Question 1 (suggested for peer/personal tutorial)

Consider the roll of a fair six-sided die, and let X be the random variable that takes value 1 if the roll is an even number (i.e. $\{2,4,6\}$), and X=0 otherwise. Let Y be the random variable that takes the value 1 if the roll is a number greater than 3 (i.e. $\{4,5,6\}$), and Y=0 otherwise. Compute E(Y|X=1).

Question 2

Suppose that X_1, X_2, \ldots, X_n are independent random variables that follow a N (μ, σ^2) distribution, and define $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ and $S^2 = \frac{1}{n-1} (\overline{X} - X_i)^2$, as usual. Show that the random variable T, where

$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}},$$

can be written in the form

$$T = \frac{U}{\sqrt{V/p}},$$

where

- $U \sim N(0,1)$,
- p is some function of n,
- $V \sim \chi_p^2$, the chi-squared distribution with p degrees of freedom,
- U and V are independent random variables.

Question 3

Download the dataset data_week18.csv (link for dataset below link for problem sheet on Blackboard). This dataset contains 200 observations for each of the random variables X, Y and Z. Using different exploratory data analysis techniques or visualisations,

- (a) Investigate whether or not there is any relationship between any of the variables.
- (b) Guess the distributions of X, Y and Z.

Hints

• For Question 2, refer to Sections 1.6 and 1.7 in your notes.