Procedures Versus Algorithms

There are two senses in which a TM accepts a language.

- 1. The TM accepts the strings in the language (by final state), but does not halt on some of the strings not in the language.
 - ♦ Thus, we can never be sure whether those strings are rejected, or eventually will be accepted.
 - ◆ A language accepted in this way is called recursively enumerable (RE).
 - Note: this notion is the normal "accepted by a TM" notion.
 - The TM is sometimes referred to as a procedure.
- 2. The TM accepts by final state, but halts on every string, whether or not it is accepted.
 - A language accepted this way is called recursive.
 - ♦ As a problem, the question is called decidable.
 - lacktriangle The TM is called an algorithm.

Plan

- 1. Show a particular language not to be RE.
 - ♦ Like the "hello-world" argument, we show no TM can tell whether a given TM halts on a given input the proof is by "diagonalization," or self-reference.
- 2. Use the non-RE language from (1) to show another language to be RE, but not recursive.
 - ♦ Trick: if a language and its complement are both RE, then they are both recursive.
 - ◆ Thus, if a language L is RE, but its complement is not, then L is not recursive.

TM's as Integers

We shall focus on TM's whose input alphabet is $\{0,1\}$. Each such TM can be represented by one or more integers, using the following code:

• Assume the states are $\{q_1, q_2, \ldots\}$. Represent q_i by 0^i .

- Assume the tape symbols are $\{X_1, X_2, \ldots\}$, where the first three of these are 0, 1, and B, in that order. Represent X_i by 0^i .
- Represent directions L and R by 0 and 00, respectively, and refer to them as $L = D_1$, $R = D_2$.
- Represent a rule of the TM $\delta(q_i, X_j) = (q_k, X_l, D_m)$ by $0^i 10^j 10^k 10^l 10^m$.
- Represent the whole TM by $111C_111C_211\cdots 11C_n111$, where C_i is the code for one of the δ rules, in any order.
 - This string is some integer in binary, so we can call the TM M_i , where i is that integer.
- Conversely, every integer i can be said to describe some TM M_i .
 - If i in binary is not of the right form $(111code \cdots)$, then M_i is the TM with no moves. Thus, $H(M_i)$ is $L(0+1)^*$).
 - Note that many integers represent the same TM, but that is neither good nor bad.

The Diagonalization Language

Define L_d to be the set of binary strings w with the following properties:

- 1. First, let i be the integer that is 1w in binary.
 - Refer to w as the "ith string," or w_i .
- 2. Then w_i is in L_d if and only if w_i is not in $H(M_i)$.

Proof L_d is not RE

Suppose L_d is RE. Then $L_d = H(M)$ for some TM M

- Since the input alphabet of M is $\{0, 1\}$, M is M_j for at least one value of j.
- Let x be the jth string; i.e., 1x is j in binary.
- Question: is x in L_d ?
 - Suppose so. Then x is not in $H(M_j)$, by definition of L_d . But $H(M_j) = H(M) = L_d$, so x is not in L_d (Contradiction).
 - ♦ Suppose not. Then x is in $H(M_j)$ by definition of L_d . But $H(M_j) = H(M) = L_d$, so x is in L_d (Contradiction).

• Since we derive a contradiction in either case, we conclude that our assumtion $H(M) = L_d$ was wrong, and in fact, there is no such TM M.

Rules About Complements

Let L and \overline{L} be a language and its complement with respect to alphabet $\{0,1\}$.

- If L is recursive, so is \overline{L} .
 - Proof: Find a TM M that accepts L by final state but always halts. Arrange for a TM M' to simulate M, but accept if and only if M halts before accepting.
- If L and \overline{L} are RE, then both are recursive.
 - Proof: Simulate TM's for both L and \(\overline{L}\) on separate tracks. One or the other is guaranteed to accept, so the simulating TM can always be made to halt.

The Universal Language

 L_u = the set of binary strings consisting of a code for some TM M_i followed by some binary string w, such that w is in $H(M_i)$.

- Proof in reader that L_u is RE.
 - In essence: a TM can be treated as a stored-program device, just like a real computer.
 - lackHard part of proof: Since M_i may have any number of states and tape symbols, one multitape TM M cannot simulate these states and symbols directly. Rather, it represents them as strings of 0's (as in the code we developed) and compares using scratch tapes.
- Proof L_u is not recursive: show $\overline{L_u}$ is not RE.
 - Remember, if L_u were recursive, then $\overline{L_u}$ would be recursive, and therefore RE.
- Proof that $\overline{L_u}$ is not RE:
 - ♦ A reduction from $\underline{L_d}$ to $\overline{L_u}$: Show that if there is a TM for $\overline{L_u}$, then there is a TM for L_d (which we know there isn't).
 - ♦ Transform w by first checking that 1w represents some TM M_i (i.e., it is of the form 111codes111). If so, produce 1ww as input to a hypothetical $\overline{L_u}$ TM. If not, reject w, since 1w represents a TM that accepts everything.

- If 1ww is produced, simulate the $\overline{L_u}$ TM on this input. If it accepts, then TM M_i (represented by 1w) does not accept the *i*th string, w, so w is in L_d .
- If 1ww is not in $\overline{L_u}$, then M_i does accept w, so w is not in L_d .

Summary:

- L_d is undecidable (not recursive), and in fact not RE.
- \bullet L_u is undecidable, but RE.
- $\overline{L_u}$ is like L_d , not RE.
- $\overline{L_d}$ is like L_u , RE, although we did not prove this.

Rice's Theorem

Essentially, any nontrivial property of the language of a TM is undecidable.

- Note the difference between a property of L(M) from a property about M:
 - Example: $L(M) = \emptyset$ is a property of the language.
 - ◆ Example: "M has at least 100 states" is a property of the TM itself.
 - "= \emptyset " is undecidable; "has 100 states" is easily decidable, just look at the code for M and count.

Properties

A property of the RE languages is a set of strings, those that represent TM's in a certain class.

- Example: the property "is context-free" is the set of codes for all TM's M such that L(M) is a CFL.
- The property is "of languages" if TM's whose languages are the same either all have the property or none do.

Proof of Rice's Theorem

Let P be any nontrivial property of the RE languages; i.e., at least one RE language has the property, and at least one does not.

• We shall prove that P (as a language, i.e., a set of TM codes) is undecidable.

- Assume \emptyset does not have property P.
 - If it does, consider \overline{P} . P is decidable if and only if \overline{P} is.
- Suppose P is decidable. Assume L is a language with property P, and \emptyset is a language without property P. We can decide L_u (something we know is impossible) as follows.
 - Given (M, w), test if w is in H(M) as follows. First, we shall construct a TM N to accept either \emptyset or L, depending on whether M accepts w.
 - ♦ N simulates M on w. Note that w is not input to N; rather N writes w on a scratch tape and simulates M which is part of N's own states.
 - If M accepts w, N then simulates a TM M_L for language L on N's own input x. If M_L accepts x then N accepts x.
 - If M never accepts w, N never gets to simulate M_L , and therefore accepts \emptyset .
 - Feed the constructed N to the hypothetical P tester. Accept (M, w) if and only if N has property P.

Consequences of Rice's Theorem

We cannot tell if a TM:

- Accepts ∅.
- Accepts a finite language.
- Accepts a regular language, a context free language, etc. etc.

Reductions

To prove a problem P_1 to be hard in some sense (e.g., undecidable), we can $reduce P_2$, a known hard problem, to P_1 .

- For each instance w (string in) P_2 , we construct an instance x of P_2 , using some fixed algorithm.
 - The same algorithm must also turn a string w that is not in P_2 into a string x that is not in P_1 .
- We can then argue that if P₁ were decidable, we could use the algorithm in which we transformed w to x and then tested x for membership in P₁ as a way to decide P₂.
 - lacktriangle Since P_2 is undecidable, we have a

contradiction of the assumption P_1 is decidable.

- The same idea works for showing P_1 not to be RE, but now P_2 must be non-RE, and the transformation from instances of P_2 to instances of P_1 may be a procedure, not necessarily an algorithm.
- Common error: trying to do the reduction in the wrong direction.