2014 TAIWAN

International Olympiad in Informatics 2014

13-20th July 2014 Taipei, Taiwan Day-1 tasks

game

Language: hu-HU

Játék

Jian-Jia és Mei-Yu Taiwan repülő hálózata alapján játszik. Van n város (0-tól n-1-ig sorszámozva), néhányat kétirányú repülő járat köt össze.

A játékban Mei-Yu kérdez, a kérdése formája: "Van-e az x. és y. város között közvetlen repülő járat?". A kérdésekre Jian-Jia azonnal válaszol. Mei-Yu minden várospárra pontosan egyszer kérdez rá, így összesen r = n(n-1)/2 kérdést tesz fel. Mei-Yu nyer, ha r-nél kevesebb kérdés feltétele után el tudja dönteni, hogy bármely városból el lehet-e jutni bármely másik városba közvetlen vagy közvetett úton. Egyébként, azaz ha csak r kérdés feltétele után tudja eldönteni, akkor Jian-Jia nyer.

Segíts Jian-Jia-nak megnyerni a játékot!

Példa

Mindhárom példában n=4 város és r=6 kérdés van, amire válaszolnod kell.

Az első példában (az alábbi táblában) Jian-Jia *veszít*, mert a 4. kérdés után Mei-Yu tudja, hogy bármely városból bármely városba el lehet jutni, függetlenül az 5. és a 6. kérdésre adott választól.

lépés	kérdés	válasz	
1	0, 1	igen	
2	3, 0	igen	
3	1, 2	nem	
4	0, 2	igen	
5	3, 1	nem	
6	2, 3	nem	

A 2. példában Mei-Yu 3 kérdés után tudja, hogy nem lehet bárhonnan bárhova eljutni, például a 0. városból az 1. városba sem. Tehát Jian-Jia veszít.

lépés	kérdés	válasz	
1	0, 3	nem	
2	2, 0	nem	
3	0, 1	nem	
4	1, 2	igen	

lépés	kérdés	válasz
5	1, 3	igen
6	2, 3	igen

Az utolsó példában Mei-Yu csak 6 kérdés után tudja a választ, tehát Jian-Jia *nyeri* a játékot. Ez azért van, mert ha Jian-Jia válasza az utolsó kérdésre *igen*, akkor el lehet jutni bárhonnan bárhova, ha pedig a válasza *nem*, akkor ez lehetetlen.

lépés	kérdés	válasz
1	0, 3	nem
2	1, 0	igen
3	0, 2	nem
4	3, 1	igen
5	1, 2	nem
6	2, 3	igen

Feladat

Írj programot, amellyel Jian-Jia nyer! Tudjuk, hogy Mei-Yu és Jian-Jia nem ismerik egymás stratégiáját. Mei-Yu tetszőleges sorrendben kérdezhet, Jian-Jia-nak pedig azonnal válaszolnia kell! A következő két függvényt kell megvalósítanod:

- initialize (n) -- Az initialize-t az értékelő egyszer hívja, a legelején. Az n paraméterben adja meg a városok számát.
- hasEdge (u, v) -- Ezután a hasEdge függvényt r = n(n-1)/2-szer hívja meg. A hívások Mei-Yu kérdéseit valósítják meg, amire meg kell adnod, hogy van-e u és v között közvetlen repülő járat. A függvény értéke 1 legyen, ha van közvetlen járat, illetve 0, ha nincs!

Részfeladatok

ré s z fe la dat	pont	n
1	15	n=4
2	27	$4 \le n \le 80$
3	58	$4 \le n \le 1500$

Megvalósítás

A game.c, game.cpp vagy game.pas fájlt kell beküldened! Ebben legyen a két megvalósított függvény! A game.h-t include-old!

C/C++ program

```
void initialize(int n);
int hasEdge(int u. int v);
```

Pascal program

```
procedure initialize(n: longint);
function hasEdge(u, v: longint): longint;
```

Minta értékelő

A minta értékelő a bemenetet a következő formában várja:

- 1. sor: n
- lacktriangle A következő $m{r}$ sor mindegyike egy u és v számpárt tartalmaz, a kérdésben szereplő városok $m{u}$ és $m{v}$ sorszámát.