Μαθηματικά Γυμνασίου με Python

Δημήτρης Νικολός 15 Ιουνίου 2020

Κεφάλαιο 1

Εξισώσεις και προβλήματα

Σε αυτό το κεφάλαιο θα χρησιμοποιήσουμε τη βιβλιοθήκη sympy. Υπάρχει ένα περιβάλλον στο οποίο μπορούμε να πληκτρολογούμε εντολές της βιβλιοθήκης ώστε να βλέπουμε τα αποτελέσματα με φιλικό τρόπο στον φυλλομετρήτή μας, συνήθως Chrome, Firefox ή Microsoft Edge. Το περιβάλλον αυτό βρίσκεται στη διεύθυνση https://live.sympy.org/. Μπορούμε να κάνουμε τα ίδια παραδείγματα στον Mu Editor όπως έχουμε συνηθίσει χρησιμοποιώντας την εντολή:

```
from sympy import *
```

όμως τα αποτελέσματα δεν θα εμφανίζονται με φιλικό τρόπο αλλά με τον συμβολισμό της Python.

1.1 Η έννοια της εξίσωσης

Ασκηση 1.1.1 Γράψε συντομότερα τις εκφράσεις:

- (α) x + x + x + x,
- (6) $\alpha + \alpha + \alpha + \beta + \beta$,
- (y) $3 \cdot \alpha + 5 \cdot \alpha$,
- (δ) $18 \cdot x + 7 \cdot x + 4 \cdot x$,
- (ϵ) $15 \cdot \beta 9 \cdot \beta$.

Επειδή τα σύμβολα είναι τα x, a, b θα πρέπει να τα δηλώσουμε στο sympy. Αυτό γίνεται ως εξής:

```
from sympy import *
x,a,b = symbols("x a b")
```

Στη συνέχεια όποτε αναφέρουμε τα x, a, b η Python θα καταλαβαίνει ότι πρόκειται για σύμβολα και θα δρα ανάλογα. Ετσι αν δώσουμε στην Python

>>> x + x + x + x

Θα μας δώσει ως απάντηση

4x

στο live.sympy.org και

4*x

στην απλή Python ή στο Mu Editor. Αρα το

>>> a + a + a + b + b

Θα μας δώσει σαν απάντηση:

3a + 2b

και τα

>>> 3*a + 5*a >>> 18*x + 7*x + 4*x >>> 15*b - 9b

8a

29x

6b

αντίστοιχα.

Ασκηση 1.1.2 Να αντικαταστήσεις το x, με τους αριθμούς 1, 3, 4, 5, 6 και 11, σε κάθε ισότητα της πρώτης στήλης, του παρακάτω πίνακα. Βρες ποιος από αυτούς την επαληθεύει και ποιος όχι.

•	00, 01, 0,000		
	Εξίσωση	Αριθμοί που την επαληθεύουν	Αριθμοί που δεν την επαληθεύουν
	x-4 = 1		
	5 - x = 4		
	2x = 8		
	$\frac{6}{x} = 2$		
	$\frac{x}{2} = 3$		
	x + 7 = 30		

>>> e = x - 4 >>> e.subs(x,1)

-3

>>> e.subs(x,3)

>>> e.subs(x,4)

0

>>> e.subs(x,5)

1

>>> e.subs(x,6)

2

>>> e.subs(x,11)

Οπότε ο αριθμός που την επαληθεύει είναι ο 5 και όλοι οι υπόλοιποι δεν την επαληθεύουν.

>>> e = 5 - x
>>> e.subs(x,1)

4
>>> e.subs(x,3)
2
>>> e.subs(x,4)

1
>>> e.subs(x,5)

0
>>> e.subs(x,6)

-1
>>> e.subs(x,11)

Οπότε ο αριθμός που την επαληθεύει είναι ο 1 και όλοι οι υπόλοιποι δεν την επαληθεύουν.

```
>>> e = 2*x
>>> e.subs(x,1)
2
>>> e.subs(x,3)
```

6

>>> e.subs(x,4)	
	8
>>> e.subs(x,5)	
	10
>>> e.subs(x,6)	
	12
>>> e.subs(x,11)	

Οπότε ο αριθμός που την επαληθεύει είναι ο 4 και όλοι οι υπόλοιποι δεν την επαληθεύουν.

22

	e = 6/x e.subs(x,1)	
		6
>>>	e.subs(x,3)	
		2
>>>	e.subs(x,4)	
		$\frac{3}{2}$
>>>	e.subs(x,5)	
		$\frac{6}{5}$
>>>	e.subs(x,6)	
		1
>>>	e.subs(x,11)	
		$\frac{6}{11}$

Οπότε ο αριθμός 3 επαληθεύει την εξίσωση και όλοι οι υπόλοιποι δεν την επαληθεύουν:

```
>>> e = x/2
>>> e.subs(x,1)
```

1.1. Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ

7

(
>>> e.subs(x,3)	
2	2
>>> e.subs(x,4)	
	3
>>> e.subs(x,5)	
<u>(</u>	
>>> e.subs(x,6)	
1	L
>>> e.subs(x,11)	
	3
$\frac{\epsilon}{1}$) 1
>>> e = x/2 >>> e.subs(x,1)	
$\frac{1}{2}$	
>>> e.subs(x,3)	
	<u>3</u>
>>> e.subs(x,4)	
2	2
>>> e.subs(x,5)	
E 	
>>> e.subs(x,6)	
Ş	3
>>> e.subs(x,11)	

 $\frac{11}{2}$

Ο αριθμός που επαληθεύει την εξίσωση είναι ο 6, οι υπόλοιποι αριθμοί δεν την επαληθεύουν.

```
>>> e = x + 7
>>> e.subs(x,1)

8

>>> e.subs(x,3)

10

>>> e.subs(x,4)

11

>>> e.subs(x,5)

12

>>> e.subs(x,6)

13

>>> e.subs(x,11)
18
```

Κανένας από αυτούς τους αριθμούς δεν επαληθεύει την εξίσωση, οπότε:

Εξίσωση	Αριθμοί που την επαληθεύουν	Αριθμοί που δεν την επαληθεύουν	
x-4=1	5	1, 3, 4, 6 και 11	
5 - x = 4	1	3, 4, 5, 6 και 11	
2x = 8	4	1, 3, 5, 6 και 11	
$\frac{6}{x} = 2$	3	1, 4, 5, 6 και 11	
$\frac{x}{2} = 3$	6	1, 3, 4, 5 και 11	
x + 7 = 30		1, 3, 4, 5, 6 και 11	

Ενας καλύτερος τρόπος για να έχουμε το ίδιο αποτέλεσμα είναι να γραφτεί ένα πρόγραμμα που να υπολογίζει τα αποτελέσματα για όλους τους αριθμούς και να συγκρίνει το αποτέλεσμα με το αναμενόμενο. Η enumerate μετράει τη λίστα και δημιουγεί έναν μετρητή με όνομα i που μπορούμε να τον χρησιμοποιήσουμε για να μετρήσουμε τα αναμενόμενα αποτελέσματα:

```
for e in exprs:
    for (i,xi) in enumerate([1,3,4,5,6,11]):
        print(e,xi,e.subs(x,xi),res[i])
        print(e.subs(x,xi)==res[i])
```

Ασκηση 1.1.3 (Στο βιβλίο βρίσκεται στη Σελ. 73) Να λυθούν οι εξισώσεις:

$$x + 5 = 12$$

$$y - 2 = 3$$

$$10 - z = 1$$

$$7 \cdot phi = 14$$

$$w : 5 = 4$$

$$24 : \psi = 6$$

Η βιβλιοθήκη sympy έχει συνάρτηση solve για να λύνει εξισώσεις όταν το δεξί μέρος της εξίσωσης είναι ο οπότε οι εξισώσεις πρέπει να μετατραπούν με το χέρι σε:

$$x + 5 - 12 = 0$$

$$y - 2 - 3 = 0$$

$$10 - z - 1 = 0$$

$$7 \cdot phi - 14 = 0$$

$$w : 5 - 4 = 0$$

$$24 : \psi - 6 = 0$$

```
>>> from sympy import *
>>> x,y,z,f,w,psi = symbols('x y z f w psi')
>>> solve(x+5-12)
[7]
>>> solve(y-2-3)
[5]
>>> solve(10-z -1)
[9]
>>> solve(7* f - 14)
[2]
>>> solve(w/5 - 4)
[20]
>>> solve(24/psi - 6)
[4]
```

Η συνάρτηση solve επιστρέφει μια λίστα με τις τιμές που επαληθεύουν την εξίσωση. Επειδή υπάρχει μόνο μία τιμή που επαληθεύει την εξίσωση για αυτό το λόγο υπάρχει μόνο μία τιμή στην κάθε λίστα.

Ασκηση 1.1.4 (Στο βιβλίο βρίσκεται στη Σελ. 63) Μια δεξαμενή χωρητικότητας $6m^3$ που έχει μήκος 1,5m και πλάτος 2m, έχει ύψος (α) 1,5m ή (β) 3m ή (γ) 2m;

```
>>> solve(2*1.5*x - 6)
[2.0]
```

Ασκηση 1.1.5 (Ασκηση 4 του βιβλίου, Σελ. 74) Γράψε με απλούστερο τρόπο τις μαθηματικές εκφράσεις:

- (α) x + x,
- (6) $\alpha + \alpha + \alpha$,
- (y) $3 \cdot \alpha + 52 \cdot \alpha$,
- (δ) $2 \cdot \beta + \beta + 3 \cdot \alpha + 2 \cdot \alpha$,
- (ε) $4 \cdot x + 8 \cdot x 3 \cdot x$,
- ($\sigma\tau$) $7 \cdot \omega + 4 \cdot \omega 10 \cdot \omega$

>>> X+X

2x

```
>>> a = symbols('a')
>>> a+a+a
```

3a

>>> 3*a + 52 * a

55a

```
>>> a,b = symbols('a b')
>>> 2*b+b+3*a+2*a
```

5a + 3b

>>> 4*x+8*-x3*x

9x

```
>>> w = symbols('w')
>>> 7*w+4*-w10*w
```

w

Ασκηση 1.1.6 (Ασκηση 6 του βιβλίου, Σελ. 74) Στην εξίσωση 2 + α = x, το α και το x είναι φυσικοί αριθμοί. Ποια από τις τιμές 0, 3, 1 μπορεί να πάρει το x;

Θα λύσουμε την

$$2 + a - x = 0$$

για αυτές τις τιμές:

```
>>> solve(2+a-0)
[-2]
>>> solve(2+a-3)
[1]
>>> solve(2+a-1)
[-1]
```

Από αυτές τις λύσεις συμπεραίνουμε ότι μόνο η 2+a-3 μπορεί να ισχύει για φυσικό αριθμό και άρα μόνο την τιμή 3 μπορεί να πάρει το x.

Ασκηση 1.1.7 (Ασκηση 7 του βιβλίου, Σελ. 74) Να εξετάσεις, αν ο αριθμός 12 είναι η λύση της εξίσωσης: x + 13 = 25

```
>>> e = x + 13
>>> e.subs(e,x,12)
```

25

Ασκηση 1.1.8 (Ασκηση 8 του βιβλίου, Σελ. 74) Τοποθέτησε ένα "Χ" στη θέση εκείνη που ο αριθμός επαληθεύει την αντίστοιχη εξίσωση:

Χρησιμοποιώντας έναν πίνακα για τα αποτελέσματα res γράφουμε:

```
from sympy import *
x,y,w,a,b = symbols('x y w a b')
s = [x,y,w,a,b]
e = [x-2,1+y,18-w,2-a,93-b]
res = [4,4,10,1,86]
for (en,expr) in enumerate(e):
    for i in range(9):
        if expr.subs(s[en],i) == res[en]:
            print('X',end='')
        else:
        print('0',end='')
    print()
```

που δίνει το αποτέλεσμα

```
000000X00
0000X0000
00000000X
0X0000000
0000000X0
```

6 7 8 3 | 4 5 x-2 = 4Χ Χ 1 + y = 4οπότε ο πίνακας διαμορφώνεται ως εξής: $18-\omega = 10$ Χ 2– $\alpha = 1$ Χ Χ

Ασκηση 1.1.9 (Ασκηση 9 του βιβλίου, Σελ. 74) Ποιος αριθμός επαληθεύει κάθε μία από τις παρακάτω εξισώσεις;

- (α) x + 4, 9 = 15, 83
- (6) 40, 4 + x = 93, 19
- (y) 53, 404-x = 4, 19
- (δ) 38-x = 7, 1.

Οπως και προηγουμένως η sympy μπορεί να λύσει την εξίσωση αρκεί το αριστερό μέλος να είναι ο. Οπότε:

```
>>> solve(x+4.9-15.83)
[10.9300000000000]
>>> solve(40.4+x-93.19)
[52.79000000000000]
>>> solve(53.404 - x - 4.19)
[49.21400000000000]
>>> solve(38-x-7.1)
[30.9000000000000]
```

Αρα οι απαντήσεις είναι 10,93, 52,79, 49,214, 30,9.

Ασκηση 1.1.10 (Ασκηση 11 του βιβλίου, Σελ. 74) Ποια είναι η τιμή του χ για να ισχύει;

- (a) $3x = \frac{12}{20}$, (b) $\frac{5}{7} = \frac{15}{x}$, (c) $\frac{35}{40} = \frac{x}{8}$, (d) $\frac{49}{5} = x + \frac{4}{5}$.

Με την ίδια λογική:

>>> solve(3/x-12/20) [9.000000000000000] >>> solve(5/7-15/x) [21.00000000000000]

```
>>> solve(35/40-x/8)
[7.0000000000000]
>>> solve(49/5-x-4/5)
[9.0000000000000]
```

Αρα οι απαντήσεις είναι 9, 21, 7 και 9.

Ασκηση 1.1.11 (Ασκηση 12 του βιβλίου, Σελ. 74) Λύσε τις εξισώσεις:

```
(\alpha) \ni +3 = 4,

(\beta) x-2 = 8,

(\gamma) t + 4 + 1 = 3 + 19,

(\delta) 6-x = 5.
```

```
from sympy import *
x,n,t = symbols('x n t')
print(solve(n+3-4))
print(solve(x-2-8))
print(solve(t+4+1-3-19))
print(solve(6-x-5))
```

και το αποτέλεσμα είναι:

```
[1]
[10]
[17]
[1]
```

Ασκηση 1.1.12 (Ασκηση 13 του βιβλίου, Σελ. 74) Ποιον αριθμό πρέπει να προσθέσεις στον 4, για να προκύψει ο αντίστροφός του $\frac{5}{21}$;

```
>>> solve(x+4-21/5)
[0.20000000000000]
```

Ασκηση 1.1.13 (Ασκηση 14 του βιβλίου, Σελ. 74) Σε έναν αριθμό προσθέτουμε 5 και παίρνουμε άθροισμα 313. Ποιος είναι ο αριθμός;

```
>>> solve(x+5-313)
[308]
```

Ασκηση 1.1.14 (Ασκηση 15 του βιβλίου, Σελ. 74) Τα τετράγωνα που αποτελούν τους "δομικούς λίθους" με τους οποίους κατασκευά-ζουμε τα παρακάτω σχήματα, έχουν πλευρά ίση με 1 cm. (α) Βρες την περίμετρο του πέμπτου σχήματος και εξήγησε πώς έφτασες στην απάντησή σου. (β) Γράψε ένα τύπο με τη βοήθεια του οποίου θα μπορείς να υπολογίσεις την περίμετρο κάθε σχήματος. (γ) Ποια είναι η σειρά του σχήματος του οποίου η περίμετρος είναι 128 cm;

α) Το πέμπτο σχήμα θα έχει περίμετρο 20cm.

β)

4x

(y)

```
>>> solve(4x-128)
[32]
```

Ασκηση 1.1.15 (Στο βιβλίο βρίσκεται στη Σελ. 75) Ενα κατάστημα για να προσελκύσει πελατεία ανακοινώνει ότι ο πελάτης που θα αγοράσει τρία ίδια πακέτα προσφοράς ενός συγκεκριμένου προϊόντος θα έχει έκπτωση 5D. Αν και τα τρία πακέτα κοστίζουν, με την έκπτωση, συνολικά 85D, ποιά είναι η αρχική αξία του κάθε πακέτου;

```
>>> solve(3x-5-85)
[30]
```

Ασκηση 1.1.16 (Στο βιβλίο βρίσκεται στη Σελ. 75) Να περιγράψεις κάποιο πρόβλημα, που να λύνεται με τη βοήθεια της εξίσωσης: 2x+800=1000.

Είναι δύσκολο να βρούμε με την Python ένα τέτοιο πρόβλημα όμως η λύση του μπορεί να βρεθεί:

```
>>> solve(2x+800-1000)
[100]
```

Ασκηση 1.1.17 (Στο βιβλίο βρίσκεται στη Σελ. 76) Η Χριστίνα ξόδεψε τα μισά της χρήματα για να αγοράσει 2 τετράδια και μαρκαδόρους. Αν είναι γνωστό, ότι κάθε τετράδιο στοιχίζει 1 Q και όλοι οι μαρκαδόροι 3 Q, ποιο είναι το ποσό των χρημάτων που είχε η Χριστίνα πριν από τις αγορές αυτές;

```
>>> solve(x/2-2-3)
[10]
```

Ασκηση 1.1.18 Η δεξαμενή της κοινότητας χωράει 3.000 m^3 νερό. Κάθε μέρα ξοδεύονται 300 m^3 από τα νοικοκυριά και άλλα 200 m^3 από τις βιοτεχνίες. Για τη συντήρηση του δικτύου, σταμάτησε η παροχή νερού προς τη δεξαμενή. Τέσσερις ημέρες μετά την έναρξη των εργασιών αποφασίζεται να ξοδεύονται μόνο 400 m^3 συνολικά κάθε ημέρα. Πόσες ημέρες ακόμη πρέπει να κρατήσουν τα έργα συντήρησης, ώστε να μη μείνουν χωρίς νερό οι κάτοικοι της κοινότητας;

Δηλαδή 2,5 ημέρες.

Ασκηση 1.1.19 Ενας εργάτης για μια εργασία πέντε ημερών συμφώνησε να πάρει προκαταβολή το μισό της αμοιβής του και το υπόλοιπο αυτής να το πληρωθεί όταν τελειώσει η εργασία. Αν η προκαταβολή ήταν 18ο€, ποιό ήταν το μεροκάματό του;

```
>>> solve(5/2*x - 180)
[72]
```

Ασκηση 1.1.20 (Στο βιβλίο βρίσκεται στη Σελ. 76) Μετά τη συνεδρίαση και τα 10 μέλη του διοικητικού συμβουλίου μιας εταιρείας ανταλλάσσουν μεταξύ τους χειραψίες. Πόσες χειραψίες γίνονται συνολικά;

```
>>> sum(range(10))
45
```

Η εντολή sum υπολογίζει το άθροισμα μιας λίστας. Στη συγκεκριμένη περίπτωση η λίστα είναι η range(10) που είναι οι αριθμοί από το ο μέχρι το 9.

Ασκηση 1.1.21 (Ασκηση 1 του βιβλίου, Σελ. 78) Η διαφορά της ηλικίας της κόρης από τη μητέρα της είναι 25 χρόνια. Αν η κόρη είναι 18 ετών, πόσων ετών είναι η μητέρα;

$$x - 25 = 18$$

Ασκηση 1.1.22 (Ασκηση 2 του βιβλίου, Σελ. 78) Πόσοι μαθητές είναι τα $\frac{7}{10}$ των μαθητών ενός σχολείου, αν τα $\frac{2}{8}$ των μαθητών, αυτού του σχολείου, είναι 60 μαθητές.

$$\frac{2}{8} \cdot x = 60$$

Για τα $\frac{7}{10}$ των μαθητών έχουμε

```
>>> 7/10*240
168.0
```

Ασκηση 1.1.23 (Ασκηση 3 του βιβλίου, Σελ. 78) Να βρεις τρεις διαδοχικούς φυσικούς αριθμούς που έχουν άθροισμα 1533.

Εστω ότι ο πρώτος αριθμός από αυτούς είναι ο x. Τότε:

$$x + (x + 1) + x + 2 = 1533$$

 $3x + 3 = 1533$

```
>>> solve(3*x+3-1533)
[510]
```

Οι αριθμοί είναι 510, 511, 512.

Ασκηση 1.1.24 (Ασκηση 4 του βιβλίου, Σελ. 78) Βρες το ψηφίο που λείπει από τον αριθμό 75_3, ώστε αυτός να διαιρείται με το 9.

Λύση 1η Από τα κριτήρια διαιρετότητας ξέρουμε ότι θα πρέπει το άθροισμα των ψηφίων να διαιρείται με το 9 οπότε:

```
7+5+x+3 να είναι πολλαπλάσιο του 9 x+15 πολλαπλάσιο του 9 Τα πολλαπλάσια του 9 είναι 9, 18, 27,... Ας δούμε τις πιθανότητες:
```

```
>>> solve(x+15-9)
[-6]
>>> solve(x+15-18)
[3]
>>> solve(x+15-27)
[12]
```

Από αυτές τις λύσεις μόνο η 3 είναι αποδεκτή (ένα ψηφίο). Οπότε ο αριθμός είναι 7533 για τον οποίο ισχύει ότι το υπόλοιπο της διαίρεσής του με το 9 είναι ο.

```
>>> 7533%9
0
```

Λύση 2η

```
for d in range(10):
    number = 7503 + 10*d
    if number%9 == 0:
        print(d)
```

Το αποτέλεσμα της εκτέλεσης είναι

3

Ασκηση 1.1.25 (Ασκηση 5 του βιβλίου, Σελ. 78) Σε ένα διαγώνισμα, κάθε μαθητής πρέπει να απαντήσει σε 100 ερωτήσεις. Θα πάρει 3 μονάδες, για κάθε σωστή απάντηση και μόνο 1 μονάδα, για κάθε λανθασμένη. Ενας μαθητής πήρε συνολικά 220 μονάδες. Σε πόσες ερωτήσεις απάντησε σωστά

$$3x + (100 - x) = 220$$

Οντως αν απάντησε σε 60 ερωτήσεις σωστά τότε θα έχει απαντήσει 40 λάθος και θα πάρει 60*3+40*1=220.

Ασκηση 1.1.26 (Ασκηση 6 του βιβλίου, Σελ. 78) Η ηλικία ενός πατέρα είναι τετραπλάσια από την ηλικία του γιου του. Οι δύο ηλικίες μαζί συμπληρώνουν μισό αιώνα. Πόσο χρονών είναι ο καθένας;

$$4x + x = 50$$

```
>>> solve(4*x+x-50)
[10]
```

Ασκηση 1.1.27 (Ασκηση 7 του βιβλίου, Σελ. 78) Τρία αδέλφια μοιράζονται, εξίσου, μια κληρονομιά, που είναι ένα χωράφι και ένα διαμέρισμα. Ο πρώτος παίρνει το χωράφι. Ο δεύτερος παίρνει το διαμέρισμα, αλλά δίνει στον πρώτο 600€ και στον τρίτο 15.000€. Ποια ήταν η αξία του χωραφιού και ποια του διαμερίσματος;

Αν x η τιμή του χωραφιού και y η τιμή του διαμερίσματος τότε:

$$x + 600 = (y - 600 - 15000) = 15000$$

Οπότε

```
>>> solve(x+600-15000)
[14400]
>>> solve(y-600-15000-15000)
[30600]
```

Οπότε το χωράφι κοστίζει 14.400€ και το διαμέρισμα 30.600€.

Ασκηση 1.1.28 Σε κάθε μία από τις πράξεις (α) και (β) τα γράμματα αντιστοιχούν σε διαφορετικά μεταξύ τους ψηφία. Αντικατέστησε τα γράμματα Α, Β, Γ και Δ με τα κατάλληλα ψηφία.

$$AB + 47 = 73$$

$$\Gamma\Delta - 8 = \Delta5$$

```
>>> solve(x+47-73)
[26]
```

Το δεύτερο δεν μπορούμε να το υπολογίσουμε ολόκληρο. Είναι:

$$10\Gamma + \Delta - 8 = 10\Delta + 5$$
$$10\Gamma - 9\Delta - 13 = 0$$

Με δοκιμές βλέπουμε ότι αν το Γ είναι 1 τότε δεν μπορεί το Δ να έχει κατάλληλη τιμή. Το ίδιο και με το 2. Με το 3 όμως έχουμε

```
>>> sympy.solve(30-9*d-13)
[17/9]
```

Με το 4 έχουμε σωστή απάντηση:

```
>>> sympy.solve(40-9*d-13)
[3]
```

Ασκηση 1.1.29 Από μία ποσότητα κρασιού, αφαιρούμε 18 lt. Η υπόλοιπη ποσότητα χωράει σε δοχεία των 7 lt. Αν γνωρίζεις ότι η αρχική ποσότητα είναι μικρότερη από 100 lt και μεγαλύτερη από 90 lt, πόσα lt είναι η ποσότητα αυτή; Πόσα δοχεία θα χρησιμοποιήσουμε;

```
for i in range(20):
    if (7*i+18)>90 and (7*i+18)<100:
        print(7*i+18)</pre>
```

Που δίνει την απάντηση 95 οπότε 95-18 = 77 και η αρχική ποσότητα είναι μεγαλύτερη από 90lt και μικρότερη από 100lt.