Symmetric Monoidal ∞ -Categories

- Note: we will call $(\infty, 1)$ -categories ∞ -categories. Sorry Tom, it's just convenient.
- Main references: [4], [5], [2], [1], [3].

1 Pseudofunctors, opfibrations, and symmetric monoidal categories

1.1 Pseudofunctors to Cat are Grothendieck opfibrations

• Grothendieck op-fibrations correspond to pseudofunctors to Cat.

The below gives an example to complement [2].

Example of a pseudofunctor to **Cat**: Let \mathcal{C} be a category with pullbacks. Recall that for a map $f: C \to D$ in \mathcal{C} , we define a pullback functor

$$f^*: \mathcal{C}_{/D} \to \mathcal{C}_{/C},$$

 $(h: X \to D) \mapsto (f^*h: P \to C),$

where we have formed a pullback

$$\begin{array}{ccc}
P & \xrightarrow{h^* f} & X \\
f^* h \downarrow & & \downarrow h \\
C & \xrightarrow{f} & D
\end{array}$$

in \mathscr{C} . For any map

$$X \xrightarrow{\phi} X'$$

$$D \xrightarrow{h'}$$

from h to h' in $\mathcal{C}_{/D}$, we define $f^*\phi$ to be the unique map making the diagram below commute.

Now, we may wish to define a functor

$$F: \mathcal{C}^{\mathrm{op}} \to \mathbf{Cat},$$

 $C \mapsto \mathcal{C}_{/C},$

which sends a map $f: C \to D$ in \mathcal{C} to a pullback functor $f^*: \mathcal{C}_{/D} \to \mathcal{C}_{/C}$. However a problem arises when we check that F respects composition: suppose $f: C \to D$, $g: D \to E$ are maps in \mathcal{C} . Then

$$F(g \circ f)(h : X \to E) = (g \circ f)^*h : P \to C,$$

corresponding to the pullback

$$\begin{array}{ccc}
P & \stackrel{h^*(g \circ f)}{\longrightarrow} X \\
(g \circ f)^* h \downarrow & & \downarrow h \\
C & \xrightarrow{g \circ f} E
\end{array}$$

in \mathcal{C} . On the other hand,

$$(F(g) \circ F(f))(h : X \to E) = f^*(g^*h) : P'' \to C,$$

which corresponds to the diagram below.

$$P'' \xrightarrow{(g^*h)^*f} P' \xrightarrow{h^*g} X$$

$$f^*(g^*h) \downarrow \qquad \qquad \downarrow g^*h \qquad \downarrow h$$

$$C \xrightarrow{f} D \xrightarrow{g} E$$

The outer square is indeed a pullback square, since the inner two squares are, so we have a unique isomorphism $P \cong P''$. However, we do not in general have equality. This is because pullbacks are only unique up to unique isomorphism, and in defining a pullback functor we made arbitrary (and not necessarily compatible) choices of P, P' and P''. Thus, we have not defined a functor $\mathcal{C}^{\text{op}} \to \mathbf{Cat}$, rather, we have defined what is known as a *pseudofunctor*.

(definition of a pseudofunctor)

The above example is one way in which pseudofunctors into **Cat** naturally arise; another common example is the pseudofunctor

$$\mathbf{CRing} \to \mathbf{Cat} \\
R \mapsto R\mathbf{-Mod},$$

which sends a ring homomorphism $\phi: R \to S$ to the functor $-\otimes_R S: R\text{-}\mathbf{Mod} \to S\text{-}\mathbf{Mod}$ (extension of scalars). However, to give the data of a pseudofunctor $F: \mathcal{C} \to \mathbf{Cat}$, we must specify not only the functions $\mathrm{ob}(\mathcal{C}) \to \mathrm{ob}(\mathbf{Cat})$ and $\mathrm{Hom}_{\mathcal{C}}(X,Y) \to \mathrm{Hom}_{\mathbf{Cat}}(F(X),F(Y))$ for each $X,Y \in \mathcal{C}$, but also natural isomorphisms

$$F(\mathrm{id}_X) \cong \mathrm{id}_{F(X)}, \quad F(g \circ f) \cong F(g) \circ F(f).$$

That's a pain, let's use Grothendieck opfibrations instead.

The definitions below are from [1].

DEFINITION 1.1.1. Let $p: X \to \mathcal{C}$ be a functor, and let $f: c \to d$ be a morphism in \mathcal{C} . A morphism Φ in X lying over f is p-cocartesian if for any other morphism Ψ of X lying over f, there exists a morphism I of X such that $p(I) = \mathrm{id}_d$ and $\Psi = I \circ \Phi$.

DEFINITION 1.1.2. Let $p: X \to \mathcal{C}$ be a functor. Then p is a *Grothendieck opfibration* if for any morphism of \mathcal{C} and any lift of its source, there is a p-cocartesian morphism with that course lying over it.

1.2 Symmetric monoidal categories are special pseudofunctors to Cat

• Now that we know how to move between pseudofunctors to **Cat** and opfibrations, let's write the data of a symmetric monoidal category as a pseudofunctor to **Cat**.

1.3 ...which are special opfibrations

- The above implies there's some category \mathcal{D} such that opfibrations $\mathcal{D} \to \operatorname{Fin}_*$ are the same as symmetric monoidal categories. Let's see what \mathcal{D} is.
- (Usual) definition of symmetric monoidal category and translation into the language of op-fibrations into Fin_{*}, running example of \mathbf{Vect}_k with \otimes or \times .
- Possibly mention swapping out \mathbf{Fin}_* for Δ^{op} gives a monoidal category rather than a symmetric monoidal category (how do we get a braided monoidal category?)
- Correspondence of symmetric monoidal functors with morphisms of opfibrations.

The construction below is in [4].

Let (\mathcal{C}, \otimes) be a symmetric monoidal category. We define a new category \mathcal{C}^{\otimes} , whose objects are finite (possibly empty) sequences of objects of \mathcal{C} , denoted by $[C_1, ..., C_n]$. A morphism

$$[C_1, ..., C_n] \rightarrow [C'_1, ..., C'_m]$$

consists of a subset $S \subseteq \{1, ..., n\}$, a map of finite sets $\alpha : S \to \{1, ..., m\}$, and a collection of morphisms $\{f_j : \bigotimes_{i \in \alpha^{-1}\{j\}} C_i \to C'_j\}_{1 \le j \le m}$ in \mathcal{C} .

For two morphisms $f:[C_1,...,C_n] \to [C'_1,...,C'_m]$ and $g:[C'_1,...,C'_m] \to [C''_1,...,C''_l]$, determining two subsets $S \subseteq \{1,...,n\}$ and $T \subseteq \{1,...,m\}$ and maps $\alpha:S \to \{1,...,m\}$, $\beta:T \to \{1,...,l\}$, the composition $g \circ f$ is given by the subset $U = \alpha^{-1}T \subseteq \{1,...,n\}$, the map $\beta \circ \alpha:U \to \{1,...,l\}$ and the maps

$$\left\{ \bigotimes_{i \in (\beta \circ \alpha)^{-1}\{k\}} C_i \cong \bigotimes_{j \in \beta^{-1}\{k\}} \bigotimes_{i \in \alpha^{-1}\{j\}} C_i \to \bigotimes_{j \in \beta^{-1}\{k\}} C'_j \to C''_k \right\}_{1 \le k \le l}.$$

For example, let

$$f: [C_1, C_2, C_3, C_4] \to [C'_1, C'_2, C'_3]$$

be a morphism in \mathcal{C}^{\otimes} consisting of the subset $\{1,2,3\} \subseteq \{1,2,3,4\}$, the map

$$\alpha: \{1, 2, 3\} \to \{1, 2, 3\},$$
 $1 \mapsto 1,$
 $2 \mapsto 2,$
 $3 \mapsto 3,$

and morphisms

$$f_1: C_1 \to C_1', \quad f_2: C_2 \otimes C_3 \to C_2', \quad f_3: \mathbf{1} \to C_3',$$

and let

$$g:[C_1',C_2',C_3']\to [C_1'',C_2'',C_3'']$$

be a morphism in \mathcal{C}^{\otimes} consisting of the subset $\{1,2,3\} \subseteq \{1,2,3\}$, the map

$$\beta: \{1, 2, 3\} \to \{1, 2, 3\},\ 1, 2, 3 \mapsto 3,$$

and morphisms

$$g_1: \mathbf{1} \to C_1'', \quad g_2: \mathbf{1} \to C_2'', \quad g_3: C_1' \otimes C_2' \otimes C_3' \to C_3''.$$

Then the composition $g \circ f$ consists of the subset $\alpha^{-1}\{1,2,3\} = \{1,2,3\} \subseteq \{1,2,3,4\}$, the map

$$\beta \circ \alpha : \{1, 2, 3\} \to \{1, 2, 3\},\ 1, 2, 3 \mapsto 3,$$

and the morphisms

$$(g \circ f)_1 = g_1, \quad (g \circ f)_2 = g_2, \quad (g \circ f)_3 = g_3 \circ (f_1 \otimes f_2 \otimes f_3).$$

(really?)

(some intuition on this, tensor along the fibres, etc)

Claim: the forgetful functor

$$p: \mathcal{C}^{\otimes} \to \operatorname{Fin}_*,$$

 $[C_1, ..., C_n] \mapsto \langle n \rangle_*$

is an opfibration. (It almost tautologically is).

1.4 Generalisation to ∞ -categories

- Translation of the above into ∞ -categorical language.
- A functor $p:D\to C$ between ordinary categories is a Grothendieck opfibration if and only if the induced functor $N(p):N(D)\to N(C)$ on nerves is a cocartesian fibration.
- Some examples (nerve of an ordinary symmetric monoidal category, currently trying to find more examples many people talk about **Sp**, but it seems like I'd need a lot of background to understand this).
- If an ∞ -category has finite (co)products, there is a (co)cartesian monoidal structure on \mathcal{C} .
- Algebra objects in monoidal (∞ -)categories
- Possibly generalisation to ∞ -operads, depending on how much the above comes to or if I find anything fun to do with symmetric monoidal ∞ -categories.

DEFINITION 1.4.1 ([1], Def 2.1). A functor $p: X \to Y$ between ∞ -categories is an *inner fibration* if for all $n \geq 2$, all 0 < k < n, and any solid arrow commutative square

$$\Lambda_k^n \longrightarrow X$$

$$\downarrow^p$$

$$\Delta^n \longrightarrow Y$$

there exists a dotted lift.

(Stupid note to self, very obvious but I forget it every now and again):

• If $X : \Delta^{\text{op}} \to \mathbf{Set}$ is a simplicial set, and $\Delta^0 : \Delta^{\text{op}} \to \mathbf{Set} := \text{Hom}(-, [0])$, then a map $F : X \to \Delta^0$ is a natural transformation $(F_n : X_n \to *)_{n \in \mathbb{N}_0}$. That is, such a natural transformation is a family of maps down to a point. In other words, there's only really one natural transformation, so we really *can* view Δ^0 as a point.

EXAMPLE 1.4.2 ([1], Ex 2.2). Let $p: X \to \Delta^0$ be the canonical map, and suppose we have the diagram below, such that the outer square commutes.

$$\begin{array}{ccc}
\Lambda_k^n & \longrightarrow X \\
\downarrow & & \downarrow^p \\
\Delta^n & \longrightarrow \Delta^0
\end{array}$$

The lower triangle commutes automatically, so the statement that p is an inner fibration is equivalent to the statement that for all $n \geq 2$, all 0 < k < n, and any map $\Lambda_k^n \to X$, there exists a dotted lift.

That is, X is an ∞ -category.

Now, since any element $y \in Y_0$ can be viewed as a copy of Δ^0 , the above discussion tells us that the fibre $p^{-1}\{y\}$ is an ∞ -category.

DEFINITION 1.4.3 ([1], Def 3.1). Let $p: X \to Y$ be an inner fibration. An edge $f: \Delta^1 \to X$ of X is p-cocartesian if for all $n \geq 2$, any extension

and any solid arrow commutative diagram

$$\begin{array}{ccc}
\Lambda_0^n & \xrightarrow{F} & X \\
\downarrow & & \downarrow^p \\
\Delta^n & \longrightarrow & Y
\end{array}$$

a dotted lift exists.

DEFINITION 1.4.4. Let $p: X \to Y$ be an inner fibration. Then p is a cocartesian fibration if for any edge $\phi: y \to y'$ in Y_1 , and for every $x \in X_0$ lying over y, there exists a p-cocartesian edge $f: x \to x'$ of X lying over ϕ .

This is a test to check pushing to GitHub is working as expected.

References

- [1] Clark Barwick and Jay Shah. 'Fibrations in ∞-Category Theory'. In: 2016 MATRIX Annals. Springer Cham, 2018, pp. 17–42.
- [2] Julius Frank. Symmetric monoidal ∞-categories. 2021. URL: https://homepages.abdn.ac.uk/markus.upmeier/pages/JuliusMay13.pdf.

- [3] Moritz Groth. A Short Course on ∞ -Categories. 2015. arXiv: 1007.2925 [math.AT].
- [4] Jacob Lurie. Higher Algebra. 2017. URL: https://www.math.ias.edu/~lurie/papers/HA.pdf.
- [5] Jacob Lurie. Higher Topos Theory. 2008. arXiv: math/0608040 [math.CT].