## IT19tb WIN7 S4 Aufgabe 1

Leo Rudin & Stefan Teodoropol

**a**)

Auswahl möglicher Fixpunktgleichungen für Ursprungsfunktion:  $f(x) = 230x^4 + 18x^3 + 9x^2 - 221x - 9$ 

$$F1(x) = \frac{230x^4 + 18x^3 + 9x^2 - 9}{221}$$

$$F1'(x) = \frac{920x^3}{221} + \frac{54x^2}{221} + \frac{18x}{221}$$

$$F2(x) = \sqrt{\frac{230x^4 + 18x^3 - 221x - 9}{-9}}$$

$$F2'(x) = \frac{1}{2} * \frac{1}{\sqrt{\frac{230x^4 + 18x^3 - 221x - 9}{-9}}} * \frac{920x^3 + 54x^2 - 221}{-9}$$

Für  $\overline{x}_1$  wählen wir den Startwert -0.1:

|F1'(-0.1)| = 0.00986425339366516 < 1

Somit wird der Punkt für den Startwert -0.1 konvergieren.

Fixpunktiteration für Startwert -0.1:

F1(-0.1) = -0.04029411764705882...

F1(-0.04029411764705882..) = -0.040660446815532846..

F1(-0.040660446815532846..) = -0.0406592846229974..

F1(-0.0406592846229974..) = -0.0406592883275295..

 $\overline{x}_1 \approx -0.04065928...$ 

Für  $\overline{x}_2$  wählen wir den Startwert 0.9:

|F1'(0.9)| = 3.305972850678734 > 1

|F2'(0.9)| = 12.4153 > 1

Wir schliessen daraus, dass wir auf dem Interval [0,1] für den Startwert 0.9 keine Fixpunktiteration ausführen können, da die Steigung an dieser Stelle zu gross ist und die Fixpunktiteration nicht konvergiert bzw. der Fixpunkt ist nicht anziehend.

## b)

Für die erste Bedingung  $[a, b] \rightarrow [a, b]$ , das heisst die Funktion F1(x) bildet sich auf das gleiche Interval ab, haben wir gezeigt, indem wir die Funktion geplottet haben und die Funktionswerte betrachten:



Figure 1: Plot für F1(x) zwischen -0.5 und 0.5 auf x und y-Achse.

Dann rechnen wir  $\alpha$  aus, indem wir den in der Aufgabenstellung vorgegebenes Maximum in die Ableitung einsetzen und kriegen dann:

$$\alpha = F1'(0.5) = 0.6221719457013575$$

 $\alpha$  erfüllt somit die Bedingung  $0 > \alpha > 1$ . Das heisst alle Bedingungen des Banachscher Fixpunktsatzes sind erfüllt.

## **c**)

Wir nutzen folgende Formel für die Fehlerabschätzung:

$$|x_n - \overline{x}| \le \frac{\alpha^n}{1 - \alpha} |x_1 - x_0|$$

Für  $|x_n - \overline{x}|$  setzen wir  $10^{-9}$  ein und für  $\alpha$  unseren vorherigen errechnet Wert:

$$\begin{array}{l} 10^{-9} \leq \frac{0.62^n}{0.38} * |F(-0.1) - (-0.1)| \\ 10^{-9} \leq \frac{0.62^n * 0.05970588235294118}{0.38} \\ 6.3645320197044331213084520371764 * 10^{-9} \leq 0.62^n \\ log(6.3645320197044331213084520371764 * 10^{-9}) \leq log(0.62^n) \\ log(6.3645320197044331213084520371764 * 10^{-9}) \leq n * log(0.62) \\ log(6.3645320197044331213084520371764 * 10^{-9}) \leq n \\ log(6.3645320197044331213084520371764 * 10^{-9}) \leq n \end{array}$$

 $n \ge 39.4793..$ 

Somit ist unsere Abweichung kleiner als  $10^{-9}$  wenn n grösser als 39.3793. Wir wählen also die nächstgrössere Zahl n = 40.