FUNDAÇÃO GETULIO VARGAS - FGV

TRABALHO - Análise de Agrupamentos

Ana Paula Pudo Fábio Monteiro Lucas Sena Alves Marcos Soares

MBA Business Analytics e Big Data | Métodos Matriciais e

Analise de Clusters

Prof. Abraham Laredo Sicsú

Sumário

1. Introdução	4
2. Análises das Variáveis	4
2.1 Identificação das variáveis drivers e descritivas	4
2.1.1 Variáveis Drivers	4
2.1.2 Variáveis Descritivas	4
2.2 Tratamento da base de dados	4
2.3 Análise por variáveis drivers	5
2.3.1 DS_SITUACAO_CANDIDATURA	5
2.3.2 TP_AGREMIACAO	6
2.3.3 ST_REELEICAO	7
2.3.4 ST_DECLARAR_BENS	8
2.3.5 SG_UF	9
2.3.6 DS_CARGO / POR SG_UF	9
2.3.7 SG_UF_NASCIMENTO - POR SG_UF	10
2.3.8 DS_GRAU_INSTRUCAO	12
2.3.9 DS_COR_RACA	13
3. Análise por variáveis descritivas	14
3.1 DS_ESTADO_CIVIL	14
3.4.2 DS_GENERO	15
4. Análise de Clusters obtidos pelo método hierárquico aglomerativo	16
4.1 Caracterização dos grupos	16
4.2 Comparação dos clusters hierárquicos gerados com os drivers	17
4.2.1 DS_SITUACAO_CANDIDATURA	17
4.2.2 TP_AGREMIACAO	17
4.2.3 ST_REELEICAO	18
4.2.4 ST_DECLARAR_BENS	18
4.2.5 SG_UF	18
4.2.6 DS_CARGO	19
4.2.7 SG_UF_NASCIMENTO - POR SG_UF	19
4.2.8 DS_GRAU_INSTRUCAO	20
4.2.9 DS_COR_RACA	21
4.3.1 DS_ESTADO_CIVIL	21
4.3.2 DS_GENERO	22
5. Análise de Clusters obtidos pelo método K-medoid	23

5.1 Análise por variáveis drivers	23
5.1.1 DS_SITUACAO_CANDIDATURA	23
5.1.2 TP_AGREMIACAO	23
5.1.3 ST_REELEICAO	23
5.1.4 ST_DECLARAR_BENS	24
5.1.5 SG_UF	24
5.1.6 DS_CARGO	24
5.1.7 SG_UF_NASCIMENTO	25
5.1.8 DS_GRAU_INSTRUCAO	26
5.1.9 DS_COR_RACA	26
5.2 Variáveis Descritivas	27
5.2.1 DS_ESTADO_CIVIL	27
5.2.2 DS_GENERO	27
7. Conclusões	28

1. Introdução

O processo para a escolha de representantes federais para cargos nos poderes executivo e legislativo ocorre a cada quatro anos no Brasil. Nos pleitos, candidatos devidamente registrados em partidos políticos disputam as cadeiras de deputados estaduais e federais, senadores, governadores e de Presidente da República. Todas as informações cadastrais desses candidatos são reunidas, processadas e disponibilizadas pelo Tribunal Superior Eleitoral (TSE).

Neste estudo, foram analisados candidatos que disputaram cargos de deputado federal e deputado estadual nos estados da Bahia e de São Paulo.

2. Análises das Variáveis

2.1 Identificação das variáveis drivers e descritivas

2.1.1 Variáveis Drivers

- DS_SITUACAO_CANDIDATURA
- TP_AGREMIACAO
- ST_REELEICAO
- ST_DECLARAR_BENS
- SG_UF
- DS_CARGO
- SG_UF_NASCIMENTO
- DS_GRAU_INSTRUCAO
- DS_COR_RACA

2.1.2 Variáveis Descritivas

- DS_ESTADO_CIVIL
- DS_GENERO

2.2 Tratamento da base de dados

Após um tratamento inicial da base de dados original, o data frame ficou com 16 variáveis e 29.145 observações. A partir desta base, optou-se por uma redução do escopo mantendo o número de variáveis, ficando com apenas 4.993 observações, seguindo os seguintes passos:

- a) Restrição para a ABRANGÊNCIA Estadual;
- b) Filtragem para apenas duas Unidades Federativas: *Bahia e São Paulo (tamanho de colégios eleitorais e regiões distintas)*;
 - c) Cargos Deputado Estadual e Deputado Federal;
 - d) Eliminação variáveis:
 - 3 variáveis com missing values em todos os registros;
 - ABRANGÊNCIA:
 - IDADE_DATA_POSSE;

2.3 Análise por variáveis drivers

2.3.1 DS_SITUACAO_CANDIDATURA

A situação da candidatura é definida pela justiça eleitoral, cabe a ela informar se a candidatura está apta ou inapta. 89% dos candidatos mostraram-se aptos para o cargo. O percentual de 11% de inaptos se equivalem nos dois Estados escolhidos nesta base de dados - Bahia e São Paulo.

Tabela 1 - Situação Candidatura

1	APTO	INAPTO I
1	4466	527 I
1	0.894	0.106

Tabela 2 - Situação Candidatura X UF

Cand\$DS_SITUACAO_CANDIDATURA BA SP Row Total		1 (cand\$SG_UF	:		
0.008 0.002	cand\$DS_SITUACAO_CANDIDATURA	1	BA	1	SP I	Row Total I
0.008 0.002		- -		- ا		
0.230 0.770 0.894	APT0	1	1027		3439	4466 I
0.897 0.894		ı	0.008	I	0.002	I
0.206 0.689 INAPTO 118 409 527 0.067 0.020 0.224 0.776 0.106 0.103 0.106 0.024 0.082 Column Total 1145 3848 4993		ı	0.230	1	0.770	0.894
INAPTO 118 409 527		1	0.897	1	0.894	I
0.067 0.020		I	0.206	I	0.689	I
0.067 0.020		-		- ا		
0.224 0.776 0.106 0.106 0.103 0.106	INAPTO	1	118		409	527 I
0.103 0.106 0.024 0.082 Column Total 1145 3848 4993		1	0.067		0.020	I
0.024 0.082 Column Total 1145 3848 4993		1	0.224	1	0.776	0.106 I
Column Total 1145 3848 4993		1	0.103		0.106	I
		1	0.024		0.082	I
		-		- ا		
0.229 0.771	Column Total	I	1145	I	3848	4993 I
, 0.223 , 01 ,		I	0.229	I	0.771	I
		- -		- ا		

2.3.2 TP_AGREMIACAO

A variável agremiação aponta de que forma será a candidatura dos candidatos. A variável apresenta apenas dois níveis de categorização: Coligação e Partido Isolado. Apesar dos totais estarem equilibrados, nota-se que, no Estado da Bahia, apenas 5% estão agremiados em partido isolado. O Estado de São Paulo possui 53% desta camada.

Tabela 3 - Tipo de Agremiação

ı	COLIGAÇÃO	١	PARTIDO	ISOLADO	١
ı		٠ ٠			۱.
ı	2088	I		2905	I
ı	0.418	I		0.582	I
ı		٠ ٠			۱.

Tabela 4 - Tipo de Agremiação x UF

	cand\$SG_UF		
cand\$TP_AGREMIACAO	l BA	I SP	Row Total
COLIGAÇÃO	908	1180	l 2088 l
	384.680	114.464	l I
	0.435	0.565	0.418
	0.793	0.307	l I
	0.182	0.236	l I
PARTIDO ISOLADO	237	1 2668	l 2905 l
	276.493	82.272	l I
	0.082	0.918	0.582
	0.207	0.693	l I
	0.047	0.534	l I
Column Total	1145	3848	l 4993 l
	0.229	0.771	l I

2.3.3 ST_REELEICAO

No cruzamento das variáveis Reeleição e Cargo 96% dos Deputados Estadual e Federal não estão concorrendo à reeleição. Na comparação entre cargos conforme a tabela 6, 54% são Deputados Estaduais e 42% Deputados Federais

Tabela 5 - Situação de Reeleição

	NI	SI
	-	
1	4773 l	220 I
1	0.956 l	0.044

Tabela 6 - Situação de Reeleição X Cargo

cand\$ST_REELEICAO	DEPUTADO ESTADUAL I	DEPUTADO FEDERAL	Row Total
	I		
N I	2686 I	2087	4773
I	0.000	0.001	1
I	0.563 l	0.437	0.956
I	0.956 l	0.956	1
I	0.538 I	0.418	1
I			
SI	125 I	95	220
I	0.011 I	0.014	1
I	0.568 I	0.432	0.044
I	0.044	0.044	1
I	0.025 l	0.019	1
I			
Column Total I	2811 I	2182	l 4993 l
I	0.563 l	0.437	1

2.3.4 ST_DECLARAR_BENS

Esta variável indica se o candidato tem ou não bens a declarar. Em SP e BA, 61% dos candidatos possuem bens para declarar. Optou-se por verificar se o cruzamento da situação da candidatura e a situação da declaração de bens poderia trazer alguns insights, mas este cruzamento não apresentou nenhuma informação relevante.

Tabela 7 - Situação da Declaração de bens

	N I	SI
	-	
1	1942	3051 I
1	0.389	0.611 l

Tabela 8 - Situação da Declaração de bens

1	cand\$DS_SITUACAO_CANDIDATURA				
cand\$ST_DECLARAR_BENS	APTO I	INAPTO	Row Total I		
	I	I			
N I	1629 I	313	1942		
ı	6.718 l	56.932 l	1		
ı	0.839 l	0.161	0.389		
ı	0.365 l	0.594 l	1		
ı	0.326 l	0.063	1		
	I	I			
S I	2837 I	214	3051 I		
ı	4.276 l	36.238	1		
ı	0.930 l	0.070	0.611		
	0.635 l	0.406	1		
ı	0.568 l	0.043	1		
	I	I			
Column Total	4466 I	527 I	4993 I		
ı	0.894	0.106	1		
	I				

2.3.5 SG_UF

SG_ UF significa a Unidade da Federação em que ocorreu a eleição. Para este trabalho selecionamos 2 UFs de amostra para avaliar o perfil dos candidatos a deputado estadual e federal eleitos. A UF de SP elegeu 43% dos Deputados Estaduais inscritos, enquanto a UF da Bahia 13%. Na esfera federal, cargo de deputado federal, a UF de SP elegeu 34 % e a UF da Bahia 10%.

Tabela 9 - UF da candidatura | BA | SP | |-----| | 1145 | 3848 | | 0.229 | 0.771 |

2.3.6 DS_CARGO / POR SG_UF

Tabela 10 - Cargos

I DEPUTADO	ESTADUAL	l	DEPUTADO	FEDERAL	I
		۱-			I
l	2811	l		2182	١
l	0.563	I		0.437	١
		۱-			١

Tabela 11 - Cargos X UF

I	cand\$SG_UF		
cand\$DS_CARGO	BA	I SP	Row Total
DEPUTADO ESTADUAL I	642	2169	l 2811 l
I	0.011	0.003	1
I	0.228	0.772	0.563
ı	0.561	0.564	1
I	0.129	0.434	I I
DEPUTADO FEDERAL I	503	1679	2182
ı	0.014	0.004	1
ı	0.231	0.769	0.437
ı	0.439	0.436	Ι Ι
ı	0.101	0.336	Ι Ι
Column Total I	1145	3848	l 4993 l
ı	0.229	0.771	Ι Ι

2.3.7 SG_UF_NASCIMENTO - POR SG_UF

Na proposta de conhecer melhor o perfil dos candidatos optamos a fazer um cruzamento das variáveis UF de Nascimento com a UF onde ocorreu a eleição, que no caso desta amostra somente consideramos as UFs de SP e BA. A tabela 12 mostra as informações detalhadas de cada UF. Devido ao histórico de algumas décadas SP, foi o estado que mais recebeu migrantes no Brasil, o que justifica os 77% de candidatos vindos de outras UFs.

Tabela 12 -UF Nascimento X UF Eleitos(as)

						ı	,
	cand\$SG_UF			PI	2	l 33	I 35
cand\$SG_UF_NASCIMENTO	I BA I	SP	Row Total		4.525	1.346	I
					0.057	0.943	0.007
AC	. 01	1	1		0.002		I
	0.229				0.000	0.007	I
	0.000	1.000					
	0.000			PR			
	0.000	0.000			26.242		
	0.000 1	0.000			0.008		
AL	 4	32	1 36		0.001		
AL					0.000	l 0.024 	1
	2.194			RJ	 9	•	l 65
	0.111			KJ	2.340		
	0.003				0.138		
	0.001	0.006			0.008		
					0.002		
AM							
	1.212			RN		I 22	I 25
	0.429	0.571	0.001	l	1.303		
	0.003	0.001	I	l	0.120		
	0.001	0.001	I	l I	0.003	0.006	I
				l	0.001	0.004	I
AP	0 1	1	1			l	I
	0.229	0.068	I	RO	0	1 4	1 4
	0.000	1.000	0.000		0.917		
	0.000	0.000	I	l l	0.000		
	0.000	0.000	I		0.000		
					0.000	0.001	1
ВА	I 1036 I	176	I 1212				
2	2067.588	615.226		RR			
	0.855			· 	0.229		
	0.905				0.000 0.000		
	0.207				0.000		
	0.207	0.055	' 	, 	0.000	1	'
			1			1	1

	I	I	
CE	I 7	I 53	I 60 I
	3.321	0.988	
	0.117	0.883	
	0.006	0.014	
	0.001	0.011	ı i
DF	1 3	8	11
	0.090	0.027	l I
	0.273	0.727	0.002
	0.003	0.002	l I
	0.001	0.002	l I
ES	5	12	17
	0.311	0.093	
	0.294	0.706	0.003
	0.004	0.003	
	0.001	0.002	
GO	2	8	10
	0.037	0.011	
	0.200	0.800	0.002
	0.002	0.002	
	0.000	0.002	. !
MA	 0	27	 27
MA	6.192	1.842	
	0.000	1.000	0.005
	0.000	0.007	
	0.000	0.005	i i
MG	I 12	I 172	I 184 I
	21.608	6.430	
	0.065	0.935	0.037
	0.010	0.045	ı i
	0.002	0.034	ı

24	22	2 1	RS I
24	0.664	2.230	1.5
0.005	0.917	0.083	i
0.005	0.006	0.002	i
	0.004	0.000	i
26	25	1	SC I
	1.229	4.130	i
0.005	0.962	0.038	i
	0.006	0.001	ĺ
	0.005	0.000	1
26	16	10	SE I
	0.814	2.734	1
0.005	0.615 I	0.385	1
	0.004	0.009	1
	0.003 I	0.002	1
2890	2870	20	SP I
	185.480	623.341	1
0.579	0.993	0.007	
	0.746	0.017	!
	0.575	0.004	!
			TO 1
2	2	0 1	T0 I
0.000	0.136	0.459 0.000	
0.000	1.000	0.000 0.000	
	0.001 0.000	0.000	
		WWW.W	ا اا
4993	3848	1145	Column Total
4333	0.771	0.229	COLUMN TOCAL T
	0	0.223	:

MS	1	17	18
	2.370	0.705	I I
	0.056	0.944	0.004
	0.001	0.004	I I
	0.000	0.003	l l
	l		lI
MT	1 0	1 5	l 5 l
	1.147	0.341	l I
	0.000	1.000	0.001
	0.000		l I
	0.000	0.001	
PA	1 1	13	14
	1.522		
		0.929	0.003
	0.001		!!
	0.000	0.003	
PB			
	1 4	46	1 50 1
rb	l 4 l 4.861	l 46 l 1.447	50
РБ	4.861	1.447	l l
PD	4.861 0.080	1.447 0.920	
PD	4.861	1.447	l l
rb	4.861 0.080 0.003	1.447 0.920 0.012	l l
PE	4.861 0.080 0.003	1.447 0.920 0.012 0.009	
	4.861 0.080 0.003 0.001 	1.447 0.920 0.012 0.009	 0.010
	4.861 0.080 0.003 0.001 	1.447 0.920 0.012 0.009 	 0.010
	4.861 0.080 0.003 0.001 19 2.518 0.160	1.447 0.920 0.012 0.009 	 0.010 119
	4.861 0.080 0.003 0.001 19 2.518 0.160	1.447 0.920 0.012 0.009 100 0.749 0.840	 0.010 119
PE	4.861 0.080 0.003 0.001 1.19 1.2518 0.160 0.017 0.004	1.447 0.920 0.012 0.009 	0.010
PE	4.861 0.080 0.003 0.001 	1 1.447 0.920 0.012 0.009 1 100 1 00,749 1 0.840 0.026 1 0.020	0.010
PE	4.861 0.080 0.003 0.001 1 19 2.518 0.160 0.017 0.004 	1 1.447 0.920 0.012 0.009 1 100 1 0.749 1 0.840 0.026 0.020 1 33 1 346	
PE	4.861 0.080 0.003 0.001 19 2.518 0.160 0.017 0.004 	1 1.447 0.920 0.012 0.009 1 0.749 0.840 0.026 0.020 0.020 1 33 1 346 0.943	0.010
PE	4.861 0.080 0.003 0.001 	1 1.447 0.920 0.012 0.009 1 0.749 0.840 0.026 0.020 1 0.33 1 1.346 0.943 0.009	0.010
PE	4.861 0.080 0.003 0.001 19 2.518 0.160 0.017 0.004 	1 1.447 0.920 0.012 0.009 1 100 0.749 0.840 0.026 0.020 1 33 1 1.346 0.943 0.009	0.010

2.3.8 DS_GRAU_INSTRUCAO

Em uma sequência crescente a maior parte dos candidatos possuem o ensino médio completo e superior completo conforme tabela 13.

Tabela 13 Grau de Instrução

EFC	EFI	EMC	EMI	LÊ E ESC	SC	SI
244	147	1357	162	24	2568	491
0.049	0 029	0 271	0.032	0.005	0 515	0 098

EFC: Ensino Fundamental Completo EFI: Ensino Fundamental Incompleto

EMC: Ensino Médio Completo EMI: Ensino Médio Incompleto

Lê e Esc: Lê e Escreve SC: Superior Completo SI: Superior Incompleto

2.3.9 DS_COR_RACA

De acordo com a autodeclaração dos candidatos, 61% são da Cor/Raça Branca, sendo 52% eleitos na UF de SP. Dos 24 % autodeclarados Pardos, 12% estão na UF da Bahia e 13 % em São Paulo.

Tabela 14 Cor e Raça

١	AMARELA I	BRANCA I	INDÍGENA I	PARDA I	PRETA I
١	-	-			
١	39	3041 I	16 I	1219	678 I
١	0.008	0.609	0.003 I	0.244	0.136 I
١	-	-		I	

Tabela 15 Cor e Raça x UF Eleitos

1	cand\$SG_UF		
cand\$DS_COR_RACA	BA I	SP	Row Total
AMARELA	4	35	 39
AMARLEA	2.733	0.813	
	0.103	0.897	0.008
i	0.003	0.009	0.000 1
i	0.001	0.007	i
BRANCA I	287 I	2754	3041 I
1	241.480	71.854	l I
I	0.094	0.906	0.609
1	0.251 l	0.716	l I
1	0.057	0.552	I
INDÍGENA	7	9	16
	3.024	0.900	
	0.438	0.562	0.003
	0.006	0.002	!
	0.001	0.002	
PARDA	584	635	1219
IANDA	331.594	98.668	1215 1
i	0.479	0.521	0.244
ï	0.510	0.165	
i	0.117	0.127	i
PRETA I	263 I	415	678 I
I	74.355	22.125	l I
I	0.388	0.612	0.136 l
I	0.230	0.108	l I
I	0.053 I	0.083	I
Column Total	1145	3848	4993
!	0.229	0.771	

3. Análise por variáveis descritivas

As variáveis descritivas deste estudo dizem respeito ao estado civil dos candidatos e ao gênero. As seguintes análises foram realizadas:

3.1 DS_ESTADO_CIVIL

Apenas como um aspecto descritivo verificamos que 53% dos candidatos são casados e 31% solteiros.

Tabela 16 Estado Civil

1	VIÚVO(A)	SOLTEIRO(A)	SEPARADO(A) JUDICIALMENTE	DIVORCIADO(A)	CASADO(A)	
	91	1540	54	651	2657	
	0.018	0.308	0.011	0.130	0.532	
į.						

3.4.2 DS_GENERO

O cenário político brasileiro ainda é dominado por uma maioria masculina - 68%. No cruzamento da variável Gênero com Cargos verificamos que o gênero feminino ocupou 18% no cargo de deputado estadual e 14% para deputado federal. Uma parte ainda tímida dentro da política brasileira.

Tabela 17 Gênero

1	FEMININO	MASCULINO I
۱-	·	I
1	1581 I	3412 I
1	0.317 I	0.683 l
1-		

Tabela 18 Gênero X Cargo

I	cand\$DS_CARGO		
cand\$DS_GENERO	DEPUTADO ESTADUAL	I DEPUTADO FEDERA	L Row Total
		-	
FEMININO I	892	1 68	9 1581
1	0.004	0.00	5
I	0.564	0.43	6 0.317
I	0.317	0.31	6
I	0.179	0.13	8
		-	
MASCULINO I	1919	149	3 3412
I	0.002	0.00	2
I	0.562	0.43	8 0.683
1	0.683	0.68	4
I	0.384	0.29	9
		-	
Column Total I	2811	1 218	2 4993
1	0.563	0.43	7 I I
		-	

4. Análise de Clusters obtidos pelo método hierárquico aglomerativo

4.1 Caracterização dos grupos

Utilizando o método hierárquico aglomerativo, os registros foram agrupados em dois clusters, conforme apresentado no Dendograma abaixo.

Gráfico 1 - Dendrograma HC

cand.dist hclust (*, "ward.D2")

4.2 Comparação dos clusters hierárquicos gerados com os drivers

4.2.1 DS_SITUACAO_CANDIDATURA

I	cand\$hc2		
cand\$DS_SITUACAO_CANDIDATURA	1	1 2	Row Total
APTO I	1024	3442	l 4466 l
I	0.229	0.771	0.894
INAPTO	116	l 411	527
I	0.220	0.780	0.106
Column Total I	1140	3853	l 4993 l

Com relação ao driver DS_SITUACAO_CANDIDATURA o cluster 2 é identificado como candidatos APTOS ao pleito eleitoral, que representa 77% do total de candidatos.

4.2.2 TP_AGREMIACAO

1	cand\$hc2		
cand\$TP_AGREMIACAO	1	2 1	Row Total
COLIGAÇÃO I	905 I	1183	2088
	0.433 l	0.567	0.418
	I		
PARTIDO ISOLADO	235	2670	2905 I
1	0.081	0.919	0.582
Column Total I	1140	3853	4993 I

Com relação ao driver TP_AGREMIACAO, candidatos cujo partido possui coligação, estão distribuídos de maneira uniforme entre os dois clusters.

Já os candidatos cujo partido não possui coligação, estão agrupados em sua maioria (92%) no cluster 2.

4.2.3 ST_REELEICAO

1	cand\$hc2		
cand\$ST_REELEICAO	1	1 2	Row Total
N I	1058	3715	l 4773 l
	0.222	0.778	0.956
S I	82	138	220
	0.373	0.627	0.044
Column Total	1140	3853	l 4993 l

Com relação ao driver ST_REELEICAO, o cluster 2 agrupa a maioria proporcional dos candidatos, independentemente da ocupação de um mandato eleitoral vigente.

4.2.4 ST_DECLARAR_BENS

	l cand\$hc2		
cand\$ST_DECLARAR_BENS	1 1	2	Row Total
N	l 433 l	1509	1942
	0.223	0.777	0.389
S	l 707 l	2344	3051
	0.232	0.768	0.611
Column Total	1140	3853	4993

Com relação ao driver ST_DECLARAR_BENS, o cluster 2 agrupa a maioria proporcional dos candidatos, independentemente de possuírem bens declarados ou não.

4.2.5 SG_UF

cand\$SG_UF	cand\$hc2 1		Row Total
BA 		21 0.018	1145 0.229
SP I		3832	3848 0.771
Column Total I	1140	3853	4993

Com relação ao driver ST_UF, o cluster 1 está caracterizado, em sua maioria, por candidatos que disputaram cargos públicos no estado da Bahia, enquanto o cluster 2 agrupa predominantemente candidatos do estado de São Paulo.

4.2.6 DS_CARGO

1	cand\$hc2		
cand\$DS_CARGO	1	2	Row Total
DEPUTADO ESTADUAL I	647	2164	2811
I	0.230	0.770	0.563
DEPUTADO FEDERAL I	493	1689	2182
	0.226	0.774	0.437
Column Total	1140	3853	4993

Com relação ao driver DS_CARGO, o cluster 2 agrupa a maioria dos candidatos, independentemente da ocupação de um mandato eleitoral vigente.

4.2.7 SG_UF_NASCIMENTO - POR SG_UF

	CHIMPITE						
cand\$SG_UF_NASCIMENTO	1	2	Row Total	 			
AC I	0.000	1.000	0.000	·		17 0.944	0.004
AL AL	3 I 0.083 I	33 0.917		MT I	0.000 I	5 1.000	5 0.001
AM	3 0.429	4 0.571			0 I 0.000 I	14 1.000	0.003
AP I	0 .000 l	1 1.000	1		4 0.080	46 0.920 	0.010
BA	1046 I	166	1212	PE 	16 0.134	103 0.866 	0.024
 CE	0.863 7	0.137 53		l PI I	2 0.057	33 0.943	
 DF	0.117 3		0.012 11	l I	1 0.008	122 0.992	
	0.273	0.727	0.002	I RJ I	7 0.108	58 I 0.892 I	65 0.013
ES 	0.294 l	12 0.706 		RN I	3 0.120	22 I 0.880 I	25 0.005
GO 	0.200 l	0.800 0.800	0.002	RO I	0 I 0.000 I	4 1.000	4 0.001
MA	0.000	27 1.000	27	KK I	0.000	1 1.000	0.000
MG I	11 0.060	173 0.940	184 0.037		1 I 0.042 I	23 I 0.958 I	24 0.005
				-	-		

26	25	1	SC I
0.005	0.962	0.038	!
26	17	9	SE I
0.005	0.654	0.346	1
2890	2875 I	15 I	SP
0.579	0.995	0.005	1
2	2	0	T0 I
0.000	1.000	0.000	1
4993	3853	1140	Column Total

Percebe-se aqui uma repetição dos clusters e, portanto, esta análise não gera informações relevantes para o estudo.

4.2.8 DS_GRAU_INSTRUCAO

	l cand\$hc2		
cand\$DS_GRAU_INSTRUCAO	l 1 	l 2	Row Total
ENSINO FUNDAMENTAL COMPLETO	32 0.131		0.049
ENSINO FUNDAMENTAL INCOMPLETO	36 0.245		
ENSINO MÉDIO COMPLETO	386 0.284		
ENSINO MÉDIO INCOMPLETO	46 0.284	116 0.716	0.032
LÊ E ESCREVE	0.167	20	24
SUPERIOR COMPLETO	528 0.206		
SUPERIOR INCOMPLETO	108 0.220		
Column Total	1140	3853 	

Com relação ao driver DS_GRAU_INSTRUCAO, o cluster 2 agrupa a maioria dos candidatos, independentemente do nível de escolaridade deles.

4.2.9 DS_COR_RACA

I	cand\$hc2		
cand\$DS_COR_RACA	1	l 2 I	Row Total
AMARELA I	3	I 36	39
!	0.077	0.923	0.008
BRANCA	278	l 2763	 3041
1	0.091	0.909	0.609
		l	
INDÍGENA	7	1 9	16
I.	0.438	0.562	0.003
PARDA I	584	1 635	1219
!	0.479	0.521	0.244
PRETA	268	l 410	 678
	0.395	0.605	0.136
Column Total	1140	l 3853	

Com relação ao driver DS_COR_RACA, o cluster 2 agrupa a maioria dos candidatos, independentemente da sua cor de pele.

4.3 - Variáveis Descritivas

4.3.1 DS_ESTADO_CIVIL

	cand\$hc2		
cand\$DS_ESTADO_CIVIL		l 2 I	Row Total
CASADO(A)			
	l 0.207	. 055	0.532
DIVORCIADO(A)	I 137	I 514	651
	0.210		
SEPARADO(A) JUDICIALMENTE		•	 54
SEPARADO(A) JUDICIALMENTE	0.130		
	l		
SOLTEIRO(A)	1 430	1110	1540
	0.279		
VIÚVO(A)			
V10V0(A)	0.165		
Column Total	1140	I 3853	1 4993 1
	I	I	

Com relação ao driver DS_ESTADO_CIVIL, o cluster 2 agrupa a maioria dos candidatos, independentemente da sua cor de pele.

4.3.2 DS_GENERO

	cand\$hc2		
cand\$DS_GENERO	1	2	Row Total I
FEMININO	368	1218	1586 l
	0.232	0.768	0.317
MASCULINO	777	2643	3420
	0.227	0.773	0.683
Column Total	1145	3861	5006 I

Com relação ao driver DS_GENERO, o cluster 2 agrupa a maioria dos candidatos, independentemente do seu sexo.

5. Análise de Clusters obtidos pelo método K-medoid Número de clusters selecionados pelo método k-medoid = 2

5.1 Análise por variáveis drivers

5.1.1 DS_SITUACAO_CANDIDATURA

I	cand\$kmd		
cand\$DS_SITUACAO_CANDIDATURA	1	1 2	Row Total
APTO I	1284	3182	l 4466 l
I	0.288	0.712	0.894
INAPTO	153	374	l 527 l
I	0.290	0.710	0.106
Column Total I	1437	3556	l 4993 l

5.1.2 TP_AGREMIACAO

I	cand\$kmd		
cand\$TP_AGREMIACAO	1	1 2	Row Total
COLIGAÇÃO I	1160	928	2088
I	0.556	0.444	0.418
PARTIDO ISOLADO	277	1 2628	1 2905
ı	0.095	0.905	0.582
Column Total I	1437	3556	l 4993 l

5.1.3 ST_REELEICAO

	l cand\$kmd		
cand\$ST_REELEICAO	1	1 2	Row Total
N	1349	3424	l 4773 l
	0.283	0.717	0.956
S	l 88	132	1 220 1
	0.400	0.600	0.044
Column Total	1437	1 3556	1 4993 1

5.1.4 ST_DECLARAR_BENS

	l cand\$kmd		
cand\$ST_DECLARAR_BENS	1	1 2	Row Total I
N	J 567	1375	1942
	0.292	0.708	0.389
S	l 870	I 2181	3051 I
	0.285	0.715	0.611
Column Total	1437	l 3556	4993

5.1.5 SG_UF

1	cand\$kmd		
cand\$SG_UF	1	1 2	Row Total
BA I	1135	10	l 1145 l
1	0.991	0.009	0.229
SP I	302	3546	3848
1	0.078	0.922	0.771 l
Column Total I			

5.1.6 DS_CARGO

1	cand\$kmd		
cand\$DS_CARG0			Row Total
DEPUTADO ESTADUAL	790 0.281	2021 0.719	2811 0.563
DEPUTADO FEDERAL	647 0.297	1535 0.703	2182 0.437
Column Total	1437	3556	 4993

5.1.7 SG_UF_NASCIMENTO

	cand\$kmd		I Daw Takal
cand\$SG_UF_NASCIMENTO	I		Row Total
AC	0.000 0.000 	1 1.000 	1 0.000
AL	8 0.222	l 28 l 0.778	36 0.007
АМ	l 2 l 0.286	5 0.714	7 7
AP	 1 1.000		
ВА	 1128 0.931	 84 0.069	1212 0.243
CE	 10 0.167	 50 0.833	 60 0.012
DF	3 0.273	 8 0.727	 11 0.002
ES	I	 10	 17
GO	l3	l7	 10
	0.300 3	l l 24	 27
MG	0.111 31	0.889 153	0.005 184
 MS	0.168 3	0.832 15	0.037 18
 MT	0.167 	0.833 	0.004
	0.000		
PA I	4 I 0.286 I	10 0.714	14 0.003
PB	l 7 l	l 43 l	I 50 I
		0.860 80	0.010 119
 PI	0.328 5	0.672 30	0.024 35
l	0.143 	0.857 l	0.007
PR 	10 0.081 	0.919 	123 0.025
RJ I	14 0.215	51 0.785	65 0.013
RN I	4 0.160		0.005 I
RO I	0 1	4 1.000	4 I 0.001 I
RR I	0 1	1	
 RS	2 1	 22	24 I
ا ا SC ا		0.917 24	
 	0.077	0.923	0.005
SE 	13 0.500	13 0.500	
SP I	138 0.048 		
TO I	0.000 I	2 1.000	
Column Total	1437 l		
	I		

5.1.8 DS_GRAU_INSTRUCAO

	cand\$kmd		
cand\$DS_GRAU_INSTRUCAO	1	l 2 I	Row Total
ENSINO FUNDAMENTAL COMPLETO	57	I 187	I 244 I
	0.234	0.766	0.049
ENSINO FUNDAMENTAL INCOMPLETO	49	98	147
	0.333	0.667	0.029
ENSINO MÉDIO COMPLETO	480	877	1357
	0.354	0.646	0.272
ENSINO MÉDIO INCOMPLETO	58	104	162
	0.358	0.642	0.032
LÊ E ESCREVE	4	20	24
	0.167	0.833	0.005
SUPERIOR COMPLETO	640	1928	2568
	0.249	0.751	0.514
SUPERIOR INCOMPLETO	149	342	491
	0.303	0.697	0.098
Column Total	1437	3556	4993

5.1.9 DS_COR_RACA

cand\$DS_COR_RACA	cand\$kmd 1	l 2	Row Total	
AMARELA	5 0.128	0.872		
BRANCA	0.096		0.609	 -
INDÍGENA	8 0.500			
PARDA	832 0.683	0.317		
PRETA	299 0.441	I 379	I 678	
Column Total	1437	3556 	4993 	i I

5.2 Variáveis Descritivas

5.2.1 DS_ESTADO_CIVIL

	l cand\$kmd		
cand\$DS_ESTADO_CIVIL	1	-	Row Total
CASADO(A)			I 2657 I
DIVORCIADO(A)	0.255	485 0.745	0.130
SEPARADO(A) JUDICIALMENTE	1 11 1 0.204	0.796	
SOLTEIRO(A)	518 0.336		
VIÚVO(A)	0.275		0.018
Column Total			

5.2.2 DS_GENERO

1	cand\$kmd		
cand\$DS_GENERO	1	1 2	Row Total
FEMININO I	459	1122	1581
I	0.290	0.710	0.317
MASCULINO	978	2434	3412
1	0.287	0.713	0.683
Column Total I	1437	3556	4993 I

6. Comparação e Validação entre os agrupamentos pelos métodos Hierárquico Aglomerativo e K-Medoid

	l cand\$kmd		
cand\$hc2	1	1 2 1	Row Total I
1	1128	12	1140 I
2	309	3544	3853 I
Column Total	1437	3556	4993 I

7. Conclusões

Os dois métodos, hierárquico e kmedoid, obtiveram praticamente o mesmo resultado de agrupamento, tanto na quantidade de clusters identificados, quanto na distribuição das observações em cada grupo, com relação às variáveis drivers, obtendo o índice de validação(corrected.rand) entre os métodos de 0.99%, resultando em uma coesão entre os agrupamentos.