<u>التمرين(1)</u>

لدراسة تطور حركية التحول بين شوارد البيكرومات $Cr_2O_{7(aq)}^{2-}$ و محلول حمض الأكساليك $Cr_2O_{7(aq)}^{2-}$ عند درجة $C_2H_2O_{4(aq)}$ المحرارة C_2C_2 نمزج في اللحظة C_2C_2 حجما $C_1=0$ من محلول بيكرومات البوتاسيوم $Cr_2O_{7(aq)}^{2-}$ المحلول عند المولي $Cr_2O_{7(aq)}^{2-}$ مع حجم $C_1=0$ مع حمن الأكساليك تركيزه المولي تحريري مناسب من جمع و قياس حجم غاز ثنائي أكسيد الكربون المنطلق C_2C_2 عند الضغط الجوي $C_1=0$ النتائج المحصل عليها مكنتنا من رسم المنحني البياني الشكل $C_2=0$ النتائج المحصل عليها مكنتنا من رسم المنحني البياني الشكل $C_2=0$

نعتبر أنه يمكن اعتبار غاز ثنائي أكسيد الكربون في الشروط التجريبية كغاز مثالي ينطبق عليه القانون التالي: m^3 . V ، $T=(273+\theta)^\circ K$ ، R=8,31 J.mol $^{-1}$.K $^{-1}$. P.V=n.R.T . $Cr_2O_{7(aq)}^{2-}/Cr_{(aq)}^{3+}$ ، $CO_{2(q)}/C_2H_2O_{4(aq)}$. $Cr_2O_{7(aq)}^{2-}/Cr_{(aq)}^{3+}$ ، $CO_{2(q)}/C_2H_2O_{4(aq)}$.

- 1) أكتب المعادلة المعبرة عن التفاعل أكسدة- إرجاع المنمذج للتحول الكيميائي الحادث.
 - 2) أنشئ جدو لا لتقدم التفاعل .
 - 3) أوجد من البيان:
 - t=1 أ- سرعة تشكل شوارد $Cr^{3+}_{(aq)}$ في اللحظة $cr^{3+}_{(aq)}$. 20min
 - ب- استنتج السرعة الحجمية للتفاعل في اللحظة t=20min
 - x_m ج- التقدم الأعظمي
 - د- زمن نصف التفاعل $t_{1/2}$
 - C_{2} أوجد التركيز المولى لمحلول حمض الاكساليك C_{2}
 - t = 10min أوجد التركيب المولي للمزيج في اللحظة

<u>التمرين(2)</u>

نضع في كاس بيشر حجما V=100من محلول حمض الازوت $(H_3O_{(aq)}^+ + NO_{3(aq)}^-)$ تركيزه المولي V=100 تركيزه المولي . $(Cu_{(s)})$ من النحاس $(Cu_{(s)})$ من النحاس $(Cu_{(s)})$.

الداخلتان في التفاعل هما $OX/_{Red}$ الداخلتان في التفاعل هما (1

$$NO_{3(aq)}^{-}/NO_{(g)}$$
 $\int_{S} \frac{Cu_{(aq)}^{2+}}{Cu_{(s)}}$

أ- بين ان معادلة التقاعل المنمذج للتحول السابق هي :

$$3Cu_{(s)} + 2NO_{3(aq)}^{-} + 8H_3O_{(aq)}^{+} \rightarrow 3Cu_{(aq)}^{2+} + 2NO_{(g)} + 12H_2O_{(l)}$$

- ب- احسب كمية المادة الابتدائية للمتفاعلات.
- ج- انشىء جدول التقدم للتفاعل المنمذج للتحول السابق.
 - د- حدد المتفاعل المحد

- 2) علما ان التجربة اجرية في درجة الحرارة $P = 10^5 Pa$.
- أ- بين ان الحجم المولي للغازات في شروط التجربة هو $V_M = 24 L/mol$.
- V_{NO} ب اوجد العلاقة بين حجم غاز اكسيد الازوت X و التقدم
- 3) يعطى في الشكل تغير حجم غاز اكسيد الازوت V_{NO} بدلالة الزمن .
- أ- عرف سرعة التفاعل واحسب قيمتها في اللحظة t=20s
 - ب- استنتج التركيب المولي للمزيج في اللحظة t=20s
- 4) اعط عبارة الناقلية النوعية $\sigma(t)$ للمحلول بدلالة (x) يعطى:

،
$$R=8,31SI$$
 ، $PV=nRT$ قانون الغازات $M_{Cu}=64g/mol$

$$\lambda_{NO_3^-}=\cdot~\lambda_{H_3O^+}=35msm^2/mol$$

. $\lambda_{Cu^{2+}} = 10.4 \; msm^2/mol \; \cdot \; 7.14 \; msm^2/mol$

<u>التمرين(3)</u>

لدراسة تطور حركية التحول بين شوارد البيكرومات $Cr_2O^{2-}_{7(aq)}$ و محلول حمض الأكساليك $Cr_2O^{2-}_{4(aq)}$ عند درجة الحرارة $Cr_2O^{2-}_{7(aq)}$ نمزج في اللحظة $Cr_2O^{2-}_{7(aq)}$ عند $Cr_2O^{2-}_{7(aq)}$ من محلول بيكرومات البوتاسيوم $Cr_2O^{2-}_{7(aq)}$ تركيزه المولي $Cr_2O^{2-}_{7(aq)}$ مع حجم $Cr_2O^{2-}_{7(aq)}$ من محلول حمض الأكساليك تركيزه المولي $Cr_2O^{2-}_{7(aq)}$ عند الضغط المولي $Cr_2O^{2-}_{7(aq)}$ عند الضغط الجوي $Cr_2O^{2-}_{7(aq)}$ عند المحصل عليها مكنتنا من رسم المنحني البياني الشكل $Cr_2O^{2-}_{7(aq)}$ النتائج المحصل عليها مكنتنا من رسم المنحني البياني الشكل $Cr_2O^{2-}_{7(aq)}$

نعتبر أنه يمكن اعتبار غاز ثنائي أكسيد الكربون في الشروط التجريبية كغاز مثالي ينطبق عليه القانون التالي:

 $: - \mathcal{P}.V = n.R.T$

 $T=(273 + {}^{\circ}R=8,\!31\,\mathrm{J.}\,mol^{-1}.\,K^{-1}$. m^3 حجم الغاز مقدرا ب $\mathrm{V}\cdot\theta)^{\circ}K$

الثنائيتان المشاركتان في التفاعل هما:

.
$$Cr_2O_{7(aq)}^{2-}/Cr_{(aq)}^{3+}$$
 · $CO_{2(g)}/C_2H_2O_{4(aq)}$

- 6) أكتب المعادلة المعبرة عن التفاعل أكسدة-إرجاع المنمذج للتحول الكيميائي الحادث.
 - 7) أُنشئ جدو لا لتقدم التفاعل .
 - 8) أوجد من البيان :
- ه- سرعة تشكل شوارد $Cr_{(aq)}^{3+}$ في اللحظة

. t = 20min

t=20min استنتج السرعة الحجمية للتفاعل في اللحظة

- ر- التقدم الأعظمي x_m
- ح- زمن نصف التفاعل $t_{1/2}$
- . C_2 أوجد التركيز المولي لمحلول حمض الاكساليك C_2
- . t = 10min أوجد التركيب المولي للمزيج في اللحظة

التمرين(4)

ندرس تطور التفاعل التام الحاصل بين محلول يود البوتاسيوم ، C_1 ، $V_1=100\ ml$ حجمه $V_1=100\ ml$ حجمه ومحلول بيروكسودي كبريتات البوتاسيوم $V_2=100\ ml$ حجمه $V_2=100\ ml$ حجمه $V_2=100\ ml$ حجمه $V_2=100\ ml$ حجمه $V_2=100\ ml$ حجمه التحول بشوارد $V_2=100\ ml$ تكتب معادلة التفاعل المنمدج للتحول الحاصل:

$$S_2 O_{8(aq)}^{2-} + 2I_{(aq)}^- = I_{2(aq)} + 2SO_{4(aq)}^{2-}$$

تمكنا عن طريق معايرة ثنائي اليود المتشكل من تمثيل البيانات $[I_2]$ و $[I^-]$ و $[I^-]$ و $[I_2]$

- 1) انجز جدول تقدم التفاعل.
- . x_m التقدم الأعظمي (2
- (1) احسب كمية المادة الابتدائية للمتفاعل الموافق للبيان (1)
 وللمتفاعل الموافق للبيان (3)
 - . $S_2 O_8^{2-}$ بين أن البيان (3) يوافق المتفاعل (4
 - . C_2 و C_1 احسب قيمة كل من
- . عرف زمن نصف التفاعل $t_{1/2}$ واستنتج قيمته من أحد البيانات (6
- . t=0 عند اللحظة عند اللحظة ، $v_{vol}=-rac{1}{2}rac{d[I^-]}{dt}$ بين أن السرعة الحجمية للتفاعل تكتب بالشكل بالشكل (7

t(min)

التمرين (5)

نمز ج عند اللحظة t=0 حجم $V_1=500m$ من محلول برمنغنات البوتاسيوم $K_{(aq)}^++MnO_{4(aq)}^-$ تركيزه المولي $V_2=500m$ مع حجم $V_2=500m$ من محلول حمض الأكساليك $H_2C_2O_{4(aq)}$ تركيزه المولي

 $.C_2 = 0.1 mol/L$

(2)

(3)

[....](mmol/L)

20

نكتب معادلة التفاعل المنمذج للتحول الكيميائي بالشكل:

$$5 H_2 C_2 O_{4(aq)} + 2Mn O_{4(aq)}^- + 6H_{(aq)}^+ = 2Mn_{(aq)}^{2+} + 10CO_{2(g)} + 8H_2 O_{(l)}$$

- 1) ما هما الثنائيتان Ox/Red الداخلتان في التفاعل؟.
 - 2) أكتب جدول تقدم التفاعل .

- 3) هل المزيج الابتدائي ستكيومتري ؟
- $[CO_2] = 0.15 5[MnO_4^-]$: t بين أنه في أي لحظة (4

لمتابعة التفاعل نأخذ خلال أزمنة مختلفة t حجما t حجما $V_0=10m$ من المزيج ، ثم نعاير كمية مادة شوارد البرمنغنات C=0 المتبقية t بواسطة محلول لكبريتات الحديد الثنائي t المتبقية t t التركيز t التركيز t التركيز t المتبقية t

. $\left(Fe^{3+}_{(aq)}/Fe^{2+}_{(aq)}
ight)$. تعطى الثنائية . 0,25mol/L

- 5) أكتب معادلة تفاعل المعايرة.
- V_0 و C بدلالة V_E عرف التكافؤ ، ثم استنتج عبارة حجم محلول كبريتات الحديد الثنائي المضاف عند التكافؤ ، ثم استنتج عبارة حجم محلول كبريتات الحديد الثنائي المضاف عند التكافؤ V_E و MnO_{-}^{-} و MnO_{-}^{-}
 - 3-الشكل $V_E=f(t)$ قسناً حجم التكافؤ خلال أزمنة مختلفة t ثم تم رسم المنحنى (7
 - . t=90s عند اللحظة CO_2 عند السرعة الحجمية لتشكل أ-
 - . t=90s عند اللحظة $Mn^{2+}_{(aq)}$ عند اللحظة ب
 - ج- عرف زمن نصف التفاعل $t_{1/2}$ ثم حدد قيمته .

التمرين(6)

في محلول مائي، و عند درجة الحرارة $T=20^{\circ}C$ ، يتفاعل الماء الأوكسيجيني مع شوارد اليود $I^{-}_{(aq)}$ وفق المعادلة $H_2O_2(aq)+2I^{-}(aq)+2H_3O^{+}(aq)=I_2(aq)+4H_2O(\ell)$ الكيميائية التالية:

المحلول المائي لثنائي اليود (aq) يتميز بلون بني في حين المحلول المائي ليود الهيدروجين

عند اللحظة t=0 نحضر مزيجا تفاعليا و ذلك بمزج:

- . $C_1 = \, 56 \, mo\ell/m^3$ حجم $V_1 = 5,0.\, 10^{-5} \, m^3$ حجم $V_1 = 5,0.\, 10^{-5} \, m^3$ حجم
- من محلول يود البوتاسيوم ($K^+(aq)+I^-(aq)$) من محلول يود البوتاسيوم ($V_2=5,0.\,10^{-5}\,m^3$ حجم . $C_2=2 imes10^2\,mo\ell/m^3$
- حجم $V_3=1,0.10^{-6}\,m^3$ من محلول حمض الكبريت ($2H_3O^+(aq)+SO_4^{2-}(aq)$) من محلول حمض الكبريت . $C_3=6\times 10^3\,mo\ell/m^3$

،
$$\lambda_{SO_4^{2-}}=8 imes10^{-3} ext{S.}\,m^2/mo\ell$$
 : يعطى $\lambda_{K^+}=7{,}35 imes10^{-3} ext{S.}\,m^2/mo\ell$

$$\lambda_{I^{-}} = 7,68 \times 10^{-3} \text{S.} \, m^{2} / mo\ell$$

 $\lambda_{H_{3}O^{+}} = 35 \times 10^{-3} \text{S.} \, m^{2} / mo\ell$

- 1) كيف يمكن التأكد تجريبيا بأن التفاعل بطيء ؟
- من خلال معادلة التفاعل، تعرف على التنائيتين (2 ox/Red) المتدخلتين في هذا التفاعل.

$$n_0(H_2O_2) = 2.8 \times 10^{-3} mo\ell$$
 تحقق أن (3 $n_0(I^-) = 1.0 \times 10^{-2} mo\ell$ و $n_0(H_3O^+) = 1.2 \times 10^{-2} mo\ell$

. χ_{max} انجز جدو لا لتقدم التفاعل الكيميائي ثم حدد التقدم الأعظمي χ_{max}

- $\sigma = 6.1 845 x$ باستغلال جدول التقدم بين أن الناقلية النوعية في المزيج عند اللحظة t تحقق العلاقة $\sigma = 6.1 845 x$. (S/m) . والناقلية النوعية $\sigma = 6.1 845 x$. تقدم التفاعل بالمول $\sigma = 6.1 845 x$.
 - . استنتج σ_f الناقلية النوعية في نهاية التحول (6
 - . $\sigma = f(t)$ يمثل المنحنى (الشكل-1) تغيرات الناقلية النوعية بدلالة الزمن (7
 - . $t_{1/2}$ حدد زمن نصف التفاعل عدد (أ
 - . $v_{vol}=-rac{1}{845 V_T}rac{d\sigma}{dt}$ بين أن عبارة السرعة الحجمية للتفاعل تكتب على الشكل عبارة السرعة الحجمية التفاعل بين أن عبارة السرعة الحجمية التفاعل المتعام
 - . t=0 عند السرعة السرعة المحمية عند $mo\ell.m^{-3}$. min^{-1}

التمرين (7)

. $I_{2(aq)}$ مادة مطهرة تباع عند الصيدليات مكونها الأساسي هو ثنائي اليود Lugol

نغمر صفيحة من الزنك $Zn_{(s)}$ كتلتها m_0 في كأس يحتوي على حجم V من الليكول حيث التركيز الابتدائي اثنائي اليود C_0 التحول الكيميائي بين الليكول و الزنك بطيء و تام.

- 1) كيف يمكن التّأكد تجريبيا من أنّ التفاعل بطيء؟.
- I_2/I^- اكتب معادلة تفاعل الأكسدة و الا رجاع الحادث ثم ضع جدو لا لتقدم التفاعل . تعطى الثنائيتان I_2/I^- و Zn^{2+}/Zn .
 - . $n_{Zn} = V[I_2] + \frac{m_0}{M_{Zn}} C_0 V$: قرن التقدم بيّن أنّ (3
 - 4) بواسطة تقنية خاصة تمكّنا من رسم المنحنيين البيانيين التاليين:

اعتمادا على الشكلين (1) و (2) اجب على الأسئلة التالية:

- أ) استنتج المتفاعل المحدّ.
- . $n_{Zn}=f(I_2)$ ب) اكتب معادلة البيان (ب
- . C_0 عV ، x_{max} من کلاّ من ج
 - د) زمن نصف التفاعل $t_{1/2}$ د
- . $v_{vol} = -rac{1}{V.M_{Zn}} imes rac{dm_{Zn}}{dt}$ بيّن أن السرعة الحجمية للتفاعل تعطى بالعبارة التالية imes (5

. t = 0 احسب قيمة السرعة الحجمية للتفاعل عند اللحظة

. $M_{Zn}=65g/mol$: نعطی

<u>التمرين (8)</u>

نمزج عند اللحظة t=0 حجما V_1 من محلول مائي لبيروكسوديكبريتات البوتاسيوم V_1 حجما V_2 حجما V_3 من محلول يود البوتاسيوم V_4 من محلول يود البوتاسيوم V_2 عجم V_3 من محلول يود البوتاسيوم V_4 من محلول يود البوتاسيوم V_4 من محلول يود البوتاسيوم V_4 من محلول يود البوتاسيوم أن مختلفة V_4 من محلول يود البوتاسيوم أن مختلفة أن تحصلنا على البيان V_4 على البيان V_4 من محلول يود البوتاسيوم أن مختلفة أن مختلفة أن البيان V_4 من محلول يود البوتاسيوم أن مختلفة أن مختلفة أن البيان V_4 من محلول يود البوتاسيوم أن مختلفة أن مختلف

1) إذا عُلمت أن الثنائيتين الداخلتين في التحول الكيميائي الحاصل هما:

 $(I_{2(aq)}/I_{(aq)}^{-})_{\mathcal{S}}(S_{2}O_{8(aq)}^{2-}/SO_{4(aq)}^{2-})$

- أ) أكتب معادلة تفاعل الأكسدة الإرجاعية المنمذج للتحول الكيميائي الحاصل.
 - ب)أنجز جدول تقدم التفاعل.
 - 2) اعتمادا على البيان:
 - أ) استنتج التركيز المولي C_2 لمحلول يود البوتاسيوم .
 - ب)حدد المتفاعل المحد علما أن التفاعل تام .
 - ج) استنتج قيمة التقدم الأعظمي xmax .
 - 3) من البيان
- أ) استنتج قيمة سرعة اختفاء شوارد اليود $\left(I^-_{(aq)}
 ight)$ عند اللحظة t=1min

- . C_1 استنتج قيمة الحجم V_1 لمحلول بيروكسوديكبريتات البوتاسيوم و تركيزه المولي ج
 - . $t_{1/2}$ عرف زمن نصف التفاعل (4
- . $n_{I^-}(t_{1/2}) = \frac{n_0(I^-) + n_f(I^-)}{2}$: بين أن كمية مادة شوار د اليود عند اللحظة $t_{1/2}$ تعطى بالعلاقة والمادة أن كمية مادة أن كمية مادة أن كمية مادة أن كمية المادة المادة أن كمية المادة أن كمية أن ك
 - . $t_{1/2}$ قيمة (6

التمرين(9<u>)</u>

لغرض المتابعة الزمنية للتحول الكيميائي المنمذج بالمعادلة:

$$2Al_{(s)} + 6H_3O_{(aq)}^+ = 2Al_{(aq)}^{3+} + 3H_{2(g)} + 6H_2O_{(l)}$$

عن طريق قياس الناقلية ، عند درجة حرارة 25^0c نضع في بيشر كتلة m=27mg من الألمنيوم ونضيف V=20ml ونضيف اليها عند اللحظة t=0 حجما V=20ml من محلول حمض كلور الماء V=20ml تركيزه المولي C=0.012mol/l

t ونتابع تغيرات الناقلية النوعية σ بدلالة الزمن فتحصانا على البيان الموضح الشكل .

- مثل جدو لا لتقدم التفاعل .
- . للمزيج $\sigma(t)$ المزيج للمزيج) للمزيج
- . $\sigma(t) = -1.01 \times 10^4 x + 0.511$: بين أن (3
 - $Al_{(aq)}^{3+}$ و $H_3O_{(aq)}^+$: فوجد كمية المادة لكل من t=6min عند اللحظة
- بين أن سرعة التفاعل في هذه الحالة تعطى بالعلاقة : $v=-\frac{1}{1,01\times 10^4} imes \frac{d\sigma}{dt}$
- t=6min وأوجد قيمة سرعة التفاعل عند اللحظة أوجد تعطى عند درجة حرارة $25^{0}c$:

 $\lambda(Al_{(aq)}^{3+}) = 4 \times 10^{-3} sm^2/mol$ $\lambda(H_3 O_{(aq)}^+) = 35 \times 10^{-3} sm^2/mol$ M(Al) = 27g/mol $\lambda(Cl_{(aq)}^-) = 7.6 \times 10^{-3} sm^2/mol$

بطاقة التلميذ ع م2

① تطور كميات المتفاعلات والنواتج خلال تحول كيميائي

 $H_2O_{2(aq)}$ في وسط حمضي بواسطة الماء الأكسجيني أكسدة شوارد اليود اليود أ $I_{(aq)}$

أثناء مزج محلولي الماء الأكسجيني H_2O_2 (aq) و يود البوتاسيوم $(K^+ + I^-)_{(aq)}$ يحدث تحول كيميائي بطيء (التفاعل $(M^+ + I^-)_{(aq)}$).

 $m H_2O_{2(aq)}$ / $m H_2O_{(\ell)}$ و $m I_{2(aq)}$ / $m I^-_{(aq)}$ الثنائيتان مرجع/مؤكسد الداخلتان في التفاعل هما:

- 1- أكتب معادلة التفاعل المنمذجة لهذا التحول.
 - 2 كيف يتغير لون المحلول ؟

Ⅱ- المبدأ:

لتعيين كمية مادة ثنائي اليود الناتج في الوسط التفاعلي عند لحظة زمنية (t) نستعمل المعايرة اللونية. من أجل هذا نستعمل محلول ثيوكبريتات الصوديوم $(2Na^+ + S_2O_3^{2-})_{(aq)}$ عديم اللون تركيزه المولي $(2Na^+ + S_2O_3^{2-})_{(aq)}$ معلوم .

- $I_{2(aq)} / I_{(aq)}^{-}$ المعادلة المنمذجة لتفاعل المعايرة (التفاعل \mathbb{Q}) علما أن الثنائيتان مرجع/مؤكسد هما: $S_4 O_{6(aq)}^{2-} / S_2 O_{3(aq)}^{2-}$ و $S_4 O_{6(aq)}^{2-} / S_2 O_{3(aq)}^{2-}$
 - 2- أنشئ جدول التقدم لتفاعل المعايرة (التفاعل 2).
 - 3 أكتب عبارة التقدم الأعظمي عند التكافؤ.
 - . (الحجم المضاف عند التكافؤ). $V_{\scriptscriptstyle E}$ و $V_{\scriptscriptstyle E}$ الحجم المضاف عند التكافؤ).
 - 5- عندما نأخذ عينة من الوسط التفاعلي (التفاعل ١٠) لمعايرتها هل التفاعل بين الماء الأكسجيني
 - و شوارد اليود $I_{(aq)}^{-}$ يتوقف أم يتواصل ؟ اشرح ذلك. $H_2 O_{2(aq)}$
 - صتمر؟ اليود معايرة نوع كيميائي ثنائي اليود $I_{2(aq)}$ في هذه التجربة وهو في حالة تطور مستمر? -6

III- البروتوكول التجريبي:

أ – المحاليل:

	محلول الماء الأكسجيني (S_1)	محلول يود البوتاسيوم (\mathbb{S}_2)	محلول حمض الكبريت		
	$\mathrm{H_{2}O_{2(aq)}}$	$(K^++I^-)_{aq}$	المركز (2H ⁺ +SO ₄ ²⁻)		
V(mL)	V ₁ =50	V ₂ =50	1		
C(mol/L) التركيز	$C_1 = 0.056$	$C_2 = 0.2$	3		

ب- الوسائل:

- قارورة عيارية سعتها 50mL . - قمع.

- مال.- حامل.

- سحاحة 25mL .

- ماصة : عيارية مدرجة سعتها: 1mL ، 5mL . - ميقاتية .

– اجاصة مص .

ج - التجربة:

-1 أذكر خطوات العمل في التجربة -1

2 في رأيك هل لون الوسط التفاعلي يتطور بنفس الطريقة في الأنابيب العشرة -2

3- أذكر البروتوكول التجريبي للمعايرة.

 $S_2{
m O}_{3~{
m (aq)}}^{2-}$ ، $I^-_{{
m (aq)}}$ كل عينة. -4

% المستعمل ($2H^{+} + SO_{4}^{2-}$) المستعمل -5

6- أنشئ جدول تقدم التفاعل الخاص بالتحول الكيميائي الذي يحدث بين ثنائي اليود والماء الأكسجيني.

7 - لخص نتائج قياسات المعايرة في الجدول التالي:

t(s)	0	60	160	270	360	510	720	900	1080	1440	1800
$V_{\acute{eq}}(mL)$											

8- أحسب عند اللحظة t = 360 كمية مادة كل نوع من الانواع الكيميائية المتواجدة في العينة و لخصها في جدول.

9- أ / أكمل الجدول:

t(s)						
$n_{(I_2)}(mmo\ell)$						
$n_{(H_2O_2)}(mmo\ell)$						
$n_{(I^-)}(mmo\ell)$						

 ${\bf n}({\bf I}^{\hbox{-}})={\bf f}_{{}_3}({\bf t})$ ، ${\bf n}({\bf H}_{{}_2}{\bf O}_{{}_2})={\bf f}_{{}_2}({\bf t})$ ، ${\bf n}({\bf I}_{{}_2})={\bf f}_{{}_1}({\bf t})$: - ب/ مثل البیانات