Planche nº 1. Logique

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice nº 1 (*IT)

f désigne une fonction de $\mathbb R$ dans $\mathbb R$. Exprimer à l'aide de quantificateurs les phrases suivantes puis donner leur négation.

- 1) a) f est la fonction nulle.
 - b) L'équation f(x) = 0 a une solution.
 - c) L'équation f(x) = 0 a exactement une solution.
 - d) La fonction f s'annule au moins une fois sur \mathbb{R} .
- 2) a) f est l'identité de \mathbb{R} (c'est-à-dire la fonction qui, à chaque réel, associe lui-même. Cette fonction est notée $\mathrm{Id}_{\mathbb{R}}$).
 - b) Le graphe de f coupe la droite d'équation y = x.
 - c) f a au moins un point fixe.
- 3) a) f est croissante sur \mathbb{R} .
 - **b)** f est monotone sur \mathbb{R} .

Exercice nº 2 (*IT)

Dans cet exercice, $(u_n)_{n\in\mathbb{N}}$ est une suite réelle. Exprimer à l'aide de quantificateurs les phrases suivantes puis donner leur négation.

- 1) a) La suite $(u_n)_{n\in\mathbb{N}}$ est majorée.
 - b) La suite $(u_n)_{n\in\mathbb{N}}$ est bornée.
- 2) a) La suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.
 - b) La suite $(u_n)_{n\in\mathbb{N}}$ est monotone.

Exercice nº 3 (*IT)

Dans cet exercice, f est une fonction du plan dans lui-même. Même énoncé.

- 1) a) f est l'identité du plan (notée Id_P).
 - b) f a au moins un point invariant (on dit aussi point fixe).
- 2) Pour tout point M du plan \mathcal{P} , M est sur le cercle \mathcal{C} de centre Ω et de rayon R si et seulement si la distance de M à Ω est égale à R.

Exercice nº 4 (*IT) Donner la négation des phrases suivantes

- 1) $x \geqslant 3$
- **2**) $0 < x \le 2$.

Exercice no 5 (**IT)

Les phrases suivantes sont-elles équivalentes?

- 1) « $\forall x \in \mathbb{R}$, (f(x) = 0 et g(x) = 0) » et « $(\forall x \in \mathbb{R}, f(x) = 0) \text{ et } (\forall x \in \mathbb{R}, g(x) = 0)$ ».
- 2) « $\forall x \in \mathbb{R}$, (f(x) = 0 ou g(x) = 0) » et « $(\forall x \in \mathbb{R}, f(x) = 0) \text{ ou } (\forall x \in \mathbb{R}, g(x) = 0)$ ».

Donner un exemple de fonctions f et g de \mathbb{R} dans \mathbb{R} , toutes deux non nulles et dont le produit est nul.

Exercice nº 6 (**IT)

Dans chacun des cas suivants, dire si la proposition est vraie ou fausse puis le démontrer.

- 1) $\exists x \in \mathbb{R}/ \sin(x) = x$.
- 2) $\forall x \in \mathbb{R}, \ x^2 + 1 \neq 0.$
- 3) $\forall x \in \mathbb{C}, \ x^2 + 1 \neq 0.$

Exercice nº 7. (**IT)

- 1) Montrer que la fonction sin n'est pas nulle.
- 2) Montrer que la fonction valeur absolue n'est pas dérivable sur \mathbb{R} .

Exercice nº 8. (**IT)

- 1) Montrer que la proposition : « $(\exists x \in \mathbb{R}/\cos x = 0)$ et $(\exists x \in \mathbb{R}/\sin x = 0)$ » est vraie.
- 2) Montrer que la proposition : « $(\exists x \in \mathbb{R}/\cos x = 0 \text{ et } \sin x = 0)$ est fausse.

Exercice nº 9. (***IT)

Montrer que $\sqrt{2}$ est irrationnel.

Exercice nº 10. (***IT)

Soient a et b deux entiers naturels non nuls. Montrer que $(\exists k \in \mathbb{N}/\ b = ka$ et $\exists k \in \mathbb{N}/\ a = kb) \Rightarrow a = b$.

Exercice nº 11. (**IT)

Ecrire avec des quantificateurs les propositions suivantes puis dans chaque cas dire si la proposition est vraie ou fausse.

- 1) Tout entier naturel est pair ou impair.
- 2) Tout entier naturel est pair ou tout entier naturel est impair.
- 3) Pour chaque entier, on peut trouver un entier strictement plus grand.
- 4) Il y a un entier plus grand que tous les entiers.

Exercice nº 12. (**IT)

Ecrire avec des quantificateurs les propositions suivantes :

- 1) f est constante sur \mathbb{R} (où f est une fonction de \mathbb{R} dans \mathbb{R}).
- 2) f n'est pas constante sur \mathbb{R} .

Exercice nº 13. (*IT)

Dans chacun des cas suivants, dire si l'affirmation proposée est vraie ou fausse.

- 1) Pour tout $n \ge 3$, pour que n soit premier, il suffit que n soit impair.
- 2) Pour tout $n \ge 3$, pour que n soit premier, il faut que n soit impair.
- 3) Pour tout $x \in \mathbb{R}$, pour que $x^2 = 4$, il est nécessaire que x = 2.
- 4) Pour tout $x \in \mathbb{R}$, pour que $x^2 = 4$, il est suffisant que x = 2.
- 5) Pour que $x \in \mathbb{R}$, il est nécessaire que x > 2 pour que x > 3.
- 6) Pour tout $x \in \mathbb{R}$, pour que x > 3, il est suffisant que x > 2.