

EXAMEN DE FIN D'ÉTUDES SECONDAIRES **2017**

BRANCHE	SECTION(S)	ÉPREUVE ÉCRITE
		Durée de l'épreuve 3h
Chimie	B/C	Date de l'épreuve 13.06.2017 Numéro du candidat

Le clenbutérol, une molécule bien intéressante

QC = question de cours (19)

ANN = application non numérique (20)

AN = application numérique (21)

Le clenbutérol (5) est un médicament issu de la médecine vétérinaire (affections broncho-pulmonaires spastiques chez le cheval de course). Chez l'Homme, le clenbutérol est indiqué en cas de problèmes pulmonaires graves. A cause du renforcement de la ventilation, en combinaison avec ses effets secondaires perte de masse grasse, effets anabolisants et augmentation du flux sanguin, le clenbutérol jouait (et joue) un rôle important et très douteux dans les domaines du régime et du dopage.

1. La molécule de clenbutérol (4P)

- a. Derrière la formule donnée se cachent en fait deux molécules isomères. De quel type d'isomérie s'agit-il ? Motiver la réponse !
- b. Donner les représentations spatiales de ces isomères avec leur désignation (pas le nom!) selon IUPAC! (Abréviations R- et/ou Ar- permises après leur(s) définition(s)!)
- c. Le clenbutérol est commercialisé sous forme d'un mélange 50/50 de ces molécules isomères. Comment appelle-t-on un tel mélange ? QC1

Dans la suite certains éléments de structure du clenbutérol seront discutés.

2. Les aromates (composés aromatiques) (6P)

- a. Expliquer ce qu'on entend par un système aromatique en analysant la situation électronique dans le benzène (sans conception classique). QC4
- b. Quelles sont les propriétés qui en découlent ?

QC2

3. La fonction alcool (12P)

Un alcool ${f A}$ de formule C_6H_5 -CHOH-R est oxydé en milieu acide par le dichromate de potassium

- a. À quel fonction le produit appartient-il ? Motiver la réponse ! ANN1
- Dresser le système rédox pour cette réaction en utilisant la formule générale donnée plus haut pour l'alcool!
- c. Trouver les formules brute et semi-développée de l'alcool **A** sachant que l'oxydation de 2,04 g consomme 10 mL d'une solution de dichromate 0,5 M! AN4
- d. L'alcool A peut facilement être transformé en un alcène B. De quel de type de réaction s'agit-il ? Donner l'équation globale pour cette transformation (formules semi-développées)!

 ANN2
- e. L'alcène **B** obtenu se présente sous forme de deux isomères. Dresser les formules avec leur noms IUPAC respectifs!

 ANN2

4. La fonction amine (24P)

- a. Discuter la basicité des amines aliphatiques en général et comparer les trois classes.
- Discuter la basicité de l'aniline (aminobenzène, N-phénylamine) en impliquant la mésomérie.

 ANN2

Le diagramme suivant montre le titrage d'une prise de 10 mL de solution d'aniline par une solution de HCl 1 M :

C.	Déterminer graphiquement le P.E.!	AN2
d.	Calculer la concentration initiale de l'aniline!	AN2
e.	Déterminer le pK₀ de l'aniline !	AN2
f.	Calculer le pH de la solution initiale!	AN3
g.	Calculer le pH au P.E.!	AN3

- h. Considérons le tampon formé par l'aniline et son acide conjugué. Dans quel domaine de pH pourrait-on l'utiliser ?

 ANN1
- i. Quel serait la composition d'un tel tampon au pH = 5 ?

AN2

j. Quel volume de HCl 1M serait nécessaire pour transformer 4,65 g d'aniline en un tel tampon ?

5. Synthèse du clenbutérol (5) (14P)

La synthèse est réalisée en quatre étapes à partir de la p-aminoacétophénone (1) :

Réaction A

a. De quel type de réaction s'agit-il (sigle à deux lettres) ?

ANN1

- Expliquer la position des deux atomes de chlore introduits dans la molécule !
 (formules contributives à la mésomérie non requises)

 ANN2
- c. Donner le mécanisme réactionnel pour la première chloration de la p-aminoacétophénone 1! QC5

Réaction B: Substitution d'un atome d'hydrogène par le brome

Réaction C

d. De quel type de réaction s'agit-il (sigle à deux lettres) ?

ANN1

- e. Quel est le deuxième réactif nécessaire à cette transformation ? (nom et formule semi-développée)

 ANN1
- f. Donner le mécanisme réactionnel ! (Abréviation R- ou Ar- permise après définition!)

 ANN3

Réaction D

g. De quel type de réaction s'agit-il ? Motiver la réponse!

ANN1

Tableau des pKa (abréviations : ac. = acide ; cat. = cation ; an. = anion)

acides forts (plus forts que H₃O⁺) HI, HBr, HCl, HClO₄, HNO₃, H₂SO₄

bases de force négligeable

			-	
cat. hydronium	H ₃ O ⁺	H ₂ O	eau	-1,74
ac. chlorique	HCIO₃	CIO ₃ -	an. chlorate	-1,00
ac. trichloroéthanoïque	CCI₃COOH	CCl₃COO⁻	an. trichloroéthanoate	0,70
ac. iodique	HIO ₃	IO ₃ .	an. iodate	0,80
cat. hexaqua thallium III	$[TI(H_2O)_6]^{3+}$	[TI(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo thallium III	1,14
ac. oxalique	нооссоон	HOOCCOO-	an. hydrogénooxalate	1,23
ac. dichloroéthanoïque	CHCI₂COOH	CHCl₂COO ⁻	an. dichloroéthanoate	1,26
ac. sulfureux	H ₂ SO ₃	HSO ₃ -	an. hydrogénosulfite	1,80
an. hydrogénosulfate	HSO ₄ -	SO ₄ ²⁻	an. sulfate	1,92
ac. chloreux	HCIO ₂	CIO ₂ -	an, chlorite	2,00
ac. phosphorique	H ₃ PO ₄	H ₂ PO ₄	an. dihydrogénophosphate	2,12
ac. fluoroéthanoïque	CH₂FCOOH	CH₂FCOO⁻	an. fluoroéthanoate	2,57
cat. hexaqua gallium III	[Ga(H ₂ O) ₆] ³⁺	[Ga(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo gallium III	2,62
cat. hexaqua fer III	[Fe(H ₂ O) ₆] ³⁺	[Fe(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo fer III	2,83
ac. chloroéthanoïque	CH₂ClCOOH	CH₂CICOO⁻	an. chloroéthanoate	2,86
ac. bromoéthanoïque	CH₂BrCOOH	CH ₂ BrCOO ⁻	an. bromoéthanoate	2,90
cat. hexaqua vanadium III	[V(H ₂ O) ₆] ³⁺	[V(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo vanadium III	2,92
ac. nitreux	HNO ₂	NO ₂	an. nitrite	3,14
ac. iodoéthanoïque	CH₂ICOOH	CH₂ICOO ⁻	an. iodoéthanoate	3,16
ac. fluorhydrique	HF	F	an. fluorure	3,17
ac. acétylsalicylique	C ₈ H ₇ O ₂ COOH	C ₈ H ₇ O ₂ COO ⁻	an. acétylsalicylate	3,48
ac. cyanique	HOCN	OCN-	an. cyanate	3,66
ac. méthanoïque	НСООН	HCOO-	an. méthanoate	3,75
ac. lactique	СН₃СНОНСООН	CH₃CHOHCOO-	an. lactate	3,87
ac. ascorbique	C ₆ H ₈ O ₆	C ₆ H ₇ O ₆ ⁻	an. ascorbate	4,17
ac. benzoïque	C ₆ H ₅ COOH	C ₆ H ₅ COO	an. benzoate	4,19
cat. anilinium	C ₆ H ₅ NH ₃ ⁺	C ₆ H ₅ NH ₂	aniline	4,62

ac. éthanoïque	CH₃COOH	CH₃COO⁻	an. éthanoate	4,75
ac. propanoïque	CH ₃ CH ₂ COOH	CH₃CH₂COO⁻	an. propanoate	4,87
cat. hexaqua aluminium	[AI(H ₂ O) ₆] ³⁺	[Al(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo aluminium	4,95
cat. pyridinium	C ₅ H ₅ NH ⁺	C ₅ H ₅ N	pyridine	5,25
cat. hydroxylammonium	NH₃OH ⁺	NH₂OH	hydroxylamine	6,00
dioxyde de carbone (aq)	CO ₂ + H ₂ O	HCO ₃ -	an. hydrogénocarbonate	6,12
ac. sulfhydrique	H ₂ S	HS ⁻	an. hydrogénosulfure	7,04
an. hydrogénosulfite	HSO ₃ -	SO ₃ ²⁻	an. sulfite	7,20
an. dihydrogénophosphate	H ₂ PO ₄	HPO ₄ ²⁻	an. hydrogénophosphate	7,21
ac. hypochloreux	HCIO	CIO ⁻	an. hypochlorite	7,55
cat. hexaqua cadmium	[Cd(H ₂ O) ₆] ²⁺	[Cd(OH)(H ₂ O) ₅] ⁺	cat. pentaqua hydroxo cadmium	8,50
cat. hexaqua zinc	[Zn(H ₂ O) ₆] ²⁺	[Zn(OH)(H ₂ O) ₅] ⁺	cat. pentaqua hydroxo zinc	8,96
cat. ammonium	NH ₄ ⁺	NH ₃	ammoniac	9,20
ac. borique	H ₃ BO ₃	H ₂ BO ₃	an. borate	9,23
ac. hypobromeux	HBrO	BrO ⁻	an. hypobromite	9,24
ac. cyanhydrique	HCN	CN ⁻	an. cyanure	9,31
cat. triméthylammonium	(CH ₃) ₃ NH ⁺	(CH ₃) ₃ N	triméthylamine	9,87
phénol	C ₆ H ₅ OH	C ₆ H ₅ O ⁻	an. phénolate	9,89
an. hydrogénocarbonate	HCO ₃ -	CO ₃ ²⁻	an, carbonate	10,25
ac. hypoiodeux	HIO	IO-	an. hypoiodite	10,64
cat. méthylammonium	CH ₃ NH ₃ ⁺	CH ₃ NH ₂	méthylamine	10,70
cat. éthylammonium	CH ₃ CH ₂ NH ₃ ⁺	CH ₃ CH ₂ NH ₂	éthylamine	10,75
cat. triéthylammonium	(C₂H₅)₃NH ⁺	(C ₂ H ₅) ₃ N	triéthylamine	10,81
cat. diméthylammonium	(CH ₃) ₂ NH ₂ ⁺	(CH ₃) ₂ NH	diméthylamine	10,87
cat. diéthylammonium	(C ₂ H ₅) ₂ NH ₂ ⁺	(C ₂ H ₅) ₂ NH	diéthylamine	11,10
an. hydrogénophosphate	HPO ₄ ²⁻	PO ₄ ³⁻	an. phosphate	12,32
an. hydrogénosulfure	HS ⁻	S ²⁻	an. sulfure	12,90
eau	H ₂ O	OH-	anion hydroxyde	15,74

acides de force négligeable	bases fortes (plus fortes que OH ⁻) O ²⁻ , NH ₂ ⁻ , anion alcoolate RO ⁻)

TABLEAU PERIODIQUE DES ELEMENTS

	NIII V	4,0	He	2	20,2	Ne	10	39,9	Ar	18	83,8	궃	36	131,3	Xe	54	(222)	Ru	98			
	II/				19,0	ш	0	35,5	ਹ	17	6'62	Br	35	126,9	н	53	(210)	At	85			
ipaux	>				16,0	0	8	32,1	S	16	0'62	Se	34	127,6	Te	52	(508)	Po	84			
groupes principaux	>				14,0	z	7	31,0	۵	15	74,9	As	33	121,8	Sb	51	209,0	<u>B</u>	83			
grou	2				12,0	U	9	28,1	Si	14	72,6	Ge	32	118,7	Sn	20	207,2	Pb	82			
	≡				10,8	8	5	27,0	A	13	2,69	Ga	31	114,8	'n	49	204,4	F	81			
										=	65,4	Zn	30	112,4	8	48	200,6	Hg	80			
										_	63,5	J	29	107,9	Ag	47	197,0	Αn	79			
											28,7	Z	28	106,4	Pd	46	195,1	꿉	78	(281)	Ds	110
								ires		III	6'89	ပိ	27	102,9	Rh	45	192,2	ľ	77	(268)	Æ	109
								groupes secondaires			8,53	Fe	26	101,1	Ru	44	190,2	Os	92	(569)	Hs	108
								groupes		IIN	54,9	Ξ	25	(26)	Z	43	186,2	Re	75	(564)	Bh	107
										I	52,0	င်	24	62'6	Mo	42	183,9	3	74	(592)	Sg	106
										>	6'09	>	23	92,9	P	41	180,9	Ta	73	(262)	СP	105
										2	47,9	F	22	91,2	Zr	40	178,5	Ŧ	72	(261)	Rf	104
×						1133-11				=	45,0	Sc	21	6'88	>	39	138,9	Гa	22	227,0	Ac	89
groupes principaux	=				0,6	Be	4	24,3	Mg	12	40,1	င္မ	20	9,78	'n	38	137,3	Ba	56	226,0	Ra	88
groupes	-	1,0	I	1	6'9	<u>'</u>	3	23,0	Na	1	39,1	¥	19	85,5	Rb	37	132,9	S	55	(223)	ቷ	87
			-			7			n			4			2			9			7	

(145) 150,4	(145) 150,4	150,4	~	52,0	157,3		162,5	164,9	167,3	168,9	173,0	175,0
Pr Nd Pm Sm Eu	Pm Sm	Sm	Ш		P 5	1	ρ	웃	ш	ᆵ	Yb	Ľ
59 60 61 62 63	61 62	62	63		64	65	99	29	89	69	70	71
231,0 238,0 237,0 (244) (243)	237,0 (244)	(244)	(243)		(247)	(247)	(251)	(254)	(257)	(258)	(259)	(256)
U Np Pu	Pu	Pu	Am		Ę	BK	ರ	Es	Fm	PΨ	2	۲
91 92 93 94 95	93 94	94	95		96	26	98	66	100	101	102	103

lanthanides

actinides