- (c) To displace air from the apparatus. Heated aluminium may react with oxygen to form an impurity. (Al_2O_3) (2 marks)
- (d) Sublimes.

(1 mark)

(e) (i)
$$2AI_{(s)} + 3Cl_{2(g)} \rightarrow 2AlCl_{3(s)}$$

 2×27 $2(27 + 35.5 \times 3)$
 54 = 267
 $54g \text{ of Al}$ = 267 of AICI₃
Therefore 1.08 produces = 267×1.08

54 = 5.34(g) (3 marks)

(ii) % yield =
$$\frac{3.47}{5.34} \times 100$$

= 65%

(1 mark)

(f) Replace receiver with a flask in ice-cold water.

(1 mark)

24.6.3 Chemistry Paper 3 (233/3)

1. (A)

	I	II	III
Final burette reading	21.8	21.6	43.6
Initial burette reading	0.0	0.0	22.0
Volume of D used (cm ³)	21.8	21.6	21.6

(3 marks)

(i)
$$\frac{21.6 + 21.6}{2}$$
 = 21.6cm^3 (1 mark)

(ii) R.F.M of Na₂CO₃₌ = 106
Conc.
$$\frac{8}{106} = 0.075M$$
 (1 mark)

(iii) Moles of Na₂CO₃ =
$$\frac{25 \times 0.075}{1000}$$

=0.001875

Moles of
$$H_2SO_4 = 0.001875$$

Conc. of
$$H_2SO_4 = \frac{0.001875}{21.6} \times 1000$$

=0.0868M (2 marks)

(iv)
$$0.0868 \times 10$$
 = $0.868M$ (1 mark)

(B)

Test-tube number	1	2	3	4	5	6
Volume of solution A (cm ³)	2	4	6	8	6	4
Volume of solution C (cm ³)	14	12	10	8	10	12
Initial temperature of solution C (°C)	20.5	20.5	20.5	20.5	20	20
Highest temperature of mixture (°C)	23	25.5	28.0	29.5	26.5	24.5
Change in temperature ΔT	2.5	5.0	7.5	9.0	6.5	4.5

(6 marks)

(3 marks)

(ii) I $\Delta T = 9.5 \pm 0.1^{\circ}$ C Maximum volume of

 $A = 7.6 \text{ cm}^3 \pm 0.1$

(1 mark) (1 mark)

(iii) I Moles of sulphuric Acid = 7.6×0.868

 $\frac{1000}{1000}$ = 0.0066 moles

(1 mark)

II Heat evolved 16 x 4.2 x 9.5

= 638.4 joules

Molar Heat $= \underline{638.4}$

0.0066= 96.727272 KJ mol⁻¹

(2 marks)

2. (a)

Inferences

Gas with a pungent/irritating/choking smell.

Colourless liquid formed on cool part of test tube.

Hydrated salt.

Blue litmus paper turns red.

Observations

Acidic gas evolved.

Red litmus paper remains red.

Solid turns reddish brown.

(3 marks)

(b)

Observations

- i) Reddish brown solution. PH 1,2,3,
- ii) Brown precipitate insoluble in excess.
- iii) Brown/Black solid formed or solution changes from yellow to brown.
- iv) White Precipitate settles at the bottom of the test tube.

Inferences

Strongly acidic.

(2 marks)

Fe 3+

(2 marks)

Iodide ions oxidised to

Iodine

(2 marks)

SO₄²-present.

(2 marks)

3. (a)

Observations

a) Clear blue flame.

- b) No separation or forms a solution Two liquids are miscible.
- c) No effervescence.
- d) Solution changes from orange to green.

Inferences

Saturated low carbon organic compound.

(2 marks)

Mixture is miscible or polar

organic compound.

(1 mark)

Liquid not acidic or absence

of H⁺.
(2 marks)

F is likely to be alcohol *OR* R

– OH .

(2 marks)