Árvore-B*

Anderson Canale Garcia

Material gentilmente cedido por: Cristina D. Aguiar

Árvore-B*

- Proposta por Knuth em 1973
 - variação de árvore-B
- Característica
 - cada nó contém, no mínimo, 2/3 do número máximo de chaves
- Posterga o split
 - estende a noção de redistribuição durante a inserção para incluir novas regras para o particionamento de nós

Redistribuição durante Inserção

- Funcionalidade
 - permite melhorar a taxa de utilização do espaço alocado para a árvore
- split
 - divide uma página com overflow em duas páginas semivazias

- redistribuição
 - chave que causou
 overflow (e outras
 chaves) é colocada
 em outra página
 - não requer a criação de novas páginas

Redistribuição durante Inserção

- Opção interessante
 - a rotina de redistribuição já está codificada para prover suporte à remoção
 - a redistribuição evita, ou pelo menos adia, a criação de novas páginas
 - tende a tornar a árvore-B mais eficiente em termos de utilização do espaço em disco
 - garante um melhor desempenho na busca, desde que um número menor de nós pode reduzir a altura da árvore, por exemplo

Split x Redistribuição

- Somente split na inserção
 - no pior caso, a utilização do espaço é de cerca de 50%
 - em média, para árvores grandes, o índice de ocupação é de ~69%
- Com redistribuição na inserção
 - em média, para árvores grandes, o índice de ocupação é de ~86%

Árvore-B*

Geração

 utiliza uma variação do processo de subdivisão

Características

- a subdivisão é adiada até que duas páginas irmãs estejam cheias
- na sequência, a divisão do conteúdo das duas páginas em três páginas (two-to-three split) é realizada

Split 2-to-3: Exemplo

Definição Formal

- Propriedades de uma Árvore-B*
 - cada página possui um máximo de m descendentes
 - cada página, exceto a raiz e as folhas, possui no mínimo (2m-1)/3 descendentes -> taxa de ocupação
 - a raiz possui pelo menos 2 descendentes, a menos que seja um nó folha
 - todas as folhas aparecem no mesmo nível
 - uma página interna com k descendentes contém k-1 chaves
 - uma folha possui no mínimo [(2m-1)/3] chaves e no máximo m - 1 chaves → taxa de ocupação

Observações

- Mudança na taxa de ocupação
 - afeta as rotinas de remoção e redistribuição
- Particionamento da raiz
 - problema
 - raiz não possui nó irmão
 - soluções
 - dividir a raiz usando a divisão convencional (1-to-2 split); ou
 - permitir que a raiz seja maior

Exercício

Considere as seguintes chaves

- Criar uma árvore-B*
 - Ordem da árvore: 5
 - Obedecer ordem de entrada dos dados
 - Considere implementadas as rotinas:
 - Split, concatenação e redistribuição
- Ilustre graficamente o índice gerado
 - Indique o RRN de cada página e o endereço do nó raiz no registro de cabeçalho