Implicit Feedback for Dense Passage Retrieval: A Counterfactual Approach

Shengyao Zhuang, Hang Li, Guido Zuccon

{s.zhuang, h.li, g.zuccon}@uq.edu.au ielab, The University of Queensland, Australia www.ielab.io

Dense Retrievers

- Offline (Training):
 - Train BERT encoder to create representation of relevant docs and queries that are close to each other
 - Create vector representation of documents with BERT encoder
- Online (Inference):
 - create vector representation of query with BERT encoder
 - compute vector similarity between query and document vectors

Dense Retrievers require extensive labelled data

- Labelled data can be expensive to obtain (e.g. domain specific), at times not possible (e.g. for private data)
- In this paper:
 - Can we use implicit feedback collected by a search engine (click-through data) to inform DRs?
 - Key idea: adapt current pseudo relevance feedback method for DRs (Vector PRF) to deal with implicit feedback (clicks)

Vector PRF (VPRF) for DRs

Vector PRF (VPRF) for DRs

Vector PRF (VPRF) for DRs

Adapting VPRF to clicks

Adapting VPRF to clicks

Adapting VPRF to clicks

Addressing Challenge 1: position bias

- Position bias
 - Lower ranked documents often get less attention by users
 - A document may not be clicked due to:
 - (i) irrelevant, or (ii) not observed

- How to solve?
 - Inverse propensity scoring (IPS): re-weight clicks by the document observation propensity

$$\operatorname{CoRocchio}\left(\vec{q}, P(o)\right) = \alpha \cdot \vec{q} + \frac{\beta}{|R_q|} \cdot \sum_{r_q \in R_q} \sum_{p_i \in r_q} \frac{\vec{p}_i}{P(o_i)} \cdot c(p_i)$$

- How to solve?
 - Inverse propensity scoring (IPS): re-weight clicks by the document observation propensity

CoRocchio
$$(\vec{q}, P(o)) = \alpha \cdot \vec{q} + \frac{\beta}{|R_q|} \cdot \sum_{r_q \in R_q} \sum_{p_i \in r_q} \frac{\vec{p}_i}{P(o_i)} \cdot c(p_i)$$

- How to solve?
 - Inverse propensity scoring (IPS): re-weight clicks by the document observation propensity

CoRocchio
$$(\vec{q}, P(o)) = \alpha \cdot \vec{q} + \frac{\beta}{|R_q|} \cdot \sum_{r_q \in R_q} \sum_{p_i \in r_q} \frac{\vec{p}_i}{P(o_i)} \cdot c(p_i)$$

- How to solve?
 - Inverse propensity scoring (IPS): re-weight clicks by the document observation propensity

CoRocchio
$$(\vec{q}, P(o)) = \alpha \cdot \vec{q} + \frac{\beta}{|R_q|} \cdot \sum_{r_q \in R_q} \sum_{p_i \in r_q} \frac{\vec{p}_i}{P(o_i)} \cdot c(p_i)$$

 What if we don't have the current query in our historic query log?

 CoRocchio is similar to a tabularbased ranker: can only be used for queries in log

- How to solve?
 - Intuition: similar queries ~ similar dense representations in DR
 - Then, find the most similar k queries in the query log

- How to solve?
 - Intuition: similar queries ~ similar dense representations in DR
 - Then, find the most similar k queries in the query log
 - Use average unbiased passage representation aggregation for top-k similar queries to compute new query representation

 $CoRocchio-ANN(\vec{q_u}, P(o))$

$$= \alpha \cdot \vec{q_u} + \frac{\beta}{|Q| \cdot |R_q|} \cdot \sum_{q \in Q} \sum_{r_q \in R_q} \sum_{p_i \in r_q} \frac{\vec{p_i}}{P(o_i)} \cdot c(p_i)$$

- How to solve?
 - Intuition: similar queries ~ similar dense representations in DR
 - Then, find the most similar k queries in the query log
 - Use average unbiased passage representation aggregation for top-k similar queries to compute new query representation

 $CoRocchio-ANN(\vec{q_u}, P(o))$

$$= \alpha \cdot \vec{q_u} + \underbrace{\frac{\beta}{|Q| \cdot |R_q|} \cdot \sum_{q \in Q} \sum_{r_q \in R_q} \sum_{p_i \in r_q} \frac{\vec{p_i}}{P(o_i)} \cdot c(p_i)}_{}$$

Evaluating CoRocchio: dataset problem

- Training of DRs requires large datasets with textual passages & relevance labels
- No datasets for DRs with large scale click data to be used as implicit feedback
 - ORCAS for MS MARCO does not cut it:
 - Clicks refer to document part of MS MARCO, mapping to passages not complete
 - clicks recorded as query-document pairs; no info regarding rank position in SERP: cannot derive position bias information

Evaluating CoRocchio

- Use MS MARCO corpus & TREC DL 2019 & 2020 query sets
- Create dataset following online LTR practice
 - click model to simulate click behaviour and create a synthetic click log; two parameters: the click probability & position bias
 - Issue queries multiple times, run click model, create simulated historical click log
- Unseen queries: Synthetic query generation
 - docTquery-T5 to generate a query from each passage judged relevant to original query; then assume synthetic query has same relevant documents

CREATE CHANGE

CREATE CHANGE

CREATE CHANGE

Results: Influence of user propensity

THE UNIVERSITY
OF QUEENSLAND
AUSTRALIA
CREATE CHANGE

Results: Influence of user propensity

Results: Influence of user propensity

Results: Unseen queries and CoRocchio-ANN

TREC DL 2019

Take-aways

- Key idea: improve DRs effectiveness using implicit feedback from click logs
- Click signal more informative than pseudo relevance signal. But click signal is biased:
 - devised CoRocchio: counterfactually de-bias the click signal
 - **theoretical** demonstration that CoRocchio generates unbiased estimates (in paper, not shown)
 - empirical analyses shows CoRocchio effectively address click bias
- CoRocchio requires current query has been observed in the query log
 - CoRocchio-ANN effectively exploits click signals of related, observed queries
- Adapted practices from counterfactual LTR to datasets for DR evaluation: simulate clicks on SERPs to collect historic click log

