# Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»



Кафедра теоретической и прикладной информатики

Лабораторная работа № 3 по дисциплине «Компьютерное моделирование»



Факультет: ПМИ

ГРУППА: ПМИ-61

Студенты: Ершов П.К., Мамонова Е.В., Цыденов З.Б.

ПРЕПОДАВАТЕЛЬ: Черникова О. С. Карманов В. С.

Новосибирск

2020

#### 1. Цель работы

Провести имитационное моделирование системы массового обслуживание и научиться оптимизировать ее параметры.

#### 2. Ход работы

1. Создаём первичную модель и настраиваем её.





## Проверяем работоспособность:



#### Изменяем параметры очереди:



#### Проверяем работоспособность:



| Логичес  | ская ошибка в модели:                                                                                                           |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------|--|
| root.sou | urce:                                                                                                                           |  |
|          | e смог покинуть этот порт: root.source.out в момент времени 134.773 / дату 1 мар. 2020 г., 2:14:46 (текущее ное время: 135.716) |  |
| Увеличь  | ьте вместимости объектов и/или пропускную способность последующих объектов                                                      |  |

#### Выбираем работоспособные параметры модели:

Модель успешно выполняется при следующих параметрах:





#### 2. Создаём анимацию модели.





## Проверяем работоспособность:









Добавляем ещё одну диаграмму:



Заголовок: Queue lenqth

Цвет: orange 

Значение: queue.statsSize.mean()

## Проверка работоспособности:



## 4. Доработка модели.





## Проверяем работоспособность:



5. Создадим новый тип заявки Inquiry и добавим в него данные диаграммы.



Выполним такие же замены в других элементах системы.

Добавим в sink следующие коды:

time\_obrabotki.add(time()-agent.time\_vxod); agent.col\_vixod=sink.count();
agent.col\_vxod=source.count();ver\_obrabotki.add(agent.col\_vixod/ agent.col\_vxod);

| <b>Ⅲ</b> Свойства   □ |                                                               |  |
|-----------------------|---------------------------------------------------------------|--|
| ⊗ sink - Sink         |                                                               |  |
| Имя:                  | sink 🗹 Отображать имя                                         |  |
| ▼ Действия            |                                                               |  |
| При входе:            | <pre>time_obrabotki.add(time()-agent.time_vxod); agent </pre> |  |

Создадим для элемента delay параметр time\_mean с начальным значением 180 и свяжем параметр с бегунком:



Также добавим бегунок для контроля ёмкости очереди:





Проверка работоспособности:



## 6. Добавим две гистограммы:





## Проверка работоспособности:



#### 3. Выводы

В ходе проведённой работы была построена модель сервера. Анализируя работу построенной модели, можно сделать вывод, что оптимальные параметры не всегда удаётся предугадать. Поэтому, модель должна обладать инструментами контроля параметров.