

PARADIGMAS

de la Inteligencia Artificial

Presentado por:

Robles Rios Jacquelin Peña Lopez Miguel Angel

¿QUE ES UN PARADIGMA

Un paradigma es un enfoque o modelo teórico que define cómo se debe representar el conocimiento, aprender, razonar y resolver problemas de manera inteligente. Cada paradigma establece principios, métodos y algoritmos específicos para desarrollar sistemas inteligentes.

PARADIGMAS VISTOS EN CLASE

Conexismo

Basada en redes neuronales artificiales que tratan de similar un ser humano, este enfoque aprende datos y se adapta a las situaciones

Bioinspirado

Toma ideas de la naturaleza y la biología para resolver problemas computacionales, como logística, evolución, adaptación y comportamiento colectivo

Simbolico

Considera la inteligencia basada en reglas y hechos, se basa en la manipulación de estructuras según sus datos simbolicos

PARADIGMA COMPUTACIONAL

Es un enfoque fundamental en la IA que se basa en algoritmos y estructuras de datos para resolver problemas. Se utiliza en una amplia variedad de aplicaciones, como la planificación, el razonamiento y la búsqueda. Sin embargo, puede ser computacionalmente costoso para resolver problemas complejos.

DIJSTRAK

Dijkstra es el algoritmo de referencia para encontrar el camino más corto entre dos puntos de una red

tiene muchas aplicaciones. Es fundamental en informática y teoría de grafos

Los grafos son conjuntos de nodos (vértices) conectados por aristas. Los nodos representan entidades o puntos de una red, mientras que las aristas representan la conexión o relaciones entre ellos.

DIJSTRAK

Se elije un nodo origen y un nodo destino para posteriormente sacar su camino mas corto

En base al nodo inicial busca los nodos vecinos y sus respectivos pesos, toma el de menor peso y calcula la suma acumulada de pesos del nodo actual mas el vecino de menos peso, esto de manera iterativa entre nodos

PARADIGMA SIMBOLICO

Se centra en el procesamiento y la manipulación de símbolos o conceptos, en lugar de datos numéricos.

Su objetivo es construir sistemas inteligentes que puedan razonar y pensar como los humanos, representar y manipular el conocimiento y el razonamiento en función de reglas lógicas.

EJEMPLO. DIAGNÓSTICO DE AFECCIONES MÉDICAS EN FUNCIÓN DE LOS SÍNTOMAS

Los sistemas expertos médicos son programas que ayudan a los doctores a diagnosticar enfermedades en función de los síntomas ingresados por el paciente.

Estos sistemas utilizan una base de conocimientos con reglas predefinidas para sugerir posibles enfermedades y recomendar tratamientos

Componentes principales

- Base de conocimientos: Contiene información médica estructurada, incluyendo relaciones entre síntomas y enfermedades, prevalencia estadística, y factores de riesgo.
- Motor de inferencia: Algoritmo que analiza los datos del paciente contra la base de conocimientos para generar conclusiones.
- Interfaz de usuario: Permite la entrada de síntomas y la visualización de resultados de manera comprensible.

% Posibles diagnósticos
hipotesis(resfriado) :- resfriado.
hipotesis(gripe) :- gripe.
hipotesis(faringitis) :- faringitis.
hipotesis(sinusitis) :- sinusitis.
hipotesis(desconocido).
% Sin diagnóstico

% Reglas para cada enfermedad resfriado:verificar(dolor_cabeza),
verificar(nariz_congestionada),
verificar(estornudos),
verificar(dolor_garganta).

gripe:verificar(fiebre), verificar(dolor_cabeza), verificar(dolor_muscular), verificar(escalofrios), verificar(cansancio_extremo). faringitis:verificar(dolor_garganta), verificar(dificultad_para_tragar), verificar(fiebre), verificar(ronquera). sinusitis:verificar(dolor_cabeza), verificar(congestion_nasal), verificar(dolor_facial), verificar(secrecion_nasal_espesa).

Beneficios

- Interpretabilidad, lo cual facilita la comprensión de cómo un sistema ha llegado a una conclusión.
- Representación del conocimiento: puede representar conocimientos complejos de manera formal y estructurada.
- Es muy flexible y puede adaptarse a distintos ámbitos al modificar las reglas y la base de conocimientos.

Limitaciones

- Requiere conocimiento completo y bien definido para ser eficaz.
- Poco escalable, aumenta el costo computacional con más reglas.
- Dificultad con la incertidumbre, no maneja bien datos ambiguos.
- No aprende ni se adapta, necesita programación manual.

MUCHAS GRACIAS