F1G.1.

AAAATGTATG GATACAACTT ACCTTTGATG AAAGACTTGG GCTTGAAGAC CCAGAGAGTTTTTACATAC CTATGTTGAA TGCAAACTAC TTTCTAAACC CGAACTTCTG GGTCTTCTAC ACATATGCAA GTATGATTT GTAGAAGTTG AGGAACCCAG TGATGGAACT ATATTAGGGT TGTATACGTT CATACTAAAA CATCTTCAAC TCCTTGGGTC ACTACCTTGA TATATAGGCC TGTATACGTT CATACTAAAA CATCTTCAAC TCCTTGGGTC ACTACCTTGA TATATAGGCC GACCACACC AAGACCATGA CATGGTCCTT TTGTCTAAAG ATTTCCTTTA GTTTAATCCCC **1		, , ,,					
TGTATACGTT CATACTAAAA CATCTICAAC TCCTTGGGTC ACTACCTTGA TATAATCCCC GCTGGTGTGG TTCTGGTACT GTACCAGGAA AACAGATTC TAAAGGAAAT CAAATTAGGG CGACCACACC AAGACCATGA CATGGTCCTT TTGTCTAAAG ATTTCCTTTA GTTTAATCCT *1	1						
Metasn IlePheLeu LeuAsnLeuLeu ThrGluGlu ValArgLeu **IMetasn IlePheLeu LeuAsnLeuLeu ThrGluGlu ValArgLeu **I**MagATTTGT ATCTGATGAA TATTTTCCTT CTGAACCTTC TAACAGAGGA GGTAAGATTY **ATTCTAAACA TAGACTACTT ATAAAAGGAA GACTTGGAAG ATTGTCTCTC CCATTCTAAT **ATTCTAAACA TAGACTACTT ATAAAAGGAA GACTTGGAAG ATTGTCTCCT CCATTCTAAT **I**TYPSerCysThr ProArgasn PheSerVal SerIleArgGlu GluLeuLys ArgThrAsg **ATGTCGACGT GCACCTCGTAA CTCTCTCGGT TCCATAAGGG AAGAACTAAA GAGAACCGAT **ATGTCGACGT GTGGAGCATT GAAGAGTCAC AGGTATTCCC TTCTTGATTT CTCTTGGCTF **ATGTCGACGT GTGGAGCATT GAAGAGTCAC AGGTATTCCC TTCTTGATTT CTCTTGGCTF **I**ThrIlePheTrp ProGlyCys LeuLeuVal LysArgCysGly GlyAsnCys AlaCysCys **I**ThrIlePheTrp ProGlyCys GlnCysVal ProSerLysVal ThrLysLys TyrHisGlu **I**ThrIlePheTrp ProGlyCys GlnCysVal ProSerLysVal ThrLysLys TyrHisGlu **I**ThrIlePheTrp ProGlyCys GlnCysVal ProSerLysVal ThrLysLys TyrHisGlu **I**CTCCACAATT GCAATGAATG TCAATGTGTC CCAAGACAAA ATACCACTGACA **CACCACAATT GCAATGAATG TCAATGTGTC CCAAGACAAA ATACCACTGACA **CACCACAATT GCAATGAATG TCAATGTGTC ACGGGATTC AAGAATCAACT CACCGACGTC **CACGAAGTCA ACCTCTGGTTT CTGGCCACAC TCCCCTAACG TCTTTAGTGA GTGGCTGCAC **AILeuGluHis HisGluGlu CysAspCys ValCysArgGly SerThrGly Gly **I**AILeuGluHis HisGluGlu CysAspCys ValCysArgGly SerThrGly GlyAcaaCGC **CAGGACCTCG TGGTACTCCT CACACTGACA CACACGTCTC CCTCGTGTCC TCCTATCGGC **AILeuGluHis HisGluGlu Cy	61						
MetAsn IlePheLeu LeuAsnLeuLeu ThrGluGlu ValArgLeu TAAGATTTGT ATCTGATGAA TATTTTCCTT CTGAACCTTC TAACAGAGGA GGTAAGATTA ATTCTAAACA TAGACTACTT ATAAAAGGAA GACTTGGAAG ATTGTCTCCT CCATTCTAAT **1 TyrSerCysthr ProArgAsn PheSerVal SerileArgGlu GluLeuLys ArgThrAsg **1 TACAGCTGCA CACCTCGTAA CTTCTCAGTG TCCATAAGGG AAGAACTAAA GAGAACCGAAT ATGTCGACGT GTGGAGCATT GAAGAGTCAC AGGTATTCCC TTCTTGATTT CTCTTGGCTA **1 ThrilePheTrp ProGlyCys LeuLeuVal LysArgCysGly GlyAsnCys AlaCysCys **ACCATTTTCT GGCCAGGTTG TCTCCTGGTT AAACGCTGTG GTGGGAACTG TGCCTGTTGT TGGTAAAAGA CCGGTCCAAC AGAGGACCAA TTTGCGACAC CACCCTTGAC ACGGACACAC **1 LeuHisAsnCys AsnGluCys GlnCysVal ProSerLysVal ThrLysLys TyrHisGlu **1 CTCCACAATT GCAATGAATG TCAATGTGTC CCAAGCAAAG TTACTAAAAA ATACCACGAA GAGGTGTTAA CGTTACTTAC AGTTACACAG GGTTCGTTTC AATGATTTT TATGGTGCTC **1 ValLeuGlnLeu ArgProLys ThrGlyVal ArgGlyLeuHis LysSerLeu ThrAspVal **21 GTCCTTCAGT TGAGACCAAA GACCGGTGTC AGGGATTGC ACAAATCACT CACCGACGTGC CAAGGAAGTCA ACTCTGGTTT CTGGCCACAG TCCCCTAACG TGTTTAGTGA GTGGCTGCAC **1 AlaLeuGluHis HisGluGlu CysAspCys ValCysArgGly SerThrGly Gly **AlaLeuGluHis HisGluGlu CysAspCys ValCysArgGly SerThrGly Gly **AlaLeuGluHis HisGluGlu CysAspCys ValCysArgGly SerThrGly Gly **AlaLeuGluHis HisGluGlu CysAspCys ValCysArgGly SerThrGly Gly **CACCTGGAGC ACCATGAGGA GTGTGACTGT GTGTGCAGAG GAGACCAGG AGGATAGCCG CGGGACCTCG TGGTACTCTC CACACTGACA CACACGTCTC CCTCGTGTCC TCCTATCGGC **ATCACCACC AGCAGCTCTT GCCCAAGAGCT GTGCAGGAG GTGGCTGATT CTATTAGAGA GTAGTGGTG TACTCCATC CTTAATCTCA GTTGTTTGCT TCAAGGACCT TTCATCTTCA TGCATACGCA ATGAGGATAG GAATTAGAGT CAACAAACGA AGTTACTCTA AGGAACATT TACTCCATC **ACGTATGCGT TACTCCATC CTTAATCTCA GTTGTTTGCT TCAAGGACCT TTCATCTTCA TGCATACGCA ATGAGGATAG GAATTAGAGT CAACAAACGA AGTTCCTGGA AAGAAACTTA AGAAAACTCT CCTCCGGATT TCCTCTCCTC TAATCTCA TAGTTCTCT TAATCCTCAA CACGTTGTCG **CTTTTTTGAGA GGAGGCCTAA AGGACAGGA AAAAGGTCT TAATCGTGGA AAGAAACTTA AGAAAACTCT CCTCCGGATT TCCTGTCCTC TTTTCCAGAA GTTAGCACCT TTCTTTTTAAT AGAAAACTCT CCTCCGGATT TCCTGTCCTC TTTTCCAGAA GTTAGCACCT TTCTTTTTAAT **ATGTTGTAT TAAATAGATC A	121						
TAAGATTTGT ATCTGATGAA TATTTTCCTT CTGAACCTTC TAACAGAGGA GGTAAGATTAATTCTAAACA TAGACTACTT ATAAAAGGAA GACTTGGAAG ATTGTCTCCT CCATTCTAAACA TAGACTACTT ATAAAAAGGAA GACTTGGAAG ATTGTCTCCT CCATTCTAAACA TAGACTACTA ATAAAAAGGAA GACTTGGAAG ATTGTCTCCT CCATTCTAAACA TACACCGACGAT ACTCTCAGTG TCCATAAGGG AAGAACTAAA GAGAACCGAA ATGTCGACGT GTGGAGCATT GAAGAGTCAC AGGTATTCCC TTCTTGATTT CTCTTGGGCTAATGTCGACGT GTGGAGCATT GAAGAGTCAC AGGTATTCCC TTCTTGATTT CTCTTGGGCTAAAAGAAAGAACGAATAAAGAACCGAATAAAGAACCGAATAAAGAACCGAATAAGAACCGAATAAAGAACCGAATAAAGAACCGAATAAAGAACCGAATAAAGAACCGAACAACAACCAAC	+1		MetAs	n IlePheLeu	LeuAsnLeuL	eu ThrGluGl:	u ValArgLeu
TACAGCTGCA CACCTCGTAA CTTCTCAGTG TCCATAAGGG AAGAACTAAA GAGAACCGAA ATGTCGACGT GTGGAGCATT GAAGAGTCAC AGGTATTCCC TTCTTGATT CTCTTGGCTA ATGTCGACGT GTGGAGCATT GAAGAGTCAC AGGTATTCCC TTCTTGATT CTCTTGGCTA THILEPhetry ProGlyCys LeuLeuVal LysArgCysGly GlyAsnCys AlacysCys Triflephetry ProGlyCys Triflephetry Triflephetry ProGlyCys Triflephetry Trifle	181		ATCTGATGAA	TATTTTCCTT	CTGAACCTTC	TAACAGAGGA	GGTAAGATTA
TACAGCTGCA CACCTCGTAA CTTCTCAGTG TCCATAAGGG AAGAACTAAA GAGAACCGAT ATGTCGACGT GTGGAGCATT GAAGAGTCAC AGGTATTCCC TTCTTGATTT CTCTTGGCTA 1 ThrilePhetry ProGlyCys LeuLeuval LysargCysGly GlyasnCys AlacysCys ACCATTTCT GGCCAGGTTG TCTCCTGGTT AAAGGCTGTG GTGGGAACTG TGCCTGTGTT TGGTAAAAGA CCGGTCCAAC AGAGGACCAA TTTCCGACAC CACCCTTGAC ACGGACAACA 1 LeuHisAsnCys AsngluCys GlnCysVal ProserLysVal ThrLysLys TyrHisGlu CTCCACACATT GCAATGAATG TCAATGTGTC CCAAGGAAAG TTACTAAAAA ATACCACGAC GAGGTGTTAA CGTTACTTAC AGTTACACAG GGTTCGTTTC AATGATTTT TATGGTGCTC 1 ValLeuGlnLeu ArgProLys ThrGlyVal ArgGlyLeuHis LysSerLeu ThrAspVal GTCCTTCAGT TGAGACCAAA GACCGGTGTC AGGGGATTGC ACAAATCACT CACCGACGTGC CAGGAAGTCA ACTCTGGTTT CTGGCCACAG TCCCCTAACG TGTTTAGTGA GTGGCTGCAC 4 AlaLeuGluHis HisGluGlu CysAspCys ValCysArgGly SerThrGly Gly GCCCTGGAGC ACCATGAGGA GTGTGACTGT GTGTGCAGAG GGAGCACAGG AGGATAGCCG CGGGACCTCG TGGTACTCCT CACACTGACA CACACGTCC CCTCGTGTCC TCCTATCGGC GACTATACCAC AGCAGCTCTT GCCCAGAGCT GTGCAGGTGC ACCGACTGA GATAATCTCT ACGTATGCGT TATCTCCATC CTTAATCTCA GTTGTTTGCT TCAAGGACCT TCCTTATCGGC GGATTTACGG ATGAGAGAA CGGGTCTCGA CACCAAAACGA AGTTCCTGGA AAGTAAACGCA GGATTTACAG TGCATTCTGA AAGAGGAGA ATCAAAACGA AGTTCCTGGA AAGTAAGACG CCTAAAATGTC ACCGTAAAACGA ATTAGGAGTT GTGCAACAGC CCTAAAATGTC ACGTAAGACT TTCTCCTCTG TAGTTTGCT TAATCCTCAA CACGTTGTCG TCTTTTGAGA GGAGGCCTAA AGGACAGGA AAAAGGTCT CAATCGTGGA AAGAAAAATTA AGAAAAACTCT CCTCCGGATT TCCTGTCCTC TTTTCCAGGA GTTAGCACCT TTCTTTTAAT AAATGTTGTAT TAAATAGATC ACCAGCTAGT TTCCAGGAGTTA CCATGTACCT TTCTTTTTAAT AAATGTTGTAT TAAATAGATC ACCAGCTAGT TTCCAGGAGTA CCATGTACCT ATTCCACTAG	+1	TyrSerCysTl	nr ProArgAsi	n PheSerVal	SerIleArgG	lu GluLeuLy:	s ArgThrAsp
ACCATTTCT GGCCAGGTTG TCTCCTGGTT AAACGCTGTG GTGGGAACTG TGCCTGTTCT TGGTAAAAGA CCGGTCCAAC AGAGGACCAA TTTGCGACAC CACCCTTGAC ACGGACACA +1 LeuHisAsnCys AsnGlucys GlnCysVal ProserLysVal ThrLysLys TyrHisGlu GAGGTGTTAA CGTAACTAC AGTTACACAG GGTTCGTTC AATGATTTT TATGGTGCTC GAGGTGTTAA CGTTACTTAC AGTTACACAG GGTTCGTTC AATGATTTT TATGGTGCTC +1 ValLeuGlnLeu ArgProLys ThrGlyVal ArgGlyLeuHis LysSerLeu ThrAspVal GTCCTTCAGT TGAGACCAAA GACCGGTGTC AGGGGATTGC ACAAATCACT CACCGACGTGC CAGGAAGTCA ACTCTGGTTT CTGGCCACAG TCCCCTAACG TGTTTAGTGA GTGGCTGCAC +1 AlaLeuGluHis HisGluGlu CysAspCys ValCysArgGly SerThrGly Gly GCCCTGGAGC ACCATGAGGA GTGTGACTGT GTGTGCAGAG GGAGCACAG AGGATAGCCG CGGGACCTCG TGGTACTCCT CACACTGACA CACACGTCTC CCTCGTGTCC TCCTATCGGC CATCACCACC AGCAGCTCTT GCCCAGAGCT GTGCAGTGA GTGGCTGATT CTATTAGAGA GTAGTGGTG TCCTCGAGAA CGGGTCTCGA CACGTCACGT	241	TACAGCTGCA	CACCTCGTAA	CTTCTCAGTG	TCCATAAGGG	AAGAACTAAA	GAGAACCGAT
TGGTAAAAGA CCGGTCCAAC AGAGGACCAA TTTGCGACAC CACCCTTGAC ACGGACAACACACACACACACACACACACACACACA	+1						
CTCCACATT GCAATGAATG TCAATGTGTC CCAAGCAAAG TTACTAAAAA ATACCACGAG GAGGTGTTAA CGTTACTTAC AGTTACACAG GGTTCGTTC AATGATTTT TATGGTGCTC +1 ValleuGlnLeu ArgProLys ThrGlyVal ArgGlyLeuHis LysSerLeu ThrAspVal 421 GTCCTTCAGT TGAGACCAAA GACCGGTGTC AGGGGATTGC ACAAATCACT CACCGACGTGC CAGGAAGTCA ACTCTGGTTT CTGGCCACAG TCCCCTAACG TGTTTAGTGA GTGGCTGCAC +1 AlaLeuGluHis HisGluGlu CysAspCys ValCysArgGly SerThrGly Gly 481 GCCCTGGAGC ACCATGAGGA GTGTGACTGT GTGTGCAGAG GGAGCACAGG AGGATAGCCG CGGGACCTCG TGGTACTCCT CACACTGACA CACACGTCTC CCTCGTGTCC TCCTATCGGC 541 CATCACCACC AGCAGCTCTT GCCCAGAGCT GTGCAGTGCA	301						
CTCCACAATT GCAATGATG TCAATGTSTC CCAAGCAAAG TTACTAAAAA ATACCACGAG GAGGTGTTAA CGTTACTTAC AGTTACACAG GGTTCGTTC AATGATTTT TATGGTGCTC +1 ValLeuGlnLeu ArgProlys ThrGlyVal ArgGlyLeuHis LysSerLeu ThrAspVal GTCCTTCAGT TGAGACCAAA GACCGGTGTC AGGGGATTGC ACAAATCACT CACCGACGTG CAGGAAGTCA ACTCTGGTTT CTGGCCACAG TCCCCTAACG TGTTTAGTGA GTGGCTGCAC +1 AlaLeuGluHis HisGluGlu CysAspCys ValCysArgGly SerThrGly Gly GCCCTGGAGC ACCATGAGGA GTGTGACTGT GTGTGCAGAG GGAGCACAĠG AGGATAGCCG CGGGACCTCG TGGTACTCCT CACACTGACA CACACGTCTC CCTCGTGTCC TCCTATCGGC GATCACCACC AGCAGCTCTT GCCCAGAGGT GTGCAGTGCA	+1						
GTCCTTCAGT TGAGACCAAA GACCGGTGTC AGGGGATTGC ACAAATCACT CACCGACGTG CAGGAAGTCA ACTCTGGTTT CTGGCCACAG TCCCCTAACG TGTTTAGTGA GTGGCTGCAC +1 AlaLeuGluHis HisGluGlu CysaspCys ValcysargGly SerThrGly Gly 681 GCCTGGAGC ACCATGAGGA GTGTGACTGT GTGTGCAGAG GGAGCACAG AGGATAGCCG CGGGACCTCG TGGTACTCCT CACACTGACA CACACGTCTC CCTCGTGTCC TCCTATCGGC 641 CATCACCACC AGCAGCTCTT GCCCAGAGGT GTGCAGTGCA	361	CTCCACAATT	GCAATGAATG	TCAATGTGTC	CCAAGCAAAG	TTACTAAAAA	ATACCACGAG
CAGGAAGTCA ACTCTGGTTT CTGGCCACAG TCCCCTAACG TGTTTAGTGA GTGGCTGCAC +1 AlaLeuGluHis HisGluGlu CysaspCys ValcysArgGly SerThrGly Gly	+1						
GCCCTGGAGC ACCATGAGGA GTGTGACTGT GTGTGCAGAG GGAGCACAGG AGGATAGCCG CGGGACCTCG TGGTACTCCT CACACTGACA CACACGTCTC CCTCGTGTCC TCCTATCGGC GTACTCCC AGCAGCTCTT GCCCAGAGCT GTGCAGTGCA	121	GTCCTTCAGT	TGAGACCAAA	GACCGGTGTC	AGGGGATTGC	ACAAATCACT	CACCGACGTG
GCCCTGGAGC ACCATGAGGA GTGTGACTGT GTGTGCAGAG GGAGCACAGG AGGATAGCCG CGGGACCTCG TGGTACTCCT CACACTGACA CACACGTCTC CCTCGTGTCC TCCTATCGGC 641 CATCACCACC AGCAGCTCTT GCCCAGAGCT GTGCAGTGCA	+1						
GTAGTGGTGG TCGTCGAGAA CGGGTCTCGA CACGTCACGT	181	GCCCTGGAGC	ACCATGAGGA	GTGTGACTGT	GTGTGCAGAG	GGAGCACAĠG	AGGATAGCCG
TGCATACGCA ATAGAGGTAG GAATTAGAGT CAACAAACGA AGTTCCTGGA AAGTAGAAGT GGATTTACAG TGCATTCTĠA AAGAGGAGAC ATCAAACAGA ATTAGGAGTT GTGCAACAGC CCTAAATGTC ACGTAAGACT TTCTCCTCTG TAGTTTGTCT TAATCCTCAA CACGTTGTCG 721 TCTTTTGAGA GGAGGCCTAA AGGACAGGAG AAAAGGTCTT CAATCGTGGA AAGAAAATTA AGAAAACTCT CCTCCGGATT TCCTGTCCTC TTTTCCAGAA GTTAGCACCT TTCTTTTAAT 781 AATGTTGTAT TAAATAGATC ACCAGCTAGT TTCAGAGTTA CCATGTACGT ATTCCACTAG	541						
CCTAAATGTC ACGTAAGACT TTCTCCTCTG TAGTTTGTCT TAATCCTCAA CACGTTGTCG 721 TCTTTTGAGA GGAGGCCTAA AGGACAGGAG AAAAGGTCTT CAATCGTGGA AAGAAAATTA AGAAAACTCT CCTCCGGATT TCCTGTCCTC TTTTCCAGAA GTTAGCACCT TTCTTTTAAT 781 AATGTTGTAT TAAATAGATC ACCAGCTAGT TTCAGAGTTA CCATGTACGT ATTCCACTAG	501						
721 TCTTTTGAGA GGAGGCCTAA AGGACAGGAG AAAAGGTCTT CAATCGTGGA AAGAAAATTA AGAAAACTCT CCTCCGGATT TCCTGTCCTC TTTTCCAGAA GTTAGCACCT TTCTTTTAAT 781 AATGTTGTAT TAAATAGATC ACCAGCTAGT TTCAGAGTTA CCATGTACGT ATTCCACTAG	561						
81 AATGTTGTAT TAAATAGATC ACCAGCTAGT TTCAGAGTTA CCATGTACGT ATTCCACTAG	721	TCTTTTGAGA	GGAGGCCTAA	AGGACAGGAG	AAAAGGTCTT	CAATCGTGGA	AAGAAAATTA
	781	AATGTTGTAT	TAAATAGATC	ACCAGCTAGT	TTCAGAGTTA	CCATGTACGT	ATTCCACTAG

FIG. 1 (CONTINUED). 841 CTGGGTTCTG TATTTCAGTT CTTTCGATAC GGCTTAGGGT AATGTCAGTA CAGGAAAAAA GACCCAAGAC ATAAAGTCAA GAAAGCTATG CCGAATCCCA TTACAGTCAT GTCCTTTTTT 901 ACTGTGCAAG TGAGCACCTG ATTCCGTTGC CTTGCTTAAC TCTAAAGCTC CATGTCCTGG TGACACGTTC ACTCGTGGAC TAAGGCAACG GAACGAATTG AGATTTCGAG GTACAGGACC 1021 AACCAGAACA TTCTATGTAC TACAAACCTG GTTTTTAAAA AGGAACTATG TTGCTATGAA TTGGTCTTGT AAGATACATG ATGTTTGGAC CAAAAATTTT TCCTTGATAC AACGATACTT 1081 TTAAACTTGT GTCGTGCTGA TAGGACAGAC TGGATTTTTC ATATTTCTTA TTAAAATTTC AATTTGAACA CAGCACGACT ATCCTGTCTG ACCTAAAAAG TATAAAGAAT AATTTTAAAG 1141 TGCCATTTAG AAGAAGAGA CTACATTCAT GGTTTGGAAG AGATAAACCT GAAAAGAAGA ACGGTAAATC TTCTTCTCTT GATGTAAGTA CCAAACCTTC TCTATTTGGA CTTTTCTTCT 1201 GTGGCCTTAT CTTCACTTTA TCGATAAGTC AGTTTATTTG TTTCATTGTG TACATTTTTA CACCGGAATA GAAGTGAAAT AGCTATTCAG TCAAATAAAC AAAGTAACAC ATGTAAAAAT 1261 TATTCTCCTT TTGACATTAT AACTGTTGGC TTTTCTAATC TTGTTAAATA TATCTATTTT ATAAGAGGAA AACTGTAATA TTGACAACCG AAAAGATTAG AACAATTTAT ATAGATAAAA 1321 TACCAAAGGT ATTTAATATT CTTTTTTATG ACAACTTAGA TCAACTATTT TTAGCTTGGT ATGGTTTCCA TAAATTATAA GAAAAAATAC TGTTGAATCT AGTTGATAAA AATCGAACCA 1381 AAATTTTTCT AAACACAATT GTTATAGCCA GAGGAACAAA GATGATATAA AATATTGTTG TTTAAAAAGA TTTGTGTTAA CAATATCGGT CTCCTTGTTT CTACTATATT TTATAACAAC 1441 CTCTGACAAA AATACATGTA TTTCATTCTC GTATGGTGCT AGAGTTAGAT TAATCTGCAT GAGACTGTTT TTATGTACAT AAAGTAAGAG CATACCACGA TCTCAATCTA ATTAGACGTA 1501 TTTAAAAAAC TGAATTGGAA TAGAATTGGT AAGTTGCAAA GACTTTTTGA AAATAATTAA AAATTTTTTG ACTTAACCT ATCTTAACCA TTCAACGTTT CTGAAAAACT TTTATTAATT 1561 ATTATCATAT CTTCCATTCC TGTTATTGGA GATGAAAATA AAAAGCAACT TATGAAAGTA TAATAGTATA GAAGGTAAGG ACAATAACCT CTACTTTTAT TTTTCGTTGA ATACTTTCAT 1621 GACATTCAGA TCCAGCCATT ACTAACCTAT TCCTTTTTTG GGGAAATCTG AGCCTAGCTC CTGTAAGTCT AGGTCGGTAA TGATTGGATA AGGAAAAAAC CCCTTTAGAC TCGGATCGAG 1741 GTGCAGTAGG AACACCTC ATTTATTGTG ATGTTGTGGT TTTATTATCT TAAACTCTGT CACGTCATCC TTGTGTAGGA TAAATAACAC TACAACACCA AAATAATAGA ATTTGAGACA 1801 TCCATACACT TGTATAAATA CATGGATATT TTTATGTACA GAAGTATGTC TCTTAACCAG AGGTATGTGA ACATATTTAT GTACCTATAA AAATACATGT CTTCATACAG AGAATTGGTC 1861 TTCACTTATT GTACCTGG AAGTGAATAA CATGGACC

FIG. 2. Predicted VEGF-like protein encoded by Incyte contig of 8/12/98

- 1 MNIFLLNLLT EEVRLYSCTP RNFSVSIREE LKRTDTIFWP GCLLVKRCGG
- 51 NCACCLHNCN ECQCVPSKVT KKYHEVLQLR PKTGVRGLHK SLTDVALEHH
- 101 EECDCVCRGS TGG

F/G. 3.	PCR primers for	cloning	VEGF-X
---------	-----------------	---------	--------

vegfX1	AAAATGTATGGATACAACTTAC
vegfX2	GTTTGATGAAAGATTTGGGCTTG
vegfX3	TTTCTAAAGGAAATCAAATTAG
vegfX4	GATAAGATTTGTATCTGATG
vegfX5	GATGTCTCCTCTTTCAG
vegfX6	GCACAACTCCTAATTCTG
vegfX7	AGCACCTGATTCCGTTGC
vegfX8	TAGTACATAGAATGTTCTGG
vegfX9	AAGAGACATACTTCTGTAC

vegfX10 CCAGGTACAATAAGTGAACTG

4/54 F16.4. Variants Isolated by PCR (at 8/2/99, all cloned and sequenced at JRF) a b c d e f PCR primers- \rightarrow \rightarrow Incyte contig ____ (8/12/98) clone 22, 29, 41 clone 52, 59 clone 15, 20 clones 57, 25, 26, 27 2.1kb clones 1, 2, 3

b- vegfX2

e- vegfX9

c- vegfX5

f-vegfX10

primers-

(see fig 3)

a- vegfX1

d- vegfX6

F16.5. VEGF-X 5' RACE primers

vegfX11 CCTTTAGAAATCTGTTTTCCTGGTACAG

vegfX12 GGAAAATATTCATCAGATACAAATCTTATCC

vegfX13 GGTCCAGTGGCAAAGCTGAAGG

vegfX14 CTGGTTCAAGATATCGAATAAGGTCTTCC

6/54 F/G. 6. DNA sequence assembled from in-house clones and 5'RACE

1		GGTGGGCGCT TCCACCCCAG TGCAGCCTTC CCCTGGCGGT GGTGAAAGAG CCACCCGCGA AGGTGGGGTC ACGTCGGAAG GGGACCGCCA CCACTTTCTC
61		CGCTGCTTCC AAAGTGCCCG CCGTGAGTGA GCTCTCACCC CAGTCAGCCA GCGACGAAGG TTTCACGGGC GGCACTCACT CGAGAGTGGG GTCAGTCGGT
+2	MetSerLeu	PheGlyLeuLeu LeuLeuThr SerAlaLeu AlaGlyGlnArg GlnGlyTh
121	AATGAGCCTC	TTCGGGCTTC TCCTGCTGAC ATCTGCCCTG GCCGGCCAGA GACAGGGGACAAGCCCGAAG AGGACGACTG TAGACGGGAC CGGCCGGTCT CTGTCCCCTG
+2	rGlnAlaGlu	SerAsnLeuSer SerLysPhe GlnPheSer SerAsnLysGlu GlnAsnGl
181		TCCAACCTGA GTAGTAAATT CCAGTTTTCC AGCAACAAGG AACAGAACGG AGGTTGGACT CATCATTTAA GGTCAAAAGG TCGTTGTTCC TTGTCTTGCC
+2	yValGlnAsp	ProGlnHisGlu ArgIleIle ThrValSer ThrAsnGlySer IleHisSe
241		CCTCAGCATG AGAGAATTAT TACTGTGTCT ACTAATGGAA GTATTCACAG GGAGTCGTAC TCTCTTAATA ATGACACAGA TGATTACCTT CATAAGTGTC
+2	rProArgPhe	ProHisThrTyr ProArgAsn ThrValLeu ValTrpArgLeu ValAlaVa
301		CCTCATACTT ATCCAAGAAA TACGGTCTTG GTATGGAGAT TAGTAGCAGT GGAGTATGAA TAGGTTCTTT ATGCCAGAAC CATACCTCTA ATCATCGTCA
+2	lGluGluAsn	ValTrpIleGln LeuThrPhe AspGluArg PheGlyLeuGlu AspProGl
361		GTATGGATAC AACTTACGTT TGATGAAAGA TTTGGGCTTG AAGACCCAGA CATACCTATG TTGAATGCAA ACTACTTTCT AAACCCGAAC TTCTGGGTCT
+2	uAspAspIle	CysLysTyrAsp PheValGlu ValGluGlu ProSerAspGly ThrIleLe
421		TGCAAGTATG ATTTTGTAGA AGTTGAGGAA CCCAGTGATG GAACTATATT ACGTTCATAC TAAAACATCT TCAACTCCTT GGGTCACTAC CTTGATATAA
+2	uGlyArgTrp	CysGlySerGly ThrValPro GlyLysGln IleSerLysGly AsnGlnIl
481		TGTGGTTCTG GTACTGTACC AGGAAAACAG ATTTCTAAAG GAAATCAAAT ACACCAAGAC CATGACATGG TCCTTTTGTC TAAAGATTTC CTTTAGTTTA
+2	eArgIleArg	PheValSerAsp GluTyrPhe ProSerGlu ProGlyPheCys IleHisTy
541		TTTGTATCTG ATGAATATTT TCCTTCTGAA CCAGGGTTCT GCATCCACTA AAACATAGAC TACTTATAAA AGGAAGACTT GGTCCCAAGA CGTAGGTGAT
+2	rAsnIleVal	MetProGlnPhe ThrGluAla ValSerPro SerValLeuPro ProSerAl
601		ATGCCACAAT TCACAGAAGG TGTGAGTGCT TCAGTGCTAG CCCCTTCAGG TACGGTGTTA AGTGTCTTCG ACACTCAGGA AGTCACGATG GGGGAAGTCG
+2		AspLeuLeuAsn AsnAlaile ThrAlaPhe SerThrLeuGlu AspLeuIl
661	TTTGCCACTG	GACCTGCTTA ATAATGCTAT AACTGCCTTT AGTACCTTGG AAGACCTTAT CTGGACGAAT TATTACGATA TTGACGGAAA TCATGGAACC TTCTGGAATA

	116.61	CONTINUE	ס צ).			
+2	eArgTyrLeu	GluProGluA	rg TrpGlnLe		AspLeuTyrA:	
721	TCGATATCTT	GAACCAGAGA	GATGGCAGTT	GGACTTAGAA	GATCTATATA	GGCCAACTTG
		CTTGGTCTCT				
+2	pGlnLeuLeu	GlyLysAlaP	he ValPheGl	y ArgLysSer	ArgValValA	sp LeuAsnLe
781	GCAACTTCTT	GGCAAGGCTT	τ	AAGAAAATCC	AGAGTGGTGG	
, • •		CCGTTCCGAA				
+2	uLeuThrGlu	GluValArgLe	eu TyrSerCy:		AsnPheSerV	
841	TCTAACAGAG	GAGGTAAGAT	ТАТАСАССТС			
V		CTCCATTCTA				
+2	gGluGluLeu	LysArgThrA	sp ThrIlePh		CysLeuLeuV	
901	GGAAGAACTA	AAGAGAACCG	ልጥል ሮሮልጥጥጥጥ			
,,,		TTCTCTTGGC				
+2	sGlyGlyAsn	CysAlaCysCy	ys LeuHisAsı	n CysAsnGlu	CysGlnCysVa	al ProSerLy
961	TGGTGGGAAC	TGTGCCTGTT	CTCTCCACAA	TTCCAATCAA	TCTC	TCCC
701		ACACGGACAA				
+2	sValThrLys	LysTyrHisG	lu ValLeuGlr	n LeuArgPro	LysThrGlyVa	al ArgGlyLe
1021	AGTTACTAAA	AAATACCACG	AGGTCCTTCA	GTTGAGACCA	AAGACCGGTG	TCAGGGGATT
		TTTATGGTGC				
+ 2	uHisLysSer	LeuThrAspVa			GluCysAspCy	
081	GCACAAATCA	CTCACCGACG	TGGCCCTGGA	GCACCATGAG	GAGTGTGACT	GTGTGTGCAG
		GAGTGGCTGC				
+2	gGlySerThr	GlyGly				
141	AGGGAGCACA	GGAGGATAGC	CCCATCACCA	CCAGCAGCTC	TTCCCCAGAG	CTCTCCACTC
		CCTCCTATCG				
.201	CAGTGGCTGA	TTCTATTAGA	CAACCTATCC	CTTATCTCCA	TCCTTA 2 TCT	CACTTCTTC
		AAGATAATCT				
261	CTTCAAGGAC	CTTTCATCTT	CACCATTAL	אריירר <i>א</i> יייריי	CARACROCAC	1CNTCN11CN
201		GAAAGTAGAA				
321	C 3 A TT T 3 C C 3 C	mmamaaaaaa	comommmes.	010010000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1011110000
		TTGTGCAACA AACACGTTGT				
381	ייייר א אייירכיייר	GAAAGAAAAT	ma a a memmem	20022200202	mox cox com>	CMMM03.03.0M
		CTTTCTTTTA				
441	ТАССАТСТАС	CT A TTCC 3 CT	ACCTCCCCTC	mem s manes s e	TO COMPAGE A CO	A CCCCCCCCC
		GTATTCCACT CATAAGGTGA				
501	GTAATGTCAG	TACAGGAAAA	AAACTGTGCA	AGTGAGCACC	ТСАТТСССТТ	GCCTTGCTTA

CATTACAGTC ATGTCCTTTT TTTGACACGT TCACTCGTGG ACTAAGGCAA CGGAACGAAT

FIG. 6 (CONTINUED 2). 1561 ACTCTAAAGC TCCATGTCCT GGGCCTAAAA TCGTATAAAA TCTGGATTTT TTTTTTTTT 1621 TTTGCTCATA TTCACATATG TAAACCAGAA CATTCTATGT ACTACAAACC TGGTTTTTAA AAACGAGTAT AAGTGTATAC ATTTGGTCTT GTAAGATACA TGATGTTTGG ACCAAAAATT 1681 AAAGGAACTA TGTTGCTATG AATTAAACTT GTGTCGTGCT GATAGGACAG ACTGGATTTT TTTCCTTGAT ACAACGATAC TTAATTTGAA CACAGCACGA CTATCCTGTC TGACCTAAAA 1741 TCATATTTCT TATTAAAATT TCTGCCATTT AGAAGAAGAG AACTACATTC ATGGTTTGGA AGTATAAAGA ATAATTTTAA AGACGGTAAA TCTTCTTCTC TTGATGTAAG TACCAAACCT 1801 AGAGATAAAC CTGAAAAGAA GAGTGGCCTT ATCTTCACTT TATCGATAAG CCAGTTTATT TCTCTATTTG GACTTTTCTT CTCACCGGAA TAGAAGTGAA ATAGCTATTC GGTCAAATAA 1861 TGTTTCATTG TGTACATTTT TATATTCTCC TTTTGACATT ATAACTGTTG GCTTTTCTAA ACAAAGTAAC ACATGTAAAA ATATAAGAGG AAAACTGTAA TATTGACAAC CGAAAAGATT 1921 TCTTGTTAAA TATATCTATT TTTACCAAAG GTATTTAATA TTCTTTTTTA TGACAACTTA AGAACAATTT ATATAGATAA AAATGGTTTC CATAAATTAT AAGAAAAAAT ACTGTTGAAT 1981 GATCAACTAT TTTTAGCTTG GTAAATTTTT CTAAACACAA TTGTTATAGC CAGAGGAACA CTAGTTGATA AAAATCGAAC CATTTAAAAA GATTTGTGTT AACAATATCG GTCTCCTTGT 2041 AAGATGATAT AAAATATTGT TGCTCTGACA AAAATACATG TATTTCATTC TCGTATGGTG TTCTACTATA TTTTATAACA ACGAGACTGT TTTTATGTAC ATAAAGTAAG AGCATACCAC 2101 CTAGAGTTAG ATTAATCTGC ATTTTAAAAA ACTGAATTGG AATAGAATTG GTAAGTTGCA GATCTCAATC TAATTAGACG TAAAATTTTT TGACTTAACC TTATCTTAAC CATTCAACGT 2161 AAGACTTTTT GAAAATAATT AAATTATCAT ATCTTCCATT CCTGTTATTG GAGATGAAAA TTCTGAAAAA CTTTTATTAA TTTAATAGTA TAGAAGGTAA GGACAATAAC CTCTACTTTT 2221 TAAAAAGCAA CTTATGAAAG TAGACATTCA GATCCAGCCA TTACTAACCT ATTCCTTTTT ATTTTTCGTT GAATACTTTC ATCTGTAAGT CTAGGTCGGT AATGATTGGA TAAGGAAAAA 2281 TGGGGAAATC TGAGCCTAGC TCAGAAAAAC ATAAAGCACC TTGAAAAAAGA CTTGGCAGCT. ACCCCTTTAG ACTCGGATCG AGTCTTTTTG TATTTCGTGG AACTTTTTCT GAACCGTCGA 2341 TCCTGATAAA GCGTGCTGTG CTGTGCAGTA GGAACACATC CTATTTATTG TGATGTTGTG AGGACTATTT CGCACGACAC GACACGTCAT CCTTGTGTAG GATAAATAAC ACTACAACAC 2401 GTTTTATTAT CTTAAACTCT GTTCCATACA CTTGTATAAA TACATGGATA TTTTTATGTA CAAAATAATA GAATTTGAGA CAAGGTATGT GAACATATTT ATGTACCTAT AAAAATACAT

2461 CAGAAGTATG TCTCT

GTCTTCATAC AGAGA

F/G. T.

New Sequence + Incyte ESTs

1			ACTGGTTCAG			
	TAAACAAATT	TGGAACCCTT	TGACCAAGTC	CAGGTCCAAA	ACGAAACTAG	GAAAAGTTTT
61	ACTGGAGACA	CAGAAGAGGG	CTTCTAGGAA	AAAGTTTTGG	GATGGGATTA	TGTGGAAACT
	TGACCTCTGT	GTCTTCTCCC	GAAGATCCTT	TTTCAAAACC	CTACCCTAAT	ACACCTTTGA
121			CAGAGCAGGC			
	TGGGACGCTA	AGAGACGACG	GTCTCGTCCG	AGCCGCGAAG	GTGGGGTCAC	GTCGGAAGGG
181	CTGGCGGTGG	TGAAAGAGAC	TCGGGAGTCG	CTGCTTCCAA	AGTGCCCGCC	GTGAGTGAGC
	GACCGCCACC	ACTTTCTCTG	AGCCCTCAGC	GACGAAGGTT	TCACGGGCGG	CACTCACTC
+2			et SerLeuPhe			
241	maman acces	•	TGAGCCTCTT			
241			ACTCGGAGAA			
+2	aGlyGlnArg	GlnGlyThrG	ln AlaGluSei	AsnLeuSer	SerLysPheG	In PheSerSe
201			AGGCGGAATC			
301			TCCGCCTTAG			
+2	rAsnLysGlu	GlnTyrGlyVa	al GlnAspPro	GlnHisGlu	ArgIleIleTh	
361	CAACAAGGAA	CAGTACGGAG	TACAAGATCC	TCAGCATGAG		
301			ATGTTCTAGG			
+2	rAsnGlySer	IleHisSerPı	ro ArgPhePro	HisThrTyr	ProArgAsnTh	nr ValLeuVa
421			CAAGGTTTCC			
			GTTCCAAAGG			
+2			lu GluAsnVal			
481			AGGAAAATGT			
401			TCCTTTTACA			
+2			sp AspIleCys			
			ATGACATATG			
541			TACTGTATAC			
+2	oSerAspGly	ThrIleLeuG	ly ArgTrpCys	GlySerGly	ThrValProG	
601	CAGTGATGGA	ACTATATTAG	GGCGCTGGTG	TGGTTCTGGT	ACTGTACCAG	GAAAACAGAT
301			CCGCGACCAC			
+2			rg [leArgPhe			
			GGATAAGATT			
661					CTTATAAAAG	

	F1G. 71	CONTINUE	ED 1).			
+2		IleHisTyrAs		ProGlnPhe	ThrGluAlaVa	al SerProSe
721		ATCCACTACA TAGGTGATGT				
+2	rValLeuPro	ProSerAlaLe	eu ProLeuAs) LeuLeuAsn	AsnAlaIleTh	nr AlaPheSe
781		CCTTCAGCTT GGAAGTCGAA				
+2	rThrLeuGlu	AspLeuIleA	g TyrLeuGl	ı ProGluArg	TrpGlnLeuAs	sp LeuGluAs
841		GACCTTATTC CTGGAATAAG				
+2	pLeuTyrArg	ProThrTrpG	in LeuLeuGly	/ LysAlaPhe	ValPheGlyA	g LysSerAr
901		CCAACTTGGC GGTTGAACCG				
+2	gValValAsp	LeuAsnLeuLe	eu ThrGluGlu	ı ValArgLeu	TyrSerCysTl	nr ProArgAs
961		CTGAACCTTC GACTTGGAAG				
+2	nPheSerVal	SerIleArgGl	u GluLeuLys	ArgThrAsp	ThrIlePheTr	p ProGlyCy
.021		TCCATAAGGG AGGTATTCCC				
+2	sLeuLeuVal	LysArgCysGl	y GlyAsnCys	AlaCysCys	LeuHisAsnCy	s AsnGluCy
.081		AAACGCTGTG TTTGCGACAC				
+2	sGlnCysVal	ProSerLysVa	l ThrLysLys	TyrHisGlu	ValLeuGlnLe	eu ArgProLy
.141		CCAAGCAAAG GGTTCGTTTC				
+2		ArgGlyLeuHi				
	GACCGGTGTC	AGGGGATTGC TCCCCTAACG	ACAAATCACT	CACCGACGTG	GCCCTGGAGC	ACCATGAGGA
+2	uCysAspCys	ValCysArgGl	y SerThrGly	/ Gly		
	GTGTGACTGT	GTGTGCAGAG CACACGTCTC	GGAGCACAGG	AGGATAGCCG		
		GTGCAGTGCA CACGTCACGT				
		GTTGTTTGCT				TGCATTCTGA

FIG. TICONTINUED 2).

1441			ATTAGGAGTT TAATCCTCAA			
1501			CAATCGTGGA GTTAGCACCT			
1561			CCATGTACGT GGTACATGCA			TATTTCAGTT ATAAAGTCAA
1621			AATGTCAGTA TTACAGTCAT			
1681			CTCTAAAGCT GAGATTTCGA			
1741			TTGCGCATAT AACGCGTATA			
1801			AAGGAACTAT TTCCTTGATA			
1861			CATATTTCTT GTATAAAGAA	· -		
1921			GAGATAAACC CTCTATTTGG			
1981			GTTTCATTGT CAAAGTAACA			
2041			CTTGTTAAAT GAACAATTTA			
2101			ATCAACTATT TAGTTGATAA			TAAACACAAT ATTTGTGTTA
2161	ACAATATCGG	TCTCCTTGTT	TCTACTATAT	TTTATAACAA	CGAGACTGTT	AAATACATGT TTTATGTACA
2221						CTGAATTGGA GACTTAACCT
2281	ATAGAATTGG TATCTTAACC					TCTTCCATTC AGAAGGTAAG
2341	CTGTTATTGG GACAATAACC					ATCCAGCCAT TAGGTCGGTA
2401	TACTAACCTA ATGATTGGAT					TAAAGCACCT ATTTCGTGGA
2461						GAACACATCC CTTGTGTAGG
2521						TTGTATAAAT AACATATTTA

	F16.7	(CONTINUS	ED 3).			
2581		TTTTATGTAC		CTCTTAACCA	GTTCACTTAT	TGTACTCTGG
	TGTACCTATA	AAAATACATG	TCTTCATACA	${\tt GAGAATTGGT}$	CAAGTGAATA	ACATGAGACC
~ - 4 -						
2641	CAATTTAAAA	GAAAATCAGT	AAAATATTTT	GCTTGTAAAA	TGCTTAATAT	CGTGCCTAGG
	GTTAAATTTT	CTTTTAGTCA	TTTTATAAAA	CGAACATTTT	ACGAATTATA	GCACGGATCC
2701	TTATGTGGTG	ACTATTTGAA	TCAAAAATGT	ATTGAATCAT	CAAATAAAAG	AATGTGGCTA
	AATACACCAC	TGATAAACTT	AGTTTTTACA	TAACTTAGTA	GTTTATTTTC	TTACACCGAT
2761	TTTTGGGGAG	ΑΑΑΑΤΤ				
	AAAACCCCTC	TTTTAA				

FIG. 8. Additional oligonucleotides used for amplification of entire coding region

5'-1	TTTGTTTAAACCTTGGGAAACTGG
5'-2	GTCCAGGTTTTGCTTTGATCC

FIG. 9. DNA Sequence Of Clones 4 & 7, Identical Clones Containing The Entire Open Reading Frame

1		CCTTGGGAAA GGAACCCTTT				
61		AGAAGAGGGC TCTTCTCCCG				
121		CTGCTGCCAG GACGACGGTC				
181		AAGAGACTCG TTCTCTGAGC				
+2					LeuThrSerA	
241		AGCCAAATGA TCGGTTTACT	GCCTCTTCGG	GCTTCTCCTG	CTGACATCTG	CCCTGGCCGG
+2	yGlnArgGln	GlyThrGlnA	la GluSerAsı	n LeuSerSer	LysPheGlnPt	ne SerSerAs
301		GGGACTCAGG CCCTGAGTCC				
+2		AsnGlyValGl			IleIleThrVa	
361	CAAGGAACAG	AACGGAGTAC TTGCCTCATG	AAGATCCTCA	GCATGAGAGA	ATTATTACTG	TGTCTACTAA
+2	nGlySerIle	HisSerProAr			ArgAsnThrVa	
421		CACAGCCCAA GTGTCGGGTT	GGTTTCCTCA	TACTTATCCA	AGAAATACGG	TCTTGGTATG
+2	pArgLeuVal	AlaValGluGl	_		ThrPheAspGl	-
481		GCAGTAGAGG CGTCATCTCC	AAAATGTATG	GATACAACTT	ACGTTTGATG	AAAGATTTGG
+2		ProGluAspAs				
541	GCTTGAAGAC	CCAGAAGATG GGTCTTCTAC	ACATATGCAA	GTATGATTTT	GTAGAAGTTG	AGGAACCCAG
+2	rAspGlyThr	IleLeuGlyAr	g TrpCysGly	/ SerGlyThr	ValProGlyLy	ys GlnIleSe
601		ATATTAGGGC TATAATCCCG				
+2	rLysGlyAsn	GlnIleArgIl			TyrPheProSe	
661		CAAATTAGGA GTTTAATCCT	TAAGATTTGT	ATCTGATGAA		CTGAACCAGG

	5/6	3/CONTINU	(ED) 141	54		
+2	yPheCysIle	HisTyrAsnIl	le ValMetPro	GlnPheThr	GluAlaValSe	er ProSerVa
721		CACTACAACA GTGATGTTGT				
+2	lLeuProPro	SerAlaLeuPr	o LeuAspLe	LeuAsnAsn	AlaIleThrAl	la PheSerTh
781		TCAGCTTTGC AGTCGAAACG				
+2	rLeuGluAsp	LeulleArgTy	r LeuGluPro	GluArgTrp	GlnLeuAspLe	eu GluAspLe
841		CTTATTCGAT GAATAAGCTA				
+2	uTyrArgPro	ThrTrpGlnLe	eu LeuGlyLys	: AlaPheVal	PheGlyArgLy	ys SerArgVa
901		ACTTGGCAAC TGAACCGTTG				
+2	lValAspLeu	AsnLeuLeuTh	ır GluGluVal	ArgLeuTyr	SerCysThrPi	ro ArgAsnPh
961		AACCTTCTAA TTGGAAGATT				
+2	eSerValSer	IleArgGluGl	u LeuLysArg	g ThrAspThr	IlePheTrpPi	co GlyCysLe
1021		ATAAGGGAAG TATTCCCTTC				
+2	uLeuValLys	ArgCysGlyGl	y AsnCysAla	a CysCysLeu	HisAsnCysAs	sn GluCysGl
1081		CGCTGTGGTG GCGACACCAC				
+2	nCysValPro	SerLysValTh	ır LysLysTyı	HisGluVal	LeuGlnLeuA	rg ProLysTh
1141		AGCAAAGTTA TCGTTTCAAT				
+2		GlyLeuHisLy				is GluGluCy
1201	CGGTGTCAGG	GGATTGCACA CCTAACGTGT	AATCACTCAC	CGACGTGGCC	CTGGAGCACC	
+2		CysArgGlySe				
1261	TGACTGTGTG	TGCAGAGGGA ACGTCTCCCT	GCACAGGAGG	ATAGCCGCAT		
1321		CAGTGCAGTG GTCACGTCAC				
1381		GTTTGCTTCA CAAACGAAGT				
1441	AGGAGACATC	AAACAGAATT	AGGAGTTGTG	CAA		

TCCTCTGTAG TTTGTCTTAA TCCTCAACAC GTT

FIG. 10. Predicted Full-length Polypeptide Sequence

	1	MSLFGLLLLT	SALAGQRQGT	QAESNLSSKF	QFSSNKEQYG	VQDPQHERI
	51	TVSTNGSIHS	PRFPHTYPRN	TVLVWRLVAV	EENVWIQLTF	DERFGLEDPE
1	01	DDICKYDFVE	VEEPSDGTIL	GRWCGSGTVP	GKQISKGNQI	RIRFVSDEYF
1	51	PSEPGFCIHY	NIVMPQFTEA	VSPSVLPPSA	LPLDLLNNAI	TAFSTLEDLI
20)1	RYLEPERWQL	DLEDLYRPTW	QLLGKAFVFG	RKSRVVDLNL	LTEEVRLYSC
25	i 1	TPRNFSVSIR	EELKRTDTIF	WPGCLLVXRC	GGNCACCLHN	CNECQCVPSK
30	1	VTKKYHEVLQ	LRPKTGVRGL	HKSLTDVALE	HHEECDCVCR	GSTGG

FIG. 11. Alignment of VEGF-X with Other VEGFs

VECE LIMAN		* 20 	*	40	*
PLGF_HUMAN VEGB_HUMAN VEGC_HUMAN VEGD_HUMAN	; :				
		rsalagqrqgtqai			
VEGF_HUMAN : PLGF_HUMAN : VEGB_HUMAN : VEGC_HUMAN : VEGD_HUMAN : 990126vegx :	:) *			: - : -
VEGF_HUMAN : PLGF_HUMAN : VEGB_HUMAN : VEGC_HUMAN : VEGD_HUMAN : 990126vegx :		* 120	LGFFSVACSLL	 AAALLPGPREA	: - APAAAA : 30
VEGF_HUMAN : PLGF_HUMAN : VEGB_HUMAN : VEGC_HUMAN : VEGD_HUMAN : 990126vegx :	AFESGLDLSI FMMLYVQLV() * OAEPDAGEATAYAS QGSSNEHGPVKRSS	SKDLEEQLRSVS SQSTLERSEQQI	SVDELMTVLYI RAASSLEELLI	MP : 2 : - PEYWKM : 80 RITHSE : 60
VEGF_HUMAN : PLGF_HUMAN : VEGB_HUMAN : VEGC_HUMAN : VEGD_HUMAN : 990126vegx :	VMRLFPCFLÇ MSPLLRF YKCQLRKGGW DWKLWRCRLF	220 LALLLYLHHAKWSÇ LLAGLALPAVPPÇ RLLLAALLQLAPAÇ IQHNREQANLNSRT RLKSFTSMDSRSAS	QWALSAGNGSS: APVSQPDAPGH EETIKFAAAHYI HRSTRFAATFY	EVEVVPFQE-1 QRKVVSWID-1 NTEILKSIDNE DIETLKVIDEE	WGRSY : 51 YYTRAT : 46 EWRKTQ : 130 EWORTQ : 110
VEGF_HUMAN : PLGF_HUMAN : VEGB_HUMAN : VEGC_HUMAN : VEGD_HUMAN : 990126vegx :	CRALERLVDV CQPREVVVPI CMPREVCIDV CSPRETCVEV	TOTAL TOTAL PROPERTY OF THE PR	PSCVSLLRCTG PSCVTVQRCGG PPCVSVYRCGG PPCVNVFRCGG	*CONDECCOPDDCCONSECCONEES NCACOLHNCNE	NLHCVP: 96 GLECVP: 91 GLQCMN: 175 GLICMN: 155

FIG. IT (CONTINUED).

VEGF_HUMAN PLGF_HUMAN VEGB_HUMAN VEGC_HUMAN VEGD_HUMAN 990126vegx	: : : :	* 3 TEESNITMOTMRIKPHOG VETANVTMOLLKIRSGDR TGQHQVRMOILMIRYPS- TSTSYLSKTLFEITVPLS TSTSYISKOLFEISVPLT SKVTKKYHEVLOLRPKTG	PSYVEI SQLGEN QGPKPVTI SVPELVPN	TFSOHVRCE ISLEEHSOCE ISFANHTSOR IKVANHTGOK	RPKKDRARQEK RPLREKMKPER RPKKKDSAVKP MSKLDVYRQVH LPTAPRHPYSI	: : : : : :	141 141 135 222 202 345
VEGF_HUMAN PLGF_HUMAN VEGB_HUMAN VEGC_HUMAN VEGD_HUMAN 990126vegx	: : : : :	360 KSVRGKGKGQKRKRKKSR DSPRSIIRRSLPATLPQCQAANIRRSIQIPEEDRCSHSKK	KTCPTNYMWNN LCPIDMLWDSN	HICRCLAQED	FMFSSDAGDDS	: : : : : : : : : : : : : : : : : : : :	166 - 139 272 246
VEGF_HUMAN PLGF_HUMAN VEGB_HUMAN VEGC_HUMAN VEGD_HUMAN 990126vegx	: : : : : : : : : : : : : : : : : : : :	* 4	CQCVCRAGLRP	ASCGPHKELD		: : : : : : : : : : : : : : : : : : : :	- - 322 260
VEGF_HUMAN PLGF_HUMAN VEGB_HUMAN VEGC_HUMAN VEGD_HUMAN 990126vegx	: : : : : :	460	HLFVQDPQTCK HHQRPDPRTCR EVCKRTCPRNQ	.CRCRRRSFLR PLNPGKCACE	CKARQLELNER	:	206 149 179 372 310
VEGF_HUMAN PLGF_HUMAN VEGB_HUMAN VEGC_HUMAN VEGD_HUMAN 990126vegx	: : : : : : : : : : : : : : : : : : : :	* 52 TCRCDKPRR TCRCRKLRR GKKFHHQTCSCYRRPCTNI TCSCEDRCPFHTRPCASGI	RQKACEPGFSY	SEEVCRCVPS KEKRAAQGPH	YWKRPQMS	:	215 188 419 354

F/G. 12. Variant Polypeptide Sequences

FL_seq clone41 clone20	: : :	* 20 * 40 * MSLFGLLLTSALAGQRQGTQAESNLSSKFQFSSNKEQNGVQDPQHERII MSLFGLLLTSALAGQRQGTQAESNLSSKFQFSSNKEQNGVQDPQHERII MSLFGLLLLTSALAGQRQGTQAESNLSSKFQFSSNKEQNGVQDPQHERII	: :	50 50 50
FL_seq clone41 clone20	:	60 * 100 TVSTNGSIHSPRFPHTYPRNTVLVWRLVAVEENVWIQLTFDERFGLEDPE TVSTNGSIHSPRFPHTYPRNTVLVWRLVAVEENVWIQLTFDERFGLEDPE TVSTNGSIHSPRFPHTYPRNTVLVWRLVAVEENVWIQLTFDERFGLEDPE	:	100 100 100
FL_seq clone41 clone20	: :	* 120 * 140 * DDICKYDFVEVEEPSDGTILGRWCGSGTVPGKQISKGNQIRIRFVSDEYF DDICKYDFVEVEEPSDGTILGRWCGSGTVPGKQISKGNQIRIRFVSDEYF DDICKYDFVEVEEPSDGTILGRWCGSGTVPGKQISKGNQIRIRFVSDEYF	: : :	150 150 150
FL_seq clone41 clone20	: : :	160 * 180 * 200 PSEFGFCIHYNIVMPQFTEAVSPSVLPPSALPLDLLNNAITAFSTLEDLI PSEFGFCIHYNIVMPQFTEAVSPSVLPPSALPLDLLNNAITAFSTLEDLI PSEFGFCIHYNIVMPQFTEAVSPSVLPPSALPLDLLNNAITAFSTLEDLI	: :	200 167 200
FL_seq clone41 clone20	: :	* 220 * 240 * RYLEPERWQLDLEDLYRPTWQLLGKAFVFGRKSRVVDLNLLTEEVRLYSC RYLEPERWQLDLEDLYRPTWQLLGKAFVFGRKSRVVDLNLLTE	:	250 - 243
FL_seq clone41 clone20	: : :	260 * 280 * 300 TPRNFSVSIREELKRTDTIFWPGCLLVKRCGGNCACCLHNCNECQCVPSK	: :	300
FL_seq clone41 clone20	: :	* 320 * 340 VTKKYHEVLQLRPKTGVRGLHKSLTDVALEHHEECDCVCRGSTGG : 345		

F/G. 13. Primers for Expression of VEGF-X

E.coli expression of domain-

vegx-6	AATTGGATCCGAGAGTGGTGGATCTGAACC
vegx-7	AATTGGATCCGGGAAGAAAATCCAGAGTGG
vegx-8	GGTTGAATTCATTATTTTTAGTAACTTTGCTTGGGACAC
vegX-9	AATTGAATTCATTATCCTCCTGTGCTCCCTC

Baculovirus/insect cell expression of full-length protein-

vegbac1

AATTGGATCCGGAGTCTCACCATCACCATCATGAATCCAACCTGAGTAGTAAATTC

vegbac2 AATTGAATTCGCTATCCTCCTGTGCTCCCTCTGC

F16.14.

>3993180H1

LUNGNON03

INCYTE

CACAAATCACTCACCGACGTGGCCCTGGAGCACCATGAGGNGTGTGACTGTGTGTGCAGAGGAGGACACAGGAGGATAGCC
GCATCACCACCAGCAGCTCTTGCCCAGAGCTGTGCAGTGCAGTGGCTGATTCTATTAGAGAACGTATGCGTTATCTCCAT
CCTTAATCTCAGTTGTTTGCTTCAAGGACCTTTCATCTTCAGGATTTACAGTGCATTCTGAAAGAGAGGAGACATCAAACAG
AATTAGGAGTTGTGCAACAGCTCTTTTGAGAGGAGGAGACAGGAGAANAGGTCTT

>3510192H1 CONCNOT01 INCYTE

>2559870H1 ADRETUT01 INCYTE

>3979767H1 LUNGTUT08 INCYTE

GGAGGATAGCCGCATCACCAGCAGCTCTTGCCCAGAGCTGTGCAGTGCAGTGGCTGATTCTATTAGAGAACGTATGCGTTATCTCCATCCTTAATCTCAGTTGTTTGCTTCAAGGACCTTTCATCATCTTCAGGATTTACAGTGCATTCTGAAAGAGGAGACACTCAAACAGAATTAGGAGTTGTGCAACAGCTCTTTTGAGAGGGGGGCCTAAAGGACAGGAGAAAAGGTCTTCAATCGTGGAAAGAANATTAAATGTTGTATTAAATAGACACCAGCT

>3980011H1 LUNGTUT08 INCYTE

GGAGGATAGCCGCATCACCACCAGCAGCTCTTGCCCAGAGCTGTGCAGTGGCTGATTCTATTAGAGAACGTATGC
GTTATCTCCATCCTTAATCTCAGTTGTTTGCTTCAAGGACCTTTCATCTTCAGGATTTACATGCATTCTGAAAGAGAGA
CATCAAACAGAATTAGGAGTTGTGCAACAGCTCTTTTGAGAGGAGGCCTAAAGGACAGGAGAAAAGGTCTTCAATCGTGG
AAAGAAAATTAAATGTTGTATTAAATAGATCACCA

>4825396H1 BLADDIT01 INCYTE

>3073703H1 BONEUNT01 INCYTE

AGAAAATCCAGAGTGGTGGATCTGAACCTTCTAACAGAGGAGGTAAGATTATACAGCTGCACACCTCGTAACTTCTCAGT GTCCATAAGGGAAGAACTAAAGAGAACCGATACCATTTTCTGGCCAGGTTGTCTCCTGGTTAAACGCTGTGGTGGGAACT GTGCCTGTTGTCCCACAATTGCAATGAATGTCAATGTCCCCAAGCAAAGTTACTAAAAAATACCACGAGGTCCTTCAG TTGAGACCAAAGACCGGTGTCAGGGGATTGCACAAATCA

>1302516H1 PLACNOT02 INCYTE

ATTTCATCTTCAGGATTTACAGTGCATTCTGAAANAGGAGAAATCAAACANAATTAGGAGTTGTGCAACAGCTCTTTTGA GAGGAGGCCTAAAGGACAGGAGAAAAGGTCTTCAATCGTGGAAANAAAATTAAATGTTGTATTAAATAGATCACCAGCTA GTTTCAGAGTTACCATGTACGTATTCCACTAGCTGGGTTCTGTATTTCAGTTCTTTCGATACGGCTTAGGGTAATGTCAG TACAGGAAAAAAACTGTGCAAGTGAGCACCTGATTCCGTTGCCTTGCTT

>4713188H1 BRAIHCT01 INCYTE

>458823H1 KERANOT01 INCYTE

>1303909H1 PLACNOT02 INCYTE

FIG. 14 (CONTINUED).

>2739211H1

OVARNOT09

INCYTE

GTGCATTCTGAAAGAGGAGACATCAAACAGAATTAGGAGTTGTGCAACAGCTCTTTTGAGAGGAGGCCCTAAAGGACAGGA GAAAAGGTCTTCAATCGTGGAAAGAAAATTAAATGTTGTATTAAATAGATCACCAGCTAGTTTCAGAGTTACCATGTACG TATTCCACTAGCTGGGTTCTGTATTTCAGTTCTTTCGATACGGCTTAGGGTAATGTCAGTACAGGAAAAAAACTGTGCAA GTGAGCACCTGAT

>3325591H1

PTHYNOT03

INCYTE

>3733565H1

SMCCNOS01

INCYTE

CCTTAATCTCAGTTGTTTGCTTCAAGGACCTTTCATCTTCAGGATTTACAGTGCATTCTGNAAGANGAGACATCAAACAG
AATTAGGNGTTGTGCAAAAGCTCTTTTGAGAGGAGGCCTAAAGGACAGGAGAAAAGGTCTNCAATCGTGGAAAGNAAATT
AAATGTTGTATNAAATNGATCACCAGCTAGTTTCAGAGTTACCATGTACGTATTCCACTAGCTGGGNCNGTATTCAGTCT
TTCGGAACGGCTTAGGGTAATGTCAGTACAGGANAAAAACTGTGCAGTGAG

TTCGGAACGGC >3554223H1

GTAATGTCAC SYNONOT01

INCYTE

>4507477H1

OVARTDT01

INCYTE

GGCTAGTTTCAGAGTTACCATGTACGTATTCCACTAGCTGGGTTCTGTATTTCAGTTCTTTCGATACGGCTTAGGGTAAT GTCAGTACAGGAAAAAACTGTGCAAGTGAGCACCTGATTCCGTTGCCTTGCTTAACTCTAAAGCTCCATGTCCTGGGCC TAAAATCGTATAAAATCTGGA

>4163378H1

BRSTNOT32

INCYTE

AATAGATCACCAGCTAGTTTCAGAGTTACCATGTACGTATTCCACTAGCTGGGNTCTGTATTTCAGTTCCTTTCGATACG GCTTAGGGTAATGTCAGTACAGGAAAAAAGCTGTGCAAGTGAGCACCTGATTCCGTTGCCTTAACTCTAAAGCTCC ATGTCCTGGGCCTAAAATCGTATA F1G.15.

22/54

>2054675H1

BEPINOT01

INCYTE

>3993180H1

LUNGNON03

INCYTE

>3510192H1

CONCNOT01

INCYTE

>4164633H1

BRSTNOT32

INCYTE

CTTGTTAAATATCTATTTTTACCAAAGGTATTTAATATCTTTANTTATGACAACTTAGATCAACTATTTTTAGCTTG
GTAAATTTTTCTAAACACAATTGTTATAGCCAGAGGAACAAAGATGATATAAAATATTGTTGCTCTGACAAAAATACATG
TATTTCATTCTCGTATGGTGCTAGAGTTAGATTAATCTGCATTTTAAAAAAACTGAATTGGAATAGAATTGGTAAGTTGCA
AAGACTTTTTGANAATAATTAAATTATCATATCTTCCATTCCTGTTATTGGGGGAGAAAAT

>2559870H1

ADRETUT01

INCYTE

>3817470H1

BONSTUT01

INCYTE

TTAAAAAGGAACTATGTTGCTATGAATTAAACTTGTGTCATGCTGATAGGACAGACTGGATTTTTCATATTTCTTATTAA
AATTTCTGCCATTTAGAAGAAGAACTACATTCATGGTTTGGAAGAGATAAACCTGAAAAGAAGAGGTGGCCTTATCTTC
ACTTTATCGATAAGTCAGTTTATTTGTTTCATTGTGTACATTTTTATATTCTCCTTTTGACATTATAACTGTTGGCTTTC
TAATCTGTTAAATATATCTATTTTTACCAAAGGTATTTAATATTCTTT

>3979767H1

LUNGTUT08

INCYTE

GGAGGATAGCCGCATCACCACCAGCAGCTCTTGCCCAGAGCTGTGCAGTGCAGTGGCTGATTCTATTAGAGAACGTATSC GTTATCTCCATCCTTAATCTCAGTTGTTTGCTTCAAGGACCTTTCATCTTCAGGATTTACAGTGCATTCTGAAAGAGGAG ACATCAAACAGAATTAGGAGTTGTGCAACAGCTCTTTTGAGAGGAGGACCTAAAGGACAGGAGAAAAGGTCTTCAATCGTG GAAAGAANATTAAATGTTGTATTAAATAGACACCAGCT

>3980011H1

LUNGTUT08

INCYTE

GGAGGATAGCCGCATCACCACCAGCAGCTCTTGCCCAGAGCTGTGCAGTGCAGTGGCTGATTCTATTAGAGAACGTATGC
GTTATCTCCATCCTTAATCTCAGTTGTTTGCTTCAAGGACCTTTCATCTTCAGGATTTACATGCATTCTGAAAGAGAGA
CATCAAACAGAATTAGGAGTTGTGCAACAGCTCTTTTGAGAGGGGGCCTAAAGGACAGGAGAAAAGGTCTTCAATCGTGG
AAAGAAAATTAAATGTTGTATTAAATAGATCACCA

>4825396H1

BLADDIT01

INCYTE

>3073703H1

BONEUNT01

INCYTE

AGAAAATCCAGAGTGGTGGATCTGAACCTTCTAACAGAGGAGGTAAGATTATACAGCTGCACACCTCGTAACTTCTCAGT GTCCATAAGGGAAGAACTAAAGAGAACCGATACCATTTTCTGGCCAGGTTGTCTCCTGGTTAAACGCTGTGGTGGGAACT GTGCCTGTTGTCTCCACAATTGCAATGAATGTCAATGTGTCCCAAGCAAAGTTACTAAAAAATACCACGAGGTCCTTCAG TTGAGACCAAAGACCGGTGTCAGGGGATTGCACAAATCA

>862169H1

BRAITUT03

INCYTE

AGATGATATAAAATATTGTIGCTCTGACAAAAATACATGTATTTCATTCTCGTATGGTGCTAGAGTTAGATTAATCTGCA TTTTAAAAAACTGAATTGGAATAGAATTGGTAAGTTGCAAAGACTTTTTGAAAATAATTAAATTATCATATCTTCCATTC CTGTTATTGGAGATGAAAATAAAAAGCAACTTATGAAAGTAGACATTCAGATCCAGCCATTACTAACCTATTCCTTTTTT GGGGAAATCTGAGCCTAGC

>4201385H1

BRAITUT29

INCYTE

TTTTTAAAAAGGAACTATGTTGCTATGAATTAAACTTGTGTCGTGCTGATAGGACAGACTGGATTTTTCATATTTCTTAT TAAAATTTCTGCCATTTAGAAGAAGAAGAACAACTACATTCATGGTTTGGAAGAGATAAACCTGAAAAGAAGAGAGTGGCCTATCT TCACTTTATCGATAAGTCAGTTTATTTGTTTCATTGTCTACATTTTTATATTCTCCTTTGACATATAACTGTTGGCTTTT F/G. 15 (CONTINUED 1).

23/54

CTAATCTGTTAAATATCTATTTTTACCAAAGGTATTTAATAT

>1302516#1

PLACNOT02

INCYTE

>3684109H1

HEAANOT01

INCYTE

ATTTCATCTTCAGGATTTACAGTGCATTCTGAAANAGGAGAAATCAAACANAATTAGGAGTTGTGCAACAGCTCTTTTGA GAGGAGGCCTAAAGGACAGGAGAAAAGGTCTTCAATCGTGGAAANAAAATTAAATGTTGTATTAAATAGATCACCAGCTA GTTTCAGAGTTACCATGTACGTATTCCACTAGCTGGGTTCTGTATTTCAGTTCTTTCGATACGGCTTAGGGTAATGTCAG TACAGGAAAAAAACTGTGCAAGTGAGCACCTGATTCCGTTGCCTTGCTT

>2549720H1

LUNGTUT06

INCYTE

>877279H1

LUNGAST01

INCYTE

CTTTTTTATGACAACTTAGATCAACTATTTTTAGCTTGGTAAATTTTTCTAAACACAATTGTTATAGCCAGAGGAACAAA GATGATATAAAATATTGTTGCTCTGACAAAAATACATGTATTTCATTCTCGTATGGTGCTAGAGTTAGATTAAATCTGCAT TTTAAAAAAACTGAATTGGAATAGAATTGGTAAGTTGCAAAGGCTTTTTGAAAATAATTAAATTATCATATCTTCCATTCC TGTTATTGGNGG

>4713188H1

BRAIHCT01

INCYTE

>2171082H1

ENDCNOT03

INCYTE

AGATAAACCTGAAAAGAAGAGTGGCCTTATCTTCACTTTATCGATAAGTCAGTTTATTTGTTTCATTGTGTACATTTTTA
TATTCTCCTTTTGACATTATAACTGTTGGCTTTTCTAATCTTGTTAAATATATCTATTTTTACCAAAGGTATTTAATATT
CTTTTTTATGACAACTTAGATCAACTATTTTTAGCTTGGTAAATTTTTCTAAACACAATTGTTATAGCCAGAGGAACAAA
GATGA

>875860H1

LUNGAST01

INCYTE

>706168H1

SYNORAT04

INCYTE

GCTCATATTCACATATGTAAACCAGAACATTCTATGTACTACAAACCTGGTTTTTAAAAAGGANCTATGTTGCTATGAAT
TAAACTTGTGTGGTGCTGATAGGACAGACTGGATTTTCATATTTCTTATTAAAATTTCTGCCATTTAGAAGAAGAGAAC
TACATTCATGGTTTGGAAGAGATAAACCTGAAAAGAAGAGGTGGCCTTATCTTCANTTTATCGATAAGTCAGTTTATTTGT
TTCA

>458823H1

KERANOT01

INCYTE

ANGAGTTGCCCAGAGCTGTGCAGTGCAGTGGCTGATTCTATTAGAGAACGTATGCGTTATCTCCATCCTTAATCTCAGTT GTTTGNTTCAAGGACCTTTCATCTTCAGGATTTACAGTGCATTCTGAAAGAGGAGACATCAAACAGAATTAGGAGTTGTG CAACAGCTCTTTTGAGAGGGGGCCTAAAGGNCAGGAGAAAAGGTCTTCAATCGTGGAAAGAAATTAAATGTTGTATTAA ATAGATC

>538436H1

LNODNOT02

INCYTE

>1303909#1

PLACNOTO2

INCYTE

>2739211H1

OVARNOT09

INCYTE

FIG. 15(CONTINUED 2). 24/54

>2550343H1 LUNGTUT06 INCYTE

TGTACATTTTTATATTCTCCTTTTGACATTATAACTGTTGGCTTTTCNAATCTTGTTAAATATATCTATTTTTACCAAAG GTATTTAATATTCTTTTTTATGACAACTTAGATCAACTATTTTTAGCTTGGTAAATTTTTCTAAACACAAATTGTTATAGC CAGAGGAACAAAGATGATAAAATATTGTTGCTCTGACAAAAATACATGTATTTCATTCTCGTATGGTGCTA

>5321148H1 FIBPFEN06 INCYTE

>879495H1 THYRNOTO2 INCYTE

>3325591H1 PTHYNOTO3 INCYTE

>543890H1 OVARNOTO2 INCYTE

TTTCTAAACACAATTGTTATAGCCAGAGGAACAAAGATGATATAAAATATTGTTGCTCTGACAAAAATACATGTATTTCA TTCTCGTATGGTGCTAGAGTTAGATTAATCTGCATTTTAAAAAACTGAATTGGNATAGAATTGGTAAGTTGCAAAGNCTT TTTGAAAATAATTAAATTATCATATCTTCCATTCCTGTTATTGGAGGATGGAAAATAAAAAGCAACTTATGGAAAGTAGG ACATTCAGATC

>3733565H1 SMCCNOS01 INCYTE

CCTTAATCTCAGTTGTTTGCTTCAAGGACCTTTCATCTTCAGGATTTACAGTGCATTCTGNAAGANGAGACATCAAACAG AATTAGGNGTTGTGCAAAAGCTCTTTTGAGAGGAGGCCTAAAGGACAGGAGAAAAGGTCTNCAATCGTGGAAAGNAAATT AAATGTTGTATNAAATNGATCACCAGCTAGTTTCAGAGTTACCATGTACGTATTCCACTAGCTGGGNCNGTATTCAGTCT TTCGGAACGGCTTAGGGTAATGTCAGTACAGGANAAAAACTGTGCAGTGAG

>4641939H1 PROSTMT03 INCYTE

GTACTACAAACCTGGTTTTTAAAAAGGAACTATGTTGCTATGAATTAAACTTGTGTCCATGCTGATAGGACAGACTGGAT TTTNCATATTTCTTATTAAAATTTCTGCCATTTAGAAGAAGAAACTACATTCATGGTTTGGNAGAGATAAACCTGAAAA GAAGAGTGGCCTTATCTTCACTTTATCGATAAGTCAGTTTATTTGTTTCATGTGTACATTTTTATATTCTCCTTTGACAT ATAACGTGGCTTT

>2007780H1 TESTNOT03 INCYTE

>3085331H1 HEAONOT03 INCYTE

>3414043H1 PTHYNOT04 INCYTE

GCTCATATTCACATATGTAAACCAGAACATTCTATGTACTACAAACCTGGTTTTTAAAAAGGAACTATGTTGCTATGAAT TAAACTTGTGTGGTGGTGATAGGACAGACTGGATTTTTCATATTTCTTATTAAAATTTCTGCCATTTAGAAGAAGAAGAAC TACATTCATGGTTTGGAAGAGATAAACCTGAAA

>3705963H1 PENCNOT07 INCYTE

>5137051H1 OVARDITO4 INCYTE

AAAAACTGAATTGGAATAGAATTGGTAAGTTGCAAAGACTNTTTGAAAATAATTAATTATCATATCTTCCATTCCTGT TATTGGAGATGAANATAAAAAGCAACTTATGAAAGTAGACATTCAGATCCAGCCATTACTAACCTATTCCTTTTTTGGGC AAATCTGAGCCTAGCTCAGAAAAACATAAAGCACCTTGAAAAAGACTTGGCAGCTTCCTGATAAAGCGTGCTGTNTGTCA GTAGGAACACATCCTATTTATTGTGATGNTGTGGTTTATTAT

>3554223H1 SYNONOT01 INCYTE

ATTAAATAGATCACCAGCTAGTTTCAGAGTTACCATGTACGTATTCCACTAGCTGGGTTCTGTATTTCAGTTCTTTCGATACGGCTTAGGGTAATGTCAGTACAGGAAAAAAACTGTGCAAGTGAGCACCTGATTCCGTTGCCTTGGCTTAACTCTAAAG

25/54 FIG. 15 (CONTINUED 3).

>4507477H1

OVARTDT01

INCYTE

GGCTAGTTTCAGAGTTACCATGTACGTATTCCACTAGCTGGGTTCTGTATTTCAGTTCTTTCGATACGGCTTAGGGTAAT
GTCAGTACAGGAAAAAAACTGTGCAAGTGAGCACCTGATTCCGTTGCCTTAACTCTAAAGCTCCATGTCCTGGGCC
TAAAATCGTATAAAATCTGGA

>1955646H1

CONNNOT01

INCYTE

>4163378H1

BRSTNOT32

INCYTE

AATAGATCACCAGCTAGTTTCAGAGTTACCATGTACGTATTCCACTAGCTGGGNTCTGTATTTCAGTTCCTTTCGATACG GCTTAGGGTAATGTCAGTACAGGAAAAAAGCTGTGCAAGTGAGCACCTGATTCCGTTGCCTTGACTCTAAAGCTCC ATGTCCTGGGCCTAAAATCGTATA

>5095141H1

EPIMNON05

INCYTE

AGATAAACCTGAAAAGAAGAGTGGCCTTATNTTCACTTTATCGATAAGTCAGNTTATTTGTTTCATTGTGTACATTTNNA TATTCTCCTTTTGACATTATAACTGNTGGCTTTTCTAANCNTGTTAAATATATCTATTTTTACCAAAGGTATTTAATATT CTTT

>943826H1

ADRENOT03

INCYTE

 ${\tt TATGGTGCTAGAGTTAGATTAATCTGCATTTTAAAAAACTGAATTGGAATAGAATTGGTAAGTTGCAAAGACTTTTTGAAAAAAATTAAATTATCATATCTTCCATTCCTGTTATTGGAGATGAAAATAAAAAGCAACTTATG$

>3451273H1

UTRSNON03

INCYTE

TTTTTTTTTTTGCTCATATTCACATATGTAAACCNGAACATTCTATGTACNACAAACCTGGTTTTTAAAAAGGAACTATG TTGCTATGAATTAAACTTGTGTCGTGCTGATAGGACAGACTGGATTTTTCANATTTCTTANTAANNTTTCTGCCATTTAG AAGA

>1402278H1

LATRTUT02

INCYTE

>4361191H1

SKIRNOT01

INCYTE

GCAAAGACTTTTTGANAATNATTAANTTATCATATCTTCCATTCCTGTTATNGGAGATGANAATAAAAAGCAACTTATGA AAGTAGACATTCAGATCCAGCCATTACTAACCTATTCCTTTTTTTGGGGAAATCTGAGCCTAGCNCAGAAAAACATAAAGC ACCTTGAAAAAGACTTGGCAGCTTCCTGATAAAGCGTGCTGTGCTGTGCAGTAGGAACACATCCNATTTATTGTGNTGTN GNGGTTTTATGATC

>1307017H1

PLACNOT02

INCYTE

>5032225H1

HEARFET03

INCYTE

>3732621H1

SMCCNOS01

INCYTE

ANAGATGATATAAAANATTGTTGCTCTGACAANNATACATGTATTTCATTCTCGTATGGTGCTAGAGTTAGATTAATCTGCNTTTTAAAAAAACTGANTTGGAATAGANTTGGTAAGTTGCAAAGNCNTTTGAAAAATNATTAAGTTATCAGAT

>3530274H1

BLADNOT09

INCYTE

>3530249H1

BLADNOT09

INCYTE

F16.16.

VEGFE1	AAAATGTATGGATACAACTTAC	_
VEGFE2	GTTGATCA A A CATTER OF THE	22
VEGFE3	GTTTGATGAAAGATTTGGGCTTG	23
	TTTCTAAAGGAAATCAAATTAG	22
VEGFE4	GATAAGATTTGTATCTGATG	20
VEGFE5	GATGTCTCCTCTTTCAG	
VEGFE6	GCA CA A CTCCTA A CTCC	17
VEGFE7	GCACAACTCCTAATTCTG	18
	AGCACCTGATTCCGTTGC	19
VEGFE8	TAGTACATAGAATGTTCTGG	• •
VEGFE9	AAGAGACATACTTCTGTAC	20
VEGFE10	CCACCTACATACTICIGIAC	19
· EGILIO	CCAGGTACAATAAGTGAACTG	21

F16.17.

N 	L	L L	_		E	E	v 		R	L 	Y 	_												L
ΑA	CCT	1 TCT	AA	C.	AG <i>P</i>	\GG!	4GG	T A	AG.	ATT	ATA	.C					TGA ACT							
ΤΊ	'GGA	AGA											LAA	MC.	AIA	ıG	ACI.	ACI	IA	ıA	AAA	100.	MAG	AC
т	D	+ T		I	F	W	₽		G	С	L						I 							R
			CC GG	AG 'A' TC	CTC TTI GAC	GT(CAC rgg GTG	CT C C	CG' AG'	TAA GTT ATT	'GTC 'GAA	CI T					ATA TAT					GAT"	TTC	
 E	C	+ Q		С	V	P		S	K	V	 G						C	C	: :	L 	H - - -	N	C	: N
		TGT	CA GT	A' GG. T.	TGC TGT ACC	GTTA CAAC ACAC	AAA CCC. TTT GGG	CC A A GC T T	GCT AGC. CGA CCG	GTG AAA CAC TTT	GTT CAC CAA	GC A CC	CTI	'GA	CAC	G	CTG	AAC	AG	AG	GT	GT _. T	'AAC	
			- 	т	K S	 К	 Ү Т		H D	 E V	 V A	. _ I	Ĺ	Q	L	F	- -	P	K	Т	(R
 D	с	- Т	1		- -	- - -			- - -	- 												 V	s	 G
		rgca ACGT	.CA 'GT	CT A GA	AAA AT(TT)	CAC' PTT'	ATA ICA IAT AGT		CAC CGA GTG GCT	GAG CGT CTC GCA	GTC CGC	:C G G. 3G					GAC CTG							
			[_	_	_				_		_	_	- م	_		_	_				_	_	_

FIG. 17(CONTINUED).

						_		-					-		- - -	 	. . .	 			
> I		+ A	_		P				. L										H 		
		I	1	T 	T 	s s 	T S	M 5 S	R C	s 	v 	7								_	
ΓA	AGC	321 CCGC GGCG	ΑT	CT(C <i>I</i> GA(GGA ACC	GCA ACC	CC AGC GG	ATC AC	AGG CTC	AGT TTG TCA	G 1 CC	ACT									
S	I	+ L		N	L	S	С	L	V . L	Q											
		+ P	1	P	E	L	С	S	 S A	. V		A									
CI	CCA	401 ATCC	${f T}{f T}$	A.A GTC	ATC CTC	TCA GAC	GTT AC	GTC	ACG	CTT(CA C (
		+	2	C	3	P	F	I	F	R	I	,	(S	Α					···	
		481 AGAA TCTŤ	TT	AC TCC	GGA CTG	GTT GAA	GTG AG	CA TAG	AAG	GCT(TCC'	CT T 2	AAA:				rct					
		561 TAA TT 4	AT	GT AAA	TG CT	TAI CTC	TAA CT	AT CCG	GAT	TCA(CC C :	rg T(CT								

641 AGCTAGTTTC AGAGTTACCA TGTACGTATT CCACTAGCTG GGTTCTGTAT TTCAGTTCTT TCGATACGGC TTAGGGTAAT

TCGATCAAAG TCTCAATGGT ACATGCATAA GGTGATCGAC CCAAGACATA AAGTCAAGAA AGCTATGCCG AATCCCATTA

- 721 GTCAGTACAG GAAAAAACT GTGCAAGTGA GCACCTGATT CCGTTGCCTT
 GGCTTAACTC TAAAGCTCCA TGTCCTGGGC
 CAGTCATGTC CTTTTTTTGA CACGTTCACT CGTGGACTAA GGCAACGGAA
 CCGAATTGAG ATTTCGAGGT ACAGGACCCG
 - 801 CTAAAATCGT ATAAAATCTG GA GATTTTAGCA TATTTTAGAC CT

FIG. 18.

							•													
N	L	+ L		E	E	v	R	L	Y										L	L
		1 TCT	AC AA C TC	GAA CAGA CCTT	ATC GGA TAG	AA GGT TT	ATTA AAG TAAT TTC	GGA ATT CCT	AAT. 'ATA' TTA'	GAT C CTA			СТ	'GAT	'GAA	ATA	r T	rtc(CTT(CTG
Т	D		I	F	W	P	R G	С	L											
AA TT	CCG.	81 ATA: TAT:	AG CC A TC GG T 2	SCTG ATTT GAC	CAC TCT GTG AGA	AC GGC TG CCG	CTCG CAG GAGC GTC	TAA GTT ATT CAA	CTT GTC GAA CAG	CTO T GAO A									rtt(
E	С		С	V	Р	S	R K	V												
ΑT	GAA' CTT	161 TGT(ACA(CC CA A GG GT T	TGG TGT ACC	TTA GTC AAT	AA CCA TT GGT	CGCT AGC GCGA TCG	GTG AAA CAC TTT	GTG GTT GTC CAC	- GG <i>I</i> A CCI	ACT TGA	GTG(C C	TGT ACA	TGT ACA	CT(C CI	ACA <i>i</i> rgt:	TTA AAT	GCA CGT
 G		+:	- 3 Т К	K S	 K L	 Y T	 Н D	 E V	 V A	- L	Q	L	R	P	, k		r ·	G	V	R
		+	 1				т											V	S	
	ATT	GCA(CA A GA	OTA.	ACT TTT	CAC AT	CCAC CGA GGTG	CGT CTC	GGC(C GA#								, GGT(GTC?	4GG
CC'	TAA(CGT	GT T	."TAG	ΤGA	GTG	GCT	GCA	CCG	3										

30/54 FIG. 18 (CONTINUED 1). +3 L E H H E E C D C V C R G S T G G +2 V Q R E H R R I A A S P P A A L A]-----+1 WST MRSV TVC AEG AQED S R I T T S S S C 321 CTGGAGCACC ATGAGGAGTG TGACTGTGTG TGCAGAGGGA GCACAGGAGG ATAGCCGCAT CACCACCAGC AGCTCTTGCC GACCTCGTGG TACTCCTCAC ACTGACACAC ACGTCTCCCT CGTGTCCTCC TATCGGCGTA GTGGTGGTCG TCGAGAACGG +2 Q S C A V Q W L I L L E N V C V I SILNLSCLLQ +1 P E L C S A V A D S I R E R M R Y 401 CAGAGCTGTG CAGTGCAGTG GCTGATTCTA TTAGAGAACG TATGCGTTAT CTCCATCCTT AATCTCAGTT GTTTGCTTCA GTCTCGACAC GTCACGTCAC CGACTAAGAT AATCTCTTGC ATACGCAATA GAGGTAGGAA TTAGAGTCAA CAAACGAAGT +2 G P F I F R I Y S A F 481 AGGACCTTC ATCTTCAGGA TTTACAGTGC ATTCTGAAAG AGGAGACATC AAACAGAATT AGGAGTTGTG CAACAGCTCT TCCTGGAAAG TAGAAGTCCT AAATGTCACG TAAGACTTTC TCCTCTGTAG TTTGTCTTAA TCCTCAACAC GTTGTCGAGA 561 TTTGAGAGGA GGCCTAAAGG ACAGGAGAAA AGGTCTTCAA TCGTGGAAAG AAAATTAAAT GTTGTATTAA ATAGATCACC AAACTCTCCT CCGGATTTCC TGTCCTCTTT TCCAGAAGTT AGCACCTTTC TTTTAATTTA CAACATAATT TATCTAGTGG 641 AGCTAGTTTC AGAGTTACCA TGTACGTATT CCACTAGCTG GGTTCTGTAT TTCAGTTCTT TCGATACGGC TTAGGGTAAT TCGATCAAAG TCTCAATGGT ACATGCATAA GGTGATCGAC CCAAGACATA AAGTCAAGAA AGCTATGCCG AATCCCATTA

721 GTCAGTACAG GAAAAAACT GTGCAAGTGA GCACCTGATT CCGTTGCCTT

GGCTTAACTC TAAAGCTCCA TGTCCTGGGC

31/54 FIG. 18(continued 2)

CAGTCATGTC CTTTTTTGA CACGTTCACT CGTGGACTAA GGCAACGGAA CCGAATTGAG ATTTCGAGGT ACAGGACCCG

801 CTAAAATCGT ATAAAATCTG GATTTTTTN TTTTTTTTTG CGCATATTCA CATATGTAAA CCAGAACATT CTATGTACTA

GATTTTAGCA TATTTTAGAC CTAAAAAAAA AAAAAAAAAC GCGTATAAGT GTATACATTT GGTCTTGTAA GATACATGAT

881 CAAACCTGGT TTTTAAAAAG GAACTATGTT GCTATGAATT AAACTTGTGT CGTGCTGATA GGACAGACTG GATTTTTCAT

GTTTGGACCA AAAATTTTTC CTTGATACAA CGATACTTAA TTTGAACACA GCACGACTAT CCTGTCTGAC CTAAAAAGTA

-3 <------

961 ATTTCTTATT AAAATTTCTG CCATTTAGAA GAAGAGAACT ACATTCATGG
TTTGGAAGAG ATAAACCTGA AAAGAAGAGT

TAAAGAATAA TTTTAAAGAC GGTAAATCTT CTTCTCTTGA TGTAAGTACC AAACCTTCTC TATTTGGACT TTTCTTCTCA

- -3 -----
- 1041 GGCCTTATCT TCACTTTATC GATAAGTCAG TTTATTTGTT TCATTGTGTA CATTTTATA TTCTCCTTTT GACATTATAA

CCGGAATAGA AGTGAAATAG CTATTCAGTC AAATAAACAA AGTAACACAT GTAAAAATAT AAGAGGAAAA CTGTAATATT

- -3 -----
- 1121 CTGTTGGCTT TTCTAATCTT GTTAAATATA TCTATTTTTA CCAAAGGTAT TTAATATTCT TTTTTATGAC AACTTAGATC
 GACAACCGAA AAGATTAGAA CAATTTATAT AGATAAAAAT GGTTTCCATA
- GACAACCGAA AAGATTAGAA CAATTTATAT AGATAAAAAT GGTTTCCATA
 AATTATAAGA AAAAATACTG TTGAATCTAG
- 1201 AACTATTTT AGCTTGGTAA ATTTTTCTAA ACACAATTGT TATAGCCAGA GGAACAAAGA TGATATAAAA TATTGTTGCT

TTGATAAAA TCGAACCATT TAAAAAGATT TGTGTTAACA ATATCGGTCT CCTTGTTTCT ACTATATTTT ATAACAACGA

1281 CTGACAAAA TACATGTATT TCATTCTCGT ATGGTGCTAG AGTTAGATTA ATCTGCATTT TAAAAAACTG AATTGGAATA

GACTGTTTT ATGTACATAA AGTAAGAGCA TACCACGATC TCAATCTAAT TAGACGTAAA ATTTTTTGAC TTAACCTTAT

1361 GAATTGGTAA GTTGCAAAGA CTTTTTGAAA ATAATTAAAT TATCATATCT TCCATTCCTG TTATTGGAGA TGAAAATAAA

CTTAACCATT CAACGTTTCT GAAAAACTTT TATTAATTTA ATAGTATAGA AGGTAAGGAC AATAACCTCT ACTTTTATTT

1441 AAGCAACTTA TGAAAGTAGA CATTCAGATC CAGCCATTAC TAACCTATTC CTTTTTTGGG GAAATCTGAG CCTAGCTCAG

TTCGTTGAAT ACTTTCATCT GTAAGTCTAG GTCGGTAATG ATTGGATAAG GAAAAAACCC CTTTAGACTC GGATCGAGTC

FIG. 18 (CONTINUED 3).

- 1521 AAAAACATAA AGCACCTTGA AAAAGACTTG GCAGCTTCCT GATAAAGCGT GCTGTGCTGT GCAGTAGGAA CACATCCTAT
- 1601 TTATTGTGAT GTTGTGGTTT TATTATCTTA AACTCTGTTC CATACACTTG
 TATAAATACA TGGATATTT TATGTACAGA
- AATAACACTA CAACACCAAA ATAATAGAAT TTGAGACAAG GTATGTGAAC ATATTTATGT ACCTATAAAA ATACATGTCT
 - 1681 AGTATGTCTC TTAACCAGTT CACTTATTGT ACCTGG
 TCATACAGAG AATTGGTCAA GTGAATAACA TGGACC

FIG. 19. DNA and polypeptide sequence used for mammalian cell expression 33/54

- $^{+1}$ m s 1 f g l l l l t s a l a g q r l GGATCCAAAA TGAGCCTCTT CGGGCTTCTC CTGCTGACAT CTGCCCTGGC CGGCCAGAGA
- +1 q g t q a E S N L S S K F Q F S S N K E 61 CAGGGGACTC AGGCGGAATC CAACCTGAGT AGTAAATTCC AGTTTTCCAG CAACAAGGAA
- +1 Q N G V Q D P Q H E R I I T V S T N G S
 121 CAGAACGAG TACAAGATCC TCAGCATGAG AGAATTATTA CTGTGTCTAC TAATGGAAGT
- +1 I H S P R F P H T Y P R N T V L V W R L
 181 ATTCACAGCC CAAGGTTTCC TCATACTTAT CCAAGAAATA CGGTCTTGGT ATGGAGATTA
- +1 V A V E E N V W I Q L T F D E R F G L E
 241 GTAGCAGTAG AGGAAAATGT ATGGATACAA CTTACGTTTG ATGAAAGATT TGGGCTTGAA
- +1 D P E D D I C K Y D F V E V E E P S D G
 301 GACCCAGAAG ATGACATATG CAAGTATGAT TTTGTAGAAG TTGAGGAACC CAGTGATGGA
- +1 T I L G R W C G S G T V P G K Q I S K G 361 ACTATATAG GGCGCTGGTG TGGTTCTGGT ACTGTACCAG GAAAACAGAT TTCTAAAGGA
- +1 N Q I R I R F V S D E Y F P S E P G F C 421 AATCAAATTA GGATAAGATT TGTATCTGAT GAATATTTTC CTTCTGAACC AGGGTTCTGC
- +1 I H Y N I V M P Q F T E A V S'P S V L P 481 ATCCACTACA ACATTGTCAT GCCACAATTC ACAGAAGCTG TGAGTCCTTC AGTGCTACCC
- +1 P S A L P L D L L N N A I T A F S T L E 541 CCTTCAGCTT TGCCACTGGA CCTGCTTAAT AATGCTATAA CTGCCTTTAG TACCTTGGAA
- +1 D L I R Y L E P E R W Q L D L E D L Y R 601 GACCTTATTC GATATCTTGA ACCAGAGAGA TGGCASTTGG ACTTASAAGA TCTATATAGG
- +1 P T W Q L L G K A F V F G R K S R V V D 661 CCAACTTGGC AACTTCTTGG CAAGGCTTTT GTTTTTTGGAA GAARATCCAG AGTGGTGGAT
- +1 L N L L T E E V R L Y S C T F R N F S V
 721 CTGAACCTTC TAACAGAGGA GGTAAGATTA TACAGCTGCA CACCTCGTAA CTTCTCAGTG
- +1 S I R E E L K R T D T I F W P G C L L V
 781 TCCATAAGGG AAGAACTAAA GAGAACCGAT ACCATTTTCT GGCCAGGTTG TCTCCTGGTT
- +1 K R C G G N C A C C L H N C N E C Q C V 841 AAACGCTGTG GTGGGAACTG TGCCTGTTGT CTCCACAATT GCAATGAATG TCAATGTGTC
- +1 P S K V T K K Y H E V L Q L E P K T G V 901 CCAAGCAAAG TTACTAAAAA ATACCACGAG GTCCTTCAGT TGAGACCAAA GACCGGTGTC
- +1 R G L H K S L T D V A L E H H E E C D C 961 AGGGGATTGC ACARATCACT CACCGACGTG GCCCTGGAGG ACCATGAGGA GTGTGACTGT
- +1 V C R G S T G G <u>S R G P F E G K P I P N</u>
 1021 GTGTGCAGAG GGAGCACAGG AGGATCTAGA GGGCCCTTIG AAGGTAAGCC TATCCCTAAC
- +1 P L L G L D S T R T G H H H H H 1081 CCTCTCCTCG GTCTCGATTC TACGCGTACC GGTCATCATC ACCATCACCA TTGA

F/G. 20. DNA and polypeptide sequence used for baculovirus/insect cell expression

- 1 GAATTCAAAG GCCTGTATTT TACTGTTTTC GTAACAGTTT TGTAATAAAA AAACCTATAA
- +3 m k f l v n v a l v f m v v y i s y i 61 ATATGAAATT CTTAGTCAAC GTTGCCCTTG TTTTTATGGT CGTATACATT TCTTACATCT
- +3 Y a D P E S H H H H H E S N L S S K F
 121 ATGCGGATCC CGAGTCTCAC CATCACCACC ATCATGAATC CAACCTGAGT AGTAAATTCC
- +3 Q F S S N K E Q N G V Q D P Q H E R I I 181 AGTTTCCAG CAACAAGGAA CAGAACGGAG TACAAGATCC TCAGCATGAG AGAATTATTA
- +3 T V S T N G S I H S P R F P H T Y P R N
 241 CTGTGTCTAC TAATGGAAGT ATTCACAGCC CAAGGTTTCC TCATACTTAT CCAAGAAATA
- +3 T V L V W R L V A V E E N V W I Q L T F
 301 CGGTCTTGGT ATCGAGATTA GTAGCAGTAG AGGAAAATGT ATGGATACAA CTTACGTTTG
- +3 D E R F G L E D P E D D I C K Y D F V E 361 ATGAAAGATT TGGGCTTGAA GACCCAGAAG ATGACATATG CAAGTATGAT TTTGTAGAAG
- +3 V E E P S D G T I L G R W C G S G T V P
 421 TTGAGGAACC CAGTGATGGA ACTATATTAG GGCGCTGGTG TGGTTCTGGT ACTGTACCAG
- +3 G K Q I S K G N Q I R I R F V S D E Y F 481 GAAAACAGAT TTCTAAAGGA AATCAAATTA GGATAAGATT TGTATCTGAT GAATATTTTC
- +3 P S E P G F C I H Y N I V M P Q F T E A 541 CTTCTGAACC AGGGTTCTGC ATCCACTACA ACATTGTCAT GCCACAATTC ACAGAAGCTG
- +3 V S P S V L P P S A L P L D L L N N A I 601 TGAGTCCTTC AGIGCTACCC CCTTCAGCTT TGCCACTGGA CCTGCTTAAT AATGCTATAA
- +3 T A F S T L E D L I R Y L E P E R W Q L 661 CTGCCTTAG TACCTTGGAA GACCTTATTC GATATCTTGA ACCAGAGAGA TGGCAGTTGG
- +3 D L E D L Y R P T W Q L L G K A F V F G
 721 ACTTAGAAGA TCTATATAGG CCAACTTGGC AACTTCTTGG CAAGGCTTTT GTTTTTGGAA
- +3 R K S R V V D L N L L T E E V R L Y S C 781 GAAAATCCAG AGTGGTGGAT CTGAACCTTC TAACAGAGGA GGTAAGATTA TACAGCTGCA
- +3 T P R N F S V S I R E E L K R T D T I F 841 CACCTCGTAA CTTCTCAGTG TCCATAAGGG AAGAACTAAA GAGAACCGAT ACCATTTTCT
- +3 W P G C L L V K R C G G N C A C C L H N 901 GGCCAGGTTG TCTCTTGGTT AAACGCTGTG GTGGGAACTG TGCCTGTTGT CTCCACAATT
- +3 C N E C Q C V P S K V T K K Y H E V L Q
 961 GCAATGAATG TCAATGTGTC CCAAGCAAAG TTACTAAAAA ATACCACGAG GTCCTTCAGT
- +3 L R P K T G V R G L H K S L T D V A L E 1021 TGAGACCAAA GACCGGTGTC AGGGGATTGC ACAAATCACT CACCGACGTG GCCCTGGAGC
- +3 H H E E S D C V C R G S T G G
 1081 ACCATGAGA GIGIGACTC TGTGCAGAG GGAGACACGAG AGATAGCTC TAGA

FIG. 21. DNA and polypeptide sequence used for E.coli expression

35/54

- +3 OTNSSSNNNNNNNNNLGI
- 1 CGCAGACTAA TTCGAGCTCG AACAACAACA ACAATAACAA TAACAACAAC CTCGGGATCG
- +3 E G R I S E F E S N L S S K F Q F S S N 61 AGGGAAGGAT TTCAGAATTC GAATCCAACC TGAGTAGTAA ATTCCAGTTT TCCAGCAACA
- +3 K E Q N G V Q D P Q H E R I I T V S T N
- 121 AGGAACAGAA CGGAGTACAA GATCCTCAGC ATGAGAGAAT TATTACTGTG TCTACTAATG
- +3 G S I H S P R F P H T Y P R N T V L V W
 181 GAAGTATCA CAGCCCAAGG TTTCCTCATA CTTATCCAAG AAATACGGTC TTGGTATGGA
- +3 R L V A V E E N V W I Q L T F D E R F G
 241 GATTAGTAGC AGTAGAGGAA AATGTATGGA TACAACTTAC GTTTGATGAA AGATTTGGGC
- +3 L E D P E D D I C K Y D F V E V E E P S
 301 TTGAAGACCC AGAAGATGAC ATATGCAAGT ATGATTTTGT AGAAGTTGAG GAACCCAGTG
- +3 D G T I L G R W C G S G T V P G K Q I S
- 361 ATGGAACTAT ATTAGGGCGC TGGTGTGGTT CTGGTACTGT ACCAGGAAAA CAGATTTCTA
- +3 K G N Q I R I R F V S D E Y F P S E P G 421 AAGGAAATCA AATTAGGATA AGATTTGTAT CTGATGAATA TTTTCCTTCT GAACCAGGGT
- +3 F C I H Y N I V M P Q F T E A V S P S V
 481 TCTGCATCCA CTACAACATT GTCATGCCAC AATTCACAGA AGCTGTGAGT CCTTCAGTGC
- +3 L P P S A L P L D L L N N A I T A F S T 541 TACCCCCTTC AGCTTGCCA CTGGACCTGC TTAATAATGC TATAACTGCC TTTAGTACCT
- +3 L E D L I R Y L E P E R W Q L D L E D L 601 TGGAAGACCT TATTCGATAT CTTGAACCAG AGAGATGGCA GTTGGACTTA GAAGATCTAT
- +3 Y R P T W Q L L G K A F V F G R K S R V 661 ATAGGCCAAC TTGGCAACTT CTTGGCAAGG CTTTTGTTTT TGGAAGAAAA TCCAGAGTGG
- +3 V D L N L L T E E V R L Y S C T P R N F
 721 TGGATCTGAA CCTTCTAACA GAGGAGGTAA GATTATACAG CTGCACACCT CGTAACTTCT
- +3 S V S I R E E L K R T D T I F W P G C L
 781 CAGTGTCCAT AAGGGAAGAA CTAAAGAGAA CCGATACCAT TTTCTGGCCA GGTTGTCTCC
- +3 L V K R C G G N C A C C L H N C N E C Q 841 TGGTTAAACG CTGTGGTGGG AACTGTGCCT GTTGTCTCCA CAATTGCAAT GAATGTCAAT
- +3 C V P S K V T K K Y H E V L Q L R P K T 901 GTGTCCCAAG CAAAGTTACT AAAAAATACC ACGAGGTCCT TCAGTTGAGA CCAAAGACCG
- +3 G V R G L H K S L T D V A L E H H E E C 961 GTGTCAGGG ATTGCACAAA TCACTCACCG AGGTGGCCCT GGAGGACCAT GAGGAGTGTG
- +3 D C V C R G S T G G H H H H H H H
- 1021 ACTGTGTGTG CAGAGGGAGC ACAGGAGGAC ATCATCACCA TCACCATTGA TCTAGAGTCG
- 1081 ACCTGTAGGC AAGCTT

FIG. 22. Disulphide-linked dimerisation of VEGF-X

(A) Mammalian cell expression

(B) E.coli expression

FIG. 23. Glycosylation of VEGF-X

kD

Full-length product

C-terminal proteolysis fragment

FIG. 24.

DNA and polypeptide sequence used for E.coli expression of the PDGF-like domain

- +3 MRGSHHHHHGMASM
- 1 AAGGAGATAT ACATATGCGG GGTTCTCATC ATCATCATCA TCATGGTATG GCTAGCATGA
- +3 T G G O O M G R D L Y D D D D K D P G R 61 CTGGTGGACA GCAAATGGGT CGGGATCTGT ACGACGATGA CGATAAGGAT CCGGGAAGAA
- +3 K S R V V D L N L L T E E V R L Y S C T
- 121 AATCCAGAGT GGTGGATCTG AACCTTCTAA CAGAGGAGGT AAGATTATAC AGCTGCACAC
- +3 P R N F S V S I R E E L K R T D T I F W 181 CTCGTAACTT CTCAGTGTCC ATAAGGGAAG AACTAAAGAG AACCGATACC ATTTCTGGC
- +3 P G C L L V K R C G G N C A C C L H N C 241 CAGGTTGTCT CCTGGTTAAA CGCTGTGGTG GGAACTGTGC CTGTTGTCTC CACAATTGCA
- +3 N E C Q C V P S K V T K K Y H E V L Q L ...
 301 ATGAATGTCA ATGTGTCCCA AGCAAAGTTA CTAAAAAATA CCACGAGGTC CTTCAGTTGA
- +3 R P K T G V R G L H K S L T D V A L E H
 361 GACCAAAGAC CGGTGTCAGG GGATTGCACA AATCACTCAC CGACGTGGCC CTGGAGCACC
- +3 H E E C D C V C R G S T G G
- 421 ATGAGGAGTG TGACTGTGTG TGCAGAGGGA GCACAGGAGG ATAATGAATT CGAAGCTTGA
- 491 TCCGGCTGCT AACAAAGCCC

F/G. 25. Expression of PDGF domain in E.coli

1 2 3

FIG. 26.

DNA and polypeptide sequence used for E.coli expression of the CUB-like domain

MAMDIGINS DPESHHHHHH 1 GGCGATGGCC ATGGATATCG GAATTAATTC GGATCCGGAG TCTCACCATC ACCACCATCA ESN LSSK FQF SSN KEQN G V Q 61 TGAATCCAAC CTGAGTAGTA AATTCCAGTT TTCCAGCAAC AAGGAACAGA ACGGAGTACA +2 D P Q H E R I I T V S T N G S I H S P R 121 AGATCCTCAG CATGAGAGAA TTATTACTGT GTCTACTAAT GGAAGTATTC ACAGCCCAAG +2 F P H T Y P R N T V L V W R L V A 181 GTTTCCTCAT ACTTATCCAA GAAATACGGT CTTGGTATGG AGATTAGTAG CAGTAGACGA NVW IQLT FDE RFG LEDP EDD 241 AAATGTATGG ATACAACTTA CGTTTGATGA AAGATTTGGG CTTGAAGACC CAGAAGATGA +2 I C K Y D F V E V E E P S D G T I L G R 301 CATATGCAAG TATGATTTTG TAGAAGTTGA GGAACCCAGT GATGGAACTA TATTAGGGCG +2 W C G S G T V P G K Q I S K G N Q I R I 361 CTGGTGTGGT TCTGGTACTG TACCAGGAAA ACAGATTTCT AAAGGAAATC AAATTAGGAT R F V S D E Y F P S E P G F C I H Y N I 421 AAGATTTGTA TOTGATGAAT ATTTTCCTTC TGAACCAGGG TTCTGCATCC ACTACAACAT +2 V M P Q F T E A V 481 TGTCATGCCA CAATTCACAG AAGCTGTGTA GTCGAGCTCC GTCGACAAGC TTGCGGCCGC

541 ACTCGAGCAC

F16. 27. Expression of the CUB domain in E.coli

FIG. 28. The Effect of Truncated VEGF-X (CUB domain) on HUVEC Proliferation.

13/5A FIG. 28(continued 1).

(8)
Human Umbilical Vein Endothelial Cells (24-hourstorving Followed by one-day-treatment)

F1G. 28(continued 2).

(C)
The effect of VEGF-A₁₆₅ and VEGF-X CUB domain
on the proliferation of HUVEC (two-day-treatment).

30 cyc. 35 cyc. Sejasoja Ajeno

> () (下) (末) 333 9.5

Sold Control

Lolds.

elus sela

4.4

95.

Tissue distribution of mRNA

(A) - Normal tissues

FG, 29 (continue D). (B)-Tumour tissue and cell lines

F1G.30.

Partial intron/exon structure of the VEGF-X gene

(A) - Genomic DNA sequences of 2 exons determined by sequencing

aaagccagtcatagacattcgttqattttttaaaagtggcttactcttattcccttttcagGTCCTTCAGTTGAGACCAAAGACCGGT GTCAGGGGATTGCACAAATCACTCACCGACGTGGCCCTGGAGCACCATGAGGGGTGTGACTGTGTGCAGAGGGAGCACAGGAGG ATAGCCGCATCACCACCAGCAGCTCTTGCCCAGAGCTGTGCAGTGCAGTGCTGATTCTATTAGAGAACGTATGCGTTATCTCCAT CCTTAATCTCAGTTGTTTGCTTCAAGGACCTTTCATCTTCAGGATTTACAGTGCATTCTGAAAGAGGAGACATCAAACAGAATTAG AAATAGATCACCAGCTAGTTTCAGAGTTACCATGTACGTATTCCACTAGCTGGGTTCTGTATTTCAGTTCTTTCGATACGGCTTAG GGTAATGTCAGTACAGGAAAAAAACTGTGCAAGTGAGCACCTGATTCCGTTGCCTTGGCTTAACTCTAAAGCTCCATGTCCTGGGC AATTTCTGCCATTTAGAAGAAGAACTACATTCATGGTTTGGAAGAGATAAACCTGAAAAGAAGAGTGGCCTTATCTTCACTTTA TCGATAAGTCAGTTTATTTGTTTCATTGTGTACATTTTTATATTCTCCTTTTGACATTATAACTGTTGGCTTTTCTAATCTTGTTA AATATATCTATTTTTACCAAAGGTATTTAATATTCTTTTTTATGACAACTTAGATCAACTATTTTTAGCTTGGTAAATTTTTCTAA ACACAATTGTTATAGCCAGAGGAACAAAGATGATATAAAATATTGTTGCTCTGACAAAAATACATGTATTTCATTCTCGTATGGTG CTAGAGTTAGATTAATCTGCATTTTAAAAAACTGAATTGGAATAGAATTGGTAAGTTGCAAAGACTTTTTGAAAATAATTAAATTA TCATATCTTCCATTCCTGTTATTGGAGATGAAAATAAAAAGCAACTTATGAAAGTAGACATTCAGATCCAGCCATTACTAACCTAT TCCTTTTTTGGGGAAATCTGAGCCTAGCTCAGAAAAACATAAAGCACCTTGAAAAAAGACTTGGCAGCTTCCTGATAAAGCGTGCTG TGCTGTGCAGTAGGAACACCTCTATTTATTGTGATGTTGTGGTTTTATTATCTTAAACTCTGTTCCATACACTTGTATAAATACA TGGATATTTTTATGTACAGAAGTATGTCTCTTAACCAGTTCACTTATTGTACTCTGGCAATTTAAAAGAAAATCAGTAAAATATTT TGCTTGTAAAATGCTTAATATCGTGCCTAGGTTATGTGGTGACTATTTGAATCAAAAATGTATTGAATCATCAAATAAAAGAATGT GGCTATTTTGGGGAGAAAATTatgtgtgtgtgtgtgtctcaagatttatttcttggactctgagaaaatgaaagataaa

F16.30(CONTINUED 1). 48/54

(B) - Location of splice sites within the cDNA sequence

- 1 GAATTCGCCC TITTGTTTAA ACCTTGGGAA CTGGTTCAGG TCCAGGTTTT GCTTTGATCC
- 61 TTTTCAAAAA CTGGAGACAC AGAAGAGGGC TCTAGGAAAA AGTTTTGGAT GGGATTATGT
- 121 GGAAACTACC CTGCGATTCT CTGCTGCCAG AGCAGGCTCG GCGCTTCCAC CCCAGTGCAG
- 181 CCTTCCCCTG GCGGTGGTGA AAGAGACTCG GGAGTCGCTG CTTCCAAAGT GCCCGCCGTG
- +3 M S L F G L L L L T S 241 AGTGAGCTCT CACCCCAGTC AGCCAAATGA GCCTCTTCGG GCTTCTCCTG CTGACATCTG
- +3 A L A G Q R Q G T Q A E S N L S S K F Q
 301 CCCTGGCCGG CCAGAGACAG GGGACTCAGG CGGAATCCAA CCTGAGTAGT AAATTCCAGT
- +3 F S S N K E Q N G V Q D P Q H E R I I T 361 TTTCCAGCAA CAAGGAACAG AACGGAGTAC AAGATCCTCA GCATGAGAGA ATTATTACTG
- +3 V S T N G S I H S P R F P H T Y P R N T 421 TGTCTACTAA TGGAAGTATT CACAGCCCAA GGTTTCCTCA TACTTATCCA AGAAATACGG
- +3 V L V W R L V A V E E N V W I Q L T F D 481 TCTTGGTATG GAGATTAGTA GCAGTAGAGG AAAATGTATG GATACAACTT ACGTTTGATG
- +3 E R F G L E D P E D D I C K Y D F V E V 541 AAAGATTTGG GCTTGAAGAC CCAGAAGATG ACATATGCAA GTATGATTTT GTAGAAGTTG
- +3 E P S D G T I L G R W C G S G T V P G
 601 AGGAACCCAG TGATGGAACT ATATTAGGGC GCTGGTGTGG TTCTGGTACT GTACCAGGAA
- +3 K Q I S K G N Q I R I R F V S D E Y F P 661 AACAGATTC TAAAGGAAAT CAAATTAGGA TAAGATTTGT ATCTGATGAA TATTTTCCTT
 - +3 S E P G F C I H Y N I V M P Q F T E A V
 721 CTGAACCAGG GTTCTGCATC CACTACAACA TTGTCATGCC ACAATTCACA GAAGCTGTGA
 - +3 S P S V L P P S A L P L D L L N N A I T 781 GTCCTTCAGT GCTACCCCCT TCAGCTTTGC CACTGGACCT GCTTAATAAT GCTATAACTG
 - +3 A F S T L E D L I R Y L E P E R W Q L D 841 CCTTTAGTAC CTTGGAAGAC CTTATTCGAT ATCTTGAACC AGAGAGATGG CAGTTGGACT
- +3 L E D L Y R P T W Q L L G K A F V F G R 901 TAGAAGATCT ATATAGGCCA ACTTGGCAAC TTCTTGGCAA GGCTTTTGTT TTTGGAAGAA
- +3 P R N F S V S I R E E L K R T D T I F W 1021 CTCGTAACTT CTCAGTGTCC ATAAGGGAAG AACTAAAGAG AACCGATACC ATTTTCTGGC
- +3 P G C L L V K \pm C G G N C A C C L \pm N C 1081 CAGGTTGTCT CCTGGTTAAA CGCTGTGGTG GGAACTGTGC CTGTTGTCTC CACAATTGCA
- +3 N E C Q C V P S K V T K K Y H E V L Q L

FIG. 30 (CONTINUED 2). +3 R P K T G V R G L H K S L T D V A L E H 1201 GACCAAAGAC CGGTGTCAGG GGATTGCACA AATCACTCAC CGACGTGGCC CTGGAGCACC +3 H E E C D C V C R G S T G G 1261 ATGAGGAGTG TGACTGTGTG TGCAGAGGGA GCACAGGAGG ATAGCCGCAT CACCACCAGC 1321 AGCTCTTGCC CACAGCTGTG CAGTGCAGTG GCTGATTCTA TTAGAGAACG TATGCGTTAT 1381 CTCCATCCTT AATCTCAGTT GTTTGCTTCA AGGACCTTTC ATCTTCAGGA TTTACAGTGC 1441 ATTCTGAAAG AGGAGACATC AAACAGAATT AGGAGTTGTG CAACAGCTCT TTTGAGAGGA 1501 GGCCTAAAGG ACAGGAGAAA AGGTCTTCAA TCGTGGAAAG AAAATTAAAT GTTGTATTAA 1561 ATAGATCACC AGCTAGTTTC AGAGTTACCA TGTACGTATT CCACTAGCTG GGTTCTGTAT 1621 TTCAGTTCTT TCCATACGGC TTAGGGTAAT GTCAGTACAG GAAAAAAACT GTGCAAGTGA 1681 GCACCTGATT CCGTTGCCTT GCTTAACTCT AAAGCTCCAT GTCCTGGGCC TAAAATCGTA 1741 TAAAATCTGG ATTTTTTTT TTTTTTTTG CTCATATTCA CATATGTAAA CCAGAACATT 1801 CTATGTACTA CAAACCTGGT TTTTAAAAAG GAACTATGTT GCTATGAATT AAACTTGTGT 1861 CATGCTGATA CGACAGACTG GATTTTTCAT ATTTCTTATT AAAATTTCTG CCATTTAGAA 1921 GAAGAGAACT ACAITCATGG TTTGGAAGAG ATAAACCTGA AAAGAAGAGT GGCCTTATCT 1981 TCACTTTATC GATAGETCAG TETATTEGET TCATTGTGTA CATTTTTATA TECTCCTTTT 2041 GACATTATAA CTGTTGGCTT TTCTAATCTT GTTAAATATA TCTATTTTTA CCAAAGGTAT 2101 TTAATATTCT TTTTTATGAC AACTTAGATC AACTATTTTT AGCTTGGTAA ATTTTTCTAA 2161 ACACAATTGT TATAGCCAGA GGAACAAAGA TGATATAAAA TATTGTTGCT CTGACAAAAA 2221 TACATGTATT TCATTCTCGT ATGGTGCTAG AGTTAGATTA ATCTGCATTT TAAAAAACTG 2291 AATTGGAATA GAATTGGTAA GTTGCAAAGA CTTTTTGAAA ATAATTAAAT TATCATATCT 2341 TCCATTCCTG TTATTGGAGA TGAAAATAAA AAGCAACTTA TGAAAGTAGA CATTCAGATC 2401 CAGCCATTAC TAACCTATTC CTTTTTTGGG GAAATCTGAG CCTAGCTCAG AAAAACATAA 2521 CACATCCTAT TIAITGTGAT GTTGTGGTTT TATTATCTTA AACTCTGTTC CATACACTTG

2581 TATAAATACA TOGATATTTT TATGTACAGA AGTATGTCTC TTAACCAGTT CACTTATTGT

2641 ACCTGGAAGG GCGAATTCTG CAGATATC

F16.31.

51/54

(wds) uorgonodnosuj surprwhyj [HE]

53/54

54/54

