COLUMBIA UNIVERSITY Statistical Inference and Modeling Quiz 1 Prof. Marco Avella TA: Ian Kinsella September 17, 2019

Name:

UNI:

You have 20 minutes to answer the following questions. Good luck!

Let X_1, \ldots, X_n be random sample of i.i.d. exponential random variables with density function $f(x; \theta) = \theta e^{-\theta x}$ for x > 0. Compute the Fisher information for θ and deduce the asymptotic distribution of $\hat{\theta}_{MLE}$.

$$\log f(z;\theta) = \log(\theta) - \theta z$$

$$\frac{\partial^{2}}{\partial \theta^{2}} \left(\log f(z;\theta) \right) = \frac{\partial}{\partial \theta} \left(\frac{1}{\theta} - x \right) = -\frac{1}{\theta^{2}}$$

$$= \sum_{z \in S} \left[(\theta) = \frac{1}{\theta^{2}} = z \right] \sqrt{n} \left(\frac{1}{\theta} - \theta \right) \frac{\partial}{\partial z} \mathcal{N}(0, \theta^{2})$$
Question 2 (3 points)

Suppose that X_1, \dots, X_n form a random sample from the normal distribution with unknown mean μ and unknown standard deviation σ , and let $\hat{\mu}$ and $\hat{\sigma}$ denote their respective MLE. For the sample size n = 17, find a value of k such that $\mathbb{P}(\hat{\mu} > \mu + k\hat{\sigma}) = 0.975$.

that
$$\mathbb{P}(\mu > \mu + k\sigma) = 0.975$$
.

(c) $\mu = \overline{X}$ $\sigma^2 = \underline{L}$ $\mathcal{L}(X; -\overline{X})^2$, $n = 17$
 $\overline{X} - \mu$ $\overline{X} - \mu$ $\overline{X} = \overline{X} = \overline{X}$

 $=) k=, \perp .2, 12$

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} Poisson(\lambda)$.

 $\nearrow Q$ 1. Show that $\frac{1}{n} \sum_{i=1}^{n} X_i$ is the MLE of λ .

 2ρ 2. Give the MLE of $\mathbb{P}(X=0)$ and give its asymptotic distribution.

i)
$$\prod_{i \in I} P(X_i = x_i) = \prod_{i \in I} e^{-\lambda_i x_i} = e^{-n\lambda_i x_i} = L_n(\lambda)$$

$$\frac{\partial \log \ln(\lambda)}{\partial \lambda} = \frac{\partial}{\partial \lambda} \left(-n\lambda + \underbrace{\xi_{x_i} \log \lambda} \right) = -n + \underbrace{1\xi_{x_i}} = 0$$

$$= \sum_{i=1}^{n} \frac{1}{i} = X$$

$$P(x=0) = e^{\lambda} = p(\lambda)$$

$$= p(\lambda) = e^{\lambda}$$

$$(LT: (1-\lambda) \xrightarrow{\mathcal{D}} \mathcal{N}(0,\lambda)$$

Delta nethod

$$\sqrt{n} \left(e^{-1} - e^{-2\lambda} \right)$$
 $\sqrt{n} \left(e^{-1} - e^{-2\lambda} \right)$
 $\sqrt{n} \left(e^{-1} - e^{-2\lambda} \right)$

Table of the t Distribution

If X has a t distribution with m degrees of freedom, the table gives the value of x such that $Pr(X \le x) = p$.

m	p = .55	.60	.65	.70	.75	.80	.85	.90	.95	.975	.99	.995
1	.158	.325	.510	.727	1.000	1.376	1.963	3.078	6.314	12.706	31.821	63.657
2	.142	.289	.445	.617	.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925
3	.137	.277	.424	.584	.765	.978	1.250	1.638	2.353	3.182	4.541	5.841
4	.134	.271	.414	.569	.741	.941	1.190	1.533	2.132	2.776	3.747	4.604
5	.132	.267	.408	.559	.727	.920	1.156	1.476	2.015	2.571	3.365	4.032
6	.131	.265	.404	.553	.718	.906	1.134	1.440	1.943	2.447	3.143	3.707
7	.130	.263	.402	.549	.711	.896	1.119	1.415	1.895	2.3 <mark>65</mark>	2.998	3.499
8	.130	.262	.399	.546	.706	.889	1.108	1.397	1.860	2.306	2.896	3.355
9	.129	.261	.398	.543	.703	.883	1.100	1.383	1.833	2.262	2.821	3.250
10	.129	.260	.397	.542	.700	.879	1.093	1.372	1.812	2.228	2.764	3.169
11	.129	.260	.396	.540	.697	.876	1.088	1.363	1.796	2.2 <mark>01</mark>	2.718	3.106
12	.128	.259	.395	.539	.695	.873	1.083	1.356	1.782	2.1 <mark>7</mark> 9	2.681	3.055
13	.128	.259	.394	.538	.694	.870	1.079	1.350	1.771	2.1 <mark>6</mark> 0	2.650	3.012
14	.128	.258	.393	.537	.692	.868	1.076	1.345	1.761	2.145	2.624	2.977
15	.128	.258	.393	.536	.691	.866	1.074	1.341	1.753	2.131	2.602	2.947
16) .128	.258	.392	.535	.690	.865	1.071	1.337	1.746	2.120	2.583	2.921
12	.128	.257	.392	.534	.689	.863	1.069	1.333	1.740	2.110	2.567	2.898
18	.127	.257	.392	.534	.688	.862	1.067	1.330	1.734	2.101	2.552	2.878
19	.127	.257	.391	.533	.688	.861	1.066	1.328	1.729	2.093	2.539	2.861
20	.127	.257	.391	.533	.687	.860	1.064	1.325	1.725	2.086	2.528	2.845
21	.127	.257	.391	.532	.686	.859	1.063	1.323	1.721	2.080	2.518	2.831
22	.127	.256	.390	.532	.686	.858	1.061	1.321	1.717	2.074	2.508	2.819
23	.127	.256	.390	.532	.685	.858	1.060	1.319	1.714	2.069	2.500	2.807
24	.127	.256	.390	.531	.685	.857	1.059	1.318	1.711	2.064	2.492	2.797
25	.127	.256	.390	.531	.684	.856	1.058	1.316	1.708	2.060	2.485	2.787
26	.127	.256	.390	.531	.684	.856	1.058	1.315	1.706	2.056	2.479	2.779
27	.127	.256	.389	.531	.684	.855	1.057	1.314	1.703	2.052	2.473	2.771
28	.127	.256	.389	.530	.683	.855	1.056	1.313	1.701	2.048	2.467	2.763
29	.127	.256	.389	.530	.683	.854	1.055	1.311	1.699	2.045	2.462	2.756
30	.127	.256	.389	.530	.683	.854	1.055	1.310	1.697	2.042	2.457	2.750
40	.126	.255	.388	.529	.681	.851	1.050	1.303	1.684	2.021	2.423	2.704
60	.126	.254	.387	.527	.679	.848	1.046	1.296	1.671	2.000	2.390	2.660
120	.126	.254	.386	.526	.677	.845	1.041	1.289	1.658	1.980	2.358	2.617
∞	.126	.253	.385	.524	.674	.842	1.036	1.282	1.645	1.960	2.326	2.576

Table III, "Table of the t Distribution" from STATISTICAL TABLES FOR BIOLOGICAL, AGRICULTURAL, AND MEDICAL RESEARCH by R.A. Fisher and F. Yates. © 1963 by Pearson Education, Ltd.

Table of the Standard Normal Distribution Function

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{(2\pi)^{1/2}} \exp\left(-\frac{1}{2}u^2\right) du$$

				(=)	`	/			
x	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$	х	Φ()	x	$\Phi(x)$
0.00	0.5000	0.60	0.7257	1.20	0.8849	1.8	0.96	41 2.40	0.9918
0.01	0.5040	0.61	0.7291	1.21	0.8869	1.8		49 2.41	0.9920
0.02	0.5080	0.62	0.7324	1.22	0.8888	1.8	0.96	56 2.42	0.9922
0.03	0.5120	0.63	0.7357	1.23	0.8907	1.8			0.9925
0.04	0.5160	0.64	0.7389	1.24	0.8925	1.8			0.9927
0.05	0.5199	0.65	0.7422	1.25	0.8944	1.8			0.9929
0.06	0.5239	0.66	0.7454	1.26	0.8962	1.8			0.9931
0.07	0.5279	0.67	0.7486	1.27	0.8980	1.8			0.9932
0.08	0.5319	0.68	0.7517	1.28	0.8997	1.8			0.9934
0.09	0.5359	0.69	0.7549	1.29	0.9015	1.8			0.9936 0.9938
0.10	0.5398	0.70	0.7580	1.30	0.9032 0.9049	1.9			0.9938
0.11 0.12	0.5438 0.5478	$0.71 \\ 0.72$	0.7611 0.7642	1.31 1.32	0.9049	1.9 1.9			0.9941
0.12	0.5517	0.72	0.7673	1.33	0.9082	1.9			0.9943
0.13	0.5557	0.74	0.7704	1.34	0.9099	1.9		38 2.58	0.9951
0.15	0.5596	0.75	0.7734	1.35	0.9115	1.9			0.9953
0.16	0.5636	0.76	0.7764	1.36	0.9131	1.9			0.9956
0.17	0.5675	0.77	0.7794	1.37	0.9147	1.9			0.9959
0.18	0.5714	0.78	0.7823	1.38	0.9162	1.9			0.9961
0.19	0.5753	0.79	0.7852	1.39	0.9177	1.9			0.9963
0.20	0.5793	0.80	0.7881	1.40	0.9192	2.0			0.9965
0.21	0.5832	0.81	0.7910	1.41	0.9207	2.0	0.97	78 2.72	0.9967
0.22	0.5871	0.82	0.7939	1.42	0.9222	2.0			0.9969
0.23	0.5910	0.83	0.7967	1.43	0.9236	2.0			0.9971
0.24	0.5948	0.84	0.7995	1.44	0.9251	2.0			0.9973
0.25	0.5987	0.85	0.8023	1.45	0.9265	2.0		98 2.80	0.9974
0.26	0.6026	0.86	0.8051	1.46	0.9279	2.0		03 2.82	0.9976
0.27	0.6064	0.87	0.8079	1.47	0.9292	2.0			0.9977
0.28	0.6103	0.88	0.8106	1.48	0.9306	2.0			0.9979
0.29	0.6141	0.89	0.8133	1.49	0.9319	2.0			0.9980
0.30 0.31	0.6179 0.6217	0.90 0.91	0.8159 0.8186	1.50 1.51	0.9332 0.9345	2.1 2.1			0.9981 0.9983
0.31	0.6217	0.91	0.8180	1.51	0.9343	2.1			0.9983
0.32	0.6293	0.93	0.8212	1.53	0.9370	2.1	3 0.98		0.9985
0.34	0.6331	0.94	0.8264	1.54	0.9382	2.1			0.9986
0.35	0.6368	0.95	0.8289	1.55	0.9394	2.1			0.9987
0.36	0.6406	0.96	0.8315	1.56	0.9406	2.1			0.9989
0.37	0.6443	0.97	0.8340	1.57	0.9418	2.1			0.9990
0.38	0.6480	0.98	0.8365	1.58	0.9429	2.1			0.9992
0.39	0.6517	0.99	0.8389	1.59	0.9441	2.1			0.9993
0.40	0.6554	1.00	0.8413	1.60	0.9452	2.2	0.98		0.9994
0.41	0.6591	1.01	0.8437	1.61	0.9463	2.2	0.98		0.9995
0.42	0.6628	1.02	0.8461	1.62	0.9474	2.2	2 0.98		0.9996
0.43	0.6664	1.03	0.8485	1.63	0.9485	2.2	0.98		0.9997
0.44	0.6700	1.04	0.8508	1.64	0.9495	2.2	0.98	75 3.45	0.9997
0.45	0.6736	1.05	0.8531	1.65	0.9505	2.2	0.98	78 3.50	0.9998
0.46	0.6772	1.06	0.8554	1.66	0.9515 0.9525	2.2			0.9998 0.9998
0.47	0.6808	1.07	0.8577	1.67		2.2			
0.48 0.49	0.6844 0.6879	1.08 1.09	0.8599 0.8621	1.68 1.69	0.9535 0.9545	2.2 2.2			0.9999 0.9999
0.49	0.6915	1.10	0.8643	1.70	0.9554	2.3			0.9999
0.51	0.6950	1.11	0.8665	1.71	0.9564	2.3			0.9999
0.52	0.6985	1.12	0.8686	1.72	0.9573	2.3			0.9999
0.53	0.7019	1.13	0.8708	1.73	0.9582	2.3			1.0000
0.54	0.7054	1.13	0.8729	1.74	0.9591	2.3			1.0000
0.55	0.7088	1.15	0.8749	1.75	0.9599	2.3			1.0000
0.56	0.7123	1.16	0.8770	1.76	0.9608	2.3			
0.57	0.7157	1.17	0.8790	1.77	0.9616	2.3	7 0.99	11	
0.58	0.7190	1.18	0.8810	1.78	0.9625	2.3	8 0.99		
0.59	0.7224	1.19	0.8830	1.79	0.9633	2.3	9 0.99	16	

 $[\]hbox{``Table of the Standard Normal Distribution Function'' from HANDBOOK\ OF\ STATISTICAL\ TABLES}$ by Donald B. Owen. @ 1962 by Addison-Wesley.