Discrete and Computational Geometry

Deadline: 20 December, 2024

Winter semester 2024/2025 Assignment 9

Problem 1: (3+4 Points)

Consider the example of 4 line segments in Figure 1 on the next page. Let s_1, \ldots, s_4 be the permutation of line segments used in Algorithm 16.1.

- a) Draw the current state of the trapezodial decomposition computed by the algorithm after each iteration of the for-loop.
- b) Draw the search graph G computed by the algorithm after each iteration of the for-loop.

Problem 2: (7 Points)

Consider Algorithm 16.1 from Lecture 16. The algorithm needs to find the faces f_2, \ldots, f_k that properly intersect s_i in line 7. Show that the expected number of faces k that properly intersect s_i is in O(1).

Hint: Use backwards analysis.

Problem 3: (6 Points)

Let $P \subset \mathbb{R}^2$ be a star-shaped polygon. That means there exists a kernel point $p \in P$ such that for every point $r \in P$ the line segment \overline{pr} is contained in P. For an example of a star-shaped polygon see Figure 2 on the next page. Let $p_1, \ldots, p_n \in \mathbb{R}^2$ be the vertices of the boundary of P in counterclockwise order. Design an algorithm that takes the ordered sequence p_1, \ldots, p_n and the kernel point p as input and computes a triangulation of P in O(n) time. You may assume that each star shaped polygon with kernel point p and more than three vertices p_1, \ldots, p_n contains a vertex p_i such that the quadrilateral p, p_{i-1}, p_i, p_{i+1} is convex.

Figure 1: line segments

Figure 2: Example of a star-shaped polygon