CSC336 Assignment 3

Name: Zheyu Yang; Student Number: 1003932943

1.(a)

$$A = \begin{pmatrix} 1 & -4 & 5 & 4 \\ 1 & 0 & 2 & 0 \\ \hline (2) & -2 & 4 & 2 \\ -1 & 0 & 1 & -2 \end{pmatrix}$$

Interchange row 1&3 since 2 is the largest element in col 1

$$P_{1} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, P_{1}A = \begin{pmatrix} 2 & -2 & 4 & 2 \\ 1 & 0 & 2 & 0 \\ 1 & -4 & 5 & 4 \\ -1 & 0 & 1 & -2 \end{pmatrix}, M_{1} = I - m_{1}e_{1}^{T} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 & 0 \\ \frac{1}{2} & 0 & 1 & 0 \\ \frac{1}{2} & 0 & 0 & 1 \end{pmatrix}$$

$$M_1 P_1 A = \begin{pmatrix} 2 & -2 & 4 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & -3 & 3 & 3 \\ 0 & -1 & 3 & -1 \end{pmatrix}$$

No need of interchanging

$$P_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, P_2 M_1 P_1 A = \begin{pmatrix} 2 & -2 & 4 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & -3 & 3 & 3 \\ 0 & -1 & 3 & -1 \end{pmatrix}, M_2 = I - m_2 e_2^T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ -3 \\ -1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$M_2 P_2 M_1 P_1 A = \begin{pmatrix} 2 & -2 & 4 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & \boxed{3} & 0 \\ 0 & 0 & 3 & -2 \end{pmatrix}$$

No need of interchanging

$$P_{3} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, P_{3} M_{2} P_{2} M_{1} P_{1} A = \begin{pmatrix} 2 & -2 & 4 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 3 & -2 \end{pmatrix}, M_{3} = I - m_{3} e_{3}^{T} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{pmatrix}$$

$$M_{3}P_{3}M_{2}P_{2}M_{1}P_{1}A = \begin{pmatrix} 2 & -2 & 4 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix} = U$$

$$\begin{aligned} &1.Let\ P_{3}M_{2}=\widehat{M_{2}}P_{3}\quad For\ some\ \widehat{M_{2}}\in\mathbb{R}^{4}\\ &Since\ P_{3}=I,\ \widehat{M_{2}}=M_{2}\\ &Then\ M_{3}\widehat{M_{2}}P_{3}P_{2}M_{1}P_{1}A=U\\ &2.Let\ P_{3}P_{2}M_{1}=\widehat{M_{1}}P_{3}P_{2}\ For\ some\ \widehat{M_{1}}\in\mathbb{R}^{4} \end{aligned}$$

Since
$$P_3 = P_2 = I$$
, $\widehat{M}_1 = M_1$

Then
$$M_3 \widehat{M_2 M_1} P_3 P_2 P_1 A = M_3 M_2 M_1 P_3 P_2 P_1 A = U$$

$$M_3^{-1}M_2^{-1}M_1^{-1} = I + m_3e_3^T + m_2e_2^T + m_1e_1^T$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ -3 \\ -1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 \\ \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{2} & 1 & 0 & 0 \\ \frac{1}{2} & -3 & 1 & 0 \\ -\frac{1}{2} & -1 & 1 & 1 \end{pmatrix} = L$$

$$P_{3}P_{2}P_{1} = IIP_{1} = P_{1} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = P$$

Since $M_3 M_2 M_1 P_3 P_2 P_1 A = U$

Then
$$(P_3 P_2 P_1)A = PA = LU = (M_3^{-1} M_2^{-1} M_1^{-1})U$$

(b)

 $Ax = b \Rightarrow PAx = Pb \Rightarrow LUx = Pb$

Let Ux = y, $Pb = \widehat{b}$, Then $Ly = \widehat{b}$

$$Then \ Pb = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \\ 0 \\ 5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 3 \\ 5 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{2} & 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 & 0 \\ \frac{1}{2} & -3 & 1 & 0 \\ -\frac{1}{2} & -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \cdot \hat{b}_1 = 0 \Rightarrow \hat{b}_1 = 0 \\ 1 \cdot \hat{b}_2 = 0 \Rightarrow \hat{b}_2 = 0 \\ 1 \cdot \hat{b}_3 = 3 \Rightarrow \hat{b}_3 = 3 \\ 1 \cdot 3 + 1 \cdot \hat{b}_4 = 5 \Rightarrow \hat{b}_4 = 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 3 \\ 5 \end{pmatrix}$$

Then
$$Ux = \begin{pmatrix} 2 & -2 & 4 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix} \begin{pmatrix} 2 \cdot x_1 + (-2) \cdot x_2 + 4 \cdot x_3 + 2 \cdot x_4 = 0 \Rightarrow x_1 = -2 \\ 1 \cdot x_2 + (-1) \cdot x_4 = 0 \Rightarrow x_2 = -1 \\ 3 \cdot x_3 = 3 \Rightarrow x_3 = 1 \\ -2 \cdot x_4 = 2 \Rightarrow x_4 = -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 3 \\ 2 \end{pmatrix}, Thus \ x = \begin{pmatrix} -2 \\ -1 \\ 1 \\ -1 \end{pmatrix}$$

```
2.
   (a) and (b)
 a = sqrt(2)/2;
 b=[0;10;0;0;0;0;0;15;0;20;0;0;0];
 A = [0 \ 1 \ 0 \ 0 \ 0 \ -1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0;
       0 0 1 0 0 0 0 0 0 0 0 0 0;
       a 0 0 -1 -a 0 0 0 0 0 0 0;
       a 0 1 0 a 0 0 0 0 0 0 0;
       0 0 0 1 0 0 0 -1 0 0 0 0;
       0 0 0 0 0 0 1 0 0 0 0 0;
       0 0 0 0 a 1 0 0 -a -1 0 0 0;
       0000a010a0000;
       0 0 0 0 0 0 0 0 0 1 0 0 -1;
       0 0 0 0 0 0 0 0 0 0 1 0 0;
       0 0 0 0 0 0 0 1 a 0 0 -a 0;
       0 0 0 0 0 0 0 0 0 a 0 1 a 0;
       0 0 0 0 0 0 0 0 0 0 0 a 1;];
  f = A \setminus b
  condition number A = cond(A, inf);
  infinity norm b = norm(b, inf);
  b hat = A * f;
  r = b_hat - b;
  infinity norm r = norm(r, inf);
  upper_bound = condition_number_A * (infinity_norm_r/infinity_norm_b)
  lower_bound = (1/condition_number_A) * (infinity_norm_r/infinity_norm_b)
f =
  -28.2843
  20.0000
  10.0000
  -30.0000
   14.1421
   20.0000
  -30.0000
   7.0711
  25.0000
  20.0000
  -35.3553
   25.0000
upper_bound =
   5.6100e-15
lower_bound =
```

5.6247e-18

```
T = table;
for n = 2:13
    x = ones(n, 1);
    H = hilb(n);
    b = H * x;
    x_hat = H \ b;

    f_n = log10(10^(1.49044545*(n)-1.72));
    condition_number = log10(cond(H));

    relative_error = norm(x_hat - x, inf)/norm(x, inf);
    g_n = -log10(cond(H)) + 16.5941;
    logrr = -log10(relative_error);

    I = [T; table(n, f_n, condition_number, relative_error, g_n, logrr)];
end
disp(T)
plot(T.n, T.condition_number, T.n, T.f_n), xlabel('n'), legend('log10(cond(H))', 'f(n)'), grid on
plot(T.n, T.logrr, T.n, T.g_n), xlabel('n'), legend('-log10(||x_hat-x||/||x||)', 'g(n)'), grid on
```

n	f_n	condition_number	relative_error	g_n	logrr
_					
2	1.2609	1.2851	7.7716e-16	15.309	15.109
3	2.7513	2.7194	7.4385e-15	13.875	14.129
4	4.2418	4.1907	4.5053e-13	12.403	12.346
5	5.7322	5.6782	3.9924e-12	10.916	11.399
6	7.2227	7.1747	5.724e-10	9.4194	9.2423
7	8.7131	8.677	2.019e-08	7.9171	7.6949
8	10.204	10.183	3.7286e-07	6.4106	6.4285
9	11.694	11.693	1.3105e-05	4.9011	4.8825
10	13.184	13.205	0.00051646	3.3893	3.287
11	14.675	14.718	0.012488	1.8764	1.9035
12	16.165	16.21	0.65878	0.38427	0.18126
13	17.656	17.68	5.5991	-1.0859	-0.74812

