CSE 445 Assignment 2 Report

Regression Task with Evaluation Methods

Dataset: Boston Housing (UCI Repository) **Student Name:** Adib Ar Rahman Khan

Date: 25/03/25

Objective

The objective of this assignment was to:

- Train and evaluate regression models on the Boston Housing dataset,
- Balance both accuracy and interpretability,
- Explore relationships between variables,
- And apply **improvement techniques** such as scaling, regularization, and non-linear modeling.

Dataset Overview

The dataset includes **506 samples** and **13 features** that describe socioeconomic and environmental attributes of Boston suburbs from 1970. The goal is to predict the **median value of owner-occupied homes (MEDV)**.

Data Preprocessing & Exploration

- Loaded the dataset and verified no missing values.
- Visualized MEDV, which showed a right-skewed distribution with a cap at \$50,000.
- Used a correlation heatmap and scatter plots to identify strong predictors:
 - RM (average rooms) strong positive correlation
 - LSTAT (lower-income population %) strong negative correlation
 - NOX (pollution) negative correlation

Modeling & Evaluation

The dataset was split into:

- 70% training
- 30% testing

Models Trained & Evaluated:

Model	Туре	Scaling	Bonus
Linear Regression	Baseline	No	_
Linear Regression	Re-tested	Yes	Applicable
Polynomial Regression	Non-linear	No	Applicable
Ridge Regression	Regularized (L2)	Yes	Applicable
Lasso Regression	Regularized (L1)	Yes	Applicable
Decision Tree Regressor	Tree-based	No	Applicable
Random Forest Regressor	Ensemble Tree	No	Best-performing

Model Performance Summary

Model	MAE	MSE	RMSE	R²	Adjusted R ²
Linear	3.16	21.52	4.64	0.711	0.684
Linear (Scaled)	3.16	21.52	4.64	0.711	0.684
Polynomial (deg=2)	3.06	25.26	5.03	0.661	0.629
Lasso	3.21	22.79	4.77	0.694	0.665
Ridge	3.16	21.55	4.64	0.711	0.684
Decision Tree	2.46	10.83	3.29	0.855	0.841
Random Forest	2.10	9.71	3.12	0.870	0.857

Feature Importance

- Linear Regression: RM, CHAS, NOX, and LSTAT were the strongest drivers of MEDV.
- Random Forest: Identified LSTAT, RM, and DIS as highly important through ensemble splitting.

Visualizations of feature importance were provided using **bar plots**, highlighting both the direction and strength of influence.

Bonus Improvements Attempted

Technique	Result
Feature Scaling	No effect on linear models
Polynomial Regression	Increased complexity, but worse R ²
Ridge & Lasso	Slight regularization, no gain
Decision Tree	Strong non-linear capture
Random Forest	Most accurate & robust

Conclusion:

- Random Forest Regressor is the best-performing model, excelling in both error reduction and variance explanation.
- Linear Regression offers speed and interpretability but fails to capture complex patterns.
- Polynomial Regression adds complexity without improving accuracy.
- Regularization has minimal impact, suggesting the dataset is not suffering from overfitting.