EXP 3: 210701144

Map Reduce program to process a weather dataset.

AIM:

To implement MapReduce program to process a weather dataset.

Procedure:

Step 1: Create Data File:

Create a file named "word_count_data.txt" and populate it with text data that you wish to analyse.

Login with your hadoop user.

Download the dataset (weather data)

Output:

Open ~	(FI)			_weather.txt ownloads		Save		ē ×
S690190		20060201_0 51.75	33.0 24	1006.3 24	943.9 24	15.0 24	10.7 24	22.0
28.9		999.9 000000						
690190	13910	20060201_1 54.74	33.0 24	1006.3 24	943.9 24	15.0 24	10.7 24	22.0
28.9	0.001	999.9 000000						
690190	13910	20060201_2 50.59	33.0 24	1006.3 24	943.9 24	15.0 24	10.7 24	22.0
28.9	0.001	999.9 000000						
690190		20060201_3 51.67	33.0 24	1006.3 24	943.9 24	15.0 24	10.7 24	22.0
28.9	0.001	999.9 000000						
690190		20060201_4 65.67	33.0 24	1006.3 24	943.9 24	15.0 24	10.7 24	22.0
28.9		999.9 000000						
690190	13910	20060201_5 55.37	33.0 24	1006.3 24	943.9 24	15.0 24	10.7 24	22.0
28.9	0.001	999.9 000000						
690190	13910	20060201_6 49.26	33.0 24	1006.3 24	943.9 24	15.0 24	10.7 24	22.0
28.9	0.001	999.9 000000						
690190	13910	20060201_7 55.44	33.0 24	1006.3 24	943.9 24	15.0 24	10.7 24	22.0
28.9	0.001	999.9 000000						
690190	13910	20060201_8 64.05	33.0 24	1006.3 24	943.9 24	15.0 24	10.7 24	22.0
28.9	0.001	999.9 000000						
690190	13910	20060201_9 68.77	33.0 24	1006.3 24	943.9 24	15.0 24	10.7 24	22.0
28.9	0.001	999.9 000000						
690190	13910	20060201 10 48.93	33.0 24	1006.3 24	943.9 24	15.0 24	10.7 24	22.0
28.9	0.001	999.9 000000						
690190	13910	20060201 11 65.37	33.0 24	1006.3 24	943.9 24	15.0 24	10.7 24	22.0
28.9	0.001	999.9 000000						
690190	13910	20060201 12 69.45	33.0 24	1006.3 24	943.9 24	15.0 24	10.7 24	22.0
28.9	0.001	999.9 000000						
690190	13910	20060201 13 52.91	33.0 24	1006.3 24	943.9 24	15.0 24	10.7 24	22.0
28.9	0.001	999.9 000000						
690190	13910	20060201 14 53.69	33.0 24	1006.3 24	943.9 24	15.0 24	10.7 24	22.0
28.9		999.9 000000						
		20060201 15 53.30	33.0 24	1006.3 24	943.9 24	15.0 24	10.7 24	22.0
28.9		999.9 000000			50,150,550 500		CONTRACTOR ATTRICT	
		20060201 16 66.17	33.0 24	1006.3 24	943.9 24	15.0 24	10.7 24	22.0
28.9		999.9 000000		200012		25.0		
		20060201 17 53.83	33.0 24	1006.3 24	943.9 24	15.0 24	10.7 24	22.0
28.9		999.9 000000	33.0 21	1000.5 21	213.2 21	15.0 21	10.7 21	22.0
		20060201 18 50.54	33.0 24	1006.3 24	943.9 24	15.0 24	10.7 24	22.0
28.9		999.9 000000	33.0 21	1000.5 21	313.3 21	13.0 21	10.7 24	22.0
		20060201 19 50.27	33.0 24	1006.3 24	943.9 24	15.0 24	10.7 24	22.0
28.9		999.9 000000	33.0 24	1300.3 24	213.2 21	15.0 27	10.7 24	22.0
		20060201 20 59.08	33.0 24	1006.3 24	943.9 24	15.0 24	10.7 24	22.0
28.9		999.9 000000	33.0 24	1000.5 27	J 13.7 LT	13.0 24	10.7 24	22.0
		20060201 21 53.05	33.0 24	1006.3 24	943.9 24	15.0 24	10.7 24	22.0
28.9		999.9 000000	33.0 24	1300.3 24	243.2 24	15.0 24	10.7 24	22.0
		20060201 22 57.97	33 0 24	1006.3 24	943.9 24	15.0 24	10.7 24	22.0
OPULPO	13310	20000201_22 31.31	33.0 24	1000.3 24	243.7 24	13.0 24	10.7 24	22.0

Step 2: Mapper Logic - mapper.py:

Create a file named "mapper.py" to implement the logic for the mapper. The mapper will read input data from STDIN, split lines into words, and output each word with its count.

```
nano mapper.py
# Copy and paste the mapper.py code
#!/usr/bin/env python
import sys
# input comes from STDIN (standard input)
# the mapper will get daily max temperature and group it by month. so output will be
(month,dailymax temperature)
for line in sys.stdin:
  # remove leading and trailing whitespace
  line = line.strip()
# split the line into
words words =
line.split()
  #See the README hosted on the weather website which help us understand how
each position represents a column month = line[10:12] daily max = line[38:45]
daily_max = daily_max.strip()
  # increase
counters for
word in words:
    # write the results to STDOUT (standard output);
    # what we output here will be go through the shuffle proess and then
    # be the input for the Reduce step, i.e. the input for reducer.py
    # tab-delimited; month and daily max temperature as output
print ('%s\t%s' % (month, daily max))
```

Step 3: Reducer Logic - reducer.py:

Create a file named "reducer.py" to implement the logic for the reducer. The reducer will aggregate the occurrences of each word and generate the final output.

```
nano reducer.py
# Copy and paste the reducer.py code
```

reducer.py

```
#!/usr/bin/env python
```

```
from operator import itemgetter
import sys
#reducer will get the input from stdid which will be a collection of key,
value(Key=month , value= daily max temperature)
#reducer logic: will get all the daily max temperature for a month and find max
temperature for the month
#shuffle will ensure that key are sorted(month)
current month =
None
current max = 0
month = None
# input comes from
STDIN for line in
sys.stdin:
  # remove leading and trailing
whitespace line = line.strip()
  # parse the input we got from mapper.py
month, daily max = line.split('\t', 1)
  # convert daily_max (currently a string) to
float
       try:
    daily max = float(daily max)
except ValueError:
    # daily max was not a number, so silently
    # ignore/discard this line
continue
  # this IF-switch only works because Hadoop shuffle process sorts map output
  # by key (here: month) before it is passed to the
reducer if current month == month:
                                           if
daily max > current max:
                                 current max =
daily max
             else:
                       if current month:
       # write result to STDOUT
       print ('%s\t%s' % (current month, current max))
current_max = daily max
    current month = month
# output of the last month if current month
== month: print ('%s\t%s' %
(current month, current max))
```

Step 4: Prepare Hadoop Environment:

Start the Hadoop daemons and create a directory in HDFS to store your data.

start-all.sh

Step 6: Make Python Files Executable:

Give executable permissions to your mapper.py and reducer.py files.

chmod 777 mapper.py reducer.py

Step 7: Run the program using Hadoop Streaming:

Download the latest hadoop-streaming jar file and place it in a location you can easily access.

Then run the program using Hadoop Streaming.

hadoop fs -mkdir -p /weatherdata

hadoop fs -copyFromLocal /home/sx/Downloads/dataset.txt /weatherdata

hdfs dfs -ls /weatherdata

hadoop jar /home/sx/hadoop-3.2.3/share/hadoop/tools/lib/hadoop-streaming-3.2.3.jar \

- -input /weatherdata/dataset.txt \
- -output /weatherdata/output \
- -file "/home/sx/Downloads/mapper.py" \
- -mapper "python3 mapper.py" \
- -file "/home/sx/Downloads/reducer.py" \
- -reducer "python3 reducer.py"

hdfs dfs -text /weatherdata/output/* > /home/sx/Downloads/outputfile.txt

Step 8: Check Output:

Check the output of the program in the specified HDFS output directory.

Result:

Thus, the program for weather dataset using Map Reduce has been executed successfully.