Parallel Computing Presentation

01

Bruno Guindani - 10533134 Chiara Marzano - 10560220

Agenda

92

ORIGINAL PROBLEM

Assessment of the original problem, profiling and measurements

TECHNOLOGY CHOICES

CUDA for GPGPU

IMPLEMENTATION

Where and how we implemented parallelism

PERFORMANCE

Evaluation of our solution

NUMERICAL RESULTS

Comparison with the original

ORIGINALPROBLEM

Original Problem

Interaction of particles in space

GENERATING FIELD

PARTICLE GENERATION

SYSTEM EVOLUTION

Performance Assessment

using KCacheGrind

Technology choice

CUDA for GPGPU

FINE-GRAINED CONTROL

EDUCATIONAL CHALLENGE

HIGHLY SUITABLE APPLICATION DOMAIN

Implementation

Selecting functions to parallelize

Our first focus was deciding what to execute GPU-side and CPU-side. The decision was mainly based on:

- bottlenecks
- highly-parallelizable and concurrency-free operations
- educational impact

Implementation

Techniques

- mono and bidimensional stride
- shared memory

Implementation: stride technique

```
idx = blockIdx.x * blockDim.x + threadIdx.x;
stridex = gridDim.x * blockDim.x;
```


block

Generating Field

- Computes the generating field grid values in all points of the defined space.
- Deterministic generation
- EX * EY independent iterations
- Bidimensional stride technique
- Bidimensional threads per block: 32, 32
- Bidimensional number of blocks: 32 * num_SMs, 32 * num_SMs

Minimum and maximum

- Joint MinMaxInt() and MinMaxDouble() functions
- Single block, shared memory
- Optimal number of threads: argmin f(x) = x + N/x $\rightarrow x = sqrt(N)$ (capped at 1024)

System Instant Evolution

- Executes a single evolution iteration.
- NP independent iterations
- Monodimensional stride technique
- Monodimensional threads per block: 1024
- Monodimensional number of blocks: 32 * num_SMs

Initialize Empty Gio

- Initializes empty particle grid
- EX * EY independent iterations
- Bidimensional stride technique

Compt Population

- Computes effects of forces on particles
- NP independent iterations
- Monodimensional stride technique

Performance

data collected over 10 runs, in microseconds

1200 * 1000

Sequential

• average: 234'457'848

• standard deviation: 2'478'229

Parallel

• average: 11'110'354

• standard deviation: 110'340

Speedup: 20x

2400 * 2000

Sequential

• average: 895'111'148

standard deviation: 26'741'978

Parallel

average: 42'099'243

• standard deviation: 195'185

Speedup: 20x

4800 * 4000

Sequential (one iteration)

• average: 373'628'321

• standard deviation: 3'001'303

Parallel (one iteration)

• average 2'189'173

standard deviation: 20068

Speedup: 170x

Numerical Results

• Sometimes, the populations generated by the sequential and parallel programs are identical except for a single particle

particle number 214

sequential weight: 1650

parallel weight: 1950

THANKYOUFOR YOUR ATTENTION

Bruno Guindani - 10533134 Chiara Marzano - 10560220

Compiling and running

REPOSITORY

Can be cloned at https://github.com/ChiaraMarzano/ParComProject

COMPILING

nvcc -arch=sm_70 -o particles.x particles_c.cu

RUNNING

./particles.x