南京航空航天大学

第1页 (共8页)

二〇一八~二〇一九学年第一学期《数字电路与逻辑设计》考试试题

		_ , .		, , ,		, ,,,,,			. ,			
		考试	日期:	2019 年	F 月	日	试着	送类型:	В	试卷代	号:	
			班	号		学号			姓名			
题-	号	_	11	111	四	五	六	七	八	九	+	总分
得	分											
lΓ	本	题分数	22] _	、填空	题(22	分,每	空格 1	分)			
	900	身 分		\dashv								
L	1.5	. ,,		_								
1.	(16	$(5.4)_{16} = ($	()	8421BCD=	=()2=	= ()10 °	
2.	(-	-78) ₁₀ :	=()8 位	2 进制原码=	= ()	8 位 2 进制反	[码= () 8位2进	制补码o
3.	己	知函数I	F1(A, B)	$(C) = \sum_{i=1}^{N}$	m(1)	3, 5,	7), F	2(A, B, C)	$c) = \prod$	M(2, 4)	4, 5,	7):
	F1	⊕F2的:	最小项	表达式是	$\sum m$	庆学 收);				
	F1	·F2的量	最大项表	表达式是	₽ ∏M()。					
4.	己	知函数	$F = A\bar{B}$	$+ \overline{CD}$,	利用对	偶规则	写出其	对偶式	$: F_D =$	(),
	利	用反演	规则写出	出其反函	函数: F	= () (不化简)。	
5.	在	不影响	逻辑功能	能的情况	兄下 ,	对或门、	、或非广	门的多名	余输入的	尚进行 如	 业理的	方式有
	() 5	哎 ()。				
6.	函	数F = <i>A</i>	$C + B\overline{C}$	消除逻	辑险象	.后的表	达式为	()。	
7.	4K	×4 的	RAM	有()根地	业线,	()柞	艮数据约	线,用语	亥 RAM
	组	成 16K	×8的 F	RAM 要	用()	片。					
8.	双	积分型	ADC F	中的计数	数器是一	一进制,	其最大	、容量 N	$N_1 = (20)$	$(00)_{10},$	$f_{CP}=101$	kHz,
	V_R	_{EF} =8 V,	当计数	器值 N ₂	=(1500)10时,	其对应	输入模	拟电压	Va为(),	完成
	本	次转换的	的所需	付间为	()。						
9.	AΓ	C 变换	有()	、保持	, ()、编	码四个	过程。		

)。

10.	将集电极开路	门输出端连在-	一起实现的逻辑功	能是 ()
	何未出汲川岬	1個田洲廷仏	起去地们是相切	HE VE	

11. 集成电路电气特性 V_{OL} , V_{OH} , V_{IL} , V_{IH} 的大小关系为(

本题分数 36 得 分 二. 简答题(共6题,各6分)。

1.	(6	分)	己	知

 $F(A,B,C,D) = \prod M(0,1,2,3,7,12) \cdot \prod D(8,9,10,11)$,填写卡诺图

(图 1)并化简,写出化简后的最简与或表达式,画出用与非-与非门关系实现的电路。

图 1

本资源免费共享 收集网站 nuaa.store

2. (6 分) 已知**F1** = $(A + \bar{B})C$, **F2** = **A** \oplus **B** \oplus **C**, 完成图 2a 中两函数的真值表,并在图 2b 中用 PROM 电路实现。

A	В	C	F_2	F_1
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

图 2a

图 2b

3. (6分) 一位 8421BCD 码的奇校验函数**F(A,B,C,D)**的卡诺图如图 3a 所示,完成降 维后的卡诺图 3b,用图 3c 中的四选一数据选择器实现该电路。

4. (6分) 电路如下图 4(a) 所示,输入信号 A 的波形如下右图,画出该电路 Q 和 Y 的波形图 (直接图 4b 上画)。

5. (6 分) 某序列检测器有一根输入线 X 和一根输出线 Y, 当检测到偶数个 1 后, 再检测到一个 0 时输出 Y 为 1, 其他情况输出均为 0。例如:

X: 0100110111011111100

6. (6 分)基于加法器辅以少量门电路实现电路设计,该电路的输入为 $A=A_3A_2A_1A_0$,输出为 $Y=Y_3Y_2Y_1Y_0$,当 $A\geq 6$ 实现 Y=A-3,当 A< 6 实现 Y=A+5.(要求说明思路并在图 5 中完成电路设计)。

本资源免费共享 收集网站 nuaa.store

冬 5

本题分数	42
得 分	

三. 计算题

1. (10分) 同步时序电路如图 6a 所示。试写出该电路的激励方程、输出方程和次态方程,并画出其状态表(直接在图 6b 上

完成)。

2. (10 分) 用一片计数器 74163 加少量门电路设计一计数器,计数规律为 2、3、4、5、12、13、14、15、2、3、4、5、12、13、14、15 的模八计数器,说明设计过程,在图7上完成电路设计。

3. (12分)图 8 移位寄存器 74194 的初态 Q_AQ_BQ_C为 001,分析其功能,画出状态图 (Q_AQ_BQ_C/Y)(不必分析自启动),写出 Dsr 和 Y 的表达式,并分析电路输出 Y 为何序列。

图 8

4. (10) 用 JK 触发器设计一个状态表如图 9 所示的同步时序电路,要求: 1、求出电路的次态方程、输出方程和激励方程; 2、画出电路图

本资源免费共享 收集网站 nuaa.store

附录:

表 1 同步计数器 74163 功能表

		7	输		У					输	出	
CP	CR	ĪD	CT_P	CT_T	D_3	D_2	D_1	D_0	Q_3	Q_2	Q_1	Q_0
1	0	×	×	×	×	×	×	×	0	0	0	0
1	1	0	×	×	D_3	D_2	D_1	D_0	D_3	D_2	\mathbf{D}_1	D_0
×	1	1	0	×	×	×	×	×		保	持	
×	1	1	×	0	×	×	×	×	保持			
1	1	1	1	1	×	×	×	×		计	数	

表 2 移位寄存器 74194 功能表

本资源免费共享 收集网站 nuaa.store

		车	俞)	\					输	出		場 <i>作</i> :
CR	M_1	M_0	CP	\mathbf{D}_{SL}	D_{SR}	A	В	C	D	QA	Q _B	Qc	Q_D	操作
0	×	×	×	×	×	×	×	×	×	0	0	0	0	复位
1	0	0	×	×	×	×	×	×	×	Q_A^n	$Q_{\mathrm{B}}^{\mathrm{n}}$	$Q_{\rm C}^{\rm n}$	$Q_{\mathrm{D}}^{\mathrm{n}}$	保持
1	0	1	1	×	1	×	×	×	×	1	Q_A^n	$Q_{\mathrm{B}}^{\mathrm{n}}$	$Q_{\rm C}^{\rm n}$	右移
1	0	1	1	×	0	×	×	×	×	0	$Q_{\rm A}^{\rm n}$	$Q_{\mathrm{B}}^{\mathrm{n}}$	$Q_{\rm C}^{\rm n}$	口恀
1	1	0	1	1	×	×	×	×	×	$Q_{\rm B}^{\rm n}$	$Q_{\rm C}^{\rm n}$	$Q_{\mathrm{D}}^{\mathrm{n}}$	1	
1	1	0	1	0	×	×	×	×	×	$Q_{\rm B}^{\rm n}$	$Q_{\rm C}^{\rm n}$	$Q_{\mathrm{D}}^{\mathrm{n}}$	0	左移
1	1	1	1	×	×	A	В	С	D	A	В	С	D	置数

南京航空航天大学

第1页 (共5页)

二〇一八~ 二〇一九学年 第 一 学期

课程名称:《数字电路与逻辑设计》参考答案及评分标准

命题教师:

试卷类型:

试卷代号:

- 一、填空题(共22分,每空格1分)
- 1. $(16.4)_{16}$ = $(0010\ 0010.0010\ 0101\)_{8421BCD}$ = $(00010110.01\)_2$ = $(22.25\)_{10}$.
- 2. (-78) $_{10}$ =(11001100) $_{8\,\odot\,2\,$ 进制原码</sub>=(10110011) $_{8\,\odot\,2\,$ 进制反码</sub>=(10110100) $_{8\,\odot\,2\,$ 进制补码。
- 3. 已知函数 $F1(A,B,C) = \sum m(1,3,5,7), F2(A,B,C) = \prod M(2,4,5,7);$ F1 \oplus F2的最小项表达式是 $\sum m(0,5,6,7);$

F1·F2的最大项表达式是ⅡM(0, 2, 4, 5, 6, 7)。

- 4. 已知函数 $F = A\overline{B} + \overline{CD}$,利用对偶规则写出其对偶式: $F_D = ((A + \overline{B})\overline{C} + \overline{D})$,利用反演规则写出其反函数: $\overline{F} = ((\overline{A} + B)\overline{\overline{C} + \overline{D}})$ (不化简)。
- 在不影响逻辑功能的情况下,对或门、或非门的多余输入端进行处理的方式有(接低电平)或(和其他输入端并联)。
- 6. 函数 $F = AC + B\overline{C}$ 消除逻辑险象后的表达式为 ($F = AC + B\overline{C} + AB$)。
- 7. 4K×4的 RAM 有(12)根地址线, (4)根数据线, 用该 RAM 组成 16K ×8的 RAM 要用(8)片。
- 8. 双积分型 ADC 中的计数器是十进制,其最大容量 N_1 =(2000) $_{10}$, f_{CP} =10kHz, V_{REF} =8 V,当计数器值 N_2 =(1500) $_{10}$ 时,其对应输入模拟电压 V_A 为(6V),完成本次转换的所需时间为(0.35 秒)。
- 9. ADC 变换有(采样)、保持、(量化)、编码四个过程。
- 10. 将集电极开路门输出端连在一起实现的逻辑功能是(线与)。 集成电路电气特性 Vol., Vol., Vil., Vil. 的大小关系为(Vil. < Vol. < Vil. < Vol. <

1、(6分)

 $AD + \overline{A}B\overline{C} + CB\overline{D} = \overline{AD} \cdot \overline{\overline{A}B\overline{C}} \cdot \overline{\overline{C}B\overline{D}}$

2分

2分

2、(6分)

A	В	C	F ₂	$\overline{F_1}$
0	0	0	0	0
0	0	1	1	1
0	1	0	1	0
0	1	1	0	0
1	0	0	1	0
1	0	1	0	1
1	1	0	0	0
1	1	1	1	1

各3分

3、(6分)

各3分

4、(6分)

5、(6分)解:

- S_0 ——收到一个 0 S_1 ——收到奇数个 1 S_2 ——收到偶数个 1 S_3 ——收到偶数个 1 后收到一个 0

每错一个地方扣一分(可以简化为三个态)

5、(6分)解: 当 A≥6,即 A3+A2A1 时 减 3 加-3 的补码 即加 1101 其他情况 加 5 即加 0101

所以另一加数为 B3= A3+A2A1 、B2B1B0=101

三. 计算题 (共44分)

1. (10分)

次态方程、输出方程、激励方程,各2分,状态表4分

2、(10分) Q=5时 D=12, Q=15时 D=2 即 $\overline{\text{LD}} = \overline{\text{CO}} \cdot \overline{\overline{Q_3}Q_2Q_0}$,

3、(12分)

表达式: 6分

$$D_{SR} = \sum_{R} m(1, 3, 4, 6) = \bar{A}\bar{B}C + \bar{A}BC + A\bar{B}\bar{C} + AB\bar{C} = A \oplus C = Q_A \oplus Q_C$$

$$Y = \overline{m_7} = \overline{ABC} = \overline{Q_AQ_BQ_C}$$

产生的序列为: 1110111 序列 2分

4. (10分)

解:

$$Q_2^{n+1} = (X \oplus Q_1^n)\overline{Q_2^n} + (\overline{X \oplus Q_1^n}) Q_2^n$$

$$Q_1^{n+1} = \overline{Q_1^n} = 1 \cdot \overline{Q_1^n} + 0 \cdot Q_1^n$$

$$Z = \overline{X}Q_2^n Q_1^n + X \overline{Q_2^n} \overline{Q_1^n}$$

 $J_2 = K_2 = Q_2^n Q_1^n$, $J_1 = K_1 = 1$ 免 分共享 收集网站 nuaa.store

4分