Segmentation by Clustering

Supervised learning

Training set: $\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),(x^{(3)},y^{(3)}),\dots,(x^{(m)},y^{(m)})\}$

Supervised learning

Training set: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), (x^{(3)}, y^{(3)}), \dots, (x^{(m)}, y^{(m)})\}$

Unsupervised learning

Training set: $\{x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(m)}\}$

Unsupervised learning

Training set: $\{x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(m)}\}$

Applications of clustering

Market segmentation

Organize computing clusters

Social network analysis

Astronomical data analysis

Clustering

Application

Google News: automatic clustering gives an effective news presentation metaphor

聚类分析无处不在

- ▶ 谁经常光顾商店,谁买什么东西,买多少?
 - ▶ 按忠诚卡记录的光临次数、光临时间、性别、年龄、职业、购物种类、金额等变量分类
 - > 这样商店可以....
 - ▶ 识别顾客购买模式(如喜欢一大早来买酸奶和鲜肉, 习惯周末时一次性大采购)
 - 》刻画不同的客户群的特征

聚类分析无处不在

- ▶ 谁是银行信用卡的黄金客户?
 - 利用储蓄额、刷卡消费金额、诚信度等变量对客户 分类,找出"黄金客户"!
 - ▶ 这样银行可以.....
 - ▶ 制定更吸引的服务,留住客户!比如:
 - >一定额度和期限的免息透资服务!
 - ▶ 百盛的贵宾打折卡!
 - ▶ 在他或她生目的时候送上一个小蛋糕!

聚类的应用领域

▶ 经济领域:

- 帮助市场分析人员从客户数据库中发现不同的客户群,并且用购买模式来刻画不同的客户群的特征。
- ▶ 谁喜欢打国际长途,在什么时间,打到那里?
- ▶ 对住宅区进行聚类,确定自动提款机ATM的安放位置
- 股票市场板块分析,找出最具活力的板块龙头股
- 企业信用等级分类

生物学领域

- 推导植物和动物的分类;
- 对基因分类,获得对种群的认识
- 数据挖掘领域
 - ▶ 作为其他数学算法的预处理步骤,获得数据分布状况,集中对特定的类做进一步的研究

Clustering

K-means algorithm

K-means algorithm

Input:

- K (number of clusters)
- Training set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$

 $x^{(i)} \in \mathbb{R}^n$ (drop $x_0 = 1$ convention)

K-means algorithm

```
Randomly initialize K cluster centroids \mu_1, \mu_2, \ldots, \mu_K \in \mathbb{R}^n
Repeat {
          for i = 1 to m
               c^{(i)} := \operatorname{index} (\operatorname{from} \operatorname{1} \operatorname{to} K) of cluster centroid
                         closest to x^{(i)}
          for k = 1 to K
                \mu_k := average (mean) of points assigned to cluster k
```


K-means for non-separated clusters

Clustering Optimization objective

K-means optimization objective

 $c^{(i)}$ = index of cluster (1,2,..., $\!K\!$) to which example $x^{(i)}$ is currently assigned

 μ_k = cluster centroid k ($\mu_k \in \mathbb{R}^n$)

 $\mu_{c^{(i)}}$ = cluster centroid of cluster to which example $x^{(i)}$ has been assigned

Optimization objective:

$$J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K) = \frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

$$\min_{\substack{c^{(1)}, \dots, c^{(m)}, \\ \mu_1, \dots, \mu_K}} J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K)$$

K-means algorithm

Randomly initialize K cluster centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$

```
Repeat {  \text{for } i = 1 \text{ to } m \\ c^{(i)} := \text{index (from 1 to } K \text{) of cluster centroid} \\ \text{closest to } x^{(i)} \\ \text{for } k = 1 \text{ to } K \\ \mu_k := \text{average (mean) of points assigned to cluster } k \\ \}
```


Clustering Random initialization

K-means algorithm

Randomly initialize K cluster centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$

```
Repeat {  \text{for } i = 1 \text{ to } m \\ c^{(i)} := \text{index (from 1 to } K \text{) of cluster centroid} \\ \text{closest to } x^{(i)} \\ \text{for } k = 1 \text{ to } K \\ \mu_k := \text{average (mean) of points assigned to cluster } k \\ \}
```


Random initialization

Should have K < m

Randomly pick K training examples.

Set μ_1, \ldots, μ_K equal to these K examples.

Local optima

Random initialization

```
For i = 1 to 100 {  \text{Randomly initialize K-means.} \\ \text{Run K-means. Get } c^{(1)}, \ldots, c^{(m)}, \mu_1, \ldots, \mu_K. \\ \text{Compute cost function (distortion)} \\ J(c^{(1)}, \ldots, c^{(m)}, \mu_1, \ldots, \mu_K) \\ \}
```

Pick clustering that gave lowest cost $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)$

Clustering

Choosing the number of clusters

What is the right value of K?

Choosing the value of K

Elbow method:

Choosing the value of K

Sometimes, you're running K-means to get clusters to use for some later/downstream purpose. Evaluate K-means based on a metric for how well it performs for that later purpose.

Image Segmentation by K-means

Segmentation as Clustering

Original image

2 clusters

3 clusters

Feature Space

- Depending on what we choose as the feature space, we can group pixels in different ways.
- Grouping pixels based on intensity similarity

Feature space: intensity value (1D)

Slide credit: Kristen Grauman

Feature Space

Depending on what we choose as the feature space, we can group pixels in different ways.

 Grouping pixels based on color similarity

G=200 B=250 R=245 G=220 B = 248R=15 R=3 G=189 G=12 B=2

Feature space: color value (3D)

Slide credit: Kristen Grauman

Feature Space

- Depending on what we choose as the feature space, we can group pixels in different ways.
- Grouping pixels based on texture similarity

24 filters

Feature space: filter bank responses (e.g., 24D)

Slide credit: Kristen Grauman

K-means Clustering—特点

▶ 优点:

- 当类密集,且类与类之间区别明显(比如球型聚集)时,聚类效果很好;
- ▶ 强的一致性
- ▶ 算法的复杂度是O(Nmt)(t为迭代次数),对处理大数据集 是高效的。

▶ 缺点:

- > 结果与初始质心有关;
- > 必须预先给出聚类的类别数m;
- 对"噪声"和孤立点数据敏感,少量的这些数据对平均值产生较大的影响;
- > 不适合发现非凸面形状的聚类

Clustering

Mean-shift

Mean-Shift Segmentation

An advanced and versatile technique for clusteringbased segmentation

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.

Iterative iviode Search

- 1. Initialize random seed, and window W
- Calculate center of gravity (the "mean" $\sum x H(x)$
- 3. Shift the search window to the mean $x \in W$
- 4. Repeat Step 2 until convergence

Real Modality Analysis

The blue data points were traversed by the windows towards the mode.

Mean-Shift Clustering

- Cluster: all data points in the attraction basin of a mode
- Attraction basin: the region for which all trajectories lead to the same mode

Mean-Shift Clustering/Segmentation

- Find features (color, gradients, texture, etc)
- Initialize windows at individual pixel locations
- Perform mean shift for each window until convergence
- Merge windows that end up near the same "peak" or mode

Slide credit: Svetlana Lazebnik

Mean-Shift Segmentation Results

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

More Results

More Results

Problem: Computational Complexity

Speedups: Basin of Attraction

1. Assign all points within radius r of end point to the mode.

Speedups

2. Assign all points within radius r/c of the search path to the mode -> reduce the number of data points to search.

Technical Details

Given n data points $\mathbf{x}_i \in \mathbb{R}^d$, the multivariate kernel density estimate using a radially symmetric kernel¹ (e.g., Epanechnikov and Gaussian kernels), $K(\mathbf{x})$, is given by,

$$\hat{f}_K = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right),\tag{1}$$

where h (termed the *bandwidth* parameter) defines the radius of kernel. The radially symmetric kernel is defined as,

$$K(\mathbf{x}) = c_k k(\|\mathbf{x}\|^2),\tag{2}$$

where c_k represents a normalization constant.

Technical Details

$$\nabla \hat{f}(\mathbf{x}) = \underbrace{\frac{2c_{k,d}}{nh^{d+2}} \left[\sum_{i=1}^{n} g\left(\left\| \frac{\mathbf{x} - \mathbf{x}_{i}}{h} \right\|^{2} \right) \right]}_{\text{term 1}} \underbrace{\left[\sum_{i=1}^{n} \mathbf{x}_{i} g\left(\left\| \frac{\mathbf{x} - \mathbf{x}_{i}}{h} \right\|^{2} \right) - \mathbf{x} \right]}_{\text{term 2}}, \tag{3}$$

where g(x) = -k'(x) denotes the derivative of the selected kernel profile.

- Term1: this is proportional to the density estimate at x (similar to equation 1 from the previous slide).
- Term2: this is the mean-shift vector that points towards the direction of maximum density.

Technical Details

Finally, the mean shift procedure from a given point x_t is:

Computer the mean shirt vector m:

$$\left[\frac{\sum_{i=1}^{n} \mathbf{x}_{i} g\left(\left\|\frac{\mathbf{x}-\mathbf{x}_{i}}{h}\right\|^{2}\right)}{\sum_{i=1}^{n} g\left(\left\|\frac{\mathbf{x}-\mathbf{x}_{i}}{h}\right\|^{2}\right)} - \mathbf{x}\right]$$

Translate the density window:

$$\mathbf{x}_i^{t+1} = \mathbf{x}_i^t + \mathbf{m}(\mathbf{x}_i^t).$$

Iterate steps 1 and 2 until convergence.

$$\nabla f(\mathbf{x}_i) = 0.$$

Comaniciu & Meer, 2002

Summary Mean-Shift

Pros

- General, application-independent tool
- Model-free, does not assume any prior shape (spherical, elliptical, etc.) on data clusters
- Just a single parameter (window size h)
 - h has a physical meaning (unlike k-means)
- Finds variable number of modes
- Robust to outliers

Cons

- Output depends on window size
- Window size (bandwidth) selection is not trivial
- Computationally (relatively) expensive (~2s/image)
- Does not scale well with dimension of feature space

