

Σχολη ΗΜ&ΜΥ, ΕΜΠ

ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Καθ. Πετρος Μαραγκος

ΓΧΑ Συστηματα ←→ Συνελιξη

1

Σύστημα Συνεχούς Χρόνου (Τελεστής, Απεικόνιση-Μετ/σμός χρονικών σημάτων)

$$x(t)$$
 $\Sigma v \sigma \tau \eta \mu \alpha$ $y(t) = S[x(t)]$

Σύστημα Διακριτού Χρόνου (Τελεστής, Απεικόνιση-Μετ/σμός χρονικών ακολουθιών)

$$x[n] \longrightarrow S$$

$$\Sigma v \sigma \tau \eta \mu \alpha \qquad y[n] = S(x[n])$$

$$S$$

Γραμμικα Χρονικα-Αναλλοιωτα (ΓΧΑ) Συστηματα

3

ΓΡΑΜΜΙΚΟ ΣΥΣΤΗΜΑ $x \rightarrow y$

- ΓΡΑΜΜΙΚΟΤΗΤΑ (Γραμμική Επαλληλία) = Δύο Ιδιότητες:
- ΚΛΙΜΑΚΩΣΗ πλάτους (Ομογένεια ως προς πολλαπλασιαστικές σταθερές): [a·x[n] → a·y[n]
 - "Διπλασιασμός της εισόδου διπλασιάζει την έξοδο"
- ΥΠΕΡΘΕΣΗ (Αθροιστική Επαλληλία):

$$x_1[n] + x_2[n] \rightarrow y_1[n] + y_2[n]$$

- "Αθροιση δύο εισόδων δίνει ως έξοδο το άθροισμα των δύο ξεχωριστών εξόδων"
- Ιδιοι ορισμοί για Συστήματα Συνεχούς Χρόνου

ΕΞΕΤΑΖΟΝΤΑΣ την Time-Invariance $w[n] = y[n - n_0]$ equal $y[n - n_0]$ when the system is time invariant Delay $x[n - n_0]$ w[n]System by n_0 Delay System Figure 5.16 Testing time-invariance property by checking the interchange of operations.

ΧΡΟΝΙΚΑ ΑΝΑΛΛΟΙΩΤΟ

- IΔEA:
 - "Η Χρονική Μετατόπιση της εισόδου θα προκαλέσει την ίδια χρονική μετατόπιση στην έξοδο" $x[n-n_0]$ → $y[n-n_0]$
- ΙΣΟΔΥΝΑΜΑ:
 - Ο τελεστής του συστήματος αντιμετατίθεται με τον τελεστή μετατόπισης

Παραδειγματα Συστηματων

Σύστημα	Συνεχής Χρόνος	Διακριτός Χρόνος
Διαφοριστής (Differentiator)	$y(t) = \frac{dx(t)}{dt}$	y(n) = x(n) - x(n-1)
Ολοκληρωτής (Integrator)	$y(t) = \int_{-\infty}^{t} x(\tau)d\tau$	$y(n) = \sum_{m = -\infty}^{n} x(m)$
Καθυστέρηση (Delay)	$y(t) = x(t - t_0)$	$y(n) = x(n - n_0)$
Τρέχων Μέσος (Moving Average)	$y(t) = \frac{1}{2T} \int_{-T}^{T} x(t-\tau)d\tau$	$y(n) = \frac{1}{2M+1} \sum_{m=-M}^{M} x(n-m)$
Τετραγωνισμός	$y(t) = \left x(t) \right ^2$	$y(n) = \left x(n) \right ^2$
Διαμορφωτής Πλάτους (Amplitude Modulator)	$y(t) = [A + x(t)]\cos(\omega_c t)$	$y(n) = [A + x(n)]\cos(\Omega_c n)$

Σειριακή σύνδεση συστημάτων ➤ y(n) Παράλληλη σύνδεση συστημάτων. \rightarrow y(n) x(n)

11

Βασικα Σηματα Διακριτου Χρονου

$$\delta[n] = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$

$$x[n] = \alpha^n$$

$$u[n] = \begin{cases} 1, & n \ge 0 \\ 0, & n < 0 \end{cases}$$

$$x[n] = A\cos(\Omega_0 n + \varphi)$$

13

ΓΧΑ Συστηματα Διακριτου Χρονου

ΧΑΡΑΚΤΗΡΙΖΟΝΤΑΙ ΠΛΗΡΩΣ από την h[n]: Το σημα εξοδου y[n] είναι η συνελιξη του σηματος εισοδου x[n] με την κρουστικη αποκριση h[n]:

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

15

Αποδειξη: η Συνελιξη ειναι Αντιμεταθετικη $x[n] \xrightarrow{\text{ΓΧΑ Συστημα Imp.resp: } h[n]} y[n] = x[n]*h[n]$ $y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$ $\triangleq x[n]*h[n]$ $y[n] = \sum_{m=-\infty}^{\infty} h[m]x[n-m]$ = h[n]*x[n]

Παραδειγμα: Συνελιξη με Δυο Ειδικα Σηματα

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{m=-\infty}^{\infty} h[m]x[n-m]$$

ΜΕΤΑΤΟΠΙΣΗ:

$$\frac{h[n] = \delta[n - n_0]}{h[n] = \delta[n - n_0]} \Rightarrow y[n] = x[n] * h[n] = \sum_{m = -\infty}^{\infty} h[m]x[n - m]$$

$$= \dots$$

ΤΡΕΧΟΝ ΑΘΡΟΙΣΜΑ:

$$h[n] = u[n] \implies y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} h[m]x[n-m]$$

$$= \dots$$

19

Παραδειγμα Συνελιξης σε Διακριτο Χρονο: FIR Συστημα

Γενικο ΓΧΑ συστημα: $y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} h[m]x[n-m]$

Ειδικη περιπτωση: Εστω το ΓΧΑ σύστημα:

$$y[n] = \sum_{m=0}^{M} b_m x[n-m]$$

ightarrow η h[n] είναι η ίδια με την πεπερασμένη ακολουθία $(b_{\rm n})$:

$$h[n] = \begin{cases} b_n, & 0 \le n \le M \\ 0, & \text{else} \end{cases} \Rightarrow \text{Finite Impulse Response (FIR)}$$

$$y[n] = \sum_{m=0}^{M} b_m x[n-m] = x[n] * h[n] = \sum_{m=0}^{M} h[m] x[n-m]$$

18

21

22

ΣΥΣΤΗΜΑ ΜΕΣΟΥ 3 ΣΗΜΕΙΩΝ

□ ΠΡΟΣΘΕΤΟΥΜΕ 3 ΔΙΑΔΟΧΙΚΑ ΣΗΜΕΙΑ□ Για κάθε "n"

the following input-output equation

Φτιάχνουμε έναν ΠΙΝΑΚΑ

$$y[n] = \frac{1}{3}(x[n] + x[n+1] + x[n+2])$$

n	n < -2							l		
x[n]	0	0	0	2	4	6	4	2	0	0
y[n]	0	<u>2</u> 3	2	4	14 3	4	2	<u>2</u> 3	0	0

$$n=0$$
 $y[0] = \frac{1}{3}(x[0] + x[1] + x[2])$

$$y[1] = \frac{1}{3}(x[1] + x[2] + x[3])$$
 22

23

24

ΠΑΡΕΛΘΟΝ, ΠΑΡΟΝ, ΜΕΛΛΟΝ

Figure 5.4 The running-average filter calculation at time index n uses values within a sliding window (shaded). Dark shading indicates the future $(\ell > n)$; light shading, the past $(\ell < n)$.

	Α ΑΛ ΜΕΙΩ		Σ	ΥΣ	T	HI	MΑ	N	IE	Σ(YC	′ 3
	Χρησιμο ΣΗΜΑ ΠΡΑΓΝ ΟΤ. υ[n]	ANTII MATII AN TO	KO a\ KO XI a x[n]	/ TO PON	"n" IO [n]	'α\ εiva	/aпa ı POE	ρισ Σ Α	τά PIΘ			
n	n < -2	-2	-1	0	1	2	3	4	5	6	7	n > 7
x[n]	0	0	0	2	4	6	4	2	0	0	0	0
y[n]	0	0	0	2 3	2	4	14 3	4	2	2/3	0	0
			y[4]=	$=\frac{1}{3}($	x[4]]+	<i>x</i> [4	-1]	+ <i>x</i>	[4-	- 2]	25

ΓΕΝΙΚΟ Αιτιατο FIR ΦΙΛΤΡΟ □ ΚΥΛΙΟΥΜΕ ένα ΠΑΡΑΘΥΡΟ Μήκους Μ πάνω στο x[n] $y[n] = \sum_{m=0}^{M} b_m x[n-m]$ $y[n] = b_0x[n] + b_1x[n-1] + \dots + b_Mx[n-M]$ M-th Order FIR Filter Operation (Causal) $A x[\ell]$ Running off the Data Weighted Sum Running over M + 1 points Zero Output the Data h[M]x[n-M] + ... + h[0]x[n]27

27

28

FIR Παράδειγμα-1 (a) □ Το FIR Φίλτρο είναι η "ΠΡΩΤΗ ΔΙΑΦΟΡΑ" □ Γράφουμε την έξοδο ως συνέλιξη □ Χρειαζόμαστε την κρουστική απόκριση $h[n] = \delta[n] - \delta[n-1]$ □ Ενας άλλος τρόπος να υπολογιστεί η έξοδος είναι: $y[n] = (\delta[n] - \delta[n-1]) * x[n]$ $= \delta[n] * x[n] - \delta[n-1] * x[n] = x[n] - x[n-1]$

FIR Παράδειγμα-2:
Μαθηματικός τύπος για το h[n]

Ω Χρησιμοποιούμε ΜΕΤΑΤΟΠΙΣΜΕΝΟΥΣ
ΠΑΛΜΟΥΣ για να γράψουμε το h[n] $h[n] = \delta[n] - \delta[n-1] + 2\delta[n-2] - \delta[n-3] + \delta[n-4]$ $\{b_k\} = \{1,-1,2,-1,1\}$

29

Δυο Μορφές για FIR Συνέλιξη

 \Box 'Εξοδος = y[n] = h[n]*x[n] = x[n]*h[n]

$$y[n] = \sum_{m=0}^{M} h[m]x[n-m] = \sum_{k=n}^{n-M} h[n-k]x[k]$$

- □ Ισοδυναμια: Αλλάζομε τον δείκτη m=n-k ή k=n-m.
- □ Δυο Υλοποιησεις (μηκος $h[n] = M+1 < \mu \eta κος x[n]$):

$$y[n] = \sum_{k=n-M}^{n} x[k]h[n-k]$$
 : Σειριακή (κινουμένο παραθύρο h)
$$= \sum_{m=0}^{M} h[m]x[n-m] : Παραλληλη$$

 $y[n] = x[n]h[0] + x[n-1]h[1] + \dots + x[n-M]h[M]$

_

FIR Παράδειγμα-2: Συνέλιξη

 $h[n] = \delta[n] - \delta[n-1] + 2\delta[n-2] - \delta[n-3] + \delta[n-4]$ x[n] = u[n]

n	-1	U	1	2	3	4	3	O	/
x[n]	0	1	1	1	1	1	1	1	
h[n]	0	1	-1	2	-1	1	0	0	0
h[0]x[n]	0	1	1	1	1	1	1	1	1
h[1]x[n-1]	0	0	-1	-1	-1	-1	-1	-1	-1
h[2]x[n-2]	0	0	0	2	2	2	2	2	2
h[3]x[n-3]	0	0	0	0	-1	-1	-1	-1	-1
h[4]x[n-4]	0	0	0	0	0	1	1	1	1
y[n]	0	1	0	2	1	2	2	2	
ນ[ກ]		٦ الم ⁻	[k]v	Г и	<i>b</i> 1	П	αραλ	ληλ	η

 $y[n] = \sum_{k=0}^{M} h[k]x[n-k]$ Παραλλη Υλοποιησ

ηση 32

ΣΕΙΡΙΑΚΗ ΣΥΝΔΕΣΗ ΣΥΣΤΗΜΑΤΩΝ

- Έχει σημασία η σειρά των S₁ & S₂;
 - □ ΟΧΙ ,τα <u>ΓΧΑ ΣΥΣΤΗΜΑΤΑ μπορούν να αντιμετατεθούν!</u>
 - \Box ΠΟΙΟΙ ΕΙΝΑΙ ΟΙ ΣΥΝΤΕΛΕΣΤΕΣ $\{b_k\}$ ΤΟΥ ΦΙΛΤΡΟΥ;

Figure 5.19 A Cascade of Two LTI Systems.

33

33

34

ΙΣΟΔΥΝΑΜΟ ΣΥΣΤΗΜΑ ΣΕΙΡΙΑΚΗΣ ΣΥΝΔΕΣΗΣ

□ Ποιο είναι το "συνολικό" h[n];

Γραμμικη Συνελιξη και Πινακας Toeplitz

Η έξοδος ενός ΓΧΑ συστήματος με απόκριση h(n) = n, $-1 \le n \le 1$ και είσοδο x(n) που είναι μηδενική εκτός του $0 \le n \le 4$ δίνεται από:

$$y[n] = x[n] * h[n] = \sum_{m=-1}^{1} h[m]x[n-m] = \sum_{k=0}^{4} x[k]h[n-k]$$

 Η συνέλιξη αυτή μπορεί να γραφεί ως γινόμενο Toeplitz πίνακα επί διάνυσμα (τα σηματα x[n] και h[n] ειναι πεπερασμενης διαρκειας):

$$\begin{bmatrix} y(-1) \\ y(0) \\ y(1) \\ y(2) \\ y(3) \\ y(4) \\ y(5) \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \\ x(4) \end{bmatrix}$$

35

36

ΓΧΑ Συστημα ←→ Συνελιξη

Γραμμικό & Χρονικά Αναλλοίωτο (ΓΧΑ) σύστημα $S\left[\ \ \right]$

Γραμμικότητα:
$$S\left(\sum_{k} c_k x_k[n]\right) = \sum_{k} c_k S\left(x_k[n]\right)$$

Χρονικά Αναλλοίωτο: S(x[n-k]) = S(x)[n-k]

Κρουστική απόκριση: $h[n] = S(\delta[n])$

Απόκριση ΓΧΑ συστήματος σε σήμα $x[n] = \sum_k x[k]\delta[n-k]$

$$S(x[n]) = S\left(\sum_{k} x[k]\delta[n-k]\right) = \sum_{k} x[k]h[n-k] \triangleq (x*h)[n]$$

$$S[\]$$
 είναι ΓΧΑ $\Leftrightarrow S[x] = x*h, \ h = S[\delta]$

27-Oct-21

Sharpening Filter 2.0 Original Sharpening filter

51

Ubernet: Spatial Multi-task Convolutional Network

Συνελικτικα Νευρωνικα Δικτυα για επιλυση πολλαπλων χωρικων προβληματων Ορασης Υπολογιστων

Input Boundaries Saliency Normals

Detection Semantic Boundaries & Segmentation Human Parts

[1. Kokkinos. Ubernet: Training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory. In Proc. CVPR 2017.]

55

53

ΓΡΑΜΜΙΚΟ ΣΥΣΤΗΜΑ $x \rightarrow y$

- ΓΡΑΜΜΙΚΟΤΗΤΑ (Γραμμική Επαλληλία) = Δύο Ιδιότητες:
- ΚΛΙΜΑΚΩΣΗ πλάτους (Ομογένεια ως προς πολλαπλασιαστικές σταθερές): $a \cdot x(t) \rightarrow a \cdot y(t)$
 - "Διπλασιασμός της εισόδου διπλασιάζει την έξοδο"
- ΥΠΕΡΘΕΣΗ (Αθροιστική Επαλληλία):

$$x_1(t) + x_2(t) \rightarrow y_1(t) + y_2(t)$$

- "Αθροιση δύο εισόδων δίνει ως έξοδο το άθροισμα των δύο ξεχωριστών εξόδων"
- Ιδιοι ορισμοί για Συστήματα Διακριτού Χρόνου

59

ΧΡΟΝΙΚΑ ΑΝΑΛΛΟΙΩΤΟ

- ΙΔΕΑ:
 - "Η Χρονική Μετατόπιση της εισόδου θα προκαλέσει την ίδια χρονική μετατόπιση στην έξοδο" $x(t-t_0)$ → $y(t-t_0)$
- ΙΣΟΔΥΝΑΜΑ:
 - Ο τελεστής του συστήματος αντιμετατίθεται με τον τελεστή μετατόπισης

ANA Λ OΓΙΚΑ ΣΗΜΑΤΑ x(t)□ ΑΠΕΙΡΟ ΜΗΚΟΣ HMITONOΕΙΔΗ: (t = χρόνος σε secs)□ΠΕΡΙΟΔΙΚΑ ΣΗΜΑΤΑ \square ΜΟΝΟΠΛΕΥΡΑ, π.χ. , για t>0 □MONAΔIAIO BHMA: u(t)

□ ΠΕΠΕΡΑΣΜΕΝΟΥ ΜΗΚΟΥΣ □ΤΕΤΡΑΓΩΝΙΚΟΣ ΠΑΛΜΟΣ

63

64

□ ΣΗΜΑ ΚΡΟΥΣΤΙΚΟΥ ΠΑΛΜΟΥ: $\delta(t)$

63

Παραδειγματα Συστηματων

Σύστημα	Συνεχής Χρόνος	Διακριτός Χρόνος
Διαφοριστής (Differentiator)	$y(t) = \frac{dx(t)}{dt}$	y(n) = x(n) - x(n-1)
Ολοκληρωτής (Integrator)	$y(t) = \int_{-\infty}^{t} x(\tau)d\tau$	$y(n) = \sum_{m = -\infty}^{n} x(m)$
Καθυστέρηση (Delay)	$y(t) = x(t - t_0)$	$y(n) = x(n - n_0)$
Τρέχων Μέσος (Moving Average)	$y(t) = \frac{1}{2T} \int_{-T}^{T} x(t-\tau)d\tau$	$y(n) = \frac{1}{2M+1} \sum_{m=-M}^{M} x(n-m)$
Τετραγωνισμός	$y(t) = \left x(t) \right ^2$	$y(n) = \left x(n) \right ^2$
Διαμορφωτής Πλάτους (Amplitude Modulator)	$y(t) = [A + x(t)]\cos(\omega_c t)$	$y(n) = [A + x(n)]\cos(\Omega_c n)$

Σήματα Συνεχούς Χρόνου: ΠΕΡΙΟΔΙΚΑ $x(t) = 10\cos(200\pi t)$ Ημιτονοειδές Σήμα (a) (b) Τετραγωνικό Κύμα ΑΠΕΙΡΗ ΔΙΑΡΚΕΙΑ 64

Ιδιότητα Δειγματοληψίας $f(t)\delta_{\Delta}(t) \approx f(0)\delta_{\Delta}(t)$ 68

Γενική Ιδιότητα Δειγματοληψίας $f(t)\delta(t-t_0) = f(t_0)\delta(t-t_0)$

ΓΧΑ Συστηματα Συνεχους Χρονου

• Αν ένα συνεχούς-χρόνου σύστημα είναι γραμμικό και χρονικά αναλλοίωτο τότε η έξοδος γ(t) σχετίζεται με την είσοδο x(t) μέσω ενός ολοκληρώματος συνέλιξης

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = x(t) * h(t)$$

όπου h(t) είναι η κρουστική απόκριση του συστήματος.

69

71

Ιδιότητες του Κρουστικού Παλμού $\delta(t) = 0, \quad t \neq 0$ Συγκεντρωμένος στο t=0 $f(t)\overline{\delta(t-t_0)} = f(t_0)\overline{\delta(t-t_0)}$ Ιδιότητα Δειγματοληψίας $\int \delta(\tau)d\tau = 1$ Μοναδιαία Επιφάνεια $\delta(\tau)d\tau = u(t) = \begin{cases} 1 & t > 0 \\ 0 & t < 0 \end{cases}$ Η μοναδιαία βηματική συνάρτηση είναι το ολοκλήρωμά του

Αποδειξη: ΣΧ ΓΧΑ Συστημα -> Συνελιξη () $\hat{x}(t) = \sum_{n=0}^{\infty} x(nT) \operatorname{rect}(\frac{t - nT}{T}) = \sum_{n=0}^{\infty} x(nT) \delta_{T}(t - nT) T$ $x(t) = \int x(\tau)\delta(t-\tau)d\tau$ $\hat{y}(t) = \sum_{n=-\infty}^{\infty} x(nT)h_T(t-nT)T$ $\lim_{T\to 0}h_T(t)=h(t)$ $y(t) = \int x(\tau)h(t-\tau)d\tau \stackrel{\triangle}{=} x(t) * h(t)$

Παράγωγος της μοναδιαίας βηματικής συνάρτησης

Αναπαρασταση και Συνελιξη Σηματος με Dirac-Κρουστικη

$$\int_{-\infty}^{\infty} x(\tau)\delta(t-\tau)d\tau = x(t)$$

- Ολοκληρωση γινομενου σηματος με κρουστικη = τιμη σηματος στο κεντρο της κρουστικης
- Αναπαρασταση σηματος ως γραμμικος συνδυασμος από σταθμισμενες & μετατοπισμενες κρουστικες.
- Συνελιξη σηματος με κρουστικη = σημα: $x(t)*\delta(t)=x(t)$

73

Υπολογισμός μίας Συνέλιξης x(t) = u(t-1) $y(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau = h(t)*x(t)$

75

Η Συνέλιξη είναι Γραμμική

Αντικαθιστούμε $x(t)=ax_1(t)+bx_2(t)$

$$y(t) = \int_{-\infty}^{\infty} [ax_1(\tau) + bx_2(\tau)]h(t-\tau)d\tau$$
$$= a\int_{-\infty}^{\infty} x_1(\tau)h(t-\tau)d\tau + b\int_{-\infty}^{\infty} x_2(\tau)h(t-\tau)d\tau$$
$$= ay_1(t) + by_2(t)$$

Η Συνέλιξη είναι Χρονικά Αναλλοίωτη

Αντικαθιστούμε $x(t-t_0)$

$$w(t) = \int_{-\infty}^{\infty} h(\tau)x((t-\tau) - t_o)d\tau$$
$$= \int_{-\infty}^{\infty} h(\tau)x((t-t_o) - \tau)d\tau$$
$$= y(t-t_o)$$

81

81

Η Συνέλιξη είναι Αντιμεταθετική

$$h(t) * x(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$$

$$\det \sigma = t - \tau \text{ and } d\sigma = -d\tau$$

$$h(t) * x(t) = -\int_{+\infty}^{\infty} h(t - \sigma)x(\sigma)d\sigma$$
$$= \int_{-\infty}^{\infty} h(t - \sigma)x(\sigma)d\sigma = x(t) * h(t)$$

$$= \int_{-\infty}^{\infty} h(t-\sigma)x(\sigma)d\sigma = x(t)*h(t)$$

82

82

Αιτιατά Συστήματα

- Ένα σύστημα είναι αιτιατό εάν και μόνο εάν η $y(t_0)$ εξαρτάται μόνο από τα $x(\tau)$ για $\tau \leq t_0$.
- □ Ένα *ΓΧΑ σύστημα* είναι αιτιατό εάν και μόνο εάν h(t) = 0 for t < 0

85

85

Ευστάθεια

BIBO: Bounded Input → **Bounded Output**

- □ Ένα σύστημα είναι ευσταθές αν κάθε φραγμένη είσδος παράγει μία φραγμένη έξοδο.
- □ Ένα *ΓΧΑ σύστημα* συνεχούς χρόνου είναι ευσταθές εάν και μόνο εάν

$$\int_{-\infty}^{\infty} |h(t)| dt < \infty$$

86

Αποδειξη Συνθηκης ΒΙΒΟ Ευστάθειας ΓΧΑ Συστηματος

$$| \Gamma XA \Rightarrow y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau |$$

87

Ιδιοτητες ΓΧΑ Συστηματος μεσω Κρουστικης Αποκρισης

AITIATOTHTA (Causality)

$$h(t) = 0 \quad \forall t < 0$$

EYΣΤΑΘΕΙΑ (Stability)

$$\int_{-\infty}^{\infty} |h(t)| dt < \infty$$

EΛΛΕΙΨΗ MNHMHΣ (Memoryless)

$$h(t) = K \cdot \delta(\tau)$$

86

sin(0.04nn) Αυτοσυσχέτιση του sin(0.04nn) Ημιτονοειδής συνάρτηση διακριτού χρόνου πεπερασμένης διάρκειας και αυτοσυσχέτιση

Βιβλιογραφια

- Γ. Καραγιάννης και Π. Μαραγκός, Βασικές Αρχές Σημάτων και Συστημάτων, Εκδόσεις Παπασωτηρίου, Αθήνα 2010.
- J. H. McClellan, R. W. Schafer and M. A. Yoder, *Signal Processing First*, Prentice-Hall, 2003.
- I. Kokkinos, *Introduction to Machine Learning*, Lecture Slides, UCL, 2017.

93

93

Demo Συνέλιξης

https://phiresky.github.io/convolution-demo/