Syntaks og semantik

Lektion 5

27 februar 2007

Regulære sprog

1	Bogstaver, ord og sprog	(13f, 44)
2	Deterministiske endelige automater	(35f, 40)
3	Nondeterministiske endelige automat	ter (53–56)
4	Lukningsegenskaber	(45f, 58–63, 85)
5	Regulære udtryk	(64, 67, 69–74)
6	Ikke-regulære sprog	(77–80)
7	Anvendelser	
8	En anden bog	
9	Jeres forståelse som jeg oplever den	

- alfabet: en endelig mængde, normalt betegnet Σ
- bogstav / tegn / symbol: et element i Σ

- ord / streng: en endelig følge $(a_1, a_2, ..., a_k)$ af bogstaver. Normalt skrevet uden parenteser og komma: $a_1 a_2 ... a_k$
- ε: det tomme ord (med 0 bogstaver)
- at sammensætte ord: abe o kat = abekat
- ε er identiteten for \circ : $w \circ \varepsilon = \varepsilon \circ w = w$ for alle ord w

- Sprog (over Σ): en mængde af ord med bogstaver fra Σ
- Ø: det tomme sprog

- Σ^* : sproget bestående af *alle* ord over Σ
- \Rightarrow L er et sprog over Σ hvis og kun hvis $L \subset \Sigma^*$
 - Givet sprog $L_1, L_2 \subseteq \Sigma^*$, da kan vi danne sprogene
 - $L_1 \cup L_2 = \{ w \mid w \in L_1 \text{ eller } w \in L_2 \}$

foreningsmængden

• $L_1 \circ L_2 = \{ w_1 \circ w_2 \mid w_1 \in L_1 \text{ og } w_2 \in L_2 \}$

sammensætningen

- $L_1^* = \{ w_1 \circ w_2 \circ \cdots \circ w_k \mid \text{alle } w_i \in L_1 \}$ stiernen
- Disse 3 operationer kaldes de regulære operationer på sprog.
- Vi kan også danne andre sprog; de vigtigste andre operationer:
 - $L_1 \cap L_2 = \{ w \mid w \in L_1 \text{ og } w \in L_2 \}$ fællesmængden • $\overline{L}_1 = \Sigma^* \setminus L_1 = \{ w \in \Sigma^* \mid w \notin L \}$
 - komplementet

- Definition 1.5: En deterministisk endelig automat (DFA) er en 5-tupel $M = (Q, \Sigma, \delta, q_0, F)$, hvor delene er
 - Q: en endelig mængde af tilstande
 - Σ : input-alfabetet
 - **3** $\delta: Q \times \Sigma \rightarrow Q$: transitionsfunktionen
 - $q_0 \in Q$: starttilstanden
- M siges at acceptere et ord w ∈ Σ* hvis der findes w₁, w₂,..., w_k ∈ Σ og r₀, r₁,..., r_k ∈ Q således at w = w₁ w₂... w_k og
 - $oldsymbol{1} r_0 = q_0,$
 - 2 $r_{i+1} = \delta(r_i, w_{i+1})$ for alle i = 0, 1, ..., k-1, og
 - \circ $r_k \in F$.
- Sproget som genkendes af M er $\llbracket M \rrbracket = \{ w \in \Sigma^* \mid M \text{ accepterer } w \}.$
- Definition 1.16: Et sprog siges at være regulært hvis der findes en DFA der genkender det.

Boa

- Definition 1.37: En nondeterministisk endelig automat (NFA) er en 5-tupel $M = (Q, \Sigma, \delta, q_0, F)$, hvor delene er
 - Q: en endelig mængde af tilstande
 - Σ : input-alfabetet
 - **③** δ : \mathbf{Q} × $(\Sigma \cup \{\varepsilon\})$ → $\mathcal{P}(\mathbf{Q})$: transitionsfunktionen
 - $q_0 \in Q$: starttilstanden
 - $F \subseteq Q$: mængden af accepttilstande
- M siges at acceptere et ord w ∈ Σ* hvis der findes w₁, w₂,..., w_k ∈ Σ ∪ {ε} og r₀, r₁,..., r_k ∈ Q således at w = w₁ w₂... w_k og
 - $0 r_0 = q_0,$
 - 2 $r_{i+1} \in \delta(r_i, y_{i+1})$ for alle i = 0, 1, ..., k-1, og
 - \circ $r_k \in F$.
- Sproget som genkendes af M er $\llbracket M \rrbracket = \{ w \in \Sigma^* \mid M \text{ accepterer } w \}.$

- Enhver DFA er også en NFA.
- Sætning 1.39: Til enhver NFA findes der en DFA der genkender samme sprog.
- Bevis ved brug af

- delmængdekonstruktionen: Hvis NFAen har tilstandsmængde Q, skal DFAens tilstandsmængde være $\mathcal{P}(Q)$
- og ε-aflukningen: Den nye transitionsfunktion skal være
- $\delta'(R, a) = \{q \in Q \mid q \text{ kan nås fra } R \text{ ved en } a\text{-transition}$ efterfulgt af 0 eller flere $\varepsilon\text{-transitioner}\}$

- Sætning 1.45, 1.47, 1.49: Mængden af regulære sprog er lukket under de regulære operationer. Dvs. $A_1, A_2 \in \Sigma^*$ regulære $\Rightarrow A_1 \cup A_2, A_1 \circ A_2, A_1^*$ regulære
- Bevis ved at sammensætte NFAs på en meget intuitiv måde
- Sætning 1.25 (fodnote): Mængden af regulære sprog er lukket under ∩.
- Bevis ved at konstruere produktet af to DFAs

- Opgave 1.14: Mængden af regulære sprog er lukket under

 (komplement)
- Bevis ved at bytte om på accept- og reject-tilstandene i en DFA

Boa

Forståelse

- Definition 1.52: Et regulært udtryk over et alfabet Σ er et udtryk af formen
 - **1** a for et $a \in \Sigma$, ε eller \emptyset ,
 - ② $(R_1 \cup R_2)$, $(R_1 \circ R_2)$ eller (R_1^*) , hvor R_1 og R_2 er regulære udtryk.
- Sproget, som et regulært udtryk R beskriver, betegnes [R] og er defineret som følger:

 - ② $[R_1 \cup R_2] = [R_1] \cup [R_2], [R_1 \circ R_2] = [R_1] \circ [R_2]$ og $[R_1^*] = [R_1]^*$
- Sætning 1.54: Et sprog er regulært hvis og kun hvis det kan beskrives ved et regulært udtryk.
- (følger af Lemma 1.55 og Lemma 1.60)

- Lemma 1.55: Hvis et sprog genereres af et regulært udtryk, da er det regulært.
- Bevis ved brug af strukturel induktion:
 - Vis at de basale regulære udtryk a, ε og \emptyset kan konverteres til NFAs
 - Konvertér sammensætninger af regulære udtryk til sammensætninger af NFAs
- Lemma 1.60: Hvis et sprog er regulært, da kan det beskrives ved et regulært udtryk.
- Bevis ved brug af

- generaliserede NFAs: Konvertér en DFA til en GNFA, der har regulære udtryk på transitionerne (i stedet for bare bogstaver)
- og rekursion: Konvertér en GNFA til en ny med én tilstand mindre, ved at fjerne en tilstand og lave tilsvarende ændringer på transitionerne.

- Sætning 1.70 (Pumpelemmaet): For ethvert regulært sprog A findes der et (naturligt) tal p (pumpelængden) således at ethvert ord s ∈ A der har længde mindst p kan pumpes, dvs. opsplittes i tre stykker, s = xyz, med
 - $|y| \ge 1$ og $|xy| \le p$,

- og således at ordene $xy^iz \in A$ for alle $i \in \mathbb{N}_0$.
- Bevis ved at tage en DFA for A og lade p være antallet af dens tilstande
- Anvendelse: At vise at et givet sprog B ikke er regulært:
 - antag at B er regulært
 - så må der findes en pumpelængde p for B
 - tag et velegnet ord s som
 - har længde $|s| \ge p$, dvs. bør kunne pumpes,
 - men som ikke kan pumpes.
 - Modstrid!

- grep, sed, teksteditorer etc.: konverterer et givet regulært udtryk til en NFA for at søge og erstatte
- lex, flex etc.: konverterer et eller flere givne regulære udtryk til en DFA der kan bruges til leksikalsk analyse [sok.lex]

Hvis I synes at *Sipser* er for blød, eller hvis I vil vide mere end hvad *Sipser* skriver om, prøv at kigge i

Hopcroft, Motwani, Ullman: Introduction to automata theory, languages, and computation. 2nd ed. Addison-Wesley, 2001

Jeres forståelse som jeg oplever den

sprog

Sprog

- DFAs
- NFAs
- lukningsegenskaber
- regulære udtryk
 - konvertering DFA → regulært udtryk
- ikke-regulære sprog

Opgaver som der specielt var problemer med:

- 1.21 a
- 1.29 a, c
- 1.46 a
- 1.53

Kontekst-frie sprog Push-down-automater

Push-down-automater

Kontekst-frie sprogPush-down-automater

- Problem: Mange interessante sprog er ikke regulære. F.x.
 - sproget ADD fra opgave 1.53
 - sproget L_3 fra syntaksopgaven
 - programmeringssprog generelt
- Brug for "stærkere" værktøjer til at beskrive dem:
 - kontekst-frie grammatikker (CFG) for at generere dem
 - push-down-automater (PDA) for at genkende dem
- sprog genereret af CFGs = sprog genkendt af PDAs = kontekst-frie sprog
- Er alle sprog kontekst-frie? Nej.
- Anvendelse: parsere

Pushdown-automat: endelig automat plus stack

- kan pushe symboler på stacken og læse og poppe det øverste stacksymbol
- Eksempel:

• genkender sproget $\{0^n1^n \mid n \in \mathbb{N}_0\}$

Definition 2.13: En pushdown-automat (PDA) er en 6-tupel $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$, hvor delene er

- Q: en endelig mængde af tilstande
- Σ : input-alfabetet
- Γ : stack-alfabetet
- **④** δ : \mathbf{Q} × Σ_{ε} × Γ_{ε} → $\mathcal{P}(\mathbf{Q}$ × $\Gamma_{\varepsilon})$: transitionsfunktionen
- $oldsymbol{0} q_0 \in Q$: starttilstanden
- $F \subseteq Q$: mængden af accepttilstande

M siges at acceptere et ord $w \in \Sigma^*$ hvis der findes $m \in \mathbb{N}$ og $w_1, w_2, \ldots, w_m \in \Sigma_{\varepsilon}, r_0, r_1, \ldots, r_m \in Q$ og $s_0, s_1, \ldots, s_m \in \Gamma^*$ således at $w = w_1 w_2 \ldots w_m$ og

- opfylder $s_i = 0, 1, ..., m-1$ findes $a, b \in \Gamma_{\varepsilon}$ og $t \in \Gamma^*$ som opfylder $s_i = at$, $s_{i+1} = bt$ og $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$, og
- \circ $r_m \in F$.

Kontekst-frie sprog Push-down-automater

Eksempel 2.14:

At finde ud af om stacken er tom: Introducér et specielt end-of-stack-symbol \$

Eksempel 2.14:

$$Q = \{q_1, q_2, q_3, q_4\} \qquad \Sigma = \{0, 1\} \qquad \Gamma = \{0, \$\} \qquad F = \{q_1, q_4\}$$

δ :	Input:	0			1			ε		
	Stack:	0	\$	ε	0	\$	ε	0	\$	ε
	<i>q</i> ₁	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	$\{(q_2,\$)\}$
	q_2	Ø	\emptyset	$\{(q_2,0)\}$	$\{(extbf{ extit{q}}_3,arepsilon)\}$	\emptyset	\emptyset	\emptyset	Ø	Ø
	q_3	Ø	\emptyset	Ø	$\{(extbf{ extit{q}}_3,arepsilon)\}$	\emptyset	\emptyset	\emptyset	$\{(q_4, \varepsilon)\}$	Ø
	q_4	Ø	\emptyset	Ø	Ø	Ø	Ø	\emptyset	Ø	Ø

Kontekst-frie sprog Push-down-automater

Opsummering: PDA:

- endelig automat med stack
- stacken kan gemme på vilkårligt mange symboler, men kun det øverste kan læses (og poppes)
- (first-in, last-out)
- nondeterministiske
- der findes deterministiske PDAs, ja. Men
 - vi skal ikke se på dem her, og
 - de genkender færre sprog end de nondeterministiske PDAs!

Kontekst-frie sprog Push-down-automater

Eksempel 2.16: En PDA der genkender sproget

$$\{a^i b^j c^k \mid i, j, k \in \mathbb{N}_0 \text{ og } i = j \text{ eller } i = k\}$$

 det kan vises at man skal bruge en nondeterministisk PDA for at genkende det sprog