Computational and Applied Mathematics

Solve every problem.

Problem 1. Let $f \in C^{k+1}[-1,1]$ and [-1,1] be partitioned into subintervals $I_j = [(j-1)h, jh]$ of width h. Assume p is a polynomial of degree k which approximates f in I_j with

$$\max_{x \in I_j} \left| p_j(x) - f(x) \right| \le C_0 h^{k+1},$$

where C_0 is a constant independent of j. Show that there exists an another constant C, independent of j, such that

$$\max_{x \in I_{j+1}} |p_j(x) - f(x)| \le Ch^{k+1}.$$

(as long as $I_{j\pm 1} \subset [-1,1]$, of course).

Problem 2. Consider the iteration

$$x_{n+1} = x_n - \left(\frac{x_n - x_0}{f(x_n) - f(x_0)}\right) f(x_n)$$

for finding the roots of a two times continuous differentiable function f(x). Assuming the method converges to a simple root x^* , what is the rate of convergence? Justify your answer.

Problem 3. Suppose **A** is an $m \times m$ matrix with a complete set of orthonormal eigenvectors $\mathbf{q_1}, \ldots, \mathbf{q_m}$ and corresponding eigenvalues $\lambda_1, \ldots, \lambda_m$. Assume that $|\lambda_1| > |\lambda_2| > |\lambda_3|$ and $\lambda_j \ge \lambda_{j+1}$ for $j = 3, \ldots, m$. Consider the power method $\mathbf{v}^{(k)} = \mathbf{A}\mathbf{v}^{(k-1)}/\lambda_1$, with $\mathbf{v}^{(0)} = \alpha_1\mathbf{q}_1 + \cdots + \alpha_m\mathbf{q}_m$ where α_1 and α_2 are both nonzero. Show that the sequence $\{\mathbf{v}^{(k)}\}_{k=0}^{\infty}$ converges linearly to $\alpha_1\mathbf{q}_1$ with asymptotic constant $C = |\lambda_2/\lambda_1|$.

Problem 4. For the initial value problem y' = f(t, y), $y(0) = y_0$ on the interval [0, T], consider the implicit two-step method

$$y_{n+1} = \frac{4}{3}y_n - \frac{1}{3}y_{n-1} + \frac{2h}{3}f(t_{n+1}, y_{n+1}),$$

$$y_1 = y_0 + hf(t_1, y_0),$$

where h is the step size and $t_n = nh$.

- (a) What is the order of the accuracy of the scheme?
- **(b)** Check the stability of the scheme by analyzing the stability polynomial?
- (c) Find the stability region of the scheme.

Problem 5. Suppose the difference scheme $u^{n+1} = Bu^n$ is stable, and $C(\Delta t)$ is a bounded family of

operators. Show that the scheme

$$u^{n+1} = (B + \Delta t C(\Delta t))u^n$$

is stable.

Problem 6. Let *A* be an $m \times m$ nonsingular matrix. Suppose $\inf_{p_n \in P^n} ||p_n(A)|| = ||p^*(A)|| > 0$ where P^n denotes the set of all degree-n monic polynomials:

$$P^n = \{p : p \text{ is a polynomial of degree } n, p(z) = z^n + \cdots \}.$$

Prove that p^* is unique.