turmas e dos professores. Os autores denominam "compacidade" como sendo a necessidade de se compactar uma grade horária ao máximo, procurando diminuir o número de janelas, tanto de professores como de alunos. No artigo, há um esclarecimento importante em relação ao sistema educacional espanhol: a possibilidade de existência de janelas nas turmas. Logo, o modelo teve ter como objetivo deixar vagos apenas períodos iniciais ou finais para que a IE não ofereça uma grade horária que mantenha alunos na escola sem aula (exceção feita ao intervalo). Isso é algo que não acontece no sistema brasileiro, pois, com raras exceções, a grade horária apresenta exatamente o número de aulas previsto na grade curricular. Finalmente, os autores validaram seus algoritmos em 14 (quatorze) bases de dados de escolas de diferentes portes (apenas a maior instância está apresentada na linha [6] do Quadro 4), afirmando que obtiveram boas soluções. Porém, o trabalho não apresenta o tempo de execução para cada instância.

				Parâmetros				Dime		es		Técnica								
			Turmas	Disciplinas	Professores	Locais de aula	Turmas	Professores	Locais de aula	Aulas		MIP	Heurísticas	~	A	GRASP	_	CLP	7	Outras
Autores	Ano	País		Ä	쥬	ř		_	_	-	Tempo	M	Ξ	E	GA	5	SA	C	Z	0
1 Gotlieb	1962	Canadá	✓				111		107	NI	NI	V								
2 Lawrie	1969	Inglaterra	✓	✓	✓		NI	74		NI	NI	✓								
3 De Werra	1970	Canadá	V	✓	✓		48	84		NI	50 min*		✓							
4 Gans	1981	Holanda	✓	✓	✓	✓	NI	NI	NI	NI	NI		✓							
5 Abramson	1991	Austrália	V		✓	✓	101	37	24	3030	14 h						✓			
6 Alvarez-Valdes et al	1996	Espanha	✓		✓	✓	26	60	NI	1100	NI			✓						
7 Wright	1996	Inglaterra	V	✓	✓		NI	80		NI	NI			✓.						
8 Birbas et al.	1997	Grécia	✓	✓	✓		21	46		721	NI	✓								
9 Colomi et al.	1998	Itália	✓	✓	✓		10	24		300	8 h			✓	✓		✓			
10 Schaerf	1999ъ	Itália	✓		✓		38	61		1368	4,5 h			✓						
11 Smith et al.	2003	Austrália	✓		✓	✓	8	8	8	240	7,2 min								✓	
12 Valouxis; Housos	2003	Grécia	✓	✓	✓		9	23		315	1 h							✓		
13 Carrasco; Pato	2004	Portugal	✓		✓	✓	92	107	27	626	8,6 min								✓	
14 Santos; Ochi; Souza	2004	Brasil	✓		✓		20	33		500	NI			✓						
15 Moura et al.	2004	Brasil	✓		✓		NI	NI		NI	4 min			✓.	✓	✓				✓
16 Avella et al.	2007	Itália	✓		✓		43	82		1548	20 min						✓			✓
17 Marte	2007	Alemanha	✓		✓	✓	**	91	NI	1157	NI							✓		
18 Jacobsen et al.	2007	Alemanha	✓		✓	✓	**	91	NI	1157	100 s			✓				✓		
19 Santos; Souza	2007	Brasil	✓		✓		20	33		NI	NI	✓	✓	✓	✓		✓			✓
20 Belingiannis et al.	2008	Grécia	✓	✓	✓		13	35		455	45 min				✓					
21 Birbas et al.	2008	Grécia	✓.	✓	✓		21	48	NI	404	4 min	✓.								
22 Belingiannis et al.	2009	Grécia	✓	✓	✓		13	35		455	45 min				✓					
23 Zhang et al.	2010	***	✓	✓	✓		13	35		455	3,5 min						✓			

NI: Não Informado

Quadro 4 - Resumo dos trabalhos anteriores Fonte: elaborado pelo autor

Wright (1996) também desenvolveu um modelo baseado na meta-heurística *tabu* search, porém baseado no modelo educacional inglês. A rigidez do *UK National Curriculum*

^{* 5%} não solucionado

^{**} No modelo alemão, alunos - e não turmas - são alocados

^{***} Os autores são de diversos países. O estudo não aponta o país em que o modelo foi baseado