第十五周周记

	周一
完成内容	阅读博客园里的《神经网络结构在命名实体识别(NER)中的应用》
内容描述	在传统机器学习中,条件随机场(Conditional Random Field,CRF)是 NER
	目前的主流模型。它的目标函数不仅考虑输入的状态特征函数,而且还包含
	了标签转移特征函数。在训练时可以使用 SGD 学习模型参数。在已知模型时,
	给输入序列求预测输出序列即求使目标函数最大化的最优序列,是一个动态
	规划问题,可以使用维特比算法进行解码。
未解决问题	无

	周二
完成内容	阅读 CSDN 里的一篇博客《基于深度学习的命名实体识别详解》
内容描述	命名实体识别(NER)是在自然语言处理中的一个经典问题,其应用也极为
	广泛。比如从一句话中识别出人名、地名,从电商的搜索中识别出产品的名
	字,识别药物名称等等。传统的公认比较好的处理算法是条件随机场(CRF),
	它是一种判别式概率模型,是随机场的一种,常用于标注或分析序列资料,
	如自然语言文字或是生物序列。简单是说在 NER 中应用是,给定一系列的特
	征去预测每个词的标签。
未解决问题	无

	周三
完成内容	阅读 CSDN 里的博客《LSTM+CRF 介绍》
内容描述	LSTM 单元最终输出的向量即可以看成是输入数据的一种表示形式,最终在打
	标签阶段,一般都采用 softmax 进行处理,不过这种方法在处理输出标签直接
	有强烈关系的数据时,效果还是有限的。特别是在实际的序列标注任务时,
	由于神经网络结构对数据的依赖很大,数据量的大小和质量也会严重影响模
	型训练的效果,故而出现了将现有的线性统计模型与神经网络结构相结合的
	方法,效果较好的有 LSTM 与 CRF 的结合。简单来说就是在输出端将 softmax
	与 CRF 结合起来,使用 LSTM 解决提取序列特征的问题,使用 CRF 有效利
	用了句子级别的标记信息。
未解决问题	无

	周四
完成内容	阅读 CSDN 的博客《基于深度学习的命名实体识别 bi-lstm+crf》
内容描述	递归神经网络(RNN)已被用于在包括语言模型(Mikolovetal。, 2010; Mikolov
	等人,2011)和语音识别(Graves 等人,2005)在内的各种任务中产生有前
	景的结果。 RNN 基于历史信息维护存储器, 使得模型能够预测以长距离特征
	为条件的当前输出。图 1 显示了具有输入层 x, 隐藏层 h 和输出层 y 的 RNN
	结构(Elman, 1990)。 在命名实体标记上下文中, x 表示输入特征, y 表示
	标记。 图 1 显示了一个命名实体识别系统,其中每个单词用其他(O)或四
	种实体类型(人员(PER),位置(LOC),组织(ORG)和杂项(MISC))
	中的一个标记。例如: 欧盟拒绝德国呼吁抵制英国羊肉。被标记为: B-ORG O
	B-MISCOO B-MISCO, 其中B, I-标签指示实体的开始和中间位置。

未解决问题 无

周五	
完成内容	把 LSTM-CRF 的程序导入 linux 虚拟机里面的 pycharm 编辑器中
内容描述	
未解决问题	无

周末	
完成内容	调试程序里的 bug。
内容描述	如 printf 函数由于 python 版本问题没加括号导致错误
未解决问题	无

	工程汇总
完成任务	阅读了几篇论文
任务描述	初步学习了 python 的一些基本知识
代码量	无
未解决问题	无

	论文汇总
论文列表	[1] 《神经网络结构在命名实体识别(NER)中的应用》
	[2] 《基于深度学习的命名实体识别详解》
	[3] 《LSTM+CRF 介绍》
	[4] 《基于深度学习的命名实体识别 bi-lstm+crf》
论文摘要	
未解决问题	无

下周任务	
工作	运行程序并编写 Co-training 算法的代码
论文	继续寻找与中文分词和命名实体识别相关的论文
其他	无
汇总	下周开始准备写中期报告

日期:2018/04/09 -

2018/04/14