To measure the time for the execution of the algorithm I used the *clock()* function. First I call one of the functions (best, worst or average) to get the desired input of array and then once I have the array filled with the elements I put the time. The Selection Sort Algorithm runs. I get the time again in the end of the algorithm and then just print the difference between the last and first time.

For each case I run the algorithm **n** times with different number of elements which vary from 1000 to 100000. I manually kept the notes of time and then built the graph.

Recent values were:

(n)	Best Case	Average Case	Worst Case
1000	0.001s	0.001s	0.001s
5000	0.054s	0.036s	0.062s
10000	0.167s	0.175s	0.195s
50000	2.651s	3.006s	3.659s
100000	10.34s	11.126s	13.198s

STRUCTURAL HEADWINDS AND MEASUREMENT CHALLENGES

