Lecture 3: Nonlinear Dynamics and Instabilities

Olivier Pierre-Louis

ILM-Lyon, France.

4th October 2023

- Type III-s
- 2 1D Dynamics
 - Kinks and antikinks
 - Coexistence
- 3 2D dynamics
 - Geometry of Fronts
 - Eikonal equation
 - Coexistence
- Conclusion

- Type III-s
- 1D Dynamics
 - Kinks and antikinks
 - Coexistence
- 2D dynamics
 - Geometry of Fronts
 - Eikonal equation
 - Coexistence
- Conclusion

Linear Stability

Type III-s instability of flat state $u_0 = 0$

$$\operatorname{Re}[\sigma(q)] = L_0 - L_2 q^2$$

- Assume $x \to -x$ symmetry
- Only one slow lengthscale, no fast lengthscale
- Scalings $L_0 \sim \epsilon$

$$\operatorname{Re}[\sigma(q)] \sim \epsilon, \qquad q \sim \epsilon^{1/2}$$

- Slow time-scale $t \sim \epsilon^{-1}$ large spatial "pattern" scale $\sim \epsilon^{-1/2}$
- Multi-scale analysis

$$t = \epsilon^{-1} T$$
$$x = \epsilon^{-1/2} X$$

Power-counting

$$t = \epsilon^{-1} T$$
, $x = \epsilon^{-1/2} X$, $u = \epsilon^{\alpha} U$

Linear

$$\operatorname{Re}[\sigma(q)] = L_0 - L_2 q^2$$

General weakly-nonlinear expansion:

$$\partial_t u = \partial_{xx} u + \epsilon u + \epsilon^{\gamma} [\partial_x]^n [\partial_t]^{\ell} [u]^m$$

Examples

- n = 0, m = 3, $\ell = 0$, $\gamma = 0$: u^3
- n = 2, m = 2, $\ell = 0$, $\gamma = 0$: $(\partial_x u)^2$, $u\partial_{xx} u$
- n = 1, m = 3, $\ell = 1$, $\gamma = 1$: $\epsilon u \partial_x u \partial_t u$, $\epsilon u^2 \partial_{tx} u$

Constraints

- non-linear: m > 1
- non-singular: $\gamma, n, \ell, m \geq 0$
- $x \rightarrow -x$ symmetry: n even

Power-counting

$$\begin{split} \partial_t u &= \partial_{xx} u + \epsilon u + \epsilon^{\gamma} [\partial_x]^n [\partial_t]^{\ell} [u]^m \\ \epsilon^{1+\alpha} \partial_{\mathcal{T}} U &= \epsilon^{1+\alpha} (\partial_{XX} U + U) + \epsilon^{\gamma+n/2+\ell+m\alpha} [\partial_X]^n [\partial_{\mathcal{T}}]^{\ell} [U]^m \end{split}$$

$$\alpha = \frac{1 - n/2 - \gamma - \ell}{m - 1}$$

Smallest $u \sim \epsilon^{\alpha}$ for which nonlinearities matter

ightarrow largest possible value of lpha

First nonlinear term $\alpha = 1$, m = 2, $n = \ell = \gamma = 0$: u^2

Fisher Equation (also known as Fisher-Kolmogorov equation)

$$\partial_t u = \partial_{xx} u + \epsilon u + u^2$$

- associated to transcritical bifurcation
- stable solution $u = -\epsilon$, but divergences in finite time for $u \to +\infty$!
- u^2 forbidden in systems with field inversion $u \rightarrow -u$ symmetry

Power-counting

$$\partial_t u = \partial_{xx} u + \epsilon u + \epsilon^{\gamma} [\partial_x]^n [\partial_t]^{\ell} [u]^m$$

with m > 1

$$\alpha = \frac{1 - n/2 - \gamma - \ell}{m - 1}$$

Next nonlinear term $\alpha=1/2$, m=3, $n=\ell=\gamma=0$: u^3

Cahn-Allen equation (Time-Dependent-Ginzburg-Landau equation, ϕ^4 model, model A)

$$\partial_t u = \partial_{xx} u + \epsilon u - u^3$$

adding term $\gamma=1/2$ m=2 breaks the $u \to -u$ symmetry

$$\partial_t u = \partial_{xx} u + \epsilon u + \epsilon^{1/2} u^2 - u^3$$

generic equation for Type III-s

normalization

Non-normalized equation (in physical units)

$$\partial_t u = D\partial_{xx} u + L_0 u + C_2 u^2 - C_3 u^3$$

with D > 0 and $C_3 > 0$ and with $L_0 > 0$ in the unstable regime

$$t = \frac{T}{L_0}$$

$$x = \left(\frac{D}{L_0}\right)^{1/2} X$$

$$u = \left(\frac{L_0}{C_3}\right)^{1/2} U$$

$$\gamma = \frac{C_2}{(C_3 L_0)^{1/2}}$$

One-parameter equation

$$\partial_T U = \partial_{XX} U + U + \gamma U^2 - U^3$$

Gradient dynamics

Generalized equation

$$\partial_t U = D\partial_{XX} U + g(U)$$

Double-well potential

$$g(U) = -V'(U)$$

We have

$$\partial_t U = -\frac{\delta \mathcal{F}}{\delta U}$$

Gradient dynamics / Lyapunov functional

$$\mathcal{F} = \int \mathrm{d}X \left(rac{1}{2} (\partial_X U)^2 + V(U)
ight) \geq 0$$

Then

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}\mathcal{T}}\mathcal{F} &= \int \mathrm{d}X \; \partial_{\mathcal{T}} U \left(-\partial_{XX} U + V'(U) \right) \\ &= - \int \mathrm{d}X \; (\partial_{\mathcal{T}} U)^2 \leq 0 \end{split}$$

Special case: cubic $g(U) = U + \gamma U^2 - U^3$

$$V(U) = \frac{1}{4}(1 - U^2)^2 - \frac{\gamma}{3}U^3$$

- Type III-s
- 1D Dynamics
 - Kinks and antikinks
 - Coexistence
- 3 2D dynamics
 - Geometry of Fronts
 - Eikonal equation
 - Coexistence
- Conclusion

- 1D Dynamics
 - Kinks and antikinks
 - Coexistence
- - Geometry of Fronts
 - Eikonal equation
 - Coexistence

Heteroclinic solution

Two heteroclinic solutions with velocity $\pm C$ Solution with velocity C

Cahn-Allen

Special case: cubic $g(U) = U + \gamma U^2 - U^3$ $\partial_T U = -C \partial_X U$ $\rightarrow -C \partial_X U = \partial_{XX} U + g(U)$ Quartic potential

Analogy with mechanics inverted potential V, and friction C

$$V(U) = \frac{1}{4}(1 - U^2)^2 - \frac{\gamma}{3}U^3$$

Solution

$$g(U) = -V'(U)$$

$$C = -2^{-1/2}\gamma$$

Moving front \rightarrow see lecture Alain Pumir

Heteroclinic solution

velocity v proportional to asymmetry γ

- Stable state invading meta-stable state
- ullet Two types: "kinks" and anti-kinks with $C=\pm 2^{-1/2}\gamma$
- Kinks annihilate when they collide
- Advected kink-antikink distribution of distances in metastable phase P(d, T) = P(d + 2CT, 0)

Coexistence

- 1D Dynamics
 - Kinks and antikinks
 - Coexistence
- 3 2D dynamics
 - Geometry of Fronts
 - Eikonal equation
 - Coexistence

Kinks

 $\gamma=0\colon U\to -U$ symmetry / coexistence Oscillatory solutions in X (non-dissipative when $\gamma=0$) $V_0(U_+)=V_0(U_-)$

Max amplitude U_m

$$E = \frac{1}{2}(\partial_X U)^2 - V_0(U) = -V_0(U_m)$$
$$\partial_X U = 2^{1/2}[V_0(U) - V_0(U_m)]^{1/2}$$

Kink solution $U_m = U_+$, and $V(U_+) = 0$ Kink profile, kink at X = 0

$$X = \int_0^X dX' = \int_0^U \frac{dU'}{\partial_X U}$$
$$= 2^{-1/2} \int_0^U \frac{dU'}{V(U')^{1/2}}$$

Special case $V(U) = (1 - U^2)^2/4$

$$X = 2^{1/2} \int_0^U \frac{\mathrm{d}U'}{1 - U'^2} = 2^{-1/2} \mathrm{arctanh}(U)$$

Tanh profile kink

$$U(X) = \tanh \frac{X - X_k}{2^{1/2}}$$

...and antikink

$$U(X) = -\tanh\frac{X - X_a}{2^{1/2}}$$

Kink-antikink attraction and annihilation

Kink energy

$$\mathcal{F}_k = \int dX \left(\frac{1}{2} (\partial_X U)^2 + V(U) \right)$$
$$= \int dX \left(\frac{1}{2} (\partial_X U)^2 + \frac{1}{2} (\partial_X U)^2 \right)$$
$$= \int dX \partial_X U (\partial_X U)$$
$$= 2^{1/2} \int dU (V(U))^{1/2}$$

For
$$V(U) = (1 - U^2)^2/4$$
, one finds $\mathcal{F}_k = 2^{3/2}/3$

Exponentially decreasing tail $X\gg X_k$

$$U(X) \approx 1 - 2e^{-2^{1/2}(X - X_k)}$$

leads to exponentially small interactions Collapse time T_c of a domain of size L

$$T_c = \frac{1}{24} e^{2^{1/2}L}$$

exponentially slow! (see TD)

Coarsening

Dynamics from random initial conditions

- Extremal dynamics: shortest domain collapses
- Coarsening $\lambda \sim \ln(T)$

- Type III-s
- 1D Dynamics
 - Kinks and antikinks
 - Coexistence
- 3 2D dynamics
 - Geometry of Fronts
 - Eikonal equation
 - Coexistence
- Conclusion

2D generic equation

Isotropic dynamics $\partial_{XX} \to \Delta = \partial_{XX} + \partial_{YY}$ Generic equation for III-s instability

$$\partial_T U = \Delta U + U + \gamma U^2 - U^3$$

- - Kinks and antikinks
 - Coexistence
- 3 2D dynamics
 - Geometry of Fronts
 - Eikonal equation
 - Coexistence

20/33

Extend the definition of $\hat{\mathbf{n}}, \hat{\tau}$ in the vicinity of a curve transported along $\hat{\mathbf{n}}$ radius of curvature r

$$\int dA \nabla \cdot \hat{\mathbf{n}} = \oint d\hat{\mathbf{s}} \cdot \hat{\mathbf{n}}$$
$$= d\theta (r + dr) - d\theta r = d\theta dr$$

and

$$\int dA \nabla \cdot \hat{\mathbf{n}} = (\nabla \cdot \hat{\mathbf{n}})[d\theta(r+dr)^2/2 - d\theta r^2/2]$$
$$= (\nabla \cdot \hat{\mathbf{n}})d\theta rdr$$

$$ightarrow
abla \cdot \hat{\mathbf{n}} = 1/r$$

$$\int \mathrm{d}A \, \nabla \cdot \hat{\boldsymbol{\tau}} = \oint \mathrm{d}\hat{\mathbf{s}} \cdot \hat{\boldsymbol{\tau}} = 0$$

and

$$\int dA \nabla \cdot \hat{\tau} = (\nabla \cdot \hat{\tau}) d\theta \, r dr$$

$$ightarrow
abla \cdot \hat{ au} = 0$$

Aligned curvilinear coordinates (s, ξ)

 ξ distance to the front along $\hat{\mathbf{n}}$

s arclength along the front, ℓ along the local $\hat{\tau}$ Radius of curvature at (ξ,s)

$$r = \frac{1}{\kappa} + \xi$$

interface arclength

$$\mathrm{d}s = \frac{1}{\kappa} \mathrm{d}\theta$$

curvilinear arclength

$$d\ell = rd\theta = (\frac{1}{\kappa} + \xi)d\theta = (1 + \xi\kappa)ds$$

Summary

$$\begin{split} \nabla \cdot \hat{\mathbf{n}} &= \frac{1}{\kappa^{-1} + \xi}, \qquad & \hat{\mathbf{n}} \cdot \nabla = \partial_{\xi} \\ \nabla \cdot \hat{\tau} &= 0, \qquad & \hat{\tau} \cdot \nabla = \partial_{\ell} = \frac{1}{1 + \varepsilon \kappa} \partial_{s} \end{split}$$

Laplacian

$$\begin{split} & \Delta = \nabla \cdot \nabla \\ & = \nabla \cdot \left[\hat{\mathbf{n}} \left(\hat{\mathbf{n}} \cdot \nabla \right) + \hat{\tau} \left(\hat{\tau} \cdot \nabla \right) \right] \\ & = \frac{\kappa}{1 + \xi \kappa} \partial_{\xi} + \partial_{\xi \xi} + \frac{1}{1 + \xi \kappa} \partial_{s} \left(\frac{1}{1 + \xi \kappa} \partial_{s} \right) \end{split}$$

Aligned coordinates (s,ξ) s arclength along the front ξ distance to the front along n Orthogonal Curvilinear coordinates length element

$$d\ell^2 = d\xi^2 + (1 + \kappa \xi)^2 \mathrm{d}s^2$$

metrics

$$g = \begin{pmatrix} 1 & 0 \\ 0 & (1 + \xi \kappa)^2 \end{pmatrix}$$

 g_{ij} components of g g^{ij} components of inverse g^{-1}

$$\nabla \cdot \mathbf{a} = \frac{1}{|g|^{1/2}} \partial_i (|g|^{1/2} a^i)$$
$$(\nabla u)^i = \partial^i u = g^{ij} \partial_i u$$

Therefore

$$\Delta u = \nabla \cdot \nabla u = \frac{1}{|g|^{1/2}} \partial_i \left(|g|^{1/2} g^{ij} \partial_j u \right)$$

Small curvature expansion

Aligned coordinates (s, ξ) Laplacian

$$\kappa = \epsilon \kappa_1, \quad s = \epsilon^{-1} S$$

 $\Delta U = \partial_{\varepsilon \varepsilon} U + \epsilon \kappa_1 \partial_{\varepsilon} U + \dots$

$$\Delta = \frac{\kappa}{1+\xi\kappa}\partial_\xi + \partial_{\xi\xi} + \frac{1}{1+\xi\kappa}\partial_s\left(\frac{1}{1+\xi\kappa}\partial_s\right)$$

Aligned coordinates (s, ξ)

Approximated locally by polar coordinates (r, θ)

$$\Delta u \approx \frac{1}{r} \partial_r (r \partial_r u) + \frac{1}{r^2} \partial_{\theta \theta} u + \text{h.o.t.}$$

$$\approx \partial_{rr} u + \frac{1}{r} \partial_r u + \frac{1}{r^2} \partial_{\theta \theta} u + \text{h.o.t.}$$

$$\approx \partial_{\xi \xi} u + \kappa \partial_r u + \kappa^2 \partial_{\theta \theta} u + \text{h.o.t.}$$

where $\partial_r = \partial_\xi$ and $r pprox 1/\kappa$

Small curvature expansion

$$\kappa = \epsilon \kappa_1, \quad \mathbf{s} = \epsilon^{-1} \mathbf{S}$$

Laplacian to linear order

$$\Delta U = \partial_{\xi\xi} U + \epsilon \kappa_1 \partial_{\xi} U + \dots$$

- Type III-s
- 2 1D Dynamics
 - Kinks and antikinks
 - Coexistence
- 3 2D dynamics
 - Geometry of Fronts
 - Eikonal equation
 - Coexistence
- Conclusion

Weakly driven front

$$\partial_T U = \Delta U + g(U)$$

Expansion close to coexistence slow evolution $\partial_T = -\epsilon C_1 \partial_{\varepsilon}$

$$-\epsilon C_1 \partial_{\xi} U = \partial_{\xi\xi} U + \epsilon \kappa_1 \partial_{\xi} U + \dots$$
$$- V'_0(U) - \epsilon V'_1(U)$$

Expansion of U

$$U=U_0+\epsilon U_1+...$$

Order 0

$$\partial_{\xi\xi}\,U_0-V_0'(U_0)=0$$

 $U_0(\xi)$ is the equilibrium 1D kink solution independent of S

Order 1

$$\begin{split} \partial_{\xi\xi} \, U_1 - U_1 V_0''(U_0) \\ &= -\kappa_1 \partial_{\xi} \, U_0 - C_1 \partial_{\xi} \, U_0 + V_1'(U_0) \end{split}$$

Since $\partial_\xi \, U_0$ solution of homogeneous equation

$$\partial_{\xi\xi}(\partial_{\xi}U_0) - \partial_{\xi}U_0 V_0^{\prime\prime}(U_0) = 0$$

Fredholm alternative

$$C_1 \int_{-}^{+} d\xi (\partial_{\xi} U_0)^2 = \int_{-}^{+} d\xi \partial_{\xi} U_0 V_1'(U_0)$$
$$- \kappa_1 \int_{-}^{+} d\xi (\partial_{\xi} U_0)^2$$

finally

$$C_1 = rac{V_1(U_{0+}) - V_1(U_{0-})}{\int \mathrm{d}\xi \; (\partial_\xi U_0)^2} - \kappa_1$$

Eikonal equation

Eikonal equation

$$C = C_* - \kappa$$

Two terms:

• constant term C_* can be > 0 or < 0

$$C_* = rac{V(U_{0+}) - V(U_{0-})}{\int \mathrm{d}\xi \; (\partial_\xi U_0)^2}$$

Normal propagation (Eikonal) like in ray physics

• curvature term has fixed sign: always stabilizing

24/33

Eikonal equation

Back to physical variables I

$$t = \frac{T}{L_0} \qquad \qquad x = \left(\frac{D}{L_0}\right)^{1/2} X$$

$$C_* = (DL_0)^{-1/2}c_*$$
 and $\kappa = (D/L_0)^{1/2}arkappa$

$$c = c_* - D\varkappa$$

For
$$V(U) = (1 - U^2)^2/4 - \gamma U^3/3$$
, we have $C_* = \pm 2^{-1/2} \gamma$

$$c_* = \pm 2^{-1/2} \gamma (DL_0)^{1/2} = \pm 2^{-1/2} C_2 \left(\frac{D}{C_3}\right)^{1/2}$$

Lyapunov functional for the Eikonal equation

Eikonal equation

$$C = \frac{1}{\mathcal{I}_0} (V(U_{0+}) - V(U_{0-}) - \mathcal{I}_0 \kappa)$$

where

$$\mathcal{I}_0 = \int \mathrm{d}\xi \; (\partial_\xi U_0)^2 = 2^{1/2} \int \mathrm{d}U \; V(U)^{1/2}$$

Two global geometric observables

- ullet Area both sides $\mathcal{A}_+, \mathcal{A}_-$
- ullet perimeter ${\cal L}$

Functional

$$\mathcal{F} = V(U_{0+})\mathcal{A}_+ + V(U_{0-})\mathcal{A}_- + \mathcal{I}_0\mathcal{L}$$

kink energy = Line tension (Landau Models)

$$\mathcal{I}_0 = \mathcal{F}_k$$

Global minimum: whole system in low-potential phase with no boundary $\to \mathcal{F}$ is a Lyapunov functional (coarse grained)

Variation $\delta \mathbf{r}(s)$

$$egin{aligned} \mathrm{d}\mathcal{F} &= V(U_{0+})\mathrm{d}\mathcal{A}_{+} + V(U_{0-})\mathrm{d}\mathcal{A}_{-} + \mathcal{I}_{0}\mathrm{d}\mathcal{L} \ \mathrm{d}\mathcal{A}_{+} &= -\oint\mathrm{d}s\,(\delta r(s)\cdot\hat{\mathbf{n}}) \end{aligned}$$

$$\mathrm{d}\mathcal{A}_{-}=+\oint\mathrm{d}s\,(\delta\mathbf{r}(s)\cdot\hat{\mathbf{n}})$$

$$\mathrm{d}\mathcal{L} = \oint \mathrm{d}\mathbf{s} \, (\delta \mathbf{r}(\mathbf{s}) \cdot \hat{\mathbf{n}}) \kappa$$

$$\delta \mathbf{r}(s) \cdot \hat{\mathbf{n}} = C \, \mathrm{d}t$$

$$rac{\mathrm{d}}{\mathrm{d}t}\mathcal{F} = \oint \mathrm{d}s \; C\left(-V(U_{0+}) + V(U_{0-}) + \mathcal{I}_0\kappa\right)$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F} = -\mathcal{I}_0 \oint \mathrm{d}s \ C^2 \le 0$$

Eikonal dynamics

Eikonal equation

$$c = c_* - D\kappa$$

- Several interfaces: collisions of interfaces

 → topological changes
- "quick" invasion of the system by low-energy domains

- Type III-s
- 1D Dynamics
 - Kinks and antikinks
 - Coexistence
- 3 2D dynamics
 - Geometry of Fronts
 - Eikonal equation
 - Coexistence
- Conclusion

Coarsening dynamics at coexistence

 $c_*=0$, i.e., $\gamma=0$ Coexistence / Motion by curvature

$$c = -D\kappa$$

Heuristic scaling approach Dynamics dominated by one lengthscale L Domain size L, curvature $\kappa \sim 1/L$ $\partial_t L \sim c \sim D\kappa \sim D/L$ $\Rightarrow \partial_t L^2 \sim D \Rightarrow L \sim (Dt)^{1/2}$

scalings
$$\begin{split} &\kappa \sim 1/L \sim \epsilon \\ &c \sim \partial_t L \sim D/L \sim \epsilon \\ &t \sim L^2 \sim \epsilon^{-2} \end{split}$$

ightarrow derivation of Eikonal equation self-consistent

Ising model (500×500, inv temp 10^2);

Coarsening dynamics

Closed hull of area A_H

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{A}_{H} = \oint \mathrm{d}s \; c = -D \oint \mathrm{d}s \; \kappa$$

Gauss-Bonnet $\oint \mathrm{d} s \; \kappa = 2\pi$

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{A}_H = -2\pi D$$

Hull area dynamics

$$\mathcal{A}_H(t) = \mathcal{A}_H(0) - 2\pi Dt$$

Collapse in finite time $A_H(0)/(2\pi D)$ Advection of the probability distribution

$$P(A_H, t) = P(A_H + 2\pi Dt, 0)$$

No collisions!

Coarsening dynamics

Example of application Conformal field theory, quenching from ∞ temperature

$$P(\mathcal{A}_H,0) = \frac{2c_c}{\mathcal{A}_H^2}$$

 c_c is called the central charge ($c_c = 1/(8\pi 3^{1/2})$) finite time distribution

$$P(A_H, t) = P(A_H + 2\pi Dt, 0) = \frac{2c_c}{(A_H + 2\pi Dt)^2}$$
$$t^2 P(A_H; t) = f(A_H/t) = \frac{2c_c}{[(A_H/t) + 2\pi D]^2}$$

$$t^2 P(A_H; t) = f(A_H/t) = \frac{2c_c}{[(A_H/t) + 2\pi D]^2}$$

Arenzon et al (2007)

$$D \approx 0.33$$

- 🕕 Type III-s
- 1D Dynamics
 - Kinks and antikinks
 - Coexistence
- 2D dynamics
 - Geometry of Fronts
 - Eikonal equation
 - Coexistence
- Conclusion

Conclusion

- III-s: Cahn-Allen equation
- 1D kink dynamics, Coarsening (coexistence $L \sim \ln t$)
- 2D Eikonal equation
- ullet 2D Coarsening (coexistence $L \sim t^{1/2}$)

