

AULA 16: EXERCÍCIOS PREPARATÓRIOS PARA 2ºAVALIAÇÃO.

RLM - EXERCÍCIOS PREPARATÓRIOS PARA 2ºAVALIAÇÕES

ATENÇÃO: É OBRIGATÓRIO APRESENTAR OS CÁLCULOS NA ENTREGA DE TODAS ATIVIDADES AVALIATIVAS.

Funções

- 1. *Problema:* Um desenvolvedor está criando uma função para calcular o valor de um desconto com base no valor da compra. A função definida é \($f(x) = 0.1x \$), onde \($x \$) é o valor da compra. Quanto é o desconto para uma compra de R\$200?
 - A) R\$10
 - B) R\$15
 - C) R\$20
 - D) R\$25
- 2. *Problema:* Em um sistema de monitoramento, a temperatura $\ (T)$ em graus Celsius é descrita pela função $\ (f(t) = 5t + 20)$, onde $\ (t)$ é o tempo em horas. Qual será a temperatura após 3 horas?
 - A) 25°C
 - B) 30°C
 - C) 35°C
 - D) 40°C

Tipos de Funções

- 3. *Problema:* Qual das seguintes opções representa uma função linear?
 - $A) \setminus (f(x) = 3x + 2 \setminus)$
 - B) \($f(x) = x^2 + 3x + 5$ \)

```
C) \( f(x) = \sqrt{x} \)D) \( f(x) = \frac{1}{x} \)
```

4. *Problema:* Qual das funções abaixo é uma função quadrática?

```
- A) \setminus (f(x) = x^3 + 3x + 1 \setminus)
```

- B) \(
$$f(x) = x^2 - 4x + 4$$
 \)

- C) \(
$$f(x) = 2x + 5 \$$
 \)

- D) \(
$$f(x) = \log(x) \setminus$$

Funções Exponenciais

- 5. *Problema:* Em uma aplicação financeira, o valor de um investimento é calculado pela função exponencial $(f(t) = 1000 \cdot 1.05^t)$, onde (t) é o número de anos. Qual será o valor do investimento após 2 anos?
 - A) R\$1050
 - B) R\$1102.50
 - C) R\$1150
 - D) R\$1200
- 6. *Problema:* Qual das opções abaixo representa o gráfico de uma função exponencial crescente?
 - $A) \setminus (f(x) = 2^x \setminus)$
 - B) \($f(x) = x^2$ \)
 - C) \($f(x) = \frac{1}{x^2} \)$
 - D) \($f(x) = -2^x \)$

Funções Logarítmicas

- 7. *Problema:* Se uma função logarítmica é expressa por $(f(x) = \log_2(x))$, qual é o valor de (f(8))?
 - A) 2
 - B) 3
 - C) 4
 - D) 5
- 8. *Problema:* Uma empresa de tecnologia usa a função $(f(x) = \log(x) + 1)$ para modelar o crescimento de dados ao longo do tempo. Se atualmente têm 10 unidades de dados, qual é o valor de (f(10))?
 - A) 1
 - B) 2
 - C) 3
 - D) 1 + \(\log(10)\)

Mais Questões Contextualizadas

 9. *Problema:* No desenvolvimento de um algoritmo de otimização, a função \((f(x) = 2x^3 - 3x^2 + x \) é usada como critério de avaliação. Qual o valor de \((f(2) \)? - A) 3 - B) 4 - C) 5 - D) 8
 10. *Problema:* Um programador percebeu que um algoritmo que realiza buscas em um database possui complexidade temporal modelada por \(f(n) = \log_2(n) \\). Se o database possui 1024 entradas, quantos passos de busca são necessários? - A) 8 - B) 9 - C) 10 - D) 11
 11. *Problema:* Em análise de complexidade, a função \((f(n) = 3^n \) representa a complexidade de um algoritmo exponencial. Qual será a complexidade para \((n = 4 \))? - A) 27 - B) 64 - C) 81 - D) 243
12. *Problema:* Uma certa base de dados dobra de tamanho a cada mês. Isso pode ser descrito pela função \((f(t) = 500 \cdot 2^t \), onde \((t \) está em meses. Quanto valerá o tamanho da base após 3 meses? - A) 1000 - B) 2000 - C) 4000 - D) 8000
13. *Problema:* Em um mesmo contexto, a função \(g(x) = $x^2 - 5x + 6 $ \) modela o número de operações. Qual o valor de \(g(3) \)? - A) 0 - B) 2 - C) 4 - D) 6
14. *Problema:* Em um sistema de segurança, a detecção de intrusos é modelada por $(f(t) = 10e^{0.7t})$. Qual seria o valor de $(f(t))$ em $(t = 1)$? - A) 17.1 - B) 20 - C) 23.4 - D) 25

15. *Problema:* Um analista de sistemas deseja determinar a qualidade de código com base na fórmula \(f(x) = 10\log(x) - 5 \). Qual o valor de \(f(100) \)? - A) 5 - B) 10 - C) 15 - D) 20
 16. *Problema:* A empresa tem um sistema cujo tempo de resposta é modelado por \(f(x) = x^2 + 6x + 9 \). Se o sistema recebeu atualização para reduzir x, qual era o tempo de resposta inicial sem a atualização (quando \(x = 3 \))? - A) 9 - B) 18 - C) 27 - D) 36
 17. *Problema:* Se um algoritmo tem a complexidade em função de entradas \(f(n) = 4 \cdot 2^n \), quantas operações são necessárias para \(n = 5 \)? - A) 64 - B) 128 - C) 256 - D) 512
18. *Problema:* Um software aumenta sua base de dados de modo que o crescimento seja descrito pelo logaritmo natural $(f(x) = \ln(x) + 2)$. Qual o $f(x)$ quando $x \in 7.389$ (sabendo que $(\ln(e^2) = 2)$)? - A) 0 - B) 2 - C) 4 - D) 6
19. *Problema:* Given: \(f(x) = e^x \) isso descreve o número de usuários ativos de um sistema ao longo do tempo. Para \(x = 4 \), qual seria o número de usuários ativos (aproximando e = 2.7)? - A) 24.5 - B) 32.5 - C) 48.5 - D) 52.5
 20. *Problema:* Uma função é usada para calcular o impacto ambiental em um relatório de análise de sistemas: \(f(x) = 7 \log(x) - 3x \). Qual o valor de impacto para \(x = 10 \)? - A) 0 - B) 4 - C) -10 - D) 7

GABARITO

ATENÇÃO: É OBRIGATÓRIO APRESENTAR OS CÁLCULOS NA ENTREGA DE TODAS ATIVIDADES AVALIATIVAS.

SEGUE ABAIXO O GABARITO PARA PROVA REAL E ESTUDOS PARA 2ª AVALIAÇÃO.

- 1. C) R\$20
- 2. C) 35°C
- 3. A) (f(x) = 3x + 2)
- 4. B) \setminus (f(x) = x^2 4x + 4 \setminus)
- 5. B) R\$1102.50
- 6. A) $(f(x) = 2^x)$
- 7. B) 3
- 8. D) 1 + \(\log(10)\)
- 9. D) 8
- 10. C) 10
- 11. D) 243
- 12. C) 4000
- 13. A) 0
- 14. C) 23.4
- 15. A) 5
- 16. C) 27
- 17. D) 512
- 18. C) 4
- 19. D) 52.5
- 20. C) -10