

Direcção Pedagógica

Departamento de Admissão à Universidade (DAU)

Disciplina:	MATEMÁTICA I	Nº Questões:	40
Duração:	90 minutos	Alternativas por questão:	5
Ano:	2022		

INSTRUÇÕES

- Preencha as suas respostas na FOLHA DE RESPOSTAS que lhe foi fornecida no início desta prova. Não será aceite qualquer outra folha adicional, incluindo este enunciado.
- Na FOLHA DE RESPOSTAS, assinale a letra que corresponde à alternativa escolhida pintando completamente o interior do círculo por cima da letra. Por exemplo, pinte assim.
- A máquina de leitura óptica anula todas as questões com mais de uma resposta e/ou com borrões. Para evitar isto, preencha primeiro à lápis HB, e só depois, quando tiver certeza das respostas, à esferográfica (de cor azul ou preta).

Leia	o texto com atenção e respoi	nda as questoes que se s	seguem.		
1.	O valor de $\left -\sqrt{5}+2\right $ corresponde a seguinte opção:				
	• • •	B. $\sqrt{7}$	C. 2/5	D. $\sqrt{5} - 2$	E. $ \sqrt{5} + 2 $
2.	Qual é a solução da equaç	$e\tilde{a}o\left \frac{4}{x-1}\right =2$?			
	A. -4	B. 2	C. 3 e −5	D. −1 e 3	E. 4
3.	Qual é o conjunto que rep A. $x \le -1 \lor x \ge 5$			D. $-5 \le x \le 5$	E. $-1 \le x \le 5$
4.	Tendo em conta a relação	- x < x é correcto a	afirmar que:		
	A. R	B. $x = 0$	C. $x < 0$	D. $x > 0$	E. Ø
5.	Qual é o conjunto de solu	ções da inequação $ x ^2$	$ x^2 - 4 x + 3 \le 0$?		
	A. {1; 3}	B. $[-3, -1] \cup [1,3]$	C. [1,3]	D. $]-\infty, -1[\cup]3, \infty[$	E. [-1,3]
6.			as faces numeradas de 1 a (6. A probabilidade de obter	4 das faces é dada pela
	tabela abaixo. Qual é a pro	babilidade de obter u	m número par?		- †
	N°.	1 2	3 4 0,1 0,15	5 6 0,15 ?	-
	Prob.	0,1 ?	0,1 0,15	0,15 ?	_i
	A. 1	B. 3/10	C. 0,35	D. 1/2	E. 0,65
7.			te de um trabalho individual		rentes, numeradas de 1 a
	40. Qual é a probabilidad		nte da Inocência ser ímpar	e menor que 12?	
	A. 1/8	B. 11/40	C. 3/20	D. 1/4	E. 3/10
8.			devem ser realizados num t	torneio com 20 pessoas e q	ual é a probabilidade <i>p</i>
	de uma pessoa ser a vence				
				D. $m = 200$,	
	p = 1/10	p = 1/20	p = 1/40	p = 1/20	p = 1/40
9.			em 2 grupos de 11 e 7 pesso		
	A. $\frac{18!}{7!11!}$	B. $\frac{18!}{7!} + \frac{18!}{11!}$	C. $\frac{18!18!}{7!11!}$	D. 11! 7! 2!	E. $\frac{18!}{11!} \times 7$
10.					
	família se organizarem pa	ıra tirar uma foto, sen	do que o Carlos e a esposa	pretendem ficar lado-a-lad	do.
	A. 120	B. 15	C. 98	D. 24	E. 48
11.	O coeficiente de x^2 no des	envolvimento do binó	mio $(2x-3)^5$ é igual a:		
	A. 1080	B. 540	C. −10	D. -540	E. -1080
12.	A soma dos três primeiros seguinte?	elementos de uma ce	rta linha do Triângulo de Pa	ascal é 121. Qual é o terc	eiro elemento da linha
	A. 3	B. 84	C. 120	D 124	E. 232
	11. 5	D. 04	C. 120	D. 124	E. 232
13.			o da função real de variáve		E. 232

Exar	ne de Admissão de Matemática I	DAU		Página 2
14.	Sejam $f(x)$ e $g(x)$ duas funções reais de v	ariável real tais que $f(-x) = -f(x)$ e	g(x) = g(-x). Indic	que a opção errada.
	A. $f(0) = 0$	B. $f(x)$ é impar.	$\mathbf{C}. \ \ g(x)$	
	D. O gráfico de $f(x)$ é simétrico en	n relação ao eixo das abcissas.		•
	E. O gráfico de $g(x)$ é simétrico en	n relação ao eixo das ordenadas.		
15.	A parábola cujo gráfico está representad			2 + y
	A. $y(x) = (x-1)^2 - 1$	B. $y(x) = (x-1)^2 + 1$		1 -
	C. $y(x) = -(x+1)^2 + 1$ E. $y(x) = -(x+1)^2 - 1$	D. $y(x) = -(x-1)^2 - 1$	 	x
	E. $y(x) = -(x + 1) - 1$		-4 -3 -2	-1 1 2 3 4 5 -1+
				-2
				/3
16.	Quais os valores que α deve assumir par	ra que a função $f(x) = \alpha x^2 - (2\alpha - 1)$	$(2)x + \alpha - 1, \alpha \in \mathbb{R}$.	tenha 2 raízes distintas?
	A. $\alpha < 1$ B. $\alpha > 0$			E. $\alpha = 1$
17.			,	1
1/.				
	C. $f(x) = u$ coin $u > 1$. C. $f(x) = 1/x$ com $x > 0$.	B. $f(x) = a^x \text{ com } 0 < a < 1.$ D. $f(x) = log_a x \text{ com } 0 < a < 1.$: 1.	
	$\mathbf{E.} f(x) = \log_a x \text{com } a > 1.$			
18.	,			2
	$\mathbf{A.} f(x) = sen(x - \pi)$		$\mathbf{C.} f(x) = -2$	$x^2 + 4x - 2$
	D. $f(x) = -log_{10}(x-5)$	$\mathbf{E.} f(x) = e^{\sin(x+2)}$		
		4		
19.	Considere as sucessões de termos gerais u			
	$\mathbf{A.} u_n \in v_n \qquad \qquad \mathbf{B.} u_n \in W$	v_n C. $v_n e w_n$	$\mathbf{D.} u_n, v_n \in w_n$	E. Nenhuma.
19. 20.	$\mathbf{A.} u_n \in v_n \qquad \qquad \mathbf{B.} u_n \in W$	v_n C. $v_n e w_n$ o aritmética são $a_1 = 1 + x$, $a_2 = 6x e$	$\mathbf{D.} u_n, v_n \in w_n$	E. Nenhuma.
	A. $u_n e v_n$ B. $u_n e w_n$ Os três primeiros termos de uma progressão	v_n C. $v_n e w_n$ o aritmética são $a_1 = 1 + x$, $a_2 = 6x e$ B. $a_1 = \frac{3}{2}$, $a_2 = 3$ e $a_3 = \frac{9}{2}$ ou	D. $u_n, v_n \in w_n$ $a_3 = 2x^2 + 4$. Deter	E. Nenhuma.
	$\mathbf{A.} u_n \in v_n \qquad \qquad \mathbf{B.} u_n \in W$	C. $v_n \in w_n$ o aritmética são $a_1 = 1 + x$, $a_2 = 6x \in \mathbb{R}$ B. $a_1 = \frac{3}{2}$, $a_2 = 3$ e $a_3 = \frac{9}{2}$ ou $a_1 = 6$, $a_2 = 30$ e $a_3 = 54$	D. $u_n, v_n \in w_n$ $v_n = 2x^2 + 4$. Deter C. u_n	E. Nenhuma.
	A. $u_n e v_n$ B. $u_n e v_n$ Os três primeiros termos de uma progressã A. $a_1 = 1, a_2 = 4 e a_3 = 7$	C. $v_n e w_n$ o aritmética são $a_1 = 1 + x$, $a_2 = 6x e$ B. $a_1 = \frac{3}{2}$, $a_2 = 3 e a_3 = \frac{9}{2}$ ou $a_1 = 6$, $a_2 = 30 e a_3 = 54$ E. $a_1 = -1$, $a_2 = -12 e a_3 = -23$	D. $u_n, v_n \in w_n$ $v_n = 2x^2 + 4$. Deter C. u_n	E. Nenhuma.
	A. $u_n e v_n$ B. $u_n e w_n$ Os três primeiros termos de uma progressão	C. $v_n \in w_n$ o aritmética são $a_1 = 1 + x$, $a_2 = 6x \in \mathbb{R}$ B. $a_1 = \frac{3}{2}$, $a_2 = 3$ e $a_3 = \frac{9}{2}$ ou $a_1 = 6$, $a_2 = 30$ e $a_3 = 54$	D. $u_n, v_n \in w_n$ $v_n = 2x^2 + 4$. Deter C. u_n	E. Nenhuma.
	A. $u_n e v_n$ B. $u_n e v_n$ Os três primeiros termos de uma progressã A. $a_1 = 1, a_2 = 4 e a_3 = 7$ D. $a_1 = \frac{1}{2}, a_2 = 1 e a_3 = \frac{3}{2}$	C. $v_n e w_n$ o aritmética são $a_1 = 1 + x$, $a_2 = 6x e$ B. $a_1 = \frac{3}{2}$, $a_2 = 3 e a_3 = \frac{9}{2}$ ou $a_1 = 6$, $a_2 = 30 e a_3 = 54$ E. $a_1 = -1$, $a_2 = -12 e a_3 = -23$ $a_1 = \frac{3}{2}$, $a_2 = 9 e a_3 = \frac{33}{9}$	D. $u_n, v_n \in w_n$ $a_3 = 2x^2 + 4$. Deter C. $a_3 = 2x^2 + 4$	E. Nenhuma. Think os seus valores. $a_1 = \frac{6}{5}, a_2 = \frac{36}{25} e \ a_3 = \frac{216}{125}$
20.	A. $u_n e v_n$ B. $u_n e v_n$ Os três primeiros termos de uma progressã A. $a_1 = 1, a_2 = 4 e a_3 = 7$ D. $a_1 = \frac{1}{2}, a_2 = 1 e a_3 = \frac{3}{2}$ Na progressão 1,3,9,27,81, a soma dos n A. 6 B. 72	C. $v_n e w_n$ o aritmética são $a_1 = 1 + x$, $a_2 = 6x e$ B. $a_1 = \frac{3}{2}$, $a_2 = 3 e a_3 = \frac{9}{2}$ ou $a_1 = 6$, $a_2 = 30 e a_3 = 54$ E. $a_1 = -1$, $a_2 = -12 e a_3 = -23$ $a_1 = \frac{3}{2}$, $a_2 = 9 e a_3 = \frac{33}{9}$ o primeiros termos é 364. Qual é o n ? C. 4	D. $u_n, v_n \in w_n$ $v_n = 2x^2 + 4$. Deter C. a 3 ou D. 16	E. Nenhuma. Think os seus valores. $a_1 = \frac{6}{5}, a_2 = \frac{36}{25} e \ a_3 = \frac{216}{125}$ E. 7
20.	A. $u_n e v_n$ B. $u_n e v_n$ Os três primeiros termos de uma progressã A. $a_1 = 1, a_2 = 4 e a_3 = 7$ D. $a_1 = \frac{1}{2}, a_2 = 1 e a_3 = \frac{3}{2}$ Na progressão 1,3,9,27,81, a soma dos n	C. $v_n e w_n$ o aritmética são $a_1 = 1 + x$, $a_2 = 6x e$ B. $a_1 = \frac{3}{2}$, $a_2 = 3 e a_3 = \frac{9}{2}$ ou $a_1 = 6$, $a_2 = 30 e a_3 = 54$ E. $a_1 = -1$, $a_2 = -12 e a_3 = -23$ $a_1 = \frac{3}{2}$, $a_2 = 9 e a_3 = \frac{33}{9}$ o primeiros termos é 364. Qual é o n ? C. 4	D. $u_n, v_n \in w_n$ $v_n = 2x^2 + 4$. Deter C. a 3 ou D. 16	E. Nenhuma. The prime of seus valores. $a_1 = \frac{6}{5}, a_2 = \frac{36}{25} e \ a_3 = \frac{216}{125}$ E. 7
20.	A. $u_n e v_n$ B. $u_n e v_n$ Os três primeiros termos de uma progressã A. $a_1 = 1, a_2 = 4 e a_3 = 7$ D. $a_1 = \frac{1}{2}, a_2 = 1 e a_3 = \frac{3}{2}$ Na progressão 1,3,9,27,81, a soma dos n A. 6 B. 72	C. $v_n e w_n$ o aritmética são $a_1 = 1 + x$, $a_2 = 6x e$ B. $a_1 = \frac{3}{2}$, $a_2 = 3 e a_3 = \frac{9}{2}$ ou $a_1 = 6$, $a_2 = 30 e a_3 = 54$ E. $a_1 = -1$, $a_2 = -12 e a_3 = -23$ $a_1 = \frac{3}{2}$, $a_2 = 9 e a_3 = \frac{33}{9}$ o primeiros termos é 364. Qual é o n ? C. 4	D. $u_n, v_n \in w_n$ $v_n = 2x^2 + 4$. Deter C. a 3 ou D. 16	E. Nenhuma. Think os seus valores. $a_1 = \frac{6}{5}, a_2 = \frac{36}{25} e \ a_3 = \frac{216}{125}$ E. 7
20.	A. $u_n \in v_n$ B. $u_n \in v_n$ Os três primeiros termos de uma progressã A. $a_1 = 1, a_2 = 4 \in a_3 = 7$ D. $a_1 = \frac{1}{2}, a_2 = 1 \in a_3 = \frac{3}{2}$ Na progressão 1,3,9,27,81, a soma dos n A. 6 B. 72 Qual é o número de termos de uma progressão 1/8 B. 7	C. $v_n e w_n$ o aritmética são $a_1 = 1 + x$, $a_2 = 6x e$ B. $a_1 = \frac{3}{2}$, $a_2 = 3 e a_3 = \frac{9}{2}$ ou $a_1 = 6$, $a_2 = 30 e a_3 = 54$ E. $a_1 = -1$, $a_2 = -12 e a_3 = -23$ $a_1 = \frac{3}{2}$, $a_2 = 9 e a_3 = \frac{33}{9}$ a primeiros termos é 364. Qual é o n ? C. 4 ressão geométrica onde $a_1 = 1/32$, o C. 6	D. $u_n, v_n \in w_n$ $a_3 = 2x^2 + 4$. Deter C. $a_n = 2$ D. $a_n = 2$ e a razão $a_n = 2$	E. Nenhuma. The prime of seus valores. $a_1 = \frac{6}{5}, a_2 = \frac{36}{25} e \ a_3 = \frac{216}{125}$ E. 7
20. 21. 22.	A. $u_n \in v_n$ B. $u_n \in v_n$ Os três primeiros termos de uma progressã A. $a_1 = 1, a_2 = 4 \in a_3 = 7$ D. $a_1 = \frac{1}{2}, a_2 = 1 \in a_3 = \frac{3}{2}$ Na progressão 1,3,9,27,81, a soma dos n A. 6 B. 72 Qual é o número de termos de uma progressão 1/8 B. 7	C. $v_n e w_n$ o aritmética são $a_1 = 1 + x$, $a_2 = 6x e$ B. $a_1 = \frac{3}{2}$, $a_2 = 3 e a_3 = \frac{9}{2}$ ou $a_1 = 6$, $a_2 = 30 e a_3 = 54$ E. $a_1 = -1$, $a_2 = -12 e a_3 = -23$ $a_1 = \frac{3}{2}$, $a_2 = 9 e a_3 = \frac{33}{9}$ a primeiros termos é 364. Qual é o n ? C. 4 cressão geométrica onde $a_1 = 1/32$, o $a_1 = 36 e a_2 = 4/81$ são:	D. $u_n, v_n \in w_n$ $a_3 = 2x^2 + 4$. Determined B ou D. 16 $a_n = 2$ e a razão $r = 0$ D. 1/2	E. Nenhuma. Think os seus valores. $a_1 = \frac{6}{5}, a_2 = \frac{36}{25} e \ a_3 = \frac{216}{125}$ E. 7 2? E. 16
20. 21. 22.	A. $u_n e v_n$ B. $u_n e v_n$ Os três primeiros termos de uma progressã A. $a_1 = 1, a_2 = 4 e a_3 = 7$ D. $a_1 = \frac{1}{2}, a_2 = 1 e a_3 = \frac{3}{2}$ Na progressão 1,3,9,27,81, a soma dos n A. 6 B. 72 Qual é o número de termos de uma progressão de uma progressão geométric A. $\frac{1}{8}$ B. 7 Os termos de uma progressão geométric A. $\frac{3}{6}$; $\frac{4}{7}$; $\frac{4}{81}$; $\frac{4}{81}$	C. $v_n e w_n$ o aritmética são $a_1 = 1 + x$, $a_2 = 6x e$ B. $a_1 = \frac{3}{2}$, $a_2 = 3 e a_3 = \frac{9}{2}$ ou $a_1 = 6$, $a_2 = 30 e a_3 = 54$ E. $a_1 = -1$, $a_2 = -12 e a_3 = -23$ $a_1 = \frac{3}{2}$, $a_2 = 9 e a_3 = \frac{33}{9}$ a primeiros termos é 364. Qual é o n ? C. 4 C. 6 a entre $a_1 = 36 e a_7 = 4/81$ são: B. 36; 12; 6; $\frac{4}{9}$; $\frac{4}{18}$; $\frac{4}{27}$; $\frac{4}{81}$	D. $u_n, v_n \in w_n$ $a_3 = 2x^2 + 4$. Determined B ou D. 16 $a_n = 2$ e a razão $r = 0$ D. 1/2	E. Nenhuma. Think os seus valores. $a_1 = \frac{6}{5}, a_2 = \frac{36}{25} e \ a_3 = \frac{216}{125}$ E. 7 2? E. 16
20. 21. 22. 23.	A. $u_n ext{ e } v_n$ B. $u_n ext{ e } w_n$ Os três primeiros termos de uma progressã A. $a_1 = 1, a_2 = 4 ext{ e } a_3 = 7$ D. $a_1 = \frac{1}{2}, a_2 = 1 ext{ e } a_3 = \frac{3}{2}$ Na progressão 1,3,9,27,81, a soma dos n A. 6 B. 72 Qual é o número de termos de uma progressão quanto qua	C. $v_n e w_n$ o aritmética são $a_1 = 1 + x$, $a_2 = 6x e$ B. $a_1 = \frac{3}{2}$, $a_2 = 3 e a_3 = \frac{9}{2}$ ou $a_1 = 6$, $a_2 = 30 e a_3 = 54$ E. $a_1 = -1$, $a_2 = -12 e a_3 = -23$ $a_1 = \frac{3}{2}$, $a_2 = 9 e a_3 = \frac{33}{9}$ a primeiros termos é 364. Qual é o n ? C. 4 cressão geométrica onde $a_1 = 1/32$, o $a_1 = 36 e a_2 = 4/81$ são:	D. $u_n, v_n \in w_n$ $a_3 = 2x^2 + 4$. Determined B ou D. 16 $a_n = 2$ e a razão $r = 0$ D. 1/2	E. Nenhuma. Think os seus valores. $a_1 = \frac{6}{5}, a_2 = \frac{36}{25} e \ a_3 = \frac{216}{125}$ E. 7 2? E. 16
20. 21. 22.	A. $u_n ext{ e } v_n$ B. $u_n ext{ e } w_n$ Os três primeiros termos de uma progressã A. $a_1 = 1, a_2 = 4 ext{ e } a_3 = 7$ D. $a_1 = \frac{1}{2}, a_2 = 1 ext{ e } a_3 = \frac{3}{2}$ Na progressão 1,3,9,27,81, a soma dos n A. 6 B. 72 Qual é o número de termos de uma progressão quanto qua	C. $v_n e w_n$ o aritmética são $a_1 = 1 + x$, $a_2 = 6x e$ B. $a_1 = \frac{3}{2}$, $a_2 = 3 e a_3 = \frac{9}{2}$ ou $a_1 = 6$, $a_2 = 30 e a_3 = 54$ E. $a_1 = -1$, $a_2 = -12 e a_3 = -23$ $a_1 = \frac{3}{2}$, $a_2 = 9 e a_3 = \frac{33}{9}$ a primeiros termos é 364. Qual é o n ? C. 4 C. 6 a entre $a_1 = 36 e a_7 = 4/81$ são: B. 36; 12; 6; $\frac{4}{9}$; $\frac{4}{18}$; $\frac{4}{27}$; $\frac{4}{81}$	D. $u_n, v_n \in w_n$ $a_3 = 2x^2 + 4$. Determined B ou D. 16 $a_n = 2$ e a razão $r = 0$ D. 1/2	E. Nenhuma. Think os seus valores. $a_1 = \frac{6}{5}, a_2 = \frac{36}{25} e \ a_3 = \frac{216}{125}$ E. 7 2? E. 16
20. 21. 22. 23.	A. $u_n \in v_n$ B. $u_n \in v_n$ Os três primeiros termos de uma progressã A. $a_1 = 1, a_2 = 4 \in a_3 = 7$ D. $a_1 = \frac{1}{2}, a_2 = 1 \in a_3 = \frac{3}{2}$ Na progressão 1,3,9,27,81, a soma dos n A. 6 B. 72 Qual é o número de termos de uma progressão geométric A. $1/8$ B. 7 Os termos de uma progressão geométric A. 36 ; 12 ; 4 ; $\frac{4}{3}$; $\frac{4}{9}$; $\frac{4}{27}$; $\frac{4}{81}$ D. 36 ; 12 ; 3 ; $\frac{4}{3}$; $\frac{4}{9}$; $\frac{4}{27}$; $\frac{4}{81}$ Determine o $\lim_{n \to \infty} \left(\frac{n+2}{n+1}\right)^{n+1}$, $n \in \mathbb{N}$? A. $+\infty$ B. 1	C. $v_n e w_n$ o aritmética são $a_1 = 1 + x$, $a_2 = 6x e$ B. $a_1 = \frac{3}{2}$, $a_2 = 3 e a_3 = \frac{9}{2}$ ou $a_1 = 6$, $a_2 = 30 e a_3 = 54$ E. $a_1 = -1$, $a_2 = -12 e a_3 = -23$ $a_1 = \frac{3}{2}$, $a_2 = 9 e a_3 = \frac{33}{9}$ a primeiros termos é 364. Qual é o n ? C. 4 C. 6 a entre $a_1 = 36 e a_7 = 4/81$ são: B. 36; 12; 6; $\frac{4}{9}$; $\frac{4}{18}$; $\frac{4}{27}$; $\frac{4}{81}$	D. $u_n, v_n \in w_n$ $a_3 = 2x^2 + 4$. Determined B ou D. 16 $a_n = 2$ e a razão $r = 0$ D. 1/2	E. Nenhuma. Think os seus valores. $a_1 = \frac{6}{5}, a_2 = \frac{36}{25} e \ a_3 = \frac{216}{125}$ E. 7 2? E. 16
20. 21. 22. 23.	A. $u_n \in v_n$ B. $u_n \in v_n$ Os três primeiros termos de uma progressã A. $a_1 = 1, a_2 = 4 \in a_3 = 7$ D. $a_1 = \frac{1}{2}, a_2 = 1 \in a_3 = \frac{3}{2}$ Na progressão 1,3,9,27,81, a soma dos n A. 6 B. 72 Qual é o número de termos de uma progressão geométric A. $1/8$ B. 7 Os termos de uma progressão geométric A. 36 ; 12 ; 4 ; $\frac{4}{3}$; $\frac{4}{9}$; $\frac{4}{27}$; $\frac{4}{81}$ D. 36 ; 12 ; 3 ; $\frac{4}{3}$; $\frac{4}{9}$; $\frac{4}{27}$; $\frac{4}{81}$ Determine o $\lim_{n \to \infty} \left(\frac{n+2}{n+1}\right)^{n+1}$, $n \in \mathbb{N}$? A. $+\infty$ B. 1	C. $v_n \in w_n$ o aritmética são $a_1 = 1 + x$, $a_2 = 6x$ e B. $a_1 = \frac{3}{2}$, $a_2 = 3$ e $a_3 = \frac{9}{2}$ ou $a_1 = 6$, $a_2 = 30$ e $a_3 = 54$ E. $a_1 = -1$, $a_2 = -12$ e $a_3 = -23$ $a_1 = \frac{3}{2}$, $a_2 = 9$ e $a_3 = \frac{33}{9}$ a primeiros termos é 364. Qual é o n ? C. 4 ressão geométrica onde $a_1 = 1/32$, o C. 6 a entre $a_1 = 36$ e $a_7 = 4/81$ são: B. 36; 12; 6; $\frac{4}{9}$; $\frac{4}{18}$; $\frac{4}{27}$; $\frac{4}{81}$ E. Nenhuma das anteriores.	D. $u_n, v_n \in w_n$ $e a_3 = 2x^2 + 4$. Deter C. $a_n = 2$ $e a_n = 2$ $e a_n$	E. Nenhuma. Timine os seus valores. $a_1 = \frac{6}{5}, a_2 = \frac{36}{25} e \ a_3 = \frac{216}{125}$ E. 7 2? E. 16
20. 21. 22. 23.	A. $u_n \in v_n$ B. $u_n \in v_n$ Os três primeiros termos de uma progressã A. $a_1 = 1, a_2 = 4 \in a_3 = 7$ D. $a_1 = \frac{1}{2}, a_2 = 1 \in a_3 = \frac{3}{2}$ Na progressão 1,3,9,27,81, a soma dos n A. 6 B. 72 Qual é o número de termos de uma progressão geométric A. 1/8 B. 7 Os termos de uma progressão geométric A. 36; 12; 4; $\frac{4}{3}$; $\frac{4}{9}$; $\frac{4}{27}$; $\frac{4}{81}$ D. 36; 12; 3; $\frac{4}{3}$; $\frac{4}{9}$; $\frac{4}{27}$; $\frac{4}{81}$ Determine o $\lim_{n\to\infty} \frac{\binom{n+2}{n+1}}{\binom{n+1}{3n^2+1}^6}, n \in \mathbb{N}$? A. $+\infty$ B. 1 Encontre o $\lim_{n\to\infty} \frac{\binom{9n^3+2n+1}{4}^6}{\binom{3n^2+7}{6}^6}, n \in \mathbb{N}$.	C. $v_n \in w_n$ o aritmética são $a_1 = 1 + x$, $a_2 = 6x$ e B. $a_1 = \frac{3}{2}$, $a_2 = 3$ e $a_3 = \frac{9}{2}$ ou $a_1 = 6$, $a_2 = 30$ e $a_3 = 54$ E. $a_1 = -1$, $a_2 = -12$ e $a_3 = -23$ $a_1 = \frac{3}{2}$, $a_2 = 9$ e $a_3 = \frac{33}{9}$ a primeiros termos é 364. Qual é o n ? C. 4 ressão geométrica onde $a_1 = 1/32$, o C. 6 a entre $a_1 = 36$ e $a_7 = 4/81$ são: B. 36; 12; 6; $\frac{4}{9}$; $\frac{4}{18}$; $\frac{4}{27}$; $\frac{4}{81}$ E. Nenhuma das anteriores.	D. $u_n, v_n \in w_n$ $a_3 = 2x^2 + 4$. Determined By our D. 16 D. 16 D. 1/2 C. 12; 4; $\frac{4}{3}$; $\frac{4}{3}$	E. Nenhuma. Timine os seus valores. $a_1 = \frac{6}{5}, a_2 = \frac{36}{25} e a_3 = \frac{216}{125}$ E. 7 2? E. 16 E. e
20. 21. 22. 23. 24.	A. $u_n \in v_n$ B. $u_n \in v_n$ Os três primeiros termos de uma progressã A. $a_1 = 1, a_2 = 4 \in a_3 = 7$ D. $a_1 = \frac{1}{2}, a_2 = 1 \in a_3 = \frac{3}{2}$ Na progressão 1,3,9,27,81, a soma dos n A. 6 B. 72 Qual é o número de termos de uma progressão geométric A. $1/8$ B. 7 Os termos de uma progressão geométric A. 36 ; 12 ; 4 ; $\frac{4}{3}$; $\frac{4}{9}$; $\frac{4}{27}$; $\frac{4}{81}$ D. 36 ; 12 ; 3 ; $\frac{4}{3}$; $\frac{4}{9}$; $\frac{4}{27}$; $\frac{4}{81}$ Determine o $\lim_{n \to \infty} \frac{(n+2)}{(n+1)}^{n+1}$, $n \in \mathbb{N}$? A. $+\infty$ B. 1 Encontre o $\lim_{n \to \infty} \frac{(9n^3+2n+1)^4}{(3n^2+7)^6}$, $n \in \mathbb{N}$. A. $1/7$ B. 3	C. $v_n \in w_n$ o aritmética são $a_1 = 1 + x$, $a_2 = 6x$ e B. $a_1 = \frac{3}{2}$, $a_2 = 3$ e $a_3 = \frac{9}{2}$ ou $a_1 = 6$, $a_2 = 30$ e $a_3 = 54$ E. $a_1 = -1$, $a_2 = -12$ e $a_3 = -23$ $a_1 = \frac{3}{2}$, $a_2 = 9$ e $a_3 = \frac{33}{9}$ a primeiros termos é 364. Qual é o n ? C. 4 ressão geométrica onde $a_1 = 1/32$, $a_3 = 1/32$. B. 36; 12; 6; $\frac{4}{9}$; $\frac{4}{18}$; $\frac{4}{27}$; $\frac{4}{81}$ E. Nenhuma das anteriores. C. 9	D. $u_n, v_n \in w_n$ $a_3 = 2x^2 + 4$. Determined By our D. 16 D. 16 D. 1/2 C. 12; 4; $\frac{4}{3}$;	E. Nenhuma. Timine os seus valores. $a_1 = \frac{6}{5}, a_2 = \frac{36}{25} e \ a_3 = \frac{216}{125}$ E. 7 2? E. 16 E. e
20. 21. 22. 23.	A. $u_n \in v_n$ B. $u_n \in v_n$ Os três primeiros termos de uma progressã A. $a_1 = 1, a_2 = 4 \in a_3 = 7$ D. $a_1 = \frac{1}{2}, a_2 = 1 \in a_3 = \frac{3}{2}$ Na progressão 1,3,9,27,81, a soma dos n A. 6 B. 72 Qual é o número de termos de uma progressão geométric A. 1/8 B. 7 Os termos de uma progressão geométric A. 36; 12; 4; $\frac{4}{3}$; $\frac{4}{9}$; $\frac{4}{27}$; $\frac{4}{81}$ D. 36; 12; 3; $\frac{4}{3}$; $\frac{4}{9}$; $\frac{4}{27}$; $\frac{4}{81}$ Determine o $\lim_{n\to\infty} \left(\frac{n+2}{n+1}\right)^{n+1}$, $n \in \mathbb{N}$? A. $+\infty$ B. 1 Encontre o $\lim_{n\to\infty} \frac{(9n^3+2n+1)^4}{(3n^2+7)^6}$, $n \in \mathbb{N}$. A. 1/7 B. 3 Considere a função real $f(x) = 2^{-x}$. O valuation of the sum	C. $v_n \in w_n$ o aritmética são $a_1 = 1 + x$, $a_2 = 6x$ e B. $a_1 = \frac{3}{2}$, $a_2 = 3$ e $a_3 = \frac{9}{2}$ ou $a_1 = 6$, $a_2 = 30$ e $a_3 = 54$ E. $a_1 = -1$, $a_2 = -12$ e $a_3 = -23$ $a_1 = \frac{3}{2}$, $a_2 = 9$ e $a_3 = \frac{33}{9}$ a primeiros termos é 364. Qual é o n ? C. 4 ressão geométrica onde $a_1 = 1/32$, o C. 6 a entre $a_1 = 36$ e $a_7 = 4/81$ são: B. 36; 12; 6; $\frac{4}{9}$; $\frac{4}{18}$; $\frac{4}{27}$; $\frac{4}{81}$ E. Nenhuma das anteriores. C. 0	D. $u_n, v_n \in w_n$ $a_3 = 2x^2 + 4$. Determined By out $a_3 = 2x^2 + 4$. Determined By out $a_3 = 2$ and $a_4 = 2$ are a razão $a_$	E. Nenhuma. Timine os seus valores. $a_1 = \frac{6}{5}, a_2 = \frac{36}{25} e \ a_3 = \frac{216}{125}$ E. 7 2? E. 16 E. e E. 2/3
20. 21. 22. 23. 24.	A. $u_n \in v_n$ B. $u_n \in v_n$ Os três primeiros termos de uma progressã A. $a_1 = 1, a_2 = 4 \in a_3 = 7$ D. $a_1 = \frac{1}{2}, a_2 = 1 \in a_3 = \frac{3}{2}$ Na progressão 1,3,9,27,81, a soma dos n A. 6 B. 72 Qual é o número de termos de uma progressão geométric A. $1/8$ B. 7 Os termos de uma progressão geométric A. 36 ; 12 ; 4 ; $\frac{4}{3}$; $\frac{4}{9}$; $\frac{4}{27}$; $\frac{4}{81}$ D. 36 ; 12 ; 3 ; $\frac{4}{3}$; $\frac{4}{9}$; $\frac{4}{27}$; $\frac{4}{81}$ Determine o $\lim_{n \to \infty} \frac{(n+2)}{(n+1)}^{n+1}$, $n \in \mathbb{N}$? A. $+\infty$ B. 1 Encontre o $\lim_{n \to \infty} \frac{(9n^3+2n+1)^4}{(3n^2+7)^6}$, $n \in \mathbb{N}$. A. $1/7$ B. 3	C. $v_n \in w_n$ o aritmética são $a_1 = 1 + x$, $a_2 = 6x$ e B. $a_1 = \frac{3}{2}$, $a_2 = 3$ e $a_3 = \frac{9}{2}$ ou $a_1 = 6$, $a_2 = 30$ e $a_3 = 54$ E. $a_1 = -1$, $a_2 = -12$ e $a_3 = -23$ $a_1 = \frac{3}{2}$, $a_2 = 9$ e $a_3 = \frac{33}{9}$ a primeiros termos é 364. Qual é o n ? C. 4 ressão geométrica onde $a_1 = 1/32$, $a_3 = 1/32$. B. 36; 12; 6; $\frac{4}{9}$; $\frac{4}{18}$; $\frac{4}{27}$; $\frac{4}{81}$ E. Nenhuma das anteriores. C. 9	D. $u_n, v_n \in w_n$ $a_3 = 2x^2 + 4$. Determined By our D. 16 D. 16 D. 1/2 C. 12; 4; $\frac{4}{3}$;	E. Nenhuma. Timine os seus valores. $a_1 = \frac{6}{5}, a_2 = \frac{36}{25} e \ a_3 = \frac{216}{125}$ E. 7 2? E. 16 E. e E. 2/3

C. 2

C. 4

D. −∞

D. 0

E. +∞

E. −8

Indique o valor do $\lim_{x\to 2} \frac{(x-2)^2}{x^2-3x+2}$:

Calcule o limite, quando $x \to 8$, da função $\frac{x-8}{\sqrt[3]{x}-2}$:

B. 1

B. 12

A. 0

A. +∞

Exar	ne de Admissão de Matemática I	DAU		Página 3 de 3	
29.	Determine $\lim_{x\to\infty} \frac{4x^2+2x-3}{3x^4+1}$:				
	A. 0 B. 4/3	C3	D. 1	E. +∞	
30.	Indique o limite, quando $x \to 0$, da funçã	$0 \frac{x - sen(3x)}{3x^2 - sen(5x)}$:			
	A. 0 B. 1/3	C. 2/5	D. 3/5	E. 1	
31.	PASSE PARA PERGUNTA SEGUINTE	•			
32.	Qual o valor do parâmetro $m{\beta} \in \mathbb{R}$ para o qual a função $f(x) = \begin{cases} \frac{sen(3x)}{x}, & x > 0 \\ 5^x - m{\beta}, & x \leq 0 \end{cases}$ é contínua em \mathbb{R} :				
	A. 0 B. 1	C. 2	D. −2	E. −3	
33.	Indique qual a derivada de $f(x) = \frac{2x-1}{\sqrt{x}}$:				
	A. $f'(x) = \frac{2}{\sqrt{x}}$ B. $f'(x) = \frac{2}{2}$	$\frac{4x+1}{x^{3/2}}$ C. $f'(x) = 4x^{1/2}$	D. $f'(x) = \frac{2\sqrt{x}}{(2x-1)^{-1}}$	E. $f'(x) = -\frac{1}{x}$	
34.	Considere a função $f(x) = xe^{-x}$. Indique				
	A. Crescente:]-∞,1[e decrescenteC. Decrescente: ℝ.	= = =	rescente: ℝ. rescente:]−∞, 0[∪]1, ∞	[a decrescente:]0 1[
	E. Crescente: [0,1] e decrescente:]1		16sectic.] 55,0[0]1,55	[c decrescente.]0, 1[.	
35.	Seja a função $f(x) = x^3 - 3x + 1$. Qual das seguintes afirmações é correcta?				
	A. $f(x)$ tem um mínimo e um máximo. B. $f(x)$ tem um mínimo e não tem máximo.				
	C. $f(x)$ tem um máximo e não tem mínimo. B. $f(x)$ tem um minimo e não tem mínimo. D. $f(x)$ é crescente na recta numérica.				
	E. $f(x)$ é decrescente na recta numé	=			
36.	A recta $y = 8x - 5$ é tangente ao gráfico da $f(x) - 2$ em $x = 1$.	função $f(x)$ em $x = 1$. Determin	e a equação da recta tar	$\frac{1}{1} = \frac{1}{1} \int_{\mathbb{R}^n} \mathbf{g}(x) = \frac{1}{1} \int_{\mathbb{R}^n} \mathbf{g}(x) dx$	
	A. y = -5x + 8	B. $y = 6x - 3$	C. $y =$	8y - 7	
	D. $y = 6x - 7$	E. $y = 8x + 2$	C. y	<i>5,</i> ,	
37.	•	•			
37.	A que função corresponde o integral $\int x^2$	$\left(\frac{x^3}{3}+2\right)^2 dx?$			
	A. $F(x) = \left(\frac{x^3}{9} + 2\right)^3$	B. $F(x) = \frac{x^3}{3} \left(\frac{x^4}{4} + 2 \right)^2$	$\mathbf{C.} \ \ F(x)$	$= \left(\frac{x^4}{4} + 2\right)^2$	
	D. $F(x) = x^2 \left(\frac{x^3}{3} + 2\right)^3$	E. $F(x) = \frac{1}{3} \left(\frac{x^3}{3} + 2 \right)^3$			
38.	Determine a primitiva de $f(x) = sen^2(x)$			_	
	A. $\frac{sen^3(x)}{3} + c, c \in \mathbb{R}$	B. $\frac{sen^3(x)}{3} \frac{cos^2(x)}{2} + c, c$	$\in \mathbb{R}$ C. $\frac{sen^2(}{}$	$\frac{(x)\cos^2(x)}{2} + c, c \in \mathbb{R}$	
	$\mathbf{D.} -2\cos(x)\operatorname{sen}(x) + c, c \in \mathbb{R}$	$\mathbf{E.} sen^2(x) + c, c \in \mathbb{R}$		-	
39.	Uma das funções que cumprem a condiçã	io $f'(x) = 4x^3 + x^2$ é:			
	A. $f(x) = x^4 + x^3$	B. $f(x) = x^4 + \frac{1}{3}x^3 + 4$	C. $f(x)$	$0 = x^3 + \frac{1}{3}x^2 + 3$	
	D. $f(x) = 4x^4 + x^3 + 4$	E. $f(x) = -x^4 + \frac{1}{3}x^3 + 4$	1	J	

C. 6 - 11i

D. 11 + 2i

E. 5 - 2i

40. Qual é o valor de (3-4i)(2-i)(i)?

B. 2 + 5i

A. 5 - 11i