Finding the Latent Factors

Mining of Massive Datasets Leskovec, Rajaraman, and Ullman Stanford University

Latent Factor Models

Our goal is to find P and Q such tat:

$$\min_{P,Q} \sum_{(i,x)\in R} (r_{xi} - q_i \cdot p_x^T)^2$$

Dealing with Missing Entries

 Want to minimize SSE (that is RMSE) for unseen test data

Idea: Minimize SSE on training data:

$$f(P,Q) = \sum_{(i,x)\in R} (r_{xi} - q_i \cdot p_x^T)^2$$

- Want large k (# of factors) to capture all the signals
- How to minimize our error function?

Detour: Minimizing a function

- A simple way to minimize a function f(x):
 - Compute the take a derivative ∇f
 - Start at some point y and evaluate $\nabla f(y)$
 - Make a step in the reverse direction of the gradient: $y = y \nabla f(y)$
 - Repeat until converged

Back to Our Problem

- Want to minimize SSE for unseen test data
- Idea: Minimize SSE on training data
 - Want large k (# of factors) to capture all the signals
 - But, SSE on test data begins to rise for k > 2
- This is a classical example of overfitting:
 - With too much freedom (too many free parameters) the model starts fitting noise
 - That is it fits too well the training data and thus not generalizing well to unseen test data

Dealing with Missing Entries

To solve overfitting we introduce regularization:

- Allow rich model where there are sufficient data
- Shrink aggressively where data are scarce

$$\min_{P,Q} \sum_{\text{training}} (r_{xi} - q_i p_x^T)^2 + \lambda \left[\sum_{x} \|p_x\|^2 + \sum_{i} \|q_i\|^2 \right]$$
"error"
"length"

 λ user set regularization parameter

Stochastic Gradient Descent

Want to find matrices P and Q:

$$\min_{P,Q} \sum_{training} (r_{xi} - q_i p_x^T)^2 + \lambda \left[\sum_{x} ||p_x||^2 + \sum_{i} ||q_i||^2 \right]$$

Note:

- $\lambda \neq 0$ increases the value of the objective function
- But we do not care about the value of the objective function but P and Q that minimize the value
- And real our goal is to find P and Q on seen ratings so that we predict well the unseen ratings

Stochastic Gradient Descent

$$\min_{P,Q} \sum_{training} (r_{xi} - q_i p_x^T)^2 + \lambda \left[\sum_{x} ||p_x||^2 + \sum_{i} ||q_i||^2 \right]$$

Gradient decent:

- Initialize P and Q (using SVD, pretend missing ratings are 0)
- Do gradient descent:
 - \blacksquare *P* ← *P* η · ∇ P
 - $Q \leftarrow Q \eta \cdot \nabla Q$ where ∇Q is gradient/derivative of matrix Q: $\nabla Q = [\nabla q_{ik}]$ and $\nabla q_{ik} = \sum_{xi} -2(r_{xi} - q_i p_x^T)p_{xk} + 2\lambda q_{ik}$
 - Here q_{ik} is entry k of row q_i of matrix Q
 - And similarly for \(\nabla P\)

