Радиофизический факультет

Кафедра акустики Отчет по лабораторной работе №1

Колебания механических систем с распределенными параметрами

Выполнили студенты 440 группы Карусевич А.А., Понур К.А.

Содержание

Введение			2
1	Резонансные кривые продольных колебаний		
	1.1	Алюминиевый стержень	4
	1.2	Латунный стержень	5
	1.3	Стержень из оргстекла	6
	1.4	Стальной стержень	7
	1.5	Экспериментальное значение модуля Юнга	8
2	Пог	перечные колебания круглых пластин	9
	2.1	Пластина 0.63 мм	9
		2.1.1 Излучатель в центре	9
		2.1.2 Излучатель смещен	9
	2.2	Пластина 1.16 мм	9
		2.2.1 Излучатель в центре	9
		2.2.2 Излучатель смещен	10
	2.3	Теоретические значения частот	10
За	аклю	рчение	11

Введение

В настоящей работе исследуются продольные колебания стержней и поперечные колебания пластин с помощью резонансного метода — возбуждаются колебания на резонансных частотах. Под пластиной понимается упругое трехмерное тело, один размер которого много меньше двух других, а под стержнем — тело, у которого один размер больше двух других. При этом пластины и стержни можно считать тонкими, если длина волны велика по сравнению с их толщиной.

В эксперименте используются три стержня (из алюминия, стали и оргстекла, все длины 394 мм) и две металлические пластины (толщины 0.63 мм и 1.16 мм)

Колебания стержней

Механические свойства однородных и изотропных упругих тел, обладающих потерями, могут быть описаны следующими параметрами: модулем Юнга Е, модулем сдвига, коэффициентом вязкости η и плотностью ρ .

Рассмотрим продольные колебания, возбужденные посредством приложения периодической силы $F_0e^{-i\omega t}$, действующей в направлении оси стержня. Уравнение продольных колебаний в тонком абсолютно упругом стержне, имеющем по всей длине постоянное сечение (без затухания):

$$\xi(x,t) = \frac{F_0 e^{-i\omega t} cosk(l-x)}{kES \sin(\frac{\omega l}{c})},$$

где l длина стержня, k и с соответственно волновое число и фазовая скорость звука в отсутствие потерь, s - единица поперечного сечения.

Видно, что в идеальном стержне без затухания устанавливается чисто стоячая волна, амплитуда смещения которой вдоль стержня распределена по косинусоиде и сильно зависит от частоты вынуждающей силы. Резонанс наблюдается при $\omega = \frac{\pi nc}{l}$ при частотах $f_n = nc/2l$.

В случае малых потерь резонанс наступает почти при тех же частотах, что и а стержне без потерь. Возбуждение продольных колебаний в стержне дает возможность определить модуль Юнга и коэффициент вязкости:

$$E = \rho c^2, \eta = \frac{E}{Q\omega},$$

где Q - добротность стержня, ω - резонансная частота.

Изгибные колебания пластин

Для малых прогибов тонкой пластины требуются слабые внешние усилия, приложенные к ее поверхности. Эти усилия значительно меньше, чем внутренние напряжения, ко-

торые возникают внутри деформированной пластины благодаря имеющимся в ней растяжениям и сжатиям.

Колебания пластины, происходящие с собственными частотами, носят название нормальных колебаний (мод). Каждая мода колебаний характеризуется двойным индексом mn. Число m соответствует порядку бесселевской функции и совпадает с числом узлов окружностей, за исключением граничной. Число n соответствует порядковому номеру решения характеристического уравнения и совпадает с числом узловых диаметров без единицы.

При колебаниях с образованием узловых колец и диаметров поверхность пластины разбивается на зоны, разделенные узловыми линиями, причем колебания в любой зоне происходят в противофазе с соседними зонами. При низшей частоте f_{01} вся поверхность пластины колеблется с одной фазой.

Под действием на пластину силой, изменяющейся по гармоническому закону, в пластине возбуждаются вынужденные колебания. Если частота возбуждающей силы соответствует частоте одной из собственных мод колебаний пластины, то наступает механический резонанс.

Установка с пластинами. Металлическая пластина закреплена в станке, в котором размещен электромагнитный возбудитель колебаний. Возбудитель можно перемещать вдоль диаметра пластинки и наблюдать при этом различные типы колебаний. На пластине рассыпается тонкий слой песка, который при резонансе собирается в узлах колебаний пластины. Полученные картины называются картинами Хладни и позволяют определить конкретную моду колебаний.

1. Резонансные кривые продольных колебаний

1.1. Алюминиевый стержень

Рис. 1: Принципиальная схема

Из графика снятой АЧХ нашли параметры резонансной кривой: резонансную частоту $f_0=6458.6~\Gamma$ ц и ширину на уровне $0.7~\Delta f_{0.7}\approx 1~\Gamma$ ц. Частота согласуется с теоретическим значением первой моды

$$f_1 = \frac{1 \cdot c}{2l} = \frac{5140 \text{ M} \cdot \text{c}^{-1}}{2 \cdot 0.394 \text{ M}} = 6522 \text{ Гц}$$

Добротность колебательной системы

$$Q = \frac{f_0}{\Delta f_{0.7}} \approx 6450$$

Исходя из табличного значения модуля Юнга для алюминия $E=0.07\cdot 10^{12}$ Па, нашли вязкость стержня [2, стр. 10]:

$$\eta = \frac{\gamma E}{\omega_0} = \frac{E}{Q2\pi f_0} = \frac{\Delta f_{0.7} E}{2\pi f_0^2} = 270 \text{ kg} \cdot \text{m}^{-1} \cdot \text{c}^{-1}$$

1.2. Латунный стержень

Рис. 2: Принципиальная схема

Из графика снятой АЧХ нашли параметры резонансной кривой: резонансную частоту $f_0=6458.6~\Gamma$ ц и ширину на уровне $0.7~\Delta f_{0.7}\approx 1~\Gamma$ ц. Частота согласуется с теоретическим значением первой моды

$$f_1 = \frac{1 \cdot c}{2l} = \frac{5140 \text{ M} \cdot \text{c}^{-1}}{2 \cdot 0.394 \text{ M}} = 6522 \text{ } \Gamma$$
ц

Добротность колебательной системы

$$Q = \frac{f_0}{\Delta f_{0.7}} \approx 6450$$

Исходя из табличного значения модуля Юнга для алюминия $E=0.07\cdot 10^{12}$ Па, нашли вязкость стержня [2, стр. 10]:

$$\eta = \frac{\gamma E}{\omega_0} = \frac{E}{Q2\pi f_0} = \frac{\Delta f_{0.7} E}{2\pi f_0^2} = 270 \text{ kg} \cdot \text{m}^{-1} \cdot \text{c}^{-1}$$

1.3. Стержень из оргстекла

Рис. 3: Резонансная кривая колебаний в стержне из оргстекла

Из графика снятой АЧХ нашли параметры резонансной кривой: резонансную частоту $f_0=2420~\Gamma$ ц и ширину на уровне $0.7~\Delta f_{0.7}=96~\Gamma$ ц. Частота согласуется с теоретическим значением первой моды

$$f_1 = \frac{1 \cdot c}{2l} = \frac{2040 \text{ M} \cdot \text{c}^{-1}}{2 \cdot 0.394 \text{ M}} = 2588 \text{ } \Gamma$$
ц

Добротность колебательной системы

$$Q = \frac{f_0}{\Delta f_{0.7}} \approx 25$$

Исходя из табличного значения модуля Юнга для оргстекла $E=0.005\cdot 10^{12}$ Па, нашли вязкость стержня [2, стр. 10]:

$$\eta = \frac{\gamma E}{\omega_0} = \frac{E}{Q2\pi f_0} = \frac{\Delta f_{0.7} E}{2\pi f_0^2} = 13150 \text{ кг} \cdot \text{м}^{-1} \cdot \text{c}^{-1}$$

1.4. Стальной стержень

Рис. 4: Семейство переходных характеристик

Из графика снятой АЧХ нашли параметры резонансной кривой: резонансную частоту $f_0=6610~\Gamma$ ц и ширину на уровне 0.7 $\Delta f_{0.7}=0.48~\Gamma$ ц. Частота хорошо согласуется с теоретическим значением первой моды

$$f_1 = \frac{1 \cdot c}{2l} = \frac{5210 \text{ M} \cdot \text{c}^{-1}}{2 \cdot 0.394 \text{ M}} = 6611 \text{ } \Gamma$$
ц

Добротность колебательной системы

$$Q = \frac{f_0}{\Delta f_{0.7}} \approx 13770$$

Исходя из табличного значения модуля Юнга для стали $E=0.20\cdot 10^{12}$ Па, нашли вязкость стержня [2, стр. 10]:

$$\eta = \frac{\gamma E}{\omega_0} = \frac{E}{Q2\pi f_0} = \frac{\Delta f_{0.7} E}{2\pi f_0^2} = 340 \text{ kg} \cdot \text{m}^{-1} \cdot \text{c}^{-1}$$

1.5. Экспериментальное значение модуля Юнга

В предыдущих пунктах значение модуля Юнга бралось apriori, а согласованность проверялась сравнением первых мод. Однако, можно рассчитать уточненное значение модуля Юнга, рассчитав в обратном порядке скорость звука в продольном стержне, исходя из экспериментальных данных:

$$c = \frac{2lf_n}{n} = 2lf_n = \begin{cases} 5089 \text{ м} \cdot \text{c}^{-1}, & \text{алюминий} \\ 1097 \text{ м} \cdot \text{c}^{-1}, & \text{оргстекло} \\ 5208 \text{ м} \cdot \text{c}^{-1}, & \text{сталь} \end{cases}$$

Считая известными плотности, найдем модуль Юнга:

$$E=\rho c^2= \begin{cases} 0.069\cdot 10^{12}~\Pi\mathrm{a}, & \text{алюминий}\\ 0.0014\cdot 10^{12}~\Pi\mathrm{a}, & \text{оргстекло}\\ 0.211\cdot 10^{12}~\Pi\mathrm{a}, & \text{сталь} \end{cases}$$

Тогда уточнённое значение вязкости для стали и алюминия изменится в пределах погрешности измерений, а для оргстекла

$$\eta_{new} \approx 3700 \text{ kg} \cdot \text{m}^{-1} \cdot \text{c}^{-1}$$

Возникает вопрос о причине такого сильного расхождения. Это можно объяснить тем, что вычисляюся величины, опирающиеся на эксперимент, т.е. снятую резонансную кривую, которая характеризует не колебания в стержне, но и характеристики колебательной системы в целом, в том числе, приемника/передатчика.

2. Поперечные колебания круглых пластин

В данном эксперименте изучались т.н. фигуры Хладни, образующиеся из скоплений частиц песка на колеблющейся пластине в узлах колебаний. Фигуры был получены на различных модах колебаний в пределах 0.5-1.5 к Γ ц для двух пластин различной толщины при двух положениях излучателя.

2.1. Пластина 0.63 мм

2.1.1 Излучатель в центре

2.1.2 Излучатель смещен

2.2. Пластина 1.16 мм

2.2.1 Излучатель в центре

2.2.2 Излучатель смещен

Можно отметить, что при смещении излучателя частота основного тона повышается. В каждом из экспериментов были сняты основной тон и один и более обертонов. Наиболее высокий обретон, который удалось получить – f_{31} для пластины 0.63 мм.

2.3. Теоретические значения частот

Собственные частоты изгибных колебаний пластины определяются формулой

$$\omega_{mn} = \frac{\pi^2 H}{a^2} \beta_{mn}^2 \left| \frac{E}{3\rho_s (1 - \nu^2)} \right|^{\frac{1}{2}}$$

Где значения β_{mn} порождаются решением уравнений относительно функций Бесселя и не связаны с характеристиками установки. β_{mn} можно считать известными.

Так как некоторые константы были не известны, можно поступить следующим образом: брать основной тон из эксперимента и пытаться рассчитать по формуле обертона. Например, для основного тона $f_{01} = 165$ Γ ц рассчитаем обертона $f_{02,03}$:

$$f_{02} = 3.309 f_{01} = 545 \ \Gamma$$
ц, $f_{03} = 2.234 f_{02} = 1217 \ \Gamma$ ц

В эксперименте же наблюдались частоты 567 и 1226 Гц. Завышение теоретических значений можно объяснить наличием диссипации: так, по аналогии, учет диссипации для колебаний в LC-контуре приводит к уменьшению резонансной частоты.

Заключение

В настоящей работе были изучены линейные теории двумерных колебательных систем с распределенными параметрами (пластин и стержней); проведен ряд экспериментов с пластинами и стержнями.

Для стержней были получены резонансные кривые, рассчитаны добротность, модуль Юнга и коэффициент вязкости для каждого стержня. Следует отметить различие в ширинах резонансных кривых (и, как следствие, добротностях) для стали и оргстекла. Для оргстекла ширина резонансной кривой составляет несколько сотен Герц (и добротность ~ 10), а для стали ширина кривой несколько Герц (а добротность $\sim 10^4$). Такая большая разница связана с различиями в структурах оргстекла и стали. Оргстекло – аморфный материал с высокой (по сравнению со сталью) вязкостью, поэтому колебания в нем распространяются хуже, чем в стали.

В экспериментах с пластинами были получены фигуры Хладни, определены моды колебаний для двух положений возбудителя: по центру пластины и сдвинутым относительно центра.

Список литературы

- [1] Гурбатов С.Н. Лекции по механике сплошных сред на радиофизическом факультете 2018/2019.-106 с.
- [2] Горская Н. В., Курин В. В. и др. Колебания механической системы с распределенными параметрами: колебания стержней. Н.Новгород: ННГУ, 1995. 13 с.