Semaine n° 16: du 13 janvier au 17 janvier

Lundi 13 janvier

- Cours à préparer : Chapitre XVI Polynômes
 - Partie 1.7: Algorithme de Horner.
 - Partie 2.1 : Racines d'un polynôme ; ordre de multiplicité d'une racine.
 - Partie 2.2 : Majoration par le degré du nombre de racines d'un polynôme non nul.
- Exercices à rendre en fin de TD (liste non exhaustive)
 - Feuille d'exercices nº 15 : exercices 4, 6, 9, 10, 12, 14.

Mardi 14 janvier

- Cours à préparer : Chapitre XVI Polynômes
 - Partie 2.3 : Polynômes scindés, relations coefficients-racines.
 - Partie 2.4 : Théorème de d'Alembert-Gauss; polynômes irréductibles de $\mathbb{C}[X]$, de $\mathbb{R}[X]$.
 - Partie 2.5 : Décomposition en produit de polynômes irréductibles dans $\mathbb{C}[X]$, dans $\mathbb{R}[X]$.
- Exercices à corriger en classe
 - Feuille d'exercices nº 16 : exercice 1.

Jeudi 16 janvier

- Cours à préparer : Chapitre XVI Polynômes
 - Partie 3 : Polynôme dérivé; opérations; formule de Leibniz.
 - Partie 3 : Formule de Taylor Mac-Laurin ; formule de Taylor ; caractérisation de la multiplicité d'une racine par les polynômes dérivés successifs.
- Exercices à corriger en classe
 - Feuille d'exercices nº 16 : exercices 2, 3, 5.

Vendredi 17 janvier

- Cours à préparer : Chapitre XVI Polynômes
 - Partie 4.1 : Lemme d'Euclide ; plus grands diviseurs communs de deux polynômes ; existence et unicité du PGCD unitaire de deux polynômes non tous deux nuls ; propriétés des PGCD de deux polynômes ; relations de Bézout.

Échauffements

Mardi 14 janvier

- Effectuez la division euclidienne de $A = X^7 X^6 + X^5 + 2X^2 + 1$ par $B = X^3 X 1$.
- Cocher toutes les assertions vraies : Laquelle des conditions suivantes est suffisante pour que f soit continue en 0?
 - $\Box |f(x)| \leq |x|$ pour tout x dans [-1,1]
 - $\Box f(x) \leqslant x$ pour tout x dans [-1,1]
 - \square la suite f(1/n) converge vers f(0)
 - \Box f est croissante sur [-1,1]

Jeudi 16 janvier

- Soit $P = X^6 3X^5 6X^4 + 6X^3 + 9X^2 6X + 1$ Calculez P(4) et donnez le quotient et le reste de la division euclidienne de P par (X 4).
- Cocher toutes les assertions vraies : Soit I un intervalle et $f: I \to \mathbb{R}$, et $a, b \in I$ tels que a < b.
 - \square Si f est croissante, f([a,b]) = [f(a), f(b)].
 - \square Si f est continue, f([a,b]) = [f(a), f(b)].
 - \square Si f est décroissante et continue, f admet une limite à gauche en b.
 - \square Si f est décroissante et continue, $f([a,b]) = [f(a), \lim_{\longrightarrow} f[a,b])$
 - \square Si f est décroissante et continue, $f([a,b[)=]\lim_{b\to}f,f(a)]$.

Vendredi 17 janvier

- Cocher toutes les assertions vraies : Soit f la fonction définie sur $\mathbb R$ par $f(x)=2^{(x-1)^2+2}$
 - \square f est définie et continue sur \mathbb{R} .
 - \square f est injective sur \mathbb{R} .
 - \Box fadmet un minimum sur $\mathbb R$ en 1 qui vaut 4.
 - \square f est dérivable sur \mathbb{R}_+ .
- Cocher toutes les assertions vraies : Soit f une fonction définie et continue sur [0, 1].
 - \square Si f admet une limite en 0, alors f est prolongeable par continuité en 0.
 - \square Alors f est bornée sur [0,1].
 - \square Alors pour tout réel c de]0,1], <math>f est bornée sur [c,1].
 - \square Si f est croissante et majorée sur [0,1] alors f est bornée sur [0,1].