

TEST REPORT No.: 17-1-0105501T04a-C1

According to: FCC Regulations Part 22, Part 24, Part 27

ISED-Regulations

RSS-132 Issue 3, RSS-133 Issue 6, RSS-139 Issue 2, RSS-Gen Issue 4 RSS-130 Issue 1

for

Daimler Trucks North America

7 620 000 296 66-10777-001

FCC: 2AKC8CTP10777001 ISED: 22221-CTP10777001 PMN: CTPMIDDTNA HVIN: CTPMIDDTNA FVIN: 17.02.S.016

Accredited EMC-Test Laboratory

Industry Canada Reg. No.: 3462D-1 Reg. No.: 3462D-2 Reg. No.: 3462D-3

Voluntary Controls for Electromagnetic Emissions

> Reg. No.: R-20013, C-20009, T-20006, G-20013

accredited according to DIN EN ISO/IEC 17025

CETECOM GmbH

Laboratory Radio Communications & Electromagnetic Compatibility
Im Teelbruch 116 • 45219 Essen • Germany
Registered in Essen, Germany, Reg. No.: HRB Essen 8984
Tel.: + 49 (0) 20 54 / 95 19-954 • Fax: + 49 (0) 20 54 / 95 19-964
E-mail: info@cetecom.com • Internet: www.cetecom.com

Laboratory Accreditation and Listings

Table of contents

1. SUMMARY OF TEST RESULTS	3
1.1. TX mode, Test overview of FCC and Canada IC/ISED (RSS) Standards	5
2. ADMINISTRATIVE DATA	
2.1. Identification of the testing laboratory	
2.2. Test location	6
2.3. Organizational items	
2.4. Applicant's details	
3. EQUIPMENT UNDER TEST (EUT)	
3.1. SUMMARY OF RESULTS AND TECHNICAL DATA OF MAIN EUT DECLARED BY API	PLICANT7
3.2. EUT: Type, S/N etc. and short descriptions used in this test report	9
3.3. Auxiliary Equipment (AE): Type, S/N etc. and short descriptions	
3.5. EUT operating modes	
4. DESCRIPTION OF TEST SYSTEM SET-UP'S	11
4.1. Test system set-up for conducted measurements on antenna port	11
4.2. Test system set-up for radiated magnetic field measurements below 30 MHz	13
4.3. Test system set-up for radiated spurious emission measurements	
5. MEASUREMENTS	
5.1. RF-Parameter - RF Peak power output conducted and PAPR	15
5.2. General Limit - Radiated field strength emissions below 30 MHz	
5.4. Measurement uncertainties	
6. ABBREVIATIONS USED IN THIS REPORT	40
7. ACCREDITATION DETAILS OF CETECOM'S LABORATORIES AND TEST SITES	40
8. INSTRUMENTS AND ANCILLARY	41
9. VERSIONS OF TEST REPORTS (CHANGE HISTORY)	44
Table of annex Total pages	
Annex 1: Test result diagrams (separate document) CETECOM_TR17-1-0105501T04a-C1-A1	99
$\textbf{Annex 2: Internal photographs of EUT} \ (separate \ document) \ CETECOM_TR17-1-0105501T06a-AMS \ (separate \ document) \ CETECOM_TR17-1-0105501T06a-AMS \ (separate \ document) \ CETECOM_TR17-1-0105501T06a-AMS \ (separate \ document) \ (separa$	2 4
Annex 3: External photographs of EUT (separate document) CETECOM_TR17-1-0105501T06a-A	3 7
Annex 4: Test set-up photographs (separate document) CETECOM_TR17-1-0105501T06a-A4	7

The listed attachments are an integral part of this report.

1. Summary of test results

The test results apply exclusively to the test samples as presented in this Report. The CETECOM GmbH does not assume responsibility for any conclusions and generalizations taken in conjunction with other specimens or samples of the type of the item presented to tests.

The test results apply exclusively to the test samples as presented in this Report. The CETECOM GmbH does not assume responsibility for any conclusions and generalizations taken in conjunction with other specimens or samples of the type of the item presented to tests. Also we refer on special conditions which the applicant should fulfil according §2.927 to §2.948, special focus regarding modification of the equipment and availability of sample equipment for market surveillance tests.

The Equipment Under Test (in this report, hereinafter referred as EUT) supports radiofrequency technologies and use an already approved cellular module with FCC-ID: XPYTOBYL200 and ISED/IC: 8595A-TOBYL200. This test report shows results for LTE technology only. Other implemented wireless technologies were not considered within this test report.

Following tests have been performed to show compliance with applicable FCC Part 2, Part 22, Subpart H, Part 24, Subpart E (Broadband PCS) and FCC Part 27, Subpart C, of the FCC CFR Title 47 Rules, Edition 4th November 2016 and Canada RSS-132 Issue 3, RSS-133 Issue 6 and RSS-Gen Issue 4 standards.

1.1. TX mode, Test overview of FCC and Canada IC/ISED (RSS) Standards

No. of	,			References & Lim	References & Limits			
Diagram group	Test case	Port	FCC Standard	RSS Section	Test limit	EUT set-up	op- mode	Result
1	AC- Power Lines Emissions Conducted (0,15 - 30 MHz)	AC- Power lines (conducted)	§15.207	§15.207 limits RSS-Gen, Issue 4: Chapter 8.8 ISED: Table 3, Chapter 8.8				Remark 1.)
2	General field strength emissions (9 kHz - 30 MHz)		§15.209(a)	RSS-Gen, Issue 4: Chapter 8.9, Table 5+6	2400/F(kHz) µV/m 24000/F(kHz) µV/m 30 µV/m	2	1+2+3 +4+5	passed
			\$2.1046 \$22.913(a)(2)	RSS-132, Issue 3: Chapter 5.4 SRSP-503: 5.1.3	< 7 Watt (ERP)			
7	RF-Power (ERP/EIRP)	Cabinet +	§24.232(c)	RSS-133, Issue 6 Chapter 4.1/6.4 SRSP-510: 5.1.2	< 2 Watt (EIRP)	2	1+2+3 +4+5	Calculated
	(EKI/EIKI)	connecting cables	§27.50 (d)(4)	RSS-139: Issue 3 Chapter 6.5 SRSP-513: 5.1.2	< 1 Watt (EIRP)		T4T3	passed
		(radiated)	§27.50(c)(10)	RSS-130, Issue 1, Chapter 4.4	< 3 Watt (ERP)			
8	Spurious		§2.1053(a) §2.1057	RSS-Gen., Issue 4		2	1+2+3	passed
	emissions		§22.917(a)(b)	RSS-132: Chapter 5.5(i)(ii)		_	+4+5	pussed
9	Band-Edge compliance		\$24.238(a)(b) \$27.53(h)(1)(3) (i)(ii)(iii)	RSS-133: Chapter 6.5.1(i)(ii) RSS-139: Issue 3 Chapter 6.6 (i) (ii)	43+10log(P) dBc	2	1+2+3 +4+5	passed
			§27.53(g)	RSS-130: Issue 1 Chapter 4.6.1				

30	RF Power		§2.1046		N/A	1	1+2+3 +4+5	passed
34	26dB Emission bandwidth		\$2.1040/\$\	RSS-Gen, Issue	26dBc Emissions BW			Not performed
35	99% Occupied bandwidth		§2.1049(h)	4, Chapter 6.6	99% Power			modules's certification *3)
36	Spurious emissions	Antenna terminal (conducted)	\$2.1051 \$2.1057 \$22.917(a)(b) \$24.238(a)(b)	RSS-132, Issue 3: 5.5(i)(ii) RSS-133, Issue 6: 6.5.1(i)(ii) RSS-139, Issue 3 Chapt. 6.6 (i) (ii)	43+10log(P) dBc			Not performed see initial modules's certification *3)
37	Band-Edge compliance		§27.53	RSS-130, Issue 1 Chapt. 4.6.1 Chapt. 4.6.2				Not performed see initial modules's certification *3)
38	Frequency stability		\$22.355, table C-1 \$24.235 \$2.1055(a)(2) \$27.54	RSS-132, Issue 3: Chapter 5.3 RSS-133, Issue 6: Chapter 6.3 RSS-130, Issue 1: Chapter 4.3 RSS-139, Issue 3, Chapter 6.4	< ±2.5ppm			Not performed see initial modules's certification *3)

1.2. RX mode, tests overview according FCC Part 15B and Canadian RSS Standards

No. of Diagram	Test case	Port	References & Limits			EUT	EUT op-	Result
group			FCC Standard	FCC Standard RSS Section Test limit		set-up	mode	
1	AC-Power Lines conducted Emissions	AC-Power lines	§15.107 §15.207	RSS-Gen, Issue 8: Chapter 8.8	FCC §15.107 class B limits §15.207 limits			Remark 1
3	Receiver radiated emissions	Cabinet + Interconnec ting cables	§15.109 §15.33 §15.35	RSS-132, Issue 3: 6.6 RSS-Gen, Issue 4: 5.3 RSS 133, Issue 6: 6.6	FCC 15.109 class B limits RSS-Gen: Chapter 5.3+Chapter 7.1.2			Passed, Remark 2

Remark:

- 1.) not applicable since powered within car-environment
- 2.) See separate test report no. CETECOM_TR17-1-0105501T01a-C1 for measurements according Part 15, Subpart B / RSS-Gen (ICES-003)
- 3.) Please refer to modular test reports of FCC-ID: XPYTOBYL200

1.3. Attestation:

I declare that all measurements were performed by me or under my supervision and that all measurements have been performed and are correct to my best knowledge and belief to Industry Canada standards. All requirements as shown in above table are met in accordance with enumerated standards.

The current version of the Test Report CETECOM_TR17-1-0105501T04a-C1 replaces the test report CETECOM_TR17-1-0105501T04a dated 2017-10-05. The replaced test report is herewith invalid.

DiplIng. Rachid Acharkaoui	DiplIng N. Perez
Responsible for test section	Responsible for test report

2. Administrative Data

2.1. Identification of the testing laboratory

Company name: CETECOM GmbH Address: Im Teelbruch 116

45219 Essen - Kettwig

Germany

Responsible for testing laboratory: Dipl.-Ing. Rachid Acharkaoui

Deputy: Dipl.-Ing. Niels Jeß

2.2. Test location

2.2.1. Test laboratory "CTC"

Company name: see chapter 2.1. Identification of the testing laboratory

2.3. Organizational items

Responsible for test report and

project leader: Dipl.-Ing N. Perez

Receipt of EUT: 2017-08-17

Date(s) of test: 2017-09-18 to 2017-10-02

Date of report: 2018-01-08

Version of template: 13.02

2.4. Applicant's details

Applicant's name: Daimler Trucks North America

Address: 4747 N. Channel Ave.

Portland, OR 97217

U.S.A.

Contact person: Mr. Jürgen Weber

2.5. Manufacturer's details

Manufacturer's name: Robert Bosch Car Multimedia Portugal, S.A.

Address: Rua Max Grundig 35

4705-820 Braga

Portugal

3. Equipment under test (EUT)

3.1. SUMMARY OF RESULTS AND TECHNICAL DATA OF MAIN EUT DECLARED BY APPLICANT

	Ι								
TX-frequency range	☑ LTE Band 2: 1850 - 1910 MHz (Uplink), 1930-1990 MHz (Downlink)								
(E-UTRA operating bands)		E LTE Band 4: 1710 - 1755 MHz (Uplink), 2110 - 2155 MHz (Downlink)							
		5: 824 - 849 MHz (Uplink), 869							
		☑ LTE Band 7: 824 - 849 MHz (Uplink), 869-894 MHz (Downlink)							
		☐ LTE Band 13: 777 - 787 MHz (Uplink), 746-756 MHz (Downlink)							
	区 LTE Band 1	■ LTE Band 17: 704 - 716 MHz (Uplink), 734 - 746 MHz (Downlink)							
Type of modulation	QPSK, 16-QA	M							
Data rates	Cat3, Downlin	ık: max. 100Mbps, Uplink: max	. 50Mbps						
Number of channels	■ LTE Band 2	2: UARFCN range 18600 - 1919	99						
- Table 5.4.4-1 accord. 3GPP	■ LTE Band 4	4: UARFCN range 19950 - 2039	99						
TS36.521-1	■ LTE Band 5	5: UARFCN range 20400 - 2064	19						
	■ LTE Band 7	7: UARFCN range 20750 - 2144	19						
(See Note in 3GPP-Standard about	☐ LTE Band 13: UARFCN range 23180 - 23279								
channels not to be used depending on channel bandwidths)	☑ LTE Band 17: UARFCN range 23730 - 23849								
Emission designator(s)	Nominal	QPSK Modulation:	16-QAM Modulation						
Emission designator(s)	Channel	QF SK Wodulation.	10-QAWI Wodulation						
	bandwidth								
	Dandwidth	See original grant under:	See original grant under:						
		See original grant under.	See original grant under.						
	1.4 MHz	https://apps.fcc.gov/oetcf/tcb/reports/	https://apps.fcc.gov/oetcf/tcb/reports/T						
	3 MHz	Tcb731GrantForm.cfm?mode=COP	cb731GrantForm.cfm?mode=COPY&						
	5 MHz	Y&RequestTimeout=500&tcb_code	RequestTimeout=500&tcb_code=≈						
	10 MHz	=&application_id=fy%2FxVplxCthQ V%2Bcew9PD2Q%3D%3D&fcc_id	plication_id=fy%2FxVplxCthQV%2B cew9PD2Q%3D%3D&fcc_id=XPYT						
	15 MHz 20 MHz	=XPYTOBYL200	OBYL200						
Antenna Type	☐ Integrated								
Amemia Type	_	o RF- connector							
	· · · · · · · · · · · · · · · · · · ·	eparate RF-connector							
	✓ Values:	parate Ri-connector							
	850MHz Band	I. OAD;							
Antenna Gain Tx *1)	1700MHz band								
	- , , , ,								
	1900MHz Band: 0dBi								

MAX Average Output Power:							
Conducted LTE-Mode 2	22.22 dBm (AV)	2.22 dBm (AV)					
LTE-Mode 4	22.21 dBm (AV)	22.21 dBm (AV)					
LTE-Mode 5	22.24 dBm (AV)						
LTE-Mode 7	21.81 dBm (AV)						
LTE-Mode 17	22.42 dBm (AV)						
EIRP	conducted output power + anter	ına gain					
LTE-Mode 2	22.22 dBm + 0 dBi = 22.22 dBr	n					
LTE-Mode 4	22.21 dBm + 0 dBi = 22.21 dBr	n					
LTE-Mode 5	22.24 dBm + 0 dBi = 22.24 dBr	n					
LTE-Mode 7	21.81 dBm + 0 dBi = 21.81 dBr	n					
LTE-Mode 17	22.42 dBm + 0 dBi = 22.42 dBr	n					
ERP	EIRP – 2.15dBi						
LTE-Mode 2	22.22 dBm - 2.15 dBi = 20.07 dBm						
LTE-Mode 4	22.21 dBm - 2.15 dBi = 20.06 c	dBm					
LTE-Mode 5	22.24 dBm - 2.15 dBi = 20.09 dBi	dBm					
LTE-Mode 7	21.81 dBm - 2.15 dBi = 19.66 dBi	dBm					
LTE-Mode 17	22.42 dBm - 2.15 dBi = 20.27 dBi	dBm					
Installed option	☑ GSM 900 and GSM 1800 Bands (not usable in USA/Canada)						
	■ W-CDMA Band I and Band VIII (not usable in USA/Canada)						
	■ W-LAN, Bluetooth [©] , ANT+ wireless technologies						
	☑ GPS (not tested within this test report)						
Power supply	☑ DC power only: 24 V DC No	ominal					
Special EMI components							
EUT sample type	☐ Production	➤ Pre-Production	☐ Engineering				
FCC label attached	□ yes	≥ no					

Remark: *1)please refer to antenna data sheet "D126-0153A - HCEL-AG-0205A Installation Instruction Rev1"

3.2. EUT: Type, S/N etc. and short descriptions used in this test report

Short description*)	EUT	Туре	S/N serial number	HW hardware status	SW software status
EUT A	66-10777-001	7 620 000 296	2960006201	0601G01	17.02.S.016
EUT B	HCEL-AG-0205-01 / 955-180-001 (DTNA PN 66-03942- 002)	4G LTE/GNSS Low Profile Adhesive Mount Antenna			
EUT C	HWLN-AX-0115A-01	WiFi Low Profile Adhesive Mount Antenna			

^{*)} EUT short description is used to simplify the identification of the EUT in this test report.

3.3. Auxiliary Equipment (AE): Type, S/N etc. and short descriptions

AE short description *)	Auxiliary Equipment	Туре	S/N serial number	HW hardware status	SW software status
AE 1	Cable harness with loadbox		Harness#1		
AE 2	Cable harness reduced		Harness#2		

^{*)} AE short description is used to simplify the identification of the auxiliary equipment in this test report.

3.4. EUT set-ups

EUT set-up no.*)	Combination of EUT and AE	Remarks
set. 1	EUT A + EUT B + EUT C + AE 1	Radiated Set-up (main TX -antenna activated)
set. 2	EUT A + AE 2	Conducted measurement set-up

^{*)} EUT set-up no. is used to simplify the identification of the EUT set-up in this test report.

3.5. EUT operating modes

Jeraung modes	
Description of operating modes	Additional information
LTE Band2:	
Channel:	A communication link is established between the mobile station (UE) and the test simulator
18606 and 19175	
LTE FDD4	
Channel: 19965 and 20300	A communication link is established between the mobile station (UE) and the test simulator
LTE FDD5	
Channel: 20425 and 20625	A communication link is established between the mobile station (UE) and the test simulator
LTE FDD7	
Channel: 20750 and 21449	A communication link is established between the mobile station (UE) and the test simulator
LTE FDD 17	
Channel: 23755 and 23800	A communication link is established between the mobile station (UE) and the test simulator
	operating modes LTE Band2: Channel: 18606 and 19175 LTE FDD4 Channel: 19965 and 20300 LTE FDD5 Channel: 20425 and 20625 LTE FDD7 Channel: 20750 and 21449 LTE FDD 17 Channel:

^{*)} EUT operating mode no. is used to simplify the

test report.

4. Description of test system set-up's

4.1. Test system set-up for conducted measurements on antenna port

Cellular Conducted RF-Setup 1 (Cel-1 Set-up)

Tests Specification: Conducted spurious emissions, Emission Bandwidth

General Description: The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The

signal is first attenuated (2) before it is 0° divided by a power divider (3). One of the RF-signal path is connected to the test unit communication tester (4), other RF-path is connected to the spectrum – analyzer (5) for specific RF-measurements. The specific attenuation losses for both signal paths/branches are determined prior to the measurement within a set-up calibration. These are then taken into account by correcting

the measurement readings on the spectrum-analyzer.

Schematic:

Used Equipment:

Passive Elements

Test Equipment

Remark:

■ 10 dB Attenuator **区** CMW500

See List of equipment under each test case and chapter 8. for calibration info

(#530)

■ Low loss RF-

☑ DC-Power Supply

cables

区 6 dB resistive

■ Spectrum-Analyser

power

divider/coupler

(#529)

Testing method: ANSI C63.10:2013, KDB 971168 D01 v02r02

Measurement uncertainty: See chapter Measurement Uncertainties (Cel-1)

Cellular Conducted RF-Setup 2 (Cel-2 Set-up)

Tests Specification: Conducted Carrier power, Frequency Error

Schematic: Following modified test set-up apply for tests performed inside the climatic chamber

(frequency stability) or conducted RF-carrier power-measurement. The EUT RF-Signal is directly connected over suitable RF-connector over low-loss cable and an attenuator

(2) to the cellular radio communication test-unit. (5)

Testing method: ANSI C63.10:2013, KDB 971168 D01 v02r02

Used Equipment Passive Elements Test Equipment Remark:

■ 20 dB ■ CMW500 See List of equipment under each Attenuator test case and chapter 8. for

calibration info

Attenuator (#613)

cables

Measurement uncertainty See chapter Measurement Uncertainties (Cel-2)

4.2. Test system set-up for radiated magnetic field measurements below 30 MHz

Specification: ANSI C63.4-2014 §5.3, §8.2.1, §8.3.1.1+§8.3.2.1, ANSI C63.10-2013 chapter

6.4 (§6.4.4.2)

General Description: Evaluating the radiated field emissions are done first by an exploratory emission

measurement and a final measurement for most critical frequencies determined.

The loop antenna was placed at 1 m height above ground plane and 3 m measurement distance from set-up for investigations. Because of reduced measurement distance, correction data were applied, as stated in chapter "General Limit - Radiated field strength emissions below 30 MHz". The tests are performed in the semi anechoic room recognized by the regulatory commission.

Schematic:

Testing method:

Exploratory, preliminary measurement

The EUT and it's associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (step 90°, range 0° to 360°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2orthogonal axis (defined operational position of EUT), the emission spectrum was recorded. The loop antenna was moved at least to 2-perpendicular axes (antenna vector in direction of EUT and parallel to EUT) in order to maximize the emissions. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a data reduction table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Formula:

$$E_C = E_R + AF + C_L + D_F - G_A$$

 $M = L_T - E_C$

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position).

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

AF = Antenna factor

 C_L = Cable loss

D_F= Distance correction factor

 E_C = Electrical field – corrected value

 E_R = Receiver reading

 G_A = Gain of pre-amplifier (if used)

 $L_T = Limit$

M = Margin

All units are dB-units, positive margin means value is below limit.

Distance correction: Reference for applied correction (extrapolating) factors due to reduced

measurement distance:

ANSI C63.10:2013, §6.4.4.2 - Equations (2) + (3) + (4)

4.3. Test system set-up for radiated spurious emission measurements

Specification: ANSI C63.4-2014 chapter 8.3, ANSI C63.10-2013 chapter 6.6.3.3 & 6.6.4, ANSI

C63.26-2015, Chapter 4.6.3.3

General Description: Evaluating the emissions have to be done first by an exploratory emissions

measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 16-1-4:2010 compliant fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements

on the EUT.

Schematic:

Testing method:

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 1.50 m height which is placed on the turntable. By rotating the turntable (range 0° to 360° , step 45°) and the EUT itself on 3-orthogonal axis (the emission spectrum and it's characteristics was recorded with an EMI-receiver, broadband antenna and software.

The measurements are performed in horizontal and vertical polarization of the measurement antennas. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined. Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself over 3-orthogonal axis and the height for EUT with large dimensions.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out. The readings on the spectrum analyzer are corrected with conversion value between field strength and E(I)RP, so the readings shown are equivalent to ERP/EIRP values. Critical measurements near the limit are re-measured with a substitution method accord. ANSI/TIA/EIA 603 C/D

Formula:

 $E_C = E_R + AF + C_L + D_F - G_A$ (1)

 $Ec_{E(I)RP} = Ec - 95.2 dB$

 $M = L_T - Ec_{E(I)RP}$

 E_C = Electrical field – corrected value

 E_R = Receiver reading

M = Margin

 $L_T = Limit$

AF = Antenna factor

 $C_L = Cable loss$

 D_F = Distance correction factor (if used)

 $G_A = Gain of pre-amplifier (if used)$

 $Ec_{E(I)RP}$ = Electrical field corrected for E(I)RP

All units are dB-units, positive margin means value is below limit.

5. Measurements

5.1. RF-Parameter - RF Peak power output conducted and PAPR

5.1.1. Test location and equipments (for reference numbers please see chapter 'List of test equipment')

CITITI T COL TO	101 11.11 1 Cot location and equipments (for reference numbers please see enapter 121st or test equipment)									
test location	▼ CETECOM Esser	☐ Please see Chapter. 2.2.2								
test site	☐ 347 Radio.lab. 1	Radio.lab. 2								
spectr. analys.	□ 584 FSU	□ 489 ESU 40	□ 264	FSEK	□ 620	ESU 26				
signaling	□ 392 MT8820A	□ 436 CMU	□ 547	CMU	≥ 594	CMW500				
otherwise	□ 400 FTC40x15E	□ 401 FTC40x15E	□ 110	USB LWL	□ 482	Filter Matrix	□ 378	RadiSense		
DC power	□ 456 EA 3013A	□ 463 HP3245A	□ 459	EA 2032-50	□ 268	EA- 3050	□ 494	AG6632A	≥ 611 H	E3632A
otherwise	□ 331 HC 4055	□ 248 6 dB Att.	□ 529	Power div.		cable OTA2	0		≥ 530 1	0 dB Att.
line voltage	□ 230 V 50 Hz via p	oublic mains	□ 060	110 V/ 60 Hz v	ia PAS	5000				

5.1.2. Requirements and limits

7.1.2. Kcyun c	ments and mints
FCC	§2.1046, §27.50
IC	RSS-132: 5.4 + SRSP 503:5.1.3 for FDD Band 5 RSS-133: 4.1/6.4 + SRSP-510:5.1.2 for FDD Band 2 RSS-139, Issue 3: 6.5 RSS-199: Issue 1, §4.4 + PAR PK-AV ≤ 13 dB RSS-130, Issue 1 + SRSP-518
Limit	Maximum Power Output of the mobile phone should be determined while measured conducted. Limit LTE Band 5: 7 Watt ERP (38.4 dBm) Limit LTE Band 2: 2 Watt EIRP (33.0 dBm) Limit LTE Band 4: 1 Watt EIRP (30.0 dBm) Limit LTE Band 7: 2 Watt EIRP (33.0 dBm) FCC: Limit LTE Band 12/13/17: 3 Watt ERP (34.7dBm)
FCC Limit	FCC: Limit LTE Band 12/13/17: 3 Watt ERP (34.7dBm)
ISED Limit	ISED Limit LTE Band 12: 5 Watt EIRP (37dBm) ISED Limit LTE Band 13: 5 Watt EIRP (37dBm) ISED-Limit LTE Band 17: 5 Watt EIRP (37dBm)

5.1.3. Test condition and test set-up

Climatic conditions	Temperature: (22±3°C) Rel. humidity: (40±20)%
Test system set-up	Please see chapter "Test system set-up for conducted measurements on antenna port"
	The measurements were performed with the integrated power measurement function of the "radio communication tester CMW500 from Rohde&Schwarz company. In this way spectrum-analyzers instrument limitations can be avoided or minimized. Instead, CMW manufacturers declared measurement error can be considered for this measurement.
Measurement method	The attenuation (insertion loss) at the RF Inputs/Outputs of CMW were set according the path loss of the test set-up, determined in a step before starting the measurements. A suitable artificial antenna or RF-connector is provided by the applicant in order to perform the conducted measurements. Any data provided with the artificial antenna or connector, have been taken in account in order to correct the measurement data. (typical 0.3dB for attenuation of antenna connector)
	Peak and Average Values have been recorded for each channel and band. The Peak-to -Average-Ratio is determined by comparing the total peak power to total average power for each measurement.
	A call was established with a suitable communication test unit (CMW500). UE is set TX mode, highest transmit power conditions (RMC-mode), power saving techniques have been disabled (MPR-techniques)
Mobile phone settings	Tests have been performed in different EUT bandwidth settings and various settings for allocated RBs.
	The measurements were made at the low, middle and high carrier frequencies of each of the supported operating band within the designated range within the allowed channel bandwidths. Choosing three TX-carrier frequencies of the mobile phone, should be sufficient to demonstrate compliance.

5.1.4. Power results 5.1.4.1. LTE Band 2 results

5.1.4.1. LTE Band LTE-Band 2	2 ICSUI	ıs			QPSK-Modulation	on .	16-0	QAM-Modulation	. <u> </u>				
channel bandwidth	ARFCN ch. no.	ARFCN- Frequency [MHz]	Resource block allocation	Peak detektor [dBm]	RMS detektor [dBm]	PAR Faktor [dB]		RMS detektor [dBm]	PAR Faktor [dB]	max- modulationQPSK	max. modulation16QAM	max. bandwidth	absolute max. value channels/bandwidths
			1 RB low 1 RB high	26,9512 26,9479	21,4049 21,3479	5,5463 5,6	26,4464 26,3421	20,5594 20,465	5,887 5,8771				
	18607	1850,7	50% RB mid	26,8758	21,3554	5,5204	26,8752	20,4369	6,4383	21,4049	20,5594		
			100% RB	26,5619	20,3519	6,21	26,7958	19,4217	7,3741				
			1 RB low	27,0812	21,0383	6,0429	26,4464	20,5594	5,887				
			1 RB high	27,0508	21,2259	5,8249	25,4955	20,232	5,2635				
1.4 MHz	18900	1880	50% RB mid	26,9759	21,1337	5,8422	26,9068	20,2057	6,7011	21,2259	20,5594	22,0912	
			100% RB	26,6925	20,0855	6,607	26,2919	19,1619	7,13				
			1 RB low	27,4291	21,9481	5,481	26,488	21,0814	5,4066				
			1 RB high	27,2791	22,0912	5,1879	26,4106	21,2161	5,1945				
	19193	1909,3	50% RB mid	27,2462	21,9855	5,2607	27,3167	21,2218	6,0949	22,0912	21,2218		
			100% RB	27,3681	20,9676	6,4005	26,7085	20,0147	6,6938				
			1 RB low	26,6165	21,3979	5,2186	25,5314	20,4411	5,0903				
			1 RB high	26,6049	21,1839	5,421	25,3484	20,176	5,1724				
	18615	1851,5	50% RB mid	26,2121	20,2266	5,9855	26,6057	20,3672	6,2385	21,3979	20,4411		
			100% RB	26,3027	20,2753	6,0274	26,8743	19,3141	7,5602				
			1 RB low	26,3391	20,7658	5,5733	25,3796	19,8688	5,5108				
			1 RB high	26,5797	21,2106	5,3691	25,7039	20,3756	5,3283				
3 MHz	18900	1880	50% RB mid	26,7314	20,1789	6,5525	27,2138	20,1686	7,0452	21,2106	20,3756	22,1133	
			100% RB	26,3853	20,1011	6,2842	26,259	19,21	7,049				
			1 RB low	26,7765	21,5272	5,2493	27,3363	21,2813	6,055				
			1 RB high	26,8036	22,1133	4,6903	27,1379	21,6988	5,4391				
	19185	1908,5	50% RB mid	27,3168	20,9498	6,367	26,8754	21,0176	5,8578	22,1133	21,6988		
			100% RB	26,7884	20,9203	5,8681	26,8058	19,9291	6,8767				
			1 RB low	26,71	21,5388	5,1712	26,5182	20,7604	5,7578				22,2207
	10505	4050 5	1 RB high	26,477	21,0291	5,4479	26,1986	20,2762	5,9224				
	18625	1852,5	50% RB mid	27,1223	20,1814	6,9409	26,6248	20,2924	6,3324	21,5388	20,7604		
			100% RB	26,8056	20,2071	6,5985	27,4834	19,2248	8,2586				
			1 RB low	26,6121	21,0026	5,6095	26,644	20,0528	6,5912				
5 8411-	40000	4000	1 RB high	26,9532	21,3673	5,5859	26,8579	20,3369	6,521	04.0070	00 0000	00.4000	
5 MHz	18900	1880	50% RB mid	27,1942	20,1641	7,0301	27,0917	20,2809	6,8108	21,3673	20,3369	22,1228	
			100% RB	26,4354	20,1328	6,3026	27,1359	19,2007	7,9352				
			1 RB low	27,2234	21,0874	6,136	26,276	20,1454	6,1306				
	19175	1907,5	1 RB high	27,2298	22,1228	5,107	26,7329	21,1664	5,5665	22,1228	21,1664		
	191/5	1907,5	50% RB mid	27,3693	20,763	6,6063	27,3109	20,7512	6,5597	22,1220	21,1004		
			100% RB	27,3251	20,7529	6,5722	27,3242	19,6265	7,6977				
			1 RB low	26,7289	21,4882	5,2407	25,6499	20,5687	5,0812				
	18650	1855	1 RB high	26,2008	20,4087	5,7921	24,7399	19,4626	5,2773	24 4002	20,5687		
	18050	1055	50% RB mid	26,215	19,8642	6,3508	26,7685	18,8616	7,9069	21,4002	20,5667		
			100% RB	26,2471	19,8822	6,3649	26,325	18,9234	7,4016				
			1 RB low	26,6559	21,2246	5,4313	25,9412	20,5443	5,3969				
10 MHz	18900	1880	1 RB high	26,654	21,5062	5,1478	26,0098	20,7327	5,2771	21,5062	20,7327	22,0708	
TO IVIUZ	19900	1000	50% RB mid	26,7848	20,1848	6,6	26,6576	19,2725	7,3851	21,5002	20,1321	22,0708	
			100% RB	26,8732	20,2877	6,5855	27,1984	19,2479	7,9505				
			1 RB low	25,9343	20,4754	5,4589	26,6953	20,1337	6,5616				
	10150	1005	1 RB high	26,9645	22,0708	4,8937	27,1935	21,7402	5,4533	22 0700	24.7402		
	19150	1905	50% RB mid	26,8631	20,1681	6,695	26,4913	19,0386	7,4527	22,0708	21,7402		
			100% RB	26,9154	20,2297	6,6857	27,2288	19,1435	8,0853				

LTE-Band 2					QPSK-Modulation	on	16-0	QAM-Modulation	1					
channel bandwidth	ARFCN ch. no.	ARFCN- Frequency [MHz]	Resource block allocation	Peak detektor [dBm]	RMS detektor [dBm]	PAR Faktor [dB]	Peak detektor [dBm]	RMS detektor [dBm]	PAR Faktor [dB]	max- modulationQPSK	max. modulation16QAM	max. bandwidth	absolute max. value channels/bandwidths	
			1 RB low	26,5466	21,4677	5,0789	25,6939	20,5772	5,1167					
	18675	1857.5	1 RB high	25,532	20,0241	5,5079	24,417	19,0968	5,3202	21,4677	20,5772			
	100/5	1657,5	50% RB mid	26,7795	19,5936	7,1859	27,0312	19,373	7,6582	21,4077	20,5772			
			100% RB	26,8754	19,6827	7,1927	26,2991	18,726	7,5731					
			1 RB low	26,274	20,8592	5,4148	25,8809	20,5847	5,2962					
15 MHz	18900	1880	1 RB high	26,4026	21,1773	5,2253	25,8875	20,7184	5,1691	21.1773	20,7184	22.0077		
15 IVIHZ	18900	1880	50% RB mid	27,1679	20,1771	6,9908	27,3899	20,1982	7,1917	21,1773	20,7184	22,0077		
			100% RB	27,4421	20,3147	7,1274	26,7281	19,2413	7,4868					
			1 RB low	26,1926	20,835	5,3576	26,7903	20,5003	6,29					
	40425	4002.5	1 RB high	26,9439	22,0077	4,9362	27,1852	21,7692	5,416					
	19125	1902,5	50% RB mid	27,0519	19,766	7,2859	26,8712	19,6254	7,2458	22,0077	21,7692			
			100% RB	27,5507	20,0607	7,49	26,5292	18,934	7,5952				22,2207	
			1 RB low	26,8408	21,5881	5,2527	27,044	20,8983	6,1457				22,2207	
	18700	1000	1 RB high	26,1095	20,2887	5,8208	26,5255	19,6184	6,9071	04 5004	00 0000			
	18700	1860	50% RB mid	26,3254	19,4404	6,885	26,6161	19,2278	7,3883	21,5881	20,8983			
			100% RB	26,2774	19,6241	6,6533	26,6802	18,6353	8,0449					
			1 RB low	26,3152	20,5771	5,7381	26,1265	20,0869	6,0396					
20.1411-	40000	1000	1 RB high	26,2706	20,6243	5,6463	26,0277	20,0813	5,9464					
20 MHz	18900	1880	50% RB mid	26,8481	20,2828	6,5653	27,1417	20,1969	6,9448	20,6243	20,1969	22,2207		
			100% RB	26,8727	20,2113	6,6614	26,8565	19,1834	7,6731					
			1 RB low	26,3157	20,6699	5,6458	26,0826	19,9609	6,1217					
	40400	1000	1 RB high	27,1768	22,2207	4,9561	27,0237	21,4838	5,5399	00 000=	04 4000			
	19100	1900	50% RB mid	26,8065	19,7672	7,0393	26,4178	19,4853	6,9325	22,2207	21,4838			
			100% RB	27,0126	19,9018	7,1108	27,5244	18,7545	8,7699					

5.1.4.2. LTE Band 4 Results

LTE-Band 4	Resur				QPSK-Modulation	on	16-0	QAM-Modulation	1	×	AM			
channel bandwidth	ARFCN ch. no.	ARFCN- Frequency [MHz]	Resource block allocation	Peak detektor [dBm]	RMS detektor [dBm]	PAR Faktor [dB]	Peak detektor [dBm]	[dBm]	PAR Faktor [dB]	max- modulationQPSK	max. modualtion16-QAM	max. channel	absolute max.value	
			1RB low	27,0448	21,4539	5,5909	26,3712	20,4334	5,9378					
	19957	1710,7	1RB high	26,9622	21,5035	5,4587	26,4014	20,5603	5,8411	21,5035	20,5603			
			50% RB mid	27,0093	21,4343	5,575	26,9931	20,5068	6,4863					
			100% RB	26,9706	20,4002	6,5704	26,7565	19,4282	7,3283		,			
			1RB low	27,2329	21,6737	5,5592	26,6266	20,7232	5,9034					
1.4 MHz	20175	1732,5	1RB high	27,0311	21,6178	5,4133	26,5248	20,7578	5,767	21,6737	20,7578	21,6737		
			50% RB mid	27,1772	21,6544	5,5228	27,1968	20,752	6,4448					
			100% RB	26,8768	20,629	6,2478	26,9473	19,683	7,2643					
			1RB low	26,4647	20,7939	5,6708	25,8556	19,9193	5,9363					
	20393	1754,3	1RB high	26,5334	20,856	5,6774	25,8638	19,9458	5,918	20,856	19,963			
			50% RB mid	26,4965	20,7566	5,7399	26,5241	19,963	6,5611					
			100% RB	26,3953	19,8545	6,5408	25,7696	18,6784	7,0912					
			1RB low	26,5243	21,3984	5,1259	27,0072	21,076	5,9312					
	19965	1711,5	1RB high	26,4498	21,4444	5,0054	26,9362	21,1238	5,8124	21,4444	21,1238			
			50% RB mid	27,0911	20,4476	6,6435	26,4668	20,5865	5,8803					
			100% RB	26,7241	20,4428	6,2813	26,5978	19,4978	7,1		,			
			1RB low	26,6322	21,5527	5,0795	27,1727	21,2275	5,9452		ĺ			
3 MHz	20175	1732,5	1RB high	26,6365	21,6312	5,0053	27,1478	21,3053	5,8425	21,6312	21,3053	21,6312		
		. ,.	50% RB mid	27,3051	20,6714	6,6337	26,6935	20,8043	5,8892		,,,,,,,	,		
			100% RB	27,2886	20,6366	6,652	27,0681	19,718	7,3501		,			
			1RB low	25,8303	20,6732	5,1571	26,4093	20,4419	5,9674					
	20385	1753,5	1RB high	25,9716	20,7963	5,1753	26,5739	20,5621	6,0118	20,7963	20,5621			
		20,0	50% RB mid	26,6082	19,88	6,7282	25,8765	19,9382	5,9383					
			100% RB	26,3819	19,8151	6,5668	25,4002	18,7128	6,6874				22,218	
			1RB low	27,2815	21,4913	5,7902	26,3688	20,5056	5,8632					
	19975	1712,5	1RB high	27,0857	21,4891	5,5966	26,213	20,5144	5,6986	21,4913	20,5144			
		,	50% RB mid	26,915	20,4626	6,4524	26,9016	20,4922	6,4094					
			100% RB	26,9161	20,4692	6,4469	26,5568	19,504	7,0528					
			1RB low	27,4099	21,6049	5,805	26,4932	20,6265	5,8667					
5 MHz	20175	1732,5	1RB high	27,5519	21,8185	5,7334	26,5816	20,8279	5,7537	21,8185	20,8279	21,8185		
	200	52,5	50% RB mid	27,3157	20,6797	6,636	27,119	20,7225	6,3965			_ ,,		
			100% RB	27,1506	20,6734	6,4772	27,2683	19,7142	7,5541					
			1RB low	26,6229	20,831	5,7919	25,7402	19,9406	5,7996					
	20375	1752,5	1RB high	26,8629	20,8874	5,9755	25,7856	19,9832	5,8024	20,8874	19,9832			
		52,5	50% RB mid	26,7849	19,849	6,9359	26,3894	19,874	6,5154		,			
			100% RB	26,3313	19,8345	6,4968	26,2775	18,7052	7,5723					
			1RB low	26,5825	21,4951	5,0874	27,0688	21,1453	5,9235					
	20000	1715	1RB high	26,3732	21,2707	5,1025	26,8247	20,939	5,8857	21,4951	21,1453			
	20000	17 10	50% RB mid	26,8512	20,4665	6,3847	26,5324	19,5562	6,9762	21,4001	21,1400			
			100% RB	26,8928	20,449	6,4438	27,1034	19,4547	7,6487					
			1RB low	26,808	21,3578	5,4502	27,0689	21,0125	6,0564					
40 MHz	20175	1732,5	1RB high	27,2263	22,0354	5,1909	27,4559	21,6435	5,8124	22 0254	216425	22 0254		
10 MHz	201/5	1/32,5	50% RB mid	27,0508	20,7063	6,3445	26,8112	19,7911	7,0201	22,0354	21,6435	22,0354		
			100% RB	27,0807	20,7171	6,3636	27,5415	19,7289	7,8126					
			1RB low	26,2496	21,3142	4,9354	26,6558	20,9828	5,673					
			1RB high	26,0984	20,8641	5,2343	26,667	20,599	6,068	1				
	20350	1750	50% RB mid	26,3646	19,93	6,4343	25,8964	18,8689	7,0275	21,3142	20,9828			
			100% RB	26,505	20,0461	6,4589	26,5846	18,8912	7,6934	1				

Test Report 17-1-0105501T04a-C1, Page 20 of 44

E-Band 4					QPSK-Modulation	on	16-0	QAM-Modulation	1	×	MAG				
channel bandwidth	ARFCN ch. no.	ARFCN- Frequency [MHz]	Resource block allocation	Peak detektor [dBm]	RMS detektor [dBm]	PAR Faktor [dB]	Peak detektor [dBm]	RMS detektor [dBm]	PAR Faktor [dB]	max- modulationQPSK	max. modualtion16-QAM	max. channel	absolute max. value		
			1RB low	26,5878	21,4792	5,1086	27,0955	21,1903	5,9052						
			1RB high	26,3516	21,1858	5,1658	26,8798	20,8788	6,001						
	20025	1717,5	50% RB mid	26,9266	20,3555	6,5711	26,8546	20,3463	6,5083	21,4792	21,1903				
			100% RB	27,4239	20,3824	7,0415	26,8601	19,4243	7,4358						
			1RB low	26,494	21,3104	5,1836	25,6418	20,441	5,2008						
			1RB high	26,8952	21,9609	4,9343	27,3355	21,6191	5,7164						
15 MHz	20175	1732,5	50% RB mid	27,3738	20,7185	6,6553	27,2721	20,7436	6,5285	21,9609	21,6191	21,9609			
			100% RB	27,6227	20,7053	6,9174	27,2389	19,7646	7,4743						
			1RB low	26,6354	21,7151	4,9203	27,1134	21,4359	5,6775						
			1RB high	26,0619	20,8074	5,2545	25,2268	20,0139	5,2129	1		21 7151	21,4359		
	20325	1747,5	50% RB mid	26,6539	20,2346	6,4193	26,5687	20,2068	6,3619	21,7151	21,4359				
			100% RB	27,2188	20,279	6,9398	26,4068	19,1067	7,3001						
			1RB low	26,931	21,7496	5,1814	26,8349	21,0201	5,8148				22,		
			1RB high	27,0694	21,6991	5,3703	26,8964	20,9726	5,9238	1					
	20050	1720	50% RB mid	26,7553	20,3275	6,4278	26,6933	20,3105	6,3828	21,7496	21,0201				
			100% RB	26,9742	20,425	6,5492	27,4553	19,4508	8,0045						
			1RB low	26,6881	21,4371	5,251	26,5627	20,7244	5,8383						
			1RB high	26,992	21,9329	5,0591	26,8277	21,207	5,6207						
20 MHz	20175	1732,5	50% RB mid	27,2825	20,772	6,5105	27,1446	20,7643	6,3803	21,9329	21,9841	22,2175			
			100% RB	27,2568	20,7327	6,5241	25,2052	21,9841	3,2211						
			1RB low	27,2931	22,2175	5,0756	27,1594	21,5225	5,6369						
	20000	4745	1RB high	26,447	21,0117	5,4353	26,2831	20,2941	5,989	00.0475	04.5005				
	20300	20300 1745	50% RB mid	26,7293	20,5595	6,1698	26,7695	20,4601	6,3094	22,2175	21,5225				
			100% RB	26,8976	20,4943	6.4033	27,3418	19,4869	7.8549						

5.1.4.3. LTE Band 5 Results

E-Band 5					QPSK-Modulatio	on	16-0	QAM-Modulation	1	~	Σ		
channel bandwidth	ARFCN ch. no.	ARFCN- Frequency [MHz]	Resource block allocation	Peak detektor [dBm]	RMS detektor [dBm]	PAR Faktor [dB]	Peak detektor [dBm]	RMS detektor [dBm]	PAR Faktor [dB]	max- modulation QPSK	max. modulation 16-QAM	max. channel	absolute max. value
			1RB low	27,3381	21,6406	5,6975	26,2249	20,8048	5,4201				
	00407	0047	1RB high	27,2788	21,8805	5,3983	26,7237	20,9211	5,8026	04.00	00.00		
	20407	824.7	50% RB mid	27,2948	21,7124	5,5824	27,2901	20,8365	6,4536	21,88	20,92		
			100% RB	27,2291	20,6629	6,5662	26,9533	19,6523	7,301				
			1RB low	27,1495	21,1697	5,9798	26,4225	20,2026	6,2199				
1.4 MHz	20525	836.5	1RB high	27,2062	21,1701	6,0361	26,4194	20,21	6,2094	21,17	20,21	21,88	
L4 WIT 12	20323	630.3	50% RB mid	27,12	21,0656	6,0498	27,1179	20,201	6,9169	21,17	20,21	21,00	
			100% RB	26,581	20,081	6,5	26,5774	19,0747	7,5027				
			1RB low	26,3692	21,8736	4,4956	26,0225	20,9485	5,074				
			1RB high	26,2819	21,7141	4,5678	25,9433	20,8478	5,0955				
	20643	848.3	50% RB mid	26,333	21,7375	4,5955	26,2926	20,9064	5,3862	21,87	20,95		
			100% RB	26,5134	20,7948	5,7186	26,3767	19,8417	6,535				
			1RB low	26,7334	21,4895	5,2439	27,369	21,2341	6,1349				
			1RB high	26,7731	22,1051	4,668	27,1669	21,8095	5,3574				
	20415	825.5	50% RB mid	27,3248	20,9291	6,3957	26,7128	21,0584	5,6544	22,11	21,81		
			100% RB	27,3591	20,8772	6,4819	26,9998	19,881	7,1188				
			1RB low	26,4792	21,158	5,3212	27,0685	20,8627	6,2058				
				26,5698	21,1092	5,4606	27,4139	20,8362	6,5777				
3 MHz	20525	836.5	1RB high	27,3055	20,093	7,2125	26,4626	20,229	6,2336	21,16	20,86	22,11	
			50% RB mid			6,5146			7,6364				
			100% RB	26,6282	20,1136	-	26,7217	19,0853				-	
			1RB low	26,315	21,9303	4,3847	26,74	21,5848	5,1552		i		
	20635	847.5	1RB high	26,0067	21,7285	4,2782	26,3487	21,3377	5,011	21,93	21,58		
			50% RB mid	26,4334	20,9362	5,4972	26,0578	20,9919	5,0659				
			100% RB	26,6144	20,9547	5,6597	26,2476	19,9947	6,2529				22,24
			1RB low	27,7003	21,6996	6,0007	26,6709	20,7133	5,9576				
	20425	826.5	1RB high	27,0633	22,2385	4,8248	26,4901	21,2713	5,2188	22,24	21,27		
			50% RB mid	27,387	21,0963	6,2907	26,9832	21,2051	5,7781	,			
			100% RB	27,1359	21,1031	6,0328	27,4316	20,0519	7,3797				
			1RB low	27,1381	21,3532	5,7849	26,3066	20,3884	5,9182				
E Mille	20525	000.5	1RB high	27,7935	21,14	6,6541	26,3047	20,1718	6,1329	21.35	00.00	22.24	
5 MHz	20525	836.5	50% RB mid	27,392	20,1274	7,2646	27,2538	20,168	7,0858	21,35	20,39	22,24	
			100% RB	26,846	20,1309	6,7151	27,0296	19,1245	7,9051				
			1RB low	27,3892	21,8452	5,544	26,5132	20,8959	5,6173				
			1RB high	26,5215	21,7502	4,7713	25,9131	20,809	5,1041				
	20625	846.5	50% RB mid	26,8806	21,0302	5,8504	26,6123	21,0886	5,5237	21,85	21,09		
			100% RB	26,9711	21,0241	5,947	26,5859	19,9773	6,6086				
			1RB low	26,8431	21,7001	5,143	27,4407	21,365	6,0757				
			1RB high	26,5115	21,5388	4,9727	26,8928	21,2116	5,6812				
	20450	829	50% RB mid	26,7074	21,1757	5,5317	26,5704	20,2538	6,3166	21,70	21,37		
				27,1939	21,0607	6,1332	27,5001	20,0339	7,4662				
			100% RB	1		4,6328	· ·		5,3634				
			1 RB low	26,4021	21,7693	5,5188	26,7598	21,3964	6,691				
10 MHz	20525	836.5	1RB high	26,8387	21,3199		27,7285	21,0375		21,77	21,40	21,85	
			50% RB mid	26,9936	20,1484	6,8452	26,6523	19,2082	7,4441				
			100% RB	27,1224	20,3073	6,8151	26,4641	19,237	7,2271				
			1 RB low	26,7097	21,2089	5,5008	27,635	20,9156	6,7194				
	20600	844	1RB high	26,2456	21,8492	4,3964	26,4358	21,4532	4,9826	21,85	21,45		
	20600	844	50% RB mid	26,9882	20,9125	6,0757	26,795	19,8854	6,9096				
			100% RB	27,0261	20,825	6,2011	27,4849	19,7934	7,6915				

5.1.4.4. LTE Band 7 Results

LTE-Band 7				(QPSK-Modulati	on	16-Q	AM-Modulati	on	n QPSI	n 16-Q		value
channel bandwidth	ARFCN ch. no.	ARFCN- Frequency [MHz]	Resource block allocation	Peak detektor [dBm]	RMS detektor [dBm]	PAR Faktor [dB]	Peak detektor [dBm]	RMS detektor [dBm]	PAR Faktor [dB]	max- modulation QPS	max. modulation 16-Q	max. channel	absolute m.ax. v
			1RB low	25,31	19,1304	6,18	23,814	18,1916	5,6224				
	20775	2502,5	1RB high	25,136	19,1089	6,0272	23,9762	18,3783	5,5979	19,13	18,378		
	20773	2302,3	50%RB mid	25,163	18,1577	7,0052	24,965	18,2582	6,7068	19,15	10,576		
			100%RB	24,554	18,2072	6,3471	24,634	17,2534	7,3806				
			1RB low	24,89	20,5637	4,3267	24,4315	19,6922	4,7393				
5MIF	21100	2535	1RB high	25,007	20,1024	4,9044	24,4209	19,1796	5,2413	20,564	40.000	0470	
5 M Hz	21100	2535	50%RB mid	25,141	19,3885	5,7521	24,683	19,5027	5,1803	20,564	19,692	21,73	
			100%RB	25,114	19,3859	5,7282	25,3437	18,6039	6,7398				
			1RB low	26,417	21,6235	4,7931	25,8519	20,7767	5,0752				
			1RB high	26,22	21,7348	4,4853	25,7912	20,8986	4,8926				
	21425	2567,5	50%RB mid	26,647	20,8834	5,7636	26,2341	20,966	5,2681	21,735	20,966		
			100%RB	26,245	20,568	5,677	26,7405	20,1103	6,6302				
			1RB low	24,169	19,0268	5,1426	24,8593	19,135	5,7243				
			1RB high	24,403	19,5035	4,8994	25,2336	19,362	5,8716				
	20800	2505	50%RB mid	24,715	18,2393	6,476	24,4424	17,4047		19,504	19,362		
				25,014	18,2913		25,147	17,4056	7,0377				
			100%RB	24,565	20,7785	6,7225	24,7328	20,4163	7,7414				
			1RB low		-	3,786		19,4464	4,3165				
10 M Hz	21000	2535	1RB high	24,543	19,7083	4,8343	24,9225	,	5,4761	20,779	20,416	21,67	
			50%RB mid	24,989	19,4483	5,541	24,6332	18,6779	5,9553				
			100%RB	25,359	19,4841	5,8745	25,5765	18,6893	6,8872				
			1RB low	25,528	20,609	4,9193	26,2116	20,4391	5,7725		Ī		
	21400	2565	1RB high	25,915	21,6712	4,244	26,1239	21,381	4,7429	21,671	21,381		
	21100	2000	50%RB mid	26,447	20,6189	5,828	26,1491	19,9041	6,245	2 1,071	2 1,00 1		
			100%RB	26,59	20,5269	6,0631	27,0062	19,7535	7,2527				21,81
			1RB low	24,297	19,0816	5,2 158	24,9709	18,8252	6,1457				21,81
			1RB high	25,097	20,3541	4,7427	25,5797	20,1002	5,4795				
	20825	2507,5	50%RB mid	25,031	18,5908	6,4402	25,5029	18,5569	6,946	20,354	20,1		
			100%RB	25,579	18,7206	6,8579	25,0403	17,7004	7,3399				
			1RB low	25,234	20,9506	4,283	25,5513	20,5561	4,9952				
			1RB high	24,628	20,717	3,911	24,7803	20,3223	4,458				
15 M Hz	21100	2535	50%RB mid	24,991	20,2635	4,7271	25,161	20,2654		20,951	20,556	21,67	
				26,092	20,1927		25,6771	19,3914	4,8956				
			100%RB 1 RB low		,	5,8988 5,0464	·	19,6902	6,2857 5,9509				
				25,058			25,6411						
	21375	2562,5	1RB high	25,876	21,6711	4,2046	26,117	21,332	4,785	21,671	21,332		
			50%RB mid	26,295	20,3303	5,9644	26,52	20,3479	6,1721				
			100%RB	25,856	20,568	5,288	26,405	19,2824	7,1226				
			1RB low	24,528	19,3205	5,2075	24,3695	18,6488	5,7207				
	20850	2510	1RB high	25,393	21,1128	4,28	25,2404	20,4334	4,807	21,113	20,433		
			50%RB mid	25,442	18,9496	6,4919	25,6396	18,8759	6,7637				
			100%RB	25,401	19,0048	6,3961	26,2309	18,1703	8,0606				
			1RB low	25,514	20,9285	4,5857	25,292	20,2642	5,0278				
20 MHz	24400	0505	1RB high	24,735	20,5542	4,1808	24,6088	19,8842	4,7246	20.000	20.200	2404	
20 M Hz	21100	2535	50%RB mid	25,193	20,297	4,8962	25,1605	20,3057	4,8548	20,929	20,306	21,81	
			100%RB	25,824	20,1387	5,6852	26,2247	19,3446	6,8801	1			
			1RB low	25,046	19,4518	5,5946	24,8269	18,8482	5,9787				
			1RB high	26,114	21,8109	4,3028	26,0749	21,2708	4,8041				
	21300	2555	50%RB mid	26,128	19,8047	6,3236	26,4861	19,8539	6,6322	21,811	21,271		
			100%RB	26,123	19,9056	6,2918	26,8748	19,0159	7,8589		_ ,, ,		
			iJU76KB	20,197	19,9030	0,2918	20,0748	19,0159	7,0089	<u> </u>	L	L	

5.1.4.5. LTE Band 17 Results

Band 17				C	QPSK-Modulati	on	16-Q	AM-Modulati	on	modulatic	modulatic	modulati	absolute max. value
channel bandwidth	ARFCN ch. no.	ARFCN- Frequency [MHz]	Resource block allocation	Peak detektor [dBm]	RMS detektor [dBm]	PAR Faktor [dB]	Peak detektor [dBm]	RMS detektor [dBm]	PAR Faktor [dB]	тах- то	тах. тос	max. cha	
			1RB low	27,726	22,0732	5,6527	26,8844	21,0836	5,801				
	23755	706,5	1RB high	27,713	22,3069	5,4064	26,9551	21,2971	5,658	22,307	21,297		
	23733	700,5	50%RB mid	27,7	21,2113	6,4886	27,3303	21,2884	6,042	22,507	21,297		
			100%RB	27,532	21,1813	6,3504	27,4538	20,1825	7,271				
			1RB low	27,582	22,2551	5,327	26,851	21,2344	5,617	22,255			
5 M Hz	23790	710	1RB high	28,148	21,5688	6,5789	26,6385	20,5685	6,07		21,234	22,31	
OWIL	20700	710	50%RB mid	27,5	21,0195	6,4803	27,7442	21,0449	6,699	22,200	21,204	22,01	
			100%RB	27,354	20,9976	6,356	27,219	19,9816	7,237				
			1RB low	28,209	21,8198	6,389	26,7921	20,7959	5,996				
	23825	713,5	1RB high	27,952	21,873	6,079	26,9238	20,9546	5,969	21,873	20,955		
	20020	710,0	50%RB mid	27,571	20,5736	6,9974	27,8513	20,5686	7,283	21,070	20,000		
			100%RB	27,218	20,6491	6,5684	27,2954	19,6095	7,686				22
			1RB low	27,144	22,1262	5,0178	27,5746	21,6843	5,89				
	23780	709	1RB high	27,209	21,7171	5,4915	28,0042	21,3114	6,693	22,126	21,684		
	20700	700	50%RB mid	27,427	21,1515	6,2759	27,1619	20,1873	6,975	22,120	21,004		
			100%RB	27,49	21,0113	6,479	27,9039	20,0023	7,902				
			1RB low	27,196	22,3767	4,8189	27,4728	21,9071	5,566				
10 M Hz	23790	710	1RB high	27,192	21,7265	5,4655	28,0059	21,3309	6,675	22,377	21,907	22,42	
IO WITE	20700	710	50%RB mid	27,413	21,0098	6,4036	27,304	20,0655	7,239	22,011	21,007	22,72	
			100%RB	27,501	21,0083	6,4922	27,9559	19,9594	7,997				
			1RB low	27,146	22,4247	4,7217	27,4247	21,9594	5,465				
	23800	711	1RB high	27,631	21,9158	5,7151	27,977	21,6641	6,313	22,425	21,959		
	25550		50%RB mid	27,555	20,8767	6,6787	27,2518	19,881	7,371	22,720	2 1,000		
			100%RB	27,188	20,974	6,2138	27,8926	19,9097	7,983				

5.1.5. PAPR results

5.1.5.1. Test condition and test set-up

Climatic conditions	Temperature: (22±3°C) Rel. humidity: (40±20)%
Test system set-up	Please see chapter "Test system set-up for conducted measurements on antenna port"
	The measurements were performed with the integrated power measurement function of the "radio communication tester CMW500 from Rohde&Schwarz company.
Measurement method	The attenuation (insertion loss) at the RF Inputs/Outputs of CMW were set according the path loss of the test set-up, determined in a step before starting the measurements. A suitable artificial antenna or RF-connector is provided by the applicant in order to perform the conducted measurements. Any data provided with the artificial antenna or connector, have been taken in account in order to correct the measurement data. (typical 0.3dB for attenuation of antenna connector)
	The CCDF function of the measurement equipment as described in the operating manual was used (default settings). Futher details can be found in KDB 971168 D01 v02r02 chapter 5.7.1.
Mobile phone settings	A call was established with a suitable communication test unit (CMW500). UE is set TX mode, highest transmit power conditions (RMC-mode), power saving techniques have been disabled (MPR-techniques)
	Tests have been performed in different EUT bandwidth settings and various settings for allocated RBs.

5.1.5.2. PAPR-results

According KDB 5.7.1 two method are allowed.

 \boxtimes Chapter 5.7.2 for determining worst-case configuration (Signal bandwidth, modulation, RB allocation) \boxtimes Chapter 5.7.1 CCDF-Method (0.1% probability)

LTE Band 2									
	Max. PAPR Max. PAPR level with 0.1% probability / [dB]								
Signal-Bandwidth / [MHz]	QPSK Modulation	16-QAM Modulation							
1.4	6.25	6.36							
3.0	5.02	5.83							
5.0	4.94	5.83							
10	4.81	6.12							
15	4.97	6.31							
20	4.76	6.55							

Remark: pls. see annex 1 for graphical plots

LTE Band 4								
	Max. PAPR level with	n 0.1% probability / [dB]						
Signal-Bandwidth / [MHz]	QPSK Modulation	16-QAM Modulation						
1.4	5.26	5.83						
3.0	5.16	5.95						
5.0	5.00	6.03						
10	5.26	5.26						
15	5.38	5.43						
20	4.71	7.23						

Remark: pls. see annex 1 for graphical plots

LTE Band 5									
	Max. PAPR level with 0.1% probability / [dB]								
Signal-Bandwidth / [MHz]	QPSK Modulation	16-QAM Modulation							
1.4	4.63	4.70							
3.0	4.97	5.46							
5.0	4.31	5.05							
10	4.82	6.01							

Remark: pls. see annex 1 for graphical plots

LTE Band 7									
	Max. PAPR level with 0.1% probability / [dB]								
Signal-Bandwidth / [MHz]	QPSK Modulation	16-QAM Modulation							
5.0	4.41	5.02							
10	4.19	4.90							
15	4.25	5.05							
20	4.90	4.90							

Remark: pls. see annex 1 for graphical plots

LTE Band 17									
Max. PAPR level with 0.1% probability / [dB]									
Signal-Bandwidth / [MHz]	QPSK Modulation	16-QAM Modulation							
5.0	5.10	5.37							
10	4.78	5.64							

Remark: pls. see annex 1 for graphical plots

5.1.5.3. Conclusion

 \blacksquare Peak conducted output power - pass

■ PAPR <13dB - pass

5.2. General Limit - Radiated field strength emissions below 30 MHz

5.2.1. Test location and equipment

211 1 to to to carron and complicate									
test location	▼ CETECOM Essen	(Chapter. 2.2.1)	☐ Please see Chapte	er. 2.2.2	☐ Please see Chapter. 2.2.3				
test site	■ 441 EMI SAR	☐ 487 SAR NSA	☐ 347 Radio.lab.						
receiver	□ 377 ESCS30	■ 001 ESS							
spectr. analys.	□ 584 FSU	□ 120 FSEM	□ 264 FSEK						
antenna	□ 574 BTA-L	☐ 133 EMCO3115	□ 302 BBHA9170	□ 289 CBL 6141	■ 030 HFH-Z2	□ 477 GPS			
signaling	□ 392 MT8820A	□ 371 CBT32	□ 547 CMU	□ 594 CMW					
otherwise	☐ 400 FTC40x15E	□ 401 FTC40x15E	□ 110 USB LWL	☐ 482 Filter Matrix	☐ 378 RadiSense				
DC power	□ 456 EA 3013A	□ 457 EA 3013A	□ 459 EA 2032-50	□ 268 EA- 3050	□ 494 AG6632A	☐ 498 NGPE 40			
line voltage	□ 230 V 50 Hz via p	oublic mains	■ 24V DC						

5.2.2. Requirements

FCC	Part 15, Subpart 0	Part 15, Subpart C, §15.205 & §15.209								
IC	RSS-Gen: Issue 4	: §8.9 Table 5								
ANSI	C63.10-2013	C63.10-2013								
Frequency [MHz]	Field [[[strength limit [dBµV/m]	Distance [m]	Remarks						
0.009 - 0.490	2400/f (kHz)	67.6 – 20Log(f) (kHz)	300	Correction factor used due to measurement distance of 3 m						
0.490 - 1.705	24000/f (kHz)	87.6 – 20Log(f) (kHz)	30	Correction factor used due to measurement distance of 3 m						
1.705 – 30	30	29.5	30	Correction factor used due to measurement distance of 3 m						

5.2.3. Test condition and test set-up

	ition and test set a	7					
Signal link to test s	Signal link to test system (if used):		□ cable connection	none			
EUT-grounding		⋈ none	☐ with power supply	□ additional connection			
Equipment set up		■ table top		☐ floor standing			
Climatic conditions		Temperature:	(22±3°C)	Rel. humidity: (40±20)%			
	Scan data	■ 9 – 150 kHz ■ 150 kHz – 3	3 150 kHz - 30 MHz RBW/VBW = 9 kHz Scan step = 4 kHz				
EMI-Receiver or	Scan-Mode	⋈ 6 dB EMI-I	Receiver Mode 🗆 3dB Sp	ectrum analyser Mode			
Analyzer Settings	Detector	Peak (pre-mea	surement) and Quasi-PK/	Average (final if applicable)			
	Mode:	Repetitive-Sca	ın, max-hold				
	Sweep-Time	Coupled – calibrated display if continuous signal otherwise adapted to EUT's individual					
		transmission duty-cycle					
General measureme	nt procedures	Please see chapter "Test system set-up radiated magnetic field measurements below 30 MHz"					

5.2.4. Measurement Results

The results are presented below in summary form only. For more information please consult the diagrams included in annex 1.

Table of measurement results:

Diagram No.	Chamici		Frequency range	Set- up no.	OP- mode	Remark	Use	ed dete	ector	Result
	Range	No.		110.	no.		PK	AV	QP	
2.01	1 RB low	18607	9 kHz-30 MHz	1	1	Remark1	×			passed
2.02	1RB high	18900	9 kHz-30 MHz	1	1	Remark1	×			passed
2.03	1 RB high	19150	9 kHz-30 MHz	1	1	Remark1	×			passed
2.11	1RB High	19965	9 kHz-30 MHz	1	2	Remark1	×			passed
2.12	1RB high	20175	9 kHz-30 MHz	1	2	Remark1	×			passed
2.13	1RB low	20300	9 kHz-30 MHz	1	2	Remark1	×			passed
2.21	1 RB high	20425	9 kHz-30 MHz	1	3	Remark1	×			passed
2.22	1 RB low	20525	9 kHz-30 MHz	1	3	Remark1	×			passed
2.23	1 RB high	20643	9 kHz-30 MHz	1	3	Remark1	×			passed
2.31	1 RB high	23755	9 kHz-30 MHz	1	4	Remark1	×			passed
2.32	1 RB low	23790	9 kHz-30 MHz	1	4	Remark1	×			passed
2.33	1 RB high	23800	9 kHz-30 MHz	1	4	Remark1	×			passed
2.41	1 RB high	20850	9 kHz-30 MHz	1	5	Remark1	×			passed
2.42	1 RB low	21100	9 kHz-30 MHz	1	5	Remark1	×			passed
2.43	1 RB low	21425	9 kHz-30 MHz	1	5	Remark1	×			passed

Remark 1: For further information see Annex A1

5.2.5. Correction factors due to reduced meas. distance (f< $30\ MHz$)

The used correction factors when the measurement distance is reduced compared to regulatory measurement distance, are calculated according Extrapolation formulas valid for EUT's with maximum dimension of 0.625xLambda. Formula 2+3+4 as presented in ANSI C63.10, Chapter 6.4.4 are used for the calculations of proper extrapolation factors.

Frequency -Range	f [kHz/MHz]	Lambda [m]	Far-Field Point [m]	Distance Limit accord. 15.209 [m]	1st Condition (dmeas< D _{near-field})	2'te Condition (Limit distance bigger d _{near-field})	Distance Correction accord. Formula
	9,00E+03 1,00E+04 2,00E+04	33333,33 30000,00 15000,00	5305,17 4774,65 2387,33		fullfilled fullfilled fullfilled	not fullfilled not fullfilled not fullfilled	-80,00 -80,00 -80,00
	3,00E+04	10000,00	1591,55		fullfilled	not fullfilled	-80,00
	4,00E+04 5,00E+04	7500,00 6000.00	1193,66 954,93		fullfilled fullfilled	not fullfilled not fullfilled	-80, 00 -80, 00
	6,00E+04	5000,00	795,78		fullfilled	not fullfilled	-80,00
	7,00E+04 8,00E+04	4285,71 3750,00	682, 09 596, 83	300	fullfilled fullfilled	not fullfilled not fullfilled	-80, 00 -80, 00
	9,00E+04	3333,33	530,52		fullfilled	not fullfilled	-80,00
kHz	1,00E+05	3000,00	477, 47		fullfilled	not fullfilled	-80,00
	1,25E+05 2,00E+05	2400,00 1500,00	381,97 238,73		fullfilled fullfilled	not fullfilled fullfilled	-80,00 -78,02
	3,00E+05	1000.00	159, 16		fullfilled	fullfilled	-74, 49
	4,00E+05	750,00	119,37		fullfilled	fullfilled	-72,00
	4,90E+05	612,24	97,44		fullfilled	fullfilled	-70,23
	5,00E+05	600,00	95,49		fullfilled	not fullfilled	-40,00 -40,00
	6,00E+05 7,00E+05	500,00 428,57	79,58 68,21		fullfilled fullfilled	not fullfilled not fullfilled	-40,00 -40,00
	8,00E+05	375,00	59,68		fullfilled	not fullfilled	-40,00
	9,00E+05	333,33	53,05		fullfilled	not fullfilled	-40,00
	1,00	300,00	47,75		fullfilled	not fullfilled	-40,00
	1,59 2,00	188,50	30,00		fullfilled	not fullfilled	-40,00
	3,00	150,00 100,00	23,87 15,92		fullfilled fullfilled	fullfilled fullfilled	-38,02 -34,49
	4,00	75,00	11,94		fullfilled	fullfilled	-32,00
	5,00	60,00	9,55		fullfilled	fullfilled	-30,06
	6,00	50,00	7,96		fullfilled	fullfilled	-28, 47
	7,00	42,86	6,82		fullfilled	fulfilled	-27, 13
	8,00 9,00	37,50 33.33	5,97 5,31		fullfilled fullfilled	fullfilled fullfilled	-25, 97 -24, 95
	10,00	30.00	4,77	30	fullfilled	fullfilled	-24,04
	10,60	28,30	4,50		fullfilled	fullfilled	-23,53
MHz	11,00	27,27	4, 34		fullfilled	fullfilled	-23,21
	12,00	25,00	3,98		fullfilled	fullfilled	-22, 45
	13,56 15,00	22, 12 20, 00	3,52 3,18		fullfilled fullfilled	fullfilled fullfilled	-21,39 -20,51
	15,92	18,85	3,00		fullfilled	fullfilled	-20,00
	17,00	17,65	2,81		not fullfilled	fullfilled	-20,00
	18,00	16,67	2,65		not fullfilled	fullfilled	-20,00
	20,00	15,00	2,39		not fulfilled	fullfilled	-20,00
	21,00 23,00	14, 29 13, 04	2,27 2,08		not fullfilled not fullfilled	fullfilled fullfilled	-20,00 -20,00
	25,00	12,00	1,91		not fulfilled	fullfilled	-20,00
	27,00	11, 11	1,77		not fullfilled	fullfilled	-20,00
	29,00	10,34	1,65		not fullfilled	fullfilled	-20,00
	30,00	10,00	1,59		not fullfilled	fullfilled	-20,00

5.3. RF-Parameter - Radiated out of Band RF emissions and Band Edge

5.3.1. Test location and equipments (for reference numbers please see chapter 'List of test equipment')

test location	▼ CETECOM Esser	n (Chapter. 2.2.1)	☐ Please see Chapte	er. 2.2.2	☐ Please see Chapte	er. 2.2.3
test site	☐ 441 EMI SAR	□ 487 SAR NSA	≥ 443 FAR	□ 347 Radio.lab.1	☐ 347 Radio.lab.2	
receiver	□ 377 ESCS30	□ 001 ESS	□ 489 ESU 40	□ ESU 26		
spectr. analys.	□ 584 FSU	☐ 120 FSEM	№ 264 FSEK			
antenna	№ 608 HL 562	■ 549 HL 025	□ 302 BBHA9170	☐ 289 CBL 6141	□ 030 HFH-Z2	□477 GPS
signaling	□ 017 CMD 65	□ 323 CMD 55	□ 340 CMD 55			
signaling	□ 392 MT8820A	□ 546 CMU	□ 547 CMU	■ 642 CMW500		
power supply	区 611 E3632A	□ 457 EA 3013A	□ 459 EA 2032-50	□ 268 EA- 3050	□ 494 AG6632A	□498 NGPE 40
otherwise	☐ 529 6dB divider	□ 530 6dB Att.	□ 110 USB LWL	☐ 482 Filter Matrix	☐ 431 Near field	
line voltage	□ 230 V 50 Hz via p	oublic mains	≥ 24V DC			

5.3.2. Requirements and limits

FCC	General: §2.1053(a) , §2.1057(a) ☑ LTE Band 5: Part 22: §22.917(a)(b) ☑ LTE Band 2: Part 24: §24.238(a)(b) ☑ LTE Band 4: Part 27: §27.53(h) ☑ LTE Band 12: Part 27: §27.53(g) ☐ LTE Band 13: Part 27: §27.53(c) , §27.53(f) ☑ LTE Band 17: Part 27: §27.53(g)
IC	 ☑ FDD Band 5: RSS-132, Issue 3: 5.5(i)(ii) ☑ FDD Band 2: RSS-133, Issue 6: 6.5.1(i)(ii) ☑ FDD Band 4: RSS-139, Issue 3: 6.6 (i)(ii) ☑ FDD Band 12: RSS-130, Issue 1: 4.6.1 ☐ FDD Band 13: RSS-130, Issue 1: 4.6.2(a)(i)(ii) + 4.6.2(b) ☑ FDD Band 17: RSS-130, Issue 1: 4.6.1
Limit	"the power of emissions shall be attenuated below the transmitter output power (p) by at least 43+10Log(P) dB" -> Resulting limits for all power levels of the Mobile Phone: -13dBm

5.3.3. Test condition and test set-up

link to test system (if used):		air link	☐ cable connection		
EUT-g	EUT-grounding		□ with power supply	□ additional connection	
Equipm	nent set up	■ table top		☐ floor standing	
Climatic	conditions	Temperature: (22	2±3°C)	Rel. humidity: (40±20)%	
Test sys	stem set-up	Please see chapte	er "Test system set-up for	radiated spurious emission measurements up to 20 GHz"	
Spectrum Analyzer	Parameter: Scan Mode RBW		Spec	etrum analyser mode 1 MHz	
Settings	VBW			10 MHz	
	Sweep time	Coupled (Auto)			
	Sweep mode			repetitive	
	Detector	Peak			
Measurer	nent method	the equipment. AVERAGE dete performed in var	A PEAK detector was usector applied when results rious settings for the device ase configuration. Due to	ne 10th harmonic of the highest frequency generated within sed except measurements near the Band-Edge where a are critical (low margin or limit exceed). Tests have been regarding allocated ressource blocks and channels in order very big amount of possible combinations only certain	
Mobile pl	none settings	The measuremer operating band v	nts were made at the low, n within the designated rang	ansmit conditions in RMC mode. MPR was deactivated. niddle and high carrier frequencies of each of the supported e within the allowed channel bandwidths. Choosing three e, should be sufficient to demonstrate compliance.	

Spectrum-Analyzer settings for LTE band 2

	Start freq. MHz	Stop freq. MHz	R-BW MHz	V-BW MHz	Sweep time sec.	Att. [dB]	Detector
Sweep 1 (subrange 1)	30	1000	1	10	10	10	MaxH-PK
Sweep 1 (subrange 2)	1000	2800	1	10	15	0	MaxH-PK
Sweep 1 (subrange 3)	2800	20000	1	10	60	10	MaxH-PK
Sweep 2a (Band-Edge)	1849	1850	0.03	0.3	30	35	MaxH-PK
Sweep 2b (Band-Edge)	1849	1850	0.03	0.3	30	35	MaxH-AV
Sweep 3a (Band-Edge)	1910	1911	0.03	0.3	30	35	MaxH-PK
Sweep 3b (Band-Edge)	1910	1911	0.03	0.3	30	35	MaxH-AV

Spectrum-analyzer settings for FDD Band 4

	Start freq. MHz	Stop freq. MHz	R-BW MHz	V-BW MHz	Sweep time sec.	Att.	Detector
Sweep 1 (subrange 1)	30	1000	1	10	10	10	MaxH-PK
Sweep 1 (subrange 2)	1000	2800	1	10	15	0	MaxH-PK
Sweep 1 (subrange 3)	2800	18000	1	10	160	10	MaxH-PK
Sweep 2a (Band-Edge)	1709	1710	0.03	0.3	30	35	MaxH-PK
Sweep 2b (Band-Edge)	1709	1710	0.03	0.3	30	35	MaxH-AV
Sweep 3a (Band-Edge)	1755	1756	0.03	0.3	30	35	MaxH-PK
Sweep 3b (Band-Edge)	1755	1756	0.03	0.3	30	35	MaxH-AV

Spectrum-analyzer settings for LTE Band 5

specti um-anaryzer set	ungs tot	LIL Dan	u J				
	Start freq. MHz	Stop freq. MHz	R-BW MHz	V-BW MHz	Sweep time sec.	Att.	Detector
Sweep 1 (subrange 1)	30	1000	1	10	10	10	MaxH-PK
Sweep 1 (subrange 2)	1000	2800	1	10	15	0	MaxH-PK
Sweep 1 (subrange 3)	2800	9000	1	10	160	10	MaxH-PK
Sweep 2a (Band-Edge)	823	824	0.02	0.2	30	35	MaxH-PK
Sweep 2b (Band-Edge)	823	824	0.02	0.2	30	35	MaxH-AV
Sweep 3a (Band-Edge)	850	851	0.02	0.2	30	35	MaxH-PK
Sweep 3b (Band-Edge)	850	851	0.02	0.2	30	35	MaxH-AV

Spectrum-analyzer settings for LTE Band 17

specti din-analyzer set	tings for	ETE Dun	<u>u 1</u> ,				
	Start freq. MHz	Stop freq. MHz	R-BW kHz	V-BW kHz	Sweep time sec.	Att.	Detector
Sweep 1 (subrange 1)	30	1000	100	300	10	10	MaxH-PK
Sweep 1 (subrange 2)	1000	2800	100	300	15	0	MaxH-PK
Sweep 1 (subrange 3)	2800	9000	100	300	160	10	MaxH-PK
Sweep 2a (Band-Edge)	703	704	50	300	30	35	MaxH-PK, Signal- BW=5MHz
Sweep 2b (Band-Edge)	703	704	100	300	30	35	MaxH-PK, Signal- BW=10MHz
Sweep 3a (Band-Edge)	716	717	500	300	30	35	MaxH-PK, Signal- BW=5MHz
Sweep 3b (Band-Edge)	716	717	100	300	30	35	MaxH-PK, Signal- BW=10MHz

5.3.4. Results

The results are presented below in summary form only. For more information please see the diagrams enclosed in annex 1.

5.3.4.1. LTE Band 2: Op. Mode 1, Set-up 1

Diagram no.	Diagram no. Carrier Channel		Frequency range	OP- mode	Remark	Use	d detec	tor	Result
	Range	No.	range	no.		PK	AV	QP	
8.01_RSE_ R_Ch18607_B W_1,4	1RB low	18607	30 MHz to 20 GHz	1	Carrier visible on diagram. Not relevant for results External antenna used QPSK modulation	×			passed
8.02_RSE_ R_Ch18900_B W_10	1RB high	18900	30 MHz to 20 GHz	1	Carrier visible on diagram. Not relevant for results Internal antenna used 16-QAM modulation	×			passed
8.03_RSE_ R_Ch19150_B W_10	1RB high	19175	30 MHz to 20 GHz	1	Carrier visible on diagram. Not relevant for results External antenna used QPSK modulation	×			passed

Remark: Used channel bandwidth of 1.4MHZ (low channel) and 10MHz (mid and high channel) was chosen as worst-case as determined within power measurements

5.3.4.1.1. Band-Edge Low: 1849-1850 MHz

Diagram No.	Channel	Op.Mode	Number of	Modulation scheme	Dete	ctor	Verdict
	no.		RBs		PK	RMS	
9.01	18607	1	■ 1RB low	■ QPSK modulation	×		passed
9.06	18650	1	⊠ full: 50	■ QPSK modulation	×		passed
9.02	18607	1	I 1RB low	■ 16-QAM modulation	×		passed
9.05	18650	1	ĭ full: 50	☑ 16-QAM modulation	×		passed

Remark: Used channel bandwidth of 1.4MHZ and 10MHz was chosen as worst-case as determined within power measurements

5.3.4.1.2. Band-Edge High: 1910-1911MHz

5.5.4.1.2. Dand-Duge High. 1710-1711VIII											
Diagram No.	Channel no.	Op.Mode	Number of RBs	Modulation scheme	Dete	ctor	Verdict				
			1125		PK	RMS					
9.04	19193	1	■ 1RB high	■ QPSK modulation	×		passed				
9.03	19193	1	■ 1RB high	■ QAM modulation	×		passed				
9.07	19150	1	⊠ full: 50	■ QAM modulation	×		passed				
9.08	19150	1	ĭ full: 50	☑ QPSK modulation	×		Passed				

Remark: Used channel bandwidth of 1.4MHZ and 10MHz was chosen as worst-case as determined within power measurements

5.3.4.2. LTE Band 4: Op. Mode 2, Set-up 2

3.3.4.2. LTE Danu	т. Ор.	Wiouc 2	, Bet-up 2						D 1
Dia-gram no.		rrier annel	Frequency range	OP- mode	Remark	Used detector			Result
	Range	No.	8-	no.		PK	AV	QP	
8.11_RSE_R_Ch1 9965_BW_3	Low	19965	30 MHz to 18 GHz		Carrier visible on diagram. Not relevant for results Laying EUT position External antenna used	×			passed
8.12_RSE_R_Ch2 0175_BW_10	Mid	20175	30 MHz to 18 GHz		Carrier visible on diagram. Not relevant for results Standing EUT position External antenna used	×			passed
8.13_RSE_R_Ch2 0300_BW_20	High	20300	30 MHz to 18 GHz		Carrier visible on diagram. Not relevant for results Laying EUT position Internal antenna used	X			passed

Remark1: LTE EUT channel bandwidth of 3MHz (Low Channel), 10Mhz (Mid channel) and 20MHz (High channel) was chosen as worst-case as determined within power measurements

5.3.4.2.1. Band-Edge Low: 1709-1710 MHz

5.5.4.2.1. Danu-Euge Lo	W. 1707-	1/10 1/11/2	4						
Diagram No.	Channel no.	Op.Mode	Number of RBs	Modulation scheme	Detector		Detector PK RMS		Verdict
9.10	19965	2	ĭ 1RB low	■ QPSK modulation	×		passed		
9.11	19965	2	⊠ 1RB low	■ 16-QAM modulation	×		passed		
9.12	19965	2	ĭ full: 15	☑ QPSK modulation	×		passed		
9.13	19965	2	ĭ full: 15	■ 16-QAM modulation	×		passed		

Remark:

1.) LTE EUT channel bandwidth of 3MHz used for measurements as worst-case as determined within power measurements

5.3.4.2.2. Band-Edge High: 1755-1756MHz

5.5.4.2.2. Band-Edge Hig	311. 1733.	·1/301V111Z	,						
Diagram No.	Channel no.	Op.Mode	Number of RBs	Modulation scheme	Detector		Iodulation scheme		Verdict
			RDS		PK	RMS			
9.14	20300	2	■ 1RB high	☑ QPSK modulation	×		passed		
9.15	20300	2	■ 1RB high	■ 16-QAM modulation	X		passed		
9.16	20300	2	⊠ full: 100	■ QPSK modulation	×		passed		
9.17	20300	2	ĭ full: 100	■ 16-QAM modulation	×		Passed		

Remark: LTE EUT channel bandwidth of 20MHz used for measurements as worst-case as determined within power measurements

5.3.4.3. LTE Band 5: Op. Mode 3, Set-up 2

Carrier Diagram no. Channel		rier	Frequency range	OP- mode	Remark	Used detector			Result
	Range	No.	runge	no.		PK	AV	QP	
8.21_RSE_R_Ch2 0425_BW_5	Low	20425	30 MHz to 9 GHz	3	Carrier visible on diagram. Not relevant for results QPSK modulation External antenna used	×			passed
8.22_RSE_R_Ch2 0525_BW_10	Mid	20525	30 MHz to 9 GHz	3	Carrier visible on diagram. Not relevant for results QPSK modulation External antenna used	×			passed
8.23_RSE_R_Ch2 0643_BW_5	High	20643	30 MHz to 9 GHz	3	Carrier visible on diagram. Not relevant for results QPSK modulation Internal antenna used	×			passed

Remark: LTE EUT channel bandwidth of 5MHz (Low Channel), 10Mhz (Mid channel) and 5MHz (High channel) was chosen as worst-case as determined within power measurements

5.3.4.3.1. Band-Edge Low: 823-824MHz

3.3.4.3.1. Danu-Euge Lo	111020 0						
Diagram No.	Channel no.	Op.Mode	Number of RBs	Modulation scheme	Dete	ctor	Verdict
					111	14.15	
9.21	20425	3	≥ 1RB low	■ QPSK modulation	×		passed
9.22	20425	3	≥ 1RB low	■ 16-QAM modulation	×		passed
9.23	20425	3	ĭ full: 25	☑ QPSK modulation	×		passed
9.24	20425	3	☑ full: 25	■ 16-QAM modulation	×		passed

Remark: LTE EUT channel bandwidth of 5MHz used for measurements as worst-case as determined within power measurements

5.3.4.3.2. Band-Edge High: 849-850MHz

Diagram No.	Channel	Op.Mode	Number of	Modulation scheme	Dete	ector	Verdict
	no.		RBs		PK	RMS	
9.25	20625	3	■ 1RB high	■ QPSK modulation	×		passed
9.26	20625	3	■ 1RB high	■ 16-QAM modulation	×		passed
9.27	20625	3	ĭ 25RB	■ QPSK modulation	X		Passed
9.28	20625	3	≥ 25RB	☑ 16-QAM modulation	×		Passed

Remark:

1.) LTE EUT channel bandwidth of 5MHz used for measurements as worst-case as determined within power measurements

5.3.4.4. LTE Band 7: Op. Mode 4 Set-up 1

Radiated spurious emission measurements:

Radiated Spu	Tious	CIIISSIC	n measurements:						Result
Diagram no.	Carrier Channel		Frequency range	OP- mode	Remark	Used	d detec	ctor	Result
	Ran	No.		no.		PK	AV	QP	
8.31_RSE_R _Ch20850_B W_20	Low	20850	30 MHz to 9 GHz	4	Carrier visible on diagram. Not relevant for results External antenna used QPSK Modulation Laying position	X			passed
8.32_RSE_R _Ch21100_B W_15	Mid	21100	30 MHz to 9GHz	4	Carrier visible on diagram. Not relevant for results External antenna used QPSK Modulation Standing position	×			passed
8.33_RSE_R _Ch21425_B W_5	High	21425	30 MHz to 9 GHz	4	Carrier visible on diagram. Not relevant for results Internal antenna used QPSK Modulation Laying position	×			passed

Remark: LTE EUT channel bandwidth of 20MHz (Low Channel), 15Mhz (Mid channel) and 5MHz (High channel) was chosen as worst-case as determined within power measurements

Band-Edge Low: 2471-2496MHz

Band-Luge Low. 2471-2-	01/1111							
Diagram No.	Channel	no. Op.Mode RBs Modulation scheme		Dete	ctor	Verdict		
	no.		KDS		PK	RMS		
9.30	20850	4	■ 1RB low	☑ QPSK modulation		×	passed	
9.31	20850	4	I 1RB low	■ 16-QAM modulation		×	passed	
9.32	20850	4	⊠ full: 100	■ QPSK modulation		×	passed	
9.33	20850	4	⊠ full: 100	■ 16-QAM modulation		×	passed	

^{1.)} LTE EUT channel bandwidth of 20MHz used for measurements as worst-case as determined within power measurements

Band-Edge High: 2572-2587MHz

Diagram No.	Channel	Op.Mode	Number of	Modulation scheme	Dete	ector	Verdict	
J	no.		RBs		PK	RMS		
9.34	21425	4	■ 1RB high	■ QPSK modulation		×	passed	
9.35	21425	4	■ 1RB low	■ 16-QAM modulation		×	passed	
9.36	21425	4	⊠ full: 25	☑ QPSK modulation		×	passed	
9.37	21425	4	⊠ full: 25	☑ 16-QAM modulation		×	passed	

^{1.)} LTE EUT channel bandwidth of 5MHz used for measurements as worst-case as determined within power measurements

5.3.4.5. LTE Band 17: Op. Mode 5 Set-up 1

Radiated spurious emission measurements:

Kadiated Spu	rious	emissic	on measurements:						
Diagram no.	Carrier Channel		Frequency range	OP- mode	Remark	Used	d detec	tor	Result
	Ran	No.		no.		PK	AV	QP	
8.41_RSE_R _Ch23755_B W_5	Low	23755	30 MHz to 9 GHz	5	Carrier visible on diagram. Not relevant for results External antenna used QPSK Modulation Laying position	X			passed
8.42_RSE_R _Ch23790_B W_10	Mid	23790	30 MHz to 9GHz	5	Carrier visible on diagram. Not relevant for results External antenna used QPSK Modulation Standing position	×			passed
8.43_RSE_R _Ch23800_B W_10	High	23800	30 MHz to 9 GHz	5	Carrier visible on diagram. Not relevant for results Internal antenna used QPSK Modulation Laying position	×			passed

Remark: LTE EUT channel bandwidth of 5MHz (Low Channel), 10Mhz (Mid channel) and 10MHz (High channel) was chosen as worst-case as determined within power measurements

Band-Edge Low: 703-704MHz

Diagram No.	Channel	hannel no. Op.Mode Number of RBs Modulation		Modulation scheme	Dete	ctor	Verdict	
	no.		KDS		PK	RMS		
9.40	23755	5	⊠ 1RB low	■ QPSK modulation		×	passed	
9.41	23755	5	⊠ 1RB low	■ 16-QAM modulation		×	passed	
9.42	23755	5	☑ full: 25	■ QPSK modulation		X	passed	
9.43	23755	5	☑ full: 25	■ 16-QAM modulation		×	passed	

^{1.)} LTE EUT channel bandwidth of 5MHz used for measurements as worst-case as determined within power measurements

Band-Edge High: 716-717MHz

Diagram No.	Channel	Op.Mode	Number of	Modulation scheme	Dete	ctor	Verdict	
· ·	no.		RBs		PK	RMS		
9.44	23800	5	■ 1RB high	■ QPSK modulation		×	passed	
9.45	23800	5	■ 1RB low	■ 16-QAM modulation		X	passed	
9.46	23800	5	⊠ full: 50	■ QPSK modulation		×	passed	
9.47	23800	5	⊠ full: 50	☑ 16-QAM modulation		×	passed	

^{1.)} LTE EUT channel bandwidth of 10MHz used for measurements as worst-case as determined within power measurements

5.4. Measurement uncertainties

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor **k**, such that a confidence level of approximately 95% is achieved.

For uncertainty determination, each component used in the concrete measurement set-up was taken in account and it's contribution to the overall uncertainty according it's statistical distribution calculated.

Following table shows expectable uncertainties for each measurement type performed.

RF-Measurement	Reference	Frequency range	Ca		d uncer dence l		pased or 95%	ı a	Remarks
Conducted emissions (U CISPR)	CISPR 16-2-1	9 kHz - 150 kHz 150 kHz - 30 MHz	4.0 dE 3.6 dE	3					-
Radiated emissions Enclosure	CISPR 16-2-3	30 MHz - 1 GHz 1 GHz - 18 GHz	4.2 dE 5.1 dE						E-Field
Disturbance power	CISPR 16-2-2	30 MHz - 300 MHz	-			-			
Power Output radiated	-	30 MHz - 4 GHz	3.17 dB					Substitution method	
		Set-up No.	Cel- C1	Cel- C2	BT1	W1	W2		
Power Output conducted	-	9 kHz - 12.75 GHz	N/A	0.60	0.7	0.25	N/A		-
		12.75 - 26.5GHz	N/A	0.82		N/A	N/A		
Conducted emissions	-	9 kHz - 2.8 GHz	0.70	N/A	0.70	N/A	0.69		N/A - not
on RF-port		2.8 GHz - 12.75GHz	1.48	N/A	1.51	N/A	1.43		applicable
		12.75 GHz - 18GHz	1.81	N/A	1.83	N/A	1.77		
		18 GHz - 26.5GHz	1.83	N/A	1.85	N/A	1.79		
Power density	-	1 – 2.8GHz	1.40 d	lB					
Occupied bandwidth	-	9 kHz - 4 GHz	0.1272 1.0 dE		Delta N	Marker))		Frequency error Power
Emission bandwidth	-	9 kHz - 4 GHz		0.1272 ppm (Delta Marker) See above: 0.70 dB					Frequency error Power
Frequency stability	-	9 kHz - 20 GHz	0.0636	6 ppm					-
Radiated emissions Enclosure	-	150 kHz - 30 MHz 30 MHz - 1 GHz 1 GHz - 20 GHz	5.0 dE 4.2 dE 3.17 d	3					Magnetic field E-field Substitution

Table: measurement uncertainties, valid for conducted/radiated measurements

6. Abbreviations used in this report

The abbreviation	S
ANSI	American National Standards Institute
AV , AVG, CAV	Average detector
EIRP	Equivalent isotropically radiated power, determined within a separate measurement
EGPRS	Enhanced General Packet Radio Service
EUT	Equipment Under Test
FCC	Federal Communications Commission, USA
IC	Industry Canada
n.a.	not applicable
Op-Mode	Operating mode of the equipment
PK	Peak
RBW	resolution bandwidth
RF	Radio frequency
RSS	Radio Standards Specification, Dokuments from Industry Canada
Rx	Receiver
TCH	Traffic channel
Tx	Transmitter
QP	Quasi peak detector
VBW	Video bandwidth
ERP	Effective radiated power

7. Accreditation details of CETECOM's laboratories and test sites

D-PL- 12047-01-01 (MRA US-EU	All laboratories and test sites of CETECOM GmbH, Essen Radiated Measurements 30 MHz to 1 GHz, 3 m / 10 m (OATS)	DAkkS, Deutsche Akkreditierungsstelle GmbH
(MRA US-EU	Radiated Measurements 30 MHz to 1 GHz, 3 m / 10 m (OATS)	
0003)	Radiated Measurements 30 MHz to 1 GHz, 3 m (SAR) Radiated Measurements above 1 GHz, 3 m (FAR) Mains Ports Conducted Interference Measurements Telecommunication Ports Conducted Interference Measurem.	FCC, Federal Communications Commission Laboratory Division, USA
3462D-1 3462D-2 3462D-2 3462D-3	Radiated Measurements 30 MHz to 1 GHz, 3 m / 10 m (OATS) Radiated Measurements 30 MHz to 1 GHz, 3 m (SAR) Radiated Measurements 1 GHz to 6 GHz, 3 m (SAR) Radiated Measurements above 1 GHz, 3 m (FAR)	IC, Industry Canada Certification and Engineering Bureau
R- 4452 G- 20013 C- 20009	Radiated Measurements 30 MHz to 1 GHz, 3 m (SAR) Radiated Measurements 1 GHz to 6 GHz, 3 m (SAR) Mains Ports Conducted Interference Measurements Telecommunication Ports Conducted Interference Measurem.	VCCI, Voluntary Control Council for Interference by Information Technology Equipment, Japan
	3462D-3 R- 4452	3462D-3Radiated Measurements above 1 GHz, 3 m (FAR)R- 4452Radiated Measurements 30 MHz to 1 GHz, 3 m (SAR)G- 20013Radiated Measurements 1 GHz to 6 GHz, 3 m (SAR)C- 20009Mains Ports Conducted Interference Measurements

8. Instruments and Ancillary

The "Ref.-No" in the left column of the following tables allows the clear identification of the laboratory equipment.

8.0.1. Test software and firmware of equipment

o				
Z	Equipment	Type	Serial-No.	Version of Firmware or Software during the test
RefNo.	• •			
Н				
001	EMI Test Receiver	ESS	825132/017	Firm.= 1.21, OTP=2.0, GRA=2.0
012	Signal Generator (EMS-cond.)	SMY 01	839069/027	Firm.= V 2.02
013	Power Meter (EMS cond.)	NRVD	839111/003	Firm.= V 1.51
017	Digital Radiocommunication Tester	CMD 60 M	844365/014	Firmware = V 3.52 .22.01.99, DECT = D2.87 13.01.99
053	Audio Analyzer	UPA3	860612/022	Firm. V 4.3
119	RT Harmonics Analyzer dig. Flickermeter	B10	G60547	Firm.= V 3.1DHG
140	Signal Generator	SMHU	831314/006	Firm.= 3.21
261	Thermal Power Sensor	NRV-Z55	825083/0008	EPROM-Datum 02.12.04, SE EE 1 B
262	Power Meter	NRV-S	825770/0010	Firm.= 2.6
263	Signal Generator	SMP 04	826190/0007	Firm.=3.21
295	Racal Digital Radio Test Set	6103	1572	UNIT Firmware= 4.04, SW-Main=4.04, SW-BBP=1.04, SW-DSP=1.02, Hardboot=1.02, Softboot=2.02
298	Univ. Radio Communication Tester	CMU 200	832221/091	R&S Test Firmware =3.53 /3.54 (current Testsoftw. f. all band used
323	Digital Radiocommunication Tester	CMD 55	825878/0034	Firm.= 3.52 .22.01.99
335	CTC-EMS-Conducted	System EMS Conducted	-	EMC 32 V 8.52
340	Digital Radiocommunication Tester	CMD 55	849709/037	Firm.= 3.52 .22.01.99
355	Power Meter	URV 5	891310/027	Firm.= 1.31
365	10V Insertion Unit 50 Ohm	URV5-Z2	100880	Eprom Data = 31.03.08
366	Ultra Compact Simulator	UCS 500 M4	V0531100594	Firm. UCS 500=001925/3.06a02, rc=ISMIEC 4.10
371	Bluetooth Tester	CBT32	100153	CBT V5,30+ SW-Option K55, K57
377	EMI Test Receiver	ESCS 30	100160	Firm.= 2.30, OTP= 02.01, GRA= 02.36
378	Broadband RF Field Monitor	RadiSense III	03D00013SNO-08	Firm.= V.03D13
389	Digital Multimeter	Keithley 2000	0583926	Firm. = A13 (Mainboard) A02 (Display)
			00000	Firm.= 4.50 #005, IPL=4.01#001, OS=4.02#001,
392	Radio Communication Tester	MT8820A	6K00000788	GSM=4.41#013, W-CDMA= 4.54#004, scenario= 4.52#002
436	Univ. Radio Communication Tester	CMU 200	103083	R&S Test Firmware Base=5.14, Mess-Software= GSM:5.14 WCDMA:5.14 (current Testsoftw. F. all band
441	CTC-SAR-EMI Cable Loss	System EMI field (SAR)	-	EMC 32 Version 8.52
442	CTC-SAR-EMS	System EMS field (SAR)	-	EMC 32 Version 8.40
443	CTC-FAR-EMI-RSE	System CTC-FAR-EMI- RSE		Spuri 7.2.5 or EMC 32 Ver. 9.15.00
444	CTC-FAR-EMS field	System-EMS-Field (FAR)	-	EMC 32 Version 9.15.00
4.50			100001	R&S Test Firmware Base=5.14, GSM=5.14
460	Univ. Radio Communication Tester	CMU 200	108901	WCDMA=5.14 (current Testsoftw.,f. all band to be used,
489	EMI Test Receiver	ESU40	1000-30	Firmware=4.43 SP3, Bios=V5.1-16-3, Spec. =01.00
491	ESD Simulator dito	ESD dito	dito307022	V 2.30
524	Voltage Drop Simulator	VDS 200	0196-16	Software Nr: 000037 Version V4.20a01
526	Burst Generator	EFT 200 A	0496-06	Software Nr. 000034 Version V2.32
527	Micro Pulse Generator	MPG 200 B	0496-05	Software-Nr. 000030 Version V2.43
528	Load Dump Simulator	LD 200B	0496-06	Software-Nr. 000031 Version V2.35a01
546	Univ. Radio Communication Tester	CMU 200	106436	R&S Test Firmware Base=5.14, GSM=5.14 WCDMA=5.14 (current Testsoftw.,f. all band to be used
547	Univ. Radio Communication Tester	CMU 200	835390/014	R&S Test Firmware Base=V5.1403 (current Testsoftw., f. all band used, GSM = 5.14 WCDMA: = 5.14
584	Spectrum Analyzer	FSU 8	100248	2.82_SP3
597	Univ. Radio Communication Tester	CMU 200	100347	R&S Test Firmware Base=5.01, GSM=5.02 WCDMA= not installed, Mainboard= μP1=V.850
598	Spectrum Analyzer	FSEM 30 (Reserve)	831259/013	Firmware Bios 3.40 , Analyzer 3.40 Sp 2
607	Signal Generator	SMR 20	832033/011	V1.25
620	EMI Test Receiver	ESU 26	100362	4.43_SP3
642	Wideband Radio Communication Tester	CMW 500	126089	Setup V03.26, Test programm component V03.02.20
670	Univ. Radio Communication Tester	CMU 200	106833	μ P1 =V8.50, Firmware = V.20
689	Vector Signal Generator	SMU200	100970	02.20.360.142
692	Bluetooth Tester	CBT 32	100236	CBT V 5.40, FW: V.2.41 (FPGA Digital, V. 3.09 FPGA RF)

8.0.2. Single instruments and test systems

		1	1				
RefNo.	Equipment	Туре	Serial-No.	Manufacturer	Interval of calibration	Remark	Cal due
001	EMI Test Receiver	ESS	825132/017	Rohde & Schwarz	12 M	-	16.05.2018
005	AC - LISN (50 Ohm/50μH, test site 1)	ESH2-Z5	861741/005	Rohde & Schwarz	12 M	-	15.05.2018
007	Single-Line V-Network (50 Ohm/5µH)	ESH3-Z6	892563/002	Rohde & Schwarz	12 M	-	17.05.2018
009	Power Meter (EMS-radiated)	NRV	863056/017	Rohde & Schwarz	24 M	-	15.05.2019
016	Line Impedance Simulating Network	Op. 24-D	B6366	Spitzenberger+Spies	36 M	-	30.05.2019
021	Loop Antenna (H-Field)	6502	9206-2770	EMCO	36 M	-	30.04.2018
030	Loop Antenna (H-field)	HFH-Z2	879604/026	Rohde & Schwarz	36 M	-	30.04.2018
033	RF-current probe (100kHz-30MHz)	ESH2-Z1	879581/18	Rohde & Schwarz	24 M	-	15.05.2019
057	relay-switch-unit (EMS system)	RSU	494440/002	Rohde & Schwarz	pre-m	1a	
060	power amplifier (DC-2kHz)	PAS 5000	B6363	Spitzenberger+Spies	-	3	
086	DC - power supply, 0 -10 A	LNG 50-10	-	Heinzinger Electronic	pre-m	2	
087	DC - power supply, 0 -5 A	EA-3013 S	-	Elektro Automatik	pre-m	2	
091	USB-LWL-Converter	OLS-1	007/2006	Ing. Büro Scheiba	-	4	
099	passive voltage probe	ESH2-Z3	299.7810.52	Rohde & Schwarz	36 M	-	30.04.2018
100	passive voltage probe	Probe TK 9416	without	Schwarzbeck	36 M	-	30.04.2018
110	USB-LWL-Converter	OLS-1	-	Ing. Büro Scheiba	-	4	
119	RT Harmonics Analyzer dig. Flickermeter	B10	G60547	BOCONSULT	36 M	-	30.05.2019
133	horn antenna 18 GHz (Meas 1)	3115	9012-3629	EMCO	36 M	1c	10.03.2020
134	horn antenna 18 GHz (Subst 2)	3115	9005-3414	EMCO	36 M	-	10.03.2020
136	adjustable dipole antenna (Dipole 1)	3121C-DB4	9105-0697	EMCO	36 M	-	30.04.2018
140	Signal Generator	SMHU	831314/006	Rohde & Schwarz	24 M	-	30.05.2018
248	attenuator	SMA 6dB 2W	-	Radiall	pre-m	2	
249	attenuator	SMA 10dB 10W	-	Radiall	pre-m	2	
252	attenuator	N 6dB 12W	-	Radiall	pre-m	2	
256	attenuator	SMA 3dB 2W	-	Radiall	pre-m	2	
257	hybrid	4031C	04491	Narda	pre-m	2	
260	hybrid coupler	4032C	11342	Narda	pre-m	2	
261	Thermal Power Sensor	NRV-Z55	825083/0008	Rohde & Schwarz	24 M	-	30.05.2018
262	Power Meter	NRV-S	825770/0010	Rohde & Schwarz	24 M	-	30.05.2018
263	Signal Generator	SMP 04	826190/0007	Rohde & Schwarz	36 M	-	30.05.2019
265	peak power sensor	NRV-Z33, Model 04	840414/009	Rohde & Schwarz	24 M	-	30.05.2018
266	Peak Power Sensor	NRV-Z31, Model 04	843383/016	Rohde & Schwarz	24 M	-	30.05.2018
267	notch filter GSM 850	WRCA 800/960-6EEK	9	Wainwright GmbH	pre-m	2	
270	termination	1418 N	BB6935	Weinschel	pre-m	2	
271	termination	1418 N	BE6384	Weinschel	pre-m	2	
272	attenuator (20 dB) 50 W	Model 47	BF6239	Weinschel	pre-m	2	
273	attenuator (20 dB) 30 W	Model 48	BF9229	Weinschel	*		
					pre-m	2	
274	attenuator (10 dB) 50 W	Model 47 (10 dB) 50 W	BG0321	Weinschel	pre-m	2	
275	DC-Block	Model 7003 (N)	C5129	Weinschel	pre-m	2	
276	DC-Block	Model 7006 (SMA)	C7061	Weinschel	pre-m	2	
279	power divider	1515 (SMA)	LH855	Weinschel	pre-m	2	
298	Univ. Radio Communication Tester	CMU 200	832221/091	Rohde & Schwarz	pre-m	3	
300	AC LISN (50 Ohm/50µH, 1-phase)	ESH3-Z5	892 239/020	Rohde & Schwarz	12 M	-	17.05.2018
301	attenuator (20 dB) 50W, 18GHz	47-20-33	AW0272	Lucas Weinschel	pre-m	2	
302	horn antenna 40 GHz (Meas 1)	BBHA9170	155	Schwarzbeck	36 M	Ŀ	14.03.2020
303	horn antenna 40 GHz (Subst 1)	BBHA9170	156	Schwarzbeck	36 M	-	20.03.2020
331	Climatic Test Chamber -40/+180 Grad	HC 4055	43146	Heraeus Vötsch	24 M	-	30.10.2018
341	Digital Multimeter	Fluke 112	81650455	Fluke	24 M	-	30.05.2018
342	Digital Multimeter	Voltcraft M-4660A	IB 255466	Voltcraft	24 M	-	17.05.2019
347	laboratory site	radio lab.	-	-	-	5	
348	laboratory site	EMI conducted	-	-	-	5	
354	DC - Power Supply 40A	NGPE 40/40	448	Rohde & Schwarz	pre-m	2	
355	Power Meter	URV 5	891310/027	Rohde & Schwarz	24 M	-	30.05.2018
357	power sensor	NRV-Z1	861761/002	Rohde & Schwarz	24 M	-	24.05.2019
371	Bluetooth Tester	CBT32	100153	R&S	36 M	-	30.05.2019
373	Single-Line V-Network (50 Ohm/5µH)	ESH3-Z6	100535	Rohde & Schwarz	12 M	-	17.05.2018
377	EMI Test Receiver	ESCS 30	100160	Rohde & Schwarz	12 M	-	15.05.2018
392	Radio Communication Tester	MT8820A	6K00000788	Anritsu	12 M	-	18.05.2018
405	Thermo-/Hygrometer Model 7405	OPUS 10 THI Near-Field Probe Set	126.0604.0003.3.3.3.22 9305-2457	LUFFT Mess u. Regeltechnik EMCO	24 M	4	30.03.2019
					12.16		24.05.2010
436	Univ. Radio Communication Tester	CMU 200 HL 562	103083 100248	Rohde & Schwarz	12 M 36 M	-	24.05.2018 10.03.2020
439	UltraLog-Antenna CTC-FAR-EMI-RSE	System CTC-FAR-EMI-RSE	100246	Rohde & Schwarz ETS-Lindgren / CETECOM	36 M 12 M	5	30.09.2017
443	Oscilloscope	HM 205-3	9210 P 29661	Hameg	1 ∠ IVI	4	30.09.2017
	*			, and the second	pro	2	
456	DC-Power supply 0-5 A	EA 3013 S	207810	Elektro Automatik	pre-m		
459	DC -Power supply 0-5 A , 0-32 V	EA-PS 2032-50	910722	Elektro Automatik	pre-m	2	
463	Universal source	HP3245A	2831A03472	Agilent	-	4	
466	Digital Multimeter	Fluke 112	89210157	Fluke USA	24 M	-	30.05.2018

RefNo.	Equipment	Туре	Serial-No.	Manufacturer	Interval of calibration	Remark	Cal due
467	Digital Multimeter	Fluke 112	89680306	Fluke USA	36 M	-	30.04.2018
468	Digital Multimeter	Fluke 112	90090455	Fluke USA	36 M	-	30.04.2018
477	ReRadiating GPS-System	AS-47	-	Automotive Cons. Fink	-	3	
480	power meter (Fula)	NRVS	838392/031	Rohde & Schwarz	24 M	-	16.05.2019
482	filter matrix	Filter matrix SAR 1	-	CETECOM (Brl)	-	1d	
487	System CTC NSA-Verification SAR-EMI	System EMI field (SAR) NSA	-	ETS Lindgren / CETECOM	24 M	-	31.09.2017
489	EMI Test Receiver	ESU40	1000-30	Rohde & Schwarz	12 M	-	18.05.2019
502	band reject filter	WRCG 1709/1786-1699/1796-	SN 9	Wainwright	pre-m	2	
503	band reject filter	WRCG 824/849-814/859-	SN 5	Wainwright	pre-m	2	
512	notch filter GSM 850	WRCA 800/960-02/40-6EEK	SN 24	Wainwrght	12 M	1c	30.06.2017
517	relais switch matrix	HF Relais Box Keithley	SE 04	Keithley	pre-m	2	
523	Digital Multimeter	L4411A	MY46000154	Agilent	24 M	-	18.05.2019
529	6 dB Broadband resistive power divider	Model 1515	LH 855	Weinschel	pre-m	2	
530	10 dB Broadband resistive power divider	R 416110000	LOT 9828	-	pre-m	2	
546	Univ. Radio Communication Tester	CMU 200	106436	R&S	12 M	-	30.03.2018
547	Univ. Radio Communication Tester	CMU 200 HL025	835390/014	Rohde & Schwarz	12 M 36/12 M	-	30.04.2017 31.07.2018
549 550	Log.Per-Antenna System CTC S-VSWR Verification SAR-EMI	System EMI Field SAR S-	1000060	Rohde & Schwarz ETS Lindgren/CETECOM	24 M	-	31.07.2018
574	Biconilog Hybrid Antenna	VSWR BTA-L	980026L	Frankonia	36/12 M	-	31.03.2019
584	Spectrum Analyzer	FSU 8	100248	Rohde & Schwarz	pre-m	-	51.05.2019
597	Univ. Radio Communication Tester	CMU 200	100347	Rohde & Schwarz	pre-m	-	
600	power meter	NRVD (Reserve)	834501/018	Rohde & Schwarz	24 M	_	17.05.2019
601	medium-sensitivity diode sensor	NRV-Z5 (Reserve)	8435323/003	Rohde & Schwarz	24 M	-	15.05.2019
602	peak power sensor	NRV-Z32 (Reserve)	835080	Rohde & Schwarz	24 M	-	
611	DC power supply	E3632A	KR 75305854	Agilent	pre-m	2	
612	DC power supply	E3632A	MY 40001321	Agilent	pre-m	2	
613	Attenuator	R416120000 20dB 10W	Lot. 9828	Radiall	pre-m	2	
616	Digitalmultimeter	Fluke 177	88900339	Fluke	24 M	-	30.05.2018
617	Power Splitter/Combiner	ZFSC-2-2-S+	S F987001108	Mini Circuits	-	2	
618	Power Splitter/Combiner	50PD-634	600994	JFW Industries USA	-	2	
619	Power Splitter/Combiner	50PD-634	600995	JFW Industries, USA	-	3	
620	EMI Test Receiver	ESU 26	100362	Rohde-Schwarz	12 M	-	16.05.2018
621	Step Attenuator 0-139 dB	RSP	100017	Rohde & Schwarz	pre-m	2	
625	Generic Test Load USB	Generic Test Load USB	-	CETECOM	-	2	
627	data logger	OPUS 1	201.0999.9302.6.4.1.43	G. Lufft GmbH	24 M	-	30.03.2019
634	Spectrum Analyzer	FSM (HF-Unit)	826188/010	Rohde & Schwarz	pre-m	2	
637	High Speed HDMI with Ethernet 1m	HDMI cable with Ethernet 1m	=	KogiLink	-	2	
638	HDMI Kabel with Ethernet 1,5 m flach	HDMI cable with Ethernet	=	Reichelt	-	2	
640	HDMI cable 2m rund	HDMI cable 2m rund	-	Reichelt	-	2	
641	HDMI cable with Ethernet	Certified HDMI cable with	==	PureLink	-	2	
642	Wideband Radio Communication Tester	CMW 500	126089	Rohde&Schwarz	12 M	-	24.05.2018
644	Amplifierer	ZX60-2534M+	SN865701299	Mini-Circuits	-	-	
670	Univ. Radio Communication Tester	CMU 200	106833	Rohde & Schwarz	24 M	-	30.05.2018
671	DC-power supply 0-5 A	EA-3013S	-	Elektro Automatik	pre-m	2	
678	Power Meter	NRP	101638	Rohde&Schwarz	pre-m	-	
683	Spectrum Analyzer	FSU 26	200571	Rohde & Schwarz	12 M	-	17.05.2018
686	Field Analyzer	EHP-200A	160WX30702	Narda Safety Test Solutions	24 M	-	29.03.2019
687	Signal Generator Pre Amp	SMF 100A JS-18004000-40-8P	102073 1750117	Rohde&Schwarz	12 M	-	17.05.2018
688 690	*	FSU	1/3011/	Miteq Rohde&Schwarz	pre-m 12 M	-	16.05.2018
691	Spectrum Analyzer OSP120 Base Unit	OSP120	101183	Ronde&Schwarz Rohde & Schwarz	12 M	-	22.05.2018
692	Bluetooth Tester	CBT 32	100236	Rohde & Schwarz	36 M	-	29.05.2020
697	Power Splitter	ZN4PD-642W-S+	165001445	Mini-Circuits	-	2	
703	INNCO Antennen Mast	MA 4010-KT080-XPET-ZSS3	MA4170-KT100-XPET-	INNCO	pre-m	-	
704	INNCON Controller	CO 3000-4port	CO3000/933/38410516/L	INNCO Systems GmBh	pre-m	-	
711	Harmonic Mixer 90 GHz - 140GHz	RPG FS-Z140	101004	RPG	12 M	-	22.02.2018
712	Harmonic Mixer 75 GHz - 110GHz	FS-Z110	101468	Rohde & Schwarz	12 M	-	22.02.2018
713	Harmonic Mixer, 50 GHz - 75GHz	FS-Z75	101022	Rohde & Schwarz	12 M	-	22.05.2018
714	Signal Analyzer 67GHz	FSW67	104023	Rohde & Schwarz	24 M	-	03.03.2019
715	Harmonic Mixer, 140 GHz - 220GHz	FS-Z220	101009	RPG Radiometer Physics	12 M	-	03.08.2018
716	Harmonic Mixer 220 GHz to 325 GHZ	FS-Z325	101005	RPG Radiometer Physics	12 M	-	13.02.2018
747 748	Spectrum Analyzer Pickett-Potter Horn Antenna	FSU 26 FH-PP 4060	200152 010001	Rohde & Schwarz Radiometer Physiscs	12 M	-	18.05.2018
749		FH-PP 60-90			ļ <u></u>	-	
	Pickett-potter Horn Antenna	FH-PP 00-90 FH-PP 140-220	010003	Radiometer Physics	ļ -	-	
750	Pickett-Potter Horn Antenna	гп-РР 140-220	010011	Radiometer Physics		-	

Note / remarks		Calibrated during system calibration:
	1a	System CTC-SAR-EMS (RefNo. 442)
	1b	System-CTC-EMS-Conducted (RefNo. 335)
	1c	System CTC-FAR-EMI-RSE (RefNo . 443)
	1d	System CTC-SAR-EMI (RefNo . 441)
	1e	System CTC-OATS (EMI radiated) (RefNo. 337)
	1 f	System CTC-CTIA-OTA (RefNo . 420)
	1 g	System CTC-FAR-EMS (RefNo . 444)
	2	Calibration or equipment check immediately before measurement
	3	Regulatory maintained equipment for functional check or support purpose
	4	Ancillary equipment without calibration e.g. mechanical equipment or monitoring equipment
	5	Test System
Interval of calibration	12 M	12 month
	24 M	24 month
	36 M	36 month
	24/12 M	Calibration every 24 months, between this every 12 months internal validation
	36/12 M	Calibration every 36 months, between this every 12 months internal validation
	-1	

9. Versions of test reports (change history)

Check before starting the measurement

Without calibration

Version	Applied changes	Date of release
	Initial release	2017-10-06
C1	EUT identification changed	2018-01-08