기초설계 프로젝트 계획서

1. 계획서

팀명	1팀				
	구분	이름	학번		
팀원	팀장	유지원			
	팀원	정진영			
	팀원	박무열			
	팀원	노지민			
주제	웹&앱을 이용한 거동 취약계층 맞춤형 길찾기 서비스와 탈부착 AI 보행 보조 디바이스				
	팀원들과 일상 속에서 느끼는 불편에 대해 얘기를 나누던 중, 비장애인들이 일상적으로 사용하는 네이버				
	지도, 카카오 맵 등의 길찾기 서비스가 비장애인에게만 편리한 기능이라는 의견이 제기되었다. 이에 비장애				
	인들이 편리하게 사용하는 길찾기 기능을 비장애인들도 유용하게 사용할 수 있도록 확대해보자고 의견이				
	모아졌다.				
	최근 장애인의 이동권에 대한 사회적 관심이 커지고 있다. 사실 이는 과거부터 꾸준히 제기되고 있는 문				
제작 동기	제이며 비장애인이 이용할 수 있는 기술이 진보하는 만큼, 장애인이 이용할 수 있는 기술 또한 발전하려는				
	노력이 필요하다. 이에 장애인의 스마트 서비스 접근성을 제고하려는 노력에 이바지하는 서비스를 제작해				
	보고자 한다.				
	서비스의 대상을 장애인에서 거동이 불편한 취약계층으로 확대하여 거동이 어려운 사람들을 위한 서비				
	스를 고안했다. 최종적으로 '웹&앱 거동 취약계층 맞춤형 길찾기 서비스와 AI 보행 보조 탈부착 모듈'을 구				
	상했다.				
-1171 777	아두이노에 인공지능(CV), 웹/앱을 연결한 탈부착형 모듈을 개발하여 거동 취약계층 맞춤형 길찾기 서비스				
제작 목적	를 제공하고 보행 거동 취약계층의 이동 안정성과 편의성 향상				

	'웹&앱 거동 취약계층 맞춤형 길찾기 서비스와 AI 보행 보조 탈부착 모듈'을 제작한다.			
개요	아두이노와 앱을 연동하여 사용자에게 여러 편의 기능을 제공한다. 그리고 앱에 웹을 링크하여 거동 취약계			
	층 맞춤 길찿기 서비스를 제공한다. 또한 아두이노에 인공지능 CV 모델을 심어 카메라에 통행에 방해되는			
	요소가 인식되었을 때 사용자에게 경고 알림을 준다.			
	아이디어	원리/구현 방법		
	1. <웹> 거동이 불편한 사람들을 위한 맞춤 길찿기	아두이노에서 GPS 값 받아서 웹 프로그래밍으로 맞		
	서비스	춤형 길찿기 SW 서비스 구현		
		티처블 머신(AI tool)으로 통행 시 방해되는 물체 학		
		습시킨 후 아두이노에 임베드하고 스피커 액츄에이		
주요 아이디어 및 원리	2. 티처블 머신 이용하여 통행로 상황 감지 후 안내	터를 작동시킨다. 학습시킨 모델을 .h5 확장자로		
		export 한다. 이 파일을 python에 받아오고		
	(횡단보도, 연석, 경사로, 계단 등) 	pySerial 모듈을 사용해 아두이노와 통신한다. 인공		
		지능으로 판단한 결과에 따라 아두이노 액츄에이터		
		로 음성 안내한다.		
	3. 아두이노 센서를 통해 위급 시 누를 수 있는 신고			
	버튼, 온습도 감지, 조도 센서를 이용한 자동 LED	아두이노 센서 & C++ 을 통한 하드웨어 구축		
	on/off 기능 등 제공			
	4. <앱> 아두이노 센서 값 및 사용자의 입력값에 따	아두이노 블루투스 통신 모듈로 앱 서비스 연동,		
	1			
	른 결과 UI 출력 및 음성 안내	MIT 앱 인벤터를 통해 앱 개발		
	른 결과 UI 출력 및 음성 안내 아이디어	MIT 앱 인벤터를 통해 앱 개발 기대효과		
기대중과	아이디어	기대효과		
기대효과	아이디어 1. 거동이 불편한 사람들을 위한 맞춤 길찾기 서비	기대효과 기동이 불편한 사람에게 가장 편한 길을 맞춤형으로		
기대효과	아이디어 1. 거동이 불편한 사람들을 위한 맞춤 길찿기 서비 스 제공	기대효과 거동이 불편한 사람에게 가장 편한 길을 맞춤형으로 알려줄 수 있음		
	4. <앱> 아두이노 센서 값 및 사용자의 입력값에 따	아두이노 블루투스 통신 모듈로 앱 서비스 연동,		

	버튼, 온습도 감지, 조도 선	児서를 이용한 자동 LED	통해 도움이 되는 정보를 제공 할 수 있음	
	on/off 기능 등 제공			
			탈부착형 모듈을 앱을 통해 조정할 수 있고, 아두이	
	4. 앱을 통해 아두이노 센/	너 값 및 사용자의 입력값	노와의 통신이 원활하게 실시간으로 결과값을 업데	
	에 따른 결과 UI 출력 및 A	음성 안내	이트 해주어 필요한 정보를 UI 및 음성으로 안내할	
			수 있음	
	전체 작업의 파트를 총 5갈래로 나누었고 파트 별 메인 담당자 한 명과 보조 담당자를 정하였다. 작업의 효율성을 위해 파트 별 담당자를 정하였지만, 작업 내용은 팀원들과 충분히 공유하며 진행할 예정이다. (담당자 지정은 모든 팀원들의 희망을 반영하여 진행하였다.)			
	파트	담당	세부 작업	
역할분담	A) 모델링	ALL	1) 계획서 2) CAD 이용한 설계 작업	
	B) 아두이노	박무열, 정진영	 3) 장애물 인식 아두이노 2) 온습도 판단 아두이노 3) 조도 판단 아두이노 4) 앱 연동 	
	C) 인공지능	유지원, 노지민	1) 플로우 차트 설계 2) Python과 C 연결 실험 3) 티처블 머신 semi 모델 만들기 4) 축소한 Toy Project 5) 학습용 데이터 수집 & 최종 모델 설계 6) 아두이노 파트와 연결 7) Input - 카메라 데이터 연결 8) Output - 아두이노 액츄에이터 구현 9) 원하는 기능 모두 구현 완성	
	D) 앱 개발	정진영, 박무열	1) 기획 및 요구 사항 분석 2) 앱 기초 설계 3) 아두이노 센서 연동 4) 테스트 및 수정	
	E) 웹 개발	노지민, 유지원	1) 웹 개발 기획 2) 웹 Back-end 구축 3) 웹 길찾기 서비스 API 연동 4) GPS 정보 웹 연동 및 조건에 맞는 길찾기 정보 출력 구현 5) 웹 Front-end 개발 6) 웹 테스트 및 피드백 반영	

	추가 소모품 신청서:
	https://docs.google.com/spreadsheets/d/1SdZ1lonBHYMiAe_MoztIDRRiJJ1i10jCi3exnpGS
사용 부품 리스	1mg/edit?usp=sharing
트	● GPS 모듈(1개) → 12,900원
	● 카메라 모듈(1개) → 32,900원
	● AMP 모듈(2개) → 8,800원
	1) 아두이노 하드웨어
서비스 기획 구 상도	카메라 모듈 오/습도 센서 이두이노 보호와 탈부착을 위한 케이스

2. 활동 계획

	차시	일시	활동방법	온라인	주제 및 내용
	5	4/4~4/10			주제 논의 및 아이디어 구체화
	6	4/11~4/17			아이디어 발표
	7	4/18~4/24			피드백 수렴 및 최종 계획서 작성
	8	4/25~5/1			본격적인 파트 별 작업에 앞서 전체적인 회의 진행
	9	5/2~5/8			파트 별 구현
활동계획	10	5/9~5/15			파트 별 구현
	11	5/16~5/22			파트 별 구현
	12	5/23~5/29			파트 별 구현
	13	5/30~6/5			파트 별 작업 상황 합치기
	14	6/6~6/12			파트 별 작업 상황 합치기
	15	6/13~6/19			동작 시험 및 문제점 개선
	16	6/20~6/26			최종 발표 및 시연

1) 팀 노션 페이지

'노션' 플랫폼에 팀 공동 작업 페이지를 개설하였다.

파트 별 진행 상황, 제작물 아카이브 등 모든 팀 활동 내용을 노션에 기록할 예정이다.

• 노션 주소: https://marked-bestseller-836.notion.site/65af3fbddd78439fa0522ef2d7aceb5f

2) 간트 차트

아래의 간트 차트는 팀 노션 페이지에서 확인할 수 있다.

세부 계획 및 간트 차트