

Delaunay Mesh Generation using the GPU

http://geomGPU.net

Thanh-Tung Cao, Mingcen Gao, Meng Qi, Tiow-Seng Tan

School of Computing, National University of Singapore

Ashwin Nanjappa

Bioinformatics Institute, Singapore

Zhiyong Huang

Institute for Infocomm Research, A*STAR

3D Delaunay triangulation

Problem: Generate high-quality Delaunay mesh using the GPU.

triangulation

! Input: Point set in \mathbb{R}^2 or \mathbb{R}^3 with [constraints] and [point weights].

Framework

❖ 2D Delaunay Triangulation [1]

A direct application of our framework with any flipping sequence efficiently leads to the 2D Delaunay triangulation.

❖ 2D Regular Triangulation [2]

- Key techniques:
 - o Identify redundant points through unflippable edges.
 - Combine flipping of regular and non-regular edges to remove redundant points.

2D Constrained Delaunay Triangulation [1]

- Constraint enforcement is performed by repeating two steps:
 - Identify triangles intersected by constraints.
 - o Flip edges to remove intersections.
- Key techniques:

(b) One step look-ahead

❖ 3D Delaunay Triangulation [3]

Key techniques:

(a) After flipping, only a few regions contain locally non-Delaunay facets.

(b) Adaptive star splaying locally fix these regions.

Performance

Speedup

10

Ongoing work

- Constrained Delaunay triangulation in \mathbb{R}^3 .
- Delaunay refinement in \mathbb{R}^2 and \mathbb{R}^3 .
- Local transformation in higher dimensions.

References

- [1] Computing 2D constrained Delaunay triangulation using the GPU [TVCG '12]
- [2] Flip-Flop: Convex hull construction via star-shaped polyhedron in 3D [i3D '13]
- [3] A GPU accelerated algorithm for 3D Delaunay triangulation

[i3D '14]