

Practice Problems Set 3

Problem 3.1

Find a polynomial P(x) of degree ≤ 3 for which

$$P(0) = y_1$$
 $P(1) = y_2$
 $P'(0) = y'_1$ $P'(1) = y'_2$

with y_1, y_2, y'_1, y'_2 given constants.

The resulting polynomial is called **cubic Hermite interpolating polynomial**.

HINT: Write $P(x) = y_1 H_1(x) + y_2 H_2(x) + y_1' H_3(x) + y_2' H_4(x)$ with H_i cubic polynomials satisfying appropriate properties, in analogy with Lagrange interpolating polynomials.

Problem 3.2

Find the function $P(x) = a + b\cos(\pi x) + c\sin(\pi x)$, which interpolates the data

This is so-called **trigonometric interpolation**. Also, find the quadratic polynomial interpolating this data. In each instance, draw the graph of the interpolating function.

Problem 3.3

Find cubic polynomial interpolating the data

Problem 3.4

Find the polynomial interpolating the data

Problem 3.5

Prove that

$$\sum_{i=0}^{N} L_i(x) = 1,$$

where $L_i(x)$ are Lagrange basis functions associated to N+1 interpolation points.

Problem 3.6

Consider the polynomial interpolation of the function $f(x) = e^{-x^2}$ on [0,1] at the points $x_0 = 0$, $x_1 = 0.5$ and $x_2 = 1$. Estimate the maximum of the polynomial interpolation error for $x \in [0,1]$, i.e. give an upper bound for this error.

Problem 3.7

Is the following a cubic spline on the interval $0 \le x \le 2$?

$$s(x) = \begin{cases} (x-1)^3, & 0 \le x \le 1 \\ 2(x-1)^3, & 1 \le x \le 2 \end{cases}$$

$FAF - NA - Spring \ 2022$

Problem 3.8

Consider the data

(a) Find the piecewise linear interpolating function for the data; (b) Find the piecewise quadratic interpolating function for the data. (c) Find the natural cubic spline that interpolates the data. Graph all three graphs for $0 \le x \le 3$.

Problem 3.9

Compute the error bound for the minimax approximation of the function $f(x) = e^{3x-1}$ on the [-1,2] and n = 5.

Problem 3.10

How many multiplications and additions are needed to compute Chebyshev polynomials $T_0(x), T_1(x), T_2(x), \dots, T_n(x)$ for a particular value of x?

Problem 3.11

Let q(x) be a polynomial of degree $\leq n-1$, and consider

$$\max_{-1 \le x \le 1} |x^n - q(x)|$$

What is the smallest possible value for this quantity? Solve for the q(x) for which this value is attained.

Problem 3.12

For $n, m \ge 0$ and $n \ne m$ show

$$\int_{-1}^{1} \frac{T_n(x)T_m(x)}{\sqrt{1-x^2}} dx = 0$$

This is called the orthogonality property for the Chebyshev polynomials.