

MAINTENANCE N

MANUAL

maintenance-AD-4323-v.1.c 89.09.30 OYM

CONTENTS

Warranty, FCC Rules	Page	2
Specifications	Page	3
General	Page	7
Method	Page	7
A/D Coverter	Page	8
Block Diagram	Page	9
Software Flow Chart	Page	10
Main Routine Flow Chart	Page	11
Calibration Flow Chart	Page	12
Front Panel Description	Page	13
Rear Panel Description	Page	16
Self-Check Mode	Page	17
Check Mode	Page	18.
Entering the Check Mode	Page	18
Setpoint Input Pins A-5~A-8	Page	18
Setpoint Input Pins A-9~A-12	Page	18
Setpoint Input Pins B-1~B-4	Page	19
Setpoint Input Pins B-5~B-8	Page	19
Control I/O Interface Check	Page	19
Front Panel Key Switch Check	Page	19
Options Check	Page	20
Non-Volatile Memory Check	Page	20
Power Board Check	Page	21
Initialization	Page	22
Setting to Meet Individual Regulation	Page	23
Circuitry	Page	25
A/D Control Circuit	Page	26
Waveform Check	Page	27
Watchdog Circuit	Page	27
I/O Circuit	Page	28
Setpoint Circuit	Page	28
IC6 Circuit	Page	29
Keyboard Circuit Diagram	Page	30
Display Board Diagram	-	31
Main Board Circuit Diagram	Page	32
Dimensions	_	
Diagrams	nnend	احمد

WARRANTY

Warranty rights vary from country to country but it is the general intention of A&D Co., Ltd., to offer customers a one year warranty on this product from the day it is purchased. In some countries consumer protection legislation states that your dealer is responsible for offering a warranty and under these circumstances please refer to your local dealer.

In the U.S.A. the product (if defective) should be returned, freight prepaid by the customer, to A&D Engineering Inc. in California and in Europe the product can be returned freight prepaid to A&D Instruments GmbH in Frankfurt, West Germany. Elsewhere the product can be returned to A&D Co., Ltd. in Japan. In any event please contact your nearest A&D office, before shipping, to confirm that the product is covered by this warranty. Simple repairs can be carried out by your local dealer under warranty and this may be the fastest method of solving your problem.

This warranty only applies to product failures due to defective materials and/or workmanship. This warranty will be rendered invalid if, upon inspection, it is found that the product was: Abused; used for a purpose for which it was not designed; mishandled; placed in a hostile environment; repaired by unauthorized personnel; improperly installed or not adjusted in accordance with instructions given in this manual. If repair under warranty is confirmed by A&D, then the product will be repaired (or replaced, at the discretion of A&D) and then returned to the customer at no extra cost.

COMPLIANCE WITH FCC RULES

Please note that this equipment generates, uses and can radiate radio frequency energy. This equipment has been tested and has been found to comply with the limits of a Class A computing device pursuant to Subpart J of Part 15 of FCC rules. These rules are designed to provide reasonable protection against interference when equipment is operated in a commercial environment. If this unit is operated in a residential area it might cause some interference and under these circumstances the user would be required to take, at his own expense, whatever measures are necessary to eliminate the interference.

(FCC = Federal Communications Commission in the U.S.A.)

SPECIFICATIONS

■ ANALOG INPUT and A/D CONVERSION

Input Sensitivity	up to 0.6μV/D (D="min. division" or "graduation")
ZERO Adjustment Range	0.35mV~24mV
Max. Load Cell Input Volt.	36mV
Load Cell Excitation	12V DC ± 5% 280mA
ZERO Temperature Comp.	±(0.2μV + 0.0008% of Dead Load)/°C TYP
Span Temperature Comp.	± 0.0008% / °C TYP
Non-Linearity	0.01% F.S.
Input Noise	± 0.3μV _{p-p}
Input Impedance	10 ΜΩ
A/D Conversion Method	3 phase, true integrating dual-slope type
A/D Resolution	96,000 Counts Max.
A/D Conversion Rate approx. 70 times/second (14 m sec/conversion)	

■ DIGITAL SECTION

Weighing Display	High intensity 7-segment, cobalt-blue fluorescent	
Display Height	13mm (¹ / ₂ ")	
Minimum Division	times 1, x2, x5, x10, x20, x50	
Maximum Display	"+500450	
Under ZERO Indication	"" minus sign	
"ZERO" ▼ Annunciator	Center of ZERO (0±0.17D)	
"MD" ▼ Annunciator	Motion Detection	
"GROSS" ▼ Annunclator	GROSS Mode	
"NET" ▼ Annunciator	NET Mode	
"TARE ENTERED" ▼ Annun.	Tare has been entered	
"lb" ● Annunciator	Pounds Displayed (lb or kg version)	
"kg" ● Annunciator	Kilograms Displayed	
"t" ● Annunciator	Tonne Displayed (kg or t version)	
STANDBY / OPERATE KEY	Activates display and functions.	
ZERO Key	ZERO's the Display when stable.	
TARE Key	Tare when stable - in NET mode, display ZERO.	
GROSS / NET Key	Changes from "GROSS" to "NET" and vice versa.	
PRINT Key	Send print command to printer via current loop OP-01 or OP-04.	

☐ GENERAL

Power Requirements	100,115,220,240V AC +10%,-15% 50/60Hz	
NET Weight	Approx. 3kg (6.6lb)	
Operating Temperature	-5°C to 40°C (23°F to 104°F)	
Maximum Humidity	85% (non-condensing)	
Physical Dimensions	192(W)x187(D)x96(H)mm 7.56"x7.36"x3.78"	
Memory Battery Back-up 6 years or more without AC power (lithium).		

☐ STANDARD ACCESSORIES

	quantity
Load Cell Connector	1
Serial Outlet Connector	1
Setpoint Connector	1
Control I/O Connector	1
Fuse: 100 or 120 V AC = 0.5A; 220 or 240 V AC = 0.3A	1
Power Cable	1
Capacity Sticker	1
Rubber Feet	4

OPTIONS

Option OP-01	Parallel BCD (Binary-Coded-Decimal) output (DATA OUT). Output data: weight, NET/GROSS, MD Decimal point, lb, kg, (t), print trigger, overload.
Option OP-04	Serial Interface. Two types of serial interface are available with this option: 1) EIA-RS-232C, with or without handshake. 2) 20mA current loop (passive). Baud Rate & Format are identical to RS-232C.
Option OP-05	Setpoint Unit. Independent unit in separate metal casing. The unit can be directly interfaced via an attached cable and connector. Final Weight (Target), Free Fall, Preliminary Weight (cut-off point), and High/Low Limit.
Option OP-07	Analog output (current).

☐ WEIGHT CONVERSION TABLE

One kg = 2.204 62 lb(avoir) approximately.

One lb = 0.45359kg.

One t = tonne 1,000kg (Metric Ton) or 2,204.62 lb approximately.

= ton, long: (20 cwt) 2,240 lb or 1,016.05kg approximately.

= ton, short: 2,000 lb or 907.18kg approximately.

tun 216 imp. gal. (ale), 252 imp. gal. (wine). "weight"=volume x density. One imp. gal. of distilled water at 62°F=10 lb=4.536kg but also equals about 4.546 liters/dm³/kg at 4°C. One liter of water at 4°C equals 1kg. One US gal. is about 5/6 of an imp. gal. or about 3.785 liters.

■ F-FUNCTIONS and SETTINGS

F 01	Decimal Point Adjustment	Displays to 1,2,3 or 4 decimal places.	
F 02	Weighing Unit Selection	"kg"↔ "t" (Not USA version)	
F 03	Display Update Rate	17 times/sec, 4 times/sec.	
F 04	Digital Filter	Week ↔ Strong.	
F 05	Set ZERO Range	2% or 10% of Maximum Capacity.	
F 06	Motion Detection Condition	0.5 sec, 1 count → 1 sec, 9 counts	
F 07	Auto, ZERO Track, Comp.	1 sec, .5 division → 2 sec, 4.5 division	
F 08	Holding Mode	Normal Hold, Peak Hold	
F 09	Comparison Result Output	Normal Output, Locked w/ Display	

□ For Batch Weighing

F 10	Pulse Width of FINISH signal	0.1 sec → 2.0 sec
F 11	ZERO Band	Selectable (enter weight)
F 12	Optional Preliminary Weight	Selectable (enter weight)
F 13	Timer - Comparator Inhibiter	0.1 to 2.0 seconds or Disable.
F 14	Automatic Free Fall Comp.	Set Weight or Disable.
F 15*	Measurement Mode	Normal, Loss-in Batching. *When F-70="0"
F 15*	Comparison Mode	Modes 1→5. *When F-70="1".
F 16	TARE & ZERO keys Availability	Stable or Always Working (Not USA version).
F 17	TARE key Availability	Avail., N. A. at Minus Gross (Not USA version)
F 18	Timer - Finish Signal	Set between 0.1 sec. and 9.9 sec.
F 19	N. A.	N. A.

☐ Front Panel Keys

F 20	Panel Key Disable Selection	Enable/Disable Selection (Not USA version)

				· ·	
	☐ For Standard Current Loop				
	F 21	Bau	d Rate	600, 2400 Baud.	
	.F 22	Outp	out Data	Display, GROSS, NET, Tare or Gross+Net+Tare	
	F 23	Outp	out Mode	Stream, Auto Print, PRINT key.	
	F 24	Outp	out Availability	Always Available, or Stable Only	
	F 25→	30	N. A.		
	□ For BC	D Opt	ion OP-01		
	F 31	Out	out Data	Display, GROSS, NET, or Tare Data.	
	F 32	Out	out Mode	Stream, Auto Print, PRINT Key.	
	F 33	Out	put Logic	Positive Logic, Negative Logic.	
Į	F 34→	40	N. A.		
	□ For Se	rial Int	erface Option OP-04		
	F 41	Bau	d Rate	600, 1200, 2400, 4800, 9600.	
	F 42	Out	put Data	Display, GROSS, NET, Tare or Gross+Net+Tare Data (also update rates).	
	F 43	3 Output Mode		Stream, Auto Print, Print Key, Command.	
l	F 44 Output Availability		put Availability	Always Available, Only when Stable	
	F 45→50 N. A.				
	□ For A	nalog (Option OP-07		
	F 51 Analog Output Data		alog Output Data	Display, Gross, or Net Data.	
	F 52	Out	put current at display ZERO	0.0mA through 99.9mA.	
	F 53	Out	put current at Full Scale	0.0mA through 99.9mA.	
	F 54-	÷60	N. A.		
	□ For C	heck V	Veighing		
	F 61	Hig	h High Limit Weight	Input the Weight.	
	F 62	Hig	h Limit Weight	Input the Weight.	
	F 63	Lov	w Limit Weight	Input the Weight.	
	F 64	Lov	w Low Limit Weight	Input the Weight.	
	F 65-	→69	N. A.		
	☐ Weighing Mode				
	F 70	We	eighing Mode	Batch Weighing, Check Weighing	

GENERAL

The AD-4323 is a high speed weighing indicator which amplifies the analog output from a Load Cell(s) and converts this to digital data, displaying it as a weight value. It has high speed sampling at 70 times per second, with equally high accuracy of 1/10,000.

Standard and optional features include I/O's for Batch Weighing, and interfaces for External controllers and instruments. FDCTM (Full Digital Calibration) calibrated ZERO and SPAN values are stored in non-volatile memory, and setting data is written in memory with a battery back-up.

Watchdog circuitry protects unexpected movement of the indicator. WATCHDOGTM circuitry virtually eliminates malfunctions commonly associated with computerized equipment, protecting against unexpected software crashes of the indicator. And, the unit is screened against RFI (Radio Frequency Interference).

METHOD

A Load Cell works by detecting stress in a spring element using strain gauges that have been bonded to the upper and lower surfaces, forming a Wheastone Bridge circuit.

When the Wheastone Bridge circuit is supplied excitation voltage by the indicator, the resulting voltage output becomes the indicator's measurement input.

When weight is applied, the force causes the Load Cell to bend, causing an elongation/contraction relationship (Hooke's Law). The strain gauges measure the stress and the resulting output is directly proportional to the applied force.

The output is then amplified, converted to a digital signal by an A/D converter and then used to calculate and display the weight.

A/D CONVERTER

Weighing indicators are designed to amplify the analog output from a load celll, convert the analog signal to digital data and then display this data as a weight reading. This weighing indicator employs a highly accureate dual slope A to D conversion method.

Integrator output slope is constant with respet to time. Dual-slope converter measures time taken for output to reach zero volts. Small input B-Short T2, Large input A-Long T3 time.

BVin = T2/T1x(Vref)

BLOCK DIAGRAM

Analog Section The analog unit is encased in an aluminum casing to protect the unit from electronic noise. The analog unit takes the analog output from the load cells, amplifies it and converts it into a digital signal.

2 Logic Section

The digital signal from the analog unit is processed by a 8 bit CPU, passed through a digital filter, and processed to the proper span vector.

The 20mA Current Loop output, the RS-232C output, and the BCD output data will be transferred by the 8 bit CPU as serial data. The key switch settings, slide switch and the digital switches will all be read by the the 8 bit CPU.

The display data, comparator output and the output data, are transferred to the 4 bit CPU.

The calibrated ZERO and SPAN values, plus function settings, are stored in nonvolatile memory.

O Power and Interface Section

The power unit supplies 5V DC for the main logic excitation voltage for the load cell(s), and AC voltage for the fluorescent display.

The interface unit contains the conversion circuits for the Current Loop, Set Point and Control I/O.

Key Units

Six key switches and diodes.

SOFTWARE FLOWCHART

MAIN ROUTINE FLOWCHART

CALIBRATION FLOWCHART

FRONT PANEL DESCRIPTION

The STANDBY/OPERATE Key

This key switches the unit between STANDBY and OPERATE mode. While in STANDBY mode - the display will go OFF and all data output will stop. The power cord must be removed to disconnect power to the AD-4323.

The ZERO Key

The ZERO key returns the display to the center of ZERO when the weighing device is empty (user selected within ±2% or 10% of the maximum capacity), and motion is not detected (MD annunciator is not on). It should not be confused with the TARE key which re–ZERO's the display and switches to NET mode.

The TARE Key

The TARE key switches to NET mode, ZERO's the display, stores the TARE weight in memory (if motion is not detected) and the TARE ENTERED Annunciator will light.

Maximum TARE value is Max. Capacity, regardless of the decimal point position (if any). Max. Capacity is also the maximum display value which can be stored as TARE when in GROSS mode.

The NET/GROSS Key

The **NET/GROSS** key switches between the two modes. The annunciators and display will alternate between NET and GROSS.

The PRINT Key

The **PRINT** key transmits to printer via Option OP-01 (BCD output) or Option OP-04 (RS-232C interface) and Standard Current Loop.

The ZERO Annunciator triangle will appear when the display is showing the center of ZERO.

The MD (Motion Detection) Annunciator triangle will appear when the display is unstable due to weighing device motion.

The GROSS Annunciator triangle will appear when the display is in the GROSS mode, the display showing the GROSS weight.

The **NET** Annunciator triangle will appear when the display is in the NET mode, the display showing the NET weight.

The **TARE ENTERED** Annunciator triangle will appear when a TARE weight has been entered.

The **Ib** Annunciator light will appear when the AD-4323 is in the pound weighing mode - the displayed weight is in pounds. *note:* Ib/kg version only (USA).

The kg Annunciator light will appear when the AD-4323 is in the kilogram weighing mode - the displayed weight is in kilograms.

t ((()

International version only

The t Annunciator light will appear when the AD-4323 is in the tonne weighing mode - the displayed weight is in tonne. *note:* International version only.

There are three dip-switches behind the front panel (removed by the Front Panel Cover Screw).

There are three dip-switches behind the front panel (removed by the Front Panel Cover Screw).

There are three dip-switches behind the front panel (removed by the Front Panel Cover Panel Cover Screw).

- Mode (see p.76).2) Dip-switch no. 2 moves the AD–4323 into Calibration Mode.
- 3) Dip-switch no. 3 moves the AD-4323 into F-Function Mode.
- In the space provided, the owner should mark the AD-4323's set weighing (max.) capacity, and minimum division.
- SEC. In the space provided, the owner should mark the AD-4323's section weight specification.

To Clear ZERO and TARE Memories

To clear the ZERO and TARE memories: Start with the display OFF. Press and hold the TARE key. While holding the TARE key, press the STANDBY/OPERATE key.

REAR PANEL DESCRIPTION

- Load Cell connector.
- ② Ib ↔ kg switch (USA version) or front panel keys enable ↔ front panel key disable switch (International version).

	Mode	USA	International
1	0 0 1 MODE 2	ib weighing	Disable Front Panel Keys
2	O O 1 MODE 2	kg weighing	Enable Front Panel Keys

Fuse Holder
 (screw counter-clockwise for re-

	Line Voltage	Fuse
'	AC 100V ~120V	0.5A
	AC 220V ~240V	0.3A

- Three prong Power Connector with ground.
- Setpoint Connector. To connect with Option OP-05 or similar setpoint device.
- **6** Control I/O Connector. To connect with weighing equipment accepting control signals.
- Current Loop Serial Outlet Connector for Printer, external display.
- **③** Optional OP-07 Analog Output Connector. 4→20mA.
- Optional OP-01 Parallel Binary-Coded-Decimal BCD Output Connector. Open-collector output.
- Optional OP-04 Serial Interface Connector. Two types of serial interface are available with this option: 1) EIA-RS-232C. 2) 20mA current loop (passive).

SELF-CHECK MODE

Step 1.

Slide the left dip-switch (check)
 ONfi.

The display will come ON with all characters lit.

.

The display will blank during a RAM check, followed by;

- The Setpoint FINAL Value in memory will be displayed ("XXXXX" here denotes the value), followed by;
- The Setpoint FREE FALL Value in memory will be displayed, followed by;
- The Setpoint PRELIM Value in memory will be displayed, followed by;
- The Setpoint OVER Value in memory will be displayed, followed by;
- The Setpoint UNDER Value in memory will be displayed, followed by;

or "I" if a connection, (CONTROL I/O, or OP-04) will be displayed, followed by;

3 /

Step 2.

A "i" will appear when the front panel switches are pressed - indicating a good switch. •Press each key in turn, if the display does not change, then the key switch is bad.

Step 3.

•Slide the left dip-switch (check) OFF↓.

The internal A/D SPAN value will be shown, followed by;

End

"End" will be displayed for a couple of seconds, and then the display will return to normal.

CHECK MODE

Entering the Check Mode

- Step 1. With the AC power OFF, set the MODE switch on the rear panel to MODE 2.
- Step 2. Set all three front dip-switches to OFF.
- Step 3. Press and hold key switch **5** & **6**.and supply AC power.

- Step 4. For a couple of seconds the display will flash the internal count number of the analogue unit. Simultaneously, the two LED's will flash as the I/O B1→B8 sequentially sends data.
- Step 4. You may go to any of the following sections to check a particular function. The checks do not have to be done in any particular order. See the LEAVING THE CHECK MODE section when you have finished checking the desired function.

Setpoint Input Pins A-5→A-8 (Final 10⁰→10³)

- Step 5. Slide dip-switch 1 ON, switches 2 & 3 OFF.
- Step 6. Pins $A-5 \rightarrow A-8$. The display should correspond to the first four FINAL digits settings on the setpoint unit $(10^0 \rightarrow 10^3)$.

S etpoint Input Pins A-9→A-12 (Final 10⁴, Free Fall 10⁰→10²)

- Step 5. Slide dip-switches 1 & 3 OFF and 2 ON.
- Step 6. Pins A-9→A-12. The display should correspond to the fifth FINAL digit(10⁴) and the three FREE FALL digits (10⁰→10²).

Setpoint Input Pins B-1→B-4 (Prelim. 100→103)

- Step 5. Slide dip-switches 1 & 2 ON and 3 OFF.
- Step 6. Pins B-1 \rightarrow B-4. The display should correspond to the four PRELIM digits ($10^{0}\rightarrow10^{3}$).

Setpoint Input Pins B-5→B-8 (Hi 100,101 Lo 100,101)

- Step 5. Slide dip-switches 1 & 2 OFF and 3 ON.
- Step 6. Pins **B-1\rightarrowB-4.** The display should correspond to the two HI digits $(10^0\rightarrow10^1)$ and the two LO digits $(10^0\rightarrow10^1)$.

Control I/O Interface Check

Display/Pin Representation

- Step 5. Slide dip-switches 1 & 3 ON and 2 OFF.
- Step 6. Individually short the CONTROL I/O pins, if the pin is good, the corresponding display digit will go from "O" to "1". For example if you short pin A1, the last display digit should got to "1"

NOTE:

Throughout this check, the display will correspond to the CONTROL I/O pins as shown above.

If option OP-04 is installed, the first display digit will show "1" instead of "0".

Front Panel Key Switch Check

Display/Key Switch Representation

Step 5. Slide dip-switches 1 OFF and 2 & 3 ON.

Step 6. Press each key switch on the front panel to check, if the switch is good, the corresponding display digit will go from "0" to "1". For example, if you press key switch 6, the last display digit should got to "1"

Options Check

Step 6. If you slide all of the dip-switches ON, "OPtion" will be displayed. Unfortunately, this check requires special equipment – send to your A&D dealer if required.

Non-Volatile Memory Check

Step 1. Slide all the dip-switches ON.

Step 2. Set the MODE switch on the rear panel to MODE 1.

Step 5. The display will flash "FFFF", "AAAA", "5555", "0000"

Step 5. If everything is correct "Good" will be displayed.

Power Board Check

Disassemble the main board from the case, then the front panel board from the main board.

The front panel board from the main board must remain connected. Make sure that the main board is resting on non conductive material.

The transformer should be connected with the commercial voltage. The AD-4323 can be connected to AC 100V, 120V, 200V, 220V or 240V via the two brown and one blue cables from the transformer. The connections are shown at left.

Connect to Power, and check the voltages:

TP1	to	P51	DC 5V ±5%
TP1	to	P50	DC -24V→ -29V
TP1	to	J2(10)	DC 12V ±5%
TP2	to	U6(24)	DC 5V ±5%
J6(A8) to	DF5(1)	DC 6V→7.5V
P46	to	P47	AC 3.0V →3.6V
J4(7)	to	J4(8)	AC 16.2V →21.6V

Number in parenthesis are the connector pin numbers. The voltages are obtained using commercial voltage. If the supplied voltages are quite different form the figures, check the transformer connection.

When the voltages are low, check the chip temperature, to see if they are abnormal.

DO NOT SHORT PINS WHEN CHECKING THE VOLTAGE.

INITIALIZATION

This is a procedure to Initialize the AD-4323 in two parts. Steps 1-4 stores all initialization data *except for* Calibration data. Step 5 accepts the CAL data (Zero CAL, MD, Max. Cap., & Span CAL). Please read the entire procedure before starting.

- Step 1. With the power disconnected Press and hold key switches 1 and 3.
- Step 2. Plug in the power. "8.8.8.8.8.8" will be displayed.

- Step 3. While holding key switch 1, press key switch 2.
- Step 4. Release both. "init" will be displayed. Initialization information excluding CAL is now accepted.

- Step 5. Quickly (you only have a couple of seconds) press and release key switch 6 while "init" is still being displayed. If you miss it start over.
- NOTE "initALL" will be displayed. Release both. All initialization information including CAL is now accepted.

SETTING TO MEET INDIVIDUAL REGULATION

This is a procedure to set for meeting the approval of specified countries listed below.

Display	Country
JRPAn	JAPAN
OUEr5ER	International
RUSEr 13	Australia
HO I Idnd	Holland
n2 L∃nd	New Zealand
SouthAF	South Africa
USA	U.S.A.

oPlease perform following preparation prior to the setting.

- 1. AC power OFF.
- 2.Set the mode switch at the rear panel to MODE 2.

 While pressomg Zero and Tare key, connect the power line.
 All segment will be turned on.
 Remove fingers from two keys at the same time.

2)Press key twice immediately.

3)Then press PRINT key for 3 times immediately.

4) Display shows "version" for 2 seconds.

5)Select the desired country which you need by using and PRINT kev. If display shows "V Err" please press key first, then reselect the country by pressing and RIM keys

6)After select the desired country, press key. Then all t will be displayed.

7)To escape from this mode, press key again. This selection of country will be written into non-volatile memory and return to normal mode.

CIRCUITRY

318

A/D Control Circuit

- A 8 bit CPU controls the A/D converter (please see to the following wave form diagram).
- ☐ The IC 5 is an open connector (7406), the input side TTL's output level is 0-12V.
- ☐ The COMP input level is 0-5V.
- ☐ When the front Dip-switch no. 1 is turned ON, the the waveform ☐HECK will turn from HI to LO.

The Watchdog circuit chip monitors the power supply voltage. When the power is turned ON, it generates the power-on reset until the supply voltage becomes adequate.

It also resets if the clock inputs are longer than expected, i.e. contains a Watchdog timer.

As the outputs are opencollectors, it is necessary to provide an external power supply and registers to check them.

Setpoint Circuit

The IC6 circuit generates the pulses to select a bit of the digital switches. As the outputs are open-collectors, it is necessary to provide an external power supply and registers to check them.

PARTS LIST

AD4323A DISPLAY BOARD

CIRCUIT SYMBOL OR DRWG. NO.	PARTS NAME	DESCRIPTION	Q'TY
ON DINIS. NO.	7PZ:2074	DISPLAY BOARD FULLY ASSEMBLED	1
	PC:2074	 PRINTED CIRCUIT BÖARD	1
	CC:0.022U	CAPACITOR 0.022 µF 50V	10
C 1,3	CT:1A4R7	CAPACITOR 4.7 µF 10V	2
C 2	CT:1D2R2	CAPACITOR 2.2 µF 20V	2
D 1,2	DL:TLUG144	LED	2
D 3	DZ:0529.1	ZENER DIODE	1
	ED:F1P7B13	DISPLAY TUBE	1
	J[:1-163740-9	CONNECTOR	3
(011)	JS:10328-01-445	SOCKET 28PIN	1
J 1	JT:172429-8	CONNECTOR	1
Q 1	QT:C1815Y	TRASISTOR	1
R 11	RC:NAT1M	RESISTOR 1MΩ 1/4W	1
R 7	RC:NAT68K	RESISTOR 68KΩ 1/4W	1
R 1,2	RC:10K	RESISTOR 10KΩ 1/4W	2
R 3,4	RC:560R	RESISTOR 560Ω 1/4W	2
R 8,9	RN:IHR-6-104JA	RESISTOR NETWORK	2
R 5,6,10	RN: IHR-8-223MA	RESISTOR NETWORK	3
S 1~3	SS:2NB2X2AG	SWITCH	3
TP 1	TM:CP-10	TEST PIN	- 1
U 3	UC:D78C10G-1B	CMOS	1
U 11	UC:HCU04	cmos	1
ប 8	UC:HCOO	CMOS TC74HC00P	1
U 12	UC:HC04	CMOS TC74HCO4P	1
U 9	UC:HC08	CMOS TC74HC08P	1
U 10	UC:HC32	CMOS TC74HC32P	1
บ 13	UC:HC4520	CMOS TC74HC4520P	1
U 5	UC:HC540	CMOS TC74HC540P	1
	UC:HC573	CMOS TC74HC573P	1
U 1	UC:RP93C46	EEPROM	1
ሀ 7	UC:5518CFL	CMOS TC5518CFL-15	1
	UC:7516HG595-12	СРИ	1
X 1	XT:C4SB-12M-L02	CERAMIC 12MHz	1
1		1	

A D 4 3 2 3 A M A I N B O A R D

CIRCUIT SYMBOL	PARTS NAME	DESCRIPTION	O Z TV
OR DRWG. NO.	FOILIS MAINE	DESCRIPTION	Q'TY
	7PZ:2075	MAIN BOARD FULLY ASSEMBLED	
C 1,2	CC:0.01U500V	CAPACITOR 0.01 µF 500V	2
C 19,20	CC:0.022U	CAPACITOR 0.022 µF 50V	2
C 5,6,10,11	CC:0.1U25V	CAPACITOR 0.1 µF 25V	6
C 16	CC:100P	CAPACITOR 100pF 50V	1
C 12	CK:SM16VB470	CAPACITOR 470 µ F 16V	1
C 8,18	CK:SM25VB22	CAPACITOR 22 µF 25V	2
C 4,9	CK:SM25VB2200	CAPACITOR 2200 µF 25V	2
C 14	CK:SM50VB10	CAPACITOR 10 µF 50V	1
C 13	CK:SM50VB100	CAPACITOR 100 µ F 50V	1
C 7	CK:9117	CAPACITOR 4700 µF 35V	1
C 17	CM:E1474KN	CAPACITOR 0.47 µF 100V	1
C 3	CM:6003104K	CAPACITOR 0.1 µF 600V	1
DF 3,4	DF:PS-2403-2	PHOTO COUPLER	2
DF 1,2,5~7	DF:PS-2403-4	PHOTO COUPLER	5
D 1~3	DI:W02	DIODE BRIDGE	3
D 4~6	DI:184842	DIODE BRIDGE	3
D 7,24	DI:1SS97	DIODE	2
D 8~22	DI:1S1588	DIODE	15
D 23	DZ:05Z5.6	ZENER DIODE 5.6V	1
	EB:CR2032-WT12	LITHIUM BATTERY	1
·	FH:FH-B02	FUSE HOLDER	1
	FS:F7142-0.5A	FUSE 0.5A	1
J 5	JA:4470-01-1111	CONNECTOR	1
	JI:360A2	CONNECTOR	3
J 6	JI:365P016-AG	CONNECTOR	1
J 7	JI:365P024-AG	CONNECTOR	1
·	JS:NC-174	SOCKET	1
J 2	JT:1-171825-2	CONNECTOR	1
J 3	JT:1-172429-2	CONNECTOR	1
J 4	JT:172429-8	CONNECTOR	1
	JT:61134-1	CONNECTOR	1
	KO:280A-08BR	CONNECTOR CABL	2
L 1,2	LL:SF-T8-40S	COIL	2
	QA:AC256-1674	INSULATING PLATE	3
			<u>i</u>

AD4323A MAIN BOARD

CIRCUIT SYMBOL	PARTS NAME	DECOMPT IN	
OR DRWG: NO.	PHATS WHITE	DESCRIPTION	Q'TY
	7PZ:2075	MAIN BOARD FULLY ASSEMBLED	
	QA:AC316A	PLATE GROMMET	3
Q 1~3	QT:C1815Y	TRANSISTOR	3
R 12~18,28~33	RC:1K	RESISTOR 1KΩ 1/4W	13
R 5,35	RC:10K	RESISTOR 10KΩ 1/4W	2
R 19~27	RC:2.7K	RESISTOR 2.7KQ 1/4W	9
R 7	RC:22K	RESISTOR 22KΩ 1/4W	2
R 2	RC:27R	RESISTOR 27 Q 1/4W	1
	RC:330R	RESISTOR 330Ω 1/4W	1
R 3,4,6,8	RC:4.7K	RESISTOR 4.7KΩ 1/4W	4
R 1	RC:470R	RESISTOR 470Ω 1/4W	1
R 11	RC:680R	RESISTOR 680 \Q 1/4₩	1
R 9,10	RC:82R	RESISTOR 82Ω 1/4W	2
R 36,37	RN: IHR-4-182KA	RESISTOR NETWORK	2
R 34,38,39	RN:1HR-4-472MA	RESISTOR NETWORK	3
	SS:SW-16	SWITCH	1
	TF:328	TRANSFORMER	1
TP 1,2	TM:CP-10	TEST PIN	2
U 1	UA:MB3773PS-G	-	1
U 2,3	UA:TD62003AP	TRANSISTOR NETWORK	2
U 7,9	UR:TA78005AP	REGULATOR	2
U 8	UR:78M12H	VOLTAGE REGULATOR	1
U 5	UT:06	TTL SN7406N	1
U 6	UT:159	TTL SN74159N	1
	01:A34778A	REAR PANEL	1 . 1
	02:A48921	BLAN PANEL	1 1
•	04:A49263	BLAN PANEL	1
	05:A40055	SPACER 19mm	1
	05:A42206	ANTI-TAMPER FIXING SCREW 3mm	1
	05:A49401		1
	07:A48927		2
1	~	·	

A D 4 3 2 3 K E Y B O A R D

KEY BOAR CIRCUIT SYMBOL OR DRWG. NO.	PARTS NAME	DESCRIPTION	Q'TY
D 1~6	7PZ:2076 DI:1S1588	KEY BOARD FULLY ASSEMBLED DIODE	6
S 1~6	K0:440-8S15 SK:KHC10902	CONNECTOR CABLE SWITCH	6
		•	
÷			
· · · · · · · · · · · · · · · · · · ·			

