GESTION DE DOCUMENTS / *

Complexes

Les nombres complexes

L'ensemble des nombres complexes

On admet qu'il existe un ensemble de nombres, noté $\mathbb C$ tel que :

- \mathbb{C} contient un nombre *imaginaire* noté i tel que $i^2=-1$
- Tous les éléments de $\mathbb C$ s'écrivent sous la forme a+ib où a et b sont des nombres réels.

 $\mathbb C$ est appelé l'ensemble des nombres complexes.

Les opérations dans $\mathbb C$ obéissent aux mêmes règles de calcul que dans $\mathbb R$.

Exemple :
$$(3+4i)+(6-2i)=9+2i$$

Exemple 2 : $(2+i)(3+2i)=2 imes 3+i imes 3+2 imes 2i+i imes 2i=6+3i+4i-2=4+7i$

La forme algébrique

L'écriture z=x+iy (avec x et y deux réels) est appelée forme algébrique de z. Elle est unique.

- On appelle partie réelle de z, notée $\mathrm{Re}(z)$, le réel x.
- On appelle partie imaginaire de z, notée $\mathrm{Im}(z)$, le réel y.

Exemple : Soit le nombre complexe z=12-4i :

- ullet La partie réelle de z est : $\mathrm{Re}(z)=12$
- La partie imaginaire de z est : $\mathrm{Im}(z) = -4$

Deux nombres complexes sont égaux si et seulement s'ils ont la même partie réelle et la même partie imaginaire. A noter : Si ${
m Im}(z)=0$, z est un réel.

Le conjugué et le module

Conjugué

Soit un nombre complexe z=x+iy, où x et y sont deux réels. On appelle conjugué de z, noté \bar{z} , le complexe : $\bar{z}=x-iy$ Exemples :

•
$$\overline{2-2i}=2+2i$$

- $\overline{4i} = -4i$
- $\bar{2} = 2$

Propriétés du conjugué :

Soient z et \overline{z} deux nombres complexes. On a :

•
$$\bar{\bar{z}} = z$$

•
$$\overline{z+z'}=\overline{z}+\overline{z'}$$

•
$$\overline{zz'} = \overline{z}\overline{z'}$$

• Si
$$z$$
 'est non nul :

$$\overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}}$$

Module

Soit un nombre complexe z = x + iy où x et y sont des réels.

On appelle module z, noté |z|, le réel :

$$|z|=\sqrt{x^2+y^2}$$

Exemples:

•
$$|1+2i| = \sqrt{1^2+2^2} = \sqrt{1+4} = \sqrt{5}$$

$$ullet \ |-3i| = \sqrt{0^2 + {(-3)}^2} = \sqrt{0+9} = \sqrt{9} = 3$$

Remarque : le module est une généralisation de la notion de valeur absolue. En effet, le module d'un réel est égal à sa valeur absolue.

Propriétés du module

Soient z et z' deux nombres complexes. On a :

•
$$z\bar{z} = |z|^2$$

•
$$|z|=|\bar{z}|$$

•
$$|z| = |-z|$$

•
$$|zz'| = |z| \times |z'|$$

• Si z 'est non nul :

$$\left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}$$

Représentation Graphique

Soit un repère orthonormal direct du plan $(O; \vec{u}; \vec{v})$. A tout point de M de coordonnées (x; y), on associe le nombre complexe z = x + iy:

- Le nombre complexe z est appelé affixe du point M (et du vecteur $\overrightarrow{\mathrm{OM}}$) et le note généralement z_M .
- Le point M est appelé image du nombre complexe z.

On définit ainsi le plan complexe :

Ici, M est le point d'affixe $z_1=2+2i$ et A est le point d'affixe $z_2=1-i$.

Module

Le module |z| du nombre complexe z, affixe du point M, est égal à la distance OM .

Ici,
$$M$$
 est le point d'affixe $z=2+2i$. On a donc $\mathrm{OM}=|z|=\sqrt{2^2+2^2}=\sqrt{8}$.

Les équations complexes

On résout une équation dans $\mathbb C$ à l'aide des mêmes techniques de calcul que dans $\mathbb R$.

Les équations du second degré dans C

Soit un trinôme du second degré à coefficients réels $(a \neq 0)$ $az^2 + bz + c$, de discriminant $\Delta = b^2 - 4ac < 0$. Ce trinôme admet deux racines complexes conjuguées :

$$z_1=rac{-b-i\sqrt{-\Delta}}{2a}$$

$$z_2=rac{-b+i\sqrt{-\Delta}}{2a}$$

Exemple: Résolvons dans $\mathbb C$ l'équation suivant: $3z^2+z+8=0$.

$$\Delta = 1^2 - 4 \times 3 \times 8 = -95 < 0.$$

L'équation possède deux solutions complexes conjuguées :

$$ullet z_1 = rac{-1-i\sqrt{95}}{6}$$

$$ullet z_2=rac{-1+i\sqrt{95}}{6}$$

A noter : Si le trinôme du second degré a un discriminant $\Delta \geq 0$, on retombe sur une équation du second degré classique.

Formes trigonométrique et exponentielle

Forme trigonométrique

Argument

Soit z un nombre complexe non nul et M le point d'affixe z du plan complexe.

On appelle argument de z, noté rg(z), une mesure en radians de l'angle orienté $\left(\overrightarrow{u};\overrightarrow{\mathrm{OM}}
ight)$:

$$\mathrm{arg}(z) = \left(ec{u}; \overrightarrow{\mathrm{OM}}
ight)[2\pi]$$

Forme trigonométrique

Soit un nombre complexe z non nul d'argument θ . On peut alors exprimer z sous forme trigonométrique : $z=|z|\left(\cos(\theta)+i\sin(\theta)\right)$

$$z = |z| (\cos(\theta) + i\sin(\theta))$$

Réciproquement, si $z=r(\cos(heta)+i\sin(heta))$, avec r>0 et heta réel quelconque, alors : |z|=r $rg(z)= heta[2\pi]$

$$|z| = r \ ext{arg}(z) = heta[2\pi]$$

Soit z=x+iy (avec x et y deux réels) un nombre complexe non nul. Soit $z=r(\cos(heta)+i\sin(heta))$ une forme trigonométrique de Z.

Alors:

$$\cos(heta) = rac{ ext{Re}(z)}{|z|} = rac{x}{\sqrt{x^2 + y^2}}$$

$$\sin(heta) = rac{ ext{Im}(z)}{|z|} = rac{y}{\sqrt{x^2 + y^2}}$$

Deux nombres complexes non nuls sont égaux si et seulement s'ils ont même module et même argument modulo 2π . Propriétés de l'argument

•
$$\arg(zz') = \arg(z) + \arg(z')[2\pi]$$

•
$$\operatorname{arg}(\frac{1}{z}) = -\operatorname{arg}(z)[2\pi]$$

•
$$\operatorname{arg}(rac{z}{z'}) = \operatorname{arg}(z) - \operatorname{arg}(z')[2\pi]$$

Forme exponentielle

Exponentielle complexe

Pour tout réel θ , on pose :

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Soit un nombre complexe z non nul d'argument heta. On peut alors exprimer z sous forme exponentielle :

$$z = |z| e^{i\theta}$$

Réciproquement, si $z={
m re}^{i heta}$, avec $r{>}0$ et heta réel quelconque, alors :

$$|z| = r$$

$$\arg(z) = \theta[2\pi]$$

Interprétation géométrique

Distance

Soient A et B deux points d'affixes respectives z_A et z_B : $\mathrm{AB} = |z_B - z_A|$

$$\mathrm{AB} = |z_B - z_A|$$

Exemple:

Soient A et B deux points d'affixes respectives $z_A=1+2i$ et $z_B=5+i$.

$$|{
m AB} = |z_B - z_A| = |5 + i - 1 - 2i| = |4 - i| = \sqrt{17}$$

Angle

Soient A et B deux points d'affixes respectives z_A et z_B :

$$\left(ec{u};\overrightarrow{ ext{AB}}
ight)=rg(z_B-z_A)[2\pi]$$

Argument d'un quotient

Soient A, B et C trois points distincts d'affixes respectives z_A , z_B et z_C (avec $z_A \neq z_B$):

$$\left(\overrightarrow{ ext{AB}};\overrightarrow{ ext{AC}}
ight) = rg\left(rac{z_C - z_A}{z_B - z_A}
ight)[2\pi]$$