Toward multilevel variance decomposition of interactions in non-linear structural equation models

Joshua N. Pritikin

Virginia Institute for Psychiatric and Behavioral Genetics Virginia Commonwealth University

23 May 2017

Acknowledgment

This research was aided by

- ► Mike Neale
- ▶ Steve Boker (Univ of Virginia)
- ▶ OpenMx development team
- ▶ National Institute of Health R25-DA026119, R01-DA018673 (PI Neale)

Second order linear differential equation

$$\ddot{x}(t) = \eta x(t) + \zeta \dot{x}(t) \tag{1}$$

- ► x a position (1 dimensional)
- ▶ t time
- ightharpoonup x(t) position as a function of time
- ▶ η , ζ parameters to estimate

An oscillator

$$\ddot{x}(t) = \eta x(t) + \zeta \dot{x}(t) \tag{2}$$

- ▶ When $x(t) = \dot{x}(t) = 0$ then the system is at equilibrium
- ▶ When $\eta < 0$ and $\eta + \zeta^2/4 < 0$, x will oscillate
- ▶ Otherwise, $x \to \pm \inf$ as $t \to \inf$

Resilience: Physical and psychological

- ▶ variable thermostats
- ▶ recovery from negative (or positive) emotional shocks

As a statistical model

$$\ddot{x}(t) = \eta x(t) + \zeta \dot{x}(t) \tag{3}$$

- ▶ x measured with some noise
- ▶ t known
- $\triangleright \eta, \zeta$ parameters to estimate

η , frequency

ζ , damping

Path diagram

Time delay embedding

Potential multilevel applications

arousal amplitude variance by age decile

- η |age decile
- $\blacktriangleright \eta | \text{person}$
- ▶ time

stressor resonance duration by group

- $\zeta|\text{group}$
- $ightharpoonup \zeta|person$
- ▶ time

heredity of frequency and damping

What model?

Which model do we need?

Nice if we can stay in a maximum likelihood SEM framework: asymptotically unbiased and minimum variance

Random slopes

$$Y_{ij} = (\beta_0 + \beta_0 j) + (\beta_1 + \beta_1 j) x_{ij}$$
 (5)

- ightharpoonup i enumerates within groups
- \triangleright j is the group
- ightharpoonup Y is the response
- $\triangleright \beta$ are parameters
- \blacktriangleright x is given (e.g. measurement time)

Product is between a parameter and a given value (x)

Path diagram

Product is between two latent variables

Variance of a regression coefficient

$$Var(\eta) \equiv Var \left[\frac{Cov(\ddot{x}, x)}{Var(x)} \right]$$

$$Var(\zeta) \equiv Var \left[\frac{Cov(\dot{x}, x)}{Var(x)} \right]$$
(6)

$$Var(\zeta) \equiv Var \left[\frac{Cov(\dot{x}, x)}{Var(x)} \right]$$
 (7)

Mean structure

In SEM, variables are assumed to be centered (mean deviation form).¹

$$E(\xi_1) = E(\xi_2) = 0 \tag{8}$$

$$E(\xi_1 \xi_2) = E(\xi_1) E(\xi_2) + \text{Cov}(\xi_1, \xi_2) = \text{Cov}(\xi_1, \xi_2)$$
 (9)

 $Cov(\xi_1, \xi_2)$ of Equation 9 is non-Normal

What does a latent interaction look like through a Normal lens?

Mixture approaches

General approach²

- ▶ Components represent different outcomes of $Cov(\xi_1, \xi_2)$
- ▶ Per-row component weights determined by per-row likelihood

Cannot extend to multileve

²Klein and Moosbrugger (2000); Jedidi, Jagpal, and DeSarbo (1997)

Mixture approaches

General approach²

- ▶ Components represent different outcomes of $Cov(\xi_1, \xi_2)$
- ▶ Per-row component weights determined by per-row likelihood

Cannot extend to multilevel

 $^{^2}$ Klein and Moosbrugger (2000); Jedidi et al. (1997) \square > $\checkmark \square$ > \checkmark \blacksquare > \checkmark \blacksquare > \checkmark

Modeling frameworks

Two-stage maximum likelihood

Bayesian using Monte Carlo sampling

Two-stage parameter recovery simulation

Fully crossed design:

- ightharpoonup number of twins = 100, 200, 400, 800
- ightharpoonup additive genetic variance = 0, 0.25, 0.5, 0.75
- ▶ 300 time points
- ▶ 200 Monte Carlo replications

$$\log(-\eta) \sim \mathcal{N}(-1.6, 0.6) \tag{10}$$

$$\log(-\zeta) \sim \mathcal{N}(-3.0, 0.6) \tag{11}$$

Path diagram

Variance decomposition

$$U = \begin{pmatrix} \eta_1 & \eta \zeta_1 & 0 & 0\\ \eta \zeta_1 & \zeta_1 & 0 & 0\\ 0 & 0 & \eta_2 & \eta \zeta_2\\ 0 & 0 & \eta \zeta_2 & \zeta_2 \end{pmatrix}$$
 (12)

$$AE = \begin{pmatrix} A+E & kA \\ kA & A+E \end{pmatrix} \tag{13}$$

$$\Sigma = U + AE \tag{14}$$

- ightharpoonup U is populated with the inverse Hessian
- \blacktriangleright A and E are 2-by-2 covariance matrices
- \blacktriangleright k is 1.0 for MZ and 0.5 for DZ
- means are freely estimated

95% interval coverage

numTwins	agv	$_{ m eta}$	zeta
100	0.00	0.97	0.96
100	0.25	0.97	0.99
100	0.50	0.94	0.97
100	0.75	0.98	0.99
200	0.00	0.98	0.97
200	0.25	0.96	0.98
200	0.50	0.96	1.00
200	0.75	0.96	0.99
400	0.00	0.96	0.98
400	0.25	0.96	0.99
400	0.50	0.94	0.99
400	0.75	0.95	1.00
800	0.00	0.92	0.94
800	0.25	0.91	0.97
800	0.50	0.92	1.00
800	0.75	0.94	1.00

One replication

Future Directions

 $\label{eq:Figure 3.} Figure \ 3. \quad \hbox{Coupled latent differential equation model (coupled LDE)}.$

Accounting for a common environment? $\!\!^3$

³Hu, Boker, Neale, and Klump (2014)

Future Directions

Full Bayesian

- Bisconti, T. L., Bergeman, C. S., & Boker, S. M. (2006). Social support as a predictor of variability: An examination of the adjustment trajectories of recent widows. Psychology and Aging, *21*(3), 590.
- Hu, Y., Boker, S. M., Neale, M. C., & Klump, K. L. (2014). Coupled latent differential equation with moderators: Simulation and application. Psychological methods, 19(1), 56.
- Jedidi, K., Jagpal, H. S., & DeSarbo, W. S. (1997). STEMM: A general finite mixture structural equation model. Journal of Classification, 14(1), 23-50.
- Klein, A., & Moosbrugger, H. (2000). Maximum likelihood estimation of latent interaction effects with the lms method. Psychometrika, 65(4), 457–474.
- Moosbrugger, H., Schermelleh-Engel, K., & Klein, A. (1997). Methodological problems of estimating latent interaction effects. Methods of Psychological Research Online, 2(2), 95–111.

