E40M

Binary Numbers

Reading

- Chapter 5 in the reader
- A&L 5.6

Useless Box Lab Project #2

Adding a computer to the Useless Box alows us to write a program to control the motor (and hence the box).

- To control the motor we need to study and use MOS transistors since our computer cannot drive the motor directly.
- The computer (Arduino) uses
 Boolean logic and CMOS logic
 gates to implement software
 we write for it. The MOS
 transistors amplify the Arduino
 output to control the motor.

Last Lecture: MOSFETs

nMOS

- It is a switch which connects source to drain
- If the gate-to-source voltage is greater than V_{th} (around 1 V)
 - Positive gate-to-source voltages turn the device on.

– pMOS

- It is a switch which connects source to drain
- If the gate-to-source voltage is less than V_{th} (around -1 V)
 - Negative gate-to-source voltages turn the device on

... and there's zero current into the gate!

M. Horowitz, J. Plummer, R. Howe

Last Lecture: MOSFET models

- Are very interesting devices
 - Come in two "flavors" pMOS and nMOS
 - Symbols and equivalent circuits shown below
- Gate terminal takes no current (at least no DC current)
 - The gate voltage* controls whether the "switch" is ON or OFF

ON when V_G is LOW

ON when V_G is HIGH

 $^{^{*}}$ actually, the gate – to – source voltage, V_{GS}

CMOS NOR = NOT-OR Gate

Α,	V_A	В,	V_{B}	V _{OUT,} OUT
0,	0 V	0,	0 V	
0,	0 V	1,	5 V	
1,	5 V	0,	0 V	
1,	5 V	1,	5 V	

Last Lecture: Logic Gates

Logic Gates Deal With Binary Signals

- Wires can have only two values
 - Binary values, 0, 1; or True and False
- Generally transmitted as:
 - Vdd = 1 V; Gnd = 0
 - Vdd is the power supply, 1V to 5 V
 - Gnd is the "reference" level, about 0V
- So how do we represent:
 - Numbers, letters, colors, etc. ?

Α	В	AND
0	0	0
0	1	0
1	0	0
1	1	1

Logic Gates Deal With Binary Signals

- Wires can have only two values
 - Binary values, 0, 1; or True and False
- Generally transmitted as:
 - Vdd <-> 1; Gnd <-> 0
 - Vdd is the power supply, 1V to 5 V
 - Gnd is the "reference" level, about 0V
- So how do we represent:
 - Numbers, letters, colors, etc. ?

Α	В	OR
0	0	0
0	1	1
1	0	1
1	1	1

$$(A || B) = OR$$

- To represent anything other than true and false
 - You are going to need more then one bit
- Group bits together to form more complex objects
 - 8 bits are a byte, and can represent a character (ASCII)
- 24 bits are grouped together to represent color
 - 8 bits for R, G, B.
- 16 or 32 or 64 bits are grouped together and can represent an integer

- For decimal numbers
 - Each place is 10ⁿ
 - 1, 10, 100, 1000 ...
 - Since there are 10 possible values of digits

10 ²	10 ¹	10º
1	4	5

Decimal = 145

- For binary numbers
 - Each digit is only 0, 1 (only two possible digits)
- The place values are then 2ⁿ

• It is useful to remember that $2^{10} = 1024$

Decimal =
$$2^2 + 2^0$$

= 5

Operation	Output	Remainder
23/2 ⁷	0	23
23/2 ⁶	0	23
23/2 ⁵	0	23
23/24	1	7
23/2 ³	0	7
23/2 ²	1	3
23/2 ¹	1	1
23/20	1	0

23 in binary is 00010111

Carry		1	1	
11	1	0	1	1
3	0	0	1	1
Addition (14)	1	1	1	0

Add by carrying 1s

- Subtract by borrowing 2s.
- See class reader

- One can think of binary numbers as a kind of code:
 - In communications and information processing, code is a system of rules to convert information—such as a letter, word, sound, image, or gesture—into another form or representation, sometimes shortened or secret, for communication through a channel or storage in a medium.

https://en.wikipedia.org/wiki/Code

Many Different Types of Codes

- Figuring out "good" codes is a big part of EE
- Security
- Error correction
- Compression
 - .mp3, .mp4, .jpeg, .avi, etc. Are all a code of the source
 - zip
- Whole theory of information (Information theory) guides codes
 - Sets what is possible and not possible (Claude Shannon)

Binary Code

Advantages

- Uses a small number of bits, log2(N), to represent a number
- Easy to generate and decode
- Easy to do math on this representation

Disadvantages

- The value is in the "clear" (the data is not encrypted)
- If any bit is in error, the number is lost
 - If you use more bits, can recover from single bit error
- Can only represent one number per value
 - Let's say we would like to drive a display with 64 lights ...

How To Represent Negative Numbers?

- Could create sign / magnitude code
 - Add one bit to be the sign bit

7	00000111
-7	10000111

- But that is not what works out best
 - To add two numbers, you first need to look at the sign bits
 - If they are the same, add
 - If they are different, subtract

Two's Complement Numbers

- Positive numbers are normal binary
- Negative numbers are defined so when we add them to |Num|, a normal adder will give zero
 - So
 - -1 = 11111111111111111
 - -2 = 111111111111110

Carry	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
+3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
-3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
Addition	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Generating Two's Complement Numbers

- Take your number
 - Invert all the bits of the number
 - Make all "0's" "1's" and all "1's" "0's"
 - And then add 1 to the result
- Lets look at an example:

42	0	0	1	0	1	0	1	0
Flip 1 and 0	1	1	0	1	0	1	0	1
Add 1	1	1	0	1	0	1	1	0

So -42 in two's complement is 11010110

The Way This Works

Figure 7.16: Two's complement circle

Funny Things Happen With Finite Numbers

- Your homework looks at some problems with numbers
 - having only have a finite number of bits
- Computers generally have two types of numbers
 - Signed numbers, and unsigned numbers
 - It interprets the MSB differently
 - Can get "interesting" results if you mistake
 - A signed number as unsigned and vice versa
- Also overflows have an interesting effect
 - Can add two positive numbers and get a negative result!

Overflow Situations

Figure 7.16: Two's complement circle

Time Multiplexing

- In the LED cube we will have 64 LEDs but they are wired so we can access rows and columns of the matrix.
- We'll explore a different type of coding later that will allow us to control each LED individually, even though we do not have a separate connection to each of them!

Learning Objectives

- Understand how binary numbers work
 - And be able to convert from decimal to binary numbers

- Understand what Electrical Engineers mean by a code
 - It is a set of rules to represent information
 - How to use two's complement codes
 - To represent positive and negative numbers
 - And what happens when an overflow occurs