${\bf Jeffrey\ Chang} \\ {\bf jeffrey_chang@g.harvard.edu-https://jeffjar.me}$

Education	Ph.D. student in Physics, Harvard University B.S. in Physics, Stanford University (GPA: 4.03)	2020– 2016–'20
Career	 Graduate Researcher in Nicholas Polizzi Lab Dana Farber Cancer Institute De novo protein design of ligand-binding proteins 	2022-
	 Graduate Researcher in Michael Desai Lab Harvard Dept. of Organismic and Evolutionary Biology Using high-throughput measurements of binding affinity to study sequence-to-function landscapes of antibodies 	2021-
	 Rotation Student in Wesley Wong Lab Wyss Institute at Harvard University Single-molecule force spectroscopy and Bayesian inference for characterizing polyclonal antibodies 	2021–'22
	 Biophysics / Statistical Modeling Consultant Manifold Biotechnologies, Inc. Algorithmic development of a proprietary platform for highly multiplexed quantification of barcoded proteins 	2020-
	 Textbook Author with Prof. Steven A. Kivelson and Dr. Jack M. Jiang Stanford Dept. of Physics Writing an undergraduate textbook, "Statistical Mechanics of Phases and Phase Transitions" 	2019–
	 Undergrad Researcher in Steve Boxer Lab Stanford Dept. of Chemistry X-ray crystallography to study photochemical pathways in fluorescent proteins 	2017–'19
	Software Engineering Intern Schrödinger, Inc. • Helped develop python GUI for protein structure visualization	2017
Teaching	 Teaching Assistant, Harvard Dept. of Applied Math Applied Math 104: Complex and Fourier Analysis (Aut. 21-22) 	2021
	 Teaching Assistant, Stanford Dept. of Physics Physics 216: Back of the Envelope Physics (Aut. 19-20) Physics 63: Electricity, Magnetism, and Waves (Wtr. 19-20) 	2019–'20
	 Peer Tutor, Stanford Center for Teaching and Learning Tutored Stanford undergraduates in math and physics through a free tutoring program 	2019

Honors	Harvard NSF-Simons Center Quantitative Biology Student Award	2022
	Harvard Dept. of Physics James Mills Peirce Fellowship	2020
	National Science Foundation Graduate Research Fellowship	2020
	Stanford Deans' Award for Academic Achievement	2020
	Stanford Undergraduate Research and Advising Small Grant	2019
	Stanford Bio-X IIP Symposium Best Poster Award	2018
	Stanford Bio-X Undergraduate Fellow	2018

Skills

Next-generation sequencing. Library preparation, data analysis Molecular biology. Sequence design, cloning, library generation

Biochemistry. Protein expression and purification, X-ray crystallography

Statistics. Bayesian inference, machine learning

Programming. Python, C++, R

Publications

Resolving Molecular Heterogeneity with Single-Molecule Centrifugation

Y Luo‡, <u>J Chang‡</u>, D Yang‡, J S Bryan IV, M MacIsaac, S Pressé, W P Wong Journal of the American Chemical Society, **145**, 6, 3276-3282 (2023). [link]

The landscape of antibody binding affinity in SARS-CoV-2 Omicron BA.1 evolution

A Moulana‡, T Dupic‡, A M Phillips‡, <u>J Chang‡</u>, A A Roffler, A J Greaney, T N Starr, J D Bloom, M M Desai

eLife, in press. [bioRxiv]

Torsional Diffusion for Molecular Conformer Generation

B Jing‡, G Corso‡, <u>J Chang</u>, R Barzilay, T Jaakkola *NeurIPS* (2022). [openreview]

Compensatory epistasis maintains ACE2 affinity in SARS-CoV-2 Omicron BA.1

A Moulana‡, T Dupic‡, A M Phillips‡, <u>J Chang‡,</u> S Nieves, A A Roffler, A J Greaney, T N Starr, J D Bloom, M M Desai

Nature Communications, 13, 7011 (2022). [link]

Binding affinity landscapes constrain the evolution of broadly neutralizing anti-influenza antibodies

A M Phillips, K R Lawrence, A. Moulana, T. Dupic, <u>J Chang</u>, M S Johnson, I Cvijovic, T Mora, A M Walczak, M M Desai *eLife*, **10**, e71393 (2021). [link]

Structural Evidence of Photoisomerization Pathways in Fluorescent Proteins

J Chang, M G Romei, S G Boxer

Journal of the American Chemical Society, 141, 39, 15504-15508 (2019). [link]