

2016 India IMO Training Camp

India International Mathematical Olympiad Training Camp 2016

Practice Tests
Practice Test 1
An acute-angled ABC $(AB < AC)$ is inscribed into a circle ω . Let M be the centroid of ABC , and let AH be an altitude of this triangle. A ray MH meets ω at A' . Prove that the circumcircle of the triangle $A'HB$ is tangent to AB . $(A.I.\ Golovanov\ ,\ A.\ Yakubov)$
Given that n is a natural number such that the leftmost digits in the decimal representations of 2^n and 3^n are the same, find all possible values of the leftmost digit.
Let a,b,c,d be real numbers satisfying $ a , b , c , d > 1$ and $abc + abd + acd + bcd + a + b + c + d = 0$. Prove that $\frac{1}{a-1} + \frac{1}{b-1} + \frac{1}{c-1} + \frac{1}{d-1} > 0$
Practice Test 2
We say a natural number n is perfect if the sum of all the positive divisors of n is equal to $2n$. For example, 6 is perfect since its positive divisors $1, 2, 3, 6$ add up to $12 = 2 \times 6$. Show that an odd perfect number has at least 3 distinct prime divisors.
Note: It is still not known whether odd perfect numbers exist. So assume such a number is there and prove the result.
Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that
$f\left(x^2 + xf(y)\right) = xf(x+y)$
for all reals x, y .
An equilateral triangle with side length 3 is divided into 9 congruent triangular cells as shown in the figure below. Initially all the cells contain 0. A move consists of selecting two adjacent cells (i.e., cells sharing a common boundary) and either increasing or decreasing the numbers in both the cells by 1 simultaneously. Determine all positive integers n such that after performing several such moves one can obtain 9 consecutive numbers $n, (n+1), \dots, (n+8)$ in some order.

Contributors: gavrilos, IstekOlympiadTeam, Ankoganit, Mukhammadiev, Prob-

lem_Penetrator, ABCDE, va2010

2016 India IMO Training Camp

_	Team Selection Tests
_	Team Selection Test 1
1	Let ABC be an acute triangle with orthocenter H . Let G be the point such that the quadrilateral $ABGH$ is a parallelogram. Let I be the point on the line GH such that AC bisects HI . Suppose that the line AC intersects the circumcircle of the triangle GCI at C and J . Prove that $IJ = AH$.
2	Suppose that a sequence a_1, a_2, \ldots of positive real numbers satisfies
	$a_{k+1} \ge \frac{ka_k}{a_k^2 + (k-1)}$
	for every positive integer k. Prove that $a_1 + a_2 + \ldots + a_n \ge n$ for every $n \ge 2$.
3	Let n be a natural number. A sequence x_1, x_2, \dots, x_{n^2} of n^2 numbers is called $n-good$ if each x_i is an element of the set $\{1,2,\cdots,n\}$ and the ordered pairs (x_i,x_{i+1}) are all different for $i=1,2,3,\cdots,n^2$ (here we consider the subscripts modulo n^2). Two n -good sequences x_1,x_2,\cdots,x_{n^2} and y_1,y_2,\cdots,y_{n^2} are called $similar$ if there exists an integer k such that $y_i=x_{i+k}$ for all $i=1,2,\cdots,n^2$ (again taking subscripts modulo n^2). Suppose that there exists a non-trivial permutation (i.e., a permutation which is different from the identity permutation) σ of $\{1,2,\cdots,n\}$ and an $n-$ good sequence x_1,x_2,\cdots,x_{n^2} which is similar to $\sigma(x_1),\sigma(x_2),\cdots,\sigma(x_{n^2})$. Show that $n\equiv 2\pmod{4}$.
_	Team Selection Test 2
1	Suppose α, β are two positive rational numbers. Assume for some positive integers m, n , it is known that $\alpha^{\frac{1}{n}} + \beta^{\frac{1}{m}}$ is a rational number. Prove that each of $\alpha^{\frac{1}{n}}$ and $\beta^{\frac{1}{m}}$ is a rational number.

2016 India IMO Training Camp

2	Let m and n be positive integers such that $m > n$. Define $x_k = \frac{m+k}{n+k}$ for $k = 1, 2, \ldots, n+1$. Prove that if all the numbers $x_1, x_2, \ldots, x_{n+1}$ are integers, then $x_1 x_2 \ldots x_{n+1} - 1$ is divisible by an odd prime.
3	For a finite set A of positive integers, a partition of A into two disjoint nonempty subsets A_1 and A_2 is $good$ if the least common multiple of the elements in A_1 is equal to the greatest common divisor of the elements in A_2 . Determine the minimum value of n such that there exists a set of n positive integers with exactly 2015 good partitions.
_	Team Selection Test 3
1	Let n be a natural number. We define sequences $\langle a_i \rangle$ and $\langle b_i \rangle$ of integers as follows. We let $a_0 = 1$ and $b_0 = n$. For $i > 0$, we let
	$(a_i, b_i) = \begin{cases} (2a_{i-1} + 1, b_{i-1} - a_{i-1} - 1) & \text{if } a_{i-1} < b_{i-1}, \\ (a_{i-1} - b_{i-1} - 1, 2b_{i-1} + 1) & \text{if } a_{i-1} > b_{i-1}, \\ (a_{i-1}, b_{i-1}) & \text{if } a_{i-1} = b_{i-1}. \end{cases}$
	Given that $a_k = b_k$ for some natural number k , prove that $n+3$ is a power of two.
2	Let ABC be an acute triangle and let M be the midpoint of AC . A circle ω passing through B and M meets the sides AB and BC at points P and Q respectively. Let T be the point such that $BPTQ$ is a parallelogram. Suppose that T lies on the circumcircle of ABC . Determine all possible values of $\frac{BT}{BM}$.
3	Let n be an odd natural number. We consider an $n \times n$ grid which is made up of n^2 unit squares and $2n(n+1)$ edges. We colour each of these edges either red or blue. If there are at most n^2 red edges, then show that there exists a unit square at least three of whose edges are blue.
_	Team Selection Test 4
1	Let ABC be an acute triangle with circumcircle Γ . Let A_1, B_1 and C_1 be respectively the midpoints of the arcs BAC, CBA and ACB of Γ . Show that the inradius of triangle $A_1B_1C_1$ is not less than the inradius of triangle ABC .
2	Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that
	$f(x^3 + f(y)) = x^2 f(x) + y,$
	for all $x, y \in \mathbb{R}$. (Here \mathbb{R} denotes the set of all real numbers.)
_	

2016 India IMO Training Camp

3

Let $\mathbb N$ denote the set of all natural numbers. Show that there exists two nonempty subsets A and B of $\mathbb N$ such that

- $A \cap B = \{1\};$
- every number in \mathbb{N} can be expressed as the product of a number in A and a number in B;
- each prime number is a divisor of some number in A and also some number in B;
- one of the sets A and B has the following property: if the numbers in this set are written as $x_1 < x_2 < x_3 < \cdots$, then for any given positive integer M there exists $k \in \mathbb{N}$ such that $x_{k+1} x_k \ge M$.
- Each set has infinitely many composite numbers.