Bioinformatik Stefanie Hartmann

Wintersemester 2019 / 2020, Universität Potsdam

Introduction to R Jan 17, 2020

What is R?

- R is a language and software package with
 - built-in statistical analysis functions
 - excellent graphing capabilities

demo(graphics)

What is R?

- R is a language and software package with
 - built-in statistical analysis functions
 - excellent graphing capabilities
- functions can be added (written) by the user
- additional modules (packages) are available for a variety of specific purposes
- R is available for free at http://www.r-project.org
 - links to books, pdf manuals, and tutorials are also available at this url
 - http://www.math.csi.cuny.edu/Statistics/R/simpleR/ printable/simpleR.pdf
 - http://cran.r-project.org/doc/contrib/refcard.pdf

bioinf WS19 · lec12 · S.Hartmann

Starting and quitting R

to start, type: R

R version 3.3.2 (2016-10-31)
Copyright (C) 2016 The R Foundation for Statistical Computing ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help.

Type 'q()' to quit R.

Starting and quitting R

to start, type: R

- interaction through the command line interface
- the ">" is the R prompt
- commands can be executed directly
- > 2+6

[1] 8

- the "+" is the R prompt when continuation is expected
- > 1*2*3*4*
- + 5*6

[1] 720

to quit, type: q()

bioinf WS19 · lec12 · S.Hartmann

bioinf WS19 · lec12 · S.Hartman

Existing variables

> ls()

- > rm(x)
- > ls()

Data: entered directly or saved in variables

use R like an overgrown calculator

- > 2+6
- [1] 8

assign values to variables (objects) and use these

> x = 2

> x <- 2

- > y = 6
- > y <- 6
- > X+y

[1] 8

variables are case sensitive, should not begin with numbers or symbols, and should not contain blank spaces

bioinf WS19 • lec12 • S.Hartmann

Variables: one-dimensional objects

vector

- > a = 7
- > b = c(1, 2, 3, 4, 5)
- > c = c("one", "two", "three")

list

$$> d = c(1, "two", 3, "four", 5)$$

if the object already exists, its previous value is erased!

highinf WS19 . Jac12 . S Hartmann

Generating vectors

- 1. read from an external file
- 2. type into the R interface

Using vectors

$$> x = 2$$
 $> y = 6$

> X+Y

- Γ17 8
- > x*y
- [1] 12
- > x+3
- [1] 5
- > factorial(y) [1] 720

bioinf WS19 · lec12 · S.Hartmann

Using vectors

$$y = 6$$
 $y = c(2,4,6)$

- > x+y [1] 8 [1] 3 7 11
- > x*y [1] 12 [1] 2 12 30
- > x+3 [1] 5 [1] 4 6 8
- > factorial(y) [1] 720 [1] 2 24 720

bioinf WS19 • lec12 • S.Hartmann

bioinf WS19 · lec12 · S.Hartmann

Accessing vectors

- vector content
- vector indices
- general information about the vector

Vector content

> y

[1] 2 4 8 16 32 64 1 2 3 4 5 6

- > y[2]
- > y[-2]
- > y[1:3]
- > y[c(1,3,5)]
- > y[y>10]
- > y[y<8 | y>16]
- > max(y)

bioinf WS19 · lec12 · S.Hartmann

About the vector

- > length(y) [1] 6
- > class(y) [1] "numeric"

Vector content vs. indices

- > y[y>5]
- [1] 8 16 32 64
- (value)
- > which(y>5) [1] 3 4 5 6
- (index)

- > max(y)
- [1] 64

(value)

> which(y==max(y)) [1] 6

(index)

- > y[y<10] [1] 2 4 8
- (value)

(index)

> y<10

- [1] TRUE TRUE TRUE
 - FALSE FALSE FALSE

bioinf WS19 · lec12 · S.Hartmann

Two-dimensional variables

1	2	45
1	5	67
2	1	46

4	"small"	6
8	"med"	3
2	"large"	7

matrix

data frame

- · generating matrices and data frames
- · reading in
- accessing
- working with

bioinf WS19 · lec12 · S.Hartmann

Two-dimensional variables

	[,1]	[,2]	[,3]
[1,]	1	2	45
[2,]	1	5	67
[3,]	2	1	46

y[row,column]

bioinf WS19 · lec12 · S.Hartmann

Two-dimensional variables

	[,1]	[,2]	[,3]
[1,]	1	2	45
[2,]	1	5	67
[3,]	2	1	46

y[3,2] y[,2] y[3,]

y[,2]*10

sum(y)
sum(y[,2])

bioinf WS19 · lec12 · S.Hartmann

Built-in functions

log10(x)

- gives logs to the base of 10
- expects one argument
- > log10(5)

[1] 0.69897

> help(log)

> ?log

log(x,n)

- gives logs to the base n
- expects two arguments
- > log(81,3)

Γ1**]** 4

bioinf WS19 • lec12 • S.Hartmann

Mathematical functions

log(x) log to the base e of x

> log(5)

 $e^{?} = 5$

[1] 1.609438

- > number = 5
- > log(number)

[1] 1.609438

- > numbers = c(2, 5, 10)
- > log(numbers)

[1] 0.6931472 1.6094379 2.3025851

Mathematical functions

log(x) log to the base e of x

exp(x) e^x

log(x,n) log to base n of x

log10(x) log to base 10 of x

sqrt(x) square root of x

factorial(x) x!

choose(n,x) binomial coefficients n!/(x! (n-x)!)

cos(x) cosine of x (in radians)

•••

bioinf WS19 · lec12 · S.Hartmann

Vector functions

length(x) number of elements in x

max(x) maximum value in x

min(x) minimum value in x

sum(x) total of all the values in x

mean(x) arithmetic average of all values in x

median(x) median value in x

var(x) variance of x

sort(x) a sorted version of x

quantile(x) vector containing the min., lower quartile,

median, upper quartile, max. of \boldsymbol{x}

bioinf WS19 • lec12 • S.Hartmann

Vector functions

```
> numbers = c(1, 10, 5, 30)
```

> mean(numbers)
> m = mean(numbers)

[1] 11.5

> sort(numbers)

[1] 1 5 10 30 (values)

> rank(numbers)

[1] 1 3 2 4 (indices)

bioinf WS19 • lec12 • S.Hartmann

Other built-in functions

string functions

strsplit(x, split); toupper(x)

statistical probability functions

dnorm(x); dunif(x, min=0, max=1)

statistical analysis functions

chisq.test(matrix)

graphics functions

plot(x,y); boxplot(z)

Reading data into R

through the keyboard: using the concatenate or matrix function

> x = c(3, 6, 8, 1, 6, 8)

> x = matrix(c(1, 2, 3, 4, 5, 6), byrow=T, nrow=2)

through the keyboard or from the clipboard: using the <u>scan</u> function

> y = scan()

1: 4

2: 5

from an external file using the read.table function

- reads in a file in table format, creates a dataframe from it
- > z = read.table("/home/bioinf/genomes.txt")

bioinf WS19 · lec12 · S.Hartmann

Reading data into R

- > z = read.table("/home/bioinf/genomes.txt", header=T)
- > attach(z)
- > z[,3]
- > genomeSizeMB
- > z\$genomeSizeMB

header organism type genomeSizeMB geneNumber Arabidopsis plant 125 25,000 unicellular 12 6.200 veast rows 3.000 24.000 human animal 466 60.000 rice plant worm animal 100 21,000 bioinf WS19 · lec12 · S.Hartmann

Reading data into R

- > z = read.table("/home/bioinf/genomes.txt", header=T)
- > z[,3]

Using row names
> z = read.table("/home/bioinf/genomes.txt", header=T, row.names=1)

row names

header organis
Arabido
yeas
huma
rice

\			
organism	type	genomeSizeMB	geneNumber
Arabidopsis	plant	125	25,000
yeast	unicellular	12	6,200
human	animal	3,000	24,000
rice	plant	466	60,000
worm	animal	100	21,000

Generating graphics

- different plots for different data/purposes!
 - plots for a single variable
 - plots with two variables
 - multivariate plots
 - special plots
- general introduction today
- more graphics next week!

XV	ys
90.77212	51.75918
16.11536	28.95312
31.12350	35.50002
39.79581	32.69104
48.82297	40.50366
78.17519	56.58430
29.97319	31.87137
61.66741	46.30729
55.47211	44.09255
8.93557	30.02324
73.36877	46.05974
60.94679	42.96545
30.12837	41.13832
63.49312	41.89534
69.42570	45.94758
33.65231	30.78103
60.49952	45.73121
89.56325	47.64866
37.79412	36.71042
55.99477	41.87292
0.14132	26.84904
71.25819	49.54433
1.22322	27.91121
81.51914	45.52460
3.87410	23.16908
73.32387	49.90860
45.66414	40.22269
67.81447	45.13829

bioinf WS19 · lec12 · S.Hartmann

Today's exercise

- starting R
- data formats
 - vectors
 - matrices
- functions
 - optional: writing your own function
- generating graphics
- saving graphics
- ⇒ please finish this exercise before the next lecture

Saving graphics

an output format in R is called a "device": we have to decide on a device before writing into it

- 1. save an image that has already been generated: copy the content of that window into a file using dev. copy command.
- > plot(mvdata)
- > dev.copy(device = pdf, file = "plot_of_mydata.pdf")
- > dev.off()
- 2. first create the device and then generate the graphics, writing these directly into the device.
- > pdf(file = "plot_of_mydata.pdf")
- > plot(mydata)
- > dev.off()

bioinf WS19 · lec12 · S.Hartmann

Terms and concepts

- · assigning and using variables
 - concatenate function
 - read.table function
 - accessing data in vectors and matrices
 - accessing content vs. indices

bioinf WS19 · lec12 · S.Hartmann