SISTEM MONITORING PENGUKURAN KUALITAS UDARA (NO₂, CO, PM2.5) BERBASIS IOT DENGAN ARDUINO MEGA 2560 MENGGUNAKAN APLIKASI BLYNK

(Studi Kasus: Di Persimpangan Rancabango Kota Tasikmalaya)

SKRIPSI

Karya Tulis sebagai syarat untu memperoleh Gelar Sarjana Komputer dari Fakultas Teknologi Informasi Universitas Bale Bandung

Disusun oleh:

TRI MUTIARAMA PUTRI NPM. 301180036

PROGRAM STRATA 1
PROGRAM STUDI TEKNIK INFORMATIKA
FAKULTAS TEKNOLOGI INFORMASI
UNIVERSITAS BALE BANDUNG
BANDUNG

2022

LEMBAR PERSETUJUAN PEMBIMBING

SISTEM MONITORING PENGUKURAN KUALITAS UDARA (NO2, CO, PM2.5) BERBASIS IOT DENGAN ARDUINO MEGA 2560 MENGGUNAKAN APLIKASI BLYNK

(Studi Kasus: Di Persimpangan Rancabango Kota Tasikmalaya)

Disusun oleh:

TRI MUTIARAMA PUTRI

NPM. 301180036

Telah diterima dan disetujui untuk memenuhi persyaratan mencapai gelar SARJANA KOMPUTER

Pada

PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INFORMASI UNIVERSITAS BALE BANDUNG

Baleendah, Agustus 2022

Disetujui oleh:

Pembimbing Utama

Pembimbing Pendamping

Yudi Herdiana, S.T., M.T. NIK. 04104808008 Khilda Nistrina, S.Pd., M.Sc. NIK. 04104820004

LEMBAR PERSETUJUAN PENGUJI

SISTEM MONITORING PENGUKURAN KUALITAS UDARA (NO2, CO PM2.5) BERBASIS IOT DENGAN ARDUINO MEGA 2560 MENGGUNAKAN APLIKASI BLYNK

(Studi Kasus: Di Persimpangan Rancabango Kota Tasikmalaya)

Disusun oleh:

TRI MUTIARAMA PUTRI

NPM. 301180036

Telah diterima dan disetujui untuk memenuhi persyaratan mencapai gelar SARJANA KOMPUTER

Pada

PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INFORMASI UNIVERSITAS BALE BANDUNG

Baleendah, Agustus 2022

Disetujui oleh:

Penguji 1 Penguji 2

Rosmalina, S.T., M.Kom. NIK. 04104808122 Yusuf Muharam, S.Kom., M.Kom. NIK. 04104820003

LEMBAR PENGESAHAN PROGRAM STUDI

SISTEM MONITORING PENGUKURAN KUALITAS UDARA (NO2, CO, PM2.5) BERBASIS IOT DENGAN ARDUINO MEGA 2560 MENGGUNAKAN APLIKASI BLYNK

(Studi Kasus: Di Persimpangan Rancabango Kota Tasikmalaya)

Disusun oleh:

TRI MUTIARAMA PUTRI

NPM. 301180036

Telah diterima dan disetujui untuk memenuhi persyaratan mencapai gelar SARJANA KOMPUTER

Pada

PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INFORMASI UNIVERSITAS BALE BANDUNG

Baleendah, Agustus 2022

Disetujui oleh:

Mengetahui, Mengesahkan,

Dekan Ketua Program Studi

Yudi Herdiana, S.T., M.T. Yusuf Muharam, S.Kom., M.Kom. NIK. 04104808008 NIK. 04104820003

HALAMAN PERNYATAAN

Penyusun yang bertanda tangan di bawah ini:

Nama : Tri Mutiarama Putri

NPM : 301180036

Judul Skripsi : Sistem Monitoring Pengukuran Kualitas Udara (NO2, CO,

PM2.5) Berbasis IoT Dengan Arduino Mega 2560

Menggunakan Aplikasi Blynk

(Studi Kasus: Di Persimpangan Rancabango Kota

Tasikmalaya)

Menyatakan dengan sebenarnya bahwa penulisan skripsi ini berdasarkan hasil penelitian, pemikiran, dan pemaparan asli dari penyusun sendiri, baik untuk naskah laporan maupun kegiatan *programming* yang tercantum sebagai bagian dari skripsi ini. Jika terdapat karya orang lain, penyusun mencantumkan sumber yang jelas.

Pernyataan ini penyusun buat dengan sesungguhnya dan apabila di kemudian hari terdapat penyimpangan dan ketidakbenaran dalam pernyataan ini, maka penyusun bersedia menerima sanksi akademik berupa pencabutan gelar yang telah diperoleh karena karya tulis ini dan sanksi lain sesuai dengan peraturan yang berlaku di FAKULTAS TEKNOLOGI INFORMASI UNIVERSITAS BALE BANDUNG. Demikian surat pernyataan ini penyusun buat dalam keadaan sadar tanpa paksaan dari pihak mana pun.

Baleendah, Agustus 2022 Yang membuat pernyataan

> Tri Mutiarama Putri NPM. 301180036

ABSTRAK

Sumber pencemaran udara dapat berasal dari berbagai kegiatan, antara lain industri, transportasi, perkantoran, maupun perumahan. Pencemaran udara juga dapat diakibatkan dari berbagai aktivitas alam, seperti kebakaran hutan, letusan gunung berapi dan gas alam yang beracun. Seperti yang diketahui bahwa lingkungan menentukan kualitas udara yang ada.

Maka dari itu diperlukan media dan peranti yang dapat menyampaikan nilai kualitas udara. Dalam skripsi ini memaparkan sistem monitoring pengukuran kualitas udara menggunakan aplikasi Blynk dan langsung ditampilkan pada Led Matrix P10 berbasis Arduino Mega 2560 yang terintegrasi dengan sensor PMS5003 untuk mengukur nilai PM2.5, sensor MICS6814 untuk mengukur konsentrasi NO2 dan CO. Metode penelitian yang dikembangkan dalam penelitian ini adalah metode kualitatif dengan penyelesaian masalah menggunakan System Development Life Cycle (SDLC) model air terjun (Waterfall).

Informasi yang ditampilkan merupakan nilai parameter yang diukur oleh sensor MICS6814 (NO₂, CO), PMS5003 (PM2.5), DHT22 (Suhu dan Kelembaban) disajikan dalam bentuk nilai asli dan nilai yang telah dikonversi menjadi satuan ISPU. Nilai tersebut ditampilkan pada display matriks P10 3x1 dan pada aplikasi Blynk. Dengan metode dan pemodelan perancangan sistem yang telah dibangun, sistem monitoring pengukuran kualitas udara dapat diselesaikan dengan maksimal.

Kata Kunci:

Arduino Mega2560, Blynk, Internet of Things, Pencemaran udara, Sistem monitoring

ABSTRACT

Sources of air pollution can come from various activities, including industry, transportation, offices, and housing. Air pollution can also result from various natural activities, such as forest fires, volcanic eruptions and toxic natural gas. As it is known that the environment determines the quality of the existing air.

Therefore, we need media and devices that can convey the value of air quality. In this thesis describes the monitoring system for measuring air quality using the Blynk application and directly displayed on the Arduino Mega 2560-based Led Matrix P10 which is integrated with the PMS5003 sensor to measure the PM2.5 value, the MICS6814 sensor to measure the concentration of NO₂ and CO. The research method developed in this study is a qualitative method with problem solving using the System Development Life Cycle (SDLC) waterfall model.

The information displayed is the parameter value measured by the MICS6814 sensor (NO₂, CO), PMS5003 (PM2.5), DHT22 (Temperature and Humidity) are presented in the form of the original value and the value has been converted into ISPU units. These values are displayed on the P10 3x1 matrix display and in the Blynk application. With the method and modeling of the system design that has been built, the monitoring system for measuring air quality can be completed optimally.

Keywords:

Arduino Mega2560, Blynk, Internet of Things, Air pollution, Monitoring system

KATA PENGANTAR

Puji syukur ke hadirat Allah SWT atas berkat dan limpahan rahmat serta karunia-Nya kepada kita semua sehingga penyusun dapat menyelesaikan laporan tugas akhir skripsi ini dengan judul "Sistem Monitoring Pengukuran Kualitas Udara (NO₂, PM2.5, CO) Berbasis IoT Dengan Arduino Mega 2560 Menggunakan Aplikasi Blynk (Studi Kasus: Di Persimpangan Rancabango Kota Tasikmalaya) tepat pada waktunya.

Laporan tugas akhir skripsi ini disusun sebagai salah satu syarat untuk mendapatkan gelar Sarjana Komputer di Fakultas Teknologi Informasi Universitas Bale Bandung (FTI UNIBBA). Laporan tugas akhir skripsi ini dibuat dengan beberapa bantuan dari berbagai pihak untuk menyelesaikan tantangan dan hambatan selama pengerjaan nya. Oleh karena itu, pada kesempatan kali ini penyusun ingin mengucapkan terima kasih yang sebesar-besarnya kepada:

- 1. Kedua Orang Tua yang telah memberikan dukungan baik dalam bentuk moral maupun materi.
- 2. Bapak Yudi Herdiana, S.T., M.T. selaku Dekan Fakultas Teknologi Informasi Universitas Bale Bandung sekaligus dosen pembimbing utama.
- Bapak Yusuf Muharam, S.Kom., M.Kom. selaku Ketua Program Studi Teknik Informatika Fakultas Teknologi Informasi Universitas Bale Bandung.
- 4. Ibu Khilda Nistrina, S.Pd., M.Sc. selaku dosen pembimbing pendamping di Fakultas Teknologi Informasi Universitas Bale Bandung.
- Seluruh Dosen beserta staf Fakultas Teknologi Informasi Universitas Bale Bandung.
- 6. Rekan–rekan mahasiswa angkatan 2018 Fakultas Teknologi Informasi.
- 7. Semua pihak yang telah membantu dan memberikan dukungan kepada penyusun untuk menyelesaikan laporan tugas skripsi ini.
- 8. Last but not least, I wanna thank me, I wanna thank me for believing in me, I wanna thank me for doing all this hard work, I wanna thank me for having no days off, I wanna thank me for never quitting, for just being me at all times.

Atas segala kekurangan dan ketidaksempurnaan skripsi ini, penulis sangat

mengharapkan masukan, kritik, dan saran yang bersifat membangun ke arah

perbaikan dan penyempurnaan skripsi ini, agar dalam penyusunan karya tulis

selanjutnya dapat lebih baik.

Penulis berharap semoga skripsi ini dapat bermanfaat bagi seluruh pihak dan

semoga segala amal baik yang telah diberikan kepada penulis mendapat balasan

dari Allah SWT.

Baleendah, Agustus 2022

Tri Mutiarama Putri

NPM. 301180036

ix

DAFTAR ISI

ABSTRAKv	/i
ABSTRACTv	ii
KATA PENGANTARvi	ii
DAFTAR ISI	X
DAFTAR GAMBARxi	ii
DAFTAR TABELxv	/i
DAFTAR LAMPIRAN xv	ii
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	3
1.3 Batasan Masalah	3
1.4 Tujuan Penelitian	4
1.5 Metodologi Penelitian	4
1.6 Sistematika Penulisan	4
BAB II TINJAU PUSTAKA	6
2.1 Landasan Teori	6
2.2 Dasar Teori	9
2.2.1 Internet of Things (IoT)	9
2.2.2 Blynk IoT	0
2.2.3 Arduino Mega 2560 Pro Mini CH340 Micro USB	1
2.2.4 SIM800L	2
2.2.5 Visual Studio Code	2
2.2.6 Bahasa Pemrograman C/C++	3

2.2.7 Waterfall	. 13
2.2.8 Parameter yang Diukur	. 15
2.2.9 Pencemaran Udara	. 18
2.2.10 ISPU (Indeks Standar Pencemar Udara)	. 19
2.2.11 Unified Modeling Language (UML)	. 24
BAB III METODOLOGI	. 28
3.1 Kerangka Pikir	. 28
3.2 Deskripsi	. 29
BAB IV ANALISIS DAN PERANCANGAN	. 32
4.1 ANALISIS	. 32
4.1.1 Analisis Masalah	. 32
4.1.2 Analisis Software	. 32
4.1.3 Analisis Pengguna	. 33
4.1.4 User Interface	. 33
4.1.5 Fitur-fitur	. 34
4.1.6 Analisis Data	. 34
4.1.7 Analisis Biaya	. 35
4.2 PERANCANGAN	. 37
4.2.1 Unified Modeling Language (UML)	. 37
4.2.2 Struktur Tabel	. 54
4.2.3 Blok Diagram Input-Output	. 55
4.2.4 Flowchart Program	. 57
4.2.6 Skematik Rangkaian	. 57
4.2.7 Desain	. 58
BAB V IMPLEMENTASI DAN PENGUJIAN	. 67
5.1 Listing Program	67

5.1.1 Master	57
5.1.2 Slave (Display)	59
5.2 Implementasi Sistem	0
5.3 Spesifikasi Sistem	1
5.3.1 Perangkat Keras (<i>Hardware</i>)	1
5.3.2 Perangkat Lunak (Software)	1
5.4 Instalasi Sistem	1
5.4.1 Instalasi Aplikasi	2'
5.3.2 Instalasi <i>Database</i>	2'
5.5 Menjalankan Sistem	13
5.6 Hasil Pengujian 8	33
4.3.1 Pengujian Aplikasi Blynk	33
4.3.2 Pengujian Ketahanan Alat (Perangkat keras dan Backup Data) 8	34
4.3.3 Kesesuaian Nilai Sensor pada Blynk dengan Display P10 8	35
BAB VI PENUTUP	90
6.1 KESIMPULAN 9	90
6.2 SARAN	0
DAFTAR PUSTAKA 9)1

DAFTAR GAMBAR

Gambar 2.1 Arsitektur IoT	10
Gambar 2.2 Ukuran Arduino Mega2560 Pro Mini CH340	11
Gambar 2.3 SIM800L	12
Gambar 2.4 Metode Waterfall	14
Gambar 3.5 flowchart Kerangka Pikir	28
Gambar 4.6 Use Case Diagram	37
Gambar 4.7 Sequence Diagram Login Admin	39
Gambar 4.8 Sequence Diagram Layout Dashboard Blynk	40
Gambar 4.9 Sequence Diagram Project Setting	40
Gambar 4.10 Sequence Diagram Shared Barcode Access	40
Gambar 4.11 Sequence Diagram Device Config	41
Gambar 4.12 Sequence Diagram Kategori ISPU	41
Gambar 4.13 Sequence Diagram Parameter Kritis	41
Gambar 4.14 Sequence Diagram ISPU Max	42
Gambar 4.15 Sequence Diagram ISPU	42
Gambar 4.16 Sequence Diagram Mengatur Layout PM2.5	42
Gambar 4.17 Sequence Diagram Mengatur Layout NO2	43
Gambar 4.18 Sequence Diagram Mengatur Layout CO	43
Gambar 4.19 Sequence Diagram Value Parameter	43
Gambar 4.20 Sequence Diagram Temperature	44
Gambar 4.21 Sequence Diagram Humidity	44
Gambar 4.22 Sequence Diagram Temperature & Humidity	44
Gambar 23 Sequence Diagram Scan Barcode	45
Gambar 4.24 Activity Diagram Login Admin	45
Gambar 4.25 Activity Diagram Layout Dashboard Blynk	46
Gambar 4.26 Activity Diagram Project Setting	46
Gambar 4.27 Activity Diagram Shared Barcode Access	47
Gambar 4.28 Activity Diagram Device Config	47
Gambar 4.29 Activity Diagram Kategori ISPU	48
Gambar 4.30 Activity Diagram Parameter Kritis	48
Gambar 4.31 Activity Diagram ISPU Max	49

Gambar 4.32 Activity Diagram ISPU	. 49
Gambar 4.33 Activity Diagram Mengatur Layout PM2.5	. 50
Gambar 4.34 Activity Diagram Mengatur Layout NO2	. 50
Gambar 4.35 Activity Diagram Mengatur Layout CO	. 51
Gambar 4.36 Activity Diagram Value Parameter	. 51
Gambar 4.37 Activity Diagram Temperature	. 52
Gambar 4.38 Activity Diagram Humidity	. 52
Gambar 4.39 Activity Diagram Temperature & Humidity	. 53
Gambar 4.40 Activity Diagram Scan Barcode	. 53
Gambar 4.41 Struktur Tabel	. 54
Gambar 4.42 Blok Diagram Input-Output	. 55
Gambar 4.43 Flowchart Program	. 57
Gambar 4.44 Skematik Rangkaian	. 58
Gambar 4.45 Tampilan Halaman <i>Login</i> Admin	. 58
Gambar 4.46 Tampilan <i>Dashboard</i> Blynk (Admin)	. 59
Gambar 4.47 Tampilan Dashboard Blynk (User)	. 59
Gambar 4.48 Tampilan Setting Layout Kategori ISPU	. 60
Gambar 4.49 Tampilan Setting Layout Parameter kritis	. 60
Gambar 4.50 Tampilan Setting layout ISPU Max	. 61
Gambar 4.51 Tampilan Setting Layout ISPU	. 61
Gambar 4.52 Tampilan Setting Layout PM2.5	. 62
Gambar 4.53 Tampilan Setting Layout NO2	. 62
Gambar 4.54 Tampilan Setting Layout CO	. 63
Gambar 4.55 Tampilan Setting Layout Value Parameter	. 63
Gambar 4.56 Tampilan Setting Layout Temperature	. 64
Gambar 4.57 Tampilan Setting Layout Humidity	. 64
Gambar 4.58 Tampilan Setting Layout Temperature & Humidity	. 65
Gambar 4.59 Box Sensor	. 65
Gambar 4.60 Papan Informasi Alat Ukur Kualitas Udara	. 66
Gambar 4.61 Desain Tiang Alat Ukur Kualitas Udara	. 66
Gambar 5.62 Instalasi Aplikasi Master	. 72
Gambar 5.63 Instalasi Aplikasi Client	. 72

Gambar 5.64 Instalasi <i>Database Hardware</i>	. 72
Gambar 65 Instalasi Database Software	. 73
Gambar 5.66 Halaman <i>Login</i> Admin	. 73
Gambar 5.67 Dashboard Blynk (Admin)	. 74
Gambar 5.68 Dashboard Blynk (User)	. 75
Gambar 5.69 Setting Layout Kategori ISPU	. 76
Gambar 5.70 Setting Layout Parameter Kritis	. 76
Gambar 5.71 Setting Layout ISPU Max	. 77
Gambar 5.72 Setting Layout PM2.5	. 77
Gambar 5.73 Setting Layout NO2	. 78
Gambar 5.74 Setting Layout CO	. 78
Gambar 5.75 Setting Layout ISPU	. 79
Gambar 5.76 Setting Layout Value Parameter	. 80
Gambar 5.77 Setting Layout Temperature	. 81
Gambar 5.78 Setting Layout Humidity	. 81
Gambar 5.79 Setting Layout Temperature & Humidity	. 82
Gambar 5.80 Percobaan Ke-1 Pengujian Nilai PM2.5	. 86
Gambar 5.81 Percobaan Ke-2 Pengujian Nilai PM2.5	. 86
Gambar 5.82 Percobaan Ke-3 Pengujian Nilai PM2.5	. 86
Gambar 5.83 Percobaan Ke-1 Pengujian Nilai NO2	. 87
Gambar 5.84 Percobaan Ke-2 Pengujian Nilai NO2	. 87
Gambar 5.85 Percobaan Ke-3 Pengujian Nilai NO2	. 87
Gambar 5.86 Percobaan Ke-1 Pengujian Nilai CO	. 88
Gambar 5.87 Percobaan Ke-2 Pengujian Nilai CO	. 88
Gambar 5.88 Percobaan Ke-3 Pengujian Nilai CO	. 88

DAFTAR TABEL

Tabel 2.1 Tabel Ikhtisar	6
Tabel 2.2 Indeks Standar Pencemar Udara	20
Tabel 2.3 Kategori Indeks Standar Pencemaran Udara	20
Tabel 2.4 Keterangan Nilai Indeks Standar Pencemaran Udara	21
Tabel 2.5 Use Case Diagram	24
Tabel 2.6 Activity Diagram	25
Tabel 2.7 Sequence Diagram	26
Tabel 3.8 Pengujian Variabel Input	31
Tabel 4.9 Kebutuhan software dan Perangkat	32
Tabel 4.10 Analisis Biaya	35
Tabel 4.11 Deskripsi <i>Use Case</i>	37
Tabel 4.12 Deskripsi Aktor	39
Tabel 4.13 Rancangan Tabel ISPU	54
Tabel 4.14 Rancangan Tabel Value Parameter	54
Tabel 4.15 Rancangan Tabel Temperature & Humidity	54
Tabel 5.16 Perangkat Keras (Hardware)	71
Tabel 5.17 Perangkat Lunak (Software)	71
Tabel 5.18 Pengujian Aplikasi Blynk	83
Tabel 5.19 Pengujian Perangkat Dalam 7 Hari	84

DAFTAR LAMPIRAN

Lampiran 1. Daftar Riwayat Hidup	. 94
Lampiran 2. Hasil Wawancara	. 95
Lampiran 3. Data Hasil Pengujian	. 97
Lampiran 4. Dokumen Pengujian Alat	104

BABI

PENDAHULUAN

1.1 Latar Belakang

Internet of Things (IoT) merupakan suatu jaringan yang menghubungkan berbagai objek yang memiliki identitas pengenal serta alamat IP, sehingga dapat saling berkomunkasi dan bertukar informasi mengenai dirinya maupun lingkungan yang diinderanya. Objek-objek dalam IoT dapat menggunakan maupun menghasilkan layanan-layanan dan saling bekerjasama untuk mencapai suatu tujuan bersama. Dengan kemampuannya ini, IoT telah menggeser definisi internet sebagai komputasi dimana saja kapan saja bagaimana saja, menjadi apa saja siapa saja dan layanan apa saja. Salah satu pengimplementasian karakteristik yang mengacu pada identifikasi suatu objek. Serangan terhadap keamanan IoT dapat mencakup serangan terhadap label *Radio Frequency Identification* (RFID), jaringan komunikasi maupun pada privasi data. Untuk mencegah dan mengatasinya dibutuhkan mekanisme dan protokol keamanan (Furqaansyah et al., 2022).

IoT telah diimplementasikan pada alat ukur kualitas udara di persimpangan Rancabango Kota Tasikmalaya. Perangkat pendukung IoT pada alat tersebut yaitu menggunakan SIM800L dan mikrokontroler Arduino Mega 2560. Parameter yang diukur meliputi Particulate Matter 2.5μm (PM2.5), Nitrogen Oksida (NO₂), Karbon Monoksida (CO). (Anwar, 2022)

Dalam implementasi tersebut sistem database yang dibangun menggunakan Firebase sebagai media penyimpanan dalam internet sehingga memudahkan tim analis dalam mengambil data dari jarak jauh. Namun dengan fungsi dan perangkat yang tersedia, perangkat tersebut belum dapat menampilkan antarmuka digital yang efektif untuk penyebaran informasi kualitas udara menggunakan smartphone. Sehingga dibutuhkan sistem monitoring menggunakan aplikasi Blynk yang fungsinya agar dapat menyampaikan informasi seputar kualitas udara berbasis mobile.

Sistem pemantauan kualitas udara menggunakan internet telah banyak dipelajari oleh beberapa penelitian terdahulu. 1.) Dalam jurnal yang berjudul "Sistem Pemantauan Kualitas Udara di Kota Tasikmalaya berdasarkan *Internet of*

Things (IoT)" Pada tahun 2016, Fioccola membangun Polluino, sistem pemantauan polusi udara berbasis arduino yang menggunakan konsep *Internet of Things* (IoT). Data dikumpulkan di daerah Marigliano, Naples, Italia. Data sensor dikirim ke server dan diproses menggunakan server berbasis cloud. Cloud yang digunakan menggunakan Platform as a Service (PaaS) dan antarmuka deployment menggunakan Node-RED. Namun, sistem yang ditawarkan masih menggunakan kabel sehingga tidak cocok untuk digunakan di luar ruangan (Kuncoro et al., 2020). 2.) pada penelitian yang berjudul "Implementasi Monitoring Kualitas Udara Menggunakan MQ-7 dan MQ-131 berbasis Internet of Things" Sumber pencemaran udara dapat berasal dari berbagai kegiatan, antara lain industri, transportasi, perkantoran, dan perumahan. Sumber pencemaran udara juga dapat disebabkan oleh berbagai kegiatan alam, seperti kebakaran hutan, gunung meletus dan gas alam yang beracun. Salah satu parameter dari pencemaran udara yaitu gas karbon monoksida (CO) dan Ozon (O3) yang terkandung dalam udara (Dwi Prasetyo et al., 2021). 3.) menurut (Sadali et al., 2022) pada jurnal yang berjudul "Sistem Monitoring dan Notifikasi Kualitas Udara di Jalan Raya Dengan Platform IoT" Lingkungan yang bersih merupakan lingkungan yang sehat sehingga menjadi faktor yang sangat penting untuk kelangsungan mahluk hidup. Seperti yang diketahui lingkungan menentukan kualitas udara yang berada di dalam maupun di luar ruangan dimana orang menghabiskan sebagian hidup mereka untuk memulai hidup sehat. Dimana diketahui udara mengandung oksigen yang dibutuhkan untuk hidup.

Dengan adanya platform digital Blynk IoT, sistem monitoring dapat dibangun menggunakan android ataupun iOS, sesuai uraian di atas maka penulis tertarik untuk membuat suatu penelitian dengan tema "Sistem Monitoring Pengukuran Kualitas Udara (NO₂, CO, PM2.5) Berbasis IoT Dengan Arduino Mega 2560 Menggunakan Aplikasi Blynk (Studi Kasus: Di Persimpangan Rancabango Kota Tasikmalaya)" secara berkelanjutan serta dapat menyampaikan informasi langsung kepada masyarakat Tasikmalaya berupa kategori dan nilai kualitas udara melalui Smartphone secara *real time*.

1.2 Rumusan Masalah

Adapun rumusan masalah yang akan disampaikan dalam penelitian ini yaitu sebagai berikut:

- 1. Bagaimana membangun sistem monitoring kualitas udara menggunakan aplikasi Blynk?
- 2. Bagaimana mengaplikasikan pengukuran kualitas udara untuk keperluan umum?
- 3. Bagaimana cara memonitoring kualitas udara dengan menggunakan sensor dan Arduino *to serial* SIM800L?

1.3 Batasan Masalah

Dalam penyusunan skripsi yang dilakukan saat ini terdapat batasan masalah sesuai dengan permasalahan yang telah disampaikan.

- Penelitian ini akan dilakukan di persimpangan Rancabango Kota Tasikmalaya yang akan ditempatkan di ruang terbuka.
- Membangun sistem monitoring kualitas udara ambient menggunakan software Blynk sebagai platform IoT dengan komponen Arduino Mega2560 pro mini CH340 dan SIM800L.
- 3. Display yang digunakan untuk alat monitoring kualitas udara yang terpasang adalah menggunakan display matrix ukuran 16 x 96-pixel dengan bantuan Arduino pro mini (ATmega328) untuk membangun komunikasi serial dalam pengiriman text informasi yang di tampilkan ke display.
- 4. Parameter yang di monitoring adalah NO₂, PM2.5, CO, *Temperature* [°C], dan *Relative Humidity* (RH).
- 5. Piranti sensor yang akan diterapkan pada monitoring kualitas udara dalam skripsi ini meliputi:
 - a. PMS5003 (PM2.5)Sensor PMS5003 digunakan untuk mengukur parameter PM2.5
 - b. MICS6814 (Sensor CO, NO2)
 Sensor MICS6814 digunakan untuk mengukur parameter CO dan NO2
 - c. DHT22 (suhu dan kelembaban)
 Sensor DHT22 digunakan untuk mengukur parameter suhu dan kelembaban

1.4 Tujuan Penelitian

Tujuan penelitian ini diantaranya yaitu:

- Untuk membangun sistem monitoring kualitas udara menggunakan aplikasi Blynk.
- Untuk menyampaikan peng-aplikasian pengukuran kualitas udara sebagai keperluan umum
- Untuk memonitoring kualitas udara dengan menggunakan sensor dan Arduino to serial SIM800L

1.5 Metodologi Penelitian

Metodologi penelitian merupakan cara untuk mengetahui hasil dari suatu permasalahan yang spesifik atau sering disebut dengan permasalahan penelitian. Dalam penelitian sistem monitoring kualitas udara di persimpangan Rancabango Kota Tasikmalaya berbasis IoT menggunakan beberapa metode untuk mengumpulkan data, diantaranya Wawancara, Observasi dan Studi pustaka.

Metode pengembangan sistem yang digunakan pada sistem monitoring pengukuran kualitas udara dengan aplikasi Blynk menggunakan metode *System Development Life Cycle* (SDLC) model air terjun (*Waterfall*). Model ini terdiri dari beberapa tahap yaitu: Analisis Kebutuhan, Perancangan Desain dan Konfigurasi Sistem, Pembangunan Software, Pengujian Variabel Input, Evaluasi.

1.6 Sistematika Penulisan

Penulisan dalam skripsi ini disajikan dalam 6 bab dimana setiap bab mempunyai keterkaitan sebagai berikut:

BAB I PENDAHULUAN

Bab ini memuat latar belakang, rumusan masalah, batasan masalah, tujuan penelitian, dan sistematika penulisan.

BAB II TINJAUAN PUSTAKA

Merupakan cakupan teori-teori serta ulasan penelitian terdahulu yang menunjang dalam menyelesaikan penelitian yang akan dilaksanakan. Adapun teoriteori tersebut meliputi landasan teori yang berkaitan dengan kualitas udara beserta dampaknya, standar pengukuran kualitas udara dan beberapa penjelasan komponen yang digunakan serta landasan metode.

BAB III METODOLOGI PENELITIAN

Bab ini berisikan uraian langkah-langkah penyelesaian yang ditempuh meliputi kerangka pikir dan deskripsi.

BAB IV ANALISIS, PERANCANGAN DAN HASIL

Pada bagian ini membahas penelitian dan analisis yang dilaksanakan sesuai dengan metodologi penelitian.

BAB V IMPLEMENTASI DAN PENGUJIAN

Menjelaskan kesimpulan saran dan keterbatasan penelitian.

BAB VI KESIMPULAN DAN SARAN

Bagian ini membahas mengenai Kesimpulan dan Saran

BAB II

TINJAU PUSTAKA

2.1 Landasan Teori

Dalam melakukan penelitian, penulis juga melakukan kajian literatur dari penelitian terdahulu yang relevan sebagai landasan teori yang melandasi penelitian yang tengah dilakukan. Berikut adalah beberapa landasan teori yang relevan pada penelitian ini.

Tabel 2.1 Tabel Ikhtisar

No	Judul	Masalah	Metode	Solusi
1	Sistem	Kualitas udara memiliki	Metode	Sistem pemantauan
	Pemantauan	peran penting bagi	yang	yang dapat
	Kualitas	kesehatan, iklim dan	digunakan	menampilkan
	Udara di	ekosistem. Kualitas udara	adalah	parameter kualitas
	Kota	yang buruk dapat	model RAD	udara secara bersamaan
	Tasikmalaya	menyebabkan kesehatan		menggunakan sensor
	berdasarkan	yang buruk dan kematian		yang terhubung ke
	Internet of	dini, serta kerusakan		mikrokontroler
	Things (IoT)	ekosistem, tanaman, dan		Arduino. Hasil kualitas
		bangunan. Oleh karena		udara akan ditampilkan
		itu, pemantauan kualitas		pada tampilan web
		udara di perkotaan sangat		secara real time yang
		penting agar masyarakat		dapat diakses oleh
		dapat mengetahui kualitas		seluruh masyarakat
		udara di lingkungannya.		untuk mengetahui
		Namun, sulit bagi warga		informasi tentang
		untuk mendapatkan data		keadaan suatu
		tersebut. Bahkan, kualitas		lingkungan.
		udara biasanya hanya		
		dapat dipantau melalui		
		stasiun pemantauan		
		expensive, yang dipasang		

		di lokasi tertentu, dan		
		dikelola oleh pemerintah.		
2	Implementasi	Pencemaran udara adalah	Metode	Dalam hal ini telah
2	•	suatu kondisi dimana		dibuat
	Monitoring		yang	
	Kualitas	kualitas udara menjadi	digunakan	satu alat pengukur
	Udara	rusak dan terkontaminasi	adalah	kualitas udara yang
	Menggunaka	oleh zat-zat, baik yang	model	dapat dibawa kemana-
	n MQ-7 dan	tidak berbahaya maupun	Waterfall	mana dengan mudah
	MQ-131	yang membahayakan		dan pengukuran secara
	berbasis	kesehatan manusia.		real time yang
	Internet of	Beberapa gas yang		digunakan untuk
	Things (IoT)	berbahaya di udara		mengukur kualitas
		seperti: CO, CO2, O3 dan		udara berdasarkan
		lainnya. Gas Karbon		Indeks Standar
		Monoksida (CO) tidak		Pencemaran Udara
		berbau dan tidak dapat		(ISPU).
		dilihat mata, oleh karena		
		itu manusia dan makhluk		
		hidup lainnya tidak dapat		
		mengetahui jika gas-gas		
		tersebut ada di sekitarnya.		
		Manusia bisa tahu jika		
		sudah merasakan		
		dampaknya.		
		F J		
3	Sistem	Pencemaran udara dan	Penelitian	dirancang sebuah alat
	Monotoring	polusi udara yang ada di	ini mengacu	yang bisa digunakan
	dan	jalan raya merupakan	pada	untuk memonitoring
	Notifikasi	suatu dampak yang sangat	pengemban	kualitas udara melalui
	Kualitas	buruk terhadap manusia,	gan sistem	jarak jauh,
	udara di	karena udara yang	model	menggunakan wemos
	Jalan Raya	tercemar dapat	prototipe	
			r	

Dengan	menimbulkan berbagai	d1 sebagai penghubung
Platform IoT	macam penyakit.	antara sensor MQ 135
	Dibutuhkannya sistem	dengan platform
	monitoring	Internet of Things (IoT)
	dan notifikasi kualitas	dan aplikasi Blynk
	udara pada jalan raya	yang merupakan
	untuk	sebuah sistem
	mengetahui kondisi	monitoring yang
	kualitas udara pada suatu	apabila kualitas udara
	jalan raya, yang bertempat	pada jalan
	di Lombok Timur pada	raya yang banyak
	jalan TGKH. Zainuddin	kendaraan melintas
	Am Pancor dan jalan Raya	menjadikan polusi
	Sakra.	udara pada jalan raya
		menjadi kurang sehat
		sehingga mengancam
		kesehatan fisik mahluk
		hidup.

Berdasarkan tabel diatas jurnal nomor 1 yang ditulis oleh (Kuncoro et al., 2020) Pada artikel ini, kami menyajikan desain sistem pemantauan kualitas udara di kota Tasikmalaya, Indonesia berbasis Internet of Things (IoT). Peningkatan kualitas udara adalah karbon monoksida (CO), metana (CH4) dan ozon (O3). Jenis sensor yang digunakan adalah Mq-131 untuk ozon sensor, Mq-7 untuk karbon monoksida dan Mq-4 untuk sensor metana. Alat ini dibuat menggunakan Mikroprosesor Arduino dan data sensor dikirim ke internet dan divisualisasikan dalam grafik di web dalam waktu nyata. Pengambilan data dilakukan selama sepuluh hari di Bundaran Bypass Tasikmalaya. Hasilnya adalah gas karbon monoksida (CO) yang memiliki konsentrasi rata-rata 1,51 ppm, untuk metana konsentrasi gas (CH4) sebesar 329,95 ppm dan konsentrasi gas ozon (O3) sebesar 0,09 ppm. Berdasarkan hasil yang diperoleh, kualitas udara di kota Tasikmalaya memiliki kualitas udara yang baik.

Berdasarkan jurnal nomor 2 yang di tulis oleh (Dwi Prasetyo et al., 2021) Pencemaran udara adalah suatu kondisi dimana kualitas udara menjadi rusak dan terkontaminasi oleh zat-zat, baik yang tidak berbahaya maupun yang membahayakan kesehatan manusia. Beberapa gas yang berbahaya di udara seperti: CO, CO2, O3 dan lainnya. Gas Karbon Monoksida (CO) tidak berbau dan tidak dapat dilihat mata, oleh karena itu manusia dan makhluk hidup lainnya tidak dapat mengetahui jika gas-gas tersebut ada di sekitarnya. Manusia bisa tahu jika sudah merasakan dampaknya. Dalam hal ini telah dibuat satu alat pengukur kualitas udara yang dapat dibawa kemana-mana dengan mudah dan pengukuran secara real time yang digunakan untuk mengukur kualitas udara berdasarkan Indeks Standar Pencemaran Udara (ISPU). Menggunakan Sensor MQ-7 untuk mengukur gas karbon Monoksida (CO) dan MQ-131 untuk mengukur gas Ozon (O3)

Berdasarkan jurnal nomor 3 yang ditulis oleh (Sadali et al., 2022) Penelitian ini membahas tentang prototipe alat pendeteksi kualitas udara di dalam ruangan dengan menggunakan mikrokontoler Wemos dan sensor MQ135 yang terhubung dengan platform IoT sebagai sistem monitoring dan notifikasi. Modul sensor MQ135 sebagai detektor kualitas udara, mengirimkan sinyal input untuk diproses oleh mikrokontroler Wemos board. Modul wifi yang terdapat pada Wemos board mengirimkan nilai yang terbaca oleh sensor ke platform IoT Thingspeak yang merekam data logging dalam bentuk grafik. Dalam hal ini, Thingspeak berfungsi sebagai bagian dari sistem monitoring. Sedangkan sebagai sistem notifikasi digunakan platform IoT Blynk apps. Blynk apps terhubung secara tidak langsung ke prototipe alat pendeteksi kualitas udara melalui internet. Nilai yang terbaca dari sensor diproses sesuai program dan jika memenuhi level sensor yang ditentukan maka sistem memberikan notifikasi kepada user melalui Blynk apps. Sistem ini berpotensi untuk digunakan sebagai sistem pemantauan kualitas udara di dalam ruangan untuk meningkatkan kesadaran tentang pentingnya kualitas udara yang sehat.

2.2 Dasar Teori

2.2.1 Internet of Things (IoT)

IoT Adalah suatu sistem yang mampu memonitor perangkat keras dan menggerakkan perangkat tersebut dari jarak jauh dengan menggunakan teknologi komunikasi internet. Hal ini akan memudahkan pengguna memperoleh informasi dari manapun dan mampu memantau dari jarak jauh (J. Doshi et al., 2019). Menurut Doshi, masa sekarang merupakan era internet yang memudahkan kita menggunakan platform perangkat keras seperti *resberry pi, arduino, orange pi* dan perangkat lainnya yang terhubung ke *Cloud* seperti *AWS* (*Amazon Web Service*), *Blynk, FireBase, Canned an cloud* lainnya (H. S. Doshi et al., 2017).

Gambar 2.1 Arsitektur IoT Sumber: (Sheth & Rupani, 2019)

Sensor

Tahap ini mengumpulkan data dari perangkat keras yang di olah menggunakan mikrokontroler kemudian;

Transport

Mikrokontroler memberikan *sintaks* pada komponen SIM800L untuk di teruskan melalui protokol dan jaringan GPRS yang di kirim ke server Blynk

Aplikasi

Data dari server di tampilkan pada aplikasi Blynk menjadi sebuah informasi.

2.2.2 Blynk IoT

Aplikasi Blynk menyediakan platform di mana kita bisa dengan mudah mengubah ide kita menjadi solusi IoT komersial. Blynk adalah Fase IoT yang memungkinkan pengontrolan gadget elektronik dari jarak jauh memanfaatkan aplikasi iOS dan android nya. Ini memberikan efektif dasbor di mana klien dapat

membuat antarmuka yang akurat menggunakan gadget khas. Blynk juga dapat menyimpan data dan tampilan informasi data sensor. Blynk memberikan library secara luas, sebagian besar tahapan peralatan umum seperti Arduino, ESP8266, Raspberry pi, SparkFun dan sebagainya (Sheth & Rupani, 2019).

2.2.3 Arduino Mega 2560 Pro Mini CH340 Micro USB

Arduino adalah sebuah kit atau papan elektronik yang dilengkapi dengan software open source yang menggunakan mikrokontroler ATMega dan berfungsi sebagai pengendali mikro single-board yang dirancang untuk memudahkan penggunaan elektronik dalam berbagai bidang yang dirilis oleh Atmel. Dimana Hardwarenya memiliki prosesor Atmel AVR dan softwarenya memiliki bahasa pemrograman sendiri. Selanjutnya Arduino mega 2560 juga merupakan papan mikrokontroler berbasiskan atmega 2560 sebagai penghantar tegangan listrik secara langsung kepada komponen-komponen atau perangkat keras lainnya yang ada pada alat tersebut, seperti *LED*, *kapasitor*, *Nuvoton* dan lain sebagainya (Iskandar et al., 2017).

Gambar 2.2 Ukuran Arduino Mega2560 Pro Mini CH340 Sumber: (Forum arduino, 2020)

Arduino dengan chip kontroller utama yaitu ATmega 2560 memiliki desain minimalis (38,3mm x 54,2mm) sehingga akan menghemat ruang dibandingkan dengan Arduino Mega 2560 R3 (101,6 mm x 53,34 mm). Dengan konektor *microUSB*, kabel dan konektor tersebut lebih murah dan terjangkau bagi pengembang. Dengan antarmuka USB TTL CH340 merupakan komunikasi serial yang sangat mudah dikomunikasikan dengan PC.

Arduino Mega 2560 adalah board Arduino yang merupakan perbaikan dari board Arduino Mega sebelumnya. Arduino Mega awalnya memakai chip ATmega1280 dan kemudian diganti dengan chip ATmega2560, oleh karena itu namanya diganti menjadi Arduino Mega 2560 (Arpianto et al., 2015).

2.2.4 SIM800L

SIM800L adalah modul GSM/GPRS memiliki fitur multi-slot kelas 12/kelas 10 (opsional) dan mendukung skema pengkodean GPRS CS-1, CS-2, CS-3 dan CS-4. SIM800H&SIM800L dapat memenuhi hampir semua kebutuhan ruang dalam aplikasi pelanggan, seperti ponsel pintar, PDA, dan perangkat seluler lainnya (SIMCom, 2013). Chip SIM800L sendiri memiliki kemampuan kerja pada tegangan 4.3Vdc sampai dengan -4.4 Vdc, pada keadaan mode *sleep* mengkonsumsi arus sebesar 1.04mA.

Gambar 2.3 SIM800L Sumber: (SIMCom, 2013)

GSM adalah singkatan dari Global System for Mobile communication. Ini dikembangkan oleh Institut Standar Telekomunikasi Eropa. SIM800L adalah modul seluler mini. Hal ini memungkinkan mengirim dan menerima SMS dan membuat dan menerima panggilan. Fitur utama dari GSM Sim800L adalah memiliki footprint kecil dengan biaya rendah (Kanani & Padole, 2020).

2.2.5 Visual Studio Code

Visual Studio Code adalah perangkat lunak yang terintegrasi yang berfungsi sebagai tempat pengembangan dan membangun perangkat lunak atau *Integrated Development Environment* (IDE). Perangkat lunak yang terbuka ini ditujukan untuk membuat program perangkat yang dikembangkan untuk berbagai keperluan. Program ini dapat berjalan pada Windows, Mac OS X, dan

GNU/Linux. Terdapat fitur ekstensi untuk menambahkan berbagai macam IDE atau Framework lain.

1. Ekstensi Platform IO

Platform IO atau biasa disebut PIO adalah IDE yang dikembangkan untuk kebutuhan *Internet of Thinks* (IoT). PIO dapat bekerja pada sistem operasi GNU/Linux atau sebagai ekstensi Visual Studio Code. IDE ini mendukung pemrograman bahasa C++ dengan *framework* yang beragam. Proses penambahan PIO pada Visual Studio Code adalah dengan masuk pada tab *Extentions* dan mencari Platform IO pada kolom pencarian

2.2.6 Bahasa Pemrograman C/C++

Bahasa C++ adalah bahasa pemrograman yang awalnya berasal dari bahasa C, dan kemudian berkembang menjadi bahasa C++. Bahasa C++ merupakan peningkatan dari C *with classes* oleh Bjarne Stroustrup pada tahun 1980, berganti nama dari C *with classes* menjadi C++ pada tahun 1983. Bahasa C++ dibuat untuk mendukung Pemrograman Berorientasi, yang tidak dimiliki oleh bahasa C, dan bahasa C dibuat untuk mendukung Pemrograman Berorientasi Objek (OOP) yang tidak didukung oleh bahasa C. Ini adalah superset dari C, di mana C dapat mengeksekusi sebagian besar C (file header/library), tetapi C tidak dapat mengeksekusi/memanggil kode (d file/library) (Furqaansyah et al., 2022).

2.2.7 Waterfall

Waterfall atau Air Terjun adalah model yang dikembangkan untuk pengembangan perangkat lunak dan pembuatan perangkat lunak. Model dikembangkan secara sistematis dari satu tahap ke tahap lainnya dengan cara seperti air terjun. Model ini mengusulkan pendekatan pengembangan perangkat lunak yang sistematis dan berurutan, mulai dari tingkat kemajuan sistem dan bergerak melalui analisis, desain, pengkodean, pengujian, dan pemeliharaan. Menurut Sholikhah et al., (2017) "Waterfall adalah model klasik yang bersifat sistematis, berurutan dalam membangun software". Waterfall merupakan model yang paling banyak dipakai oleh para pengembang software. Inti dari model waterfall adalah pengerjaan dari suatu sistem yang dilakukan secara berurutan atau secara linear. Jika langkah pertama belum terselesaikan maka tidak dapat

melanjutkan ke tahap berikutnya dan begitupun seterusnya. Tahap selanjutnya tidak dilanjutkan sampai tahap sebelumnya selesai, dan tahap sebelumnya tidak dapat dikembalikan atau diulang (Zendrato, 2018).

Gambar 2.4 Metode Waterfall Sumber: (Aroral, 2021)

1. Analisis

Tahap analisis juga dikenal sebagai spesifikasi kebutuhan perangkat lunak (SRS) yang merupakan deskripsi lengkap dari perilaku perangkat lunak yang akan dikembangkan. Fase ini menginginkan analis bisnis untuk mendefinisikan persyaratan fungsional dan non-fungsional. Persyaratan fungsional mencakup persyaratan seperti tujuan, ruang lingkup, perspektif, fungsi, atribut perangkat lunak, karakteristik pengguna, dan persyaratan basis data. Di sisi lain, persyaratan non-fungsional termasuk kendala, keterbatasan, persyaratan pada desain dan pengoperasian perangkat lunak. Ini memiliki sifat seperti keandalan, skalabilitas, kemampuan uji, kinerja, dan standar kualitas, dll.

2. Desain

Fase ini mencakup proses perencanaan dan pemecahan masalah untuk solusi perangkat lunak. Ini berarti bahwa pengembang perangkat lunak dan perancang akan menentukan rencana untuk solusi, dan itu termasuk desain algoritma, desain arsitektur perangkat lunak, skema diagram logis, definisi struktur data, dll. Fase ini tentang merancang

perangkat lunak yang mencakup upaya lebih lanjut untuk merancang perangkat lunak.

3. Implementasi

Ini mengacu pada pemahaman tentang persyaratan bisnis dan merancang persyaratan ke dalam program eksekusi yang solid, database, situs web melalui pemrograman dan penyebaran. Di sinilah kode sebenarnya ditulis dan dikompilasi ke dalam aplikasi operasional, dari mana database dan file teks dibuat. Singkatnya, itu berarti konversi dari fase proses ke fase produksi.

4. Pengujian

Fase ini juga dikenal sebagai verifikasi dan validasi yang mencakup proses untuk memeriksa bahwa harapan perangkat lunak memenuhi kinerja dan spesifikasi asli dan menyelesaikan tujuan yang dimaksudkan. Verifikasi mengacu pada proses di mana proses evaluasi perangkat lunak dilakukan untuk menentukan apakah produk pada fase yang diberikan memenuhi kondisi yang ada di awal. Validasi, di sisi lain mengacu pada proses evaluasi perangkat lunak selama dan pada akhir proses pengembangan untuk menemukan bahwa perangkat lunak memenuhi persyaratan yang ditentukan. Dalam fase ini, bug dan gangguan sistem ditemukan, dan diperbaiki, didefinisikan ulang sesuai dengan itu.

5. Perbaikan

Fase ini mencakup proses modifikasi solusi perangkat lunak setelah pengiriman dan penerapan untuk memperbaiki output, memperbaiki kesalahan dan meningkatkan kinerja dan kualitas. Ini juga dapat mencakup adaptasi perangkat lunak dengan lingkungannya, mengakomodasi kebutuhan pengguna baru dan meningkatkan keandalannya, dll (Aroral, 2021).

2.2.8 Parameter yang Diukur

1. Particulate Matter 2.5 µm (PM2.5)

Particulate Matter 2.5 sebagai partikel udara *ambient* yang berukuran hingga 2,5 mikron. Partikel-partikel ini mencakup berbagai susunan kimia dan berasal dari berbagai sumber. Sumber buatan manusia yang paling

umum termasuk kendaraan bermotor bertenaga bahan bakar fosil, pembangkit listrik, aktivitas industri, pertanian dan pembakaran biomassa (IQAir, 2020).

Menurut WHO (2021) PM di lingkungan perkotaan dan nonperkotaan adalah campuran kompleks dengan komponen yang memiliki karakteristik kimia dan fisik yang beragam. Temuan penelitian yang lebih baru terus menyoroti kompleksitas ini dan sifat dinamis dari PM udara, karena terbentuk baik terutama atau sekunder dan kemudian terus mengalami transformasi kimia dan fisik di atmosfer.

Dengan ukuran mikroskopis PM2.5 memungkinkan partikel-partikel ini diserap jauh ke dalam aliran darah saat terhirup, berpotensi menyebabkan efek kesehatan yang luas seperti asma, kanker paru-paru, dan penyakit jantung. Paparan PM2.5 juga telah dikaitkan dengan berat badan lahir rendah, peningkatan infeksi saluran pernapasan akut, dan stroke (IQAir, 2020). Selain berdampak terhadap kesehatan pada dasarnya PM2.5 merupakan partikel debu atau zat cair yang bertebaran di udara berdampak terhadap nilai estetika lingkungan atau kota, dan juga meningkatkan sensitivitas pada pasien berpenyakit asma dan bronchitis.

2. Nitrogen Oksida (NO₂)

Hasil Penelitian Prabowo & Muslim (2018) sifat gas NO₂ adalah berwarna dan berbau, warna gas NO₂ adalah merah kecoklatan dan berbau tajam menyengat hidung. Seperti hal nya CO emisi nitrogen oksida dipengaruhi oleh kepadatan penduduk karena sumber utama NO₂ yang diproduksi manusia adalah dari pembakaran, dan kebanyakan pembakaran disebabkan oleh kendaraan, produksi energi dan pembuangan sampah.2. Pembentukan NO dan NO₂ mencakup reaksi antara nitrogen dan oksigen di udara sehingga membentuk NO, kemudian reaksi selanjutnya antara NO dengan lebih banyak oksigen membentuk NO₂.

Udara terdiri dari sekitar 80% volume nitrogen dan 20% volume oksigen. Sedangkan menurut WHO (2021) Ada banyak spesies kimia nitrogen oksida, tetapi spesies polutan udara yang paling menarik dari sudut pandang kesehatan manusia adalah nitrogen dioksida. Nitrogen

dioksida adalah gas coklat kemerahan dengan bau menyengat yang khas. Oksida nitrat secara spontan menghasilkan dioksida ketika terkena udara. Gas nitrogen dioksida adalah oksidan kuat, dan bereaksi dengan air untuk menghasilkan asam nitrat dan oksida nitrat (WHO, 2021).

Dampak serius dari pencemaran kadar NO₂ di udara yang dijelaskan oleh (Factsheet, 2010), Frekuensi pajangan NO₂ dengan konsentrasi yang tinggi dapat menurunkan fungsi paru-paru khususnya pada anak-anak. Hal ini dapat menurunkan pertahanan terhadap penyakit paru-paru, agen *bronchoconstriction* dan penyebab iritasi lainnya. NO₂ juga meningkatkan resiko untuk gangguan kelahiran termasuk berat lahir rendah atau prematurtas, gangguan pertumbuhan intra-uterus, cacat lahir, kelahiran dan kematian. Karena NO₂ berasal dari sumber kendaraan, NO₂ juga sangat terkait dengan particulate matter, sehingga sangat sulit untuk membedakan dampak dari masing-masing polutan (Handoko, 2020).

3. Carbon Monoxide (CO)

Air Quality Global (WHO, 2021) menjelaskan, Karbon monoksida (CO) adalah gas beracun yang tidak berwarna, tidak mengiritasi, tidak berbau dan tidak berasa. Ini dihasilkan oleh pembakaran bahan bakar karbon yang tidak sempurna seperti kayu, bensin, batu bara, gas alam, dan minyak tanah. Karbon monoksida tidak dapat dideteksi oleh manusia baik dengan penglihatan, rasa maupun penciuman. hanya sedikit larut dalam air, serum darah dan plasma; dalam tubuh manusia, ia bereaksi dengan hemoglobin untuk membentuk *carboxyhemoglobin* (COHb).

Kendaraan bermotor merupakan sumber polutan CO yang utama (sekitar 59,2%). Konsentrasi CO di udara per waktu dalam satu hari dipengaruhi oleh kesibukan atau aktivitas kendaraan bermotor yang ada. Pada daerah perkotaan kecepatan pembersihan CO dari udara sangat lambat. Ternyata tanah yang masih terbuka di mana belum ada bangunan di atasnya, dapat membantu penyerapan gas CO. Hal ini disebabkan mikroorganisme yang ada di dalam tanah mampu menyerap gas CO yang terdapat di udara (Prabowo & Muslim, 2018).

2.2.9 Pencemaran Udara

Berdasarkan Peraturan Pemerintah No. 41 tahun 1999 dalam pengendalian pencemaran udara, Pencemaran udara adalah "masuknya atau zat yang dimasukkannya oleh kegiatan manusia, sehingga mutu udara *ambient* turun sampai ke tingkat tertentu yang menyebabkan udara *ambient* tidak dapat memenuhi fungsinya". Sedangkan ambient itu sendiri adalah "udara bebas dipermukaan bumi pada lapisan troposfer yang berada di wilayah Yurisdiksi Republik Indonesia yang dibutuhkan dan mempengaruhi Kesehatan manusia, makhluk hidup, dan unsur lingkungan hidup lainnya" (Indonesia, 1999).

Menurut Apriana (2021) Pencemar primer adalah substansi pencemar yang ditimbulkan langsung dari sumber pencemaran udara. Sedangkan Pencemar sekunder adalah substansi pencemar yang terbentuk dari reaksi pencemar-pencemar primer di atmosfer contohnya adalah pembentukan lapisan ozon.

Menurut Pratama (2021) menyimpulkan bahwa faktor meteorologi (temperatur udara, kelembapan udara, dan kecepatan angin) memiliki pengaruh yang signifikan secara simultan terhadap variabel terikat yaitu konsentrasi karbon monoksida. Menurut Chandra (2006) mendefinisikan pencemaran udara oleh beberapa factor (Dewi, 2018):

1. Meteorologi dan Iklim

a. Temperature

Pergerakan mendadak lapisan udara dingin ke suatu kawasan industri dapat menimbulkan inversi atmosfer. Inversi merupakan kondisi dimana udara dingin akan terperangkap dan tidak dapat keluar dari kawasan tersebut. Keadaan ini, akan menahan polutan tetap berada di permukaan bumi sehingga konsentrasinya semakin lama semakin meningkat. Pada keadaan tersebut, di permukaan bumi dapat dikatakan tidak ada pertukaran udara sama sekali. Kondisi tersebut dapat bertahan hingga beberapa hari atau beberapa minggu, maka udara yang berada dekat dengan permukaan bumi akan penuh polutan sehingga dapat menimbulkan keadaan yang kritis bagi kesehatan.

b. Arah dan Kecepatan Angin

Kecepatan angin yang kuat dapat membawa polutan kemanapun sesuai arahnya sehingga dapat mencemari daerah lain pada jarak yang jauh. Sebaliknya, dengan kecepatan angin yang lemah, polutan akan menetap dan semakin bertambah di kawasan sumber pencemar nya.

c. Hujan

Air hujan sebagai pelarut umum akan melarutkan bahan polutan yang terdapat di udara. Kawasan industri yang menggunakan batubara akan menghasilkan gas sulfurdioksida. Apabila gas tersebut bercampur dengan air hujan akan terbentuk asam sulfat sehingga air hujan bersifat asam yang biasa dikenal dengan hujan asam.

2. Topografi

a. Dataran Rendah

Di dataran rendah, angin cenderung membawa polutan terbang ke seluruh penjuru daerahnya dan dapat melewati batas negara sehingga mencemari udara di negara lain.

b. Dataran Tinggi

Di dataran tinggi sering terjadi inversi atmosfer. Hal ini menyebabkan polutan hanya berada di kawasan tersebut.

c. Lembah

Di daerah lembah, aliran angin sedikit sekali dan tidak bertiup ke segala arah. Keadaan ini akan menahan polutan yang ada di permukaan bumi.

2.2.10 ISPU (Indeks Standar Pencemar Udara)

Indeks standar kualitas udara di Indonesia secara resmi telah diseragamkan dengan sebutan Indeks Standar Pencemar Udara (ISPU) yang tertulis dalam Keputusan Menteri Negara Lingkungan Hidup Nomor: KEP 45 / MENLH / 1997 hingga saat ini yang terbaru yaitu Peraturan Menteri Lingkungan Hidup dan Kehutanan Republik Indonesia Nomor P.14/MENLHK/SETJEN/KUM.1/7/

2020. Namun dengan batasan penelitian yang telah dibuat, penelitian ini akan difokuskan pada 3 pencemaran udara yaitu *Particulate Matter 2.5* (PM2.5), *Nitrogen Dioxide* (NO₂), dan *Carbon Monoxide* (CO).

Berikut adalah tabel ISPU dengan satuan angka yang menggambarkan kondisi mutu udara *ambient* di lokasi tertentu, yang didasarkan kepada dampak terhadap kesehatan manusia, nilai estetika dan makhluk hidup lainnya (Permen-LHK, 2020).

Tabel 2.2 Indeks Standar Pencemar Udara Sumber: (Permen-LHK, 2020)

ISPU	24 Jam partikulat (PM ₁₀) µg/m ³	24 Jam partikul at (PM2.5) µg/m ³	24 Jam sulfur dioksida (SO ₂) µg/m ³	24 Jam karbon monoksi da (CO) µg/m ³	24 Jam ozon (O ₃) μg/m ³	24 Jam nitrogen dioksida (NO ₂) µg/m ³	24 Jam hidrokarbon (HC) µg/m³
0. 70	50	, ,	, ,	, ,		• •	4.5
0 - 50	50	15.5	52	4000	120	80	45
51 – 100	150	55.5	180	8000	235	200	100
101 –	350	150.4	400	15000	400	1130	215
200							
201 –	420	250.4	800	30000	800	2260	432
300							
>300	500	500	1200	45000	1000	3000	648

Keterangan:

- Data pengukuran selama 24 jam secara terus-menerus
- Hasil perhitungan ISPU parameter partikulat (PM2.5) disampaikan tiap jam selama 24 jam.
- Hasil perhitungan ISPU parameter partikulat (PM₁₀), sulphur dioksida (SO₂), karbon monoksida (CO), ozon (O₃), nitrogen dioksida (NO₂), dan hidrokarbon (HC), diambil nilai ISPU parameter tertinggi dan paling sedikit disampaikan setiap jam 09.00 dan jam 15.00.

1. Kategori ISPU

Tabel 2.3 Kategori Indeks Standar Pencemaran Udara Sumber: (Permen-LHK, 2020)

Kategori	Status Warna	Angka Rentang
Baik	Hijau	1 – 50
Sedang	Biru	51 – 100
Tidak Sehat	Kuning	101 - 200
Sangat Tidak Sehat	Merah	201 – 300
Berbahaya	Hitam	≥ 301

Tabel 2.4 Keterangan Nilai Indeks Standar Pencemaran Udara Sumber: (Permen-LHK, 2020)

Kategori	Keterangan	Apa yang harus dilakukan
Baik	Tingkat kualitas udara yang	Sangat baik melakukan kegiatan di luar
	sangat baik, tidak memberikan	
	efek negatif terhadap manusia,	
G 1	hewan, tumbuhan.	W. 1. 1. C. C. W 1. C. C.
Sedang	Tingkat kualitas udara masih	Kelompok sensitif: Kurangi aktivitas
	dapat diterima pada kesehatan	fisik yang terlalu lama atau berat.
	manusia, hewan dan	Setiap orang: Masih dapat beraktivitas
	tumbuhan.	di luar
Tidak Sehat	Tingkat kualitas udara yang	Kelompok sensitif: Boleh melakukan
	bersifat merugikan pada	aktivitas di luar, tetapi mengambil
	manusia, hewan dan	rehat lebih sering dan melakukan
	tumbuhan.	aktivitas ringan. Amati gejala berupa
		batuk atau nafas sesak. Penderita asma
		harus mengikuti petunjuk kesehatan
		untuk asma dan menyimpan obat
		asma. Penderita penyakit jantung:
		gejala seperti palpitasi/jantung
		berdetak lebih cepat, sesak nafas, atau
		kelelahan yang tidak biasa mungkin
		mengindikasikan masalah serius.
Sangat	Tingkat kualitas udara yang	Kelompok sensitif: Hindari semua
Tidak Sehat	dapat meningkatkan resiko	aktivitas di luar. Perbanyak aktivitas di
	kesehatan pada sejumlah	dalam ruangan atau lakukan
	segmen populasi yang	penjadwalan ulang pada waktu dengan
	terpapar.	kualitas udara yang baik. Setiap orang:
		Hindari aktivitas fisik yang terlalu
		lama di luar ruangan, pertimbangkan
		untuk melakukan aktivitas di dalam
		ruangan.
Berbahaya	Tingkat kualitas udara yang	Kelompok sensitif: Tetap di dalam
	dapat merugikan kesehatan	ruangan dan hanya melakukan sedikit
	serius pada populasi dan perlu	aktivitas Setiap orang: Hindari semua
	penanganan cepat.	aktivitas di luar.

Tabel 2.1 Pengaruh ISPU Berdasarkan Parameter Pencemaran

Sumber: (Budiyono, 2019)

Keterangan	Rentang	Carbon Monoksida	Nitrogen (NO ₂)	Ozon (O ₃)	Sulfur Dioksida	Partikulat
		(CO)			(SO_2)	
Baik	1 – 50	Tidak ada efek	Sedikit berbau	Luka pada	Luka pada beberapa	Tidak ada efek
				beberapa spesies	spesies tumbuhan	
				tumbuhan akibat	akibat kombinasi O ₃	
				kombinasi dengan	(selama 4 jam)	
				SO ₂ (selama 4		
				jam)		
Sedang	51 – 100	Perubahan kimia	Berbau	Luka pada	Luka pada beberapa	Terjadi penurunan
		darah tetapi tidak		beberapa spesies	spesies tumbuhan	pada jarak pandang
		terdeteksi		tumbuhan		
Tidak Sehat	101 – 200	Peningkatan pada	Bau dan kehilangan	Penurunan	Bau, meningkatnya	Jarak pandang turun
		kardiovaskular pada	warna. Peningkatan	kemampuan pada	kerusakan tanaman	dan terjadi
		perokok yang sakit	reaktivitas pembuluh	atlit yang berlatih		pengotoran debu
		jantung	tenggorokan pada	keras		dimana-mana
			penderita asma			

Sangat Tidak	201 – 300	Meningkatnya	Meningkatnya	Olahraga ringan	Meningkatnya	Meningkatnya
Sehat		kardiovaskular pada	sensitivitas pasien	mengakibatkan	sensitivitas pada	sensitivitas pada
		orang yang bukan	yang berpenyakit	pengaruh	pasien berpenyakit	pasien berpenyakit
		perokok yang	asma dan bronkhitis.	pernafasan pada	asma dan bronkhitis.	asma dan bronkhitis.
		berpenyakit jantung		pasien yang		
		dan akan tampak		berpenyakit paru-		
		beberapa kelemahan		paru kronis		
		yang terlihat secara				
		nyata				
Berbahaya	≥ 301	Tingkat yang berbahaya bagi semua populasi yang terpapar.				

2.2.11 Unified Modeling Language (UML)

Unified Modeling Language (UML) adalah salah satu standar bahasa yang banyak digunakan dalam industri untuk mendefinisikan persyaratan, melakukan analisis dan desain, dan menggambarkan arsitektur dalam pemrograman berorientasi objek. UML adalah bahasa visualisasi untuk pemodelan dan sistem komunikasi menggunakan diagram dan teks pendukung (Rohmat & Pertiwi, 2020).

1. Use Case Diagram

Menurut (Tabrani & Rezqy Aghniya, 2020) menyimpulkan bahwa, "use case adalah rangkaian atau uraian sekelompok yang saling terkait dan membentuk sistem secara teratur yang dilakukan atau diawasi oleh sebuah aktor".

Tabel 2.5 Use Case Diagram

			Case Diagram
No.	Simbol	Nama	Keterangan
1.	Actor	Actor	Aktor adalah orang, proses, sistem lain yang berinteraksi dengan sistem informasi yang akan dibuat, jadi meskipun simbol dari aktor ialah gambar orang, tapi aktor belum tentu merupakan orang. Biasanya penamaan aktor dinamakan menggunakan kata benda di awal frase nama actor
2.		Use case	Use Case adalah fungsionalitas yang disediakan sistem sebagai unit - unit yang saling bertukar pesan antar unit atau aktor. Biasanya use case diberikan penamaan dengan menggunakan kata kerja di awal frase nama use case.
3.		Association	Asosiasi adalah komunikasi antara aktor dan <i>use case</i> yang berpartisipasi pada <i>use case</i> diagram atau <i>use case</i> yang memiliki interaksi aktor. Asosiasi merupakan simbol yang digunakan untuk

			menghubungkan simbol yang digunakan
			untuk menghubungkan link antar
			element.
4.	< <extend>></extend>	Extend	Relasi <i>use case</i> tambahan ke sebuah <i>use case</i> dimana <i>use case</i> yang ditambahkan dapat berdiri sendiri meski tanpa <i>use case</i> tambahan itu. Arah panah mengarah pada <i>use case</i> yang ditambahkan.
5.	< <include>></include>	Include	Relasi <i>use case</i> tambahan ke sebuah <i>use case</i> dimana <i>use case</i> yang ditambahkan membutuhkan <i>use case</i> ini untuk menjalankan fungsinya atau sebagai syarat dijalankan <i>use case</i> ini. Arah panah include mengarah pada <i>use case</i> yang dipakai (dibutuhkan) atau mengarah pada <i>use case</i> tambahan.
6.	>	Generalisasi / Generalization	Hubungan generalisasi dan spesialisasi (umum – khusus) antara dua buah <i>use case</i> dimana fungsi yang satu merupakan fungsi yang lebih umum dari lainnya. Arah panah mengarah pada <i>use case</i> yang menjadi generalisasi nya (umum).

2. Activity Diagram

Menurut (Tabrani & Rezqy Aghniya, 2020) mendefinisikan bahwa, "activity diagram memodelkan workflow proses bisnis dan urutan aktifitas dalam sebuah proses. Diagram ini sangat mirip dengan flowchart karena memodelkan workflow dari suatu aktifitas lainnya atau dari aktifitas ke status".

Tabel 2.6 Activity Diagram

-	Tabel 2.6 Activity Diagram							
No.	Simbol	Nama	Keterangan					
			ϵ					
1.		Status Awal	Sebuah diagram aktivitas memiliki					
			sebuah status awal.					

2.		Aktivitas	Aktivitas yang dilakukan sistem, aktivitas biasanya diawali dengan kata kerja.
3.	\Diamond	Percabangan/ Decision	Percabangan dimana ada pilihan aktivitas yang lebih dari satu.
4.		Penggabungan/ Join	Penggabungan dimana yang mana lebih dari satu aktivitas lalu digabungkan jadi satu aktivitas.
5.		Swimlane	Swimlane memisahkan organisasi bisnis yang bertanggung jawab terhadap aktivitas yang terjadi.

3. Sequence Diagram

Menurut (Tabrani & Rezqy Aghniya, 2020) menyimpulkan bahwa, "sequence diagram menggambarkan interaksi antara sejumlah objek dalam urutan waktu".

Tabel 2.7 Sequence Diagram

1 auci 2.7	Sequence Diagram
Simbol	Deskripsi
Aktor Nama aktor atau Nama aktor	Orang, proses, atau sistem lain yang berinteraksi dengan sistem informasi yang akan dibuat di luar sistem informasi yang akan dibuat itu sendiri.
Garis hidup/lifeline	Menyatakan kehidupan suatu objek.

Objek	Menyatakan objek yang
Nama objek: nama <u>kelas</u>	berinteraksi pesan.
Waktu aktif	Menyatakan objek dalam keadaan aktif dan berinteraksi, semua yang terhubung dengan waktu aktif ini adalah sebuah tahapan yang dilakukan di dalamnya.
Pesan tipe <i>create</i> < <create>> ————</create>	Menyatakan suatu objek membuat objek yang lain
Pesan tipe call 1: nama_metode()	Menyatakan suatu objek memanggil operasi/metode yang ada pada objek lain atau dirinya sendiri.
Pesan tipe send 1: masukan	Menyatakan bahwa suatu objek mengirimkan data/masukan/informasi ke objek lainnya.
Pesan tipe return 1: keluaran	Menyatakan bahwa suatu objek yang telah menjalankan suatu operasi atau metode menghasilkan suatu kembalian ke objek tertentu.

BAB III

METODOLOGI

3.1 Kerangka Pikir

Kerangka pikir memuat dari metode pengumpulan data dan metode pengembangan sistem. Adapun *flowchart* atau diagram alir kerangka pikir yang dibuat oleh penulis adalah sebagai berikut:

Gambar 3.5 flowchart Kerangka Pikir

3.2 Deskripsi

1. Metode Pengumpulan Data

Dalam penelitian ini menggunakan beberapa metode untuk mengumpulkan data, diantaranya:

a. Wawancara

Metode ini digunakan sebagai teknik pengumpulan data apabila ingin melakukan studi pendahuluan untuk menemukan suatu permasalahan yang akan di teliti. Narasumber wawancara Saepul Anwar selaku penggagas awal pembangunan alat ukur kualitas udara.

b. Observasi

Metode ini digunakan sebagai teknik pengumpulan data dengan ciriciri yang spesifikasi apabila di bandingkan dengan teknik pengumpulan data lainnya seperti wawancara. Tempat observasi yaitu di persimpangan Rancabango Kota Tasikmalaya.

c. Studi Pustaka

Metode ini digunakan sebagai teknik pengumpulan data dengan membaca sumber dari buku, jurnal serta dari internet yang dapat menunjang dalam memperoleh data untuk melengkapi penyusunan penelitian laporan yang berhubungan dengan masalah yang di teliti.

2. Analisis Kebutuhan

Pada tahap analisis kebutuhan penulis melakukan pengkajian *deep learning* pada beberapa aspek yang diamati meliputi; metode dan *tools* yang akan digunakan. Sehingga diharapkan penulis dapat menghasilkan keterbaruan dari penelitian. Berdasarkan hasil analisis kebutuhan berikut adalah beberapa yang diperlukan dalam membangun sistem monitoring:

a. Perangkat Keras (Hardwar)

Perangkat yang digunakan untuk pengembangan sistem, yaitu laptop dengan spesifikasi sebagai berikut:

- Inter(R) Celeron(R) CPU N2830 @ 2.16Hz
- RAM 4GB
- Monitor 14", HD 1366 x 768

Perangkat yang digunakan sebagai bagian dari sistem yaitu:

- Sensor
- Mikrokontroler Arduino mega 2560 Pro mini CH340
- SIM800L

b. Perangkat Lunak (Software)

Perangkat lunak untuk pembangunan program pada sistem dalam penelitian ini yaitu:

- Visual Studio Code
- Blynk

3. Perancangan desain dan Konfigurasi Sistem

Pada tahap perancangan desain dan konfigurasi sistem penulis merancang konsep kerja secara detail meliputi; skema rangkaian elektronik, desain model 3 dimensi, dan alur kerja dari variabel input menuju proses hingga menghasilkan beberapa output.

4. Pembangunan Software

Pembangunan software yang dimaksud yaitu memprogram mikrokontroler Arduino Mega2560 dan ATmega328 menggunakan aplikasi visual studio code V.1.65.2 dengan ekstensi tambahan yaitu platform IO. File yang dihasilkan dari aplikasi ini yaitu dengan format C++ (.cpp) dan File hex (.h). Seluruh variabel input dan output diinisialisasikan sesuai dengan port komunikasi (Analog, digital, SPI dan serial Rx-Tx). Memastikan masing-masing device dapat difungsikan dengan pemrograman yang dibangun, kemudian seluruh fungsi di jalankan secara bertahap. Membangun aplikasi Blynk dengan menggunakan fungsi-fungsi yang sudah ada pada aplikasi Blynk.

5. Pengujian variabel input

Pengujian dilakukan dengan cara memasukan satu persatu variabel input dari mikrokontroler hingga dapat diterima oleh aplikasi Blynk sesuai dengan tipe data yang diharapkan, kemudian beberapa variabel input yang dimaksud dikombinasikan dan dimuat di aplikasi Blynk.

Tabel 3.8 Pengujian Variabel Input

Sensor	Variabel Input	Tipe Data	Port Komunikasi
	, ariaser impac	Провиш	T OIT HOMESI
PMS5003	PM2.5	Integer	Serial
MICS6814	CO	Float	Analog Input
7.57.00.404.4	370		
MICS6814	NO_2	Float	Analog Input
DHT22	Suhu dan Kelembaban	Float	Digital Input
211122		11000	Bigital inpat

6. Evaluasi

Tahap evaluasi merupakan pengujian sistem secara menyeluruh yang melibatkan perangkat keras (unit alat) dan aplikasi Blynk yang berhasil dibangun. Variable yang diuji yaitu keakuratan nilai sensor yang ditampilkan pada display dan aplikasi Blynk serta memastikan unit dapat mengirimkan data ke server Blynk pada periode waktu yang ditentukan.

Metode pengujian yang penulis ambil berlandaskan pada tingkat mobilitas masyarakat umum yang berbeda-beda di setiap waktu. Pengujian ini dilakukan selama 7 hari yang ditinjau dari produktifitas masyarakat yang berulang setiap pekannya, dalam 1 hari pengambilan data dilakukan sebanyak 3 kali yaitu pagi dari jam 08:00-09:00, siang dari jam 13:00-14:00 dan malam dari jam 19:00-20:00 dengan masing-masing minimal durasi waktu 1 jam.

Memastikan beberapa point penting dapat berfungsi sebagaimana mestinya, meliputi:

- Arduino Mega2560 pro mini CH340 dapat diprogram dan membaca variabel input dan output
- 2. Sensor dapat mengukur parameter PM2.5, CO, dan NO₂
- 3. SIM800L dapat mengirimkan data sensor ke server Blynk

7. Laporan

Tahapan terakhir adalah menyusun laporan sebagaimana diatur dalam Pedoman Penulisan Skripsi di Fakultas Teknologi Informasi Universitas Bale Bandung.

BAB IV

ANALISIS DAN PERANCANGAN

4.1 ANALISIS

Analisis dalam penelitian ini terdiri dari beberapa tahapan yaitu, analisis masalah, analisis software, analisis pengguna, user interface, fitur-fitur, analisis data, dan analisis biaya.

4.1.1 Analisis Masalah

Analisis masalah dilakukan untuk mendapatkan gambaran tentang sistem yang digunakan dalam sistem monitoring pengukuran kualitas udara yang berlangsung di persimpangan Rancabango Kota Tasikmalay yaitu sebagai berikut:

- 1. Sistem IoT yang telah dibangun sebelumnya belum dapat tersampaikan atau dipantau secara *realtime* oleh masyarakat umum.
- 2. Sistem database IoT yang dikembangkan sebelumnya menggunakan platform firebase.
- Data yang dihasilkan dari firebase berupa format .json yang perlu dikonversikan dan diolah pada aplikasi Microsoft excel, sehingga tidak memungkinkan masyarakat umum dapat menyimpulkan nilai kualitas udara secara langsung.
- 4. Tampilan *interface* monitoring pengukuran kualitas udara belum dibangun pada sistem sebelumnya.

4.1.2 Analisis *Software*

Berikut adalah beberapa kebutuhan *software* dan perangkat yang dibutuhkan oleh developer sebagai programmer mikrokontroller, admin sebagai pemilik atau pengelola informasi pada aplikasi Blynk dan *user* sebagai pengguna umum untuk memantau pengukuran kualitas udara.

Tabel 4.9 Kebutuhan *software* dan Perangkat

Kebutuhan Developer	Kebutuhan Admin	Kebutuhan User
Aplikasi Blynk	Aplikasi Blynk	Aplikasi Blynk
Smartphone	Smartphone	Smartphone
Akun Blynk Serangkota	Akun Blynk Serangkota	Scan Barcode
PC		

Visual Studio Code	
Aplikasi Blynk	
Platform IO	
Easy EDA PCB	
Solidwork 3D Desain	
Corel Draw	

4.1.3 Analisis Pengguna

Berdasarkan pada penelitian sistem monitoring pengukuran kualitas udara ini maka penulis memiliki target pengguna sistem pada semua kalangan atau semua masyarakat terutama masyarakat Rancabango Kota Tasikmalaya. Dalam penelitian ini tidak membatasi umur pengguna dikarenakan semua kalangan membutuhkan informasi seputar kualitas udara di Rancabango. Ada dua jenis pengguna yaitu:

1. Admin

Berperan untuk mengatur layout dan parameter yang ditampilkan pada aplikasi Blynk.

2. User

Pengguna yang dapat memantau nilai kualitas udara dari jarak jauh dengan menggunakan smartphone dan aplikasi Blynk. *User* yang diijinkan adalah *user* yang sebelumnya melakukan *scan barcode* pada aplikasi Blynk, *barcode* tersebut diberikan oleh admin melalui media sosial.

4.1.4 User Interface

User interface dari aplikasi ini sangat berpengaruh terhadap kemudahan pengguna dalam menggunakannya. Hal ini mencakup tampilan dan fungsi yang dibuat user friendly artinya dalam penggunaannya user akan dimudahkan dari sisi penempatan-penempatan konten yang efisien, sehingga lebih menonjolkan isi dari informasi yang akan ditampilkan oleh setiap konten. Berikut adalah user interface pada aplikasi Blynk:

- 1. Kategori ISPU
- 2. Parameter Kritis

- 3. ISPU Max
- 4. ISPU (Indeks Standar Pencemaran Udara)
- 5. PM2.5
- 6. NO2
- 7. CO
- 8. Value Parameter
- 9. Temperature
- 10. Humidity
- 11. Temperature & Humidity

4.1.5 Fitur-fitur

Dalam aplikasi Blynk yang di bangun terdapat beberapa fitur yang dapat dijalankan fitur tersebut dibuat *friendly user* sehingga dapat dengan mudah digunakan oleh pengguna. Fitur-fitur tersebut antara lain:

- a. Aplikasi Blynk dapat mengunduh data logger yang tersimpan pada server dengan cara *export to* csv pada grafik kemudian file csv akan terkirim pada email admin.
- b. Nilai kualitas udara yang terukur di tampilkan juga secara otomatis dengan nilai standar ISPU sehingga level kritis masing-masing pencemar dapat lebih mudah dipahami.
- c. Parameter suhu dan kelembaban diukur juga dalam monitoring ini, bertujuan untuk memudahkan peneliti lain dalam mengamati kualitas udara di titik sampel.

4.1.6 Analisis Data

Sistem pengukur kualitas udara ambient terdiri dari 3-unit sensor sebagai input, 3 jenis output, 1 mikrokontroler dan referensi ISPU digunakan sebagai nilai konversi dari sensor (μg/m³) menjadi satuan resmi ISPU serta SIM800L digunakan sebagai media transmisi jaringan untuk mengirimkan nilai sensor ke server Blynk.

Input	Proses	Output
Data NO2	Kontroler Arduino AT Mega 2560 dan SIM800L	Nilai NO2
Data CO	Kontroler Arduino AT Mega 2560 dan SIM800L	Nilai CO

Data PM2.5	Kontroler Arduino AT Mega 2560 dan SIM800L	Nilai PM2.5
Suhu &	Kontroler Arduino AT Mega 2560 dan SIM800L	Nilai Suhu &
Kelembaban		Kelembaban

4.1.7 Analisis Biaya

Rincian anggaran biaya yang dikeluarkan untuk alat pengukuran kualitas udara ambient di Rancabango Kota Tasikmalaya sebagai berikut:

Tabel 4.10 Analisis Biaya

1. Peralatan Penunjang	Qty	Harga Satuan (Rp)	Nilai (Rp)
Toolset Merk hozan s22	1	2,700,000	2,700,000
Mata Bor Set Baja Stainless 19 Pcs 1- 10mm Black Foot	1	550,000	550,000
Mesin Bor Cordless 12V 10 mm	1	349,000	349,000
Gergaji Besi	1	85,000	85,000
Mata gergaji besi	2	8,000	16,000
Cutting mat	1	185,000	185,000
Multimeter Digital	1	150,000	150,000
Jangka Sorong	1	160,000	160,000
Cutter	1	15,000	15,000
Project Board	1	28,000	28,000
Kabel Jumper	2	15,000	30,000
Masker 1 box	1	40,000	40,000
Kaca mata Pelindung	2	15,000	30,000
Sarung Tangan Lab	8	5,000	40,000
	1	SUB TOTAL (Rp)	4,378,000
2. Bahan Habis Pakai	Qty	Harga Satuan (Rp)	Nilai (Rp)
2. Bahan Habis Pakai Arduino Mega 2560 Promini	Qty 1	Harga Satuan (Rp)	Nilai (Rp) 165,000
		3 . 1	
Arduino Mega 2560 Promini	1	165,000	165,000
Arduino Mega 2560 Promini SIM800L V2.0	1 1	165,000 108,000	165,000 108,000
Arduino Mega 2560 Promini SIM800L V2.0 Kartu Perdana Telkomsel	1 1 1	165,000 108,000 20,000	165,000 108,000 20,000
Arduino Mega 2560 Promini SIM800L V2.0 Kartu Perdana Telkomsel Paket AON Telkomsel	1 1 1 2	165,000 108,000 20,000 75,000	165,000 108,000 20,000 150,000
Arduino Mega 2560 Promini SIM800L V2.0 Kartu Perdana Telkomsel Paket AON Telkomsel Sensor PMS5003	1 1 1 2 1	165,000 108,000 20,000 75,000 430,500	165,000 108,000 20,000 150,000 430,500
Arduino Mega 2560 Promini SIM800L V2.0 Kartu Perdana Telkomsel Paket AON Telkomsel Sensor PMS5003 Sensor MICS6814	1 1 1 2 1 1	165,000 108,000 20,000 75,000 430,500 490,000	165,000 108,000 20,000 150,000 430,500 490,000
Arduino Mega 2560 Promini SIM800L V2.0 Kartu Perdana Telkomsel Paket AON Telkomsel Sensor PMS5003 Sensor MICS6814 RTC DS3231	1 1 1 2 1 1	165,000 108,000 20,000 75,000 430,500 490,000 55,000	165,000 108,000 20,000 150,000 430,500 490,000 55,000
Arduino Mega 2560 Promini SIM800L V2.0 Kartu Perdana Telkomsel Paket AON Telkomsel Sensor PMS5003 Sensor MICS6814 RTC DS3231 Buzzer	1 1 1 2 1 1 1 1	165,000 108,000 20,000 75,000 430,500 490,000 55,000	165,000 108,000 20,000 150,000 430,500 490,000 55,000
Arduino Mega 2560 Promini SIM800L V2.0 Kartu Perdana Telkomsel Paket AON Telkomsel Sensor PMS5003 Sensor MICS6814 RTC DS3231 Buzzer Module SD Card Logger	1 1 1 2 1 1 1 1 1	165,000 108,000 20,000 75,000 430,500 490,000 55,000 5,000	165,000 108,000 20,000 150,000 430,500 490,000 55,000 12,500
Arduino Mega 2560 Promini SIM800L V2.0 Kartu Perdana Telkomsel Paket AON Telkomsel Sensor PMS5003 Sensor MICS6814 RTC DS3231 Buzzer Module SD Card Logger SD Card 4GB	1 1 2 1 1 1 1 1 1	165,000 108,000 20,000 75,000 430,500 490,000 55,000 12,500 49,000	165,000 108,000 20,000 150,000 430,500 490,000 55,000 5,000 12,500 49,000

Spacer	8	2,500	20,000
Jasa Cetak PCB Layout	1	70,000	70,000
PSU 5V/10A	1	69,000	69,000
Fan 5Vdc 40x40mm	2	18,000	36,000
Panel P10 red outdoor	3	85,000	255,000
Frame Running Text 1x3P	1	175,000	175,000
Tutup belakang (galvalume)	1	35,000	35,000
Lem silen	1	32,000	32,000
Box plastik x-6	1	15,000	15,000
Kabel gland	5	3,000	15,000
Kabel AC meteran	15	7,000	105,000
Kabel Pita	3	3,500	10,500
Steaker Broko	1	9,500	9,500
Kabel DC AWG 18	10	5,100	51,000
Kleman Kabel	2	7,000	14,000
Kabel Ties	1	15,000	15,000
Print desain papan banner /m ²	5	30,000	150,000
Jasa las dan Tiang	1	985,000	985,000
Kertas 1 Rim 80gr	1	59,000	59,000
ATK	1	34,000	34,000
		SUB TOTAL (Rp)	3,670,500
3. Perjalanan	Qty	Harga Satuan (Rp)	Nilai (Rp)
Jasa Pengiriman Paket Barang	13	20,000	260,000
Pembelian Barang Toko Offline	7	40,000	280,000
Perijinan Kota	4	80,000	320,000
Biaya Tak Terduga (20%)	1	172,000	172,000
		SUB TOTAL (Rp)	1,032,000
d. Lain-lain	Qty	Harga Satuan (Rp)	Nilai (Rp)
Biaya Perawatan Laboratorium	1	300,000	300,000
Flashdisk 8 GB (Keperluan Money)	1	50,000	50,000
Biaya uji coba lapangan	3	100,000	300,000
Biaya penggandaan laporan	4	80,000	320,000
	+ '	,	
		SUBTOTALIRM	9/(11/11/
		SUB TOTAL (Rp)	970,000
	T	OTAL 1+2+3+4 (Rp)	10,050,500

4.2 PERANCANGAN

Berikut merupakan perancangan yang digunakan dalam pembuatan sistem monitoring pengukuran kualitas udara menggunakan aplikasi Blynk. Dalam perancangan penelitian ini terdiri dari beberapa tahapan, yaitu UML, Struktur tabel, blok diagram Input-Output, flowchart program, skematik rangkaian, dan desain.

4.2.1 Unified Modeling Language (UML)

a. Use Case Diagram

Gambar 4.6 *Use Case* Diagram

Tabel 4.11 Deskripsi *Use Case*

No		Use Case	•	Deskripsi
1	Login			Untuk admin login
2	Mengatur	Layout	Dashboard	Admin berperan untuk mengatur
	Blynk			layout yang ada di tampilan Blynk

3	Project Setting	Admin dapat melakukan
		pengaturan dasar seperti; mengatur
		tema, pengaturan latar belakang
		dan duplikat projek
4	Shared Barcode Access	Untuk menyebarkan informasi
		kepada user dengan barcode
5	Device Config	Melakukan konfigurasi perangkat
		keras, koneksi yang digunakan, dan
		token Application Programming
		Interface (API)
6	Kategori ISPU	Menampilkan Parameter Kritis
		dalam bentuk lingunstik
7	Parameter Kritis	Menunjukan Parameter yang
		sedang kritis
8	ISPU Max	Menunjukan angka ISPU yang
		tertinggi
9	Grafik ISPU	Menampilkan linimasa informasi
		nilai ISPU dalam keseluruhan (3
		Parameter) dalam bentuk grafik
10	Mengatur Layout PM2.5	Menampilkan nila PM2.5 dalam
		satuan ug/m ³
11	Mengatur Layout NO2	Menampilkan nilai NO2 dalam
		satuan ppm (parts per million)
12	Mengatur Layout CO	Menampilkan nilai CO dalam
		satuan ppm (parts per million)
13	Value Parameter	Menampilkan linimasa nilai 3
		parameter tersebut dengan satuan
		masing-masing dalam bentuk
		grafik
14	Temperature	Tampilan nilai suhu dalam satuan
		0 C

15	Humidity	Tampilan persentase Konsentrasi
		kelembaban dalam satuan Relatif
		Humidity
16	Grafik Temperature & Humidity	Menampilkan linimasa nilai suhu
		dan kelembaban dalam bentuk
		grafik
17	Scan Barcode	Untuk memberi informasi kepada
		user agar dapat memantau atau
		melihat parameter yang di ukur dari
		jarak jauh

Tabel 4.12 Deskripsi Aktor

14861 1112 2	eskiipsi i iktoi
Aktor	Deskripsi
Admin	Berperan sebagai pengatur layout dan
	parameter
User	Berperan sebagai pengguna yang dapat
	memantau parameter

b. Sequence Diagram

Diagram urutan menggambarkan perilaku objek dalam sebuah adegan dengan menggambarkan siklus hidup objek dan pesan yang dikirim dan diterima antar objek.

1. Sequence Diagram Login Admin

Gambar 4.7 Sequence Diagram Login Admin

Actor 1: Pilih Layout yang akan di edit 2: Mengedit Layout yang akan di edit 3: menampilkan hasil edit

2. Sequence Diagram Mengatur Layout Dashboard Blynk

Gambar 4.8 Sequence Diagram Layout Dashboard Blynk

3. Sequence Diagram Project Setting

Gambar 4.9 Sequence Diagram Project Setting

4. Sequence Diagram Shared Barcode Access

Gambar 4.10 Sequence Diagram Shared Barcode Access

Admin 1: Memilih Project Setting 2: Memilih Device 3: Memilih My Device 4: Menampilkan Device Setting

5. Sequence Diagram Device Config

Gambar 4.11 Sequence Diagram Device Config

6. Sequence Diagram Kategori ISPU

Gambar 4.12 Sequence Diagram Kategori ISPU

7. Sequence Diagram Parameter Kritis

Gambar 4.13 Sequence Diagram Parameter Kritis

8. Sequence Diagram ISPU Max

Gambar 4.14 Sequence Diagram ISPU Max

9. Sequence Diagram ISPU

Gambar 4.15 Sequence Diagram ISPU

10. Sequence Diagram Mengatur Layout PM2.5

Gambar 4.16 Sequence Diagram Mengatur Layout PM2.5

11. Sequence Diagram Mengatur Layout NO2

Gambar 4.17 Sequence Diagram Mengatur Layout NO2

12. Sequence Diagram Mengatur Layout CO

Gambar 4.18 Sequence Diagram Mengatur Layout CO

13. Sequence Diagram Value Parameter

Gambar 4.19 Sequence Diagram Value Parameter

14. Sequence Diagram Temperature

Gambar 4.20 Sequence Diagram Temperature

15. Sequence Diagram Humidity

Gambar 4.21 Sequence Diagram Humidity

16. Sequence Diagram Temperature & Humidity

Gambar 4.22 Sequence Diagram Temperature & Humidity

User 1: Tampilan Awal Blynk 2: Memilih scan barcode 3: Scan Barcode yang sudah diberi admin 4: Dashboard Project

17. Sequence Diagram Scan Barcode

Gambar 23 Sequence Diagram Scan Barcode

c. Activity Diagram

Activity diagram digunakan untuk menggambarkan alur kerja atau aktivitas dari suatu sistem atau menu dalam suatu aplikasi.

1. Activity Diagram Login Admin

Gambar 4.24 Activity Diagram Login Admin

Tampilan Mengatur Layout Dashboard Blynk Admin Sistem Masuk Ke Aplikasi Blynk Menampilkan Project Blynk Menampilkan Dashboard Layout yang bisa di edit

2. Activity Diagram Mengatur Layout Dashboard Blynk

Gambar 4.25 Activity Diagram Layout Dashboard Blynk

3. Activity Diagram Project Setting

Gambar 4.26 Activity Diagram Project Setting

Tampilan Shared Barcode Access Admin Masuk Ke Aplikasi Blynk Memilih Setting Memilih Generate Link Menampilkan Pengaturan Dasar pada Project Menampilkan Barcode

4. Activity Diagram Shared Barcode Access

Gambar 4.27 Activity Diagram Shared Barcode Access

5. Activity Diagram Device Config

Gambar 4.28 Activity Diagram Device Config

6. Activity Diagram Kategori ISPU

Gambar 4.29 Activity Diagram Kategori ISPU

7. Activity Diagram Parameter Kritis

Gambar 4.30 Activity Diagram Parameter Kritis

8. Activity Diagram ISPU Max

Gambar 4.31 Activity Diagram ISPU Max

9. Activity Diagram ISPU

Gambar 4.32 Activity Diagram ISPU

10. Activity Diagram Mengatur Layout PM2.5

Gambar 4.33 Activity Diagram Mengatur Layout PM2.5

11. Activity Diagram Mengatur Layout NO2

Gambar 4.34 Activity Diagram Mengatur Layout NO2

Admin Sistem Masuk Ke Aplikasi Blynk Edit CO Menampilkan Dashboard Blynk Menampilkan Hasil Edit Di Dashboard Blynk

12. Activity Diagram Mengatur Layout CO

Gambar 4.35 Activity Diagram Mengatur Layout CO

13. Activity Diagram Value Parameter

Gambar 4.36 Activity Diagram Value Parameter

14. Activity Diagram Temperature

Gambar 4.37 Activity Diagram Temperature

15. Activity Diagram Humidity

Gambar 4.38 Activity Diagram Humidity

Admin Sistem Masuk Ke Aplikasi Blynk Edit Temperature & Humidity Menampilkan Dashboard Blynk Menampilkan Hasil Edit Di Dashboard Blynk

16. Activity Diagram Temperature & Humidity

Gambar 4.39 Activity Diagram Temperature & Humidity

17. Activity Diagram Scan Barcode

Gambar 4.40 Activity Diagram Scan Barcode

4.2.2 Struktur Tabel

Berikut adalah struktur tabel menu dari sistem monitoring pengukuran kualitas udara menggunakan aplikasi Blynk yang akan dibuat:

Gambar 4.41 Struktur Tabel

1. Tabel ISPU

Tabel 4.13 Rancangan Tabel ISPU

Tuber 1:15 Rancangun Tuber 151 C				
Field	Туре	Size	Keterangan	
Kategori_ISPU	String	12	"Kualitas Udara Baik" "Kualitas Udara Sedang"	
			"Kualitas Udara Tidak Sehat" "Udara Sangat	
			Tidak Sehat" "Kualitas Udara Berbahaya"	
Parameter_Kritis	String	10	"PM2.5", "NO2", "CO"	
ISPU Max	Integer	10	Parameter Kritis	

2. Tabel Value Parameter

Tabel 4.14 Rancangan Tabel Value Parameter

Field	Туре	Size	Keterangan
PM2.5	Integer	11	$0-500 \ \mu g/m^3$
NO2	float	11	0.04-4.00 ppm
СО	float	11	0.00-30.000 ppm

3. Tabel *Temperature & Humidity*

Tabel 4.15 Rancangan Tabel Temperature & Humidity

Field	Туре	Size	Keterangan
Temperature	float	11	0-100 °C
Humidity	float	11	0-100 %

4.2.3 Blok Diagram Input-Output

Berikut adalah blok diagram *input* yang diolah oleh mikrokontroler kemudian menghasilkan beberapa *output* yang ditampilkan:

Gambar 4.42 Blok Diagram Input-Output

- Parameter input dihasilkan dari beberapa sensor yang pada dasarnya dapat digolongkan sebagai tranduser input karena mereka dapat mengubah energi listrik seperti cahaya, tekanan, gerak dan suhu, sensor yang digunakan dalam alat tersebut meliputi:
 - Sensor PM2.5 (PM55003)
 PMS5003 (50 x 38 x 20.9 mm) merupakan sensor untuk mendeteksi jumlah partikel debu berukuran ≤10μm, ≤2.5μm, hingga ≤1μm.
 Sensor digital ini termasuk dalam peralatan instrumen dalam menentukan nilai konsentrasi partikel yang benar dan tepat waktu dengan nilai satuan yang dikeluarkan adalah μg/m³.
 - Sensor CO dan NO₂ (MICS6814)
 MiCS-6814 adalah sensor MEMS (*Micro Electro Mechanical System*) yang kuat untuk mendeteksi polusi dari knalpot mobil dan untuk bau pertanian/industry (SGX sensoMiCS-6814 Data Sheet, 2017).

Memiliki spesifikasi komponen sebagai berikut:

- Ukuran chip (5 x 7 x 1.55 mm)
- Ukuran PCB (16.9*14.1*3.2 mm)
- Tegangan Kerja 5 Vdc
- Sensor MEMS yang kuat untuk lingkungan yang keras
- Waktu delay yang singkat

• Sensor Suhu dan Kelembaban (DHT22)

DHT22 merupakan komponen sensor yang bekerja pada tegangan 5Vdc/2.5mA mampu mendeteksi dan mengukur nilai suhu dan kelembaban dengan nilai output dalam bentuk digital yang perlu dikalibrasi. Sensor ini sangat cocok digunakan sebagai variable input pada perangkat Arduino. (Electronics, 1995) Dengan menggunakan teknik akuisisi sinyal digital eksklusif dan teknologi penginderaan suhu & kelembaban, ini memastikan keandalan yang tinggi dan stabilitas jangka panjang yang sangat baik. Sensor DHT22 telah dikalibrasi secara ketat di laboratorium yang sangat akurat dalam kalibrasi kelembaban.

- Proses merupakan pengolahan data dari parameter input berupa sinyal analog atau digital diubah menjadi value pada software kemudian dikomparasi dengan persamaan ISPU, proses ini dilakukan pada mikrokontroler ATmega 2560.
- 3. Satuan listrik dari output sensor kemudian diolah menggunakan transduser yang langsung dikirim ke mikrokontroler melalui port komunikasi digital input dan serial. Kemudian mikrokontroler mengolah data sensor menggunakan bahasa C menjadi bahasa linguistik untuk mudah di pahami oleh manusia. Informasi tersebut disampaikan melalui beberapa perangkat output meliputi:

• Data logger SD Card

Kartu SD dan micro SD adalah salah satu yang paling praktis di antara perangkat penyimpanan, yang digunakan untuk penyimpana riwayat nilai sensor untuk rekapitulasi data apabila dibutuhkan untuk penelitian selanjutnya.

• Display Matrix 3 x P10

Display berperan sebagai media penyampaian informasi nilai kualitas udara dalam bentuk text yang ditampilkan secara *real time* serta terintegrasi dengan sensor. Led Matriks yang digunakan merupakan led matrix P10 yaitu dengan jarak piksel 10mm. Memiliki ukuran 16 x 32 cm dengan ketahanan terhadap air pada

bagian display nya, sehingga Led Matriks ini sangat cocok digunakan sebagai perangkat luar ruangan.

Blynk IoT
 Digunakan sebagai alat monitoring jarak jauh.

4.2.4 Flowchart Program

Gambar 4.43 Flowchart Program

Perangkat pertama kali dioperasikan akan menampilkan display untuk menyampaikan informasi instansi pengembang alat "fti.unibba.ac.id" kemudian akan menyambungkan ke server Blynk oleh perangkat SIM800L.

Setelah SIM800L dapat terhubung ke Blynk maka tahap selanjutnya adalah mengalibrasi sensor MICS6814 dalam menentukan nilai resistansi dasar dari sensor tersebut.

Pada tahapan *loop* program yaitu setelah selesai melakukan kalibrasi, kemudian akan melakukan pengukuran kualitas udara beberapa parameter yang diukur. Pada interval waktu 3 detik akan melakukan *update* tampilan display. Setelah waktu mencapai 5 menit maka kemudian kontroler akan mengirim data sensor saat itu ke Blynk dan menyimpan data di SD Card.

4.2.6 Skematik Rangkaian

Pengembangan skematik dan layout PCB penulis menggunakan aplikasi easyeda.com

Gambar 4.44 Skematik Rangkaian

4.2.7 Desain

a. Desain Interface Blynk

Perancangan desain dilakukan untuk mengetahui bagaimana tampilan pada aplikasi yang akan dibangun, penulis menggunakan aplikasi balsamiq mockup. Berikut ini adalah desain perancangan desain *interface* Blynk:

1. Halaman Login Admin

Gambar 4.45 Tampilan Halaman Login Admin

2. Tampilan Dashboard Blynk (Admin)

Gambar 4.46 Tampilan Dashboard Blynk (Admin)

3. Tampilan Dashboard Blynk (User)

Gambar 4.47 Tampilan Dashboard Blynk (User)

4. Tampilan Setting Layout Kategori ISPU

Gambar 4.48 Tampilan Setting Layout Kategori ISPU

5. Tampilan Setting Layout Parameter Kritis

Gambar 4.49 Tampilan Setting Layout Parameter kritis

Gambar 4.50 Tampilan Setting layout ISPU Max

7. Tampilan Setting Layout ISPU

Gambar 4.51 Tampilan Setting Layout ISPU

8. Tampilan Setting Layout PM2.5

Gambar 4.52 Tampilan Setting Layout PM2.5

9. Tampilan Setting Layout NO2

Gambar 4.53 Tampilan Setting Layout NO2

10. Tampilan Setting Layout CO

Gambar 4.54 Tampilan Setting Layout CO

11. Tampilan Setting Layout Value Parameter

Gambar 4.55 Tampilan Setting Layout Value Parameter

12. Tampilan Setting Layout Temperature

Gambar 4.56 Tampilan Setting Layout Temperature

13. Tampilan Setting Layout Humidity

Gambar 4.57 Tampilan Setting Layout Humidity

SuperChart Temperature & Humidity FONT SIZE T T T 皇主重 DATASTREAMS Temperature (C) Humidity (%RH) ♣ Add DataStream TITLE Show LEGEND Hide Show X-AXIS VALUES Hide Show OVERRIDE AUTO SCREEN FOR ALL DATA Hide Show TIME RANGES (7 MAX) HIGH RESOLUTION HIGH RESOLUTION Delete

14. Tampilan Setting Layout Temperature & Humidity

Gambar 4.58 Tampilan Setting Layout Temperature & Humidity

b. Desain *Hardware*

Berikut adalah pemodelan 3D desain alat ukur kualitas udara yang dibangun menggunakan $SolidWorks\ 2019\ sp5$

Gambar 4.59 Box Sensor

Gambar 4.60 Papan Informasi Alat Ukur Kualitas Udara

Sistem informasi dibuat pada text yang ditampilkan oleh display dengan nilai sensor dan referensi dari ISPU untuk menentukan kategori kondisi kualitas udara pada saat itu.

Text I = { PM2.5 == $(\mu g/m^3)$ }

Text II = { NO2 == (ppm) }

Text II = { CO == (ppm) }

Text IV = { Nilai Kritis }

Text V = { Kategori berdasarkan ISPU }

Gambar 4.61 Desain Tiang Alat Ukur Kualitas Udara

BAB V

IMPLEMENTASI DAN PENGUJIAN

5.1 Listing Program

Listing program merupakan kode-kode program dari membangun sistem monitoring pengukuran kualitas udara menggunakan aplikasi Blynk yang terdiri dari master dan slave (display).

5.1.1 Master

```
#include <Arduino.h>
#include "variable.h"
#include <Wire.h>
#include <SPI.h>
#include <PMserial.h>
#include "MICS6814.h"
#include "DHT.h"
#include <TinyGsmClient.h>
#include "RTClib.h"
#include "SdFat.h"//komunikasi SPI
#include <ArduinoJson.h>
#include "HitunganIPSU.h"
int puluhan(int n) { return (n / 10) % 10; }
int satuan(int n) { return n % 10; }
void daya ()
void mulai pms()
void mulai dht()
void initSD()
void tulisSD()
void setup()
  Serial.begin(115200);
  delay(10);
  SerialAT.begin(115200);
  Serial1.begin(115200);
 Megal.begin(9600);
 pinMode(buzPin, OUTPUT); // active HGH
 pinMode(Imeasure, INPUT);
 pinMode(Vmeasure, INPUT);
  sd.begin();
  Serial.println("Modem Restart, please wait.!");
 modem.restart();
  dht.begin();
  Serial.println("Start Calibration MICS6814");
  gas.calibrate();
  Serial.println("Next Device");
  delay(10);
  if (!rtc.begin())
    Serial.print("RTC tidak di temukan");
    while (1)
```

```
DateTime now = rtc.now();
 String modemInfo = modem.getModemInfo();
 Serial.print(F("Modem: "));
 Serial.println(modemInfo);
 Serial.print(F("Connecting to "));
 Serial.print(apn);
 Blynk.begin(auth, modem, apn, user, pass, "iot.serangkota.go.id",
8080);
 initSD();
 digitalWrite(buzPin, HIGH);
 delay(1000);
 digitalWrite(buzPin, LOW);
 pms.init();
}
void loop()
 runningblynk();
 pm25 = pms.pm25;
  pm25 -= ISPU.adjPM; // normalization
 nilai CO = gas.measure(CO);
 nilai CO -= ISPU.adjCO; // normalization//12.73;
 nilai NO2 = gas.measure(NO2);
 nilai NO2 -= ISPU.adjNO2; // normalization//0.55
 if (pm25 <= 0)
    pm25 = 0;
   Serial.println("normalisasi PM");
 if (nilai CO <= .001)
   nilai CO = 0;
   Serial.println("normalisasi CO");
 if (nilai NO2 <= .001)
   nilai NO2 = 0;
   Serial.println("normalisasi NO2");
  daya();
  Serial.print("Hasil pengukuran \n");
 Serial.print("Tegangan\t\t= ");
  Serial.print(Vcc, 2);
  Serial.print(" volt\n");
  Serial.print("Arus\t\t= ");
  Serial.print(Amps, 3);
 Serial.println(" mA");
 mulai dht();
 mulai_pms();
 Serial.print("CO\t\t\t= ");
  Serial.print(nilai CO);
 Serial.println(" ppm");
 Serial.print("NO2\t\t\t= ");
 Serial.print(nilai NO2);
 Serial.println(" ppm");
 ISPU.begin(gas, pms);
 Serial.print("Parameter Kritis\t: ");
 Serial.println(ISPU.Parameter);
 Serial.print("ISPU Max\t\t: ");
```

```
Serial.println(ISPU.ISPU max);
  Serial.print("Kategori\t\t: ");
 Serial.println(ISPU.kategori);
 Serial.print("ISPU PM2.5\t\t: ");
 Serial.println(ISPU.ISPU pm);
 Serial.print("ISPU CO\t\t\t: ");
 Serial.println(ISPU.ISPU co);
 Serial.print("ISPU NO2\t\t: ");
 Serial.println(ISPU.ISPU no2);
 Serial.println("");
 if (millis() - sesudah >= 15000)//15secon
   sesudah = millis();
   Serial.println("Recoding data & upload to Blynk, delta (t) = 15
second");
                                            // V0 == Humidity
   Blynk.virtualWrite(V0, h);
                                           // V1 == Temperatur
   Blynk.virtualWrite(V1, t);
                                           // V3 == CO[ppm]
   Blynk.virtualWrite(V3, nilai C0);
                                           // V4 == NO2[ppm]
   Blynk.virtualWrite(V4, nilai NO2);
                                           // V5 == PM2/5[ug/m3]
   Blynk.virtualWrite(V5, _pm25);
   Blynk.virtualWrite(V6,
                            ISPU.ISPU max);
                                                   //
ISPU.ISPU max[satuan ISPU]
   Blynk.virtualWrite(V7, ISPU.Parameter); // V7 == Parameter
Kritis[PM2.5|NO2|CO]
   Blynk.virtualWrite(V8, ISPU.ISPU pm); // V8 == ISPU.ISPU pm
                                          // V9 == ISPU.ISPU co
   Blynk.virtualWrite(V9, ISPU.ISPU co);
   Blynk.virtualWrite(V10, ISPU.ISPU no2); // V10 == ISPU.ISPU no2
   Blynk.virtualWrite(V11, ISPU.kategori); // V11 == ISPU.kategori
   tulisSD();
  if(millis() -time promini >= 3000)
   time promini= millis();
   Serial.println("Send Data File to Prom-mini");
   StaticJsonDocument<100> doc;
   doc["no2"] = nilai NO2;
   doc["co"] = nilai CO;
   doc["pm25"] = ISPU.terhitung pm;
   serializeJson(doc, Megal);
```

5.1.2 Slave (Display)

```
#include <Arduino.h>
#include "variable.h"
#include <SPI.h>
#include <DMD2.h>
#include <fonts/ArialBlack11.h>
#include <SoftwareSerial.h>
#include <ArduinoJson.h>

String Hitungan_IPSU(int penghitung)
void _param_max()
void kritis(int a)
void _display()
void Jeson()
while (Serial.available() > 0)
```

```
StaticJsonDocument<100> doc; //<164>
   DeserializationError error = deserializeJson(doc, Serial);
   no2 = doc["no2"];
   co = doc["co"];
   pm25 = doc["pm25"];
   Serial.print("Nilai PM2.5 \t= ");
   Serial.println(pm25);
   Serial.print("Nilai NO2 \t= ");
    Serial.println(no2);
    Serial.print("Nilai CO \t= ");
    Serial.println(co);
    Serial.println();
}
void setup()
 Serial.begin (9600);
 Mega.begin(9600);
  Serial.println("void setup");
  dmd.begin();
  dmd.setBrightness(255);
  dmd.selectFont(ArialBlack11);
  dmd.clearScreen();
  dmd.drawString(2, 3, "@fti.unibba.ac.id");
  delay(3000);
  dmd.clearScreen();
  dmd.drawString(2, 3, "a'Qura V.Blynk");
  delay(3000);
  dmd.clearScreen();
 dmd.drawString(2, 3, "Wait.Calibrations");
  delay(2000);
void loop()
 Jeson();
 if (pm25 > 0)
    terhitung pm = pm25;
   measureMICS no2 = no2;
   measureMICS co = co;
 if (terhitung pm > 0)
    _display();
```

5.2 Implementasi Sistem

Tempat dan waktu untuk implementasi dari sistem monitoring pengukuran kualitas udara NO2, CO, dan PM2.5 berbasis IoT ini adalah sebagai berikut:

Tempat: Persimpangan Rancabngo

Alamat: Jl. Ir. H. Juanda No.82, Panglayungan, Kec. Cipedes, Kab. Tasikmalaya, Jawa Barat 46134.

Lokasi penelitian ini telah direkomendasikan oleh Dinas Lingkungan Hidup Kota Tasikmalaya dan merupakan titik mobilitas cukup tinggi. Penelitian dilakukan pada bulan Maret sampai dengan juli 2022.

5.3 Spesifikasi Sistem

Spesifikasi sistem merupakan spesifikasi yang terdiri dari *hardware* dan *Software*.

5.3.1 Perangkat Keras (*Hardware*)

Tabel 5.16 Perangkat Keras (*Hardware*)

No	Perangkat Keras	Spesifikasi Minimum	Spesifikasi yang
			digunakan
1	Prosesor	Kecepatan minimum	Intel Dual Core N2840
		~1,7GHz	(2,16 GHz up to 2,58
			GHz)
2	Kapasitas Memori	512 MB RAM	4.00 GB
3	Ruang Hardisk	300 GB	470 GB
4	Screen resolusi	800 x 600 pixel	14", HD 1366 x 768, 16:9
			aspect ratio, LED-backlit
			TFT LCD

5.3.2 Perangkat Lunak (*Software*)

Tabel 5.17 Perangkat Lunak (*Software*)

Nama Perangkat Lunak	Spesifikasi
Sistem Operasi Komputer	Windows 10 62-Bit
Visual studio Code Platform IO	1.69.2
Serial Komunikasi	Driver serial Communication CH340
Bahasa Pemrograman	C++

5.4 Instalasi Sistem

Berikut merupakan langkah-langkah instalasi sistem monitoring pengukuran kualitas udara yang terdiri dari instalasi aplikasi dan instalasi *database*.

5.4.1 Instalasi Aplikasi

Berikut adalah Instalasi aplikasi meliputi instalasi master dan client:

1. Master

Gambar 5.62 Instalasi Aplikasi Master

2. Client

Gambar 5.63 Instalasi Aplikasi Client

5.3.2 Instalasi *Database*

Berikut adalah Instalasi database meliputi instalasi master dan client:

1. Hardware

Gambar 5.64 Instalasi Database Hardware

2. Software

Gambar 65 Instalasi Database Software

5.5 Menjalankan Sistem

Pada bagian ini akan memperlihatkan bagaimana jalannya sistem monitoring pengukuran kualitas udara (NO₂, CO, PM2.5) berbasis IoT dengan Arduino mega 2560 menggunakan aplikasi Blynk studi kasus di persimpangan Rancabango Kota Tasikmalaya dengan bantuan *Screenshot* program per modul nya. Penggunaan program digunakan oleh dua pengguna yaitu admin dan *user*.

1. Halaman Login Admin

Gambar 5.66 Halaman *Login* Admin

2. Dashboard Blynk (Admin)

Gambar 5.67 Dashboard Blynk (Admin)

3. Dashboard Blynk (User)

Gambar 5.68 Dashboard Blynk (User)

Gambar 5.69 Setting Layout Kategori ISPU

5. Setting Layout Parameter Kritis

Gambar 5.70 Setting Layout Parameter Kritis

6. Setting Layout ISPU Max

Gambar 5.71 Setting Layout ISPU Max

7. Setting Layout PM2.5

Gambar 5.72 Setting Layout PM2.5

8. Setting Layout NO2

Gambar 5.73 Setting Layout NO2

9. Setting Layout CO

Gambar 5.74 Setting Layout CO

10. Setting Layout ISPU

Gambar 5.75 Setting Layout ISPU

11. Setting Layout Value Parameter

Gambar 5.76 Setting Layout Value Parameter

12. Setting Layout Temperature

Gambar 5.77 Setting Layout Temperature

13. Setting Layout Humidity

Gambar 5.78 Setting Layout Humidity

14. Setting Layout Temperature & Humidity

Gambar 5.79 Setting Layout Temperature & Humidity

5.6 Hasil Pengujian

4.3.1 Pengujian Aplikasi Blynk

Tabel 5.18 Pengujian Aplikasi Blynk

Aktifitas	Realisasi yang	Hasil Pengujian	Kesimpulan
Pengujian	diharapkan	masii rengujian	Kesimpulan
		Login Berhasil	Diterima
	Terhubung ke server	Login Gagal	Ditolak
Login Akun Blynk			karena akun
Logiii Akuli Biylik			tidak sesuai
			atau salah
			server
	Berhasil di tambahkan	Token API Key terkirim	Diterima
		ke Gmail	
Tambahkan Project		Maaf, server tidak dapat	Project
		terhubung, coba lagi	Ditolak
		nanti	server sibuk
Project Setting	Konfigurasi sistem	Pengaturan dasar sistem	Diterima
		IoT	
Mengatur Layout	Board layout	Widget variable dapat	Diterima
Dashboard Blynk	ditampilkan	diatur tata letaknya	
Menambahkan	Daftar widget box	Memilih widget box yg	Diterima
Variable Parameter	ditampilkan	akan digunakan dan	
		diisi variabel	
Menambahkan	Pilih widget	SuperChart setting	Diterima
Grafik	SuperChart	ditampilkan	
		Barcode dapat di scan	Diterima
		oleh user	
	Generate barcode	Barcode tidak dapat	Ditolak
		ditampilkan	karena
Share Barcode			project masih
			kosong atau
			belum
			terhubung ke
			server

		Menampilkan		Diterima
		Parameter	kualitas	
		udara		
User Melakukan	Menampilkan	Akses ditolak		Ditolak
scan barcode	dashboard project			karena
				barcode telah
				diperbarui
				oleh admin

4.3.2 Pengujian Ketahanan Alat (Perangkat keras dan *Backup* Data)

Pengujian dilakukan di luar ruang terbuka selama 7 hari untuk menguji ketahanan alat dalam berbagai kondisi cuaca dan lingkungan. Tes tujuh hari ini didasarkan pada pemeriksaan tingkat aktivitas manusia yang sibuk yang berkontribusi terhadap polusi udara. Diklasifikasikan sebagai fungsi meliputi: *real-time database*, display, data logger, dan sensor.

Tabel 5.19 Pengujian Perangkat Dalam 7 Hari

Cuaca Cerah		Cuaca Berkabut		Hujan Ringan	
Fungsi	Anomali	Fungsi	Anomali	Fungsi	Anomali
Baik	-	Baik	- PM2.5 meningkat	Baik	-
			secara wajar dan		
			sesuai		
Hujan Sedang		Hujan Lebat		Hujan Ekstrim	
Fungsi	Anomali	Fungsi	Anomali	Fungsi	Anomali
Fungsi Baik	Anomali -PM2.5 menurun	Fungsi Baik	Anomali -PM2.5 meningkat	Fungsi Baik	Anomali -PM2.5
J		Ö		J	
J		Ö	-PM2.5 meningkat	J	-PM2.5

Dari hasil pengamatan pengujian ketahanan alat, beberapa fungsi yang diamati berjalan sesuai dengan konfigurasi yang telah dibangun. Namun terdapat beberapa gejala kesalahan pengukuran dari sensor MICS6814.

Gejala yang terjadi pada sensor MICS6814 disebabkan oleh ruang penempatan komponen sensor tidak diperhatikan untuk tingkat kekeringan dan suhu pada ruang uji sampel nya.

4.3.3 Kesesuaian Nilai Sensor pada Blynk dengan Display P10

Pengujian yang dilakukan yaitu pengujian korelasi yang berfokus pada perbandingan alat instrument dengan instrument lain yang dianggap sebanding (x_{benar}) dengan parameter yang akan dinilai.

Nilai simpangan baku (standar deviasi) sampel dapat dicari dengan persamaan berikut. (Hidayanti et al., 2013)

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$
 (4.1)

Sedangkan untuk menghitung Nilai Error Sensor dapat menggunakan persamaan

$$\%error = \frac{selisih}{Nilai Sebenarnya} \times 100_{...}$$
 (4.2)

$$selisih = |x_{benar} - x_{sensor}| \tag{4.3}$$

(Soejoeti, 1987)

pengujian dilakukan dengan memberikan sumber pencemar gas buangan kendaraan bermotor dengan jarak 1-meter pada interval waktu pengambilan sampling per 5 menit selama 1 jam dengan 3 kali pengulangan pengambilan sampel.

Pengujian ini dilakukan pada jarak aman 1-meter agar tidak terjadi keracunan pada sensor dan peralatan instrument yang digunakan.

Gambar 5.80 Percobaan Ke-1 Pengujian Nilai PM2.5

Gambar 5.81 Percobaan Ke-2 Pengujian Nilai PM2.5

Gambar 5.82 Percobaan Ke-3 Pengujian Nilai PM2.5

Gambar 5.83 Percobaan Ke-1 Pengujian Nilai NO2

Gambar 5.84 Percobaan Ke-2 Pengujian Nilai NO2

Gambar 5.85 Percobaan Ke-3 Pengujian Nilai NO2

Gambar 5.86 Percobaan Ke-1 Pengujian Nilai CO

Gambar 5.87 Percobaan Ke-2 Pengujian Nilai CO

Gambar 5.88 Percobaan Ke-3 Pengujian Nilai CO

Dari grafik pengujian diatas ditemukan nilai kesalahan antara data yang data yang ditampilkan pada Blynk dan data display. Adapun nilai Galat Persentase yang dihitung menggunakan persamaan (*Percentage Error*). Variabel yang diuji adalah nilai yang ditampilkan pada display dan Blynk, dengan acuan nilai display adalah nilai yang terukur lebih *real-time*.

Variabel PM2.5 menghasilkan Nilai Tengah Galat Persentase MAPE (*Mean Absolut Percentage Error*) sebesar 5.30%.

Sedangkan hasil pengujian yang didapat dari pengukuran parameter NO₂ nilai NO₂ yang terukur oleh sensor yang dikembangkan (MICS6814) mendapatkan hasil eror yang sangat besar yaitu *Mean Absolut Percentage* sebesar 54.21%.

Pengujian parameter CO yang terukur oleh sensor yang dikembangkan (MICS6814) terbukti sensor dapat mendeteksi perubahan kadar CO. Nilai *Mean Absolut Percentage* yang dihasilkan yaitu sebesar 17.87%.

Berdasarkan data pengujian yang didapat, adapun penyebab dari nilai kesalahan pengukuran yang terjadi yaitu pengujian yang dilakukan antara nilai pada display dengan nilai yang dikeluarkan pada aplikasi Blynk memiliki periode waktu update data yang berbeda. Periode display yaitu setiap 3 detik dan periode aplikasi Blynk setiap 5 menit.

BAB VI

PENUTUP

6.1 KESIMPULAN

Dari hasil penelitian yang telah dilaksanakan, berikut adalah kesimpulan yang dapat dihasilkan.

- Sistem monitoring pengukuran kualitas udara dengan platform IoT pada aplikasi Blynk berhasil dibangun menggunakan mikrokontroler Arduino Mega 2560 dengan koneksi GSM SIM800L berfungsi dengan baik.
- 2. Hasil pengujian Aplikasi Blynk oleh user dan Admin dapat diterima oleh personal dan tidak menunjukan kesalahan yang signifikan.
- 3. Alat yang dibangun telah diuji selama 7 hari pada ruang terbuka dengan hasil pengujian seluruh fungsi dan *sequence* program yang dibangun telah sesuai dengan apa yang direncanakan. Nilai yang dihasilkan pada display dan aplikasi Blynk terdapat kesalahan nilai yang dapat diterima dengan kesalahan rata-rata 25.80%. Kesalahan tersebut disebabkan oleh periode pengambilan sampel data yang berbeda antara display dan Blynk serta *delay*/latensi pengiriman data ke server Blynk menyebabkan data tidak *real-time*.

6.2 SARAN

Dari penelitian yang telah dilaksanakan, penelitian selanjutnya dapat memanfaatkan penelitian ini sebagai salah satu referensi dalam penelitian selanjutnya. Adapun saran yang dapat penulis sampaikan yaitu sebagai berikut:

- 1. Untuk mendapatkan koneksi GSM pada SIM800L yang stabil dibutuhkan sumber tegangan yang sangat stabil dan presisi yaitu 4,2 Volt.
- 2. Pada server yang digunakan untuk database sistem monitoring pengukuran kualitas udara yang dibangun perlu diperhatikan lebih lanjut dikarenakan histori data yang ada tidak dapat di ekspor.
- 3. Diperlukan penelitian lebih lanjut agar dapat mengembangkan sistem yang bersifat publik berupa Application Programming Interface (API) yang dapat diaplikasikan oleh sistem atau alat monitoring lain.

DAFTAR PUSTAKA

- Anwar, S. (2022). NO 2, CO) Berbasis Iot Menggunakan Sim800l Dan Mikrokontroler Arduino Mega 2560 Di Kota Tasikmalaya. 2.
- Apriana, R. (2021). *Modul praktikum pencemaran udara*. UIN Raden Intan Lampung.
- Aroral, H. K. (2021). Waterfall Process Operations in the Fast-paced World: Project Management Exploratory Analysis. *International Journal of Applied Business and Management Studies*, 6(1), 91–99. http://www.ijabms.com/wp-content/uploads/2021/05/05_ARORAL_PB.pdf
- Arpianto, R., Priyatman, H., & Suryadi, D. (2015). Rancang Bangun Alat Identifikasi Nominal Uang Kertas Untuk Tunanetra Berbasis Arduino Mega 2560 Dengan Ouput Suara. *Jurnal Kelitbangan*, 03(03), 212–225.
- Budiyono, A. (2019). Index Kualitas Udara. *Berita Dirgantara*, *3*(1), 1–14. http://iku.menlhk.go.id/aqms/uploads/docs/ispu.pdf
- Chandra, B. (2006). Pengantar kesehatan lingkungan.
- Dewi, B. N. (2018). Paparan gas nitrogen dioksida (NO2) dan karbon monoksida (CO) di trotoar beberapa jalan Kota Surabaya. Institut Teknologi Sepuluh Nopember.
- Doshi, H. S., Shah, M. S., & Shaikh, U. S. A. (2017). Internet of Things (IoT): integration of Blynk for domestic usability. *Vishwakarma Journal of Engineering Research*, *1*(4), 149–157.
- Doshi, J., Patel, T., & kumar Bharti, S. (2019). Smart Farming using IoT, a solution for optimally monitoring farming conditions. *Procedia Computer Science*, *160*, 746–751.
- Dwi Prasetyo, D. P., Ibrahim Lamada, I. L., & Wilma Nurrul Adzillah, W. N. A. (2021). Implementasi Monitoring Kualitas Udara menggunakan Sensor MQ-7 dan MQ-131 berbasis Internet Of Things. *Electrician*, *15*(3), 239–245. https://doi.org/10.23960/elc.v15n3.2184
- Factsheet, C.-A. (2010). Nitrogen dioxide (NO2): Status and Trends in Asia.
- Forum arduino. (2020). *No Title*.
- Furqaansyah, Y., Fauziah, F., Gunaryati, A., & Fitri, I. (2022). Perbandingan Metode Interpolasi Newton dan Lagrange dengan Bahasa Pemrograman C++.

- *Jurnal JTIK (Jurnal Teknologi Informasi Dan Komunikasi)*, *6*(3), 411–416. https://doi.org/10.35870/jtik.v6i3.457
- Handoko, E. D. (2020). Analisis dampak nitrogen dioksida (NO2) di kota Yogyakarta.
- Hidayanti, T., Handayani, I., & Ikasari, I. H. (2013). Statistika Dasar Panduan Bagi Dosen dan Mahasiswa. In *Journal of Chemical Information and Modeling* (Vol. 53, Issue 9).
- Indonesia, P. R. (1999). Peraturan Pemerintah No. 41 Tahun 1999 Tentang: Pengendalian Pencemaran Udara. *No.* 41, 1–34.
- IQAir. (2020). World air quality report. 2020 World Air Quality Report, August, 1–41.
- Iskandar, A., Muhajirin, M., & Lisah, L. (2017). Sistem Keamanan Pintu Berbasis Arduino Mega. *Jurnal Informatika Upgris*, *3*(2), 99–104. https://doi.org/10.26877/jiu.v3i2.1803
- Kanani, P., & Padole, M. (2020). Real-time Location Tracker for Critical Health Patient using Arduino, GPS Neo6m and GSM Sim800L in Health Care. Proceedings of the International Conference on Intelligent Computing and Control Systems, ICICCS 2020, Iciccs, 242–249. https://doi.org/10.1109/ICICCS48265.2020.9121128
- Kuncoro, A. H., Mellyanawaty, M., Sambas, A., Maulana, D. S., Subiyanto, & Mamat, M. (2020). Air quality monitoring system in the city of tasikmalaya based on the internet of things (IoT). *Journal of Advanced Research in Dynamical and Control Systems*, 12(2), 2473–2479. https://doi.org/10.5373/JARDCS/V12I2/S20201294
- Permen-LHK. (2020). Peraturan Menteri Lingkungan Hidup dan Kehutanan Republik Indonesia No 14 Tahun 2020 tentang Indeks Standar Pencemaran Udara. 1–16.
- Prabowo, K., & Muslim, B. (2018). Penyehatan udara. Kementrian Kesehatan Republik Indonesia, Pusat Pendidikan Sumber Daya Manusia Kesehatan Bandan Pengembangan Dan Pemberadayaan Sumber Daya Manusia Kesehatan.
- Pratama, D. S. (2021). Pengaruh jumlah kendaraan bermotor dan faktor

- meteorologi terhadap konsentrasi karbon monoksida (CO) di Bundaran Aloha Kabupaten Sidoarjo. UIN Sunan Ampel Surabaya.
- Rohmat, T., & Pertiwi, D. D. (2020). Analisis dan Desain Sistem Informasi Pengolahan Nilai Siswa di SMK Avicena Rajeg. *JIKA (Jurnal Informatika*), 4(1), 29. https://doi.org/10.31000/jika.v4i1.2571
- Sadali, M., Putra, Y. K., Kertawijaya, L., & Gunawan, I. (2022). Sistem Monitoring dan Notifikasi Kualitas Udara Dijalan Raya Dengan Platform IOT Lingkungan yang bersih merupakan lingkungan yang sehat sehingga menjadi faktor yang sangat penting untuk kelangsungan mahluk hidup. Seperti yang diketahui lingkungan menenet. 5(1), 11–21.
- Sheth, M., & Rupani, P. (2019). Smart Gardening Automation using IoT with BLYNK App. *Proceedings of the International Conference on Trends in Electronics and Informatics, ICOEI 2019*, 2019-April(Icoei), 266–270. https://doi.org/10.1109/icoei.2019.8862591
- Sholikhah, I., Sairan, M., & Syamsiah, N. O. (2017). CIKARANG. III(1), 16–23.
- SIMCom. (2013). Sim800L_Hardware_Design_V1.00. *A Company of Sim Tech*, 1–70.
- Soejoeti, Z. (1987). Analisis Runtun Waktu. Jakarta: Universitas Terbuka.
- Tabrani, M., & Rezqy Aghniya, I. (2020). Implementasi Metode Waterfall Pada Program Simpan Pinjam Koperasi Subur Jaya Mandiri Subang. *Jurnal Interkom: Jurnal Publikasi Ilmiah Bidang Teknologi Informasi Dan Komunikasi*, 14(1), 44–53. https://doi.org/10.35969/interkom.v14i1.65
- WHO. (2021). WHO global air quality guidelines: particulate matter (PM2. 5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide: executive summary.
- Zendrato, H. P. (2018). Perancangan Sistem Informasi Logistik Berbasis Web Pada PT. Unitama Huting Mandiri Menggunakan Metode Waterfall. *REMIK (Riset Dan E-Jurnal Manajemen Informatika Komputer)*, 2(2). https://jurnal.polgan.ac.id/index.php/remik/article/view/10837

Lampiran 1. Daftar Riwayat Hidup

Keterangan Diri:

Nama : Tri Mutiarama Putri

NPM : 301180036

Jurusan : Teknik Informatika

Semester : VIII (Delapan)

Tahun Ajaran : 2018/2019

Jenis Kelamin : Perempuan

Agama : Islam

Tempat/Tanggal Lahir : Ciamis, 20 Desember 1999

Kebangsaaan/Suku : Indonesia/Sunda

Alamat : Komp. Tirta Regenci Blok H No 10 RT/RW

001/016 Desa Langonsari Kec. Pameungpeuk

Kab. Bandung

Riwayat Pendidikan : SD (2006 - 2012)

SMP (2012 - 2015)

SMK (2015 - 2018)

Riwayat Pekerjaan : Operator PT FengTay Indonesia Enterprise

(2018-2019)

Riwayat Organisasi : Pramuka, Organisai Basket

Demikian daftar riwayat hidup ini dibuat dengan sebenar-benarnya

Bandung, Agustus 2022 Yang Membuat,

> Tri Mutiarama Putri NPM 301180036

Lampiran 2. Hasil Wawancara

Nama: Saepul Anwar Waktu: Maret 2022

Tempat: Kediaman Saepul Anwar

1. Apa saja yang diperlukan untuk melengkapi alat sebelumnya yang telah dibangun?

Jawab: Yang pertama yaitu sistem antar muka atau *interface* nya yang harus di kembangkan, yang kedua database nya, terus j .son API Key untuk mengambil data real time nya oleh alat lain.

- 2. Platform apa yang digunakan dalam alat sebelumnya yang telah dibangun? Jawab: flatform IoT yang digunakan adalah firebase dengan keterbatasan antara lain antar mukanya harus di codding menggunakan pemrograman website
- 3. Atas dasar apa memilih tiga parameter yang di ukur yaitu PM2.5, NO2, CO? **Jawab:** Sebetulnya yang di usulkan dari pihak DLH (Dinas Lingkungan Hidup) kota tasikmalaya yaitu PM2.5, NO2, dan SO2, namun dengan keterbatasan sensor yang ada di Indonesia jadi saya menggunakan tiga parameter yaitu PM2.5, NO2, dan CO, untuk CO biasanya diukur dalam uji emisi oleh dishub kota Tasikmalaya bukan dari pihak DLH.
- 4. Kenapa penempatan alat yang telah di bangun di tempatkan di persimpangan Rancabango Kota Tasikmalaya?

Jawab: Karena atas dasar arahan dari ibu Wiwin selaku pimpinan dinas lingkungan hidup kota Tasikmalaya, beliau menyarankan penempatan nya di persimpangan Rancabango karena tempat tersebut menjadi tempat pengujian pasif sampler oleh pihak DLH yang dilakukan setiap periode tiga bulan sekali, lalu dari segi keamanan juga terpantau aman karena ada lalu lintas disana lalu penempatan alat juga memiliki jarak dari pejalan kaki dan juga disana ada pos polisi pengamanan yang *stand by* berjaga 24 jam.

5. Siapa saja yang memerlukan hasil pengukuran kualitas udara?

Jawab: Yang jelas khususnya yaitu pihak DLH untuk komparasi hasil pengukuran dan umumnya untuk masyarakat pada umumnya.

6. Untuk keberlanjutan mengenai alat tersebut jika sudah berhasil dibangun dan telah berjalan sesuai yang diharapkan, maka pihak manakah yang akan mendapatkan manfaat dari adanya alat tersebut?

Jawab: yang pertama pihak DLH akan mendapatkan suatu eksistensi pada bidang penelitian dari DLH, yang kedua atas nama kampus karena disana ada logo universitas dan mungkin itu akan menarik untuk calon mahasiswa baru di universitas tersebut untuk menjadikan sebuah motivasi atau menambah *value* bahwa didalamnya ada mahasiswa aktif dan kreatif yang dapat membuat inovasi untuk terobosan terbaru dalam pengukuran kualitas udara.

7. Digunakan untuk siapa saja hasil dari penelitian tersebut?

Jawab: Yang pertama untuk universitas, dan yang kedua untuk pihak DLH khususnya untuk tim di laboratorium atau tim peneliti.

8. Apakah sebelumnya dari pihak DLH (Dinas Lingkungan Hidup) Kota Tasikmalaya sudah mempunyai alat ukur kualitas udara?

Jawab: Ya jelas sudah mempunyai alat ukur namun alat ukurnya berupa pasif sampler dimana itu menggunakan cairan penyerap, jadi pencemaran udara itu dilarutkan dulu dalam air lalu kemudian di ukur dan diuji di lab untuk konsentrasi satuan ppm nya atau ug/m³ jadi masih pasif masih memakai metode impinger, alatnya juga terlalu mahal untuk pasif sampler.

9. Ada berapa parameter yang telah di uji oleh pihak DLH dan parameter apa saja?

Jawab: Pada dasarnya ada 7 parameter namun DLH hanya beberapa yang di ukur, selama bulan September 2021 baru 2 parameter yang telah diuji yaitu SO2 dan NO2.

10. Apa saja parameter yang harus di ukur dan dibutuhkan dari pihak DLH?

Jawab: PM2.5 sangat dibutuhkan, dari pihak DLH masih menggunakan regulasi lama yaitu dari pihak DLH mengukur PM10 ternyata PM2.5 dari tahun 2018 sudah mulai diperhatikan, terus NO2, SO2, dan NH3

Lampiran 3. Data Hasil Pengujian1. Data hasil pengujian NO2

						ľ	NO2 (ppn	1)						
Wolster]	H1]	H2]	Н3]	H4]	Н5]	Н6]	H7
Waktu	Blynk	Display	Blynk	Display	Blynk	Display	Blynk	Display	Blynk	Display	Blynk	Display	Blynk	Display
8:23	0.00	0.01	0.01	0.02	0.00	0.01	0.00	0.01	0.01	0.01	0.00	0.01	0.00	0.01
8:28	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.01	0.00	0.01	0.00
8:33	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.01	0.00	0.01	0.00
8:39	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.01	0.01	0.01	0.00	0.01	0.00	0.01
8:45	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.01	0.00	0.01	0.00
9:50	0.01	0.02	0.01	0.02	0.00	0.01	0.02	0.01	0.01	0.02	0.01	0.02	0.01	0.02
8:55	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.01	0.00
9:02	0.01	0.00	0.01	0.01	0.00	0.00	0.01	0.01	0.01	0.00	0.01	0.00	0.01	0.00
9:07	0.00	0.01	0.02	0.01	0.00	0.01	0.00	0.00	0.01	0.01	0.00	0.01	0.01	0.01
9:12	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.01	0.00
9:18	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.00	0.00	0.01	0.00
9:23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.00

		Galat PM	2.5 Display	- Blynk			
Waktu	H1	H2	Н3	H4	H5	Н6	H7
8:23	0	0	0	1	2	4	1
8:28	0	0	1	0	3	1	1
8:33	3	1	1	1	0	3	3
8:39	2	0	0	1	4	2	2
8:45	0	0	1	1	3	2	1
9:50	0	2	1	0	4	1	2
8:55	1	1	2	1	4	2	3
9:02	2	0	0	1	2	1	1
9:07	0	0	1	1	1	2	3
9:12	0	1	1	2	1	2	2
9:18	1	1	0	0	1	2	2

						N	O2 (ppn	n)						
Walstn		H1]	H2]	Н3		H4]	Н5		Н6	I	1 7
Waktu	Blynk	Display	Blynk	Display	Blynk	Display	Blynk	Display	Blynk	Display	Blynk	Display	Blynk	Display
13:23	0.04	0.02	0.02	0.01	0.01	0.02	0.01	0.01	0.01	0.02	0.01	0.00	0.02	0.01
13:28	0.02	0.01	0.02	0.01	0.01	0.02	0.01	0.01	0.01	0.02	0.01	0.00	0.02	0.01
13:33	0.02	0.01	0.02	0.01	0.01	0.02	0.01	0.01	0.01	0.02	0.01	0.00	0.02	0.01
13:39	0.02	0.01	0.02	0.01	0.01	0.02	0.01	0.01	0.01	0.02	0.01	0.00	0.02	0.01
13:45	0.02	0.01	0.02	0.01	0.01	0.02	0.01	0.01	0.01	0.02	0.01	0.00	0.02	0.01
13:50	0.02	0.01	0.02	0.01	0.01	0.02	0.01	0.01	0.01	0.02	0.01	0.00	0.02	0.01
13:55	0.02	0.01	0.02	0.01	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.00	0.02	0.01
14:02	0.02	0.01	0.02	0.01	0.01	0.02	0.01	0.02	0.01	0.02	0.02	0.00	0.02	0.01
14:07	0.02	0.01	0.01	0.01	0.01	0.02	0.01	0.02	0.01	0.03	0.02	0.01	0.02	0.02
14:12	0.02	0.01	0.01	0.01	0.01	0.02	0.01	0.02	0.01	0.00	0.02	0.01	0.02	0.01
14:18	0.02	0.01	0.01	0.01	0.01	0.02	0.01	0.02	0.01	0.00	0.02	0.01	0.02	0.01
14:23	0.02	0.01	0.01	0.01	0.01	0.02	0.01	0.02	0.01	0.00	0.02	0.01	0.02	0.01

		Galat l	NO2 Displ	ay - Blynk			
Waktu	H1	H2	Н3	H4	Н5	Н6	H7
13:23	0.02	0.01	0.01	0	0.01	0.01	0.01
13:28	0.01	0.01	0.01	0	0.01	0.01	0.01
13:33	0.01	0.01	0.01	0	0.01	0.01	0.01
13:39	0.01	0.01	0.01	0	0.01	0.01	0.01
13:45	0.01	0.01	0.01	0	0.01	0.01	0.01
13:50	0.01	0.01	0.01	0	0.01	0.01	0.01
13:55	0.01	0.01	0.01	0.01	0.01	0.01	0.01
14:02	0.01	0.01	0.01	0.01	0.01	0.02	0.01
14:07	0.01	0	0.01	0.01	0.02	0.01	0
14:12	0.01	0	0.01	0.01	0.01	0.01	0.01
14:18	0.01	0	0.01	0.01	0.01	0.01	0.01
14:23	0.01	0	0.01	0.01	0.01	0.01	0.01

						N	NO2 (ppn	n)						
Walstn]	H1]	H2	I	Н3	J	H4	I	H5	J	H6	I	H7
Waktu	Blynk	Display	Blynk	Display	Blynk	Display	Blynk	Display	Blynk	Display	Blynk	Display	Blynk	Display
19:23	0.02	0.01	0.01	0.01	0.00	0.00	0.02	0.02	0.02	0.01	0.02	0.01	0.00	0.01
19:28	0.02	0.01	0.01	0.01	0.00	0.00	0.02	0.02	0.02	0.01	0.02	0.01	0.00	0.01
19:33	0.02	0.01	0.01	0.01	0.00	0.00	0.01	0.02	0.02	0.01	0.01	0.01	0.00	0.01
19:39	0.02	0.01	0.01	0.01	0.00	0.00	0.01	0.02	0.02	0.01	0.01	0.01	0.02	0.01
19:45	0.02	0.01	0.01	0.01	0.00	0.01	0.01	0.02	0.02	0.01	0.01	0.01	0.02	0.01
19:50	0.02	0.01	0.01	0.00	0.00	0.01	0.01	0.02	0.02	0.01	0.01	0.01	0.02	0.01
19:55	0.02	0.01	0.01	0.00	0.00	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.02	0.01
20:02	0.01	0.01	0.01	0.00	0.00	0.01	0.01	0.02	0.01	0.02	0.01	0.01	0.01	0.01
20:07	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.02	0.01	0.02	0.01	0.01	0.00	0.01
20:12	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.01	0.01	0.02	0.01	0.01	0.00	0.01
20:18	0.01	0.01	0.01	0.00	0.00	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.02	0.01
20:23	0.01	0.01	0.01	0.00	0.00	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.02	0.01
				NO2 Displa	• •									
Wak		H1	H2	Н3	H4	H5	H6	H7						
19:2		0.01	0	0	0	0.01	0.01	0.01	_					
19:2	28	0.01	0	0	0	0.01	0.01	0.01						

		Galat	NO2 Displ	ay - Blynk			
Waktu	H1	H2	Н3	H4	Н5	Н6	H7
19:23	0.01	0	0	0	0.01	0.01	0.01
19:28	0.01	0	0	0	0.01	0.01	0.01
19:33	0.01	0	0	0.01	0.01	0	0.01
19:39	0.01	0	0	0.01	0.01	0	0.01
19:45	0.01	0	0.01	0.01	0.01	0	0.01
19:50	0.01	0.01	0.01	0.01	0.01	0	0.01
19:55	0.01	0.01	0.01	0.01	0	0	0.01
20:02	0	0.01	0.01	0.01	0.01	0	0
20:07	0.01	0.01	0	0.01	0.01	0	0.01
20:12	0.01	0.01	0	0	0.01	0	0.01
20:18	0	0.01	0.01	0	0.01	0	0.01
20:23	0	0.01	0.01	0	0.01	0	0.01

2. Data hasil pengujian CO

						(CO (ppn	n)						
Waktu	J	H1]	H2]	Н3		H4]	H5	J	H6	J	H7
waktu	Blynk	Display	Blynk	Display	Blynk	Display	Blynk	Display	Blynk	Display	Blynk	Display	Blynk	Display
8:23	4.08	6.21	4.09	3.43	5.58	4.54	5.45	4.55	5.78	4.21	6.32	4.57	5.71	4.75
8:28	4.01	4.32	4.05	4.11	4.82	4.21	5.07	5.33	5.19	5.76	6.25	5.32	5.78	5.21
8:33	4.1	6.21	3.97	4.54	5.26	3.22	5.07	5.21	6.52	4.89	6.18	6.32	5.91	4.35
8:39	4.1	4.1	4.09	4.02	5.78	5.78	5.58	4.12	6.11	4.76	5.65	5.75	5.85	4.36
8:45	4.1	4.22	3.84	2.05	4.94	4.21	5.58	3.45	6.32	5.23	6.32	4.39	6.52	4.57
9:50	4.43	5.11	3.84	3.12	4.94	3.45	5.13	4.21	6.66	5.34	5.85	4.31	6.39	6.12
8:55	4.3	4.21	3.8	3.22	5.39	4.05	5.78	5.78	5.98	3.56	6.25	6.25	5.98	4.55
9:02	4.34	5	3.8	4.02	5.06	4.71	5.19	4.22	6.52	6.52	6.87	5.71	5.98	4.21
9:07	4.34	4.56	4.51	3.21	5.71	4.11	5.52	5.36	6.18	5.34	6.25	4.38	5.91	4.36
9:12	4.34	3.12	4.32	4.22	5.52	5.21	5.98	5.12	5.52	5.78	6.18	5.43	6.46	5.11
9:18	4.26	4.19	5	4.09	5.07	5.12	6.11	4.22	6.05	5.21	6.32	5.21	6.73	4.47
9:23	4.22	3.78	4.45	4.45	5.78	4.02	5.71	4.76	5.71	5.89	6.46	6.32	6.32	4.23

			Galat CO I	Display - Bl	ynk		
Waktu	H1	H2	Н3	H4	Н5	Н6	H7
8:23	2.13	0.66	1.04	0.9	1.57	1.75	0.96
8:28	0.31	0.06	0.61	0.26	0.57	0.93	0.57
8:33	2.11	0.57	2.04	0.14	1.63	0.14	1.56
8:39	0	0.07	0	1.46	1.35	0.1	1.49
8:45	0.12	1.79	0.73	2.13	1.09	1.93	1.95
9:50	0.68	0.72	1.49	0.92	1.32	1.54	0.27
8:55	0.09	0.58	1.34	0	2.42	0	1.43
9:02	0.66	0.22	0.35	0.97	0	1.16	1.77
9:07	0.22	1.3	1.6	0.16	0.84	1.87	1.55
9:12	1.22	0.1	0.31	0.86	0.26	0.75	1.35
9:18	0.07	0.91	0.05	1.89	0.84	1.11	2.26
9:23	0.44	0	1.76	0.95	0.18	0.14	2.09

1. Data hasil pengujian PM2.5

						PN	/12.5 (μg/	m ³)						
Waktu	I	H1	J	H2	I	Н3		H4	I	H5	I	H6]	H7
waktu	Blynk	Display	Blynk	Display	Blynk	Display	Blynk	Display	Blynk	Display	Blynk	Display	Blynk	Display
8:23	31	31	34	34	30	30	32	31	32	30	34	30	35	34
8:28	29	29	31	31	33	32	23	23	30	27	30	31	32	31
8:33	29	26	33	34	29	30	30	31	28	28	28	25	33	30
8:39	27	29	32	32	22	22	28	29	31	27	26	28	29	27
8:45	21	21	32	32	31	30	32	33	26	23	25	23	30	29
9:50	22	22	35	33	26	27	28	28	32	28	20	19	28	26
8:55	20	21	34	35	25	27	24	23	29	25	18	20	24	27
9:02	17	15	35	35	23	23	33	32	25	23	19	20	27	28
9:07	16	16	35	35	23	24	31	30	28	27	20	18	26	29
9:12	17	17	40	41	33	32	26	24	30	29	21	19	29	27
9:18	15	14	37	38	31	31	22	22	28	27	25	23	30	28
9:23	17	19	35	36	28	28	31	31	25	25	27	25	31	33

		Galat PM	2.5 Display	- Blynk			
Waktu	H1	H2	Н3	H4	H5	Н6	H7
8:23	0	0	0	1	2	4	1
8:28	0	0	1	0	3	1	1
8:33	3	1	1	1	0	3	3
8:39	2	0	0	1	4	2	2
8:45	0	0	1	1	3	2	1
9:50	0	2	1	0	4	1	2
8:55	1	1	2	1	4	2	3
9:02	2	0	0	1	2	1	1
9:07	0	0	1	1	1	2	3
9:12	0	1	1	2	1	2	2
9:18	1	1	0	0	1	2	2
9:23	2	1	0	0	0	2	2

Pengujian ke-2

13:50 13:55

14:02

14:07

14:12

14:18

14:23

rengujia	ali KC-Z														
							PN	/12.5 (μg/	m³)						
Waktu	J	H1		H2		I	1 3]	H4	J	H5	I	Н6	I	H7
waktu	Blynk	Display	Blynk	Displ	lay	Blynk	Display	Blynk	Display	Blynk	Display	Blynk	Display	Blynk	Display
13:23	35	36	29	30)	31	28	34	34	30	29	35	34	34	33
13:28	32	32	26	28		33	31	31	33	31	29	33	31	31	28
13:33	31	31	29	26	;	28	26	33	31	29	27	30	26	32	29
13:39	33	30	28	29	1	29	25	32	32	27	25	29	29	30	28
13:45	29	27	26	25		26	25	32	32	29	27	31	28	29	27
13:50	28	25	24	22	,	33	29	35	33	28	28	33	31	25	23
13:55	26	28	29	27		21	21	34	33	25	22	33	31	27	26
14:02	27	29	30	28		29	27	35	35	24	20	29	28	28	25
14:07	25	26	27	25		20	22	35	31	22	19	27	26	23	19
14:12	30	31	29	28		27	24	40	37	34	32	20	19	20	21
14:18	29	27	26	25		22	22	37	34	25	21	24	22	27	25
14:23	26	25	23	21		28	29	35	32	20	21	29	25	30	28
			at PM2.5												
Wa		H1	H2	Н3	H4	Н5	Н6	H7							
13:		1	1	3	0	1 1	1 2	1 2							
13:		0	3	2	2	2 2	2 4	3							
13: 13:		3	1	4	0	2	0	2							
13:		2	1	1	0	2	3	2							
13.			•	-	9		,								

Pengujian ke-3

						PN	/12.5 (μg/	m³)						
Waktu]	H1]	H2]	Н3]	H4]	H5]	H6]	H 7
waktu	Blynk	Display	Blynk	Display	Blynk	Display	Blynk	Display	Blynk	Display	Blynk	Display	Blynk	Display
19:23	35	34	32	31	34	35	34	30	31	28	33	30	35	34
19:28	34	32	29	28	31	29	27	22	33	32	34	35	32	31
19:33	23	20	27	26	30	30	28	26	35	33	31	32	35	30
19:39	27	26	28	29	29	28	27	28	36	35	35	35	31	28
19:45	29	27	26	26	23	21	26	25	32	30	34	33	30	31
19:50	21	19	24	23	26	28	23	20	28	27	29	26	29	29
19:55	23	22	22	21	27	26	25	22	29	28	27	23	27	28
20:02	19	19	18	20	29	26	25	27	27	27	26	21	29	28
20:07	16	18	20	19	30	29	20	18	29	25	28	25	24	23
20:12	17	19	21	18	31	30	25	21	26	24	29	27	27	25
20:18	26	23	26	25	29	26	22	21	28	25	22	21	21	19
20:23	29	27	25	24	24	23	20	18	24	22	21	17	29	26

Galat PM2.5 Display - Blynk							
Waktu	H1	H2	Н3	H4	Н5	Н6	H7
19:23	1	1	1	4	3	3	1
19:28	2	1	2	5	1	1	1
19:33	3	1	0	2	2	1	5
19:39	1	1	1	1	1	0	3
19:45	2	0	2	1	2	1	1
19:50	2	1	2	3	1	3	0
19:55	1	1	1	3	1	4	1
20:02	0	2	3	2	0	5	1
20:07	2	1	1	2	4	3	1
20:12	2	3	1	4	2	2	2
20:18	3	1	3	1	3	1	2
20:23	2	1	1	2	2	4	3

Lampiran 4. Dokumen Pengujian Alat 1. Proses pengambilan nilai data sensor

2. Pengujian ketahanan alat

3. Alat yang dibangun

