Algebra Qualifying Exam Spring 1993

All rings are assumed to have a multiplicative identity, denoted 1. The fields \mathbb{Q} , \mathbb{R} and \mathbb{C} are the fields of rational, real and complex numbers, respectively.

- **1.** Let G be a group of order $5 \cdot 7 \cdot 11$. Prove that $7 \parallel Z(G) \parallel$, where Z(G) denotes the *center* of G.
- **2.** Let G be a finite group and let C be a conjugacy class of elements in G. If $|C| = \frac{1}{2}|G|$, show that every element of C is an involution (i.e., an element of order 2).
- **3.** Let F be a field. Prove that the groups (F, +), (F^{\times}, \times) cannot be isomorphic. (Here, $F^{\times} = F \{0\}$).
- **4.** Let R be a commutative ring, and let $x \in R$. Define what it means for x to be an *irreducible* element, and define what it means for x to be *prime*. If R is a *unique factorization domain*, show that x is irreducible if and only if x is prime.
- **5.** Let F be a field and let R be the ring

$$R = \left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} | a, b \in F \right\}.$$

Define the R-modules

$$M_1 = \left\{ \begin{bmatrix} a \\ 0 \end{bmatrix} | a \in F \right\}, M_2 = \left\{ \begin{bmatrix} 0 \\ b \end{bmatrix} | b \in F \right\},$$

where the module action is matrix multiplicaton. Prove that $M_1 \ncong_R M_2$.

- **6.** Let V a vector space and let $S \subseteq V$ be a finite subset which generates V. Prove that S contains a basis of V.
- 7. Let V be an n-dimensional vector space over a field F, and let $1_V \neq T : V \to V$ be a linear transformation satisfying $\ker(T 1_V) \supseteq \operatorname{im}(T 1_V)$. Compute the characteristic and minimal polynomials of T.
- 8. Let $f(x), g(x) \in F[x]$, and let d(x) be the greatest common divisor of f(x) and g(x) in F[x]. If $F \subseteq K$ is any field extension, show that d(x) is still the greatest common divisor of f(x) and g(x) in K[x].
- **9.** Let F_q be the finite field of q elements, and let K be an extension of f_q , of degree n.
 - (a) Prove that the map $\tau_q: K \to K, \tau_q(x) = x^q$ is an automorphism of K, and that F_q is precisely the subfield of fixed elements of τ_q .
 - (b) Show that $Gal(K/F_q)$ is cyclic, generated by the element τ_q .