STAT 7200

Introduction to Advanced Probability
Lecture 5

Taylor R. Brown

- Probability Triple
 - Extension Theorem
 - Review From Last Lecture
 - ullet P* is Countably Additive over $\mathcal M$
 - ${\cal M}$ is Closed under Finite Intersections/Unions
 - M is Closed under *Countable* Unions of *Disjoint* Sets
 - ullet $\mathcal M$ is a σ -algebra
 - \circ $\mathcal{J}\subseteq\mathcal{M}$

"A First Look at Rigorous Probability Theory" (Jeffrey Rosenthal) Section 2.3 (continued)

Theorem 1

The Extension Theorem Let \mathcal{J} be a semialgebra of subsets of Ω , P a function from \mathcal{J} to [0,1] with the following properties:

- a) $P(\emptyset) = 0, P(\Omega) = 1$.
- b) $P(\bigcup_{i=1}^k A_i) \ge \sum_{i=1}^k P(A_i)$ whenever $A_1, \ldots, A_k \in \mathcal{J}$, $\bigcup_{i=1}^k A_i \in \mathcal{J}$, and A_1, \ldots, A_k are pairwise disjoint (finite superadditivity).
- c) $P(A) \leq \sum_{n} P(A_n)$ whenever $A, A_1, A_2, \ldots \in \mathcal{J}$, and $A \subseteq \bigcup_{n} A_n$ (countable monotonicity).

Then there is a σ -algebra $\mathcal{M}\supseteq\mathcal{J}$ and a probability measure P^* on \mathcal{M} such that $\mathsf{P}^*(A)=\mathsf{P}(A)$ for all $A\in\mathcal{J}$.

Constructing Probability Triples I

Goal: constructing complicated probability triples on sample space Ω

- 1) Select \mathcal{J} , a collection of subsets of Ω that forms a *semialgebra*. A semialgebra includes empty set and sample space, closed under finite intersections, and the complement of a set in \mathcal{J} can be represented as the unions of disjoint sets from \mathcal{J} .
- 2) Define a function P from \mathcal{J} to [0,1] that is finitely superadditive, countably monotonic and $P(\emptyset) = 0, P(\Omega) = 1$.
- 3) Construct outer measure P^* over all subsets of Ω based on P:

$$\mathsf{P}^*(A) = \inf_{A_1, A_2 \dots \in \mathcal{J}, A \subseteq \bigcup_i A_i} \sum_i \mathsf{P}(A_i)$$

We have shown that the outer measure is an extension of P, is monotonic and countably subadditive over *all* subsets.

Constructing Probability Triples II

4) We constructed a new collection of subsets, \mathcal{M} :

$$\mathcal{M}:=\{A:A\subseteq\Omega,\mathsf{P}^*(A\cap E)+\mathsf{P}^*(A^c\cap E)=\mathsf{P}^*(E)\text{ for all }E\subseteq\Omega\}$$

We have shown that \mathcal{M} includes the empty set and sample space, and is closed under complement. And based on this definition, it is easy to see that $\mathsf{P}^*(A) = 1 - \mathsf{P}^*(A^c)$ for all $A \in \mathcal{M}$.

- 5) To verify that \mathcal{M} is a σ -algebra and P^* is a proper probability measure on \mathcal{M} , we still need to show that \mathcal{M} is closed under countable unions and P^* is countably additive on \mathcal{M} .
- 6) Note that, if we need to verify that whether a given set $A \in \mathcal{M}$. By the countable subadditivity of outer measure, we always have $\mathsf{P}^*(E) \leq \mathsf{P}^*(A \cap E) + \mathsf{P}^*(A^c \cap E)$ for all $E \subseteq \Omega$. Thus we only need to verify $\mathsf{P}^*(E) \geq \mathsf{P}^*(A \cap E) + \mathsf{P}^*(A^c \cap E)$ for all $E \subseteq \Omega$.

P^* is Countably Additive over \mathcal{M}

Lemma 2 (2.3.9)

For disjoint
$$A_1, A_2, \ldots \in \mathcal{M}$$
, $P^*(\bigcup_n A_n) = \sum_n P^*(A_n)$.

Proof: We will show the finite additivity first.

- 1) For disjoint $A_1, A_2 \in \mathcal{M}$, since $A_1 \in \mathcal{M}$, we have (in the definition of \mathcal{M} , let $E = A_1 \cup A_2$, and $A = A_1$): $P^*(A_1 \cup A_2) = P^*(A_1 \cap (A_1 \cup A_2)) + P^*(A_1^c \cap (A_1 \cup A_2)) = P^*(A_1) + P^*(A_2)$
 - The finite additivity would then follow as the result of induction.
- 2) For a countably disjoint sequence, by the finite additivity and monotonicity of P*, we have $\sum_{i=1}^{n} P^{*}(A_{i}) = P^{*}(\bigcup_{i=1}^{n} A_{i}) \leq P^{*}(\bigcup_{n} A_{n})$ Furthermore, $\sum_{n} P^{*}(A_{n}) = \lim_{n \to \infty} \sum_{i=1}^{n} P^{*}(A_{i}) \leq P^{*}(\bigcup_{n} A_{n})$
- 3) By the countable subadditivity of P^* , we have $\sum_n P^*(A_n) \ge P^*(\bigcup_n A_n)$, thus $\sum_n P^*(A_n) = P^*(\bigcup_n A_n)$ for disjoint sequence of \mathcal{M} .

${\cal M}$ is Closed under Finite Intersections/Unions

Lemma 3 (2.3.10)

If
$$A_1, A_2, \dots, A_n \in \mathcal{M}$$
, then $\bigcap_{i=1}^n A_i \in \mathcal{M}$ and $\bigcup_{i=1}^n A_i \in \mathcal{M}$.

Proof: Since \mathcal{M} is closed under complement, then by de Morgan's law, \mathcal{M} is closed under finite unions if \mathcal{M} is closed under finite intersections. So we need to show if $A, B \in \mathcal{M}$, then $A \cap B \in \mathcal{M}$.

1) For any $E \subseteq \Omega$,

$$P^{*}(A \cap B \cap E) + P^{*}((A \cap B)^{c} \cap E)$$
=P*(A \cap B \cap E) + P*((A^{c} \cap B \cap E) \cup (A \cap B^{c} \cap E) \cup (A^{c} \cap B^{c} \cap E))
≤P*(A \cap B \cap E) + P*(A^{c} \cap B \cap E)
+P*(A \cap B^{c} \cap E) + P*(A^{c} \cap B^{c} \cap E)
=P*(B \cap E) + P*(B^{c} \cap E) = P*(E)

2) By subadditivity, $P^*(E) \leq P^*(A \cap B \cap E) + P^*((A \cap B)^c \cap E)$. Thus $P^*(E) = P^*(A \cap B \cap E) + P^*((A \cap B)^c \cap E)$ and we have $A \cap B \in \mathcal{M}$.

${\mathcal M}$ is Closed under *Countable* Unions of *Disjoint* Sets:

ullet To show that ${\mathcal M}$ is closed under countable unions of disjoint sets, we need the following result

Lemma 4 (2.3.11)

Let $A_1, A_2, \ldots \in \mathcal{M}$ be disjoint. Define $B_n = \bigcup_{i=1}^n A_i$, then for any $E \subseteq \Omega$, we have $P^*(E \cap B_n) = \sum_{i=1}^n P^*(E \cap A_i)$.

Proof: Since $B_n \in \mathcal{M}$ for all $n \in \mathbb{N}$, and note that $B_{n-1} \cap B_n = B_{n-1}$ and $B_{n-1}^c \cap B_n = A_n$, we have:

$$P^{*}(E \cap B_{n}) = P^{*}(B_{n-1} \cap E \cap B_{n}) + P^{*}(B_{n-1}^{c} \cap E \cap B_{n})$$
$$= P^{*}(E \cap B_{n-1}) + P^{*}(E \cap A_{n})$$

It is obvious that $P^*(E \cap B_1) = P^*(E \cap A_1)$, then the above equation would allow us to use induction to obtain $P^*(E \cap B_n) = \sum_{i=1}^n P^*(E \cap A_i)$.

 ${\mathcal M}$ is Closed under *Countable* Unions of *Disjoint* Sets:

Lemma 5 (2.3.13)

For disjoint $A_1, A_2, \ldots \in \mathcal{M}$, $\bigcup_n A_n \in \mathcal{M}$.

Proof: Let $B_n = \bigcup_{i=1}^n A_i$, then for any $E \subseteq \Omega$

$$P^*(E) = P^*(E \cap B_n) + P^*(E \cap B_n^c) = \sum_{i=1}^n P^*(E \cap A_i) + P^*(E \cap B_n^c)$$

$$\geq \sum_{i=1}^{n} \mathsf{P}^*(E \cap A_i) + \mathsf{P}^*(E \cap (\bigcup_{j=1}^{\infty} A_j)^c)$$

Letting $n \to \infty$, we have:

$$P^*(E) \ge \sum_n P^*(E \cap A_n) + P^*(E \cap (\bigcup_n A_n)^c) \ge P^*(E \cap (\bigcup_n A_n)) + P^*(E \cap (\bigcup_n A_n)^c). \text{ Thus } (\bigcup_n A_n) \in \mathcal{M}$$

Taylor R. Brown STAT 7200 9/11

${\mathcal M}$ is a σ -algebra

Lemma 6 (2.3.14)

 \mathcal{M} is a σ -algebra

Proof: We only need to prove that \mathcal{M} is closed under *countable* *not disjoint* unions. Let $A_1, A_2, \ldots \in \mathcal{M}$. For each n, define $B_n = A_n \cap (\bigcup_{i=1}^{n-1} A_i)^c$.

Since we already show that \mathcal{M} is closed under complement, finite intersections/unions, $B_n \in \mathcal{M}$.

As $B_n \cap B_m = \emptyset$ for all $n \neq m$, by the previously established result, $\bigcup_n B_n \in \mathcal{M}$. However, $\bigcup_n A_n = \bigcup_n B_n$, so $\bigcup_n A_n \in \mathcal{M}$. Then \mathcal{M} is closed under countable unions.

Lemma 7

$$\mathcal{J}\subseteq\mathcal{M}$$

Proof: We need to show that for any $A \in \mathcal{J}$, $P^*(A \cap E) + P^*(A^c \cap E) \leq P^*(E)$ for all $E \subseteq \Omega$.

- By the definition of outer measure and A.4.2, for any $\varepsilon > 0$, we can find $B_1, B_2, \ldots \in \mathcal{J}$ such that $E \subseteq \bigcup_n B_n$ and $\sum_n \mathsf{P}(B_n) < \mathsf{P}^*(E) + \varepsilon$. Furthermore, by the definition of semialgebra, $A^c = \bigcup_{k=1}^K J_k$ where $J_1, J_2, \ldots, J_k \in \mathcal{J}$ are pairwise disjoint. Thus:
- $P^*(E \cap A) + P^*(E \cap A^c) \le P^*((\bigcup_n B_n) \cap A) + P^*((\bigcup_n B_n) \cap A^c)$ = $P^*(\bigcup_n (B_n \cap A)) + P^*((\bigcup_n B_n) \cap (\bigcup_{k=1}^K J_k))$ $\le \sum_n P^*(B_n \cap A) + \sum_{n,k} P^*(B_n \cap J_k) = \sum_n P(B_n \cap A) + \sum_{n,k} P(B_n \cap J_k)$ = $\sum_n \{P(B_n \cap A) + \sum_k P(B_n \cap J_k)\} \le \sum_n P(B_n) < P^*(E) + \varepsilon$
- As ε is an arbitrary constant, we can conclude that $P^*(A \cap E) + P^*(A^c \cap E) \leq P^*(E)$. Thus $A \in \mathcal{M}$, $\mathcal{J} \subseteq \mathcal{M}$.