Using NHDPlus HR Value-Added Attributes to Create Useful Analytical Tools

Al Rea, Karen Adkins, and Michele (Mike) Basile

National Geospatial Program

July 31, 2019

CUAHSI HydroInformatics Conference

Today's Agenda

- Introduction Al Rea
 - General Overview of Hydro Datasets
 - NHDPlus concepts and applications
 - NHDPlus High Resolution (NHDPlus HR)
 - Value-Added Attributes (VAAs) Basics
- VAA Navigator Tool Demo Karen Adkins
- VAA Navigation Tutorial Mike Basile

USGS National Hydrography Datasets

Hydrologic networks, units, catchments, and more...

National Hydrography Dataset (NHD)

■ The **drainage network** with features such as rivers, streams, canals, lakes, ponds, and stream gages

Watershed Boundary Dataset (WBD)

 Hydrologic units at 8 scales of a nested hierarchy; defines all or part of the areal extent of surface water drainage to a point

NHDPlus High Resolution

Incorporates features of the NHD, WBD and 3DEP elevation data to create a networked hydrography framework that incorporates the entire landscape

NHDPlus

- Medium Resolution completed for CONUS (1:100,000)
- High Resolution in work for CONUS and AK (1:24,000)
- Incorporates NHD, WBD and 3DEP data

Evolution of NHDPlus HR

Taking NHDPlus v2 (Med Res) to a new level

- ■The best of NHDPlus and NHD HR (24K or better) data
- Addresses the need for a single hydrographic frame of reference
- Link data to one network and generalize to many different scales

NHDPlus includes...

- A nationally seamless network of stream reaches
- Value-added attributes for stream network navigation and analysis
- Flow surfaces in raster format
- Elevation-based catchment areas for each stream segment that
 - Create a seamless, scalable hydrologic framework
 - Enable modeling of water flow across the landscape, linking terrestrial characteristics to the stream network

NHDPlus <u>Medium Resolution</u> Applications Sampler

A few examples to inspire ideas...

For a listing of ~150 more applications, see

https://www.epa.gov/waterdata/nhdplus-applications

+Phosphorus and Nitrogen yields predicted by the Northeastern and Mid-Atlantic regions SPARROW model.

Predicted Nitrogen Load (kg/year) Delivered to Long Island Sound from States within the Connecticut River Watershed

ICWater QuickTrace – 8 day travel time

National Water Model simulation: Fernando Salas, NOAA-NWS

Catalog, Search, and Discover Prototype

- Allows network search of addressed data
- Upstream and downstream
- With or without tributaries or divergences
- Built into the Water
 Quality Portal
 https://www.waterqualitydata.us/

https://cida.usgs.gov/nldi/huc12pp/030801011008 ... /navigate/UM ... /navigate/UT

https://cida.usgs.gov/nldi/huc12pp/030801011008 ... /navigate/DD Zoomed In

https://cida.usgs.gov/nldi/huc12pp/030801011008 ... /navigate/UT/nwissite ... /navigate/UT/wqp

+ NLDI Additional Information

- https://owi.usgs.gov/blog/nldi-intro/
- https://cida.usgs.gov/nldi/about

- **■** <u>jkreft@usgs.gov</u>
- dblodgett@usgs.gov

NHDPlus HR Status

- NHDPlus HR Beta will be completed in 2020 for the conterminous U.S., HI and territories, followed by AK in later years
- Users are invited to review and provide feedback to the Beta version datasets
- Feedback will be used to update and improve the refreshed data release, beginning in late 2019

Markup App

https://edits.nationalmap.gov/markup-app

- Suggest edits to NHD, WBD, and NHDPlus HR
- Requirements: Gmail or ArcGIS Online <u>account and</u> Google Chrome

Vector Data

- NHD features
- NHDPlus features
- WBD features
- Value Added Attribute(VAA) tables

- ☐ NHDPlus_H_0903_GDB.gdb
 - ⊟ Hydrography
 - HYDRO_NET
 - HYDRO_NET_Junctions
 - NHDArea
 - → NHDFlowline
 - ➡ NHDLine
 - NHDPoint
 - NHDWaterbody
 - - ➡ NHDPlusBurnLineEvent
 - NHDPlusBurnWaterbody
 - NHDPlusCatchment
 - NHDPlusLandSea
 - NHDPlusSink
 - MHDPlusWall
 - - NonContributingDrainageArea
 - NonContributingDrainageLine
 - NWISDrainageArea
 - NWISDrainageLine
 - **™** WBDHU10
 - **WBDHU12**
 - WBDHU14
 - WBDHU16
 - **WBDHU2**
 - WBDHU4
 - WBDH04
 - WBDHU6
 WBDHU8
 - WBDLine

- NHDPlusDivFracMP
- NHDPlusEROMMA
- NHDPlusEROMQAMA
- NHDPlusEROMQARPT
- NHDPlusFlow
- NHDPlusFlowlineVAA
- NHDPlusIncrLat
- NHDPlusIncrPrecipMA
- NHDPlusIncrPrecipMM01
- NHDPlusIncrPrecipMM02
- NHDPlusIncrPrecipMM03
- NHDPlusIncrPrecipMM04
- NHDPlusIncrPrecipMM05
- NHDPlusIncrPrecipMM06
- NHDPlusIncrPrecipMM07
- NHDPlusIncrPrecipMM08
- NHDPlusIncrPrecipMM09
- NHDPlusIncrPrecipMM10
- NHDPlusIncrPrecipMM11
- NHDPlusIncrPrecipMM12
- NHDPlusIncrROMA
- NHDPlusIncrTempMA
- NHDPlusIncrTempMM01
- NHDPlusIncrTempMM02
- NHDPlusIncrTempMM03
- NHDPlusIncrTempMM04
- NHDPlusIncrTempMM05
- NHDPlusIncrTempMM06
- MHDPlusIncrTempMM07
- NHDPlusIncrTempMM08
 NHDPlusIncrTempMM09
- INHDPlusIncrTempMM09

 NHDPlusIncrTempMM10
- NHDPlusIncrTempMM11
- NHDPlusIncrTempMM12
- MHDPlusMegaDiv
- NHDPlusNHDPlusIDGridCode

Vector Data

- ☐ INHDPlus_H_0903_GDB.gdb
 - - HYDRO_NET
 - HYDRO_NET_Junctions
 - MHDArea
 - → NHDFlowline
 - → NHDLine
 - NHDPoint
 - MHDWaterbody
 - P NHDPlus
 - MHDPlusBurnLineEvent
 - NHDPlusBurnWaterbody
 - NHDPlusCatchment
 - NHDPlusLandSea
 - NHDPlusSink
 - ➡ NHDPlusWall
 - 日 中 WBD
 - NonContributingDrainageArea
 - NonContributingDrainageLine
 - NWISDrainageArea
 - NWISDrainageLine
 - **™** WBDHU10
 - WBDHU12
 - WBDHU14
 - WBDHU16
 - **WBDHU2**
 - **™** WBDHU4

 - **™** WBDHU6
 - WBDHU8
 - WBDLine

- NHDPlusDivFracMP
- NHDPlusEROMMA
- NHDPlusEROMQAMA
- NHDPlusEROMQARPT ■ NHDPlusFlow
- NHDPlusFlowlineVAA
- NHDPlusIncrLat
- NHDPlusIncrPrecipMA
- NHDPlusIncrPrecipMM01
- NHDPlusIncrPrecipMM02
- NHDPlusIncrPrecipMM03
- NHDPlusIncrPrecipMM04
- NHDPlusIncrPrecipMM05
- NHDPlusIncrPrecipMM06
- NHDPlusIncrPrecipMM07
- NHDPlusIncrPrecipMM08
- NHDPlusIncrPrecipMM09
- NHDPlusIncrPrecipMM10
- NHDPlusIncrPrecipMM11
- NHDPlusIncrPrecipMM12
- NHDPlusIncrROMA
- NHDPlusIncrTempMA
- NHDPlusIncrTempMM01
- NHDPlusIncrTempMM02
- NHDPlusIncrTempMM03 NHDPlusIncrTempMM04
- NHDPlusIncrTempMM05
- NHDPlusIncrTempMM06
- NHDPlusIncrTempMM07
- NHDPlusIncrTempMM08
- NHDPlusIncrTempMM09
- NHDPlusIncrTempMM10
- NHDPlusIncrTempMM11 ■ NHDPlusIncrTempMM12
- NHDPlusMegaDiv
- NHDPlusNHDPlusIDGridCode

Vector Data

NHDPlusID	StreamLeve	StreamOrde	StreamCalc	
65000300030296	7	1	1	
65000300052711	8	1	1	
65000300014858	5	3	3	
65000300106445	6	4	4	
CEARCARARCTOR	7		TotDA Sakm	

☐ ■ NHDPlus_H_0903_GDB.gdb

⊟ Hydrography

HYDRO_NET

HYDRO_NET_Junctions

MHDArea

NUDElouding

■ NHDPlusDivFracMP

III NHDPlusEROMMA

■ NHDPlusEROMQAMA

■ NHDPlusEROMQARPT ■ NHDPlusFlow

III NHDPlusFlowlineVAA

65000300052711	8	1 1	→ NHDFlowline	₩ NHDPlusIncrLat	
65000300014858	5	3 3	□ NHDLine	■ NHDPlusIncrPrecip	MA
65000300106445	6	4 4 4	(120 de la 140 de la	MaxElevRaw	MinElevRaw
65000300096895	7	TotDA SqKm	DivDASqKm		
65000300035863	8	0.6497	0.6497	35918	3541
65000300065594	10	0.88560002	0.88560002	-9998	4666
65000300105411	6	47.51939998	23.90860021	-9998	3304
65000300041488	8	215.67509921	215.67509921	-9998	4691
65000300085887	7	17.77670014	17.77670014	-9998	3584
65000300098802	7	0.70980006	0.70980006	-9998	3919
65000300031773	5	0.17109994	0.17109994	46193	4568
65000300104158	9	2003.84179784	2003.45979789	-9998	4234
65000300009816	9	0.78219994	0.78219994	-9998	4261
65000300016216	7	33.79639983	33.79639983	-9998	3384
65000300090069	8	1.30610012	1.30610012	-9998	4009
65000300006999	7	735.78720027	735.78720027	-9998	3763
65000300020007	7	4.53500008	4.53500008	-9998	4234
65000300038332	9	0.72749998	0.72749998	46323	4488
65000300088008	7	2.02510004	2.02510004	41630	4134
65000300048647	8	9.33099992	9.33099992	-9998	5774
65000300100032	8	2.12950013	2.12950013	-9998	3467
65000300058575	7	1.03320002	1.03320002	-9998	3595
65000300045949	7	0.09260001	0.09260001	-9998	4544
65000300003339	9	1.34830005	1.34830005	-9998	3776
65000300036875	8	2.94200017	2.94200017	-9998	4414
65000300079461	7	0.08869998	0.08869998	37452	3638
65000300037267	6	1.32560012	1.32560012	-9998	3993
65000300009320	6	9.75410007	9.75410007	-9998	3960
		0.83970004	0.83970004	-9998	3844
		0.041	0.041	-9998	4568
		1.43619997	1.43619997	-9998	4435
		42 66279975	42 66279975	-9998	4523
		72.00213313	72.002/33/3	2000	1320

Raster Data

- HRNHDPlusRasters0601

- ⊞ fdr.tif
- ⊞ Illdepth.tif
- ⊞ shdrelief.jp2
 - x swnet.tif.xml

Raster and Vector Data

- NHDPlus is built though an automated process that analyzes NHD, WBD, and 3-DEP elevation.
- This analysis produces a set of value added geospatial layers and hundreds of attributes.
- Many of the attributes are computed from the analysis of the NHD network.
- These attributes are designed to make the NHD network more powerful and easier to use.
- See https://usgs.gov/NatHydroVAAs

NHDPlus Analysis VAAs

- StreamOrder
- StreamCalculator
- ArbolateSum
- ReturnDivergence
- PathLength

NHDPlus Navigation VAAs

- FromNode/ToNode VPUIn/VPUOut
- Hydroseq
- LevelPathID
- TerminalPathID
- StreamLevel
- Divergence
- StartFlag
- TerminalFlag

- UpLevelPathID
- UpHydroSeq
- DnStreamLevel
- DnLevelPathID
- DnMinorHydroseq
- DnDrainCount

Strahler Stream Order

- A surrogate for stream size
- A popular analysis attribute.

FromNode/ToNode

- A set of nationally unique identifiers for the node endpoints of the flowlines
- This supports the many models that use linked node navigation
- Note there is no actual node feature class

PathLength

 The distance downstream to the network terminus

Hydrologic Sequence Number (HYDROSEQ)

- A nationally unique sequence number that places NHD flowline features in hydrologic sequence
 - Ascending = downstream to up
 - Descending = upstream to down
- Enables models to process the network in a tabular manner without using geometry flowlines

StreamLevel

- Provides the information necessary to determine the main path upstream at each confluence
 - Blue = StreamLevel 1
 - Green = StreamLevel 2
 - Red = StreamLevel 3
- This supports upstream navigation of a river mainstem

LevelPathIdentifier

- The identifier (HydroSeq) for all the flowlines on a level path from mouth to headwaters
- River Main Stem

TerminalPathIdentifier

■ The identifier (HydroSeq) for the terminal flowline in this network

Total Upstream Drainage Network

A simple select
 TerminalPathIdentifier to
 identify the upstream drainage
 network

Total Upstream Drainage Area

- Each flowline has total upstream drainage area already computed
- Plus... many other attributes

DivergenceCode

- A flag which defines the major and minor branches of a flow split (divergence)
- This supports downstream navigation of the network mainstem

Dendrite

 Remove divergence minor paths and create a dendritic network

 Some models require a dendritic network

Select for StreamOrder = StreamCalc

† Putting it all together

LevelPathID: Selects the Susitna River

[†] Putting it all together

TerminalPathIdentifier: Selects everything upstream of the Susitna River

* Putting it all together

ArbolateSum (UpstreamCumulativeStreamKm): 65,491 km

* Putting it all together

TotalDrainageAreaSqKM: 50,623 sqkm

Longitudinal Profile from NHDPlus HR

Plot MinimumElevationSmoothed vs PathLength for a selected LevelPathID

Longitudinal Profile from NHDPlus HR

Plot MinimumElevationSmoothed vs PathLength for selected NHDFlowlines

Resources

- See VAA web page https://usgs.gov/NatHydroVAAs
- User Guide for NHDPlus HR is coming soon. The NHDPlus V2 User Guide is a good reference for now:
 - https://s3.amazonaws.com/nhdplus/NHDPlusV21/Documentation/NHDPlusV2_User_Guide.pdf
- New GitHub Repository: https://github.com/ACWI-SSWD/nhdplushr_tools
- NHDPlus HR web page:
 https://usgs.gov/NatHydroNHDPlus-HR

Contacts

Al Rea

ahrea@usgs.gov

National Hydrography Science and Applications Lead

Karen Adkins

kadkins@usgs.gov

NGTOC Senior Hydrography Lead

Michele (Mike) Basile mbasile@usgs.gov
NGTOC Hydrologist

