Circuits numériques Logique séquentielle

Plan

- Spécificités de la logique séquentielle et des signaux synchrones / asynchrones
- Eléments de mémorisation :
 - circuit RS
 - point mémoire 6T et SRAM
 - D-latch, bascule D et registre
- Premier système séquentiel : le compteur
- Synthèse de circuits séquentiels
 - Machine de Moore
 - Machine de Mealy

Logique combinatoire - rappel

Sorties = f(Entrées)

- f représente un vecteur de fonctions combinatoires
- Ces fonctions sont déterministes et peuvent s'exprimer par des tableaux de vérité exhaustifs sur toutes les combinaisons des entrées
- Le calcul des sorties est effectué dès que la valeur de l'une des entrées se modifie
- Un état stable au niveau des entrées résulte en un état stable au niveau des sorties

Principes de la logique séquentielle

Sorties = f(Entrées, Sorties précédentes)

- Une fonction de logique séquentielle a la capacité de se « souvenir » des états antérieurs des sorties
- Une même combinaison des entrées pourra avoir des effets différents sur les sorties
- On introduit donc une notion de mémorisation de l'état actuel des sorties

Logique séquentielle synchrone

 On utilisera le plus souvent des fonctions de logique séquentielle synchrone : tous les éléments de mémorisation reçoivent le même signal d'horloge

$$Q(n+1) = f(E, Q(n))$$

n s'incrémente à chaque front actif de l'horloge ; autrement dit, n correspond au nombre entier de périodes de l'horloge depuis t=0

Signaux synchrones / asynchrones

- Les signaux synchrones changent d'état à un instant corrélé au front actif de l'horloge
 - Les sorties Q sont nécessairement synchrones
 - Les entrées E sont synchrones si issues de logique séquentielle synchrone située en amont
- Les signaux asynchrones changent d'état à un instant qui n'est pas corrélé au front actif de l'horloge
 - Il s'agit en général de signaux de contrôle
 - Remise à zéro (RESET, ou RAZ)
 - Mise à 1 (SET)
 - Chargement d'une valeur (LOAD)

Phénomène bistable

- Bistable = circuit avec 2 états stables (il y a aussi un état métastable)
- Les 2 états
 correspondent à la
 mémorisation des 2
 états possibles d'un bit
- Mais il n'y a pas d'entrée : impossible de contrôler l'état
- Représentation usuelle

Parenthèse: Point mémoire 6T (SRAM)

 M₁/M₂ et M₃/M₄ constituent les deux inverseurs connectés en boucle

BL (bit line)
 transmet (en
 signaux
 complémentaires)
 la valeur à
 mémoriser ou à
 lire

WL (word line)
 commande les
 transistors M₅/M₆ pour
 connecter BL à Q
 (ainsi que !BL à !Q)

Bistable → **bascule** RS

 Remplacer les inverseurs par des portes NOR

 Entrées R (RESET) et S (SET)

Existe aussi en version
 NAND (R et S inversées)

Bascule RS + horloge

 Rajouter un étage d'entrée pour activer/désactiver la bascule

• C=1 : Q(n+1)=S.!R

 État interdit (Q=!Q lorsque S=R=1) existe toujours

С	S	R	Q(n+1)	!Q(n+1)
0	Χ	Χ	Q(n)	!Q(n)
1	0	0	Q(n)	!Q(n)
1	0	1	0	1
1	1	0	1	0
4	4	1	Interdit	Interdit

Le D-latch

 Rajouter un étage d'entrée pour contrôler R et S à partir d'un seul bit de donnée (D comme data)

•
$$C=0 : Q(n+1)=Q(n)$$

•
$$C=1 : Q(n+1)=D$$

• Plus d'état interdit

Entre	ées	Sorties		
C	D	Qn+1	Qn+1	
0	X	Qn	$\overline{\mathbb{Q}}n$	
1	0	0	1	
1	1	1	0	

La bascule D

 2 D-latch connectés en maître-esclave et fonctionnant en opposition de phase de l'horloge

 La synchronisation se fait sur le **front** actif (montant ici) de CK

D-latch vs. bascule D

 La synchronisation sur front actif (montant ou descendant), cas de la bascule, permet de déclencher simultanément diverses fonctions : corrélation des données dans le temps

Parenthèse : D'autres bascules

Bascule T

- Inverse la sortie Q si T=1
- Fréquence de Q = ½
 la fréquence de l'horloge
- Utilisation dans les compteurs

T	Q(n+1)
0	Q(n)
1	!Q(n)

$$Q(n+1) = T \oplus Q(n) = T\overline{Q(n)} + \overline{T}Q(n)$$

Bascule JK

- J=!K: bascule D

- J=K; bascule T

- J=S et K=R

$$Q(n+1) = J\overline{Q(n)} + \overline{K}Q(n)$$

E	intrées	Sorties		
CK	J	K	Qn+1	Qn+1
0	X	Х	Qn	Qn
1	Х	Х	Qn	Qn
↓	X	Х	Qn	Qn
1	0	0	Qn	Qn
1	0	1	0	1
†	1	0	1	0
†	1	1	√n	Qn

Signaux de contrôle

- Exemples synchrones
- Chargement (LD)
 - LD=1 : chargement de la donnée D
 - LD=0 : maintien de la donnée en mémoire (isolation de l'entrée)
- Remise à zéro (RAZ)
 - RAZ=0 : chargement de 0
 - RAZ=1 : chargement de la donnée D
- Possible de combiner les CK signaux de contrôle

Registres

- Mise en parallèle de n bascules D pour mémoriser une donnée de n bits
- Le signal d'horloge est commun à l'ensemble des bascules
- Tout signal de contrôle (LD, RAZ ...) est aussi commun à l'ensemble des bascules

Premier système séquentiel : le compteur

- Un compteur est un ensemble de bascules reliées de manière à compter des impulsions de l'horloge
- Il génère ainsi une séquence ordonnée, sans données en entrée
- Un compteur modulo N compte de 0 à N-1

- Compteur modulo 4
- Division de fréquence:

$$- f_{Q0} = f_{CK}/2$$

 $- f_{Q1} = f_{Q0}/2 = f_{CK}/4$

Compteur modulo 4 : états

- 4 états
 nécessitent
 log₂(4)=2
 bascules D
- Le réseau combinatoire pour générer les entrées des bascules en fonction de la séquence désirée s'établit avec la table d'états

Etat (n)	Q1 (n)	Q0 (n)	Etat (n+1)	Q1 (n+1) = D1(n)	=
0	0	0	1	0	_ 1
1	0	1	2	_ 1	_ 0
2	1	0	3	_ 1	_ 1
3	1 1	1	0	– 0	0

$$D_0 = \overline{Q_0}$$

$$D_1 = \overline{Q_1} \oplus \overline{Q_0}$$

Compteur modulo 4: structure

Compteur modulo 10 : tableau d'états

Etat (n)	Q3 (n)	Q2 (n)	Q1 (n)	Q0 (n)	Etat (n+1)	Q3 (n+1) = D3(n)	Q2 (n+1) = D2(n)	Q1 (n+1) = D1(n)	Q0 (n+1) = D0(n)
0	0	0	0	0	1	0	0	0	1
1	0	0	0	1	2	0	0	1	0
2	0	0	1	0	3	0	0	1	1
3	0	0	1	1	4	0	1	0	0
4	0	1	0	0	5	0	1	0	1
5	0	1	0	1	6	0	1	1	0
6	0	1	1	0	7	0	1	1	1
7	0	1	1	1	8	1	0	0	0
8	1	0	0	0	9	1	0	0	1
9	1	0	0	1	0	0	0	0	0

Compteur modulo 10 : équations

D0			Q1	Q0	
		00	01	11	10
	00	1	0	0	1
Q3Q2	01	1	0	0	1
Q 3	11	X	X	X	X
	10	1	0	X	X

$$D_0 = \overline{Q_0}$$

 Q1Q0

 00
 01
 11
 10

 00
 0
 0
 1
 0

 00
 0
 1
 0
 1

	UU	U	U	L	O
Q3Q2	01	1	1	0	1
63	11	Χ	Χ	Χ	Χ
	10	0	0	Χ	Χ

$$D_2 = Q_2 \left(\overline{Q_1} + \overline{Q_0} \right) + \overline{Q_2} Q_1 Q_0$$

D1			Q1	Qυ	
		00	01	11	10
	00	0	1	0	1
Q3Q2	01	0	1	0	1
6 3	11	Χ	Х	Х	X
	10	0	0	Χ	X

$$D_1 = \overline{Q_3} \left(Q_1 \oplus Q_0 \right)$$

D3			Q1	Q0	
		00	01	11	10
	00	0	0	0	0
Q3Q2	01	0	0	1	0
Q 3	11	Χ	Х	X	Х
	10	1	0	Χ	X

$$D_3 = Q_3 \overline{Q_1} \overline{Q_0} + Q_2 Q_1 Q_0$$

STI tc1

Compteur modulo 10: structure

Q(n+1) = f(Q(n)): pas d'entrées ici

Système séquentiel complet

- Les entrées E représentent les stimulis pour faire passer le système d'un état vers un autre : il s'agit plus généralement d'une machine d'états finis
 - Exemples simples : détecteurs de séquence / code, feux de circulation, ascenseurs, vendeurs automatiques
 - Exemples plus complexes : protocoles de communication, parseurs linguistiques ...

Machine de Moore : structure générique

- Les sorties S dépendent de l'état présent Q(n): les sorties changent de manière synchrone sur un front d'horloge et il n'y a pas de connexion directe entrée-sortie
- L'état futur Q(n+1) dépend des entrées E et de l'état présent Q(n)

Machine de Moore : diagramme d'états

- Les sorties dépendent seulement des états
- Les transitions entre les états (condition sur les entrées) sont prises en compte de manière synchrone

Exemple : détection de séquence « 10 »

Etat (n)	Q1 (n)	Q0 (n)	E	Etat (n+1)	Q1(n+1) =D1(n)	Q0(n+1) =D0(n)	S	_
0	0	0	0	0	0	0	0	$D_{_1}$
0	0	0	1	1	0	1	0	∇
1	0	1	0	2	1	0	0	\mathcal{D}_0
1	0	1	1	0	0	0	0	S
2	1	0	0	0	0	0	1	
2	1	0	1	1	0	1	1	

$$D_{1} = \overline{Q_{1}}Q_{0}\overline{E}$$

$$D_{0} = \overline{Q_{0}}E$$

$$S = \overline{Q_{1}}Q_{0}$$

Détection de séquence « 10 » : structure

Machine de Mealy : structure générique

- Les sorties S dépendent de l'état présent Q(n) et des entrées E : les sorties changent de manière asynchrone en raison de la connexion directe entrée-sortie
- L'état futur Q(n+1) dépend des entrées E et de l'état présent Q(n)

Machine de Mealy: diagramme d'états

 Les sorties dépendent des états et des entrées : elles sont donc associées aux transitions (combinaison d'un état et d'une condition sur les entrées) et changent de manière asynchrone

Transition 2→1
E=condition 2 / S=sortie 2

Exemple : détection de séquence « 10 »

Etat (n)	Q0 (n)	Ε	Etat (n+1)	Q0(n+1) =D0(n)	S
0	0	0	0	0	0
0	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	0

$$D_0 = E$$

$$S = Q_0 E$$

Moore vs Mealy

- Machines de Moore et de Mealy peuvent être fonctionnellement équivalentes
- Machine de Mealy permet une description plus complexe avec un nombre d'état réduit
 - Surface et consommation réduite
- Machine de Mealy : prise en compte immédiate d'un changement en entrée, temps de réponse réduit d'un cycle par rapport à son équivalent de Moore
- Une machine de Moore n'a pas de chemin combinatoire liant l'entrée et la sortie
 - Absence d'un chemin critique le plus court

Aide-mémoire

Sorties = f(Entrées, Sorties précédentes)

- Bistable au cœur de la mémorisation
- Bascule D = 2 D-latchs en maître-esclave, mémorise sur **front** d'horloge
- Registre = plusieurs bascules D en parallèle
- Compteur modulo N = log₂(N) bascules avec logique combinatoire pour coder une séquence
- Machines d'états finis (Moore ou Mealy) = bascules D avec logique combinatoire pour coder les sorties et l'état futur en fonction des entrées et de l'état présent