

United International University (UIU)

Mid Term Examination

IPE 401/IPE3401: Industrial Management/Industrial & Operational Management

Fall Trimester: 2024

Total time: 1 hour 30 mins

Date: 14/12/2024

Total marks: 30

Section: A/B/C/D/E/F/G

There are 5 questions. You must answer any 4 questions

1 (a) Mr. Suman invested \$17239 at a certain effective rate, and after 29 years, he earned [3] [CO2] 1.5 million. Now find the following: i) find out the effective rate, and ii) find out what the future value will be if the rate is compounded weekly.

(b) Given the cash flows below and an annual interest rate of 10% compounded [4.5] [CO1] annually, find the Future Value (FV) of all cash flows at the end of Year 5.

Year	0	1	2	3	4	5
Cash Inflow (\$)	0	3000	4500	5000	6000	7500
Cash outflow (\$)	10000	2000	1500	3500	4000	0

2 (a) Find Maximum Flow.

[3.5] [CO2]

(b) Two projects are given Project "A"

[4] [CO1]

[4.5]

[CO1]

Year	0	1	2	3	4	5	
Cash Flow	-26200	6520	18500	9700	16300	20000	

Project "B"

Troject B						
Year	0	1	2	3	4 .	5
Cash Flow	-25,200	8,900	10,000	6,200	6,600	17,500

Now select the project using the Discounted payback period method and consider the rate = 22% compounded quarterly. Which project should you select?

3 (a) What do you mean by Economic order quantity? Explain with the necessary [3] [CO2] diagrams.

(b)								
	Year	0	1	2	3	4	5	
	Cash	-65000	19,000	13,300	17,000	26,500	11,200	
	Flow							

Calculate the IRR, starting from 8%, and show necessary calculations.

- 4 (a) A certain chip factory has a monthly demand of 660 units. The production rate of [3] [CO2] Fried chips is 200 per day. The demand for these produced chips is 1050 per week, the set-up cost is \$40, the holding cost is \$3.5, the number of working days is 320 in p year, and the lead time is 7 days. Determine the optimal production order quantity and reorder point.
 - (b) A skeel factory is open for 230 days a year. The demand for refractory material in [4.5] [CO2] the factory is 100 bags per day. Whenever an order is placed, it costs \$48, and the holding cost per unit per year is 40%. The quantity schedule chart is given below. Determine Optimal order quantity and Total cost associated with it.

Discount Number	count Number Discount quantity		Discount price\$
1	0 to 500	No discount	17
2	501 to 700	10%	?
3	701 and over	14%	?

5 (a) Task		Task	Predecessors	Duration	[5]	[CO2]
		Α	,	3		
		В	Α	5		
		С	, A	2		
		D	В .	4		
		E	В, С	6 .		
		F	С	3		
		G	D, E	5		
		Н	E, F	4		

Find the Critical Path.

(b)	Find the be	nefit-cost ra	tio of the fo	[2.5]	[CO1]			
	Year	0	1	2	3	4		

Year	0	1	2	3	4
	0	11500	11000	18500	8200
Benefit					
	16000	6000	2500	7900	15000
Cost					

CO1-Apply Engineering economics and simple mathematics for Solving project selection problems for choosing the best possible project.

CO2- Analyze various industrial problems by using operation management, technique, operation research technique and cost accounting techniques and solve it.