

Gain and Attenuation Functions

ITMO

frequency responses

phase

magnitude
$$G(\omega) = |H(j\omega)| = \left| \frac{V_2(j\omega)}{E(j\omega)} \right|$$

$$\phi(\omega) = argument(H(j\omega))$$

$$G_{dB}(\omega) = 20 \log(G(\omega)) = 20 \log\left(\frac{|V_2(j\omega)|}{|E(j\omega)|}\right)$$
 (dB)

$$A(\omega) = 20 \log \left(\frac{|E(j\omega)|}{|V_2(j\omega)|} \right) = 20 \log \left(\frac{1}{G(\omega)} \right) = -G_{dB}(\omega) \text{ (dB)}$$

Ideal Transmission

ITMO

$$G(\omega)=|H(j\omega)|=A$$

$$G(\omega) = |H(j\omega)| = A$$

Ideal Transmission

Real Transmission

$$G(\omega) = |H(j\omega)| = f_1(\omega) \neq \text{const} \quad \varphi(\omega) = f_2(\omega) \neq t_0 \omega$$

$$D(\omega)$$

$$D(\omega) = -\frac{d}{d\omega}\phi(\omega) = t_0$$

$$D(\omega) = -\frac{d}{d\omega}\phi(\omega) \neq t_0$$

ideal lowpass filter transfer function

$$H(j\omega) = \begin{cases} e^{-j\omega t_0} & for \ |\omega| \le \omega_C \\ 0 & for \ |\omega| \ge \omega_C \end{cases}$$

$$|H(j\omega)| = \begin{cases} 1 & for \ |\omega| \le \omega_C \\ 0 & for \ |\omega| \ge \omega_C \end{cases}$$

$$\varphi(\omega) = t_0 \omega$$

$$h(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H(j\omega) e^{j\omega t} d\omega =$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} |H(j\omega)| e^{-j\omega t_0} e^{j\omega t} d\omega =$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{j\omega(t-t_0)} d\omega =$$

$$= \frac{\omega_C}{2\pi} \frac{\sin(\omega_C(t-t_0))}{\omega_C(t-t_0)}$$

Real Electronic Filters

$$h(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H(j\omega) e^{j\omega t} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} |H(j\omega)| e^{-j\omega t_0} e^{j\omega t} d\omega =$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{j\omega(t-t_0)} d\omega = \frac{\omega_C}{2\pi} \frac{\sin(\omega_C(t-t_0))}{\omega_C(t-t_0)}$$

Realizable Lowpass Filters

 $H_{\mathcal{C}}$ - minimum allowed gain in the passband $\omega_{\mathcal{C}}$ - cut-off frequency $H_{\mathcal{S}}$ - maximum allowed value of the gain in the stopband $\omega_{\mathcal{S}}$ - stopband edge frequency

The five quantities H_o , H_c , H_s , ω_c and ω_s constitute the magnitude specifications of the realizable lowpass filter and are dictated by the requirements of the system

Realizable Lowpass Filters

ITMO

Realizable Highpass (HP) Filters

Realizable Bandpass (BP) Filters

Bandwidth $BW = \Delta f = \omega_{C2} - \omega_{C1}$

center frequency $\omega_0 = \sqrt{\omega_{C2} * \omega_{C1}}$

Realizable Band-Reject (BR) Filters

BandWidth $BW = \omega_{C2} - \omega_{C1}$

Stopband BandWidth $BWS = \omega_{S2} - \omega_{S1}$

Center Frequency $\omega_0 = \sqrt{\omega_{S2} * \omega_{S1}}$

Logarithmic Gain Bandpass And Band-reject Filter

Bandpass filter

Band-reject filter

Classification of analogue electronic filters

Classification filter by input signal, their internal signals and the output signals

i. Continuous-time (CT)

iii. Discrete-time

$$f(t)$$
 at any t

$$f_{S}(t) = \sum_{n=-\infty}^{+\infty} f(nT) * \delta(t - nT)$$

$$f(nT)$$
 For $-\infty < n_1 \le n \le n_2 < +\infty$

$$f(t)$$
 - continuous time signal T - sampling period

 $f_{\rm s}(t) = 0$ for $nT \le t < (n+1)T$

And
$$f(nT) = 0$$

if $nT \le t < (n+1)T$

Classification of analogue electronic filters

Classification filter by input signal, their internal signals and the output signals

i. Continuous-time (CT)

f(t) at any t

$$f_{S}(t) = \sum_{n=-\infty}^{+\infty} f(nT) * \delta(t - nT)$$

$$f(t)$$
 - continuous time signal T - sampling period $f_s(t) = 0$ for $nT \le t < (n+1)T$

iii. Discrete-time

$$f(nT)$$
 For $-\infty < n_1 \le n \le n_2 < +\infty$

And
$$f(nT) = 0$$

if $nT \le t < (n+1)T$

Classification of analogue electronic filters

General classification of analogue electronic filters:

- 1. Passive RLCM filters
- 2. Active-RC filters
- 3. Integrated MOS-C filters
- 4. Integrated OTA-C or gm C filters
- 5. Current-mode integrated filters.
- 6. Active switched capacitor filters designed for discrete-time signals
- 7. Microwave filters with distributed parameters (waveguides) and microwave filters based on microwave resonators and cavities.
- 8. Crystal filters
- 9. Mechanical and electromechanical filters

Filter frequency range

LC circuits

ITMO

Lattice structure

Ladder structure

Benefits LC circuits

- (a) can satisfy any practical filter specifications
- (b) need a minimum number of components
- (c) can be designed so that they can maximize the power transferred from source to load in some frequencies in their passband.

19

Lattice LC circuits

disadvantages when compared to the ladder topology:

- for a given set of requirements, it needs more lossless elements than the corresponding ladder
- 2. it presents high sensitivity to component changes

To realize a transmission zero in passband, a bridge equilibrium is required:

$$|Z_A(j\omega)| = |Z_B(j\omega)|$$

Designing a Filter. Example

We need lowpass filter with the following specifications

- (a) For $0 \le f \le 1$ kHz the gain is G(f) = 4
- (b) For f > 1 kHz the gain is G(f) = 0.7

Designing a Filter. Example

For the filter to be realizable, some tolerance should be given:

- (a) For $0 \le f \le 1$ kHz the gain may vary $3.9 \le G(f) \le 4$
- (b) For $1 \, kHz \le f \le 3 \, kHz$ the gain must be $G(f) \le 3.9$
- (c) For f > 3 kHz the gain must be $G(f) \le 0.7$

Scaling and Normalization

let be characteristic frequency at ω_0 , wish to move it to another frequency ω_X

$$\omega_0 \Longrightarrow \omega_X$$

So *scale* the frequency by $\gamma = \frac{\omega_0}{\omega_X}$

functions will be frequency-scaled by the factor γ .

$$H(s) \Rightarrow H(\gamma s), G(\omega) \Rightarrow G(\gamma \omega)$$

When using $\omega_X=1$,want the characteristic frequency to move from $\omega=\omega_0$ to $\omega=1$ this particular frequency scaling is called *frequency normalization*.

The new scaled frequency $\frac{\omega}{\omega_0} = \Omega$ is the *normalized frequency*.

A frequency-normalized filter is a filter which satisfies normalized specifications. It can be easily denormalized so that the cutoff frequency takes any desirable value, without affecting gain and attenuation characteristics.

Scaling and Normalization. Example

A frequency-normalized filter is a filter which satisfies normalized specifications. It can be easily denormalized so that the cutoff frequency takes any desirable value, without affecting gain and attenuation characteristics.

Approximation

ITMO

approximation - finding the normalized gain function $G(\omega)$

and theoretically has an infinite number of solutions

To minimize the number of solutions, the function should be satisfy some realizability conditions

- $\triangleright G(\Omega)$ even function of Ω
- $\triangleright G^2(\Omega)$ even rational function

Solution that satisfies the conditions in question

$$G(\Omega) = \frac{A}{\sqrt{1 + k^2 P^2(\Omega)}}$$

where k is a constant and $P(\Omega)$ is a polynomial or a rational function of Ω .

26

Approximation

ITMO

Approximation:

- Butterworth
- Chebyshev
- Inverse Chebyshev
- Bessel
- Pascal
- Inverse Pascal
- Elliptic
- ❖ And so on...

General Filter Design Procedure

design procedure:

- 1. Frequency is scaled using ω_C so that the normalized cutoff frequency becomes 1 and the stopband edge frequency $\Omega_S = \frac{\omega_S}{\omega_C}$
- 2. Using one of the known approximations, the corresponding transfer function H(s) is calculated, whose frequency response $|H(j\Omega)| = G(\Omega)$ satisfies the specifications.
- 3. The normalized filter circuit is synthesized from H(s).
- The filter is denormalized to the desired frequency and impedance level.

impedances divided (scaled) by k

$$E \stackrel{\widetilde{k}}{\longleftrightarrow} V_2 \stackrel{R_L}{\longleftrightarrow} H(S)$$

$$(s) = \frac{1/LC}{s^2 + (\frac{R_S}{L} + \frac{1}{R_LC})s + \frac{1 + R_S/R_L}{LC}}$$

$$Z_n(s) = \frac{Z(s)}{k}$$

Impedance Scaling

the scaled resistors will be dimensionless quantities

$$R_{Sn} = \frac{R_S}{R_0}$$

$$R_{Ln} = \frac{L}{R_0}$$

dimensionless

$$L_n = \frac{L}{R_0}$$

$$\frac{1}{sC} = \frac{1}{sC} \frac{1}{R_0}$$

measured in seconds

Frequency Scaling

ITMO

Full Normalization

ITMO

dimensionless normalized values

$$R_{Sn}=rac{R_S}{R_L}$$
, $R_{Ln}=rac{R_L}{R_L}=1$, $L_n=rac{\omega_0}{R_L}L$, $C_n=\omega_CR_L$ C

normalized dimensionless angular frequency, time and frequency

$$\Omega = \frac{\omega}{\omega_C}$$
, $t_n = \frac{\omega_C}{2\pi}t$, $F_n = \frac{2\pi}{\omega_C}f$

Denormalized value

$$R_n = R_L R_n$$
, $L = \frac{R_L}{\omega_0} L_n$, $C = \frac{1}{\omega_C R_L} C_n$

Prototype Filters

ITMO

dimensionless normalized values

$$R_{Sn} = \frac{R_S}{R_L}$$
, $R_{Ln} = \frac{R_L}{R_L} = 1$, $L_n = \frac{\omega_0}{R_L}L$, $C_n = \omega_C R_L C$

normalized dimensionless angular frequency, time and frequency

$$\Omega = \frac{\omega}{\omega_C}$$
, $t_n = \frac{\omega_C}{2\pi}t$, $F_n = \frac{2\pi}{\omega_C}f$

Denormalized value

$$R_n = R_L R_n$$
, $L = \frac{R_L}{\omega_0} L_n$, $C = \frac{1}{\omega_C R_L} C_n$

Circuit Order

ITMO

number of reactive elements: 7 inductors: 3

capacitors: 4

maximum order (as expected): 7

each L-node, C-node, L-loop or C-loop reduces the Circuit order by 1

number of reactive elements: 7

inductors: 3

capacitors: 4

L and C-node: 1

L and C-loop: 1

maximum order: 5

Circuit Order. Example

ITMO

number of reactive elements: 3 Inductors and capacitors: 1+2 maximum order (as expected): 3

$$H(s) = \frac{L_1 C_1 s^2 + 1}{L_1 C_1 C_2 R_1 s^3 + [L_1 C_1 + L_1 C_1 (1 + \frac{R_1}{R})] s^2 + (R_1 C_2 + \frac{L_1}{R}) s + 1 + \frac{R_1}{R}}$$

$$H(s) = \underbrace{L_1 C_1 s^2 + 1}_{C_1 + C_1) s + \frac{L_1}{R} + 1}$$

number of reactive elements: 3 Inductors and capacitors: 1+2 node and loop: 1 maximum order: 2

Canonic circuits

do not have L-nodes, C-nodes, L-loops or C-loops

All-Pole Approximations

transfer function

$$H(s) = \frac{k}{D(s)} = \frac{k}{s^N + B_{N-1}s^{N-1} + \dots + B_1s + B_0}$$

where D(s) is in general a polynomial in s of degree N:

$$s_p = -c \ (c > 0)$$

acceptable of poles

$$s_p = -a \pm jb$$
 , with negative real part

general form of the magnitude response of all-pole lowpass filters

$$|H(j\Omega)| = \frac{|k|}{\sqrt{1 + [|D(j\Omega)|^2 - 1]}} = \frac{|k|}{\sqrt{1 + Q(\Omega)}} \qquad G(\Omega) = |H(j\Omega)| = \frac{H_o}{\sqrt{1 + P_a(\Omega)}}$$

All-Pole Transfer Functions and Approximations

$$G(\Omega) = |H(j\Omega)| = \frac{H_o}{\sqrt{1 + P_a(\Omega)}}$$

$$G(\Omega) = \frac{H_o}{\sqrt{1 + \gamma^2 P_N^2(\Omega)}}$$

with $P_{N}(\Omega)$ being the approximating polynomial (complete even or odd) and γ a design parameter.

- 1. Sarma M. S. Introduction to electrical engineering. New York: Oxford University Press, 2001. C. 715-716.
- Boylestad, Robert L. Electronic devices and circuit theory / Robert L. Boylestad, Louis Nashelsky.—11th ed.
- ISBN 978-0-13-262226-4Scherz P., Monk S. Practical electronics for inventors.
 McGraw-Hill Education, 2016.
- 4. Horowitz, Paul, and Winfield Hill. "The Art of Electronics. 3rd." *New York, NY, USA: University of Cambridge* (2015).
- 5. All about circuits (https://www.allaboutcircuits.com/)
- 6. https://www.electronics-tutorials.ws/
- 7. https://en.wikipedia.org/

