

CM12002 Computer Systems Architectures

Data Representation

Fabio Nemetz

Binary System

Convert the binary number 101101001 to decimal.

1	0	1	1	0	1	0	0	1
28	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	20
256	128	64	32	16	8	4	2	1

256 0 64 33	0 8	0 0	1
-------------	-----	-----	---

$$256 + 64 + 32 + 8 + 1 = 361$$

$$101101001_2 = 361_{10}$$

Homework: convert 11101₂ to decimal

Binary System

Convert the decimal number 241 to binary.

Find the largest power of 2 that is lower than the number.

128

Result: 11110001

Homework: convert 165 to binary

Powers of 2

0
$2^9 = 512$
$2^{10} = 1024$
$2^{11} = 2048$
$2^{12} = 4096$
$2^{13} = 8192$
$2^{14} = 16384$
$2^{15} = 32768$
$2^{16} = 65536$

Binary System

Addition

The binary system

A binary digit (0 or 1) is called a bit

We can easily imagine that if we were operating with a system whose elements were built with two-state devices, we could use the two states of a collection of devices to encode a number in binary representation.

This is exactly what happens in computer systems!

More about numeration systems

The elements of the numeration system are that:

- as many digit symbols as the base are needed;
- the decimal system's base or radix of ten, the cardinal number of standards in the basic set, is denoted by '10';
- place values increase from right to left in successive powers of the base (a positional system);
- addition is used to make up a number consisting of combinations of digits and multiplication is used to make up the number represented by a digit in a specific place;
- there is an agreed starting point (the 'unit' place); and
- a point is used to denote this place.

More about numeration systems

Numeration for non-integer numbers

We can extend symmetrically to the right of the point:

E.g. the number 179.32 can be computed as:

$$(1 \times 10^2) + (7 \times 10^1) + (9 \times 10^0) + (3 \times 10^{-1}) + (2 \times 10^{-2})$$

More practice (check results with your classmates):

Convert 255 to binary.

Convert 10101010 to decimal.

Plus:

Homework: convert 11101, to decimal

Homework: convert 165 to binary

Next time:

- How is data stored in memory
- representing and storing signed integers in binary.

Additional material

Videos

- http://www.youtube.com/watch?v=hacBFrgtQjQ
- http://www.youtube.com/watch?v=5sS7w-CMHkU

Book

Code: The Hidden Language of Computer Hardware and Software Book by Charles Petzold