Support Vector Machines

Pradeep Ravikumar

Co-instructor: Manuela Veloso

Machine Learning 10-701

At Pittsburgh G-20 summit ...

Linear classifiers – which line is better?

Pick the one with the largest margin!

Parameterizing the decision boundary

Parameterizing the decision boundary

Distance of closest examples from the line/hyperplane

margin =
$$\gamma = 2a/\|\mathbf{w}\|$$

Step 1: **w** is perpendicular to lines since for any x_1 , x_2 on line **w**.($\mathbf{x}_1 - \mathbf{x}_2$) = 0

$$0 \neq x_1$$

margin =
$$\gamma$$
 = $2a/\|w\|$

Step1: w is perpendicular to lines

Step 2: Take a point x on w.x + b = -a and move to point x_{+} that is γ away on line w.x+b = a

$$\mathbf{x}_{+} = \mathbf{x}_{-} + \gamma \mathbf{w} / \| \mathbf{w} \|$$

 $\mathbf{w}.\mathbf{x}_{+} = \mathbf{w}.\mathbf{x}_{-} + \gamma \mathbf{w}.\mathbf{w} / \| \mathbf{w} \|$
 $\mathbf{a}-\mathbf{b} = -\mathbf{a}-\mathbf{b} + \gamma \| \mathbf{w} \|$
 $2\mathbf{a} = \gamma \| \mathbf{w} \|$

10

Support Vector Machines

 $\min_{\mathbf{w},b} \mathbf{w}.\mathbf{w}$ s.t. $(\mathbf{w}.\mathbf{x}_j+b) \mathbf{y}_j \ge 1 \quad \forall j$

Solve efficiently by quadratic programming (QP)

- Quadratic objective, linear constraints
- Well-studied solution algorithms

Support Vectors

Linear hyperplane defined by "support vectors"

Moving other points a little doesn't effect the decision boundary

only need to store the support vectors to predict labels of new points

For support vectors $(\mathbf{w}.\mathbf{x}_j+b)$ $\mathbf{y}_j=1$

What if data is not linearly separable?

Use features of features of features of features....

$$x_1^2$$
, x_2^2 , x_1x_2 , ..., $exp(x_1)$

But run risk of overfitting!

What if data is still not linearly separable?

Allow "error" in classification

Smaller margin ⇔ larger ||w||

min
$$\mathbf{w}.\mathbf{w} + C$$
 #mistakes \mathbf{w},b
s.t. $(\mathbf{w}.\mathbf{x}_j+b)$ $\mathbf{y}_j \geq 1$ \forall non-mistakes

Maximize margin and minimize # mistakes on training data

C - tradeoff parameter

Not QP ⊗

0/1 loss (doesn't distinguish between near miss and bad mistake)

What if data is still not linearly separable?

Allow "error" in classification

Soft margin approach

$$\min_{\mathbf{w},b,\{\xi_{j}\}} \mathbf{w}.\mathbf{w} + C \sum_{j} \xi_{j}$$
s.t. $(\mathbf{w}.\mathbf{x}_{j}+b) \ \mathbf{y}_{j} \geq 1-\xi_{j} \ \forall j$

$$\xi_{j} \geq 0 \ \forall j$$

 ξ_j - "slack" variables = (>1 if x_j misclassifed) pay linear penalty if mistake

C - tradeoff parameter (chosen by cross-validation)

Soft-margin SVM

Soften the constraints:

$$(\mathbf{w}.\mathbf{x}_{j}+b) \ \mathbf{y}_{j} \ge 1-\xi_{j} \ \forall j$$

 $\xi_{i} \ge 0 \ \forall j$

Penalty for misclassifying:

$$C \xi_i$$

How do we recover hard margin SVM?

Slack variables – Hinge loss

Notice that

$$\xi_j = (1 - (\mathbf{w} \cdot x_j + b)y_j))_+$$

Slack variables – Hinge loss

$$\xi_j = (1 - (\mathbf{w} \cdot x_j + b)y_j))_+$$

Regularized hinge loss

$$\min_{\mathbf{w},b} \mathbf{w}.\mathbf{w} + C \sum_{j} (1-(\mathbf{w}.x_j+b)y_j)_+$$

Support Vectors

Margin support vectors

 $\xi_j = 0$, $(\mathbf{w}.\mathbf{x}_j + b) y_j = 1$ (don't contribute to objective but enforce constraints on solution)

Correctly classified but on margin

Non-margin support vectors

 $\xi_j > 0$ (contribute to both objective and constraints)

 $1 > \xi_j > 0$ Correctly classified but inside margin $\xi_i > 1$ Incorrectly classified 19

SVM vs. Logistic Regression

SVM: **Hinge loss**

$$loss(f(x_j), y_j) = (1 - (\mathbf{w} \cdot x_j + b)y_j))_{+}$$

<u>Logistic Regression</u>: Log loss (-ve log conditional likelihood)

$$loss(f(x_j), y_j) = -\log P(y_j \mid x_j, \mathbf{w}, b) = \log(1 + e^{-(\mathbf{w} \cdot x_j + b)y_j})$$

What about multiple classes?

One vs. rest

Learn 1 classifier: Multi-class SVM

Simultaneously learn 3 sets of weights

Learn 1 classifier: Multi-class SVM

Simultaneously learn 3 sets of weights

n training points
$$(\mathbf{x}_1, ..., \mathbf{x}_n)$$

d features \mathbf{x}_j is a d-dimensional \mathbf{x}_j is a d-dimensional \mathbf{x}_j

• <u>Primal problem</u>: $\min_{\substack{\text{minimize}_{\mathbf{w},b} \\ \left(\mathbf{w}.\mathbf{x}_j + b\right)y_j \geq 1, \ \forall j}$

w - weights on features (d-dim problem)

- Convex quadratic program quadratic objective, linear constraints
- But expensive to solve if d is very large
- Often solved in dual form (n-dim problem)

Constrained Optimization

Constrained Optimization – Dual Problem

 α = 0 constraint is inactive α > 0 constraint is active

Primal problem:

$$\min_x x^2$$
 s.t. $x > b$

Moving the constraint to objective function Lagrangian:

$$L(x, \alpha) = x^2 - \alpha(x - b)$$

s.t. $\alpha \ge 0$

Dual problem:

max
$$_{\alpha}$$
 $d(\alpha)$ \longrightarrow min $_{x} L(x,\alpha)$ s.t. $\alpha \geq 0$

Connection between Primal and Dual

Primal problem: p* =
$$\min_x x^2$$
 Dual problem: d* = $\max_\alpha d(\alpha)$ s.t. $\alpha \ge 0$

Weak duality: The dual solution d^* lower bounds the primal solution p^* i.e. $d^* \le p^*$

To see this, recall
$$L(x, \alpha) = x^2 - \alpha(x - b)$$

For every feasible x (i.e. $x \ge b$) and feasible α (i.e. $\alpha \ge 0$), notice that

$$d(\alpha) = \min_{x} L(x, \alpha) \leq p^*$$

Dual problem (maximization) is always concave even if primal is not convex

Connection between Primal and Dual

Primal problem: p* =
$$\min_x x^2$$
 Dual problem: d* = $\max_\alpha d(\alpha)$ s.t. $\alpha \ge 0$

- Weak duality: The dual solution d^* lower bounds the primal solution p^* i.e. $d^* \le p^*$
- ➤ Strong duality: d* = p* holds often for many problems of interest e.g. if the primal is a feasible convex objective with linear constraints

Connection between Primal and Dual

What does strong duality say about α^* (the α that achieved optimal value of dual) and x^* (the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT conditions) are true for α^* and x^* :

- 1. $\nabla L(x^*, \alpha^*) = 0$ i.e. Gradient of Lagrangian at x^* and α^* is zero.
- 2. $x^* \ge b$ i.e. x^* is primal feasible
- 3. $\alpha^* \geq 0$ i.e. α^* is dual feasible
- 4. $\alpha^*(x^* b) = 0$ (called as complementary slackness)

We use the first one to relate x^* and α^* . We use the last one (complimentary slackness) to argue that $\alpha^* = 0$ if constraint is inactive and $\alpha^* > 0$ if constraint is active and tight.

Solving the dual

Solving:

$$\max_{\alpha} \min_{x} x^{2} - \alpha(x - b)$$

s.t. $\alpha \geq 0$

Optimization over x is unconstrained.

$$\frac{\partial L}{\partial x} = 2x - \alpha = 0 \Rightarrow x^* = \frac{\alpha}{2}$$

$$L(x^*, \alpha) = \frac{\alpha^2}{4} - \alpha \left(\frac{\alpha}{2} - b\right)$$
$$= -\frac{\alpha^2}{4} + b\alpha$$

Now need to maximize $L(x^*,\alpha)$ over $\alpha \ge 0$ Solve unconstrained problem to get α' and then take max(α' ,0)

$$\frac{\partial}{\partial \alpha} L(x^*, \alpha) = -\frac{\alpha}{2} + b \implies \alpha' = 2b$$

$$\Rightarrow \alpha^* = \max(2b, 0) \qquad \Rightarrow x^* = \frac{\alpha^*}{2} = \max(b, 0)$$

 $\alpha = 0$ constraint is inactive, $\alpha > 0$ constraint is active and tight

n training points, d features $(\mathbf{x}_1, ..., \mathbf{x}_n)$ where x_i is a d-dimensional vector

• <u>Primal problem</u>: minimize $_{\mathbf{w},b}$ $\frac{1}{2}\mathbf{w}.\mathbf{w}$ $\left(\mathbf{w}.\mathbf{x}_{j}+b\right)y_{j}\geq1,\ \forall j$

w – weights on features (d-dim problem)

• <u>Dual problem</u> (derivation):

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2}\mathbf{w}.\mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w}.\mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

 $\alpha_{j} \ge 0, \ \forall j$

a – weights on training pts (n-dim problem)

Dual problem:

$$\max_{\alpha} \min_{\mathbf{w}, b} L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w} \cdot \mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

$$\alpha_{j} \ge 0, \ \forall j$$

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \qquad \Rightarrow \mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$

$$\frac{\partial L}{\partial b} = 0 \qquad \Rightarrow \sum_{j} \alpha_{j} y_{j} = 0$$

If we can solve for as (dual problem), then we have a solution for **w**,b (primal problem)

maximize
$$_{\alpha}$$
 $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$
 $\sum_{i} \alpha_{i} y_{i} = 0$
 $\alpha_{i} \geq 0$

Dual problem is also QP \Longrightarrow $w = \sum_i \alpha_i y_i \mathbf{x}_i$ Solution gives $\alpha_i \mathbf{s}$ What about b? Solution gives $\alpha_{\text{j}}s$

$$\mathbf{w} = \sum_{i} \alpha_i y_i \mathbf{x}_i$$

Dual SVM: Sparsity of dual solution

$$\mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$

Only few $\alpha_j s$ can be non-zero : where constraint is active and tight

$$(\mathbf{w}.\mathbf{x}_j + \mathbf{b})\mathbf{y}_j = \mathbf{1}$$

Support vectors –

training points j whose $\alpha_{j}s$ are non-zero

maximize
$$_{\alpha}$$
 $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$
 $\sum_{i} \alpha_{i} y_{i} = 0$
 $\alpha_{i} \geq 0$

Dual problem is also QP $\begin{array}{c} \mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \\ b = y_{k} - \mathbf{w}.\mathbf{x}_{k} \\ \text{for any } k \text{ where } \alpha_{k} > 0 \end{array}$

Use support vectors with $\alpha_k > 0$ to compute b since constraint is tight $(w.x_k + b)y_k = 1$

$$\mathbf{w} = \sum_i lpha_i y_i \mathbf{x}_i$$
 $b = y_k - \mathbf{w}.\mathbf{x}_k$ for any k where $lpha_k > 0$

Dual SVM – non-separable case

Primal problem:

$$\begin{aligned} & \text{minimize}_{\mathbf{w},b,\{\xi_j\}} \frac{1}{2} \mathbf{w}.\mathbf{w} + C \sum_{j} \xi_j \\ & \left(\mathbf{w}.\mathbf{x}_j + b \right) y_j \geq 1 - \xi_j, \ \forall j \\ & \qquad \qquad \xi_j \geq 0, \ \forall j \end{aligned}$$

 $\begin{bmatrix} \alpha_j \\ \mu_j \end{bmatrix}$ Lagrange
Multipliers

Dual problem:

$$\begin{aligned} \max_{\alpha,\mu} \min_{\mathbf{w},b,\{\xi_{\!j}\}} L(\mathbf{w},b,\xi,\alpha,\mu) \\ s.t.\alpha_j &\geq 0 \quad \forall j \\ \mu_j &\geq 0 \quad \forall j \end{aligned}$$

Dual SVM – non-separable case

$$\begin{aligned} \text{maximize}_{\alpha} \quad & \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}. \mathbf{x}_{j} \\ & \sum_{i} \alpha_{i} y_{i} = \mathbf{0} \\ & C \geq \alpha_{i} \geq \mathbf{0} \end{aligned}$$

$$\text{comes from } \frac{\partial L}{\partial \xi} = \mathbf{0} \qquad \begin{aligned} & \underbrace{\text{Intuition:}}_{\text{If C} \rightarrow \infty, \text{ recover hard-margin SVM}} \end{aligned}$$

Dual problem is also QP $\begin{array}{c} \mathbf{w} = \sum_i \alpha_i y_i \mathbf{x}_i \\ b = y_k - \mathbf{w}.\mathbf{x}_k \\ \text{for any } k \text{ where } C > \alpha_k > 0 \end{array}$

$$\mathbf{w} = \sum_i \alpha_i y_i \mathbf{x}_i$$

$$b = y_k - \mathbf{w}.\mathbf{x}_k$$
 for any k where $C > \alpha_k > 0$

So why solve the dual SVM?

 There are some quadratic programming algorithms that can solve the dual faster than the primal, (specially in high dimensions d>>n)

But, more importantly, the "kernel trick"!!!
 (later!)