diop Id m Q = 0° $W = (mg) (1m) \cdot \cos 0^{\circ} = (0 \text{ kg}) (10 \text{ m/s}^2) (1m)$ $\sqrt{\frac{1}{d}} = -10$ $\sqrt{\frac{1}{d}}$ $\begin{array}{c} \overrightarrow{F} \rightarrow 0 > 90^{\circ} \rightarrow W < 0 \\ \overrightarrow{J} = 180^{\circ} \end{array}$ * Moring object under ængles

Noring object under ængles

World = W +

Model = W sing

de The

model + 0, +90°

Kinetic energy
$$KE = \frac{1}{2}mv^2$$
 $\frac{1}{2}mv^2_p = \frac{1}{2}mv^2_p + W_{total}$

Work/energy theorem: $W_{net} = KE_p - KE_i$

* Example: $W_{net} = KE_p - KE_i$

* Example: $W_{met} = W_{met} - KE_p - KE_i$

* Example: $W_{met} = W_{met} - KE_p - KE_i$

* Work/energy $W_q = -F_{ol} - M_{gl} - KE_{gl}$

* Objects in Gree fall

* Objects in Gree fall

* Objects in Gree fall

* Work = W_{gl} + W_{gl} + ...

- Mg d_2 cool 0; + ...

1 Wtokal

As Blential energy in gravity

PE= mgy

Wtokal = - (PEf - PEi)

Wtokal = KEp - KE; = - (PEp - PE;)

5 conservation of energy:

KEf + PEf = KE; + KE; PE;

W= Fd cos O W>O if work is done by the force on the system such that the energy in creceses Recap: KE = 1 m v 2 = energy of motion of an object with mass m PE = mgy for gravity only
- capacity of an object to do
with respect to Earth Work lenergy theorem: Wnet = KET-KE; For gravity: What = - (PEI-PE;) $KE_i + PE_i = KE_f + PE_f$ * Other examples of potential energy Hodie's law: F = kAL -> PE = \(\frac{1}{2}k\lambda\lambda\lambda\rambda

