Ínría_

T3.1: Automating IoT device configuration. 6th July 2021

Renzo E. NAVAS (renzo.navas@inria.fr)

WP3: Virtualization and automation of IoT access networks.

Goals of Meeting

- Highlight work in T3.1: we have (preliminary) results!
- Inform of my depart :'/: Transition

Recap T3.1: Goal

Description:

- Having a large number of IoT nodes to learn what parameters to use (time, power, spreading factor, etc.) for uploading data, and optimizing their global performance.
- Focus on mechanisms where IoT nodes make their own decisions (decentralized)
- But, end devices may have their strategy optimized globally by the orchestrator.

Goal:

- Propose and analyze the performance of machine learning algorithms that need few resources, like multi-armed bandit methods.
- D3.1: Lightweight learning algorithms for massive IoT and analysis of their performance. (T15)

Recap T3.1: Roadmap

Baseline: Do "better" than LoRaWAN's ADR —and SoA—, in massive IoT scenarios.

- Related Work (Positioning, Survey. E.g. [1]) [Non-priority for D3.1]
- 2. Proposal: Reinforcement-Learning-based, particularly Bandit Algorithms [2]
- **3. Evaluation**: We will use a realistic setting/evaluation scenario, NS-3 based [URL].
- **4. Contribution:** A differentiating factor of our Bandit-based Algorithm(s) will be this applicability/evaluation in realistic LoRaWAN scenarios.
 - In the literature, proposals use strong hypotheses or simplified models.
 - However, evaluation/comparison against non-bandit proposals will be a challenge (i.e., implementation)

Outline

01. Software Components

02. LoRAWAN Bandit Rewards

03. First Experimental Results

04. Wrap Up and Future

01

Software Components

Software Components

*Core NS-3: A Discrete Event Simulator (in C++)

**LoRaWAN NS3 Module: https://github.com/signetlabdei/lorawan

Al-kernel: https://github.com/Svalorzen/Al-Toolbox

Software Components

- Code shared on Inria GitLab:
 - https://gitlab.inria.fr/intelligentsia/LoRaWAN-Bandits
 - We can give you access!
 - TODO: Clean, Document, etc... Code is preliminary/rough but "hardest" part is done
- Custom LoRaWAN MAC Command (0xBB) for Bandit Rewards:
 - BanditRewardReq / BanditRewardAns
 - ... More on this later

Software Components: Node Al

Shared NS-3 PHY Model, Node Mobility Model, etc ...

BanditDelayedRewardIntelligence

Most of logic: LoRaWAN Domain + Bootstrapping + Delayed Bandit

ADRBanditAgent

ChooseArm (); UpdateReward (armNumber, reward); _

-- Bandit::Experience

-- Bandit::PolicyInterface

Al-kernel: https://github.com/Svalorzen/Al-

Toolbox

02

LoRAWAN Bandit Rewards

Delayed Reward (or Feedback)

(Remember: 12 Bytes is the maximum to be able to piggyback a MAC command)

[ED→NS] MAC BanditRewardReq

Size (Bytes)	1	2	1	
Payload	CID (0xBB)	Max FCnt	Delta	


```
Eg: [0xBB , 0x01 0x00, 0x00 ]

FCnt=1, Delta = 0

"Send me stats for frame #1

to frame #1"
```


[ED←NS] MAC BanditRewardAns

Size (Bytes)	1	1	1	1	1	1	1
Payload	CID (0xBB)	#Pkt_RCV DRO (SF12)	#Pkt_RCV DR1 (SF11)	#Pkt_RCV DR2 (SF10)	#Pkt_RCV DR3 (SF9)	#Pkt_RCV DR4 (SF8)	#Pkt_RCV DR5 (SF7)


```
Eg: [0xBB,00,00,00,01,00,00 ]
"1 packet received with SF9,
0 for other SFs"
```

(Frame# and Delta are not present)

Feedback Frequency

- 1) Ask for Reward at every Frame until Frame #10
- 2) Then, we ask for reward every N frames (deterministic!)

- There is room for improvement/ strategy implementations here © (E.g., Probabilistic, Adaptive)
- Notion of Convergence is interesting to discuss/have in account (E.g., value and speed)
- Warning!
 - Everybody asking for reward at the same time affects the medium
 - Asymmetric UL/DL links:
 - RX sensitivity is different for ED (SX1276) and GW (SX1301):
 - UL may be ok, but we can not get the DL message using the same SF (Bandit will Converge slow)

MAC Command: High-level comments

- Rewards Request and Answer: "Hardcoded" ... for now ?
 - Feedback only for Packets Received per SF (e.g., interesting to discriminate per Frequency)
 - If we want more: we need a more flexible/complex MAC command(s)
 - I foresee research material on this topic (Compression, Frequency of Request, Stats Flexibility)
- NS is agnostic to the notion of Bandit Rewards!
 - Good property!
 - Each Node optimizes whatever they want with the raw-data stats.
 - But... we can envisage a solution with Reward-Awareness @ NS
 - More NS complexity, but can be used for Slicing purposes! (NS has global visibility)
 [Beware of Ethical considerations!]

LoRAWAN Rewards (Optimizing@ED)

Arm [How] Objective [What]	SF12	SF11	SF10	SF9	SF8	SF7
Raw PDR	1	1	1	1	1	1
Energy-aware	1	2	4	8	16	32
?						

Final Remaks

Three fundamental Design Decisions:

- 1. Definition of Reward
 - > **Key** factor, and not as trivial as it seems (... reward ≠ 1-cost ≠ 1/cost !!)
- 2. Frequency of Reward MAC Command
 - Related to Convergence speed (and primordial for mobility Use Case in future)
- 3. Bandit Arm's Rewards "Internal Bootstrapping"
 - > a.k.a. heuristics for starting "cold" arms (Currently: two fake samples per arm, reward 0 and 1)
 - > ... may affects Convergence/Exploration!

.... Experimental results will reflect these decisions:) (Iterative "tunning")

03

First Experimental Results

Simulation Parameters

Cell Radius	6400 m (12900 ha)		
Number of End-Devices	1000 [x,y:Uniformly Dist, z=1.2m]		
GWs	1 [@(x=0 , y=0, y=14m)]		
App Packet Size	32 Bytes (41/45B Raw)		
Time between packets (min)	20min [Initial Delay = U(0,20)]		
Simulation Time	33h20m (100 Packets)		
TX Power	14 dBm (Max)		
Frequency Carrier	U.Random in {868.1, 868.3, 868.5}		
Bandwidth	125 kHz		

Propagation Model

Propagation Loss Model (Loss [dB])	LogDistancePropagationLossModel: Loss [dB] = 120.5 + 10 * 3.76 * log10 (R [km]) + RandomPropagationLossModel [0, 10]
Building Penetration Loss	(Disabled for now)
Shadowing	(Disabled for now)

- We leverage in vanilla NS-3: very powerful PHY model (Models can be "stacked")
- LoRa Interference Matrix:
 - Current is Gorsaud (2015) [1] https://github.com/signetlabdei/lorawan/blob/develop/model/lora-interference-helper.cc#L128
 - I did not use the "new" LoRa Colission Matrix (2018) [2]

Three Strategies

- LoRaWAN's ADR "The Things Network" (TTN)
 - All Nodes start in SF=12
 - SF Down (NS-centric): Uses LinkADRReq/Ans MAC command, w/SNR Avg. of last 10 frames.*
 - > SF Up (EN-centric): LoRaWAN ADR Backoff. (Implem) → Negligible for our test
- 2. Bandit: Thompson Sampling \rightarrow raw-PDR reward (all 1)
 - Cold Arm bootstrap 0 and 1
- 3. Bandit: Thompson Sampling → Energy-aware reward
 - > A) Cold Arm bootstrap 0 and 1
 - > B) Cold Arm bootstrap 0 and 8

^{*} Can also use Min or Max, It also takes in account all Gateways

PDR convergence: Energy-aware (A)

PDR convergence: Energy-aware (B)

(PDR seems

converged)

PDR convergence: raw-PDR Bandit

PDR convergence: ADR

Data Rate Evolution: ADR

Data Rate Evolution: raw-PDR Bandit

Data Rate Evolution: Energy-aware (A)

Data Rate Evolution: Energy-aware (B)

Pointers from Preliminary Results

- PDR-centric Reward
 - See if current Reward Bandit converges to ADR (If it does: good!)
 - > Refine Reward to see if we can approach ADR PDR value (or increase speed) of convergence
- Energy-aware Rewards
 - > The most promising results: From PDR to Energy paradigm (already identif in [3])
 - > Opens up many LoRaWAN improvements: e.g., adaptive packet frequency
 - > FOCUS ON ENERGY (+ Fairness)
- Work on automatization of sim (and Metrics/Graphs)
 - > See [4] "A simulation execution manager for ns-3: Encouraging reproducibility and simplifying statistical analysis of ns-3 simulations." (Davide, 2019)

[3] Kerkouche, Raouf, Réda Alami, Raphaël Féraud, Nadège Varsier, and Patrick Maillé. "Node-based optimization of LoRa transmissions with Multi-Armed Bandit algorithms." In 2018 25th International Conference on Telecommunications (ICT), pp. 521-526. IEEE, 2018.

04

Wrap-up and Future

Wrapping Up:

- A Functional Thompson S. Bandit in NS-3 LoRaWAN Simulation
 - https://gitlab.inria.fr/intelligentsia/LoRaWAN-Bandits
 - Scales to N nodes; not tested multiple GWs (could lead to bugs)
- Defined and Implemented the "delayed feedback" MAC command
- Energy-aware Rewards seem promising
- Identified areas to Improve:
 - Refine the "bootstrapping" (including REWARDS definition –fn(PDR,Energy)–)
 - Measure how Energy evolves, and notion of Fairness (do all nodes communicate?)
 - Statistics/visual representation

Future

- I am leaving 1 Sept :/
- Advance on Simulations, and tell a nice story:
 - Focus on energy, and that bandits do very well
 - Add UCB Bandits to mix
 - Bootstrapping and Heuristics
 - City Model (buildings), multiple GWs, etc.. Bandits probably will adapt well vs ADR
- Start writing Paper and D3.1, both will map almost 1 to 1.
 - I want to publish this paper ☺
- Clean the source code and document for my relay/replacement

Merci!

renzo.navas@inria.fr

Bibliography

[1] Goursaud, Claire, and Jean-Marie Gorce. "Dedicated networks for IoT: PHY/MAC state of the art and challenges." EAI endorsed transactions on Internet of Things (2015). https://hal.archives-ouvertes.fr/hal-01231221/

interferer	7	8	9	10	11	12
desired						
7	-6	16	18	19	19	20
8	24	-6	20	22	22	22
9	27	27	-6	23	25	25
10	30	30	30	-6	26	28
11	33	33	33	33	-6	29
12	36	36	36	36	36	-6

Table 1. Cochannel rejection (dB) for all combinations of spreading factor for the desired and interferer user

Bibliography

[2] Croce, Daniele, Michele Gucciardo, Stefano Mangione, Giuseppe Santaromita, and Ilenia Tinnirello. "Impact of LoRa imperfect orthogonality: Analysis of link-level performance." IEEE Communications Letters 22, no. 4 (2018): 796-799. https://doi.org/10.1109/LCOMM.2018.2797057

TABLE II SIR THRESHOLDS WITH SX1272 TRANSCEIVER

SF_{int} SF_{ref}	7	8	9	10	11	12
7	1	-8	-9	-9	-9	-9
8	-11	1	-11	-12	-13	-13
9	-15	-13	1	-13	-14	-15
10	-19	-18	-17	1	-17	-18
11	-22	-22	-21	-20	1	-20
12	-25	-25	-25	-24	-23	1

Bibliography

[3] Kerkouche, Raouf, Réda Alami, Raphaël Féraud, Nadège Varsier, and Patrick Maillé. "Node-based optimization of LoRa transmissions with Multi-Armed Bandit algorithms." In 2018 25th International Conference on Telecommunications (ICT), pp. 521-526. IEEE, 2018.

[4] Magrin, Davide, Dizhi Zhou, and Michele Zorzi. "A simulation execution manager for ns-3: Encouraging reproducibility and simplifying statistical analysis of ns-3 simulations." Proceedings of the 22nd International ACM Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems. 2019.

Interesting Pubs (for Future Work...)

[Downlink] Capuzzo, Martina, Davide Magrin, and Andrea Zanella. "Confirmed traffic in LoRaWAN: Pitfalls and countermeasures." In 2018 17th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), pp. 1-7. IEEE, 2018. (Downlink issues and proposals, very interesting! Ex.: Invert RX2 and RX1 params)

[Jamming] Bolivar, Ivan Marino Martinez. "Jamming on LoRaWAN Networks: from modelling to detection." PhD diss., Institut National des Sciences Appliquées de Rennes, 2021. https://tel.archives-ouvertes.fr/tel-03196484/document

