Existence of Solutions to Non-Compact Dynamic Optimization Problems

September 28, 2017

Objective

Present and prove theorem on existence of solutions to a **reduced form** dynamic optimisation problem when feasibility correspondences have **non-compact** image sets and pay-offs are **bounded below**

Main application and motivation: optimal policies in incomplete market models with heterogeneity **Preliminaries**

Semicontinuity

Definition. A function $f: X \to \mathbb{R} \cup \{-\infty, +\infty\}$ is sequentially **upper semi-continuous** if the upper contour sets

$$UC_f(\epsilon)$$
: $= \{x \in X \mid f(x) \ge \epsilon\}$

are sequentially closed for all $\epsilon \in \mathbb{R}$.

Sup-Compactness

Let *D* be a subset of $\mathbb{R} \cup \{-\infty, +\infty\}$

Definition. A function $f: X \to D$ is **sup-compact** if the sets $UC_f(\epsilon)$ are sequentially compact for all $\epsilon \in \mathbb{R}$

If X is not compact and D is bounded below, then f cannot be sup-compact

Definition. A function $f: X \to D$ is **mildly sup-compact** if the sets $UC_f(\epsilon)$ are sequentially compact for all $\epsilon > \inf f$

Mildly Sup-Compact

Sup-Compact

Correspondences

Let (X, τ) and (Y, τ') be topological spaces. A correspondence from a space X to Y is a set valued function denoted by $\Gamma: X \twoheadrightarrow Y$.

The image of a subset A of X under the correspondence Γ will be the set

$$\Gamma(A)$$
: = $\{y \in Y | y \in \Gamma(x) \text{ for some } x \in A\}$

A correspondence will be called **compact valued** if $\Gamma(x)$ is compact for $x \in X$.

Correspondences

The correspondence Γ is **upper hemi-continuous** if for every x and neighbourhood U of $\Gamma(x)$, there is a neighbourhood V of x such that $z \in V$ implies $\Gamma(z) \subset U$

Upper hemicontinuous correspondences need not be compact valued or have closed graph. Closed graph correspondences also need not be upper hemi-continuous (see Aliprantis and Border (2006), ch. 17). However,

Lemma. If $\Gamma: X \to Y$ is upper hemicontinuous and compact valued, then for $C \subset X$ such that C is compact, $\Gamma(C)$ is compact.

See Lemma 17.8 by Aliprantis and Border (2006)) for a proof

A non-stationary reduced form economy is a 5-tuple

$$\mathscr{E}: = ((\mathbb{X}, \tau), (\mathbb{S}_t)_{t=0}^{\infty}, (\Gamma_t)_{t=0}^{\infty}, (\rho_t)_{t=0}^{\infty}, \beta)$$
 (1)

consisting of:

- lacksquare A topological space (\mathbb{X}, au)
- lacktriangle A collection of state-spaces $\overline{(\mathbb{S}_t)_{t=0}^\infty}$, with $\mathbb{S}_t\subset\mathbb{X}$ for each t
- A collection of non-empty feasibility correspondences $(\Gamma_t)_{t=0}^{\infty}$, with $\Gamma_t \colon \mathbb{S}_t \twoheadrightarrow \mathbb{S}_{t+1}$ for each t
- A collection of per-period pay-offs $(
 ho_t)_{t=0}^{\infty}$, with $ho_t\colon \operatorname{Gr}\Gamma_t o \mathbb{R}_+$ and $\inf
 ho_t=0$ for each t
- A discount factor $\beta \in (0,1)$.

Define the correspondence of **feasible sequences** $\mathcal{G}_t^T : \mathbb{S}_t \twoheadrightarrow \prod_{i=t}^T \mathbb{S}_i$ starting at time t and ending at time T as follows:

$$\mathcal{G}_{t}^{T}(x) := \left\{ (x_{i})_{i=t}^{T} \mid x_{i+1} \in \Gamma_{i}(x_{i}), x_{t} = x \right\}, \qquad x \in \mathbb{S}_{t}$$
 (2)

Let $\mathcal G$ denote $\mathcal G_0^\infty$ and let $\mathcal G^T$ denote $\mathcal G_0^T$.

Define the value function $\tilde{V} \colon \mathbb{S}_0 \to \mathbb{R} \cup \{-\infty, +\infty\}$ as follows:

$$\tilde{V}(x) := \sup_{(x_t)_{t=0}^{\infty} \in \mathcal{G}(x)} \sum_{t=0}^{\infty} \beta^t \rho_t(x_t, x_{t+1})$$
 (3)

Application

Aiyagari-Huggett optimal policy (roughly)

- ▶ let $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t=0}^{\infty}, \mathbb{P})$ be a filtered probability space
- $ightharpoonup \mathbb{X} = L^2(Z,\mathbb{P})$ with the weak topology
- the state-spaces \mathbb{S}_t are spaces of \mathscr{F}_t measurable random variables (history dependent)
- the correspondences Γ_t does not have compact image sets because of Inada conditions
- feasible sequences $(x_t)_{t=0}^{\infty}$ map histories of shocks to assets
- ightharpoonup the pay-off ho_t integrates pay-offs across all agents given prices that depend on x_t

Assumptions

Fix $x \in \mathbb{S}_0$. Let $\phi_t \colon \mathcal{G}^{t+1}(x) \to \mathbb{R}_+$ denote $(x_i)_{i=0}^{t+1} \mapsto \rho_t(x_t, x_{t+1})$ for each t

The upper contour sets $UC_{\phi_t}(\epsilon)$ of $(x_i)_{i=0}^{t+1} \mapsto \rho_t(x_t, x_{t+1})$ are defined by

$$UC_{\phi_t}(\epsilon) = \{(x_i)_{i=0}^{t+1} \in \mathcal{G}^{t+1}(x) \mid \rho_t(x_t, x_{t+1}) \ge \epsilon\}$$
 (4)

Assumptions

Standard requirement is for Γ_t to be upper hemicontinuous and compact valued and for \mathbb{S}_t to be a metric space (see by Acemoglu (2009), Assumption 6.2, Kamihigashi (2017), section 6 or Stokey and Lucas (1989), Assumption 4.3, for assumptions used by the standard theory).

Main assumption below relaxes this requirement.

Assumption.3.1 For each $x \in \mathbb{S}_0$ and $t \in \mathbb{N}$, the functions $\phi_t \colon \mathcal{G}^{t+1}(x) \to \mathbb{R}_+$ are mildly sup-compact in the product topology (of τ topology in \mathbb{X})

Assumptions

The next assumption is the standard growth condition (see discussion on Corollary 6.1 by Kamihigashi (2017)).

Assumption. 3.2 For each $x \in \mathbb{S}_0$, there exists a sequence of non-negative real numbers $(m_t)_{t=0}^{\infty}$ such that any $(x_t)_{t=0}^{\infty} \in \mathcal{G}(x)$ satisfies

$$\rho_t(x_t, x_{t+1}) \le m_t, \qquad \forall t \in \mathbb{N}$$
 (5)

and

$$\sum_{t=0}^{\infty} \beta^t m_t < \infty \tag{6}$$

Assumption.3.3 The functions $(\rho_t)_{t=0}^{\infty}$ are sequentially upper semicontinuous for all $t \in \mathbb{N}$.

Main Theorem

Theorem. 3.1 If $\mathscr E$ satisfies assumptions 3.1 - 3.3, then for every $x \in S_0$, there will exist $(x_t)_{t=0}^\infty$ satisfying $(x_t)_{t=0}^\infty \in \mathcal G(x)$ such that

$$ilde{V}(x) = \sum_{t=0}^{\infty} \beta^{t} \rho_{t}(x_{t}, x_{t+1}) < \infty$$

Proofs

Proof Premlinaries

Let (X, τ) be a topological vector space

Unless otherwise stated, convergence for sequences in $\mathbb X$ will be with respect to the τ topology and convergence for sequences in countable Cartesian products of $\mathbb X$ will be in the product topology of the τ topology on $\mathbb X$.

We will use \mathbf{x} to refer to elements of $\mathbb{X}^{\mathbb{N}}$. We can then use $(\mathbf{x}^n)_{n=0}^{\infty}$ to denote a sequence $\{\mathbf{x}^0,\ldots,\mathbf{x}^n,\ldots\}$, where $(\mathbf{x}^n)_{n=0}^{\infty}\in(\mathbb{X}^{\mathbb{N}})^{\mathbb{N}}$.

Let
$$U(\mathbf{x})$$
: $=\sum_{t=0}^{\infty} \beta^t \rho_t(x_t, x_{t+1})$.

Product Topology

Remark. A.1 Let $X = \prod_{i \in F} X_i$ denote a Cartesian product of topological spaces. Let $\pi_i \colon X \to X_i$ denote the projection map defined as $\pi_i(x) = x_i$ for each $i \in F$.

Recall each projection map will be a continuous function on X when X has the product topology (see section 2.14 by Aliprantis and Border (2006))

Also recall (section 1.8 by Tao (2013)) the image of a (sequentially) compact set under a continuous function is (sequentially) compact.

If a set C with $C \subset X$ is (sequentially) compact in the product topology, then $\pi_i(C)$ will be (sequentially) compact.

Lemma A.1

Lemma. A.1 Let Assumption 3.2 hold and let x satisfy $x \in \mathbb{S}_0$. If $(\mathbf{x}^n)_{n=0}^{\infty}$ is a sequence with $\mathbf{x}^n \in \mathcal{G}(x)$ for each n and $U(\mathbf{x}^n) \to B$ for B > 0, then there exists a sub-sequence $(\mathbf{x}^{n_k})_{k=0}^{\infty}$ such that for all $t \in \mathbb{N}$

$$\lim_{k\to\infty}\rho_t(x_t^{n_k},x_{t+1}^{n_k})\to c_t$$

where $c_t \in \mathbb{R}_+$ for each t and $c_t > 0$ for at-least one t.

Proof.By Assumption 3.2, for each t and n,

$$m_t \ge \rho_t(x_t^n, x_{t+1}^n) \ge 0 \tag{7}$$

Accordingly, for each n, $(\rho_t(x_t^n, x_{t+1}^n))_{t=0}^{\infty}$ will belong to the set $\prod_{t=0}^{\infty} [0, m_t]$, which by Tychonoff's Theorem (see Proposition 1.8.12 by Tao (2010)) will be compact in the product topology.

There then exists a sub-sequence of $(\mathbf{x}^n)_{n=0}^{\infty}$, $(\mathbf{x}^{n_k})_{k=0}^{\infty}$, such that $(\rho(x_t^{n_k}, x_{t+1}^{n_k}))_{k=0}^{\infty}$ converges for each t.

Let
$$c_t$$
: $=\lim_{k o \infty}
ho(x_t^{n_k}, x_{t+1}^{n_k})$ and note

$$B = \lim_{k \to \infty} \sum_{t=0}^{\infty} \beta^{t} \rho_{t} \left(x_{t}^{n_{k}}, x_{t+1}^{n_{k}} \right)$$

$$= \sum_{t=0}^{\infty} \lim_{k \to \infty} \beta^{t} \rho_{t} \left(x_{t}^{n_{k}}, x_{t+1}^{n_{k}} \right) = \sum_{t=0}^{\infty} \beta^{t} c_{t} \quad (8)$$

Since (7) holds, and $\sum_{t=0}^{\infty} \beta^t m_t < \infty$ by Assumption 3.2, we can pass limits through in the second equality using dominated convergence theorem (see Corollary 7.3.15 by Stachurski (2009))

If B is strictly positive, the above means there is at least one $c_t > 0$.

Lemma A.2

Lemma. A.2

Let x satisfy $x \in \mathbb{S}_0$. If $(\mathbf{x}^n)_{n=0}^{\infty}$ is a sequence with $\mathbf{x}^n \in \mathcal{G}(x)$ for each n and for some t

$$\rho_t(x_t^n,x_{t+1}^n)\to c_t$$

with $c_t > 0$, then there exists $\epsilon > 0$ and $N \in \mathbb{N}$ such that for all n > N, $(x_i^n)_{i=0}^{t+1} \in UC_{\phi_t}(\epsilon)$.

Proof. There exists ι such that ϵ : $= c_t - \iota$ is strictly positive

For N large enough and any n > N, $\rho_t(x_t^n, x_{t+1}^n) \in [\epsilon, c_t + \iota]$, implying $\rho_t(x_t^n, x_{t+1}^n) \geq \epsilon$ and $(x_i^n)_{i=0}^{t+1} \in UC_{\phi_t}(\epsilon)$.

Lemma A.3

Lemma. A.3

Let assumptions 3.1- 3.3 hold and let x satisfy $x \in \mathbb{S}_0$. If $(\mathbf{x}^n)_{n=0}^{\infty}$ is a sequence such that $\mathbf{x}^n \in \mathcal{G}(x)$ for each $n \in \mathbb{N}$ and $U(\mathbf{x}^n) \to B$ where B > 0, then:

- 1. $(\mathbf{x}^n)_{n=0}^{\infty}$ has a convergent sub-sequence with a limit $\mathbf{x} \in \mathcal{G}(x)$, and
- 2. $B \leq U(\mathbf{x}) < \infty$.

Proof. Let x satisfy $x \in \mathbb{S}_0$ and let $(\mathbf{x}^n)_{n=0}^{\infty}$ be a sequence such that $\mathbf{x}^n \in \mathcal{G}(x)$ for each n and $U(\mathbf{x}^n) \to B$ where B > 0.

By Lemma A.1 there exists a sub-sequence $(\mathbf{x}^{n_j})_{j=0}^{\infty}$ such that for each $t \in \mathbb{N}$, $c_t := \lim_{j \to \infty} \rho_t(x_t^{n_j}, x_{t+1}^{n_j}) > 0$ for at-least one t

Re-label $(\mathbf{x}^{n_j})_{j=0}^{\infty}$ to $(\mathbf{x}^n)_{n=0}^{\infty}$, and let P denote the subset of $\mathbb N$ such that $t\in P$ if and only if $c_t>0$

▶ The set *P* will be non-empty, but could be finite or infinite.

We consider first the case when *P* is infinite and then the case when *P* is finite.

Suppose *P* is infinite and consider any $t \in \mathbb{N}$. There will exist k > t such that $c_k > 0$

By Lemma A.2, there exists N and $\epsilon>0$ such that for all n>N, $(x_i^n)_{i=0}^{k+1}\in UC_{\phi_k}(\epsilon)$

By Assumption 3.1, $UC_{\phi_k}(\epsilon)$ will be sequentially compact in the product topology

The space $\pi_t(UC_{\phi_k}(\epsilon))$ will also be sequentially compact by the argument in Remark A.1

Let
$$\Xi_t$$
: $= \{x_1^0, \dots, x_t^N\} \cup \pi_t(UC_{\phi_k}(\epsilon))$

Since $\{x_1^0, \dots, x_t^N\}$ is sequentially compact, Ξ_t will be sequentially compact

Note $x_t^n \in \Xi_t$ for each $n \in \mathbb{N}$

Since t was arbitrary, can construct a Ξ_t as above for every $t \in \mathbb{N}$

Let
$$\Xi$$
: $=\prod_{t\in\mathbb{N}}\Xi_t$

Using the Sequential Tychonoff Theorem (Proposition 1.8.12 by Tao (2010)), Ξ will be sequentially compact

Since for each $t, x_t^n \in \Xi_t$ for each $n, \mathbf{x}^n \in \Xi$ for each n, there exists a sub-sequence $(\mathbf{x}^{n_j})_{j=0}^{\infty}$ converging to \mathbf{x} , with $\mathbf{x} \in \Xi$

We now confirm $\mathbf{x} \in \mathcal{G}(x)$ by showing $x_{t+1} \in \Gamma_t(x_t)$ for all $t \in \mathbb{N}$

Pick any $t \in \mathbb{N}$, there will be a k satisfying k > t such that $c_k > 0$

By Lemma A.2, there exists $\epsilon > 0$ and J such that for all j > J we have $(x_i^{n_j})_{i=0}^{k+1} \in UC_{\phi_k}(\epsilon)$

By Assumption 3.1, $UC_{\phi_k}(\epsilon)$ will be sequentially compact, moreover, $UC_{\phi_k}(\epsilon) \subset \mathcal{G}^{k+1}(x)$ by the definition of $UC_{\phi_k}(\epsilon)$ at (4), frame 15.

As such, the sub-sequence $(x_i^{n_j})_{i=0}^{k+1}$ converges to $(x_i)_{i=0}^{k+1}$, with $(x_i)_{i=0}^{k+1} \in \mathcal{G}^{k+1}(x)$, allowing us to conclude $x_{t+1} \in \Gamma_t(x_t)$

Since the t was arbitrary, $x_{t+1} \in \Gamma_t(x_t)$ for each $t \in \mathbb{N}$ and $\mathbf{x} \in \mathcal{G}(x)$.

Now assume P is finite. P will have a maximum element, which we now call k

By Lemma A.2, there exists $\epsilon>0$ and $N\in\mathbb{N}$ such that $(x_t^n)_{t=0}^{k+1}\in UC_{\phi_k}(\epsilon)$ for each n>N

By Assumption 3.1, $UC_{\phi_k}(\epsilon)$ will be sequentially compact in the product topology

As such, there exists a sub-sequence $(\mathbf{x}^{n_j})_{j=0}^\infty$ such that $(x_t^{n_j})_{j=0}^\infty$ for each $t \leq k+1$

Define $(x_t)_{t=0}^\infty$ by setting $x_t=\lim_{j o\infty}x_t^{n_j}$ for $t\le k+1$ and picking any $x_{t+1}\in\Gamma_t(x_t)$ for $t\ge k+1$.

To confirm $(x_t)_{t=0}^{\infty}$ is feasible, we check $x_{t+1} \in \Gamma_t(x_t)$ for each t

Once again, note by definition, $UC_{\phi_k}(\epsilon) \subset \mathcal{G}^{k+1}(x)$

Since $UC_{\phi_k}(\epsilon)$ is sequentially compact, $(x_t)_{t=0}^{k+1} \in \mathcal{G}(x)$ and $x_{t+1} \in \Gamma_t(x_t)$ for all t satisfying $t \leq k$

On the other hand, if t>k, by construction, $x_{t+1}\in \Gamma_t(x_t)$, confirming $(x_t)_{t=0}^\infty\in \mathcal{G}(x)$

Re-label $(\mathbf{x}^{n_j})_{j=0}^{\infty}$ to $(\mathbf{x}^n)_{n=0}^{\infty}$

To prove part 2 of the lemma, by Assumption 3.2,

$$\rho_t(x_t^n, x_{t+1}^n) \le m_t$$

for each t and n, where $\sum_{t=0}^{\infty} \beta^t m_t < \infty$.

Fatou's Lemma¹ gives

$$B = \limsup_{n \to \infty} \sum_{t=0}^{\infty} \beta^{t} \rho_{t}(x_{t}^{n}, x_{t+1}^{n})$$

$$\leq \sum_{t=0}^{\infty} \limsup_{n \to \infty} \beta^{t} \rho_{t}(x_{t}^{n}, x_{t+1}^{n}) < \infty$$
 (9)

¹See 5.4 b) by Williams (1991) and let $\Omega = \mathbb{Z}_+$ and μ be the counting measure. Also see Equation (1.1) and discussion by Kamihigashi (2017).

Upper-semicontinuity of ρ_t (Assumption 3.3) and the growth condition (Assumption 3.2) imply

$$\limsup_{n\to\infty} \rho_t(x_t^n, x_{t+1}^n) \le \rho_t(x_t, x_{t+1}) \le m_t, \qquad t\in\mathbb{N}$$
 (10)

Note the growth condition implies

$$\lim_{T \to \infty} \sum_{t=0}^{T} \beta^{t} \rho_{t}(x_{t}, x_{t+1}) \leq \lim_{T \to \infty} \sum_{t=0}^{T} \beta^{t} m_{t} < \infty$$
 (11)

Thus, combine (10) with (9) and conclude

$$B \leq \sum_{t=0}^{\infty} \limsup_{n \to \infty} \beta^t \rho_t(x_t^n, x_{t+1}^n) \leq \sum_{t=0}^{\infty} \beta^t \rho_t(x_t, x_{t+1}) = U(\mathbf{x}) < \infty$$

Theorem. 3.1 If $\mathscr E$ satisfies assumptions 3.1 - 3.3, then for every $x\in \mathbb S_0$, there will exist $(x_t)_{t=0}^\infty$ satisfying $(x_t)_{t=0}^\infty\in \mathcal G(x)$ such that

$$ilde{V}(x) = \sum_{t=0}^{\infty} \beta^{t} \rho_{t}(x_{t}, x_{t+1}) < \infty$$

Proof. Fix $x \in \mathbb{S}_0$. If $U(\mathbf{x}) = 0$ for all $\mathbf{x} \in \mathcal{G}(x)$, then our solution will be any $\mathbf{x} \in \mathcal{G}(x)$.

Next, suppose at-least one **x** with $\mathbf{x} \in \mathcal{G}(x)$ satisfies $U(\mathbf{x}) > 0$

By Assumption 3.2, there exists a sequence of real numbers $(m_t)_{t=0}^{\infty}$ such that $\rho_t\left(x_t,x_{t+1}\right)\leq m_t$ for any \mathbf{x} in $\mathcal{G}(x)$ and

$$\bar{B}$$
: $=\sum_{t=0}^{\infty}\beta^{t}m_{t}<\infty$

Any **x** with $\mathbf{x} \in \mathcal{G}(x)$ will satisfy

$$U(\mathbf{x}) = \sum_{t=0}^{\infty} \beta^{t} \rho_{t}(\mathbf{x}_{t}, \mathbf{x}_{t+1}) \leq \bar{B}$$

Now, consider the set $I: = \{U(\mathbf{x}) \mid \mathbf{x} \in \mathcal{G}(x)\}$

▶ I will be a subset of $\mathbb{R} \cup \{-\infty, \infty\}$ and so must have a supremum

Let B: = sup I and note $0 \le B \le \bar{B} < \infty$

Construct a sequence $(\mathbf{x}^n)_{n=0}^{\infty}$ with $\mathbf{x}^n \in \mathcal{G}(x)$ for each n and $U(\mathbf{x}^n) \to B$ as follows:

lacksquare for every $n\in\mathbb{N}$, take \mathbf{x}^n such that $B-U\left(\mathbf{x}^n
ight)<rac{1}{n+1}$

Such a sequence exists, otherwise for some n, $U(\mathbf{x}) \leq B - \frac{1}{n+1}$ for all $\mathbf{x} \in \mathcal{G}(x)$ and B will not be the supremum of I.

Since $U(\mathbf{x}^n) \to B$, by Lemma A.3, there exists $\mathbf{x} \in \mathcal{G}(x)$ such that $U(\mathbf{x}) \geq B$. Since B was the supremum for I, conclude

$$U(\mathbf{x}) = B = \tilde{V}(x) < \infty$$

- Acemoglu, D. (2009). *Introduction to Modern Economic Growth*. Princeton University Press, Princeton, New Jersey.
- Aliprantis, C. D. and Border, K. C. (2006). *Infinite Dimensional Analysis: A Hitchhiker's Guide*. Springer-Verlag, Berlin.
- Kamihigashi, T. (2017). A Generalisation of Fatou's Lemma for Extended Real-Valued Functions on sigma-Finite Measure spaces: with an Application to Infinite-Horizon Optimization in Discrete Time. *Journal of Inequalities and Applications*, 2017(1):24.
- Stachurski, J. (2009). *Economic Dynamics: Theory and Computation*. MIT Press Books, Cambridge, MA.
- Stokey, N. and Lucas, R. (1989). *Recursive Methods in Economic Dynamics*. Harvard University Press, Cambridge, MA.
- Tao, T. (2010). *Epsilon of Room, One: Volume 117 of Graduate Studies in Mathematics*. American Mathematical Soc.
- Tao, T. (2013). *Compactness and contradiction*. Americal Mathematical Society.

Williams, D. (1991). *Probability with Martingales*. Cambridge University Press.