

Computeranimation

Lesson 2 – Keyframeanimation

Motivation

Topics

- Rigid Transformation
- Animation
- Collision
- Dynamic
- Mass-Spring Simulation
- Rigging and Skeletal Animation

Introduction Interpolation Orientation Application

Key Frame Animation (also In-Betweening)

- State of an Object is defined at certain points in time (**key frames**)
- Determine Positions in between this key frames
- ... using **interpolation**

Object State

- Snap-shot of all relevant object parameters
- Some Examples of animation variables (avars):

Object's ...

- ... position
- ... orientation
- ... shape of an object
- ... camera parameters
- ... light information parameters

[...]

"Woody has 712 avars, 212 only for his face..."

(http://www.ee.hawaii.edu/~tep/EE461/Notes/Intro/toystory.html)

Object State: Translation And Rotation Example

Object State: Translation And Rotation Example

Introduction
Interpolation
Orientation
Application

Motivation

- Problem: A function (e.g. an *avar*) is given only at some points in time.
- Challenge: How to find valid (or plausible) values in between these **sampling points**.

Local Methods

- To interpolate a value only a surrounding sampling points are used
- Some methods:
 - Linear interpolation
 - Hermite interpolation
 - Catmull-Rom interpolation

Global Methods

- More than a local neighborhood is is included in the computation
- Some Methods use the whole set of sample points
- Some methods:
 - Polynomial interpolation
 - Bézier curves
 - B-Spline curves

Linear Interpolation

2D

Linear Interpolation

- Seek for the *i* with $t_i \le t \le t_{i+1}$
- Compute the **local parameter** $u(t) = \frac{t t_i}{t_{i+1} t_i}$
- The function Value P(t) finally the linearly interpolated value at u between the sampling points (t_i, P_i) and (t_{i+1}, P_{i+1}) :

$$P(u) = (1 - u) \cdot P_i + u \cdot P_{i+1}$$

Hermite-Interpolation

- In Addition to values the 1st derivatives (slope) is defined at each sample

Hermite-Interpolation

- Challenge: Find an interpolating cubic polynomial which slope fits good to the desired curve

$$P(u) = a_3 u^3 + a_2 u^2 + a_1 u + a_0$$

- Consider Hermite Polynomials with their boundary properties:

	$H_i(0)$	H _i '(0)	H_i '(1)	$H_i(1)$
$H_0(u) = 2u^3 - 3u^2 + 1$	1	0	0	0
$H_1(u) = u^3 - 2u^2 + u$	0	1	0	0
$H_2(u) = u^3 - u^2$	0	0	1	0
$H_3(u) = -2u^3 + 3u^2$	0	0	0	1

Hermite-Interpolation

With the following approach

$$P(u) = P_0 H_0(u) + P_0'(u) H_1(u) + P_1'(u) H_2(u) + P_1 H_3(u), \qquad u \in [0,1]$$

... this leads to the interpolation:

$$P(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & -2 \\ -3 & -2 & -1 & 3 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} P_0 \\ P'_0 \\ P_1 \\ P'_1 \end{bmatrix}$$

Catmull-Rom Interpolation

- Basically Hermite interpolation
- Tangent (derivative) is calculated by finite differences:

$$P_i' = \frac{P_{i+1} - P_{i-1}}{t_{i+1} - t_{i-1}}$$

Bézier Curves

- Global Interpolation Method
- Uses all sample points for interpolation
- Geometrical construction
- Algorithm of De' Casteljau

Introduction Interpolation

Orientation

Application

Introduction

Remember the rigid body Transformation

$$\vec{x} \rightarrow \mathbf{R} \cdot \vec{x} + \vec{t}$$

- The Rotation Matrix R is orthogonal: $R \cdot R^T = R^T \cdot R = I \rightarrow |R \cdot R^T|^2 = 1$
- The combination of rigid Transformations is a rigid Transformation as well:

$$\vec{x} \rightarrow R_2 \cdot (R_1 \cdot \vec{x} + \vec{t_1}) + \vec{t_2} = R_2 \cdot R_1 \cdot \vec{x} + R_2 \cdot \vec{t_1} + \vec{t_2}$$

is a orthogonal matrix!

is a vector!

Rotation Matrix

The columns of the rotation matrix span a new coordinate system

$$\vec{x} \rightarrow \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \cdot \vec{x} + \vec{t}$$

- The matrix cannot be arbitrarily choosen!
- The orthonoality has to be ensured → 3 degrees of freedom!

Interpolation of a Rotationmatrix

- $interpolate(\mathbf{R_1}, \mathbf{R_2}, u) = (1 u) \cdot \mathbf{R_1} + u \cdot \mathbf{R_2}$
- The interpolated Matrix in general is not a Rotation Matrix
- Unit vectors are no longer unit length, orthogonality is not ensured

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix} + \frac{1}{2} \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{bmatrix} = \frac{1}{2} \begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{bmatrix}$$

It is not a good idea interpolating rotation matrices!

21

Reorthonomalization of interpolated Rotation Matrices

- $interpolate(R_1, R_2, u) = (1 u) \cdot R_1 + u \cdot R_2 \rightarrow \widetilde{R}_{int}$
- \widetilde{R}_{int} consists of the column vectors $\{\widetilde{a}, \widetilde{b}, \widetilde{c}\}$, we want to get the adjusted vectors $\{a, b, c\}$
 - 1. Set vector $a = \frac{\widetilde{a}}{\|\widetilde{a}\|}$
 - 2. Set vector $\boldsymbol{b} = \boldsymbol{a} \times \tilde{\boldsymbol{c}}$, and normalize it $\boldsymbol{b} = \frac{\boldsymbol{b}}{\|\boldsymbol{b}\|}$
 - 3. Set vector $c = a \times b$, and normalize it $c = \frac{c}{\|c\|}$
 - 4. Set adjusted rotation matrix $R_{int} = \{a, b, c\}$

Fixed Angles

- The rotation is described by a chain of Rotations about the global Axis

$$R = R_z(\gamma) \cdot R_y(\beta) \cdot R_x(\alpha)$$

- Note: the rotations are multiplied from right to left
- The avars is the triplet (α, β, γ)
- Rotation axis can combinated (almost) freely:
 - xyz (example above), zyx
 - also xyx, zxz
 - Not: xxy! A subsequent rotation about the same axis leads to a wrong result

Fixed Angles

The rotation is described by a chain of Rotations about the global Axis

$$R = R_z(\gamma) \cdot R_y(\beta) \cdot R_x(\alpha)$$

The matrices for rotations about the unit axis are:

$$\mathbf{R}_{x}(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$$

$$\mathbf{R}_{\mathbf{x}}(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix} \qquad \mathbf{R}_{\mathbf{y}}(\theta) = \begin{bmatrix} \cos(\theta) & 0 & -\sin(\theta) \\ 0 & 1 & 0 \\ \sin(\theta) & 0 & \cos(\theta) \end{bmatrix} \qquad \mathbf{R}_{\mathbf{z}}(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\alpha) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R}_{\mathbf{z}}(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\alpha) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Fixed Angles

- Example, order is xyz (see example above), angles are (10°, 45°, 90°)

Euler Angles

- Instead of rotation about global axis, we rotate the system with the object:

Example

- 1. Yaw: $R_{\nu}(\alpha)$
- 2. Pitch in local space (reverse yaw, rotate, re-apply yaw): $\mathbf{R}_{\mathbf{v}}(\alpha) \mathbf{R}_{\mathbf{x}}(\beta) \mathbf{R}_{\mathbf{v}}(-\alpha)$
- 3. combine: $R_{v}(\alpha) R_{x}(\beta) R_{v}(-\alpha) R_{v}(\alpha) = R_{v}(\alpha) R_{x}(\beta)$
- 4. Roll local space
 - 1. Revert Yaw und Pitch, apply roll, re-apply yaw, pitch:
 - 2. $\mathbf{R}_{\mathbf{v}}(\alpha) \mathbf{R}_{\mathbf{x}}(\beta) \mathbf{R}_{\mathbf{z}}(\gamma) \mathbf{R}_{\mathbf{x}}(-\beta) \mathbf{R}_{\mathbf{v}}(-\alpha)$
 - 3. kombinieren:

$$R_{y}(\alpha) R_{x}(\beta) R_{z}(\gamma) R_{x}(-\beta) R_{y}(-\alpha) R_{y}(\alpha) R_{x}(\beta) = R_{y}(\alpha) R_{x}(\beta) R_{z}(\gamma)$$

 \rightarrow Standard in Automotive/Aeronautics is: $R_x(\alpha) R_y(\beta) R_z(\gamma)$

Interpolation of Fixed/Euler Angles

- Simply interpolate the angles
- **Problems**: flipping angles, gimbal lock

- Gimbal Lock:
 - Pitch (green) is 90° → roll (blue) and yaw (violet) have the same effect
 - In this constellation no roll about the original roll axis possible!

Introduction
Interpolation
Orientation
Application

