2018-2019 Bahar Yarıyılı

Veri Yapıları ve Algoritmalar Dersi 3. Ödevi

Konu: Böl ve Yönet Algoritmalar

<u>Problem:</u> Bir kulede bulunan N odayı açmak için farklı büyüklükte N adet anahtar gerekiyor. Anahtarları diğer anahtarlarla veya kilitlerin büyüklüklerini diğer kilitlerle karşılaştırmadan, sadece anahtarlar kapılara takılarak kontrol yapılabiliyor. Her seferinde <u>rasgele</u> bir anahtar seçip hangi kilide uyduğunu bularak, anahtarların uydukları bütün kapıları O(N*lg₂N) karmaşıklıkla bulan algoritmayı tasarlayınız.

<u>Yapılacaklar</u>: Tasarlanacak algoritma Quicksort benzeri bir böl-ve-yönet algoritmasıdır:

- Kilit büyüklüklerinin sayısal değeri **Lock[N]** ve anahtar büyüklüklerinin sayısal değeri **Key[N]** dizilerinde olsun. Anahtarların hepsi bir kilide uyduğu için, her iki dizi de sıraları farklı da olsa aynı sayılardan oluşmaktadır.
- Rasgele seçilen bir **Key[i]** anahtarı için, **Lock dizisi üzerinde arama yaparak Lock** dizisini bu anahtardan küçük olan kilitler, eşit olan kilitler ve büyük olan kilitler olarak yeniden düzenleyiniz. Bu durumda **Lock[x]**, **Key[i]** anahtarının uyduğu kilittir.
- Aynı işlemi bu sefer Lock[x] kilitine uygun anahtarı bulmak için Key dizisini x. kilitten küçük anahtarlar ve büyük anahtarlar şeklinde düzenlerseniz Key[i] anahtarı ile Lock[x] kiliti karşı karşıya gelmiş olur.
- Bundan sonra önce son yerleştirdiğiniz anahtardan küçük anahtarların içinden rasgele bir anahtar seçerek, küçük anahtarların kilitlerini bulmayı bitirdikten sonra büyük anahtarlar için işlemi tekrarlayarak bütün anahtarlara uygun kilitleri bulabilirsiniz.

Ödev raporu

1. Yaptığınız çalışmayı **yöntem, uygulama ve sonuç** bölümlerinden oluşan bir doküman hazırlayarak anlatınız.

Yöntem bölümünde problemi kısaca anlatıp, algoritmanıza ait <u>akış diagramını</u> çiziniz. **Uygulama** bölümünde

- dizilerin rasgele sayılardan oluştuğu bir örnek,
- dizilerin küçükten büyüğe sıralı sayılardan oluştuğu bir örnek
- dizilerin büyükten küçüğe sıralı sayılardan oluştuğu bir örnek

üzerinde algoritmanızın çalışmasını adım adım gösteriniz.

Sonuç bölümünde algoritmanızın işlem karmaşıklığını hesaplayınız.

2. Algoritmanızın <u>C dilinde</u> programını hazırlayarak dokümana ekleyiniz.

Teslim İşlemleri:

Ödevler 8 Mayıs 2019 Çarşamba günü yapılacak laboratuvarda gösterilecektir.

Ödev son teslimi aşağıdaki verilen linke 7 Mayıs Salı 2019 Saat 23:59'a kadardır. Ödev teslimi ile ilgili duyurular için *Arş. Gör. Ahmet Elbir*'in Avesis sayfasını takip ediniz.

- Teslim edilecek rapor ve program kaynak kodu ismi sırasıyla **HW3_ÖğrNumara.pdf ve HW3_ÖğrNumara.c** isimlerinde olmalıdır. (Örn: HW3_18011001.pdf, HW3_18011001.c)
- Rapor ve Kod dosyaları HW3_ÖğrNumara.rar (Örn:HW3_18011001.rar)
- Bu .rar dosyasını aşağıdaki linke son teslim saatine kadar yükleyiniz.
- https://forms.gle/LT7j8wcw4fRzACsK6

<u>Laboratuvar Sunumu:</u> Programınızın çalışmasını laboratuvar esnasında size verilecek olan bir örnek üzerinde göstermeniz istenecektir.

Değerlendirme: Ödeviniz aşağıdaki gibi değerlendirilecektir:

Algoritma Tasarımı ve Programın Çalışması: (%60)

- 1. Ödev, istenilen işlerin tamamını yerine getirmelidir.
- 2. Gereksiz kontrollerden ve işlemlerden arınmış bir tasarım yapılmalıdır.
- 3. Programda gerekli alt modüller belirlenerek her modül ayrı fonksiyon olarak yazılmalıdır.
- 4. Program hatasız çalışmalıdır.
- 5. Programın çalışması sırasında, konuyu bilmeyen kişilerin rahatlıkla anlayabilmesi için, giriş ve çıkışlarda mesajlarla bilgi verilmelidir.

Rapor Dokümantasyonu: (%40)

- 1. Raporun ilk sayfasında, dersin adı, öğrencinin ad, soyad ve numarası, ödev konusu bilgileri yer almalıdır.
- 2. Kaynak kodda değişken deklerasyonu yapılırken her değişken tek satırda tanımlanmalı, tanımın yanına değişkenin ne için kullanılacağı açıklama olarak yazılmalıdır.
- 3. Değişken ve fonksiyon(veya metod) isimleri anlamlı olmalıdır.

- 4. Her fonksiyonun (veya metodun) yaptığı iş, parametreleri ve dönüş değeri açıklanmalıdır.
- 5. Gerekli yerlerde açıklama satırları ile kodda yapılan işlemler açıklanmadır.
- 6. Gereksiz kod tekrarı olmamalıdır.
- 7. Kaynak kodun formatı düzgün olmalıdır.