Лекция 5. Примеры конформных отображений

Теория функций комплексного переменного

Отображение диска в полуплоскость

Рис. 3.1. Отображение $z\mapsto (z-1)/(z+1)$ переводит единичную окружность в мнимую ось

Отображение диска в полуплоскость

- Точки $0, 1, \infty$ лежат на (обобщенной) окружности, ортогональной к $\mathbb{S} = \{z : |z| = 1\}$, причем $1 \in \mathbb{S}$, а 0 и ∞ симметричны относительно \mathbb{S} .
- Точки i,0,-i лежат на окружности, ортогональной к \mathbb{R} , причем $0 \in \mathbb{R}$, а i и -i симметричны относительно \mathbb{R} .
- Поэтому, если дробно-линейное преобразование f переводит $0,1,\infty$ в i,0,-i, то $f(\mathbb{S})=f(\mathbb{R})$ и $f(\mathbb{D})=\mathbb{H}.$
- Нетрудно найти

$$f(z) = i\frac{1-z}{1+z}.$$

Отображение $f(z) = i \frac{1-z}{1+z}$.

Автоморфизмы верхней полуплоскости

Предложение 3.4. Дробно-линейные автоморфизмы верхней полуплоскости $H = \{z : \text{Im } z > 0\}$ суть отображения вида

$$z \mapsto \frac{az+b}{cz+d}$$
, $a,b,c,d \in \mathbb{R}$, $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = 1$.

Группа дробно-линейных автоморфизмов верхней полуплоскости изоморфна $\mathrm{SL}_2(\mathbb{R})/\{\pm I\}$, где $\mathrm{SL}_2(\mathbb{R})$ — группа вещественных матриц с определителем 1, а I — единичная матрица.

Ключевая идея: если $f(\mathbb{H})=\mathbb{H}$, то $f(\mathbb{R})=\mathbb{R}$. Если $a,b,c,d\in\mathbb{R}$ и ad-bc>0, то $f(i)\in\mathbb{R}$.

Автоморфизмы диска

Предложение 3.5. Дробно-линейные автоморфизмы единичного круга $U = \{z : |z| < 1\}$ суть отображения вида

$$z \mapsto e^{i\theta} \frac{z - a}{1 - \bar{a}z}, \quad \theta \in \mathbb{R}, \ |a| < 1,$$
 (3.2)

и только они.

• Если точка a переходит в 0, то симметричная к a относительно $\mathbb S$ точка $\frac{1}{a}$ переходит в симметричную к 0 точку ∞ .

Отображение на полуплоскость: плоскость с разрезом

$$f(z) = i\sqrt{z}$$

Отображение на полуплоскость: угол

Отображение на полуплоскость: полоса

Отображение на полуплоскость: полудиск

$$z \mapsto \left(\frac{1}{z-1} + \frac{1}{2}\right)^2 = \frac{1}{4} \left(\frac{z+1}{z-1}\right)^2.$$

Отображение на полуплоскость: полуполоса

Рис. 3.4. Отображение $z\mapsto z_1=e^{\pi z}$ переводит полуполосу (а) в верхнюю полуплоскость с выемкой (б)

Отображение на полуплоскость:

$$z \mapsto e^{\pi z} + e^{-\pi z} = 2\cos \pi i z$$

Отображение на полуплоскость: полуплоскость с разрезом

$$f(z) = \sqrt{z^2 + 1}$$

В лекции использованы иллюстрации и материалы из следующих источников:

- С.М. Львовский, «Принципы комплексного анализа». МЦНМО.
- Wolfram Mathematica

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ