KCA104 : Discrete Mathematics		
Course Outcome (CO) Bloom's Knowledge Level (KL)		
At the end of course, the student will be able to		
CO 1	Use mathematical and logical notation to define and formally reason about basic	V V
COT	discrete structures such as Sets, Relations and Functions	K_1, K_2
CO 2	Apply mathematical arguments using logical connectives and quantifiers to check the	$K_{2}K_{3}$
	validity of an argument through truth tables and propositional and predicate logic	,
CO 3	Identify and prove properties of Algebraic Structures like Groups, Rings and Fields	K_3, K_4
CO 4	Formulate and solve recurrences and recursive functions	K_3, K_4
CO 5	Apply the concept of combinatorics to solve basic problems in discrete mathematics	K_1, K_3
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	Set Theory: Introduction, Size of sets and Cardinals, Venn diagrams, Combination of	08
	sets, Multisets, Ordered pairs and Set Identities.	
	Relation: Definition, Operations on relations, Composite relations, Properties of	
	relations, Equality of relations, Partial order relation.	
	Functions: Definition, Classification of functions, Operations on functions,	
	Recursively defined functions.	
II	Posets, Hasse Diagram and Lattices: Introduction, Partial ordered sets, Combination	08
	of Partial ordered sets, Hasse diagram, Introduction of lattices, Properties of lattices –	
	Bounded, Complemented, Modular and Complete lattice.	
	Boolean Algebra: Introduction, Axioms and Theorems of Boolean algebra, Boolean	
	functions. Simplification of Boolean functions, Karnaugh maps, Logic gates.	
III	Propositional: Propositions, Truth tables, Tautology, Contradiction, Algebra of	08
	Propositions, Theory of Inference and Natural Detection.	
	Predicate Logic: Theory of Predicates, First order predicate, Predicate formulas,	
	Quantifiers, Inference theory of predicate logic.	
IV	Algebraic Structures:Introduction to algebraic Structures and properties. Types of	08
- '	algebraic structures: Semi group, Monoid, Group, Abelian group and Properties of	00
	group. Subgroup, Cyclic group, Cosets, Permutation groups, Homomorphism and	
	Isomorphism of groups.	
	Rings and Fields: Definition and elementary properties of Rings and Fields.	
V	Natural Numbers: Introduction, Piano's axioms, Mathematical Induction, Strong	08
	Induction and Induction with Nonzero Base cases.	-
	Recurrence Relation & Generating functions: Introduction and properties of	
	Generating Functions. Simple Recurrence relation with constant coefficients and	
	Linear recurrence relation without constant coefficients. Methods of solving	
	recurrences.	
	Combinatorics: Introduction, Counting techniques and Pigeonhole principle,	
	Polya's Counting theorem.	
Suggest	d Dadings	

Suggested Readings:

- 1. Kenneth H. Rosen, "Discrete Mathematics and Its Applications", McGraw Hill, 2006.
- 2. B. Kolman, R.C Busby and S.C Ross, "Discrete Mathematics Structures", Prentice Hall ,2004.
- 3. R.P Girimaldi, "Discrete and Combinatorial Mathematics", Addison Wesley, 2004.
- 4. Y.N. Singh, "Discrete Mathematical Structures", Wiley- India, First edition, 2010.
- 5. Swapankumar Sarkar, "A Textbook of Discrete Mathematics", S. Chand & Company PVT. LTD.V.
- 6. Krishnamurthy, "Combinatorics Theory & Application", East-West Press Pvt. Ltd., New Delhi.
- 7. Liptschutz, Seymour, "Discrete Mathematics", McGraw Hill.
- 8. J.P. Trembely&R.Manohar, "Discrete Mathematical Structure with application to Computer Science", McGraw Hill.