

sin B= 4/3

sin 60° = "

E-Banking-Fraud-Challenge Eigentümlichkeiten des POC-Datensatzes

1 Datengrundlage

- 2 Datenmodell
- 3 Data-Leakage
- 4 Abhängigkeit der Daten
- 5 Kreuzvalidierung mit abhängigen Daten
- 6 Passende Metrik: AUC?



### Übersicht Datensatz

Der Datensatz besteht aus 18'164'183 regulären Transaktionen aus dem E-Banking. Dem gegenüber stehen 73 identifizierte Fraud-Fälle. Die regulären Transaktionen verteilen sich über den Zeitraum vom 31.03.2016 bis 31.05.2017. Ab dem 10.05.2017 liegen nur sehr wenige Daten vor.

Die Fraud-Fälle erstrecken sich über den Zeitraum vom 23.05.2016 bis zum 21.04. 2017 und sind in unten stehender Graphik farblich markiert.



## Schwierigkeiten des Datensets

Der Datensatz besteht aus 18'164'183 regulären Transaktionen aus dem E-Banking. Dem gegenüber stehen 73 identifizierte Fraud-Fälle. Information über klassische Fraud-Muster kann nur aus den 73 Fraud-Fällen gewonnen werden. Die Schwierigkeit ist, Regeln zu finden, die nicht nur spezifisch für die 73 Fraud-Fälle sind, sondern darüber hinaus auch auf anderen Transaktionen generalisieren.



- 1 Datengrundlage
- 2 Datenmodell
- 3 Data-Leakage
- 4 Abhängigkeit der Daten
- 5 Kreuzvalidierung mit abhängigen Daten
- 6 Passende Metrik: AUC?



# Datenmodell: Bag of transactions (bot)

Dieses Datenmodell führt zu fehlerhafter Berechnung von Variablen. Information, die erst zu einem späteren Zeitpunkt vorliegt fliesst in frühere Daten mit ein («leakage»).

Beispiel: Anzahl frauds pro Land. Wenn jedem fraud-case als Variablewert die Gesamtzahl der Fälle pro Land zugewiesen wird, so missachtet man den sequentiellen Character der Daten. Das Modell generalisiert anschliessend schlechter auf «echte» Daten.



|   | Land | # Fraud pro Land |
|---|------|------------------|
|   | СН   | 0                |
| = | PT   | 0                |
|   | IN   | 6                |
|   | DE   | 0                |

| Aber die Da<br>Datum | ten sind sequent<br>Bank IN | iell:<br># Fraud | Falsch |
|----------------------|-----------------------------|------------------|--------|
| 31.05.2016           | IND KARMA<br>FUND           | 0                | 6      |
| 23.07.2016           | Barclay PLC                 | 1                | 6      |
| 08.09.2016           | Liberty Bank                | 2                | 6      |
| 22.12.2016           | United Trust F.             | 3                | 6      |
| 17.01.2017           | HDFC BANK                   | 4                | 6      |
| 01.03.2017           | NAT.HOUS.BANK               | 5                | 6      |
|                      |                             |                  |        |

## Datenmodell: Sequence of transactions (sot)

Für dieses Datenmodell werden gleich lange Zeitperioden vor dem interessierenden Ereignis zur Berechnung der Variablen herangezogen. Somit liegt nur Information aus der Vergangenheit vor.

Beispiel: Anzahl frauds pro Land. Wird jedem fraud-case als Variablenwert die Anzahl der vorherigen Fälle zugewiesen, so wird nur Information verwenden, die zum jeweiligen Zeitpunkt auch effektiv vorlag. Das Modell generalisiert ohne Performanz-Verluste.



- 1 Datengrundlage
- 2 Datenmodell
- 3 Data-Leakage
- 4 Abhängigkeit der Daten
- 5 Kreuzvalidierung mit abhängigen Daten
- 6 Passende Metrik: AUC?



### Data - Leakage

Durch Fehler bei der Erstellung von Daten-Sets kann Information über die Klassenzugehörigkeit entstehen, die unter normalen Bedingungen nicht zur Verfügung steht. Beispielsweise korreliert die Datensatz-ID mit den Klassen, wenn postivie und negative Fälle aneinander gefügt wurden. Oder alle positiven Fälle enstammen nur einem bestimmten Zeitraum. Bei Wettbewerben wird diese Information gezielt gesucht und ausgenutzt um das Preisgeld zu erlangen.



71% der Fraud-Fälle haben auf der Variable «Medium» die Ausprägung «Erstellt im E-Banking». Diese Kategorie kommt bei den regulären Transaktionen kein einziges Mal vor. Die meisten Fraud-Fälle entstammen einer seperaten Excel-Datei in der diese Kategorie in der Spalte «Medium» eingetragen ist. Durch Unachtsamkeit oder gezieltes Ausnutzen erlangt man a priori 71% Klassifikationsgenauigkeit.

- 1 Datengrundlage
- 2 Datenmodell
- 3 Data-Leakage
- 4 Abhängigkeit der Daten
- 5 Kreuzvalidierung mit abhängigen Daten
- 6 Passende Metrik: AUC?



## Die Fraud-Fälle sind nicht unabhängig

Mehr als die Hälfte der Fraud-Fälle gehört einer Serie von frauds an. Vermutlich kommen solche Serien durch die wiederholte Ausnutzung einer Schwachstelle zustande. Die Anzahl der unabhängigen Fraud-Fälle reduziert sich von 73 auf ca. 36. Somit liegt für das Trainieren von machine learning Algorithmen noch weniger Information vor.

Hier werden einige Beispiele aufgeführt.

| AUSFUEHRUNGSDA      | ADRESSE  |            | BUSINESS | GEGENPARTEI BANK ADRESSE                  |
|---------------------|----------|------------|----------|-------------------------------------------|
| 20.07.2016 00:00:00 | three hi | 700017 kol | 9466     | HDFC BANK LIMITED HDFC BANK LTD P34-AP    |
| 18.07.2016 00:00:00 | window   | ukee       | 9466     | PNC BANK, N.A. 15219 PITTSBURGH,PA Verein |
| 20.07.2016 00:00:00 | window   | ukee       | 9466     | PNC BANK, N.A. 15219 PITTSBURGH,PA Verein |

Wiederholte betrügerische Überweisungen bei gleichem Business-Partner.

| ADRESSE       |                                         | BUSINESS_PA                                                 | GEGENPARTEI_BANK_ADRESSE                                                                                                                                                      |
|---------------|-----------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| atlar         | mited gb                                | 1624                                                        | BARCLAYS BANK PLC 1 CHURCHILL PLACE E14 5                                                                                                                                     |
| atlar         | mited gb                                | 2850                                                        | BARCLAYS BANK PLC 1 CHURCHILL PLACE E14 5                                                                                                                                     |
| dudl          | om air bn                               | 678                                                         | BARCLAYS BANK PLC 1 CHURCHILL PLACE E14 5                                                                                                                                     |
| loft <u>c</u> | d gb-bd7                                | 705                                                         | BARCLAYS BANK PLC 1 CHURCHILL PLACE E14 5                                                                                                                                     |
| atlar         | mited gb                                | 8354                                                        | BARCLAYS BANK PLC 1 CHURCHILL PLACE E14 5                                                                                                                                     |
|               | atlar<br>atlar<br>dudl<br>loft <u>c</u> | atlar mited gb atlar mited gb dudl pm air bn loftc d gb-bd7 | atlar         mited gb         162-           atlar         mited gb         285r           dudl         pm air bn         678-           loftg         d gb-bd7         705. |

Überweisungen zur selben Gegenpartei-Bank-Adre sse, teilweise auch zu identischen Gegenpartei-Adressen.

| AUSFUEHRUNGSDATUM   | ADRESSE |                  |               | BUSINESS | GEGENPARTEI_BANK_ADRESSE                         |
|---------------------|---------|------------------|---------------|----------|--------------------------------------------------|
| 26.01.2017 00:00:00 | vinc    | k-5270 odense.n. |               | 1664     | NORDEA BANK DANMARK A/S STRANDGADE 3 9           |
| 07.11.2016 00:00:00 | vinc    | ensegy           | dense.n. 5270 | 1741     | NORDEA BANK DANMARK A/S STRANDGADE 3 9           |
| 24.01.2017 00:00:00 | ravi    | and              |               | 2318     | KRUNG THAI BANK PUBLIC COMPANY LIMITED 35        |
| 12.01.2017 00:00:00 | vinc    | ensegy           | dense.n. 5270 | 2318     | NORDEA BANK DANMARK A/S STRANDGADE 3 9           |
| 31.08.2016 00:00:00 | vinc    | ensegy           | dense.n. 5270 | 2318     | NORDEA BANK DANMARK A/S STRANDGADE 3 9           |
| 16.01.2017 00:00:00 | stef    | stria            |               | 2318     | Raiffeisen Regionalbank Moedling eGen Hauptstra. |
| 16.01.2017 00:00:00 | stef    | stria            |               | 2318     | Raiffeisen Regionalbank Moedling eGen Hauptstra. |
| 18.01.2017 00:00:00 | stef    | triche           |               | 2318     | Raiffeisen Regionalbank Moedling eGen Hauptstra. |
| 23.01.2017 00:00:00 | stef    | triche           |               | 2318     | Raiffeisen Regionalbank Moedling eGen Hauptstra. |
| 25.01.2017 00:00:00 | stef    | stria            |               | 2318     | UniCredit Bank Austria AG Schottengasse 6-8 1010 |

Mehrfache betrügerische Überweisungen bei gleichem Business-Partner. Andere Überweisungen zu identischen Gegenpartei-Adressen.

## Die Fraud-Fälle sind nicht unabhängig

Mehr als die Hälfte der Fraud-Fälle gehört einer Serie von frauds an. Vermutlich kommen solche Serien durch die wiederholte Ausnutzung einer Schwachstelle zustande. Die Anzahl der unabhängigen Fraud-Fälle reduziert sich von 73 auf ca. 36. Somit liegt für das Trainieren von machine learning Algorithmen noch weniger Information vor.

Hier werden einige Beispiele aufgeführt.

| AUSFUEHRUNGSDATUM   | ADRESSE                             | BUSINESS_P | GEGENPARTEI_BANK_ADRESSE                   |
|---------------------|-------------------------------------|------------|--------------------------------------------|
| 21.04.2017 00:00:00 | mateo technologies IIc us-queen cre | 2651       | BANK OF AMERICA, N.A. 94104 SAN FRANCIS    |
| 21.04.2017 00:00:00 | adyen client management fou 1011dj  | 2651       | Deutsche Bank AG Zürich Branch 8021 Zürich |
| 21.04.2017 00:00:00 | adyen client management fou 1011dj  | 2651       | Deutsche Bank AG Zürich Branch 8021 Zürich |
| 21.04.2017 00:00:00 | adyen client management fou 1011dj  | 2651       | Deutsche Bank AG Zürich Branch 8021 Zürich |

Wiederholte betrügerische Überweisungen bei gleichem Business-Partner.

| AUSFUEHRUNGSDATU    | ADRESSE |                 | BUSINESS_PART | GEGENPARTEI_BANK_ADRESSE       |
|---------------------|---------|-----------------|---------------|--------------------------------|
| 17.11.2016 00:00:00 | mr      | ostfach ch-809  | 1267          | UBS Switzerland AG 8098 Zürich |
| 22.08.2016 00:00:00 | kaa     |                 | 1381          | PostFinance AG 3030 Bern       |
| 22.08.2016 00:00:00 | ma      | lietikon        | 1381          | UBS Switzerland AG 8098 Zürich |
| 24.05.2016 00:00:00 | eric    | gnon            | 1777          | PostFinance AG 3030 Bern       |
| 25.05.2016 00:00:00 | ale     | l paderborn     | 1777          | SPARKASSE HERFORD AUF DER      |
| 25.05.2016 00:00:00 | ger     | quier-montbarry | 1777          | UBS Switzerland AG 1630 Bulle  |
| 12.08.2016 00:00:00 | ack     | mingerstrasse 2 | 2137          | PostFinance AG 3030 Bern       |
| 25.11.2016 00:00:00 | san     |                 | 2428          | PostFinance AG 3030 Bern       |
| 27.12.2016 00:00:00 | ber     | es 31 1227 car  | 2534          | PostFinance AG 3030 Bern       |
| 09.09.2016 00:00:00 | frai    | 1 8127 forch    | 5352          | PostFinance AG 3030 Bern       |
| 01.07.2016 00:00:00 | ma      | en              | 8116          | PostFinance AG 3030 Bern       |
| 30.06.2016 00:00:00 | ma      | en              | 8116          | PostFinance AG 3030 Bern       |

Wiederholte betrügerische Überweisungen bei gleichem Business-Partner. Teilweise Überschneidung der Gegenpartei-Bank-Adressen.

| ADRESSE          |                  | BUSINESS_P          | GEGENPARTEI_BANK_ADRESSE                         |
|------------------|------------------|---------------------|--------------------------------------------------|
| mra <sup>-</sup> | sse 8/15 at-10   | 1055                | BAWAG P.S.K. Bank fuer Arbeit und Wirtschaft und |
| niko             | gasse 49/5       | 1969                | BAWAG P.S.K. Bank fuer Arbeit und Wirtschaft und |
|                  | mra <sup>-</sup> | mra' sse 8/15 at-10 | mra' sse 8/15 at-10 1055                         |

Gleiche Gegenpartei-Bank-A dresse

## Die Fraud-Fälle sind nicht unabhängig

Mehr als die Hälfte der Fraud-Fälle gehört einer Serie von frauds an. Vermutlich kommen solche Serien durch die wiederholte Ausnutzung einer Schwachstelle zustande. Die Anzahl der unabhängigen Fraud-Fälle reduziert sich von 73 auf ca. 36. Somit liegt für das Trainieren von machine learning Algorithmen noch weniger Information vor.

Hier werden einige Beispiele aufgeführt.

| AUSFUEHRUNGS_DATUM  | ADRESSE |                | BUSINESS_PARTNER | GEGENPARTEI_BANK_ADRESSE       |
|---------------------|---------|----------------|------------------|--------------------------------|
| 23.05.2016 00:00:00 | Ma      | ol 8006 Zürich | 1206             | UBS Switzerland AG 8049 Zürich |
| 24.05.2016 00:00:00 | Ma      | ol 8006 Zürich | 1206             | UBS Switzerland AG 8049 Zürich |
| 31.08.2016 00:00:00 | Vin     | ensegyden 23   | 2318             | NORDEA BANK DANMARK A/S        |
| 12.01.2017 00:00:00 | Vin     | ensegyden 23   | 2318             | NORDEA BANK DANMARK A/S        |
| 16.01.2017 00:00:00 | ste     | ria            | 2318             | Raiffeisen Regionalbank Moedli |
| 16.01.2017 00:00:00 | STI     | ustria         | 2318             | Raiffeisen Regionalbank Moedli |
| 18.01.2017 00:00:00 | ste     | iche           | 2318             | Raiffeisen Regionalbank Moedli |
| 23.01.2017 00:00:00 | ste     | iche           | 2318             | Raiffeisen Regionalbank Moedli |
| 25.01.2017 00:00:00 | ste     | ria            | 2318             | UniCredit Bank Austria AG Scho |
| 21.04.2017 00:00:00 | Ad      | ment Fou 10    | 2651             | Deutsche Bank AG Zürich Branc  |
| 21.04.2017 00:00:00 | Ad      | ment Fou 10    | 2651             | Deutsche Bank AG Zürich Branc  |
| 21.04.2017 00:00:00 | Ad      | ment Fou 10    | 2651             | Deutsche Bank AG Zürich Branc  |
| 30.06.2016 00:00:00 | Ma      | ittisellen     | 8116             | PostFinance AG 3030 Bern       |
| 01.07.2016 00:00:00 | Ma      | ittisellen     | 8116             | PostFinance AG 3030 Bern       |
| 18.07.2016 00:00:00 | Wi      | 53172 South    | 9466             | PNC BANK, N.A. 15219 PITTSBU   |
| 20.07.2016 00:00:00 | Wi      | 53172 South    | 9466             | PNC BANK, N.A. 15219 PITTSBU   |

#### Echte Dubletten:

- Business Partner
- Gegenpartei

D.h., der Datensatz beinhaltet 14% echte Dubletten und verkleinert die Anzahl der frauds auf 63 (anstatt 73)

- 1 Datengrundlage
- 2 Datenmodell
- 3 Data-Leakage
- 4 Abhängigkeit der Daten
- 5 Kreuzvalidierung mit abhängigen Daten
- 6 Passende Metrik: AUC?



## Wie funktioniert Kreuzvalidierung?

## Beispiel: 5-fache Kreuzvalidierung



## Gedankenexperiment

Angenommen die Fraud-Fälle tauchen immer paarweise auf. Hat man 10 solcher Paare, wie hoch ist die Wahrscheinlichkeit, dass 2 zufällig gezogene Fraud-Fälle vom Lerndatensatz abhängig sind? Abhängig sind sie, wenn ein Partner im Lerndatensatz verbleibt.



Nach dem ersten Mal Ziehen verbleiben 19 Datenpunkte.

Mit einer Wahrscheinlichkeit von 1/19 wird beim zweiten Mal Ziehen der Partner gezogen. Kein gezogener Fraud-Fall hat nun einen verbleibenden Partner im Lerndatensatz

Mit einer Wahrscheinlichkeit von 18/19 wird nicht der Partner gezogen. Beide gezogenen Datenpunkte haben nun einen Partner im Lerndatensatz

Folglich sind mit einer Wahrscheinlichkeit von 18/19 ≈ 0.95 beide Datenpunkte im hold-out set abhängig vom Lerndatensatz.

## Wie funktioniert Kreuzvalidierung?

Im Folgenden wurde für den Fraud-Datensatz simuliert, wie hoch die Wahrscheinlichkeit ist, dass ein Fraud-Fall im hold-out set der Kreuzvalidierung einen entsprechenden Datenpunkt im Lerndatensatz hat. Die Basis hierfür bilden die gefundenen Fraud-Serien. Mit abnehmender Anzahl von Fraud-Fällen im hold-out set steigt diese Wahrscheinlichkeit.



Was passiert nun wenn die Daten aus dem Lerndatensatz und dem hold-out set nicht unabhängig sind? Zum Beispiel weil sie aus der selben Attacke (fraud) stammen?

- auswendig lernen des Lerndatensatzes führt auch zu besseren Ergebnissen im hold-out set
- Parameter werden falsch geschätzt (Anzahl der trees im xgboost wird zu hoch geschätzt, genauso wie depth)
- Overfitting (see for example: <u>create good validation sets</u>)

## Veranschaulichung

Eine scheinbar kleine Überschneidung von Datenpunkten zwischen dem Lern-Set und dem hold-out-Set führt zu falschen Schätzungen der optimalen Parameter. Die optimale Anzahl von trees für einen xgboost classifier würde massiv überschätzt werden. Die Konsequenz ist ein ebenso massives overfitting.

Simulation mit 0% (links) bzw. 50% (rechts) Überschneidung der seltenen Fälle (fraud) zwischen Lerndatensatz und hold-out set



den gelben Punkten aus der Punktewolke

Der Betrag an overfitting ergibt sich aus der Differenz zwischen dem besten Wert für das unabh. Datenset (links) und dem besten Wert für den Fall von Abhängigkeit (rechts).

Die Datensets unterscheiden sich nur anhand von 2 Punkten. Im rechten Datenset sind 2 Punkte sowohl im Lernset (gelber Punkt) und im hold-out set (roter Stern). Im linken Datenset gibt es keine Überschneidung zwischen Lernset und hold-out set. Beide Klassen entstammen der selben Grundgesammheit, d.h. es gibt nichts zu lernen. Der Erwartungswert ist auc = 0.5.

## Zusammenfassung

- Highly unbalanced classes
- Data-Leakage durch falsches Datenmodell (BOT vs. SOT)
- Data-Leakage 'MEDIUM'
- Abhängige Daten in minority class

18'164'183 vs 73; ratio: 0.000004

Information durch zeitl. spätere Ereigniss fliesst ein

52 fraud-Fälle haben eineindeutigen Wert

- Kreuzvalidierung unter Missachtung der Abhängigkeitsstruktur führt zu massivem overfitting.
- 25-fache Kreuzvalidierung bedingt, dass ca. 60% der Fraud-Fälle im hold-out set abhängig sind.
- xgboost mit n\_trees = 2000 und max\_depth=6 bedeutet 2000 Klassifikationsbäumen mit minimal 6 und maximal 63 splits (Verzweigungen) pro Baum:
  - Bei n\_trees = 2000, durchschnittlich 20 splits sind das 40'000 splits auf 60 Variablen um weniger als 63 (nur Dubletten entfernt) unabh. Datenpunkte zu klassifizieren.
  - Das sind 635 Variablen-Splits pro Fraud-Fall
  - oder 666 splits pro Variable insgesamt.
  - Für jeden Fraud-Fall wird jede der 60 Variablen durchschnittlich 10 mal in der Klassifikation verzweigt

- 1 Datengrundlage
- 2 Datenmodell
- 3 Data-Leakage
- 4 Abhängigkeit der Daten
- 5 Kreuzvalidierung mit abhängigen Daten
- 6 Passende Metrik: AUC?



## AUC: was soll optimiert werden?

Die verwendete Metrik, AUC (area under the curve) ist unter Umständen nicht optimal für ungleichgrosse Klassen. Traditionell wird sie auf der ROC – Metrik (true postive rate, false negative rate) berechnet; Besser wäre es die precision-recall curve zu verwenden; Diese Möglichkeit ist in xgboost nicht gegeben.

|                    | positive | negative | recall = true positive rate = $\frac{TP}{TP+FN}$ precision = $\frac{TP}{TP+FP}$ |  |
|--------------------|----------|----------|---------------------------------------------------------------------------------|--|
| predicted positive | TP       | FP       | TP+FN $TP+FP$                                                                   |  |
| predicted negative | FN       | TN       | false positive rate = $\frac{FP}{FP+TN}$                                        |  |
|                    |          |          |                                                                                 |  |

### Beispiel:

predicted fraud real fraud
Algorithmus 1 2000 50
Algorithmus 2 200 50

| Algorithmus 1<br>Algorithmus 2 | true postive rate 0.6849315 0.6849315 | false positive rate 0.0001073543 0.00000825802 | Algorithmus 1<br>Algorithmus 2 | recall<br>0.6849315<br>0.6849315 | 0.025<br>0.25 |
|--------------------------------|---------------------------------------|------------------------------------------------|--------------------------------|----------------------------------|---------------|
|                                |                                       | 0.000099                                       |                                |                                  | 0.225         |