

CHARACTERIZATION OF ISOMETRIC EMBEDDINGS OF GRASSMANN GRAPHS

MARK PANKOV

ABSTRACT. Let V be an n -dimensional left vector space over a division ring R . We write $\mathcal{G}_k(V)$ for the Grassmannian formed by k -dimensional subspaces of V and denote by $\Gamma_k(V)$ the associated Grassmann graph. Let also V' be an n' -dimensional left vector space over a division ring R' . Isometric embeddings of $\Gamma_k(V)$ in $\Gamma_{k'}(V')$ are classified in [13]. A classification of $J(n, k)$ -subsets in $\mathcal{G}_{k'}(V')$, i.e. the images of isometric embeddings of the Johnson graph $J(n, k)$ in $\Gamma_{k'}(V')$, is presented in [12]. We characterize isometric embeddings of $\Gamma_k(V)$ in $\Gamma_{k'}(V')$ as mappings which transfer apartments of $\mathcal{G}_k(V)$ to $J(n, k)$ -subsets of $\mathcal{G}_{k'}(V')$. This is a generalization of the earlier result concerning apartments preserving mappings [11, Theorem 3.10].

1. INTRODUCTION

Let V be an n -dimensional left vector space over a division ring R and let $\mathcal{G}_k(V)$ be the Grassmannian formed by k -dimensional subspaces of V . The associated Grassmann graph will be denoted by $\Gamma_k(V)$. By classical Chow's theorem [2], every automorphism of $\Gamma_k(V)$ with $1 < k < n - 1$ is induced by a semilinear automorphism of V or a semilinear isomorphism of V to the dual vector space V^* and the second possibility can be realized only in the case when $n = 2k$. The statement fails for $k = 1, n - 1$. In this case, any two distinct vertices of $\Gamma_k(V)$ are adjacent and any bijective transformation of $\mathcal{G}_k(V)$ is an automorphism of $\Gamma_k(V)$.

Results closely related to Chow's theorem can be found in [1, 3, 4, 6, 7, 9, 10], see also [11, Section 3.2].

One of resent generalizations of Chow's theorem is the classification of isometric embeddings of $\Gamma_k(V)$ in $\Gamma_{k'}(V')$, where V' is an n' -dimensional left vector space over a division ring R' [13]. The existence of such embeddings implies that

$$(1.1) \quad \min\{k, n - k\} \leq \min\{k', n' - k'\},$$

i.e. the diameter of $\Gamma_k(V)$ is not greater than the diameter of $\Gamma_{k'}(V')$. The case $k = 1, n - 1$ is trivial: every isometric embedding of $\Gamma_k(V)$ in $\Gamma_{k'}(V')$ is a bijection to a clique of $\Gamma_{k'}(V')$. If $1 < k < n - 1$ then isometric embeddings of $\Gamma_k(V)$ in $\Gamma_{k'}(V')$ are defined by semilinear $(2k)$ -embeddings, i.e. semilinear injections which transfer any $2k$ linearly independent vectors to linearly independent vectors.

A result of similar nature is obtained in [12]. This is the classification of the images of isometric embeddings of the Johnson graph $J(n, k)$ in the Grassmann graph $\Gamma_{k'}(V')$. As above, we need (1.1) which guarantees that the diameter of $J(n, k)$ is not greater than the diameter of $\Gamma_{k'}(V')$. The images of isometric embeddings of $J(n, k)$ in $\Gamma_{k'}(V')$ will be called $J(n, k)$ -subsets of $\mathcal{G}_{k'}(V')$.

2000 *Mathematics Subject Classification.* 15A04, 51M35.

Key words and phrases. Grassmann graph, Johnson graph, apartment, isometric embedding.

Suppose that $1 < k < n - 1$ (the case $k = 1, n - 1$ is trivial). If $n = 2k$ then every $J(n, k)$ -subset is an apartment in a parabolic subspace of $\mathcal{G}_{k'}(V')$ and we get an apartment of $\mathcal{G}_{k'}(V')$ if $n = n'$ and $k' = k, n - k$. In the case when $n \neq 2k$, there are two distinct types of $J(n, k)$ -subsets.

If $n = n'$ then every apartments preserving mapping of $\mathcal{G}_k(V)$ to $\mathcal{G}_k(V')$ with $1 < k < n - 1$ is induced by a semilinear embedding of V in V' or a semilinear embedding of V in V'^* and the second possibility can be realized only in the case when $n = 2k$ [11, Theorem 3.10]. For $k = 1, n - 1$ this fails. By [5], there are apartments preserving mappings of $\mathcal{G}_1(V)$ to itself which can not be defined by semilinear mappings.

Our main result (Theorem 3.1) characterizes isometric embeddings of $\Gamma_k(V)$ in $\Gamma_{k'}(V')$ as mappings which transfer apartments of $\mathcal{G}_k(V)$ to $J(n, k)$ -subsets of $\mathcal{G}_{k'}(V')$. As a consequence, we get a generalization of the above mentioned result on apartments preserving mappings.

2. GRASSMANN GRAPH AND JOHNSON GRAPH

2.1. Graph theory. In this subsection we recall some concepts of the general graph theory.

A subset in the vertex set of a graph is called a *clique* if any two distinct vertices in this subset are adjacent (connected by an edge). Every clique is contained in a maximal clique (this is trivial if the vertex set is finite and we use Zorn lemma in the infinite case).

The *distance* between two vertices in a connected graph Γ is defined as the smallest number i such that there is a path consisting of i edges and connecting these vertices. The *diameter* of Γ is the greatest distance between two vertices.

An *embedding* of a graph Γ in a graph Γ' is an injection of the vertex set of Γ to the vertex set of Γ' such that adjacent vertices go to adjacent vertices and non-adjacent vertices go to non-adjacent vertices. Every surjective embedding is an isomorphism. An embedding is said to be *isometric* if it preserves the distance between any two vertices. Every embedding preserves the distances 1 and 2. Thus any embedding of a graph with diameter 2 is isometric.

2.2. Grassmann graph. Let V be an n -dimensional left vector space over a division ring R . For every $k \in \{0, \dots, n\}$ we denote by $\mathcal{G}_k(V)$ the Grassmannian formed by k -dimensional subspaces of V . Then $\mathcal{G}_0(V) = \{0\}$ and $\mathcal{G}_n(V) = \{V\}$. In the case when $1 \leq k \leq n - 1$, two elements of $\mathcal{G}_k(V)$ are said to be *adjacent* if their intersection is $(k - 1)$ -dimensional (this is equivalent to the fact that their sum is $(k + 1)$ -dimensional).

The *Grassmann graph* $\Gamma_k(V)$ is the graph whose vertex set is $\mathcal{G}_k(V)$ and whose edges are pairs of adjacent k -dimensional subspaces. The graph $\Gamma_k(V)$ is connected, the distance $d(S, U)$ between two vertices $S, U \in \mathcal{G}_k(V)$ is equal to

$$k - \dim(S \cap U) = \dim(S + U) - k$$

and the diameter of Γ_k is equal to $\min\{k, n - k\}$.

Let V^* be the dual vector space. This is an n -dimensional left vector space over the opposite division ring R^* (the division rings R and R^* have the same set of elements and the same additive operation, the multiplicative operation $*$ on R^* is defined by the formula $a * b := ba$ for all $a, b \in R$). The second dual space V^{**} is canonically isomorphic to V .

For a subset $X \subset V$ the subspace

$$X^0 := \{ x^* \in V^* : x^*(x) = 0 \quad \forall x \in X \}$$

is called the *annihilator* of X . The dimension of X^0 is equal to the codimension of $\langle X \rangle$. The annihilator mapping of the set of all subspaces of V to the set of all subspaces of V^* is bijective and reverses the inclusion relation, i.e.

$$S \subset U \iff U^0 \subset S^0$$

for any subspaces $S, U \subset V$. Since $S^{00} = S$ for every subspace $S \subset V$, the inverse bijection is also the annihilator mapping. The restriction of the annihilator mapping to each $\mathcal{G}_k(V)$ is an isomorphism of $\Gamma_k(V)$ to $\Gamma_{n-k}(V^*)$.

Lemma 2.1. *If S_1, \dots, S_m are subspaces of V then*

$$\begin{aligned} (S_1 + \cdots + S_m)^0 &= (S_1)^0 \cap \cdots \cap (S_m)^0, \\ (S_1 \cap \cdots \cap S_m)^0 &= (S_1)^0 + \cdots + (S_m)^0. \end{aligned}$$

Consider incident subspaces $S \in \mathcal{G}_s(V)$ and $U \in \mathcal{G}_u(V)$ such that $s < k < u$. We define

$$[S, U]_k := \{ P \in \mathcal{G}_k(V) : S \subset P \subset U \}.$$

In the case when $U = V$ or $S = 0$, this subset will be denoted by $[S]_k$ or $\langle U \rangle_k$, respectively. Subsets of such type are called *parabolic subspace* of $\mathcal{G}_k(V)$, see [11, Section 3.1].

There is the natural isometric embedding Φ_S^U of $\Gamma_{k-s}(U/S)$ in $\Gamma_k(V)$ which sends every $(k-s)$ -dimensional subspace of U/S to the corresponding k -dimensional subspace of V . In the case when $U = V$ or $S = 0$, this embedding will be denoted by Φ_S or Φ^U , respectively. The image of Φ_S^U is the parabolic subspace $[S, U]_k$.

If $k = 1, n-1$ then any two distinct vertices of $\Gamma_k(V)$ are adjacent. In the case when $1 < k < n-1$, there are precisely the following two types of maximal cliques of $\Gamma_k(V)$:

- the *star* $[S]_k$, $S \in \mathcal{G}_{k-1}(V)$,
- the *top* $\langle U \rangle_k$, $U \in \mathcal{G}_{k+1}(V)$.

The annihilator mapping transfers every parabolic subspace $[S, U]_k$ to the parabolic subspace $[U^0, S^0]_{n-k}$; in particular, it sends stars to tops and tops to stars.

2.3. Johnson graph. The *Johnson graph* $J(n, k)$ is the graph whose vertices are k -element subsets of $\{1, \dots, n\}$ and whose edges are pairs of k -element subsets with $(k-1)$ -element intersections. The graph $J(n, k)$ is connected, the distance $d(X, Y)$ between two vertices X, Y is equal to

$$k - |X \cap Y| = |X \cup Y| - k$$

and the diameter of $J(n, k)$ is equal to $\min\{k, n-k\}$. The mapping

$$X \rightarrow X^c := \{1, \dots, n\} \setminus X$$

is an isomorphism between $J(n, k)$ and $J(n, n-k)$.

If $k = 1, n-1$ then any two distinct vertices of $J(n, k)$ are adjacent. In the case when $1 < k < n-1$, there are precisely the following two types of maximal cliques of $J(n, k)$:

- the *star* which consists of all vertices containing a certain $(k-1)$ -element subset,

- the *top* which consists of all vertices contained in a certain $(k+1)$ -element subset.

The stars and tops of $J(n, k)$ consist of $n - k + 1$ and $k + 1$ vertices, respectively. The isomorphism $X \rightarrow X^c$ transfers stars to tops and tops to stars.

Let B be a base of V . The associated *apartment* of $\mathcal{G}_k(V)$ consists of all k -dimensional subspaces spanned by subsets of B . This is the image of an isometric embedding of $J(n, k)$ in $\Gamma_k(V)$. We will use the following facts:

- for any two k -dimensional subspaces of V there is an apartment of $\mathcal{G}_k(V)$ containing both of them;
- the annihilator mapping of $\mathcal{G}_k(V)$ to $\mathcal{G}_{n-k}(V^*)$ transfers apartments to apartments.

Let $[S, U]_k$ be a parabolic subspace of $\mathcal{G}_k(V)$. Let also B be a base of V such that S and U are spanned by subsets of B . The intersection of the corresponding apartment of $\mathcal{G}_k(V)$ with $[S, U]_k$ is said to be an *apartment* in the parabolic subspace $[S, U]_k$. This is the image of an isometric embedding of $J(u-s, k-s)$ in $\Gamma_k(V)$, where $s = \dim S$ and $u = \dim U$. The mapping Φ_S^U establishes a one-to-one correspondence between apartments of $\mathcal{G}_{k-s}(U/S)$ and apartments of the parabolic subspace $[S, U]_k$.

2.4. Isometric embeddings of Johnson graphs in Grassmann graphs. Let V' be an n' -dimensional left vector space over a division ring R' . Isometric embeddings of $J(n, k)$ in $\Gamma_{k'}(V')$ are classified in [12]. The existence of such embeddings implies that the diameter of $J(n, k)$ is not greater than the diameter of $\Gamma_{k'}(V')$, i.e.

$$(2.1) \quad \min\{k, n - k\} \leq \min\{k', n' - k'\}.$$

Since $J(n, k)$ and $J(n, n - k)$ are isomorphic, we can suppose that $k \leq n - k$. Then

$$k \leq \min\{k', n - k, n' - k'\}.$$

The case $k = 1$ is trivial: any two distinct vertices of $J(n, 1)$ are adjacent and every isometric embedding of $J(n, 1)$ in $\Gamma_{k'}(V')$ is a bijection to a clique of $\Gamma_{k'}(V')$.

We say that a subset $X \subset V$ is *m-independent* if every m -element subset of X is independent. If x_1, \dots, x_m are linearly independent vectors of V and

$$x_{m+1} = a_1x_1 + \dots + a_mx_m,$$

where each a_i is non-zero, then x_1, \dots, x_{m+1} form an m -independent subset. Every n -independent subset of V consisting of n vectors is a base of V . By [12, Proposition 1], if the division ring R is infinite then for every natural integer $l \geq n$ there is an n -independent subset of V consisting of l vectors.

Suppose that $k < n - k$ and X is a $(2k)$ -independent subset of V consisting of l vectors. Every k -element subset of X spans a k -dimensional subspace and we denote by $\mathcal{J}_k(X)$ the set formed by all such subspaces. This is the image of an isometric embedding of $J(l, k)$ in $\Gamma_k(V)$. We will write $\mathcal{J}_k^*(X)$ for the subset of $\mathcal{G}_{n-k}(V^*)$ consisting of the annihilators of elements from $\mathcal{J}_k(X)$. If X is a base of V then $\mathcal{J}_k(X)$ and $\mathcal{J}_k^*(X)$ are apartments of $\mathcal{G}_k(V)$ and $\mathcal{G}_{n-k}(V^*)$, respectively.

The images of isometric embeddings of $J(n, k)$ in $\Gamma_{k'}(V')$ are called $J(n, k)$ -subsets of $\mathcal{G}_{k'}(V')$.

Theorem 2.1 ([12]). *Let \mathcal{J} be a $J(n, k)$ -subset of $\mathcal{G}_{k'}(V')$ and $1 < k \leq n - k$. In the case when $n = 2k$, there exist $S \in \mathcal{G}_{k'-k}(V')$ and $U \in \mathcal{G}_{k'+k}(V')$ such that \mathcal{J} is*

an apartment in the parabolic subspace $[S, U]_{k'}$, i.e.

$$\mathcal{J} = \Phi_S^U(\mathcal{A}),$$

where \mathcal{A} is an apartment of $\mathcal{G}_k(U/S)$. If $k < n - k$ then one of the following possibilities is realized:

(1) there exist $S \in \mathcal{G}_{k'-k}(V')$ and a $(2k)$ -independent n -element subset $X \subset V'/S$ such that

$$\mathcal{J} = \Phi_S(\mathcal{J}_k(X));$$

(2) there exist $U \in \mathcal{G}_{k'+k}(V')$ and a $(2k)$ -independent n -element subset $Y \subset U^*$ such that

$$\mathcal{J} = \Phi^U(\mathcal{J}_k^*(Y)).$$

In the case when $1 < k < n - k$, we say that \mathcal{J} is a $J(n, k)$ -subset of *first* or *second type* if the corresponding possibility is realized. The annihilator mapping changes types of $J(n, k)$ -subsets.

Remark 2.1. Suppose that $1 < k < n - k$ and $\mathcal{J} \subset \mathcal{G}_{k'}(V')$ is a $J(n, k)$ -subset of second type. Let U and Y be as in Theorem 2.1. The annihilators of vectors belonging to Y form an n -element subset $\mathcal{Y} \subset \mathcal{G}_{k'+k-1}(U)$. Every element of \mathcal{J} can be presented as the intersection of k distinct elements of \mathcal{Y} .

Let \mathcal{C} be a maximal clique of $\Gamma_{k'}(V')$ (a star or a top). As above, we suppose that \mathcal{J} is a $J(n, k)$ -subset of $\mathcal{G}_{k'}(V')$ and $1 < k \leq n - k$. If $\mathcal{J} \cap \mathcal{C}$ contains more than one element than it is a maximal clique of the restriction of $\Gamma_{k'}(V')$ to \mathcal{J} (this restriction is isomorphic to $J(n, k)$). In this case, we say that $\mathcal{J} \cap \mathcal{C}$ is a *star* or a *top* of \mathcal{J} if \mathcal{C} is a star or a top, respectively.

Lemma 2.2. Suppose that $1 < k < n - k$. If \mathcal{J} is a $J(n, k)$ -subset of first type then the stars and tops of \mathcal{J} consist of $n - k + 1$ and $k + 1$ vertices, respectively. In the case when \mathcal{J} is a $J(n, k)$ -subset of second type, the stars and tops of \mathcal{J} consist of $k + 1$ and $n - k + 1$ vertices, respectively.

Proof. Easy verification. □

Lemma 2.2 shows that the two above determined classes of $J(n, k)$ -subsets are disjoint.

2.5. Isometric embeddings of Grassmann graphs. Isometric embeddings of $\Gamma_k(V)$ in $\Gamma_{k'}(V')$ are classified in [13]. As in the previous subsection, we have (2.1) which implies that the diameter of $\Gamma_k(V)$ is not greater than the diameter of $\Gamma_{k'}(V')$.

A mapping $l : V \rightarrow V'$ is called *semilinear* if

$$l(x + y) = l(x) + l(y)$$

for all $x, y \in V$ and there is a homomorphism $\sigma : R \rightarrow R'$ such that

$$l(ax) = \sigma(a)l(x)$$

for all $a \in R$ and $x \in V$. If l is non-zero then there is only one homomorphism σ satisfying this condition. Every non-zero homomorphism of R to R' is injective.

A semilinear injection of V to V' is said to be a *semilinear m-embedding* if it transfers any m linearly independent vectors to linearly independent vectors. The existence of such mappings implies that $m \leq n'$. A semilinear n -embedding of V in V' will be called a *semilinear embedding*. It maps every independent subset to an

independent subset which means that $n \leq n'$. For any natural integers $p \geq 3$ and q there is a semilinear p -embedding of a $(p+q)$ -dimensional vector space which is not a $(p+1)$ -embedding [8].

Let $l : V \rightarrow V'$ be a semilinear m -embedding. If P is a k -dimensional subspace of V and $k \leq m$ then $\langle l(P) \rangle$ is a k -dimensional subspace of V' . So, for every $k \in \{1, \dots, m\}$ we have the mapping

$$\begin{aligned} (l)_k : \mathcal{G}_k(V) &\rightarrow \mathcal{G}_k(V') \\ P &\mapsto \langle l(P) \rangle \end{aligned}$$

and the mapping

$$\begin{aligned} (l)_k^* : \mathcal{G}_k(V) &\rightarrow \mathcal{G}_{n'-k}(V'^*) \\ P &\mapsto \langle l(P) \rangle^0. \end{aligned}$$

In the case when $k < m$, these mappings are injective and transfer adjacent subspaces to adjacent subspaces. If $2k \leq m$ then $(l)_k$ and $(l)_k^*$ are isometric embeddings of $\Gamma_k(V)$ in $\Gamma_k(V')$ and $\Gamma_{n'-k}(V'^*)$, respectively.

Theorem 2.2 ([13]). *Let f be an isometric embedding of $\Gamma_k(V)$ in $\Gamma_{k'}(V')$ and $1 < k \leq n - k$. Then one of the following possibilities is realized:*

- (1) *there exist $S \in \mathcal{G}_{k'-k}(V')$ and a semilinear $(2k)$ -embedding $l : V \rightarrow V'/S$ such that $f = \Phi_S \circ (l)_k$;*
- (2) *there exist $U \in \mathcal{G}_{k'+k}(V')$ and a semilinear $(2k)$ -embedding $s : V \rightarrow U^*$ such that $f = \Phi_U^U \circ (s)_k^*$.*

In particular, if $n = 2k$ then there exist incident $S \in \mathcal{G}_{k'-k}(V')$ and $U \in \mathcal{G}_{k'+k}(V')$ such that f is induced by a semilinear embedding $l : V \rightarrow U/S$ or a semilinear embedding $s : V \rightarrow (U/S)^$, i.e.*

$$f = \Phi_S^U \circ (l)_k \text{ or } f = \Phi_U^U \circ (s)_k^*.$$

The case $k = 1, n - 1$ is trivial. The case when $1 < k \leq n - k$ is considered in Theorem 2.2. Suppose that $n - k < k < n - 1$. Since $\Gamma_k(V)$ and $\Gamma_{n-k}(V^*)$ are canonically isomorphic, every isometric embedding of $\Gamma_k(V)$ in $\Gamma_{k'}(V')$ can be considered as an isometric embedding of $\Gamma_{n-k}(V^*)$ in $\Gamma_{k'}(V')$. The latter embedding is one of the mappings described in Theorem 2.2. In contrast to the case when $1 < k \leq n - k$, we can not show that isometric embeddings of $\Gamma_k(V)$ in $\Gamma_{k'}(V')$ are defined by semilinear mappings of V .

3. MAIN RESULT

Let f be a mapping of $\mathcal{G}_k(V)$ to $\mathcal{G}_{k'}(V')$. If the restriction of f to every apartment of $\mathcal{G}_k(V)$ is an isometric embedding of $J(n, k)$ in $\Gamma_{k'}(V')$ then f is an isometric embedding of $\Gamma_k(V)$ in $\Gamma_{k'}(V')$. This follows from the fact that for any two elements of $\mathcal{G}_k(V)$ there is an apartment containing both of them.

We say that f is a *J-mapping* if it sends every apartment of $\mathcal{G}_k(V)$ to a $J(n, k)$ -subset. Every isometric embedding of $\Gamma_k(V)$ in $\Gamma_{k'}(V')$ satisfies this condition. Our main result states that this property characterizes isometric embeddings of $\Gamma_k(V)$ in $\Gamma_{k'}(V')$.

Theorem 3.1. *Every J-mapping of $\mathcal{G}_k(V)$ to $\mathcal{G}_{k'}(V')$ is an isometric embedding of $\Gamma_k(V)$ in $\Gamma_{k'}(V')$.*

Some corollaries of Theorem 3.1 will be given in Section 6.

4. INTERSECTIONS OF $J(n, k)$ -SUBSETS

4.1. Special subsets. Let $X = \{x_1, \dots, x_n\}$ be a $(2k)$ -independent subset of a vector space W (the dimension of W is assumed to be not less than $2k$ and $n \geq 2k$) and let $k \geq 2$. Consider the set $\mathcal{J} = \mathcal{J}_k(X)$ formed by all k -dimensional subspaces spanned by subsets of X . For every $i \in \{1, \dots, n\}$ we denote by $\mathcal{J}(+i)$ and $\mathcal{J}(-i)$ the sets consisting of all elements of \mathcal{J} which contain x_i and do not contain x_i , respectively. Also, we write $\mathcal{J}(+i, +j)$ for the intersection of $\mathcal{J}(+i)$ and $\mathcal{J}(+j)$. Every

$$\mathcal{J}(+i, +j) \cup \mathcal{J}(-i), \quad i \neq j$$

is said to be a *special* subset of \mathcal{J} .

We say that a subset $\mathcal{X} \subset \mathcal{J}$ is *inexact* if there is a $(2k)$ -independent n -element subset $Y \subset W$ such that $\mathcal{J}_k(Y) \neq \mathcal{J}$ (at least one of the vectors belonging to Y is not a scalar multiple of a vector from X) and $\mathcal{X} \subset \mathcal{J}_k(Y)$.

Lemma 4.1. *Every inexact subset is contained in a special subset.*

Proof. Let \mathcal{X} be an inexact subset. Denote by S_i the intersection of all elements of \mathcal{X} containing x_i and set $S_i = 0$ if there are no elements of \mathcal{X} containing x_i . There is at least one i such that $S_i \neq \langle x_i \rangle$ (otherwise, \mathcal{X} is not inexact). Then $S_i = 0$ or $\dim S_i \geq 2$. In the first case, \mathcal{X} is contained in $\mathcal{J}(-i)$ which gives the claim. If $\dim S_i \geq 2$ then the inclusion

$$\mathcal{X} \subset \mathcal{J}(+i, +j) \cup \mathcal{J}(-i)$$

holds for any $j \neq i$ such that $x_j \in S_i$. \square

Lemma 4.2. *If X is independent then the class of maximal inexact subsets coincides with the class of special subsets.*

Proof. By Lemma 4.1, it sufficient to show that every special subset is inexact. Since X is independent,

$$Y := (X \setminus \{x_i\}) \cup \{x_i + x_j\}$$

is independent and $\mathcal{J}_k(Y)$ contains the special subset $\mathcal{J}(+i, +j) \cup \mathcal{J}(-i)$. \square

Remark 4.1. Suppose that $R = \mathbb{Z}_2$ and $X = \{x_1, \dots, x_5\}$, where x_1, \dots, x_4 are linearly independent vectors and

$$x_5 = x_1 + \dots + x_4.$$

Then $k = 2$ and X is 4-independent. The vectors $x_1 + x_2, x_3, x_4, x_5$ are not linearly independent and x_1 can not be replaced by $x_1 + x_2$ as in the proof of Lemma 4.2. The subspace $\langle x_1, x_2 \rangle$ contains only three non-zero vectors — $x_1, x_2, x_1 + x_2$. This means that $\mathcal{J}(+1, +2) \cup \mathcal{J}(-1)$ can not be inexact. The same arguments show that every special subset is not inexact.

Remark 4.2. It is not difficult to prove that all special subsets are inexact if R is infinite, but we do not need this fact.

The subsets $\mathcal{J}(+i, +j)$ and $\mathcal{J}(-i)$ are disjoint. This means that every special subset contains precisely

$$a(n, k) := |\mathcal{J}(+i, +j)| + |\mathcal{J}(-i)| = \binom{n-2}{k-2} + \binom{n-1}{k}$$

elements. Lemma 4.1 implies the following.

Lemma 4.3. *If an inexact subset consists of $a(n, k)$ elements then it is a special subset.*

A subset $\mathcal{X} \subset \mathcal{J}$ is said to be *complement* if $\mathcal{J} \setminus \mathcal{X}$ is special, i.e.

$$\mathcal{J} \setminus \mathcal{X} = \mathcal{J}(+i, +j) \cup \mathcal{J}(-i)$$

for some distinct i, j . Then

$$\mathcal{X} = \mathcal{J}(+i) \cap \mathcal{J}(-j).$$

This complement subset will be denoted by $\mathcal{J}(+i, -j)$.

Lemma 4.4. *Let $P, Q \in \mathcal{J}$. Then $d(P, Q) = m$ if and only if there are precisely*

$$(k - m)(n - k - m)$$

distinct complement subsets of \mathcal{J} containing both P and Q .

Proof. The equality $d(P, Q) = m$ implies that

$$\dim(P \cap Q) = k - m \text{ and } \dim(P + Q) = k + m.$$

The complement subset $\mathcal{J}(+i, -j)$ contains both P and Q if and only if

$$x_i \in P \cap Q \text{ and } x_j \notin P + Q.$$

So, there are precisely $k - m$ possibilities for i and precisely $n - k - m$ possibilities for j . \square

4.2. Connectedness of the apartment graph. Suppose that $1 < k \leq n - k$. If X is a base of V then $\mathcal{J}_k(X)$ is an apartment of $\mathcal{G}_k(V)$ and, by Lemma 4.2, the class of maximal inexact subsets coincides with the class of special subsets. Two apartments of $\mathcal{G}_k(V)$ are said to be *adjacent* if their intersection is a maximal inexact subset. Consider the graph A_k whose vertices are apartments of $\mathcal{G}_k(V)$ and whose edges are pairs of adjacent apartments.

Proposition 4.1. *The graph A_k is connected.*

Proof. Let B and B' be bases of V . The associated apartments of $\mathcal{G}_k(V)$ will be denoted by \mathcal{A} and \mathcal{A}' , respectively. Suppose that $\mathcal{A} \neq \mathcal{A}'$ and show that these apartments can be connected in A_k .

First we consider the case when $|B \cap B'| = n - 1$. Let

$$B = \{x_1, \dots, x_{n-1}, x_n\} \text{ and } B' = \{x_1, \dots, x_{n-1}, x'_n\}.$$

Since $\mathcal{A} \neq \mathcal{A}'$, the vector x'_n is a linear combination of x_n and some others x_{i_1}, \dots, x_{i_m} . Clearly, we can suppose that

$$x'_n = ax_n + \sum_{i=1}^m a_i x_{i_i} \text{ with } m \leq n - 1.$$

We prove the statement induction on m . If $m = 1$ then

$$\mathcal{A} \cap \mathcal{A}' = \mathcal{J}(+n, +1) \cup \mathcal{J}(-n)$$

is a maximal inexact subset and $\mathcal{A}, \mathcal{A}'$ are adjacent. Let $m \geq 2$. Denote by \mathcal{A}'' the apartment of $\mathcal{G}_k(V)$ associated with the base $x_1, \dots, x_{n-1}, x''_n$, where

$$x''_n := ax_n + \sum_{i=1}^{m-1} a_i x_{i_i}.$$

By inductive hypothesis, \mathcal{A} and \mathcal{A}'' can be connected in A_k . The equality

$$x'_n = x''_n + a_m x_m$$

guarantees that \mathcal{A}'' and \mathcal{A}' are adjacent. This implies the existence of a path connecting \mathcal{A} with \mathcal{A}' .

Now consider the case when $|B \cap B'| = m < n - 1$ (possible $m = 0$). Suppose that

$$B \setminus B' = \{x_1, \dots, x_{n-m}\} \text{ and } x' \in B' \setminus B.$$

For every $i \in \{1, \dots, n-m\}$ we define

$$S_i := \langle B \setminus \{x_i\} \rangle.$$

Since the intersection of all S_i coincides with $\langle B \cap B' \rangle$ and x' does not belong to $\langle B \cap B' \rangle$, there is at least one S_i which does not contain x' . Then

$$B_1 := (B \setminus \{x_i\}) \cup \{x'\}$$

is a base of V . Denote by \mathcal{A}_1 the associated apartment of $\mathcal{G}_k(V)$. It is clear that

$$|B \cap B_1| = n - 1 \text{ and } |B_1 \cap B'| = m + 1.$$

The apartment \mathcal{A}_1 coincides with \mathcal{A} (if x' is a scalar multiple of x_i) or \mathcal{A} and \mathcal{A}_1 are connected in A_k . Step by step we construct a sequence of bases

$$B = B_0, B_1, \dots, B_{n-m} = B'$$

such that $|B_{i-1} \cap B_i| = n - 1$ for every $i \in \{1, \dots, n-m\}$. Let \mathcal{A}_i be the apartment of $\mathcal{G}_k(V)$ associated with B_i . Then for every $i \in \{1, \dots, n-m\}$ we have $\mathcal{A}_{i-1} = \mathcal{A}_i$ or \mathcal{A}_{i-1} and \mathcal{A}_i are connected in A_k . This means that $\mathcal{A} = \mathcal{A}_0$ and $\mathcal{A}' = \mathcal{A}_{n-m}$ are connected in A_k . \square

4.3. Intersections of $J(n, k)$ -subsets of different types. In this subsection we suppose that W is a $(2k)$ -dimensional vector space and $k \geq 2$. Let

$$X = \{x_1, \dots, x_n\} \text{ and } Y = \{y_1^*, \dots, y_n^*\}, \quad n > 2k$$

be $(2k)$ -independent subsets of W and W^* , respectively. Denote by U_i the annihilator of y_i^* . This is a $(2k-1)$ -dimensional subspace of W . Suppose that the following conditions hold:

- every U_i is spanned by a subset of X ,
- every $\langle x_i \rangle$ is the intersection of some U_j .

Since X is a $(2k)$ -independent subset, every U_i is spanned by a $(2k-1)$ -element subset $X_i \subset X$ and it does not contain any vector of $X \setminus X_i$. Similarly, Y is $(2k)$ -independent and every x_i is contained in precisely $2k-1$ distinct U_j whose intersection coincides with $\langle x_i \rangle$.

We will investigate the intersection

$$\mathcal{Z} := \mathcal{J}_k(X) \cap \mathcal{J}_k^*(Y).$$

It is formed by all elements of $\mathcal{G}_k(W)$ which are spanned by subsets of X and can be presented as the intersections of k distinct U_j .

We define

$$b(n, k) := \frac{\binom{2k-1}{k} n}{k}.$$

Note that this integer is not necessarily natural.

Lemma 4.5. $|\mathcal{Z}| \leq b(n, k)$.

Proof. Denote by \mathcal{Z}_i the set of all elements of \mathcal{Z} containing x_i . There are precisely $2k - 1$ distinct U_j containing x_i and every element of \mathcal{Z} is the intersection of k distinct U_j . This means that \mathcal{Z}_i contains not greater than $\binom{2k-1}{k}$ elements. Since every element of \mathcal{Z} belongs to k distinct \mathcal{Z}_i , we have

$$|\mathcal{Z}| = \frac{|\mathcal{Z}_1| + \dots + |\mathcal{Z}_n|}{k}$$

which implies the required inequality. \square

Lemma 4.6. $a(n, k) > b(n, k)$ except the case when $n = 5$ and $k = 2$.

Proof. We have

$$a(n, 2) = 1 + \frac{(n-1)(n-2)}{2} = \frac{n^2 - 3n + 4}{2} \text{ and } b(n, 2) = \frac{3n}{2}.$$

An easy verification shows that the equality $a(n, 2) > b(n, 2)$ does not hold only for $n = 5$.

From this moment we suppose that $k \geq 3$. Then

$$\begin{aligned} a(n, k) &= \binom{n-2}{k-2} + \binom{n-1}{k} = \frac{(n-2)!}{(k-2)!(n-k)!} + \frac{(n-1)!}{k!(n-k-1)!} = \\ &= \frac{(n-2)\dots(n-k+1)\cdot k(k-1)}{k!} + \frac{(n-1)\dots(n-k)}{k!} = \\ &= [k(k-1) + (n-1)(n-k)] \frac{(n-2)\dots(n-k+1)}{k!} \end{aligned}$$

and

$$\begin{aligned} b(n, k) &= \frac{\binom{2k-1}{k} n}{k} = \frac{n(2k-1)!}{k!k!} = \frac{n(2k-1)\dots(k+1)}{k!} = \\ &= [n(k+1)] \frac{(2k-1)\dots(k+2)}{k!}. \end{aligned}$$

Since $n \geq 2k + 1$ and $k \geq 3$,

$$\begin{aligned} (n-1)(n-k) + k(k-1) &= (n-1)(n-k) + (k+1)(k-1) - (k-1) \geq \\ &\geq (n-1)(k+1) + (k+1)(k-1) - (k-1) = (n+k-2)(k+1) - (k-1) \geq \\ &\geq (n+1)(k+1) - (k-1) = n(k+1) + 2 > n(k+1). \end{aligned}$$

So,

$$(4.1) \quad k(k-1) + (n-1)(n-k) > n(k+1).$$

Also, $n \geq 2k + 1$ implies that

$$n-2 \geq 2k-1, \dots, n-k+1 \geq k+2$$

and we have

$$(4.2) \quad (n-2)\dots(n-k+1) \geq (2k-1)\dots(k+2).$$

The inequality

$$\begin{aligned} a(n, k) &= [k(k-1) + (n-1)(n-k)] \frac{(n-2)\dots(n-k+1)}{k!} > \\ &> [n(k+1)] \frac{(2k-1)\dots(k+2)}{k!} = b(n, k) \end{aligned}$$

follows from (4.1) and (4.2). \square

Lemma 4.7. If $n = 5$ and $k = 2$ then $|\mathcal{Z}| \leq 5 < 7 = a(5, 2)$.

Proof. In the present case, U_1, \dots, U_5 are 3-dimensional, each x_i is contained in precisely 3 distinct U_j and every element of \mathcal{Z} is the intersection of 2 distinct U_j . If every U_i contains not greater than 2 elements of \mathcal{Z} then $|\mathcal{Z}| \leq \frac{2 \cdot 5}{2} = 5$ (since every element of \mathcal{Z} is contained in 2 distinct U_j).

Suppose that U_1 is spanned by x_1, x_2, x_3 and contains 3 elements of \mathcal{Z} . These are $\langle x_1, x_2 \rangle, \langle x_1, x_3 \rangle, \langle x_2, x_3 \rangle$. Suppose that these subspaces are the intersections of U_1 with U_2, U_3, U_4 . Then each $x_i, i \in \{1, 2, 3\}$ is contained in 3 distinct $U_j, j \in \{1, 2, 3, 4\}$. The subspace U_5 contains at least one of $x_i, i \in \{1, 2, 3\}$ and this x_i is contained in 4 distinct U_j , a contradiction.

The same arguments show that every U_i contains not greater than 2 elements of \mathcal{Z} and we get the claim. \square

Joining all results of this subsection, we get the following.

Lemma 4.8. $|\mathcal{Z}| < a(n, k)$.

5. PROOF OF THEOREM 3.1

Let f be a J -mapping of $\mathcal{G}_k(V)$ to $\mathcal{G}_{k'}(V')$.

Lemma 5.1. *The mapping f is injective.*

Proof. Let P, Q be distinct elements of $\mathcal{G}_k(V)$. We take an apartment $\mathcal{A} \subset \mathcal{G}_k(V)$ containing P and Q . Since $f(\mathcal{A})$ is a $J(n, k)$ -subset, \mathcal{A} and $f(\mathcal{A})$ have the same number of elements which implies that $f(P) \neq f(Q)$. \square

Consider the mapping f_* which transfers every $P \in \mathcal{G}_{n-k}(V^*)$ to $f(P^0)$. This is a J -mapping of $\mathcal{G}_{n-k}(V^*)$ to $\mathcal{G}_{k'}(V')$. It is clear that f is an isometric embedding of $\Gamma_k(V)$ in $\Gamma_{k'}(V')$ if and only if f_* is an isometric embedding of $\Gamma_{n-k}(V^*)$ in $\Gamma_{k'}(V')$. Therefore, it sufficient to prove Theorem 3.1 only in the case when $k \leq n - k$.

Suppose that $k = 1$, i.e. f is a J -mapping of $\mathcal{G}_1(V)$ to $\mathcal{G}_{k'}(V')$. Any distinct $P, Q \in \mathcal{G}_1(V)$ are adjacent and there is an apartment $\mathcal{A} \subset \mathcal{G}_1(V)$ containing P, Q . Since $f(\mathcal{A})$ is a $J(n, 1)$ -subset, $f(P)$ and $f(Q)$ are adjacent vertices of $\Gamma_{k'}(V')$. Thus f is an isometric embedding of $\Gamma_1(V)$ in $\Gamma_{k'}(V')$.

From this moment we suppose that $2 \leq k \leq n - k$. By Subsection 2.4, we have

$$k \leq \min\{k', n - k, n' - k'\}.$$

Lemma 5.2. *If $n = 2k$ then there exists $S \in \mathcal{G}_{k'-k}(V')$ such that the image of f is contained in $[S]_{k'}$.*

Proof. Let \mathcal{A} and \mathcal{A}' be distinct apartments of $\mathcal{G}_k(V)$. Then $f(\mathcal{A})$ and $f(\mathcal{A}')$ are $J(n, k)$ -subsets and, since $n = 2k$, Theorem 2.1 implies that

$$f(\mathcal{A}) = \Phi_S(\mathcal{J}_k(X)) \text{ and } f(\mathcal{A}') = \Phi_{S'}(\mathcal{J}_k(X')),$$

where $S, S' \in \mathcal{G}_{k'-k}(V')$ and X, X' are independent $(2k)$ -element subsets of V'/S and V'/S' , respectively. We need to show that $S = S'$.

By Proposition 4.1, it is sufficient to consider the case when \mathcal{A} and \mathcal{A}' are adjacent. Then

$$|f(\mathcal{A}) \cap f(\mathcal{A}')| = |\mathcal{A} \cap \mathcal{A}'| = a(2k, k)$$

and

$$\mathcal{X} := (\Phi_S)^{-1}(f(\mathcal{A}) \cap f(\mathcal{A}'))$$

is a subset of $\mathcal{J}_k(X)$ consisting of $a(2k, k)$ elements. Since $S + S'$ is contained in all elements of $f(\mathcal{A}) \cap f(\mathcal{A}')$, every element of \mathcal{X} contains $T := (S + S')/S$. If $S \neq S'$ then $t = \dim T \geq 1$ and

$$|\mathcal{X}| \leq \binom{2k-t}{k-t}$$

which implies that

$$|\mathcal{X}| \leq \binom{2k-1}{k-1} = \frac{(2k-1)!}{(k-1)!k!} = \binom{2k-1}{k} < \binom{2k-1}{k} + \binom{2k-2}{k-2} = a(2k, k),$$

a contradiction. Thus $S = S'$. \square

Lemma 5.3. *Suppose that $k < n - k$. If f transfers an apartment $\mathcal{A} \subset \mathcal{G}_k(V)$ to a $J(n, k)$ -subset of first type then the images of all apartments of $\mathcal{G}_k(V)$ are $J(n, k)$ -subsets of first type and there exists $S \in \mathcal{G}_{k'-k}(V')$ such that the image of f is contained in $[S]_{k'}$.*

Proof. By our hypothesis,

$$f(\mathcal{A}) = \Phi_S(\mathcal{J}_k(X)),$$

where $S \in \mathcal{G}_{k'-k}(V')$ and X is a $(2k)$ -independent subset of V'/S consisting of n vectors

$$\bar{x}_1 = x_1 + S, \dots, \bar{x}_n = x_n + S.$$

Denote by S_i the $(k'-k+1)$ -dimensional subspace of V' corresponding to \bar{x}_i . Every element of $f(\mathcal{A})$ is the sum of k distinct S_j .

Let \mathcal{A}' be an apartment of $\mathcal{G}_k(V)$ distinct from \mathcal{A} . We need to show that $f(\mathcal{A}')$ is a $J(n, k)$ -subset of first type and is contained in $[S]_{k'}$. By Proposition 4.1, it is sufficient to consider the case when \mathcal{A} and \mathcal{A}' are adjacent. As in the proof of the previous lemma,

$$\mathcal{X} := (\Phi_S)^{-1}(f(\mathcal{A}) \cap f(\mathcal{A}'))$$

is a subset of $\mathcal{J}_k(X)$ consisting of $a(n, k)$ elements. There are the following possibilities:

- (1) \mathcal{X} is contained in a special subset of $\mathcal{J}_k(X)$,
- (2) there is no special subset of $\mathcal{J}_k(X)$ containing \mathcal{X} .

Case (1). Every special subset of $\mathcal{J}_k(X)$ consists of $a(n, k) = |\mathcal{X}|$ elements. This implies that \mathcal{X} is a special subset of $\mathcal{J}_k(X)$. Suppose that

$$\mathcal{X} = \mathcal{J}(+i, +j) \cup \mathcal{J}(-i)$$

(see Subsection 4.1 for the notation). We take any $(k-1)$ -dimensional subspace $T \subset V'/S$ spanned by a subset of X containing \bar{x}_j . Then

$$\mathcal{S} := \mathcal{J}_k(X) \cap [T]_k$$

is a star of $\mathcal{J}_k(X)$ contained in \mathcal{X} (if $P \in \mathcal{S}$ contains \bar{x}_i then it belongs to $\mathcal{J}(+i, +j)$ and $P \in \mathcal{S}$ is an element of $\mathcal{J}(-i)$ if it does not contain \bar{x}_i).

Consider $\Phi_S(\mathcal{S})$. This is a star of $f(\mathcal{A})$. By Lemma 2.2, this star consists of $n-k+1$ vertices (since $f(\mathcal{A})$ is a $J(n, k)$ -subset of first type). Also, it is contained in $\Phi_S(\mathcal{X}) \subset f(\mathcal{A}')$ and Lemma 2.2 guarantees that $f(\mathcal{A}')$ is a $J(n, k)$ -subset of first type.

We take $P, Q \in \mathcal{X}$ such that $P \cap Q = 0$. The intersection of $\Phi_S(P)$ and $\Phi_S(Q)$ coincides with S . Since $\Phi_S(P)$ and $\Phi_S(Q)$ both belong to $f(\mathcal{A}')$ and $f(\mathcal{A}')$ is

a $J(n, k)$ -subset of first type, the associated $(k' - k)$ -dimensional subspace of V' coincides with S and $f(\mathcal{A}')$ is contained in $[S]_{k'}$.

Case (2). For every $i \in \{1, \dots, n\}$ the intersection of all elements of \mathcal{X} containing \bar{x}_i coincides with $\langle \bar{x}_i \rangle$ (otherwise, as in the proof of Lemma 4.1 we show that \mathcal{X} is contained in a special subset of $\mathcal{J}_k(X)$ which is impossible). Then the intersection of all elements of

$$\Phi_S(\mathcal{X}) = f(\mathcal{A}) \cap f(\mathcal{A}')$$

containing S_i coincides with S_i . This implies that the intersection of all elements of $f(\mathcal{A}) \cap f(\mathcal{A}')$ is S .

Therefore, if $f(\mathcal{A}')$ is a $J(n, k)$ -subset of first type then the associated $(k' - k)$ -dimensional subspace of V' coincides with S , i.e. $f(\mathcal{A}')$ is contained in $[S]_{k'}$. Then \mathcal{X} is an inexact subset of $\mathcal{J}_k(X)$. By Lemma 4.3, \mathcal{X} is a special subset of $\mathcal{J}_k(X)$ which is impossible.

So, $f(\mathcal{A}')$ is a $J(n, k)$ -subset of second type. Then

$$f(\mathcal{A}') = \Phi^U(\mathcal{J}_k^*(Y)),$$

where $U \in \mathcal{G}_{k'+k}(V')$ and Y is a $(2k)$ -independent subset of U^* consisting of n vectors y_1^*, \dots, y_n^* . Denote by U_i the annihilator of y_i^* (in U). By Remark 2.1, every element of $f(\mathcal{A}')$ is the intersection of k distinct U_j .

The set

$$(5.1) \quad (\Phi^U)^{-1}(f(\mathcal{A}) \cap f(\mathcal{A}'))$$

is contained in $\mathcal{J}_k^*(Y)$. Denote by \mathcal{Y} the subset of $\mathcal{J}_k(Y)$ formed by the annihilators of all elements of (5.1). It consists of $a(n, k)$ elements. If \mathcal{Y} is contained in a special subset of $\mathcal{J}_k(Y)$ then it coincides with this special subset. In this case, there is a star $\mathcal{S} \subset \mathcal{J}_k(Y)$ contained in \mathcal{Y} . Let \mathcal{S}^0 be the subset of $\mathcal{J}_k^*(Y)$ consisting of the annihilators of all elements of \mathcal{S} . Then $\Phi^U(\mathcal{S}^0)$ is a top of $f(\mathcal{A}')$ contained in $f(\mathcal{A}) \cap f(\mathcal{A}')$. This contradicts Lemma 2.2, since $f(\mathcal{A})$ and $f(\mathcal{A}')$ are $J(n, k)$ -subsets of different types.

Thus there is no special subset of $\mathcal{J}_k(Y)$ containing \mathcal{Y} . This means that for every $i \in \{1, \dots, n\}$ the intersection of all elements of \mathcal{Y} containing y_i^* coincides with $\langle y_i^* \rangle$. By Lemma 2.1, U_i is the sum of the annihilators (in U) of these elements; hence it is the sum of some elements of $f(\mathcal{A}) \cap f(\mathcal{A}')$. Since every element of $f(\mathcal{A})$ is the sum of k distinct S_j ,

(*) every U_i is the sum of some S_j .

This implies that every U_i contains S (since S is contained in all S_i) and $f(\mathcal{A}')$ is a subset of $[S]_{k'}$ (every element of $f(\mathcal{A}')$ is the intersection of k distinct U_j).

Since the intersection of all elements of $f(\mathcal{A}) \cap f(\mathcal{A}')$ containing S_i coincides with S_i and every element of $f(\mathcal{A}')$ is the intersection of k distinct U_j ,

(**) every S_i is the intersection of some U_j .

Then every S_i is contained in U and $f(\mathcal{A})$ is a subset of $\langle U \rangle_{k'}$ (since every element of $f(\mathcal{A})$ is the sum of k distinct S_j).

So, $f(\mathcal{A})$ and $f(\mathcal{A}')$ both are contained in $[S, U]_{k'}$. The vector space $W := U/S$ is $2k$ -dimensional. It is clear that

$$f(\mathcal{A}) = \Phi_S^U(\mathcal{J}_k(X)) \text{ and } f(\mathcal{A}') = \Phi_S^U(\mathcal{J}_k^*(Y')),$$

where Y' is the $(2k)$ -independent n -element subset of W^* induced by Y . The annihilators of the vectors belonging to Y' are U_i/S , $i \in \{1, \dots, n\}$. The facts $(*)$ and $(**)_{\circ}$ guarantee that X and Y' satisfy the conditions of Subsection 4.3:

- the annihilator of every element of Y' is spanned by a subset of X ,
- every $\langle \bar{x}_i \rangle$ is the intersection of the annihilators of some elements from Y' .

By Subsection 4.3,

$$\mathcal{Z} := \mathcal{J}_k(X) \cap \mathcal{J}_k^*(Y')$$

contains less than $a(n, k)$ elements. This contradicts the fact that

$$\Phi_S^U(\mathcal{Z}) = f(\mathcal{A}) \cap f(\mathcal{A}')$$

consists of $a(n, k)$ elements. So, the case (2) is impossible. \square

By Lemma 5.3, if $k < n - k$ then the images of all apartments of $\mathcal{G}_k(V)$ are $J(n, k)$ -subsets of the same type.

Suppose that one of the following possibilities is realized:

- $n = 2k$,
- $k < n - k$ and the images of all apartments of $\mathcal{G}_k(V)$ are $J(n, k)$ -subsets of first type.

By Lemmas 5.2 and 5.3, the image of f is contained in $[S]_{k'}$ with $S \in \mathcal{G}_{k'-k}(V')$. This implies the existence of a mapping

$$g : \mathcal{G}_k(V) \rightarrow \mathcal{G}_k(V'/S)$$

such that $f = \Phi_S \circ g$. This is a J -mapping which transfers every apartment of $\mathcal{G}_k(V)$ to a certain $J_k(X)$, where X is a $(2k)$ -independent n -element subset of V'/S . Using results of Subsection 4.1, we prove the following.

Lemma 5.4. *The mapping g is an isometric embedding of $\Gamma_k(V)$ in $\Gamma_k(V'/S)$.*

Proof. Let $P, Q \in \mathcal{G}_k(V)$ and let \mathcal{A} be an apartment of $\mathcal{G}_k(V)$ containing P and Q . If \mathcal{X} is a special subset of \mathcal{A} then $\mathcal{X} = \mathcal{A} \cap \mathcal{A}'$, where \mathcal{A}' is an apartment of $\mathcal{G}_k(V)$ adjacent with \mathcal{A} . By Subsection 4.1,

$$g(\mathcal{X}) = g(\mathcal{A}) \cap g(\mathcal{A}')$$

is an inexact subset of $g(\mathcal{A})$. It consists of $a(n, k)$ elements and Lemma 4.3 implies that $g(\mathcal{X})$ is a special subset of $g(\mathcal{A})$. Since \mathcal{A} and $g(\mathcal{A})$ have the same number of special subsets, a subset of \mathcal{A} is special if and only if its image is a special subset of $g(\mathcal{A})$. Then \mathcal{X} is a complement subset of \mathcal{A} if and only if $g(\mathcal{X})$ is a complement subset of $g(\mathcal{A})$. Lemma 4.4 implies that

$$d(P, Q) = d(g(P), g(Q))$$

and we get the claim. \square

Since Φ_S is an isometric embedding of $\Gamma_k(V'/S)$ in $\Gamma_{k'}(V')$, Lemma 5.4 guarantees that $f = \Phi_S \circ g$ is an isometric embedding of $\Gamma_k(V)$ in $\Gamma_{k'}(V')$.

Now suppose that $k < n - k$ and the images of all apartments of $\mathcal{G}_k(V)$ are $J(n, k)$ -subsets of second type. Consider the mapping f^* which sends every $P \in \mathcal{G}_k(V)$ to $f(P)^0$. This is a J -mapping of $\mathcal{G}_k(V)$ to $\mathcal{G}_{n'-k'}(V'^*)$. It transfers every apartment of $\mathcal{G}_k(V)$ to a $J(n, k)$ -subset of first type. Then f^* is an isometric embedding of $\Gamma_k(V)$ in $\Gamma_{n'-k'}(V'^*)$ which means that f is an isometric embedding of $\Gamma_k(V)$ in $\Gamma_{k'}(V')$.

6. STRONG J -MAPPINGS

A J -mapping of $\mathcal{G}_k(V)$ to $\mathcal{G}_{k'}(V')$ is said to be *strong* if there is an apartment of $\mathcal{G}_k(V)$ whose image is an apartment in a parabolic subspace of $\mathcal{G}_{k'}(V')$. The apartments preserving mappings considered in [11, Section 3.4] are strong J -mappings.

If $n = 2k \geq 4$ then every J -mapping of $\mathcal{G}_k(V)$ to $\mathcal{G}_{k'}(V')$ is strong (Theorem 2.1) and, by Theorems 2.2 and 3.1, it is induced by a semilinear embedding of V in U/S or a semilinear embedding of V in $(U/S)^*$, where

$$S \in \mathcal{G}_{k'-k}(V') \quad \text{and} \quad U \in \mathcal{G}_{k'+k}(V').$$

In this section, we show that all strong J -mappings of $\mathcal{G}_k(V)$ to $\mathcal{G}_{k'}(V')$ are induced by semilinear embeddings if $1 < k < n - 1$. For $k = 1, n - 1$ this fails [5].

First we prove the following generalization of [11, Theorem 3.10].

Corollary 6.1. *If $n = n'$ and $1 < k < n - 1$ then every strong J -mapping of $\mathcal{G}_k(V)$ to $\mathcal{G}_k(V')$ is induced by a semilinear embedding of V in V' or a semilinear embedding of V in V'^* and the second possibility can be realized only in the case when $n = 2k$.*

Proof. Let f be a strong J -mapping of $\mathcal{G}_k(V)$ to $\mathcal{G}_k(V')$. By Theorem 3.1, f is an isometric embedding of $\Gamma_k(V)$ in $\Gamma_k(V')$. We suppose that $n = n'$ and $1 < k < n - 1$. Then there is an apartment $\mathcal{A} \subset \mathcal{G}_k(V)$ such that $f(\mathcal{A})$ is an apartment of $\mathcal{G}_k(V')$.

In the case when $n = 2k$, the required statement follows from Theorem 2.2.

If $k < n - k$ then, by Theorem 2.2, we have the following possibilities:

- $f = (l)_k$, where $l : V \rightarrow V'$ is a semilinear $(2k)$ -embedding;
- $f = (s)_k^*$, where $s : V \rightarrow U^*$ is a semilinear $(2k)$ -embedding and U is a $(2k)$ -dimensional subspace of V' .

In the second case, the image of f is contained in $\langle U \rangle_k$. Since $2k < n$, $\langle U \rangle_k$ does not contain any apartment of $\mathcal{G}_k(V')$. So, this case is impossible and $f = (l)_k$. Then l transfers any base of V associated with \mathcal{A} to a base of V' . This implies that l is a semilinear embedding.

Let $k > n - k$. Consider the mapping which transfers every $P \in \mathcal{G}_{n-k}(V^*)$ to $f(P^0)^0$. This is a strong J -mapping of $\mathcal{G}_{n-k}(V^*)$ to $\mathcal{G}_{n-k}(V'^*)$. By the arguments given above, it is induced by a semilinear embedding $s : V^* \rightarrow V'^*$. Denote by g the mapping of the set of all subspaces of V to the set of all subspaces of V' which sends every P to $s(P^0)^0$. By [11, Subsection 3.4.3], it is induced by a semilinear embedding $l : V \rightarrow V'$, i.e.

$$g(P) = \langle l(P) \rangle$$

for every subspace $P \subset V$. Since the restriction of g to $\mathcal{G}_k(V)$ coincides with f , we have $f = (l)_k$. \square

Corollary 6.2. *Suppose that $1 < k < n - 1$ and $n \neq 2k$. Then for every strong J -mapping $f : \mathcal{G}_k(V) \rightarrow \mathcal{G}_{k'}(V')$ one of the following possibilities is realized:*

- (1) *there exist $S \in \mathcal{G}_{k'-k}(V')$ and $U \in \mathcal{G}_{n+k'-k}(V')$ such that $f = \Phi_S^U \circ (l)_k$, where $l : V \rightarrow U/S$ is a semilinear embedding;*
- (2) *there exist $S' \in \mathcal{G}_{n'-k'-k}(V'^*)$ and $U' \in \mathcal{G}_{n+n'-k'-k}(V'^*)$ such that $f = A \circ \Phi_{S'}^{U'} \circ (l)_k$, where $l : V \rightarrow U'/S'$ is a semilinear embedding and A is the annihilator mapping of $\mathcal{G}_{n'-k'}(V'^*)$ to $\mathcal{G}_{k'}(V')$.*

Proof. By Theorem 3.1, f is an isometric embedding of $\Gamma_k(V)$ in $\Gamma_{k'}(V')$. Suppose that $k < n - k$. Theorem 2.2 states that one of the following possibilities is realized:

- $f = \Phi_S \circ (l)_k$, where $S \in \mathcal{G}_{k'-k}(V')$ and $l : V \rightarrow V'/S$ is semilinear $(2k)$ -embedding;
- $f = \Phi^U \circ (s)_k^*$, where $U \in \mathcal{G}_{k'+k}(V')$ and $s : V \rightarrow U^*$ is a semilinear $(2k)$ -embedding.

As in Corollary 6.1, we establish that l and s both are semilinear embeddings.

We get a mapping of type (1) in the first case.

In the second case, the image of f is contained in $[T, U]_{k'}$, where $T \in \mathcal{G}_{k+k'-n}(V')$ is the annihilator of $s(V)$ in U . Consider the mapping f^* sending every $P \in \mathcal{G}_k(V)$ to $f(P)^0$. The image of this mapping is contained in $[S', U']_{n'-k'}$ with

$$S' := U^0 \in \mathcal{G}_{n'-k'-k}(V'^*) \text{ and } U' := T^0 \in \mathcal{G}_{n+n'-k'-k}(V'^*).$$

Then $f^* = \Phi_{S'}^{U'} \circ g$, where g is a J -mapping of $\mathcal{G}_k(V)$ to $\mathcal{G}_k(U'/S')$. This J -mapping is strong (since f and f^* are strong J -mappings). The dimension of U'/S' is equal to n and Corollary 6.1 implies that g is induced by a semilinear embedding of V in U'/S' . Thus f is a mapping of type (2).

Now suppose that $k > n - k$. The image of f coincides with the image of the mapping f_* which transfers every $P \in \mathcal{G}_{n-k}(V^*)$ to $f(P)^0$. This image is contained in

$$[N, M]_{k'}, \quad N \in \mathcal{G}_{k'-n+k}(V'), \quad M \in \mathcal{G}_{k'+k}(V')$$

$(f_*$ is a mapping of type (1)) or it is a subset of

$$[S, U]_{k'}, \quad S \in \mathcal{G}_{k'-k}(V'), \quad U \in \mathcal{G}_{k'+n-k}(V')$$

$(f_*$ is a mapping of type (2)).

In the second case, $f = \Phi_S^U \circ g$, where g is a strong J -mapping of $\mathcal{G}_k(V)$ to $\mathcal{G}_k(U/S)$. Since U/S is n -dimensional, Corollary 6.1 implies that g is induced by a semilinear embedding of V in U/S and f is a mapping of type (1).

Suppose that the image of f is contained in $[N, M]_{k'}$. As above, we consider the mapping f^* which sends every $P \in \mathcal{G}_k(V)$ to $f(P)^0$. Its image is a subset of $[S', U']_{n'-k'}$ with

$$S' := M^0 \in \mathcal{G}_{n'-k'-k}(V'^*) \text{ and } U' := N^0 \in \mathcal{G}_{n+n'-k'-k}(V'^*).$$

Then $f^* = \Phi_{S'}^{U'} \circ g$, where g is a strong J -mapping of $\mathcal{G}_k(V)$ to $\mathcal{G}_k(U'/S')$. The standard arguments show that f is a mapping of type (2). \square

REFERENCES

- [1] Blunck A., Havlicek H., *On bijections that preserve complementarity of subspaces*, Discrete Math. 301(2005), 46–56.
- [2] Chow W.L., *On the geometry of algebraic homogeneous spaces*, Ann. of Math. 50(1949), 32–67.
- [3] Havlicek H., *On Isomorphisms of Grassmann Spaces*, Mitt. Math. Ges. Hamburg. 14 (1995), 117–120.
- [4] Havlicek H., *Chow's Theorem for Linear Spaces*, Discrete Math. 208/209 (1999), 319–324.
- [5] Huang W.-l., Kreuzer A., *Basis preserving maps of linear spaces*, Arch. Math. (Basel) 64(1995), 530–533.
- [6] Huang W.-l., *Adjacency preserving transformations of Grassmann spaces*, Abh. Math. Sem. Univ. Hamburg 68(1998), 65–77.
- [7] Lim M. H., *Surjections on Grassmannians preserving pairs of elements with bounded distance*, Linear Algebra Appl. 432(2010), 1703–1707.
- [8] Kreuzer A., *Projective embeddings of projective spaces*, Bull. Belg. Math. Soc. Simon Stevin 5(1998), 363–372.
- [9] Kreuzer A., *On isomorphisms of Grassmann spaces*, Aequationes Math. 56(1998), 243–250.

- [10] Pankov M., *Chows theorem and projective polarities*, Geom. Dedicata 107(2004), 17–24.
- [11] Pankov M., *Grassmannians of classical buildings*, Algebra and Discrete Math. Series 2, World Scientific, 2010.
- [12] Pankov M., *Isometric embeddings of Johnson graphs in Grassmann graphs*, J. Algebraic Combin. 33(2011), 555–570.
- [13] Pankov M., *Embeddings of Grassmann graphs*, Linear Algebra Appl. (in press).

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES, UNIVERSITY OF WARMIA AND MAZURY,
SŁONECZNA 54, 10-710 OLSZTYN, POLAND

E-mail address: pankov@matman.uwm.edu.pl