Remarques

Le contenu

I. Repère du plan :

1. Coordonnées d'un point - Coordonnées d'un vecteur :

Activité:

On considère les points A(0,2), B(1,-2) et C(1,1) du plan rapporté au repère (0,I,J).

- 1) Placer les points A, B et C.
- 2) Donner les coordonnées des vecteurs : \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{BC} .
- 3) Donner les coordonnées des vecteurs : $\overrightarrow{AB} + \overrightarrow{AC}$ et $2\overrightarrow{BC}$.
- 4) Donner les coordonnées de *I* le milieu du segment [AC].

PP Définitions :

Trois points O, I et J distincts non alignés définissent un repère (O; I, J).

- O Le point O est appelé *l'origine* du repère.
- O La droite (OI) est appelée axe des abscisses.
- O La droite (OJ) est appelée axe des ordonnés.

Si on pose $\vec{i} = \overrightarrow{OI}$ et $\vec{j} = \overrightarrow{OJ}$, alors ce repère se note également $(O; \vec{i}, \vec{j})$.

 \circ Le couple (\vec{i}, \vec{j}) est appelé **une base** du plan.

O Exemple:

Soit ABC un triangle non aplati du plan.

Le triplet $(A; \overrightarrow{AB}; \overrightarrow{AC})$ est un repère du plan et $(\overrightarrow{AB}; \overrightarrow{AC})$ est une base du plan car les points A, B et C ne sont pas alignés.

// Propriétés :

Soit $(O; \vec{i}, \vec{j})$ un repère du plan.

O Pour tout point M du plan, il existe un unique couple (x; y) de nombres réels tels que : $\overrightarrow{OM} = x\overrightarrow{i} + y\overrightarrow{j}$.

Le couple (x; y) est appelé coordonnées du M et on écrit M(x; y).

O Pour tout vecteur \vec{u} du plan, il existe un unique couple (x; y) de nombres réels tels que : $\vec{u} = x\vec{i} + y\vec{j}$.

Le couple (x; y) est appelé **coordonnées** du \vec{u} et on écrit $\vec{u}(x, y)$ ou $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$.

Application:

On considère les points A(-2,2), B(3,2) et C(0,1) du plan rapporté au repère $(0,\vec{i},\vec{j})$.

- 1) Donner les coordonnées des vecteurs : \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{BC} .
- **2)** Ecrire les vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{BC} dans la base (\vec{i}, \vec{j}) .
- **3)** En déduire les coordonnées des vecteurs : $\vec{u} = 3\vec{A}\vec{B}$ et $\vec{u} = \vec{A}\vec{C} 2\vec{B}\vec{C} + 3\vec{A}\vec{B}$.

Exercice:

Soit ABCD un parallélogramme de centre O.

Donner les coordonnés des points A, B, C, O et D dans le repère $(A; \overrightarrow{AB}, \overrightarrow{AC})$

// Propriétés :

Soient A et B deux points de coordonnées (x_A, y_A) et (x_B, y_B) dans un repère $(O; \vec{i}, \vec{j})$.

- Le vecteur \overrightarrow{AB} a pour coordonnées $(x_B x_A, y_B y_A)$.
- O Le milieu du segment [AB] a pour coordonnées $\left(\frac{x_B + x_A}{2}, \frac{y_B + y_A}{2}\right)$.
- O Si le repère $(O; \vec{i}, \vec{j})$ est orthonormé, alors: $AB = \sqrt{(x_B x_A)^2 + (y_B y_A)^2}$

Application:

Soient A(4,4), B(2,2) et C(5,-1) des points du plan.

Montrer que le triangle ABC est rectangle en B.

Dans tous ce qui suit on rapporte le plan au repère $(O; \vec{i}, \vec{j})$.

2. Condition analytique de colinéarité de deux vecteurs :

// Définition :

Soient $\vec{u}(a,b)$ et $\vec{v}(a',b')$ deux vecteurs du plan.

Le nombre ab'-a'b est appelé **le déterminant** de vecteurs \vec{u} et \vec{v} dans cet ordre, on le

note
$$\det(\vec{u}, \vec{v})$$
 ou $\begin{vmatrix} a & a' \\ b & b' \end{vmatrix}$ et on écrit : $\begin{vmatrix} a & a' \\ b & b' \end{vmatrix} = ab' - a'b$.

O Exemples:

Calculons:
$$\begin{vmatrix} 1 & 6 \\ -2 & -3 \end{vmatrix}$$
 et $\begin{vmatrix} -2\sqrt{6} & 4\sqrt{3} \\ 3 & -3\sqrt{2} \end{vmatrix}$.

// Propriétés :

Deux vecteurs \vec{u} et \vec{v} sont colinéaires si et seulement si $\det(\vec{u}, \vec{v}) = 0$.

Les points A, B, et C sont alignés si et seulement si : $\det(\overrightarrow{AB}; \overrightarrow{AC})$.

Application: Exercice N°2 de la série.

Soit m un paramètre réel.

- 1) On considère les vecteurs : $\overrightarrow{u_1} = -\overrightarrow{i} + 2\overrightarrow{j}$; $\overrightarrow{u_2} = -4\overrightarrow{i} + \overrightarrow{j}$; $\overrightarrow{u_3} = (2m-3)\overrightarrow{i} + 2\overrightarrow{j}$.
 - **a)** Etudier la colinéarité de $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$.
 - **b)** Déterminer la valeur de m pour que $\overrightarrow{u_1}$ et $\overrightarrow{u_3}$ soient colinéaires.

Etudier l'alignement des points A(2;5), B(0;3) et C(-3;0).

Exercice:

Soit *m* un paramètre réel.

On considère les points A(2,3), B(3,5) et C(m-1,3m-2).

Déterminer la valeur de m pour que C appartient à (AB).

II. Equation cartésienne d'une droite :

Activité:

On considère les points A(1,-3), B(-2,1) du plan et soit M(x,y) un point de (AB).

- 1) Que peut-on dire sur les vecteurs \overrightarrow{AB} et \overrightarrow{AM} .
- **2)** Sans calcul, déterminer la valeur du $\det(\overrightarrow{AB}; \overrightarrow{AM})$.
- **3)** Calculer $det(\overrightarrow{AB}; \overrightarrow{AM})$ en fonction de x et y.

L'équation 4x+3y+5=0 est appelée *l'équation cartésienne* de la droite (AB) de vecteur directeur \overrightarrow{AB}

PP Définition :

Dans un repère quelconque du plan, toute droite a une équation *cartésienne s'écrit* sous la forme: ax + by = c où a, b et c sont trois réels donnés avec a et b non tous nuls.

O Remarque:

Soit (D) du plan d'équation : ax + by = c.

Les vecteurs $\overrightarrow{u}(-b,a)$ et $\overrightarrow{u}'(b,-a)$ sont des vecteurs directeurs de la droite (D).

Application:

Compléter le tableau suivant:

L'équation cartésienne de la droite	Vecteur directeur de la droite
$\vec{u}(\cdots;\cdots)$	2x + 5y = 4
$\vec{u}(\cdots;\cdots)$	y+3x-2=0
<i>u</i> (3;5)	=6
$\vec{u}(\cdots;\cdots)$	x + 4 = 0

O Remarque:

On note souvent la droite passante par un point A et de vecteur \vec{u} par $D(A, \vec{u})$.

Application:

- 1) Donner l'équation cartésienne de la droite $(D) = D(A, \vec{u})$ avec A(1,3) et $\vec{u}(2,2)$.
- 2) Donner l'équation cartésienne de la droite (BC) avec B(-2,3) et C(0,-4).

III. Représentation paramétrique d'une droite :

Activité:

On considère $(D) = D(A, \vec{u})$ tels que A(2,-1) et $\vec{u}(3,1)$ et soit M(x,y) un point de (D).

- 1) Montrer l'existence d'un nombre réel t tel que: $\overrightarrow{AM} = t \overrightarrow{u}$.
- **2)** Ecrire x e t y en fonction de t.

Le système $\begin{cases} x = 2 + 3t \\ y = -1 + t \end{cases} / t \in \mathbb{R} \text{ est appelé une représentation paramétrique } de(D).$

Application:

ذ لعرش عبد الكبير

- 1) Donner une représentation paramétrique de la droite (MN) avec M(-1,4) et N(5,4).
- 2) Donner l'équation cartésienne de la droite (D): $\begin{cases} x = 5 + 2t \\ y = 4 t \end{cases} / t \in \mathbb{R}.$
- Exercice: Exercice N°4 de la série.

IV. Position relative de deux droites:

& Activité:

Soient (D) et (Δ) deux droites telles que: (D): 3x - y + 4 = 0 et (Δ): -6x + 2y - 1 = 0.

- 1) Calculer $\det(\vec{u}; \vec{v})$ tels que \vec{u} un vecteur directeur de (D) et \vec{v} un vecteur directeur de (Δ) .
- **2)** Déduire la position relative de (D) et (Δ) .

Propriété :

Soient \vec{u} et \vec{v} deux vecteurs directeurs respectivement des droites (D) et (Δ) .

- $(D)/(\Delta)$ si et seulement si $\det(\vec{u}; \vec{v}) = 0$.
- (D) et (Δ) sécantes si et seulement si det(\vec{u} ; \vec{v}) $\neq 0$

Application:

Etudier la position relative de (D) et (Δ) en déterminant leur point d'intersection si sont sécantes dans les cas suivants:

Cas **0**: (*D*):
$$x + 2y = 3$$
 et (Δ): $2x + y = 6$.

Cas **2**: (D):
$$x + y = 5$$
 et (Δ):
$$\begin{cases} x = 1 + t \\ y = -2 + 2t \end{cases} / t \in \mathbb{R}.$$

Exercice de synthèse : Exercice N°6 de la série.

ذ لعرش عبد هبیر