## Olimpiada Județeană de Fizică februarie 2005 Preba teoretică – barem



| I.A.a)     | Realizarea corectă a desenului.                         |       |
|------------|---------------------------------------------------------|-------|
|            | $R'$ $P$ $X_2 \rightarrow R$ $R$                        | 2p    |
| <b>b</b> ) | $\frac{1}{x_1} + \frac{1}{x_2} = \frac{1}{f}$           | 0,5p  |
|            | $x_1 = -D$                                              | 0,25p |
|            | $x_{2_{=}} \frac{fD}{D+f}$                              | 0,5p  |
|            | $\frac{R'}{\text{Din desen rezultă:}} = \frac{d}{2x_2}$ | 0,5p  |
|            | $R' = \frac{d(D + x_2)}{2x_2}$                          | 0,25p |
|            | Aria suprafeței $S=\pi R^{2}=0,25m^{2}$                 | 0,5p  |
|            |                                                         |       |

| B.a)  |                                                                                                                                                                                                                                                                             |      |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|       | $\begin{array}{c} B' \\ A \\ d \\ d_0 \\ F \\ O_1 \\ \end{array}$                                                                                                                                                                                                           | 2,5p |
| b)    | Diametrul spotului luminos este A'B' $O_2A' = O_2M + MA'$                                                                                                                                                                                                                   | 0,5p |
|       | $\frac{O_2 M}{AF} = \frac{O_2 O_1}{O_1 F}$                                                                                                                                                                                                                                  | 0,5p |
|       | $O_2 M = \frac{d_0 l}{2f}$                                                                                                                                                                                                                                                  | 0,5p |
|       | $A'B' = d + \frac{d_0 l}{f}$                                                                                                                                                                                                                                                | 0,5p |
| II.a) | $\overrightarrow{F}_{n}$ $\overrightarrow{T}$ $\overrightarrow{N}_{1}$ $\overrightarrow{T}$ $\overrightarrow{N}_{2}$ $\overrightarrow{F}_{n}$ $\overrightarrow{F}_{n}$ $\overrightarrow{F}_{n}$ $\overrightarrow{G}_{1}$ $\overrightarrow{-N}_{1}$ $\overrightarrow{G}_{2}$ |      |
|       | Fie $t_1$ momentul de la care începe alunecarea corpului de masă $2m$ . F-F <sub>f1</sub> -F <sub>f2</sub> =0                                                                                                                                                               | 1p   |
|       | $\frac{4\mu mg}{kt_1 = \mu mg + 3\mu mg}$ $t_1 = \frac{k}{k}$                                                                                                                                                                                                               | 1p   |
|       | După momentul t <sub>1</sub> mișcarea corpului inferior este accelerată.<br>F-F <sub>f1</sub> -F <sub>f2</sub> =2ma                                                                                                                                                         | 1p   |

|        | kt- $\mu$ mg- $3\mu$ mg= $2$ ma $\frac{kt}{a} - 2\mu g$                                                                                                                                                                                                                                 | 0,5p |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|        | $a=2m$ fie $t_2$ momentul când corpurile nu se mai află în contact $F-F_f'=2ma$                                                                                                                                                                                                         | 1p   |
|        | $\frac{kt}{a=2m}-\mu g$                                                                                                                                                                                                                                                                 | 0,5p |
| b)     | pentru t $<$ t <sub>1</sub> $a = 0$ pentru t $_1 \le t \le t_2$ $a = \frac{kt}{2m} - 2\mu g$ pentru t $>$ t <sub>2</sub> $a = \frac{kt}{2m} - \mu g$ pentru t $>$ t <sub>2</sub> $a = \frac{kt}{2m} - \mu g$                                                                            | 2p   |
|        | pentru $t \le t$ ', unde $t' = k$ , $T = 0$ pentru $t' \le t \le t_1$ tensiunea crește liniar până la valoarea $T = \mu mg$ pentru $t_1 \le t \le t_2$ $T = \mu mg$ pentru $t > t_2$ $T = 0$                                                                                            | 2p   |
| III.a) | $\overrightarrow{F}_{f}$ $\overrightarrow{M}$ $\overrightarrow{F}_{f}$ $\overrightarrow{M}$ $\overrightarrow{N}_{1}$ $\overrightarrow{M}$ $\overrightarrow{T}$ $\overrightarrow{T}$ $\overrightarrow{G}_{2}$ $\overrightarrow{A}_{1}$ $\overrightarrow{G}_{2}$ $\overrightarrow{A}_{2}$ |      |
|        | $G_1$ -T- $F_f$ =m $a_1$                                                                                                                                                                                                                                                                | 1p   |
|        | $N_1=ma_2$                                                                                                                                                                                                                                                                              | 1p   |
|        | $F_f = \mu N_1$                                                                                                                                                                                                                                                                         | 0,5p |
|        | $T-N_1=Ma_2$                                                                                                                                                                                                                                                                            | 1p   |

|            | $a_1 = a_2$                                                                                                                | 1p   |
|------------|----------------------------------------------------------------------------------------------------------------------------|------|
|            | Accelerația planului în raport cu suprafața orizontală este                                                                | 0,5p |
|            | $a_2 = M + m(2 + \mu)$                                                                                                     |      |
|            | Accelerația corpului de masă <b>m</b> în raport cu suprafața orizontală este $a = \sqrt{{a_1}^2 + {a_2}^2} = a_1 \sqrt{2}$ | 1p   |
| <b>b</b> ) | Deoarece sistemul se află în repaus $N_1=0$                                                                                | 1p   |
|            | $T=G_1$                                                                                                                    | 0,5p |
|            | $T=\mu'g(M+m)$                                                                                                             | 1p   |
|            | $\mu' = \frac{m}{M+m}$                                                                                                     | 0,5p |
|            | $\mu'=M+m$                                                                                                                 |      |