j2tham

- 1a) 1. Uses python random module which is only pseudorandom. I would use the secrets or sympy modules instead
 - 2. Cipher block mode is ECB, which is less secure than other styles such as CBC. I would use CBC
 - 3. provides n, e, c_1 and c_2 in the JSON file. I would encrypt n,e,c_1 in a second file and send it to myself
 - 4. e was not selected specifically for RSA, (where it should be $1 < e < \phi(n)$ and that $\gcd(e,\phi(n))=1$). I would ensure that e is chosen within these specs and reselect e if necessary

1b)

```
#TODO
phi = totient(n)
d = mod_inverse(e,phi)
aes_key_int = pow(c_1,d,n)
aes_key = aes_key_int.to_bytes((aes_key_int.bit_length()+7)//8,byteorder='big')
cipher = Cipher(algorithms.AES(aes_key),modes.ECB())
decryptor = cipher.decryptor()
padded = decryptor.update(c_2)+decryptor.finalize()
unpadder = padding.PKCS7(128).unpadder()
plaintext = unpadder.update(padded)+unpadder.finalize()
# write the decrypted assignment to a file
with open("assignment_out.pdf", 'wb') as fh:
fh.write(plaintext)
```

1c) 96106

Diffie-Hellman assumption (DHA) - given g, g^a and g^b , it is computationally infeasible to determine g^{ab} .

discrete logarithm assumption (DLA)- given $g\ and\ g^a$, it is computationally infeasible to determine a

In a scenario where DLA does not hold, we can trivially break DHA in the following ways:

Given A' where g^{a^2} can be calculated with g and g^a , a is determined. g^{a^2} can be calculated by $a*g^a$. DHA is also broken as g^{ab} can be calculated efficiently where g^{ab} is calculated by g^a*g^b . Since DLA is similar to DHA, given A' that can calculate a or b given g^a or g^b respectively, DHA is trivial broken. Hence, the square DHA would not hold either. Thus, by contrapostive, square DHA is equivalent to DHA

- For public keys $X = g^x$ and $Y = g^y$, make a call to O_D under XY which would return m. Given $(c_0, c_1) = (g^r, m(g^{xy})^r)$, we can calculate g^{xy} by taking $\frac{c_1}{c_0 * m}$.
- 3b) Input the values $X = Z = g^z$, $Y = c_0 = g'$ into O_{DH} . By querying this oracle, we obtain g^{zr} . Since $c_1 = m(g^z)^r$, we can compute $\frac{m(g)^{zr}}{g^{zr}}$ to obtain m.

4 a) Looking at the power consumption graph, we can infer the value 1010110101111. Thus, the most significant byte in Alice's private key corresponds to 10101101.

b)
$$P = (2,3), Q = (5,2), y^2 = x^3 - x + 3$$

i. $m = \frac{3*2^2 - 1}{2*3} = \frac{11}{6} = \frac{4}{6} = \frac{2}{3} = \frac{2}{10} = \frac{1}{5} = 3,$
 $x_{P+P} = m^2 - x_P - x_P = 3^2 - 2 - 2 = 5,$
 $y_{P+P} = -(m(x_{P+P} - x_P) + y_P) = -(3*(5-2) + 3) = -12 = -5 = 2,$
 $P + P = (5,2)$

ii.
$$m = \frac{2-3}{5-2} = -\frac{1}{3} = 2,$$

$$x_{P+Q} = m^2 - x_P - x_Q = 2^2 - 2 - 5 = -3 = 4,$$

$$y_{P+Q} = -\left(m\left(x_{P+Q} - x_P\right) + y_P\right) = -\left(2 * (4-2) + 3\right) = -7 = 0,$$

$$P + Q = (4,0)$$

iii.
$$m = \frac{3*5^2 - 1}{2*2} = \frac{37}{2} = \frac{2}{2} = 1$$

$$x_{Q+Q} = m^2 - x_q - x_q = 1^2 - 5 - 5 = -9 = -2 = 5,$$

$$y_{Q+Q} = -(m(x_{Q+Q} - x_Q) + y_Q) = -(1*(5-5) + 2) = -2 = 5,$$

$$Q + Q = (5,5)$$

c)
$$using \ m = \frac{(x_P + x_Q)^2 - x_P x_Q + a}{y_P + y_Q},$$

iv. for
$$P + P$$
, $m = \frac{(2+2)^2 - 2 \cdot 2 - 1}{3+3} = \frac{11}{6} = 3$, $P + P = (5,2)$

v. for
$$P+Q$$
, $m=\frac{(2+5)^2-2*5-1}{2+3}=\frac{38}{5}=\frac{3}{5}=\frac{3}{12}=\frac{1}{4}=2$ $x_{P+Q}=2^2-x_P-x_q=2^2-2-5=-3=4$

vi.
$$for Q + Q$$
, $m = \frac{(5+5)^2 - 5*5 - 1}{2+2} = \frac{37}{2} = 1$, $Q + Q = (4,0)$

d) Add noise to the emitted channel by introducing arbitrary and artificial noise via random delays.

5a) If k = 0, s will be undefined.

- 5b) To verify the signature as valid for DSA signing, we check for 0 < r < q, and 0 < s < q, and $\left(g^{\frac{H(m)}{s}}g^{\frac{\alpha r}{s}} \bmod p\right) \bmod q = r$. For r = 0, we check for $\left(g^{\frac{H(m)}{s}} \bmod p\right) \bmod q = 0$. Since $0 \le s = \frac{H(m)}{k} \bmod q$, thus, we have $\left(g^{\frac{H(m)}{k}} \bmod p\right) \bmod q = (g^k \bmod p) \bmod q = 0$. Since $r = (g^k \bmod p) = 0$, we have $0 \bmod q = 0$, and this statement will always hold for any value of s and thus the attacker can forge a signature on any message
- 5c) For s = 0, we check for $(\infty \mod p) \mod q = r$. Since ∞ is unable to be calculated, it is no longer required to verify as valid, and any value of r will be valid allowing the attacker to forge a signature.