§5 子室间

- 一、正交子空间
- 二、子空间的正交补

一、欧氏空间中的正交子空间

1. 定义:

1) V₁与V₂是欧氏空间V中的两个子空间,如果对

 $\forall \alpha \in V_1, \beta \in V_2,$ 恒有

$$(\alpha,\beta)=0,$$

则称子空间 V_1 与 V_2 为正交的,记作 $V_1 \perp V_2$.

2) 对给定向量 $\alpha \in V$, 如果对 $\forall \beta \in V_1$, 恒有

$$(\alpha,\beta)=0,$$

则称向量 α 与子空间 V_1 正交,记作 $\alpha \perp V_1$.

注:

- ① $V_1 \perp V_2$ 当且仅当 V_1 中每个向量都与 V_2 正交.
- ② $V_1 \perp V_2 \Rightarrow V_1 \cap V_2 = \{0\}.$

$$\left(: \forall \alpha \in V_1 \cap V_2 \Rightarrow (\alpha, \alpha) = 0 \Rightarrow \alpha = 0. \right)$$

③ 当 $\alpha \perp V_1$ 且 $\alpha \in V_1$ 时,必有 $\alpha = 0$.

2. 两两正交的子空间的和必是直和.

证明:设子空间 V_1, V_2, \dots, V_s 两两正交,

要证明 $V_1 \oplus V_2 \oplus \cdots \oplus V_s$, 只须证:

$$V_1 + V_2 + \cdots + V_s$$
 中零向量分解式唯一.

设
$$\alpha_1 + \alpha_2 + \cdots + \alpha_s = 0$$
, $\alpha_i \in V_i$, $i = 1, 2, \cdots, s$

- $V_i \perp V_j, i \neq j$
- $\therefore (\alpha_i, 0) = (\alpha_i, \alpha_1 + \alpha_2 + \dots + \alpha_s) = (\alpha_i, \alpha_i) = 0$

由内积的正定性,可知 $\alpha_i = 0$, $i = 1, 2, \dots, s$.

二、子空间的正交补

1. 定义:

如果欧氏空间V的子空间 V_1, V_2 满足 $V_1 \perp V_2$, 并且 $V_1 + V_2 = V$, 则称 V_2 为 V_1 的正交补.

2. n维欧氏空间V的每个子空间 V_1 都有唯一正交补.

证明: 当 $V_1 = \{0\}$ 时, V就是 V_1 的唯一正交补.

当 $V_1 \neq \{0\}$ 时, V_1 也是有限维欧氏空间.

取 V_1 的一组正交基 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_m$,

由定理1,它可扩充成V的一组正交基

$$\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_m, \varepsilon_{m+1}, \cdots, \varepsilon_n,$$

记子空间
$$L(\varepsilon_{m+1},\dots,\varepsilon_n)=V_2$$
.

显然,
$$V_1 + V_2 = V$$
.

又对
$$\forall \alpha = x_1 \varepsilon_1 + x_2 \varepsilon_2 + \dots + x_m \varepsilon_m \in V_1$$
,

$$\beta = x_{m+1}\varepsilon_{m+1} + \dots + x_n\varepsilon_n \in V_2,$$

$$(\alpha, \beta) = (\sum_{i=1}^{m} x_i \varepsilon_i, \sum_{j=m+1}^{n} x_j \varepsilon_j) = \sum_{i=1}^{m} \sum_{j=m+1}^{n} x_i x_j (\varepsilon_i, \varepsilon_j) = 0$$

$$: V_1 \perp V_2$$
. 即 V_2 为 V_1 的正交补.

再证唯一性. 设 V_2,V_3 是 V_1 的正交补,则

$$V = V_1 \oplus V_2$$
 $V = V_1 \oplus V_3$

对 $\forall \alpha \in V_2 \subset V$, 由上式知 $\alpha \in V_1 \oplus V_3$

即有
$$\alpha = \alpha_1 + \alpha_3$$
, $\alpha_1 \in V_1$, $\alpha_3 \in V_3$

$$\nabla V_1 \perp V_2$$
, $V_1 \perp V_3$ $\therefore \alpha_1 \perp \alpha_3, \alpha \perp \alpha_1$,

从而有
$$(\alpha,\alpha_1) = (\alpha_1 + \alpha_3,\alpha_1) = (\alpha_1,\alpha_1) + (\alpha_3,\alpha_1)$$

$$=(\alpha_1,\alpha_1)=0$$

由此可得
$$\alpha_1 = 0$$
, 即有 $\alpha \in V_3$ $\therefore V_2 \subseteq V_3$.

同理可证
$$V_3 \subseteq V_2$$
, $\therefore V_2 = V_3$. 唯一性得证.

注: ① 子空间W的正交补记为
$$W^{\perp}$$
. 即
$$W^{\perp} = \left\{ \alpha \in V \middle| \alpha \perp W \right\}$$

- ② n 维欧氏空间V的子空间W满足:
 - i) $(W^{\perp})^{\perp} = W$
 - ii) $\dim W + \dim W^{\perp} = \dim V = n$
 - iii) $W \oplus W^{\perp} = V$
 - iv) W的正交补 W 必是W的余子空间.

但一般地,子空间W的余子空间未必是其正交补.

3. 内射(投)影

设W是欧氏空间V的子空间,由 $V = W \oplus W^{\perp}$,

对 $\forall \alpha \in V$, 有唯一的 $\alpha_1 \in W$, $\alpha_2 \in W^{\perp}$, 使

$$\alpha = \alpha_1 + \alpha_2$$

 α_1 为 α 在子空间W上的内射(投)影.