CHM102A

Problem Set 3

1. What is the role of protein chain (globin) in dioxygen transport proteins like hemoglobin or myoglobin?

Ans: Protein chain effectively provides protection and plays key role in preventing bimolecular contacts between heme groups. It prevents (i) irreversible oxidation of Fe(II) to Fe(III), (ii) formation of Fe-O₂-Fe dimer, (iii) makes Hb/Mb water-soluble and (iv) reduce heme affinity towards CO. Following unfavourable reactions do not take place when heme unit is packed within a protein chain.

- 2. Which of the following statement(s) are TRUE for Hemoglobin (Hb) and/or myoglobin (Mb).
- (i) Hemoglobin is tetramer of myoglobin.
- (ii) Proximal histidine makes a hydrogen bond with dioxygen at the active site of oxymyoglobin.
- (iii) Iron atom move away from heme plane upon oxygenation in Mb.
- (iv) Binding affinity of free heme group to CO is much higher compare to the binding affinity of CO to heme present in Mb.
- (v) Mb is having lower binding affinity than Hb at low partial pressure of O₂ (pO₂)
- 3. Draw the crystal field splitting diagram for deoxy-myoglobin and oxy-myoglobin with proper labelling and filling up of the electrons.

4. Do the electron count around central metal ion for the following compounds:

(a) $Co_2(CO)_8$

Co = 9

 $3 \text{ terminal CO} = 3 \times 2 = 6$

2 bridging $CO = 2 \times 1 = 2$

One Co-Co bond = 1

 $Total = 18 e^{-}$

(b) $[HMn(CO)_3(PPh_3)_2]$

(Ionic method)

 $Mn^+ = 6$

3 bridging $CO = 3 \times 2 = 6$

 $2 \text{ PPh}_3 = 2 \times 2 = 4$

 $H^{-} = 2$

 $Total = 18 e^{-}$

(c)	$Ru^{2+} = 6$
r ¬⊕	η^3 -allyl = 4
co l	$2 \text{ PPh}_3 = 2 \times 2 = 4$
PPh ₃	1 terminal CO = 2
Řu	
PPh ₃	$Total = 16 e^{-}$
(d)	Re(I) = 6
0 0	$\eta^5 - C_5 H_5 = 6$
C_{C}	terminal $CO = 2 \times 2 = 4$
	bridging CO = 1
Re—Re	Re-Re bond = 1
	$Total = 18 e^{-}$

5. Identify the first-row transition metal for the following 18-electron species:

(a) $[M(CO)_3(PPh_3)]$

- (b) HMn(CO)₅
- (c) $(\eta^4-C_8H_8)M(CO)_3$ (d) $[(\eta^5-$

 $C_5H_5)M(CO)_3]_2$ (assume single M-M bond) (e) $(\eta^5-C_5H_5)M(C_2H_4)_2$

Ans: (a) $[M(CO)_3(PPh_3)]$: 3 CO = 6, PPh₃ = 2, (-)ve charge = 1: Total = 9, So need (18-9) = 9 e⁻ from metal, so, M= Cobalt (Co)

(b) HMn(CO)₅: 5 CO = 10, H = 1: Total = 11, need (18-11) = 7 e^- from M. Thus M = Mn.

(c) $(\eta^4 - C_8 H_8) M(CO)_3$: 3 CO = 6, $\eta^4 - C_8 H_8 = 4$; Total = 10, need (18-10) = 8 e⁻ from M, M = Fe

(d) $[(\eta^5 - C_5 H_5)M(CO)_3]_2$: 3 CO = 6, $\eta^5 - C_5 H_5 = 5$, M-M bond = 1; Total = 12, need (18-12) = 6 e⁻ from M, so, M = Cr.

(e) $(\eta^5 - C_5 H_5) M(C_2 H_4)_2$: $\eta^5 - C_5 H_5 = 5$, $2 C_2 H_4 = 2x 2 = 4$, Total = 9 e⁻, need (18-9) = 9 e⁻ from M, thus M = Co

6. Which of the following species will act as strong oxidizing or reducing agent?

Decamethylcobaltocene

Ferrocenium hexafluorophosphate

 $[\text{Co}(\eta^5\text{-C}_5\text{Me}_5)_2] \text{ is a 19 electron system } [\text{Co} = 9 \text{ e}^- + 2(\eta^5\text{-C}_5\text{Me}_5) = 2x5 = 10 \text{ e}^-, \text{ Total} = 19 \text{ e}^-$) around cobalt, so to achieve stable 18 e⁻ count it will release one electron with ease to form $[\text{Co}(\eta^5\text{-C}_5\text{Me}_5)_2]^+ \text{ and act as a strong reducing agent.}$

[Fe(η^5 -C₅H₅)₂](PF₆): [Fe(η^5 -C₅H₅)₂]⁺ having 17 electron around iron [Fe = 8 e⁻ + 2(η^5 -C₅H₅)= 2 x 5 = 10 e⁻, (+) charge= -1 e⁻, Total = 17 e⁻], so to have 18 e⁻, it need one more electron and get reduced itself, thus acting as efficient oxidizing agent.

7. Why does CO bind a metal through its less electronegative carbon atom than its more electronegative oxygen? What makes it a good π acceptor ligand? (THIS PROBLEM IS NOT FOR ANY FINAL TEST)

The highest occupied molecular orbital (HOMO) of CO is weakly antibonding (compared to O atomic orbitals) and mainly centered on the carbon. Moreover, π^* -antibonding orbital which is the lowest unoccupied molecular orbital (LUMO) is also of comparatively lower energy making it possible to effectively interact with metal filled t_{2g} orbitals for π -back bonding. There exists a strong backbonding of metal electrons to the π^* antibonding orbitals of CO.

8. The CO stretching frequency of the following species is listed below. Provide a convincing explanation.

Compound	ν _{CO} (cm ⁻¹)
free CO	2143
[Mn(CO) ₆] ⁺	2090
Cr(CO) ₆	2000
[V(CO) ₆]-	1860
[Ti(CO) ₆] ² -	1750

Ans: CO stretching frequency depends on effective charge on the metal centre. As the electron density on a metal centre increases down the table, more π -back bonding to the CO ligands takes place. This weakens the C-O bond as more electron density from low-valent metal is pumped into π^* antibonding orbitals of CO. Hence C-O bond order is lowered which is evident from the lowering of CO

stretching frequency.

9. Identify A and B in the following reaction with proper justification.

$$2 (\eta^{5}-C_{5}H_{5})_{2}Co + I_{2} \longrightarrow A + B$$

$$2(\eta^{5}-C_{5}H_{5})_{2}Co + I_{2} \longrightarrow 2[(\eta^{5}-C_{5}H_{5})_{2}Co]^{+} + 2 I^{-}$$

$$19 e^{-} \qquad 18 e^{-}$$
cobalticinium ion

(See reasoning in Q6, similar explanation is valid for $[Co(\eta^5-C_5Me_5)_2]$ and $[Co(\eta^5-C_5H_5)_2]$)