Prediction of Diffusion Coefficient using Machine Learning with Physical Formula Integration

github

Model Selection

- 1. Decision Tree Regressor
- 2. Random Forest Regressor

The models are trained and evaluated on three different target variables:

- 1. D
- 2. D*ρ
- 3. D*ρ*/√T

Data Splitting

Training Set: ρ* ≥ 0.1

Testing Set: ρ* < 0.1

Performance Metrics

- Mean Squared Error (MSE): Measures the average squared difference between actual and predicted values.
- Mean Absolute Error (MAE): Measures the average absolute difference between actual and predicted values.
- 3. Relative Error (%): Measures the percentage deviation from actual values.

Experimental Design

Dataset

1. Origin dataset

D and ρ*

D*ρ and ρ*

D*ρ*/√T and ρ*

2. Augmented dataset

- New dataset added to train dataset ($\rho^* \ge 0.1$) with ρ^* is zero to help model enhance pattern where ρ^* is zero
- Original has 1251 samples with 566 unique values of T.
- New data created from **566** unique values of T with $\, \rho^*$ is zero \rightarrow dataset with **566** samples.
- Merge original dataset and new data \rightarrow augmented dataset with **1817** samples.

D*ρ and ρ*

D*ρ*/√T and ρ*

Balance trade-off

Purpose: Finding a best max depth to build custom decision model

Steps: Finding max depth all targets on 2 datasets (original and augmented)

Method: Validation curve of scikit learn library

Original

Augmented

Max depth range	Training relative error	Validation relative error	Model behavior	Interpretation
1-4	high	high	underfitting	model is too simple to capture data pattern
5-10	sharply decreasing	sharply decreasing	well-fitting, balanced	model captures patterns well
11-20	very low	slightly decreasing	overfitting	Model memorizes training data and starts to lose generalization

Best max depth:

Optimal max_depth: 9 or 10

A good trade-off between bias and variance

→ Building a Decision with max depth is 10 and min samples split is 2

Results and Discussion

1. Decision Tree

Alias:

- max_depth = md
- min_samples_split = msp
- mean relative error = mre

Default params:

- criterion: mre
- max depth: 10
- min samples split: 2

Full data

• D

I realize that a custom model is worse than a pre-trained model in the training phase but is better in the testing phase. It proves that a pre-trained model is overfitting than a custom model. Show through a deeper tree (max-depth = 20).

 \rightarrow Prefer to use a custom model .

D*ρ*

• $D^*\rho^*/\sqrt{T}$ and ρ^*

When change target from **D** to $D^*\rho^*$ or $D^*\rho^*/\sqrt{T}$ and ρ^* then have better result (about 5 - 6 %)

Part data

• D

We can see that when we only take part data to train and test a different part. Relative error is significant higher than full data from **26%** to **56%**

D*ρ*

• $D*\rho*/\sqrt{T}$ and $\rho*$

Amazing! we observe that when we change target from D to $D^*\rho^*$ or $D^*\rho^*$ /T and ρ^* , the result improve dramatically better than full data, reducing relative error from 56% to 13% (more 40%). Custom model still prefers to be selected to pre trained model.

Part data with augmented data (at rho = 0)

New dataset is calculated by formula (rho = 0): here's formula to calculate $D^*\rho^*$ at rho = 0

$$(D\rho)_0(T) = \frac{3}{8} \sqrt{\frac{kT}{m\pi}} \frac{f_{D\rho}}{\sigma^2 \Omega^{(1,1)*}}$$

Note: Using custom model

D*ρ*

I observe that when adding a new dataset to train model then result improve better (about **3%**). But both adding a new dataset and adding weight (8) in training phase then result even better.

• $D*\rho*/\sqrt{T}$ and $\rho*$

I observe that when change target from $D^*\rho^*$ to $D^*\rho^*/T$ and ρ^* then the result improve better (about 3%). Afterward adding a new dataset and adding weight (8) in training phase then results even better.

without_augmentation
$$\rightarrow$$
 with_augmentation \rightarrow with_augmentation_weight 13.53 % 12.78 % 8.74 %

