MA 109: Calculus I

Tutorial Solutions

Aryaman Maithani

https://aryamanmaithani.github.io/tuts/ma-109

Autumn Semester 2020-21

Last update: 2020-11-26 20:20:59+05:30

Contents

	2
	3

§0 Notations

§0. Notations

- 1. $\mathbb{N} = \{1,\ 2,\ \ldots\}$ denotes the set of natural numbers.
- 2. $\mathbb{Z}=\mathbb{N}\cup\{0\}\cup\{-n:n\in\mathbb{N}\}$ denotes the set of integers.
- 3. $\ensuremath{\mathbb{Q}}$ denotes the set of rational numbers.
- 4. \mathbb{R} denotes the set of real numbers.

 $\S 1$ Tutorial 1

§1. Tutorial 1

25th November, 2020

Sheet 1

2. (iv) $\lim_{n\to\infty} (n)^{1/n}$.

Define $h_n:=n^{1/n}-1.$ Then, $h_n\geq 0$ for all $n\in\mathbb{N}.$ (Why?)

Now, for n > 2, we have

$$n = (1 + h_n)^n$$

$$= 1 + nh_n + \binom{n}{2}h_n^2 + \dots + \binom{n}{n}h_n^n$$

$$\geq 1 + nh_n + \binom{n}{2}h_n^2$$

$$> \binom{n}{2}h_n^2$$

$$= \frac{n(n-1)}{2}h_n^2.$$

Thus, $h_n < \sqrt{\frac{2}{n-1}}$ for all n > 2.

Using Sandwich Theorem, we get that $\lim_{n \to \infty} \overline{h_n} = 0$ which gives us that

$$\lim_{n \to \infty} n^{1/n} = 1.$$

(Where did we use that $h_n \ge 0$?)

 $\S 1$ Tutorial 1 4

3. (ii) We show that $\left\{ (-1)^n \left(\frac{1}{2} - \frac{1}{n} \right) \right\}_{n \ge 1}$ is *not* convergent.

Solution. Note that from the difference formula, we know that if $\{a_n\}$ converges, then

$$\lim_{n \to \infty} |a_{n+1} - a_n| = 0.$$

(The limit exists and equals 0.)

We show that this is not true for the given sequence. We define

$$b_n := a_{n+1} - a_n$$

where $\{a_n\}$ is the sequence given in the question.

Then, b_n is given as

$$b_n = (-1)^{n+1} \left(\frac{1}{2} - \frac{1}{n+1} \right) - (-1)^n \left(\frac{1}{2} - \frac{1}{n} \right)$$
$$= (-1)^{n+1} \left(\frac{1}{2} - \frac{1}{n+1} \right) + (-1)^{n+1} \left(\frac{1}{2} - \frac{1}{n} \right)$$
$$= (-1)^{n+1} + (-1)^n \left(\frac{1}{n+1} + \frac{1}{n} \right).$$

Thus, we have

$$|b_n| = \left|1 - \left(\frac{1}{n+1} + \frac{1}{n}\right)\right|$$
$$= \left|1 - \frac{2n+1}{n(n+1)}\right|$$

From the above, we conclude that

$$\lim_{n\to\infty}|b_n|=1.$$

This shows that a_n does not converge.

 $\S 1$ Tutorial 1 5

5. (iii)
$$a_1 = \sqrt{2}, \ a_{n+1} = 3 + \frac{a_n}{2} \quad \forall n \ge 1.$$

Solution. I first describe the general idea.

The idea in these questions is to first prove a bound on a_n by induction. Then, using that bound we prove that the sequence is convergent.

Once we do that, we then know that $\lim_{n\to\infty} a_n$ exists. Since that also equals $\lim_{n\to\infty} a_{n+1}$, we can take limit on both sides of the equation and solve for the limit L.

First, we prove that the sequence is bounded above.

Claim 1. $a_n < 6$ for all $n \in \mathbb{N}$.

Proof. We shall prove this via induction. The base case n=1 is immediate as 2<6.

Assume that it holds for n = k. Then,

$$a_{k+1} = 3 + \frac{a_n}{2} < 3 + \frac{6}{2} = 6.$$

By principle of mathematical induction, we have proven the claim. \Box

Claim 2. $a_n < a_{n+1}$ for all $n \in \mathbb{N}$.

Proof.
$$a_{n+1} - a_n = 3 - \frac{a_n}{2} = \frac{6 - a_n}{2} > 0 \implies a_{n+1} > a_n$$
.

Thus, we now know that the sequence converges. Let $L = \lim_{n \to \infty} a_n$. Then taking the limit on both sides of

$$a_{n+1} = 3 + \frac{a_n}{2}$$

gives us

$$L = 3 + \frac{L}{2},$$

which we can solve to get L=6.

 $\S 1$ Tutorial 1

7. If $\lim_{n\to\infty}a_n=L\neq 0$, show that there exists $n_0\in\mathbb{N}$ such that

$$|a_n| \ge \frac{|L|}{2}$$
 for all $n \ge n_0$.

Solution. Choose $\epsilon = \frac{|L|}{2}$. Note that this is indeed greater than 0.

By the $\epsilon-N$ definition, there exists $N\in\mathbb{N}$ such that

$$|a_n - L| < \epsilon = \frac{|L|}{2}$$

for all n > N. Using triangle inequality, we get

$$||a_n| - |L|| \le |a_n - L| < \frac{|L|}{2}.$$

Thus, we get

$$-\frac{|L|}{2} < |a_n| - |L| < \frac{|L|}{2}.$$

Adding |L| on both sides gives us

$$\frac{|L|}{2} < |a_n| < \frac{3|L|}{2}$$

for all n > N, as desired.

 $\S 1$ Tutorial 1 7

9. For given sequences $\{a_n\}_{n\geq 1}$ and $\{b_n\}_{n\geq 1}$, prove or disprove the following:

- 1. $\{a_nb_n\}_{n\geq 1}$ is convergent, if $\{a_n\}_{n\geq 1}$ is convergent.
- 2. $\{a_nb_n\}_{n\geq 1}$ is convergent, if $\{a_n\}_{n\geq 1}$ is convergent and $\{b_n\}_{n\geq 1}$ is bounded.

Solution. Both the statements are false. We give one counterexample for both.

$$\begin{aligned} a_n &:= 1 & \text{for all } n \in \mathbb{N}, \\ b_n &:= (-1)^n & \text{for all } n \in \mathbb{N}. \end{aligned}$$

Clearly, $\{a_n\}_{n\geq 1}$ converges and $\{b_n\}_{n\geq 1}$ is bounded. However, the product is again the latter sequence which does not converge.

 $\S 1$ Tutorial 1

11. Let $f,g:(a,b)\to\mathbb{R}$ be functions and suppose that $\lim_{x\to c}f(x)=0$ for some $c\in[a,b]$. Prove or disprove the following statements.

- $\overline{1.} \ \overline{\lim_{x \to c} [f(x)g(x)]} = 0.$
- 2. $\lim_{x\to c}[f(x)g(x)]=0$, if g is bounded.
- 3. $\lim_{x\to c} [f(x)g(x)] = 0$, if $\lim_{x\to c} g(x)$ exists.

Solution. 1. No. Consider a=c=0 and b=1. Let f,g be defined as

$$f(x) = x, \quad g(x) = \frac{1}{x}.$$

Verify that this works as a counterexample.

2. We prove this statement. Since g is bounded, there exists M>0 such that

for all $x \in (a, b)$. Thus, we have

$$|f(x)g(x)| \le M|f(x)|$$

for all $x \in (a, b)$. Since the LHS is clearly non-negative, using Sandwich theorem proves that

$$\lim_{x \to c} |f(x)g(x)| = 0.$$

This also gives us that

$$\lim_{x \to c} f(x)g(x) = 0.$$

(Why?)

3. This is also true. We can simply use that limit of products is the product of limits if the individual limits exist.