A Few Notes on Algebraic Structures (WIP)

David Meyer

 $dmm@\{1\text{-}4\text{-}5.net, uoregon.edu\}$

Last update: December 19, 2020

1 Introduction

Structure	ABO^1	Identity	Inverse	${\bf Distributive}^2$	Commutative ³	Comments
Semigroup	✓	no	no	N/A	no	(S, \circ)
Monoid	✓	✓	no	N/A	no	Semigroup plus idenity $\in S$
Group	✓	✓	✓	N/A	no	Monoid plus inverse $\in S$
Abelian Group	✓	✓	✓	N/A	✓	Commutative group
Ring_{+}	✓	✓	✓	√	✓	Abelian group under +
Ring_*	✓	✓	no	✓	no	Monoid under *
$Field_{(+,*)}$	✓	√ (+,*)	√ (+,*)	✓	✓	Abelian group under $+$ and $*$
Vector Space	✓	√ (+,*)	√ (+)	\checkmark	✓	Abelian group under +

Table 1: A Few Algebraic Structures and Their Features

Abbreviations:

- 1. **ABO:** Associative Binary Operation
 - $(x \circ y) \circ z = x \circ (y \circ z)$ for all $x, y, z \in S$
 - $x \circ y \in S$ (closure under \circ)
- 2. **Distributive:** Distributive Property
 - Left Distributive Property: x*(y+z)=(x*y)+(x*z) for all $x,y,z\in S$
 - Right Distributive Property: (y+z)*x = (y*x) + (z*x) for all $x,y,z \in S$
 - \bullet * is distributive over + if * is left and right distributive
- 3. Commutative: Commutative Property

• $x \circ y = y \circ x$ for all $x, y \in S$

Notes:

- \bullet Table 1 implies that $F\subset R\subset G\subset M\subset SG$
- $\bullet~VS\subset G_+~({\rm vector~spaces~are~Abelian~groups~under}~+)$
- \bullet F \subset VS since the field axioms require a multiplicative inverse (a^{-1}) while vector spaces do not

2 Acknowledgements