#### Résumé de Cours FONCTIONS PRIMITIVES

PROF : ATMANI NAJIB

2ème BAC Sciences ex (pc-svt...)

# **FONCTIONS PRIMITIVES**

# I) FONCTION PRIMITIVE D'UNE FONCTION Définition et propriétés

**Définition :** Soit f une fonction définir sur un intervalle I; On dit que la fonction F est une primitive de la fonction f sur l'intervalle I si :1) F est dérivable sur I

**2**)  $(\forall x \in I) (F'(x) = f(x))$ 

**Théorème :** Si f est continue sur I alors f admet une fonction primitive sur I

**Remarque :** La continuité dans le théorème précédent est une condition suffisante qui n'est pas nécessaire.

**Propriété :** Si f admet une fonction primitive F sur I alors toutes les fonctions primitives de f sur I s'écrivent de la : forme : $F + \lambda$  où  $\lambda$  est un réel.

**Propriété**: Si  $F_1$  et  $F_2$  sont deux fonction primitive d'une fonction f sur I alors :

 $(\forall x \in I)(F_2(x) = F_1(x) + \lambda) \text{ où } \lambda \in \mathbb{R}$ 

**Propriété**: Si f admet une fonction primitive sur I et  $x_0$ 

 $\in I$ ; alors il existe une unique fonction  $F_0$  fonction

Primitive de f telle que  $F_0(x_0) = y_0$  où  $y_0$  un réel quelconque.

#### 2) Tableau des fonctions primitives usuelles.

| Fonction                                             | Primitives                                    |
|------------------------------------------------------|-----------------------------------------------|
| $x^n, n \in \mathbb{N}$                              | $\frac{x^{n+1}}{n+1} + C, \ C \in \mathbb{R}$ |
| $\frac{1}{x^n}, n \in \mathbb{N} \setminus \{0, 1\}$ | $-\frac{1}{(n-1)x^{n-1}}+C,\ C\in\mathbb{R}$  |
| $\frac{1}{x}$                                        | $\ln(x)+C,C\in\mathbb{R}$                     |
| $x^n, n \in \mathbb{Z} \setminus \{-1\}$             | $\frac{x^{n+1}}{n+1} + C, \ C \in \mathbb{R}$ |
| $\frac{1}{\sqrt{x}}$                                 | $2\sqrt{x}+C,\ C\in\mathbb{R}$                |
| e <sup>x</sup>                                       | $e^x + C, C \in \mathbb{R}$                   |
| $\cos(x)$                                            | $\sin(x) + C, \ C \in \mathbb{R}$             |
| $\sin(x)$                                            | $-\cos(x) + C, C \in \mathbb{R}$              |

## 3) Opérations sur les fonctions primitives.

**Propriété :** Si F est une fonction primitive de la fonction f sur l'intervalle I et G une fonction primitive de la fonction g sur l'intervalle I et  $\alpha$  un réel alors :

1) (F + G) est une fonction primitive de la fonction (f + g) sur I

2)  $(\alpha F)$  est une fonction primitive de la fonction  $(\alpha f)$  sur I

## Remarque:

Les seules opérations sur les fonctions primitives sont : la somme et le produit par un réel. Mais grâce au tableau des opérations sur les fonctions dérivées on peut en déduire :

| Fonction                                              | Primitives                                    |
|-------------------------------------------------------|-----------------------------------------------|
| $f'f^n, n \in \mathbb{N}$                             | $\frac{f^{n+1}}{n+1} + C, \ C \in \mathbb{R}$ |
| $\frac{f'}{f^n}, n \in \mathbb{N} \setminus \{0, 1\}$ | $-\frac{1}{(n-1)f^{n-1}}+C,\ C\in\mathbb{R}$  |
| $f'f^n, n \in \mathbb{Z} \setminus \{-1\}$            | $\frac{f^{n+1}}{n+1} + C, \ C \in \mathbb{R}$ |
| $\frac{f'}{f}$                                        | $\ln(f)+C,C\in\mathbb{R}$                     |
| $\frac{f'}{\sqrt{f}}$                                 | $2\sqrt{f}+C,C\in\mathbb{R}$                  |
| f'e <sup>f</sup>                                      | $e^f + C, C \in \mathbb{R}$                   |
| f'cos(f)                                              | $\sin(f)+C,\ C\in\mathbb{R}$                  |
| $f'\sin(f)$                                           | $-\cos(f) + C, C \in \mathbb{R}$              |

C'est en forgeant que l'on devient forgeron Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices Que l'on devient un mathématicien



Prof/ATMANI NAJIB <u>1</u>