Resumo de aula 4

1 Inversão de Funções e outras operações

Função Injetora

Dizemos que uma função f é injetora se, quaisquer que sejam s e t no seu domínio,

$$s \neq t \Longrightarrow f(s) \neq f(t)$$

Essa função é injetora.

Função sobrejetora

Dizemos que uma função é sobrejetora se, sua imagem coincide com seu contradomínio.

Essa função é sobrejetora.

Função bijetora

Dizemos que uma função é bijetora se, ela é injetora e sobrejetora.

Função Inversa

Se $f:A\longrightarrow B$ for uma função bijetora (isto é, f é injetora e B=Imf) em que y=f(x), então a função inversa de f, denotada por $f^{-1}:B\longrightarrow A$, é definida por

$$f^{-1}(y) = x \iff f(x) = y$$

Além disso, $f^{-1}(f(x)) = x$ para todo $x \in A$ e $f(f^{-1}(y)) = y$ para todo $y \in B$

Graficamente, se (x, y) é um ponto de gráfico de f, então (y, x) é um ponto de gráfico de f^{-1} ; logo, os gráficos de f e f^{-1} são simétricos em relação à reta y = x

Exemplo 1.1. Seja y = f(x) = 3x + 5. Ela é uma funç ão bijetiva de \mathbb{R} em \mathbb{R} , existe a função inversa f^{-1} , e ela é obtida isolando-se x na relação dada, isto é:

$$y = 3x + 5 \Longrightarrow x = \frac{y - 5}{3}$$

Portanto, $f^{-1}(y) = x = \frac{y-5}{3}$

Exemplo 1.2. Encontre a função inversa de $f(x) = x^3 + 2$.

Solução: $y = f(x) = x^3 + 2$. Isolando-se x na equação dada $y = x^3 + 2$,

$$x^3 = y - 2$$
$$x = \sqrt[3]{y - 2}$$

Portanto, $f^{-1}(y) = x = \sqrt[3]{y-2}$, ou seja, $f^{-1}(y) = \sqrt[3]{y-2}$.

Funções crescentes e decrescentes

Uma função é chamada de crescente em um intervalo [a,b] se $f(x_1) < f(x_2)$ sempre que $x_1 < x_2$ em [a,b]. Ela é chamada de decrescente em [a,b] se $f(x_1) > f(x_2)$ sempre que $x_1 < x_2$ em I.

Observação: Se $f:[a,b] \longrightarrow [c,d]$ é uma função crescente ou decrescente, então ela bijetora, logo admite a função inversa $f^{-1}:[c,d] \longrightarrow [a,b]$.