Machine learning, heterogeneous investors, and stock returns

simulation

Machine Forecast Disagreement

Turan G. Bali, Bryan T. Kelly, Mathis M¨orke, and Jamil Rahman Working paper, 2023

1. Introduction-- Motivation

- Belief disagreement is a primary motivation for trade
- A theoretical literature seeks to understand how differences of opinion among investors impact market prices and volumes.
 - Miller (1977) predicts that stock prices are upward biased due to shortsale constraints
- **Empirical** work on disagreement is more limited due to the difficulty in measuring investor beliefs.
 - Diether et al. (2002) proxies for belief heterogeneity using analyst earnings forecasts: analyst forecast dispersion (AFD) ↑ → future return ↓
 - Johnson (2004) questions the interpretation of Diether et al. (2002) and argues that AFD proxies for firm-specific risk
- We propose a new measure of investor disagreement.

1. Introduction-- Challenge

- We propose a statistical surrogate for belief disagreement
 - not directly observable
- Each investor is a prediction model from which beliefs about future returns are formed
 - have access to a common set of predictive information, but use available information in different ways
 - endowing each investor with a machine learning model but introduce random variation in model specification
- Whether the distribution from which we simulate model specifications is plausible
 - the calibration of our simulation distribution is reasonable
 - our results are **robust** to a range of distributions for simulating investors' models.

4

1. Introduction-- Contents

每只股票存在多 个预测值

1. Introduction-- Contribution

- Proposing a **new measure** of belief disagreement at the asset level (MFD)
 - more data coverage, more objective than AFD (Dugar and Nathan, 1995; Michaely and Womack, 1999; Chan et al., 2007)
- Documenting the strong explanatory power of MFD for the crosssectional pricing of individual stocks.
 - 23% correlation with AFD, more explanatory power than AFD
- Investigating the economic underpinnings of MFD alpha
 - More overpricing with higher short-sale costs and higher retail ownership (Miller, 1977)
 - The MFD premium is associated with high-MFD stocks being

2. An empirical model of disagreement

Gu et al. (2020) consider a general conditional risk premium formulation

$$E_t[r_{i,t+1}] = g(z_{i,t}),$$

• We consider a collection of investors k = 1, ..., K. Each investor k differs in her information set $z_{k,i,t}$, an investor k forms beliefs according to

$$E_{k,t}[r_{i,t+1}] = g_k(z_{k,i,t}).$$

 $g_k(z_{i,t}) = RF_k(z_{k,i,t}),$

- Each investor is endowed with an incomplete information set $z_{k,i,t} \in \mathbb{R}^{d_k}$, $1 \le d_k \le d$. $z_{i,t} \in \mathbb{R}^d$.
- Investors estimate $g_k(\cdot)$ using a random forest regression (bootstrapping and dropout)
- Machine forecast disagreement (MFD), for stock i as the standard deviation of $E_{k,t}$ [$r_{i,t+1}$] across investors.

2024/3/11 Tu Xueyong 7

3. Data and variables

- Use the dataset from Jensen et al. (2022b)
- Stock returns and characteristics(153)
- Cross-sectionally rank into [-1,1]
- 1966.07-2022.12
- 10-year rolling window
- MFD construction
 - the number of investors K = 100
 - the dimension of the incomplete information set $d_k = 76$

4. Univariate Sorts on MFD

	Excess Return	t-stat	CAPM	t-stat
Low	1.14***	(5.09)	0.50***	(3.72)
2	1.06***	(4.85)	0.42***	(3.30)
3	1.06***	(4.62)	0.38***	(2.97)
4	1.00***	(4.28)	0.29**	(2.43)
5	0.97***	(4.02)	0.23**	(1.96)
6	0.87***	(3.44)	0.11	(0.92)
7	0.77***	(2.87)	-0.03	(-0.22)
8	0.61**	(2.08)	-0.22	(-1.51)
9	0.44	(1.44)	-0.42***	(-2.63)
High	-0.18	(-0.52)	-1.12***	(-5.68)
H-L	-1.32***	(-5.61)	-1.62***	(-7.15)

 The negative cross-sectional relation between MFD and future stock returns

4. Analyst Forecast Dispersion and MFD

Panel A: Average AFD in MFD Decile Portfolio

	Low	High	H-L	t-stat
AFD	0.08	0.26	0.18***	18.48

Panel B: Bivariate Portfolio Sort on AFD

	Low	High	H-L	t-stat	FF6	t-stat
AFD Low	1.18	0.66	-0.51**	-2.23	-0.39	-1.52
AFD 2	0.92	0.07	-0.85***	-3.22	-0.83***	-2.79
AFD 3	0.96	-0.02	-0.98***	-3.43	-0.73**	-2.38
AFD 4	0.87	-0.09	-0.96***	-2.79	-0.79**	-2.18
AFD High	0.61	-0.59	-1.20***	-3.41	-1.11***	-2.92
AFD H-L	-0.57	-1.25	-0.68**	-2.34	-0.72**	-2.19

- The relatively higher predictive power of MFD with respect to AFD
- MFD is much stronger for equities with high AFD.

4. Average Stock Characteristics of MFD-sorted Portfolios

	Low	2	3	4	5	6	7	8	9	High	H-L	t-stat
MFD	1.21	1.39	1.52	1.64	1.84	1.97	2.10	2.27	2.49	2.87	1.66***	(19.21)
SUE	0.04	0.02	0.01	-0.02	-0.01	-0.01	-0.01	-0.01	-0.01	-0.03	-0.07**	(-2.14)
AG	0.06	0.07	0.08	0.09	0.09	0.11	0.12	0.13	0.16	0.23	0.17***	(7.32)
MOM	0.16	0.13	0.12	0.11	0.11	0.11	0.11	0.11	0.11	0.09	-0.07**	(-2.11)
ILLIQ	0.06	0.08	0.07	0.07	0.08	0.09	0.09	0.10	0.11	0.17	0.11***	(4.97)
OP	0.29	0.27	0.26	0.25	0.24	0.23	0.21	0.19	0.15	0.03	-0.26***	(-11.36)
IVOL	0.02	0.02	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.04	0.02***	(21.58)
BETA	0.92	0.98	1.03	1.08	1.11	1.15	1.19	1.26	1.33	1.46	0.54***	(16.51)
SIZE $(\times 10^{-9})$	1.35	1.01	0.87	0.73	0.62	0.54	0.45	0.37	0.31	0.24	-1.11***	(-6.77)
BM	0.51	0.53	0.53	0.54	0.54	0.53	0.53	0.53	0.50	0.45	-0.06**	(-2.37)
MAX	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.05	0.03***	(18.29)
TURN $(\times 10^3)$	4.13	4.27	4.47	4.73	4.85	5.08	5.29	5.58	5.89	7.29	3.16***	(7.98)
$STR(\times 10^3)$	8.33	8.31	9.15	8.52	8.51	8.74	9.16	8.29	10.32	23.05	14.72***	(4.30)

- Other firm characteristics can explain the negative relation between MFD and future stock returns.
- The stocks with higher MFD are indeed smaller, less liquid, and have higher idiosyncratic volatility and stronger lottery features.

4. Average Stock Characteristics of MFD-sorted Portfolios

Pane	el A: Equal	l-Weighted	Portfolios									
	SUE	AG	MOM	ILLIQ	OP	IVOL	BETA	SIZE	$_{\mathrm{BM}}$	MAX	TURN	STR
1	1.12***	1.08***	1.06***	1.13***	1.11***	1.09***	1.13***	1.12***	1.13***	1.11***	1.12***	1.12***
High	-0.00	0.02	-0.00	-0.17	0.07	0.17	0.14	-0.03	-0.08	0.13	-0.09	-0.11
	(-0.01)	(0.07)	(-0.01)	(-0.49)	(0.23)	(0.63)	(0.47)	(-0.10)	(-0.26)	(0.44)	(-0.28)	(-0.32)
H-L	-1.12***	-1.06***	-1.06***	-1.30***	-1.04***	-0.92***	-0.99***	-1.15***	-1.21***	-0.99***	-1.21***	-1.22***
	(-4.99)	(-5.61)	(-5.18)	(-5.71)	(-6.48)	(-7.32)	(-5.61)	(-5.01)	(-6.01)	(-6.94)	(-6.21)	(-6.11)
FF6	-0.77***	-0.77***	-0.79***	-0.88***	-0.87***	-0.72***	-0.80***	-0.73***	-0.85***	-0.64***	-0.81***	-0.84***
	(-6.90)	(-7.04)	(-7.51)	(-7.83)	(-7.43)	(-6.55)	(-6.85)	(-5.82)	(-7.73)	(-6.38)	(-7.23)	(-7.36)

 The negative association between MFD and future stock returns exists while controlling for the established equity return predictors

5. Sources of return predictability--Mispricing versus risk

Mispricing and MFD (Stambaugh et al. (2015))

Panel A: A	verage MIS	SP in MFD	Decile Po	rtfolio					
	Low	2	3	4	High	H-L	t-stat		
MISP	44.07	46.78	48.98	51.10	55.05	10.97***	16.68		
Panel B: B	ivariate Po	rtfolio Sor	t on MISP						
	Low	2	3	4	High	H-L	t-stat	FF6	t-stat
MISP Low	1.32	1.36	1.29	1.16	0.92	-0.40***	-2.66	-0.28*	-1.83
MISP 2	1.11	1.20	1.08	1.00	0.60	-0.51***	-3.00	-0.37**	-2.13
MISP High	0.78	0.56	0.29	0.19	-0.40	-1.18***	-5.33	-0.97***	-4.10
MISP H-L	-0.54	-0.80	-1.00	-0.98	-1.32	-0.79***	-4.75	-0.69***	-3.77

 High MFD stocks indeed have a higher average mispricing score than the low MFD stocks

5. Sources of return predictability---Mispricing versus risk

Earnings Announcement Returns Prediction

	Panel A: One-d	ay Window	Panel B: Three-o	lay Window
Dep. variable	Ret^d_t	Ret_t^d	Ret_t^d	Ret_t^d
MFD	-0.26***	-0.32***	-0.25***	-0.31***
	(-6.31)	(-6.84)	(-6.16)	(-6.67)
$\mathrm{MFD} imes \mathrm{EDAY}$	-0.50***	-0.50***	-0.36***	-0.36***
	(-3.43)	(-3.42)	(-5.18)	(-5.13)
EDAY	0.25***	0.26***	0.15***	0.15***
	(9.28)	(9.44)	(11.60)	(11.78)
Lagged Controls?	No	Yes	No	Yes
Day Fixed Effects?	Yes	Yes	Yes	Yes

- An earnings announcement window dummy variable (EDAY)
- Mispricing explanation: negative cross-sectional relation is stronger on earnings announcement days(the interaction term)

2024/3/11 Tu Xueyong 14

5. Sources of return predictability--Short-selling costs

the indicative borrowing fee provided by HIS Markit, and institutional ownership

Panel A: Average BO	ORROWF	EE in MF	D Decile	Portfolio					
	Low	2	3	4	High	H-L	t-stat	_	
BORROWFEE	0.67	0.68	0.88	1.27	3.82	3.15***	8.85		
Panel B: Bivariate P	ortfolio So	ort on BO	RROWFE	EΕ					
	Low	2	3	4	High	H-L	t-stat	FF6	t-stat
BORROWFEE Low	0.92	1.00	0.97	0.89	0.83	-0.09	-0.45	-0.07	-0.38
BORROWFEE 2	1.00	0.98	0.80	0.66	0.28	-0.72**	-2.38	-0.77**	-2.51
BORROWFEE High	0.76	0.33	-0.38	-1.08	-1.94	-2.69***	-5.45	-2.30***	-4.92
BORROWFEE H-L	-0.16	-0.67	-1.35	-1.97	-2.76	-2.60***	-5.89	-2.23***	-5.27

The MFD premium is stronger among stocks with more severe short sale costs

5. Sources of return predictability--Limits to arbitrage

ARB is composed of IVOL, illiquidity, and size

	Low	2	3	4	High	H-L	t-stat		
ARB	13.73	14.69	15.75	16.80	18.66	4.93***	8.45		
Panel B: I	Bivariate Po	ortfolio Sor	t on ARB						
	Low	2	3	4	High	H-L	t-stat	FF6	t-stat
ARB Low	1.00	0.94	0.93	0.81	0.68	-0.32***	-3.24	-0.28***	-2.73
			1.01	0.07	0.48	-0.62***	-3.54	-0.38**	-2.16
ARB 2	1.10	1.08	1.01	0.87	0.40	-0.02	-0.04	0.00	2.10
ARB 2 ARB High	1.10 1.16	0.79	0.45	0.87	-0.50	-1.66***	-6.70	-1.37***	-5.51

 Slow diffusion of information into stock prices due to limits-to-arbitrage provides a complementary explanation to the predictive power of MFD

6. Conclusion

 This paper introduces a statistical model of investor beliefs from which we build a novel measure of investor belief disagreement.

 We find a significantly negative and highly cross-sectional relation between this proposed measure, MFD, and future stock returns.

We investigate the source of the MFD spread portfolio's alpha.

Do the Collective Trades of Market Participants Contain Information about Stocks? A Machine Learning Approach

Victor DeMiguel, Li Guo, Bo Sang, Zhe Zhang Working paper, 2023

1. Introduction-- Motivation

 How information is impounded into asset prices through trading is a central theme

- Most studies tend to focus on the trades of one particular type of investors
 - mutual funds, hedge funds, short sellers, or retail investors
- McLean, Pontiff, and Reilly (2022) conduct a comprehensive analysis on the trades of nine market participants
 - focusing on the marginal effect of each type of participant
- Studying the interactions between investors is important (Diamond and Verrecchia, 1981; Goldstein and Yang, 2015)

1. Introduction-- Contents

1. Introduction-- Question

Do the composite signals predict returns?

Yes

 The return predictability comes from the (nonlinear) interaction or the trading of a few types?

Both

The predicted returns contain information about firm fundamentals?

Yes

The predicted returns is on the right side of anomaly returns?

Yes

1. Introduction-- Contribution

- Contribute to the literature whether market participant trading contains information about future stock returns, using machine learning method.
 - (Diether, Lee, and Werner, 2009; Aggarwal and Jorion, 2010; Boehmer, Huszar, and Jordan, 2010; Baker et al., 2010; Kaniel et al., 2012; Kelley and Tetlock, 2013; Cao et al., 2018; Boehmer et al., 2021; McLean, Pontiff, and Reilly, 2022)
- Contribute to the literature that uses machine learning models in asset pricing and investment, based on the trading signals of multiple market participants
 - (Gu, Kelly, and Xiu, 2020; Kozak, Nagel, and Santosh, 2020; Bryzgalova, Pelger, and Zhu, 2021; Chatigny, Goyenko, and Zhang, 2022; Leippold, Wang, and Zhou, 2022).

2. Data

- Institutional trading signals: institutional holdings data from Thomson/Refinitiv S12 and 13F
 - mutual funds, insurance companies, banks, hedge funds, wealth management firms, and other institutions.
 - Changes in 13F institutional holdings
 - The level of holdings of each type
- Retail trading signals: compute retail order imbalance on a monthly basis from TAQ trade dataset, following Boehmer et al. (2021)
- Short seller trading signals: monthly short interest data scaled by the number of shares outstanding, from Compustat
- Firm trading signals: calculate changes in shares, that is, share issues minus share repurchases, divided by shares outstanding from Tu Xueyong

2. Data

- 2008.01-2020.12
- Normalizing trading signals to the (-1,1) interval
- Rolling window: five-year length
- linear combination
 - OLS、Alasso,、Ridge、Enet、PCR、PLS
- Nonlinear combination
 - GBRT、RF、ANN1、ANN2、ANN3、ANN4

3. FF5 alpha of univariate trading signals

	Low	2	3	8	9	High	High - Low
Bank Trading	0.01%	-0.08%	-0.05%	0.07%	-0.36%*	-0.11%	-0.12%
	(0.04)	(-0.47)	(-0.29)	(0.42)	(-1.99)	(-0.76)	(-0.49)
Firm Trading	-0.28%	0.10%	0.19%	-0.09%	0.04%	-0.05%	0.22%
	(-0.94)	(0.50)	(1.31)	(-0.70)	(0.61)	(-0.43)	(0.66)
Hedge Fund Trading	0.00%	-0.10%	-0.05%	0.06%	-0.13%	0.07%	0.08%
	(-0.02)	(-0.69)	(-0.38)	(0.39)	(-1.03)	(0.46)	(0.29)
Insurance Company Trading	0.10%	-0.03%	-0.16%	-0.10%	-0.27%	-0.16%	-0.26%
	(0.49)	(-0.19)	(-0.85)	(-0.42)	(-1.40)	(-1.20)	(-0.98)
Mutual Fund Trading	-0.02%	0.04%	0.08%	0.02%	0.26%*	0.00%	0.02%
	(-0.15)	(0.33)	(0.27)	(0.06)	(1.82)	(0.04)	(0.12)
Other Institutional Trading	0.00%	-0.15%	0.01%	0.21%	-0.02%	-0.10%	-0.10%
	(0.01)	(-1.18)	(0.08)	(1.57)	(-0.14)	(-0.70)	(-0.38)
Short Seller Trading	0.08%	-0.16%	-0.06%	-0.16%	0.19%**	0.07%	-0.01%
	(0.52)	(-1.45)	(-0.53)	(-1.51)	(2.19)	(0.67)	(-0.04)
Wealth Management Trading	0.06%	-0.13%	-0.16%	-0.11%	0.10%	0.07%	0.01%
	(0.29)	(-1.50)	(-0.90)	(-0.71)	(0.61)	(0.44)	(0.03)
Retail Trading_MPR	0.12%	0.22%*	0.15%	0.01%	-0.14%	-0.45%	-0.57%**
	(0.62)	(1.84)	(0.92)	(0.08)	(-0.48)	(-1.22)	(-2.09)
Retail Trading_BJZZ	0.16%	0.02%	-0.18%**	-0.09%	0.02%	0.43%**	0.27%
	(0.93)	(0.19)	(-2.44)	(-0.52)	(0.14)	(2.02)	(1.20)

 Retail trading as measured by Boehmer et al. (2021) shows strong return predictability

2024/3/11 Tu Xueyong 25

3. Portfolio performance from composite return predictors

		LCP			NLCP	
	FF5	q5	MISP	FF5	q5	MISP
Low	-0.53%	-0.15%	-0.61%**	-1.04%***	-0.75%***	-0.95%***
	(-1.57)	(-0.54)	(-2.53)	(-4.69)	(-3.15)	(-5.04)
High	0.32%**	0.19%	0.32%**	0.35%**	0.36%**	0.35%**
	(2.26)	(1.23)	(2.56)	(2.15)	(2.19)	(2.35)
H - L	0.85%**	0.34%	0.93%***	1.39%***	1.11%***	1.30%***
	(2.19)	(1.02)	(3.58)	(4.88)	(3.70)	(5.73)

The nonlinear composite return predictor (NLCP) preforms better

3. Importance of each trading signal

These trading signals are individually insignificant in predicting returns,
 collectively they provide significant contribution to the return predictor,
 possibly from their nonlinear interactions.

3. Predicting profitability and stock fundamentals

Variable	ΔROA	ΔCF	$\Delta { m SUE}$	ROA	CF	SUE
NLCP	0.0597**	0.0392***	0.0062**	0.2692***	0.2517***	0.0156***
	(2.23)	(2.68)	(2.62)	(6.95)	(7.94)	(7.70)
SIZE	-0.0007	0.0085	-0.0004	0.1056***	0.1098***	-0.0002
	(-0.12)	(1.61)	(-0.46)	(18.27)	(19.42)	(-0.28)
BM	-0.0463***	-0.0289***	-0.0014	0.0380***	0.0493***	0.0002
	(-4.44)	(-4.09)	(-1.34)	(3.48)	(6.92)	(0.23)
MOM	0.0166***	0.0066*	-0.0026**	0.0338***	0.0242***	0.0005
	(3.11)	(1.98)	(-2.13)	(6.08)	(5.25)	(0.58)
STR	0.0047	0.0046*	-0.0259***	-0.0004	-0.0003	0.0008*
	(1.18)	(1.81)	(-26.17)	(-0.09)	(-0.10)	(1.78)
AG	0.0428***	0.0164**	-0.0002	-0.0371***	-0.0340***	-0.0008
	(3.57)	(2.16)	(-0.20)	(-4.45)	(-5.79)	(-1.41)
GP	-0.0924***	-0.0521***	0.0000	0.0463*	0.0599***	0.0006
	(-3.78)	(-3.26)	(0.02)	(1.73)	(3.22)	(0.76)
Obs.	226,329	222,214	286,434	230,541	223,447	288,550
R-squared	0.04	0.03	0.04	0.17	0.27	0.01

NLCP contains information related to firm fundamentals

3. Predicting profitability and anomalies

	Low	2	3	4	High	High - Low	t-stat
Market capitalization	12.427	13.585	13.937	14.017	13.664	1.24***	10.37
Book-to-market	0.554	0.567	0.561	0.554	0.596	0.04***	2.68
Gross margin	0.187	0.291	0.298	0.301	0.293	0.11***	18.80
Illiquidity	0.810	0.874	0.864	0.765	1.154	0.34**	2.56
Idiosyncratic volatility	0.078	0.052	0.046	0.045	0.047	-0.03***	-16.27
$Momentum_12m$	-0.010	0.084	0.103	0.120	0.113	0.12***	5.43
$Momentum_1m$	-0.002	0.009	0.012	0.013	0.015	0.02*	1.97
Asset growth	0.137	0.118	0.107	0.104	0.093	-0.04***	-5.75
Dividend yield	0.011	0.013	0.014	0.014	0.014	0.00***	4.41
Analyst coverage	5.168	7.350	8.069	8.080	7.096	1.93***	6.16
Price delay	0.089	0.064	0.060	0.057	0.077	-0.01*	-1.74
Combined fundamental	3.572	4.163	4.326	4.361	4.237	0.67***	13.77

	FF5	q5	MISP	vw NLCP + market factor	
Average $ \alpha $	0.64%	0.52%	0.58%	0.40%	
Average t	1.9	1.5	1.9	1.2	
Delta	0.44	0.38	0.72	0.34	
F-statistic	1.6*	1.3	2.8***	1.2	
p-value	0.073	0.234	0.001	0.256	

- The predicted returns is on the right side of most anomaly returns
- Two-factor model suggests their ability to explain the stock return anomalies

4. Conclusion

 We use machine learning to study whether the joint trading behavior of multiple market participants contains information about future stock returns

 A long-short portfolio based on the nonlinear composite predictor (NLCP) generates monthly alphas from various factor models exceeding 1%