Pracovní úkoly

- 1. Změřte statickou charakteristiku termistoru pro proudy do 25 mA a graficky ji znázorněte. V případě záznamu měření počítačem vytiskněte.
- 2. Změřte teplotní závislost odporu termistoru v teplotním intervalu přibližně 180 až 360 K a graficky znázorněte (ev. vytiskněte).
- 3. Graficky znázorněte závislost logaritmu odporu R termistoru na 1/T a vyhodnoť te velikost materiálových veličin R_{∞} a B, aktivační energie U a teplotního součinitele odporu α při pokojové teplotě.
- 4. Stanovte teplotu termistoru v maximu charakteristiky, případně v některých dalších bodech a tepelný odpor K.

Teoretická část

Budeme měřit elektrickou součástku termistor. U většiny termistorů se se zvyšující se teplotou snižuje elektrický odpor. Elektrický odpor R při teplotě T můžeme vyjádřit vztahem [1]

$$R(T) = R_{\infty} \exp\left(\frac{B}{T}\right) \,, \tag{1}$$

kde R_{∞} a B jsou konstanty.

Pro kovalentní vodiče, v nichž s teplotou roste koncentrace nositelů náboje, platí [1]

$$B = \frac{\Delta U}{2k} \,, \tag{2}$$

kde $k=0.8617\cdot 10^{-4}\,\mathrm{eV\,K^{-1}}=1.38\cdot 10^{-24}\,\mathrm{J\,K^{-1}}$ je Boltzmannova konstanta a ΔU je aktivační energie. Vynásobením Avogadrovou konstantou $N_A=6.022\cdot 10^{23}\,\mathrm{mol^{-1}}$ dostaneme aktivační energii na jeden mol ΔU_{mol} a vztah se redukuje na

$$\Delta U_{mol} = 2BR\,, (3)$$

kde $R = 8.314 \,\mathrm{J}\,\mathrm{mol}^{-1}\,\mathrm{K}^{-1}$ je molární plynová konstanta.

Teplotní součinitel odporu α je definován [1]

$$\alpha = \frac{1}{R(T)} \frac{dR(T)}{dT} \,. \tag{4}$$

Po dosazení do (1) dostaneme

$$\alpha = \frac{-B}{T^2} \,. \tag{5}$$

Vyneseme-li závislost log R=f(1/T), dostaneme přímku popsanou rovnicí

$$\log R = \log R_{\infty} + 0.434 \cdot B \frac{1}{T} \,. \tag{6}$$

Pomocí lineární interpolace určíme konstantu B a extrapolarizací pro $1/T \to 0$ určíme R_{∞} .

Dále měříme statickou charakteristiku termistoru. Teplota termistoru se ustálí na teplotě, kdy se vyrovná elektrický příkon a tepelný výkon odváděný do okolí [1]

$$KP = T - T_0, (7)$$

kde K je tepelný odpor termistoru a T_0 je teplota okolí. Nejvyšší napětí U_m na termistoru bude při proudu I_m a teplotě [1]

$$T_m = \frac{1}{2} \left[B - \sqrt{B(B - 4T_0)} \right] \,. \tag{8}$$

Tepelný odpor K určíme podle

$$K = \frac{T_m - T_0}{U_m I_m} \,. \tag{9}$$

Výsledky měření

Teplota v místnosti byla $T_0 = (24,0 \pm 0,3)$ °C.

Teplotu jsme měřili platinovým odporovým teploměrem. Vztah mezi teplotou t ve stupních Celsia a odporem platinového teploměru R_t je

$$t = \frac{R_t - R_0}{\alpha_{Pt} R_0} \,, \tag{10}$$

kde $R_0 = 100 \,\Omega$ je odpor při 0 °C a $\alpha_{Pt} = 3.85 \cdot 10^{-3} \,\mathrm{K}^{-1}$.

Elektrické veličiny (napětí, proud, odpor) jsme měřili multimetrem METEX MXD-4660A. Při měření statické charakteristiky jsme hodnoty odečítali přímo z displeje a zapisovali na papír, při měření tepelné závislosti jsme multimetry připojili k počítači.

Naměřená teplotní závislost je uvedena v přiložené tabulce 1 a zanesena v grafu 1. Proložením závislosti jsme určili konstanty $B=(2680\pm30)\,\mathrm{K}$ a $R_\infty=(7.0\pm0.1)\,\mathrm{m}\Omega$. Chybu těchto veličin jsme odhadli, přičemž jsme uvážili chybu fitu a chyby fitovaných veličin.

Graf 1: Teplotní závislost odporu

Ze známé konstanty B a vztahů (2), (3), (8) a (5) získáme $\Delta U = (0.463 \pm 0.006) \,\mathrm{eV}$, $\Delta U_{mol} = (44.6 \pm 0.5) \,\mathrm{kJ} \,\mathrm{mol}^{-1}$, $T_m = (340 \pm 2) \,\mathrm{K}$ a $\alpha = (-0.0304 \pm 0.0005) \,\mathrm{K}^{-1}$ (při pokojové teplotě 24,0 °C). Odchylku těchto veličin jsme počítali metodou přenosu chyb.[2]

Naměřená statická charakteristika je uvedena v přiložené tabulce 2 a zanesena do grafu 2.

Z grafu jsme určili $U_m = (1,086 \pm 0,005) \text{ V a } I_m = (6,0 \pm 0,3) \text{ mA. Podle (9) dostáváme } K = (6600 \pm 400) \text{ K W}^{-1}$.

Diskuze

Obě měřené závislosti vyšly podle očekávání.

Graf 2: Statická charakteristika

Konstantu B bychom mohli vypočítat podle studijního textu jako [1]

$$B = \frac{2,3\log(R_1/R_2)}{1/T_1 - 1/T_2} \approx 2650 \,\mathrm{K}\,,$$

která se mírně liší od hodnoty určené lineární regresí.

Veličina I_m je určena poměřně nepřesně, s ní tedy i tepelný odpor K. Na vrcholu charakteristiky se s proudem měnilo napětí velmi pomalu a narozdíl od U_m , které jsme určili poměrně přesně, se nám nepodařilo určit přesný proud I_m , kdy bylo napětí nejvyšší.

Závěr

Statická charakteristika je pro malé proudy lineární a odpor klesá s teplotou exponenciálně. Změřili jsme následující veličiny

- $R_{\infty} = (7.0 \pm 0.1) \,\mathrm{m}\Omega$
- $B = (2680 \pm 30) \,\mathrm{K}$
- aktivační energie $\Delta U = (0.463 \pm 0.006) \,\mathrm{eV}, \ \Delta U_{mol} = (44.6 \pm 0.5) \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- teplota v maximu statické charakteristiky $T_m = (340 \pm 2) \,\mathrm{K}$
- teplotní součinitel odporu při teplotě 24 °C $\alpha = (-0.0304 \pm 0.0005) \,\mathrm{K}^{-1}$
- tepelný odpor $K = (6600 \pm 400) \,\mathrm{K} \,\mathrm{W}^{-1}$

Seznam použité literatury

- 1. Základní fyzikální praktikum [online]. [cit. 2016-04-06]. Dostupný z WWW: http://physics.mff.cuni.cz/vyuka/zfp/start.
- 2. ENGLICH, Jiří. Úvod do praktické fyziky I: Zpracování výsledků měření. Praha: MATFYZPRESS, 2006. ISBN 80-86732-93-2.