4. Hausaufgabe im Modul "Berechenbarkeit & Komplexität"

Gruppe HA-EH-Fr-10-12-MA544-3

Aufgabe 1: **AKZEPTANZPROBLEM**

Wir zeigen die Unentscheidbarkeit von A_0 , indem wir das allgemeine Halteproblem $H = \{w \# x \mid M_w \text{ hält auf Eingabe } x\}$ darauf reduzieren.

Konstruktion einer Reduktion f:

Aus Kapitel 8, Folie 17 kennen wir $H_0 := \{w | w \# \in H\}$ wobei $H \leq H_0$. Ähnlich wie Kapitel 8, Folie 14: bei Eingabe w berechnet f das Codewort einer Maschine M', die wie M_w arbeitet, aber in einen Endzustand übergeht, sobald M_w hält (egal ob akzeptierend oder ablehnend). Also $H_0 \leq A_0$. Somit ist A_0 unentscheidbar.

Aufgabe 2: PCP

Bei I_1 handelt es sich um ein unäres PCP und wir können die Lösung wie folgt finden:

$$a(|x_1| - |y_1|) + b(|x_2| - |y_2|) = 60a - 66b = 0$$

lässt sich lösen mit a = 11; b = 10 also:

$$x_1^{11} \cdot x_2^{10} = a^{671} \cdot a^{10} = a^{681}$$

$$y_1^{11} \cdot y_2^{10} = a^{11} \cdot a^{670} = a^{681}$$

Bei I_2 existiert keine lösung denn das einzige Paar was den gleichen Suffix hat ist das Paar i=1: (b,ab), also müsste die Sequenz auf den Paar enden. Dies heißt, dass auch das obere wort auf ab enden muss.

Da es kein $i \in \{1, 2, 3, 4\}$ gibt wobei x_i auf a endet, kann keine Wort existieren $x_i \cdot x_1$ was auf ab enden und somit y_1 als Suffix übereinstimmen kann.