1° PERIODO

Exercícios tipo somativa

03/06/2024

OBJETIVO

Tipos de funções e suas aplicações; Exercícios tipo da somativa

Tipos de funções mais importantes

Função quadrática

Chama-se **função quadrática**, ou **função polinomial do 2º grau**, qualquer função **f** de \mathbb{R} em \mathbb{R} dada por uma lei da forma $f(x) = ax^2 + bx + c$, em que **a**, **b** e **c** são números reais e a $\neq 0$.

Função quadrática

(Enem-MEC) Um professor, depois de corrigir as provas de sua turma, percebeu que várias questões estavam muito difíceis. Para compensar, decidiu utilizar uma função polinomial \mathbf{f} , de grau menor que 3, para alterar as notas \mathbf{x} da prova para notas $\mathbf{y} = \mathbf{f}(\mathbf{x})$, da seguinte maneira:

- A nota zero permanece zero.
- A nota 10 permanece 10.
- A nota 5 passa a ser 6.

A expressão da função y = f(x) a ser utilizada pelo professor é:

a)
$$y = -\frac{1}{25}x^2 + \frac{7}{5}x$$
 c) $y = \frac{1}{24}x^2 + \frac{7}{12}x$

b)
$$y = -\frac{1}{10}x^2 + 2x$$

$$y = x$$

(Enem-MEC) Um professor, depois de corrigir as provas de sua turma, percebeu que várias questões estavam muito difíceis. Para compensar, decidiu utilizar uma função polinomial **f**, de grau menor que 3, para alterar as notas \mathbf{x} da prova para notas $\mathbf{y} = \mathbf{f}(\mathbf{x})$, da seguinte maneira:

- A nota zero permanece zero.
- A nota 10 permanece 10.
- A nota 5 passa a ser 6.

A expressão da função
$$y = f(x)$$
 a ser utilizada pelo professor é:

c)
$$y = \frac{1}{2}x^2 + \frac{1}{2}$$

-x **c)**
$$y = \frac{1}{24}x^2 + \frac{7}{12}$$

b)
$$y = -\frac{1}{10}x^2 + 2x$$

d)
$$y = \frac{4}{5}x + 2$$

e) y = x

(Enem-MEC) Um professor, depois de corrigir as provas de sua turma, percebeu que várias questões estavam muito difíceis. Para compensar, decidiu utilizar uma função polinomial \mathbf{f} , de grau menor que 3, para alterar as notas \mathbf{x} da prova para notas $\mathbf{y} = \mathbf{f}(\mathbf{x})$, da seguinte maneira:

- A nota zero permanece zero.
- A nota 10 permanece 10.
- A nota 5 passa a ser 6.

A expressão da função y = f(x) a ser utilizada pelo professor é:

(a)
$$y = -\frac{1}{25}x^2 + \frac{7}{5}$$

c)
$$y = \frac{1}{24}x^2 + \frac{7}{12}x$$

e) y = x

10(20)

 $\frac{1}{10}\sqrt{10}$

- 1. A função é $f(x)=-rac{1}{10}x^2+2x$.
- 2. Substituindo x por 10:

$$f(10) = -rac{1}{10}(10)^2 + 2(10)$$

3. Calculando 10^2 :

$$f(10) = -rac{1}{10}(100) + 2(10)$$

4. Multiplicando $-\frac{1}{10}$ por 100:

$$f(10) = -10 + 20$$

5. Somando os termos:

$$f(10)=10$$

Portanto, o resultado da função f(x) para x=10 é 10.

V = S $V = -\frac{1}{2} \times \frac{7}{2} \times \frac{7}{2}$ $V = -\frac{1}{2} \times \frac{7}{2} \times \frac{7}{2$

$$y = -1/25 (10)^2 + 7/5 (10)$$

$$y = -1/25 (100) + 14$$

$$y = -4 + 14$$

(Enem-MEC) Um professor, depois de corrigir as provas de sua turma, percebeu que várias questões estavam muito difíceis. Para compensar, decidiu utilizar uma função polinomial **f**, de grau menor que 3, para alterar as notas \mathbf{x} da prova para notas $\mathbf{y} = \mathbf{f}(\mathbf{x})$, da seguinte maneira:

- A nota zero permanece zero.
- A nota 10 permanece 10.
- A nota 5 passa a ser 6.

A expressão da função y = f(x) a ser utilizada pelo professor é: **a)** $y = -\frac{1}{25}x^2 + \frac{7}{5}x$ **c)** $y = \frac{1}{24}x^2 + \frac{7}{12}x$

a)
$$y = -\frac{1}{25}x^2 + \frac{7}{5}$$

c)
$$y = \frac{1}{24}x^2 + \frac{7}{12}x$$

b)
$$y = -\frac{1}{10}x^2 + 2x$$
 d) $y = \frac{4}{5}x + 2$

(Enem-MEC) Um professor, depois de corrigir as provas de sua turma, percebeu que várias questões estavam muito difíceis. Para compensar, decidiu utilizar uma função polinomial **f**, de grau menor que 3, para alterar as notas \mathbf{x} da prova para notas $\mathbf{y} = \mathbf{f}(\mathbf{x})$, da seguinte maneira:

- A nota zero permanece zero.
- A nota 10 permanece 10.
- A nota 5 passa a ser 6.

A expressão da função y = f(x) a ser utilizada pelo professor é:
a)
$$y = -\frac{1}{25}x^2 + \frac{7}{5}x$$
 c) $y = \frac{1}{24}x^2 + \frac{7}{12}x$

c)
$$y = \frac{1}{x^2 + \frac{7}{x^2}}$$

$$y = -\frac{1}{25}x^2 + \frac{1}{5}x$$

d)
$$y = \frac{4}{5}x + 2$$

e) y = x

Função exponencial

Função exponencial

Chama-se **função exponencial** qualquer função **f** de \mathbb{R} em \mathbb{R}_+^* dada por uma lei da forma $f(x) = a^x$, em que **a** é um número real dado, a > 0 e $a \ne 1$.

São exemplos de funções exponenciais: $y = 10^x$; $y = \left(\frac{1}{3}\right)^x$; $y = 2^x$; $y = \left(\frac{5}{6}\right)^x$ etc.

$$\frac{5}{2}$$
 = 2.2.2.2 = 32

10 mid. 7, m.

Função exponencial

-6,2t W(t) = 55 - 30.C

Em uma indústria alimentícia, verificou-se que, após t semanas de experiência e treinamento, um funcionario consegue empacotar p unidades de um determinado produto, a cada hora de trabalho. A lei que relaciona **p** e **t** é: $p(t) = 55 - 30 \cdot e^{-0.2t}$ (leia o texto da seção *Aplicações*, página 142).

- a) Quantas unidades desse produto o funcionário consegue empacotar sem experiência alguma?
- b) Qual é o acréscimo na produção, por hora, que o funcionário experimenta da 1ª para a 2ª semana de experiência? Use 201,2

Em uma indústria alimentícia, verificou-se que, após \mathbf{t} semanas de experiência e treinamento, um funcionário consegue empacotar \mathbf{p} unidades de um determinado produto, a cada hora de trabalho. A lei que relaciona \mathbf{p} e \mathbf{t} é: p(t) = 55 - 30 · e^{-0,2t} (leia o texto da seção *Aplicações*, página 142).

- a) Quantas unidades desse produto o funcionário consegue empacotar sem experiência alguma?
- **b)** Qual é o acréscimo na produção, por hora, que o funcionário experimenta da 1^a para a 2^a semana de experiência? Use $e^{0,2} \approx 1,2$.

(a)
$$t = 0$$
(b) $t = 0$
(c) $t = 0$
(d) $t = 0$
(e) $t = 0$
(f) $t = 0$
(f) $t = 0$
(g) $t = 0$
(g)

$$\int_{0}^{2} \frac{1}{p(2)} - p(1)$$

$$\frac{1}{p(2)} = \frac{55 - 30}{34.9}$$

$$\frac{1}{p(1)} = \frac{55 - 30}{55 - 30}$$

$$\frac{1}{p(1)} = \frac{55 - 30}{55 - 30}$$

$$\frac{1}{p(1)} = \frac{55 - 30}{55 - 30}$$

$$\frac{1}{p(1)} = \frac{55 - 30}{55 - 24}$$

$$\frac{1}{p(1)} = \frac{55 - 24}{50}$$

Em uma indústria alimentícia, verificou-se que, após \mathbf{t} semanas de experiência e treinamento, um funcionário consegue empacotar \mathbf{p} unidades de um determinado produto, a cada hora de trabalho. A lei que relaciona \mathbf{p} e \mathbf{t} é: $p(t) = 55 - 30 \cdot e^{-0.2t}$ (leia o texto da seção *Aplicações*, página 142).

- **a)** Quantas unidades desse produto o funcionário consegue empacotar sem experiência alguma?
- **b)** Qual é o acréscimo na produção, por hora, que o funcionário experimenta da 1^a para a 2^a semana de experiência? Use $e^{0.2} \simeq 1.2$.

Em uma indústria alimentícia, verificou-se que, após \mathbf{t} semanas de experiência e treinamento, um funcionário consegue empacotar \mathbf{p} unidades de um determinado produto, a cada hora de trabalho. A lei que relaciona \mathbf{p} e \mathbf{t} é: p(t) = 55 - 30 · e^{-0,2t} (leia o texto da seção *Aplicações*, página 142).

- a) Quantas unidades desse produto o funcionário consegue empacotar sem experiência alguma?
- **b)** Qual é o acréscimo na produção, por hora, que o funcionário experimenta da 1^a para a 2^a semana de experiência? Use $e^{0,2} \approx 1,2$.

1 2 1 T x ! + -

2) O investimento financeiro mais conhecido do brasileiro é a caderneta de poupança, que rende aproximadamente 6% ao ano. Ao aplicar hoje R\$ 2000,00, um poupador terá, daqui a **n** anos, um valor **v**, em reais, dado por $v(n) = 2000 \cdot 1,06^{n}$.

Quanto terá poupado em 3 amos, e em 50 a mos? $V(3) = 2000 \cdot (1,06)^3$ $V(50) = 2000 \cdot (1,06)^5$ V(50) = 36840,30

Analistas do mercado imobiliário de um município estimam que o valor (**v**), em reais, de um apartamento nesse município seja dado pela lei v(t) = 250 000 · (1,05)^t, sendo **t** o número de anos (t = 0, 1, 2, ...) contados a partir da data de entrega do apartamento.

- a) Qual o valor desse imóvel na data de entrega?
- **b)** Qual é a valorização, em reais, desse apartamento, um ano após a entrega?
- c) Qual será o valor desse imóvel 6 anos após a entrega? Use $1,05^3 \approx 1,15$.
- d) Depois de quantos anos da data da entrega o apartamento estará valendo 1,525 milhão de reais? Use as aproximações da tabela seguinte.

t	35	36	37	38	40
1,05 ^t	5,5	5,8	6,1	6,4	7,0

Logaritmos

Sendo **a** e **b** números reais e positivos, com a \neq 1, chama-se **logaritmo de b na base a** o expoente **x** ao qual se deve elevar a base **a** de modo que a potência a x seja igual a **b**.

$$\log_a b = x \Leftrightarrow a^x = b$$

Dizemos que:

- a é a base do logaritmo;
- b é o logaritmando;
- x é o logaritmo.

Vejamos alguns exemplos de logaritmos:

•
$$\log_2 8 = 3$$
, pois $2^3 = 8$

•
$$\log_3 9 = 2$$
, pois $3^2 = 9$

•
$$\log_2 \frac{1}{4} = -2$$
, pois $2^{-2} = \frac{1}{4}$

•
$$\log_5 5 = 1$$
, pois $5^1 = 5$

•
$$\log_4 1 = 0$$
, pois $4^0 = 1$

•
$$\log_3 \sqrt{3} = \frac{1}{2}$$
, pois $3^{\frac{1}{2}} = \sqrt{3}$

•
$$\log_{\frac{1}{2}} 8 = -3$$
, $pois \left(\frac{1}{2}\right)^{-3} = 8$

•
$$\log_{0.5} 0.25 = 2$$
, pois $(0.5)^2 = 0.25$

Vejamos alguns exemplos de logaritmos:

•
$$\log_2 8 = 3$$
, pois $2^3 = 8$

•
$$\log_3 9 = 2$$
, pois $3^2 = 9$

Vejamos alguns exemplos de logaritmos:
•
$$\log_2 8 = 3$$
, pois $2^3 = 8$
• $\log_3 9 = 2$, pois $3^2 = 9$
• $\log_2 \frac{1}{4} = -3$ fazer isso na calculadora???
• $\log_2 \frac{1}{4} = -3$ fazer isso na calculadora???
• $\log_2 \frac{1}{4} = -3$ fazer isso na calculadora???
• $\log_2 \frac{1}{2} = -3$, pois $\left(\frac{1}{2}\right)^{-3} = 8$
• $\log_5 5 = 1$, pois $5^1 = 5$
• $\log_{0,5} 0.25 = 2$, pois $(0,5)^2 = 0.2$

•
$$\log_5 5 - 1$$
, pois $5^1 = 5$

•
$$\log_4 1 = 0$$
, pois $3^{\frac{1}{2}} = \sqrt{3}$

•
$$\log_{\frac{1}{2}} 8 = -3$$
, pois $\left(\frac{1}{2}\right)^{-3} = 8$

•
$$\log_{0.5} 0.25 = 2$$
, pois $(0.5)^2 = 0.25$

Propriedade

Suponha **a**, **b** e **c** números reais positivos, com **a** e **b** diferentes de 1. Temos:

$$\log_a c = \frac{\log_b c}{\log_b a}$$

Função logarítmica

Dado um número real **a** (0 < a e a \neq 1), chama-se **função logarít-mica de base a** a função **f** de \mathbb{R}_+^* em \mathbb{R} dada pela lei $f(x) = \log_a x$.

Essa função associa cada número real positivo ao seu logaritmo na base **a**. Um exemplo de função logarítmica é a função **f** definida por $f(x) = \log_2 x$.

(UFPR) Para determinar a rapidez com que se esquece de uma informação, foi efetuado um teste em que listas de palavras eram lidas a um grupo de pessoas e, num momento posterior, verificava--se quantas dessas palavras eram lembradas. Uma análise mostrou que, de maneira aproximada, o percentual **S** de palavras lembradas, em função do tempo t, em minutos, após o teste ter sido aplicado, era dado pela expressão:

$$S = -18 \cdot \log (t + 1) + 86$$

a) Após 9 minutos, que percentual da informação inicial era lembrado?

(UFPR) Para determinar a rapidez com que se esquece de uma informação, foi efetuado um teste em que listas de palavras eram lidas a um grupo de pessoas e, num momento posterior, verificava-se quantas dessas palavras eram lembradas. Uma análise mostrou que, de maneira aproximada, o percentual **S** de palavras lembradas, em função do tempo **t**, em minutos, após o teste ter sido aplicado, era dado pela expressão:

$$S = -18 \cdot \log (t + 1) + 86$$

a) Após 9 minutos, que percentual da informação inicial era lembrado?

Exercícios para garantir a felicidade da semana!!!

A lei seguinte representa uma estimativa sobre o número de funcionários de uma empresa, em função do tempo t, em anos (t = 0, 1, 2, ...), de existência da empresa:

$$f(t) = 400 + 50 \cdot \log_4 (t + 2)$$

- a) Quantos funcionários a empresa possuía na sua fundação?
- **b)** Quantos funcionários foram incorporados à empresa do 2º ao 6º ano? (Admita que nenhum funcionário tenha saído.)

Respostas – número 1

a)
$$t = 0 \Rightarrow f(0) = 400 + 50 \cdot \log_4 2$$

 $f(0) = 400 + 50 \cdot \frac{1}{2} = 425$ (425 funcionários)

b)
$$f(2) = 400 + 50 \cdot \log_4 4 = 450$$

$$f(6) = 400 + 50 \cdot \log_4 8$$

$$f(6) = 400 + 50 \cdot \frac{3}{2} = 475$$

A diferença f(6) - f(2) é igual a 475 - 450 = 25 (25 funcionários).

$$f(11) - f(6)$$

a)
$$v(3) = 2000 \cdot 1,06^3 = 2000 \cdot 1,2 = 2400$$

 (2400 reais)
 $v(6) = 2000 \cdot 1,06^6 = 2000 \cdot (1,06^3)^2 = 2000 \cdot 1,2^2 = 2880 \ (2880 \text{ reais})$

Respostas – número 3

- a) $v(0) = 250000 \cdot (1,05)^0 = 250000 (250000 reais)$
- **b)** v(1) = 250000 · 1,05¹ = 262500 (262500 reais) A valorização é 12500 reais (262500 — 250000 = 12500)
- **c)** $v(6) = 250\,000 \cdot (1,05)^6 = 250\,000 \cdot (1,05)^3 \cdot (1,05)^3 = 250\,000 \cdot 1,15^2 = 330\,625 \text{ (330\,625 reais)}$
- **d)** Devemos determinar **t** tal que v(t) = 1525000. 1525000 = 250000 · (1,05)^t \Rightarrow \Rightarrow 1,05^t = 6,1 $\stackrel{\text{tabela}}{\Longrightarrow}$ t = 37 (37 anos)