CE 221 ENGINEERING MECHANICS I (FALL 2014 – 2015)

Home Exercise IV -Equilibrium

(http://www2.ce.metu.edu.tr/~ce221)

Q1.

Determine the force in each member of the truss and state if the members are in tension, or compression. Set $P_1 = 800 \text{ kN}$ and $P_2 = 400 \text{ kN}$.

ANS: $F_{BA}{=}~286~kN$ (T) $F_{BC}{=}~808~kN$ (T) $F_{CA}{=}~571~kN$ (C) $C_{\nu}{=}571~kN$

Q2.

Assume that each member of the truss is made of steel having a mass per length of 4 kg/m. Set P=0, determine the force in each member, and indicate if the members are in tension or compression. Neglect the weight of the gusset plates and assume each joint is a pin. Solve the problem by assuming the weight of each member can be represented as a vertical force, half of which is applied at the end of each member.

ANS: F_{AE} = 372 N (C), F_{AB} = 332 N (T), F_{BC} = 332 N (T), F_{BE} = 196 N (C), F_{EC} = 558 N (T), F_{ED} = 929 N (C), F_{DC} = 582 N (T)

Q3.

Determine the force in each member of the truss and state if the members are in tension or compression. Set $P_1 = 2 \text{ kN}$ and $P_2 = 1.5 \text{ kN}$.

ANS: $F_{CB}\!=\!3kN$ (T), $F_{CD}\!=\!2.5$ kN(C), $F_{DE}\!=\!2.60$ kN (C), 2.0 kN(T), $F_{BE}\!=\!2.0$ kN (C), $F_{BA}\!=\!5.0$ kN (T)

If the maximum force that any member can support is 8 kN in tension and 6 kN in compression, determine the O4, maximum force P that can be supported at joint D.

ANS: P=5.2 kN

O5.

Determine the force in each member of the truss and state if the members are in tension or compression.

ANS: $F_{DE}=16.3$ kN (C), $F_{DC}=8.4$ kN (T), $F_{EA}=8.85$ kN (C), $F_{EC}=6.2$ kN(C), $F_{CF}=8.77$ kN (T), $F_{CB}=2.2$ kN (T), $F_{BA}=3.11$ kN (T), $F_{BF}=6.2$ kN (C), $F_{FA}=6.2$ kN (T)

O6.

Determine the force in each member of the truss in terms of the load P, and indicate whether the members are in tension or compression.

ANS: F_{CB} =FCD=0, F_{AB} =2.40P (C), F_{AF} =2.0P (T) F_{BF} =1.86P (T), F_{BD} =0.373P(C)

Q7.

Determine the force in members GF, CF, and CD of the bridge truss, and indicate whether the members are in tension or compression

ANS: F_{GF} =29.0 kN (C), F_{CD} =23.5 kN (T), F_{CF} =7.78 kN(T)

Determine the force in members BC, CG, and GF of the Warren truss. Indicate if the members are in tension or compression.

ANS: Ax=0, F_{GF} =8.08 kN (T), F_{BC} =7.7 kN (C), F_{CG} =0.77 kN (C) $\mbox{\bf O9.}$

Determine the force in members GF_1FB_2 , and BC_2 of the *Fink truss* and state if the members are in tension or compression.

ANS: Ax=0, FGF=Ay= 110 kN, F $_{\rm GF}$ = 180 (C), F $_{\rm FB}$ = 69.3 kN(T), F $_{\rm BC}$ = 52,83 kN (T)

Q10.

Determine the force in members *GF*, *CF*, and *CD* of the roof truss and indicate if the members are in tension or compression.

ANS: $F_{GF}=1.78 \text{ kN (T)}$, $F_{CD}=2.23 \text{ kN (C)}$, $F_{CF}=0$

Q11.

Determine the force in members *EF*, *EP*, and *LK* of the *Baltimore bridge truss* and state if the members are in tension or compression. Also, indicate all zero-force members.

ANS: $I_{y=6.375}$ kN, F_{EF} = 7.875 kN (T), F_{LK} =9.25 kN (C), F_{EP} = 1.94 kN (T) Q12.

Determine the force P needed to support the 100-N (\approx 10-kg) weight. Each pulley has a weight of 10 N ($\stackrel{\checkmark}{\approx}$ 1 kg). Also, what are the cord reactions at A and B?

ANS: $F_A=25 \text{ N}$, $F_B=60 \text{ N}$

013.

The principles of a differential chain block are indicated schematically in the figure. Determine the magnitude of force P needed to support the 800-N force. Also, find the distance x where the cable must be attached to bar AB so the bar remains horizontal. All pulleys have a radius of 60 mm.

ANS: P=40 kN, x= 240 mm

Determine the horizontal and vertical components of force at pins A, B, and C, and the reactions to the fixed support D of the three-member frame.

ANS: By=1.33 kN, Bx= 5.00 kN, Ax=Cx=5.00 kN, Ay=Cy=6.67 kN, $M_{\rm D}$ =10 kNm, Dy=8.0 kN, Dx=0 Q15.

Determine the horizontal and vertical components of force which the pins exert on member *ABC*.

ANS: Ax=80 kN, Ay= 80 kN, By= 1.33 kN, Bx=336 kN, Cx= 416 kN, Cy=53.3 kN

Q16.

The compound arrangement of the pan scale is shown. If the mass on the pan is 4 kg, determine the horizontal and vertical components at pins A, B, and C and the distance x of the 25-g mass to keep the scale in balance.

ANS: Ay=34.0 kN, Ax=0, Cy=6.54 kN, Cx=0, x=292 mm, By=1.06 N, Bx= 0

O17.

Determine the horizontal and vertical components of force that the pins at A, B, and C exert on the frame. The cylinder has a mass of 80 kg. The pulley has a radius of 0.1 m.

ANS: Cy=1.33 kN, By=549 kN, Cx=2.98 kN, Ay=235 N, Ax=2.98 kN, Bx= 2.98 kN

Q18.

The structure is subjected to the loading shown. Member AD is supported by a cable AB and roller at C and fits through a smooth circular hole at D. Member ED is supported by a roller at D and a pole that fits in a smooth snug circular hole at E. Determine the x, y, z components of reaction at E and the tension in cable AB.

ANS: M_{Ex} =0.5 kNm, M_{Ey} =0, Ey=0, Ex=0, F_{AB} = 1.56 kN