Lesson 003 Measures of Location

Friday, September 15

Survey Feedback

- **Note:** Questions mentioning "standard deviation", "variation", or "boxplots" will be covered next lesson.
- Note: Problem 32 had a missing histogram in the problem set.

- Comparing means and medians.
- How do we calculate the mean of categorical data?
- Questions 29, 31, and 32 in the problem set

Measures of Location

> Sample mean is the standard average of a distribution.

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Measures of Location

> Sample mean is the standard average of a distribution.

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Sample median is the halfway point of a dataset, when the data are ordered.

$$\mathsf{median} = \begin{cases} \left(\frac{n+1}{2}\right)^\mathsf{th} \mathsf{observation} & \textit{n} \mathsf{ is odd.} \\ \mathsf{Mean of } \left(\frac{n}{2}\right)^\mathsf{th} \mathsf{ and } \left(\frac{n}{2}+1\right)^\mathsf{th} \mathsf{ observations } & \textit{n} \mathsf{ is even} \end{cases}$$

Measures of Location

> Sample mean is the standard average of a distribution.

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Sample median is the halfway point of a dataset, when the data are ordered.

$$\mathsf{median} = \begin{cases} \left(\frac{n+1}{2}\right)^\mathsf{th} \mathsf{observation} & \textit{n} \mathsf{ is odd.} \\ \mathsf{Mean of } \left(\frac{n}{2}\right)^\mathsf{th} \mathsf{ and } \left(\frac{n}{2}+1\right)^\mathsf{th} \mathsf{ observations } & \textit{n} \mathsf{ is even} \end{cases}$$

Sample mode is the most common (set of) observation(s).

Calculate the Mean, Median, and Mode of the Following Data

28	93	31	
14		67	36
21	41		30

What is the mean of: 5, 5, 10, 20?

What is the median of: 5, 5, 10, 20?

One batch from a manufacturing process had 15 items, with a mean weight of 10kg. A second batch had 10 items, with a mean weight of 9kg. What is the total weight of the two batches?

Histogram of weight

Find the (approximate) a mean from the following histogram

Find the (approximate) mean from the following histogram

3.75	2	5.25	9
4.25	5	5.75	4
4.75	6	6.25	4

► When data are approximately symmetric, the mean and median will be similar.

- When data are approximately symmetric, the mean and median will be similar.
- ▶ If data are skewed, the mean is *pulled* towards the long tail of the distribution.

- When data are approximately symmetric, the mean and median will be similar.
- ▶ If data are skewed, the mean is *pulled* towards the long tail of the distribution.
 - In this way, the mean is more sensitive to *skewed* outliers than the median.

- ► When data are approximately symmetric, the mean and median will be similar.
- ▶ If data are skewed, the mean is *pulled* towards the long tail of the distribution.
 - In this way, the mean is more sensitive to *skewed* outliers than the median.
- ► We generally prefer the median if data are skewed, and the mean otherwise.

Consider the mean and median of the following three sets of numbers (without calculation)

If you wanted a measure of location for household income, would you prefer the mean or median?

For categorical data, we can consider the relative frequency of each category as the sample proportion.

- For categorical data, we can consider the relative frequency of each category as the sample proportion.
- Assume that there are categories, c_1, c_2, \ldots, c_k , and observations x_1, x_2, \ldots, x_k .

- For categorical data, we can consider the relative frequency of each category as the sample proportion.
- Assume that there are categories, c_1, c_2, \ldots, c_k , and observations x_1, x_2, \ldots, x_k .
- ▶ Define $z_{i,j} = I(x_i = c_j)$, where $I(\cdot)$ is an indicator function.

- For categorical data, we can consider the relative frequency of each category as the sample proportion.
- Assume that there are categories, c_1, c_2, \ldots, c_k , and observations x_1, x_2, \ldots, x_k .
- ▶ Define $z_{i,j} = I(x_i = c_j)$, where $I(\cdot)$ is an indicator function.
- \triangleright Then, we can write the j-th sample proportion as

$$p_j = \overline{z}_{.,j} = \frac{1}{n} \sum_{i=1}^n z_{i,j}.$$

Compute the Sample Proportion of 'Red'

	Count
Red	49
Blue	16
Yellow	54
	119

1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	
0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0						

49 / 119 = 0.41176

In the data from Spotify, 550 of the 953 songs were in a major key, the rest were in a minor key. What proportion of songs were in a minor key?

