	Tonvergence des sommes de Riemann Comparaison de la méthode des rectangle avec celle des trapèzes. Complément : continuité uniforme d'une fonction. Les propositions marquées de \star sont au programme de colles. Intégrale d'une fonction continue sur un segment Ensemble $\mathcal{CM}(I,\mathbb{K})$
Soit [a, b] On n	Ensemble $\mathcal{CM}(I,\mathbb{K})$ ition 1: Fonction continue par morceaux sur un intervalle. I un intervalle et $f:I\to\mathbb{K}$. On dit que f est continue par morceaux sur I si pour tout segment $\subset I$, $f_{ [a,b]}$ est continue par morceaux sur $[a,b]$. Note $\mathcal{CM}(I,\mathbb{K})$ l'ensemble des fonctions continues par morceaux sur I .
Solu Soit Cet \(\epsilon \) Soto Noto Posoi	Inction $x \mapsto \lfloor \frac{1}{x} \rfloor$ est continue par morceaux sur \mathbb{R}_+^* . Expliquer. Inction: $[a,b] \subset \mathbb{R}_+^*. \text{ Notons } S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap]a, b[.$ $[a,b] \subset \mathbb{R}_+^*. \text{ Notons } S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap]a, b[.$ $[a,b] \subset \mathbb{R}_+^*. \text{ Notons } S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap]a, b[.$ $[a,b] \subset \mathbb{R}_+^*. \text{ Notons } S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap]a, b[.$ $[a,b] \subset \mathbb{R}_+^*. \text{ Notons } S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap]a, b[.$ $[a,b] \subset \mathbb{R}_+^*. \text{ Notons } S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap]a, b[.$ $[a,b] \subset \mathbb{R}_+^*. \text{ Notons } S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap]a, b[.$ $[a,b] \subset \mathbb{R}_+^*. \text{ Notons } S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap]a, b[.$ $[a,b] \subset \mathbb{R}_+^*. \text{ Notons } S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap]a, b[.$ $[a,b] \subset \mathbb{R}_+^*. \text{ Notons } S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap]a, b[.$ $[a,b] \subset \mathbb{R}_+^*. \text{ Notons } S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap]a, b[.$ $[a,b] \subset \mathbb{R}_+^*. \text{ Notons } S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap]a, b[.$ $[a,b] \subset \mathbb{R}_+^*. \text{ Notons } S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap]a, b[.$ $[a,b] \subset \mathbb{R}_+^*. \text{ Notons } S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap]a, b[.$ $[a,b] \subset \mathbb{R}_+^*. \text{ Notons } S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap]a, b[.$ $[a,b] \subset \mathbb{R}_+^*. \text{ Notons } S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap]a, b[.$ $[a,b] \subset \mathbb{R}_+^*. \text{ Notons } S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap]a, b[.$ $[a,b] \subset \mathbb{R}_+^*. \text{ Notons } S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap]a, b[.$ $[a,b] \subset \mathbb{R}_+^*. \text{ Notons } S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap]a, b[.$ $[a,b] \subset \mathbb{R}_+^*. \text{ Notons } S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap]a, b[.$ $[a,b] \subset \mathbb{R}_+^*. \text{ Notons } S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap]a, b[.$ $[a,b] \subset \mathbb{R}_+^*. \text{ Notons } S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap [a,b]$ $[a,b] \subset \mathbb{R}_+^*. \text{ Notons } S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap [a,b]$ $[a,b] \subset \mathbb{R}_+^*. \text{ Notons } S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap [a,b]$ $[a,b] \subset \mathbb{R}_+^*. \text{ Notons } S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap [a,b]$ $[a,b] \subset \mathbb{R}_+^*. \text{ Notons } S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap [a,b]$ $[a,b] \subset \mathbb{R}_+^*. \text{ Notons } S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap [a,b]$ $[a,b] \subset \mathbb{R}_+^*. \text{ Notons } S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap [a,b]$ $[a,b] \subset \mathbb{R}_+^*. \text{ Notons } S = \{$
$f \in \mathcal{C}$ Rem Soit Soit	EM($\mathbb{R}_+^*, \mathbb{R}$). Harque: En posant $f(0) := 0$, ça ne marche plus car $f_{[0,b]}$ n'est pas cpm sur $[0,b]$. Intégrale d'une fonction continue par morceaux entre deux bornes ition 3 $f \in \mathcal{CM}(I,\mathbb{R})$ et $a,b \in I$. On note $\int_a^b f(x) \mathrm{d}x$, ou plus simplement $\int_a^b f$ le réel défini par : $\int_a^b f(x) \mathrm{d}x := \int_{[a,b]} f \text{ si } a < b, \int_a^a f(x) \mathrm{d}x := 0, \text{et} \int_a^b f(x) \mathrm{d}x := -\int_{[b,a]} f \text{ si } a > b.$ Desition 4 $f \in \mathcal{CM}(I,\mathbb{C})$. Conctions $x \mapsto \mathrm{Re}(f(x))$ et $x \mapsto \mathrm{Im}(f(x))$ sont continues par morceaux sur I .
Ainsi Preu Pour adap utilis En e	$a,b\in I$, on pose : $\int_a^b f(x)\mathrm{d}x:=\int_a^b \mathrm{Re}(f(x))\mathrm{d}x+i\int_a^b \mathrm{Im}(f(x))\mathrm{d}x.$ i, la partie réelle de l'intégrale est l'intégrale de la partie réelle, idem pour la partie imaginaire. $\mathbf{ive}:$ prouver la continuité par morceaux de $\mathrm{Re}(f)$ et $\mathrm{Im}(f)$ à partir de celle de f , on introduit une subdivision tée à f $\sigma=(a_0,,a_n)$ et on prouve qu'elle est adaptée à sa partie réelle et à sa partie imaginaire. On peut
Soien Preu La re • cas D'un	position 5: Relation de Chasles at $f \in \mathcal{CM}(I, \mathbb{K})$ et $a, b, c \in I$. $ \int_a^b f = \int_a^c f + \int_c^b f. $ elation a été établie dans le cours de construction pour une fonction à valeurs réelles dans le cas où $a < c < b$. As $a < b < c$: $ \int_a^c f + \int_c^b f = \int_{[a,c]} f - \int_{[b,c]} f = \int_{[a,b]} f + \int_{[b,c]} f - \int_{[b,c]} f = \int_a^b f. $ As $b = c < a$: Le part $\int_a^b f = -\int_{[b,a]} f$, d'autre part : $\int_a^c f + \int_c^b f = -\int_c^a f = -\int_[b,a] f$. But the case sont similaires.
Propo Soien Preu	Linéarité. Distion 6: Linéarité de l'intégrale. In $f,g\in\mathcal{CM}(I,\mathbb{K}),$ et $a,b\in I.$ Pour tous scalaires $\lambda,\mu\in\mathbb{K},$ $\int_a^b (\lambda f + \mu g) = \lambda \int_a^b f + \mu \int_a^b g.$ Dive: The aprouvé pour $a < b$ et f,g à valeurs réelles. Il faut le vérifier dans les autres cas.
Soit Si f o	Intégrales et inégalités. position 7: Positivité $f \in \mathcal{CM}([a,b],\mathbb{R})$ où le segment $[a,b]$ est tel que $a \leq b$. est positive sur $[a,b]$, alors l'intégrale $\int_a^b f(x) \mathrm{d}x$ est un nombre positif. est négative sur $[a,b]$, alors cette intégrale est un nombre négatif.
Proposition Soit is Soit in Part of Previous Previous Proposition \mathbf{P}	position 8: Intégrale nulle d'une fonction positive et continue $f:[a,b] \to \mathbb{R}$, avec $a < b$, continue et positive sur $[a,b]$. In $f(x) dx = 0$, alors f est nulle sur $[a,b]$. Contraposée, si $\exists c \in [a,b] \ f(c) > 0$, alors $\int_a^b f > 0$.
On street Poscor Poscor Par of Donor Par of Poscor Proportion of Proport	a aussi la preuve suivante dans L'Exercice 79 de la banque CCINP : uppose f continue et positive sur $[a,b]$ et $\int_a^b f = 0$. Ins $F: x \mapsto \int_a^x f(t) dt$ définie sur $[a,b]$, f étant continue sur $[a,b]$, F est une primitive de f sur $[a,b]$ d'après F A (prouvé plus loin). In F B (F B) F B
Preu On a	
Soit Si f	position 10: Inégalité de la moyenne $f \in \mathcal{CM}([a,b],\mathbb{R}) \text{ avec } \boxed{a \leq b}.$ est minorée par un réel m et majorée par M sur $[a,b]$, alors : $m(b-a) \leq \int_a^b f(x) \mathrm{d}x \leq M(b-a), \text{ Lorsque } a < b, \text{ on a } m \leq \frac{1}{b-a} \int_a^b f(x) \mathrm{d}x \leq M.$ eve : $a \forall x \in [a,b], \ m \leq f(x) \leq M.$
Par o	$m(b-a) \leq \int_a^b f(t) \mathrm{d}t \leq M(b-a)$ osition 11: Inégalité triangulaire
Preu © Ca On a Par o	$\left \int_{a}^{b}f(x)\mathrm{d}x\right \leq\int_{a}^{b} f(x) \mathrm{d}x$ $\left \int_{a}^{b}f(x)\mathrm{d}x\right \leq\int_{a}^{b} f(x) \mathrm{d}x$ ive: as réel: Soit $f\in\mathcal{CM}([a,b],\mathbb{R})$. $f\leq f \ \mathrm{et}\ -f\leq f ,\ \mathrm{or}\ f,-f\ \mathrm{et}\ f \ \mathrm{sont}\ \mathrm{cpm}\ \mathrm{sur}\ [a,b].$ croissance de l'intégrale $(a\leq b):\int_{a}^{b}f\leq\int_{a}^{b} f \ \mathrm{et}\ -\int_{a}^{b}f\leq\int_{a}^{b} f .$ croissance de l'accomplexe: admis.
Pour Solu Exis 1er o	Quelques exercices de cours. aple 12 $a \in \mathbb{R}_+^*$, on pose $I_a = \int_a^{a^2} \ln^3(x) dx$. Existence et signe de I_a . tion: tence: \ln^3 est continue (par morceaux) sur \mathbb{R}_+^* . cas: Supposons $a \ge 1$, alors $a \le a^2$ et $\forall x \in [a, a^2] \ln^3(x) \ge 0$, par positivité, $\int_a^{a^2} \ln^3 \ge 0$. tence: Supposons $a \in]0,1[$, alors $a^2 \le a$ et $\forall x \in [a^2,a] \ln^3(x) \le 0$, par positivité, $\int_{a^2}^a \ln^3 \le 0$ donc $\ln^3 \ge 0$.
Ainsi Exem Soit Justi Solu 1er	i, $\forall a \in \mathbb{R}_+^*, \ I_a \geq 0$ in ple 13 $f: [a,b] \to \mathbb{R}$ avec $a < b$ continue telle que $\int_a^b f(t) \mathrm{d}t = 0$. fier que f s'annule au moins une fois sur $[a,b]$. tion: cas: Supposons que f change de signe sur $[a,b]$, alors d'après le TVI, f s'annule sur $[a,b]$ puisque f est
conti 2eme sur [a On p Exem Soit, 1. I	
3. I Solu 1. M La fo Par I Condiapr	From the first value of a range of the Fig. Donner un équivalent de I_n . Loop Donner un équivalent de I_n . $I_{n+1} - I_n = \int_1^e \underbrace{(\ln(x))^n (\ln(x) - 1)}_{\geq 0} \mathrm{d}x$ Interpret on the first of the first o
Alors 3. C Exem Soit	vartheta V
Solu	narque: Le lemme est vrai pour f continue sur $[a,b]$, mais difficile à démontrer. tion: : IPP. Soit $n \in \mathbb{N}$. f et $\frac{1}{in}e^{int}$ sont de classe μC^1 sur $[a,b]$ donc: $\int_a^b f(t)e^{int}\mathrm{d}t = \left[f(t)\cdot\frac{1}{in}e^{int}\right]_a^b - \int_a^b f'(t)\cdot\frac{1}{in}e^{int}\mathrm{d}t$
D'au Par r Théo r	e part : $\left \left[f(t) \frac{1}{in} e^{int} \right]_a^b \right = \frac{1}{n} \left f(b) e^{inb} - f(a) e^{ina} \right \le \frac{1}{n} (f(b) + f(a)).$ tre part : $\left \int_a^b f'(t) \frac{1}{in} e^{int} dt \right \le \frac{1}{n} \int_a^b \left f'(t) \right dt.$ majoration, $ I_n = O(\frac{1}{n})$ donc $I_n \to 0$. Théorème fondamental de l'analyse \bigstar I un intervalle et $f: I \to \mathbb{K}$ une fonction continue sur I . Soit $a \in I$. La fonction
Preu Soit	$x_0 \in I$. Montrons que $\frac{F(x) - F(x_0)}{x - x_0} \to f(x_0)$ $x \in I \setminus \{x_0\}$, on note min = min (x_0, x) et max = max (x_0, x) . $\left \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) \right = \left \frac{1}{x - x_0} \left(\int_a^x f(t) dt - \int_a^{x_0} f(t) dt \right) - f(x_0) \right $
Supp Par o	$= \left \frac{1}{x - x_0} \int_{x_0}^x f(t) dt - \frac{1}{x - x_0} \int_{x_0}^x f(x_0) dt \right $ $= \frac{1}{ x - x_0 } \left \int_{x_0}^x (f(t) - f(x_0)) dt \right $ $\leq \frac{1}{ x - x_0 } \int_{\min}^{\max} f(t) - f(x_0) dt$ $\varepsilon > 0. \text{ Par continuit\'e de } f \text{ en } x_0, \exists \eta > 0 \ \forall x \in I \cap]x_0 - \eta, x_0 + \eta[, f(t) - f(x_0) \leq \varepsilon.$ Bosons que $ x - x_0 \leq \eta$. Alors $[\min, \max] \subset I \cap]x_0 - \eta, x_0 + \eta[.$ Boroissance: $\int_{\min}^{\max} \left f(t) - f(x_0) \right dt \leq \int_{\min}^{\max} \varepsilon dt = \varepsilon(\max - \min) = \varepsilon x - x_0 .$
Corro Toute Sur v Prev Le T	FA donne bien une primitive sous ces hypothèses. $f \in \mu C(I, \mathbb{K}), F$ et G deux primitives de f .
Propo Soit	
La fo Alors	of continue sur $[a,b]$. Le TFA donne $\widetilde{F}: x \mapsto \int_a^x f(t) dt$ primitive de f sur $[a,b]$. Solution F en est une autre, sur le même intervalle : $\exists C \in \mathbb{K} \ \forall x \in [a,b] \ \widetilde{F}(x) = F(x) + C$. Solution f is f and f and f are f and f are f and f are f are f and f are f are f and f are f and f are f are f are f and f are f are f are f and f are f are f are f are f and f are f are f are f and f are f are f are f are f and f are f are f are f and f are f are f and f are f are f are f and f are f are f are f and f are f and f are f are f and f are f are f are f are f and f are f are f and f are f are f and f are f are f are f are f and f are f are f are f and f are f are f are f and f are f are f are f are f and f are f are f and f are f are f and f are f are f are f are f are f and f are f and f are f and f ar
Exem	Ja
Pour Ainsi 2. Alors Donc Su 3. I Par r Limi	$f := \frac{1}{\ln} \text{ est définie sur }]0,1[\cup]1,+\infty[\text{ et non prolongeable.} \\ x \in]0,1[,0 < x^2 < x < 1 \text{ donc } [x^2,x] \subset]0,1[\text{ donc } f \text{ est continue sur } [x^2,x]. \\ x \in]1,+\infty[,x^2 > x \text{ donc } [x,x^2] \subset]1,+\infty[\text{ donc } f \text{ est continue sur } [x,x^2]. \\ i,D =]0,1[\cup]1,+\infty[\\ \text{ is } Sur]0,1[. \text{ Notons } L \text{ une primitive de } f \text{ sur }]0,1[, \text{ elle existe par TFA et continuité de } f. \\ \text{ is } F(x) = \int_x^{x^2} f = L(x^2) - L(x) \text{ et } F \text{ et dérivable comme composée et différence.} \\ \text{ is } F(x) = \int_x^{x^2} f = L(x^2) - f(x) = \frac{1}{\ln(x)}(x-1) > 0. \\ \text{ is } F(x) = \int_x^{x^2} f = L(x^2) - f(x) = \frac{1}{\ln(x)}(x-1) > 0. \\ \text{ is } F(x) = \int_x^{x^2} f = L(x^2) - f(x) = \frac{1}{\ln(x)}(x-1) > 0. \\ \text{ is } F(x) = \int_x^{x^2} f = L(x^2) - f(x) = \frac{1}{\ln(x)} f(x-1) > 0. \\ \text{ is } F(x) = \int_x^{x^2} f = L(x^2) - f(x) = \frac{1}{\ln(x)} f(x-1) > 0. \\ \text{ is } F(x) = \int_x^{x^2} f = L(x^2) - f(x) = \frac{1}{\ln(x)} f(x-1) > 0. \\ \text{ in } F(x) = \int_x^{x-1} f = \frac{1}{\ln(x)} f(x) $
Poson	ite en 1 ₊ : Pour $x > 1$, $F(x) = L(x^2) - L(x)$ et $L'(x) = \frac{1}{\ln(x)} \sim_1 \frac{1}{x-1}$ donc $L'(x) =_1 \frac{1}{x-1} + o(\frac{1}{x-1})$. Ins $R(x) = L'(x) - \frac{1}{x-1}$ continue sur $]1, +\infty[$. On a: $F(x) = \int_x^{x^2} L(t) dt = \int_x^{x^2} \left(\frac{1}{t-1} + R(t)\right) dt = \int_x^{x^2} \frac{1}{t-1} dt + \int_x^{x^2} R(t) dt$ $\int_x^{x^2} \frac{1}{t-1} dt = \ln(x^2 - 1) - \ln(x - 1) = \ln(x + 1) \xrightarrow[x \to 1_+]{} \ln(2)$ throughout $\int_x^{x^2} R(t) dt \to 0$. On a $(t-1)R(t) \to 0$ quand $t \to 1_+$.
Alors On in	trons que $\int_x^{x^2} R(t) dt \to 0$. On a $(t-1)R(t) \to 0$ quand $t \to 1_+$. $\varepsilon > 0, \exists \eta > 0 \ \forall t \in]1, 1 + \eta[-\varepsilon \leq (t-1)R(t) \leq \varepsilon \ \text{donc} \ -\frac{\varepsilon}{t-1} \leq R(t) \leq \frac{\varepsilon}{t-1}$.
On in On a Limit On a Or,	trons que $\int_x^{x^2} R(t) dt \to 0$. On a $(t-1)R(t) \to 0$ quand $t \to 1_+$. $\varepsilon > 0$, $\exists \eta > 0 \ \forall t \in]1, 1 + \eta[-\varepsilon \le (t-1)R(t) \le \varepsilon \ \mathrm{donc} \ -\frac{\varepsilon}{t-1} \le R(t) \le \frac{\varepsilon}{t-1}$. Proposed where $x \in [1, \sqrt{1+\eta}[\ \mathrm{alors} \ [x, x^2] \subset]1, 1 + \eta[\ \mathrm{alors} \ [x, x^2] \subset]1, 1 + \eta[\ \mathrm{alors} \ [x, x^2], \ -\frac{\varepsilon}{t-1} \le R(t) \le \frac{\varepsilon}{t-1}$. The energy $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$. The energy $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ and $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ and $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ and $x \in [x, x^2]$ are $x \in [x, x^2]$ and $x \in [x, x^2]$ and $x \in [x, x^2]$ and $x \in$
On in On a Limi On a Or, J Final Create Soien	$ \varepsilon > 0, \exists \eta > 0 \ \forall t \in]1, 1 + \eta[- \varepsilon \leq (t-1)R(t) \leq \varepsilon \ \text{donc} - \frac{\varepsilon}{t-1} \leq R(t) \leq \frac{\varepsilon}{t-1}. $ posons $x \in]1, \sqrt{1+\eta}[\ \text{alors} \ [x,x^2] \subset]1, 1+\eta[.$ so $\forall t \in [x,x^2], -\frac{\varepsilon}{t-1} \leq R(t) \leq \frac{\varepsilon}{t-1}. $ Integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \int_x^{x^2} R(t) \mathrm{d}t \leq \varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \int_x^{x^2} R(t) \mathrm{d}t \leq \varepsilon \ln(x+1) + o(1) \ \text{donc} \ F(x) \xrightarrow[x \to 1]{} \ln 2 $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $ The integer $: -\varepsilon \leq -\varepsilon \ln(x+1) \leq \varepsilon. $
On in On a Limi On a Or, J Final Or Final Or Soien	$\varepsilon>0, \exists \pi>0 \ \forall t\in]1,1+\eta[-\varepsilon\leq (t-1)R(t)\leq \varepsilon \ \text{donc} -\frac{\varepsilon}{t-1}\leq R(t)\leq \frac{\varepsilon}{t-1}.$ so so set $\varepsilon=1,\sqrt{1+\eta}[\ \text{alors}\ [x,x^2]\ \subset]1,1+\eta[.\ \text{s}]$ so $\forall t\in [x,x^2],-\frac{\varepsilon}{t-1}\leq R(t)\leq \frac{\varepsilon}{t-1}.$ so $\forall t\in [x,x^2],-\frac{\varepsilon}{t-1}\leq R(t)\leq \frac{\varepsilon}{t-1}.$ so the energy $\varepsilon=\varepsilon\leq -\varepsilon\ln(x+1)\leq \int_x^{x^2}R(t)\mathrm{d}t\leq \varepsilon\ln(x+1)\leq \varepsilon.$ then $\int_x^{x^2}R(t)\mathrm{d}t=1$ o(1) done $F(x)=1\ln(x+1)$ + o(1) done $F(x)\xrightarrow[x-1]{}\ln 2$ site energy $\int_x^x \frac{1}{t\ln 1}\mathrm{d}t=1$. So if $t\in [x^2,x]$ is the energy $\int_x^x \frac{1}{t\ln 1}\mathrm{d}t=1$. So if $t\in [x^2,x]$ is the energy $\int_x^x \frac{1}{t\ln 1}\mathrm{d}t=1$. So if $t\in [x^2,x]$ is the energy $\int_x^x \frac{1}{t\ln 1}\mathrm{d}t=1$. So if $t\in [x^2,x]$ is the energy $\int_x^x \frac{1}{t\ln 1}\mathrm{d}t=1$. So if $t\in [x^2,x]$ is the energy $\int_x^x \frac{1}{t\ln 1}\mathrm{d}t=1$. So if $t\in [x^2,x]$ is the energy $\int_x^x \frac{1}{t\ln 1}\mathrm{d}t=1$. So if $t\in [x^2,x]$ is the energy $\int_x^x \frac{1}{t\ln 1}\mathrm{d}t=1$. So if $t\in [x^2,x]$ is the energy $\int_x^x \frac{1}{t\ln 1}\mathrm{d}t=1$. So if $t\in [x^2,x]$ is the energy $\int_x^x \frac{1}{t\ln 1}\mathrm{d}t=1$ and $\int_x^x \frac{1}{t\ln 1}\mathrm{d}t=1$ by $\int_x^x \frac{1}{t\ln 1}\mathrm{d}t=1$. So if $t\in [x^2,x]$ is the energy $\int_x^x \frac{1}{t\ln 1}\mathrm{d}t=1$ by $\int_$
On in On a Limi On a Or, J Final Or Soien Preu On a Alors Exem Soit of On p	$\varepsilon > 0, \ 3 > 0 \ \forall t \in [1, 1 + \eta[- \varepsilon \le (t - 1)R(t) \le \varepsilon \ \text{donc} - \frac{\varepsilon}{\varepsilon - 1} \le R(t) \le \frac{\varepsilon}{\varepsilon - 1}.$ no soons $x \in [1, \sqrt{1 + \eta}[\ \text{alors} \ [x, x^2] \in [1, 1 + \eta[.$ so $\forall t \in [x, x^2] - \frac{1}{\varepsilon - 1} \le R(t) \le \frac{\varepsilon}{\varepsilon - 1}.$ notices: $-\varepsilon \le -\varepsilon \ln(x + 1) \le \int_x^{2\varepsilon} R(t) dt \le \varepsilon \ln(x + 1) \le \varepsilon.$ then $\int_x^{2\varepsilon} R(t) dt = 0 \ (1) \ \text{donc} \ F(x) = \ln(x + 1) + o(1) \ \text{donc} \ F(x) \xrightarrow{x \to 1} \ln 2$ it explains the ending of the end o
On in On a Limi On a Or, J Final On a Soien Soien On p Freu On a Alors Soit of	$ z > 0, \exists y > 0 \text{ yr } \in]1, 1 + \eta [- \varepsilon \le (t - 1)R(t) \le \varepsilon \text{ donc } - \frac{\varepsilon}{t-1} \le R(t) \le \frac{\varepsilon}{t-1}. $ $ z \text{ so } t \in [x, x^2], -\frac{\varepsilon}{t-1} \le R(t) \le \frac{\varepsilon}{t-1}. $ $ z \text{ so } t \in [x, x^2], -\frac{\varepsilon}{t-1} \le R(t) \le \frac{\varepsilon}{t-1}. $ $ z \text{ so } t \in [x, x^2], -\frac{\varepsilon}{t-1} \le R(t) \le \frac{\varepsilon}{t-1}. $ $ z \text{ so } t \in [x, x^2], -\frac{\varepsilon}{t-1} \le R(t) \le \frac{\varepsilon}{t-1}. $ $ z \text{ so } t \in [x, x^2], -\frac{\varepsilon}{t-1} \le R(t) \le \frac{\varepsilon}{t-1}. $ $ z \text{ so } t \in [x, x^2], z \text{ so } t \in [x - t] = [x + 1) + o(1) \text{ donc } F(x) \xrightarrow{x \to 1} \ln 2 $ $ z \text{ so } t \in [0, 1], \text{ on } x \in [x] = \int_{x}^{x} t_{\text{int}}^{2} dt \le \int_{x}^{x} \frac{\varepsilon}{t_{\text{in}}} dt \le \int_{x}^{x} \frac{\varepsilon}{t_{\text{in}}} dt \le \left(\frac{\varepsilon}{t_{\text{in}}} \right) $ $ z \text{ so } t \in [x, x^2], z \text{ so } t \in [x, x^2], z \text{ so } t \in [x^2, x]. $ $ z \text{ so } t \in [x, x^2], z \text{ so } t \in [x, x^2], z \text{ so } t \in [x^2, x]. $ $ z \text{ so } t \in [x, x^2], z \text{ so } t \in [x, x^2], z \text{ so } t \in [x^2, x]. $ $ z \text{ so } t \text{ so } t \in [x, x^2], z \text{ so } t \text{ so } t \in [x^2, x]. $ $ z \text{ so } t $
On in On a Limi On a Or, J Final On a Soien Soien On p Freu On a Alors Soit of	
Con in On a Limit On a Cor, J Final On a Soien Soien Soien Soien Soit of Cour Cour Cour Cour Cour Cour Cour Cour	$ > 0, 3n, 9 \lor 0, 4n \in [1, 1 + n]_1 - \le \xi(1 - 1)R(t) \le \epsilon \text{ done } -\frac{e^{-t}}{1-t} \le R(t) \le \frac{e^{-t}}{1-t}. $ $ oversex x = [1, 4t - 1]_1 \text{ done } t_1, x^2 \xi(t) + t \xi(t) + t \xi(t) + t \xi(t) + t \xi(t) \xi(t) + t \xi(t) \xi(t)$
Corro Soit Corro	$ > 0, 3 > 0, 3 \le L , 1 + q - \varepsilon \le (t - 1)R(t) \le \varepsilon \operatorname{done} - \frac{1}{r-1} \le R(t) \le \frac{1}{r-1},$ so sees $x \in [1, -t]$ alons $\xi_x x^2 = (1, 1 + q)$ and $\xi_x x^2 = (1, 1 + q)$ a
Corrections of the original of	$\begin{aligned} & > 0, \ _{Y} > 0 \ _{Y} = _{Y} _{Y} + _{Y} _{Y} = \langle (-1)R(t) _{Y} _{Y} $
Corro Soit Corro Soit Soit Corro Soit Soit Corro Soit Soit Soit Corro Soit Soit Soit Soit Soit Soit Soit Soi	$\begin{aligned} & > 0, \Rightarrow 0, \Rightarrow 0, \forall 0 \in [1, 1+n] = s < (n-1)M(t) \le a + s - \frac{1}{2} \le M(t) \le \frac{1}{2}, \\ & > t^{2} \subseteq [n, n], s \le M(t) \le \frac{1}{2} \le M(t) \le$
Corro Soit Soit Soit Soit Corro Soit Soit Soit Soit Soit Soit Soit Soi	$ > 0. \ 2p < 0.9 + 1.4 + w_1 = e^{-t} \le (-1)R(t) \le c \cos w - \frac{1}{t^2} \le R(t) \le \frac{1}{t^2},$ where $t = t^2 - t^2 - t^2 \le R(t) \le \frac{1}{t^2},$ where $t = t^2 - t^2 - t^2 \le R(t) \le \frac{1}{t^2},$ where $t = t^2 - t^2 - t^2 \le R(t) \le \frac{1}{t^2}$ and $t = t^2 - t^2 - t^2 \le R(t) \le \frac{1}{t^2}$ and $t = t^2 - t^2 - t^2 \le R(t) \le \frac{1}{t^2}$ and $t = t^2 - t^2 - t^2 \le R(t) \le \frac{1}{t^2}$ and $t = t^2 - t^2 - t^2 - t^2 \le R(t) \le \frac{1}{t^2}$ and $t = t^2 - t^$
Corro Soit Corro Corro Soit Corro	$c > 0.5 \le c \le 10^{-1} + c \le 10^{-1} \le c \le 100^{-1} \le c \le 0.000 = c \le 0.000 =$
On in On a Limit On a Cry of Final Soit of Correct Soit of Soit of Correct Soit of Soit of Soit of Correct Soit of Soit of Correct Soit of Correct Soit of Correct Soit of Correct Soit of Soit of Correct Soi	$\begin{aligned} & \leq \lambda_{0} \log x (\frac{1}{2}) \int_{-\infty}^{\infty} \frac{dx}{(1+x)^{2}} = \frac{1}{2} \int_{-$
On in On a Limit On a Critical Solidar	$\begin{aligned} & \leq \lambda_{n,n} > \mathcal{H}(x) \leq \mathcal{H}(x) + \mathcal{H}(x) + $
On in On a Limit On a Crimal O	$\begin{aligned} & = S_{ij} (S_{ij} (S_{ij}) + S_{ij} (S_{ij} - S_{ij}) + S_{ij} (S_{ij} - S_{ij}) \\ & = S_{ij} (S_{ij} - S_{ij}) + S_{ij} (S_{ij} - S_{ij}) \\ & = S_{ij} (S_{ij} - S_{ij}) + S_{ij} (S_{ij} - S_{ij}) \\ & = S_{ij} (S_{ij} - S_{ij}) + S_{ij} (S_{ij} - S_{ij}) \\ & = S_{ij} (S_{ij} - S_{ij}) + S_{ij} (S_{ij} - S_{ij}) \\ & = S_{ij} (S_{ij} - S_{ij}) + S_{ij} (S_{ij} - S_{ij}) \\ & = S_{ij} (S_{ij} - S_{ij}) + S_{ij} (S_{ij} - S_{ij}) \\ & = S_{ij} (S_{ij} - S_{ij}) $
On in On a Limit On a Corn of Soit of	$\begin{aligned} & \text{constant} & constant$
Corro Soit Soit Soit Soit Soit Soit Soit Soi	See Section 2. Control 1. See Section 2.
On in On a Limit On a Or, J or	$S_{ij}(x) = \{ (x_i + x_j) + (x_j + x_j) + $
Corro Soit Corro Corro Soit Corro Corro Soit Corro	The control of the c
On in On a Corro Soit of Soit	The control of the c
On in Consultation of the	$\begin{aligned} & \mathcal{C}_{\mathcal{C}} & = \left(\frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - 1$
On in On a Corro Soit of Soit	The second contribution of the second contribut
On in On a Control of Proper Control of Alors Control of	The content of the c
Corro Soit Corro Corro Soit Corro Co	
Corro Soit Soit Soit Soit Soit Soit Soit Soi	The state of the control of the con
Corro Soit Corro Corro Soit Corro Corro Soit Corro	The control of the c
Corro Soit Soit Soit Soit Soit Soit Soit Soi	
Corro Soit Soit Soit Soit Soit Soit Soit Soi	

Théo D.

Intégrales sur un segment

2023-2024