An evaluation of score-informed methods for estimating fundamental frequency and power from polyphonic audio

Johanna Devaney (The Ohio State University) Michael Mandel (Brooklyn College, CUNY)

Introduction Motivations and Background	1
Evaluated Approaches fo and Power	2
Experiment Materials and Results	3
Conclusions Future Directions and Summary	4

Motivation

Automatically extracting musical performance data

- Robust extraction of performance data from polyphonic musical performances requires precise frame-level estimation of fundamental frequency (f₀) and power
 - pitch- and dynamic-deviations in expressive musical performance
- Currently blind f0 estimation has an ~70% accuracy ceiling (Benetos et. al. 2013)

Note-wise f_0 estimations

Note-wise power estimations

Introduction Motivations and Background	1
Evaluated Approaches fo and Power	2
Experiment Materials and Results	3
Conclusions Future Directions and Summary	4

General approach

- Aligned score indicates time-frequency regions of interest
- For each region, we calculated frequency and magnitude estimates using one of
 - discrete Fourier transform (DFT)
 - instantaneous frequency (IF)
 - high resolution spectral analysis (HR)
 - high resolution spectral analysis with comb filtering at harmonics of initial f_0 estimate (HR-C)

General approach

- DFT: 64 ms window size and 16 ms hop size
- IF: derivative of phase spectrum of DFT
 - Abe, Kobayashi, and Imai (1995, 1997)
- HR: estimate mixtures of complex exponentials modulated by polynomials using ESPRIT algorithm
 - Badeau, Richard, and David (2008)

General approach

f₀ estimates calculated with a weighted sum

magnitude measurements of set of frequencies

The process is repeated 10 times in order to refine f_0 estimate

DFT, IF, and HR

$$\hat{f}_0 = \frac{\sum_n \sum_{\omega_i \in \mathcal{N}(nf_0)} \frac{\omega_i}{n} x(\omega_i)}{\sum_n \sum_{\omega_i \in \mathcal{N}(nf_0)} x(\omega_i)}$$

	$x(\omega_i)$	ω_i	$\mathcal{N}(nf_0)$
DFT	cube roots of the DFT magnitudes	uniformly spaced between DC and Nyquist (plus interpolation from weighted sum)	two DFT bins, below and above the predicted frequency (27 Hz)
IF	cube roots of the DFT magnitudes	frequency values estimated from the time derivative of the phase spectrum	estimated frequency within 27 Hz
HR	the cube root of the amplitude of each modulated complex exponential	the frequency of each modulated complex exponential	estimated frequency within 40 Hz

High Resolution + Comb Filter

Bank of zero-delay, constant-Q, one-zero gammatone filters (Lyon 2010)

Power estimates

- The power estimates were derived from the same data as the f_0 estimates
 - with squared magnitudes used instead of cube root magnitudes
- For each estimated f₀, the power was estimated as

$$\hat{p}(f_0) = \sum_{n} \sum_{\omega_i \in \mathcal{N}(nf_0)} \tilde{x}(\omega_i)$$

Introduction Motivations and Background	1
Evaluated Approaches fo and Power	2
Experiment Materials and Results	3

Experiment

Materials

Two multi-tracked datasets

- Bach 10 dataset: violin, clarinet, saxophone and bassoon (Duan, Pardo and Zhang 2010)
- Machaut "Kyrie" dataset: soprano, alto, tenor, and bass (Devaney and Ellis 2008)

Hand annotated note boundaries were used

 Further refined by removing any leading or trailing sections that had a pYIN (Mauch and Dixon, 2014) periodicity estimate of less than 95%

Experiment

Materials

- Signals were convolved with three impulse responses from a room with an RT60 reverberation time of 1.4 sec resulting in four sets of recordings
 - Original anechoic
 - Reverberant with microphone 3.6 meters away
 - Reverberant with microphone 7.7 meters away
 - Reverberant with microphone 11 meters away

Experiment

Ground Truth

- Ground truth was calculated from monophonic tracks using the pYIN algorithm (Mauch and Dixon, 2014)
- Error was calculated in cents (or db) between the estimates and the ground truth across each note

$$E = \sqrt{\sum_{n} \left(\hat{f}_0(n) - f_0(n)\right)^2}$$

 f_0 estimates on an 3.6s reverberant recording

 f_0 estimates on an 3.6ms reverberant recording

Power, entire notes

Power estimates on an 3.6ms reverb. recording

High-Res
High-Res+Comb
Instantaneous Freq.
Disc. Fourier Trans.
pYIN (mono)

Introduction Motivations and Background	1
Evaluated Approaches fo and Power	2
Experiment Materials and Results	3
Conclusions Future Directions and Summary	4

Summary

- Simple and accurate score-guided f0 and power estimation method
- Instantaneous frequency features performed best in terms of accuracy, capturing framewise variation (e.g., vibrato), and computational cost
- f₀ estimates, in particular, shown to be robust to reverberation

Future Directions

- Improve power estimates
 - Add a de-reverberation step
- Move from frame-wise measurements to note-wise estimates informed by perceptual models
 - relatively straightforward in the case of perceived pitch
 - more complicated for perceived loudness
 - much more so for timbre
- Investigate alternatives to using pYIN to generate ground truth, such as synthesized tracks using high-quality models

Acknowledgements

Thank you