COMS30035, Machine learning: Probabilistic Graphical Models 0

James Cussens

james.cussens@bristol.ac.uk

Department of Computer Science, SCEEM University of Bristol

October 9, 2020

Random variables

- Virtually all machine learning / statistics is done using random variables.
- ► Here's a simple random variable (r.v.) for modelling dice-throwing: Dice is a r.v. whose *domain* is {1,2,3,4,5,6} and we have a probability distribution over the possible values of Dice.
- ► One possible distribution is P(Dice = x) = 1/6 for all $x \in \{1, 2, 3, 4, 5, 6\}$

Continuous random variables

- In the case of discrete random variables we can define its probability distribution by simply tabulating the probabilities.
- This is evidently not possible for a continuous random variable (i.e. tomorrow's temperature at noon).
- Instead for continuous random variables we have a probability density function.

Gaussian distribution

Here is the probability density function (p.d.f.) for a Gaussian distribution with mean μ and variance σ^2 :

$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
(1)

Density functions

► Instead of requiring that a finite set of probabilities add up to 1, if f is a probability density function then the area under its curve must equal 1.

$$\int_{-\infty}^{\infty} f(x) \ dx = 1 \tag{2}$$

Also $f(x) \ge 0$ for all x.

Using density functions

We can use the pdf to get the probability that some random variable X takes a value in any given interval

$$P(X \in [a,b]) = \int_{x=a}^{x=b} f(x) dx$$
 (3)

- In general this integral need not be easy to compute.
- If X is a random variable with a Gaussian distribution what is P(X = 0)?

Means and modes

Mean (or expected value):

$$E(X) = \sum_{x} x P(X = x)$$

$$E(X) = \int_{x=-\infty}^{x=\infty} x \, f(x) \, dx$$

Mode

$$\arg\max_{x} P(X = x)$$

$$\arg\max_{x} f(x)$$

Variance

- Let the mean of some random variable X be μ .
- Consider the function $g(x) = (\mu x)^2$ which measures squared difference from the mean.
- g(X) has a distribution (it's a function of a random variable) so it too has a mean.
- ► This value is called the *variance* of X; it is the expected squared distance from the mean and so measures the spread of the distribution.

$$Var(X) = \sigma^{2}(X) = \sum_{x} P(X = x)(\mu - x)^{2}$$

$$Var(X) = \sigma^{2}(X) = \int_{x = -\infty}^{x = \infty} f(x)(\mu - x)^{2}$$

The square root of the variance is called the standard deviation, denoted σ(X)

Multivariate distributions

- A multivariate distribution is one defined using two or more random variables. The term *joint distribution* is also often used.
- For example, to model the outcome of throwing two dice we could have two random variables D_1 and D_2 .
- To define the joint distribution in this case we need to specify a value for every combination of values (joint instantiation) for these two random variables.
- For example, one joint distribution is:

$$P(D_1 = x, D_2 = y) = \frac{1}{36} \quad \forall x, y \in \{1, 2, 3, 4, 5, 6\}$$

Marginal distributions

- From a joint distribution we can produce marginal distributions over any subset of the random variables, by 'summing out' (aka 'marginalising away') the random variables we don't want.
- For example, from the following joint distribution P(X, Y) over two binary random variables X and Y, we can produce two marginal distributions: P(X) (in the bottom 'margin') and P(Y) (in the 'margin' on the right).

P(X,Y)	X=0	<i>X</i> = 1	P(Y)
<i>Y</i> = 0	0.2	0.3	0.5
Y = 1	0.4	0.1	0.5
P(X)	0.6	0.4	

Marginal distributions (ctd)

- The process of producing a marginal distribution is known as marginalisation.
- You should think of marginalisation as projecting a higher-dimensional distribution to get a lower dimensional one.
- ▶ Here is how we 'marginalise out' X_1 from a k-dimensional joint distribution over the variables X_1, \ldots, X_k .

$$P(X_2 = x_2, ... X_k = x_k) = \sum_{x_1} P(X_1 = x_1, X_2 = x_2, ... X_k = x_k)$$

Independence

Two discrete random variables X and Y are independent if (and only if)

$$P(X = x, Y = y) = P(X = x)P(Y = y) \quad \forall x, y$$
 (4)

Are X and Y independent in the following distribution?

P(X,Y)	X=0	<i>X</i> = 1	<i>P</i> (<i>Y</i>)
Y = 0	0.2	0.3	0.5
Y = 1	0.4	0.1	0.5
P(X)	0.6	0.4	

Conditional distributions

Let *X* and *Y* be two discrete distributions, then the distribution over *X* conditional on *Y* = *y* or given *Y* = *y* is:

$$P(X|Y = y) = \frac{P(X, Y = y)}{P(Y = y)}$$
 (5)

- Note: P(X|Y = y) is undefined if P(Y = y) = 0 (that makes sense, no?)
- Conditional distributions are the cornerstone of statistics/machine learning, since we condition on the observed data to get distributions over unknown quantities.
- In the Bayesian approach to statistics/machine learning that's pretty much all we do!

Bayes theorem

Since P(X, Y) = P(X)P(Y|X) = P(Y)P(X|Y) we can re-arrange to get *Bayes theorem*

$$P(Y|X) = \frac{P(Y)P(X|Y)}{P(X)}$$
 (6)

Suppose θ were some parameter and we observed some data D=d, then Bayes theorem tells us that:

$$P(\theta|D=d) = \frac{P(\theta)P(D=d|\theta)}{P(D=d)}$$
 (7)

- ▶ $P(\theta)$ is the *prior distribution* for θ .
- ▶ $P(D|\theta)$ is known as the *likelihood*.

Continuous multivariate distributions

- So far I have defined: joint distributions, marginal distributions, conditional distributions, and independence all in terms of discrete distributions.
- But all these concepts apply (of course!) to continuous multivariate distributions.
- Everything is pretty much the same except addition is replaced by integration and a finite set of probabilities is replaced by probability density functions.

Continuous joint distributions and marginals

- ▶ A joint continuous distribution over, say, two variables X and Y is defined by a a probability density function with two arguments.
- Suppose this pdf was denoted f_{X,Y} then here's how to get the marginal over just X:

$$f_X(x) = \int_{y} f_{X,Y}(x,y) dy$$
 (8)

Continuous joint distributions and conditioning

▶ Given $f_{X,Y}$ we can define a conditional distribution by simple division:

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$$

For the conditional distribution to be defined we need $f_X(x) > 0$

Independence

► For two continuous random variables *X* and *Y* to be independent we must have:

$$f_{X,Y}(x,y) = f_X(x)f_Y(y) \tag{9}$$

Multivariate Gaussian distribution

The most important multivariate distribution is the multivariate Gaussian distribution. Here's the p.d.f for a k-dimensional Gaussian distribution:

$$f(\mathbf{x}_1,\ldots,\mathbf{x}_k) = f(\mathbf{x}) = \frac{\exp\left(-\frac{1}{2}(\mathbf{x}-\mu)^T \mathbf{\Sigma}^{-1}(\mathbf{x}-\mu)\right)}{\sqrt{(2\pi)^k |\mathbf{\Sigma}|}}$$
(10)

- Instead of a single number (a scalar) as a mean, we now have a k-dimensional mean vector μ.
- Instead of a scalar variance, we now have a $k \times k$ covariance matrix Σ .
- Let's plot some Gaussian density functions when k = 2.
- I used this Jupyter notebook written by Peter Roelants (ML Engineer at Twitter) to produce the following plots.

Marginal distributions

Conditional distributions

Marginal distributions (independent rvs)

Conditional distributions (independent rvs)

