First order logic—syntax

First order languages extend propositional ones by adding the apparatus to refer to elements of a structure and to assert their properties.

Our language consists of (certain) finite sequences of symbols, as described below.

ullet The $logical\ symbols$ are the following.

$$() \neg \rightarrow \forall$$

- $\hat{=}$ is the equality symbol.
- The variable symbols are x_i , for $i \in \mathbb{N}$.
- The constant symbols are c_i , for $i \in \mathbb{N}$.
- The function symbols are F_i , for $i \in \mathbb{N}$.
- The predicate symbols are P_i , for $i \in \mathbb{N}$.

We fix a function π mapping the set of function and predicate symbols to \mathbb{N} so that for each $k \geq 1$, each of the sets

$$\{i \in \mathbb{N} \mid \pi(F_i) = k\}$$

and

$$\{i \in \mathbb{N} \mid \pi(P_i) = k\}$$

is infinite. For example, we could define $\pi: F_i \mapsto k$, where the kth prime is the least prime which divides i. (So e(j) = 2 if j is even etc.) The purpose of the function π is to specify the number of arguments or arity of each function and predicate symbol.

2.1 Terms

Recall our notation; if $s = \langle s_1, \ldots, s_n \rangle$ and $t = \langle t_1, \ldots, t_m \rangle$ are finite sequences of symbols, then s + t denotes the finite sequence $\langle s_1, \ldots, s_n, t_1, \ldots, t_m \rangle$.

Definition 2.1 The set of terms, T, is defined as the smallest set of finite sequences T satisfying the following properties.

(1) For each $i \in \mathbb{N}$, the sequences of length one,

 $\langle x_i \rangle$

and

 $\langle c_i \rangle$

belong to T.

(2) If F_i is a function symbol, $n = \pi(F_i)$, and τ_1, \ldots, τ_n belong to T, then

$$\langle F_i \rangle + \langle (\rangle + \tau_1 + \dots + \tau_n + \langle) \rangle$$

belongs to T. More briefly, the concatenation $F_i(\tau_1 \dots \tau_n)$ belongs to T.

We will assume familiarity with the methods of the previous chapter and omit the proof that T is well defined.

Remark 2.2 We shall adopt several notational conventions.

- (1) Often we shall say that x_i is a term. Of course we are referring to the sequence of length 1, $\langle x_i \rangle$.
- (2) More generally we shall indicate terms informally and use

$$F_i(\tau_1,\ldots,\tau_n)$$

to indicate the term

$$\langle F_i \rangle + \langle (\rangle + \tau_1 + \dots + \tau_n + \langle) \rangle$$

The elements of T are uniquely readable, as is pointed out in the next sequence of lemmas.

Lemma 2.3 (Readability) For each term τ in T, exactly one of the following conditions applies.

- (1) There is an $i \in \mathcal{N}$ greater than or equal to 1 such that τ is x_i or τ is c_i .
- (2) There is an $i \in \mathcal{N}$ greater than or equal to 1 such that $\pi(F_i) = n$ and there are terms τ_1, \ldots, τ_n in T such that τ is $F_i(\tau_1, \ldots, \tau_n)$.

Proof. As in the proof of Lemma 1.11, we let T be the subset of T whose elements satisfy one of the above clauses. We observe that T satisfies the closure properties of Definition 2.1. Consequently, $T \subseteq T$, as required.

The two conditions are mutually exclusive, as the first symbol in τ determines which condition applies. \Box

Lemma 2.4 If $\tau \in T$, then no proper initial segment of τ is an element of T.

Proof. We proceed by induction on the length of $\tau \in T$.

If τ is a term of length 1, then the only proper initial segment is the null sequence, which by Lemma 2.3 is not an element of T.

Suppose that τ has length greater than 1 and assume the lemma for all terms of length less than that of τ . By Lemma 2.3, τ is of the form $F_i(\tau_1, \ldots, \tau_n)$. Suppose that σ is a proper initial segment of τ such that $\sigma \in T$. As above, σ is not the null sequence, so the first symbol in σ is F_i . By Lemma 2.3, σ must have the form $F_i(\sigma_1, \ldots, \sigma_n)$, where each σ_i belongs to T. But then, σ_1 and τ_1 must be identical, since neither can be a proper initial segment of the other. It follows by an induction up to n, that for each i, σ_i is equal to τ_i . But then $\sigma = \tau$, contradicting the choice of σ . Thus, τ has no proper initial segment in T, as required.

Theorem 2.5 (Unique Readability) For each term τ in T, exactly one of the following conditions applies.

- (1) There is an $i \in \mathcal{N}$ greater than or equal to 1 such that τ is x_i or τ is c_i .
- (2) There is an $i \in \mathcal{N}$ greater than or equal to 1 such that $\pi(F_i) = n$ and there are terms τ_1, \ldots, τ_n in T such that τ is $F_i(\tau_1, \ldots, \tau_n)$.

Further, in (2), the function symbol F_i and the terms τ_1, \ldots, τ_n are unique.

Proof. By Lemma 2.3, it will be sufficient to verify the uniqueness of τ_1, \ldots, τ_n . This follows as in the proof of Lemma 2.4. Suppose that τ could be written as $F_i(\tau_1, \ldots, \tau_n)$ and as $F_j(\sigma_1, \ldots, \sigma_m)$. Then F_i and F_j both occur as the first symbol in τ , and hence are equal. Consequently, $n = m = \pi(F_i)$. Then, τ_1 and σ_1 must also be equal, as neither can be a proper initial segment of the other. By induction on i less than or equal to n, for each i, τ_i is equal to σ_i , as required.

2.2 Formulas

Definition 2.6 The set of formulas, \mathcal{L} , is the smallest set L of finite sequences of symbols as above satisfying the following properties.

(1) If P_i is a predicate symbol, $n = \pi(P_i)$ is the arity of P_i and τ_1, \ldots, τ_n are terms, then

$$P_i(\tau_1 \dots \tau_n)$$

is an element of L

(2) If τ_1 and τ_2 are terms, then

$$(\tau_1 = \tau_2)$$

is an element of L.

(3) If $\varphi \in L$, then

$$(\neg \varphi)$$

is an element of L

(4) If φ_1 and φ_2 are elements of L, then

$$(\varphi_1 \to \varphi_2)$$

is an element of L

(5) If $\varphi \in L$ and x_i is a variable symbol, then

$$(\forall x_i \varphi)$$

is an element of L.

As in the case of T, we will not repeat the argument to show that \mathcal{L} is well defined.

Definition 2.7 The *atomic formulas* are the ones indicated in (1) and (2) of Definition 2.6.

2.3 Subformulas

We define the relation ψ is a subformula of φ for formulas in \mathcal{L} .

Definition 2.8 Suppose that φ is a formula. A formula ψ is a *subformula* of φ if ψ is a block-subsequence of φ . (See Definition 1.5.)

Definition 2.9 Suppose that $\varphi = \langle a_1, \dots, a_n \rangle$ is a formula and s is a finite sequence. An *occurrence* of s in φ is an interval $[j_1, j_2]$ such that $s = \langle a_{j_1}, \dots, a_{j_2} \rangle$.

Remark 2.10 Suppose that φ is a formula. A formula ψ is a subformula of φ if and only if ψ has an occurrence in φ .

We will give an abbreviated proof that every formula in \mathcal{L} is uniquely readable, as stated in Theorem 2.13. As above, we proceed by proving a readability lemma, a proper initial segment lemma, and then a uniqueness lemma.

Lemma 2.11 (Readability) Suppose that φ is a formula. Then exactly one of the following conditions applies.

- (1) There is an i and terms τ_1, \ldots, τ_n are terms, where $n = \pi(P_i)$, such that $\varphi = P_i(\tau_1 \ldots \tau_n)$.
- (2) There are terms τ_1 and τ_2 such that $\varphi = (\tau_1 = \tau_2)$.
- (3) There is a formula ψ such that $\varphi = (\neg \psi)$.
- (4) There are formulas ψ_1 and ψ_2 such that $\varphi = (\psi_1 \to \psi_2)$.
- (5) There is a formula ψ and a variable x_i such that $\varphi = (\forall x_i \psi)$.

The proof Lemma 2.11 is analogous to that of Lemma 1.11.

Lemma 2.12 If $\varphi \in \mathcal{L}$, then no proper initial segment of φ is an element of \mathcal{L} .

Proof. We consider the cases of Lemma 2.11.

Suppose that φ is of the form $P_i(\tau_1...\tau_n)$ and ψ is a proper initial segment of φ which also belongs to \mathcal{L} . Then the first symbol in ψ is P_i and so ψ must also be of the form $P_i(\sigma_1...\sigma_n)$. But then τ_1 must equal σ_1 , or they would be a pair of distinct terms for which one is a proper initial segment of the other, contradicting Lemma 2.4. It follows by induction on i less than or equal to n that each σ_i is equal to τ_i , and hence that φ is equal to ψ .

The case when φ is an equality between terms can be analyzed similarly, using Lemma 2.4.

The cases when φ is $(\neg \psi)$ or $(\psi_1 \to \psi_2)$ are analogous to the same cases in the propositional case. See Lemma 1.12.

Finally, consider the case when φ is $(\forall x_i \varphi_1)$. If ψ is an initial segment of φ , then ψ must be of the form $(\forall x_i \psi_1)$, as φ and ψ must have the same first three symbols. But then induction applies to φ_1 , and ψ_1 must equal φ_1 . It follows that φ is equal to ψ .

Theorem 2.13 (Unique Readability) Suppose that φ is a formula. Then exactly one of the following conditions applies.

- (1) There is an i and terms τ_1, \ldots, τ_n are terms, where $n = \pi(P_i)$, such that $\varphi = P_i(\tau_1 \ldots \tau_n)$.
- (2) There are terms τ_1 and τ_2 such that $\varphi = (\tau_1 = \tau_2)$.
- (3) There is a formula ψ such that $\varphi = (\neg \psi)$.
- (4) There are formulas ψ_1 and ψ_2 such that $\varphi = (\psi_1 \to \psi_2)$.
- (5) There is a formula ψ and a variable x_i such that $\varphi = (\forall x_i \psi)$.

Further, in each of the above cases, the terms and/or subformulas which are mentioned in that case are unique.

We leave the proof of Theorem 2.13 to the Exercises.

2.3.1 Exercises

- (1) Prove Theorem 2.13.
- (2) Consider the set of sequences defined as in Definition 2.6 except that the last clause is changed to read, "If $\varphi \in L$ and x_i is a variable symbol, then $\forall x_i \varphi$ is an element of L" in which the parentheses are omitted. Is this set uniquely readable?
- (3) Consider the set of sequences defined as in Definition 2.6 except that the fourth clause is changed to read, "If φ_1 and φ_2 are elements of L, then $\varphi_1 \to \varphi_2$ is an element of L" in which the parentheses are omitted. Is this set uniquely readable?

2.4 Free variables, bound variables

Suppose that φ is a formula and that x_i is a variable. Then each occurrence of $\forall x_i \text{ in } \varphi$ defines a unique subformula of φ . This is the content of the next lemma.

Lemma 2.14 Suppose that φ is a formula, x_i is a variable, s and t are finite sequences, and that

$$\varphi = s + \langle \forall, x_i \rangle + t.$$

Then there is a finite sequence \hat{s} , there is a formula ψ , and there is a finite sequence \hat{t} such that $s = \hat{s} + \langle (\rangle \text{ and }$

$$\varphi = \hat{s} + \psi + \hat{t}.$$

Further, ψ is unique.

Proof. Note that the uniqueness of ψ follows by observing that if there were two such formulas, then one would be a proper initial segment of the other and contradict Lemma 2.12.

We prove the existence claims of Lemma 2.14 by induction on the length of φ . There are no formulas of length 1, and so the lemma is true of all length 1 formulas on trivial grounds. Now assume the lemma is true of every formula which is shorter than φ . By Lemma 2.11, we can analyze φ by considering the various cases of the Lemma. If φ is atomic, then φ does not contain an occurrence of $\langle \forall, x_i \rangle$, and again the claim is true on trivial grounds. If φ is $(\neg \theta)$, then any occurrence of $\langle \forall, x_i \rangle$ in φ is also one in θ and by induction there is a ψ contained in θ as required. Similarly, if φ is $(\psi_1 \to \psi_2)$ and there is an occurrence of $\langle \forall, x_i \rangle$ in φ , then it must be contained completely in ψ_1 or in ψ_2 (there is no \to in $\langle \forall, x_i \rangle$) and the induction hypothesis applies. If φ is $(\forall x_j \varphi_1)$, then either the occurrence of $\langle \forall, x_i \rangle$ is the block of the second and third symbols in φ , \hat{s} and \hat{t} are both equal to the empty sequence, and the formula φ is the desired ψ , or the occurrence of $\langle \forall, x_i \rangle$ is entirely contained in φ_1 and the induction hypothesis applies.

This suggests the following definition.

Definition 2.15 Suppose that $\varphi = \langle a_1, \dots, a_n \rangle$ is a formula and x_i is a variable.

- (1) An occurrence of $\forall x_i$ in φ is an occurrence of $\langle \forall, x_i \rangle$ in φ (as a block-subsequence).
- (2) The *scope* of a particular occurrence of $\forall x_i$ in φ is the unique interval $[j_1, j_2]$ with the following properties.
 - a) $[j_1 + 1, j_1 + 2]$ is the given occurrence of $\forall x_i$.
 - b) $\langle a_{j_1}, \ldots, a_{j_2} \rangle$ is a formula (which of course is a subformula of φ).

Note that Lemma 2.12 implies that the sequence $\langle a_{j_1}, \ldots, a_{j_2} \rangle$ is unique.

Definition 2.16 Suppose that φ is a formula and that x_i is a variable which occurs in φ .

(1) An occurrence of x_i in φ is *free* if and only if it is not within the scope of any occurrence of $\forall x_i$ in φ . Otherwise, the occurrence is *bound*.

- (2) x_i is a free variable if and only if there is a free occurrence of x_i in φ .
- (3) x_i is a bound variable of φ if and only if x_i occurs in φ and is not a free variable of φ .
- **Definition 2.17** (1) If τ is a term, we write $\tau(x_1,\ldots,x_n)$ to indicate that the variables of τ are included in the set $\{x_1, \ldots, x_n\}$.
- (2) If φ is a formula, we write $\varphi(x_1, \ldots, x_n)$ to indicate that the free variables of φ are included in the set $\{x_1, \ldots, x_n\}$.

Definition 2.18 A formula φ is a *sentence* if and only if it has no free variables.