Lenguajes de Programación Tarea 5

Karla Ramírez Pulido Alan Alexis Martínez López

Semestre 2023-2 **Fecha de inicio**: 10 de abril 2023 Facultad de Ciencias UNAM **Fecha de entrega**: 15 de abril 2023

Integrantes:

Dania Paula Gongora Ramírez Salgado Tirado Diana Laura

Instrucciones

Resolver los siguientes ejercicios de forma clara y ordenada de acuerdo a los lineamientos de entrega de tareas disponibles en la página del curso. Esta tarea se puede hacer a lo más en equipos de 2 integrantes.

Ejercicios

1. Utiliza el paso de parámetros que se indica para evaluar la siguiente expresión.

a. Paso de parámetros por valor.

Al llamar al seqn necesitaremos nuestro ambiente el cual es el siguiente :

Ya que se llama de la siguiente forma: {swap a b}

swap	{fun {x y}	0x12
	{ with { { tmp x } }	
	{seqn {set x y }	
	{set y tmp } } }	
b	-8	0x11
а	8	0x10

Tenemos como parámetros formales x, y, los parámetros reales a, b. Si evaluamos la función swap copiando el valor en la función:

```
{{fun {x y}
	{ with { { tmp x } } }
	{seqn {set x y }
	{set y tmp } } } 8 -8}
con x = 8 , y = -8
```

1.-Comenzamos con la línea { with { { tmp 8} } }

Por lo que tmp = 8.

2.-Continuamos en la línea {seqn {set x y }

Por lo que x = y, es decir x = -8

3.-Seguimos en la línea {set y tmp }

Por lo que y = 8

Notemos que en ningún momento cambiamos las referencias de a y b , por lo tanto al continuar y aplicar la siguiente línea del seqn, la cual es $\{-a \}$

Por lo que utilizando el ambiente al evaluar tenemos $\{-8\}$ + $\{-8\}$ $\}$ = $\{-80\}$ = -8

Por lo que la evaluación de la expresión con parámetros por valor es -8.

b. Paso de parámetros por referencia.

Primero veamos como al llamar al segn necesitaremos nuestro ambiente el cual es el siguiente.

Ya que se llama de la siguiente forma: {swap a b}

swap	0x12
b -8	0x11
a 8	0x10

Tenemos como parámetros reales x, y, los parámetros reales a, b. Si evaluamos la función swap:

1.-Comenzamos con la línea { with { { tmp x } } }

Por lo que tmp = a donde a pasa su dirección, la cual es 0x10, entonces tmp = 8.

2.-Continuamos en la línea {seqn {set x y }

Por lo que a = b, b pasa la dirección 0x11, entonces a = -8

3.-Seguimos en la línea {set y tmp }

Por lo que b = tmp donde sabemos que tmp es 8, entonces b = 8

Por lo que ahora nuestro ambiente es:

swap	0x12
b 8	0x11
a -8	0x10

4.- Seguimos con la línea del seqn, la cual es { - a { + b a } }

Por lo que utilizando el ambiente al evaluar tenemos $\{--8\}$ + 8 -8 $\}$ = $\{-8\}$ - 8 0 $\}$ = -8

Por lo que la evaluación de la expresión con parámetros por referencia es -8.

2. Define la función recursiva ocurrencias que recibe dos listas y devuelve una lista de parejas, en donde cada pareja contiene en su parte izquierda un elemento de la segunda lista y en su parte derecha el número de veces que aparece dicho elemento en la primera lista. Por ejemplo:

>(ocurrencias '(3 5 8 5 2 1 2 2 0 3) '(2 3 6)) '((2 . 3) (3 . 2) (6 . 0))

3. A partir del Ejercicio 2, muestra los registros de activación generados por la función con la siguiente llamada. (ocurrencias '(1 2 3) '(1 2))

Por lo tanto el resultado de **(ocurrencias '(1 2 3) '(1 2))** es '((1 1) (2 1))

4. Usando recursión de cola optimiza la función del Ejercicio 2. Toda función auxiliar ocupada debe ser optimizada.

```
#lang plai
(define (ocurrencias lst elems)
  (define (ocurrencias-aux lst elems acc)
       (null? elems) (reverse acc)]
      [(null? lst) (numeros list 0)]
      [else
                  (let* ([e (car elems)]
              [n (count (lambda (x) (equal? e x)) lst)])
         (ocurrencias-aux lst (cdr elems) (cons (cons e n) acc)))]))
 (ocurrencias-aux lst elems '()))
;;Función auxiliar para poner elementos con su pareja n
define (numeros lst n)
  (define (numeros-aux lst n acc)
      [(null? lst) (reverse acc)]
                  (numeros-aux (cdr lst) n (cons (cons (car lst) n) acc))]))
 (numeros-aux lst n '()))
```

5. A partir del Ejercicio 4, muestra los registros de activación generados por la función con la siguiente llamada. (ocurrencias '(1 2 3) '(1 2))

Por lo tanto el resultado de **(ocurrencias '(1 2 3) '(1 2))** es '((1 1) (2 1))