Structured Streaming 实现思路与实现概述

[酷玩 Spark] Structured Streaming 源码解析系列 ,返回目录请 <u>猛戳这里</u>

<u>「腾讯广告」</u>技术团队(原腾讯广点通技术团队)荣誉出品

本文内容适用范围:

- * 2018.11.02 update, Spark 2.4 全系列 √ (已发布: 2.4.0)
- * 2018.02.28 update, Spark 2.3 全系列 √ (已发布: 2.3.0 ~ 2.3.2)
- * 2017.07.11 update, Spark 2.2 全系列 √ (已发布: 2.2.0 ~ 2.2.3)

本文目录

- 一、引言: Spark 2 时代!
- 二、从 Structured Data 到 Structured Streaming
- 三、Structured Streaming: 无限增长的表格
- 四、StreamExecution: 持续查询的运转引擎
 - 1. StreamExecution 的初始状态
 - 2. StreamExecution 的持续查询
 - 3. StreamExecution 的持续查询(增量)
 - 4. 故障恢复
 - 5. Sources 与 Sinks
 - 6. 小结: end-to-end exactly-once guarantees
- 五、全文总结
- 六、扩展阅读

参考资料

一、引言: Spark 2 时代!

Spark 1.x 时代里,以 SparkContext(及 RDD API)为基础,在 structured data 场景衍生出了 SQLContext,HiveContext,在 streaming 场景衍生出了 StreamingContext,很是琳琅满目。

Spark 2.x 则咔咔咔精简到只保留一个 SparkSession 作为主程序入口,以 Dataset/DataFrame 为主要的用户 API,同时满足 structured data, streaming data, machine learning, graph 等应用场景,大大减少使用者需要学习的内容,爽爽地又重新实现了一把当年的 "one stack to rule them all" 的理想。

Person	
Person	
Person	
Person	
Person	
Person	

name	age	height		
String	Int	Double		
String	Int	Double		
String	Int	Double		
String	Int	Double		
String	Int	Double		
String	Int	Double		

RDD[Person]

Dataset/DataFrame

我们这里简单回顾下 Spark 2.x 的 Dataset/DataFrame 与 Spark 1.x 的 RDD 的不同:

- Spark 1.x 的 RDD 更多意义上是一个一维、只有行概念的数据集,比如 RDD[Person] ,那么一行就是一个 Person,存在内存里也是把 Person 作为一个整体(序列化前的 java object,或序列化后的 bytes)。
- Spark 2.x 里,一个 Person 的 Dataset 或 DataFrame,是二维行+列的数据集,比如一行一个 Person,有 name:String,age:Int,height:Double 三列;在内存里的物理结构,也会显式区分列边界。
 - o Dataset/DataFrame 在 API 使用上有区别: Dataset 相比 DataFrame 而言是 type-safe 的,能够在编译时对 AnalysisExecption 报错(如下图示例):

```
personDS.filter(_.age > 20)  // Dataset API(type-safe)
personDS.filter(_.agee > 20)  // Dataset API(type-safe): check analysis errors at compile time

personDF.filter($"age" > 20)  // DataFrame API
personDF.filter($"agee" > 20)  // DataFrame API
```

o Dataset/DataFrame 存储方式无区别:两者在内存中的存储方式是完全一样的、是按照二维行列(UnsafeRow)来存的,所以在没必要区分 Dataset 或 DataFrame 在 API 层面的差别时,我们统一写作 Dataset/DataFrame

[小节注] 其实 Spark 1.x 就有了 Dataset/DataFrame 的概念,但还仅是 SparkSQL 模块的主要 API; 到了 2.0 时则 Dataset/DataFrame 不局限在 SparkSQL、而成为 Spark 全局的主要 API。

二、从 Structured Data 到 Structured Streaming

使用 Dataset/DataFrame 的行列数据表格来表达 structured data,既容易理解,又具有广泛的适用性:

- Java 类 class Person { String name; int age; double height} 的多个对象可以方便地转化为 Dataset/DataFrame
- 多条 json 对象比如 {name: "Alice", age: 20, height: 1.68}, {name: "Bob", age: 25, height: 1.76} 可以方便地转化为 Dataset/DataFrame
- 或者 MySQL 表、行式存储文件、列式存储文件等等等都可以方便地转化为 Dataset/DataFrame

Spark 2.0 更进一步,使用 Dataset/Dataframe 的行列数据表格来扩展表达 streaming data —— 所以便横空出世了 Structured Streaming 、《Structured Streaming 源码解析系列》—— 与静态的 structured data 不同,动态的 streaming data 的行列数据表格是一直无限增长的(因为 streaming data 在源源不断地产生)!

三、Structured Streaming: 无限增长的表格

基于"无限增长的表格"的编程模型 [1],我们来写一个 streaming 的 word count:

对应的 Structured Streaming 代码片段:

```
val spark = SparkSession.builder().master("...").getOrCreate() // 创建一个
SparkSession 程序入口
val lines = spark.readStream.textFile("some_dir") // 将 some_dir 里的内容创建为
Dataset/DataFrame; 即 input table
val words = lines.flatMap( .split(" "))
val wordCounts = words.groupBy("value").count() // 对 "value" 列做 count, 得到多
行二列的 Dataset/DataFrame; 即 result table
                                               // 打算写出 wordCounts 这个
val query = wordCounts.writeStream
Dataset/DataFrame
                                               // 打算写出 wordCounts 的全量数据
  .outputMode("complete")
                                               // 打算写出到控制台
  .format("console")
                                               // 新起一个线程开始真正不停写出
  .start()
                                               // 当前用户主线程挂住,等待新起来的
query.awaitTermination()
写出线程结束
```

- Structured Streaming 也是先纯定义、再触发执行的模式,即
 - o 前面大部分代码是 *纯定义* Dataset/DataFrame 的产生、变换和写出
 - o 后面位置再真正 start 一个新线程,去触发执行之前的定义
- 在新的执行线程里我们需要 **持续地** 去发现新数据,进而 **持续地** 查询最新计算结果至写出
 - 这个过程叫做 continous query (持续查询)

四、StreamExecution: 持续查询的运转引擎

现在我们将目光聚焦到 *continuous query* 的驱动引擎(即整个 Structured Streaming 的驱动引擎) StreamExecution 上来。

1. StreamExecution 的初始状态

我们前文刚解析过,先定义好 Dataset/DataFrame 的产生、变换和写出,再启动 StreamExection 去持续查询。这些 Dataset/DataFrame 的产生、变换和写出的信息就对应保存在 StreamExecution 非常重要的 3 个成员变量中:

- sources: streaming data 的产生端(比如 kafka 等)
- logicalPlan: DataFrame/Dataset 的一系列变换(即计算逻辑)
- sink: 最终结果写出的接收端(比如 file system 等)

StreamExection 另外的重要成员变量是:

- currentBatchId: 当前执行的 id
- batchCommitLog:已经成功处理过的批次有哪些
- offsetLog, availableOffsets, committedOffsets: 当前执行需要处理的 source data 的 meta 信息
- OffsetSeqMetadata: 当前执行的 watermark 信息(event time 相关,本文暂不涉及、另文解析)等

我们将 Source, Sink, StreamExecution 及其重要成员变量标识在下图,接下来将逐个详细解析。

2. StreamExecution 的持续查询

一次执行的过程如上图;这里有6个关键步骤:

- 1. StreamExecution 通过 Source.getOffset() 获取最新的 offsets, 即最新的数据进度;
- 2. StreamExecution 将 offsets 等写入到 offsetLog 里
 - o 这里的 offsetLog 是一个持久化的 WAL (Write-Ahead-Log),是将来可用作故障恢复用
- 3. StreamExecution 构造本次执行的 LogicalPlan
 - o (3a) 将预先定义好的逻辑(即 StreamExecution 里的 logicalPlan 成员变量)制作一个副本出来
 - o (3b) 给定刚刚取到的 offsets,通过 Source.getBatch(offsets) 获取本执行新收到的数据的 Dataset/DataFrame 表示,并替换到 (3a) 中的副本里
 - 经过 (3a), (3b) 两步,构造完成的 LogicalPlan 就是针对本执行新收到的数据的 Dataset/DataFrame 变换(即整个处理逻辑)了
- 4. 触发对本次执行的 LogicalPlan 的优化,得到 IncrementalExecution
 - 。 逻辑计划的优化:通过 Catalyst 优化器完成
 - 。 物理计划的生成与选择: 结果是可以直接用于执行的 RDD DAG
 - 。 逻辑计划、优化的逻辑计划、物理计划、及最后结果 RDD DAG,合并起来就是 IncrementalExecution
- 5. 将表示计算结果的 Dataset/DataFrame (包含 IncrementalExecution) 交给 Sink,即调用 Sink.add(ds/df)
- 6. 计算完成后的 commit
 - o (6a) 通过 Source.commit() 告知 Source 数据已经完整处理结束;Source 可按需完成数据的 garbage-collection
 - 。 (6b) 将本次执行的批次 id 写入到 batchCommitLog 里

3. StreamExecution 的持续查询(增量)

Structured Streaming 在编程模型上暴露给用户的是,每次持续查询看做面对全量数据(而不仅仅是本次执行信收到的数据),所以每次执行的结果是针对全量数据进行计算的结果。

但是在实际执行过程中,由于全量数据会越攒越多,那么每次对全量数据进行计算的代价和消耗会越来越大。

Structured Streaming 的做法是:

- 引入全局范围、高可用的 StateStore
- 转全量为增量,即在每次执行时:
 - 。 先从 StateStore 里 restore 出上次执行后的状态
 - 。 然后加入本执行的新数据, 再进行计算
 - o 如果有状态改变,将把改变的状态重新 save 到 StateStore 里
- 为了在 Dataset/DataFrame 框架里完成对 StateStore 的 restore 和 save 操作,引入两个新的物理计划节点 —— StateStoreRestoreExec 和 StateStoreSaveExec

所以 Structured Streaming 在编程模型上暴露给用户的是,每次持续查询看做面对全量数据,但在具体实现上转换为增量的持续查询。

4. 故障恢复

通过前面小节的解析,我们知道存储 source offsets 的 offsetLog,和存储计算状态的 StateStore,是全局高可用的。仍然采用前面的示意图,offsetLog 和 StateStore 被特殊标识为紫色,代表高可用。

由于 exectutor 节点的故障可由 Spark 框架本身很好的 handle,不引起可用性问题,我们本节的故障恢复只讨论 driver 故障恢复。

如果在某个执行过程中发生 driver 故障,那么重新起来的 StreamExecution:

- 读取 WAL offsetlog 恢复出最新的 offsets 等;相当于取代正常流程里的 (1)(2) 步
- 读取 batchCommitLog 决定是否需要重做最近一个批次
- 如果需要,那么重做 (3a), (3b), (4), (5), (6a), (6b) 步
 - 这里第(5)步需要分两种情况讨论
 - (i) 如果上次执行在(5) **结束前即失效**,那么本次执行里 sink 应该完整写出计算结果
 - (ii) 如果上次执行在 (5) **结束后才失效**,那么本次执行里 sink 可以重新写出计算结果(覆盖上次结果),也可以跳过写出计算结果(因为上次执行已经完整写出过计算结果了)

这样即可保证每次执行的计算结果,在 sink 这个层面,是 *不重不丢* 的 —— 即使中间发生过 1 次或以上的失效和恢复。

5. Sources 与 Sinks

可以看到,Structured Streaming 层面的 Source,需能 根据 offsets 重放数据 [2]。所以:

Sources	是否可重 放	原生内置支 持	注解
HDFS-compatible file system	~	已支持	包括但不限于 text, json, csv, parquet, orc,
Kafka	~	已支持	Kafka 0.10.0+
RateStream	~	已支持	以一定速率产生数据
RDBMS	~	(待支持)	预计后续很快会支持
Socket	×	已支持	主要用途是在技术会议/讲座上做 demo
Receiver-based	×	不会支持	就让这些前浪被拍在沙滩上吧

也可以看到,Structured Streaming 层面的 Sink,需能 *幂等式写入数据* [3]。所以:

Sinks	是否幂等 写入	原生内置 支持	注解
HDFS-compatible file system	~	已支持	包括但不限于 text, json, csv, parquet, orc,
ForeachSink (自定操 作幂等)	V	已支持	可定制度非常高的 sink
RDBMS	~	(待支持)	预计后续很快会支持
Kafka	×	已支持	Kafka 目前不支持幂等写入,所以可能会有重复写入 复写入 (但推荐接着 Kafka 使用 streaming de- duplication 来去重)
ForeachSink (自定操 作不幂等)	×	已支持	不推荐使用不幂等的自定操作
Console	×	已支持	主要用途是在技术会议/讲座上做 demo

6. 小结: end-to-end exactly-once guarantees

所以在 Structured Streaming 里,我们总结下面的关系[4]:

offset tracking in WAL + state management +

fault-tolerant sources and sinks

=

end-to-end exactly-once guarantees

这里的 end-to-end 指的是,如果 source 选用类似 Kafka, HDFS 等,sink 选用类似 HDFS, MySQL 等,那 么 Structured Streaming 将自动保证在 sink 里的计算结果是 exactly-once 的 —— Structured Streaming 终于把过去需要使用者去维护的 sink 去重逻辑接盘过去了!:-)

五、全文总结

自 Spark 2.0 开始,处理 structured data 的 Dateset/DataFrame 被扩展为同时处理 streaming data,诞生了 Structured Streaming。

Structured Streaming 以"无限扩展的表格"为编程模型,在 StreamExecution 实际执行中增量执行,并满足 end-to-end exactly-once guarantee.

在 Spark 2.0 时代,Dataset/DataFrame 成为主要的用户 API,同时满足 structured data, streaming data, machine learning, graph 等应用场景,大大减少使用者需要学习的内容,爽爽地又重新实现了一把当年的 "one stack to rule them all" 的理想。

谨以此《Structured Streaming 源码解析系列》和以往的《Spark Streaming 源码解析系列》,向"把大数据变得更简单 (make big data simple)"的创新者们,表达感谢和敬意。

六、扩展阅读

- 1. Spark Summit East 2016: The Future of Real-time in Spark
- 2. Blog: Continuous Applications: Evolving Streaming in Apache Spark 2.0
- 3. Blog: Structured Streaming In Apache Spark: A new high-level API for streaming

参考资料

- 1. Structured Streaming Programming Guide
- 2. Github: org/apache/spark/sql/execution/streaming/Source.scala
- 3. Github: org/apache/spark/sql/execution/streaming/Sink.scala

4. A Deep Dive into Structured Streaming

知识共享

除非另有注明,本《Structured Streaming 源码解析系列》系列文章使用 $\underline{CC\ BY-NC\ ($ 署名-非商业性使 \underline{H} $\underline{)}$ 知识共享许可协议。

(本文完,参与本文的讨论请 猛戳这里, 返回目录请 猛戳这里)