



#### Intelligent Abnormal Situation Awareness Platform (i-ASAP)

#### **Biweekly Team Meeting**

February 24, 2021

#### **Audience**

University of South Carolina, Columbia, SC

#### **Performers**

CFD Research Corporation, Huntsville, AL

#### Progress



- Implemented latent feature difference method
- Compared results to basic reconstruction error method
- Started working on object tracking model
  - Optical flow methods

#### **ROC** and Precision-Recall Curves





Area under Curve (AUC) = **0.9497** (default metric used in repo)



 $f_1 = 2 \frac{PR}{P + R}$ Best  $f_1$  score = **0.7632** 



# **Reconstruction Error Images**















## **Square Distance Reconstructions**

### Anomaly Detection and Segmentation Concept



#### Segmentation Phase















200 -





WWW.CFD-RESEARCH.COM

200 -











100

150

200

Distance Reconstruction 150-

250

Anomaly
Error Image 1037





Normal







# **Optical Flow**

### Tracking Workflow



- Run anomaly detector
  - If anomaly is detected
    - Extract features from scene
    - Run optical flow tracking
  - Else
    - Move to next frame

## Dense Optical Flow





## Lucas-Kanade Optical Flow Tracking





#### **Next Steps**



- Push code updates to i-ASAP GitHub
  - Distance reconstruction code
  - Optical flow tracking code
- Develop anomaly detection and tracking model
  - Unsupervised region proposals method
  - Blob detection
  - Deep learning-based detection models

#### Unsupervised

Yang, Y., Loquercio, A., Scaramuzza, D., & Soatto, S. (2019). Unsupervised moving object detection via contextual information separation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition* (pp. 879-888).

#### **Supervised + Transfer learning**

Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. *arXiv preprint arXiv:1804.02767*. He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In *Proceedings of the IEEE international conference on computer vision* (pp. 2961-2969).



# **Questions and Discussion**