

FCC PART 15C TEST REPORT

No. I14N00955-BLE

For

ShenZhen Sang Fei Consumer Communications Co.,Ltd.

WCDMA digital mobile phone

Model Name: Philips 1908

Marketing Name: Philips 1908

With

Hardware Version: I908 V01

Software Version: Philips_I908_V01

FCC ID: VQRCTI908

Issued Date: Oct 21st, 2014

Test Laboratory:

FCC 2.948 Listed: No.310359 IC O.A.T.S listed: No.6629C-1

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

TMC Beijing, Telecommunication Metrology Center of Ministry of Industry and Information Technology No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China 100191

Tel:+86(0)10-62304633-2678, Fax:+86(0)10-62304633-2504 Email:welcome@emcite.com. www.emcite.com

CONTENTS

1.	TE	ST LABORATORY	4
1	.1.	TESTING LOCATION	4
1	.2.	TESTING ENVIRONMENT	4
1	.3.	PROJECT DATA	4
1	.4.	SIGNATURE	4
2.	CL	IENT INFORMATION	5
2	2.1.	APPLICANT INFORMATION	5
2	2.2.	MANUFACTURER INFORMATION	5
3.	EQ	UIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	6
3	3.1.	ABOUT EUT	6
3	3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	6
3	3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	6
4.	RE	FERENCE DOCUMENTS	7
4	1.1.	DOCUMENTS SUPPLIED BY APPLICANT	7
4	1.2.	REFERENCE DOCUMENTS FOR TESTING	7
5.	LA	BORATORY ENVIRONMENT	8
6.	SU	MMARY OF TEST RESULTS	9
6	5.1.	SUMMARY OF TEST RESULTS	9
6	5.2.	STATEMENTS	9
6	5.3.	TERMS USED IN THE RESULT TABLE	9
7.	TE	ST EQUIPMENTS UTILIZED	10
AN	NEX	A: EUT PHOTOGRAPH	11
AN	NEX	B: MEASUREMENT RESULTS	13
E	3.0 A	NTENNA REQUIREMENT	13
E	3.1 M	IAXIMUM PEAK OUTPUT POWER	14
E	3.2 P	EAK POWER SPECTRAL DENSITY	14
E	3.3 O	CCUPIED 6DB BANDWIDTH	15
		AND EDGES COMPLIANCE	
		RANSMITTER SPURIOUS EMISSION	
		Transmitter Spurious Emission - Conducted	
		TRANSMITTER SPURIOUS EMISSION - RADIATED	
E	3.6 A	C POWERLINE CONDUCTED EMISSION	21
AN	NEX	C: TEST FIGURE LIST	23
F	FIG. 1	MAXIMUM PEAK OUTPUT POWER(GFSK, CH 0)	23

FIG. 2	MAXIMUM PEAK OUTPUT POWER(GFSK, CH 19)	23
Fig. 3	MAXIMUM PEAK OUTPUT POWER(GFSK, CH 39)	24
Fig. 4	POWER SPECTRAL DENSITY (CH 0)	24
FIG. 5	POWER SPECTRAL DENSITY (CH 19)	25
Fig. 6	POWER SPECTRAL DENSITY (CH 39)	25
Fig. 7	OCCUPIED 6DB BANDWIDTH (CH 0)	26
Fig. 8	OCCUPIED 6DB BANDWIDTH (CH 19)	26
Fig. 9	OCCUPIED 6DB BANDWIDTH (CH 39)	27
Fig. 10	BAND EDGES (CH 0)	27
Fig. 11	BAND EDGES (CH 39)	28
FIG. 12	CONDUCTED SPURIOUS EMISSION (CH0, CENTER FREQUENCY)	28
Fig. 13	CONDUCTED SPURIOUS EMISSION (CH0, 30 MHz-1 GHz)	29
Fig. 14	CONDUCTED SPURIOUS EMISSION (CH0, 1 GHz-18 GHz)	29
FIG. 15	CONDUCTED SPURIOUS EMISSION (CH19, CENTER FREQUENCY)	30
Fig. 16	CONDUCTED SPURIOUS EMISSION (CH19, 30 MHz-1 GHz)	30
Fig. 17	CONDUCTED SPURIOUS EMISSION (CH19, 1 GHz-18 GHz)	31
Fig. 18	CONDUCTED SPURIOUS EMISSION (CH39, CENTER FREQUENCY)	31
Fig. 19	CONDUCTED SPURIOUS EMISSION (CH39, 30 MHz-1 GHz)	32
FIG. 20	CONDUCTED SPURIOUS EMISSION (CH39, 1 GHz-18 GHz)	32
FIG. 21	CONDUCTED SPURIOUS EMISSION (ALL CHANNELS, 18 GHz-26 GHz)	33
FIG. 22	RADIATED SPURIOUS EMISSION (CH0, 30 MHz-1 GHz)	33
FIG. 23	RADIATED SPURIOUS EMISSION (CH0, 1 GHz-18 GHz)	34
FIG. 24	RADIATED SPURIOUS EMISSION (CH19, 30 MHz-1 GHz)	34
FIG. 25	RADIATED SPURIOUS EMISSION (CH19, 1 GHz-18 GHz)	35
FIG. 26	RADIATED SPURIOUS EMISSION (CH39, 30 MHz-1 GHz)	35
Fig. 27	RADIATED SPURIOUS EMISSION (CH39, 1 GHz-18 GHz)	36
FIG. 28	RADIATED EMISSION POWER (GFSK, CH0, 2380GHz~2450GHz)	36
FIG. 29	RADIATED EMISSION POWER (GFSK, CH39, 2450GHz~2500GHz)	37
Fig. 30	RADIATED EMISSION: 18 GHz - 26 GHz	37
FIG. 31	AC POWERLINE CONDUCTED EMISSION (TRAFFIC, AE1)	38
Fig. 32	AC POWER LINE CONDUCTED EMISSION (IDLE, AE1).	39

1. Test Laboratory

1.1. Testing Location

Company Name:

TMC Shenzhen, Telecommunication Metrology Center of MIIT

Address:

No. 12 Building, Shangsha Innovation and Technology Park, Futian

District, Shenzhen, P. R. China

Postal Code:

518048

Telephone:

+86(0)755-33322000

Fax:

+86(0)755-33322001

1.2. Testing Environment

Normal Temperature:

15°C-30°C

Extreme Temperature:

-20℃/+55℃

Relative Humidity:

30%-60%

1.3. Project data

Project Leader:

Zhang Bojun

Test Engineer:

Tang Weisheng

Testing Start Date:

Aug 22nd, 2014

Testing End Date:

Sep 4th, 2014

1.4. Signature

Tang Weisheng

(Prepared this test report)

Zhang Bojun

(Reviewed this test report)

Lu Minniu

Director of the laboratory

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: ShenZhen Sang Fei Consumer Communications Co,Ltd.

Address /Post: 11 Science and Technology Road, Shenzhen Hi-tech industrial Park

Nanshan District, Shenzhen, PRC

City: Shenzhen Country: China

E-mail: Helen Lin@Sangfei.com

Telephone: 0755-26633217 Fax: 0755-26635272

2.2. Manufacturer Information

Company Name: ShenZhen Sang Fei Consumer Communications Co,Ltd.

11 Science and Technology Road, Shenzhen Hi-tech industrial Park

Address /Post:

Nanshan District, Shenzhen, PRC

City: Shenzhen Country: China

E-mail: Helen Lin@Sangfei.com

Telephone: 0755-26633217 Fax: 0755-26635272

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description WCDMA digital mobile phone

Model Name Philips 1908
Market Name Philips 1908

Frequency Band 2402MHz~2480MHz

Type of Modulation GFSK Number of Channels 40

FCC ID VQRCTI908

Note: Photographs of EUT are shown in ANNEX A of this test report.

3.2. Internal Identification of EUT used during the test

 EUT ID*
 IMEI
 HW Version
 SW Version

 EUT1
 /
 1908_V01
 Philips_1908_V01

3.3. Internal Identification of AE used during the test

AE ID*	Description	Туре	SN
AE1	Charger	A31-501000	/

^{*}AE ID: is used to identify the test accessory in the lab internally.

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part15	FCC CFR 47, Part 15, Subpart C:	Oct, 2013
	15.205 Restricted bands of operation;	Edition
	15.209 Radiated emission limits, general requirements;	
	15.247 Operation within the bands 902-928MHz, 2400-2483.5	
	MHz, and 5725–5850 MHz.	
ANSI C63.4	Methods of Measurement of Radio-Noise Emissions from	2003
	Low-Voltage Electrical and Electronic Equipment in the Range	
	of 9 kHz to 40 GHz	
KDB558074	Measurement of Digital Transmission Systems	Jun, 2014
	Operating under Section 15.247	

5. Laboratory Environment

Half-anechoic chamber (11.20 meters×6.10 meters×5.60 meters) did not exceed following limits:

Temperature	Min. = 15 °C, Max. = 30 °C					
Relative humidity	Min. = 30 %, Max. = 60 %					
Shielding effectiveness	> 110 dB					
Electrical insulation	> 2M Ω					
Ground system resistance	< 0.5 Ω					
Normalized Site Attenuation (NSA)	< ±3.5dB, with 3m of Measuring distance, 30MHz 1000MHz					
Uniformity of field strength	Between 0 and 6 dB, from 80MHz to 3000 MHz					

Fully-anechoic chamber (11.20 meters×6.10 meters×6.60 meters) did not exceed following limits:

Temperature	Min. = 15 $^{\circ}$ C, Max. = 30 $^{\circ}$ C		
Relative humidity	Min. = 30 %, Max. = 60 %		
Shielding effectiveness	> 110 dB		
Electrical insulation	> 2M Ω		
Ground system resistance	< 0.5 Ω		
VSWR	Between 0 and 6 dB, from 30MHz to 18 000 MHz		

Conduction Lab did not exceed following limits:

<u> </u>				
Temperature	Min.=15 °C, Max.=30 °C			
Relative humidity	Min.=30 %, Max.= 60 %			
Shielding effectiveness	> 80 dB			
Electrical insulation	> 2M Ω			
Ground system resistance	< 0.5 Ω			

6. Summary of Test Results

6.1. Summary of Test Results

No	Test cases	Sub-clause of Part15C	Verdict
0	Antenna Requirement	15.203	Р
1	Maximum Peak Output Power	15.247 (a)	Р
2	Peak Power Spectral Density	15.247 (e)	Р
3	Occupied 6dB Bandwidth	15.247 (a)	Р
4	Band Edges Compliance	15.247 (d)	Р
5	Transmitter Spurious Emission - Conducted	15.247 (d)	Р
6	Transmitter Spurious Emission - Radiated	15.247, 15.205, 15.209	Р
7	AC Powerline Conducted Emission	15.207	Р

6.2. Statements

TMC has evaluated the test cases requested by the applicant/manufacturer as listed in section 6.1 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2

The hardware of Vodafone 888N and Vodafone 888 are the same. The only difference between these two models is that Vodafone 888N has NFC module but Vodafone 888 removes it. The test bases on the model Vodafone 888N.

6.3. Terms used in the result table

Terms used in Verdict column

Р	Pass
NA	Not Available
F	Fail

Abbreviations

AC	Alternating Current		
AFH Adaptive Frequency Hopping			
BW Band Width			
E.I.R.P. equivalent isotropical radiated power			
ISM Industrial, Scientific and Medical			
R&TTE	Radio and Telecommunications Terminal Equipment		
RF	Radio Frequency		
Tx	Transmitter		

7. Test Equipments Utilized

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date	Calibration Period
1	Vector Signal Analyzer	FSV40	100903	Rohde & Schwarz	2015-04-22	1 year

Radiated emission test system

	Natiated emission test system					
No.	Equipment	Model	Serial Manufacture	Manufacturer	Calibration	Calibration
			Number		Due date	Period
1	Chamber	FACT5-2.0	4166	ETS-Lindgren	2016-05-29	3 years
2	Test Receiver	ESCI	100701	Rohde & Schwarz	2015-07-30	1 year
3	Spectrum Analyzer	FSP40	100378	Rohde & Schwarz	2014-12-20	1 year
4	BiLog Antenna	VULB9163	9163-329	Schwarzbeck	2017-01-20	3 years
5	Test Receiver	ESCI	100702	Rohde & Schwarz	2015-07-30	1 year
6	LISN	ESH2-Z5	100196	Rohde & Schwarz	2015-01-14	1 year
7	Signal Generator	SMR40	100541	Rohde & Schwarz	2014-12-26	1 year
8	Dual-Ridge Waveguide	3117	00066577	ETC Lindaron	2016-04-01	2 40000
ð	Horn Antenna	3117	00000577	ETS-Lindgren	2016-04-01	3 years
9	Loop Antenna	HLA6120	35779	TESEQ	2016-02-25	3 years
10	EMI Antenna	3160-09	00118383	ETS-Lindgren	2015-09-05	3 years

Anechoic chamber

Fully anechoic chamber by ETS-Lindgren.

ANNEX A: EUT photograph

Pic A-1 Mobile phone

Pic A-2 Mobile phone

Pic A-3 Charger

Pic A-4 Charger

ANNEX B: MEASUREMENT RESULTS

B.0 Antenna requirement

Measurement Limit:

Standard	Requirement				
	An intentional radiator shall be designed to ensure that no antenna other than that				
	furnished by the responsible party shall be used with the device. The use of a				
	permanently attached antenna or of an antenna that uses a unique coupling to the				
	intentional radiator shall be considered sufficient to comply with the provisions of				
	this section. The manufacturer may design the unit so that a broken antenna can				
	be replaced by the user, but the use of a standard antenna jack or electrical				
FCC CRF Part	connector is prohibited. This requirement does not apply to carrier current devices				
15.203	or to devices operated under the provisions of §15.211, §15.213, §15.217,				
	§15.219, or §15.221. Further, this requirement does not apply to intentional				
	radiators that must be professionally installed, such as perimeter protection				
	systems and some field disturbance sensors, or to other intentional radiators				
	which, in accordance with §15.31(d), must be measured at the installation site.				
	However, the installer shall be responsible for ensuring that the proper antenna is				
	employed so that the limits in this part are not exceeded.				

Conclusion: The Directional gains of antenna used for transmitting is 2.8 dBi.

The RF transmitter uses an integrate antenna without connector.

B.1 Maximum Peak Output Power

Measurement Limit and Method:

Standard	Limit (dBm)
FCC CRF Part 15.247(b)(1)	< 30

Test Condition:

Hopping Mode	RBW	VBW	SPAN	Sweeptime
Hopping off	3MHz	3MHz	10MHz	Auto

Measurement Results:

Mode	Channel	Maximum Peak Ou	Conclusion	
	0	-2.20	Fig.1	Р
GFSK	19	-1.83	Fig.2	Р
	39	-1.17	Fig.3	Р

See ANNEX C for test graphs.

Conclusion: Pass

B.2 Peak Power Spectral Density

Measurement Limit:

Standard	Limit
FCC CRF Part 15.247(d)	< 8 dBm/3 kHz

Measurement Results:

Mode	Channel	Peak Power \$	Conclusion	
	0	Fig.4	-18.46	Р
GFSK	19	Fig.5	-18.02	Р
	39	Fig.6	-17.27	Р

See ANNEX C for test graphs.

B.3 Occupied 6dB Bandwidth

Measurement Limit:

Standard	Limit (kHz)
FCC 47 CFR Part 15.247 (a)	≥ 500

Measurement Result:

Mode	Channel	Test Results (kHz)		conclusion
	0	Fig.7	706.2	Р
GFSK	19	Fig.8	699.2	Р
	39	Fig.9	699.2	Р

See ANNEX C for test graphs.

Conclusion: Pass

B.4 Band Edges Compliance

Measurement Limit:

Standard	Limit (dBc)
FCC 47 CFR Part 15.247 (d)	> 20

Measurement Result:

Mode	Channel	Test Results	Conclusion
GFSK	0	Fig.10	Р
	39	Fig.11	Р

See ANNEX C for test graphs.

B.5 Transmitter Spurious Emission

B.5.1 Transmitter Spurious Emission - Conducted

Measurement Limit:

Standard	Limit	
FCC 47 CFR Part 15.247 (d)	20dB below peak output power in 100 kHz	
	bandwidth	

Measurement Results:

MODE	Channel	Frequency Range	Test Results	Conclusion
		2.402 GHz	Fig.12	Р
	0	30 MHz-3 GHz	Fig.13	Р
		3GHz-18GHz	Fig.14	Р
		2.440 GHz	Fig.15	Р
GFSK	39	30 MHz-3 GHz	Fig.16	Р
GFSK		3GHz-18GHz	Fig.17	Р
		2.480 GHz	Fig.18	Р
		30 MHz-3 GHz	Fig.19	Р
		3GHz-18GHz	Fig.20	Р
	All channels	18GHz-26GHz	Fig.21	Р

See ANNEX C for test graphs.

B.5.2 Transmitter Spurious Emission - Radiated Measurement Limit:

Standard	Limit	
FCC 47 CFR Part 15.247, 15.205, 15.209	20dB below peak output power	

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit in restricted band:

Frequency of emission	Field strongth(u)//m)	Measurement
(MHz)	Field strength(μV/m)	distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Condition

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Frequency of emission	Frequency of emission RBW/VBW	
(MHz)		
30-1000	120kHz/300kHz	5
1000-4000	1MHz/3MHz	15
4000-18000	1MHz/3MHz	40
18000-26500	1MHz/3MHz	20

Note:

According to the performance evaluation, the radiated emission margin of EUT is over 20dB in the band from 9kHz to 30MHz. Therefore, the measurement starts from 30MHz to tenth harmonic.

The measurement results include the horizontal polarization and vertical polarization measurements.

Measurement Results:

Mode	Channel	Frequency Range	Test Results	Conclusion
	0	30 MHz ~1 GHz	Fig.22	Р
		1 GHz ~ 18 GHz	Fig.23	Р
	19	30 MHz ~1 GHz	Fig.24	Р
CECK	GFSK 39	1 GHz ~ 18 GHz	Fig.25	Р
GFSK		30 MHz ~1 GHz	Fig.26	Р
		1 GHz ~ 18 GHz	Fig.27	Р
	Power(CH0)	2.38 GHz ~ 2.45 GHz	Fig.28	Р
	Power(CH78)	2.45 GHz ~ 2.5 GHz	Fig.29	Р
1	All channels	18 GHz~ 26.5 GHz	Fig.30	Р

GFSK CH0 (1-18GHz)

Frequency	MaxPeak	Polari	Corr.	Margin	Limit
(MHz)	(dBµV/m)	zation	(dB)	(dB)	(dBµV/m)
14006.000	57.4	Н	12.0	16.6	74.0
15043.000	57.7	V	13.3	16.3	74.0
15675.000	59.4	٧	13.8	14.6	74.0
16160.000	59.8	V	14.5	14.2	74.0
16748.000	60.2	Н	15.1	13.8	74.0
17276.000	60.2	Н	15.4	13.8	74.0

Frequency (MHz)	Average (dBµV/m)	Polari zation	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
14514.000	45.1	V	12.7	8.9	54.0
15174.000	45.6	V	13.1	8.4	54.0
15768.000	47.4	V	14.1	6.6	54.0
16201.000	47.7	V	14.4	6.3	54.0
16833.000	48.4	Н	15.5	5.6	54.0
17295.000	48.2	Н	15.4	5.8	54.0

GFSK CH19 (1-18GHz)

Frequency	MaxPeak	Polari	Corr.	Margin	Limit
(MHz)	(dBµV/m)	zation	(dB)	(dB)	(dBµV/m)
14522.000	57.2	V	12.7	16.8	74.0
15060.000	57.3	V	13.2	16.7	74.0
15683.000	59.0	V	13.9	15.0	74.0
16168.000	60.1	Н	14.5	13.9	74.0
16893.000	60.4	V	15.8	13.6	74.0
17348.000	61.1	V	15.5	12.9	74.0

Frequency (MHz)	Average (dBµV/m)	Polari zation	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
14524.000	45.1	V	12.7	8.9	54.0
15182.000	45.8	V	13.1	8.2	54.0
15692.000	47.5	Н	13.9	6.5	54.0
16234.000	48.0	V	14.5	6.0	54.0
16747.000	48.7	Н	15.0	5.3	54.0
17310.000	48.4	V	15.4	5.6	54.0

GFSK CH39 (1-18GHz)

Frequency	MaxPeak	Polari	Corr.	Margin	Limit
(MHz)	(dBµV/m)	zation	(dB)	(dB)	(dBµV/m)
14456.000	57.1	V	13.1	16.9	74.0
14955.000	57.8	Н	13.7	16.2	74.0
15238.000	59.4	V	13.5	14.6	74.0
16326.000	59.5	V	15.0	14.5	74.0
16749.000	60.9	Н	15.1	13.1	74.0
17295.000	60.2	V	15.4	13.8	74.0

Frequency	Average	Polari	Corr.	Margin	Limit
(MHz)	(dBµV/m)	zation	(dB)	(dB)	(dBµV/m)
14494.000	45.0	V	12.9	9.0	54.0
15051.000	45.7	V	13.3	8.3	54.0
15777.000	47.4	V	14.2	6.6	54.0
16239.000	47.8	V	14.5	6.2	54.0
16779.000	48.4	V	15.2	5.6	54.0
17277.000	48.2	Н	15.4	5.8	54.0

See ANNEX C for test graphs.

Conclusion: Pass

Note:

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss.

 P_{Mea} is the field strength recorded from the instrument.

The measurement results are obtained as described below:

Result= P_{Mea} + A_{Rpl} = P_{Mea} +Cable Loss+Antenna Factor

B.6 AC Powerline Conducted Emission

Test Condition:

Voltage (V)	Frequency (Hz)
120	60

Measurement Result and limit:

BLE (Quasi-peak Limit)-AE2

	,			
Frequency range	Quasi-peak	Result (dBμV)		Conclusion
(MHz)	Limit (dBμV)	Traffic	ldle	Conclusion
0.15 to 0.5	to 56			
0.5 to 5	56	Fig.31	Fig.32	Р
5 to 30	60			

NOTE: The limit decreases linearly with the logarithm of the frequency in the range $0.15\,\mathrm{MHz}$ to $0.5\,\mathrm{MHz}$.

BLE (Average Limit)-AE2

Frequency range	Average-peak	Result (dBμV)		Conclusion	
(MHz)	Limit (dBμV)	Traffic Idle		Conclusion	
0.15 to 0.5	56 to 46				
0.5 to 5	46	Fig.31	Fig.32	Р	
5 to 30	50				

NOTE: The limit decreases linearly with the logarithm of the frequency in the range $0.15\,\mathrm{MHz}$ to $0.5\,\mathrm{MHz}$.

BLE (Quasi-peak Limit)-AE3

Frequency range Quasi-peak		Result	Canalusian	
(MHz)	Limit (dBμV)	Traffic	ldle	Conclusion
0.15 to 0.5	Fig.33 to 56			
0.5 to 5	56	Fig.33	Fig.34	Р
5 to 30	60			

NOTE: The limit decreases linearly with the logarithm of the frequency in the range $0.15\,\mathrm{MHz}$ to $0.5\,\mathrm{MHz}$.

BLE (Average Limit)-AE3

Frequency range	Average-peak	Result (dBμV)		Conclusion	
(MHz)	Limit (dBμV)	Traffic Idle		Conclusion	
0.15 to 0.5	56 to 46				
0.5 to 5	46	Fig.33	Fig.34	Р	
5 to 30	50				

NOTE: The limit decreases linearly with the logarithm of the frequency in the range $0.15\,\mathrm{MHz}$ to $0.5\,\mathrm{MHz}$.

Note: The measurement results include the L1 and N measurements.

See ANNEX C for test graphs.

ANNEX C: TEST FIGURE LIST

Fig. 1 Maximum Peak Output Power(GFSK, Ch 0)

Fig. 2 Maximum Peak Output Power(GFSK, Ch 19)

Fig. 3 Maximum Peak Output Power(GFSK, Ch 39)

Fig. 4 Power Spectral Density (Ch 0)

Fig. 5 Power Spectral Density (Ch 19)

Fig. 6 Power Spectral Density (Ch 39)

Fig. 7 Occupied 6dB Bandwidth (Ch 0)

Fig. 8 Occupied 6dB Bandwidth (Ch 19)

Fig. 9 Occupied 6dB Bandwidth (Ch 39)

Fig. 10 Band Edges (Ch 0)

Fig. 11 Band Edges (Ch 39)

Fig. 12 Conducted Spurious Emission (Ch0, Center Frequency)

Fig. 13 Conducted Spurious Emission (Ch0, 30 MHz-1 GHz)

Fig. 14 Conducted Spurious Emission (Ch0, 1 GHz-18 GHz)

Fig. 15 Conducted Spurious Emission (Ch19, Center Frequency)

Fig. 16 Conducted Spurious Emission (Ch19, 30 MHz-1 GHz)

Fig. 17 Conducted Spurious Emission (Ch19, 1 GHz-18 GHz)

Fig. 18 Conducted Spurious Emission (Ch39, Center Frequency)

Fig. 19 Conducted Spurious Emission (Ch39, 30 MHz-1 GHz)

Fig. 20 Conducted Spurious Emission (Ch39, 1 GHz-18 GHz)

Fig. 21 Conducted Spurious Emission (All channels, 18 GHz-26 GHz)

Fig. 22 Radiated Spurious Emission (Ch0, 30 MHz-1 GHz)

Fig. 23 Radiated Spurious Emission (Ch0, 1 GHz-18 GHz)

Fig. 24 Radiated Spurious Emission (Ch19, 30 MHz-1 GHz)

Fig. 25 Radiated Spurious Emission (Ch19, 1 GHz-18 GHz)

Fig. 26 Radiated Spurious Emission (Ch39, 30 MHz-1 GHz)

Fig. 27 Radiated Spurious Emission (Ch39, 1 GHz-18 GHz)

Fig. 28 Radiated Emission Power (GFSK, Ch0, 2380GHz~2450GHz)

Fig. 29 Radiated Emission Power (GFSK, Ch39, 2450GHz~2500GHz)

Fig. 30 Radiated emission: 18 GHz - 26 GHz

Fig. 31 AC Powerline Conducted Emission (Traffic, AE1)

MEASUREMENT RESULT: " QuasiPeak "

Frequency (MHz)	QuasiPeak (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.706000	51.5	FLO	L1	10.0	4.5	56.0
0.734000	48.4	FLO	L1	10.0	7.6	56.0
0.750000	49.7	FLO	L1	10.0	6.3	56.0
0.810000	51.1	FLO	L1	10.1	4.9	56.0
0.862000	24.2	FLO	L1	10.0	31.8	56.0
0.918000	16.3	FLO	N	10.1	39.7	56.0

MEASUREMENT RESULT: " Average "

Frequency (MHz)	CAverage (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.706000	39.9	FLO	L1	10.0	6.1	46.0
0.758000	40.3	FLO	L1	10.1	5.7	46.0
0.802000	38.3	FLO	L1	10.1	7.7	46.0
0.846000	36.4	FLO	L1	10.0	9.6	46.0
0.854000	9.4	FLO	L1	10.0	36.6	46.0
1.762000	9.3	FLO	L1	10.1	36.7	46.0

Fig. 32 AC Power line Conducted Emission (Idle, AE1)

MEASUREMENT RESULT: " QuasiPeak "

Frequency (MHz)	QuasiPeak (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.618000	35.5	FLO	L1	10.0	20.5	56.0
0.662000	48.1	FLO	L1	10.0	7.9	56.0
0.718000	40.3	FLO	L1	10.0	15.7	56.0
0.762000	51.8	FLO	L1	10.1	4.2	56.0
0.810000	52.0	FLO	L1	10.1	4.0	56.0
0.866000	46.6	FLO	L1	10.1	9.4	56.0

MEASUREMENT RESULT: " Average "

Frequency (MHz)	CAverage (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.410000	34.3	FLO	L1	10.0	13.4	47.6
0.454000	40.6	FLO	L1	10.0	6.2	46.8
0.654000	39.1	FLO	L1	10.0	6.9	46.0
0.706000	42.7	FLO	L1	10.0	3.3	46.0
0.758000	44.7	FLO	L1	10.1	1.3	46.0
0.810000	44.6	FLO	L1	10.1	1.4	46.0