3. hét, 2024. február 27.

Analízis 2A Előadás

Tartalom

- a) Monotonitás
- b) Szélsőértékek
- c) Konvexitás

Monotonitás

Emlékeztető

Monoton növekedő függvények

Azt mondjuk, hogy az $f \in \mathbb{R} \to \mathbb{R}$ függvény monoton (szigorúan monoton) növekedő, ha minden $x_1, x_2 \in \mathcal{D}_f, x_1 < x_2$ esetén $f(x_1) \le f(x_2)$ $(f(x_1) < f(x_2))$.

Monoton csökkenés hasonlóan.

Jelölések:
$$(\nearrow, \uparrow, \searrow, \downarrow)$$
.

Vegyük észre: nehéz ellenőrizni a monotonitást a definíció alapján.

Pontbeli derivált: A függvényről lokális információt tartalmaz, belőle lokális tulajdonságokra következtethetünk.

Példák a pontbeli derivált alkalmazására:

- a) ha $f \in D\{a\}$, akkor $f \in C\{a\}$
- b) ha $f \in D\{a\}$, akkor a lokális szélsőérték létezésének szükséges feltétele, hogy f'(a) = 0.

Derivált függvény: Ha I nyílt intervallum, és $f \in D(I)$, akkor f' segítségével az f függvénynek a teljes intervallumon való viselkedésére következtethetünk.

Érdemes f'-t az f transzformációjának tekinteni.

Tétel

Legyen $I \subset \mathbb{R}$ nyílt intervallum. Tegyük fel, hogy $f: I \to \mathbb{R}, f \in D(I)$.

Ekkor

$$f \nearrow \iff f' \geq 0$$
.

Megjegyzés: az $f' \ge 0$ feltétel azt jelenti, hogy minden $x \in I$ pontban $f'(x) \ge 0$, aminek geometriai interpretációja az, hogy az érintő meredeksége minden pontban nem negatív.

Bizonvítás

 \implies Legyen $x \in I$. Ekkor tetszőleges

a)
$$y \in I$$
, $y > x$ esetén $f(y) \ge f(x)$, tehát $\Delta_x f(y) = \frac{f(y) - f(x)}{y - x} \ge 0$,

a)
$$y \in I$$
, $y < x$ esetén $f(y) \le f(x)$, tehát $\Delta_x f(y) = \frac{f(y) - f(x)}{y - x} \ge 0$.

Következésképpen

$$\Delta_x f(y) \geq 0 \quad (y \in I) \qquad \Longrightarrow \qquad f'(x) = \lim_{y \to x} \Delta_x f(y) \geq 0 \, .$$

Indirekt tegyük fel, hogy f nem monotonon növekedő.

Ekkor $\exists x, y \in I, y > x$, amelyre f(y) < f(x).

A Lagrange-féle középérték-tétel feltételei teljesülnek az $[x, y] \subset I$ intervallumon.

Következésképpen $\exists \xi \in (x, y)$, hogy

$$f'(\xi) = \frac{f(y) - f(x)}{y - x} < 0$$
 Ellentmondás!

Megjegyzés: hasonlóan igazolható, hogy $f \in D(I)$ esetén $f \searrow \iff f' \ge 0$.

Vigyázat: A tétel intervallumon érvényes.

Példa:
$$f(x) = \frac{1}{x}$$
 $(x \in \mathbb{R} \setminus \{0\})$. $f'(x) = -\frac{1}{x^2} < 0$ $(x \in \mathbb{R} \setminus \{0\})$, de f nem monoton csökenő, $f(1) = 1 > -1 = f(-1)$.

Kiterjesztés tetszőleges intervallumra

Állítás

Legyen $a, b \in \mathbb{R}$, a < b. Ha $f : [a, b) \to \mathbb{R}$, $f_{|(a,b)} \nearrow$ és $f \in C\{a\}$, akkor $f \nearrow$.

Igazolás

Elég megmutatni, hogy $f(a) \le f(x)$ (a < x < b).

Legyen a < x < b, és $(x_n) : \mathbb{N} \to (a, x)$, amelyre $\lim_{n \to \infty} x_n = a$.

Egyrészt $f \in C\{a\}$ miatt $\lim_{n\to\infty} f(x_n) = f(a)$, másrészt $f_{|(a,b)} \nearrow \text{miatt } f(x_n) \le f(x)$. Következésképpen f(a) < f(x).

Megjegyzés: a többi eset (\uparrow , \searrow , \downarrow) hasonlóan igazolható.

Következmény

Legyen $f \in C[a, b], f \in D(a, b)$.

Ekkor

$$f \nearrow \iff f'(x) \ge 0 \quad (x \in (a,b)).$$

A szigorú monotonitás esete

Tétel

Legyen $I \subset \mathbb{R}$ nyílt intervallum.

Tegyük fel, hogy $f: I \to \mathbb{R}, f \in D(I)$.

Ekkor

$$f' > 0 \implies f \uparrow$$
.

(Hasonlóan: $f' < 0 \implies f \downarrow$.)

Megjegyzés: Az állítás fordítottja nem igaz. Az $f(x) = x^3$ $(x \in \mathbb{R})$ függvény szigorúan monoton növekedő, de f'(0) = 0.

Bizonyítás

Indirekt tegyük fel, hogy $\exists x, y \in I, y > x$, amelyre $f(y) \leq f(x)$. Ekkor a Lagrange-tétel szerint van olyan $\xi \in (x, y)$,

$$f'(\xi) = \frac{f(y) - f(x)}{v - x} \le 0$$
 Ellentmondás!

Az eddigiek alapján könnyű meggondolni, hogy igaz az alábbi állítás.

Állítás

Legyen $I \subset \mathbb{R}$ nyílt intervallum.

Tegyük fel, hogy $f: I \to \mathbb{R}, f \in D(I)$.

Ekkor

$$f \uparrow \quad \iff \quad f' \geq 0, \;\; \text{\'es} \;\; \nexists \;\; (a,b) \subset I, \; \text{hogy} \; f'_{|(a,b)} \equiv 0 \,.$$

Példa a monotonitás vizsgálatára

Az előbbi példa alapján bevezetjük az előjelváltás fogalmát.

Definíció

Azt mondjuk, hogy az $f \in \mathbb{R} \to \mathbb{R}$ függvény az $a \in \operatorname{int} \mathcal{D}_f$ pontban (-,+) (szóban: mínuszból pluszba) előjelet vált, ha f(a) = 0, és van olyan $\delta > 0$, hogy

$$f(x) < 0 \ (a - \delta < x < a), \quad f(x) > 0 \ (a < x < a + \delta).$$

A (+, -) jelváltás értelemszerűen definiálható.

Példa: Az f(x) = x függvénynek (-,+) jelváltása van a 0 pontban.

A SZÉLSŐÉRTÉK LÉTEZÉSÉRE VONATKOZÓ ELÉGSÉGES FELTÉTELEK

Emlékeztető: $f \in D\{a\}$ esetén f'(a) = 0 a szélsőérték létezésének szükséges, de nem elégséges feltétel.

Tétel (A szélsőérték létezésének elsőrendű elégséges feltétele)

Legyen $f \in \mathbb{R} \to \mathbb{R}$, és $a \in \text{int } \mathcal{D}_f$. Tegyük fel, hogy $\exists \ \delta > 0$, amelyre $f \in \mathcal{D}((a - \delta, a + \delta))$ és f' előjelet vált a-ban.

Ekkor f-nek szigorú lokális szélsőértéke van az a-ban.

(-,+) jeváltás esetén minimum, (+,-) jelváltás esetén pedig maximum.

Bizonyítás

Elég a (+, -) jelváltás esetét bizonyítani.

A feltételekből következik, hogy $\exists \varepsilon > 0$, hogy

a)
$$f'(x) > 0$$
 $(a - \varepsilon, a)$, és $f \in C\{a\}$, és így $f_{|(a - \varepsilon, a)|} \uparrow$,

b)
$$f'(x) < 0$$
 $(a, a + \varepsilon)$, és $f \in C\{a\}$ és így $f_{|[a, a+\varepsilon)} \downarrow$,

Következésképpen $f(a) > f(x) \ \forall \ x \in (a - \varepsilon, a + \varepsilon) \setminus \{a\}.$

Példa: Id. az előző példát.

Megjegyzés: A jelváltás nem szükséges feltétel.

Példa:

$$f(x) = \begin{cases} x^2 + \frac{1}{2}x^2 \sin \frac{1}{x}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

Tétel (Másodrendű elégséges feltétel a lokális szélsőértékekre)

Legyen $f \in \mathbb{R} \to \mathbb{R}$, $a \in \operatorname{int} \mathcal{D}_f$.

Tegyük fel, hogy

a)
$$f \in D^2\{a\}$$
, b) $f'(a) = 0$ és $f''(a) \neq 0$.

Ekkor az a pont szigorú lokális szélsőértékhelye az f függvénynek.

f''(a) > 0 esetén minimum, f''(a) < 0 esetén maximum van.

Bizonyítás

Tegyük fel, hogy f''(a) > 0. Mivel

$$0 < f''(a) = \lim_{x \to a} \frac{f'(x) - f'(a)}{x - a} = \lim_{x \to a} \frac{f'(x) - 0}{x - a} = \lim_{x \to a} \frac{f'(x)}{x - a},$$

ezért

az a pontnak van olyan bal oldali környezete, ahol f' < 0, és

van olyan jobb oldali környezete, ahol f' > 0.

Tehát f'-nek az a pontban (-,+) előjelváltása van.

Ez az elsőrendű elégséges feltétel alapján azt jelenti, hogy az a pont az f függvénynek szigorú lokális minimumhelye.

Az állítás hasonlóan igazolható akkor, ha f''(a) < 0.

Megjegyzések

- a) A másodrendű elégséges feltétel bizonyításában az elsőrendű elégséges feltételt alkalmaztuk. Következésképpen, az elsőrendű feltétel gyengébb feltétel (pl. nem kell kétszeri differenciálhatóság), mint a másodrendű. Másrészt viszont sok esetben "kényelmesebb" alkalmazni a másodrendű feltételt.
- b) A másodrendű feltétel még kétszer differenciálható függvények esetében sem szükséges: $f(x) = x^4 \ (x \in \mathbb{R}), f'(0) = 0, f''(0) = 0$, de a 0-ban szigorú abszolút minimum van.
- c) Az f''(a) = 0 esetben további vizsgálatokra van szükség: $f(x) = x^3$ esetében nincs szélsőérték a 0-ban, de mint láttuk az $f(x) = x^4$ esetben igen.
- d) A tételnek létezik, a magasabbrendű deriváltakra vonatkozó kiterjesztése.

ABSZOLÚT SZÉLSŐÉBTÉKEK

A derivált alapvetően a lokális szélsőértékhelyek megkeresére alkalmas, de mivel a globális szélsőértékhelyek egyben lokálisak is, ezért az eddigi eredményeinket alkalmazhatjuk abszolút szélsőérték feladatokban is.

Hol lehetnek az f függvény abszolút szélsőértékhelyei, ha vannak egyáltalán?

Az alábbi halmaz elemei között kell lenniük:

$$H = \{x \in \mathcal{D}_f : f \notin D\{x\}, \text{vagy } x \in D\{x\} \text{ \'es } f'(x) = 0\}.$$

H elemeit kritikus pontoknak nevezzük.

Gvakori eset: $f \in C[a, b]$ $(a, b \in \mathbb{R}, a < b)$.

A Weierstrass-tétel szerint $\exists \max f, \min f$.

Ha $f \in D(a, b)$, akkor ebben az esetben a kritikus pontok a stacionárius pontok és a végpontok.

A szélsőértékhely lehet az intervallum végpontja, vagy belső pont.

Ha belső pont, akkor ott a derivált 0.

A függvényértékek összehasonlításával válszthatjuk ki az abszolút szélsőérték helyeket.

Példa Keressük meg az $f(x) = 2x^3 - 3x^2 - 12x + 1$ abszolút szélsőérték helyeit a [0, 3] intervallumon.

$$f \in C[0,3]$$
, és $f \in D(0,3)$.

Láttuk: $f'(x) = 6x^2 - 6x - 12 = 0 \iff x = -1 \text{ v. } x = 2.$

Következésképpen a kritikus pontok: 0, 3 (a végpontok), és 2.

$$f(0) = 1$$
, $f(3) = -8$, $f(2) = -19$. Maximum 0-ban (végpont), minimum 2-ben.

KONVEX ÉS KONKÁV FÜGGVÉNYEK

Az Analízis I. kurzusban (l. a 12. és a 13. ea) a szemléletre támaszkodva vezettük be ezeket a fogalmakat, és a definíció alapján beláttuk néhány függvény szóban forgó tulajdonságait.

Szemléletesen:

Ha f konvex (konkáv), akkor \forall $a,b \in I$, a < b esetén f grafikonjának az (a,b) intervallumhoz tartozó része a P_a és P_b pontokat összekötő húr alatt (felett) van. Ezek egyenlete:

$$y = \frac{f(b) - f(a)}{b - a}(x - a) + f(a)$$
, vagy $y = \frac{f(b) - f(a)}{b - a}(x - b) + f(b)$.

Definíció

Azt mondjuk, hogy az $f:I\to\mathbb{R}$ függvény konvex az $I\subset\mathbb{R}$ intervallumon, ha

$$\forall a, b \in I, \ a < b \quad \text{eset\'en} \quad f(x) \leq \frac{f(b) - f(a)}{b - a}(x - a) + f(a) \quad (\forall x \in (a, b)).$$

Ha a fenti egyenlőtlenségben < teljesül, akkor f-et az I-n szigorúan konvexnek nevezzük.

 \geq esetén konkáv, > esetében pedig szigorúan konkáv függvényről beszélünk.

Megjegyzések

- a) f konkáv I-n \iff -f konvex I-n.
- b) Az abs függvény konvex, de nem szigorúan konvex R-en.
- c) Az f(x):=cx+d $(x\in\mathbb{R},\ c,d\in\mathbb{R})$ függvény egyszerre konvex és konkáv is \mathbb{R} -en, de nem szigorú értelemben.
- d) A definíció alapján a konvexitás-konkávitás fogalma szemléletes, de vizsgálata általában nem egyszerű feladat.

A definíció helyett a differenciálszámítás segítségével jól használható módszert adunk a konvexitás vizsgálatához.

Az alkalmazások szempontjából érdemes a konvexitást az alábbi formában is megadni.

Tétel

Az $f \in \mathbb{R} \to \mathbb{R}$ függvény akkor és csak akkor konvex az $I \subset \mathbb{R}$ intervallumon, ha

$$\forall a, b \in I, \ a < b \text{ \'es } \forall \lambda \in (0,1) \text{ eset\'en } f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda)f(b).$$

Bizonyítás

Volt Analízis I. előadáson.

A KONVEXITÁS KAPCSOLATA A DERIVÁLTTAL

Szemléletesen mi várható?

Tétel

Tegyük fel, hogy $I \subset \mathbb{R}$ nyílt intervallum, és $f \in D(I)$.

Ekkor

$$f$$
 konvex az I intervallumon \iff $f' \nearrow$ az I - n .

Megjegyzés: szigorúan konvex esetben $f' \nearrow$ helyett $f' \uparrow$ áll. Konkáv esetben értelemszerűen $f' \searrow$ és szigorúan konkáv esetben pedig $f' \downarrow$.

Bizonyítás

 \implies Legyen $u, v \in I$, u < v tetszőleges és $x \in (u, v)$ is tetszőleges.

Tegyük fel, hogy f konvex az I-n. Ekkor

$$f(x) \leq \frac{f(v) - f(u)}{v - u}(x - u) + f(u)$$

és

$$f(x) \leq \frac{f(v) - f(u)}{v - u}(x - v) + f(v).$$

Egyszerű átrendezésekkel azt kapjuk, hogy

$$\frac{f(x)-f(u)}{x-u}\leq \frac{f(v)-f(u)}{v-u}\leq \frac{f(x)-f(v)}{x-v}.$$

Vegyük itt az $x \to u$, illetve az $x \to v$ határátmenetet:

$$f'(u) \leq \frac{f(v) - f(u)}{v + u} \leq f'(v).$$

f' tehát monoton növekedő az I-n.

Bizonyítás (folyt.)

← Tegyük fel, hogy f' monoton növekedő az I-n.

Legyen $u, v \in I$, u < v tetszőleges és $x \in (u, v)$ is tetszőleges.

Ekkor a Lagrange-féle középérték-tétel szerint $\exists \xi_1 \in (u, x)$ és $\exists \xi_2 \in (x, v)$, amelyre

$$f'(\xi_1) = \frac{f(x) - f(u)}{x - u}$$
 és $f'(\xi_2) = \frac{f(v) - f(x)}{v - x}$

Mivel $f' \nearrow$ az I-n, ezért $f'(\xi_1) \le f'(\xi_2)$, vagyis

$$\frac{f(x)-f(u)}{x-u}\leq \frac{f(v)-f(x)}{v-x}.$$

Ezt átrendezve azt kapjuk, hogy

$$f(x) \leq \frac{f(v) - f(u)}{v - u}(x - u) + f(u).$$

Ez azt jelenti, hogy az f függvény konvex az l-n.

A monotonitás és a derivált kapcsolatára vonatkozó tétel alkalmazásával kaphatjuk az alábbi másodrendű feltételt.

Vigyázat: itt kétszeres differenciálhatóságot teszünk fel.

Tétel

Tegyük fel, hogy $I \subset \mathbb{R}$ nyílt intervallum, és $f \in D^2(I)$. Ekkor

ii) $f'' > 0 \text{ az } l\text{-n} \implies f \text{ szigorúan konvex az } l\text{-n}.$

f''>0 az I-n \Longrightarrow f szigorúan konvex az I-n. f''<0 az I-n \Longrightarrow f szigorúan konkáv az I-n.

INFLEXIÓS PONT

Definíció

Legyen *I* nyílt intervallum, $f \in \mathbb{R} \to \mathbb{R}$, $I \subset \mathcal{D}_f$.

Azt mondjuk, hogy az $a\in I$ pont az f függvénynek inflexiós pontja, ha $\exists \ \delta>0, \ k_\delta(a)\subset I$ olyan, hogy

f konvex az $(a-\delta,a]$ intervallumon és konkáv az $[a,a+\delta)$ -n intervallumon, vagy fordítva.

Példa: Az $f(x) = x^3$, $\sin x \ (x \in \mathbb{R})$ függvényeknek az a = 0 pont inflexiós pontjuk.

Definíció

Azt mondjuk, hogy az $f \in \mathbb{R} \to \mathbb{R}$ függvény kétszer folytonosan differenciálható az $a \in \operatorname{int} \mathcal{D}_f$ pontban, ha $\exists \ \delta > 0$ olyan, hogy $f \in D^2(k_\delta(a))$, és $f'' \in C\{a\}$. Jelölés: $f \in C^2\{a\}$.

Tétel

Legyen $f \in \mathbb{R} \to \mathbb{R}$, $a \in \operatorname{int} \mathcal{D}_f$.

Ha $f \in C^2\{a\}$ és f-nek az a pontban inflexiója van, akkor f''(a) = 0.

Bizonyítás

Indirekt. Ha például f''(a) > 0 akkor a folytonosság miatt $\exists \ \delta > 0$, amelyre f''(x) > 0 $\forall \ x \in k_{\delta}(a)$. Ez azt jelenti, hogy f konvex az a pont $k_{\delta}(a)$ környezetében, így nem válthat konvexitást az -ban.