Breadth in finite dimensional algebras

0.2

13 August 2025

Óscar Fernández Ayala

Óscar Fernández Ayala

Email: oscar00ayala@gmail.com

Homepage: https://Osferay.github.io

Contents

_	Preface			
	1.1	Introduction	3	
2	Lie algebras and breadth			
		Attributes		
		Breadth		
	2.3	Inflation of Lie algebras	6	
Re	eferen	nces	8	
In	dex		9	

Chapter 1

Preface

In this package we compute the breadth of Lie algebras. This package also include functions to compute covered Lie algebras of maximal class using a proces called inflation, this is described by Caranti, Mattarei, and Newman [CMN97].

1.1 Introduction

Given a Lie algebra L, we define its lower central series as $L = L^1 > L^2 > \ldots$, where $L^{i+1} = L^i L$. The algebra L is nilpotent if there exists $c \in \text{such that } L^{c+1} = 0$, and the minimal such c is called the class cl(L) of L. For a nilpotent Lie algebra L, the type of L is the vector (d_1, \ldots, d_c) , where $d_i = \dim L^i$. A nilpotent Lie algebra L is said to be of maximal class if the type of L is $(2, 1, \ldots, 1)$. The centralizer of $x \in L$ is the subspace of L defined by $C_L(x) = \{a \in L \mid ax = 0\}$. For an algebra L, we define

$$br(L) = max\{br(x) \mid x \in L\}, \text{ where } br(x) = dim(L) - dim(C_L(x)).$$

The class-breadth conjecture asserts that $\operatorname{cl}(L) \leq \operatorname{br}(L) + 1$ for an algebra L. This holds for nilpotent Lie algebras over infinite fields and for nilpotent associative algebras over arbitrary fields.

Let *L* be a Lie algebra over a field *K*, and let $B = \{b_1, \dots, b_n\}$ be a basis of *L*. The multiplication in *L* is described by structure constants

$$b_i \cdot b_j = \sum_{k=1}^n c_{ijk} b_k \quad 1 \le i, j \le n.$$

For each k, write $C_k = (c_{ijk})_{1 \le i,j \le n}$ for the $n \times n$ matrix over K with entries c_{ijk} , these matrices are the structure matrices of L. For $x = x_1b_1 + \ldots + x_nb_n \in L$, let $\overline{x} = (x_1, \ldots, x_n) \in K^n$ denote the coefficient vector of x. Then $C_k \overline{x}^{tr}$ is a column vector over K. We write $M_B(x)$ for the $n \times n$ matrix over K whose k-th column is $C_k \overline{x}^{tr}$, this is the adjoint matrix of L with respect to the basis B.

Chapter 2

Lie algebras and breadth

2.1 Attributes

2.1.1 LieClass (for IsLieNilpotent)

 \triangleright LieClass(L) (attribute)

Computes the class of the nilpotent Lie algebra *L*.

2.1.2 LieType (for IsLieNilpotent)

 \triangleright LieType(L) (attribute)

(property)

Computes the type of the nilpotent Lie algebra L.

2.1.3 IsOfMaximalClass (for IsLieNilpotent)

▷ IsOfMaximalClass(L)

Returns: true or false

Returns whether the nilpotent Lie algebra L is of maximal class or not.

2.1.4 StructureMatrices (for IsLieAlgebra)

▷ StructureMatrices(L) (attribute)

Computes the structure matrices of the nilpotent Lie algebra L.

2.1.5 BasisLieCenter (for IsLieAlgebra)

 \triangleright BasisLieCenter(L) (attribute)

Returns the elements of the basis Lie algebra L that are contained in the center of L.

(property)

2.1.6 BasisLieDerived (for IsLieAlgebra)

ightharpoonup BasisLieDerived(L) (attribute)

Returns the elements of the basis Lie algebra L that are contained in the derived subalgebra of L.

2.1.7 LieAdjointMatrix (for IsLieAlgebra)

ightharpoonup LieAdjointMatrix(L) (attribute)

Computes the adjoint matrix of the Lie algebra L.

2.1.8 PrintLiePresentation (for IsLieAlgebra)

 \triangleright PrintLiePresentation(L) (attribute)

Prints the Lie presentation of the Lie algebra L.

2.2 Breadth

2.2.1 InfoLieBreadth

▷ InfoLieBreadth (info class)

Info class for the functions of the breadth of Lie algebras.

2.2.2 LieBreadth (for IsLieNilpotent)

 \triangleright LieBreadth(L) (attribute)

Computes the breadth of the Lie algebra *L*.

2.2.3 IsTrueClassBreadth (for IsLieNilpotent)

Returns: true or false

▷ IsTrueClassBreadth(L)

Returns whether the Lie algebra L holds the class-breadth conjecture or not.

2.2.4 TGroupBreadth

▶ TGroupBreadth(G) (function)

Computes the breadth of the T-groupo G.

2.3 Inflation of Lie algebras

A grading for a Lie algebra L is a decomposition $L = \bigoplus_{i=1}^n L_i$ that respects the Lie bracket, *i.e.* $[L_i, L_j] \subseteq L_{i+j}$. Any nilpotent Lie algebras can be graded by taking $L_i = \gamma_i(L)/\gamma_{i+1}(L)$. Let L be a nilpotent Lie algebra of maximal class. The two-step centralizers are the sets $C_i = C_{L_1}(L_i) = \{x \in L_1 \mid [x, L_i] = 0\}$ for all $2 \le i \le c$. Let $\mathscr{C} = \{C_i\} \setminus L_1$, we say that a Lie algebra of maximal class is covered if the set \mathscr{C} consist of all one-dimensional subspaces of L_1 .

Let L be a graded Lie algebra $L=\bigoplus_{i=1}^n L_i$ over $K=_q$ for some prime power $q=p^n$. Consider the field extension $A=K[\varepsilon]/\langle \varepsilon^p\rangle$ which is a vector space over K of dimension p. The algebra A is an associative, commutative and has a unit. The algebra $L\otimes A$ over K defined by $[x\otimes a,y\otimes b]=[x,y]\otimes ab$ is a graded Lie algebra. Let M be a maximal ideal of L and consider the Lie subalgebra $M^\uparrow=M\otimes A$. Let D be a derivation of L of degree 1. Define D^\uparrow via: $D^\uparrow(x\otimes \varepsilon^i)=D(x)\otimes \varepsilon^i$, this is a derivation of M^\uparrow of degree 1. Define the derivation $E\in M^\uparrow$ by $E(x\otimes \varepsilon^i)=D^\uparrow(x\otimes \varepsilon^i\cdot \varepsilon^{p-1})+1\otimes \partial_\varepsilon(\varepsilon^i)$. Let $s\in L_1\setminus M$, take $D=\operatorname{ad}_s$, and extend it naturally to M^\uparrow . Denote $E_{s'}$ as previously. The *inflation* M of L at M by $S\in L_1\setminus M$ is the graded Lie algebra obtained as an extension of S by an element S, which is the extension of S that induces the derivation $E_{S'}$, that is,

$$[x \otimes a, s'] = E_{s'}(x \otimes a) = \operatorname{ad}_{s'}(x \otimes \varepsilon^i) + x \otimes \partial_{\varepsilon}(\varepsilon^i).$$

2.3.1 InfoInflation

Info class for the functions of the inflation of Lie algebras.

2.3.2 LieNilpotentGrading (for IsLieNilpotent)

▷ LieNilpotentGrading(L)

(attribute)

Computes a grading of the nilpotent Lie algebra L using the lower central series.

2.3.3 LieTwoStepCentralizers (for IsLieNilpotent)

▷ LieTwoStepCentralizers(L)

(attribute)

Computes the two step centralizers of the Lie algebra L.

2.3.4 IsLieCovered (for IsLieNilpotent)

▷ IsLieCovered(L)

(property)

Returns: true or false

Returns whether the Lie algebra *L* is covered or not.

2.3.5 PolynomialAlgebra (for IsField and IsFinite)

▷ PolynomialAlgebra(F)

(attribute)

For a finite field F computes the polynomial algebra F[x].

2.3.6 LieCoveredInflated (for IsInt)

▷ LieCoveredInflated(n)

(attribute)

For n = 2, 3, 4 computes the covered Lie algebras of maximal class using the polynomial algebra of dimension n. For n=3 one can directly load the Lie algebra by reading the file "inflation_3.g".

2.3.7 LieMinimalQuotientClassBreadth (for IsLieAlgebra)

 \triangleright LieMinimalQuotientClassBreadth(L)

(attribute)

Given a covered Lie algebras of maximal class L computes the minimal quotient that not holds the class-breadth conjecture.

References

[CMN97] A. Caranti, S. Mattarei, and M. F. Newman. Graded lie algebras of maximal class. *Transactions of the American Mathematical Society*, 349:4021--4051, 1997. 3

Index

```
{\tt BasisLieCenter}
    for IsLieAlgebra, 4
BasisLieDerived
    for IsLieAlgebra, 5
InfoInflation, 6
InfoLieBreadth, 5
{\tt IsLieCovered}
    for IsLieNilpotent, 6
IsOfMaximalClass
    for IsLieNilpotent, 4
{\tt IsTrueClassBreadth}
    for IsLieNilpotent, 5
{\tt LieAdjointMatrix}
    for IsLieAlgebra, 5
LieBreadth
    for IsLieNilpotent, 5
LieClass
    for IsLieNilpotent, 4
{\tt LieCoveredInflated}
    for IsInt, 7
{\tt LieMinimalQuotientClassBreadth}
    for IsLieAlgebra, 7
LieNilpotentGrading
    for IsLieNilpotent, 6
{\tt LieTwoStepCentralizers}
    for IsLieNilpotent, 6
LieType
    for IsLieNilpotent, 4
PolynomialAlgebra
    for IsField and IsFinite, 6
PrintLiePresentation
    for IsLieAlgebra, 5
StructureMatrices
    for IsLieAlgebra, 4
TGroupBreadth, 5
```