

Sintesi Sequenziale Sincrona

Sintesi Comportamentale di reti Sequenziali Sincrone di Macchine Senza Processo di Ottimizzate a Livello Comportamentale

> Sintesi comportamentale e architettura generale Diagramma degli stati Tabella degli stati

Tabella delle Transizioni: Codifica dello Stato Tabella delle Eccitazioni: Scelta degli elementi di memoria Esempi

Appendice: Trasformazioni tra bistabili

versione 18/05/04

- Le uscite di un circuito sequenziale in un dato istante di tempo dipendono:
 - Dallo condizione iniziale del circuito;
 - Dalla sequenza di ingressi, applicata in un arco temporale finito, fino all'istante considerato
- Questo aspetto implica che il dispositivo ha memoria degli eventi passati
- In un generico istante t l'informazione relativa al "contenuto" di questa memoria è rappresentata nel concetto di stato
 - Nota: le reti combinatorie possono essere considerate un caso particolare di sistema sequenziale dove lo stato è unico

- 2 -

Progetto e strumenti

- Progetto di reti combinatorie
 - I metodi sono noti e ben assestati
 - Si ricercano nuove soluzioni che aumentino l'efficienza:
 - · Computazionale degli strumenti automatici
 - Nell'uso delle risorse (es. BDD)
 - · Metodologica (es. Signature Cube '92)
- Progetto di reti sequenziali
 - L'ottimizzazione di circuiti sequenziali è in costante evoluzione
 - · Esistono dei buoni metodi ma non di uso generale
 - Lo sviluppo di software efficienti necessita di ulteriori sforzi

- 3 -

Modello del circuito sequenziale

Il modello di un circuito sincrono può essere

- Comportamentale (descrive l'evoluzione degli stati e delle uscite del dispositivo)
 - La transizione degli stati è descritta in termini di tabelle o diagrammi
 - Le informazioni sugli stati sono esplicite
 - Le informazioni sull'area e sui ritardi sono implicite
- Strutturale
 - Il modello del circuito è una *netlist* ovvero un insieme di componenti, registri e logica combinatoria, collegati tra loro

- 4 -

- Le informazioni sugli stati sono implicite
- Le informazioni sull'area e ritardi sono esplicite

Modello comportamentale

- Il modello generale delle macchine sequenziali a cui si fa riferimento è quello delle Macchine a Stati Finiti Deterministiche (Finite State Machine - FSM)
 - con questo modello le macchine sequenziali vengono descritte tramite la teoria degli automi
 - su questo modello si basano la metodologia e le tecniche di sintesi esposte

Macchine a stati finiti deterministiche

- fisica realizzabilità: il numero di stati è finito e il comportamento della macchina in un istante t non dipende da eventi futuri
- dato uno stato ed una configurazione di ingresso il nuovo stato è identificato univocamente
- Si considera la sintesi di FSM sincrone

- 5 -

Sintesi comportamentale di FSM (1)

- una macchina sequenziale è definita dalla quintupla $(I, U, S, \delta, \lambda)$
 - I Alfabeto di Ingresso
 - · E' costituito dall'insieme finito dei simboli di ingresso
 - Con *n* linee di ingresso si hanno 2ⁿ simboli
 - U Alfabeto d'Uscita
 - · E' costituito dall'insieme finito dei simboli d'uscita
 - Con *m* linee d'uscita si hanno 2^m simboli
 - S Insieme degli Stati
 - · Insieme finito e non vuoto degli stati.
 - Spesso viene definito anche uno stato iniziale o stato di reset,in cui la macchina deve portarsi all'accensione o all'applicazione del segnale di reset
 - $_{-}$ δ Funzione stato prossimo
 - λ Funzione d'uscita

- 6 -

Sintesi comportamentale di FSM (2)

- Ad ogni stato presente e per ogni simbolo di ingresso la funzione $\pmb{\delta}$ associa uno stato prossimo:

$$\delta: S \times I \rightarrow S$$

- Ad ogni coppia {stato, simbolo di ingresso} è associato, se specificato, uno ed uno solo stato prossimo.
- Definisce l'evoluzione della macchina nel tempo, in risposta agli eventi in ingresso

□ Funzione d'uscita λ

- Genera il simbolo d'uscita
- Macchine di Mealy: l'uscita dipende sia dallo stato presente sia dall'ingresso:

$$\lambda : S \times I \rightarrow U$$

- Macchine di Moore: l'uscita dipende solamente dallo stato presente:

$$\lambda: S \to U$$

Macchine di Mealy e Macchine di Moore

Macchine di Mealy

- la funzione di uscita costituisce la risposta della macchina quando, trovandosi in un certo stato presente, riceve un simbolo di ingresso
- nelle macchine di Mealy, l'uscita va "letta" mentre la macchina subisce una transizione di stato

Macchine di Moore

- la funzione di uscita costituisce la risposta della macchina associata allo stato in cui si trova
- nelle macchine di Moore, l'uscita viene letta mentre la macchina si trova in un determinato stato
- E' possibile trasformare una macchina di Mealy in una macchina equivalente di Moore, e viceversa

- 7 -

Architettura generale

Struttura generale di una macchina sequenziale (Huffman):

SUTTONO STATE OF THE PARTY OF T

Architettura generale: macchina di Mealy

Struttura generale di una macchina di Mealy:

- 10

Architettura generale: macchina di Moore

Struttura generale di una macchina di Moore:

Architettura generale

- La sintesi comportamentale di una rete sequenziale consiste nella:
 - Identificazione delle le funzioni δ e λ
 - Sintesi della rete combinatoria che le realizza
- Gli elementi di memoria sono costituiti da Flip-Flop
 - I flip-flop di tipo D sono quelli usati più comunemente
- La funzione di stato prossimo δ dipende dal tipo di bistabili utilizzati.
- La funzione di uscita ¹⁄₂ non dipende dal tipo di bistabili utilizzati.

- 11 -

- 12 -

Architettura generale

□ La funzione δ dipende dai bistabili utilizzati:

- 13 -

Tabella degli stati

Il comportamento di una FSM può essere descritto mediante la *Tabella degli stati*

- $exttt{ iny Gli indici di colonna sono i simboli di ingresso}$ $i_{lpha} \in I$
- $\tt a$ Gli indici di riga sono i simboli di stato $s_j \in \mathcal{S}$ che indicano lo stato presente
- Gli elementi della tabella sono:
 - Macchine di Mealy
 - la coppia $\{u_{\beta}, s_{j}\}$
 - $u_{\beta} = \lambda(i_{\alpha'} s_i)$ è il simbolo di uscita
 - $s_i = \delta(i_{\alpha'}, s_i)$ è il simbolo stato prossimo

	i_1	\mathtt{i}_2	
S_1^t	S_j^{t+1}/u_j	S_k^{t+1}/u_k	
S_2^t	${\rm S_m^{t+1}/u_m}$	S_1^{t+1}/u_1	

- Macchine di Moore
- Il simbolo stato prossimo s_i
- $s_i = \delta(i_{\alpha'}, s_i)$ è il simbolo stato prossimo
- i simboli d'uscita sono associati allo stato presente

- 14 -

Diagramma degli stati

- Spesso, la stesura della Tabella degli stati stati è preceduta da una rappresentazione grafica ad essa equivalente, denominata Diagramma degli stati
- □ Il diagramma degli stati è un *grafo orientato G(V,E,L)*
 - v Insieme dei *nodi*
 - · Ogni nodo rappresenta uno stato
 - · Ad ogni nodo è associato un simbolo d'uscita (macchine di Moore)
 - E Insieme degli archi
 - · Ogni arco rappresenta le transizioni di stato
 - · Ad ogni arco è associato un simbolo di uscita (macchina di Mealy)
 - L Insieme degli:
 - Ingressi e Uscite (macchina di Mealy)
 - Ingressi (macchina di Moore)

Macchina di Mealy: Esempio

 Equivalenza delle due rappresentazioni nel caso di una macchina di Mealy

Diagramma degli stati

Tabella degli stati

	0	1
S ₀	$S_1/1$	$S_2/1$
S_1	S ₃ /0	S ₂ /1
S ₂	$S_{1}/1$	S ₃ /0
S ₃	S ₃ /0	S ₀ /0

Macchina di Moore: Esempio

 Equivalenza delle due rappresentazioni nel caso di una macchina di Moore

Diagramma degli stati

Tabella degli stati

	0	1	U
S ₀	S_1	S_2	00
S_1	S_3	S_2	01
S ₂	S_1	S ₃	10
S ₃	S_3	S ₀	11

- 17 -

STEEN CO

Passi della Sintesi di una FSM (i)

- Realizzazione del diagramma degli stati a partire dalle specifiche funzionali (informali) del comportamento del sistema
 - e' il passo che richiede maggior intuito, anche se è più semplice rispetto al costruire direttamente la tabella degli stati
 - una volta identificato lo stato iniziale, si applicano a tale stato tutte le possibili configurazioni di ingresso
 - stato iniziale: identificazione univoca e non ambigua di uno stato da cui iniziare la stesura del diagramma degli stati
 - stato di reset: se questo è definito esplicitamente nella specifica funzionale
 - ogni configurazione di ingresso può portare a uno stato già esistente oppure a un nuovo stato che viene aggiunto al diagramma
 - per ogni nuovo stato introdotto, si applicano tutte le sequenze di ingresso
 - II procedimento termina quando non vengono più introdotti nuovi stati

- 18 -

Passi della Sintesi di una FSM (i): Esempio

Controllore di parità (dispari)

- Una macchina sequenziale sincrona ha un ingresso x e un'uscita z.
 L'uscita z assume il valore 1 se e solo se sull'ingresso si sono presentati un numero dispari di 1. In ogni altro caso è z uguale a 0.
 All'accensione la macchina riconosce parità dispari non verificata.
- Considerazioni:
 - specifiche funzionali analitiche: non è necessario ulteriore raffinamento
 - dalle specifiche, c'è uno stato di RESET esplicito e la macchina da sintetizzare è una macchina di Moore

Passi della Sintesi di una FSM (ii)

- 2. Costruzione della *tabella degli stati* a partire da diagramma degli stati
 - non introduce alcuna informazione aggiuntiva. Definisce la cardinalità iniziale degli stati e le funzioni δ e λ in forma astratta

	0	1	U
S ₀	S_1	S ₂	0.0
\mathtt{S}_1	S ₃	S_2	01
S_2	S ₁	S ₃	10
S ₃	S ₃	S ₀	11

- 3. Riduzione del numero degli stati: ottimizzazione
 - Identificazione di una macchina equivalente (oppure di una macchina compatibile) minima a quella rappresentata dalla tabella degli stati
 - I criteri di riduzione del numero degli stati per equivalenza e compatibilità verranno affrontati in seguito

- 19 -

Passi della Sintesi di una FSM (iii)

- Costruzione della tabella delle transizioni della FSM.
 - In modo informale, si può dire che questo passo traduce la tabella degli stati in una tabella rappresentata tramite funzioni di commutazione.
 - Nota: ad una tabella degli stati corrispondono più tabelle delle transizioni
 - Definisce l'assegnamento degli stati e cioè
 - il numero di variabili di stato necessarie (y_i: stato presente e Y_i: stato prossimo) a rappresentare la cardinalità degli stati
 - In questo modo viene determinato il numero di flip-flop necessari a relizzare la macchina
 - assegna una codifica (configurazione tra quelle disponibili nel codice) ad ogni stato.
 - La scelta della codifica influenza in modo significativo la realizzazione e complessità circuitale della funzione stato prossimo δ (anche in funzione dei bistabili utilizzati)
 - I criteri di assegnamento verranno affrontati in seguito

- 21 -

Passi della Sintesi di una FSM (iii): Esempio

Costruzione della *tabella delle transizioni* della FSM

Tabella degli stati

	0	1	U
S ₀	S_1	S ₂	00
S_1	S_3	S ₂	01
S_2	S ₁	S ₃	10
S ₃	S ₃	S ₀	11

Assegnamento degli stati

- •2 <u>variabili di stato</u> **y**₀**y**₁ (quindi 2 bistabili)
- Assegnamento banale

- 22 -

 $S_0 = 00$

 $S_1 = 01$

 $s_2 = 11$

 $s_3 = 10$

Tabella delle transizioni

\I.			
7 ₀ Y ₁	0	1	U
00	01	11	00
01	10	11	01
11	01	10	10
10	10	00	11

 $Y_0Y_1 =$

stato prossimo

COURCE OF STREET

Passi della Sintesi di una FSM (iv)

- 5. Costruzione della tabella delle eccitazioni della FSM
 - Scelta degli elementi di memoria.
 - Una volta scelti gli elementi di memoria, la tabella delle eccitazioni della macchina è ottenuta dalla tabella delle transizioni della macchina e da quella delle eccitazioni del bistabile scelto
 - Al termine di questo passo, per ogni bistabile (e cioè per ogni variabile di stato) si hanno le funzioni di commutazione relative ai suoi ingressi che consentono le transizione stato presente - stato prossimo
- Sintesi ottimizzata sia della rete combinatoria che realizza la funzione stato prossimo sia della rete combinatoria che realizza la funzione d'uscita

Passi della Sintesi di una FSM (iv)

- 23 -

Passi della Sintesi di una FSM (iv)

- La tabella delle transizioni descrive la relazione tra i bit di stato presente e quelli di stato futuro.
 - La configurazione binaria dello stato presente corrisponde all'uscita dei bistabili relativi
 - La configurazione binaria dello stato prossimo precisa quello che si desidera ottenere
- A seconda del tipo di bistabile scelto, variano i segnali che devono essere generati per realizzare la transizione stato presente - stato prossimo desiderata
 - I segnali di ingresso di un bistabile prendono il nome di eccitazioni
- La tabella delle eccitazioni di un bistabile rappresenta il mezzo di collegamento tra la tabella delle transizioni e la tabella delle eccitazioni di una specifica macchina a stati.

- 25 -

Passi della Sintesi di una FSM (iv)

Si scelgono i bistabili SR

Tabella delle transizioni

0	1	U
01	11	0.0
10	11	01
01	10	10
10	00	11
	01 10 01	01 11 10 11 01 10

 $Y_0Y_1 =$

stato prossimo

Tabella delle eccitazioni del FF SR

Q	Q*	C	S	R	
0	0	0	-	-	
1	1	0	-	-	
0	0	1	0	-	
0	1	1	1	0	
1	0	1	0	1	
1	1	1	-	0	

Tabella delle eccitazioni con FF SR

	\ I			
y	$_{0}\mathbf{y}_{1}$	0	1	U
	00	0-,10	10,10	00
	01	10,01	10,-0	01
	11	01,-0	-0,01	10
	10	-0,0-	01,0-	11

SoRo SIR

Dalla tabella delle eccitazioni posso sintetizzare le reti combinatorie (mappe di Karnaugh) che realizzano S_0R_0 S_1R_1 in funzione di y_0, y_1 e l

- 26 -

Diagramma degli stati - Esempio 1: specifiche

Specifiche

- Una macchina sequenziale sincrona ha un ingresso x e un'uscita z. L'uscita z assume il valore 1 se e solo se sull'ingresso si sono presentati almeno due 0 seguiti esattamente da due 1 (z va a 1 in corrispondenza del secondo 1 su x). In ogni altro caso è z uguale a 0.
- □ Considerazioni:
 - specifiche funzionali analitiche: non è necessario ulteriore raffinamento delle specifiche
 - dalle specifiche, la macchina da sintetizzare è una macchina di Mealy
 - la macchina è un riconoscitore di sequenze nella forma

$$x = ..0011..$$
 $z = ..00010..$

Diagramma degli stati - Esempio 1: stato iniziale - caso (a)

- (a) Scelta dello stato iniziale per la stesura del diagramma degli stati
 - dalle specifiche: " z assume il valore 1 se e solo se sull'ingresso si sono presentati almeno due 0 seguiti esattamente da due 1....."
 - una sequenza di tre o più 1 su x, indipendentemente dalla successione di valori di x ricevuti precedentemente, porta la macchina in uno stato in cui "si aspetta" una sequenza da riconoscere. Inoltre, sicuramente al terzo 1 l'uscita vale 0. Chiamiamo questa sequenza di tre o più 1 "non utile" a fini del riconoscimento
 - la sequenza di esattamente tre 1 su x è la minima sequenza non utile
 - Nota: una sequenza di soli due 1 non sarebbe univoca per l'uscita, in quanto in corrispondenza del secondo 1 l'uscita potrebbe valere 1 (sequenza precedente riconosciuta) oppure 0 (sequenza precedente non riconosciuta)
 - stato iniziale = stato derivante da tre 1 su x, indipendentemente dai valori precedenti

- 27 -

Diagramma degli stati - Esempio 1 - caso (a)

OUTTE CNG

Tabella degli stati - Esempio 1 - caso (a)

Tabella degli stati

	0	1			0	L
A	в,0	A,0		A	в,0	
В	C,0	A,0		В	C,0	
С	C,0	D,0		С	C,0	
D	в,0	E,1		D	в,0	
E	в,0	A,0	A =	E	в,0	

0 1 A B,0 A,0 B C,0 A,0 C C,0 D,0 D B,0 A,1

Riduzione della tabella degli stati

(banale!!)

1

A,0

A,0

D,0

E,1

A,0

- 29 -

- 30 -

Diagramma degli stati - Esempio 1: stato iniziale - caso (b)

(b) Scelta dello stato iniziale per la stesura del diagramma degli stati

- dalle specifiche: " z assume il valore 1 se e solo se sull'ingresso si sono presentati almeno due 0 seguiti esattamente da due 1....."
- una sequenza di due o più 0 su x, indipendentemente dalla successione di valori di x ricevuti precedentemente, porta la macchina in uno stato in cui "si è presentata la parte iniziale, indispensabile, della sequenza da riconoscere". Inoltre, sicuramente l'uscita vale 0. Chiamiamo questa sequenza di due o più 0 "utile" a fini del riconoscimento
- la sequenza di esattamente due 0 su x è la minima sequenza utile
- stato iniziale = stato derivante da due 0 su x, indipendentemente dai valori precedenti

Diagramma degli stati - Esempio 1 - caso (b)

- 31 -

Diagramma degli stati - Esempio 2: specifiche (i)

Specifiche

- Si vuole realizzare un controllore di semaforo all'incrocio tra via Mazzini e via Garibaldi tramite una macchina sequenziale sincrona. La macchina riceve un segnale di sincronismo con periodo di un minuto. Esiste un pulsante P per attraversamento pedonale.
- Normalmente il semaforo alterna un minuto VERDE su via Mazzini e ROSSO su via Garibaldi, poi un minuto VERDE su via Garibaldi e ROSSO su via Mazzini, e così via
- Se si preme il pulsante P, alla scadenza del minuto si porta il ROSSO su entrambe le strade e lo si mantiene per due minuti indipendentemente da P
- al termine dei due minuti riparte il funzionamento normale con la configurazione VERDE-ROSSO per la via in cui precedentemente ai due minuti era ROSSO e successivamente, dopo una nuova alternanza, si prende in considerazione P

- 33 -

Diagramma degli stati - Esempio 2: specifiche (ii)

Considerazioni:

- le specifiche funzionali non sono adatte allo scopo: è utile un ulteriore raffinamento
- dalle specifiche, la macchina da sintetizzare è una macchina di Moore: infatti le uscite devono mantenere il loro valore stabile nell'intervallo tra due impulsi di sincronismo
- Riscrittura delle specifiche
 - due uscite G e M, l'uscita vale 0 se semaforo rosso, 1 se semaforo verde
 - ingresso primario: P, 1 se premuto, 0 altrimenti
- Una macchina sequenziale sincrona ha un ingresso P e due uscite G e M. Se P=0, le due uscite si alternano a 1 ad ogni impulso di sincronismo. Se P=1, le due uscite vanno a 0 per due impulsi di sincronismo. Successivamente, ritornano ad alternarsi con un 1 su quella che precedentemente era 0. Solo dopo una nuova alternanza, P viene preso in considerazione

- 34 -

Diagramma degli stati - Esempio 2: stato iniziale

Scelta dello stato iniziale per la stesura del diagramma degli stati

 stato in cui non è richiesto attraversamento pedonale: ad esempio, stato con uscite 01 e ingresso 0

Sintesi: Esempio 3

 Si sintetizzi la funzione di stato prossimo della seguente FSM nell'ipotesi di utilizzare bistabili di tipo SR

Tabella degli stati

	00	01	11	10	Z	
s 0	S0	S0	S2	S1	1	
s1	S1	S1	S0	S1	0	
s2	S2	S3	so	S2	1	
S 3	S3	S3	S2	S3	0	

Tabella delle transizioni

	00	01	11	10	Z
00	00	00	11	01	1
01	01	01	00	01	0
11	11	10	00	11	1
10	10	10	11	10	0

Codifica

 s0
 00

 s1
 01

 s2
 11

 s3
 10

Tabella delle eccitazioni di un bistabile di tipo SR

• Le quattro mappe di Karnaugh che si ottengono sono quindi:

Appendice

Trasformazioni tra bistabili

Sintesi del bistabile JK tramite altri bistabili

- 38 -

- Specifica: realizzare una FSM sincrona con due ingressi ed una uscita che abbia il seguente comportamento (è il bistabile JK):
 - · Configurazione di ingressi 00: l'uscita non cambia valore
 - Configurazione di ingressi 01: l'uscita assume valore 0
 - · Configurazione di ingressi 10: l'uscita assume valore 1
 - Configurazione di ingressi 11: l'uscita cambia valore dopo ogni fronte di salita del clock

- 40 -

Codifica degli stati

Tabella degli stati

	00	01	11	10	U
S_0	S ₀	S ₀	S_1	S_1	0
S_1	S_1	S ₀	S ₀	S_1	1

oppure

Codifica Naturale

 $S_0 = 0$; $S_1 = 1$

$$S_0=1; S_1=0$$

	\i,;	i,				
Q	H	ÖΟ	01	11	10	U
Tabella delle	0	0	0	1	1	0
transizioni	1	1	0	0	1	1

Q i _H	i 00	01	11	10	U
1	1	1	0	0	0
0	0	1	1	0	1

Tabella delle eccitazioni

- 41 -

OUTECNO.

Tabelle delle transizioni e eccitazioni dei bistabili

Tabelle delle Transizioni:

R	Q*		С	J	K	Q;
-	Q		0	-	-	Q
0	Q		1	0	0	Q
1	0		1	0	1	0
0	1		1	1	0	1
1	-		1	1	1	Q
	- 0 1	- Q 0 Q 1 0	- Q 0 Q 1 0	- Q 0 1 1 0 1	- Q 0 Q 1 0 1 0	- Q 0 Q 1 0 1 0 1

С	D	Q,
0	-	Q
1	0	0
1	1	1

	С	Т	Q*
Ī	0	-	Q
	1	0	Q
	1	1	Q′

Tabelle delle Eccitazioni:

Q	Q*	_	S	R
0	0	0	-	ı
1	1	0	-	-
0	0	1	0	_
0	1	1	1	0
1	0	1	0	1
1	1	1	_	0

Q	Q*	С	J	K
0	0	0	-	-
1	1	0	-	-
0	0	1	0	-
0	1	1	1	-
1	0	1	-	1
1	1	1	-	0

Q	Q*	С	D
0	0	0	-
1	1	0	-
0	0	1	0
0	1	1	1
1	0	1	0
1	1	1	1

Q	Q*	С	Τ
0	0	0	-
1	1	0	-
0	0	1	0
0	1	1	1
1	0	1	1
1	1	1	0

Scelta del Bistabile - FF SR

□ Codifica Naturale $(S_0=0; S_1=1)$

Tabella delle transizioni della FSM

Realizzazione delle reti combinatorie (FF SR)

- 42 -

□ Codifica Naturale ($S_0=0$; $S_1=1$) cont.

Scelta del Bistabile - FF JK

□ Codifica Naturale $(S_0=0; S_1=1)$

Tabella delle eccitazioni della FSM (con FF JK)

Realizzazione delle reti combinatorie (FF JK)

□ Codifica Naturale $(S_0=0; S_1=1)$ cont.

- 46 -

Scelta del Bistabile - FF D

\Box Codifica Naturale ($S_0=0$; $S_1=1$)

Tabella delle transizioni della FSM

Tabella delle eccitazioni della FSM (con FF D)

Nota: Nel caso si faccia uso di FF D. la tabella delle eccitazioni coincide esattamente con la tabella delle transizioni. Questo aspetto rende più semplice prevedere l'affetto della codifica sulla realizzazione e ben si presta per l'applicazione di euristiche.

Realizzazione delle reti combinatorie (FF D)

□ Codifica Naturale $(S_0=0; S_1=1)$ cont.

Tabella delle eccitazioni della FSM (con FF D) Mappa di Karnaugh di D

00 | 01 | 11 | 10 U 0

 $D = !Q * i_H + Q * !i_L$

- 47 -

- L'esempio svolto è relativo alla trasformazione di un elemento di memoria in un altro.
 - Ottenere un JK utilizzando SR, JK, D e T.
- Le trasformazioni tra bistabili sono molto utili quando è richiesto uno specifico elemento di memoria ma non è disponibile
- Un modo differente per raggiungere lo stesso obiettivo è quello di utilizzare le equazioni caratteristiche

T utilizzando un SR

Flip Flop SR Q*=C'Q+C(S+R'Q) Flip Flop T Q*=C'Q+C(TQ'+T'Q) Q=0: $S+R'0=T1+T'0 \rightarrow S=T$ Q=1: $S+R'1=T0+T'1 \rightarrow S+R'=T' \rightarrow S'R=T$ Quindi quando T=1 deve essere S=0 e R=1 mentre quando T=0 deve essere S=1; R=0 oppure S=0; R=1 ma non S=1; R=0 S=TQ'+T'QR=TO

SR utilizzando un T

Flip Flop T Q*=C'Q+C(TQ'+T'Q) Flip Flop SR Q*=C'Q+C(S+R'Q)

Q=0: T1+T'0=S+R'0 \rightarrow T=S
Q=1: T0+T'1=S+R'1 \rightarrow T'=S+R' \rightarrow T=S'R T=SQ'+(S'R)Q