

Université Libre de Bruxelles

Implementation of High-Level Cryptographic Protocols using a SoC platform

June 24th, 2015

Quentin Delhaye

- Context
- 2 Cryptographic protocols
- Platform
- 4 Implementation
- Results
- Conclusion

Objectives

- Real life use cases.
- Decrease CPU load.
- Improve performance.

Cryptographic protocols

VPN

- TLS
- IPsec

Schemes

- AES
- SHA-2
- Diffie-Hellman
- RSA

- Context
- Cryptographic protocols
- Open the state of the state
- 4 Implementation
- Results
- Conclusion

Linux structure

Linux structure (Cont'd)

- Context
- 2 Cryptographic protocols
- Opening the second of the s
- 4 Implementation
 - OpenVPN
 - IPsec
- Results
- Conclusion

OpenVPN

IPsec

- Context
- 2 Cryptographic protocols
- Opening the state of the sta
- 4 Implementation
- Results
 - TLS connections
 - File transfer
- Conclusion

TLS connections - Context

- 1 server, 10 clients
- 1-second connections
- RSA-1024/2048/4096
- OpenVPN

TLS connections - OpenVPN

File transfer - Context

- 128MB file
- AES-256-CBC/SHA-256
- OpenVPN/IPsec

File transfer - OpenVPN

File transfer – IPsec

Conclusion

TLS connections

- 589% connections
- 5% the CPU usage

File transfer

- Drop OpenVPN
- 89% performance
- 23% the CPU usage

Conclusion

Ongoing development

