

SEQUENCE LISTING

<110> Saris, Christiaan M.
Giles, Jennifer
Mu, Sharon X.
Xia, Min
Bass, Michael B.
Craveiro, Roger

<120> Interleukin-1 Receptor Antagonist-Related Molecules and
Uses Thereof

<130> 00-1213

<140>
<141>

<150> 60/170,191
<151> 1999-12-10

<150> 60/188,053
<151> 2000-03-09

<150> 60/194,521
<151> 2000-04-04

<150> 60/195,910
<151> 2000-04-10

<160> 32

<170> PatentIn Ver. 2.0

<210> 1
<211> 1020
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (64)..(522)

<400> 1
cagggatcag ggttccagga actcaggatc tgcagtgagg accagacacc actgattgca 60

gga atg tgt tcc ctc ccc atg gca aga tac tac ata att aaa tat gca 108
Met Cys Ser Leu Pro Met Ala Arg Tyr Tyr Ile Ile Lys Tyr Ala
1 5 10 15

gac cag aag gct cta tac aca aga gat ggc cag ctg ctg gtg gga gat 156
Asp Gln Lys Ala Leu Tyr Thr Arg Asp Gly Gln Leu Leu Val Gly Asp
20 25 30

cct gtt gca gac aac tgc tgt gca gag aag atc tgc aca ctt cct aac 204
Pro Val Ala Asp Asn Cys Cys Ala Glu Lys Ile Cys Thr Leu Pro Asn
35 40 45

aga ggc ttg gac cgc acc aag gtc ccc att ttc ctg ggg atc cag gga	252		
Arg Gly Leu Asp Arg Thr Lys Val Pro Ile Phe Leu Gly Ile Gln Gly			
50	55	60	
ggg agc cgc tgc ctg gca tgt gtg gag aca gaa gag ggg cct tcc cta	300		
Gly Ser Arg Cys Leu Ala Cys Val Glu Thr Glu Gly Pro Ser Leu			
65	70	75	
cag ctg gag gat gtg aac att gag gaa ctg tac aaa ggt ggt gaa gag	348		
Gln Leu Glu Asp Val Asn Ile Glu Glu Leu Tyr Lys Gly Gly Glu Glu			
80	85	90	95
gcc aca cgc ttc acc ttc cag agc agc tca ggc tcc gcc ttc agg	396		
Ala Thr Arg Phe Thr Phe Gln Ser Ser Gly Ser Ala Phe Arg			
100	105	110	
ctt gag gct gct gcc tgg cct ggc tgg ttc ctg tgt ggc ccg gca gag	444		
Leu Glu Ala Ala Ala Trp Pro Gly Trp Phe Leu Cys Gly Pro Ala Glu			
115	120	125	
ccc cag cag cca gta cag ctc acc aag gag agt gag ccc tca gcc cgt	492		
Pro Gln Gln Pro Val Gln Leu Thr Lys Glu Ser Glu Pro Ser Ala Arg			
130	135	140	
acc aag ttt tac ttt gaa cag agc tgg tag ggagacagga aactgcgttt	542		
Thr Lys Phe Tyr Phe Glu Gln Ser Trp			
145	150		
tagccttgtc cccccaaacc aagctcatcc tgctcagggt ctatggtagg cagaataatg	602		
tcccccgaaa tatgtccaca tcctaattccc aagatctgtg catatgttac catacatgtc	662		
caaagaggtt ttgcaaattgt gattatgtta aggatcttga aatgaggaga caatcctggg	722		
ttatccttgt gggctcagtt taatcacaag aaggaggcag gaagggagag tcagagagag	782		
aatggaagat accatgcttc taatttgaa gatggagtga ggggccttga gccaacaaat	842		
gcaggtgttt ttagaagggtg gaaaagccaa gggAACGGAT tctcctctag agtctccgga	902		
aggaacacag ctcttgacac atggatttca gctcagtgac acccatttca gacttctgac	962		
ctccacaact ataaaataat aaacttgtgt tattgtaaac ctctaaaaaa aaaaaaaaa	1020		
<210> 2			
<211> 152			
<212> PRT			
<213> Homo sapiens			
<400> 2			
Met Cys Ser Leu Pro Met Ala Arg Tyr Tyr Ile Ile Lys Tyr Ala Asp			
1	5	10	15
Gln Lys Ala Leu Tyr Thr Arg Asp Gly Gln Leu Leu Val Gly Asp Pro			
20	25	30	

Val Ala Asp Asn Cys Cys Ala Glu Lys Ile Cys Thr Leu Pro Asn Arg
 35 40 45

 Gly Leu Asp Arg Thr Lys Val Pro Ile Phe Leu Gly Ile Gln Gly Gly
 50 55 60

 Ser Arg Cys Leu Ala Cys Val Glu Thr Glu Glu Gly Pro Ser Leu Gln
 65 70 75 80

 Leu Glu Asp Val Asn Ile Glu Glu Leu Tyr Lys Gly Gly Glu Glu Ala
 85 90 95

 Thr Arg Phe Thr Phe Gln Ser Ser Ser Gly Ser Ala Phe Arg Leu
 100 105 110

 Glu Ala Ala Ala Trp Pro Gly Trp Phe Leu Cys Gly Pro Ala Glu Pro
 115 120 125

 Gln Gln Pro Val Gln Leu Thr Lys Glu Ser Glu Pro Ser Ala Arg Thr
 130 135 140

 Lys Phe Tyr Phe Glu Gln Ser Trp
 145 150

<210> 3
 <211> 1020
 <212> DNA
 <213> Homo sapiens

<220>
 <221> CDS
 <222> (64)..(522)

<400> 3
 cagggatcag ggttccagga actcaggatc tgcagtgagg accagacacc actgattgca 60

gga atg tgt tcc ctc ccc atg gca aga tac tac ata att aaa tat gca 108
 Met Cys Ser Leu Pro Met Ala Arg Tyr Tyr Ile Ile Lys Tyr Ala
 1 5 10 15

gac cag aag gct cta tac aca aga gat ggc cag ctg ctg gtg gga gat 156
 Asp Gln Lys Ala Leu Tyr Thr Arg Asp Gly Gln Leu Leu Val Gly Asp
 20 25 30

cct gtt gca gac aac tgc tgt gca gag aag atc tgc ata ctt cct aac 204
 Pro Val Ala Asp Asn Cys Cys Ala Glu Lys Ile Cys Ile Leu Pro Asn
 35 40 45

aga ggc ttg gcc cgc acc aag gtc ccc att ttc ctg ggg atc cag gga 252
 Arg Gly Leu Ala Arg Thr Lys Val Pro Ile Phe Leu Gly Ile Gln Gly
 50 55 60

ggg agc cgc tgc ctg gca tgt gtg gag aca gaa gag ggg cct tcc cta 300
 Gly Ser Arg Cys Leu Ala Cys Val Glu Thr Glu Glu Gly Pro Ser Leu
 65 70 75

cag ctg gag gat gtg aac att gag gaa ctg tac aaa ggt ggt gaa gag 348
 Gln Leu Glu Asp Val Asn Ile Glu Glu Leu Tyr Lys Gly Gly Glu Glu
 80 85 90 95

 gcc aca cgc ttc acc ttc ttc cag agc agc tca ggc tcc gcc ttc agg 396
 Ala Thr Arg Phe Thr Phe Gln Ser Ser Ser Gly Ser Ala Phe Arg
 100 105 110

 ctt gag gct gct gcc tgg cct ggc tgg ttc ctg tgt ggc ccg gca gag 444
 Leu Glu Ala Ala Trp Pro Gly Trp Phe Leu Cys Gly Pro Ala Glu
 115 120 125

 ccc cag cag cca gta cag ctc acc aag gag agt gag ccc tca gcc cgt 492
 Pro Gln Gln Pro Val Gln Leu Thr Lys Glu Ser Glu Pro Ser Ala Arg
 130 135 140

 acc aag ttt tac ttt gaa cag agc tgg tag ggagacagga aactgcgttt 542
 Thr Lys Phe Tyr Phe Glu Gln Ser Trp
 145 150

 tagccttgtg cccccaaacc aagctcatcc tgctcagggt ctatggtagg cagaataatg 602
 tcccccgaaa tatgtccaca tcctaattccc aagatctgtg catatgttac catacatgtc 662
 caaagagggtt ttgcaaatgt gattatgtta aggatcttga aatgaggaga caatcctggg 722
 ttatccttgtt gggctcagtt taatcacaag aaggaggcag gaagggagag tcagagagag 782
 aatggaagat accatgcttc taatttgaa gatggagtga ggggccttga gccaacaaat 842
 gcaggtgttt tttagagggtg gaaaagccaa gggAACGGAT tctcctctag agtctccgga 902
 aggaacacag ctcttgacac atggatttca gctcagtgac acccatttca gacttctgac 962
 ctccacaaact ataaaataat aaacttgtgt tattgtaaac ctctaaaaaa aaaaaaaaaa 1020

 <210> 4
 <211> 152
 <212> PRT
 <213> Homo sapiens

 <400> 4
 Met Cys Ser Leu Pro Met Ala Arg Tyr Tyr Ile Ile Lys Tyr Ala Asp
 1 5 10 15

 Gln Lys Ala Leu Tyr Thr Arg Asp Gly Gln Leu Leu Val Gly Asp Pro
 20 25 30

 Val Ala Asp Asn Cys Cys Ala Glu Lys Ile Cys Ile Leu Pro Asn Arg
 35 40 45

 Gly Leu Ala Arg Thr Lys Val Pro Ile Phe Leu Gly Ile Gln Gly Gly
 50 55 60

 Ser Arg Cys Leu Ala Cys Val Glu Thr Glu Glu Gly Pro Ser Leu Gln
 65 70 75 80

Leu Glu Asp Val Asn Ile Glu Glu Leu Tyr Lys Gly Gly Glu Glu Ala
85 90 95

Thr Arg Phe Thr Phe Phe Gln Ser Ser Ser Gly Ser Ala Phe Arg Leu
100 105 110

Glu Ala Ala Ala Trp Pro Gly Trp Phe Leu Cys Gly Pro Ala Glu Pro
115 120 125

Gln Gln Pro Val Gln Leu Thr Lys Glu Ser Glu Pro Ser Ala Arg Thr
130 135 140

Lys Phe Tyr Phe Glu Gln Ser Trp
145 150

<210> 5
<211> 744
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (58)..(573)

<400> 5
gctcccgcca ggagaaagga acattctgag gggagtctac accctgtgga gctcaag 57
atg gtc ctg agt ggg gcg ctg tgc cgt gag gac cag aca cca ctg 105
Met Val Leu Ser Gly Ala Leu Cys Phe Arg Glu Asp Gln Thr Pro Leu
1 5 10 15

att gca gga atg tgt tcc ctc ccc atg gca aga tac tac ata att aaa 153
Ile Ala Gly Met Cys Ser Leu Pro Met Ala Arg Tyr Tyr Ile Ile Lys
20 25 30

tat gca gac cag aag gct cta tac aca aga gat ggc cag ctg ctg gtg 201
Tyr Ala Asp Gln Lys Ala Leu Tyr Thr Arg Asp Gly Gln Leu Leu Val
35 40 45

gga gat cct gtt gca gac aac tgc tgt gca gag aag atc tgc ata ctt 249
Gly Asp Pro Val Ala Asp Asn Cys Cys Ala Glu Lys Ile Cys Ile Leu
50 55 60

cct aac aga ggc ttg gcc cgcc acc aag gtc ccc att ttc ctg ggg atc 297
Pro Asn Arg Gly Leu Ala Arg Thr Lys Val Pro Ile Phe Leu Gly Ile
65 70 75 80

cag gga ggg agc cgc tgc ctg gca tgt gtg gag aca gaa gag ggg cct 345
Gln Gly Gly Ser Arg Cys Leu Ala Cys Val Glu Thr Glu Glu Gly Pro
85 90 95

tcc cta cag ctg gag gat gtg aac att gag gaa ctg tac aaa ggt ggt 393
Ser Leu Gln Leu Glu Asp Val Asn Ile Glu Glu Leu Tyr Lys Gly Gly
100 105 110

```

gaa gag gcc aca cgc ttc acc ttc ttc cag agc agc tca ggc tcc gcc 441
Glu Glu Ala Thr Arg Phe Thr Phe Phe Gln Ser Ser Ser Gly Ser Ala
           115          120          125

ttc agg ctt gag gct gct gcc tgg cct ggc tgg ttc ctg tgt ggc ccg 489
Phe Arg Leu Glu Ala Ala Trp Pro Gly Trp Phe Leu Cys Gly Pro
           130          135          140

gca gag ccc cag cag cca gta cag ctc acc aag gag agt gag ccc tca 537
Ala Glu Pro Gln Gln Pro Val Gln Leu Thr Lys Glu Ser Glu Pro Ser
           145          150          155          160

gcc cgt acc aag ttt tac ttt gaa cag agc tgg tag ggagacagga 583
Ala Arg Thr Lys Phe Tyr Phe Glu Gln Ser Trp
           165          170

aactgcgttt tagccttgtc ccccaaacc aagctcatcc tgctcagggt ctatggtagg 643
cagaataatg tcccccgaaa tatgtccaca tcctaattccc aagatctgtg catatgttac 703
catacatgtc caaaagatgtt ttgcaaatgt qattatgtta a 744

```

```

<210> 6
<211> 171
<212> PRT
<213> Homo sapiens

<400> 6
Met Val Leu Ser Gly Ala Leu Cys Phe Arg Glu Asp Gln Thr Pro Leu
1 5 10 15

Ile Ala Gly Met Cys Ser Leu Pro Met Ala Arg Tyr Tyr Ile Ile Lys
20 25 30

Tyr Ala Asp Gln Lys Ala Leu Tyr Thr Arg Asp Gly Gln Leu Leu Val
35 40 45

Gly Asp Pro Val Ala Asp Asn Cys Cys Ala Glu Lys Ile Cys Ile Leu
50 55 60

Pro Asn Arg Gly Leu Ala Arg Thr Lys Val Pro Ile Phe Leu Gly Ile
65 70 75 80

Gln Gly Gly Ser Arg Cys Leu Ala Cys Val Glu Thr Glu Glu Gly Pro
85 90 95

Ser Leu Gln Leu Glu Asp Val Asn Ile Glu Glu Leu Tyr Lys Gly Gly
100 105 110

Glu Glu Ala Thr Arg Phe Thr Phe Phe Gln Ser Ser Ser Gly Ser Ala
115 120 125

Phe Arg Leu Glu Ala Ala Trp Pro Gly Trp Phe Leu Cys Gly Pro
130 135 140

Ala Glu Pro Gln Gln Pro Val Gln Leu Thr Lys Glu Ser Glu Pro Ser

```

145	150	155	160
Ala Arg Thr Lys Phe Tyr Phe Glu Gln Ser Trp			
165	170		
<210> 7			
<211> 269			
<212> PRT			
<213> Homo sapiens			
<400> 7			
Met Ala Glu Val Pro Lys Leu Ala Ser Glu Met Met Ala Tyr Tyr Ser			
1	5	10	15
Gly Asn Glu Asp Asp Leu Phe Phe Glu Ala Asp Gly Pro Lys Gln Met			
20	25	30	
Lys Cys Ser Phe Gln Asp Leu Asp Leu Cys Pro Leu Asp Gly Gly Ile			
35	40	45	
Gln Leu Arg Ile Ser Asp His His Tyr Ser Lys Gly Phe Arg Gln Ala			
50	55	60	
Ala Ser Val Val Val Ala Met Asp Lys Leu Arg Lys Met Leu Val Pro			
65	70	75	80
Cys Pro Gln Thr Phe Gln Glu Asn Asp Leu Ser Thr Phe Phe Pro Phe			
85	90	95	
Ile Phe Glu Glu Pro Ile Phe Phe Asp Thr Trp Asp Asn Glu Ala			
100	105	110	
Tyr Val His Asp Ala Pro Val Arg Ser Leu Asn Cys Thr Leu Arg Asp			
115	120	125	
Ser Gln Gln Lys Ser Leu Val Met Ser Gly Pro Tyr Glu Leu Lys Ala			
130	135	140	
Leu His Leu Gln Gly Gln Asp Met Glu Gln Gln Val Val Phe Ser Met			
145	150	155	160
Ser Phe Val Gln Gly Glu Glu Ser Asn Asp Lys Ile Pro Val Ala Leu			
165	170	175	
Gly Leu Lys Glu Lys Asn Leu Tyr Leu Ser Cys Val Leu Lys Asp Asp			
180	185	190	
Lys Pro Thr Leu Gln Leu Glu Ser Val Asp Pro Lys Asn Tyr Pro Lys			
195	200	205	
Lys Lys Met Glu Lys Arg Phe Val Phe Asn Lys Ile Glu Ile Asn Asn			
210	215	220	
Lys Leu Glu Phe Glu Ser Ala Gln Phe Pro Asn Trp Tyr Ile Ser Thr			
225	230	235	240

Ser Gln Ala Glu Asn Met Pro Val Phe Leu Gly Gly Thr Lys Gly Gly
245 250 255

Gln Asp Ile Thr Asp Phe Thr Met Gln Phe Val Ser Ser
260 265

<210> 8
<211> 153
<212> PRT
<213> Homo sapiens

<400> 8
Ala Pro Val Arg Ser Leu Asn Cys Thr Leu Arg Asp Ser Gln Gln Lys
1 5 10 15

Ser Leu Val Met Ser Gly Pro Tyr Glu Leu Lys Ala Leu His Leu Gln
20 25 30

Gly Gln Asp Met Glu Gln Gln Val Val Phe Ser Met Ser Phe Val Gln
35 40 45

Gly Glu Glu Ser Asn Asp Lys Ile Pro Val Ala Leu Gly Leu Lys Glu
50 55 60

Lys Asn Leu Tyr Leu Ser Cys Val Leu Lys Asp Asp Lys Pro Thr Leu
65 70 75 80

Gln Leu Glu Ser Val Asp Pro Lys Asn Tyr Pro Lys Lys Lys Met Glu
85 90 95

Lys Arg Phe Val Phe Asn Lys Ile Glu Ile Asn Asn Lys Leu Glu Phe
100 105 110

Glu Ser Ala Gln Phe Pro Asn Trp Tyr Ile Ser Thr Ser Gln Ala Glu
115 120 125

Asn Met Pro Val Phe Leu Gly Gly Thr Lys Gly Gln Asp Ile Thr
130 135 140

Asp Phe Thr Met Gln Phe Val Ser Ser
145 150

<210> 9
<211> 177
<212> PRT
<213> Homo sapiens

<400> 9
Met Glu Ile Cys Arg Gly Leu Arg Ser His Leu Ile Thr Leu Leu Leu
1 5 10 15

Phe Leu Phe His Ser Glu Thr Ile Cys Arg Pro Ser Gly Arg Lys Ser
20 25 30

Ser Lys Ile Gln Ala Phe Arg Ile Trp Asp Val Asn Gln Lys Thr Phe

35	40	45	
Tyr Leu Arg Asn Asn Gln Leu Val Ala Gly Tyr Leu Gln Gly Pro Asn			
50	55	60	
Val Asn Leu Glu Glu Lys Ile Asp Val Val Pro Ile Glu Pro His Ala			
65	70	80	
Leu Phe Leu Gly Ile His Gly Gly Lys Met Cys Leu Ser Cys Val Lys			
85	90	95	
Ser Gly Asp Glu Thr Arg Leu Gln Leu Glu Ala Val Asn Ile Thr Asp			
100	105	110	
Leu Ser Glu Asn Arg Lys Gln Asp Lys Arg Phe Ala Phe Ile Arg Ser			
115	120	125	
Asp Ser Gly Pro Thr Thr Ser Phe Glu Ser Ala Ala Cys Pro Gly Trp			
130	135	140	
Phe Leu Cys Thr Ala Met Glu Ala Asp Gln Pro Val Ser Leu Thr Asn			
145	150	155	160
Met Pro Asp Glu Gly Val Met Val Thr Lys Phe Tyr Phe Gln Glu Asp			
165	170	175	
Glu			
<210> 10			
<211> 155			
<212> PRT			
<213> Homo sapiens			
<400> 10			
Met Val Leu Ser Gly Ala Leu Cys Phe Arg Met Lys Asp Ser Ala Leu			
1	5	10	15
Lys Val Leu Tyr Leu His Asn Asn Gln Leu Leu Ala Gly Gly Leu His			
20	25	30	
Ala Gly Lys Val Ile Lys Gly Glu Glu Ile Ser Val Val Pro Asn Arg			
35	40	45	
Trp Leu Asp Ala Ser Leu Ser Pro Val Ile Leu Gly Val Gln Gly Gly			
50	55	60	
Ser Gln Cys Leu Ser Cys Gly Val Gly Gln Glu Pro Thr Leu Thr Leu			
65	70	75	80
Glu Pro Val Asn Ile Met Glu Leu Tyr Leu Gly Ala Lys Glu Ser Lys			
85	90	95	
Ser Phe Thr Phe Tyr Arg Arg Asp Met Gly Leu Thr Ser Ser Phe Glu			
100	105	110	

Ser Ala Ala Tyr Pro Gly Trp Phe Leu Cys Thr Val Pro Glu Ala Asp
115 120 125

Gln Pro Val Arg Leu Thr Gln Leu Pro Glu Asn Gly Gly Trp Asn Ala
130 135 140

Pro Ile Thr Asp Phe Tyr Phe Gln Gln Cys Asp
145 150 155

<210> 11
<211> 178
<212> PRT
<213> Homo sapiens

<400> 11
Met Ser Phe Val Gly Glu Asn Ser Gly Val Lys Met Gly Ser Glu Asp
1 5 10 15

Trp Glu Lys Asp Glu Pro Gln Cys Cys Leu Glu Asp Pro Ala Gly Ser
20 25 30

Pro Leu Glu Pro Gly Pro Ser Leu Pro Thr Met Asn Phe Val His Thr
35 40 45

Lys Ile Phe Phe Ala Leu Ala Ser Ser Leu Ser Ser Ala Ser Ala Glu
50 55 60

Lys Gly Ser Pro Ile Leu Leu Gly Val Ser Lys Gly Glu Phe Cys Leu
65 70 75 80

Tyr Cys Asp Lys Asp Lys Gly Gln Ser His Pro Ser Leu Gln Leu Lys
85 90 95

Lys Glu Lys Leu Met Lys Leu Ala Ala Gln Lys Glu Ser Ala Arg Arg
100 105 110

Pro Phe Ile Phe Tyr Arg Ala Gln Val Gly Ser Trp Asn Met Leu Glu
115 120 125

Ser Ala Ala His Pro Gly Trp Phe Ile Cys Thr Ser Cys Asn Cys Asn
130 135 140

Glu Pro Val Gly Val Thr Asp Lys Phe Glu Asn Arg Lys His Ile Glu
145 150 155 160

Phe Ser Phe Gln Pro Val Cys Lys Ala Glu Met Ser Pro Ser Glu Val
165 170 175

Ser Asp

<210> 12
<211> 218
<212> PRT
<213> Homo sapiens

<400> 12
 Met Ser Phe Val Gly Glu Asn Ser Gly Val Lys Met Gly Ser Glu Asp
 1 5 10 15
 Trp Glu Lys Asp Glu Pro Gln Cys Cys Leu Glu Asp Pro Ala Gly Ser
 20 25 30
 Pro Leu Glu Pro Gly Pro Ser Leu Pro Thr Met Asn Phe Val His Thr
 35 40 45
 Ser Pro Lys Val Lys Asn Leu Asn Pro Lys Lys Phe Ser Ile His Asp
 50 55 60
 Gln Asp His Lys Val Leu Val Leu Asp Ser Gly Asn Leu Ile Ala Val
 65 70 75 80
 Pro Asp Lys Asn Tyr Ile Arg Pro Glu Ile Phe Phe Ala Leu Ala Ser
 85 90 95
 Ser Leu Ser Ser Ala Ser Ala Glu Lys Gly Ser Pro Ile Leu Leu Gly
 100 105 110
 Val Ser Lys Gly Glu Phe Cys Leu Tyr Cys Asp Lys Asp Lys Gly Gln
 115 120 125
 Ser His Pro Ser Leu Gln Leu Lys Lys Glu Lys Leu Met Lys Leu Ala
 130 135 140
 Ala Gln Lys Glu Ser Ala Arg Arg Pro Phe Ile Phe Tyr Arg Ala Gln
 145 150 155 160
 Val Gly Ser Trp Asn Met Leu Glu Ser Ala Ala His Pro Gly Trp Phe
 165 170 175
 Ile Cys Thr Ser Cys Asn Cys Asn Glu Pro Val Gly Val Thr Asp Lys
 180 185 190
 Phe Glu Asn Arg Lys His Ile Glu Phe Ser Phe Gln Pro Val Cys Lys
 195 200 205
 Ala Glu Met Ser Pro Ser Glu Val Ser Asp
 210 215

<210> 13
 <211> 192
 <212> PRT
 <213> Homo sapiens

<400> 13
 Met Ser Gly Cys Asp Arg Arg Glu Thr Glu Thr Lys Gly Lys Asn Ser
 1 5 10 15
 Phe Lys Lys Arg Leu Arg Gly Pro Lys Val Lys Asn Leu Asn Pro Lys
 20 25 30

Lys Phe Ser Ile His Asp Gln Asp His Lys Val Leu Val Leu Asp Ser
 35 40 45

 Gly Asn Leu Ile Ala Val Pro Asp Lys Asn Tyr Ile Arg Pro Glu Ile
 50 55 60

 Phe Phe Ala Leu Ala Ser Ser Leu Ser Ser Ala Ser Ala Glu Lys Gly
 65 70 75 80

 Ser Pro Ile Leu Leu Gly Val Ser Lys Gly Glu Phe Cys Leu Tyr Cys
 85 90 95

 Asp Lys Asp Lys Gly Gln Ser His Pro Ser Leu Gln Leu Lys Lys Glu
 100 105 110

 Lys Leu Met Lys Leu Ala Ala Gln Lys Glu Ser Ala Arg Arg Pro Phe
 115 120 125

 Ile Phe Tyr Arg Ala Gln Val Gly Ser Trp Asn Met Leu Glu Ser Ala
 130 135 140

 Ala His Pro Gly Trp Phe Ile Cys Thr Ser Cys Asn Cys Asn Glu Pro
 145 150 155 160

 Val Gly Val Thr Asp Lys Phe Glu Asn Arg Lys His Ile Glu Phe Ser
 165 170 175

 Phe Gln Pro Val Cys Lys Ala Glu Met Ser Pro Ser Glu Val Ser Asp
 180 185 190

<210> 14
 <211> 169
 <212> PRT
 <213> Homo sapiens

<400> 14
 Met Arg Gly Thr Pro Gly Asp Ala Asp Gly Gly Gly Arg Ala Val Tyr
 1 5 10 15

Gln Ser Met Cys Lys Pro Ile Thr Gly Thr Ile Asn Asp Leu Asn Gln
 20 25 30

Gln Val Trp Thr Leu Gln Gly Gln Asn Leu Val Ala Val Pro Arg Ser
 35 40 45

Asp Ser Val Thr Pro Val Thr Val Ala Val Ile Thr Cys Lys Tyr Pro
 50 55 60

Glu Ala Leu Glu Gln Gly Arg Gly Asp Pro Ile Tyr Leu Gly Ile Gln
 65 70 75 80

Asn Pro Glu Met Cys Leu Tyr Cys Glu Lys Val Gly Glu Gln Pro Thr
 85 90 95

Leu Gln Leu Lys Glu Gln Lys Ile Met Asp Leu Tyr Gly Gln Pro Glu
 100 105 110
 Pro Val Lys Pro Phe Leu Phe Tyr Arg Ala Lys Thr Gly Arg Thr Ser
 115 120 125
 Thr Leu Glu Ser Val Ala Phe Pro Asp Trp Phe Ile Ala Ser Ser Lys
 130 135 140
 Arg Asp Gln Pro Ile Ile Leu Thr Ser Glu Leu Gly Lys Ser Tyr Asn
 145 150 155 160
 Thr Ala Phe Glu Leu Asn Ile Asn Asp
 165

<210> 15
 <211> 208
 <212> PRT
 <213> Homo sapiens

<400> 15
 Met Arg Gly Thr Pro Gly Asp Ala Asp Gly Gly Gly Arg Ala Val Tyr
 1 5 10 15
 Gln Ser Ser Glu Ser Asn Ala Val Gly Met Gly Leu Trp Arg Leu Arg
 20 25 30
 Pro Ser Ala Leu Thr Leu Ser Pro Val Glu Ala Pro Ala Phe Ser Ala
 35 40 45
 Pro Leu Cys Thr Leu Pro Phe Pro Pro Val Cys Lys Pro Ile Thr Gly
 50 55 60
 Thr Ile Asn Asp Leu Asn Gln Gln Val Trp Thr Leu Gln Gly Gln Asn
 65 70 75 80
 Leu Val Ala Val Pro Arg Ser Asp Ser Val Thr Pro Val Thr Val Ala
 85 90 95
 Val Ile Thr Cys Lys Tyr Pro Glu Ala Leu Glu Gln Gly Arg Gly Asp
 100 105 110
 Pro Ile Tyr Leu Gly Ile Gln Asn Pro Glu Met Cys Leu Tyr Cys Glu
 115 120 125
 Lys Val Gly Glu Gln Pro Thr Leu Gln Leu Lys Glu Gln Lys Ile Met
 130 135 140
 Asp Leu Tyr Gly Gln Pro Glu Pro Val Lys Pro Phe Leu Phe Tyr Arg
 145 150 155 160
 Ala Lys Thr Gly Arg Thr Ser Thr Leu Glu Ser Val Ala Phe Pro Asp
 165 170 175
 Trp Phe Ile Ala Ser Ser Lys Arg Asp Gln Pro Ile Ile Leu Thr Ser

180

185

190

Glu Leu Gly Lys Ser Tyr Asn Thr Ala Phe Glu Leu Asn Ile Asn Asp
195 200 205

<210> 16
<211> 158
<212> PRT
<213> Homo sapiens

<400> 16
Met Glu Lys Ala Leu Lys Ile Asp Thr Pro Gln Gln Gly Ser Ile Gln
1 5 10 15

Asp Ile Asn His Arg Val Trp Val Leu Gln Asp Gln Thr Leu Ile Ala
20 25 30

Val Pro Arg Lys Asp Arg Met Ser Pro Val Thr Ile Ala Leu Ile Ser
35 40 45

Cys Arg His Val Glu Thr Leu Glu Lys Asp Arg Gly Asn Pro Ile Tyr
50 55 60

Leu Gly Leu Asn Gly Leu Asn Leu Cys Leu Met Cys Ala Lys Val Gly
65 70 75 80

Asp Gln Pro Thr Leu Gln Leu Lys Glu Lys Asp Ile Met Asp Leu Tyr
85 90 95

Asn Gln Pro Glu Pro Val Lys Ser Phe Leu Phe Tyr His Ser Gln Ser
100 105 110

Gly Arg Asn Ser Thr Phe Glu Ser Val Ala Phe Pro Gly Trp Phe Ile
115 120 125

Ala Val Ser Ser Glu Gly Gly Cys Pro Leu Ile Leu Thr Gln Glu Leu
130 135 140

Gly Lys Ala Asn Thr Thr Asp Phe Gly Leu Thr Met Leu Phe
145 150 155

<210> 17
<211> 157
<212> PRT
<213> Homo sapiens

<400> 17
Met Asn Pro Gln Arg Glu Ala Ala Pro Lys Ser Tyr Ala Ile Arg Asp
1 5 10 15

Ser Arg Gln Met Val Trp Val Leu Ser Gly Asn Ser Leu Ile Ala Ala
20 25 30

Pro Leu Ser Arg Ser Ile Lys Pro Val Thr Leu His Leu Ile Ala Cys
35 40 45

Arg Asp Thr Glu Phe Ser Asp Lys Glu Lys Gly Asn Met Val Tyr Leu
50 55 60

Gly Ile Lys Gly Lys Asp Leu Cys Leu Phe Cys Ala Glu Ile Gln Gly
65 70 75 80

Lys Pro Thr Leu Gln Leu Lys Glu Lys Asn Ile Met Asp Leu Tyr Val
85 90 95

Glu Lys Lys Ala Gln Lys Pro Phe Leu Phe Phe His Asn Lys Glu Gly
100 105 110

Ser Thr Ser Val Phe Gln Ser Val Ser Tyr Pro Gly Trp Phe Ile Ala
115 120 125

Thr Ser Thr Ser Gly Gln Pro Ile Phe Leu Thr Lys Glu Arg Gly
130 135 140

Ile Thr Asn Asn Thr Asn Phe Tyr Leu Asp Ser Val Glu
145 150 155

<210> 18
<211> 11
<212> PRT
<213> Human immunodeficiency virus type 1

<400> 18
Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg
1 5 10

<210> 19
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: internalizing
domain derived from HIV tat protein

<400> 19
Gly Gly Gly Gly Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg
1 5 10 15

<210> 20
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:

Oligonucleotide 2349-98

<400> 20
cacacgcttc accttcttc cag 23

<210> 21
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide 2349-99

<400> 21
taaaaacttgg tacgggctga ggg 23

<210> 22
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide 1572-36

<400> 22
gtgttgaatt gtgagcggat aac 23

<210> 23
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide 2328-91

<400> 23
ctatgaccat gattacgccaa agc 23

<210> 24
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide 2351-47

<400> 24
gctgtactgg ctgctggggc 20

<210> 25
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide 2351-48

<400> 25
ccttcaggct tgaggctgct g 21

<210> 26
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide 2329-93

<400> 26
cgggcctctt cgctattacg c 21

<210> 27
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide 2363-04

<400> 27
cctggctggc tcctgtgtgg c 21

<210> 28
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide 2329-94

<400> 28
tggcgaaagg gggatgtgct g 21

<210> 29
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide AP-1

<400> 29
ccatcctaat acgactcaact atagggc 27

<210> 30
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide 2353-87

<400> 30
ccttggtgag ctgtactggc tg 22

<210> 31
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide 2349-52

<400> 31
ccggggccaca caggaacca 19

<210> 32
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide 2349-51

<400> 32
aagaggccac acgcttcacc ttct 24

<210> 33
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide 2557-95

<400> 33		
aaggctttttt cttctttgcc tcagtg		26
<210> 34		
<211> 26		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:		
Oligonucleotide 2557-96		
<400> 34		
tgcatttaa tgtaaacacgg tcacag		26
<210> 35		
<211> 459		
<212> DNA		
<213> Mus musculus		
<220>		
<221> CDS		
<222> (1)..(459)		
<400> 35		
atg tgc tcc ctt ccc atg gca aga tac tac ata atc aag gat gca cat		48
Met Cys Ser Leu Pro Met Ala Arg Tyr Tyr Ile Ile Lys Asp Ala His		
1 5 10 15		
caa aag gct ttg tac aca cgg aat ggc cag ctc ctg ctg gga gac cct		96
Gln Lys Ala Leu Tyr Thr Arg Asn Gly Gln Leu Leu Gly Asp Pro		
20 25 30		
gat tca gac aat tat agt cca gag aag gtc tgt atc ctt cct aac cga		144
Asp Ser Asp Asn Tyr Ser Pro Glu Lys Val Cys Ile Leu Pro Asn Arg		
35 40 45		
ggc cta gac cgc tcc aag gtc ccc atc ttc ctg ggg atg cag gga gga		192
Gly Leu Asp Arg Ser Lys Val Pro Ile Phe Leu Gly Met Gln Gly Gly		
50 55 60		
agt tgc tgc ctg gcg tgt gta aag aca aga gag gga cct ctc ctg cag		240
Ser Cys Cys Leu Ala Cys Val Lys Thr Arg Glu Gly Pro Leu Leu Gln		
65 70 75 80		
ctg gag gat gtg aac atc gag gac cta tac aag gga ggt gaa caa acc		288
Leu Glu Asp Val Asn Ile Glu Asp Leu Tyr Lys Gly Gly Glu Gln Thr		
85 90 95		
acc cgt ttc acc ttt ttc cag aga agc ttg gga tct gcc ttc agg ctt		336
Thr Arg Phe Thr Phe Gln Arg Ser Leu Gly Ser Ala Phe Arg Leu		
100 105 110		
gag gct gct gcc tgc cct ggc tgg ttt ctc tgt ggc cca gct gag ccc		384
Glu Ala Ala Ala Cys Pro Gly Trp Phe Leu Cys Gly Pro Ala Glu Pro		

115

120

125

```

cag cag cca gtg cag ctc acc aaa gag agt gaa ccc tcc acc cat act      432
Gln Gln Pro Val Gln Leu Thr Lys Glu Ser Glu Pro Ser Thr His Thr
   130          135          140

```

gaa ttc tac ttt gag atg agt cg^g taa 459
Glu Phe Tyr Phe Glu Met Ser Arg
145 150

<210> 36
<211> 152
<212> PRT
<213> Mus musculus

<400> 36
Met Cys Ser Leu Pro Met Ala Arg Tyr Tyr Ile Ile Lys Asp Ala His
1 5 10 15

Gln Lys Ala Leu Tyr Thr Arg Asn Gly Gln Leu Leu Leu Gly Asp Pro
20 25 30

Asp Ser Asp Asn Tyr Ser Pro Glu Lys Val Cys Ile Leu Pro Asn Arg
35 40 45

Gly Leu Asp Arg Ser Lys Val Pro Ile Phe Leu Gly Met Gln Gly Gly
50 55 60

Ser Cys Cys Leu Ala Cys Val Lys Thr Arg Glu Gly Pro Leu Leu Gln
65 70 75 80

Leu Glu Asp Val Asn Ile Glu Asp Leu Tyr Lys Gly Gly Glu Gln Thr
85 90 95

Thr Arg Phe Thr Phe Phe Gln Arg Ser Leu Gly Ser Ala Phe Arg Leu
100 105 110

Glu Ala Ala Ala Cys Pro Gly Trp Phe Leu Cys Gly Pro Ala Glu Pro
 115 120 125

Gln Gln Pro Val Gin Leu Thr Lys Glu Ser Glu Pro Ser Thr His Thr
130 135 140

Glu Phe Tyr Phe Glu Met Ser Arg
145 150

```
<210> 37  
<211> 13017  
<212> DNA  
<213> Mus musculus
```

<220>
<221> exon
<222> (8025) .. (8054)

```

<220>
<221> exon
<222> (9548) .. (9631)

<220>
<221> exon
<222> (9967) .. (10092)

<220>
<221> exon
<222> (10358) .. (10570)

<400> 37
actagtctcc catagacaac agctgaatgt acgaggtag aagcaaggcc tgccccagaa 60
ccattgcaag ccaggtgctg tcttgattgt agcctcataa aaaactgatg cagaattgcc 120
ccaccaacat gctccagatt cctgctccac agaaaccctg tgaactaacc atgttgcctt 180
tagattctgc agtaagttga taatctgcag taaataacat tcgatgaaag agaaacatgt 240
gtagttactt tattatgatc aaaactttat ttctccactc tttccatttt ctttcaga 300
attgacacca gccttcact aacccaaata gcctattaa atgctgatca tacttctctt 360
gttaactgtt acctgttccc aaaaggtaca attcccttc gaccatagct gcatctccca 420
cctgcacacc aggatgttcc tcataatttc acctaaaaca ttggggacta caagtgaaag 480
caaaagaggg ggtccatatac agaaccggc gtatttagct gtaaaactca ctgtcaggc 540
cagcttgaca ggtttacagt ttgtagaagg accagaaaga aggttagccaa gacagaagag 600
gcaacctctg ctgtccttag aacttcagt ccatatacat ctaagctccc cagcaccatt 660
tctaccacag acctctcaga gttcctgagg atgcagaccc caggacactg acctcagttt 720
ccaggcaggg ttctgcaca ccccttcac actgcctgac tggagtttgc tctcatggg 780
caacactact ttgggacact gtacccatcc cctcgaccta cagaaaccat tcactttca 840
aggtcaccc tcataggaaat tatttggaaaa gatgagagtc atggcattt gctatgataa 900
tattctgtgc ttatctccct gtaaaaagg ggcttgggt ctctggcatg catctgaccc 960
taaggttggaa gctgcaccaa tatgtttta agcaccggc ataatgcttc gcaaaatttc 1020
agaacatggt ttgtacagaa tgtactttcc tccactcata caaacccttgc taaaagagta 1080
gtttgaatcc caactcattc ttgaaggcca cctttgttag ggtgacagaaa tttaaaaata 1140
cagaatttaa aaatacttta tcccaggaa gctcacactt ctaaatccag aatgaaagaa 1200
gaaatagaaa cacacttgcgtt gttggcggtgg tgggtggat ggtggcgtt gttgggtgg 1260
tgggtgggtt ggtgatgggtt gttgggtgg tgggtgggtt ggtcgtgggtt gtgtaatgtt 1320

```

cacagtaaaag tgaggcatca tggcctgaga gagtcaggca tcacagctat tcaagtgaaa 1380
actacctact actgatttta gagttctata attttagtag cagccacagg cctggggcct 1440
gggcctatat tttcagagag gaaatgttca cagcaggtca actgcagaca gtgaagatca 1500
gaaatgttc ataatcaggt catcagagaa aaggcaaagg agctgatgga ctttatcctg 1560
aaaaagcaaa atccaaccca cctcatgctt aatgcattca aaggctcg ggcagaagaa 1620
tacatttgc ttttattat tataaattac ctggagaata ttttgc aattatctcc 1680
caaatattaa ccataaaaat aaaaaattcc atgtgtgctt ctcccagggg ctataaagcc 1740
cctggtctta gagttgttgg gcacaaacct gaccttgaa gtagttactt ttgaagatgc 1800
cataccatac atttggccac ttggagagag tctaatgtca catctaaagg gttactctga 1860
tgctctgttt tctcatatgc cttggctta cagctaacta tggctccagc taaactataa 1920
agttccttgg caacagagat ggtacgctat gtgtcttga cacagcagaa taaatgctta 1980
gtgaacatta ctgattgcct gacaggacac ctcacacttt ggtactttca acagagggat 2040
gtaaacttat gaagaacaat gaagaatgaa tattggcaat aaaagcaaaa attggtaac 2100
ccaattctag ctctgaaatc atttttaggt agtggaaagt cttttgc ttttattca 2160
ctttacatcc caattgctgt cttccctcca agttccccac caccaccaca gtccttttc 2220
cctcccttc tcctctgaga gaatggagaa ccctcctgga tattccccca tcatgaaaca 2280
ttaagtctct gcagggctag acactcccc cagtgaggcc agtcagggca gcccagctag 2340
aaaaagcata tcccacagac agacaacagc ttttggata gccccgttcc agttgttag 2400
gatccacatg aaggctgagc tgcacatctg ctacatatga atgaggaggc ctagtccag 2460
cctgtgtatg ttcttgggtt ggtggttcag actctgagag ccccaagggt ccaggtcagt 2520
tgactctgtt ggtcttcctg tggacaccct gtcccttcc agcccacaat cttccctta 2580
atccttctcc ttctcacttc cataagagtg tgaggagtct taaaaacat gaagcatttt 2640
atctccccag ggcaacacat ggaaatgaaa gattgtgaaa agtaattaa agaaaaagaa 2700
aaaaaaaaattt aacaaggaat aagaatctt tttctctgaa aatgcttaag agtgtggaaa 2760
acataaaactg gattctaata gaatgcaatt ggattgtaat gaaaacctat caaagttatg 2820
aaatagcttt cactaccttgc cacaatctt cttggcatgt gtgttggggg caaattttct 2880
tgtagttta aaaccacaac aataacaaca aaatagcaaa aattgggtct cagcctcatt 2940
catttttctt catttcttgc tctgtatcg tctgggtctt aagctgacac ctcaccaattt 3000
cctcatcaag acctttgtgg aaatttgcaa atgtccaaa aaggagaatt acaataagtc 3060

agagaacgtt ctgtccaatt ctttatccct agtgatggat gagtaaagga tgtataagag 3120
atggataaaat ggactgatgt acagataaaat gaaggaatat gtacatggtt aggtggatag 3180
atgacttact caacagatga gtagaaggat gagaaataga tggacagctg gactgaggca 3240
tgcaaagtca actggagaac tgagtcttt gaccatgcac tgtccagggt ctcatattcc 3300
ctagagtcca gggccatgg ctccctgtgcc atccccatgc aaatctaagg ttaatacggtt 3360
ctacagctga gtttccttac atatgtgtct cagtaagttt gtatcaacta attaaatctg 3420
aaaggagttc cttctgatct tcccaaacag agccacactc gtgatgaagt cagccctgct 3480
tcattgtggt tctctggatg catctggctt ccatcagcat aatcttctta ttcttgatcc 3540
ttccaacctc ttcaggtctc agacagaacc ccatggagca tcaaagaggt ttgacccag 3600
cattgtttat gtagctgcaa aaccactaat aacacagtca atgacagtag ctacagagac 3660
agcaggtcag tgtctggctt ctgtcaaggc tttatgagtg actctctccc cttcccgcaa 3720
atactcatta atctccccac ctccttatta tttggactgt gttgaagata ttatgaaatc 3780
tctgggctct tcttcccgga tctagagcca attacagatt ctgttaggtt gaccaccct 3840
gaccagacat tataaacaca gtgctggtgc cctgaagaaa acagttggag actccaggca 3900
ttagaatcca ggcaccagga actacaggc agtggtgaca gtcggctct ctgtgtatct 3960
cttacacaca cacacataca cacacacaac acaacataca cacacataca acacacaaca 4020
catacacata caacacatac acacacacaa cactttctg taatgtctcc aaaattctca 4080
ggctctaggg aagaagaaat gtctttaga gaatgcggtg tgatgttcta taagtctagg 4140
aataacttgat agaatttaat gagaagtata gattaggtca aagcaagggt actacatatt 4200
tggaaaccaca gagtttgaa agtcatctca aaagaaatta tttaggccag agatgtcaa 4260
aaaatgtttt gtttgacata tatggaagct cccatggaga cattctgtga ttctcatcaa 4320
tagacagtag ggatgccacc aaggtgctaa cgtcttcatt accccatcat ctatcataca 4380
tccaaatggt ttcttgaaa acaatctcct tgtgaaactt aaagtagcct tgaaaatata 4440
ataatcttgt ccagcctctc atttcaatgg gaatagattt aaggcctaag gacaaaaaca 4500
aaaaacaaaa caaacaat aaaaacacca aaaaaaaaaac ccataaaatg aatgagtagc 4560
taagttattt ttagaatcca gccttcagt caaagcttga ttcatgcata tctgtgttct 4620
gatcttaagg tgctgtgtct gtcagttgtta tagttggata gaggtacaga tgagctata 4680
acatcatgct tcaagatttc aggatctt aactttata aagcaaataa tttgtcttaa 4740

tgcacactaa taaacaatat agcaaagttt gacaggagtt cagagtactg ttagagaagt 4800
gaagggaaaga attttgttat gatagtaaag gggaaaatca aattttgagt catggaatca 4860
tacatagttt gacatagaaa gaaccttggc aaccacataa tctaattgcac gagcccaaga 4920
actggcctgt gtttttaaga tctcattctc agctgttatg taactgaaca gacaagatac 4980
taagcccaag tatagtgaag ccatgtccag tgatcttaat aggagtgaca ggaatggttg 5040
gtgatgaaga ggggtggatt ttgagcagga atacaaaaag caatgctgac tgtgcccttg 5100
gagagaatta gcatgagtcc ttgagagaaa aatgagatgc tattgcacaa gcaacctagg 5160
gccagatggt gtcaagatag gtggccatcg tggactttag aaccaggcag gaatgtgatc 5220
agagatgtac tttatgttagg ttaggtttga ttcagaaacc aggagggtt acatgtttac 5280
aatggtgact aaaaacaagc acaaggttat actttaaaga aataatctct gaaaagaagg 5340
gaggtatatt ttcagtgcgg gaaagaggaa tattacaaaa gtgagaggag tagatttgag 5400
aaagagaagt ggatttgtgga ggagcagatg ctcaccacgc cttacactc acttgaactg 5460
acacccaaag atgaagggtgt gctgtggact gctgaagctc agcctgtggc tggaaagcag 5520
taaacaaaaat tgctcatcac agctgtacaa gatattccat agcatataaa aataaaagtg 5580
cttaggctat tctcttacaa ctctcagcct tatgaatgac ccggaggaa aagaactcta 5640
caatgtgcct gtgtctgttc ttacttcctc tgccacaagc aaaagagcct tggaaattgg 5700
ctcagaggga acgtcatcaa acaggctggc cttgaggctg ggctgttatt cgtctacctg 5760
ggatagagga attcgctatt cttttataat ccaagtgtgg cctggggacc agcagcatta 5820
ttaagacctg gttgcatgtt tgaaatgcag tctcagattt catcccagac ctaaagagta 5880
acactgtttt catgaggata caagattaag aaatatgcac tagagagtaa ttggctaaat 5940
ggtaaatgt catgcaagca ggaggatctg attgactccc caggacccac acagttccca 6000
tgccgttagag cacatctgta atcacagtag gcgtatgatg aaatggagg tgaatcaaga 6060
gaatctctag cagctacggg ctggccagcc tcccatgcac agcactaaat aaggcaagga 6120
ccaataacctg aagttgtccc attaccttca catatacacc acggcatgtg tgtacttgta 6180
ctcacacata caaacaataa cacacgtgca cacataaaa actcagagat taaggacaat 6240
tggcctgaca tatcagttcc taagcctggc tcattgcttg taacactaca agcagtatta 6300
aataaggata ggcgagagaa cagttaccga atggttcaga agtggggcca tgcctgtgac 6360
tttaaacaatg tttttcatat ttttaataa taacacttag attacaaaat aaatttacta 6420
cagaaaaatg ttaagaacta tcaacaacca ttgactatcc tgcggccac aaatgagtgt 6480

tataacaagc accagccgtc cttgtccaca tgtgtgtgt tctacacagc tatgaattta 6540
attgggataa taatgtgcac attcttacg gcctgcagtt tttacttcat gtatttgaaa 6600
tgtttgtgcc acaaatgtca tcttaagga gcatatcctt attcctgga tttatcattc 6660
ccttcagcc gactggacat tgacagcatt tccaactttt caaccttcta aaaataacta 6720
attgaactat ttataacta agcatttggg caatcaatta cctctgcctg gaatggggc 6780
aacaacacat gcaatcatgg gaaagccagg atgctgtgt ctgatcccta gccctggcat 6840
tcgtgcagaa cctcactctc atctgtgccc tgatatcctt cactctcaag tctttccca 6900
tgactttta aaggcaacag aatcatatacg ccaataatga aagctacttgc gtctacagtt 6960
gtgtggcgtt ttttatacgat attttcttca ttacatttc aaatgctatc caaaaagtcc 7020
cctataccct cccccaccct gctccctac ccactcactc ccacttcttgc gccctggcctt 7080
tcccccttac tggggcatat aaagtttgc agaccaagg gcctcttcc ccaatgatgg 7140
ccaaactaggc cattttctgc tacatatgca gctagagaca ccagttctgg ggttactgg 7200
tagttcatat tggtgttcta cctatgggt tgtagcccc ttcagctttt gagttacttgc 7260
tctagctcct ccattggag ccctgtgttc catcctatag atgactgtga gcatccactt 7320
ctgtatTTgc caggcaactgg catatgaaat agtacatgca ttgggtggct gattatggga 7380
tggacccccc ggtggggcag tctctggatg gtccatcctt tcatttttttgc tccaaacttt 7440
gtctctgcaa cttctccat ggatatttttgc gtccttaatc tagggagaaa tgaagtatcc 7500
acaagttgat cttcccttctt gattttcttgc tgtttttagaa gttgtatctt ggatattctt 7560
ggtttctggg ctaatatcca cttatcagtg agtacatatc aagtgaatttctt ttttgatttgc 7620
aggttacctc actcaagatg atattcttca ctatgttcat agcagcccta tttatagtag 7680
ccagaagctg gaaagaaccc agtccctcaa cagaggaatg gatacagaaa atgtggcaca 7740
tttatgcaat ggagtaccac tcagatatta aaaacaacga atttatgaaa ttctcgggca 7800
aaaccctatc taaagaccag gaataaggaa aagatggact gcctgcctgc agctgggaga 7860
gctggggaga cttttgtgga ttctgtataata ctttagggta cggaacagct tggctgg 7920
taattctgag ctccagcatg tctgcccccc aaaaaacatt ctgttttctt gaaagccctt 7980
ttcttcttttgc ctcagtgaa gaccagacac tcccaactgc agga atg tgc tcc ctt 8036
ccc atg gca aga tac tac atgtaaatgat tcttaacgat cgctcaatca 8084
agggggcctgg agatcacatg agaaggggaaa aggctgagtc aaagggacaa agctccctct 8144

agccacagaa atctcaaaca ctgaataatt gatcttcatt tttgtcaatc acaacagccc 8204
tctttcctgg tgacagaatg gaacaactgt aagagtggta ttgcttagtc cattttacag 8264
acccggaaac tcaacctcca cgagggtata caatttcct catgtcatgc aattacccaa 8324
aagcagagag tgggatcgga ctctctgttc tctaaactga tgttagctgt tcttagaaag 8384
ctcaaacaat cttgagtccc aaggacagca cctttatggt cacctggatt gatacctata 8444
tcaaaaaaaaaaaa aaaaaggctt cactagatag ccctggctac cctgaaaactc tcactgtgta 8504
cattttaggtg accacgaact cacagagatc tgccttccaa gtgctggat taaagtatgt 8564
accaccacac ctgcatctt gacaataact gagtggtatc taaattcttc cagtggtctaa 8624
acagttaagt cccagttccc aaagtctgag aaaaatgcca ggtggtgaaa tctgtacaga 8684
cctttagtttct taatgtacaa gtgagcctgc tttaaaaaaca atacgcaagc tggttttgct 8744
attgctaagt gttgcagaga cagaaaaggc tcccagaagt ggtaactttg gtccagaggt 8804
tctgttctca aactcattgt gagctctgaa agcaactgat gggcagctct gaaatcagct 8864
ggcaatttag gctaataaca ggcataattt taatgttca cacgcatgac agttcctccc 8924
cagctgccct agtacatact taccctccta ggcacgtcat tagaccctata ggtataacca 8984
gtgactaattc aggccctggc ctaattctaa gttggcctcc tatataagtg ccactcagag 9044
tgtacctcat catggctgta gtggccctcag agtctaggta catagacttt tctattgtcc 9104
aatttctgat ttgtgaattt tctacaaaaa gaattttttt taattttaca aatcaaatca 9164
cagttactac atcttcagtt ctttcattaa ttagtggta tattttaaaaa aataaaataa 9224
atcaagctca gaaacatcat ggatagggtt cattgtatct ccagggtacc tgagcttcaa 9284
agcaactcct cagacagcca tgaaaacatc ctcaattacc tcatgagaag acactattgt 9344
catttctgga gcctctgata atcctgagcc taggcagctt tggatgaaa caatttctac 9404
ccttatttggc acagtgccc ttcctgtct ggaaacaatt caccaaggc tccatgtgg 9464
tgtccagtaa ggtggatgg ggacagaaaat ggacaatgat ccctgagggc agtgcatt 9524
taacccttgcc ctccattttc aga atc aag gat gca cat caa aag gct ttg tac 9577
aca cgg aat ggc cag ctc ctg ctg gga gac cct gat tca gac aat tat 9625
agt cca ggtgatctc cgggtggggg ggtgggggag tggaggggag ggtgtgggg 9681
gggctctctt ccagaagttt ctttgttcc atctgccaca aggccctgat tctttccttc 9741
aattgtgtct ctagagacat gagaatattt tcacagtgtat aaggagaaga ggttagggca 9801
gtttcttcctt gtaaaaaatg aattccattt accctgcagt ctccatacag aaacaggcca 9861

gaggggggca gaccagtaa cttctagctg agccctaccc tgctaaaac ctgccatctg 9921
tggccccctc actgtctgaa ttgcattctg tcttacctcc cagag aag gtc tgt atc 9978
ctt cct aac cga ggc cta gac cgc tcc aag gtc ccc atc ttc ctg ggg 10026
atg cag gga gga agt tgc tgc ctg gcg tgt gta aag aca aga gag gga 10074
cct ctc ctg cag ctg gag gtgagacacc cctcctcatt gcagttagta 10122
ctgccactgg aacatagtga catcttgaa cccacatgtc ccctctcttg tttccatct 10182
atctctcttt gcctccagct gagggactct agcctttggg gatgtacaga aagaacatgg 10242
cttcggaaaa ctctcccta ttgagtcctt cttggccaa gcctctgagg cactaaggc 10302
tgacgtccca accaaacact catttcatct cacagctgtc tcccttccc cacag gat 10360
gtg aac atc gag gac cta tac aag gga ggt gaa caa acc acc cgt ttc 10408
acc ttt ttc cag aga agc ttg gga tct gcc ttc agg ctt gag gct gct 10456
gcc tgc cct ggc tgg ttt ctc tgt ggc cca gct gag ccc cag cag cca 10504
gtg cag ctc acc aaa gag agt gaa ccc tcc acc cat act gaa ttc tac 10552
ttt gag atg agt cgg taa agagacataa ggctggggcc tcgtcttagt 10600
cccccagtct gagatcttct tgctcagcat ctctggaaag cagaataagg aagataacaa 10660
agatgttgg gtcttaatcc ccagaatctg tgaccgtgtt acattaaatg gcaaaggat 10720
tttttttttc cttcatggtc cattgggcc cattggaatc atctgaggcc tcatgaggag 10780
aaggaagagg tcagagggag actggggcaa acttttgtac taaaagtaac aatggagaca 10840
gggaccataa gctgatgggt aacagtgggt tctagaaacc ggaaatgatg agagctctcc 10900
tgacacaggt tctggatttt tctggactga agaatggta aataatacag ctccattatt 10960
ttaagccact gagttgaga tcattcaatg aagctgtcat aataaaacct gtgcttcaca 11020
tacaattcaa tattggtagg caccgggtg atttcttggaa aagacatcta gggattctcc 11080
tggatgctga ttccagggtc cagtgagtc cctgggttga agagattca caaccagaa 11140
catcaggctc gactcttcta aaagtccgtc gttgcacccc ttgcctgaga gcattagcaa 11200
tttctatttc atagggaaatc tggcccttg cccctgctaa agcagggagc ctggaccgtc 11260
ctgattnatg gagggttagt ctgctggcac tttttgtgt caccagtgtc ttaagcagt 11320
atggagcaca aaagatctt actgagaaga tggccatgaa gctctggcta gacaccaaga 11380
atatgatata agcagagcta cagcacaaga tgagccaatg aggaaagcca ttcagggagg 11440

ctaaagccccag cttcccaaag ggacagctaa ccctggactc aaatgaatacg gggtttcct 11500
ggcagagaac ataggtaaag cattcttaggt agaatcagca attcagaaag gtgtgagaga 11560
ggcatggaga gctccaggca tgtctggct atggtgtgtc attcttgtgg caagaatcca 11620
acgtctgtgg ttaaggagtt gctgaaaatt aaaataggaa aatgggtaga gtctaattgt 11680
gaatgacttg caaaggagtt tagcccataa gtggggagct cagaggagtc atctaaggat 11740
tgcaagcagg ggccctgtga tcattgctgg accagcctag gtgctacaga gcctaccc 11800
agctctgcac cctcaactcac atccaggtac cttcagaggt caatttctgt gctctgggtc 11860
tatgggttagc ctgaccctgt ttcatcttct tgtataactt aggacacataa gcttagggac 11920
tggtagagtt tacttgagtg attggtaat cagggcagcac caaactacaa gttgttcagg 11980
gctttaccaa gggggcactg attggagaat tggaatgagg gtggtagaa tgcattcaga 12040
aaacaagggg aagaaaaatt tgattgctta aagtggaaag tcccaactta aatgttagtc 12100
agtagtttct aattacttga gtctctaatt agaggttagt tggcagtttc tggtagtta 12160
atctaagttt cattttctta ggctatgacc attctctgag tcgcatgtta gcaatgcagt 12220
aagaactcaa gacctagaat agcctctgtt aattatTTTA gcaatgatca ctcatTTCTG 12280
ttgcctccta ttgagatctg ttcccatgga ccacccaggc acatcaggcc tcctagtagtacc 12340
aacataataa tgattgctgc acagacaaaaa tattttttt cagtatctgg tatttgctac 12400
atttccatta gtgctggagg gaaggctaca acgaccatga aggcatggcc cctgccttct 12460
aaggacttac aatgtaatag gagccctgac attataaagt gggtcacctt gttcaaact 12520
gagccaaact gaggctgagg gcttagatta gtggtaggtc actttccaga catgttcagt 12580
gctaagaaaa acacattctg gggtagtta gatgttttag ttcatttgat aagaagcccc 12640
atgattggac tttcaacttc tggAACCCat gtggTGAAG agagaaccaa cttctgacca 12700
tttgggtcat ggcacatccc ctaccatcac aagaactcac caaaataaat tagaaaaatc 12760
aagaaaaact catabctat agacctctgg tagaatttagc agaacgctgc tgtggactt 12820
gggatttgaa actcaaaaaat ggaagaagct acttggacc gttcaagact ccaggagggc 12880
tcctctgaca catccacga ctcaggctta aattccttct tctccctaga aggccacgccc 12940
atcttctcaa ccaggccaca gatgctataa ttatgtaaat gtgtgggaga ggcacacttt 13000
agatcttatac cactagt 13017