Bericht der Woche 22.4. - 29.4.

LiDAR

Metadaten:

Name	Value
Produktname	TIM551-2050001
Hersteller	SICK
Lichtquelle	850nm (Infrarot)
Scannbereich	270°
Winkelauflösung	1°
Funktionsreichweite	0.05 m - 10 m
Delay	$\sim 67 \mathrm{ms}$
Systematischer Err.	$\pm 60 \mathrm{mm}$
Statischer Err.	$<20 \mathrm{mm}$
Interface	TCP/IP od. USB
Arbeitstemperatur	$-25^{\circ}{ m C}$ - $50^{\circ}{ m C}$
Montagehöhe	TBD
Scanbereichdim.	2D

- Tatsächlicher Scannbereich varriert je nach Umgebungs-/Oberflächeneigenschaften
- Umgebungslichtunabhägig
- Lagedaten in Messung einbezogen

ROS und ROS2

- Bibliothek erfüllen identische Funktionalitäten ### Topics:
- $\bullet \ / cloud \ (sensor_msgs/msg/PointCloud2)$
- /imu (sensor_msgs/msg/Imu) 1
- /scan (sensor_msgs/msg/LaserScan) 2

GNSS

ROS sensor_msgs/NavSatFix Message

uint8 COVARIANCE_TYPE_UNKNOWN=0
uint8 COVARIANCE_TYPE_APPROXIMATED=1
uint8 COVARIANCE_TYPE_DIAGONAL_KNOWN=2
uint8 COVARIANCE_TYPE_KNOWN=3
std_msgs/Header header
sensor_msgs/NavSatStatus status
float64 latitude
float64 longitude
float64 altitude
float64[9] position_covariance
uint8 position_covariance_type

Mögliche Fehler

Fehler, die die Genauigkeit der Positionierung durch GPS / GNSS-Methoden beeinträchtigen hängen zusammen:

- Das Signal wird während seines Durchgangs durch die Atmosphäre auf variable Weise verlangsamt.
- Das Signal ist möglicherweise blockiert und erreicht den Empfänger in Städten aufgrund von Bäumen, Brücken, Tunneln usw. nicht.
- Das Signal kann von Elementen auf dem Boden (Metalloberflächen, Fenster, Gebäude usw.) reflektiert werden.
- Fehler, die sich auf die Entfernungsmessung zwischen den verschiedenen Satelliten und dem Empfänger des Benutzers auswirken

Odometrie Datenformat

Husky Implementierung

• drei Topics bereits implementiert

Topic	Sources	Description
husky_velocity_controlle	erl/ uslky n_node	Raw odometry as read from Husky encoders
imu/data	mu_filter_madgwi	ckOrientation estimate from the IMU
odometry/filtered	ekf_localization_ne	ofensed odometry estimate (encoders and IMU)

nav_msgs/Odometry.msg

- $\mbox{\tt\#}$ This represents an estimate of a position and velocity in free space.
- # The pose in this message should be specified in the coordinate frame given by header.frame # The twist in this message should be specified in the coordinate frame given by the child_:

Header header string child_frame_id geometry_msgs/PoseWithCovariance pose

geometry_msgs/TwistWithCovariance twist