Ejemplo. Cálculo de ceros usando el Teorema de Bolzano

Juan Gabriel Gomila, Arnau Mir y Llorenç Valverde

Section 1

Cálculo de ceros de funciones usando el Teorema de Bolzano

Introducción

En esta presentación vamos a ver una utilidad del Teorema de Bolzano: cálculo de ceros de funciones.

En primer lugar recordemos su enunciado:

Proposición: Teorema de Bolzano

Sea $f:[a,b]\to\mathbb{R}$ continua tal que $f(a)\cdot f(b)<0$, entonces existe $c\in(a,b)$ tal que f(c)=0.

Introducción

Algoritmo para calcular el cero c

Supongamos para fijar ideas que f(a) < 0 y f(b) > 0. Si fuese al revés, f(a) > 0 y f(b) < 0. Se razonaría de forma parecida.

Vamos a definir dos sucesiones $(a_n)_n$ y $(b_n)_n$ de valores reales tal que $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=c$ de la forma siguiente:

Algoritmo para calcular el cero c

```
Input: a, b y \in \text{con } f(a) < 0 y f(b) > 0
Output: c tal que |f(c)| < \epsilon.
c = \frac{f(a)+f(b)}{2}
while |f(c)| \ge \epsilon do
   if f(c) < 0 then a = c
   else
    b = c
    end
    c = \frac{f(a)+f(b)}{2}
end
```

Algorithm 1: Algoritmo para calcular el cero de f(x) = 0

return c

Algoritmo para calcular el cero c

Consideremos la función $f(x) = x^3 - x - 4$.

Vamos a crear una tabla de dos columnas: en la primera, vamos a escribir la sucesión $(a_n)_n$ y en la segunda la sucesión $(b_n)_n$.

Nos dicen que a = 1 con f(1) = -4 < 0 y b = 2 con f(2) = 2 > 0.

La primera fila de la tabla será:

$$a_n b_n$$
 $1 2$

Sea ahora $c = \frac{a+b}{2} = \frac{1+2}{2} = 1.5$. El valor de f(c) es f(1.5) = -2.125. Como es negativo, tendremos que a = 1.5 y la tabla será:

$$\begin{array}{c|cc}
 a_n & b_n \\
 \hline
 1.0 & 2 \\
 1.5 & \end{array}$$

Sea ahora $c = \frac{a+b}{2} = \frac{1.5+2}{2} = 1.75$. El valor de f(c) es: f(1.75) = -0.390625. Como es negativo, tendremos que a = 1.75 y la tabla será:

a _n	bn
1.00	2
1.50	
1.75	

Sea ahora $c=\frac{a+b}{2}=\frac{1.75+2}{2}=1.875$. El valor de f(c) es: f(1.875)=0.7167969. Como es positivo, tendremos que b=1.875 y la tabla será:

a _n	b_n
1.00 1.50 1.75	2 1.875

Sea ahora $c = \frac{a+b}{2} = \frac{1.75+1.875}{2} = 1.8125$. El valor de f(c) es: f(1.8125) = 0.1418457. Como es positivo, tendremos que b = 1.8125 y la tabla será:

a _n	b_n
1.00	2.0000
1.50	1.8750
1.75	1.8125

Hagamos el último paso:

Sea ahora $c = \frac{a+b}{2} = \frac{1.75+1.8125}{2} = 1.78125$. El valor de f(c) es: f(1.78125) = -0.1296082. Como es negativo, tendremos que a = 1.8125 y la tabla será:

a _n	b _n
1.00000	2
1.50000	1.875
1.75000	1.8125
1.78125	

La precisión de la sucesión a_n es f(1.78125) = -0.1296082 y la de b_n es f(1.8125) = 0.1418457. Vemos que tenemos poca precisión. Si queremos llegar a una precisión de 0.001, las sucesiones a_n y b_n son las siguientes:

a _n	b _n
1.000000	2
1.500000	1.875
1.750000	1.8125
1.781250	1.796875
1.789062	
1.792969	
1.794922	
1.795898	

El valor c buscado sería

$$c = \frac{1.7958984 + 1.796875}{2} = \frac{1.7958984 + 1.796875}{2} = 1.7963867,$$

con

$$f(1.7963867) = 5.6264165 \times 10^{-4}.$$