See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/245031923

Conformational analysis and vibrational spectroscopic investigation of 3-phenylpropylamine

ARTICLE in VIBRATIONAL SPECTROSCOPY · FEBRUAR	Y 2009
Impact Factor: 2 · DOI: 10.1016/j.vibspec.2009.01.006	
CITATIONS	READS
10	65
10	00

3 AUTHORS, INCLUDING:

Arslan Ünal Bilecik Üniversitesi

12 PUBLICATIONS 79 CITATIONS

SEE PROFILE

ELSEVIER

Contents lists available at ScienceDirect

Vibrational Spectroscopy

journal homepage: www.elsevier.com/locate/vibspec

Conformational analysis and vibrational spectroscopic investigation of 3-phenylpropylamine

Arslan Ünal^{a,*}, Mustafa Şenyel^a, Şükrü Şentürk^b

- ^a Department of Physics, Science Faculty, Anadolu University, 26470 Eskişehir, Turkey
- ^b Department of Physics, Dumlupinar University, Kütahya, Turkey

ARTICLE INFO

Article history:
Received 4 July 2008
Received in revised form 23 January 2009
Accepted 25 January 2009
Available online 5 February 2009

Keywords: 3-Phenylpropylamine Conformational analysis FT-IR Raman DFT

ABSTRACT

The possible stable forms of 3-phenylpropylamine (3-PPA) molecule were experimentally and theoretically studied by infrared and Raman spectroscopy. FT-IR and Raman spectra of 3-PPA were recorded in the regions of 4000–400 cm⁻¹ and 3700–60 cm⁻¹, respectively. The potential energy surface corresponding to the internal rotations of the molecule was investigated by semi-empirical quantum mechanical methods, and appropriate conformers defined with B3LYP hybrid density functional theory method along with the basis sets of different size and type. Results from experimental and theoretical data showed the *trans-trans-gauche* (TTG) to be the most stable form of a 3-PPA molecule.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

3-Phenylpropylamine (3-PPA) molecule is a monodentate ligand with the aromatic sp² ring carbon bonding to the primary carbon of propylamine moiety. The molecule is used to synthesize compounds such as vanadium oxide nanotubes [1-3], Ru^{II} halfsandwich [4], protein-ligand [5] and n-(3-phenylpropyl)guanidinium bromide complexes [6] where the 3-PPA molecule is in different forms. To the best of our knowledge, conformational and vibrational spectroscopic analyses have not yet been reported for 3-PPA molecule. However conformational or spectroscopic studies for *n*-propylamine [7-14] and toluene molecules [15-24] are available resulting in the motivation of this work. The *n*propylamine has two stable conformers, the *trans-trans* (TT) and trans-gauche (TG). The TT conformer is the most stable according to the ab initio calculations [12,13]. The conformers of toluene are either planar or orthogonal with the orthogonal being the most stable one [20-24].

In the current study, the stable conformers of 3-PPA molecule were considered within the density functional theory at any basis sets. The infrared and Raman vibrational assignments were also provided experimentally. The most stable conformer of 3-PPA was found to be of the *trans-trans-gauche* (TTG) form.

2. Experimental part

The 3-PPA was obtained from Aldrich Europe and used without any further purification that is in liquid phase and colourless at room temperature. The FT-IR spectrum of 3-PPA between KBr windows was recorded by using a Bruker Optics IFS66v/s FTIR spectrometer with the resolution of 2 cm⁻¹ in the spectral region of 4000 cm⁻¹ and 400 cm⁻¹ in vacuum. The Raman spectrum was recorded by using a Bruker Senterra Dispersive Raman microscope spectrometer with 532 nm excitation from a 3B diode laser having 3 cm⁻¹ resolution in the spectral region of 3700 cm⁻¹ and 60 cm⁻¹. The FT-IR and Raman spectra of the molecule are given in Figs. 1 and 2.

3. Theoretical part

First, potential energy surfaces (PES) were determined via MOPAC2002 geometry optimization using either PM3 or PM5 semi-empirical Hamiltonian within Fujitsu CAChe WS Pro v.7.5.0 Windows software package [25] on a personal workstation for the possible stable structures of 3-PPA where the torsion angles $\tau_1(C_4C_5C_7C_8),\ \tau_2(C_5C_7C_8C_9),\ \tau_3(C_7C_8C_9N_{10})$ and $\tau_4(C_8C_9N_{10}H_{22})$ were changed by 3° steps. The appropriate structures were then selected by considering the minimum positive heat of formation energy (ΔH).

For the selected structures, local minima or transition states on the PES were then examined through geometric optimizations and vibrational frequency analyses using Becke-3-Lee-Yang-Parr

^{*} Corresponding author. Tel.: +90 222 335 0580; fax: +90 222 320 4910. E-mail address: arslanu@anadolu.edu.tr (A. Ünal).

Fig. 1. The IR spectra of 3-phenylpropylamine molecule: (a) TTG isomer, calculated; (b) TGG isomer, calculated; (c) experimental FT-IR spectrum.

(B3LYP) hybrid Density Functional Theory (DFT) method with 6-31G(d) basis set [26,27] within the Gaussian03W program package as well as the GaussView molecular visualization program [28,29]. The calculations were also repeated with the B3LYP/6-31++G(d,p) double and B3LYP/6-311++G(d,p) triple zeta contracted Gaussian basis sets (see Tables S1 and S2 given as supplementary tables). In conjugated π systems, electrons are highly delocalized including

additional diffuse and polarization functionals to the basis set used in the electronic structure calculations, in many cases, lead to more accurate results. From our calculations, eight conformers were obtained which were reduced to four using the mirror reflection symmetry operation (σ). The conformers were identified by three letters (ABC) through orientation of the torsions τ_2 , τ_3 and τ_4 , respectively. The 3-PPA molecule possesses four possible rota-

Fig. 2. The Raman spectra of 3-phenylpropylamine molecule: (a) TTG isomer, calculated; (b) TGG isomer, calculated; (c) experimental Raman spectrum.

tional isomers as shown in Newman projection (see Fig. 3). The first letter, T (*trans*) or G (*gauche*), refers to the skeletal atom conformation indicating the position of the phenyl and methylamine groups relative to the C_7C_8 bond. The second letter refers to the skeletal atomic conformation representing the position of the benzyl and amino groups relative to the C_8C_9 bond. The third letter refers to the amino group and represents the position of the lone

electron pair on the nitrogen and phenylethyl relative to the central C_9N_{10} bond.

Further analyses of the conformers were made via statistical thermodynamic factors that include conformational relative energies having significant contributions from the harmonic modes of vibration. The statistical weighting factors for the population analysis were calculated on the basis of Gibbs free

Fig. 3. The illustrations for the four conformers of 3-phenylpropylamine: (A) Newman projections along to the C_7 - C_8 bond; (B) Newman projections along to the C_8 - C_9 bond; (C) Newman projections along to the C_9 - N_{10} bond.

energy. Boltzmann weighting factors (N_i) were determined for each conformer using the relation,

$$N_i = \frac{\exp(-G_i/RT)}{\sum_i \exp(-G_i/RT)} \tag{1}$$

where $R = 1.987 \times 10^{-3}$ kcal/mol, G_i is the Gibbs free energy of conformer i and T = 300 K were used. The results given in Table 1

indicate that the TTG and TGG forms have dominant features among the isomers.

Although accurate vibrational frequencies are more difficult to compute, it is well known that DFT calculations give excellent agreement between molecular structure parameters and experimental vibrational frequencies of organic compounds provided the calculated frequencies are scaled to compensate the approximate treatment of electron correlation, basis set deficiencies and

Table 1The possible stable conformers of 3-phenylpropylamine molecule and their molecular properties within DFT B3LYP method with 6-31G(d), 6-31++G(d,p), 6-311++G(d,p) basis sets.

	B3LYP/6-3	1G(d)			B3LYP/6-3	1++G(d,p)			B3LYP/6-311++G(d,p)			
	TTG	TGG	GGG	GTG	TTG	TGG	GGG	GTG	TTG	TGG	GGG	GTG
Symmetry	C ₁	C ₁	C ₁	C ₁								
Δ ZPE (kcal/mol)	-	0.02	0.16	0.31	-	0.02	0.11	0.15	-	0.02	0.12	0.16
Δ SCF (kcal/mol)	_	0.47	1.03	1.17	_	0.96	1.50	1.64	-	0.71	1.19	1.33
ΔG (kcal/mol)	_	0.40	0.71	1.21	_	0.22	0.56	1.97	-	0.25	0.57	0.91
μ_{TOTAL} (Debye)	1.61	1.77	1.76	1.16	1.75	1.69	1.51	1.05	1.72	1.65	1.46	1.01
E _{HUMO} (eV)	-6.24	-6.15	-6.21	-6.13	-6.52	-6.45	-6.44	-6.51	-6.60	-6.51	-6.50	-6.57
E_{LUMO} (eV)	0.15	0.24	0.26	0.05	-0.41	-0.35	-0.46	-0.38	-0.43	-0.35	-0.51	-0.41
$\Delta E_{\rm HUMO-LUMO}$ (eV)	6.39	6.39	6.48	6.18	6.12	6.11	5.98	6.13	6.12	6.15	5.99	6.17
N_i (%)	52	26	15	7	44	30	17	9	44	30	17	9
Torsion angles (°)												
$\tau_1(C_4C_5C_7C_8)$	95	90	100	107	95	90	100	107	95	90	100	107
$\tau_{2}(C_{5}C_{7}C_{8}C_{9})$	-179	177	-65	-66	-179	177	-65	-66	-179	177	-65	-66
$\tau_{3}(C_{7}C_{8}C_{9}N_{10})$	-178	-65	-62	-178	-178	-65	-62	-178	-178	-65	-62	-178
$\tau_4(C_8C_9N_{10}H_{22})$	56	51	52	55	56	51	52	55	56	51	52	55

The relative energies of the conformers were given in respect to the calculated self-consistent field (SCF), zero point energy (ZPE) and Gibbs free energy (ΔG) of the *trans-trans-gauche* (TTG) conformer. For the TTG conformer, the ZPE, SCF, ΔG calculated using DFT B3LYP method with 6-31G(d), 6-31++G(d,p), 6-311++G(d,p) basis sets that are (127.85, -254476.60, -254559.79), (127.22, -254502.71, -254397.90), (126.84, -254550.98, -254446.84) kcal/mol, respectively. N_i is the Boltzmann weighting factors for population analysis.

Table 2The experimental geometric structures of toluene and *gauche*-ethylamine molecule together with the calculated data for the rotational isomers of the 3-phenylpropylamine molecule at B3LYP/6-311++G(d,p) theory level.

Geometrical coordinate	Toluene ^a	g-Ethylamine ^b	Isomers of 3-PP	Isomers of 3-PPA				
			TTG	TGG	GGG	GTG		
r(C–C) _{av} /Å aromatic	1.399	=	1.3957	1.3960	1.3962	1.3959		
r(C-H) _{av} /Å aromatic	1.098	-	1.0850	1.0851	1.0850	1.0850		
r(C-C) _{av} /Å	1.511	1.524	1.5343	1.5360	1.5376	1.5355		
r(C–H) _{av} /Å	1.12	1.107	1.0969	1.0964	1.0960	1.0964		
r(C-N)/Å	_	1.475	1.4680	1.4698	1.4702	1.4702		
r(N–H)/Å	_	1.052	1.0150	1.0149	1.0150	1.0152		
C-C-N/(deg)	_	109.7	110.7	111.2	111.3	110.8		
<C $-$ C $-$ H _{av} $/$ (deg)	_	113.2	109.2	108.9	108.7	109.1		
$<$ C $-N-H_{av}/(deg)$	-	112.4	111.0	110.9	110.9	110.7		

Taken from Ref. [19].

anharmonicity [30–38]. In this respect, two different scaling approaches, namely scaling harmonic wavenumbers by dual scale factors and scaling harmonic wavenumbers in the scaled quantum mechanics force field (SQM FF) methodology [39,33,34], were implemented. In the first one, two different scale factors (0.954 for B3LYP/6-31++G(d,p) and 0.960 for B3LYP/6-311++G(d,p) basis sets) were used for fitting the harmonic wavenumbers lower or equal to $1700~{\rm cm}^{-1}$ while one scale factor (0.980) for both basis sets was used for those higher than $1700~{\rm cm}^{-1}$. In the latter, the scaled wavenumbers were calculated using the scaled harmonic force constants obtained from the harmonic force constants at B3LYP/6-31++G(d,p) and B3LYP/6-311++G(d,p) theory level where the scaling factors proposed by Baker et al. [40] for the B3LYP method were employed without any modification of the scaling of the force constants.

The scaling factors were not applied to the IR and Raman intensities. The Raman intensity (I^R), which simulates the measured Raman spectrum was calculated using the following relation:

$$I_i^R = C(\nu_0 - \nu_i) \cdot \nu_i^{-1} \cdot B_i^{-1} \cdot S_i$$
 (2)

where S_i is the Raman scattering activity of the normal mode Q_i obtained by DFT methods, C is a constant and I_i^R is in arbitrary units [41,42]. Here, the excitation frequency (ν_0 = 18797 cm⁻¹), that is the wavelength of 532 nm of a 3B diode laser and C = 10^{-14} were used. For the B_i factor, the values at T = 300 K were determined with the equation given below.

$$B_i = 1 - \exp\left(\frac{h\nu_i c}{kT}\right) \tag{3}$$

4. Results and discussion

Possible stable conformers for the 3-PPA molecule and their molecular properties are given in Table 1. The table points out that the TTG is a more stable conformer at room temperature among the others taking into account the energies along with the population factors values. It is also worth noticing that the various basis sizes effect on Δ ZPE, Δ SCF and Δ G energies are not great and that the stability order for the conformers remains the same with the basis sets. The conformers are also in agreement with the X-ray crystal structural data reported by Melchart et al. for the Ru^{II} half-sandwich complexes [4], by Leiros et al. for the trypsin-3phenylpropylamine (1.tnk) protein–ligand complex [5] and by Standford et al. for the n-(3-phenylpropyl)guanidinium bromide [6] where the 3-PPA has the GGG, GTG or TTG forms.

In Table 2, the calculated geometrical parameters for the rotational isomers of the 3-PPA are given with the experimental data of the toluene and *gauche*-ethylamine molecule. The comparison implies that the bond lengths and also the angles of the TTG isomer are much closer to the experimental data. The experimental lengths of 3-PPA molecule were reported as *ca.* 0.9–1.0 nm in the vanadium oxide nanotubes [1–3]. The experimental length agrees with the obtained length of the TTG–TGG isomers. The lengths of the TTG–TGG and GGG–GTG isomers were determined as *ca.* 0.9 nm and 0.8 nm.

Before offering an explanation for the vibrational assignments of isomers, the IR and Raman frequencies of 3-PPA molecule together with the vibrational assignments of toluene and npropylamine molecule are presented in Table 3. The N-H₂ asymmetric and symmetric stretching fundamental bands appearing at 3372 cm⁻¹, 3290 cm⁻¹ (IR) and 3377 cm⁻¹, 3319 cm⁻¹ (Ra) are attributed to the *n*-propylamine molecule. The bands between $3085-3026 \text{ cm}^{-1}$ (IR) and $3054-3032 \text{ cm}^{-1}$ (Ra) are from the C-H stretching of toluene group while the bands at 2930 cm⁻¹, $2856 \, \text{cm}^{-1}$ (IR) and $2918 \, \text{cm}^{-1}$, $2855 \, \text{cm}^{-1}$ (Ra) are due to the CH_2 asymmetric and symmetric stretching bands of n-propylamine. The other bands that appeared at $1604 \, \mathrm{cm}^{-1}$, 1584– 1496 cm⁻¹ and 1002 cm⁻¹ (IR, Ra) represent the NH₂ deformation of *n*-propylamine, C-C stretching vibrations and ring breathing of toluene. The CH₂ vibrations are deformation, twisting, wagging, and rocking that appear in the expected frequency regions of 1453–746 cm⁻¹. Hence the 3-PPA molecule shares the vibration modes of the *n*-propylamine and toluene.

In the spectral analysis, the TTG and TGG isomers were considered due to the weighting of population factor that is ca. %74 of the total. The scaled vibrational frequencies of the isomers at B3LYP/6311++G(d,p) theory level were compared to the experimental infrared and Raman vibrational frequencies of the 3phenylpropylamine in Table 4 for the spectral region of 4000 cm⁻¹ and 400 cm⁻¹ (see also Tables S3 and S4). As seen from the table, the fundamental bands of TTG and TGG forms of the 3-PPA have nearly same frequencies. On the other hand, the modes with the number 11 and 10 corresponding to the CCCN deformation vibrations are close to the TGG form. However, the modes with the number 56, 53, 44, 42, 12 are close to the TTG form. Within the vibrational bands, the bands corresponding to the vibrational frequencies of TTG form are strong bands and relative intensities of the vibrational frequencies are also higher. In the light of these results, the TTG form of the molecule possesses the dominant feature compared to the TGG form. It might be worth mentioning that the correlation between experimental and theoretical wavenumbers were found to be 0.9995, 0.9996 and 0.9994, 0.9994 for scaling harmonic wavenumbers by dual scale factors

b Taken from Ref. [43].

Table 3 The measured IR and Raman frequencies (cm $^{-1}$) of 3-phenylpropylamine molecule together with the vibrational assignments of toluene and n-propylamine molecules.

Assignment ^{a,b}	Toluene ^{a,b}			Assignment ^c	Propylamine ^c		3-Phenylpropylamine ^d		
	IR-Raman ^a	IR ^b	Raman ^b		IR	Raman	IR	Raman	
_	_	_	_	$\nu({\rm NH_2})$ as.	3314 (8b)	3314 (8)	3372 m	3377 vw	
				2,	3308 (7b)	-			
2xν(CC)	-	3203 vw br sh	3205 p	2xNH ₂ def.	3245 (3bb)	-	3190 vw br	3203 vw	
_	-	-	-	$\nu(NH_2)$ s.	3182 (4bb)	3185 (3b)	3290 w	3319 w	
2xν(CC)	-	3167.5 vw	3168 p	-	-	-	-	3164 vw	
2xν(CC)	-	3104.1 w	-	-	-	-	3106 vw	-	
ν(CH)	3085	3086.4 m		-	-	-	3085 m	-	
ν(CH)	3070	3062.1 m br	3065 p	-	-	-	3062 m	-	
ν(CH)	3058	3055 m br sh	3055 p	-	-	-	-	3054 vs	
ν(CH)	3037	- 2027.0	3038 dp	=	-	-	-	3032 m br sh	
ν(CH)	3028	3027.0 m	-	-	-	_	3026 s	-	
3xRing	- 2979	-	-	- -	2055 (1)	- 2959 (10)	3002 w	3002 w	
$\nu(CH_3)$ as. $\nu(CH_3)$ as.	2950	2950 m sh	_	$\nu(CH_3)$ as., $\nu(CH_3)$ s.	2955 (1)	2939 (10)	_	_	
$\nu(CH_3)$ as. $\nu(CH_3)$ s.	2920	2919.9 m	- 2920 р	$\nu({\rm CH_2})$ as.	2953 (12) 2928 (1)	2940 (6bb)	2930 vs	2918 m	
ν(C113) 3.	2320	2313.3 111	2320 p	ν(C112) as.	2924 (10)	- -	2330 V3	2310 111	
					2897 (3)	2900 (12)			
_	_	_	_	$\nu(CH_2)$ s., $\nu(CH_3)$ s.	2870 (5)	2871 (11)	2856 vs	2855 m	
				. (2), . (3)	2862 (9)	_			
					2852 (4)	2855 (3b)			
ν(CC)	1604	1604.6 m	1604 dp	NH ₂ def.	1618 (1)	_	1604 s	1604 m	
` '			•	-	1615 (6bb)	_			
					1605 (6bb)	_			
ν(CC)	1584	1586.7 w br	1585 dp	-	- ' '	-	1584 m	1584 w	
ν(CC)	1493	1495.7 s	-	_	-	-	1496 vs	1496 vw br sh	
$\delta(CH_3)$ as., $\nu(CC)$	1455	1460.3 m br	-	CH ₃ def. as., CH ₂ def.	1459 (4s)	1456 (7s)	1453 vs	1439 w	
-	-	-	1442 dp		1446 (2s)	1452 (7s)	-	-	
					1442 (4s)	1424 (4s)			
$\delta(CH_3)$ s.	1378	1378.9 m	1378 p	CH₃ def. s.	1375 (2s)	-	-	-	
					1372 (2s)	-			
-	-	-	-	CH ₂ wag.	1366 (2)	-	1389 w	-	
					1357 (1)	-	1352 w	-	
					1349 (1)	-			
ν(CC)	1331	1332.0 w	1332 p	CH ₂ tw.	1294 (1)	-	1334 vw	1340 vw	
β(СН)	1313	1312.7 w	-		1291 (1)	1291 (3)	1310 vw	1297 vw	
(C. CH.) V	1200	12102	1210 -		1217 (2s)	-	1204	1202	
ν(C–CH ₃) X–sens	1208	1210.2 w	1210 p	-	-	1124 (5-)	1204 vw	1203 m	
β(CH)	1176	1178.6 m	1179 dp	ν(CCCN)	1124 (3)	1124 (5s)	1179 vw	1181 vw br sh	
β(CH)	1153	1155.9 w	1156 dp				1155 vw	1157 w	
β(CH)	1080	1081.4 m		ρ(CH ₃)	1074 (2)	1075 (1b)	1133 vw 1070 m	- 1075 vw	
r(CH ₃)	1040	1041.4 m	-	NH ₂ tw.	10/4 (2) 1040 (2b)	1073 (1b) -	-	10/3 VW -	
β(CH)	1028	1030.1 m	- 1031 р	$\nu(CCCN)$	1040 (2b) 1022 (2s)	1023 (2s)	- 1046 m	_	
p(CII)	1020	1050.1 111	1051 р	V(CCCIV)	1022 (23)	1025 (23)	1030 m	1031 m	
Ring	1002	1002.3 w	1003 p	_	_	_	1002 w sh	1002 vs	
γ(CH)	983	980.7 w	-	_	_	_	-	-	
γ(CH)	973	966.4 w br	_				_	_	
γ(CH)	893	895.4 m	_	_	_	_	909 m	920 vw	
-	_	_	_	NH ₂ wag.	963 (2bb)	_	805 s br	806 m	
					939 (4b)	_			
γ(CH)	841	842.7 m	842 dp	$\nu(CCCN)$	877 (1)	-	873 m	843 vw	
					866 (1)	-			
					855 (3s)	853 (3)			
α (CCC) X–sens	784	785.6 m	786 p	$\rho(CH_2)$	747 (6s)	-	746 vs	749 w	
					745 (6s)-	-			
γ(CH)	734	729.9 vs	-	-	-	-	-	-	
φ(CC)	690	694.8 vs	-				699 vs	-	
α(CCC)	620	622.0 w	622 dp	-	-	-	621 vw	621 w	
							591 w	-	
_	-	=	-	ν(skeletal)	556 (4bb)	-	573 m	577 vw	
α(CCC) X–sens	524	521.0 m	521 p	-	-	-	518 w	-	
φ(CC) X–sens	467	464.4 vs	-	CCCN def.	471 (6)	469 (2)	495 w	492 vw	
					455 (1)	-	459 w	453 vw	
1 (00)	400				445 (5)	-	400	100	
φ(CC)	406	-	-	-	-	-	422 vw	422 vw br	
β (C–CH ₃) X–sens	347	-	346 dp	-	-	-	-	349 vw br	
	-	-	-	-	-	-	-	283 vw	
γ (C–CH ₃) X–sens	217	-	217 dp	-	_	_	-	229 vw	

 ν : bond stretching, δ : bending; β and α : in plane angle bending, γ and ϕ : out of plane angle bending, def.: deformation, ρ and r: rocking, tw.: twisting, wag.: wagging, s.: symmetric, as.: asymmetric, vs: very strong, s: strong, m: medium, w: weak, vw: very weak, sh: shoulder, br: broad, p: polarized, dp: depolarized.

^a Taken from Ref. [16]. ^b Taken from Ref. [18].

^c Taken from Ref. [8]; s: sharp, b: broad, bb: breit broad.

^d Assigned from the FT-IR and Raman spectra of 3-phenylpropylamine molecule recorded in this study.

Table 4The experimental vibrational assignments of the 3-phenylpropylamine molecule and comparison with the calculated data of TTG and TGG isomers at B3LYP/6-311++G(d,p) theory level.

Mode	ode Experiment ^a 3-PPA			B3LYP/6-311++G(d,p) TTG isomer					B3LYP/6-311++G(d,p) TGG isomer					P.E.D. ^e (Potential Energy Distribution) Description (%)		
	IR ^a	Raª	Assignment ^a	R.I. ^b (IR)	R.I. ^b (Ra)	$\nu^{\rm b}$	ν^{c}	$\nu^{\rm d}$	R.I. ^b (IR)	R.I. ^b (Ra)	$\nu^{\rm b}$	ν^{c}	$\nu^{\rm d}$	TTG isomer	TGG isomer	
63	3372 m	3377 vw	$\nu(NH_2)$ as.	1	19	3576	3433	3451	1	17	3577	3434	3451	ν _{as} (NH ₂) (100)	ν _{as} (NH ₂) (100)	
62	3290 w	3319 w	$\nu(NH_2)$ s.	1	35	3497	3357	3375	1	31	3497	3357	3374	$\nu_{\rm s}({\rm NH_2})$ (100)	$\nu_{\rm s}({\rm NH_2})$ (100)	
	3190 vw br	3203 vw	2xNH ₂ def.	-	-	-	-	_	_	-	-	_	-	-	_	
	_	3164 vw	$2x\nu_R(CC)$	-	_	_	_	_	-	_	_	_	_	_	_	
	3106 vw	_	NH_2 def.+ ν (CC)	-	_	_	_	_	-	_	_	_	_	_	_	
61	3085 m	_	$\nu_{\rm R}({\rm CH})$	22	75	3187	3060	3061	23	76	3186	3059	3060	$\nu_{\rm R}({\rm CH})~(95)$	$\nu_{\rm R}({\rm CH})~(95)$	
60	3062 m	_	$\nu_{\rm R}({\rm CH})$	36	28	3174	3047	3049	40	28	3173	3046	3048	$\nu_{\rm R}({\rm CH})~(99)$	$\nu_{\rm R}({\rm CH})~(99)$	
59	_	3054 vs	$\nu_{\rm R}({\rm CH})$	17	40	3166	3039	3041	18	40	3165	3038	3040	$\nu_{\rm R}({\rm CH})~(100)$	$\nu_{\rm R}({\rm CH})~(100)$	
58	-	3032 m br sh	$\nu_{R}(CH)$	18	30	3152	3026	3028	17	31	3152	3026	3027	$\nu_{R}(CH)$ (98)	$\nu_{R}(CH)$ (97)	
57	3026 s	_	$\nu_{R}(CH)$	17	30	3151	3025	3026	17	29	3150	3024	3025	$\nu_{\rm R}({\rm CH})~(100)$	$\nu_{\rm R}({\rm CH})~(100)$	
	3002 w	3002 w	3xR. breath.	_	-	-	_	-	_	-	_	-	-	-	_	
56	2930 vs	2918 m	$\nu(CH_2)$ as.	46	4	3071	2948	2950	21	8	3083	2960	2966	$\nu_{\rm as}({\rm CH_2})~(94)$	$\nu_{as}(CH_2)$ (93)	
53	2856 vs	2855 m	$\nu(CH_2)$ s.	41	22	3017	2896	2898	33	18	3024	2903	2907	$\nu_{\rm s}({\rm CH_2})$ (83)	$\nu_{\rm s}({\rm CH_2})$ (89)	
50	1604 s	1604 m	NH ₂ def.	35	6	1660	1627	1589	35	7				NH ₂ sci. (87)	NH ₂ sci. (86)	
49	1584 m	1584 w	$\nu_{\rm R}({\rm CC})$	12	37	1644	1611	1587	14	41	1643	1610	1585	$\nu_{\rm R}({\rm CC})~(85)$	ν _R (CC) (84)	
47	1496 vs	1496 vw	$\nu_{\rm R}({\sf CC})$	15	4	1526	1495	1481	14	2				$\nu_{\rm R}({\rm CC})$ (67), $\delta_{\rm R}({\rm CH})$ (16)	$\nu_{\rm R}({\rm CC})$ (67), $\delta_{\rm R}({\rm CH})$ (16)	
		br sh	/											, , , , , , ,	,	
44	1453 vs	1439 w	$\nu_R(CC)$, CH_2 def.	3	27	1488	1458	1449	6	17	1483	1453	1441	CH ₂ sci. (67)	CH ₂ sci. (76)	
43	1453 vs	1439 w	$\nu_{\rm R}({\rm CC})$, CH ₂ def.	5	12	1482	1452	1442	7	17				$\nu_{\rm R}({\rm CC})$ (28), $\delta_{\rm R}({\rm CH})$ (50)	$\nu_{\rm R}({\rm CC})$ (25), $\delta_{\rm R}({\rm CH})$ (45)	
42	1389 w	_	CH ₂ wag.	18	1	1426	1397	1389	19	3				CH ₂ wag. (85)	CH ₂ wag. (89)	
41	1352 w	_	CH ₂ wag.	1	20		1347		4	15				CH ₂ wag. (61)	CH ₂ wag. (60)	
38	1334 vw	1340 vw	$\nu_R(CC)$, CH ₂ tw.	4			1305		3	17				$\nu_{\rm R}({\rm CC})$ (12), CH ₂ tw. (54)	$\nu_{\rm R}({\rm CC})$. (12), CH ₂ tw. (52)	
37	1310 vw	1297 vw	$\beta_R(CH)$, CH_2 tw.	1	10		1292		1	14				$\delta_{R}(CC)$ (20), CH ₂ tw. (45)	$\delta_{\rm R}({\rm CC})$ (41), CH ₂ tw. (25)	
34	1204 vw	1203 m	$\nu(C_R-CH_2)$	1	39		1200		1	40				$\nu(C_R-CH_2)$ (73)	$\nu(C_R-CH_2)$ (71)	
33	1179 vw	1181 vw br sh	$\beta_R(CH)$	0	9		1178		0	9				$\delta_{R}(CH)$ (93)	$\delta_{R}(CH)$ (93)	
32	1155 vw	1157 w	$\beta_R(CH)$	0	8	1181	1157	1149	0	8	1180	1156	1148	$\delta_R(CH)$ (93)	$\delta_R(CH)$ (92)	
30	1070 m	1075 vw	$\beta_R(CH)$	4	4		1095		6	7	1099	1077	1066	$\delta_R(CH)$ (52)	$\delta_{\rm R}({\rm CH})$ (40), $\nu({\rm CN})$ (27)	
29	1046 m	_	ν(CCCN)	14	16	1083	1061	1045	7	10				$\nu_{as}(CCCN)$ (43), $\nu_{R}(CC)$ (7)		
28	1030 m	1031 m	ν(CCCN)	9	18		1040		13	26				$\nu_{\rm s}({\rm CCCN})$ (42), $\nu_{\rm R}({\rm CC})$ (7)	$\nu_{as}(CCCN)$ (54)	
27	1002 w sh	1002 vs	R. breath.	7	43	1050	1029	1022	7	41	1050			R. breath. (89)	R. breath. (99)	
21	909 m	920 w	$\gamma_R(CH)$	4	8	920	902	899	10	6	926	907		γ _R (CH) (83)	γ _R (CH) (66)	
19	873 m	843 vw	$\gamma_R(CH)$	5	3	852	835	835	3	3	853	836		γ _R (CH) (98)	γ _R (CH) (99)	
17	805 s br	806 m	NH ₂ wag.	115	31	818	802	798	90	25	820	804		NH ₂ wag. (64)	NH ₂ wag. (72)	
15	746 vs	749 w	ρ(CH ₂)	8	5	755	740	737		31	757	742		ρ(CH ₂) (74)	γ _R (CCH) (57)	
14	699 vs	_	$\gamma_R(CC)$	45	1	712	698	692	44	1	712	698		γ _R (CCH) (63)	$\gamma_R(CCH)$ (88)	
13	621vw	621 w	$\beta_R(CCC)$	0	27	636	623	631	0	27	636	623		$\delta_{R}(CC)$ (84)	$\delta_{R}(CC)$ (84)	
12	573 m	577 vw	ν(skeletal)	4	7	593	581	586	2	8	603	591		$\delta_{\rm R}({\rm CCC})$ (38) s.,	$\delta_{\rm R}({\rm CCC})$ (28) s.,	
			,											$\delta_{\rm s}({\rm CCC})$ (15)	$\delta_{as}(CCC)$ (13)	
11	495 w	492 vw	CCCN def.	22	12	528	517	518	13	18	508	498	497	$\tau_R(CC)$ (37), $\delta_{as}(CCC,CCN)$ (21)	$\tau_R(CC)$ (45), $\delta_s(CCC)$ (4)	
10	459 w	453 vw	CCCN def.	7	15	418	410	411	11	21	455	446	451	$\tau_{R}(CC)$ (14), $\delta_{s}(CCC,CCN)$ (67)	$\tau_R(C_RC)$ (7), $\delta_s(CCC,CCN)$ (62)	
9	422 vw	422 vw br	$\gamma_R(CC)$	3	9	413	405	401	0	1	414	406	402	$\gamma_R(CH)$ (99)	$\gamma_R(CH)$ (99)	
8	-		$\beta(C_R-CH_2)$	0	6	343	336	344	1	7	343	336		$\delta(C_R C_R C)$ (77)	$\delta(C_R C_R C)$ (72)	
7	-	283 vw	-	3	96	280	274	275	7	26	286	280		$\tau_{R}(CC)$ (6), $\delta_{s}(CCN)$ (59)	$\tau_R(CC)$ (31), $\delta_s(CCN)$ (28)	
5	-	229 vw	$\gamma(C_RCH_2)$	4	38	215	211	210	32	15	225	221	220	$\tau_{\text{R}}(\text{CC})$ (23), $\delta_{\text{as}}(\text{CCN})$ (51)	-, , , ,	

^a Assigned in this study by the obtained IR and Raman spectra of 3-phenylpropylamine along with the assignments of related molecules; vs: very strong, s: strong, m: medium, w: weak, vw: very weak, sh: shoulder, br: broad; ν : bond stretching, β : in plane angle bending, γ : out of plane angle bending, ρ : rocking, def.: deformation; tw.: twisting, wag.: wagging, breath.: breathing, R: ring, s: symmetric, as: asymmetric.

and scaling harmonic wavenumbers in SQM FF methodology at B3LYP/6-31++G(d,p) and B3LYP/6-311++G(d,p) theory level, respectively.

concluded that *trans-trans-gauche* (TTG) is the most stable form of 3-PPA molecule.

5. Conclusion

The results presented, both theoretically and experimentally, show that the TTG form of the 3-phenylpropylamine molecule is more compatible with the experimental data. Similarity it can be

Acknowledgements

This study is dedicated to the 50th anniversary of Anadolu University. The authors are thankful to Prof. Dr. Horst Ludwig for his kind helps and also to Editor for his great help.

^b Calculated values (unscaled).

^c Wavenumbers scaled with the dual scale factors.

^d Wavenumbers scaled by SQM FF methodology.

e ν: bond stretching, δ: in plane angle bending, γ: out of plane angle bending, τ: torsion, ρ: rocking, sci.: scissoring, tw.: twisting, wag.: wagging, breath.: breathing, R: Ring, s: symmetric, as: asymmetric.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.vibspec.2009.01.006.

References

- [1] F. Bieri, F. Krumeich, H.J. Muhr, R. Nesper, Helv. Chim. Acta 84 (2001) 315.
- [2] F. Sediri, F. Touati, N. Gharbi, Mater. Lett. 61 (2007) 1946.
- [3] F. Sediri, N. Gharbi, J. Phys. Chem. Solids 68 (2007) 1821.
- [4] M. Melchart, A. Habtemariam, O. Novakova, S.A. Moggach, F.P.A. Fabbiani, S. Parsons, V. Brabec, P.J. Sadler, Inorg. Chem. 46 (2007) 8950.
- [5] H.-K.S. Leiros, B.O. Brandsdal, O.A. Andersen, V. Os, I. Leiros, R. Helland, J. Otlewski, N.P. Willassen, A.O. Smalas, Protein Sci. 13 (2004) 1056.
- [6] D.J. Stanford, R.A. Fernandez, M. Zeller, A.D. Hunter, Acta Crystallogr. E 63 (2007) o1934
- H. Wolff, H. Ludwig, Ber. Bunsenges. Phys. Chem. 68 (1964) 143.
- [8] H. Wolff, H. Ludwig, Ber. Bunsenges. Phys. Chem. 71 (1967) 1107.
- [9] D.W. Scott, G.A. Crowder, J. Mol. Spectrosc. 26 (1968) 477.
- [10] B.Ri. Friedman, M. Schwartz, Spectrosc. Lett. 15 (1982) 945
- [11] N. Sato, Y. Hamada, M. Tsuboi, Spectrochim. Acta 43A (1987) 943.
- [12] L.A.E. Batista de Carvalho, A.M. Amorim da Costa, M.L. Duarte, J.J.C. Teixeira Dias, Spectrochim. Acta A 44 (1988) 723.
- [13] J.R. Durig, W.B. Beshir, S.E. Godbey, T.J. Hizer, J. Raman Spectrosc. 20 (1989) 311.
- L.A.E. Batista de Carvalho, A.M. Amorim da Costa, J.J.C. Teixeira-Dias, J. Mol. Struct. Theochem. 205 (1990) 327.
- [15] J.K. Wilmshurst, H.J. Bernstein, Can. J. Chem. 35 (1957) 911.
- [16] A.P. Hitchcock, J.D. Laposa, J. Mol. Spectrosc. 54 (1975) 223.
- [17] J.E. Bertie, R.N. Jones, C.D. Keefe, Appl. Spectrosc. 47 (1993) 891.
- [18] J.E. Bertie, Y. Apelblat, C.D. Keefe, J. Mol. Struct. 750 (2005) 78.
- [19] R. Seip, G. Schultz, I. Hargittai, Z.G. Szabo, Z. Naturforsch. A32 (1977) 1178.
- [20] F. Pang, J.E. Boggs, P. Pulay, G. Fogarasi, J. Mol. Struct. 66 (1980) 281.
- [21] V. Amir-Ebrahimi, A. Choplin, J. Demaison, G. Roussy, J. Mol. Spectrosc. 89 (1981) 42.
- [22] B.R. Henry, K.M. Gough, Laser Chem. 2 (1983) 309.

- [23] P.C. Chen, F.M. Chang, Int. J. Quantum Chem. 77 (2000) 772.
- [24] L.D. Field, S.D. Ramadan, Magn. Reson. Chem. 41 (2003) 933.
- [25] Mopac-PM3 and PM5 implemented in CAChe WorkSystem Pro. ver. 7.5.0 for Windows, Fujitsu Co. Ltd., Japan, 2006.
- [26] A.D. Becke, J. Phys. Chem. 107 (1997) 8554.
- [27] H.L. Schmider, A.D. Becke, J. Phys. Chem. 108 (1998) 9624.
- [28] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, I.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03 Revision D.01, Gaussian Inc., Wallingford, CT, 2004.
- [29] A. Frish, A.B. Nielsen, A.J. Holder, Gaussview Users Manual, Gaussian Inc., 2000.
- [30] N.C. Handy, P.E. Maslen, R.D. Amos, J.S. Andrews, C.W. Murray, G.J. Laming, Chem. Phys. Lett. 197 (1992) 506.
- [31] N.C. Handy, C.W. Murray, R.D. Amos, J. Chem. Phys. 97 (1993) 4392.
- [32] P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98 (1994)
- [33] G. Rauhut, P. Pulay, J. Phys. Chem. 99 (1995) 3093.
- [34] G. Rauhut, P. Pulay, J. Phys. Chem. 99 (1995) 14572.
- [35] F.J. Devlin, J.W. Finley, P.J. Stephens, M.J. Frisch, J. Phys. Chem. 99 (1995) 16883.
- [36] S.Y. Lee, B.H. Boo, Bull. Korean Chem. Soc. 17 (1996) 754.
- [37] S.Y. Lee, B.H. Boo, Bull. Korean Chem. Soc. 17 (1996) 760.
- [38] A.P. Scott, L. Radom, J. Phys. Chem. 100 (1996) 16502.
 [39] M.D. Halls, J. Velkovski, H.B. Schlegel, Theor. Chem. Acc. 105 (2001) 413.
- [40] J. Baker, A.A. Jarzecki, P. Pulay, J. Phys. Chem. A 102 (1998) 1412.
- [41] G. Keresztury, S. Holly, J. Varga, G. Besenyei, A.Y. Wang, J.R. Durig, Spectrochim. Acta A 49 (1993) 2007.
- [42] D. Michalska, R. Wysokiński, Chem. Phys. Lett. 403 (2005) 211.
- [43] Y. Hamada, M. Tsuboi, K. Yamanouchi, K. Kuchitsu, J. Mol. Struct. 146 (1986) 253.