Table 1: Recursively-parsable LL(1) grammar for arithmetic expressions

				Predict
(1)	$\langle E \rangle$	\rightarrow	$< T > < T_T >$	(,+,-, var, num, func
(2)	$\langle T_T \rangle$	\rightarrow	$+ <\!\! T\!\! > <\!\! T_T\!\! >$	+
(3)	$\langle T_T \rangle$	\rightarrow	$-<\!T\!><\!T_T\!>$	_
(4)	$< T_T >$	\rightarrow	ϵ), EOF
(5)	< T >	\rightarrow	$<\!\!F\!\!><\!\!F_T\!\!>$	$\mid (, +, \texttt{-}, \mathtt{var}, \mathtt{num}, \mathtt{func} \mid$
(6)	< F $>$	\rightarrow	< N >	$+$, -, \mathtt{num}
(7)	< F $>$	\rightarrow	$(<\!E\!>)$	(
(8)	< F $>$	\rightarrow	var	var
(9)	< F >	\rightarrow	$\mathtt{func}{<}F{>}$	func
(10)	$< F_T >$	\rightarrow	$*< F> < F_T>$	*
(11)	$< F_T >$	\rightarrow	$/<\!\!F\!\!><\!\!F_T\!\!>$	/
(12)	$< F_T >$	\rightarrow	$^{\sim} < F > < F_T >$	^
(13)	$< F_T >$	\rightarrow	$\verb"func" <\!\!F\!\!><\!\!F_T\!\!>$	func
(13)	$< F_T >$	\rightarrow	ϵ	+, -,), EOF
(14)	< N >	\rightarrow	num	num
(15)	< N >	\rightarrow	$+\mathtt{num}$	+
(16)	< N >	\rightarrow	$-\mathtt{num}$	-

- \bullet num denotes anything returned as a number from the scanner, e.g. 10.203, .105, 11., 212, 10.1E-15
- \bullet func includes any of $\sin,\cos,\tan,\cot,\csc,\sec,\lg,\ln,\log,\exp$
- When applying rule (13), implicitly insert a multiplication operator * before func.