Data Analytics CS301 Relational Data

Fall 2020 Oliver BONHAM-CARTER

- How do you know if therapies are working?
- Are the Vaccines working?
 - Are there fewer people with Measles, mumps,
 Hepatitis B (and other illnesses), as a result of receiving vaccines in 1966?

History of Vaccines: https://www.historyofvaccines.org/timeline

When to Use Vaccines?

Blog: Year http://ruleof6ix.fieldofscience.com/2011/10/vaccines-can-you-predict-how-well.html

Do Vaccines Work?

Comparison of 20th Century Annual Morbidity & Current Morbidity

Disease	20 th Century Annual Morbidity*	2010 Reported Cases [†]	% Decrease
Smallpox	29,005	0	100%
Diphtheria	21,053	0	100%
Pertussis	200,752	21,291	89%
Tetanus	580	8	99%
Polio (paralytic)	16,316	0	100%
Measles	530,217	61	>99%
Mumps	162,344	2,528	98%
Rubella	47,745	6	>99%
CRS	152	0	100%
Haemophilus influenzae (<5 years of age)	20,000 (est.)	270 (16 serotype b and 254 unknown serotype)	99%

Sources:

- * JAMA. 2007;298(18):2155-2163
- † CDC. MMWR January 7, 2011;59(52);1704-1716. (Provisional MMWR week 52 data)
- Vox Article: https://www.vox.com/health-care/2014/10/13/6967317/vaccines-work-this-chart-proves-it

ALLEGHEN COLLEGE

What Does Our Data Say About (All) Vaccines of Data?

1940

library(tidyverse)

library(dslabs)

library(dplyr)

ggplot(data = us_contagious_diseases) + geom_point(mapping = aes(x = year, y = count, color = year)) + geom_vline(xintercept = 1965, color = "red")

1960

year

1980

2000

Cases of Illness

Lab Results

 #1) Use the us contagious disease and dplyr tools to create an object that stores only the Measles data, includes a per 100,000 people rate, and removes Alaska and Hawaii. Note that there is a weeks reporting column. Take that into account when computing the rate.

#Add the rate column to the data:

dat_measles_rate <- filter(us_contagious_diseases,
disease == "Measles") %>% mutate(rate =
count/(population / 100000) / (52 / weeks_reporting))

Note: the *rate* is one of several possible calculations...

Trim Out Two States

- #Remove the two states (Alaska and Hawaii)
 dat_measles_rate_lessTwoStates < filter(dat_measles_rate, state != "Alaska", state !=
 "Hawaii")
 View(dat_measles_rate_lessTwoStates)
- # Plot the results across 48 states
 ggplot(data = dat_measles_rate_lessTwoStates, mapping = aes(x = year, y = rate, color = year)) + geom_point() + geom_vline(xintercept = 1963, color = "red") + labs(y = "Counts of Measels")

Plot Across 48 States

ggplot(data = dat_measles_rate_lessTwoStates, mapping = aes(x = year, y = rate, color = year)) + geom_point() + geom_vline(xintercept = 1963, color = "red") + labs(y = "Counts of Measels")

Focus On California

 # Create table to focus on California dat caliFocus <filter(dat measles rate lessTwoStates, state == "California") View(dat caliFocus) ggplot(data = dat caliFocus, mapping = aes(x = year, y = rate, color = count)) + geom point() + geom vline(xintercept = 1963, color = "red") + labs(y = "Counts of Measles")

Data From California, Only

ggplot(data = dat_caliFocus, mapping = aes(x = year, y = rate, color = count)) + geom_point() + geom_vline(xintercept = 1963, color = "red") + labs(y = "Counts of Measles")

Transformations Help to Fit the Data

- Messy Data is hard to work with...
- The square root, x to $x^{(1/2)} = sqrt(x)$, is a transformation with a moderate effect on distribution shape.
- Weaker than the logarithm and the cube root transformations
- Used for reducing right skewness
- Has the advantage that it can be applied to zero values

Effects of Transformations on Variables

2 3846.153846 62.01736729 15.6678312 3.585026652 3 5769.230769 75.95545253 17.93518953 3.761117911 4 7692.307692 87.70580193 19.74023034 3.886056648

Effects of Transformations on Variables, Zoomed-in

Transformations Help to Fit the Data (example)

- Reduce the Y into a smaller space to see trends.
- Places all points on a similar "playing ground"
- P < -(x,y)
- Trans(p) <- (x, sqrt(y))

1/(Metal Distance)

The 1950's, 1960's and 1970's Without Transformation

```
# Plot three bars to see cases in the 1950's, 1960's and 1970's.

ggplot(data = dat_caliFocus %>% filter(year == 1950 | year == 1960 | year == 1970)) +
```

geom_bar(mapping = aes(x = year, y = count), stat = "identity")

The 1950's, 1960's and 1970's Without Transformation

The 1950's, 1960's and 1970's With Sqrt Transformation

```
# Plot three bars to see cases in the 1950's, 1960's and 1970's.

ggplot(data = dat_caliFocus %>% filter(year == 1950 | year == 1960 | year == 1970)) + geom_bar(mapping = aes(x = year, y = sqrt(count)), stat = "identity")
```


The 1950's, 1960's and 1970's With Sqrt Transformation

Why the Rise?

Can we explain why the cases in the 1960's were more than the 1950's?

Urban Versus Rural

Urban and rural population as proportion of total population, by major areas, 1950–2050

Asia

Europe

Urbanization has occurred in all major areas, yet Africa and Asia remain mostly rural

- Urban: City dwelling
- Rural: Country dwelling
- Vaccinations:
 - Were there fewer people available from whom to contract viruses?
- Less opportunity to see others?

Urban population Rural population

https://esa.un.org/unpd/wup/publications/files/wup2014-highlights.Pdf

Figure 3.

100

Africa

Rural Living


```
# Create table to focus on California
```

dat_caliFocus <- filter(dat_measles_rate_lessTwoStates, state == "California")

```
dat_caliFocus$yearBlock[dat_caliFocus$year >= 1920 & dat_caliFocus$year <= 1929] <- "1920's" dat_caliFocus$yearBlock[dat_caliFocus$year >= 1930 & dat_caliFocus$year <= 1939] <- "1930's" dat_caliFocus$yearBlock[dat_caliFocus$year >= 1940 & dat_caliFocus$year <= 1949] <- "1940's" dat_caliFocus$yearBlock[dat_caliFocus$year >= 1950 & dat_caliFocus$year <= 1959] <- "1950's" dat_caliFocus$yearBlock[dat_caliFocus$year >= 1960 & dat_caliFocus$year <= 1969] <- "1960's" dat_caliFocus$yearBlock[dat_caliFocus$year >= 1970 & dat_caliFocus$year <= 1979] <- "1970's" dat_caliFocus$yearBlock[dat_caliFocus$year >= 1980] <- "1980's onward"
```

Set up the histogram blocks (of cases)

No transformation y = count

```
ggplot(data = dat_caliFocus ) +
geom_bar(mapping = aes(x = state, y = count, fill = yearBlock),
position = "dodge", stat = "identity") +
theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust=-0.01))
```

Histograms of the Cases in California by Year

Use transformation y = sqrt(count)

```
ggplot(data = dat_caliFocus ) +
geom_bar(mapping = aes(x = state, y = sqrt(count), fill = yearBlock),
position = "dodge", stat = "identity") +
theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust=-0.01))
```

Histograms of the Cases in California by Year

Histograms of the Cases in States by Year

Focus on all states

dat_measles_rate_lessTwoStates <- filter(dat_measles_rate, state != "Alaska", state != "Hawaii")

dat_measles_rate_lessTwoStates\$yearBlock[dat_measles_rate_lessTwoStates\$year >= 1920 & dat_measles_rate_lessTwoStates\$year <= 1929] <- "1920's"

dat_measles_rate_lessTwoStates\$yearBlock[dat_measles_rate_lessTwoStates\$year >= 1930 & dat_measles_rate_lessTwoStates\$year <= 1939] <- "1930's"

dat_measles_rate_lessTwoStates\$yearBlock[dat_measles_rate_lessTwoStates\$year >= 1940 & dat_measles_rate_lessTwoStates\$year <= 1949] <- "1940's"

dat_measles_rate_lessTwoStates\$yearBlock[dat_measles_rate_lessTwoStates\$year >= 1950 & dat_measles_rate_lessTwoStates\$year <= 1959] <- "1950's"

dat_measles_rate_lessTwoStates\$yearBlock[dat_measles_rate_lessTwoStates\$year >= 1960 & dat_measles_rate_lessTwoStates\$year <= 1969] <- "1960's"

dat_measles_rate_lessTwoStates\$yearBlock[dat_measles_rate_lessTwoStates\$year >= 1970 & dat_measles_rate_lessTwoStates\$year <= 1979] <- "1970's"

dat measles rate lessTwoStates\$yearBlock[dat measles rate lessTwoStates\$year >= 1980] <- "1980's onward"

Setup the histogram locks (of cases)

Histograms of the Cases in States by Year

```
ggplot(data = dat_measles_rate_lessTwoStates) +
geom_bar(mapping = aes(x = state, y = count, fill = yearBlock),
position = "dodge", stat = "identity") +
theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust=-0.01))
```

Histograms of the Cases in States by Year

