Homework #1 (Due before start of lecture 2)

1. The price of a three-year zero-coupon government bond is \$85.16. The price of a similar four-year bond is \$79.81. What is the one-year implied forward rate from year 3 to year 4?

Relevant Equation: $B_3 = B_4 (1 + F_{3.4})$

2. Put-call Parity: $c + Ke^{-r\tau} = se^{-y\tau} + p$

Jeff is an arbitrage trader, who wants to calculate the implied dividend yield on a stock while looking at the over-the-counter price of a five-year European put and call on the stock. He has the following data: s = \$85, K = 90, r = 5%, c = \$10, and p = \$15. What is the continuous implied dividend yield of the stock (y in the above equation)?

3. Asset Returns

Suppose that an asset has a simple return of 5% for year 1, 10% for year 2, -5% for year 3, 0% for year 4, and -10% for year 5. Calculate the corresponding continuously compounded (log) returns, and display your results in a table of three columns (time, simple returns, log returns).

Relevant Equation: r = log(1 + R), where r = log return and R = simple return.

4. Forward Rates

$$R_{F,i} = \frac{R_i T_i - R_{i-1} T_{i-1}}{T_i - T_{i-1}}$$
 for i = 2,3,4,5

Suppose that zero interest rates with continuous compounding are as follows:

Maturity (years)	Rate (%	% per annum)
1		2.0
2		3.0
3		3.7
4		4.2
.5	•	4.5

Calculate forward interest rates for the second, third, fourth, and fifth years.

Display your results as a table with two columns: time and forward rate.

Note: Put all your answers (outputs) and MATLAB code in one Word file and post to Blackboard.

Formatting note: Use 'format short g' to display both integers and other numbers nicely in a single table