Data Analysis and Matrix Computations Assignment 5

Exercise 1.

Let $f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x} + 2 \mathbf{b}^{\top} \mathbf{x} + c$, where **A** is an $n \times n$ symmetric positive definite matrix, $\mathbf{b} \in \mathbb{R}^n$, and $\mathbf{c} \in \mathbb{R}$. Let $\mathbf{x}_k \in \mathbb{R}^n$ and let $\mathbf{d}_k \in \mathbb{R}^n$ be a descent direction of f at \mathbf{x}_k . Compute the stepsize generated by exact line search.

Exercise 2.

- (1) Let $f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x} + 2 \mathbf{b}^{\top} \mathbf{x} + c$, where **A** is an $n \times n$ symmetric matrix, $\mathbf{b} \in \mathbb{R}^n$, and $\mathbf{c} \in \mathbb{R}$. Show that the *smallest* Lipschitz constant of ∇f is $2\|\mathbf{A}\|$.
- (2) Let $f \in C_L^{1,1}(\mathbb{R}^m)$, and let $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$. Show that the function $g : \mathbb{R}^n \to \mathbb{R}$ defined by $g(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b})$ satisfies $g \in C_{\widetilde{L}}^{1,1}(\mathbb{R}^n)$, where $\widetilde{L} = L \|\mathbf{A}\|^2$.