Homework 3

Name: Aina Azman

Net_ID: qistina

- 1. (10 points) Determine whether or not the following statements are true or false. If you think a statement is true, give your reasoning. If you think it is false, provide a counterexample.
 - (a) For all sets A and B, if $B \subseteq \overline{A}$, then $A \cap B = \emptyset$.
 - (b) For all sets A, B, C, if $B \subseteq C$ and $A \cap C = \emptyset$, then $A \cap B = \emptyset$.

a) For all sets A and B, if $B \subseteq A^-$, then $A \cap B = \emptyset$.

True: If $B \subseteq A^-$, it means that every element in set B is in complement A, or can also be said that every element in set B is not in A. This means that if we take the intersection of set A and set B, we will get null (\emptyset) as there is no elements that are both in set A and set B.

b) For all sets A, B, C, if B \subseteq C and A \cap C = \emptyset , then A \cap B = \emptyset .

True: If $B \subseteq C$ and $A \cap C = \emptyset$, it means that every element in set B is also in set C and that the intersection of set A and set C results to empty (\emptyset). This means that there is no elements that are both in set A and set C. Since every element of set B is also in set C, it is safe to conclude that the intersection of set A and set B must be empty (\emptyset).

Homework 3

- 2. (10 points) Indicate which of the following relationships are true and which are false, together with a brief explanation in words why you think that is the case:
 - (a) $Z^+ \subseteq Q$.
 - (b) $Q \subseteq Z$.
 - (c) $Q \cap R = Q$.
 - (d) $Z^+ \cap R = Z^+$.
 - (e) $\emptyset \subset \mathbb{N}$.
- a) $Z^+ \subseteq Q$: The set of positive integers is a subset of the set of rational numbers.

True: Every positive integer is also a rational number since every positive integer can be expressed as a fraction with a denominator of 1. Hence, this relationship is true.

b) $Q \subseteq Z$: The set of rational numbers is a subset of the set of integers.

False: The set of rational numbers includes both integers and fractions. Not all rational numbers are integers. Hence, this relationship is false.

c) $Q \cap R = Q$: The intersection of set of rational numbers and set of real numbers are set of rational numbers

True: Rational numbers are real numbers. Hence, this statement is true.

d) $Z^+ \cap \mathbf{R} = Z^+$: The intersection of set of positive integers and set of real numbers are set of positive integers.

True: Every positive integers are also real number. Hence, this statement is true.

e) $\emptyset \subset \mathbb{N}$: Null is a subset of nonnegative integers.

True: The empty set is a proper subset of any nonempty set. Hence, this relationship is true.

3. (10 points) Prove the distributive law for any three sets A, B, C:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

You can use any method of proof. For example, for a formal logic proof you might want to consider an element $x \in A \cup (B \cap C)$ and construct a chain of logical deductions to show that x also belongs to $(A \cup B) \cap (A \cup C)$. Or you could use Venn diagrams.

4. (10 points) Let $A = \{a, b, c, d\}$ and $B = \{y, z\}$. Determine $A \times B$ and $B \times A$. Are they equal?

- The number of possible ordered pairs (a, b) = 4 imes 2 = 8
- $A \times B = \{(a, y), (a, z), (b, y), (b, z), (c, y), (c, z), (d, y), (d, z)\}$
- $B \times A = \{(y, a), (y, b), (y, c), (y, d), (z, a), (z, b), (z, c), (z, d)\}$
- Hence, $A \times B \neq B \times A$.
 - 5. (10 points) Prove or disprove that for all sets A, B and C, we have

(i)
$$A \times (B - C) = (A \times B) - (A \times C)$$
. (ii) $\overline{A} \times \overline{(B \cup C)} = \overline{A \times (B \cup C)}$.

i) $A \times (B - C) = (A \times B) - (A \times C)$

- Pick arbitrary element $(x,y) \in A \times (B-C)$.
- The x is in A while the y is in the intersection of B and the complement of C.
- Therefore, (x,y) is in the Cartesian product of A and B and not in the Cartesian product of A and C, $(x,y)\in A\times B-A\times C$
- This prove that $A imes (B-C) \subseteq A imes B A imes C$ as (x,y) is arbitrary element in A imes (B-C).
- Next, prove that $A imes (B-C) \supseteq A imes B A imes C$
- Pick arbitrary element $(x,y) \in A \times B A \times C$.
- The (x, y) is in the Cartesian product of A and B and not in Cartesian product of A and C.
- Therefore, $x \in A, y \in B$, and $y \notin C$.
- This implies that y is in B-C.
- Therefore, we conclude that $(x,y) \in A imes (B-C)$.

- ii) $\bar{\mathbf{A}} \times (B \cup C)^c = (A \times (B \cup C))^c$
 - Let (x, y) be arbitrary element in $(A^c imes (B \cup C)^c), (x,y) \in (A^c imes (B \cup C)^c)$
 - $\circ~$ This means that the $x\not\in A, y\not\in B\cup C$
 - Let (x, y) be arbitrary element in $(A imes (B \cup C))^c, (x,y) \in (A imes (B \cup C))^c$
 - \circ This means that $(x,y)
 otin A imes (B \cup C)$
 - Since $x \not\in A$, we have $(x,y) \not\in (A imes (B \cup C))$
 - Therefore, $((x,y)\in A imes (B\cup C))^c$
 - 6. (10 points) Let E be the set of even integers and O be the set of odd integers. Define a function:

$$f: E \times O \to \mathbb{Z}$$

such that f(x,y) = xy. Is f one-to-one? Is f onto? For either question, if your answer is yes, then prove it; if not, then provide a counterexample.

- ullet f is a one-to-one.
 - \circ Consider two distinct pairs (x_1,y_1) and (x_2,y_2) in E imes O such that $f(x_1,y_1)=f(x_2,y_2).$
 - \circ We need to show that $(x_1,y_1)=(x_2,y_2)$
 - $\circ \;\;$ Given that x
 eq 0 and that $f(x_1,y_1) = xy_1$ and $f(x_2,y_2) = xy_2.$
 - \circ Since y_1 and y_2 are odd integers, they cannot be zero and we can cancel x from both sides, leading to $y_1=y_2$.
 - $\circ \:\:$ If x=0, then y_1 and y_2 can be any odd integers, and x=0 would not affect the injectivity.
 - Therefore, the function is one-to-one.
- f is a an onto function

- \circ For any $z\in Z$, we need to find $(x,y)\in E imes O$ such that f(x,y)=xy=z .
- $\circ~$ If z is even, we can choose $x=rac{z}{2}$ and y=1 (any odd integer)
- If z is odd, we can choose x = 1 and y = z.
- Therefore, the function is onto.
- In conclusion, the function $f: E \times O \longrightarrow Z$ defined as f(x,y) = xy is both one-to-one and onto.
 - 7. (10 points) Let $f: A \to B$ and $g: B \to C$ be functions. Let $h: A \to C$ be their composition, i.e., h(a) = g(f(a)).
 - (a) Prove that if f and g are surjections, then so is h.
 - (b) Prove that if f and g are bijections then so is h.

a) Prove that if f and g are surjections, then so is h.

- Given an arbitrary element c, where $c \in C$. Since g is a surjection, there exist b where $b \in B$ and that g(b) = c.
- Since f is also a surjection, there exist a where $a \in A$ and that f(a) = b.
- As h(a)=g(f(a)), then h(a)=g(f(a))=g(b)=c.
- This shows that for any $c \in C$, there exists an $a \in A$ where h(a) = c.

b) Prove that if f and g are bijections, then so is h.

- Proof that f and g are surjections, then so is h.
 - \circ Given an arbitrary element c, where $c \in C$. Since g is a surjection, there exist b where $b \in B$ and that g(b) = c.
 - \circ Since f is also a surjection, there exist a where $a \in A$ and that f(a) = b.

- \circ As h(a)=g(f(a)), then h(a)=g(f(a))=g(b)=c.
- \circ This shows that for any $c \in C,$ there exists an $a \in A$ where h(a) = c.
- ullet Proof that f and g are injections, then so is h
 - \circ Let $h(a_1) = h(a_2)$ for some a_1 and a_2 in A.
 - \circ This implies that $g(f(a_1))=g(f(a_2)).$
 - Since g is injective, $f(a_1) = f(a_2)$.
 - \circ And since f is injective, $a_1=a_2.$
 - Therefore, h is injective.
- Since it is proven that both f and g are surjective and injective , then so is h, therefore, h is a surjective and injective, making it a bijection.
- 8. (10 points) Determine if the following are functions. The domain is \mathbb{R} and the co-domain is \mathbb{R} . (i)f(x) = 1/x, $(ii)f(x) = \sqrt{x}$, $(iii)f(x) = \pm \sqrt{x^2 + 1}$.

i)
$$f(x) = 1/x$$

- This is a function.
- But this function is not defined for x = 0 as division by zero is undefined.
- Therefore f(x)=1/x is not a function for the entire domain R since it excludes ${\bf x}$ = 0.

ii)
$$f(x) = \sqrt{x}$$

- This is a function.
- For every real number $x \ge 0$, there is a unique non-negative real number \sqrt{x} .
- However, for x < 0, \sqrt{x} is not a real number.
- Hence the domain of this function should be $x \geq 0$.

iii)
$$f(x)=\pm\sqrt{x^2+1}$$

- This is not a function.
- The \pm makes the co-domain value be both negative and positive real numbers.
- This means that there are two possible values of f(x) due to the $\pm .$
- Specifically, for each x, there are two distinct values: one positive and one negative.
- This violates the definition of a function, where each input is related to exactly one output.
 - 9. **(20 points)** Determine if these functions from \mathbb{Z} (domain) to \mathbb{Z} (co-domain) are one-to-one (injective). $(i)f(n) = n 1, (ii)f(n) = n^2 + 1, (iii)f(n) = n^3, (iv)f(n) = \lceil n/2 \rceil$.

i)
$$f(n) = n - 1$$

- This function is injective.
 - Assume $f(n_1) = f(n_2)$.
 - \circ Then $n_1 1 = n_2 1$.
 - $\circ~$ Solving for n_1 and n_2 , we get $n_1=n_2$
 - Therefore, f(n) = n 1 is an injective function.

ii)
$$f(n) = n^2 + 1$$

- This is function not injective.
 - \circ Assume $f(n_1)=f(n_2).$
 - \circ Then $n_1^2 + 1 = n_2^2 + 1$.
 - $\circ~$ Solving for n_1 and n_2 , we get $n_1=n_2$ and $n_1=-n_2$

 \circ Therefore, $f(n)=n^2+1$ is not injective as there are two domain values that map to the same co-domain value.

iii)
$$f(n) = n^3$$

- This function is injective.
 - \circ Assume $f(n_1)=f(n_2)$
 - \circ Then $n_1^3=n_2^3$
 - \circ Solving for n_1 and n_2 , we get $n_1=n_2$ after taking the cube root on both sides.
 - \circ Therefore, $f(n) = n^3$ is an injective function.

iv)
$$f(n) = \lceil n/2 \rceil$$

- This function is not injective.
 - \circ Assume $f(n_1)=f(n_2)$
 - $\circ~$ Given that $n_1=3$ and $n_2=4$
 - \circ Then $\lceil 3/2 \rceil = 2$ and $\lceil 4/2 \rceil = 2$.
 - \circ Therefore, $f(n)=\lceil n/2 \rceil$ is not an injective function as distinct values of domain n should not map to the same co-domain value.
 - 10. **(20 points)** Determine if these functions from $\mathbb{Z} \times \mathbb{Z}$ (domain) to \mathbb{Z} (co-domain) are onto (surjective). $(i)f(m,n) = m + n, (ii)f(m,n) = m^2 n^2, (iii)f(m,n) = m, (iv)f(m,n) = |m| |n|$.

$$i) \ f(m,n) = m+n$$

• This function is a surjective.

- \circ For any integer z, we can find m=z and n=0 or vice versa such that f(m,n)=m+n=z.
- \circ Therefore, f(m,n)=m+n is onto.

ii)
$$f(m,n) = m^2 - n^2$$

- This function is not a surjective.
 - \circ Consider z=-1.
 - \circ There is no pair integers m,n such that $m^2-n^2=-1$.
 - \circ Therefore, $f(m,n)=m^2-n^2$ is not onto.

$$iii) f(m,n) = m$$

- This function is a surjective.
 - $\circ~$ For any integer z , we can find m=z and n=0 such that f(m,n)=m = z.
 - Therefore, f(m,n)=m is onto.

iv)
$$f(m,n)=|m|-|n|$$

- This function is a surjective.
 - $\circ~$ For any integer z , we can find m=z and n=0 and vice versa such that f(m,n)=|m|-|n|=z.
 - \circ Therefore, f(m,n)=|m|-|n| is onto.
 - 11. (10 points) Find $f \circ g$ and $g \circ f$ if $f(x) = x^2 + 1$ and g(x) = x + 2 if the functions are from \mathbb{R} (domain) to \mathbb{R} (co-domain).

•
$$f \circ g$$

$$\circ \ (f\circ g)(x)=f(g(x))=f(x+2)=(x+2)^2+1=x^2+4x+5$$

$$\circ$$
 Hence, $(f\circ g)=x^2+4x+5$

•
$$g \circ f$$

$$\circ \ (g \circ f) = g(x^2 + 1) = x^2 + 3$$

$$\circ$$
 Hence, $(g\circ f)=x^2+3$