Homework 2

Let A = [1..6] be a statespace, $S \subseteq A \times (\bar{A} \cup \{fail\})^{**}$ a program over the statespace A.

$$S = \begin{cases} 1 \to <1, 2, 5, 1> & 2 \to <2, 4, 3, 5, 6> & 2 \to <2, 2, 2, \dots> \\ 3 \to <3, 1> & 3 \to <3, 2, 4> & 3 \to <3, 5, 2, 4, 1> \\ 4 \to <4, 1, fail> & 5 \to <5, 3, 2, 4> & 5 \to <5, 3, 6, 1> \\ 6 \to <6, 1, 4> & 6 \to <6, 1, fail> \end{cases}$$

Let $F \subseteq A \times A$ denote the following problem: $F = \{ (1,1), (3,4), (3,1), (5,1), (5,2), (5,4) \}$

Question

Let S_1 and S_2 be programs, let F_1 and F_2 be problems over the same statespace.

Statement1: if S_1 solves F_1 and $F_1 \subseteq F_2$ then S_1 solves F_2 .

Statement2: if S_1 solves F_1 and $F_2 \subseteq F_1$ then S_1 solves F_2 .

Statement3: if S_1 solves F_1 and $S_1 \subseteq S_2$ then S_2 solves F_1 .

Statement4: if S_1 solves F_1 and $S_2 \subseteq S_1$ then S_2 solves F_1 .

Informally, for example, Statement4 says that if a program S_1 solves a given problem F_1 then a smaller program S_2 also solves the same problem F_1 . Interestingly, only this fourth statement is true out of the four statements.

Your task is to find a counter-example for Statement3.

More precisely: consider the program S and problem F given above in this exercise. Find a program S_2 such that $S \subseteq S_2$ and S_2 does not solve F. Explain why your S_2 program does not solve F.

Answer

Here is the S_2 that has subset S and it does not Solve the F.

$$S_2 = \begin{cases} 1 \to <1, 2, 5, 1> & 2 \to <2, 4, 3, 5, 6> & 2 \to <2, 2, 2, \ldots> \\ 3 \to <3, 1> & 3 \to <3, 2, 4> & 3 \to <3, 5, 2, 4, fail> \\ 4 \to <4, 1, fail> & 5 \to <5, 3, 2, 4> & 5 \to <5, 3, 6, 1> \\ 6 \to <6, 1, 4> & 6 \to <6, 1, fail> \end{cases}$$

So it does not Satisfy the Condition So it S_2 does not Solve the F_1

Recall

S program solves problem F if

- 1. $\mathcal{D}_F \subseteq \mathcal{D}_{P[S]}$
- 2. $\forall a \in \mathcal{D}_F \colon P[S](a) \subseteq F(a)$