Pharmacy Drugs Inventory Management

Milestone: Implementation in MySQL

Group 11

Sai Varun Kumar Namburi

FNU Meenal

857-265-1349 (Sai Varun)

848-667-4233 (Meenal)

namburi.sai@northeastern.edu

lnu.meenal@northeastern.edu

Percentage of Effort Contributed by Student1: 50%

Percentage of Effort Contributed by Student2: 50%

Signature of Student 1: Sai Varun

Signature of Student 2: Meenal

Submission Date: November 5, 2022

Implementation Model:

show databases; create database inventory; use inventory;

create table orders

(order_id Int primary key, pharmacy_id int, shipment_id int, order_date varchar(50), payment_type varchar(100),total_amount int);

create table order_details
(order_id INT, drug_id INT, quantity int);

create table stock_details

(stock_id int primary key, drug_id int, warehouse_id int, stock_left int, last_ordered_date varchar(30), last_updated_date varchar(30), mfg_date varchar(30), exp_date varchar(30));

create table shipment_details

(shipment_id int primary key, warehouse_id int, shipment_start_date varchar(30), order_id int, shipment_end_date varchar(30));

create table suppliers

(supplier_id int primary key, company_name varchar(30), manufacturer varchar(30),phone_no int(10),address varchar(50));

create table drugs

(drug_id int primary key, drug_name varchar(30), manufacturer varchar(30), mrp_price int, supplier_id int);

create table warehouse details

(warehouse_id int primary key, warehouse_name varchar(30), address varchar(50), phone_no bigint,zipcode int(10));

Create Table pharmacy

(pharmacy_id int primary key, pharmacy_name Varchar(100), address varchar(150), phone_no bigint);

After creating the table it is how it looks

After inserting the data into the table, It looks like below, in the same way we have inserted the data into all the tables

Warehouse details

Suppliers:

Orders:

Stock_details:

Shipment_details:

Creating Foreign Key relation for the Tables:

ALTER TABLE drugs ADD FOREIGN KEY (supplier_id) REFERENCES suppliers(supplier_id);

ALTER TABLE shipment_details ADD FOREIGN KEY (warehouse_id) REFERENCES warehouse_id);

ALTER TABLE stock_details ADD FOREIGN KEY (warehouse_id) REFERENCES warehouse_id);

ALTER TABLE order_details ADD FOREIGN KEY (order_id) REFERENCES orders(order_id);

ALTER TABLE shipment_details ADD FOREIGN KEY (order_id) REFERENCES orders(order_id);

ALTER TABLE order_details ADD FOREIGN KEY (drug_id) REFERENCES drugs(drug_id);

ALTER TABLE stock_details ADD FOREIGN KEY (drug_id) REFERENCES drugs(drug_id);

ALTER TABLE orders ADD FOREIGN KEY (shipment_id) REFERENCES shipment_details(shipment_id);

Basic Analysis:

1. select * from orders where total_amount>25000

order by total_amount desc;

Checking the all the orders which have total amount more than 25000 and ordered by total_amount in descending order

 select * from orders where total_amount>25000 and order_date<'12/31/2021' order by total_amount desc;

Now I have added one more filter condition to check orders of year 2021

3. select * from orders join order_details on orders.order_id=order_details.order_id where orders.total_amount>25000 and orders.order_date<'12/31/2021' order by orders.total_amount desc;

 select * from stock_details where stock_left <200;

Which means we have less stock left for those drugs

