Лагранжиан. Седловая задача. Метод экстраградиента. Прямо-двойственный метод. Методы оптимизации

Александр Безносиков

Московский физико-технический институт

19 октября 2023

Лагранжиан

Рассматриваем задачу условной оптимизации вида:

$$\min_{x \in \mathbb{R}^d} f_0(x)$$
s.t. $f_i(x) \le 0, i = 1, ..., m$

$$Ax = b$$

Здесь матрица $A \in \mathbb{R}^{n \times d}$ и $b \in \mathbb{R}^n$.

Лагранжиан

Рассматриваем задачу условной оптимизации вида:

$$\min_{x \in \mathbb{R}^d} f_0(x)$$
s.t. $f_i(x) \le 0, i = 1, ..., m$

$$Ax = b$$

Здесь матрица $A \in \mathbb{R}^{n \times d}$ и $b \in \mathbb{R}^n$. Здесь еще можно было немного обобщить постановку и добавить, что $x \in \mathcal{X} \cap \mathsf{dom} f_i$. Но мы предполагаем, что $\mathcal{X} \cap \mathsf{dom} f_i = \mathbb{R}^d$.

Лагранжиан

Лагранжиан

Функция Лагранжа/Лагранжиан для этой задачи строится следующим образом:

$$L(x,\lambda,\nu)=f_0(x)+\sum_{i=1}^m\lambda_if_i(x)+\nu^T(Ax-b),$$

где $\lambda_i \geq 0$ для $i=1,\ldots,m$, а $\nu \in \mathbb{R}^n$. λ_i можно записать в виде векторов λ соответствующей размерности.

Что делали на семинаре:

Что делали на семинаре:

• Рассматривали:

$$g(\lambda,\nu)=\inf_{x\in\mathbb{R}^d}L(x,\lambda,\nu).$$

Вопрос: как называется этот объект?

Что делали на семинаре:

• Рассматривали:

$$g(\lambda,\nu)=\inf_{x\in\mathbb{R}^d}L(x,\lambda,\nu).$$

Вопрос: как называется этот объект? двойственная функция

Что делали на семинаре:

• Рассматривали:

$$g(\lambda,\nu) = \inf_{x \in \mathbb{R}^d} L(x,\lambda,\nu).$$

Вопрос: как называется этот объект? двойственная функция

ullet Осознали, что для любой $\lambda \succeq 0$ и $u \in \mathbb{R}^n$

$$g(\lambda, \nu) \leq f(x^*).$$

Что делали на семинаре:

Что делали на семинаре:

• Узнали

Условие Слейтера

Будем говорить, что для задачи с ограничениями выполняется условие Слейтера, если существует $x \in \mathbb{R}^d$, такой что

$$f_i(x) < 0, i = 1, ..., m$$
 u $Ax = b$.

Что делали на семинаре:

• Узнали

Условие Слейтера

Будем говорить, что для задачи с ограничениями выполняется условие Слейтера, если существует $x \in \mathbb{R}^d$, такой что

$$f_i(x) < 0, \ i = 1, \ldots, m \quad \text{if} \quad Ax = b.$$

Вопрос: и что оно дает?

Что делали на семинаре:

• Узнали

Условие Слейтера

Будем говорить, что для задачи с ограничениями выполняется условие Слейтера, если существует $x \in \mathbb{R}^d$, такой что

$$f_i(x) < 0, i = 1, ..., m$$
 u $Ax = b$.

• Вопрос: и что оно дает?

Теорема Слейтера

Если в задаче с ограничениями все функции являются выпуклыми и выполняется условие Слейтера, то тогда при построении двойственной задачи выполняется свойство сильной двойственности, а именно

$$\sup_{\lambda\succeq 0,\nu\in\mathbb{R}^n} g(\lambda,\nu) = f(x^*).$$

Седловая точка

Седловая точка

Точка $(x^*,\lambda^*,\nu^*)\in\mathbb{R}^d\times\mathbb{R}^m_+\times\mathbb{R}^n$ называется седловой для функции $L(x,\lambda,\nu)$, если для любых $(x,\lambda,\nu)\in\mathbb{R}^d\times\mathbb{R}^m_+\times\mathbb{R}^n$ выполнено

$$L(x, \lambda^*, \nu^*) \ge L(x^*, \lambda^*, \nu^*) \ge L(x^*, \lambda, \nu).$$

Теорема о седловой точке Куна-Таккера

Теорема о седловой точке Куна-Таккера

Для задачи выпуклой оптимизации с выпуклыми ограничениями с выполненными условием Слейтера следующие утверждения эквиваленты:

- для x^* существует $\lambda^* \succeq 0$ и $\nu^* \in \mathbb{R}^n$ такие, что (x^*, λ^*, ν^*) седловая точка функции Лагранжа,
- x^* глобальное решение задачи оптимизации с ограничениями.

 \Rightarrow Пусть для x^* существует $\lambda^* \succeq 0$, $\nu^* \in \mathbb{R}^n$ такие, что (x^*, λ^*, ν^*) – седловая точка функции Лагранжа, тогда x^* – глобальное решение задачи с ограничениями.

- \Rightarrow Пусть для x^* существует $\lambda^* \succeq 0$, $\nu^* \in \mathbb{R}^n$ такие, что (x^*, λ^*, ν^*) седловая точка функции Лагранжа, тогда x^* глобальное решение задачи с ограничениями.
 - Для начала удостоверимся, что x^* удовлетворяет ограничениям. Если нет, то $f_i(x^*) > 0$ для некоторого i (или $Ax^* \neq b$). Вопрос: что можно сказать про $\sup_{\lambda \succeq 0, \nu \in \mathbb{R}^n} L(x^*, \lambda, \nu)? = +\infty$.

- \Rightarrow Пусть для x^* существует $\lambda^* \succeq 0$, $\nu^* \in \mathbb{R}^n$ такие, что (x^*, λ^*, ν^*) седловая точка функции Лагранжа, тогда x^* глобальное решение задачи с ограничениями.
 - Для начала удостоверимся, что x^* удовлетворяет ограничениям. Если нет, то $f_i(x^*) > 0$ для некоторого i (или $Ax^* \neq b$). Вопрос: что можно сказать про $\sup_{\lambda \succeq 0, \nu \in \mathbb{R}^n} L(x^*, \lambda, \nu)? = +\infty$. Вопрос: может ли такое быть? Нет, 2ое неравенство в определении седловой точки рушится для $\lambda = (.\lambda_{i-1}^*, 2\lambda_i^*, \lambda_{i+1}^*.)^T$. Аналогично разбирается случай, когда $Ax^* \neq b$.

- \Rightarrow Пусть для x^* существует $\lambda^* \succeq 0$, $\nu^* \in \mathbb{R}^n$ такие, что (x^*, λ^*, ν^*) седловая точка функции Лагранжа, тогда x^* глобальное решение задачи с ограничениями.
 - Для начала удостоверимся, что x^* удовлетворяет ограничениям. Если нет, то $f_i(x^*)>0$ для некоторого i (или $Ax^*\neq b$). Вопрос: что можно сказать про $\sup_{\lambda\succeq 0,\nu\in\mathbb{R}^n}L(x^*,\lambda,\nu)?=+\infty$. Вопрос: может ли такое быть? Нет, 2ое неравенство в определении седловой точки рушится для $\lambda=(.\lambda_{i-1}^*,2\lambda_i^*,\lambda_{i+1}^*.)^T$. Аналогично разбирается случай, когда $Ax^*\neq b$.
 - Заметим, что $f_0(x^*) = \sup_{\lambda \succ 0, \nu \in \mathbb{R}^n} L(x^*, \lambda, \nu).$

- \Rightarrow Пусть для x^* существует $\lambda^* \succeq 0$, $\nu^* \in \mathbb{R}^n$ такие, что (x^*, λ^*, ν^*) седловая точка функции Лагранжа, тогда x^* – глобальное решение задачи с ограничениями.
 - Для начала удостоверимся, что х* удовлетворяет ограничениям. Если нет, то $f_i(x^*) > 0$ для некоторого i (или $Ax^* \neq b$). Вопрос: что можно сказать про $\sup_{\lambda \succeq 0, \nu \in \mathbb{R}^n} L(x^*, \lambda, \nu)$? $= +\infty$. Вопрос: может ли такое быть? Нет, 2ое неравенство в определении седловой точки рушится для $\lambda = (.\lambda_{i-1}^*, 2\lambda_i^*, \lambda_{i+1}^*.)^T$. Аналогично разбирается случай, когда $Ax^* \neq b$.
 - Заметим, что $f_0(x^*) = \sup_{\lambda \succ 0, \nu \in \mathbb{R}^n} L(x^*, \lambda, \nu)$. Второе неравенство в определении седловой задачи дает $L(x^*, \lambda^*, \nu^*) = f_0(x^*)$.

- \Rightarrow Пусть для x^* существует $\lambda^* \succeq 0$, $\nu^* \in \mathbb{R}^n$ такие, что (x^*, λ^*, ν^*) седловая точка функции Лагранжа, тогда x^* глобальное решение задачи с ограничениями.
 - Для начала удостоверимся, что x^* удовлетворяет ограничениям. Если нет, то $f_i(x^*)>0$ для некоторого i (или $Ax^*\neq b$). Вопрос: что можно сказать про $\sup_{\lambda\succeq 0,\nu\in\mathbb{R}^n}L(x^*,\lambda,\nu)?=+\infty$. Вопрос: может ли такое быть? Нет, 2ое неравенство в определении седловой точки рушится для $\lambda=(.\lambda_{i-1}^*,2\lambda_i^*,\lambda_{i+1}^*.)^T$. Аналогично разбирается случай, когда $Ax^*\neq b$.
 - Заметим, что $f_0(x^*) = \sup_{\lambda \succeq 0, \nu \in \mathbb{R}^n} L(x^*, \lambda, \nu)$. Второе неравенство в определении седловой задачи дает $L(x^*, \lambda^*, \nu^*) = f_0(x^*)$. Первое неравенство из определения седловой задачи дает:

$$f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + (\nu^*)^T (Ax - b) \ge L(x^*, \lambda^*, \nu^*) = f_0(x^*).$$

- \Rightarrow Пусть для x^* существует $\lambda^* \succeq 0$, $\nu^* \in \mathbb{R}^n$ такие, что (x^*, λ^*, ν^*) седловая точка функции Лагранжа, тогда x^* глобальное решение задачи с ограничениями.
 - Для начала удостоверимся, что x^* удовлетворяет ограничениям. Если нет, то $f_i(x^*)>0$ для некоторого i (или $Ax^*\neq b$). Вопрос: что можно сказать про $\sup_{\lambda\succeq 0,\nu\in\mathbb{R}^n}L(x^*,\lambda,\nu)?=+\infty$. Вопрос: может ли такое быть? Нет, 2ое неравенство в определении седловой точки рушится для $\lambda=(.\lambda_{i-1}^*,2\lambda_i^*,\lambda_{i+1}^*.)^T$. Аналогично разбирается случай, когда $Ax^*\neq b$.
 - Заметим, что $f_0(x^*) = \sup_{\lambda \succeq 0, \nu \in \mathbb{R}^n} L(x^*, \lambda, \nu)$. Второе неравенство в определении седловой задачи дает $L(x^*, \lambda^*, \nu^*) = f_0(x^*)$. Первое неравенство из определения седловой задачи дает:

$$f_0(x) + \sum_{j=1}^m \lambda_j^* f_j(x) + (\nu^*)^T (Ax - b) \ge L(x^*, \lambda^*, \nu^*) = f_0(x^*).$$

А это и есть то, что мы хотели. Вопрос: почему?

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ 夕 ○ ○

- \Rightarrow Пусть для x^* существует $\lambda^* \succeq 0$, $\nu^* \in \mathbb{R}^n$ такие, что (x^*, λ^*, ν^*) седловая точка функции Лагранжа, тогда x^* глобальное решение задачи с ограничениями.
 - Для начала удостоверимся, что x^* удовлетворяет ограничениям. Если нет, то $f_i(x^*)>0$ для некоторого i (или $Ax^*\neq b$). Вопрос: что можно сказать про $\sup_{\lambda\succeq 0,\nu\in\mathbb{R}^n}L(x^*,\lambda,\nu)?=+\infty$. Вопрос: может ли такое быть? Нет, 2ое неравенство в определении седловой точки рушится для $\lambda=(.\lambda_{i-1}^*,2\lambda_i^*,\lambda_{i+1}^*.)^T$. Аналогично разбирается случай, когда $Ax^*\neq b$.
 - Заметим, что $f_0(x^*) = \sup_{\lambda \succeq 0, \nu \in \mathbb{R}^n} L(x^*, \lambda, \nu)$. Второе неравенство в определении седловой задачи дает $L(x^*, \lambda^*, \nu^*) = f_0(x^*)$. Первое неравенство из определения седловой задачи дает:

 $f_0(x) + \sum_{j=1}^m \lambda_j^* f_j(x) + (\nu^*)^T (Ax - b) \ge L(x^*, \lambda^*, \nu^*) = f_0(x^*).$ А это и есть то, что мы хотели. **Вопрос**: почему? для допустимых x (удовлетворяет ограничениям), имеем, что левая часть $\le f_0(x)$, так как λ^* неотрицательные.

Александр Безносиков

 \Leftarrow Пусть x^* – глобальное решение задачи с ограничениями, а также пусть все f_0 и $\{f_i\}$ выпуклые и выполнено условие Слейтера, то существует $\lambda^* \succeq 0$ и $\nu \in \mathbb{R}^n$ такое, что (x^*, λ^*, ν^*) – седловая точка функции Лагранжа.

- \Leftarrow Пусть x^* глобальное решение задачи с ограничениями, а также пусть все f_0 и $\{f_i\}$ выпуклые и выполнено условие Слейтера, то существует $\lambda^* \succeq 0$ и $\nu \in \mathbb{R}^n$ такое, что (x^*, λ^*, ν^*) седловая точка функции Лагранжа.
 - Вопрос: что нам дает условие Слейтера, для выпуклой оптимизации?

 \Leftarrow Пусть x^* – глобальное решение задачи с ограничениями, а также пусть все f_0 и $\{f_i\}$ выпуклые и выполнено условие Слейтера, то существует $\lambda^* \succeq 0$ и $\nu \in \mathbb{R}^n$ такое, что (x^*, λ^*, ν^*) – седловая точка функции Лагранжа.

• Вопрос: что нам дает условие Слейтера, для выпуклой оптимизации? для решения двойственной (λ^*, ν^*) , $f_0(x^*) = g(\lambda^*, \nu^*) = \inf_{x \in \mathbb{R}^d} L(x, \lambda^*, \nu^*)$.

 \Leftarrow Пусть x^* – глобальное решение задачи с ограничениями, а также пусть все f_0 и $\{f_i\}$ выпуклые и выполнено условие Слейтера, то существует $\lambda^* \succeq 0$ и $\nu \in \mathbb{R}^n$ такое, что (x^*, λ^*, ν^*) – седловая точка функции Лагранжа.

• Вопрос: что нам дает условие Слейтера, для выпуклой оптимизации? для решения двойственной (λ^*, ν^*) , $f_0(x^*) = g(\lambda^*, \nu^*) = \inf_{x \in \mathbb{R}^d} L(x, \lambda^*, \nu^*)$. Откуда $f_0(x^*) \leq L(x^*, \lambda^*, \nu^*) = f_0(x^*) + \sum_{j=1}^m \lambda_j^* f_j(x^*) + (\nu^*)^T (Ax^* - b)$.

 \Leftarrow Пусть x^* – глобальное решение задачи с ограничениями, а также пусть все f_0 и $\{f_i\}$ выпуклые и выполнено условие Слейтера, то существует $\lambda^* \succeq 0$ и $\nu \in \mathbb{R}^n$ такое, что (x^*, λ^*, ν^*) – седловая точка функции Лагранжа.

• Вопрос: что нам дает условие Слейтера, для выпуклой оптимизации? для решения двойственной (λ^*, ν^*) , $f_0(x^*) = g(\lambda^*, \nu^*) = \inf_{x \in \mathbb{R}^d} L(x, \lambda^*, \nu^*)$. Откуда $f_0(x^*) \leq L(x^*, \lambda^*, \nu^*) = f_0(x^*) + \sum_{j=1}^m \lambda_j^* f_j(x^*) + (\nu^*)^T (Ax^* - b)$. Вопрос: что можем сказать про $\lambda_j^* f_j(x^*)$ и $Ax^* - b$? равны 0.

 \Leftarrow Пусть x^* – глобальное решение задачи с ограничениями, а также пусть все f_0 и $\{f_i\}$ выпуклые и выполнено условие Слейтера, то существует $\lambda^* \succeq 0$ и $\nu \in \mathbb{R}^n$ такое, что (x^*, λ^*, ν^*) – седловая точка функции Лагранжа.

• Вопрос: что нам дает условие Слейтера, для выпуклой оптимизации? для решения двойственной (λ^*, ν^*) , $f_0(x^*) = g(\lambda^*, \nu^*) = \inf_{x \in \mathbb{R}^d} L(x, \lambda^*, \nu^*)$. Откуда $f_0(x^*) \leq L(x^*, \lambda^*, \nu^*) = f_0(x^*) + \sum_{j=1}^m \lambda_j^* f_j(x^*) + (\nu^*)^T (Ax^* - b)$. Вопрос: что можем сказать про $\lambda_j^* f_j(x^*)$ и $Ax^* - b$? равны 0. Поэтому $L(x^*, \lambda^*, \nu^*) = f_0(x^*)$.

Седловая точка Лагранжиана

000000000000

 \leftarrow Пусть x^* – глобальное решение задачи с ограничениями, а также пусть все f_0 и $\{f_i\}$ выпуклые и выполнено условие Слейтера, то существует $\lambda^* \succ 0$ и $\nu \in \mathbb{R}^n$ такое, что (x^*, λ^*, ν^*) – седловая точка функции Лагранжа.

 Вопрос: что нам дает условие Слейтера, для выпуклой оптимизации? для решения двойственной (λ^*, ν^*) , $f_0(x^*) = g(\lambda^*, \nu^*) = \inf_{\mathbf{x} \in \mathbb{R}^d} L(\mathbf{x}, \lambda^*, \nu^*)$. Откуда $f_0(x^*) \leq L(x^*, \lambda^*, \nu^*) = f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + (\nu^*)^T (Ax^* - b).$ **Вопрос**: что можем сказать про $\lambda_i^* f_i(x^*)$ и $Ax^* - b$? равны 0. Поэтому $L(x^*, \lambda^*, \nu^*) = f_0(x^*)$. Откуда первую часть определения седловой задачи:

$$L(x^*, \lambda^*, \nu^*) = f_0(x^*) = \inf_{x \in \mathbb{R}^d} L(x, \lambda^*, \nu^*).$$

 \Leftarrow Пусть x^* – глобальное решение задачи с ограничениями, а также пусть все f_0 и $\{f_i\}$ выпуклые и выполнено условие Слейтера, то существует $\lambda^* \succeq 0$ и $\nu \in \mathbb{R}^n$ такое, что (x^*, λ^*, ν^*) – седловая точка функции Лагранжа.

• Вопрос: что нам дает условие Слейтера, для выпуклой оптимизации? для решения двойственной (λ^*, ν^*) , $f_0(x^*) = g(\lambda^*, \nu^*) = \inf_{x \in \mathbb{R}^d} L(x, \lambda^*, \nu^*)$. Откуда $f_0(x^*) \leq L(x^*, \lambda^*, \nu^*) = f_0(x^*) + \sum_{j=1}^m \lambda_j^* f_j(x^*) + (\nu^*)^T (Ax^* - b)$. Вопрос: что можем сказать про $\lambda_j^* f_j(x^*)$ и $Ax^* - b$? равны 0. Поэтому $L(x^*, \lambda^*, \nu^*) = f_0(x^*)$. Откуда первую часть определения седловой задачи:

$$L(x^*,\lambda^*,\nu^*)=f_0(x^*)=\inf_{x\in\mathbb{R}^d}L(x,\lambda^*,\nu^*).$$

Вторая часть получается из того $f_j(x^*) \leq 0$ и $Ax^* - b = 0$, а значит $f_0(x^*) \geq f_0(x^*) + \sum_{j=1}^m \lambda_j f_j(x^*) + \nu^T (Ax^* - b) = L(x^*, \lambda, \nu)$ для $\lambda_j \geq 0$.

Седловые задачи – это больше, чем просто функция Лагранжа. Это отдельный и более общий класс задач, который имеет свои приложения.

Седловые задачи – это больше, чем просто функция Лагранжа. Это отдельный и более общий класс задач, который имеет свои приложения.

Абстрогируемся от функции Лагранжа. Пусть есть некоторая функция:

$$L(x,\lambda): \mathcal{X} \times \Lambda \to \mathbb{R}.$$

Седловые задачи – это больше, чем просто функция Лагранжа. Это отдельный и более общий класс задач, который имеет свои приложения.

Абстрогируемся от функции Лагранжа. Пусть есть некоторая функция:

$$L(x,\lambda): \mathcal{X} \times \Lambda \to \mathbb{R}.$$

Рассмотрим следующую игровую интерпретацию

• Пусть есть два игрока: первый игрок может выбирать $x \in \mathcal{X}$, а второй — $\lambda \in \Lambda$ (это может быть распределение ресурсов, выбор действие и т.д.).

Седловые задачи — это больше, чем просто функция Лагранжа. Это отдельный и более общий класс задач, который имеет свои приложения.

Абстрогируемся от функции Лагранжа. Пусть есть некоторая функция:

$$L(x,\lambda): \mathcal{X} \times \Lambda \to \mathbb{R}.$$

Рассмотрим следующую игровую интерпретацию

- Пусть есть два игрока: первый игрок может выбирать $x \in \mathcal{X}$, а второй $\lambda \in \Lambda$ (это может быть распределение ресурсов, выбор действие и т.д.).
- Функция $L(x,\lambda)$ некоторое значение прибыли в зависимости от выбранных $x \in \mathcal{X}$ и $\lambda \in \Lambda$. Первый игрок платит второму игроку сумму $L(x,\lambda)$.

Седловые задачи – это больше, чем просто функция Лагранжа. Это отдельный и более общий класс задач, который имеет свои приложения.

Абстрогируемся от функции Лагранжа. Пусть есть некоторая функция:

$$L(x,\lambda): \mathcal{X} \times \Lambda \to \mathbb{R}.$$

Рассмотрим следующую игровую интерпретацию

- Пусть есть два игрока: первый игрок может выбирать $x \in \mathcal{X}$, а второй $\lambda \in \Lambda$ (это может быть распределение ресурсов, выбор действие и т.д.).
- Функция $L(x,\lambda)$ некоторое значение прибыли в зависимости от выбранных $x \in \mathcal{X}$ и $\lambda \in \Lambda$. Первый игрок платит второму игроку сумму $L(x,\lambda)$.
- Вопрос: чего хочет первый, а чего хочет второй?

4□ > 4□ > 4□ > 4□ > 4□ > 9

Седловые задачи – это больше, чем просто функция Лагранжа. Это отдельный и более общий класс задач, который имеет свои приложения.

Абстрогируемся от функции Лагранжа. Пусть есть некоторая функция:

$$L(x,\lambda): \mathcal{X} \times \Lambda \to \mathbb{R}.$$

Рассмотрим следующую игровую интерпретацию

- Пусть есть два игрока: первый игрок может выбирать $x \in \mathcal{X}$, а второй $\lambda \in \Lambda$ (это может быть распределение ресурсов, выбор действие и т.д.).
- Функция $L(x,\lambda)$ некоторое значение прибыли в зависимости от выбранных $x \in \mathcal{X}$ и $\lambda \in \Lambda$. Первый игрок платит второму игроку сумму $L(x,\lambda)$.
- **Bonpoc:** чего хочет первый, а чего хочет второй? Первый хочет платить меньше, а второй хочет получить больше.

• Нужно найти равновесие между игроками, потому что экстремальная стратегия не значит лучшая. Например, если игрок два знает, что при некотором \tilde{x} игрока один можно получить огромный выигрыш при правильном выборе $\lambda(\tilde{x})$. В то же время может так оказаться, что при других $x \neq \tilde{x}$ выбор $\lambda(\tilde{x})$ дает нулевой выигрыш второму игроку, тогда игрок один может просто никогда не выбирать \tilde{x} . При этом может быть $\tilde{\lambda}$, которая при любом x будет давать небольшой фиксированный выигрыш.

- Нужно найти равновесие между игроками, потому что экстремальная стратегия не значит лучшая. Например, если игрок два знает, что при некотором \tilde{x} игрока один можно получить огромный выигрыш при правильном выборе $\lambda(\tilde{x})$. В то же время может так оказаться, что при других $x \neq \tilde{x}$ выбор $\lambda(\tilde{x})$ дает нулевой выигрыш второму игроку, тогда игрок один может просто никогда не выбирать \tilde{x} . При этом может быть $\tilde{\lambda}$, которая при любом x будет давать небольшой фиксированный выигрыш.
- С точки зрения седловой задачи:

$$L(x, \lambda^*) \ge L(x^*, \lambda^*) \ge L(x^*, \lambda),$$

получается следующее:

- Нужно найти равновесие между игроками, потому что экстремальная стратегия не значит лучшая. Например, если игрок два знает, что при некотором \tilde{x} игрока один можно получить огромный выигрыш при правильном выборе $\lambda(\tilde{x})$. В то же время может так оказаться, что при других $x \neq \tilde{x}$ выбор $\lambda(\tilde{x})$ дает нулевой выигрыш второму игроку, тогда игрок один может просто никогда не выбирать \tilde{x} . При этом может быть $\tilde{\lambda}$, которая при любом x будет давать небольшой фиксированный выигрыш.
- С точки зрения седловой задачи:

$$L(x, \lambda^*) \ge L(x^*, \lambda^*) \ge L(x^*, \lambda),$$

получается следующее: пусть $(\tilde{x},\tilde{\lambda})$ — седло, тогда любые изменения x игрока один будут приводить к тому, что он будет платить больше (обратно для игрока два).

- Нужно найти равновесие между игроками, потому что экстремальная стратегия не значит лучшая. Например, если игрок два знает, что при некотором \tilde{x} игрока один можно получить огромный выигрыш при правильном выборе $\lambda(\tilde{x})$. В то же время может так оказаться, что при других $x \neq \tilde{x}$ выбор $\lambda(\tilde{x})$ дает нулевой выигрыш второму игроку, тогда игрок один может просто никогда не выбирать \tilde{x} . При этом может быть $\tilde{\lambda}$, которая при любом x будет давать небольшой фиксированный выигрыш.
- С точки зрения седловой задачи:

$$L(x, \lambda^*) \ge L(x^*, \lambda^*) \ge L(x^*, \lambda),$$

получается следующее: пусть $(\tilde{x},\tilde{\lambda})$ – седло, тогда любые изменения x игрока один будут приводить к тому, что он будет платить больше (обратно для игрока два). В обратную сторону, если, например, \tilde{x} не часть решения седловой задачи, то игрок один сможет изменить x при фиксированной $\tilde{\lambda}$ и платить меньше,

- Вопрос: одинаковый ли будет результат игры, если
 - 1) сначала будет выбирать первый игрок, а потом второй
 - 2) сначала будет выбирать второй игрок, а потом первый?

- Вопрос: одинаковый ли будет результат игры, если
 - 1) сначала будет выбирать первый игрок, а потом второй
 - 2) сначала будет выбирать второй игрок, а потом первый?
- Нет, как рассуждает первый игрок в первом случае: «если я выберу некоторый x, то второй игрок тут же будет максимизировать свой выигрыш: $\sup_{\lambda} L(x,\lambda)$, значит мне надо выбрать x так, чтобы минимизировать потери: $\inf_{x} \sup_{\lambda} L(x,\lambda)$ ». Противоположная ситуация во втором случае $\sup_{\lambda} \inf_{x} L(x,\lambda)$

- Вопрос: одинаковый ли будет результат игры, если
 - 1) сначала будет выбирать первый игрок, а потом второй
 - 2) сначала будет выбирать второй игрок, а потом первый?
- Нет, как рассуждает первый игрок в первом случае: «если я выберу некоторый x, то второй игрок тут же будет максимизировать свой выигрыш: $\sup_{\lambda} L(x,\lambda)$, значит мне надо выбрать x так, чтобы минимизировать потери: $\inf_{x} \sup_{\lambda} L(x,\lambda)$ ». Противоположная ситуация во втором случае $\sup_{\lambda} \inf_{x} L(x,\lambda)$
- Используя эту интуицию можно понять, что в общем случае, что

$$\sup_{\lambda} \inf_{x} L(x,\lambda) \leq \inf_{x} \sup_{\lambda} L(x,\lambda)$$

12 / 40

Седловая задача и игры

Седловая точка Лагранжиана

000000000000

- Вопрос: одинаковый ли будет результат игры, если
 - 1) сначала будет выбирать первый игрок, а потом второй
 - 2) сначала будет выбирать второй игрок, а потом первый?
- Нет, как рассуждает первый игрок в первом случае: «если я выберу некоторый x, то второй игрок тут же будет максимизировать свой выигрыш: $\sup_{\lambda} L(x,\lambda)$, значит мне надо выбрать x так, чтобы минимизировать потери: $\inf_{x} \sup_{\lambda} L(x,\lambda)$ ». Противоположная ситуация во втором случае $\sup_{\lambda} \inf_{x} L(x,\lambda)$
- Используя эту интуицию можно понять, что в общем случае, что

$$\sup_{\lambda} \inf_{x} L(x,\lambda) \leq \inf_{x} \sup_{\lambda} L(x,\lambda)$$

• Формально:

$$\inf_{\tilde{x} \in \mathcal{X}} L(\tilde{x}, \lambda) \leq L(x, \lambda) \ \forall x \in \mathcal{X} \ \Rightarrow \ \sup_{\lambda \in \Lambda} \inf_{\tilde{x} \in \mathcal{X}} L(\tilde{x}, \lambda) \leq \sup_{\lambda \in \Lambda} L(x, \lambda) \ \forall x \in \mathcal{X}$$

Александр Безносиков Лекция 7 19 октября 2023

- Вопрос: одинаковый ли будет результат игры, если
 - 1) сначала будет выбирать первый игрок, а потом второй
 - 2) сначала будет выбирать второй игрок, а потом первый?
- Нет, как рассуждает первый игрок в первом случае: «если я выберу некоторый x, то второй игрок тут же будет максимизировать свой выигрыш: $\sup_{\lambda} L(x,\lambda)$, значит мне надо выбрать x так, чтобы минимизировать потери: $\inf_{x} \sup_{\lambda} L(x,\lambda)$ ». Противоположная ситуация во втором случае $\sup_{\lambda} \inf_{x} L(x,\lambda)$
- Используя эту интуицию можно понять, что в общем случае, что

$$\sup_{\lambda} \inf_{x} L(x,\lambda) \leq \inf_{x} \sup_{\lambda} L(x,\lambda)$$

• Формально:

$$\inf_{\tilde{x} \in \mathcal{X}} L(\tilde{x}, \lambda) \le L(x, \lambda) \ \forall x \in \mathcal{X} \ \Rightarrow \ \sup_{\lambda \in \Lambda} \inf_{\tilde{x} \in \mathcal{X}} L(\tilde{x}, \lambda) \le \sup_{\lambda \in \Lambda} L(x, \lambda) \ \forall x \in \mathcal{X}$$

Откуда $\sup_{\lambda \in \Lambda} \inf_{\tilde{x} \in \mathcal{X}} L(\tilde{x}, \lambda) \leq \inf_{x \in \mathcal{X}} \sup_{\lambda \in \Lambda} L(x, \lambda)$

Как две игры: $\sup_{\lambda}\inf_{x}L(x,\lambda)\inf_{x}\sup_{\lambda}L(x,\lambda)$ связаны с седловой точкой?

Как две игры: $\sup_{\lambda}\inf_{x}L(x,\lambda)\inf_{x}\sup_{\lambda}L(x,\lambda)$ связаны с седловой точкой?

Теорема о седловой точке

Множество седловых точек функции $L:\mathcal{X}\times\Lambda\to\mathbb{R}$ непустое тогда и только тогда, когда обе задачи $\sup_\lambda\inf_x L(x,\lambda)$ и $\inf_x\sup_\lambda L(x,\lambda)$ имеют решение и эти решения совпадают.

Теорема Сиона-Какутани

Пусть \mathcal{X} , Λ выпуклые компактные множества, пусть также $L: \mathcal{X} \times \Lambda \to \mathbb{R}$ непрерывна, выпукла по x (для любого фиксированного λ) и вогнута по λ (для любого фиксированного x). Тогда L имеет седловые точки на $\mathcal{X} \times \Lambda$.

Теорема Сиона-Какутани

Пусть \mathcal{X} , Λ выпуклые компактные множества, пусть также $L: \mathcal{X} \times \Lambda \to \mathbb{R}$ непрерывна, выпукла по x (для любого фиксированного λ) и вогнута по λ (для любого фиксированного x). Тогда L имеет седловые точки на $\mathcal{X} \times \Lambda$.

Теорема Сиона-Какутани

Пусть \mathcal{X} , Λ выпуклые множества, и \mathcal{X} или Λ дополнительно компактно, пусть также $L: \mathcal{X} \times \Lambda \to \mathbb{R}$ непрерывна, выпукла по x (для любого фиксированного λ) и вогнута по λ (для любого фиксированного x). Тогда (гарантий существования тут нет)

$$\sup_{\lambda \in \Lambda} \inf_{x \in \mathcal{X}} L(x, \lambda) = \inf_{x \in \mathcal{X}} \sup_{\lambda \in \Lambda} L(x, \lambda)$$

Седловая задача

• Оптимизация функции Лагранжа — седловая задача.

Седловая задача

- Оптимизация функции Лагранжа седловая задача.
- Седловые задачи возникают как отдельный большой класс задач.

Седловая задача

- Оптимизация функции Лагранжа седловая задача.
- Седловые задачи возникают как отдельный большой класс задач.
- Будем рассматривать следующую задачу:

$$\min_{\mathbf{x} \in \mathbb{R}^d} \max_{\lambda \in \mathbb{R}^d} L(\mathbf{x}, \lambda),$$

где L непрерывно дифференцируема по обеим группам переменных, выпукла-вогнута: выпукла по x (для любого фиксированного λ) и вогнута по λ (для любого фиксированного x), а также градиенты по обеим группам переменных являются $L/\sqrt{2}$ -Липшицевыми:

$$\|\nabla_{x}L(x_{1},\lambda_{1}) - \nabla_{x}L(x_{2},\lambda_{2})\|_{2}^{2} \leq \frac{L^{2}}{2}(\|x_{1} - x_{2}\|_{2}^{2} + \|\lambda_{1} - \lambda_{2}\|_{2}^{2})$$
$$\|\nabla_{\lambda}L(x_{1},\lambda_{1}) - \nabla_{\lambda}L(x_{2},\lambda_{2})\|_{2}^{2} \leq \frac{L^{2}}{2}(\|x_{1} - x_{2}\|_{2}^{2} + \|\lambda_{1} - \lambda_{2}\|_{2}^{2})$$

• Сравним:

$$\min_{x \in \mathbb{R}^d} f(x) \qquad \min_{x \in \mathbb{R}^d} \max_{\lambda \in \mathbb{R}^d} L(x, \lambda).$$

Вопрос: как решали первое? Может быть поможет решать второе.

• Сравним:

$$\min_{x \in \mathbb{R}^d} f(x)$$
 $\min_{x \in \mathbb{R}^d} \max_{\lambda \in \mathbb{R}^d} L(x, \lambda).$

Bonpoc: как решали первое? Может быть поможет решать второе.

Градиентный спуск-подъем:

$$\begin{pmatrix} x^{k+1} \\ y^{k+1} \end{pmatrix} = \begin{pmatrix} x^k \\ \lambda^k \end{pmatrix} - \gamma \begin{pmatrix} \nabla_x L(x^k, \lambda^k) \\ -\nabla_\lambda L(x^k, \lambda^k) \end{pmatrix}$$

• Идея спуска-подъема неплохая и часто рабочая, но интуиция подсказывает, что у него есть не самые приятные аспекты.

- Идея спуска-подъема неплохая и часто рабочая, но интуиция подсказывает, что у него есть не самые приятные аспекты.
- Рассмотрим задачу $\min_{x \in R} \max_{\lambda \in \mathbb{R}} x \lambda$. Стартовая точка (1,1). Вопрос: где решение?

- Идея спуска-подъема неплохая и часто рабочая, но интуиция подсказывает, что у него есть не самые приятные аспекты.
- Рассмотрим задачу $\min_{x \in R} \max_{\lambda \in \mathbb{R}} x\lambda$. Стартовая точка (1,1). Вопрос: где решение? Точка (0,0).

- Идея спуска-подъема неплохая и часто рабочая, но интуиция подсказывает, что у него есть не самые приятные аспекты.
- Рассмотрим задачу $\min_{x \in R} \max_{\lambda \in \mathbb{R}} x\lambda$. Стартовая точка (1,1). Вопрос: где решение? Точка (0,0).
- Вектор $\binom{\nabla_x L(x^k, \lambda^k)}{-\nabla_\lambda L(x^k, \lambda^k)}$ всегда ортогонален направлению на решение $\binom{x^k-x^*}{\lambda^k-\lambda^*}$. Вопрос: что это значит?

- Идея спуска-подъема неплохая и часто рабочая, но интуиция подсказывает, что у него есть не самые приятные аспекты.
- Рассмотрим задачу $\min_{x \in R} \max_{\lambda \in \mathbb{R}} x\lambda$. Стартовая точка (1,1). Вопрос: где решение? Точка (0,0).
- Вектор $\binom{\nabla_x L(x^k, \lambda^k)}{-\nabla_\lambda L(x^k, \lambda^k)}$ всегда ортогонален направлению на решение $\binom{x^k-x^*}{\lambda^k-\lambda^*}$. Вопрос: что это значит? Метод не стремится к решению.

- Идея спуска-подъема неплохая и часто рабочая, но интуиция подсказывает, что у него есть не самые приятные аспекты.
- Рассмотрим задачу $\min_{x \in R} \max_{\lambda \in \mathbb{R}} x\lambda$. Стартовая точка (1,1). Вопрос: где решение? Точка (0,0).
- Вектор $\binom{\nabla_x L(x^k, \lambda^k)}{-\nabla_\lambda L(x^k, \lambda^k)}$ всегда ортогонален направлению на решение $\binom{x^k-x^*}{\lambda^k-\lambda^*}$. Вопрос: что это значит? Метод не стремится к решению.
- Интуиция не является сторогой, но может подсказать, что нужно попробовать что-то чуть-чуть другое.

Экстраградиентный метод

Алгоритм 1 Экстраградиентный метод

Вход: размер шага $\gamma > 0$, стартовая точка $x^0 \in \mathbb{R}^d$, количество итераций K

1: **for**
$$k = 0, 1, ..., K - 1$$
 do

2:
$$x^{k+1/2} = x^k - \gamma \nabla_x L(x^k, \lambda^k)$$

3:
$$\lambda^{k+1/2} = \lambda^k + \gamma \nabla_{\lambda} L(x^k, \lambda^k)$$

4:
$$x^{k+1} = x^k - \gamma \nabla_x L(x^{k+1/2}, \lambda^{k+1/2})$$

5:
$$\lambda^{k+1} = \lambda^k + \gamma \nabla_{\lambda} L(x^{k+1/2}, \lambda^{k+1/2})$$

5:
$$\lambda^{k+1} = \lambda^k + \gamma \nabla_{\lambda} L(x^{k+1/2}, \lambda^{k+1/2})$$

6: end for

Выход:
$$\frac{1}{K} \sum_{k=0}^{K-1} x^{k+1/2}, \frac{1}{K} \sum_{k=0}^{K-1} \lambda^{k+1/2}$$

Экстраградиентный метод

Алгоритм 2 Экстраградиентный метод

Вход: размер шага $\gamma>0$, стартовая точка $x^0\in\mathbb{R}^d$, количество итераций K

1: **for**
$$k = 0, 1, ..., K - 1$$
 do

2:
$$x^{k+1/2} = x^k - \gamma \nabla_x L(x^k, \lambda^k)$$

3:
$$\lambda^{k+1/2} = \lambda^k + \gamma \nabla_{\lambda} L(x^k, \lambda^k)$$

4:
$$x^{k+1} = x^k - \gamma \nabla_x L(x^{k+1/2}, \lambda^{k+1/2})$$

5:
$$\lambda^{k+1} = \lambda^k + \gamma \nabla_{\lambda} L(x^{k+1/2}, \lambda^{k+1/2})$$

Выход:
$$\frac{1}{K} \sum_{k=0}^{K-1} x^{k+1/2}, \frac{1}{K} \sum_{k=0}^{K-1} \lambda^{k+1/2}$$

Легко проверить, что для этого метода на задаче $\min_{x \in R} \max_{\lambda \in \mathbb{R}} x \lambda$, направления итогового градиентного шага в скалярном приведении с направлением на решение дает число больше 0, а значит острый угол.

Для удобства введем следующие обозначения

Вектор переменных z и оператор:

$$z = \begin{pmatrix} x \\ \lambda \end{pmatrix}, \quad F(z) = F(x, \lambda) = \begin{pmatrix} \nabla_x L(x, \lambda) \\ -\nabla_\lambda L(x, \lambda) \end{pmatrix}$$

Для удобства введем следующие обозначения

• Вектор переменных z и оператор:

$$z = \begin{pmatrix} x \\ \lambda \end{pmatrix}, \quad F(z) = F(x, \lambda) = \begin{pmatrix} \nabla_x L(x, \lambda) \\ -\nabla_\lambda L(x, \lambda) \end{pmatrix}$$

• Если $\nabla_x L$ и $\nabla_\lambda L$ L-Липшицевы, то L-Липшицев и оператор F. Как проявляется выпуклость по x и вогнутость по λ увидим позже.

Для удобства введем следующие обозначения

• Вектор переменных z и оператор:

$$z = \begin{pmatrix} x \\ \lambda \end{pmatrix}, \quad F(z) = F(x, \lambda) = \begin{pmatrix} \nabla_x L(x, \lambda) \\ -\nabla_\lambda L(x, \lambda) \end{pmatrix}$$

- Если $\nabla_x L$ и $\nabla_\lambda L$ L-Липшицевы, то L-Липшицев и оператор F. Как проявляется выпуклость по x и вогнутость по λ увидим позже.
- **Bonpoc**: как экстраградиентный метод будет выглядеть в новых обозначениях?

$$z^{k+1/2} = z^k - \gamma F(z^k)$$

 $z^{k+1} = z^k - \gamma F(z^{k+1/2})$

Для начала докажем следующую лемму:

Лемма

Пусть $z,y\in\mathbb{R}^d$, и $z^+=z-y$, тогда для любого $u\in\mathbb{R}^d$:

$$||z^{+} - u||_{2}^{2} = ||z - u||_{2}^{2} - 2\langle y, z^{+} - u \rangle - ||z^{+} - z||_{2}^{2}.$$

<u>Доказательство:</u> тут достаточно обычных алгебраических преобразований:

$$||z^{+} - u||_{2}^{2} = ||z^{+} - z + z - u||_{2}^{2}$$

$$= ||z - u||_{2}^{2} + 2\langle z^{+} - z, z - u \rangle + ||z^{+} - z||_{2}^{2}$$

$$= ||z - u||_{2}^{2} + 2\langle z^{+} - z, z^{+} - u \rangle - ||z^{+} - z||_{2}^{2}$$

$$= ||z - u||_{2}^{2} - 2\langle y, z^{+} - u \rangle - ||z^{+} - z||_{2}^{2}.$$

Применим доказанную лемму два раза для итерации экстраградиентного метода:

• Для
$$z = z^k$$
, $y = \gamma F(z^{k+1/2})$ и $z^+ = z^{k+1}$:

$$||z^{k+1} - u||_2^2 = ||z^k - u||_2^2 - 2\gamma \langle F(z^{k+1/2}), z^{k+1} - u \rangle - ||z^{k+1} - z^k||_2^2$$

Применим доказанную лемму два раза для итерации экстраградиентного метода:

• Для
$$z=z^k$$
, $y=\gamma F(z^{k+1/2})$ и $z^+=z^{k+1}$:
$$\|z^{k+1}-u\|_2^2=\|z^k-u\|_2^2-2\gamma\langle F(z^{k+1/2}),z^{k+1}-u\rangle-\|z^{k+1}-z^k\|_2^2$$

• Для
$$z=z^k$$
, $y=\gamma F(z^k)$ и $z^+=z^{k+1/2}$:
$$\|z^{k+1/2}-\tilde{u}\|_2^2=\|z^k-\tilde{u}\|_2^2-2\gamma\langle F(z^k),z^{k+1/2}-\tilde{u}\rangle-\|z^{k+1/2}-z^k\|_2^2$$

• С предыдущего слайда:

$$||z^{k+1} - u||_2^2 = ||z^k - u||_2^2 - 2\gamma \langle F(z^{k+1/2}), z^{k+1} - u \rangle - ||z^{k+1} - z^k||_2^2$$

$$||z^{k+1/2} - \tilde{u}||_2^2 = ||z^k - \tilde{u}||_2^2 - 2\gamma \langle F(z^k), z^{k+1/2} - \tilde{u} \rangle - ||z^{k+1/2} - z^k||_2^2$$

• Подставим вместо $\tilde{u} = z^{k+1}$ и сложим

$$||z^{k+1} - u||_{2}^{2} + ||z^{k+1/2} - z^{k+1}||_{2}^{2}$$

$$= ||z^{k} - u||_{2}^{2} - 2\gamma \langle F(z^{k+1/2}), z^{k+1} - u \rangle$$

$$- 2\gamma \langle F(z^{k}), z^{k+1/2} - z^{k+1} \rangle - ||z^{k+1/2} - z^{k}||_{2}^{2}$$

Немного поработаем с выражением с прошлого слайда:

$$||z^{k+1} - u||_{2}^{2} + ||z^{k+1/2} - z^{k+1}||_{2}^{2}$$

$$= ||z^{k} - u||_{2}^{2} - 2\gamma \langle F(z^{k+1/2}), z^{k+1/2} - u \rangle$$

$$- 2\gamma \langle F(z^{k}) - F(z^{k+1/2}), z^{k+1/2} - z^{k+1} \rangle - ||z^{k+1/2} - z^{k}||_{2}^{2}$$

Немного поработаем с выражением с прошлого слайда:

$$||z^{k+1} - u||_{2}^{2} + ||z^{k+1/2} - z^{k+1}||_{2}^{2}$$

$$= ||z^{k} - u||_{2}^{2} - 2\gamma \langle F(z^{k+1/2}), z^{k+1/2} - u \rangle$$

$$- 2\gamma \langle F(z^{k}) - F(z^{k+1/2}), z^{k+1/2} - z^{k+1} \rangle - ||z^{k+1/2} - z^{k}||_{2}^{2}$$

KEIII:

$$||z^{k+1} - u||_{2}^{2} + ||z^{k+1/2} - z^{k+1}||_{2}^{2}$$

$$\leq ||z^{k} - u||_{2}^{2} - 2\gamma \langle F(z^{k+1/2}), z^{k+1/2} - u \rangle - ||z^{k+1/2} - z^{k}||_{2}^{2}$$

$$+ \gamma^{2} ||F(z^{k}) - F(z^{k+1/2})||_{2}^{2} + ||z^{k+1/2} - z^{k+1}||_{2}^{2}$$

или

$$||z^{k+1} - u||_{2}^{2} \le ||z^{k} - u||_{2}^{2} - 2\gamma \langle F(z^{k+1/2}), z^{k+1/2} - u \rangle + \gamma^{2} ||F(z^{k}) - F(z^{k+1/2})||_{2}^{2} - ||z^{k+1/2} - z^{k}||_{2}^{2}$$

L-Липшицевость F:

$$||z^{k+1} - u||_2^2 \le ||z^k - u||_2^2 - 2\gamma \langle F(z^{k+1/2}), z^{k+1/2} - u \rangle + \gamma^2 L^2 ||z^k - z^{k+1/2}||_2^2 - ||z^{k+1/2} - z^k||_2^2$$

L-Липшицевость F:

$$||z^{k+1} - u||_{2}^{2} \le ||z^{k} - u||_{2}^{2} - 2\gamma \langle F(z^{k+1/2}), z^{k+1/2} - u \rangle + \gamma^{2} L^{2} ||z^{k} - z^{k+1/2}||_{2}^{2} - ||z^{k+1/2} - z^{k}||_{2}^{2}$$

• $\gamma \leq \frac{1}{L}$:

$$||z^{k+1} - u||_2^2 \le ||z^k - u||_2^2 - 2\gamma \langle F(z^{k+1/2}), z^{k+1/2} - u \rangle$$

или

$$2\gamma \langle F(z^{k+1/2}), z^{k+1/2} - u \rangle \le ||z^k - u||_2^2 - ||z^{k+1} - u||_2^2$$

• Работаем с

$$\langle F(z^{k+1/2}), z^{k+1/2} - u \rangle$$

$$= \langle \begin{pmatrix} \nabla_x L(x^{k+1/2}, \lambda^{k+1/2}) \\ -\nabla_\lambda L(x^{k+1/2}, \lambda^{k+1/2}) \end{pmatrix}, \begin{pmatrix} x^{k+1/2} \\ \lambda^{k+1/2} \end{pmatrix} - \begin{pmatrix} u_x \\ u_\lambda \end{pmatrix} \rangle$$

$$= \langle \nabla_x L(x^{k+1/2}, \lambda^{k+1/2}), x^{k+1/2} - u_x \rangle$$

$$+ \langle -\nabla_\lambda L(x^{k+1/2}, \lambda^{k+1/2}), \lambda^{k+1/2} - u_\lambda \rangle$$

• Работаем с

$$\langle F(z^{k+1/2}), z^{k+1/2} - u \rangle$$

$$= \langle \begin{pmatrix} \nabla_x L(x^{k+1/2}, \lambda^{k+1/2}) \\ -\nabla_\lambda L(x^{k+1/2}, \lambda^{k+1/2}) \end{pmatrix}, \begin{pmatrix} x^{k+1/2} \\ \lambda^{k+1/2} \end{pmatrix} - \begin{pmatrix} u_x \\ u_\lambda \end{pmatrix} \rangle$$

$$= \langle \nabla_x L(x^{k+1/2}, \lambda^{k+1/2}), x^{k+1/2} - u_x \rangle$$

$$+ \langle -\nabla_\lambda L(x^{k+1/2}, \lambda^{k+1/2}), \lambda^{k+1/2} - u_\lambda \rangle$$

ullet Выпуклость по x и вогнутость по λ :

$$\langle F(z^{k+1/2}), z^{k+1/2} - u \rangle = \langle \nabla_x L(x^{k+1/2}, \lambda^{k+1/2}), x^{k+1/2} - u_x \rangle + \langle -\nabla_{\lambda} L(x^{k+1/2}, \lambda^{k+1/2}), \lambda^{k+1/2} - u_{\lambda} \rangle \geq L(x^{k+1/2}, \lambda^{k+1/2}) - L(u_x, \lambda^{k+1/2}) - L(x^{k+1/2}, \lambda^{k+1/2}) + L(x^{k+1/2}, u_{\lambda})$$

• Итого получаем:

$$2\gamma\left(L(x^{k+1/2},u_{\lambda})-L(u_{x},\lambda^{k+1/2})\right)\leq \|z^{k}-u\|_{2}^{2}-\|z^{k+1}-u\|_{2}^{2}$$

• Итого получаем:

$$2\gamma\left(L(x^{k+1/2},u_{\lambda})-L(u_{x},\lambda^{k+1/2})\right)\leq \|z^{k}-u\|_{2}^{2}-\|z^{k+1}-u\|_{2}^{2}$$

• Суммируем по всем k от 0 до K-1 и делим на $2\gamma K$:

$$\frac{1}{K} \sum_{k=0}^{K-1} \left(L(x^{k+1/2}, u_{\lambda}) - L(u_{x}, \lambda^{k+1/2}) \right) \leq \frac{\|z^{0} - u\|_{2}^{2} - \|z^{K} - u\|_{2}^{2}}{2\gamma K} \\
\leq \frac{\|z^{0} - u\|_{2}^{2}}{2\gamma K}$$

• Итого получаем:

$$2\gamma \left(L(x^{k+1/2},u_{\lambda})-L(u_{x},\lambda^{k+1/2})\right) \leq \|z^{k}-u\|_{2}^{2}-\|z^{k+1}-u\|_{2}^{2}$$

• Суммируем по всем k от 0 до K-1 и делим на $2\gamma K$:

$$\frac{1}{K} \sum_{k=0}^{K-1} \left(L(x^{k+1/2}, u_{\lambda}) - L(u_{x}, \lambda^{k+1/2}) \right) \leq \frac{\|z^{0} - u\|_{2}^{2} - \|z^{K} - u\|_{2}^{2}}{2\gamma K} \leq \frac{\|z^{0} - u\|_{2}^{2}}{2\gamma K}$$

• Неравенство Йесена для выпуклой и вогнутой функции дает:

$$\left(L\left(\frac{1}{K}\sum_{k=0}^{K-1}x^{k+1/2},u_{\lambda}\right)-L\left(u_{x},\frac{1}{K}\sum_{k=0}^{K-1}\lambda^{k+1/2}\right)\right)\leq \frac{\|z^{0}-u\|_{2}^{2}}{2\gamma K}$$

Сходимость экстраградиентного метода

Теорема о сходимости экстраградиентного метода

Пусть дана непрерывно дифференцируемая по обеим группам переменным выпуклая-вогнутая L-гладкая функция $L:\mathbb{R}^d\times\mathbb{R}^n\to\mathbb{R}$, тогда для экстраградиентного метода справедлива следующая оценка сходимости для любого $u\in\mathbb{R}^d\times\mathbb{R}^n$ и для любого $\gamma\leq \frac{1}{l}$:

$$\left(L\left(\frac{1}{K} \sum_{k=0}^{K-1} x^{k+1/2}, u_{\lambda}\right) - L\left(u_{x}, \frac{1}{K} \sum_{k=0}^{K-1} \lambda^{k+1/2}\right) \right) \leq \frac{\|z^{0} - u\|_{2}^{2}}{2\gamma K}$$

Сходимость экстраградиентного метода

Теорема о сходимости экстраградиентного метода

Пусть дана непрерывно дифференцируемая по обеим группам переменным выпуклая-вогнутая L-гладкая функция $L:\mathbb{R}^d\times\mathbb{R}^n\to\mathbb{R}$, тогда для экстраградиентного метода справедлива следующая оценка сходимости для любого $u\in\mathbb{R}^d\times\mathbb{R}^n$ и для любого $\gamma\leq \frac{1}{l}$:

$$\left(L\left(\frac{1}{K} \sum_{k=0}^{K-1} x^{k+1/2}, u_{\lambda}\right) - L\left(u_{x}, \frac{1}{K} \sum_{k=0}^{K-1} \lambda^{k+1/2}\right) \right) \leq \frac{\|z^{0} - u\|_{2}^{2}}{2\gamma K}$$

Подставим $\gamma = \frac{1}{L}$:

$$\left(L\left(\frac{1}{K}\sum_{k=0}^{K-1} x^{k+1/2}, u_{\lambda}\right) - L\left(u_{x}, \frac{1}{K}\sum_{k=0}^{K-1} \lambda^{k+1/2}\right)\right) \leq \frac{L\|z^{0} - u\|_{2}^{2}}{2K}$$

Сходимость экстраградиентного метода

Теорема о сходимости экстраградиентного метода

Пусть дана непрерывно дифференцируемая по обеим группам переменным выпуклая-вогнутая L-гладкая функция $L: \mathbb{R}^d \times \mathbb{R}^n \to \mathbb{R}$, тогда для экстраградиентного метода справедлива следующая оценка сходимости для любого $u \in \mathbb{R}^d \times \mathbb{R}^n$ и для любого $\gamma \leq \frac{1}{L}$:

$$\left(L\left(\frac{1}{K} \sum_{k=0}^{K-1} x^{k+1/2}, u_{\lambda} \right) - L\left(u_{x}, \frac{1}{K} \sum_{k=0}^{K-1} \lambda^{k+1/2} \right) \right) \leq \frac{\|z^{0} - u\|_{2}^{2}}{2\gamma K}$$

Подставим $\gamma = \frac{1}{L}$:

$$\left(L\left(\frac{1}{K}\sum_{k=0}^{K-1} x^{k+1/2}, u_{\lambda}\right) - L\left(u_{x}, \frac{1}{K}\sum_{k=0}^{K-1} \lambda^{k+1/2}\right)\right) \leq \frac{L\|z^{0} - u\|_{2}^{2}}{2K}$$

Остается вопрос: что подставлять в качестве $u = (u_{\bar{x}}, u_{\lambda})$?

Александр Безносиков

Лекция 7

19 октября 2023

27 / 40

• Ожидаемый вариант: $L(x^k, \lambda^*) - L(x^*, \lambda^k)$, где x^* и λ^* – решение седловой задачи.

• Ожидаемый вариант: $L(x^k, \lambda^*) - L(x^*, \lambda^k)$, где x^* и λ^* – решение седловой задачи. Рассмотрим самую простую седловую задачу $\min_x \max_\lambda (x-1) \cdot (\lambda+1)$. Решение этой задачи $x=1, \lambda=-1, g(1,-1)=0$. Тогда $L(x,\lambda^*)-L(x^*,\lambda)=0$.

• Ожидаемый вариант: $L(x^k,\lambda^*)-L(x^*,\lambda^k)$, где x^* и λ^* – решение седловой задачи. Рассмотрим самую простую седловую задачу $\min_x \max_\lambda(x-1)\cdot(\lambda+1)$. Решение этой задачи $x=1,\lambda=-1,g(1,-1)=0$. Тогда $L(x,\lambda^*)-L(x^*,\lambda)=0$. Такой критерий не подходит для выпукло-вогнутых седел, но подходит для сильно выпукло—сильно вогнутых. Но в сильно выпуклом—сильно вогнутом случае можно доказать линейную сходимость по аргументу, что более сильный результат.

- Ожидаемый вариант: $L(x^k,\lambda^*)-L(x^*,\lambda^k)$, где x^* и λ^* решение седловой задачи. Рассмотрим самую простую седловую задачу $\min_x \max_\lambda(x-1)\cdot(\lambda+1)$. Решение этой задачи $x=1,\lambda=-1,g(1,-1)=0$. Тогда $L(x,\lambda^*)-L(x^*,\lambda)=0$. Такой критерий не подходит для выпукло-вогнутых седел, но подходит для сильно выпукло—сильно вогнутых. Но в сильно выпуклом—сильно вогнутом случае можно доказать линейную сходимость по аргументу, что более сильный результат.
- Нужный вариант: $\max_{\lambda} L(x^k, \lambda) \min_{x} L(x, \lambda^k)$.

- Ожидаемый вариант: $L(x^k,\lambda^*)-L(x^*,\lambda^k)$, где x^* и λ^* решение седловой задачи. Рассмотрим самую простую седловую задачу $\min_x \max_\lambda(x-1)\cdot(\lambda+1)$. Решение этой задачи $x=1,\lambda=-1,g(1,-1)=0$. Тогда $L(x,\lambda^*)-L(x^*,\lambda)=0$. Такой критерий не подходит для выпукло-вогнутых седел, но подходит для сильно выпукло—сильно вогнутых. Но в сильно выпуклом—сильно вогнутом случае можно доказать линейную сходимость по аргументу, что более сильный результат.
- Нужный вариант: $\max_{\lambda} L(x^k, \lambda) \min_{x} L(x, \lambda^k)$.
- Если $\min_{x \in \mathcal{X}} \max_{\lambda \in \Lambda} (x-1) \cdot (\lambda+1) \ \mathcal{X} = \mathbb{R}, \Lambda = \mathbb{R}$, то вопрос: что можно сказать про $\max_{\lambda} g(x^k, \lambda) \min_{x} g(x, y^k)$?

- Ожидаемый вариант: $L(x^k,\lambda^*)-L(x^*,\lambda^k)$, где x^* и λ^* решение седловой задачи. Рассмотрим самую простую седловую задачу $\min_x \max_\lambda(x-1)\cdot(\lambda+1)$. Решение этой задачи $x=1,\lambda=-1,g(1,-1)=0$. Тогда $L(x,\lambda^*)-L(x^*,\lambda)=0$. Такой критерий не подходит для выпукло-вогнутых седел, но подходит для сильно выпукло—сильно вогнутых. Но в сильно выпуклом—сильно вогнутом случае можно доказать линейную сходимость по аргументу, что более сильный результат.
- Нужный вариант: $\max_{\lambda} L(x^k, \lambda) \min_{x} L(x, \lambda^k)$.
- Если $\min_{x \in \mathcal{X}} \max_{\lambda \in \Lambda} (x-1) \cdot (\lambda+1) \ \mathcal{X} = \mathbb{R}, \Lambda = \mathbb{R}$, то вопрос: что можно сказать про $\max_{\lambda} g(x^k, \lambda) \min_{x} g(x, y^k)$? $= +\infty$.

• Поэтому критерий вида: $\max_{\lambda \in \Lambda} L(x^k, \lambda) - \min_{x \in \mathcal{X}} L(x, \lambda^k)$, формально можно рассматривать только на компактах.

- Поэтому критерий вида: $\max_{\lambda \in \Lambda} L(x^k, \lambda) \min_{x \in \mathcal{X}} L(x, \lambda^k)$, формально можно рассматривать только на компактах.
- С первого взгляда кажется, что это значит, что выпукло-вогнутые седловые задачи можно решать только на компактах (об этом говорила теорема Сиона-Какутани).

- Поэтому критерий вида: $\max_{\lambda \in \Lambda} L(x^k, \lambda) \min_{x \in \mathcal{X}} L(x, \lambda^k)$, формально можно рассматривать только на компактах.
- С первого взгляда кажется, что это значит, что выпукло-вогнутые седловые задачи можно решать только на компактах (об этом говорила теорема Сиона-Какутани).
- Такую же проблему встречали и в выпуклой минимизации (на \mathbb{R}^d выпуклая задача может не иметь решения).

- Поэтому критерий вида: $\max_{\lambda \in \Lambda} L(x^k, \lambda) \min_{x \in \mathcal{X}} L(x, \lambda^k)$, формально можно рассматривать только на компактах.
- С первого взгляда кажется, что это значит, что выпукло-вогнутые седловые задачи можно решать только на компактах (об этом говорила теорема Сиона-Какутани).
- Такую же проблему встречали и в выпуклой минимизации (на \mathbb{R}^d выпуклая задача может не иметь решения).
- В выпуклой минимизации предполагали, что решение существует.

- Поэтому критерий вида: $\max_{\lambda \in \Lambda} L(x^k, \lambda) \min_{x \in \mathcal{X}} L(x, \lambda^k)$, формально можно рассматривать только на компактах.
- С первого взгляда кажется, что это значит, что выпукло-вогнутые седловые задачи можно решать только на компактах (об этом говорила теорема Сиона-Какутани).
- Такую же проблему встречали и в выпуклой минимизации (на \mathbb{R}^d выпуклая задача может не иметь решения).
- В выпуклой минимизации предполагали, что решение существует.
- Здесь можно сделать то же самое: предположим что решение существует и лежит в некотором компактном множестве $\mathcal{X}_* \times \Lambda_*$, тогда в критерии сходимости можно брать $\Lambda = \Lambda_*$ и $\mathcal{X} = \mathcal{X}_*$.

Экстраградиентный метод

- Имеет сходимость 1/K для выпукло-вогнутых гладких седловых задач.
- Можно добавить проекции и решать седловую задачу на множествах $\mathcal{X} \neq \mathbb{R}^d$ и $\Lambda \neq R^n$.
- Можно получить линейную сходимость для сильно выпуклых—сильно вогнутых задач.
- В случае, если целевая функция седловой задачи это функция Лагранжа, то мы по факту переносим ограничения исходной задачи минимизации в целевую функцию седловой задачи. При этом теперь у седловой задачи будут простые ограничения: оставшиеся для x, которые не занесли в Лагранжиан, а также простые ограничения на $\lambda_i \geq 0$ (можно также добавить искусственно ограничения сверху на λ_i и на ν : $\lambda_i \leq A$ и $\nu_i \in [-B, B]$).

Рассмотрим следующую задачу:

$$\min_{x \in \mathbb{R}^d} \max_{\lambda \in \mathbb{R}^n} L(x, \lambda) = f(x) - \lambda^T A x - g(\lambda),$$

где функция $f-L_f$ -гладкая и выпуклая, а функция $g-L_g$ -гладкая и выпуклая.

Рассмотрим следующую задачу:

$$\min_{x \in \mathbb{R}^d} \max_{\lambda \in \mathbb{R}^n} L(x, \lambda) = f(x) - \lambda^T A x - g(\lambda),$$

где функция $f-L_f$ -гладкая и выпуклая, а функция $g-L_g$ -гладкая и выпуклая.

Примеры

• Минимизация с ограничениями вида равенств:

$$\min_{x \in \mathbb{R}^d} f(x)$$
s.t. $Ax = b$

Рассмотрим следующую задачу:

$$\min_{x \in \mathbb{R}^d} \max_{\lambda \in \mathbb{R}^n} L(x, \lambda) = f(x) - \lambda^T A x - g(\lambda),$$

где функция $f-L_f$ -гладкая и выпуклая, а функция $g-L_g$ -гладкая и выпуклая.

Примеры

• Минимизация с ограничениями вида равенств:

$$\min_{x \in \mathbb{R}^d} f(x)$$
s.t. $Ax = b$

Лагранж:

$$\min_{\mathbf{x} \in \mathbb{R}^d} \max_{\lambda \in \mathbb{R}^n} L(\mathbf{x}, \lambda) = f(\mathbf{x}) - \lambda^T A \mathbf{x}.$$

Примеры

• Линейная модель с регуляризатором:

$$\min_{x \in \mathbb{R}^d} f(x) + \ell(Ax)$$

Примеры

• Линейная модель с регуляризатором:

$$\min_{x \in \mathbb{R}^d} f(x) + \ell(Ax)$$

• Заметим, что для самосопряженной функции $\ell(Ax) = \ell^{**}(Ax) = \max_{\lambda} \{(Ax)^T \lambda - \ell^*(\lambda)\}$, тогда

$$\min_{x \in \mathbb{R}^d} \max_{\lambda \in \mathbb{R}^n} f(x) - \lambda^T A x - \ell^*(\lambda).$$

Алгоритм 3 Прямо-двойственный алгоритм

Вход: стартовая точка $x^0 \in \mathbb{R}^d$, количество итераций K

1: **for** k = 0, 1, ..., K - 1 **do**

2:
$$x^{k+1} = x^k - \eta \left(\nabla f(x^k) - A^T \lambda^k \right)$$

3:
$$\lambda^{k+1} = \lambda^k - \eta \left(\nabla g(\lambda^k) + A(2x^{k+1} - x^k) \right)$$

4: end for

Выход:
$$\frac{1}{K} \sum_{k=1}^{K} x^k, \frac{1}{K} \sum_{k=1}^{K} \lambda^k$$

Алгоритм 4 Прямо-двойственный алгоритм

Вход: стартовая точка $x^0 \in \mathbb{R}^d$, количество итераций K

1: **for**
$$k = 0, 1, ..., K - 1$$
 do

2:
$$x^{k+1} = x^k - \eta \left(\nabla f(x^k) - A^T \lambda^k \right)$$

3:
$$\lambda^{k+1} = \lambda^k - \eta \left(\nabla g(\lambda^k) + A(2x^{k+1} - x^k) \right)$$

4: end for

Выход:
$$\frac{1}{K} \sum_{k=1}^{K} x^k, \frac{1}{K} \sum_{k=1}^{K} \lambda^k$$

Если вместо $(2x^{k+1}-x^k)$ подставить просто x^k получится просто спуск-подъем. В $(2x^{k+1}-x^k)$ зашита "экстраградиентность".

34 / 40

Доказательство

• Выпуклость и гладкость f:

$$L(x^{k+1}, \lambda^{k+1}) - L(x, \lambda^{k+1})$$

$$= f(x^{k+1}) - f(x) - (\lambda^{k+1})^T A(x^{k+1} - x)$$

$$= f(x^{k+1}) - f(x^k) + f(x^k) - f(x) - (\lambda^{k+1})^T A(x^{k+1} - x)$$

$$\leq \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L_f}{2} \|x^{k+1} - x^k\|_2^2$$

$$+ \langle \nabla f(x^k), x^k - x \rangle - (\lambda^{k+1})^T A(x^{k+1} - x)$$

$$= \langle \nabla f(x^k) - A^T \lambda^k, x^{k+1} - x \rangle + \frac{L_f}{2} \|x^{k+1} - x^k\|_2^2$$

$$- (\lambda^{k+1} - \lambda^k)^T A(x^{k+1} - x)$$

$$= \eta^{-1} \langle x^k - x^{k+1}, x^{k+1} - x \rangle + \frac{L_f}{2} \|x^{k+1} - x^k\|_2^2$$

$$- (\lambda^{k+1} - \lambda^k)^T A(x^{k+1} - x)$$

• Выпуклость и гладкость g:

$$L(x^{k+1}, \lambda) - L(x^{k+1}, \lambda^{k+1})$$

$$= g(\lambda^{k+1}) - g(\lambda) - (x^{k+1})^T A^T (\lambda - \lambda^{k+1})$$

$$= g(\lambda^{k+1}) - g(\lambda^k) + g(\lambda^k) - g(\lambda) - (x^{k+1})^T A^T (\lambda - \lambda^{k+1})$$

$$\leq \langle \nabla g(\lambda^k), \lambda^{k+1} - \lambda^k \rangle + \frac{L_g}{2} \|\lambda^{k+1} - \lambda^k\|_2^2$$

$$+ \langle \nabla g(\lambda^k), \lambda^k - x \rangle - (x^{k+1})^T A^T (\lambda - \lambda^{k+1})$$

$$= \langle \nabla g(\lambda^k) + A(2x^{k+1} - x^k), \lambda^{k+1} - \lambda \rangle + \frac{L_g}{2} \|\lambda^{k+1} - \lambda^k\|_2^2$$

$$+ (x^k - x^{k+1})^T A^T (\lambda^{k+1} - \lambda)$$

$$= \eta^{-1} \langle \lambda^k - \lambda^{k+1}, \lambda^{k+1} - \lambda \rangle + \frac{L_g}{2} \|\lambda^{k+1} - \lambda^k\|_2^2$$

$$+ (x^k - x^{k+1})^T A^T (\lambda^{k+1} - \lambda)$$

• С предыдущих слайдов:

$$L(x^{k+1}, \lambda^{k+1}) - L(x, \lambda^{k+1}) \le \eta^{-1} \langle x^k - x^{k+1}, x^{k+1} - x \rangle + \frac{L_f}{2} ||x^{k+1} - x^k||_2^2 - (\lambda^{k+1} - \lambda^k)^T A(x^{k+1} - x)$$

$$L(x^{k+1}, \lambda) - L(x^{k+1}, \lambda^{k+1}) \le \eta^{-1} \langle \lambda^k - \lambda^{k+1}, \lambda^{k+1} - \lambda \rangle + \frac{L_g}{2} \|\lambda^{k+1} - \lambda^k\|_2^2 + (x^k - x^{k+1})^T A^T (\lambda^{k+1} - \lambda)$$

Суммируем:

$$L(x^{k+1}, \lambda) - L(x, \lambda^{k+1}) \le \begin{pmatrix} (x^k - x^{k+1})^T \\ (\lambda^k - \lambda^{k+1})^T \end{pmatrix}^T \begin{pmatrix} \frac{1}{\eta} & A \\ A & \frac{1}{\eta} \end{pmatrix} \begin{pmatrix} x^{k+1} - x \\ \lambda^{k+1} - \lambda \end{pmatrix} + \frac{L_g}{2} \|\lambda^{k+1} - \lambda^k\|_2^2 + \frac{L_f}{2} \|x^{k+1} - x^k\|_2^2$$

• Индуцированное скалярное произведение: $\langle x, Py \rangle = \langle x, y \rangle_P$ и норма $\|x\|_P^2 = \langle x, x \rangle_P$. У нас сейчас скалярное произведение вида $(z - \text{вектор из } x \text{ и } \lambda)$

$$\langle z^k - z^{k+1}, z^{k+1} - z \rangle_P$$
, где $P = \begin{pmatrix} rac{1}{\eta} & A \ A & rac{1}{\eta} \end{pmatrix}$

• Ровно, как для обычного скалярного произведения:

$$\begin{split} L(x^{k+1},\lambda) - L(x,\lambda^{k+1}) &\leq \langle z^k - z^{k+1}, z^{k+1} - z \rangle_P \\ &\quad + \frac{\max(L_g,L_f)}{2} \|z^{k+1} - z^k\|_2^2 \\ &= \frac{1}{2} \|z^k - z\|_P^2 - \frac{1}{2} \|z^{k+1} - z\|_P^2 - \frac{1}{2} \|z^{k+1} - z^k\|_P^2 \\ &\quad + \frac{\max(L_g,L_f)}{2} \|z^{k+1} - z^k\|_2^2. \end{split}$$

• Суммируем:

$$\begin{split} &\sum_{k=0}^{K-1} \left(L(x^{k+1}, \lambda) - L(x, \lambda^{k+1}) \right) \\ &\leq &\frac{1}{2} \|z^0 - z\|_P^2 - \frac{1}{2} \|z^K - z\|_P^2 \\ &+ \sum_{k=0}^{K-1} \left(\frac{\max(L_g, L_f)}{2} \|z^{k+1} - z^k\|_2^2 - \frac{1}{2} \|z^{k+1} - z^k\|_P^2 \right). \end{split}$$

• Суммируем:

$$\begin{split} &\sum_{k=0}^{K-1} \left(L(x^{k+1}, \lambda) - L(x, \lambda^{k+1}) \right) \\ &\leq &\frac{1}{2} \| z^0 - z \|_P^2 - \frac{1}{2} \| z^K - z \|_P^2 \\ &+ \sum_{k=0}^{K-1} \left(\frac{\max(L_g, L_f)}{2} \| z^{k+1} - z^k \|_2^2 - \frac{1}{2} \| z^{k+1} - z^k \|_P^2 \right). \end{split}$$

• Вопрос: что потребуем?

• Суммируем:

$$\begin{split} &\sum_{k=0}^{K-1} \left(L(x^{k+1}, \lambda) - L(x, \lambda^{k+1}) \right) \\ &\leq &\frac{1}{2} \|z^0 - z\|_P^2 - \frac{1}{2} \|z^K - z\|_P^2 \\ &+ \sum_{k=0}^{K-1} \left(\frac{\max(L_g, L_f)}{2} \|z^{k+1} - z^k\|_2^2 - \frac{1}{2} \|z^{k+1} - z^k\|_P^2 \right). \end{split}$$

• Вопрос: что потребуем? $P\succ 0$ и $P-\max(L_g,L_f)I\succ 0$, чтобы "убить" последнюю строку и оставить $\|z^0-z\|^2$.

• Суммируем:

$$\begin{split} &\sum_{k=0}^{K-1} \left(L(x^{k+1}, \lambda) - L(x, \lambda^{k+1}) \right) \\ &\leq &\frac{1}{2} \| z^0 - z \|_P^2 - \frac{1}{2} \| z^K - z \|_P^2 \\ &+ \sum_{k=0}^{K-1} \left(\frac{\max(L_g, L_f)}{2} \| z^{k+1} - z^k \|_2^2 - \frac{1}{2} \| z^{k+1} - z^k \|_P^2 \right). \end{split}$$

• Вопрос: что потребуем? $P\succ 0$ и $P-\max(L_g,L_f)I\succ 0$, чтобы "убить" последнюю строку и оставить $\|z^0-z\|^2$. Легко проверить, что это достигается с помощью $\eta\leq \frac{1}{\max(L_g,L_f)+\|A\|_2}$.

4□ > 4□ > 4□ > 4 = > 4 = > 4 = 990°

• Делим на К и получаем

$$\frac{1}{K} \sum_{k=0}^{K-1} \left(L(x^{k+1}, \lambda) - L(x, \lambda^{k+1}) \right) \le \frac{1}{2K} \|z^0 - z\|_P^2.$$

• Делим на K и получаем

$$\frac{1}{K} \sum_{k=0}^{K-1} \left(L(x^{k+1}, \lambda) - L(x, \lambda^{k+1}) \right) \le \frac{1}{2K} \|z^0 - z\|_P^2.$$

• Неравенство Йенсена для выпуклой и вогнутой функции дает

$$L\left(\frac{1}{K}\sum_{k=0}^{K-1}x^{k+1},\lambda\right) - L\left(x,\frac{1}{K}\sum_{k=0}^{K-1}\lambda^{k+1}\right) \leq \frac{1}{2K}\|z^0 - z\|_P^2.$$

Сходимость прямо-двойственного метода

Сходимость прямо-двойственного метода

Если в билинейной седловой задаче функция f является выпуклой и L_f -гладкой, а функция g является вогнутой и L_g -гладкой, то прямо-двойственный метод имеет следующую оценку сходимости для любых $x\in\mathbb{R}^d$ и $u\in\mathbb{R}^n$

$$L\left(\frac{1}{K}\sum_{k=0}^{K-1}x^{k+1},\lambda\right) - L\left(x,\frac{1}{K}\sum_{k=0}^{K-1}\lambda^{k+1}\right) \le \frac{1}{2K}\|z^0 - z\|_P^2.$$

Здесь абсолютно эквивалетная ситуация с критерием сходимости, что была в обсуждении сходимости экстраградиентного метода.