© Eskil Johnson, Göteborg 2001.

1. Ingen minterm har indexnr större än 29. Detta innebär, att alla mintermerna och därmed också alla primimplikatorerna innehåller $x_1^{'}x_2^{'}$.

I bredvidstående Karnaughdiagram har väsentliga primimplikatorer, då man bortser från x_1 och x_2 variablerna, markerats.

Väsentliga primimplikatorer: $x_1^{'}x_2^{'}x_6^{'}x_7$, $x_1^{'}x_2^{'}x_3^{'}x_5^{'}x_7$, $x_1^{'}x_2^{'}x_3^{'}x_4^{'}x_5$, $x_1^{'}x_2^{'}x_3^{'}x_5^{'}x_7$, $x_1^{'}x_2^{'}x_3^{'}x_5^{'}x_7$, $x_1^{'}x_2^{'}x_3^{'}x_4^{'}x_5^{'}x_6^{'}$ och $x_1^{'}x_2^{'}x_3^{'}x_4^{'}x_5^{'}x_6^{'}$

Övriga primimplikatorer då man bortser från x_1 och x_2 variablerna.

Övriga primimplikatorer: $x_1'x_2'x_3'x_5x_6'$ och $x_1'x_2'x_3'x_4x_6x_7'$.

De väsentliga primimplikatorerna täcker funktionen.

$$f = x_1 x_2 x_6 x_7 + x_1 x_2 x_3 x_5 x_7 + x_1 x_2 x_3 x_4 x_5 + x_1 x_2 x_3 x_5 x_7 + x_1 x_2 x_4 x_5 x_6 + x_1 x_2 x_3 x_4 x_5 x_6$$

2.

Täck funktionen med disjunkta delkuber.

$$f = w'x + wz + wxyz' = w'x \oplus wz \oplus wxyz'$$

 $f = (1 \oplus w)x \oplus wz \oplus wxy (1 \oplus z) =$
 $f = x \oplus wx \oplus wz \oplus wxy \oplus wxyz$

3.
$$f(x_1, x_2, x_3, x_4) = x_1 \cdot (x_2 + x_3) + (x_1 + x_2) \cdot (x_2 + x_3)$$

 $f(x_1, 0, 1, x_4) = x_1 \cdot (0 + 1) + (x_1 + 0) \cdot (1 + 0 \cdot x_4) = x_1 + x_1$

Statisk 1-hasard för övergången mellan (0010) och (1010) samt mellan (0011) och (1011).

$$f(1, x_2, 0, 1) = 1 \cdot (x_2 + 0) + (0 + x_2) \cdot (x_2' + 1 \cdot 0) = x_2 + x_2 \cdot x_2'$$

Dynamisk hasard för övergången mellan (1001) och (1101).

4.

Valda starttillstånd ger z = 0.

x = 0	x = 1
00 (0)	01 (1)
01 (1)	01 (1)
10 (0)	01 (1)
10 (0)	11 (0)
	00 (0) 01 (1) 10 (0)

	0 3	x 1		0 3	x 1
00	0	0	00	0	1
01	0	0	01	1	1
$q_{_{I}}q_{_{2}}$	1	0	<i>q₁q</i> ₂₁₁	0	1
10	1	1	10	0	1

$$q_1^+ = q_1 x' + q_1 q_2' = q_2^+ = x + q_1' q_2' = q_1 \cdot (xq_2)'$$

$$u = q_1 q_2 + x q_1 + x q_2$$

5.

Maximala förenlighetsmängder: {1,2,3}, {1,3,4,5}, {2,6}, {4,5,6}

C _i	$I(C_i)$
{1,2,3}	{4,5,6}, {1,5}
{1,3,4,5}	{2,6}
{2,6}	Φ
{4,5,6}	{1,2},{3,5},{2,6}

{1,3,4,5} och {2,6} bildar en minimal, sluten och täckande uppsättning av förenlighetsmängder.

δ(λ)	00	01	11	10
$A=\{1,3,4,5\}$	A(0)	A(1)	A(0)	B(1)
B={2,6}	B (-)	A(0)	-	A(0)

6.

Av tillståndsgrafen framgår direkt, att $u = q_I$

δ	00	01	11	10
00	01	00	00	01
01	01	00	11	01
11	10	11	11	10
10	10	11	00	10

	00	01	. <i>y</i> .11 .	10
00	-	1)	-
01 a a	-	1	0	-
q_1q_{211}	0	0	0	0
10	0	0	1	0

$$S_1 = q_2 xy$$

$$R_1 = q_2 xy$$

Fortsättning nästa sida

6 fortsättning

$$u = q_1$$

$$S_1 = q_2 xy$$

$$R_1 = q_2 xy$$

