EDEXCEL PURE MATHEMATICS S1 (6683) – JANUARY 2003 PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks	
1.	Frequency densities: 0.16, 1.0, 1.0, 0.4, 0.4, 0.08	M1, A1	
	Histogram: Scale and labels	B1	
	Correct histogram	B1	
		(4 marks)	
2 . (a)	$P(A \cap B) = \frac{10}{100} = \frac{1}{10} = 0.1$ $P(A') = \frac{75}{100} = 0.75$	M1 A1 (2)
(<i>b</i>)	$P(A') = \frac{75}{100} = 0.75$	M1 A1 (2	,)
(c)	$P(B' A) = \frac{P(B' \cap A)}{P(A)} = \frac{\frac{15}{100}}{\frac{25}{100}} = \frac{15}{25} = \frac{3}{5} = 0.6$	M1 A1 (2	,)
(<i>d</i>)	$P(A' \cap B) = 0.4; P(A')P(B) = 0.75 \times 0.5 = 0.375$	M1	
	Since $P(A' \cap B) \neq P(A')P(B) \Rightarrow$ not independent	A1	
	One of models is less reliable	A1 (3	3)
		(9 marks	s)
3.	Let <i>X</i> represent amount dispersed into cups		
	$\therefore X \sim N(55, \sigma)$		
(a)	$\therefore X \sim N(55, \sigma)$ $P(X < 50) = 0.10 \Rightarrow \frac{50 - 55}{\sigma} = -1.2816$	M1 B1	
	$\sigma = 3.90137$	M1 A1 (4	.)
(<i>b</i>)	$P(X > 61) = P(Z > \frac{61 - 55}{3.90137})$	M1	
	= P(Z > 1.54)	A1	
	= 1 - 0.90382 = 0.0618; 6.18%	A1 (3	;)
(c)	Let Y represent new amount dispensed.		
	$\therefore Y \sim N(\mu, 3)$		
	$P(Y < 50) = 0.025 \Rightarrow \frac{50 - \mu}{3} = -1.96$	M1 B1	
	$\mu = 55.88$	M1 A1 (4	.)
		(11 marks)	

EDEXCEL PURE MATHEMATICS S1 (6683) – JANUARY 2003 PROVISIONAL MARK SCHEME

_	stion nber	Scheme	Marks	
4.	(a)	$Q_2 = \frac{16+16}{2} = 16; Q_1 = 15; Q_3 = 16.5; IQR = 1.5$	M1A1; B1;	B1;
	(<i>b</i>)	$1.5 \times IQR = 1.5 \times 1.5 = 2.25$	M1 A1	
		$Q_1 - 1.5 \times IQR = 12.75 \Rightarrow \text{no outliers below } Q_1$	A1	
		$Q_3 + 1.5 \times IQR = 18.75 \Rightarrow 25$ is an outlier	A1	
		Boxplot, label scale 14, 15, 16, 16.5, 18.75 (18)	M1 A1	
		Outlier	A1	(7)
	(c)	$\bar{x} = \frac{322}{20} = 16.1$	M1 A1	(2)
	(<i>d</i>)	Almost symmetrical/slight negative skew	B1	
		Mean (16.1) \approx Median (16) and $Q_3 - Q_2$ (0.5) $\approx Q_2 - Q_1$ (1.0)	B1	(2)
			(16 ma	arks)
5.	(a)	2k + k + 0 + k = 1	M1	
		$\therefore 4k = 1 \Rightarrow k = 0.25 (\clubsuit)$	A1	(2)
		<u>x 0 1 2 3</u>		
	(<i>b</i>)	P(X = x) 0.5 0.25 0 0.25		
	(0)	xP(X = x) 0 0.25 0 0.75		
		$x^2 P(X = x) = 0$ 0.25 0 2.75		
		$E(X) = \sum x P(X = x) = 0 + 0.25 + 0 + 0.75 = 1$	M1 A1	
		$E(X^2) = 0 + 0.25 + 0 + 2.25 = 2.5 $ (*)	M1 A1	(4)
	(c)	$Var(3X - 2) = 3^2 Var(X)$	M1	(3)
	(b	$= 9(2.5 - 1^{2}) = 13.5$ $= 9(2.5 - 1^{2}) = 13.5$	M1 A1	(3)
	(<i>d</i>)	$P(X_1 + X_2) = P(X_1 = 3 \cap X_2 = 2) + P(X_1 = 2 \cap X_2 = 3) = 0 + 0 = 0$	B1	(1)
	(e)	Let $Y = X_1 + X_2$ y 0 1 2 3 4 5 6 P(Y = y) 0.25 0.25 0.0625 0.25 0.125 (0) 0.0625	B1 B2	(3)
	<i>(f)</i>	$P(1.3 \le X_1 + X_2 \le 3.2) = P(X_1 + X_2 = 2) + P(X_1 + X_2 = 3)$	M1	
		=0.0625+0.25=0.3125	A1ft, A1ft	(3)
				arks)

EDEXCEL PURE MATHEMATICS S1 (6683) – JANUARY 2003 PROVISIONAL MARK SCHEME

Question Number	Scheme	Scheme Marks	
6 . (a)	x 20 26 32 34 37 44 48 50 53 58 y 24 38 42 44 43 52 59 66 70 79	B1	
	Change in cost of advertising influences number of new car sales	B1	
	Graph: Scale and labels	B1	
	Points all correct	B2	(5)
(b)	$S_{xy} = 22611 - \frac{402 \times 517}{10} = 1827.6$	M1 A1	
	$S_{xx} = 17538 - \frac{402^2}{10} = 1377.6$	A1	
	$b = \frac{S_{xy}}{S_{xx}} = \frac{1827.6}{1377.6} = 1.326655$	M1 A1	
	$a = \frac{517}{10} - (1.326655) \times \frac{402}{10} = -1.63153$	B1	
	y = -1.63 + 1.33x	B1ft	(7)
(c)	$\frac{c - 4000}{10} = -1.63 + 1.33(p - 100)$	M1 A1ft	
	c = 2653.7 + 13.3p	A1	(3)
(d)	No. sold if no money spent on advertising	B1	
	p = 0 is well outside valid range – meaningless	B1	(2)
(e)	$2 \times 13.3 = 27$ extra cars sold	B1	
	Only valid in range of data for 1990s	B1	(2)
		(19 ma	arks)