1. Язык схем для VWML

Мы рассмотрим язык

ShL

(Scheme Language), который будем называть <u>языком схем проектирования</u> <u>VWML-кода</u>.

Этот язык является основой для разработки <u>среды проектирования</u> VWML-кода.

Прежде всего, отметим, что **ShL** включает в себя **VWML**.

Конструкции **ShL** "объемлют" соответствующие конструкции **VWML**. Мы этот факт запишем так:

 $VWML \subset ShL$

Основным понятием **ShL** является понятие

фрейма-контекста.

Такие фреймы подразделяются на два типа (см. рис.1).

- а) фрейм-контекст типа
- б) фрейм-контекст типа

Первый из них не содержит LifetErm'a, а второй – содержит.

Замечание:

Везде жирный шрифт используется для описания **ShL**, т.е. принадлежит метаязыку языка **ShL**.

Отметим, что все конструкции **ShL** "погружены" в некоторый фрейм-контекст. Фрейм-контексты также погружаются в фрейм-контекст, кроме "самых внешних" фреймов.

2. Классификация термов языка VWML

 $2.1. \, \underline{\text{Множество термов}} \, \text{VWML}$, как обычно, будем обозначать через \mathbf{T} .

 \mathbf{T} – множество термов.

Имея в виду обозначения произвольных термов будем писать:

$$t, t_1, t_2, \dots$$

 ϕ -интерпретация терма есть терм:

$$t_1^\phi=t_2\;.$$

2.2. Сущности.

Сущности образуют подкласс Е класса Т.

Говоря о сущностях будем пользоваться обозначениями:

$$\mathbf{e}$$
 , $\mathbf{e_1}$, $\mathbf{e_2}$, ...
$$\mathbf{E} \subset \mathbf{T} \qquad \text{(ot Entity)}$$

$$\mathbf{e}^{\phi} = \mathbf{e} \ .$$

2.3. Логические термы.

Класс логических термов ${f L}$ также является подклассом класса ${f T}$:

$$\mathbf{L} \subset \mathbf{T}$$
 (ot Logic).

Говоря о логических термах будем пользоваться обозначениями:

$$l$$
, l_1 , l_2 , ...

По определению:

$$\mathbf{l}^{\boldsymbol{\varphi}} = \text{true} \mid \text{false}$$

2.4. Термы, описывающие события.

Класс термов событий является подклассом класса Т.

Обозначать этот класс будем Ev.

$$\mathbf{E}\mathbf{v} \subset \mathbf{T}$$
 (or Event).

Говоря о таких термах, будем пользоваться обозначениями:

$$ev \ , ev_1 \ , ev_2 \ , \ldots$$

$$ev^\phi = * \ ;$$

Или точнее:

$${\cal M}$$
 , ${
m ev}^\phi={\cal M}_1$, $*$

где \mathcal{M}_1 рассматривается нами, как модификация \mathcal{M} .

2.5. Термы, описывающие термы, которые интерпретируются как сущности.

Речь идёт о подклассе **IE** класса **T**.

$$\mathbf{IE} \subset \mathbf{T}$$
 (Interpret to E).

Говоря о термах этого класса будем пользоваться обозначениями:

$$ie, ie_1, ie_2, \dots$$

По определению:

$$IE^{\phi} \subset E$$

т.е.

$$ie^{\varphi}=e$$
.

Очевидно, что:

$$\mathbf{E} \subset \mathbf{EI}$$
.

2.6. Термы, интерпретация которых суть термы описывающие события.

Речь идёт о классе \mathbf{IEv} , $\mathbf{IEv} \subset \mathbf{T}$.

Говоря о термах этого класса будем пользоваться обозначениями:

$$iev\;,\; iev_1\;,\; iev_2\;,\; \dots$$

$$IEv^{\phi} \subset Ev$$
; $iev^{\phi} = ev$.

Таким образом,

$${\cal M}$$
 , $iev^{\phi\phi}={\cal M}_1$, * .

2.7. Термы, интерпретация которых суть логический терм.

Речь идёт о подклассе ${\bf IL}$ класса ${\bf T}$; ${\bf IL} \subset {\bf T}$.

По определению:

$$IL^{\varphi} \subset L$$
.

Если мы говорим о термах этого класса, то будем пользоваться обозначениями:

$$il$$
, il_1 , il_2 , ...

Таким образом:

$$il^{\phi}=l\,$$

Но тогда:

$$il^{\phi\phi}$$
 = true | false

т.е.

$$\mathbf{IL}^{\phi\phi} \in \{ \text{ true , false } \}.$$

2.8. Термы высших порядков.

Это классы:

$$I^{2}E$$
 , $I^{3}E$, ...
$$I^{2}L$$
 , $I^{3}L$, ...
$$I^{2}Ev$$
 , $I^{3}Ev$, ...

Эти термы легко определяются по индукции.

Например,

$$I^2 E^{\phi} \subset IE$$
 $I^3 E^{\phi} \subset I^2 E_{\text{ M T.A.}}$

Отметим, что рассмотренная нами классификация термов не является полной.

В то же время, это множество термов, которое достаточно для наших задач описания виртуальных миров.

3. Интерпретационные выражения VWML

Мы говорили о том, что контекст описывается интерпретационными выражениями.

Интерпретационное выражение имеет вид:

$$e$$
 ias t , где $e \in E$, $t \in T$.

При этом:

$$e^{\varphi} = e \cdot e \downarrow^{\varphi} = t^{\varphi}$$
.

Если рассматривать " \downarrow " как операцию над термами в контексте \mathcal{M} , то

$${m {\mathcal M}}$$
 , $e\downarrow^\phi={m {\mathcal M}}$, $e^{\downarrow\phi}={m {\mathcal M}}$, t^ϕ .

Если контекст является контекстом типа , то в нём обязательно присутствие LifeTerm'a.

LifeTerm является специальной выделенной сущностью.

В каждом контексте типа **2** обязательно присутствие LifeTerm-выражения, которое имеет вид:

$$LifeTerm = ev (*)$$

Здесь LifeTerm – зарезервированная сущность.

$$\mathbf{ev} \in \mathbf{Ev}$$
 – терм типа "событие".

T.e.

$$\mathcal{M}$$
, $\operatorname{ev}^{\varphi} = \mathcal{M}_1$, *.

Замечание:

Такова конструкция LifeTerm'a в **VWML**. На **ShL** эта конструкция обобщается.

4. Схемы и термы языка ShL

В этом коротком разделе мы лишь начнём говорить о схемах.

К различным схемам мы будем обращаться по их именам, которые входят в **ShL**-конструкции.

Будем пользоваться выражением вида:

[name] .

Здесь надо иметь в виду, что квадратные скобки принадлежат языку **ShL** и указывают на то, что речь идёт именно о схеме.

пате синтаксически представляет собой простую сущность VWML.

Мы интерпретировали LifeTerm'ы и другие термы языка VWML, обозначая оператор интерпретирования φ.

Мы будем говорить также и об ψ -интерпретировании и об ψ -интерпретаторе. ψ -интерпретатор, в частности применяется к схемам языка **ShL**.

Результат интерпретации будем записывать так:

[name] $^{\psi}$

Результатом такой интерпретации являются "две вещи":

- а) терм языка VWML;
- б) совокупность некоторых интерпретационных выражений языка VWML; т.е. фрагмент VWML-кода.

Мы часто будем иметь в виду только терм, как результат ψинтерпретирования, имея в виду, что фрагмент кода мы получаем "на побочном эффекте".

5. Термы языка ShL

Введем теперь понятие **ShL-терма** языка **ShL**. Обозначим множество таких термов **ShT**.

Отметим, что как простые, так и составные термы VWML (они образуют совокупность термов T) являются также термами языка ShL.

Иными словами,

$$T \subset ShT$$
.

Введём сначала понятие <u>простого **ShL-терма**</u>. Такой терм имеет вид:

Class является именем класса термов языка VWML

(однако теперь это символы ShL, и будут записываться в этом документе, не жирным шрифтом).

name – имя простого ShL-терма.

Приведём примеры:

$$E_{<}abc>$$
, $Ev_{<}SomeEvent>$, $L_{<}expr>$, ...

Семантика этих термов будет подробно описана ниже. Сейчас же отметим, что, например:

$$E_{-}$$
< abc $>^{\psi} \in E$,
 Ev_{-} < SomeEvent $>^{\psi} \in Ev$,
 L_{-} < expr $>^{\psi} \in L$, ...

Таким образом, ψ-интерпретация простого ShL-терма – терм языка VWML.

Введём, наконец, понятие терма (не обязательно простого) языка **ShL**.

Такой терм конструируется так же как и терм языка VWML, однако в качестве дополнительного "строительного материала" используются также схемы (конструкции вида [name]) и простые ShL-термы (конструкции вида Class_< name >).

Приведём примеры:

- 1. $a \downarrow exe$
- 2. $(ev \le event1 \ge (a b) \uparrow ev \le event2 \ge)$
- 3. ([name1] ev_< event >)
- 4. (Case $L \leq expr >$) $\downarrow exe$
- 5. ([name1] [name2])

ψ-интерпретация ShL-терма даёт терм языка VWML, т.е.

$$ShT^{\psi}\subset T$$

при этом "обычные" термы являются неподвижными точками этого ψ-оператора:

$$T^{\psi} = T \; ,$$
 $t \in T \; ,$ тогда $t^{\psi} = t \; .$

Замечание:

Если ShL-терм содержит в своей записи схемы, то результатом его интерпретации дополнительно также могут являться и интерпретационные выражения VWML.

6. Подстановочные выражения

Введём понятие подстановочного выражения языка ShL.

Такое выражение имеет вид:

Простой ShL-терм sub ShL-терм.

Приведём примеры:

$$\begin{split} E_{-} &< \text{entity} > \underline{\text{sub}} \ (\ E_{-} &< \text{entity} \ 1 > \ a \downarrow) \ \text{join} \\ Ev_{-} &< \text{event1} > \underline{\text{sub}} \ (\ a \ b) \uparrow \\ Ev_{-} &< \text{event} > \underline{\text{sub}} \ (\ [\ \text{transfer} \] \ Ev_{-} &< \text{put} >) \\ L_{-} &< \text{expr} > \underline{\text{sub}} \ [\ \text{condition} \] \\ ---- \end{aligned}$$

На множестве простых термов ShL можем естественным образом ввести операцию подстановки <u>sub</u>, <u>например</u>:

E_< entity >
sub
 = (E_< entity_1 > a \) join
Ev_< event1 > sub = (a b) \ \ -----

Замечание:

Операцию <u>sub</u>можно рассматривать как аналог операции "↓" на сущностях VWML.

7. Фреймы простых термов

Class_< term >

ShL - term

Это просто краткая фреймовая запись подстановочного выражения. Саму рамку можно рассматривать, как знак "**sub**".

8. Интерпретационные выражения ShL-языка

Мы рассматривали интерпретационные выражения как конструкции языка VWML. Теперь мы расширим совокупность интерпретационных выражений. Мы будем рассматривать интерпретационные выражения **ShL**-языка.

В частности, интерпретационные выражения VWML являются интерпретационными выражениями **ShL**.

Будем обозначать:

IV – множество интерпретационных выражений языка VWML;

IS – множество интерпретационных выражения языка **ShL**.

В силу сказанного выше:

$$IV \subset IS$$
.

Говоря об интерпретационных выражениях будем пользоваться обозначениями:

Интерпретационное ShL-выражение имеет вид:

Как мы уже отмечали:

$$ShL_term^{\psi} \subset T$$
.

Для левой части интерпретационного ShL-выражения потребуем, чтобы:

$$ShL_term1^{\psi} \subset E$$
 .

Т.е. результат ψ-интерпретации здесь является сущностью языка VWML. Определим теперь ψ для интерпретационных выражений. Пусть,

$$isexpr = ShL_term1 \underline{ias} ShL_term2$$

Тогда:

$$isexpr^{\psi} = ShL_term1^{\psi} \underline{ias} ShL_term2^{\psi}$$

При этом, мы полагаем, что:

$$ivexpr^{\psi} = ivexpr$$
.

 $T.е. \$ интерпретационные выражения языка VWML являются неподвижными точками интерпретатора $\psi.$

9. Фреймы схем

Введём сначала понятие схемного выражения языка **ShL**.

Это выражение имеет вид:

```
[ Sh_name ] = ShL-term ,
{ isexpr1 , isexpr2 , ... } ;
```

При этом,

```
[ Sh_name ] — имя схемы (часто будем говорить просто схема); 

ShL-term — терм схемы; 

{ isexpr1 , isexpr2 , ... } — тело (или окрестность) схемы.
```

Имея в виду ψ-интерпретацию схемы, будем писать:

[Sh_name]
$$^{\psi}$$

При этом, полагаем, что:

[Sh_name]
$$^{\psi}$$
 =ShL_term $^{\psi}$,
{ isexpr1 $^{\psi}$, isexpr2 $^{\psi}$, ... } .

Приведём пример:

Пусть,

[Sh_example] = (a E_< entity >)
$$\downarrow$$
 exe
{ b ias Ev_< event > }

Тогда,

[Sh_example]
$$^{\psi}$$
 = (a E_< entity $>^{\psi}$) \downarrow exe
{ b ias Ev_< event $>^{\psi}$ }

Точно оператор ψ будет определён в следующем разделе.

Схемное выражение может быть представлено в виде фрейма-схемы.

[Sh_name] = ShL_term

isexpr1
isexpr2

"Верхнюю часть" фрейма будем называть <u>заголовком фрейма-схемы</u>. Каждый фрейм-схема погружается в фрейм-контекст.

10. Ф-интерпретация

Мы здесь рассмотрим понятие ψ-интерпретации термов, подстановочных выражений, интерпретационных выражений и схемных выражений языка ShL.

ψ-интерпретация определяется рекурсивно следующими правилами.

1. ψ-интерпретация простых ShL-термов.

Class_< term
$$>^{\psi}$$
 = Class_< term $>^{\text{sub }\psi}$

2. Пусть в ShL-терм конструируется из элементов языка VWML, а также с помощью:

которые являются либо именами схем, либо простыми ShL-термами, т.е. либо имеют вид:

либо:

Сказанное выше запишем так:

Но тогда:

$$ShL\text{-term}^{\psi} = Expr \; (\; item 1^{\psi}, \ldots \, , \; item_n^{\psi} \;)$$

Например,

Пусть ShL-term =
$$(a \downarrow [b] E_{< c >) \downarrow exe$$
.

Тогда
$$\mathbf{ShL}$$
-term $^{\psi} = (a \downarrow [b]^{\psi} E_{< c>^{\psi}) \downarrow exe$.

3. ψ-интерпретация интерпретационных ShL-выражений.

Пусть дано интерпретационное выражение:

$$isexpr = ShL_term1$$
 ias ShL_term2

Тогда по определению:

$$isexpr^{\psi} = ShL_term1^{\psi} \underline{ias} ShL_term2^{\psi}$$

4. ψ-интерпретация схемы.

Пусть дана схема:

Тогда по определению:

[Sh_name]
$$^{\psi}$$
 = ShL_term $^{\psi}$,
{ isexpr 1^{ψ} , isexpr 2^{ψ} , ... }

5. Терминальные ψ-интерпретации

Пусть
$$\mathbf{t} \in \mathbf{T}$$
, т.е. \mathbf{t} – терм языка VWML.

Тогда
$$\mathbf{t}^{\mathbf{\Psi}} = \mathbf{t}$$
 .

Отсюда следует, что если **ivexpr** – интерпретационное выражение языка VWML, то

$$ivexpr^{\psi} = ivexpr$$
.

11. Интерпретация контекста

Мы говорили, что все конструкции ShL-языка погружены в некоторый контекст. Контекст также может погружаться в контекст.

Сейчас мы лишь отметим, что ψ-интерпретация контекста сводится к ψ-интерпретациям погруженных в него объектов. Точные определения дадим позднее.

Отметим лишь, что контекст типа **2** содержит LifeTerm. На языке ShL мы имеем в таком контексте специальное выражение:

$$LifeTerm = ShL Term$$

ψ-интерпретация этого выражения даёт:

LifeTerm =
$$ShL_Term^{\psi}$$
.

Здесь, LifeTerm – сущность VWML.