

TOÁN RỜI RẠC DISCRETE MATHEMATICS

LÊ THỊ PHƯƠNG DUNG

Thời gian thi cuối kỳ

■ 14 giờ ngày 27/12/2020

Nội dung

- 1. Mệnh đề và vị từ
- 2. Suy luận toán học
- 3. Phép đếm
- 4. Quan hệ
- 5. Đại số Bool
- 6. Lý thuyết chia và đồng dư

Tài liệu tham khảo

- Kenneth Rosen, "Toán học rời rạc", bản dịch của NXB KH&KT, 2000
- Nguyễn Đức Nghĩa, Nguyễn Tô Thành, "Toán rời rạc", NXB ĐHQG Hà Nội, 2009

.....

Chương 7: LÝ THUYẾT ĐỒNG DƯ

- **■** Quan hệ đồng dư
- Phương trình đồng dư bậc nhất một ẩn
- ► Hệ phương trình đồng dư
- Phương trình đồng dư bậc cao một ẩn

Quan hệ đồng dư

- Cho a và b là hai số nguyên, m là số nguyên dương. Khi đó a và b được gọi là đồng dư theo modulo m, ký hiệu a $\equiv b \pmod{m}$ nếu a và b có cùng số dư khi chia cho m. Ta có a $\equiv b \pmod{m}$ khi và chỉ khi a -b : m
- **P**VD: $16 \equiv 11 \pmod{5}$; $-7 \equiv 5 \pmod{3}$
- Cho a và b là hai số nguyên, m là số nguyên dương, các mệnh đề sau tương đương nhau
 - ightharpoonup a $\equiv b \pmod{m}$
 - $-a = b + mt \qquad (t \in \mathbb{Z})$
 - ightharpoonup a $-b \equiv 0 \pmod{m}$
- Các tính chất của đồng dư
- 1. Nếu $a_i \equiv b_i \pmod{m}$, $\forall i = 1, 2, ..., n$ thì
 - $a_1 a_2 \dots a_n \equiv b_1 b_2 \dots b_n (mod \ m)$
 - $a_1 + a_2 + \dots + a_n \equiv b_1 + b_2 + \dots + b_n \pmod{m}$

Quan hệ đồng dư

- 2. $a \equiv b \pmod{m} \Leftrightarrow a \pm c \equiv b \pm c \pmod{m}$, với mọi $c \in \mathbb{Z}$
- 3. $a \equiv b \pmod{m} \Leftrightarrow a \equiv b + mk \pmod{m}$, với mọi $k \in \mathbb{Z}$
- 4. Nếu $a \equiv b \pmod{m}$ thì $a^n \equiv b^n \pmod{m}$, với n là số nguyên dương
- 5. Nếu $a \equiv b \pmod{m}$ thì $ac \equiv bc \pmod{m}$ với mọi $c \in \mathbb{Z}$. Trường hợp (c, m) = 1 ta có $a \equiv b \pmod{m} \Leftrightarrow ac \equiv bc \pmod{m}$
- 6. Nếu c là số nguyên dương thì $a \equiv b \pmod{m} \Leftrightarrow ac \equiv bc \pmod{mc}$
- 7/ Nếu d > 0 là UC của a, b, m thì $a \equiv b \pmod{m} \Leftrightarrow \frac{a}{d} \equiv \frac{b}{d} \pmod{\frac{m}{d}}$
- 8. Nếu d là UC của a, b và (d, m) = 1 thì $a \equiv b \pmod{m} \Leftrightarrow \frac{a}{d} \equiv \frac{b}{d} \pmod{m}$
- 9. Nếu $a \equiv b \pmod{m_i}$, $\forall i = 1, 2, ..., n \ \text{và} \ m = [m_1, m_2, ..., m_n] \ \text{thì} \ a \equiv b \pmod{m}$
- 10. Nếu $a \equiv b \pmod{m}$ và d > 0 là ước của m thì $a \equiv b \pmod{d}$
- 11. Nếu $a \equiv b \pmod{m}$ và d là UC của a, m thì d là ước của b
- 12. Nếu $a \equiv b \pmod{m}$ thì (a, m) = (b, m)

- Cho $a, b, m \in \mathbb{Z}, m > 0$. Một phương trình có dạng $ax \equiv b \pmod{m}$, trong đó x là ẩn số nhận giá trị nguyên, được gọi là pt đồng dư bậc nhất một ẩn
- **■** VD: $9x \equiv 6 \pmod{15}$
- ► Xét phương trình $ax \equiv b \pmod{m} (**)$ và đặt d = (a, m):
 - Nếu d ∤ b thì (**) vô nghiệm
 - Nếu d|b thì (**) có d nghiệm không đồng dư theo modulo m. Nếu x_0 là một nghiệm của (**) thì d nghiệm của (**) được xác định như sau:

$$\begin{cases} x \equiv x_0 + \frac{m}{d}.0 \pmod{m} \\ x \equiv x_0 + \frac{m}{d}.1 \pmod{m} \\ \dots \\ x \equiv x_0 + \frac{m}{d}.(d-1) \pmod{m}. \end{cases}$$

- \blacksquare Giải phương trình $9x \equiv 6 \pmod{15}$
 - Ta có d = (9,15) = 3|6. Do đó pt có 3 nghiệm không đồng dư theo modulo 15. Ta thấy x_0 = 4 là một nghiệm của pt. Vậy 3 nghiệm của pt được xác định như sau:

$$\begin{cases} x \equiv 4 + \frac{15}{3}.0 \equiv 4 \pmod{15} \\ x \equiv 4 + \frac{15}{3}.1 \equiv 9 \pmod{15} \\ x \equiv 4 + \frac{15}{3}.(2) \equiv 14 \pmod{15}. \end{cases}$$

Cách tìm nghiệm riêng x_0 : Xét phương trình $ax \equiv b \pmod{m}$, d = (a, m)|b. Giả sử d=1, vì nếu $d \neq 1$ thì ta chia a, b, m cho d ta được

$$\frac{a}{d}x \equiv \frac{b}{d} \pmod{\frac{m}{d}}$$

TH1: Nếu $a \mid b$, vì (a, m) = 1 nên chia hai vế của pt cho a, ta được

$$x \equiv \frac{b}{a} \; (mod \; m)$$

Khi đó, ta có $x_0 = \frac{b}{a}$ là một nghiệm của pt.

TH2: Nếu $a \nmid b$, vì (a, m) nên pt $ax \pm my = b$ luôn có nghiệm. Khi đó:

$$x_0 = \frac{b + my}{a}$$

là một nghiệm của pt

- ► VD: Giải pt $4x \equiv 12 \pmod{7}$
 - \blacksquare d = (4,7) = 1|12. Do đó pt có một nghiệm theo modulo 7
 - ■Tìm nghiệm riêng: Vì 4 |12 nên ta được một nghiệm của pt là

$$x_0 = \frac{b}{a} = \frac{12}{4} = 3$$

- ► Vậy một nghiệm của pt là $x \equiv 3 \pmod{7}$
- ►VD: Giải pt $3x \equiv 4 \pmod{11}$
 - -d = (3,7) = 1|4. Do đó pt có một nghiệm theo modulo 11
 - Tìm nghiệm riêng: Vì 3 ∤ 4 nên một nghiệm riêng của pt là

$$x_0 = \frac{b + my}{a} = \frac{4 + 11.1}{3} = 5$$

▶ Vậy một nghiệm của pt là $x \equiv 5 \pmod{11}$

Chú ý:

- Pt đồng dư $ax \equiv b \pmod{m}$ có nghiệm khi và chỉ khi pt Diophante ax + my = b có nghiệm
- Nếu pt ax + my = b có nghiệm thì ta dùng thuật toán Euclide để tìm hai số nguyên x_0 , y_0 thỏa $ax_0 + my_0 = b$
- ► Khi đó, x_0 là một nghiệm của pt đồng dư $ax \equiv b \pmod{m}$

Hệ phương trình đồng dư

► Hệ phương trình sau đây được gọi là htp đồng dư bậc nhất một ẩn

$$\begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \\ \dots \\ x \equiv a_r \pmod{m_r} \end{cases}$$

- Nếu x_0 là một nghiệm của hpt thì mọi số nguyên x đồng dư với x_0 theo modulo $M=[m_1,m_2,\dots,m_r]$ đều là nghiệm của hpt
- Tìm nghiệm của hpt đồng dư theo định lý Trung Quốc về phần dư. Nếu hpt đồng dư có $m_1, m_2, ..., m_r$ là các số nguyên tố cùng nhau từng đôi thì hpt có duy nhất nghiệm theo modulo $M = m_1 m_2 ... m_r$

Hệ phương trình đồng dư

- Cách giải hpt đồng dư theo định lý Trung Quốc về phần dư.
 - lacksquare Đặt $M=m_1m_2...m_r$
 - ightharpoonupVới mỗi $k \in \{1, 2, ..., r\}$
 - ₽Đặt

$$M_k = \frac{M}{m_k} = m_1 m_2 \dots m_{k-1} m_{k+1} \dots m_r$$

- lacksquare Giải pt đồng dư $M_k y_k \equiv 1 \ (mod \ m_k)$
- ► Khi đó: $x \equiv a_1 M_1 y_1 + a_2 M_2 y_2 + \dots + a_r M_r y_r \pmod{M}$ là nghiệm của hpt

Hệ phương trình đồng dư

- lacksquare Đặt $M=m_1m_2...m_r$
- ▶ Với mỗi $k \in \{1, 2, ..., r\}$

► VD: Tìm nghiệm của hpt đồng dư

$$\begin{cases} x \equiv 1 \pmod{12} \\ x \equiv 4 \pmod{5} \\ x \equiv 0 \pmod{7} \end{cases}$$

- lacksquare Đặt $M_k=rac{M}{m_r}=m_1m_2\dots m_{k-1}m_{k+1}\dots m_r$
- Giải pt đồng dư $M_k y_k \equiv 1 \pmod{m_k}$
- $\mathbf{x} \equiv a_1 M_1 y_1 + a_2 M_2 y_2 + \dots + a_r M_r y_r \pmod{M}$ là nghiệm

$$lackbox{ V}$$
ì $m_1=12$, $m_2=5$, $m_3=7$ là các số nguyên tố sánh đôi thỏa mãn đk đl TQ

$$lacksquare$$
 Đặt $M=m_1m_2m_3=12.5.7=420;\ M_1=35;M_2=84;M_3=60$

- ■Giải các pt đồng dư
 - $-35y_1 \equiv 1 \pmod{12}$ có nghiệm là $y_1 \equiv -1 \pmod{12}$
 - ■84 $y_2 \equiv 1 \pmod{5}$ có nghiệm là $y_2 \equiv -1 \pmod{5}$
 - ► $60y_3 \equiv 1 \pmod{7}$ có nghiệm là $y_3 \equiv 2 \pmod{7}$
- ►Vậy nghiệm của hpt là

$$x \equiv 1.35.(-1) + 4.84.(-1) + 0.60.2 \equiv 49 \pmod{420}$$