

SOLID STATE LIGHTING ARRAY DRIVING CIRCUIT

FIELD OF THE INVENTION

This invention relates to a solid state lighting array driving circuit which, in
5 particular, although not necessarily solely, is intended for use with automobiles. The
driving circuit may be used for other lighting situation, particularly where the power
supply may fluctuate.

BACKGROUND TO THE INVENTION

10 Some lighting circuit such as those used for lights on automobiles traditionally
used conventional light bulbs. For example, the taillight, park-light and indicator-
lights provided at the rear of a motor vehicle would include a number of light bulbs in
parallel circuits powered by a DC-powered supply from the vehicle.

15 There are advantages in utilizing solid-state devices for such lights as solid-
state devices have significantly longer life expectancies and reduce the need for bulb
replacement and risk of failure of the lights.

In using solid-state lighting devices, an array of such devices may be provided
20 such as an array of LEDs. The LEDs are generally driven at constant current to
ensure the correct illumination from the LEDs and each of the devices will have a
power demand and voltage drop across the device. With a single LED being
relatively small and its total light output being insufficient for such lights, it is typical
to supply an array of such LEDs to form a single light.

The difficulty with incorporating solid-state devices such as LEDs in automotive uses is that the power supply from a vehicle may fluctuate to some considerable degree. For example, an automotive power supply may provide variable voltages between 6 and 26 volts. Different voltages will be available depending on

5 different states of the battery or generator in the vehicle at any particular time or the instantaneous load drawn from the overall power supply.

- With the LEDs operating on constant currents, it is typical to require some kind of power converter and regulator to ensure that the LEDs are driven at the
- 10 appropriate current and with sufficient voltage. Usually these would require ensuring that the lighting array can operate at the lower end of the likely range of supply voltages and if the voltage is higher, the excess power may be wasted and requires dissipation as heat.
- 15 Different circuits have been proposed to provide greater efficiencies. For example, linear regulator circuits can provide the necessary control over the power supply although are relatively inefficient.

- An alternative is a switching power supply but such power supplies can cause
- 20 high electromagnetic interference through the high-speed switching of the device.

OBJECT OF THE INVENTION

It is an object of the present invention to provide a driving circuit for a solid-state lighting array that can deal with fluctuating supply voltages while reducing the

25 inefficiencies and minimizing the problems of heat dissipation or electromagnetic

interference. At a minimum, it is an object of the present invention to provide the driving circuit for solid-state lighting arrays that provides the public with a useful choice.

5

SUMMARY OF THE INVENTION

Accordingly, in a first aspect, the invention may broadly be said to consist in a driving circuit for a solid-state lighting array comprising:

- means for connection of said circuit to an incoming direct current supply;
- 10 - a plurality of solid-state lighting devices arranged in one or more series circuits with said means for connection to said power supply;
- at least one switchable parallel current path from said means for connection to said power supply to an intermediate point along at least one of said series circuits to form an alternative set of series circuits;
- 15 - at least one current regulating device in circuit with said one or more series circuits;
- a voltage sensor; and
- a control means to control a switch in said switchable parallel path such that said array of lighting devices may be reconfigured into said alternative set of series circuits to alter the quantity of lighting devices in one or more of said series circuits in response to changes in the voltage in the circuits.

Accordingly, in a second aspect, the invention may broadly be said to consist
25 in a method of controlling a solid-state lighting array comprising the steps of:

- sensing a voltage supply to or in circuits through an array of solid-state lighting devices;
- providing at least a first serial path through said solid-state lighting devices;
- 5 - providing at least one switchable parallel input intermediate of the ends of said serial path;
- providing at least one current regulating device in circuit with said lighting devices; and
- sensing the incoming voltage and controlling switches on said parallel path to break the serial path into at least two parallel paths each containing a lesser number of solid state lighting devices than said serial path should the voltage drop below a pre-determined threshold.

Accordingly, in a third aspect, the invention may broadly be said to consist in
15 a circuit containing solid-state lighting devices comprising:

- at least one serial path through said solid-state lighting devices;
- at least two alternative parallel paths through said solid-state lighting devices;
- at least one current regulating device in circuit with said lighting devices;
- 20 - switching means to switch said circuit from said serial path to a plurality of parallel paths containing a reduced load of lighting devices in each path; and
- control means to control said switches in response to detected voltage within said circuit.

Accordingly, in a further aspect, the invention may broadly be said to consist in a method of providing a circuit containing solid-state lighting devices comprising:

- arranging said solid-state lighting devices into a plurality of alternative circuits connected to at least one current regulating device; and
- 5 - switching between said alternative circuits to increase or decrease the number of circuits available and hence the number of solid-state lighting devices in each circuit in response to variations in the power available to the total number of circuits.

10

BRIEF DESCRIPTION OF THE DRAWINGS

A preferred embodiment of the invention will now be described with reference to the following drawings in which:

15

- Fig. 1 shows a schematic diagram of a circuit in accordance with a preferred embodiment of the invention;
- Fig. 2 shows a schematic drawing of the apparatus of Fig. 1 in a first configuration;
- Fig. 3 shows a schematic diagram of the apparatus of Fig. 1 in a second configuration;
- Fig. 4 shows a schematic view of the apparatus of Fig. 1 in a third configuration;
- 20 - Fig. 5 shows a schematic diagram of the apparatus of Fig. 1 in a fourth configuration; and
- Fig. 6 shows a schematic diagram of a further embodiment of the apparatus.

25

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Referring to Fig. 1, a particular embodiment of a circuit 1 is shown.

In the circuit 1, a plurality of solid-state lighting devices in the form of LEDs 2
5 are provided.

The plurality of LEDs 2 are arranged in an array incorporating a serial path 3
through each of the LEDs and terminating in a constant current sink 4 or similar
device. It will be apparent that, when connected to a power supply, each of the LEDs
10 may operate and the constant current sink 4 is used to regulate the current and
dissipate excess power supplied to the array. The power supply is indicated generally
by the item 5 being a supply DC current which, in the case of automobiles or other
uses, may be variable between different levels. This particular circuit is generally
described with reference to automobile applications where the incoming voltage may
15 be, for example, 6 volts to 26 volts.

In the embodiments described subsequently, reference will generally be made
to a constant current sink or to a constant current device. It will be appreciated that
these are particular forms of current regulating devices.

20

In the circuits of these embodiments, the LEDs are driven with a constant
current continuously. It will be appreciated that the circuits may include pulse width
modulating devices to drive the LEDs at different duty cycles. In such circuits, there
may be a desire to increase the amplitude of the driving current with an associated
25 change in the duty cycle for different circumstances. For example, the LEDs

described in the circuit may be driven by a constant current of, for example, 20 mA. controlled by a constant current device. If a pulse width modulated driving current is used, the amplitude of that driving current may be regulated such that the duty cycle is, for example, 100% at 20 mA. or perhaps 70% at 30 mA. The variation in the duty 5 cycle allows the LEDs to accommodate different voltages available in the circuit to perhaps further improve the efficiency.

Although the preferred embodiments described use a constant current device, it will be appreciated that a current regulator to choose specific currents and utilize 10 pulse width modulation to equate the intensity is a specific option available to a circuit designer.

In addition to the serial path through the LEDs 2, at least one alternative path 6 is provided. In this particular embodiment, 5 parallel paths (6, 7, 8, 9 and 10) are 15 provided although the particular number of parallel paths depends on the number of LEDs in the array and the particular uses and likely voltage variations to which the device may be put.

Each of the parallel paths such as path 6 is switchable by a suitable switch 11. 20 This preferred embodiment utilizes P-channel metal oxide semiconductor field effect transistor (PMOSFET) switches although a variety of other switches could be used. These particular switches are selected due to the relatively small losses resulting through such switches.

Additional switchable constant current devices 12, 13, 14, 15 and 16 are provided. Each of these additional constant current devices is connected immediately prior to the point of interception of one of the parallel paths 6, 7, 8, 9 and 10 with the serial path 3. Furthermore, each of the constant current device connections is
5 separated along the serial path from the parallel path by a path breaker 18 such as a diode or similar to inhibit current flowing directly from the parallel path 6 to the immediately prior constant current device 12.

A voltage sensor or similar means to calculate the incoming voltage and an
10 associated controller 19 is provided to complete the circuit.

As will be seen already from Fig. 1, the circuit as provided gives both a serial path through each of the LEDs along path 3 as well as a number of alternative parallel paths through portions of the array.
15

To describe the array in use, references made to Figs. 2, 3, 4 and 5 at which different input voltages are received and the circuit seeks to balance the power across different paths in the array.

20 Referring to Fig. 2 in the first instance, an input voltage of between 6.0 and 10.1 volts is detected by the voltage sensor and controller 19. On noting a relatively low voltage, the switches 11 in parallel circuits 6, 8 and 10 are switched on together with the constant current devices 12, 14 and 16. The constant current device 4 at the end of the serial path 3 does not need to be switchable and is permanently left on.

25

As can be seen in Fig. 2, the array is now split into 4 parallel circuits, each containing 3 LEDs. In this manner, the voltage supply is dropped across 3 LEDs in each circuit and only a remaining voltage might be lost through the constant current sink in each of the circuits. If each LED has a voltage drop of approximately 2 volts,
5 there will be minimal residual power lost through the constant current sink and only at slightly higher voltages, power is evenly dropped across all 4 operating constant current devices rather than concentrated in a single device.

A first path can be seen in Fig. 2 to comprise the first 3 LEDs that then
10 terminate through the constant current device 12. A further circuit is provided along parallel path 6 and terminates at the constant current device 14. A yet further path is provided along the parallel path 8 and terminates at the constant current device 16 and a final path along parallel path 10 terminating in the constant current device 4.

15 The diodes provided in the circuit assist in acting as path breakers in the reverse direction.

Referring to Fig. 3, a voltage of between 10.1 and 14.3 volts is detected by the controller 19. The controller 19 may operate switches 11 on paths 7 and 9 as shown
20 to open these parallel paths while closing the other paths. Constant current devices 13, 15 and 4 are in operation and the others switched to "off". It can be seen that the array is now broken into 3 parallel circuits, each containing 4 operable LEDs. The first path terminates with the constant current device 13, a second path is opened along parallel path 7 and terminates a constant current device 15 and the third path
25 along parallel path 9 and terminates at the constant current device 4.

With 4 LEDs in each parallel path, a greater voltage drop occurs through the increased number of LEDs and again only leaving residual power to be drawn by the constant current sinks.

5 Referring now to Fig. 4, it can be seen that only path 8 and constant current sinks 14 and 4 are in an operable condition with the detector and controller 19 having received an indication of a voltage of 14.3 to 16.99 volts. Such an arrangement breaks the array into 2 paths, each containing 6 operable LEDs

10 In the remaining Fig. 5, all the switchable parallel paths and switchable constant current devices are switched off with only the constant current device 4 at the end of a serial path for the arrays being in operation. This situation occurs upon the controller 19 receiving an indication of voltages between 16.99 and 26.0 volts so that all 12 LEDs are in a single current path to minimize the residual power requiring to be
15 drawn by the constant current sink 4.

Thus it can be seen that the circuit is manipulated into a different number of parallel paths to minimize residual power.

20 It is clearly preferred in the embodiments that the parallel paths provided allow approximately equal numbers of LEDs in each of the parallel paths to equally share the power supply and cause minimal even power drains at the constant current devices. However, such an arrangement assumes the demand of each LED to be the same. In other devices, they may not be the same and quantity of LEDs is not the

determining factor. It is the load from each circuit or the residual power that should be balanced where possible.

Although this preferred form of the invention utilizes constant current sink devices, other constant current regulators could be used in such parallel circuits. Furthermore, it should be noted that the arrangement of the circuit may be quite different from that shown in the schematic diagram of the preferred embodiment. The aspect to be taken from the preferred embodiment is the use of multiple parallel paths that allow the circuit to be reconfigured with differing numbers of LEDs in each circuit with a constant current drain.

The reconfiguration involves switching upon sensing of the incoming voltage in this preferred embodiment. Again, it will be appreciated that other forms of detection could be used such as detecting the voltage at the constant current devices which, when higher than a specific threshold could indicate a desire to rearrange the circuit to incorporate one or more further LEDs into each of the parallel paths.

The invention provides a relatively simple circuit operating on a DC operation so that there is no electromagnetic interference from the circuit. As each of the LEDs is driven by a constant current device in the circuit, brightness of the lamp is unaffected in each of the different configurations. There remain 12 LEDs illuminated at a constant current in all of the variations described in Figs. 2 to 5.

The circuit uses relatively few components that may be off the shelf components and can be mounted on a PCB with the LEDs themselves to provide a unit readily fitable to a vehicle or similar item.

5 Heat is released and distributed by a variety of components in this embodiment rather than being centralized and no large heat sink is required.

A further embodiment is shown in Fig. 6. The circuit in this embodiment is generally the same as the previous embodiment with the same number of LEDs and
10 current paths. However, it can be seen that the constant current devices 12 and 13 are combined into a single device 22. Additional switches, again preferably PMOS switches 23 and 24 are used on alternative paths to the device 22.

In operation, the switches 23, 24 may be operated in sync with the switches
15 25, 26 on the opposed side of the array. When it is desirable to have three LEDs in each circuit, switches 23 and 25 may be turned on to allow current to flow. To change the circuits such that four LEDs are in each circuit, switches 23 and 25 may be turned off and switches 24 and 26 may be turned on to shift the path of the current. In both cases, only a single constant current device 22 is needed as the switches bring this into
20 each of the alternative circuit arrangements.

It will also be appreciated that similar switchable paths for the current could be used to make other constant current devices in the first embodiment redundant. Indeed, it will be apparent that a single constant current device could be in circuit with
25 all the alternative current paths. However, although saving in components, such a

solution reduces the number of devices dissipating heat when the voltage in each circuit is slightly higher than the drop caused by the optimal operation of the LEDs in that circuit. The choice between extra devices or extra need to deal with localized increases in heat may depend on the particular use of the circuit.

5

Thus it can be seen that the invention provides advantages over the prior art in these aspects.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
988
989
989
990
991
992
993
994
995
996
997
998
998
999
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882<br