Informe RecSys T01

Sistemas Recomendadores IIC3633 | 2021-2

Recomendación no personalizada, basada en feedback implícito y basada en contenido.

🢡 Recomendamos fuertemente ver este informe en su <u>versión online</u> en Notion. 💡

Anime Recommendation Database - Kaggle

Alumnos

- Diego Iruretagoyena 14619164
- Víctor Tirreau 17637171

Interacciones por usuarios y usuarios más activos

Interacciones por animé y animes más vistos

Indicadores estadísticos del dataset

AC02 | Recomendación no personalizada

Most popular

Random

AC03 | Recomendación feedback implícito

Análisis de sensibilidad - rendimiento contra factores latentes

Análisis de sensibilidad - tiempos de entrenamiento

AC04 | Recomendación basada en contenido

Análisis de sensibilidad en base a factores latentes

AC05 | Ejemplos de recomendación de animé

Análisis y discusión de resultados

AC06 | Ejemplos de recomendación de animé

Recomendaciones

Recomendación usuario perfil Warm Start

Recomendación usuario con participación media

Recomendación u**suario con alta participación**

Historial perfiles de usuario

Historial usuario Warm Start

Géneros más frecuentes de usuario Warm Start

Géneros más frecuentes de usuario usuario con participación media

Historial usuario con alta participación

Géneros más frecuentes de usuario usuario con participación alta

Experimentos futuros

AC01 | Exploración de datos

Interacciones por usuarios y usuarios más activos

Gran parte de los usuarios ha registrado entre 60 y 100 recomendaciones de anime, con una distribución similar a una gaussiana. De hecho, la función inversa de la CDF de una gaussiana se ve la siguiente forma:

Mientras que la distribución de los ratings en el dataset se ve así:

Distribución acumulada de animes vistos (eje Y) según cantidad de usuarios (eje X).

Nótese la similitud entre la forma de las distribuciones acumuladas.

Con respecto al histograma, se confirma la sospecha de la forma Gaussiana en la distribución, con una pequeña anormalidad en torno a 85 - 90 ratings.

Además, se observa una leve asimetría a la izquierda:

Histograma de cantidad de animes vistos (eje X) según cuántas personas han visto dicha cantidad (eje Y)

A continuación, podemos observar que los usuarios que más animes han evaluado tienen entre 128 y 134 ítems distintos.

ID	Count
297988	134
469	131
6088	129
214484	129
303684	128

La cantidad de usuarios únicos en el dataset asciende a 18.552. Los 5 usuarios más activos contribuyen un 0,044% de las reviews totales, lo que **no es relevante** con respecto a el resto de los usuarios.

Interacciones por animé y animes más vistos

Los 5 animes más vistos se detallan en la siguiente tabla:

anime_id	Rating Count ↓	Name
16498	3119	No Game No Life
11757	3108	Sword Art Online
6547	2923	Angel Beats!
1535	2876	Death Note
19815	2843	No Game No Life

Los 5 animes más vistos acaparan el 1% del total de ratings, siendo esta distribución significativamente más asimétrica que la de ratings por usuario. En efecto, la distribución de ratings por ítem se asemeja bastante a una distribución exponencial:

Fuente. Ejemplo de PDF distribución exponencial

Histograma para la distribución de ratings por animé. En el eje X se presenta la cantidad de ratings y en el eje Y la cantidad de animes que han recibido dicha cantidad de ratings.

Para comprobar que la distribución sea efectivamente exponencial, se puede graficar un histograma con eje Y logarítmico, tras lo cual debería observarse una distribución triangular derecha.

Histograma para la distribución de ratings por animé, escala de eje Y logarítmica.

Se observa que la distribución de ratings por animé tiene forma exponencial.

Indicadores estadísticos del dataset

Estadístico	Valor
#Usuarios únicos	18552
#Animes únicos	2326
Animes/usuario AVG	79.51
Animes/usuario STD	13.70
Usuarios/animé AVG	634.16
Usuarios/animé STD	513.60
Sparsity	96.58%

AC02 | Recomendación no personalizada

Most popular

Utilizamos la librería para realizar las recomendaciones más populares. Recomendamos 30 ítems a cada usuario del set de validación y computamos nDCG@k y mAP@k, para k=10,20,30. A continuación se tabulan y

grafican los resultados obtenidos por este método baseline.

k	nDCG@k	mAP@k
10	0.0122	0.0110
20	0.0174	0.0128
30	0.0216	0.0136

 $Rendimiento\ Most\ Popular\ para\ mAP@k\ y\ nDCG@k.\ En\ el\ eje\ x\ se\ ubican\ los\ distintos\ valores\ de\ k.$

Random

Realizamos 30 recomendaciones aleatorias a cada usuario del set de validación, descontando de los animes candidatos a recomendar aquellos que ya hubiesen sido vistos por los usuarios.

Los resultados se reportan en la tabla y gráfico a continuación:

k	nDCG@k	mAP@k
10	0.0070	0.0020
20	0.0141	0.0024
30	0.0224	0.0028

A modo de análisis, si bien tanto Random como Most Popular son resultados baseline, es interesante que al cortar las primeras k=20 posiciones, Most Popular es mejor recomendador en términos de nDCG@k que Random, pero es superado por este último cuando k=30. Si bien el incremento no es significativo, da nociones que recomendar ítems populares funciona mejor en las primeras posiciones, pero al ser una recomendación prácticamente idéntica para todos, no puede capturar diversos tipos de usuario que Random podría acertar por azar. No obstante, en términos de mAP@k, Most Popular es una alternativa sustancialmente más robusta.

AC03 | Recomendación feedback implícito

Análisis de sensibilidad - rendimiento contra factores latentes

Utilizamos la librería implicit para entrenar modelos de factorización matricial basados en feedback implícito. En particular, entrenamos los modelos ALS (Alternating Least Squares) y BPR (Bayesian Personalized Ranking). A continuación, se presentan los resultados de ambos métodos en cuanto a nDCG@10, mAP@10 y tiempo de entrenamiento.

Resultados nDCG@10 de los modelos ALS y BPR (eje Y), para distintas configuraciones de factores latentes (eje X).

Resultados mAP@10 de los modelos ALS y BPR (eje Y), para distintas configuraciones de factores latentes (eje X).

Se puede observar una tendencia fuerte a la baja en el rendimiento para ambas métricas en ALS. Para BPR, existe también una leve baja en el rendimiento. Esto se puede explicar por un posible *overfitting* en los modelos con mayor

cantidad de factores latentes, hipótesis que comprobamos al graficar el rendimiento en función de la cantidad de iteraciones de entrenamiento en la actividad 5.

Dado que durante el entrenamiento, la métrica train AUC (utilizada por la librería para reportar el estado de entrenamiento) alcanzaba valores cercanos a 100% y, a la vez, el rendimiento en validación disminuía fuertemente (sobre todo en BPR), lo más probable es que el algoritmo esté memorizando los datos de entrenamiento en desmedro del rendimiento y capacidad de generalización en validación.

Análisis de sensibilidad - tiempos de entrenamiento

Del análisis experimental del rendimiento en función de la cantidad de iteraciones de entrenamiento, dedujimos que para la convergencia de ALS requerimos menos de 20 iteraciones, mientras que BPR requiere alrededor de 100.

Fijándonos en la misma cantidad de iteraciones (en lugar de esperar hasta la convergencia), observamos que el proceso de entrenamiento en función de la cantidad de factores latentes es considerablemente más rápido en BPR que ALS.

Cabe mencionar que todos los tiempos reportados corresponden a segundos y que los algoritmos de entrenamiento fueron acelerados mediante una GPU Nvidia V100 - 16GB.

Tiempo de entrenamiento para 10 iteraciones según cantidad de factores latentes - ALS y BPR

Evidentemente, una estrategia de *early-stopping* puede amortizar el costo de entrenar un algoritmo ALS contrastado con un algoritmo BPR, dado que no se observan incrementos en el rendimiento incluso tras solo 10 iteraciones de ALS (graficado en la sección 5).

AC04 | Recomendación basada en contenido

Las recomendaciones basadas en contenido se caracterizan por basarse en las descripciones de los ítems presentes y en perfiles de usuario.

En este ejercicio, hemos utilizado **Universal Sentence Encodings**, codificaciones de texto en vectores de alta dimensionalidad (512), los que podemos utilizar para hacer clasificación de texto, similitud semántica y otras operaciones de <u>Procesamiento de Lenguaje Natural</u>, aprovechando que tenemos una base de datos con información útil sobre cada item, en la forma de descripciones sobre cada animé, tales como su título, género, sinopsis y descripción de contenido.

Ahora bien, la dimensionalidad de estos vectores es muy alta para poder utilizar la totalidad de la información. Es por esto que utilizamos **Principal Component Analysis** para reducirla, utilizando solo aquellos componentes con mayor representatividad sobre los embeddings.

Hemos reducido los embeddings a representaciones de **10, 50 y 100** componentes, para luego producir recomendaciones usando operaciones vectoriales. Calculamos las **distancias coseno**, **euclideana** y **manhattan**, para luego obtener los K más cercanos, con K entre **10, 20 y 30**.

Análisis de sensibilidad en base a factores latentes

En los siguientes sns.FacetGrid.barplots, tenemos el comportamiento de los hiperparámetros.

Análisis MAP@K

Análisis ncdg@K

Es interesante observar que para toda métrica de distancia, el resultado mejora al utilizar mayor cantidad de vectores vecinos cercanos. Los mejores resultados tanto para MAP como ndcg fueron usando **distancia coseno**, **50 componentes principale**s y **30 vectores vecinos**. Todos los resultados están dentro del rango de resultado 0.005 - 0.008 en ndcg y 0.0025 - 0.009 MAP, obteniendo resultados menores que el resto de los modelos.

AC05 | Ejemplos de recomendación de animé

Una vez completados nuestros cinco métodos, hicimos diversos experimentos con el fin de buscar los mejores hiperparámetros para cada modelo. Para todos se utilizó un threshold de relevancia de 7+ reviews por item. Se presentan los mejores resultados para cada método.

Tabla comparativa de resultados - nDCG@30

Método	Resultado
ALS	0.133144
BPR	0.102840
PCA	0.061013
Random	0.022371
Most Popular	0.021628

Tabla comparativa de resultados - mAP@30

Método	Resultado
ALS	0.019522
BPR	0.015077
Most Popular	0.013672
PCA	0.008609
Random	0.002817

Detalle hiperparámetros nDCG@30

Método	Resultado	Factores Latentes	Iteraciones	# Componentes	Métrica Distancia
ALS	0.133144	50	40	-	-
BPR	0.102840	50	110	-	-
PCA	0.061013	-	-	50	Coseno
Random	0.022371	-	-	-	-
Most Popular	0.021628	-	-	-	-

Detalle hiperparámetros MAP@30

Método	Resultado	Factores Latentes	Iteraciones	# Componentes	Métrica Distancia
ALS	0.019522	50	50	-	-
BPR	0.015077	50	610	-	-
Most Popular	0.013672	-	-	-	-
PCA	0.008609	-	-	50	Coseno
Random	0.002817	-	-	-	-

Análisis y discusión de resultados

En primer lugar, sobre los métodos de factorización matricial, se observa que la convergencia de ALS se logra mucho antes que BPR, sin embargo, el comportamiento asintótico del tiempo de ejecución del primero es mucho peor que el segundo cuando se modifica la cantidad de factores latentes. Esto es particularmente evidente para ALS con 1000 factores latentes, que tarda en torno a 10 segundos para entrenamiento y evaluación, de los cuales 5 segundos son atribuibles a la evaluación. En contraste, BPR tarda 7 segundos para entrenar y evaluar bajo la misma cantidad de factores latentes, con igualmente 5 segundos destinados a evaluación. En la misma línea, se observó empíricamente un descenso en el rendimiento al aumentar la cantidad de factores latentes. Como el máximo rendimiento se observó en el comienzo de la escala probada, queda abierta la posibilidad de probar con aún menos factores latentes, lo que no se ha reportado en este informe.

Como segundo punto, la técnica de content-based recommendation tiene un resultado mediocre comparado a las técnicas de feedback implícito. Esto se puede deber a que modela las percepciones como un promedio entre los ítems relevantes, y suele sufrir de problemas como *echo-chamber* o *information-bubble*. Así, la calidad de recomendaciones se ve perjudicada por la localidad de los embeddings, y rara vez logra recomendar ítems novedosos o con serendipia. De las métricas de distancia, se observó que la mejor resulta ser cosine-distance. Si bien puede tener similitud con la técnica euclideana, la primera solo rankea en función del ángulo entre dos vectores, permitiendo que aquellos colineales o que apunten a la misma región del espacio k-dimensioal sean mejor recomendados que bajo el esquema euclideano. El método Manhattan resultó ser el peor, probablemente porque la métrica L1 ha sido probada como útil en <u>regímenes</u> de mucho más alta dimensionalidad.

Finalmente, retomando el argumento de Random contra Most Popular, es entendible que el segundo presente un mAP@30 rotundamente mejor que Random, sin embargo, resalta que haya tenido un peor rendimiento en nDCG@30. Esto se puede explicar por el incremento en diversidad que puede aportar Random, contrastando con la recomendación prácticamente constante de Most Popular.

Rendimiento nDCG@30 para el método BPR en función de iteraciones de entrenamiento

Se observa en el gráfico anterior una clara tendencia a la baja a medida que aumentan las iteraciones máximas y también los factores latentes, particularmente evidente para los casos con 500 y 1000 factores. Se observa un *peak* de rendimiento en datos de validación en torno a las 110 iteraciones, decreciendo a medida que progresa el entrenamiento. En contraste, cuando los factores latentes son bajos, no solo se observa un mejor rendimiento, sino que también consistencia en su valor a lo largo del entrenamiento.

Rendimiento nDCG@30 para el método ALS en función de iteraciones de entrenamiento

Para ALS la convergencia es sustancialmente más rápido, no pudiendo evidenciarse cambios en el rendimiento tras solo 20 iteraciones. Además, es evidente la superioridad en el rendimiento para una menor cantidad de factores latentes al modelar las interaciones usuario-item.

Hemos entregado un archivo /test_predictions.json que contiene diez recomendaciones a cada usuario presente en el set de testing. Link a archivo en Github.

AC06 | Ejemplos de recomendación de animé

Con el fin de analizar cualitativamente nuestras recomendaciones, tomamos tres perfiles de usuarios y estudiamos las recomendaciones que les hicimos. Nuestros perfiles fueron usuarios *Warm Start*, *Participación Media* y *Alta participación*. Para hacer esto, ordenamos la lista de usuarios según la cantidad de reviews que tenían, y obtuvimos los indices de usuarios que se encontraban en las posiciones representativas dentro del dataset de testing.

ID Usuario	Perfil	# Reviews
29392	Warm Start	40
297988	Participación media	79
46569	Alta participación	134

Recomendaciones

A continuación se presenta tabla de diez recomendaciones por usuario, indicando detalle de su Nombre, Género y Sinopsis. Se comenta también acerca de los géneros recomendados, comparando con los items que el usuario ya había consumido.

Recomendación usuario perfil Warm Start

anime_id	Synopsis	Genres	Name
4181	Clannad: After Story , the sequel to the criti	Slice of Life, Comedy, Supernatural, Drama, Ro	Clannad: After Story
849	Kyon, your typical high school student, has lo	Comedy, Mystery, Parody, School, Sci-Fi, Slice	Suzumiya Haruhi no Yuuutsu
28171	Ever since he was a child, fifteen-year-old So	Ecchi, School, Shounen	Shokugeki no Souma
23283	Painted in red, the word "VON" is all that is	Mystery, Psychological, Thriller	Zankyou no Terror
25777	For centuries, humanity has been hunted by gia	Action, Military, Mystery, Super Power, Drama,	Shingeki no Kyojin Season 2
23289	Chiyo Sakura is a cheerful high school girl wh	Comedy, Romance, School	Gekkan Shoujo Nozaki-kun
14813	Hachiman Hikigaya is an apathetic high school	Slice of Life, Comedy, Drama, Romance, School	Yahari Ore no Seishun Love Comedy wa Machigatt
356	fter a mysterious inferno kills his family, Sh	Action, Supernatural, Magic, Romance, Fantasy	Fate/stay night
6351	Included in the 8th and final DVD of Clannad ~	Drama, Romance, School	Clannad: After Story - Mou Hitotsu no Sekai, K
23755	In a world similar to the European Middle Ages	Action, Adventure, Ecchi, Fantasy, Magic, Shou	Nanatsu no Taizai

Género	Cantidad
Romance	5
School	5
Comedy	4
Drama	4
Slice of Life	3
Supernatural	3
Mystery	3
Shounen	3
Action	3
Fantasy	3

Recomendación usuario con participación media

anime_id	Synopsis	Genres	Name
12189	Energy-conservative high school student Houtar	Mystery, School, Slice of Life	Hyouka
22199	Night Raid is the covert assassination branch	Action, Adventure, Drama, Fantasy, Shounen	Akame ga Kill!
23847	Yahari Ore no Seishun Love Comedy wa Machigatt	Slice of Life, Comedy, Drama, Romance, School	Yahari Ore no Seishun Love Comedy wa Machigatt
10719	hen Kodaka Hasegawa finds out that he will be	Ecchi, Slice of Life, Comedy, Harem, Romance, \dots	Boku wa Tomodachi ga Sukunai
11597	Surviving a vampire attack, meeting several gi	Mystery, Comedy, Supernatural, Ecchi	Nisemonogatari
8937	s tensions between the world of magic and Acad	Action, Magic, Sci-Fi, Super Power	Toaru Majutsu no Index II
22297	The Holy Grail War is a battle royale among se	Action, Fantasy, Magic, Supernatural	Fate/stay night: Unlimited Blade Works
6746	In Tokyo's downtown district of Ikebukuro, ami	Action, Mystery, Supernatural	Durarara!!
35073	z Ooal Gown, the undead sorcerer formerly know	Action, Game, Adventure, Supernatural, Magic,	Overlord II
356	fter a mysterious inferno kills his family, Sh	Action, Supernatural, Magic, Romance, Fantasy	Fate/stay night

Género	Cantidad
Action	6
Supernatural	5
Fantasy	4
Magic	4
Mystery	3
School	3
Slice of Life	3
Comedy	3
Romance	3
Adventure	2

Recomendación usuario con alta participación

	Name	Genres	Synopsis	anime_id
	Kyoukai no Kanata	Slice of Life, Supernatural, Fantasy	ai Kuriyama is the sole survivor of a clan of \dots	18153
	Mahou Shoujo Madoka ★ Magica	Psychological, Drama, Magic, Thriller	adoka Kaname and Sayaka Miki are regular middl	9756
	Mahouka Koukou no Rettousei	Action, Sci-Fi, Supernatural, Magic, Romance,	In the dawn of the 21st century, magic, long t	20785
	Psycho-Pass	Action, Sci-Fi, Police, Psychological	Justice, and the enforcement of it, has change	13601
	Death Parade	Game, Mystery, Psychological, Drama, Thriller	fter death, there is no heaven or hell, only a	28223
	Fullmetal Alchemist	Action, Adventure, Comedy, Drama, Fantasy, Mag	Edward Elric, a young, brilliant alchemist, ha	121
Or	re no Imouto ga Konnani Kawaii Wake ga Nai	Slice of Life, Comedy	Kirino Kousaka embodies the ideal student with	8769
	Gekkan Shoujo Nozaki-kun	Comedy, Romance, School	Chiyo Sakura is a cheerful high school girl wh	23289
	Aldnoah.Zero	Action, Military, Sci-Fi, Mecha	The discovery of a hypergate on the Moon once	22729
	Gate: Jieitai Kanochi nite, Kaku Tatakaeri	Action, Adventure, Fantasy, Military	Off-duty Japan Self-Defense Forces (JSDF) offi	28907

Género	Cantidad
Action	5
Fantasy	3
Psychological	3
Drama	3
Magic	3
Sci-Fi	3
Comedy	3
Military	3
Slice of Life	2
Supernatural	2

Historial perfiles de usuario

Qué habían visto estos usuarios ? Con esta información podremos comparar las recomendaciones versus los items consumidos históricamente.

Historial usuario Warm Start

Name	Genres	Synopsis	anime_id
Toki wo Kakeru Shoujo	Adventure, Drama, Romance, Sci-Fi	akoto Konno is in her last year of high school	2236
Grisaia no Kajitsu Specials	Ecchi	Short specials added to Blu-ray/DVD volumes.	29101
Hoshi no Koe	Sci-Fi, Space, Drama, Romance, Mecha	It is the year 2046, Noboru Terao and Mikako N	256
Kokoro Connect: Michi Random	Comedy, Drama, Romance, School, Slice of Life,	Not long after putting the previous supernatur	16001
Owari no Seraph	Action, Military, Supernatural, Drama, Vampire	h the appearance of a mysterious virus that ki	26243
Dragon Ball	Adventure, Comedy, Fantasy, Martial Arts, Shou	Gokuu Son is a young boy who lives in the wood	223
Chuunibyou demo Koi ga Shitai!: Kirameki no	Comedy, Drama, Romance, School, Slice of Life	Ithough Yuuta Togashi and Rikka Takanashi have	16934
Akatsuki no Yona	Action, Adventure, Comedy, Fantasy, Romance, S	Princess Yona lives a life of luxury and ease,	25013
Aiura	Comedy, School, Shounen, Slice of Life	The story centers around Amaya, Iwasawa, and U	17082
Teekyuu 2	Comedy, School, Shounen, Sports	Second season of Teekyu series.	18121

Géneros más frecuentes de usuario Warm Start

Género	Cantidad
Drama	18
Comedy	18
Romance	13
School	13
Supernatural	12
Action	12
Shounen	12
Slice of Life	10
Adventure	7
Sci-Fi	7

Analizando el historial y recomendaciones del usuario 29392, el cual corresponde a un perfil Warm Start, vemos que los top cuatro géneros recomendados Romance, School, Comedy, Drama, y en su historial vemos que es Drama, Comedy, Romance, School. Existe una fuerte correlación entre los géneros recomendados e históricos. De esto podemos concluir que el modelo "se va a la segura" al recomendar items con cualidades parecidas a lo que ya había visto anteriormente, dado que al tener menos información del usuario, no tiene cómo perfilar correctamente al individuo.

Historial usuario con participación media

Name	Genres	Synopsis	anime_id
ra Te wo Dasu na!	Adventure, Comedy, School, Seinen	dori Asakusa sees the world a bit differently	39792
School Idol Movie	Music, School, Slice of Life	Hot on the heels of the third year students' g	24997
d of the Takanashi	Comedy, Romance, Seinen, Slice of Life	The light-hearted Working!! franchise comes to	31715
Dead: Hai, Mino A	Action, Harem, Comedy, Supernatural, Magic, Ecchi	unaired OVA episode of Kore wa Zombie Desu ka?	15437
u ka? of the Dead A	Action, Harem, Comedy, Supernatural, Magic, Ecchi	kawa Ayumu was revived as a zombie by the cute	10790
High School DxD C	Comedy, Demons, Ecchi, Harem, Romance, School	High school student Issei Hyoudou is your run	11617
i Shukufuku wo! 2 A	Adventure, Comedy, Parody, Supernatural, Magic	hen Kazuma Satou died, he was given two choice	32937
mi zo Shiru Sekai C	Comedy, Harem, Romance, Shounen, Supernatural	Keima Katsuragi, known online as the legendary	8525
Strike the Blood II	Action, Harem, Supernatural, Ecchi, Vampire, F	The second season of Strike the Blood which ad	33286
annad: After Story	Slice of Life, Comedy, Supernatural, Drama, Ro	Clannad: After Story , the sequel to the criti	4181

Géneros más frecuentes de usuario usuario con participación media

Género	Cantidad
Comedy	66
Action	50
Romance	47
School	46
Supernatural	35
Fantasy	34
Shounen	31
Drama	31
Slice of Life	28
Sci-Fi	27

Para el usuario con perfil de participación media, vemos que los principales géneros que hemos recomendado son Action, Supernatural, Fantasy, Magic, mientras que sus géneros históricos son Comedy, Action, Romance, School. Llama la atención que Comedy no sea predominante en sus recomendaciones, aún cuando es su tipo preferido. Si podemos ver items como Action, repetirse. De esto podemos inferir que el modelo ya logra discernir ciertos perfiles entre usuarios con ~70 reviews, recomendado cosas fuera de lo que ya han visto.

Historial usuario con alta participación

anime_id	Synopsis	Genres	Name
17831	onsense comical mystery. Harumi Kazuhito is a	Comedy, Supernatural	Inu to Hasami wa Tsukaiyou
8917	The story centers around a spirited high schoo	Sci-Fi, Space	Mouretsu Pirates
21677	One night, right before summer vacation, Manat	Action, Mecha, Romance, Sci-Fi, Space	Captain Earth
6547	Otonashi awakens only to learn he is dead. A r	Action, Comedy, Drama, School, Supernatural	Angel Beats!
10588	Yuu Narukami moves to Inaba, a seemingly quiet	Sci-Fi, Adventure, Mystery, Super Power, Super	Persona 4 the Animation
27833	s Mikado Ryuugamine continues to purge the Dol	Action, Mystery, Supernatural	Durarara!!x2 Ketsu
1138	dabots-powerful robots granted artificial inte	Adventure, Comedy, Sci-Fi, Shounen	Medarot
9289	Ohana Matsumae is an energetic and wild teenag	Slice of Life, Comedy, Drama	Hanasaku Iroha
731	This music video is the visual realization of \dots	Adventure, Drama, Music, Sci-Fi	Interstella5555: The 5tory of The 5ecret 5tar
27831	In Ikebukuro, the lives of its citizens contin	Action, Mystery, Supernatural	Durarara!!x2 Ten

Géneros más frecuentes de usuario usuario con participación alta

Género	Cantidad
Action	51
Sci-Fi	29
Comedy	27
Supernatural	24
Fantasy	23
Adventure	19
Mecha	17
Shounen	16
Drama	15
School	15

Para el usuario de perfil más activo, hemos recomendado principalmente géneros como Action, Fantasy, Psychological y Drama, mientras que sus items más consumidos eran Action, Sci-Fi, Comedy, Supernatural. Vemos que Action toma una posición predominante, pero el sistema recomendador es capaz de entregar nuevos tipos de items, distintos a los que ya había visto.

Experimentos futuros

De la misma forma que hemos aprendido en clases, es posible generar un ensamble de modelos llamado VBPR, el cual utiliza features visuales junto con feedback implícito para recomendar items. En vez de usar features visuales, podríamos combinar embeddings de texto como un TBPR.

En los modelos normales de Matrix Factorization, cuando nos pidan recomendar usuarios que tienen muy pocos reviews, por ejemplo menos de 15, podemos hacer fallback a Most Popular, generando un ensamble de modelos más completo.

Otro approach sería involucrar técnicas de Deep Learning y generar redes neuronales que manejen los embeddings para usuarios e items, para luego hacer búsquedas por similitud de distancia coseno para obtener los vectores vecinos a nuestra representación vectorial.