

ANÁLISIS NUMÉRICO

Ing. José Luis Artal Dra. Ana Nuñez Lic. Sergio Fuentes

INTERPOLACION INTRODUCCION. INTERPOLACION LINEAL

La interpolación es una de las formas de aproximación de funciones que permite obtener datos exactos, o aproximados con un cierto error, a partir de un conjunto discreto de puntos, o de una función mucho más compleja.

2. INTERPOLACION LINEAL:

Sea una función f(x) dada por una tabla $[(x_i,f(x_i),i=0,1,2,...,n]$ o por un conjunto de operaciones f(), se desea aproximar dicha función mediante una recta en el intervalo $[x_{i-1}, x_{i}]$, fig. 1. De este modo en el dominio total de la función, esta queda aproximada por una poligonal, fig. 2.

INTERPOLACION INTRODUCCION. INTERPOLACION I INFAI

El problema se reduce a encontrar la ecuación de la recta que pasa por dos puntos del plano, y estimar los valores de la función con los de dicha recta.

Datos

$$P_{i-1} (x_{i-1}, f(x_{i-1}))$$

$$P_i (x_i, f(x_i))$$

Incógnitas

Ecuación de la recta que pasa por P_{i-1} y P_i

Este es un problema resuelto por la Geometría Analítica.

$$y = m x + b \tag{1}$$

$$f(x_{i-1}) = m x_{i-1} + b$$
 (2)

$$f(x_i) = m x_i + b \tag{3}$$

De (1) y (3) restamos (2) para eliminar b

$$y - f(x_{i-1}) = m(x - x_{i-1})$$
 (4)

$$f(x_i) - f(x_{i-1}) = m(x_i - x_{i-1})$$
 (5)

Si efectuamos el cociente entre (4) y (5) es elimina m.

INTERPOLACION INTRODUCCION. INTERPOLACION LINEAL

$$\frac{y - f(x_{i-1})}{f(x_i) - f(x_{i-1})} = \frac{(x - x_{i-1})}{(x_i - x_{i-1})}$$

Reordenando:

$$y = f(x_{i-1}) + \frac{(x - x_i f_i)}{(x_i - x_{i-1})} \cdot (f(x_i) - f(x_{i-1}))$$

$$y = \frac{(x_{i}^{-x}_{i-1}) \cdot f(x_{i-1}) + (x - x_{i}) \cdot (f(x_{i}) - f(x_{i-1})}{(x_{i}^{-x}_{i-1})}$$

Simplificando y reordenando se obtiene:

$$y = \frac{(x_i-x).f(x_{i-1}) + (x - x_{i-1}).f(x_i)}{(x_i-x_{i-1})}$$
 Fórmula de Aitken

$$y = \frac{x_i - x}{x_i - x_{i-1}} f(x_{i-1}) + \frac{x - x_{i-1}}{x_i - x_{i-1}} f(x_i)$$
 Formula de Lagrange

Sea una función continua f(x) de la cual se tienen algunos valores ((x, f(x,)), i=0,1,2,..,n]. Se desea encontrar
un polinomio que aproxime la función f(x), ya sea porque la
misma es muy compleja en sus procedimientos de cálculo o
porque sencillamente no se la conoce y los valores son eximentales.

restag

$$[(x_1, f(x_1), i=1,2,...,n], x$$

Incognitua

P_n(x) polinomio de interpolación

El procedimiento para encontrar el polinomio de Interpoleción depende de las condiciones que se le exijan a P(x).

3. 1. Interpolación de Lagrange . . .

El polinomio de Lagrange se obtiene imponiendo la siguiente condición:

$$P(x) = f(x_1) \forall i / i=0,1,2,...,n$$

Concer el polinomio significa conocer los coeficientes del mismo. Coro estos son n+1 tendremos que plantear n+1 ecua-

sistema desarrollado será: $a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_n x_1^n = r(x_1) = P_0(x_1)$ $a_0 + a_1 x_1 + a_2 x_1^2 + ... + a_n x_1^n = r(x_1) = P_n(x_i)$ $a_0 + a_1 x_n + a_2 x_n^2 + \dots + a_n x_n^n = f(x_n) = P_{\gamma \gamma}(X_{\gamma \gamma})$ Si escribinos este sistema de ecuaciones en forma matricial

 $1 \mid x_n \mid x_n^2 \mid \dots \mid x_n^n \mid a_n$

La expresión queda en forma desarrollada :

$$\begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} 1_{00} & 1_{01} & 1_{02} & \dots & 1_{0n} \\ 1_{10} & 1_{11} & 1_{12} & \dots & 1_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1_{10} & 1_{11} & 1_{12} & \dots & 1_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1_{n0} & 1_{n1} & 1_{n2} & \dots & 1_{nn} \end{bmatrix} \begin{bmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix}$$

Recomplazando los valores a, del polinomio por los calculados tendremos:
$$P(x) = (1_{00}, f(x_0) + 1_{01}, f(x_1) + 1_{02}, f(x_2) + \dots + 1_{0n}, f(x_n)) + (1_{10}, f(x_0) + 1_{11}, f(x_1) + 1_{12}, f(x_2) + \dots + 1_{1n}, f(x_n)) \times T$$

$$(1_{10}, f(x_0) + 1_{11}, f(x_1) + 1_{12}, f(x_2) + \dots + 1_{1n}, f(x_n)) \times T$$

$$(1_{10}, f(x_0) + 1_{11}, f(x_1) + 1_{12}, f(x_2) + \dots + 1_{1n}, f(x_n)) \times T$$

$$+ (1_{n0}, f(x_0) + 1_{n1}, f(x_1) + 1_{n2}, f(x_2) + \dots + 1_{nn}, f(x_n)) \times T$$
 Se puede reagrupar la suma y escribir del siguiente modo:
$$P(x) = (1_{00} + 1_{10}, \frac{x}{1} + 1_{20}, \frac{x^2}{1} + \dots + 1_{n1}, \frac{x^n}{1}), f(x_1) + (1_{01} + 1_{11}, x + 1_{21}, x^2 + \dots + 1_{n1}, x^n), f(x_1) + (1_{01} + 1_{11}, x + 1_{21}, x^2 + \dots + 1_{n1}, x^n), f(x_1) + (1_{01} + 1_{11}, x + 1_{21}, x^2 + \dots + 1_{n1}, x^n), f(x_1) + (1_{01} + 1_{11}, x + 1_{21}, x^2 + \dots + 1_{n1}, x^n), f(x_1) + (1_{01} + 1_{11}, x + 1_{21}, x^2 + \dots + 1_{n1}, x^n), f(x_1) + (1_{01} + 1_{11}, x + 1_{21}, x^2 + \dots + 1_{n1}, x^n), f(x_n)$$

```
Si llamamos L. (x) (con i=0,1,...,n) a cada uno de los pollno
mlos entre parentesis tendremos:
  P(x) = L_0(x_0) \cdot f(x_0) + L_1(x) \cdot f(x_1) + ... + L_n(x) \cdot f(x_n)
Para que se cumpla la condición inicial: P(x_1) = I'(x_1),—b. necesariamente debe cumplirse:
   (L_1(x_1) = 1) y (L_k(x_1) = 0) \forall k / k \neq \tilde{1}) i...
Con lo qual se concluye que las absises de x_k de la tabla son ceros del polinomio L_k(x), excluyendo por supuesto x_i. Ejemplificando puede decifse que:
    L_0(x) tiens ceros en [x_1, x_2, \dots, x_1, \dots, x_n]
    L_1(x) there ceros en [ x_0, x_2, \dots, x_1, \dots, x_n ]
     Ly (x) tiens ceros on (x_1, x_1, x_2, \dots x_{j-1}, x_{j+1}, \dots x_{j-1})
```

Cuando se conocen los Ceros de en political este paede este ribirse en forma factoreada:

$$L_{1}'(x) = c. (x-x_{0})(x-x_{1})....(x-x_{i-1})(x-x_{i+1})....(x-x_{0})$$

$$L_{1}(x) = c. \text{ II}(x-x_{k}) \qquad \text{(ii/ i \neq k)} \qquad \text{(ii/ i \neq k)}$$

$$Además: \qquad L_{1}(x_{1}) = 1 = c. \frac{k=n}{k=0}(x-x_{k}) \qquad \text{(ii/ i \neq k)}$$

$$L_{1}(x) = \frac{L_{1}(x)}{1} = \frac{L_{1}(x)}{L_{1}(x_{1})} = \frac{d. \text{II}(x-x_{k})}{d. \text{II}(x-x_{k})}$$

$$L_{1}(x) = \frac{d. \text{II}(x-x_{k})}{d. \text{II}(x-x_{k})}$$

$$L_{1}(x) = \frac{d. \text{II}(x-x_{k})}{d. \text{II}(x-x_{k})}$$

$$L_{1}(x) = \frac{d. \text{II}(x-x_{k})}{d. \text{II}(x-x_{k})}$$

La expresión final para el polinomio P(x) será:

$$P(x) = \frac{\frac{k=n}{k=1} (x-x_{k})}{\frac{k=n}{k=1} (x_{0})} \cdot f(x_{0}) \cdot \frac{\frac{k=n}{k=0, k\neq 1}}{\frac{k=n}{k=0, k\neq 1}} \cdot f(x_{1}) + \dots \cdot \frac{\frac{k=n}{k=0} (x_{1}-x_{k})}{\frac{k=n}{k=0} (x_{1}-x_{k})} \cdot \frac{\frac{k=n-1}{k=0}}{\frac{k=n-1}{k=0}} f(x_{n})$$

$$P'(x) = \frac{\sum_{i=0}^{k \in M} \frac{e_i}{k! \cdot \sum_{i=0}^{k \in M} \frac{e_i}{k! \cdot \sum_{i=0}^{k! \cdot \sum_{i=0}^{k \in M} \frac{e_i}{k! \cdot \sum_{i=0}^{k \in M} \frac{e_i}{k! \cdot \sum_{i$$

Sea f una función definida en el intervalo [a,b] y supongamos que se conocen n+1 puntos $(x_0, f(x_0)), (x_1, f(x_1)), \cdots, (x_n, f(x_n))$ de su gráfica.

Llamaremos diferencia dividida de orden $0,1,\cdots,n$ de la función f a las expresiones que siguen:

$$f[x_{i}] = f(x_{i})$$

$$f[x_{i}, x_{j}] = \frac{f(x_{i}) - f(x_{j})}{x_{i} - x_{j}} \qquad (i \neq j)$$

$$f[x_{i}, x_{j}, x_{k}] = \frac{f[x_{i}, x_{j}] - f[x_{i}, x_{k}]}{x_{j} - x_{k}} \qquad (j \neq k)$$

$$\vdots \qquad (5.14)$$

$$f[x_0, x_1, \dots, x_n] = \frac{f[x_0, \dots, x_{n-1}] - f[x_0, \dots, x_{n-2}, x_n]}{x_{n-1} - x_n}$$

Usemos ahora (5.14) para obtener un desarrollo de f(x) en términos de diferencias divididas.

Cualquiera sea $x \in [a, b], x \neq x_i$ para i = 0, 1, ..., n tenemos:

$$f[x_0] = f(x_0)$$

$$f[x_0, x] = \frac{f(x_0) - f(x)}{x_0 - x} \quad \text{de donde}$$

$$f(x) = f[x_0] + (x - x_0)f[x_0, x]$$

$$f[x_0, x_1, x] = \frac{f[x_0, x_1] - f[x_0, x]}{x_1 - x} \quad \text{luego}$$

$$f[x_0, x] = f[x_0, x_1] + (x - x_1)f[x_0, x_1, x]$$

y, por lo anterior,

$$f(x) = f[x_0] + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x]$$

Siguiendo el proceso, establecemos

$$f(x) = f[x_0] + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2] + \cdots$$

$$\cdots + (x - x_0)\cdots(x - x_{n-1})f[x_0, \cdots, x_n]$$

$$+ (x - x_0)\cdots(x - x_n)f[x_0, \cdots, x_n, x]$$
(5.17)

De este resultado se deduce que si $f(x) = p_q(x)$, un polinomio de grado q, entonces las diferencias divididas de orden mayor o igual que q + 1 son todas nulas.

En efecto,

$$p_q(x) = p_q(x_0) + \dots + (x - x_0) \dots (x - x_q) f[x_0, \dots, x_q, x]$$

$$p_n(x) = f[x_0] + (x - x_0) f[x_0, x_1] + (x - x_0) (x - x_1) f[x_0, x_1, x_2] + \dots +$$

$$\dots + (x - x_0) \dots (x - x_{n-1}) f[x_0, \dots, x_n]$$

donde los xi son distintos entre sí e intervienen en un orden arbitrario.

De (5.13) y (5.17) se obtiene una expresión para la cota del error de interpol

$$|\varepsilon(x)| \le \frac{|(x-x_0)\cdots(x-x_n)|}{(n+1)!}M$$
, $x \in I_x = K\{x_0,\cdots,x_n,x\},$

donde $|f^{(n+1)}(t)| \le M$, $t \in I_x$.

x_i	0	1	3	4
F(r.)	1	-1	13	41

construyamos el polinomio de interpolación de f, con diferencias divididas.

Para escribir $p_3(x)$ se requiere conocer las diferencias divididas de f. En la tabla que sigue usamos la notación $\hat{\Delta}^{(k)}f$ para la diferencia dividida de orden k.

x_i	y_i	Δf	$\hat{\Delta}^{(2)}f$	$\tilde{\Delta}^{(3)}f$	$\hat{\Delta}^{(4)}f$
0 '	1				
		-2			
1	-1		3		
		7		1	
3	13		7		-8
		28	~	-15	
4	41		-8		
		36			
2	-31				

se tiene

$$p_3(x) = 1 - 2x + 3x(x-1) + x(x-1)(x-3) +$$

Si a la tabla agregamos un nuevo dato, por ejemplo el punto (2,-31), podemos extender la tabla de diferencias.

Podemos ahora escribir el polinomio $p_4(x)$ que interpola a f con la tabla extendida:

$$p_4(x) = 1 - 2x + 3x(x-1) + x(x-1)(x-3) - 8x(x-1)(x-3)(x-4).$$

Si consideramos ahora que los datos $(x_i, f(x_i))$ son tales que $x_{i+1} - x_i = h$, para todo $i = 0, 1, \dots, n-1$, se tiene

$$f[x_i, x_{i+1}] = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} = \frac{\Delta f(x_i)}{h}$$

dende $\Delta f(x_i) = f(x_{i+1}) - f(x_i)$, para todo i = 0, 1, ..., n-1.

$$f[x_i,x_{i+1},x_{i+2}] = \frac{f[x_{i-1},x_{i+2}] - f[x_i,x_{i+1}]}{x_{i+2}-x_i} = \frac{\Delta f(x_{i+1}) - \Delta f(x_i)}{2h^2} = \frac{\Delta^2 f(x_i)}{2h^2},$$

ende
$$\Delta^2 f(x_i) = \Delta f(x_{i-1}) - \Delta f(x_i)$$
 para $i = 0, 1, \dots, n-2$.

Siguiendo este cálculo tenemos

$$f[x_0, x_1, \cdots, x_n] = \frac{\Delta^{(n)} f(x_i)}{n! H^n},$$

para i = 0, siendo

$$\Delta^{(n)} f(x_i) = \Delta^{(n-1)} f(x_{i+1}) - \Delta^{(n-1)} f(x_i).$$

es decir,
$$f[x_0, x_1, \dots, x_n] = \frac{\Delta^{(n)} f(x_0)}{n!h^n}$$
, donde $\Delta^{(n)} f(x_0) = \Delta^{(n-1)} f(x_1) - \Delta^{(n-1)} f(x_0)$.

De esta manera, podemos escribir el polinomio de interpolación de f introduciendo estas nuevas diferencias $\Delta^{(k)}f(x_i)$, llamadas diferencias no divididas, en la expresión (5.20):

$$p_n(x) = f(x_0) + (x - x_0) \frac{\Delta f(x_0)}{h} + (x - x_0)(x - x_1) \frac{\Delta^2 f(x_0)}{2h^2} + \dots + \frac{(x - x_0) \cdots (x - x_{n-1})}{n!h^n} \Delta^{(n)} f(x_0)$$
(5.22)

Esta forma de escribir $p_n(x)$ se conoce como fórmula de Newton progresiva y las diferencias $\Delta^{(k)} f(x_i)$ que intervienen se denominan diferencias no divididas de orden k.

Se conoce también la fórmula de Newton regresiva para $p_n(x)$ y es la

$$p_n(x) = f(x_n) - (x - x_n) \frac{\nabla f(x_n)}{h} + (x - x_n)(x - x_{n-1}) \frac{\nabla^2 f(x_n)}{2h^2} + \dots + \frac{(x - x_n) \cdots (x - x_1)}{n!h^n} \nabla^{(n)} f(x_n)$$

donde

$$\nabla f(x_i) = f(x_i) - f(x_{i-1})$$
; $i = n, n-1, \dots, 1$
 $\nabla^2 f(x_i) = \nabla f(x_i) - \nabla f(x_{i-1})$; $i = n, n-1, \dots, 2$

$$\nabla^{(n)} f(x_i) = \nabla^{(n-1)} f(x_i) - \nabla^{(n-1)} f(x_{i-1})$$
; $i = n$

x.	0	2	4	6	8	10
$f(x_i)$	7	13	43	145	350	700

escribamos la fórmula progresiva del polinomio de interpolación $p_5(x)$.

Construyamos la tabla de diferencias no divididas de f.

x_i	3/4	Δf	$\Delta^2 f$	$\Delta^3 f$	$\Delta^4 f$	$\Delta^5 f$
0	7					
	1	6				
2	13		24			
		30		48		
4	43		72		-17	
		102		31		28
6	145		103		11	
		205		42		
8	350		145			
		350				
10	700					

El valor de h es 2 y, de (5.22), se tiene

$$p_5(x) = 7 + 3x + 3x(x-2) + x(x-2)(x-4) - \frac{17}{384}x(x-2)(x-4)(x-6) + \frac{7}{960}x(x-2)(x-4)(x-6)(x-8)$$

MUCHAS GRACIAS

Jose.artal@um.edu.ar