$\Lambda(1690) \ 3/2^-$

$$I(J^P) = 0(\frac{3}{2}^-)$$
 Status: ***

The measurements of the mass, width, and elasticity published before 1974 are now obsolete and have been omitted. They were last listed in our 1982 edition Physics Letters **111B** 1 (1982).

REAL PART VALUE (MeV) DOCUMENT ID TECN COMMENT 1697+6 1 KAMANO 15 DPWA Multichannel • • • We do not use the following data for averages, fits, limits, etc. • •

1689 ZHANG 13A DPWA Multichannel 1 From the preferred solution A in KAMANO 15.

-2×IMAGINARY PART VALUE (MeV) 65±14 1 KAMANO 15 DPWA Multichannel • • • We do not use the following data for averages, fits, limits, etc. • • • 53 ZHANG 13A DPWA Multichannel 1 From the preferred solution A in KAMANO 15.

Λ(1690) POLE RESIDUES

The normalized residue is the residue divided by $\Gamma_{pole}/2$.

Normalized i MODULUS	residue in N K – PHASE (°)		TECN	COMMENT
• • • We do n	not use the followin	g data for averages, fits, li	mits, etc.	• • •
0.251	3	¹ KAMANO 15	DPWA	Multichannel
$^{ m 1}$ From the p	referred solution A	in KAMANO 15.		
Normalized r	residue in N K –	$\rightarrow \Lambda(1690) \rightarrow \Sigma \pi$		
MODULUS		DOCUMENT ID	TECN	COMMENT
• • • We do n	not use the followin	g data for averages, fits, li	mits, etc.	• • •
0.315	-173	¹ KAMANO 15	DPWA	Multichannel
$^{ m 1}$ From the p	referred solution A	in KAMANO 15.		
Normalized r	residue in $N\overline{K}$ –	$\rightarrow \Lambda(1690) \rightarrow \Lambda \eta$		
MODULUS		, , ,	TECN	COMMENT
• • We do n	not use the followin	g data for averages, fits, li	mits, etc.	• • •
0.00567	81	¹ KAMANO 15	DPWA	Multichannel
¹ From the p	referred solution A	in KAMANO 15.		

Normalized residue in $N\overline{K} \rightarrow \Lambda(1690) \rightarrow \Sigma(1385)\pi$, S-wave							
MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT			
• • • We do i	not use the following	data for averages, fits, l	imits, etc.	• • •			
0.134	168	¹ KAMANO 15	DPWA	Multichannel			
$^{ m 1}$ From the $_{ m I}$	oreferred solution A in	n KAMANO 15.					
Normalized	residue in $N\overline{K} \rightarrow$	$\Lambda(1690) \rightarrow \Sigma(138)$	5)π, <i>D</i> -	wave			
MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT			
• • • We do i	not use the following	data for averages, fits, l	imits, etc.	• • •			
0.319	-22	¹ KAMANO 15	DPWA	Multichannel			

Λ(1690) MASS

 $^{
m 1}$ From the preferred solution A in KAMANO 15.

VALUE (MeV)		DOCUMENT ID		TECN	COMMENT
1685	to 1695 (≈ 1690) OUR EST	IMATE			
1691	± 3	ZHANG	13A	DPWA	Multichannel
1695.7	7±2.6	KOISO	85	DPWA	$K^- p \rightarrow \Sigma \pi$
1690	± 5	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1692	± 5	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1690	± 5	GOPAL	77	DPWA	$\overline{K}N$ multichannel
1690	± 3	HEPP	76 B	DPWA	$K^- N \rightarrow \Sigma \pi$
1689	± 1	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$
• • •	We do not use the following of	data for averages	, fits,	limits, e	tc. • • •
1687	or 1689	^L MARTIN	77	DPWA	$\overline{K}N$ multichannel
1692	±4	CARROLL	76	DPWA	Isospin-0 total σ
1					

¹ The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit. Another D_{03} Λ at 1966 MeV is also suggested by MARTIN 77, but is very uncertain.

Λ(1690) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
50 to 70 (≈ 60) OUR ESTIMATE				
54 ± 5	ZHANG	13A	DPWA	Multichannel
67.2± 5.6	KOISO	85	DPWA	$K^- p \rightarrow \Sigma \pi$
61 ± 5	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
64 ± 10	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
60 ± 5	GOPAL	77	DPWA	$\overline{K}N$ multichannel
82 ± 8	HEPP	76 B	DPWA	$K^- N \rightarrow \Sigma \pi$
60 ± 4	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$
• • • We do not use the following of	data for averages	s, fits,	limits, et	tc. • • •
62 or 62	¹ MARTIN	77	DPWA	$\overline{K}N$ multichannel
38	CARROLL	76	DPWA	Isospin-0 total σ
1				

 $^{^1}$ The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit. Another D_{03} \varLambda at 1966 MeV is also suggested by MARTIN 77, but is very uncertain.

Λ(1690) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	NK	20–30 %
Γ_2	$\Sigma \pi$	20–40 %
Γ_3	$\Lambda\pi\pi$	\sim 25 $\%$
Γ_4	$\Sigma \pi \pi$	\sim 20 %
Γ_5	$\Lambda\eta$	
Γ_6	$\Sigma(1385)\pi$, \emph{S} -wave	
Γ_7	$\Sigma(1385)\pi$, $ extit{D} ext{-wave}$	
Γ ₈	$N\overline{K}^*(892)$, $S=1/2$, D -wave	
Γ ₉	$N\overline{K}^*(892)$, $S=3/2$, S -wave	
Γ ₁₀	$N\overline{K}^*(892)$, $S=3/2$, <i>D</i> -wave	

1/(1690) BRANCHING RATIOS

The sum of all the quoted branching ratios is more than 1.0. The two-body ratios are from partial-wave analyses, and thus probably are more reliable than the three-body ratios, which are determined from bumps in cross sections. Of the latter, the $\Sigma\pi\pi$ bump looks more significant. (The error given for the $\Lambda\pi\pi$ ratio looks unreasonably small.) Hardly any of the $\Sigma\pi\pi$ decay can be via Σ (1385), for then seven times as much $\Lambda\pi\pi$ decay would be required. See "Sign conventions for resonance couplings" in the Note on Λ and Σ Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$				Γ ₁ /Γ		
VALUE	DOCUMENT ID		TECN	COMMENT		
0.2 to 0.3 OUR ESTIMATE						
0.25 ± 0.04	ZHANG	13A	DPWA	Multichannel		
0.23 ± 0.03	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$		
0.22 ± 0.03	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$		
• • • We do not use the following of	data for averages	s, fits,	limits, e	tc. • • •		
0.239	¹ KAMANO	15	DPWA	Multichannel		
0.24 ± 0.03				See GOPAL 80		
0.28 or 0.26	² MARTIN	77	DPWA	$\overline{K}N$ multichannel		
1 From the preferred solution A in KAMANO 15. 2 The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit. Another D_{03} Λ at 1966 MeV is also suggested by MARTIN 77, but is very uncertain.						
=(= \)=				- /-		

$\Gamma(\Sigma \pi)/\Gamma_{\text{total}}$				l ₂ /l
VALUE	DOCUMENT ID	TECN	COMMENT	
ullet $ullet$ We do not use the following	data for averages, fit	s, limits,	etc. • • •	
0.387	¹ KAMANO 15	DPWA	Multichannel	
$^{ m 1}$ From the preferred solution A i	n KAMANO 15.			

$\Gamma(\Lambda\eta)/\Gamma_{\text{total}}$					Γ_5/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •	
not seen	$^{ m 1}$ KAMANO	15	DPWA	Multichanne	
$^{\mathrm{1}}$ From the preferred solution A in	n KAMANO 15.				
$\Gamma(\Sigma(1385)\pi$, <i>S</i> -wave $)/\Gamma_{total}$					Γ_6/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •	
0.062	¹ KAMANO	15	DPWA	Multichanne	
$^{ m 1}$ From the preferred solution A ir	n KAMANO 15.				
$\Gamma(\Sigma(1385)\pi, D$ -wave $)/\Gamma_{total}$					Γ_7/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	- // -
• • We do not use the following					
_	_			Multichannel	
1 From the preferred solution A in	_	10	DI WI	Waterename	
From the preferred solution A in	i KAWANO 15.				
$\Gamma(N\overline{K}^*(892), S=1/2, D-wave)$	/Γ _{total}				Γ_8/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •	
not seen	$^{ m 1}$ KAMANO	15	DPWA	Multichanne	
$^{ m 1}$ From the preferred solution A ir	n KAMANO 15.				
$\Gamma(N\overline{K}^*(892), S=3/2, S-wave)$	/Γ .				٦/و٦
VALUE (092), 3—3/2, 3-Wave)	/ ' total <u>DOCUMENT ID</u>		TECN	COMMENT	19/1
• • • We do not use the following •	•				
0.003	KAMANO	15		Multichanne	
F(N\(\overline{V}\)*(902) \(S=2/2\) \(D\)\(\overline{V}\)*	٠/٦				Г., /Г
$\Gamma(N\overline{K}^*(892), S=3/2, D-wave)$			TECN	COMMENT	Γ_{10}/Γ
• • • We do not use the following	DOCUMENT ID				
_	data for averages ¹ KAMANO				
		15	DPWA	Multichanne	
$^{ m 1}$ From the preferred solution A in	n KAMANO 15.				
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to \Lambda(16)$	00) → ∇æ			/1	Γ ₁ Γ ₂) ^{1/2} /Γ
VALUE (1 i i f) / i total iii / i / i → /i(10	DOCUMENT ID		TECN	COMMENT	1'2) /'
-0.27 ± 0.03	ZHANG			Multichannel	
-0.34 ± 0.02	KOISO	85		$K^-p \rightarrow \Sigma$	
-0.25 ± 0.03	GOPAL	77		$\overline{K}N$ multicha	
-0.29 ± 0.03	HEPP	76 B	DPWA	$K^- N \rightarrow \Sigma$	π
-0.28 ± 0.03	LONDON	75		$K^-p \rightarrow \Sigma^0$	
-0.28 ± 0.02	KANE	74		$K^-p \rightarrow \Sigma$	
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •	
-0.30 or -0.28	$^{ m 1}$ MARTIN	77	DPWA	$\overline{K}N$ multicha	annel
1 The two MARTIN 77 values a Another D_{03} Λ at 1966 MeV is					
HTTP://PDG.LBL.GOV	Page 4	,		ed: 5/30/20	

(Γ _i Γ _f) ^{1/2} /Ι	_ total	in $N\overline{K} \rightarrow \Lambda(16)$	90) → Λππ DOCUMENT ID		TECN	COMMENT	_ (Γ ₁ Γ ₃) ^{1/2} /Γ
• • • We de	o not	use the following					
0.25 ± 0.02			¹ BARTLEY	68	HDBC	$K^-p \rightarrow$	$\Lambda\pi\pi$
¹ BARTLI VOST 7		B uses only cross-	section data. ¯	Γhe er	nhanceme	ent is not	seen by PRE-
$(\Gamma_i\Gamma_f)^{\frac{1}{2}}/\Gamma_{VALUE}$	- total	in $N\overline{K} \rightarrow \Lambda(16)$	$(90) \rightarrow \Sigma \pi \pi$ DOCUMENT ID		TECN	COMMENT	_ (Γ ₁ Γ ₄) ^½ /Γ
0.21			ARMENTERO				
$(\Gamma_i\Gamma_f)^{\frac{1}{2}}/\Gamma$ $VALUE$ 0.00 ± 0.03	total	in $N\overline{K} \rightarrow \Lambda(16)$	90) → Λη <u>DOCUMENT ID</u> BAXTER			$\frac{\textit{COMMENT}}{\textit{K}^{-}\textit{p}} \rightarrow$	
(Γ _ί Γ _f) ^{1/2} /Ι <u>VALUE</u>	_ total	in $N\overline{K} \rightarrow \Lambda(16)$	90) → Σ(138 DOCUMENT ID	β5)π,	<i>S</i> -wave	·	$(\Gamma_1\Gamma_6)^{\frac{1}{2}}/\Gamma$
-0.28 ± 0.06	6		ZHANG	_		Multicha	
$+0.27\pm0.04$	4		PREVOST	74	DPWA	$K^-N \rightarrow$	$\Sigma(1385)\pi$
		Λ(1	.690) REFERI	ENCE	S		
KAMANO ZHANG KOISO PDG GOPAL ALSTON Also GOPAL MARTIN Also Also CARROLL HEPP LONDON KANE PREVOST BAXTER PREVOST ARMENTEROS BARTLEY	15 13A 85 82 80 78 77 77 76 76B 75 74 74 73 71 668C 68	PR C92 025205 PR C88 035205 NP A433 619 PL 111B 1 Toronto Conf. 159 PR D18 182 PRL 38 1007 NP B119 362 NP B127 349 NP B126 266 NP B126 285 PRL 37 806 PL 65B 487 NP B85 289 LBL-2452 NP B69 246 NP B67 125 Amsterdam Conf. NP B8 216 PRL 21 1111	H. Kamano et H. Zhang et a M. Roos et a G.P. Gopal M. Alston-Gar G.P. Gopal et B.R. Martin, B.R. Martin, B.R. Martin, B.R. Martin, A.S. Carroll e V. Hepp et a G.W. London D.F. Kane J. Prevost et D.F. Baxter e J. Prevost R. Armenteros J.H. Bartley et al G.W. London D.F. Kane J. Prevost et D.F. Baxter e J. Prevost R. Armenteros J.H. Bartley et al M. Kanton Bartley et al G.W. London D.F. Kane J. Prevost et D.F. Baxter e J. Prevost R. Armenteros J.H. Bartley et al G.W. London Bartley e	al. l. l. njost et njost et al. M.K. Pi M.K. Pi M.K. Pi t al. l. et al. t al. s et al.	t al. idcock, R.C idcock idcock	(TG (HELS, (LE (LE G. Moorhouse (CERN, HE (BNL, CE (SACL, G	ANL, OSAK) (KSU) OKY, MASA) CIT, CERN) (RHEL) IJP BL, MTHO+) IJP BL, MTHO+) IJP LOIC, RHEL) IJP (LOUC) (LOUC) IJP (BNL) I EIDH, MPIM) IJP RN, EPOL+) (LBL) IJP CERN, HEID) (OXF) IJP HEID, SACL) HEID, SACL) FSU, BRAN) I