MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV BIOCHEMIE

Bakalářská práce

RADKA SEDLÁKOVÁ

MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV BIOCHEMIE

Atomové typy v metodách pro výpočet parciálních atomových nábojů

Bakalářská práce

Radka Sedláková

Vedoucí práce: RNDr. Tomáš Raček

Brno 2019

Bibliografický záznam

Autor: Radka Sedláková

Přírodovědecká fakulta, Masarykova univerzita

Ústav biochemie

Název práce: Atomové typy v metodách pro výpočet parciálních atomových

nábojů

Studijní program: Biochemie

Studijní obor: Chemoinformatika a bioinformatika

Vedoucí práce: RNDr. Tomáš Raček

Akademický rok: 2018/2019

Počet stran: počet stran od druhé stránky dokumentu po poslední stránku

obsahu + počet stránek práce od první strany Úvodu

Klíčová slova: atomy, magie

Bibliographic Entry

Author: Radka Sedláková

Faculty of Science, Masaryk University

Department of Biochemistry

Title of Thesis: Atom types in methods for calculation of partial atomic

charges

Degree Programme: Biochemistry

Field of Study: Chemoinformatics and Bioinformatics

Supervisor: RNDr. Tomáš Raček

Academic Year: 2018/2019

Number of Pages: počet stran od druhé stránky dokumentu po poslední

stránku obsahu + počet stránek práce od první strany Úvodu

Keywords: atoms, magic

Abstrakt

Parciální atomové náboje

Abstract

In this thesis we study

Poděkování
Na tomto místě bych chtěla poděkovat stránce LOTR University Memes za zlepšování nálady ve chvílích největší bezradnosti.
Prohlášení
Prohlašuji, že jsem svoji bakalářskou práci vypracovala samostatně s využitím informačních zdrojů, které jsou v práci citovány.
Brno 15. května 2019

Obsah

Přehled použitého značení i					
Kapito	la 1. Úvod	1			
Kapito	la 2. Teorie	2			
2.1	Parciální atomové náboje	2			
2.2	Kvantově-mechanické metody	2			
	2.2.1 Základy kvantové mechaniky	3			
	2.2.2 Příklady kvantově-mechanických metod	3			
2.3	Empirické metody	4			
	2.3.1 PEOE	4			
	2.3.2 EEM (v rámci ní Parametrizace)	4			
2.4	Statistické pojmy	4			
	2.4.1 Průměrná a maximální absolutní odchylka	4			
	2.4.2 RMSD	4			
	2.4.3 Pearsonův korelační koeficient	4			
Kapito	la 3. Metody	5			
3.1	Vstupní data (Formát souborů)	5			
3.2	(SMILES/SMARTS - jestli je použiju)	5			
3.3	RDKit	5			
3.4	NumPy	5			
3.5	MatPlotLib? Co mi Ondra ukazoval jeho program, tak ten grafy taky tvoří	5			
3.6	Ondrův program	5			
Kapito	la 4. Implementace	6			
4.1	Klasifikátory (Co jiného?)	6			
Kapito	la 5. Výsledky a diskuse	7			
	Výsledky parametrizace	7			
	5.1.1 Klasifikátor1	7			
	5.1.2 Klasifikátor2	7			
	5.1.3 Klasifikátor3	7			
5.2	Srovnání navržených klasifikátorů	7			

Kapitola 6. Závěr	8
Příloha	9
Seznam použité literatury	10

Přehled použitého značení

Pro jednodušší orientaci čtenářů v textu bakalářské práce uvádím seznam zkratek, které jsou v textu použity.

- C množina všech komplexních čísel
- R množina všech reálných čísel
- \mathbb{Z} množina všech celých čísel
- N množina všech přirozených čísel

Úvod

Distribuce elektronů v m

Teorie

2.1 Parciální atomové náboje

Parciální atomové náboje [1] jsou reálná čísla, která popisují asymetrické rozložení elektronové hustoty na chemické vazbě. Vznikají v důsledku rozdílných elektronegativit vazebných partnerů. Pokud v chemické vazbě figuruje vysoce elektronegativní atom, pak tento k sobě přitahuje vazebný elektronový pár, čímž se zvyšuje elektronová hustota v jeho okolí a dochází ke vzniku parciálního záporného náboje $(\delta$ -). V okolí elektropozitivnějšího vazebného partnera se elektronová hustota naopak snižuje a na atomu dochází ke vzniku parciálního kladného náboje $(\delta$ +).

Koncept parciálních atomových nábojů je pouze teoretický, hodnoty nábojů proto nelze získat pomocí experimentu [2]. Jelikož jsou ale významným faktorem pro predikci fyzikálních, chemických a biologických vlastností molekul, bylo pro jejich stanovení vyvinuto množství výpočetních metod. Tyto se dělí na metody kvantově-mechanické a metody empirické. Kvantově-mechanické metody poskytují přesnější výsledky, ovšem za cenu vysoké časové náročnosti. Empirické metody dosahují v porovnání s QM metodami velmi dobrých výsledků, a to ve výrazně kratším čase. Žádná z vyvinutých empirických metod však není uznána za všeobecně platnou a použitelnost konkrétních metod se hodnotí na základě reprodukovatelnosti výsledků [3].

Aplikaci parciálních atomových nábojů lze nalézt ve výpočetní chemii a chemoinformatice, kde slouží k predikci elektrostatických a termodynamických vlastností popisujících reaktivitu molekul. Uplatňují se v molekulových simulacích [4], ve virtuálním screeningu [5], při hledání vazebných míst proteinů nebo při návrhu farmakoforů. Prokázaly se jako platné deskriptory v QSAR a QSPR modelech [6, 7]. V anorganické chemii se uplatňují při popisu toku elektronů v bateriích a katalyzátorech [8].

2.2 Kvantově-mechanické metody

Kvantově-mechanické metody pro výpočet parciálních atomových nábojů jsou založeny na poznatcích kvantové mechaniky. Dělí se na tři hlavní skupiny, a to metody semi-empirické, metody odvozené od teorie funkcionálu hustoty a metody *ab initio*. *Ab initio* metody (lat. *ab initio* - od počátku) staví výpočty na teoretickém aparátu a k

Kapitola 2. Teorie _______ 3

řešení Schrödingerovy rovnice přistupují numericky, z čehož vyplývá jejich velká výpočetní náročnost. Metody semi-empirické jsou stejně jako metody *ab initio* založeny na řešení SE, část výpočtů však parametrizují nebo aproximují na základě experimentálních dat.

Limitujícím faktorem pro použití QM metod je jejich složitost, konkrétně pro *ab initio* metody až $O(B^4)$, kde B je číslo rovno počtu elektronů v molekule nebo větší.

2.2.1 Základy kvantové mechaniky

K rozvoji kvantové mechaniky došlo ve 20. letech 20. století v reakci na newtonovskou mechaniku, jejíž aparát nevyhovoval popisu mikročástic (např. elektronů). Základním principem QM je vlnově-korpuskulární dualismus. Vlna je v kvantové mechanice reprezentována matematickou funkcí Ψ, tzv. vlnovou funkcí, která popisuje dynamický stav částice a nese veškeré informace, které lze o částici získat [9].

Základním úkolem kvantové mechaniky je výpočet vlnové funkce systému. Vlnová funkce je řešením Schrödingerovy rovnice

$$H\Psi = E\Psi$$

kde H je operátor Hamiltonián a E je energie systému. Hamiltonián bere na vstup vlnovou funkci Ψ a transformuje ji na funkci jinou. Řešením Schrödingerovy rovnice je soubor funkcí, které lze po aplikaci Hamiltoniánu zapsat jako součin původní funkce a skaláru E. Takovéto funkce označujeme jako vlastní funkce a odpovídající skaláry jako vlastní hodnoty operátoru [10].

Schrödingerova rovnice je exaktně řešitelná pouze pro vybrané problémy. Jedním z nich je atom vodíku. Pro víceelektronové systémy je nutno do výpočtu zavádět velké množství aproximací, z nichž nejznámější je Born-Oppenheimerova aproximace. Jejím základním konceptem je oddělení pohybu jader atomů od pohybu elektronů, vycházející z předpokladu, že jádra, mnohonásobně těžší než elektrony, se pohybují výrazně pomaleji než elektrony samotné. Řešení Schrödingerovy rovnice

$$H\Psi(r,R) = E\Psi(r,R)$$

se tak rozkládá na řešení popisující elektrony v souboru fixních jader, po němž následuje řešení rovnice zahrnující kinetickou a potenciální energii jader obklopených polem elektronů. $\Psi(r,R)$ je vlnová funkce systému, závislá jak na souřadnicích elektronů (r), tak na souřadnicích jader (R).

Problém řešení víceelektronových systémů nastává při zahrnutí elektronových interakcí do výpočtu. Interakce elektronů molekuly lze řešit pomocí přiblížení metody nezávislých částic (SCF, Self-Consistent Field), která pracuje s modelem elektronu pohybujícím se v průměrném poli ostatních elektronů. Původní problém se tak rozkládá na řešení jednoelektronových rovnic, zahrnující působení vnějšího elektronového pole. Teorii SCF využívá Hartree-Fockova metoda, označována jako HF-SCF.

2.2.2 Příklady kvantově-mechanických metod

Důležitým krokem *ab initio* a semi-empirických metod je výběr bázové sady. Bázová sada je soubor vlnových funkcí reprezentující atomové orbitaly, jejichž vhodnou line-

Kapitola 2. Teorie _______ 4

ární kombinací (LCAO) lze následně vyjádřit vlnovou funkci molekuly. Pro popis funkcí reprezentujících atomové orbitaly se používají orbitaly Gaussova typu (GTO). Kombinace několika Gaussových orbitalů přibližuje tzv. Slaterův orbital (STO), který je pro výpočet vlnové funkce molekuly méně vhodný z důvodu složitosti výpočtů. Příkladem bázových sad jsou STO-3G, STO-4G či obecně STO-nG, kde n je počet orbitalů Gaussova typu reprezentujících jeden atomový orbital.

Krokem vedoucím k výpočtu hodnot parciálních nábojů je provedení populační analýzy, která popisuje rozložení elektronů v orbitalech atomu či molekuly. Mullikenova populační analýza

Hartree-Fockova metoda

EHT

DFT

- 2.3 Empirické metody
- 2.3.1 **PEOE**
- 2.3.2 EEM (v rámci ní Parametrizace)
- 2.4 Statistické pojmy
- 2.4.1 Průměrná a maximální absolutní odchylka
- **2.4.2** RMSD
- 2.4.3 Pearsonův korelační koeficient

Metody

- 3.1 Vstupní data (Formát souborů)
- 3.2 (SMILES/SMARTS jestli je použiju)
- **3.3 RDKit**
- 3.4 NumPy
- 3.5 MatPlotLib? Co mi Ondra ukazoval jeho program, tak ten grafy taky tvoří
- 3.6 Ondrův program

Implementace

4.1 Klasifikátory (Co jiného?)

Výsledky a diskuse

- 5.1 Výsledky parametrizace
- 5.1.1 Klasifikátor1
- 5.1.2 Klasifikátor2
- 5.1.3 Klasifikátor3
- 5.2 Srovnání navržených klasifikátorů

Závěr

Zde můžete napsat závěr. Zde můžete napsat závěr.

Zde můžete napsat závěr. Zde můžete napsat závěr. Zde můžete napsat závěr. Zde můžete napsat závěr. Zde můžete napsat závěr. Zde můžete napsat závěr. Zde můžete napsat závěr. Zde můžete napsat závěr. Zde můžete napsat závěr. Zde můžete napsat závěr. Zde můžete napsat závěr. Zde můžete napsat závěr. Zde můžete napsat závěr. Zde můžete napsat závěr. Zde můžete napsat závěr. Zde můžete napsat závěr. Zde můžete napsat závěr. Zde můžete napsat závěr. Zde můžete napsat závěr.

Příloha

Sem můžete přidat přílohu. Pokud chcete "Přílohy", tak upravte definici záhlaví v souboru sci.muni.thesis.sty, viz příkaz \HlavickaPriloha.

Seznam použité literatury

- [1] ATKINS, P. W. & DE PAULA, J. *Atkins' physical chemistry*. 9th ed. Oxford: Oxford University Press, c2010. ISBN 978-0-19-954337-3.
- [2] LEACH, A. R. *Molecular modelling: principles and applications*. 2nd ed. New York: Prentice Hall, 2001. ISBN 0-582-38210-6.
- [3] GASTEIGER, J. & ENGEL, T. *Chemoinformatics: A Textbook*. Weinheim: Wiley-VCH, c2003. ISBN 978-3-527-30681-7.
- [4] RAPPE, A. K. & GODDARD, W. A. "Charge equilibration for molecular dynamics simulations". *The Journal of Physical Chemistry*. 1991, **95**(8), 3358-3363. DOI: 10.1021/j100161a070. ISSN: 0022-3654. URL: http://pubs.acs.org/doi/abs/10.1021/j100161a070
- [5] LYNE, P. D. "Structure-based virtual screening: an overview". *Drug Discovery Today*. 2002, 7(20), 1047-1055. DOI: 10.1016/S1359-6446(02)02483-2. ISSN: 13596446. URL: http://linkinghub.elsevier.com/retrieve/pii/S1359644602024832
- [6] GHAFOURIAN, T., DEARDEN, J. C. & KATRITZKY, A. R. "The Use of Atomic Charges and Orbital Energies as Hydrogen-bonding-donor Parameters for QSAR Studies: Comparison of MNDO, AM1 and PM3 Methods". *Journal of Pharmacy and Pharmacology*. 2000, 52(6), 1027-1044. DOI: 10.1211/0022357001774435. ISSN: 00223573. URL: http://doi.wiley.com/10.1211/0022357001774435
- [7] KARELSON, M., LOBANOV, V. S. & KATRITZKY, A. R. "Quantum-Chemical Descriptors in QSAR/QSPR studies". *Chemical Reviews*. 1996, **96**(3), 1027-1044. DOI: 10.1021/cr950202r. ISSN: 0009-2665. URL: https://pubs.acs.org/doi/10.1021/cr950202r
- [8] WANG, B., LI, S. L. & TRUHLAR. D. G. "Modeling the Partial Atomic Charges in Inorganometallic Molecules and Solids and Charge Redistribution in Lithium-Ion Cathodes". *Journal of Chemical Theory and Computation*. 2014, 10(12), 5640-5650. DOI: 10.1021/ct500790p. ISSN 1549-9618. URL: http://pubs.acs.org/doi/10. 1021/ct500790p
- [9] CELÝ, J. *Základy kvantové mechaniky pro chemiky: I. Principy.* Brno: Rektorát UJEP Brno, 1986

[10] JEAN, Y., VOLATRON, F. & BURDETT, J. K. *An introduction to molecular orbitals*. New York: Oxford University Press, 1993. ISBN 0-19-506918-8.