Name:	Utech
	To Photography (N' Knowledge Start Experience)
Roll No.:	
Invigilator's Signature :	

CS/B.Tech/(EE-NEW)/SEM-6/EE-605A/2013 2013 DIGITAL SIGNAL PROCESSING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any *ten* of the following : $10 \times 1 = 10$
 - i) The sampling frequency of the following analog signal

 $x(t) = 3 \sin(150 \pi t) + 5 \cos(200 \pi t)$ should be

- a) greater than or equal to 150 Hz
- b) greater than or equal to 200 Hz
- c) greater than or equal to 600 Hz
- d) less than or equal to 200 Hz.

6512 Turn over

- ii) The magnitude response $H\left(e^{j\omega}\right)$
 - a) periodic and odd function of ω
 - b) periodic and even function of ω
- iii) A discrete-time system is said to be causal if and only if its impulse response $h \ [n]$ is
 - a) zero for n < 0
- b) zero for n > 0
- c) zero at n = 0
- d) zero at $n \neq 0$.
- iv) Fourier transform of x [n] is $x (\omega)$; then the Fourier transform of n x [n] is
 - a) $-j \frac{d \times (\omega)}{d\omega}$
- b) $\frac{d \times (\omega)}{d\omega}$
- c) $j \frac{d \times (\omega)}{d\omega}$
- d) $\omega \cdot \frac{d \times (\omega)}{d\omega}$.
- v) A signal is an energy signal if
 - a) $E < \infty$, P = 0
- b) $E < \infty$, $P = \infty$
- c) $P < \infty$, $E = \infty$
- d) $E=\infty$, P=0.
- vi) The overall impulse response of a cascaded connection of two systems with impulse responses h_1 [n] and h_2 [n] is
 - a) $h_1[n] + h_2[n]$
 - b) $h_1[n].h_2[n]$
 - c) $h_1[n] * h_2[n]$
 - d) $h_1[n] h_2[n]$.

vii) If x [n] and h[n] are two finite length sequences with length 6 and 5 respectively then their convolution has length

a) 8

9 b)

c) 10 d) 11.

viii) The value of the twiddle factor $W_{16}^{\,\,2}$ is given by

a) 0 + j b) 0.707 - j 0.707

c) 0-j

d) $-0.707 + j \cdot 0.707$.

If DFT $\{x [n]\} = X (K)$, then for circularly shifted ix) sequence DFT { x (n – 2) $_N$ } is

X (K) $e^{-j 4\pi K/N}$ a)

b) $X(K) e^{-j \pi K/N}$

c) $X(K) e^{j 4\pi K/N}$ d) $X(K) e^{j \pi K/N}$.

x) The first three points of a 4-point DFT of a real valued sequence are $\{6, -2 + j 2, -2\}$. The remaining point in the DFT is

a) 2 - j2

b) 2 + j 2

c) 6 - 2j

d) -2-j2.

CS/B.Tech/(EE-NEW)/SEM-6/EE-605A/2013

- a) increases the main lobe width and computational burden
- b) increases the main lobe width and decreases computational burden
- c) decreases the main lobe width and computational burden
- d) decreases the main lobe width and increase computational burden.

xii) If
$$x [n] \leftrightarrow X(z)$$
 then,

a)
$$x[-n] \Leftrightarrow X(-z)$$

b)
$$x[-n] \leftrightarrow zX(z)$$

c)
$$x[-n] \leftrightarrow X(z)/z$$

d)
$$x[-n] \leftrightarrow X(1/z)$$
.

xiii) The best approximation of a derivative function dx/dt of a continuous system, while discretising is made as

a)
$$(x_n - x_{n-1}) / T$$

b)
$$\frac{x_n + x_{n-1}}{T}$$

c)
$$(x_{n+1} - x_n) / T$$

d)
$$\frac{x_{n+1}-x_{n-1}}{2T}$$
.

2. The step response of an LTI system is

$$s [n] = \left(\frac{1}{z}\right)^{n-2} u [n-2].$$
 Find the impulse response of the system.

3. Consider the following two sequences to show how their ROCs are different although their *z*-transform are same.

$$x_1[n] = a^n u[n].$$

$$x_{2}\left[\ n \ \right] = - \ a^{n} \ u \left[\ -n-1 \ \right].$$

4. For the following system determine whether they are linear, causal and time-invariant.

a)
$$y[n] = e^{x[n]}$$

b)
$$y[n] = x[n] + 3x[n+1].$$
 $2 \times 2\frac{1}{2}$

5. Determine the periods of the sequences

a)
$$x_1 [n] = 2 \cos (0.15 \pi n) + 5 \sin (0.25 \pi n + \pi/3)$$

b)
$$x_2[n] = e^{-j \cdot 0.2 \pi n} + e^{0.7 \pi n}$$
. $2 \times 2\frac{1}{2}$

6. Obtain a Cascade realisation of the following system:

$$y[n] = 0.8 y[n-1] + 0.12 y[n-2]$$

= $x[n] + x[n-1] - 2x[n-2]$.

CS/B.Tech/(EE-NEW)/SEM-6/EE-605A/2013

7. Given
$$x[n] = (1 + n/5)$$
, $-5 \le n \le -1$
= 1 $0 \le n \le 5$
= 0 otherwise.

- a) Sketch the function $x_1 [n] = n x [n]$
- b) Show the even and odd part of $x_1 [n]$. 3 + 1 + 1

GROUP - C (Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

8. a) What do you understand by BIBO stable system ? Show that an LTI sysgtem is said to be BIBO stable if its impulse response $h \ [n]$ is absolutely summable

i.e.,
$$\sum_{n=-\infty}^{\infty} |h[n]| < \infty$$

b) Determine the impulse response of the system given by

$$y [n] = 0.6 y [n-1] - 0.8 y [n-2] + x [n].$$

c) Use Z-transform to perform convolution of the two sequences

$$x [n] = \delta [n] - \delta [n-2]$$

$$y [n] = 2\delta [n] - 2\delta [n-1] + \delta [n-3]$$
 5 + 5 + 5

6512

- 9. a) Show the outputs of a basic butterfly graph of a radix-2 DIF FFT for inputs *x* and *y*.
 - b) Find the (outputs) 8 pt DFT of the following sequence using Radix-2 DIF - FFT algorithm after padding with necessary zero.

$$x[n] = \sum_{k=0}^{4} (k-2) \delta[n-k].$$

- c) Show how the time complexity of finding the DFT of 256 point data sequence improves by using Radix-2 FFT algorithm instead of using direct computation.
- 10. a) How is the overlap save method useful in the convolution of sequences ?
 - b) Show that time domain convolution is equivalent to Z-domain multiplication of sequences

c)
$$x[n] = \{2, -1, 3, 4, 1\}$$

$$h[n] = \{1, 2, -1\}.$$

Find x [n] * h[n] using Z-transform.

CS/B.Tech/(EE-NEW)/SEM-6/EE-605A/2013

$$0.9 \le \left| H\left(e^{j\omega}\right) \right| \le 1 \qquad 0 \le \omega \le \frac{\pi}{4}$$

$$\left| H\left(e^{j\omega}\right) \right| \le 0.2 \qquad \frac{3\pi}{4} \le \omega \le \pi$$

Sampling time T = 1 sec.

- b) Discuss how frequency warping effect is taken into account in the design of an IIR filter using bilinear transformation. 10 + 5
- 12. a) Design a linear phase FIR filter, approximating the ideal frequency response

$$Hd\left(e^{j\omega}\right) = e^{-j\alpha\omega} \quad \text{for } |\omega| \le \frac{\pi}{6}$$
$$= 0 \quad \frac{\pi}{6} \le |\omega| \le \pi$$

Determine the filter co-efficient for N = 13, with a Bartlett window.

- b) Show a realisation of the filter. 12 + 3
- 13. Write short notes on any *three* of the following : 3×5
 - a) Impulse in variant method for design of IIR filter
 - b) Gibbs phenomenon and its effect
 - c) Aliasing and sampling rate in signal processing
 - d) Quantisation and its effect on digital filters.

6512 8