Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» Факультет программной инженерии и компьютерной техники

Практическая работа №5 по дисциплине **Теория вероятностей и математическая статистика**

Вариант №12

Выполнил: Селянта Олег Дмитриевич

Группа: Р3214

Преподаватель: Селина Елена Георгиевна

Задание

Каждый студент получает выборку из 20 чисел. Необходимо определить следующие статистические характеристики: вариационный ряд, экстремальные значения и размах, оценки математического ожидания и среднеквадратического отклонения, эмпирическую функцию распределения и её график, гистограмму и полигон приведенных частот группированной выборки. Для расчета характеристик и построения графиков нужно написать программу на одном из языков программирования. Листинг программы и результаты работы должны быть представлены в отчете по практической работе

Вариант №12

0.	41	1.63	-1.53	-0.2	0.85	0.09	1.54	0.25	1.24	-0.26	1.08	0.42	-0.92	-0.91	1.15	-0.82	0.26	0.96	1.57	0.72
				0	0.00	0.00		00		* *			0.0_	0.0-		0.0-	00	0.00		0

Выполнение

Вариационный ряд

-1.53	-0.92	-0.91	-0.82	-0.26	-0.2	0.09	0.25	0.26	0.41	0.42	0.72	0.85	0.96	1.08	1.15	1.24	1.54	1.57	1.63
Cta	Статистический ряд																		

-1.	.53	-0.92	-0.91	-0.82	-0.26	-0.2	0.09	0.25	0.26	0.41	0.42	0.72	0.85	0.96	1.08	1.15	1.24	1.54	1.57	1.63
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Экстремальные значения

Минимальное значение: $x_0 = -1.53$; Максимальное значение: $x_{20} = 1.63$

Размах

Размах = наибольшее значение - наименьшее значение = x_{20} - x_0 ; Размах = 3.16

Математическое ожидание

Для данной выборки статистический ряд будет совпадать с вариационным, так как каждое значение встречается только раз

Выборочное среднее (выборочное математическое ожидание) - среднее арифметическое всех значений выборки, считается по формуле:

$$\overline{x_B} = \frac{1}{n} \sum_{i=1}^k x_i \cdot n_i$$

Для исходной выборки

$$\overline{x_B} = 0.3765$$

Выбороная дисперсия

Выбороная дисперсия D_B - среднее арифметическое квадратов отклонений значений выборки от выборочной средней $\overline{x_B}$, считается по формуле:

$$D_B = \frac{1}{n} \sum_{i=1}^k (x_i - \overline{x_B})^2 \cdot n_i$$

$$D_B = 0.3765$$

Среднеквадратическое отклонение

Выборочное среднее квадратическое отклонение выборки определяется формулой

$$\sigma_B = \sqrt{D_B}$$

Для исходной выборки

$$\sigma_B = 0.897927$$

Исправленное выборочное среднее квадратическое отклонение

При решении практических используется величина

$$S^{2} = \frac{n}{n-1} \sum_{i=1}^{k} (x_{i} - \overline{x_{B}})^{2} \cdot n_{i} = \frac{n}{n-1} D_{B}$$

Которая называется исправленной выборочной дисперсией Величина $S=\sqrt{S^2}$ называется исправленным выборочным средним квадратическим отклонением Для исходной выборки

$$S = 0.921254$$

Эмпирическая функция распределения

Эмпирической (статистической) функцией распределения называется функция $F_n^x(x)$, определяющая для каждого значения x частность события $\{X < x\}$:

$$F_n^*(x) = p^* \{ X < x \}$$

Где $p^x = \frac{n_x}{n}$ - отношение количесвта вариантов $\{ {
m X} < {
m x} \}$ к общему числу вариантов

$$F_n^*(x) = \begin{cases} 0 & \text{при } x < -1.53 \\ 0.05 & \text{при } -1.53 \leq x < -0.92 \\ 0.1 & \text{при } -0.92 \leq x < -0.91 \\ 0.15 & \text{при } -0.91 \leq x < -0.82 \\ 0.2 & \text{при } -0.82 \leq x < -0.26 \\ 0.25 & \text{при } -0.26 \leq x < -0.2 \\ 0.3 & \text{при } -0.26 \leq x < 0.09 \\ 0.35 & \text{при } 0.09 \leq x < 0.25 \\ 0.4 & \text{при } 0.25 \leq x < 0.26 \\ 0.45 & \text{при } 0.26 \leq x < 0.41 \\ 0.5 & \text{при } 0.41 \leq x < 0.42 \\ 0.55 & \text{при } 0.42 \leq x < 0.72 \\ 0.6 & \text{при } 0.72 \leq x < 0.85 \\ 0.65 & \text{при } 0.85 \leq x < 0.96 \\ 0.7 & \text{при } 0.96 \leq x < 1.08 \\ 0.75 & \text{при } 1.08 \leq x < 1.15 \\ 0.8 & \text{при } 1.15 \leq x < 1.24 \\ 0.85 & \text{при } 1.24 \leq x < 1.54 \\ 0.9 & \text{при } 1.54 \leq x < 1.57 \\ 0.95 & \text{при } 1.57 \leq x < 1.63 \\ 1 & \text{при } x \geq 1.63 \end{cases}$$

Рис. 1: График эмпирической функции распределения

Интервальный статистический ряд

Так как признак является непрерывным, то имеет смысл составить интервальный статический ряд (для дальнейшего использования в функции распределения). Пользуясь формулой Стерджеса, найдем величину интервала

$$h = \frac{x_{max} - x_{min}}{1 + log_2 n}$$

Для исходной выборки

$$h = 0.59377$$

Учитывая рекомендацию по выбору начала первого интервала $x=x_{min}-\frac{h}{2}$

- 1						
	[-1.8269;-1.2331)	[-1.2331;-0.6393)	[-0.6393;-0.0456)	[-0.0456;0.5482)	[0.5482;1.142)	[1.142; 1.7357)
	1	3	2	5	4	5

Рис. 2: Гистограмма

Рис. 3: Полигон приведенных частот группированной выборки