Cálculo de Programas

2.º Ano de LCC (Universidade do Minho) Ano Lectivo de 2021/22

Teste — 1 de Junho de 2022 09h00–11h00 - Salas E1-2.05, E1-2.07 e E1-2.11

- Esta prova consta de 8 questões que valem, cada uma, 2.5 valores. O tempo médio estimado para resolução de cada questão é de 15 min.
- Recomenda-se que os alunos leiam a prova antes de decidirem por que ordem querem responder às questões que são colocadas.

PROVA PRESENCIAL INDIVIDUAL SEM CONSULTA (2h)

Questão 1 Considere o diagrama

$$(A \times B) \times C \qquad \cong \qquad A \times (B \times C)$$
assocl

onde assocr = $\langle \pi_1 \cdot \pi_1, \pi_2 \times id \rangle$ e assocl = $\langle id \times \pi_1, \pi_2 \cdot \pi_2 \rangle$ Mostre que

 $assocl \cdot assocr = id$

se verifica.

Questão 2 Infira a propriedade grátis da função $\alpha = i_1 \cdot \pi_1$ e mostre que não faz sentido calcular a mesma propriedade se se trocar a ordem da composição de i_1 com π_1 .

Questão 3 Prove a igualdade $\overline{f\cdot(g\times h)}=\overline{\operatorname{ap}\cdot(id\times h)}\cdot\overline{f}\cdot g$ usando as leis das exponenciais e dos produtos.

Questão 4 Converta o catamorfismo de listas

join
$$p = ([nil, aug \ p])$$
 where $aug \ p = p \cdot cons \rightarrow cons, \pi_2$

para notação Haskell com variáveis e indique por palavras suas o que faz a função join.

Questão 5 A função seguinte, em Haskell

$$sumprod\ a\ [\]=0$$

 $sumprod\ a\ (h:t)=a*h+sumprod\ a\ t$

é o catamorfismo de listas

$$sumprod \ a = ([zero, add \cdot ((a*) \times id)])$$
 (E1)

onde zero $= \underline{0}$ e add (x, y) = x + y. Mostre, como exemplo de aplicação da propriedade de **fusão-cata** para listas, que

$$sumprod \ a = (a*) \cdot sum$$
 (E2)

onde sum = ([zero, add]). **NB:** não ignore propriedades elementares da aritmética que lhe possam ser úteis.

Questão 6 O número de movimentos que solucionam o "puzzle" das Torres de Hanoi, com n discos, é dado por

$$k \ n = 2^n - 1$$

Mostre (recorrendo à lei de recursividade mútua) que uma forma de calcular k é

$$k = \pi_1 \cdot \text{for } loop (0,1) \text{ where } loop (k, e) = (k + e, 2 * e)$$

sabendo que: (a) $2^n = \text{for } (2*) \ 1 \ n$; (b) k satisfaz as equações

$$k 0 = 0$$
$$k (n+1) = 2^n + k n$$

(como facilmente se prova).

Questão 7 Apresente as justificações para o cálculo (que se segue) da simplificação de um hilomorfismo cuja base é o bifunctor B $(X, Y) = G(X \times Y)$, para um dado G:

Valorização: Faça um diagrama deste hilomorfismo genérico e instancie-o para a função factorial.

Questão 8 Demonstre a seguinte propriedade da composição monádica:

$$f \bullet [g, h] = [f \bullet g, f \bullet h] \tag{E3}$$