

SANDIA REPORT

SAND88-8764
Unlimited Release
Printed May 1988

RE-ENTRANCE PLASTIC
SYSTEM INDEXING
AET INDEX
2. Index for
a. Subject

Pulsed Microwave Irradiation of Graphite/Epoxy Composites

(To be published in Microwave Processing of Materials)

R. B. James, P. R. Bolton, R. A. Alvarez

19960628 118

✓

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-76DP00789

DEPARTMENT OF DEFENSE
PLASTICS INSTRUMENTATION EVALUATION GROUP
ARRADCOM, DODMA, DODCOM

S

DTIC QUALITY INSPECTED 1

PLASTIC SYSTEM INDEXING
2. Index for
a. Subject

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of the contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof or any of their contractors or subcontractors.

unlabeled

SAND88-8764
Unlimited Release
Printed May 1988

**PULSED MICROWAVE IRRADIATION OF
GRAPHITE/EPOXY COMPOSITES**

R. B. James
Theoretical Division
Sandia National Laboratories, Livermore, CA 94550

P. R. Bolton, R. A. Alvarez
Lawrence Livermore National Laboratory, Livermore, CA 94550

ABSTRACT

We have measured the microwave-induced damage to the near-surface region of a graphite/epoxy composite material for $1.1\text{-}\mu\text{s}$ pulses at a frequency of 2.865 GHz and a pulse power of up to 8 MW. Rectangular samples were irradiated by single-pass TE₁₀ traveling wave pulses inside a WR-284 waveguide, and in situ and post irradiation studies were performed to characterize the material modifications induced by the microwave pulses. The results of time-resolved optical measurements in vacuo show that surface decomposition of the epoxy resin occurs for incident pulse powers exceeding 1.1 MW, and that the surface damage is accompanied by a large increase in the reflected microwave power. Simultaneous with the onset of surface decomposition, we observe significant light emission from the sample and a large enhancement of the gas pressure in the test cell. The large increments in the reflected power and light emission are attributed to the formation of a plasma due to electrical breakdown of the gas at (or near) the sample surface.

INTRODUCTION

Graphite/epoxy composite materials are rapidly replacing metals, especially in applications where high strength, weight and dimensional stability are important. Furthermore, it is common practice to design and produce graphite/resin composites that optimize particular selected properties, such as tensile, compressive and flexural strengths. The reinforcing graphite filaments in the composite are used to obtain the desired mechanical properties, and the epoxy is used to yield a finished part with stable, high strength laminates and low void contents. In this paper a study of the energy deposition and material damage of a graphite/epoxy composite due to excitation by high-power pulsed microwave radiation is presented. The primary goals are to determine the damage threshold as a function of the excitation conditions and to use the data in the design and materials selection of radiation-resistant composites.

EXPERIMENT

A high-power pulsed klystron was used to generate microwave pulses having a frequency of 2.856 GHz and a maximum peak power of 10 MW. By gating the rf drive, the pulse duration was varied between 135 ns and 2 μ s with a risetime of approximately 70 ns. A schematic diagram of the experimental setup is shown in Fig. 1. The output of a highly stable cw master oscillator is gated by a PIN diode that provides a variable-length 500-mW drive pulse to a driver klystron, which in turn produces a 135-2000 ns drive pulse for the high-power klystron. The output pulse from the klystron passes through a high-power cir-

culator, which then feeds into a WR-284 copper waveguide. The waveguide is terminated with an impedance-matched, water-cooled load to minimize reflections and ensure that the sample is irradiated by a single-pass, TE_{10} traveling-wave pulse.

The test cell consists of a copper waveguide section that allows insertion of a sample into the microwave field without requiring the venting of the waveguide system. The samples are inserted into the test cell with a linear motion feedthrough and are suspended in the center of the WR-284 waveguide by an alumina holder. An E-H tuner is used in the test section to reduce the impedance mismatch associated with the presence of the sample in the waveguide cavity. Using a cw low-power microwave source, the tuner is adjusted to minimize the reflected signal when the sample is inserted into the waveguide. The test cell was evacuated to a pressure of about 4×10^{-7} torr, and the waveguide assembly, not including the test cell, was pressurized to 30 psig with Freon-12.

In this paper values of the incident microwave power are quoted rather than the power density, because the presence of the sample may cause some local modification of the field of the TE_{10} traveling wave pulse. If one assumes that the presence of the sample does not significantly perturb the TE_{10} guided mode in the test cell, then the power density incident on the sample can be obtained by dividing the pulse power by 12.25 cm^2 .

The graphite/epoxy samples used in the experiment were Thorne 300 graphite filaments and Narmco 5208 epoxy, which is one of the most common graphite/epoxy composites. The samples had a unidirectional layup and a thickness of 3.18 mm. Each sample was cut to a size of 5x5 mm, so that the cross-sectional area of the sample ($\approx 0.25 \text{ cm}^2$) would be much smaller than the cross-sectional

area of the test cell ($\approx 24.5 \text{ cm}^2$). The Narmco 5208 epoxy was cured at a temperature of 450 K. The graphite filaments in the composite have a diameter of about $6 \mu\text{m}$ and comprise approximately 61 % of the sample volume. The electrical resistivity of the graphite is about $20 \mu\Omega\text{-cm}$, from which a calculated linear absorption coefficient of about 230 cm^{-1} is obtained for 2.856-GHz microwave radiation [1].

RESULTS AND DISCUSSION

Time-resolved measurements of the microwave reflectivity (R) from the graphite/epoxy samples were performed. Each sample was initially impedance-matched at low microwave powers (i.e., $\text{VSWR} < 1.05$), in order to minimize the reflected power. For incident microwave pulse powers exceeding about 1.1 MW, an abrupt increase in the microwave reflectivity was observed near the end of the $1.1\text{-}\mu\text{s}$ pulse. (When the sample was removed from the test cell, no change in R was observed over the same range of microwave powers.) For higher incident microwave pulses, the onset of the increased reflectivity occurred at earlier times during each pulse. Figure 2 shows the time required for the sudden increase in R as a function of the incident microwave power. Each data point was obtained by averaging 20 different shots at a fixed pulse power, and each error bar designates the standard deviation of the data from the different shots at a fixed ($\pm 5 \%$) incident pulse power.

The surface topography of the samples was studied with a scanning electron microscope (see Fig. 3). For incident microwave powers exceeding the threshold value ($\sim 1.1 \text{ MW}$) at which the high reflectivity is observed, the

samples show evidence for localized surface decomposition of the epoxy. Further increases in the pulse power beyond 1.1 MW cause more of the epoxy to be lost from the sample. After exposure to several shots at pulse powers above about 5 MW, only bare graphite filaments are visible on the surface. Figures 3b and 3c are SEM photographs of samples after excitation by twenty shots, each shot having an incident pulse power of 5.1 and 6.9 MW, respectively. Several graphite filaments are broken at pulse powers exceeding approximately 6 MW, which is most likely due the electrical discharge associated with the breakdown of the gas near the target surface [2].

The onset of depolymerization of the epoxy in a vacuum occurs at a temperature of about 600 K [3], whereas the melting point of graphite is approximately 4300 K [4]. Thus, the damage threshold for the epoxy is expected to be much lower than for the graphite filaments, which is consistent with the SEM results shown in Fig. 3.

A video camera was used to monitor each sample before and after excitation by the high-power microwave pulses. We found that the microwave irradiation caused the emission of visible light from the sample surface. When the sample and holder were removed from the waveguide, no light emission was detected from the empty waveguide. A Hamamatsu R2055 photomultiplier tube was employed to measure the light emission as a function of the incident microwave power. The results for the maximum photomultiplier output are displayed in Fig. 4 for 1.1- μ s pulses and a photocathode voltage of 900 V. The light emission incident on the photocathode was attenuated by a 10%-transmission broadband neutral density filter and two fused silica windows. Each data point in the figure represents the average of twenty different shots at a fixed incident pulse power, and each error bar designates the standard deviation of the

data. The threshold for the light emission occurs at about 1 MW, which is approximately equal to the threshold for the sudden increase in the reflected microwave power.

The pressure of the gas in the test cell was continuously monitored by an ion gauge, which was located about 40 cm downstream from the sample. Figure 5 shows the maximum increase in the gas pressure as measured at the ion gauge for several different pulse powers. Each data point designates the average increase resulting from ten different 1.1- μ s pulses. The initial base pressure of the gas at the ion gauge was in the range of $3\text{-}8 \times 10^{-7}$ torr.

Our interpretation of the experimental results is as follows: The small increase in the gas pressure at a pulse power near 1 MW is probably caused by microwave heating and a subsequent desorption of water, oxygen and other absorbed species from the sample. The electric field associated with the high-power microwave radiation accelerates the electrons and desorbed ionized species and causes further ionization via collisions with neutral particles. The additional electrons are also accelerated to high velocities by the pulse, leading to more charged species and subsequent electrical breakdown of the gas near the target surface.[4] The electrical discharge associated with the gas breakdown causes further heating and decomposition of the surface. The additional loss of material from the surface leads to much larger enhancements in the plasma density and gas pressure. The presence of the microwave-induced plasma is responsible for the abrupt increase in the reflectivity of the microwave pulse from the test cell, which reduces the duration of the exposure of the sample to the high-power microwave pulse. The emission of the visible light results from the relaxation of the plasma at (or near) the target surface.

SUMMARY AND CONCLUSIONS

Graphite/epoxy composite samples were irradiated in a waveguide by single-pass high-power microwave pulses, and post-irradiation studies show that the surfaces of the samples can be damaged by the microwaves. For pulses with a duration of 1.1- μ s, surface damage is apparent for incident microwave powers exceeding about 1.1 MW. The onset of surface damage is accompanied by a large increase in reflected microwave radiation and significant emission of light from the target area. Examination of the irradiated samples shows that the epoxy at the surface decomposes, whereas the graphite filaments appear primarily undamaged. We believe that the increase in reflected microwave power, emission of visible light from the target area, and surface damage are attributed to the formation of a plasma due to electrical breakdown of the gas at (or near) the sample surface.

ACKNOWLEDGMENTS

This work was supported by the U. S. Department of Energy. The authors would like to acknowledge W. H. Christie, D. P. Byrne, J. R. Spingarn, W. R. Even, Jr., W. L. Hsu and J. B. Adams for many useful discussions.

REFERENCES

1. J. D. Jackson, in Classical Electrodynamics, 2nd Edition (Wiley, New York, 1975), p. 298.
2. A. D. MacDonald, Microwave Breakdown of Gases (Wiley, New York, 1966).
3. J. R. Spingarn and W. R. Even, Jr. (unpublished).
4. T. Venkatesan, D. C. Jacobson, J. M. Gibson, B. S. Elman, G. Braunstein, M. S. Dresselhaus, and G. Dresselhaus, Phys. Rev. Lett. 53, 360 (1984).

Fig. 1 Schematic diagram of the experimental setup.

Fig. 2 Time required for the abrupt increase in the reflectivity of the microwave radiation as a function of the incident pulse power.

Fig. 3 SEM micrographs of the sample surface. Fig. 3(a) shows an unirradiated sample, 3(b) shows a sample after irradiation by twenty 1.1- μ s pulses at a power of 5.1 MW, and 3(c) shows a sample after irradiation by twenty 1.1- μ s pulses at a power of 6.9 MW. The magnifications and scale markers are shown at the bottom of each photograph.

Fig. 4 Peak photomultiplier output as a function of the incident microwave power.

Fig. 5 Measured increase of the gas pressure in the test cell as a function of the incident microwave power.

UNLIMITED RELEASE
INITIAL DISTRIBUTION

Army Material Systems
Analysis Agency
Attn: DRXSY-CCS, B. Bradley
Aberdeen Proving
Ground, MD 21005-5071

Commander
US Army Foreign Science and
Technology Center
Attn: DRXST-SD1/Dr. T. A. Caldwell
220 Seventh Street, NE
Charlottesville, VA 22901

U. S. Army Research Office
Attn: DRXRO-PH/Dr. B. D. Guenther
P. O. Box 12211
Research Triangle Park, NC 27709

Commander, US Army CAORA
Attn: ATORO-CAS-SO, Mr. Hansen
Ft. Leavenworth, KS 66027

Director
US Army Ballistic Research Lab.
Attn: DRSMC-BLV-R (A), J. McNeilly
Aberdeen Proving Ground, MD 21005

Director
U. S. Army Ballistic Research Lab.
Attn: DRSMC-BLV-A (A), M. Vogen
Aberdeen Proving Ground, MD 21005

US Army Electronics Technology &
Devices Laboratory (ERADCOM)
Attn: DELET-MW/Mr. Wilson
Evans Area
Fort Monmouth, NJ 07703

Director, Defense Research
and Engineering
ATTN: Asst. Director
The Pentagon
Washington, DC 20301

HQ-USAF/RD-D
Attn: R. Rankine, Jr.,
Brigadier General, USAF
The Pentagon
Washington, DC 20301

HQ-USAF/RD-D
Attn: J. MacCallum
The Pentagon
Washington, DC 20301

Defense Intelligence Agency (3)
Attn: DT-4C, J. Coleman
DC-7B, Cpt. R. Hoffman
DB-4C2, D. Spohn
Washington, DC 20301

Director
National Security Agency
Attn: A4, Ms. G. Reinheimer
Ft. Meade, MD 20755

Director
Defense Communications Agency
Attn: P. Jain
8th St. & S. Courthouse Road
Washington, DC 20305

Administrator (2)
Defense Technical Info Center
Attn: DTIC-DDA
Cameron Station
Alexandria, VA 22304-6145

HQDA
DAMA-WSN-T
Washington, DC 20310

HQDA
DAMA-WA
Washington, DC 20310

HQDA
DAMA-AR
Washington, DC 20310

HQDA
DAMA-ART-M
Washington, DC 20310

HQDA
DAMA-RAA
Washington, DC 20310

Commander
U. S. Army Aviation Center
Attn: ATZQ-D-CC, Maj. R. Stark
Fort Rucker, AL 36362-5000

<p>Department of the Army (2)</p> <p>Deputy Chief of Staff, RDA</p> <p>Attn: DAMA-ARZ-D, F. Verderame DAMA-ARZ-D, Col. Rhinehardt</p> <p>Washington, DC 20310</p> <p>Director (2)</p> <p>U. S. Army BMD Advanced Tech. Ctr.</p> <p>Attn: ATC-O ATC-T, J. Hagefstration</p> <p>P. O. Box 1500</p> <p>Huntsville, AL 35807</p> <p>Commander</p> <p>U. S. Army Intelligence Threat Analysis Center</p> <p>Attn: AIAIT-WC, D. Stefanik</p> <p>Building 203, Stop 314, WNY</p> <p>Washington, DC 20374</p> <p>Commander</p> <p>U. S. Army Materiel Command</p> <p>Attn: AMCDRA-ST, R. Haley</p> <p>5001 Eisenhower Avenue</p> <p>Alexandria, VA 2233-0001</p> <p>Commander</p> <p>U. S. Army Materiel Command</p> <p>Attn: AMCDRA-ST</p> <p>5001 Eisenhower Avenue</p> <p>Alexandria, VA 2233-0001</p> <p>Commander</p> <p>U. S. Army Materiel Command</p> <p>Attn: AMCLD</p> <p>5001 Eisenhower Avenue</p> <p>Alexandria, VA 2233-0001</p> <p>Commander</p> <p>U. S. Army Materiel Command</p> <p>Attn: AMCLD, J. Stekert</p> <p>5001 Eisenhower Avenue</p> <p>Alexandria, VA 2233-0001</p> <p>Commander</p> <p>Armament R&D Center</p> <p>U. S. Army AMDDOM</p> <p>Attn: SMCAR-TSS</p> <p>Dover, NJ 07801-5001</p>	<p>Commander</p> <p>Armament R&D Center</p> <p>U. S. Army AMCCOM</p> <p>Attn: SMCAR-TDC</p> <p>Dover, NJ 07801-5001</p> <p>Director</p> <p>Benet Weapons Laboratory</p> <p>Armament R&D Center</p> <p>U. S. Army AMCCOM</p> <p>Attn: SMCAR-LCB-TL</p> <p>Watervliet, NY 12189</p> <p>Commander</p> <p>U. S. Army Armament, Munitions, and Chemical Command</p> <p>Attn: SMCAR-ESP-L</p> <p>Rock Island, IL 61299</p> <p>Commander (2)</p> <p>U. S. Army Aviation Research and Development Command</p> <p>Attn: AMSAV-E AMSAV-EXS</p> <p>4300 Goodfellow Blvd.</p> <p>St. Louis, MO 63120-1798</p> <p>Director</p> <p>U. S. Army Air Mobility Research and Development Laboratory</p> <p>Ames Research Center</p> <p>Moffett Field, CA 94035</p> <p>Director (3)</p> <p>Applied Technology Laboratory</p> <p>U. S. Army Research and Technical Laboratories (AVRADCOM)</p> <p>Attn: AMDDL-EU-MOS, C. Pedriani AMDDL-EU-MOS, M. Taylor AMDDL-ATL-ASR, H. Carper</p> <p>Ft. Eustis, VA 23604-5577</p> <p>Commander</p> <p>U. S. Army Communications-Electronics Command</p> <p>Attn: AMSEL-ED</p> <p>Fort Monmouth, NJ 07703-5301</p> <p>Commander</p> <p>U. S. Army Communications-Electronics Command</p> <p>Attn: AMSCO-PPA-SA</p> <p>Fort Monmouth, NJ 07703-5301</p>
---	--

Commander
U. S. Army Laboratory Command
Attn: AMSLC-GC, MG James Cercy
AMSLC-CT, R. Vitali
2800 Powder Mill Road
Adelphi, MD 20783

Commander
ERADCOM Technical Library
Attn: DELSD-L (Reports Section)
Fort Monmouth, NJ 07703-5301

Director (4)
Assessment Laboratory
Attn: SLCVA-STO
SLCVA-TAC, D. Alvarez
SLCVA-TAC, A. Pattni
SLCVA-TAC, R. Flores
White Sands Missle Range, NM 88002

U. S. Army Letterman Army Institute
of Research
Attn: SGRD-ULZ-IR, Maj. Vandre
Presidio of San Francisco
San Francisco, CA 94129-6800

Commander (4)
U. S. Army Missle Command
Research, Development, and
Engineering Center
Attn: AMSMI-RD
AMSMI-YSO, L. Altgilbers
AMSMI-RD-DE-UB, H. Greene
AMSMI-RH, Col. A. Haddock
Redstone Arsenal, AL 35898-5241

Commander
U. S. Army Missle and Space
Intelligence Center
Attn: AIAMS-YDL
Redstone Arsenal, AL 35898-5500

Commander
U. S. Army Missle and Munitions
Center and School
Attn: ATSK-CC, Cpt. J. Showalter
Redstone Arsenal, AL 35898

Commander
U. S. Army Mobility Equipment Research
and Development Command
Attn: AMSME-WC
Ft. Belvoir, VA 22060

Commander (2)
U. S. Army Tank Automotive Command
Attn: AMSTA-TSL
AMSTA-RSC, J. Bennett
Warren, MI 48397-500

Director
U. S. Army TRADOC Systems
Analysis Activity
Attn: ATAA-SL
White Sands Missle
Range, NM 88002-5002

Director
U. S. Army Materials and Mechanics
Research Center
Attn: AMXMR-HW, R. Fitzpatrick
Watertown, MA 02172

Commander
U. S. Army Research Office
Attn: AMSRO-PH, B. Guenther
P. O. Box 12211
Research Triangle Park, NC 27709-2211

Commander
U. S. Army Combined Arms Operations
Research Agency
Attn: ATOR-CAS-SO, Mr. Waters
Ft. Leavenworth, KS 66027

Commander (2)
U. S. Army Survivability
Management Office
Attn: SLCSM-E, J. Szczepanski
SLCSM-F, M. Claffy
2800 Powder Mill Road
Adelphi, MD 20783

Director
Electro-Optical Guided Weapons
CM/CCM Center
Joint Test & Evaluation Directorate
Attn: OTD
White Sands Missle Range, NM 88002

Commander
U. S. Army Combined Arms Center
Attn: ATZL-CAM-D, Cpt. M. McKee
Ft. Leavenworth, KS 66027

Commander U. S. Army Training and Doctrine Command Attn: ATSA-CDM-W, Cpt. R. Gertman Ft. Bliss, TX 97716	Commander (2) Pacific Naval Missle Test Ctr. Attn: Code 1234, K. Knudson Code 1132, P. Toly Point Mugu, CA 93042
Commandant (2) U. S. Army Infantry School Attn: ATSH-CD-CSO-OR ATSH-CD-MLS-F Ft. Benning, GA 31905	Department of the Air Force Secretary of Air Force Space Systems Pentagon Rm 4C1052 Attn: LTC M. Hodgenson Washington, DC 20330
Commander U. S. Army Development and Employment Agency Attn: MODE-TED-SAB Ft. Lewis, WA 98433-5000	Department of the Air Force Attn: INYX, Maj. C. Bose Washington, DC 20330
Commander (4) Naval Medical R&D Command National Naval Medical Center, Bldg. 142 Attn: P. Tyler Code AIR-50313, R. Hume Code AIR-5204 Code PMA 242, Cpt. R. Shumacker Bethesda, MD 20814-5044	Air Force Armament Laboratory Attn: AFATL-DLODL Elgin AFB, FL 32542-5000
Commander Naval Sea Systems Command Code PMS-405 Washington, DC 20362	Headquarters Air Force Electronic Warfare Center Attn: SAXA San Antonio, TX 78243
Commander (2) Naval Sea Systems Command Attn: Code PMS-405-300, G. Bates Code 072.4, R. Wildt Washington, DC 20362	Headquarters Air Force Systems Command/SDOA Attn: DLWM, Cpt. J. Cook Andrews AFB, MD 20334
Naval Intelligence Support Center Attn: A. Leavitt 4301 Suitland Road Washington, DC 29390	USAFSAM/RZP Attn: D. Erwin Brooks AFB, TX 78235
Naval Intelligence Support Center Attn: NISC-51, A. Cobleigh, Jr. 4301 Suitland Road Washington, DC 29390	RADC/OSCE Attn: Mr. R. Urtz Griffiss AFB, NY 13441
TRADOC Research Element Department of Physics and Chemistry Code 2124 Prof. J. Neighbors, Library Monterey, CA 93940	OOALC/MMW Attn: Maj. Roden Hill AFB, UT 84406
	MMWRBC Attn: W. Ferguson Hill AFB, UT 84406
	AAI Corporation P. O. Box 126 Hunt Valley, MD 21030-0126

Air Force Systems Command Attn: J. Cook Andrews Air Force Base Washington, DC 20334	AFWAL/FIES/CDIC Wright-Patterson AFB, OH 45433
Air Force Weapons Laboratory (4) Attn: AFWL/SUL AFWL/CA, A. Guenther AFWL/NTC, Dr. Singaraju AFWL/NTC, Mr. Davenport Kirtland AFBf, NM 87117-6008	AFWAL/AADM Attn: D. Rees Wright-Patterson AFB, OH 45433
Air Force Weapons Laboratory/NTYN (5) Attn: J. Generosa A. Jack D. Jacobs M. Toll Kirtland Air Force Base Albuquerque, NM 87117	AFELM, The Rand Corporation Attn: Library D 1700 Main Street Santa Monica, CA 90406
U. S. Air Force Technical Assessment Center Attn: TAO, Cpt. R. Amico Patrick AFT, FL 32925	The Aerospace Corporation ATTN: Robert G. Slaughter P. O. Box 92957 Los Angeles, CA 90009
AF HQ Space Command, INOS Attn: Maj. Leach Peterson AFB, CO 80914	Applied Microwave Plasma Concepts, Inc. Attn: R. A. Dandl 2210 Encinitas Blvd. Encinitas, CA 92024
AFML Attn: LC, G. Denman Wright-Patterson AFB, OH 45433	Argo Systems Attn: R. Roderique 3901 Via Oro Ave. Long Beach, CA 90810
AFML-MLPJ Attn: S. Lyon Wright-Patterson AFB, OH 45433	Argo Systems Systems Development Department Attn: W. B. Stevens 2901 Via Oro Ave. Long Beach, CA 90810
ASD/ENSSS Attn: H. Griffis Wright-Patterson AFB, OH 45433	The BDM Corporation Attn: Mr. Igor D. Gerhardt 227 Drake Ave., Suite 25 Huntsville, AL 35805
ASD/TAMAL Attn: Maj. Restivo Wright-Patterson AFB, OH 45433	Boeing Aerospace Company (2) Attn: D. Egelkrout, MS 2R-00 E. Nalos, MS 8W-08 P. O. Box 3999 Seattle, WA 98124
AFFDL/FESD Attn: G. Streets Wright-Patterson AFB, OH 45433	J. A. Carter Analytical Chemistry Div. Oak Ridge National Lab. P.O. Box X Oak Ridge, TN 37831
AFIT/ENY Attn: P. Torvik Wright-Patterson AFB, OH 45433	

Central Intelligence Agency (10)
Office of Central Reference
Dissemination Branch
Room GS-47 HQS
Washington, DC 20520

Defense Advanced Research
Projects Agency
Attn: Lt. Col. D. Gullickson, DEO
1400 Wilson Blvd.
Arlington, VA 22209

Defense Communications Agency
ATTN: Dr. Pravin Jain
85th St. and S. Courthouse Road
Arlington, VA 22204

Defense Nuclear Agency (4)
Attn: Col. W. Adams, STRA
G. Baker
J. Benson
B. Cikotas, RAEE
J. Farber, RAEV
6801 Telegraph Road
Alexandria, VA 22310

Defense Nuclear Agency (4)
Attn: J. Somers, SPLH
Maj. H. Soo, RAEV
G. Soper, DDST
L. Stoessell, SPLH
6801 Telegraph Road
Alexandria, VA 22310

Defense Nuclear Agency (4)
Attn: Cpt. P. Filios, RAEV
J. Mansfield, RAEE
J. Pierre
D. H. Stone
6801 Telegraph Road
Alexandria, VA 22310

Directed Technologies, Inc.
Attn: Mr. Ira F. Kuhn, Jr.
1226 Potomac School Road
McLean, VA 22101

EOS Technologies, Inc.
Attn: Dr. R. E. LeLevier
606 Wilshire Blvd., Suite 700
Santa Monica, CA 90401

Grumman Aerospace Corp.
Attn: A. G. Zimbalatti
Bethpage, NY 11714

DASIAC-DETIR
Kaman Tempo
Attn: D. Reitz
816 State Street
P. O. Drawer QQ
Santa Barbara, CA 93102

DASIAC-DETIR
Kaman Tempo
Attn: M. F. Wimenitz
2560 Huntington Ave., Suite 500
Alexandria, VA 22303

General Dynamics
Attn: K. Brown
P. O. Box 2507, MZ44-21
Pomona, CA 91769

General Electric Company
Space Systems Division
Attn: J. Peden
P. O. Box 8555
Philadelphia, PA 19101

GTE Labs, Inc.
Attn: L. A. Pitchford
40 Sylvan Rd.
Waltham, MA 02154

Harry Diamond Laboratories (4)
Attn: J. Agee
F. Balicki, HD-NW-P
H. E. Brandt
A. Brombovsky
2800 Powder Mill Road
Adelphi, MD 20783

Harry Diamond Laboratories (4)
Attn: E . Brown, SLCHD-PO-P
G. V. Cinnicione
H. Dropkin, HD-RT-CA
R. Garver, SLCHD-NW-RE
2800 Powder Mill Road
Adelphi, MD 20783

Harry Diamond Laboratories (4)
Attn: S. Graybill
R. Kehs
L. Libello
D. Lokerson, DELHD-RT-AA
2800 Powder Mill Road
Adelphi, MD 20783

Harry Diamond Laboratories (4)
Attn: J. Michalowicz, HD-NW-RA
R. Oswald
J. Rosado, SLCHD-NW-R
S. Share, HD-NW-RA
2800 Powder Mill Road
Adelphi, MD 20783

Harry Diamond Laboratories (3)
Attn: A. Steward, HD-NW-P
A. Sindoris, SLCHD-NW-RE
J. Tatum, SLCHD-NW-RE
2800 Powder Mill Road
Adelphi, MD 20783

Industrial College of the Armed Forces
Attn: ICFA-MSM, R. Lewis
Fort Lesley J. McNair
Fourth and P Street, SW
Washington, DC 20319

Institute for Defense Analysis
Attn: Dr. Deborah Levin
1801 N. Beauregard Street
Alexandria, VA 22311

IRT Corporation (3)
Attn: H. Buscher
F. Chilton
C. Williams
3030 Callan Rd.
San Diego, CA 92007

JAYCOR (3)
Attn: R. Bonn
D. Higgins
E. Weenas
309 Renard Place
Suite 201
Albuquerque, NM 87106

Kaman Sciences Corporation
Attn: J. Lamar Allen
P. O. Box I7463
Colorado Springs, CO 80933

Kaman Sciences, Inc. (3)
Attn: E. Conrad
T. Tumolillo
D. R. Smith
1911 Jefferson Davis Hwy.
Suite 1200
Arlington, VA 22202

Los Alamos National Laboratory (4)
Attn: D. Bach
H. Davis, MS-E526
J. Dingus
R. Hoberling, MS-F866
P. O. Box 1663
Los Alamos, NM 87545

Los Alamos National Laboratory (4)
Attn: T. Kwan
J. A. Landt
F. Morse
M. Reed
P. O. Box 1663
Los Alamos, NM 87545

Los Alamos National Laboratory (3)
Attn: J M. Schick, Group S6
L. E. Thode
L. Warner
P. O. Box 1663
Los Alamos, NM 87545

John MacCullum, Jr.
OUSDRE (RS & AT/MST)
Pentagon
Washington, DC 20330-5040

Lockheed Missles and Space
Company, Inc.
Attn: Charles J. Triangali
3251 Hanover Street
Palo Alto, CA 94304

Martin-Marietta Orlando Aerospace (3)
Attn: B. L. Clark
Mr. Charles R. Cranford
H. R. Fuehrer
P. O. Box 5837
Mail Point 480
Orlando, FL 32855

Maxwell Laboratories, Inc.
Attn: F. Marc de Piolenc
8835 Balboa Avenue
San Diego, CA 92123

Mission Research Co.
Attn: M. W. Bollen
8560 Cinderbed Rd, #700
Newington, VA 22122

Mission Research Corp.
Attn: Ms. Dawn Higgs
P. O. Box 279
Springfield, VA 22150

Mission Research Corp.
Attn: V. J. Lint
5434 Ruffin Rd.
San Diego, CA 92123

Mission Research Corp. (2)
Attn: B. Goldstein
C. Longmire
P. O. Box 719
735 State Street
Santa Barbara, CA 93102

Mission Research Corp.
Attn: D. Sullivan
1720 Randolph Rd., SE
Albuquerque, NM 78106

National Bureau of Standards (3)
Attn: N. Nahman
J. Reeve
A. Newell
Electromagnetic Technology Division
325 Broadway
Boulder, CO 80303

National Bureau of Standards (2)
Attn: D. Hill
C. Miller
Electromagnetic Fields Division
325 Broadway
Boulder, CO 80303

Naval Electronics Supply Engr. Center
Attn: D. Ensley
Bldg. 509, Mare Island
Vallejo, CA 94592

Naval Intelligence Center
Attn: Mr. Albert Leavitt
4301 Suitland Road
Washington, DC 20390

Naval Research Laboratory (4)
Attn: Sidney L. Ossakow, 4700
W. Ali, 4700.1
M. Friedman, 4700.1
J. Pasour, 4704.2
4555 Overlook Ave., SW
Washington, DC 20375

Naval Research Laboratory (4)
Attn: A. Fliflet
S. Gold
R. K. Parker
I. Vitkovitsky
4555 Overlook Ave., SW
Washington, DC 20375

Naval Research Laboratory (4)
Attn: B. Sheleg, 5733
G. Mueller, 6652
N. Seeman, 6652
T. Wieting, 6652
4555 Overlook Avenue, SW
Washington, DC 20375

Naval Sea Systems Command
PMS-405-300
Attn: R. L. Topping
Washington, DC 20301

Naval Surface Weapons Center
Attn: V. Pugiel/R. Richardson
Dahlgren, VA 22448

New Mexico State University
Physical Science Laboratory
Attn: A. K. Pattni
Box 3-PSL
Las Cruces, NM 88003

N. T. Amherd
39510 Paseo Padre Parkway
Fremont, CA 94538

Office of Missile Elec. Warfare
US Army Elec. Warfare Lab.
Attn: D. P. Ames
Dept. H220, Bldg. 1110
White Sands Missle Range, NM 88002

The Ohio State University (2)
Attn: L. Peters
P. H. Pothak
Electro Science Laboratory
1320 Kinnear Road
Columbus, OH 43212

Pacific Sierra Research
Attn: W. W. Carter
1401 Wilson Blvd.
Suite 1100
Arlington, VA 22209

Pacific Sierra Research (2)
Attn: L. Schlessinger
L. Johnson
1234 Santa Monica Blvd.
Los Angeles, CA 90025

Physics International Co. (5)
Attn: J. R. Anderson
J. Benford
Emil Kovtun
H. Sze
T. Young
2700 Merced St.
San Leandro, CA 94577

Physics International
Research & Development Div.
Attn: Dr. Alan J. Toepfer
2700 Merced Street
San Leandro, CA 94577

Pulse Sciences Inc. (2)
Attn: Philip D'A. Champney
R. DeGenuario
14796 Wicks Blvd.
San Leandro, CA 94577

Quest Research Corporation
Attn: Robert S. Ohanesian
6858 Old Dominion Drive
McLean, VA 22101

R&D Associates
Attn: Mr. B. Moller
P. O. Box 9695
Marina del Rey, CA 90291

R&D Associates
Attn: R. L. Parker
2720-B Broad Bent Parkway, NE
Albuquerque, NM 87107

RAND
Attn: Alexander F. Brewer
Santa Monica, CA 90406

Rockwell International
Attn: G. Morgan
Autonetics Strategic Systems Div.
P. O. Box 4192
Anaheim, CA 92803

W. J. Schafer Associates, Inc.
Attn: Dr. James P. Reilly
Corporate Place 128
Building 2, Suite 300
Wakefield, MA 01880

Science Applications, Inc. (2)
Attn: C. Yee
E. Cornet
1710 Goodridge Dr.
McLean, VA 22102

Science Applications, Inc.
Attn: R. Johnston
5 Palo Alto Square
Suite 200
Palo Alto, CA 94304

Science Applications, Inc.
Attn: Linda Whitmeyer
1215 Jefferson Davis Hwy., Suite 3
Arlington, VA 22202

SRI Inc.
Attn: Dr. Gerald August
Electromagnetic Sci. Lab.
333 Ravenswood Ave.
Menlo Park, CA 94025

Stanford Research Institute (3)
Attn: D. Douglas
A. MacDonald
D. Tremain
333 Ravenswood Avenue
Menlo Park, CA 94025

TRW, Inc. (3)	
Attn: P. Bhuta	1112 D. M. Follstaedt
Z. Guiragossian	1112 S. M. Myers
M. Mostron	1112 W. R. Wampler
Space and Technology Group	1134 G. L. Kellogg
1 Space Park	1150 J. E. Schirber
Mark Stop R1-1196	1151 D. Emin
Redondo Beach, CA 90278	1151 D. R. Jennison
TRW, Inc.	1230 J. E. Powell
Attn: L. Ferguson	1230 M. Stablein
T. Romesser	1234 W. Filter
Defense Systems Group	1235 B. Ballard
1 Space Park	1235 J. M. Hoffman
Mark Stop R1-1196	1240 K. Prestwich
Redondo Beach, CA 90278	1320 J. Renken
Varian Associates (2)	1800 R. L. Schwoebel
Attn: C. Lob	1823 J. A. Borders
D. S. Stone	1830 M. J. Davis
611 Hansen Way	2000 J. K. Galt
Palo Alto, CA 94304	2321 W. G. Perkins
Wright Aeronautical Laboratory (2)	2322 G. Scrivner
Attn: AFWAL/AAD, E. Champagne	2336 C. Blaine
AAWW-1, R. Von Rohr	7400 J. C. King
Wright-Patterson AFB, OH 45433	7554 G. Maxam
R. Alvarez, LLNL, L-280	7555 B. Boverie
Paul Bolton, LLNL, L-280	8000 J. C. Crawford
Hriar S. Cabayan, LLNL, L-156	8100 E. E. Ives
J. B. Chase, LLNL, L-35	8200 R. J. Detry
Jay Davis, LLNL, L-405	8230 W. D. Wilson
G. A. Fuller, LLNL, L-317	8233 J. Harris
Ray King, LLNL, L-156	8240 C. W. Robinson
H. Kruger, LLNL, L-10	8300 P. L. Mattern
R. Lundberg, LLNL, L-153	8310 R. W. Rohde
A. Poggio, LLNL, L-156	8340 W. Bauer
R. Scarpetti, LLNL, L-156	8341 M. I. Baskes
W. J. Shotts, LLNL, L-231	8341 J. B. Adams
A. J. Spero, LLNL, L-022	8341 A. Antolak
H. Valentine, LLNL, L-38	8341 M. S. Daw
B. W. Weinstein, LLNL, L-387	8341 S. M. Foiles
P. C. Wheeler, LLNL, L-23	8341 R. B. James (25)
R. Ziolkowski, LLNL, L-156	8341 J. S. Nelson
20 O. E. Jones	8341 C. M. Rohlfing
1000 V. Narayananamurti	8341 G. J. Thomas
1100 F. L. Vook	8341 W. G. Wolfer
1110 S. T. Picraux	8342 M. Lapp
1111 B. L. Doyle	8343 R. H. Stulen
1111 J. A. Knapp	8343 T. E. Felter
1111 H. J. Stein	8343 S. E. Guthrie
1112 D. K. Brice	8343 G. D. Kubiak
	8343 E. C. Sowa
	8347 K. L. Wilson
	8350 J. S. Binkley
	8357 C. F. Melius

8360 W. J. McLean

8400 R. C. Wayne

8478 J. Hinton

8500 P. E. Brewer

8535 Publication Div./ Technical
Library Processes Div., 3141

3141 Technical Library Processes
Div. (3)

8524-2 Central Technical Files (3)

Sandia National Laboratories