

DARLINGTON COPLEMENTARY SILICON POWER TRANSISTORS

...designed for general-purpose amplifier and low speed switching applications

FEATURES:

* Collector-Emitter Sustaining Voltage-

V_{CEO(SUS)} = 60 V (Min) - TIP140, TIP145

= 80 V (Min) - TIP141, TIP146

= 100 V (Min) - TIP142,TIP147

* Collector-Emitter Saturation Voltage

 $V_{\rm CE(sat)}$ = 2.0 V (Max.) @ I_C = 5.0 A * Monolithic Construction with Built-in Base-Emitter Shunt Resistor

MAXIMUM RATINGS

Characteristic	Symbol	TIP140 TIP145	TIP141 TIP146	TIP142 TIP147	Unit
Collector-Emitter Voltage	V _{CEO}	60	80	100	V
COllector-Base Voltage	V _{CBO}	60	80	100	٧
Emitter-Base Voltage	V _{EBO}	5.0		V	
Collector Current-Continuous -Peak	I _C	10 15		A	
Base Current	l _B	0.5		А	
Total Power Dissipation @T _C = 25°C Derate above 25°C	P _D	125 1.0		w/°c	
Operating and Storage Junction Temperature Range	T _J ,T _{STG}	- 65 to +150		°C	

THERMAL CHARACTERISTICS

	Characteristic	Symbol	Max	Unit		
	Thermal Resistance Junction to Case	R⊕jc	1.0	°C/W		

NPN PNP TIP140 TIP145 TIP141 TIP146 TIP142 TIP147

10 AMPERE **DARLINGTON COMPLEMENTARY SILICON POWER TRANSISTORS** 60-100 VOLTS **125 WATTS**

PIN 1.BASE 2.COLLECTOR 3.EMITTER

DIM	MILLIMETERS			
J	·MIN	MAX		
Α	20.63	22.38		
В	15.38	16.20		
С	1.90	2.70		
D	5.10	6.10		
E	14.81	15.22		
F	11.72	12.84		
G	4.20	4.50		
н	1.82	2.46		
	2.92	3.23		
J	0.89	1.53		
K	5.26	5.66		
L	18.50	21.50		
М	4.68	5.36		
N	2.40	2.80		
0	3.25	3.65		
P	0.55	0.70		

ELECTRICAL CHARACTERISTICS ($T_c = 25$ °C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector - Emitter Sustaining Volta (I _C = 30 mA, I _B = 0)	ge (1) TIP140,TIP145 TIP141,TIP146 TIP142,TIP147	V _{CEO(sus)}	60 80 100		V
Collector Cutoff Current ($V_{CE} = 30 \text{ V}, I_B = 0$) ($V_{CE} = 40 \text{ V}, I_B = 0$) ($V_{CE} = 50 \text{ V}, I_B = 0$)	TIP140,TIP145 TIP141,TIP146 TIP142,TIP147	I _{CEO}		2.0 2.0 2.0	mA
Collector Cutoff Current ($V_{CB} = 60 \text{ V}, I_E = 0$) ($V_{CB} = 80 \text{ V}, I_E = 0$) ($V_{CB} = 100 \text{ V}, I_E = 0$)	TIP140,TIP145 TIP141,TIP146 TIP142,TIP147	I _{CBO}		1.0 1.0 1.0	mA
Emitter Cutoff Current (V _{EB} = 5.0 V,I _C = 0)		EBO		2.0	mA
ON CHARACTERISTICS (1)					
DC Current Gain (I _C = 5.0 A, V _{CE} = 4.0 V) (I _C = 10 A, V _{CE} = 4.0 V)		hFE	1000 500		
Collector-Emitter Saturation Voltage ($I_C = 5.0 \text{ A}$, $I_B = 10 \text{ mA}$) ($I_C = 10 \text{ A}$, $I_B = 40 \text{ mA}$)	•	V _{CE(sat)}		2.0 3.0	V
Base-Emitter Saturation Voltage (I _C = 10 A, I _B = 40 mA)		V _{BE(sat)}		3.5	V
Base-Emitter On Voltage (I _C = 10 A, V _{CE} = 4.0 V)		V _{BE(on)}		3.0	V

Delay Time	V _{CC} = 30 V, I _C = 5.0 A I _{B1} = -I _{B2} =20 mA, t _p = 20us,Duty Cycle ≦2.0%	t d	0.15(Typ)	us
Rise Time		tr	0.55(Typ)	us
Storage Time		ts	2.5(Typ)	us
Fail Time	tf	2.5(Typ)	us	

(1) Pulse Test: Pulse width = 300 us , Duty Cycle \leq 2.0%

ACTIVE REGION SAFE OPERATING AREA (SOA)

There are two limitation on the power handling ability of a transistor:average junction temperature and second breakdown safe operating area curves indicate $I_{\text{C}}\text{-V}_{\text{CE}}$ limits of the transistor that must be observed for reliable operation i.e., the transistor must not be subjected to greater dissipation than curves indicate.

The data of SOA curve is base on $T_{J(PK)}$ =150 °C; T_C is variable depending on conditions.At high case temperatures, thermal limitation will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

SMALL-SIGNAL COMMON-EMITTER FORWARD CURRENT TRANSFER RATIO

UNCLAMPED INDUCTIVE LOAD

SWITCHING TIME

SWITCHING TIME

NPN TIP140, TIP141, TIP142

PNP TIP145, TIP146, TIP147

DC CURRENT GAIN

COLLECTOR-EMITTER SATURATION VOLTAGE

COLLECTOR-EMITTER SATURATION VOLTAGE

BASE-EMITTER VOLTAGE

BASE-EMITTER VOLTAGE

