U.S.S.N.09/779,334
Filed: February 8, 2001
RESPONSE TO RESTRICTION REQUIREMENT

- 8. (twice Amended) The animal feed additive of claim 6, which further comprises at least one enzyme selected from the group consisting of phytase, xylanase, galactanase, and [/or] beta-glucanase.
- 9. (amended) An animal feed composition having a crude protein content of 50-800 g/kg and comprising at least one acid-stable protease, wherein the protease is selected from the group consisting of
 - (i) [is] proteases of the subtilisin family; and [/or]
 - (ii) [has] proteases having less than 10% residual activity when inhibited with SSI.
- 10. The animal feed composition of claim 9, wherein the amount of the protease is 0.01-200 mg protease protein per kg feed.

Please cancel claims 11-12.

13. The animal feed additive of claim 7, which further comprises at least one enzyme selected from the group consisting of phytase, xylanase, galactanase, and [/or] beta-glucanase.

Remarks

The claims have been amended to utilize more accepted claim format. In particular, the claims have been amended to incorporate Markush language and to delete the phrase "and/or".

The claims were restricted into five groups. This restriction is respectfully traversed.

The Examiner has divided the claims into five groups: group I, claims 1, 3, 9, and 10, drawn to an animal feed composition comprising an acid-stable subtilisin; group II, claims 2, 4, and 6-8, drawn to an animal feed additive and method of making; group III, claim 5, drawn to a

U.S.S.N.09/779,334 Filed: February 8, 2001

RESPONSE TO RESTRICTION REQUIREMENT

vegetable proteins; and group V, claim 13, drawn to an animal feed additive comprising subtilisin protease and glycanases.

First, it should be noted that the examiner has divided dependent claims into separate groups than the independent claims from which they depend. It is impossible to argue that one would have to search a different group for a claim dependent on another claim which has been alleged grouped as a separate invention. Second, the features which the examiner must search for novelty and inventive step, are the same for all of claims 1-10 and 13: an acid-stable protease as defined either as a protease of the subtilisin family or a protease having less than 10% residual activity when inhibited with SSI. Although the examiner has indicated that the claims are distinguished as an animal feed versus an animal feed additive, and method of manufacture, these are in fact semantic arguments, since the claimed elements are the same. Accordingly, it would not represent an additional burden for the examiner to search all of the claims now pending. Should the examiner maintain the restriction requirement, applicants reserve the right to petition for rejoined of the claims. However, to the extent it is possible to elect a single group from these claims, applicants elect an animal feed additive, and method of making, group II, with traverse.

Claims 11-12, group IV, have been cancelled.

Please note that an Information Disclosure Statement was mailed July 11, 2001, and a Supplemental Information Disclosure Statement was mailed October 12, 2001.

U.S.S.N.09/779,334
Filed. February 8, 2001
RESPONSE TO RESTRICTION REQUIREMENT

11. V. 12 12 12 18:38

An action on the merits of all of claims 1-10 and 13, as amended, is earnestly solicited.

Respectfully submitted,

Patrea L Pabst

Reg. No. 31,284

Date: May 23, 2002 Holland & Knight LLP One Atlantic Center Suite 2000 1201 W. Peachtree Street Atlanta, GA 30309-3400 (404) 817 8473 (404) 817 8588

CERTIFICATE OF FACSIMILE TRANSMISSION

I hereby certify that the attached Response to Restriction Requirement and all documents shown as being attached is being facsimile transmitted to the U. S. Patent and Trademark Office on the date shown below.

Date: May 23, 2002

Jean Hicks

U.S.S.N.09/779,334
Filed: February 8, 2001
RESPONSE TO RESTRICTION REQUIREMENT

APPENDIX: Marked up copy of claims as amended

- 1. (amended) [Use of at least one acid-stable protease in] An animal feed[, wherein the] comprising at least one protease selected from the group consisting of
 - (i) [is] proteases of the subtilisin family; and[/or]
 - (ii) [has] proteases having less than 10% residual activity when inhibited with SSI.
- 2. (amended) [Use of at least one acid-stable protease in the preparation of] A method of preparing a composition for use in animal feed, [wherein the] comprising adding to the feed at least one protease selected from the group consisting of
 - (i) [is] proteases of the subtilisin family; and[/or]
 - (ii) [has] proteases having less than 10% residual activity when inhibited with SSI.
- 3. (amended) The [use] <u>animal feed</u> of claim 1, wherein the dosage of the protease is 0.01-200 mg protease enzyme protein per kg feed.
- 4. (amended) The [use] method of claim 2, wherein the [intended dosage of the] protease is added at a dosage of 0.01-200 mg protease enzyme protein per kg feed.
- 5. (amended) A method for improving the nutritional value of an animal feed, wherein at least one acid-stable protease is added to the feed, and wherein the protease is selected from the group consisting of
 - (i) [is] proteases of the subtilisin family; and[/or]
 - (ii) [has] proteases having less than 10% residual activity when inhibited with SSI.
- 6. (amended) An animal feed additive comprising

 [(a)] at least one acid-stable protease; and at least one compound selected from the group

U.S.S.N.09/779,334 Filed: February 8, 2001

RESPONSE TO RESTRICTION REQUIREMENT

- [(b) at least one] fat-soluble [vitamin] vitamins; [and/or]
- [(c) at least one] water-soluble [vitamin, and/or] vitamins,
- [(d) at least one] trace [mineral, and/or] minerals, and
- [(e) at least one] macro [mineral] minerals; wherein the protease is selected from the group consisting of
 - (i) [is] proteases of the subtilisin family; and [/or]
 - (ii) [has] proteases having less than 10% residual activity when inhibited with SSI.
- 7. The animal fee additive of claim 6, wherein the amount of the protease corresponds to an intended addition of 0.01-200 mg protease protein per kg feed.
- 8. (twice Amended) The animal feed additive of claim 6, which further comprises at least one enzyme selected from the group consisting of phytase, xylanase, galactanase, and[/or] beta-glucanase.
- 9. (amended) An animal feed composition having a crude protein content of 50-800 g/kg and comprising at least one acid-stable protease, wherein the protease is selected from the group consisting of
 - (i) [is] proteases of the subtilisin family; and [/or]
 - (ii) [has] proteases having less than 10% residual activity when inhibited with SSI.
- 10. The animal feed composition of claim 9, wherein the amount of the protease is 0.01-200 mg protease protein per kg feed.

Please cancel claims 11-12.

U.S.S.N.09/779,334 Filed: February 8, 2001

RESPONSE TO RESTRICTION REQUIREMENT

APPENDIX: Clean Copy of Claims as Amended

- 1. (amended) An animal feed comprising at least one protease selected from the group consisting of
 - (i) proteases of the subtilisin family; and
 - (ii) proteases having less than 10% residual activity when inhibited with SSI.
- 2. (amended) A method of preparing a composition for use in animal feed, comprising adding to the feed at least one protease selected from the group consisting of
 - (i) proteases of the subtilisin family; and
 - (ii) proteases having less than 10% residual activity when inhibited with SSI.
- 3. (amended) The animal feed of claim 1, wherein the dosage of the protease is 0.01-200 mg protease enzyme protein per kg feed.
- 4. (amended) The method of claim 2, wherein the protease is added at a dosage of 0.01-200 mg protease enzyme protein per kg feed.
- 5. (amended) A method for improving the nutritional value of an animal feed, wherein at least one acid-stable protease is added to the feed, and wherein the protease is selected from the group consisting of
 - (i) proteases of the subtilisin family; and
 - (ii) proteases having less than 10% residual activity when inhibited with SSI.
- 6. (amended) An animal feed additive comprising
 at least one acid-stable protease; and at least one compound selected from the group

"a" so oble vi umins.

U.S.S.N.09/779,334 Filed: February 8, 2001

RESPONSE TO RESTRICTION REQUIREMENT

water-soluble vitamins.

trace minerals, and

macro minerals;

wherein the protease is selected from the group consisting of

- (i) proteases of the subtilisin family; and
- (ii) proteases having less than 10% residual activity when inhibited with SSL
- 7. The animal fee additive of claim 6, wherein the amount of the protease corresponds to an intended addition of 0.01-200 mg protease protein per kg feed.
- 8. (twice Amended) The animal feed additive of claim 6, which further comprises at least one enzyme selected from the group consisting of phytase, xylanase, galactanase, and beta-glucanase.
- 9. (amended) An animal feed composition having a crude protein content of 50-800 g/kg and comprising at least one acid-stable protease, wherein the protease is selected from the group consisting of
 - (i) proteases of the subtilisin family; and
 - (ii) proteases having less than 10% residual activity when inhibited with SSL
- 10. The animal feed composition of claim 9, wherein the amount of the protease is 0.01-200 mg protease protein per kg feed.

Please cancel claims 11-12.

 $\frac{\partial g^{-1}(g)}{\partial g} = \frac{\partial g^{-1}(g)}{\partial g} = \frac{\partial g}{\partial g}$

13. The animal feed additive of claim 7, which further comprises at least one enzyme