

# GW1NSR 系列 FPGA 产品 **数据手册**

DS861-1.4.3, 2020-11-27

#### 版权所有© 2020 广东高云半导体科技股份有限公司

未经本公司书面许可,任何单位和个人都不得擅自摘抄、复制、翻译本文档内容的部分或全部,并不得以任何形式传播。

#### 免责声明

本文档并未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可。除高云半导体在其产品的销售条款和条件中声明的责任之外,高云半导体概不承担任何法律或非法律责任。高云半导体对高云半导体产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等,均不作担保。高云半导体对文档中包含的文字、图片及其它内容的准确性和完整性不承担任何法律或非法律责任,高云半导体保留修改文档中任何内容的权利,恕不另行通知。高云半导体不承诺对这些文档进行适时的更新。

# 版本信息

| 日期         | 版本    | 说明                                                                                       |
|------------|-------|------------------------------------------------------------------------------------------|
| 2018/11/15 | 1.0   | 初始版本。                                                                                    |
| 2019/01/03 | 1.1   | <ul><li>更新器件推荐工作电压列表;</li><li>更新 PSRAM 参考文档相关描述。</li></ul>                               |
| 2019/03/12 | 1.2   | 电气特性中的环境温度更新为结温。                                                                         |
| 2019/11/13 | 1.3   | 增加 GW1NSR-4 及 GW1NSR-4C 器件信息。                                                            |
| 2020/02/20 | 1.4   | <ul><li>完善器件订货信息;</li><li>GW1NSR-LX2 器件的 VCCIO 供电范围≤1.8V;</li><li>更新电气特性章节的架构。</li></ul> |
| 2020/04/16 | 1.4.1 | <ul><li>● 更新封装信息列表;</li><li>● 更新 CFU 结构示意图。</li></ul>                                    |
| 2020/06/28 | 1.4.2 | 更正 GW1NSR-2C/ GW1NSR-2 封装名称:由"QN48"更正为"QN48P"。                                           |
| 2020/11/27 | 1.4.3 | 更新 ARM Cortex-M3 支持的最高工作频率。                                                              |

i

# 目录

| Ħ | 录…  |                | İ  |
|---|-----|----------------|----|
| 图 | 目录  |                | V  |
| 表 | 目录  | ·vii           | ii |
| • |     | ·本手册           |    |
| • |     | 手册内容           |    |
|   |     | 相关文档           |    |
|   |     | 术语、缩略语         |    |
|   |     | 技术支持与反馈        |    |
| 2 |     | 概述             |    |
| _ |     |                |    |
|   |     | 特性概述           |    |
|   |     | 产品信息列表         |    |
|   | 2.3 | 封装信息列表         | 8  |
| 3 | 结构  | 介绍             | 9  |
|   | 3.1 | 结构框图           | 9  |
|   | 3.2 | PSRAM 1        | 1  |
|   | 3.3 | HyperRAM1      | 2  |
|   | 3.4 | NOR FLASH1     | 3  |
|   | 3.5 | 可配置功能单元1       | 4  |
|   | 3.5 | .1 可配置逻辑单元1    | 5  |
|   | 3.5 | .2 布线资源单元      | 6  |
|   | 3.6 | 输入输出模块         | 7  |
|   | 3.6 | .1 I/O 电平标准1   | 8  |
|   | 3.6 | .2 真 LVDS 设计2  | 2  |
|   | 3.6 | .3 I/O 逻辑2     | 2  |
|   | 3.6 | .4 I/O 逻辑工作模式2 | 4  |
|   | 3.7 | 块状静态随机存储器模块2   | 9  |
|   | 3.7 | .1 简介2         | 9  |
|   | 3.7 | 2 存储器配置模式3     | 0  |

| 3.7.3 存储器混合数据宽度配置       | 31 |
|-------------------------|----|
| 3.7.4 字节使能功能配置          | 32 |
| 3.7.5 校验位功能配置           | 32 |
| 3.7.6 同步操作              | 32 |
| 3.7.7 上电情况              | 32 |
| 3.7.8 B-SRAM 操作模式       | 32 |
| 3.7.9 时钟模式              | 34 |
| 3.8 用户闪存资源(GW1NSR-2C/2) | 35 |
| 3.8.1 简介                | 35 |
| 3.8.2 端口信号              | 37 |
| 3.8.3 页地址映射表            | 37 |
| 3.8.4 操作模式命令表           | 38 |
| 3.8.5 读操作               | 38 |
| 3.8.6 写操作               | 38 |
| 3.8.7 擦除操作              | 38 |
| 3.9 用户闪存资源(GW1NSR-4C/4) | 39 |
| 3.9.1 简介                | 39 |
| 3.9.2 端口信号              | 40 |
| 3.9.3 操作模式              | 40 |
| 3.10 数字信号处理模块           | 41 |
| 3.10.1 简介               | 41 |
| 3.10.2 DSP 操作模式配置       | 45 |
| 3.11 Cortex-M3          | 45 |
| 3.11.1 简介               | 45 |
| 3.11.2 Cortex-M3        | 46 |
| 3.11.3 总线矩阵             | 47 |
| 3.11.4 NVIC             |    |
| 3.11.5 启动模式             | 49 |
| 3.11.6 时间戳              | 49 |
| 3.11.7 定时器              | 50 |
| 3.11.8 UART             | 52 |
| 3.11.9 看门狗              | 53 |
| 3.11.10 GPIO            |    |
| 3.11.11 调试接口            |    |
| 3.11.12 内存映射            | 57 |
| 3.11.13 应用              | 57 |
| 3.12 USB2.0 PHY         | 58 |

| 3.12.1 特性概述          | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.12.2 端口及参数信号描述     | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3.13 ADC             | . 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.13.1 特性概述          | . 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.13.2 端口信号          | . 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.14 时钟              | . 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.14.1 全局时钟网络        | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3.14.2 锁相环           | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3.14.3 高速时钟          | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3.15 长线              | . 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.16 全局复置位           | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3.17 编程配置            | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3.17.1 SRAM 编程       | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3.17.2 Flash 编程      | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3.18 片内晶振            | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 电气特性                 | .71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4.1 工作条件             | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.1.1 绝对最大范围         | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.1.2 推荐工作范围         | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.1.3 电源上升斜率         | . 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4.1.4 热插拔特性          | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.1.5 POR 特性         | . 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4.2 ESD 性能           | . 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4.3 DC 电气特性          | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.3.1 推荐工作范围 DC 电气特性 | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.3.2 静态电流           | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.3.3 I/O 推荐工作条件     | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.3.4 单端 I/O DC 电气特性 | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.3.5 差分 I/O DC 电气特性 | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.4 AC 开关特性          | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.4.1 IO 速度          | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.4.2 CFU 开关特性       | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.4.3 时钟和 I/O 开关特性   | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.4.4 Gearbox 开关特性   | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.4.5 B-SRAM 开关特性    | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.4.6 DSP 开关特性       | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.4.7 片内晶振开关特性       | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      | 3.12.2 端口及参数信号描述 3.13.ADC 3.13.1 特性概述 3.13.2 端口信号 3.14 时钟 3.14.2 锁相环 3.14.2 锁相环 3.14.3 高速时钟 3.15 长线 3.16 全局复置位 3.17 编程配置 3.17.1 SRAM 编程 3.17.1 SRAM 编程 3.17.2 Flash 编程 4.1 性气特性 4.1 生作条件 4.1 生物对最大范围 4.1.2 推荐工作范围 4.1.3 电源上升斜率 4.1.4 热插波特性 4.1.5 POR 特性 4.2 ESD 性能 4.3 DC 电气特性 4.3 DC 电气特性 4.3 DC 电气特性 4.3 DC 电气特性 4.3 PM 中域 VO DC 电气特性 4.3 单端 VO DC 电气特性 4.4 单端 VO DC 电气特性 4.4 单端 VO DC 电气特性 4.4 产于特性 4.4 DC 开关特性 |

|   | 4.4.8 锁相环开关特性             | 80 |
|---|---------------------------|----|
|   | 4.5 Cortex-M3 电气特性        | 81 |
|   | 4.5.1 DC 电气特性             | 81 |
|   | 4.5.2 AC 电气特性             | 81 |
|   | 4.6 用户闪存电气特性(GW1NSR-2C/2) | 82 |
|   | 4.6.1 DC 电气特性             | 82 |
|   | 4.6.2 AC 电气特性             | 83 |
|   | 4.6.3 操作时序图               | 84 |
|   | 4.7 用户闪存电气特性(GW1NSR-4C/4) | 85 |
|   | 4.7.1 DC 电气特性             | 85 |
|   | 4.7.2 AC 电气特性             | 86 |
|   | 4.7.3 操作时序图               | 87 |
|   | 4.8 ADC 电气特性              | 88 |
|   | 4.8.1 ADC 转换时序            | 88 |
|   | 4.8.2 电气特性参数              | 89 |
|   | 4.9 编程接口时序标准              | 90 |
| 5 | 器件订货信息                    | 91 |
|   | 5.1 器件命名                  | 91 |
|   | 5.2 器件封装标识                | 93 |

# 图目录

| 图 3-1 GW1NSR-2 器件结构示意图              | 9  |
|-------------------------------------|----|
| 图 3-2 GW1NSR-2C 器件结构示意图             | 9  |
| 图 3-3 GW1NSR-4 器件结构示意图              | 10 |
| 图 3-4 GW1NSR-4C 器件结构示意图             | 10 |
| 图 3-5 CFU 结构示意图                     | 14 |
| 图 3-6 CLS 中的寄存器示意图                  | 15 |
| 图 3-7 IOB 结构示意图                     | 17 |
| 图 3-8 GW1NSR-2C/2 器件 I/O Bank 分布示意图 | 18 |
| 图 3-9 GW1NSR-4C/4 器件 I/O Bank 分布示意图 | 18 |
| 图 3-10 真 LVDS 设计参考框图                | 22 |
| 图 3-11 I/O 逻辑输出示意图                  | 22 |
| 图 3-12 I/O 逻辑输入示意图                  | 23 |
| 图 3-13 IODELAY 示意图                  | 23 |
| 图 3-14 GW1NSR 的 I/O 寄存器示意图          |    |
| 图 3-15 GW1NSR 的 IEM 示意图             | 24 |
| 图 3-16 普通模式下的 I/O 逻辑结构示意图           | 25 |
| 图 3-17 SDR 模式下的 I/O 逻辑结构示意图         | 25 |
| 图 3-18 I/O 逻辑的 DDR 输入示意图            | 26 |
| 图 3-19 I/O 逻辑的 DDR 输出示意图            | 26 |
| 图 3-20 I/O 逻辑的 IDES4 输入示意图          | 26 |
| 图 3-21 I/O 逻辑的 OSER4 输出示意图          | 26 |
| 图 3-22 I/O 逻辑的 IVideo 输入示意图         | 27 |
| 图 3-23 I/O 逻辑的 OVideo 输出示意图         | 27 |
| 图 3-24 I/O 逻辑的 IDES8 输入示意图          | 27 |
| 图 3-25 I/O 逻辑的 OSER8 输出示意图          | 27 |
| 图 3-26 I/O 逻辑的 IDES10 输入示意图         | 28 |
| 图 3-27 I/O 逻辑的 OSER10 输出示意图         | 28 |
| 图 3-28 I/O 逻辑的 IDES16 输出示意图         | 28 |
| 图 3-29 I/O 逻辑的 OSER16 输出示意图         | 28 |

| 图 3-30 单端口、伪双端口及双端口模式下的流水线模式                 | 33 |
|----------------------------------------------|----|
| 图 3-31 独立时钟模式                                | 34 |
| 图 3-32 读写时钟模式                                | 35 |
| 图 3-33 单端口时钟模式                               | 35 |
| 图 3-34 用户闪存端口信号                              | 37 |
| 图 3-35 GW1NSR-4C/4 用户闪存端口信号                  | 40 |
| 图 3-36 DSP 宏单元                               | 42 |
| 图 3-37 Cortex-M3 结构框图                        | 46 |
| 图 3-38 DEMCR 寄存器                             | 50 |
| 图 3-39 Timer0/ Timer1 结构框图                   | 51 |
| 图 3-40 APB UART Buffering                    | 52 |
| 图 3-41 Watchdog 操作方式                         | 54 |
| 图 3-42 内存映射                                  | 57 |
| 图 3-43 GW1NSR-2/2C 时钟资源                      | 63 |
| 图 3-44 GW1NSR-4/4C 时钟资源                      | 63 |
| 图 3-45 GCLK 象限分布示意                           | 64 |
| 图 3-46 DQCE 结构示意图                            | 64 |
| 图 3-47 DCS 接口示意图                             | 65 |
| 图 3-48 DCS Rising Edge 模式下的时序示意图             | 65 |
| 图 3-49 DCS Falling Edge 模式下的时序示意图            |    |
| 图 3-50 PLL 示意图                               | 66 |
| 图 3-51 GW1NSR-2/2C HCLK 示意图                  | 67 |
| 图 3-52 GW1NSR-4/4C HCLK 示意图                  | 68 |
| 图 4-1 读操作模式                                  | 84 |
| 图 4-2 写操作模式                                  | 84 |
| 图 4-3 页擦除模式                                  | 84 |
| 图 4-4 模块擦除模式                                 | 85 |
| 图 4-5 用户闪存读操作时序                              | 87 |
| 图 4-6 用户闪存编程操作时序                             | 87 |
| 图 4-7 用户闪存擦除操作时序                             | 88 |
| 图 4-8ADC 转换时序                                | 88 |
| 图 5-1 GW1NSR-2/ GW1NSR-4 器件命名方法_ES           | 91 |
| 图 5-2 GW1NSR-2C/ GW1NSR-4C 器件命名方法-ES         | 91 |
| 图 5-3 GW1NSR-2C/ GW1NSR-4C 器件命名方法-Production | 92 |
| 图 5-4 GW1NSR-2 / GW1NSR-4 器件命名方法-Production  | 92 |
| 图 5-5 GW1NSR-2 器件封装标识示例                      | 93 |
| 图 5-6 GW1NSR-2C 器件封装标识示例                     | 93 |

| 图 5-7 GW1NSR-4 器件封装标识示例  | 93 |
|--------------------------|----|
| 图 5-8 GW1NSR-4C 器件封装标识示例 | 93 |

DS861-1.4.3 vii

# 表目录

| 表 1-1 术语、缩略语                               | 2  |
|--------------------------------------------|----|
| 表 2-1 产品信息列表                               | 7  |
| 表 2-2 存储资源列表                               | 8  |
| 表 2-3 产品封装和最大用户 I/O 信息列表                   | 8  |
| 表 3-1 CLS 中寄存器模块信号说明                       | 16 |
| 表 3-2 GW1NSR 系列 FPGA 产品支持的输出 I/O 类型及部分可选配置 | 20 |
| 表 3-3 GW1NSR 支持的输入 I/O 类型及部分可选配置           | 21 |
| 表 3-4 B-SRAM 信号功能                          | 30 |
| 表 3-5 存储器配置列表                              | 30 |
| 表 3-6 双端口混合读写数据宽度配置列表                      | 31 |
| 表 3-7 伪双端口混合读写数据宽度配置列表                     | 32 |
| 表 3-8 时钟模式配置列表                             | 34 |
| 表 3-9 用户闪存模块信号说明                           | 37 |
| 表 3-10 用户数据闪存地址映射                          | 37 |
| 表 3-11 用户信息闪存地址映射                          | 38 |
| 表 3-12 操作模式命令表                             | 38 |
| 表 3-13 用户闪存模块信号说明                          | 40 |
| 表 3-14 用户模式真值表                             | 40 |
| 表 3-15 DSP 端口描述                            | 43 |
| 表 3-16 内部寄存器描述                             | 43 |
| 表 3-17 NVIC 中断向量表                          | 48 |
| 表 3-18 Timer0/ Timer1 寄存器                  | 51 |
| 表 3-19 UART0/UART1 寄存器                     | 53 |
| 表 3-20 Watchdog 寄存器                        | 55 |
| 表 3-21 GPIO 寄存器                            | 56 |
| 表 3-22 USB2.0 PHY 端口信号                     | 58 |
| 表 3-23 USB2.0 PHY 参数信号                     | 61 |
| 表 3-24 ADC 端口信号                            | 62 |
| 表 3-25 通道选择真值表                             | 62 |

| 表 3-26 PLL 端口定义                   | 66 |
|-----------------------------------|----|
| 表 3-27 GW1NSR-2/2C 片内晶振的部分输出频率    | 69 |
| 表 3-28 GW1NSR-4/4C 片内晶振的部分输出频率    | 70 |
| 表 4-1 绝对最大范围                      | 71 |
| 表 4-2 推荐工作范围                      | 71 |
| 表 4-3 电源上升斜率                      | 72 |
| 表 4-4 热插拔特性                       | 72 |
| 表 4-5 POR 电压参数                    | 72 |
| 表 4-6 GW1NSR ESD - HBM            | 72 |
| 表 4-7 GW1NSR ESD – CDM            | 72 |
| 表 4-8 推荐工作范围内 DC 电气特性             | 73 |
| 表 4-9 静态电流                        | 74 |
| 表 4-10 I/O 推荐工作条件                 | 75 |
| 表 4-11 单端 I/O DC 电气特性             | 76 |
| 表 4-12 差分 I/O DC 电气特性             | 77 |
| 表 4-13 IO 特性参数                    | 77 |
| 表 4-14 CFU 时序参数                   | 78 |
| 表 4-15 外部开关特性                     | 78 |
| 表 4-16 Gearbox 内部时序参数             | 78 |
| 表 4-17 B-SRAM 时序参数                | 79 |
| 表 4-18 DSP 时序参数                   | 79 |
| 表 4-19 片内晶振特性参数                   | 79 |
| 表 4-20 锁相环特性参数                    | 80 |
| 表 4-21 电流特性                       | 81 |
| 表 4-22 时钟参数                       | 81 |
| 表 4-23 GW1NSR-2C/2 器件用户闪存 DC 电气特性 | 82 |
| 表 4-24 GW1NSR-2C/2 器件用户闪存时序参数     | 83 |
| 表 4-25 GW1NSR-4C/4 器件用户闪存 DC 电气特性 | 85 |
| 表 4-26 GW1NSR-4C/4 器件用户闪存时序参数     | 86 |
| 表 4-27 ADC 时序参数                   | 89 |
| ± 4.29 ADC 由与会粉                   | 90 |

1 关于本手册 1.1 手册内容

# 1 关于本手册

# 1.1 手册内容

GW1NSR 系列 FPGA 产品数据手册主要包括高云半导体 GW1NSR 系列 FPGA 产品特性概述、产品资源信息、内部结构介绍、电气特性、编程接口时序以及器件订货信息。帮助用户快速了解高云半导体 GW1NSR 系列 FPGA 产品以及特性,有助于器件选型及使用。

# 1.2 相关文档

通过登录高云半导体网站 <u>www.gowinsemi.com.cn</u>可以下载、查看以下相关文档:

- 1. DS861, GW1NSR 系列 FPGA 产品数据手册
- 2. UG290, Gowin 系列 FPGA 产品编程配置手册
- 3. UG863, GW1NSR 系列 FPGA 产品封装与管脚手册
- 4. UG862, GW1NSR-2&2C 器件 Pinout 手册
- 5. <u>UG864, GW1NSR-4 器件 Pinout 手册</u>
- 6. UG865, GW1NSR-4C 器件 Pinout 手册

DS861-1.4.3 1(93)

# 1.3 术语、缩略语

表 1-1 中列出了本手册中出现的相关术语、缩略语及相关释义。

表 1-1 术语、缩略语

| 术语、缩略语    | 全称                                             | 含义         |
|-----------|------------------------------------------------|------------|
| FPGA      | Field Programmable Gate Array                  | 现场可编程门阵列   |
| SoC       | System On Chip                                 | 片上系统       |
| ARM       | Advanced RISC Machines                         | ARM 处理器    |
| AHB       | Advanced High performance Bus                  | AHB 系统总线   |
| APB       | Advanced Peripheral Bus                        | APB 外围总线   |
| Timer     | Timer                                          | 定时器        |
| UART      | Universal Asynchronous<br>Receiver/Transmitter | 通用异步收发器    |
| NVIC      | Nested Vector Interrupt Controller             | 嵌套式向量中断控制器 |
| DAP       | Debug Access Port                              | 调试访问端口     |
| Watchdog  | Watchdog                                       | 看门狗        |
| TimeStamp | TimeStamp                                      | 时间戳        |
| DWT       | Data Watchpoint Trace                          | 数据监测点跟踪    |
| ITM       | Instrumentation Trace Module                   | 仪器跟踪模块     |
| TUIP      | Trace Port Interface Unit                      | 跟踪端口接口单元   |
| USB       | Universal Serial Bus                           | 通用串行总线     |
| PHY       | Physical Layer                                 | 物理层        |
| ADC       | Analog to Digital Converter                    | 模数转换器      |
| SAR       | Successive Approximation Register              | 逐次逼近型      |
| SFDR      | Spurious-freeDynamic Range                     | 无杂散动态范围    |
| SINAD     | Signal to Noise And Distortion                 | 信号与噪声失真比   |
| LSB       | Least Significant Bit                          | 最低有效位      |
| INL       | Integral Nonlinearity                          | 非线性积分      |
| DNL       | Differential Nonlinearity                      | 非线性微分      |
| CFU       | Configurable Function Unit                     | 可配置功能单元    |
| CLS       | Configurable Logic Slice                       | 可配置逻辑片     |
| CRU       | Configurable Routing Unit                      | 可编程布线单元    |
| LUT4      | 4-input Look-up Tables                         | 4 输入查找表    |
| LUT5      | 5-input Look-up Tables                         | 5 输入查找表    |
| LUT6      | 6-input Look-up Tables                         | 6 输入查找表    |
| LUT7      | 7-input Look-up Tables                         | 7 输入查找表    |
| LUT8      | 8-input Look-up Tables                         | 8 输入查找表    |
| REG       | Register                                       | 寄存器        |
| ALU       | Arithmetic Logic Unit                          | 算术逻辑单元     |
| IOB       | Input/Output Block                             | 输入输出模块     |

DS861-1.4.3 2(93)

1 关于本手册 1.4 技术支持与反馈

| 术语、缩略语 | 全称                              | 含义            |
|--------|---------------------------------|---------------|
| S-SRAM | Shadow SRAM                     | 分布式静态随机存储器    |
| B-SRAM | Block SRAM                      | 块状静态随机存储器     |
| SP     | Single Port                     | 单端口           |
| SDP    | Semi Dual Port                  | 伪双端口          |
| DP     | Dual Port                       | 双端口           |
| DQCE   | Dynamic Quadrant Clock Enable   | 动态象限时钟使能      |
| DCS    | Dynamic Clock Selector          | 动态时钟选择器       |
| PLL    | Phase-locked Loop               | 锁相环           |
| QN48P  | QFN48P                          | QFN48P 封装     |
| QN48G  | QFN48G                          | QFN48G 封装     |
| MG64P  | MBGA64P                         | MBGA64P 封装    |
| TDM    | Time Division Multiplexing      | 时分复用          |
| GPIO   | Gowin Programmable Input/output | Gowin 可编程通用管脚 |

# 1.4 技术支持与反馈

高云半导体提供全方位技术支持,在使用过程中如有任何疑问或建议,可直接与公司联系:

网址: <u>www.gowinsemi.com.cn</u>

E-mail: <a href="mailto:support@gowinsemi.com">support@gowinsemi.com</a>

Tel: +86 755 8262 0391

DS861-1.4.3 3(93)

2 产品概述 2.1 特性概述

# **2**产品概述

高云半导体 GW1NSR 系列 FPGA产品是高云半导体小蜜蜂®(LittleBee®) 家族第一代 FPGA产品,是一款系统级封装芯片,内部集成了 GW1NS 系列 FPGA产品和 PSRAM 存储芯片。包括 GW1NSR-2C/2 器件和 GW1NSR-4C/4 器件。GW1NSR-2C 和 GW1NSR-4C 是 SoC 芯片,以 ARM Cortex-M3 硬核处理器为核心,具备了实现系统功能所需要的最小内存;内嵌的 FPGA 逻辑模块单元方便灵活,可实现多种外设控制功能,能提供出色的计算功能和异常系统响应中断,具有高性能、低功耗、管脚数量少、使用灵活、瞬时启动、低成本、非易失性、高安全性、封装类型丰富等特点。SoC 器件实现了可编程逻辑器件和嵌入式处理器的无缝连接,兼容多种外围器件标准,可大幅降低用户成本,可广泛应用于工业控制、通信、物联网、伺服驱动、消费等多个领域。

高云半导体提供面向市场自主研发的新一代 FPGA 硬件开发环境,支持 GW1NSR 系列 FPGA 产品,能够完成 FPGA 综合、布局、布线、产生数据流文件及下载等一站式工作。

# 2.1 特性概述

- 低功耗
  - 55nm 嵌入式闪存工艺
  - 核电压: 1.2V
  - GW1NSR-2C/2 支持 LX 和 UX 版本
  - GW1NSR-4C/4 支持 LV 版本
  - 支持时钟动态打开/关闭
- 集成 HyperRAM/PSRAM 存储芯片
- 集成 NOR FLASH 存储芯片
- 硬核微处理器
  - Cortex-M3 32-bit RISC 内核
  - ARM3v7M 架构,针对小封装嵌入式应用方案进行了优化

DS861-1.4.3 4(93)

2 产品概述 2.1 特性概述

- 系统定时器,提供了一个简单的 24 位写清零、递减、自装载计数器, 具有灵活的控制机制

- Thumb 兼容, Thumb-2 指令集处理器可以获取更高的代码密度
- GW1NSR-2C 最高支持 30MHz 的工作频率
- GW1NSR-4C 最高支持 80MHz 的工作频率
- 硬件除法和单周期乘法
- 集成 NVIC, 提供确定性中断处理
- 26个中断,具有8个优先级
- 内存保护单元,提供特权模式来保护操作系统的功能
- 非对齐数据访问,数据能够更高效的装入内存
- Bit-banding,精确的位操作,最大限度的利用了存储空间,改善了 对外设的控制
- Timer0 和 Timer1
- UARTO 和 UART1
- watchdog
- 调试端口: JTAG 和 TPIU
- USB2.0 PHY(GW1NSR-2C/2 器件支持)
  - 480Mbps 数据速率,兼容 USB1.1 1.5/12Mbps 速率
  - 即插即用
  - 热插拔
- ADC(GW1NSR-2C/2 器件支持)
  - 八通道
  - 12-bit SAR 模数转换
  - 转换速率: 1MHz
  - 动态范围: >81dB SFDR, >62db SINAD
  - 线性性能: INL<1LSB, DNL<0.5LSB, 无失码
- 用户闪存资源
  - GW1NSR-2C/2 内嵌 1Mb 存储空间
  - GW1NSR-4C/4 内嵌 256Kb 存储空间
  - 32-bit 数据位宽
- 支持多种 I/O 电平标准
  - LVCMOS33/25/18/15/12; LVTTL33, SSTL33/25/18 I,
     SSTL33/25/18 II, SSTL15: HSTL18 I, HSTL18 II, HSTL15 I: PCI,

DS861-1.4.3 5(93)

2 产品概述 2.1 特性概述

#### LVDS25, RSDS, LVDS25E, BLVDSE

- MLVDSE, LVPECLE, RSDSE
- 提供输入信号去迟滞选项
- 支持 4mA、8mA、16mA、24mA 等驱动能力
- 提供输出信号 Slew Rate 选项
- 提供输出信号驱动电流选项
- 对每个 I/O 提供独立的 Bus Keeper、上拉/下拉电阻及 Open Drain 输出选项
- 支持热插拔
- 支持 MIPI 接口
- 支持 I3C
- 丰富的基本逻辑单元
  - 4 输入 LUT(LUT4)
  - 双沿触发器
  - 支持移位寄存器
- 支持多种模式的静态随机存储器
  - 支持双端口、单端口以及伪双端口模式
  - 支持字节写使能
- 灵活的 PLL 资源
  - 实现时钟的倍频、分频和相移
  - 全局时钟网络资源
- 内置 Flash 编程
  - 瞬时启动
  - 支持安全位操作
  - 支持 AUTO BOOT 和 DUAL BOOT 编程模式
- 编程配置模式
  - 支持 JTAG 配置模式
  - 支持 FPGA 片内 DUAL BOOT 配置模式
  - 支持多种 GowinCONFIG 配置模式: AUTOBOOT、SSPI、MSPI、 CPU、SERIAL

DS861-1.4.3 6(93)

2 产品概述 2.2 产品信息列表

# 2.2 产品信息列表

表 2-1 产品信息列表

| 器件                          | GW1NSR-2    | GW1NSR-2C   | GW1NSR-4 | GW1NSR-4C |
|-----------------------------|-------------|-------------|----------|-----------|
| 逻辑单元(LUT4)                  | 1,728       | 1,728       | 4,608    | 4,608     |
| 寄存器(FF)                     | 1,296       | 1,296       | 3,456    | 3,456     |
| 块状静态随机存储器<br>B-SRAM(bits)   | 72K         | 72K         | 180K     | 180K      |
| 块状静态随机存储器数目<br>B-SRAM(个)    | 4           | 4           | 10       | 10        |
| 乘法器<br>(18 x 18 Multiplier) | -           | -           | 16       | 16        |
| 用户闪存(bits)                  | 1M          | 1M          | 256K     | 256K      |
| PSRAM(bits)                 | 32M         | 32M         | 64M      | 64M       |
| HyperRAM(bits)              | -           | -           | -        | 64M       |
| NOR FLASH(bits)             | -           | -           | -        | 32M       |
| 锁相环(PLLs)                   | 1           | 1           | 2        | 2         |
| OSC                         | 1,精度±5%     | 1,精度±5%     | 1,精度±5%  | 1,精度±5%   |
| 硬核处理器                       | -           | Cortex-M3   | -        | Cortex-M3 |
| USB PHY                     | USB 2.0 PHY | USB 2.0 PHY | -        | -         |
| ADC <sup>1</sup>            | 1           | 1           | -        | -         |
| I/O Bank 总数                 | 4           | 4           | 4        | 4         |
| 最大 I/O 数                    | 102         | 102         | 106      | 106       |
| 核电压                         | 1.2V        | 1.2V        | 1.2V     | 1.2V      |

注!

[1]最多可支持八通道 ADC。

DS861-1.4.3 7(93)

2 产品概述 2.3 封装信息列表

# 2.3 封装信息列表

#### 表 2-2 存储资源列表

| 器件        | 封装    | Memory 类型 | 容量   | 位宽      |
|-----------|-------|-----------|------|---------|
| GW1NSR-2  | QN48P | PSRAM     | 32Mb | 8 bits  |
| GW1NSR-2C | QN48P | PSRAM     | 32Mb | 8 bits  |
| GW1NSR-4  | MG64P | PSRAM     | 64Mb | 16 bits |
| GW1NSR-4C | MG64P | PSRAM     | 64Mb | 16 bits |
|           | QN48P | HyperRAM  | 64Mb | 8 bits  |
|           | QN48G | NOR FLASH | 32Mb | 1 bit   |

#### 表 2-3 产品封装和最大用户 I/O 信息列表

| 封装    | 间距(mm) | 尺寸(mm)    | GW1NSR-2 | GW1NSR-2C | GW1NSR-4 | GW1NSR-4C |
|-------|--------|-----------|----------|-----------|----------|-----------|
| QN48P | 0.4    | 6 x 6     | 38(7)    | 38(7)     | -        | 39(4)     |
| MG64P | 0.5    | 4.2 x 4.2 | -        | -         | 55(8)    | 55(8)     |
| QN48G | 0.4    | 6 x 6     | -        | -         | -        | 39(4)     |

#### 注!

- JTAGSEL\_N 和 JTAG 管脚是互斥管脚,JTAGSEL\_N 引脚和 JTAG 下载的 4 个引脚(TCK、TDI、TDO、TMS)不可同时复用为 I/O,此表格的数据为 JTAG 下载的 4 个引脚复用为 I/O 时的情况。当 mode[2:0]=001 时,JTAGSEL\_N 管脚与 JTAG 配置的 4 个管脚(TCK、TMS、TDI、TDO)可以同时设置为 GPIO,此时最大用户 I/O 数加 1。详细信息请参考 UG863, GW1NSR 系列 FPGA 产品封装与管脚手册。
- 本手册中 GW1NSR 系列 FPGA 产品封装命名采用缩写的方式,详细信息请参见 5.1 器件命名。
- 详细信息请参见 <u>UG862, GW1NSR-2&2C 器件 Pinout 手册</u>、<u>UG864, GW1NSR-4 器件 Pinout 手册</u>、<u>UG865, GW1NSR-4C 器件 Pinout 手册</u>。

DS861-1.4.3 8(93)

# 3结构介绍

# 3.1 结构框图

#### 图 3-1 GW1NSR-2 器件结构示意图



图 3-2 GW1NSR-2C 器件结构示意图



DS861-1.4.3 9(93)

3 结构介绍 3.1 结构框图

#### 图 3-3 GW1NSR-4 器件结构示意图



图 3-4 GW1NSR-4C 器件结构示意图



GW1NSR 为系统级封装芯片(SIP),集成了高云半导体 GW1NS 系列 FPGA 产品及存储芯片。PSRAM 特性和概述,请参见 <u>3.2 PSRAM</u>,HyperRAM 特性和概述,请参见 <u>3.3 HyperRAM</u>。NOR FLASH 特性和概述,请参考 3.4NOR FLASH。

GW1NSR 系列 FPGA 产品除了 CFU (可配置功能单元)、I/O 等基本组成单元,还内嵌了 B-SRAM 资源、PLL 资源、用户闪存资源、片内晶振、下载 Flash 资源、USB2.0 PHY 和 ADC 资源。此外,SoC 内嵌 Cortex-M3 硬核处理器,详细信息请参见表 2-1。

GW1NSR 系列 FPGA 产品基本的组成部分为可配置功能单元(CFU, Configurable Logic Unit)。在器件内部按照行、列式矩阵排列,不同容量的器件行数和列数不同。可配置功能单元(CFU)可以配置成查找表(LUT4)模式、算术逻辑模式。详细资料请参见 3.5 可配置功能单元。

GW1NSR 系列 FPGA 产品的 I/O 资源分布在器件外围,以 Bank 为单位划分,分别为 Bank0、Bank1、Bank2 和 Bank3。I/O 资源支持多种电平标准,支持普通工作模式、SDR 工作模式和通用 DDR 模式。详细资料请参见3.6 输入输出模块。

DS861-1.4.3 10(93)

GW1NSR 系列 FPGA 产品的块状静态随机存储器(B-SRAM)在器件内部按照行排列,一个 B-SRAM 在器件内部占用 3 个 CFU 的位置。B-SRAM 提供两种使用方式,但是两种方式不能同时使用。一是在 SoC 器件中用作 Cortex-M3 处理器系统的 SRAM 资源,用于存储器数据的读写,一个 B-SRAM 容量大小为 16Kbits,总容量为 64Kbits(GW1NSR-2/2C) / 128Kbits(GW1NSR-4/4C)。二是用作用户的存储资源,一个 B-SRAM 的容量大小为 18Kbits,总容量为 72Kbits(GW1NSR-2/2C) / 180Kbits(GW1NSR-4/4C),支持多种配置模式和操作模式,详细资料请参见 3.7 块状静态随机存储器模块。

GW1NSR 系列 FPGA 产品内嵌了用户闪存资源,掉电数据不会丢失。GW1NSR-2C/2 器件的用户闪存支持三种使用方式,但是不支持两种或两种以上的方式同时使用。一是用于存储 Cortex-M3 处理器的 ARM 程序,这样使用时用户闪存资源只能读取,不能写入。二是用作用户的非易失性存储资源。三是用于 FPGA 下载的 DUAL BOOT 模式。详细信息请参见 3.8 用户闪存资源。GW1NSR-4C/4 器件的用户闪存支持两种使用方式,并且两种使用方式是互斥的。一是用于存储 Cortex-M3 处理器的 ARM 程序,这样使用时用户闪存资源只能读取,不能写入。二是用作用户的非易失性存储资源。详细信息请参考 3.8 用户闪存资源(GW1NSR-2C/2)和 3.9 用户闪存资源(GW1NSR-4C/4)。

GW1NSR 系列 FPGA 产品内嵌了数字信号处理模块 DSP。DSP 在器件内部按照行排列,每个 DSP 资源占用 9 个 CFU 的位置。每个 DSP 包含两个宏单元,每个宏单元包含两个前加法器(pre-adders),两个 18 位的乘法器(multipliers)和一个三输入的算术/逻辑运算单元(ALU54)。详细资料请参考3.10 数字信号处理模块。

GW1NSR 系列 FPGA 产品内嵌了锁相环 PLL 资源。高云半导体 PLL 模块能够提供可以综合的时钟频率,通过配置不同的参数可以进行时钟的频率调整(倍频和分频)、相位调整、占空比调整等功能。同时产品内嵌可编程片内晶振,支持 2.5MHz 到 120MHz 的时钟频率范围,为 MSPI 编程配置模式提供时钟。片内晶振可为用户提供可编程的用户时钟,时钟精度可达±5%。详细资料请参见 3.14 时钟。

GW1NSR 系列 FPGA产品内嵌的下载 Flash 资源用于内置 Flash 编程, 支持瞬时启动和安全位操作,支持 AUTO BOOT 和 DUAL BOOT 编程模式。详细资料请参考 4.9 编程接口时序标准。

Cortex-M3 硬核处理器,系统启动时支持 30MHz 的程序加载,支持和"内存"之间更高速的数据/指令传输。通过 AHB 扩展总线方便与外部存储设备通信。通过 APB 总线方便与外部设备进行通信,如 UART 等。通过 GPIO 接口可以灵活方便的与外部接口通信,FPGA 编程实现不同接口/标准的控制器功能,如 SPI、I<sup>2</sup>C、I3C 等。详细资料请参考 3.11Cortex-M3。

## 3.2 PSRAM

#### 特性

● 时钟频率 166MHz

DS861-1.4.3 11(93)

3 结构介绍 3.3HyperRAM

- 双沿数据传输
- 数据位宽: 8 bits
- 读写数据锁存 RWDS
- 温度补偿刷新
- 部分阵列自动刷新 PASR
- 混合休眠模式
- 深度省电 DPD
- 驱动能力: 35,50,100 和 200 欧姆
- 突发访问
- 16/32/64/128 字节突发模式
- 状态/控制寄存器
- 供电电压 1.8V

器件 PSRAM 供电请参考器件 pinout 手册。

高云半导体云源软件 IP Core Generator 支持内嵌/外部的 PSRAM 控制器的 IP,使用控制器的 IP 可以自动完成 PSRAM 上电初始化,读校准等操作,用户按照控制器的读/写时序操作即可,详细信息请参考 <u>IPUG525</u>, <u>Gowin</u> <u>HyperRAM & PSRAM Memory Interface IP 用户指南</u>。

# 3.3 HyperRAM

#### 特性

- 时钟频率 200MHz
- 双沿数据传输
- 时钟: 支持单端时钟和差分时钟
- 支持片选信号
- 数据位宽: 8bits
- 支持硬件复位
- 读写数据锁存 RWDS
  - 双向数据锁存/掩码
  - 传输开始时输出,用来指示刷新延迟
  - 读操作期间的输出作为读锁存
  - 写操作期间的输入作为写数据掩码
- 颗粒堆栈地址
- 性能和功耗:
- 可配置输出驱动能力

DS861-1.4.3 12(93)

3 结构介绍 3.4NOR FLASH

- 降低功耗的模式:混合睡眠模式和深度睡眠模式
- 可配置的突发特性:
  - 支持线性突发
  - 可编程突发长度: 16、32、64 和 128 字节
  - 混合突发:一次突发操作接着是线性突发
- 阵列刷新模式:全阵列刷新模式和部分阵列刷新模式
- 供电电压: 1.7V~2.0V

器件 HyperRAM 供电请参考 UG865, GW1NSR-4C 器件 Pinout 手册。

高云半导体云源软件 IP Core Generator 支持内嵌/外部的 HyperRAM 控制器的 IP,使用控制器的 IP 可以自动完成 HyperRAM 上电初始化,读校准等操作,用户按照控制器的读/写时序操作即可,详细信息请参考 IPUG525, Gowin HyperRAM & PSRAM Memory Interface IP 用户指南。

#### 3.4 NOR FLASH

SoC 封装后缀是"G"的器件,如 QN48G,内嵌 NOR FLASH,用来存储 Cortex-M3 的程序。

#### 特性:

- 32Mb 存储空间,每页 256 字节;
- 支持 SPI:
- 时钟频率: 120MHz:
- 支持连续读取 8/16/32/64 字节数据;
- 软/硬件写保护:
  - 软件设置全部/部分内存写保护;
  - 顶层/底层块写保护
- Min 100.000 编程/擦除:
- 快速的编程/擦除操作:
  - 页编程时间: 0.7ms;
  - Sector 擦除时间: 90ms:
  - 块擦除时间: 0.45s;
  - 芯片擦除时间: 20s;
- 灵活的架构:
  - Sector: 4K 字节
  - 块: 32/64K 字节:
  - 擦除/编程挂起/恢复:

DS861-1.4.3 13(93)

3 结构介绍 3.5 可配置功能单元

- 低功耗:
  - 待机电流: 35uA;
  - 关断电流: 0.2uA;
- 安全特性:
  - 每个器件有唯一的 128 位的 ID:
  - 3x1024字节的安全寄存器,可实现 OTP 锁存;
- 数据存储时间: 20年

# 3.5 可配置功能单元

可配置功能单元(CFU)是构成 GW1NSR 系列 FPGA 产品的基本单元,每个 CFU 由可配置逻辑单元(CLU)和可编程布线资源单元(CRU)组成。每个 CLU 由四个可配置功能片 CLS(Configurable Logic Slice)组成,其中可配置功能片包含查找表和寄存器,请参见图 3-5。

#### 图 3-5 CFU 结构示意图



注!

SREG 需要特殊的软件支持。如有需要,请联系高云半导体技术支持或当地 办事处。

DS861-1.4.3 14(93)

3 结构介绍 3.5 可配置功能单元

## 3.5.1 可配置逻辑单元

可配置逻辑单元支持基本查找表、算术逻辑和存储器模式:

#### ● 基本查找表模式

每个查找表可以被配置为一个 4 输入查找表(LUT4),可配置逻辑单元可实现高阶查找表功能:

- 一个可配置功能片可配置成一个 5 输入查找表(LUT5)。
- 两个可配置功能片可配置成一个 6 输入查找表(LUT6)。
- 四个可配置功能片可配置成一个 7 输入查找表(LUT7)。
- 八个可配置功能片(两个 CLU)可配置成成一个 8 输入查找表(LUT8)。

#### ● 算术逻辑模式

结合进位链,查找表可配置成算术逻辑模式(ALU),用作实现以下功能:

- 加法/减法运算
- 计数器,包括加计数器和减计数器
- 比较器,包括大于比较、小于比较和不相等比较
- 乘法器

#### 寄存器

可配置功能片(CLS0~CLS2)中各含两个寄存器(REG),如图 3-6 所示。

#### 图 3-6 CLS 中的寄存器示意图



DS861-1.4.3 15(93)

3 结构介绍 3.5 可配置功能单元

#### 表 3-1 CLS 中寄存器模块信号说明

| 信号名                | I/O | 描述                                                                        |  |  |
|--------------------|-----|---------------------------------------------------------------------------|--|--|
| D                  | I   | 寄存器数据输入 <sup>1</sup>                                                      |  |  |
| CE                 | I   | CLK 使能信号,可配置为高电平使能或低电平使能 <sup>2</sup>                                     |  |  |
| CLK                | I   | 时钟信号,可配置为上升沿触发或下降沿触发 <sup>2</sup>                                         |  |  |
| SR                 | 1   | 本地置复位输入,可配置为如下功能 <sup>2</sup> :  ● 同步复位  ● 同步置位  ● 异步复位  ● 异步置位  ● 无本地置复位 |  |  |
| GSR <sup>3,4</sup> | I   | 全局复置位,可配置为如下功能 <sup>4</sup> :  ● 异步复位  ● 异步置位  ● 无全局复置位                   |  |  |
| Q                  | 0   | 寄存器输出                                                                     |  |  |

#### 注!

- [1]信号 D 的来源可以选择同一可配置功能片中任一查找表的输出,也可以选择来自于 CRU 的输入。因此在查找表被占用的情况下,寄存器仍可以单独使用。
- [2]CFU 中可配置功能片的 CE/CLK/SR 均可独立配置选择。
- [3]在 GW1NSR 系列 FPGA 产品内部,GSR 通过直连线连接,不通过 CRU。
- [4]SR 与 GSR 同时有效时 GSR 有较高的优先级。

### 3.5.2 布线资源单元

布线资源单元 CRU 的功能主要包括两个方面:

- 输入选择功能: 为 CFU 的输入信号提供输入源选择。
- 布线资源功能:为 CFU 的输入/输出信号提供连接关系,包括 CFU 内部连接 CFU 之间连接以及 CFU 和 FPGA 内部其它功能模块之间的连接。

DS861-1.4.3 16(93)

# 3.6 输入输出模块

GW1NSR 系列 FPGA 产品的 IOB 主要包括 I/O Buffer、I/O 逻辑以及相应的布线资源单元三个部分。如图 3-7 所示为两个 IOB 的结构示意图,每个 IOB 单元包括了两个 I/O 管脚(标记为 A 和 B),它们可以配置成一组差分信号对,也可以作为单端信号分别配置。

#### 图 3-7 IOB 结构示意图



GW1NSR 系列 FPGA 产品中 IOB 的功能特点:

- 基于 Bank 的 V<sub>CCO</sub> 机制。
- 支持 LVCMOS、PCI、LVTTL、LVDS、SSTL 以及 HSTL 等多种电平标准, GW1NSR-4C/4 的 BANK3 只支持单端 LVCMOS 输入/输出和 LVDS25E 差分输出。
- 提供输入信号去迟滞选项。
- 提供输出信号驱动电流选项。
- 提供输出信号 Slew Rate 选项。
- 对每个 I/O 提供独立的 Bus Keeper、上拉/下拉电阻及 Open Drain 输出 选项。
- 支持热插拔, GW1NSR-4C/4 的 BANK3 除外。
- I/O 逻辑支持普通模式、SDR 模式以及 DDR 等多种模式。
- GW1NSR-2C/2 的 BANK0 支持 MIPI 输入。
- GW1NSR-2C/2 的 BANK2 支持 MIPI 输出。
- GW1NSR-4C/4 的 BANK0/BANK1 支持 MIPI 输入

DS861-1.4.3 17(93)

3.4 输入输出模块

- GW1NSR-4C/4 的 BANK2 支持 MIPI 输出
- GW1NSR-2C/2 的 BANK0 和 BANK2 支持 I3C。
- GW1NSR-4C/4 的 BANK0/BANK1/BANK2 支持 I3C。

### 3.6.1 I/O 电平标准

GW1NSR 系列 FPGA 产品的 I/O 包括 4 个 Bank,如图 3-8 所示,每个 Bank 有独立的 I/O 电源 V<sub>CCO</sub>。为支持 SSTL,HSTL 等 I/O 输入标准,每个 Bank 还提供一个独立的参考电压(V<sub>REF</sub>),用户可以选择使用 IOB 内置的 V<sub>REF</sub> 源(等于 0.5\*V<sub>CCO</sub>),也可选择外部的 V<sub>REF</sub> 输入(使用 Bank 中任意一个 I/O 管 脚作为外部 V<sub>REF</sub> 输入)。

#### 图 3-8 GW1NSR-2C/2 器件 I/O Bank 分布示意图



#### 图 3-9 GW1NSR-4C/4 器件 I/O Bank 分布示意图



GW1NSR-2C/2 器件分为 LX 和 UX 两个版本。

GW1NSR-4C/4 系列 FPGA 产品支持 LV 版本。

GW1NSR 系列 FPGA 产品核电压 Vcc 为 1.2V;

LX 版本器件内部没有线性稳压器,辅助电压  $V_{CCX}$  需要设置为 1.8V,I/O Bank 电压  $V_{CCO}$  可根据需要在 1.2V、1.5V、1.8V 电压中设置。

DS861-1.4.3 18(93)

UX 版本器件内部集成线性稳压器,支持辅助电压  $V_{CCX}$  设置为 2.5V/3.3V, I/O Bank 电压  $V_{CCO}$  可根据需要在 1.2V、1.5V、1.8V、2.5V、3.3V 电压中灵活设置。

LV 版本器件内部没有线性稳压器,辅助电压  $V_{CCX}$  支持 1.8V、2.5V 和 3.3V,I/O Bank 电压  $V_{CCO}$  可根据需要在 1.2V、1.5V、1.8V、2.5V、3.3V 电压中灵活设置。

#### 注!

- GW1NSR-2C/2 不论是 LX 版本还是 UX 版本的器件, BANK0 用作 MIPI 输入时 V<sub>CCOO</sub> 需设置为 1.2V, BANK2 用作 MIPI 输出时 V<sub>CCO2</sub> 需设置为 1.2V, 并且 LX 版本的 MIPI 的速度仅能达到 UX 版本器件的 MIPI 速度的 60%;
- GW1NSR-4C/4 器件 BANK0/BANK1 用作 MIPI 输入时, VCCO0/VCCO1 需设置为 1.2V, BANK2 用作 MIPI 输出时 VCCO2 需设置为 1.2V; 并且 VCCX 设置为 1.8V 时 MIPI 的速度仅能达到 VCCX 设置为 2.5V/3.3V 时 MIPI 速度的 60%;
- 可编程通用管脚(GPIO)默认状态是三态输入弱上拉。。

DS861-1.4.3 19(93)

不同的 I/O 输出标准对 Vcco 的要求如表 3-2 所示。

### 表 3-2 GW1NSR 系列 FPGA 产品支持的输出 I/O 类型及部分可选配置

| I/O 输出标准   | 单端/差分 | Bank V <sub>CCO</sub> (V) | 输出驱动能力(mA)     |  |
|------------|-------|---------------------------|----------------|--|
| LVTTL33    | 单端    | 3.3                       | 4,8,12,16,24   |  |
| LVCMOS33   | 单端    | 3.3                       | 4,8,12,16,24   |  |
| LVCMOS25   | 单端    | 2.5                       | 4,8,12,16      |  |
| LVCMOS18   | 单端    | 1.8                       | 4,8,12         |  |
| LVCMOS15   | 单端    | 1.5                       | 4,8            |  |
| LVCMOS12   | 单端    | 1.2                       | 4,8            |  |
| SSTL25_I   | 单端    | 2.5                       | 8              |  |
| SSTL25_II  | 单端    | 2.5                       | 8              |  |
| SSTL33_I   | 单端    | 3.3                       | 8              |  |
| SSTL33_II  | 单端    | 3.3                       | 8              |  |
| SSTL18_I   | 单端    | 1.8                       | 8              |  |
| SSTL18_II  | 单端    | 1.8                       | 8              |  |
| SSTL15     | 单端    | 1.5                       | 8              |  |
| HSTL18_I   | 单端    | 1.8                       | 8              |  |
| HSTL18_II  | 单端    | 1.8                       | 8              |  |
| HSTL15_I   | 单端    | 1.5                       | 8              |  |
| PCI33      | 单端    | 3.3                       | N/A            |  |
| LVPECL33E  | 差分    | 3.3                       | 16             |  |
| MVLDS25E   | 差分    | 2.5                       | 16             |  |
| BLVDS25E   | 差分    | 2.5                       | 16             |  |
| RSDS25E    | 差分    | 2.5                       | 8              |  |
| LVDS25E    | 差分    | 2.5                       | 8              |  |
| LVDS25     | 差分    | 2.5/3.3                   | 3.5/2.5/2/1.25 |  |
| RSDS       | 差分    | 2.5/3.3                   | 2              |  |
| MINILVDS   | 差分    | 2.5/3.3                   | 2              |  |
| PPLVDS     | 差分    | 2.5/3.3                   | 3.5            |  |
| SSTL15D    | 差分    | 1.5                       | 8              |  |
| SSTL25D_I  | 差分    | 2.5                       | 8              |  |
| SSTL25D_II | 差分    | 2.5                       | 8              |  |
| SSTL33D_I  | 差分    | 3.3                       | 8              |  |
| SSTL33D_II | 差分    | 3.3                       | 8              |  |
| SSTL18D_I  | 差分    | 1.8                       | 8              |  |
| SSTL18D_II | 差分    | 1.8                       | 8              |  |
| HSTL18D_I  | 差分    | 1.8                       | 8              |  |
| HSTL18D_II | 差分    | 1.8                       | 8              |  |
| HSTL15D_I  | 差分    | 1.5                       | 8              |  |

DS861-1.4.3 20(93)

表 3-3 GW1NSR 支持的输入 I/O 类型及部分可选配置

| I/O 输入标准   | 单端/差分 | Bank V <sub>CCO</sub> (V) | 支持去迟滞选项 | 是否需要 V <sub>REF</sub> |
|------------|-------|---------------------------|---------|-----------------------|
| LVTTL33    | 单端    | 1.5/1.8/2.5/3.3           | 是       | 否                     |
| LVCMOS33   | 单端    | 1.5/1.8/2.5/3.3           | 是       | 否                     |
| LVCMOS25   | 单端    | 1.5/1.8/2.5/3.3           | 是       | 否                     |
| LVCMOS18   | 单端    | 1.5/1.8/2.5/3.3           | 是       | 否                     |
| LVCMOS15   | 单端    | 1.2/1.5/1.8/2.5/3.3       | 是       | 否                     |
| LVCMOS12   | 单端    | 1.2/1.5/1.8/2.5/3.3       | 是       | 否                     |
| SSTL15     | 单端    | 1.5/1.8/2.5/3.3           | 否       | 是                     |
| SSTL25_I   | 单端    | 2.5/3.3                   | 否       | 是                     |
| SSTL25_II  | 单端    | 2.5/3.3                   | 否       | 是                     |
| SSTL33_I   | 单端    | 3.3                       | 否       | 是                     |
| SSTL33_II  | 单端    | 3.3                       | 否       | 是                     |
| SSTL18_I   | 单端    | 1.8/2.5/3.3               | 否       | 是                     |
| SSTL18_II  | 单端    | 1.8/2.5/3.3               | 否       | 是                     |
| HSTL18_I   | 单端    | 1.8/2.5/3.3               | 否       | 是                     |
| HSTL18_II  | 单端    | 1.8/2.5/3.3               | 否       | 是                     |
| HSTL15_I   | 单端    | 1.5/1.8/2.5/3.3           | 否       | 是                     |
| PCI33      | 单端    | 3.3                       | 是       | 否                     |
| LVDS       | 差分    | 2.5/3.3                   | 否       | 否                     |
| RSDS       | 差分    | 2.5/3.3                   | 否       | 否                     |
| MINILVDS   | 差分    | 2.5/3.3                   | 否       | 否                     |
| PPLVDS     | 差分    | 2.5/3.3                   | 否       | 否                     |
| LVDS25E    | 差分    | 2.5/3.3                   | 否       | 否                     |
| MLVDS25E   | 差分    | 2.5/3.3                   | 否       | 否                     |
| BLVDS25E   | 差分    | 2.5/3.3                   | 否       | 否                     |
| RSDS25E    | 差分    | 2.5/3.3                   | 否       | 否                     |
| LVPECL33   | 差分    | 3.3                       | 否       | 否                     |
| SSTL15D    | 差分    | 1.5/1.8/2.5/3.3           | 否       | 否                     |
| SSTL25D_I  | 差分    | 2.5/3.3                   | 否       | 否                     |
| SSTL25D_II | 差分    | 2.5/3.3                   | 否       | 否                     |
| SSTL33D_I  | 差分    | 3.3                       | 否       | 否                     |
| SSTL33D_II | 差分    | 3.3                       | 否       | 否                     |
| SSTL18D_I  | 差分    | 1.8/2.5/3.3               | 否       | 否                     |
| SSTL18D_II | 差分    | 1.8/2.5/3.3               | 否       | 否                     |
| HSTL18D_I  | 差分    | 1.8/2.5/3.3               | 否       | 否                     |
| HSTL18D_II | 差分    | 1.8/2.5/3.3               | 否       | 否                     |
| HSTL15D_I  | 差分    | 1.5/1.8/2.5/3.3           | 否       | 否                     |

DS861-1.4.3 21(93)

#### 3.6.2 真 LVDS 设计

GW1NSR-2C/2 器件的 BANK1/2/3 支持真 LVDS 输出,但是不支持内部 100 欧姆输入差分匹配电阻; GW1NSR-4C/4 器件的 BANK2 支持真 LVDS输出,但是不支持内部 100 欧姆输入差分匹配电阻。GW1NSR-2C/2 器件的Bank0 支持内部 100 欧姆输入差分匹配电阻,但是不支持真 LVDS 输出;GW1NSR-4C/4 器件的 Bank0/1 支持内部 100 欧姆输入差分匹配电阻,但是不支持真 LVDS 输出;不支持真 LVDS 输出。此外,IO 支持 LVDS25E、MLVDS25E、BLVDS25E等电平类型,详细资料请参见 UG289, Gowin 可编程通用管脚(GPIO)用户指南。

真 LVDS 的分布详细资料请参见 <u>UG862, GW1NSR-2&2C 器件 Pinout</u> <u>手册</u>、<u>UG864, GW1NSR-4 器件 Pinout 手册</u>、<u>UG865, GW1NSR-4C 器件</u> Pinout 手册。

LVDS 的输入端 IO 需要外部的 100 欧姆终端电阻做匹配,设计参考如图 3-10 所示。

#### 图 3-10 真 LVDS 设计参考框图



LVDS25E、MLVDS25E、BLVDS25E 等差分 IO 终端匹配电阻网络请参见 UG289, Gowin 可编程通用管脚(GPIO)用户指南。

# 3.6.3 I/O 逻辑

图 3-11 为 GW1NSR 系列 FPGA 产品的 I/O 逻辑的输出部分。

#### 图 3-11 I/O 逻辑输出示意图



DS861-1.4.3 22(93)

图 3-12 为 GW1NSR 系列 FPGA 产品的 I/O 逻辑的输入部分。

#### 图 3-12 I/O 逻辑输入示意图



GW1NSR 系列 FPGA 产品的 I/O 逻辑的组成模块说明如下:

#### 延迟模块

图 3-13 为延迟模块 IODELAY。GW1NSR 系列 FPGA 产品的每个 I/O 都包含 IODELAY 模块,总共提供 128(0~127)步的延迟,一步的延迟时间约为 30 ps。

#### 图 3-13 IODELAY 示意图



有两种控制延迟的方式:

- 静态控制:
- 动态控制,可与 IEM 模块一起使用来调节动态取样窗口, IODELAY 不能同时用于输入和输出。

#### I/O 寄存器

图 3-14 为 GW1NSR 系列 FPGA 产品的 I/O 寄存器模块。GW1NSR 系列 FPGA 产品的每个 I/O 都提供可编程输入寄存器 INFF、输出寄存器 OUTFF和高阻控制寄存器 TCFF。

DS861-1.4.3 23(93)

#### 图 3-14 GW1NSR 的 I/O 寄存器示意图



#### 注!

- CE 可以编程为低电平有效(0: enable)或高电平有效(1: enable)。
- CLK 可以编程为上升沿触发或下降沿触发。
- SR 可以编程为同步/异步的 SET/RESET 或无效(disable)。
- 寄存器可以编程为寄存器(register)或触发器(latch)。

#### 取样模块

取样模块(IEM)是用来取样数据边沿,用于通用 DDR 模式,如图 3-15 所示。

#### 图 3-15 GW1NSR 的 IEM 示意图



#### 解串器 DES 模块

每个输入的 I/O 逻辑提供了简单的解串器 DES,丰富了 I/O 资源应用方式。

#### 串化器 SER 模块

每个输出的 I/O 逻辑提供了简单的串化器 SER 模块,丰富了 I/O 资源应用方式。

## 3.6.4 I/O 逻辑工作模式

GW1NSR 系列 FPGA 产品的 I/O 逻辑支持多种工作模式。每一种工作模式下,I/O(或 I/O 差分信号对)又可以配置成输出信号、输入信号、INOUT信号及三态输出信号(带三态控制的输出信号)。

不是所有的器件管脚都支持 IO 逻辑, GW1NSR-2 的管脚 IOL6(A,B,C....J)不支持 IO 逻辑。

#### 普诵模式

普通模式下的 I/O 逻辑如图 3-16 所示,此模式下信号 TC、DO 以及 DI 直接通过 CRU 与器件内部连接。

DS861-1.4.3 24(93)

3.4 输入缩 3.6 输入输出模块

### 图 3-16 普通模式下的 I/O 逻辑结构示意图



### SDR 模式

相对于普通模式, SDR 模式采用了 I/O 寄存器, 如图 3-17 所示, 可以有效地改善 I/O 的时序性能。

### 图 3-17 SDR 模式下的 I/O 逻辑结构示意图



#### 注!

- CLK 使能信号 O CE 和 I CE 可以配置为高电平使能或低电平使能;
- 时钟信号 O CLK 和 I CLK 可以配置为上升沿触发或下降沿触发;
- 本地置复位信号 O\_SR 和 I\_SR 可以配置为同步复位、同步置位、异步复位、异步置位 或无本地置复位功能;
- SDR 模式下的 I/O 存储单元可以配置成普通寄存器或 Latch。

#### 通用 DDR 模式

在通用 DDR 模式下, GW1NSR 系列 FPGA 产品可以支持较高的 I/O 速度。

图 3-18 为通用 DDR 输入, PAD 与 FPGA 内部逻辑速率比为 1:2。

DS861-1.4.3 25(93)

3.6 输入输出模块

### 图 3-18 I/O 逻辑的 DDR 输入示意图



图 3-19 为通用 DDR 输出, PAD 与 FPGA 内部逻辑速率比为 2:1。

### 图 3-19 I/O 逻辑的 DDR 输出示意图



### IDES4 模式

IDES4 模式下,PAD 与 FPGA 内部逻辑速率比为 1:4。

### 图 3-20 I/O 逻辑的 IDES4 输入示意图



### OSER4 模式

OSER4模式下,PAD与FPGA内部逻辑速率比为4:1。

### 图 3-21 I/O 逻辑的 OSER4 输出示意图



DS861-1.4.3 26(93)

3.6 输入输出模块

### IVideo 模式

IVideo 模式下,PAD 与 FPGA 内部逻辑速率比为 1:7。

### 图 3-22 I/O 逻辑的 IVideo 输入示意图



#### 注!

IVideo 和 IDES8/10 将占用相邻 I/O 的资源。如果用单端 I/O 标准,则 I/O 逻辑将不能使用。在这种情况下,SDR 模式和普通模式还可以使用。

### OVideo 模式

OVideo 模式下,PAD 与 FPGA 内部逻辑速率比为 7:1。

#### 图 3-23 I/O 逻辑的 OVideo 输出示意图



### IDES8 模式

IDES8 模式下,PAD 与 FPGA 内部逻辑速率比为 1:8。

### 图 3-24 I/O 逻辑的 IDES8 输入示意图



### OSER8 模式

OSER8 模式下,PAD 与 FPGA 内部逻辑速率比为 8:1。

#### 图 3-25 I/O 逻辑的 OSER8 输出示意图



### IDES10 模式

IDES10 模式下,PAD 与 FPGA 内部逻辑速率比为 1:10。

DS861-1.4.3 27(93)

3.6 输入输出模块

### 图 3-26 I/O 逻辑的 IDES10 输入示意图



### OSER10 模式

OSER10 模式下,PAD 与 FPGA 内部逻辑速率比为 10:1。

### 图 3-27 I/O 逻辑的 OSER10 输出示意图



### IDES16 模式

IDES16 模式下,PAD 与 FPGA 内部逻辑速率比为 1:16。

### 图 3-28 I/O 逻辑的 IDES16 输出示意图



### OSER16 模式

OSER16 模式下,PAD 与 FPGA 内部逻辑速率比为 16:1。

### 图 3-29 I/O 逻辑的 OSER16 输出示意图



DS861-1.4.3 28(93)

# 3.7 块状静态随机存储器模块

### 3.7.1 简介

GW1NSR 系列 FPGA 产品提供了丰富的块状静态随机存储器资源。这些存储器资源按照模块排列,以行的形式,分布在整个 FPGA 阵列中。因此称为块状静态随机存储器(B-SRAM)。

### B-SRAM 支持两种功能:

- 1. 用作 Cortex-M3 的 SRAM 资源,为 Cortex-M3 提供高速的数据读/写存储功能,保证系统的运行。Cortex-M3 通过 AHB 总线实现数据的读写,数据位宽为 32bits,每个 B-SRAM 提供 8bits 数据,地址深度为 2048,总容量为 64Kbits(GW1NSR-2/2C)/128Kbits(GW1NSR-4/4C)。此时未使用的 B-SRAM 仍可用作 FPGA 的数据存储。
- 2. 用作 FPGA 的数据存储,每个 B-SRAM 可配置最高 18,432bits(18Kbits)。此时不能再用作 Cortex-M3 处理器系统的 SRAM。提供的操作模式包括:单端口模式 Single Port,双端口模式 Dual Port,伪双端口模式 Semi Dual Port,只读存储器模式。在表 3-4 中列出了 B-SRAM 的信号及功能描述。

丰富的块状静态随机存储器资源为用户的高性能设计提供了保障。以下是 B-SRAM 提供的各种功能:

- 1 个模块最大容量为 18,432bits
- 时钟频率达到 190MHz
- 单端口模式 Single Port
- 双端口模式 Dual Port
- 伪双端口模式 Semi Dual Port
- 提供校验位 Parity Bit
- 提供只读存储器模式 ROM
- 数据宽度从 1 位到 36 位
- 多时钟操作模式 Mixed Clock Mode
- 多数据宽度模式 Mixed Data Width Mode
- 在双字节以上的数据宽度支持字节使能功能 Enable Byte
- 正常读写 Normal Read and Write Mode
- 先读后写 Read-before-write Mode
- 通写 Write-through Mode

DS861-1.4.3 29(93)

| 表 3-4 B-SRAM 信 | 号功能 | ř |
|----------------|-----|---|
|----------------|-----|---|

| 端口名称            | 方向 | 描述              |
|-----------------|----|-----------------|
| DIA             | I  | A 端口数据输入信号      |
| DIB             | I  | B端口数据输入信号       |
| ADA             | I  | A 端口地址信号        |
| ADB             | I  | B端口地址信号         |
| CEA             | I  | A 端口时钟使能信号      |
| CEB             | I  | B端口时钟使能信号       |
| RESETA          | I  | A 端口寄存器复位信号     |
| RESETB          | I  | B端口寄存器复位信号      |
| WREA            | I  | A 端口读/写使能信号     |
| WREB            | I  | B 端口读/写使能信号     |
| BLKSELA BLKSELB | I  | 存储单元块选择信号       |
| CLKA            | I  | A 端口读/写时钟信号     |
| CLKB            | I  | B 端口读/写时钟信号     |
| OCEA            | I  | A 端口输出寄存器时钟使能信号 |
| OCEB            | I  | B端口输出寄存器时钟使能信号  |
| DOA             | 0  | 数据输出 A 端口       |
| DOB             | 0  | 数据输出 B 端口       |

关于 B-SRAM 更多详细信息,可参考 <u>UG285,Gowin 块状静态随机存</u>储器(B-SRAM)用户指南。

## 3.7.2 存储器配置模式

GW1NSR 系列 FPGA 产品的块状静态随机存储器可支持多种的数据宽度,如表 3-5 所示。

表 3-5 存储器配置列表

| 单端口模式    | 双端口模式   | 伪双端口模式   | 只读模式     |
|----------|---------|----------|----------|
| 16K x 1  | 16K x 1 | 16K x 1  | 16K x 1  |
| 8K x 2   | 8K x 2  | 8K x 2   | 8K x 2   |
| 4K x 4   | 4K x 4  | 4K x 4   | 4K x 4   |
| 2K x 8   | 2K x 8  | 2K x 8   | 2K x 8   |
| 1K x 16  | 1K x 16 | 1K x 16  | 1K x 16  |
| 512 x 32 | -       | 512 x 32 | 512 x 32 |
| 2K x 9   | 2K x 9  | 2K x 9   | 2K x 9   |
| 1K x 18  | 1K x 18 | 1K x 18  | 1K x 18  |
| 512 x 36 | -       | 512 x 36 | 512 x 36 |

### 单端口模式

在单端口模式,B-SRAM 可以在一个时钟沿对 B-SRAM 进行读或写操作。 在写操作中,被写入的数据会传到 B-SRAM 的输出。支持正常读写模式

DS861-1.4.3 30(93)

(NORMAL-WRITE MODE)和通写模式(Write—through Mode)。当输出寄存器旁路(Bypass)时,新数据出现在同一个时钟的上升沿。

关于单端口模式的端口框图及相关描述请参考 SUG283, Gowin 原语用户指南 > 3 Memory。

### 双端口模式

B-SRAM 支持双端口模式,可对两个端口做如下操作:

- 两个端口同时读操作
- 两个端口同时写操作
- 任何一个端口的读和写

关于双端口模式的端口示意图及相关描述请参考 <u>SUG283, Gowin 原语用户指南</u> > 3 Memory。

### 伪双端口模式

伪双端口可支持同时的读和写操作。但是对同一个端口不能做读写操作, 只支持 A 端口写, B 端口读。

关于伪双端口模式的端口示意图及相关描述请参考 <u>SUG283</u>, <u>Gowin 原</u> <u>语用户指南</u> > 3 Memory。

### 只读模式

B-SRAM 可配置成只读存储器模式。用户可通过存储器初始化文件,通过编程端口来初始化只读存储器。用户需要提供 ROM 中的内容,编入初始化文件中。在器件上电编程时来完成初始化操作。

每个 B-SRAM 可配置成一个 16Kbits ROM。关于只读模式的端口示意图及详细描述请参考 SUG283, Gowin 原语用户指南 > 3 Memory。

## 3.7.3 存储器混合数据宽度配置

GW1NSR 系列 FPGA 产品的块状静态随机存储器模块可支持混合数据线宽度操作。在双端口模式和伪双端口模式下,读和写的数据宽度可以不同,但需要按照表 3-6 和表 3-7 的配置来应用。

表 3-6 双端口混合读写数据宽度配置列表

| 读端口      | 写端口     | 写端口    |        |        |         |        |         |  |  |  |  |  |  |  |
|----------|---------|--------|--------|--------|---------|--------|---------|--|--|--|--|--|--|--|
| <b>以</b> | 16K x 1 | 8K x 2 | 4K x 4 | 2K x 8 | 1K x 16 | 2K x 9 | 1K x 18 |  |  |  |  |  |  |  |
| 16K x 1  | *       | *      | *      | *      | *       |        |         |  |  |  |  |  |  |  |
| 8K x 2   | *       | *      | *      | *      | *       |        |         |  |  |  |  |  |  |  |
| 4K x 4   | *       | *      | *      | *      | *       |        |         |  |  |  |  |  |  |  |
| 2K x 8   | *       | *      | *      | *      | *       |        |         |  |  |  |  |  |  |  |
| 1K x 16  | *       | *      | *      | *      | *       |        |         |  |  |  |  |  |  |  |
| 2K x 9   |         |        |        |        |         | *      | *       |  |  |  |  |  |  |  |
| 1K x 18  |         |        |        |        |         | *      | *       |  |  |  |  |  |  |  |

注!

DS861-1.4.3 31(93)

标注为"\*"的表示支持的模式。

#### 表 3-7 伪双端口混合读写数据宽度配置列表

| <b>法</b> 些口 | 写端口     |        |        |        |         |          |        |         |          |
|-------------|---------|--------|--------|--------|---------|----------|--------|---------|----------|
| 读端口         | 16K x 1 | 8K x 2 | 4K x 4 | 2K x 8 | 1K x 16 | 512 x 32 | 2K x 9 | 1K x 18 | 512 x 36 |
| 16K x 1     | *       | *      | *      | *      | *       | *        |        |         |          |
| 8K x 2      | *       | *      | *      | *      | *       | *        |        |         |          |
| 4K x 4      | *       | *      | *      | *      | *       | *        |        |         |          |
| 2K x 8      | *       | *      | *      | *      | *       | *        |        |         |          |
| 1K x 16     | *       | *      | *      | *      | *       | *        |        |         |          |
| 512x32      | *       | *      | *      | *      | *       | *        |        |         |          |
| 2K x 9      |         |        |        |        |         |          | *      | *       | *        |
| 1K x 18     |         |        |        |        |         |          | *      | *       | *        |

注!

标注为"\*"的表示支持的模式。

# 3.7.4 字节使能功能配置

B-SRAM 支持字节使能(byte-enable)功能。可以遮蔽输入数据,只让被选择到的字节写入。而被遮蔽的数据能继续保留。读/写使能信号(WREA, WREB),及 byte-enable 参数选项用于控制 B-SRAM 的写操作。

### 3.7.5 校验位功能配置

所有的块状静态随机存储器模块 B-SRAM 内置了校验位的配置。每个字节的第9位可用来做校验位,也可以用来存储数据。需要注意的是校验操作并没有提供。

# 3.7.6 同步操作

- 所有的块状静态随机存储器模块的输入寄存器支持同步写入:
- 输出寄存器可用作流水线寄存器提高用户的设计性能;
- 输出寄存器可旁路 bypass-able。

# 3.7.7 上电情况

B-SRAM 支持上电时静态随机存储器初始化。在上电过程中,B-SRAM 处于待机状态,所有数据输出为 0。此状态也适用于只读存储器模式 ROM。

# 3.7.8 B-SRAM 操作模式

B-SRAM 支持 5 种操作模式,包括 2 种读操作模式(旁路模式 Bypass Mode, 流水线读模式 PipelineRead Mode)和 3 种写操作模式(正常写模式: Normal-write Mode, 通写模式: Write-through Mode, 先读后写模式: Read-before-write Mode)。

DS861-1.4.3 32(93)

### 读操作模式

从 B-SRAM 读出数据通过输出寄存器输出或不通过输出寄存器输出。

### 流水线模式

在同步写入存储器时,使用输出寄存器。此模式可支持数据宽度最大36位。

### 旁路模式

不使用输出寄存器,数据保留在存储器(Memory Array)的输出。

### 图 3-30 单端口、伪双端口及双端口模式下的流水线模式



### 写操作模式

### 正常写模式

对一个端口进行正常写操作,此端口的输出数据不变。写入数据不会出现在读端口。

DS861-1.4.3 33(93)

### 通写模式

在此模式下,对一个端口进行写操作时,写入数据会出现在此端口的输出。

### 先读后写模式

在此模式下,对一个端口进行写操作时,原来的数据会出现在此端口的输出,写入数据会存入相应单元。

### 3.7.9 时钟模式

表 3-8 中列出了不同 B-SRAM 模式下可使用的时钟模式:

### 表 3-8 时钟模式配置列表

| 时钟模式    | 双端口模式 | 伪双端口模式 | 单端口模式 |
|---------|-------|--------|-------|
| 独立时钟模式  | Yes   | No     | No    |
| 读/写时钟模式 | Yes   | Yes    | No    |
| 单端口时钟模式 | No    | No     | Yes   |

### 独立时钟模式

图 3-31 显示了在双端口模式下的独立时钟使用模式,每个端口各有一个独立时钟。CLKA 信号控制了端口 A 的所有寄存器, CLKB 信号控制了端口 B 的所有寄存器。

#### 图 3-31 独立时钟模式



### 读写时钟模式

图 3-32 显示了在伪双端口模式下的读写时钟使用模式。每个端口各有一个时钟。写时钟(CLKA)信号控制了端口 A 的写入数据、写地址和读/写使能信号。读时钟(CLKB)信号控制了端口 B 的读出数据、读地址和读使能信号。

DS861-1.4.3 34(93)

#### 图 3-32 读写时钟模式



### 单端口时钟模式

图 3-33 显示了单端口时钟模式。

#### 图 3-33 单端口时钟模式



# 3.8 用户闪存资源(GW1NSR-2C/2)

## 3.8.1 简介

GW1NSR-2C/2 器件内嵌 128 KB 的闪存资源(User Flash),支持三种功能,并且三种使用方式是互斥的:

- 1. 用作 Cortex-M3 程序的存储,此时用户闪存资源只能读取,不能写入;
- 2. 为用户提供非易失性存储资源;
- 3. 用作器件内部的 DUAL BOOT 下载模式,片内下载 Flash 资源作为第一块存储资源存储数据流文件,用户闪存作为第二块存储资源存储数据流文件,实现片内 DUAL BOOT 下载模式。

主要特性如下所示:

- 32bits 数据输入/输出
- 页架构模式
  - 一页存储空间为 128 x 32bits
  - 一共 256 页
- 快速的读,写和擦除
  - 读取时间 30ns

DS861-1.4.3 35(93)

- 写入时间 30us
- 页擦除时间 2ms
- 模块擦除时间 10ms

### ● 低功耗

- IDLE 模式电流 100uA
- 读操作电流 60uA /MHz
- 写操作电流 2.4mA
- 擦除操作电流 2.4mA
- 100,000 次写/擦除寿命周期
- 超过 10 年的数据保存能力

DS861-1.4.3 36(93)

### 3.8.2 端口信号

图 3-34 为 GW1NSR-2C/2 器件的用户闪存模块信号框图:

### 图 3-34 用户闪存端口信号



### 表 3-9 用户闪存模块信号说明

| 管脚名称 <sup>1</sup> | 方向 | 描述          |
|-------------------|----|-------------|
| RESETN            | 1  | 复位信号,低电平有效。 |
| DIN[31:0]         | 1  | 数据输入        |
| ADDR[5:0]         | 1  | 地址输入        |
| AE                | 1  | 地址使能信号      |
| CS                | 1  | 片选信号        |
| PROG              | 1  | 数据使能信号      |
| NVSTR             | 1  | 数据写入闪存信号    |
| SERA              | 1  | 页擦除选择信号     |
| MASE              | 1  | 模块擦除选择信号    |
| OE                | 1  | 读使能         |
| DOUT              | 0  | 输出数据        |
| TBIT              | 0  | 写/擦除完成指示信号  |

#### 注!

[1]控制信号、地址信号和数据信号端口名称。

# 3.8.3 页地址映射表

用户数据闪存资源的容量为 128KB,由 256 页组成,每页大小为 512byte,分为两行,一行包括 64 个 32bits 的数据。

表 3-10 用户数据闪存地址映射

|                         | 页选择地址                        |  |  |  |  |    |    | 行选择 |    | 32bits | 数据 | 列地址 | 选择 |  |
|-------------------------|------------------------------|--|--|--|--|----|----|-----|----|--------|----|-----|----|--|
| A14                     | A14 A13 A12 A11 A10 A9 A8 A7 |  |  |  |  | A6 | A5 | A4  | А3 | A2     | A1 | A0  |    |  |
| X8 X7 X6 X5 X4 X3 X2 X1 |                              |  |  |  |  |    | X0 | Y5  | Y4 | Y3     | Y2 | Y1  | Y0 |  |

DS861-1.4.3 37(93)

| 页选择地址 |     |     |     |     |     |     | 行选择 |    | 32bits | 数据 | 列地址 | 上选择 |    |    |
|-------|-----|-----|-----|-----|-----|-----|-----|----|--------|----|-----|-----|----|----|
| A14   | A13 | A12 | A11 | A10 | A9  | A8  | A7  | A6 | A5     | A4 | А3  | A2  | A1 | A0 |
| 0/1   | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | X1  | X0 | Y5     | Y4 | Y3  | Y2  | Y1 | Y0 |

### 表 3-11 用户信息闪存地址映射

### 3.8.4 操作模式命令表

用户可以通过控制控制信号选择不同的操作模式,具体如表 3-12 所示。

### 表 3-12 操作模式命令表

| MODE | CS | AE | OE | PROG | SERA | MASE | DIN | DOUT | ADDR | NVSTR |
|------|----|----|----|------|------|------|-----|------|------|-------|
| IDLE | L  | L  | L  | L    | L    | L    | Χ   | Z    | X    | X     |
| 读    | Н  | R  | Н  | L    | L    | L    | Χ   | DOUT | ADDR | L     |
| 写    | Н  | R  | L  | Н    | L    | L    | DIN | Z    | ADDR | Н     |
| 页擦除  | Н  | R  | L  | L    | Н    | L    | Χ   | Z    | ADDR | Н     |
| 模块擦除 | Н  | R  | L  | L    | L    | Н    | Х   | Z    | ADDR | Н     |

### 3.8.5 读操作

Flash 的读操作类似于 ROM 的读操作,数据读取需要满足以下条件:

AE 信号拉高,满足地址建立时间 (≥5ns),在 AE 的上升沿,地址被锁存。

OE 读使能信号拉高,(≥1ns)数据出现在输出管脚 DOUT 上,数据读取时间为 30ns。

# 3.8.6 写操作

写操作前需要先对想要写入的存储空间进行擦除操作,因为在 flash 数据编程到非易失性存储空间的时候,只能是从 1 变 0,只有擦除操作才能使数据从 0 变 1。

Flash 的写操作(数据 0)类似于 SRAM 的写操作,完成写操作需要 AE、PROG 和 NVSTR 为高电平。写入的数据和地址提前准备好,满足建立时间(≥5ns),在 AE 的上升沿,数据和地址被锁存。AE 变为高电平后,满足 NVSTR 信号的上升沿保持时间(≥10ns),NVSTR 信号变为高电平,数据编程到存储空间的地址中,写入时间为 30us。

## 3.8.7 擦除操作

用户闪存支持页擦除和模块擦除,页擦除的空间是 512byte,模块擦除的空间是整个用户数据存储空间。当 SERA 为高电平时,有效的擦除操作是页擦除,当 MASE 为高电平时,有效的擦除操作是模块擦除。

页擦除操作:完成页擦除操作需要 AE、SERA 和 NVSTR 为高电平。擦除的地址提前准备好,满足建立时间(≥5ns),在 AE 的上升沿,地址被锁

DS861-1.4.3 38(93)

存。AE 变为高电平后,满足 NVSTR 信号的上升沿保持时间(≥10ns), NVSTR 信号变为高电平,对应地址的存储空间被擦除,数据变为 1,页擦除 时间为 2ms。

模块擦除操作:完成模块擦除操作需要 AE、MASE 和 NVSTR 为高电平。擦除的地址提前准备好,满足建立时间(≥5ns),在 AE 的上升沿,地址被锁存。AE 变为高电平后,满足 NVSTR 信号的上升沿保持时间(≥10ns),NVSTR 信号变为高电平,对应地址的存储空间被擦除,数据变为 1,模块擦除时间为 10ms。

# 3.9 用户闪存资源(GW1NSR-4C/4)

### 3.9.1 简介

GW1NSR-4C/4 器件内嵌 32KB 的用户闪存资源(User Flash),支持两种功能,并且两种使用方式是互斥的:

1.用作 Cortex-M3 程序的存储,此时用户闪存资源只能读取,不能写入; 2.为用户提供非易失性存储资源。

用户闪存由行存储单元和列存储单元组成,一行由 64 个列存储单元组成,列存储单元的容量为 32bits,行存储单元的容量为 64\*32=2048 bits。擦除操作支持页擦除,一页的容量为 2048 字节,即一页包含 8 行。特性如下所示:

- 10,000 次写寿命周期
- 超过 10 年的数据保存能力(+85℃)
- 数据位宽: 32
- 容量: 128 行\*64 列\*32 = 256kbits
- 页擦除能力: 2,048 字节
- 快速页擦除/字编程操作
- 时钟频率: 40MHz
- 字编程时间: ≤16µs
- 页擦除时间: ≤120ms
- 电流
  - 读电流/持续时间: 2.19mA/25ns (V<sub>CC</sub>) & 0.5mA/25ns (V<sub>CCX</sub>)(MAX)
  - 编程/擦除操作: 12/12mA(MAX)

DS861-1.4.3 39(93)

### 3.9.2 端口信号

图 3-35 为 GW1NSR-4C/4 器件的用户闪存模块信号框图:

### 图 3-35 GW1NSR-4C/4 用户闪存端口信号



表 3-13 用户闪存模块信号说明

| 管脚名称 <sup>1</sup>      | 方向 | 描述                                         |
|------------------------|----|--------------------------------------------|
|                        |    | X地址总线,访问行地址,其中 XADR[n:3]用于选择某一页, XADR[2:0] |
| XADR[n:0] <sup>2</sup> | I  | 用于选择一页中的某一行,一页由8行组成,一行由64列组成。              |
|                        |    | GW1NSR-2/2C/4/4C: 共 128 行,n=6              |
| YADR[5:0] <sup>2</sup> | 1  | Y地址总线,用于选择一行存储单元中的某一列,一行由 64 列组成。          |
| DIN[31:0]              | 1  | 数据输入总线。                                    |
| DOUT[31:0]             | 0  | 数据输出总线。                                    |
| XE <sup>2</sup>        | 1  | X地址使能信号,当 XE 为 0 的时候,所有的行地址均不使能。           |
| YE <sup>2</sup>        | 1  | Y地址使能信号,当 YE 为 0 的时候,所有列地址均不使能。            |
| SE <sup>2</sup>        | 1  | 检测放大器使能信号,高电平有效。                           |
| ERASE                  | ı  | 擦除信号,高电平有效。                                |
| PROG                   | I  | 编程信号,高电平有效。                                |
| NVSTR                  | 1  | Flash 数据存储信号,高电平有效。                        |

### 注!

- [1]控制信号、地址信号和数据信号端口名称。
- [2]只有当 XE=YE=V<sub>CC</sub> 并且 SE 满足脉冲时序要求(T<sub>pws</sub>, T<sub>nws</sub>)的时候,读操作才是有效的。读出的数据的地址是由 XADR[5:0]和 YADR[5:0]确定的。

# 3.9.3 操作模式

### 表 3-14 用户模式真值表

| 模式    | XE | YE | SE | PROG | ERASE | NVSTR |
|-------|----|----|----|------|-------|-------|
| 读模式   | Н  | Н  | Н  | L    | L     | ∟     |
| 编程模式  | Н  | Н  | L  | Н    | L     | Н     |
| 页擦除模式 | Н  | L  | L  | L    | Н     | Н     |

### 注!

"H"和"L"表示高电平和低电平。

DS861-1.4.3 40(93)

3.10 数字信号处理模块

# 3.10 数字信号处理模块

## 3.10.1 简介

GW1NSR-4C/4 器件中具有丰富的 DSP 模块资源。高云半导体的 DSP 解决方案可满足用户的高性能数字信号处理需求,如 FIR、FFT 设计等。DSP 具有时序性能稳定、资源利用率高、功耗低等优点。

DSP 支持下列功能:

- 3 种宽度乘法器 (9-bit, 18-bit, 36-bit)
- 54-bit 的算术/逻辑运算单元
- 多个乘法器可级联以增加数据宽度
- 桶形移位器(Barrel Shifter)
- 通过反馈信号做自适应滤波(Adaptive filtering through signal feedback)
- 运算可以自动取正(Computing with options of rounding to positive number or prime number)
- 支持寄存器输出和旁路输出

### 宏单元

DSP 模块排列以行的形式分布在整个 FPGA 阵列中。每个 DSP 模块占用 9 个 CFU 的位置。每个 DSP 包含两个宏单元,每个宏单元包含两个前加 法器(pre-adders),两个 18 位的乘法器(multipliers),和一个三输入的算术/逻辑运算单元(ALU54)。

图 3-36 显示了一个宏单元的结构。

DS861-1.4.3 41(93)

3 结构介绍 3.10 数字信号处理模块

### 图 3-36 DSP 宏单元



DS861-1.4.3 42(93)

3 结构介绍 3.10 数字信号处理模块

DSP 模块端口描述如表 3-15 所示,内部寄存器如表 3-16 所示。

### 表 3-15 DSP 端口描述

| 端口名称         | I/O 类型 | 说明                                                                                             |
|--------------|--------|------------------------------------------------------------------------------------------------|
| A0[17:0]     | 1      | 18-bit 数据输入 A0                                                                                 |
| B0[17:0]     | 1      | 18-bit 数据输入 B0                                                                                 |
| A1[17:0]     | I      | 18-bit 数据输入 A1                                                                                 |
| B1[17:0]     | 1      | 18-bit 数据输入 B1                                                                                 |
| C[53:0]      | I      | 54-bit 数据输入 C                                                                                  |
| SIA[17:0]    | I      | 移位数据输入 A,用于级联连接。输入信号 SIA<br>直接连接到先前相邻的 DSP 模块的输出信号<br>SOA,DSP 模块内部从 SIA 到 SOA 的延迟时间<br>是一个时钟周期 |
| SIB[17:0]    | I      | 移位数据输入B,用于级联连接。输入信号 SIB<br>直接连接到先前相邻的 DSP 模块的输出信号<br>SOB,DSP 模块内部从 SIB 到 SOB 的延迟时间<br>是一个时钟周期  |
| SBI[17:0]    | 1      | 前加器逻辑移位输入,反向                                                                                   |
| CASI[54:0]   | I      | 来自前一个 DSP 模块的 ALU 输入,用于级联连接                                                                    |
| ASEL[1:0]    | I      | 前加器或乘法器的 A 输入源选择                                                                               |
| BSEL[1:0]    | I      | 乘法器的 B 输入源选择                                                                                   |
| ASIGN[1:0]   | I      | 输入信号 A 符号位                                                                                     |
| BSIGN[1:0]   | I      | 输入信号 B 符号位                                                                                     |
| PADDSUB[1:0] | 1      | 前加器的操作控制信号,用于前加器逻辑加减法选<br>择                                                                    |
| CLK[3:0]     | I      | 时钟输入                                                                                           |
| CE[3:0]      | 1      | 时钟使能信号                                                                                         |
| RESET[3:0]   | 1      | 同步/异步,复位信号                                                                                     |
| SOA[17:0]    | 0      | 移位数据输出 A                                                                                       |
| SOB[17:0]    | 0      | 移位数据输出B                                                                                        |
| SBO[17:0]    | 0      | 前加器逻辑移位输出,反向方向                                                                                 |
| DOUT[35:0]   | 0      | DSP 输出数据                                                                                       |
| CASO[54:0]   | 0      | ALU 输出到下一个 DSP 模块进行级联连接,最高位符号扩展                                                                |

### 表 3-16 内部寄存器描述

| 寄存器         | 说明及相关属性 |
|-------------|---------|
| A0 register | AO输入寄存器 |
| A1 register | A1输入寄存器 |
| B0 register | BO输入寄存器 |
| B1 register | B1输入寄存器 |

DS861-1.4.3 43(93)

3.10 数字信号处理模块

| 寄存器             | 说明及相关属性       |
|-----------------|---------------|
| C register      | C输入寄存器        |
| P1_A0 register  | 左乘数A0输入寄存器    |
| P1_A1 register  | 右乘数A1输入寄存器    |
| P1_B0 register  | 左乘数B0输入寄存器    |
| P1_B1 register  | 右乘数B1输入寄存器    |
| P2_0 register   | 左乘数流水线输入寄存器   |
| P2_1 register   | 右乘数流水线输入寄存器   |
| OUT register    | DOUT输出寄存器     |
| OPMODE register | 操作模式控制寄存器     |
| SOA register    | 寄存器 SOA 的移位输出 |

#### 前加器

DSP 宏单元包含两个前加器,实现预加、预减和移位功能。 前加器位于宏单元的最前端,有两个输入端:

- 并行 18-bit 输入 B 或 SBI:
- 并行 18-bit 输入 A 或 SIA。

#### 注!

每个输入端都支持寄存器模式和旁路模式。

高云半导体 FPGA 产品的前加器可以作为功能模块单独使用,支持 9-bit 位宽和 18-bit 位宽。

### 乘法器

乘法器(multipliers)位于前加器之后,用来实现乘法运算。乘法器可以配置为 9 x 9、18 x 18、36 x 18 或 36 x 36,输入端和输出端均支持寄存器模式和旁路模式。一个宏单元支持的配置模式包括:

- 一个 18 x 36 乘法器
- 两个 18 x 18 乘法器
- 四个9x9乘法器

#### 注!

两个宏单元可以配置成一个 36 x 36 乘法器。

### 算术运算单元

每个DSP宏单元包含一个54位ALU54,是对乘法器功能的进一步加强,输入端和输出端均支持寄存器模式和旁路模式。支持的功能包括:

- 乘法器输出数据/0、数据 A 和数据 B 的加法/减法运算;
- 乘法器输出数据/0、数据 B 和进位 C 的加法/减法运算;
- 数据 A、数据 B 和进位 C 的加法/减法运算。

DS861-1.4.3 44(93)

### 3.10.2 DSP 操作模式配置

- 乘法器(multiplier)模式
- 乘法累加器(accumulator)模式
- 乘法求和累加器模式

### **3.11 Cortex-M3**

### 3.11.1 简介

GW1NSR-2C/GW1NSR-4C器件是SoC芯片,内嵌微处理器系统硬核、具有丰富的逻辑资源、内嵌用户闪存资源、B-SRAM存储资源、PLL和OSC时钟资源,此外,GW1NSR-2C器件内嵌USB2.0 PHY和ADC。微处理器硬核是32-bit RISC架构的Cortex-M3,具有低功耗,低成本,高性能的特点,FPGA提供可编程的外设和软核IP,方便灵活的实现片上系统。

微处理器系统通过处理器模块和总线系统与外设通信,这里的外设指使用 FPGA 资源实现的外设或调用 FPGA 软核 IP 实现的外设。FPGA 内部有丰富的逻辑资源,用户可以灵活实现不同外设,高云云源软件提供了丰富的软核 IPs,方便用户调用,如 SPI、I<sup>2</sup>C、I3C 等外设控制器。微处理器系统连接的是 FPGA 资源,除了 JTAG 接口,没有直接的 I/O 端口与外设端口连接。

总线系统由 AHB-Lite 总线、AHB2APB 桥接总线和两条 APB 总线组成。

微处理器系统通过 AHB 总线访问 FPGA 子内存系统,该系统包含一个控制器,实现了 128KB 的 Flash 资源的只读操作和 8KB 的 B-SRAM 资源的读写操作。上电启动后,Cortex-M3 内核加载 Flash 中 ARM 程序的指令和数据,并且传输到 B-SRAM,然后开始运行。

AHB 总线支持两个扩展端口 INTEXP0 和 TARGEXP0,每个扩展端口提供一个 126bits 的 AHB 总线,可以连接到 FPGA 中的任何高速外设或存储资源。AHB 总线支持 GPIO 接口连接到 FPGA,用来实现用户通用 I/O 功能的连接。

两条 APB 总线分别为 APB1 和 APB2, APB1 连接两个定时器(Timer0 和 Timer1),两个 UART(Uart0 和 Uart1),以及一个看门狗(Watchdog)。两个 UART 直接连接到 FPGA,两个定时器和看门狗只在微处理器系统内部控制和使用,通过寄存器访问。APB2 总线直接连接到 FPGA 资源。

处理器模块由 Cortex-M3 内核、总线矩阵、NVIC、调试端口和时间戳组成。

Cortex-M3 内核通过总线矩阵来访问总线系统,包括 AHB 总线, AHB2APB 桥接总线和两条 APB 总线。

GW1NSR-2C 器件的 NVIC 提供了两个外部用户中断,GW1NSR-4C 器件支持六个外部用户中断。调试端口包括 JTAG 调试端口和 TPIU。

此外,微处理器系统提供了一个中断监测信号 IntMonitor,该信号可以指示 GPIO 中断或 APB1 外设中断,包括 Timer0 / Timer1 / Uart0 / Uart1 /

DS861-1.4.3 45(93)

Watchdog。该中断监测信号反馈给 FPGA,用来报告微处理器系统当前运行的中断状态。

FPGA 内嵌 PLL 和 OSC,可以灵活方便的提供时钟资源,上电复位和系统复位。

Cortex-M3 的结构框图如图 3-37 所示。

#### 图 3-37 Cortex-M3 结构框图

#### Cortex-M3



### 3.11.2 Cortex-M3

### 特性

- 紧凑型内核
- Thumb-2 指令集,支持 ARM 核高性能
- 支持 8bits 和 16bits,一般应用于几千字节的内存微控制器中
- 采用哈佛架构,独立的指令总线和数据总线,加载/存储数据的同时能够 执行指令取指

DS861-1.4.3 46(93)

- 异常中断处理,通过寄存器操作实现硬件中断处理
- 确定性,快速的中断处理
- 内存保护单元,提供特权模式来保护操作系统功能
- 从 ARM7<sup>™</sup> 处理器升级而来,具有更高性能和更低功耗
- 功能丰富的调试解决方案
  - JTAG 调试端口
  - FPB 模块实现断点功能
  - DWT 模块实现检测,触发和系统分析功能
  - ITM 模块支持调试打印
  - TPIU 模块桥接跟踪分析

### 3.11.3 总线矩阵

总线矩阵用来将 Cortex-M3 处理器和调试接口与外部 AHB 总线相连。 **总线矩阵与 AHB 总线的连接包括:** 

- ICode 总线: 32bit AHBLite 总线,用于从代码空间取指令和向量;
- DCode 总线: 32bit AHBLite 总线,用于对代码空间进行数据加载/存储 以及调试访问:
- 系统总线: 32bit AHBLite 总线,用于对系统空间执行取指令和向量,数据加载/存储以及调试访问;
- APB: 32bit APB 总线,用于对外部设备空间进行数据加载/存储以及调试访问。

### 总线矩阵还对下面的功能进行控制:

- 非对齐访问: 总线矩阵将非对齐的处理器访问转换为对齐访问:
- Bit-banding: 总线矩阵将 Bit\_band 别名访问转换为对 Bit\_band 空间的 访问:
- 写缓冲: 总线矩阵包含一个写缓冲区, 使得处理器内核不受总线延迟的 影响。

### 3.11.4 **NVIC**

嵌套向量中断控制器(NVIC)与 Cortex-M3 内核紧密耦合实现了低延迟的异常和中断处理,具有以下特性:

- 支持多达 26 个中断
- GW1NSR-2C 支持两个外部用户中断
- GW1NSR-4C 支持六个外部用户中断
- 每个中断支持 8 种可编程的优先级(0~7),7 表示最低级的优先级,0 表示最高级的优先级

DS861-1.4.3 47(93)

- 支持中断信号电平和脉冲检测
- 支持动态配置中断优先级
- 处理器状态进入中断时自动保存,中断退出时自动恢复,不需要额外的指令

### 表 3-17 NVIC 中断向量表

| 地址          | 名称                 | 类型            | 描述               |
|-------------|--------------------|---------------|------------------|
| 0x00000000  | _StackTop          | 只读            | 中断堆栈顶层           |
| 0x00000004  | Reset_Handler      | 只读            | 复位中断             |
| 0x00000008  | NMI_Handler        | 只读            | NMI 中断           |
| 0x000000C   | HardFault_Handler  | 只读            | 硬件错误中断           |
| 0x00000010  | MemMange_Handler   | 只读            | MPU 错误中断         |
| 0x00000014  | BusFault_Handler   | 读/写           | 总线错误中断           |
| 0x00000018  | UsageFault_Handler | 只读            | 使用错误中断           |
| 0x0000002C  | SVC_Handler        | 读/写           | SVCall 中断        |
| 0x00000030  | DebugMon_Handler   | 只读            | 调试监测中断           |
| 0x00000038  | PendSV_Handler     | 读 / 写 /<br>只读 | 挂起中断             |
| 0x0000003C  | SysTick_Handler    | 读/写           | 系统定时器中断          |
| 外部中断(GW1NSI | R-2C)              |               |                  |
| 0x00000040  | UART0_Handler      | 读/写           | UARTO 接收和发送中断    |
| 0x00000048  | UART1_Handler      | 读/写           | UART1 接收和发送中断    |
| 0x00000058  | PORT0_COMB_Handler | 读/写           | GPIO0 中断         |
| 0x00000060  | TIMER0_Handler     | 读/写           | TIMER0 中断        |
| 0x00000064  | TIMER1_Handler     | 读/写           | TIMER1 中断        |
| 0x00000070  | UARTOVF_Handler    | 读/写           | UART0/UART1 溢出中断 |
| 0x00000074  | USER_INT0_Handler  | 读/写           | 用户中断 0           |
| 0x00000078  | USER_INT1_Handler  | 读/写           | 用户中断 1           |
| 外部中断(GW1NSI | R-4C)              |               |                  |
| 0x00000040  | UART0_Handler      | 读/写           | UARTO 接收和发送中断    |
| 0x00000044  | USER_INT0_Handler  | 读/写           | 用户中断 0           |
| 0x00000048  | UART1_Handler      | 读/写           | UART1 接收和发送中断    |
| 0x0000004C  | USER_INT1_Handler  | 读/写           | 用户中断 1           |
| 0x0000050   | USER_INT2_Handler  | 读/写           | 用户中断 2           |
| 0x00000058  | PORT0_COMB_Handler | 读/写           | GPIO0 中断         |
| 0x0000005C  | USER_INT3_Handler  | 读/写           | 用户中断 3           |
| 0x00000060  | TIMER0_Handler     | 读/写           | TIMER0 中断        |
| 0x00000064  | TIMER1_Handler     | 读/写           | TIMER1 中断        |
| 0x0000006C  | I2C_Handler        | 读/写           | I2C 中断           |
| 0x0000070   | UARTOVF_Handler    | 读/写           | UART0/UART1 溢出中断 |
| 0x00000074  | USER_INT4_Handler  | 读/写           | 用户中断 4           |

DS861-1.4.3 48(93)

| 地址          | 名称                | 类型  | 描述             |
|-------------|-------------------|-----|----------------|
| 0x00000078  | USER_INT5_Handler | 读/写 | 用户中断 5         |
| 外部中断(GW1NSI | R-2C / GW1NSR-4C) |     |                |
| 0x00000080  | PORT0_0_Handler   | 读/写 | GPIO0 管脚 0 中断  |
| 0x00000084  | PORT0_1_Handler   | 读/写 | GPIO0 管脚 1 中断  |
| 0x00000088  | PORT0_2_Handler   | 读/写 | GPIO0 管脚 2 中断  |
| 0x0000008C  | PORT0_3_Handler   | 读/写 | GPIO0 管脚 3 中断  |
| 0x00000090  | PORT0_4_Handler   | 读/写 | GPIO0 管脚 4 中断  |
| 0x00000094  | PORT0_5_Handler   | 读/写 | GPIO0 管脚 5 中断  |
| 0x00000098  | PORT0_6_Handler   | 读/写 | GPIO0 管脚 6 中断  |
| 0x0000009C  | PORT0_7_Handler   | 读/写 | GPIO0 管脚 7 中断  |
| 0x000000A0  | PORT0_8_Handler   | 读/写 | GPIO0 管脚 8 中断  |
| 0x000000A4  | PORT0_9_Handler   | 读/写 | GPIO0 管脚 9 中断  |
| 0x000000A8  | PORT0_10_Handler  | 读/写 | GPIO0 管脚 10 中断 |
| 0x000000AC  | PORT0_11_Handler  | 读/写 | GPIO0 管脚 11 中断 |
| 0x000000B0  | PORT0_12_Handler  | 读/写 | GPIO0 管脚 12 中断 |
| 0x000000B4  | PORT0_13_Handler  | 读/写 | GPIO0 管脚 13 中断 |
| 0x000000B8  | PORT0_14_Handler  | 读/写 | GPIO0 管脚 14 中断 |
| 0x000000BC  | PORT0_15_Handler  | 读/写 | GPIO0 管脚 15 中断 |

### 3.11.5 启动模式

程序加载模块从 ARM 程序内存中加载堆栈指针初始值,并且传送到复位中断处理程序中,复位向量在程序内存中指定。

当前的程序加载是基于 UART 消息监测实现的,这种方式易与 PC 机进行通信。启动程序加载模块的例程如下所示:

- 上电复位,进入复位中断处理程序调用程序加载器;
- 设置 UARTO 波特率和控制寄存器,为发送和接收设置合适的波特率:
- 启动 Flash 加载模块子程序执行,如内存测试,Timer0 测试,Timer1 测试等:
- 写入 0x4(EOP)来终止程序。

# 3.11.6 时间戳

48bits 的时间戳计数器包含在 ITM 中,由跟踪使能信号 TRCENA 进行门控和使能,TRCENA 是 DEMCR 寄存器中第 24 位,是 Cortex-M3 处理器的调试模块 DWT 和 ITM 的全局使能信号。时间戳应用在调试进程中用来设置断点和标记等。

DS861-1.4.3 49(93)

#### 图 3-38 DEMCR 寄存器

#### DEMCR寄存器



#### 注!

TRCENA 为 DWT 和 ITM 的全局使能信号:

- 0: DWT 和 ITM 不使能;
- 1: DWT 和 ITM 使能。

### 3.11.7 定时器

SoC 内嵌了两个同步的标准定时器 Timer0 和 Timer1,可以通过 APB1 总线进行控制和访问。

Timer0 和 Timer1 是 32bits 递减计数器,特性如下:

- 当计数值为 0 的时候生成中断请求信号 TIMERINT 且在配置中断清除寄存器 INTCLEAR 前,中断请求信号一直保持有效;
- 可以使用外部信号 EXTIN 作为计数器的使能信号,当 EXTIN 由 0 变 1 的时候使能有效;
- 如果计数器计数到 0, 并且同时软件在清除上一次的中断状态, 那么中断状态被设置为 1;
- 当外部输入 EXTIN 作为时钟的时候,时钟频率必须低于主时钟的一半, 因为 EXTIN 首先要经过两级寄存器采样,然后经过边沿检测逻辑;
- Timer0: EXTIN 硬连接到 GPIO[1];
- Timer1: EXTIN 硬连接到 GPIO[6]。

DS861-1.4.3 50(93)

### 图 3-39 Timer0/Timer1 结构框图



Timer0/ Timer1 寄存器如下表所示,Timer0 基地址为 0x40000000, Timer1 基地址为 0x40001000。

表 3-18 Timer0/Timer1 寄存器

| 名称                     | 基地址偏移 | 类型  | 位宽 | 复位值        | 描述                                                              |
|------------------------|-------|-----|----|------------|-----------------------------------------------------------------|
| CTRL                   | 0x000 | 读/写 | 4  | 0x0        | [3]: 定时器中断使能<br>[2]: 外部输入作为时钟信号<br>[1]: 外部输入作为使能信号<br>[0]: 使能信号 |
| VALUE                  | 0x004 | 读/写 | 32 | 0x00000000 | 当前计数值                                                           |
| RELOAD                 | 0x008 | 读/写 | 32 | 0x00000000 | 加载值,写入到这个寄存器的数值<br>会加载到计数器的当前计数值寄<br>存器中                        |
| INTSTATUS/<br>INTCLEAR | 0x00C | 读/写 | 1  | 0x0        | [0]: 定时器中断,写1清除中断                                               |
| PID4                   | 0XFD0 | 只读  | 8  | 0x04       | 外设 ID 寄存器 4                                                     |
| PID5                   | 0XFD4 | 只读  | 8  | 0x00       | 外设 ID 寄存器 5                                                     |
| PID6                   | 0XFD8 | 只读  | 8  | 0x00       | 外设 ID 寄存器 6                                                     |
| PID7                   | 0XFDC | 只读  | 8  | 0x00       | 外设 ID 寄存器 7                                                     |
| PID0                   | 0XFE0 | 只读  | 8  | 0x22       | 外设 ID 寄存器 0                                                     |
| PID1                   | 0XFE4 | 只读  | 8  | 0XB8       | 外设 ID 寄存器 1                                                     |
| PID2                   | 0XFE8 | 只读  | 8  | 0X1B       | 外设 ID 寄存器 2                                                     |
| PID3                   | 0XFEC | 只读  | 8  | 0X00       | 外设 ID 寄存器 3                                                     |
| CID0                   | 0XFF0 | 只读  | 8  | 0X0D       | 组件 ID 寄存器 0                                                     |
| CID1                   | 0XFF4 | 只读  | 8  | 0XF0       | 组件 ID 寄存器 1                                                     |
| CID2                   | 0XFF8 | 只读  | 8  | 0X05       | 组件 ID 寄存器 2                                                     |
| CID3                   | 0XFFC | 只读  | 8  | 0XB1       | 组件 ID 寄存器 3                                                     |

DS861-1.4.3 51(93)

### 3.11.8 UART

SoC 内嵌了两个 UART (UARTO 和 UART1),可以通过 APB1 总线进行控制和访问,支持的最大波特率为 921.6Kbits/s。

UARTO 和 UART1 支持 8 位数据位和 1 位停止位,不支持校验位。

### 图 3-40 APB UART Buffering



UARTO 和 UART1 支持高速测试模式,当 CTRL[6]设置为 1 时,串行数据在每个时钟周期下传输一位,这样可以在较短的仿真时间内发送信息。当APB 检测到 UARTO 和 UART1 有数据发送时的同时,APB 接口总是会发送"OK"响应,不需要等待。在使能 UART 之前,需要首先配置波特率分频寄存器 BAUDDIV。

BAUDTICK 输出频率是波特率的 16 倍,可以使用这个外部信号在同步模式下采样 UART 数据。CTRL[0]为输出使能信号 TXEN,当 UART 传输使能时,可以用这个信号把双向 I/O 转换为 UART 数据输出。

状态寄存器 STATE 中的缓存溢出状态用于驱动溢出中断请求信号,因此,清除缓存溢出状态可以清除溢出中断请求,清除溢出中断请求也可以清除 STATE 中的缓存溢出状态。

下表是 UART0 和 UART1 的寄存器描述, UART0 基地址为 0X40004000, UART1 基地址为 0X40005000。

DS861-1.4.3 52(93)

### 表 3-19 UART0/UART1 寄存器

| 名称                     | 基地址偏移 | 类型  | 位宽 | 复位值     | 描述                                                                                                                          |
|------------------------|-------|-----|----|---------|-----------------------------------------------------------------------------------------------------------------------------|
| DATA                   | 0x000 | 读/写 | 8  | 0x      | 8 位数据<br>接收模式下为接收数据<br>发送模式下为发送数据                                                                                           |
| STATE                  | 0x004 | 读/写 | 4  | 0x0     | [3]:接收缓存溢出,写 1 清除<br>[2]:发送缓存溢出,写 1 清除<br>[1]:接收缓存满标志,只读<br>[0]:发送缓存满标志,只读                                                  |
| CTRL                   | 0x008 | 读/写 | 7  | 0x00    | [6]: 高速测试模式,只在发送模式下支持<br>[5]: 接收溢出中断使能信号<br>[4]: 发送溢出中断使能信号<br>[3]: 接收中断使能信号<br>[2]: 发送中断使能信号<br>[1]: 接收使能信号<br>[0]: 发送使能信号 |
| INTSTATUS/<br>INTCLEAR | 0x00C | 读/写 | 4  | 0x0     | [3]:接收溢出中断,写 1 清除<br>[2]:发送溢出中断,写 1 清除<br>[1]:接收中断,写 1 清除<br>[0]:发送中断,写 1 清除                                                |
| BAUDDIV                | 0x010 | 读/写 | 20 | 0x00000 | [19:0]: 波特率分频寄存器,最小值为 16                                                                                                    |
| PID4                   | 0XFD0 | 只读  | 8  | 0x04    | 外设 ID 寄存器 4                                                                                                                 |
| PID5                   | 0XFD4 | 只读  | 8  | 0x00    | 外设 ID 寄存器 5                                                                                                                 |
| PID6                   | 0XFD8 | 只读  | 8  | 0x00    | 外设 ID 寄存器 6                                                                                                                 |
| PID7                   | 0XFDC | 只读  | 8  | 0x00    | 外设 ID 寄存器 7                                                                                                                 |
| PID0                   | 0XFE0 | 只读  | 8  | 0x21    | 外设 ID 寄存器 0                                                                                                                 |
| PID1                   | 0XFE4 | 只读  | 8  | 0XB8    | 外设 ID 寄存器 1                                                                                                                 |
| PID2                   | 0XFE8 | 只读  | 8  | 0X1B    | 外设 ID 寄存器 2                                                                                                                 |
| PID3                   | 0XFEC | 只读  | 8  | 0X00    | 外设 ID 寄存器 3                                                                                                                 |
| CID0                   | 0XFF0 | 只读  | 8  | 0X0D    | 组件 ID 寄存器 0                                                                                                                 |
| CID1                   | 0XFF4 | 只读  | 8  | 0XF0    | 组件 ID 寄存器 1                                                                                                                 |
| CID2                   | 0XFF8 | 只读  | 8  | 0X05    | 组件 ID 寄存器 2                                                                                                                 |
| CID3                   | 0XFFC | 只读  | 8  | 0XB1    | 组件 ID 寄存器 3                                                                                                                 |

## 3.11.9 看门狗

SoC 内嵌了一个 Watchdog,可以通过 APB1 总线进行控制和访问。

它是基于一个 32bits 的递减计数器,通过重装载寄存器 WDOGLOAD 进行初始化。

Watchdog 模块会产生中断信号 WDOGINT,和用户配置的计数值有关。 当时钟使能信号 WDOGCLKEN 为高电平有效的时候,Watchdog 计数器在 每个时钟的上升沿递减。Watchdog 监测中断信号,并且当计数值为 0 时产

DS861-1.4.3 53(93)

生中断请求信号 WDOGRES。在时钟 WDOGCLK 的下一个时钟周期,重装载寄存器 WDOGLOAD 的数值加载到计数器中,继续进行下一次递减计数。

当系统发生错误时,Watchdog 用于产生系统复位信号,提供一种软件系统崩溃恢复的方法。比如,如果中断信号没有清除,此时计数器又一次计数到 0,那么 Watchdog 会重新置位复位信号,用于系统复位。

Watchdog 操作方式如下图所示:

### 图 3-41 Watchdog 操作方式



Watchdog 寄存器如下表所示,Watchdog 基地址为 0x40008000.

DS861-1.4.3 54(93)

表 3-20 Watchdog 寄存器

| 名称            | 基地址偏移 | 类型  | 位宽 | 复位值       | 描述                             |
|---------------|-------|-----|----|-----------|--------------------------------|
| WDOGLOAD      | 0x00  | 读/写 | 32 | 0xFFFFFFF | Watchdog 加载寄存器                 |
| WDOGVALUE     | 0x04  | 只读  | 32 | 0xFFFFFFF | Watchdog 计数值寄存器                |
| WDOGCONTROL   | 0x08  | 读/写 | 2  | 0x0       | Watchdog 控制寄存器<br>[1]:<br>[0]: |
| WDOGINTCLR    | 0x0C  | 只写  | -  | 0x-       | Watchdog 中断清除寄存器               |
| WDOGRIS       | 0x10  | 只读  | 1  | 0x0       | Watchdog 上一次中断状态寄存器            |
| WDOGMIS       | 0x14  | 只读  | 1  | 0x0       | Watchdog 中断状态寄存器               |
| WDOGLOCK      | 0xC00 | 读/写 | 32 | 0x0       | Watchdog 锁存寄存器                 |
| WDOGTCR       | 0xF00 | 读/写 | 1  | 0x0       | Watchdog 测试控制寄存器               |
| WDOGTOP       | 0xF04 | 只写  | 2  | 0x0       | Watchdog 测试输出设置寄存器             |
| WDOGPERIPHID4 | 0XFD0 | 只读  | 8  | 0x04      | 外设 ID 寄存器 4                    |
| WDOGPERIPHID5 | 0XFD4 | 只读  | 8  | 0x00      | 外设 ID 寄存器 5                    |
| WDOGPERIPHID6 | 0XFD8 | 只读  | 8  | 0x00      | 外设 ID 寄存器 6                    |
| WDOGPERIPHID7 | 0XFDC | 只读  | 8  | 0x00      | 外设 ID 寄存器 7                    |
| WDOGPERIPHID0 | 0XFE0 | 只读  | 8  | 0x24      | 外设 ID 寄存器 0                    |
| WDOGPERIPHID1 | 0XFE4 | 只读  | 8  | 0XB8      | 外设 ID 寄存器 1                    |
| WDOGPERIPHID2 | 0XFE8 | 只读  | 8  | 0X1B      | 外设 ID 寄存器 2                    |
| WDOGPERIPHID3 | 0XFEC | 只读  | 8  | 0X00      | 外设 ID 寄存器 3                    |
| WDOGPCELLID0  | 0XFF0 | 只读  | 8  | 0X0D      | 组件 ID 寄存器 0                    |
| WDOGPCELLID1  | 0XFF4 | 只读  | 8  | 0XF0      | 组件 ID 寄存器 1                    |
| WDOGPCELLID2  | 0XFF8 | 只读  | 8  | 0X05      | 组件 ID 寄存器 2                    |
| WDOGPCELLID3  | 0XFFC | 只读  | 8  | 0XB1      | 组件 ID 寄存器 3                    |

### 3.11.10 GPIO

SoC 通过 AHB 总线与 GPIO 模块通信, GPIO 模块连接到 FPGA。GPIO 支持 16bits 的通用 I/O 功能,具有以下特性:

- 可编程中断生成功能,可以配置 GPIO 的任一位用来产生中断;
- 位掩码支持使用地址值;
- 支持通过配置寄存器实现不同的功能
- 独立的寄存器配置和明确的控制寄存器地址保证了线程安全 GPIO 寄存器如下表所示,GPIO 基地址为 0x40010000。

DS861-1.4.3 55(93)

### 表 3-21 GPIO 寄存器

| 名称                     | 基地址偏移             | 类型  | 位宽 | 复位值    | 描述                                                                                            |
|------------------------|-------------------|-----|----|--------|-----------------------------------------------------------------------------------------------|
| DATA                   | 0x0000            | 读/写 | 16 | 0x     | [15:0]: 数据寄存器                                                                                 |
| DATAOUT                | 0x0004            | 读/写 | 16 | 0x0000 | [15:0]: 数据输出寄存器                                                                               |
| OUTENSET               | 0x0010            | 读/写 | 16 | 0x0000 | [15:0]: 输出使能设置<br>写 1: 输出使能有效<br>写 0: 输出使能无效<br>读 1: 信号为输出<br>写 0: 信号为输入                      |
| OUTENCLR               | 0x0014            | 读/写 | 16 | 0x0000 | [15:0]: 清除输出使能                                                                                |
| ALTFUNCSET             | 0x0018            | 读/写 | 16 | 0x0000 | [15:0]: 可选择功能设置<br>写 1: 设置 ALTFUNC<br>写 0: 不设置 ALTFUNC<br>读 0: GPIO 作为 I/O<br>读 1: ALTFUNC 功能 |
| ALTFUNCCLR             | 0x001C            | 读/写 | 16 | 0x0000 | [15:0]: 可选择功能清除                                                                               |
| INTENSET               | 0x0020            | 读/写 | 16 | 0x0000 | [15:0]: 中断使能设置<br>写 1: 设置中断使能<br>写 0: 不设置中断使能<br>读:0: 不使能中断<br>读 1: 中断使能                      |
| INTENCLR               | 0x0024            | 读/写 | 16 | 0x0000 | [15:0]: 中断使能清除<br>写 1: 清除中断使能<br>写 0: 不清除中断使能<br>读 0: 中断使能不清除<br>读 1: 中断使能清除                  |
| INTTYPESET             | 0x0028            | 读/写 | 16 | 0x0000 | [15:0]: 中断类型设置                                                                                |
| INTTYPECLR             | 0x002C            | 读/写 | 16 | 0x0000 | [15:0]: 中断类型清除                                                                                |
| INTPOLSET              | 0x0030            | 读/写 | 16 | 0x0000 | [15:0]: 中断极性设置                                                                                |
| INTPOLCLR              | 0x0034            | 读/写 | 16 | 0x0000 | [15:0]: 中断极性清除                                                                                |
| INTSTATUS/<br>INTCLEAR | 0x0038            | 读/写 | 16 | 0x0000 | 读中断状态寄存器<br>写 1 清除中断请求                                                                        |
| MASKLOWBYTE            | 0x0400-<br>0x07FC | 读/写 | 16 | 0x0000 | -                                                                                             |
| MASKHIGHBYTE           | 0x0800-<br>0x0BFC | 读/写 | 16 | 0x0000 | -                                                                                             |
| Reserved               | 0x0C00-<br>0x0FCF | -   | -  | -      | Reserved                                                                                      |
| PID4                   | 0XFD0             | 只读  | 8  | 0x04   | 外设 ID 寄存器 4                                                                                   |
| PID5                   | 0XFD4             | 只读  | 8  | 0x00   | 外设 ID 寄存器 5                                                                                   |
| PID6                   | 0XFD8             | 只读  | 8  | 0x00   | 外设 ID 寄存器 6                                                                                   |
| PID7                   | 0XFDC             | 只读  | 8  | 0x00   | 外设 ID 寄存器 7                                                                                   |
| PID0                   | 0XFE0             | 只读  | 8  | 0x20   | 外设 ID 寄存器 0                                                                                   |
| PID1                   | 0XFE4             | 只读  | 8  | 0XB8   | 外设 ID 寄存器 1                                                                                   |
| PID2                   | 0XFE8             | 只读  | 8  | 0X1B   | 外设 ID 寄存器 2                                                                                   |
| PID3                   | 0XFEC             | 只读  | 8  | 0X00   | 外设 ID 寄存器 3                                                                                   |

DS861-1.4.3 56(93)

| 名称   | 基地址偏移 | 类型 | 位宽 | 复位值  | 描述          |
|------|-------|----|----|------|-------------|
| CID0 | 0XFF0 | 只读 | 8  | 0X0D | 组件 ID 寄存器 0 |
| CID1 | 0XFF4 | 只读 | 8  | 0XF0 | 组件 ID 寄存器 1 |
| CID2 | 0XFF8 | 只读 | 8  | 0X05 | 组件 ID 寄存器 2 |
| CID3 | 0XFFC | 只读 | 8  | 0XB1 | 组件 ID 寄存器 3 |

### 3.11.11 调试接口

Cortex-M3 处理器包含一个调试访问接口,包括 JTAG 接口和 TPIU 接口,这两个接口都连接到 FPGA。JTAG 调试访问接口符合 IEEE1149.1 测试访问端口以及边界扫描结构标准。

JTAG-DP 的功能实现主要由三部分组成:

- JTAG-DP 状态机
- 指令寄存器(IR)和相关的 IR 扫描链,用来控制 JTAG 和当前所选的寄存器的行为
- 数据寄存器和相关的 DR 扫描链,他们与 JTAG-DP 中的寄存器连接。

# 3.11.12 内存映射

图 3-42 内存映射



# 3.11.13 应用

高云半导体提供的云源软件支持 Cortex-M3 的 IP 调用,详细信息请参考 IPUG517, GW1NS-2C 硬件设计参考手册。

DS861-1.4.3 57(93)

**3** 结构介绍 **3.12**USB2. 0 PHY

### 3.12 USB2.0 PHY

# 3.12.1 特性概述

GW1NSR-2C/2 器件内嵌 USB2.0 PHY, 特性概述如下:

- 480Mbps 数据速率,兼容 USB1.1 1.5/12Mbps 速率
- 即插即用
- 热插拔

# 3.12.2 端口及参数信号描述

USB2.0 PHY 模块包括 UTMI+digital 和 UTMI+AFE(Analog Front End), 主要用于连接 USB 控制器和 USB PHY。

### 表 3-22 USB2.0 PHY 端口信号

| 端口名称           | 方向 | 描述                                   |
|----------------|----|--------------------------------------|
|                |    | 接收和发送的时钟信号                           |
| CLK            | 0  | 数据位宽为 8bit: 60MHz                    |
|                |    | 数据位宽为 16bit: 30MHz                   |
| RESET          | 1  | 复位信号,高有效                             |
|                |    | 传输模式选择信号                             |
|                |    | 2'b00: HS 传输                         |
| XCVRSEL        | I  | 2'b01: FS 传输                         |
|                |    | 2'b10: LS 传输                         |
|                |    | 2'b11: 在 FS 总线上发送 LS 包,或者接收 LS 包     |
| TERMOEL        |    | 终端选择                                 |
| TERMSEL        | I  | 0: HS 终端使能                           |
| 00             |    | 1: FS 终端使能                           |
| SUSPENDM       | I  | 挂起信号                                 |
|                |    | 接收端的线路状态                             |
|                |    | 2'b00: SE0                           |
| LINESTATE[1:0] | 0  | 2'b01: 'J'状态                         |
|                |    | 2'b10: 'K'状态                         |
|                |    | 2'b11: SE1                           |
|                |    | 探行模式选择信号<br>  <b>2'b00:</b> 正常操作     |
| OPMODE [1:0]   | 1  | 2'b01: 无驱动                           |
| Of WODE [1.0]  | •  | 2'b10: 元振切                           |
|                |    | 2'b11:不自动产生开始和结束信号的操作                |
| DP             | Ю  | USB 数据管脚                             |
| DM             | Ю  | USB 数据管脚                             |
| DATAIN[7:0]    | I  | 低 8bit USB 发送数据输入                    |
| DATAIN[15:8]   | I  | 高 8bit USB 发送数据输入                    |
| TXVLD          | 1  | 低 8bit 发送数据使能信号, DATAIN[7:0]数据有效指示信号 |
| TXVLDH         | 1  | 高 8bit 发送数据使能信号,DATAIN[15:8]数据有效指示信号 |

DS861-1.4.3 58(93)

**3** 结构介绍 **3.12**USB2. 0 PHY

| 端口名称          | 方向 | 描述                                     |
|---------------|----|----------------------------------------|
| TXREADY       | 0  | 发送数据准备完成信号                             |
| DATAOUT[7:0]  | 0  | 低 8bit USB 接收数据输出                      |
| DATAOUT[15:8] | 0  | 高 8bit USB 接收数据输出                      |
| DV/// D       |    | 低 8bit 接收数据使能信号, DATAOUT[7:0]数据有效指示    |
| RXVLD         | 0  | 信号                                     |
| RXVLDH        | 0  | 高 8bit 接收数据使能信号,DATAOUT[15:8]数据有效指     |
|               |    | 示信号<br>接收激活信号,表示接收状态机已经检测到同步信号并        |
| RXACTIVE      | 0  | 虽激活。                                   |
| RXERROR       | 0  | 接收错误指示信号,高电平表示接收错误                     |
| IDPULLUP      | ı  | 模拟 ID 线采用使能,高有效                        |
|               |    | 连接插头类型指示                               |
| IDDIG         | 0  | 0: mini-A                              |
|               |    | 1: mini-B                              |
| SESSVLD       | 0  | A/B 外设的会话是否有效<br>0: Vbus < 0.8V        |
| SESSVLD       | U  | 1: Vbus > 2V                           |
|               |    | 指示 Vbus 电压是否有效                         |
| VBUSVLD       | 0  | 0: Vbus < 4.4V                         |
|               |    | 1: Vbus > 4.75V                        |
| 4.000.10      |    | 指示 Vbus 电压                             |
| ADPSNS        | 0  | 0: Vbus < 0.2V<br>1: Vbus > 0.55V      |
|               |    | ADP 探针比较器使能信号                          |
| ADP_PRBEN     | ı  | 1: 使能                                  |
|               |    | 0: 不使能                                 |
|               |    | 指示 Vbus 电压                             |
| ADPPRB        | 0  | 0: Vbus < 0.6V                         |
|               |    | 1: Vbus > 0.75V                        |
| CHARGVBUS     | ı  | Vbus 充电使能信号           0: 不充电           |
| CHARGVBOS     | •  | 0:                                     |
|               |    | Vbus 放电使能信号                            |
| DISCHARGEVBUS | I  | 0: 不放电                                 |
|               |    | 1: 通过电阻放电                              |
|               |    | DP 线上 15K 欧姆下拉电阻使能信号                   |
| DPPD          | I  | 0: 没有下拉电阻连接到 DP                        |
|               |    | 1: 有下拉电阻连接到 DP DM 线上 15K 欧姆下拉电阻使能信号    |
| DMPD          | ı  | O: 没有下拉电阻连接到 DM                        |
| Divil D       |    | 1: 有下拉电阻连接到 <b>DM</b>                  |
|               |    | 外部设备连接指示信号,只有当 DPPD 和 DMPD 为 1         |
| HOSTDIS       | 0  | 的时候此信号才有效                              |
| 11001010      |    | 0: 有外部设备连接                             |
|               |    | 1: 没有外部设备连接                            |
| TXBITSTUFFEN  | ı  | 指示 DATAOUT[7:0]端口上的数据位填充是否使能 0: 不使能位填充 |
| INDITOTOTICIN | '  | 1:                                     |
|               |    | ・・ 人間 臣・万/世                            |

DS861-1.4.3 59(93)

**3** 结构介绍 **3.12**USB2. 0 PHY

| 端口名称          | 方向 | 描述                              |
|---------------|----|---------------------------------|
|               |    | 指示 DATAOUT[15:8]端口上的数据位填充是否使能   |
| TXBITSTUFFENH | I  | 0: 不使能位填充                       |
|               |    | 1: 使能位填充                        |
| FSLSSERIAL    | 1  | 1: FS 和 LS 包采用串行接口发送            |
| TXENN         | ı  | 只有当FSLSSERIAL为1时才有效,串行数据使能信号,   |
|               |    | 低电平有效                           |
| TXDAT         | 1  | 只有当 FSLSSERIAL 为 1 时才有效,串行数据    |
| TXSE0         | 1  | 只有当 FSLSSERIAL 为 1 时才有效,强制单端为 0 |
| RXDP          | 0  | 只有当 FSLSSERIAL 为 1 时才有效,数据接收    |
| RXDM          | 0  | 只有当 FSLSSERIAL 为 1 时才有效,数据接收    |
| RXRCV         | 0  | 只有当 FSLSSERIAL 为 1 时才有效,数据接收    |
| VBUS          | Ю  | VBUS 信号                         |
| ID            | I  | ID 信号                           |
| XIN           | I  | 晶振输入,支持 12MHz~24MHz             |
| XOUT          | 0  | 晶振输出                            |
| REXT          | 1  | 1%精度 12.7K 下拉电阻                 |
| LBKERR        | 0  | 0:没有 BIST 错误<br>1: BIST 错误      |
| INTCLK        | I  | 由 SoC 提供的时钟信号                   |
| CLKRDY        | 0  | 内部 PLL 锁频成功                     |
| CLK480PAD     | 0  | 输出的 480MHz 时钟                   |
| 扫描 (SCAN) 信号  |    |                                 |
| SCANCLK       | I  | 扫描模式时钟信号                        |
| SCANEN        | ı  | 转换模式使能信号                        |
| SCANMODE      | ı  | 扫描模式使能信号,高有效                    |
| TRESETN       | I  | 扫描模式复位信号,低有效                    |
| SCANIN1       | ı  | 扫描链输入                           |
| SCANIN2       | ı  | 扫描链输入                           |
| SCANIN3       | I  | 扫描链输入                           |
| SCANIN4       | 1  | 扫描链输入                           |
| SCANIN5       | 1  | 扫描链输入                           |
| SCANIN6       | 1  | 扫描链输入                           |
| SCANOUT1      | 0  | 扫描链输出                           |
| SCANOUT2      | 0  | 扫描链输出                           |
| SCANOUT3      | 0  | 扫描链输出                           |
| SCANOUT4      | 0  | 扫描链输出                           |
| SCANOUT5      | 0  | 扫描链输出                           |
| SCANOUT6      | 0  | 扫描链输出                           |

DS861-1.4.3 60(93)

3.12USB2. 0 PHY

#### 表 3-23 USB2.0 PHY 参数信号

| 参数名称                      | 描述                                                                                                     |
|---------------------------|--------------------------------------------------------------------------------------------------------|
| DATABUS16_8               | 数据位宽选择信号 1: 16bit 数据位宽,时钟信号 CLK 为 30MHz 0: 8bit 数据位宽,时钟信号 CLK 为 60MHz                                  |
| ADP_PRBEN                 | ADP 探针比较器使能信号                                                                                          |
| TEST_MODE[0]              | BIST 测试使能信号                                                                                            |
| TEST_MODE[4] TEST_MODE[1] | BIST 模式选择<br>2'b00: 高速 BIST 模式<br>2'b01: 全速 BIST 模式<br>2'b10: 低速 BIST 模式<br>2'b11: FSBUS BIST 模式下低速包数据 |
| TEST_MODE[2]              | 0: 8bit 位宽 BIST<br>1: 16bit 位宽 BIST                                                                    |
| TEST_MODE[3]              | 0: 数字回环 BIST<br>1: 模拟回环 BIST                                                                           |
| HSDRV1                    | 高速驱动调整信号,正常操作时连接低电平                                                                                    |
| HSDRV0                    | 高速驱动调整信号,正常操作时连接低电平                                                                                    |
| CLK_SEL                   | 时钟源选择信号<br>0:外部晶振 XIN/XOUT<br>1:SoC 内部时钟 INTCLK                                                        |
| M[3: 0]                   | 用于测试, M 分频系数, 默认值 0 0: 1 分频 1: 禁用 2: 2 分频 3: 3 分频                                                      |
| N[5: 0]                   | 用于测试, N 分频系数, 默认值 6'b101000<br>支持 2 到 63<br>0 和 1: 禁用<br>2:2 分频<br>3: 3 分频<br>                         |
| C[1: 0]                   | 用于测试,电荷泵电流控制信号,默认 40uA<br>2'b00: 30uA<br>2'b01: 40uA<br>2'b10: 50uA<br>2'b11: 60uA                     |
| FOC_LOCK                  | 用于测试,默认值 0<br>0: 锁频信号由 PLL 生成<br>1: 锁频信号一直为高电平                                                         |

DS861-1.4.3 61(93)

**3**结构介绍 **3.13**ADC

# 3.13 ADC

### 3.13.1 特性概述

GW1NSR-2C/2 器件内部集成了一个8通道单端12bit SAR模数转换器,是一款低功耗,低漏电流、高动态性能的中速 ADC。

动态性能如下:

● 转换速率:最大1MHz

● 动态范围: >81dB SFDR, >62db SINAD

● 线性性能: INL<1LSB, DNL<0.5LSB, 无失码

# 3.13.2 端口信号

#### 表 3-24 ADC 端口信号

| 端口名称     | 方向 | 描述                                            |
|----------|----|-----------------------------------------------|
| CLK      | I  | 时钟输入信号, 时钟频率 fclk 大于等于 16 倍的采样频率 最大时钟频率 16MHz |
| PD       | I  | 掉电信号,该信号值为1时,输出0                              |
| SoC      | I  | 采样频率,最大频率 1MHz                                |
| S[2: 0]  | I  | 通道选择信号                                        |
| CH[7:0]  | I  | 八通道模拟输入                                       |
| EOC      | 0  | 转换结束                                          |
| B[11: 0] | 0  | A/D 转换结果                                      |

#### 表 3-25 通道选择真值表

| S[2: 0] | 选择的输入通道 |
|---------|---------|
| 3'b111  | CH[7]   |
| 3'b110  | CH[6]   |
| 3'b101  | CH[5]   |
| 3'b100  | CH[4]   |
| 3'b011  | CH[3]   |
| 3'b010  | CH[2]   |
| 3'b001  | CH[1]   |
| 3'b000  | CH[0]   |

DS861-1.4.3 62(93)

# 3.14 时钟

时钟资源及布线对 FPGA 高性能的应用至关重要。GW1NSR 系列 FPGA 产品提供了专用全局时钟网络(GCLK),直接连接到器件的所有资源。除了GCLK 资源,还提供了高速时钟 HCLK 资源。此外,还提供了锁相环(PLL)等时钟资源。

### 3.14.1 全局时钟网络

GCLK 在 GW1NSR 系列 FPGA 产品中按象限分布,分成 L、R 两个象限,每个象限提供 8 个 GCLK 网络。GCLK 的可选时钟源包括专用的时钟输入管脚和普通布线资源,使用专用的时钟输入管脚具有更好的时钟性能。

#### 图 3-43 GW1NSR-2/2C 时钟资源



#### 图 3-44 GW1NSR-4/4C 时钟资源



DS861-1.4.3 63(93)

#### 图 3-45 GCLK 象限分布示意



通过 DQCE(Dynamic Quadrant Clock Enable)可动态打开/关闭 GCLK0~GCLK5。关闭 GCLK0~GCLK5 时钟,GCLK0~GCLK5 驱动的内部 逻辑不再翻转,从而降低了器件的总体功耗。

#### 图 3-46 DQCE 结构示意图



DS861-1.4.3 64(93)

每个象限的 GCLK6~GCLK7 由 DCS(Dynamic Clock Selector)控制,如图 3-47 所示,内部逻辑可以通过 CRU 在四个时钟输入之间动态选择,输出不带毛刺的时钟。

#### 图 3-47 DCS 接口示意图



DCS 可以配置为以下几种模式:

#### 1. DCS Rising Edge 模式

即在当前选择时钟的上升沿后转入常量 1,在新选择时钟的上升沿后转入新时钟,如图 3-48 所示。

#### 图 3-48 DCS Rising Edge 模式下的时序示意图



即在当前选择时钟的下降沿后转入常量 0,在新选择时钟的下降沿后转入新时钟,如图 3-49 所示。

#### 图 3-49 DCS Falling Edge 模式下的时序示意图



#### 3. Clock Buffer 模式

此模式下,DCS 简化为普通的 Clock buffer。

DS861-1.4.3 65(93)

# 3.14.2 锁相环

锁相环路是一种反馈控制电路, 简称锁相环(PLL, Phase-locked Loop)。 利用外部输入的参考时钟信号控制环路内部振荡信号的频率和相位。

GW1NSR 系列 FPGA 产品的 PLL 模块能够提供可以综合的时钟频率,通过配置不同的参数可以进行时钟的频率调整(倍频和分频)、相位调整、占空比调整等功能。

PLL 模块的结构框图如图 3-50 所示。

#### 图 3-50 PLL 示意图



表 3-26 PLL 端口定义

| 端口名称          | 信号 | 描述                                                     |  |
|---------------|----|--------------------------------------------------------|--|
| CLKIN [5: 0]  | 输入 | 参考时钟输入                                                 |  |
| CLKFB         | 输入 | 反馈时钟输入                                                 |  |
| RESET         | 输入 | PLL 全部复位                                               |  |
| RESET_P       | 输入 | PLL 关断(Power Down)信号                                   |  |
| IDSEL [5: 0]  | 输入 | 动态控制 IDIV 值,范围 1~64                                    |  |
| FBDSEL [5: 0] | 输入 | 动态控制 FBDIV 值,范围 1~64                                   |  |
| PSDA [3: 0]   | 输入 | 动态相位控制(上升沿有效)                                          |  |
| DUTYDA [3: 0] | 输入 | 动态占空比控制(下降沿有效)                                         |  |
| FDLY [3: 0]   | 输入 | CLKOUTP 动态延迟控制                                         |  |
| CLKOUT        | 输出 | 无相位和占空比调整的时钟输出                                         |  |
| CLKOUTP       | 输出 | 有相位和占空比调整的时钟输出                                         |  |
| CLKOUTD       | 输出 | 来自 CLKOUT 或 CLKOUTP 分频时钟(由 SDIV 分频器控制)                 |  |
| CLKOUTD3      | 输出 | 来自 CLKOUT 或 CLKOUTP 的分频时钟(由 DIV3 分频器控制, DIV3 分频值固定为 3) |  |
| LOCK          | 输出 | PLL 锁定指示:<br>1: 锁定;<br>0: 失锁                           |  |

DS861-1.4.3 66(93)

PLL 的参考时钟信号可以通过外部 PLL 时钟管脚输入,也可以是通过绕线过去的全局时钟信号、高速时钟信号或普通数据信号。PLL 的反馈信号可以是外部 PLL 反馈信号的管脚的输入,也可以是通过绕线过去的全局时钟信号、高速时钟信号或普通数据信号。

GW1NSR 系列 FPGA 产品的 PLL 性能请参考表 4-20 锁相环特性参数。 PLL 可对输入时钟 CLKIN 进行频率调整(倍频和分频), 计算公式如下:

- 1.  $f_{CLKOUT} = (f_{CLKIN}*FBDIV)/IDIV$
- 2.  $f_{VCO} = f_{CLKOUT}^*ODIV$
- 3.  $f_{CLKOUTD} = f_{CLKOUT}/SDIV$
- 4.  $f_{PFD} = f_{CLKIN}/IDIV = f_{CLKOUT}/FBDIV$

#### 注!

- f<sub>CLKIN</sub> 为输入时钟 CLKIN 频率。
- f<sub>CLKOUT</sub> 为 CLKOUT 和 CLKOUTP 时钟频率。
- f<sub>CLKOUTD</sub> 为 CLKOUTD 时钟频率, CLKOUTD 为 CLKOUT 分频后的时钟。
- f<sub>PFD</sub> 为 PFD 鉴相频率, f<sub>PFD</sub> 最小值不小于 3MHz。

即可通过调整 IDIV、FBDIV、ODIV、SDIV 来得到期望频率的时钟信号。

### 3.14.3 高速时钟

GW1NSR 系列 FPGA 产品的高速时钟 HCLK 可以支持 I/O 完成高性能数据传输,是专门针对源时钟同步的数据传输接口而设计的。

#### 图 3-51 GW1NSR-2/2C HCLK 示意图



DS861-1.4.3 67(93)

3 结构介绍 3.15 长线

#### 图 3-52 GW1NSR-4/4C HCLK 示意图



# 3.15 长线

作为对 CRU 的有效补充, GW1NSR 系列 FPGA 产品提供了灵活丰富的长线资源,适用于时钟、时钟使能、置复位或其它高扇出的信号。

# 3.16 全局复置位

GW1NSR 系列 FPGA 产品包含一个专用的全局复置位网络,直接连接到器件的内部逻辑,可用作异步/同步复位或异步/同步置位,CFU 和 I/O 中的寄存器均可以独立配置。

# 3.17 编程配置

GW1NSR 系列 FPGA 产品支持 SRAM 编程和 Flash 编程。Flash 编程模式既支持片内 Flash 编程也支持片外 Flash 编程,此外,GW1NSR-2C/2器件支持片内 DUAL BOOT 功能,用户也可以根据自身需要将配置数据备份在外部 Flash 中。

GW1NSR 系列 FPGA 产品除了支持业界通用的 JTAG 配置模式外,还支持高云半导体特有的 GowinCONFIG 配置模式,支持多达 6 种模式: AUTO BOOT、SSPI、MSPI、DUAL BOOT、SERIAL 和 CPU。所有器件均支持 JTAG 和 AUTO BOOT 模式。详细资料请参见 <u>UG290</u>, *Gowin FPGA 产品编程配置手册*。

### 3.17.1 SRAM 编程

GW1NSR 系列 FPGA 产品的 SRAM 编程,每次上电后需要重新下载配置数据。

# 3.17.2 Flash 编程

Flash 编程的配置数据存放在片内 Flash 单元。上电后,配置数据从片

DS861-1.4.3 68(93)

3 结构介绍 3.18 片内晶振

内 Flash 单元传送到 SRAM 配置单元。在上电后的几个毫秒内就可以完成数据的配置,这种配置方式也称为"快速启动/瞬时启动"。GW1NSR 系列 FPGA产品还支持外部 Flash 编程模式和双启动模式,详细资料请参见 <u>UG290</u>, *Gowin FPGA 产品编程配置手册*。

# 3.18 片内晶振

GW1NSR 系列 FPGA 产品内嵌了一个片内晶振,片内晶振提供可编程的用户时钟,时钟精度可达±5%,编程过程中为 MSPI 编程模式提供时钟源。

GW1NSR-4C/4 器件的片内晶振支持用户可配置省电模式。

片内晶振也可以为用户设计提供时钟源,通过配置工作参数,可以获得 多达 **64** 种时钟频率。

GW1NSR-2C/2 器件的片内晶振输出时钟频率计算公式为:

fout=240MHz/Param

GW1NSR-4C/4 器件的片内晶振输出时钟频率计算公式为:

f<sub>out</sub>=210MHz/Param

#### 注!

除数 Param 为配置参数,范围为 2~128,只支持偶数。

下面两个表列举了片内晶振的部分频率,如默认频率、最大频率和某些 参数的输出小数的频率。

#### 表 3-27 GW1NSR-2/2C 片内晶振的部分输出频率

| 模式 | 频率                  | 模式 | 频率      | 模式 | 频率                  |
|----|---------------------|----|---------|----|---------------------|
| 0  | 2.5MHz <sup>1</sup> | 8  | 7.5MHz  | 16 | 15.0MHz             |
| 1  | 5.4MHz              | 9  | 8.0MHz  | 17 | 17.1MHz             |
| 2  | 5.7MHz              | 10 | 8.6MHz  | 18 | 20.0MHz             |
| 3  | 6.0MHz              | 11 | 9.2MHz  | 19 | 24.0MHz             |
| 4  | 6.3MHz              | 12 | 10.0MHz | 20 | 30.0MHz             |
| 5  | 6.6MHz              | 13 | 10.9MHz | 21 | 40.0MHz             |
| 6  | 6.9MHz              | 14 | 12.0MHz | 22 | 60.0MHz             |
| 7  | 7.4MHz              | 15 | 13.3MHz | 23 | 120MHz <sup>2</sup> |

DS861-1.4.3 69(93)

3 结构介绍 3.18 片内晶振

# 表 3-28 GW1NSR-4/4C 片内晶振的部分输出频率

| 模式 | 频率                  | 模式 | 频率      | 模式 | 频率                  |
|----|---------------------|----|---------|----|---------------------|
| 0  | 2.5MHz <sup>1</sup> | 8  | 7.8MHz  | 16 | 15.6MHz             |
| 1  | 5.4MHz              | 9  | 8.3MHz  | 17 | 17.9MHz             |
| 2  | 5.7MHz              | 10 | 8.9MHz  | 18 | 21MHz               |
| 3  | 6.0MHz              | 11 | 9.6MHz  | 19 | 25MHz               |
| 4  | 6.3MHz              | 12 | 10.4MHz | 20 | 31.3MHz             |
| 5  | 6.6MHz              | 13 | 11.4MHz | 21 | 41.7MHz             |
| 6  | 6.9MHz              | 14 | 12.5MHz | 22 | 62.5MHz             |
| 7  | 7.4MHz              | 15 | 13.9MHz | 23 | 125MHz <sup>2</sup> |

#### 注!

- [1]默认输出频率
- [2]不适用于 MSPI 编程模式

DS861-1.4.3 70(93)

**4** 电气特性 **4.1** 工作条件

# $oldsymbol{4}$ 电气特性

#### 注!

建议在推荐的工作条件及工作范围内使用高云半导体器件,超出工作条件及工作范围的数据 仅供参考,高云半导体不保证所有器件都能在超出工作条件及工作范围的情况下正常工作。

# 4.1 工作条件

# 4.1.1 绝对最大范围

表 4-1 绝对最大范围

| 名称                   | 描述          | 最小值   | 最大值    |
|----------------------|-------------|-------|--------|
| V <sub>CC</sub>      | 核电压         | -0.5V | 1.32V  |
| V <sub>CCOx</sub>    | I/O Bank 电压 | -0.5V | 3.75V  |
|                      | LX 版本器件辅助电压 | -0.5V | 1.98V  |
| V <sub>CCX</sub>     | UX 版本器件辅助电压 | -0.5V | 3.75V  |
|                      | LV 版本器件辅助电压 | -0.5V | 3.75V  |
| Storage Temperature  | 储存温度        | -65℃  | +150°C |
| Junction Temperature | 结温          | -40℃  | +125℃  |

# 4.1.2 推荐工作范围

表 4-2 推荐工作范围

| 名称               | 描述                                                  | 最小值    | 最大值    |
|------------------|-----------------------------------------------------|--------|--------|
| V <sub>CC</sub>  | 核电压                                                 | 1.14V  | 1.26V  |
|                  | LX 版本器件辅助电压                                         | 1.71V  | 1.89V  |
|                  | UX 版本器件辅助电压                                         |        |        |
|                  | UX 版本器件的 Vccx 需大于或者等于 Vccox                         | 2.375V | 3.465V |
| V <sub>CCX</sub> | LV 版本器件辅助电压                                         | 1.71V  | 3.465V |
|                  | LX 版本器件 I/O Bank 电压                                 | 1.14V  | 1.89V  |
|                  | UX 版本器件 I/O Bank 电压                                 |        |        |
|                  | UX 版本器件的 V <sub>CCX</sub> 需大于或者等于 V <sub>CCOx</sub> | 1.14V  | 3.465V |
| $V_{CCOx}$       | LV 版本器件 I/O Bank 电压                                 | 1.14V  | 3.465V |
|                  | 结温(商业级)                                             |        |        |
| $T_{JCOM}$       | (Junction temperature Commercial operation)         | 0℃     | +85℃   |

DS861-1.4.3 71(93)

4 电气特性 4.2ESD 性能

| 名称         | 描述                                          | 最小值   | 最大值   |
|------------|---------------------------------------------|-------|-------|
|            | 结温(工业级)                                     |       |       |
| $T_{JIND}$ | (Junction temperature Industrial operation) | -40°C | +100℃ |

#### 注!

不同封装的电压供电信息请参考 <u>UG862</u>, <u>GW1NSR-2&2C 器件 Pinout 手册</u>、<u>UG864</u>, <u>GW1NSR-4 器件 Pinout 手册</u>、<u>UG865</u>, <u>GW1NSR-4C 器件 Pinout 手册</u>。

# 4.1.3 电源上升斜率

#### 表 4-3 电源上升斜率

| 名称                | 描述                                                              | 最小值      | 典型值 | 最大值    |
|-------------------|-----------------------------------------------------------------|----------|-----|--------|
| T <sub>RAMP</sub> | 电源电压上升斜率<br>(Power supply ramp rates for<br>all power supplies) | 0.6mV/µs | -   | 6mV/µs |

# 4.1.4 热插拔特性

#### 表 4-4 热插拔特性

| 名称              | 描述                                      | 条件                                        | I/O 类型              | 最大值   |
|-----------------|-----------------------------------------|-------------------------------------------|---------------------|-------|
| I <sub>HS</sub> | 输入漏电流<br>(Input or I/O leakage current) | 0 <v<sub>IN<v<sub>IH(MAX)</v<sub></v<sub> | I/O                 | 150uA |
| I <sub>HS</sub> | 输入漏电流<br>(Input or I/O leakage current) | 0 <v<sub>IN<v<sub>IH(MAX)</v<sub></v<sub> | TDI,TDO,<br>TMS,TCK | 120uA |

# 4.1.5 POR 特性

#### 表 4-5 POR 电压参数

| 名称      | 描述                            | 最小值 | 最大值 |
|---------|-------------------------------|-----|-----|
| POR 电压值 | Power on reset voltage of Vcc | TBD | TBD |

# 4.2 ESD 性能

#### 表 4-6 GW1NSR ESD - HBM

| 器件        | QN48       | MG64       |
|-----------|------------|------------|
| GW1NSR-2C | HBM>1,000V | -          |
| GW1NSR-2  | HBM>1,000V | -          |
| GW1NSR-4C | HBM>1,000V | HBM>1,000V |
| GW1NSR-4  | -          | HBM>1,000V |

#### 表 4-7 GW1NSR ESD - CDM

| 器件        | QN48     | MG64     |
|-----------|----------|----------|
| GW1NSR-2C | CDM>500V | -        |
| GW1NSR-2  | CDM>500V | -        |
| GW1NSR-4C | CDM>500V | CDM>500V |
| GW1NSR-4  | -        | CDM>500V |

DS861-1.4.3 72(93)

# 4.3 DC 电气特性

# 4.3.1 推荐工作范围 DC 电气特性

#### 表 4-8 推荐工作范围内 DC 电气特性

| 名称                               | 描述                                                           | 条件                                                        | 最小值                   | 典型值   | 最大值                   |
|----------------------------------|--------------------------------------------------------------|-----------------------------------------------------------|-----------------------|-------|-----------------------|
|                                  | I/O 输入漏电流                                                    | V <sub>CCO</sub> <v<sub>IN<v<sub>IH(MAX)</v<sub></v<sub>  | -                     | -     | 210µA                 |
| I <sub>IL</sub> ,I <sub>IH</sub> | (Input or I/O leakage)                                       | 0V <v<sub>IN<v<sub>CCO</v<sub></v<sub>                    | -                     | -     | 10µA                  |
| I <sub>PU</sub>                  | I/O 上拉电流<br>(I/O Active Pull-up<br>Current)<br>I/O 下拉电流      | 0 <v<sub>IN&lt;0.7V<sub>CCO</sub></v<sub>                 | -30μΑ                 | -     | -150µA                |
| I <sub>PD</sub>                  | (I/O Active Pull-down Current)                               | V <sub>IL</sub> (MAX) <v<sub>IN<v<sub>CCO</v<sub></v<sub> | 30μΑ                  | -     | 150µA                 |
| I <sub>BHLS</sub>                | 总线保持低电平时<br>持续电流<br>(Bus Hold Low<br>Sustaining<br>Current)  | V <sub>IN</sub> =V <sub>IL</sub> (MAX)                    | 30μΑ                  | -     | -                     |
| I <sub>BHHS</sub>                | 总线保持高电平时<br>持续电流<br>(Bus Hold High<br>Sustaining<br>Current) | V <sub>IN</sub> =0.7V <sub>CCO</sub>                      | -30μΑ                 | -     | -                     |
| I <sub>BHLO</sub>                | 总线保持低电平时<br>过载电流<br>(Bus Hold Low<br>Overdrive Current)      | 0≤V <sub>IN</sub> ≤V <sub>CCO</sub>                       | -                     | -     | 150µA                 |
| I <sub>BHHO</sub>                | 总线保持高电平时<br>过 载 电 流<br>(BusHoldHigh<br>Overdrive Current)    | 0≤V <sub>IN</sub> ≤V <sub>CCO</sub>                       | -                     | -     | -150µA                |
| $V_{BHT}$                        | 总线保持触发点时<br>电压(Bus hold trip<br>points)                      |                                                           | V <sub>IL</sub> (MAX) | -     | V <sub>IH</sub> (MIN) |
| C1                               | I/O 电容<br>(I/O Capacitance)                                  |                                                           |                       | 5pF   | 8pF                   |
|                                  |                                                              | V <sub>CCO</sub> =3.3V, Hysteresis= Large                 | -                     | 482mV | -                     |
|                                  |                                                              | V <sub>CCO</sub> =2.5V, Hysteresis= Large                 | -                     | 302mV | -                     |
|                                  | 输入迟滞                                                         | V <sub>CCO</sub> =1.8V, Hysteresis= Large                 | -                     | 152mV | -                     |
| V <sub>HYST</sub>                | (Hysteresis for                                              | V <sub>CCO</sub> =1.5V, Hysteresis= Large                 | -                     | 94mV  | -                     |
| VHYST                            | Schmitt Trigge                                               | V <sub>CCO</sub> =3.3V, Hysteresis= Small                 | -                     | 240mV | -                     |
|                                  | inputs)                                                      | V <sub>CCO</sub> =2.5V, Hysteresis= Small                 | -                     | 150mV | -                     |
|                                  |                                                              | V <sub>CCO</sub> =1.8V, Hysteresis= Small                 | -                     | 75mV  | -                     |
|                                  |                                                              | V <sub>CCO</sub> =1.5V, Hysteresis= Small                 | -                     | 47mV  | -                     |

DS861-1.4.3 73(93)

# 4.3.2 静态电流

表 4-9 静态电流

| 名称               | 描述                                                    | 器件类型  | 器件       | 最小值 | 典型值 | 最大值 |
|------------------|-------------------------------------------------------|-------|----------|-----|-----|-----|
| I <sub>CC</sub>  | Core 电源电流                                             | UX 版本 | GW1NSR-2 | TBD | TBD | TBD |
| I                | V <sub>CCX</sub> 电源电流<br>(V <sub>CCX</sub> =3.3V)     | UX 版本 | GW1NSR-2 | TBD | TBD | TBD |
| Iccx             | V <sub>CCX</sub> 电源电流<br>(V <sub>CCX</sub> =2.5V)     | UX 版本 | GW1NSR-2 | TBD | TBD | TBD |
| I <sub>cco</sub> | I/O Bank 电源电流<br>(V <sub>cco</sub> =2.5V)             | UX 版本 | GW1NSR-2 | TBD | TBD | TBD |
| I <sub>CC</sub>  | 加载时 Core 电源电流                                         | UX 版本 | GW1NSR-2 | TBD | TBD | TBD |
| I <sub>ccx</sub> | 加载时 V <sub>CCX</sub> 电源电<br>流(V <sub>CCX</sub> =3.3V) | UX 版本 | GW1NSR-2 | TBD | TBD | TBD |
| I <sub>cco</sub> | 加载时 I/O Bank 电源 电流 (V <sub>cco</sub> =2.5V)           | UX 版本 | GW1NSR-2 | TBD | TBD | TBD |
| I <sub>CC</sub>  | 加载时 Core 电源电流                                         | LV 版本 | GW1NSR-4 | TBD | TBD | TBD |
| I <sub>ccx</sub> | 加载时 V <sub>CCX</sub> 电源电流                             | LV 版本 | GW1NSR-4 | TBD | TBD | TBD |
| I <sub>cco</sub> | 加载时 I/O Bank 电源电流                                     | LV 版本 | GW1NSR-4 | TBD | TBD | TBD |

DS861-1.4.3 74(93)

# 4.3.3 I/O 推荐工作条件

### 表 4-10 I/O 推荐工作条件

| カギタ        | 输出对应的 V <sub>CCO</sub> (V) |       | 输入对应的 V <sub>REF</sub> (V) |       |      |       |
|------------|----------------------------|-------|----------------------------|-------|------|-------|
| 名称         | 最小值                        | 典型值   | 最大值                        | 最小值   | 典型值  | 最大值   |
| LVTTL33    | 3.135                      | 3.3   | 3.465                      | -     | -    | -     |
| LVCMOS33   | 3.135                      | 3.3   | 3.465                      | -     | -    | -     |
| LVCMOS25   | 2.375                      | 2.5   | 2.625                      | -     | -    | -     |
| LVCMOS18   | 1.71                       | 1.8   | 1.89                       | -     | -    | -     |
| LVCMOS15   | 1.425                      | 1.5   | 1.575                      | -     | -    | -     |
| LVCMOS12   | 1.14                       | 1.2   | 1.26                       | -     | -    | -     |
| SSTL15     | 1.425                      | 1.5   | 1.575                      | 0.68  | 0.75 | 0.9   |
| SSTL18_I   | 1.71                       | 1.8   | 1.89                       | 0.833 | 0.9  | 0.969 |
| SSTL18_II  | 1.71                       | 1.8   | 1.89                       | 0.833 | 0.9  | 0.969 |
| SSTL25_I   | 2.375                      | 2.5   | 2.645                      | 1.15  | 1.25 | 1.35  |
| SSTL25_II  | 2.375                      | 2.5   | 2.645                      | 1.15  | 1.25 | 1.35  |
| SSTL33_I   | 3.135                      | 3.3   | 3.465                      | 1.3   | 1.5  | 1.7   |
| SSTL33_II  | 3.135                      | 3.3   | 3.465                      | 1.3   | 1.5  | 1.7   |
| HSTL18_I   | 1.71                       | 1.8   | 1.89                       | 0.816 | 0.9  | 1.08  |
| HSTL18_II  | 1.71                       | 1.8   | 1.89                       | 0.816 | 0.9  | 1.08  |
| HSTL15     | 1.425                      | 1.5   | 1.575                      | 0.68  | 0.75 | 0.9   |
| PCI33      | 3.135                      | 3.3   | 3.465                      | -     | -    | -     |
| LVPECL33E  | 3.135                      | 3.3   | 3.465                      | -     | -    | -     |
| MLVDS25E   | 2.375                      | 2.5   | 2.625                      | -     | -    | -     |
| BLVDS25E   | 2.375                      | 2.5   | 2.625                      | -     | -    | -     |
| RSDS25E    | 2.375                      | 2.5   | 2.625                      | -     | -    | -     |
| LVDS25E    | 2.375                      | 2.5   | 2.625                      | -     | -    | -     |
| SSTL15D    | 1.425                      | 1.5   | 1.575                      | -     | -    | -     |
| SSTL18D_I  | 1.71                       | 1.8   | 1.89                       | -     | -    | -     |
| SSTL18D_II | 1.71                       | 1.8   | 1.89                       | -     | -    | -     |
| SSTL25D_I  | 2.375                      | 2.5   | 2.625                      | -     | -    | -     |
| SSTL25D_II | 2.375                      | 2.5   | 2.625                      | -     | -    | -     |
| SSTL33D_I  | 3.135                      | 3.3   | 3.465                      | -     | -    | -     |
| SSTL33D_II | 3.135                      | 3.3   | 3.465                      | -     | -    | -     |
| HSTL15D    | 1.425                      | 1.575 | 1.89                       | -     | -    | -     |
| HSTL18D_I  | 1.71                       | 1.8   | 1.89                       | -     | -    | -     |
| HSTL18D_II | 1.71                       | 1.8   | 1.89                       | -     | -    | -     |

DS861-1.4.3 75(93)

# 4.3.4 单端 I/O DC 电气特性

### 表 4-11 单端 I/O DC 电气特性

| なまな       | V <sub>IL</sub>                                                                  |                          | V <sub>IH</sub>          |                       | V <sub>OL</sub>      | V <sub>OH</sub>            | I <sub>OL</sub>        | I <sub>OH</sub> |    |
|-----------|----------------------------------------------------------------------------------|--------------------------|--------------------------|-----------------------|----------------------|----------------------------|------------------------|-----------------|----|
| 名称        | Min                                                                              | Max                      | Min                      | Max                   | (Max)                | (Min)                      | (mA)                   | (mA)            |    |
|           |                                                                                  |                          |                          |                       |                      |                            | 4                      | -4              |    |
|           |                                                                                  |                          |                          |                       |                      |                            | 8                      | -8              |    |
| LVCMOS33  | -0.3V                                                                            | 0.8V                     | 2.0V                     | 3.6V                  | 0.4V                 | $V_{CCO}$ -0.4 $V$         | 12                     | -12             |    |
| LVTTL33   | -0.5 v                                                                           | 0.8 V                    | 2.0 V                    | 3.0 V                 |                      |                            | 16                     | -16             |    |
|           |                                                                                  |                          |                          |                       |                      |                            | 24                     | -24             |    |
|           |                                                                                  |                          |                          |                       | 0.2V                 | V <sub>CCO</sub> -0.2V     | 0.1                    | -0.1            |    |
|           |                                                                                  |                          |                          |                       |                      |                            | 4                      | -4              |    |
|           |                                                                                  |                          |                          |                       | 0.4V                 | \/0.4\/                    | 8                      | -8              |    |
| LVCMOS25  | -0.3V                                                                            | 0.7V                     | 1.7V                     | 3.6V                  | 0.47                 | V <sub>CCO</sub> -0.4V     | 12                     | -12             |    |
|           |                                                                                  |                          |                          |                       |                      |                            | 16                     | -16             |    |
|           |                                                                                  |                          |                          |                       | 0.2V                 | V <sub>CCO</sub> -0.2V     | 0.1                    | -0.1            |    |
|           |                                                                                  |                          |                          |                       |                      |                            | 4                      | -4              |    |
|           |                                                                                  |                          |                          |                       |                      | 0.4V                       | $V_{\text{CCO-}}0.4V$  | 8               | -8 |
| LVCMOS18  | VCMOS18 $\left  \begin{array}{c c} -0.3V & 0.35^*V_{CCO} \end{array} \right  0.$ | 0.65*V <sub>CCO</sub>    | 3.6V                     |                       |                      | 12                         | -12                    |                 |    |
|           |                                                                                  |                          |                          | 0.2                   | 0.2V                 | V <sub>CCO</sub> -0.2V     | 0.1                    | -0.1            |    |
|           |                                                                                  |                          | 0.65*V <sub>CCO</sub>    |                       | 0.4)/                | \/ 0.4\/                   | 4                      | -4              |    |
| LVCMOS15  | -0.3V                                                                            | 0.35*V <sub>CCO</sub>    |                          | 0.65*V <sub>CCO</sub> | 3.6V                 | 0.4V                       | V <sub>CCO</sub> -0.4V | 8               | -8 |
|           |                                                                                  |                          |                          |                       | 0.2V                 | V <sub>CCO</sub> -0.2V     | 0.1                    | -0.1            |    |
|           |                                                                                  |                          |                          |                       | 0.4V                 | \/ 0.4\/                   | 2                      | -2              |    |
| LVCMOS12  | -0.3V                                                                            | 0.35*V <sub>CCO</sub>    | 0.65*V <sub>CCO</sub>    | 3.6V                  | 0.47                 | V <sub>CCO</sub> -0.4V     | 6                      | -6              |    |
|           |                                                                                  |                          |                          |                       | 0.2V                 | V <sub>CCO</sub> -0.2V     | 0.1                    | -0.1            |    |
| PCI33     | -0.3V                                                                            | 0.3*V <sub>CCO</sub>     | 0.5*V <sub>CCO</sub>     | 3.6V                  | 0.1*V <sub>CCO</sub> | $0.9*V_{CCO}$              | 1.5                    | -0.5            |    |
| SSTL33_I  | -0.3V                                                                            | V <sub>REF</sub> -0.2V   | V <sub>REF</sub> +0.2V   | 3.6V                  | 0.7                  | V <sub>CCO</sub> -1.1V     | 8                      | -8              |    |
| SSTL25_I  | -0.3V                                                                            | V <sub>REF</sub> -0.18V  | V <sub>REF</sub> +0.18V  | 3.6V                  | 0.54V                | V <sub>CCO</sub> -0.62V    | 8                      | -8              |    |
| SSTL25_II | -0.3V                                                                            | V <sub>REF</sub> -0.18V  | V <sub>REF</sub> +0.18V  | 3.6V                  | NA                   | NA                         | NA                     | NA              |    |
| SSTL18_II | -0.3V                                                                            | V <sub>REF</sub> -0.125V | V <sub>REF</sub> +0.125V | 3.6V                  | NA                   | NA                         | NA                     | NA              |    |
| SSTL18_I  | -0.3V                                                                            | V <sub>REF</sub> -0.125V | V <sub>REF</sub> +0.125V | 3.6V                  | 0.40V                | $V_{\text{CCO}}$ -0.40 $V$ | 8                      | -8              |    |
| SSTL15    | -0.3V                                                                            | V <sub>REF</sub> -0.1V   | V <sub>REF</sub> + 0.1V  | 3.6V                  | 0.40V                | $V_{\text{CCO}}$ -0.40 $V$ | 8                      | -8              |    |
| HSTL18_I  | -0.3V                                                                            | V <sub>REF</sub> -0.1V   | V <sub>REF</sub> + 0.1V  | 3.6V                  | 0.40V                | V <sub>CCO</sub> -0.40V    | 8                      | -8              |    |
| HSTL18_II | -0.3V                                                                            | V <sub>REF</sub> -0.1V   | V <sub>REF</sub> + 0.1V  | 3.6V                  | NA                   | NA                         | NA                     | NA              |    |
| HSTL15_I  | -0.3V                                                                            | V <sub>REF</sub> -0.1V   | V <sub>REF</sub> + 0.1V  | 3.6V                  | 0.40V                | V <sub>CCO</sub> -0.40V    | 8                      | -8              |    |
| HSTL15_II | -0.3V                                                                            | V <sub>REF</sub> -0.1V   | V <sub>REF</sub> + 0.1V  | 3.6V                  | NA                   | NA                         | NA                     | NA              |    |

DS861-1.4.3 76(93)

# 4.3.5 差分 I/O DC 电气特性

### 表 4-12 差分 I/O DC 电气特性

LVDS25

| 名称                 | 描述                                                                 | 测试条件                                        | 最小    | 典型   | 最大    | 单位 |
|--------------------|--------------------------------------------------------------------|---------------------------------------------|-------|------|-------|----|
| $V_{INA}, V_{INB}$ | 输入电压<br>(Input Voltage)                                            |                                             | 0     | -    | 2.4   | <  |
| V <sub>CM</sub>    | 共模输入电压<br>(Input Common Mode Voltage)                              | Half the Sum of the Two Inputs              | 0.05  | -    | 2.35  | <  |
| $V_{THD}$          | 差分输入门限(Differential Input Threshold)                               | Difference<br>Between the Two<br>Inputs     | ±100  | -    | -     | mV |
| I <sub>IN</sub>    | 输入电流(Input Current)                                                | Power On or<br>Power Off                    | -     | -    | ±10   | μΑ |
| V <sub>OH</sub>    | 输出高电平(Output High Voltage for V <sub>OP</sub> or V <sub>OM</sub> ) | R <sub>T</sub> = 100Ω                       | -     | -    | 1.60  | V  |
| V <sub>OL</sub>    | 输出低电平(Output Low Voltage for V <sub>OP</sub> or V <sub>OM</sub> )  | $R_T = 100\Omega$                           | 0.9   | -    | -     | V  |
| V <sub>OD</sub>    | 差模输出电压(Output Voltage Differential)                                | $(V_{OP}$ - $V_{OM})$ , $R_T$ =100 $\Omega$ | 250   | 350  | 450   | mV |
| $\Delta V_{OD}$    | 差模输出电压的变化范围<br>(Change in V <sub>OD</sub> Between High<br>and Low) |                                             | -     | -    | 50    | mV |
| Vos                | 输出零漂(Output Voltage Offset)                                        | $(V_{OP} + V_{OM})/2,$<br>$R_T = 100\Omega$ | 1.125 | 1.20 | 1.375 | V  |
| ΔV <sub>OS</sub>   | 输出零漂变化(Change in Vos<br>Between High and Low)                      |                                             | -     | -    | 50    | mV |
| Is                 | 短路电流                                                               | V <sub>OD</sub> = 0V 两路输<br>出短接             | -     | -    | 15    | mA |

# 4.4 AC 开关特性

# 4.4.1 IO 速度

### 表 4-13 IO 特性参数

| 名称                    | 说明        | Min | Max  | 单位 |
|-----------------------|-----------|-----|------|----|
| f <sub>MAX</sub>      | IO 最大频率   | -   | 150M | Hz |
| f <sub>MAX_LVDS</sub> | LVDS 最大频率 | -   | 400M | Hz |

DS861-1.4.3 77(93)

# 4.4.2 CFU 开关特性

### 表 4-14 CFU 时序参数

| 名称                    | 描述                                          | 速度等 | 单位    |            |
|-----------------------|---------------------------------------------|-----|-------|------------|
| <b>右</b> 你            | 抽座                                          | Min | Max   | <b>半</b> 型 |
| t <sub>LUT4_CFU</sub> | LUT4 延迟(LUT4 delay)                         | -   | 0.674 | ns         |
| t <sub>LUT5_CFU</sub> | LUT5 延迟(LUT5 delay)                         | -   | 1.388 | ns         |
| t <sub>LUT6_CFU</sub> | LUT6 延迟(LUT6 delay)                         | -   | 2.01  | ns         |
| t <sub>LUT7_CFU</sub> | LUT7 延迟(LUT7 delay)                         | -   | 2.632 | ns         |
| t <sub>LUT8_CFU</sub> | LUT8 延迟(LUT8 delay)                         | -   | 3.254 | ns         |
| t <sub>SR_CFU</sub>   | 置位/复位到寄存器输出时间(Set/Reset to Register output) | -   | 1.86  | ns         |
| t <sub>CO_CFU</sub>   | 时钟到寄存器输出时间(Clock to Register output)        | -   | 0.76  | ns         |

# 4.4.3 时钟和 I/O 开关特性

# 表 4-15 外部开关特性

| 名称                         | 说明         | 器件  | -5  | -5  |     | -6  |    |
|----------------------------|------------|-----|-----|-----|-----|-----|----|
| <b>石</b> 你                 | <b>远</b> 奶 |     | Min | Max | Min | Max | 单位 |
| Clocks                     | TBD        | TBD | TBD | TBD | TBD | TBD |    |
| Pin-LUT-Pin Delay          | TBD        | TBD | TBD | TBD | TBD | TBD |    |
| General I/O Pin Parameters | TBD        | TBD | TBD | TBD | TBD | TBD |    |

# 4.4.4 Gearbox 开关特性

表 4-16 Gearbox 内部时序参数

| 名称                     | 描述                 | 典型值 | 单位  |
|------------------------|--------------------|-----|-----|
| FMAX <sub>IDDR</sub>   | 2:1Gearbox 输入最大主频  | TBD | MHz |
| FMAX <sub>IDES4</sub>  | 4:1Gearbox 输入最大主频  | TBD | MHz |
| FMAX <sub>IDES8</sub>  | 8:1Gearbox 输入最大主频  | TBD | MHz |
| FMAX <sub>IVIDEO</sub> | 7:1Gearbox 输入最大主频  | TBD | MHz |
| FMAX <sub>IDES10</sub> | 10:1Gearbox 输入最大主频 | TBD | MHz |
| FMAX <sub>ODDR</sub>   | 1:2Gearbox 输入最大主频  | TBD | MHz |
| FMAX <sub>OSER4</sub>  | 1:4Gearbox 输入最大主频  | TBD | MHz |
| FMAX <sub>OSER8</sub>  | 1:8Gearbox 输入最大主频  | TBD | MHz |
| FMAX <sub>OVIDEO</sub> | 1:7Gearbox 输入最大主频  | TBD | MHz |
| FMAX <sub>OSER10</sub> | 1:10Gearbox 输入最大主频 | TBD | MHz |
| FMAX <sub>OSER16</sub> | 1:16Gearbox 输入最大主频 | TBD | MHz |

DS861-1.4.3 78(93)

# 4.4.5 B-SRAM 开关特性

#### 表 4-17 B-SRAM 时序参数

| 名称                      | 描述                                                                     | 速度等 | 级    | 单位 |
|-------------------------|------------------------------------------------------------------------|-----|------|----|
| 10100                   | 加化                                                                     | Min | Max  | 千世 |
| t <sub>COAD_BSRAM</sub> | BSRAM 读地址/数据的时钟到输出延时<br>(Clock to output time of read<br>address/data) | -   | 5.10 | ns |
| t <sub>COOR_BSRAM</sub> | BSRAM 输出寄存器的时钟到输出延时<br>(Clock to output time of output register)       | -   | 0.56 | ns |

# 4.4.6 DSP 开关特性

#### 表 4-18 DSP 时序参数

| 名称                                    | 描述                                                       | 速度等 | 单位   |                  |
|---------------------------------------|----------------------------------------------------------|-----|------|------------------|
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 加处                                                       | Min | Max  | <del>+</del> 17. |
| t <sub>COIR_DSP</sub>                 | 输入寄存器的时钟到输出延时(Clock to output time of input register)    | -   | 4.80 | ns               |
| t <sub>COPR_DSP</sub>                 | 流水寄存器的时钟到输出延时(Clock to output time of pipeline register) | -   | 2.40 | ns               |
| t <sub>COOR_DSP</sub>                 | 输出寄存器的时钟到输出延时(Clock to output time of output register)   | -   | 0.84 | ns               |

# 4.4.7 片内晶振开关特性

#### 表 4-19 片内晶振特性参数

| 名称                 | 说明                    | 说明          |           | 典型值       | 最大值       |
|--------------------|-----------------------|-------------|-----------|-----------|-----------|
| f <sub>MAX</sub>   | 晶振输出频率<br>(0 ~ +85℃)  | GW1NSR-2/2C | 114MHz    | 120MHz    | 126MHz    |
|                    | 晶振输出频率<br>(-40~+100℃) | GW1NSR-2/2C | 108MHz    | 120MHz    | 132MHz    |
|                    | 晶振输出频率<br>(0~+85℃)    | GW1NSR-4/4C | 118.75MHz | 125MHz    | 131.25MHz |
|                    | 晶振输出频率<br>(-40~+100℃) | GW1NSR-4/4C | 112.5MHz  | 125MHz    | 137.5MHz  |
| t <sub>DT</sub>    | 输出时钟占空比               |             | 43%       | 50%       | 57%       |
| t <sub>OPJIT</sub> | 输出时钟抖动                |             | 0.01UIPP  | 0.012UIPP | 0.02UIPP  |

DS861-1.4.3 79(93)

# 4.4.8 锁相环开关特性

### 表 4-20 锁相环特性参数

| 器件        | 速度等级  | 名称     | 最小值      | 最大值     |
|-----------|-------|--------|----------|---------|
|           |       | CLKIN  | 3MHZ     | 400MHZ  |
|           | C6/I5 | PFD    | 3MHZ     | 400MHZ  |
|           | C6/15 | VCO    | 400MHZ   | 1200MHZ |
| GW1NSR-2/ |       | CLKOUT | 3.125MHZ | 600MHZ  |
| GW1NSR-2C |       | CLKIN  | 3MHZ     | 320MHZ  |
|           | C5/I4 | PFD    | 3MHZ     | 320MHZ  |
|           | C3/14 | VCO    | 320MHZ   | 960MHZ  |
|           |       | CLKOUT | 2.5MHZ   | 480MHZ  |
|           | 00/15 | CLKIN  | 3MHZ     | 400MHZ  |
|           |       | PFD    | 3MHZ     | 400MHZ  |
|           | C6/I5 | VCO    | 400MHZ   | 1200MHZ |
| GW1NSR-4/ |       | CLKOUT | 3.125MHZ | 600MHZ  |
| GW1NSR-4C |       | CLKIN  | 3MHZ     | 320MHZ  |
|           | C5/I4 | PFD    | 3MHZ     | 320MHZ  |
|           | G3/14 | VCO    | 320MHZ   | 960MHZ  |
|           |       | CLKOUT | 2.5MHZ   | 480MHZ  |

DS861-1.4.3 80(93)

**4** 电气特性 **4.5**Cortex-M3 电气特性

# 4.5 Cortex-M3 电气特性

# 4.5.1 DC 电气特性

#### 表 4-21 电流特性

| <b> 左</b>        | 描述       | 规格  | 单位   |       |
|------------------|----------|-----|------|-------|
| 符号               | 捆坯       | 最小值 | 最大值  | 1 半 位 |
| I <sub>VCC</sub> | VCC 最大电流 | -   | 100  | mA    |
| I <sub>VSS</sub> | VSS 最大电流 | -   | -100 | mA    |
| I <sub>INJ</sub> | 漏电流      | -   | +/-5 | mA    |

# 4.5.2 AC 电气特性

#### 表 4-22 时钟参数

| 符号                    | 描述                         | 器件        | 规格  | <b></b> |     |
|-----------------------|----------------------------|-----------|-----|---------|-----|
| 付与                    |                            | 467十      | 最小值 | 最大值     | 单位  |
| f                     | f <sub>HCLK</sub> AHB 时钟频率 | GW1NSR-2C | 0   | 30      | MHz |
| THCLK                 |                            | GW1NSR-4C | 0   | 80      | MHz |
| f <sub>PCLK</sub> APB | APB 时钟频率                   | GW1NSR-2C | 0   | 30      | MHz |
|                       | APD的钾频率                    | GW1NSR-4C | 0   | 80      | MHz |

DS861-1.4.3 81(93)

# 4.6 用户闪存电气特性(GW1NSR-2C/2)

# 4.6.1 DC 电气特性

### 表 4-23 GW1NSR-2C/2 器件用户闪存 DC 电气特性

| 符号                     | 描述                       | 规格                   | <del></del>          |       |
|------------------------|--------------------------|----------------------|----------------------|-------|
|                        |                          | 最小值                  | 最大值                  | —— 单位 |
| IVCC <sub>read</sub>   | V <sub>cc</sub> 读操作电流    | -                    | 1.4                  | mA    |
| IVCCX <sub>read</sub>  | V <sub>ccx</sub> 读操作电流   | -                    | 0.6                  | mA    |
| IVCC <sub>prog</sub>   | Vcc写操作电流                 | -                    | 0.2                  | mA    |
| IVCCX <sub>prog</sub>  | V <sub>ccx</sub> 写操作电流   | -                    | 2.2                  | mA    |
| IVCC <sub>erase</sub>  | Vcc擦除操作电流                | -                    | 0.2                  | mA    |
| IVCCX <sub>erase</sub> | V <sub>ccx</sub> 擦除操作电流  | -                    | 2.3                  | mA    |
| I <sub>IDLE-VCC</sub>  | V <sub>CC</sub> IDLE 电流  | -                    | 10                   | uA    |
| I <sub>IDLE-VCCX</sub> | V <sub>CCX</sub> IDLE 电流 | -                    | 100                  | uA    |
| ILI                    | 输入漏电流                    | -                    | 0.1                  | uA    |
| I <sub>LO</sub>        | 输出漏电流                    | -                    | 0.1                  | uA    |
| V                      | 设置配置寄存器之前                | 1.14                 | 1.26                 | V     |
| $V_{VREF}$             | 设置配置寄存器之后                | 1.176                | 1.224                | V     |
| V                      | 设置配置寄存器之前                | 0.94                 | 1.06                 | V     |
| $V_{VREF1V}$           | 设置配置寄存器之后                | 0.97                 | 1.03                 | V     |
| V <sub>IL</sub>        | 输入低电平                    | -                    | 0.1*V <sub>CC</sub>  | V     |
| V <sub>IH</sub>        | 输入高电平                    | 0.9* V <sub>CC</sub> | -                    | V     |
| V <sub>OL</sub>        | 输出低电平                    | -                    | 0.1* V <sub>CC</sub> | V     |
| V <sub>OH</sub>        | 输出高电平                    | 0.9* V <sub>CC</sub> | -                    | V     |
| t <sub>PROG</sub>      | 写操作时间                    | -                    | 30                   | us    |
| t <sub>SER</sub>       | 页擦除时间                    | -                    | 2                    | mA    |
| t <sub>MER</sub>       | 模块擦除时间                   | -                    | 10                   | mA    |

DS861-1.4.3 82(93)

# 4.6.2 AC 电气特性

# 表 4-24 GW1NSR-2C/2 器件用户闪存时序参数

| なた 口    | 4,41                              | 规格  |     | <del></del> |
|---------|-----------------------------------|-----|-----|-------------|
| 符号      | 描述                                | 最小值 | 最大值 | 单位          |
| tAS     | 地址建立时间                            | 2   | -   | ns          |
| tHS     | 地址保持时间                            | 2   | -   | ns          |
| tS      | 写和擦除建立时间                          | 5   | -   | ns          |
| tH      | 写和擦除保持时间                          | 5   | -   | ns          |
| tDS     | 数据建立时间                            | 5   | -   | ns          |
| tDH     | 数据保持时间                            | 5   | -   | ns          |
| tAC     | <br>- 数据读取时间                      | -   | 30  | ns          |
| tACR    | <b>数据误联时间</b>                     | -   | 80  | ns          |
| tHZ     | 高阻到 OE 变为低电平的时间                   | 3   | -   | ns          |
| tAE     | AE 高电平时间                          | 10  | -   | ns          |
| tAEL    | AE 低电平时间                          | 10  | -   | ns          |
| tAAD    | 读操作下 AE 到 AE 延迟时间                 | 30  | -   | ns          |
| tAADR   | 回读状态下 AE 到 AE 延迟时间                | 80  | -   | ns          |
| tTR     | NVSTR 上升沿后 TBIT 上升沿时间             | -   | 100 | ns          |
| tTF     | 写操作下 NVSTR 上升沿到 TBIT 下降沿的时间       | -   | 30  | us          |
| tTF     | 页擦除操作下 NVSTR 上升沿到<br>TBIT 下降沿的时间  | -   | 2   | ms          |
| tTF     | 模块擦除操作下 NVSTR 上升沿到<br>TBIT 下降沿的时间 | -   | 10  | ms          |
| tNVSTRH | NVSTR 上升沿到 AE 上升沿保持时间             | 10  | -   | ns          |
| tNVSTRL | NVSTR下降沿到TBIT下降沿保持时间              | 50  | -   | ns          |
| tCS     | CS 建立时间                           | 10  | -   | ns          |
| tRCH    | 读操作下 CS 保持时间                      | 0   | -   | ns          |
| tWCH    | 写操作下 CS 保持时间                      | 10  | -   | ns          |
| tECH    | 擦除操作下 CS 保持时间                     | 10  | -   | ns          |
| tDOH    | AE 有效到数据输出的时间                     | 5   | -   | ns          |
| tOS     | 读使能建立时间                           | 1   | -   | ns          |
| tOH     | 读使能保持时间                           | 30  | -   | ns          |
| tOHR    | 回读状态下读使能保持时间                      | 80  | -   | ns          |

DS861-1.4.3 83(93)

### 4.6.3 操作时序图

图 4-1 读操作模式



图 4-2 写操作模式



图 4-3 页擦除模式



DS861-1.4.3 84(93)



#### 图 4-4 模块擦除模式

# 4.7 用户闪存电气特性(GW1NSR-4C/4)

### 4.7.1 DC 电气特性

表 4-25 GW1NSR-4C/4 器件用户闪存 DC 电气特性

| カチャ                              | <b>全</b> 粉                    | 最大值                          |                  | 光片 | Wake-up | カ 仏                                                                                                          |  |
|----------------------------------|-------------------------------|------------------------------|------------------|----|---------|--------------------------------------------------------------------------------------------------------------|--|
| 名称                               | 参数                            | V <sub>CC</sub> <sup>3</sup> | V <sub>CCX</sub> | 单位 | 时间      | 条件                                                                                                           |  |
| 读 模 式 (w/l<br>25ns) <sup>1</sup> |                               | 2.19                         | 0.5              | mA | NA      | 最小时钟周期,占空比 100%,<br>VIN = "1/0"                                                                              |  |
| 写模式                              | I <sub>CC1</sub> <sup>2</sup> | 0.1                          | 12               | mA | NA      | -                                                                                                            |  |
| 擦除模式                             |                               | 0.1                          | 12               | mA | NA      | _                                                                                                            |  |
| 页擦除模式                            |                               | 0.1                          | 12               | mA | NA      | -                                                                                                            |  |
| 读模式静态电流<br>(25-50ns 之间)          | I <sub>CC2</sub>              | 980                          | 25               | μА | NA      | XE=YE=SE="1",在 T=T <sub>acc</sub><br>到 T=50ns 之间,I/O 的电流为<br>0mA。T=50ns 之后,内部定时<br>器关闭读模式,I/O 的电流为待<br>机模式电流 |  |
| 待机模式                             | I <sub>SB</sub>               | 5.2                          | 20               | μΑ | 0       | V <sub>SS</sub> 、V <sub>CCX</sub> 和 V <sub>CC</sub>                                                          |  |

#### 注!

- [1]这些数值为直流平均电流值,峰值电流值会高于该平均电流值;
- [2]I<sub>CC1</sub> 在 T<sub>new</sub> 不同的时钟周期计算;
  - 不允许 T<sub>new</sub>< T<sub>acc</sub>
  - $T_{new} = T_{acc}$
  - $I_{acc} < T_{new} 50 \text{ns}$ :  $I_{CC1} \text{ (new)} = (I_{CC1} I_{CC2})(T_{acc}/T_{new}) + I_{CC2}$
  - $T_{\text{new}}$ >50ns:  $I_{\text{CC1}}$  (new) = ( $I_{\text{CC1}}$   $I_{\text{CC2}}$ )( $T_{\text{acc}}$ / $T_{\text{new}}$ ) + 50ns\* $I_{\text{CC2}}$ / $T_{\text{new}}$  +  $I_{\text{SB}}$
  - t > 50ns,  $I_{CC2} = I_{SB}$
- [3]从 wake-up time 的零时刻开始 V<sub>CC</sub> 必须大于 1.08V。

DS861-1.4.3 85(93)

# 4.7.2 AC 电气特性

#### 表 4-26 GW1NSR-4C/4 器件用户闪存时序参数

| 用户模式                        | 参数       | t                            | 符号                            | 最小值 | 最大值 | 单位 |
|-----------------------------|----------|------------------------------|-------------------------------|-----|-----|----|
|                             | WC       | 1                            |                               | -   | 25  | ns |
|                             | TC       |                              |                               | -   | 22  | ns |
| 访问时间2                       | ВС       |                              | T <sub>acc</sub> <sup>3</sup> | -   | 21  | ns |
|                             | LT       |                              |                               | -   | 21  | ns |
|                             | WC       |                              |                               | -   | 25  | ns |
| 编程/擦除到数据                    | 客存值      | 者建立时间                        | T <sub>nvs</sub>              | 5   | -   | μs |
| 数据存储保持时                     | 间        |                              | $T_nvh$                       | 5   | -   | μs |
| 数据存储保持时                     | 间(图      | 整体擦除)                        | T <sub>nvh1</sub>             | 100 | -   | μs |
| 数据存储到编程                     | 建立       | 上 时间                         | T <sub>pgs</sub>              | 10  | -   | μs |
| 编程保持时间                      |          |                              | $T_{pgh}$                     | 20  | -   | ns |
| 写时间                         |          |                              | T <sub>prog</sub>             | 8   | 16  | μs |
| 写准备时间                       |          |                              | $T_{wpr}$                     | >0  | -   | ns |
| 擦除保持时间                      |          |                              | $T_{whd}$                     | >0  | -   | ns |
| 控制信号到写/擦                    | 察除到      | 建立时间                         | $T_{cps}$                     | -10 | -   | ns |
| SE 到读操作建立                   | 立时       | 间                            | T <sub>as</sub>               | 0.1 | -   | ns |
| SE 脉冲的高电 <sup>5</sup>       | 平时       | 间                            | T <sub>pws</sub>              | 5   | -   | ns |
| 地址/数据建立时                    | 门间       |                              | $T_{ads}$                     | 20  | -   | ns |
| 地址/数据保持时                    | †间       |                              | T <sub>adh</sub>              | 20  | -   | ns |
| 数据保持时间                      |          |                              | T <sub>dh</sub>               | 0.5 | -   | ns |
|                             |          | WC1                          | $T_{ah}$                      | 25  | -   | ns |
| )±+#-+\ukull/0++            | - 11-11- | TC                           | -                             | 22  | -   | ns |
| 读模式地址保持<br>  间 <sup>3</sup> | 門        | ВС                           | -                             | 21  | -   | ns |
| 173                         |          | LT                           | -                             | 21  | -   | ns |
|                             |          | WC                           | -                             | 25  | -   | ns |
| SE 脉冲低电平时                   | 付间       |                              | T <sub>nws</sub>              | 2   | -   | ns |
| 恢复时间                        |          |                              | T <sub>rcv</sub>              | 10  | -   | μs |
| 数据存储时间                      |          | T <sub>hv</sub> <sup>4</sup> | -                             | 6   | ms  |    |
| 擦除时间                        |          | T <sub>erase</sub>           | 100                           | 120 | ms  |    |
| 整体擦除时间                      |          | T <sub>me</sub>              | 100                           | 120 | ms  |    |
| 掉电到待机模式的 Wake-up 时间         |          | T <sub>wk_pd</sub>           | 7                             | -   | μs  |    |
| 待机保持时间                      |          |                              | T <sub>sbh</sub>              | 100 | -   | ns |
| V <sub>CC</sub> 建立时间        |          |                              | T <sub>ps</sub>               | 0   | -   | ns |
| V <sub>ccx</sub> 保持时间       |          |                              | $T_{ph}$                      | 0   | -   | ns |

#### 注!

- [1]这些设定值可能会改变。
- [2]这些数值为仿真数据,在实际器件中会有改变。

DS861-1.4.3 86(93)

- [3]在信号 XADR、YADR、XE 和 YE 信号有效后,T<sub>acc</sub>的开始时间为 SE 信号的上升沿。 读取的数据 DOUT 被保存直到在下一次有效的读操作开始。
- [4]T<sub>hv</sub>时间为写操作开始到数据下一次擦除操作之前的累积时间,同一个地址在下一次 擦除之前不能被写入两次;同一个存储单元在下一次擦除之前不能被写入两次。这种限 制是基于安全考虑的。
- [5]所有的波形都有 1ns 的上升沿时间和 1ns 的下降沿时间。
- [6]控制信号 X、YADR、XE 和 YE 信号需要至少保持 T<sub>acc</sub> 的时间,T<sub>acc</sub> 从 SE 的上升沿处开始。

### 4.7.3 操作时序图

#### 图 4-5 用户闪存读操作时序



#### 图 4-6 用户闪存编程操作时序



DS861-1.4.3 87(93)

**4** 电气特性 **4.8**ADC 电气特性

#### 图 4-7 用户闪存擦除操作时序



# 4.8 ADC 电气特性

# 4.8.1 ADC 转换时序

ADC 从采样模拟输入信号到转换完成输出数字信号需要 16 个时钟周期,前 4 个时钟周期用来采样和保持,后 12 个时钟周期用来进行 SAR 算法,生成输出信号。ECO 信号在第 16 个时钟周期变为高电平,表示一次转换完成,转换的数字数据在 EOC 的上升沿输出。

#### 图 4-8ADC 转换时序



DS861-1.4.3 88(93)

4 电气特性 4.8ADC 电气特性

### 表 4-27 ADC 时序参数

| 符号                 | 描述       | 规格   | <b>光</b> |    |
|--------------------|----------|------|----------|----|
|                    |          | 最小值  | 最大值      | 单位 |
| CLK                | 时钟周期     | 62.5 | -        | ns |
| Ts                 | SoC 建立时间 | 0    | -        | ns |
| T <sub>H</sub>     | SoC 保持时间 | 10   | -        | ns |
| T <sub>D_EOC</sub> | EOC 延迟时间 | -    | 13.5     | ns |
| T <sub>D_B</sub>   | 输出数据延迟时间 | -    | 16       | ns |

# 4.8.2 电气特性参数

### 表 4-28 ADC 电气参数

| 参数       | 描述        | 规格        | <b>公</b> / ·     |           |      |
|----------|-----------|-----------|------------------|-----------|------|
|          |           | 最小值       | 典型值              | 最大值       | 单位   |
| DC 精度    |           | '         | "                |           |      |
| 输出       | 数字输出位数    |           | 12               |           | bit  |
| INL      | 非线性积分     |           | +/- 0.84         |           | LSB  |
| DNL      | 非线性微分     |           | +/- 0.46         |           | LSB  |
| 偏移误差     | 偏移误差      |           | 0.45             |           | %FS  |
| 增益误差     | 增益误差      |           | 0.02             |           | %FS  |
| 模拟输入     |           |           |                  |           |      |
| CH[7: 0] | 单端输入范围    | 0.01*VREF |                  | 0.99*VREF | V    |
| CIN      | 输入电容      |           | 11.52            |           | pF   |
| 转换速率     |           | '         |                  | ,         | ,    |
| SoC      | 采样频率      |           |                  | 1         | MHz  |
| CLK      | 主时钟       |           |                  | 16        | MHz  |
| 数据输出延迟   | 数据输出延迟    |           | 12               |           | 时钟周期 |
| 动态特性参数   |           |           |                  |           |      |
| SINAD    | 信噪比       |           | 64.8(Fin=1.47K)  |           | DB   |
| SINAD    |           |           | 62.6(Fin=107K)   |           | DB   |
| SFDR     | 工力地动大英国   |           | 84.9(Fin=1.47K)  |           | DB   |
| SFDR     | 无杂散动态范围   |           | 81.7(Fin=107K)   |           | DB   |
| HD2      | 二次谐波失真    |           | -104(Fin=1.47K)  |           | DB   |
| HDZ      | 一价值似大县    |           | -87.1(Fin=107K)  |           | DB   |
| HD3      | 三次谐波失真    |           | -94.1(Fin=1.47K) |           | DB   |
| прз      | 二价值极大县    |           | -80.6(Fin=107K)  |           | DB   |
| THD      | 总谐波失真(五次) |           | -87.2(Fin=1.47K) |           | DB   |
| וחט      | 心怕奴太县(丑仏) |           | -79.3(Fin=107K)  |           | DB   |
| ENOB     | 去就协业料据总料  |           | 10.5(Fin=1.47K)  |           | bit  |
| ENUD     | 有效输出数据位数  |           | 10.1(Fin=107K)   |           | bit  |
| 参考电压     |           |           |                  |           |      |

DS861-1.4.3 89(93)

4 电气特性 4.9 编程接口时序标准

| 会粉                 | 44.44   | 规格                    | <b>公</b>        |                      |    |  |  |
|--------------------|---------|-----------------------|-----------------|----------------------|----|--|--|
| 参数                 | 描述      | 最小值                   | 典型值             | 最大值                  | 单位 |  |  |
| VREF               | 参考电压    | 0.5*V <sub>CCO0</sub> |                 | V <sub>CCO0</sub>    | V  |  |  |
| 数字输入               |         |                       |                 |                      |    |  |  |
| V <sub>IH</sub>    | 输入高电平   | 0.7*V <sub>CC</sub>   | V <sub>CC</sub> |                      | V  |  |  |
| V <sub>IL</sub>    | 输入低电平   |                       | 0               | 0.3* V <sub>CC</sub> | V  |  |  |
| 数字输出 B[11: 0]      |         |                       |                 |                      |    |  |  |
| V <sub>OH</sub>    | 输出高电平   | 0.7* V <sub>CC</sub>  |                 |                      | V  |  |  |
| V <sub>OL</sub>    | 输出低电平   |                       |                 | 0.3* V <sub>CC</sub> | V  |  |  |
| 供电电压               |         |                       |                 |                      |    |  |  |
| V <sub>CCO0</sub>  | 模拟/数字电压 | 2.97                  | 3.3             | 3.63                 | V  |  |  |
| V <sub>CC</sub>    | 数字电压    | 1.08                  | 1.2             | 1.32                 | V  |  |  |
| I <sub>vccoo</sub> | 模拟/数字电流 |                       | 750(Fin=107K)   |                      | uA |  |  |
| I <sub>VCC</sub>   | 数字电流    |                       | 4(Fin=107K)     |                      | uA |  |  |
| I <sub>pd</sub>    | 关断电流    |                       | 0.15            |                      | mA |  |  |

# 4.9 编程接口时序标准

GW1NSR 系列 FPGA 产品 GowinCONFIG 配置模式支持多达 6 种,包括自启动模式、双启动模式、MSPI 模式、SSPI 模式、CPU 模式、SERIAL模式,详细资料请参见 UG290, Gowin FPGA 产品编程配置手册。

DS861-1.4.3 90(93)

5 器件订货信息 5.1 器件命名

# 5器件订货信息

# 5.1 器件命名

注!

- 关于详细的封装类型及管脚数量信息,请参考 2.2 产品信息列表及 2.3 封装信息列表。
- 相同速度等级的小蜜蜂®(LittleBee®)家族器件和晨熙®家族(Arora)器件速度不同。
- 高云器件速度等级采用双标标识,如 C6/I5, C5/I4 等。芯片筛选采用的是工业级标准,所以同一芯片可以同时满足满足工业应用(I)和商业应用(C)。工业级最高温度 100℃,商业级最高温度 85℃,所以同一芯片如在商业级应用中满足速度等级 6,在工业级应用中速度等级则为 5。

#### 图 5-1 GW1NSR-2/ GW1NSR-4 器件命名方法 - ES



#### 图 5-2 GW1NSR-2C/ GW1NSR-4C 器件命名方法 - ES



DS861-1.4.3 91(93)

5 器件订货信息 5.1 器件命名

#### 图 5-3 GW1NSR-2C/GW1NSR-4C 器件命名方法 - Production

#### GW1NSR - XX XX C XXXXXX CX/IX **Product Series Temperature Range GW1NSR** C Commercial 0°C to 85°C I Industrial -40°C to 100°C **Core Supply Voltage** LX Vccx: 1.8V **Speed Grade** UX Vccx: 2.5V/3.3V 4 Slowest LV Vcc: 1.2V 5 6 Fastest **Logic Density** Package Type 2 1,728 LUTs QN48P (QFN48P, 0.4mm) 4 4,608 LUTs QN48G (QFN48G, 0.4mm) C: ARM Cortex-M3 MG64P (MBGA64P, 0.5mm)

#### 图 5-4 GW1NSR-2/GW1NSR-4 器件命名方法 - Production



DS861-1.4.3 92(93)

5 器件订货信息 5.2 器件封装标识

# 5.2 器件封装标识

高云半导体产品在芯片表面印制了器件信息,如图 5-5 至图 5-8 所示。

#### 图 5-5 GW1NSR-2 器件封装标识示例



#### 图 5-6 GW1NSR-2C 器件封装标识示例



#### 图 5-7 GW1NSR-4 器件封装标识示例



#### 图 5-8 GW1NSR-4C 器件封装标识示例



注!

上图中第一行与第二行均为 "Part Number"。

DS861-1.4.3 93(93)

