МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра систем штучного інтелекту

Лабораторна робота № 4

з дисципліни «Дискретна математика»

Виконала:

студентка групи КН-112

Сидір Олена Юріївна

Викладач:

Мельникова Н.І.

Тема: Основні операції над графами. Знаходження остова мінімальної ваги за алгоритмом Пріма-Краскала

Мета роботи: набуття практичних вмінь та навичок з використання алгоритмів Пріма і Краскала.

Варіант №13

Завдання № 1.

Розв'язати на графах наступні задачі:

- 1) знайти доповнення до першого графу,
- 2) об'єднання графів,
- 3) кільцеву суму G1 та G2 (G1+G2),
- 4) розщепити вершину у другому графі,
- 5) виділити підграф A, що складається з 3-х вершин в G1 і знайти стягнення A в G1 (G1 \setminus A),
- 6) добуток графів.

 $V_1 \qquad V_2 \qquad V_4 \qquad V_3 \qquad V_4 \qquad V_5 \qquad V_7 \qquad V_6$

1) Доповнення до 1 графу

2) Об'єднання графів

- 3) Кільцева сума G1 і G2:
- 4) Розщепити вершину 2 у G2:

5) Виділити підграф А, що складається з 3-х вершин в G1 і знайти стягнення A в G1 (G1\ A) Підграф А:

G1 після стягнення:

6) Множення графів

2. Знайти таблицю суміжності та діаметр графа.

No	1	2	3	4	5	6	7	8	9
1	0	1	1	0	0	1	0	0	1
2	1	0	1	1	0	0	1	0	0
3	1	1	0	1	0	0	0	0	1
4	0	1	1	0	1	0	0	0	1
5	0	0	0	1	0	0	0	0	1
6	1	0	0	0	0	0	0	0	1
7	0	1	0	0	0	0	0	1	1
8	0	0	0	0	0	0	1	0	0
9	1	0	1	1	1	1	1	0	0

Таблиця суміжності

No	1	2	3	4	5	6	7	8	9
1	0	1	1	2	2	1	2	3	1
2	1	0	1	1	2	2	1	2	2
3	1	1	0	1	2	2	2	3	1
4	2	1	1	0	1	2	2	3	1
5	2	2	2	1	0	2	2	3	1
6	1	2	2	2	2	0	2	3	1
7	2	1	2	2	2	2	0	1	1
8	3	2	3	3	3	3	1	0	2
9	1	2	1	1	1	1	1	2	0

Таблиця інцидентності

Діаметр графа: 3.

3. Знайти двома методами (Краскала і Прима) мінімальне остове дерево графа.

Прима:

V	E
1	1,2
2	2,7
/	7,9
9	9,11
11	11,8
8	8,5
5	5,3
3	3,6
6	6,4

Краскала:

E	Вага
1,2	1
7,9	1
1,3	2
4,6	2
2,7	2
2,5	3
1,4	3
5,8	4
8,11	4
11,10	4

Завдання 2

Варіант № 13

За алгоритмом Прима знайти мінімальне остове дерево графа. Етапи розв'язання задачі виводити на екран. Протестувати розроблену програму на наступному графі:

No	1	2	3	4	5	6	7	8	9	10	11
1	0	1	2	3	0	0	0	0	0	0	0
2	1	0	0	0	0	0	4	0	0	0	0
3	2	0	0	0	6	6	0	0	0	9	0
4	3	0	0	0	0	2	4	0	0	0	0
5	0	3	6	0	0	0	0	7	5	0	0
6	0	0	6	2	0	0	0	7	6	0	0
7	0	4	0	4	0	0	0	0	5	4	0
8	0	0	0	0	7	7	0	0	0	0	4
9	0	0	0	0	5	0	5	0	0	0	1
10	0	0	0	0	0	3	4	0	0	0	2
11	0	0	0	0	0	0	0	4	1	2	0

Таблиця ваг

Програма:

```
if (used[v] == false && key[v] < min)</pre>
void prima(int graph[V][V])
```