NOM:

Prénom :

Note:

 $1. \ \mathrm{Soit} \ (u_n) \ \mathrm{la \ suite \ telle \ que \ } u_0 = 1 \ \mathrm{et} \ u_{n+1} = \frac{u_n}{1 + u_n^2} \ \mathrm{pour \ tout \ } n \in \mathbb{N}. \ \mathrm{Montrer \ que \ } (u_n) \ \mathrm{converge \ vers \ } 0.$

 $2. \ \mathrm{Soit} \ (u_n) \ \mathrm{la \ suite \ telle \ que \ } u_0 = 0 \ \mathrm{et} \ u_{n+1} = u_n + e^{-u_n} \ \mathrm{pour \ tout} \ n \in \mathbb{N}. \ \mathrm{Montrer \ que} \ (u_n) \ \mathrm{diverge \ vers} \ + \infty.$

3. Soit E un ensemble. On note $S(E)$ l'ensemble des bijections de E dans lui-même. On sait que $(S(E), \circ)$ est un groupe. On
fixe $a \in F$, on pose $S_{\alpha}(F) = \{f \in S(F), f(a) = a\}$. Montrer que $S_{\alpha}(F)$ est un sous-groupe de $(S(F), \circ)$.

4. Montrer que $f: \left\{ \begin{array}{ccc} \mathbb{C} & \longrightarrow & \mathbb{C}^* \\ z & \longmapsto & e^z \end{array} \right.$ est un morphisme du groupe $(\mathbb{C},+)$ dans le groupe (\mathbb{C}^*,\times) et déterminer son image et son noyau.

5. Soit (u_n) la suite arithmético-géométrique telle que $u_0=0$ et $u_{n+1}=3u_n-2$ pour tout $n\in\mathbb{N}$. Donner une expression du terme général de la suite (u_n) .