Лабораторная работа 17

Задания для самостоятельной работы

Апареев Дмитрий Андреевич

Содержание

1	Цель работы	4
2	Задание	5
3	3.1 Моделирование работы вычислительного центра	6
	3.2 Модель работы аэропорта	9 12
4	Выводы	21

Список иллюстраций

3.1	Модель работы вычислительного центра	7
3.2	Отчёт по модели работы вычислительного центра	8
3.3	Отчёт по модели работы вычислительного центра	8
3.4	Модель работы аэропорта	10
3.5	Отчёт по модели работы аэропорта	11
3.6	Отчёт по модели работы аэропорта	12
3.7	Модель работы морского порта	13
3.8	Отчет по модели работы морского порта	14
3.9	Модель работы морского порта с оптимальным количеством при-	
	чалов	15
3.10	Отчет по модели работы морского порта с оптимальным количе-	
	ством причалов	16
3.11	Модель работы морского порта	17
	Отчет по модели работы морского порта	18
3.13	Модель работы морского порта с оптимальным количеством при-	
	чалов	19
3.14	Отчет по модели работы морского порта с оптимальным количе-	
	ством причалов	20

1 Цель работы

Реализовать с помощью gpss модели работы вычислительного центра, аэропорта и морского порта.

2 Задание

Реализовать с помощью gpss:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.

3 Выполнение лабораторной работы

3.1 Моделирование работы вычислительного центра

На вычислительном центре в обработку принимаются три класса заданий A, B и C. Исходя из наличия оперативной памяти ЭВМ задания классов A и B могут решаться одновременно, а задания класса C монополизируют ЭВМ. Задачи класса C загружаются в ЭВМ, если она полностью свободна. Задачи классов A и B могут дозагружаться к решающей задаче.

Смоделируем работу ЭВМ за 80 ч. и определим её загрузку.

Построим модель (рис. 3.1).

🎇 model 17_1.gps ram STORAGE 2 ;моделирование заданий класса А GENERATE 20,5 QUEUE class A ENTER ram, 1 DEPART class A ADVANCE 20,5 LEAVE ram, 1 TERMINATE 0 ;моделирование заданий класса В GENERATE 20,10 QUEUE class A ENTER ram, 1 DEPART class A ADVANCE 21,3 LEAVE ram, 1 TERMINATE 0 ;моделирование заданий класса С GENERATE 28,5 QUEUE class A ENTER ram, 2 DEPART class A ADVANCE 28,5 LEAVE ram, 2 TERMINATE 0 ; таймер GENERATE 4800 TERMINATE 1 START 1

Рис. 3.1: Модель работы вычислительного центра

Задается хранилище ram на две заявки. Затем записаны три блока: первые два обрабатывают задания класса A и B, используя один элемент ram, а третий обрабатывает задания класса C, используя два элемента ram. Также есть блок

времени генерирующий 4800 минут (80 часов).

После запуска симуляции получаем отчёт (рис. 3.2, 3.3).

model 17_	1.1.1 - REPORT						
	START TIME	END '	TIME :	BLOCKS	FACILITIES	STO	RAGES
	0.000		.000	23	0		1
	NAME			ALUE			
	CLASS_A		1000				
	RAM		1000	0.000			
LABEL	T	OC BLOCK TYPE	FN	דפע כמוו	NT CHODENT	COUNT	DETDV
DADEL		GENERATE	EN	240		0	0
	2			240		4	0
	3			236		0	0
	4			236		0	ō
	5	ADVANCE		236		1	0
	6			235		0	0
	7	TERMINATE		235		0	0
	8	GENERATE		236		0	0
	9	QUEUE		236		5	0
	10	ENTER		231		0	0
	11	DEPART		231		0	0
	12	ADVANCE		231		1	0
	13	LEAVE		230		0	0
	14	TERMINATE		230		0	0
	15	GENERATE		172		0	0
	16	QUEUE		172	17	2	0
	17	ENTER		0		0	0
		DEPART		0		0	0
	19	ADVANCE		0		0	0
		LEAVE		0		0	0
		TERMINATE		0		0	0
		GENERATE		1		0	0
	23	TERMINATE		1		0	0

Рис. 3.2: Отчёт по модели работы вычислительного центра

QUEUE CLASS_A		MAX CONT. 183 181	ENTRY E			T. AVE.TIME 684.105	AVE.(-0) RETRY 688.354 0
STORAGE RAM		CAP. REM. 2 0		X. ENTRI 2 46	ES AVL		
FEC XN 650	PRI 0	BDT 4803.512	ASSEM 650	CURRENT 0	NEXT	PARAMETER	VALUE
636	0	4805.704	636	5	6		
651	0	4807.869	651	0	15		
637	0	4810.369		12	13		
652	0	4813.506		0	8		
653	0	9600.000	653	0	22		

Рис. 3.3: Отчёт по модели работы вычислительного центра

Из отчета увидим, что загруженность системы равна 0.994.

3.2 Модель работы аэропорта

Самолёты прибывают для посадки в район аэропорта каждые 10 ± 5 мин. Если взлетно-посадочная полоса свободна, прибывший самолёт получает разрешение на посадку. Если полоса занята, самолет выполняет полет по кругу и возвращается в аэропорт каждые 5 мин. Если после пятого круга самолет не получает разрешения на посадку, он отправляется на запасной аэродром.

В аэропорту через каждые 10 ± 2 мин к взлетно -посадочной полосе выруливают готовые к взлёту самолёты и получают разрешение на взлёт, если полоса свободна. Для взлета и посадки самолёты занимают полосу ровно на 2 мин. Если при свободной полосе одновременно один самолёт прибывает для посадки, а другой – для взлёта, то полоса предоставляется взлетающей машине.

Требуется:

- выполнить моделирование работы аэропорта в течение суток;
- подсчитать количество самолётов, которые взлетели, сели и были направлены на запасной аэродром;
- определить коэффициент загрузки взлетно-посадочной полосы.

Построим модель (рис. 3.4).

```
model 17_2.gps
 GENERATE 10,5,,,1
 ASSIGN 1,0
 QUEUE arrival
 landing GATE NU runway, wait
 SEIZE runway
 DEPART arrival
 ADVANCE 2
 RELEASE runway
 TERMINATE 0
 ; ожидание
 wait TEST L p1,5,goaway
 ADVANCE 5
 ASSIGN 1+,1 ;если значение атрибута меньше 5,
 ;то счетчик прибавляет 1(круг) и идет попытка приземления
 TRANSFER 0, landing
 goaway SEIZE reserve
 DEPART arrival
 RELEASE reserve
 TERMINATE 0
 GENERATE 10,2,,,2
 QUEUE takeoff
 SEIZE runway
 DEPART takeoff
 ADVANCE 2
 RELEASE runway
 TERMINATE 0
 :таймер
 GENERATE 1440
 TERMINATE 1
 START 1
```

Рис. 3.4: Модель работы аэропорта

Блок для влетающих самолетов имеет приоритет 2, для прилетающий приоритет 1 (чем выше значение, тем выше приоритет). Происходит проверка: если полоса пустая, то заявка просто отрабатывается, если нет, то происходит переход в блок ожидания. При ожидании заявка проходит в цикле 5 раз, каждый раз проверяется не освободилась ли полоса, если освободилась – переход в блок обработки, если нет – самолет обрабатывается дополнительным обработчиком отправления в запасной аэродром. Время задаем в минутах – 1440 (24 часа).

После запуска симуляции получаем отчёт (рис. 3.5, 3.6).

	су	ббота, и	июня 15,	2024	19:09:52	2		
	START TIME		END T	TIME	BLOCKS	FACILITIES	S STO	RAGES
	0.000		1440.	000	26	1		0
	NAME			V	ALUE			
	ARRIVAL			1000	2.000			
	GOAWAY			1	4.000			
	LANDING				4.000			
	RESERVE			UNSE	ECIFIED			
	RUNWAY				1.000			
	TAKEOFF				0.000			
	WAIT			1	0.000			
LABEL	т	OC BLOO	K TYPE	FN	ודפע כמווי	NT CURRENT	COUNT	DETDV
LADEL	1		RATE	LIV	146	NI CORRENI	0	0
	2				146		0	0
	3				146		0	0
ANDING	4	_			184		0	0
	5				146		0	0
	6				146		0	0
	7				146		0	0
	8		EASE		146		0	0
	9		MINATE		146		0	o
AIT	10	TEST			38		0	0
	11				38		0	0
	12	ASSI	GN		38		0	0
	13	TRAN	ISFER		38		0	0
OAWAY	14	SEIZ	Œ		0		0	0
	15	DEPA	RT		0		0	0
	16	RELE	EASE		0		0	0
	17	TERM	MINATE		0		0	0
	18	GENE	ERATE		142		0	0
	19	QUEU	JΕ		142		0	0
	20	SEIZ	E		142		0	0
	21	DEPA	RT		142		0	0
	22	ADVA	NCE		142		0	0
	23	RELE	ASE		142		0	0
	24	TERM	MINATE		142		0	0
	25	GENE	ERATE		1		0	0
	26	TERM	INATE		1		0	0

Рис. 3.5: Отчёт по модели работы аэропорта

1	ACILITY	7	ENTRIES 288		IL. A	VE. TIME 2.000		OWNER 0	PEND 0	INTER 0	RETRY 0	DELAY 0
T	JEUE TAKEOFF ARRIVAL		MAX CC	ONT. 0 0	142		AVE.CON 0.017 0.132		0.173 1.301	3	E.(-0) 0.880 5.937	0
FE	290 291 292	PRI 2 1 0	BDT 1440.7 1445.3 2880.0	67	ASSEM 290 291 292	CURRENT 0 0 0	NEXT 18 1 25	PARAM	METER	VAI	LUE	

Рис. 3.6: Отчёт по модели работы аэропорта

Взлетело 142 самолета, село 146, а в запасной аэропорт отправилось 0. В запасной аэропорт не отправились самолеты, поскольку процессы обработки длятся всего 2 минуты, что намного быстрее, чем генерации новых самолетов. Коэффициент загрузки полосы равняется 0.4, полоса большую часть времени не используется.

3.3 Моделирование работы морского порта

Морские суда прибывают в порт каждые $[\alpha \pm \delta]$ часов. В порту имеется N причалов. Каждый корабль по длине занимает M причалов и находится в порту $[b \pm \varepsilon]$ часов. Требуется построить GPSS-модель для анализа работы морского порта в течение полугода, определить оптимальное количество причалов для эффективной работы порта.

Рассмотрим два варианта исходных данных:

1)
$$a = 20 \text{ y}, \delta = 5 \text{ y}, b = 10 \text{ y}, \varepsilon = 3 \text{ y}, N = 10, M = 3;$$

2)
$$a = 30 \text{ y}, \delta = 10 \text{ y}, b = 8 \text{ y}, \varepsilon = 4 \text{ y}, N = 6, M = 2.$$

Первый вариант модели

Построим модель для первого варианта (рис. 3.7).

```
model 17_3.gps

pier STORAGE 10
GENERATE 20,5

;моделирование занятия причала
QUEUE arrive
ENTER pier,3
DEPART arrive
ADVANCE 10,3
LEAVE pier,3
TERMINATE 0

;таймер
GENERATE 24
TERMINATE 1
START 180
```

Рис. 3.7: Модель работы морского порта

После запуска симуляции получаем отчёт (рис. 3.8).

	START T				FACILITIES S 0	TORAGES 1
	NAME ARRIVE PIER			VALUE 001.000 000.000		
LABEL		1 GENER 2 QUEUE 3 ENTER 4 DEPAR 5 ADVAN 6 LEAVE	RATE R R R R I I I I I I I I I I I I I I I	215 215 215 215 215 215 214	0 0 0 0 1	0 0 0 0 0 0 0
QUEUE ARRIVE						AVE.(-0) RETRY 0.000 0
STORAGE PIER						IL. RETRY DELAY
FEC XN 395 396 397	0	BDT 4324.260 4335.233 4344.000	395 5 396 0	6) 1	PARAMETER	VALUE

Рис. 3.8: Отчет по модели работы морского порта

При запуске с 10 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 3 (рис. 3.9), получаем оптимальный результат, что видно на отчете (рис. 3.10).

pier STORAGE 3 GENERATE 20,5 ;моделирование занятия причала QUEUE arrive ENTER pier,3 DEPART arrive ADVANCE 10,3 LEAVE pier,3 TERMINATE 0 ;таймер GENERATE 24 TERMINATE 1 START 180

Рис. 3.9: Модель работы морского порта с оптимальным количеством причалов

			END TIME				
	0.	000	4320.000	9	0	1	
	NAME			VALUE			
	ARRIVE PIER			001.000			
LABEL			CK TYPE E			OUNT RETRY	
			ERATE		_	_	
		2 QUE	_		0	_	
		3 ENT		215	_	0	
		4 DEP		215	0	•	
		5 ADV		215	1	•	
		6 LEA	VE MINATE	214 214		0	
		7 TERI 8 GENI		180	0	0	
		9 TER		180	0	•	
		9 158	TINALE	100	Ü	Ü	
QUEUE		MAX CONT.	ENTRY ENTRY	(0) AVE.C	ONT. AVE.TIM	E AVE.(-0) RE	TRY
ARRIVE		1 0	215 215	0.00	0.00	0 0.000	0
STORAGE						UTIL. RETRY DEL	
PIER		3 0	0 3	645	1.485	0.495 0 0)
			ASSEM CURE		r parameter	VALUE	
			395 5				
396			396 (
397	0	4344.000	397 () 8			

Рис. 3.10: Отчет по модели работы морского порта с оптимальным количеством причалов

Второй вариант модели

Построим модель для второго варианта (рис. 3.11).

```
model 17_3.gps

pier STORAGE 6
GENERATE 30,10

;моделирование занятия причала
QUEUE arrive
ENTER pier,2
DEPART arrive
ADVANCE 8,4
LEAVE pier,2
TERMINATE 0

;таймер
GENERATE 24
TERMINATE 1
START 180
```

Рис. 3.11: Модель работы морского порта

После запуска симуляции получаем отчёт (рис. 3.12).

model 17	_3.3.1 - REPO	RT					
					FACILITIES 0		
	NAME ARRIVE PIER			VALUE 10001.000 10000.000			
LABEL		1 GEN 2 QUE 3 ENT 4 DEP 5 ADV 6 LEA 7 TER 8 GEN	ERATE UE ER ART ANCE VE MINATE ERATE	143 143 143 143 143	0 1 0 0	0 0 0 0 0 0 0 0 0 0 0	
QUEUE ARRIVE					CONT. AVE.TIM	, ,	
STORAGE PIER					AVL. AVE.C. 1 0.524		
322 324	0	4325.892 4336.699	322	5 6 0 1	T PARAMETER	VALUE	

Рис. 3.12: Отчет по модели работы морского порта

При запуске с 6 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 2 (рис. 3.13), получаем оптимальный результат, что видно из отчета (рис. 3.14).

model 17_3.gps pier STORAGE 2 GENERATE 30,10 ;моделирование ванятия причала QUEUE arrive ENTER pier,2 DEPART arrive ADVANCE 8,4 LEAVE pier,2 TERMINATE 0 ;таймер GENERATE 24 TERMINATE 1 START 180

Рис. 3.13: Модель работы морского порта с оптимальным количеством причалов

model 17	_3.6.1 - REPO	RT
		IME END TIME BLOCKS FACILITIES STORAGES 000 4320.000 9 0 1
	NAME ARRIVE PIER	10001.000
LABEL		LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY 1 GENERATE 143 0 0 2 QUEUE 143 0 0 3 ENTER 143 0 0 4 DEPART 143 0 0 5 ADVANCE 143 1 0 6 LEAVE 142 0 0 7 TERMINATE 142 0 0 8 GENERATE 180 0 0 9 TERMINATE 180 0 0 0
QUEUE ARRIVE		MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY 1 0 143 143 0.000 0.000 0.000 0
STORAGE PIER		CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY 2 0 0 2 286 1 0.524 0.262 0 0
FEC XN 322 324 325	0	BDT ASSEM CURRENT NEXT PARAMETER VALUE 4325.892 322 5 6 4336.699 324 0 1 4344.000 325 0 8

Рис. 3.14: Отчет по модели работы морского порта с оптимальным количеством причалов

4 Выводы

В результате выполнения данной лабораторной работы я реализовал с помощью gpss:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.