Robotics

Estimation and Learning with Dan Lee

Week 2. Kalman Filter

2.1 Kalman Filter Model2.2 Maximum-A-Posterior Estimation2.3 Nonlinear Variations

Week 2. Kalman Filter

2.1. Kalman Filter: Motivation

Kalman filter is used for optimal tracking for linear system.

For example, pedestrian and vehicle tracking

Intuition behind KF

• Dynamics

Intuition behind KF

• Dynamics

Application

- Track a moving target
 - Soccer ball

Intuition behind KF

- Multiple <u>measurements</u>: •, •, •, ...
- Each measurement is noisy:
- What is the true state of the object?

State and Measurement

• State (x): any quantity of interest

• Measurement (z): what we observe

State

- Example: "What characterizes the state of a ball?"
 - Position, Velocity, Acceleration
 - Rotation
 - Color
 - Size
 - Weight
 - Temperature
 - Elasticity
 - ...

Measurement

- Example: What do we observe or measure?
 - Distance
 - Angle
 - Inertia change
 - Color
 - ...

Measurement

