딥러닝팀

1팀

김예찬

윤지영

채소연

한지원

홍지우

INDEX

- 1. 머 신 러 닝
- 2. 퍼셉트론
- 3. 신 경 망

1

머 신 러 닝

● 머신러닝

머신러닝(Machine Learning)이란?

인간이 다양한 경험을 기반으로 새로운 행동 패턴과 지식을 습득하듯, 컴퓨터가 데이터의 형태로 얻어지는 경험에서 <mark>스스로 학습하고 지식을 추론</mark>하는 것

● 머신러닝

머신러닝(Machine Learning)이란?

머신러닝은 고전적 머신러닝 (지도 / 비지도 학습)과 강화학습으로 나눌 수 있으며, 딥러닝은 이 모두에 적용될 수 있음

● 지도 학습과 비지도 학습

지도 학습(Supervised Learning)

- 객체의 속성에 대한 <mark>입력과 출력</mark>이 데이터로 주어졌을 때, 그 입력과 출력 간의 함수관계를 유추
- 분류 문제: 예측 대상이 범주형 자료로 주어지는 예측 과제
- 회귀 문제: 예측 대상이 연속형 자료로 주어지는 예측 과제

고전적 머신러닝 모델

● 지도 학습과 비지도 학습

비지도 학습(Unsupervised Learning)

- 객체의 속성에 대한 <mark>입력</mark>만이 데이터로 주어졌을 때, 데이터를 설명하는 특성이나 패턴을 추출
 - 군집화, **이상탐지**, 연관분석, 차원축소

고전적 머신러닝 모델

강화학습

강화학습(Reinforcement Learning)

강화학습은 지도학습 및 비지도학습과 **교집합이 존재하지 않음** (알고리즘의 작동 방식과 원리의 차이)

강화학습

강화학습(Reinforcement Learning)

고전적 머신러닝 알고리즘

입력과 출력을 통해 데이터의 <mark>속성 파악</mark>, 라벨을 예측

강화학습

(X,Y)의 형태는 물론이고 입력과 출력이라는 개념조차 없음

강화학습

강화학습(Reinforcement Learning)

• Agent : 빨간 원

Environment: (5,5) Grid

Action : 상하좌우 4가지 중 한 방향으로
 움직이는 것

• Reward: Terminal state에 들어가면 +1

State : 빨간 원이 한 번 움직이는 상황

학습 목표: (1,1)에서 출발하여 (5,5)까지 최단거리로 이동하는 경로 탐색 '보상의 총합 최대화'

● 딥러닝

딥러닝(Deep Learning)

- 데이터의 크기와 형태가 커질수록 더 좋은 성능 빅데이터 분석에 유용
- 지도학습, 비지도학습, 강화학습의 과제 모두에 적용될 수 있음

● 딥러닝

딥러닝의 활용 사례

지도 학습

비지도 학습

강화학습

2

퍼 셉 트 론

● 퍼셉트론

퍼셉트론이란?

: 다수의 입력 데이터에 대해 하나의 출력을 반환하는 형태

● 퍼셉트론

퍼셉트론의 한계

데이터 분석에 있어서 입력의 속성이 많아지면 많아질수록 높은 정확도의 선형 분류 모델을 찾는 것은 매우 어렵다

해결방안 : 비선형성 추가

퍼셉트론의 중첩

활성화 함수의 선택

→ 다층 퍼셉트론

• 다층 퍼셉트론

• 다층 퍼셉트론

다층 퍼셉트론의 이점

: 비선형성을 데이터에 여러번 부여하여 선형 모델의 한계를 극복함

선형모델로는 분류할 수 없는 XOR 문제를 해결할 수 있음

다층 퍼셉트론

XOR 문제의 해결

▶ 좌표축의 변환으로 비선형성 추가

$$w_{11} = 1.0, \ w_{21} = 1.0,$$

$w_{01} =$	-1.5				
X ₁	X ₂	Σ	y ₁		
0	0	-1.5	0		
0	1	-0.5	0		
1	0	-0.5	0		
1	1	0.5	1		

$$w_{12} = 1.0, \ w_{22} = 1.0, \qquad v_{11} = -1.0, \ v_{21} = 1.0,$$

 $w_{02} = -0.5$

002			
X ₁	X ₂	Σ	y ₂
0	0	-0.5	0
0	1	0.5	1
1	0	0.5	1
1	1	1.5	1

$$v_{11} = -1.0, \ v_{21} = 1.0$$

 $v_0 = -0.5$

15	V01				
	y ₁	y ₂	Σ	У	
	0	0	-0.5	0	
	0	1	0.5	1	
	0	1	0.5	1	
\	1	1	-0.5	0	
33.5	$\overline{}$				

• 다층 퍼셉트론

XOR 문제의 해결

선형적인 구분선을 그을 수 있게 되었음

3

신 경 망

• 활성화 함수

활성화 함수(Activation Function)란?

: 입력과 가중치의 선형결합에 비선형성을 부여해주는 함수

● 활성화 함수

시그모이드 함수(Sigmoid)

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- 로지스틱 회귀모델과 동일한 형태
- (0, 1)내의 값으로 반환
- 입력값이 조금이라도 커지면 미분값이 0으로 수렴

활성화 함수

하이퍼볼릭 탄젠트 함수(tanh)

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

- 그래프의 중심이 0
- (-1, 1)내의 값으로 반환
- 입력값이 조금이라도 커지면 미분값이 0으로 수렴

활성화 함수

ReLU 함수

$$f(x) = \max(0, x)$$

- 연산 속도가 sigmoid, tanh에 비해 빠름
- (0, x)값 중 더 큰 값을 반환
- 입력 데이터의 특징을 효과적으로 인식

● 활성화 함수

소프트맥스 함수 (Softmax Function)

- 출력층에서 활용되는 활성화 함수
- 다중 분류 문제에 자주 활용됨
- 지수함수, 정규화 단계를 거쳐 출력값과 라벨 값을 비교할 수 있도록 함

• 손실 함수

손실 함수(Loss Function)란?

• 역전파를 위한 필수적인 단계

• 손실 함수

손실 함수(Loss Function)란?

• 역전파를 위한 필수적인 단계

• 손실 함수

교차 엔트로피 오차(Cross Entropy Loss)

$$E = \sum_{k=1}^{N} y_k (-\log y_k)$$

$$\log x_k (-\log y_k)$$

$$\log x_k (-\log y_k)$$

$$\log x_k (-\log y_k)$$

- 분류 문제에서 사용
- $-\log(\widehat{y_k})$: 0에 가까울수록 증가 1에 가까울수록 0에 수렴
- 정답과 예측의 차이 ↑ 오차 ↑

• 손실 함수

평균 제곱 오차(Mean Squared Error)

$$E=\sum_{k=1}^{N}(\widehat{y_k}-y_k)^2$$
 প্রকাশ স্বাধার দ্বালা প্রাণ্ড গ্রান্থ স্থান স্বাধার দ্বালা প্রাণ্ড গ্রান্থ স্বাধার দ্বালা স্বা

- 회귀 문제에서 사용
- 오차의 제곱의 평균값
- 정답과 예측의 차이 ↑ 오차 ↑

• 역전파

진행 과정

역전파 (Back Propagation)

Optimizer

경사 하강법(Gradient Descent)

- 기울기를 <mark>작게 만들어</mark> 나가는 형태
- 미분계수 부호의 반대 방향으로 이동 → 최솟값

학습률
$$x_{i+1} = x_i - \alpha \frac{df}{dx}(x_i) - 가중치 1개$$

$$W \leftarrow W - \eta \left(\frac{\partial E}{\partial w}\right)$$
 - 각각의 가중치 업데이트

Optimizer

경사 하강법(Gradient Descent)

미분의 연쇄법칙을 통해 손실함수의 값 전달 (: 여러 층의 딥러닝 모델)

Optimizer

확률적 경사 하강법(Stochastic Gradient Descent)

Optimizer

Momentum

Stochastic Gradient Descent withhout Momentum

기존 optimizer 미분값에 따라 한 단계씩 최적점으로 접근

Optimizer

Momentum

Stochastic Gradient
Descent withhout
Momentum

기존 optimizer

미분값에 따라 한 단계씩 최적점으로 접근

Stochastic Gradient
Descent with
Momentum

Momentum

미분값이 클 경우, <mark>가속도</mark> 부여(큰 보폭으로 이동)

Optimizer의 문제점

Local Minima 문제

극소와 극대가 여러 곳에서 존재

Optimizer의 문제점

Saddle Point 문제

미분계수가 **0**에 수렴하는 지점이 유지될 경우

- 정상적인 업데이트 X
- 고차원 함수에서 자주 발생

기울기 소실 문제 (Gradient Vanishing Problem)

미분계수가 최적점과 현위치의 차이를 적절하게 반영했는가?

기울기 소실 문제 (Gradient Vanishing Problem)

미분계수가 최적점과 현위치의 차이를 적절하게 반영했는가?

함수를 통과할 때마다 기울기에 1보다 작은 수를 곱하게 되므로 0에 수렴

정상적인 학습 X

● 기울기 소실 문제의 극복

ReLU 함수

- 단순한 형태
- 연산 속도 빠름
- 딥러닝 모델에서 대표적으로 활용

THANK YOU