Impuls dan Momentum

A. Momentum (p)

p = m.v	p = momentum (kgm/s), besaran vektor;
	m = massa (kg) v = kecepatan (m/s)

B. Impuls (I)

Gaya bekerja suatu benda dalam selang waktu t adalah Impuls (I).

C. Hukum Kekekalan Momentum

Pada proses tumbukan/ledakan	$\Sigma P_{\text{sebelum}} = \Sigma P_{\text{sesudah}}$
Pada 2 benda bergerak dalam 1 garis lurus	$m_1v_1 + m_2v_2 = m_1v_1 + m_2v_2$

D. Tumbukan

Kelentingan suatu tumbukan ditentukan dengan koefisien restitusi (e).

Lenting Sempurna: Koefisien restitusi
$$e = 1$$
Lenting Sebagian: Koefisien restitusi $e = 0 < e < 1$
Tidak Lenting Sama sekal: Koefisien restitusi $e = 0$

E. Benda Dijatuhkan dan Memantul

Benda yang jatuh kemudian memantul, maka besarnya koefisien restitusi dirumuskan dengan:

$$e = -\frac{v_1}{v_1} = \sqrt{\frac{h_2}{h_1}}$$

Berlaku: e =

$$e = \sqrt{\frac{h_{n+1}}{h_n}}$$

Dengan h_n adalah tinggi pantulan ke-n (n = 0, 1,2).

G. Kasus Peluru yang Ditembakkan ke Balok

