0.0074 0.0076 0.0076 0.0076 0.0076 0.0076	0.0239	0.0527 0.0499 0.0566 0.0578 0.0543 0.0554 0.0582
IMPACT VELOCITY: (cm/sec X 10 ⁻⁴)	5. 517 5. 752 6. 004 6. 066 6. 251 6. 736 7. 047 7. 525 8. 019 8. 071 8. 071 8. 525 9. 195 9. 229 9. 623	1. 335 2. 243 2. 999 3. 459 3. 475 3. 536 4. 694	1. 7586 2. 316 2. 554 2. 682 2. 789 3. 048 3. 200 3. 377
DROP	Sphere (Hg)	Sphere (Hg)	Sphere (Hg)
DROP DIAMETER (mm)	1. 058 1. 014 0. 971 0. 961 1. 032 1. 028 0. 971 1. 028 1. 028 1. 037 1. 014 1. 045 0. 946 0. 966 1. 019	1.5	1, 9514 1, 9175 1, 998 2, 0122 1, 969 1, 984 2, 017 1, 9672
SAMPLE MATERIAL	AL 2024	AL 2024	AL 2024

TABLE IV (Continued)
HIGH VELOCITY IMPACT DATA - MERCURY DROPS

MEASURED ACCURACY INDEX		ଷ ମ ଷ ଷ ମ ମ ଷ ଷ ଷ ଭୀ ଷ ଷ	
~	2, 777 2, 149 2, 822 2, 141 2, 716 3, 075 8, 763	4. 162 4. 855 4. 855 2. 678 2. 776 1. 967 3. 780 4. 855 3. 308 2. 982 3. 539 2. 677	2, 339 1, 623 1, 643 1, 430 1, 308 1, 519 1, 213 2, 578 3, 195 4, 497 4, 292 5, 149
VOLUME DISPLACED $(cm^3 \times 10^3)$	4.961 4.642 5.988 6.703 14.491 12.671	0.917 1.103 1.502 1.176 1.863 1.672 3.521 6.032 5.080 6.372 4.170	0.0023 0.0090 0.0159 0.0414 0.0619 0.0948 0.217 0.432 0.692 1.228 1.345 1.774
ENERGY (ergs X 10 ⁻⁶)	38. 490 48. 795 49. 489 58. 762 92. 876 93. 058	15. 746 17. 097 18. 937 24. 521 28. 823 34. 444 36. 227 51. 208 53. 818 56. 292 63. 515 69. 496	0.943 1.246 1.587 2.119 2.505 2.973 3.164 4.510 6.458 9.079 10.675 13.047
DAMAGE RADIUS (cm X 10 ³)	142. 88 132. 08 143. 51 129. 54 143. 50 146. 05	120. 65 127. 0 127. 00 104. 14 105. 41 93. 98 116. 84 127. 00 111. 76 107. 95 114. 30	31.75 35.56 40.64 45.72 49.53 54.61 53.34 68.58 73.66 82.55 81.28 86.36
DEPTH OF PENETRATION (cm X 10 ³)	94.36 264.16 109.47 259.08 241.55 206.50	29. 72 30. 48 38. 35 47. 50 66. 04 76. 20 86. 11 127. 76 140. 72 125. 98 166. 12	3. 81 7. 62 10. 16 16. 51 20. 32 25. 40 38. 10 48. 26 63. 50 71. 12 78. 74
DROP MASS (g)	0.0596 0.0608 0.0594 0.0576 0.0671 0.0567	0.0239	0.0071
IMPACT VELOCITY (cm/sec X 10 ⁻⁴)	3.596 4.008 4.084 4.517 5.727 6.834	3. 627 3. 779 3. 978 4. 526 4. 907 5. 502 6. 541 6. 706 6. 858 7. 284	1. 631 1. 875 2. 115 2. 444 2. 658 2. 986 2. 987 3. 566 4. 267 5. 060 5. 486 6. 066 6. 523
DROP SHAPE	Sphere (Hg)	Sphere (Hg)	Sphere (Hg)
DROP DIAMETER (mm)	2. 0330 2. 047 2. 031 2. 010 2. 0572 2. 000 1. 982	1. 35.	1.0
SAMPLE MATERIAL	AL 2024	AL 7075- <u>T</u> 4	COPPER

TABLE IV (Continued)
HIGH VELOCITY IMPACT DATA - MERCURY DROPS

MEASURED ACCURACY Y INDEX	6.635 2 7.188 2	1.598 1	1.000 1	1.322	1.218	1.562	1.980 1	3.177 1	4.022	3.214	3.345	3.677	4.731	14.413	5.540	5.270 1	7.080	7.412 1	7.348 1	8.621	8.769	11.474 1	9.153 1	10.224	10.554	14.187	18.053 1	1.536 3	1.710 3	1.450 3	1.584 3
VOLUME DISPLACED (cm ³ X 10 ³)	2.618 2.917	0.020	0.024	0.076	0.083	0.178	0.378	0.584	0.897	0.596	0.871	1.050	1.209	1.037	1.164	1.498	2.494	2.172	3.007	2.889	3.041	3.680	2.808	4.745	4.327	6.619	7.414	0.0109	0.0161	0.0604	0.0876
ENERGY (ergs X 10 ⁻⁶)	20, 592 21, 930	1.160	1.040	1.236	1.561	1.951	3, 155	4.376	6.520	4.722	6.758	7.817	7.680	7.718	7.211	10.348	15.146	15.620	18.298	17.296	19.945	19.488	18.837	30.209	28.371	37.249	43.478	2.312	3.183	4.206	5.371
DAMAGE RADIUS (cm X 103)	93.98 96.52	37.46	40.00 30.48	42.54	42.54	52.07	64.77	77.47	87.63	72.39	80.01	80.65	83.18	78.10	78.70	83.19	100.33	92.71	101.60	101.60	104.14	111.76	97.79	115.57	111.76	124.5	135.9	39, 37	45.72	54.61	62.23
DEPTH OF PENETRATION (cm x 10 ³)	99.06 104.14	9.39	13.97	16.25	16.256	21.59	29.46	39.11	44.45	43.68	51.31	58.67	61.47	59,94	64.52	74.16	83.56	84.58	97.28	95.96	93.22	97.03	97.03	116.84	113.79	138.94	130.30	6.35	7.62	13.97	16.51
DROP MASS (g)	0.0071	0.0060	0.0054	0.0064	0.0077	0.0066	0.0079	0.0079	0.0095	0.0067	0.0081	0.0081	0.0069	0.0061	0.0050	0.0062	0.0081	0.0061	0.0080	0.0069	0.0073	0.0697	0.0060	0.0086	0.0075	0.0077	0.0079	0.0239			
IMPACT VELOCITY (cm/sec X 10 ⁻⁴)	7.620 7.864	1.965	1.965	1.965	1.978	2.432	2.829	3.246	3, 706	3.761	3.944	4.401	4.724	5.038	5.371	5.779	6.126	6,486	6.772	7,0896	7.388	7,5255	8.074	8.409	8.708	9.832	10.500	1.390	1.631	1.874	2.118
DROP SHAPE	Sphere (Hg)	Sphere	(Bu)																			,						Sphere	(Hg)		
DROP DIAMETER (mm)	1.0	0.946	0.913 1.005	0.966	1.041	0.976	1.037	1.054	1.102	0.981	1.070	1.045	0.991	0.951	0.890	0.956	1.045	0.951	1.041	0.991	1.010	0.991	0.935	1.065	1.019	1.028	1,036	1.5			
SAMPLE MATERIAL	COPPER	COPPER																		•								COPPER			

TABLE IV (Continued)
HIGH VELOCITY IMPACT DATA - MERCURY DROPS

MEASURED ACCURACY INDEX			нананенанан <u>а</u> нана
*	1.435 1.465 1.700 1.720 2.394 2.581 3.659 5.306 5.784	2.571 3.780 4.032 4.162 5.461 6.462	1. 042 1. 183 1. 279 2. 111 2. 393 1. 899 2. 827 1. 824 2. 357 7. 76 3. 209 3. 149 2. 967 4. 174
VOLUME DISPLACED (cm ³ X 10 ³)	0, 230 0, 414 0, 567 0, 739 1, 325 1, 754 3, 502 6, 931 7, 656	0,648 2,712 3,424 4,438 5,429 6,296 8,924	0.389 1.748 3.517 2.747 2.579 3.234 3.099 6.181 4.906 3.737 3.818 6.497 6.497
ENERGY (ergs X 10 ⁻⁶)	7.152 9.248 10.248 12.260 16.012 20.566 31.011 50.448 66.472	11.856 18.848 32.362 39.534 45.384 57.155 65.050	9.281 16.416 20.149 20.550 20.382 23.940 27.134 23.711 23.711 23.711 23.711 23.830 24.885 30.942 26.150 28.865 33.839 34.764
DAMAGE RADIUS (cm X 10 ³)	69.85 77.47 86.36 88.90 100.33 102.87 115.57 130.81	96.52 116.84 119.38 120.65 132.08 139.70 146.05	67.3 96.52 120.63 127.64 123.19 125.73 130.81 142.24 172.72 173.67 174.60 172.72 173.67 153.67 153.67 153.67 153.67
DEPTH OF PENETRATION (cm X 103)	25.40 33.02 38.10 43.18 55.88 66.04 93.98 137.16	35.56 76.20 88.90 109.22 111.76 132.08	29.16 47.75 66.04 59.69 58.67 64.01 74.67 65.53 67.82 65.02 76.96 82.29 76.71 76.58 73.66 94.74
DROP MASS (g)	0.0239	0.0301 0.0301 0.0301 0.0301 0.0301 0.0301	0.0059 0.0569 0.0588 0.0588 0.0528 0.0593 0.0578 0.0578 0.0578 0.0578 0.0578
IMPACT VELOCITY (cm/sec X 10 ⁻⁴)	2. 444 2. 780 2. 926 3. 200 3. 657 4. 145 5. 090 6. 492	2.804 3.535 4.633 5.121 5.486 6.156	1. 773 2. 402 2. 542 2. 715 2. 715 2. 8407 2. 865 2. 865 2. 865 3. 2247 3. 313 3. 313 3. 575
DROP	Sphere (Hg)	Sphere (Hg)	Sphere (Hg)
DROP DIAMETER (mm)	1.5	1.62	2. 027 2. 002 2. 064 1. 989 1. 983 2. 030 2. 012 2. 012 2. 004 1. 991 1. 991 1. 889 1. 951 2. 006 2. 006
SAMPLE MATERIAL	СОРРЕЯ	COPPER	COPPER

TABLE IV (Continued)
HIGH VELOCITY IMPACT DATA - MERCURY DROPS

MEASURED ACCURACY INDEX	н н	. 	1	-	-	1	1	-	-	-	1	1	က	က	2	က	က	က	က	2	က	က	က	က	N	87	87	က	2	87	83	က
~	4.721	4.819	3.818	4.191	3.612	4.042	4.709	5.225	9.232	5.472	8.312	9.172	1.725	1.497	2.399	2.173	3.147	2.726	5.244	4.500	6.803	4.098	6.117	9.303	1.101	1.953	3.015	3.767	4.431	5.002	6.640	7.461
VOLUME DISPLACED (cm ³ X 10 ³)	6.337	8.551	7.436	9.381	8.089	9.003	10.562	18.774	24.831	16.557	19, 103	26.211	0.0230	0.0864	0.161	0.254	0.198	4.122	0.832	0.968	1.516	1.044	1.937	3.557	0.023	0.226	0.972	0.658	2.658	2,998	4.855	6.744
ENERGY (ergs X 10 ⁻⁶)	38.549 45.773	47.754	47.896	56,905	55.123	58.230	66.053	114.743	111.858	116.239	115.522	116.692	0.374	0.381	0.728	0.728	0.929	1.501	1.537	2,119	2.740	2.758	4.744	8.018	0.578	1.339	2.332	3.147	4.138	5.187	7.188	9.248
DAMAGE RADIUS (cm X 10 ³)	167.64	168.91	156.2	165.10	153.67	161.29	165.10	182.24	214.63	177.80	201.9	208.28	40.01	45.72	64.77	65.15	73.15	69.72	86.87	82,55	94.74	80.01	91.44	10.52	35.56	76.20	107.95	116.58	123.19	128.27	140.97	146.43
DEPTH OF PENETRATION (cm X 10 ³)	83.57	107.31	110.74	122.68	123.19	123.44	135.4	191.38	179.19	177.54	169.92	199.90	8.89	15.24	20.57	24.13	21.59	17.15	40.64	50.31	58.42	23.24	30.48	39.62	7.87	20.07	38.61	30.48	65.02	66.54	84.83	106.68
DROP MASS (g)	0.0565	0.0573	0.0571	0.0609	0.0570	0.0588	0.0559	0.0669	0.0607	0.0583	0.0563	0.0589	0.0071												0.0239							
IMPACT VELOCITY (cm/sec X 10 ⁻⁴)	3.697	4.084	4.096	4.322	4.401	4.450	4.8615	5,919	6.069	6.315	6.410	6.461	1.027	1.036	1.432	1.432	1.618	2.057	2.082	2.444	2.780	2.789	3.658	4.754	0.695	1.058	1.396	1.622	1.859	2.081	2.451	2.780
DROP	Sphere	19-11											Sphere	(Hg)	i										Sphere	(Hg)	i					
DROP DIAMETER (mm)	1.997	2,006	2.004	2.048	2,003	2.025	1.990	2,099	2.046	2.018	1.995	1.990	1.0												1.5							
SAMPLE MATERIAL	COPPER												LEAD												LEAD							

TABLE IV (Continued)
HIGH VELOCITY IMPACT DATA - MERCURY DROPS

MEASURED ACCURACY INDEX	es 61		ପ ପ ପ [ି] ପ ପ ଧ		ରେଟର ରର୍ଷ୍ଷ୍ଟ
>-	7.422 9.712	1.233 2.660 2.038 2.277 1.174 2.784 2.662	2. 030 3. 132 3. 775 4. 668 4. 863	4.438 6.831 7.481 9.887 1.928 1.946 2.281	3.469 5.430 6.015 1.010 1.608 3.640 4.629 5.507
VOLUME DISPLACED $(cm^3 \times 10^3)$	8.611 11.307	0, 081 0, 436 0, 436 1, 557 0, 906 1, 165 1, 780	0.911 4.620 5.164 7.775 9.732	11.687 20.469 24.898 35.712 0.0288 4.450	6.784 16.444 26.904 0.168 2.065 13.744 25.054 33.667 41.876
ENERGY (ergs X 10 ⁻⁶)	10.679 13.577	1.270 2.958 2.958 3.381 5.080 5.080	5.318 7.238 12.035 16.408 21.271 21.271	28.234 41.183 49.832 71.323 2.676 6.234 10.704	15.011 24.367 33.278 3.965 9.236 21.586 36.734 49.056
DAMAGE RADIUS (cm X 10 ³)	146.43 160.02	54.86 89.15 100.58 128.27 102.87 137.16	118.87 146.30 155.57 167.01 169.29	164.46 189.60 195.58 214.63 64.01 125.73 164.46	189. 20 219. 70 227. 30 66. 04 138. 43 219. 0 237. 49 252. 73
DEPTH OF PENETRATION (cm X 10 ³)	134.62 146.05	12.70 25.40 25.40 43.18 34.29 38.10	35.56 83.82 81.28 100.33 119.38	149.86 190.50 215.90 254.0 7.62 32.51 66.04	78.48 121.92 178.31 16.00 45.72 111.25 158.49 182.88 226.06
DROP MASS (g)	0.0239	0.0526	0.0551	0.0567	0.1642
IMPACT VELOCITY (cm/sec X 10 ⁻⁴)	2, 987 3, 368	0.694 1.061 1.061 1.133 1.390 1.390	1. 390 1. 622 2. 091 2. 441 2. 780 2. 780	3.155 3.810 4.191 5.014 0.695 1.061	1.646 2.097 2.451 0.695 1.061 1.622 2.115 2.444 2.780
DROP SHAPE	Sphere (Hg)	Sphere (Hg)	Sphere (Hg)	Sphere (Hg) Sphere (Hg)	Sphere (Hg)
DROP DIAMETER (mm)	1.5	1,95	1.98	2 5.0	2,85
SAMPLE MATERIAL	LEAD	LEAD	LEAD	LEAD LEAD	LEAD

TABLE IV (Continued)
HIGH VELOCITY IMPACT DATA - MERCURY DROPS

MEASURED ACCURACY INDEX	a a a a a a a a a a a a a a a a a a a	
~	3.797 3.905 4.218 3.905 5.305 5.461 5.948 6.116 6.116	2. 390 2. 531 2. 751 2. 884 3. 260 4. 592 5. 488 6. 287 6. 982 7. 186 6. 970 6. 317 7. 459 7. 958
VOLUME DISPLACED (cm ³ X 10 ³)	0.347 1.375 0.836 1.132 1.743 2.065 2.947 3.461 3.611	0.014 0.049 0.035 0.093 11.287 2.055 2.338 2.671 2.964 3.910 4.651 5.018 6.859 7.286 10.455
ENERGY (ergs X 10 ⁻⁶)	28. 111 39. 301 35. 231 39. 903 49. 505 50. 923 65. 659 68. 114 71. 738	8.545 11.075 11.704 14.336 27.483 42.704 50.827 56.191 55.031 72.177 80.215 89.097 133.423 147.479 205.04
DAMAGE RADIUS (cm X 10 ³)	110.49 123.19 115.57 123.19 130.80 132.08 135.89 137.16	50.80 63.50 63.50 76.20 104.77 123.19 121.92 127.00 133.35 135.89 140.97 140.97 140.97 141.605 147.32 148.59
DEPTH OF PENETRATION (cm X 10 ³)	21.08 38.10 30.48 33.02 40.64 45.72 58.42 66.04 68.58	6.096 10.160 8.890 13.208 38.10 51.82 53.84 54.86 57.658 74.17 81.03 87.12 88.90 107.18 111.25 124.96
DROP MASS (g)	0.0239	0.0212 0.0212 0.0201 0.0202 0.0204 0.0224 0.0214 0.0214 0.0207 0.0228 0.0228 0.0228 0.0228 0.0228
IMPACT VELOCITY (cm/sec X 10 ⁻⁴)	4:846 5.730 5.425 5.776 6.431 7.406 7.742 7.894	2.840 3.234 3.331 4.782 6.157 6.449 6.928 7.254 7.299 8.239 8.525 8.839 10.229 11.235 11.235
DROP	Sphere (Hg)	(Hg)
DROP DIAMETER (mm)	1.5	1. 440 1. 440 1. 438 1. 417 1. 503 1. 445 1. 429 1. 429 1. 429 1. 429 1. 429 1. 489 1. 538 1. 538 1. 538
SAMPLE MATERIAL	COLD ROLLED STEEL (ANNEALED)	321 Stainless Steel

TABLE V HIGH VELOCITY IMPACT DATA - STEEL BALLS AND WATER DROPS

MEASURED ACCURACY INDEX	Ţ	-	п	7	Ħ		7						83								7			ස	က		က					67	က
	1.048	1,395	1.594	2.047	2.438	3,555	4.141	1.782	3.062	6.378	2,268	2.773	2.934	8.289	9.864	4.512	3.025	3,982	3, 323	3.774	3.592	3.592	3,823	5.171	4.720	5.171	5,267	4.600	3.930	4,691	3.909	5.017	3.174
VOLUME DISPLACED $(cm^3 X 10^3)$	0.324	0.702	0.828	1.767	3.430	0.0016	0.0020	0.0088	0.0065	0.0345	0.0412	0.0648	0.1239	0.0029	0.0080	0.0269	0.0039	0.0329	0.0298	0.0114	0.0504	0,1095	0.0858	0.0080	0.0124	0.0080	0.0179	0.0485	0.1209	0.1421	0.1517	0.3048	0.3981
ENERGY (ergs X 10 ⁻⁶)	2.478	4.424	4.424	9.434	18, 231	43, 95	43.95	49.32	62.34	84.99	90.78	109.29	117.75	47.96	52.01	58.77	63.04	78.22	90.78	92.89	103.83	103.83	163.64	13.73	23.12	13.73	28.25	53.62	87.451	88.28	94.17	103.83	131.53
DAMAGE RADIUS (cm X 10 ³)	50.80	55.24	58.42	63.50	67.31	49.02	57.15	46.99	62.23	143.51	78.74	99.06	116.84	109.98	137.92	110.19	50.80	104.14	93.47	80.77	108.46	128.27	127.00	91.44	95.25	91.44	109.22	128.27	137.16	116.84	142.24	172.72	144.78
DEPTH OF PENETRATION (cm X 10 ³)	56.13	86.87	89.28	149.86	125.09	2, 29	2,54	5, 33	4.57	10.67	11,68	14.73	20.57	3.05	5.08	9.40	3.56	10.41	9.91	6.10	12.95	19.30	17.02	5.08	6,35	5.08	7.62	12.70	20.32	22.09	22,86	33.02	38.10
DROP MASS (g)	0,0071					0.00419								0.00419										0.00419									
IMPACT VELOCITY (cm/sec X 10 ⁻⁴)	3.484	4.654	4.654	6. 797	9, 449	4.581	4.581	4.852	5.456	6.370	6.584	7, 224	7.498	4.593	4 983	5 297	5.486	6.111	6.584	6.660	7.041	7.041	8,839	2.560	3, 322	3,490	3,673	5,060	6.462	6.492	6,706	7.041	7,925
DROP	Sphere	Steel Ball)	(prect part)			Supere	CH O	(4,2°)						Supere) ioude	(1120)								Sphere	(H 0)	1.2.1							
DROP DIAMETER (mm)	-	>				0	5.							c	i									0	į								
SAMPLE MATERIAL	14	1100	0-0011			**	A.L.	4Z0Z						aaaaoo	COFFER									7.00	A CONT								

Figure 1. Time Delay Generator and Drop Release System

Figure 2. Schematic Diagram

DROP TESTER

Figure 3. Drop Tester

Figure 4. Damage Mark Contour - Cylindrical Indenter

Figure 5. Normalized Damage Mark Contour - Cylindrical Indenter

Figure 6. Normalized Damage Mark Contour - Conical Indenter - 90° Included Angle

Figure 7. Depth vs Cylinder Radius

Figure 8. Drop Height vs Penetration Depth for Drop Tester - Cylindrical Indenter

Drop Height vs Penetration Depth for Drop Tester - Conical and Spherical Indenters

Figure 10. Impact Energy vs Volume Displaced for Drop Tester - Cylindrical Indenter

Figure 11. Impact Energy vs Volume Displaced for Drop Tester - Conical and Spherical Indenters

Figure 12. Slope M of "Energy vs Displaced Volume Curve" vs Target Tensile Strength

Figure 13. $v_0^2 - v^2$ vs An Expression Containing Gamma

Figure 14. Energy vs Volume - Low Velocity - Lead No. 1

Figure 15. Energy vs Volume - Low Velocity - Lead No. 2

Figure 16. Energy vs Volume - Low Velocity - Polyethylene

Figure 17. Energy vs Volume - 1100-0 Aluminum - 1.0 mm Mercury

Figure 18. Energy vs Volume - 1100-0 Aluminum - 1.5 mm Mercury

Figure 19. Energy vs. Volume - 1100-0 Aluminum - 1.6 mm Mercury

Figure 20. Energy vs Volume - 1100-0 Aluminum - 1.0 mm Steel Ball

Figure 21. Energy vs Volume - 2024 Aluminum - 1.0 mm Mercury

Figure 22. Energy vs Volume - 2024 Aluminum - 2.0 mm Mercury

Figure 23. Energy vs Volume - 2024 Aluminum - 2.0 mm Water

Figure 24. Energy vs Volume - 7075-T4 Aluminum - 1.5 mm Mercury

Figure 25. Energy vs Volume - Copper - 1.0 mm Mercury

Figure 26. Energy vs Volume - Copper - 2.0 mm Mercury

Figure 27. Energy vs Volume - Lead - 1.5 mm Mercury

Figure 28. Energy vs Volume - Lead - 2.85 mm Mercury

Figure 29. Energy vs Volume - Lead - 2.0 mm Water

Figure 30. Energy vs Volume - Cold Rolled Steel (Annealed) - 1.5 mm Mercury

Figure 31. Energy vs Volume - Stainless Steel - 1.50 mm Mercury

Figure 32. Gamma vs Impact Velocity - 1100-0 Aluminum - 1.6 mm Mercury

Figure 33. Gamma vs Impact Velocity - 1100-0 Aluminum - 1.0 mm Stainless Steel Sphere

Figure 34. Gamma vs Impact Velocity - 2024 Aluminum - 1.0 mm Mercury

Figure 35. Gamina vs Impact Velocity - 2024 Aluminum - 2.0 mm Mercury

Figure 36. Gamma vs Impact Velocity - 2024 Aluminum - 2.0 mm Water

Figure 37. Gamma vs Impact Velocity - Copper - 1.0 mm Mercury

Figure 38. Gamma vs Impact Velocity - Copper - 2.0 mm Mercury

Figure 39. Gamma vs Impact Velocity - Lead - 1.5 mm Mercury

Figure 40. Gamma vs Impact Velocity - Lead - 2.85 mm Mercury

Figure 41. Gamma vs Impact Velocity - Cold Rolled Steel (Annealed) - 1.5 mm Mercury

Figure 42. Gamma vs Impact Velocity - 321 Stainless Steel - 1.5 mm Mercury

Figure 43. Dynamic Yield Stress/Static Yield Stress vs Average Rate of Strain - Mild Steel

APPENDIX I
ANGLE STUDY DATA AND CALCULATIONS

Ø	vo(ft/sec)	x (ft) x 10 ³	Vo(ft/sec)	v_{o}/v_{o}	$\frac{\sin \emptyset}{(V_{o}/v_{o})}$
30° **	1525	0.671	692	0.454	1.102
30° **	1525	0.750	720	0.472	1.059
30° *	2050	2.88	1021	0.498	1.004
45° **	1477	1.996	1200	0.675	1.047
60° *	1105	2.00	893	0.808	1.072
60° **	1480	2.424	1360	0.919	0.944
75° *	1055	2.41	948	0.899	1.074
75° **	1500	2.875	1520	1.013	0.953
75° **	1562	3.060	1570	1.005	0.962
90° **	1525	2.850	1508	0.989	1.011
90° **	1525	2.929	1530	1.003	0.997

* 1.5 mm mercury drop tests

Average 1.020

** 1.000 mm steel ball bearing tests

or

Approximately 1.00

Since
$$\frac{\sin \emptyset}{V_o/v_o} = 1$$

$$V_o = v_o \sin \emptyset$$
or
$$v_o = V_o \csc \emptyset$$

where

 \emptyset = incidence angle (measured from line of travel)

v = relative velocity of drop and sample on impact

V = equivalent flat plate velocity (i.e., that velocity at which an equal depth indentation would be made in an equivalent flat plate specimen)

From the diagram, it is seen that the equivalent velocity is equal to the normal component of the impact velocity (i.e., $\sin Q = \frac{V_0}{O}$).

APPENDIX II

Derivation of Equations used in the Computation of Energies and Volumes

In the following derivation it was assumed that the 10 mm diameter steel Brinell ball remained spherical during the tests with lead and polyethylene - No effect of ball deflection was included.

The volume of a spherical segment (R = 0.50 cm) is

$$V = \frac{\pi}{3} x^2 (3 R - x) = \frac{\pi}{3} x^2 (1.500 - x).$$

It was found that the rate of change of load with penetration depth was constant during any particular test. This rate could be determined by plotting the load vs depth.

$$E_1 = \int_{x_1}^{x_2} F dx = \int_{x_1}^{x_2} L dx$$
, where L = load.

Since

$$L = \int_{x_1}^{x_2} \left(\frac{dL}{dx} \right) dx = \left(\frac{dL}{dx} \right) X \quad (x_1 = 0)$$

$$E_1$$
 (Load Varying) = $\frac{x^2}{2} \left(\frac{dL}{dx} \right)_{constant}$

At the point where the load just becomes constant, L,

$$E_{o} = \int_{0}^{x_{o}} L_{o} dx = \frac{X_{o}^{2}}{2} \left(\frac{dL}{dx}\right)_{const.}$$

Then

$$E_2 = E_0 + \int_{x_0}^{x} L_0 dx$$

$$E_2 - E_0 = L_0 (\dot{X} - X_0)$$

Because

$$L_o = X_o \left(\frac{dL}{dx}\right)_{const.}$$

$$E_2 = L_o\left(X - \frac{X_o}{2}\right)$$

 $E_2 = L_0 \left(X - \frac{X_0}{2} \right)$, where E_2 equals the damage energy when

the load remains constant.

+	UNCLASSIFIED			UNCLASSIFIED	UNCLASSIFIED		 UNCLASSIFIED	
#		CONVAIR, San Diego, California - A STUDY OF RAIN EROSION TESTING METHODS FOR SUPERSONIC SPEEDS, by Donald E. Hurd and R. F. Holmes May 1959, 94p. incl. illus. tables. (Project 7340; Task 73400)(WADC TR 53-173 Pt VI) (Contract AF 33(616)-3421)	To better understand the mechanism by which materials passing through rain at supersonic speeds are damaged, the results of numerous types of impacts on metals were analyzed. An equation which relates total energy of impacts to the volume of metal displaced was derived and found adequate to explain damage in the velocity range from less than one	(00.00		foot per hour to greater than Mach 3. This equation together with results of incidence angle tests led to an over-all damage equation which was successfully applied to the problem of multiple drop rain damage. Principal parameters are target material tensile strength; impacting material shape and mass; angle of incidence; and the velocity of impact.		
T strates summers reserve summer s	UNCLASSIFIED			UNCLASSIFIED	UNCLASSIFIED		UNCLASSIFIED	
		GONVAIR, San Diego, Galifornia - A STUDY OF RAIN EROSION TESTING METHODS FOR SUPERSONIC SPEEDS, by Donald E. Hurd and R. F. Holmes May 1959, 94p. incl. illus, tables. (Project 7340; Task 73400)(WADC TR 53-173 Pt VI) (Contract AF 33(616)-3421)	To better understand the mechanism by which materials passing through rain at supersonic speeds are damaged, the results of numerous types of impacts on metals were analyzed. An equation which relates total energy of impacts to the volume of metal displaced was derived and found adequate to explain damage to the valority range from less than one	(200)		foot per hour to greater than Mach 3. This equation together with results of incidence angle tests led to an over-all damage equation which was successfully applied to the problem of multiple drop rain damage. Frincipal parameters are target material tensile strength; impacting material shape and mass; angle of incidence; and the velocity of impact.		·

	THE		UNCLASSIFIED	· —
CONVAIR, San Diego, California - A STUDY OF RAIN EROSION TESTING METHODS FOR SUFERSONIC SPEEDS, by Donald E. Hurd and R. F. Holmes. May 1959, 94p. incl. illus. tables. (Project 7340; Task 73400) (WADC TR 53-173 Pt VI) (Contract AF 33(616)-2421)		CONVAIR, San Diego, California - A STUDY OF RAIN EROSION TESTING METHODS FOR SUPERSONIC SPEEDS, by Donald E. Hurd and R. F. Holmes May 1959, 94p. incl. illus. tables. (Project 7340; Task 73400) (WADC TR 53-173 Ft VI) (Contract AF 33(616)-3421) Unclassified report		
To better understand the mechanism by which materials passing through rain at supersonic speeds are damaged, the results of numerous types of impacts on metals were analyzed. An equation which relates total energy of impacts to the volume of metal displaced was derived and found adequate to explain damage in the velocity range from less than one		To better understand the mechanism by which materials passing through rain at supersonic speeds are damaged, the results of numerous types of impacts on metals were analyzed. An equation which relates total energy of impacts to the volume of metal displaced was derived and found adequate to explain damage in the velocity range from less than one		· · · · · · · · · · · · · · · · · · ·
(3000)	UNCLASSIFIED	(****)	UNCLASSIFIED	
	UNCLASSIFIED		UNCLASSIFIED	
foot per hour to greater than Mach 3. This equation together with results of incidence angle tests led to an over-all damage equation which was successfully applied to the problem of multiple drop rain damage. Principal parameters are target material tensile strength; impacting material shape and mass; angle of incidence; and the velocity of impact.		foot per hour to greater than Mach 3. This equation together with results of incidence angle tests led to an over-all damage equation which was successfully applied to the problem of multiple drop rain damage. Principal parameters are target material tensile strength; impacting material shape and mass; angle of incidence; and the velocity of impact.		
	UNCLASSIFIED		UNCLASSIFIED	
<u>. </u>				+