- The Transition to Grandparenthood: No Consistent Evidence for Change in
 the Big Five Personality Traits and Life Satisfaction
- Author1^{1,2,3}, Author2⁴, Author3⁵, and Author4^{1,3}
- ¹Institution1
- ⁵ Institution 2
- 3 Institution 3
- 4 Institution4
- ⁵Institution5

9 Author Note

10

- 11 Authornote1
- 12 Authornote2
- 13 Authornote3
- Authornote4
- The authors made the following contributions. Author1: Conceptualization, Data
- ¹⁶ Curation, Formal Analysis, Methodology, Visualization, Writing Original Draft
- 17 Preparation, Writing Review & Editing; Author2: Methodology, Writing Review &
- Editing; Author3: Methodology, Writing Review & Editing; Author4: Supervision,
- 19 Methodology, Writing Review & Editing.
- 20 Correspondence concerning this article should be addressed to Author1, Address1.
- E-mail: Email1

22 Abstract

Intergenerational relations have received increased attention in the context of population 23 aging and increased childcare provision by grandparents. However, few studies have investigated the psychological consequences of becoming a grandparent. For the Big Five 25 personality traits, the transition to grandparenthood has been proposed as a developmental task in middle adulthood and old age that contributes to personality development through the adoption of a new role—in line with the social investment principle. In this preregistered study, we used nationally representative panel data from the Netherlands (N=520) and the United States (N=2,239) to analyze first-time grandparents' development of the Big Five and life satisfaction in terms of mean-level changes, interindividual 31 differences in change, and rank-order stability. We tested gender, paid work, and 32 grandchild care as moderators of change trajectories. To address confounding bias, we 33 employed propensity score matching using two procedures: matching grandparents with parents and with nonparents to achieve balance in different sets of carefully selected 35 covariates. Longitudinal multilevel models demonstrated relative stability in the Big Five 36 and life satisfaction over the transition to grandparenthood, and no consistent moderation 37 effects. The few small effects of grandparenthood on personality development did not replicate across samples. Contrary to expectations, we also found no consistent evidence of larger interindividual differences in change in grandparents compared to the controls or of lower rank-order stability. Our findings add to recent critical re-examinations of the social investment principle and are discussed in light of characteristics of grandparenthood that might moderate personality development.

Keywords: grandparenthood, Big Five, life satisfaction, development, propensity score matching

The Transition to Grandparenthood: No Consistent Evidence for Change in the Big Five Personality Traits and Life Satisfaction

Becoming a grandparent is an important life event for many people in midlife or old 48 age (Infurna et al., 2020). At the same time, there is considerable heterogeneity in how intensely grandparents are involved in their grandchildren's lives and care (Meyer & Kandic, 2017). In an era of population aging, the time that grandparents are alive and in good health during grandparenthood is prolonged compared to previous generations (Bengtson, 2001; Leopold & Skopek, 2015; Margolis & Wright, 2017). In addition, grandparents fulfill an increased share of childcare responsibilities (Hayslip et al., 2019; Pilkauskas et al., 2020). Thus, intergenerational relations have received heightened attention from psychological and sociological research in recent years (Bengtson, 2001; Coall & Hertwig, 2011; Fingerman et al., 2020). In the research on personality 57 development, the transition to grandparenthood has been posited as an important developmental task arising in old age (Hutteman et al., 2014). However, empirical research on the psychological consequences of grandparenthood still remains sparse. Testing hypotheses derived from neo-socioanalytic theory (Roberts & Wood, 2006) in a prospective 61 matched control-group design (see Luhmann et al., 2014), we investigate whether the transition to grandparenthood affects the Big Five personality traits and life satisfaction using data from two nationally representative panel studies.

Personality Development in Middle Adulthood and Old Age

The life span perspective conceptualizes aging as a lifelong process of development and adaptation (Baltes et al., 2006). Research embedded in this perspective has found personality traits to be subject to change across the entire life span (Costa et al., 2019; Graham et al., 2020; Specht, 2017; Specht et al., 2014; for recent reviews, see Bleidorn et al., 2021; Roberts & Yoon, 2021). Although a majority of personality development takes place in adolescence and emerging adulthood (Bleidorn & Schwaba, 2017; Pusch et al.,

```
2019; Schwaba & Bleidorn, 2018), evidence has accumulated that personality traits also
   undergo changes in middle and old adulthood (e.g., Allemand et al., 2008; Damian et al.,
73
   2019; Kandler et al., 2015; Lucas & Donnellan, 2011; Mõttus et al., 2012; Mueller et al.,
74
   2016; Seifert et al., 2021; Wagner et al., 2016; for a review, see Specht, 2017).
75
          Here, we examine the Big Five personality traits—agreeableness, conscientiousness,
76
   extraversion, neuroticism, and openness to experience—which constitute a broad
77
   categorization of universal patterns of thought, affect, and behavior (John et al., 2008;
78
   John & Srivastava, 1999). Changes over time in the Big Five occur both in mean trait
   levels (i.e., mean-level change; Roberts et al., 2006) and in the ordering of people relative
   to each other on trait dimensions (i.e., rank-order stability; Anusic & Schimmack, 2016;
   Roberts & DelVecchio, 2000). A lack of observed changes in mean trait levels does not
82
   necessarily mean that individual trait levels are stable over time, and perfect rank-order
   stability does not preclude mean-level changes. Mean-level changes in early to middle
   adulthood (circa 30–60 years old; Hutteman et al., 2014) are typically characterized by
   greater maturity, as evidenced by increased agreeableness and conscientiousness and
   decreased neuroticism (Damian et al., 2019; Roberts et al., 2006). In old age (circa 60
   years and older; Hutteman et al., 2014), research is generally more sparse, but there is
   some evidence of a reversal of the maturity effect following retirement (sometimes termed
   la dolce vita effect; Asselmann & Specht, 2021; Marsh et al., 2013; cf. Schwaba & Bleidorn,
90
   2019) and at the end of life when health problems arise (Wagner et al., 2016).
91
          In terms of rank-order stability, most prior studies have shown support for an
92
   inverted U-shape trajectory (Ardelt, 2000; Lucas & Donnellan, 2011; Seifert et al., 2021;
93
   Specht et al., 2011; Wortman et al., 2012): Rank-order stability rises until it reaches a
   plateau in midlife, and decreases in old age. However, evidence is mixed on whether
   rank-order stability actually decreases again in old age (see Costa et al., 2019; Wagner et
   al., 2019). Nonetheless, the previously held view that personality is stable or "set like
   plaster" (Specht, 2017, p. 64) after one reaches adulthood (or leaves emerging adulthood
```

behind; Bleidorn & Schwaba, 2017) has been largely abandoned (Specht et al., 2014).

Theories explaining the mechanisms of personality development in middle 100 adulthood and old age emphasize genetic influences and life experiences as interdependent 101 sources of stability and change (Bleidorn et al., 2021; Specht et al., 2014; Wagner et al., 102 2020). We conceptualize the transition to grandparenthood as a life experience involving 103 the adoption of a new social role according to the social investment principle of 104 neo-socioanalytic theory (Lodi-Smith & Roberts, 2007; Roberts & Wood, 2006). The social 105 investment principle states that normative life events or transitions such as entering the 106 work force or becoming a parent lead to personality maturation through the adoption of 107 new social roles (Roberts et al., 2005). These new roles encourage or compel people to act 108 in a more agreeable, conscientious, and emotionally stable (i.e., less neurotic) way, and 109 people's experiences in these roles as well as societal expectations towards them are 110 hypothesized to drive long-term personality development (Lodi-Smith & Roberts, 2007; 111 Wrzus & Roberts, 2017). Conversely, consistent social roles foster personality stability. 112 The paradoxical theory of personality coherence (Caspi & Moffitt, 1993) offers a 113 complimentary perspective on personality development through role transitions: It assumes 114 that trait change is more likely whenever people transition into unknown environments 115 where pre-existing behavioral responses are no longer appropriate and social expectations 116 give clear indications how to behave instead. Environments that provide no clear guidance 117 on how to behave favor stability. The finding that age-graded, normative life experiences, 118 such as the transition to grandparenthood, drive personality development would therefore 119 also be in line with the paradoxical theory of personality coherence (see Specht et al., 2014). 120 Empirically, certain life events such as the first romantic relationship (Wagner et al., 121 2015), the transition from high school to university, or the first job (Asselmann & Specht, 122 2021; Golle et al., 2019; Lüdtke et al., 2011) have been found to co-occur with mean-level 123 changes that are (partly) consistent with the social investment principle (for a review, see 124 Bleidorn et al., 2018). However, recent findings on the transition to parenthood fail to

125

support the social investment principle (Asselmann & Specht, 2020b; van Scheppingen et al., 2016). An analysis of trajectories of the Big Five before and after eight life events produced limited support for the social investment principle: Small increases in emotional stability occurred following the transition to employment but not in the other traits or following the other life events theoretically linked to social investment (Denissen et al., 2019).

Overall, much remains unknown about the environmental factors that underlie 132 personality development in middle adulthood and old age. Recent research on retirement 133 offers an indication that age-graded, normative life experiences contribute to change 134 following a period of relative stability in midlife (Bleidorn & Schwaba, 2018; Schwaba & 135 Bleidorn, 2019). These results are only partly in line with the social investment principle in 136 terms of mean-level changes and display substantial interindividual differences in change trajectories. Schwaba and Bleidorn described retirement as a "divestment" of social roles 138 (2019, p. 660) that functions differently than social investment, which adds a role (another 139 paper introduced the term personality relaxation in this context; see Asselmann & Specht, 2021). Grandparenthood could represent a psychological investment in a new role in 141 middle adulthood and old age—given that grandparents have regular contact with their 142 grandchild and actively take part in childcare (Lodi-Smith & Roberts, 2007). 143

144 Grandparenthood

The transition to grandparenthood can be described as a time-discrete life event marking the beginning of one's status as a grandparent (Luhmann et al., 2012). In terms of characteristics of major life events (Luhmann et al., 2020), the transition to grandparenthood stands out in that it is externally caused (by one's children; see also Arpino, Gumà, et al., 2018; Margolis & Verdery, 2019), but also predictable as soon as children reveal their family planning or pregnancy. The transition to grandparenthood has been labeled a countertransition due to this lack of direct control over its timing (Hagestad

¹⁵² & Neugarten, 1985; as cited in Arpino, Gumà, et al., 2018). Grandparenthood is also generally positive in valence and emotionally significant if the grandparent maintains a good relationship with their child.

Grandparenthood can be characterized as a developmental task (Hutteman et al... 155 2014) that generally takes place in (early) old age, although this varies considerably both 156 within and between cultures (Leopold & Skopek, 2015; Skopek & Leopold, 2017). Still, the 157 period in which parents experience the birth of their first grandchild coincides with the end 158 of (relative) personality stability in midlife (Specht, 2017), when retirement, shifting social 159 roles, and initial cognitive and health declines can disrupt life circumstances, setting 160 processes of personality development in motion (e.g., Mueller et al., 2016; Stephan et al., 161 2014). As a developmental task, grandparenthood is considered part of a normative 162 sequence of aging that is subject to societal expectations and values that differ across cultures and historical time (Baltes et al., 2006; Hutteman et al., 2014). Mastering developmental tasks (i.e., fulfilling roles and expectations) is hypothesized to drive 165 personality development towards maturation similarly to propositions of the social 166 investment principle, that is, leading to higher levels of agreeableness and 167 conscientiousness, and lower levels of neuroticism (Roberts et al., 2005; Roberts & Wood, 168 2006). Grandparent's investments in their grandchildren have been discussed as beneficial 169 in terms of the evolutionary, economic, and sociological advantages they provide for the 170 intergenerational family structure (Coall et al., 2018; Coall & Hertwig, 2011). 171

In comparison to the transition to parenthood, which has been found to be
ambivalent in terms of both personality maturation and life satisfaction (Aassve et al.,
2021; Johnson & Rodgers, 2006; Krämer & Rodgers, 2020; van Scheppingen et al., 2016),
Hutteman et al. (2014) hypothesize that the transition to grandparenthood is positive
because it (usually) does not impose the stressful demands of daily childcare on
grandparents. However, societal expectations about how grandparents should behave are
less clearly defined than expectations around parenthood, and depend heavily on the

degree of possible grandparental investment (Lodi-Smith & Roberts, 2007)—how close
grandparents live to their children, the quality of their relationship, and sociodemographic
factors that create conflicting role demands (Bordone et al., 2017; Lumsdaine & Vermeer,
2015; Silverstein & Marenco, 2001; cf. Muller & Litwin, 2011). In the entire population of
first-time grandparents, this diversity of role investments might generate pronounced
interindividual differences in intraindividual personality change.

While we could not find prior studies investigating the development of the Big Five 185 over the transition to grandparenthood, there is some evidence of changes in life 186 satisfaction across the transition to grandparenthood. In cross-sectional studies, 187 grandparents who provide grandchild care or have close relationships with their older 188 grandchildren often have higher life satisfaction (e.g., Mahne & Huxhold, 2014; Triadó et 189 al., 2014). There are a few longitudinal studies but they have produced conflicting conclusions: Studies using data from the Survey of Health, Ageing and Retirement in 191 Europe (SHARE) showed that the birth of a grandchild was followed by improvements in 192 quality of life and life satisfaction, but only among women (Tanskanen et al., 2019) and 193 only in first-time grandmothers via their daughters (Di Gessa et al., 2019). Several studies 194 demonstrated that grandparents who were actively involved in childcare experienced larger 195 increases in life satisfaction (Arpino, Bordone, et al., 2018; Danielsbacka et al., 2019; 196 Danielsbacka & Tanskanen, 2016). On the other hand, fixed effects regression models¹ 197 using SHARE data did not find any effects of first-time grandparenthood on life 198 satisfaction regardless of grandparental investment and only minor decreases in depressive 199 symptoms in grandmothers (Sheppard & Monden, 2019). 200

In a similar vein, some prospective studies have reported beneficial effects of the transition to grandparenthood and of grandparental childcare investment on various health measures, especially in women (Chung & Park, 2018; Condon et al., 2018; Di Gessa et al.,

201

202

203

 $^{^1}$ Fixed effects regression models rely exclusively on within-person variance (see Brüderl & Ludwig, 2015; McNeish & Kelley, 2019).

2016a, 2016b). Again, the beneficial effects of grandparenthood on self-rated health did not persist in fixed effects analyses, such as Ates's (2017) analysis of longitudinal data from the German Aging Survey (DEAS).

We are not aware of any study investigating trait rank-order stability over the
transition to grandparenthood. Other life events are associated with rank-order stability of
personality and well-being, although only certain events and traits (e.g., Denissen et al.,
2019; Hentschel et al., 2017; Specht et al., 2011). Altogether, evidence is lacking on the Big
Five and inconclusive on life satisfaction (and related measures) which might be due to
different methodological approaches that do not always account for confounding (i.e.,
selection effects).

214 Methodological Considerations

Effects of life events on psychological traits generally tend to be small and need to 215 be properly analyzed using robust, prospective designs and appropriate control groups 216 (Bleidorn et al., 2018; Luhmann et al., 2014). This is necessary because pre-existing 217 differences between prospective grandparents and non-grandparents in variables related to 218 the development of the Big Five or life satisfaction introduce confounding bias when 219 estimating the effects of the transition to grandparenthood (VanderWeele et al., 2020). The impact of adjusting (or not adjusting) for pre-existing differences, or background 221 characteristics, was recently emphasized in the prediction of life outcomes from personality in a mega-analytic framework of ten large panel studies (Beck & Jackson, 2021). 223 Propensity score matching is one technique to account for confounding bias by equating 224 groups in their estimated propensity to experience the event (Thoemmes & Kim, 2011). 225 This propensity is calculated from regressing the so-called treatment variable (indicating 226 whether someone experienced the event) on covariates related to the likelihood of 227 experiencing the event and to the outcomes. This approach addresses confounding bias by 228 creating balance between the groups in the covariates used to calculate the propensity 229

score (Stuart, 2010). 230

255

We adopt a prospective design that tests the effects of becoming first-time 231 grandparents against two propensity-score-matched control groups separately: first, parents 232 (but not grandparents) with at least one child of reproductive age, and, second, 233 nonparents. Adopting two control groups allows us to disentangle potential effects 234 attributable to becoming a grandparent from effects attributable to already being a parent 235 (i.e., parents who eventually become grandparents might share additional similarities with 236 parents who do not). Thus, we are able to address selection effects into grandparenthood 237 more comprehensively than previous research and we cover the first two of three causal 238 pathways to not experiencing grandparenthood pointed out in demographic research 230 (Margolis & Verdery, 2019): childlessness, childlessness of one's children, and not living 240 long enough to become a grandparent. Our comparative design controls for average age-related and historical trends in the Big Five traits and life satisfaction (Luhmann et al., 2014). The design also enables us to report effects of the transition to grandparenthood unconfounded by instrumentation effects, which describe the tendency of reporting lower well-being scores with each repeated measurement (Baird et al., 2010). 245 We improve upon previous longitudinal studies using matched control groups (e.g., 246 Anusic et al., 2014a, 2014b; Yap et al., 2012) by matching at a specific time point before 247 the transition to grandparenthood (i.e., at least two years beforehand) and not based on 248 individual survey years. This design choice ensures that the covariates involved in the 249 matching procedure are not already influenced by the event or anticipation of it 250 (Greenland, 2003; Rosenbaum, 1984; VanderWeele, 2019; VanderWeele et al., 2020), 251 thereby reducing the risk of introducing confounding through collider bias (Elwert & 252 Winship, 2014). Similar approaches in the study of life events have been adopted in recent 253 studies (Balbo & Arpino, 2016; Krämer & Rodgers, 2020; van Scheppingen & Leopold, 254 2020).

6 Current Study

267

268

270

278

279

280

In the current study, we examine the development of the Big Five personality traits across the transition to grandparenthood in a prospective, quasi-experimental design, thereby extending previous research on the effects of this transition on well-being to psychological development in a more general sense. We also revisit the development of life satisfaction, which we define as the general, cognitive appraisal of one's well-being in life based on subjective criteria (Eid & Larsen, 2008). Three research questions motivate the current study which—to our knowledge—is the first to analyze Big Five personality development over the transition to grandparenthood:

- 1. What are the effects of the transition to grandparenthood on mean-level trajectories of the Big Five traits and life satisfaction?
 - 2. How large are interindividual differences in intraindividual change for the Big Five traits and life satisfaction over the transition to grandparenthood?
 - 3. How does the transition to grandparenthood affect rank-order stability of the Big Five traits and life satisfaction?

To address these questions, we used two nationally representative panel data sets and compared grandparents' development over the transition to grandparenthood with that of matched respondents who did not become grandparents during the study period (Luhmann et al., 2014). Informed by the social investment principle and previous research on personality development in middle adulthood and old age, we preregistered the following hypotheses (see blinded file *Preregistration.pdf* on https://osf.io/75a4r/?view_only=ac929a2c41fb4afd9d1a64a3909848d0):

• H1a: Following the birth of their first grandchild, grandparents increase in agreeableness and conscientiousness, and decrease in neuroticism compared to the matched control groups of parents (but not grandparents) and nonparents. We do

- not expect the groups to differ in their trajectories of extraversion and openness to experience.
 - H1b: Grandparents' post-transition increases in agreeableness and conscientiousness, and decreases in neuroticism are more pronounced among those who provide substantial grandchild care.
 - H1c: Grandmothers increase in life satisfaction following the transition to grandparenthood as compared to the matched control groups but grandfathers do not.
 - H2: Individual differences in intraindividual change in the Big Five and life satisfaction are larger in the grandparent group than the control groups.
 - H3: Compared to the matched control groups, grandparents' rank-order stability of the Big Five and life satisfaction over the transition to grandparenthood is smaller.

Finally, commitments to other institutions necessarily constrain the amount of possible grandparental investment. Thus, exploratorily, we probe the moderator *performing* paid work, which could constitute a potential role conflict among grandparents.

295 Methods

296 Samples

283

284

285

286

287

288

280

290

291

To evaluate these hypotheses, we used data from two population-representative 297 panel studies: the Longitudinal Internet Studies for the Social Sciences (LISS) panel from 298 the Netherlands, and the Health and Retirement Study (HRS) from the United States. 290 The LISS panel is a representative sample of the Dutch population initiated in 2008 300 with data collection still ongoing (Scherpenzeel, 2011; van der Laan, 2009). It is administered by Centerdata (Tilburg University). The survey population is a true probability sample of households drawn from the population register (Scherpenzeel & Das, 2010). While roughly half of invited households consented to participate, refresher samples were drawn to oversample previously underrepresented groups using information about 305 response rates and their association with demographic variables (see 306

https://www.lissdata.nl/about-panel/sample-and-recruitment/). Data collection was
carried out online, and respondents were provided the technical equipment if needed. We
included yearly assessments from 2008 to 2020 as well as basic demographics assessed
monthly. For later coding of covariates from these monthly demographic data we used the
first available assessment in each year.

The HRS is an ongoing population-representative study of older adults in the 312 United States (Sonnega et al., 2014) administered by the Survey Research Center 313 (University of Michigan). Initiated in 1992 with a first cohort of individuals aged 51-61 and 314 their spouses, the study has since been expanded through additional cohorts (see 315 https://hrs.isr.umich.edu/documentation/survey-design/). In addition to the biennial 316 in-person or telephone interview, since 2006 the study has included a leave-behind 317 questionnaire covering psychosocial topics including the Big Five personality traits and life 318 satisfaction. These topics, however, were only administered every four years starting in 319 2006 for one half of the sample and in 2008 for the other half. We included personality data from 2006 to 2018, all available data for the coding of the transition to grandparenthood 321 from 1996 to 2018, as well as covariate data from 2006 to 2018 including variables drawn 322 from the Imputations File and the Family Data (only available up to 2014).

These two panel studies provided the advantage that they contained several waves 324 of personality data as well as information on grandparent status and a broad range of 325 covariates. While the HRS provided a large sample with a wider age range, the LISS was 326 smaller and younger but provided more frequent personality assessments spaced every one 327 to two years. Included grandparents from the LISS were younger because grandparenthood 328 questions were part of the Work and Schooling module and—for reasons unknown to 329 us—filtered to respondents performing paid work. Thus, older, retired first-time 330 grandparents from the LISS could not be identified. Even though we have published using 331 the LISS and HRS data before (see preregistration, 332

https://osf.io/75a4r/?view only=ac929a2c41fb4afd9d1a64a3909848d0), these publications

333

do not overlap with the current study in the focus on grandparenthood.² The present study used de-identified archival data available in the public domain, which meant that it was not necessary to obtain ethical approval from an IRB.

337 Measures

338 Personality

```
In the LISS, the Big Five personality traits were assessed using the 50-item version
339
   of the IPIP Big Five Inventory scales (Goldberg, 1992). For each trait, respondents
340
   answered ten 5-point Likert-scale items (1 = very inaccurate, 2 = moderately inaccurate, 3
341
    = neither inaccurate nor accurate, 4 = moderately accurate, 5 = very accurate). Example
342
   items included "like order" (conscientiousness), "sympathize with others' feelings"
343
    (agreeableness), "worry about things" (neuroticism), "have a vivid imagination" (openness
   to experience), and "start conversations" (extraversion). In each wave, we took a
345
   respondent's mean of each subscale as their trait score. Internal consistencies at the time of
   matching, as indicated by \omega_h (McNeish, 2018), averaged \omega_h = 0.70 over all traits (\omega_t =
347
   0.89; \alpha = 0.83; see Table S1). Other studies have shown measurement invariance for these
348
   scales across time and age groups, and convergent validity with the Big Five Inventory
349
    (BFI-2; Schwaba & Bleidorn, 2018; Denissen et al., 2020). The Big Five and life
350
   satisfaction were administered yearly but with planned missingness in some years for
351
   certain cohorts (see Denissen et al., 2019).
352
           In the HRS, the Midlife Development Inventory (MIDI) scales measured the Big
353
   Five (Lachman & Weaver, 1997) with 26 adjectives (five each for conscientiousness,
354
    agreeableness, and extraversion; four for neuroticism; seven for openness to experience).
355
   Respondents were asked to rate on a 4-point scale how well each item described them (1 =
356
    a lot, 2 = some, 3 = a little, 4 = not at all). Example adjectives included "organized"
357
```

² Publications using LISS data can be searched at https://www.dataarchive.lissdata.nl/publications/. Publications using HRS data can be searched at https://hrs.isr.umich.edu/publications/biblio/.

```
(conscientiousness), "sympathetic" (agreeableness), "worrying" (neuroticism),
"imaginative" (openness to experience), and "talkative" (extraversion). For better
comparability with the LISS panel, we reverse-scored all items so that higher values
corresponded to higher trait levels and, in each wave, took the mean of each subscale as the
trait score. Big Five trait scores showed satisfactory internal consistencies at the time of
matching that averaged \omega_h = 0.63 over all traits (\omega_t = 0.80; \omega_h = 0.72; see Table S1).
```

${\it Life \ Satisfaction}$

In both samples, life satisfaction was assessed using the 5-item Satisfaction with Life 365 Scale (SWLS; Diener et al., 1985) which respondents answered on a 7-point Likert scale (1 366 = strongly disagree, 2 = somewhat disagree, 3 = slightly disagree, 4 = neither agree or 367 disagree, 5 = slightly agree, 6 = somewhat agree, 7 = strongly agree)³. An example item 368 was "I am satisfied with my life". Internal consistency at the time of matching was $\alpha =$ 369 0.91 in the LISS with the parent control sample ($\alpha = 0.88$ with the nonparent control 370 sample), and $\alpha = 0.90$ in the HRS with the parent control sample ($\alpha = 0.90$ with the 371 nonparent control sample). 372

373 Transition to Grandparenthood

The procedure to obtain information on the transition to grandparenthood generally followed the same steps in both samples. This coding was based on items that differed slightly, however: In the LISS, respondents performing paid work were asked "Do you have children and/or grandchildren?" and were offered the answer categories "children", "grandchildren", and "no children or grandchildren". In the HRS, all respondents were asked to state their total number of grandchildren: "Altogether, how many grandchildren do you (or your husband / wife / partner, or your late husband / wife / partner) have?

Include as grandchildren any children of your (or your [late] husband's / wife's / partner's)

³ In the LISS, the "somewhat" was omitted and instead of "or", "nor" was used.

biological, step- or adopted children".⁴

In both samples, we tracked grandparenthood status over time. Due to longitudinally inconsistent data in some cases, we included in the grandparent group only respondents with one transition from 0 (no grandchildren) to 1 (at least one grandchild) in this status variable, and no transitions backwards (see Figure 1). We marked respondents who consistently indicated that they had no grandchildren as potential members of the control groups.

Based on insights from previous research, we tested three variables as potential

89 Moderators

390

moderators of the mean-level trajectories of the Big Five and life satisfaction over the 391 transition to grandparenthood: First, we analyzed whether female gender (0 = male, 1 =392 female) acted as a moderator as indicated by research on life satisfaction (Di Gessa et al., 393 2019; Tanskanen et al., 2019). 394 Second, we tested whether performing paid work (0 = no, 1 = yes) was associated 395 with divergent trajectories of the Big Five and life satisfaction (Schwaba & Bleidorn, 2019). 396 Since the LISS subsample consisted solely of respondents performing paid work, we 397 performed these analyses only in the HRS. This served two purposes. On the one hand, it allowed us to test how respondents in the workforce differed from those not working, which might shed light on role conflict and have implications for social investment mechanisms. On the other hand, these moderation analyses allowed us to assess whether potential 401 differences in results between the LISS and HRS samples could be accounted for by 402 including performing paid work as a moderator in HRS analyses. In other words, perhaps 403 the results in the HRS respondents performing paid work were similar to those seen in the 404 LISS sample, which had already been conditioned on this variable through filtering in the 405 questionnaire. 406

⁴ The listing of biological, step-, or adopted children has been added since wave 2006.

Participant Flowchart

Figure 1

Participant flowchart demonstrating the composition of the four analysis samples via matching (1:4 matching ratio with replacement). obs. = longitudinal observations.

Third, we examined how involvement in grandchild care moderated trajectories of 407 the Big Five and life satisfaction (Arpino, Bordone, et al., 2018; Danielsbacka et al., 2019; 408 Danielsbacka & Tanskanen, 2016). We coded a moderator variable (0 = provided less than409 100 hours of grandchild care, 1 = provided 100 or more hours of grandchild care) based on 410 the question "Did you (or your [late] husband / wife / partner) spend 100 or more hours in 411 total since the last interview / in the last two years taking care of grand- or great 412 grandchildren?". This information was only available for grandparents in the HRS: in the 413 LISS, too few respondents answered respective follow-up questions to be included in 414 analyses. 415

416 Procedure

Drawing on all available data, three main restrictions defined the final analysis 417 samples of grandparents (see Figure 1): First, we identified respondents who indicated 418 having grandchildren for the first time during study participation ($N_{LISS} = 380; N_{HRS} =$ 419 3273, including HRS waves 1996-2004 before personality assessments were introduced). 420 Second, we restricted the sample to respondents with at least one valid personality 421 assessment (valid in the sense that at least one of the six outcomes was non-missing; 422 $N_{LISS} = 378$; $N_{HRS} = 1703$). Third, we included only respondents with both one valid personality assessment before and one after the transition to grandparenthood (N_{LISS} = 424 283; $N_{HRS} = 860$). Finally, a few respondents were excluded because of inconsistent or 425 missing information regarding their children resulting in the final analysis samples of 426 first-time grandparents, $N_{LISS} = 282$ (54.61% female; age at transition to grandparenthood 427 M = 58.29, SD = 4.87) and $N_{HRS} = 847$ (54.90% female; age at transition to 428 grandparenthood M = 61.80, SD = 6.87).

⁵ Dichotomization of a continuous construct (hours of care) is not ideal for moderation analysis (MacCallum et al., 2002). However, there were too many missing values in the variable assessing hours of care continuously (variables *E063).

⁶ We also excluded N = 30 HRS grandparents in a previous step who reported unrealistically high numbers of grandchildren (> 10) in their first assessment following the transition to grandparenthood.

We defined two pools of potential control subjects to be involved in the matching 430 procedure: The first comprised parents who had at least one child of reproductive age 431 (defined as $15 \leq age_{firstborn} \leq 65$) but no grandchildren during the observation period 432 $(N_{LISS} = 853 \text{ with } 3846 \text{ longitudinal observations}; N_{HRS} = 1485 \text{ with } 2703 \text{ longitudinal }$ 433 observations). The second comprised respondents who reported being childless throughout 434 the observation period ($N_{LISS} = 986$ with 4906 longitudinal observations; $N_{HRS} = 1340$ 435 with 2346 longitudinal observations). The two control groups were, thus, by definition 436 mutually exclusive. 437

438 Covariates

To match each grandparent with the control respondent from each pool of potential controls who was most similar in terms of the included covariates, we used propensity score matching.

Although critical to the design, covariate selection has seldom been explicitly 442 discussed in studies estimating effects of life events (e.g., in matching designs). We see two 443 (in part conflicting) traditions that address covariate selection: First, classic 444 recommendations from psychology are to include all available variables that are associated 445 with both the treatment assignment process (i.e., selection into treatment) and the outcome (e.g., Steiner et al., 2010; Stuart, 2010). Second, recommendations from a structural causal modeling perspective (Elwert & Winship, 2014; Rohrer, 2018) are more cautious, aiming to avoid pitfalls such as conditioning on a pre-treatment collider (collider bias) or a mediator 449 (overcontrol bias). Structural causal modeling, however, requires advanced knowledge of 450 the causal structures underlying the involved variables (Pearl, 2009). 451 In selecting covariates, we followed the guidelines of VanderWeele et al. (2019; 452 2020), which reconcile both views and offer practical guidance when the underlying causal 453

structures are not completely understood and when using large archival datasets. The
 "modified disjunctive cause criterion" (VanderWeele, 2019, p. 218) recommends selecting

```
all available covariates which are assumed to be causes of the outcomes, treatment
456
   exposure (i.e., the transition to grandparenthood), or both, as well as any proxies for an
457
    unmeasured common cause of the outcomes and treatment exposure. Variables that are
458
    assumed to be instrumental variables (i.e., assumed causes of treatment exposure that are
459
    unrelated to the outcomes except through the exposure) and collider variables (Elwert &
460
    Winship, 2014) should be excluded from this selection. Because all covariates we used for
461
    matching were measured at least two years before the birth of the grandchild, we judge the
462
   risk of introducing collider bias or overcontrol bias to be relatively small. In addition, as
463
    mentioned above, the event of transition to grandparenthood is not planned by or under
464
   the direct control of the grandparents, which further reduces the risk of these biases.
465
           Following these guidelines, we selected covariates covering respondents'
466
   demographics (e.g., age, education), economic situation (e.g., income), and health (e.g.,
   mobility difficulties). We also included the pre-transition outcome variables as
   covariates—as recommended in the literature (Cook et al., 2020; Hallberg et al., 2018;
   Steiner et al., 2010; VanderWeele et al., 2020), as well as wave participation count and
   assessment year in order to control for instrumentation effects and historical trends (e.g.,
471
   2008/2009 financial crisis; Baird et al., 2010; Luhmann et al., 2014). To match
    grandparents with the parent control group, we additionally selected covariates containing
473
   information on fertility and family history (e.g., number of children, age of first three
474
    children) which were causally related to the timing of the transition to grandparenthood
475
    (Arpino, Gumà, et al., 2018; Margolis & Verdery, 2019).
476
           An overview of all covariates we used to compute the propensity scores can be found
477
   in the supplemental materials (see Tables S5 & S6). Importantly, as part of our
478
    preregistration we also provided a justification for each covariate explaining whether we
479
    assumed it to be related to the treatment assignment, the outcomes, or both (see
480
    qp-covariates-overview.xlsx on
481
   https://osf.io/75a4r/?view only=ac929a2c41fb4afd9d1a64a3909848d0). We tried to find
```

substantively equivalent covariates in both samples but had to compromise in a few cases (e.g., children's educational level only in HRS vs. children living at home only in LISS).

Estimating propensity scores required complete covariate data. Therefore, we 485 performed multiple imputations in order to account for missingness in our covariates 486 (Greenland & Finkle, 1995). Using five imputed data sets computed by classification and 487 regression trees (CART; Burgette & Reiter, 2010) in the mice R package (van Buuren & 488 Groothuis-Oudshoorn, 2011), we predicted treatment assignment (i.e., the transition to 480 grandparenthood) five times per observation in logistic regressions with a logit link 490 function. We averaged these five scores per observation to compute the final propensity 491 score to be used for matching (Mitra & Reiter, 2016). We used imputed data only for 492 propensity score computation and not in later analyses because nonresponse in the 493 outcome variables was negligible.

495 Propensity Score Matching

The time of matching preceded the survey year in which the transition to 496 grandparenthood was first reported by at least two years (aside from that choosing the 497 smallest available gap between matching and transition). This ensured that the covariates 498 were not affected by the event itself or anticipation thereof (i.e., matching occurred well before children would have announced that they were expecting their first child; Greenland, 500 2003; Rosenbaum, 1984; VanderWeele et al., 2020). Propensity score matching was performed using the MatchIt R package (Ho et al., 2011) with exact matching on gender 502 combined with Mahalanobis distance matching on the propensity score. Four matchings 503 were performed; two per sample (LISS; HRS) and two per control group (parents; 504 nonparents). We matched 1:4 with replacement because of the relatively small pools of 505 available controls. This meant that each grandparent was matched with four control 506

⁷ In these logistic regressions, we included all covariates listed above as predictors except for *female*, which was later used for exact matching, and health-related covariates in LISS wave 2014, which were not assessed in that wave.

observations in each matching procedure, and that control observations were allowed to be used multiple times for matching.⁸ We did not specify a caliper because our goal was to find matches for all grandparents, and because we achieved good covariate balance this way.

We evaluated the matching procedure in terms of covariate balance and, graphically,
in terms of overlap of the distributions of the propensity score (Stuart, 2010). Covariate
balance as indicated by the standardized difference in means between the grandparent and
the controls after matching was good (see Tables S5 & S6), lying below 0.25 as
recommended in the literature (Stuart, 2010), and below 0.10 with few exceptions (Austin,
2011). Graphically, group differences in the distribution of propensity scores were small
and indicated no substantial missing overlap (see Figure S1).

After matching, each matched control observation was assigned the same value as
the matched grandparent in the *time* variable describing the temporal relation to
treatment, and the control respondent's other longitudinal observations were centered
around this matched observation. We thus coded a counterfactual transition time frame for
each control respondent. Due to left- and right-censored longitudinal data (i.e., panel entry
or attrition), we restricted the final analysis samples to six years before and six years after
the transition, as shown in Table 1.

The final LISS analysis samples (see Figure 1) contained 282 grandparents with 1591 longitudinal observations, matched with 1128 control respondents with either 6288 (parent control group) or 6290 longitudinal observations (nonparent control group). The final HRS analysis samples contained 847 grandparents with 2264 longitudinal

⁸ In the LISS, 282 grandparent observations were matched with 1128 control observations; these control observations corresponded to 561 unique person-year observations stemming from 281 unique respondents for the parent control group, and to 523 unique person-year observations stemming from 194 unique respondents for the nonparent control group. In the HRS, 847 grandparent observations were matched with 3388 control observations; these control observations corresponded to 1363 unique person-year observations stemming from 978 unique respondents for the parent control group, and to 1039 unique person-year observations stemming from 712 unique respondents for the nonparent control group.

Table 1

Longitudinal Sample Size in the Analysis Samples and Coding Scheme for the Piecewise Regression Coefficients.

		-P ₁	Pre-transition years	tion yes	ırs				Post-tı	Post-transition years	ı years		
	9-	쟌	4-	-3	-2	-	0	₩	2	3	4	ಬ	9
LISS: Analysis samples													
Grandparents: obs.	105	66	122	137	171	155	170	149	130	117	91	74	71
Grandparents: % women	50.48	52.53	54.92	51.09	57.89	00.09	48.82	53.69	53.08	52.99	50.55	62.16	59.15
Parent controls: obs.	337	469	465	675	838	486	483	532	452	446	457	331	317
Parent controls: % women	57.57	52.88	56.99	51.26	56.56	55.56	53.42	55.26	53.54	50.45	52.30	57.40	58.04
Nonparent controls: obs.	313	445	456	669	863	470	495	558	400	522	470	307	292
Nonparent controls: % women	42.81	55.73	55.04	53.36	56.43	54.68	51.72	54.12	52.25	57.09	50.21	46.91	56.51
LISS: Coding scheme													
Before-slope	0	П	2	က	4	ಬ	ಬ	ಬ	ಬ	ಬ	2	ಬ	ಬ
After-slope	0	0	0	0	0	0	Н	2	က	4	ರ	9	7
Shift	0	0	0	0	0	0	П	П	1	1	П	1	1
HRS: Analysis samples													
Grandparents: obs.	162		389		461		381		444		195		232
Grandparents: % women	57.41		54.24		55.53		54.07		55.41		56.41		53.45
Parent controls: obs.	647		1544		1844		1230		1492		703		998
Parent controls: % women	51.62		54.15		55.53		54.55		56.90		52.77		58.08
Nonparent controls: obs.	999		1545		1845		1203		1464		289		819
Nonparent controls: % women	56.61		54.17		55.50		56.36		58.13		57.21		61.66
HRS: Coding scheme													
Before-slope	0		1		2		2		2		2		2
After-slope	0		0		0		П		2		ဘ		4
Shift	0		0		0		1		1		1		1

Note. obs. = observations. time = 0 marks the first year where the transition to grandparenthood has been reported. The number of grandparent respondents included in the final samples is $N_{LISS} = 282$ and $N_{HRS} = 847$.

observations, matched with 3388 control respondents with either 8326 (parent control group) or 8229 longitudinal observations (nonparent control group). In the HRS, there
were a few additional missing values in the outcomes ranging from 19 to 99 longitudinal
observations, which were listwise deleted in the respective analyses.

Transparency and Openness

We used R (Version 4.0.4; R Core Team, 2021) and the R-packages lme4 (Version 534 1.1.27.1; Bates et al., 2015), and lmerTest (Version 3.1.3; Kuznetsova et al., 2017) for multilevel modeling, as well as tidyverse (Wickham, Averick, Bryan, Chang, McGowan, 536 François, et al., 2019) for data wrangling, and papaja (Aust & Barth, 2020) for 537 reproducible manuscript production. A complete list of software we used is provided in the 538 supplemental materials. The preregistration and scripts for data wrangling, analyses, and 539 to reproduce this manuscript⁹ can be found on the OSF 540 (https://osf.io/75a4r/?view_only=ac929a2c41fb4afd9d1a64a3909848d0) and on GitHub 541 (https://github.com/ [blinded]). LISS and HRS data are available online after registering 542 accounts. Following Benjamin et al. (2018), we set the α -level for confirmatory analyses to 543 .005. 544

45 Analytical Strategy

Our design can be referred to as an interrupted time series with a "nonequivalent 546 no-treatment control group" (Shadish et al., 2002, p. 182) where treatment, that is, the 547 transition to grandparenthood, is not deliberately manipulated. First, to analyze 548 mean-level changes (research question 1), we used linear piecewise regression coefficients in 549 multilevel models with person-year observations nested within respondents and households 550 (Hoffman, 2015). To model change over time in relation to the transition to 551 grandparenthood, we coded three piecewise regression coefficients: a before-slope 552 representing linear change in the years leading up to the transition to grandparenthood, an 553

⁹ We also provide "Instructions to Reproduce.pdf" on the OSF.

after-slope representing linear change in the years after the transition, and a shift
coefficient, shifting the intercept directly after the transition was first reported, thus
representing sudden changes that go beyond changes already modeled by the after-slope
(see Table 1 for the coding scheme of these coefficients). Other studies of personality
development have recently adopted similar piecewise coefficients (e.g., Schwaba & Bleidorn,
2019; Krämer & Rodgers, 2020; van Scheppingen & Leopold, 2020).

All effects of the transition to grandparenthood on the Big Five and life satisfaction 560 were modeled as deviations from patterns in the matched control groups by interacting the 561 three piecewise coefficients with the treatment variable (0 = control, 1 = grandparent). In 562 additional models, we interacted these coefficients with the moderator variables, resulting 563 in two- and three-way interactions. To test differences in the growth parameters between 564 two groups in cases where these differences were represented by multiple fixed-effects coefficients, we defined linear contrasts using the linear Hypothesis command from the car package (Fox & Weisberg, 2019). All models of mean-level changes were estimated using 567 maximum likelihood and included random intercepts but no random slopes. We included 568 the propensity score as a level-2 covariate for a double-robust approach (Austin, 2017). 569 Model equations can be found in the supplemental materials. 570

Second, to assess interindividual differences in change (research question 2), we added random slopes to the models. In other words, we allowed for differences between individuals in their trajectories of change to be modeled, that is, differences in the before-slope, after-slope, and shift coefficients. Because multiple simultaneous random slopes are often not computationally feasible, we added random slopes one at a time and used likelihood ratio tests to determine whether the addition of the respective random

 $^{^{10}}$ As an additional robustness check, we re-estimated the mean-level trajectories after further restricting the analysis time frame by excluding time points earlier than two years before the transition (i.e., before the latest time of matching). This served the purpose of assessing whether including time points from before matching (as preregistered) would distort the trajectories in any way. However, results were highly similar across all outcomes (see $gp_restricted_models.pdf$ on https://osf.io/75a4r/?view_only=ac929a2c41fb4afd9d1a64a3909848d0).

slope led to a significant improvement in model fit. To statistically test differences in the
random slope variance between the grandparent group and each control group, we
respecified the models as heterogeneous variance models using the *nlme* R package
(Pinheiro et al., 2021), which allowed for separate random slope variances to be estimated
in the grandparent group and the control group within the same model. We compared the
fit of these heterogeneous variance models to corresponding models with a homogeneous
(single) random slope variance using likelihood ratio tests.

Third, to examine rank-order stability in the Big Five and life satisfaction over the 584 transition to grandparenthood (research question 3), we computed the test-retest 585 correlation of measurements prior to the transition to grandparenthood (at the time of 586 matching) and the first available measurement afterwards. To test differences in test-retest 587 correlations between grandparents and either of the control groups, we entered the pre-treatment measure, the treatment variable (0 = control, 1 = qrandparent), and their interaction into regression models predicting the Big Five and life satisfaction. The interaction tests for significant differences in the rank-order stability between those who 591 experienced the transition to grandparenthood and those who did not (see Denissen et al., 592 2019; McCrae, 1993).

594 Results

Throughout the results section, we referred to statistical tests with .005 as suggestive evidence as stated in our preregistration.

Descriptive Results

597

Means and standard deviations of the Big Five and life satisfaction over the
analyzed time points are presented in Tables S3 and S4. Visually represented (see Figures
S2-S7), all six outcomes display marked stability over time in both LISS and HRS.
Intra-class correlations (see Table S2) show that large portions of the total variance in the
Big Five could be explained by nesting in respondents (median = 0.75), while nesting in

- LISS: Grandparents vs. Parents
- LISS: Grandparents vs. Nonparents
- HRS: Grandparents vs. Parents
- HRS: Grandparents vs. Nonparents

Figure 2

Unstandardized Effect Sizes of the Basic Models Across Analysis Samples (Regression Coefficients $\hat{\gamma}$ or Linear Contrasts $\hat{\gamma}_c$ From Multilevel Models, see Tables 2, S7, S13, S14, S19, S20, S27, S28, S35, S36, S43, S44). Error Bars Represent 95% Confidence Intervals.

households only accounted for minor portions of the total variance (ICC_{hid} , median = 0.03). For outcome-subsample combinations with ICC_{hid} below 0.05 we omitted the household nesting factor from all models to bypass computational errors—a small deviation from our preregistration. For life satisfaction, the nesting in households accounted for slightly larger portions of the total variance (median = 0.37) than nesting in respondents (median = 0.30). Across all outcomes, the proportion of variance due to within-person factors was relatively low (median = 0.23).

- LISS: Grandparents vs. Parents
- LISS: Grandparents vs. Nonparents
- HRS: Grandparents vs. Parents
- → HRS: Grandparents vs. Nonparents

Figure 3

Unstandardized Effect Sizes of the Models Including the Gender Interaction Across Analysis Samples (Regression Coefficients $\hat{\gamma}$ or Linear Contrasts $\hat{\gamma}_c$ From Multilevel Models, see Tables 3, S8, S15, S16, S21, S22, S29, S30, S37, S38, S45, S46). Error Bars Represent 95% Confidence Intervals.

610 Mean-Level Changes

Figures 2 and 3 summarize the effects of the basic (i.e., unmoderated) models and those including the gender interaction for all outcomes and across the four analysis samples.

613 Agreeableness

In the basic models (see Tables 2 & S7 and Figure 4), we found no evidence that 614 grandparents increased as compared to the controls (suggestive evidence in the LISS parent 615 sample: $\hat{\gamma}_{21} = 0.01, 95\%$ CI [0.00, 0.02], p = .030). The models including the gender 616 interaction (see Tables 3 & S8 and Figure 4) indicated that grandfathers slightly increased 617 in agreeableness as compared to the parent controls (LISS: $\hat{\gamma}_{21} = 0.02$, 95% CI [0.01, 0.04], 618 p = .002; suggestive evidence in the HRS: $\hat{\gamma}_{21} = 0.03, 95\%$ CI [0.01, 0.05], p = .008), 619 whereas grandmothers did not differ from the female controls. There was no consistent evidence for moderation by paid work (see Tables S9 & S10 621 and Figure S8) or by providing substantial grandchild care (see Tables S11 & S12 and Figure S9).

 Table 2

 Fixed Effects of Agreeableness Over the Transition to Grandparenthood.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	<≻	95% CI	t	<i>d</i>	⟨~	95% CI	t	d
SSIT								
$\text{Intercept, } \hat{\gamma}_{00}$	3.86	[3.80, 3.91]	135.36	< .001	3.90	[3.83, 3.96]	116.54	< .001
Propensity score, $\hat{\gamma}_{02}$	90.0	[0.01, 0.12]	2.18	.029	0.02	[-0.04, 0.08]	0.71	.478
	0.00	[-0.01, 0.00]	-0.90	.368	0.00	[-0.01, 0.00]	-1.52	.130
After-slope, $\hat{\gamma}_{20}$	-0.01	[-0.01, -0.01]	-4.30	< .001	0.00	[0.00, 0.01]	0.88	.377
Shift, $\hat{\gamma}_{30}$	0.01	[-0.01, 0.03]	1.05	.292	0.00	[-0.03, 0.02]	-0.10	.924
Grandparent, $\hat{\gamma}_{01}$	0.04	[-0.04, 0.12]	0.93	.351	0.01	[-0.08, 0.10]	0.27	.788
Before-slope * Grandparent, $\hat{\gamma}_{11}$	-0.01	[-0.02, 0.01]	-1.07	.283	0.00	[-0.02, 0.01]	-0.57	.568
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.01	[0.00, 0.02]	2.17	.030	0.00	[-0.01, 0.01]	-0.07	.943
Shift * Grandparent, $\hat{\gamma}_{31}$	0.00	[-0.04, 0.05]	0.19	.847	0.02	[-0.04, 0.07]	0.00	.551
HRS								
Intercept, $\hat{\gamma}_{00}$	3.47	[3.44, 3.51]	198.85	< .001	3.49		167.64	< .001
Propensity score, $\hat{\gamma}_{02}$	0.08	[0.02, 0.14]	2.51	.012	0.07		2.23	0.026
Before-slope, $\hat{\gamma}_{10}$	0.00	[-0.01, 0.01]	-0.21	.833	-0.01		-2.77	900.
After-slope, $\hat{\gamma}_{20}$	-0.01	[-0.02, 0.00]	-2.50	.012	-0.01		-3.16	.002
Shift, $\hat{\gamma}_{30}$	0.01	[-0.01, 0.03]	0.07	.506	0.02		2.39	.017
$\text{Grandparent, } \hat{\gamma}_{01}$	0.01	[-0.04, 0.07]	0.49	.627	-0.01		-0.38	902.
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.00	[-0.03, 0.02]	-0.19	.852	0.01	[-0.01, 0.03]	0.89	.375
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.01	[0.00, 0.03]	1.57	.116	0.01		1.91	.057
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.01	[-0.05, 0.04]	-0.36	.717	-0.03		-1.15	.251

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval.

Fixed Effects of Agreeableness Over the Transition to Grandparenthood Moderated by Gender.

Table 3

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	<i>∞</i>	95% CI	t	<i>d</i>	«≻	95% CI	t	d
LISS								
Intercept, $\hat{\gamma}_{00}$	3.65	[3.58, 3.73]	93.57	< .001	3.65	[3.56, 3.74]	79.53	< .001
Propensity score, $\hat{\gamma}_{04}$	0.07	[0.01, 0.12]	2.37	.018	0.04	[-0.02, 0.10]	1.37	.172
Before-slope, $\hat{\gamma}_{10}$	0.00	[-0.01, 0.00]	-0.97	.333	0.00	[0.00, 0.01]	0.91	.364
After-slope, $\hat{\gamma}_{20}$	-0.02	[-0.02, -0.01]	-5.09	< .001	0.00	[-0.01, 0.01]	-0.49	.625
Shift, $\hat{\gamma}_{30}$	0.02	[-0.01, 0.06]	1.37	.172	0.01	[-0.02, 0.05]	0.81	.417
Grandparent, $\hat{\gamma}_{01}$	0.04	[-0.07, 0.16]	0.72	.473	0.05	[-0.07, 0.17]	0.78	.434
	0.37	[0.27, 0.47]	7.09	< .001	0.44	[0.32, 0.56]	7.24	< .001
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.00	[-0.02, 0.01]	-0.52	.602	-0.01	[-0.03, 0.01]	-1.22	.221
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.02	[0.01, 0.04]	3.11	.002	0.01	[-0.01, 0.02]	1.03	.301
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.03	[-0.10, 0.05]	-0.71	.475	-0.02	[-0.10, 0.06]	-0.48	.635
Before-slope * Female, $\hat{\gamma}_{12}$	0.00	[-0.01, 0.01]	0.54	.592	-0.02	[-0.03, -0.01]	-2.82	002
After-slope * Female, $\hat{\gamma}_{22}$	0.01	[0.00, 0.02]	2.94	.003	0.01	[0.00, 0.02]	1.51	.132
Shift * Female, $\hat{\gamma}_{32}$	-0.02	[-0.07, 0.02]	-0.88	.377	-0.03	[-0.08, 0.02]	-1.16	.244
Grandparent * Female, $\hat{\gamma}_{03}$	0.00	[-0.15,0.16]	0.03	977	-0.07	[-0.23, 0.10]	-0.78	.436
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	0.00	[-0.03, 0.02]	-0.32	.751	0.02	[-0.01, 0.04]	1.20	.231
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	-0.02	[-0.04, 0.00]	-2.24	.025	-0.02	[-0.04, 0.00]	-1.51	.130
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	0.06	[-0.04, 0.16]	1.21	.227	0.07	[-0.04, 0.18]	1.26	.209
HRS								
Intercept, $\hat{\gamma}_{00}$	3.29	[3.24, 3.34]	135.53	< .001	3.39	[3.34, 3.44]	124.23	< .001
Propensity score, $\hat{\gamma}_{04}$	0.09	[0.03, 0.15]	2.97	.003	0.06	[-0.01, 0.12]	1.77	920.
Before-slope, $\hat{\gamma}_{10}$	0.01	[-0.01, 0.03]	1.22	.223	-0.02	[-0.04, -0.01]	-2.86	.004
After-slope, $\hat{\gamma}_{20}$	-0.02	[-0.03, -0.01]	-3.20	.001	-0.01	[-0.02, 0.01]	-0.99	.320
Shift, $\hat{\gamma}_{30}$	0.04	[0.01, 0.08]	2.83	.005	0.01	[-0.02, 0.04]	0.39	.700
Grandparent, $\hat{\gamma}_{01}$	0.06	[-0.02, 0.14]	1.57	.116	-0.03	[-0.11, 0.05]	-0.65	.514
Female, $\hat{\gamma}_{02}$	0.32	[0.26, 0.38]	10.44	< .001	0.21	[0.14, 0.27]	6.08	< .001
Before-slope * Grandparent, $\hat{\gamma}_{11}$	-0.03	[-0.06, 0.01]	-1.42	.157	0.01	[-0.03, 0.04]	0.29	.772
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.03	[0.01, 0.05]	2.65	800.	0.02	[0.00, 0.04]	1.71	.087
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.05	[-0.12, 0.01]	-1.53	.126	-0.02	[-0.08, 0.05]	-0.46	.648
Before-slope * Female, $\hat{\gamma}_{12}$	-0.02	[-0.04, 0.00]	-2.01	.044	0.02	[-0.01, 0.04]	1.46	.145
After-slope * Female, $\hat{\gamma}_{22}$	0.01	[0.00, 0.03]	2.05	.040	-0.01	[-0.02, 0.00]	-1.35	.178
Shift * Female, $\hat{\gamma}_{32}$	-0.07	[-0.11, -0.03]	-3.16	.002	0.03	[-0.01, 0.07]	1.50	.135

Table 3 continued

		Parent controls	ıtrols			Nonparent controls	ontrols	
Parameter	⋄	95% CI	t	d	Ŷ	95% CI	t	d
Grandparent * Female, $\hat{\gamma}_{03}$	-0.09	[-0.19, 0.02]	-1.66	860.	0.03	[-0.08, 0.13]	0.48	.632
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	0.05	[0.00, 0.10]	1.84	290.	0.01	[-0.04, 0.06]	0.37	.713
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	-0.03	[-0.07, 0.00]	-2.14	.033	-0.01	[-0.04, 0.02]	-0.66	.512
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	0.08	[-0.01, 0.17]	1.74	.082	-0.02	[-0.10, 0.07]	-0.34	.737

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval.

626 Conscientiousness

We no differences between grandparents and both parent and nonparent controls in 627 their trajectories of conscientiousness (see Tables S13 & S14 and Figure S10). There was 628 only inconsistent evidence for a moderation by gender (see Tables S15 & S16 and Figure 629 S10): Grandfathers' conscientiousness decreased immediately following the transition to 630 grandparenthood as compared to male nonparents in the HRS, $[\hat{\gamma}_{21} + \hat{\gamma}_{31}] = -0.07, 95\%$ CI 631 [-0.11, -0.02], p = .004, but not in any of the other three analysis samples. 632 There were significant differences in conscientiousness depending on grandparents' 633 work status (see Tables 5 & S17 and Figure 6): non-working grandparents saw more 634 pronounced increases in conscientiousness in the years before the transition to 635 grandparenthood compared to non-working parent, $\hat{\gamma}_{21} = 0.08, 95\%$ CI [0.03, 0.13], p <636 .001, and nonparent controls, $\hat{\gamma}_{21} = 0.06$, 95% CI [0.02, 0.11], p = .004, and compared to 637 working grandparents (difference in before parameter; parents: $[\hat{\gamma}_{30} + \hat{\gamma}_{31}] = -0.08, 95\%$ CI 638 [-0.13, -0.03], p=.002; nonparents: $[\hat{\gamma}_{30}+\hat{\gamma}_{31}]=-0.08,\,95\%$ CI [-0.12, -0.03], p=.001). 630 Grandparents providing substantial grandchild care increased in conscientiousness to a 640 greater degree than the matched respondents (difference in after parameter; parents: $\hat{\gamma}_{21}$ 641 + $\hat{\gamma}_{31}]$ = 0.04, 95% CI [0.02, 0.06], p< .001; nonparents: $[\hat{\gamma}_{21}$ + $\hat{\gamma}_{31}]$ = 0.04, 95% CI [0.02, 642 [0.06], p < .001; see Tables 4 & S18 and Figure 5). There was only suggestive evidence that 643 grandparents who provided substantial grandchild care increased more strongly in 644 conscientiousness after the transition compared to grandparents who did not (difference in 645 after parameter; parents: $[\hat{\gamma}_{30} + \hat{\gamma}_{31}] = 0.03, 95\%$ CI [0.00, 0.06], p = .029; nonparents: $[\hat{\gamma}_{30}]$ $+ \hat{\gamma}_{31}$] = 0.03, 95% CI [0.01, 0.06], p = .019).

648 Extraversion

The trajectories of grandparents' extraversion closely followed those of the matched controls. There were no significant effects indicating differences between grandparents and controls in the basic models (see Tables S19 & S20 and Figure S11), the models including

Figure 4

Change trajectories of agreeableness based on the basic models (left column) and the models including the gender interaction (right column). The error bars are 95% confidence intervals of the predicted values, which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood.

- the gender interaction (see Tables S21 & S22 and Figure S11), the models of moderation by
- $_{653}$ paid work (see Tables S23 & S24 and Figure S12), or the models of moderation by
- $_{654}$ grandchild care (see Tables S25 & S26 and Figure S13).

Fixed Effects of Conscientiousness Over the Transition to Grandparenthood Moderated by Grandchild Table 4

Care.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	«≻	95% CI	t	d	√≻	95% CI	t	$\frac{d}{d}$
Intercept, $\hat{\gamma}_{00}$	3.43	[3.39, 3.47]	169.73	< .001	3.38	[3.33, 3.42]	141.47	< .001
Propensity score, $\hat{\gamma}_{02}$	0.03	[-0.04, 0.10]	0.82	.411	0.23	[0.16, 0.31]	6.14	< .001
After-slope, $\hat{\gamma}_{20}$	0.00	[-0.01, 0.01]	-0.66	.510	-0.01	[-0.02, 0.00]	-2.37	.018
Grandparent, $\hat{\gamma}_{01}$	0.01	[-0.05, 0.07]	0.44	659	-0.03	[-0.09, 0.03]	-0.89	.374
Caring, $\hat{\gamma}_{10}$	0.02	[-0.01, 0.06]	1.46	.143	0.01	[-0.02, 0.04]	0.74	.457
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.00	[-0.02, 0.02]	-0.16	877	0.01	[-0.01, 0.02]	0.55	.585
After-slope * Caring, $\hat{\gamma}_{30}$	-0.01	[-0.02, 0.00]	-1.51	.131	0.00	[-0.01, 0.01]	-0.24	807
Grandparent * Caring, $\hat{\gamma}_{11}$	-0.06	[-0.14, 0.02]	-1.54	.125	-0.06	[-0.14, 0.02]	-1.50	.134
After-slope * Grandparent * Caring, $\hat{\gamma}_{31}$	0.04	[0.01,0.07]	2.63	600.	0.03	[0.00,0.06]	2.20	.028

nonparent controls. CI = confidence interval. caring = 1 indicates more than 100 hours of grandchild Note. Two models were computed (only HRS): grandparents matched with parent controls and with care since the last assessment.

HRS

Figure 5

Change trajectories of conscientiousness based on the models of moderation by grandchild care (see Table 4). The error bars are 95% confidence intervals of the predicted values, which only account for the fixed-effects portion of the model. The plots in the left column are the same as in Figure S10 (basic models) but restricted to the post-transition period for better comparability.

Table 5

Fixed Effects of Conscientiousness Over the Transition to Grandparenthood Moderated by Performing Paid Work.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	Ŷ	95% CI	t	d	ŷ	95% CI	t	d
Intercept, $\hat{\gamma}_{00}$	3.40		169.21	< .001	3.39	[3.34, 3.43]	151.26	< .001
Propensity score, $\hat{\gamma}_{02}$	0.06		2.17	.030	0.13	[0.07, 0.19]	4.35	< .001
Before-slope, $\hat{\gamma}_{20}$	-0.01		-1.24	.215	0.00	[-0.01, 0.02]	0.48	.634
After-slope, $\hat{\gamma}_{40}$	0.00		-1.07	.284	-0.01	[-0.02, 0.00]	-2.59	600.
Shift, $\hat{\gamma}_{60}$	0.00		-0.07	.943	-0.05	[-0.08, -0.02]	-3.41	.001
Grandparent, $\hat{\gamma}_{01}$	-0.09		-2.04	.042	-0.10	[-0.19, -0.02]	-2.49	.013
Working, $\hat{\gamma}_{10}$	-0.01		-0.52	009.	-0.04	[-0.08, -0.01]	-2.41	.016
Before-slope * Grandparent, $\hat{\gamma}_{21}$	0.08		3.41	.001	90.0	[0.02, 0.11]	2.89	.004
After-slope * Grandparent, $\hat{\gamma}_{41}$	0.02		1.54	.124	0.02	[0.00, 0.04]	2.29	.022
Shift * Grandparent, $\hat{\gamma}_{61}$	-0.07		-1.96	020.	-0.02	[-0.08, 0.05]	-0.47	989.
Before-slope * Working, $\hat{\gamma}_{30}$	0.03		3.13	.002	0.00	[-0.02, 0.02]	0.02	.982
After-slope * Working, $\hat{\gamma}_{50}$	0.01		0.80	.422	0.01	[0.00, 0.03]	2.34	.019
Shift * Working, $\hat{\gamma}_{70}$	-0.02		-0.80	.422	0.07	[0.03, 0.11]	3.53	< .001
Grandparent * Working, $\hat{\gamma}_{11}$	0.16		3.57	< .001	0.19	[0.10, 0.27]	4.41	< .001
Before-slope * Grandparent * Working, $\hat{\gamma}_{31}$	-0.11		-4.04	< .001	-0.08	[-0.13, -0.03]	-2.98	.003
After-slope * Grandparent * Working, $\hat{\gamma}_{51}$	0.00		-0.27	.784	-0.01	[-0.04, 0.02]	-0.91	.363
Shift * Grandparent * Working, $\hat{\gamma}_{71}$	0.07	[-0.02, 0.16]	1.48	.140	-0.02	[-0.10, 0.07]	-0.44	829.

Note. Two models were computed (only HRS): grandparents matched with parent controls and with

nonparent controls. CI = confidence interval. working = 1 indicates being employed in paid work.

HRS

Figure 6

Change trajectories of conscientiousness based on the models of moderation by paid work (see Table 5). The error bars are 95% confidence intervals of the predicted values, which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood. The plots in the left column are the same as in Figure S10 (basic models) and added here for better comparability.

Neuroticism

The basic models for neuroticism (see Tables S27 & S28 and Figure S14) showed only minor differences between grandparents and matched controls: Compared to HRS

parent controls, HRS grandparents shifted slightly downward in their neuroticism 660 immediately after the transition to grandparenthood (difference in *shift* parameter: $[\hat{\gamma}_{21} +$ 661 $\hat{\gamma}_{31}$] = -0.07, 95% CI [-0.11, -0.02], p = .003; suggestive evidence in the nonparent sample: 662 $[\hat{\gamma}_{21} + \hat{\gamma}_{31}] = -0.05, 95\%$ CI [-0.09, 0.00], p = .042, which was not the case in the LISS 663 samples. The models including the gender interaction (see Tables S29 & S30 and Figure 664 S14) showed one significant effect in the comparison of grandparents and controls: In the 665 HRS, grandfathers, compared to male parent controls, shifted downward in neuroticism 666 directly after the transition to grandparenthood (difference in shift parameter: $[\hat{\gamma}_{21} + \hat{\gamma}_{31}]$ 667 = -0.15, 95% CI [-0.21, -0.08], p < .001). Thus, the effect present in the basic models 668 seemed to be mostly due to differences in the grandfathers (vs. male controls). 669 Grandparents' trajectories of neuroticism as compared to the controls were 670 significantly moderated by paid work in one instance (see Tables S31 & S32 and Figure S15): Compared to working controls, working grandparents increased more strongly in neuroticism in the years before the transition to grandparenthood (difference in before 673 parameter; parents: $[\hat{\gamma}_{21} + \hat{\gamma}_{31}] = 0.06, 95\%$ CI [0.02, 0.10], p = .001; nonparents: $[\hat{\gamma}_{21} + \hat{\gamma}_{31}] = 0.06$ 674 $\hat{\gamma}_{31}$] = 0.06, 95% CI [0.02, 0.09], p = .002). There was no evidence that grandparents 675 providing substantial grandchild care differed in neuroticism from grandparents who did 676 not (see Tables S33 & S34 and Figure S16). 677

678 Openness

For openness, we also found a high degree of similarity between grandparents and matched control respondents in their trajectories based on the basic models (see Tables S35 & S36 and Figure S17) and models including the gender interaction (see Tables S37 & S38 and Figure S17). Grandfathers in the HRS shifted downward in openness in the first assessment after the transition to grandparenthood to a greater extent than the male parent controls (difference in *shift* parameter: $[\hat{\gamma}_{21} + \hat{\gamma}_{31}] = -0.09$, 95% CI [-0.14, -0.03], p = 0.002). However, this was not the case in the other three analysis samples.

The analysis of moderation by performing paid work revealed only one significant 686 effect for openness trajectories (see Tables S39 & S40 and Figure S18): Non-working 687 grandparents increased more strongly in openness post-transition than non-working parent 688 controls ($\hat{\gamma}_{41}=0.04,\,95\%$ CI [0.02, 0.06], p<.001; suggestive evidence in the nonparent 689 sample: $\hat{\gamma}_{41} = 0.03, 95\%$ CI [0.01, 0.05], p = .015). The analysis of moderation by 690 grandchild care did not provide evidence for differences in openness between grandparents 691 providing substantial grandchild care and those who did not (see Tables S41 & S42 and 692 Figure S19). 693

694 Life Satisfaction

We found no consistent evidence that grandparents' life satisfaction trajectories
differed significantly from those of the controls in either the basic models (see Tables S43 &
S44 and Figure S20) or the models including the gender interaction (see Tables S45 & S46
and Figure S20). There was also no evidence of a moderation of life satisfaction by
performing paid work (see Tables S47 & S48 and Figure S21) or grandchild care (see Tables
S49 & S50 and Figure S22).

701 Interindividual Differences in Change

First, we conducted comparisons of model fit between the random intercept models reported previously and models where a random slope variance was estimated, separately for each change parameter. These comparisons showed a substantial amount of interindividual differences in change for all random slopes in all models, as indicated by increases in model fit significant at p < .001.

Second, we estimated models with heterogeneous random slope variances of the grandparents and each control group in order to test whether interindividual differences in change were significantly larger in the grandparents. Contrary to hypothesis H2, for agreeableness, conscientiousness, extraversion, and neuroticism, interindividual differences in intraindividual change were greater in the control group for all tested effects (see Tables S51, S52, S53, & S54). In the two HRS samples, assuming group heterogeneity in the random slope variances led to significant improvements in model fit in all model comparisons. In the two LISS samples, this was the case for around half the tests.

For openness, interindividual differences in change before the transition to grandparenthood were significantly greater in the HRS grandparents than the nonparent controls (random slope variances of the *before* parameter), *likelihood ratio* = 57.57, p < 0.001. This result could not be replicated in the other three samples, and the other parameters of change either did not differ between groups in their random slope variances or had significantly larger random slope variances in the respective control group (see Table S55).

We found larger interindividual differences in grandparents' changes in life satisfaction before the transition to grandparenthood compared to the nonparent controls in the HRS (random slope variances of the *before* parameter), *likelihood ratio* = 115.87, p < 0.001 (see Table S56). This was not corroborated in the other three analysis sample and, overall, the majority of tests for heterogeneous random slope variances in life satisfaction indicated either non-significant differences or significantly larger random slope variances in the control sample.

729 Rank-Order Stability

As indicators of rank-order stability, we computed test-retest correlations for the
Big Five and life satisfaction for the matched sample, and also separately for grandparents
only and controls only (see Table 6). In 5 out of 24 comparisons grandparents' test-retest
correlation was lower than that of the respective control group. However, differences in
rank-order stability between grandparents and control respondents did not reach
significance in any of these comparisons. Overall, we found no confirmatory evidence in
support of hypothesis H3.¹¹

¹¹ In addition to the preregistered retest interval, we also computed a maximally large retest interval between the first available pre-transition assessment and the last available post-transition assessment

737 Discussion

In an analysis of first-time grandparents in comparison with both parent and
nonparent matched control respondents, we found pronounced stability in the Big Five and
life satisfaction over the transition to grandparenthood. Although there were a few isolated
effects in line with our hypotheses on mean-level increases in agreeableness and
conscientiousness, and decreases in neuroticism (H1a), they were very small in size and also
not consistent over the two analyzed panel studies (LISS and HRS) or the two matched

within the observation period. Here, 3 out of 24 comparisons indicated that rank-order stability was lower in the grandparents. There was only one significant difference in rank-order stability in accordance with our hypothesis: HRS grandparents' rank-order stability in openness was lower than that of the nonparents, p < .001 (see Table S57). Another analysis also failed to provide convincing evidence that grandparents' rank-order stability was lower: We followed the preregistered approach but then excluded any duplicate control respondents resulting from matching with replacement who might bias results towards greater stability in the controls. Descriptively, 10 out of 24 comparisons showed lower rank-order stability in the grandparents compared to either control group (see Table S58). However, differences between groups were small and nonsignificant throughout.

Table 6
Rank-Order Stability.

		Parent controls	ontrols			Nonparer	Nonparent controls	10
Outcome	Cor_{all}	Cor_{GP}	Cor_{con}	d	Cor_{all}	Cor_{GP}	Cor_{con}	d
SSIT								
Agreeableness	0.78	0.81	0.77	.506	0.73	0.81	0.71	< .001
Conscientiousness	0.79	0.80	0.79	.289	0.79	0.80	0.78	.212
Extraversion	0.80	0.87	0.78	080	0.85	0.87	0.84	.311
Neuroticism	0.73	0.77	0.71	.038	0.72	0.77	0.70	.164
Openness	0.73	0.80	0.71	.023	0.79	0.80	0.79	.382
Life Satisfaction	0.70	0.06	0.71	050	0.61	0.66	09.0	.263
HRS								
Agreeableness	0.67	0.70	0.67	.523	0.71	0.70	0.72	.750
Conscientiousness	0.70	0.69	0.70	.196	0.70	0.69	0.70	.362
Extraversion	0.71	0.75	0.70	.011	0.73	0.75	0.73	.001
Neuroticism	0.06	0.71	0.65	.936	0.69	0.71	0.68	298.
Openness	0.70	0.73	0.69	.150	0.76	0.73	0.77	.123
Life Satisfaction	0.49	0.55	0.48	.021	0.54	0.55	0.54	.892

sample, 3.05~(SD=0.94) for the LISS nonparent sample, 4.15~(SD=0.77) for the HRS parent sample, and 4.11 (SD = 0.67) for the HRS nonparent sample. Cor = correlation; indicating significant group differences therein between grandparents and each control group. The average retest intervals in years are 3.06~(SD=0.89) for the LISS parent Note. Test-retest correlations as indicators of rank-order stability, and p-values GP = grandparents; con = controls.

control groups (parents and nonparents). We found suggestive evidence that grandparents 745 providing substantial grandchild care increased slightly more strongly in conscientiousness 746 and decreased slightly more strongly in neuroticism than grandparents who did not (H1b), 747 as well as partial evidence for moderation of mean-level trajectories of conscientiousness, 748 neuroticism, and openness by performing paid work. There was no consistent evidence that 749 grandmothers reached higher levels of life satisfaction following the transition to 750 grandparenthood (H1c). Although interindividual differences in change were present for all 751 parameters of change, they were only greater in the grandparents compared to the controls 752 in a small minority of the model comparisons conducted (H2). Finally, rank-order stability 753 did not differ between grandparents and either control group, or it was lower in the control 754 group—contrary to expectations (H3). 755

756 Social Investment Principle

757

758

759

760

762

We conducted a preregistered, cross-study, and multi-comparison test of the social investment principle (Lodi-Smith & Roberts, 2007; Roberts & Wood, 2006) in middle adulthood and old age, which posits that the transition to grandparenthood is a potentially important developmental task driving development of the Big Five personality traits (Hutteman et al., 2014). Across all analyzed traits, we found more evidence of trait stability than of change.

Still, whereas we did not find *consistent* evidence of personality development across

Still, whereas we did not find consistent evidence of personality development across
the transition to grandparenthood, the direction of the (sparse) effects we found generally
supported the social investment principle—in contrast to development following
parenthood (Asselmann & Specht, 2020b; van Scheppingen et al., 2016). Below, we
summarize our findings in support of the social investment principle because even small
psychological effects may be meaningful and involve real-world consequences (Götz et al.,
2021). For agreeableness and conscientiousness we found slight post-transition increases in
comparison to the matched control groups that were in line with the social investment

principle. However, the effects were not only small but also inconsistent across samples.

Agreeableness only increased in the LISS (compared to parents) and conscientiousness only

in the HRS (compared to both parents and nonparents). In the HRS, neuroticism

decreased in grandparents directly following the transition to grandparenthood when

compared to matched parent respondents. This was not the case in the LISS or compared

to HRS nonparents.

In the case of agreeableness and neuroticism, these effects were only present in the 777 comparison of grandfathers and male controls, whereas no effects were found for 778 grandmothers. In contrast, past research—mostly in the domains of well-being and 779 health—found more pronounced effects of the transition to grandparenthood for 780 grandmothers (Di Gessa et al., 2016b, 2019; Sheppard & Monden, 2019; Tanskanen et al., 781 2019). This has been discussed in the context of grandmothers spending more time with 782 their grandchildren than grandfathers and providing more hours of care (Condon et al., 783 2013; Di Gessa et al., 2020), thus making a higher social investment. ¹² We found partial support for this for life satisfaction (see below). Yet our results for the Big Five were not in 785 agreement with this line of thought. One possible explanation is that (future) grandfathers 786 were previously more invested in their work lives than in child rearing, and at the end of 787 their career or after retirement, found investments in grandchild care to be a more novel 788 and meaningful transition than grandmothers (StGeorge & Fletcher, 2014; Tanskanen et 789 al., 2021). Currently, however, empirical research specifically on the grandfather role is 790 sparse (for a qualitative approach, see Mann & Leeson, 2010), while the demography of 791 grandparenthood is undergoing sweeping changes, with rising proportions of grandfathers 792 actively involved in grandchild care (see Coall et al., 2016; Mann, 2007). Thus, more 793 research into grandfathers' experience of the transition to grandparenthood is needed to 794 substantiate our tentative findings. 795

¹² In the HRS analysis sample, the proportion of grandparents reporting that they have provided at least 100 hours of grandchild care since the last assessment was also slightly higher in grandmothers (M = 0.45, SD = 0.50) than grandfathers (M = 0.41, SD = 0.49).

To gain more insight into social investment mechanisms, we tested paid work and 796 grandchild care as moderators. For conscientiousness, we found that grandparents who 797 were not gainfully employed increased more strongly in anticipation of the transition to 798 grandparenthood than working grandparents (and than the matched nonworking controls). 799 Although this could imply that working grandparents did not find as much time for social 800 investment because of the role conflict with the employee/worker role (see Tanskanen et 801 al., 2021), we would have expected these moderation effects after the transition, when 802 grandparents were indeed able to spend time with their grandchild. However, such 803 post-transition differences did not surface. Results for neuroticism were even less clearly in 804 line with the social investment principle: Working grandparents increased in neuroticism in 805 anticipation of the transition to grandparenthood (compared to nonparents), and decreased 806 immediately following the transition (compared to parents). Regarding moderation by 807 grandchild care, our results suggested that grandparents who provided substantial 808 grandchild care increased more in conscientiousness and decreased more in neuroticism compared to grandparents who did not. However, the strength of the evidence was weak 810 and indicates a need for temporally more fine-grained assessments with more extensive 811 instruments of grandchild care (e.g., Vermote et al., 2021; see also Fingerman et al., 2020). 812 In total, evidence in favor of the social investment principle in our analyses was 813 rather thin. This adds to other recent empirical tests in the context of parenthood and 814 romantic relationships (Asselmann & Specht, 2020a, 2020b; Spikic et al., 2021; van 815 Scheppingen et al., 2016) that have challenged the original core assumption of personality 816 maturation through age-graded social role transitions. It now seems likely that distinct (or 817 additional) theoretical assumptions and mechanisms are required to explain empirical 818 findings of personality development in middle adulthood and old age. First steps in that 819 direction include the recent distinction between social investment and divestment (Schwaba 820 & Bleidorn, 2019) in the context of retirement (for the related distinction between 821 personality maturation and relaxation, see Asselmann & Specht, 2021), as well as the 822

hypothesis that personality development is more closely tied to the subjective perceptions of adult role competency than to the transitions per se (Roberts & Davis, 2016).

Nonetheless, the possibility remains that preconditions we have not considered have 825 to be met for grandparents to undergo personality development after the transition to 826 grandparenthood. For example, grandparents might need to live in close proximity to their 827 grandchild, see them on a regular basis, and provide grandchild care above a certain 828 quantity and quality (e.g., level of responsibility). To our knowledge, however, there are 820 presently no datasets with such detailed information regarding the grandparent role in 830 conjunction with multiple waves of Big Five personality data. Studies in the well-being 831 literature have provided initial evidence that more frequent contact with grandchildren was 832 associated with higher grandparental well-being (Arpino, Bordone, et al., 2018; 833 Danielsbacka et al., 2019; Danielsbacka & Tanskanen, 2016). However, Danielsbacka et al. (2019) noted that this effect was due to between-person differences in grandparents, 835 thus limiting a causal interpretation of frequency of grandchild care as a mechanism of development in psychological characteristics like life satisfaction and personality. 837

838 Life Satisfaction

Similar to our findings on the Big Five personality traits, we did not find convincing 839 evidence that life satisfaction changed as a consequence of the transition to 840 grandparenthood. Only in the LISS in comparison with the nonparent control group did grandparents' life satisfaction increase slightly at the first assessment following the 842 transition to grandparenthood. This difference was present in grandmothers but not 843 grandfathers. While this pattern of effects is in line with several studies reporting increases 844 associated with women becoming grandmothers (e.g., Di Gessa et al., 2019; Tanskanen et 845 al., 2019), we did not uncover it reliably in both samples or with both comparison groups 846 and also did not see consistent effects in the linear trajectories after the transition to 847 grandparenthood. As mentioned in the introduction, a study of the effects of the transition 848

on first-time grandparents' life satisfaction that used fixed effects regressions also did not discover any positive within-person effects of the transition (Sheppard & Monden, 2019).

Further, in line with this study, we did not find evidence that grandparents who provided substantial grandchild care increased more strongly in life satisfaction than those who did not, and grandparents' life satisfaction trajectories were also not moderated by employment status (Sheppard & Monden, 2019).

Overall, evidence has accumulated that there is an association between having
grandchildren and higher life satisfaction on the between-person level—especially for
(maternal) grandmothers who provide frequent grandchild care (Danielsbacka et al., 2011;
Danielsbacka & Tanskanen, 2016)—but no within-person effect of the transition. The main
reason for this divergence is the presence of selection effects, that is, confounding which we
have accounted for through the propensity score matching design, but which was present in
previous within-person estimates of change (Luhmann et al., 2014; Thoemmes & Kim,
2011; VanderWeele et al., 2020).

863 Interindividual Differences in Change

Analyzing how grandparents differed interindividually in their trajectories of change provided additional insight beyond the analysis of mean-level change. All parameters of change exhibited considerable interindividual differences. Similar to Denissen et al. (2019), who found significant model fit improvements of random slopes in most models (see also Doré & Bolger, 2018), this pattern indicates that respondents—both grandparents and matched controls—deviated to a considerable extent from the average trajectories that we reported on previously.

We expected larger interindividual differences in grandparents because life events
differ in their impact on daily life and in the degree to which they are perceived as
meaningful or emotionally significant (Doré & Bolger, 2018; Luhmann et al., 2020). Our
results, however, indicated that interindividual differences were larger in the controls than

the grandparents for many models, or not significantly different between groups. Only in a 875 small minority of tests were interindividual differences significantly larger in grandparents 876 (concerning the linear slope in anticipation of grandparenthood for neuroticism, openness, 877 and life satisfaction). Overall, we did not find evidence supporting the hypothesis that 878 interindividual differences in change would be larger in the grandparents than the controls 870 (H2).880 When integrating this result into the literature, it is important to keep in mind that 881 most previous studies did not compare interindividual differences in personality change 882 between the event group and a comparison group (even if they did use comparison groups 883 for the main analyses; Denissen et al., 2019; Schwaba & Bleidorn, 2019; cf. Jackson & 884 Beck, 2021). As demonstrated by an analysis across the entire life span (i.e., irrespective of 885 life events; Schwaba & Bleidorn, 2018), interindividual differences in personality change—although largest in emerging adulthood—were substantial up until around 70 years of age in most domains. Regarding the substantive question of how the transition to grandparenthood affects interindividual differences in change, we therefore propose that it 889 is more informative to test grandparents' degree of variability in change against 890 well-matched control groups than against no groups as often done previously. 891 Recently, Jackson and Beck (2021) presented evidence that the experience of sixteen 892

commonly analyzed life events was mostly associated with decreases in interindividual 893 variation in the Big Five compared to those not experiencing the respective event. They 894 used a comparable approach to ours but in a SEM latent growth curve framework and not 895 accounting for covariates related to pre-existing group differences (i.e., without matching). 896 Their results based on the German SOEP data suggested—contrary to their 897 expectations—that most life events made people more similar to each other (Jackson & 898 Beck, 2021). Thus, taken together with our results, it seems that the assumption that life 890 events and transitions ostensibly produce increased heterogeneity between people needs to 900 be scrutinized in future studies. 901

22 Rank-Order Stability

We also investigated whether grandparents' rank-order stability in the Big Five 903 personality traits and life satisfaction over the transition to grandparenthood was lower 904 than that of the matched controls. Conceptually, rank-order changes are possible in the 905 absence of mean-level changes. Empirically, though, we did not find evidence supporting our hypothesis (H3): Rank-order stability did not differ significantly between grandparents and controls and, descriptively, was larger in the grandparents in the majority of 908 comparisons. In a recent study of the effects of eight different life events on the development of the Big Five personality traits and life satisfaction (Denissen et al., 2019), comparably high rank-order stability was reported in the event groups. Only particularly 911 adverse events such as widowhood and disability significantly lowered respondents' 912 rank-order stability (Chopik, 2018; Denissen et al., 2019). 913 Regarding the Big Five's general age trajectories of rank-order stability, support for 914 inverted U-shape trajectories was recently strengthened in a study of two panel data sets 915 (Seifert et al., 2021). This study also explored that health deterioration accounted for parts 916 of the decline of personality stability in old age. Therefore, it is possible that in later 917 developmental phases (see also Hutteman et al., 2014) rank-order stability of personality is 918 largely influenced by health status and less by normative life events. In the context of 919 grandparenthood, this relates to research into health benefits (Chung & Park, 2018; 920 Condon et al., 2018; Di Gessa et al., 2016a, 2016b; cf. Ates, 2017) and decreases to 921 mortality risk associated with grandparenthood or grandchild care (Choi, 2020; 922 Christiansen, 2014; Hilbrand et al., 2017; cf. Ellwardt et al., 2021). Grandparenthood 923 might therefore have a time-lagged effect on personality stability through protective effects 924 on health. However, with the currently available data, such a mediating effect cannot be 925 reliably recovered (under realistic assumptions; Rohrer et al., 2021).

27 Limitations and Future Directions

The current study has a number of strengths that bolster the robustness of its 928 inferences: It features a preregistered analysis of archival data with an internal cross-study 929 replication, a propensity score matching design that carefully deliberated covariate choice, 930 and a twofold comparison of all effects of the grandparents against matched parents (with 931 children of reproductive age) and nonparents. To obtain a comprehensive picture of 932 personality development, we analyzed mean-level changes, interindividual differences in 933 change, and changes in rank-order stability. Both of the panel studies we used had their 934 strengths and weaknesses: The HRS had a larger sample of first-time grandparents besides information on important moderators, but it assessed personality and life satisfaction only every four years. The LISS assessed the outcomes every year (apart from a few waves with 937 planned missingness) but restricted the grandparent sample through filtering of the relevant 938 questions to employed respondents, resulting in a smaller and younger sample. Together, 939 the strengths of one dataset partially compensated for the limitations of the other. 940 Still, a number of limitations need to be addressed: First, there remains some doubt 941 whether we were able to follow truly socially invested grandparents over time. More 942 detailed information regarding a grandparent's relationship with their first and later 943 grandchildren and the level of care a grandparent provides would be a valuable source of 944 information on social investment, as would information on possible constraining factors 945 such as length and cost of travel between grandparent and grandchild. Lacking such precise 946 contextual information, the multidimensionality of the grandparent role (Buchanan & 947 Rotkirch, 2018; Findler et al., 2013; Thiele & Whelan, 2006) might lend itself to future 948 investigations into grandparents' personality development using growth mixture models (Grimm & Ram, 2009; Infurna, 2021; Ram & Grimm, 2009). On a similar note, we did not 950 consider grandparents' subjective perception of the transition to grandparenthood in terms of the emotional significance, meaningfulness, and impact on daily lives, which might be responsible for differential individual change trajectories (Haehner et al., 2021; Kritzler et

954 al., 2021; Luhmann et al., 2020).

980

Second, we relied on self-report personality data and did not include other-reports 955 by family members or close friends (Luan et al., 2017; McCrae, 2018; McCrae & Mõttus, 956 2019; Mõttus et al., 2019; Schwaba et al., 2022). Thus, our results might be influenced by 957 common method bias (Podsakoff et al., 2003). Large-scale panel data incorporating both 958 self- and other-reports of personality over time would be needed to address this issue (e.g., 950 Oltmanns et al., 2020). 960 Third, a causal interpretation of our results rests on a number of assumptions that 961 are not directly testable with the data (Li, 2013; Stuart, 2010): Most importantly, we 962 assumed that we picked the right sets of covariates, that our model to estimate the 963 propensity score was correctly specified, and that there was no substantial remaining bias due to unmeasured confounding. Working with archival data meant that we had no influence on data collection, and we also aimed for roughly equivalent sets of covariates across both data sets. Therefore, we had to make some compromises on covariate choice. Still, we believe that our procedure to select covariates following state-of-the-art 968 recommendations (see Methods; VanderWeele et al., 2020), and to substantiate each 969 covariate's selection explicitly within our preregistration improved upon previously applied practices. Regarding the propensity score estimation, we opted to estimate the 971 grandparents' propensity scores at a specific time point at least two years before the 972 transition to grandparenthood, which had the advantages that (1) the covariates were 973 uncontaminated by anticipation of the transition, and (2) the matched controls had a clear 974 counterfactual timeline of transition (for similar recent approaches analyzing life events, see 975 Balbo & Arpino, 2016; Krämer & Rodgers, 2020; van Scheppingen & Leopold, 2020). 976 Regarding the timing of measurements and the transition to grandparenthood, it also has 977 to be emphasized that we might have missed more short-term effects playing out over 978 months instead of years. 970

Fourth, our results only pertain to the countries for which our data are

representative on a population level: the Netherlands and the United States. Personality 981 development, and more specifically personality maturation, have been examined 982 cross-culturally (e.g., Bleidorn et al., 2013; Chopik & Kitayama, 2018). On the one hand, 983 these studies showed universal average patterns of change towards greater maturity over 984 the life span. On the other hand, they emphasized cultural differences regarding norms and 985 values and the temporal onset of social roles. For grandparenthood, there are substantial 986 demographic differences between countries (Leopold & Skopek, 2015), as well as differences 987 in public child care systems that may demand different levels of grandparental involvement 988 (Bordone et al., 2017; Hank & Buber, 2009). In the Netherlands, people become 980 grandparents six years later on average than in the United States (Leopold & Skopek, 990 2015). Furthermore, although both countries have largely market-based systems for early 991 child care, parents in the Netherlands on average have access to more extensive childcare services through (capped) governmental benefits (OECD, 2020). Despite these differences, 993 our results from the Dutch and US samples did not indicate systematic discrepancies. Finally, while we assessed our dependent variables using highly reliable scales, there 995 was a conceptual difference in the Big Five measures (see John & Srivastava, 1999) in the 996 two studies: The IPIP Big Five inventory used in the LISS (Goldberg, 1992) presented 997 statements as items, and asked respondents to indicate how accurately these statements 998 described them (using a bipolar response scale). However, the Midlife Development ggc Inventory used in the HRS (Lachman & Weaver, 1997) presented adjectives as items, and 1000 asked respondents how well these adjectives described them (using a unipolar response 1001 scale). This discrepancy hindered the between-sample comparison somewhat and also 1002 resulted in different distributions of the Big Five across samples (see Figures S2-S7). The 1003 possibility should also be pointed out that our analyses on the domain-level of the Big Five 1004 could be too conceptually broad to identify patterns of personality development over the 1005 transition to grandparenthood that are discernible on the level of facets or nuances (Mõttus 1006 & Rozgonjuk, 2021; Schwaba et al., 2022). 1007

1008 Conclusion

Do personality traits change over the transition to grandparenthood? Using data 1009 from two nationally representative panel studies in a preregistered propensity score 1010 matching design, the current study revealed that trajectories of the Big Five personality 1011 traits and life satisfaction remained predominantly stable in first-time grandparents over 1012 this transition compared to matched parents and nonparents. We found slight 1013 post-transition increases to grandparents' agreeableness and conscientiousness in line with 1014 our hypothesis of personality development based on the social investment principle. 1015 However, these effects were minuscule and inconsistent across analysis samples. In addition, 1016 our analyses revealed (1) a lack of consistent moderation of personality development by 1017 grandparents providing substantial grandchild care, (2) interindividual differences in 1018 change that were mostly smaller in grandparents than in matched respondents, and (3) 1019 comparable rank-order stability in grandparents and matched respondents. Thus, we 1020 conclude that the transition to grandparenthood did not act as a straightforwardly 1021 important developmental task driving personality development in middle adulthood and 1022 old age (as previously proposed, see Hutteman et al., 2014). With more detailed 1023 assessment of the grandparent role, future research could investigate whether personality 1024 development occurs in a subset of grandparents who are highly socially invested. 1025

1026 Acknowledgements

We thank Joe Rodgers, Jaap Denissen, and Julia Rohrer for helpful comments on earlier versions of this paper.

1029 References

Aassve, A., Luppi, F., & Mencarini, L. (2021). A first glance into the black box of life
satisfaction surrounding childbearing. *Journal of Population Research*.

https://doi.org/10.1007/s12546-021-09267-z

Allemand, M., Zimprich, D., & Martin, M. (2008). Long-term correlated change in personality traits in old age. *Psychology and Aging*, 23(3), 545–557. https://doi.org/10.1037/a0013239

Anusic, I., & Schimmack, U. (2016). Stability and change of personality traits, self-esteem,
and well-being: Introducing the meta-analytic stability and change model of retest
correlations. Journal of Personality and Social Psychology, 110(5), 766–781.
https://doi.org/10.1037/pspp0000066

Anusic, I., Yap, S., & Lucas, R. E. (2014a). Does personality moderate reaction and adaptation to major life events? Analysis of life satisfaction and affect in an Australian national sample. *Journal of Research in Personality*, 51, 69–77. https://doi.org/10.1016/j.jrp.2014.04.009

Anusic, I., Yap, S., & Lucas, R. E. (2014b). Testing set-point theory in a Swiss national sample: Reaction and adaptation to major life events. *Social Indicators Research*, 119(3), 1265–1288. https://doi.org/10.1007/s11205-013-0541-2

Ardelt, M. (2000). Still stable after all these years? Personality stability theory revisited.

Social Psychology Quarterly, 63(4), 392–405. https://doi.org/10.2307/2695848

Arpino, B., Bordone, V., & Balbo, N. (2018). Grandparenting, education and subjective well-being of older Europeans. *European Journal of Ageing*, 15(3), 251–263. https://doi.org/10.1007/s10433-018-0467-2

Arpino, B., Gumà, J., & Julià, A. (2018). Family histories and the demography of grandparenthood. *Demographic Research*, 39(42), 1105–1150.

```
https://doi.org/10.4054/DemRes.2018.39.42
1054
    Asselmann, E., & Specht, J. (2020a). Taking the ups and downs at the rollercoaster of
1055
           love: Associations between major life events in the domain of romantic relationships
1056
           and the Big Five personality traits. Developmental Psychology, 56(9), 1803–1816.
1057
           https://doi.org/10.1037/dev0001047
1058
    Asselmann, E., & Specht, J. (2021). Personality maturation and personality relaxation:
1059
           Differences of the Big Five personality traits in the years around the beginning and
1060
           ending of working life. Journal of Personality, Advance Online Publication.
1061
           https://doi.org/10.1111/jopy.12640
1062
    Asselmann, E., & Specht, J. (2020b). Testing the Social Investment Principle Around
1063
           Childbirth: Little Evidence for Personality Maturation Before and After Becoming
1064
           a Parent. European Journal of Personality, Advance Online Publication.
1065
           https://doi.org/10.1002/per.2269
1066
    Ates, M. (2017). Does grandchild care influence grandparents' self-rated health? Evidence
1067
           from a fixed effects approach. Social Science & Medicine, 190, 67–74.
1068
           https://doi.org/10.1016/j.socscimed.2017.08.021
1069
    Aust, F. (2019). Citr: 'RStudio' add-in to insert markdown citations.
1070
           https://github.com/crsh/citr
1071
    Aust, F., & Barth, M. (2020). papaja: Prepare reproducible APA journal articles with R
1072
           Markdown. https://github.com/crsh/papaja
1073
    Austin, P. C. (2011). An introduction to propensity score methods for reducing the effects
1074
           of confounding in observational studies. Multivariate Behavioral Research, 46(3),
1075
           399–424. https://doi.org/10.1080/00273171.2011.568786
1076
    Austin, P. C. (2017). Double propensity-score adjustment: A solution to design bias or bias
1077
           due to incomplete matching. Statistical Methods in Medical Research, 26(1),
1078
```

```
201–222. https://doi.org/10.1177/0962280214543508
```

- Baird, B. M., Lucas, R. E., & Donnellan, M. B. (2010). Life satisfaction across the lifespan:
- Findings from two nationally representative panel studies. Social Indicators
- nose Research, 99(2), 183–203. https://doi.org/10.1007/s11205-010-9584-9
- Balbo, N., & Arpino, B. (2016). The role of family orientations in shaping the effect of
- fertility on subjective well-being: A propensity score matching approach.
- 1085 Demography, 53(4), 955–978. https://doi.org/10.1007/s13524-016-0480-z
- Baltes, P. B., Lindenberger, U., & Staudinger, U. M. (2006). Life Span Theory in
- Developmental Psychology. In R. M. Lerner & W. Damon (Eds.), Handbook of child
- psychology: Theoretical models of human development (pp. 569–664). John Wiley &
- Sons Inc.
- Barth, M. (2021). tinylabels: Lightweight variable labels.
- https://cran.r-project.org/package=tinylabels
- Bates, D., & Maechler, M. (2021). Matrix: Sparse and dense matrix classes and methods.
- https://CRAN.R-project.org/package=Matrix
- Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects
- models using lme4. Journal of Statistical Software, 67(1), 1-48.
- https://doi.org/10.18637/jss.v067.i01
- Beck, E. D., & Jackson, J. J. (2021). A Mega-Analysis of Personality Prediction:
- Robustness and Boundary Conditions. Journal of Personality and Social
- 1099 Psychology, In Press. https://doi.org/10.31234/osf.io/7pg9b
- Bengtson, V. L. (2001). Beyond the Nuclear Family: The Increasing Importance of
- Multigenerational Bonds. Journal of Marriage and Family, 63(1), 1–16.
- https://doi.org/10.1111/j.1741-3737.2001.00001.x
- Benjamin, D. J., Berger, J. O., Clyde, M., Wolpert, R. L., Johnson, V. E., Johannesson,

```
M., Dreber, A., Nosek, B. A., Wagenmakers, E. J., Berk, R., & Brembs, B. (2018).
1104
           Redefine statistical significance. Nature Human Behavior, 2, 6–10.
1105
           https://doi.org/10.1038/s41562-017-0189-z
1106
    Bernaards, C. A., & I.Jennrich, R. (2005). Gradient projection algorithms and software for
1107
           arbitrary rotation criteria in factor analysis. Educational and Psychological
1108
           Measurement, 65, 676–696.
1109
    Bleidorn, W., Hopwood, C. J., Back, M. D., Denissen, J. J. A., Hennecke, M., Hill, P. L.,
1110
           Jokela, M., Kandler, C., Lucas, R. E., Luhmann, M., Orth, U., Roberts, B. W.,
1111
           Wagner, J., Wrzus, C., & Zimmermann, J. (2021). Personality Trait Stability and
1112
           Change. Personality Science, 2(1), 1–20. https://doi.org/10.5964/ps.6009
1113
    Bleidorn, W., Hopwood, C. J., & Lucas, R. E. (2018). Life events and personality trait
1114
           change. Journal of Personality, 86(1), 83–96. https://doi.org/10.1111/jopy.12286
1115
    Bleidorn, W., Klimstra, T. A., Denissen, J. J. A., Rentfrow, P. J., Potter, J., & Gosling, S.
1116
           D. (2013). Personality Maturation Around the World: A Cross-Cultural
1117
           Examination of Social-Investment Theory. Psychological Science, 24 (12),
1118
           2530–2540. https://doi.org/10.1177/0956797613498396
1119
    Bleidorn, W., & Schwaba, T. (2018). Retirement is associated with change in self-esteem.
1120
           Psychology and Aging, 33(4), 586-594. https://doi.org/10.1037/pag0000253
1121
    Bleidorn, W., & Schwaba, T. (2017). Personality development in emerging adulthood. In
1122
           J. Specht (Ed.), Personality Development Across the Lifespan (pp. 39–51).
1123
           Academic Press. https://doi.org/10.1016/B978-0-12-804674-6.00004-1
1124
    Bordone, V., Arpino, B., & Aassve, A. (2017). Patterns of grandparental child care across
1125
           Europe: The role of the policy context and working mothers' need. Ageing and
1126
           Society, 37(4), 845–873. https://doi.org/10.1017/S0144686X1600009X
1127
```

Brüderl, J., & Ludwig, V. (2015). Fixed-Effects Panel Regression (H. Best & C. Wolf,

```
Eds.). SAGE.
1129
    Buchanan, A., & Rotkirch, A. (2018). Twenty-first century grandparents: Global
1130
           perspectives on changing roles and consequences. Contemporary Social Science,
1131
           13(2), 131–144. https://doi.org/10.1080/21582041.2018.1467034
1132
    Burgette, L. F., & Reiter, J. P. (2010). Multiple Imputation for Missing Data via
1133
           Sequential Regression Trees. American Journal of Epidemiology, 172(9), 1070–1076.
1134
           https://doi.org/10.1093/aje/kwq260
1135
    Caspi, A., & Moffitt, T. E. (1993). When do individual differences matter? A paradoxical
1136
           theory of personality coherence. Psychological Inquiry, 4(4), 247–271.
1137
           https://doi.org/10.1207/s15327965pli0404 1
1138
    Choi, S.-w. E. (2020). Grandparenting and Mortality: How Does Race-Ethnicity Matter?
1139
           Journal of Health and Social Behavior, 61(1), 96–112.
1140
           https://doi.org/10.1177/0022146520903282
1141
    Chopik, W. J. (2018). Does personality change following spousal bereavement? Journal of
1142
           Research in Personality, 72, 10–21. https://doi.org/10.1016/j.jrp.2016.08.010
1143
    Chopik, W. J., & Kitayama, S. (2018). Personality change across the life span: Insights
1144
           from a cross-cultural, longitudinal study. Journal of Personality, 86(3), 508–521.
1145
           https://doi.org/10.1111/jopy.12332
1146
    Christiansen, S. G. (2014). The association between grandparenthood and mortality. Social
1147
           Science & Medicine, 118, 89–96. https://doi.org/10.1016/j.socscimed.2014.07.061
1148
    Chung, S., & Park, A. (2018). The longitudinal effects of grandchild care on depressive
1149
           symptoms and physical health of grandmothers in South Korea: A latent growth
1150
```

Coall, D. A., & Hertwig, R. (2011). Grandparental Investment: A Relic of the Past or a

approach. Aging & Mental Health, 22(12), 1556-1563.

https://doi.org/10.1080/13607863.2017.1376312

1151

```
Resource for the Future? Current Directions in Psychological Science, 20(2), 93–98.
1154
           https://doi.org/10.1177/0963721411403269
1155
    Coall, D. A., Hilbrand, S., Sear, R., & Hertwig, R. (2016). A New Niche? The Theory of
1156
           Grandfather Involvement. In A. Buchanan & A. Rotkirch (Eds.), Grandfathers:
1157
           Global Perspectives (pp. 21–44). Palgrave Macmillan UK.
1158
           https://doi.org/10.1057/978-1-137-56338-5_2
1159
    Coall, D. A., Hilbrand, S., Sear, R., & Hertwig, R. (2018). Interdisciplinary perspectives on
1160
           grandparental investment: A journey towards causality. Contemporary Social
1161
           Science, 13(2), 159–174. https://doi.org/10.1080/21582041.2018.1433317
1162
    Condon, J., Corkindale, C., Luszcz, M., & Gamble, E. (2013). The Australian First-time
           Grandparents Study: Time spent with the grandchild and its predictors.
1164
           Australasian Journal on Ageing, 32(1), 21–27.
1165
           https://doi.org/10.1111/j.1741-6612.2011.00588.x
1166
    Condon, J., Luszcz, M., & McKee, I. (2018). The transition to grandparenthood: A
1167
           prospective study of mental health implications. Aging & Mental Health, 22(3),
1168
           336–343. https://doi.org/10.1080/13607863.2016.1248897
1169
    Cook, T. D., Zhu, N., Klein, A., Starkey, P., & Thomas, J. (2020). How much bias results
1170
           if a quasi-experimental design combines local comparison groups, a pretest outcome
1171
           measure and other covariates?: A within study comparison of preschool effects.
1172
           Psychological Methods, Advance Online Publication.
1173
           https://doi.org/10.1037/met0000260
1174
    Costa, P. T., McCrae, R. R., & Löckenhoff, C. E. (2019). Personality Across the Life Span.
1175
           Annual Review of Psychology, 70(1), 423-448.
```

Damian, R. I., Spengler, M., Sutu, A., & Roberts, B. W. (2019). Sixteen going on sixty-six: 1178 A longitudinal study of personality stability and change across 50 years. Journal of 1179

https://doi.org/10.1146/annurev-psych-010418-103244

1176

```
Personality and Social Psychology, 117(3), 674–695.
1180
           https://doi.org/10.1037/pspp0000210
1181
    Danielsbacka, M., & Tanskanen, A. O. (2016). The association between grandparental
1182
           investment and grandparents' happiness in Finland. Personal Relationships, 23(4),
1183
           787–800. https://doi.org/10.1111/pere.12160
1184
    Danielsbacka, M., Tanskanen, A. O., Coall, D. A., & Jokela, M. (2019). Grandparental
1185
           childcare, health and well-being in Europe: A within-individual investigation of
1186
           longitudinal data. Social Science & Medicine, 230, 194–203.
1187
           https://doi.org/10.1016/j.socscimed.2019.03.031
1188
    Danielsbacka, M., Tanskanen, A. O., Jokela, M., & Rotkirch, A. (2011). Grandparental
           Child Care in Europe: Evidence for Preferential Investment in More Certain Kin.
1190
           Evolutionary Psychology, 9(1), 147470491100900102.
1191
           https://doi.org/10.1177/147470491100900102
1192
    Denissen, J. J. A., Geenen, R., Soto, C. J., John, O. P., & van Aken, M. A. G. (2020). The
1193
           Big Five Inventory2: Replication of Psychometric Properties in a Dutch Adaptation
1194
           and First Evidence for the Discriminant Predictive Validity of the Facet Scales.
1195
           Journal of Personality Assessment, 102(3), 309–324.
1196
           https://doi.org/10.1080/00223891.2018.1539004
1197
    Denissen, J. J. A., Luhmann, M., Chung, J. M., & Bleidorn, W. (2019). Transactions
1198
           between life events and personality traits across the adult lifespan. Journal of
1199
           Personality and Social Psychology, 116(4), 612–633.
1200
           https://doi.org/10.1037/pspp0000196
1201
    Diener, E., Emmons, R. A., Larsen, R. J., & Griffin, S. (1985). The Satisfaction With Life
1202
           Scale. Journal of Personality Assessment, 49(1), 71–75.
1203
           https://doi.org/10.1207/s15327752jpa4901_13
```

Di Gessa, G., Bordone, V., & Arpino, B. (2019). Becoming a Grandparent and Its Effect

```
on Well-Being: The Role of Order of Transitions, Time, and Gender. The Journals
1206
           of Gerontology, Series B: Psychological Sciences and Social Sciences, Advance
1207
           Online Publication. https://doi.org/10.1093/geronb/gbz135
1208
    Di Gessa, G., Glaser, K., & Tinker, A. (2016a). The Health Impact of Intensive and
1209
           Nonintensive Grandchild Care in Europe: New Evidence From SHARE. The
1210
           Journals of Gerontology, Series B: Psychological Sciences and Social Sciences,
1211
           71(5), 867–879. https://doi.org/10.1093/geronb/gbv055
1212
    Di Gessa, G., Glaser, K., & Tinker, A. (2016b). The impact of caring for grandchildren on
1213
           the health of grandparents in Europe: A lifecourse approach. Social Science &
1214
           Medicine, 152, 166–175. https://doi.org/10.1016/j.socscimed.2016.01.041
1215
    Di Gessa, G., Zaninotto, P., & Glaser, K. (2020). Looking after grandchildren: Gender
1216
           differences in "when," "what," and "why": Evidence from the English Longitudinal
1217
           Study of Ageing. Demographic Research, 43(53), 1545–1562.
1218
           https://doi.org/10.4054/DemRes.2020.43.53
1219
    Doré, B., & Bolger, N. (2018). Population- and individual-level changes in life satisfaction
1220
           surrounding major life stressors. Social Psychological and Personality Science, 9(7),
1221
           875-884. https://doi.org/10.1177/1948550617727589
1222
    Eid, M., & Larsen, R. J. (2008). The science of subjective well-being. Guilford Press.
1223
    Ellwardt, L., Hank, K., & Mendes de Leon, C. F. (2021). Grandparenthood and risk of
1224
           mortality: Findings from the Health and Retirement Study. Social Science &
1225
           Medicine, 268, 113371. https://doi.org/10.1016/j.socscimed.2020.113371
1226
    Elwert, F., & Winship, C. (2014). Endogenous Selection Bias: The Problem of
1227
           Conditioning on a Collider Variable. Annual Review of Sociology, 40(1), 31–53.
1228
           https://doi.org/10.1146/annurev-soc-071913-043455
1229
```

Findler, L., Taubman - Ben-Ari, O., Nuttman-Shwartz, O., & Lazar, R. (2013).

- 1231 Construction and Validation of the Multidimensional Experience of
- Grandparenthood Set of Inventories. Social Work Research, 37(3), 237–253.
- https://doi.org/10.1093/swr/svt025
- Fingerman, K. L., Huo, M., & Birditt, K. S. (2020). A Decade of Research on
- 1235 Intergenerational Ties: Technological, Economic, Political, and Demographic
- 1236 Changes. Journal of Marriage and Family, 82(1), 383–403.
- https://doi.org/10.1111/jomf.12604
- Fox, J., & Weisberg, S. (2019). An R companion to applied regression (Third). Sage.
- Fox, J., Weisberg, S., & Price, B. (2020a). Car: Companion to applied regression [Manual].
- Fox, J., Weisberg, S., & Price, B. (2020b). CarData: Companion to applied regression data

 sets. https://CRAN.R-project.org/package=carData
- Genz, A., & Bretz, F. (2009). Computation of multivariate normal and t probabilities.

 Springer-Verlag.
- Goldberg, L. R. (1992). The development of markers for the Big-Five factor structure.
- 1245 Psychological Assessment, 4(1), 26–42. https://doi.org/10.1037/1040-3590.4.1.26
- Goldberg, L. R. (1999). A broad-bandwidth, public domain, personality inventory
- measuring the lower-level facets of several five-factor models. *Personality*
- Psychology in Europe, 7(1), 7–28.
- Golle, J., Rose, N., Göllner, R., Spengler, M., Stoll, G., Hübner, N., Rieger, S., Trautwein,
- U., Lüdtke, O., Roberts, B. W., & Nagengast, B. (2019). School or Work? The
- 1251 Choice May Change Your Personality. Psychological Science, 30(1), 32–42.
- https://doi.org/10.1177/0956797618806298
- Götz, F. M., Gosling, S. D., & Rentfrow, P. J. (2021). Small Effects: The Indispensable
- Foundation for a Cumulative Psychological Science. Perspectives on Psychological
- science, Advance Online Publication. https://doi.org/10.1177/1745691620984483

- Graham, E. K., Weston, S. J., Gerstorf, D., Yoneda, T. B., Booth, T., Beam, C. R.,
- Petkus, A. J., Drewelies, J., Hall, A. N., Bastarache, E. D., Estabrook, R., Katz, M.
- J., Turiano, N. A., Lindenberger, U., Smith, J., Wagner, G. G., Pedersen, N. L.,
- Allemand, M., Spiro Iii, A., ... Mroczek, D. K. (2020). Trajectories of Big Five
- Personality Traits: A Coordinated Analysis of 16 Longitudinal Samples. European
- Journal of Personality, Advance Online Publication.
- https://doi.org/10.1002/per.2259
- Greenland, S. (2003). Quantifying biases in causal models: Classical confounding vs
- collider-stratification bias. *Epidemiology*, 14(3), 300–306.
- https://doi.org/10.1097/01.EDE.0000042804.12056.6C
- Greenland, S., & Finkle, W. D. (1995). A Critical Look at Methods for Handling Missing
- 1267 Covariates in Epidemiologic Regression Analyses. American Journal of
- Epidemiology, 142(12), 1255-1264.
- https://doi.org/10.1093/oxfordjournals.aje.a117592
- Grimm, K. J., & Ram, N. (2009). A second-order growth mixture model for developmental
- research. Research in Human Development, 6(2-3), 121-143.
- https://doi.org/10.1080/15427600902911221
- Haehner, P., Rakhshani, A., Fassbender, I., Lucas, R. E., Donnellan, M. B., & Luhmann,
- M. (2021). Perception of Major Life Events and Personality Trait Change.
- 1275 PsyArXiv. https://doi.org/10.31234/osf.io/kxz2u
- Hagestad, G. O., & Neugarten, B. L. (1985). Age and the life course. In E. Shanas & R.
- Binstock (Eds.), Handbook of aging and the social sciences. Van Nostrand and
- Reinhold.
- Hallberg, K., Cook, T. D., Steiner, P. M., & Clark, M. H. (2018). Pretest Measures of the
- Study Outcome and the Elimination of Selection Bias: Evidence from Three Within
- Study Comparisons. Prevention Science, 19(3), 274–283.

```
https://doi.org/10.1007/s11121-016-0732-6
1282
    Hank, K., & Buber, I. (2009). Grandparents Caring for their Grandchildren: Findings
1283
           From the 2004 Survey of Health, Ageing, and Retirement in Europe. Journal of
1284
           Family Issues, 30(1), 53-73. https://doi.org/10.1177/0192513X08322627
1285
    Harrell Jr, F. E. (2021). Hmisc: Harrell miscellaneous.
1286
           https://CRAN.R-project.org/package=Hmisc
1287
    Hayslip, B., Jr, Fruhauf, C. A., & Dolbin-MacNab, M. L. (2019). Grandparents Raising
1288
           Grandchildren: What Have We Learned Over the Past Decade? The Gerontologist,
1289
           59(3), e152-e163. https://doi.org/10.1093/geront/gnx106
1290
    Henry, L., & Wickham, H. (2020). Purr: Functional programming tools.
1291
           https://CRAN.R-project.org/package=purrr
1292
    Hentschel, S., Eid, M., & Kutscher, T. (2017). The Influence of Major Life Events and
1293
           Personality Traits on the Stability of Affective Well-Being. Journal of Happiness
1294
           Studies, 18(3), 719–741. https://doi.org/10.1007/s10902-016-9744-y
1295
    Hilbrand, S., Coall, D. A., Gerstorf, D., & Hertwig, R. (2017). Caregiving within and
1296
           beyond the family is associated with lower mortality for the caregiver: A
1297
           prospective study. Evolution and Human Behavior, 38(3), 397–403.
1298
           https://doi.org/10.1016/j.evolhumbehav.2016.11.010
1299
    Ho, D. E., Imai, K., King, G., & Stuart, E. A. (2011). MatchIt: Nonparametric
1300
           preprocessing for parametric causal inference. Journal of Statistical Software, 42(8),
1301
           1-28.
1302
    Hoffman, L. (2015). Longitudinal analysis: Modeling within-person fluctuation and change.
1303
           Routledge/Taylor & Francis Group.
1304
    Hothorn, T. (2019). TH.data: TH's data archive.
1305
```

https://CRAN.R-project.org/package=TH.data

- Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. *Biometrical Journal*, 50(3), 346–363.
- Hutteman, R., Hennecke, M., Orth, U., Reitz, A. K., & Specht, J. (2014). Developmental
 Tasks as a Framework to Study Personality Development in Adulthood and Old
 Age. European Journal of Personality, 28(3), 267–278.
- https://doi.org/10.1002/per.1959
- Infurna, F. J. (2021). Utilizing Principles of Life-Span Developmental Psychology to Study
 the Complexities of Resilience Across the Adult Life Span. *The Gerontologist*,

 61(6), 807–818. https://doi.org/10.1093/geront/gnab086
- Infurna, F. J., Gerstorf, D., & Lachman, M. E. (2020). Midlife in the 2020s: Opportunities and challenges. *American Psychologist*, 75(4), 470–485.
- https://doi.org/10.1037/amp0000591
- Jackson, J. J., & Beck, E. D. (2021). Personality Development Beyond the Mean: Do Life

 Events Shape Personality Variability, Structure, and Ipsative Continuity? The

 Journals of Gerontology: Series B, 76(1), 20–30.

 https://doi.org/10.1093/geronb/gbaa093
- John, O. P., Naumann, L. P., & Soto, C. J. (2008). Paradigm shift to the integrative Big

 Five trait taxonomy: History, measurement, and conceptual issues. In O. P. John,
- R. W. Robins, & L. A. Pervin (Eds.), Handbook of personality: Theory and research (pp. 114–158). The Guilford Press.
- John, O. P., & Srivastava, S. (1999). The Big Five Trait taxonomy: History, measurement, and theoretical perspectives. In L. A. Pervin & O. P. John (Eds.), *Handbook of* personality: Theory and research, 2nd ed. (pp. 102–138). Guilford Press.
- Johnson, A. B., & Rodgers, J. L. (2006). The impact of having children on the lives of
 women: The Effects of Children Questionnaire. *Journal of Applied Social*Psychology, 36(11), 2685–2714. https://doi.org/10.1111/j.0021-9029.2006.00123.x

Kandler, C., Kornadt, A. E., Hagemeyer, B., & Neyer, F. J. (2015). Patterns and sources of personality development in old age. Journal of Personality and Social Psychology, 1334 109(1), 175–191. https://doi.org/10.1037/pspp0000028 1335 Krämer, M. D., & Rodgers, J. L. (2020). The impact of having children on domain-specific 1336 life satisfaction: A quasi-experimental longitudinal investigation using the 1337 Socio-Economic Panel (SOEP) data. Journal of Personality and Social Psychology, 1338 119(6), 1497–1514. https://doi.org/10.1037/pspp0000279 1339 Kritzler, S., Rakhshani, A., Terwiel, S., Fassbender, I., Donnellan, B., Lucas, R. E., & 1340 Luhmann, M. (2021). How Are Common Major Life Events Perceived? Exploring 1341 Differences Between and Variability of Different Typical Event Profiles and Raters. 1342 PsyArXiv. https://doi.org/10.31234/osf.io/fncz3 1343 Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests 1344 in linear mixed effects models. Journal of Statistical Software, 82(13), 1–26. 1345 https://doi.org/10.18637/jss.v082.i13 1346 Lachman, M. E., & Weaver, S. L. (1997). The Midlife Development Inventory (MIDI) 1347 personality scales: Scale construction and scoring. Brandeis University. 1348 Leopold, T., & Skopek, J. (2015). The Demography of Grandparenthood: An International 1349 Profile. Social Forces, 94(2), 801–832. https://doi.org/10.1093/sf/sov066 1350 Li, M. (2013). Using the Propensity Score Method to Estimate Causal Effects: A Review 1351 and Practical Guide. Organizational Research Methods, 16(2), 188–226. 1352 https://doi.org/10.1177/1094428112447816 1353 Lodi-Smith, J., & Roberts, B. W. (2007). Social Investment and Personality: A 1354 Meta-Analysis of the Relationship of Personality Traits to Investment in Work, 1355

Family, Religion, and Volunteerism. Personality and Social Psychology Review,

11(1), 68–86. https://doi.org/10.1177/1088868306294590

1356

Luan, Z., Hutteman, R., Denissen, J. J. A., Asendorpf, J. B., & van Aken, M. A. G. (2017). 1358 Do you see my growth? Two longitudinal studies on personality development from 1359 childhood to young adulthood from multiple perspectives. Journal of Research in 1360 Personality, 67, 44-60. https://doi.org/10.1016/j.jrp.2016.03.004 1361 Lucas, R. E., & Donnellan, M. B. (2011). Personality development across the life span: 1362 Longitudinal analyses with a national sample from Germany. Journal of Personality 1363 and Social Psychology, 101(4), 847–861. https://doi.org/10.1037/a0024298 1364 Luhmann, M., Fassbender, I., Alcock, M., & Haehner, P. (2020). A dimensional taxonomy 1365 of perceived characteristics of major life events. Journal of Personality and Social 1366 Psychology, Advance Online Publication. https://doi.org/10.1037/pspp0000291 1367 Luhmann, M., Hofmann, W., Eid, M., & Lucas, R. E. (2012). Subjective well-being and adaptation to life events: A meta-analysis. Journal of Personality and Social 1369 Psychology, 102(3), 592–615. https://doi.org/10.1037/a0025948 1370 Luhmann, M., Orth, U., Specht, J., Kandler, C., & Lucas, R. E. (2014). Studying changes 1371 in life circumstances and personality: It's about time. European Journal of 1372 Personality, 28(3), 256–266. https://doi.org/10.1002/per.1951 1373 Lumsdaine, R. L., & Vermeer, S. J. C. (2015). Retirement timing of women and the role of 1374 care responsibilities for grandchildren. Demography, 52(2), 433–454. 1375 https://doi.org/10.1007/s13524-015-0382-5 1376 Lüdtke, O., Roberts, B. W., Trautwein, U., & Nagy, G. (2011). A random walk down 1377 university avenue: Life paths, life events, and personality trait change at the 1378 transition to university life. Journal of Personality and Social Psychology, 101(3), 1379 620-637. https://doi.org/10.1037/a0023743 1380 MacCallum, R. C., Zhang, S., Preacher, K. J., & Rucker, D. D. (2002). On the practice of 1381 dichotomization of quantitative variables. Psychological Methods, 7(1), 19-40. 1382

https://doi.org/10.1037/1082-989X.7.1.19

```
Mahne, K., & Huxhold, O. (2014). Grandparenthood and Subjective Well-Being:
           Moderating Effects of Educational Level. The Journals of Gerontology: Series B,
1385
           70(5), 782–792. https://doi.org/10.1093/geronb/gbu147
1386
    Mann, R. (2007). Out of the shadows?: Grandfatherhood, age and masculinities.
1387
           Masculinity and Aging, 21(4), 281–291.
1388
           https://doi.org/10.1016/j.jaging.2007.05.008
1389
    Mann, R., & Leeson, G. (2010). Grandfathers in Contemporary Families in Britain:
1390
           Evidence from Qualitative Research. Journal of Intergenerational Relationships,
1391
           8(3), 234–248. https://doi.org/10.1080/15350770.2010.498774
1392
    Margolis, R., & Verdery, A. M. (2019). A Cohort Perspective on the Demography of
1393
           Grandparenthood: Past, Present, and Future Changes in Race and Sex Disparities
1394
           in the United States. Demography, 56(4), 1495–1518.
1395
           https://doi.org/10.1007/s13524-019-00795-1
1396
    Margolis, R., & Wright, L. (2017). Healthy Grandparenthood: How Long Is It, and How
1397
           Has It Changed? Demography, 54(6), 2073–2099.
1398
           https://doi.org/10.1007/s13524-017-0620-0
1399
    Marsh, H. W., Nagengast, B., & Morin, A. J. S. (2013). Measurement invariance of big-five
1400
           factors over the life span: ESEM tests of gender, age, plasticity, maturity, and la
1401
           dolce vita effects. Developmental Psychology, 49(6), 1194–1218.
1402
           https://doi.org/10.1037/a0026913
1403
    McCrae, R. R. (1993). Moderated analyses of longitudinal personality stability. Journal of
1404
           Personality and Social Psychology, 65(3), 577–585.
1405
           https://doi.org/10.1037/0022-3514.65.3.577
1406
    McCrae, R. R. (2018). Method biases in single-source personality assessments.
1407
```

Psychological Assessment, 30(9), 1160–1173. https://doi.org/10.1037/pas0000566

- McCrae, R. R., & Mõttus, R. (2019). What personality scales measure: A new
- psychometrics and its implications for theory and assessment. Current Directions in
- Psychological Science, 28(4), 415–420. https://doi.org/10.1177/0963721419849559
- ¹⁴¹² McNeish, D. (2018). Thanks coefficient alpha, we'll take it from here. *Psychological*
- 1413 Methods, 23(3), 412–433. https://doi.org/10.1037/met0000144
- 1414 McNeish, D., & Kelley, K. (2019). Fixed effects models versus mixed effects models for
- clustered data: Reviewing the approaches, disentangling the differences, and making
- recommendations. Psychological Methods, 24(1), 20–35.
- https://doi.org/10.1037/met0000182
- Meyer, M. H., & Kandic, A. (2017). Grandparenting in the United States. Innovation in
- Aging, 1(2), 1-10. https://doi.org/ 10.1093/geroni/igx 023
- Mitra, R., & Reiter, J. P. (2016). A comparison of two methods of estimating propensity
- scores after multiple imputation. Statistical Methods in Medical Research, 25(1),
- 188–204. https://doi.org/10.1177/0962280212445945
- Mõttus, R., Allik, J., & Realo, A. (2019). Do Self-Reports and Informant-Ratings Measure
- the Same Personality Constructs? European Journal of Psychological Assessment,
- 1425 1-7. https://doi.org/10.1027/1015-5759/a000516
- Mõttus, R., Johnson, W., & Deary, I. J. (2012). Personality traits in old age: Measurement
- and rank-order stability and some mean-level change. Psychology and Aging, 27(1),
- 1428 243-249. https://doi.org/10.1037/a0023690
- Mõttus, R., & Rozgonjuk, D. (2021). Development is in the details: Age differences in the
- Big Five domains, facets, and nuances. Journal of Personality and Social
- 1431 Psychology, 120(4), 1035–1048. https://doi.org/10.1037/pspp0000276
- Mueller, S., Wagner, J., Drewelies, J., Duezel, S., Eibich, P., Specht, J., Demuth, I.,
- Steinhagen-Thiessen, E., Wagner, G. G., & Gerstorf, D. (2016). Personality

- development in old age relates to physical health and cognitive performance: 1434 Evidence from the Berlin Aging Study II. Journal of Research in Personality, 65, 1435 94–108. https://doi.org/10.1016/j.jrp.2016.08.007 1436 Muller, Z., & Litwin, H. (2011). Grandparenting and well-being: How important is 1437 grandparent-role centrality? European Journal of Ageing, 8, 109–118. 1438 https://doi.org/10.1007/s10433-011-0185-5 1439 Müller, K., & Wickham, H. (2021). Tibble: Simple data frames. 1440 https://CRAN.R-project.org/package=tibble 1441 OECD. (2020). Is Childcare Affordable? Policy Brief On Employment, Labour And Social 1442 Affairs. 1443 Oltmanns, J. R., Jackson, J. J., & Oltmanns, T. F. (2020). Personality change: Longitudinal self-other agreement and convergence with retrospective-reports. 1445 Journal of Personality and Social Psychology, 118(5), 1065–1079. https://doi.org/10.1037/pspp0000238 1447 Ooms, J. (2021). Magick: Advanced graphics and image-processing in r. 1448 https://CRAN.R-project.org/package=magick 1449 Pearl, J. (2009). Causal inference in statistics: An overview. Statistics Surveys, 3, 96–146. 1450 https://doi.org/10.1214/09-SS057 1451 Pilkauskas, N. V., Amorim, M., & Dunifon, R. E. (2020). Historical Trends in Children 1452 Living in Multigenerational Households in the United States: 18702018. 1453 Demography, 57(6), 2269–2296. https://doi.org/10.1007/s13524-020-00920-5 1454 Pinheiro, J., Bates, D., & R-core. (2021). Nlme: Linear and nonlinear mixed effects models 1455 [Manual]. 1456
- Podsakoff, P. M., MacKenzie, S. B., Jeong-Yeon, L., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and

```
recommended remedies. Journal of Applied Psychology, 88(5), 879–903.
1459
           https://doi.org/10.1037/0021-9010.88.5.879
1460
    Pusch, S., Mund, M., Hagemeyer, B., & Finn, C. (2019). Personality Development in
1461
           Emerging and Young Adulthood: A Study of Age Differences. European Journal of
1462
           Personality, 33(3), 245–263. https://doi.org/10.1002/per.2181
1463
    Ram, N., & Grimm, K. J. (2009). Methods and Measures: Growth mixture modeling: A
           method for identifying differences in longitudinal change among unobserved groups.
1465
           International Journal of Behavioral Development, 33(6), 565–576.
1466
           https://doi.org/10.1177/0165025409343765
1467
    R Core Team. (2021). R: A language and environment for statistical computing. R
1468
           Foundation for Statistical Computing. https://www.R-project.org/
1469
    Revelle, W. (2021). Psych: Procedures for psychological, psychometric, and personality
1470
           research [Manual].
147
    Roberts, B. W., & Davis, J. P. (2016). Young Adulthood Is the Crucible of Personality
1472
           Development. Emerging Adulthood, 4(5), 318–326.
1473
           https://doi.org/10.1177/2167696816653052
1474
    Roberts, B. W., & DelVecchio, W. F. (2000). The rank-order consistency of personality
1475
           traits from childhood to old age: A quantitative review of longitudinal studies.
1476
           Psychological Bulletin, 126(1), 3-25. https://doi.org/10.1037/0033-2909.126.1.3
1477
    Roberts, B. W., Walton, K. E., & Viechtbauer, W. (2006). Patterns of mean-level change
1478
           in personality traits across the life course: A meta-analysis of longitudinal studies.
1479
           Psychological Bulletin, 132, 1-25. https://doi.org/10.1037/0033-2909.132.1.1
1480
    Roberts, B. W., & Wood, D. (2006). Personality Development in the Context of the
1481
           Neo-Socioanalytic Model of Personality. In D. K. Mroczek & T. D. Little (Eds.),
1482
```

Handbook of Personality Development. Routledge.

```
Roberts, B. W., Wood, D., & Smith, J. L. (2005). Evaluating Five Factor Theory and
           social investment perspectives on personality trait development. Journal of
1485
           Research in Personality, 39(1), 166–184. https://doi.org/10.1016/j.jrp.2004.08.002
1486
    Roberts, B. W., & Yoon, H. J. (2021). Personality Psychology. Annual Review of
1487
           Psychology, Advance Online Publication.
1488
           https://doi.org/10.1146/annurev-psych-020821-114927
1489
    Rohrer, J. M. (2018). Thinking Clearly About Correlations and Causation: Graphical
1490
           Causal Models for Observational Data. Advances in Methods and Practices in
1491
           Psychological Science, 1(1), 27-42. https://doi.org/10.1177/2515245917745629
1492
    Rohrer, J. M., Hünermund, P., Arslan, R. C., & Elson, M. (2021). That's a lot to
1493
           PROCESS! Pitfalls of Popular Path Models. PsyArXiv.
1494
           https://doi.org/10.31234/osf.io/paeb7
1495
    Rosenbaum, P. (1984). The consequences of adjustment for a concomitant variable that has
           been affected by the treatment. Journal of the Royal Statistical Society. Series A
1497
           (General), 147(5), 656–666. https://doi.org/10.2307/2981697
1498
    Sarkar, D. (2008). Lattice: Multivariate data visualization with r. Springer.
1499
           http://lmdvr.r-forge.r-project.org
1500
    Scherpenzeel, A. (2011). Data Collection in a Probability-Based Internet Panel: How the
1501
           LISS Panel Was Built and How It Can Be Used. Bulletin of Sociological
1502
           Methodology/Bulletin de Méthodologie Sociologique, 109(1), 56-61.
1503
           https://doi.org/10.1177/0759106310387713
1504
    Scherpenzeel, A. C., & Das, M. (2010). True longitudinal and probability-based internet
1505
           panels: Evidence from the Netherlands. In M. Das, P. Ester, & L. Kaczmirek
1506
           (Eds.), Social and behavioral research and the internet: Advances in applied methods
1507
           and research strategies (pp. 77–104). Taylor & Francis.
1508
```

```
Schwaba, T., & Bleidorn, W. (2019). Personality trait development across the transition to
1509
           retirement. Journal of Personality and Social Psychology, 116(4), 651–665.
1510
           https://doi.org/10.1037/pspp0000179
1511
    Schwaba, T., & Bleidorn, W. (2018). Individual differences in personality change across the
1512
           adult life span. Journal of Personality, 86(3), 450–464.
1513
           https://doi.org/10.1111/jopy.12327
1514
    Schwaba, T., Bleidorn, W., Hopwood, C. J., Manuck, S. B., & Wright, A. G. C. (2022).
1515
           Refining the maturity principle of personality development by examining facets,
1516
           close others, and comaturation. Journal of Personality and Social Psychology, No
1517
           Pagination Specified-No Pagination Specified. https://doi.org/10.1037/pspp0000400
1518
    Seifert, I. S., Rohrer, J. M., Egloff, B., & Schmukle, S. C. (2021). The Development of the
1519
           Rank-Order Stability of the Big Five Across the Life Span. Journal of Personality
1520
           and Social Psychology. https://doi.org/10.1037/pspp0000398
1521
    Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and
1522
           quasi-experimental designs for generalized causal inference. Houghton, Mifflin and
1523
           Company.
1524
    Sheppard, P., & Monden, C. (2019). Becoming a First-Time Grandparent and Subjective
1525
           Well-Being: A Fixed Effects Approach. Journal of Marriage and Family, 81(4),
1526
           1016–1026. https://doi.org/10.1111/jomf.12584
1527
    Silverstein, M., & Marenco, A. (2001). How Americans Enact the Grandparent Role Across
1528
           the Family Life Course. Journal of Family Issues, 22(4), 493–522.
1529
           https://doi.org/10.1177/019251301022004006
1530
    Skopek, J., & Leopold, T. (2017). Who becomes a grandparent and when? Educational
1531
           differences in the chances and timing of grandparenthood. Demographic Research,
1532
```

37(29), 917–928. https://doi.org/10.4054/DemRes.2017.37.29

```
Sonnega, A., Faul, J. D., Ofstedal, M. B., Langa, K. M., Phillips, J. W., & Weir, D. R.
1534
           (2014). Cohort Profile: The Health and Retirement Study (HRS). International
1535
           Journal of Epidemiology, 43(2), 576-585. https://doi.org/10.1093/ije/dyu067
1536
    Specht, J. (2017). Personality development in adulthood and old age. In J. Specht (Ed.),
1537
           Personality Development Across the Lifespan (pp. 53-67). Academic Press.
1538
           https://doi.org/10.1016/B978-0-12-804674-6.00005-3
1539
    Specht, J., Bleidorn, W., Denissen, J. J. A., Hennecke, M., Hutteman, R., Kandler, C.,
1540
           Luhmann, M., Orth, U., Reitz, A. K., & Zimmermann, J. (2014). What Drives
1541
           Adult Personality Development? A Comparison of Theoretical Perspectives and
1542
           Empirical Evidence. European Journal of Personality, 28(3), 216–230.
1543
           https://doi.org/10.1002/per.1966
1544
    Specht, J., Egloff, B., & Schmukle, S. C. (2011). Stability and change of personality across
1545
           the life course: The impact of age and major life events on mean-level and
1546
           rank-order stability of the Big Five. Journal of Personality and Social Psychology,
1547
           101(4), 862–882. https://doi.org/10.1037/a0024950
1548
    Spikic, S., Mortelmans, D., & Pasteels, I. (2021). Does divorce change your personality?
1549
           Examining the effect of divorce occurrence on the Big Five personality traits using
1550
           panel surveys from three countries. Personality and Individual Differences, 171,
1551
           110428. https://doi.org/10.1016/j.paid.2020.110428
1552
    Steiner, P., Cook, T., Shadish, W., & Clark, M. (2010). The Importance of Covariate
1553
           Selection in Controlling for Selection Bias in Observational Studies. Psychological
1554
           Methods, 15, 250–267. https://doi.org/10.1037/a0018719
1555
    Stephan, Y., Sutin, A. R., & Terracciano, A. (2014). Physical activity and personality
1556
           development across adulthood and old age: Evidence from two longitudinal studies.
1557
           Journal of Research in Personality, 49, 1–7.
1558
           https://doi.org/10.1016/j.jrp.2013.12.003
1559
```

- StGeorge, J. M., & Fletcher, R. J. (2014). Men's experiences of grandfatherhood: A
 welcome surprise. The International Journal of Aging & Human Development,

 78(4), 351–378. https://doi.org/10.2190/AG.78.4.c

 Stuart, E. A. (2010). Matching methods for causal inference: A review and a look forward.

 Statistical Science: A Review Journal of the Institute of Mathematical Statistics,

 25(1), 1–21. https://doi.org/10.1214/09-STS313
- Tanskanen, A., Danielsbacka, M., Hämäläinen, H., & Sole-Auro, A. (2021). Does

 Transition to Retirement Promote Grandchild Care? Results from the Survey of

 Health, Ageing and Retirement in Europe. *PsyArXiv*.

 https://doi.org/10.31235/osf.io/akme6
- Tanskanen, A. O., Danielsbacka, M., Coall, D. A., & Jokela, M. (2019). Transition to
 Grandparenthood and Subjective Well-Being in Older Europeans: A Within-Person
 Investigation Using Longitudinal Data. Evolutionary Psychology, 17(3),
 1474704919875948. https://doi.org/10.1177/1474704919875948
- Terry M. Therneau, & Patricia M. Grambsch. (2000). *Modeling survival data: Extending*the Cox model. Springer.
- Thiele, D. M., & Whelan, T. A. (2006). The Nature and Dimensions of the Grandparent Role. Marriage & Family Review, 40(1), 93–108.

 https://doi.org/10.1300/J002v40n01_06
- Thoemmes, F. J., & Kim, E. S. (2011). A Systematic Review of Propensity Score Methods in the Social Sciences. *Multivariate Behavioral Research*, 46(1), 90–118. https://doi.org/10.1080/00273171.2011.540475
- Triadó, C., Villar, F., Celdrán, M., & Solé, C. (2014). Grandparents Who Provide

 Auxiliary Care for Their Grandchildren: Satisfaction, Difficulties, and Impact on

 Their Health and Well-being. Journal of Intergenerational Relationships, 12(2),
- 113–127. https://doi.org/10.1080/15350770.2014.901102

```
Urbanek, S. (2013). Png: Read and write png images.
1586
           https://CRAN.R-project.org/package=png
1587
    Ushey, K. (2022). Renv.: Project environments [Manual].
1588
    van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by
           chained equations in r. Journal of Statistical Software, 45(3), 1–67.
1590
    van der Laan, J. (2009). Representativity of the LISS panel (Discussion Paper 09041).
1591
           Statistics Netherlands.
1592
    VanderWeele, T. J. (2019). Principles of confounder selection. European Journal of
1593
           Epidemiology, 34(3), 211–219. https://doi.org/10.1007/s10654-019-00494-6
1594
    VanderWeele, T. J., Mathur, M. B., & Chen, Y. (2020). Outcome-Wide Longitudinal
1595
           Designs for Causal Inference: A New Template for Empirical Studies. Statistical
1596
           Science, 35(3), 437–466. https://doi.org/10.1214/19-STS728
1597
    van Scheppingen, M. A., Jackson, J. J., Specht, J., Hutteman, R., Denissen, J. J. A., &
1598
           Bleidorn, W. (2016). Personality Trait Development During the Transition to
1599
           Parenthood: A Test of Social Investment Theory. Social Psychological and
1600
           Personality Science, 7(5), 452–462. https://doi.org/10.1177/1948550616630032
1601
    van Scheppingen, M. A., & Leopold, T. (2020). Trajectories of life satisfaction before, upon,
1602
           and after divorce: Evidence from a new matching approach. Journal of Personality
1603
           and Social Psychology, 119(6), 1444–1458. https://doi.org/10.1037/pspp0000270
1604
    Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with s (Fourth).
1605
           Springer. http://www.stats.ox.ac.uk/pub/MASS4/
1606
    Vermote, M., Deliens, T., Deforche, B., & D'Hondt, E. (2021). The impact of
1607
           non-residential grandchild care on physical activity and sedentary behavior in
1608
           people aged 50 years and over: Study protocol of the Healthy Grandparenting
1609
           Project. BMC Public Health, 21. https://doi.org/10.1186/s12889-020-10024-9
1610
```

```
Wagner, J., Becker, M., Lüdtke, O., & Trautwein, U. (2015). The First Partnership
1611
           Experience and Personality Development: A Propensity Score Matching Study in
1612
           Young Adulthood. Social Psychological and Personality Science, 6(4), 455–463.
1613
           https://doi.org/10.1177/1948550614566092
1614
    Wagner, J., Lüdtke, O., & Robitzsch, A. (2019). Does personality become more stable with
1615
           age? Disentangling state and trait effects for the big five across the life span using
1616
           local structural equation modeling. Journal of Personality and Social Psychology,
1617
           116(4), 666–680. https://doi.org/10.1037/pspp0000203
1618
    Wagner, J., Orth, U., Bleidorn, W., Hopwood, C. J., & Kandler, C. (2020). Toward an
1619
           Integrative Model of Sources of Personality Stability and Change. Current
1620
           Directions in Psychological Science, 29(5), 438–444.
1621
           https://doi.org/10.1177/0963721420924751
1622
    Wagner, J., Ram, N., Smith, J., & Gerstorf, D. (2016). Personality trait development at
1623
           the end of life: Antecedents and correlates of mean-level trajectories. Journal of
1624
           Personality and Social Psychology, 111(3), 411–429.
1625
           https://doi.org/10.1037/pspp0000071
1626
    Wickham, H. (2016). Ggplot2: Elegant graphics for data analysis. Springer-Verlag New
1627
           York. https://ggplot2.tidyverse.org
1628
    Wickham, H. (2019). Stringr: Simple, consistent wrappers for common string operations.
1629
           https://CRAN.R-project.org/package=stringr
1630
    Wickham, H. (2021a). Forcats: Tools for working with categorical variables (factors).
1631
           https://CRAN.R-project.org/package=forcats
1632
    Wickham, H. (2021b). Tidyr: Tidy messy data.
1633
```

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R.,

https://CRAN.R-project.org/package=tidyr

```
Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller,
1636
           E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., ...
1637
           Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software,
1638
           4(43), 1686. https://doi.org/10.21105/joss.01686
1639
    Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R.,
1640
           Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller,
1641
           E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., ...
1642
           Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software,
1643
           4(43), 1686. https://doi.org/10.21105/joss.01686
1644
    Wickham, H., François, R., Henry, L., & Müller, K. (2021). Dplyr: A grammar of data
1645
           manipulation. https://CRAN.R-project.org/package=dplyr
1646
    Wickham, H., Hester, J., & Bryan, J. (2021). Readr: Read rectangular text data.
1647
           https://CRAN.R-project.org/package=readr
1648
    Wickham, H., & Seidel, D. (2020). Scales: Scale functions for visualization.
1649
           https://CRAN.R-project.org/package=scales
1650
    Wilke, C. O. (2020). Complet: Streamlined plot theme and plot annotations for 'ggplot2'.
1651
           https://CRAN.R-project.org/package=cowplot
1652
    Wortman, J., Lucas, R. E., & Donnellan, M. B. (2012). Stability and change in the Big
1653
           Five personality domains: Evidence from a longitudinal study of Australians.
1654
           Psychology and Aging, 27(4), 867–874. https://doi.org/10.1037/a0029322
1655
    Wrzus, C., & Roberts, B. W. (2017). Processes of personality development in adulthood:
1656
           The TESSERA framework. Personality and Social Psychology Review, 21(3),
1657
           253–277. https://doi.org/10.1177/1088868316652279
```

Yap, S., Anusic, I., & Lucas, R. E. (2012). Does personality moderate reaction and 1659 adaptation to major life events? Evidence from the British Household Panel Survey. 1660

```
Journal of Research in Personality, 46(5), 477–488.
1661
           https://doi.org/10.1016/j.jrp.2012.05.005
1662
    Zeileis, A., & Croissant, Y. (2010). Extended model formulas in R: Multiple parts and
1663
           multiple responses. Journal of Statistical Software, 34(1), 1–13.
1664
           https://doi.org/10.18637/jss.v034.i01
```

Supplemental Material

1666 Model Equations

Model equation for the basic (i.e., unmoderated) models (ignoring the additional nesting in households applied to the majority of models):

$$y_{ti} = \beta_{0i} + \beta_{1i}before_{ti} + \beta_{2i}after_{ti} + \beta_{3i}shift_{ti} + e_{ti}$$

$$\beta_{0i} = \gamma_{00} + \gamma_{01}grandparent_{i} + \gamma_{02}pscore_{i} + v_{0i}$$

$$\beta_{1i} = \gamma_{10} + \gamma_{11}grandparent_{i}$$

$$\beta_{2i} = \gamma_{20} + \gamma_{21}grandparent_{i}$$

$$\beta_{3i} = \gamma_{30} + \gamma_{31}grandparent_{i} ,$$
(A1)

where at time t for person i $e_{ti} \sim N(0, \sigma_e^2)$ and $v_{0i} \sim N(0, \tau_{00})$. y_{ti} represented one of the Big Five or life satisfaction. Separate models were computed for LISS and HRS samples, and for parent and nonparent matched controls.

Model equation for the models including the gender interaction (moderator variable $female_i$):

$$y_{ti} = \beta_{0i} + \beta_{1i}before_{ti} + \beta_{2i}after_{ti} + \beta_{3i}shift_{ti} + e_{ti}$$

$$\beta_{0i} = \gamma_{00} + \gamma_{01}grandparent_{i} + \gamma_{02}female_{i} + \gamma_{03}grandparent_{i}female_{i}$$

$$+ \gamma_{04}pscore_{i} + v_{0i}$$

$$\beta_{1i} = \gamma_{10} + \gamma_{11}grandparent_{i} + \gamma_{12}female_{i} + \gamma_{13}grandparent_{i}female_{i}$$

$$\beta_{2i} = \gamma_{20} + \gamma_{21}grandparent_{i} + \gamma_{22}female_{i} + \gamma_{23}grandparent_{i}female_{i}$$

$$\beta_{3i} = \gamma_{30} + \gamma_{31}grandparent_{i} + \gamma_{32}female_{i} + \gamma_{33}grandparent_{i}female_{i}$$

$$\beta_{3i} = \gamma_{30} + \gamma_{31}grandparent_{i} + \gamma_{32}female_{i} + \gamma_{33}grandparent_{i}female_{i}$$

where $e_{ti} \sim N(0, \sigma_e^2)$ and $v_{0i} \sim N(0, \tau_{00})$. Again, we estimated separate models for each sample (LISS, HRS) and each comparison group (parents, nonparents).

Model equation for the models including the interaction by paid work (moderator variable $working_{ti}$):

$$y_{ti} = \beta_{0i} + \beta_{1i}working_{ti} + \beta_{2i}before_{ti} + \beta_{3i}before_{ti}working_{ti} + \beta_{4i}after_{ti}$$

$$+ \beta_{5i}after_{ti}working_{ti} + \beta_{6i}shift_{ti} + \beta_{7i}shift_{ti}working_{ti} + e_{ti}$$

$$\beta_{0i} = \gamma_{00} + \gamma_{01}grandparent_{i} + \gamma_{02}pscore_{i} + v_{0i}$$

$$\beta_{1i} = \gamma_{10} + \gamma_{11}grandparent_{i}$$

$$\beta_{2i} = \gamma_{20} + \gamma_{21}grandparent_{i}$$

$$\beta_{3i} = \gamma_{30} + \gamma_{31}grandparent_{i}$$

$$\beta_{4i} = \gamma_{40} + \gamma_{41}grandparent_{i}$$

$$\beta_{5i} = \gamma_{50} + \gamma_{51}grandparent_{i}$$

$$\beta_{6i} = \gamma_{60} + \gamma_{61}grandparent_{i}$$

$$\beta_{7i} = \gamma_{70} + \gamma_{71}grandparent_{i}$$
,

where $e_{ti} \sim N(0, \sigma_e^2)$ and $v_{0i} \sim N(0, \tau_{00})$. We estimated separate models for each comparison group (parents, nonparents) in the HRS.

Model equation for the models including the interaction by grandchild care (moderator variable $caring_{ti}$):

$$y_{ti} = \beta_{0i} + \beta_{1i} caring_{ti} + \beta_{2i} after_{ti} + \beta_{3i} after_{ti} caring_{ti} + e_{ti}$$

$$\beta_{0i} = \gamma_{00} + \gamma_{01} grandparent_{i} + \gamma_{02} pscore_{i} + v_{0i}$$

$$\beta_{1i} = \gamma_{10} + \gamma_{11} grandparent_{i}$$

$$\beta_{2i} = \gamma_{20} + \gamma_{21} grandparent_{i}$$

$$\beta_{3i} = \gamma_{30} + \gamma_{31} grandparent_{i} ,$$
(A4)

where $e_{ti} \sim N(0, \sigma_e^2)$ and $v_{0i} \sim N(0, \tau_{00})$. Restricted to the HRS post-transition period, we estimated separate models for each comparison group (parents, nonparents).

Supplemental Tables

Table S1

Internal Consistency Measures in the Four Analysis Samples at the Time of Matching.

	A	С	E	N	О	LS
LISS: Parent controls						
ω_t	0.88	0.83	0.88	0.91	0.88	0.93
ω_h	0.75	0.57	0.71	0.72	0.63	0.78
α	0.83	0.78	0.84	0.87	0.78	0.91
LISS: Nonparent controls						
ω_t	0.89	0.88	0.93	0.92	0.88	0.89
ω_h	0.73	0.68	0.79	0.79	0.66	0.75
α	0.81	0.79	0.90	0.90	0.79	0.88
HRS: Parent controls						
ω_t	0.78	0.82	0.80	0.76	0.86	0.93
ω_h	0.67	0.48	0.68	0.59	0.61	0.88
α	0.78	0.59	0.75	0.71	0.77	0.90
HRS: Nonparent controls						
ω_t	0.84	0.77	0.81	0.76	0.85	0.92
ω_h	0.64	0.63	0.71	0.62	0.65	0.82
α	0.80	0.57	0.77	0.72	0.79	0.90

Note. A = agreeableness, C = conscientiousness, E = extraversion, N = neuroticism, O = openness, LS = life satisfaction. Omega total, ω_t , is based on "omega.tot" from the psych::omega() function, and omega hierarchical, ω_h , on "omega_h" (Revelle, 2021). For the LISS, we based the number of lower-order factors specified in "nfactors" on information supplied in Goldberg (1999). For the HRS, we could not find comparable information and used the default value. α is based on "raw_alpha" from the psych::alpha() function (Revelle, 2021).

Table S2

Intra-Class Correlations of Grandparents and Matched Controls in the Four Analysis Samples.

	A	С	Е	N	О	LS
LISS: Parent controls						
ICC_{pid}	0.76	0.76	0.83	0.67	0.76	0.28
ICC_{hid}	0.04	0.02	0.01	0.10	0.03	0.40
$ICC_{pid/hid}$	0.80	0.78	0.84	0.78	0.79	0.68
LISS: Nonparent controls						
ICC_{pid}	0.75	0.74	0.85	0.65	0.80	0.31
ICC_{hid}	0.00	0.01	0.00	0.10	0.01	0.34
$ICC_{pid/hid}$	0.75	0.75	0.85	0.74	0.81	0.65
HRS: Parent controls						
ICC_{pid}	0.75	0.73	0.76	0.71	0.58	0.28
ICC_{hid}	0.01	0.03	0.02	0.03	0.20	0.38
$ICC_{pid/hid}$	0.76	0.76	0.79	0.74	0.78	0.66
HRS: Nonparent controls						
ICC_{pid}	0.69	0.74	0.75	0.74	0.60	0.33
ICC_{hid}	0.08	0.05	0.04	0.01	0.22	0.37
$ICC_{pid/hid}$	0.77	0.79	0.80	0.75	0.83	0.70

Note. A = agreeableness, C = conscientiousness, E = extraversion, N = neuroticism, O = openness, LS = life satisfaction. Intra-class correlations are the proportion of total variation that is explained by the respective nesting factor. ICC_{pid} is the proportion of total variance explained by nesting in respondents which corresponds to the correlation between two randomly selected observations from the same respondent. ICC_{hid} is the proportion of total variance explained by nesting in households which corresponds to the correlation between two randomly selected observations from the same household. $ICC_{pid/hid}$ is the proportion of total variance explained by nesting in respondents and in households which corresponds to the correlation between two randomly selected observations from the same respondent and the same household.

Means and Standard Deviations of the Big Five and Life Satisfaction over Time in the LISS Panel.

		P	re-transi	re-transition years	LS				Post-t:	Post-transition	years		
	9-	ų	4-	က္	-2	-	0	П	2	33	4	ಬ	9
Agreeableness													
Grandparents	3.84	3.88	3.94	3.84	3.91	3.91	3.85	3.90	3.89	3.96	3.89	3.96	3.98
	(0.50)	(0.50)	(0.45)	(0.50)	(0.53)	(0.48)	(0.51)	(0.55)	(0.52)	(0.49)	(0.51)	(0.51)	(0.40)
Parent controls	3.90	3.87	3.89	3.87	3.85	3.90	3.84	3.86	3.89	3.82	3.84	3.87	3.81
	(0.51)	(0.50)	(0.45)	(0.51)	(0.49)	(0.46)	(0.45)	(0.50)	(0.52)	(0.48)	(0.49)	(0.48)	(0.48)
Nonparent controls	3.89	3.95	3.96	3.97	3.95	3.93	3.90	3.95	3.94	3.94	3.95	3.92	3.90
	(0.53)	(0.53)	(0.49)	(0.49)	(0.49)	(0.48)	(0.46)	(0.44)	(0.46)	(0.48)	(0.44)	(0.43)	(0.42)
Conscientiousness													
Grandparents	3.79	3.85	3.75	3.76	3.77	3.78	3.80	3.80	3.79	3.81	3.81	3.77	3.75
	(0.52)	(0.45)	(0.48)	(0.47)	(0.52)	(0.49)	(0.51)	(0.51)	(0.49)	(0.50)	(0.45)	(0.47)	(0.44)
Parent controls	3.75	3.75	3.73	3.73	3.72	3.76	3.73	3.76	3.74	3.74	3.71	3.76	3.65
	(0.56)	(0.47)	(0.53)	(0.48)	(0.47)	(0.49)	(0.47)	(0.46)	(0.49)	(0.49)	(0.50)	(0.51)	(0.48)
Nonparent controls	3.72	3.76	3.77	3.73	3.76	3.75	3.73	3.74	3.72	3.77	3.74	3.71	3.76
	(0.54)	(0.55)	(0.54)	(0.50)	(0.52)	(0.50)	(0.52)	(0.51)	(0.53)	(0.49)	(0.51)	(0.53)	(0.53)
Extraversion													
Grandparents	3.21	3.18	3.31	3.31	3.29	3.29	3.21	3.21	3.16	3.22	3.26	3.32	3.20
	(0.65)	(0.73)	(0.56)	(0.58)	(99.0)	(09.0)	(0.63)	(0.68)	(0.68)	(0.62)	(0.59)	(0.62)	(0.54)
Parent controls	3.30	3.22	3.22	3.23	3.25	3.23	3.19	3.20	3.24	3.18	3.20	3.17	3.19
	(0.59)	(0.61)	(0.57)	(0.58)	(0.55)	(0.55)	(0.57)	(0.58)	(0.57)	(0.57)	(0.57)	(0.55)	(0.50)
Nonparent controls	3.29	3.28	3.24	3.28	3.29	3.31	3.27	3.24	3.30	3.22	3.27	3.25	3.26
	(0.72)	(0.70)	(0.78)	(0.74)	(0.68)	(0.66)	(0.70)	(0.68)	(0.71)	(0.73)	(0.72)	(0.66)	(0.71)
Neuroticism													
Grandparents	2.39	2.33	2.32	2.41	2.48	2.42	2.32	2.38	2.28	2.35	2.29	2.45	2.41
	(0.70)	(0.64)	(0.59)	(0.63)	(0.64)	(0.70)	(0.67)	(0.78)	(0.68)	(0.65)	(0.64)	(0.79)	(89.0)
Parent controls	2.50	2.44	2.47	2.42	2.46	2.43	2.40	2.41	2.34	2.36	2.37	2.33	2.40
	(0.58)	(0.60)	(0.62)	(0.55)	(0.58)	(09.0)	(0.60)	(09.0)	(0.62)	(09.0)	(0.61)	(0.64)	(0.59)
Nonparent controls	2.51	2.47	2.51	2.45	2.46	2.41	2.44	2.42	2.49	2.50	2.48	2.52	2.49
	(0.58)	(0.61)	(0.68)	(0.64)	(0.66)	(0.65)	(0.69)	(0.71)	(0.76)	(0.74)	(0.77)	(0.80)	(0.83)

Table S3 continued

		P	re-transi	tion years	s				Post-t:	ransitior	ı years		
	9-	쟌	-4	-3	-2	-	0		2	က	4	ಬ	9
Openness													
Grandparents	3.48	3.48	3.48	3.51	3.47	3.47	3.46	3.49	3.50	3.48	3.47	3.46	3.39
	(0.52)	(0.51)	(0.51)	(0.45)	(0.53)	(0.52)	(0.50)	(0.54)	(0.44)	(0.46)	(0.47)	(0.53)	(0.53)
Parent controls	3.47	3.41	3.42	3.44	3.41	3.38	3.41	3.40	3.37	3.37	3.38	3.36	3.36
	(0.58)	(0.50)	(0.51)	(0.52)	(0.49)	(0.49)	(0.52)	(0.50)	(0.49)	(0.48)	(0.48)	(0.45)	(0.48)
Nonparent controls	3.54	3.52	3.50	3.50	3.51	3.46	3.49	3.48	3.52	3.52	3.51	3.48	3.49
	(0.48)	(0.53)	(0.51)	(0.53)	(0.53)	(0.53)	(0.52)	(0.52)	(0.52)	(0.53)	(0.51)	(0.49)	(0.52)
Life satisfaction													
Grandparents	5.17	5.24	5.21	5.14	5.29	5.28	5.34	5.23	5.36	5.44	5.39	5.27	5.32
	(1.07)	(0.91)	(1.11)	(0.98)	(0.92)	(1.08)	(0.91)	(0.99)	(1.06)	(0.88)	(1.10)	(1.10)	(1.08)
Parent controls	5.10	5.14	5.17	5.21	5.20	5.31	5.27	5.26	5.26	5.30	5.21	5.30	5.18
	(1.29)	(1.11)	(1.17)	(1.01)	(1.06)	(1.12)	(1.10)	(1.12)	(1.10)	(1.09)	(1.12)	(1.17)	(1.12)
Nonparent controls	5.06	5.17	5.07	5.10	5.21	5.22	5.12	5.00	5.02	4.96	5.04	5.05	5.02
	(0.92)	(0.85)	(0.92)	(0.92)	(0.88)	(0.88)	(0.96)	(1.00)	(1.15)	(1.21)	(1.13)	(1.16)	(1.14)

Note. Standard deviations shown in parentheses; time = 0 marks the first year where the transition to grandparenthood was reported.

Means and Standard Deviations of the Big Five and Life Satisfaction over Time in the HRS.

		Pre.	Pre-transition vears	n vears)d	Post-transition years	sition	VPSTS		
		1	7	, m		1						1	
	9-	-2	-4	-3	-2	-1	0	1	5	3	4	2	9
Agreeableness													
Grandparents	3.46		3.51	.3	.51		3.51		3.52		3.50		3.56
	(0.47)		(0.48)	0)	(49)		(0.49)		(0.48)	\subseteq	0.53		0.44
Parent controls	3.47		3.51	, es	.51		3.51		3.50	,	3.50		3.48
	(0.50)		(0.46)	0	.47)		(0.48)		(0.49)	<u> </u>	0.50		(0.52)
Nonparent controls	3.53		3.48	<u>့</u> က	.51		3.48		3.52°	,	3.44		3.47
	(0.48)		(0.51)	0)	(0.49)		(0.51)		(0.49)	\subseteq	(0.54)		(0.54)
Conscientiousness													
Grandparents	3.47		3.47	33	.47		3.46		3.45		3.44		3.49
	(0.46)		(0.45)	0	.44)		(0.45)		(0.44)	\subseteq	0.43		(0.44)
Parent controls	3.45		3.44	က်	.46		3.46		3.46		3.44		3.46
	(0.44)		(0.45)	0)	.45)		(0.45)		(0.47)	\odot).48)		(0.50)
Nonparent controls	3.50		3.47		.49		3.49		3.50		3.47		3.49
	(0.43)		(0.45)	0)	(0.43)		(0.44)		(0.44)	\odot	(0.45)		(0.44)
Extraversion													
Grandparents	3.15		3.22	33	.20		3.21		3.19		3.22		3.22
	(0.56)		(0.56)	0)	.54)		(0.56)		(0.58)	\subseteq	0.59		(0.58)
Parent controls	3.18		3.19	6.0	.19		3.22		3.21	٠.,	3.22		3.22
	(0.54)		(0.54)	0)	.55)		(0.54)		(0.56)	\odot	0.52		(0.54)
Nonparent controls	3.23		3.21	33	.24		3.22		3.25		3.24		3.27
	(0.54)		(0.54)	0)	(0.55)		(0.53)		(0.52)	\subseteq	(0.56)		(0.55)
Neuroticism													
Grandparents	2.00		1.98	2.	90:		1.91		1.96		1.91		1.91
	(0.56)		(0.63)	0)	.62)		(0.60)		(0.58)	<u> </u>	0.59		(0.61)
Parent controls	2.07		2.02	2.	.02		1.98		1.99	, ,	96.1		1.95
	(0.59)		(0.59)	0)	(09.0)		(0.61)		(0.62)	<u> </u>	(0.59)		(0.59)
Nonparent controls	2.08		2.04	2.	.03		1.96		1.97	, ,	1.88		1.93
	(0.59)		(0.61)	0)	(09:		(09.0)		(0.60)	\subseteq	0.56		(0.58)

Table S4 continued

		Pre-1	Pre-transition years	on yea	urs				ost-tra	nsitic	Post-transition years		
	9-	5-	4-	ကု	-2	 	0 1	Н	2	က	4	ಬ	9
Openness													
Grandparents	3.00		3.02		3.04		3.01		3.00		2.96		3.04
	(0.51)		(0.53)		(0.51)		(0.52)		(0.52)		(0.59)		(0.51)
Parent controls	3.01		2.99		2.99		3.00		2.99		2.97		2.96
	(0.51)		(0.54)		(0.54)		(0.53)		(0.53)		(0.56)		(0.56)
Nonparent controls	3.08		3.04		3.07		3.04		3.06		3.02		3.04
	(0.56)		(0.53)		(0.54)		(0.53)		(0.55)		(0.55)		(0.57)
Life satisfaction													
Grandparents	5.14		5.08		5.15		5.17		5.16		5.29		5.28
	(1.44)		(1.45)		(1.46)		(1.40)		(1.44)		(1.38)		(1.50)
Parent controls	5.08		5.03		5.05		5.16		5.13		5.17		5.18
	(1.60)		(1.56)		(1.58)		(1.50)		(1.52)		(1.46)		(1.49)
Nonparent controls	5.16		5.07		5.15		5.21		5.26		5.34		5.46
	(1.45)		(1.54)		(1.47)		(1.44)		(1.43)		(1.37)		(1.31)

Note. Standard deviations shown in parentheses; time = 0 marks the first year where the transition to grandparenthood was reported. To aid comparability with the LISS panel measures, we reverse scored all Big Five items so that higher values corresponded to higher trait levels.

Standardized Difference in Means for Covariates Used in Propensity Score Matching and the Propensity Score in the LISS.

			Parent control group	trol group	Nonparent control group	ntrol group
Covariate	Description	Raw variables	Before PSM	After PSM	Before PSM	After PSM
pscore	Propensity score	/	1.13	0.02	1.32	0.03
female	Gender $(f=1, m=0)$	geslacht	0.08	0.00	0.07	0.00
age	Age	gebjaar	0.76	0.03	3.86	-0.11
degreehighersec	Higher secondary/preparatory university education	oplmet	0.04	-0.08	-0.08	0.10
degreevocational	Intermediate vocational education	oplmet	-0.20	0.01	0.01	0.00
degreecollege	Higher vocational education	oplmet	0.03	0.05	0.02	-0.02
degreeuniversity	University degree	oplmet	-0.06	90.0	-0.15	-0.03
religion	Member of religion/church	cr^*012	0.19	0.01	0.38	0.11
speakdutch	Dutch spoken at home (primarily)	cr^*089	-0.01	0.11	-0.01	0.05
divorced	Divorced (marital status)	burgstat	0.01	-0.01	0.29	0.06
widowed	Widowed (marital status)	burgstat	0.00	-0.13	0.14	-0.13
livetogether	Live together with partner	$^{ m cf}$	-0.03	0.00	1.04	0.05
rooms	Rooms in dwelling	cd*034	0.05	-0.03	0.68	-0.04
logincome	Personal net monthly income in Euros (logarithm)	nettoink	-0.07	-0.03	0.46	-0.09
rental	Live for rent (vs. self-owned dwelling)	woning	-0.10	0.01	-0.48	-0.03
financialsit	Financial situation of household (scale from 1-5)	ci*252	0.01	0.08	-0.05	0.03
jobhours	Average work hours per week	cw*127	0.03	0.08	0.10	0.03
mobility	Mobility problems (walking, staircase, shopping)	\sim	0.05	-0.03	90.0	-0.06
deb	Depression items from Mental Health Inventory	$ch^*011 - ch^*015$	0.01	0.02	-0.21	-0.09
betterhealth		ch^*004	-0.03	0.07	-0.28	0.08
worsehealth	Very good/excellent health status (ref.: good)	ch*004	-0.01	0.00	0.05	-0.12
totalchildren		cf^*455 / cf^*036	0.29	0.00	NA	NA
totalresidentkids	Number of living-at-home children in household	aantalki	-0.63	0.01	NA	NA
secondkid	Has two or more children	\	0.23	0.05	NA	NA
thirdkid	Has three or more children	cf^*455 / cf^*036	0.27	90.0	NA	NA
kid1female	Gender of first child $(f=1, m=0)$	$^{ m cf}$	0.04	0.02	NA	NA
kid2female	Gender of second child $(f=1, m=0)$	$^{ m ct}$	0.08	-0.03	NA	NA
kid3female	Gender of third child $(f=1, m=0)$	$^{ m cf}$	0.14	90.0	NA	NA
kid1age	Age of first child	\	1.58	-0.09	NA	NA
kid2age	Age of second child	\	0.84	0.03	NA	NA
kid3age	Age of third child	cf^*458 / cf^*039	0.41	0.00	NA	NA
kid1home	First child living at home	cf^*083	-1.46	0.00	NA	NA

Table S5 continued

			Parent control group	trol group	Nonparent control group	ntrol group
Covariate	Description	Raw variables	Before PSM	After PSM	Before PSM	After PSM
kid2home	Second child living at home	cf*084	-0.94	0.01	NA	NA
kid3home	Third child living at home	$^{ m cf}$	-0.03	-0.01	NA	NA
swls		$cp^*014 - cp^*018$	0.00	0.03	0.22	0.02
agree	Agreeableness	$cp^*021 - cp^*066$	0.05	0.05	0.12	-0.12
con	Conscientiousness	$cp^*022 - cp^*067$	•	0.08	0.14	90.0
extra	Extraversion	$cp^*020 - cp^*065$		0.08	0.04	-0.01
neur	Neuroticism	$cp^*023 - cp^*068$		-0.04	-0.22	90.0-
open	Openness	$cp^*024 - cp^*069$		0.13	-0.16	0.00
participation	Waves participated		•	-0.07	-0.18	-0.04
year	Year of assessment	wave	-0.63	-0.02	-0.16	-0.02

was computed by $(\bar{x}_{gp} - \bar{x}_c)/(\hat{\sigma}_{gp})$. Rules of thumb say that this measure should ideally be below .25 (Stuart, 2010) or below Note. PSM = propensity score matching, ref. = reference category, f. = female, m. = male, NA = covariate not used in this sample. The standardized difference in means between the grandparent and the two control groups (parent and nonparent) .10 (Austin, 2011).

Standardized Difference in Means for Covariates Used in Propensity Score Matching and the Propensity Score in the HRS.

			Parent control group	rol group	Nonparent control group	ntrol group
Covariate	Description	Raw variables	Before PSM	After PSM	Before PSM	After PSM
pscore	Propensity score	/	0.92	0.01	1.45	00.00
female	Gender $(f=1, m=0)$	RAGENDER	-0.06	0.00	0.01	0.00
age	Age	RABYEAR	-0.46	-0.03	-1.02	0.10
schlyrs	Years of education	RAEDYRS	0.11	0.05	0.24	-0.01
religyear	Religious attendance: yearly	*B082	0.04	0.01	0.13	0.02
religmonth	Religious attendance: monthly	*B082	0.01	-0.03	0.10	0.05
religweek	Religious attendance: weekly	*B082	0.00	0.04	0.04	0.03
religmore	Religious attendance: more	*B082	0.00	-0.04	90.0	-0.06
notusaborn	Not born in the US	*Z230	-0.05	0.02	0.13	0.01
black	Race: black/african american (ref.: white)	RARACEM	-0.12	-0.03	-0.20	0.00
raceother	Race: other (ref.: white)	RARACEM	-0.09	-0.01	0.01	-0.01
divorced	Divorced (marital status)	R^*MSTAT	-0.06	-0.02	0.01	0.00
widowed	Widowed (marital status)	R^*MSTAT	-0.31	0.01	-0.41	0.04
livetogether	Live together with partner	$*A030 / *XF065_R$	0.25	0.00	1.05	-0.01
${\rm roomsless three}$	Number of rooms (in housing unit)	*H147 / *066	-0.15	-0.01	-0.59	-0.06
${ m roomsfourfive}$	Number of rooms (in housing unit)	*H147 / *066	0.00	0.01	-0.23	-0.02
${ m roomsmoreeight}$	Number of rooms (in housing unit)	* H147 $/ *$ 066	0.07	-0.03	0.25	0.03
loghhincome	Household income (logarithm)	*IOTI	0.03	0.00	0.41	0.04
loghhwealth	Household wealth (logarithm)	*ATOTB	0.07	0.00	0.34	0.03
renter	Live for rent (vs. self-owned dwelling)	*H004	-0.09	-0.02	-0.50	-0.08
jobhours	Hours worked/week main job	R*JHOURS	0.25	0.06	0.59	-0.03
paidwork	Working for pay	*J020	0.28	0.08	0.62	-0.04
mobilitydiff	Difficulty in mobility rated from 0-5	$R^*MOBILA$	-0.16	-0.02	-0.52	-0.01
cesd	CESD score (depression)	R^*CESD	-0.13	-0.01	-0.26	-0.04
conde	Sum of health conditions	R*CONDE	-0.23	-0.01	-0.51	0.03
healthexcellent	Self-report of health - excellent (ref: good)	$ m R^*SHLT$	90.0	0.01	0.15	0.00
m health very good	Self-report of health - very good (ref: good)	$ m R^*SHLT$	0.23	-0.01	0.31	-0.02
healthfair	Self-report of health - fair (ref: good)	$ m R^*SHLT$	-0.16	0.00	-0.29	-0.01
m healthpoor	Self-report of health - poor (ref: good)	$ m R^*SHLT$	-0.07	-0.03	-0.24	0.02
totalnonresidentkids	Number of nonresident kids	*A100	0.00	-0.06	NA	NA
totalresidentkids	Number of resident children	*A099	-0.22	0.03	NA	NA
secondkid	Has two or more children	KIDID	0.52	0.01	NA	NA

Table S6 continued

			Parent control group	trol group	Nonparent control group	ontrol group
Covariate	Description	Raw variables	Before PSM	After PSM	Before PSM	After PSM
thirdkid	Has three or more children	KIDID	0.38	-0.02	NA	NA
kid1female	Gender of first child $(f=1, m=0)$	KAGENDERBG	0.11	0.04	NA	NA
kid2female	Gender of second child (f.=1, m.=0)	KAGENDERBG	0.17	0.02	NA	NA
kid3female	hild (f	KAGENDERBG	0.23	0.05	NA	NA
kid1age	Age of first child	KABYEARBG	-0.35	-0.06	NA	NA
kid2age	Age of second child	KABYEARBG	0.36	-0.01	NA	NA
kid3age	Age of third child	KABYEARBG	0.35	-0.02	NA	NA
kid1educ	Education of first child (years)	KAEDUC	0.30	0.03	NA	NA
kid2educ	Education of second child (years)	KAEDUC	0.57	0.03	NA	NA
kid3educ	Education of third child (years)	KAEDUC	0.40	-0.01	NA	NA
childrenclose	Children live within 10 miles	*E012	0.13	0.00	NA	NA
siblings	Number of living siblings	\mathbb{R}^* LIVSIB	0.05	-0.02	0.22	0.03
swls	Satisfaction with Life Scale	$*\mathrm{LB003}*$	0.17	0.05	0.30	0.00
agree	Agreeableness	$*\mathrm{LB033}*$	90.0	0.01	0.11	0.02
con	Conscientiousness	$*\mathrm{LB033}*$	0.14	0.03	0.26	-0.03
extra	Extraversion	$*\mathrm{LB033}*$	0.04	0.03	0.18	-0.04
neur	Neuroticism	$*\mathrm{LB033}*$	-0.07	0.01	-0.04	-0.01
open	Openness	$*\mathrm{LB033}*$	0.04	0.07	0.05	-0.05
participation	Waves participated (2006-2018)	_	-0.36	-0.02	-0.26	-0.04
interviewyear	Date of interview - year	*A501	-0.33	-0.04	-0.18	-0.07

was computed by $(\bar{x}_{gp} - \bar{x}_c)/(\hat{\sigma}_{gp})$. Rules of thumb say that this measure should ideally be below .25 (Stuart, 2010) or below Note. PSM = propensity score matching, ref. = reference category, f. = female, m. = male, NA = covariate not used in this sample. The standardized difference in means between the grandparent and the two control groups (parent and nonparent) .10 (Austin, 2011).

Table S7

Linear Contrasts for Agreeableness.

	Pareı	nt cont	rols	Parent controls Nonparent controls	rent co	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c \chi^2 p \hat{\gamma}_c \chi^2$	χ^2	$\frac{d}{d}$
LISS						
Shift of the controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$ 0	0.00	0.07	.792	0.00	0.01	.932
$\hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}$	0.02		.343	0.02	0.63	.428
$\hat{\gamma}_{31})$	0.02		.471	0.02		506
	-0.01	2.75	260.	-0.01	2.02	.155
After-slope of the grandparents vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{21})$ 0 HRS	0.00		.748	0.00		.726
Shift of the controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$ 0	0.00	90.0	908.	0.01	2.86	.091
$\hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}$	0.00	0.02	890	0.00	0.02	968.
$\hat{\gamma}_{31})$	0.00	0.05	.815	-0.01	0.42	.517
	0.00	0.09	.759	0.00	0.10	.746
After-slope of the grandparents vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{21}$) 0	0.00	0.27	209.	0.00	0.30	.581

the car R package (Fox & Weisberg, 2019) based on the models from Table 2. $\hat{\gamma}_c = \text{combined}$ Note. The linear contrasts are needed in cases where estimates of interest are represented by multiple fixed-effects coefficients and are computed using the linearHypothesis function from fixed-effects estimate.

Table S8

Linear Contrasts for Agreeableness (Moderated by Gender).

	Pare	Parent controls	slo	Nonpa	Nonparent controls	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	. d	$\hat{\gamma}_c$	χ^2	d
LISS						
Shift of male controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.01	0.20	.657	0.01	0.67	.413
Shift of female controls vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32}$)	0.00	0.00	959	-0.01	0.34	.559
Shift of grandfathers vs. $0\left(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}\right)$	0.00	0.02	.901	0.00	0.01	.939
	0.03	1.69	.194	0.03	1.30	.255
Shift of male controls vs. grandfathers $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.00	0.01	.924	-0.01	0.09	.762
	-0.01	1.10	.295	0.00	0.19	.659
After-slope of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	0.00	0.01	.927	-0.01	1.23	.267
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.03	1.38	.239	0.04	1.64	.201
Shift of male vs. female controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	-0.01	0.13	.716	-0.02	0.99	.319
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	0.00	0.01	.932	0.00	0.01	.921
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	-0.01	1.13	.288	-0.01	0.90	.342
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.03	0.61	.434	0.03	0.50	.478
HRS						
Shift of male controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.03	5.09	.024	0.00	0.00	959
Shift of female controls vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32}$)	-0.02	5.24	.022	0.02	4.44	.035
Shift of grandfathers vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}$)	0.01	0.05	.819	0.01	0.05	.828
	0.00	0.00	.971	0.00	0.00	926.
Shift of male controls vs. grandfathers $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.02	0.67	.413	0.00	0.03	865
Before-slope of female controls vs. grandmothers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	0.02	1.37	.242	0.01	0.79	.374
After-slope of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	0.00	0.07	.791	0.01	0.84	.358
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.03	1.13	.288	-0.02	0.84	.359
Shift of male vs. female controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	-0.05	10.29	.001	0.02	1.80	.180
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	0.02	1.17	.280	0.02	1.19	.276
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	-0.02	1.87	.171	-0.02	2.01	.157
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.00	0.02	.884	0.00	0.02	887

Note. The linear contrasts are based on the models from Table 3. $\hat{\gamma}_c =$ combined fixed-effects estimate.

Fixed Effects of Agreeableness Over the Transition to Grandparenthood Moderated by Performing Paid Work. Table S9

		Parent controls	ntrols			Nonparent controls	sontrols	
Parameter	<i>√</i> ≻	95% CI	t	. d	<≻	95% CI	t	d
Intercept, $\hat{\gamma}_{00}$	3.51	[3.47, 3.56]	161.90	< .001	3.51	[3.46, 3.55]	142.65	< .001
Propensity score, $\hat{\gamma}_{02}$	0.09	[0.03, 0.15]	2.82	.005	90.0	[-0.01, 0.12]	1.69	060.
Before-slope, $\hat{\gamma}_{20}$	-0.01	[-0.02, 0.01]	-0.57	292.	-0.02	[-0.04, 0.00]	-1.95	.051
After-slope, $\hat{\gamma}_{40}$	-0.02	[-0.03, -0.01]	-3.42	.001	-0.02	[-0.03, -0.01]	-2.94	.003
Shift, $\hat{\gamma}_{60}$	-0.01	[-0.04, 0.02]	-0.56	.578	0.03	[-0.01, 0.06]	1.58	.114
Grandparent, $\hat{\gamma}_{01}$	-0.12	[-0.21, -0.03]	-2.65	800.	-0.11	[-0.20, -0.02]	-2.31	.021
Working, $\hat{\gamma}_{10}$	-0.06	[-0.10, -0.02]	-3.06	.002	-0.01	[-0.05, 0.03]	-0.37	.710
Before-slope * Grandparent, $\hat{\gamma}_{21}$	0.05	[0.00, 0.10]	2.14	.033	0.07	[0.02, 0.12]	2.76	900.
After-slope * Grandparent, $\hat{\gamma}_{41}$	0.02	[0.00, 0.04]	1.63	.103	0.02	[0.00, 0.04]	1.54	.124
Shift * Grandparent, $\hat{\gamma}_{61}$	0.00	[-0.08, 0.07]	-0.06	.949	-0.04	[-0.11, 0.03]	-1.06	.288
Before-slope * Working, $\hat{\gamma}_{30}$	0.01	[-0.02, 0.03]	0.52	.604	0.01	[-0.01, 0.03]	0.70	.482
After-slope * Working, $\hat{\gamma}_{50}$	0.02	[0.00, 0.03]	2.46	.014	0.01	[0.00, 0.03]	1.66	960.
Shift * Working, $\hat{\gamma}_{70}$	0.02	[-0.03, 0.06]	0.71	.480	-0.01	[-0.05, 0.03]	-0.37	.712
Grandparent * Working, $\hat{\gamma}_{11}$	0.18	[0.09, 0.28]	3.79	< .001	0.13	[0.04, 0.22]	2.76	900.
Before-slope * Grandparent * Working, $\hat{\gamma}_{31}$	-0.07	[-0.13, -0.02]	-2.49	.013	-0.08	[-0.13, -0.02]	-2.63	600.
After-slope * Grandparent * Working, $\hat{\gamma}_{51}$	-0.01	[-0.04, 0.02]	-0.75	.453	-0.01	[-0.04, 0.03]	-0.40	695
Shift * Grandparent * Working, $\hat{\gamma}_{71}$	-0.01	[-0.10, 0.09]	-0.11	.914	0.02	[-0.08, 0.11]	0.36	.719

Note. Two models were computed (only HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval. working = 1 indicates being employed in paid work.

Table S10

Linear Contrasts for Agreeableness (Moderated by Paid Work; only HRS).

	Pare	Parent controls	rols	Nonpa	Nonparent controls	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
Shift of not-working controls vs. $0 \left(\hat{\gamma}_{40} + \hat{\gamma}_{60} \right)$	-0.03	4.00	.045	0.01	89.0	.411
Shift of working controls vs. 0 ($\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{50} + \hat{\gamma}_{70}$)	0.01	0.40	.528	0.02	2.65	.103
Shift of not-working grandparents vs. $0 (\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{41} + \hat{\gamma}_{61})$	-0.01	0.14	.712	-0.01	0.15	.700
Shift of working grandparents vs. $0(\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{41} + \hat{\gamma}_{61} + \hat{\gamma}_{50} + \hat{\gamma}_{70} + \hat{\gamma}_{51} + \hat{\gamma}_{71})$	0.01	0.07	.795	0.00	90.0	.812
Shift of not-working controls vs. not-working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{61})$	0.02	0.29	.589	-0.02	0.53	.466
Before-slope of working controls vs. working grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.02	1.75	.186	-0.01	0.28	597
After-slope of working controls vs. working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{51})$	0.01	0.32	.571	0.01	1.05	.305
Shift of working controls vs. working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{61} + \hat{\gamma}_{51} + \hat{\gamma}_{71})$	0.00	0.00	826.	-0.01	0.24	.621
Shift of not-working controls vs. working controls $(\hat{\gamma}_{50} + \hat{\gamma}_{70})$	0.03	3.81	.051	0.00	0.05	.825
Before-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{30} + \hat{\gamma}_{31})$	-0.07	6.16	.013	-0.07	6.59	.010
After-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{50} + \hat{\gamma}_{51})$	0.01	0.14	.710	0.01	0.15	.694
Shift of not-working grandparents vs. working grandparents $(\hat{\gamma}_{50} + \hat{\gamma}_{70} + \hat{\gamma}_{51} + \hat{\gamma}_{71})$	0.02	0.20	.658	0.01	0.20	.659

Note. The linear contrasts are based on the models from Table S9. $\hat{\gamma}_c =$ combined fixed-effects estimate.

Table S11

Fixed Effects of Agreeableness Over the Transition to Grandparenthood Moderated by Grandchild Care.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	«≿	95% CI	t	d	«≿	95% CI	t	d
Intercept, $\hat{\gamma}_{00}$	3.47	[3.43, 3.52]	158.38	< .001	3.44	[3.39, 3.49]	130.25	< .001
Propensity score, $\hat{\gamma}_{02}$	0.17	[0.09, 0.24]	4.36	< .001	0.22	[0.13, 0.30]	5.07	< .001
After-slope, $\hat{\gamma}_{20}$	-0.02		-3.73	< .001	-0.02	[-0.03, -0.01]	-3.01	.003
Grandparent, $\hat{\gamma}_{01}$	-0.04		-1.29	.197	-0.04	[-0.11, 0.02]	-1.26	.209
Caring, $\hat{\gamma}_{10}$	-0.01	[-0.04, 0.03]	-0.42	.672	0.00	[-0.04, 0.03]	-0.19	.850
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.02		2.01	.044	0.02	[0.00, 0.04]	1.71	.088
After-slope * Caring, $\hat{\gamma}_{30}$	0.01		0.76	.446	0.00	[-0.01, 0.02]	0.34	.733
Grandparent * Caring, $\hat{\gamma}_{11}$	0.02		0.55	.584	0.01	[-0.08, 0.10]	0.28	.781
After-slope * Grandparent * Caring, $\hat{\gamma}_{31}$	0.01		0.35	.726	0.01	[-0.02, 0.04]	0.59	.557

nonparent controls. CI = confidence interval. caring = 1 indicates more than 100 hours of grandchild care Note. Two models were computed (only HRS): grandparents matched with parent controls and with since the last assessment.

Table S12

Linear Contrasts for Agreeableness (Moderated by Grandchild Care; only HRS).

	Pare	Parent controls	rols	Nonpa	Vonparent controls	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	p	$\hat{\gamma}_c$	χ^2	p
After-slope of caring controls vs. caring grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.03	4.66	.031	0.03 4.66 .031 0.03	4.93	.026
After-slope of not-caring grandparents vs. caring grandparents $(\hat{\gamma}_{30} + \hat{\gamma}_{31})$	0.01	0.61	.434	0.61 $.434$ 0.01	0.69	.405

Note. The linear contrasts are based on the models from Table S11. $\hat{\gamma}_c = \text{combined fixed-effects}$

estimate.

 Table S13

 Fixed Effects of Conscientiousness Over the Transition to Grandparenthood.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	<i>∞</i>	95% CI	t	d	⟨~	95% CI	t	d
TISS								
$\text{Intercept}, \hat{\gamma}_{00}$	3.77	[3.71, 3.82]	134.94	< .001	3.83		114.22	< .001
Propensity score, $\hat{\gamma}_{02}$	0.08	[0.02, 0.13]	2.59	600.	-0.01		-0.45	.652
Before-slope, $\hat{\gamma}_{10}$	-0.01	[-0.01, 0.00]	-2.43	.015	-0.01		-2.09	.037
After-slope, $\hat{\gamma}_{20}$	-0.01	[-0.01, 0.00]	-2.96	.003	0.01		2.22	.026
Shift, $\hat{\gamma}_{30}$	0.01	[-0.01, 0.04]	1.21	.225	0.00		0.35	.724
Grandparent, $\hat{\gamma}_{01}$	-0.02	[-0.10, 0.06]	-0.46	.644	-0.05		-1.14	.255
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.01	[0.00, 0.02]	1.38	.168	0.01		1.21	.226
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.00	[-0.01, 0.01]	0.46	.646	-0.01		-1.72	.085
Shift * Grandparent, $\hat{\gamma}_{31}$	0.00	[-0.05, 0.05]	0.14	887	0.01	[-0.04, 0.07]	0.48	.634
HRS								
Intercept, $\hat{\gamma}_{00}$	3.39	[3.36, 3.42]	208.49	< .001	3.35	[3.32, 3.39]	174.84	< .001
Propensity score, $\hat{\gamma}_{02}$	0.08	[0.02, 0.13]	2.75	900.	0.15	[0.09, 0.21]	5.01	< .001
Before-slope, $\hat{\gamma}_{10}$	0.01	[0.00, 0.02]	2.35	.019	0.00	[-0.01, 0.01]	0.86	.388
After-slope, $\hat{\gamma}_{20}$	-0.01	[-0.01, 0.00]	-1.53	.125	-0.01	[-0.01, 0.00]	-2.31	.021
Shift, $\hat{\gamma}_{30}$	-0.01	[-0.03, 0.01]	-1.17	.242	0.00	[-0.02, 0.02]	-0.19	.846
Grandparent, $\hat{\gamma}_{01}$	0.03	[-0.02, 0.09]	1.34	.181	0.03	[-0.02, 0.08]	1.17	.241
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.00	[-0.03, 0.02]	-0.32	.752	0.00	[-0.02, 0.03]	0.39	969.
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.01	[0.00, 0.03]	1.90	.058	0.02	[0.00, 0.03]	2.34	.019
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.02	[-0.06, 0.02]	-0.97	.333	-0.03	[-0.07, 0.01]	-1.51	.130

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval.

Table S14

Linear Contrasts for Conscientiousness.

$\hat{\gamma}_c$	χ^2 0.54	d	•		
10 0	0.54		γ_c	$\hat{\gamma}_c \chi^2$	d
0.01	0.54				
	7	.461	0.01	0.80	.371
$\hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}) \qquad 0.01 0.01$	0.47	.493	0.01	0.39	.532
$\hat{\gamma}_{31}$) 0.01	0.07	.789	0.00	0.02	.884
0.00	0.10	.751	0.00	80.0	.773
0.00	0.86	.353	0.00	0.69	.406
	4.85	.028	-0.01	1.62	.202
$\hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}$ -0.02	2.50	.114	-0.02	2.87	.091
$\hat{\gamma}_{31}$) -0.01	0.17	829.	-0.01	0.87	.351
0.01	0.59	.441	0.01	0.70	.403
After-slope of the grandparents vs. 0 $(\hat{\gamma}_{20} + \hat{\gamma}_{21})$ 0.01 1.8	1.85	.174	0.01	2.16	.142

Note. The linear contrasts are needed in cases where estimates of interest are represented by multiple fixed-effects coefficients and are computed using the linearHypothesis function from ||the car R package (Fox & Weisberg, 2019) based on the models from Table S13. $\hat{\gamma}_c$ combined fixed-effects estimate.

Fixed Effects of Conscientiousness Over the Transition to Grandparenthood Moderated by Gender.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	<i>∞</i>	95% CI	t	d	⟨ >	95% CI	t	d
TISS								
Intercept, $\hat{\gamma}_{00}$	3.72	[3.64, 3.80]	89.52	< .001	3.77	[3.67, 3.87]	75.55	< .001
Propensity score, $\hat{\gamma}_{04}$	0.08	[0.02, 0.13]	2.61	600.	-0.01	[-0.07, 0.05]	-0.33	.745
Before-slope, $\hat{\gamma}_{10}$	-0.01	[-0.02, 0.00]	-2.08	.037	-0.01	[-0.02, 0.00]	-2.26	.024
After-slope, $\hat{\gamma}_{20}$	-0.01	[-0.01, 0.00]	-1.96	050.	0.00	[-0.01, 0.00]	-0.56	.577
Shift, $\hat{\gamma}_{30}$	0.02	[-0.01, 0.06]	1.44	.150	0.00	[-0.03, 0.04]	0.08	936
Grandparent, $\hat{\gamma}_{01}$	-0.01	[-0.14, 0.11]	-0.23	.820	-0.04	[-0.17, 0.10]	-0.56	.575
Female, $\hat{\gamma}_{02}$	0.00	[-0.02, 0.20]	1.60	.110	0.10	[-0.03, 0.23]	1.48	.139
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.01	[-0.01, 0.03]	1.00	.318	0.01	[-0.01, 0.03]	1.06	.291
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.01	[-0.01, 0.02]	1.12	.261	0.00	[-0.01, 0.02]	0.48	.634
Shift * Grandparent, $\hat{\gamma}_{31}$	0.00	[-0.08, 0.07]	-0.08	.936	0.02	[-0.06, 0.10]	0.51	.613
Before-slope * Female, $\hat{\gamma}_{12}$	0.00	[-0.01, 0.01]	0.62	.537	0.01	[0.00, 0.02]	1.29	.198
After-slope * Female, $\hat{\gamma}_{22}$	0.00	[-0.01, 0.01]	-0.02	986	0.01	[0.00, 0.02]	2.90	.004
Shift * Female, $\hat{\gamma}_{32}$	-0.02	[-0.07, 0.03]	-0.84	.401	0.00	[-0.05, 0.05]	0.11	.912
Grandparent * Female, $\hat{\gamma}_{03}$	-0.01	[-0.17, 0.16]	-0.08	.939	-0.02	[-0.20, 0.16]	-0.20	.841
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	0.00	[-0.02, 0.02]	-0.17	298.	-0.01	[-0.03, 0.02]	-0.49	.623
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	-0.01	[-0.03, 0.01]	-1.06	.290	-0.03	[-0.05, 0.00]	-2.22	0.026
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	0.01	[-0.09, 0.11]	0.26	.792	-0.01	[-0.12, 0.10]	-0.17	998.
IIKS								
Intercept, $\hat{\gamma}_{00}$	3.31	[3.27, 3.36]	142.75	< .001	3.27	[3.22, 3.32]	126.71	< .001
Propensity score, $\hat{\gamma}_{04}$	0.08	[0.03, 0.14]	2.97	.003	0.14	[0.09, 0.20]	4.83	< .001
Before-slope, $\hat{\gamma}_{10}$	0.03	[0.01, 0.04]	3.61	< .001	0.00	[-0.01, 0.02]	0.71	.477
After-slope, $\hat{\gamma}_{20}$	0.00	[-0.01, 0.01]	-0.92	.360	0.00	[-0.01, 0.00]	-0.98	.328
Shift, $\hat{\gamma}_{30}$	-0.02	[-0.05, 0.01]	-1.46	.143	0.02	[-0.01, 0.05]	1.51	.131
Grandparent, $\hat{\gamma}_{01}$	0.01	[-0.07, 0.08]	0.15	878	0.01	[-0.06, 0.09]	0.38	.707
Female, $\hat{\gamma}_{02}$	0.14	[0.08, 0.20]	4.73	< .001	0.16	[0.10, 0.22]	4.88	< .001
	0.00	[-0.04, 0.03]	-0.24	807	0.02	[-0.01, 0.05]	1.06	.287
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.02	[0.00, 0.04]	1.96	050	0.02	[0.00, 0.04]	2.13	.033
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.04	[-0.11, 0.02]	-1.39	.164	-0.09	[-0.15, -0.03]	-2.90	.004
Before-slope * Female, $\hat{\gamma}_{12}$	-0.03	[-0.05, -0.01]	-2.78	900.	0.00	[-0.02, 0.02]	-0.17	.861
After-slope * Female, $\hat{\gamma}_{22}$	0.00		-0.16	.874	0.00	[-0.02, 0.01]	-0.53	.593
Shift * Female, $\hat{\gamma}_{32}$	0.02	[-0.02, 0.06]	0.94	.346	-0.04	[-0.08, -0.01]	-2.27	.023

Table S15 continued

		Parent controls	trols			Nonparent controls	ontrols	
Parameter		95% CI	t	d	Ŷ	95% CI	t	d
Grandparent * Female, $\hat{\gamma}_{03}$	0.05	[-0.05, 0.15]	1.00	.318	0.03	[-0.07, 0.13]	0.53	.595
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	0.00	[-0.04, 0.05]	0.12	.903	-0.02	[-0.07, 0.02]	-1.07	.283
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	-0.01	[-0.04, 0.02]	-0.92	.356	-0.01	[-0.04, 0.02]	-0.84	.401
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	0.04	[-0.04, 0.13]	1.00	.315	0.10	[0.02, 0.18]	2.55	.011

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval.

Table S16

 $Linear\ Contrasts\ for\ Conscientiousness\ (Moderated\ by\ Gender).$

	Pare	Parent controls	rols	Nonpa	Nonparent controls	itrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	. d	$\hat{\gamma}_c$	χ^2	d
TISS						
Shift of male controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.02	1.46	.226	0.00	0.00	926.
Shift of female controls vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32}$)	0.00	0.01	.923	0.02	1.18	.277
Shift of grandfathers vs. $0\left(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}\right)$	0.02	0.67	.413	0.02	0.57	.452
Shift of grandmothers vs. 0 $(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.01	90.0	800	0.01	0.05	.816
Shift of male controls vs. grandfathers $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.01	0.03	298.	0.03	0.47	.494
	0.01	0.72	.395	0.00	0.17	229.
After-slope of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	0.00	0.11	.737	-0.02	99.2	900.
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.01	0.07	787.	-0.01	0.09	992.
Shift of male vs. female controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	-0.02	0.93	.335	0.02	0.59	.444
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	0.00	0.02	.901	0.00	0.01	.915
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	-0.01	1.40	.236	-0.01	1.13	.287
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.02	0.19	.664	-0.02	0.16	689.
HRS						
Shift of male controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	-0.03	5.34	.021	0.02	2.33	.127
Shift of female controls vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32}$)	-0.01	0.74	.388	-0.03	9.62	.002
Shift of grandfathers vs. 0 $(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.05	5.02	.025	-0.05	5.82	.016
rn.	0.00	0.01	.923	0.00	0.01	.912
Shift of male controls vs. grandfathers $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.02	0.89	.345	-0.07	8.09	.004
Before-slope of female controls vs. grandmothers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	0.00	0.01	.926	-0.01	0.17	089.
After-slope of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	0.01	0.61	.436	0.01	1.23	.266
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.01	0.09	.764	0.03	1.65	.199
Shift of male vs. female controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.02	1.33	.248	-0.05	10.13	.001
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	-0.02	1.38	.240	-0.03	1.60	.205
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	-0.01	1.23	.268	-0.02	1.46	.227
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.05	2.55	.110	0.05	2.95	980.

Note. The linear contrasts are based on the models from Table S15. $\hat{\gamma}_c = \text{combined fixed-effects}$ estimate.

Table S17

Linear Contrasts for Conscientiousness (Moderated by Paid Work; only HRS).

	Pare	Parent controls	rols	Non	Nonparent controls	ontrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
Shift of not-working controls vs. $0 (\hat{\gamma}_{40} + \hat{\gamma}_{60})$	-0.01	0.25	.620	-0.07	26.57	< .001
~\Z	-0.02	3.07	080	0.02	4.47	.035
Shift of not-working grandparents vs. 0 ($\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{41} + \hat{\gamma}_{61}$)	-0.06	5.21	.022	-0.06	00.9	.014
Shift of working grandparents vs. $0(\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{41} + \hat{\gamma}_{61} + \hat{\gamma}_{50} + \hat{\gamma}_{70} + \hat{\gamma}_{51} + \hat{\gamma}_{71})$	-0.01	0.08	.778	-0.01	0.13	.718
	-0.05	3.38	990.	0.01	0.08	.778
Before-slope of working controls vs. working grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.03	5.06	.024	-0.01	1.02	.313
After-slope of working controls vs. working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{51})$	0.01	1.32	.250	0.01	1.11	.293
Shift of working controls vs. working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{61} + \hat{\gamma}_{51} + \hat{\gamma}_{71})$	0.01	0.29	.590	-0.02	1.55	.213
Shift of not-working controls vs. working controls $(\hat{\gamma}_{50} + \hat{\gamma}_{70})$	-0.01	0.47	.495	0.08	29.16	< .001
Before-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{30} + \hat{\gamma}_{31})$	-0.08	9.33	.002	-0.08	10.57	.001
After-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{50} + \hat{\gamma}_{51})$	0.00	0.01	.930	0.00	0.02	.885
Shift of not-working grandparents vs. working grandparents $(\hat{\gamma}_{50} + \hat{\gamma}_{70} + \hat{\gamma}_{71} + \hat{\gamma}_{71})$	0.05	2.65	.103	0.05	2.93	780.

Note. The linear contrasts are based on the models from Table 5. $\hat{\gamma}_c =$ combined fixed-effects estimate.

Table S18

Linear Contrasts for Conscientiousness (Moderated by Grandchild Care; only HRS).

	Pare	arent cont	rols	Nonpa	Vonparent controls	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
After-slope of caring controls vs. caring grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$ After-slope of not-caring grandparents vs. caring grandparents $(\hat{\gamma}_{30} + \hat{\gamma}_{31})$	0.04 11.65 0.03 4.75	11.65 .001 0.04 4.75 .029 0.03	65 .001 0.0 75 .029 0.03	$0.04 \\ 0.03$	11.76 5.49	.001

Note. The linear contrasts are based on the models from Table 4. $\hat{\gamma}_c = \text{combined fixed-effects estimate}$.

Table S19

Fixed Effects of Extraversion Over the Transition to Grandparenthood.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	<i>∞</i>	95% CI	t	d	<i>√</i> ≻	95% CI	t	d
SSIT								
Intercept, $\hat{\gamma}_{00}$	3.25	[3.17, 3.32]	89.33	< .001	3.29	[3.20, 3.38]	73.28	< .001
Propensity score, $\hat{\gamma}_{02}$	0.08	[0.01, 0.14]	2.32	.021	0.03	[-0.03, 0.09]	0.89	.375
	0.00	[-0.01, 0.00]	-1.59	.113	0.00	[-0.01, 0.00]	-0.91	.365
After-slope, $\hat{\gamma}_{20}$	0.00	[-0.01, 0.00]	-1.75	080	-0.01	[-0.02, -0.01]	-4.79	< .001
Shift, $\hat{\gamma}_{30}$	-0.02	[-0.04, 0.01]	-1.41	.160	0.00	[-0.02, 0.03]	0.37	.712
Grandparent, $\hat{\gamma}_{01}$	0.04	[-0.07, 0.14]	0.06	.508	0.00	[-0.12, 0.12]	0.04	.971
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.00	[-0.02, 0.01]	-0.70	.483	-0.01	[-0.02, 0.01]	-1.00	.318
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.00	[-0.01, 0.01]	0.41	.682	0.01	[0.00, 0.02]	1.74	.083
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.01	[-0.06, 0.05]	-0.34	.731	-0.03	[-0.09, 0.02]	-1.15	.248
HRS								
Intercept, $\hat{\gamma}_{00}$	3.19	[3.15, 3.22]	160.27	< .001	3.14	[3.10, 3.19]	136.03	< .001
Propensity score, $\hat{\gamma}_{02}$	0.05	[-0.01, 0.12]	1.53	.126	0.05	[-0.02, 0.12]	1.50	.134
Before-slope, $\hat{\gamma}_{10}$	-0.01	[-0.02, 0.01]	-1.03	.303	0.01	[0.00, 0.02]	1.40	.162
After-slope, $\hat{\gamma}_{20}$	0.01	[0.00, 0.01]	1.57	.117	0.00	[-0.01, 0.01]	0.45	.654
Shift, $\hat{\gamma}_{30}$	0.00	[-0.02, 0.03]	0.34	.738	0.00	[-0.02, 0.02]	-0.34	.736
Grandparent, $\hat{\gamma}_{01}$	0.00	[-0.06, 0.06]	0.07	.944	0.04	[-0.03, 0.10]	1.17	.243
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.01	[-0.02, 0.03]	0.51	609	-0.01	[-0.03, 0.02]	-0.51	209.
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.00	[-0.01, 0.02]	0.45	.651	0.01	[-0.01, 0.02]	1.00	.316
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.02	[-0.07, 0.03]	-0.92	.357	-0.02	[-0.06, 0.03]	-0.66	.508

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched

with parent controls and with nonparent controls. CI = confidence interval.

Table S20

Linear Contrasts for Extraversion.

Linear Contrast $ \hat{\gamma}_c \chi^2 $ LISS					troubarding contracts
LISS	χ^{2}	d	$\hat{\gamma}_c \chi^2$	χ^2	d
	3.95		-0.01	0.40	.527
$\hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}$ -0.03			-0.03	1.85	.174
$\hat{\gamma}_{31}$) -0.01		.765	-0.02		.358
-0.01	2.51	.113	-0.01	2.52	.112
0.00	0.16	.692	0.00		.693
	1.28	.259	0.00	0.06	.812
$\hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}) \qquad -0.01$	0.31	.576	-0.01	0.35	.556
$\hat{\gamma}_{31}$) -0.02	1.02	.313	-0.01	0.17	929.
0.00	0.01	939	0.00	0.01	.931
After-slope of the grandparents vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{21})$ 0.01 1.	1.63	.202	0.01	1.80	.180

Note. The linear contrasts are needed in cases where estimates of interest are represented by multiple fixed-effects coefficients and are computed using the linearHypothesis function from ||the car R package (Fox & Weisberg, 2019) based on the models from Table S19. $\hat{\gamma}_c$ combined fixed-effects estimate.

Fixed Effects of Extraversion Over the Transition to Grandparenthood Moderated by Gender. Table S21

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	<i>∞</i>	95% CI	t	. d	⟨ ~	95% CI	t	d
TISS								
Intercept, $\hat{\gamma}_{00}$	3.21	[3.11, 3.32]	59.28	< .001	3.23	[3.09, 3.36]	47.76	< .001
Propensity score, $\hat{\gamma}_{04}$	0.08	[0.01, 0.14]	2.35	.019	0.03	[-0.03, 0.09]	0.99	.322
Before-slope, $\hat{\gamma}_{10}$	0.00	[-0.01, 0.00]	-0.91	.363	0.01	[0.00, 0.02]	1.77	220.
After-slope, $\hat{\gamma}_{20}$	0.00	[-0.01, 0.01]	-0.05	.964	-0.01	[-0.02, -0.01]	-3.61	< .001
Shift, $\hat{\gamma}_{30}$	-0.08	[-0.12, -0.05]	-4.40	< .001	-0.01	[-0.04, 0.03]	-0.29	.773
Grandparent, $\hat{\gamma}_{01}$	90.0	[-0.10, 0.22]	0.76	.449	90.0	[-0.12, 0.23]	0.65	.517
Female, $\hat{\gamma}_{02}$	90.0	[-0.08, 0.20]	0.80	.426	0.12	[-0.05, 0.30]	1.36	.174
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.00	[-0.02, 0.01]	-0.40	069.	-0.02	[-0.03, 0.00]	-1.61	.108
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.00	[-0.02, 0.01]	-0.38	.700	0.01	[-0.01, 0.03]	1.15	.252
Shift * Grandparent, $\hat{\gamma}_{31}$	0.05	[-0.03, 0.13]	1.18	.236	-0.03	[-0.11, 0.05]	-0.72	.474
Before-slope * Female, $\hat{\gamma}_{12}$	0.00	[-0.01, 0.01]	-0.14	888.	-0.02	[-0.03, -0.01]	-3.39	.001
After-slope * Female, $\hat{\gamma}_{22}$	-0.01	[-0.02, 0.00]	-1.59	.112	0.00	[-0.01, 0.01]	0.42	.673
Shift * Female, $\hat{\gamma}_{32}$	0.12	[0.07, 0.17]	4.70	< .001	0.02	[-0.03, 0.07]	0.77	.441
Grandparent * Female, $\hat{\gamma}_{03}$	-0.04	[-0.25, 0.17]	-0.40	289.	-0.11	[-0.34, 0.13]	-0.89	.376
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	0.00	[-0.03, 0.02]	-0.10	.917	0.02	[-0.01, 0.04]	1.38	.167
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	0.01	[-0.01, 0.03]	0.89	.371	0.00	[-0.02, 0.02]	0.01	686.
ft * Grandparent * Fem	-0.11	[-0.22, 0.00]	-1.92	.055	-0.01	[-0.12, 0.10]	-0.11	606.
HRS								
Intercept, $\hat{\gamma}_{00}$	3.13	[3.08, 3.19]	109.26	< .001	3.12	[3.06, 3.19]	98.59	< .001
Propensity score, $\hat{\gamma}_{04}$	0.06	[-0.01, 0.12]	1.69	.091	0.05	[-0.02, 0.12]	1.32	.188
Before-slope, $\hat{\gamma}_{10}$	0.01	[0.00, 0.03]	1.43	.152	-0.01	[-0.02, 0.01]	-1.01	.314
After-slope, $\hat{\gamma}_{20}$	0.01	[0.00, 0.03]	2.51	.012	0.01	[-0.01, 0.02]	1.04	.299
Shift, $\hat{\gamma}_{30}$	-0.02	[-0.05, 0.02]	-1.05	.293	0.00	[-0.03, 0.03]	0.06	.953
Grandparent, $\hat{\gamma}_{01}$	-0.01	[-0.10, 0.08]	-0.15	878.	0.00	[-0.09, 0.09]	0.02	086.
Female, $\hat{\gamma}_{02}$	0.10	[0.02, 0.17]	2.64	800.	0.05	[-0.04, 0.13]	1.10	.270
Before-slope * Grandparent, $\hat{\gamma}_{11}$	-0.02	[-0.06, 0.02]	-1.15	.249	0.00	[-0.04, 0.04]	-0.14	.891
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.00	[-0.02, 0.03]	0.12	.901	0.01	[-0.01, 0.03]	0.83	.409
Shift * Grandparent, $\hat{\gamma}_{31}$	0.00	[-0.07, 0.08]	0.13	895	-0.01	[-0.09, 0.06]	-0.39	.694
Before-slope * Female, $\hat{\gamma}_{12}$	-0.03	[-0.06, -0.01]	-2.98	.003	0.03	[0.01, 0.05]	2.60	600.
After-slope * Female, $\hat{\gamma}_{22}$	-0.02	[-0.03, 0.00]	-1.97	.049	-0.01	[-0.02, 0.01]	-0.95	.340
Shift * Female, $\hat{\gamma}_{32}$	0.04	[-0.01, 0.08]	1.72	980.	-0.01	[-0.05, 0.03]	-0.41	.681

Table S21 continued

		Parent controls	trols			Nonparent controls	ontrols	
Parameter	⋄≻	95% CI	t	d	⋄	95% CI	t	d
Grandparent * Female, $\hat{\gamma}_{03}$	0.03	[-0.11, 0.14]	0.24	808.	0.02		1.02	.307
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	0.06	[0.00, 0.11]	2.07	030	-0.01		-0.27	.785
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	0.00	[-0.03, 0.04]	0.20	.844	0.00	[-0.04, 0.03]	-0.27	.784
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	-0.05	[-0.15, 0.05]	-0.98	.328	0.00	[-0.10, 0.09]	-0.03	926.

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval.

Table S22

Linear Contrasts for Extraversion (Moderated by Gender).

	Pa _l	Parent controls	trols	Nonpa	Nonparent controls	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
TISS						
Shift of male controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	-0.08	25.26	< .001	-0.02	1.25	.264
Shift of female controls vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.03	3.67	.055	0.00	0.05	.819
Shift of grandfathers vs. $0\left(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}\right)$	-0.04	1.43	.231	-0.04	1.40	.236
Shift of grandmothers vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.02	0.60	.438	-0.02	0.60	.440
	0.05	1.58	.209	-0.02	0.30	.582
Before-slope of female controls vs. grandmothers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	-0.01	0.35	.552	0.00	0.09	.767
After-slope of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	0.01	0.82	365	0.01	1.60	.206
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.05	2.46	.117	-0.03	0.62	.429
Shift of male vs. female controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.11	25.15	< .001	0.02	0.95	.331
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	0.00	0.04	.851	0.00	0.03	857
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	0.00	0.05	.825	0.00	0.05	.826
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.02	0.13	.716	0.02	0.13	.721
HRS						
Shift of male controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.00	0.06	.802	0.01	0.30	.584
Shift of female controls vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.02	3.12	220.	-0.01	0.69	.406
Shift of grandfathers vs. 0 $(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.00	0.02	268.	0.00	0.01	.904
Shift of grandmothers vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.02	0.69	.405	-0.02	0.76	.384
Shift of male controls vs. grandfathers $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.01	0.05	.819	0.00	0.02	.884
Before-slope of female controls vs. grandmothers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	0.03	3.30	690.	-0.01	0.33	.568
After-slope of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	0.01	0.18	899.	0.01	0.26	.613
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.04	2.36	.124	-0.01	0.17	.683
Shift of male vs. female controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.02	1.85	.173	-0.02	0.92	.338
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	0.02	0.78	.377	0.02	0.83	.363
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	-0.01	0.57	.452	-0.01	0.62	.432
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.02	0.43	.513	-0.02	0.45	.502

Note. The linear contrasts are based on the models from Table S21. $\hat{\gamma}_c = \text{combined fixed-effects}$ estimate.

Table S23

Fixed Effects of Extraversion Over the Transition to Grandparenthood Moderated by Performing Paid Work.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	<i>⟨</i> ≻	95% CI	t	. d	<i>√</i> ≻	95% CI	<i>t</i>	d
Intercept, $\hat{\gamma}_{00}$	3.19	[3.14, 3.24]	131.67	> .001	3.16	[3.11, 3.21]	117.06	< .001
Propensity score, $\hat{\gamma}_{02}$	0.04		1.28	.201	0.02	[-0.05, 0.09]	0.46	.645
Before-slope, $\hat{\gamma}_{20}$	0.00		-0.34	.734	0.00		-0.22	.825
After-slope, $\hat{\gamma}_{40}$	0.01	_	1.45	.148	0.00		-0.55	.583
Shift, $\hat{\gamma}_{60}$	-0.03	[-0.07, 0.00]	-1.89	050	-0.01	[-0.04, 0.03]	-0.43	899.
Grandparent, $\hat{\gamma}_{01}$	-0.08		-1.62	.105	-0.04		-0.88	.379
Working, $\hat{\gamma}_{10}$	0.00		-0.21	.836	0.00		-0.10	.922
Before-slope * Grandparent, $\hat{\gamma}_{21}$	0.04		1.50	.134	0.04		1.51	.132
After-slope * Grandparent, $\hat{\gamma}_{41}$	0.01		1.05	.292	0.02		1.99	.047
Shift * Grandparent, $\hat{\gamma}_{61}$	-0.03		-0.73	.467	-0.06		-1.38	.168
Before-slope * Working, $\hat{\gamma}_{30}$	0.00		-0.27	.785	0.02		1.18	.238
After-slope * Working, $\hat{\gamma}_{50}$	0.00		0.10	.923	0.02		1.98	.047
Shift * Working, $\hat{\gamma}_{70}$	0.06	_	2.43	.015	0.00		0.13	006.
Grandparent * Working, $\hat{\gamma}_{11}$	0.11	_	2.10	036	0.11		2.13	.033
Before-slope * Grandparent * Working, $\hat{\gamma}_{31}$	-0.04		-1.28	.200	-0.06		-1.92	055
After-slope * Grandparent * Working, $\hat{\gamma}_{51}$	-0.02		-0.92	.355	-0.03		-1.79	.074
Shift * Grandparent * Working, $\hat{\gamma}_{71}$	0.03		0.29	.774	0.07	[-0.03, 0.17]	1.32	.186

Note. Two models were computed (only HRS): grandparents matched with parent controls and with

nonparent controls. CI = confidence interval. working = 1 indicates being employed in paid work.

Table S24

Linear Contrasts for Extraversion (Moderated by Paid Work; only HRS).

	Pare	Parent controls	rols	Nonpa	Nonparent controls	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2		$\hat{\gamma}_c$	χ^2	d
Shift of not-working controls vs. $0 (\hat{\gamma}_{40} + \hat{\gamma}_{60})$	-0.03	3.19	.074	-0.01	0.53	.465
Shift of working controls vs. 0 ($\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{50} + \hat{\gamma}_{70}$)	0.03	8.11	.004	0.01	0.44	.505
Shift of not-working grandparents vs. $0 (\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{41} + \hat{\gamma}_{61})$	-0.04	2.00	.157	-0.04	2.17	.141
Shift of working grandparents vs. $0(\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{41} + \hat{\gamma}_{61} + \hat{\gamma}_{50} + \hat{\gamma}_{70} + \hat{\gamma}_{51} + \hat{\gamma}_{71})$	0.01	0.42	.518	0.01	0.43	.514
Shift of not-working controls vs. not-working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{61})$	-0.02	0.25	.618	-0.03	0.91	.341
Before-slope of working controls vs. working grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.00	0.00	866.	-0.02	1.62	.204
After-slope of working controls vs. working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{51})$	0.00	0.07	.793	-0.01	0.29	.592
Shift of working controls vs. working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{61} + \hat{\gamma}_{51} + \hat{\gamma}_{71})$	-0.02	0.50	.479	0.01	0.09	992.
Shift of not-working controls vs. working controls $(\hat{\gamma}_{50} + \hat{\gamma}_{70})$	90.0	9.85	.002	0.03	0.94	.333
Before-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{30} + \hat{\gamma}_{31})$	-0.04	2.27	.131	-0.04	2.47	.116
After-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{50} + \hat{\gamma}_{51})$	-0.02	0.96	.326	-0.02	1.03	.311
Shift of not-working grandparents vs. working grandparents $(\hat{\gamma}_{50} + \hat{\gamma}_{70} + \hat{\gamma}_{51} + \hat{\gamma}_{71})$	90.0	2.22	.136	90.0	2.37	.124

Note. The linear contrasts are based on the models from Table S23. $\hat{\gamma}_c =$ combined fixed-effects estimate.

Table S25

Fixed Effects of Extraversion Over the Transition to Grandparenthood Moderated by Grandchild Care.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	«≿	95% CI	t	d	«≻	95% CI	t	d
Intercept, $\hat{\gamma}_{00}$	3.18	[3.13, 3.23]	127.99	< .001	3.16	[3.10, 3.22]	107.75	< .001
Propensity score, $\hat{\gamma}_{02}$	0.07	[-0.01, 0.16]	1.72	980.	0.07	[-0.02, 0.16]	1.45	.148
After-slope, $\hat{\gamma}_{20}$	0.00	[-0.01, 0.01]	0.54	.590	0.00	[-0.01, 0.01]	0.61	.539
Grandparent, $\hat{\gamma}_{01}$	-0.01	[-0.08, 0.06]	-0.26	.795	0.01	[-0.07, 0.09]	0.27	.790
Caring, $\hat{\gamma}_{10}$	0.03	[-0.01, 0.07]	1.63	.104	0.00	[-0.04, 0.03]	-0.09	.932
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.00	[-0.03, 0.02]	-0.20	.840	0.00	[-0.02, 0.02]	-0.25	.802
After-slope * Caring, $\hat{\gamma}_{30}$	-0.01	[-0.03, 0.01]	-1.04	300	0.00	[-0.02, 0.01]	-0.23	.818
Grandparent * Caring, $\hat{\gamma}_{11}$	-0.06	[-0.16, 0.03]	-1.30	.194	-0.04	[-0.13, 0.06]	-0.81	.421
After-slope * Grandparent * Caring, $\hat{\gamma}_{31}$	0.04	[0.00, 0.07]	1.99	.047	0.03	[0.00, 0.07]	1.79	.074

nonparent controls. CI = confidence interval. caring = 1 indicates more than 100 hours of grandchild Note. Two models were computed (only HRS): grandparents matched with parent controls and with care since the last assessment.

Table S26

Linear Contrasts for Extraversion (Moderated by Grandchild Care; only HRS).

	Pare	arent controls	crols	Nonparen	arent cc	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	p
After-slope of caring controls vs. caring grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.03	5.30	.012	0.012 0.03	4.85	.028
After-slope of not-caring grandparents vs. caring grandparents $(\hat{\gamma}_{30} + \hat{\gamma}_{31})$	0.03	0.03 2.91 .088	.088	0.03	3.56	050

Note. The linear contrasts are based on the models from Table S25. $\hat{\gamma}_c = \text{combined fixed-effects}$

estimate.

Table S27

Fixed Effects of Neuroticism Over the Transition to Grandparenthood.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	⟨ ≻	95% CI	t	d	⟨~	95% CI	t	d
LISS								
Intercept, $\hat{\gamma}_{00}$	2.48		67.36	< .001	2.43	[2.34, 2.52]	53.46	< .001
Propensity score, $\hat{\gamma}_{02}$	90.0	[-0.01, 0.14]	1.66	960.	0.17	[0.09, 0.25]	4.15	< .001
Before-slope, $\hat{\gamma}_{10}$	-0.01		-1.73	.084	-0.02	[-0.02, -0.01]	-4.27	< .001
After-slope, $\hat{\gamma}_{20}$	-0.01		-2.66	800.	0.01	[0.00, 0.02]	2.79	.005
Shift, $\hat{\gamma}_{30}$	0.00		-0.21	.831	-0.01	[-0.04, 0.03]	-0.38	.703
Grandparent, $\hat{\gamma}_{01}$	-0.09		-1.63	.103	-0.08	[-0.20, 0.05]	-1.24	.217
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.00		0.61	.541	0.02	[0.00, 0.03]	1.82	690.
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.01		0.97	.334	-0.01	[-0.03, 0.00]	-1.40	.163
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.05		-1.41	.158	-0.05	[-0.12, 0.03]	-1.21	.227
HRS								
Intercept, $\hat{\gamma}_{00}$	2.07		94.88	< .001	2.07		79.40	< .001
Propensity score, $\hat{\gamma}_{02}$	-0.02		-0.46	.649	0.13		3.07	.002
Before-slope, $\hat{\gamma}_{10}$	-0.02		-3.16	000	-0.04		-5.33	< .001
After-slope, $\hat{\gamma}_{20}$	0.00		-0.07	.947	-0.01		-3.02	.003
Shift, $\hat{\gamma}_{30}$	-0.01		-0.96	.337	-0.02		-1.45	.146
Grandparent, $\hat{\gamma}_{01}$	-0.05		-1.47	.141	-0.11		-2.99	.003
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.03	[0.00, 0.06]	1.82	690.	0.04	[0.01, 0.07]	2.67	800.
After-slope * Grandparent, $\hat{\gamma}_{21}$	-0.02		-2.00	.045	-0.01		-0.78	.437
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.05		-1.54	.125	-0.04	[-0.10, 0.02]	-1.28	.200

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval.

Table S28

Linear Contrasts for Neuroticism.

	Par	Parent controls	trols	Nong	Nonparent controls	ontrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$p = \frac{\hat{\gamma}_c}{\hat{\gamma}_c}$	χ^2	$\frac{d}{d}$
LISS						
Shift of the controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	-0.01	0.68	.410	0.00	0.03	.859
Shift of the grandparents vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.05	3.97	.046	-0.05	3.33	890.
Shift of the controls vs. shift of the grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.04	1.93	.165	-0.06	2.90	.088
Before-slope of the grandparents vs. $0 (\hat{\gamma}_{10} + \hat{\gamma}_{11})$	0.00	0.03	.853	0.00	0.02	.885
After-slope of the grandparents vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{21}$) HRS	0.00	0.05	.828	0.00	0.04	.843
Shift of the controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	-0.01	1.64	.201	-0.03	10.46	.001
Shift of the grandparents vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.08	15.39	< .001	-0.08	15.42	< .001
Shift of the controls vs. shift of the grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.07	8.55	.003	-0.05	4.15	.042
Before-slope of the grandparents vs. 0 $(\hat{\gamma}_{10} + \hat{\gamma}_{11})$	0.01	0.25	.615	0.01	0.19	.661
After-slope of the grandparents vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{21}$)	-0.02	5.12	.024	-0.03	5.64	.018

R package (Fox & Weisberg, 2019) based on the models from Table S27. $\hat{\gamma}_c = \text{combined fixed-effects}$ multiple fixed-effects coefficients and are computed using the linearHypothesis function from the car Note. The linear contrasts are needed in cases where estimates of interest are represented by estimate.

Fixed Effects of Neuroticism Over the Transition to Grandparenthood Moderated by Gender. Table S29

		Parent controls	ntrols			Nonparent controls	sontrols	
Parameter	⟨~	95% CI	t	. d	√≻	95% CI	t	d
TISS								
Intercept, $\hat{\gamma}_{00}$	2.41	[2.31, 2.52]	45.01	< .001	2.29	[2.16, 2.42]	34.73	< .001
Propensity score, $\hat{\gamma}_{04}$	0.07	[-0.01, 0.14]	1.74	.082	0.18	[0.10, 0.26]	4.42	< .001
Before-slope, $\hat{\gamma}_{10}$	-0.01	[-0.02, 0.00]	-1.31	.190	-0.01	[-0.02, 0.00]	-2.42	.016
After-slope, $\hat{\gamma}_{20}$	0.00		-0.29	.770	0.02	[0.01, 0.03]	4.98	< .001
Shift, $\hat{\gamma}_{30}$	-0.02	[-0.07, 0.02]	-1.01	.315	-0.04	[-0.09, 0.01]	-1.52	.129
Grandparent, $\hat{\gamma}_{01}$	-0.15	[-0.30, 0.01]	-1.85	.065	-0.08	[-0.25, 0.10]	-0.85	.394
Female, $\hat{\gamma}_{02}$	0.12		1.72	980.	0.24	[0.07, 0.41]	2.80	.005
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.00	[-0.02, 0.03]	0.38	.703	0.01	[-0.01, 0.04]	0.87	.382
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.00	[-0.02, 0.02]	0.08	.939	-0.02	[-0.05, 0.00]	-2.17	.030
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.05	[-0.15, 0.04]	-1.10	.271	-0.04	[-0.15, 0.07]	-0.74	.456
Before-slope * Female, $\hat{\gamma}_{12}$	0.00	[-0.01, 0.02]	0.21	.836	-0.01	[-0.02, 0.01]	-0.89	.376
After-slope * Female, $\hat{\gamma}_{22}$	-0.01	[-0.02, 0.00]	-2.01	.045	-0.03	[-0.04, -0.01]	-4.22	< .001
Shift * Female, $\hat{\gamma}_{32}$	0.04	[-0.02, 0.10]	1.17	.241	0.06	[-0.01, 0.13]	1.81	0200
Grandparent * Female, $\hat{\gamma}_{03}$	0.10	[-0.11, 0.31]	0.96	.337	0.00	[-0.24, 0.23]	-0.03	.972
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	0.00	[-0.03, 0.03]	0.09	.925	0.01	[-0.02, 0.04]	0.60	.548
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	0.01	[-0.02, 0.04]	0.70	.487	0.03	[0.00, 0.05]	1.66	260.
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	0.02	[-0.12, 0.15]	0.25	.800	-0.01	[-0.15, 0.14]	-0.11	.913
HRS								
$\text{Intercept, } \hat{\gamma}_{00}$	1.98	[1.92, 2.04]	63.31	< .001	2.02	[1.95, 2.09]	56.79	< .001
Propensity score, $\hat{\gamma}_{04}$	-0.01	[-0.09, 0.06]	-0.31	.759	0.13	[0.04, 0.21]	2.96	.003
Before-slope, $\hat{\gamma}_{10}$	-0.03	[-0.05, -0.01]	-3.13	.002	-0.02	[-0.04, 0.00]	-2.29	.022
After-slope, $\hat{\gamma}_{20}$	-0.01	[-0.02, 0.00]	-1.54	.124	-0.02	[-0.04, -0.01]	-3.03	.002
Shift, $\hat{\gamma}_{30}$	0.06	[0.03, 0.10]	3.23	.001	-0.02	[-0.06, 0.02]	-0.85	396
Grandparent, $\hat{\gamma}_{01}$	-0.05	[-0.15, 0.05]	-1.01	.311	-0.15	[-0.26, -0.04]	-2.77	900.
Female, $\hat{\gamma}_{02}$	0.17	[0.09, 0.25]	4.20	< .001	0.09	[0.00, 0.18]	2.05	.041
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.06	[0.02, 0.11]	2.68	200.	0.06	[0.01, 0.10]	2.31	.021
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.00	[-0.03, 0.03]	-0.08	.939	0.01	[-0.02, 0.04]	0.59	.557
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.15	[-0.23, -0.06]	-3.25	.001	-0.06	[-0.15, 0.03]	-1.38	.167
Before-slope * Female, $\hat{\gamma}_{12}$	0.02	[-0.01, 0.04]	1.15	.250	-0.02	[-0.05, 0.00]	-1.64	.102
After-slope * Female, $\hat{\gamma}_{22}$	0.02	[0.00, 0.04]	2.04	.041	0.01	[-0.01, 0.03]	1.41	.157
Shift * Female, $\hat{\gamma}_{32}$	-0.14	[-0.19, -0.09]	-5.18	< .001	0.00	[-0.06, 0.05]	-0.11	606.

Table S29 continued

		Parent controls	trols			Nonparent controls	ontrols	
Parameter	√	95% CI	t	d	√,	95% CI	t	d
Grandparent * Female, $\hat{\gamma}_{03}$	l	[-0.13, 0.14]	0.01	966.	0.07	[-0.07, 0.21]	0.97	.331
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	-0.06	[-0.12, 0.00]	-1.90	.057	-0.02	[-0.09, 0.04]	-0.74	.461
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$		[-0.08, 0.01]	-1.71	780.	-0.03	[-0.07, 0.01]	-1.45	.148
Shift * Grandparent * Female, $\hat{\gamma}_{33}$		[0.06, 0.29]	2.95	.003	0.04	[-0.08, 0.16]	0.69	.491

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval.

Table S30

Linear Contrasts for Neuroticism (Moderated by Gender).

	Paı	Parent controls	trols	Nonpa	Nonparent controls	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	<i>d</i>	$\hat{\gamma}_c$	χ^2	<i>d</i>
LISS						
Shift of male controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	-0.02	1.47	.226	-0.01	0.41	.520
Shift of female controls vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32}$)	0.00	0.00	866.	0.02	0.95	.328
Shift of grandfathers vs. $0 \left(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} \right)$	-0.08	4.09	.043	-0.08	3.37	990.
Shift of grandmothers vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.03	09.0	.439	-0.03	0.51	.474
	-0.05	1.53	.217	-0.07	1.81	.178
Before-slope of female controls vs. grandmothers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	0.01	0.31	.577	0.02	3.32	890.
After-slope of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	0.01	1.24	.265	0.00	0.01	.927
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.03	0.47	.491	-0.05	1.18	.278
Shift of male vs. female controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.02	0.81	368	0.03	1.29	.255
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	0.00	0.04	.833	0.00	0.05	.825
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	0.00	0.04	.840	0.00	0.04	.840
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.05	0.95	.331	0.05	0.76	.382
HRS						
Shift of male controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.05	12.37	< .001	-0.04	6.17	.013
Shift of female controls vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32}$)	-0.07	23.28	< .001	-0.03	4.52	.033
Shift of grandfathers vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.09	9.16	.002	-0.09	9.17	.002
Shift of grandmothers vs. 0 $(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.07	6.71	.010	-0.07	6.70	.010
Shift of male controls vs. grandfathers $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.15	18.41	< .001	-0.05	2.40	.122
Before-slope of female controls vs. grandmothers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	0.00	0.03	.873	0.03	2.33	.127
After-slope of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	-0.04	68.9	600.	-0.02	2.28	.131
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.00	0.02	888.	-0.04	1.86	.173
Shift of male vs. female controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	-0.12	34.07	< .001	0.01	0.23	629
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	-0.05	2.44	.118	-0.05	2.49	.115
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	-0.02	0.81	360	-0.02	0.83	.364
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.02	0.28	.599	0.02	0.28	262.

Note. The linear contrasts are based on the models from Table S29. $\hat{\gamma}_c = \text{combined fixed-effects estimate}$.

Table S31

Fixed Effects of Neuroticism Over the Transition to Grandparenthood Moderated by Performing Paid Work.

		Parent controls	itrols			Nonparent controls	ontrols	
Parameter	⟨~	95% CI	t	d	⟨~	95% CI	t	$\frac{d}{d}$
Intercept, $\hat{\gamma}_{00}$	2.02		73.54	< .001	2.09		67.21	< .001
Propensity score, $\hat{\gamma}_{02}$	-0.02		-0.47	.636	0.15		3.52	< .001
Before-slope, $\hat{\gamma}_{20}$	0.01		0.62	.535	-0.05		-3.81	< .001
After-slope, $\hat{\gamma}_{40}$	-0.01		-1.48	.140	0.00		-0.15	877
Shift, $\hat{\gamma}_{60}$	0.02		0.95	.343	-0.03		-1.34	.179
Grandparent, $\hat{\gamma}_{01}$	0.15		2.48	.013	0.00		0.07	.948
Working, $\hat{\gamma}_{10}$	0.09		3.45	.001	-0.04		-1.65	860.
Before-slope * Grandparent, $\hat{\gamma}_{21}$	-0.07	[-0.14, -0.01]	-2.20	.028	-0.02	[-0.08, 0.05]	-0.48	.634
After-slope * Grandparent, $\hat{\gamma}_{41}$	-0.02		-1.26	.209	-0.03		-1.91	050.
Shift * Grandparent, $\hat{\gamma}_{61}$	-0.03		-0.60	.548	0.02		0.47	.636
Before-slope * Working, $\hat{\gamma}_{30}$	-0.04		-2.86	.004	0.02		1.25	.210
ഫ്	0.02		1.87	.062	-0.02		-2.66	800.
Shift * Working, $\hat{\gamma}_{70}$	-0.06		-2.13	.033	0.03		0.98	.325
Grandparent * Working, $\hat{\gamma}_{11}$	-0.26		-4.25	< .001	-0.14		-2.33	.020
Before-slope * Grandparent * Working, $\hat{\gamma}_{31}$	0.13		3.50	< .001	0.07		1.90	.057
After-slope * Grandparent * Working, $\hat{\gamma}_{51}$	-0.01		-0.40	889.	0.03		1.64	.101
Shift * Grandparent * Working, $\hat{\gamma}_{71}$	-0.02		-0.26	.794	-0.10		-1.63	.103

Note. Two models were computed (only HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval. working = 1 indicates being employed in paid work.

Table S32

Linear Contrasts for Neuroticism (Moderated by Paid Work; only HRS).

	Par	Parent controls	trols	Non	Nonparent controls	ontrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
Shift of not-working controls vs. $0 (\hat{\gamma}_{40} + \hat{\gamma}_{60})$	0.01	0.37	.543	-0.03	2.93	780.
Shift of working controls vs. 0 $(\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{50} + \hat{\gamma}_{70})$	-0.03	5.61	.018	-0.03	5.27	.022
Shift of not-working grandparents vs. $0 (\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{41} + \hat{\gamma}_{61})$	-0.04	1.12	.290	-0.04	1.17	.280
Shift of working grandparents vs. $0(\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{41} + \hat{\gamma}_{61} + \hat{\gamma}_{50} + \hat{\gamma}_{70} + \hat{\gamma}_{51} + \hat{\gamma}_{71})$	-0.10	15.73	< .001	-0.10	15.86	< .001
\sim	-0.05	1.48	.223	-0.01	0.02	888.
Before-slope of working controls vs. working grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	90.0	10.60	.001	0.06	9.30	.002
After-slope of working controls vs. working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{51})$	-0.03	3.38	990.	0.01	0.16	.694
Shift of working controls vs. working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{61} + \hat{\gamma}_{51} + \hat{\gamma}_{71})$	-0.07	6.11	.013	-0.07	69.9	.010
Shift of not-working controls vs. working controls $(\hat{\gamma}_{50} + \hat{\gamma}_{70})$	-0.04	3.70	.054	0.00	0.02	988.
Before-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{30} + \hat{\gamma}_{31})$	0.00	6.67	.010	0.09	7.01	800.
After-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{50} + \hat{\gamma}_{51})$	0.01	0.22	630	0.01	0.25	.618
Shift of not-working grandparents vs. working grandparents $(\hat{\gamma}_{50} + \hat{\gamma}_{70} + \hat{\gamma}_{71} + \hat{\gamma}_{71})$	-0.07	2.21	.137	-0.07	2.19	.139

Note. The linear contrasts are based on the models from Table S31. $\hat{\gamma}_c = \text{combined fixed-effects}$ estimate.

Table S33

Fixed Effects of Neuroticism Over the Transition to Grandparenthood Moderated by Grandchild Care.

		Parent controls	ntrols			Nonparent controls	ontrols	
Parameter	.⊱	95% CI	t	d	√>	95% CI	t	$\frac{d}{d}$
Intercept, $\hat{\gamma}_{00}$	2.00	[1.95, 2.05]	73.56	< .001	1.97	[1.90, 2.03]	59.44	< .001
Propensity score, $\hat{\gamma}_{02}$	0.03	[-0.06, 0.13]	0.70	.483	0.01	[-0.09, 0.12]	0.27	.784
After-slope, $\hat{\gamma}_{20}$	-0.01	[-0.02, 0.01]	-1.03	.303	-0.01		-1.49	.135
Grandparent, $\hat{\gamma}_{01}$	-0.08	[-0.16, 0.00]	-2.00	.046	-0.05		-1.04	.297
Caring, $\hat{\gamma}_{10}$	0.02	[-0.02, 0.06]	0.85	.394	0.05	[0.00, 0.09]	2.11	.035
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.00	[-0.02, 0.03]	0.27	.790	0.01		0.54	.592
After-slope * Caring, $\hat{\gamma}_{30}$	-0.01	[-0.03, 0.01]	-1.21	.226	-0.02		-2.05	.040
Grandparent * Caring, $\hat{\gamma}_{11}$	0.08	[-0.03, 0.18]	1.36	.174	0.04	[-0.07, 0.16]	0.74	.460
After-slope * Grandparent * Caring, $\hat{\gamma}_{31}$	-0.03	[-0.07, 0.01]	-1.25	.213	-0.02	[-0.06, 0.03]	-0.73	.463

nonparent controls. CI = confidence interval. caring = 1 indicates more than 100 hours of grandchild Note. Two models were computed (only HRS): grandparents matched with parent controls and with care since the last assessment.

Table S34

Linear Contrasts for Neuroticism (Moderated by Grandchild Care; only HRS).

	Pare	arent controls	rols	Nonparen	rent co	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
After-slope of caring controls vs. caring grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.02	2.11 .146	.146	5 -0.01	0.29	.592
After-slope of not-caring grandparents vs. caring grandparents $(\hat{\gamma}_{30} + \hat{\gamma}_{31})$	-0.04	4.05	.044	-0.04	3.52	.061

Note. The linear contrasts are based on the models from Table S33. $\hat{\gamma}_c = \text{combined fixed-effects}$

1716

estimate.

Table S35

Fixed Effects of Openness Over the Transition to Grandparenthood.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	\\ \times_	95% CI	t		⟨ ~	95% CI	t	d
LISS								
Intercept, $\hat{\gamma}_{00}$	3.48		121.02	< .001	3.52	[3.46, 3.59]	104.78	< .001
Propensity score, $\hat{\gamma}_{02}$	0.04		1.40	.161	0.01	[-0.04, 0.06]	0.47	.637
	-0.01		-3.00	.003	0.00	[-0.01, 0.00]	-1.98	.048
After-slope, $\hat{\gamma}_{20}$	0.00		-1.82	070.	0.00	[0.00, 0.01]	0.78	.433
Shift, $\hat{\gamma}_{30}$	-0.01		-0.72	.469	0.01	[-0.01, 0.03]	1.25	.212
Grandparent, $\hat{\gamma}_{01}$	-0.01		-0.31	.753	-0.05	[-0.14, 0.04]	-1.10	.271
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.01		1.53	.127	0.01	[0.00, 0.02]	1.11	.269
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.00		-0.23	.822	-0.01	[-0.02, 0.00]	-1.42	.154
Shift * Grandparent, $\hat{\gamma}_{31}$	0.00	[-0.05, 0.05]	0.16	.872	-0.02	[-0.06, 0.03]	-0.77	.444
HRS								
Intercept, $\hat{\gamma}_{00}$	3.05		152.61	< .001	3.04		131.12	< .001
Propensity score, $\hat{\gamma}_{02}$	0.04		1.28	.199	-0.01		-0.31	.759
	-0.02		-3.90	< .001	0.00		-0.54	.591
After-slope, $\hat{\gamma}_{20}$	-0.01		-3.38	.001	-0.01		-2.76	900.
Shift, $\hat{\gamma}_{30}$	0.03		2.62	600.	0.01		0.56	.574
Grandparent, $\hat{\gamma}_{01}$	-0.03		-1.01	.312	0.00		0.08	.936
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.02	[0.00, 0.05]	1.60	.109	0.00	[-0.02, 0.02]	0.12	906.
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.01		1.12	.262	0.01		0.80	.424
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.04		-1.81	0200	-0.02		-0.95	.343

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched

with parent controls and with nonparent controls. CI = confidence interval.

Table S36

Linear Contrasts for Openness.

χ^2 1.50	<		
1.50	$p \qquad \gamma_c$	$\hat{\gamma}_c \qquad \chi^2$	d
1.50			
		2.55	.110
0.24		0.28	.595
0.02		1.45	.229
0.04		0.02	.820
1.28		1.45	.229
3.66	00.0 99	0.25	.621
1.29		1.55	.214
3.52	-	0.78	.376
0.01		0.01	.903
0.00 0.17 .67	00.0 6	0.22	.638
	8 8 2 8 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5		-0.02 0.00 -0.01 -0.02 -0.01 0.00 0.00

Note. The linear contrasts are needed in cases where estimates of interest are represented by multiple fixed-effects coefficients and are computed using the linearHypothesis function from ||the car R package (Fox & Weisberg, 2019) based on the models from Table S35. $\hat{\gamma}_c$ combined fixed-effects estimate.

Fixed Effects of Openness Over the Transition to Grandparenthood Moderated by Gender.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	<i>√</i> ~	95% CI	t	<i>d</i>	⟨≻	95% CI	t	d
LISS								
Intercept, $\hat{\gamma}_{00}$	3.55	[3.46, 3.63]	83.49	< .001	3.58	[3.48, 3.67]	71.70	< .001
Propensity score, $\hat{\gamma}_{04}$	0.04	[-0.02, 0.10]	1.37	.170	0.01	[-0.04, 0.06]	0.32	.751
Before-slope, $\hat{\gamma}_{10}$	-0.01	[-0.02, 0.00]	-2.26	.024	0.00	[-0.01, 0.01]	-0.38	902.
After-slope, $\hat{\gamma}_{20}$	0.00	[0.00, 0.01]	1.28	.200	0.00	[-0.01, 0.01]	0.30	.763
Shift, $\hat{\gamma}_{30}$	-0.05	[-0.08, -0.02]	-2.92	.004	0.01	[-0.02, 0.04]	0.86	.392
Grandparent, $\hat{\gamma}_{01}$	0.03	[-0.09, 0.15]	0.48	.634	0.01	[-0.12, 0.14]	0.13	.893
Female, $\hat{\gamma}_{02}$	-0.12	[-0.23, -0.01]	-2.16	.031	-0.09	[-0.22, 0.04]	-1.38	.168
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.01	[-0.01, 0.02]	0.77	.441	0.00	[-0.02, 0.01]	-0.10	.918
After-slope * Grandparent, $\hat{\gamma}_{21}$	-0.01	[-0.03, 0.00]	-1.62	.105	-0.01	[-0.02, 0.00]	-1.26	.208
Shift * Grandparent, $\hat{\gamma}_{31}$	0.04	[-0.03, 0.12]	1.12	.263	-0.02	[-0.09, 0.05]	-0.64	.522
Before-slope * Female, $\hat{\gamma}_{12}$	0.00	[-0.01, 0.01]	0.36	.720	-0.01	[-0.02, 0.00]	-1.43	.153
After-slope * Female, $\hat{\gamma}_{22}$	-0.02	[-0.02, -0.01]	-3.38	.001	0.00	[-0.01, 0.01]	0.33	.744
Shift * Female, $\hat{\gamma}_{32}$	0.08	[0.03, 0.12]	3.31	.001	0.00	[-0.04, 0.04]	0.02	286.
Grandparent * Female, $\hat{\gamma}_{03}$	-0.08	[-0.25, 0.08]	-1.00	.318	-0.12	[-0.29, 0.06]	-1.29	.199
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	0.01	[-0.02, 0.03]	0.44	629	0.01	[-0.01, 0.04]	1.29	.195
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	0.02	[0.00, 0.04]	1.94	.052	0.00	[-0.02, 0.02]	0.35	.725
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	-0.07	[-0.17, 0.03]	-1.39	.166	0.01	[-0.09, 0.10]	0.14	888.
HRS								
Intercept, $\hat{\gamma}_{00}$	3.07	[3.01, 3.12]	110.76	< .001	3.05	[2.99, 3.11]	98.96	< .001
Propensity score, $\hat{\gamma}_{04}$	0.04	[-0.02, 0.11]	1.33	.183	-0.02	[-0.08, 0.05]	-0.45	.653
Before-slope, $\hat{\gamma}_{10}$	-0.02	[-0.04, 0.00]	-2.49	.013	-0.02	[-0.03, 0.00]	-2.46	.014
After-slope, $\hat{\gamma}_{20}$	-0.02	[-0.03, -0.01]	-3.51	< .001	-0.01	[-0.02, 0.00]	-1.99	.046
Shift, $\hat{\gamma}_{30}$	0.07	[0.03, 0.10]	4.03	< .001	0.00	[-0.03, 0.03]	0.12	.903
Grandparent, $\hat{\gamma}_{01}$	-0.04	[-0.13, 0.05]	-0.92	.358	0.00	[-0.09, 0.09]	0.02	.981
Female, $\hat{\gamma}_{02}$	-0.02	[-0.09, 0.04]	-0.68	.498	-0.01	[-0.09, 0.06]	-0.32	.752
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.01	[-0.03, 0.05]	0.37	.708	0.00	[-0.03, 0.04]	0.26	.798
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.02	[0.00, 0.04]	1.62	.106	0.01	[-0.01, 0.03]	0.92	.357
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.11	[-0.18, -0.03]	-2.89	.004	-0.04	[-0.10, 0.03]	-1.19	.233
Before-slope * Female, $\hat{\gamma}_{12}$	0.00	[-0.03, 0.02]	-0.33	.740	0.03	[0.01, 0.05]	2.83	.005
After-slope * Female, $\hat{\gamma}_{22}$	0.01		1.72	.085	0.00	[-0.01, 0.02]	0.25	.801
Shift * Female, $\hat{\gamma}_{32}$	-0.07	[-0.11, -0.02]	-3.05	.002	0.01	[-0.03, 0.05]	0.35	.726

Table S37 continued

		Parent controls	itrols			Nonparent controls	ontrols	
Parameter	∻	95% CI	t	d	⋄	95% CI	t	d
Grandparent * Female, $\hat{\gamma}_{03}$	0.01	[-0.10, 0.13]	0.25	.804	0.00	[-0.11, 0.12]	0.05	.961
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	0.03	[-0.03, 0.08]	0.95	.341	-0.01		-0.26	.798
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	-0.02	[-0.05, 0.01]	-1.17	.240	-0.01	[-0.04, 0.02]	-0.51	809.
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	0.11	[0.01,0.21]	2.26	.024	0.03	[-0.05, 0.12]	0.78	.435

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval.

Table S38

Linear Contrasts for Openness (Moderated by Gender).

	Par	Parent controls	trols	Nonpa	Nonparent controls	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d b
LISS						
Shift of male controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	-0.05	9.28	.002	0.01	1.08	.298
Shift of female controls vs. $\hat{0}$ $(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.03	1.34	.247	0.02	1.55	.213
\sim	-0.02	0.32	.569	-0.02	0.38	.539
	0.00	0.03	.853	-0.01	0.04	.839
Shift of male controls vs. grandfathers $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.03	0.81	368	-0.03	1.04	308
Before-slope of female controls vs. grandmothers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	0.01	2.27	.132	0.01	3.22	.073
After-slope of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	0.01	1.23	.268	-0.01	0.72	.396
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.02	0.48	.487	-0.02	0.57	.450
Shift of male vs. female controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.06	9.22	.002	0.00	0.01	.928
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	0.01	0.46	.499	0.01	0.52	.469
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	0.00	0.27	909.	0.00	0.30	.583
ft of grandfathers vs. gra	0.01	0.09	992.	0.01	0.10	.751
HRS						
Shift of male controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.05	13.53	< .001	-0.01	0.56	.455
Shift of female controls vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32}$)	-0.01	0.48	.489	0.00	0.00	866.
Shift of grandfathers vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.04	2.45	.118	-0.04	2.84	.092
Shift of grandmothers vs. 0 $(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.00	0.01	.939	0.00	0.01	.915
Shift of male controls vs. grandfathers $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.09	9.39	.002	-0.03	1.33	.249
Before-slope of female controls vs. grandmothers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	0.03	3.45	063	0.00	0.01	.923
After-slope of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	0.00	0.00	.973	0.00	0.07	962.
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.01	0.06	808.	0.00	0.01	.923
	-0.05	10.30	.001	0.01	0.32	.571
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	0.02	0.80	.370	0.02	1.08	.299
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	-0.01	0.21	.646	-0.01	0.20	.654
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.04	1.23	.266	0.04	1.40	.237

Note. The linear contrasts are based on the models from Table S37. $\hat{\gamma}_c = \text{combined fixed-effects}$ estimate.

Table S39

Fixed Effects of Openness Over the Transition to Grandparenthood Moderated by Performing Paid Work.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	<≻	95% CI	t	. d	<i>⋄</i> ≻	95% CI	t	d
Intercept, $\hat{\gamma}_{00}$	3.04		126.17	< .001	3.07	[3.02, 3.12]	116.43	< .001
Propensity score, $\hat{\gamma}_{02}$	0.03		0.92	.357	-0.03	[-0.09, 0.04]	-0.81	.420
Before-slope, $\hat{\gamma}_{20}$	-0.02		-1.85	.064	-0.01	[-0.03, 0.01]	-1.18	.238
After-slope, $\hat{\gamma}_{40}$	-0.02		-4.08	< .001	-0.01	[-0.02, 0.00]	-1.67	.095
Shift, $\hat{\gamma}_{60}$	0.04	_	2.12	.034	-0.02	[-0.06, 0.01]	-1.45	.148
Grandparent, $\hat{\gamma}_{01}$	-0.09		-1.73	.084	-0.09	[-0.19, 0.00]	-1.94	.053
Working, $\hat{\gamma}_{10}$	0.02		1.05	.292	-0.04	[-0.07, 0.00]	-1.91	050
Before-slope * Grandparent, $\hat{\gamma}_{21}$	0.04		1.61	.107	0.04	[-0.01, 0.08]	1.48	.139
After-slope * Grandparent, $\hat{\gamma}_{41}$	0.04	_	3.31	.001	0.03	[0.01, 0.05]	2.44	.015
Shift * Grandparent, $\hat{\gamma}_{61}$	-0.12		-2.91	.004	-0.05	[-0.12, 0.02]	-1.44	.149
Before-slope * Working, $\hat{\gamma}_{30}$	0.00		-0.36	.720	0.01	[-0.01, 0.04]	1.11	.269
After-slope * Working, $\hat{\gamma}_{50}$	0.02	_	3.01	.003	0.00	[-0.01, 0.02]	0.38	.702
Shift * Working, $\hat{\gamma}_{70}$	-0.02		-0.99	.324	0.04	[0.00, 0.08]	2.01	.044
Grandparent * Working, $\hat{\gamma}_{11}$	0.07		1.34	.180	0.13	[0.04, 0.22]	2.79	.005
Before-slope * Grandparent * Working, $\hat{\gamma}_{31}$	-0.02		-0.77	.439	-0.04	[-0.10, 0.01]	-1.47	.141
After-slope * Grandparent * Working, $\hat{\gamma}_{51}$	-0.06		-3.53	< .001	-0.04	[-0.07, -0.01]	-2.61	600.
Shift * Grandparent * Working, $\hat{\gamma}_{71}$	0.14	[0.04, 0.24]	2.66	800.	0.07	[-0.02, 0.16]	1.51	.130

Note. Two models were computed (only HRS): grandparents matched with parent controls and with

nonparent controls. CI = confidence interval. working = 1 indicates being employed in paid work.

Table S40

Linear Contrasts for Openness (Moderated by Paid Work; only HRS).

	Pare	Parent controls	:ols	Nonpa	Nonparent controls	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	. d	$\hat{\gamma}_c$	χ^2	d
Shift of not-working controls vs. $0 (\hat{\gamma}_{40} + \hat{\gamma}_{60})$	0.01	1.13	.288	-0.03	5.76	.016
Shift of working controls vs. 0 ($\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{50} + \hat{\gamma}_{70}$)	0.02	1.97	.160	0.01	1.68	.194
Shift of not-working grandparents vs. $0 (\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{41} + \hat{\gamma}_{61})$	-0.06	4.32	.038	-0.06	5.11	.024
Shift of working grandparents vs. 0 ($\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{41} + \hat{\gamma}_{61} + \hat{\gamma}_{50} + \hat{\gamma}_{70} + \hat{\gamma}_{51} + \hat{\gamma}_{71}$)	0.02	0.68	.408	0.02	0.81	367
Shift of not-working controls vs. not-working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{61})$	-0.07	5.45	.020	-0.03	0.73	.392
Before-slope of working controls vs. working grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.02	1.47	.226	-0.01	0.17	.684
After-slope of working controls vs. working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{51})$	-0.02	2.93	780.	-0.01	1.57	.210
Shift of working controls vs. working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{61} + \hat{\gamma}_{51} + \hat{\gamma}_{71})$	0.00	0.01	916.	0.01	90.0	.804
Shift of not-working controls vs. working controls $(\hat{\gamma}_{50} + \hat{\gamma}_{70})$	0.00	0.00	.980	0.05	7.22	200.
Before-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{30} + \hat{\gamma}_{31})$	-0.03	0.99	.320	-0.03	1.25	.263
After-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{50} + \hat{\gamma}_{51})$	-0.04	6.04	.014	-0.04	7.42	900.
Shift of not-working grandparents vs. working grandparents $(\hat{\gamma}_{50} + \hat{\gamma}_{70} + \hat{\gamma}_{51} + \hat{\gamma}_{71})$	0.08	4.49	.034	0.08	5.31	.021

Note. The linear contrasts are based on the models from Table S39. $\hat{\gamma}_c = \text{combined fixed-effects}$ estimate.

Table S41

Fixed Effects of Openness Over the Transition to Grandparenthood Moderated by Grandchild Care.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	«≻	95% CI	t	d	«≿	95% CI	t	d
Intercept, $\hat{\gamma}_{00}$	3.05	[3.00, 3.09]	126.62	< .001	2.98	[2.92, 3.03]	104.37	< .001
Propensity score, $\hat{\gamma}_{02}$	0.05	[-0.03, 0.13]	1.23	.218	0.23	[0.14, 0.31]	5.19	< .001
After-slope, $\hat{\gamma}_{20}$	-0.02	[-0.03, -0.01]	-4.39	< .001	-0.02		-3.16	.002
Grandparent, $\hat{\gamma}_{01}$	-0.04	[-0.11, 0.03]	-1.17	.242	-0.06	[-0.13, 0.02]	-1.51	.131
Caring, $\hat{\gamma}_{10}$	0.01	[-0.03, 0.05]	0.55	.585	0.00		-0.25	.800
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.01		0.85	395	0.00		0.03	.974
After-slope * Caring, $\hat{\gamma}_{30}$	0.00		-0.06	.953	0.00		0.30	292.
Grandparent * Caring, $\hat{\gamma}_{11}$	-0.03	[-0.13, 0.06]	-0.67	.506	-0.03	[-0.12, 0.06]	-0.60	.546
After-slope * Grandparent * Caring, $\hat{\gamma}_{31}$	0.03	[-0.01, 0.06]	1.51	.132	0.03	[-0.01, 0.06]	1.60	.110

nonparent controls. CI = confidence interval. caring = 1 indicates more than 100 hours of grandchild care Note. Two models were computed (only HRS): grandparents matched with parent controls and with since the last assessment.

Table S42

Linear Contrasts for Openness (Moderated by Grandchild Care; only HRS).

	Pare	Parent controls	rols	Nonpa	Vonparent controls	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	p	$\hat{\gamma}_c$	χ^2	p
After-slope of caring controls vs. caring grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.04	7.55	900.	0.00 0.03	4.77	.029
After-slope of not-caring grandparents vs. caring grandparents $(\hat{\gamma}_{30} + \hat{\gamma}_{31})$	0.03 2.75	2.75	260.	0.03	3.73	.054

Note. The linear contrasts are based on the models from Table S41. $\hat{\gamma}_c = \text{combined fixed-effects}$

estimate.

Table S43

Fixed Effects of Life Satisfaction Over the Transition to Grandparenthood.

		Parent controls	ntrols			Nonparent controls	sontrols	
Parameter		95% CI	t	<i>d</i>	\\ \times_	95% CI	t	<i>d</i>
LISS								
Intercept, $\hat{\gamma}_{00}$	5.04	[4.93, 5.15]	90.40	< .001	5.15	[5.02, 5.28]	78.22	< .001
Propensity score, $\hat{\gamma}_{02}$	-0.08	[-0.22, 0.05]	-1.18	.239	0.01	[-0.12, 0.15]	0.20	.843
Before-slope, $\hat{\gamma}_{10}$	0.03	[0.02, 0.04]	5.02	< .001	0.01	[0.00, 0.03]	2.03	.042
After-slope, $\hat{\gamma}_{20}$	0.01	[0.00, 0.02]	2.10	.036	-0.01	[-0.02, 0.00]	-1.53	.126
Shift, $\hat{\gamma}_{30}$	-0.03	[-0.09, 0.02]	-1.20	.230	-0.11	[-0.16, -0.05]	-3.64	< .001
Grandparent, $\hat{\gamma}_{01}$	0.14	[-0.03, 0.30]	1.58	.115	0.00	[-0.18, 0.18]	0.01	995
Before-slope * Grandparent, $\hat{\gamma}_{11}$	-0.01	[-0.04, 0.02]	-0.55	.583	0.01	[-0.02, 0.04]	0.68	.494
After-slope * Grandparent, $\hat{\gamma}_{21}$	-0.02	[-0.04, 0.01]	-1.53	.125	0.00	[-0.02, 0.03]	0.00	.928
Shift * Grandparent, $\hat{\gamma}_{31}$	0.08	[-0.04, 0.20]	1.24	.215	0.15	[0.02, 0.28]	2.34	.019
HRS						1		
Intercept, $\hat{\gamma}_{00}$	4.79	[4.67, 4.90]	81.69	< .001	4.58	[4.45, 4.72]	67.28	< .001
Propensity score, $\hat{\gamma}_{02}$	0.42	[0.21, 0.63]	3.87	< .001	0.43	[0.21, 0.65]	3.87	< .001
Before-slope, $\hat{\gamma}_{10}$	0.01	[-0.03, 0.04]	0.27	.790	0.04	[0.00, 0.07]	1.95	.051
After-slope, $\hat{\gamma}_{20}$	0.01	[-0.01, 0.04]	0.91	.361	0.03	[0.01,0.05]	2.37	.018
Shift, $\hat{\gamma}_{30}$	0.01	[-0.06, 0.09]	0.28	.783	-0.01	[-0.09, 0.06]	-0.40	069°
$\text{Grandparent, } \hat{\gamma}_{01}$	-0.01	[-0.20, 0.18]	-0.11	.911	0.15	[-0.04, 0.35]	1.51	.130
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.08	[-0.01, 0.17]	1.76	070	0.06	[-0.03, 0.14]	1.26	.207
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.03	[-0.02, 0.09]	1.11	.266	0.02	[-0.04, 0.07]	0.61	.539
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.07	[-0.24, 0.10]	-0.78	.436	-0.05	[-0.21, 0.11]	-0.59	.553

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched

with parent controls and with nonparent controls. CI = confidence interval.

Table S44

Linear Contrasts for Life Satisfaction.

	Pare	Parent controls	rols	Non	Nonparent controls	ntrols
Linear Contrast	$\hat{\gamma}_c$	$\hat{\gamma}_c \qquad \chi^2 \qquad p$	d	$\hat{\gamma}_c$	χ^2	d
LISS						
Shift of the controls vs. $0 \left(\hat{\gamma}_{20} + \hat{\gamma}_{30} \right)$	-0.02	0.83	.363	-0.12	20.17	< .001
$\hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}$	0.03	0.53	.468	0.04	0.51	.476
$\hat{\gamma}_{31})$	90.0	1.13	.288	0.15	7.24	200.
Before-slope of the grandparents vs. $0(\hat{\gamma}_{10} + \hat{\gamma}_{11})$	0.02	3.68	.055	0.02	3.28	070.
•	-0.01		.496	-0.01	0.42	.519
HRS						
Shift of the controls vs. $0 \left(\hat{\gamma}_{20} + \hat{\gamma}_{30} \right)$	0.02	0.58	.445	0.01	0.28	.595
$\hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}$	-0.01	0.04	.844	-0.02	0.09	.771
$\hat{\gamma}_{31})$	-0.03	0.27	.602	-0.03	0.25	.616
Before-slope of the grandparents vs. $0 (\hat{\gamma}_{10} + \hat{\gamma}_{11})$	0.09	4.29	.038	0.09	5.35	.021
After-slope of the grandparents vs. 0 $(\hat{\gamma}_{20} + \hat{\gamma}_{21})$	0.04	2.88	060.	0.05	3.50	.061

multiple fixed-effects coefficients and are computed using the *linearHypothesis* function from the Note. The linear contrasts are needed in cases where estimates of interest are represented by car R package (Fox & Weisberg, 2019) based on the models from Table S43. $\hat{\gamma}_c = \text{combined}$ fixed-effects estimate.

Fixed Effects of Life Satisfaction Over the Transition to Grandparenthood Moderated by Gender.

Table S45

		Parent controls	ntrols			Nonparent controls	controls	
Parameter		95% CI	t	_ d	χ	95% CI	t	d
TISS								
Intercept, $\hat{\gamma}_{00}$	4.96	[4.81, 5.11]	63.49	< .001	5.12	[4.94, 5.30]	55.20	< .001
Propensity score, $\hat{\gamma}_{04}$	-0.08	[-0.21, 0.05]	-1.17	.241	0.01		0.15	.878
Before-slope, $\hat{\gamma}_{10}$	0.05	[0.03, 0.06]	4.76	< .001	0.02		1.57	.116
After-slope, $\hat{\gamma}_{20}$	0.02	[0.00, 0.03]	1.91	050.	-0.02	[-0.04, 0.00]	-2.50	.012
Shift, $\hat{\gamma}_{30}$	-0.08	[-0.17, 0.00]	-2.00	.045	-0.04	[-0.12, 0.04]	-0.93	.352
Grandparent, $\hat{\gamma}_{01}$	0.27	[0.04, 0.51]	2.29	.022	0.09	[-0.17, 0.34]	0.67	.505
Female, $\hat{\gamma}_{02}$	0.14	[-0.05, 0.33]	1.43	.152	0.05	[-0.17, 0.28]	0.47	.637
Before-slope * Grandparent, $\hat{\gamma}_{11}$	-0.02	[-0.07, 0.02]	-1.19	.235	0.01	[-0.04, 0.05]	0.24	808.
After-slope * Grandparent, $\hat{\gamma}_{21}$	-0.03	[-0.07, 0.00]	-1.73	.084	0.00	[-0.03, 0.04]	0.23	.817
Shift * Grandparent, $\hat{\gamma}_{31}$	0.13	[-0.05, 0.30]	1.38	.166	0.08	[-0.10, 0.27]	0.86	387
Before-slope * Female, $\hat{\gamma}_{12}$	-0.03	[-0.05, 0.00]	-1.90	0.058	0.00	[-0.03, 0.02]	-0.26	.791
After-slope * Female, $\hat{\gamma}_{22}$	-0.01	[-0.03, 0.01]	-0.69	.491	0.02	[0.00, 0.04]	2.00	046
Shift * Female, $\hat{\gamma}_{32}$	0.00	[-0.02, 0.20]	1.60	.110	-0.13	[-0.24, -0.01]	-2.13	.033
Grandparent * Female, $\hat{\gamma}_{03}$	-0.26	[-0.56, 0.04]	-1.67	000	-0.16	[-0.49, 0.17]	-0.97	.331
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	0.03	[-0.02, 0.09]	1.15	.251	0.01	[-0.05, 0.07]	0.38	.704
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	0.02		0.91	365	-0.01	[-0.06, 0.04]	-0.30	.768
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	-0.09		-0.73	.467	0.13	[-0.12, 0.38]	0.99	.322
HRS								
$\text{Intercept, } \hat{\gamma}_{00}$	4.68	[4.53, 4.82]	61.35	< .001	4.49	[4.32, 4.66]	51.99	< .001
Propensity score, $\hat{\gamma}_{04}$	0.43	[0.22, 0.64]	3.95	< .001	0.40	[0.18, 0.62]	3.61	< .001
Before-slope, $\hat{\gamma}_{10}$	0.01	[-0.05, 0.07]	0.28	777.	0.06	[0.01, 0.12]	2.27	.023
After-slope, $\hat{\gamma}_{20}$	-0.01	[-0.05, 0.03]	-0.55	.584	0.06	[0.02, 0.10]	3.05	.002
Shift, $\hat{\gamma}_{30}$	0.18	[0.07, 0.29]	3.13	000	-0.21	[-0.32, -0.10]	-3.75	< .001
Grandparent, $\hat{\gamma}_{01}$	0.09	[-0.17, 0.35]	0.71	.480	0.25	[-0.01, 0.52]	1.85	.064
Female, $\hat{\gamma}_{02}$	0.20	[0.03, 0.37]	2.36	.019	0.18	[-0.01, 0.38]	1.88	090.
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.01	[-0.13, 0.14]	0.10	.917	-0.04	[-0.17, 0.09]	-0.62	.536
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.06	[-0.03, 0.14]	1.32	.186	-0.01	[-0.09, 0.07]	-0.23	.816
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.19	[-0.44, 0.06]	-1.51	.131	0.19	[-0.05, 0.43]	1.57	.117
Before-slope * Female, $\hat{\gamma}_{12}$	-0.01	[-0.09, 0.07]	-0.27	.788	-0.05	[-0.12, 0.03]	-1.23	.218
After-slope * Female, $\hat{\gamma}_{22}$	0.04	[-0.01, 0.09]	1.58	.114	-0.05		-2.07	.039
Shift * Female, $\hat{\gamma}_{32}$	-0.31	[-0.46, -0.15]	-3.95	< .001	0.34	[0.20, 0.48]	4.63	< .001

Table S45 continued

		Parent controls	ıtrols			Nonparent controls	ontrols	
Parameter	∻	95% CI	t	d	Ŷ	95% CI	t	d
Grandparent * Female, $\hat{\gamma}_{03}$	-0.19	[-0.51, 0.13]	-1.19	.234	-0.17	[-0.50, 0.15]	-1.04	.298
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	0.14	[-0.04, 0.32]	1.48	.139	0.17	[0.00, 0.34]	1.91	056
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	-0.05	[-0.16, 0.07]	-0.79	.432	0.05	[-0.06, 0.15]	0.82	.412
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	0.23	[-0.11, 0.56]	1.34	.180	-0.41	[-0.73, -0.10]	-2.55	.011

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval.

Table S46

Linear Contrasts for Life Satisfaction (Moderated by Gender).

SS Shift of male controls vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30}$) Shift of male controls vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30}$) Shift of grandfathers vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}$) Shift of grandfathers vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}$) Shift of grandfathers vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}$) Shift of male controls vs. grandfathers ($\hat{\gamma}_{21} + \hat{\gamma}_{31}$) Before-slope of female controls vs. grandmothers ($\hat{\gamma}_{21} + \hat{\gamma}_{23}$) Shift of female controls vs. grandmothers ($\hat{\gamma}_{21} + \hat{\gamma}_{23}$) Shift of female controls vs. grandmothers ($\hat{\gamma}_{21} + \hat{\gamma}_{23}$) Shift of female controls vs. grandmothers ($\hat{\gamma}_{21} + \hat{\gamma}_{23}$) Shift of female controls vs. grandmothers ($\hat{\gamma}_{21} + \hat{\gamma}_{23}$) 6.03	$\begin{array}{c} \chi^2 \\ 3.48 \\ 0.19 \\ 0.13 \\ 0.16 \\ 0.30 \\ 0.13 \\ 0.13 \\ 0.14 \\ 0.16 \\ 0.03 \\ 0.13 \\ 0.13 \\ 0.0$			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 108 108 730 529 300 413 853 007 770 520 865 865
	3.48 0.19 0.13 0.41 1.38 0.16 0.30 0.13 0.13 0.45		24	2.59 1.48 < 0.12 0.40 0.07 0.03 3.97 0.09	.108 .001 .730 .529 .300 .300 .007 .046 .770 .520
	3.48 0.19 0.13 0.41 1.38 0.16 0.30 0.13 2.81 0.11 0.45		C4	2.59 < 1.48 < 0.12	.108 .001 .730 .529 .300 .413 .853 .007 .770 .865
·	0.19 0.13 0.41 1.38 0.16 0.30 0.13 2.81 0.11 0.45	1	C1	 1.48 0.12 0.40 1.07 0.03 7.28 3.97 0.09 0.41 	.001 .730 .529 .300 .413 .853 .007 .770 .520
·	0.13 0.41 1.38 0.16 0.30 0.13 2.81 0.11 0.45	ľ		0.12 0.40 1.07 0.03 7.28 3.97 0.09	.730 .329 .300 .413 .853 .007 .770 .520
·	0.41 1.38 0.16 0.30 0.13 2.81 0.11 0.45	ı		0.40 0.67 0.03 7.28 3.97 0.09	.529 .300 .300 .413 .853 .007 .770 .520
·	1.38 0.16 0.30 0.13 2.81 0.11 0.45	'		1.07 0.67 0.03 7.28 3.97 0.09	.300 .413 .853 .007 .770 .520
	0.16 0.30 0.13 2.81 0.11 0.45	'		0.67 0.03 7.28 3.97 0.09	.413 .853 .007 .046 .770 .520
	0.30 0.13 2.81 0.11 0.45	'		0.03 7.28 3.97 0.09 0.41	.853 .007 .770 .520
	0.13 2.81 0.11 0.45	'		7.28 3.97 0.09 0.41	.007 .046 .770 .520
	2.81 0.11 0.45	'		3.97 0.09 0.41	.046 .770 .520 .865
0.00	0.11 0.45 0.03			0.09 0.41	.770 .520 .865
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$ 0.01	0.45			0.41	.520 .865
	0.03				.865
$+ \hat{\gamma}_{33}$	00.0			0.03	
	14.63 <		, ,	12.35 <	.001
Shift of female controls vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32}$) -0.09	5.59		, ,	V	-
	0.17			0.12	.727
$31 + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33}$	0.35	•		0.45	.504
	1.92			3.79	.052
	5.47			4.79	.029
	0.00			0.92	.337
	0.29	•		5.13	.024
	> 19.63 <			> 88.2	.001
	2.28			2.36	.125
	0.01			0.02	688.
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$ -0.08	0.50	.480	0.08	0.50	.477
	1.92 5.47 0.09 0.29 19.63 < 2.28 0.01 0.50		0.18 0.13 0.04 0.04 0.29 0.29 0.12 -0.01		64

Note. The linear contrasts are based on the models from Table S45. $\hat{\gamma}_c = \text{combined fixed-effects}$ estimate.

Table S47

Fixed Effects of Life Satisfaction Over the Transition to Grandparenthood Moderated by Performing Paid Work.

		Parent controls	ıtrols			Nonparent controls	ontrols	
Parameter	$\hat{\gamma}$	95% CI	t	d	$\hat{\gamma}$	95% CI	t	d
Intercept, $\hat{\gamma}_{00}$	4.78	[4.63, 4.93]	63.55	< .001	4.62		56.07	< .001
Propensity score, $\hat{\gamma}_{02}$	0.40		3.64	< .001	0.37		3.26	.001
Before-slope, $\hat{\gamma}_{20}$	0.00		0.11	.912	-0.08		-2.31	.021
After-slope, $\hat{\gamma}_{40}$	0.00	[-0.04, 0.03]	-0.25	800	0.05	[0.01, 0.09]	2.74	900.
Shift, $\hat{\gamma}_{60}$	-0.02		-0.30	.761	0.18		2.90	.004
Grandparent, $\hat{\gamma}_{01}$	-0.04		-0.22	.826	0.11		0.70	.484
Working, $\hat{\gamma}_{10}$	0.02		0.27	787.	0.03		0.25	.799
Before-slope * Grandparent, $\hat{\gamma}_{21}$	0.07		0.74	.458	0.16		1.83	290.
After-slope * Grandparent, $\hat{\gamma}_{41}$	0.04		0.87	.385	-0.02		-0.49	.622
Shift * Grandparent, $\hat{\gamma}_{61}$	0.11		0.77	.440	-0.10		-0.74	.459
Before-slope * Working, $\hat{\gamma}_{30}$	0.00		0.06	950	0.16		3.86	< .001
After-slope * Working, $\hat{\gamma}_{50}$	0.05		1.88	090.	-0.04		-1.59	.112
Shift * Working, $\hat{\gamma}_{70}$	0.02		0.28	.778	-0.26		-3.35	.001
Grandparent * Working, $\hat{\gamma}_{11}$	0.03		0.19	.848	0.03		0.15	.880
Before-slope * Grandparent * Working, $\hat{\gamma}_{31}$	0.02		0.19	.853	-0.14		-1.38	.167
After-slope * Grandparent * Working, $\hat{\gamma}_{51}$	-0.03		-0.51	.611	0.06		1.07	.286
Shift * Grandparent * Working, $\hat{\gamma}_{71}$	-0.25		-1.41	.160	0.03	[-0.31, 0.36]	0.15	.881

Note. Two models were computed (only HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval. working = 1 indicates being employed in paid work.

Table S48

Linear Contrasts for Life Satisfaction (Moderated by Paid Work; only HRS).

	Pare	Parent controls	rols	Non	Nonparent controls	ontrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
Shift of not-working controls vs. $0 (\hat{\gamma}_{40} + \hat{\gamma}_{60})$	-0.02	0.22	989.	0.23	21.09	< .001
Shift of working controls vs. 0 $(\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{50} + \hat{\gamma}_{70})$	0.05	1.67	.197	-0.07	3.91	.048
Shift of not-working grandparents vs. 0 $(\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{41} + \hat{\gamma}_{61})$	0.12	1.43	.232	0.12	1.55	.213
Shift of working grandparents vs. $0 (\hat{\gamma}_{40} + \hat{\gamma}_{60} + \hat{\gamma}_{41} + \hat{\gamma}_{61} + \hat{\gamma}_{50} + \hat{\gamma}_{70} + \hat{\gamma}_{51} + \hat{\gamma}_{71})$	-0.09	1.49	.223	-0.10	1.99	.159
	0.14	1.65	.200	-0.12	1.21	.272
Before-slope of working controls vs. working grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.09	2.65	.104	0.02	0.15	269.
After-slope of working controls vs. working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{51})$	0.01	0.02	988.	0.04	1.06	.303
Shift of working controls vs. working grandparents $(\hat{\gamma}_{41} + \hat{\gamma}_{61} + \hat{\gamma}_{51} + \hat{\gamma}_{71})$	-0.14	2.80	.094	-0.03	0.16	689.
Shift of not-working controls vs. working controls $(\hat{\gamma}_{50} + \hat{\gamma}_{70})$	0.07	1.35	.246	-0.30	23.66	< .001
Before-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{30} + \hat{\gamma}_{31})$	0.02	0.05	.819	0.02	0.05	.823
After-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{50} + \hat{\gamma}_{51})$	0.02	0.13	.716	0.02	0.16	.693
Shift of not-working grandparents vs. working grandparents $(\hat{\gamma}_{50} + \hat{\gamma}_{70} + \hat{\gamma}_{51} + \hat{\gamma}_{71})$	-0.21	2.77	960.	-0.22	3.28	020.

Note. The linear contrasts are based on the models from Table S47. $\hat{\gamma}_c =$ combined fixed-effects estimate.

Table S49

Fixed Effects of Life Satisfaction Over the Transition to Grandparenthood Moderated by Grandchild Care.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	.≻	95% CI	t	d	⋄	95% CI	t	d
Intercept, $\hat{\gamma}_{00}$	4.99	[4.85, 5.13]	69.26	< .001	4.82	[4.66, 4.99]	57.30	< .001
Propensity score, $\hat{\gamma}_{02}$	-0.05	[-0.30, 0.21]	-0.37	.712	0.24	[-0.02, 0.51]	1.79	.074
After-slope, $\hat{\gamma}_{20}$	0.02	[-0.01, 0.06]	1.43	.153	0.02	[-0.02, 0.05]	1.05	.293
Grandparent, $\hat{\gamma}_{01}$	-0.02	[-0.24, 0.20]	-0.17	.863	0.02		0.15	878
Caring, $\hat{\gamma}_{10}$	-0.02	[-0.14, 0.10]	-0.33	.739	-0.12		-2.01	.045
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.04	[-0.03, 0.12]	1.25	.212	0.05		1.42	.155
After-slope * Caring, $\hat{\gamma}_{30}$	-0.01	[-0.06, 0.04]	-0.30	.762	0.05		1.78	.075
Grandparent * Caring, $\hat{\gamma}_{11}$	0.23	[-0.06, 0.53]	1.54	.124	0.34	[0.05, 0.64]	2.29	.022
After-slope * Grandparent * Caring, $\hat{\gamma}_{31}$	-0.03	[-0.14, 0.08]	-0.50	.620	-0.08	[-0.19, 0.03]	-1.48	.140

nonparent controls. CI = confidence interval. caring = 1 indicates more than 100 hours of grandchild Note. Two models were computed (only HRS): grandparents matched with parent controls and with care since the last assessment.

Table S50

Linear Contrasts for Life Satisfaction (Moderated by Grandchild Care; only HRS).

	Pare	arent contro	rols	Nonparent	rent co	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	$\frac{d}{d}$	$\hat{\gamma}_c$	χ^2	d
After-slope of caring controls vs. caring grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$ After-slope of not-caring grandparents vs. caring grandparents $(\hat{\gamma}_{30} + \hat{\gamma}_{31})$	0.02	$0.15 \\ 0.51$.702 .476	.702 -0.03 .476 -0.04	$0.63 \\ 0.56$.429

Note. The linear contrasts are based on the models from Table S49. $\hat{\gamma}_c = \text{combined fixed-effects}$

1732

estimate.

Table S51

Tests of Heterogeneous Random Slope Variance Models for Agreeableness Against Comparison Models With a Uniform Random Slope Variance.

			Parent controls	controls			Z	Vonparen	Nonparent controls	
	Var.	$^{\mathrm{SD}}$	LR	ď	GP greater	Var.	$^{\mathrm{SD}}$	LR	d	GP greater
LISS										
Before-slope: uniform	0.00	0.04				0.00	0.04			
Before-slope: heterogeneous (controls)	0.00	0.02				0.00	0.05			
Before-slope: heterogeneous (grandparents)	0.00	0.04	15.22	.002	ou	0.00	0.03	37.53	< .001	ou
After-slope: uniform	0.00	0.03				0.00	0.03			
After-slope: heterogeneous (controls)	0.00	0.04				0.00	0.04			
After-slope: heterogeneous (grandparents)	0.00	0.03	4.88	.181	ou	0.00	0.02	14.49	.002	ou
Shift: uniform	0.02	0.15				0.02	0.15			
Shift: heterogeneous (controls)	0.02	0.15				0.03	0.16			
Shift: heterogeneous (grandparents)	0.02	0.13	1.57	999.	ou	0.01	0.10	15.97	.001	ou
HRS										
Before-slope: uniform	0.01	0.11				0.01	0.12			
Before-slope: heterogeneous (controls)	0.02	0.14				0.02	0.15			
Before-slope: heterogeneous (grandparents)	0.01	0.12	57.65	< .001	ou	0.02	0.13	81.45	< .001	ou
After-slope: uniform	0.01	0.09				0.01	0.11			
After-slope: heterogeneous (controls)	0.01	0.10				0.01	0.12			
After-slope: heterogeneous (grandparents)	0.01	0.08	35.76	< .001	ou	0.01	0.09	68.22	< .001	ou
Shift: uniform	90.0	0.25				0.07	0.26			
Shift: heterogeneous (controls)	0.08	0.28				0.09	0.30			
Shift: heterogeneous (grandparents)	0.02	0.22	06.89	< .001	ou	0.06	0.24	92.11	< .001	ou

Note. The heterogeneous variance models (df = 16) differ only in the random effects from the comparison models (df = 13). In addition to two random slope variances (instead of one), the heterogeneous variance models estimate two additional random intercept/slope covariances. Both models estimate heterogeneous random intercept variances for the grandparent and control groups. Var. = random slope variance; SD =standard deviation; LR = likelihood ratio; p = p-value (of the LR test); GP greater = indicating if therandom slope variance of the grandparents is larger than that of either control group.

Table S52

Tests of Heterogeneous Random Slope Variance Models for Conscientiousness Against Comparison Models With a Uniform Random Slope Variance.

			Parent	Parent controls				Nonparent controls	t controls	
	Var.	SD	LR	d	GP greater	Var.	$^{\mathrm{SD}}$	LR	d	GP greater
LISS										
Before-slope: uniform	0.00	0.04				0.00	0.04			
Before-slope: heterogeneous (controls)	0.00	0.02				0.00	0.04			
Before-slope: heterogeneous (grandparents)	0.00	0.03	16.78	< .001	ou	0.00	0.01	31.44	< .001	ou
After-slope: uniform	0.00	0.04				0.00	0.04			
After-slope: heterogeneous (controls)	0.00	0.04				0.00	0.04			
After-slope: heterogeneous (grandparents)	0.00	0.03	8.03	.046	ou	0.00	0.03	17.47	< .001	ou
Shift: uniform	0.02	0.14				0.02	0.14			
Shift: heterogeneous (controls)	0.02	0.15				0.03	0.16			
Shift: heterogeneous (grandparents)	0.01	0.12	2.58	.461	no	0.01	0.08	14.58	.002	ou
HRS										
Before-slope: uniform	0.01	0.11				0.01	0.11			
Before-slope: heterogeneous (controls)	0.02	0.14				0.02	0.14			
Before-slope: heterogeneous (grandparents)	0.01	0.11	79.31	< .001	ou	0.02	0.13	105.76	< .001	ou
After-slope: uniform	0.01	0.09				0.01	0.10			
After-slope: heterogeneous (controls)	0.01	0.11				0.01	0.11			
After-slope: heterogeneous (grandparents)	0.01	0.08	57.77	< .001	ou	0.01	0.09	59.64	< .001	ou
Shift: uniform	0.06	0.24				0.06	0.25			
Shift: heterogeneous (controls)	0.07	0.27				0.08	0.27			
Shift: heterogeneous (grandparents)	0.02	0.23	83.80	< .001	ou	90.0	0.25	91.50	< .001	ou

Note. The heterogeneous variance models (df = 16) differ only in the random effects from the comparison models (df = 13). In addition to two random slope variances (instead of one), the heterogeneous variance random intercept variances for the grandparent and control groups. Var. = random slope variance; SD =models estimate two additional random intercept/slope covariances. Both models estimate heterogeneous standard deviation; LR = likelihood ratio; p = p-value (of the LR test); GP greater = indicating if therandom slope variance of the grandparents is larger than that of either control group.

Table S53

Tests of Heterogeneous Random Slope Variance Models for Extraversion Against Comparison Models With a Uniform Random Slope Variance.

			Parent	Parent controls				Vonparer	Nonparent controls	
	Var.	$^{\mathrm{SD}}$	LR	ф	GP greater	Var.	$^{\mathrm{SD}}$	LR	d	GP greater
LISS										
Before-slope: uniform	0.00	0.02				0.00	0.02			
Before-slope: heterogeneous (controls)	0.00	90.0				0.00	90.0			
Before-slope: heterogeneous (grandparents)	0.00	0.02	25.93	< .001	ou	0.00	0.05	16.88	< .001	ou
After-slope: uniform	0.00	0.04				0.00	0.04			
After-slope: heterogeneous (controls)	0.00	0.04				0.00	0.05			
After-slope: heterogeneous (grandparents)	0.00	0.03	4.61	.203	ou	0.00	0.03	8.97	.030	ou
Shift: uniform	0.03	0.17				0.03	0.18			
Shift: heterogeneous (controls)	0.03	0.18				0.04	0.20			
Shift: heterogeneous (grandparents)	0.02	0.13	99.9	.084	ou	0.02	0.13	8.05	.045	ou
HRS										
Before-slope: uniform	0.01	0.12				0.02	0.13			
Before-slope: heterogeneous (controls)	0.02	0.14				0.03	0.16			
Before-slope: heterogeneous (grandparents)	0.01	0.11	50.21	< .001	ou	0.02	0.13	88.69	< .001	ou
After-slope: uniform	0.01	0.10				0.01	0.11			
After-slope: heterogeneous (controls)	0.01	0.11				0.02	0.12			
After-slope: heterogeneous (grandparents)	0.01	0.09	40.23	< .001	ou	0.01	0.10	48.76	< .001	ou
Shift: uniform	0.07	0.27				0.08	0.28			
Shift: heterogeneous (controls)	0.09	0.29				0.00	0.31			
Shift: heterogeneous (grandparents)	0.00	0.25	60.29	< .001	ou	0.07	0.26	67.55	< .001	ou

models (df = 13). In addition to two random slope variances (instead of one), the heterogeneous variance models estimate two additional random intercept/slope covariances. Both models estimate heterogeneous Note. The heterogeneous variance models (df = 16) differ only in the random effects from the comparison random intercept variances for the grandparent and control groups. Var. = random slope variance; SD =standard deviation; LR = likelihood ratio; p = p-value (of the LR test); GP greater = indicating if therandom slope variance of the grandparents is larger than that of either control group.

Table S54

Tests of Heterogeneous Random Slope Variance Models for Neuroticism Against Comparison Models With a Uniform Random Slope Variance.

			Parent controls	ontrols				Jonparen	Nonparent controls	
	Var.	SD	LR	d	GP greater	Var.	$^{\mathrm{SD}}$	LR	ď	GP greater
LISS										
Before-slope: uniform	0.00	90.0				0.01	0.07			
Before-slope: heterogeneous (controls)	0.00	0.07				0.01	0.09			
Before-slope: heterogeneous (grandparents)	0.00	90.0	13.44	.004	ou	0.00	90.0	27.16	< .001	ou
After-slope: uniform	0.00	0.05				0.00	90.0			
After-slope: heterogeneous (controls)	0.00	0.05				0.00	90.0			
After-slope: heterogeneous (grandparents)	0.00	0.04	4.07	.254	ou	0.00	0.04	12.76	.005	no
Shift: uniform	0.04	0.21				0.06	0.25			
Shift: heterogeneous (controls)	0.04	0.21				0.08	0.29			
Shift: heterogeneous (grandparents)	0.04	0.20	1.74	.628	ou	0.03	0.18	13.84	.003	no
HRS										
Before-slope: uniform	0.02	0.15				0.02	0.15			
Before-slope: heterogeneous (controls)	0.04	0.19				0.04	0.20			
Before-slope: heterogeneous (grandparents)	0.03	0.17	83.87	< .001	ou	0.03	0.18	96.95	< .001	no
After-slope: uniform	0.01	0.12				0.01	0.12			
After-slope: heterogeneous (controls)	0.02	0.14				0.02	0.14			
After-slope: heterogeneous (grandparents)	0.01	0.10	73.89	< .001	ou	0.01	0.10	87.94	< .001	no
Shift: uniform	0.10	0.32				0.09	0.30			
Shift: heterogeneous (controls)	0.13	0.36				0.12	0.34			
Shift: heterogeneous (grandparents)	0.00	0.30	103.35	< .001	ou	0.08	0.29	99.32	< .001	ou

Note. The heterogeneous variance models (df = 16) differ only in the random effects from the comparison models (df = 13). In addition to two random slope variances (instead of one), the heterogeneous variance random intercept variances for the grandparent and control groups. Var. = random slope variance; SD =models estimate two additional random intercept/slope covariances. Both models estimate heterogeneous standard deviation; LR = likelihood ratio; p = p-value (of the LR test); GP greater = indicating if therandom slope variance of the grandparents is larger than that of either control group.

Table S55

Tests of Heterogeneous Random Slope Variance Models for Openness Against Comparison Models With a Uniform Random Slope Variance.

			Parent	Parent controls				Vonparen	Nonparent controls	
	Var.	SD	LR	d	GP greater	Var.	SD	LR	р	GP greater
LISS										
Before-slope: uniform	0.00	0.04				0.00	0.04			
Before-slope: heterogeneous (controls)	0.00	0.02				0.00	0.04			
Before-slope: heterogeneous (grandparents)	0.00	0.04	32.73	< .001	ou	0.00	0.04	20.42	< .001	ou
After-slope: uniform	0.00	0.03				0.00	0.03			
After-slope: heterogeneous (controls)	0.00	0.04				0.00	0.03			
After-slope: heterogeneous (grandparents)	0.00	0.02	20.08	< .001	ou	0.00	0.02	9.55	.023	ou
Shift: uniform	0.02	0.14				0.02	0.13			
Shift: heterogeneous (controls)	0.03	0.16				0.02	0.13			
Shift: heterogeneous (grandparents)	0.01	0.10	16.70	< .001	ou	0.01	0.12	8.33	.040	ou
HRS										
Before-slope: uniform	0.01	0.12				0.01	0.12			
Before-slope: heterogeneous (controls)	0.02	0.15				0.02	0.14			
Before-slope: heterogeneous (grandparents)	0.01	0.10	60.99	< .001	ou	0.02	0.14	57.57	< .001	yes
After-slope: uniform	0.01	0.10				0.01	0.10			
After-slope: heterogeneous (controls)	0.01	0.11				0.01	0.11			
After-slope: heterogeneous (grandparents)	0.01	0.00	31.95	< .001	ou	0.01	0.10	31.36	< .001	ou
Shift: uniform	0.07	0.26				0.07	0.26			
Shift: heterogeneous (controls)	0.08	0.28				80.0	0.28			
Shift: heterogeneous (grandparents)	0.00	0.24	61.83	< .001	ou	0.07	0.26	52.06	< .001	ou

Note. The heterogeneous variance models (df = 16) differ only in the random effects from the comparison models (df = 13). In addition to two random slope variances (instead of one), the heterogeneous variance models estimate two additional random intercept/slope covariances. Both models estimate heterogeneous random intercept variances for the grandparent and control groups. Var. = random slope variance; SD =standard deviation; LR = likelihood ratio; p = p-value (of the LR test); GP greater = indicating if therandom slope variance of the grandparents is larger than that of either control group.

Table S56

Tests of Heterogeneous Random Slope Variance Models for Life Satisfaction Against Comparison Models With a Uniform Random Slope Variance.

			Parent controls	ontrols				Nonparen	Nonparent controls	
	Var.	$^{\mathrm{SD}}$	LR	d	GP greater	Var.	SD	LR	Ъ	GP greater
LISS										
Before-slope: uniform	0.01	0.11				0.01	0.11			
Before-slope: heterogeneous (controls)	0.02	0.14				0.02	0.14			
Before-slope: heterogeneous (grandparents)	0.02	0.13	56.24	< .001	ou	0.01	0.12	34.59	< .001	ou
After-slope: uniform	0.01	0.10				0.01	0.10			
After-slope: heterogeneous (controls)	0.01	0.09				0.01	0.10			
After-slope: heterogeneous (grandparents)	0.02	0.12	11.91	800.	yes	0.01	0.12	10.88	.012	yes
Shift: uniform	0.20	0.45				0.19	0.44			
Shift: heterogeneous (controls)	0.21	0.45				0.19	0.44			
Shift: heterogeneous (grandparents)	0.23	0.48	8.96	.030	yes	0.21	0.46	8.43	.038	yes
HRS										
Before-slope: uniform	0.12	0.34				0.14	0.38			
Before-slope: heterogeneous (controls)	0.22	0.47				0.22	0.47			
Before-slope: heterogeneous (grandparents)	0.22	0.47	116.02	< .001	ou	0.32	0.57	115.87	< .001	yes
After-slope: uniform	0.10	0.32				0.11	0.33			
After-slope: heterogeneous (controls)	0.14	0.38				0.15	0.39			
After-slope: heterogeneous (grandparents)	0.02	0.27	80.96	< .001	ou	0.09	0.30	80.01	< .001	ou
Shift: uniform	0.84	0.91				0.78	0.88			
Shift: heterogeneous (controls)	1.11	1.05				1.00	1.00			
Shift: heterogeneous (grandparents)	0.76	0.87	171.58	< .001	ou	0.85	0.92	125.52	< .001	ou

Note. The heterogeneous variance models (df = 16) differ only in the random effects from the comparison models (df = 13). In addition to two random slope variances (instead of one), the heterogeneous variance random intercept variances for the grandparent and control groups. Var. = random slope variance; SD =models estimate two additional random intercept/slope covariances. Both models estimate heterogeneous standard deviation; LR = likelihood ratio; p = p-value (of the LR test); GP greater = indicating if therandom slope variance of the grandparents is larger than that of either control group.

Table S57
Rank-Order Stability With Maximal Retest Interval.

		Parent controls	ontrols			Nonparer	Nonparent controls	
Outcome	Cor_{all}	Corgp Corcon	Cor_{con}	d	Cor_{all}	Cor_{GP}	Cor_{con}	d
SSIT								
Agreeableness	0.74	0.77	0.74	.236	0.67	0.77	0.64	< .001
Conscientiousness	0.68	0.77	0.66	.028	0.69	0.77	0.67	.002
Extraversion	0.74	0.82	0.71	.001	0.80	0.82	0.80	.903
Neuroticism	0.70	0.76	0.68	680.	0.68	0.76	0.65	.684
Openness	0.74	0.79	0.73	.162	0.78	0.79	0.78	887
Life Satisfaction	0.67	0.54	0.70	780.	0.51	0.54	0.51	.247
HRS								
Agreeableness	0.67	0.68	0.67	.361	0.69	0.68	0.69	.913
Conscientiousness	0.06	0.68	0.06	.041	0.65	0.68	0.64	.765
Extraversion	0.70	0.73	0.69	050.	0.69	0.73	0.68	.003
Neuroticism	0.64	0.67	0.64	.281	0.63	0.07	0.62	.187
Openness	0.70	0.71	0.70	.464	0.76	0.71	0.77	.001
Life Satisfaction	0.51	0.54	0.50	396	0.48	0.54	0.46	.072

sample, 8.31 (SD = 2.28) for the LISS nonparent sample, 6.91 (SD = 2.21) for the HRS parent sample, and 6.96~(SD=2.27) for the HRS nonparent sample. Cor = correlation; indicating significant group differences therein between grandparents and each control group. The average retest intervals in years are 8.45 (SD=2.24) for the LISS parent Note. Test-retest correlations as indicators of rank-order stability, and p-values GP = grandparents; con = controls.

 Table S58

 Rank-Order Stability Excluding Duplicate Control Observations.

						, J.		
SSIT	Cor_{all}	Cor_{GP}	Cor_{con}	d	Cor_{all}	Cor_{GP}	Cor_{con}	d
A 1.1								
Agreeableness	0.79	0.81	0.77	.410	0.77	0.81	0.71	700.
Conscientiousness	0.80	0.80	0.79	.428	0.78	0.80	0.75	.395
Extraversion	98.0	0.87	0.85	.751	0.86	0.87	0.86	.709
Neuroticism	0.77	0.77	0.78	.925	0.76	0.77	0.75	.545
Openness	0.76	0.80	0.72	.111	0.81	0.80	0.82	.826
Life Satisfaction	0.65	0.06	0.63	.853	0.64	0.06	0.63	.252
HRS								
Agreeableness	0.69	0.70	0.68	066.	0.70	0.70	0.70	.943
Conscientiousness	0.70	0.69	0.70	.219	0.69	0.69	0.70	.513
Extraversion	0.74	0.75	0.73	.228	0.75	0.75	0.74	.159
Neuroticism	0.68	0.71	0.06	.599	0.72	0.71	0.74	.028
Openness	0.73	0.73	0.74	887	0.74	0.73	0.76	630
Life Satisfaction	0.56	0.55	0.57	.515	0.58	0.55	0.62	.031

indicating significant group differences therein between grandparents and each control group. The average retest intervals in years are 2.90~(SD=0.90) for the LISS parent sample, 2.90 (SD = 0.92) for the LISS nonparent sample, 3.91 (SD = 0.96) for the HRS parent sample, and 3.89 (SD = 0.94) for the HRS nonparent sample. Cor Note. Test-retest correlations as indicators of rank-order stability, and p-values correlation; GP = grandparents; con = controls.

Supplemental Figures

Figure S1

Distributional Overlap of the Propensity Score in the Four Analysis Samples at the Time of Matching.

Figure S2

Violin Plots for Agreeableness Including Means Over Time and LOESS Line.

Figure S3

Violin Plots for Conscientiousness Including Means Over Time and LOESS Line.

Figure S4

Violin Plots for Extraversion Including Means Over Time and LOESS Line.

Figure S5

Violin Plots for Neuroticism Including Means Over Time and LOESS Line.

Violin Plots for Openness Including Means Over Time and LOESS Line.

Figure S7

Violin Plots for Life Satisfaction Including Means Over Time and LOESS Line.

Figure S8

Change trajectories of agreeableness based on the models of moderation by paid work (see Table S9). The error bars are 95% confidence intervals of the predicted values, which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood. The plots in the left column are the same as in Figure 4 (basic models) and added here for better comparability.

Figure S9

Change trajectories of agreeableness based on the models of moderation by grandchild care (see Table S11). The error bars are 95% confidence intervals of the predicted values, which only account for the fixed-effects portion of the model. The plots in the left column are the same as in Figure 4 (basic models) but restricted to the post-transition period for better comparability.

Figure S10

Change trajectories of conscientiousness based on the basic models (left column) and the models including the gender interaction (right column). The error bars are 95% confidence intervals of the predicted values, which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood.

Figure S11

Change trajectories of extraversion based on the basic models (left column) and the models including the gender interaction (right column). The error bars are 95% confidence intervals of the predicted values, which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood.

Figure S12

Change trajectories of extraversion based on the models of moderation by paid work (see Table S23). The error bars are 95% confidence intervals of the predicted values, which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood. The plots in the left column are the same as in Figure S11 (basic models) and added here for better comparability.

Figure S13

Change trajectories of extraversion based on the models of moderation by grandchild care (see Table S25). The error bars are 95% confidence intervals of the predicted values, which only account for the fixed-effects portion of the model. The plots in the left column are the same as in Figure S11 (basic models) but restricted to the post-transition period for better comparability.

Figure S14

Change trajectories of neuroticism based on the basic models (left column) and the models including the gender interaction (right column). The error bars are 95% confidence intervals of the predicted values, which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood.

Figure S15

Change trajectories of neuroticism based on the models of moderation by paid work (see Table S31). The error bars are 95% confidence intervals of the predicted values, which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood. The plots in the left column are the same as in Figure S14 (basic models) and added here for better comparability.

Figure S16

Change trajectories of neuroticism based on the models of moderation by grandchild care (see Table S33). The error bars are 95% confidence intervals of the predicted values, which only account for the fixed-effects portion of the model. The plots in the left column are the same as in Figure S14 (basic models) but restricted to the post-transition period for better comparability.

Figure S17

Change trajectories of openness based on the basic models (left column) and the models including the gender interaction (right column). The error bars are 95% confidence intervals of the predicted values, which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood.

Figure S18

Change trajectories of openness based on the models of moderation by paid work (see Table S39). The error bars are 95% confidence intervals of the predicted values, which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood. The plots in the left column are the same as in Figure S17 (basic models) and added here for better comparability.

Figure S19

Change trajectories of openness based on the models of moderation by grandchild care (see Table S41). The error bars are 95% confidence intervals of the predicted values, which only account for the fixed-effects portion of the model. The plots in the left column are the same as in Figure S17 (basic models) but restricted to the post-transition period for better comparability.

Figure S20

Change trajectories of life satisfaction based on the basic models (left column) and the models including the gender interaction (right column). The error bars are 95% confidence intervals of the predicted values, which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood.

Figure S21

Change trajectories of life satisfaction based on the models of moderation by paid work (see Table S47). The error bars are 95% confidence intervals of the predicted values, which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood. The plots in the left column are the same as in Figure S20 (basic models) and added here for better comparability.

Figure S22

Change trajectories of life satisfaction based on the models of moderation by grandchild care (see Table S49). The error bars are 95% confidence intervals of the predicted values, which only account for the fixed-effects portion of the model. The plots in the left column are the same as in Figure S20 (basic models) but restricted to the post-transition period for better comparability.

1742 Complete Software and Session Information

```
We used R (Version 4.0.4; R Core Team, 2021) and the R-packages car (Version
1743
    3.0.12; Fox et al., 2020a, 2020b), carData (Version 3.0.4; Fox et al., 2020b), citr (Version
1744
    0.3.2; Aust, 2019), cowplot (Version 1.1.1; Wilke, 2020), dplyr (Version 1.0.7; Wickham,
1745
    François, et al., 2021), forcats (Version 0.5.1; Wickham, 2021a), Formula (Version 1.2.4;
1746
    Zeileis & Croissant, 2010), qqplot2 (Version 3.3.5; Wickham, 2016), GPArotation (Version
1747
    2014.11.1; Bernaards & I.Jennrich, 2005), Hmisc (Version 4.6.0; Harrell Jr, 2021), lattice
1748
    (Version 0.20.41; Sarkar, 2008), lme4 (Version 1.1.27.1; Bates et al., 2015), lmerTest
1749
    (Version 3.1.3; Kuznetsova et al., 2017), magick (Version 2.7.3; Ooms, 2021), MASS
    (Version 7.3.53; Venables & Ripley, 2002), Matrix (Version 1.3.2; Bates & Maechler, 2021),
1751
    multcomp (Version 1.4.18; Hothorn et al., 2008), mvtnorm (Version 1.1.1; Genz & Bretz,
1752
    2009), papaja (Version 0.1.0.9997; Aust & Barth, 2020), pnq (Version 0.1.7; Urbanek,
1753
    2013), psych (Version 2.1.9; Revelle, 2021), purrr (Version 0.3.4; Henry & Wickham, 2020),
1754
    readr (Version 2.1.1; Wickham, Hester, et al., 2021), scales (Version 1.1.1; Wickham &
1755
    Seidel, 2020), stringr (Version 1.4.0; Wickham, 2019), survival (Version 3.2.7; Terry M.
1756
    Therneau & Patricia M. Grambsch, 2000), TH.data (Version 1.0.10; Hothorn, 2019), tibble
1757
    (Version 3.1.6; Müller & Wickham, 2021), tidyr (Version 1.1.4; Wickham, 2021b), tidyverse
1758
    (Version 1.3.1; Wickham, Averick, Bryan, Chang, McGowan, François, et al., 2019), and
1759
    tinylabels (Version 0.2.2; Barth, 2021) for data wrangling, analyses, and plots. We used
1760
    renv to create a reproducible environment for this R-project (Version 0.15.2; Ushey, 2022).
1761
           The following is the output of R's sessionInfo() command, which shows information
1762
    to aid analytic reproducibility of the analyses.
1763
           R version 4.0.4 (2021-02-15) Platform: x86 64-apple-darwin17.0 (64-bit) Running
1764
    under: macOS Big Sur 10.16
1765
           Matrix products: default BLAS:
1766
    /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dvlib LAPACK:
1767
```

```
/Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
1768
           locale: [1]
1769
    en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
1770
           attached base packages: [1] grid stats graphics grDevices datasets utils methods
1771
           [8] base
1772
           other attached packages: [1] png 0.1-7 magick 2.7.3 car 3.0-12
1773
           [4] carData 3.0-4 scales 1.1.1 complet 1.1.1
1774
           [7] lmerTest_3.1-3 lme4_1.1-27.1 Matrix_1.3-2
1775
           [10] GPArotation 2014.11-1 psych 2.1.9 forcats 0.5.1
1776
           [13] stringr_1.4.0 dplyr_1.0.7 purrr_0.3.4
1777
           [16] readr_2.1.1 tidyr_1.1.4 tibble_3.1.6
1778
           [19] tidyverse 1.3.1 Hmisc 4.6-0 ggplot2 3.3.5
1779
           [22] Formula_1.2-4 lattice_0.20-41 multcomp_1.4-18
1780
           [25] TH.data_1.0-10 MASS_7.3-53 survival_3.2-7
1781
           [28] mvtnorm 1.1-1 citr 0.3.2 papaja 0.1.0.9997
1782
           [31] tinylabels_0.2.2
1783
           loaded via a namespace (and not attached): [1] minga_1.2.4 colorspace_2.0-2
1784
    ellipsis 0.3.2
1785
           [4] htmlTable_2.4.0 base64enc_0.1-3 fs_1.5.2
1786
           [7] rstudioapi 0.13 fansi 1.0.2 lubridate 1.8.0
1787
           [10] xml2 1.3.3 codetools 0.2-18 splines 4.0.4
1788
           [13] mnormt 2.0.2 knitr 1.37 jsonlite 1.7.3
1789
           [16] nloptr 1.2.2.2 broom 0.7.11.9000 cluster 2.1.0
1790
           [19] dbplyr_2.1.1 shiny_1.7.1 compiler_4.0.4
1791
           [22] httr_1.4.2 backports_1.4.1 assertthat_0.2.1
1792
           [25] fastmap_1.1.0 cli_3.1.1 later_1.3.0
1793
```

```
[28] htmltools_0.5.2 tools_4.0.4 gtable_0.3.0
1794
           [31] glue_1.6.1 Rcpp_1.0.7 cellranger_1.1.0
1795
           [34] vctrs_0.3.8 nlme_3.1-152 xfun_0.29
1796
           [37] rvest 1.0.2 mime 0.12 miniUI 0.1.1.1
1797
           [40] lifecycle 1.0.1 renv 0.15.2 zoo 1.8-8
1798
           [43] hms_1.1.1 promises_1.2.0.1 parallel_4.0.4
1799
           [46] sandwich 3.0-0 RColorBrewer 1.1-2 yaml 2.2.2
1800
           [49] gridExtra_2.3 rpart_4.1-15 latticeExtra_0.6-29 [52] stringi_1.7.6
1801
    checkmate_2.0.0 boot_1.3-26
1802
           [55] rlang_1.0.0 pkgconfig_2.0.3 evaluate_0.14
1803
           [58] htmlwidgets_1.5.2 tidyselect_1.1.1 magrittr_2.0.2
1804
           [61] bookdown_0.24 R6_2.5.1 generics_0.1.1
1805
           [64] DBI_1.1.0 pillar_1.6.5 haven_2.4.3
1806
           [67] foreign_0.8-81 withr_2.4.3 abind_1.4-5
1807
           [70] nnet 7.3-15 modelr 0.1.8 crayon 1.4.2
1808
           [73] utf8 1.2.2 tmvnsim 1.0-2 tzdb 0.2.0
1809
```

[76] rmarkdown_2.11 jpeg_0.1-8.1 readxl_1.3.1

[79] data.table_1.13.2 reprex_2.0.1 digest_0.6.29

[82] xtable_1.8-4 httpuv_1.6.5 numDeriv_2016.8-1.1 [85] munsell_0.5.0

1810

1811

1812