EE241 spring 2022 Midterm I Name: Surname:

Please write clearly show your work and present your solutions in the order asked.

(20 pt)

1. Implement the logic function $\overline{C_o} = \overline{AB + AC_i + BC_i}$ using a complementary pull-up and pull-down network.

(20pt) 2) Use a 6-variable Karnaugh Map (2D) to derive a simplified boolean function from this truth table using the Sum of Products method.

A	В	С	D	E	F	Out	A	В	С	D	Е	F	Out
0	0	0	0	0	0	0	1	0	0	0	0	0	1
0	0	0	0	0	1	0	1	0	0	0	0	1	0
0	0	0	0	1	0	0	1	0	0	0	1	0	1
0	0	0	0	1	1	0	1	0	0	0	1	1	1
0	0	0	1	0	0	0	1	0	0	1	0	0	0
0	0	0	1	0	1	0	1	0	0	1	0	1	0
0	0	0	1	1	0	0	1	0	0	1	1	0	0
0	0	0	1	1	1	x	1	0	0	1	1	1	1
0	0	1	0	0	0	0	1	0	1	0	0	0	0
0	0	1	0	0	1	x	1	0	1	0	0	1	0
0	0	1	0	1	0	1	1	0	1	0	1	0	1
0	0	1	0	1	1	1	1	0	1	0	1	1	1
0	0	1	1	0	0	0	1	0	1	1	0	0	0
0	0	1	1	0	1	1	1	0	1	1	0	1	0
0	0	1	1	1	0	1	1	0	1	1	1	0	0
0	0	1	1	1	1	1	1	0	1	1	1	1	1
0	1	0	0	0	0	0	1	1	0	0	0	0	0
0	1	0	0	0	1	0	1	1	0	0	0	1	0
0	1	0	0	1	0	1	1	1	0	0	1	0	1
0	1	0	0	1	1	1	1	1	0	0	1	1	1
0	1	0	1	0	0	0	1	1	0	1	0	0	0
0	1	0	1	0	1	0	1	1	0	1	0	1	0
0	1	0	1	1	0	0	1	1	0	1	1	0	0
0	1	0	1	1	1	1	1	1	0	1	1	1	1
0	1	1	0	0	0	0	1	1	1	0	0	0	1
0	1	1	0	0	1	X	1	1	1	0	0	1	1
0	1	1	0	1	0	1	1	1	1	0	1	0	1
0	1	1	0	1	1	1	1	1	1	0	1	1	1
0	1	1	1	0	0	0	1	1	1	1	0	0	1
0	1	1	1	0	1	1	1	1	1	1	0	1	1
0	1	1	1	1	0	1	1	1	1	1	1	0	1
0	1	1	1	1	1	1	1	1	1	1	1	1	1

	a.) dead (hex) (binary)
	b.) beef (hex)(binary)
	c.) 1001010101 (binary)(hex)
	d.) 1A7 (hex)(decimal)
	4)
	a) (10)List all 3bit signed numbers 2's complement binary notation and in decimal .
	b)(10) in binary notation for 3bit unsigned numbers (where the result shouls be in 3 bit 2's complement notation) calculate
	i) -2 x-1
	ii) 2 x -1
	iii) 3 x -1
	iv) 2 x 2
	v) 2 x -2
	(30) 5)
	(10) a) Derive the truth table for mutitiplication of two numbers where each number is represented in 2's complement notation.
	(20) b) Find the sop and draw the curcuit diagram the 's complement two bit multiplicator. (Each input and output should be two bits)
]:	