Banach Algebras - Homework 7 Solutions

25)

(1) For the orthogonal projection $E: H \to Y$ we have, $Ex = E(y + y^{\perp}) = y$. Using this, we obtain,

$$||Ex||^2 = ||y||^2 \le ||y||^2 + ||y^{\perp}||^2 = ||x||^2 \Rightarrow ||E|| \le 1.$$

Now, for $x \in Y$, we have ||Ex|| = ||x||, hence ||E|| = 1. Moreover,

$$\langle Ex, x \rangle = \langle y, y + y^{\perp} \rangle = \langle y, y \rangle = ||y||^2 > 0 \Rightarrow E > 0.$$

- (2) Follows from (1).
- (3) Let $E \in \mathcal{B}(H)$ with $E^2 = E = E^*$. We have that $\ker(E) = \operatorname{Rg}(E^*)^{\perp} = \operatorname{Rg}(E)^{\perp}$. Since $\operatorname{Rg}(E)^{\perp}$ is closed, the statement follows.
- (4) Let E_1, E_2 be orthogonal projections onto closed subspaces $Y_1, Y_2 \subset H$.
- $(i) \Rightarrow (ii)$: Let $Y_1 \subseteq Y_2, x = y_1 + y_1^{\perp}$. Then $E_1 x = y_1$ and since $E_2 y_2 = y_2$ for every $y_2 \in Y_2$, $E_2 E_1 x = y_1 = E_1 x$
- $(ii) \Rightarrow (iii)$: Since $E_1^2 = E_1$, we get from $E_2E_1 = E_1$ the equation $E_1E_2E_1 = E_1^2$ or equivalently $(E_1E_1 E_1)E_1 = 0$, and thus $E_1E_2 = E_1$.
- $(iii) \Rightarrow (iv)$: For $x \in H$, we have $||E_1x|| = ||E_1E_2x|| \le ||E_2x||$, using the fact that $E_1 \in \mathcal{B}(H)$ and $||E_1|| \le 1$.
- $(iv) \Rightarrow (v)$: We have to show that $\langle (E_2 E_1)x, x \rangle \geq 0, \forall x \in H$.

$$\langle E_1 x, x \rangle = \langle E_1 x, E_1 x \rangle = ||E_1 x||^2 \le ||E_2 x||^2 = \langle E_2 x, E_2 x \rangle = \langle E_2 x, x \rangle.$$

Hence $0 \leq \langle (E_2 - E_1)x, x \rangle$.

 $(v) \Rightarrow (i)$: Let $y \in Y_1$, then $(E_2 - E_1)y = E_2y - y$ and

$$||y||^2 = \langle E_1 y, y \rangle \le \langle E_2 y, y \rangle = ||E_2 y||^2 \le ||y||^2,$$

from which it follows that $||E_2y||^2 = ||y||^2$, and by (2), $y \in Y_2$.

- (5) If $\{E_{\alpha}\}$ is a family of projections, it follows from (4) that $\check{E} = \bigvee E_{\alpha}$, $\hat{E} = \bigwedge E_{\alpha}$ are the projections onto $\bigvee Y_{\alpha}$ and $\bigwedge Y_{\alpha}$ respectively, where Y_{α} is the closed subspace with $E_{\alpha}Y_{\alpha} = Y_{\alpha}$.
- (6) If $E_1 \leq E_2$, then $I = E_2 \leq (I E_1)$. Hence $\bigwedge (I E_\alpha) = I \bigvee E_\alpha$ and $\bigvee (I E_\alpha) = I \bigwedge E_\alpha$.
- (7) By assumption $\{E_{\alpha}(H)\}_{\alpha}$ is an increasing net of closed subspaces of H. Moreover, $\bigcup_{\alpha} E_{\alpha}(H)$ is a subspace of H with $\operatorname{cl}(\bigcup_{\alpha} E_{\alpha}(H)) = E(H)$. Now let $x \in H, \epsilon > 0$. Since $Ex \in E(H)$, there is $y \in E_{\alpha}(H)$ for some α with $||Ex y|| < \epsilon$. If $\alpha \leq \beta$, we get $E_{\alpha} \leq E_{\beta} \leq E$, and so $y \in E_{\alpha}(H) \subseteq E_{\beta}(H)$ which implies

$$||Ex - E_{\alpha}x|| = ||E(Ex - y) - E_{\beta}(Ex - y)|| \le ||E - E_{\beta}|| ||Ex - y|| < \epsilon$$

(8) Working with $I - E_{\alpha}$, the result follows from (7).

(9) If the index set A is finite, then $E = \sum_{\alpha \in A} E_{\alpha}$ is clear. If A is an infinite set, let $\mathcal{F} = \{F \subset A \mid |F| < \infty\}$. For $F \in \mathcal{F}$, let $G_F = \sum_{\alpha \in F} E_{\alpha}$, then by assumption on the net $\{E_{\alpha}\}_{{\alpha} \in A}$ and (7), we see $G_F = \bigvee_{\alpha \in F} E_{\alpha}$. Hence $(G_F)_{F \in \mathcal{F}}$ is an increasing net of projections and

$$\bigvee_{F \in \mathcal{F}} G_F = \bigvee_{F \in \mathcal{F}} \{ \bigvee_{\alpha \in F} E_\alpha \} = \bigvee_{\alpha \in A} E_\alpha = E$$

and by (7) the assertion follows.

26)

(i) Let $\mathcal{A} = \{ M_{\varphi} \mid \varphi \in L^{\infty}(\mu) \}.$

Commutativity: Let $M_{\varphi}, M_{\psi} \in \mathcal{A}$, then $M_{\varphi}M_{\psi}f = \varphi\psi f = \psi\varphi f = M_{\psi}M_{\varphi}f$. C* property: We have to show that $\|M_{\varphi}^*M_{\varphi}\| = \|M_{\varphi}\|^2$. This follows from example 1.6 (i).

(ii) Let $S \subset X$ be any measurable set and χ_S its characteristic function. We have, for any $f \in L^2(\mu)$,

$$M_{\chi_S} M_{\chi_S} f = \chi_S \chi_S f = \chi_S f = M_{\chi_S} f.$$

Hence $M_{\chi_S}^2 = M_{\chi_S}$. Moreover, $M_{\chi_S}^* f = M_{\overline{\chi_S}} f = M_{\chi_S} f$, that is, $M_{\chi_S}^* = M_{\chi_S}$. By 25)(3) we get that M_{χ_S} is a projection.

(iii) Let $\{S_n\}_{n\geq 1}$ be a sequence of subsets of Ω which $S_n\cap S_m=\emptyset, n\neq m, \bigcup_{n\geq 1}S_n=X$. By (ii), $M_{\chi_{S_n}}$ are projections and by 25)(4) we get

$$||f - \sum_{i=1}^{n} M_{\chi_{S_j}} f|| \to 0, \ n \to \infty.$$