13 Kleene Realizability

13.1 Encoding \mathcal{T}_0 in arithmetic

So far the main non trivial examples of pca that we've seen are \mathcal{T}_0 and \mathcal{T}_0^+ , the pca of normal forms and inside first reduction and the extended version. As it stands, this is not something we can formalise in $\mathbf{H}\mathbf{A}$, or even in $\mathbf{H}\mathbf{A}_{\omega}$; we cannot even define the set of normal forms in this setting. Hence it is useful to have way to view normal terms as numbers. That is, we need a Gödelnumbering of terms. To define this, first note that we can define an bijection from $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$. There are various ways to do this. For example, note that the function $\langle -, - \rangle : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ given by the following definition is definable and provably a bijection already in $\mathbf{H}\mathbf{A}$.

$$\langle n, m \rangle := \frac{1}{2}(n+m)(n+m+1) + m$$

We can then define an injective function $\lceil - \rceil : \mathcal{T}^+ \to \mathbb{N}$ as follows:

Theorem 13.1. There is a total computable function $f: \mathbb{N} \to \mathbb{N}$ such that

$$f(\langle\langle n, m \rangle, k \rangle) = \begin{cases} \langle 1, \lceil r \rceil \rangle & n = \lceil t \rceil \text{ for } t \in \mathcal{T}_0^+ \text{ and } t\underline{m} \to_k r \\ \langle 0, 0 \rangle & \text{otherwise} \end{cases}$$

As it turns out, we can now define application in **HA**, in the following sense.

Theorem 13.2. There is a formula $\varphi(l,m,n)$ in the language of arithmetic such that $\varphi(l,m,n)$ is true if and only if $l = \lceil s \rceil$ for a term s, $m = \lceil t \rceil$ for a normal term t, and s reduces to t at stage n. Furthermore, we may assume φ is a negative formula, i.e. it does not contain disjunction or existential quantifiers and that \mathbf{HA} proves $\forall l, m, n \varphi(l, m, n) \vee \neg \varphi(l, m, n)$.

Definition 13.3. The axiom of Church's thesis $\mathbf{CT}_0!$ is the following sentence of \mathbf{HA}_{ω} .

$$\forall f^{N \to N} \, \exists e^N \, \forall n^N \, e \cdot n \downarrow \, \wedge e \cdot n = fn$$

Lemma 13.4. There is an element \mathbf{e} of \mathcal{T}_0^+ with the property that for all $t \in \mathcal{T}^+$, we have $\mathbf{e}^{\Gamma} t^{\Gamma} = t'$ if t evaluates to t' at some stage n, and otherwise is undefined. In particular, if t is normal, then $\mathbf{e}^{\Gamma} t^{\Gamma} = t$.

Proof. First note that using the decidability combinator for numbers, **d**, and the fact that projection is computable, we can ensure that $\mathbf{e}\langle 0,0\rangle=0$, that $\mathbf{e}\langle 0,1\rangle=S$, that $\mathbf{e}\langle 0,2\rangle=P$, and similarly for all the other constants. Using the **y** combinator we can also ensure $\mathbf{e}\langle 1,\langle n,m\rangle\rangle\simeq\mathbf{e}n(\mathbf{e}m)$. In particular, we can see that $\mathbf{e}n$ is defined whenever n is the Gödelnumber for a normal term. \square

13.2 The first Kleene algebra

The first Kleene algebra, \mathcal{K}_1 is often seen as the key example of pca⁺ and is the one that was originally used for realizability, the general theory of pca's being a later generalisation of this example. \mathcal{K}_1 is the first example we will see of an ω -pca, so we can assume that the underlying set is equal to \mathbb{N} , and that in the pca⁺ structure 0 is the actual zero of \mathbb{N} and that S represents the actual successor function. Furthermore, it is defined so that the representable partial functions are exactly the computable partial functions. In fact these features characterise \mathcal{K}_1 uniquely up to isomorphism, using a non trivial argument due to Blum. However, for this course we will just show how to define an extended pca with these properties.

Definition 13.5. We define \mathcal{K}_1 to be the pca with underlying set \mathbb{N} , and application defined as follows:

$$n \cdot m := \begin{cases} l & \text{if } \mathbf{e}\underline{n}\underline{m} = \underline{l} \\ \text{undefined} & \text{otherwise} \end{cases}$$

Note that we cannot use \mathbf{k} and \mathbf{s} from \mathcal{T}_0^+ directly, but we can still define them as follows. For \mathbf{k} we use the fact that pairing is computable.

$$\mathbf{k} := \lceil \lambda x. \langle 1, \langle \lceil \mathbf{k} \rceil, x \rangle \rangle \rceil$$

We define \mathbf{s} using \mathbf{e} from lemma 13.4. Our first attempt would be \mathbf{s}_0 , as defined below.

$$\mathbf{s}_0 := \lceil \lambda x. \lambda y. \lambda z. \mathbf{e}(\mathbf{e} xz) (\mathbf{e} yz) \rceil$$

As an element of \mathcal{T}_0^+ , this takes the Gödelnumbers of two normal terms as input, and then evaluates them. However, we need to ensure that $\mathbf{s}x$ and $\mathbf{s}xy$ are Gödelnumbers for terms, rather than the terms themselves. Hence, we again use the computability of the pairing operator, and define

$$\mathbf{s}_1 := \lceil \lambda x.\lambda y.\langle 1, \langle \langle 1, \langle \mathbf{s}_0, x \rangle \rangle, y \rangle \rangle \rceil$$
$$\mathbf{s} := \lceil \lambda x.\langle 1, \langle \mathbf{s}_1, x \rangle \rangle \rceil$$

Theorem 13.6. Church's thesis holds in both standard realizability models of \mathbf{HA}_{ω} on \mathcal{K}_1 .

Proof. For the intensional model, $\mathcal{M}_{N\to N}$ is precisely the set of $n\in\mathbb{N}$ representing a total function $\mathbb{N}\to\mathbb{N}$. So given such an n, it's clear that if we want a realizer for $\exists e^N, \forall m^N\ e\cdot m\downarrow \wedge e\cdot m=fm$, then the first component should just be n. We still need to show how to find the second component, which should be a realizer for $\forall m^N\ n\cdot m\downarrow \wedge n\cdot m=fm$. The key point is that from theorem 13.2 the statement $\forall m^N\ n\cdot m\downarrow \wedge e\cdot m=fm$ is equivalent to one of the form $\forall m\ \exists k\ \varphi(n,m,k)$ where φ is negative. Furthermore, in the presence of Markov's principle (which always holds in the realizability models we consider in this course), this is equivalent to $\forall m\ \neg \forall k\ \neg \varphi(n,m,k)$, which is entirely negative. However, negative formulas ψ are always self-realizing. That is, we can

find f such that f realizes ψ whenever ψ is true. We can apply this here to get a realizer for $\forall m^N \ n \cdot m \downarrow \land n \cdot m = fm$.

Definition 13.7. We say an extended pca satisfies the *computability axiom* if there exists $\mathbf{c} \in \mathcal{K}_1$ with the following property. For all $a, b, c \in \mathcal{K}_1$, $\mathbf{c}abc \downarrow$ and $\mathbf{c}abc = 0$ or $\mathbf{c}abc = 1$, and for all $a, b, ab \downarrow$ if and only if there exists c such that $\mathbf{c}abc = 1$.

Lemma 13.8. K_1 satisfies the computability axiom.

Proof. By theorem 13.1. \Box

Theorem 13.9. There is no $e \in \mathcal{K}_1$ with the following property: For all a such that a is total, $ea \downarrow and \ ea = 0$ if $a\underline{n} = 0$ for all n, and ea = 1 if $a\underline{n} \neq 0$ for some n.

Proof. If there was such a term e, then by theorem 13.1 we could use it to construct a term e' such that $e'ab = \underline{1}$ if $ab \downarrow$ and $e'ab = \underline{0}$ if $ab \uparrow$. However, this is not possible for any strictly partial pca (exercise).

Corollary 13.10. WLPO does not hold in either of the standard realizability models of \mathbf{HA}_{ω} on \mathcal{K}_1 .

Proof. Suppose there was a realizer e of

$$e \Vdash \forall f^{N \to N} \ (\forall n \, fn = 0) \lor \neg (\forall n \, fn = 0)$$

We will use e to contradict theorem 13.9. Suppose a is total. Then this gives us an element of $\mathcal{M}_{N\to N}$, directly for the intensional model, and as the function that a represents for the extensional model. In either case we have $ea \Vdash (\forall n \, an = 0) \lor \neg (\forall n \, an = 0)$. Hence either $\mathbf{p}_0(ea) = \top$ and $\mathbf{p}_1(ea) \Vdash \forall n \, an = 0$, or $\mathbf{p}_0(ea) = \bot$ and $\mathbf{p}_1(ea) \Vdash \neg \forall n \, an = 0$. In the former case, we have that for all n, $\mathbf{p}_1(ea)n \Vdash an = 0$, and so an = 0, and in the latter case it is false that an = 0 for all n, because otherwise $\lambda n . \top$ would be a realizer of $\forall n \, an = 0$. Hence $e' := \lambda a . \mathbf{p}_0(ea)01$ has the required property to contradict theorem 13.9.

Theorem 13.11. There is no $e \in \mathcal{K}_1$ with the following property: For all a such that a is total and $an \neq 0$ at most once, $ea \downarrow$ with $ea \in \{0,1\}$ and for all n, a(2n + (ea)) = 0.

Proof. Assume there is such an e. Using the \mathbf{y} combinator, we can define a as follows. For each n, we will define a(2n) and a(2n+1). We first check if n is least such that $\mathbf{c}ean=1$. If not, we take both a(2n) and a(2n+1) to be 0. If it is, then we know that $ea\downarrow$. We then check the value of ea. If it is 0, we take a(2n)=1 and a(2n+1)=0. If it is 1, we take a(2n)=0 and a(2n+1)=1. If it is anything else, then we take a(2n)=a(2n+1)=0. Note that we have ensured that whatever happens a is a total binary sequence with at most one 1. Hence $ea\downarrow$, and so $\mathbf{c}ean=1$ for some n. By considering the least such n, we get a contradiction.

Corollary 13.12. LLPO does not hold in either of the standard realizability models of \mathbf{HA}_{ω} on \mathcal{K}_1 .

13.3 The Kleene Tree

We now work in **HAS**.

Definition 13.13. A set T of numbers is a *tree* if it is inhabited, every element of T is the encoding of a finite sequence $[a_0, \ldots, a_{n-1}]$ where $a_i \in \{0, 1\}$, and whenever $[a_0, \ldots, a_{n-1}, a_n] \in T$ we have also $[a_1, \ldots, a_n] \in T$ (we say T is *prefix closed*).

An infinite path through the tree is a binary sequence $f: \mathbb{N} \to 2$ such that for all n we have $[f(0), f(1), \dots, f(n)] \in T$.

We say T is *infinite* if for all n, T contains a binary sequence of length greater than n.

We say T is decidable if we have $n \in T \lor n \notin T$ for all n.

Theorem 13.14. In the standard realizability model of **HAS** on \mathcal{K}_1 there is an infinite tree with no infinite branch (the Kleene tree).

Proof. We again use the fact that \mathcal{K}_1 satisfies the computability axiom. We first define a set $T \subseteq \mathbb{N}$ externally to the model. We take T to be the set of codes for sequences $[a_0,\ldots,a_{n-1}]$ such that for all e < n with $\mathbf{c}eem = 1$ for some m < n, we have $a_i \neq ei$. Note that T cannot contain any computable infinite branches. Suppose $e \in \mathcal{K}_1$ is a total binary sequence. Then $ee \downarrow$, and so $\mathbf{c}ee = 1$ for some m. However, we can see that for all $n > \max(e, m)$ and all finite sequences $[a_0,\ldots,a_{n-1}] \in T$, we have $a_e \neq ee$, and so e cannot be a branch of the tree. However, T is infinite, and moreover for each n we can find $[a_0,\ldots,a_{n-1}] \in T$ computably: we evaluate $\mathbf{c}eem$ for each m,e < n, and whenever $\mathbf{c}eem = 1$, we can evaluate ee, and then ensure $a_e \neq ee$. If $\mathbf{c}eem = 0$ for all m < n, we can take a_e to be either 0 or 1.

We can then view T as an element \bar{T} of \mathcal{M}_S by defining

$$\bar{T}(n) = \begin{cases} \{\top\} & n \in T \\ \emptyset & n \notin T \end{cases}$$

By the way that we defined T, we can computably decide whether or not a binary sequence belongs to T, and so we have a realizer that \bar{T} is decidable. Furthermore, using the fact that T has no computable infinite branch, we can find a realizer witnessing that \bar{T} has no infinite branch, and similarly, we can find a realizer witnessing that \bar{T} is infinite using the fact that T is "computably infinite."

Corollary 13.15. In the standard realizability model of **HAS** on \mathcal{K}_1 there is an infinite open cover of Cantor space with no finite subcover.

Proof. We take the open cover to consist of U_{σ} for each finite binary sequence σ such that $\sigma \notin \bar{T}$. Now for every infinite binary sequence $f \in 2^{\mathbb{N}}$, there is n such

that $[f(0),\ldots,f(n)] \notin \bar{T}$. Hence we can take $\sigma := [f(0),\ldots,f(n)]$ to get $f \in U_{\sigma}$ and $\sigma \notin \bar{T}$. However, given any finite set σ_1,\ldots,σ_k of finite binary sequences in the complement of \bar{T} , we can take n to be the maximum length, and then find $\tau \in \bar{T}$ of length n. However, we can now define f to be the infinite binary sequence such that $f(j) = \tau(j)$ for $j \leq n$, and f(j) = 0 for j > n. We then have $f \notin U_{\sigma_i}$ for $1 \leq i \leq k$.