New York Times Web Analytics

September 21, 2014

1 Introduction

We are presented with the web log of the **New York Times** Website containing information about the number of advertisements the users are exposed to (**Impressions**), and the number of advertisements those users click through to (**Clicks**).

The goal is to understand how different factors affect a user clicking through an advertisement. These factors include the number of **impressions**, **gender**, **age** and whether the user is **signed in**.

To start with, here is how the data looks like

Out[80]:		Age	Gender	Impressions	Clicks	${\tt Signed_In}$
	0	36	0	3	0	1
	1	73	1	3	0	1
	2	30	0	3	0	1
	3	49	1	3	0	1
	4	47	1	11	0	1

[5 rows x 5 columns]

2 Analysis

Let's get an idea how the distribution of the data looks like \dots

Out[5]: <matplotlib.axes._subplots.AxesSubplot at 0x10c1426d0>

Impressions looks like a Gamma distribution

Out[6]: <matplotlib.axes._subplots.AxesSubplot at 0x112580950>

Obviously we have a bunch of people with ${\bf age}~{\bf 0}$

Out[7]: <matplotlib.text.Text at 0x11261d0d0>

All males signed ?? Females on the other hand doesn't always sign in, but there are more users who are female. Are the female bots???

0		CD1	CD1	ano	CDO	CD+ 4:44					
Out[16]:	_	GP1	GP1_mean	GP2	GP2_mean	GPonetwo_diff	p_val				
	7	(64, 1000]	0.029803	(44, 54]	0.009958	0.019845	1.430923e-295				
	0	(34, 44]	0.010286	(64, 1000]	0.029803	-0.019516	5.245541e-288				
	6	(64, 1000]	0.029803	(24, 34]	0.010146	0.019656	7.860398e-285				
	9	(64, 1000]	0.029803	(18, 24]	0.009720	0.020082	2.458627e-272				
	15	(44, 54]	0.009958	(0, 18]	0.026621	-0.016663	1.300520e-151				
	17	(44, 54]	0.009958	(54, 64]	0.020307	-0.010349	2.525271e-151				
	3	(34, 44]	0.010286	(0, 18]	0.026621	-0.016334	1.498876e-146				
	12	(24, 34]	0.010146	(0, 18]	0.026621	-0.016474	2.458928e-146				
	18	(0, 18]	0.026621	(18, 24]	0.009720	0.016900	2.346743e-144				
	5	(34, 44]	0.010286	(54, 64]	0.020307	-0.010020	7.523228e-144				
	14	(24, 34]	0.010146	(54, 64]	0.020307	-0.010160	5.668132e-141				
	20	(18, 24]	0.009720	(54, 64]	0.020307	-0.010586	1.007813e-130				
	10	(64, 1000]	0.029803	(54, 64]	0.020307	0.009496	9.214903e-56				
	19	(0, 18]	0.026621	(54, 64]	0.020307	0.006314	5.323948e-20				
	8	(64, 1000]	0.029803	(0, 18]	0.026621	0.003182	4.361969e-05				
	[15	rows x 6 co	lumns								
Out[20]:		GP1	GP1_mean	GP2	GP2_mean	GPonetwo_diff	p_val				
	1	(34, 44]	0.010286	(24, 34]	0.010146	0.000140	6.246618e-01				
	11	(24, 34]	0.010146	(44, 54]	0.009958	0.000189	5.146885e-01				
	16	(44, 54]	0.009958	(18, 24]	0.009720	0.000237	4.779019e-01				
	2	(34, 44]	0.010286	(44, 54]	0.009958	0.000329	2.339282e-01				

```
(24, 34]
                0.010146
                             (18, 24]
                                       0.009720
13
                                                       0.000426
                                                                   2.136576e-01
                             (18, 24]
4
      (34, 44]
                0.010286
                                       0.009720
                                                       0.000566
                                                                   8.747009e-02
                             (0, 18]
    (64, 1000]
                0.029803
                                                                   4.361969e-05
8
                                       0.026621
                                                       0.003182
       (0, 18]
                0.026621
                             (54, 64]
                                       0.020307
                                                       0.006314
                                                                   5.323948e-20
19
                             (54, 64]
10
    (64, 1000]
                0.029803
                                       0.020307
                                                       0.009496
                                                                   9.214903e-56
20
      (18, 24]
                0.009720
                             (54, 64]
                                       0.020307
                                                      -0.010586 1.007813e-130
14
      (24, 34]
                0.010146
                             (54, 64]
                                       0.020307
                                                      -0.010160
                                                                  5.668132e-141
      (34, 44]
                             (54, 64]
                0.010286
                                       0.020307
                                                      -0.010020
                                                                  7.523228e-144
5
18
       (0, 18]
                0.026621
                             (18, 24]
                                       0.009720
                                                       0.016900
                                                                  2.346743e-144
12
      (24, 34]
                0.010146
                             (0, 18]
                                       0.026621
                                                      -0.016474
                                                                  2.458928e-146
3
      (34, 44]
                0.010286
                              (0, 18]
                                       0.026621
                                                      -0.016334
                                                                  1.498876e-146
      (44, 54]
                             (54, 64]
                                                                  2.525271e-151
17
                0.009958
                                       0.020307
                                                      -0.010349
                0.009958
                                       0.026621
15
      (44, 54]
                              (0, 18]
                                                      -0.016663
                                                                 1.300520e-151
                             (18, 24]
9
    (64, 1000]
                0.029803
                                       0.009720
                                                       0.020082
                                                                  2.458627e-272
6
    (64, 1000]
                0.029803
                             (24, 34]
                                       0.010146
                                                       0.019656
                                                                  7.860398e-285
0
      (34, 44]
                0.010286
                           (64, 1000]
                                       0.029803
                                                      -0.019516
                                                                 5.245541e-288
7
    (64, 1000]
                0.029803
                             (44, 54]
                                       0.009958
                                                       0.019845 1.430923e-295
```

[21 rows x 6 columns]

Out[79]: u'/Users/JeffreyTang/Desktop/Zipfian/ab-testing'