

The roles and impacts of active end-users and DSOs during the transition towards smart distribution grids

Dung-Bai (Tony) Yen 2023.06.02 Trondheim, Norway

Agenda

Motivation

Research Questions

Publication

Future Plans

Motivation

More variable supply and demand

More variable supply and demand

Need for flexibility on the distribution grid

More variable supply and demand

Need for flexibility on the distribution grid

Research Questions

What are Active End-Users and DSOs' Roles in...

Publication

1st Paper:

Active End-User Participation under a TSO-DSO Coordination Scheme for Norway

To what extent will flexibility from end-users affect the operation of the power system under the TSO-DSO coordination scheme?

How well will the TSO-DSO coordination scheme incentivize end-users flexibility?

Reference Scenario Stylized representation of the results in DA and intraday irl Agents' Bid EOM Maximize social welfare according to the submitted bids Submission Clearing TSO Minimize social welfare loss Redispatch while honoring physical constraints

Partially Flexible Scenario

Fully Flexible Scenario

Inflexible End-users

Passive End-users

Active End-users

Table 3: Cost in EOM (in million EUR), redispatch cost (in million EUR), and total cost (in million EUR) in the scenarios between (a) 01 Jan to 14 Jan and (b) 01 July to 14 July.

(a)

		Partially	Fully
	Reference	Flexible	Flexible
Cost in EOM	262.945	262.945	267.927
Redispatch Cost	42.021	41.785	36.438
Total Cost	304.966	304.730	304.365

(b)

		Partially	Fully
	Reference	Flexible	Flexible
Cost in EOM	96.245	96.245	96.036
Redispatch Cost	53.684	53.588	53.888
Total Cost	149.928	149.833	149.924

Table 3: Cost in EOM (in million EUR), redispatch cost (in million EUR), and total cost (in million EUR) in the scenarios between (a) 01 Jan to 14 Jan and (b) 01 July to 14 July.

149.928

Total Cost

	(a)		
		Partially	Fully
	Reference	Flexible	Flexible
Cost in EOM	262.945	262.945	267.927
Redispatch Cost	42.021	41.785	36.438
Total Cost	304.966	304.730	304.365
	(b)		
		Partially	Fully
	Reference	Flexible	Flexible
Cost in EOM	96.245	96.245	96.036
Redispatch Cost	53.684	53.588	53.888

149.833

149.924

Table 6: Population density weighted median of average electricity prices (EUR / MWh) for different types of end-users in different bidding zones in scenario 3 between (a) 01 Jan to 14 Jan and (b) 01 July to 14 July.

(a)

	`	,	
Zones	Inflexible	Passive	${f Active} \ {f Flexible}$
Zones	IIIIexible	1 assive	LICYIDIC
$\overline{\#1}$	75.816	75.474	62.506
#2	78.812	78.329	66.412
#3	48.951	48.674	42.389
#4	36.636	36.233	32.107
#5	77.353	77.134	68.280

(b)

			Active
Zones	Inflexible	Passive	Flexible
#1	72.882	74.285	64.491
#2	73.597	73.494	63.808
#3	38.086	38.021	32.101
#4	28.074	27.933	24.964
#5	68.445	68.349	58.001

Table 4: Cost in EOM (in million EUR), redispatch cost (in million EUR), and total cost (in million EUR) in the 3x EV Scenario between (a) 01 Jan to 14 Jan and (b) 01 July to 14 July.

	0101 - 0114	$\boldsymbol{0701\text{-}0714}$
Cost in EOM	268.042	95.983
Redispatch Cost	35.927	53.628
Total Cost	303.970	149.612

Future Plans

2nd Paper:

Quantifying the value of aggregated EV participation in the German Redispatch

How will the German power system in 2030 be affected by a large EV fleet?

How can the flexibility provided by EV batteries help reduce congestion in the power system and RES curtailment?

2nd Paper: Quantifying the value of aggregated EV participation in the German Redispatch

Figure 2: Comparison of the monthly (positive) redispatch volumes for all three cases

Table 1: Results of the indicators for the months of January and August for all three cases

Month	Indicator	REF	EV_{uptake}	$EV_{redispatch}$
January	Redispatch cost [Mio. €]	1,136.71	3,041.39	2,924.0
	Redispatch volume [TWh]	4.93	9.78	9.66
	Curtailment [TWh]	0.58	1.93	1.89
	Lost load [TWh]	0.43	1.28	1.214
	EV Flexibility [MWh]	0	0	325,854.56
	Conventional loadshift [MWh]	0	0	247,665.66
August	Redispatch cost [Mio. €]	542.75	1,481.6	1,439.26
	Redispatch volume [TWh]	2.85	5.49	5.54
	Curtailment [TWh]	0.23	2.16	2.33
	Lost load [TWh]	0.15	0.7	0.66
	EV Flexibility [MWh]	0	0	200,803.81
	Conventional loadshift [MWh]	0	0	156,634.42

3rd Paper (working title): Investment Strategies of Active End-users and DSOs during Transition of Distribution Grid

How will investment strategies of active endusers and system operators affect each other?

4th Paper (working title): Impact of Active End-users and DSOs on the Sensitivity of Different Transition Pathways

How will active end-users and DSOs affect the sensitivity of various transition pathways?

	Summer 23	Winter 23 / 24	Summer 24
Paper II	V		
Paper III	V	V	
Paper IV		V	V
Thesis			V

