Laboratorio di Fisica 1: Esperimento 3, *Molla Elicoidale*

Andrea Vacchi

Aprile 2021

Contents

1	Le Leggi degli oscillatori Armonici							
	1.1 L'oscillatore armonico ideale	3						
	1.2 L'oscillatore armonico reale	3						
2	Scopo dell'esperimento							
	2.1 Obiettivi	4						
	2.2 Materiale	4						
3	L'esperimento							
	3.1 Verifica della trascurabilità dell'attrito viscoso dell'aria	4						
	3.2 Determinazione k da M e x_M	5						
	3.3 Determinazione k e massa effettiva della molla m_e da M e T_0	6						
	3.4 Stima dell'accelerazione di gravità g da x_M e T_0	7						
4	Conclusioni	8						

Abstract

L'esperimento dell'oscillatore armonico ha due fasi: una statica e una dinamica. Entrambe hanno lo scopo dimostrare l'attendibilità della legge di Hooke, quindi determinare la costante eleastica della molla in considerazione, e stimare l'acclerazione di gravità a Pavia.

1 Le Leggi degli oscillatori Armonici

1.1 L'oscillatore armonico ideale

L'equazione differenziale che descrive il moto di un oscillatore ideale è la seguente:

$$x(t) = A\cos(\omega_0 t + \phi) + x_m \tag{1}$$

1.2 L'oscillatore armonico reale

Tuttavia, come nel nostro esperimento, la massa M appesa alla molla oscilla nell' aria, dobbiamo considerare il sistema come un oscillatore reale, a causa dell'effetto di smorzamento esercitato dall'aria. Dobbiamo quindi usare la legge:

$$x(t) = e^{-\gamma t} A \cos(\omega_0 t + \phi) + x_m \tag{2}$$

Eseguendo il "best fit" dei dati sperimentali attraverso l'applicazione della funzione 1, è possibile ricavare, per tutte le masse note:

- La frequenza angolare di oscillazione: $\omega_{\rm s} \pm \delta \omega_{\rm s}$
- $\bullet\,$ Il coefficiente di smorzamento del moto: $\gamma\,\pm\,\delta\gamma$
- \bullet La posizione di equilibrio della massa: x_M \pm δ x_M

Si riporta come esempio il grafico dell'equazione di ${\cal M}_0$ nel caso dinamico:

Figure 1: Legge oraria di M_0 .

2 Scopo dell'esperimento

2.1 Obiettivi

Gli obiettivi dell'esperimento sono:

- 1. Verificare la trascurabilità dell'attrito viscoso dell'aria.
- 2. Verificare la legge di Hooke e determinare la costante elastica k dalla misura di M e $x_{\rm M}$.
- 3. Verificare la legge di Hooke e determinare k e massa effettiva della molla me dalla misura di M e T_0 .
- 4. Fornire una stima dell'accelerazione di gravità g dalla misura di $x_{\rm M}$ e T_0 .

2.2 Materiale

Per svolgere l'esemperimento è stato utilizzato:

- Molla elicoidale.
- Metro di 30cm.
- Sensore di movimento a 40Hz.
- Bilancia.
- Computer, dove abbiamo usato: "" per la raccolta dati del sensore e "Google Colab" per l'analisi dei dati.

3 L'esperimento

3.1 Verifica della trascurabilità dell'attrito viscoso dell'aria

Eseguendo il fit per tutte le masse, anche per un oscillatore ideale, ricavo i seguenti valori di ω_0 :

$\omega_0 \ (rad/s)$	11.6909	11.1334	10.3495	9.8003	9.2777	8.8811

Sfruttando la relazione:

$$\omega_0 = \sqrt{\omega_s^2 - \gamma^2} \tag{3}$$

Posso confrontarli con ω_s e $\delta\omega_s$ e constatare che:

$$\omega_0 - \omega_s \le \delta \omega_s \tag{4}$$

Ciò mi permette di trascurare dell'attrito viscoso dell'aria.

3.2 Determinazione k da M e x_M

La legge di Hooke afferma che:

$$F = Mg = kx_M (5)$$

Ponendo i valori di x_M sulle ascisse e di F=Mg sulle ordinate, si ottiene una funzione lineare il cui coefficiente angolare è la costante elastica k della molla.

Per l'errore su F
 considerando δg nullo:

$$\delta F_i = \frac{\delta M_i}{M_i} F_i \tag{6}$$

Possiamo quindi determinare la costante elastica come il coefficiente angolare della funzione.

Figure 2: Grafico fit Peso-Allungamento.

$$k \pm \delta k = (18.682 \pm 0.952) \frac{N}{m}$$

3.3 Determinazione k e massa effettiva della molla $\mathbf{m_e}$ da M e T_0

Ricaviamo la funzione che andremo a rappresentare dalla definizione di frequenza angolare:

$$\begin{cases}
\omega_0 = \sqrt{\frac{k}{M + m_e}} \\
T_0 = 2\pi\omega_0
\end{cases}$$
(7)

E ottengo:

$$M = k \frac{T_0^2}{4\pi^2} - m_e (8)$$

Sfruttando la relazione tra periodo di oscillazione reale e pulsazione, siamo in grado di trovare una funzione lineare con k come coefficiente angolare ed m_e come intercetta.

Figure 3: Grafico fit di Massa-Periodo.

$$k \pm \delta k = (19.391 \pm 0.102) \frac{N}{m}$$

$$m_{\rm e} \pm \delta m_{\rm e} = (0.0111 \pm 0.001025)kg$$

3.4 Stima dell'accelerazione di gravità g da x_M e $\mathbf{T_0}$

Dal sistema precendente, sappiamo che:

$$T_0 = 2\pi \sqrt{\frac{M + m_e}{k}} \to T_0^2 = 4\pi^2 \frac{M + m_e}{k}$$
 (9)

E otteniamo una funzione di forma:

$$x_m = \frac{T_0^2}{4\pi^2}g - \frac{m_e g}{k} \tag{10}$$

Dal fit possiamo ricare g che corrisponde al coefficente angolare.

Figure 4: Grafico fit di Allungamento-Periodo.

$$g \pm \delta g = (10.0073 \pm 0.5120) \frac{m}{s^2}$$

4 Conclusioni

Tutti gli obiettivi dell'esperimento sono stati raggiunti. In particolare, i due valori della costante elastica della molla, ricavati da funzioni diverse, sono tra di loro confrontabili e la loro differenza è minore dell'errore massimo.

Deludente è il risultato dell'accelerazione di gravità g, che ha un errore troppo grande e si discosta di $0.2025m/s^2$ dal suo valore effettivo a Pavia $(9,80481m/s^2)$, questo significa che la misura non è né precisa né accurata. Sarebbe stato possibile migliorare la stima prendendo più misurazioni e correggere il terzo punto del Grafico 4 che è notevolmente lontano dalla "best-fit".

A tal proposito, proponiamo la stima di g escludendo il dato incriminato:

Da cui estrapolo che: $g \pm \delta g = (9.8870 \pm 0.0571)$ Questo valore è nettamente più preciso e accurato. Ciò significa che con un set di dati più grande e con misurazioni più precise avremmo ottenuto un risultato più soddisfacente.

Si deduce che l'errore che affligge il trezo dato è sistemato e casuale.