ABSTRACT

To withstand the high temperature (>700°C) and pressure demands of steam turbines and boilers used for energy applications, metal alloys must be economically viable and have the necessary material properties, such as high-temperature creep strength, oxidation and corrosion resistance, to withstand such conditions. One promising class of alloys potentially capable of withstanding the rigors of aggressive environments, are alumina-forming austenitic stainless steels (AFAs) alloyed with aluminum to improve corrosion and oxidation resistance. The effect of aging on the microstructure, high temperature constant-stress creep behavior and mechanical properties of the AFA-type alloy Fe-20Cr-30Ni-2Nb-5Al (at.%) were investigated in this study.

The alloy's microstructural evolution with increased aging time was observed prior to creep testing. As aging time increased, the alloy exhibited increasing quantities of fine Fe₂Nb Laves phase dispersions, with a precipitate-free zone appearing in samples with higher aging times. The presence of the L1₂ phase γ '-Ni₃Al precipitate was detected in the alloy's matrix at 760°C.

A constant-stress creep rig was designed, built and its operation validated.

Constant-stress creep tests were performed at 760°C and 35MPa, and the effects of different aging conditions on creep rate were investigated. Specimens aged for 240 h exhibited the highest creep rate by a factor of 5, with the homogenized sample having the second highest rate. Samples aged for 2.4 h and 24 h exhibited similar low secondary

creep rates. Creep tests conducted at 700°C exhibited a significantly lower creep rate compared to those at 760°C.

Microstructural analysis was performed on crept samples to explore high temperature straining properties. The quantity and size of Fe₂Nb Laves phase and NiAl particles increased in the matrix and on grain boundaries with longer aging time.

High temperature tensile tests were performed and compared to room temperature results. The high temperature results were significantly lower when compared to room temperature values. Higher creep rates were correlated with lower yield strengths.

ACKNOWLEDGEMENTS

I would like to thank:

My adviser Professor Ian Baker, whose patience, expertise, unwavering support and encouragement made it possible for me to complete my studies.

The Baker Lab Research Group for their support and guidance.

The Carpenter Technology Corporation for providing test material for this study.

Claire Stolz, for the pep talks worthy of rousing armies and accompanying me on moonlit Methow walks. Without you by my side the cougars would've gotten me.

Nate Beatty, for being there in the darkest hour, for sharing a love of microadventures, waking up at the crack of dawn for sunrise hikes, teaching me how to properly eat lobsters and always having my back.

Mark Fischer, for being a watchful older brother, being one of the few that understands what to do when you hear 'hop hop hop!' and lending a new perspective. You've kept me successfully out of trouble most of the time. I'm already looking forward to our next adventure.

Julian Childs-Walker, for being my twin and remaining the only person to ever hitchhike past the Arctic Circle to adventure with me. You've continuously helped me get up to no good and our conversations help me make sense of this world.

I can't convey how much I owe my family for getting me this far.

My sister Jane Bellousov for being the level-headed one in the family and your incredible resilience. I can't wait to go on more adventure trips with you as we grow older together.

My father Yevgeniy Belousov, for encouraging me to stop working so hard and go on more climbing breaks outside. You've provided much needed perspective and inspiration.

My grandmother Dr. Galina Gataulina for worrying about my academic timeline, encouraging me not to procrastinate and feeding me delicious piroshki.

My grandfather Dr. Akhiyar Myginovich for reminding me that life can be filled with meaningful work and to never lose your inner child wonder of how the world works. For always being proud and supportive and teaching me how to use a crowbar to pull nails and lay bricks in a straight line. You encouraged me on my path to graduate school, and I wish you'd still be here to see me complete what I started.

Most importantly, my mother Dr. Irina Afonina, without whom I would not be here today. Who supported me at every step from the moment the two of us immigrated to the United States from Russia. You gave me room to figure things out on my own and spread my wings. You sadly left us before I could finish this thesis, but I know you would've been proud of me and would have loved to do the first round of edits.

I dedicate this thesis to my mother.

Your support, unconditional love and sacrifices are responsible for everything I've accomplished.

TABLE OF CONTENTS

Abstract	ii
Acknowledgements	iv
Table of Contents	vi
List of Tables	X
List of Figures	xi
Chapter 1 Introduction	1
1.1 Background	1
1.2 Alumina-Forming Austenitic Stainless Steels	3
1.3 AFA precipitates	4
1.4 Outline of Research Project	10
Chapter 2 Constant-Stress Creep Rig Design and Calibration	12
2.1 Introduction	12
2.2 Overview of Constant-Stress Creep Machines	12
2.3 Design of Creep Test Rig	15
2.3.1 Frame and Mounts	18
2.3.2 Constant-Stress Cam	18
2.3.3 Angular Displacement Transducer	20

2.3.4 Cable and Load Alignment	21
2.3.5 Specimen Grip Components	23
2.3.6 Making Adjustments	25
2.3.7 Data Logging	26
2.4 Testing and Verification	27
2.4.1 Identifying the ADT Adjustment Factor	27
2.4.2 Eliminating Creep Contributions From System Components	29
2.4.3 Furnace Temperature Profile	29
2.4.4 Calibration Testing	30
Chapter 3 Experimental Methods	32
3.1 Introduction	32
3.2 Materials Preparation	32
3.2.1 Materials Used	32
3.2.2 Sample Machining	33
3.2.3 Material Homogenization	34
3.2.4 Annealing	35
3.3 Materials Characterization	35
3.3.1 Scanning Electron Microscopy	35

3.3.2 Transmission Electron Microscopy	37
3.4 Constant-Stress Creep Testing	37
3.4.1 Sample Preparation	37
3.4.2 Creep Test Experimental Procedure	38
3.4.3 Creep Test Experiments Performed	40
3.5 Tensile Tests	41
Chapter 4 Effect of Aging Time on Microstructure and High Temperatu	re Tensile and
Constant-Stress Creep Behavior of the Alumina-Forming Austenitic Stainless S	Steel 44
4.1 Introduction	44
4.2 Experimental	44
4.3 Results and Discussion	46
4.3.1 Investigating presence of γ '-Ni3Al (L12) precipitates at 760°	C 46
4.3.2 Characterizing the effects of aging time on alloy's microstruc	eture 47
4.3.3 Effect of aging time on high temperature tensile behavior	51
4.3.4 Effect of aging time on constant-stress creep properties	55
4.3.5 Effect of aging temperature on constant-stress creep rate	61
4.3.6 Effect of aging time on post-creep test microstructure	62
Chapter 5 Summary and Conclusions	73

Chapter 6 Future Work	77
Appendices	79
Appendix I: Constant-Stress Derivation	79
Appendix II: Custom CAD Files for Creep Rig	81
Appendix III: Additional high temperature constant-stress creep curves for e	ach aging
condition	88
Appendix IV: Additional high temperature tensile curves for each aging cond	dition 90
References	92

LIST OF TABLES

Table 2.1: Coordinates for the constant-stress cam profile fabricated for use in this study,
with $a = 6.00$ in and $b = 0.95$ in
Table 3.1: Alloy compositions obtained by chemical quantitative analyses33
Table 4.1: Area fraction of grain boundary (GB) Laves phase for Fe-20Cr-30Ni-2Nb-5Al
(at. %) homogenized at 1250°C and aged at 800°C for 0, 2.4, 24 or 240 h with results
from this investigation in the left column and results from Trotter et al. in the right
column. GB area fractions are calculated from an average of at least three BSE images
for each aging condition
Table 4.2: Yield strength (YS), ultimate tensile strength (UTS), and elongation to failure
(ϵ_f) for Fe-20Cr-30Ni-2Nb-5Al (at. %) homogenized at 1250°C for 24 h, heat treated at
800°C and strained under tension at 760°C or at room temperature with an initial strain
rate of 5 x 10^{-4} s ⁻¹ . Results are the average of at least three tests at each condition53
Table 4.3: Values prior to creep and after creep testing of average particle diameter and
particle density for Fe-20Cr-30Ni-2Nb-5Al (at. %) homogenized at 1250°C for 24 h, then
subsequently aged at 800°C for 2.4, 24 or 240 h and crept at 760°C for 500 h under a load
of 35 MPa in air65
Table 4.4: Volume fraction and standard deviations for NiAl and Laves phase particles
for Fe-20Cr-30Ni-2Nb-5Al (at. %) homogenized at 1250°C for 24 h and aged at 800°C.
Creep testing was conducted at 760°C for 500 h under a load of 35 MPa in air

Table 4.5: Post-creep T-bone head and gauge comparison values of average Laves phase	e
and NiAl particle diameter and particle density for Fe-20Cr-30Ni-2Nb-5Al (at. %)	
homogenized at 1250°C for 24 h and aged at 800°C for 240 h. Creep testing was	
conducted at 760°C for 500 h under a load of 35 MPa in air.	71

LIST OF FIGURES

Figure 1.1: Diagram of the L1 ₂ -ordered γ'-Ni ₃ Al precipitate crystal structure
Figure 1.2: Diagram of the hexagonal C14 Fe ₂ Nb Laves phase structure
Figure 1.3: Backscattered electron images showing Fe ₂ Nb Laves phase (light contrast)
and B2-type NiAl phase (dark contrast) precipitates in the matrix of Fe-20Cr-30Ni-2Nb-
5Al (at. %) homogenized at 1250°C and heat-treated at 800°C for 240 h
Figure 2.1: A schematic diagram detailing a weight-transferring system used for constant
stress creep tests
Figure 2.2: A diagram detailing the coordinate system used for the cam profile14
Figure 2.3: Photograph of the constant-stress creep machine with system components
labeled matching the key
Figure 2.4: Design drawing of constant-stress cam
Figure 2.5: Diagram of specimen grips
Figure 2.6: Plot of the constant-stress cam geometry. The cam's centerline is centered on
y = 0.
Figure 2.7: Plot of system displacement measurements taken with ADT, manually with a
micrometer and the same ADT results plotted with an adjustment factor. Notice the
adjusted ADT measurements match those taken with the micrometer
Figure 2.8: Load calibration of constant-stress cam
Figure 3.1: CAD file drawing of a T-bone specimen inserted into one side of the creep
machine's specimen grips.

Figure 3.2: Dimensions of creep test specimen in millimeters
Figure 3.3: Diagram detailing the locations of sections taken for SEM microstructural
analysis from crept T-bones. (A) Gauge (B) Head (C) Gauge-lengthwise39
Figure 3.4: Dimensions of tensile test specimen in millimeters
Figure 4.1: (a) Bright-field TEM image of Fe-20Cr-30Ni-2Nb-5Al (at. %) homogenized
at 1250°C for 24 h, aged at 800°C for 24 h and crept for ~800 h at 760°C with an arrow
indicating the matrix; (b) corresponding selected area diffraction pattern of the matrix
showing γ'-Ni ₃ Al (L1 ₂) superlattice reflections (arrowed)
Figure 4.2: BSE SEM images of Fe-20Cr-30Ni-2Nb-5Al (at. %) homogenized at 1250°C
for 24 h (a), then subsequently aged at 800°C for 2.4 h (b), 24 h (c), and 240 h (d). The
light precipitates are the Laves phase
Figure 4.3: High temperature tensile curves of Fe-20Cr-30Ni-2Nb-5Al (at. %)
homogenized at 1250°C for 24 h and subsequently aged at 800°C for 0, 2.4, 24 or 240 h
as indicated. Tensile tests were conducted at 760°C with an initial strain rate of 5 x 10^{-4} s
¹ . Results are the average of at least three tests at each condition
Figure 4.4: BSE image of fracture surface for Fe-20Cr-30Ni-2Nb-5Al (at. %) after being
homogenized at 1250°C for 24 h, aged at 800°C for 240 h and strained under tension at
760° C with an initial strain rate of 5 x 10^{-4} s ⁻¹
Figure 4.5: Initial five hours of constant-stress creep curves for Fe-20Cr-30Ni-2Nb-5Al
(at. %) conducted at 760°C under a 35 MPa load in air. Specimens were homogenized at

1250°C for 24 h and subsequently aged at 800°C for 0, 2.4, 24 or 240 h prior to creep
testing. Two creep tests were performed for each aging protocol
Figure 4.6: Constant-stress creep curves for Fe-20Cr-30Ni-2Nb-5Al (at. %) conducted at
760°C for 500 h under a 35 MPa load in air. Specimens were homogenized at 1250°C for
24 h and subsequently aged at 800°C for 0, 2.4, 24 or 240 h prior to creep testing. Two
creep tests were performed for each aging protocol
Figure 4.7: Strain rate as a function of strain are plotted for Fe-20Cr-30Ni-2Nb-5Al (at.
%) conducted at 760°C for 500 h under a 35 MPa load in air. Specimens were
homogenized at 1250°C for 24 h and subsequently aged at 800°C for 0, 2.4, 24 or 240 h
prior to creep testing
Figure 4.8: Long-term constant-stress creep curves for Fe-20Cr-30Ni-2Nb-5Al (at. %)
conducted at 760°C under a 35 MPa load in air for durations lasting longer than 500 h.
Specimens were homogenized at 1250°C for 24 h and subsequently aged at 800°C for
2.4, 24 or 240 h prior to creep testing.
Figure 4.9: Constant-stress creep curves for Fe-20Cr-30Ni-2Nb-5Al (at. %) as-
homogenized at 1250°C for 24 h tested at either 760°C or 700°C under a 35 MPa load61
Figure 4.10: BSE images of Fe-20Cr-30Ni-2Nb-5Al (at. %) (a) homogenized at 1250°C
for 24 h, then subsequently aged at 800° C for (b) 2.4 h,, (c) 24 h and (d), 240 h and crept
at 760°C for 500 h under a load of 35 MPa in air. The light precipitates are the Laves
phase and the dark precipitates are NiAl precipitates

Figure 4.11: BSE SEM images of Fe-20Cr-30Ni-2Nb-5Al (at. %) homogenized at
1250°C for 24 h (a/b) and subsequently aged at 800°C for 2.4 h (c/d), 24 h (e/f) and 240 h
(g/h) prior to creep/after creep testing respectively. Constant-stress creep tests were
conducted at 760°C for 500 h under a load of 35 MPa in air. The light precipitates are the
Laves phase and the dark precipitates are NiAl precipitates
Figure 4.12: BSE images of Fe-20Cr-30Ni-2Nb-5Al (at. %) homogenized at 1250°C for
24 h and subsequently aged at 800°C for 2.4 h and crept at 760°C for 500 h under a load
of 35 MPa in air. Both images were taken from the gauge of the specimen with the left
taken as a cross-section and the right lengthwise as indicated70
Figure 4.13: BSE SEM images of Fe-20Cr-30Ni-2Nb-5Al (at. %) homogenized at
1250°C for 24 h and crept at 760°C for 500 h under a load of 35 MPa in air. The left
image was taken from the gauge of the specimen with the left taken from the head as
indicated 72