<u>ספרתיות סימולציה 1</u>

326286705	מוחמד זנגריה	
212269294	איימן עואד	

 $rac{{f 2.1}}{cout}$ נרשום את כל הערכים של d1d0s בטבלת האמת ועמודת הפלט אותם d1d0s אותם למפת קרנו.

D1	D0	S	COUT
0	0	0	0
0	0	1	0
1	0	0	0
1	0	1	1
0	1	0	1
0	1	1	0
1	1	0	1
1	1	1	1

מפת קרנו:

S/d1d0	00	01	11	10
0		1	1	
1			1	1

$$f(d1, d0, s) = d0s' + d1s$$

: לאחר הפעלת דה מורגן נקבל

$$f(d1, d0, s) = ((d0s')'(d1s)')$$

PATH	D0	D1	S	Tpd
D0g3g4	0a1	0	0	8+2=10
D0g3g4	1a0	0	0	8+2=10
D1g2g4	0	0a1	0	8+2=10
D1g2g4	0	1a0	0	8+2=10
Sg2g4	0	1	0a1	8+2=10
Sg2g4	0	1	1a0	8+2=10
Sg1g3g4	1	0	0a1	2*8+2=18
Sg1g3g4	0	0	1a0	2*2+8=12

, s0 = 0a1a0 את הכניסות הבאות כך שנשנה רק את

S0	S1	D3	D2	D1	D0
0a1	0	0	0	1	0
1a0	0	0	0	1	0

כאשר מעלים את s0 מ0 ל1 ומורידים אותו מ1 ל0 רק בורר 2 ובורר 0 משנים את היציאה שלהם ולפי סעיף קודם לפי הטבלה זמן השהייה של כל אחד מהם במקרה של כניסות אלו שלהם ולפי סעיף קודם לפי הטבלה זמן השהייה בשני $2*\max\{8,2\}$, ולכן סה"כ נקבל זמן השהייה בשני המקרים הנ"ל בטבלה $Tpd=2*2*\max\{8,2\}=32ns$, : המקרים הנ"ל בטבלה

תמונה להבנה:

וקיבלנו את הזמן השהייה הרצוי כפי שנראה בתמונות הנ"ל , לאחר 32ns משינוי הכניסה וקיבלנו את הזמן השהייה הרצוי כפי שנראה במודל התיאוריטי. sel[0]

2.3

נשתמש בשתי מפות קרנו בשביל למצוא ביטוי לוגי עבור כל אחת מהיציאות . נקח את מספר השכנים המקסימלי בכל פעם כפי שנלמד בהרצאה והתרגול בשביל לקבל ביטוי עם מספר ליטרלים מינימלי.

Cout:

Cin,a_ns/a,b	00	01	11	10
00		1		
01				
11		1	1	1
10	1	1	1	

a_ns= n קיצור

Cout = bCin+a'Cin*n'+a'bn'+aCin*n+abn

=(b+Cin)(a'n'+an)+bc

=(aXNORn)(b+Cin)+bc

= (((aXNORn)(b+Cin))'(bc)')'

Sum:

Cin,a_ns/a,b	00	01	11	10
00		1		1
01		1		1
11	1		1	
10	1		1	

Sum = a'bCin+ab'Cin'+a'b'Cin+abCin=a'(bCin'+b'Cin)+a(b'Cin'+bCin)= a'(bXORCin)+a(bXNORCin) = (aXNORb)XNOR Cin

a'x'+ax=aXNORx, x'= bXORcin,x = bXNORcin : מעבר אחרון

path	A_ns	Α	В	Cin	delay
b-o1-n2-	0	0	0a1	0	Tpd(or)+Tpd(NAND)+Tpd(NAND)=
n3-cout					22ns
b-x1-x3-	1	0	1a0	1	Tpd(XNOR)+Tpd(XNOR) =12ns
S					
a-x2-n2-	1	0a1	1	0	Tpd(xnor)+Tpd(nand)+Tpd(nand)
n3-Cout					= 23ns
A-x1-x3-	1	0a1	1	1	Tpd(xnor)+Tpd(xnor)= 14ns
S					
Cin-o1-	0	0	0	0a1	Tpd(or)+Tpd(NAND)+Tpd(NAND)=
n2-n3-					22ns
Cout					
Cin-x3-s	1	0	0	0a1	Tpd(xnor) = 7ns
A_ns-x2-	0a1	1	0	0	Tpd(xnor)+Tpd(nand)+Tpd(nand)
n2-n3-					= 23ns
Cout					

נבחר במקרה הבא מהטבלה הנ"ל:

A_ns	Α	В	Cin	delay
1	0a1	1	1	Tpd(xnor)+Tpd(xnor)=
				14ns
1	1a0	1	1	Tpd(xnor)+Tpd(xnor)=
				14ns

נראה כי התקבל הזמן השהייה הרצוי:

רק לאחר 0 ל1 כמו שחישבנו מ0 ל1 הsum משתנה מ0 ל1 כמו שחישבנו בתיאוריטי.

(2.4

המסלול שגורם להשהיה הכי מקסימלית מכניסה ליציאה הוא מבין כל האפשריות הוא:

а	b	op[1:0]	cin	ב
(1,1,,1)	(0,0,,0)	10	0->1	64*(Tpd_OR + 2*Tpd_NAND) = 64 * (6 +2 * 8) = 1408

מכיוון שהשינוי של cin מ 0 ל 1 גורם לכל ה cout_i (לכל 64 <= i <= 64) להשתנות בכל alu וגורם לשינויים במספר שערים הכי גדול ולכן הוא המסלול שגורם להשהיה הכי מקסמלית.

תוצאת הסימולציה על הבדיקות שנדרשנו לעשלות:

(המספרים בתוכנה טיפה קטנים) אבל אפשר לראות בתמונה הראשונה שבזמן 1408ps שינינו את cin מ 0 ל 1 אחרי שהתיצבו הערכם והיציאות, ובמתונה השנייה אחרי בטבלה ברגע (1408 = 1500 + 1408) השתנתה היציאה cout וזה תואם לחישובים שלנו בטבלה למעלה והגדרתנו לזמני ההשהיות בסעיף 2.2