Projet du cours d'apprentissage bayésien Centrale Lille - DAD

Benjamin Guedj

Instructions

- Ce projet est à réaliser par groupes de deux personnes.
- Vous devrez envoyer à l'adresse

benjamin.guedj@inria.fr

et avec l'objet [Centrale DAD] Projet Bayesian learning deux fichiers :

- 1. Un rapport, de **six pages maximum**, rédigé en LATEX avec le format NIPS¹. La qualité de présentation et de rédaction sera un élément important de l'évaluation. **Important**: ce rapport doit obligatoirement être nommé *Nom1_Nom2_*projet.pdf
- 2. Un fichier *Nom1_Nom2_*projet.py ou *Nom1_Nom2_*projet.ipynb contenant le code Python utilisé.
- Date limite d'envoi des deux fichiers : lundi 2 avril 2018, 23.59.

En cas de besoin - fiches de secours

Python, machine learning, probabilités et statistique https://www.analyticsvidhya.com/blog/2017/02/top-28-cheat-sheets-for-machine-learning-data-science-probability-sql-big-data/

LATEX

https://wch.github.io/latexsheet/latexsheet-a4.pdf

¹https://nips.cc/Conferences/2017/PaperInformation/StyleFiles

Exercice 1

On considère la loi de densité

$$f(x,y) = C \exp(-x - y - xy) \mathbb{1}_{\mathbb{R}_+}(x) \mathbb{1}_{\mathbb{R}_+}(y).$$

- 1. Calculer la constante *C*.
- 2. Calculer la loi conditionnelle de *X* sachant *Y*, puis de *Y* sachant *X*.
- 3. Proposer un algorithme MCMC pour simuler une chaîne de Markov de distribution invariante f.
- 4. Illustrer, au moyen des graphiques de votre choix et de façon argumentée, le comportement de cet algorithme.

Exercice 2

On considère la loi de densité

$$f(x) = \alpha_1 g(x|-1,1) + \alpha_2 g(x|2,3),$$

où $g(\cdot|\mu,\sigma^2)$ est la densité de la loi $\mathcal{N}(\mu,\sigma^2)$.

- 1. Quelle condition doivent vérifier les coefficients α_1 et α_2 ?
- 2. Échantillonner *f*
 - (a) par un algorithme d'acceptation-rejet,
 - (b) par échantillonnage d'importance (importance sampling),
 - (c) par l'algorithme de Metropolis-Hastings (MH).