Homework#3

For 0	1205205	–General	Electron	ics II:	sec 1	1-2
-------	---------	----------	----------	---------	-------	-----

Name	
I.D	

Due Date: March 23, 2018 (no late submission after 2.00 pm)!!

Problem#	Points
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
Total	

Homework # 3 due date 5-2-2017

- 1. For the fixed-bias configuration of Figure:
 - a. Sketch the transfer characteristics of the device.
 - b. Superimpose the network equation on the same graph.
 - c. Determine I_{D_Q} and V_{DS_Q} .
 - d. Using Shockley's equation, solve for I_{D_Q} and then find V_{DS_Q} . Compare with the solutions of part (c).

2. Given the measured value of V_D in Figure, determine;

**Please show <u>clearly methods</u>, and <u>circle your answers</u> with pen, then write your answer in the provided (red) box.

- a) $I_D = \dots$
- b) $V_{DS} = \dots$
- c) $V_{GG} = \dots$

- 3. For the self-bias configuration of Figure:
 - a. Sketch the transfer curve for the device.
 - b. Superimpose the network equation on the same graph.
 - c. Determine I_{D_Q} and V_{DS_Q} .
 - d. Calculate V_{DS} , V_{D} , V_{G} , and V_{S} .

5. Find V_s for the network of Figure.

6. For the network of Figure, determine:

**Please show clearly <u>methods and circle your answers</u> with pen, then write your answer in the provided (red) box.

| a) V_{c} | = |
 |
|------------|---|------|------|------|------|------|------|------|

b)
$$I_{D_Q} = \dots$$

c)
$$V_{GS_Q} = \dots$$

d)
$$V_D = \dots$$

e)
$$V_s = \dots$$

f)
$$V_{DS_Q} = \dots$$

7. Determine the value of R_s for the network of Figure to establish $V_D = 10 \ V$.

8. Given $V_{DS} = 4 V$ for the network of Figure, determine:

**Please show clearly methods and circle your answers with pen, then write your answer in the provided (red) box.

0) 1								
a) I_{p}	=	 	 	 	 	 	 	

a)
$$I_D = \dots$$

b) $V_D = \dots$
c) $V_S = \dots$

c)
$$V_s = \dots$$

$$f) V_{GS} = \dots$$

	5+2 ¥	

Special Case: $V_{GS_{\varrho}} = 0 \ V$

- 9. For the network of Figure.
 - a. Find I_{D_Q} .
 - b. Determine V_{D_Q} and V_{DS_Q} .
 - c. Find the power supplied by the source and dissipated by the device.

10. For the network of Figure, determine:

**Please show clearly <u>methods and circle your answers</u> with pen, then write your answer in the provided (red) box.

a) I_n	=																			
$a_{I} I_{D_{\alpha}}$	_	• •	•	•	• •	•	• •	•	•	• •	٠	•	•	٠	٠	٠	٠	٠	٠	٠

b)
$$V_{GS_Q} = \dots$$

c)
$$V_{DS_Q} = \dots$$

d)
$$V_D = \dots$$

e)
$$V_s = \dots$$

f)
$$V_{DS} = \dots$$

11. For the voltage-divider configuration of Figure, determine:

**Please show clearly <u>methods and circle your answers</u> with pen, then write your answer in the provided (red) box.

a)	I_{n}	_																								
<i>a j</i>	$I_{D_{\alpha}}$	_	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•

b)
$$V_{GS_o} = \dots$$

c)
$$V_D = \dots$$

d)
$$V_s = \dots$$

5. - .		

12. Design a network such as appears in Figure using an enhancement-type MOSFET with $V_{GS(TH)}=4~V$ and $k=0.5\times10^{-3}~A/V^2$ to have a Q-point of $I_{D_Q}=6~mA$. Use a supply of 16 V and standard values.

