SIR MODEL FOR NEW YORK COVID-19 DATA

Abdul Rehman, Rishabh Shanbhag, Yashvin Jagarlamudi

Introduction

- SIR model is an epidemiological model which divides the population into various states of health to determine the number of people impacted by a disease over time
- SIR models explain the rate of change of people who need medical attention related to a certain disease
- For our model, we have considered COVID-19 and a subset containing only New York state's data
- Our SIR model will forecast the immunity of New York residents across 148 days

Limitations of SIR Models

- 1. Time varying infectivity
 - a. causes infective rate of a disease to change over a period of time leading to sporadic predictions
- 2. Super Infection Rate
 - a. super infection occurs when a patient contracts a heterologous strain of a disease without recovering first
 - b. Super infection makes it difficult to model recovery rate
 - c. Ex: HIV and tuberculosis
- 3. Latency period
 - a. SIR models don't account for the period between between individual is exposed to a disease and when that individual becomes infected and contagious.

Overview of SIR Model

- SIR models contain 3 states: Susceptible, Infected, and Recovered
 - Susceptible: number of people who haven't contracted the disease but are likely to in the future
 - Infected: number of people who have contracted the disease
 - Recovered: the number of people who have survived and hence achieved immunity from the disease
 - SIR models also contain various hyperparameters such as:
 - \circ γ : proportion of infected recovering per day
 - \circ β : amount of people an infected person will infect per day
 - R₀: total number of people an infected person infects
 - \circ Σ : rate of change of exposed per infected

EDA

New cases per day

New deaths per day

EDA

Basic SIR model with estimated parameters

SEIRCD model fit to deaths data

Rate of change from Exposed to Infected: 0.49

Rate of change from Infected to Recovered: 0.19

Rate of change from Infected to Critical: 0.099

Rate of change from Critical to Recovered: 0.125

Rate of change from Critical to Death: 0.16

Probability from Infected to Critical: 0.09

Probability from Critical to Death: 0.79

Probability from Infected to Recovered: 0.91

Probability from Critical to Recovered: 0.21

SEIRCD model fit to recovered data

Rate of change from Exposed to Infected: 0.49

Rate of change from Infected to Recovered: 0.19

Rate of change from Infected to Critical: 0.076

Rate of change from Critical to Recovered: 0.19

Rate of change from Critical to Death: 0.16

Probability from Infected to Critical: 0.09

Probability from Critical to Death: 0.05

Probability from Infected to Recovered: 0.91

Probability from Critical to Recovered: 0.95

Conclusion and Future Scope of SEIRCD Model

- SEIRCD model can be enhanced to include other components like Hospitalized (H) and on Ventilator (V)
- The current SIR model can be generalized to other states in the United States or other countries.
- Instead of displaying short-term statistics of COVID-19 for 148 days, the model can be extended to forecast rate of infection until 2021.
- Compare SIR predictions using various deep learning models