

© 2020 IBM Corporation

Qubit 101

IBM Client Center Montpellier

JM Torres | torresjm@fr.ibm.com

June 30, 2020

0

1

« classical bit »

Definition of a quantum bit

$$\frac{1}{h\nu} \stackrel{E_e}{\sim} |e\rangle \sim |1\rangle$$

$$|\psi\rangle = \alpha |g\rangle + \beta |e\rangle$$

$$|g\rangle\sim|0\rangle$$
 $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$

- For any possible state:
 the measurement can only result in: |0> or |1>
- Probability of measuring $|0\rangle$ is $|\alpha|^2$, probability of measuring $|1\rangle$ is $|\beta|^2$
- When the measurement is done, the superposition is lost.

1 \

with two qubits :
$$|\phi\rangle = a|00\rangle + b|01\rangle + c|10\rangle + d|11\rangle$$

Controlling a qubit

« PAULI » Operators

rotation around x axis

$$X \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} qc. x(qr[n]) R_X$$

$$\mathbf{R}_{\mathbf{X}} \begin{pmatrix} \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix}$$

rotation around y axis

$$\mathbf{Y} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} qc. y(qr[n])$$

$$R_{y} \begin{pmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix}$$

rotation around z axis

$$\mathsf{R}_{\mathsf{Z}} \quad \begin{pmatrix} e^{-i\frac{\theta}{2}} & 0\\ 0 & e^{i\frac{\theta}{2}} \end{pmatrix}$$

Identity

 $|1\rangle$

From this gate, the Hadamard is done by $H=U2(0,\pi)$

U3 has the effect of rotating a qubit to a state with an arbitrary superposition and relative phase

superposition

(X+Z)Hadamard gate

$$\mathbf{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
 qc. h(qr[n])

More operators are available from qiskit (S, T, swap, cswap, ccx, cz, ...)

CNOT: flips target qubit according to control qubit state.

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

measurement measures

quantum state in quantum register into classical register (0/1)

Quantum Circuit

Hello World! example

Hadamard gate applied to q_0 , then Control-Not applied to q_1 , controlled by q_0

This produces the « Bell-State »

With words:

System starts in $|00\rangle$ (both q_0 and q_1 in state $|0\rangle$).

Then q_0 goes through Hadamard and gets into equal superposition of $|0\rangle$ and $|1\rangle$.

After q_0 controls q_1 , the state of q_1 is in a superposition of $|0\rangle \& |1\rangle$, $(q_1$ stays at $|0\rangle$ when q_0 is $|0\rangle$, and q_1 goes $|1\rangle$ when q_0 is $|1\rangle$).

So: both q_0 and q_1 are in $|0\rangle$ (state $|00\rangle$) or both q_0 and q_1 are in $|1\rangle$ (state $|11\rangle$). Our system is in equal superposition of $|00\rangle$ and $|11\rangle$.

The two qubits are entangled: if you measure one of the qubits, you immediately know the state of the other.

In between:

System starts in |00\) state, then:

$$H|00\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle)$$

Applying CNOT: left part of the sum stays as is, right term goes to $|11\rangle$ resulting state is $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$.

One can easily prove there are no $\alpha, \beta, \gamma, \delta$ such that:

$$(\alpha|0\rangle+\beta|1\rangle)\otimes(\gamma|0\rangle+\beta|1\rangle)=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$$

So, the resulting state is not the product of two quantum states, this is an entangled state.

© 2020 IBM Corporation

With maths:

Stage 1 (H on q0):

$$(H \otimes I) |00\rangle =$$

$$\begin{vmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

Stage 2: CNOT(0,1)

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \times \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$$