CONTENTS

Preface

1	Proper	rties of Antennas	1
	1-1	Antenna Radiation, 2	
	1-2	Gain, 3	
	1-3	Effective Area, 6	
	1-4	Path Loss, 6	
	1-5	Radar Range Equation and Cross Section, 7	
	1-6	Why Use an Antenna? 9	
	1-7	Directivity, 10	
	1-8	Directivity Estimates, 11	
		1-8.1 Pencil Beam, 11	
		1-8.2 Butterfly or Omnidirectional Pattern, 13	
	1-9	Beam Efficiency, 16	
	1-10	Input-Impedance Mismatch Loss, 17	
	1-11	Polarization, 18	
		1-11.1 Circular Polarization Components, 19	
		1-11.2 Huygens Source Polarization, 21	
		1-11.3 Relations Between Bases, 22	
		1-11.4 Antenna Polarization Response, 23	
		1-11.5 Phase Response of Rotating Antennas, 25	
		1-11.6 Partial Gain, 26	
		1-11.7 Measurement of Circular Polarization Using	
		Amplitude Only, 26	
		Vector Effective Height, 27	
		Antenna Factor, 29	
		Mutual Coupling Between Antennas, 29	
	1.15	Antenna Noise Temperature, 30	

XV

1 16	Commun	ication Link Budget and Radar Range, 35	
		•	
	Multipath, 36 Propagation Over Soil, 37		
		1 Fading, 39	
	nces, 40	Trading, 39	
Referen	1003, 40		
Radiat	ion Struc	tures and Numerical Methods	
2-1	Auviliary	Vector Potentials, 43	
2 1	•	Radiation from Electric Currents, 44	
	2-1.2	Radiation from Magnetic Currents, 49	
2-2		s: Huygens Source Approximation, 51	
2 2	2-2.1	Near- and Far-Field Regions, 55	
	2-2.2	Huygens Source, 57	
2-3		y Conditions, 57	
2-4		Optics, 59	
2 1		Radiated Fields Given Currents, 59	
		Applying Physical Optics, 60	
		Equivalent Currents, 65	
		Reactance Theorem and Mutual Coupling, 66	
2-5		of Moments, 67	
2 3	2-5.1		
	2 3.1	Moments, 68	
	2-5.2	General Moments Method Approach, 69	
		Thin-Wire Moment Method Codes, 71	
		Surface and Volume Moment Method Codes, 71	
		Examples of Moment Method Models, 72	
2-6		fference Time-Domain Method, 76	
2 0		Implementation, 76	
		Central Difference Derivative, 77	
		Finite-Difference Maxwell's Equations, 77	
		Time Step for Stability, 79	
		Numerical Dispersion and Stability, 80	
		Computer Storage and Execution Times, 80	
		Excitation, 81	
		Waveguide Horn Example, 83	
2-7		cs and the Geometric Theory of Diffraction, 84	
	2-7.1	Fermat's Principle, 85	
	2-7.2	H-Plane Pattern of a Dipole Located Over a Finite	
	_	Strip, 85	
	2-7.3	E-Plane Pattern of a Rectangular Horn, 87	
	2-7.4	H-Plane Pattern of a Rectangular Horn, 89	
	2-7.5	Amplitude Variations Along a Ray, 90	
	2-7.6	Extra Phase Shift Through Caustics, 93	
	2-7.7	Snell's Laws and Reflection, 93	
	2-7.8	Polarization Effects in Reflections, 94	
		Reflection from a Curved Surface, 94	
		Ray Tracing 96	

	Refere	2-7.11 Edge Diffraction, 96 2-7.12 Slope Diffraction, 98 2-7.13 Corner Diffraction, 99 2-7.14 Equivalent Currents, 99 2-7.15 Diffraction from Curved Surfaces, 99 nces, 100	
3	Arrays	s	102
	3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-13	Hansen and Woodyard End-Fire Array, 114 Phased Arrays, 115 Grating Lobes, 117 Multiple Beams, 118 Planar Array, 120 Grating Lobes in Planar Arrays, 125 Mutual Impedance, 127 Scan Blindness and Array Element Pattern, 127 Compensating Array Feeding for Mutual Coupling, 128 Array Gain, 129	
4	Apertu	ure Distributions and Array Synthesis	136
	4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 4-11 4-12 4-13 4-14 4-15 4-16 4-17 4-18 4-19 4-20	4-1.1 Separable Rectangular Aperture Distributions, 139 4-1.2 Circularly Symmetrical Distributions, 140 Simple Linear Distributions, 140 Taylor One-Parameter Linear Distribution, 144 Taylor \overline{n} Line Distribution, 147 Taylor Line Distribution with Edge Nulls, 152 Elliott's Method for Modified Taylor Distribution and Arbitrary Sidelobes, 155	

	4-21	Planar Arrays, 202	
	4-22	· ·	
	4-23	Aperture Blockage, 208	
		Quadratic Phase Error, 211	
		Beam Efficiency of Circular Apertures with Axisymmetric	
		Distribution, 214	
	Referen	nces, 215	
5	Dipole	s, Slots, and Loops	217
	•	, ,	
	5-1	Standing-Wave Currents, 218	
	5-2	· //	
	5-3	1 '	
	5-4	1	
	5-5	,	
	5-6		
	5-7		
	5-8	•	
	5-9	•	
	5-10		
	5-11	•	
	5-12	± .	
	5-13	G.	
		Discone Antenna, 249	
	5-15	Baluns, 251	
		5-15.1 Folded Balun, 252	
		5-15.2 Sleeve or Bazooka Baluns, 253	
		5-15.3 Split Coax Balun, 255	
		5-15.4 Half-Wavelength Balun, 256	
		5-15.5 Candelabra Balun, 256	
		5-15.6 Ferrite Core Baluns, 256	
		5-15.7 Ferrite Candelabra Balun, 258	
		5-15.8 Transformer Balun, 258	
		5-15.9 Split Tapered Coax Balun, 259 5-15.10 Natural Balun, 260	
	5-16	•	
	5-17	•	
	5-18	Resonant Loop, 263	
	5-19	Quadrifilar Helix, 264	
	5-20	Cavity-Backed Slots, 266	
	5-21	Stripline Series Slots, 266	
	5-22	Shallow-Cavity Crossed-Slot Antenna, 269	
	5-23	Waveguide-Fed Slots, 270	
	5-24	Rectangular-Waveguide Wall Slots, 271	
	5-25	Circular-Waveguide Slots, 276	
	5-26	Waveguide Slot Arrays, 278	
	2 20	5-26.1 Nonresonant Array, 279	
		5-26.2 Resonant Array, 282	
		J /	

Refere	5-26.3 Improved Design Methods, 282	
Refere	nees, 203	
Micros	strip Antennas	285
6-1	Microstrip Antenna Patterns, 287	
6-2	•	
	• •	
	•	
	•	
	•	
	1	
	·	
	1 '	
	•	
	• •	
6-14		
Refere	<u>.</u>	
Horn .	Antennas	336
7-1	Rectangular Horn (Pyramidal), 337	
	7-1.2 Optimum Rectangular Horn, 343	
	7-1.3 Designing to Given Beamwidths, 346	
	7-1.4 Phase Center, 347	
7-2	Circular-Aperture Horn, 348	
	7-2.1 Beamwidth, 350	
	7-2.2 Phase Center, 352	
7-3	· · · · · · · · · · · · · · · · · · ·	
7.4	<u> </u>	
	· ·	
	6-1 6-2 6-3 6-4 6-5 6-6 6-7 6-8 6-9 6-10 6-11 6-12 6-13 6-14 Refere Horn 7-1 7-2 7-3	Microstrip Antennas 6-1 Microstrip Antenna Patterns, 287 6-2 Microstrip Patch Bandwidth and Surface-Wave Efficiency, 293 6-3 Rectangular Microstrip Patch Antenna, 299 6-4 Quarter-Wave Patch Antenna, 310 6-5 Circular Microstrip Patch, 313 6-6 Circularly Polarized Patch Antennas, 316 6-7 Compact Patches, 319 6-8 Directly Fed Stacked Patches, 323 6-9 Aperture-Coupled Stacked Patches, 325 6-10 Patch Antenna Feed Networks, 327 6-11 Series-Fed Array, 329 6-12 Microstrip Dipole, 330 6-13 Microstrip Franklin Array, 332 6-14 Microstrip Antenna Mechanical Properties, 333 References, 334 Horn Antennas 7-1 Rectangular Horn (Pyramidal), 337 7-1.1 Beamwidth, 341 7-1.2 Optimum Rectangular Horn, 343 7-1.3 Designing to Given Beamwidths, 346 7-1.4 Phase Center, 347 7-2 Circular-Aperture Horn, 348 7-2.1 Beamwidth, 350 7-2.2 Phase Center, 352 7-3 Circular (Conical) Corrugated Horn, 353 7-3.1 Scalar Horn, 357 7-3.2 Corrugation Design, 357 7-3.3 Choke Horns, 358 7-3.4 Rectangular Corrugated Horns, 359 7-5 Gaussian Beam, 362 7-6 Ridged Waveguide Horns, 365 7-7 Box Horn, 372 7-8 T-Bar-Fed Slot Antenna, 374 7-9 Multimode Circular Horn, 376

8 Reflector Antennas

380

8-1 Paraboloidal Reflector Geometry, 381
8-2 Paraboloidal Reflector Aperture Distribution Losses, 383

	8-4	Phase Error Losses and Axial Defocusing, 387	
	8-5	Astigmatism, 389	
	8-6	Feed Scanning, 390	
	8-7	Random Phase Errors, 393	
	8-8	Focal Plane Fields, 396	
	8-9	Feed Mismatch Due to the Reflector, 397	
	8-10	Front-to-Back Ratio, 399	
	8-11	Offset-Fed Reflector, 399	
	8-12	Reflections from Conic Sections, 405	
	8-13		
		8-13.1 Feed Blockage, 410	
		8-13.2 Diffraction Loss, 413	
		8-13.3 Cassegrain Tolerances, 414	
	8-14	Feed and Subreflector Support Strut Radiation, 416	
	8-15	Gain/Noise Temperature of a Dual Reflector, 421	
	8-16	,	
	8-17	Offset-Fed Dual Reflector, 424	
	8-18	,	
	8-19	1	
	8-20	•	
		8-20.1 Cylindrical Reflector Synthesis, 433	
		8-20.2 Circularly Symmetrical Reflector Synthesis, 434	
		8-20.3 Doubly Curved Reflector for Shaped Beams, 437	
		8-20.4 Dual Shaped Reflectors, 439	
	8-21	- F	
		Multiple-Beam Reflectors, 442	
	Refere	nces, 443	
9	Lens A	Antennas	447
	0.1		
	9-1	Single Refracting Surface Lenses, 448	
	9-2		
	9-3 9-4	,	
	9-4		
	9-6	•	
	9-7	•	
	9-8	• • • • • • • • • • • • • • • • • • • •	
	7 0	9-8.1 Coma-Free Axisymmetric Dielectric Lens, 466	
		9-8.2 Specified Aperture Distribution Axisymmetric	
		Dielectric Lens, 468	
	9-9	Bootlace Lens, 470	
	9-10		
		nces, 472	
10	T	ing Word Automog	47 4
10		ing-Wave Antennas	474
	10-1	General Traveling Waves, 475	

8-3 Approximate Spillover and Amplitude Taper Trade-offs, 385

	10-1.1 Slow Wave, 478	
	10-1.2 Fast Waves (Leaky Wave Structure), 480	
10-2	Long Wire Antennas, 481	
	10-2.1 Beverage Antenna, 481	
	10-2.2 V Antenna, 482	
	10-2.3 Rhombic Antenna, 483	
10-3	,	
	10-3.1 Multiple-Feed Yagi-Uda Antennas, 492	
	10-3.2 Resonant Loop Yagi–Uda Antennas, 495	
10-4		
10-5	` '	
10-6	•	
	10-6.1 Helical Modes, 503	
	10-6.2 Axial Mode, 504	
	10-6.3 Feed of a Helical Antenna, 506	
	10-6.4 Long Helical Antenna, 507	
10.7	10-6.5 Short Helical Antenna, 508	
10-7		
10-8	1	
10-9	Leaky Wave Structures, 516 nces, 518	
Kelelel	ices, 318	
TD		501
Freque	ency-Independent Antennas	521
Spiral .	Antennas, 522	
11-1	Modal Expansion of Antenna Patterns, 524	
11-2	Archimedean Spiral, 526	
11-3	Equiangular Spiral, 527	
11-4	Pattern Analysis of Spiral Antennas, 530	
11-5	Spiral Construction and Feeding, 535	
	11-5.1 Spiral Construction, 535	
	11-5.2 Balun Feed, 536	
	11-5.3 Infinite Balun, 538	
	11-5.4 Beamformer and Coaxial Line Feed, 538	
11-6		
	Feed Network and Antenna Interaction, 540	
	Modulated Arm Width Spiral, 541	
11-9		
11-10	Mode 2 Conical Log Spiral Antenna, 549	
11-11	Feeding Conical Log Spirals, 550	
_	riodic Antennas, 550	
11-12	e i	
	11-12.1 Feeding a Log-Periodic Dipole Antenna, 556	
	11-12.2 Phase Center, 558 11-12.3 Elevation Angle, 559	
11 12	11-12.4 Arrays of Log-Periodic Dipole Antennas, 560 Other Log-Periodic Types, 561	
11-13 11-14	Log-Periodic Antenna Feeding Paraboloidal Reflector, 563	
44 17	Log i chouse a michina i counte i arabbidian i tenecible 303	

11

	11-16	V Log-Periodic Array, 567 Cavity-Backed Planar Log-Periodic Antennas, 569 nces, 571	
12	Phased	l Arrays	573
	12-1	Fixed Phase Shifters (Phasers), 574	
	12-2	Quantization Lobes, 578	
	12-3	Array Errors, 580	
		Nonuniform and Random Element Existence Arrays, 582	
		12-4.1 Linear Space Tapered Array, 582	
		12-4.2 Circular Space Tapered Array, 584	
		12-4.3 Statistically Thinned Array, 587	
	12-5	Array Element Pattern, 588	
	12-6	Feed Networks, 590	
		12-6.1 Corporate Feed, 590	
		12-6.2 Series Feed, 592	
		12-6.3 Variable Power Divider and Phase Shifter, 592	
		12-6.4 Butler Matrix, 594	
		12-6.5 Space Feeding, 596	
		12-6.6 Tapered Feed Network with Uniform-Amplitude	
		Subarrays, 597	
	12-7	Pattern Null Formation in Arbitrary Array, 599	
	12-8	Phased Array Application to Communication Systems, 601	
	12-9	Near-Field Measurements on Phased Arrays, 602	
	Referen	nces, 604	

Index 607