

Mastering the game of Go with deep neural networks and tree search

Agenda

1. Problem setting

2. Policy and value networks

3. Features and architectures

4. Search algorithm

Problem setting

Game of perfect information:

- State space
- Action space
- A state transition function
- Policy
- Value function

$$v^p(s) = \mathbb{E}[z_t|s_t = s, a_{t...T} \sim p]$$

$$v^*(s) = \begin{cases} z_T & \text{if } s = s_T, \\ \max_a - v^*(f(s, a)) & \text{otherwise} \end{cases}$$

Policy network: classification

- Train-test split 1mil: 28 mil;
- Position state and human action;
- Mini-batch gradient descent;
- 3 weeks of training

$$\Delta \sigma = \frac{\alpha}{m} \sum_{k=1}^{m} \frac{\partial \log p_{\sigma}(a^k | s^k)}{\partial \sigma}$$

Rollout policy

- Linear softmax policy;
- Much more features than in SL policy network

Policy network: reinforcement learning

$$\Delta \rho = \frac{\alpha}{n} \sum_{i=1}^{n} \sum_{t=1}^{T^{i}} \frac{\partial \log p_{\rho}(a_{t}^{i}|s_{t}^{i})}{\partial \rho} (z_{t}^{i} - \nu(s_{t}^{i}))$$

Value network

- Artificial datasets to prevent overfitting
- Learning only using single training example
- 1 extra feature

$$\Delta \theta = \frac{\alpha}{m} \sum_{k=1}^{m} (z^k - \nu_{\theta}(s^k)) \frac{\partial \nu_{\theta}(s^k)}{\partial \theta}$$

$$v^{p_{\rho}}(s_{U+1}) = \mathbb{E}[z_{U+1}|s_{U+1}, a_{U+1,...T} \sim p_{\rho}]$$

Features

Input features for neural networks

Feature	# of patterns	Description
Stone colour	3	Player stone / opponent stone / empty
Ones	1	A constant plane filled with 1
Turns science	8	How many turns since a move was played
Liberties	8	Number of liberties (empty adjacent points)
Capture size	8	How many opponent stones would be captured
Self-atari size	8	How many of own stones would be captured
Liberties after move	8	Number of liberties after this move is played
Ladder capture	1	Whether a move at this point is a successful ladder capture
Ladder escape	1	Whether a move at this point is a successful ladder escape
Sensibleness	1	Whether a move is legal and does not fill its own eyes
Zeros	1	A constant plane filled with 0
Player color	1	Whether current player is black

Features

Input features for rollout and tree policy

Feature	# of patterns	Description
Response	1	Whether move matches one or more response pattern features
Save atari	1	Move saves stone(s) from capture
Neighbour	8	Move is 8-connected to previous move
Nakade	8192	Move matches a nakade pattern at captured stone
Response pattern	32207	Move matches 12-point diamond pattern near previous move
Non-response pattern	69338	Move matches 3×3 pattern around move
Self-atari	1	Move allows stones to be captured
Last move distance Non-response pattern	34 32207	Manhattan distance to previous two moves Move matches 12-point diamond pattern centred around move

Search algorithm

Selection

$$\{P(s,a), N_{\nu}(s,a), N_{r}(s,a), W_{\nu}(s,a), W_{r}(s,a), Q(s,a)\}$$

$$a_t = \underset{a}{\operatorname{argmax}}(Q(s_t, a) + u(s_t, a))$$

$$u(s,a) = c_{\text{puct}} P(s,a) \frac{\sqrt{\sum_b N_r(s,b)}}{1 + N_r(s,a)}$$

Search algorithm

Backup

$$N_r(s_t, a_t) \leftarrow N_r(s_t, a_t) + n_{vl}; W_r(s_t, a_t) \leftarrow W_r(s_t, a_t) - n_{vl}$$

$$N_r(s_t, a_t) \leftarrow N_r(s_t, a_t) - n_{vl} + 1; \ W_r(s_t, a_t) \leftarrow W_r(s_t, a_t) + n_{vl} + z_t$$

$$N_{\nu}(s_t, a_t) \leftarrow N_{\nu}(s_t, a_t) + 1, W_{\nu}(s_t, a_t) \leftarrow W_{\nu}(s_t, a_t) + \nu_{\theta}(s_L)$$

$$Q(s,a) = (1-\lambda)\frac{W_{\nu}(s,a)}{N_{\nu}(s,a)} + \lambda \frac{W_{r}(s,a)}{N_{r}(s,a)}$$

Literature used

- https://habr.com/ru/post/343590/
- https://habr.com/ru/post/279071/
- https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
- https://habr.com/ru/post/282522/
- https://habr.com/ru/post/330092/
- https://www.slideshare.net/KarelHa1/alphago-mastering-the-game-of-go-with-deep-neural-networks-and-tree-search
- https://becominghuman.ai/summary-of-the-alphago-paper-b55ce24d8a7c
- https://medium.com/@karpathy/alphago-in-context-c47718cb95a5
- https://deepmind.com/blog/alphago-zero-learning-scratch/
- https://www.nature.com/articles/nature24270.epdf?author_access_token=VJXbVjaSHxFoctQQ4p2k4tRgN0jAjWel9jnR3ZoTv0PVW4gB86EEpGqTRDtplz-2rmo8-KG06gqVobU5NSCFeHILHcVFUeMsbvwS-lxjqQGq98faovwjxeTUqZAUMnRQ
- $\bullet \ \ https://storage.googleap is.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf$

THANK YOU FOR LISTENING