(1)
$$\mathbf{E}(\vec{a} \cdot \vec{b}) = R(\vec{a}) \cdot R(\vec{b}) \rightarrow \mathbf{D}$$
 $R(\vec{a} \times \vec{b}) = R(\vec{a}) \cdot R(\vec{b}) \rightarrow \mathbf{D}$
 $R(\vec{a} \times \vec{b}) = R(\vec{a}) \cdot R(\vec{b}) \rightarrow \mathbf{D}$

We need to show that the above two conditions solvery for \vec{a} , $\vec{b} \in R^3$ and R being a volation in R^3 .

 $\vec{a}' = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \quad \vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ a_3 \end{bmatrix} \quad \vec{a} \cdot \vec{b} = \begin{bmatrix} a_1b_1 + a_2b_2 + a_3b_2 \end{bmatrix}$
 $\vec{a} \times \vec{b}' = \begin{bmatrix} \vec{i} & \vec{j} & \vec{k} \\ \vec{a} & \vec{a} & \vec{a} & \vec{b} \\ \vec{a} & \vec{a} & \vec{a} & \vec{b} \\ \vec{a} & \vec{a} & \vec{b} & \vec{b} \end{bmatrix} \quad \vec{a} \cdot \vec{b} = \begin{bmatrix} a_1b_1 + a_2b_2 + a_3b_2 \end{bmatrix}$

Any solution R in R^3 can be represented by $R = R_2(\vec{a})R_2(\vec{a})$. If we prove that $\vec{a} \cdot \vec{b} = R_2(\vec{a})R_2(\vec{a})$ or until be satisfied for $R = R_2(\vec{a})R_2(\vec{a})$ and then $\vec{a} \cdot \vec{b} = R_2(\vec{a})$ and $\vec{b} \cdot$