## Magnetic Field of a Moving Charge

#### 1 Introduction

In previous activities, you computed the force on moving charges in a region of space where there is a magnetic field. No mention was made of how the magnetic field was created.

In this activity, you compute the magnetic field created by moving charges.

The magnetic field due to a point charge q moving with velocity  $\vec{\mathbf{v}}$  (when  $|\vec{\mathbf{v}}|$  is small compared to the speed of light) is

$$ec{\mathbf{B}} = rac{\mu_o}{4\pi} rac{q ec{\mathbf{v}} imes \hat{\mathbf{r}}}{r^2}$$

where  $\hat{\mathbf{r}}$  is the unit vector that points from the position of q to the point in space where we want to know  $\vec{\mathbf{B}}$ , and r is the distance between q and that point.

To find  $\hat{\mathbf{r}}$  (see also the  $\hat{\mathbf{r}}$  Unit Vector activity),

- 1. draw a vector,  $\vec{\mathbf{r}}$ , from q to the point in space where you want to know  $\vec{\mathbf{B}}$ ;
- 2. Write  $\vec{\mathbf{r}}$  in the form  $\vec{\mathbf{r}} = r_x \hat{\boldsymbol{\imath}} + r_y \hat{\boldsymbol{\jmath}}$ ; then

3. 
$$\hat{\mathbf{r}} = \vec{\mathbf{r}}/r$$
, where  $r = \sqrt{r_x^2 + r_y^2}$ .

In this activity, the examples and solutions are given using the above approach for computing  $\vec{\bf B}$ . An alternative is to use the fact that  $\vec{\bf v} \times \hat{\bf r} = |\vec{\bf v}| \sin \phi = v \sin \phi$ , where  $\phi$  is the angle between  $\vec{\bf v}$  and  $\hat{\bf r}$  and  $0 \le \phi \le 180^\circ$ . With this, the magnitude of the magnetic field is

$$B=rac{\mu_o}{4\pi}rac{|q|v\sin\phi}{r^2}$$

and the right-hand rule can be used to determine the direction of  $\vec{\mathbf{B}}$ . See the Cross Products activity for a discussion of when and how to compute the cross-product using this method.

### 2 Example

If q is at (x,y)=(-a,-a) and has a velocity of  $\vec{\mathbf{v}}=v_o\hat{\imath}$ , find  $\vec{\mathbf{B}}$  at (x,y)=(a,a).

#### **Solution**

To find  $\hat{\mathbf{r}}$ , we draw a vector from q to the point where we want to compute  $\vec{\mathbf{B}}$ .



Based on the diagram,  $\vec{\mathbf{r}}=2a\hat{\imath}+2a\hat{\jmath}$  and  $r=\sqrt{(2a)^2+(2a)^2}=2\sqrt{2}a$ , so

$$\hat{f r}=rac{ec{f r}}{r}=\left[rac{1}{\sqrt{2}}\hat{m \imath}+rac{1}{\sqrt{2}}\hat{m \jmath}
ight]$$

The cross-product is

$$egin{aligned} ec{\mathbf{v}} imes\hat{\mathbf{r}} = v_o\hat{m{\imath}} imes\left[rac{1}{\sqrt{2}}\hat{m{\imath}} + rac{1}{\sqrt{2}}\hat{m{\jmath}}
ight] = rac{v_o}{\sqrt{2}}(\hat{m{\imath}} imes\hat{m{\jmath}}) = rac{v_o}{\sqrt{2}}\hat{m{k}} \end{aligned}$$

Substitution into

$$ec{\mathbf{B}} = rac{\mu_o}{4\pi} rac{q ec{\mathbf{v}} imes \hat{\mathbf{r}}}{r^2}$$

gives

$$ec{\mathbf{B}}(a,a) = rac{\mu_o}{4\pi} rac{qrac{v_o}{\sqrt{2}}\hat{m{k}}}{(2\sqrt{2}a)^2} = rac{\mu_o}{4\pi} rac{qv_o}{(8\sqrt{2})a^2}\hat{m{k}}$$

Check: Use the right-hand rule for cross products on  $\vec{\mathbf{v}} \times \hat{\mathbf{r}}$  to verify that the result is out of the page. (Why do we know that the  $\hat{\mathbf{k}}$  direction is out of the page?)

# 3 Problem I

If q is at (x,y)=(a,a) and has a velocity of  $\vec{\mathbf{v}}=v_o\hat{\imath}$ , find  $\vec{\mathbf{B}}$  at (x,y)=(-a,-a).

## 4 Problem II

If q is at (x,y)=(a,0) and has a velocity of  $\vec{\mathbf{v}}=v_o\hat{\pmb{\jmath}}$ , find  $\vec{\mathbf{B}}$  vector at (x,y)=(a,a).

## **5 Problem III**

If q is at (x,y)=(a,2a) and has a velocity of  $\vec{\mathbf{v}}=v_o\hat{\pmb{\jmath}}$ , find  $\vec{\mathbf{B}}$  at (x,y)=(-a,-a).

### 6 Problem IV

If q is at the position  $(x_o,y_o)$  and has a velocity of  $ec{\mathbf{v}}=v_x\hat{m{\imath}}+v_y\hat{m{\jmath}},$ 

$$ec{\mathbf{B}}(x,y) = rac{\mu_o}{4\pi} rac{q}{r^3} ig[ v_x(y-y_o) - v_y(x-x_o) ig] \hat{m{k}}$$

where

$$r = \sqrt{(x-x_o)^2 + (y-y_o)^2}$$

- 1. Explain why  $\vec{\mathbf{B}}$  only has a  $\hat{\mathbf{k}}$  component.
- 2. Use this formula to find  $\vec{\mathbf{B}}$  for the example problem in section 2.

3. Derive this formula.