Exercice 1.1 On a n boîtes numérotées de 1 à n. La boîte k contient k boules numérotées de 1 à k. On choisit au hasard une boîte, puis une boule dans la boîte. Soit X le numéro de la boîte, et Y le numéro de la boule.

- (1) Déterminer la loi du couple (X, Y).
- (2) Déterminer la loi de Y et son espérance.
- (3) Les variables aléatoires X et Y sont-elles indépendantes?
- (4) Calculer P(X = Y).

Exercice 1.2 Soient X et Y deux variables aléatoires à valeurs dans \mathbb{N}^* , telles que :

$$P((X=i)\cap (Y=j)) = \frac{a}{2^{i+j}},$$

pour tous i, j de \mathbb{N}^* .

- (1) Calculer a.
- (2) Déterminer les lois marginales de X et Y.
- (3) X et Y sont-elles indépendantes?

Exercice 1.3 Soit T l'intérieur d'un triangle du plan délimité par les points O(0,0), I(1,0) et J(0,1) et soit (X,Y) un couple de variables aléatoires de loi uniforme sur le triangle T.

- (1) Donner la densité du couple (X, Y).
- (2) Calculer les lois marginales de X et de Y.
- (3) Les variables aléatoires X et Y sont-elles indépendantes?
- (4) Calculer la covariance du couple (X, Y). Qu'en pensez-vous?

Exercice 1.4 On considère un espace probabilise (Ω, \mathcal{B}, P) et deux variables aléatoires X et Y définies sur Ω et à valeurs dans $\{1, \ldots, n+1\}$, où n est un entier naturel supérieur ou égal à 2. On pose, pour tout couple $(i, j) \in \{1, \ldots, n+1\}^2$

$$a_{i,j} = P(X = i, Y = j).$$

On suppose que :

$$a_{i,j} = \begin{cases} \frac{1}{2n} & \text{si } |i+j-(n+2)| = 1\\ 0 & \text{sinon.} \end{cases}$$

- (1) Vérifier que la famille $(a_{i,j})$ ainsi définie est bien une loi de probabilité de couple.
- (2) Ecrire la matrice $A \in \mathcal{M}_{n+1}(\mathbb{R})$ dont le terme général est $a_{i,j}$. Vérifier que A est diagonalisable.
- (3) Déterminer les lois de probabilité de X et Y.
- (4) Pour tout couple $(i, j) \in \{1, \dots, n+1\}^2$, on pose :

$$b_{i,j} = P(X = i | Y = j).$$

Déterminer la matrice $B \in \mathcal{M}_{n+1}(\mathbb{R})$ dont le terme général est $b_{i,j}$. Montrer que le vecteur

$$v = \begin{pmatrix} P(X=1) \\ \vdots \\ P(X=n+1) \end{pmatrix}$$

est vecteur propre de B.

Exercice 1.5 On dit que la variable aléatoire X suit une loi de Pareto de paramètre $\alpha > 0$ si,

$$\forall x \ge 1, \ P(X > x) = x^{-\alpha}.$$

- (1) Démontrer que cette propriété caractérise effectivement la loi de X. Montrer que X suit une loi à densité, et préciser cette densité.
- (2) Pour quelles valeurs de α la variable X est-elle d'espérance finie?
- (3) Soient X, Y deux variables aléatoires indépendantes suivant une loi de Pareto de paramètre α . On note dP_Y la loi de Y. Montrer que, si $t \ge 1$, alors

$$P(XY > t) = \int_{1}^{+\infty} P\left(X > \frac{t}{y}\right) dP_Y(y).$$

(4) En déduire que, pour tout $t \ge 1$, $P(XY > t) = t^{-\alpha}(1 + \alpha \ln t)$.

2. Convergence, théorèmes limites

Exercice 2.6 Pour tout entier naturel n non nul, on considère la fonction f_n définie par

$$f_n(x) = \mathbf{1}_{\mathbb{R}_+}(x)n^2x \exp(-n^2x^2/2).$$

- (1) Montrer que f_n est la densité d'une variable aléatoire.
- (2) Soit (X_n) une suite de variables aléatoires telle que, pour tout entier $n \geq 1$, X_n admet pour densité f_n . Démontrer que la suite (X_n) converge en probabilité vers une variable aléatoire X que l'on précisera.

Exercice 2.7 Soit (U_n) une suite de variables aléatoires indépendantes suivant toutes la loi uniforme sur [0,1]. On note $M_n = \max(U_1, \ldots, U_n)$ et $X_n = n(1 - M_n)$.

- (1) Quelle est la fonction de répartition de X_n ?
- (2) Étudier la convergence en loi de la suite (X_n) .

Exercice 2.8 Soit $\lambda > 0$. Pour tout entier $n \ge \lambda$, on fixe $(X_i^n)_{i \ge 1}$ une suite de variables aléatoires de Bernoulli de paramètre $p_n = \lambda/n$. On considère alors la variable aléatoire

$$N_n = \frac{1}{n} \inf\{i \ge 1; \ X_i^n = 1\}.$$

Démontrer que la suite (N_n) converge en loi vers une variable aléatoire réelle de loi exponentielle de paramètre λ . (Indication : étudier la fonction caractéristique de N_n .)

Exercice 2.9 Soit (X_n) une suite de variables aléatoires vérifiant une loi binomiale $\mathcal{B}(n, p_n)$, avec $np_n \to \lambda > 0$. En utilisant la fonction caractéristique de X_n , démontrer que (X_n) converge en loi vers une variable aléatoire X suivant une loi de Poisson $\mathcal{P}(\lambda)$.

3. Théorème Central limite

Exercice 3.10 En appliquant le théorème limite central à une suite de variables aléatoires indépendantes (X_n) suivant toutes une loi de Poisson $\mathcal{P}(1)$, démontrer que

$$e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!} \to \frac{1}{2}.$$

Exercice 3.11 une compagnie aérienne exploitant un avion de 300 places décide de faire de la surréservation (surbooking) en prenant pour chaque vol un nombre n > 300 de réservations. S'il se présente plus de 300 passagers à l'embarquement, les 300 premiers arrivés prennent leur vol et les autres sont dédommagés financièrement.

- (1) On considère que les passagers sont mutuellement indépendants et que la probabilité de désistement de chacun d'eux est 10%. On note n le nombre de réservations prises par la compagnie pour un vol donné et S_n le nombre (aléatoire) de passagers se présentant à l'embarquement pour ce vol. Donner la loi de S_n , $E(S_n)$ et $V(X_n)$.
- (2) Le directeur commercial de la compagnie aimerait connaître la valeur maximale de n telle que $P(S_n \le 300) \ge 0,99$. En utilisant le théorème Central Limite, proposez une solution approchée de ce problème. On pourra s'aider d'une table de la loi normale.

4. Estimation

Exercice 4.12 Soit X_1, X_2, \dots, X_n un échantillon indépendant de taille n de loi uniforme sur $[0, \theta]$ où θ est unn réel positif inconnu. On note \mathbb{P}_{θ} la probabilité associée à la valeur θ du paramètre.

- (1) Donner la densité, l'espérance et la variance des variables aléatoires X_i .
- (2) On pose $\widehat{\Theta}_n = 2 \frac{X_1 + \dots + X_n}{n} = 2 \bar{X}$. Montrer que $\widehat{\Theta}_n$ converge et calculer son espérance. Déterminer sa variance.
- (3) Soit $M_n = \max(X_1, \dots, X_n)$. déterminer la fonction de répartition de M_n et en déduire que M_n admet une densité que l'on explicitera. Déterminer $\mathbb{E}_{\theta}(M_n)$ et $Var_{\theta}(M_n)$.
- (4) Montrer que pour n assez grand, la loi de $\widehat{\Theta}_n$ peut être approchée par une loi normale dont on précisera la moyenne et la variance. En déduire un intervalle de confiance asymptotique pour θ au niveau de confiance 0.95.
- (5) Montrer que (M_n) est une suite croissante et majorée. Calculer, pour tout réel $\varepsilon > 0$, $\mathbb{P}_{\theta}(|\theta M_n| > \varepsilon)$. En déduire que M_n est un estimateur convergent de θ . Calculer son espérance.