

CorrelAid MeetUp

30.11.2019 - Berlin

Missing Data & Causality

Questions to ask

Observational Questions (What is?)

"What if we see A"

P(y|A)

Action Questions (What if?)

"What if we do A?"

P(y|do(A))

Counterfactual Questions (Why?)

"What if we did things differently?"

$$P(y_{\neg A}|A)$$

Options

"With what propability?"

Structure

What is? / What if?

Missing Data:

- Missingness as a function
- Patterns vs. Mechanisms
- Naive Imputation
- Multiple Imputation

What if? / Why?

Causality:

- Data Generating Models
- Acyclic Graphical Models
- PC Algorithm

Data as a function

- Let Y be a population with the values $y_i = (y_{i1}, y_{i2}, \dots, y_{ik})$ with $i \in Y$
- The propability to draw a unit i, is $f(y_i;\theta)$ with θ indicating the parameter vector
- The observed part of Y can be denoted as Y_{obs} and the missing one as Y_{mis} , so that $Y=(Y_{obs}, Y_{mis})$ with the joint distribution $f(y_{obs}, i, y_{mis}; \theta)$ for each unit

Missingness as a function

• Let R be an **indicator variable** with unit i which is $f(r; \xi)$ distributed

$$R_{i,j} = \left\{egin{array}{l} 1, ext{ if } Y ext{ observed with unit } i \ 0 ext{ otherwise} \end{array}
ight.$$

- The **joint distribution** of R and Y is $f(y, r, \theta, \xi) = f(y; \theta) f(r|y; \xi, \theta), (\theta, \xi) \epsilon \Omega_{\theta, \xi}$
- The likelihood of a unit $\xi \in \Omega$ is $L(\theta, \xi; y_{obs}, r) = f(y_{obs}, y_{mis}, r; \theta, \xi) dy_{mis}$

$$\int f(y_{obs}, y_{mis}; \theta) f(r|y_{obs}, y_{mis}; \theta) f(r|y_{obs}, y_{mis}; \xi, \theta) dy_{mis}$$

Index	Y1	Y2	R1	R2
1	y ₁₁	y ₁₂	1	1
2	y ₂₁	y ₂₂	1	1
3	y ₃₁		1	0
4	Y ₄₁		1	0
5			0	0

Patterns vs. Structures

A pattern can be very non-random, but the mechanism might still be random!

Notation for Missing Data mechanisms

Not Missing at Random (NMAR)

Missing at Random (MAR)

$$f(r|y;\xi) = f(r|y_{obs}, y_{mis}; \xi)$$

$$f(r|y;\xi) = f(r|y_{obs}, y_{mis}; \xi) = f(r|y_{obs}; \xi) \forall Y_{mis}$$

Missing Completely at Random (MCAR)

$$f(r|y;\xi) = f(r|y_{obs}, y_{mis};\xi) = f(r;\xi) \forall Y$$

Assumption:

Variation freedom: θ and ξ are distinct/independent $\rightarrow f(r|y;\xi,\theta) = f(r|y;\xi)$

Under **MAR** and variation freedom, the missing data mechanism is ignorable since the "observed-data" likelihood of any unit resolves to:

$$L(\theta, \xi; y_{obs}, r) = \int f(y_{obs}, y_{mis}; \theta) f(r|y_{obs}, y_{mis}; \theta, \xi) dy_{mis} = f(r|y_{obs}; \xi) \int f(y; \theta) dy_{mis}], \theta \epsilon \Omega_{\theta}, \xi \epsilon \Omega_{\xi}$$

Recognizing Mechanisms

	Job performance ratings II				
IQ	Complete	MCAR	MAR	MNAR	
78	9	_	_	9	
84	13	13	_	13	
84	10	_	_	10	
85	8	8	_	_	
87	7	7	_		
91	7	7	7	_	
92	9	9	9	9	
94	9	9	9	9	
94	11	11	11	11	
96	7	_	7	_	
99	7	7	7	-	
105	10	10	10	10	
105	11	11	11	11	
106	15	15	15	15	
108	10	10	10	10	
112	10	_	10	10	
113	12	12	12	12	
115	14	14	14	14	
118	16	16	16	16	
134	12	_	12	12	

MCAR:

Missingness neighter conditional on Y_{obs} nor $Y_{mis} \rightarrow random$

MAR:

Missingness conditional on Y_{obs} but not Y_{mis}

MNAR:

Missingness conditional on Y_{mis}

To MI or not to MI...

When does it work?

- Crosstabs
- Correlations
- → Descriptive Statistics

Potential Pityfalls:

- Scewed Distributions
- Reduced variance / Confidence Intervals
- Hypothesis testing
- Model uncertainty
- → Inferential Statistics

Even if you're able to perform multivariate analysis with a naively imputed dataset you do not account for **model** uncertainty.

Ba(ye)sics of Multiple Imputation

Common to all approaches:

Produce several uniquely imputed datasets and calculate the mean.

Inferential MI:

- → Regression
- → Nearest Neighbour
- → Last Observation Carried Forward

Bayesian MI:

→ Draw from a Posterior Predictive Distribution

Ba(ye)sics of Multiple Imputation

 $f(\theta) =: Prior distribution$

 $f(\theta|y) =: Posterior distribution$

 $f(y|\theta) = L(\theta;y) =: Likelihood$

f(y) =: Marginal distribution of the data

Posterior Predictive Distribution for MI:

$$f(\mathbf{y}_{\mathrm{mis}}|\mathbf{y}_{\mathrm{obs}}) = \int_{\Omega} f(\psi|\mathbf{y}_{\mathrm{obs}}) f(\mathbf{y}_{\mathrm{mis}}|\psi,\mathbf{y}_{\mathrm{obs}}) d\psi$$

Posterior-Step:

$$\tilde{\psi} \sim f(\psi|\mathbf{y}_{\mathsf{obs}})$$

Imputation-Step $y_{mis} \sim f(y_{mis}|\tilde{\psi}, y_{obs})$

Interchanging draws from the observed-data posterior and the conditional predictive distribution yield random draws from $f(y_{mis}|y_{obs})$

Questions to ask

Observational Questions (What is?)

"What if we see A"

P(y|A)

Action Questions (What if?)

"What if we do A?"

P(y|do(A))

Counterfactual Questions (Why?)

"What if we did things differently?"

$$P(y_{\neg A}|A)$$

Options

"With what propability?"

"Correlation does not imply causation.

But there is no correlation without causation."

Basic Model of Causality

Fundamental laws of causal inference:

1. Law of counterfactuals

$$Y_x(u) = Y_{Mx}(u)$$

- → M generates and evaluates all counterfactuals
- 2. Law of Conditional Independence

$$(X_{I}Y|Z)_{G(M)} \rightarrow (X_{I}Y|Z)_{P(V)}$$

→ Separation in model entails independence in distribution

What do you think are good rules for choosing control variables?

Control für Z if...

- Z associated with Y (Outcome)
- Z associated with X (Covariate)
- Unaffected by X and associated with X and Y

Structural Causal Models

Acyclic Causal Graphs:

- → Show causal relationships between different variables
- → No circle-connections
- → Assuming you measured all relevant variables
- → There can be several markovequivalent causal models

Normal Inference:

Creating one model and testing if it fits certain requirements

Causal Inference:

Searching for all plausible causal models

Constraint Based CI (PC-Algorithm)

Search for Markov Equivalent Classes (same d-seperations, nodes)

2 Main Steps:

- 1. Learn Skeleton Graph with undirected edges
- → Start with fully connected graph and test for conditional independence
- 2. Direct the edges to get causal model
- → Use of Additive Noisew Modelling (lowest dependence between potential cause and ist residual when predicting the effect)

```
Algorithm 1: Step 1 of the original-PC algorithm: learn-
ing the skeleton
  Input: Dataset D with a set of variables V, and
         significant level \alpha
  Output: The undirected graph G with a set of edges E
  Assume all nodes are connected innitially
  Let depth d=0
  repeat
     for each ordered pair of adjacent vertices X and Y in
     G do
         if (|adj(X,G)\setminus \{Y\}| >= d) then
             for each subset Z \subseteq adj(X,G) \setminus \{Y\} and
             |Z| = d \operatorname{do}
                Test I(X,Y|Z)
                if I(X,Y|Z) then
                    Remove edge between X and Y
                    Save Z as the separating set of
                    (X,Y)
                    Update G and E
                    break
                end
             end
         end
     end
     Let d = d + 1
  until |adj(X,G)\setminus \{Y\}| < d for every pair of adjacent
  vertices in G;
```

