Ray Tracing

Ray tracing idea

Ray tracing algorithm

Generating eye rays

Use window analogy directly

Generating eye rays

ORTHOGRAPHIC

PERSPECTIVE

Generating eye rays—orthographic

Just need to compute the view plane point s

But where exactly is the view rectangle?

Generating eye rays—orthographic

Generating eye rays—perspective

- View rectangle needs to be away from viewpoint
- Distance is important: "focal length" of camera
 - still use camera frame but position view rectangle away from viewpoint
 - ray origin always e
 - ray direction now controlled by s

Generating eye rays—perspective

- Compute $\bf s$ in the same way; just subtract $d{\bf w}$
 - coordinates of **s** are (u, v, -d)

Pixel-to-image mapping

• One last detail: (u, v) coordinates of a pixel

Pixel-to-image mapping

• One last detail: (u, v) coordinates of a pixel

$$u = l + (r - l)(i + 0.5)/n_{x}$$
$$v = b + (t - b)(j + 0.5)/n_{y}$$

Generating eye rays – camera specification

Given

- Field of view in y direction,
- eye point, look at, up direction
- Image resolution $n_x \times n_y$
- How do you generate eye rays?
 - Do you need to compute a viewing transformation matrix?
 - Do you need to invert a matrix?
 - What is the aspect ratio of the image?
 - What is the left right top and bottom?
 - If the focal length is unspecified, what should d be?

Ray intersection

Ray: a half line

- Standard representation: point \mathbf{p} and direction \mathbf{d} $\mathbf{r}(t) = \mathbf{p} + t\mathbf{d}$
 - this is a parametric equation for the line
 - lets us directly generate the points on the line
 - if we restrict to t > 0 then we have a ray
 - note replacing **d** with a**d** doesn't change ray (a > 0)

Ray-sphere intersection: algebraic

Condition 1: point is on ray

$$\mathbf{r}(t) = \mathbf{p} + t\mathbf{d}$$

- Condition 2: point is on sphere
 - assume unit sphere; see Shirley or notes for general

$$||\mathbf{x}|| = 1 \iff ||\mathbf{x}||^2 = 1$$
$$f(\mathbf{x}) = \mathbf{x} \cdot \mathbf{x} - 1 = 0$$

Substitute:

$$(\mathbf{p} + t\mathbf{d}) \cdot (\mathbf{p} + t\mathbf{d}) - 1 = 0$$

• this is a quadratic equation in t

Ray-sphere intersection: algebraic

Solution for t by quadratic formula:

$$t = \frac{-\mathbf{d} \cdot \mathbf{p} \pm \sqrt{(\mathbf{d} \cdot \mathbf{p})^2 - (\mathbf{d} \cdot \mathbf{d})(\mathbf{p} \cdot \mathbf{p} - 1)}}{\mathbf{d} \cdot \mathbf{d}}$$

16

What can you do with Spheres? (ASIDE)

Physically based rendering with 100 lines of code http://www.kevinbeason.com/smallpt/


```
#include <stdlib.h> // Make : a++ -03 -fopenmp smallpt.cpp -o smallpt
#include <stdio.h> // Remove "-fopenmp" for g++ version < 4.2
  double dot(const Vec &b) const { return x*b,x+y*b,y+z*b,z; } // cross
   //ec operator%(Vec&b)(return Vec(y*b.z-z*b.y,z*b.x-x*b.z,x*b.y-y*b.x);)
enum Refl_t { DIFF, SPEC, REFR }; // material types, used in radiance(
   double t, eps=le-4, b=op.dot(r.d), det=b*b-op.dot(op)+rad*rad;
   if (detc0) return 0: else det=sort(det):
   return (t=b-det)>eps ? t : ((t=b+det)>eps ? t : 0);
  Sphere(le5, Vec( le5+1,40.8,81.6), Vec(), Vec(.75,.25,.25), DIFF),//Lef
  Sphere(le5, Vec(-le5+99,40.8,81.6),Vec(),Vec(.25,.25,.75),DIFF),//Rghi
  Sphere (16.5, Vec (73, 16.5, 78),
                                   Vec(), Vec(1,1,1)*.999, REFR),//Glas
  Sphere (600, Vec (50,681.6-.27,81.6), Vec (12,12,12), Vec (), DIFF) //Lite
inline double clamp(double x) { return x<0 ? 0 : x>1 ? 1 : x; }
inline int toInt(double x){ return int(pow(clamp(x),1/2.2)*255+.5); }
inline bool intersect (const Ray ar, double at, int aid) {
  double n=sizeof(spheres)/sizeof(Sphere), d, inf=t=le20;
 for(int i=int(n);i--;) if((d=spheres[i].intersect(r))&&d<t){t=d;id=i;}</pre>
```

```
if (!intersect(r, t, id)) return Vec(); // if miss, return black
  const Sphere &obi = spheres[id]: // the hit object
  Wec x=r.o+r.d*t, n=(x-obj.p).norm(), nl=n.dot(r.d)<0?n:n*-1, f=obj.c;</pre>
   ouble p = f.x>f.y && f.x>f.z ? f.x : f.y>f.z ? f.y : f.z; // max refl
 if (++depth>5) if (erand48(Xi)<p) f=f*(1/p); else return obj.e; //R.R.
 if (obj.refl == DIFF){
   double rl=2*M PI*erand48(Xi), r2=erand48(Xi), r2s=sqrt(r2);
   Vec w=nl, u=((fabs(w.x)>.1?Vec(0,1):Vec(1))%w).norm(), v=w%u;
   Vec d = (u*cos(r1)*r2s + v*sin(r1)*r2s + w*sqrt(1-r2)).norm();
   Ray reflRay(x, r.d-n*2*n.dot(r.d)); // Ideal dielectric REFRACTION
    ol into = n.dot(nl)>0;
   ouble nc=1, nt=1.5, nnt=into?nc/nt:nt/nc, ddn=r.d.dot(nl), cos2t;
  if ((cos2t=1-nnt*nnt*(1-ddn*ddn))<0) // Total internal reflection</pre>
   return obj.e + f.mult(radiance(reflRay,depth,Xi));
   ec tdir = (r.d*nnt - n*((into?1:-1)*(ddn*nnt+sqrt(cos2t)))).norm();
   ouble a=nt-nc, b=nt+nc, R0=a*a/(b*b), c = 1-(into?-ddn:tdir.dot(n));
   ouble Re=R0+(1-R0)*c*c*c*c*c,Tr=1-Re,P=.25+.5*Re,RP=Re/P,TP=Tr/(1-P);
  return obj.e + f.mult(depth>2 ? (erand48(Xi)<P ? // Russian roulette
   radiance(reflRay,depth,Xi)*RP:radiance(Ray(x,tdir),depth,Xi)*TP) :
   radiance(reflRay,depth,Xi)*Re+radiance(Ray(x,tdir),depth,Xi)*Tr);
int main(int argc, char *argv[]) {
 int w=1024, h=768, samps = argc==2 ? atoi(argv[1])/4 : 1; // # samples
  Vec cx=Vec(w*.5135/h), cy=(cx%cam.d).norm()*.5135, r, *c=new Vec[w*h];
  ragma omp parallel for schedule(dynamic, 1) private(r) // OpenMP
  for (int y=0; y<h; y++) {
   fprintf(stderr,"\rRendering (%d spp) %5.2f%%",samps*4,100.*y/(h-1));
   for (unsigned short x=0, Xi[3]=(0,0,y*y*y); x<w; x++) // Loop cols
     for (int sy=0, i=(h-y-1)*w+x; sy<2; sy++) // 2x2 subpixel rows
           double r2=2*erand48(Xi), dy=r2<1 ? sqrt(r2)-1: 1-sqrt(2-r2);
           Vec d = cx^{\pm}(((sx+.5 + dx)/2 + x)/w - .5) +
                  cy*((sy+.5 + dy)/2 + y)/h - .5) + cam.d;
           r = r + radiance(Ray(cam.o+d*140,d.norm()),0,Xi)*(1./samps);
         \texttt{c[i]} = \texttt{c[i]} + \texttt{Vec(clamp(r.x),clamp(r.y),clamp(r.z))*.25};
FILE *f = fopen("image.ppm", "w");
fprintf(f, "P3\n*d mdage.pd", Output
for (int i=0; i<w*i, mdage.pd", Output
```

Global Illumination (ASIDE)

- Where does the light come from?
- Can still solve this problem for special cases, or with careful sampling, in both object-order and image-order implementations

Global Illumination (ASIDE)

- Light can bounce off walls to illuminate different surfaces
 - Red reflected light illuminates left side of left object
 - Green reflected light illuminates right side of cube on the right

 At right: which is a photo, and which is a rendering?

Subsurface Scattering (ASIDE)

- The full problem is even more complex!!!
 - Light is *everywhere* and can even be *scattered beneath* the surface of materials
 - Devising a global illumination method that is fast and that correctly models all *light transport* is the ultimate problem in rendering.

McGill COMP557 [spin99, GELATO]

Ray-box intersection

- Could intersect with 6 faces individually
- Better way: box is the intersection of 3 slabs

Ray-slab intersection

- 2D example
- 3D is the same!

$$p_x + t_{x\min} d_x = x_{\min}$$
$$t_{x\min} = (x_{\min} - p_x)/d_x$$

$$p_y + t_{y\min} d_y = y_{\min}$$
$$t_{y\min} = (y_{\min} - p_y)/d_y$$

Compute *t* values where ray crosses each plane

What if $d_x = 0$? Intersection everywhere if $p_x \in [x_{\min}, x_{\max}]$, otherwise no intersection

Intersecting intersections

Each intersection is an interval

$$t_{xlow} = \min(t_{xmin}, t_{xmax})$$

 $t_{xhigh} = \max(t_{xmin}, t_{xmax})$

 Want last entry point and first exit point

$$t_{min} = \max(t_{xlow}, t_{ylow})$$

$$t_{max} = \min(t_{xhigh}, t_{yhigh})$$

• If $t_{max} < t_{min}$ then empty interval, i.e., no intersection

Ray-triangle intersection

Condition 1: point is on ray

$$\mathbf{r}(t) = \mathbf{p} + t\mathbf{d}$$

Condition 2: point is on plane

$$(\mathbf{x} - \mathbf{a}) \cdot \mathbf{n} = 0$$

- Condition 3: point is on the inside of all three edges
- First solve 1 and 2 (ray-plane intersection)
 - substitute and solve for t

$$(\mathbf{p} + t\mathbf{d} - \mathbf{a}) \cdot \mathbf{n} = 0 \iff t = \frac{(\mathbf{a} - \mathbf{p}) \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}}$$

Ray-triangle intersection

• In plane, the triangle is the intersection of 3 half spaces

Inside-edge test

- Need outside vs. inside
- Reduce to clockwise vs. counterclockwise
 - Vector of edge to vector to x
- Use cross product to decide

Ray-triangle intersection

$$(b-a) \times (x-a) \cdot n > 0$$
$$(c-b) \times (x-b) \cdot n > 0$$
$$(a-c) \times (x-c) \cdot n > 0$$

- Can see this as a step toward computing barycentric coordinates (useful as texture coordinates)
- Can also use a similar inside/outside test on non-convex n-gons, by computing the winding number (see CGPP 7.10)

Image so far

With eye ray generation and sphere intersection

```
Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);
for 0 <= iy < ny {
   for 0 <= ix < nx {
      ray = camera.getRay(ix, iy);
      hitSurface, t = s.intersect(ray, 0, +inf)
      if hitSurface is not null {
            image.set(ix, iy, white);
      }
   }
}</pre>
```


Intersection against many shapes

```
Group.intersect (ray, tMin, tMax) {
    tBest = +inf; firstSurface = null;
    for surface in surfaceList {
        hitSurface, t = surface.intersect(ray, tMin, tBest);
        if hitSurface is not null {
            tBest = t;
            firstSurface = hitSurface;
        }
    }
    return hitSurface, tBest;
}
```

Image so far

With eye ray generation and scene intersection

```
for 0 \le iy \le ny
    for 0 \le ix \le nx {
        ray = camera.getRay(ix, iy);
        c = scene.trace(ray, 0, +inf);
        image.set(ix, iy, c);
Scene.trace(ray, tMin, tMax) {
    surface, t = surfs.intersect(ray, tMin, tMax);
    if (surface != null) return surface.color();
    else return black;
```


Shading

- Compute light reflected toward camera
- Inputs:
 - eye direction
 - light direction (for each of many lights)
 - surface normal
 - surface parameters (color, shininess, ...)
 - Exact same equations as seen previously...

Shadows

- The surface is only illuminated if nothing blocks its view of the light.
- With ray tracing it is easy to check
 - just intersect a ray with the scene!

Image so far

```
Surface.shade(ray, point, normal, light) {
    shadRay = (point, light.pos - point);
    if (shadRay not blocked) {
        v = -normalize(ray.direction);
        l = normalize(light.pos - point);
        // compute shading
    }
    return black;
}
```


Shadow rounding errors

- Don't fall victim to one of the classic blunders:
- What's going on?
 - hint: at what t does the shadow ray intersect the surface you're shading?

Shadow rounding errors

- Solution: shadow rays start a tiny distance from the surfac
- Do this by moving the start point, or by limiting the *t* range

Mirror reflection

- Consider perfectly shiny surface
 - There isn't a highlight (i.e., no L_s)
 - Instead there's a reflection of other objects
- Can render this using recursive ray tracing
 - To find out mirror reflection color, ask what color is seen from surface point in reflection direction
 - Already computing reflection direction for Phong?
- "Glazed" material has mirror reflection and diffuse

$$L = L_a + L_d + L_m$$

• Here L_m is evaluated by tracing a new ray

Mirror reflection

- Intensity depends on view direction
 - Reflects incident light from mirror direction

$$\mathbf{r} = \mathbf{v} + 2((\mathbf{n} \cdot \mathbf{v})\mathbf{n} - \mathbf{v})$$
$$= 2(\mathbf{n} \cdot \mathbf{v})\mathbf{n} - \mathbf{v}$$

$$\mathbf{r} = \mathbf{v} + 2(\mathbf{n}(\mathbf{n}^T \mathbf{v}) - \mathbf{v})$$

$$= 2(\mathbf{n}\mathbf{n}^T)\mathbf{v} - \mathbf{v}$$

$$= (2\mathbf{n}\mathbf{n}^T - I)\mathbf{v}$$

Diffuse + mirror reflection (glazed)

(glazed material on floor)

Ray tracer architecture 101

- You want a class called Ray
 - point and direction; evaluate(t)
 - possible: tMin, tMax
- Some things can be intersected with rays
 - individual surfaces
 - groups of surfaces (acceleration goes here)
 - the whole scene
 - make these all subclasses of Surface
 - limit the range of valid t values (e.g. shadow rays)
- Once you have the visible intersection, compute the color
 - may want to separate shading code from geometry
 - separate class: Material (each Surface holds a reference to one)
 - its job is to compute the color

McGill COMP557

40

Architectural practicalities

Return values

- Surface intersection tends to want to return multiple values
 - Scalar t, surface or shader, normal vector, maybe surface point
- Typical solution: an intersection record
 - A class with fields for all these things
 - Keep track of the intersection record for the closest intersection

Efficiency

- In Java to be fast one should minimize creation of objects
- What objects are created for every ray? Try to find a place for them where you can reuse them
- Shadow rays can be cheaper (any intersection that blocks the light will do, don't need closest)
- But: "First Get it Right, Then Make it Fast"

Debugging strategies

- Test with small images
- Set breakpoints!!!
 - E.g., conditional on a specific pixel
- Make sure your rays are in the correct direction
 - For example, is the ray for the center of the image what you expect it to be?
- Watch out for other common mistakes...

McGill COMP557

42

Quadrics

http://en.wikipedia.org/wiki/Quadric

Quadrics

• In non-homogeneous coordinates we can write

$$[x \ y \ z] A \begin{bmatrix} x \\ y \\ z \end{bmatrix} - 2\mathbf{b}^T \begin{bmatrix} x \\ y \\ z \end{bmatrix} + c = 0 \qquad A \in \mathbb{R}^{3 \times 3} \quad \mathbf{b} \in \mathbb{R}^3 \quad c \in \mathbb{R}$$

• In homogeneous coordinates, use $Q \in \mathbb{R}^{4 \times 4}$ matrix

$$Q = \begin{bmatrix} A & -\mathbf{b} \\ -\mathbf{b}^T & c \end{bmatrix} \qquad \mathbf{x}^T Q \mathbf{x} = 0 \qquad \mathbf{x} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \mathbf{r}(t) = \mathbf{p} + t\mathbf{d}$$

- Solution is same as ray sphere intersection.
 - Replace x with ray equation, expand, solve for t
 - Given intersection point x, what is the normal? $\nabla F(x) = 2Ax 2\mathbf{b}^T$

Review and More Information

- CGPP 15.4 ray tracing in general
- CGPP 14.5.2 ray tracing implicit surfaces
- Ray-Triangle intersection, see also FCG Section 4.4.2 for method based on linear systems and Cramer's rule, but see also Section 2.7 with respect to barycentric coordinates