Name:James Tate	
-----------------	--

Netid: ____jct322____

1. Correct Design part 1 (90 pts)

You need to run a timing analysis to determine the minimum period.

FYI: Clock Frequency is 1/period

Design	#number of	# of Dffs	Minimum Period	Clock Freq
	LUTs (% util)	(%util)	(%logic, % route)	(MHz)
fifo.v	15 (1%)	6 (1%)	5.091 ns (60.2%	196.43 MHz
			logic, 39.8%	
			route)	

2. Question (5 pts): For your design, assume the write counter value is "3", and the read counter value is "5". How many elements are in the FIFO?

6 Elements

3. Question (5 pts): A "memory collision" in a true dual port memory occurs when the same location is accessed in the same clock cycle by the two ports, either both write (write-write collision) or one read/one write (read-write collision). Reading the same location from both ports is not a collision. Your FIFO uses a true dual port memory. Specify a condition in which a memory collision can occur in your FIFO.

If the FIFO is empty and a write and a read comes in on the same clock cycle this could cause a memory collision.