DEVOIR MAISON 1

Exercice 1 – Écrire les nombres suivants sous la forme d'un entier ou d'une fraction irréductible.

1.
$$A = \frac{2}{3} - \frac{1}{2} + \frac{3}{4}$$

2.
$$B = \frac{2}{3} - \frac{1}{3} \times \left(2 - \frac{1}{4}\right)$$

3.
$$C = \frac{1 + \frac{5}{6}}{\frac{1}{5} - 2 \times (\frac{1}{3} + \frac{1}{4})}$$

4.
$$D = \left(\frac{1}{2} - \frac{1}{3}\right) \times \left(\frac{1}{4} - \frac{1}{5}\right) \div \left(1 + \frac{1}{2}\right)^2$$

Exercice 2 – Résoudre les équations et inéquations suivantes.

1.
$$2x - 3 = 4$$

2.
$$x - \frac{1}{2} = 2x - 1$$

3.
$$2x-4 < 3x+5$$

4.
$$x^2 - 12x + 27 = 0$$

5.
$$-x^2 + 3x + 10 < 0$$

6.
$$x(x-2) = -1$$

$$7. \ \frac{2}{x+3} = \frac{1}{x+1}$$

$$9. \ \frac{x}{x+1} \leqslant \frac{2}{2x-3}$$

10.
$$x^3 - 9x^2 + 11x + 21 = 0$$

Exercice 3 -

- 1. Soit le polynôme $P(x) = 3x^3 7x^2 7x + 3$.
 - (a) Montrer que le polynôme P(x) peut se factoriser sous la forme P(x) = (x+1)Q(x), où Q(x) est un polynôme de degré 2 à déterminer.
 - (b) Déterminer alors les solutions de l'équation $3x^3 7x^2 7x + 3 = 0$.
- 2. Soit la fraction rationnelle $f(x) = \frac{3x^3 7x^2 7x + 3}{3x^2 12x + 12}$.
 - (a) Déterminer les valeurs interdites de f(x).
 - (b) Résoudre l'inéquation $f(x) \ge 0$.

Exercice 4 – Soient f et g les fonctions définies pour tout réel x par

$$f(x) = \frac{x^3}{3} - \frac{9}{4}x + \frac{9}{4}$$
 et $g(x) = \frac{2}{3}x^2 + x - 3$.

Les courbes représentatives des fonctions f et g sont tracées ci-dessous.

1. (a) Calculer $f\left(-\frac{3}{2}\right)$.

(b) Par lecture graphique, donner le tableau de variation de la fonction f.

(c) Montrer que pour tout réel x, $f(x) = \frac{(x+3)(2x-3)^2}{12}$.

(d) Établir le tableau de signe de f(x).

2. Résoudre dans \mathbb{R} l'équation g(x) = 0.

3. Étudier les positions relatives des courbes C_f et C_g .

Remarque : Si ce n'est pas spécifié clairement, toutes les questions doivent être traitées par le calcul.