# **POSL**Parallel Oriented Solver Language

#### **Alejandro REYES AMARO**

Thesis Director: Eric MONFROY

Advisor: Florian RICHOUX

Université de NANTES

January 23th, 2017

Presenting the goals of the thesis:

POSL and performed studies using classic problems

as benchmark

Didactically presenting the problem making an analogy with building cars

The business starts as a little factory building rudimentary planes → the simple algorithm

ANALOGY

**Factory** ←→ **Language** 

**Problem: Transportation ←→ CSP** 

**Product (solution): Cars ↔ Solvers** 

The business needs to grow, so two alternatives:

- Building a bigger factory ←→ Creating an algorithm allowing to solve more complex instances (sequential approach)
- 2. Building more little factories (franchises) ↔ The same algorithm using more computation resources (parallel approach)

Time + competitors = new version!

The step towards a new version can be (in the best case) changing something in one of the departments (pneumatics, for example)

It implies changing this department in every little factory.

#### FISRT GOAL of POSL:

It propose creating little factories specialized on a specific part of the car, and then an assembly plant to join them.

Presenting each stage of the building process using POSL, still making the analogy with cars:

#### **MODULES**

#### **Operation modules**

Little factories building specifics pieces (using rubber as input, create pneumatics as output) ↔ simple functions (using a vector as input it returns a set of vectors)

#### **Communication modules**

Storage facilities to receive pieces from other factories ↔ functions able to receive information (vectors, set of vectors)

#### **OPERATORS**

**Assembly plants** ↔ joining the modules (examples)

#### Abstract solver concept

Imagine mobile assembly plants: they are created to receive different types of generic (not specific) pieces and assembly them ↔ Operators are used not using concrete modules, but abstract modules, characterized only by their signatures (examples, code and advantages)

Introducing directly the stage of instantiating solvers (examples and code)

## THE MAIN ADVANTAGE OF POSL: Communication

A simple language to create communication strategies, capable to define/express:

What to communicate: There exists different types of communication modules, able to receive any kind of information

Where to communicate: They can be combined with other modules using operators

When to communicate: Abstract solvers can be configured using simple Boolean expressions together with operator to indicate code bifurcations

How to communicate: Different connection topologies can be created using communication operators

(examples and code)



## **Communication strategies study**

#### **Second Goal of the presentation**

Presenting a study of different communication strategies applied to some classical constraint satisfaction problems

Presenting each problem

#### Parallel without communication

Presenting abstract solvers for each problem

Explaining some characteristic (reset for Costas, tabu for Golomb, etc.)

Presenting results

## Simple communication

Presenting abstract solvers for each problem Explaining some characteristic (variant A and B for Costas, etc.)

**Presenting results** 

#### Local minimum evasion

Presenting the abstract solver for Golomb Ruler Explaining why this strategy for it.

Presenting results

### **Standard – Companion strategy**

Presenting abstract solvers for each problem

Explaining some characteristic (modules of companion solvers)

**Presenting results** 

## Communication strategies study



## **Conclusions and future works**



