Greatest Common Factor	$a^3 \pm b^3$	(a+b)(a-b)	
Difference of Two Squares	$a^2 \pm 2ab + b^2$	$ab(a^2b + 2a - 4b)$	
Sum/Difference of Cubes	$a^3b^2 + 2a^2b - 4ab^2$	$(a \pm b)^2$	
Perfect Square Trinomials	$a^2 - b^2$	$(a \pm b)(a^2 \mp ab + b^2)$	
Greatest Common Factor	$a^3 \pm b^3$	(a+b)(a-b)	
Difference of Two Squares	$a^2 \pm 2ab + b^2$	$ab(a^2b + 2a - 4b)$	
Sum/Difference of Cubes	$a^3b^2 + 2a^2b - 4ab^2$	$(a \pm b)^2$	
Perfect Square Trinomials	$a^2 - b^2$	$(a \pm b)(a^2 \mp ab + b^2)$	

Factoring Practice

Factoring Practice

$$6x^2y^2 - 2xy^2 + 6x^3$$

$$3xy^2 - 48x$$

$$6x^2y^2 - 2xy^2 + 6x^3$$

$$3xy^2 - 48x$$

$$c^3d^3 + 27$$

$$y^2 - 6y + 8$$

$$c^3d^3 + 27$$

$$y^2 - 6y + 8$$

$$3ax - 15a + x - 5$$

$$\frac{x^2+4x-5}{x^2-7x+6}$$

$$3ax - 15a + x - 5$$

$$\frac{x^2+4x-5}{x^2-7x+6}$$