

## 基于对抗神经网络的恶意用户检测

第39组 蔡雨凡 闫璐





## **Task Definition**

## **Malicious detection**

Recently, a new type of attack, coined Sybil Account comes out targeting at social networks. Sybil are accounts that post fake reviews to a certain store or service in campaigns and get paid.

#### **Node classification**

Two type of information: the feature of the node and the network.

## **Graph Representation Learning**

Graph representation learning tries to embed each node of a graph into a low-dimensional vector space, which preserves the structural similarities or distances among the nodes in the original graph.



#### **Twitter:**

User-Network

This dataset consists of 81,306 nodes representing users and, 1,768,149 edges representing relationships.

http://snap.stanford.edu/data/ego-Twitter.html

User-Labels

This dataset is achieved from a paper called POISED: Spotting Twitter Spam Off the Beaten Paths. The tweets in this dataset were manually checked by a group of 14 security researchers who labeled them independently.

**dianping:** The dataset was crawled on Dianping from January 1, 2014 to June 15, 2015 and includes 10,541,931 reviews, 32,940 stores, and 3,555,154 users.

**Cora:** The dataset consist of 2708 scientific publications classified into one of seven classes. The citation network consists of 5429 links. Each publication in the dataset is described by a 0/1-valued work vector indicating the absence/presence of the corresponding word from the dictionary. The dictionary consists of 1433 unique words.



### **GNN**

#### **Convolution Neural Network – extract!**

- 1. Discrete convolution in CNN: filter for shared parameters
- 2. Convolution operation in CNN: [feature map] by calculating the central pixel point and the [weighted sum] of adjacent pixel points;

#### Reasons for studying GCN

- 1. CNN's [translation invariance] is not applicable on [non-matrix structure] data.
- 2. Hope to extract spatial features on the [topology map] for machine learning



## Two ways to extract the spatial features of [topology]

1. vertex domain (spatial domain):

operation: find the neighbors adjacent to each vertex, and use feature

representation

Examples: GraphSage

2. spectrum domain:

Spectral domain process:

- (1) Define the Fourier Transformation Fourier transform on the graph (using Spectral graph theory, study the properties of the graph by means of the eigenvalues and eigenvectors of the **Laplacian matrix of the graph**)
- (2) Define the convolution on the graph convolution Examples: GCN



## Laplacian matrix of the graph:

$$L = D - A$$

Where L is the Laplacian matrix and D is the degree matrix of the vertex (diagonal matrix), the elements on the diagonal are sequentially the degrees of the respective vertices, and A is the adjacency matrix of the graph.

| Labeled graph | D  | Degree matrix |   |   |   | Adjacency matrix |    |   |   | Laplacian matrix |   |     |     |    |         |    |    |    |    |
|---------------|----|---------------|---|---|---|------------------|----|---|---|------------------|---|-----|-----|----|---------|----|----|----|----|
| <u></u>       | /2 | 0             | 0 | 0 | 0 | 0 \              | /0 | 1 | 0 | 0                | 1 | 0 \ | 1   | 2  | $^{-1}$ | 0  | 0  | -1 | 0  |
|               | 0  | 3             | 0 | 0 | 0 | 0                | 1  | 0 | 1 | 0                | 1 | 0   | 11- | -1 | 3       | -1 | 0  | -1 | 0  |
| (4)           | 0  | 0             | 2 | 0 | 0 | 0                | 0  | 1 | 0 | 1                | 0 | 0   |     | 0  | -1      | 2  | -1 | 0  | 0  |
| Y LD          | 0  | 0             | 0 | 3 | 0 | 0                | 0  | 0 | 1 | 0                | 1 | 1   |     | 0  | 0       | -1 | 3  | -1 | -1 |
| 3-2           | 0  | 0             | 0 | 0 | 3 | 0                | 1  | 1 | 0 | 1                | 0 | 0   | -   | -1 | -1      | 0  | -1 | 3  | 0  |
| 3             | 0  | 0             | 0 | 0 | 0 | 1)               | 0  | 0 | 0 | 1                | 0 | 0/  |     | 0  | 0       | 0  | -1 | 0  | 1  |



## GraphSage



1. Sample neighborhood



2. Aggregate feature information from neighbors



3. Predict graph context and label using aggregated information



## **GAN**



Fig 1.0, Source: Nvidia.

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))].$$

**Generator Loss:** 

**Discriminator Loss:** 

 $\frac{1}{m} \sum_{i=1}^{m} \left[ \log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right] \qquad \frac{1}{m} \sum_{i=1}^{m} \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right)$ 



## **GAN**



Conditional-GAN: <a href="https://arxiv.org/abs/1411.1784">https://arxiv.org/abs/1411.1784</a>
Use random noise and real data with embedded labels as input



### GAN with GNN result



Random noise replaced by neighbor nodes' features predicted by GNN



## **GAN**

--training with random noise

--training with GNN result

discriminator/accuracy



discriminator/accuracy



Average test accuracy: 0.914815

Average test accuracy: 0.972222



## Results of Sybil dataset

|              | <b>Decision Tree</b> | SVM   | GNB   | KNN   | Adabo<br>ost | Rando<br>m<br>Forest | GCN/<br>Graph<br>Sage<br>(no<br>featur<br>e) | GAN<br>(rando<br>m) | GAN<br>(+GC<br>N) |
|--------------|----------------------|-------|-------|-------|--------------|----------------------|----------------------------------------------|---------------------|-------------------|
| Loss         |                      |       |       |       |              |                      | 0.344                                        | 0.109               | 0.173             |
| Accu<br>racy | 0.659                | 0.677 | 0.875 | 0.595 | 0.785        | 0.897                | 0.80/<br>0.81                                | 0.913               | 0.963             |
| Preci sion   | 0.828                | 0.716 | 0.832 | 0.817 | 0.817        | 0.847                | 0.811                                        | 0.951               | 0.962             |
| recall       | 0.655                | 0.698 | 0.667 | 0.577 | 0.567        | 0.620                | 0.577                                        | 0.971               | 0.975             |



## Results of Cora dataset

|               | Decisi<br>on<br>Tree | SVM   | GNB   | KNN   | Adabo<br>ost | Rando<br>m<br>Forest | GCN    | GAN<br>(rando<br>m) | GAN<br>(+GC<br>N) |
|---------------|----------------------|-------|-------|-------|--------------|----------------------|--------|---------------------|-------------------|
| loss          |                      |       |       |       |              |                      | 0.7207 | 0.458               | 0.283             |
| Accura<br>cy  | 0.618                | 0.647 | 0.484 | 0.427 | 0.557        | 0.664                | 0.8340 | 0.918               | 0.972             |
| Precisi<br>on | 0.626                | 0.710 | 0.486 | 0.440 | 0.597        | 0.673                | 0.740  | 0.765               | 0.835             |
| recall        | 0.626                | 0.646 | 0.484 | 0.427 | 0.557        | 0.657                | 0.811  | 0.972               | 0.976             |



## Analysis

# Thanks!

