Part of Speech Tagging

COMP90042 Natural Language Processing Lecture 5

Semester 1 2022 Week 3 Jey Han Lau

What is Part of Speech (POS)?

- AKA word classes, morphological classes, syntactic categories
- Nouns, verbs, adjective, etc
- POS tells us quite a bit about a word and its neighbours:
 - nouns are often preceded by determiners
 - verbs preceded by nouns
 - content as a noun pronounced as CONtent
 - content as a adjective pronounced as conTENT

Information Extraction

- Given this:
 - Brasilia, the Brazilian capital, was founded in 1960."
- Obtain this:
 - capital(Brazil, Brasilia)
 - founded(Brasilia, 1960)
- Many steps involved but first need to know nouns (Brasilia, capital), adjectives (Brazilian), verbs (founded) and numbers (1960).

Outline

- Parts of speech
- Tagsets
- Automatic Tagging

POS Open Classes

Open vs **closed** classes: how readily do POS categories take on new words? Just a few open classes:

Nouns

- Proper (Australia) versus common (wombat)
- Mass (rice) versus count (bowls)

Verbs

- Rich inflection (go/goes/going/gone/went)
- Auxiliary verbs (be, have, and do in English)
- Transitivity (wait versus hit versus give)
 - number of arguments

POS Open Classes

- Adjectives
 - Gradable (happy) versus non-gradable (computational)
- Adverbs
 - Manner (slowly)
 - Locative (here)
 - Degree (really)
 - Temporal (today)

POS Closed Classes (English)

- Prepositions (in, on, with, for, of, over,...)
 - on the table
- Particles
 - brushed himself *off*
- Determiners
 - Articles (a, an, the)
 - Demonstratives (this, that, these, those)
 - Quantifiers (each, every, some, two,...)
- Pronouns
 - Personal (*I*, *me*, *she*,...)
 - Possessive (my, our,...)
 - Interrogative or Wh (who, what, ...)

POS Closed Classes (English)

- Conjunctions
 - Coordinating (and, or, but)
 - Subordinating (if, although, that, ...)
- Modal verbs
 - Ability (can, could)
 - Permission (can, may)
 - Possibility (may, might, could, will)
 - Necessity (must)
- And some more...
 - negatives, politeness markers, etc

COMP90042

Is POS universal? What open classes are seen in all languages?

- Noun
- Verb
- Adjective
- Adverb

PollEv.com/jeyhanlau569

Ambiguity

- Many word types belong to multiple classes
- POS depends on context
- Compare:
 - Time flies like an arrow
 - Fruit flies like a banana

Time	flies	like	an	arrow
noun	verb	preposition	determiner	noun

Fruit	flies	like	а	banana
noun	noun	verb	determiner	noun

POS Ambiguity in News Headlines

- British Left Waffles on Falkland Islands
 - [British Left] [Waffles] [on] [Falkland Islands]
- Juvenile Court to Try Shooting Defendant
 - [Juvenile Court] [to] [Try] [Shooting Defendant]
- Teachers Strike Idle Kids
 - [Teachers Strike] [Idle Kids]
- Eye Drops Off Shelf
 - [Eye Drops] [Off Shelf]

Tagsets

Tagsets

- A compact representation of POS information
 - Usually ≤ 4 capitalized characters (e.g. NN = noun)
 - Often includes inflectional distinctions
- Major English tagsets
 - Brown (87 tags)
 - Penn Treebank (45 tags)
 - CLAWS/BNC (61 tags)
 - "Universal" (12 tags)
- At least one tagset for all major languages

COMP90042

Major Penn Treebank Tags

NN noun VB verb

JJ adjective RB adverb

DT determiner CD cardinal number

IN preposition PRP personal pronoun

MD modal CC coordinating conjunction

RP particle WH wh-pronoun

TO to

Derived Tags (Open Class)

- NN (noun singular, wombat)
 - NNS (plural, wombats)
 - NNP (proper, Australia)
 - NNPS (proper plural, Australians)
- VB (verb infinitive, eat)
 - VBP (1st /2nd person present, eat)
 - VBZ (3rd person singular, eats)
 - VBD (past tense, ate)
 - VBG (gerund, eating)
 - VBN (past participle, eaten)

Derived Tags (Open Class)

- JJ (adjective, nice)
 - JJR (comparative, nicer)
 - JJS (superlative, nicest)
- RB (adverb, fast)
 - RBR (comparative, faster)
 - RBS (superlative, fastest)

Derived Tags (Closed Class)

- PRP (pronoun personal, I)
 - PRP\$ (possessive, my)
- WP (Wh-pronoun, what):
 - WP\$ (possessive, whose)
 - WDT(wh-determiner, which)
 - WRB (wh-adverb, where)

Tagged Text Example

limits The legal absurdity to notch this another stretched week Supreme when the Court refused to hear appeal from an that corporate says case defendants damages must pay after proving that they even possibly could have not the harm caused

Tagged Text Example

The/DT limits/NNS to/TO legal/JJ absurdity/NN stretched/VBD another/DT notch/NN this/DT week/NN

when/WRB the/DT Supreme/NNP Court/NNP refused/VBD to/TO hear/VB an/DT appeal/VB from/IN a/DT case/NN that/WDT says/VBZ corporate/JJ defendants/NNS must/MD pay/VB damages/NNS even/RB after/IN proving/VBG that/IN they/PRP could/MD not/RB possibly/RB have/VB caused/VBN the/DT harm/NN ./.

COMP90042

СОМР90042					
Number	Tag	Description			
1.	CC	Coordinating conjunction			
2.	CD	Cardinal number			
3.	DT	Determiner			
4.	EX	Existential there			
5.	FW	Foreign word			
6.	IN	Preposition or subordinating conjunction			
7.	JJ	Adjective			
8.	JJR	Adjective, comparative			
9.	JJS	Adjective, superlative			
10.	LS	List item marker			
11.	MD	Modal			
12.	NN	Noun, singular or mass			
13.	NNS	Noun, plural			
14.	NNP	Proper noun, singular			
15.	NNPS	Proper noun, plural			
16.	PDT	Predeterminer			
17.	POS	Possessive ending			
18.	PRP	Personal pronoun			
19.	PRP\$	Possessive pronoun			
20.	RB	Adverb			
21.	RBR	Adverb, comparative			
22.	RBS	Adverb, superlative			
23.	RP	Particle			
24.	SYM	Symbol			
25.	TO	to			
26.	UH	Interjection			
27.	VB	Verb, base form			
28.	VBD	Verb, past tense			
29.	VBG	Verb, gerund or present participle			
30.	VBN	Verb, past participle			
31.	VBP	Verb, non-3rd person singular present			
32.	VBZ	Verb, 3rd person singular present			
33.	WDT	Wh-determiner			
34.	WP	Wh-pronoun			
35.	WP\$	Possessive wh-pronoun			
36.	WRB	Wh-adverb			

Tag the following sentence with Penn Treebank's POS tagset:

CATS SHOULD CATCH MICE EASILY

PollEv.com/jeyhanlau569

Automatic Tagging

Why Automatically POS tag?

- Important for morphological analysis, e.g. lemmatisation
- For some applications, we want to focus on certain POS
 - E.g. nouns are important for information retrieval, adjectives for sentiment analysis
- Very useful features for certain classification tasks
 - E.g. genre attribution (fiction vs. non-fiction)
- POS tags can offer word sense disambiguation
 - E.g. cross/NN cross/VB cross/JJ
- Can use them to create larger structures (parsing; lecture 14–16)

Automatic Taggers

- Rule-based taggers
- Statistical taggers
 - Unigram tagger
 - Classifier-based taggers
 - Hidden Markov Model (HMM) taggers

Rule-based tagging

- Typically starts with a list of possible tags for each word
 - From a lexical resource, or a corpus
- Often includes other lexical information, e.g. verb subcategorisation (its arguments)
- Apply rules to narrow down to a single tag
 - E.g. If DT comes before word, then eliminate VB
 - Relies on some unambiguous contexts
- Large systems have 1000s of constraints

Unigram tagger

- Assign most common tag to each word type
- Requires a corpus of tagged words
- "Model" is just a look-up table
- But actually quite good, ~90% accuracy
 - Correctly resolves about 75% of ambiguity
- Often considered the baseline for more complex approaches

Classifier-Based Tagging

- Use a standard discriminative classifier (e.g. logistic regression, neural network), with features:
 - Target word
 - Lexical context around the word
 - Already classified tags in sentence
- But can suffer from error propagation: wrong predictions from previous steps affect the next ones

Hidden Markov Models

- A basic sequential (or structured) model
- Like sequential classifiers, use both previous tag and lexical evidence
- Unlike classifiers, considers all possibilities of previous tag
- Unlike classifiers, treat previous tag evidence and lexical evidence as independent from each other
 - Less sparsity
 - Fast algorithms for sequential prediction, i.e. finding the best tagging of entire word sequence
- Next lecture!

Unknown Words

- Huge problem in morphologically rich languages (e.g. Turkish)
- Can use things we've seen only once (hapax legomena) to best guess for things we've never seen before
 - Tend to be nouns, followed by verbs
 - Unlikely to be determiners
- Can use sub-word representations to capture morphology (look for common affixes)

A Final Word

- Part of speech is a fundamental intersection between linguistics and automatic text analysis
- A fundamental task in NLP, provides useful information for many other applications
- Methods applied to it are typical of language tasks in general, e.g. probabilistic, sequential machine learning

Reading

• JM3 Ch. 8-8.2