Aula de Hoje

- Resolução de Problemas de Programação Linear:
 - Introdução ao Método Simplex
 - Método Simplex: forma tabular

Introdução ao Método Simplex

- Sabe-se que para encontrar a solução ótima de um problema de Programação Linear basta procurarmos entre os vértices.
- Entretanto a quantidade de vértices de um problema prático é de C_{n,m} onde *m* é o numero de restrições e *n* é o número de variáveis.
- Por exemplo se tiver um problema com m=50 e n=100 variáveis tem-se: $C_{100.50}=100!/50!(100-50)! \cong 1 \times 10^{29}$
- Isso torna inviável a enumeração de todos os vértices existentes de um problema de tamanho moderado
- O método Simplex consiste num procedimento eficiente para a busca da solução ótima entre os vértices.

• Exemplo: Uma Industria de confecção produz camisas de manga longa e de manga curta. Os recursos disponíveis são de 1200 reais para compra de tecido e as máquinas permitem 40 horas de produção por semana. Após uma pesquisa de mercado decidiu-se que a produção total não pode exceder de 800 unidades. Além disso, o número de unidades produzidas de camisa manga longa não pode exceder o número de unidades produzidas de camisa manga curta em mais de 450 unidades. Sabe-se que, cada camisa manga longa requer 2 reais de tecido e 3 minutos de produção e cada camisa manga curta requer 1 real de tecido e 4 minutos de produção. O departamento de finanças tem a informação de que cada camisa manga longa dá um lucro de 8 reais e cada camisa manga curta dá um lucro de 5 reais. O gerente da indústria deseja saber qual o melhor esquema de produção de forma a respeitar as restrições e maximizar o lucro.

Modelo de Programação Linear

$$Max 8X1 + 5X2$$
 (lucro semanal)

Sujeito a:

```
2X1 + 1X2 \le 1200 (Quantidade de tecido) 3X1 + 4X2 \le 2400 (Tempo de produção) X1 + X2 \le 800 (Limite produção total) X1 - X2 \le 450 (Produção em excesso) X_j >= 0, j=1, 2. (Resultados positivos)
```


 Pergunta: Como aplicar a solução gráfica para resolver o seguinte problema?

```
maximizar f(x_1, x_2, x_3, x_4) = 4x_1 + 5x_2 + 9x_3 + 11x_4 (I) sujeito a:

x_1 + x_2 + x_3 + x_4 \le 15

7x_1 + 5x_2 + 3x_3 + 2x_4 \le 120 (II)

3x_1 + 5x_2 + 10x_3 + 15x_4 \le 100 (III)
```

- Resposta: Não é possível resolver graficamente!
- É possível obter uma solução com um método analítico, por exemplo, pelo método simplex

- Características dos problemas de Programação Linear que permitem a solução pelo método Simplex.
 - A região factível/viável deve ser convexa.
 - Um conjunto é convexo quando toda combinação convexa de dois elementos dele pertence a ele.
 - Uma combinação convexa de dois elementos, x_1 e x_2 é um terceiro elemento y tal que: $y=a.x_1+(1-a)x_2$ onde $0 \le a \le 1$.
 - Assim, um conjunto é convexo quando: dados x_1 ∈ S, x_2 ∈ S e $y=a.x_1+(1-a)x_2$ onde $0 \le a \le 1$ então $y \in S$.
 - Graficamente: dados dois pontos factíveis quaisquer, sempre existirá um segmento de reta ligando estes dois pontos, de forma que, este segmento está totalmente contido na região de factibilidade.

- Preparativos para a aplicação do método simplex:
 - Se o conjunto de possibilidades fosse formado por igualdades seria mais fácil resolver o sistema que o forma.
 - Para tanto é possível utilizar algumas operações que permitem transformar modelos de programação linear em outros modelos equivalentes. Por exemplo:
 - um problema de minimização, pode ser resolvido pela maximização do negativo da função objetivo.
 - restrições de ≥ podem ser multiplicadas por -1 para se tornarem restrições de ≤.
 - restrições de ≥ ou de ≤ podem ser colocadas nas forma de igualdade adicionando-se variáveis de folga.
 - variáveis que possam assumir qualquer valor e não apenas valores positivos podem ser substituídas pela diferença de duas variáveis positivas
- Vejamos tais transformações com maiores detalhes

Transformação de problemas em formas equivalentes

- Restrições de desigualdade :
- Caso as restrições, forem apresentadas como inequações, ao invés de equações, podemos converter para forma de igualdade com o auxílio de novas variáveis. Vejamos:
- Imaginemos determinada restrição *i* na forma:

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_i \quad (ex: 3x_1 + 4x_2 - x_3 \le 7)$$

- Se somarmos ao primeiro termo uma variável x_k ($k \ge n+1$), sendo $x_k \ge 0$, poderíamos escrever então, a igualdade:

$$a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n + x_k = b_i$$
 (ex : $3x_1 + 4x_2 - x_3 + x_4 = 7$, $x_4 \ge 0$) sem alterar o significado da restrição.

Transformação de problemas em formas equivalentes

- Restrições de desigualdade (continuação):
- Analogamente, se a restrição fosse da forma:

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \ge b_i \quad (ex : 3x_1 + 4x_2 - x_3 \ge 7)$$

bastaria que subtraíssemos uma variável x_k ($k \ge n+1$), do primeiro termo para transformar a inequação em igualdade, sendo $x_k \ge 0$.

Observação:

- Essas variáveis adicionais, chamadas de *variáveis de folga*, são muito úteis, pois deixam todas as restrições em forma de igualdade mantendo-se as condições de não-negatividade
- As variáveis de folga aumentam o grau de liberdade do sistema (infinitas soluções)

Transformação de problemas em formas equivalentes

Variáveis Livres:

Caso as variáveis x_i das restrições sejam livres de sinal, ou seja, não tenham restrições de não-negatividade, basta fazermos a substituição de variáveis no problema:

$$x_i = x_i^+ - x_i^-$$
, com $x_i^+ \ge 0$, $x_i^- \ge 0$.

• Função objetivo (maximizar ou minimizar):

Caso a função objetivo esteja na forma de maximização (minimização), basta substituirmos pela minimização (maximização) do negativo da função. Ou seja:

- maximizar $f(x_1,x_2)=2x_1 + 3x_2 \approx minimizar f(x_1,x_2)=-2x_1 3x_2$
- minimizar $f(x_1,x_2) = 5x_1 8x_2 \approx \text{maximizar -} f(x_1,x_2) = -5x_1 + 8x_2$

Exemplo

• Escrever o Problema de Otimização Linear abaixo na forma padrão

Minimizar
$$z = 2 x_1 + 3x_2 - 2 x_3$$
 (I)
sujeito a:
 $4x_1 + x_2 - 3x_3 \ge 2$ (II)
 $x_1 + 2x_2 - 6x_3 \le 4$
 $x_1 \ge 0 \ x_2 \ge 0, \ x_3 \ge 0$ (III)

Resposta:

sujeito a:

$$4x_1 + x_2 - 3x_3 - x_4 = 2$$
 (II)
 $x_1 + 2x_2 - 6x_3 + x_5 = 4$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0$ (III)

Maximizar $z = -2 x_1 - 3x_2 + 2 x_3 + 0 x_4 + 0 x_5$

(I)

Variáveis Básicas e não Básicas

Considere-se o sistema Ax = b, com m equações lineares e n variáveis uma solução básica é obtida fazendo

- n m variáveis iguais a 0 (variáveis não básicas)
- resolvendo o sistema para as restantes variáveis, que são chamadas as variáveis básicas.

Exemplo: determinar todas as soluções básicas para o sistema

$$x_1 + x_2 = 3$$
 $-x_2 + x_3 = 1$

Variáveis Básica : x_1 e x_3 sendo $x_1 = 3$ e $x_3 = 1$ Variável não Básica: x_2 , sendo $x_2 = 0$;

Soluções Viáveis/Adimissíveis

- Definição: a toda a solução básica do problema na forma padrão na qual todas as variáveis são não-negativas chama-se solução básica admissível.
- Teorema 1: A região admissível de qualquer problema de programação linear (PL) é um conjunto convexo. Se o PL tem uma solução única, deverá haver um ponto extremo da região admissível que é ótimo.
- Teorema 2: Para qualquer PL, há um único ponto extremo da região admissível correspondendo a cada solução básica admissível. Há pelo menos uma solução básica admissível correspondendo a cada ponto extremo da região admissível.
- Definição: soluções básicas admissíveis adjacentes: para um PL com m restrições, duas soluções básicas dizem-se adjacentes se os seus conjuntos de variáveis básicas têm m-1 variáveis em comum.

Passos Básicos do Método Simplex

- i. Achar uma solução básica inicial.
- ii. Verificar se a solução atual é ótima. Se for, pare.Caso contrário, siga para o passo iii.
- iii. Determinar a variável não básica que deve entrar na base (solução básica).
- iv. Determinar a variável básica que deve seir da base.
- v. Achar a nova solução básica e voltar ao passo ii.

Exemplo

- Uma empresa pode fabricar dois produtos (1 e 2).
- Na fabricação do produto 1 a empresa gasta nove horashomem e três horas-máquina
- Na fabricação do produto 2 a empresa gasta uma horahomem e uma hora-máquina
- A empresa dispõe de 18 horas-homem e 12 horasmáquina para um período de produção.
- Sabe-se que os lucros líquidos dos produtos são \$4 e \$1 respectivamente

Exemplo

$$Max \qquad L = 4x_1 + x_2$$

Sujeito a:

$$H.H.$$
 $9x_1 + x_2 \le 18$
 $H.M.$ $3x_1 + x_2 \le 12$
 $x_1 \ge 0$ $x_2 \ge 0$

- Vejamos como resolver este exemplo na forma tabular:
- O primeiro passo consiste em deixar o modelo na forma padrão, ou seja, deve-se acrescentar duas variáveis de folga:

H.H.
$$9x_1 + x_2 + x_3 = 18$$

H.M. $3x_1 + x_2 + x_4 = 12$

- Além disso tem-se que:

$$L = 4x_1 + x_2 \Longrightarrow L - 4x_1 - x_2 = 0$$

- Como se a função objetivo fosse uma das restrições originais, porém não é necessário nenhuma variável de folga, pois já esta na forma de igualdade
- L passa a ser vista como uma variável básica adicional e permanente

• Forma-se então um sistema de equações lineares com dois graus de liberdade (para quaisquer duas variáveis podem ser escolhidos valores arbitrários):

$$L -4x_1 -x_2 = 0$$

$$9x_1 + x_2 + x_3 = 18$$

$$3x_1 + x_2 + x_4 = 12$$

• O método simplex usa o valor zero para esses valores arbitrários

- Uma solução imediata e que muitas vezes está disponível é a solução onde todas as variáveis originais são nulas e as de folga são iguais aos limites dos recursos (lado direito).
- Esta solução é conhecida como solução trivial.

$$L -4x_1 -x_2 = 0$$

$$9x_1 +x_2 +x_3 = 18$$

$$3x_1 +x_2 +x_4 = 12$$

$$x_4=12$$

• Observe que, neste caso, x_1 =0, x_2 =0 e o lucro L=0

• As variáveis que são diferentes de zero são ditas estarem na base ou são chamadas de variáveis básicas

 x_3 e x_4 são variáveis básicas

• As que são iguais a zero são conhecidas como variáveis não básicas ou variáveis que estão fora da base.

 x_1 e x_2 são variáveis não básicas

- A solução resultante é chamada de solução básica e, se todas as variáveis básicas forem não-negativas tem-se uma solução básica factível
- Graficamente, uma solução básica factível é equivalente a um vértice factível

 x_3 =18 e x_4 =12: variáveis básicas.

 x_1 =0 e x_2 = 0: variáveis não básicas.

Lucro L=8

X2 12-

X1

- Para resolver o problema devemos resolver as seguintes perguntas:
- Qual o objetivo?
- Como se deve modificar os valores das variáveis de acordo com o objetivo?
- Lembre-se você tem dois graus de liberdade, ou seja, pode escolher os valores de até duas variáveis.
- Que variável fará seu lucro aumentar mais?
- Vejamos a seguir como responder tais perguntas:

Observando o objetivo:

$$L = 4x_1 + x_2 \Longrightarrow L - 4x_1 - x_2 = 0$$

- pode-se ver claramente que x_1 (atualmente nula, portanto não básica) aumentaria mais rapidamente o lucro se fosse posta na base (valor diferente de zero).
- Como o objetivo é maximizar o lucro o ideal seria aumentar x_1 até o infinito.
- Entretanto todas as outras restrições devem ser ainda satisfeitas na presença do máximo valor que x_1 possa alcançar.

$$L -4x_1 - x_2 = 0$$

$$9x_1 + x_2 + x_3 = 18$$

$$3x_1 + x_2 + x_4 = 12$$

$$18 \div 9 = 2$$

$$12 \div 3 = 4$$

- Como deseja-se aumentar x_1 o máximo possível, deve-se saber seus limites nas restrições:
 - Na primeira restrição o limite de x_1 é 2.
 - Na segunda restrição o limite de x_1 é 4.
- Como não se pode romper nenhuma das restrições, x_1 deve ser no máximo 2.
- Como ficam as demais variáveis?

- O limite de x_1 ocorre na linha da primeira restrição.
- Quando x_1 atingir o valor de 2:
 - x_3 deverá ser nula para atender a restrição.
 - x_4 que era 12 deverá ser igual a 6 dado que 6 unidades da segunda restrição serão consumidas por x_1 com valor 2.
- Desta forma x_1 entrou na base e x_3 saiu.

$$x_1$$
=2 e x_4 = 6: variáveis básicas.

$$x_3$$
=0 e x_2 = 0: variáveis não básicas.

X2 12-

X1

• Escalonando (pivotando) o sistema.

$$L -4x_1 -x_2 = 0
9x_1 +x_2 +x_3 = 18 \div 9
3x_1 +x_2 +x_4 = 12$$

• Para se fazer o coeficiente igual a um deve-se dividir toda equação, na linha de entrada, por 9.

$$L -4x_1 - x_2 = 0$$

$$x_1 + \frac{1}{9}x_2 + \frac{1}{9}x_3 = 2$$

$$3x_1 + x_2 + x_4 = 12$$

$$L = -4x_1 - x_2 = 0$$

$$4 \times x_1 + \frac{1}{9}x_2 + \frac{1}{9}x_3 = 2$$

$$3x_1 + x_2 + x_4 = 12$$

• Multiplicando a nova linha de x_1 por 4 e somando com a linha do lucro, zera-se o coeficiente de x_1 naquela linha.

$$L -\frac{5}{9}x_2 + \frac{4}{9}x_3 = 8$$

$$x_1 + \frac{1}{9}x_2 + \frac{1}{9}x_3 = 2$$

$$3x_1 + x_2 + x_4 = 12$$

$$L -\frac{5}{9}x_2 + \frac{4}{9}x_3 = 8$$

$$-3 \times x_1 + \frac{1}{9}x_2 + \frac{1}{9}x_3 = 2$$

$$3x_1 + x_2 + x_4 = 12$$

• Multiplicando a nova linha de x_1 por -3 e somando com a outra linha, zera-se o coeficiente de x_1 naquela linha.

$$L -\frac{5}{9}x_2 + \frac{4}{9}x_3 = 8$$

$$x_1 + \frac{1}{9}x_2 + \frac{1}{9}x_3 = 2$$

$$+\frac{2}{3}x_2 - \frac{1}{3}x_3 + x_4 = 6$$

$$L -\frac{5}{9}x_2 + \frac{4}{9}x_3 = 8$$

$$x_1 + \frac{1}{9}x_2 + \frac{1}{9}x_3 = 2$$

$$+\frac{2}{3}x_2 - \frac{1}{3}x_3 + x_4 = 6$$

- O sistema encontra-se agora como antes (com relação as VB e VNB) e pode-se decidir qual variável deve entrar na base para aumentar o lucro.
- A equação da função lucro pode ser escrita agora como:

$$L = \frac{5}{9}x_2 - \frac{4}{9}x_3 + 8$$

• Claramente se x_2 for aumentada o lucro aumentará.

$$L -\frac{5}{9}x_2 + \frac{4}{9}x_3 = 8$$

$$x_1 + \frac{1}{9}x_2 + \frac{1}{9}x_3 = 2 \cdot \frac{1}{9}$$

$$+ \frac{2}{3}x_2 - \frac{1}{3}x_3 + x_4 = 6 \cdot \frac{6}{9} \cdot \frac{2}{3}$$

- Deseja-se então aumentar ao máximo o valor de x_2 sem romper nenhuma das restrições.
- Isto pode feito como antes.
 - Na primeira restrição x_2 pode ser aumentada até 18
 - Na segunda restrição x₂ pode ser aumentada até 9
- Como as duas restrições devem ser atendidas, x_2 entrará na linha onde x_4 é a VB.

$$L -\frac{5}{9}x_2 + \frac{4}{9}x_3 = 8$$

$$x_1 + \frac{1}{9}x_2 + \frac{1}{9}x_3 = 2$$

$$+\frac{2}{3}x_2 - \frac{1}{3}x_3 + x_4 = 6$$

- A nova solução será:
 - $-x_2 = 9$ e $x_1 = 1$: variáveis básicas;
 - $x_4 = 0$ e $x_3 = 0$: variáveis não básicas;
 - Lucro L=13.
- Claramente a solução é melhor que a anterior
- Para decidir se existe alguma variável NB que aumentaria o lucro deve-se colocar o sistema novamente no formato inicial, com relação as variáveis básicas e não básicas.

$$L -\frac{5}{9}x_2 + \frac{4}{9}x_3 = 8$$

$$x_1 + \frac{1}{9}x_2 + \frac{1}{9}x_3 = 2$$

$$+\frac{2}{3}x_2 - \frac{1}{3}x_3 + x_4 = 6$$

- Através de operações elementares deve-se colocar a variável x_2 com coeficiente 1 na linha onde ela entrou e zero nas demais.
- Multiplique a linha onde x_2 entrou por 3/2 para fazer seu coeficiente unitário.

$$x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4 = 9$$

$$L = -\frac{5}{9}x_2 + \frac{4}{9}x_3 = 8$$

$$x_1 + \frac{1}{9}x_2 + \frac{1}{9}x_3 = 2$$

$$x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4 = 9$$

• Escalonando: multiplique a linha de x_2 por -1/9 e some com a linha da primeira restrição.

$$L -\frac{5}{9}x_2 + \frac{4}{9}x_3 = 8$$

$$x_1 + \frac{1}{6}x_3 - \frac{1}{6}x_4 = 1$$

$$x_2 -\frac{1}{2}x_3 + \frac{3}{2}x_4 = 9$$

• Escalonando: multiplique a linha de x₂ por 5/9 e some com a linha do lucro.

$$L + \frac{1}{6}x_3 + \frac{5}{6}x_4 = 13$$

$$x_1 + \frac{1}{6}x_3 - \frac{1}{6}x_4 = 1$$

$$x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4 = 9$$

$$L + \frac{1}{6}x_3 + \frac{5}{6}x_4 = 13$$

$$x_1 + \frac{1}{6}x_3 - \frac{1}{6}x_4 = 1$$

$$x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4 = 9$$

- Note que agora nenhuma variável contribuiria para aumentar o lucro, isto caracteriza a solução ótima.
- Se este mesmo procedimento for delineado e automatizado constituirá o algoritmo Simplex.
- Utilizando-se os quadros os passos ficaram mais fáceis de serem implementados.

- Utilizando-se de quadros os passos ficam mais fáceis de serem implementados, pois é possível expor os sistemas de uma maneira mais adequada.
- A seguinte forma foi escolhida como a mais conveniente:

• Estes quadros são conhecidos como quadro simplex, este particularmente é o quadro simplex inicial para o exemplo anterior.

• Construção da linha Pivô: divisão da linha pelo valor do pivô para que este fique igual a 1

Lin1=Lin1÷9

Base	x1	x2	x 3	x4	
L	-4	-1	0	0	0
х3	1	1/9	1/9	0	2
х4	3	1	0	1	12

• Construção da coluna Pivô: zerar os coeficientes das outras linhas na coluna relativa ao elemento pivô

Linf=4xLin2+Linf

	Base	x1	x2	x 3	x4	
f	L	9	- 5/9	4/9	0	8
	х3	1	1/9	1/9	0	2
n2	х4	0	2/3	- 1/3	1	6

Lin2=-3xLin2+Lin2

• Como x_1 entrou na base e x_3 saiu tem-se a nova tabela

• Construção da linha Pivô: divisão da linha pelo valor do pivô para que este fique igual a 1

		x1	x2	х3	x4	
	L	0	- 5/9	4/9	0	8
	x1	1	1/9	1/9	0	2
Lin2=Lin2 x 3÷2	х4	0	(1)	- 1/2	3/2	9

• Construção da coluna Pivô: zerar os coeficientes das outras linhas na coluna relativa ao elemento pivô

 Linf=5÷9xLin3+Linf
 X1
 X2
 X3
 X4

 Lin1=-1÷9xLin3+Lin1
 X1
 1
 0
 1/6
 5/6
 13

 X4
 0
 1
 -1/6
 -1/6
 1

 X4
 0
 1
 -1/2
 3/2
 9

• Como x_2 entrou na base e x_4 saiu tem-se a nova tabela

	x1	x2	x3	x4	
L	0	0	1/6	5/6	13
x1	1	0	1/6	-1/6	1
x2	0	1	- 1/2	3/2	9

- Note que agora nenhuma variável contribuiria para aumentar o lucro, isto caracteriza a solução ótima.
- Se este mesmo procedimento for delineado e automatizado constituirá um algoritmo para solução, o algoritmo Simplex.

- Idéia Básica do método Simplex (novamente):
 - O sistema de equações é resolvido repetidamente para uma sequencia de soluções básicas factíveis. Cada uma melhor que a sua predecessora
 - Isso é feito, até que seja alcançada uma solução básica factível ótima (graficamente corresponde a um vértice ótimo)
 - Cada nova solução básica é obtida de sua predecessora: "transformando uma variável não-básica em básica (variável entrando) e transformando uma variável básica em não-básica (variável saindo)"
 - Duas soluções básicas factíveis que diferem apenas por uma única troca de variáveis básicas e não-básicas são chamadas adjacentes
 - Uma solução básica (vértice) é dita ótima quando nenhuma das soluções básicas adjacentes (vértices adjacentes) é melhor que ela

• Exercício: Resolva o seguinte problema usando a forma tabular do método simplex. Faça uma primeira resolução utilizando sistemas e uma segunda utilizando a forma de tabelas. Isso facilitará o entendimento das tabelas!

Uma Indústria de confecção produz camisas de manga longa e de manga curta. Os recursos disponíveis são de 1200 reais para compra de tecido e as máquinas permitem 40 horas de produção por semana. Após uma pesquisa de mercado decidiu-se que a produção total não pode exceder de 800 unidades. Além disso, o número de unidades produzidas de camisa manga longa não pode exceder o número de unidades produzidas de camisa manga curta em mais de 450 unidades. Sabe-se que, cada camisa manga longa requer 2 reais de tecido e 3 minutos de produção e cada camisa manga curta requer 1 real de tecido e 4 minutos de produção. O departamento de finanças tem a informação de que cada camisa manga longa dá um lucro de 8 reais e cada camisa manga curta dá um lucro de 5 reais. O gerente da indústria deseja saber qual o melhor esquema de produção de forma a respeitar as restrições e maximizar o lucro.

- Vejamos como resolver este exemplo na forma tabular:
- O primeiro passo consiste em deixar o modelo na forma adequada, ou seja, deve-se acrescentar as variáveis de folga:

```
\begin{array}{lll} \text{Max Z} = 8\text{X}1 + 5\text{X}2 + 0\text{X}3 + 0\text{X}4 + 0\text{X}5 + 0\text{X}6 & \text{(lucro semanal)} \\ \text{Sujeto a:} & = 1200 & \text{(Quantidade de tecido)} \\ 3\text{X}1 + 1\text{X}2 + \text{X}3 & = 1200 & \text{(Tempo de produção)} \\ \text{X}1 + 4\text{X}2 & + \text{X}4 & = 2400 & \text{(Tempo de produção)} \\ \text{X}1 + \text{X}2 & + \text{X}5 & = 800 & \text{(Limite produção total)} \\ \text{X}1 - \text{X}2 & + \text{X}6 & = 450 & \text{(Produção em excesso)} \\ \text{X}_j >= 0 \text{ , } j = 1, ...,6 & \text{(Resultados positivos)} \end{array}
```

• Reescrevendo o problema em forma de sistema tem-se:

```
Z - 8X1 - 5X2 + 0X3 + 0X4 + 0X5 + 0X6 = 0 (lucro semanal)

2X1 + 1X2 + X3 = 1200 (Quantidade de tecido)

3X1 + 4X2 +X4 = 2400 (Tempo de produção)

X1 + X2 +X5 = 800 (Limite produção total)

X1 - X2 +X6 = 450 (Produção em excesso)
```

• Observe que este sistema tem quatro graus de liberdade:

 Iniciamos com a solução trivial onde todas as variáveis originais são nulas e as de folga são iguais aos limites dos recursos

$$Z - 8 x_1 - 5 x_2 + 0 x_3 + 0 x_4 + 0 x_5 + 0 x_6 = 0$$

$$2 x_1 + 1 x_2 + x_3 = 1200$$

$$3 x_1 + 4 x_2 + x_4 = 2400$$

$$x_1 + x_2 + x_5 = 800$$

$$x_1 - x_2 + x_6 = 450$$

- •A solução inicial é:
- $x_3 = 1200$; $x_4 = 2400$; $x_5 = 800$; $x_6 = 450$ variáveis básicas;
- x_1 =0 e x_2 = 0; variáveis não básicas;
- Lucro f=0;

O Método Simplex: forma tabular 1200 Restrição de Tecido: $2x_1+x_2=1200 (x_3=0)$ Restrição do Limite de Produção Total: $x_1+x_2=800 (x_5=0)$ 600 Restrição de excesso Restrição de de produção **Factivel** Tempo de $x_1-x_2=450 (x_6=0)$ Produção X1 $3x_1+4x_2=2400$ 600 800 $(x_4=0)$ Solução Inicial $x_1=0$ e $x_2=0$; f=0

Observando o objetivo:

$$Z = 8 x_1 + 5 x_2 + 0 x_3 + 0 x_4 + 0 x_5 + 0 x_6 \Rightarrow$$

$$Z - 8 x_1 - 5 x_2 + 0 x_3 + 0 x_4 + 0 x_5 + 0 x_6 = 0$$

- pode-se ver claramente que x_1 (atualmente nula, portanto não básica) aumentaria mais rapidamente o lucro se fosse posta na base (valor diferente de zero).
- Como o objetivo é maximizar o lucro o ideal seria aumentar x_1 até o infinito.
- Entretanto todas as outras restrições devem ser ainda satisfeitas na presença do máximo valor que x_1 possa alcançar.

- Como deseja-se aumentar x_1 o máximo possível, deve-se saber seus limites nas restrições.
 - Na quarta restrição o limite de x_1 é 450.
- Como não se pode romper nenhuma das restrições, x_1 deve ser no máximo 450.
- Como ficam as demais variáveis?

$$Z-8 x_1 - 5 x_2 + 0 x_3 + 0 x_4 + 0 x_5 + 0 x_6 = 0$$

$$2 x_1 + 1 x_2 + x_3 = 1200$$

$$3 x_1 + 4 x_2 + x_4 = 2400$$

$$x_1 + x_2 + x_5 = 800$$

$$x_1 - x_2 + x_6 = 450$$

- Quando x_1 atingir o valor de 450 (considerando que x_2 deve se manter fora da base, ou seja, x_2 =0):
 - x_3 deverá ser 300 para atender a restrição.
 - x_4 deverá ser 1050 para atender a restrição.
 - x_5 deverá ser 350 para atender a restrição.
 - x_6 deverá ser 0 para atender a restrição.

Desta forma x_1 entrou na base e x_6 saiu

- A nova solução é:
 - $-x_1=450$; $x_3=300$; $x_4=1050$; $x_5=350$ variáveis básicas.
 - $-x_6=0$ e $x_2=0$; variáveis não básicas.
 - Lucro f=3600;
- Se, utilizando operações elementares, o sistema for posto na mesma forma, com relação às variáveis básicas e não básicas, será possível perceber se alguma variável (NB=0) poderá contribuir para aumentar o lucro.
- Isto é feito escalonando-se o sistema na coluna relativa a x_1 , deixando o coeficiente desta variável igual a 1 apenas na linha onde ela entrou (trocou valores com x_6).

$$Z \cdot 8 x_{1} - 5 x_{2} = 0$$

$$2 x_{1} + 1 x_{2} + x_{3} = 1200$$

$$3 x_{1} + 4 x_{2} + x_{4} = 2400$$

$$x_{1} + x_{2} + x_{5} = 800$$

$$x_{1} - x_{2} + x_{6} = 450$$

- Como o coeficiente de x₁ já é igual a um, não é necessário fazer nada
- Resta agora zerar os coeficientes de x_1 nas outras restrições usando a restrição 4 como pivô

• Multiplicando a restrição 4 por 8 e somando com a linha do lucro, zera-se o coeficiente de x_1 naquela linha.

Z $-13 x_2$ $+8 x_6 = 3600$ $2 x_1 + 1 x_2 + x_3$ = 1200 $3 x_1 + 4 x_2 + x_4$ = 2400 $x_1 + x_2 + x_5 = 800$ $x_1 - x_2 + x_6 = 450$ x (-2)

• Multiplicando a restrição 4 por -2 e somando com a restrição 1, zera-se o coeficiente de x_1 naquela linha.

Z
$$-13 x_2$$
 $+8 x_6 = 3600$
 $+3 x_2 + x_3$ $-2 x_6 = 300$
 $3 x_1 + 4 x_2 + x_4 = 2400$
 $x_1 + x_2 + x_5 = 800$
 $x_1 - x_2 + x_6 = 450$ x (-3)

• Multiplicando a restrição 4 por -3 e somando com a restrição 2, zera-se o coeficiente de x_1 naquela linha.

• Multiplicando a restrição 4 por -1 e somando com a restrição 3, zera-se o coeficiente de x_1 naquela linha.

$$Z + -13 x_{2} + x_{3} + 8 x_{6} = 3600$$

$$+ 3 x_{2} + x_{3} - 2 x_{6} = 300$$

$$+ 7 x_{2} + x_{4} - 3 x_{6} = 1050$$

$$+ 2 x_{2} + x_{5} - x_{6} = 350$$

$$x_{1} - x_{2} + x_{6} = 450$$

- O sistema encontra-se agora como antes (com relação as VB e VNB) e pode-se decidir qual variável deve entrar na base para aumentar o lucro.
- A equação da função lucro pode ser escrita agora como:

$$Z = +13 x_2 - 8 x_6 + 3600$$

• Claramente se x_2 for aumentada o lucro aumentará.

- Como deseja-se aumentar x_2 o máximo possível, deve-se saber seus limites nas restrições.
 - Na primeira restrição o limite de x_2 é 100.
- Como não se pode romper nenhuma das restrições x_2 deve ser no máximo 100
- Como ficam as demais variáveis?

- Quando x_2 atingir o valor de 100 (considerando que x_6 deve se manter fora da base, ou seja, x_6 =0):
 - x_3 deverá ser 0 para atender a restrição.
 - x_4 deverá ser 350 para atender a restrição.
 - x_5 deverá ser 150 para atender a restrição.
 - x_1 deverá ser 550 para atender a restrição.

Desta forma x_2 entrou na base e x_3 saiu

- A nova solução é:
 - $-x_1=550$; $x_2=100$; $x_4=350$; $x_5=150$ variáveis básicas.
 - $-x_6=0$ e $x_3=0$; variáveis não básicas.
 - Lucro f=4900;
- Se, utilizando operações elementares, o sistema for posto na mesma forma, com relação às variáveis básicas e não básicas, será possível perceber se alguma variável (NB=0) poderá contribuir para aumentar o lucro.
- Isto é feito escalonando-se o sistema na coluna relativa a x_2 , deixando o coeficiente desta variável igual a 1 apenas na linha onde ela entrou (trocou valores com x_3).

• Para se fazer o coeficiente igual a um deve-se dividir toda equação, na linha de entrada, por 3.

Z	$-13 x_2$		$+8x_{6}=3600$
	+ x ₂	+ 1/3 <i>x</i> ₃	$-2/3 x_6 = 100$
	$+7 x_2$	+ x ₄	$-3 x_6 = 1050$
	$+2x_{2}$	+	$x_5 - x_6 = 350$
x_1	- x_2		$+ x_6 = 450$

• Multiplicando a restrição 1 por 13 e somando com a linha do lucro, zera-se o coeficiente de x_2 naquela linha.

Z +13/3
$$x_3$$
 -2/3 x_6 = 4900
+ x_2 + 1/3 x_3 - 2/3 x_6 = 100
+ $7x_2$ + x_4 - 3 x_6 = 1050
+ 2 x_2 + x_5 - x_6 = 350
+ x_1 - x_2 + x_6 = 450

Z
$$+13/3x_3$$
 $-2/3$ $x_6 = 4900$
 $+ x_2 + 1/3x_3$ $-2/3$ $x_6 = 100$
 $+ 7$ x_2 $+ x_4$ -3 $x_6 = 1050$
 $+ 2$ x_2 $+ x_5$ $- x_6 = 350$
 x_1 $- x_2$ $+ x_6 = 450$

• Multiplicando a restrição 1 por -7 e somando com a restrição 2, zera-se o coeficiente de x_2 naquela linha.

Z
$$+13/3x_3$$
 $-2/3 x_6 = 4900$
 $+ x_2 + 1/3x_3$ $-2/3 x_6 = 100$
 $-7/3x_3 + x_4$ $+5/3 x_6 = 350$
 $+ 2 x_2$ $+ x_5 - x_6 = 350$
 $x_1 - x_2$ $+ x_6 = 450$

Z
$$+13/3x_3$$
 $-2/3 x_6 = 4900$
 $+ x_2 + 1/3x_3$ $-2/3 x_6 = 100$
 $-7/3x_3 + x_4$ $+5/3 x_6 = 350$
 $+ 2 x_2$ $+ x_5 - x_6 = 350$
 $x_1 - x_2$ $+ x_6 = 450$

• Multiplicando a restrição 1 por -2 e somando com a restrição 3, zera-se o coeficiente de x_2 naquela linha.

Z
$$+13/3x_3$$
 $-2/3 x_6 = 4900$
 $+ x_2 + 1/3x_3$ $-2/3 x_6 = 100$
 $-7/3x_3 + x_4$ $+5/3 x_6 = 350$
 $-2/3x_3$ $+ x_5 +1/3 x_6 = 150$
 $x_1 - x_2$ $+ x_6 = 450$

Z +13/3
$$x_3$$
 -2/3 x_6 = 4900
+ x_2 + 1/3 x_3 - 2/3 x_6 = 100
- 7/3 x_3 + x_4 +5/3 x_6 = 350
- 2/3 x_3 + x_5 +1/3 x_6 = 150
 x_1 - x_2 + x_6 = 450

 Multiplicando a restrição 1 por 1 e somando com a restrição 4, zera-se o coeficiente de x_2 naquela linha.

Z +13/3
$$x_3$$
 -2/3 x_6 = 4900
+ x_2 + 1/3 x_3 - 2/3 x_6 = 100
- 7/3 x_3 + x_4 +5/3 x_6 = 350
- 2/3 x_3 + x_5 +1/3 x_6 = 150
 x_1 +1/3 x_3 +1/3 x_6 = 550

Z
$$+13/3x_3$$
 $-2/3 x_6 = 4900$
 $+ x_2 + 1/3x_3$ $-2/3 x_6 = 100$
 $-7/3x_3 + x_4$ $+5/3 x_6 = 350$
 $-2/3x_3$ $+ x_5 +1/3 x_6 = 150$
 x_1 $+1/3x_3$ $+1/3 x_6 = 550$

- O sistema encontra-se agora como antes (com relação as VB e VNB) e pode-se decidir qual variável deve entrar na base para aumentar o lucro.
- A equação da função lucro pode ser escrita agora como:

$$Z = -13/3 x_3 + 2/3 x_6 + 4900$$

• Claramente se x_6 for aumentada o lucro aumentará.

- Como deseja-se aumentar x_6 o máximo possível, deve-se saber seus limites nas restrições.
 - Na segunda restrição o limite de x_6 é 210.
- Como não se pode romper nenhuma das restrições x_6 deve ser no máximo 210
- Como ficam as demais variáveis?

Z
$$+13/3x_3$$
 $-2/3 x_6 = 4900$
 $+ x_2 + 1/3x_3$ $-2/3 x_6 = 100$
 $-7/3x_3 + x_4$ $+5/3 x_6 = 350$
 $-2/3x_3$ $+ x_5 +1/3 x_6 = 150$
 x_1 $+1/3x_3$ $+1/3 x_6 = 550$

- Quando x_6 atingir o valor de 210 (considerando que x_3 deve se manter fora da base, ou seja, x_3 =0):
 - x_2 deverá ser 240 para atender a restrição.
 - x_4 deverá ser 0 para atender a restrição.
 - x_5 deverá ser 80 para atender a restrição.
 - x_1 deverá ser 480 para atender a restrição.

Desta forma x_6 entrou na base e x_4 saiu

- A nova solução é:
 - $-x_1=480$; $x_2=240$; $x_5=80$; $x_6=210$ variáveis básicas.
 - $-x_3=0$ e $x_4=0$; variáveis não básicas.
 - Lucro Z=5040;
- Se, utilizando operações elementares, o sistema for posto na mesma forma, com relação às variáveis básicas e não básicas, será possível perceber se alguma variável (NB=0) poderá contribuir para aumentar o lucro.
- Isto é feito escalonando-se o sistema na coluna relativa a x_6 , deixando o coeficiente desta variável igual a 1 apenas na linha onde ela entrou (trocou valores com x_4).

Z
$$+13/3x_3$$
 $-2/3 x_6 = 4900$
 $+ x_2 + 1/3x_3$ $-2/3 x_6 = 100$
 $-7/3x_3 + x_4$ $+5/3 x_6 = 350$ $\times 3/5$
 $-2/3x_3$ $+ x_5$ $+1/3 x_6 = 150$
 x_1 $+1/3x_3$ $+1/3 x_6 = 550$

• Para se fazer o coeficiente igual a um deve-se multiplicar toda equação, na linha de entrada, por 3/5.

Z
$$+13/3x_3$$
 $-2/3 x_6 = 4900$
 $+ x_2 + 1/3x_3$ $-2/3 x_6 = 100$
 $-21/15x_3 + 3/5x_4$ $+ x_6 = 210$
 $-2/3x_3$ $+ x_5 + 1/3 x_6 = 150$
 x_1 $+1/3x_3$ $+1/3 x_6 = 550$

Z
$$+13/3x_3$$
 $-2/3x_6 = 4900$
 $+x_2 + 1/3x_3$ $-2/3x_6 = 100$
 $-21/15x_3 + 3/5x_4$ $+x_6 = 210$
 $-2/3x_3$ $+x_5$ $+1/3x_6 = 150$
 x_1 $+1/3x_3$ $+1/3x_6 = 550$

• Multiplicando a restrição 2 por 2/3 e somando com a linha do lucro, zera-se o coeficiente de x_6 naquela linha.

Z
$$+153/45x_3 + 2/5x_4 = 5040$$

 $+ x_2 + 1/3x_3 - 2/3 x_6 = 100$
 $-21/15x_3 + 3/5x_4 + x_6 = 210$
 $-2/3x_3 + x_5 + 1/3 x_6 = 150$
 $x_1 + 1/3x_3 + 1/3 x_6 = 550$

Z
$$+153/45x_3+2/5x_4$$
 = 5040
 $+ x_2 + 1/3x_3$ $- 2/3 x_6$ = 100
 $-21/15x_3 + 3/5x_4$ $+ x_6$ = 210
 $-2/3x_3$ $+ x_5$ $+1/3 x_6$ = 150
 x_1 $+1/3x_3$ $+1/3 x_6$ = 550

• Multiplicando a restrição 2 por 2/3 e somando com a restrição 1, zera-se o coeficiente de x_6 naquela linha.

Z
$$+153/45x_3+2/5x_4 = 5040$$

 $+ x_2 - 9/15x_3 + 2/5x_4 = 420$
 $-21/15x_3 + 3/5x_4 + x_6 = 210$
 $-2/3x_3 + x_5 + 1/3 x_6 = 150$
 $x_1 + 1/3x_3 + 1/3 x_6 = 550$

Z
$$+153/45x_3 + 2/5x_4$$
 = 5040
 $+ x_2 - 9/15x_3 + 2/5x_4$ = 420
 $-21/15x_3 + 3/5x_4$ + x_6 = 210
 $-2/3x_3$ + x_5 + x_6 = 150
 x_1 + x_1 + x_2 = 550

• Multiplicando a restrição 2 por -1/3 e somando com a restrição 3, zera-se o coeficiente de x_6 naquela linha.

Z
$$+153/45x_3+2/5x_4 = 5040$$

 $+ x_2 - 9/15x_3 + 2/5x_4 = 420$
 $-21/15x_3 + 3/5x_4 + x_6 = 210$
 $-3/15x_3 - 1/5x_4 + x_5 = 150$
 $x_1 + 1/3x_3 + 1/3x_4 + x_5 = 550$

Z
$$+153/45x_3 + 2/5x_4$$
 = 5040
 $+ x_2 - 9/15x_3 + 2/5x_4$ = 420
 $-21/15x_3 + 3/5x_4$ + x_6 = 210
 $-3/15x_3 - 1/5x_4 + x_5$ = 150
 $x_1 + 1/3x_3$ + $1/3x_6$ = 550

• Multiplicando a restrição 2 por -1/3 e somando com a restrição 4, zera-se o coeficiente de x_6 naquela linha.

$$Z + 153/45x_3 + 2/5x_4 = 5040$$

$$+ x_2 - 9/15x_3 + 2/5x_4 = 420$$

$$-21/15x_3 + 3/5x_4 + x_6 = 210$$

$$-3/15x_3 - 1/5x_4 + x_5 = 150$$

$$x_1 + 12/15x_3 - 1/5x_4 = 480$$

Z
$$+153/45x_3 + 2/5x_4 = 5040$$

 $+ x_2 - 9/15x_3 + 2/5x_4 = 420$
 $-21/15x_3 + 3/5x_4 + x_6 = 210$
 $-3/15x_3 - 1/5x_4 + x_5 = 150$
 $x_1 + 12/15x_3 - 1/5x_4 = 480$

- Note que agora nenhuma variável contribuiria para aumentar o lucro, isto caracteriza a solução ótima.
- Se este mesmo procedimento for delineado e automatizado constituirá um algoritmo para solução, o algoritmo Simplex.
- Utilizando-se os quadros os passos ficaram mais fáceis de serem implementados

86

• A seguinte forma foi escolhida como a mais conveniente para se expor o método.

Verióveia básicas a rão básicas Independente

Variáveis: básicas e não-básicas

Função								
Objetivo		x 1	x2	x 3	x4	x5	x6	
	Z	-8	-5	0	0	0	0	0
	x 3	2	1	1	0	0	0	1200
Variáveis	x4	3	4	0	1	0	0	2400
básicas	x5	1	1	0	0	1	0	800
	x6	1	-1	0	0	0	1	450

• Estes quadros são conhecidos como quadro simplex, este particularmente é o quadro simplex inicial.

Variável x1 entra na base (maior acréscimo)

		x1	x2	x 3	x4	x 5	x6	
	Z	-8	-5	0	0	0	0	0
	х3	2	1	1	0	0	0	1200
	x4	3	4	0	1	0	0	2400
	x 5	1	1	0	0	1	0	800
→	х6	1	-1	0	0	0	1	450

Variável x6 sai da base (limita)

Pivô

• Contrução da linha Pivô: como o valor do pivô já é igual a 1, nada tem que ser feito

	x1	x2	х3	x4	x5	х6	
Z	-8	-5	0	0	0	0	0
x 3	2	1	1	0	0	0	1200
x4	3	4	0	1	0	0	2400
x5	1	1	0	0	1	0	800
x6		-1	0	0	0	1	450

• Contrução da coluna Pivô: zerar os coeficintes das outras linhas na coluna do elemento pivô

		x 1	x2	х3	x4	x 5	х6	
Linf=8 x Lin4+Linf	Z	0	-13	0	0	0	8	3600
Lin1=-2 x Lin4+Lin1	x 3	0	3	1	0	0	-2	300
Lin2=-3 x Lin4+Lin2	x4	0	7	0	1	0	-3	1050
Lin3=-1 x Lin4+Lin3	x 5	0	2	0	0	1	-1	350
	x1	1	-1	0	0	0	1	450

• Como x_1 entrou na base e x_6 saiu tem-se a nova tabela

Pivô

• Contrução da linha Pivô: divisão da linha pelo valor do pivô para que este fique igual a 1

Lin1=-Lin1/3

	x 1	x2	x 3	x4	x 5	x6	
Z	0	-13	0	0	0	8	3600
х3	0	1	1/3	0	0	-2/3	100
x4	0	7	0	1	0	-3	1050
x5	0	2	0	0	1	-1	350
x 1	1	-1	0	0	0	1	450

• Contrução da coluna Pivô: zerar os coeficintes das outras linhas na coluna do elemento pivô

_								
		x1	x 2	x 3	x4	x 5	x6	
Linf=13xLin1+Linf		0	0	13/3	0	0	-2/3	4900
	x2	0	1	1/3	0	0	-2/3	100
Lin2=-7xLin1+Lin2	x4	0	0	-7/3	1	0	5/3	350
Lin3=-2xLin1+Lin3	x5	0	0	-2/3	0	1	1/3	150
Lin4=1xLin1+Lin4	x1	1	0	1/3	0	0	1/3	550

• Como x_2 entrou na base e x_3 saiu tem-se a nova tabela

Variável x6 entra na base (maior acréscimo) **x**4 **x**5 x3x1x2 13/3 -2/3 4900 1/3 100 x2 **Variável** x4 sai -7/3 350 **x**4 da base (limita) -2/3150 **x**5

Pivô

• Contrução da linha Pivô: divisão da linha pelo valor do pivô para que este fique igual a 1

	x 1	x 2	x 3	x4	x5	x6	
	0	0	13/3	0	0	-2/3	4900
x2	0	1	1/3	0	0	-2/3	100
x4	0	0	-21/15	3/5	0	1	210
x 5	0	0	-2/3	0	1	1/3	150
x 1	1	0	1/3	0	0	1/3	550

Lin2=Lin2 x 3/5

• Contrução da coluna Pivô: zerar os coeficintes das outras linhas na coluna do elemento pivô

-								
		x1	x2	x 3	x4	x 5	x6	
Linf=2/3xLin2+Linf	Z	0	0	153/45	2/5	0	0	5040
Lin1=2/3xLin2+Lin1	x2	0	1	-9/15	2/5	0	0	420
	x6	0	0	-21/15	3/5	0		210
Lin3=-1/3xLin2+Lin3	x 5	0	0	-3/15	-1/5	1	0	150
Lin4=-1/3xLin2+Lin4	x1	1	0	12/15	-1/5	0	0	480

• Como x_6 entrou na base e x_4 saiu tem-se a nova tabela

	x1	x2	х3	x4	x 5	x 6	
Z	0	0	153/45	2/5	0	0	5040
x2	0	1	-9/15	2/5	0	0	420
x 6	0	0	-21/15	3/5	0	7	210
x 5	0	0	-3/15	-1/5	1	0	150
x 1	1	0	12/15	-1/5	0	0	480

- Note que agora nenhuma variável contribuiria para aumentar o lucro, isto caracteriza a solução ótima.
- Se este mesmo procedimento for delineado e automatizado constituirá um algoritmo para solução, o algoritmo Simplex.

Casos especiais

• Caso de soluções ótimas múltiplas:

- há uma variável não básica com coeficiente 0 na linha 0 do quadro ótimo
- essa variável pode entrar na base (saindo outra) sem que o objetivo seja alterado.

Caso de problemas ilimitados:

- num passo do algoritmo há uma variável não básica que pode ser aumentada (de zero para um valor positivo)
- quando essa variável entra na base, não há nenhuma restrição que a limite
- em problemas de maximização: uma variável tem coeficiente negativo na linha da função objetivo, e coeficientes não positivos em todas as restrições.

Problemas ilimitados

Resolva graficamente:

max
$$z=2x_1-x_2$$

sujeito a $x_1-x_2\leq 1$
 $2x_1+x_2\geq 6$
 $x_1,x_2\geq 0$

Ferramenta interativa do método simplex:

• http://www.tutor.ms.unimelb.edu.au/simplex_intro/index.html