Macroeconomía Internacional

Francisco Roldán IMF

November 2024

The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management.

Cupones con decaimiento exponencial

- Emito b en t
- · Pago κ en t+1 y sobrevive (1ho)b para el futuro
- \cdot Pago $\kappa(1ho)$ en t+2 y sobrevive $(1ho)^2 b$ para el futuro
- ٠..
- Pago $\kappa (1-\rho)^{s-1}$ en t+s

$$\mathbf{q}^{\star} = \sum_{s=1}^{\infty} \frac{1}{(1+r)^{s}} \kappa (1-\rho)^{s-1} = \sum_{s=0}^{\infty} \frac{1}{(1+r)^{s+1}} \kappa (1-\rho)^{s}$$

Cupones con decaimiento exponencial

- Emito b en t
- $oldsymbol{\cdot}$ Pago κ en t+1 y sobrevive $(\mathbf{1}ho)b$ para el futuro
- \cdot Pago $\kappa(1ho)$ en t+2 y sobrevive $(1ho)^2 b$ para el futuro
- ٠..
- Pago $\kappa (1-\rho)^{s-1}$ en t+s

$$q^{\star} = \sum_{s=1}^{\infty} \frac{1}{(1+r)^{s}} \kappa (1-\rho)^{s-1} = \sum_{s=0}^{\infty} \frac{1}{(1+r)^{s+1}} \kappa (1-\rho)^{s}$$

Cupones con decaimiento exponencial

- Emito b en t
- Pago κ en t+1 y sobrevive $(1-\rho)b$ para el futuro
- · Pago $\kappa(1ho)$ en t+2 y sobrevive $(1ho)^2 b$ para el futuro
- ٠..
- Pago $\kappa (1-\rho)^{s-1}$ en t+s

$$q^* = \sum_{s=1}^{\infty} \frac{1}{(1+r)^s} \kappa (1-\rho)^{s-1} = \sum_{s=0}^{\infty} \frac{1}{(1+r)^{s+1}} \kappa (1-\rho)^s = \frac{\kappa}{1+r} \sum_{s=0}^{\infty} \left(\frac{1-\rho}{1+r}\right)^s$$

Cupones con decaimiento exponencial

- Emito b en t
- Pago κ en t+1 y sobrevive $(1-\rho)b$ para el futuro
- · Pago $\kappa(1ho)$ en t+2 y sobrevive $(1ho)^2 b$ para el futuro
- ٠..
- Pago $\kappa (1-\rho)^{s-1}$ en t+s

$$q^{\star} = \sum_{s=1}^{\infty} \frac{1}{(1+r)^{s}} \kappa (1-\rho)^{s-1} = \sum_{s=0}^{\infty} \frac{1}{(1+r)^{s+1}} \kappa (1-\rho)^{s} = \frac{\kappa}{1+r} \sum_{s=0}^{\infty} \left(\frac{1-\rho}{1+r}\right)^{s}$$
$$= \frac{\kappa}{1+r} \frac{1}{1-\frac{1-\rho}{1+r}}$$

Cupones con decaimiento exponencial

- Emito b en t
- Pago κ en t+1 y sobrevive $(1-\rho)b$ para el futuro
- · Pago $\kappa(1ho)$ en t+2 y sobrevive $(1ho)^2 b$ para el futuro
- ٠..
- Pago $\kappa (1-\rho)^{s-1}$ en t+s

$$q^{\star} = \sum_{s=1}^{\infty} \frac{1}{(1+r)^{s}} \kappa (1-\rho)^{s-1} = \sum_{s=0}^{\infty} \frac{1}{(1+r)^{s+1}} \kappa (1-\rho)^{s} = \frac{\kappa}{1+r} \sum_{s=0}^{\infty} \left(\frac{1-\rho}{1+r}\right)^{s}$$
$$= \frac{\kappa}{1+r} \frac{1}{1-\frac{1-\rho}{1+r}} = \kappa \frac{1}{1+r-(1-\rho)}$$

Cupones con decaimiento exponencial

- · Emito b en t
- Pago κ en t+1 y sobrevive $(1-\rho)b$ para el futuro
- · Pago $\kappa(1-\rho)$ en t+2 y sobrevive $(1-\rho)^2 b$ para el futuro
- ٠..
- Pago $\kappa (1-\rho)^{s-1}$ en t+s

$$q^{\star} = \sum_{s=1}^{\infty} \frac{1}{(1+r)^{s}} \kappa (1-\rho)^{s-1} = \sum_{s=0}^{\infty} \frac{1}{(1+r)^{s+1}} \kappa (1-\rho)^{s} = \frac{\kappa}{1+r} \sum_{s=0}^{\infty} \left(\frac{1-\rho}{1+r}\right)^{s}$$
$$= \frac{\kappa}{1+r} \frac{1}{1-\frac{1-\rho}{1+r}} = \kappa \frac{1}{1+r-(1-\rho)} = \frac{\kappa}{r+\rho}$$

Cupones con decaimiento exponencial

- Emito b en t
- Pago κ en t+1 y sobrevive $(1-\rho)b$ para el futuro
- · Pago $\kappa(1-\rho)$ en t+2 y sobrevive $(1-\rho)^2 b$ para el futuro
- ٠..
- Pago $\kappa(1-\rho)^{s-1}$ en t+s

$$q^{\star} = \sum_{s=1}^{\infty} \frac{1}{(1+r)^{s}} \kappa (1-\rho)^{s-1} = \sum_{s=0}^{\infty} \frac{1}{(1+r)^{s+1}} \kappa (1-\rho)^{s} = \frac{\kappa}{1+r} \sum_{s=0}^{\infty} \left(\frac{1-\rho}{1+r}\right)^{s}$$
$$= \frac{\kappa}{1+r} \frac{1}{1-\frac{1-\rho}{1+r}} = \kappa \frac{1}{1+r-(1-\rho)} = \frac{\kappa}{r+\rho}$$

Cupones con decaimiento exponencial

- Emito b en t
- Pago κ en t+1 y sobrevive $(1-\rho)b$ para el futuro
- Pago $\kappa(1-\rho)$ en t+2 y sobrevive $(1-\rho)^2b$ para el futuro
- ٠..
- Pago $\kappa(1-\rho)^{s-1}$ en t+s

$$q^{\star} = \sum_{s=1}^{\infty} \frac{1}{(1+r)^{s}} \kappa (1-\rho)^{s-1} = \sum_{s=0}^{\infty} \frac{1}{(1+r)^{s+1}} \kappa (1-\rho)^{s} = \frac{\kappa}{1+r} \sum_{s=0}^{\infty} \left(\frac{1-\rho}{1+r}\right)^{s}$$
$$= \frac{\kappa}{1+r} \frac{1}{1-\frac{1-\rho}{1+r}} = \kappa \frac{1}{1+r-(1-\rho)} = \frac{\kappa}{r+\rho}$$

Recursivamente

- · Hoy compro la deuda a precio q^*
- · Mañana cobro cupón κ , revendo la deuda que queda (1ρ) a precio q^* .

$$egin{aligned} oldsymbol{q^{\star}} &= rac{1}{1+r} (\kappa + (1-
ho) oldsymbol{q^{\star}}) \ oldsymbol{q^{\star}} &= rac{\kappa}{r+
ho} \end{aligned}$$

 \cdot Deuda emitida en t-s sustituye perfectamente $(1ho)^{\mathrm{s}}$ deuda emitida en t

Recursivamente

- · Hoy compro la deuda a precio q^*
- · Mañana cobro cupón κ , revendo la deuda que queda (1ρ) a precio q^* .

$$q^* = rac{1}{1+r} \left(\kappa + (1-
ho)q^*
ight)$$
 $q^* (1+r-(1-
ho)) = \kappa$
 $q^* = rac{\kappa}{r+
ho}$

· Deuda emitida en t-s sustituye perfectamente $(1-\rho)^s$ deuda emitida en t

Recursivamente

- · Hoy compro la deuda a precio q^*
- · Mañana cobro cupón κ , revendo la deuda que queda (1ρ) a precio q^* .

$$egin{aligned} q^\star &= rac{1}{1+r} \left(\kappa + (1-
ho) q^\star
ight) \ q^\star (1+r-(1-
ho)) &= \kappa \ q^\star &= rac{\kappa}{r+
ho} \end{aligned}$$

 $\cdot\,$ Deuda emitida en t-s sustituye perfectamente $(1ho)^{\mathsf{s}}$ deuda emitida en t

Recursivamente

- · Hoy compro la deuda a precio q^*
- · Mañana cobro cupón κ , revendo la deuda que queda (1ρ) a precio q^* .

$$egin{aligned} q^\star &= rac{1}{1+r} \left(\kappa + (1-
ho) q^\star
ight) \ q^\star (1+r-(1-
ho)) &= \kappa \ q^\star &= rac{\kappa}{r+
ho} \end{aligned}$$

· Deuda emitida en t-s sustituye perfectamente $(1-\rho)^s$ deuda emitida en t

Haircuts parciales

Default significa

- · Suspensión del pago de cupones κ
- · Fracción \hbar de la deuda es destruida
- (sí o sí requiere deuda de largo plazo)
 - (se puede hacer con deuda de corto también...)

Default: problema del deudor

Con deuda larga, si debo b y emito x deuda nueva,

$$c+\underbrace{\kappa b}_{ ext{cupones}}=y+\underbrace{qx}_{ ext{deuda nueva}}$$
 $b'=\underbrace{(1-
ho)b}_{ ext{deuda vieja}}+\underbrace{x}_{ ext{deuda nueva}}$

o, si elijo la deuda de mañana directamente,

$$c + \kappa b = y + q(b' - (1 - \rho)b)$$

· Ventaja de la forma 2: q naturalmente es una función de b' y no de x

Default: problema del deudor

Con deuda larga, si debo b y emito x deuda nueva,

$$c+\underbrace{\kappa b}_{\text{cupones}} = y + \underbrace{qx}_{\text{deuda nueva}}$$
 $b' = \underbrace{(1-\rho)b}_{\text{deuda vieja}} + \underbrace{x}_{\text{deuda nueva}}$

o, si elijo la deuda de mañana directamente,

$$c + \kappa \mathbf{b} = \mathbf{y} + \mathbf{q}(\mathbf{b}' - (\mathbf{1} - \rho)\mathbf{b})$$

· Ventaja de la forma 2: q naturalmente es una función de b' y no de x

Default: problema del deudor

Con deuda larga, si debo b y emito x deuda nueva,

$$c+\underbrace{\kappa b}_{\text{cupones}} = y + \underbrace{qx}_{\text{deuda nueva}}$$
 $b'=\underbrace{(1-\rho)b}_{\text{deuda vieja}} + \underbrace{x}_{\text{deuda nueva}}$

o, si elijo la deuda de mañana directamente,

$$c + \kappa \mathbf{b} = \mathbf{y} + \mathbf{q}(\mathbf{b}' - (\mathbf{1} - \rho)\mathbf{b})$$

· Ventaja de la forma 2: q naturalmente es una función de b' y no de x

Default: ecuaciones de Bellman

$$\mathcal{V}(b,y) = \max \left\{ v^{R}(b,y) + \epsilon^{R}, v^{D}((1-\hbar)b,y) + \epsilon^{D} \right\}$$

$$= \chi \log \left[\exp(v^{R}(b,y)/\chi) + \exp(v^{D}((1-\hbar)b,y)/\chi) \right]$$

$$v^{R}(b,y) = \max_{c,b'} u(c) + \beta \mathbb{E} \left[\mathcal{V}(b',y')|y \right]$$
sujeto a $c + \kappa b = y + q(b',y) \left(b' - (1-\rho)b \right)$

$$v^{D}(b,y) = u(h(y)) + \beta \mathbb{E} \left[\psi \mathcal{V}(b,y') + (1-\psi)v^{D}(b,y')|y \right]$$

Default: ecuaciones de Bellman

$$\mathcal{V}(b,y) = \max \left\{ v^{R}(b,y) + \epsilon^{R}, v^{D}((1-\hbar)b,y) + \epsilon^{D} \right\}$$

$$= \chi \log \left[\exp(v^{R}(b,y)/\chi) + \exp(v^{D}((1-\hbar)b,y)/\chi) \right]$$

$$v^{R}(b,y) = \max_{c,b'} u(c) + \beta \mathbb{E} \left[\mathcal{V}(b',y')|y \right]$$
sujeto a $c + \kappa b = y + q(b',y) \left(b' - (1-\rho)b \right)$

$$v^{D}(b,y) = u(h(y)) + \beta \mathbb{E} \left[\psi \mathcal{V}(b,y') + (1-\psi)v^{D}(b,y')|y \right]$$

Default: ecuaciones de Bellman

$$\mathcal{V}(b,y) = \max \left\{ v^R(b,y) + \epsilon^R, v^D((1-\hbar)b,y) + \epsilon^D \right\}$$

$$= \chi \log \left[\exp(v^R(b,y)/\chi) + \exp(v^D((1-\hbar)b,y)/\chi) \right]$$

$$v^R(b,y) = \max_{c,b'} u(c) + \beta \mathbb{E} \left[\mathcal{V}(b',y')|y \right]$$

$$\text{sujeto a } c + \kappa b = y + q(b',y) \left(b' - (1-\rho)b \right)$$

$$v^D(b,y) = u(h(y)) + \beta \mathbb{E} \left[\psi \mathcal{V}(b,y') + (1-\psi)v^D(b,y')|y \right]$$

Default: problema del acreedor

Precio de la deuda

- · Si mañana no hay default cobro
 - κ del cupón
 - $(1 \rho)q'$ de la deuda no depreciada

$$\cdot q' = q(b'', y')$$

· Si hay default me quedo con $(1 - \hbar)$ bonos defaulteados

$$\begin{split} R(b,y) &= \kappa + (1-\rho)q(g_b(b,y),y) \\ q(b',y) &= \frac{1}{1+r} \mathbb{E}\left[(1-\mathbb{I}_D(b',y'))R(b',y') + \mathbb{I}_D(b',y')(1-\hbar)q_D((1-\hbar)b',y') \right] \\ q_D(b',y) &= \frac{1}{1+r} \mathbb{E}\left[\psi\left((1-\mathbb{I}_D(b',y'))R(b',y') + \mathbb{I}_D(b',y')(1-\hbar)q_D((1-\hbar)b',y') \right) + (1-\psi)q_D(b',y') \right] \end{split}$$

Default: problema del acreedor

Precio de la deuda

- · Si mañana no hay default cobro
 - κ del cupón
 - $(1-\rho)q'$ de la deuda no depreciada
 - $\cdot q' = q(b'', y')$
- · Si hay default me quedo con $(1 \hbar)$ bonos defaulteados

$$\begin{split} R(b,y) &= \kappa + (1-\rho)q(g_b(b,y),y) \\ q(b',y) &= \frac{1}{1+r} \mathbb{E}\left[(1-\mathbb{I}_D(b',y'))R(b',y') + \mathbb{I}_D(b',y')(1-\hbar)q_D((1-\hbar)b',y') \right] \\ q_D(b',y) &= \frac{1}{1+r} \mathbb{E}\left[\psi\left((1-\mathbb{I}_D(b',y'))R(b',y') + \mathbb{I}_D(b',y')(1-\hbar)q_D((1-\hbar)b',y') \right) + (1-\psi)q_D(b',y') \right] \end{split}$$

Estrategias de resolución

- Estilo equilibrio general
 - · Dadas funciones $q(b', y), q_D(b', y)$, iterar sobre la función de valor
 - · Actualizar q, q_D usando las políticas de default
 - Iterar
- · Estilo teoría de juegos
 - · Inicializar v, q en un período T lejano
 - Encontrar q consistentes con la política implícita en v (una vez!)
 - Actualizar v dado q
 - · Iterar 'hacia el pasado' hasta convergencia
 - \dots Equilibrio recursivo (perfecto de Markov) con estrategias indexadas por (b, y, d)

Simulador

def_simul.jl

Pseudo-simul

Necesitamos

- En cada período t
 - · Entro sabiendo b_t , y_t y si estoy en default d_t
 - · Con las funciones de política, puedo calcular emisión b'_t y consumo c_t
 - · Si estoy en default $b_t' = b_t$, si no, puedo calcular $q(b_t', y_t)$
- Entre t y t + 1
 - Realizar dos shocks $\epsilon_{t+1} \sim \mathcal{N}(0,1)$ y $\xi_{t+1} \sim \mathcal{U}(0,1)$
 - · Ahora, $\log y_{t+1} = \rho_y \log y_t + \sigma_y \epsilon_{t+1}$
 - Defaulteo en t + 1 si $\xi_{t+1} < \mathbb{P}(d_{t+1}) = d(b'_{t+1}, y_{t+1})$
 - · Si estaba en repago en t pero voy a defaultear en $t+1, b_{t+1}=(1-\hbar)b_t',$ si no, $b_{t+1}=b_t'$
- · Para manejar todo esto
 - · Un vector para guardar cada serie de tiempo
 - · Interpoladores para todas las reglas de decisión