

SARVAJANIK UNIVERSITY

Sarvajanik College of Engineering and Technology Bachelor of Technology

B. Tech. Semester V

Subject Name: Engineering Optimization Subject Code: BTAS10501

Type of course: HSM

Prerequisite: Linear Algebra

Rationale: This kind of course is required to provide strong foundation for students in

operations research modelling and essential tools for optimization. Such expertiseis needed for engineering students who do not have an industrial engineering background but would like to learn about modelling and optimization concepts and

likely to use these methods in their research and projects.

Teaching and Examination Scheme:

Teaching Scheme				Theory Marks			Practica	l Marks	Total
L	T	P	C	TEE	CA1	CA2	TEP	CA3	
2	1	0	3	60	25	15	-	-	100

CA1: Continuous Assessment (assignments/projects/open book tests/closed book tests **CA2:** Sincerity in attending classes/class tests/ timely submissions of assignments/self-learning attitude/solving advanced problems **TEE:** Term End Examination **TEP:** Term End Practical Exam (Performance and viva on practical skills learned in course) **CA3:** Regular submission of Lab work/Quality of work submitted/Active participation in lab sessions/viva on practical skills learned in course

Content:

Sr. No.	Topics	Teaching Hr.	Module % Weightage
1.	Introduction to Optimization	3	10
	Mathematical formulation, Classification of optimization		
	problems, formulation of optimization problem for Engineering applications		
2.	Classical Optimization Techniques	12	20
	Single variable optimization, Functions of Single and Two		
	Variables Convexity and Concavity of Functions of One/ Two		
	Variables, Constrained and unconstrained multivariable		
	optimization,		
	optimization of Functions of Multiple Variables: Unconstrained		
	Optimization Direct substitution method, Lagrange's method		
	of multipliers ,Optimization of Functions of Multiple Variables		
	subject to Equality Constraints, Karush Kuhn-Tucker Conditions		

SARVAJANIK UNIVERSITY

Sarvajanik College of Engineering and Technology Bachelor of Technology

3.	Linear Programming	7	15
	Linear programming problem- graphical method (two variable)		
	simplex method, Two Phases of the Simplex Method.		
	Integer programming Problem		
	General integer programming Problem, Branch and bound		
	Method,		
4.	Transportation models and its Variants:	10	20
	<u>Transportation problems:</u>		
	Mathematical model, Concept of Unimodularity, Methods to find		
	initial feasible solution (NWCM, matrix minima, Vogel's		
	approximation),		
	Methods to find optimal solutions (MODI, Stepping stone),		
	Degeneracy in transportation problem, Unbalanced Transportation		
	problem, Maximization in transportation problem		
	Assignment problems:		
	Introduction and Mathematical model, Hungarian Methods to find		
	solution, Degeneracy in assignment problem, Unbalanced		
	assignment problem, Infeasible assignment problems,		
	Maximization in assignment problem		
5.	Non-linear Programming:	6	15
	Introduction, Elimination Method: Unrestricted Search,		
	haustive search, Interval-halving method, Fibonacci method.		
6.	Project management Optimization techniques	7	20
	PERT, CPM, Multi-objective Optimization		

Suggested Specification table with Marks (Theory/Practical):

% Distribution of Marks									
R Level	U Level	A Level	N Level	E Level	C Level				
10	25	35	20	10	00				

Legends: R: Remembrance, **U:** Understanding; **A:** Application, **N:** Analyze, **E:** Evaluate **C:** Create and above Levels (**Revised Bloom's Taxonomy**)

Reference Text Books:

Sr. No.	Title of book /article	Author(s)	Publisher and detailslike ISBN	Year of publication	Edition
1.	Engineering optimization Theory and Practice	S.S.Rao	New Age International	2010	3 rd
2.	An Introduction To Optimization	E. K. P. Chong S. H. Zak	Wiley India Pvt.	2010	2 nd

SARVAJANIK UNIVERSITY Sarvajanik College of Engineering and Technology Bachelor of Technology

3.	Introduction to	Jasbir S.Arora	McGraw Hill	1989	Latest
	Optimum Design				
4.	Optimization for	Kalyanmoy	Prentice Hall	1998	3 rd
	Engineering Design	Deb			
	Algorithms and				
	Examples				
5.	Practical Optimization	R. Fletcher	John Wiley	2010	2 nd
6.	Operations Research:	Hamdy A.Taha	Pearson	2010	Latest
	AnIntroduction				

Course Outcomes:

Sr. No.	CO Statement After learning this subject, students will be able to							
CO-1	Formulate real-life engineering problems, using mathematical modelling techniques.	10						
CO-2	Apply classical optimisation techniques to solve application problems.							
CO-3	Solve real life optimization problems using Linear programming and transportation model techniques	35						
CO-4	Apply nonlinear optimisation techniques to solve optimization problems	15						
CO-5	Use concepts of multi-objective optimization and project management techniques for problem solving	20						

Mapping with POs:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	2	-	2	2	2	2	2	2	2
CO2	3	2	2	2	2	2	-	-	2	2	2	1
CO3	3	2	2	2	2	2	-	-	2	2	2	2
CO4	3	2	2	2	2	-	-	-	2	2	2	2
CO5	2	2	-	2	2	-	1	2	2	2	2	2

List of Open Source/learning website:

NPTEL http://nptel.ac.in/courses/105108127/ - Optimization Methods

NPTEL- https://nptel.ac.in/courses/112106134 - Fundamentals of Operations Research

University of Washington - http://www.math.washington.edu/~rtr/fundamentals.pdf

University of Hamilton - http://www.hamilton.ie/ollie/Downloads/Opt.pdf

MIT open courses http://ocw.mit.edu/courses/sloan-school-of-management/15-093j-optimization-methods-fall-2009/lecture-notes/

NPTEL- 106108056 http://textofvideo.nptel.iitm.ac.in/video.php?courseId=106108056&p=1