Martin Kleinsteuber: Computer Vision

Kapitel 3 – Epipolargeometrie

3. Der 8-Punkt-Algorithmus

Motivation

- Euklidische Bewegung nicht bekannt
- Korrespondenzen von Merkmalspunkten bekannt
- Wie schätzt man die essentielle Matrix?

8-Punkt-Algorithmus zur Schätzung der Essentiellen Matrix Motivation / Voraussetzungen

- Gegeben: n Korrespondenzpunktpaare $(\mathbf{x}_1^j, \mathbf{x}_2^j)$
- Idealerweise erfüllen alle KP die Epipolargleichung

$$\mathbf{x}_2^j \,^{\top} E \mathbf{x}_1^j = 0$$

- \blacksquare Ziel: Berechne die essentielle Matrix E aus den geschätzten KP $E \in \mathbb{R}^{3 \times 3}$, somit 9 Unbekannte
- Skalierungsinvarianz: Wenn E Lösung ist, dann auch $\lambda E, \quad \lambda \in \mathbb{R}$
- Benötige 8 unabhängige Gleichungen

Vektorisierte Epipolargleichung

■ Bislang: $\mathbf{x}_2^j \top E \mathbf{x}_1^j = 0$

Für ein ideales Korrespondenzpunktpaar $(\mathbf{x}_1^j, \mathbf{x}_2^j)$ gilt somit

$$\mathbf{a}^{j} \mathsf{T} \mathbf{E}^s = 0$$

$$E = egin{bmatrix} e_{11} & e_{12} & e_{13} \ e_{21} & e_{22} & e_{23} \ e_{31} & e_{32} & e_{33} \end{bmatrix} \quad egin{bmatrix} \mathbf{ergibt} & \mathbf{E}^s = egin{bmatrix} e_{11} \ e_{21} \ e_{12} \ e_{22} \ e_{32} \ e_{13} \ e_{23} \end{bmatrix}$$

Vektorisieren ("stacking")

 e_{33}

Gleichungssystem zur Bestimmung von E

- homogene lineare Gleichungssystem $A\mathbf{E}^s=0$, mit $A:=\begin{bmatrix}\mathbf{a}^{1\;\top}\\\mathbf{a}^{2\;\top}\end{bmatrix}\in\mathbb{R}^{n\times 9}$ Für generisch verteilte ideale KP gilt $\lim(\ker(A))=1$ und somit $\operatorname{rk}(A)=8$ Aus n Korrespondenzpunktpaaren ergibt sich das
- Für generisch verteilte ideale KP gilt
- Durch Diskretisierungsfehler gilt in der Realität

$$\operatorname{rk}(A) = 9$$

• Für n > 8 hat das homogene LGS keine nicht-triviale Lösung

Exkurs: Lineare Algebra

Homogene Gleichungssysteme

Idee: Statt $A\mathbf{x}=0$ wird Minimierungsproblem gelöst $\min_{\mathbf{x}} \|A\mathbf{x}\|_2^2$

 Da Lösungen skalierungsinvariant sind, kann die Suche beschränkt werden auf

$$\mathbf{x} : \|\mathbf{x}\|_2 = 1$$

• Also finde \mathbf{x} mit $\|\mathbf{x}\|_2 = 1$, welches $\|A\mathbf{x}\|_2^2$ minimiert.

Exkurs: Lineare Algebra

Lösung des Minimierungsproblems mittels SVD

• Singulärwertzerlegung $A = U\Sigma V^{\top}$

$$=\mathbf{x}^ op Vegin{bmatrix} \sigma_1^2 & & & & \ & \sigma_2^2 & & & \ & & \ddots & & \ & & \sigma_n^2 \end{bmatrix} V^ op \mathbf{x}$$

$$\mathbf{v}_n = \arg\min_{\|\mathbf{x}\|_2 = 1} \|A\mathbf{x}\|_2^2$$

Bisherige Herleitung

■ Bilde Matrix A aus $n \ge 8$ generisch gelegenen Korrespondenzpunktpaaren

• Löse Minimierungsproblem $\mathbf{G}^s = \arg\min_{\|\mathbf{E}^s\|_2 = 1} \|A\mathbf{E}^s\|_2^2$:

Singulärwertzerlegung $A = U_A \Sigma_A V_A^{\top}$ liefert die Lösung

$$\mathbf{G}^s = \mathbf{v}_9$$
 (9. Spalte von V_A)

• Umsortieren der Einträge von \mathbf{G}^s führt zu $G \in \mathbb{R}^{3 \times 3}$

Von der Lösung des Minimierungsproblems zur Essentiellen Matrix

• *G* ist in der Regel keine essentielle Matrix

$$G = U_G \Sigma_G V_G^{\top} \qquad \qquad \Sigma_G = \begin{bmatrix} \sigma_1 & & \\ & \sigma_2 & \\ & & \sigma_3 \end{bmatrix}$$

■ Finde die "nächste" essentielle Matrix zu G

$$E = \arg\min_{E \in \mathcal{E}} ||E - G||_F^2$$

Projektion auf den Raum der essentiellen Matrizen \mathcal{E}

Projektion auf die nächste Essentielle Matrix

$$\bullet E = \arg\min_{E \in \mathcal{E}} ||E - G||_F^2$$

$$\bullet E = U_G \begin{bmatrix} \sigma & & \\ & \sigma & \\ & & 0 \end{bmatrix} V_G^{\top}$$

 E kann nur bis auf Skalierung geschätzt werden

In der Praxis daher üblicherweise

$$E = U_G \begin{bmatrix} 1 & & \\ & 1 & \\ & & 0 \end{bmatrix} V_G^{\top}$$

Zusammenfassung

8-Punkt-Algorithmus

- Lineares Gleichungssystem aus Epipolarbedingungen
- Koeffizientenmatrix aus Kroneckerprodukt der KP-Paare
- Lösung ist der 9. rechtsseitige Singulärvektor
- Projektion auf normierte essentielle Matrizen
 - Singulärwertzerlegung der umsortieren Lösung
 - Zu-Eins-Setzen der ersten beiden Singulärwerte
 - Zu-Null-Setzen des kleinsten Singulärwerts