INTRODUCTION TO CRYPTOGRAPHY

DR. O. I. ADELAIYE

WHAT IS CRYPTOGRAPHY?

- Is a Greek word
 - κρυπτο (crypto), secret
 - γραφη (graphy), writing
- "The art of mangling information into apparent unintelligibility in a manner allowing a secret method of unmangling"
- Allows the transformation of a plaintext (cleartext) into a ciphertext and vice versa

Plaintext □ciphertext = encryption

Ciphertext | Dplaintext = decryption

WHY CRYPTOGRAPHY?

- Protects stored data
- Protects data in transit
- Provides protection against
 - Data eavesdropping
 - Tampering with data
- Could be easily used for authentication purposes

ANY TERMINOLOGY AT ALL?

- Suuuuuuuuuuure!
- Cryptography
 - art of creating and using codes to secure transmission of information
- Cryptanalysis
 - art of obtaining original message from ciphertext without access to secret information (key or algorithm itself)
- Cryptology
 - combines cryptography and cryptanalysis

WHEN DID IT ALL START?

- Julius Caesar (sometime BC)!
 - A substitution cipher
 - The Caesar cipher replaces the ith letter by the i+3th letter
 - CAT becomes FDW
 - Wraps around to A from Z
- Generalised in monoalphabetic ciphers
 - No restriction (such as $i \square i+3$) on which letter could be assigned to which
 - E.g. A is encrypted as B, B as D, C as Z, D as A, etc.
 - 26! possible monoalphabetic ciphers (4x1026)
 - Stronger than Julius Caesar, but would you use it?
 - NO! Vulnerable to statistical analysis
 - Most common English letters?

WHAT HAPPENED NEXT?

- Vigenere Cipher
 - Not his
 - First appeared in Rome in "La cifra del. Sig.
 Giovan Battista Bellaso", in 1553
 - "Le chiffre indéchiffrable" for about 3 centuries
 - Similar to a Caesar cipher but has a variable shift value
 - First letter shifted by 5, second by 17, third by 11
 - 5, 17 and 11 are defined by a secret
 - The values range is 0 to 25 (A to Z): A is 0, Z is 25

WHAT HAPPENED NEXT?

- Vigenere Cipher
 - If the message to be encrypted is longer than the key, then the key is repeated
- Example: Encrypt
 HACKNOW using CAT
 - Repeat key to match message's length
 - CATCATC
 - The table shows how to encrypt
 - H row, C column = encrypted H = ?
- Decipher by going to row C and look for "?" inside the row (not in the column index), the corresponding column index is the cleartext

```
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
 ABCDEFGHIJKLMNOPQRSTUVWXYZ
BBCDEFGHIJKLMNOPQRSTUVWXYZA
 CDEFGHIJKLMNOPQRSTUVWXYZAB
DDEFGHIJKLMNOPQRSTUVWXYZABC
 E F G H I J K L M N O P Q R S T U V W X Y Z A B
 F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
 G H I J K L M N O P Q R S T U V W X Y Z A B C D
H H I J K L M N O P Q R S T U V W X Y Z A B C D E
  J K L M N O P Q R S T U V W X Y Z A B C D E
 J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
 K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
 LMNOPQRSTUVWXYZABCDEFGHI
MMNOPQRSTUVWXYZABCDEFGHIJ
 NOPQRSTUVWXYZABCDEFGHIJK
 O P Q R S T U V W X Y Z A B C D E F G H I J K L
 PQRSTUVWXYZABCDEFGHIJKLMNO
QQRSTUVWXYZABCDEFGHIJKLMNOP
RRSTUVWXYZABCDEFGHIJKLMNOPQ
SSTUVWXYZABCDEFGHIJKLMNOPQR
TTUVWXYZABCDEFGHIJKLMNOPQRS
UUVWXYZABCDEFGHIJKLMNOPQRST
V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
W W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
XXYZABCDEFGHIJKLMNOPQRSTUVW
YYZABCDEFGHIJKLMNOPQRSTUVWX
ZZABCDEFGHIJKLMNOPQRSTUVWXY
```

BREAKING A CRYPTOGRAPHIC ALGORITHM

SHOULD CRYPTO. ALGORITHMS BE KEPT SECRET?

- - Security through obscurity
- Difficult in practice
 - Each time you use the algorithm with someone, they need to learn it (and might leak it?)
 - If it is implemented in some hardware, reverseengineering it could reveal the algorithm

SHOULD CRYPTO. ALGORITHMS BE KEPT SECRET?

- Making an algorithm available makes it possible for crackers to do all tests on the algorithm
 - And all the good guys too
 - Asa a good guy finds a loophole, she warns people
- Fundamental Tenet of Cryptography
 - "If lots of smart people failed to solve a problem, then it probably won't be solved (soon)"
- Nowadays, most of commercial algorithms are public, whereas some military algorithms are kept secret

SHOULD CRYPTO. ALGORITHMS BE KEPT SECRET?

- Kirchhoff's principle
 - A cryptographic algorithm must not be required to be secret, and it must be able to fall into the hands of the enemy without inconvenience
 - Its key must be communicable and retainable without the help of written notes, and changeable or modifiable at the will of the correspondents
- The only secret in the system should be the key

HOW DIFFICULT IS IT TO FIND A KEY?

- Assume you are using an algorithm with a 16 bit key
 - 2¹⁶ (=16384) possible keys
 - If a computer can test 100 keys/sec, then it will take a bit less than 3 minutes to try all of them
 - brute-force
 - And, in average, half that time to find the right key
 - This time doubles for each added bit (0 or 1)
 - For a 24 bit key, the same computer will need almost 20 months to try all combinations
- In practice, computers are much faster, but keys are much longer too!
- We would say that it is computationally infeasible to brute-force a cryptographic algorithm if it required an unreasonable amount of time using the most powerful computers

HOW DIFFICULT IS IT TO FIND A KEY?

- Note that if the keys are chosen and used by humans, then they have limited choices
 - 24 bit key is a 3 character key
 - Say for example that the used characters are upper and lower case and numerals
 - 26+26+10 = 62 possibilities for each character
 - 62³ (=238328) possible keys in all
 - Takes less than an hour to try all combinations!
- Nowadays, 280 possible combinations are considered feasible

HOW TO BREAK A CRYPTO ALGORITHM?

- Three typical attacks
 - 1. Ciphertext only
 - Attacker has access to encrypted messages
 - The attacker has to try possible keys in turn until one works
 - The attacker has to be able to recognize that a key actually works
 - Hence the name recognizable plaintext attack
 - Problem when dealing with a cipher text that can be decrypted in several ways
 - Should have many samples
 - Does not occur with modern crypto algorithms (too randomised outputs)

HOW TO BREAK A CRYPTO ALGORITHM?

- Three typical attacks
 - 2. Known Plaintext
 - The attacker obtained pairs of plain and cipher texts
 - Could be because the meaning of the ciphertext was revealed
 - Attack? Yes, no
 - Next target?
 - Should prevent attackers from getting those pairs
 - Adding a sequence number

HOW TO BREAK A CRYPTO ALGORITHM?

- Three typical attacks
 - 3. Chosen Plaintext
 - The attacker can choose the plaintext and make the system encrypt it!
 - Real life example: WEP
 - In WEP, the access point can send random numbers to the station (e.g. laptop) and the station encrypts and returns it
 - An attacker could pretend to be the access point
 - Same if there are only few possible meanings of the ciphertext
 - E.g. YES or NO

TYPES OF CRYPTOGRAPHIC ALGORITHMS

DO ALL CRYPTO ALGORITHMS WORK THE SAME WAY?

- Three types of crypto algorithms
 1.Secret key algorithms
 - Most intuitive: same key for encryption and decryption
 - Also known as Symmetric Cryptography
 - Many uses in secure systems, one of the most obvious ones is confidentiality
 - The two communication parties have to find a way of sharing the key before communicating
 - More on this later

DO ALL CRYPTO ALGORITHMS WORK THE SAME WAY?

- Three types of crypto algorithms
 2.Public key algorithms
 - Keys work in pairs
 - When a key is used to encrypt, only the other one can decrypt
 - Can encrypt with either; different uses
 - Also known as Asymmetric Cryptography
 - Typically one key is kept secret (private key), the other one is made public (public key)
 - Many uses in secure systems, one of the most obvious ones is authentication
 - The two communication parties have to find a way of sharing public key(s?) before communicating
 - More on this later

DO ALL CRYPTO ALGORITHMS WORK THE SAME WAY?

- Three types of crypto algorithms3.Hash algorithms
 - A one-way transformation
 - If h is a hash function such that y=(h), then it is
 computationally infeasible for a user who has h and y to find
 x(or an x'?such that h(x')=y)
 - Gives a fixed length output, whatever the input size is
 - MD5's is 128, SHA-1's is 160
 - The output is sometimes called hash, digest or checksum
 - Many uses in secure systems, one of the most common ones is digital signatures
 - More on this later

EN