

实验5 循环神经网络实验

1. RNN预测模拟数据

- 基本原理
- torch.nn.RNN
- RNN实现模拟数据预测

2.LSTM预测气温数据

- 基本原理
- torch.nn.LSTM
- LSTM实现气温预测

3. 实验要求

- 数据集
- 实验内容

■ 回顾

• 循环神经网络能够处理任意长度的时序数据

给定一个输入序列 , $x_{1:T} = (x_1, x_2, \dots, x_t, \dots x_T)$ 其计算公式如下:

$$h_t = f(h_{t-1}, \mathbf{x}_t),$$

$$\mathbf{y}_t = g(h_t)$$

$$h_{t} = \sigma(W_{h} \mathbf{x}_{t} + U_{h} h_{t-1} + b_{h}),$$

$$\mathbf{y}_{t} = \sigma(W_{y} h_{t} + b_{y})$$

激活函数可以替换, 如tanh、Relu

torch.nn.RNN

CLASS torch.nn.RNN(*args*, * kwargs)

参数说明:

- input_size 输入x的特征数量。
- hidden_size 隐层的特征数量。
- num_layers RNN的层数。
- nonlinearity 指定非线性函数使用tanh还是relu。默认是tanh。
- bias 如果是False,那么RNN层就不会使用偏置权重 b_ih和b_hh,默认是True
- batch_first 如果True的话,那么输入Tensor的shape应该是[batch_size, time_step, feature],输出也是这样。
- dropout 如果值非零,那么除了最后一层外,其它层的输出都会套上一个dropout层。
- bidirectional 如果True,将会变成一个双向RNN,默认为False。

torch.nn.RNN

RNN的输入: (input, h_0)

- **input (seq_len, batch, input_size)**: 保存输入序列特征的tensor。input可以是被填充的变长的序列。
- h_0 (num_layers * num_directions, batch, hidden_size): 保存着初始隐状态的tensor

RNN的输出: (output, h_n)

- output (seq_len, batch, hidden_size * num_directions): 保存着RNN最后一层的输出 特征。如果输入是被填充过的序列,那么输出也是被填充的序列。
- h_n (num_layers * num_directions, batch, hidden_size): 保存着最后一个时刻隐状态。

■ 绘制序列

1. 导入所需要的包

```
import numpy as np
import torch
import matplotlib.pyplot as plt
import torch.utils.data as Data
import torch.nn as nn
import pandas as pd
```

numpy用于数据处理; torch.nn用于构建网络; torch用于对tensor进行处理; 引入画图库方便后续可视化;

2. 定义绘制序列函数

```
#绘制序列
def plot_series(time, series, format="-", start=0, end=None, label=None):
#根据时间轴和对应数据列表绘制序列图像
plt.plot(time[start:end], series[start:end], format, label=label)
#设置横纵轴意义
plt.xlabel("Time")
plt.ylabel("Value")
#设置图例说明字体大小
if label:
    plt.legend(fontsize=14)
#显示网格
plt.grid(True)
```

以时间为横坐标、以序列值为纵坐标,设置曲线对应的label,将序列进行可视化;设置横纵轴label; 画布显示网格,便于观察

■ 趋势、噪声的生成函数

3. 趋势模式的生成函数

```
#趋勢模式
def trend(time, slope=0):
#序列与时间呈线性关系
return slope * time
```

使序列的值与时间坐标呈线性关系来构造趋势;具体用参数slope来控制上升还是下降, 陡峭还是平缓 4. 噪声模式的生成函数

```
#白噪声

def white_noise(time, noise_level=1, seed=None):
    #生成正态分布的伪随机数序列
    rnd = np. random. RandomState(seed)
    #noise_level控制噪声幅值大小
    return rnd. randn(len(time)) * noise_level
```

生成满足正态分布的序列,并用 noise_level控制噪声幅值的大小

■ 季节性的生成函数

5. 季节性模式的生成函数

```
#季节性(周期性)模式
def seasonal_pattern(season_time):
   """Just an arbitrary pattern, you can change it if you wish"""
   #分段函数(自变量取值[0,1])作为一个模式
   return np. where (season time < 0.4,
                  np. cos (season time * 2 * np. pi),
                  1 / np. exp(3 * season time))
#将某个季节性(周期性)模式循环多次
def seasonality(time, period, amplitude=1, phase=0):
   """Repeats the same pattern at each period"""
   #将时间映射到0-1之间
   season_time = ((time + phase) % period) / period
   return amplitude * seasonal_pattern(season_time)
```

季节性的实现包括两步,第一步构造 一个周期内的序列,第二步实现该序 列的循环,用amplitude控制幅值大 小

■ 生成混合模式的时序数据

■ 参数设置

```
# 设置超参数
input_size = 1
hidden_size = 256
output_size = 1
epochs = 200
lr = 0.05
batch_size = 128
time_step = 5
```

- input_size:输入数据的特征数量,时序数据为1
- hidden_size:隐藏层的特征个数
- output_size:输出的时间窗口的长度
- epochs: 训练轮数
- lr:学习率
- batch_size: 一个批量的大小
- time_step:输入的时间窗口的长度

■ 数据预处理

```
#训练集的比例
split_prop=0.7
#前70%的数据作为训练集
train_data = series[:int(split_prop * int(series.size))]
#剩下的数据作为测试集
test_data = series[int(split_prop * int(series.size)):]
# # 数据归一化
train_data_normalized = (train_data - train_data.min()) / (train_data.max() - train_data.min())
test_data_normalized = (test_data - train_data.min()) / (train_data.max() - train_data.min())
```

- 数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间。
- 去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
- 其中最典型的就是数据的归一化处理,即将数据统一映射到[*0,*1]区间上。

■ 滑动窗口采样

```
train_x = []
train v = []
test_x = []
test_y = []
# 对训练数据采样
i = 0
while (i + time step + output size < len(train data normalized)):</pre>
    # 输入的序列
    train_x.append(train_data_normalized[i:i + time_step])
   # 输出的序列
    train_y.append(train_data_normalized[i + time_step:i + time_step + output_size])
   i += output_size
# 对测试数据采样
j = 0
while (j + time_step + output_size < len(test_data_normalized)):</pre>
    # 输入的序列
    test_x.append(test_data_normalized[j:j + time_step])
    # 输出的序列
    test_y.append(test_data_normalized[j + time_step:j + time_step + output_size])
    j += output_size
```


固定滑动窗口采样示意图

■ 装入数据

将训练集装入DataLoader 中,便 于之后的训练过程取出数据

class torch.utils.data.TensorDataset(data_tensor, target_tensor)

- data_tensor (*Tensor*) 包含样本数据
- target_tensor(*Tensor*) 包含样本目标(标签)

class torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False,
num_workers=0)

- dataset (Dataset) 加载数据的数据集
- batch_size (int, optional) 每个batch加载多少个样本(默认: 1)
- shuffle (bool, optional) 设置为True时会在每个epoch重新打乱数据(默认: False)

■ 构建RNN网络

```
# 构建RNN网络
class MYRNN(nn. Module):
   def __init__(self, input_size, hidden_size, output_size, time_step):
       super(MYRNN, self).__init__()
       self.input_size=input_size
       self. hidden size = hidden size
       self. output size=output size
       self.time_step=time_step
       # 创建RNN层和linear层, RNN层提取特征, linear层用作最后的预测
       self.rnn = nn.RNN(
           input size=self.input size,
           hidden size=self. hidden size,
           num_layers=1,
           batch_first=True,
       self. out = nn. Linear (self. hidden_size, self. output_size)
   def forward(self, x):
       #获得RNN的计算结果, 舍去h n
       r_{out}, _ = self. rnn(x)
       ##按照RNN模型结构修改input_seg的形状,作为linear层的输入
       r_out = r_out.reshape(-1, self.hidden_size)
       out = self.out(r_out)
       # 将out恢复成(batch, seq_len, output_size)
       out = out.reshape(-1, self.time_step, self.output_size)
       # return所有batch的sea len的最后一项
       return out[:, -1, :]
```


■ 模型参数初始化

```
# 实例化神经网络
net = MYRNN(input_size, hidden_size, output_size, time_step)
# 初始化网络参数
for param in net.parameters():
    nn.init.normal_(param, mean=0, std=0.01)
# 设置损失函数
loss = nn.MSELoss()
# 设置优化器
optimizer = torch.optim.SGD(net.parameters(), lr=lr)
# 如果GPU可用,就用GPU运算;否则使用CPU运算
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 将net复制到device (GPU或CPU)
net.to(device)
```

- 从**均值为0、标准差为0.01**的**正态分布** 中取随机数,初始化网络模型参数
- 将损失函数设置为均方误差
- 优化器使用**随机梯度下降法**
- GPU可用则使用GPU运算,否则使用 CPU运算

■ 开始训练

```
train loss = []
test loss = []
# 开始训练
for epoch in range (epochs):
   train 1 = []
   test_1 = 0
   for x, y in train_loader:
       # RNN输入应为input (seg len, batch, input size),将x转化为三维数据
       x = torch. unsqueeze(x, dim=2)
       # 将x, y放入device中
       x = x. to(device)
       y = y. to (device)
       # 计算得到预测值v predict
       v predict = net(x)
       # 计算y_predict与真实y的loss
       1 = loss(y predict, y)
       # 清空所有被优化过的Variable的梯度.
       optimizer.zero grad()
       # 反向传播, 计算当前梯度
       1. backward()
       # 根据梯度更新网络参数
       optimizer. step()
       train 1, append(1, item())
   # 修改测试集的维度以便放入网络中
   test x temp = torch.unsqueeze(test x, dim=2)
   # 测试集放入device中
   test_x_temp = test_x_temp. to(device)
   test_y_temp = test_y.to(device)
   # 得到测试集的预测结果
   test predict = net(test x temp)
   # 计算测试集loss
   test_1 = loss(test_predict, test_y_temp)
   # # # 1 617
   print("Epoch%d:train loss=%.5f, test loss=%.5f" % (epoch + 1, np.array(train_1).mean(), test_1.item()))
   train_loss.append(np.array(train_1).mean())
   test_loss.append(test_l.item())
```

完成网络初始化和训练参数的设置后,开始训练。

在每一轮训练中,对每一小批数据计算梯度,反向传播更新参数。

每一轮训练后,计算并输出当前模型在训练集和测试集上的损失。

■ 绘制loss曲线

```
# 画出Loss 時報日
plt.plot(range(epochs), train_loss, label="train loss", linewidth=2)
plt.plot(range(epochs), test_loss, label="test loss", linewidth=2)
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.legend()
plt.show()
```

```
Epoch191:train loss=0.00106, test loss=0.00102

Epoch192:train loss=0.00106, test loss=0.00103

Epoch193:train loss=0.00105, test loss=0.00104

Epoch194:train loss=0.00107, test loss=0.00102

Epoch195:train loss=0.00105, test loss=0.00102

Epoch196:train loss=0.00105, test loss=0.00102

Epoch197:train loss=0.00108, test loss=0.00098

Epoch198:train loss=0.00106, test loss=0.00101

Epoch199:train loss=0.00105, test loss=0.00104

Epoch200:train loss=0.00106, test loss=0.00100
```


■ 绘制loss曲线

```
# Loss局部图
plt.plot(range(epochs), train_loss, label="train loss", linewidth=2)
plt.plot(range(epochs), test_loss, label="test loss", linewidth=2)
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.xlim(10, 75)
plt.ylim(0, 0.2)
plt.legend()
plt.show()
```

绘制局部曲线,观察变化情况

需要注意这个图像不同机器可能下降速度不同,但总体趋势 是不断下降的。

0.050

0.025

0.000 +

20

30

50

Epoch

60

70

■ 预测并与真实值对比

```
# 将测试集放入模型计算预测结果
test_x_temp = torch.unsqueeze(test_x, dim=2)
test_x_temp = test_x_temp.to(device)
predict = net(test_x_temp)
# 逆归一化
predict = predict.cpu().detach().numpy() * (train_data.max() - train_data.min()) + train_data.min()
test_y = np.array(test_y) * (train_data.max() - train_data.min()) + train_data.min()
# 将数据从[[ouyput_size]...]转换为[x1, x2, x3...]
predict_result = []
test_y_result = []
for item in predict:
    predict_result += list(item)
for item in test_y:
    test_y_result += list(item)
```

- 计算得到预测结果
- 测试集当前值域为[0,1],需将其逆归一化,映射回原来的值域
- 将结果的维度转换为一维

■ 预测并与真实值对比

```
# 指定figure的宽和高
fig size = plt. rcParams['figure, figsize']
fig size [0] = 10
fig size[1] = 6
plt.rcParams['figure.figsize'] = fig_size
# 画出实际和预测的对比图
plt.plot(range(len(test_y_result)), test_y_result, label='True')
plt.plot(range(len(predict_result)), predict_result, label='Prediction')
plt. xlabel("Time")
plt. ylabel ("Value")
plt.grid(True)
plt.legend()
plt. show()
# 与整体数据进行比较
plt.plot(range(len(series)), series, label='True')
plt.plot(range(len(series) - len(predict_result), len(series)), predict_result, label='Prediction')
plt. xlabel("Time")
plt. ylabel ("Value")
plt. grid (True)
plt. legend()
plt. show()
```

分别在局部和整体对比 预测结果与实际值

■ 预测并与真实值对比

预测值与真实值对比(局部)

■ 预测并与真实值对比

预测值与真实值对比(全局)

■ 与CNN对比

两层卷积神经网络(平均池化)

from sklearn.metrics import mean_absolute_error as mae
mae_nn=mae(test_true, test_predict)
print(mae_nn)

1.4410519066307985

两层卷积神经网络(最大池化)

from sklearn.metrics import mean_absolute_error as mae
mae_nn=mae(test_true, test_predict)
print(mae_nn)

1.4921763508994446

循环神经网络(单向, tanh)

from sklearn.metrics import mean_absolute_error as mae
mae_nn=mae(test_true, test_predict)
print(mae_nn)

1.3555869

1. RNN预测模拟数据

- 基本原理
- torch.nn.RNN
- RNN实现模拟数据预测

2.LSTM预测气温数据

- 基本原理
- torch.nn.LSTM
- LSTM实现气温预测

3. 实验要求

- 数据集
- 实验内容

■回顾

LSTM: Long Short Term Memory networks

- 一种特殊形式的RNN
- 解决长程依赖问题

10℃ 7℃ 12℃ 14℃ 11℃ 3月2日 3月3日 3月4日 3月5日 3月6日

RNN

13℃ 15℃ 3月7日 3月8日

短程依赖, 普通的RNN能够解决

10℃ 7℃ 12℃ 18℃ 3月2日 3月3日 3月4日 …… 3月28日

LSTM

19℃ 17℃ 3月29日 3月30日

长程依赖,借助LSTM解决

■回顾

标准RNN的重复模块

LSTM 的重复模块

除了h在随时间流动,单元状态c也在随时间流动,单元状态c就代表着长期记忆。

LSTM预测气温

torch.nn.LSTM

CLASS torch.nn.LSTM(args, * kwargs)

参数说明:

- input_size 输入x的特征数量。
- hidden_size 隐层的特征数量。
- num_layers LSTM的层数。
- nonlinearity 指定非线性函数使用tanh还是relu。默认是tanh。
- bias 如果是False,那么LSTM层就不会使用偏置权重 b_ih和b_hh,默认是True
- batch_first 如果True的话,那么输入Tensor的shape应该是[batch_size, time_step, feature],
 输出也是这样。
- dropout 如果值非零,那么除了最后一层外,其它层的输出都会套上一个dropout层。
- bidirectional 如果True,将会变成一个双向LSTM,默认为False。

torch.nn.LSTM

LSTM输入: input, (h_0, c_0)

- input (seq_len, batch, input_size): 包含输入序列特征的Tensor。
- h_0 (num_layers * num_directions, batch, hidden_size):保存着batch中每个元素的初始化 隐状态的Tensor
- c_0 (num_layers * num_directions, batch, hidden_size): 保存着batch中每个元素的初始化细胞状态的Tensor

LSTM输出 output, (h_n, c_n)

- output (seq_len, batch, hidden_size * num_directions): 保存RNN最后一层的输出的Tensor
- h_n (num_layers * num_directions, batch, hidden_size): Tensor, 保存着RNN最后一个时间步的隐状态。
- c_n (num_layers * num_directions, batch, hidden_size): Tensor, 保存着RNN最后一个时间 步的细胞状态。

LSTM预测气温

■ 数据处理

从1956年至今的虹桥机场的气象数据,包括气温、干球温度、风速风向等等。

STATION DATE	SOURCE REPORT_	CALL_SIG QUALIT	Y_AA1 AA2	AA3	AG1	AJ1	AL1	AY1	AY2	CALL_SIG CIG	DEW	ED1	EQD	GA1	GA2	GA3	GA4	GE1
5.8E+10 1956-08-20T00:00:00	4 FM-12	99999 V020	06,0005,9 24,0050,9	,1				8,1,99,9		99999 03600,1	C+0250,1							
5.8E+10 1956-08-20T03:00:00	4 FM-12	99999 V020						6,1,99,9		99999 01230,1	C+0250,1	87						
5.8E+10 1956-08-20T06:00:00	4 FM-12	99999 V020	06,0030,9,1					6,1,99,9		99999 00450,1	C+0239,1							
5.8E+10 1956-08-20T09:00:00	4 FM-12	99999 V020						2,1,99,9		99999 00150,1	C+0239,1							
5.8E+10 1956-08-20T12:00:00	4 FM-12	99999 V020	06,0006,9,1					4,1,99,9		99999 00270,1	C+0228,1		Q01+00	00(08,1,+0	0270,9,07,9			
5.8E+10 1956-08-20T18:00:00	4 FM-12	99999 V020	06,0006,9,1					5,1,99,9		99999 22000,1	C+0222,1	87	Q01+00	00002SCO	TLCQ02+00	0042APC	TENQ03+	000042APC
5.8E+10 1956-08-20T21:00:00	4 FM-12	99999 V020						2,1,99,9		99999 22000,1	C+0222,1		Q01+00	00002SCO	TLCQ02+00	0012APC	TEN	
5.8E+10 1956-08-21T00:00:00	4 FM-12	99999 V020	24,0030,9,1					1,1,99,9		99999 22000,1	C+0222,1	8	Q01+00	00042APC	TENQ02+00	00152APC	23	
5.8E+10 1956-08-21T03:00:00	4 FM-12	99999 V020						1,1,99,9		99999 00450,1	C+0222,1							
5.8E+10 1956-08-21T06:00:00	4 FM-12	99999 V020						1,1,99,9		99999 00450,1	C+0222,1	8						
5.8E+10 1956-08-21T09:00:00	4 FM-12	99999 V020						1,1,99,9		99999 22000,1	C+0211,1							
5.8E+10 1956-08-21T12:00:00	4 FM-12	99999 V020						1,1,99,9		99999 22000,1	C+0228,1	8	Q01+00	00042APC	TENQ02+00	00112AP0	23	

GF1	HL1	IA1	IA2	KA1	KA2	MA1	MD1	ME1	MW1	MW2	MW3	OA1	OC1	QUALITY	REM	REPORT_SA1	SLP	SOURCE	TMP	UA1	UG1	VIS	WG1	WND	
06,99,1,	02,1,01	,1,00450,1,0	4,1,02,1				6,1,005,1	+999,9	01,1					V020		FM-12	10052,1	4	+0278,1			014000,	1,N,9	200,1,N,00	051,1
08,99,1,	08,1,08	,1,01250,1,0	0,1,00,1				0,1,003,1	+999,9	60,1					V020		FM-12	10056,1		+0261,1			009000,	1,N,9	250,1,N,00	041,1
07,99,1,	07,1,02	,1,00450,1,0	7,1,07,1	999,N,+	0250,1		9,9,015,1	+999,9	21,1					V020		FM-12	10040,1	4	+0272,1			020000,	1,N,9	250,1,N,00	051,1
07,99,1,	07,1,08	,1,00150,1,0	3,1,07,1		384		6,1,002,1	+999,9	02,1					V020		FM-12	10038,1	4	+0272,1			020000,	1,N,9	270,1,N,00	062,1
08,99,1,	08,1,06	,1,00250,1,0	0,1,00,1				2,1,024,1	+999,9	50,1					V020		FM-12	10062,1	4	+0239,1			014000,	1,N,9	270,1,N,00	051,1
07,99,1,	99,9,00	1,99999,9,0	5,1,00,1	999,M,+	0278,1				03,1					V020		FM-12	10075,1	4	+0228,1			014000,	1,N,9	290,1,N,00	031,1
07,99,1,	99,9,00	1,99999,9,0	7,1,00,1				4,1,000,1	+999,9	02,1					V020		FM-12	10075,1	4	+0228,1			016000,	1,N,9	320,1,N,00	031,1
02,99,1,	01,1,08	,1,00450,1,0	4,1,00,1				2,1,015,1	+999,9	03,1					V020		FM-12	10090,1	4	+0250,1			020000,	1,N,9	320,1,N,00	031,1
05,99,1,	05,1,01	,1,00450,1,0	4,1,00,1				0,1,004,1	+999,9	02,1					V020		FM-12	10093,1	4	+0278,1			020000,	1,N,9	290,1,N,00	041,1
06,99,1,	06,1,02	,1,00450,1,0	0,1,00,1	999,N,+	0228,1		6,1,011,1	+999,9	02,1					V020		FM-12	10082,1	4	+0289,1			020000,	1,N,9	270,1,N,00	051,1
02,99,1,	02,1,04	,1,00450,1,0	0,1,00,1				6,1,002,1	+999,9	01,1					V020		FM-12	10080,1	4	+0289,1			020000,	1,N,9	320,1,N,00	021,1
00,99,1,	00,1,00	,1,99999,9,0	0,1,00,1				2,1,012,1	+999,9	04.1					V020		FM-12	10092,1	4	+0250,1			009000,	1,N,9	090,1,N,00	010.1

LSTM预测气温

■ 数据处理

```
data = pd.read_csv(path + '\气温.csv', index_col='DATE', na_values='+9999,9')
data = data['TMP']
data.index = pd.to_datetime(data.index)
start_time = pd.to_datetime('2019-01-01 00:00:00')
end_time = pd.to_datetime('2019-06-30 23:00:00')
data = data[start_time:end_time]
data=data.dropna()
data = data.str.split(",", expand=True)[0]
data = data.astype('int')/10
index=pd.date_range(start=start_time,end=end_time, freq='H')
data = data.reindex(index)
data = data.interpolate()
```

- 1. 获取气温数据;
- 2. 将index设置为时间格式,截取数据片段
- 3. 丢弃TMP的NaN数据;
- 4. 获取气温数值;
- 5. 补全DATE,设置间隔;
- 6. 对NaN插值;

■ 显示数据

```
data. plot()
plt. xlabel("Date")
plt. ylabel("Teperature")
plt. grid(True)
plt. show()
```

画出气温数据

LSTM预测气温

■ 参数设置

```
# 设置超参数
input_size = 1
hidden_size = 128
output_size = 1
epochs = 100
lr = 0.05
batch_size = 20
time_step = 12
```

- input_size:输入数据的特征数量,时序数据为1
- hidden_size:隐藏层的特征个数
- output_size:输出的时间窗口的长度
- epochs: 训练轮数
- lr:学习率
- batch_size: 一个批量的大小
- time_step:输入的时间窗口的长度

■ 划分数据集

```
# 前140天用作训练
train_data = data[0:140 * 24]
# 剩下的时间用作测试
test_data = data[140 * 24:]
# 数据归一化
train_data_normalized = (train_data - train_data.min()) / (train_data.max() - train_data.min())
test_data_normalized = (test_data - train_data.min()) / (train_data.max() - train_data.min())
```

- 一小时记录一次,每天24条记录,故前140天共140*24条记录 作为训练集,其余作为测试集。
- 与之前相同,对数据进行归一化

■ 滑动窗口采样

```
train_x = []
train v = []
test_x = []
test_y = []
# 对训练数据采样
i = 0
while (i + time step + output size < len(train data normalized)):</pre>
    # 输入的序列
    train_x.append(train_data_normalized[i:i + time_step])
   # 输出的序列
    train_y.append(train_data_normalized[i + time_step:i + time_step + output_size])
   i += output_size
# 对测试数据采样
j = 0
while (j + time_step + output_size < len(test_data_normalized)):</pre>
    # 输入的序列
    test_x.append(test_data_normalized[j:j + time_step])
    # 输出的序列
    test_y.append(test_data_normalized[j + time_step:j + time_step + output_size])
    j += output_size
```


固定滑动窗口采样示意图

■ 装入数据

将训练集装入DataLoader 中,便 于之后的训练过程取出数据

■ 构建LSTM网络

```
# 构建LSTM网络
class MYLSTM(nn. Module):
   def __init__(self, input_size, hidden_size, output_size, time_step):
       super(MYLSTM, self).__init__()
       self.input_size = input_size
       self.hidden_size = hidden_size
       self.output_size = output_size
       self.time_step = time_step
       # 创建LSTM层和linear层, LSTM层提取特征, linear层用作最后的预测
       self. 1stm = nn. LSTM(
           input_size=self.input_size,
           hidden size=self. hidden size,
           num_layers=1,
           batch first=True,
           bidirectional=True
       self.out = nn.Linear(self.hidden_size * 2, self.output_size)
   def forward(self, x):
       # 获得LSTM的计算结果, 舍去h n
       r_{out}, _ = self. lstm(x)
       ##按照LSTM模型结构修改input_seq的形状,作为linear层的输入
       r_out = r_out.reshape(-1, self.hidden_size * 2)
       out = self.out(r_out)
       # 将out恢复成(batch, seq_len, output_size)
       out = out.reshape(-1, self.time step, self.output size)
       # return所有batch的seq_len的最后一项
       return out[:, -1, :]
```


■ 模型参数初始化

```
# 实例化神经网络
net = MYLSTM(input_size, hidden_size, output_size, time_step)
# 初始化网络参数
for param in net.parameters():
    nn.init.normal_(param, mean=0, std=0.01)
# 设置损失函数
loss = nn.MSELoss()
# 设置优化器
optimizer = torch.optim.SGD(net.parameters(), lr=lr)
# 如果GPU可用,就用GPU运算;否则使用CPU运算
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 将net复制到device (GPU或CPU)
net.to(device)
```

- 从**均值为0、标准差为0.01**的**正态分布** 中取随机数,初始化网络模型参数
- 将损失函数设置为均方误差
- 优化器使用**随机梯度下降法**
- GPU可用则使用GPU运算,否则使用CPU运算

■ 开始训练

```
train loss = []
test loss = []
# 开始训练
for epoch in range (epochs):
   train 1 = []
   test_1 = 0
   for x, y in train_loader:
       # RNN输入应为input (seg len, batch, input size),将x转化为三维数据
       x = torch. unsqueeze(x, dim=2)
       # 将x, y放入device中
       x = x. to(device)
       y = y. to (device)
       # 计算得到预测值v predict
       v predict = net(x)
       # 计算y_predict与真实y的loss
       1 = loss(y predict, y)
       # 清空所有被优化过的Variable的梯度.
       optimizer.zero grad()
       # 反向传播, 计算当前梯度
       1. backward()
       # 根据梯度更新网络参数
       optimizer. step()
       train 1, append(1, item())
   # 修改测试集的维度以便放入网络中
   test x temp = torch.unsqueeze(test x, dim=2)
   # 测试集放入device中
   test_x_temp = test_x_temp. to(device)
   test_y_temp = test_y.to(device)
   # 得到测试集的预测结果
   test predict = net(test x temp)
   # 计算测试集loss
   test_1 = loss(test_predict, test_y_temp)
   # # # 1 60
   print("Epoch%d:train loss=%.5f, test loss=%.5f" % (epoch + 1, np.array(train 1).mean(), test l.item()))
   train_loss.append(np.array(train_1).mean())
   test_loss.append(test_l.item())
```

完成网络初始化和训练参数的设置后,开始训练。

在每一轮训练中,对每一小批数据计算梯度,反向传播更新参数。

每一轮训练后,计算并输出当前模型在训练集和测试集上的损失。

■ 绘制loss曲线

```
# 画出Loss趋势图
plt.plot(range(epochs), train_loss, label="train loss", linewidth=2)
plt.plot(range(epochs), test_loss, label="test loss", linewidth=2)
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.legend()
plt.show()
```

```
Epoch90:train loss=0.00170, test loss=0.00195
Epoch91:train loss=0.00169, test loss=0.00190
Epoch92:train loss=0.00168, test loss=0.00200
Epoch93:train loss=0.00167, test loss=0.00188
Epoch94:train loss=0.00167, test loss=0.00200
Epoch95:train loss=0.00167, test loss=0.00185
Epoch96:train loss=0.00167, test loss=0.00215
Epoch97:train loss=0.00165, test loss=0.00187
Epoch98:train loss=0.00165, test loss=0.00187
Epoch99:train loss=0.00164, test loss=0.00186
Epoch100:train loss=0.00165, test loss=0.00223
```


■ 绘制loss曲线

```
# Loss局部図 plt.plot(range(epochs), train_loss, label="train loss", linewidth=2) plt.plot(range(epochs), test_loss, label="test loss", linewidth=2) plt.xlabel("Epoch") plt.xlabel("Loss") plt.ylabel("Loss") plt.xlim(0, 10) plt.ylim(0, 0.06) plt.legend() plt.show()
```

绘制局部曲线,观察变化情况


```
# 将测试集放入模型计算预测结果

test_x_temp = torch.unsqueeze(test_x, dim=2)

test_x_temp = test_x_temp.to(device)

predict = net(test_x_temp)

# 逆归一化

predict = predict.cpu().detach().numpy() * (train_data.max() - train_data.min()) + train_data.min()

test_y = np.array(test_y) * (train_data.max() - train_data.min()) + train_data.min()

# 将数据从[[ouyput_size]...]转换为[x1, x2, x3...]

predict_result = []

test_y_result = []

for item in predict:
    predict_result += list(item)

for item in test_y:
    test_y_result += list(item)
```

- 计算得到预测结果
- 测试集当前值域为[0,1],需将其逆归一化,映射回原来的值域
- 将结果的维度转换为一维

```
# 指定figure的策和高
fig size = plt.rcParams['figure.figsize']
fig size[0] = 10
fig size[1] = 6
plt.rcParams['figure.figsize'] = fig_size
# 画出实际和预测的对比图
plt.plot(data.index[len(data) - len(test_y_result):], test_y_result, label='True')
plt.plot(data.index[len(data) - len(predict result):], predict result, label='Prediction')
plt. xlabel("Time")
plt. vlabel ("Value")
plt. grid (True)
plt. legend()
plt. show()
# 与整体数据进行比较
plt.plot(data.index, data, label='True')
plt.plot(data.index[len(data) - len(predict_result):], predict_result, label='Prediction')
plt. xlabel("Time")
plt. ylabel ("Value")
plt. grid (True)
plt.legend()
plt. show()
```

分别在局部和整体对比预 测结果与实际值

1. RNN预测模拟数据

- 基本原理
- torch.nn.RNN
- RNN实现模拟数据预测

2.LSTM预测气温数据

- 基本原理
- torch.nn.LSTM
- LSTM实现气温预测

3. 实验要求

- 数据集
- 实验内容

实验要求

■ 实验一: 循环神经网络实验

- 1. 生成模拟数据,对模拟数据构建RNN进行训练,绘制loss曲线;用训练好的RNN进行预测,并与真实值进行对比。
- 2. 针对气象数据,构建LSTM (**复现**PPT中网络)进行训练,绘制loss曲线;尝试使用**不同的预测长度**(例如:用过去12个小时的数据预测未来12个小时的气温);

实验要求

■ 实验二:设计神经网络实验

- 1. 针对气象数据,设计一个与PPT中不同的网络进行预测(预测效果优于PPT中的网络可加分),对优化的思路进行总结和分析。(要求:使用pytorch)
- 2. 与上两次实验的结果进行对比,简要分析各个模型的优缺点。

作业要求

- ▶ 完成作业1+作业2
- ▶ 作业截至时间: 10月26日16:00
- ► 作业提交内容:实验报告jupyter notebook格式,要求写注释(注释单独算分)

北京交通大学《时间序列数据分析挖掘》课程组

赵守国: shgzhao@bjtu.edu.cn, http://faculty.bjtu.edu.cn/7563/

王 晶: wj@bjtu.edu.cn, http://faculty.bjtu.edu.cn/9167/

夏佳楠: xiajn@bjtu.edu.cn, http://faculty.bjtu.edu.cn/9430/

