

From IoT to LoRAWAN: Fundamentals for Industrial Applications

Industrial IoT

Department of Ingineering and Applied Sciences
University of Bergamo (UNIBG)

Dhiego Fernandes Carvalho

dhiego.fernandes@unibg.it

Objectives

- Contextualize IoT
- Review the OSI model
- LPWAN Technologies
- Explain the LoRa physical layer
- Describe the LoRaWAN protocol
- Present the ecosystem of tools
- Prepare the laboratory

Index

- Introduction to IoT
- OSI Model
- LPWAN
- LoRa
- LoRaWAN
- Integration & Data-Pipeline Tools
- Conclusions & Takeaways
- Hands-On Exercise

Introduction to IoT

"Everything is connected at all times, anywhere, using any means"

IoT timeline

Evolution of Internet of Things

OSI/ISO Model

The OSI model (Open Systems Interconnection) is a reference model for networks computer by developed ISO (International Organization for Standardization)

Why was the OSI/ISO model created?

R – Standardization and Interoperability

TCP/IP x OSI Model

- The IP and TCP protocols were created before the OSI model.
- That's why there is a TCP/IP model.
- The OSI model is more abstract, while TCP/IP is more practical.

Communication between OSI/ISO model layers

The Physical Layer

- It is responsible for:
 - Transmission and reception.
 - Specifications of the physical medium and physical interface.
 - Signals, encoding, and bit synchronization.
 - Transmission rate.

Data Link Layer

- The Data Link layer includes protocols like Ethernet (IEEE 802.3), WiFi (IEEE 802.11), NB-IoT, Bluetooth, LoRaWAN, etc.
- These protocols also define the access method to the communication medium.

Data Link Layer

Physical Layer

Network Access Layer

Network Layer

- This is the third layer of the OSI model.
- It is responsible for transmitting datagrams across different networks.
- The protocol used at this layer is the Internet Protocol (IP – IPv4 and IPv6).

	TCP/IP Model	Protocols and Services	OSI Model	
	Application		Application	7
		HTTP, HTTPS, FTP, DHCP, PNG	Presentation	6
			Session	5
	Transport	TCP, UDP	Transport	4
	Internet	IP, ARP, ICMP	Network	3
	Link		Datalink	2
		Ethernet, Wi-Fi	Physical	1

Transport layer

- It is the fourth layer of the OSI model.
- Responsible for end-to-end communication between devices.
- The two main protocols are UDP and TCP.

Not all data is present. Do not resend.

Session Layer

- The Session layer is the fifth layer of the OSI model (usually abstracted within the application layer).
- It is used for session control (dialog between an application on two different devices).

Presentation Layer

- It is the sixth layer of the OSI model (usually abstracted within the application layer).
- It handles: encryption, translation, data formatting, and compression.

Application Layer

- The seventh layer of the OSI/ISO model.
- This is where you find network services used by end users.

OSI/ISO Model Stack Overview

IoT Network Architecture using WiFi/4G/5G inside OSI Model

IoT Arquitecture using LPWAN inside OSI Model

Internet Conectivity (layers 1 and 2 of OSI Model Stack)

• Wi-Fi: Common in residential environments, offering a good combination of range and speed.

• LPWAN (Low Power Wide Area Network): designed for devices that need to send small amounts of data over long distances, optimizing energy usage

 Cellular technologies (4G/LTE and 5G): provide wide coverage and mobility, suitable for IoT devices that operate across different locations or while moving

Cloud conectivity (layers 3 to 7 of OSI Model Stack)

• MQTT: lightweight, publish/subscribe-based, designed for low-bandwidth connections and resource-constrained devices.

• HTTP/HTTPS: hypertext transfer protocol — the backbone of web communication. HTTPS adds a security layer (SSL/TLS)

 WebSocket: provides full-duplex communication over a single TCP connection, enabling real-time interaction between sensors/actuators and end users.

LPWAN

- IoT devices need to do more with fewer computational resources.
- Battery consumption becomes critical in many applications
- LPWAN technologies arise in this context.

LPWAN technologies are characterized by:

- Coverage reaching several kilometers
- Low power consumption
- Low-cost devices and infrastructure
- Operation in licensed and unlicensed bands
- Low data rates (0.3 to 200 kbps)

LPWAN – Applications

- LPWAN is the ideal solution for monitoring applications covering large areas and requiring low data rates.
 - Tracking and Logistics
 - Environmental Monitoring
 - Agriculture
 - Smart Healthcare
 - Industrial IoT
 - Smart Cities
 - Etc.

Main LPWAN Technologies

- NB-IoT (licensed band).
- SigFox (unlicensed band)
- LoRaWAN (unlicensed band)

LoRa -Physical Layer

 LoRa is the physical layer of LoRaWAN: It is a spread spectrum modulation technique based on Chirp Spread Spectrum (CSS), developed by Semtech → proprietary technology.

LoRa - Network Coverage

- Adaptive Data Rate (ADR) is supported through variation of the Spreading Factor (SF)
 - Resistant to Doppler effect, multipath fading, and weak signal interference

LoRa - Adaptative Date Rate (ADR)

- ADR adjusts depending on the distance from the device to the LoRaWAN router.
- High data rate (short distance)
 / Low data rate (long distance)

LoRa - Regional Parameters and Specifications

• Each country or region has their own frequency bands and specifications.

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF7 / 250 kHz	11000
7	FSK: 50 kbps	50000
814	RFU	
15	Defined in LoRaWAN ¹	

Table 5: EU863-870 TX Data rate table

União Europeia 863 – 870 MHz

LoRa - Spread Factor

• The higher the SF, the greater the energy consumption and airtime, but lower the data rate

$$Tc = \frac{2^{SF}}{B}$$

Tc is the chirp duration B é bandwidth.

SF is the spreading factor

LoRa - Time on Air (ToA)

*Time on Air*em transmissões *upstream.* BW = 125 KHz e 20 Bytes de payload, 12 bytes de Overhead

DR5	DR4	DR3	DR2	DR1 ⁽ⁱ⁾	DRO ⁽ⁱ⁾	
SF7 ₁₂₅	SF8 ₁₂₅	SF9 ^{BW} ₁₂₅	SF10 ^{BW} ₁₂₅	SF11 BW 125	SF12 ₁₂₅	*
71.9 _{ms}	133.6 _{ms}	246.8 _{ms}	452.6 ms	987.1 ms	1,810.4 _{ms}	

LoRaWAN

- LoRa refers to the physical medium, while LoRaWAN is the communication protocol operating at the data link layer.
- LoRaWAN networks are typically arranged in a star-of-stars topology.
- Gateways relay messages from known end devices to a network server, which then forwards them to an application server.

LoRaWAN Architecture

- Gateways connect to the network server via IP communication (Ethernet, WiFi, 3G/4G/5G), while end devices use LoRa modulation.
- LoRaWAN supports bidirectional communication: from the end device to the server (upstream) and from the server to the end device (downstream).

LoRaWAN Servers

- There are two main LoRaWAN servers used:
 - The Things Networks (TTN Public).
 - ChirpStack Server (private).

LoRaWAN security

- LoRaWAN provides two layers of encryption.
 - A 128-bit Network Session Key (NwkSKey) is shared between the end device and the Network Server.
 - A 128-bit Application Session Key (AppSKey) is shared between the end device and the Application Server.

LoRaWAN Activation

- The encryption algorithm used is AES-128.
- The Network Session Key (NwkSKey) ensures the integrity of the entire LoRaWAN frame.
- The Application Session Key (AppSKey) encrypts and decrypts the payload of the LoRaWAN frame.

- There are two methods for session key activation:
 - Over-The-Air Activation (**OTAA**) and Activation By Personalization (**ABP**).

LoRaWAN – Device Classes

• Class A:

- Uplink transmissions can be followed by two short receive windows for downlink.
- It is the default class for all LoRaWAN devices and consumes the least energy.

LoRaWAN – Device Classes

Classe B

- In addition to operating like Class A, Class B devices open additional scheduled receive windows.
- These windows are scheduled via periodic beacons sent by the server.
- Class B is intended for end devices that need to receive commands from a remote controller, such as switches or actuators.
- Class B consumes more energy than Class A.

LoRaWAN – Device Classes

Classe C

- Receive windows are open nearly continuously and only closed during data transmission.
- This is the most energy-consuming class.

Comparison between LoRaWAN device classes

LoRaWAN Integration & Data Pipeline Tools

Node-Red: data collection and flow handling.

InfluxDB (time-series), MongoDB (document) e Redis (cache): data storage.

Mosquitto server and Webwooks: LoRaWAN Integration

Grafana: data visualization.

LoRaWAN Flow using integration and Data Pipeline Tools

LoRaWAN Flow using integration and Data Pipeline Tools

Conclusions and Takeaways

((_{[1}))

LoRa + LoRaWAN fulfill IoT demands for low power, long range, and secure links.

OSI view: LoRa = Layer 1, LoRaWAN MAC = Layer 2, MQTT/HTTP = Layer 7.

</>>

Among LPWANs, LoRaWAN is open, license-free, and integration-friendly.

Success hinges on balancing **Spreading Factor \(\square \) data rate \(\square \) battery life**.

1

MQTT → Node-RED → InfluxDB → Grafana converts packets into real-time insights.

11.

Up next: connect the MKR WAN 1310 to TTN and witness your first uplink.

QUESTIONS?

Hands-On Exercise

www.github.com/dhiegofc/industrial iot

