

1/1

APANESE PATENT OFFICE

PATENT ABSTRACTS OF JAPAN

(11)Publication number: 09139937

(43) Date of publication of application: 27.05.1997

(51)Int.CI.

HO4N 7/24

(21)Application number: 07295130

(71)Applicant:

FUJITSU LTD

(22)Date of filing: 14.11.1995

(72)Inventor:

HIROSHIMA SHUICHI **OKADA AKIHIRO**

OZAWA MASAYUKI UDAGAWA MAMORU

(54) MOVING IMAGE STREAM CONVERTER

(57) Abstract:

PROBLEM TO BE SOLVED: To simply convert an MPEG 1 stream to an MPEG 2 transport stream and to compose a system coping with an MPEG 2 without the need of an expensive MPEG (the international standard of medium integration system moving image compression) 2 encoder.

SOLUTION: A demultiplex processing part 32 inputs an MPEG 1 system stream for which the respective encoding data of video and audio are multiplexed, demulitplex it into the respective elementary streams ESes of the video and the audio, the elementary streams PESs made to packets of the MPEG 2 are respectively prepared in a packet preparation part 32 and finally, they are multiplexed and converted to the MPEG 2 transport stream TS after being divided into the transport packets of fixed length 188 bytes in a multiplex processing part 34.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-139937

(43)公開日 平成9年(1997)5月27日

(51) Int.Cl.⁶

識別記号

庁内整理番号

FΙ

技術表示箇所

HO4N 7/24

H04N 7/13

Z

審査請求 未請求 請求項の数14 〇L (全 32 頁)

(21)出願番号

特願平7-295130

(22)出願日

平成7年(1995)11月14日

(71) 出願人 000005223

富士通株式会社

神奈川県川崎市中原区上小田中4丁目1番

1号

(72)発明者 広島 秀一

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内

(72)発明者 岡田 昭広

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内

(74)代理人 弁理士 竹内 進 (外1名)

最終頁に続く

(54) 【発明の名称】 動画ストリーム変換装置

(57)【要約】

【課題】高価なMPEG2エンコーダを必要とせずに、MPEG1ストリームを簡単にMPEG2トランスポートストリームに変換して、MPEG2対応のシステムを構築可能とする。

【解決手段】分離処理部32は、ビデオとオーディオの各符号化データを多重化したMPEG1システムストリームを入力して、ビデオとオーディオの各々の初等ストリームESに分離し、パケット作成部34において、MPEG2のパケット化された初等ストリームPESが各々作成され、最後に、多重化処理部38で固定長188バイトのトランスポートパケットに分割した後に多重化してMPEG2トランスポートストリームTSに変換する。

3

æ

20

1

【特許請求の範囲】

(請求項1)符号化されたビデオデータのストリームと、符号化されたオーディオデータのストリームを含むMPEG1システムストリームを入力して、ビデオとオーディオの各々の初等ストリーム(ES)を分離する分離処理部と、

前記分離処理部で分離されたビデオとオーディオの初等 ストリーム(ES)の各々に基づいて、MPEG2のパケット化された初等ストリーム(PES)を各々作成するパケット作成部と、

前記ビデオとオーディオのパケット化された初等ストリーム(PES)を分割して、固定長のトランスポートパケットに格納した後に多重化してMPEG2のトランスポートストリームに変換する多重化処理部と、を備えたことを特徴とする動画ストリーム変換装置。

【請求項2】請求項1記載の動画ストリーム変換装置に 於いて、

前記MPEG1システムストリームは、複数のパケットをまとめたパックを1単位とし複数パックで構成され、 先頭パックはパックヘッダ、システムヘッダ及び複数のパケットで構成され、2番目以降のパックはシステムヘッダと複数のパケットで構成されており、前記パケットはESヘッダとESペイロードで構成され、該ESヘッダは、パケット開始コード、ビデオとオーディオの種別とチャネル番号を示すストリームID、ESペイロードのパケット長、再生出力の時刻管理情報(PTS)、及び復号の時刻管理情報(DTS)を格納し、前記ESペイロードにビデオ又はオーディオの符号化データを格納しており、

前記MPEG2のパケット化された初等ストリーム(PES)の各パケットはPESヘッダとPESペイロードで構成され、該PESヘッダはパケット開始コード、ビデオとオーディオの種別とチャネル番号を示すストリームID、PESペイロードのパケット長、再生出力の時刻管理情報(PTS)、及び復号の時刻管理情報(DTS)を格納し、前記PESペイロードにビデオ又はオーディオの符号化データを格納しており、

前記パケット作成部は、前記ビデオとオーディオに分離された前記MPEG1システムストリームをパケット単位に入力してESヘッダを解析し、そのストリームID、パケット長、再生出力の時刻管理情報(PTS)、及び復号の時刻管理情報(DTS)を抽出して、予め準備された前記MPEG2の雛形PESヘッダの該当箇所に格納してPESヘッダを作成すると共に、PESペイロードに前記ESペイロードのデータを格納することでPESパケットを作成することを特徴とする動画ストリーム変換装置。

【請求項3】請求項2記載の動画ストリーム変換装置に 於いて、

前記MPEG2のトランスポートストリームTSは、所 50

2

定バイト長のTSヘッダとTSペイロードで構成され、 該TSヘッダには同期バイト、パケット中のビットエラ 一の有無を示す誤り表示、TSペイロード中の新規のP ESパケットの開始の有無を示すペイロードユニット開 始表示、ビデオとオーディオの種別とチャネル番号を示 すストリームID、アダプテーションフィールドとペイ ロードの有無を示す制御情報、及びアダプテーションフィールドを備えており、

前記多重化処理部は、前記パケット作成部で作成したビデオとオーディオのPESパケットの各々について、所定パイト長単位に切り出してTSペイロードに格納すると共に、各TSペイロードの前に格納データに対応した前記TSヘッドを作成して付加することにより、MPEG2トランスポートストリームに変換することを特徴とする動画ストリーム変換装置。

【請求項4】請求項3記載の動画ストリーム変換装置に 於いて、前記多重化処理部は、前記パケット作成部で作 成されたパケット化された初等ストリーム(PES)を MPEG2トランスポートストリームに変換する際に、 MPEG2の伝送レートに適合するようにTSペイロー ドに無効データを格納したTSパケットを挿入する無効 パケット挿入部を設けたことを特徴とする動画ストリーム変換装置。

【請求項5】請求項4記載の動画ストリーム変換装置に 於いて、前記多重化処理部は、MPEG1の伝送レート 1.536Mbpsに対し、MPEG2の伝送レート 6.144Mbpsとなるように、ペイロードに無効データを格納したTSパケットを挿入することを特徴とす る動画ストリーム変換装置。

【請求項6】請求項4記載の動画ストリーム変換装置に於いて、前記多重化処理部は、トランスポートストリームの先頭に、復号時に使用するプログラム仕様情報(PSI)、復号器の時刻基準となるシステム時刻基準参照値(PCR)をペイロードに格納したTSパケットを配置した後にビデオとオーディオのTSパケットを多重化配置することを特徴とする動画ストリーム変換装置。

【請求項7】請求項6記載の動画ストリーム変換装置に 於いて、前記プログラム仕様情報(PSI)として、プログラム連想テーブル(PAT)をペイロードに格納し 40 たTSパケットと、プログラムマップテーブルをペイロードに格納したTSパケットを配置することを特徴とする動画ストリーム変換装置。

【請求項8】請求項4記載の動画ストリーム変換装置に 於いて、前記無効パケット挿入部は、ペイロードを無効 データとして挿入するTSパケットについて、ペイロー ドの先頭位置にMPEG2の規格上は無効パケットであ るが、意味のあるデータが格納されていることを示す情 報を格納し、残りのペイロード部分にユーザデータを格 納することを特徴とする動画ストリーム変換装置。

【請求項9】請求項8記載の動画ストリーム変換装置に

於いて、前記無効パケット挿入部は、前記無効TSパケットのヘッダについて、ユニット開始表示に先頭ペイロードでないことをセットし、パケットIDに無効パケットID (ox1FFF) をセットし、アダプテーションフィールド制御にペイロードありをセットし、更に、ペイロードの先頭バイトに所定のユーザフラグをセットし、復号器で前記TSヘッダのユニット開始表示、パケットID及びアダプテーションフィールド制御を確認後に、ペイロードの先頭バイトのユーザフラグのセットを認識

した場合、続いて格納されたユーザデータの処理を可能 10

【請求項10】請求項1記載の動画ストリーム変換装置に於いて、更に、前記多重化処理部で作成されたTSストリームをネットワークを介して端末に伝送する際に、MPEG2の伝送レートに適合するようにTSペイロードに無効データを格納したTSパケットを挿入する無効パケット挿入部を設けたことを特徴とする動画ストリーム変換装置。

とすることを特徴とする動画ストリーム変換装置。

【請求項11】請求項10記載の動画ストリーム変換装置に於いて、前記無効パケット挿入部は、MPEG1の伝送レート1.536Mbpsに対し、MPEG2の伝送レート6.144Mbpsとなるように、ペイロードに無効データを格納したTSパケットを挿入することを特徴とする動画ストリーム変換装置。

【請求項12】請求項10記載の動画ストリーム変換装置に於いて、前記無効パケット挿入部は、トランスポートストリームの先頭に、復号器の時刻基準となるシステム時刻基準参照値(PCR)をペイロードに格納したTSパケットを配置することを特徴とする動画ストリーム変換装置。

【請求項13】請求項10記載の動画ストリーム変換装置に於いて、前記無効パケット挿入部に続いてMPEG2トランスポートストリームをATMネットワークのセルに変換して送出するATMセル化処理部を設けたことを特徴とする動画ストリーム変換装置。

【請求項14】請求項1記載の動画ストリーム変換装置に於いて、前記分離処理部、パケット作成部及び多重化処理部によりビデオサービスの編集システム(オーサリングシステム)を構成し、MPEG1システムストリームから変換されたMPEG2トランスポートストリームを媒体又は通信回線によってビデオ・オン・デマンド・センタのビデオサーバに提供することを特徴とする動画ストリーム変換装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、メディア統合系動画像圧縮の国際標準(MPEG; Moving Picture Experts Group)のフェーズ1即ちMPEG1に従った動画ストリームを、MPEGのフェーズ2即ちMPEG2に従った動画ストリームに変換する動画ストリーム変換装置 50

4

に関し、特にMPEG1のシステムストリームをMPEG2のトランスポートストリームに変換する動画ストリーム変換装置に関する。

[0002]

【従来の技術】従来、ビデオデータとオーディオデータをネットワーク経由で利用者の要求に応じて提供するビデオ・オン・デマンド・システムにあっては、利用者にネットワークやセンタを意識させず、VTRを使用してビデオとオーディオを再生すると同じ操作、応答及び機能を提供する必要がある。センタに設置されたビデオサーバは、セットトップユニットとして知られた利用者端末経由で要求されたプログラムの動画データのストリームを送出する。

【0003】センタのビデオサーバが送出するプログラ ムのビデオとオーディオを含む動画ストリームは、通 常、ディジタル情報に変換され、圧縮された形式で保管 されている。このような動画ストリームの変換には、M PEG1に従った動画ストリームと、MPEG2に従っ た動画ストリームが知られている。MPEG1は、任意 のチャネル数のビデオとオーディオ等の個別の符号スト リームを多重化して、1つのプログラムとして一本化さ れたストリームを構成する。これをMPEG1システム ストリームという。MPEG1のシステムストリーム は、1.536Mbpsの固定ビットレートで伝送される。 またCD-ROMに記録することで、再生利用される。 【0004】MPEG2は、MPEG1を含む広範なア プリケーションへの対応を可能にする。ビデオ・オン・ デマンド・システムでは、複数プログラムを構成するこ とのできるトランスポートストリームTS; Transport Stream) を使用する。これは通常、MPEG2-TSと 30 呼ばれる。この結果、MPEG2-TSは、テレビ放送 にも対応でき、プログラム編成の自由度やスクランブル 機能があり、今後、ビデオ・オン・デマンド・システム の主流を占めることが予想される。

[0005]

【発明が解決しようとする課題】しかしながら、MPEG2形式のデータを作成するエンコーダは、MPEG1形式のデータを作成するエンコーダに比べ、約20倍も高価であり、MPEG2形式のエンコーダを簡単に購入して使用することは困難である。その結果、ビデオ・オン・デマンド・システムとして、MPEG1のエンコーダを使用した機能的に制約のあるシステムしか構築できない

【〇〇〇6】またCD-ROM等の媒体は、MPEG1 形式のデータを記録することになり、MPEG2に対応 したビデオ・オン・デマンド・システムでは、MPEG 1形式のCD-ROM等から再生したビデオとオーディ オのデータを、MPEG2-TSに再変換して送出する ことになる。この場合、MPEG1ストリームをデコー ドした後にMPEG2-TSに変換するため、同様に、

5

高価なMPEGエンコーダが必要となる。またMPEG 1ストリームとして圧縮符号化されたビデオとオーディオの各データをデコードした後に同じ圧縮符号化を再度行っているため、変換歪みが多くなると共に、エンコード後のデコードという本来必要ない処理を行っている。【0007】本発明は、このような問題点に鑑みてなされたもので、高価なMPEG2エンコーダを必要とすることなく、MPEG1に変換されたデータを簡単にMPEG2のトランスポートストリームに変換して、MPEG2対応のシステムを構築できる動画ストリーム変換装 10置を提供することを目的とする。

[0008]

る。

図である。本発明の動画ストリーム変換装置は、図1 (A)のように、分離処理部 (Demultiplexer)30、パケット作成部 (Packetizer)32及び多重化処理部 (Multiplexer)34で構成される。分離処理部32は、符号化されたビデオデータのストリームと符号化されたオーディオデータのストリームを含むMPEG1システムストリームを入力して、ビデオとオーディオの各々の初等ストリーム (ES:Elementary Stream)を分離する。 [0009]分離処理部32で分離されたビデオとオーディオの初等ストリームESの各々からは、パケット作成部34において、MPEG2のパケット化された初等ストリーム (PES; Packetized Elementary Stream)が各々作成される。多重化処理部36は、ビデオとm)が各々作成される。多重化処理部36は、ビデオと

オーディオのパケット化された初等ストリーム(PE

ートストリーム (TS; Transport Stream) に変換す

S)を、固定長(188バイト)のトランスポートパケットに分割した後に多重化してMPEG2のトランスポ

【課題を解決するための手段】図1は本発明の原理説明

【〇〇1〇】ここで、変換元となるMPEG1システムストリーム78は、図1(B)のように、複数のパケットをまとめたパックを1単位として複数パックで構成される。先頭パックはパックヘッダ、システムヘッダ及び複数のパケットで構成され、2番目以降のパックはパックヘッダと複数のパケットで構成される。パケットはESヘッダとESペイロードで構成される。

【0011】ESヘッダは、パケット開始コード、ビデオとオーディオの種別とチャネル番号を示すストリーム 40 ID、ESペイロードのパケット長、再生出力の時刻管理情報 (PTS)、及び復号の時刻管理情報 (DTS)をパラメータとして格納している。またESペイロードにはビデオ又はオーディオの符号化データが格納される。

【OO12】MPEG2のパケット化された初等ストリーム (PES) 80の各パケットは、PESヘッダとPESペイロードで構成される。PESヘッダは、パケット開始コード、ビデオとオーディオの種別とチャネル番号を示すストリームID、PESペイロードのパケット 50

6

長、再生出力の時刻管理情報(PTS)、及び復号の時刻管理情報(DTS)を格納している。またPESペイロードは、ビデオ又はオーディオの符号化データを格納している。

【0013】パケット作成部34は、ビデオとオーディオに分離されたMPEG1システムストリームをパケット単位に入力してESヘッダを解析し、そのストリームID、パケット長、再生出力の時刻管理情報(PTS)、及び復号の時刻管理情報(DTS)を抽出し、予め準備されたMPEG2の雛形のPESヘッダの該当箇所に格納してPESヘッダを作成し、更に、ESペイロードにESペイロードから所定長のデータを切り出して格納することでPESパケットを作成する。

【0014】MPEG2のトランスポートストリーム84は、所定バイト長(188バイト)のTSヘッダとTSペイロードで構成される。TSヘッダには、同期バイト、パケット中のビットエラーの有無を示す誤り表示、TSペイロード中の新規PESパケットの開始の有無を示すユニット開始表示、ビデオとオーディオの種別とアイロードの有無を示す制御情報、及びフィールドとペイロードの有無を示す制御情報、及びフィールドとペイロードの有無を示す制御情報、及びの15】多重化処理部36は、パケット作成部34で作成したビデオとオーディオのPESパケットの合について、所定バイト長単位に切り出してTSペイロードに格納すると共に、各TSペイロードの前に格納すると共に、各TSペイロードの前に格納すると共に、各TSペイロードの前に格納するとなり、MPEG2トランスポートストリーム84に変換する

30 【0016】また多重化処理部36は、パケット作成部34で作成されたパケット化された初等ストリーム(PES)80をMPEG2トランスポートストリーム84に変換する際に、MPEG2の伝送レートに適合するようにTSペイロードに無効データを格納したTS無効パケットを挿入する無効パケット挿入部を設ける。無効パケット挿入部は、MPEG1の伝送レート1.536Mbpsに対し、MPEG2の伝送レート6.144Mbpsとなるように、ペイロードに無効データを格納したTSパケットを挿入する。

【0017】また無効パケット挿入部は、トランスポートストリームの先頭に、復号時に使用するプログラム仕様情報(PSI;Program Specific Information)、復号器の時刻基準となるシステム時刻基準参照値(PCR; Program Clock Reference)したTSパケットを配置した後に、ビデオとオーディオのTSパケットを多重化配置する。

【0018】この追加するプログラム仕様情報(PSI)としては、プログラム連想テーブル(PAT; program Association Table)をペイロードに格納したTSパケットと、プログラムマップテーブル(PMT; Progra

m Map Table)をペイロードに格納したTSパケットを配置する。これにより本発明の変換装置は、中身はMPEG1であるが、見掛上は、伝送レート6.144Mbpsに適合したMPEG2トランスポートストリームのファイルを簡単に作成することができる。

【0019】更に、無効パケット挿入部は、ペイロードを無効データとして挿入するTSパケットについて、ペイロードの先頭位置にMPEG2の規格上は無効パケットであるが、意味のあるデータが格納されていることを示す情報を格納し、残りのペイロード部分にユーザデー 10 タを格納する。これにより無効パケットのペイロードを、MPEG2上の無効パケットとしての設定を損うことなく、ユーザデータの挿入に利用することを可能とする。

【〇〇2〇】具体的には、TSパケットのヘッダについて、ユニット開始表示に先頭ペイロードでないことをセットし、パケットIDに無効パケットID(ox1FFF)をセットし、アダプテーションフィールド制御にペイロードありをセットし、更に、ペイロードの先頭バイトに所定のユーザフラグをセットする。このようなパラメータの設定により、復号器でTSヘッダのユニット開始表示、パケットID及びアダプテーションフィールド制御を確認後に、ペイロードの先頭バイトのユーザフラグのセットを認識した場合、続いて格納されたユーザデータの処理を可能とする。

【0021】更に無効化パケットの挿入は、多重化処理 部36で作成されたMPEG2トランスポートストリー ムを例えばATMネットワークを介して端末に伝送する 際に、MPEG2の伝送レートに適合するようにTSペ イロードに無効データを格納したTSパケットを挿入す る無効パケット挿入部を設ける。この場合、本発明によ り変換されたMPEGトランスポートストリームには、 無効パケットが挿入されていないため、その分、ハード ディスク等に格納する際のファイル容量を低減できる。 【0022】この場合の無効パケット挿入部は、MPE G1の伝送レート1.536Mbpsに対し、MPEG 2の伝送レート6.144Mbpsとなるように、ペイ ロードに無効データを格納したTSパケットを挿入す る。また無効パケット挿入部は、トランスポートストリ ームの先頭に、復号器の時刻基準となるシステム時刻基 準参照値 (PCR) をペイロードに格納したTSパケッ トを配置する。

【0023】このような無効パケット挿入部に続いては、MPEG2トランスポートストリームをATMネットワークのセルに変換して送出するATMセル化処理部が設けられる。本発明の装置を構成する分離処理部32、パケット作成部34及び多重化処理部36は、ビデオサービスの編集システム(オーサリングシステム)を構成し、MPEG1システムストリームから変換されたMPEG2トランスポートストリームを媒体又は通信回50

8

線によってビデオ・オン・デマンド・センタに設置した ビデオサーバに提供する。

[0024]

【発明の実施の形態】図2は本発明の動画ストリーム変 換装置が適用される動作環境のブロック図である。 図2 において、オーサリングシステム(編集システム)10 は、本発明の動画ストリーム変換装置の機能を実現する オーサリングユニット12と、VTRやCD-ROMド ライブ等を用いた再生ユニット14で構成される。オー サリングユニット12としては、例えば本発明の動画ス トリーム変換機能を提供するアプリケーションプログラ ムを実行するパーソナルコンピュータが使用でき、入力 ユニットとしてMPEG1エンコーダを内蔵している。 [0025] オーサリングユニット12は、再生ユニッ ト14により再生されたビデオテープやCD-ROMの 同化ストリームは、MPEG1エンコーダでMPEG1 システムストリームに変換され、オーサリングユニット 12のハードディスク等にファイルデータとして格納さ れる。この再生ユニット14から変換されたMPEG1 20 システムストリームを対象に、オーサリングユニット1 2はMPEG2トランスポートストリームへの変換を行 Э.

【0026】オーサリングユニット12で変換されたMPEG2トランスポートストリームは、例えばLAN等のネットワーク20によりビデオ・オン・デマンド・システムのセンタ16に設置されたストリームサーバ16-1,16-2に転送され、各サーバのもつハードディスクにファイルデータとして格納される。またオーサリングユニット12で変換したMPEG2トランスポートストリームを光ディスク等の蓄積媒体に格納し、この蓄積媒体を、センタ16のストリームサーバ16-1,16-2に設けているドライブにセットして再生してもよい。

【0027】ストリームサーバ16-1,16-2に対しては、ネットワーク20を介して管理サーバ18が接続されている。ストリームサーバ16-1,16-2及び管理サーバ18は、外部のネットワーク22を介して、ユーザ端末となるテレビ装置28にセットトップユニット26を介して接続される。またネットワーク22を介してユーザのパーソナルコンピュータ24とも接続される。

【0028】このビデオ・オン・デマンド・システムは、伝送レート6.144MbpsをもつMPEG2に対応しており、ネットワーク22を通じてMPEG2トランスポートストリームの固定ビットレートによる伝送を行う。ネットワーク22としては、通常、ATMネットワークが使用される。ATMネットワークは、伝送レートが156Mbpsの非同期伝送モードで動作している。

【0029】このようなビデオ・オン・デマンド・シス

9

テムにあっては、例えばテレビ装置28のユーザがセットトップユニット26を介してセンタ16に任意のプログラムを要求すると、この要求を管理サーバ18で受信し、空き状態にあるストリームサーバ16-1または16-2に対し、要求のあったプログラムのMPEG2トランスポートストリームの送出を指示する。このMPEG2トランスポートストリームの転送をネットワーク22及びセットトップユニット26を介して受信し、MPEG2デコーダでビデオとオーディオの各信号を復調して、テレビ装置28で再生する。

【0030】図3は、図2のセンタ16に設けられたストリームサーバ16-1のプログラムモジュールの構成である。ストリームサーバ16-1には、ストリームサーバ管理プロセスモジュール60、運転制御モジュール62、管理サーバ連携モジュール64、プログラム保守制御モジュール66、システム環境保守制御モジュール68、データ保守制御モジュール70、データ送出制御モジュール72、ディスクアクセス制御モジュール74及び回線制御モジュール76が設けられている。

【〇〇31】ディスクアクセス制御モジュール74に対 してはハードディスク56が設けられており、このハー ドディスク56に、図2のオーサリングシステム10の オーサリングユニット12でMPEG1システムストリ ームから変換したMPEG2トランスポートストリーム が格納されている。ストリームサーバ16に対し、管理 サーバ連携モジュール64を介して管理サーバ18より プログラム送出指示があると、ストリームサーバ管理プ ロセスモジュール60が起動して、送出指示のあったプ ログラムをもつストリームの状態を把握し、もし未送出 であれば運転制御モジュール62を起動し、データ送出 制御モジュール72を制御して、ディスクアクセス制御 モジュール74によりハードディスク56より該当する MPEG2トランスポートストリームを読み出し、回線 制御モジュール76よりネットワーク22に対し送出さ せる。

【0032】図4のフローチャートは、図2のオーサリングシステム10による動画ストリームの変換と、センタ16に設置したストリームサーバ16-1, 16-2によるビデオ・オン・デマンド処理のフローチャートである。まず図4のステップ $S1\sim S5$ の処理が、オーサリングシステム10のオーサリングユニット12で実行される動画ストリーム変換処理である。次のステップ $S6\sim S10$ の処理が、センタ16の例えばストリームサーバ16-1で行われる動画ストリームをユーザに向けて送出するビデオ・オン・デマンド処理である。

【0033】ここで本発明の動画ストリーム変換処理は、変換元となるMPEG1システムストリームをMPEG2トランスポートストリームに変換するものであるが、その変換処理は次の3つのモードに分けられる。

10

2トランスポートストリームへの変換に関し、伝送レートは変化させないで文法のみを変換する。

【0034】モード2;MPEG1システムストリームからMPEG2トランスポートストリームへの変換に関し、無効パケット(NULLパケット)を挿入して、伝送レートをMPEG2に対応した6.144Mbpsに変更する。

モード3; MPEG1システムストリームからMPEG2トランスポートストリームへの変換については、モー10 ド1と同様、伝送レートは変化させないで文法のみを変換するが、MPEG2トランスポートのストリームをネットワークに伝送する直前に無効パケット(NULLパケット)を挿入して伝送レートをMPEG2に対応した6.144Mbpsに変化させる。

【0035】図4のフローチャートは、このようなモード1,2,3について、動画ストリーム変換処理とビデオ・オン・デマンド処理を示している。まず、ステップS1~S5の動画ストリーム変換処理を説明する。図2に示したオーサリングシステム10のオーサリングユニット12にあっては、ステップS1でVTRなどの再生ユニット14から任意のプログラムを再生し、自分自身のハードディスクにMPEG1システムストリームとして格納する。

【0036】この場合、VTRからの再生信号がビデオ及びオーディオの生データであった場合には、オーサリングユニット12に設けているMPEG1エンコーダを使用してMPEG1システムストリームに変換した後にハードディスクに格納する。もちろん、媒体自身にMPEG1システムストリームの形態で記憶されている場合には、最終データをそのままハードディスクに格納する

【〇〇37】次にステップS2で、変換時に無効パケットNULLを挿入し、またビットレートをMPEG2の6.144Mbpsにするか否か判定する。これはモード1,2,3の判定である。変換時に無効パケットNULLを挿入せず、且つビットレートも変化させない場合にはモード1となり、ステップS3に進み、ハードディスクに格納したMPEG1システムストリームをMPEG2トランスポートストリームに変換し、ハードディスクに格納する。

【0038】ステップS2で、変換時に無効パケットNULLを挿入し且つビットレートを6.144Mbpsに変化させる場合は、モード2となり、ステップS4に進む。ステップS4にあっては、MPEG1システムストリームをMPEG2トランスポートストリームに変換する際に無効パケットNULLを挿入して、ビットレートをMPEG2対応の6.144Mbpsとしてハードディスクに格納する。

が、その変換処理は次の3つのモードに分けられる。 【0039】更にモード3で、MPEG2トランスポーモード1;MPEG1システムストリームからMPEG 50 トストリームをネットワークに送出する際に無効パケッ

トNULLを挿入する場合は、モード1と同じであり、ステップS3と同じ処理を行う。このようにモード1~3に応じて変換されたMPEG2トランスポートストリームを、図2のように、ネットワーク20または光ディスク媒体MOなどの保存媒体に格納した状態で、ビデオ・オン・デマンド・システムのセンタ16に設置しているストリームサーバ16-1または16-2のハードディスクにコピーする。

【0040】続いてステップS6~S10のビデオ・オン・デマンド処理を説明する。ステップS6で利用者の 10 セットトップユニット26あるいはパーソナルコンピュータ24などからセンタ16の管理サーバ18に対し見たい番組のリクエストが行われたとする。このユーザからのリクエストに対し、ステップS7で、センタ16側はリクエストに該当するストリームサーバ、例えばストリームサーバ16-1に対し映像送出の指示を出す。

【0041】この指示を受けてストリームサーバ16-1は、ステップS8で、ストリーム送出時に無効パケットNULLを挿入するか否かチェックする。即ち、モード3による送出か否かチェックする。モード3による送出か否かチェックする。モード3による送出か否かチェックする。モード3による送出であればステップS9に進み、例えば図3に示すように、ストリームサーバ16はハードディスク56よりリクエストに該当する映像のMPEG2トランスポートストリームを読み出し、ネットワーク22を介して利用者に送出するが、この送出の直前に無効パケットを挿入して、ビットレートをMPEG2に対応した6.144Mbpsとした後に送出する。

【〇〇42】これに対し、送出時に無効パケットNULLを挿入しないモード1,2については、ハードディスクから読み出したMPEG2トランスポートストリームをそのままネットワークに送出する。ただし、モード1にあっては、MPEG2トランスポートストリームをそのままネットワークに送出すると、内容的にはMPEG1の固定ビットレート1.536Mbpsしかないデータが、その4倍のMPEG2のビットレートで送られてしまい、そのままでは復号はできない。

【〇〇43】これに対する対応としては、端末側にバッファメモリを設けて、4倍の伝送レートで送られてきたMPEG1のデータをバッファに格納した後に再生する方式をとればよい。またモード1のMPEG2トランス 40ポートストリームの別のネットワーク送出としては、

6.144Mbpsの伝送クロックを4分の1に分周したクロックを使用した間欠的な送出とすることで、実質的に1.536Mbpsの本来のデータ部分に対するビットレートを保証することができる。

【〇〇44】もちろん、このようなモード1固有のネットワーク送出方式をとらず、本発明にあっては、変換方式を全てモード2またはモード3とすることで、NULLパケットの挿入によりビットレートを変化させるようにしてもよい。次に図4のフローチャートにおけるモー

1 2

ド1,2,3のそれぞれの動画ストリーム変換処理の詳細を説明する。

【0045】図5は、モード1の動画ストリームの変換を行う本発明の第1の実施形態のブロック図である。図5において、本発明の動画ストリーム変換装置は、分離処理部30、PESパケット作成部32及び多重化処理部34で構成される。分離処理部30は、変換元となるMPEG1システムストリームを入力し、ビデオとオーディオに分離したエレメンタリストリームをそれぞれ出力する。

【0046】PESパケット作成部32は、分離処理部30より供給されるビデオとオーディオのエレメンタリストリームのそれぞれについて、MPEG2のパケット化されたエレメンタリストリームを構成するパケットの作成を行う。このパケットは、通常、PESパケットと呼ばれる。多重化処理部34は、PESパケット作成部32で作成されたビデオとオーディオの各PESパケットを188バイトの固定長のTSパケットに振り分けた後に多重化して、MPEG2トランスポートストリームとして出力する。

[0047] 図6は、図5の動画ストリーム変換処理の変換処理の概略である。まず分離処理部30に入力するMPEGシステムストリーム78は、パックというデータ単位で構成されている。このパックからビデオとオーディオのエレメンタリストリーム80を分離する。MPEGシステムストリーム78の詳細は、図8に示す構成を持つ。

【0048】図7において、この例はパック86-1,86-2,86-3の3つを例にとっている。パック86-1〜86-3は、先頭のパック86-1について示す内容を持っている。即ち、パック86-1はパックへッダ88とシステムヘッダ90に続いて、複数のパケット92,・・・94を設けている。次の2番目のパック86-2は、先頭のパック86-1に設けていたパックへッダ88がなく、システムヘッダ96に続いて複数のパケット98~100を設けている。3番目のパック86-3も、2番目のパック86-2と同様である。先頭のパック86-1にのみ設けられているパックへッダ86は、パック開始コード102、2ビット制御ビット104、システム時刻基準参照値106及び多重化レート108で構成される。

【0049】ここでシステム時刻基準参照値106は、通常、SCR(システムクロックリファレンス)と呼ばれ、ビデオとオーディオのレコーダを含むMPEGシステム復号器において、時刻基準となる基準同期情報STCの値をエンコーダ側で意図した値にセット、構成するための情報である。パックヘッダ88に続いて設けられたシステムヘッダ90は、先頭開始コード110、パケットがビデオかオーディオかの種別とそのチャネル番号を示すストリームID112、パケット長114、2ビ

ット制御116、スタフィングバイト118、バッファ スケール120、バッファサイズ122、再生タイムス タンプ (PTS) 124、復号タイムスタンプ (DT S) 126、1バイトの固定ビット列に続いて設けられ たペイロードを構成するパケットデータバイト130を 持つ。

【0050】ここで、ペイロードを構成するパケットデ ータバイト130は、8バイトのN倍の領域を確保でき る可変長領域である。またペイロードとなるパケットデ ータバイト130を除くパラメータがパケットヘッダを 10 構成する。本発明による動画ストリームの変換にあって は、パケットヘッダのうちの先頭開始コード110、ス トリームID112、パケット長114、2ビット制御 116、再生タイムスタンプ124、復号タイムスタン プ126が解読されて、MPEG2のPSパケットのパ ケットヘッダのパラメータの作成に使用される。

【0051】ここでパケットヘッダに設けられた再生タ イムスタンプ124は、再生出力の時刻管理情報であ り、また復号タイムスタンプ126は復号の時刻管理情 報である。これらのタイムスタンプ124,126は、 パケットデータバイト130の中にビデオまたはオーデュ ィオのアクセスユニットの先頭がある場合は、図示のよ うにパケットヘッダに付加される。

【0052】ここでアクセスユニットとは復号再生の1 単位であり、ビデオの場合は1フレーム、オーディオの 場合は1オーディオフレームを意味する。このため復号 側にあっては、パックヘッダ88に設けているシステム 時刻基準参照値106によって与えられる時間92に基 づき、再生タイミングを示す再生タイムスタンプ124 に従った再生出力と、復号タイムスタンプ126に従っ た復号動作を行う。なお再生タイムスタンプ124,符 号タイムスタンプ126は、パケットデータバイト13 〇にアクセスユニットの先頭がない場合は付加しない。 【0053】更に、復号タイムスタンプ126は、ビデ オの符号化データの再生時に、再生出力順序に対し復号 順序が異なることに対して設けられている。具体的に は、IピクチャとPピクチャについて再生タイムスタン プ124と復号タイムスタンプ126を付けるが、Bピ クチャや、BピクチャのないIピクチャとPピクチャの ストリームは、再生タイムスタンプ124のみとなる。 【0054】再び図6を参照するに、分離処理部30で パックで構成されたMPEG1システムストリーム78 からビデオとオーディオごとに分離されたエレメンタリ ストリーム80は、図7の先頭パック86-1のパック ヘッダ88に設けているシステム時刻基準参照値(SC R) 106のみを示しており、また次のパケット92に ついては、パケットヘッダに設けられている再生タイム スタンプ124と復号タイムスタンプ126のみを示 し、ペイロードとしてのパケットデータバイト132は 14

が格納されている。

【0055】このように分離処理部30でビデオとオー ディオのエレメンタリストリーム80にそれぞれ分離さ れた符号がパケット作成部32に与えられ、MPEG2 のPESパケット82に変換される。図8は、図6のP ESパケット82の詳細である。まずPESヘッダは、 パケット開始コード132、ストリームID134、パ ケット長136及びオプショナルPESヘッダ138で 構成され、その後ろにペイロードとしてのPESパケッ トデータバイト140を設けている。

【0056】オプショナルPESヘッダ138は、2ビ ット制御142、スクランブル制御144、優先度14 6、データ整列表示148、コピーライト150、オリ ジナル/コピー152、7フラグ154、ヘッダデータ 長156、オプショナルフィールド158及びスタッフ ィングバイト160で構成される。このうちオプショナ ルフィールド158は、再生タイムスタンプ162、復 号タイムスタンプ164、エレメンタリストリーム時間 基準参照値(ESCR)166、エレメンタリストリー ムレート168、トリックモード制御データ70、付加 コピー情報172、先行PESパケット(CRC)17 4及び拡張制御176で構成される。

【0057】拡張制御176は、5フラグ178とオプ ショナルフィールド180に分けられる。オプショナル フィールド180にはPESプライベートデータ18 2、パケットヘッダフィールド184、プログラムパケ ットシーケンスカウンタ186、システムターゲットデ コーダ (STD) バッファ188、拡張フィールド長1 90及び拡張フィールドデータ192で構成される。 【0058】 このようなPESパケットのヘッダに設け ているストリームID134、パケット長136、ヘッ ダデータ長156、再生タイムスタンプ162、復号タ イムスタンプ164の各パラメータが、図7の変換元と

なるMPEG1システムストリームに基づいてセットさ れる。それ以外のパラメータは、予め定めた固定値が使

用される。

【0059】図9は、図8のPESヘッダの各パラメー タの詳細であり、連続番号1~41に分けて示され、そ の内容については、文頭(シンタックス)、ビット数、 16進表示のデビットと説明/備考に分けている。また 図10には、図9における各パラメータの名称と符号と の対応を同じ番号1~41について示している。再び図 6を参照するに、PESパケット作成部32にあって は、PESパケット82に示すように、分離処理部30 で分離された例えばビデオのエレメンタリストリームに ついて、その再生タイムスタンプ124をPESパケッ ト82のPESヘッダ85における再生タイムスタンプ 162としてセットし、同様にエレメンタリストリーム 80の復号タイムスタンプ126をPESパケット82 ビデオの符号化データまたはオーディオのビデオデータ 50 のPESヘッダ85における復号タイムスタンプDTS

- 30

15

164としてセットしている。

【0060】更にESストリーム80のペイロードとなるパケットデータバイト130については、そのままESパケット82のペイロードとなるパケットデータバイト140に格納している。図11のフローチャートは、図6のPESパケット作成部32によるPESパケット82の作成処理の詳細である。まずステップS1で、ビデオまたはオーディオに分離されたMPEG1のシステムストリーム、即ちエレメンタリストリームをファイルからリードする。ステップS2で最終フレームか否かチェックし、最終フレームでなければステップS3に進み、パックヘッダの有無をチェックする。

【0061】もしパックヘッダであればステップS4に進み、パケットヘッダ及び次のシステムヘッダは全て読み飛ばし、ステップS5で最初のパケットヘッダを解析する。パケットヘッダは図7に示す内容をもち、まずステップS6で先頭のパケット開始コード110を解析する。続いてステップS7でストリームID112を判別する。ストリームIDは、ビデオとオーディオの種別とそのチャネル番号を定義している。例えばビデオは16チャネル、オーディオは32チャネルの定義が可能である。

【0062】もしストリームIDからビデオでもなくオーディオでもなければ、ステップS8で次のパケットまでスキップして、同様の処理を行う。ストリームIDからビデオまたはオーディオであることを判別すると、ステップS9でパケット長114を読み込む。続いてステップS10で次の2ビット制御116をチェックし、もし「01」であれば、ダミーバイトとしてのスタッフィングバイト118を13ビット、スキップする。

【0063】「01」以外のときにはスタッフィングバイト118がないことから、そのままステップS12に進む。続いてステップS12で1バイトをチェックし、

「0010」であれば再生タイムスタンプ(PTS) 124のみが存在することから、これを抽出して図9のPESパケットの再生タイムスタンプ(PTS) 162に格納する。

【0064】一方、1バイトのうちの先頭4ビットが「0011」であった場合には、図8の再生タイムスタンプ (PTS) 124及び復号タイムスタンプ (DTS) 126の両方が存在することから、ステップS14で、再生タイムスタンプ (PTS) を図8のPESパケットの再生タイムスタンプ162に格納し、ステップS15で、図7の復号タイムスタンプ126のDTS情報を同じく図8のPESパケットの復号タイムスタンプ164に格納する。

【0065】更にステップS12で1バイトがオールゼ 214について ロであった場合には、再生タイムスタンプ及び復号タイ 及び符号との欠 ムスタンプの両方が存在しないことから、それぞれの情 14と図12の 報の格納は行わない。これにより、ステップS16で図 50 に示している。 16

8の内容をもつPESヘッダを作成することができる。 最終的に、ステップS17で、PESパケットのペイロードとなるPESパケットデータバイト142に対しM PEG1のパケットデータバイト130の符号化データを挿入し、これにより1つのPESパケットを作成することができる。以上の処理を、ステップS2でフレーム終了コードが得られるまで繰り返す。

【0066】再び図6を参照するに、多重化処理部34は、PESパケット作成部32で作成されたビデオ及びオーディオの各PESパケット82をそれぞれ184バイト単位に分けてMPEG2トランスポートストリーム84におけるTSパケットのペイロード196に格納し、ペイロード196のそれぞれにTSヘッダ194を付加することで、MPEG2トランスポートストリーム84に変換する。

【0067】図12はMPEG2トランスポートストリームの詳細である。MPEG2トランスポートストリームの各パケットは188バイトの固定長をもち、ヘッダ194が4バイト、ペイロード196が184バイトとなる。ヘッダ194は、同期バイト198、誤り表示200、ユニット開始表示202、トランスポート優先度204、パケットID206、スクランブル制御208、アダプテーションフィールド制御210、巡回カウンタ212及びアダプテーションフィールド214で構成される。

【0068】アダプテーションフィールド214は、アダプテーションフィールド長216、不連続表示218、ランダムアクセス表示220、エレメンタリストリーム優先度表示222、5フラグ224、オプショナルフィールド226、スタッフィングバイト228で構成される。このうちオプショナルフィールド226は、プログラム時間基準参照値(PCR)230、オリジナルプログラム時間基準参照値フィールド232、スプライスカウントダウン234、プライベートデータ長236、プライベートデータ238、アダプテーションフィールド拡張240、3フラグ241、オプショナルフィールド242で構成される。

【0069】更にオプショナルフィールド242はLTW(リーガルタイムウインドウ タイム許容範囲)有効フラグ244、LTWオフセット246、PW(Piecewise)レート表示248、シームレススプライスタイプ(継目無し結合タイプ)252、次アクセスユニット復調タイムスタンプ254で構成される。このようなTSパケットのヘッダ194の各パラメータの詳細は、図13に同期バイト198から循環カウンタ212までを示し、図14に次のアダプテーションフィールド214について示している。また図13と図12の名称及び符号との対応関係を図15(A)に示し、同様に図14と図12の名称と符号との対応関係を図15(B)

17

【0070】図16は、図6の多重化処理部34におけるPESパケット82から多重化処理によりMPEGトランスポートストリームを作成するための処理を示す。まずステップS1で、MPEG2-PESファイルをリードする。次にステップS2で、図12のTSヘッをリードする。次にステップS2で、図12のTSヘッをリードする。次にステップS2で、図12のTSヘッをリードする。次にステップS2で、図12のTSへがは、パケット中のビットエラーの有無を示す誤り表示200、TSペイロードの中に新たなPSパケットが出現する。かを示すユニット開始表示202、ペイロードのの分がビデオかオーディオかを示すパケットID20にアダプテーションフィールド214及びペーロード196の有無を示すアダプテーションフィールに196の有無を示すアダプテーションフィールにが196の有無を示すアダプテーションフィールにが196の有無を示すアダプテーションフィールにが196の有無を示すアダプテーションフィールにが196の有無を示すアダプテーションフィールに対した196の作用では40ででは100でで

【0071】ここで図12のパケットID206については、図13に示すように、ビデオかオーディオかの識別は先頭のTSパケットのパラメータにのみ規定しており、それ以降のパラメータについてはPAT, CAT, 予約, NULLパケット(無効パケット)などのストリームの属性を設定できる。この無効パケットの属性設定に対応して、図12のアダプテーションフィールド制御210、アダプテーションフィールドあり、ペイロードあり、無視、更にはNULLパケットの制御表示を行っている。

【0072】再び図16を参照するに、ステップS2で TSヘッダが作成できたならば、ステップS3で、TS ペイロードにPESデータから切り出した184バイト のデータを格納する。続いてステップS4で、TSペイ 30 ロードのバイト数184バイトよりPESデータバイト が大きいか否かチェックし、もし大きければ再びステッ プS2に戻って、次のTSパケットの作成を行う。

【〇〇73】ステップS4でPSデータバイトがTSペイロードの184バイトより小さければステップS5に進み、残りのTSペイロードの部分に「〇xFF」を挿入し、ステップS6でMPEG2トランスポートストリームを完成する。図17は、図4の動画ストリーム変換処理を行うための図2のオーサリングユニットの実施形態のブロック図である。このモード2の実施形態にあっては、MPEG1システムストリームからMPEG2トランスポートストリームに変換する際に、MPES2トリームからトランスポートストリーム、即ちPESストリームからトランスポートストリームに変換する過程において、無効パケット(NULLパケット)を挿入し、ビットレートをMPEG2の6.144Mbpsに適合させたことを特徴とする

[0074] 図17の実施形態は、分離処理部30、P ESパケット作成部32、多重化処理部34で構成さ 18

れ、更に再生タイムスタンプ計算部36とPCR(プログラム時間基準参照値)発生部38を設けている。また多重化処理部34にはパケット切替部40と無効パケット挿入部42が設けられている。図17の処理は、図18に示すようになる。分離処理部30は、変換元として与えられたMPEG1システムストリーム78の各パックにつき、ビデオとオーディオに分離したエレメンタリストリーム80を出力する。PESパケット作成部32は、ビデオとオーディオの各エレメンタリストリーム80からPESパケット82を作成する。

【0075】更にPESパケット作成部32は、PESパケット82のヘッダに含まれている再生出力タイムスタンプ(PTS)124を再生タイムスタンプ計算部36に出力し、MPEG2の伝送レートに適合した値に変更する計算を行い、この計算値をPESパケット260に示すように再生タイムスタンプ(PTS)262として変更する。

[0076] このようにPESパケット作成部32でPESヘッダ85の再生タイムスタンプPTSをMPEG2の伝送レート6.144Mbpsに適合した値に変更する以外は、図6に示したモード1の変換と同じになる。次に多重化処理部34は、ビデオ及びオーディオのPSパケット260を多重化する際に、ペイロードにプログラム連想テーブル(PAT)270、プログラムマップテーブル(PMT)276、更にMPEG2の伝送レート6.144Mbpsに適合する値に補正されたプログラム時刻参照基準値(PCR)282をそれぞれ格納したTSパケット266,272,278を作成する。

【0077】その後ろにペイロードにPESパケット260のストリームを180パイト単位に切り出してデータ288,294として格納したTSパケット284,290を発生する。そして残りのTSパケット296の全てを無効パケット(NULLパケット)とし、ペイロードのデータは無効状態300とする。このようなMPEG2トランスポートストリーム264におけるTSパケット266,272,278,284,290,296のヘッダ268,274,280,286,292,298は、モード1について示した図12,図13,図14及び図15に従って各パラメータが決められる。

[0078] またMPEG2トランスポートストリーム の先頭の2つのTSパケット266,272のペイロードに挿入しているプログラム伝送テーブル (PAT)270及びプログラムマップテーブル (PMT)276 は、プログラム使用情報 (PSI; Program Specific Information プログラム・スペースフィック・インフォーメーション)と呼ばれている。

【0079】このようなプログラム使用情報は、MPE G2のトランスポートストリームが多数のビデオ、オー 50 ディオの個別ストリームを伝送していることから、復号 側で複数のプログラムの中から、どのプログラムを選び、どのパケットを取り出して復号するかを決めるための情報として使用される。また、伝送レートを可変するために挿入した無効パケットとして機能するTSパケットとり6については、ヘッダ298のパラメータとして無効パケット(NULLパケット)であることを示すしてセットされる。またアダプテーションフィールド制御のパラメータとして無効パケット(NULLパケット)であることを示すコード「01」が格納される。

[0080] このため、TSパケット296のヘッダ2 98を復号器で解読すると、パケット I Dから無効パケ ットであることが認識され、更にアダプテーションフィ ールドの解読でペイロード部が無効データであることを 認識できる。この結果、復号器では無効パケットの処理 は無視されることになる。このような図17,図18に 示したモード2の変換処理によれば、MPEG2トラン スポートストリームに変換された状態で文法及び伝送レ ートの両方についてMPEG2に対応している。このよ うなモード2のMPEG2トランスポートストリームを 20 図2のオーサリングユニット12で作成してビデオ・オ ン・デマンド・システムのセンタ16に設置したストリ ームサーバ16-1,16-2に提供することで、スト リームサーバ16-1, 16-2はMPEG1システム ストリームからの変換ストリームであることを全く意識 することなく、利用者からの要求に対しストリームを送 出することができる。

【〇〇81】図19は、図17に示した文法及び伝送レートの両方についてMPEG2トランスポートストリームへの変換を行うモード2の更に変形した実施形態であり、無効パケットのペイロードにユーザデータを挿入できるようにしたことを特徴とする。図19の実施例にあっては、図17のPESパケット作成部32で作成されたMPEG2パケット化エレメンタリストリームのファイルを、ハードティスク44に格納した後にMPEG2トランスポートストリームに変換する場合を例に取っている。

【〇〇82】ハードディスク44に格納されたMPEG 2のパケット化エレメンタリストリーム(PES)は、分離処理部48に読み出され、ビデオPESパケットと 40 オーディオPESパケットに分離されて多重化処理部3 4に与えられる。多重化処理部34は、図17の実施例と同様、パケット切替部40と無効パケット挿入部42で構成されるが、無効パケット挿入部54に対しては別に準備したハードディスク46に格納しているユーザプライベート・マルチメディアデータの無効パケットのペイロードへの挿入を可能としている。

【0083】この多重化処理部34で変換されたMPE 144Mbpsに変化させる実施形態のブロック図であ G2トランスポートストリームは、ハードディスク56 る。この無効パケットの挿入は、図2のビデオ・オン・ に格納された後、図2のビデオ・オン・デマンド・シス 50 デマンド・システムのセンタ16に設置されているスト

20

テムのストリームサーバ16-1,16-2に提供される。図20は、図19における変換処理を示している。分離処理部48でビデオとオーディオに分離されたMPEG2PESパケット82は、多重化処理部34において、図18のモード2の場合と同様、ペイロードにプログラム伝送テーブル(PAT)270、プログラムマップテーブル(PMT)276、更にプログラム時刻基準参照値(PCR)282を格納したTSパケット266,272,278に続き、184バイト単位にMPEG2-PESパケットのストリームから切り出したデータ288,294を格納したTSパケット284,290を設け、その後ろに残りの任意の数のTSパケット296を無効パケットとしている。

【0084】この無効パケットとなるTSパケット296は、TSヘッダ298の4バイトについて、図13に示すパラメータのうち、特に次のパラメータをセットしている。

①ユニット開始表示(ペイロードユニットスタートイン ジケータ)を、TSペイロード内に新たなPESパケッ トが出現しないことを示す「〇」にセット;

②パケットIDを、無効パケットを示す「0×1fff」にセット;

③アダプテーションフィールド制御を、無効パケットを 示す「01」にセット;

このようなTSヘッダ298の無効パケットに対するパラメータの設定に続き、次の184バイトのペイロード300の先頭1バイトをユーザフラグ324とする。このユーザフラグ324としては、例えば「0×01」を使用する。そして、その後ろにユーザデータ326を挿30入する。

【0085】このようなTSヘッダ320及びペイロード300の構成を持つ無効TSパケット290にあっては、復号器でTSヘッダ320の前記①~③のパラメータを確認した後、ペイロード300の先頭1バイトのユーザフラグ324を確認し、ユーザフラグ「0×01」を確認できれば、残り183バイトがユーザデータ326であることが分かり、このユーザデータ326についてMPEG2を外れたユーザデータとしての適宜の処理に回すことができる。

【0086】もちろん、MPEG2の規格から見るとTSパケット296は無効パケットであることから、ペイロードのユーザフラグ324及びユーザデータ326は全て無視され、ビデオ及びオーディオの復号に何ら影響を及ぼすことはない。図21は、図4のビデオ・オン・デマンド処理に示したモード2によるMPEG2トランスポートストリームへのネットワークへの送出直前に無効パケットを挿入して、伝送レートをMPEG2の6・144Mbpsに変化させる実施形態のブロック図である。この無効パケットの挿入は、図2のビデオ・オン・デマンド・システムのセンタ16に設置されているスト

リームサーバ16-1,16-2から動画ストリームを 送出する際に行われる。

【0087】したがって図3に示したストリームサーバ 16におけるデータ送出制御モジュール72、ディスク アクセス制御モジュール74及び回線制御モジュール76の1つの機能として実現される。図21において、ハードディスク56には、図5に示したモード1に従って 変換されたMPEG2トランスポートストリームが格納 されている。利用者からの要求に対し、ハードディスク 56から特定のMPEG2トランスポートストリームが 10読み出され、ネットワーク22を介して利用者のセットトップユニット26に送出し、復号してテレビ装置28で再生する。

【0088】ネットワーク22としては、ATMネットワークを使用している。ハードディスク56から読み出されたMPEG2トランスポートストリームは、無効パケット挿入部58でMPEG2の固定ビットレート6.144Mbpsに適合するように無効パケットの挿入が行われる。即ち、図22に示すように、ハードディスク56から読み出されたMPEG2トランスポートストリームは、文法はMPEG2に変換されているが、ビットレートはMPEG1の1.536Mbpsのままである。そこで、先頭のTSパケット302のヘッダに設けているプログラム時刻基準参照値(PCR)304をMPEG2の伝送レート6.144Mbpsに適合した値に補正する。

【0089】送出するMPEG2トランスポートストリーム301の先頭のTSパケット302について、補正後のプログラム時刻基準参照値(PCR)306をセットする。続いて、元のMPEG2トランスポートストリーム300のTSパケット308,310をそのまま送出し、次のTSパケットの先頭を含むTSパケット312までの間に、伝送レートを6.144Mbpsに適合させるに必要な数の無効パケットとして機能する任意の数の無効TSパケット320-1,320-Nを挿入する。

【0090】この結果、ATMセル化処理部58に対しては、文法及び伝送レート共にMPEG2トランスポートストリームに変換されたストリームが供給され、ATMセル化処理部58でTSパケットのストリームを5840パイト単位のセルに変換してネットワーク22に送出する。この図21、図22に示したモード3によるネットワーク送出時に無効パケットを挿入するモード3にあっては、ハードディスク56に格納したMPEG2トランスポートストリームの段階では、伝送レートを適合させるために必要な無効パケットの挿入がないことから、ハードディスク56の必要な容量はMPEG1システムストリーム相当で済み、MPEG2トランスポートストリームに変換していても、ディスク記憶容量を低減することができる。50

22

【〇〇91】尚、上記の実施例はビデオ・オン・デマンド・システムで利用するためのMPEG1システムストリームからMPEG2トランスポートストリームへの変換を例にとるものであったが、本発明はこれに限定されず、適宜の動画ストリームの利用システムに適用することができる。また、本発明は実施形態の説明で示された数値による限定は受けない。

[0092]

【発明の効果】以上説明してきたように本発明によれば、高価なMPEG2のエンコーダを使用することなく、ビデオとオーディオの動画ストリームデータをMPEG1システムストリームにコスト的に安価なMPEG1エンコーダで変換した後に、本発明の動画ストリーム変換により、基本的には文法についてのみMPEG2トランスポートストリームへの変換を行うことで簡単に変換ができ、更にネットワーク送出については、伝送レートを変化させることで文法及び伝送レート共にMPEG2トランスポートストリームとしての形態に変換できる。

【0093】このため、MPEG2トランスポートスト リームに対応したビデオ・オン・デマンド・システムで あっても、コスト的に安価なMPEG1エンコーダと本 発明の動画ストリーム変換装置を設置するだけで、簡単 にアプリケーション機能の優れたMPEG2のシステム 形態を実現できる。またCD-ROMなどのMPEG1 システムストリームを記録した記録媒体をMPEG2対 応のビデオ・オン・デマンド・システムで送出するよう な場合、MPEG2エンコーダを使用している場合には 記録媒体のMPEG1のシステムストリームから元のビ デオとオーディオを復号した後にMPEG2エンコーダ で再変換する。これに対し本発明の動画ストリーム装置 は、記録媒体から読み出したMPEG1システムストリ ームを直接MPEG2トランスポートストリームに変換 できるため、復号後の再変換による画像の劣化が抑制さ れ、MPEG1システムストリームの映像資産を有効に 活用することができる。

[0094]

【図面の簡単な説明】

[0095]

【図1】本発明の原理説明図

[0096]

【図2】本発明の動作環境となるビデオ・オン・デマン ド・システムのブロック図

[0097]

【図3】図2のストリームサーバの機能ブロック図 【0098】

【図4】図2における本発明の動画ストリーム変換処理 とビデオ・オン・デマンド処理のフローチャート 【0099】

) 【図5】モード1の変換を行う本発明の変換装置のブロ

ック図

[0100]

【図6】図5の変換処理の説明図

[0101]

【図7】変換元となるMPEG1システムストリームの 説明図

[0102]

【図8】図6の処理で作成されるPESパケットの説明図

[0103]

【図9】図8のPESパケットのヘッダパラメータの詳細を示した説明図

[0104]

【図10】図8と図9のPESパケットのパラメータ対応の説明図

[0105]

【図11】図5のMPEG2のPESパケットの作成処

理のフローチャート

[0106]

【図12】図5で変換されるMPEG2トランスポート 20

ストリームの説明図 【0107】

【図13】図12のヘッダパラメータの詳細を示した説

明図

[0108]

【図14】図5のオプショナルフィールドヘッドのパラ

メータの詳細を示した説明図

[0109]

【図15】図12と図13,図14のパラメータの対応

を示した説明図

[0110]

【図16】図4のMPEG2システムストリームへの変

換処理の説明図

[0111]

【図17】MPEG1トランスポートの変換時に文法と

伝送レートを変えるモード2の実施形態のブロック図

[0112]

24

【図18】図17のモード2の変換の説明図

 $\{0113\}$

【図19】無効パケットにユーザデータを挿入可能なモ

ード3の実施形態のブロック図

[0114]

【図20】図1のPESパケットからトランスポートス

トリームへの変換処理の説明図

[0115]

【図21】モード1で作成したMPEG2をネットワー

10 クに送出する直前に無効パケットを挿入する場合の機能

ブロック図 【0116】

【図22】図21の無効パケット挿入処理の説明図

[0117]

【符号の説明】

10:オーサリングシステム(編集システム)

12:オーサリングユニット

14:再生ユニット

16-1, 16-2: ストリームサーバ

20 18:管理サーバ

20:内部ネットワーク

22:ネットワーク (ATMネットワーク)

26:セットトップユニット

28:テレビ装置

32:分離処理部

34:PESパケット作成部

36:多重化処理部

60:ストリームサーバ管理プロセスモジュール

62:運転制御モジュール

30 64:管理サーバ連携モジュール

66:プログラム保守制御モジュール

68:システム環境保守制御モジュール

70:データ保守制御モジュール

72:データ送出モジュール

74:アクセス制御モジュール

76:回線制御モジュール

【図1】

(B)

[図2]

本発明の動作環境となるビデオ・オン・デマンド・システムのプロック図

[図6]

[図4]

図2における本発明の動画ストリーム変換処理とビデオ・オン・デマンド処理の フローチャート

MPEG-2 TS 多重化処理部 モード1の変換を行う本発明の変換装置のブロック図 オーディオPES パケット ビデオPES パケット PESパケット 作成部 32 オーディオES ビデオES ストリーム 分離処理部 3 0 MPEG-1 システムストリーム

[図5]

MPEG-2 TS ,34 多重化処理部 MPEG1トランスポートの変換時に文法と伝送レートを変えるモード2の実施 パケット対離的 PCR オーディオPES ビデオPES パケット چ چ PCR発生部 再生タイプスタンプ 計算部 PESパケット 作成館 3,2 PTS オーディオES ストリーム ビデオES ストリーム 形骸のブロック図 PTS. SCR 分離処理部 MPEG-1 システム ストリーム

[図17]

【図7】

【図8】

2 G

~

~

PES枚級 フィールドデータ スタッフィングバイ (OrFP) オブショナル 71-NF で同の選問の 160 180 PES技能 フィールド原 5フラグ ን 先行 PES/47, CRC オプショナル フィールド 158 9 P-STD 本色コアー PES |ヘッダデー9長 | 156 図6の処理で作成されるPESパケットの説明図 18 PESパケットデータパイ (ペイロード) 140 1 7 プログラムパケット シーケンスカウンタ DSM トリックモート 観観データ œ 1751 വ ESV-オリジナル バケット ヘッダ フィールド 152 \approx オブショナル PESヘッダ 138 9 ESCR コピーンドー 42 <u>.</u> PES プライベート データ 9 パケット 本 1 3 6 9 82 データ整列表示 数号タイム スタンプ (DTS) 1 4 8 182 g ストリーム PES 無先度 148 1 6 1 D 再生タイム スタンブ (PTS) జ ころランブル制御 パケット 関格コート 132 9 144 24 N PE: . 0 . 1 4 2 0

【図9】

図8のPESパケットのヘッダパラメータの詳細を示した説明図

No	Syntax	Bits	DAVID	脱明 / 借考
1	packet start code prefix	24	'0x1'(固定)	PES packetの始まり
2	stream id	8	Oxeo: Video	Stream ID
3	PES packet length	18	'014444'(可度)	PES packet長
4	PES scrambling ctrl	2	'00':OPF(国定)	scarmble ON/OFF
5	PES priority	1	'0':低 (頭定)	このPES packetの重要度(実/低)
6	data alignment indi	1	'0':無 (固定)	データの間期の有ノ無
7	copyright	1	'0':無 (固定)	PBS packet payloadの版権の有無
8	original or copy	ì	'0':copy(固定)	PES packet payload boriginal or copy
9	PTS DTS flag	2	10 PTS & DTS	PTS . DTS の有無
10	BSCR flag	1	'0':無 (国定)	ESCR base. ESCR extention の有無
11	ES rate flag	1	'0':無 (固定)	ES rate の有無
12	DSM trick mode flag	l	'0':無 (固定)	DSM trick modeの有無
13	additional cpy info flag	1	'0':無 (固定)	additional cpy info の有無
14	PES CRC flag	1	'0':無 (固定)	PBS CRC の有無
15	PES extention flag	L	'0':無 (固定)	PES extention の有無
16	PES header data length	8	'0x**' (可変)	PES header data 長
17	PTS	33	(可変)	Presentation Time Stamp
18	DTS	33	(可要)	Decoding Time Stamp
19	ESCR base	33	absent	Elementary Stream Clock Refrence
20	ESCR extention	9	absent	Elementary Stream Clock Refrence拡張データ
21	ES rate	22	absent	ES rate
22	trick mode control	3	absent	trick mode control data
23	field id	2	absen t	1 picture のフレームの場所が記述
24	intra slice reflesh	1	absent	PES packet内で、行方不明のマイクロブロックの有無
25	field rep control	5	absent	I/P picture 各々の時間が記載
26	additional copy Info	7	absent	copyright に関する private data
27	previous PBS packet CRC	16	absent	network メンテナンス用、前のPES packet CRC値
28	PES private data flag	1	absent	PES private dataの有無
29	pack header field flag	1	abseat	Pack beader field の有無
30	prog.pkt seq.cuntr flg	1	absent	program packet sequence counter の有無
31	P STD buff flag	1	absent	P STD buffの有無
32	PES extention flag2	1	absent	PES extention field2の有無
33	PES private data	128	absent	PES private data
34	pack field length	8	absent	次field(pack header)サイズの記載
35	prog. pkt seq. counter	7	absent	pkt seq. ctr(continueity counterと関係)
36	MPBG1 MPBG2 identifier	1	absent	PES packet内のstreamは何か?
37	original staff length	6	absent	original staff長
38	P STD buff scale	1	absent	P STD buff scale
39	P STD buff size	13	absent	P STD buff size
40	PES exten. field len	7	absent	PES extention field 長
41	PES packet data byte	8	'Ox*#' (可変)	PES packet data byte

【図10】

図8と図9のPESパケットのパラメータ対応の説明図

No	名 称	図 9 符号	文 法 (Synyax)
1	パケット開始コード	132	packet start code prefix
2	ストリームID	134	stream id
3	パケット長	136	PES packet length
4	スクランブル制御	144	PES scrambling control
5	PES優先度	146	PES priority
6	データ整門表示	148	data alignment indicater
7	コピーライト(著作権)	150	copy right
8	オリジナル/コピー	152	original / copy
9	7 フラグ	154	PTS DTS flag
10	フフラグ	154	ESCR flag
11	7フラグ	154	ES rate flag
12	7フラグ	154	DSM trick mode flag
18	7フラグ	154	additional copy information flag
14	7フラグ	154	PES CRC flag
15	7フラグ	154	PES extention flag
16	PESヘッダデータ長	156	PBS header data length
17	再生タイムスタンプ	162	PTS
18	復号タイムスタンプ	164	DTS
19	ES時刻基準参照値	166	ESCR base
20	ES時刻基準参照値拡張	166	ESCR extention
21	ESV-F	168	ES rate
22	トリックモード制御	170	trick mode control
23	フィールドID	無	field id
24	イントラスライス更新	無	intra slice reflesh
25	フィールド曲り返し制御	*	picturerepitation control
26		172	additional copy information
27	先行PESパケットCRC	174	previous PES packet CRC
28	5 フラグ	178	PES private flag
29	5 フラグ	178	pack header field flag
30	5 フラグ	178	program paclet sequence control flag
31	5 フラグ	178	P STD buff flag
32		178	PBS extention flag 2
33	PESプライベートデータ	182	PES private data
34	1	184	pack field length
35		188	program packet sequence counter
36	ストリームID		MPEG1 MPEG2 identifier
37	オリジナルスタッフ長		original staff length
38		188	P-STD buffer scale
39	P-STDパッファ	188	P-STD buffer size
40		190	PES extention field length
	PES拡張フィールド	192	
41	パケットデータパイト	192	PES packet data byte

(図11)

図5のMPEG2のPESパケットの作成処理のフローチャート

[図12]

次アクセスユニット 後間タイムスタンプ 254 スタッフィング バイト 228 71-11 × 242 インショナ ಜ アダプテーション フィールド 214 オブショナル 74-11 F 3757 3-427542 947 252 英回 カウンタ アダプテーション フィールド虹観 240 ペイロード 5751 224 図5で変換されるMPEG2トランスポートストリームの説明図 フィールド知識 210 アダプテーション PWV-h ESストリーム 優先度表示 222 250 ង 4.7 プライベート データ 288 248 ~ スクランブル 観節 208 LTW オフセット 246 ランダム アクセス表示 220 ペイロード 12 ブライベート データ段 238 7.7.7 h 1D 206 LTW 有効フラク 244 2 不連続表示 2 1 8 ヘッダ 194 スプライス カウントダウン 234 _ トランスポート 優先度 204 アダプテーション フィールド版 216 ペイロード OPCR 188/イト 2 8 2 ユニット配始 搬示 202 42 PCR 2 3 0 173 \$ 製り表示 200 回題バイト 198

【図13】

図12のヘッダパラメータの詳細を示した説明図

No	Syntax	Bits	DAVID	説明 / 情考
1	sysc byte	8	'0x47'(固定)	同期バイト
2	transport error ind.	i	'0':無 (固定)	packet中のピットエラーの有無
3	payload unit start ind.	1	. 1, 0,	このTS payload内に、新たなPES packetが 出現するか否か
4	transport priority	1	'0':低 (固定)	同一PID での、このTS packet の重要度
5	PID	13	, 0x21, :Video , 0x20 : Audio (ts para. istに規定)	Ox00' PAT Ox01' CAT Ox02' Ox01' F#5 Ox11ff' NULL packet
6	transport scrbl ctrl	2	'00':0FF (固定)	scarmble ON/OFF
7	adaptation field ctrl	2	; } :	adaptation field / payloadの有無 「O', 'II, :adaptation field 有 'O', 'II : payload 有 'O', '無視。 (NULL packet: O')
8	continuity counter	4	'0000' (固定)	increment (巡回カウンタ)

[図16]

図4のMPEG2システムストリームへの変換処理の説明図

図5のオプショナルフィールドヘッドのパラメータの詳細を示した説明図

【図14】

No	Syntax	Bits	DAY	YID	説明 / 備考
1	adaptation field length	8	, 0×++,	(可変)	adaptation field長
2	discontinuty indicator	1	'0':無	(固定)	連続するTS packet において、PCR 値の変化
3	random access indicator	1	'0':無	(固定)	ESのaccess pointの位置規定の有/無
4	ES priority indicator	1	'0':低	(固定)	TS packet の優先度の高/低
5	PCR flag	1	'0':無	(固定)	Presentation Clock Reference fieldの有/無
6	OPCR flag	1	'0':無	(固定)	Original PCR fieldの有/無
7	splicing point flag	1	'0':無	(固定)	splice pointの有無→splice countdown field
8	transport prvte data flg	ĺ	'0':無	(固定)	private data fieldの有/無
9	adap. field ext. flag	1	'0':無	(固定)	adaptation field extention fieldの有/無
10	PCR base	33	absent		Presentation Clock Reference base 90KHz
11	PCR extention	8	absent		Presentation Clock Reference base 27KHz
12	OPCR base	33	absent		Splicing pointまでのcountdown
13	OPCR extention	9	absent		Original PCR base 90KHz
14	splice countdown	8	absent		Original PCR base 27KHz
15	transport prvte data len	8	absent		Private data長
16	private data byte	8	absent		Private data
17	adap.field ext.length	8	absent		adaptation field extention field長
18	ltw flag	j	absent		(legal time windows)ltw field の有/無
19	piecewise rate flag	1	absent		piecewise rate fieldの有/無
20	seamless splice flag	1	absent		seamless splice field の有/無
21	ltw valid flag	1	absent		Ltm offset fieldが無効/有効
22	ltw offset	15	absent		TSの最初のbyteの到着時刻の変動
23	pecewce rata	22	absent		PID 毎のrate(0以外)
24	splice type	4	absent		spliceのタイプ
25	DTS next au	33	absent		次のaccess unit のDTS

【図18】

[図15]

図12と図13.図14のパラメータの対応を示した説明図

(A)

No	名 称	图12符号	文 法 (Synyax)
1	周期パイト	198	synchronous byte
2	誤り表示	200	transport error indicator
3	ユニット開始表示	202	payload unit start indicator
4	トランスポート優先度	204	transport priority
5	パケットID	206	PID
8	スクランプル制御	208	transport scramble control
7	アダプテーションフィールド制御	210	adaptation field control
8	巡回カウンタ	212	continuity counter

(B)

No	名 称	図12符号	文 法 (Synyax)
1	アダプテーションフィールド長	216	packet start code prefix
2	不連続表示	218	discontinuty indicator
3	ランダムアクセス表示	220	randam access indicator
4	ES優先度表示	2 2 2	ES priority indicator
5	5 フラグ	224	PCR flag
в	5 フラグ	224	OPCR flag
7	5 フラグ	224	splicing point flag
8	5 フラグ	224	transport private data flag
9	5 フラグ	2 2 4	adaptation field extention flag
10	PCR	230	PCR base
11	PCR	230	PCR extention
12	OPCR	232	OPCR base
13	OPCR	2 3 2	OPCR extention
14	スプライスカウントダウン	234	splice countdown
15	プライベートデータ長	236	transport private data length
18	プライベートデータ	238	private data byte
17	アダプテーションフィールド拡張長	240	adaptation field extention length
18	LTW有効フラグ	2 4 4	ltw valid flag
無	LTWオフセット	2 4 6	ltw offset
19	PWレートフラグ	#	piecewiserate flag
20	シームレススプライスフラグ	無	seamless splice flag
21	[TW有効フラグ	無	Itw valid flag
22	I TWオフセット	無	Itw offset
23	PWV-1	250	piecewise rate
24	スプライスタイプ	252	splice type
25	次アクセスユニット復襲タイムスタンプ	254	DST next access

[図19]

,

.

【図20】

【図21】

. .

モード1で作成したMPEG2をネットワークに送出する直前に無効パケットを 挿入する場合の機能プロック図

[図22]

図21の無効パケット挿入処理の説明図

【手続補正書】

【提出日】平成8年6月17日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0017

【補正方法】変更

【補正内容】

【〇〇17】また無効パケット挿入部は、トランスポートストリームの先頭に、復号時に使用するプログラム仕様情報(PSI;Program Specific Information)、復号器の時刻基準となるシステム時刻基準参照値(PCR; Program Clock Reference)を格納したTSパケットを配置した後に、ビデオとオーディオのTSパケットを多重化配置する。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0054

【補正方法】変更

【補正内容】

【0054】再び図6を参照するに、分離処理部30でパックで構成されたMPEG1システムストリーム78からビデオとオーディオごとに分離されたエレメンタリストリーム80は、図7の先頭パック86-1のパックへッダ88に設けているシステム時刻基準参照値(SCR)106のみを示しており、また次のパケット92については、パケットへッダに設けられている再生タイムスタンプ124と復号タイムスタンプ126のみを示し、ペイロードとしてのパケットデータバイト132はビデオの符号化データまたはオーディオの符号化データが格納されている。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0061

【補正方法】変更

【補正内容】

【0061】もしパックヘッダであればステップS4に進み、パックへッダ及び次のシステムヘッダは全て読み飛ばし、ステップS5で最初のパケットヘッダを解析する。パケットヘッダは図7に示す内容をもち、まずステップS6で先頭のパケット開始コード110を解析する。続いてステップS7でストリームID112を判別する。ストリームIDは、ビデオとオーディオの種別とそのチャネル番号を定義している。例えばビデオは16チャネル、オーディオは32チャネルの定義が可能である。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0073

【補正方法】変更

【補正内容】

【0073】ステップS4でPESデータバイトがTSペイロードの184バイトより小さければステップS5に進み、残りのTSペイロードの部分に「0×FF」を挿入し、ステップS6でMPEG2トランスポートストリームを完成する。図17は、図4の動画ストリーム変換処理におけるモード2の変換処理を行うための図2のオーサリングユニットの実施形態のブロック図である。このモード2の実施形態にあっては、MPEG1シスポートストリームからMPEG2トランスポートストリームに変換する際に、MPEG2のパケット化されたエンメンタリストリームに変換する過程において、無効パケット(NULLパケット)を挿入し、ビットレートをMPEG2の6.144Mbpsに適合させたことを特徴とする。

【手続補正5】

【補正対象書類名】明細書

(補正対象項目名) 0078

【補正方法】変更

【補正内容】

【0078】またMPEG2トランスポートストリームの先頭の2つのTSパケット266,272のペイロードに挿入しているプログラム連想テーブル(PAT)270及びプログラムマップテーブル(PMT)276は、プログラム仕様情報(PSI; Program Specific Information プログラム・スペースフィック・インフォーメーション)と呼ばれている。

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】0079

【補正方法】変更

【補正内容】

【0079】このようなプログラム<u>仕様</u>情報は、MPEG2のトランスポートストリームが多数のビデオ、復見で複数のプログラムの中から、どのプログラムを伝送していることから、復選び、どのパケットを取り出して復号するかを決めるを決めるであれる。また、伝送レートを可変がから、とのに挿入した無効パケットとして機能するTSパケットのであることを示すコード「01」が格納される。

【手続補正7】

【補正対象書類名】明細書

【補正対象項目名】0085

【補正方法】変更

【補正内容】

【0085】このようなTSヘッダ<u>298</u>及びペイロード300の構成を持つ無効TSパケット<u>296</u>にあっては、復号器でTSヘッダ<u>298</u>の前記①~③のパラメータを確認した後、ペイロード300の先頭1バイトのユーザフラグ324を確認し、ユーザフラグ「0×01」を確認できれば、残り183バイトがユーザデータ326であることが分かり、このユーザデータ326についてMPEG2を外れたユーザデータとしての適宜の処理に回すことができる。

【手続補正8】

【補正対象書類名】明細書

【補正対象項目名】0088

【補正方法】変更

【補正内容】

【0088】 ネットワーク22としては、ATMネットワークを使用している。ハードディスク56から読み出されたMPEG2トランスポートストリームは、無効パ

ケット挿入部<u>57</u>でMPEG2の固定ビットレート6. 144Mbpsに適合するように無効パケットの挿入が行われる。即ち、図22に示すように、ハードディスク56から読み出されたMPEG2トランスポートストリームは、文法はMPEG2に変換されているが、ビットレートはMPEG1の1.536Mbpsのままである。そこで、先頭のTSパケット302のヘッダに設けているプログラム時刻基準参照値(PCR)304をMPEG2の伝送レート6.144Mbpsに適合した値に補正する。

【手続補正9】

【補正対象書類名】明細書

【補正対象項目名】図面の簡単な説明

【補正方法】変更

【補正内容】

【図面の簡単な説明】

【図1】本発明の原理説明図

【図2】本発明の動作環境となるビデオ・オン・デマン ド・システムのブロック図

【図3】図2のストリームサーバの機能ブロック図

【図4】図2における本発明の動画ストリーム変換処理 とビデオ・オン・デマンド処理のフローチャート

【図5】モード1の変換を行う本発明の変換装置のブロ ック図

【図6】図5の変換処理の説明図

<u>【図7】変換元となるMPEG1システムストリームの</u> 説明図

【図8】図6の処理で作成されるPESパケットの説明 図

【図9】図8のPESパケットのヘッダパラメータの<u>詳</u> 細を示した説明図

【図10】図8と図9のPESパケットのパラメータ対 応の説明図

【図11】図5のMPEG2のPESパケットの作成処 理のフローチャート

【図12】図5で変換されるMPEG2トランスポート ストリームの説明図

【図13】図12のヘッダパラメータの詳細を示した説 明図

【図14】図5のオプショナルフィールドヘッドのパラ メータの詳細を示した説明図

【図15】図12と図13,図14のパラメータの対応 を示した説明図

【図16】図4のMPEG2システムストリームへの変 換処理の説明図

【図17】MPEG1トランスポートの変換時に文法と 伝送レートを変えるモード2の実施形態のブロック図

【図18】図17のモード2の変換の説明図

【図19】無効パケットにユーザデータを挿入可能なモード3の実施形態のブロック図

【図20】図1のPESパケットからトランスポートス

トリームへの変換処理の説明図

【図21】モード1で作成したMPEG2をネットワークに送出する直前に無効パケットを挿入する場合の機能

ブロック図

【図22】図21の無効パケット挿入処理の説明図

【手続補正10】

【補正対象書類名】明細書

【補正対象項目名】符号の説明

【補正方法】変更

【補正内容】

【符号の説明】

10:オーサリングシステム(編集システム)

12:オーサリングユニット

14:再生ユニット

16-1, 16-2:ストリームサーバ

18:管理サーバ

20:内部ネットワーク

22:ネットワーク (ATMネットワーク)

26:セットトップユニット

28:テレビ装置

32:分離処理部

34: PESパケット作成部

36:多重化処理部

60:ストリームサーバ管理プロセスモジュール

62:運転制御モジュール

64:管理サーバ連携モジュール

66:プログラム保守制御モジュール

68:システム環境保守制御モジュール

70:データ保守制御モジュール

72:データ送出モジュール

74:アクセス制御モジュール

<u>76:回線制御モジュール</u>

フロントページの続き

(72)発明者 小沢 正幸

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内

(72)発明者 宇田川 守

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Пожить

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.