Embedded Real-Time Control

A.A. 2022/2023

Bettin Paolo - 2089152 Vitetta Emanuele - 2082149 Merolli Martina – 2072012 Guglielmin Giorgia – 2088623 Bonaventura Luca - 2090005

Laboratory 1 – Basics

Schematics of the I2C communication interface in the TurtleBot for the register reading

Program flowchart

Implementation details

Char To Decimal Conversion

X [dec] = X [char] - 48

Keypad

Rows and Columns in C matrix

About laboratory 1 Extra...

CountBit()

• Original data

• Bitwise negation

0001

• Decrease by one because indexes starts from 0

• Count the number of 1 in the string (AND + right shift)

Example for row/column 1 (only 4 out of 8 bits reported)

Laboratory 2 – Camera stabilizer

Control loop

The following controllers for PAN and TILT angle work independently since they act on different axes (the also rely on different measurements)

Data logging

Gyroscope: x-axis Amplitude [rad/s] 15 0 5 10 Time[s] Gyroscope: y-axis Amplitude [rad/s] 0 15 10 5 Time[s] Gyroscope: z-axis Amplitude [rad/s] 10 0 15 5 Time[s]

Axis perpendicular to the ground: 9.8 [m/s] (gravity acceleration)

Laboratory 3 – Motor control

DRV8871 - Bridge control

DRV8871 is a brushed DC motor driver that can control a motor bidirectionally by implementing an **H-Bridge**. In order to use it we have to use _HAL_TIM_SET_COMPARE()

Quadrature encoder

It converts position information into an electrical signal. This encoder works in quadrature. Work in series with a filter to reduce noise

IN1	IN2	OUT1	OUT2	Mode name
0	0	Hi-z	Hi-z	Coast
0	1	L	H	Reverse
1	0	H	L	Forward
1	1	\mathbf{L}	L	Brake

Flowchart

This scheme is the same for each motor, but they are indipendent

Results

Laboratory 4 – Line tracker

Polulu reflectance sensor

Control architecture

Conclusions

FreeRTOS

FreeRTOS (Free Real Time Operating System) is a real-time OS kernel for embedded device.

- 1. Simplify tasks scheduling (Lab1 Extra and Lab2 Ex2)
- 2. Enable Safer Inter-Task communications (Lab2 Ex3-4)

Tasks

Each task is an execution unit with the following properties:

- 1. One task execute at a time;
- 2. No knowledge on scheduler activity;
- 3. Own stack to save exec. Content;
- 4. Can be prioritized;
- 5. Can be in one of the four states;

Laboratory 1 Extra – Task Scheduling

Semaphores are used to coordinate task execution

Laboratory 5 Ex 2 – Resource usage

Similar working principle as EX 1 Extra

Laboratory 5 Ex3-4 – Mutex and Queue

A task can access a critical region only if the mutex is locked (check if other tasks are already in the critical region)

Conclusions

- ✓ All the given tasks has been successfully developed and tested (all extra points too)
 - ✓ Perfect camera stabilization
 - ✓ Good PID performances (it could have been tuned better)
- ✓ Good performance obtained in line following, being able to complete the most complex circuit.
- ✓ Only Lab 5 ex 4 on queues has not been completed due to lack of time (program compiles but does not work correctly)