Tema 1. Parametrización de rectas

• **Ecuación vectorial**: un punto y un vector director determinan una recta en el espacio. Por tanto, una expresión de la recta que pasa por un punto $A = (x_1, y_1, z_1)$ y tiene un vector director u = (a, b, c) es:

$$r(t) = A + t \cdot u$$

Figura 1.11. Punto de una recta y vector director.

Fuente: http://rafparedes.blogspot.com.es/

Ecuaciones paramétricas:

$$x = x_1 + t \cdot a$$

$$y = y_1 + t \cdot b$$

$$z = z_1 + t \cdot c$$

$$con t \in (-\infty, \infty)$$

Tema 1. Parametrización de rectas

• **Ecuación vectorial**: un plano puede determinarse a partir de dos vectores directores $u = (u_1, u_2, u_3), v = (v_1, v_2, v_3)$ y un punto $P = (x_0, y_0, z_0)$ por el que pasa.

$$(x, y, z) = (x_0, y_0, z_0) + t \cdot (u_1, u_2, u_3) + s \cdot (v_1, v_2, v_3)$$

Ecuaciones paramétricas:

$$x = x_0 + tu_1 + sv_1$$

 $y = y_0 + tu_2 + sv_2$
 $z = z_0 + tu_3 + sv_3$

Fuente: http://www.aulafacil.com/

Tema 2. Parametrización de curvas en el plano

2.1 Curvas diferenciables en \mathbb{R}^n

2.2 Teoría local de curvas planas

Una curva diferenciable parametrizada (curva) en \mathbb{R}^n es una aplicación diferenciable $\alpha: I \to \mathbb{R}^n$, donde I es un intervalo abierto de \mathbb{R} .

Las curvas son de la forma:

$$\alpha(t) = (x_1(t), x_2(t), ..., x_n(t)),$$

con
$$x_i: I \to \mathbb{R}, \forall i \in \{1, 2, ..., n\}.$$

• La **traza** de α es el conjunto $\alpha(I)$.

• El parámetro $\alpha(t)$, es t

 Representar la trayectoria de un móvil en el plano o en el espacio en función de un parámetro t (tiempo)

Ejemplo 1:

$$\alpha: \mathbb{R} \to \mathbb{R}^2$$

$$t \to \alpha(t) = (r\cos(t), r sen(t))$$

$$\beta: \mathbb{R} \to \mathbb{R}^2$$

$$t \to \beta(t) = (r \cos 2t, r \sin 2t)$$

$$\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = r^2\}$$

Fuente: http://laplace.us.es/

Sean I, J dos intervalos en \mathbb{R} . Decimos que $\Phi: J \longrightarrow I$ es un **difeomorfismo** si cumple:

- (i) Ф es inyectiva
- (ii) Φ es sobreyectiva, i.e., $\Phi(J) = I$
- (iii) Φ es diferenciable
- (iv) Φ^{-1} es diferenciable (sabemos que existe por (i) y (ii))

Sabemos que:

$$(\Phi^{-1})'(t_0) = \frac{1}{\Phi'(\Phi^{-1}(t_0))}, \text{ si } \Phi'(\Phi^{-1}(t_0)) \neq 0$$

Fuente: https://www.mathsisfun.com/

Sea una curva $\alpha: I \to \mathbb{R}^n$ y sea $\Phi: J \to I$ un difeomorfismo, se dice que $\beta: J \to \mathbb{R}^n$, $\beta = \alpha \circ \Phi$, es una **reparametrización** de α .

 β es es una reparametrización de α , entonces sus trazas coinciden

Llamamos **longitud** de una curva $\alpha: [a,b] \to \mathbb{R}^n$, $L(\alpha)_{a,b} = \int_a^b ||\alpha'(\tau)|| d\tau$

Longitud aproximada: $\sum_{i=0}^{n} ||\alpha(t_{i+1}) - \alpha(t_i)||$. Se toman límites

La longitud no varía por reparametrizaciones

Fuente: http://popista.com/

• Llamamos vector tangente a $\alpha(t)$ en t_0 a $\alpha'(t_0)$.

• Llamamos recta tangente a $\alpha(t)$ en t_0 a la recta que pasa por $\alpha(t_0)$ y tiene a $\alpha'(t_0)$ como vector director $(\alpha'(t_0) \neq 0)$

Sea una curva $\alpha: I \to \mathbb{R}^n$:

• Decimos que t_0 es un **punto singular** α si $\alpha'(t_0) = 0$

• α es **regular** si $\alpha'(t_0) \neq 0 \forall t \in I$

• Decimos que α está **parametrizada por arco** si $||\alpha'(t)|| = 1, \forall t \in I$

Si α está PPA entonces:

$$L(\alpha)_{0,t} = \int_0^t ||\alpha'(\tau)|| d\tau = \int_0^t 1 \cdot d\tau = t$$

Si α es una curva diferenciable y regular, siempre vamos a poder definir una reparametrización β

Sin pérdida de generalidad, trabajaremos con curvas PPA

Estudio de cómo se curva α

Llamamos T(s) al vector $T(s) = \alpha'(s)$, que es el **vector tangente**

Llamamos N(s) al vector T(s) rotado $\frac{\pi}{2}$, que es el **vector normal**

La base ortonormal $\{T(s), N(s)\}$ se llama **diedro de Frenet** de α en s

Si
$$\alpha(s) = (x(s), y(s))$$
, entonces

$$T(s) = (x'(s), y'(s))$$

$$N(s) = (-y'(s), x'(s))$$

Fuente: http://wdb.ugr.es/

Derivando las expresiones

$$\begin{cases} 1. < T, T >= 1 \\ 2. < T, N >= 0 \\ 3. < N, N >= 1 \end{cases}$$

Se llega a

$$T' = kN$$
$$N' = -kT$$

Diedro de Frenet

k tal que T'(s) = k(s)N(s) es la **curvatura** de α

Ejemplo 1: α es una recta, $\alpha(s) = p_0 + sv$

$$\alpha'(s) = T(s) = v$$

$$T'(s) = 0 = 0 \cdot N(s) \Rightarrow \mathbf{k} = \mathbf{0}$$

Ejemplo 2: α es una circunferencia,

$$\alpha(s) = \left(r\cos\left(\frac{s}{r}\right), r\sin\left(\frac{s}{r}\right)\right) \Longrightarrow T(s) = \left(-\sin\left(\frac{s}{r}\right), \cos\left(\frac{s}{r}\right)\right)$$

$$T'(s) = \left(-\frac{1}{r}\cos\left(\frac{s}{r}\right), -\frac{1}{r}\sin\left(\frac{s}{r}\right)\right)$$

$$N(s) = \left(-\cos\left(\frac{s}{r}\right), -\sin\left(\frac{s}{r}\right)\right)$$

$$\Rightarrow \mathbf{k}(s) = \frac{1}{r}$$

Si $,k(s)>0 \Rightarrow < T'(s),N(s)>>0$, la curva se curva en la dirección de la normal

Fuente: http://wdb.ugr.es/

Si $,k(s) < 0 \Rightarrow < T'(s),N(s) > < 0$, la curva se curva en la dirección opuesta a la normal

Si α es PPA, el extremo del vector T(s) = (x'(s), y'(s)) está en la circunferencia unidad.

Así,
$$T(s) = (cos\theta(s), sin\theta(s))$$
. Derivando,

$$T' = (-\theta' sin\theta(s), \theta' cos\theta(s))$$

$$N = (-sin\theta(s), cos\theta(s))$$

$$\Rightarrow k(s) = \langle T', N \rangle = \theta'$$

Es decir, para cada s, k se puede interpretar como la variación del ángulo que forma T(s) con una dirección fija.

• La curvatura sirve para definir cómo y cuánto se curva α .

 Es posible caracterizar una curva plana conociendo únicamente la función de curvatura, salvo movimientos rígidos

Fuente: http://www.scielo.org.mx/

Sea $\alpha: I \to \mathbb{R}^2$ una curva regular y sea $\beta: J \to \mathbb{R}^2$ su reparametrización por arco. $\alpha = \alpha(t)$ y $\beta = \beta(s)$.

Entonces,
$$k_{\alpha} = k_{\beta}(s(t))$$

Para calcular la curvatura de una curva que no esté parametrizada por arco, en primer lugar hay que calcular su reparametrización y luego asignar a cada punto la curvatura que corresponda según la reparametrización.