

Rozpoznawanie obiektów na zdjęciach w technologii Python

PSY VS KOTY

Treść prezentacji:

- o Jak komputer widzi zdjęcie?
- O Czym jest CNN?
- Poszczególne warstwy sieci neuronowych.
- o Prezentacja i omówienie wyników.

Jak komputer widzi zdjęcie?

Input image


```
kernel = np.array([
[1, 0, -1],
[2, 0, -2],
[1, 0, -1]])
```


Input image


```
kernel = np.array([
[0.01, 0.01, 0.01],
[0.01, 0.01, 0.01],
[0.01, 0.01, 0.01]])
```


Input image


```
kernel = np.array([
[-1, -1, -1],
[-1, 8, -1],
[-1, -1, -1]])
```


Czym jest CNN?

The skeleton of a neural network

Typy i architektura warstw:

Convolutional layer - warstwa konwolucji

ReLU layer - warstwa ReLU

Pooling layer – warstwa łączenia

Flattening layer

- warstwa spłaszczenia Dropout Layer - warstwa porzucenia

Fully connected layer – warstwa całkowicie połączona

Warstwa konwolucji

Warstwa ReLU

Warstwa łączenia

15	10	8	20			
15	55	0	0	2x2 Max-Pool	55	20
11	7	19	120		17	120
5	17	30	35			

Warstwa spłaszczająca

Pooled feature map

4

2

Warstwa całkowicie połączona i warstwa porzucenia

(b) After applying dropout.

Co zrobiłyśmy?

Czy to pies?

Czy to kot?

