Les Codes Cycliques et la Correction

M. Belkasmi

ENSIAS 2013-2014

PLAN

- [1] Introduction
- [2] Conception de Codes
- [3] Classes de codes BCH
- [4] Exemples de codes
- [5] Codes de Reed-Solomon
- · [6] Décodage de codes BCH
- · [7] Dispositifs de codage/décodage

Introduction

- Codes BCH et RS
 - Codes BCH conçus par Bose, Chaudhuri (1960) et Hocquenghem (1959)
 - Codes RS conçus par Reed et Solomon
 - Codes Cycliques
 - C'est des codes équivalents aux codes de Hamming quand on veut corriger une erreur simple
 - Capacité de correction d'erreurs multiples
 - Codage et décodage assez simples

р3.

Méthode de Construction

Pour un code BCH ou RS

- → spécifier la capacité de correction (t=(d-1)/2) la longueur n et l'alphabet du code
- → construire le polynôme générateur du code

p5.

Conception de codes

- Un code cyclique (n, k) est un code linéaire (n, k) tel que toute permutation circulaire d'un mot du code est encore un mot du code.
- Le générateur d'un code cyclique divise le polynôme Xⁿ-1.
 si Xⁿ-1 = g(X)h(X) alors h(X) est dit polynôme de parité du code
 - → Avant la construction de code bien caractériser les diviseurs de Xⁿ-1.
- On désire un code avec un alphabet A = GF(q)

- [Def] un élément primitif de $GF(q^m)$ est un élément α t.q. pour tout $\beta \in GF(q^m) \neq 0$, $\beta = \alpha^i$ pour un certain i.
- [Def] un polynôme primitif p(x) sur GF(q) est un irréductible ayant la propriété suivante :

Dans le corps d'extension $GF(q^m)$ construit modulo p(x), l'élément α (racine de p(x)) est un élément primitif.

р7

Méthode d'extension:

- Corps d'extension GF(q^m)
 - -Poly. irréductible

$$p(x) = x^m + p_{m-1}x^{m-1} + ... + p_1x^1 + p_0, p_i \in GF(q)$$

—Elément (a_{m-1}, ..., a₁, a₀)

$$A(x) = a_{m-1}x^{m-1} + ... + a_1x^1 + a_0, a_i \in GF(q)$$

- —Souscorps : GF(q)
- —Degré d'extension : m

· Théorème :

Soient β_1 , β_2 ,... $\beta_{q^{m-1}}$, représentants les éléments non nuls du corps $GF(q^m)$:

Alors
$$x^{q^{m-1}} - 1 = (x - \beta_1) (x - \beta_2) ... (x - \beta_{q^{m-1}})$$

 \rightarrow pour un élément quelconque γ de $GF(q^m): \gamma^{q^m} = \gamma$

p9.

Conception de codes

- Pour construire des codes cycliques il faut trouver des poly, générateurs :
 - Factoriser $x^{n}-1 = f_{1}(x) f_{2}(x)... f_{p}(x)$
 - $f_i(x)$ irréductible sur GF(q)
 - Toute combinaison de $f_i(x)$ donne naissance à un générateur g(x)

• $GF(q^m)$ est un corps d'extension de GF(q). Si on choisi comme longueur $n = q^m-1$

$$x^{n} - 1 = x^{q^{m} - 1} - 1 = f_{1}(x) f_{2}(x) \dots f_{p}(x)$$

= $\prod_{j} (x - \beta_{j})$

 \rightarrow Trouver l'expression des $f_k(x)$?

→ polynôme minimal

p11.

Polynôme Minimal

- On se fixe un élément β_j et un corps d'extension $GF(q^m)$:
- [Def] Le poly. de plus petit degré ayant des coefficients dans le corps de base GF(q) qui a β_j comme zéro dans le corps d'extension $GF(q^m)$ est dit poly. minimal de β_j

p12.

Eléments conjugués

- [Def] Deux éléments de GF(q^m) qui possèdent le même poly. minimal sur GF(q) sont dit éléments conjugués :
- Si f(x) est le poly. minimal de β , alors il est aussi le poly. minimal des éléments de l'ensemble $\{\beta, \beta^q, \beta^{q^2}, \dots \beta^{q^{(s-1)}}\}$ avec s le plus petit entier i/ $\beta^{q^i} = \beta$.
- classe cyclotomique de i : {i, i.q, i.q²,...,i.q^(s-1)}

p13

Exemple: Poly. Minimaux des éléments de GF(24).

Notation Notation Exponentielle Polynomiale		Notation Linéaire	Polynôme Minimal		
0	0	0000	×		
α ^o	1	0001	x + 1		
α^1	α	0010	$x^4 + x + 1$		
α^2	α^2	0100	$x^4 + x + 1$		
α^3	α^3	1000	$x^4 + x^3 + x^2 + x + 1$		
α^4	$\alpha + 1$	0011	$x^4 + x + 1$		
α^5	$\alpha^2 + \alpha$	0110	$x^2 + x + 1$		
α^6	$\alpha^3 + \alpha^2$	1100	$x^4 + x^3 + x^2 + x + 1$		
α^7	$\alpha^3 + \alpha + 1$	1011	$x^4 + x^3 + 1$		
α^8	$\alpha^2 + 1$	0101	$x^4 + x + 1$		
α^9	$\alpha^3 + \alpha$	1010	$x^4 + x^3 + x^2 + x + 1$		
α^{10}	$\alpha^2 + \alpha + 1$	0111	$x^2 + x + 1$		
α^{11}	$\alpha^3 + \alpha^2 + \alpha$	1110	$x^4 + x^3 + 1$		
α^{12}	$\alpha^3 + \alpha^2 + \alpha + 1$	1111	$x^4 + x^3 + x^2 + x + 1$		
α^{13}	$\alpha^3 + \alpha^2 + 1$	1101	$x^4 + x^3 + 1$		
α^{14}	$\alpha^3 + 1$	1001	$x^4 + x^3 + 1$		

Exemple suite

• Factoriser X¹⁵-1 sur GF(2) donnera :

$$x^{15} - 1 = x^{2^{m}-1} - 1 = f_1(x)f_2(x)...f_5(x)$$

$$= (x+1)(x^4 + x + 1)(x^4 + x^3 + 1)$$

$$(x^4 + x^3 + x^2 + x + 1)(x^2 + x + 1)$$

5 classes de conjugaison et donc 5 polynômes minimaux

p15.

Définition de Codes BCH

- · Générateur de BCH en terme de poly. minimaux
 - Trouver le générateur d'un code BCH t-correcteur et ayant une longueur de code $n = q^m-1$ avec un alphabet A = GF(q):
 - (i) Choisir un polynôme primitif p(x) de degré m et α une racine de p(x)
 - (ii) Construire ainsi la table du corps $GF(q^m)$
 - (iii) Trouver $f_i(x)$, le poly. minimal de α^i pour $1 = \langle i = \langle 2t \rangle$
 - · (iv) Le poly. générateur du code corrigeant t erreurs est

$$g(x) = PPCM[f_1(x), f_2(x),..., f_{2t}(x)]$$

p16.

Classes de codes BCH

- · Codes BCH binaire t-correcteur:
 - Alphabet A = GF(2) (cad q=2)
 - Longueur n= 2^m-1
 - Nb de bits de parité r = n-k ≤ mt
 - Distance dmin ≥ 2++1
- Codes RS t-correcteur:
 - Codes BCH particuliers où l'alphabet A= GF(q) et m=1
 - si q=2b on manipule des symboles sur b bits
 - Longueur n = $q-1 = 2^b-1$
 - Nb de symboles de parité r = n-k = 2t
 - Distance dmin = 2++1

p18.

Exemple de codes BCH

- code BCH binaire: m=4 et t=2 ---> n= 15 et t= 2
- · le générateur

$$g(x) = PPCM[f_1(x), f_2(x), f_3(x), f_4(x)]$$

$$= (X^4 + X+1)(X^4+X^3+X^2+X+1)$$

$$= X^8+X^7+X^6+X^4+1$$

On obtient ainsi un code BCH (15,7,5) 2-correcteur

p19.

TABLE de codes BCH binaires avec des longueurs plus petites à 511

m	n	k	t	m	n	k	t	m	n	k	t	n	k	t	n	k	t
3	7	4	1		63	24	7		127	50	13	255	187	9	255	71	29
4	15	11	1			18	10			43	14		179	10		63	30
		7	2			16	11			36	15		171	11		55	31
		5	3			10	13			29	21		163	12		47	42
5	31	26	1			7	15			22	23		155	13		45	43
		21	2	7	127	120	1			15	27		147	14		37	45
		16	3			113	2			8	31		139	15		29	47
		11	5			106	3	8	255	247	1		131	18		21	55
		6	7			99	4			239	2		123	19		13	59
6	63	57	1			92	5			231	3		115	21		9	63
		51	2			85	6			223	4		107	22	511	502	1
		45	3			78	7			215	5		99	23		493	2
		39	4			71	9			207	6		91	25		484	3
		36	5			64	10			199	7		87	26		475	4
		30	6			57	11			191	8		79	27			p20.

Codes de Reed-Solomon

- Est une importante sous classe des codes BCH
- · Beaucoup d'applications :
 - Support d'enregistrement (BM, CD, DVD...)
 - Communication mobile (réseau CPDP, Wimax)
 - Modems high speed (ADSL, xDSL...)
 - Spatial : RS + convolutionnel
 - DVB

p21.

Codes de Reed-Solomon

- Pour les codes RS
 - —Alphabet est le corps $GF(q^m)=GF(q)=GF(2^b)$ tout entier

ie.
$$m=1$$
, $n=q^m-1=q-1$

- —Le poly. min. d'un élément β est $f_{\beta}(x) = x \beta$
- Le générateur d'un code R5 t-correcteur est de la forme

$$g(x)=(x-\alpha)(x-\alpha^2)...(x-\alpha^{2^{t-1}})(x-\alpha^{2^t})$$

-deg(g(x))=2t, et n-k=2t

p22.

On Considère un code RS 2-correcteur de longueur 15 sur GF(16)

- le corps d'extension GF(16) de GF(2) à partir de $p(z)=z^4+z+1$
- · comme t=2

$$g(x)= (x-\alpha^{1}) (x-\alpha^{2}) (x-\alpha^{3}) (x-\alpha^{4})$$

$$= x^{4}+(\alpha^{3}+\alpha^{2}+1) x^{3}+(\alpha^{3}+\alpha^{2}) x^{2}+\alpha^{3}x+(\alpha^{2}+\alpha+1)$$

$$= x^{4}+\alpha^{13} x^{3}+\alpha^{6} x^{2}+\alpha^{3} x+\alpha^{10}$$

• n-k=4 \rightarrow k=11 On obtient ainsi un code RS (15,11,5) sur GF(16)

p23.

Exemple 2

On Considère un code RS 3-correcteur de longueur 15 sur GF(16)

comme t=3

$$g(x) = (x-\alpha^{1})(x-\alpha^{2})(x-\alpha^{3})(x-\alpha^{4})(x-\alpha^{5}) (x-\alpha^{6})$$
$$= x^{6} + \alpha^{10}x^{5} + \alpha^{14}x^{4} + \alpha^{4}x^{3} + \alpha^{6}x^{2} + \alpha^{9}x + \alpha^{6}$$

 $n-k=6 \rightarrow k=9$

On obtient ainsi un code RS (15,9,7) sur GF(16)

p24.

Décodage de codes BCH

On considère un code BCH de longueur $n = q^m-1$ et corrigeant t erreurs ayant un alphabet A=GF(q).

- On note le poly. erreur : $e(x) = e_{n-1}x^{n-1} + e_{n-2}x^{n-2} + ... + e_1x^1 + e_0$ où au plus t coefficients sont non nuls
- On suppose qu'il y a eu v erreurs $(1 \le v \le t)$ dans les positions $i_1, i_2,...$ i_v et ainsi :

$$e(x) = e_{i_1}x^{i_1} + e_{i_2}x^{i_2} + \dots + e_{i_v}x^{i_v}$$

p25

Décodage de codes BCH

- Pour la correction, on doit connaître deux choses
 - -Où les erreurs se sont apparues (\rightarrow les positions)
 - -Quelles sont les amplitudes de ces erreurs

Désignons par v(x) le polynôme reçu c(x) le polynôme émis

$$\rightarrow$$
 $v(x) = c(x) + e(x)$ à résoudre

p26.

Décodage de codes BCH

On a supposé

Le nombre, les positions et les amplitudes sont inconnues

$$e(x) = e_{i_1}x^{i_1} + e_{i_2}x^{i_2} + \dots + e_{i_v}x^{i_v}$$

- Posons:

 - $Y_j = e_{i_j}$ amplitude de l'erreur $j (1 \le j \le v)$ $X_j = \alpha^{i_j}$ position de l'erreur $j (1 \le j \le v)$

p27.

Décodage de codes BCH

· Pour représenter un polynôme

$$h(x) = h_{n-1}x^{n-1} + h_{n-2}x^{n-2} + ... + h_1x^1 + h_0$$

Deux espaces de représentation :

× ⁿ⁻¹	x ⁿ⁻²	 x ²	x^1	1
h _{n-1}	h _{n-1}	 h ₂	h ₁	h _o
$\alpha^{\text{n-1}}$	$\alpha^{\text{n-2}}$	 α^2	α^1	1
h' _{n-1}	h' _{n-2}	 h′2	h′ ₁	h'o

Décodage de codes BCH

· On commence par un calcul du Syndrome

$$S_1 = v(\alpha) = c(\alpha) + e(\alpha) = a(\alpha)g(\alpha) + e(\alpha) = e(\alpha)$$

$$e(\alpha) = e_{i_1}\alpha^{i_1} + e_{i_2}\alpha^{i_2} + \dots + e_{i_{\nu}}\alpha^{i_{\nu}}$$

alors
$$S_1 = Y_1 X_1 + Y_2 X_2 + ... + Y_v X_v$$

De même on trouve

$$S_2 = v(\alpha^2) = Y_1 X_1^2 + Y_2 X_2^2 + ... + Y_v X_v^2$$

p29.

Décodage de codes BCH

Pour
$$\alpha$$
, α^2 , ..., $\alpha^{2\dagger}$

$$S_1 = v(\alpha) = Y_1 X_1 + Y_2 X_2 + ... + Y_v X_v \qquad Y_j \in GF(q)$$

$$S_2 = v(\alpha^2) = Y_1 X_1^2 + Y_2 X_2^2 + ... + Y_v X_v^2 \qquad X_j \in GF(q^m)$$

$$S_{2\dagger} = v(\alpha^{2\dagger}) = Y_1 X_1^{2\dagger} + Y_2 X_2^{2\dagger} + ... + Y_v X_v^{2\dagger}$$

- Toute méthode permettant de résoudre ce système est un décodage de codes BCH :
 - → Algorithme de Peterson-Gorenstein-Zierler
 - → Algorithme de Berlekamp Massey
 - → Algorithme d'Euclide etendu

p30.

Décodeur de Peterson-Gorenstein-Zierler

· On définit le poly. Localisateur d'erreur:

$$\Lambda(x) = (1-X_1x) (1-X_2x)...(1-X_vx)$$

$$= \Lambda_v x^v + \Lambda_{v-1} x^{v-1} + ... + \Lambda_1 x + 1 \qquad (2)$$

• Si on connaît les coefficients Λ_j de $\Lambda(x)$ on peut trouver les zéros de $\Lambda(x)$ pour en déduire les positions X_i :

p31.

Décodeur de Peterson-Gorenstein-Zierler

• En utilisant les relations (1) et (2) on trouve :

$$\begin{cases} \Lambda_{1}S_{v} + \Lambda_{2}S_{v-1} + ... + \Lambda_{v}S_{1} + S_{v+1} = 0 \\ \Lambda_{1}S_{v+1} + \Lambda_{2}S_{v} + ... + \Lambda_{v}S_{2} + S_{v+2} = 0 \\ ... \\ \Lambda_{1}S_{2v-1} + \Lambda_{2}S_{2v-2} + ... + \Lambda_{v}S_{v} + S_{2v} = 0 \end{cases}$$

• Ou bien:

$$\begin{bmatrix} S_{1} & S_{2} & \dots & S_{v} \\ S_{2} & S_{3} & \dots & S_{v+1} \\ \vdots & & & & \vdots \\ S_{v} & S_{v+1} & \dots & S_{2v-1} \end{bmatrix} \begin{bmatrix} \Lambda_{v} \\ \Lambda_{v-1} \\ \vdots \\ \Lambda_{1} \end{bmatrix} = \begin{bmatrix} -S_{v+1} \\ -S_{v+2} \\ \vdots \\ -S_{2v} \end{bmatrix}$$

p32.

Décodeur de Peterson-Gorenstein-Zierler

Théorème : La matrice des syndromes M est non singulière si u est égale à v (le nombre d'erreurs qui se sont produit réellement). La matrice est singulière si u > v.

Idée : Tester la singularité de la matrice M à partir de u=t on s'arrête quand on tombe sur une matrice non singulière.

p33.

Synthèse du décodage

- · Etapes du décodage de codes BCH
 - (1) Fixer V = t, calculer le déterminant de la matrice syndrome M,

Si $\det(M)=0$, fixer v=t-1, répéter jusqu'à ce que $\det(M)\neq 0$

- (2) Inverser M et en déduire le localisateur $\Lambda(x)$
- (3) Résoudre $\Lambda(x)=0$ pour déterminer les positions $X_1, X_2,...$
- (4) Déterminer les amplitudes Y, des erreurs

p34.

Synthèse du décodage

(4) Si le code est non binaire, résoudre le système d'équations avec Y_i comme inconnues:

$$\begin{cases} S_1 = v(\alpha) = Y_1 X_1 + Y_2 X_2 + ... + Y_v X_v \\ S_2 = v(\alpha^2) = Y_1 X_1^2 + Y_2 X_2^2 + ... + Y_v X_v^2 \\ ... \\ S_{2t} = v(\alpha^{2t}) = Y_1 X_1^{2t} + Y_2 X_2^{2t} + ... + Y_v X_v^{2t} \end{cases}$$

p35.

Exemple 1

Soit le code BCH(15,5) binaire 3-correcteur. $g(X) = X^{10} + X^8 + X^5 + X^4 + X^2 + X + 1$

On considère le polynôme reçu suivant $v(X) = X^7 + X^2$

Dans GF(2⁴)
$$S_{1} = a^{7} + a^{2} = a^{12}$$

$$S_{2} = a^{14} + a^{4} = a^{9}$$

$$S_{3} = a^{21} + a^{6} = 0$$

$$S_{4} = a^{28} + a^{8} = a^{3}$$

$$S_{5} = a^{35} + a^{10} = a^{0}$$

$$S_{6} = a^{42} + a^{12} = 0$$

p36.

Posons
$$v = 3$$
 $M = \begin{bmatrix} S_1 & S_2 & S_3 \\ S_2 & S_3 & S_4 \\ S_3 & S_4 & S_5 \end{bmatrix} = \begin{bmatrix} \alpha^{12} & \alpha^9 & 0 \\ \alpha^9 & 0 & \alpha^3 \\ 0 & \alpha^3 & 1 \end{bmatrix} \det(M) = 0$

$$v = 2 \quad M = \begin{bmatrix} S_1 & S_2 \\ S_2 & S_3 \end{bmatrix} = \begin{bmatrix} \alpha^{12} & \alpha^9 \\ \alpha^9 & 0 \end{bmatrix} \det(M) \neq 0$$

$$M^{-1} = \begin{bmatrix} 0 & \alpha^6 \\ \alpha^6 & \alpha^9 \end{bmatrix}$$

$$\therefore \begin{bmatrix} \Lambda_2 \\ \Lambda_1 \end{bmatrix} = M^{-1} \bullet \begin{bmatrix} 0 \\ \alpha^3 \end{bmatrix} = \begin{bmatrix} \alpha^9 \\ \alpha^{12} \end{bmatrix}$$

$$\therefore \Lambda(X) = 1 + \alpha^{12}x + \alpha^9x^2$$

$$= (1 + \alpha^2x)(1 + \alpha^7x)$$

$$= \alpha^9(x - \alpha^8)(x - \alpha^{13})$$

$$\frac{1}{\alpha^8} = \alpha^7$$

$$\frac{1}{\alpha^{13}} = \alpha^2$$

$$\therefore e(X) = X^7 + X^2$$
p37.

Soit le code RS(15,9,7) 3-correcteur.

$$q(X) = x^6 + \alpha^{10}x^5 + \alpha^{14}x^4 + \alpha^4x^3 + \alpha^6x^2 + \alpha^9x + \alpha^6$$

C'est un code avec un alphabet A = GF(16)

On transmet c(x) = 0

On reçoit le polynôme suivant

$$r(x) = \alpha x^{14} + \alpha^2 x^{12} + \alpha^{13} x^4$$

p38.

$$\begin{split} r(x) &= \alpha x^{14} + \alpha^2 x^{12} + \alpha^{13} x^4 \\ S_1 &= r(x = \alpha) = \alpha(\alpha^{14}) + \alpha^2(\alpha^{12}) + \alpha^{13}(\alpha^4) \\ &= \alpha^{1+14} + \alpha^{2+12} + \alpha^{13+4} \\ &= 1 + \alpha^3 + 1 + \alpha^2 \\ &= \alpha^3 + \alpha^2 = \alpha^6 \\ S_2 &= r(x = \alpha^2) = \alpha(\alpha^2)^{14} + \alpha^2(\alpha^2)^{12} + \alpha^7(\alpha^2)^4 = \alpha^7 \\ S_3 &= r(x = \alpha^3) = \alpha(\alpha^3)^{14} + \alpha^2(\alpha^3)^{12} + \alpha^7(\alpha^3)^4 = \alpha^{12} \\ S_4 &= r(x = \alpha^4) = \alpha(\alpha^4)^{14} + \alpha^2(\alpha^4)^{12} + \alpha^7(\alpha^4)^4 = 0 \\ S_5 &= r(x = \alpha^5) = \alpha(\alpha^5)^{14} + \alpha^2(\alpha^5)^{12} + \alpha^7(\alpha^5)^4 = \alpha \\ S_6 &= r(x = \alpha^6) = \alpha(\alpha^6)^{14} + \alpha^2(\alpha^6)^{12} + \alpha^7(\alpha^6)^4 = \alpha^8 \end{split}$$

Exemple 2

Fixons v=3 on a alors:

$$M = \begin{bmatrix} S_1 & S_2 & S_3 \\ S_2 & S_3 & S_4 \\ S_3 & S_4 & S_5 \end{bmatrix} = \begin{bmatrix} \alpha^6 & \alpha^7 & \alpha^{12} \\ \alpha^7 & \alpha^{12} & 0 \\ \alpha^{12} & 0 & \alpha \end{bmatrix}$$

On obtient alors le polynôme local. suivant $\Lambda(X) = x^3 + \alpha^2 x^2 + \alpha^8 x + 1$

Vérifier que les inverses des positions sont les racines de ce polynôme et trouver les amplitudes des erreurs

p40.

- Le code BCH binaire 3-Correcteur
- Mot reçu:

$$v(X) = X^7 + X^5 + X^2$$

Les Syndromes?

p41.

Exemple 3

- Syndromes :
 - $S_1 = a^{14}$
 - $S2 = a^{13}$
 - *S3* = *1*
 - $S4 = a^{11}$
 - $S5 = a^5$
 - *S6* = *1*
- Le polynome localisateur :
- $\Lambda(x) = 1 + a^{14}x + a^{11}x^2 + a^{14}x^3$
- = $(1 + a^7x)(1 + a^5x)(1 + a^2x)$
- Verifier que les racines donnent bien les positions des erreurs

p42.