	成
上海大学 2012~2013 学年 秋 季学期试卷	绩
课程名: <u>离散数学(一)</u> 课程号: <u>08305003</u> 学分	f: <u>4</u> (A 卷)
应试人声明: 我保证遵守《上海大学学生手册》中的《上海大学考场规则》	M 加有老过连纪 佐
数保证遵守《工海人学学生于加》中的《工海人学·与场风则》 弊行为,愿意接受《上海大学学生考试违纪、作弊行为界定及处约	•
应试人应试人学号	三院系
题号 一 二 三 四 五 六 七	八九十
得分	
次报(10 八 何 小 版 2 八)	得
一、选择(10分,每小题2分)	
1、设 S = {Ø, {Ø}, {Ø, {Ø}}}, 下面不正确是(D)
A. $\{\emptyset, \{\emptyset\}\}\subseteq S$ B. $\emptyset \in S$	
C. $\{\emptyset\}\subseteq S$ D. $\{\{\emptyset\}\}\in S$	
2、下列语句是命题的(D)	
A. 请勿吐痰! B. 我们要努力学习。	
C. 你明天有空吗? D. 不存在最大质数。	
$ $ 3、设 R 是集合 A 上的二元关系, I_A 是 A 上的恒等关系	, I _A ∪R, 则R是
A上的(A)	÷
A. 自反关系 B. 传递关系	*.*
C. 对称关系 D. 反对称关系	
L	笔或圆珠笔答题。

4、A={1,2,3,4},在A上定义等价关系

 $R = \{ \langle a, b \rangle \mid a+b$ 为偶数 \},

则商集 A/R 是 (D)

- A. $\{\{1,3\},\{2\},\{4\}\}\$ B. $\{\{1\},\{2\},\{3\},\{4\}\}\$
- C. $\{\{1,2\},\{3,4\}\}\}$
- D. {{1,3},{2,4}}
- 5、考虑定义在整数集上的函数 $f:Z\to Z$,则下列函数是双射的是(C
 - A. f(x) = 2x
- B. $f(x) = x^2$
- C. f(x) = x + 1
- D. f(x) = 5

得 分

- 二、判断是非正确的打"√",否则打"×"(10分,每小题 2分)
- 1、北京与天津的距离很近是复合命题。

 (\times)

2、闭式在给定的解释中变成命题。

 $(\sqrt{})$

- 3、非空集合 A 上的关系 R 如果不是对称的一定是反对称的。
- (x)
- 4、 R_1 和 R_2 分别是非空集合 A 上的关系,若 R_1 和 R_2 是传递的,则 $R_1 \cup R_2$
 - 也是传递的。

(x)

5、 若 $f:A \to B, g:B \to C$ 是满射的,则 f·g 是满射; 反之亦然。

 (\times)

 计質题	(40分,	短小题	10分)
 N 异心	(40 71)	1 1 NZ	20 /4

1、有父亲(A)、母亲(B)和三个孩子(C, D, E)组成的一个

家庭,关于家中哪几个人看了电视的问题,有以下几种正确说法:

- (1) A 在看电视时, B 也在看;
- (2) D和E或两人都看,或者他们之中的一个看了;
- (3) B.和 C 只有一人看了;
- (4) C 和 D 或者两人都看,或者两人都没看;
- (5) 如果 E 看了, 那么 A 和 D 也看了.

请用主范式证明到底哪几个人看了电视?

413	/13				
解:	设命题变项 A、B、C、D	和E分別表	ē示 A、B、C、D 和	IE看了电视;	
/H 1 •	(1) ⇔A→B	(1分)	(2) ⇔D∨E	(1分)	
	$(3) \Leftrightarrow (B \land \neg C) \lor (\neg B \land C)$	(1分)	$(4) \Leftrightarrow \mathbb{C} \leftrightarrow \mathbb{D}$	(1分)	
	$(5) \Leftrightarrow E \to (A \land D)$	(1分)			
	从而,同时满足上述说法	的命题公式	为		• •
	$(A \rightarrow B) \land (D \lor E) \land ((B \land \neg C)$	∨(¬B∧C))∧($(C \leftrightarrow D) \land (E \rightarrow (A \land D))$	(1分)	
	A→B⇔¬ A∨B⇔Π(16,				
	DVE⇔∏(0.4.8,12,16,20,2	4,28)			
	$(B \land \neg C) \lor (\neg B \land C) \Leftrightarrow (B \lor C)$	C) ^(¬B∨¬C	$(1) \Leftrightarrow \Pi(0,,3,12,,19)$	9,28,,31)	eath of the second of the seco
	$C \leftrightarrow D \Leftrightarrow (\neg C \lor D) \land (C \lor \neg D)$)⇔Π(2,,5	,10,,13,18,,21,26	5,,29)	31 3E 30\
	$E \rightarrow (A \land D) \Leftrightarrow \neg E \lor (A \land D)$) ⇔(¬E∨A)	$\wedge(\neg E \vee D) \Leftrightarrow \Pi(1,3,5,5)$,7,9,11,13,15,17,	21,23,29) (3 分)
	因此,原式⇔П(0,5,7,)	*.	(1分)
	因此,看电视的人为 C ?	和D。			(1))

!、设集合 $A = \{a, b, c, d\}$ 上的二元关系

$$R = \{ \langle a, a \rangle, \langle b, c \rangle, \langle b, d \rangle, \langle c, a \rangle, \langle d, a \rangle \}$$

- (1) 写出 R 的自反闭包 r(R); (3 分)
- (2) 写出 R 的对称闭包 s(R); (3 分)
- (3) 用 Warshall 算法求出传递闭包 t(R)的关系矩阵。(4 分)

$$\boldsymbol{M_0} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \quad \boldsymbol{M_1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \quad \boldsymbol{M_2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \quad \boldsymbol{M_3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \quad \boldsymbol{M_4} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

(M1到 M4每个1分)

- 公式 $\forall x_1(F(x_1) \rightarrow \exists x_2G(x_1, x_2)) \rightarrow (\exists x_2(H(x_2) \rightarrow \forall x_3G(x_2, x_3)))$
- 1) 在给定解释 I: 个体域 $D = \{a, b\}$, F(a) = 1, F(b) = 0, H(a) = 0, H(b) = 1, G(a, a) = G(b, b) = 1, G(a, b) = G(b, a) = 0, 求上述公式的真值; (5分)
- 2) 求上述公式的前束范式。(5分)
- ¥: (1) 消量词得:

第式
$$\Leftrightarrow$$
 (($F(a) \rightarrow (G(a,a) \lor G(a,b)) \land (F(b) \rightarrow (G(b,a) \lor G(b,b))) \rightarrow$ (($H(a) \rightarrow (G(a,a) \land G(a,b))) \lor (H(b) \rightarrow (G(b,a) \land G(b,b)))$) \Leftrightarrow (($1 \rightarrow (1 \lor 0)) \land (0 \rightarrow (0 \lor 1))) \rightarrow ((0 \rightarrow (1 \land 0)) \lor (1 \rightarrow (0 \land 1)))$ \Leftrightarrow ($1 \land 1) \rightarrow (1 \lor 0) \Leftrightarrow 1$

?) 原式 $\Leftrightarrow \forall x_1(F(x_1) \to \exists x_2G(x_1, x_2)) \to (\exists x_4(H(x_4) \to \forall x_3G(x_4, x_3)))$ $\Leftrightarrow \forall x_1 \exists x_2 (F(x_1) \to G(x_1, x_2)) \to (\exists x_4 \forall x_3(H(x_4) \to G(x_4, x_3)))$ $\Leftrightarrow \exists x_1 \forall x_2 \exists x_4 \forall x_3 ((F(x_1) \to G(x_1, x_2)) \to (H(x_4) \to G(x_4, x_3)))$

- 4、已知 $A = \{<1,1>,<1,0>,<0,1>,<0,0>\}$, 规定 A 上的偏序关系 \leq 为: $< a,b> \leq < c,d> \Leftrightarrow a \leq c \land b \leq d$
 - (1) 画出偏序集<A, ≤>的哈斯图; (4分)
- (2) 令 *B*={<1,1>,<1,0>,<0,1>}, 求出 *B* 的最大元、最小元、极大元、极 小元、上确界和下确界。(如果不存在则指明不存在)(6分) 解: (1)

(2) 最大元: <1,1>; 最小元: 无; 极大元: <1,1>; 极小元: <0,1>和<1,0>; 上确界: <1,1>; 下确界: <0,0>。

四、证明(40分,每小题 10分)

- 1、设R是非空集合A上的关系,若 dom R = A,证明: $R \circ R^{-1}$ 是自反的 关系。
- 证: 对 $\forall x \in A = \text{dom } R$, $\exists y \in A$, 使得 $\langle x, y \rangle \in R$, 从而 $\langle y, x \rangle \in R^{-1}$, 因此 $(\langle x, y \rangle \in R \land \langle y, x \rangle \in R^{-1}) \rightarrow \langle x, x \rangle \in R^{\circ}R^{-1}$ 即, $R \circ R^{-1}$ 是自反的关系。

2、R 是集合 A 上的二元关系。对于所有的 a、b、c \in A ,如果 aRb ,bRc ,

则 cRa, 那么称 R 是循环关系。

证明: R 是自反和循环的当且仅当 R 是一等价关系。

证: (1) 充分性: 只需证明 R 是对称和传递的。

对称性: $\forall \langle x,y \rangle \in R$, 由 R 是自反的可知 $\langle y,y \rangle \in R$, 从而

 $(\langle x, y \rangle \in R \land \langle y, y \rangle \in R) \rightarrow \langle y, x \rangle \in R \tag{3 \%}$

传递性: $\forall \forall \langle x, y \rangle \in R, \langle y, z \rangle \in R$, 则

 $(\langle x, y \rangle \in R \land \langle y, z \rangle \in R) \to \langle z, x \rangle \in R \tag{3 \%}$

由 R 是对称的,从而 $< x, z > \in R$ 。

(2)必要性: 只需证明 R 是循环的。

对 \forall <x,y>∈ R, <y,z>∈ R, 则由传递性知

 $(\langle x, y \rangle \in R \land \langle y, z \rangle \in R) \rightarrow \langle x, z \rangle \in R$

再由 R 是对称的,有 $< z, x> \in R$,证毕。

(4分)

- 3、设 $f: A \rightarrow B, g: B \rightarrow C$ 是两个函数,证明:
 - (1) 若 $f \circ g$ 是满射且g 是单射,则f 是满射;(5分)
 - (2) 若 $f \circ g$ 是单射且 f 是满射,则 g 是单射。(5分)
 - 证明: (1) $\forall y \in B$, g(y) = z, 因为 $f \circ g : A \rightarrow C$ 是满射,则存在 $x \in A$, 使得 $f \circ g(x) = z = g(f(x))$, 因 g 是单射,有 g = f(x),即 $\forall y \in B$,存在 $g \in A$,使得 g(x) = y,则 $g \in B$,有在 $g \in A$,
 - (2) 反证法: 设 g 不是单射,则存在 $y_1, y_2 \in B$,且 $y_1 \neq y_2$,使得 $g(y_1) = g(y_2) = z$ 。 因 f 是满射,则存在 $x_1, x_2 \in A$ 使得 $f(x_1) = y_1$, $f(x_2) = y_2$,从而有 $g(f(x_1)) = g(f(x_2)) = z$,即 $f \circ g(x_1) = f \circ g(x_2) = z$ 由 $f \circ g$ 是单射可知, $x_1 = x_2$,从而有 $y_1 = y_2$ 。

、在自然推理系统P中证明,

前提: $(p \land q) \rightarrow r, \neg r \lor s, \neg s, p$

结论: ¬q

:明: 方法一: 直接法

(1)¬s

前提引入

 $2\neg r \lor s$

前提引入

 $3 \neg r$

①②析取三段论

 $\textcircled{4}(p \land q) \rightarrow r$

前提引入

 $\bigcirc \neg (p \land q)$

③④拒取式

6¬*p*∨¬*q*

⑤德摩根律置换

 $\bigcirc p$

前提引入

 $\otimes \neg q$

⑥⑦析取三段论

方法二: 归谬法

 $\bigcirc q$

结论的否定引入

2p

前提引入

 $\mathfrak{g}_{p \wedge q}$

①②合取引入

 $\textcircled{4}(p \land q) \rightarrow r$

前提引入

(5)r

③④假言推理

⑥¬*r*∨*s*

前提引入

(7)s

⑤⑥析取三段论

8,75

前提引入

(9)_S\¬ s

⑦⑧合取,矛盾

还有其它证明方法,上述方法以供参考,每个推理步骤 1-2 分。

		to		<u>. ~</u> ⊿au	/⊌J ~ <u>⊿(</u>	100 -j-		于于秋	11位是(A 苍)	
课	母名	治 : <u> </u>	散数当	<u>≱(−)</u>		学分	: _4	(闭	卷)	E))	
学- -	号:			姓名	<u>参考</u>	答案	院系:			成绩	
题	号	-	=	=	pq	五	六	七	八	九	+,,
得	分				Í			.:			
	(10)		分析关					' (i) '	定小正数	ε),	得 分

(80) N 4(x)(P(8,1x-a) -> P(8, f(x)-b))

(1): 谓词公式(5分)

定义谓词:
$$P(x,y)$$
: $x>y$

$$(\forall \varepsilon) P(\varepsilon,0) \rightarrow (\exists \delta) (P(\delta,0)) \land (\forall x) (P(\delta,|x-a|)) \rightarrow P(\varepsilon,|f(x)-b|)$$

(2): 前束公式(5分)

$$(\forall \varepsilon) \Big(P(\varepsilon, 0) \to (\exists \delta) \Big(P(\delta, 0) \land (\forall x) \Big(P(\delta, |x - a|) \to P(\varepsilon, |f(x) - b|) \Big) \Big) \Big)$$

 $\Leftrightarrow (\forall \varepsilon)(\exists \delta)(\forall x) \left(P(\delta,0) \land \left(P(\delta,|x-a|) \to P(\varepsilon,|f(x)-b|)\right)\right)$

二、(10 分)求 $P \longleftrightarrow (Q \land R)$ 的主析取范式和主合取范式。

得分

证法 , 求主合取范式(5分)

$$P \Longrightarrow (Q \wedge R) \Leftrightarrow (P \to Q \wedge R) \wedge (Q \wedge R \to P)$$

$$\Leftrightarrow (\neg P \lor (Q \land R)) \land (\neg (Q \land R) \lor P)$$

$$\Leftrightarrow (\neg P \vee Q) \wedge (\neg P \vee R) \wedge (\neg Q \vee \neg R \vee P)$$

$$\Leftrightarrow (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor \neg Q \lor R) \land (P \lor \neg Q \lor \neg R)$$

证法一: 求主析取范式(5分)

$$P \Leftrightarrow (Q \land R) \Leftrightarrow (P \land Q \land R) \lor (\neg P \land \neg (Q \land R))$$

$$\Leftrightarrow (P \land Q \land R) \lor (\neg P \land (\neg Q \lor \neg R))$$

$$\Leftrightarrow (P \land \tilde{Q} \land R) \lor (\neg P \land \neg Q) \lor (\neg P \land \neg R)$$

$$\Leftrightarrow (P \land Q \land R) \lor (\neg P \land \neg Q \land R) \lor (\neg P \land \neg Q \land \neg R) \lor (\neg P \land Q \land \neg R)$$

证法二: 真值表法

$$P Q R Q \wedge R P \Leftrightarrow (Q \wedge R)$$

$$F = F = T$$

$$F$$
 , T , F , F , T

$$T ext{ } F ext{ } F ext{ } F ext{ } F$$

$$T F F = PV - PV R$$

$$T - T - T - T$$

主 析取范式为 $(\neg P \land \neg Q \land \neg R) \lor (\neg P \land \neg Q \land R) \lor (\neg P \land Q \land \neg R) \lor (P \land Q \land R)(1分)$

主合取范式为: $(P \vee \neg Q \vee \neg R) \wedge (\neg P \vee Q \vee R) \wedge (\neg P \vee Q \vee \neg R) \wedge (\neg P \vee \neg Q \vee R)(1分)$

三、(10分)用推理规则证明:

- (1)用直接证法证明: $S \rightarrow \neg Q$, $\neg P$ Q, $S \lor R$, $\neg R \Rightarrow P$

(2)用 CP 规则证明: $P \lor Q$, $P \to R$, $S \to (Q \to R) \Rightarrow S \to R$.

(1)证明: 5分

- 1)

- 2)
- $S \vee R$ $\neg S \rightarrow R$
- $T_{()}$ E_{16}

- 3)

- (2)证明: 5分

- 4)

- 1)

- P
- 2)

- $(\neg P \rightarrow Q) \land (Q \rightarrow \neg P)$

- $\neg P \rightarrow Q$ 7)
- T_{6} I_{I}

- 8)
- $T_{4)7)}$ I_{13}
- $T_{()4)}$

- 9) $\neg P \rightarrow R$

- 10) $\neg R \rightarrow P$
- $T_{2)8)}$ I_{13}

- 11)

四、(10分)用推理规则证明:

(1)用反证法证明: $(\forall x)(P(x)\vee Q(x))\Rightarrow (\forall x)P(x)\vee (\exists x)Q(x)$

得 分

(2)用直接证法证明: $(\forall x) \neg P(x)$, $(\exists y)(R(y) \land S(y)) \rightarrow (\exists x)(P(x) \land Q(x))$

$$\Rightarrow (\forall y)(R(y) \rightarrow \neg S(y))$$

 T_{ij}

 T_{31}

 ES_{i}

 E_{25}

(1) 证明: 5分

- 1) $-((\forall x)P(x)\vee(\exists x)Q(x)) P(AD)$
- 2) $-(\forall x)P(x) \wedge -(\exists x)Q(x)$
- 3) $= (\forall x) P(x)$
- 4) $(\exists x) P(x)$
- 5) $-(\exists x)Q(x)$
- $(\forall x) Q(x)$
- P(a)
- 8) -Q(a)
- 9) $(\forall x)(P(x)\vee Q(x))$
- $P(a) \lor Q(a)$ 11) Q(a)
- 11) Q(a)
- $-Q(a) \wedge Q(a)$

(2)证明: 5分

- 1) $(\forall x) \neg P(x)$
- 2) ¬P(a)
- 3) $-P(a) \vee -Q(a) = T_0$
- 4) $\neg (P(a) \land Q(a)) \qquad T_3 \quad E$
- 5) $(\forall x) (P(x) \wedge Q(x)) UG_{A}$
- 6) $-(\exists x)(P(x) \land Q(x)) \quad T_{s_1} \quad E_{s_2}$
- $(R(y) \land S(y))$
- $(\exists x) (P(x) \land Q(x))$
- $(\exists y) (R(y) \land S(y)) \quad T_{6)7)} \quad I_{12}$
- 9) $(\forall y) (R(y) \wedge S(y))$ T_{sj} E_{25}
- $10) \qquad -(R(b) \wedge S(b)) \qquad LS_{9}$
- 11) $-R(b) \vee -S(b) \qquad T_{10}$
- 12) $R(b) \rightarrow S(b)$ T_{11} E_{10}
- 13) $(\forall y)(R(y) \rightarrow S(y)) \ UG_{(2)}$

 E_8

五、(10分)

(1)对谓词公式 $(\forall x)R(x,y)\lor(\forall y)P(x,y)\land(\exists y)Q(x,y)$ 中的自由变元进行代入。

(2)对谓词公式 $(\forall x)(\exists y)P(x,y)$ 先消去量词后求真值。其中,

得分

论域 $D = \{1,2\}$, $P(1,1) \Leftrightarrow P(2,1) \Leftrightarrow F$, $P(1,2) \Leftrightarrow P(2,2) \Leftrightarrow T$.

(1)代入(5分)

$$(\forall x) R(x,y) \vee (\forall y) P(x,y) \wedge (\exists y) Q(x,y)$$

$$\Leftrightarrow (\forall x) R(x,a) \vee (\forall y) P(b,y) \wedge (\exists z) Q(b,z)$$

(2) 求值(5分)

$$(\forall x)(\exists y)P(x,y) \Leftrightarrow (\forall x)(P(x,1) \vee P(x,2))$$

$$\Leftrightarrow (P(1,1) \vee P(1,2)) \wedge (P(2,1) \vee P(2,2))$$

$$\Leftrightarrow (F \vee T) \wedge (F \vee T) \Leftrightarrow T \wedge T \Leftrightarrow T$$

得分

六、 $(10\, \Omega)$ 对于任意集合 A 和 B , Φ 是空集,E 是全集,证明以下三个命题彼此等价: $A-B=\Phi$, $A\subseteq B$, $A\cup B=E$ 。

证明(1): $A - B = \Phi \Rightarrow A \subseteq B$ (4分)

 $A - B = \Phi \Rightarrow A \cap \sim B = \Phi \Rightarrow B \cup (A \cap \sim B) = B \cup \Phi$

 $\Rightarrow (B \cup A) \cap (B \cup \sim B) = B \Rightarrow (B \cup A) \cap E = B \Rightarrow B \cup A = B \Rightarrow A \subseteq B$

证明(2): $A \subseteq B \Rightarrow A \cup B = E$ (3分)

 $A \subseteq B \Rightarrow \sim A \cup A \subseteq \sim A \cup B \Rightarrow E \subseteq \sim A \cup B \Rightarrow \sim A \cup B = E$

证明(3): $\sim A \cup B = E \Rightarrow A - B = \Phi$ (3分)

 $A \cup B = E \Rightarrow (A \cup B) = E \Rightarrow A \cap B = \Phi \Rightarrow A - B = \Phi$

山上述结论得到以上三个命题彼此等价。

七、(10分)对于任意集合A、B和C,证明:

$$(1)(A-B)\times C = (A\times C) - (B\times C)$$

 $(2)(A \oplus B) \times C = (A \times C) \oplus (B \times C)$

得分

证明(1): (5分)

Set
$$\langle x, y \rangle \in (A - B) \times C \Leftrightarrow x \in (A - B) \land y \in C \Leftrightarrow x \in A \land \neg (x \in B) \land y \in C$$

 $\Leftrightarrow (x \in A \land \neg (x \in B) \land y \in C) \lor (x \in A \land \neg (y \in C) \land y \in C)$

$$\Leftrightarrow (x \in A \land y \in C) \land (\neg(x \in B) \lor \neg(y \in C)) \Leftrightarrow (x \in A \land y \in C) \land \neg(x \in B \land y \in C)$$

$$\Leftrightarrow \langle x, y \rangle \in (A \times C) \land \neg (\langle x, y \rangle \in (B \times C)) \Leftrightarrow \langle x, y \rangle \in (A \times C) \neg (B \times C)$$

$$\therefore \langle x,y \rangle$$
 是任意取的, $\therefore (A-B) \times C = (A \times C) - (B \times C)$

证明(2): (5分)

$$(A \oplus B) \times C = ((A - B) \cup (B - A)) \times C = ((A - B) \times C) \cup ((B - A) \times C)$$
$$= ((A \times C) - (B \times C)) \cup ((B \times C) - (A \times C)) = (A \times C) \oplus (B \times C)$$

得分

八、(10 分)设 R 是集合 A 上的二元关系,证明:

(1)若R对称,则r(R)对称。

 $(2) ts(R) \supseteq st(R).$

证明(1): (5分)

- $r(R) = R \cup I_A = R^e \cup I_A^e = (R \cup I_A)^e = (r(R))^e$
- :. r(R)对称

证明(2): (5分)

- $: s(R) \supseteq R \Rightarrow ts(R) \supseteq t(R) \Rightarrow sts(R) \supseteq st(R)$
- 又: s(R)対称 $\Rightarrow ts(R)$ 対称 $\Leftrightarrow sts(R) = ts(R)$
- $\therefore ts(R) \supseteq st(R)$

- (1)证明: S是 R上的等价关系。
- (2)求山等价关系S 所产生的 1 的等价类 $\left[1\right]_{S}$ 和 1/4 的等价类 $\left[\frac{1}{4}\right]_{S}$

得分

证明(1): (6分)

- 1) $a \in R \Rightarrow \frac{a-a}{2} = 0 \in I \Rightarrow \langle a, a \rangle \in S$: a是任意取的 : S自反
- 2) $a,b \in R \land \langle a,b \rangle \in S \Rightarrow \frac{a-b}{2} = t \in I \Rightarrow \frac{b-a}{2} = -t \in I \Rightarrow \langle b,a \rangle \in S$ $\therefore \langle a,b \rangle$ 是任意取的 $\therefore S$ 对称

证明(2): (4分)

$$[1]_{S} = \left\{ a \middle| \frac{1-a}{2} \in I \right\} = \left\{ a \middle| a \in 1-2I \right\} = \left\{ \cdots, -3, -1, 1, 3, \cdots \right\}$$

$$\left[\frac{1}{4} \right]_{S} = \left\{ a \middle| \frac{1-a}{2} \in I \right\} = \left\{ a \middle| a \in \frac{1}{4} - 2I \right\} = \left\{ \cdots, -\frac{15}{4}, -\frac{7}{4}, \frac{1}{4}, \frac{9}{4}, \frac{17}{4}, \cdots \right\}$$

十、(10分)设函数 $f: X \rightarrow Y$, $g: Y \rightarrow Z$, 证明:

得分

- (1)若 ƒ 和 g 均满射,则复合函数 g o f 满射。
- (2)若f和g均入射,则复合函数 $g \circ f$ 入射。

证明(1): (5分)

$$z \in Z \Rightarrow (\exists y)(y \in Y \land g(y) = z) \Rightarrow (\exists y)((\exists x)(x \in X \land f(x) = y) \land g(y) = z)$$
 $\Rightarrow (\exists x)(x \in X \land g(f(x)) = z) \Leftrightarrow (\exists x)(x \in X \land g \circ f(x) = z)$
 $\therefore z$ 是任意取的 :复合函数 $g \circ f$ 满射

证明(2): (5分)

$$g \circ f(x_1) = g \circ f(x_2) \Rightarrow g(f(x_1)) = g(f(x_2)) \stackrel{g \wedge h}{\Rightarrow} f(x_1) = f(x_2) \stackrel{f \wedge h}{\Rightarrow} x_1 = x_2$$

 $\therefore x_1, x_2$ 是任意取的 ∴复合函数 $g \circ f \wedge h$

上海大学 2006~2007 学年春季学期试卷(A卷)

成 绩

课程名: 离散数学(一)

课程号: 08305003

(番間)

应试人声明:

我保证遵守《上海大学学生手册》中的《上海大学考场规则》,如有考试违纪、作弊行为, 愿意接受《上海大学学生考试违纪、作弊行为界定及处分规定》的纪律处分。

应试人:

题	号	 =	Ξ	四	五	六	七	八	九言	:
得	分	·	·					e de la companya de	- VA	

-、(10分) 设函数 $f:A\to B$,函数 $g:B\to A$,且复合函数 $g\circ f$ 为 A 上

的恒等函数 I_A ,试用定义证明:f 是入射的 \log 是满射的。

证:因为复合函数 $g\circ f$ 为A上的恒等函数元,所以对于任意 $x\in A$,都有 $g\circ f(x)=x$ 。

对于任意的 $x_1, x_2 \in A$. 若 $f(x_1)$ 章 (x_2)

$$\Rightarrow \overline{g}(f(x_2)) = g(f(x_2))$$

$$\Rightarrow g \circ f(x_1) = g \circ f(x_2)$$

$$x_1 = x_2$$

对土住意的 $x \in A \Rightarrow g \circ f(x) = x$

复台函数定义
$$\Rightarrow$$
 $(\exists y)(y \in B \land f(x) = y \land g(y) = x)$

$$\Rightarrow (\exists y)(y \in B \land g(y) = x)$$

所以, g是满射的。

二、(10分) 简化下列命题公式;

$$(1) \neg (P \rightarrow Q) \lor (P \rightarrow (P \land Q));$$

(2)
$$((A \uparrow A) \land B) \land (A \lor (B \downarrow B))$$
.

$$\begin{split} \mathscr{H} \colon & \text{ (1)} \ \neg (P \to Q) \lor \big(P \to (P \land Q) \big) \Leftrightarrow \neg \big(\neg P \lor Q \big) \lor \big(\neg P \lor \big(P \land Q \big) \big) \\ & \Leftrightarrow \big(P \land \neg Q \big) \lor \neg P \lor \big(P \land Q \big) \Leftrightarrow \big(P \land \big(\neg Q \lor Q \big) \big) \lor \neg P \Leftrightarrow P \lor \neg P \Leftrightarrow T \end{split}$$

(2)
$$((A \uparrow A) \land B) \land (A \lor (B \downarrow B)) \Leftrightarrow (\neg A \land B) \land (A \lor \neg B)$$

 $\Leftrightarrow (\neg A \land B \land A) \lor (\neg A \land B \land \neg B) \Leftrightarrow F \lor F \Leftrightarrow F$

三、(10 分) 求公式($\forall y$) $\neg P(x,y) \rightarrow (\exists y)((\forall z)Q(y,z) \land (\forall x)R(z,y))$ 的前束析取范式。

解:
$$(\forall y) \neg P(x, y) \rightarrow (\exists y) ((\forall z) Q(y, z) \land (\forall x) R(z, y))$$

得分

 $\Leftrightarrow (\forall y) \neg P(x,y) \Rightarrow (\exists y) ((\forall z) Q(y,z) \land R(z,y))$

$$\Leftrightarrow (\forall a) \neg P(x \land a) \rightarrow (\exists y)((\forall b)Q(y,b) \land R(z,y))$$

$$\Rightarrow \neg (\forall a) \neg P(x,a) \lor (\exists y) ((\forall b) Q(y,b) \land R(z,y))$$

$$\Rightarrow (\exists a) P(x,a) \vee (\exists y) ((\forall b) Q(y,b) \wedge R(z,y))$$

$$\Leftrightarrow (\exists a)(\exists y)(\forall b)[P(x,a)\vee(Q(y,b)\wedge R(z,y))]$$

四、(10分)根据下面真值表,求公式S的主析取范式和主合取范式。

	得分	
ı		

A	В	C	S
\overline{F}	F	F	Ť
F	F	T	T
F	T	F	F
F	T	T	T
T	F	F	T
T	F	T	T
T^{\cdot}	T	F_{\cdot}	\overline{F}
T	T	T	\overline{F}

PF :	
m	M
$\neg A \land \neg B \land \neg C$	
$\neg A \land \neg B \land C$	
	$A \vee \neg B \vee$
$\neg A \land B \land C$	

$$\neg A \land B \land C$$

$$A \land \neg B \land \neg C$$

$$A \land \neg B \land C$$

$$\neg A \lor \neg B \lor C$$
$$\neg A \lor \neg B \lor \neg C$$

公式S的主析取范式为: $\sum m_{0,1,3,4,5} \Leftrightarrow m_0 \lor m_1 \lor m_3 \lor m_4 \lor m_5$

$$\Leftrightarrow (\neg A \land \neg B \land \neg C) \lor (\neg A \land \neg B \land C) \lor (\neg A \land B \land C) \lor (A \land \neg B \land \neg C) \lor (A \land \neg B \land C)$$

公式S的主合取范式为: $\prod M_{2,6,7} \Leftrightarrow M_2 \wedge M_6 \wedge M_7$

$$\Leftrightarrow (A \vee \neg B \vee C) \wedge (\neg A \vee \neg B \vee C) \wedge (\neg A \vee \neg B \vee C)$$

五、(10分) 设集合 $A=\emptyset$ 、 ρ 表示幂集。求 $S=\rho\left(\rho\left(\rho(A)\right)\right)$ 的值,并请说明 $\left\{\varnothing,\left\{\varnothing\right\}\right\}$ 是S的元素。还是S的子集。

$$\text{first} \quad \rho\left(A\right) = \rho\left(\emptyset\right) = \left\{\emptyset\right\}, \quad \rho\left(\rho\left(A\right)\right) = \rho\left(\left\{\emptyset\right\}\right) = \left\{\emptyset, \left\{\emptyset\right\}\right\}.$$

$$S = \wp(\rho(\rho(A))) = \rho(\{\emptyset, \{\emptyset\}\}) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}, \{\emptyset, \{\emptyset\}\}\}\}.$$

因为 $\{\varnothing,\{\varnothing\}\}\in S$,所以 $\{\varnothing,\{\varnothing\}\}$ 是S中的元素;

因为 $\emptyset \in S$. $\{\emptyset\} \in S$, 所以 $\{\emptyset, \{\emptyset\}\}$ 是S的了集。

				第 4	页(共8页)
六、(10 2	(A) 用推選规则证明: (A)	$-B_1 A \vee C_2$	$\neg D \leftrightarrow R$	$\Rightarrow \neg C \rightarrow D$	
	泛证法:	, 11 0	12 (7)	$\rightarrow C \rightarrow D$.	得
1)	$\neg D \leftrightarrow B$	P	1)	AVC. P.	
2)	$(\neg D \to B) \land (B \to \neg D)$) $T_{\rm n}$ E		C->A TOE	· E
3)	$\neg D \rightarrow B$		· · · · · · · · · · · · · · · · · · ·		-
4)	$\neg B \rightarrow D$	•	3)	A->7B P	
5)	$A \rightarrow \neg B$	P		7(->7B T	001
6)	$A \rightarrow D$	$T_{4)5}$ I_{3}			were the second
7)	$A \vee C$	P		(70-18)/\{	2 > 7p) /6
8)	$\neg A \rightarrow C$	T_{r_1} E_1		70-36	
9)	$\neg C \rightarrow A$	T_{8} E_{4}	8 .		l l
10)	$\neg C \to D$	$I_{6)9)}$ I_{13} 養			TOE
	规则:	4	47)	77(->b	TOS I
1)	$\neg C$	P(附加前	提) 🤲	N O N O B	
2)	$A \lor C$	P T		AVL	·
	$A \longrightarrow \neg \mathcal{B}$	$T_{1(2)}$	440	DVB 7B	מדע
4) 5) 6) (4)	7)	T	T.	76	
6).	$\neg D \leftrightarrow B$	$T_{3)4j}$	I_{11}	07'	
7)	(n n) (n 🐗		F	@ AVC.	
8)	$(\neg D \to B) \land (B \to \neg B)$ $\neg D \to B$ D	T ₁ ,	E_{20} I_1	3 A	
9)	D	$T_{5)80}$	I_{12}	@ 78 V7B	
10)	$\neg C \rightarrow D$	CP规则		3 7B	
反证	去:			O BUD	
1)	$\neg(\neg\dot{\zeta} o D)$	P(附加前封	是)	(f) (f)	
2) =	$\neg C$.	T_{ij}	I_{7}		
3)	$A \vee C$	P.		. :	
. (4)	A	$T_{2)3)}$	I_{100}		
<u></u>	$A \rightarrow \neg B$	P		1000	·
6)	$\neg B$	$T_{4)5}$	I_{D}		
7)	$\neg D \leftrightarrow B$	P			
	$(\neg D \to B) \land (B \to \neg D)$	T_{7} ,	E_{20}		
9) 10)	$\neg D \to B$ $\neg D$	T_{s_0}	I_1		
11)	$\neg D$ B	$T_{\mathbf{p}}$	$\dot{L}_{ m g}$	•	
12)	B ∧¬B矛盾	T_{10}	I _{II}		24
	27、107/月	$T_{6)11)}$	I ₉ 得证		

 $(10\, f)$ 设S, R是集合A上的等价关系,试证明: $R \circ S$ 是集合A 上的等价关系当且仅当 $R \circ S = S \circ R$ 。

得 分

证: 若S, R是集合A上的等价关系;则满足自反性、对称性、传递性。

- s-Mazbéh $(a,a) \in R \land (a,a) \in S \Rightarrow (a,a) \in R \circ S$, 所以 $R \circ S$ 满足自反性,
- 2) 对于任意的 $a,b \in A \land \langle a,b \rangle \in R \circ S \Rightarrow (\exists c) (\langle a,c \rangle \in R \land \langle c,b \rangle \in S)$ $\Rightarrow (\exists c) (\langle c,a \rangle \in R \land \langle b,a \rangle \in S) \Rightarrow \langle b,a \rangle \in S \circ R \Rightarrow \langle b,a \rangle \in R \circ S.$ 所以 $R \circ S$ 满足对称性。
- C = C 对于任意的关系 $C \subseteq D \land C \subseteq F \Rightarrow C \land C \subseteq D \land F$
- S满足自反性 $\leftrightarrow I_A \subseteq S$ \bigcirc \circ $I_A \subseteq R \circ S \leftrightarrow R \circ S$ 满足自反性,
- 3) 由 S 两足传递性 每項。 $R \subseteq S$ $\Rightarrow (R \circ R) \circ (S \circ S) \subseteq R \circ S$

線上所述, RoS是集合 A上的等价关系。

 $("\Rightarrow")$ 若 $R\circ S$ 是集合 A 上的等价关系,则满足自反性、对称性、传递性。

对于任意的 $\langle x,z\rangle \in R \circ S$ \Leftrightarrow $\langle z,x\rangle \in R \circ S \Leftrightarrow (\exists y)(y \in A \land \langle z,y\rangle \in R \land \langle y,x\rangle \in S)$ \Leftrightarrow $(\exists y)(y \in A \land \langle y,z\rangle \in R \land \langle x,y\rangle \in S) \Leftrightarrow \langle x,z\rangle \in S \circ R$ 。所以, $R \circ S = S \circ R$ 。

八、(10 分) 对谓词公式 $(\exists x)(\forall y)(H(f(x))\vee G(y,f(x)))$ 先消去量词后

得分

求真值。其中,对于任意的x,y属于个体域 $D=\{2,3\}$,

$$f(x) = \begin{cases} 3 & x = 2 \\ 2 & x = 3 \end{cases}, \quad H(x) = \begin{cases} F & x = 2 \\ T & x = 3 \end{cases}, \quad G(x, y) = \begin{cases} F & x = y \\ T & x \neq y \end{cases}.$$

解: $(\exists x)(\forall y)(H(f(x))\vee G(y,f(x)))$

$$\Leftrightarrow (\exists x) \Big[\Big(H \Big(f \Big(x \Big) \Big) \vee G \Big(2, f \Big(x \Big) \Big) \Big) \wedge \Big(H \Big(f \Big(x \Big) \Big) \vee G \Big(3, f \Big(x \Big) \Big) \Big) \Big]$$

$$\Leftrightarrow \left[\left(H(f(2)) \vee G(2, f(2)) \right) \wedge \left(H(f(2)) \vee G(3, f(2)) \right) \right] \vee$$

$$\left[\left(H(f(3))\vee G(2,f(3))\right)\wedge \left(H(f(3))\vee G(3,f(3))\right)\right]$$

$$\Leftrightarrow \left[\left(H(3) \vee G(2,3) \right) \wedge \left(H(3) \vee G(3,3) \right) \right] \vee \left[\left(H(2) \vee G(2,2) \right) \wedge \left(H(2) \vee G(3,2) \right) \right]$$

$$\Leftrightarrow [(T \vee T) \wedge (T \vee F)] \vee [(F \vee F) \wedge (F \vee T)]$$

$$\Leftrightarrow (T \wedge T) \vee (F \wedge T)$$

$$\Leftrightarrow T \vee F \Leftrightarrow T$$

九、(10分) 设 $A = \{a,b,c,d,e,f\}$,构造一个以 $\{a,b\}$, $\{c,d,e\}$, $\{f\}$ 为全部等价类的A上的等价关系R,并证明R是A上的等价关系。

得分

$$\begin{array}{ll} \text{fif:} & R = \{\langle a, a \rangle, \langle b, b \rangle, \langle a, b \rangle, \langle b, a \rangle, \\ & \langle c, c \rangle, \langle d, d \rangle, \langle e, e \rangle, \langle c, d \rangle, \langle d, c \rangle, \langle c, e \rangle, \langle e, c \rangle, \langle d, e \rangle, \langle e, d \rangle, \\ & \langle f, f \rangle \} \end{array}$$

证: 1) 因为 $R \supseteq I_4$, 所以R是自反的:

- 2) 因为 $R = R^c = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle d, d \rangle, \langle e, e \rangle, \langle f, f \rangle,$ $\langle a, b \rangle, \langle b, a \rangle, \langle c, d \rangle, \langle d, c \rangle, \langle c, e \rangle, \langle e, c \rangle, \langle d, e \rangle, \langle e, d \rangle \}, \text{ 所以 } R \text{ 是对称的}.$
- 3) 因为 $R \circ R = R = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle d, d \rangle, \langle e, e \rangle, \langle f, f \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle c, d \rangle, \langle d, c \rangle, \langle c, e \rangle, \langle e, c \rangle, \langle d, e \rangle, \langle e, d \rangle\},$

所以,由R∘R⊆R知R是转递的。 综上所述,R是A上的等价。 十、(10 分) 设 $A = \{1,2,3,4\}$, R 是 A 上的二元关系, $R = \{\langle 1,2\rangle,\langle 4,3\rangle,\langle 2,2\rangle,\langle 2,1\rangle,\langle 3,1\rangle\}$ 。

- (1) $\Re: M_R, M_{r(R)}, M_{s(R)};$
- (2) 用WarShall 算法求 $M_{l(R)}$ 。

$$\widetilde{M}: (1) \ M_{R} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \ M_{r(R)} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}, \ M_{s(R)} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

(2) 使用WarShall 算法

第一列情况:
$$M = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
,第二列情况: $M = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

第三列情况:
$$M = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$
 第四列情况: $M = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}$.

所以,
$$M_{I(R)}$$
 $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$