Group Theory

Solutions to Problems in Homework Assignment 11

Spring, 2020

Consider the permutation group S_4 .

- 1. Consider some of the properties of S_4 .
 - (a) What are the classes in S_4 ?
 - (b) What are the inequivalent irreducible representations of S_4 ?
 - (c) Write down all the Young tableaux in each irreducible representation of S_4 . What is the dimension of each irreducible representation of S_4 ?
 - (a) From the partition $\sum_{j=1}^{m} \ell_j = n$ with n = 4, we see that the classes in S_4 are $(4), (3, 1), (2^2), (2, 1^2), (1^4)$.
 - (b) From the partition $\sum_{j=1}^{m} \ell_j = n$ with n = 4, we see that the inequivalent irreducible representations of S_4 are $[4], [3, 1], [2^2], [2, 1^2], [1^4]$.
 - (c) The standard Young tableau in the irreducible representation [4] is

Because there is only one standard Young tableau in the irreducible representation [4], the dimension of the irreducible representation [4] is one.

The standard Young tableaux in the irreducible representation [3, 1] are

1	2	3	1	2	4	1	3	4
4			3			2		

Because there are three standard Young tableau in the irreducible representation [3, 1], the dimension of the irreducible representation [3, 1] is three.

The standard Young tableaux in the irreducible representation $[2^2]$ are

$$\begin{array}{c|cccc}
 & 1 & 2 \\
 & 3 & 4
 \end{array}$$
 $\begin{array}{c|cccc}
 & 1 & 3 \\
 & 2 & 4
 \end{array}$

Because there are two standard Young tableau in the irreducible representation $[2^2]$, the dimension of the irreducible representation $[2^2]$ is two.

The standard Young tableaux in the irreducible representation $[2, 1^2]$ are

1	2		1	3	İ	1	4
3		'	2			2	
4			4			3	

Because there are three standard Young tableau in the irreducible representation $[2, 1^2]$, the dimension of the irreducible representation $[2, 1^2]$ is three.

The standard Young tableau in the irreducible representation [1⁴] is

1
2
3
4

Because there is only one standard Young tableau in the irreducible representation $[1^4]$, the dimension of the irreducible representation $[1^4]$ is one.

A summary on the inequivalent irreducible representations of S_4 is given in Table I.

- 2. Consider the Young operators in the irreducible representation [3,1] of S_4 .
 - (a) Write down all the Young tableaux and the corresponding Young operators $\mathcal{Y}_{\mu}^{[3,1]}$'s in the irreducible representation [3, 1] of S_4 .

TABLE I: Inequivalent irreducible representations of S_4

	Standard Young tableau(x)	Dimension
[4]	1 2 3 4	1
[3, 1]	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3
$[2^2]$	$\begin{array}{c cccc} 1 & 2 & 1 & 3 \\ \hline 3 & 4 & 2 & 4 \end{array}$	2
$[2,1^2]$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3
$[1^4]$	$ \begin{array}{c c} 1\\ 2\\ 3\\ 4 \end{array} $	1

- (b) Argue that all the Young operators in the irreducible representation [3, 1] of S_4 are orthogonal.
- (a) For the standard Young tableaux $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 1 \end{bmatrix}$, the horizontal permutations are

$$P_1 = E, (1 \ 2), (1 \ 3), (2 \ 3), (1 \ 2 \ 3), (3 \ 2 \ 1),$$

the vertical permutations are

$$Q_1 = E, (1 \ 4),$$

and the Young operator is

$$\mathcal{Y}_1 = \begin{bmatrix} E + (1 \ 2) + (1 \ 3) + (2 \ 3) + (1 \ 2 \ 3) + (3 \ 2 \ 1) \end{bmatrix} \begin{bmatrix} E - (1 \ 4) \end{bmatrix}$$

$$= E + (1 \ 2) + (1 \ 3) + (2 \ 3) + (1 \ 2 \ 3) + (3 \ 2 \ 1)$$

$$- (1 \ 4) - (1 \ 2)(1 \ 4) - (1 \ 3)(1 \ 4) - (2 \ 3)(1 \ 4) - (1 \ 2 \ 3)(1 \ 4) - (3 \ 2 \ 1)(1 \ 4)$$

$$= E + (1 \ 2) + (1 \ 3) + (2 \ 3) + (1 \ 2 \ 3) + (3 \ 2 \ 1)$$

$$- (1 \ 4) - (2 \ 1 \ 4) - (3 \ 1 \ 4) - (2 \ 3)(1 \ 4) - (2 \ 3 \ 1 \ 4) - (3 \ 2 \ 1 \ 4).$$

For the standard Young tableaux $\begin{bmatrix} 1 & 2 & 4 \\ 3 \end{bmatrix}$, the horizontal permutations are

$$P_1 = E, (1 \ 2), (2 \ 4), (1 \ 4), (1 \ 2 \ 4), (4 \ 2 \ 1),$$

the vertical permutations are

$$Q_1 = E, (1 \ 3),$$

and the Young operator is

$$\mathcal{Y}_2 = \left[E + (1 \ 2) + (2 \ 4) + (1 \ 4) + (1 \ 2 \ 4) + (4 \ 2 \ 1) \right] \left[E - (1 \ 3) \right]$$

$$= E + (1 \ 2) + (2 \ 4) + (1 \ 4) + (1 \ 2 \ 4) + (4 \ 2 \ 1)$$

$$- (1 \ 3) - (1 \ 2)(1 \ 3) - (2 \ 4)(1 \ 3) - (1 \ 4)(1 \ 3) - (1 \ 2 \ 4)(1 \ 3) - (4 \ 2 \ 1)(1 \ 3)$$

$$= E + (1 \ 2) + (2 \ 4) + (1 \ 4) + (1 \ 2 \ 4) + (4 \ 2 \ 1)$$

$$- (1 \ 3) - (2 \ 1 \ 3) - (2 \ 4)(1 \ 3) - (4 \ 1 \ 3) - (4 \ 2 \ 1 \ 3).$$

For the standard Young tableaux $\begin{bmatrix} 1 & 3 & 4 \\ 2 & \end{bmatrix}$, the horizontal permutations are

$$P_1 = E, (1 \ 3), (1 \ 4), (3 \ 4), (1 \ 3 \ 4), (4 \ 3 \ 1),$$

the vertical permutations are

$$Q_1 = E, (1 \ 2),$$

and the Young operator is

$$\mathcal{Y}_3 = \begin{bmatrix} E + (1 \ 3) + (1 \ 4) + (3 \ 4) + (1 \ 3 \ 4) + (4 \ 3 \ 1) \end{bmatrix} \begin{bmatrix} E - (1 \ 2) \end{bmatrix}$$

$$= E + (1 \ 3) + (1 \ 4) + (3 \ 4) + (1 \ 3 \ 4) + (4 \ 3 \ 1)$$

$$- (1 \ 2) - (1 \ 3)(1 \ 2) - (1 \ 4)(1 \ 2) - (3 \ 4)(1 \ 2) - (1 \ 3 \ 4)(1 \ 2) - (4 \ 3 \ 1)(1 \ 2)$$

$$= E + (1 \ 3) + (1 \ 4) + (3 \ 4) + (1 \ 3 \ 4) + (4 \ 3 \ 1)$$

$$- (1 \ 2) - (3 \ 1 \ 2) - (4 \ 1 \ 2) - (3 \ 4)(1 \ 2) - (3 \ 4 \ 1 \ 2) - (4 \ 3 \ 1 \ 2).$$

(b) We use the following theorem and the corollary to argue that all the Young operators in the irreducible representation [3,1] of S_4 are orthogonal.

[**Theorem**] If there exist two digits a and b in one row of a Young tableau \mathcal{Y} which also occur in one column of a Young tableau \mathcal{Y}' , then $\mathcal{Y}'\mathcal{Y} = 0$.

[Corollary] For a given Young pattern, if a standard Young tableau \mathcal{Y}' is larger than a standard Young tableau \mathcal{Y} , then $\mathcal{Y}'\mathcal{Y} = 0$.

From the Corollary, we have $\mathcal{Y}_3\mathcal{Y}_2 = \mathcal{Y}_3\mathcal{Y}_1 = \mathcal{Y}_2\mathcal{Y}_1 = 0$.

and one column of \mathcal{Y}_1 . Hence, $\mathcal{Y}_1\mathcal{Y}_2=0$ according to the Theorem. From $\mathcal{Y}_2\mathcal{Y}_1=\mathcal{Y}_1\mathcal{Y}_2=0$, we conclude that \mathcal{Y}_1 and \mathcal{Y}_2 are orthogonal.

and one column of \mathcal{Y}_2 . Hence, $\mathcal{Y}_2\mathcal{Y}_3=0$ according to the Theorem. From $\mathcal{Y}_3\mathcal{Y}_2=\mathcal{Y}_2\mathcal{Y}_3=0$, we conclude that \mathcal{Y}_2 and \mathcal{Y}_3 are orthogonal.

Comparing $\mathcal{Y}_1 = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 4 \end{bmatrix}$ with $\mathcal{Y}_3 = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 4 \end{bmatrix}$, we see that the digits 1 and 4 occur in one row of \mathcal{Y}_3

and one column of \mathcal{Y}_1 . Hence, $\mathcal{Y}_1\mathcal{Y}_3=0$ according to the Theorem. From $\mathcal{Y}_3\mathcal{Y}_1=\mathcal{Y}_1\mathcal{Y}_3=0$, we conclude that \mathcal{Y}_1 and \mathcal{Y}_3 are orthogonal.

We have thus argued that all the Young operators in the irreducible representation [3, 1] of S_4 are orthogonal. The orthogonality of the Young operators in the irreducible representation [3, 1] of S_4 can be also verified directly by using the above-obtained expressions of the Young operators.

3. Write down all the standard basis vectors in the irreducible representation [3,1] of S_4 .

In consideration that all the Young operators in the irreducible representation [3,1] of S_4 are orthogonal, the orthogonal primitive idempotents in the irreducible representation [3,1] are given by

$$e_{\mu}^{[3,1]} = \frac{d_{[3,1]}}{4!} \mathcal{Y}_{\mu} = \frac{1}{8} \mathcal{Y}_{\mu}.$$

That is,

$$\begin{split} e_1^{[3,1]} &= \frac{1}{8} \mathcal{Y}_1 \\ &= \frac{1}{8} \begin{bmatrix} E + (1 \ 2) + (1 \ 3) + (2 \ 3) + (1 \ 2 \ 3) + (3 \ 2 \ 1) \\ &- (1 \ 4) - (2 \ 1 \ 4) - (3 \ 1 \ 4) - (2 \ 3)(1 \ 4) - (2 \ 3 \ 1 \ 4) - (3 \ 2 \ 1 \ 4) \end{bmatrix}, \end{split}$$

$$\begin{split} e_2^{[3,1]} &= \frac{1}{8} \mathcal{Y}_2 \\ &= \frac{1}{8} \begin{bmatrix} E + (1 \ 2) + (2 \ 4) + (1 \ 4) + (1 \ 2 \ 4) + (4 \ 2 \ 1) \\ &- (1 \ 3) - (2 \ 1 \ 3) - (2 \ 4)(1 \ 3) - (4 \ 1 \ 3) - (2 \ 4 \ 1 \ 3) - (4 \ 2 \ 1 \ 3) \end{bmatrix}, \end{split}$$

$$\begin{split} e_3^{[3,1]} &= \frac{1}{8}\mathcal{Y}_3 \\ &= \frac{1}{8} \begin{bmatrix} E + (1 \ 3) + (1 \ 4) + (3 \ 4) + (1 \ 3 \ 4) + (4 \ 3 \ 1) \\ &- (1 \ 2) - (3 \ 1 \ 2) - (4 \ 1 \ 2) - (3 \ 4)(1 \ 2) - (3 \ 4 \ 1 \ 2) - (4 \ 3 \ 1 \ 2) \end{bmatrix}. \end{split}$$

In terms of the orthogonal primitive idempotents $e_{\mu}^{[3,1]}$, the standard basis vectors $b_{\mu\nu}^{[3,1]}$ are given by

$$b_{\mu\nu}^{[3,1]} = R_{\mu\nu}e_{\nu}^{[3,1]}, \ \mu, \nu = 1, 2, 3.$$

We now find $b_{\mu 1}^{[3,1]}$ for $\mu=1,2,3$ from $e_1^{[3,1]}$. Making use of $R_{11}=E,$

$$R_{21} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 4 \end{pmatrix},$$
$$R_{31} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 4 \end{pmatrix},$$

we have

$$b_{11}^{[3,1]} = R_{22}e_{1}^{[3,1]} = e_{1}^{[3,1]}$$

$$= \frac{1}{8} [E + (1 2) + (1 3) + (2 3) + (1 2 3) + (3 2 1)$$

$$- (1 4) - (2 1 4) - (3 1 4) - (2 3)(1 4) - (2 3 1 4) - (3 2 1 4)],$$

$$b_{21}^{[3,1]} = R_{21}e_{1}^{[3,1]}$$

$$= \frac{1}{8} [(3 4) + (3 4)(1 2) + (4 3 1) + (4 3 2) + (4 3 1 2) + (4 3 2 1)$$

$$- (3 4 1) - (3 4 2 1) - (3 1) - (3 2 4 1) - (2 4)(3 1) - (3 2 1)],$$

$$b_{31}^{[3,1]} = R_{31}e_{1}^{[3,1]}$$

$$= \frac{1}{8} [(2 3 4) + (3 4 2 1) + (4 2 3 1) + (2 4) + (2 4)(1 3) + (4 2 1)$$

$$- (2 3 4 1) - (3 4)(1 2) - (2 3 1) - (2 4 1) - (2 4 3 1) - (1 2)].$$

We now find $b_{\mu 2}^{[3,1]}$ for $\mu=1,2,3$ from $e_2^{[3,1]}.$ Making use of $R_{22}=E,$

$$R_{12} = \begin{pmatrix} 1 & 2 & 4 & 3 \\ 1 & 2 & 3 & 4 \end{pmatrix} = (3 \ 4),$$

$$R_{32} = \begin{pmatrix} 1 & 2 & 4 & 3 \\ 1 & 3 & 4 & 2 \end{pmatrix} = (2 \ 3),$$

we have

$$b_{12}^{[3,1]} = R_{12}e_{2}^{[3,1]}$$

$$= \frac{1}{8} [(3 \ 4) + (3 \ 4)(1 \ 2) + (3 \ 4 \ 2) + (3 \ 4 \ 1) + (3 \ 4 \ 1 \ 2) + (3 \ 4 \ 2 \ 1)$$

$$- (4 \ 3 \ 1) - (4 \ 3 \ 2 \ 1) - (4 \ 2 \ 3 \ 1) - (1 \ 4) - (1 \ 4)(2 \ 3) - (4 \ 2 \ 1)]$$

$$b_{22}^{[3,1]} = R_{22}e_{2}^{[3,1]} = e_{2}^{[3,1]}$$

$$= \frac{1}{8} [E + (1 \ 2) + (2 \ 4) + (1 \ 4) + (1 \ 2 \ 4) + (4 \ 2 \ 1)$$

$$- (1 \ 3) - (2 \ 1 \ 3) - (2 \ 4)(1 \ 3) - (4 \ 1 \ 3) - (2 \ 4 \ 1 \ 3) - (4 \ 2 \ 1 \ 3)],$$

$$b_{32}^{[3,1]} = R_{32}e_{2}^{[3,1]}$$

$$= \frac{1}{8} [(2 \ 3) + (3 \ 2 \ 1) + (3 \ 2 \ 4) + (2 \ 3)(1 \ 4) + (3 \ 2 \ 4 \ 1) + (3 \ 2 \ 1 \ 4)$$

$$- (2 \ 3 \ 1) - (1 \ 2) - (2 \ 4 \ 3 \ 1) - (2 \ 3 \ 4) - (2 \ 4 \ 1) - (1 \ 2)(3 \ 4)].$$

We now find $b_{\mu 3}^{[3,1]}$ for $\mu = 1, 2, 3$ from $e_3^{[3,1]}$. Making use of $R_{33} = E$,

$$R_{13} = \begin{pmatrix} 1 & 3 & 4 & 2 \\ 1 & 2 & 3 & 4 \end{pmatrix} = (4 & 3 & 2),$$

$$R_{23} = \begin{pmatrix} 1 & 3 & 4 & 2 \\ 1 & 2 & 4 & 3 \end{pmatrix} = (2 & 3),$$

we have

$$\begin{split} b_{13}^{[3,1]} &= R_{13}e_3^{[3,1]} \\ &= \frac{1}{8} \Big[\ (4\ 3\ 2) + (2\ 4\ 3\ 1) + (3\ 2\ 4\ 1) + (2\ 4) + (2\ 4\ 2) + (2\ 4)(1\ 3) \\ &- (4\ 3\ 2\ 1) - (4\ 3\ 1) - (2\ 3)(1\ 4) - (4\ 2\ 1) - (1\ 4) - (4\ 2\ 3\ 1) \, \Big], \\ b_{23}^{[3,1]} &= R_{23}e_3^{[3,1]} \\ &= \frac{1}{8} \Big[\ (2\ 3) + (2\ 3\ 1) + (2\ 3)(1\ 4) + (2\ 3\ 4) + (2\ 3\ 4\ 1) + (2\ 3\ 1\ 4) \\ &- (3\ 2\ 1) - (1\ 3) - (3\ 2\ 4\ 1) - (3\ 4\ 2\ 1) - (3\ 4\ 1) - (2\ 4)(1\ 3) \, \Big], \\ b_{33}^{[3,1]} &= R_{33}e_3^{[3,1]} = e_3^{[3,1]} \\ &= \frac{1}{8} \Big[\ E + (1\ 3) + (1\ 4) + (3\ 4) + (1\ 3\ 4) + (4\ 3\ 1) \\ &- (1\ 2) - (3\ 1\ 2) - (4\ 1\ 2) - (3\ 4)(1\ 2) - (3\ 4\ 1\ 2) - (4\ 3\ 1\ 2) \, \Big]. \end{split}$$

We have thus obtained all the standard basis vectors.

4. Write down all the $Q_{\nu k}$'s in the irreducible representation [3,1] of S_4 . Find all the \mathcal{Y}' 's using $\mathcal{Y}' = Q_{\nu k} \mathcal{Y}_{\nu k} Q_{\nu k}^{-1}$. Find all the $\mathcal{Y}_{\mu}(S)$'s in the irreducible representation [3,1] of S_4 for $S = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$ using $\mathcal{Y}_{\mu}(S) = S \mathcal{Y}_{\mu}^{[3,1]} S^{-1}$.

Since $y_1 = y_2 = y_3 = E$, we have $\delta_1 = 1$ and $T_1 = R$ for y_1 , y_2 , and y_3 . Thus, $\mathcal{Y}_{\nu k} = \mathcal{Y}_{\nu}^{[3,1]}$ for $\nu = 1, 2, 3$ and k = 1. In Table II, we list all the $\mathcal{Y}_{\nu k}$'s and $Q_{\nu k}$'s.

All the $\mathcal{Y}_{\mu}(S)$'s in the irreducible representation [3,1] of S_4 for $S=(1\ 2\ 3\ 4)$ are

$$\mathcal{Y}_1(S) = \frac{2}{1} \frac{3}{4} \frac{4}{3}, \quad \mathcal{Y}_2(S) = \frac{2}{4} \frac{3}{4} \frac{1}{3}, \quad \mathcal{Y}_3(S) = \frac{2}{3} \frac{4}{4} \frac{1}{3}.$$

5. Construct the table for $A^{\mu}_{\nu k}(S)$ for $S=\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$ with $\mathcal{Y}_{\mu}(S)$ labeling the columns and $\sum_{k} \delta_{k} \mathcal{Y}_{\nu k}$ labeling the rows. Write down the representation matrix of $S=\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$.

TABLE II: $\mathcal{Y}_{\nu k}$'s, $Q_{\nu k}$'s, and \mathcal{Y}' for the irreducible representation [3, 1] of S_4 .

	$\nu = 1$	$\nu = 2$	$\nu = 3$
	k=1	k = 1	k = 1
$\mathcal{Y}_{ u}^{[3,1]}$	1 2 3	1 2 4	1 3 4
\mathcal{Y}_{ν}	4	3	2
$\mathcal{Y}_{\nu k}$	1 2 3	1 2 4	1 3 4
$\mathcal{J}\nu k$	4	3	2
$Q_{\nu k}$	E, (14)	$E, (1\ 3)$	$E, (1\ 2)$
	1 2 3	1 2 4	1 3 4
\mathcal{Y}'	4	3	2
y	4 2 3	3 2 4	2 3 4
	1	1	1

Table III is the table for $A^{\mu}_{\nu k}(S)$ for $S=\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$.

TABLE III: $A^{\mu}_{\nu k}(S)$ for $S=(1\ 2\ 3\ 4)$ in the irreducible representation [3,1] of $S_4.$

	$\mathcal{Y}_{\mu}(S)$			
$\sum \delta_k \mathcal{Y}_{ u k}$	2 3 4	2 3 1	2 4 1	
k	1	4	3	
1 2 3 4	-1	1	0	
1 2 4 3	-1	0	1	
1 3 4	-1	0	0	

From Table III, we see that the representation matrix of $S=\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$ in the irreducible representation [3,1] of S_4 is given by

$$D^{[3,1]}(S = (1 \ 2 \ 3 \ 4)) = \begin{pmatrix} -1 \ 1 \ 0 \\ -1 \ 0 \ 1 \\ -1 \ 0 \ 0 \end{pmatrix}$$