Number Theory Definitions

Based on lectures by Professor Henri Johnston Notes taken by James Arthur

These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine (especially the typos!).

Contents

Theorem (Division Algorithm). Given a $a \in \mathbb{Z}$ and a $b \in \mathbb{N}_1$ there exists unique integers q and r satisfying a = bq + r and $0 \le r < b$.

Theorem. Let $a, b \in \mathbb{Z}$, $\exists d \in \mathbb{N}_0$ and non-unique $x, y \in \mathbb{Z}$ such that,

- 1. $d \mid a$ and $d \mid b$
- 2. and if $e \in \mathbb{Z}$, $e \mid a$ and $e \mid b$, then $e \mid d$
- 3. d = ax + by

Theorem (Solubility of linear equations in \mathbb{Z}). Let $a, b, c \in \mathbb{Z}$. The equation,

$$ax + by = c$$

is soluble with $x, y \in \mathbb{Z}$ if and only if $gcd(a, b) \mid c$

Theorem (Euclids Algorithm). Let $a, b \in \mathbb{N}_1$ with a > b > 0 and $b \nmid a$. Let $r_0 = a$, $r_1 = b$ and apply the division Algorithm repeatedly to obtain a sequence of remainders defined successively,

$$r_0 = r_1 q_1 + r_2 & 0 < r_2 < r_1 \\ r_1 = r_2 q_2 + r_3 & 0 < r_3 < r_2$$

$$\vdots \\ r_{n-2} = r_{n-1} q_{n-1} + r_n & 0 < r_n < r_{n-1} \\ r_{n-1} = r_n q_n + r_{n+1} & r_{n+1} = 0$$

Then the last non-zero remainder, r_n is the gcd(a, b).

Theorem. There are infinitely many primes

Theorem (Euclid's Lemma for Primes). Let $a, b \in \mathbb{Z}$ and p be a prime. If $p \mid ab$, then $p \mid a$ or $p \mid b$.

Theorem (Fundamental Theorem of Arithmetic). Let $1 < n \in \mathbb{N}_1$. Then,

1. (Existence) The number n can be written as a product of primes.

2. (Uniqueness) Suppose that,

$$n = p_1 \dots p_r = q_1 \dots q_s$$

where each p_i and q_j are prime. Assume further that,

$$p_1 \le p_2 \le \dots \le p_r$$
 and $q_1 \le q_2 \le \dots \le q_s$

Then r = s and $p_i = q_i$ for all i

Theorem. There are infinitely many primes p with $p \equiv 3 \mod 4$

Theorem (Cancellation law for Congruences). Let $a, b, c \in \mathbb{Z}$ and $n \in \mathbb{N}_1$. Let $d = \gcd(c, n)$. Then $ac \mid bc \mod n \iff a \equiv b \mod \frac{n}{d}$. In particular, if n and c are coprime, then $ac \equiv bc \mod n \iff a \equiv b \mod n$.

Theorem (Linear Congruences with exactly one solution). Let $a, b \in \mathbb{Z}$ and let $n \in \mathbb{N}$. Suppose that a and n are coprime. Then the linear congruence,

$$ax \equiv b \mod n$$

has exactly one solution.

Theorem (Solubility of a Linear Congruence). Let $a, b \in \mathbb{Z}$ and let $n \in \mathbb{N}$. Then the linear congruence,

$$ax \equiv b \mod n$$
 (1)

has one or more solutions if and only if $gcd(a, b) \mid b$.

Theorem. Let $a, b \in \mathbb{Z}$ and let $n \in \mathbb{N}$. Let $d = \gcd(a, n)$. Suppose $d \mid b$ and write a = da', b = db' and n = dn'. Then the linear congruence

$$ax \equiv b \mod n$$
 (2)

has exactly d solutions modulo n. These are,

$$t, t + n' + t + 2n', \dots, t + (d-1)n'$$
 (3)

where t is the unique solution $\mod n'$ to,

$$a'x \equiv b' \mod n' \tag{4}$$

Theorem (Special Chinese Remainder Theorem). Let $n, m \in \mathbb{N}$ be coprime and $a, b \in \mathbb{Z}$ be given. Then the pair of linear congruences,

$$x \equiv a \mod m$$

 $x \equiv b \mod n$

has a solution $x \in \mathbb{Z}$. Moreover, if x' is another solution $x \equiv x' \mod mn$

Theorem (Chinese Remainder Theorem). Let $n_1, n_2, \ldots, n_t \in \mathbb{N}$ with $gcd(n_i, n_j) = 1$ whenever $i \neq j$ and let $a_1, \ldots, a_t \in \mathbb{Z}$ be given. Then the system of congruences

$$x \equiv a_1 \mod n_1$$

$$\vdots$$

$$x \equiv a_t \mod n_t$$

has a solution $x \in \mathbb{Z}$. Moreover if x' is any other solution, then $x' \equiv x \mod N$ where $N := n_1 n_2 \dots n_t$.

Theorem. Let $m, n \in N$ be coprime. Then $\varphi(mn) = \varphi(m)\varphi(n)$

Theorem. Let p be a prime and $r \in \mathbb{N}$. Then

$$\varphi(p^r) = p^r - p^{r-1} = p^{r-1}(p-1)$$

Theorem (Euler-Fermat). Let $n \in \mathbb{N}$, $a \in \mathbb{Z}$ and suppose $\gcd(a,n) = 1$. Then $a^{\phi(n)} \equiv 1 \mod n$.

Theorem (Fermat's Little Theorem). Let p be a prime and let $a \in \mathbb{Z}$. Then $a^p \equiv a \mod p$.

Theorem (Legranges Polynomial Congruence Theorem). Let

$$f(x) = a_0 + a_1 x + \dots + a_n x^n \in \mathbb{Z}[x]$$

and let p be a prime such that $p \mid /a_d$. Then $f(x) \equiv 0 \mod p$ has at most d solutions $\mod p$.

Theorem (Hensel's Lemma). Let p be a prime. Let $f(x) \in \mathbb{Z}[x]$ and let $f'(x) \in \mathbb{Z}[x]$ be it's formal derivative. If $a \in \mathbb{Z}$ satisfies,

$$f(x) \equiv 0 \mod p, \qquad f'(a) \not\equiv 0 \mod p$$

then for each $n \in \mathbb{N}$ there exists $a_n \in \mathbb{Z}$ such that

$$f(a_n) \equiv 0 \mod p$$
 and $a_n \equiv a \mod p$

Moreover, a_n is unique modulo p^n .

Theorem. Let p be a prime and let $d \in \mathbb{N}$ be a divisor of p-1. Then there are exactly $\phi(d)$ elements a mod p such that $\operatorname{ord}_p(a) = d$. In particular there are $\phi(p-1)$ primitive roots $\mod p$.

Theorem (Primitive Root Test). Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ where a and n are coprime. Then a is a primitive root m only if

$$a^{\frac{\phi(n)}{q}} \not\equiv 1 \mod n$$

for every prime $q \mid \phi(n)$.

Theorem. Let p be a prime. If g is a primitive root mod p, then g is also a primitive root mod p^e for all e > 1 if and only if $g^{p-1} \not\equiv 1 \mod p^2$.

Theorem. Let $n \in \mathbb{N}$. Then $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is cyclic \iff there exists a primitive root modulo $n \iff$ $n = 1, 2, 4, p^e, 2p^e$ where $e \in \mathbb{N}$ and p is an odd prime.

Theorem (Wilson's Theorem). An integer is prime if and only if $(p-1)! \equiv -1 \mod p$.

Theorem (Eulers Criterion). If p is an odd prime and $a \in \mathbb{Z}$ then

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \mod p$$

Theorem (Multiplicity of Legendre's Symbol). Let p be an odd prime and $a, b \in \mathbb{Z}$. Then $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$

Theorem. If p is an odd prime then,

$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} = \begin{cases} 1 & p \equiv 1 \mod 4\\ -1 & p \equiv 3 \mod 4 \end{cases}$$

In other words, $x^2 \equiv -1 \mod p$ is soluble if and only if $p \equiv 1 \mod 4$.

Theorem. There are infinitely many primes p with $p \equiv 1 \mod 4$.

Theorem (Gauss' Lemma). Let p be an odd prime and let $a \in \mathbb{Z}$ with $p \nmid a$. Then,

$$\left(\frac{a}{p}\right) = (-1)^{\Lambda} \qquad \Lambda = \#\{j \in \mathbb{N} : 1 \le j \le \frac{p-1}{2}, \, \lambda(aj, p) > \frac{p}{2}\}$$

Theorem. There are infinitely many primes p with $p \equiv -1 \mod 8$

Theorem (LQR). If p and q are distinct odd primes, then,

$$\left(\frac{p}{q}\right) = \left(\frac{q}{p}\right) (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$$

$$= \begin{cases} \left(\frac{p}{q}\right) & \text{if } p \equiv 1 \mod 4 \text{ or } p \equiv 1 \mod 4 \\ -\left(\frac{p}{q}\right) & \text{if } p \equiv q \equiv 3 \mod 4 \end{cases}$$

Theorem. Let n, m be odd positive integers and $a, b \in \mathbb{Z}$.

- 1. $\left(\frac{a}{n}\right) = \pm 1$ if a and n are coprime and $\left(\frac{a}{n}\right) = 0$, otherwise,
- 2. $\left(\frac{a}{n}\right) = \left(\frac{b}{n}\right)$ whenever $a \equiv b \mod n$
- 3. $\left(\frac{ab}{n}\right) = \left(\frac{a}{n}\right)\left(\frac{b}{n}\right)$ and $\left(\frac{a}{mn}\right) = \left(\frac{a}{m}\right)\left(\frac{a}{n}\right)$,
- 4. $\left(\frac{a^2}{n}\right) = 1$ whenever a and n are coprime.

Theorem. If n is an odd positive integer then

$$\left(\frac{-1}{n}\right) = (-1)^{\frac{n-1}{2}} = \begin{cases} 1 & n \equiv 1 \mod 4 \\ -1 & n \equiv 3 \mod 4 \end{cases}$$

Theorem. If n is an odd positive integer then,

$$\left(\frac{2}{n}\right) = (-1)^{(n^2 - 1)/8} = \begin{cases} +1 & n \equiv \pm 1 \mod 8 \\ -1 & n \equiv \pm 3 \mod 8 \end{cases}$$

Theorem (Reciprocity Law for Jacobi Symbols). Let m and n be coprime odd positive integers. Then,

$$\left(\frac{m}{n}\right)\left(\frac{n}{m}\right) = (-1)^{(m-1)(n-1)/4} = \begin{cases} +1 & m \equiv 1 \mod 4 \text{ or } n \equiv 1 \mod 4 \\ -1 & m \equiv n \equiv 3 \mod 4. \end{cases}$$

Theorem. Let (x, y, z) be a primitive Pythagorean triple. Then gcd(x, y) = gcd(x, z) = gcd(y, z) = 1.

Theorem. If (x, y, z) is a primitive triple, then one of x and y is even and the other odd. (Equivalently x + y is odd). Also z must be odd.

Theorem. Let (x, y, z) be a primitive Pythagorean triple with x odd. Then there are $r, s \in \mathbb{N}$ with r > s, gcd(r, s) = 1 and r + s odd, such that,

$$x = r^2 - s^2$$
 $y = 2rs$ $z = r^2 + s^2$

Conversely, if $r, s \in \mathbb{N}$ with r > s, gcd(r, s) = 1 and r + s odd, then,

$$(r^2 - s^2, 2rs, r^2 + s^2)$$

is a primitive Pythagorean triple.

Theorem. There do not exist $x, y, z \in \mathbb{N}$ with,

$$x^4 + y^4 = z^4 (5)$$

Theorem. The sets S_2 and S_4 are closed under multiplication. That is,

- 1. If $m, n \in S_2$, then $mn \in S_2$
- 2. If $m, n \in S_4$, then $mn \in S_4$.

Theorem. Let p be a prime and $p \equiv 3 \mod 4$ and let $n \in \mathbb{N}$. If $n \in S_2$ then $v_p(n)$ is even.

Theorem. Let p be a prime with $p \equiv 1 \mod 4$. Then $p \in S_2$.

Theorem (Two Square Theorem). Let $n \in \mathbb{N}$. Then $n \in S_2$ if and only if $v_p(n)$ is even whenever p is a prime congruent to $3 \mod 4$.

Theorem. Let p be a prime. If $p=a^2+b^2=c^2+d^2$ with $a,b,c,d\in\mathbb{N}$ then either a=c and b=d or a=d and b=c.

Theorem. Let p be a prime. Then $p \in S_4$.

Theorem (Lagrange's four-square theorem). If $n \in \mathbb{N}$ then $n \in S_4$