Дискретна математика 2

Лекция начинается

-Сегодня у нас клуб уопоротых любителей математики.

Contents

1	Лен	кція 1	3								
	1.1	Подільність чисел	3								
	1.2	Найбільший спільний дільник	4								
	1.3	Алгоритм Евкліда	5								
2	Лен	кція 2	7								
	2.1	Найменше спільне кратне	7								
	2.2	Евклідові послідовності	8								
3	Лен	кція З	10								
	3.1	Розширений алгоритм Евкліда	10								
	3.2		11								
4	Лен	кція 4	14								
	4.1	Прості числа	14								
	4.2	•	15								
	4.3		16								
5	Лекція 5										
	5.1	Мультиплікативні функції	18								
	5.2	- · · · · · · · · · · · · · · · · · · ·	19								
	5.3		20								
	5.4		21								
6	Лен	кція 6	23								
	6.1	Порівняння за модулем	23								
	6.2		24								
	6.3		25								
7	Лекція 7										
	7.1	'	26								
	7.2	<u> </u>	27								
	7.3	Теорема Ойлера та мала теорема Ферма	28								

8	Лекція 8 8.1 Функція Кармайкла	29 29
9	Лекція 9 9.1 Системи числення	31 31

CHAPTER 1

Лекція 1

1.1 Подільність чисел

- властивості натуральних чисел $\mathbb{N} = \{1, \ 2, \ 3, \dots\}$ $\mathbb{N}_0 = \{0, \ 1, \ 2, \ 3, \dots\}$ $\mathbb{Z} = \{-1, \ 0, \ 1, -2, \ 2, \dots\}$

Definition 1.1.1. а поділяється на b-a: b або b ділить $a(b \ e \ дільникома) \ b|a$. $a \ : b \Leftrightarrow \exists k \in \mathbb{Z} : \ a = kb$

Property.

- 1. $a \neq 0, a \vdots 0$
- 2. $a \neq 0, 0 : a$
- 3. $a \vdots b, b \vdots c \Rightarrow a \vdots c$
- 4. a:1
- 5. $a : c, b : c \Rightarrow (\alpha a \pm \beta b) : c$
- 6. $a : b \Leftrightarrow ac : bc, c > 0$

Theorem 1.1.1 (про ділення з остачею).

$$\forall a,\; b \in \mathbb{Z} \;\; \exists !q,\; r \; : \; q \in \mathbb{Z}, \; r \in \mathbb{N} \;\; 0 \leq r \leq |b| \;\; a = bq + r$$

Proof.

- 1. Існування $bq, q \in \mathbb{Z}$ росте необмежено. $\exists q \; ; \; bq \leq a \leq b(q+1), \; r=a-bq.$
- 2. Єдиність Нехай a = bq + r, a = bq' + r' $0 = b(q - q') + (r - r') \Rightarrow (r - r') \vdots b$, $-|b| < r - r' < |b| \Rightarrow$ $\Rightarrow r - r' = 0$, q = q'.

$$q=\lfloor rac{a}{b}
floor$$
 - частка. $r=a+b\cdot \lfloor rac{a}{b}
floor$ - остача $=a\mod b$.

1.2 Найбільший спільний дільник

Найбільший спільний дільник: HCД(a,b)(українська нотація), gcd(a,b)(англійська нотація), (a,b)(спеціальзована література з теорії чисел).

Definition 1.2.1. gcd(a, b) = d:

- 1. $a \vdots d, b \vdots d$

Property.

- 1. $gcd(a, b) = b \Leftrightarrow a : b$
- 2. $a \neq 0$: gcd(a, 0) = a
- 3. gcd(a, b) поділяється на довільний спільний дільник $a \ ma \ b$
- 4. c > 0: gcd(ac, bc) = c gcd(a, b)
- 5. $d = \gcd(a, b) \Rightarrow \gcd(\frac{a}{d}, \frac{b}{d})$

Lemma 1.2.1.

$$gcd(a, b) = gcd(b, a - b)$$

Proof.

 $d = \gcd(a, b), d' = \gcd(b, a - b)$

Нехай d > d'

 $a \ \vdots \ d, \ b \ \vdots \ d \Rightarrow (a-b) \ \vdots \ d \Rightarrow d$ - спільний дільник b та a-b $\Rightarrow d' \ \vdots \ d$ - Упс!

Нехай d < d'

$$b : d', a - b \Rightarrow b + (a - b) = a : d' - \text{Vnc!}$$

Consequence. $a \ge b$: $gcd(a, b) = (b, a \mod b)$

Proof.
$$a = bq + r$$

 $\gcd(a, b) = \cdots = \gcd(r, b)$

1.3 Алгоритм Евкліда

Вхід: $a, b \in \mathbb{N}$

Вихід: $d = \gcd(a, b)$

$$r_0 := a, r_1 := b$$

$$r_0 = r_1 q_1 + r_2$$

$$r_1 = r_2 q_2 + r_3$$

$$r_2 = r_3 q_3 + r_4$$

$$\vdots$$

$$r_{n-1} = r_n q_n, r_n = d$$

Proof.
$$r_{i+1} = r_i \mod r_{i-1}$$

 $r_0 \ge r_1 > r_2 > \dots > r_n > r_{n+1} = 0$
 $\gcd(a, b) - \gcd(r_0, r_1) = \gcd(r_1, r_2) = \gcd(r_2, r_3) = \dots =$
 $= \gcd(r_{n-1}, r_n) = \gcd(r_n, 0) = 0$

Lemma 1.3.1.

$$\forall i, \ r_{i+2} < \frac{r_i}{2}$$

Proof.
$$r_i = r_{i+1}q_{i+1} + r_{i+2} \ge r_{i+1} + r_{i+2} > r_{i+2} + r_{i+2} = 2r_{i+2}$$
 \Rightarrow AE зробить $\le 2\lceil \log_2 a \rceil$ кроків.

$$\gcd(123, 456).$$

$$123 = 456 \cdot 0 + 123$$

$$456 = 3 \cdot 123 + 87$$

$$123 = 87 \cdot 1 + 36$$

$$87 = 36 \cdot 2 + 15$$

$$36 = 15 \cdot 2 + 6$$

$$15 = 6 \cdot 2 + 3$$

$$6 = 3 \cdot 2 \Rightarrow \gcd = 3$$

Для яких
$$n: \frac{3n+1}{5n+1}$$
 - скоротний?
$$5n+2=(3n+1)\cdot 1+(2n+1)$$

$$3n+1=(2n+1)\cdot 1+n$$

$$2n+1=n\cdot 2+1$$

$$n=1\cdot n\Rightarrow \gcd(3n+1,\,5n+2)=1$$

2.1 Найменше спільне кратне

Definition 2.1.1. $a, b \in \mathbb{N}$

M = HCK(a, b), lcm(a, b), [a, b]

- 1. M:a, M:b
- $2. M \min make число$

Property.

- 1. lcm(a, 0) 'на доске был нарисован грустный смайлик'
- 2. $\operatorname{lcm}(a, b) = a \Leftrightarrow a \vdots b$
- 3. a, b -взаемнопрост $i \Rightarrow \operatorname{lcm}(a, b) = a \cdot b$
- 4. Довільне спільне кратне a та b \vdots lcm(a, b)
- 5. $\forall c > 0$, lcm(ac, bc) = c lcm(a, b)
- 6. $\frac{\mathrm{lcm}(a,b)}{a}$ та $\frac{\mathrm{lcm}(a,b)}{b}$ взаемнопрості

Theorem 2.1.1.

$$\forall a, b \in \mathbb{N} : \gcd(a, b) \cdot \operatorname{lcm}(a, b) = a \cdot b$$

Proof. Нехай
$$d = \gcd(a, b), \ a = a_1 \cdot d, \ b = b_1 \cdot d.$$
 $\gcd(a_1, b_1) = 1, \ \operatorname{lcm}(a_1, b_1) = a_{,1} \cdot b_1, \ \operatorname{lcm}(a, b) = d \cdot a_1 \cdot b_1$ $d \cdot \operatorname{lcm}(a, b) = (a_1 \cdot d) \cdot (b_1 \cdot d) = a \cdot b$

Theorem 2.1.2.

$$\forall a, b \in \mathbb{N} : \gcd(a, b, c) = \gcd(\gcd(a, b), c) = \gcd(a, \gcd(b, c))$$

Proof.
$$d = \gcd(a, b, c)$$

 $d' = \gcd(a, b) \Rightarrow d' \vdots d, c \vdots d \Rightarrow d = \gcd(c, d')$

$$\operatorname{lcm}(a, b, c) = \operatorname{lcm}(\operatorname{lcm}(a, b), c) = \operatorname{lcm}(a, \operatorname{lcm}(b, c))$$

Theorem 2.1.3.

$$\forall a, b, c \in \mathbb{N}: \ \operatorname{lcm}(a, b, c) = \frac{a \cdot b \cdot c \cdot \operatorname{gcd}(a, b, c)}{\operatorname{gcd}(a, b) \cdot \operatorname{gcd}(b, c) \cdot \operatorname{gcd}(c, a)}$$

Решітка(lattice) - $< A, \le, \sup, \inf >$

Example:

- 1. множини, \subseteq , \cap , \cup $|A| + |B| = |A \cup B| + |A \cap B|$
- 2. \mathbb{R} , \leq , max, min $a + b = \max\{a, b\} + \min\{a, b\}$
- 3. \mathbb{N} , \vdots , lcm, gcd $a \cdot b = \text{lcm}(a,) \cdot \text{gcd}(a, b)$

$$\max\{a_1,\ldots,a_n\} = a_1 + \cdots + a_n - \min\{a_1, a_2\} - \cdots - \min\{a_{n-1}, a_n\} + \min\{a_1, a_2, a_3\} - \min\{a_1, a_2, a_3, a_4\}$$

2.2 Евклідові послідовності

Definition 2.2.1. Послідовність $a_0, a_1, \ldots, a_i \in \mathbb{R}$ - евклідова, якщо $\forall n, m \in \mathbb{N}_0$ $n > m : \gcd(a_n, a_m) = \gcd(a_m, a_{n-m}) \Rightarrow \gcd(a_n, a_m) = \gcd(a_m, a_{n-mod m})$

Theorem 2.2.1.

$$(a_i)$$
 - евклідова і $a_0=0,\ mo\ \forall n,\ m:\ \gcd(a_n,\ a_m)=a_{\gcd(n,\ m)}$

Proof.

n=m - очевидна.

$$n > m$$
:

$$d=\gcd(n,\ m,)$$
 АЕ породжуе послідовність $r_0,\ r_1,\ \dots,r_t,$ де $r_0=n,$ $r_1=m,\ r_t=d,\ r_{t+1}=0,\ r_{i+1}=r_{i-1}\mod r_i$ $\gcd(a_n,a_m)=\gcd(a_{r_0},a_{r_1}=\gcd(a_n,a_m)=\gcd(a_{r_1},a_{r_2}=\dots=\gcd(a_{t_0},a_{t_{i+1}})=a_{r_t}=a_0$

Consequence.

Якщо додатково $a_1 = 1$, то $gcd(n, m) = 1 \Rightarrow gcd(a_n, a_m)$

Example:

$$a_k = k$$

Example:

$$a_k = 2_k - 1$$

$$\gcd(a_n, a_m) = \gcd(a_m, a_{n-m})$$

$$a_n = 2^n - 1 = 2^n - 2^m - 1 = 2^m (2^{n-m} - 1) + (2^m - 1) = 2^m \cdot a_{n-m} + a_m = a_n$$

$$\gcd(2^n - 1, 2^m - 1) = 2^{\gcd(n, m)} - 1$$

Example:

$$a_k = \alpha^k - 1, \ \alpha \in \mathbb{N}, \ \alpha \ge 2$$

$$a_0 = 0, \ a_1 = \alpha - 1 \ne 1$$

$$a_k = \alpha^k - \beta^k, \ \alpha, \ \beta \in \mathbb{N}, \ \alpha > \beta \ge 2$$

$$(a_i)$$
 - евклідова і $a_0=0, \ \mathrm{To} \ \forall n>m: \ \gcd(a_n, \ a_m)=1$

3.1 Розширений алгоритм Евкліда

Theorem 3.1.1 (лема Безу).

$$\forall a, b \in \mathbb{N}, d = \gcd(a, b) \quad \exists u, v \in \mathbb{Z}, d = au + bv$$

```
\begin{array}{l} \textit{Proof.} \\ r_0 = r_1q_1 + r_2 \\ r_1 = r_2q_2 + r_3 \\ r_2 = r_4q_4 + r_5 \\ & \vdots \\ r_{n-3} = r_{n-2}q_{n-2} + r_{n-1} \\ r_{n-2} = r_{n-1}q_{n-1} + r_n \\ r_{n-1} = r_nq_n \\ \text{Тоді} \ d = r_n = r_{n-2} - r_{n-1}q_{n-1} = r_{n-2} - q_{n-1}(r_{n-3} - r_{n-2}q_{n-2}) = \cdots = \\ = u \cdot r_0 + v \cdot r_1 \end{array}
```

Consequence.

- 1. $d = au + bv \Rightarrow o\partial He$ з чисел u, v недодатье, a iнше невід'ємне.
- 2. $d = \gcd(x_1, x_2, \dots, x_k) \Rightarrow a_1, a_2, \dots, a_k \in \mathbb{Z} : d = a_1 x_1 + a_2 + x_2 + \dots + a_k x_k$
- 3. $\forall i: u_i, v_i \in \mathbb{Z} \ r_i = au_i + bv_i \Rightarrow u_0 = 1, \ v_0 = 0, \ u_1 = 0, \ v_1 = 1$ $u_{i+1} = u_{i-1} u_i q_i, \ v_{i+1} = v_{i-1} v_i q_i, \ r_{i+1} = r_{i-1} q_i r_i = (au_{i-1} + bv_{i-1}) q_i (au_i + bv_i) = a\underbrace{(u_{i-1} q_i u_i)}_{u_{i+1}} + b\underbrace{(v_{i-1} q_i v_i)}_{v_{i+1}}$

Example:

$$\gcd(123, 456).$$

$$123 = 456 \cdot 0 + 123$$

$$456 = 3 \cdot 123 + 87 \qquad q_1 = 3$$

$$123 = 87 \cdot 1 + 36 \qquad q_2 = 1$$

$$87 = 36 \cdot 2 + 15 \qquad q_3 = 2$$

$$36 = 15 \cdot 2 + 6 \qquad q_4 = 2$$

$$15 = 6 \cdot 2 + 3 \qquad q_5 = 2$$

$$6 = 3 \cdot 2 \qquad q_6 = 2 \Rightarrow \gcd = 3$$

		q_1	q_2	q_3	q_4	q_5	
		3	1	2	2	2	
u_i	1	0	1	-1	3	-7	17
v_i	0	1	-3	4	-11	26	-63

Theorem 3.1.2.

 $\gcd(a,\ b)\ -\ \min\ \partial o\partial amhe\ число\ ,\ яке\ мае\ форму\ au+bv,\ u,\ v\in\mathbb{Z}$ Proof.

1.
$$C = \{au + bv \mid u, v \in \mathbb{Z}\}$$

$$d' = \min\{d' > 0\}, \ d \in C \text{ тоді} \ \forall d \in C : c \vdots d'$$

$$\text{Нехай } c' = au' + bv', \ c' \vdots d', \text{ тоді} \ c = q'd' + r', \ 0 < r' < d'$$

$$r' = c' - q'd' = (au' + bv') - q'(au'_{\alpha} + bv'_{\alpha}) =$$

$$= a(u' = -q'u'_{\alpha}) + b(v' - q'v'_{\alpha}) - \text{Упс!}$$

2.
$$d=au+bv=\gcd(a,\ b)\Rightarrow d\ \vdots\ d'$$
 $a=a\cdot 1+b\cdot 0\Rightarrow a\ \vdots\ d',\ b=a\cdot 0+b\cdot 1\Rightarrow b\cdot \cdot\cdot \ d'$ $\Rightarrow d'$ - спільний дільник a та $b\Rightarrow d'=au'_{\alpha}+bv'_{\alpha}\ \vdots\ d\Rightarrow d=d'$

3.2 Лінійні діафантові рівняння

Definition 3.2.1.
$$f(x_1, x_2, ..., x_n) = 0, x_i \in \mathbb{Z}$$
 $a_1x_1 + a_2x_2 + \cdots + a_nx_n = c, a_i \in \mathbb{Z}, c \in \mathbb{Z}$ $ax + by = c, a, b, c \in \mathbb{Z}$ - $\kappa oe \phi i u i e h m u, x, y \in \mathbb{Z}$ - $h e e i \partial o m i$.

Theorem 3.2.1.

$$Hexaŭ ax + by = c \ d = \gcd(a, b)$$

- 1. piвняння має pозв'язк $u \Leftrightarrow c : d$
- 2. $a=a_0\cdot d,\ b=b_0\cdot d,\ c=c_0\cdot d,\ (x_0,\ y_0)$ якийсь розв'язок рівняння. Тоді довільний розв'язок $(x,\ y)$: $\begin{cases} x=x_0+b_0\cdot t \\ y=y_0-a_0\cdot t \end{cases} t\in \mathbb{Z}$

Proof.

- 1. Якщо c : d, але ax + by : d то Упс! Якщо c : d, то $a_0x + b_0y = c_0$ еквівалентне рівняння $1 = a_0u + b_0v \Rightarrow x_0 = u \cdot c_0$, $y_0v \cdot c_0$ розв'язки.
- 2. $ax + by = a(x_0 + b_0t) + b(y_0 a_0t) = \underbrace{(ax_0 + by_0)}_{=c} + \underbrace{(ab_0t ba_0t)}_{a_0b_0dt a_0b_0dt} = c$

Нехай
$$(x, y)$$
 - розв'язок рівняння $ax + by = 0$, $ax_0 + by_0 = c \Rightarrow a(x - x_0) + b(y - y_0) = 0 \Rightarrow$ $\Rightarrow a_0(x - x_0) + b_0(y - y_0) = 0 \gcd(a_0, b_0) = 1 \Rightarrow 1 = a_0u + b_0v \Rightarrow$ $\Rightarrow 0 = \underbrace{a_0u}_{=(1-b_0v)} (x - x_0) + b_0v(y - y_0) = (x - x_0) + b_0(u(y - y_0) - v(x - x_0)) \Rightarrow$

$$\Rightarrow x - x_0 : b_0, \ x - x_0 = b_0 \cdot t, \ t \in \mathbb{Z} \Rightarrow a_0 \cdot b_0 t + b_0 (y - y_0) = 0 \Rightarrow$$
$$\Rightarrow y - y_0 = a_0 t$$

$$15x + 9y = 27$$
 $15 = 9 \cdot 1$
 $9 = 6 \cdot 1 + 3$
 $6 = 3 \cdot 2 \Rightarrow 3 = 15 \cdot (-1) + 9 \cdot 2$
 $27 \vdots 3 \Rightarrow$ розв'язки існують
 $5x + 3y = 9$
 $1 = 5 \cdot (-1) + 3 \cdot 2$
 $x_0 = 9, y_0 = 18$

$$\begin{cases} x = -9 + 3 \cdot t \\ y = 18 - 5 \cdot t \end{cases}$$
 $t = 10:$ $x = -9 + 30 = 21, y = 18 - 50 = -32$

CHAPTER 4

Лекція 4

4.1 Прості числа

Definition 4.1.1. $n \in \mathbb{N}$ - $npocme \Leftrightarrow mae рівно два дільники 1 та <math>n$ $n \in \mathbb{N}$ - $cкnadehe \Leftrightarrow \exists a: 1 < a < n \quad n \vdots a$

1 - не просте, не складене

Lemma 4.1.1.

$$n \in \mathbb{N}$$
: $gcd(n, n+1) = 1$

Theorem 4.1.2 (Евклід).

Якщо $A = \{p_1, p_2, \dots, p_n\}$ - скінченна сукупність простих чисел, то існує просте $\underline{P} \notin A$

Proof.

$$Q=p_1p_2p_3\dots p_n+1\Rightarrow Q\ \vdots\ p_i,\ n=\overline{1,n}$$
 Q - або просте, або має простий дільник

Consequence.

Простих чисел нескінченно багато

Lemma 4.1.3.

 $n \in \mathbb{N}$ - складене d > 1 — \min дільник $n \Rightarrow d$ - npocme

Proof.

Нехай d - складене, $d=a\cdot b,\ a,\ b\neq 1,\ d\ \vdots\ a,\ n\ \vdots\ d\Rightarrow n\ \vdots\ a$ - Упсв!

4.2 Розподіл простих чисел

Сито Ератросфена(пошук простих чисел?)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

// Беремо перше число яке тут ϵ . Це число 2 - воно просте. Після чого беремо і викреслюємо кожне друге число.

(2) 3 \(\) 5 \(\) 7 \(\) 9 \(\) 11 \(\) 13 \(\) 15 \(\) 6 \(17 \) \(\) 19 \(\) 0

// Беремо перше незакреслене число. Це число 3 - воно просте. Викреслюємо кожне трете число в цьому ряду.

// Беремо настпуне. Це 5 - просте. Викреслюємо кожне п'яте число. Ну вони вже викреслині. Тому далі уже нічого не викреслюєтся.

2 3 4 5 7 8 8 11 12 13 14 15 16 17 18 19 20

Lemma 4.2.1.

$$n = a \cdot b, \ 1 < a, \ b < n \Rightarrow \min\{a, \ b\} \le \sqrt{n} \le \max\{a, \ b\}$$

Proof. Від супротивного

Consequence.

У ситі Ератросфена для $2\dots N$ після викреслень чисел $\leq \sqrt{n}$ залишаются прості.

Example:

 $\forall m \in \mathbb{N}$: існують m послідовних натуральних складених чисел.

$$(m+1)!$$
 \vdots 2, $(m+1)!$ \vdots 3, $(m+1)!$ \vdots 5, ..., $(m+1)!$ \vdots $(m+1)$.

Example:

Прості числа-близнюки p, q: прості, p - q = 2

Наразі найбільша відома пара чисел близнюків: $2996863034895 \cdot 2^{1290000} \pm 1$

Example:

Прості числа Мерсена: $M_p = 2^p - 1$ - просте, $M_n = 2^n - 1$ - складене

Lemma 4.2.2.

$$M_p$$
 - $npocme \implies p$ - $npocme$. $p=a\cdot b \implies M_p=2^{ab}-1 \ \vdots \ 2^a-1$

Постулат Бертрана

 $\forall n \in \mathbb{N}, \geq 4$. інтервал $n \dots 2n-2$ містить просте число.

Функція розподіла простих чисел $\Pi(x)$

 $\Pi(x)=$ кількість простих чисел < x. $\frac{1}{2}\cdot\frac{x}{\log_2 x}\leq \Pi(x)\leq 5\cdot\frac{x}{\log_2 x} \rightarrow \alpha\cdot\frac{x}{\ln x}\leq \Pi(x)\leq \beta\cdot\frac{x}{\ln x}, \ \alpha=0.92129,\ \beta=1,10555$

Theorem 4.2.3 (Адамер, Вале).

$$\Pi(x) \sim \frac{x}{\ln x} (\Pi(x) \sim \int_{2}^{x} \frac{dt}{\ln t}) \Rightarrow p_n \sim n \cdot \ln n$$

Theorem 4.2.4 (Діріхле).

Якщо gcd(a, b) = 1, то існує ∞ простих чисел виду $a \cdot m + b$

4.3 Основна теорема арифметики

Lemma 4.3.1 (Euclid).

$$p - npocme, ab : p \Rightarrow \begin{bmatrix} a : p \\ b : p \end{bmatrix}$$

Proof.

Нехай
$$ab : p$$
, але $a : p \Rightarrow \gcd(a, p) = 1 \Rightarrow$

$$\Rightarrow \exists u, v, \quad au + pv = 1 \Rightarrow \underbrace{ab}_{:p} \cdot u + \underbrace{p}_{:p} \cdot bv = \underbrace{b}_{:p}$$

$$\vdots_{p} \vdots_{p} \vdots_{p}$$

Theorem 4.3.2 (основна теорема арифметики).

$$\forall n \in \mathbb{N} : n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}, \ \partial e \ p_1 < p_2 < \dots < p_t - \ - \ npocmi, \ \alpha_i \ge 1 \ - \ натуральні.$$
 Proof.

1. Існування

Нехай все вірне , n_0 — тіп чысло, яке не розкладається $\Rightarrow n_0$ - складене $\Rightarrow \exists a: \ 1 < a < n_0: \ n = a \cdot b$

2. Єдність

Нехай
$$n=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_t^{\alpha_t}=q_1^{\beta_1}q_2^{\beta_2}\dots q_t^{\beta_t},\ n\vdots p_1\Rightarrow q_1^{\beta_1}\dots q_t^{\beta_t}\vdots p_1\exists i:\ q_i^{p_i}\vdots p_1\Rightarrow q_i=p_i$$

Example:

Приклад Гільберта

Розглянемо числа виду 4k+1 5, 9, 13, 17, 21, 25 $((4k_1+1)(4k_2+1)=4(\dots)+1)$

1.
$$d \mid n \Rightarrow d = q_1^{\beta_1} q_2^{\beta_2} \dots q_t^{\beta_t}, \ 0 \le \beta_i \le \alpha_i$$

2.
$$a = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}, \quad \alpha_i \ge 0,$$
 $b = p_1^{\beta_1} p_2^{\beta_2} \dots p_t^{\beta_t}, \quad \beta_i \ge 0$

$$\gcd(a, b) = \prod_{i=1}^t p_i^{\min\{\alpha_i, \beta_i\}}, \qquad \operatorname{lcm}(a, b) \prod_{i=1}^t p_i^{\min\{\alpha_i, \beta_i\}}$$

3.
$$a \vdots b$$
, $a \vdots c$, $gcd(b, c) = 1 \Rightarrow a \vdots (b \cdot c)$

CHAPTER 5

Лекція 5

5.1 Мультиплікативні функції

f(n) - мультіплікативна:

- 1. $f(n) \not\equiv$
- 2. $\forall a, b \in \mathbb{N}$: $gcd(a, b) = 1 \Rightarrow f(ab) = f(a)f(b)$

Example:

$$f(n) = 1$$

$$f(n) = n$$

$$f(n) = n^S$$

Property.

1.
$$f(1) = 1$$
; $f(n) = f(n \cdot 1) = f(n)f(1)$

- 2. Якщо x_1, x_2, \ldots, x_t попарно взаємнопрості, то $f(x_1x_2\ldots x_t)=f(x_1)\ldots f(x_t)$
- 3. Якщо f(n), g(n) мультиплікативні, то $h(n) = f(n) \cdot g(n)$ мультиплікативна

4.
$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}, \ f(n) = f(p_1^{\alpha_1}) \cdot f(p_2^{\alpha_2}) \dots f(p_t^{\alpha_t})$$

Definition 5.1.1. f(n) - мультиплікативна. Числовий інтеграл $g(n) = \sum_{d \mid n} f(d)$

Theorem 5.1.1 (S).

f(n) - мультиплікативна $\Rightarrow g(n)$ - також.

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}, \quad d \mid n \Rightarrow d = p_1^{\beta_1} p_2^{\beta_2} \dots p_t^{\beta_t}, \quad 0 \le \beta_i \le \alpha_i$$

$$g(n) = \sum_{d \mid n} f(d) = \sum_{\beta_1 = 0}^{\alpha_1} \sum_{\beta_2 = 0}^{\alpha_2} \dots \sum_{\beta_t = 0}^{\alpha_t} f(p_1^{\beta_1} \dots p_t^{\beta_t}) =$$

$$= \sum_{\beta_1} \dots \sum_{\beta_t} \prod_{i = 1}^{t} i = 1^t f(p_i^{\beta_t}) = \prod_{i = 1}^{t} \sum_{\beta_i = 0}^{\alpha_i} f(p_i^{\beta_i})$$

$$g(n) = \prod_{i = 1}^{t} \sum_{\beta_i = 0}^{\alpha_i} f(p_i^{\beta_i})$$

$$i=1$$
 $\beta_i=0$

5.2 Кількість та сума дільників

Кількість дільників $\tau(n) = \sum_{d \mid n} 1$ Сума дільників $\sigma(n) = \sum_{d \mid n} d$

Proposition.

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}, \qquad p_t^{\alpha_t} : \quad \tau(n) = (1 + \alpha_1)(1 + \alpha_2) \dots (1 + \alpha_t)$$
$$\sigma = \prod_{i=0}^t \frac{p_i^{\alpha_{i+1}}}{p_i - 1}$$

Proof.

$$p$$
 - просте. $\tau(p) = 2$ $\tau(p^{\alpha}) = 1 + \alpha$ $\tau(n) = \tau(p_1^{\alpha_1}) \dots \tau(p_t^{\alpha_t}) = (1 + \alpha_1)(1 + \alpha_2) \dots (1 + \alpha_t)$ $\sigma(p) = 1 + p$ $\sigma = 1 + p + p^2 = \dots + p^{\alpha} = \frac{p^{\alpha+1} - 1}{p-1}$ $\sigma(n) = \sigma(p_1^{\alpha_1})\sigma(p_2^{\alpha_2}) \dots \sigma(p_t^{\alpha_t})$

Example:

$$n = 1000 = 2^3 5^3$$

$$\tau(1000) = (1+3)(1+3) = 16$$

$$\sigma(1000) = \frac{2^4 - 1}{2 - 1} \cdot \frac{5^4 - 1}{5 - 1} = 2340$$

$$n = 1001 = 7 \cdot 11 \cdot 13$$

$$\tau(1001) = (1+1)(1+1)(1+1) = 8$$

$$\sigma(1001) = (1+7)(1+11)(1+13) = 1344$$

Property.

1.
$$\tau(n) \le 2\sqrt{n}$$

 $n : d \Rightarrow n = d \cdot d'$
 $\sigma(n) \ge n + 1$

2.
$$\tau(n)$$
 - непарне $\Leftrightarrow n = m^2$

3.
$$\sigma$$
 - непарне $\Leftrightarrow \begin{bmatrix} m^2 \\ 2m^2 \end{bmatrix}$

5.3 Досконалі числа

Definition 5.3.1. Досконале число n:

n=cyмі усіх дільників окрім власне n або $\sigma(n)=2n$

Example:

$$n = 6$$
: $1 + 2 + 3 = 6$

Example:

$$n = 28$$
: $1 + 2 + 4 + 7 + 14 = 28$

Theorem 5.3.1 (Евклід-Ойлер).

Парне n - досконале $\Leftrightarrow n = 2^{p-1} \cdot M_p$, де $M_p = 2^p - 1$ - просте число Марсена Proof.

1.
$$n = 2^{p-1} \cdot M_p$$
, $p > 2$
 $\sigma(n) = \sigma(2^{p-1} \cdot M_p) = \sigma(2^{p-1})\sigma(M_p) = (2^p - 1)(M_p + 1) = 2^p(2^p - 1) = n$

2. Нехай
$$n$$
 - парне досконале, $n = 2^k \cdot b$, b - непарне $\sigma(n) = \sigma(2^k \cdot b) = (2^k - 1) \cdot \sigma(b) = 2^k \cdot b = 2n \Rightarrow$ $\Rightarrow b \vdots (2^k - 1), \ b = (2^k - 1) \cdot c \qquad (2^k - 1)\sigma(b) = 2^k (2^k - 1) \cdot c$ $\sigma(b) = 2^k \cdot c = (2^k - 1 + 1) \cdot c = b + c$ $b \vdots c, \ c \neq 1, \ c \neq b \Rightarrow \sigma(b) > 1 + b + c \Rightarrow c = 1.$ $b = 2^k - 1, \ \sigma(b) = b + 1 \Rightarrow b$ - просте. $n = 2^{k-1} \underbrace{(2^k - 1)}_{\text{просте}}$

5.4 Функція Мебіуса

Definition 5.4.1. $\mu(n)$:

$$\mu(p^{\alpha}) = \begin{cases} -1, & \alpha = 1 \\ 0, & \alpha > 1 \end{cases} \Rightarrow M(n) = \begin{cases} (-1)^k, & n = p_1 p_2 \dots p_t \\ 0, & n \vdots a^2 \end{cases}$$

Lemma 5.4.1 (характерізаційна властивість μ).

$$\sum_{d\mid n} M(d) = \begin{cases} 1, & n=1\\ 0, & n\neq 1 \end{cases}$$

Proof.

$$p^{\alpha}$$
: $\mu(1) + \mu(p) + \mu(p^2) + \dots + \mu(p^{\alpha}) = 1 + (-1) + 0 + 0 + \dots + 0 = 0$ За теоремою $5.1.1 \sum_{d \mid n} \mu(d) = \prod_i \sum_{\beta} \mu(p_i^{\beta})$

Proposition. f(n) - мультіплікативна, $n = p_1^{\alpha_1} \dots p_t^{\alpha_t}$

$$\sum_{d \mid n} M(d) f((d) = (1 - f(p_1))(1 - f(p_2)) \dots (1 - f(p_t))$$

Proof.

За теоремою 5.1.1
$$\sum_{\beta} \mu(p_1^{\beta}) f(p_i^{\beta}) = \mu(1) f(1) + \mu(p_i) f(p_i) + \mu(p_i^2) f(p_i^2) + \dots = 1 + (-1) f(p_i) = 1 - f(p_i)$$

Theorem 5.4.2 (закон обертання Мебіуса).

$$f(n)$$
 - мультіплікативна, $g(n) = \sum_{d \mid n} f(d) \Rightarrow f(n) = \sum_{d \mid n} M(d) \cdot g(\frac{n}{d})$

Proof.

$$\sum_{\substack{d \mid n}} M(d) \cdot \sum_{\substack{\delta \mid \frac{n}{d}}} f(\delta) = \sum_{\substack{(d, \delta), d\delta \mid n}} \mu(d \cdot f(\delta)) = \sum_{\substack{\delta \mid n}} \sum_{\substack{d \mid \frac{n}{d}}} \mu(d) f(\delta) = \sum_{\substack{\delta \mid n}} \sum_{\substack{d \mid \frac{n}{d} = 1 \Rightarrow \delta = n}} \mu(d) = f(n)$$

Example:
$$a_0, a_1, \ldots, a_n$$
 $A(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$ - ряд Діріхле. $B(s) = \sum_{n=1}^{\infty} \frac{b_n}{n^s}$
 $C(s) = A(s) \cdot B(s) = \sum_{n=1}^{\infty} \frac{c_n}{n^s} \Rightarrow C_n = \sum_{d \mid n} a_d \cdot b_{\frac{n}{d}} \qquad \xi(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$
 $\frac{1}{\xi(s)} = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s} \qquad C(s) = A(s) \cdot \xi(s) \qquad C_n = \sum_{d \mid n} a_d$
 $A(s) = C(s) \cdot (\xi(s))' \Rightarrow a_n = \sum_{d \mid n} \mu(d) c_{\frac{n}{d}}$

6.1 Порівняння за модулем

Definition 6.1.1. $a, b \in \mathbb{N}$, $a \text{ ma } b \text{ порівнювані } з a \mod n$:

$$a \equiv b \pmod{n}, \ a \equiv_n b, \ \kappa o n u \colon (1) \exists t \in \mathbb{Z} : \ a = b + nt$$

$$(2) \ a \mod n = b \mod n$$

$$(3) \ (a - b) \vdots n$$

Property.

1.
$$a \equiv a \pmod{n}$$
, $a \equiv b \pmod{n} \Rightarrow b \equiv a \pmod{n}$, $a \equiv b \pmod{n}$, $b \equiv a \pmod{n} \Rightarrow a \equiv a \pmod{n}$

2.
$$a \equiv b \pmod{n}, c \equiv d \pmod{n} \Rightarrow$$

 $\Rightarrow a \pm c \equiv b \pm d \pmod{n}, ac \equiv bd \mod n$

Proof.
$$a = b + nt_1$$
, $c = d + nt_2$, $ac = bd + \underbrace{nt_1d + nt_2b + n^2t_1t_2}_{n \cdot T, T \in \mathbb{Z}}$

$$p(x_1, x_2, ..., x_t)$$
 - поліном з цілими коефіцієнтами, $(a_i), (b_i): a_i \equiv b_i \pmod{n} \Rightarrow p(a_1, a_2, ..., a_t) = p(b_1, b_2, ..., b_t) \pmod{n}$

3. Якщо $ca \equiv cb \pmod n$, $\gcd(c, n) = 1$, то $a \equiv b \pmod n$ Але $6 \equiv 2 \pmod 4$, $3 \not\equiv \pmod 4$

Proof.
$$ca - cb : n, c(a - b) : n \Rightarrow (a - b) : n$$

4. (a)
$$a \equiv b \pmod{n}, \ k \neq 0 \Rightarrow ak \equiv bk \pmod{nk}$$

(b)
$$d = \gcd(a, b, n)$$

 $a = a_1 d_1, b = b_1 d_1, n = n_1 d_1, a \equiv b \pmod{n} \Rightarrow a_1 \equiv b_1 \pmod{n}$

Proof.
$$a = b + nt$$
, $a_1 \not d = b_1 \not d + n_1 \not dt$

5.
$$a \equiv b \pmod{n}$$
, $n : d \Rightarrow a \equiv b \pmod{d}$

6.
$$a \equiv b \pmod{n_1}$$
,
 $a \equiv b \pmod{n_2}$,
 \vdots
 $a \equiv b \pmod{n_t}$,
 $a \equiv b \pmod{n_t}$,
 $a \equiv b \pmod{n_t}$

7. $a \equiv b \pmod{n} \Rightarrow \gcd(a, n) = \gcd(b, n)$

Definition 6.1.2. Лишок за модулем n: $k, [k], \underline{k}$

$$\{k + nt \mid k \in \mathbb{Z}\}$$

Definition 6.1.3. Повна система лишків (кільце):

$$\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$$

6.2 Степені за модулем

Lemma 6.2.1 (A).

$$a \cdot \mathbb{Z}_n + b = \mathbb{Z}_n$$

Якщо x пробігає усі елементи \mathbb{Z}_n і $\gcd(a, n) = 1$, то $\forall b \in \mathbb{Z}$ y = (ax + b) $\mod n$ - також пробігає усі лишки з \mathbb{Z}_n

Proof.

Нехай
$$ax_1 + b \equiv ax_2 + b \pmod{n}$$
, $ax_1 \equiv ax_2 \pmod{n}$, $x_1 = x_2 \pmod{n}$

6.3 Обернені елементи за модулем

Definition 6.3.1. $\forall a \in \mathbb{Z}, n \in \mathbb{N}$ Обернене до a за mod n a^{-1} mod n:

$$a \cdot a^{-1} \equiv a^{-1} \cdot a \equiv 1 \pmod{n}$$

Theorem 6.3.1.

$$\exists a^{-1} \mod n \Leftrightarrow \gcd(a, n) = 1$$

Proof.

- 1. Нехай $\gcd(a,\ n)=1$ Тоді $\exists u,\ v \qquad a\cdot u+n\cdot v=1\Rightarrow a\cdot u\equiv 1(\mod n)\Rightarrow u=a^{-1}\mod n$
- 2. Нехай $\forall a^{-1} \mod n, \gcd(a, n) = d > 1$ $a \cdot a^{-1} = 1 + nt, \ 1 = a \cdot a^{-1} nt \ \vdots \ \text{- Упс!}$

Definition 6.3.2. Зведена с-ма лишків (мультиплікативна группа кільця \mathbb{Z}_n)

$$\mathbb{Z}_n^* = \{ a \mid \gcd(a, n) = 1 \}$$

Definition 6.3.3. Функція Ойлера

$$\varphi(n) = |\mathbb{Z}_n^*|$$

7.1 Китайська теорема про остачі

Theorem 7.1.1 (KTO).

$$\begin{cases} x \equiv b_1 \pmod{n_1} & \text{yci } n_i \text{ nonapho взаемнопрості} \\ x \equiv b_2 \pmod{n_2} & \text{Тоді існує рівно один класс лишків} \\ \vdots & \text{mod } n_1 n_2 \dots n_i, \\ x \equiv b_t \pmod{n_t} & \text{який є розв'язком системи.} \end{cases}$$

Proof.

1. Нехай x_1 та x_2 - різні розв'язки.

$$x_1 \equiv x_2 \equiv b_i \pmod{n_i} \Rightarrow (x_1 - x_2) \vdots n_i, \ i = \overline{1, t} \Rightarrow (x_1 - x_2) \vdots n_1 n_2 \dots n_t$$

2.
$$\begin{cases} x \equiv b_1 (\mod n_1) & x = b_1 + n_1 k, \ k \in \mathbb{Z} \\ x \equiv b_2 (\mod n_2) & \Rightarrow n_1 k + b_1 (\mod n_2), \ k = \overline{1, n_2 - 1} \\ 3 \text{ леми A: } \exists !k \ n_1 k + b_1 \equiv b_2 (\mod n_2) \\ \text{Повторюємо для } n_1 n_2 \text{ та } n_3, \ n_1 n_2 n_3 \text{ та } n_4 \dots \end{cases}$$

3. $N=n_1n_2\dots n_t,\ N_i=\frac{N}{n_i},\ M_i=N_i^{-1}\mod n_i$ $x_0=(b_iN_1M_1+b_2N_2M_2+\dots+B_iN_iM_i)\mod N$ - розв'язок $x_0\mod n_1\equiv b_1N_1M_1\mod n_1\equiv b_1N_1N_1^{-1}\mod n_1=b_1\mod n_1$

Example:

$$\begin{cases} x \equiv 1 \pmod{2} & n_1 = 2 \quad N_1 = 21 \quad M_1 = 1 \\ x \equiv 2 \pmod{3} & n_2 = 3 \quad N_2 = 14 \quad M_2 = 14^{-1} \mod{3} = 2 \\ x \equiv 3 \pmod{7} & n_3 = 7 \quad N_3 = 6 \quad M_3 = 6^{-1} \mod{7} = 6 \mod{7} \\ N = 42, & x_0 = 1 \cdot 4 \cdot 1 + 2 \cdot 14 \cdot 2 + 3 \cdot 6 \cdot 6 \equiv 17 \mod{42} \end{cases}$$

7.2 Функція Ойлера

Definition 7.2.1.

 $\varphi(n)=|\mathbb{Z}_n^*|=\kappa$ -ть чисел в інтервалі $1\ldots n$, які взаємнопрості з n

Proposition.

 $\varphi(n)$ - мультиплікативна.

Proof.

$$n=ab,\ \gcd(a,\ b)=1$$
 $\forall x:\ \gcd(x,\ n)=1\Leftrightarrow egin{cases} \gcd(x,\ a)=1\ \gcd(x,\ b)=1 \end{cases}$ (Випливає з ОТА) $\varphi(n)=\varphi(a\cdot b)$
 $x\equiv x_0(\mod n)\Leftrightarrow egin{cases} x\equiv x_0(\mod a) & x_0=x_0\mod a & \varphi(a)\ x\equiv x_0(\mod b) & x_0=x_0\mod b & \varphi(b) \end{cases}$
 $(x_a,\ x_n):\ \varphi(a)\cdot\varphi(b)$

$$\begin{array}{ll} n=p: & \varphi(p)=p-1 \text{ (всі окрім } p) \\ n=p^{\alpha}: & \varphi(p)=p^{\alpha}-p^{\alpha-1} \text{ (всі окрім } p,\ 2p,\ 3p,\ 4p,\dots,\ (p^{\alpha-1}-1,\ p^{\alpha}) \\ n=p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}}\dots p_{t}^{\alpha_{t}}: & \varphi(n)=\prod_{i=1}^{t}(p_{i}^{\alpha_{i}}-p_{i}^{\alpha_{i}-1})=n\cdot\prod_{i=1}^{t}(1-\frac{1}{p_{i}}) \end{array}$$

Example:

$$\varphi(31) = 30$$
 $\varphi(32) = \varphi(2^5) = 16$
 $\varphi(33) = \varphi(3 \cdot 11) = 30$

Proposition.

$$\sum_{d \mid n} \varphi(d) = n$$

Proof.

$$\varphi(n) = \#x$$
: $\gcd(x, n) = 1$,

$$N_d = \#x: \quad \gcd(x, n) = d, \ x = x_1 \cdot d, \ n = n_1 \cdot d, \ \gcd(x_1, n_1) = 1 \Rightarrow$$

$$\Rightarrow N_\alpha = \varphi(n_1) = \varphi(\frac{n}{d}) \Rightarrow n = \sum_{d \mid n} N_d = \sum_{d \mid n} \varphi(\frac{n}{d}) = \sum_{d \mid n} \varphi(d)$$

$$\sum_{\substack{d \mid n}} \varphi(d) = n \Rightarrow \varphi(n) = \sum_{\substack{d \mid n}} \mu(d) \cdot \frac{n}{d} = n - \frac{n}{p_1} - \frac{n}{p_2} - \dots - \frac{n}{p_t} + \frac{n}{p_2 p_3} + \dots + \frac{n}{p_{t-1} p_t} - \frac{n}{p_1 p_2 p_2} - \dots + (-1)^t \frac{n}{p_1 p_2 \dots p_t}$$

7.3 Теорема Ойлера та мала теорема Ферма

Theorem 7.3.1 (Ойлер).

$$\forall n \in \mathbb{N}, \ \forall a \in \mathbb{Z}_n^* : \ a^{\varphi(n)} \equiv 1 \pmod{n}$$

Proof.

 $\forall a \in \mathbb{Z}_n^*: a\mathbb{Z}_n^* = \mathbb{Z}_n^*$ якщо x пробігає усі значення \mathbb{Z}_n^* , то ax також пробігає \mathbb{Z}_n^* $ax \equiv ay \pmod{n} \Rightarrow x \equiv y \pmod{n}$

$$\mathbb{Z}_n^* = \{b_1, b_2, \dots, b_{\varphi(n)}\} = \{ab_1, ab_2, \dots, ab_{\varphi(n)}\} \Rightarrow \\ \Rightarrow b_1 b_2 \dots b_{\varphi(n)} \equiv ab_1 \cdot ab_2 \dots ab_{\varphi(n)} 1 \equiv a^{\varphi(n)} \pmod{n}$$

Consequence. n = p

$$a : p \Rightarrow a^{p-1} \equiv 1 \pmod{n}$$

Theorem 7.3.2 (Мала теорема Ферма).

$$p$$
 - $npocme: \forall a$ $a^p \equiv p \pmod{a}$

Proof.

$$a \stackrel{:}{\underline{\cdot}} p \qquad a^p \equiv a \equiv 0 \pmod{p}$$

 $a \stackrel{:}{\underline{\cdot}} p \qquad a^{p-1} \equiv 1 \pmod{p}$

```
5555^{2222} + 2222^{5555} : 7
2222 \equiv 3 \pmod{7} \qquad 5555 \equiv 4 \pmod{7}
3^{5555} + 4^{2222} \pmod{7} \qquad 3^6 \equiv 1 \pmod{7}
2222 \equiv 2 \pmod{6} \qquad 5555 \equiv 5 \pmod{6}
3^5 + 4^2 \equiv 9 \cdot 9 \cdot 9 \cdot 3 + 16 \equiv 2 \cdot 2 \cdot 3 + 2 \equiv 14 \equiv 0 \pmod{7}
```

8.1 Функція Кармайкла

$$\mathbb{Z}_8^* = \{1, \ 3, \ 5, \ 7\}, \ \ \varphi(8) = 4$$

$$1^2 \equiv 1 (\mod 8), \ 3^2 \equiv 1 (\mod 8), \ 5^2 \equiv 1 (\mod 8), \ 7^2 \equiv 1 (\mod 8)$$

Proposition. n > 3, a - n

$$a^{2^{n-2}} \equiv 1 \pmod{2^n}$$

Proof. Доведемо за MMI.

База: n = 3

$$a = 2k + 1$$
 $a^2 = (2k + 1)^2 = 4k(k + 1) + 1 \equiv 1 \pmod{8}$

Kрок: n

$$a^{2^{n-2}} \equiv 1 \pmod{2^n} \qquad a^{2^{n-2}} = 1 + 2^n \cdot t$$

$$a^{2^{n-1}} = (1 + 2^n \cdot t)^2 = 1 + 2 \cdot 2^n \cdot t + 2^{2n} \cdot t^2 = 1 + 2^{n+2} \cdot t_1 \equiv 1 \pmod{2^{m+1}}$$

Definition 8.1.1 (Функція Кармайкла: $\lambda(n)(\psi(n))$).

$$\lambda(n) = \min\{u \ : \ \forall a \in \mathbb{Z}_n^* : \ a^u \equiv 1 (\mod n)\}$$

Lemma 8.1.1.

$$\forall a \in \mathbb{Z}_n^* : a^{\omega} \equiv 1 \pmod{n} \Rightarrow \omega : \lambda(n)$$

Proof.

Нехай
$$\omega : \lambda(n) \Rightarrow \omega = q \cdot \lambda(n) + r, \ 0 \le r \le \lambda(n)$$
 $1 \equiv a^{\omega} \equiv a^{q \cdot \lambda(n) + r} \equiv (a^{q \cdot \lambda(n)})(a^r) \equiv a^r \pmod{n}$ - Упс!

Lemma 8.1.2.

$$n=p^{lpha},\; p\geq 3 \Rightarrow \exists a\in \mathbb{Z}_n^k:\; 1,\; a,\; a^2,\ldots,\; a^{arphi(n)-1}$$
 - попарно різні лишки

Proof.

Доведення буде пізніше

Consequence.

$$\lambda(p^{\alpha}) = \varphi(p^{\alpha})$$

Theorem 8.1.3 (Кармайкл).

1.
$$n = p$$

$$\lambda(n) = \begin{cases} \varphi(n), \ n = 2, \ 4, \ p^{\alpha}, \ p \ge 3\\ \frac{1}{2}\varphi(n), \ n = 2, \ \alpha > 3 \end{cases} \qquad (\lambda(p^{\alpha}) = \varphi(p^{\alpha}), \lambda(2^{\alpha}) = 2^{\alpha - 1}, \alpha = 3$$

2.
$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}$$

$$\lambda(n) = \operatorname{lcm}(\lambda(p_1^{\alpha_1})), (\lambda(p_2^{\alpha_2})), \dots, (\lambda(p_t^{\alpha_t}))$$

Proof.

2) Нехай
$$a^{\omega} \equiv 1 \pmod{n}, \ \forall a \in \mathbb{Z}_n^* \Rightarrow a^{\omega} \equiv 1 \pmod{p_i^{\alpha_i}} \Rightarrow \omega \ \vdots \ \lambda(p_i^{\alpha_i}) \Rightarrow \min \omega = \operatorname{lcm}(\lambda(p_1^{\alpha_1})), \ (\lambda(p_2^{\alpha_2})), \ldots, \ (\lambda(p_t^{\alpha_t})) = \lambda(n)$$

Example:

$$n = 35 = 5 \cdot 7$$

 $\varphi(35) = 4 \cdot 5 = 24$ $\lambda(35) = \text{lcm}(4, 6) = 12$

$$n = 1000 = 2^3 \cdot 5^3$$

$$\varphi(1000) = \varphi(2^3)\varphi(5^3) = 4 \cdot 100 = 400 \qquad \lambda(1000) \operatorname{lcm}(\lambda(2^3), \ \lambda(5^3)) = \operatorname{lcm}(2, 100) = 100$$

9.1 Системи числення

- представлення чисел у вигляді послідовності символів обмеженого алфавіту. (Позиційна) система числення за основою B:

$$n = (a_{k-1}a_{k-2} \dots a_1a_0)_B = a_{k-1}B^{k-1} + a_{k-2}B^{k-2} + \dots + a_1B + a_0,$$

$$\forall i: 0 \le a_i < B, \ a_{k-1} \ne 0$$

$$n = n_1 \cdot B + a_0 = n_2 \cdot B^2 + a_1 \cdot B + a_0, \ n_1 = n_2 \cdot B + a_0$$

Популярні системи числення: B = 2, B = 10, B = 16

Непозиційні системи:

- 1. римська
- 2. фібоначчієва
- 3. факторіальна

Example:
$$\overline{11010_2} = 2 + 8 + 16 = 26$$

 $2^n = \underbrace{100 \dots 0_2}_{n}$

$$70 y B = 3$$

$$70 = 23 \cdot 3 + 1$$

$$23 = 7 \cdot 3 + 2$$

$$7 = 2 \cdot 3 + 1$$

$$2 = 0 \cdot 3 + 2$$

$$70 = \overline{2121}_3$$