Regression and Classification Basics

Master en Big Data and Data Science

José Dorronsoro Escuela Politécnica Superior Universidad Autónoma de Madrid

C	CONTENTS	
C	ontents	
1	Machine Learning Modeling Basics	3
2	Basic Regression	6
3	Bias, Variance and Cross Validation	9
4	Data and Model Analysis	11
5	Basic Classification	13
6	Logistic Regression	14
7	1 1 WO VIOLET COMMON CO	17
	7.1 Nearest Neighbor Classification	19

1 Machine Learning Modeling Basics

What Is Machine Learning (ML)?

- Lofty definition: make machines learn!!!
 - Have to make "machines" and "learn" more precise
- The machines of ML: mathematical input—output processes that lend themselves to some form of (numerical) parameterization
- The learning process: adjust the machine's parameters until a goal is reached
- New thing: "goal"?
 - At first sight, get something done
 - Ultimately, to minimize some error measure
- Summing things up: a ML process tries to find a concrete mathematical/algorithmic input-output
 parameterized transformation that minimizes an error measure by iteratively adjusting the
 transformation's parameters

Where Lies ML?

- In the middle of a possibly long process chain
- Before ML starts we must
 - Go from **raw to organized** data: accessing, gathering, cleaning, formatting, ...
 - Go from organized to (potentially) informative data: extracting basic and derived features
- After ML finishes and we have a model, we must perform
 - Outcome **evaluation**: how good/actionable the model is
 - Outcome exploitation: collect, organize, act
 - Individual model maintenance: monitor performance, tune hyper–parameters
 - Modeling life cycle maintenance: discard old models, introduce new ones and communicate our work/results
- ML is in the middle of the global process chain

Supervised/Unsupervised Models

- Model types: supervised, unsupervised
- Supervised models:
 - Targets y^p are known and the model tries to predict or estimate them
 - These known targets guide, or supervise, model building
 - Main emphasis here

- Unsupervised models:
 - There are no predetermined or supervising outputs
 - But nevertheless the model is supposed to learn relations or find structure in the data
 - Sometimes as a first step towards a supervised model

Regression and Classification

- Problems (usually) to be solved by models: regression, classification
- Patterns come in pairs (x, y)
 - x: inputs, predictors, features, independent variables
 - y: target, response, dependent variable; numerical in regression, class labels in classification
- **Regression**: the desired output y is regressed into the inputs x to derive a model $\hat{y} = f(x)$
 - We want $y \simeq \hat{y}$ so having $y \hat{y}$ "small" is the natural goal
- Classification: inputs are derived from several classes C_1, \ldots, C_K , to which labels ℓ_k are assigned
 - The model now assigns a label $\ell(x)$ to an input x
 - If x is derived from C_k we want to have $\ell(x) = \ell_k$
 - Here having $\ell(x) \ell_k$ "small" may not make sense

The Boston Housing Problem

- This is a first "toy" regression problem
- We want to estimate the median of house values over an area from some information about it which we believe relevant
- Features x: several real estate—related variables of Boston areas
 - CRIM: per capita crime rate by town
 - RM: average number of rooms per dwelling
 - NOX: nitric oxides concentration (parts per 10 million)
 - AGE: proportion of owner-occupied units built prior to 1940
 - LSTAT: % lower status of the population
 - **–** ...
- Target y: MEDV, median value of owner-occupied homes in \$1,000's

How to Build Regression Models

• In general we have a sample $S = \{x^p, y^p\}, 1 \le p \le N$, with $x^p \in \mathbf{R}^d$ the **features** and y^p the **targets**

- 5
- We want to build a model $\hat{y} = f(x)$ so that $\hat{y}^p = f(x^p) \simeq y^p$; i.e., we want to **regress** y to the x
- The concrete f is chosen within a certain family \mathcal{F}
 - Examples here: linear regression, multilayer perceptrons (MLPs), SVMs
 - And also: Random Forests (RF), Gradient Boosting (GB), Nearest Neighbor (NN)
- Natural option to ensure $f(x^p) \simeq y^p$: choose f to minimize the sample mean square error (MSE)

$$\widehat{e}(f) = \widehat{e}_S(f) = \frac{1}{2N} \sum_{p=1}^{N} (y^p - f(x^p))^2$$

• Thus, the model we select is $\widehat{f} = \widehat{f}_S = \arg\min_{f \in \mathcal{F}} \widehat{e}_S(f)$

Model Parameterization

- Usually individual models are selected through (ideally optimal) parameter sets
 - The parameters (weights) $W \in \mathbb{R}^M$ select a concrete f in \mathcal{F}
- Parametric models have a fixed functional form f(x) = f(x; W)
- Simplest example: linear regression, where M = d + 1 and $W = (w_0, w)$

$$f(x; w_0, w) = w_0 + \sum_{j=1}^{d} w_j x_j = w_0 + w \cdot x$$

- **Semi-parametric** models also use weights but without a predefined functional form; MLPs but also RF or GBR
- Non parametric models do not use weights nor follow any broad functional form; Nearest Neighbor models

Model Estimation as Error Minimization

- For a parametric or semiparametric f(x; W) we can write $\widehat{e}_S(f) = \widehat{e}_S(W)$
- The problem to solve becomes

$$\widehat{W}^* = \widehat{W}_S^* = \arg\min_{W} \widehat{e}_S(f(\cdot; W)), \text{ i.e., } \widehat{e}_S(\widehat{W}^*) \leq \widehat{e}_S(W) \; \forall W$$

• In linear regression

$$\widehat{e}(w_0, w) = \frac{1}{2N} \sum_{p=1}^{N} (y^p - w_0 - w \cdot x^p)^2$$

which ends up in a simple quadratic form

- $\bullet\,$ The regression problem reduces to minimize $\widehat{e}_S(W)$
 - Something in principle well understood in mathematical optimization

2 BASIC REGRESSION 6

2 Basic Regression

Regression Assumptions

- **Key assumption**: x and y are related as $y = \phi(x) + n$ where
 - $\phi(x)$ is the **true** underlying function
 - n is **additive noise** with 0 mean and finite variance σ_N^2
- Our sample is just a particular instance of a deeper sample generation process
- Thus x, n are produced by random variables X, N
 - And so is y, given by $Y = \phi(X) + N$
- ullet Moreover, X and N are independent distributions
- These assumptions are basic in what follows
- We should check our final models verify them

Linear Models

• Assuming $x \in \mathbf{R}^d$, the basic linear model is

$$f(x) = w_0 + \sum_{i=1}^{d} w_i x_i = w_0 + w \cdot x$$

- w_0 complicates notation and, to drop it, we center x and y so that $E[x_i] = E[y] = 0$; then $w_0 = 0$
- Then we are left with the simpler homogeneous model $f(x) = w \cdot x$
- In practice we will always **normalize** x, for instance to have 0 mean and 1 standard deviation (std) on each feature
 - But not y if we may help it
- But: how do we find w?

1-dimensional Linear Regression (LR)

- Assume that features X and target Y are **centered**, i.e., have 0 means
- For 1-dimensional patterns x the LR model then becomes

$$f(x) = w x$$

• And the error is then the function e(w)

$$\widehat{e}(w) = \frac{1}{2N} \sum_{p=1}^{N} (w \, x^p - y^p)^2 = \frac{1}{2N} \sum_{p} \left(w^2 \, (x^p)^2 - 2x^p \, y^p \, w + (y^p)^2 \right)$$
$$= w^2 \left(\frac{1}{2N} \sum_{p} (x^p)^2 \right) - w \left(\frac{1}{N} \sum_{p} x^p \, y^p \right) + \frac{1}{2N} \sum_{p} (y^p)^2$$

- The problem has obviously a minimum w^*
- To find it we just solve $\hat{e}'(w) = 0$

Solving $\hat{e}'(w) = 0$

• To compute $\widehat{e}'(w)$ we have

$$\widehat{e}'(w) = w \left(\frac{1}{N} \sum_{p} (x^p)^2\right) - \left(\frac{1}{N} \sum_{p} x^p y^p\right)$$

• The optimal w^* solves $\widehat{e}'(w) = 0$ and is given by

$$w^* = \frac{\frac{1}{N} \sum_p x^p y^p}{\frac{1}{N} \sum_p (x^p)^2} \quad = \quad \frac{\frac{1}{N} X \cdot Y}{\frac{1}{N} X \cdot X} = \frac{\frac{1}{N} X \cdot Y}{\text{var}(x)} = \frac{1}{\text{var}(x)} \text{ covar}(x, y)$$

where X and Y denote the N dimensional vectors $(x^1, \dots, x^N)^t, (y^1, \dots, y^N)^t$

General Linear Regression

- ullet Assume again that X and Y are centered
- The LR model becomes now $f(x) = \sum_{i=1}^{d} w_i x_i = w \cdot x$
- If Y is the $N \times 1$ target vector and we organize the sample S in a $N \times d$ data matrix X, the sample mse is given by

$$\widehat{e}(w) = \frac{1}{2N} \sum_{p} (w \cdot x^{p} - y^{p})^{2} = \frac{1}{2N} (Xw - Y)^{t} (Xw - Y)$$
$$= \frac{1}{2N} (w^{t} X^{t} X w - 2w^{t} X^{t} Y + Y^{t} Y)$$

- Now we have to solve $\nabla \widehat{e}(w) = 0$, i.e., $\frac{\partial \widehat{e}}{\partial w_i}(w) = 0$
- It is easy to see that

$$\nabla \widehat{e}(w) = \frac{1}{N} X^t X w - \frac{1}{N} X^t Y = \widehat{R} w - \widehat{b}$$

Solving the Linear Equations

ullet Thus, the optimal \widehat{w}^* must solve the **normal equation** \widehat{R} $\widehat{w}-\widehat{b}=0$, where we recall that

$$\widehat{R} = \frac{1}{N} X^t X, \ \widehat{b} = \frac{1}{N} X^t Y$$

• Over the original, non-centered data matrix we have

$$\widehat{R} = \frac{1}{N} (X - \overline{X})^t (X - \overline{X});$$

i.e., \widehat{R} is the sample covariance matrix

2 BASIC REGRESSION 8

- If \widehat{R} is **invertible**, we just solve the linear system \widehat{R} $\widehat{w} \widehat{b} = 0$
- And obtain the sample-dependent optimal \widehat{w}^* as

$$\widehat{w}^* = \widehat{R}^{-1}\widehat{b} = (X^t X)^{-1} X^t Y$$

Finding Optimal Models

- Computing the covariance matrix has a $O(N \times d^2)$ cost and invert it has a $O(d^3)$ cost
 - For big data problems it may not possible to solve analytically the normal equation $\nabla \widehat{e}(w) = 0$
- The simplest numerical alternative is **gradient descent**:
 - Starting from some random w^0 we iteratively compute

$$w^{k+1} = w^k - \rho_k \nabla \widehat{e}(w^k) = w^k - \frac{\rho}{n_B} \left(\widehat{X}_B^t \widehat{X}_B w^k - \widehat{X}_B^t Y \right)$$

over a **mini-batch** B with n_B samples

- Component wise: $w_i^{k+1} = w_i^k \rho_k \frac{\partial \widehat{e}}{\partial w_i}(w^k)$
- ρ_k is the **learning rate**
- If $w^k \to w^*$, then $\nabla \widehat{e}(w^*) = 0$
 - Since our problems have obviously minima, this should be enough

Measuring Model Fit

- First option: Root Square Error $RSE = \sqrt{\frac{1}{N}\sum (y^p \widehat{y}^p)^2}$
- OK, but how good is this? We must always have a base model to benchmark our results
- Simplest "model": a constant w_0 , which yields the mean $\overline{y} = \frac{1}{N} \sum_{1}^{N} y^p$, with square error

$$\frac{1}{N}\sum (y^p - \overline{y})^2 = \operatorname{Var}(y)$$

• We can compare our model against this base by computing

$$\frac{\sum (y^p - \widehat{y}^p)^2}{\sum (y^p - \overline{y})^2} = \frac{RSE^2}{\mathrm{Var}(y)}$$

• The widely used R^2 coefficient is simply $R^2 = 1 - \frac{RSE^2}{\text{Var}(y)}$

Regularization

- ullet Our regression solution $\widehat{w}^* = \left(X^t X\right)^{-1} X^t Y$ won't work if $X^t X$ is not invertible
 - For instance, when some features are correlated

- We could fix this working instead with $X^tX + \alpha I$ for some $\alpha > 0$
- To make this practical, one can show that $\widehat{w}^* = (X^t X + \alpha I)^{-1} X^t Y$ minimizes

$$e_R(w) = \frac{1}{2N} \sum_p (y^p - w \cdot x_p^p)^2 + \frac{\alpha}{2} ||w||^2,$$

- This is the Ridge Regression problem
 - Our first example of **regularization**, a key technique in Machine Learning
 - All ML models must be regularized in some way
- Important issue: how to find the right choice for α ?

Takeaways on Linear Regression

- 1. We introduced **supervised** models
- 2. We have reviewed the essentials of the **linear regression model** (always the first thing to try)
- 3. We have considered model estimation as a problem on error minimization
- 4. We have seen how to build linear models analytically and numerically
- 5. We have defined how to measure model fit
- 6. We have introduced **regularization**

3 Bias, Variance and Cross Validation

Sample Dependence

- Important: everything is sample dependent for if we change S we get a different model
 - We thus write $\widehat{f}_S(x)$
- Therefore, for different samples S, S' we want our models to verify

$$\widehat{f}_S(x) \simeq \widehat{f}_{S'}(x)$$

- That is, we want our models to have small variance with respect to sample changes
 - Intuitively this can be achieved using simple models with few parameters
- $\bullet \;$ But we also want that $\widehat{f}_S \simeq \phi(x)$
- That is, we want our models to have a small **bias**, i.e., get as close as possible to the "true" model ϕ
 - Intuitively this can be achieved using highly flexible models with many parameters
- But obviously both goals are contradictory to a large extent

Evaluating Expected Performance

- Over a single S, we apply **Cross Validation** (CV), where we
 - Randomly split the sample S in M subsets S_1, \ldots, S_M
 - Work with M folds: pairs (S_m, S_m^c) , with

$$S_m^c = S - S_m = \cup_{i \neq m} S_i$$

- Build M different models using the S_m^c as training subsets
- Compute their errors e_m on the folds' validation subsets S_m
- Use these **errors' average** as a first estimate of the true model performance
- CV can and **must be used** in any model building procedure
- We will also use CV to find an **optimal value** for the hyper–parameter α in Ridge Regression

Grid Hyper-parameter Selection

- Consider for Ridge regression a hyper–parameter range [0, A]
 - $\alpha = 0$: no penalty and, thus, small bias but possibly high variance
 - $\alpha = A$: large penalty and, thus, small variance but high bias
- Select an L+1 point **grid** $[\alpha_0,\ldots,\alpha_L]$
 - For instance a uniform one $\alpha_{\ell} = \ell \frac{A}{L}$, $\ell = 0, 1, \dots, L$
- Build M folds: pairs (S_m, S_m^c) and for each α_ℓ
 - Train M Ridge models on the S_m^c using the hyper–parameter α_ℓ
 - Average their M validation errors e_m on the S_m to get the CV error $e(\alpha_\ell)$ for α_ℓ
- Finally choose the (hopefully) optimal hyper–parameter α^* as

$$\alpha^* = \arg\min_{0 < \ell < L} \ e(\alpha_\ell)$$

• α^* gives the model with the **best expected generalization among all possible** α **choices**

Takeaways on Bias, Variance and CV

- We have stressed that any model estimation is sample-dependent and that this has to be controlled
- 2. We have introduced the bias and variance as the two key components of any model error
- 3. We have discussed bias-variance trade-off
- We have introduced Cross Validation here as a tool to estimate a model's generalization performance
- 5. We have also introduced Cross Validation as a tool to estimate a model's hyper-parameters

4 Data and Model Analysis

And So What?

- Key question: what are models for?
 - First answer: to be used to derive new predictions
 - Better answer: to extract knowledge and to make inference on the underlying problem
- In this light, LR models are simple, perhaps not too powerful, but certainly useful
 - They are the first tool to apply in (almost) any problem analysis
- Some questions are easier to answer for them:
 - Which variables do influence the target and which do not?
 - What are the strongest predictive variables?
 - Are there related/redundant variables?
 - Is the relationship actually linear?

Issues with LR

- Before building any model we must perform a prior data analysis to keep under control important issues:
 - Collinearity: predictor variables that are redundant
 - Outliers: points (x^p, y^p) with a "normal" pattern x but an unlikely target value y^p , or viceversa
- And after a model is built we must check if its results agree with its assumptions
 - Linearity of the response-predictor relationships: if not, the LR will be poor
 - No correlation of error terms, i.e. our basic model assumption does hold
 - Homoscedasticity, i.e., residuals are the same across all features and target

Detecting and Handling Data Issues

- Before any model is built we must try detect possible data inconsistencies and/or redundancies
- Feature collinearity: look at least at the correlation matrix
- Analyze feature–target scatterplots; if possible, look also at the two–predictor scatterplots (though there are d(d-1)/2 of them)
- Outliers: will cause (x^p, y^p) to be far from the line fit or the residual to be out of range
 - Can detect them with box plots
- We consider all this over the Boston Housing dataset and notebook

Housing: First Conclusions on the Data

- Collinearity: some predictor variables may be redundant
 - AGE–DIS: proportion of units built prior to 1940 and weighted distances to five employment centres
 - RAD-TAX: accessibility to radial highways and full-value property-tax rate
 - NOX-INDUS
- ullet Outliers: points (x^p,y^p) with a normal pattern x but an unlikely target value y^p
 - ???
- Something happens with the high price houses
 - It seems that the price is capped at \$50K
 - Better remove them from our first model

Detecting and Handling Model Issues

- After the model is built we check whether it supports the basic LR assumptions
- Linearity: a residual plot should not have any structure
- Uncorrelated error terms: residuals do not change rather smoothly
- Error histograms should be symmetric and sharp at 0
- Homoscedasticity: residuals are the same across the target
- Always address these possible problems: if not, we may be fooling ourselves with an untenable model
- Let's build LR models over the Boston Housing data

Housing: First Conclusions on the Linear Model

- Linearity of the response-predictor relationships: not bad
 - If perfect fit, y and \hat{y} in diagonal; here in near diagonal
- Correlation of residuals: there seems to appear for large targets
 - Perhaps we should think about two separate models?
- Homoscedasticity, i.e., constant variance of residuals
 - Again, perhaps for small targets but clearly not for large targets
- Build perhaps a second model?

Takeaways on Data and Model Analysis

- 1. Before any model building we must analyze and understand our data
- 2. We must also understand the assumptions our model implies on the data
 - If they aren't true the model won't be very good
- 3. This must be checked after the model is built
- 4. LR models are simple but their assumptions are of interest to any other model
- 5. LR are the first models to build, to better understand the problem and its data and to have a **benchmark**
- 6. And
 - Always tune the hyperparameters for our models
 - Always try out many different models
 - Always explore several feature representations for our data

5 Basic Classification

Regression vs Classification

- Recall that in regression we have numerical continuous targets y and want our predictions \hat{y} to be as close to y as possible
- But in classification we have a finite number of labelled targets for which "selection by closeness" doesn't make sense
- Natural alternative: select the most probable label given the pattern we have just received
 - The concrete labels used for targets do not matter anymore
 - Model learning should thus be "target" agnostic
 - And good probability estimates should be quite useful
- Let's analyze this in an example

A First Problem: Pima Indian Diabetes

- We want to diagnose whether a person may have diabetes from some clinical measures
- Features x: clinical measures
 - numPregnant
 - bloodPress
 - massIndex
 - **-** age . . .
- Target y: 0 (no diabetes), 1 (diabetes)
- Clear goal but perhaps too radical

6 LOGISTIC REGRESSION

 \bullet Better: try to estimate the probability P(1|x) of having diabetes depending on the features x we measure

14

Classification Setup

- We have random patterns ω from M classes, $C_1, \ldots C_M$
- Over each pattern we "measure" d features $x = x(\omega) \in \mathbb{R}^d$
 - x inherits the randomness in ω and becomes a **random variable**
- A ω has a **prior probability** π_m of belonging to C_m
- Inside each class C_m there is a **conditional class density** f(x|m) that "controls" the appearance of a given x
- The π_m and f(x|m) determine the **posterior probability** P(m|x) that x comes from class C_m
- Intuition: we should assign x to the class with the largest P(m|x), that is, work with the classifier

$$\delta(x) = \arg\max_{m} P(m|x)$$

The Obviously Optimal Classifier

- It can be shown that $P(m|x) = \frac{\pi_m f(x|m)}{f(x)}$
- ullet Thus, we should decide according to a **classifier** function δ_B

$$\delta_B(x) = \arg \max_m P(m|x) = \arg \max_m \frac{\pi_m f(x|m)}{f(x)}$$

$$= \arg \max_m \pi_m f(x|m)$$

- With some extra work we can show that this **Bayes Classifier** δ_B defines an optimal solution (in some precise sense) of the classification problem
- ullet But ... this doesn't look too practical for we do not know either π_m or (much harder) f(x|m)
- We will focus on estimating **directly** the label generating distribution P(m|x)

6 Logistic Regression

Logistic Regression (LR)

• We assume

$$P(1|x) = P(1|x; w_0, w) = \frac{1}{1 + e^{-(w_0 + w \cdot x)}}$$

- Then $0 \le P(1|x) \le 1$ for any x
- We then have

$$P(0|x) = 1 - P(1|x) = \frac{e^{-(w_0 + w \cdot x)}}{1 + e^{-(w_0 + w \cdot x)}} = \frac{1}{1 + e^{w_0 + w \cdot x}}$$

- Notice that if $w_0 + w \cdot x = 0$, P(1|x) = P(0|x) = 0.5
- The ratio $\frac{P(1|x)}{P(0|x)} = e^{w_0 + w \cdot x}$ is called the **odds** of x and its log the **log odds** or **logit**
- Thus, the basic assumption in LR is that the **logit is a linear function** $w_0 + w \cdot x$ of x
- We have the model f(x; w); we need a **loss** function $L(w_0, w)$ to minimize for which we use the sample's **likelihood**

Estimating w_0^*, w^*

- Assume a single sample x,y and two possible model coefficients w_0,w and w_0',w'
- Denoting by $p = P(y|x; w_0, w)$ and $p' = P(y|x; w'_0, w')$, it is clear that we should prefer w_0, w if p > p' and w'_0, w' if not
 - In other words, we prefer the coefficients that give a **higher posterior probability** to the sample (x,y)
- For an independent sample $S = \{(x^p, y^p)\}$, its joint probability under a posterior model $p = P(y|x; w_0, w)$ is

$$P(Y|X; w_0, w) = \prod_{p=1}^{N} P(y^p|x^p; w_0, w)$$

• And, again, given two possible model coefficients w_0 , w and w'_0 , w', we should prefer w_0 , w iff

$$P(Y|X; w_0, w) > P(Y|X; w'_0, w')$$

Sample's Likelihood

• Therefore, we can estimate the optimal w_0^*, w^* as

$$w_0^*, w^* = \arg\max_{w_0, w} P(Y|X; w_0, w)$$

• By the independence assumption we have

$$P(Y|X; w_0, w) = \left\{ \prod_{y^p=1} P(1|x^p) \right\} \left\{ \prod_{y^p=0} P(0|x^p) \right\}$$
$$= \prod_{p=1}^N P(1|x^p)^{y^p} P(0|x^p)^{1-y^p}$$

with the last inequality follows from

- If
$$y^p = 1$$
, $P(1|x) = P(1|x^p)^{y^p} = P(1|x^p)^{y^p}$ $P(0|x^p)^{1-y^p}$, and - If $y^p = 0$, $P(0|x) = P(0|x^p)^{1-y^p} = P(1|x^p)^{y^p}$ $P(0|x^p)^{1-y^p}$

Max Log-Likelihood Estimation

• The log-likelihood of w_0 , w given S is then

$$\ell(w_0, w; S) = \log P(Y|X; w_0, w)$$

$$= \sum_{p} \{y^p \log p(1|x^p) + (1 - y^p) \log p(0|x^p)\}$$

$$= \sum_{p} y^p \log \frac{p(1|x^p)}{p(0|x^p)} + \sum_{p} \log p(0|x^p)$$

$$= \sum_{p} y^p (w_0 + w \cdot x^p) - \sum_{p} \log(1 + e^{w_0 + w \cdot x^p})$$

• We can thus estimate the optimal $\widehat{w}_0^*, \widehat{w}^*$ as

$$\widehat{w}_0^*, \widehat{w}^* = \arg\min_{w_0, w} - \ell(w_0, w; S)$$

• Extra bonus: $-\ell$ is a convex differentiable function of (w_0, w) and, thus, it is enough to solve $\nabla \ell(w_0, w) = 0$

Newton-Raphson Solution

- However, $\nabla \ell(W) = \nabla \ell(w_0, w) = 0$ doesn't admit a closed form solution but only an iterative, numerical one
- We solve it the Newton-Raphson iterative method (equivalent here to Newton's method for minimization)
- Starting from a random $W^0 = (w_0^0, w^0)$, Newton's iterations are

$$W^{k+1} = W^k + (\mathcal{H}_{\ell}(W^k))^{-1} \nabla \ell(W^k)$$

- $\mathcal{H}_{\ell}(W^k)$ denotes the Hessian of ℓ at W^k (which may or may not be invertible)
 - Everything is fine if the W^k are close enough to the optimum W^* but far away things may get tricky
- Just as before, we can add a regularization term $\frac{\alpha}{2} ||w||^2$
- The iterations in Logistic Regression are again typical of many of the model building methods used in Machine Learning

Learning in ML

- The general approach to **learning** is usually the following:
 - A model f(x; W) is chosen
 - Given a sample $S = \{(x^1, y^1), \dots, (x^N, y^N)\}$ and a loss function $\ell(y, \hat{y})$, we define a sample dependent loss function

$$L(W) = L(W|S) = \sum \ell(y^p, \hat{y}^p = f(x^p; W))$$

• L(W) is often minimized from some W^0 by **iterations**

$$W^{k+1} = W^k - \rho_k G(W^k, S)$$

with ρ_k a **learning rate** and G some vectorial function

- When $G(W) = \nabla L(W)$ we have gradient descent
- When $G(W)=\mathcal{H}(W)^{-1}\nabla L(W)$ we obtain **Newton's method**
- \bullet In **batch learning** the entire sample S is used at each iteration
- On-line or minibatch learning: we use either a single patterns (x^p, y^p) or small subsample
- Several such procedures will appear here in the coming weeks

7 Practical Classification

True/False Positives/Negatives

- Consider a two class problem with labels y = 0, 1
- We will call patterns with label 1 **positive** and those with label 0 **negative**
 - Usually the positive patterns are the interesting ones: sick people, defaulted loans, . . .
- Let $\hat{y} = \hat{y}(x)$ the label predicted at x; we say that x is a
 - **True Positive** (TP) if $y = \hat{y} = 1$
 - True Negative (TN) if $y = \hat{y} = 0$
 - **False Positive** (FP) if y = 0 but $\hat{y} = 1$
 - False Negative (FN) if y = 1 but $\hat{y} = 0$
- The standard way of presenting these data is through the **confusion matrix**

The Confusion Matrix

• Standard layout

	P'	N'
	(Predicted)	(Predicted)
Р	True Positive	False Negative
(Actual)		
N	False Positive	True Negative
(Actual)		

- 18
- Positives(with label 1) at bottom, as done in confusion_matrix of sklearn
- Predicted values in rows, real values in columns

Classifier Metrics

- The classifier accuracy is $acc = \frac{TP+TN}{N}$
- acc is the first thing to measure but it may not be too significant: if the number N_0 of negatives is $\gg N_1$, the number of positives
 - The classifier $\delta(x)=0$ will have a high accuracy $N_0/N \simeq 1$
 - But it will also be useless!!
- First variant: Precision, Recall
 - Recall: TP/(TP + FN), i.e., the fraction of positives detected
 - **Precision**: TP/(TP + FP), i.e., the fraction of true alarms issued
- Recall measures how many positive cases we recover, i.e., how effective is our method
- Precision measures the effort we need for that, i.e., its efficiency
- Ideal classifier: high recall, high precision (i.e., effective and efficient!!)

What's New from Regression?

- Some things change from regression, some don't
- We should check feature correlations, if only to remove too similar features
- Important: positive and negative-class feature histograms
 - Scatter plots (x_i, y) are usually less informative
- The bias-variance trade-off is subtler in classification
- Accuracy, recall, precision are the usual model quality measures
- We use CV with **stratified folds** to estimate generalization performance
- We also use CV for hyperparameter estimation, as regularization will also be needed
 - In LR we should minimize $-\ell(w_0,w;S) + \frac{\alpha}{2}\|w\|^2$

How to Handle Posterior Probabilities

- If possible, we want **posterior probabilities** as model outputs better than labels
- Most models give them as pairs

$$(\widehat{P}(0|x),\widehat{P}(1|x))=(\widehat{P}(0|x),1-\widehat{P}(0|x))$$

• In principle we would decide 1 if $\hat{P}(1|x)>0.5$ and viceversa, but this may be too crude

- It may be advisable to set a **decision threshold** κ and decide 1 if $\widehat{P}(1|x) > \kappa$ and 0 if $\widehat{P}(1|x) < \kappa$
- For **imbalanced** problems where $\pi_0 \gg \pi_1$ (usually the interesting ones) we would have $\widehat{P}(1|x) \simeq 0$ for most x
 - In this case we may choose a $\kappa < 0.5$ and suggest 1 if $\widehat{P}(1|x) > \kappa$

Takeaways on Basic Classification

- 1. We have introduced the classification problem as one of computing **posterior probabilities**
- 2. We have defined the optimal Bayes classifier
- 3. We have introduced **Logistic Regression** to estimate posterior probabilities, and the numerical minimization of its (minus) log-likelihood
- 4. We have introduced accuracy, recall, precision as first classification metrics
- 5. We have reviewed some practical issues in classification

8 Nearest Neighbor Classification

Approximating the Bayes Classifier

• Starting with the approximation $P(m|x) \simeq P(m|B_r(x))$, Bayes formula gives

$$P(m|x) \simeq P(m|B_r(x)) = \frac{P(C_m \cap B_r(x))}{P(B_r(x))} = \frac{\pi_m P(B_r(x)|m)}{P(B_r(x))}$$

- Assume a sample with N patterns of which
 - N_m are in C_m
 - k sample patterns are in B(x,r)
 - k_m samples in class C_m are in B(x,r)
- We then have

$$\pi_m \simeq \frac{N_m}{N}, \ P(B_r(x)) \simeq \frac{k}{N}, \ P(B_r(x)|m) = \frac{k_m}{N_m}$$

The k-NN Classifier

• We can thus approximate P(m|x) as

$$P(m|x) \simeq \frac{k_m}{N_m} \frac{N_m}{N} \frac{1}{\frac{k}{N}} = \frac{k_m}{k}$$

• And the optimal δ_B as

$$\delta_B(x) \simeq \arg\max_m P(m|B_r(x)) = \arg\max_m \frac{k_m}{k}$$

• We have thus arrived to the k-Nearest Neighbor classifier

$$\delta_k^{NN}(x) = \arg\max_m \, \frac{k_m}{k} = \arg\max_m \, k_m$$

• Thus $\delta_{kNN}(x)$ assigns x to the class that has more patterns in $N_k(x)$

By the Way: k-NN Regression

- k-NN Classification assumes that a pattern should belong to the class with the closest patterns
- k-NN Regression also relies on a similar assumption: **Predictors that are close should give predictions that are also close**
- In k-NN Regression we fix a number k of neighbors to be considered and for an input x set

$$\hat{y} = Y_{kNN}(x) = \frac{1}{k} \sum_{x^p \in N_k(x)} y^p$$

where $N_k(x)$ denotes again the k sample points closest to x

- Weighted variants: for instance, $Y_k^w(x) = \frac{1}{C_k(x)} \sum_{x^p \in N_k(x)} \frac{1}{\|x^p x\|} y^p$
 - $C_k(x) = \sum_{x^p \in N_k(x)} \frac{1}{\|x^p x\|}$ is a normalizing constant

Some k-NN Issues

- Q1: How do we choose k? Using CV, of course
- There are no closed form solution and we have to balance again the bias-variance tradeoff
 - Small variance with large k: if k = N, k-NN regression returns the mean
 - Small bias with small k: if k = 1 a very close point should give a very close prediction
 - But also large variance: the nearest point to x in another sample may have a quite different target or belong to another class
- Q2: Is *k*–NN always meaningful?
- We have to modify our first assumption: Predictors that are close should give predictions that are also close, **provided that there are enough of them close by**
- But we have to face the **curse of dimensionality**: Even for low dimensions and large samples, **the sample space is essentially empty**
 - Thus, for most problems, there never will be enough close points
 - As a consequence, to get k observations we may go too far away from x and the k-NN predictions will not be meaningful