3.3 场效应管

场效应管用FET表示(Field Effect Transistor)。利用输入回路的电场效应控制输出回路电流的一种半导体器件,具有输入电阻高、热稳定性好、工艺简单、易于集成等优点。

- 场效应管分类: Metal-Oxide-Semiconductor
- 绝缘栅型IGFET(或MOS) (Insulated Gate Type)
 - 增强型MOS (Enhancement)
 - 耗尽型MOS (Depletion)
- 结型JFET (Junction Type)
 - 本质上是耗尽型

耗尽型:场效应管没有加偏置电压时,导电沟道就已经存在

增强型:场效应管只有加偏置电压时,才有导电沟道

场效应管的分类:

N沟道—电子导电,P沟道—空穴导电场效应管又称单极型晶体管。

-、绝缘栅场效应管(IGFET)

增强型NMOS管

在低掺杂P型衬底上扩散2个高浓度N⁺区,P型表面用热 氧化方法生成SiO₂绝缘层, 在N⁺区加铝线引出电极。 MOS管的栅极与其它电极被 SiO_2 绝缘层隔开了,所以称为绝缘栅,栅极输入电阻近似为 ∞ , $i_G \approx 0$ 。

1. 增强型NMOS管的工作原理

正常工作时外加电源电压的配置

正常工作时,B和s通常接在一起

工作原理:

 $1_{\nu_{GS}=0}$, ν_{DS} 较小: s、d之间没有导电沟道(漏源间只是两个"背向"串联的PN是两个"背向"串联的PN结),所以d-s间呈现高阻, $i_{D}\approx 0$ 。

v_{GS}=0, v_{DS} 较小时示意图

②当V_{GS}>0,栅极与衬底 之间产生一个垂直电场 (方向为由栅极指向衬 底),P型区空穴向下移动, 剩下不能移动负离子形成 耗尽层;

当v_{GS}增强到足够大: 耗尽层下移,漏-源之间的P型程表面感应出电子层,使两个N+区连通,形成N型导电沟道。绝缘层与耗尽层之间形成一个N型薄区(反型层)。

v_{GS}>0, v_{DS}=0时示意图

开始形成导电沟道所需的最小电压称为开启电压

 $V_{GS(th)}(习惯上常表示为<math>V_{T})$ 。

 $v_{\rm GS} > V_{\rm T}$ 时:

v_{GS}使漏-源之间的P型硅表面 感应出电子层(反型层)使两个 N+区连通,形成N型导电沟道。 d、s间呈低阻,所以在 ν_{DS} 的 作用下产生一定的漏极电流in。

 $\nu_{\rm GS}>0, \nu_{\rm DS}=0$ 时示意图

当 $\nu_{\rm GS}=0$ 时没有导电沟道,而当 $\nu_{\rm GS}$ 增强到 $>V_{\rm T}$ 时才 形成沟道,所以称为增强型MOS管。并且vcs越大, 导电沟道越厚,等效电阻越小,v_{DS}一定in越大。

v_{CS}对i_D具有控制作用

③当 $V_{GS}>V_T$ 且为定值,

 $V_{DS}>0后,漏-源电压<math>v_{DS}$ 产生横向电场:由于沟 道电阻的存在, in沿沟 道方向所产生的电压降 使沟道上的电场产生不 均匀分布。近s端电压差 较高为v_{GS};近d端电压 差较低,为v_{GD}=v_{GS}-v_{DS}, 所以沟道的形状呈楔形 分布。

v_{GS}>0, v_{DS}>0时示意图

●当v_{DS}较小时:v_{DS}对导电沟道的影响不大,沟道主要受v_{GS}控制,沟道以v_{GS}为定值时,沟道电阻保持不变,i_D随电阻保持不变,i_D随地加高线性增加。

注意:此时,栅漏间的电压v_{GD}大于开启电压,沟道尚未夹断。

$$v_{GD} = v_{GS} - v_{DS} > V_T$$

 $0 < v_{DS} < v_{GS} - V_T$

● 当v_{DS}增加到v_{GD}=v_{GS}-v_{DS}=

V_T时(即v_{DS}=v_{GS}-V_T)栅漏电压为开启电压时,漏端的感应电子层刚好处于临界状态,此时,称为

"预夹断"。

 $v_{GD} = v_{GS} - v_{DS} = V_T$

● 当 v_{DS} 再 增 加 时 (即 $v_{\text{GD}} = v_{\text{GS}} - v_{\text{DS}} < V_{\text{T}}$ 或 $v_{\text{DS}} > v_{\text{DS}}$ v_{GS} - V_{T}): i_{D} 将不再增 加而基本保持不变。因 为vps再增加时,近漏站 上的预夹断点向s极延 伸,使vos的增加部分降 落在预夹断区,以维持 in的恒流特点。

 $ex_{DS} > v_{GS} - V_{T}$ 或 $v_{GD} = v_{GS} - v_{DS} < V_{T}$)时,不同的 v_{GS} 对应不同的 i_{D} ,电压 v_{GS} 控制的电流源 i_{D}

2. 伏安特性与电流方程

(1) 输出特性(漏极特性)

表示漏极电流i_D与漏-源电压

vDS之间的关系

$$i_D = f(v_{DS})|_{v_{GS} = const}$$

表示漏极电流ip与漏-源电压vps之间的关系

$$i_D = f(v_{DS})|_{v_{GS} = const}$$

特性与BJT三极管相似, 分为3个工作区:

- 截止区
- 可变电阻区
- 放大区(恒流区、饱和区)

▲截止区

又称夹断区,管子没有导电沟道时的状态。

满足的条件为:

$$v_{\rm GS} < V_{\rm T}$$

$$i_D \approx 0$$

▲可变电阻区 导电沟道形成,且沟道尚未预夹断。

满足的条件为: $v_{GS} > V_T, v_{GD} = v_{GS} - v_{DS} > V_T$

在可变电阻区 i_D 随 v_{DS} 增大而增大, 而且受 v_{GS} 的控制。可模拟为受 v_{GS} 控 $R_{DS} = \frac{v_{DS}}{i_D}\Big|_{v_{GS} = const}$ 制的压控电阻 R_{DS} 。

$$v_{GD} = v_{GS} - v_{DS} > V_T$$

$$0 < v_{DS} < v_{GS} - V_T$$

▲放大区 又称恒流区、饱和区。

满足的条件为: $v_{GS} > V_T, v_{GS} - v_{DS} \leq V_T$

 V_{DS} 较大时,沟道出现楔型,预夹断后, i_{D} 与 v_{DS} 几乎无关,表现为较好的恒流特性。

放大区和可变电阻区的过渡点是不明显的

预夹断轨迹: $v_{GD} = v_{GS} - v_{DS} = V_T$

$$v_{GD} = v_{GS} - v_{DS} < V_T$$
 $v_{DS} > v_{GS} - V_T$

2. 伏安特性与电流方程

(2) 增强型NMOS管的转移特性

在一定 v_{DS} 下,漏极电流 i_{D} 与栅-源电压 v_{GS} 之间的关系

$$i_D = f(v_{GS})|_{v_{DS} = const}$$

(2) 增强型NMOS管的转移特性

在一定v_{DS}下,栅-源电压v_{GS}与漏

极电流 i_D 之间的关系

$$-i_D = f(v_{GS})|_{v_{DS} = const}$$

 i_D

 v_{GS}

$$i_D = I_{DO} (\frac{v_{GS}}{V_T} - 1)^2$$

增强型PMOS管

在N型衬底上扩散上2个P+区,N型表面用热氧化方法生成SiO₂绝缘层,在二个P+区加铝线引出电极。

PMOS与NMOS管的工作原理完全相同, 只是电流和电压方向不同。

3、耗尽型NMOS管

●在制造过程中,人为地在栅极下方的SiO₂绝缘层中埋入了大量的K⁺(钾)或Na⁺(钠)等正离子。

- v_{DS} 一定,外加正栅压($v_{GS}>0$),导电沟道变厚,沟道等效电阻下降,漏极电流 i_D 增大;
- v_{DS} 一定,外加负栅压 $(v_{GS} < 0)$ 时,沟道变薄,沟道电阻增大, i_{D} 减小。
- v_{GS} 负到某一定值 $v_{GS(off)}$ (常以 v_{P} 表示,称为夹断电压),导电沟道消失,整个沟道被夹断, $i_{D} \approx 0$,管子截止。

N沟道耗尽型MOS的输出和转移特性

放大区的转移特性电流方程:

$$i_D = I_{DSS} (1 - \frac{v_{GS}}{V_P})^2$$

 I_{DSS} 为饱和漏极电流,是 v_{GS} =0时耗尽型MOS管的漏极电流。

梳理:

增强型NMOS管

耗尽型NMOS管

放大区的电流方程:

$$i_D = I_{DO} (\frac{v_{GS}}{V_T} - 1)^2$$

 I_{DO} 是 v_{GS} =2 V_{T} 时的漏极电流。

$$i_D = I_{DSS} (1 - \frac{v_{GS}}{V_P})^2$$

 I_{DSS} 为饱和漏极电流,是 v_{GS} =0时耗尽型MOS管的漏极电流。

二、结型场效应管(JFET)

结构与符号

在N区两侧扩散两个P+区,形成两个PN结。

两个 P^+ 区相连,引出栅极g。N区的上下两端分别引出漏极d和源极s。

导电原理(以N沟道为例)

- ●v_{GS}=0时,d和s间存在N型导电沟道(N型区),属于耗尽型。
- ?? v_{GS}栅-源电压对导电沟道宽度的控制作用?
- ?? v_{DS}漏-源电压对漏极电流的影响?

v_{GS}栅-源电压对导电沟道宽度的控制作用

- v_{GS} <0、 V_{DS} =0时,耗尽层加宽(主要向沟道一测加宽)并向沟道中间延伸,沟道变窄。
- \bullet 当 ν_{GS} < V_{off} (称为夹断电压)时,两个耗尽层增大到相遇,沟道消失,这时称沟道夹断,沟道中的载流子被耗尽。若有 V_{DS} 电压时,沟道电流也为零。

v_{GS}栅-源电压对导电沟道宽度的控制作用

? u_{GS} 可以控制导电沟道的宽度。为什么g-s必须加负电压?

v_{DS}漏-源电压对漏极电流的影响

沟道形成楔形

 $v_{\rm GS} > V_{\rm GS~(off)}$

N沟道结型FET输出特性

转移特性

$$i_{\mathrm{D}} = f(v_{\mathrm{GS}})\Big|_{v_{\mathrm{DS}} = \mathbb{R}}$$

场效应管工作在恒流区,因而 $v_{GS} > V_{GS \text{ (off)}} \, \text{且} v_{GD} < V_{GS \text{ (off)}}$ 。

$$v_{\rm DS} > v_{\rm GS} - V_{\rm GS(off)}$$

在恒流区时

$$i_{\rm D} = I_{\rm DSS} (1 - \frac{v_{\rm GS}}{V_{\rm GS(off)}})^2$$

P沟道结型:

比较外加偏置:

N沟道结型

P沟道结型

说明体内场效应、表面场效应

JFET通过 v_{GS} 改变半导体内耗尽层厚度(沟道的截面积)控制 i_D ,称为体内场效应器件;

MOSFET主要通过改变衬底表层沟道的厚度来控制 i_D ,称为表面场效应器件。

梳理:

不同类型FET对电压的极性要求

种类	增强型		耗尽型			
电压	NMOS	PMOS	NMOS	PMOS	N结型	P结型
$v_{ m GS}$	正	负	负(或正)	正(或负)	负	正
$v_{ m DS}$	正	负	正	负	正	负

各种场效应管的转移特性和输出特性曲线

各类绝缘栅场效应三极管的特性曲线

三、场效应管的主要参数

直流参数

 $[开启电压V_T]$ 增强型管的参数。

[夹断电压V_P] 耗尽型管的参数。

[饱和漏极电流 I_{DSS}]

指耗尽型管在v_{GS}=0时的漏极电流。

[饱和漏极电流 I_{DO}]

指增强型管在 $v_{GS}=2v_{T}$ 时的漏极电流。

[输入电阻 $R_{GS(DC)}$]

因 i_G =0,所以输入电阻很大。JFET大于 $10^7\Omega$,MOS管大于 $10^{12}\Omega$ 。

交流参数

[低频跨导(互导)
$$g_{\rm m}$$
] $g_{m} = \frac{\Delta i_{D}}{\Delta v_{GS}} \Big|_{v_{DS} = {\rm const}_{100}} \Big|_{v_{DS} = 5{\rm V}}$

跨导 g_m 反映了栅源电压对漏极电流的控制能力,且与 工作点有关,是转移特性曲线上过Q点切线的斜率。 的单位是mS。

[交流输出电阻 r_{ds}]

$$r_{ds} = \frac{\Delta v_{DS}}{\Delta i_D} \Big|_{v_{GS} = \text{const}}$$

 r_{ds} 反映了漏源电压对漏极电 流的影响程度, 是输出特性 曲线上过Q点的切线斜率的 倒数。

耗尽型跨导:

$$\begin{split} i_{D} &= I_{DSS} (1 - \frac{v_{GS}}{V_{P}})^{2} \\ g_{m} &= \frac{\partial i_{D}}{\partial v_{GS}}|_{Q} = -\frac{2I_{DSS}}{V_{P}} (1 - \frac{V_{GSQ}}{V_{P}}) = -\frac{2}{V_{P}} \sqrt{I_{DQ}I_{DSS}} \end{split}$$

增强型跨导:

$$i_D = I_{DO} \left(\frac{v_{GS}}{V_T} - 1 \right)^2$$

$$g_{m} = \frac{\partial i_{D}}{\partial v_{GS}}|_{Q} = \frac{2I_{DO}}{V_{T}}(\frac{V_{GSQ}}{V_{T}} - 1) = \frac{2}{V_{T}}\sqrt{I_{DO}I_{DQ}}$$

极限参数

[最大漏-源电压 $V_{(BR)DS}$]

漏极附近发生雪崩击穿时的v_{DS}。

[最大栅-源电压 $V_{(BR)GS}$]

栅极与源极间PN结的反向击穿电压(结型)。

[最大耗散功率 $P_{\rm DM}$]

同三极管的 P_{CM} 相似。当超过 P_{DM} 时,管子可能烧坏。

【例】有两种场效应管,其漏极特性曲线如图(a)(b)所示。 判断它们的类型,并从图中读取 V_T 或 V_P , I_{DSS} 或 I_{DO} 的数值。

解: $(a)^{\nu_{DS}}$ 为负值,为P沟道管; ν_{GS} 既可为正又可为负,为耗尽型MOS管; 所以该FET应是耗尽型PMOS管。由图可直接读出 $V_{P=3}V$, $I_{DSS}=2mA$ 。

 $(b)v_{DS}$ 为负值,为P沟道管; v_{GS} 为负,为增强型MOS管; 所以该FET应是增强型PMOS管。由图可直接读出

$$V_T$$
= -3V, I_{DO} =1mA(对应 $v_{GS}=2V_T=-6V$)。

【例】左图所示电路中的场效应管具有右图所示的输出特性。

- (1) 该场效应管为____沟道___型MOS管。
- (2) 流过电阻R的电流为 $_{mA}$,管压降 V_{DS} 为 $_{mV}$ 。
- (3) 若 $R=5k\Omega$,则流过R的电流为___mA, V_{DS} 为 ___V。

解: (1) 因所加的 V_{DD} 为+10 V_{DD} ,所以应为N沟道管,又 V_{GS} 可正可负,所以是耗尽型管。即该场效应管为_ N_{DD} 沟道耗尽_ N_{DD} 型MOS管。

解: (2) 因电路中 $v_{GS}=0V$,先假设管子处于放大区,在输出特性中找出 $v_{GS}=0V$ 时 $i_D=2mA$,

而 $v_{DS} = V_{DD} - i_D R = 9V$,满足 $v_{GD} = v_{GS} - v_{DS} = -9 < V_P$ 或 $v_{DS} > v_{GS} - V_P$ ($V_P = -3V$),所以管子确实处于放大区。

即流过电阻R的电流为 $_2$ mA,管压降 V_{DS} 为 $_9$ V。

解: (3) 假设管子仍处于放大区,

则 i_D =2mA,而 v_{DS} = V_{DD} - i_D R=0V,这时 v_{GD} = v_{GS} - v_{DS} =0> V_P ,所以管子已处于可变电阻区。

作出输出回路方程 $v_{DS}=V_{DD}-i_{D}R$,如图所示,与 $v_{GS}=0V$ 的特性曲线交于点A,对应 $i_{D}=1.5$ mA, $v_{DS}=2.5$ V。即流过R的电流为_1.5_mA, V_{DS} 为_2.5_V。

P32-33

【例】N沟道结型场效应管恒流源电路。估算恒流值.(设 $I_{DSS}=2mA$,夹断电压 $V_{P}=-4V$)

解: 假定在恒流区

$$\begin{cases} I_D = I_{DSS} (1 - \frac{V_{GS}}{V_P})^2 \\ V_{GS} = -I_D R_S \end{cases}$$

$$I_D = 2 \text{ mA} \quad \text{fill } I_D = 0.5 \text{ mA}$$

不合题意

所以
$$I_D = I_{DQ} = 0.5mA$$
 $V_{GSQ} = -I_{DQ}R_s = -0.5 \times 4 = -2$ $V_{DSQ} = V_{DD} - I_D(R_d + R_s) = 20 - (16 + 4) \times 0.5 = 10V$ $V_{GDQ} = V_{GS} - V_{DSQ} = -12V < V_P$

可见,场效应管工作在恒流区(即放大区)的假设正确

3.4 集成电路中的电子器件

集成电路是将电阻、电容、二极管、 三极管、场效应管等元器件以及电路中 的连接线集中制作在同一块芯片上,完 成或实现各种功能和指标的电子电路。

集成电路特点:

- ●实现材料、元器件、电路的有机结合
- ●元件密度高、体积小、连线短、焊点少
- ●不能制作电感、大容量电容

一、复合管(达林顿管)

复合管是将两只或两只以上的三极管按一定方式相连,等效为性能更好的三极管。 又称达林顿管Darlington。

复合管连接原则

连接后各管内电流能顺利流通, 且具有电流放大作用。

复合管特点:

- 等效管类型取决于前置管类型
- 同样输出电流时,等效管的输入电流大 大减小
- 等效管的 β 是 β 1、 β 2的乘积: $\beta \approx \beta$ 1 β 2

晶闸管(Thyristor)可控硅(Silicon Controlled Rectifier—SCR

1) 内部结构

四层三端器件

P1 N1 P2 N2

三个PN结 J1,J2,J3

- 2) 工作原理
- (1) 阻断状态

条件:G 悬空

UAK>0时,J1,J3正偏,J2反偏→A、K间无电流

→正向阻断状态

UAK<0时,J1,J3反偏,J2正偏→A、K间无电流

→反向阻断状态

(2) 导通状态

条件: AK正偏, GK正偏.

加lg电流→正反馈,晶闸管迅速导通。

导通过程:

(3) 关断

关断条件: I_A减小至维持电流I_H以下。 实现方法: U_{AK}减小到零或加反压

- ① 承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。
- ② 承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通→导通条件。
- ③ 晶闸管导通后相当于二极管→单向导电性
- ④ 一旦导通,门极就失去控制作用→半控性 门极常采用正向脉冲信号驱动→触发
- ⑤ 导通后阳极电流I_A小于维持电流I н才会关断→关断条件 关断方法
 - 交流电路利用电压反向自动关断晶闸管
 - 直流电路设置关断电路加反压关断晶闸管

二、多集电极管与多发射极管

多集电极管

在制作PNP型管时,若作多个集电区,则得到多集电极管,它们的集电极电流之比约等于各集电区面积之比。

多发射极管

最简单的TTL与非门电路

三、肖特基三极管

肖特基二极管(SBD)的导通电压只有0.4V,没有电荷存储效应, 开关时间很短。

肖特基三极 管可以有效地 限制管子的饱 和深度,大时间。 缩短开关时间。

三极管未饱和时, J_c反偏, SBD截止, 对电路没影响; 当三极管进入饱和时, J_c正偏, SBD导通, 使集电极正向偏压被箝位在0.4V, 限制管子的饱和深度,同时又使三极管基极电流减小。

