

Tentative Specification

Preliminary Specification

Approval Specification												
MODEL NO.: G154JCE SUFFIX: L01												
Customer:												
APPROVED BY SIGNATURE												
Name / Title Note												
Please return 1 signature and cor		nfirmation with your										
Approved By	Checked By	Prepared By]									
¥												
		1	J									

Version 0.0 01 Sep. 2017 1 / 29

- CONTENTS -

REVISION HISTORY	 3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	 4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 LED CONVERTER	 7
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 LED CONVERTER	 8
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE	 11
5. INTERFACE PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 COLOR DATA INPUT ASSIGNMENT	 12
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE 6.3 THE INPUT DATA FORMAT	 15
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	 19
8. RELIABILITY TEST CRITERIA	 22
9. PACKING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHODS	 23
10. DEFINITION OF LABELS 10.1 MODULE LABEL 10.2 OPTICAL LABEL	 25
11. PRECAUTIONS 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 11.2 SAFETY PRECAUTIONS	 26
12. MECHANICAL CHARACTERISTIC	 27

REVISION HISTORY

Version	Date	Section	Description
0.0	2017.09.01	All	Tentative Specification was first issued.

Version 0.0 01 Sep. 2017 3 / 29

1. GENERAL DESCRIPTION

1.1 OVERVIEW

G154JCE-L01 is a 15.4" IAV (Industrial/Amusement/Vehicle) TFT Liquid Crystal Display module with LED backlight unit and FPD-Link III interface. This product supports 1920 x 1200 WUXGA format and can display true 16.7M colors. The converter for LED backlight is built-in.

1.2 FEATURES

- Excellent brightness (800 nits)
- High color saturation sRGB
- WUXGA (1920 x 1200 pixels) resolution
- -Wide operation and storage temperature range

1.3 APPLICATION

- TFT LCD monitor for Industrial application

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	330.624 (H) x 206.64 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1920 x R.G.B. x 1200	pixel	-
Pixel Pitch	0.1905 (H) x 0.1905 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.7 M	color	-
Display Operation Mode	Transmissive mode / Normally black	-	-
Surface Treatment	Anti-Glare, 3H	-	-
Total power consumption(typ)	(22)	W	typ

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

1.5 MECHANICAL SPECIFICATIONS -

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	340.82	341.12	341.42	mm	(1)
Module Size	Vertical (V)	218.84	219.14	219.44	mm	(1)
	Depth (D)	(6.65)	(6.95)	(7.25)	mm	-
We	ight	(972)	(1012)	(1052)	g	-

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Val	lue	Unit	Note
item	Symbol	Min.	Max.	Offic	Note
Operating Ambient Temperature	T _{OP}	-40	+85	°C	
Storage Temperature	T _{ST}	-40	+95	°C	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max.
- (c) No condensation
- (d)The absolute maximum rating values of this product are not allowed to be exceeded at any times. The module should not be used over the absolute maximum rating value. It will cause permanently unrecoverable function fail in such a condition.

Relative Humidity (%RH)

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Symbol	•	Value	Unit	Note
item	Symbol	Min.	Max.	Onit	Note
Power Supply Voltage	VCC	-0.3	24	V	(1), (2)
Enable Voltage	EN(GPIO[5])	-	5.5	V	
Backlight Adjust	PWMGPIO[2])	-	5.5	V	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for LED light bar (Refer to 3.1 for further information).

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

Paramete		Symbol		Value	Unit	Note	
Paramete		Symbol	Min.	Тур.	Max.	Ullit	Note
Power Supply Voltage	V _{CC}	10.8	12	13.2	V	(1)	
Ripple Voltage		V_{RP}	-	-	150	mV	-
Rush Current		I _{RUSH}	-	-	4.0	Α	(2)
Power Supply Current	White		-	1.80	2.0	Α	(2)
	Black	_	-	1.62	1.82	Α	(3)
Power Consumption		P_L	-	21.6	24.0	W	
EN/ODIOIEI\ O trad d a cal	Backlight on		2.0	-	5.0	V	(4)
EN(GPIO[5]) Control Level	Backlight off		0	-	0.8	V	(4)
PWM(GPIO[2]) Control	PWM High Level		2.0	-	5.0	V	(4)
Level	PWM Low Level		0	-	0.15	V	(4)
PWM(GPIO[2]) Control Duty	y Ratio		1		100	%	
PWM(GPIO[2]) Control Free	f _{PWM}	190	200	210	Hz		
LED Life Time		L _L	(40,000)	-	-	Hrs	(5)

Note (1) The assembly should be always operated within above ranges.

Note (2) Measurement Conditions:

VCC rising time is 470us

Note (3) The specified power supply current is under the conditions at Vcc = 12 V, Ta = 25 ± 2 °C, $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.

- Note (4) GPIO[2] & GPIO[5] signal diagnosis to control Backlight. The module shall use the GPIO[2] & GPIO[5] signal to control Backlight. GPIO[2] is control Backlight brightness, GPIO[5] is high to enable Backlight.
- Note (5) The life time of LED is defined as the time when it continues to operate under the conditions at Ta = 25 ± 2 °C and I_{LED} = 68mA_{DC}(LED forward current) until the brightness becomes \leq 50% of its original value.

Version 0.0 01 Sep. 2017 9 / 29

LED BL Block Diagram

Version 0.0 01 Sep. 2017 10 / 29

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

5. INTERFACE PIN ASIGNMENT

5.1 TFT LCD MODULE

Pin No.	Name	Description
1	RIN1+	FPD-Link III True Input.
2	RIN0+	FPD-Link III True Input.
3	RIN1-	FPD-Link III Inverting Input.
4	RIN0-	FPD-Link III Inverting Input.
5	Vi	+12V power supply
6	GND	Ground

Note (1) Connector Part No.: Rosenberger(99S11D-40MA5-D)

5.2 FPD III -link DC electrical characteristics

Symbol	Parameter	Conditions	Pin/Freq.	Min.	Тур.	Max.	Unit
VTH	Differential Threshold High Voltage	VCM = 2.1V	RIN0+, RIN0- RIN1+, RIN1-			+50	mV
VTL	Differential Threshold Low Voltage			-50			mV
VID	Input Differential Threshold		,	100			mV
VcM	Differential Common-mode Voltage		,		2.1		V
RT	Internal Termination Resistor(Differential)			80	100	120	Ω

FPD-Link III Receiver DC VTH/VTL Definition:

GND ------

5.3 FPD-link LVDS output electrical characteristics

Symbol	Parameter	Conditions Pin/Freq.		Min.	Тур.	Max.	Unit
Vod	Output voltage swing (differential)		D0±, D1±,	200	-	700	mV
Δ Vod	Change in Vop between complimentary output states	$RL = 100 \Omega$	D2±, D3±, D4±, D5±,	-	1	50	mV
Vos	Offset Voltage		D6±, D7±,	1.0	1.2	1.5	V
∆Vos	Change in Vos between complimentary output states		CLK1±, CLK2±	-	1	50	mV
los	Output Short Circuit Current				-5		mA
loz	Output Tri-state Current			-500	-	500	μΑ

Version 0.0 01 Sep. 2017 12 / 29

FPD-Link Single-Ended and Differential Waveforms:

24-bit Color Dual FPD-Link Mapping: MSBs on D3/D7:

5.4 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

												Da	ata :	Sigr	nal										
	Color				Re	ed							G	reer	า						ВІ	ue			
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	B5	B4	ВЗ	B2	B1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of Red	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
0.00	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Parameter	Symbol	Min.	Тур.	Max.	Unit
CLK frequency	F _{CLK}	73.9	74.2	83.4	MHz
Horizontal display area	T _{HD}		960		CLK
HS period time	T _H	1020	1024	1150	CLK
HS blanking	T _{HFP} + T _{HBP}	60	64	190	CLK
Vertical display area	T _{VD}		1200		Ħ
Vs period time	T _V	1206	1208	1329	Н
VS blanking	T _{VBP} + T _{VFP}	6	8	129	Н

Note (1) Since this assembly is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this assembly would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM

6.2 LVDS Interface DC characteristic

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Differential input high threshold voltage	R _{XVTH}	+0.1		+0.3	V	
Differential input Low threshold voltage	R _{XVTL}	-0.3		-0.1	V	
Differential input common mode voltage	R _{XVCM}	1.0	1.2	1.7-IV _{ID} I/2	V	
Differential input voltage	IV _{ID} I	0.2		0.6	V	

LVDS DC Diagram:

6.3 Dual-Link LVDS input Data Format 8-bit LVDS Dual Link VESA:

6.4 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below.

Power ON/OFF sequence

- Note (1) Please avoid floating state of interface signal at invalid period.
- Note (2) When the interface signal is invalid, be sure to pull down the power supply of LCD VCC to 0 V.
- Note (3) The Backlight converter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight converter power must be turned off before the power supply for the logic and the interface signal is invalid.

Parameter		Units			
Parameter	Min	Тур	Max	Units	
T1	0.5	-	10	ms	
T2	0	-	50	ms	
Т3	0	-	50	ms	
T4	500	-	-	ms	
Т5	200	-	-	ms	
Т6	200	-	-	ms	
Т7	5	-	100	ms	
Т8	10	-	-	ms	
Т9	10	-	-	Ms	

Version 0.0 01 Sep. 2017 18 / 29

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit		
Ambient Temperature	Та	25±2	оС		
Ambient Humidity	На	50±10	%RH		
Supply Voltage	VCC	12	V		
Input Signal					
Converter Voltage	According to typical value in "3. ELECTRICAL CHARACTERISTICS"				
Converter Duty					

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. and all items are measured at the center point of screen except white variation. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

It	em	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio)	CR	θx=0°, θY =0°		(1400)		-	(2)
Response Time		TR		-	(13)		ms	(3)
		TF		-	(12)		ms	
Center Lumina	ance of White	LC		-	(800)	-	cd/m	(4)
White Variation	n	δW		-		(1.25)	-	(6)
	Red	Rx		(0.640)			-	
	Neu	Ry		(0.330)			-	
	Green	Gx		(0.300)			-	
		Gy		(0.600)			-	(5)
	Blue	Bx		(0.150)			-	
		Ву		(0.060)			-	
	White	Wx		Тур.	(0.313)	Тур.	-	
		Wy		-0.035	(0.329)	+0.035	-	
	(sRGB)			(99%)				(5)
Viewing Horiz Angle Verti	Horizontal	θ_x +	CR≥10		(88)	-	Deg.	(1)
	Tionzontai	θ _x -			(88)	-		
	Vertical	θ_{Y} +			(88)	-		
	vertical	θ _Y -			(88)	-		
Gamma		γ	9 Steps Log-Log gamma		(2.2)	-		Gamma

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by BM5A

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7).

Note (3) Definition of Response Time (T_R, T_F):

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 255 at center point and 9 points

 $L_C = L$ (5), where L (X) is corresponding to the luminance of the point X at the figure in Note (7).

Note (5) Measurement Setup:

The LCD assembly should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a windless room.

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 9 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5), L (6), L (7), L (8), L (9)] / Minimum [L (1), L (2), L (3), L (4), L (5), L (6), L (7), L (8), L (9)]$

Version 0.0 01 Sep. 2017 21 / 29

8. RELIABIITY TEST CRITERIA

Test Item	Test Condition	Note
High Temperature Storage Test	95°C, 500 hours	(1)
Low Temperature Storage Test	-40°C, 500 hours	(2)
Thermal Shock Storage Test (Non-Operating)	[(-40°C,30min)→(85°C,30min)]/cycle, 100hrs	(4)
High Temperature Operation Test	85°C, 500 hours	(4)
Low Temperature Operation Test	-40°C, 500 hours	(1) (2)
High Temperature & High Humidity Operation Test	60°C, 90%RH, 500 hours	(4)
Shock (Non-Operating)	10G, 6ms, half sine wave, 3 times for each direction $\pm X$, $\pm Y$, $\pm Z$.	
Vibration (Non-Operating)	Frequency: 10 ~55~10Hz;Sweep Mode: Log SweepSweep time: 1Oct/min;Acceleration: 1.5G;Test time:2 hr for each direction of X, Y, Z.	(1) (3)
ESD-Contact Mode Discharge	150pf, 330Ω, ±8KV	
ESD-Air Mode Discharge	150pf, 330Ω, ±15KV	

- Note (1) Criteria: Normal display image with no obvious non-uniformity and no line defect.
- Note (2) Evaluation should be tested after storage at room temperature for more than two hour
- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.
- Note (4) A certain level of Mura (non-uniformity) of dark / black image will happen several days after high temperature testing (H.T.T.). There is a slowly part recovery over a long time (several months). Such a long exposure time like in H.T.T. will normally not happen in a real application. Therefore the test H.T.T. was introduced to simulate cycles with normal conditions in-between but with the same total exposure time what show a significant reduced Mura. The root cause is related to tension generated due to different amount of shrinking in the stack of layers in the polarizer sheet. The effect is more significant on larger displays like this size. An investigation into alternative polarizer material showed that there is no better alternative currently available.

9. PACKAGING

9.1 PACKING SPECIFICATIONS

- (1) 7pcs LCD modules / 1 Box
- (2) Box dimensions: 415 (L) X 283 (W) X 385 (H) mm
- (3) Weight: approximately 9.1 Kg (7modules per box)

9.2 PACKING METHOD

- (1) Carton dimensions: 415(L)x283(W)x385(H)mm
- (2) 7 modules/Carton

Figure. 9-1 Packing method

Figure. 9-2 Packing method

9.3 UN-PACKING METHOD

Figure. 9-3 UN-Packing method

Version 0.0 01 Sep. 2017 24 / 29

10. DEFINITION OF LABELS

10.1 MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a) Model Name: G154JCE-L01

(b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2010~2019

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

(b) Revision Code: Cover all the change

(c) Serial No.: Manufacturing sequence of product

11. PRECAUTIONS

11.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas.

 The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of backlight will be higher than that of room temperature.
- (11) Do not keep same pattern in a long period of time. It may cause image sticking on LCD.

11.2 SAFETY PRECAUTIONS

- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the module's end of life, it is not harmful in case of normal operation and storage.

12. MECHANICAL CHARACTERIS