Prova scritta di Logica Matematica 20 febbraio 2013

Cognome

Nome

Matricola

Scrivete subito il vostro nome, cognome e numero di matricola, e tenete il tesserino universitario sul banco. Svolgete gli esercizi direttamente sul testo a penna. Dovete consegnare solo il foglio del testo: nessun foglio di brutta.

Per ogni esercizio è indicato il relativo punteggio. Nella prima parte se la riposta è corretta, il punteggio viene aggiunto al totale, mentre se la risposta è errata il punteggio viene sottratto (l'assenza di risposta non influisce sul punteggio totale). Per superare l'esame bisogna raggiungere 18 punti, di cui almeno 5 relativi alla prima parte.

PRIMA PARTE		
Barrate la risposta che ritenete corretta. Non dovete giustificare la ris	posta.	
1. $p \to r \land q$ è una α -formula o una β -formula?	$\alpha \mid \beta \mid$	1pt
2. Se l'insieme $\{F,G\}$ è soddisfacibile allora		
sia F che G sono soddisfacibili.	$\mathbf{V} \mathbf{F}$	1pt
3. $p \to (\neg q \to p)$ è valida.	$\mathbf{V} \mathbf{F}$	1pt
4. Sia <i>I</i> l'interpretazione con $D^I = \{0, 1, 2, 3\}, p^I = \{0, 3\}, q^I = \{0, 1\}$	e	
$r^{I} = \{(0,0), (0,2), (0,3), (1,2), (2,1), (2,3), (3,2), (3,3)\}.$		
Allora $I \models \forall x (p(x) \lor \neg q(x) \to \exists y (q(y) \land r(x,y))).$	$\mathbf{V} \mathbf{F}$	1pt
5. $\exists x p(x) \vee \exists y q(y) \equiv \exists x (p(x) \vee q(x)).$	$\mathbf{V} \mathbf{F}$	1pt
6. Se φ è un omomorsmo forte (non necessariamente suriettivo) di I in	$_{1}$ J	
$e J \models \exists x p(x) \text{ allora } I \models \exists x p(x).$	$\mathbf{V} \mathbf{F}$	1pt
7. Un tableau per una formula predicativa soddisfacibile		
che non sia sistematico può essere chiuso.	$\mathbf{V} \mathbf{F}$	1pt
8. Esiste un insieme di Hintikka Γ con $\neg (p \to q) \in \Gamma$ e $\neg p \in \Gamma$.	$\mathbf{V} \mathbf{F}$	1pt
9. Se $\Gamma \triangleright p(f(x))$ allora $\Gamma \triangleright \exists x p(x)$.	$\mathbf{V} \mathbf{F}$	1pt
SECONDA PARTE		
10. Sul retro del foglio dimostrate che		4pt
$\forall x (\exists y r(f(y), x) \to \neg r(x, f(x))) \models_{\equiv} \forall x (r(x, x) \to x \neq f(x)).$		
11 Cia C (mm) il linguaggia con maigrabala di palagiana unagia a ma	imala ala	

11. Sia $\mathcal{L} = \{p, r\}$ il linguaggio con p simbolo di relazione unario e r simbolo di relazione binario. Siano I e J le seguenti interpretazioni per \mathcal{L} :

$$D^I = \{A, B\}, \quad p^I = \{A\}, \quad r^I = \{(A, B), (B, B)\}; \quad D^J = \{0, 1, 2, 3\}, \quad p^J = \{2\}, \\ r^J = \{(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (1, 3), (2, 0), (2, 1), (2, 3), (3, 0), (3, 1), (3, 3)\}.$$

Sul retro del foglio dimostrate:

- (i) che I e J sono elementarmente equivalenti; 4pt
- (ii) che I e J non sono elementarmente equivalenti nella logica con uguaglianza (ovviamente nel linguaggio ottenuto aggiungendo = a \mathcal{L}). 1pt

- 12. Sia $\{b,d,c,t,a\}$ un linguaggio dove b e d sono simboli di costante, c e t sono simboli di relazione unari e a è un simbolo di relazione binario. Interpretando b come "Barbara", d come "Donatella", c(x) come "x ama il cinema", t(x) come "x ama il teatro" e a(x,y) come "x è amico di y", traducete le seguenti frasi:
 - (i) Barbara è amica di Donatella e ama il cinema, ma non il teatro;

3pt

- (ii) Chi è amico di qualcuno che ama il cinema, ama il cinema e non è amico di chi ama il teatro.
- 13. Usando il metodo dei tableaux stabilire se

3pt

3pt

$$\neg \big((\neg p \to \neg (q \to \neg r)) \to (p \lor (r \land q)) \big)$$

è soddisfacibile. Se la formula è soddisfacibile definite un'interpretazione che lo testimoni. (Utilizzate il retro del foglio)

14. Dimostrate che

5pt

$$\forall x (p(x) \to \neg r(x, f(x))), \exists x \, \forall y \, r(x, y) \rhd \neg \forall x \, p(x).$$

Usate solo le regole della deduzione naturale predicativa, comprese le sei regole derivate. (Utilizzate il retro del foglio)

15. Usando l'algoritmo di Fitting e utilizzando lo spazio qui sotto, mettete in forma normale congiuntiva la formula

$$\neg (p \land \neg q) \to (r \to \neg s \land t) \land \neg (\neg u \lor v \to \neg w).$$

Soluzioni

- 1. β è un'implicazione.
- **2.** V un'interpretazione che soddisfa $\{F, G\}$ soddisfa sia F che G.
- **3.** V si verifica con le tavole di verità, oppure notando che se p è vera il conseguente dell'implicazione è vera, mentre se p è falsa l'antecedente è falso: in ogni caso l'implicazione è vera.
- **4.** F si ha $I, \sigma[x/3] \models p(x) \lor \neg q(x)$ ma $I, \sigma[x/3] \nvDash \exists y (q(y) \land r(x, y))$.
- 5. V per il Lemma 7.55 delle dispense.
- **6. F** si veda l'Esempio 9.10 delle dispense. Un controesempio si ottiene ponendo $D^I = \{0\}, p^I = \{0\}, D^J = \{0,1\}, p^J = \{0\}$. L'identità è un omomorfismo forte, $I \models \forall x \, p(x) \in J \not\models \forall x \, p(x)$.
- 7. F il teorema di correttezza (Teorema 10.28 delle dispense) non richiede che il tableau sia sistematico.
- **8.** F se $\neg(p \to q) \in \Gamma$ deve essere (tra l'altro) $p \in \Gamma$ e quindi $\neg p \notin \Gamma$.
- **9.** V la nuova deduzione naturale si ottiene da quella di partenza con un'applicazione di $(\exists i)$ (la sostituzione $\{x/f(x)\}$ è ammissibile in p(x)).
- 10. Dobbiamo mostrare che ogni interpretazione normale I che soddisfa tutti l'enunciato a sinistra, che indichiamo con F, soddisfa anche quello di destra, che chiamiamo con G. Supponiamo per assurdo che $I \models F$ ma $I \nvDash G$.

Dato che $I \nvDash G$ esiste $d_0 \in D^I$ tale che $I, \sigma[x/d_0] \nvDash r(x, x) \to x \neq f(x)$, ovvero $(d_0, d_0) \in r^I$ e $f^I(d_0) = d^0$ (qui usiamo la normalità di I). Allora $I, \sigma[x/d_0, y/d_0] \models r(f(y), x)$ e quindi $I, \sigma[x/d_0] \models \exists y \, r(f(y), x)$. Dato che $I \models F$ deve essere $I, \sigma[x/d_0] \models \neg r(x, f(x))$, cioè $(d_0, d_0) \notin r^I$, una contraddizione.

- 11. (i) Basta definire un omomorfismo forte suriettivo di J in I (nell'altra direzione è impossibile, vista la cardinalità dei domini) e applicare il Corollario 9.14 delle dispense. Se $\varphi(0) = \varphi(1) = \varphi(3) = B$ e $\varphi(2) = A$ le condizioni della definizione di omomorfismo forte sono soddisfatte.
 - (ii) Basta indicare un enunciato del linguaggio con uguaglianza vero in I e falso in J (o viceversa): $\forall x \forall y (\neg p(x) \land \neg p(y) \rightarrow x = y)$ va bene.
- **12.** (i) $a(b,d) \wedge c(b) \wedge \neg t(b)$;
 - (ii) $\forall x (\exists y (a(x,y) \land c(y)) \rightarrow c(x) \land \forall z (t(z) \rightarrow \neg a(x,z))).$

13. Per stabilire se la formula è soddisfacibile costruiamo un tableau per essa. In ogni passaggio sottolineiamo la formula su cui agiamo. Utilizziamo la Convenzione 4.34 delle dispense e ci fermiamo non appena un nodo contiene una coppia complementare.

$$\frac{\neg((\neg p \to \neg (q \to \neg r)) \to (p \lor (r \land q)))}{|} \\
\neg p \to \neg(q \to \neg r), \underline{\neg(p \lor (r \land q))} \\
| \neg p \to \neg(q \to \neg r), \neg p, \neg(r \land q)$$

$$p, \neg p, \neg(r \land q) \\
\otimes \\
q, r, \neg p, \underline{\neg(r \land q)}$$

$$q, r, \neg p, \underline{\neg(r \land q)}$$

$$\otimes \\
q, r, \neg p, \neg q$$

Il tableau è chiuso e quindi la formula di partenza è insoddisfacibile.

14. Ecco una deduzione naturale che mostra quanto richiesto:

15.

$$\langle [\neg (p \land \neg q) \rightarrow (r \rightarrow \neg s \land t) \land \neg (\neg u \lor v \rightarrow \neg w)] \rangle$$

$$\langle [p \land \neg q, (r \rightarrow \neg s \land t) \land \neg (\neg u \lor v \rightarrow \neg w)] \rangle$$

$$\langle [p, (r \rightarrow \neg s \land t) \land \neg (\neg u \lor v \rightarrow \neg w)], [\neg q, (r \rightarrow \neg s \land t) \land \neg (\neg u \lor v \rightarrow \neg w)] \rangle$$

$$\langle [p, r \rightarrow \neg s \land t], [p, \neg (\neg u \lor v \rightarrow \neg w)], [\neg q, r \rightarrow \neg s \land t], [\neg q, \neg (\neg u \lor v \rightarrow \neg w)] \rangle$$

$$\langle [p, \neg r, \neg s \land t], [p, \neg u \lor v], [p, w], [\neg q, \neg r, \neg s \land t], [\neg q, \neg u \lor v], [\neg q, w] \rangle$$

$$\langle [p, \neg r, \neg s], [p, \neg r, t], [p, \neg u, v], [p, w], [\neg q, \neg r, \neg s], [\neg q, \neg r, t], [\neg q, \neg u, v], [\neg q, w] \rangle$$

$$\text{La formula in forma normale congiuntiva ottenuta è}$$

$$(p \vee \neg r \vee \neg s) \wedge (p \vee \neg r \vee t) \wedge (p \vee \neg u \vee v) \wedge (p \vee w) \wedge (\neg q \vee \neg r \vee \neg s) \wedge \\ \wedge (\neg q \vee \neg r \vee t) \wedge (\neg q \vee \neg u \vee v) \wedge (\neg q \vee w).$$

Prova scritta di Logica Matematica 20 febbraio 2013

Cognome

Nome

Matricola

4pt

4pt

1pt

Scrivete **subito** il vostro nome, cognome e numero di matricola, e tenete il tesserino universitario sul banco. Svolgete gli esercizi direttamente sul testo a penna. Dovete consegnare solo il foglio del testo: nessun foglio di brutta.

Per ogni esercizio è indicato il relativo punteggio. Nella prima parte se la riposta è corretta, il punteggio viene aggiunto al totale, mentre se la risposta è errata il punteggio viene sottratto (l'assenza di risposta non influisce sul punteggio totale). Per superare l'esame bisogna raggiungere 18 punti, di cui almeno 5 relativi alla prima parte.

PRIMA PARTE

Barrate la risposta che ritenete corretta. Non dovete giustificare la risposta.

1. Se l'insieme $\{F,G\}$ è insoddisfacibile allora		
almeno una tra F e G è insoddisfacibile.	$\mathbf{V} \mathbf{F}$	1pt
2. $p \to (q \to p)$ è valida.	$\mathbf{V} \mathbf{F}$	1pt
3. $p \wedge q \rightarrow r$ è una α -formula o una β -formula?	$\alpha \beta$	1pt
4. Esiste un insieme di Hintikka Γ con $\neg(p \to q) \in \Gamma$ e $q \in \Gamma$.	$\overline{\mathbf{V}}$ $\overline{\mathbf{F}}$	1pt
5. $\forall x p(x) \land \forall y q(y) \equiv \forall x (p(x) \land q(x)).$	$\mathbf{V} \mathbf{F}$	1pt
6. Sia I l'interpretazione con $D^I = \{0, 1, 2, 3\}, p^I = \{0, 3\}, q^I = \{0, 1\}$	} e	
$r^{I} = \{(0,0), (0,2), (0,3), (1,2), (2,1), (2,3), (3,2), (3,3)\}.$		
Allora $I \models \forall x (p(x) \lor \neg q(x) \to \exists y (q(y) \land r(x,y))).$	$\mathbf{V} \mathbf{F}$	1pt
7. Se φ è un omomorsmo forte (non necessariamente suriettivo) di I	\overline{I}	
e $I \models \forall x p(x)$ allora $J \models \forall x p(x)$.	$\mathbf{V} \mathbf{F}$	1pt
8. Se $\Gamma \triangleright r(y,c)$ allora $\Gamma \triangleright \exists x r(x,c)$.	$\mathbf{V} \mathbf{F}$	1pt
9. Un tableau per una formula predicativa insoddisfacibile		
che non sia sistematico può essere aperto.	$\overline{\mathbf{V}}$	1pt
SECONDA PARTE		

SECONDA PARTE

10. Sul retro del foglio dimostrate che

 $\forall x (\neg r(x, f(x)) \rightarrow \forall y \, r(f(y), x)) \models_{=} \forall x (x = f(x) \rightarrow r(x, x)).$

11. Sia $\mathcal{L} = \{p, r\}$ il linguaggio con p simbolo di relazione unario e r simbolo di relazione binario. Siano I e J le seguenti interpretazioni per \mathcal{L} :

$$D^I = \{A, B\}, \qquad p^I = \{A\}, \qquad r^I = \{(A, B)\};$$

$$D^J = \{0, 1, 2, 3\}, \qquad p^J = \{1, 2\}, \qquad r^J = \{(1, 0), (1, 3), (2, 0), (2, 3)\}.$$

Sul retro del foglio dimostrate:

- (i) che I e J sono elementarmente equivalenti;
- (ii) che I e J non sono elementarmente equivalenti nella logica con uguaglianza (ovviamente nel linguaggio ottenuto aggiungendo = a \mathcal{L}).

- 12. Sia $\{b,d,c,t,a\}$ un linguaggio dove b e d sono simboli di costante, c e t sono simboli di relazione unari e a è un simbolo di relazione binario. Interpretando b come "Bruno", d come "Davide", c(x) come "x ama il cinema", t(x) come "x ama il teatro" e a(x,y) come "x è amico di y", traducete le seguenti frasi:
 - (i) Davide è amico di Bruno e ama il teatro, ma non il cinema;

3pt

- (ii) Chi è amico di qualcuno che ama il teatro, ama il teatro e non è amico di chi ama il cinema.
- 3pt

3pt

13. Usando il metodo dei tableaux stabilire se

$$(\neg p \to \neg (q \to \neg r)) \to (p \lor (r \land q))$$

è valida. Se la formula non è valida definite un'interpretazione che lo testimoni. (Utilizzate il retro del foglio)

14. Dimostrate che

5pt

$$\forall x (p(x) \to r(f(x), x)), \exists x \, \forall y \, \neg r(y, x) \rhd \neg \forall x \, p(x).$$

Usate solo le regole della deduzione naturale predicativa, comprese le sei regole derivate. (Utilizzate il retro del foglio)

15. Usando l'algoritmo di Fitting e utilizzando lo spazio qui sotto, mettete in forma normale congiuntiva la formula

$$\neg (p \land q) \to (\neg r \to \neg t \land \neg s) \land \neg (u \lor v \to \neg z).$$

Soluzioni

- **1. F** se F è p e G è $\neg p$ l'insieme $\{F,G\}$ è insoddisfacibile, ma ognuna delle due formule è soddisfacibile.
- **2.** V si verifica con le tavole di verità, oppure notando che se p è vera il conseguente dell'implicazione è vera, mentre se p è falsa l'antecedente è falso: in ogni caso l'implicazione è vera.
- 3. β è un'implicazione.
- **4.** F se $\neg(p \to q) \in \Gamma$ deve essere (tra l'altro) $\neg q \in \Gamma$ e quindi $q \notin \Gamma$.
- **5.** V per il Lemma 7.55 delle dispense.
- **6.** F si ha $I, \sigma[x/3] \models p(x) \vee \neg q(x)$ ma $I, \sigma[x/3] \nvDash \exists y (q(y) \wedge r(x, y))$.
- 7. **F** si veda l'Esempio 9.10 delle dispense. Un controesempio si ottiene ponendo $D^I = \{0\}, p^I = \{0\}, D^J = \{0,1\}, p^J = \{0\}$. L'identità è un omomorfismo forte, $I \models \forall x \, p(x) \in J \not\models \forall x \, p(x)$.
- 8. V la nuova deduzione naturale si ottiene da quella di partenza con un'applicazione di $(\exists i)$ (la sostituzione $\{x/y\}$ è ammissibile in p(x)).
- **9.** V questo fenomeno (Esempio 10.15 delle dispense) è proprio il motivo dell'introduzione dei tableaux sistematici.
- 10. Dobbiamo mostrare che ogni interpretazione normale I che soddisfa tutti l'enunciato a sinistra, che indichiamo con F, soddisfa anche quello di destra, che chiamiamo con G. Supponiamo per assurdo che $I \models F$ ma $I \nvDash G$.

Dato che $I \nvDash G$ esiste $d_0 \in D^I$ tale che $I, \sigma[x/d_0] \nvDash x = f(x) \to r(x, x)$, ovvero $d^0 = f^I(d_0)$ (qui usiamo la normalità di I) e $(d_0, d_0) \notin r^I$. Allora $I, \sigma[x/d_0] \models \neg r(x, f(x))$. Dato che $I \models F$ deve essere $I, \sigma[x/d_0] \models \forall y \, r(f(y), x)$ e quindi in particolare $I, \sigma[x/d_0, y/d_0] \models r(f(y), x)$, cioè $(d_0, d_0) \in r^I$, una contraddizione.

- 11. (i) Basta definire un omomorfismo forte suriettivo di J in I (nell'altra direzione è impossibile, vista la cardinalità dei domini) e applicare il Corollario 9.14 delle dispense. Se $\varphi(0) = \varphi(3) = B$ e $\varphi(1) = \varphi(2) = A$ le condizioni della definizione di omomorfismo forte sono soddisfatte.
 - (ii) Basta indicare un enunciato del linguaggio con uguaglianza vero in I e falso in J (o viceversa): $\forall x \forall y (p(x) \land p(y) \rightarrow x = y)$ va bene.
- **12.** (i) $a(d,b) \wedge t(d) \wedge \neg c(d)$;
 - (ii) $\forall x (\exists y (a(x,y) \land t(y)) \rightarrow t(x) \land \forall z (c(z) \rightarrow \neg a(x,z))).$

13. Per stabilire se la formula è valida costruiamo un tableau per la sua negazione. In ogni passaggio sottolineiamo la formula su cui agiamo. Utilizziamo la Convenzione 4.34 delle dispense e ci fermiamo non appena un nodo contiene una coppia complementare.

$$\frac{\neg ((\neg p \to \neg (q \to \neg r)) \to (p \lor (r \land q)))}{|} \\
\neg p \to \neg (q \to \neg r), \underline{\neg (p \lor (r \land q))} \\
| \neg p \to \neg (q \to \neg r), \neg p, \neg (r \land q)$$

$$p, \neg p, \neg (r \land q) \\
\otimes \\
q, r, \neg p, \underline{\neg (r \land q)}$$

$$q, r, \neg p, \neg (r \land q)$$

$$\otimes \\
q, r, \neg p, \neg (r \land q)$$

$$\otimes \\$$

Il tableau è chiuso e quindi la formula di partenza è valida.

14. Ecco una deduzione naturale che mostra quanto richiesto:

15.

$$\begin{split} \langle [\neg (p \wedge q) \rightarrow (\neg r \rightarrow \neg t \wedge \neg s) \wedge \neg (u \vee v \rightarrow \neg z)] \rangle \\ \langle [p \wedge q, (\neg r \rightarrow \neg t \wedge \neg s) \wedge \neg (u \vee v \rightarrow \neg z)] \rangle \\ \langle [p \wedge q, \neg r \rightarrow \neg t \wedge \neg s], [p \wedge q, \neg (u \vee v \rightarrow \neg z)] \rangle \\ \langle [p \wedge q, r, \neg t \wedge \neg s], [p \wedge q, u \vee v], [p \wedge q, z] \rangle \\ \langle [p, r, \neg t \wedge \neg s], [q, r, \neg t \wedge \neg s], [p \wedge q, u, v], [p, z], [q, z] \rangle \\ \langle [p, r, \neg t], [p, r, \neg s], [q, r, \neg t], [q, r, \neg s], [p, u, v], [q, u, v], [p, z], [q, z] \rangle \end{split}$$

La formula in forma normale congiuntiva ottenuta è

$$(p \lor r \lor \neg t) \land (p \lor r \lor \neg s) \land (q \lor r \lor \neg t) \land (q \lor r \lor \neg s) \land (p \lor u \lor v) \land (q \lor u \lor v) \land (p \lor z) \land (q \lor z).$$