TD 4-Familles de vecteurs

Exercice 1

Dans $\mathcal{M}_{2,3}(\mathbb{R})$, soient $A = \begin{pmatrix} 1 & -2 & 0 \\ 2 & 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 6 & -2 & 3 \\ 0 & 0 & 1 \end{pmatrix}$ et $C = \begin{pmatrix} -1 & -1 & -1 \\ 1 & 1 & 0 \end{pmatrix}$. La famille (A, B, C) est-elle libre?

Exercice 2

Dans chacun des cas suivants, dire si la famille \mathcal{F} est libre ou liée et génératrice ou non.

- 1. Dans \mathbb{R}^3 , $\mathcal{F} = ((1, -1, 2), (2, 1, -1), (-1, -5, 8)).$
- 2. Dans $\mathbb{R}_2[X]$, $\mathcal{F} = (X^2 + 2X, X^2 + X + 1, X + 2)$.
- 3. Dans $\mathcal{M}_2(\mathbb{R})$, $\mathcal{F} = \begin{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.
- 4. Dans $\mathbb{R}^{\mathbb{N}}$, $\mathcal{F} = ((2^n)_{n \in \mathbb{N}}, (3^n)_{n \in \mathbb{N}}, (4^n)_{n \in \mathbb{N}})$.

Exercice 3

Soit $n \in \mathbb{N}$. Pour tout $k \in \{0, ..., n\}$, on note f_k la fonction définie sur \mathbb{R} par

$$\forall x \in \mathbb{R} \quad f_k(x) = e^{-kx}.$$

Montrer que la famille (f_0, f_1, \ldots, f_n) est libre.

Exercice 4

On note F l'ensemble des suites de $\mathbb{R}^{\mathbb{N}}$ vérifiant la relation de récurrence

$$\forall n \in \mathbb{N} \quad u_{n+2} = 2u_{n+1} + u_n.$$

- 1. Montrer que F est un espace vectoriel (pour les lois usuelles).
- 2. Déterminer deux réels $r_1 < r_2$ tels que, pour tout $(u_n)_{n \in \mathbb{N}} \in F$, il existe $(\alpha, \beta) \in \mathbb{R}^2$ tel que

$$\forall n \in \mathbb{N} \quad u_n = \alpha r_1^n + \beta r_2^n.$$

3. On définit deux suites (a_n) et (b_n) par

$$\forall n \in \mathbb{N} \quad a_n = r_1^n \quad \text{et} \quad b_n = r_2^n.$$

(a) Justifier que la famille $((a_n), (b_n))$ est une famille génératrice de F.

- (b) Montrer que $|r_1| < 1$ et $|r_2| > 1$. En déduire que $\lim_{n \to +\infty} \frac{a_n}{b_n} = 0$.
- (c) Monter que la famille $((a_n), (b_n))$ est une base de F.
- 4. Soit $(v_n)_{n\in\mathbb{N}}\in F$ la suite telle que $v_0=2$ et $v_1=3$. Déterminer les coordonnées de $(v_n)_{n\in\mathbb{N}}$ dans la base $((a_n),(b_n))$.

Exercice 5 (EML 2006)

On considère les matrices suivantes de $\mathcal{M}_2(\mathbb{R})$:

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

On note E l'ensemble des matrices carrées M d'ordre deux telles que AM = MD.

- 1. Vérifier que E est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$.
- 2. Soit $M = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$, $(x,y,z,t) \in \mathbb{R}^4$ une matrice carrée d'ordre deux. Montrer que M appartient à E si et seulement si z = 0 et y = t.
- 3. Montrer que la famille (U, A) est une base de E.
- 4. Calculer U.A. Est-ce un élément de E?

Exercice 6 (Ecricome 2002)

Dans $\mathcal{M}_3(\mathbb{R})$, on considère le sous-ensemble E des matrices M(a,b) définies par :

$$M(a,b) = \begin{pmatrix} b & a & b \\ a & b & b \\ b & b & a \end{pmatrix}.$$

Ainsi:

$$E = \{ M(a,b) \mid a,b \in \mathbb{R} \}.$$

- 1. On note A = M(1,0).
 - (a) Calculer A^2 .
 - (b) En déduire que A est une matrice inversible et donner A^{-1} en fonction de A.
- 2. Montrer que E est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.
- 3. Donner une base de E.

Exercice 7

Dans chaque cas, montrer que $\mathcal B$ est une base de E et donner les coordonnées de u dans cette base.

1.
$$E = \mathbb{R}^3$$
, $\mathcal{B} = ((3,1,3), (2,2,1), (4,3,2))$ et $u = (3,2,1)$.

2.
$$E = \mathbb{R}^3$$
, $\mathcal{B} = ((0,1,0), (0,0,1), (1,0,0))$ et $u = (3,2,1)$.

3.
$$E = \mathbb{R}_2[X]$$
, $\mathcal{B} = (1, X - 1, (X - 1)^2)$ et $u = X^2 + X + 1$.

4.
$$E = \mathcal{M}_2(\mathbb{R})$$
, $\mathcal{B} = \begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ et $u = I_2$.

Exercice 8

Déterminer une base des espaces suivants :

1.
$$\{(x+y,y+z) \mid x,y,z \in \mathbb{R}\}$$

2.
$$\{(x,y,z,t) \in \mathbb{R}^4 \mid 2x+y-t=0 \text{ et } y=t\}$$

3.
$$\{P \in \mathbb{R}_3[X] \mid P(0) = P'(1)\}$$

4.
$$\{(a+c)X + (2aX+b)X^2 - cX^2 \mid a,b,c \in \mathbb{R}^3\}$$

5.
$$\left\{ \begin{pmatrix} a & a+b & 0 \\ 2a+b & -b & 3a+2b \end{pmatrix} \mid a,b \in \mathbb{R} \right\}$$

6.
$$\{(a+c)X + (2aX+b)X^2 - cX^2 \mid a,b,c \in \mathbb{R}^3\}$$

7.
$$\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \mid a+b=c+d \right\}$$