

Lecture 03:

Dimension Reduction and PCA

Markus Hohle
University California, Berkeley

Machine Learning Algorithms
MSSE 277B, 3 Units

Lecture 1: Course Overview and Introduction to Machine Learning

Lecture 2: Bayesian Methods in Machine Learning

classic ML tools & algorithms

Lecture 3: Dimensionality Reduction: Principal Component Analysis

Lecture 4: Linear and Non-linear Regression and Classification

Lecture 5: Unsupervised Learning: Clustering and Gaussian Mixture Models

Lecture 6: Adaptive Learning and Gradient Descent Optimization Algorithms

Lecture 7: Introduction to Artificial Neural Networks - The Perceptror

ANNs/AI/Deep Learning

Lecture 8: Introduction to Artificial Neural Networks - Building Multiple Dense Layers

Lecture 9: Convolutional Neural Networks (CNNs) - Part

Lecture 10: CNNs - Part II

Lecture 11: Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTMs)

Lecture 12: Combining LSTMs and CNNs

Lecture 13: Running Models on GPUs and Parallel Processing

Lecture 14: Project Presentations

Lecture 15: Transformer

Lecture 16: GNN

Berkeley Machine Learning Algorithms:

<u>Outline</u>

- The Problem
- Mathematical formulation of the Problem
- Examples

Berkeley Machine Learning Algorithms:

<u>Outline</u>

- The Problem
- Mathematical formulation of the Problem
- Examples

The Problem

some features correlate!

label	molecular_weight	electronegativity	bond_lengths	num_hydrogen_bonds	logP
Toxic	382.602	2.00269	3.61153	3	9.82666
Toxic	408.961	2.93626	3.47904	6	9.85889
Non-Toxic	239.548	2.71413	2.63922	8	6.75962
Non-Toxic	315.58	2.85598	2.86034	9	8.70674
Non-Toxic	282.521	2.83877	2.9664	1	7.8173

$$corr(x, y) = \frac{cov(x, y)}{\sqrt{var(x)var(y)}}$$

The Problem

	label	molecular_weight	electronegativity	bond_lengths	num_hydrogen_bonds	logP
	Toxic	382.602	2.00269	3.61153	3	9.82666
	Toxic	408.961	2.93626	3.47904	6	9.85889
<u> </u>	Non-Toxic	239.548	2.71413	2.63922	8	6.75962
	Non-Toxic	315.58	2.85598	2.86034	9	8.70674
	Non-Toxic	282.521	2.83877	2.9664	1	7.8173
con(x, y)			(11)			

The Problem

some features correlate!

correlation means:

- features are **not mutually independent**
- we can predict feature a
 from feature b to some extend
- we don't need all features
- → reducing number of features (dimensions) without losing information

label	molecular_weight	electronegativity	bond_lengths	num_hydrogen_bonds	logP
Toxic	382.602	2.00269	3.61153	3	9.82666
Toxic	408.961	2.93626	3.47904	6	9.85889
Non-Toxic	239.548	2.71413	2.63922	8	6.75962
Non-Toxic	315.58	2.85598	2.86034	9	8.70674
Non-Toxic	282.521	2.83877	2.9664	1	7.8173

some features correlate!

each data point is represented by **three** features...

... but those features correlate $(x, y) \rightarrow z$

new coordinate system

some features correlate!

some features correlate!

The **axis** of the **new coordinate** system are called **eigenvectors**

eigen: loosely translated from German "proper"

How do we find the eigenvectors based on correlation?

Berkeley Machine Learning Algorithms:

<u>Outline</u>

- The Problem
- Mathematical formulation of the Problem
- Examples

$$corr(x,y) := \frac{cov(x,y)}{\sqrt{var(x)var(y)}}$$

$$var(x) \equiv \sigma_x^2 := \sum_{i=1}^{N} (x_i - \mu_x)^2$$

$$cov(x,y) \qquad \coloneqq \sum_{j}^{M} \sum_{i}^{N} (x_i - \mu_x)(y_j - \mu_y)$$

$$\sigma_{tot}^2 = \sigma_x^2 + \sigma_y^2 + 2 cov(x, y)$$

Let's try to remember this structure!

$$\sigma_{tot}^2 = \sigma_x^2 + \sigma_y^2 + 2 cov(x, y)$$

about cone sections:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = const$$

$$a = b \rightarrow x^2 + y^2 = r^2$$

$$a = b \rightarrow x^2 + y^2 = r^2$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = const$$

$$a \neq b$$

$$\sigma_{tot}^2 = \sigma_x^2 + \sigma_y^2 + 2 cov(x, y)$$

about cone sections:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = const$$
$$a \neq b$$

$$\frac{(x - \mu_x)^2}{a^2} + \frac{(y - \mu_y)^2}{b^2} = const$$

$$a \neq b$$

$$\sigma_{tot}^2 = \sigma_x^2 + \sigma_y^2 + 2 cov(x, y)$$

about cone sections:

$$\frac{(x - \mu_x)^2}{a^2} + \frac{(y - \mu_y)^2}{b^2} = const$$

$$a \neq b$$

$$\frac{(x - \mu_x)^2}{a^2} + \frac{(y - \mu_y)^2}{b^2} + 2c(x - \mu_x)(y - \mu_y) = const$$

$$a \neq b$$

$$\sigma_{tot}^{2} = \sigma_{x}^{2} + \sigma_{y}^{2} + 2 cov(x, y)$$

$$= \sum_{i}^{N} (x_{i} - \mu_{x})^{2} + \sum_{j}^{M} (y_{j} - \mu_{y})^{2} + 2 \sum_{j}^{M} \sum_{i}^{N} (x_{i} - \mu_{x})(y_{j} - \mu_{y})$$

$$const = \frac{(x - \mu_x)^2}{a^2} + \frac{(y - \mu_y)^2}{b^2} + 2c(x - \mu_x)(y - \mu_y)$$

$$const = \begin{pmatrix} x - \mu_x \\ y - \mu_y \end{pmatrix}^T \begin{pmatrix} 1/a^2 & c \\ c & 1/b^2 \end{pmatrix} \begin{pmatrix} x - \mu_x \\ y - \mu_y \end{pmatrix}$$

$$const = \begin{pmatrix} x - \mu_x \\ y - \mu_y \end{pmatrix}^T \begin{pmatrix} \alpha & \gamma_{12} \\ \gamma_{21} & \beta \end{pmatrix} \begin{pmatrix} x - \mu_x \\ y - \mu_y \end{pmatrix}$$
 covariance matrix

$$= v^T S v$$
 ... called quadratic form (also in N-D)

$$\sigma_{tot}^{2} = \sigma_{x}^{2} + \sigma_{y}^{2} + 2 cov(x, y)$$

$$= \sum_{i}^{N} (x_{i} - \mu_{x})^{2} + \sum_{j}^{M} (y_{j} - \mu_{y})^{2} + 2 \sum_{j}^{M} \sum_{i}^{N} (x_{i} - \mu_{x})(y_{j} - \mu_{y})$$

$$const = \frac{(x - \mu_x)^2}{a^2} + \frac{(y - \mu_y)^2}{b^2} + 2c(x - \mu_x)(y - \mu_y)$$

$$const = \begin{pmatrix} x - \mu_x \\ y - \mu_y \end{pmatrix}^T \begin{pmatrix} 1/a^2 & c \\ c & 1/b^2 \end{pmatrix} \begin{pmatrix} x - \mu_x \\ y - \mu_y \end{pmatrix}$$

$$const = \begin{pmatrix} x - \mu_x \\ y - \mu_y \end{pmatrix}^T \begin{pmatrix} \alpha & \gamma_{12} \\ \gamma_{21} & \beta \end{pmatrix} \begin{pmatrix} x - \mu_x \\ y - \mu_y \end{pmatrix}$$

$$= v^T S v$$
 ... called **quadric** (also in N-D)

$$\sigma_{tot}^{2} = \sigma_{x}^{2} + \sigma_{y}^{2} + 2 cov(x, y)$$

$$const = \frac{(x - \mu_{x})^{2}}{a^{2}} + \frac{(y - \mu_{y})^{2}}{b^{2}} + 2 c(x - \mu_{x})(y - \mu_{y})$$

$$const = \begin{pmatrix} x - \mu_{x} \\ y - \mu_{y} \end{pmatrix}^{T} \begin{pmatrix} 1/a^{2} & c \\ c & 1/b^{2} \end{pmatrix} \begin{pmatrix} x - \mu_{x} \\ y - \mu_{y} \end{pmatrix}$$

- geometrically, the covariance matrix can be interpreted as quadratic form
- the covariances are the **non-diagonal** elements of the **covariance matrix**
- aim: finding a coordinate transformation, where the covariance matrix is diagonal

$$egin{pmatrix} \lambda_1 & ... & 0 & ... & 0 \ 0 & \lambda_i & ... & 0 \ 0 & 0 & \lambda_N \end{pmatrix}$$

the diagonal $\begin{pmatrix} \lambda_1 & \dots & 0 & \dots & 0 \\ 0 & \lambda_i & \dots & 0 & \dots & \\ 0 & 0 & \lambda_M & \dots & \dots & \\ \end{pmatrix} \qquad \begin{array}{c} \text{the diagonal} \\ \text{entries are called} \\ \text{eigenvalues (= variances in } \\ \end{pmatrix}$ new coordinate system)

- → all variables are independent
- → principal components of the covariance matrix are parallel to the new coordinate axes (= eigenvectors)

Berkeley Machine Learning Algorithms:

<u>Outline</u>

- The Problem
- Mathematical formulation of the Problem
- Examples

from sklearn.decomposition import PCA

Let us take a look at some artificial data first:

see PCA_simple.ipynb

- 3D data cloud
- however, all data points seem to be located on one plane
- PCA should be able to reduce dimensions

from sklearn.decomposition import PCA

Let us take a look at some artificial data first:

- 3D data cloud
- however, all data points seem to be located on one plane
- PCA should be able to reduce dimensions

from sklearn.decomposition import PCA

Let us take a look at some artificial data first:

- 3D data cloud
- however, all data points seem to be located on one plane
- PCA should be able to reduce dimensions


```
performing the actual PCA:
                                                          3D data cloud
                                                          however, all data points seem to
                                                          be located on one plane
out = PCA(n_{components} = 3).fit(XYZ)
                                                          PCA should be able to reduce
                                                          dimensions
eigenVec = out.components_
eigenVal = out.explained variance
eigenXYZ = out.transform(XYZ)
plotting the eigenvalue spectrum:
xplot = np.arange(1,4)
plt.bar(xplot, eigenVal, color = (0.8, 0.8, 0.8), edgecolor = 'black')
plt.xlabel('dimension')
plt.ylabel('eigenvalue')
plt.yscale('log')
plt.xticks(xplot)
plt.show()
```

```
out = PCA(n_components = 3).fit(XYZ)
eigenVec = out.components_
eigenVal = out.explained_variance_
eigenXYZ = out.transform(XYZ)
```

plotting the eigenvalue spectrum:

```
xplot = np.arange(1,4)

plt.bar(xplot, eigenVal, color = (0.8, 0.8, 0.8), edgecolor = 'black')
plt.xlabel('dimension')
plt.ylabel('eigenvalue')
plt.yscale('log')
plt.xticks(xplot)
plt.show()
```


one eigenvalue

is zero

B 10⁻¹² 記 10⁻¹⁶

Berkeley Dimension Reduction and PCA:

plotting the eigenvalue spectrum:

```
xplot = np.arange(1,4)
plt.bar(xplot, eigenVal, color = (0.8, 0.8, 0.8), edgecolor = 'black')
plt.xlabel('dimension')
plt.ylabel('eigenvalue')
plt.yscale('log')
plt.xticks(xplot)
plt.show()
fig = plt.figure(figsize = (12, 12))
ax = fig.add_subplot(projection = '3d')
ax.scatter(eigenXYZ[:,0], eigenXYZ[:,1], eigenXYZ[:,2], c = 'black', \
            marker = 0, s = 40
ax.set xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
ax.tick_params(axis = 'both', which = 'major', labelsize = 30)
plt.show()
```


plotting the eigenvalue spectrum:

```
xplot = np.arange(1,4)
plt.bar(xplot, eigenVal, color = (0.8, 0.8, 0.8), edgecolor = 'black')
plt.xlabel('dimension')
plt.ylabel('eigenvalue')
plt.yscale('log')
plt.xticks(xplot)
plt.show()
fig = plt.figure(figsize = (12, 12))
ax = fig.add_subplot(projection = '3d')
ax.scatter(eigenXYZ[:,0], eigenXYZ[:,1], eigenXYZ[:,2], c = 'bl
ax.set xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
ax.tick_params(axis = 'both', which = 'major', labelsize = 30)
plt.show()
```

check also eg:

```
np.dot(eigenVec[:,0],eigenVec[:,1])
```


almost no variance along new z-coord

Summary:

- We don't need three coordinates in order to describe the data points
 some of the directions (features) correlate
- running a PCA in order to find the proper coordinate system
- one of three eigenvalues is a lot smaller than the other two
- → We only need two coordinates for the data set

We can reduce the complexity of the data set without loosing information

-0.038

0.92

-0.036

- 0.2

Berkeley Dimension Reduction and PCA:

let us return to the molecule data set now:

$corr(x, y) = \frac{cov(x, y)}{\sqrt{var(x)var(y)}}$

-0.025

0.085

-0.029

-0.036

0.95

-0.017

-0.029

0.92

see NaiveBayes_PCA.ipynb

label	molecular_weight	electronegativity	bond_lengths	num_hydrogen_bonds	logP
Toxic	382.602	2.00269	3.61153	3	9.82666
Toxic	408.961	2.93626	3.47904	6	9.85889
Non-Toxic	239.548	2.71413	2.63922	8	6.75962
Non-Toxic	315.58	2.85598	2.86034	9	8.70674
Non-Toxic	282.521	2.83877	2.9664	1	7.8173

TrainX = Train.drop('label', axis = 1)

Test = pd.read_csv('molecular_test_gbc.csv')

TestY = Test['label']

TestX = Test.drop('label', axis = 1)

let us return to the molecule data set now:

```
important:
from sklearn.preprocessing import MinMaxScaler
                                                                         scaling and
                                                                        normalization
        = MinMaxScaler(feature_range = (0, 1))
scaler
TrainXS = scaler.fit_transform(TrainX)
                                                                         creating our
TestXS = scaler.transform(TestX)
                                                                         model with
                                                                            .fit
out = PCA(n_components = 5).fit(TrainXS)
eigenVec = out.components
eigenVal
             = out.explained_variance_
eigenTrainX = out.transform(TrainXS)
                                                                    Finally transforming
                                                                       the data into
                                                                      eigencoordinates
```


let us return to the molecule data set now:

```
out = PCA(n_components = 5).fit(TrainXS)
eigenVec = out.components_
eigenVal = out.explained_variance_
eigenTrainX = out.transform(TrainXS)

xplot = np.arange(1,6)
```



```
plt.bar(xplot, eigenVal, color = (0.8, 0.8, 0.8), edgecolor = 'black')
plt.xlabel('dimension')
plt.ylabel('eigenvalue')
plt.yscale('log')
plt.xticks(xplot)
plt.show()
```


let us return to the molecule data set now:

let us return to the molecule data set now:

We also need only **three** directions now and therefore can create a normal scatter plot:

let us return to the molecule data set now:

as a consistency check: plotting the **three** directions with *lowest* eigenvalues

Classification Naïve Bayes

$$k_{new} = \underset{k}{argmax} \left\{ P(C_k) \prod_{i=1}^{l} P(x_i | C_k) \right\}$$

no PCA (five features):

GaussianNB: accuracy = 81%

after PCA (three features):

GaussianNB: accuracy = 83%

Berkeley Machine Learning Algorithms:

Thank you very much for your attention!

