

From <u>local</u> to <u>global</u>: a new perspective of Hepatitis B Virus Genotyping framework

指导老师 : 吴家睿 梁 治

答辩人 : 周 鑫 SA11008910

Outline of ShwinGen

- 1. Background and Motivation
- 2. Training Set Retrieve ...
 - NCBI Data Retrieve
 - 2. REGA Genotype
- Correlation Position Determination Via ICA ...
 - 1. ICA among Different Loci of Genome
 - 2. ICA among Different Sequences
- 4. Genotyping Short Windows Selection
- 5. Barcode Design
- 6. Next Generation Sequencing of Short Windows ...
 - 1. Control Template Design
 - 2. Noise Removal
- 7. HBV Subtype Inference
- 8. Analysis between Subtype Shift and Drug Therapy

Outline of ShwinGen

1. Background and Motivation

- 2. Training Set Retrieve ...
 - NCBI Data Retrieve
 - 2. REGA Genotype
- 3. Correlation Position Determination Via ICA ...
 - 1. ICA among Different Loci of Genome
 - 2. ICA among Different Sequences
- 4. Genotyping Short Windows Selection
- 5. Barcode Design
- 6. Next Generation Sequencing of Short Windows ...
 - 1. Control Template Design
 - 2. Noise Removal
- 7. HBV Subtype Inference
- 8. Analysis between Subtype Shift and Drug Therapy

Background and Motivation

Features	Description	p-value
Age	30.3 (19,52)	
Gender(male/female)	32 / 6	
Alanine aminotransferase(IU/mL)		0.026 *
Pre-treatment	161.8(45-611)	
After-treatment	65.1 (16-451)	
HBV DNA (Log(copies/mL))		0.046 *
Pre-treatment	9.5 (7.3-11.1)	
After-treatment	7.3 (3.0-10.6)	
Hepatitis B e antigen (+/-)		0.024 *
Pre-treatment	38 / 0	
After treatment	<mark>20</mark> /18	

Characteristics of the 38 ADV-treated chronic hepatitis B patients 200 samples

Significant Subtype Shift

Significant Subtype shift have been found after AVD treatment

Background and Motivation

HBV Genome Structure ... Totally overlapped and Conservation

Outline of ShwinGen

- 1. Background and Motivation
- 2. Training Set Retrieve ...
 - 1. NCBI Data Retrieve
 - 2. REGA Genotype
- 3. Correlation Position Determination Via ICA ...
 - 1. ICA among Different Loci of Genome
 - 2. ICA among Different Sequences
- 4. Genotyping Short Windows Selection
- 5. Barcode Design
- 6. Next Generation Sequencing of Short Windows ...
 - 1. Control Template Design
 - 2. Noise Removal
- 7. HBV Subtype Inference
- 8. Analysis between Subtype Shift and Drug Therapy

Independent Position Subsets

NCBI and REGA Retrieve ... 1109 Standard Subtypable Sequences

<u>SMOTE</u> of Subtype Unbalanced Dataset ... To Balanced Dataset

Independent Position Subsets

NCBI and REGA Retrieve ... 1109 Standard Subtypable Sequences

<u>SMOTE</u> of Subtype Unbalanced Dataset ... To Balanced Dataset

Loci Conservation

inter-Position Correlation

$$C_{ij}^{ab} = f_{ij}^{ab} - f_i^{(a)} f_j^{(b)}$$

$$\hat{C}_{ij}^{ab} = \phi(D_i^{(a)})\phi(D_j^{(b)}) C_{ij}^{ab} \qquad \phi(D) = \frac{\partial D}{\partial f}$$

$$\widehat{C_{ij}} = \phi_i \phi_j (\langle X3d_{si}X3d_{sj} \rangle_s - \langle X3d_{si} \rangle_s \langle X3d_{sj} \rangle_s)$$

 $\widehat{\textbf{C}_{ij}}$ means the correlation between each pair of loci i and loci j

Inter-positional correlation

Considering KL entropy as change tradeoff

Correlation average of C project the 3D tensor Matrix to M x L (sequence and loci position) **X**

$$\tilde{C} = \frac{\widetilde{X}^T \widetilde{X}}{M}$$
 and $\tilde{S} = \frac{\widetilde{X}\widetilde{X}^T}{M}$

nter-sequential correlation

Correlation Network Cleanup

Correlation observed among different loci always contain many in-direct trans-effect

$$G_{dir} = G_{obs}(I + G_{obs})^{-1}$$

$$G_{obs} = G_{dir} + G_{dir}^{2} + G_{dir}^{3} \dots$$

Inter-Positional Correlation is almost direct between each pairs of position 89.02% loci are directly correlated with each other

Correlation Network Cleanup

True network $G_{dir} = U\Sigma_{dir}U^{-1}$ $\begin{pmatrix} \lambda_i^{dir} & 0 & 0 \\ 0 & \lambda_i^{dir} \\ \vdots & \vdots & \ddots \\ 0 & & \lambda_n^{dir} \end{pmatrix}$ Network deconvolution $\lambda_i^{dir} = \frac{\lambda_i^{obs}}{1 + \lambda_i^{obs}}$ $\lambda_i^{obs} = \frac{\lambda_i^{obs}}{1 + \lambda_i^{obs}}$

Correlation observed among different loci always contain many in-direct trans-effect

$$G_{dir} = G_{obs}(I + G_{obs})^{-1}$$

$$G_{obs} = G_{dir} + G_{dir}^2 + G_{dir}^3 \dots$$

Inter-Positional Correlation is almost direct between each pairs of position 89.02% loci are directly correlated with each other

Blind Source of Correlation Matrix

352 uncorrelated loci histogram on HBV genome $S:Loci\ dependent\ WZ=S\ From\ Z\to S$

Blind Source of Correlation Matrix

352 uncorrelated loci histogram on HBV genome $S: Loci dependent WZ=S From Z \rightarrow S$

$$\Delta W = \mathcal{E}(I_k + (1 - f(-WZ)(WZ)^T)W :$$

891 loci kept for 95% recovery

517 loci kept for 85% recovery

Subtype and Independent Component $\tilde{s} = \frac{\tilde{X}\tilde{X}^T}{M}$

Ranking KL-diversity of each loci into sequence correlation matrix increase the performance of HBV subtype Category in ICA

Sequence Eigen-vector

Subtype and Independent Component $s = \frac{\tilde{X}X^T}{M}$

Ranking KL-diversity of each loci into sequence correlation matrix increase the performance of HBV subtype Category in ICA

Unbalanced subtype combination(pure)

De-noise out orthogonal source of subtype

Outline of ShwinGen

- 1. Background and Motivation
- 2. Training Set Retrieve ...
 - NCBI Data Retrieve
 - 2. REGA Genotype
- 3. Correlation Position Determination Via ICA ...
 - 1. ICA among Different Loci of Genome
 - 2. ICA among Different Sequences
- 4. Genotyping Short Windows Selection
- 5. Barcode Design
- 6. Next Generation Sequencing of Short Windows ...
 - Control Template Design
 - 2. Noise Removal
- 7. HBV Subtype Inference
- 8. Analysis between Subtype Shift and Drug Therapy

Short Window For Classification

Non-Correlated Loci are sparse and they are conserved at same time On the other hand, Since sequence of different subtype can be clustered well by ICA, we can describe each subtype with PSSM center

Short Window For Classification

Non-Correlated Loci are sparse and they are conserved at same time On the other hand, Since sequence of different subtype can be clustered well by ICA, we can describe each subtype with PSSM center

Compressed sense of HBV subtype

Flat Clustering Of Hierarchical Structure is a hard problem

$$Ax = B$$

 $x = (0,0,...,1,1,...1,0)$

Compressed sense of HBV subtype

Flat Clustering Of Hierarchical Structure is a hard problem

Short window genotype ability

0.9 0.85 0.8 0.75

0.7

0.6

0.55 0.5 0.45 0.4

0.35 0.3

0.25 0.2 0.15 0.1 0.05

RT region for pyro-sequencing: window of nt [619,879] (261bp) + primer(40bp)

Most suitable region for solexa sequencing: window of nt [1446,1544] (99bp) + primer (40bp)

Primer constrain + specificity + context constrain

.. For Barcode Design CSP

Short window genotype ability

RT region for pyro-sequencing: window of nt [619,879] (261bp) + primer(40bp)

Most suitable region for solexa sequencing: window of nt [1446,1544] (99bp) + primer (40bp)

Primer constrain + specificity + context constrain

.. For Barcode Design CSP

Short window genotype ability

RT region for pyro-sequencing: window of nt [619,879] (261bp) + primer(40bp)

Most suitable region for solexa sequencing: window of nt [1446,1544] (99bp) + primer (40bp)

Primer constrain + specificity + context constrain

.. For Barcode Design CSP

Outline of ShwinGen

- 1. Background and Motivation
- 2. Training Set Retrieve ...
 - 1. NCBI Data Retrieve
 - 2. REGA Genotype
- 3. Correlation Position Determination Via ICA ...
 - 1. ICA among Different Loci of Genome
 - 2. ICA among Different Sequences
- 4. Genotyping Short Windows Selection
- 5. Barcode Design
- 6. Next Generation Sequencing of Short Windows ...
 - 1. Control Template Design
 - 2. Noise Removal
- 7. HBV Subtype Inference
- 8. Analysis between Subtype Shift and Drug Therapy

Standard Build

Standard Build

And recover ratio's Infimum is 0.02%

Noise Removal

5	flow intensity =1	
3	log normal transform EM (GMM quality file	▶ ■
2		
1		

FlowIr	E	\$ 🔻	Prob 💌
3.62	4	0.021393	0.998211
4.4	4	0.021393	0.98641
1.52	2	0.078356	0.998669
0.82	1	0.326043	1
6.23	5	0.000449	0.987954
6.06	5	0.000449	0.992621
4.41	4	0.021393	0.985788
5.79	5	0.000449	0.984649
3.44	4	0.021393	0.862544

	Consensus	- TT - GGG
:	Conservation	
iterate profile	RefSeq_C(f)	- TT-GGG
MSA	GOFB8DQ01CD5EM(f)	- TT - GGG
\longrightarrow	GOFB8DQ01CTX2N(f)	- TT - GGG
ŕ	GOFB8DQ01B1U1M(f)	- TT-GGG
	GOFB8DQ01CSDD3(f)	- TT - GGG
	GOFB8DQ01DLIX3(f)	- TT - GGG
	GOFB8DQ01A0S21(f)	- TT - GGG
	GOFB8DQ01B6R4J(f)	- TT - GGG

GOFB8DQ01BZNU1(f) - T T - G G G - - C

Noise Removal

5.79

3.44

0.984649

0.862544

GOFB8DQ01B6R4J(f) GOFB8DQ01BZNU1(f)

0.000449

0.021393

Reads Genotype assignment via MAP from PSSM

$$\widehat{Genotype}_{\text{MLE}}('atcg....') = \operatorname{argmax}_{\text{Genotype}} \sum_{n=1}^{L} \log (P(\text{Genotype})P(S_n|\text{Genotype}))$$

Subtype Distribution

Outline of ShwinGen

- 1. Background and Motivation
- 2. Training Set Retrieve ...
 - 1. NCBI Data Retrieve
 - 2. REGA Genotype
- 3. Correlation Position Determination Via ICA ...
 - 1. ICA among Different Positions of Genome
 - 2. ICA among Different Sequences
- 4. Genotyping Short Windows Selection
- 5. Barcode Design
- 6. Next Generation Sequencing of Short Windows ...
 - 1. Control Template Design
 - 2. Noise Removal
- 7. HBV Subtype Inference
- 8. Analysis between Subtype Shift and Drug Therapy

Subtype Distribution

Genotype B Genotype C

13 Subtype Shift in Sanger Detected By NGS

CHB display B subtype preference

Conclusion

- Classify HBV subtype via short segment
- Compressed representation of HBV genome
- **First time** to retrieve HBV subtype and recombination chimera via **ICA** (Blind source recover)
- Convince the assumption that ADV resistance is from mix infection
- Pipeline construction of short window segment sequencing by 454 or Solexa
- NGS data's noise removal by different algorithms is taken into account
- First paper [Analysis of HBV genotype shift and correlation with antiviral efficiency during adefovir dipivoxil therapy by deep sequencing] has been submitted to Journal of Hepatology
- And [ICA's application in HBV subtype classification]'s manuscript is in preparation

Thanks for everyone's help very much these 3 years
Thanks for everyone's listening very much
Thanks for your attention and questions