The Longshot bias in market data: Evidence from Counter-Strike: Global Offensive

Timothy Schwieg

March 14, 2019

Loot Boxes

- Many video games have chosen to sell cosmetic alterations to their games using randomization mechanisms called "loot boxes"
- ► Economic Literature tells us that there is no benefit to randomization for risk-neutral consumers, so the benefit must come from risk-loving consumers.
- ▶ What aspect of these lotteries is generating the revenue for the companies selling them?
- ► How much more revenue-generating is this compared to traditional selling mechanisms?

Why do we care?

- ▶ We are interested in discovering what drives this market to feature randomization mechanisms.
- ► Are consumers inherently more risk-loving when they play video games?
- Is this driven by consumers over-weighting tiny probabilities as cumulative prospect theory suggests?
- Are consumers weighing benefits and losses differently?
- What is the magnitude of these gains from randomization?

The Data

- Contains complete market history for all items sold in the Steam Community Market for Counter-Strike: Global Offensive
- Market history is specific to the hour for the last 30 days, specific to the day for the remaining time the item has existed.
- Contains all active buy and sell orders for each of these items as of March 31st 2018.
- Number of active players per day and unique twitch viewers per day

Pictures

∟ Data

Does Size Matter?

Lotteries

	Values		Number of Contents					
Case	$\mathbb{E}[V]$	Price	#Blue	#Purple	#Pink	#Red	#Gold	
Operation Wildfire	0.89891	2.5307	26	18	14	9	50	
Operation Breakout	0.77011	2.5305	24	15	12	10	56	
Falchion Case	0.95072	2.5323	27	24	11	9	59	
Shadow Case	0.85299	2.5349	29	17	14	10	59	
Huntsman Weapon Case	0.95531	3.3181	25	17	12	8	62	
Spectrum Case	0.98146	2.53	34	23	15	9	68	
Chroma 2 Case	1.0058	2.53	25	13	13	9	81	
Chroma 3 Case	0.66099	2.53	30	19	11	10	81	
Chroma Case	0.83215	2.55	23	20	10	4	81	
Glove Case	0.84301	2.53	27	26	9	12	89	
Operation Hydra	1.5465	4.0827	25	20	14	9	89	
Gamma 2 Case	0.68335	2.53	31	22	13	7	128	
Gamma Case	0.80717	2.53	31	21	11	10	128	

High Content Lotteries

	Values			Number of Contents					
Case	$\mathbb{E}[V]$	Price	#Blue	#Purple	#Pink	#Red	#Gold		
CS:GO Weapon	4.4611	9.3248	7	6	7	2	228		
eSports 2013 Case	3.2708	10.354	8	13	7	2	228		
eSports 2013 Winter	1.5687	2.6441	18	9	11	3	228		
eSports 2014 Summer	1.4136	2.7414	21	19	16	9	228		
Operation Bravo	4.3567	12.628	26	15	9	6	228		
Operation Phoenix	0.85507	2.5416	15	12	9	7	228		
Operation Vanguard	1.038	2.5928	17	13	12	10	228		
Revolver Case	1.1045	2.53	24	25	12	9	228		
Winter Offensive	1.299	3.5079	14	14	12	6	228		

Discrete Choice - Berry (1994)

Utility for these lotteries is quasi-linear

$$u_{ijt} = V(x_{jt}, p_{jt}; \theta) + \xi_{jt} + \epsilon_{ij} \quad \epsilon_{ij} \sim Gumbel$$

Consumers choose the lottery that has the highest utility for them:

$$Pr(i \to j) = \frac{\exp(V(x_{jt}, p_{jt}; \theta) + \xi_{jt})}{\sum_{k \in \mathcal{F}} \exp(V(x_{jt}, p_{jt}; \theta) + \xi_{kt})}$$

Using an outside option that is normalized so that it has zero utility:

$$\log s_{jt} - \log s_{0t} = V(x_{jt}, p_{jt}; \theta) + \xi_{jt}$$

Implications

- Differentiated Goods
- Prediction based on market shares
- Homogeneous Consumers Is this reasonable?
- ▶ No structure placed on ξ

Cumulative Prospect Theory

- ► Four main components: Reference dependence, loss aversion, diminishing sensitivity, and probability weighting
- ▶ Diminishing sensitivity and loss aversion are summarized by the valuation function for each content of the lottery.
- x is not the content of the lottery, but the value of the gain or loss of that content relative to some reference point.

$$v(x) = \begin{cases} x^{\alpha} & x \ge 0 \\ -\lambda(-x)^{\alpha} & x < 0 \end{cases}$$

Reference dependence and Loss Aversion

- What is the proper reference point?
- Can it be estimated?
- How is loss aversion tied to the reference point?

Picture

Probability Weighting Function

$$w(p) = \frac{\gamma p^{\delta}}{\gamma p^{\delta} + (1 - p)^{\delta}}$$

- This weight is applied to cumulative probabilities - Interpretations of γ and $\delta?$ Picture

Valuation of a Lottery

► The "viewed" probability of each person obtaining an item from the lottery is

$$\Pi_{s_i} = \sum_{j=1}^{s_i} \pi_{s_j}$$

$$p_i = w(\Pi_{s_i}) - w(\Pi_{s_{i-1}})$$

$$F(x_i) = [w(\Pi_{s_i}) - w(\Pi_{s_{i-1}})] v(x_i - R)$$

$$V = \sum_{i=1}^{s_i} F(x_i)$$

The Longshot bias in market data: Evidence from Counter-Strike: Global Offensive $\mathrel{\bigsqcup_{\mathsf{Model}}}$

Estimation Procedure

Estimation

- Price is determined by intersection of supply and demand and is therefore endogenous
- Instrument with the changes in daily player base from the average number of players

$$\xi_{jt} = \log s_{jt} - \log s_{0t} - V(x_{jt}, p_{jt}; \theta)$$

Using the orthogonality of ξ_{jt} to the instruments and exogenous parameters:

$$\begin{aligned} \min_{\pmb{\xi}_{j,t},\xi_{j,t}} \sum_{j,t} \pmb{\xi}_{j,t}' \Omega \pmb{\xi}_{j,t} \\ \text{subject to: } & \xi_{j,t} = \log s_{jt} - \log s_{0t} - \textit{V}(\textit{x}_{jt},\textit{p}_{jt};\theta) \\ & \pmb{\xi}_{j,t} = \xi_{j,t} \pmb{Z}_{j,t} \end{aligned}$$