V3 User Manual

LAST UPDATE: 2014/11/20

 $CHENG-YIN\ WU$ $\verb|gro070916@yahoo.com.tw|, d99943034@ntu.edu.tw|$

CHUNG-YANG (RIC) HUANG ric@cc.ee.ntu.edu.tw

Design Verification Lab (DVLab), NTUGIEE http://dvlab.ee.ntu.edu.tw

National Taiwan University (NTU), Taiwan http://www.ntu.edu.tw

COPYRIGHT ©DESIGN VERIFICATION LAB, 2012-2014

This document lists the set of commands developed in $\mathcal{U}3$, which is a new framework towards the research of hardware verification and debugging. Please also refer to the $\mathcal{U}3$ webpage http://dvlab.ee.ntu.edu.tw/~publication/V3 as well as $\mathcal{U}3$ user guide for detailed usages of $\mathcal{U}3$.

Command-line Lexicographic Notations. Here we give the lexicographic notations of V3 commands:

- CAPITAL LETTERS or leading '-': The leading '-' and capital letters in the command name or parameters are mandatory entries and will be compared case-insensitively. The following letters can be partially skipped. However, when entered, they should match the specification case-insensitively.
- Round bracket (): Meaning it should be replaced by a proper argument as suggested by the (type variable) description in the round brackets.
- **Angle brackets <>**: Mandatory parameters; they should appear in the same relative order as specified in the command usage.
- Square brackets []: Optional parameters; they can appear anywhere in the command parameters.
- Or '|': Or condition; expecting either one of the argument.

List of Commands Basically \mathcal{V}_3 offers a set of commands that are roughly categorized into the following functions, as listed here:

Functionality	Examples	
General	HELP prints command information	
General	Quit terminates the program	
Design I/O	REAd Aig reads in an AIGER [1, 3] design	
Design 1/O	WRIte Rtl reports design into Verilog [10]	
Design Reporting	PRInt NTk reports network information	
Design Reporting	PLOt NTk depicts network topology	
Design Synthesis	REWrite NTk performs rule-based rewriting techniques	
	FLAtten NTk flattens a hierarchical network	
Design Manipulation QCD change current network into another		
Intent Extraction EXTract FSM extracts high-level design information from network		
Design Simulation SIM NTk simulates networks either from given patterns or random		
Design Verification	SET PRoperty creates a property	
	VERify PDR runs PDR [7] algorithm for property checking	
<i>V3</i> Model Checking	READ PROperty reads in a set of properties	
	RUN performs multiple property checking under given resource bounds	
Design Debugging SIMplify TRace performs counterexample simplification		

The following sections give the descriptions to commands and corresponding parameters. Please note that there is no complete regressions to the current release of $\it U3$, so good luck! For bug reports or questions to us, please send an e-mail to author.v3@gmail.com or report an issue to https://chengyinwu@bitbucket.org/chengyinwu/v3.git.

1 General Commands

Command: HELp [<(string cmd) [-Verbose]>]

Synopsis: Print this help message.

Parameters: (string cmd): The (partial) name of the command.

-Verbose: Print usage in more detail.

Command: DOfile <(string fileName)>

Synopsis: Execute the commands in the dofile.

Parameters: (string fileName): The file name of the script.

Command: HIStory [(int nPrint)]
Synopsis: Print command history.

Parameters: (int nPrint): The number of the latest commands to be printed. (de-

 $fault = \infty$)

Command: SET LOgfile [|-All | -Cmd | -Error | -Warning | -Info | -Debug]

<(string fileName)> [|-File-only | -Both] [-APPend]

Synopsis: Redirect messages to files.

Parameters: (string fileName): The file name for message redirection.

-APPend: Append messages to the output file.
-All: Enable any types of messages.
-Cmd: Enable only executed commands.
-Error: Enable only ERROR messages.

-Warning: Enable only WARNING messages.

-Info: Enable only messages for runtime information.

-Debug: Enable only debug messages.

-File-only: Disable message output to standard output.
-Both: Remain message output to standard output.

Command: USAGE [-Time-only | -Memory-only]

Synopsis: Report resource usage.

Parameters: -Time-only: Disable memory usage reporting.
-Memory-only: Disable time usage reporting.

Command: Quit [-Force]
Synopsis: Quit the execution.

Parameters: -Force: Quit the program forcedly.

2 Design I/O Commands

Command: REAd Aig <(string fileName)> [-Symbol]

Synopsis: Read AIGER [1, 3] Designs.

Parameters: (string fileName): The file name of the input AIGER design.

-Symbol: Enable reading of symbolic tables.

Command: REAd BTOR <(string fileName)> [-Symbol]

Synopsis: Read BTOR [5] Designs.

Parameters: (string fileName): The file name of the input BTOR design.

-Symbol: Enable the reading of symbols (i.e. name of vars).

Command: REAd Rtl <(string fileName)> [-Filelist]
[-FLAtten] [| -QuteRTL | -Primitive]

Synopsis: Read RTL (Verilog) [10] Designs.

Parameters: (string fileName): The file name of the input Verilog design or a list

design files.

-Filelist: Indicate fileName is a list of design files.

-QuteRTL: Use QuteRTL [12] RTL front-end for design pars-

ing and synthesis.

-Primitive: Use V3 Primitive RTL front-end for design parsing

and synthesis.

-FLAtten: Flatten the design after parsing. (only available to

-QuteRTL)

Command: WRIte Aig <(string fileName)> [-Symbol]

Synopsis: Write AIGER [1, 3] Designs.

Parameters: (string fileName): The file name for the AIGER output.

-Symbol: Enable using signal names specified in the input

design.

Command: WRIte Btor <(string fileName)> [-Symbol]

Synopsis: Write BTOR [5] Designs.

Parameters: (string fileName): The file name for the BTOR output.

-Symbol: Enable using signal names specified in the input

design.

Command: WRIte Rtl <(string fileName)> [-Symbol] [-Initial]

 $Synopsis: \qquad \text{Write RTL (Verilog) [10] Designs.}$

Parameters: (string fileName): The file name for the RTL output.

-Symbol: Enable using signal names specified in the input

design.

-Initial: Enable specifying initial states of a network.

3 Design Reporting Commands

Command: PRInt NTk [| -Summary | -Primary | -Verbose | -Netlist |

-CombLoops | -Floating | -Unreachable]

Synopsis: Print Network Information.

Parameters: -Summary: Print network summary.

-Primary: Print primary ports.
-Verbose: Print statistics of gates.
-Netlist: Print network topology.
-CombLoops: Print combinational loops.
-Floating: Print floating nets.
-Unreachable: Print unreachable nets.

Command: PRInt NEt <(unsigned netId)>

Synopsis: Print Net Information.

Parameters: (unsigned netId): The index of a net to be reported.

PLOt NTk [| -DOT | -PNG | -PS] <(string fileName)> Command: <(-Level | -Depth) (unsigned size)> [-Monochrome] Plot Network Topology. Synopsis: (string fileName): The file name for output. Parameters: The number of levels or depths to be reported. (unsigned size): Plot with only black and white colors. -Monochrome: -Level: Enable plotting networks under a specified number of levels. -Depth: Enable plotting networks under a specified number of time-frames. Output into *.dot files. -DOT: Output into *.png files (an executable dot re--PNG: quired). Output into *.ps files (an executable dot required). -PS:

4 Design Synthesis Commands

Command: REDuce NTk
Synopsis: Perform COI Reduction on Current Network.

Command: STRash NTk
Synopsis: Perform Structural Hashing on Current Network.

Command: REWrite NTk
Synopsis: Perform Rule-based Rewriting on Current Network.

Command: SET NTKVerbosity [-All] [-REDuce] [-Strash] [-REWrite] [-Fwd-map] [-Bwd-map] [-ON |-OFF |-RESET] Synopsis: Set Verbosities for Network Duplication. Parameters: -RESET: Reset everything to default. -ON: Turn specified attributes on. -OFF: Turn specified attributes off. Toggle all the following attributes. -All: -REDuce: Toggle COI Reduction. (default = on)Toggle Structural Hashing. (default = off)-Strash: -REWrite: Toggle Rule-based Rewriting. (default = off) Toggle Preservation of Forward (to Sucessor) ID Maps. (de--Fwd-map: -Bwd-map: Toggle Preservation of Backward (to Ancestor) ID Maps. (default = on

Command: PRInt NTKVerbosity
Synopsis: Print Verbosities for Network Duplication.

Command: DUPlicate NTk
Synopsis: Duplicate Current Ntk from Verbosity Settings.

Command: BLAst NTk [-Primary]
Synopsis: Bit-blast Word-level Networks into Boolean-level Networks.

Parameters: -Primary: Bit-blast primary inputs, inouts, and latches only.

Command: EXPand NTk <(unsigned cycle)> [-Initial] Synopsis: Perform Time-frame Expansion for Networks.

Parameters: (unsigned cycle): The number of time-frames to be considered. Set initial state values at the first timeframe. -Initial:

Command: FLAtten NTk [(unsigned level)] Flatten Hierarchical Networks. Synopsis:

The number of hierarchical levels to be flattened. Parameters: (unsigned level):

 $(\text{default} = \infty)$

Command: MITer NTk <(unsigned ntkId1)> <(unsigned ntkId2)> [-Merge]

[-Name <(string miterNtkName)>] [| -SEC | -CEC]

Miter Two Networks. Synopsis:

-CEC:

The index of the first network. (unsigned ntkId1): Parameters:

The index of the second network. ((unsigned ntkId2): The name of the resulting miter. (string miterNtkName):

-Name: Indicate the following token is the name of the

miter.

-SEC: Construct miter for sequential equivalence

checking.

Construct miter for combinational equivalence checking. Please notice that latches are

mapped by their names.

-Merge: Merge miter outputs into a representative.

5 **Design Manipulation Commands**

Command: @CD [/ | - | . | .. | (Path Format)]

Synopsis:Change Design for Current Network.

Parameters: Path Format: [/(unsigned ntkID)][/(unsigned subModuleIndex)]*

@LN <(unsigned ntkID)> <(unsigned subModuleIndex)> Command:

Link a Network with an instance of Current Network. Synopsis: Parameters:The index of a network. (unsigned ntkID):

(unsigned subModuleIndex): The index of an instance of current net-

work.

Command: @LS [(unsigned level)]

Synopsis: List Network Instances of Current Network.

Parameters:(unsigned level): The number of levels of instances to be printed. (de-

fault = 1

6 Intent Extraction Commands

Command: EXTract FSM [-Name <(string fsmName)>] [-Output <(string outputIndex)>] [-Time <(unsigned maxTime)>] [-SCC | -NONE] [-CONFIRM] Extract Finite State Machines from Current Network. Synopsis:The name of FSMs to be extracted. Parameters:(string fsmName): The index of output that represents the bad (string outputIndex): signal of a safety property. (unsigned maxTime): The runtime limit for extraction. -Time: Indicate that the following token is the maximum runtime limit. -Output: Indicate that the following token is the index of an output. Indicate that the following token is the name -Name: for FSMs. -SCC: Cluster variables by strongly connected components. -NONE: Disable clustering of variables. -CONFIRM: Self checking if the extraction is successful.

Command:	ELAborate FSM [-Input	(string inputName)]
	[-Name <	(string fsmName)>]
	[-Output	<pre><(string outputIndex)>] [-CONFIRM]</pre>
Synopsis:	Elaborate Network and Co	onstruct FSM from Input Specification.
Parameters:	<pre>(string inputName):</pre>	The name of FSM specification input file.
	(string fsmName):	The name of FSMs to be extracted.
	(string outputIndex):	The index of output that represents the bad
		signal of a safety property.
	-Input:	Indicate that the following token is the name
	-	for the input file.
	-Output:	Indicate that the following token is the index
	-	of an output.
	-Name:	Indicate that the following token is the name
		for FSMs.
	-CONFIRM:	Self checking if the extraction is successful.

Command:	PLOT FSM <(string fsmName)> <(string fsmDirName)>	
Synopsis:	Plot Finite State Machines into *.png files.	
Parameters:	(string fsmName): The name of FSMs to be plotted.	
	(string fsmDirName): The name of a directory for FSM outputs.	

Command:	WRIte FSM <(string fsmName)> <(string outputFile)>	
Synopsis:	Output Finite State Machines Specifications.	
Parameters:	(string fsmName): The na	ame of FSMs to be plotted.
	(string outputFile): The na	ame of a file for FSM outputs.

7 Design Simulation Commands

Command: SIM NTk <(-Input <(string fileName)>) |

(-Random <(unsigned patterns)>)>

[-Output <(string outFileName)>] [-Event]

Synopsis: Plot simulation or counterexample traces.

Parameters: (string fileName): The file name of the input pattern file.

(unsigned patterns): The number of patterns for random simulation.
(string outFileName): The file name for simulation result output.

-Event: Enable event-driven simulation.

-Input: Enable simulation from input patterns.

-Random: Enable random simulation.

-Output: Enable dumping simulation results into a file.

Command: PLOt TRace <(string inputPatternFileName)>

<(string outputFileName)>

Synopsis: Plot simulation or counterexample traces.

Parameters: (string inputPatternFileName): The file name of the input pattern

file.

(string outputFileName): The file name for simulation result

output.

8 Design Verification Commands

Command: SET SAFEty [-Name <(string propertyName)>]

[(unsigned outputIndex)]

[-INVAriant <(string invName)*>]

[-INVConstraint <(string constrName)*>]

Synopsis: Set Safety Properties on Current Network.

Parameters: (string propertyName): The name of a property to be set.

(unsigned output Index): The index of a primary output serving as a

bad signal.

(string invName)*: List of names of invariants.

(string constrName)*: List of names of (either invariant or fairness)

constraints.

-Name: Indicate the following token is the name of a

property.

-INVAriant: Indicate the starting of a list of invariants.-INVConstraint: Indicate the starting of a list of invariant con-

straints.

Command: SET LIVEness [-Name <(string propertyName)>] [-INVAriant <(string invName)*>] [-INVConstraint <(string constrName)*>] $[-{\tt FAIRnessConstraint}\ <({\tt string}\ {\tt constrName})*>]$ Set Liveness Properties on Current Network. Synopsis:Parameters:(string propertyName): The name of a property to be set. List of names of invariants. (string invName)*: (string constrName)*: List of names of (either invariant or fairness) constraints. -Name: Indicate the following token is the name of a property. -INVAriant: Indicate the starting of a list of invariants. -INVConstraint: Indicate the starting of a list of invariant con--FAIRnessConstraint: Indicate the starting of a list of fairness constraints.

Command: ELAborate PRoperty [(string propertyName)]*
Synopsis: Elaborate Properties on a Duplicated Network.

Parameters: (string propertyName): The name of a property.

Command:	SET REpor	t [-All] [-RESUlt] [-Endline] [-Solver] [-Usage]	
	[-ON -OFF -RESET]		
Synopsis:	Set Verbosities for Verification Report.		
Parameters:	-RESET:	Reset everything to default.	
	-ON	Turn specified attributes on.	
	-OFF	Turn specified attributes off.	
	-All	Toggle all the following attributes.	
	-RESUlt	Toggle interactive verification status. $(default = on)$	
	-Endline	Toggle endline or carriage return. $(default = off)$	
	-Solver	Toggle solver information. (default = off)	
	-Usage	Toggle verification time usage. (default = on)	
	-Profile	Toggle checker specific profiling. $(default = off)$	

Command:	PRInt REport
Synopsis:	Print Verbosities for Verification Report.

Command:	SET SOlver [-Default -Minisat -Boolector]	
Synopsis:	Set Active Solver for Verification.	
Parameters:	-Default:	Enable default solver. $(default = minisat)$
	-MSat	Enable MiniSat as the active solver.
	-Boolector	Enable Boolector as the active solver.

Command:	PRInt SOlver
Synopsis:	Print Active Solver for Verification.

Command: VERify SIM [(string propertyName)] [<-Time (unsigned MaxTime)>] [<-Cycle (unsigned MaxCycle)>] Perform (Constrained) Random Simulation. Synopsis: The name of a property to be verified. Parameters: (string propertyName): (unsigned MaxTime): The upper bound of simulation runtime. (unsigned MaxCycle): The upper bound of simulation cycle. Enable setting of runtime limit. -Time: -Cycle: Enable setting of cycle limit.

VERify BMC [(string propertyName)] Command: [-Max-depth (unsigned MaxDepth)] [-Pre-depth (unsigned PreDepth)] [-Inc-depth (unsigned IncDepth)] Synopsis: Perform Bounded Model Checking [2]. Parameters: (string propertyName): The name of a property to be verified. (unsigned MaxDepth): The upper bound of time-frames to be reached. (default = 100)(unsigned PreDepth): The number of frames at initial. (default = 0) (unsigned IncDepth): The number of frames to be increased in each iteration. (default = 1)-Max-depth: Indicate the following token is the time-frame limit. Indicate the following token is the number of -Pre-depth: frames at initial. -Inc-depth: Indicate the following token is the number of frames to be increased.

Command: VERify UMC [(string propertyName)] [-Max-depth (unsigned MaxDepth)] [-Pre-depth (unsigned PreDepth)] [-Inc-depth (unsigned IncDepth)] [-NOProve | -NOFire] [-Uniqueness] Perform Unbounded Model Checking [8]. Synopsis: The name of a property to be verified. Parameters: (string propertyName): (unsigned MaxDepth): The upper bound of time-frames to be reached. (default = 100) (unsigned PreDepth): The number of frames at initial. (default = 0) The number of frames to be increased in each (unsigned IncDepth): iteration. (default = 1)-Max-depth: Indicate the following token is the time-frame Indicate the following token is the number of -Pre-depth: frames at initial. Indicate the following token is the number of -Inc-depth: frames to be increased. -NOProve: Disable running k-induction in UMC. -NOFire: Disable performing bounded model checking (BMC) in UMC. Enable adding uniqueness constraints. -Uniqueness:

<i>O</i> 1	VED: f TED [/-+		
Command:	VERify ITP [(string prop	·	
	L-Max-depth ((unsigned MaxDepth)]	
	[-Reverse] [-	-Increment] [-Force] [-RECycle]	
	[-Block (unsi	igned badCount)]	
Synopsis:	Perform Interpolation-based Model Checking Algorithm NewITP [11].		
Parameters:	<pre>(string propertyName):</pre>	The name of a property to be verified.	
	(unsigned MaxDepth):	The upper bound of time-frames to be	
		reached. $(default = 100)$	
	(unsigned badCount):	The maximum number of spurious cex for re-	
		finement. $(default = 1)$	
	-Max-depth:	Indicate the following token is the limit of	
	_	time-frames.	
	-Block:	Indicate the following token is the limit to cex	
		analysis.	
	-Reverse:	Enables the reversed implementation of	
		NewITP.	
	-Increment:	Enables incrementing BMC depth dynami-	
		cally.	
	-Force:	Enables considering 1 k frames (instead of the	
		k-th frame) in the BMC part.	
	-RECycle:	Enables cube recycling for interpolant reuse.	

Command:	VERify PDR [(string prop	pertyName)]	
	[-Max-depth ((unsigned MaxDepth)]	
	[-Recycle (unsigned MaxCount)] [-Incremental]		
Synopsis:	Perform Property Directed	Reachability [4, 7].	
Parameters:	<pre>(string propertyName):</pre>	The name of a property to be verified.	
	(unsigned MaxDepth):	The upper bound of time-frames to be	
		reached. (default $= 100$)	
	(unsigned MaxCount):	The upper bound of temporary assumption	
		literals in solvers. (default $= \infty$)	
	-Max-depth:	Indicate the following token is the limit of	
		time-frames.	
	-Recycle:	Enable setting the limit of assumption literals	
		for recycle.	
	-Incremental:	Implement with multiple solvers. (c.f. Mono-	
		lithic)	

Command: VERify SEC [(string propertyName)] [-Max-depth (unsigned MaxDepth)] [-UMC | -IPDR | -MPDR] [-CEC] [-SEC] Synopsis: Perform Sequential Equivalence Checking [9]. Parameters: (string propertyName): The name of a property to be verified. The upper bound of time-frames to be (unsigned MaxDepth): reached. (default = 100)Indicate the following token is the time-frame -Max-depth: limit. -UMC: Enable UMC as a safety checker. -MPDR: Enable Monolithic PDR as a safety checker. Enable Incremental PDR as a safety checker. -IPDR: Assume that the Network could be a CEC -CEC: Miter. Assume that the Network could be a SEC -SEC: Miter.

VERify KLIVE [(string propertyName)] Command: [-Max-depth (unsigned MaxDepth)] [-Inc-depth (unsigned IncDepth)] [|-UMC | -IPDR | -MPDR] Synopsis: Perform K-Liveness [6] for Liveness Checking. Parameters: (string propertyName): The name of a property to be verified. The upper bound of time-frames to be (unsigned MaxDepth): reached. (default = 100)(unsigned IncDepth): The number of frames to be increased in each iteration. (default = 1)-Max-depth: Indicate the following token is the time-frame limit. Indicate the following token is the number of -Inc-depth: frames to be increased. Enable UMC as a safety checker. -UMC: -MPDR: Enable Monolithic PDR as a safety checker. -IPDR: Enable Incremental PDR as a safety checker.

Command: CHEck REsult <(string propertyName)> [-Simulation | -Formal] [[-Trace | -Invariant] <(string resultFileName)>] Synopsis: Verify Verification Result. Note: Confirmation of Inductive Invariants is Not Available Yet!! Parameters: (string propertyName): The name of a verified property. The file name of a verification result. (string resultFileName): -Simulation: Enable simulation in verifying the result. -Formal: Enable formal in verifying the result. -Trace: Indicate resultFileName is a file of counterexample. Indicate resultFileName is a file of inductive -Invariant: invariant.

Command: PLOt REsult <(string propertyName) > <(string resultFileName) > Synopsis: Elaborate Properties on a Duplicated Network.

Parameters: (string propertyName): The name of a verified property. (string resultFileName): The file name for the output of verification results.

Command: WRIte REsult <(string propertyName)> <(string resultFileName)>

Synopsis: Write Verification Results.

Parameters:(string propertyName): The name of a verified property.

> (string resultFileName): The file name for the output of verification

> > results.

V3 Model Checking Commands 9

Command: READ PROperty <(string fileName)> <-Aiger | -Prop>

Synopsis: Read property specification from external file.

The file name of the property input. Parameters:(string fileName):

Indicate fileName is an AIGER input. -Aiger:

Indicate fileName is a PROP input (build on top -Prop:

of current ntk).

Command: WRITE PROperty <(string fileName)> <-Aiger | -Prop>

Synopsis: Write property specification into file.

Parameters:(string fileName): The file name of the property output.

> -Aiger: Output network and properties into AIGER for-

Output properties into PROP format (in terms of -Prop:

current network).

Command: RUN <-TIMEout (unsigned maxTime)>

<-MEMoryout (unsigned maxMemory)>

<-THReadout (unsigned maxThread)>

Synopsis: Run *U3* Model Checker. (see also my PhD thesis for detailed descriptions)

Parameters: (unsigned maxTime): Wall Timeout limit in seconds.

(unsigned maxMemory): Memoryout limit in Mega Bytes. (unsigned maxThread): The number of available CPU cores.

-TIMEout: Indicate the next number is the timeout limit. -MEMoryout:

Indicate the next number is the memoryout

limit.

-THReadout: Indicate the next number is the CPU core limit.

10 Design Debugging Commands

Command: OPTimize TRace <(string propertyName)>

[-NOReduce | -NOGeneralize]

Synopsis:Optimize a Counterexample Trace.

Parameters: (string propertyName): The name of a failing property.

> -NOReduce: Disable counterexample reduction.

-NOGeneralize: Disable counterexample generalization. Command: SIMplify TRace <(string propertyName)>

[(unsigned maxNoFrames)]

[| -Care | -Transition]

Synopsis: Simplify Counterexample Traces.

Parameters: (string propertyName): The name of a fired property.

(unsigned maxNoFrames): Upper bound frame numbers in a sub-

problem. (default $= \infty$)

(string constrName)*: List of names of (either invariant or fairness)

constraints.

-Care: Start the configuration of minimizing care

signals.

-Transition: Start the configuration of minimizing transi-

tions.

References

- [1] A. Biere. The AIGER And-Inverter Graph (AIG) Format. Available at fmv. jku. at/aiger, 2007.
- [2] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic Model Checking without BDDs. *Tools and Algorithms for the Construction and Analysis of Systems*, pages 193–207, 1999.
- [3] A. Biere, K. Heljanko, and S. Wieringa. AIGER 1.9 and Beyond. Available at fmv.jku.at/hwmcc11/beyond1.pdf, 2011.
- [4] A. Bradley. SAT-based Model Checking without Unrolling. In *Verification*, *Model Checking*, and *Abstract Interpretation*, pages 70–87. Springer, 2011.
- [5] R. Brummayer, A. Biere, and F. Lonsing. BTOR: Bit-precise Modelling of Word-level Problems for Model Checking. In *Proceedings of the Joint Workshops of the 6th International Workshop on Satisfiability Modulo Theories and 1st International Workshop on Bit-Precise Reasoning*, pages 33–38. ACM, 2008.
- [6] K. Claessen and N. Sörensson. A Liveness Checking Algorithm that Counts. In FMCAD, pages 52–59, 2012.
- [7] N. Een, A. Mishchenko, and R. Brayton. Efficient Implementation of Property Directed Reachability. In Formal Methods in Computer-Aided Design (FMCAD), 2011, pages 125–134. IEEE, 2011.
- [8] N. Eén and N. Sörensson. Temporal Induction by Incremental SAT Solving. *Electronic Notes in Theoretical Computer Science*, 89(4):543–560, 2003.
- [9] A. Mishchenko, M. Case, R. Brayton, and S. Jang. Scalable and Scalably-verifiable Sequential Synthesis. In Computer-Aided Design, 2008. ICCAD 2008. IEEE/ACM International Conference on, pages 234–241. IEEE, 2008.
- [10] D. Thomas and P. Moorby. *The Verilog® Hardware Description Language*, volume 2. Springer, 2002.
- [11] C.-Y. Wu, C.-A. Wu, C.-Y. Lai, and C.-Y. Huang. A Counterexample-guided Interpolant Generation Algorithm for SAT-based Model Checking. In *Design Automation Conference (DAC)*, 2013 50th ACM/EDAC/IEEE, pages 1–6. IEEE, 2013.
- [12] H.-H. Yeh, C.-Y. Wu, and C.-Y. Huang. QuteRTL: Towards an Open Source Framework for RTL Design Synthesis and Verification. Tools and Algorithms for the Construction and Analysis of Systems, pages 377–391, 2012.