Used Car Service

jwyx88003@gmail.com

Requirements

- Crawl used car ads from craigslist
- Extract structure information and save to database
- Visualize data (e.g. count, price, etc) group by make and model
- Apply regression to generate predict price for new ads

Workflow: Crawl and import post

Workflow: Train model

Workflow: Data Visualization

Workflow: UI

Data Models

MySQL:

- ad:
 - o id (PK), url, make_id (FK), model_id (FK), year, price, title_status, odometer, size, category
 - color, condition, drive, fuel, transmission, latitude, longitude
 - dealer, cylinders, posted_at, post_url, predict_price, predicted_at, predict_info
- make:
 - o id, name
- carmodel:
 - o id, name, make_id (FK), predict_model

MongoDB: sfbay_redis

```
id: ObjectId("59e70081f2f22b68a3dd4328")
 body: "I love this car yet unfortunately I'm finding myself only driving my p..."
 category: "cto"
notice: Array
 title: "Acura TL, 2005"
 url: "https://sfbay.craigslist.org/sfc/cto/d/acura-tl-2005/6333121266.html"
 price: "6875"
 posted_at: "2017-10-04T16:51:13-0700"
 updated_at: "2017-10-17T21:10:47-0700"
 longitude: "-122.397100"
 post id: "6333121266"
> attr_text: Array
 title_text: "Acura TL, 2005 $6875 (SOMA)"
 collection: "sfbay_redis"
 address: ""
> images: Array
 latitude: "37.762100"
 dealer: false
> thumbs: Array
```

MongoDB: sfbay_train

```
_id: ObjectId("59f36f57eb1a1c2a0ebce652")
year: 1999
make: "Ford"
model: "ranger"
odometer: 199999
dealer: false
posted_at: "2017-10-03T14:04:48-0700"
latitude: 37.768751
longitude: -122.211669
title status: "clean"
cylinders: 4
drive: "rwd"
fuel: "gas"
transmission: "manual"
category: "truck"
color: "blue"
condition: "excellent"
size: "compact"
post_url: "https://sfbay.craigslist.org/eby/cto/d/99-ford-ranger-for-sale/6331528..."
price: 3000
make_id: 120
model_id: 2555
```

MongoDB: sfbay_d3_task

```
_id: ObjectId("59f36e88eb1a1c2a0ebce61e")

vdata: Object
    make_id: "77"
    make: "Acura"
    model_id: "2527"
    model: "t1"

sig: "1a80733a273548c7168947acfe5f2041aeaa0b31"
dirty: false
name: "make_year_count"
executed_at: 2017-10-28 20:16:41.771
```

MongoDB: sfbay_model

```
_id: ObjectId("59f3c1be9586186d25278360")
r2_score: -0.21265860024857042

> feature_importances: Array

> columns: Array
size: 16
make_id: 77
model_id: 2529
make: "Acura"
model: "ilx"
created_at: 1509147070.526292
alg_driver: "gradient_boosting_regressor"
alg_model: Binary('gANjc2tsZWFybi5lbnNlbWJsZS5ncmFkaWVudF9ib29zdGluZwpHcmFkaWVudEJvb3N0aW5nUmVncmVzc29yCnEAKYFxAX1xAihY...')
sig: "07fdd2405c949f628660e2819ede262d56d0ea6b"
```

Redis: start_urls

Redis: dupefilter (url dedup)

Redis: requests

APIs

- POST /import_ad/: {"post_url": "xxx"}
- CRUD /ads/
- CRUD /makes/
- CRUD /models/

Deployment

- Use docker and docker-compose
 - Four infra containers: MySQL, MongoDB, Redis, Frontend (nginx)
 - o Three app containers: Backend, Feeder, Crawler
 - Establish overlay networks between containers and use hostname to communicate
- Deploy at one VM
 - 2 GB memory and 2 CPU
 - Memory usage tuning
 - Use custom mysql configuration to decrease memory usage
 - Set max memory of celery worker (one worker and use 500 MB): --concurrency=1 --max-memory-per-child=500000

Design Consideration

- Storage choice:
 - MySQL: save structure data and leverage rich query feature
 - MongoDB: save semi-structure data
 - Raw post from craigslist
 - Train data
 - Train model
 - D3 Task
 - Redis: fast, in memory and offer rich data structure
 - Celery: use as broker for task
 - Crawler: use as request queue, bitset and dedup set
 - Feeder: use as start_urls queue
 - File System: save static files
 - Data visualization data in Vega-Lite format
 - Client side code

Design Consideration (CONT.)

- Extensibility
 - Use plugin mechanism
 - Train model task
 - D3 task to generate different visualization data
- Scalability
 - Scale to N replica
 - Crawler share redis
 - Celery worker
 - Backend server
 - Use offline jobs if real-time calculation is not required
 - Train model
 - D3 task
 - Remove unnecessary calculation
 - Use dirty flag of D3 task

Q & A

