(5)如图,把△ABC纸片沿DE折叠,当点A落 在四边形BCDE内部时,则 $\angle A$ 与 $\angle 1+\angle 2$ 之间有一种数量关系始终保持不变,你发 现的规律是()

 $E A. \angle A = \angle 1 + \angle 2$

B. $2\angle A = \angle 1 + \angle 2$ C. $3\angle A = 2\angle 1 + \angle 2$ D. $3\angle A = 2(\angle 1 + \angle 2)$

Example 108: As shown in Figure 1, fold the \triangle ABC sheet along DE, when point A falls inside the quadrilateral BCDE , explore the quantitative relationship between $\angle 1$ + $\angle 2$ and $\angle A$.

Traditional proof: in \triangle ADE, \angle A =180° - \angle ADE - \angle AED, from the properties of folding: \angle 1+2 \angle ADE = $180\,^{\circ}$, \angle 2+2 \angle AED = $180\,^{\circ}$, Then $\angle 1+\angle 2=360^{\circ}-2\angle ADE-2\angle AED=2(180^{\circ}-\angle ADE-\angle AED)=2\angle A$.

$$\frac{E-A}{E-B}\frac{D-C}{D-A} = \frac{D-C}{E-B}\frac{A-E}{A-D}$$

tautological value