#### SCHOOL OF ENGINEERING, ELECTRICAL AND ELECTRONIC ENGINEERING



Ronald van Buuren May 2023

#### **NET4 PROGRAM BY WEEK**

- 1. 1st order RC networks discharging DC source
- 2. 1st order RC networks charging –DC source
- 3. RL networks Steady-state DC
- 4. RL networks Switched DC source
- 5. RC & RL networks complementary solution
- 6. <spare week>
- 7. Exam Prep

# **CAPACITOR & INDUCTOR RELATIONS**

|                   | Capacitor                     | Inductor                       |
|-------------------|-------------------------------|--------------------------------|
| Voltage           | $v = \frac{1}{C} \int i(t)dt$ | $v = L \frac{di}{dt}$          |
| Current           | $i = C \frac{dv}{dt}$         | $i = \frac{1}{L} \int v(t) dt$ |
| Power             | $P(t) = v(t) \cdot i(t)$      |                                |
| Energy            | $W(t) = \frac{1}{2}Cv^2(t)$   | $W(t) = \frac{1}{2}Li^2(t)$    |
| Energy stored in: | Electric field                | Magnetic field                 |

# WEEK D: SWITCHED DC SOURCE, RL CIRCUITS

At t = 0 we close the switch

10

t [ms]

12

0,5

#### Inductor

$$v = L \frac{di}{dt}$$



$$i(t) = 2-2e^{-500t} A$$

#### THIS WEEK

- Find expressions for i(t) and v(t) using just steady-state values
  - and smart reasoning ©
- Switching on AC sources

#### RL CIRCUITS – VIA DC STEADY STATE

Find expressions for i(t) and v(t) for t > 0



#### RL CIRCUITS – VIA DC STEADY STATE



- at t = 0- s, i(t) = 0 A
- at  $t = \infty$ , i(t) = 100/50 = 2 A
- time constant  $\tau = L/R = 0.002$  s = 2 ms
- general form  $i(t) = K_1 + K_2 e^{-t/\tau}$
- we know all we need to know:

  - for t = ∞, we get K₁ = 2 A
     for t = 0- s: K₁ + K₂ = 0 → K₂ = -2 A

• 
$$i(t) = 2 - 2e^{-t/0.002} = 2 - 2e^{-500t}$$

# **GENERAL (AC) SOURCES**

$$i(t) + \frac{L}{R} \frac{di(t)}{dt} = \frac{V_S}{R}$$

$$RC\frac{dv_C(t)}{dt} + v_C(t) = V_s$$

General form:

$$\tau \frac{dx(t)}{dt} + x(t) = f(t)$$

 $\tau$  depends only on component values ( $\tau = RC$ ,  $\tau = L/R$ ) x(t) i(t), v(t) from circuit equations (KVL, KCL)

f(t) source(s)

### **COMPLEMENTARY SOLUTION**

$$\tau \frac{dx(t)}{dt} + x(t) = f(t)$$

#### **COMPLEMENTARY SOLUTION**

$$\tau \frac{dx(t)}{dt} + x(t) = \mathbf{0}$$

- Set the sources to 0: homogeneous equation
- Complementary Solution

$$x_c(t) = Ke^{-\frac{t}{\tau}}$$

- To be done: find *K* 
  - from initial conditions (typically, at t = 0 s)

#### PARTICULAR SOLUTION

Original (full) equation 
$$\tau \frac{dx(t)}{dt} + x(t) = f(t)$$

- Do an intelligent guess that fits:  $x_p(t)$
- Be inspired by f(t) and its time derivatives

```
• f(t) = constant -> x_p(t) = A

• f(t) = linear -> x_p(t) = A \cdot t + B

• f(t) = quadratic -> x_p(t) = A \cdot t^2 + B \cdot t + C

• f(t) = sinusoidal -> x_p(t) = A \sin \omega t + B \cos \omega t
```

#### COMBINE COMPLEMENTARY & PARTICULAR SOLUTIONS

Original (full) equation 
$$\tau \frac{dx(t)}{dt} + x(t) = f(t)$$

- Sum complementary & particular solutions:
  - $x(t) = x_c(t) + x_p(t)$
- Now remember:  $x_c(t) = Ke^{-\frac{c}{\tau}}$ 
  - Need to find K
  - Use initial conditions

# NEW RECIPE FOR SIMPLE CIRCUITS (RC & RL)

- 1. Use one of Kirchhoff's laws to get a circuit equation
- 2. If the equation has integrals, differentiate all terms to get a pure differential equation
  - 1. This will get you  $\tau$
- 3. Set the equation equal to 0 (homogeneous equation)
  - 1. This will get you the Complementary Solution  $Ke^{-t/\tau}$
- 4. Do an intelligent guess to solve the full equation
  - 1. This will get you the Particular Solution
- 5. Write the now fully known solution Complementary + Particular
  - 1. using R, L, C,  $\tau$ , ...
- 6. Use starting conditions (t=0-, t=0+) to get K



#### Flashback from NET4 week B

- 1. KCL at top-right node: sum = 0 1. incoming:  $(v_C(t) V_S)/R$ 2. outgoing:  $C \cdot dv_C/dt$

$$C\frac{dv_C(t)}{dt} + \frac{v_C(t) - V_s}{R} = 0$$

# Capacitor $v = \frac{1}{C} \int i(t)dt$



$$RC\frac{dv_C(t)}{dt} + v_C(t) = 2\sin(200t)$$

- Set the equation equal to 0 (homogeneous equation)
  - 1. This will get you the Complementary Solution  $Ke^{-t/\tau}$
- 4. Do an intelligent guess to solve the full equation
  - This will get you the Particular Solution

- Write the now fully known solution Complementary + Particular
   using R, L, C, τ, ...
- 6. Use starting conditions (t=0-, t=0+) to get K



$$RC\frac{dv_C(t)}{dt} + v_C(t) = 0$$

Compl. Sol. 
$$V_{CC}(t) = Ke^{-t/RC}$$

$$RC\frac{dv_C(t)}{dt} + v_C(t) = 2\sin(200t)$$

 $v_C(0) = 1 \text{ V}$ 

- 3. Set the equation equal to 0 (homogeneous equation)
  - 1. This will get you the Complementary Solution  $Ke^{-t/\tau}$
- 4. Do an intelligent guess to solve the full equation
  - This will get you the Particular Solution

- Write the now fully known solution Complementary + Particular
   using R, L, C, τ, ...
- Use starting conditions (t=0-, t=0+) to get K



$$v_C(0) = 1 \text{ V}$$

#### Apply the recipe step 4

$$RC\frac{dv_C(t)}{dt} + v_C(t) = 2\sin(200t)$$

Partic. Sol.  $V_{CP}(t) = A \sin 200t + B \cos 200t$ 

- 1. substitute into equation
- 2. turns out: A = 1 B = -1

So: 
$$V_{CP}(t) = \sin 200t - \cos 200t$$

$$RC\frac{dv_C(t)}{dt} + v_C(t) = 2\sin(200t)$$

- 3. Set the equation equal to 0 (homogeneous equation)
  - 1. This will get you the Complementary Solution  $Ke^{-t/\tau}$
- 4. Do an intelligent guess to solve the full equation
  - 1. This will get you the Particular Solution

- Write the now fully known solution Complementary + Particular
   using R, L, C, τ, ...
- Use starting conditions (t=0-, t=0+) to get K



### Apply the recipe step 5

Compl. Sol. 
$$V_{CC}(t) = Ke^{-t/RC}$$

Partic. Sol. 
$$v_{CP}(t) = \sin 200t - \cos 200t$$

$$V_C(t) = Ke^{-t/RC} + \sin 200t - \cos 200t$$

$$RC\frac{dv_C(t)}{dt} + v_C(t) = 2\sin(200t)$$

 $v_{C}(0) = 1 \text{ V}$ 

- Set the equation equal to 0 (homogeneous equation)
  - 1. This will get you the Complementary Solution  $Ke^{-t/\tau}$
- 4. Do an intelligent guess to solve the full equation
  - This will get you the Particular Solution

- Write the now fully known solution Complementary + Particular
   using R, L, C, τ, ...
- 6. Use starting conditions (t=0-, t=0+) to get K



### Apply the recipe step 6

$$V_C(t) = Ke^{-t/RC} + \sin 200t - \cos 200t$$

At 
$$t = 0$$
 s,  $v_C(t) = 1 \text{ V}$ 

• 
$$K+0-1=1$$

• 
$$\rightarrow K=2$$

$$V_C(t) = 2e^{-t/RC} + \sin 200t - \cos 200t$$
  
=  $2e^{-200t} + \sin 200t - \cos 200t$ 

$$RC\frac{dv_C(t)}{dt} + v_C(t) = 2\sin(200t)$$

- 3. Set the equation equal to 0 (homogeneous equation)
  - 1. This will get you the Complementary Solution  $Ke^{-t/\tau}$
- 4. Do an intelligent guess to solve the full equation
  - This will get you the Particular Solution

- Write the now fully known solution Complementary + Particular
   using R, L, C, τ, ...
- Use starting conditions (t=0-, t=0+) to get K



#### Check Hambley's answer for i(t)

$$V_C(t) = 2e^{-200t} + \sin 200t - \cos 200t$$

$$i(t) = C \cdot dv_C(t)/dt$$
  
=  $C \cdot [-400e^{-200t} + 200\cos 200t + 200\sin 200t] A$   
=  $-400e^{-200t} + 200\cos 200t + 200\sin 200t \mu A$ 

$$i(t) = 200\cos(200t) + 200\sin(200t) - 400e^{-t/RC}\mu A$$
 (4.56)

$$RC\frac{dv_C(t)}{dt} + v_C(t) = 2\sin(200t)$$

# PROBLEMS FOR THE EXERCISES SESSION

- P4.45
- P4.47
- P4.49
- P4.50
- P4.51
- P4.54