PROGRESS 2: ADDITIONAL DATA BIRD SONG IDENTIFICATION

Thanyaporn Phinthuphan 24 Jan 2019

Outline

- Recap
- Problem
- Experiment
- Next step

Recap

- trained on 11 bird sound class with manual labeled 120 wav file (10 per class)
- \rightarrow download all sound of 11 class with API \rightarrow 1,847 file (100-200 per class)
- goal: find the model that work on this data before append number of class

Problem

Training data

- label only 1 class per file but want multi-label result
- mp3 to wav stereo (multi-channel) sound: node-lame → mean
- quality of sound: using all / only A (\sim 701) / A & B (\sim 1,600)
- sound type (call/song): combine / separate class
- API download problem

Problem

Model algorithm

- former model: feature = max correlation with segments in spectrogram
- 4,143 feature \rightarrow 67,991 feature
- prediction time \sim 1 times of sound length \rightarrow \sim 20 times
- too slowly !!!!!

Literature review from last semester

Bird identification from audio recordings (Rafael, 2013)

Clusterized MFCC & SVM for bird song identification (Olivier, 2013)

More literature review

Audio Based Bird Species Identification using Deep Learning Techniques
 (Elias Sprengel, 2016) – Winning solution of <u>BirdCLEF 2016</u>

Bird Species Identification using Convolutional Neural Networks
 (John Martinsson, 2017) – Master's thesis in Computer Science, U. of Gothenburg

Real application

Warblr: Identify UK bird songs Warblr

#57 in Reference

★★☆☆☆ 2.0, 26 Ratings

£4.99

ExperimentReal application

Bird Song Id Automatic Recognition & Reference - Birds of the British Isles 4+

Mullen & Pohland GbR

#52 in Reference

★★★★ 4.3, 425 Ratings

£3.99

Real application

ChirpOMatic USA 4+

Automatic Bird Song ID Spiny Software Ltd

£3.99

Next Step

- find the best model on 11 class: good AUC / recall / prediction time
- define new scope and test
- test with real data (manual record / data from other website)
- write UI to use on mobile phone
- test in the park on mobile phone

Result On Thai birds data

- ประเมินผลด้วยค่า AUC score
- ใช้วิธี 5-Fold Cross Validation
- AUC score เฉลี่ยเท่ากับ 92.6%

Class no	Class Name	#features	AUC score
1	นกเขาใหญ่ (Spilopelia chinensis)	351	0.9864
2	นกเขาชวา (Geopelia striata)	423	0.9477
3	นกเอี้ยงสาลิกา (Acridotheres tristis)	306	0.6227
4	นกกระแตแต้แว้ด (Vanellus indicus)	574	0.9909
5	นกกระจอกบ้าน (Passer montanus)	334	0.9955
6	นกกาเหว่า (Eudynamys scolopaceus)	399	0.8833
7	นกกินปลีอกเหลือง (Cinnyris jugularis)	368	0.9773
8	นกตีทอง (Psilopogon haemacephalus)	458	0.9591
9	นกยางเปีย (Egretta garzetta)	277	0.9045
10	นกอีกา (Corvus macrorhynchos)	246	0.9363
11	นกอีวาบตั๊กแตน (Cacomantis merulinus)	407	0.9818

Result On Thai birds data

- โมเดลที่ได้จึงควรมีค่า recall ที่มาก
- เลือกค่า threshold เท่ากับ 0.11
- recall เท่ากับ 74.55%
- precision เท่ากับ 54.09%

Class no	Class Name	recall	precision
1	นกเขาใหญ่ (Spilopelia chinensis)	1.0000	0.5933
2	นกเขาชวา (Geopelia striata)	0.7000	0.6833
3	นกเอี้ยงสาลิกา (Acridotheres tristis)	0.0000	0.0000
4	นกกระแตแต้แว้ด (Vanellus indicus)	0.9333	0.7000
5	นกกระจอกบ้าน (Passer montanus)	0.9000	0.7333
6	นกกาเหว่า (Eudynamys scolopaceus)	0.5333	0.5167
7	นกกินปลีอกเหลือง (Cinnyris jugularis)	1.0000	0.6467
8	นกตีทอง (Psilopogon haemacephalus)	0.8000	0.3567
9	นกยางเปีย (Egretta garzetta)	0.5000	0.6000
10	นกอีกา (Corvus macrorhynchos)	0.9000	0.4533
11	นกอีวาบตั๊กแตน (Cacomantis merulinus)	0.9333	0.6667

Result

On Thai birds data

นกกระจอกบ้าน (AUC score 0.9955)

นกเอี้ยงสาลิกา (AUC score 0.6227)

Result

On Thai birds data

www.etaation.ast/biograpianswandsrav.

600 800 1000 1200 1400 1600

นกกระแตแต้แว้ด (AUC score 0.9909)

นกตีทอง (AUC score 0.9591)