

One hidden layer Neural Network

Neural Networks Overview

What is a Neural Network?

One hidden layer Neural Network

Neural Network Representation

One hidden layer Neural Network

Computing a Neural Network's Output

$$z = w^T x + b$$
$$a = \sigma(z)$$

$$z = w^T x + b$$
$$a = \sigma(z)$$

Andrew Ng

Neural Network Representation learning

Given input x:

$$z^{[1]} = W^{[1]} + b^{[1]}$$

$$\alpha^{[1]} = \sigma(z^{[1]})$$

$$\alpha^{[1]} = \sigma(z^{[1]})$$

$$\alpha^{[2]} = W^{[2]} \alpha^{[1]} + b^{[2]}$$

$$\alpha^{[2]} = \sigma(z^{[2]})$$

$$\alpha^{[2]} = \sigma(z^{[2]})$$

$$\alpha^{[2]} = \sigma(z^{[2]})$$

One hidden layer Neural Network

Vectorizing across multiple examples

Vectorizing across multiple examples

Vectorizing across multiple examples

One hidden layer Neural Network

Explanation for vectorized implementation

Justification for vectorized implementation

Recap of vectorizing across multiple examples


```
+ z^{[1](i)} = W^{[1]}x^{(i)} + b^{[1]}
    \Rightarrow a^{[1](i)} = \sigma(z^{[1](i)})
   \Rightarrow z^{[2](i)} = W^{[2]}a^{[1](i)} + b^{[2]}
   \rightarrow a^{[2](i)} = \sigma(z^{[2](i)})
                        A^{[0]} \times = a^{[0]} \times (i) = a^{[0](i)}
Z^{[1]} = W^{[1]}X + b^{[1]} \leftarrow W^{[1]} + b^{[1]}
A^{[1]} = \sigma(Z^{[1]})
Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}
A^{[2]} = \sigma(Z^{[2]})
                                                         Andrew Ng
```


One hidden layer Neural Network

Activation functions

Activation functions

 $\Rightarrow a^{[2]} = \sigma(z^{[2]}) q^{(2)}(z^{(2)})$

Pros and cons of activation functions

One hidden layer Neural Network

Why do you need non-linear activation functions?

Activation function

Andrew Ng

One hidden layer Neural Network

Gradient descent for neural networks

Gradient descent for neural networks

Parameters:
$$(\sqrt{12}) b^{(1)} (\sqrt{12}) b^{(1)} (\sqrt{12}) b^{(1)}$$
 $(\sqrt{12}) (\sqrt{12}) b^{(1)} (\sqrt{12}) b^{(1)} (\sqrt{12}) b^{(1)}$
 $(\sqrt{12}) (\sqrt{12}) b^{(1)} (\sqrt{12}) b^{(1)} (\sqrt{12}) b^{(1)} b^{(1)}$

Formulas for computing derivatives

Formal Propagation:
$$Z_{(1)} = P_{(1)}(S_{(1)}) = e(S_{(2)})$$

$$S_{(1)} = P_{(2)}(S_{(1)}) \leftarrow P_{(2)}$$

$$S_{(2)} = P_{(2)}(S_{(2)}) = e(S_{(2)})$$

$$S_{(2)} = P_{(2)}(S_{(2)}) = e(S_{(2)})$$

$$S_{(2)} = P_{(2)}(S_{(2)}) = e(S_{(2)})$$

Back propagation:

$$d^{[2]} = A^{[2]} - Y$$

$$d^{[1]} = \frac{1}{m} d^{[1]} A^{[1]} T$$

$$d^{[2]} = \frac{1}{m} d^{[2]} A^{[1]} T$$

$$d^{[2]} = \frac{1}{m} n_{p}. Sum(d^{[2]}, anais=1, keepdans=1 True)$$

$$d^{[2]} = \frac{1}{m} n_{p}. Sum(d^{[2]}, anais=1, keepdans=1 True)$$

$$d^{[2]} = \frac{1}{m} n_{p}. Sum(d^{[2]}, anais=1, keepdans=1 True)$$

$$d^{[2]} = \frac{1}{m} d^{[2]} X^{[2]} X^{[2]} T$$

$$d^{[2]} = \frac{1}{m} n_{p}. Sum(d^{[2]}, anai=1, keepdans=1 True)$$

Andrew Ng

One hidden layer Neural Network

Backpropagation intuition (Optional)

Computing gradients

Logistic regression

Neural network gradients $z^{[2]} = W^{[2]}x + b^{[2]}$ duri = de a Tos $\left(\begin{array}{cccc} n & \overline{t} & \overline{t} & \overline{t} & \overline{t} \end{array} \right)$

Summary of gradient descent

$$dz^{[2]} = a^{[2]} - y$$
 $dW^{[2]} = dz^{[2]}a^{[1]^T}$
 $db^{[2]} = dz^{[2]}$
 $dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$
 $dW^{[1]} = dz^{[1]}x^T$
 $db^{[1]} = dz^{[1]}$

Vectorized Implementation:

$$z^{(i)} = (\omega^{(i)} \times + b^{(i)})$$

$$z^{(i)} = g^{(i)}(z^{(i)})$$

$$z^{(i)} = \left[z^{(i)}(z^{(i)})\right]$$

Summary of gradient descent

$$dz^{[2]} = a^{[2]} - y$$

$$dW^{[2]} = dz^{[2]}a^{[1]^T}$$

$$db^{[2]} = dz^{[2]}$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[1]} = dz^{[1]}x^T$$

$$db^{[1]} = dz^{[1]}$$

$$dz^{[2]} = a^{[2]} - y$$

$$dW^{[2]} = dz^{[2]}a^{[1]^T}$$

$$db^{[2]} = dz^{[2]}$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[1]} = dz^{[1]}x^T$$

$$db^{[1]} = dz^{[1]}$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]}(z^{[1]})$$

Andrew Ng

One hidden layer Neural Network

Random Initialization

What happens if you initialize weights to zero?

Random initialization

