Riemann 幾何学と統計多様体の間の関係

mico

2025年7月29日

定義 1: 統計多様体

(M,g)を Riemann 多様体とする. M 上の捩れを持たないアファイン接続 ∇ が Codazzi 方程式

$$(\nabla_X g)(Y, Z) = (\nabla_Y g)(X, Z) \quad (\forall X, Y, Z \in \Gamma(TM))$$

を満たすとき, (∇, g) を M 上の統計構造といい, (M, ∇, g) を統計多様体という.

定義 2: 双対接続

M,g を Riemann 多様体, ∇ を M のアファイン接続とする. このとき等式

$$Xg(Y,Z) = g(\nabla_X Y, Z) + g(Y, \nabla_X^* Z) \quad (\forall X, Y, Z \in \Gamma(TM))$$

が成り立つような M 上のアファイン接続 ∇^* を一意に定めることができる. このアファイン接続 ∇^* を ∇ の双対接続という.

いくつかの性質を確認しておく.

命題 1

 (M,∇,g) を統計多様体とする. このとき (M,∇^*,g) も統計多様体となる. この意味で統計 多様体を (M,∇,∇^*,g) とも記述する.

命題 2

 ∇^* の双対接続 $(\nabla^*)^*$ は ∇ に等しい.

命題 3

Riemann 多様体 (M,g) の Levi-Civita 接続を ∇^g と書くこととする. このとき (M,∇^g,g) は統計多様体で, $(\nabla^g)^* = \nabla^g$ が成立する.

命題 4

 $(\widetilde{M},\widetilde{\nabla},\widetilde{\nabla}^*,h)$ を統計多様体, M を多様体, $f:M\to \widetilde{M}$ をはめ込みとする. このとき, 直和分解 $f_*TM\oplus N_fM$ に沿って, $X,Y\in \Gamma(TM)$ に対して $\nabla_XY,\nabla_X^*Y\in \Gamma(TM),\alpha(X,Y),\alpha^*(X,Y)\in \Gamma(N_fM)$ を

$$\widetilde{\nabla}_X Y = f_* \nabla_X Y + \alpha(X, Y),$$

$$\widetilde{\nabla}_X^* Y = f_* \nabla_X^* Y + \alpha^* (X, Y)$$

を満たすようにそれぞれ定める.このとき ∇, ∇^* はともに M 上のアファイン接続で, $\alpha, \alpha^* \in \Gamma(TM^{(0,2)} \otimes N_f M)$ でそれぞれ対称である.

Proof. $\phi: M \to \mathbb{R}$ とする. このとき,

$$\widetilde{\nabla}_{\phi X} Y = \phi \widetilde{\nabla}_X Y$$

$$= \phi (f_* \nabla_X Y + \alpha(X, Y))$$

$$= f_* (\phi \nabla_X Y) + \phi \alpha(X, Y)$$

なので,

$$\nabla_{\phi X} Y = \phi \nabla_X Y,$$

$$\alpha(\phi X, Y) = \phi \alpha(X, Y)$$

である. また,

$$\widetilde{\nabla}_X \phi Y = X(\phi) f_* Y + \phi \widetilde{\nabla}_X Y$$

$$= f_* (X(\phi)Y) + \phi (f_* \nabla_X Y + \alpha(X, Y))$$

$$= f_* (X(\phi)Y + \phi \nabla_X Y) + \phi \alpha(X, Y)$$

なので.

$$\nabla_X \phi Y = X(\phi)Y + \phi \nabla_X Y,$$

$$\alpha(X, \phi Y) = \phi \alpha(X, Y)$$

である. 以上より確かに ∇ は M 上のアファイン接続で, $\alpha \in \Gamma(TM^{(0,2)} \otimes N_f M)$ である. また, $\forall \xi \in \Gamma(N_f M)$ について,

$$\begin{split} \widetilde{\nabla}_X Y - \widetilde{\nabla}_Y X &= T^{\widetilde{\nabla}}(X,Y) + [f_*X, f_*Y] \\ &= f_*[X,Y] \end{split}$$

なので, $\alpha(X,Y) = \alpha(Y,X)$ である. ∇^*, α^* については同様なので省略する.

命題 5

上の命題で定めた ∇ , ∇^* は M 上の計量 $g:=f^*h$ についての双対接続となる. また, (M,∇,∇^*,g) は統計多様体となる.

Proof. まず, ∇ , ∇^* が g に関する双対接続であることを示す. [追記予定] 次に, $T^{\nabla}=0$ であることを示す.

$$\begin{split} f_*T^\nabla(X,Y) &= f_*(\nabla_X Y - \nabla_Y X - [X,Y]) \\ &= \widetilde{\nabla}_X Y - \alpha(X,Y) - \widetilde{\nabla}_Y X - \alpha(Y,X) - f_*[X,Y] \\ &= T^\nabla(f_*X,f_*Y) \\ &= 0. \end{split}$$

よって $T^{\nabla} = 0$ である.

最後に、
$$(\nabla_X g)(Y,Z) = (\nabla_Y g)(X,Z)$$
 であることを示す。[追記予定]

参考文献

[1] 藤原彰夫, 情報幾何学の基礎 情報の内的構造をとらえる新たな地平, 共立出版, 2021.