

고강도 볼트의 필요성

- ■고강도강 적용으로 부재 단면사이즈가 작아짐 → 접합부 볼트수량 감소 필요
- 기존 FIOT 볼트를 사용할 경우 볼트수량 증기로 부재단면 사이즈 축소 효과가 없어짐
- ■경쟁재 대비 기술우위를 위해 공기단축 요구증대 → 현장 조립 볼트수량 감소 필요

■강구조물의 대형화, 고강도화 철골구조물의 경쟁력 향상

■접합부에서의 문제점

1) 소요볼트수량 증가

- 접합부사이즈 대형화
- 부재 가공/시공량 증대
- Cost증대

2) 직경이 큰 볼트 사용

- 과다한 부재 단면결손
- 고성능 대용량 체결공구
- 피로강도 저하

■접합소재의 고강도화 필요성 대두

F13T 고력볼트 적용에 따른 **장점**

■구조물접합부에 필요한 볼트수량 감소

- 접합부 사이즈 축소
- 접합부 Detail 간소화
- 현장 철골조립 공사기간 단축
- 현장 철골조립 건설장비 및 인건비 절감

■사용 볼트 직경의 감소 가능

- 현장 체결작업 편의
- 접합부 유효단면적 증가(내력증가)

■고강도강(후판) 기술경쟁력 확보 기술

- 강재물량 절감 및 구조물 경량화 실현
- 철골구조물의 공기단축 효과 배기로 수요확대 기반구축

• 국내 철강산업 및 건설관련산업의 국제 경쟁력 확보

- 고강도강 /고부가가치강 활용에 따른 국내 철강산업의 경쟁력 증가/ 철강수요 확대
- 철골부재 가공시간 단축→ 납가단축, 가공설비에 대한 고정비 절감

- 강재량 감소, 철골세우기(조립) 공정 단축 → 자재비 절감, 공기단축, 인건비 절감
- 유효 철골면적 증가로 접합부 내력상승, 접합부 사이즈 compact화

■각국의 볼트규격

국내·외 기술현황

국가	규격		항복강도 (N/mm²)	인장강도 (N/mm²)	연신율 (%)	단면 수축률 (%)
	KS B 1010	F8T	640 이상	800~1,000	16	45
한국		F10T	900 이상	1000~1200	14	40
인식	K3 B 1010	(F11T) *1	990 이상	1100~1300	14	40
		F13T	1,170 이상	1300~1500	12	35
		F8T	640 이상	800~1000	16	45
일본	JIS B 1186	F10T	900 이상	1000~1200	14	40
		(F11T) *1	950 이상	1100~1300	14	40
	ASTM A325	1/4~3/4	607	827.6	14	
		7/8~1	558.9	793.3	14	
미국		1 1/8~3	530.5	723.7	14	35
미국		1 3/4~3	379.5	620.7	14	40
	ASTM A490	1/2~1 1/2	861.9	1034.5	14	40
		2 5/8~4	793,3	964.9	14	40
독일	DIN	10K	882.5	980.6	8	

■F14T급 일본 건설성 규격

볼트의 종류	내력 (N/mm²)	인장강도 (N/mm²)	연신율 (%)	단면 수축률 (%)
SHTB*(F14T)	1260이상	1400~1490	140상	400상

SHTB: Super High Tension Bolts

□ 고력볼트 성능평가 요소기술

■고력볼트 제품에 대한 성능평가

- 수소지연파괴 저항성능
- 소재 적합성 평가시험
- 제품 인장특성 평가시험
- 제품 파괴특성 평가시험(쐐기 이용)
- 볼트제품 체결특성 평가시험

■고력볼트 접합부에 대한 성능평가

- 전단형 접합부 평가시험(마찰접합)
- 인장형 접합부 평가시험
- 피로시험(제품 및 접합부)
- 지압형 접합부 평가시험
- 실구조물 실험(기둥. 보 접합부 등)

■장기 특성변화 및 현장 시공성에 대한 성능평가

- Relaxation Test(장기 체결력 변화 측정 시험)
- Relaxation Test 후 접합부 성능 평가시험
- 현장 체결공법 대응을 위한 축력시험

■KS규격

- KS B 1010
- KS B 2819

■구조설계 기준

- KBC
- 허용응력도설계법
- 도로교 설계기준

■시방서

- 건축공사 표준시방서
- 도로교 표준시방서

□ 전단형 접합부 시험

볼트가 전단이 되는 형태의 접합부에서 내력 및 변형특성을 평가하기 위한 시험으로 전단허용응력도의 기준이 되는 미끄럼허중을 평가함

■평가내용

- 미끄럼하중
- 미끄럼계수(마찰계수)
- 볼트축력 감소율
- 볼트의 전단강도
- 접합부의 허용응력도

■평가결과 (기준 : 구조설계기준)

접합부에서의 설계내력 기준이 되는 미끄럼하중이 F13T 접합부에서는 63,5ton,

F10T 접합부에서는 420ton으로

F13T를 이용한 접합부의 내력이 51% 내력 증가

□ F13고력볼트마찰이음부의 피로성능

모재 t	이음판 t	최대하중 tonf	최소하중 tonf	하중범위 tonf	응력범위
20	12	25.4	2,5	22,8	1.0f _{sr} (112MPa)
20	12	31.7	3,2	28.5	1.25f _{sr} (140MPa)
20	12	38.1	3,8	34.3	1.5f _{sr} (168MPa)
20	12	25.4	2,5	22,8	1.0f _{sr} (112MPa)
20	12	31.7	3,2	28.5	1.25f _{sr} (140MPa)
20	12	38.1	3.8	34.3	1.5f _{sr} (168MPa)
45	26	57.1	5.7	51.4	1.0f _{sr} (112MPa)
45	26	71.4	7.1	64.2	1.25f _{sr} (140MPa)
45	26	85.6	8.6	77.1	1.5f _{sr} (168MPa)

□ Relaxation Test

■고력볼트 체결 후, 시간 경과에 따른 볼트체결력 저하율 측정

■평가결과

기준:체결력 저허율 10%이내

• F10 T

볼트체결력 저하가 4% 수준으로 시방서 기준 만족

• F13T

볼트체결력 저하가 4% 수준으로 시방서 기준 만족

☐ F13T KS 규격 제정

■KS B 1010 개정 (2004,12)

- 130Kg/mm² (1300MPa)급 고력볼트(F13T)규격 추가
- 단위계 수정(Kg → 9.806N) ➡ (Kg → 10.0N)

■볼트의 종류 및 등급

기존 3종 (F8T, F10T, F11T)에 F13T규격 추가

기계적 성질에 따른 종류	토크계수값에 따른 종류	볼트	너트	와셔
1종	A / B	F8T	F10 (F8)	
2종	A / B	F10T	E10	F35
(3종)	A / B	(F11T)	F10	
	A / B	F13T	F13	

■소재의 기계적 성질

개정규격

Bolt	항복강도 (N/mm²)	인장강도 (N/mm²)	연신율 (%)	단면수 축 율 (%)
F8T	6400상	800~1000	160상	450상
F10T	900이상	1000~1200	140상	40이상
F11T	990이상	1100~1300	140상	400상
F13T	1170이상	1300~1500	120상	350상

■제품의 기계적 성질(최소인장하중)

규격치: 인장강도 최소치×볼트유효단면적

개정규격(kN)

Bolt	M12	M16	M20	M22	M24	M27	M30	Hardness
F8T	67.4	125.4	195.8	242.7	282	367	449	H _R C18~31
F10T	84.3	156.7	244.8	303.4	352.5	458.8	561.3	H _R C27~38
F11T	92.7	172.4	269.3	333.7	387.8	504.7	617.4	H _R C30~40
F13T	109.6	203.7	318.2	394.4	458.3	596.4	729.7	H _R C40∼45

■토크시험시의 볼트축력

규격지: (0.70~0.95)×항복강도×볼트유효단면적

개정규격

Bolt	M12	M16	M20	M22	M24	M27	M30
F8T	37.8~51.3	70.2~95.3	109.7~148.8	135.9~184.5	157.9~214.3	205.5~279.0	251.5~341.3
F10T	53.1~72.1	98.7~134.0	154.2~209.3	191.4~259.4	222.1~301.4	289.0~392.3	353.6~479.9
F11T	58.4~79.3	108.6~147.4	106.7~ 230.2	210.3~285.3	244.1~331.2	317.9~431.5	389.0~527.9
F13T	69.0~93.7	128.3~174.2	200.5~ 272.1	248.5~337.2	288.7~391.8	375.8~510.0	459.7~623.9

☐ F13T 고력볼트 경제성 평가

■비교 설계 대상 개요

■일반 박스 거더교 (경춘선 복선전철 마석고가 S7) ~ 볼트이음 10곳 * 2박스

1) 교량등급: 1급선(LS-22)

2) 지간구성: 40.00 + 50.00 = 90.00m

3) 폭원: 10.900m

■소수주 거더교 (경춘선 복선전철 마석고가 S6) ~ 볼트이음 4곳*2거더

1) 교량등급: 1급선

2) 지간구성: 1@40,000 = 40,00m

3) 폭원: 10.900m

■볼트이음 설계 예 ~ 플레이트 거더교 (덕송2교, 일산방향)

F10T 적용

F13T 적용

■F13T볼트 가격에 따른 이음부 및 전체 공사비 비교 (재료바제작비+인건비, 크레인 사용료 제외)

•볼트 이음부 공사비 (이음판+볼트+인건비)

•거더 전체 공사비 (거더+이음판+볼트+인건비)

 $^{\oplus}$ 이음부 공사비 = 전체 공사비의 15%로 가정 (강박스) / = 전체 공사비의 20%로 가정 (소수주거더)

☐ F13T 고력볼트 시범적용 프로젝트

■포스코 자동차강판 통합기술센터 (2007,11월)

■ 포스코 사내공시에 F13T고력볼트를 초도 적용함으로써 F13T고력볼트 신뢰성 검증 및 기술 DB 구축

- 향후 지연파괴 검증 및 Relaxation Test(장기체결력 변화측정) 실시
 - 토크-컨트롤법에 의한 축력점검 육안검사 및 타격법 등으로 전수검사 실시 예정

☐ F13T 고력볼트 적용대상 프로젝트

POS-A.C. 사옥 지상12층

포스코건설 사옥 지상 37층

연세대 첨단공학관 지상 12층

롯데 잠실슈파타워 지상 112층

- 포스코 포항및 광양플랜트 시설
- 영덕-오산 민지국도 사장교
- 송도D블럭 주상복합 아파트 등 다수 프로젝트에 적용 예정

posco

포스코 수요개발그룹

서울시 강남구 대치4동 892번지 포스코센터 TEL:02)3457-1364 / FAX:02)3457-1563 황일우 대리 / E-mail:yhfun@posco.com

KPF 국내영업팀

경기도 안산시 단원구 원시동 731-3 TEL:031)491-3081 / FAX:031)492-7034 이명구 부장 / E-mail:mglee@kpf.co.kr

공장 충청북도 충주시 용탄동 601 TEL:043)849-1114 / FAX:043)849-1234

동아건설산업(주) 창원볼트공장 경남 창원시 대원동 91,92번지 TEL:055)273-4581~4 / FAX:055)273-3122 김현호 부장 / E-mail:dacwk@yahoo.co.kr