实验 6: 完整流水线 CPU

张子康 PB22020660

2024年5月11日

1 实验目的与内容

1.1 实验目的

将结合前递模块与段间寄存器控制模块,得到一个能正常运行的完整 流水线 CPU。

1.2 实验内容

1.2.1 任务 1: 前递模块

根据实验文档的内容,根据传入的信号与优先级的判断,正确进行前递模块的设计。

1.2.2 任务 2: 加入前递的流水线

将前递模块正确接入 CPU, 形成加入前递的流水线, 并通过对应仿真测试。

1.2.3 任务 3: 段间寄存器控制模块

根据实验文档的内容,根据传入的信号,正确根据输入信号进行段间寄存器的控制模块设计。

1.2.4 任务 4: 完整流水线 CPU

将段间寄存器控制模块正确接入 CPU, 形成最终的流水线 CPU, 并通过仿真、上板测试。

2 逻辑设计

2.1 任务 1: 前递模块

```
module FORWARDING (
input [0:0] rf_we_mem,
```

```
input [0:0] rf_we_wb,
3
       input [4:0] rf_wa_mem,
4
       input [4:0] rf_wa_wb,
       input [31:0] rf_wd_mem,
6
       input [31:0] rf_wd_wb,
7
       input [4:0] rf_ra0_ex,
       input [4:0] rf_ra1_ex,
9
       output [0:0] rf_rd0_fe,
10
       output [0:0] rf_rd1_fe,
11
       output [31:0] rf_rd0_fd,
^{12}
       output [31:0] rf_rd1_fd
13
  );
14
       reg [31:0] rd0_fd,rd1_fd;
15
       reg [0:0] rd0_fe,rd1_fe;
16
       initial begin
17
           rd0_fd=0;
18
           rd0_fe=0;
19
           rd1_fd=0;
20
           rd1 fe=0;
21
       end
^{22}
23
       assign rf_rd0_fe=rd0_fe;
24
       assign rf_rd1_fe=rd1_fe;
25
       assign rf_rd0_fd=rd0_fd;
26
       assign rf_rd1_fd=rd1_fd;
27
28
       always @(*) begin
29
           // 默认不前递
           rd0_fd=0;
31
           rd1_fd=0;
32
           rd0_fe=0;
33
           rd1_fe=0;
34
           // 如果发现写入的地址与读取的地址相同就前递
35
```

```
if(rf_we_wb && rf_wa_wb!=5'b00000 && rf_wa_wb==
36
               rf_ra0_ex) begin
                rd0_fd=rf_wd_wb;
37
                rd0_fe=1;
38
           end
39
           if(rf_we_wb && rf_wa_wb!=5'b00000 && rf_wa_wb==
40
               rf_ra1_ex) begin
                rd1_fd=rf_wd_wb;
41
                rd1_fe=1;
42
           end
43
           if(rf_we_mem && rf_wa_mem!=5'b00000 && rf_wa_mem==
44
               rf_ra0_ex) begin
                rd0_fd=rf_wd_mem;
45
                rd0_fe=1;
46
           end
47
           if(rf_we_mem && rf_wa_mem!=5'b00000 && rf_wa_mem==
48
               rf_ra1_ex) begin
                rd1_fd=rf_wd_mem;
49
                rd1 fe=1;
50
           end
51
       end
   endmodule
```

2.2 任务 2: 加入前递的流水线

```
.rf_ra0_ex(rf_ra0_ex),
9
            .rf_ra1_ex(rf_ra1_ex),
10
            .rf_rd0_fe(rf_rd0_fe),
11
            .rf_rd1_fe(rf_rd1_fe),
12
            .rf_rd0_fd(rf_rd0_fd),
13
            .rf_rd1_fd(rf_rd1_fd)
       );
15
16
       MUX1 mux3(
^{17}
            .src1(rf_rd0_fd),
18
            .src0(rf_rd0_ex),
19
            .sel(rf_rd0_fe),
20
            .res(rf_rd0_ex_)
^{21}
       );
22
23
       MUX1 mux4(
24
            .src1(rf_rd1_fd),
25
            .src0(rf_rd1_ex),
26
            .sel(rf_rd1_fe),
27
            .res(rf_rd1_ex_)
28
       );
```

将上述代码加入 CPU 模块,同时作出如下修改:

```
MUX1 mux1(
1
            .src0(rf_rd0_ex_),
2
            .src1(pc_ex),
3
            .sel(alu_src0_sel_ex),
4
            .res(alu_src0_ex)
5
       );
6
7
       MUX1 mux2(
8
            .src0(rf_rd1_ex_),
9
            .src1(imm_ex),
10
            .sel(alu_src1_sel_ex),
11
```

```
.res(alu_src1_ex)
12
       );
13
       EX_MEM ex_mem(
15
            .clk(clk),
16
            .rst(rst),
17
            .flush(flush_ex_mem),
18
            .stall(stall),
19
            .en(en),
20
           //PC
            .pc_add4_in(pcadd4_ex),
22
            .pc_in(pc_ex),
23
            .pc_add4_out(pcadd4_mem),
24
            .pc_out(pc_mem),
25
           //INST
26
            .inst_in(inst_ex),
27
            .inst_out(inst_mem),
           //DECODER
29
            .alu_op_in(alu_op_ex),
30
            .dmem_access_in(dmem_access_ex),
31
            .imm_in(imm_ex),
32
            .rf_ra0_in(rf_ra0_ex),
33
            .rf_ra1_in(rf_ra1_ex),
34
            .rf_wa_in(rf_wa_ex),
35
            .rf_we_in(rf_we_ex),
36
            .rf_wd_sel_in(rf_wd_sel_ex),
37
            .alu_src0_sel_in(alu_src0_sel_ex),
38
            .alu_src1_sel_in(alu_src1_sel_ex),
            .br_type_in(br_type_ex),
40
            .dmem_we_in(dmem_we_ex),
41
            .alu_op_out(alu_op_mem),
42
            .dmem_access_out(dmem_access_mem),
43
            .imm_out(imm_mem),
44
```

```
.rf_ra0_out(rf_ra0_mem),
45
            .rf_ra1_out(rf_ra1_mem),
46
            .rf_wa_out(rf_wa_mem),
            .rf_we_out(rf_we_mem),
48
            .rf_wd_sel_out(rf_wd_sel_mem),
49
            .alu_src0_sel_out(alu_src0_sel_mem),
50
            .alu_src1_sel_out(alu_src1_sel_mem),
51
            .br_type_out(br_type_mem),
52
            .dmem_we_out(dmem_we_mem),
53
           //REG_FILE
            .rf rd0 in(rf rd0 ex ),
55
            .rf_rd1_in(rf_rd1_ex_),
56
            .rf_rd0_out(rf_rd0_mem),
57
            .rf_rd1_out(rf_rd1_mem),
58
           //MUX1
59
            .alu_src0_in(alu_src0_ex),
60
            .alu_src1_in(alu_src1_ex),
            .alu_src0_out(alu_src0_mem),
62
            .alu_src1_out(alu_src1_mem),
63
           //NPC
64
            .npc_in(npc_ex),
65
            .npc_out(npc_mem),
66
           //BRANCH
67
            .npc_sel_in(npc_sel_ex),
            .npc_sel_out(npc_sel_mem),
69
           //ALU
70
            .alu_res_in(alu_res_ex),
71
            .alu_res_out(alu_res_mem),
72
           //SLU
73
            .dmem_rd_out_in(0),
74
            .dmem_wdata_mem_in(0),
75
            .dmem_rd_out_out(),
76
            .dmem_wdata_mem_out(),
77
```

```
//DM
// DM
// DM
// dmem_rdata_mem_in(0),
// dmem_rdata_mem_out(),
// commit_in(commit_ex),
// commit_out(commit_mem)
// DM
//
```

2.3 任务 3: 段间寄存器控制模块

```
`define DMEM_RDATA 2'b10
  module SEG_CTRL (
      input [0:0] rf_we_ex,
3
      input [1:0] rf_wd_sel_ex,
4
      input [4:0] rf_wa_ex,
      input [4:0] rf_ra0_id,
6
      input [4:0] rf_ra1_id,
      input [1:0] npc_sel_ex,
      output reg [0:0] stall_pc,
9
      output reg [0:0] stall_if_id,
10
      output reg [0:0] flush_if_id,
11
      output reg [0:0] flush_id_ex
  );
13
      always @(*) begin
14
          // 默认不阻塞或冲刷流水线
15
          stall_pc=0;
16
           stall_if_id=0;
17
          flush_id_ex=0;
18
          flush_if_id=0;
          // 对于load-use, 若写入地址和读取地址相同
20
          // 则阻塞流水线2周期
21
          if(rf_we_ex && rf_wd_sel_ex == `DMEM_RDATA && (
22
              rf_wa_ex==rf_ra0_id || rf_wa_ex==rf_ra1_id))
              begin
```

```
flush_id_ex=1'b1;
23
               stall_pc=1'b1;
24
               stall_if_id=1'b1;
           end
26
           // 对于跳转指令,直接冲刷流水线
27
           if(npc_sel_ex!=2'b00) begin
28
               flush_id_ex=1'b1;
29
               flush_if_id=1'b1;
30
           end
31
       end
  endmodule
```

2.4 任务 4: 完整流水线 CPU

```
`include "./include/config.v"
2
  module CPU (input [0 : 0] clk,
               input [0 : 0] rst,
4
               input [0 : 0] global_en,
5
               output [31 : 0] imem_raddr,
6
               input [31 : 0] imem_rdata,
               input [31 : 0] dmem_rdata,
                                                 // Unused
8
               output [0 : 0] dmem_we,
                                                // Unused
9
               output [31 : 0] dmem_addr,
                                                 // Unused
10
               output [31 : 0] dmem_wdata,
                                                 // Unused
11
               output [0 : 0] commit,
12
               output [31 : 0] commit_pc,
13
               output [31 : 0] commit_inst,
14
               output [0 : 0] commit_halt,
15
               output [0 : 0] commit_reg_we,
16
               output [4 : 0] commit_reg_wa,
17
               output [31 : 0] commit_reg_wd,
18
               output [0 : 0] commit_dmem_we,
19
```

```
output [31 : 0] commit_dmem_wa,
20
                output [31 : 0] commit_dmem_wd,
^{21}
                input [4 : 0] debug_reg_ra,
22
                output [31 : 0] debug_reg_rd);
23
24
25
       // TODO
26
       wire [0:0] commit_if;
27
       wire [31:0] pc_if;
28
       wire [31:0] pcadd4_if;
       wire [31:0] inst_if;
30
31
       wire [0:0] commit_id;
32
       wire [31:0] pc_id;
33
       wire [31:0] pcadd4_id;
34
       wire [31:0] inst_id;
35
       wire [4:0] alu_op_id;
36
       wire [3:0] dmem_access_id;
37
       wire [31:0] imm_id;
38
       wire [4:0] rf_ra0_id;
39
       wire [4:0] rf_ra1_id;
       wire [5:0] rf_wa_id;
41
       wire [0:0] rf_we_id;
42
       wire [1:0] rf_wd_sel_id;
43
       wire [0:0] alu_src0_sel_id;
44
       wire [0:0] alu_src1_sel_id;
45
       wire [3:0] br_type_id;
46
       wire [0:0] dmem_we_id;
^{47}
       wire [31:0] rf_rd0_id;
48
       wire [31:0] rf_rd1_id;
49
50
       wire [0:0] commit_ex;
51
       wire [31:0] pc_ex;
52
```

```
wire [31:0] pcadd4_ex;
53
       wire [31:0] inst_ex;
54
       wire [4:0] alu_op_ex;
       wire [3:0] dmem_access_ex;
56
       wire [31:0] imm_ex;
57
       wire [4:0] rf_ra0_ex;
58
       wire [4:0] rf_ra1_ex;
59
       wire [5:0] rf_wa_ex;
60
       wire [0:0] rf_we_ex;
61
       wire [1:0] rf_wd_sel_ex;
       wire [0:0] alu_src0_sel_ex;
63
       wire [0:0] alu_src1_sel_ex;
64
       wire [3:0] br_type_ex;
65
       wire [0:0] dmem_we_ex;
66
       wire [31:0] rf_rd0_ex;
67
       wire [31:0] rf_rd1_ex;
68
       wire [31:0] npc_ex;
69
       wire [31:0] pc_j_ex;
70
       wire [31:0] alu_src0_ex;
71
       wire [31:0] alu_src1_ex;
72
       wire [31:0] alu_res_ex;
73
       wire [1:0] npc_sel_ex;
74
75
       wire [0:0] commit_mem;
76
       wire [31:0] pc_mem;
77
       wire [31:0] pcadd4_mem;
78
       wire [31:0] inst_mem;
79
       wire [4:0] alu_op_mem;
       wire [3:0] dmem_access_mem;
81
       wire [31:0] imm_mem;
82
       wire [4:0] rf_ra0_mem;
83
       wire [4:0] rf_ra1_mem;
84
       wire [5:0] rf_wa_mem;
85
```

```
wire [0:0] rf_we_mem;
86
        wire [1:0] rf_wd_sel_mem;
87
        wire [0:0] alu_src0_sel_mem;
88
        wire [0:0] alu_src1_sel_mem;
89
        wire [3:0] br_type_mem;
90
        wire [0:0] dmem_we_mem;
91
        wire [31:0] rf_rd0_mem;
92
        wire [31:0] rf_rd1_mem;
93
        wire [31:0] npc_mem;
94
        wire [31:0] pc_j_mem;
        wire [31:0] alu_src0_mem;
96
        wire [31:0] alu_src1_mem;
97
        wire [31:0] alu_res_mem;
98
        wire [31:0] dmem_rd_out_mem;
99
        wire [31:0] dmem_wdata_mem;
100
        wire [31:0] dmem_rdata_mem;
101
        wire [1:0] npc_sel_mem;
102
103
        wire [0:0] commit_wb;
104
        wire [31:0] pc_wb;
105
        wire [31:0] pcadd4_wb;
106
        wire [31:0] inst_wb;
107
        wire [4:0] alu_op_wb;
108
        wire [3:0] dmem_access_wb;
109
        wire [31:0] imm_wb;
110
        wire [4:0] rf_ra0_wb;
111
        wire [4:0] rf_ra1_wb;
112
        wire [5:0] rf_wa_wb;
113
        wire [0:0] rf_we_wb;
114
        wire [1:0] rf_wd_sel_wb;
115
        wire [0:0] alu_src0_sel_wb;
116
        wire [0:0] alu_src1_sel_wb;
        wire [3:0] br_type_wb;
118
```

```
wire [0:0] dmem we wb;
119
        wire [31:0] rf_rd0_wb;
120
        wire [31:0] rf_rd1_wb;
121
        wire [31:0] npc_wb;
122
        wire [31:0] pc_j_wb;
123
        wire [31:0] alu_src0_wb;
124
        wire [31:0] alu_src1_wb;
125
        wire [31:0] alu_res_wb;
126
        wire [31:0] dmem_rd_out_wb;
127
        wire [31:0] dmem_wdata_wb;
        wire [31:0] dmem_rdata_wb;
129
        wire [31:0] rf_wd_wb;
130
        wire [1:0] npc_sel_wb;
131
132
        wire [0:0] rf_rd0_fe,rf_rd1_fe;
133
        wire [31:0] rf_rd0_fd,rf_rd1_fd;
134
        wire [31:0] rf_rd0_ex_,rf_rd1_ex_;
135
136
        wire flush,stall,stall_pc,stall_if_id,en;
137
        wire flush_if_id,flush_id_ex,flush_ex_mem,flush_mem_wb;
138
139
        assign commit_if = 1;
140
        assign stall = 0;
141
        assign en = global_en;
142
        assign global_en = !(inst_wb == 32'H00100073);
143
        assign imem_raddr = (pc_if-32'h00400000)/'d4;
144
        assign inst_if
                         = imem_rdata;
145
                              = alu_res_ex&~1;
        assign pc_j_ex
146
        assign dmem_wd_in = rf_rd1_mem;
147
                          = dmem_we_mem;
        assign dmem_we
148
        assign dmem_addr = (alu_res_mem-32'h10010000)/'d4;
149
        assign dmem_wdata = dmem_wdata_mem;
150
        assign dmem_rdata_mem = dmem_rdata;
151
```

```
//assign flush if id=inst if==32'h00000013 && inst id
152
           ==32 'h00000013;
        //assign flush_id_ex=inst_if==32'h00000013 && inst_id
153
           ==32 'h00000013;
        assign flush_ex_mem=0;
154
        assign flush_mem_wb=0;
155
156
        // 前递模块
157
        FORWARDING forwarding(
158
            .rf_we_mem(rf_we_mem),
            .rf_we_wb(rf_we_wb),
160
            .rf_wa_mem(rf_wa_mem),
161
            .rf_wa_wb(rf_wa_wb),
162
            .rf_wd_mem(alu_res_mem),
163
            .rf_wd_wb(alu_res_wb),
164
            .rf_ra0_ex(rf_ra0_ex),
165
            .rf_ra1_ex(rf_ra1_ex),
166
            .rf_rd0_fe(rf_rd0_fe),
167
            .rf_rd1_fe(rf_rd1_fe),
168
            .rf_rd0_fd(rf_rd0_fd),
169
            .rf_rd1_fd(rf_rd1_fd)
170
        );
171
172
        MUX1 mux3(
173
            .src1(rf_rd0_fd),
174
            .src0(rf_rd0_ex),
175
            .sel(rf_rd0_fe),
176
            .res(rf_rd0_ex_)
177
        );
178
179
        MUX1 mux4(
180
            .src1(rf_rd1_fd),
181
            .src0(rf_rd1_ex),
182
```

```
.sel(rf rd1 fe),
183
            .res(rf_rd1_ex_)
184
       );
185
186
       // 段间寄存器控制器
187
       SEG_CTRL seg_ctrl(
188
            .rf_we_ex(rf_we_ex),
189
            .rf_wd_sel_ex(rf_wd_sel_ex),
190
            .rf_wa_ex(rf_wa_ex),
191
            .rf_ra0_id(rf_ra0_id),
            .rf_ra1_id(rf_ra1_id),
193
            .npc_sel_ex(npc_sel_ex),
194
            .stall_pc(stall_pc),
195
            .stall_if_id(stall_if_id),
196
            .flush_if_id(flush_if_id),
197
            .flush_id_ex(flush_id_ex)
198
       );
199
200
201
       PC_PLUS4 pc_plus(
202
            .pc(pc_if),
            .pc_plus4(pcadd4_if)
204
       );
205
206
       PC pc(
207
                     (clk),
            .clk
208
                     (rst),
            .rst
209
                     (global_en), // 当 global_en 为高电平
            .en
                时, PC 才会更新, CPU 才会执行指令。
                     (npc_ex),
            .npc
211
                     (pc_if),
            .pc
212
            .stall (stall_pc),
213
            .flush(flush)
214
```

```
);
215
216
        IF_ID if_id(
             .clk(clk),
218
             .rst(rst),
219
             .flush(flush_if_id),
220
             .stall(stall_if_id),
221
             .en(en),
222
             //PC
223
             .pc_add4_in(pcadd4_if),
             .pc_in(pc_if),
225
             .pc_add4_out(pcadd4_id),
226
             .pc_out(pc_id),
227
             //INST
228
             .inst_in(inst_if),
229
             .inst_out(inst_id),
230
             //DECODER
231
             .alu_op_in(0),
232
             .dmem_access_in(0),
233
             .imm_in(0),
234
             .rf_ra0_in(0),
235
             .rf_ra1_in(0),
236
             .rf_wa_in(0),
237
             .rf_we_in(0),
238
             .rf_wd_sel_in(0),
239
             .alu_src0_sel_in(0),
240
             .alu_src1_sel_in(0),
241
             .br_type_in(0),
242
             .dmem_we_in(0),
243
             .alu_op_out(),
244
             .dmem_access_out(),
^{245}
             .imm_out(),
246
             .rf_ra0_out(),
247
```

```
.rf_ra1_out(),
248
             .rf_wa_out(),
^{249}
             .rf_we_out(),
             .rf_wd_sel_out(),
251
             .alu_src0_sel_out(),
252
             .alu_src1_sel_out(),
253
             .br_type_out(),
254
             .dmem_we_out(),
255
             //REG_FILE
256
             .rf_rd0_in(0),
             .rf_rd1_in(0),
258
             .rf_rd0_out(),
259
             .rf_rd1_out(),
260
             //MUX1
261
             .alu_src0_in(0),
262
             .alu_src1_in(0),
263
             .alu_src0_out(),
264
             .alu_src1_out(),
265
             //NPC
266
             .npc_in(0),
^{267}
             .npc_out(),
268
             //BRANCH
269
             .npc_sel_in(0),
270
             .npc_sel_out(),
271
             //ALU
272
             .alu_res_in(0),
273
             .alu_res_out(),
274
             //SLU
275
             .dmem_rd_out_in(0),
276
             .dmem_wdata_mem_in(0),
277
             .dmem_rd_out_out(),
278
             .dmem_wdata_mem_out(),
             //DM
280
```

```
.dmem rdata mem in(0),
281
             .dmem_rdata_mem_out(),
282
             .commit_in(commit_if),
             .commit_out(commit_id)
284
        );
285
286
        DECODER decoder(
287
             .inst(inst_id),
288
             .alu_op(alu_op_id),
289
             .imm(imm_id),
             .rf_ra0(rf_ra0_id),
291
             .rf_ra1(rf_ra1_id),
292
             .rf_wa(rf_wa_id),
293
             .rf_we(rf_we_id),
294
             .alu_src0_sel(alu_src0_sel_id),
295
             .alu_src1_sel(alu_src1_sel_id),
296
             .dmem_access(dmem_access_id),
297
             .rf_wd_sel(rf_wd_sel_id),
298
             .br_type(br_type_id),
299
             .dmem_we(dmem_we_id)
300
        );
301
302
        REG_FILE reg_file(
303
             .clk(clk),
304
             .rf_ra0(rf_ra0_id),
305
             .rf_ra1(rf_ra1_id),
306
             .rf_wa(rf_wa_wb),
307
             .rf_we(rf_we_wb),
308
             .rf_wd(rf_wd_wb),
309
             .rf_rd0(rf_rd0_id),
310
             .rf_rd1(rf_rd1_id),
311
             .debug_reg_rd(debug_reg_rd),
312
             .debug_reg_ra(debug_reg_ra)
313
```

```
);
314
315
        ID_EX id_ex(
             .clk(clk),
317
             .rst(rst),
318
             .flush(flush_id_ex),
319
             .stall(stall),
320
             .en(en),
321
            //PC
322
             .pc_add4_in(pcadd4_id),
             .pc_in(pc_id),
324
             .pc_add4_out(pcadd4_ex),
325
             .pc_out(pc_ex),
326
            //INST
327
             .inst_in(inst_id),
328
             .inst_out(inst_ex),
329
            //DECODER
330
             .alu_op_in(alu_op_id),
331
             .dmem_access_in(dmem_access_id),
332
             .imm_in(imm_id),
333
             .rf_ra0_in(rf_ra0_id),
334
             .rf_ra1_in(rf_ra1_id),
335
             .rf_wa_in(rf_wa_id),
336
             .rf_we_in(rf_we_id),
337
             .rf_wd_sel_in(rf_wd_sel_id),
338
             .alu_src0_sel_in(alu_src0_sel_id),
339
             .alu_src1_sel_in(alu_src1_sel_id),
340
             .br_type_in(br_type_id),
341
             .dmem_we_in(dmem_we_id),
342
             .alu_op_out(alu_op_ex),
343
             .dmem_access_out(dmem_access_ex),
344
             .imm_out(imm_ex),
345
             .rf_ra0_out(rf_ra0_ex),
346
```

```
.rf_ra1_out(rf_ra1_ex),
347
             .rf_wa_out(rf_wa_ex),
348
             .rf_we_out(rf_we_ex),
             .rf_wd_sel_out(rf_wd_sel_ex),
350
             .alu_src0_sel_out(alu_src0_sel_ex),
351
             .alu_src1_sel_out(alu_src1_sel_ex),
352
             .br_type_out(br_type_ex),
353
             .dmem_we_out(dmem_we_ex),
354
            //REG_FILE
355
             .rf_rd0_in(rf_rd0_id),
             .rf_rd1_in(rf_rd1_id),
357
             .rf_rd0_out(rf_rd0_ex),
358
             .rf_rd1_out(rf_rd1_ex),
359
            //MUX1
360
             .alu_src0_in(0),
361
             .alu_src1_in(0),
362
             .alu_src0_out(),
363
             .alu_src1_out(),
364
            //NPC
365
             .npc_in(0),
366
             .npc_out(),
367
            //BRANCH
368
             .npc_sel_in(0),
369
             .npc_sel_out(),
370
            //ALU
371
             .alu_res_in(0),
372
             .alu_res_out(),
373
            //SLU
374
             .dmem_rd_out_in(0),
375
             .dmem_wdata_mem_in(0),
376
             .dmem_rd_out_out(),
377
             .dmem_wdata_mem_out(),
378
             //DM
379
```

```
.dmem_rdata_mem_in(0),
380
             .dmem_rdata_mem_out(),
381
             .commit_in(commit_id),
             .commit_out(commit_ex)
383
        );
384
385
        MUX1 mux1(
386
             .src0(rf_rd0_ex_),
387
             .src1(pc_ex),
388
             .sel(alu_src0_sel_ex),
             .res(alu_src0_ex)
390
        );
391
392
        MUX1 mux2(
393
             .src0(rf_rd1_ex_),
394
             .src1(imm_ex),
395
             .sel(alu_src1_sel_ex),
396
             .res(alu_src1_ex)
397
        );
398
399
        ALU alu(
400
             .alu_src0(alu_src0_ex),
401
             .alu_src1(alu_src1_ex),
402
             .alu_op(alu_op_ex),
403
             .alu_res(alu_res_ex)
404
        );
405
406
        BRANCH branch (
             .br_type(br_type_ex),
408
             .br_src0(rf_rd0_ex_),
409
             .br_src1(rf_rd1_ex_),
410
             .npc_sel(npc_sel_ex)
411
        );
412
```

```
NPC npc(
413
             .pc_offset(alu_res_ex),
414
             .pc_add4(pcadd4_if),
             .pc_j(pc_j_ex),
416
             .npc_sel(npc_sel_ex),
417
             .npc(npc_ex)
418
        );
419
420
        EX_MEM ex_mem(
421
             .clk(clk),
             .rst(rst),
423
             .flush(flush_ex_mem),
424
             .stall(stall),
425
            .en(en),
426
            //PC
427
            .pc_add4_in(pcadd4_ex),
428
             .pc_in(pc_ex),
429
             .pc_add4_out(pcadd4_mem),
430
             .pc_out(pc_mem),
431
            //INST
432
             .inst_in(inst_ex),
             .inst_out(inst_mem),
434
            //DECODER
435
             .alu_op_in(alu_op_ex),
436
             .dmem_access_in(dmem_access_ex),
437
             .imm_in(imm_ex),
438
             .rf_ra0_in(rf_ra0_ex),
439
             .rf_ra1_in(rf_ra1_ex),
440
             .rf_wa_in(rf_wa_ex),
441
            .rf_we_in(rf_we_ex),
442
             .rf_wd_sel_in(rf_wd_sel_ex),
443
             .alu_src0_sel_in(alu_src0_sel_ex),
444
             .alu_src1_sel_in(alu_src1_sel_ex),
445
```

```
.br_type_in(br_type_ex),
446
            .dmem_we_in(dmem_we_ex),
447
            .alu_op_out(alu_op_mem),
            .dmem_access_out(dmem_access_mem),
449
            .imm_out(imm_mem),
450
            .rf_ra0_out(rf_ra0_mem),
451
            .rf_ra1_out(rf_ra1_mem),
452
            .rf_wa_out(rf_wa_mem),
453
            .rf_we_out(rf_we_mem),
454
            .rf_wd_sel_out(rf_wd_sel_mem),
            .alu src0 sel out(alu src0 sel mem),
456
            .alu_src1_sel_out(alu_src1_sel_mem),
457
            .br_type_out(br_type_mem),
458
            .dmem_we_out(dmem_we_mem),
459
            //REG FILE
460
            .rf_rd0_in(rf_rd0_ex_),
461
            .rf_rd1_in(rf_rd1_ex_),
462
            .rf_rd0_out(rf_rd0_mem),
463
            .rf rd1 out(rf rd1 mem),
464
            //MUX1
465
            .alu_src0_in(alu_src0_ex),
466
            .alu_src1_in(alu_src1_ex),
467
            .alu_src0_out(alu_src0_mem),
468
            .alu_src1_out(alu_src1_mem),
469
            //NPC
470
            .npc_in(npc_ex),
471
            .npc_out(npc_mem),
472
            //BRANCH
473
            .npc_sel_in(npc_sel_ex),
474
            .npc_sel_out(npc_sel_mem),
475
            //ALU
476
            .alu_res_in(alu_res_ex),
477
            .alu_res_out(alu_res_mem),
478
```

```
//SLU
479
             .dmem_rd_out_in(0),
480
             .dmem_wdata_mem_in(0),
             .dmem_rd_out_out(),
482
             .dmem_wdata_mem_out(),
483
             //DM
484
             .dmem_rdata_mem_in(0),
485
             .dmem_rdata_mem_out(),
486
             .commit_in(commit_ex),
487
             .commit_out(commit_mem)
        );
489
490
        SLU slu(
491
             .addr(alu_res_mem),
492
             .dmem_access(dmem_access_mem),
493
             .rd_in(dmem_rdata_mem),
494
             .wd_in(rf_rd1_mem),
495
             .rd_out(dmem_rd_out_mem),
496
             .wd_out(dmem_wdata_mem)
497
        );
498
499
        MEM_WB mem_wb(
500
             .clk(clk),
501
             .rst(rst),
502
             .flush(flush_mem_wb),
503
             .stall(stall),
504
             .en(en),
505
             //PC
506
             .pc_add4_in(pcadd4_mem),
507
             .pc_in(pc_mem),
508
             .pc_add4_out(pcadd4_wb),
509
             .pc_out(pc_wb),
510
             //INST
511
```

```
.inst_in(inst_mem),
512
            .inst_out(inst_wb),
513
            //DECODER
            .alu_op_in(alu_op_mem),
515
            .dmem_access_in(dmem_access_mem),
516
            .imm_in(imm_mem),
517
            .rf_ra0_in(rf_ra0_mem),
518
            .rf_ra1_in(rf_ra1_mem),
519
            .rf_wa_in(rf_wa_mem),
520
            .rf_we_in(rf_we_mem),
            .rf_wd_sel_in(rf_wd_sel_mem),
522
            .alu_src0_sel_in(alu_src0_sel_mem),
523
            .alu_src1_sel_in(alu_src1_sel_mem),
524
            .br_type_in(br_type_mem),
525
            .dmem_we_in(dmem_we_mem),
526
            .alu_op_out(alu_op_wb),
527
            .dmem_access_out(dmem_access_wb),
528
            .imm_out(imm_wb),
529
            .rf_ra0_out(rf_ra0_wb),
530
            .rf_ra1_out(rf_ra1_wb),
531
            .rf_wa_out(rf_wa_wb),
532
            .rf_we_out(rf_we_wb),
533
            .rf_wd_sel_out(rf_wd_sel_wb),
534
            .alu_src0_sel_out(alu_src0_sel_wb),
535
            .alu_src1_sel_out(alu_src1_sel_wb),
536
            .br_type_out(br_type_wb),
537
            .dmem_we_out(dmem_we_wb),
538
            //REG_FILE
539
            .rf_rd0_in(rf_rd0_mem),
540
            .rf_rd1_in(rf_rd1_mem),
541
            .rf_rd0_out(rf_rd0_wb),
542
            .rf_rd1_out(rf_rd1_wb),
543
            //MUX1
544
```

```
.alu_src0_in(alu_src0_mem),
545
             .alu_src1_in(alu_src1_mem),
546
             .alu_src0_out(alu_src0_wb),
             .alu_src1_out(alu_src1_wb),
548
            //NPC
549
             .npc_in(npc_mem),
550
             .npc_out(npc_wb),
551
            //BRANCH
552
             .npc_sel_in(npc_sel_mem),
553
             .npc_sel_out(npc_sel_wb),
554
            //ALU
555
             .alu_res_in(alu_res_mem),
556
             .alu_res_out(alu_res_wb),
557
            //SLU
558
             .dmem_rd_out_in(dmem_rd_out_mem),
559
             .dmem_wdata_mem_in(dmem_wdata_mem),
560
             .dmem_rd_out_out(dmem_rd_out_wb),
561
             .dmem_wdata_mem_out(dmem_wdata_wb),
562
            //DM
563
             .dmem_rdata_mem_in(dmem_rdata_mem),
564
             .dmem_rdata_mem_out(dmem_rdata_wb),
565
             .commit_in(commit_mem),
566
             .commit_out(commit_wb)
567
        );
568
569
        MUX2 RF_MUX(
570
             .src0(pcadd4_wb),
571
             .src1(alu_res_wb),
572
             .src2(dmem_rd_out_wb),
573
             .src3(0),
574
             .sel(rf_wd_sel_wb),
575
             .res(rf_wd_wb)
576
        );
577
```

```
578
579
                                                    Commit
580
                                                 */
581
             */
582
        // wire [0 : 0] commit_if
583
        // assign commit_if = 1'H1;
584
585
              [0 : 0]
        reg
                         commit_reg
586
              [31 : 0]
        reg
                         commit_pc_reg
587
              [31 : 0]
                          commit_inst_reg
        reg
588
        reg
              [0 : 0]
                         commit_halt_reg
589
              [0 : 0]
                         commit_reg_we_reg
        reg
590
              [4 : 0]
                         commit_reg_wa_reg
        reg
591
              [31 : 0]
                         commit_reg_wd_reg
        reg
592
              [0 : 0]
                         commit_dmem_we_reg
593
        reg
              [31 : 0]
        reg
                          commit_dmem_wa_reg
594
              [31 : 0]
                          commit_dmem_wd_reg
        reg
595
596
        always @(posedge clk) begin
597
             if (rst) begin
598
                 commit_reg
                                       <= 1'H0;
599
                 commit_pc_reg
                                       <= 32'H0;
600
                 commit_inst_reg
                                       <= 32'H0;
601
                 commit_halt_reg
                                       <= 1'H0;
602
                 commit_reg_we_reg
                                       <= 1'H0;
603
                 commit_reg_wa_reg
                                       <= 5'H0;
604
```

<= 32'H0;

commit_reg_wd_reg

605

```
commit_dmem_we_reg <= 1'H0;</pre>
606
                 commit_dmem_wa_reg <= 32'H0;</pre>
607
                 commit_dmem_wd_reg <= 32'H0;</pre>
            end
609
            else if (global_en) begin
610
                 commit_reg
                                       <= commit_wb;
611
                 commit_pc_reg
612
                                       <= pc_wb;
                 commit_inst_reg
                                       <= inst_wb;
613
                 commit_halt_reg
                                       <= inst_wb == `HALT_INST;
614
                 commit_reg_we_reg <= rf_we_wb;</pre>
                                      <= rf_wa_wb;
                 commit_reg_wa_reg
616
                 commit_reg_wd_reg <= rf_wd_wb;</pre>
617
                 commit_dmem_we_reg <= dmem_we_wb;</pre>
618
                 commit_dmem_wa_reg <= alu_res_wb;</pre>
619
                 commit_dmem_wd_reg <= dmem_wdata_wb;</pre>
620
            end
621
                 end
622
623
                                         = commit_reg;
                 assign commit
624
                 assign commit_pc
                                        = commit_pc_reg;
625
                 assign commit_inst
                                        = commit_inst_reg;
                 assign commit_halt
                                        = commit_halt_reg;
627
                 assign commit_reg_we = commit_reg_we_reg;
628
                 assign commit_reg_wa = commit_reg_wa_reg;
629
                 assign commit_reg_wd = commit_reg_wd_reg;
630
                 assign commit_dmem_we = commit_dmem_we_reg;
631
                 assign commit_dmem_wa = commit_dmem_wa_reg;
632
                 assign commit_dmem_wd = commit_dmem_wd_reg;
   endmodule
```

3 仿真结果与分析

3.1 Test1

图 1: 仿真结果

Name	Number	Value
zero	0	0x00000000
ra	1	0x00000001
sp	2	0x000006e3
gp	3	0xf4b2e614
tp	4	0x00000000
t0	5	0x00000000
t1	6	0x00000004
t2	7	0x7f77ffff
s0	8	0xdffcffd5
s1	9	0x60cbe000
a0	10	0x006ffeff
al al	11	0xf1165000
a2	12	0xf4b2e614
a3	13	0x7594d000
a4	14	0x00000000
a5	15	0x0a438000
a6	16	0x0a438000
a7	17	0x60cbe000
s2	18	0x00000001
s3	19	0x006ffeff
s4	20	0xb474b650
s5	21	0x00000000
s6	22	0xc2a83000
s7	23	0x9b4ad664
s8	24	0x00000000
s9	25	0xb474b650
s10	26	0xa08b002a
s11	27	0x00000004
t3	28	0x97f8e63c
t4	29	0xb006f628
t5	30	0x9b4ad664
t6	31	0xb006f628
рс		0x00400684

图 2: 运行结果

可以看到, 仿真结果和运行结果吻合的很好。

3.2 Test2

图 3: 仿真结果

zero 0 ra 1 sp 2 gp 3 ttp 4 t0 5 t1 6 t2 7 s0 8 s1 9 a0 10 a1 11 a2 12 a3 13 a4 14 a5 15 a6 16 a7 17 s2 18	
sp 2 gp 3 tp 4 t0 5 t1 6 t2 7 s0 8 s1 9 a0 10 a1 11 a2 12 a3 13 a4 14 a5 15 a6 16 a7 17 s2 18	0x00000000
gp 3 tp 4 tt0 5 t1 6 t2 7 s0 8 s1 9 a0 10 a1 11 a2 12 a3 13 a4 14 a5 15 a6 16 a7 17 s2 18	0x1002017c
tp 4 t0 5 t1 6 t2 7 s0 8 s1 9 a0 10 a1 11 a2 12 a3 13 a4 14 a5 15 a6 16 a7 17 s2 18	0x00000000
to 5 t1 6 t2 7 s0 8 s1 9 a0 10 a1 11 a2 12 a3 13 a4 14 a5 15 a6 16 a7 17 s2 18	0x00000000
t1 6 t2 7 s0 8 s1 9 a0 10 a1 11 a2 12 a3 13 a4 14 a5 15 a6 16 a7 17 s2 18	0x00000000
t2	0x10020b53
\$0 8 \$1 9 \$a0 10 \$a1 11 \$a2 12 \$a3 13 \$a4 14 \$a5 15 \$a6 16 \$a7 17 \$s2 18	0x10015b8d
s1 9 a0 10 a1 11 a2 12 a3 13 a4 14 a5 15 a6 16 a7 17 s2 18	0x00000000
a0 10 a1 11 a2 12 a3 13 a4 14 a5 15 a6 16 a7 17 s2 18	0x00000000
a1 11 a2 12 a3 13 a4 14 a5 15 a6 16 a7 17 s2 18	0x00000000
a2 12 a3 13 a4 14 a5 15 a6 16 a7 17 s2 18	0x10020277
a3 13 a4 14 a5 15 a6 16 a7 17 s2 18	0x1001c80d
a4 14 a5 15 a6 16 a7 17 s2 18	0x00000000
a5 15 a6 16 a7 17 s2 18	0x0000003e
a6 16 a7 17 s2 18	0x10026042
a7 17 52 18	0x00000000
s2 18	0x00000000
	0x00000000
	0x00000000
s3 19	0x00000000
s4 20	0x1001edad
s5 21	0x00000000
s6 22	0x00000000
s7 23	0x0000003e
s8 24	0x10035516
s9 25	0x10035cac
s10 26	0x0000007d
s11 27	0x1003b6b4
t3 28	0x00000000
t4 29	0x00000000
t5 30	0x10011ce8
t6 31	0x0000007d
рс	0x00400754

图 4: 运行结果

可以看到, 仿真结果和运行结果吻合的很好。

4 电路设计与分析

4.1 前递模块

图 5: 前递模块

4.2 段间寄存器控制模块

图 6: 段间寄存器控制模块

4.3 CPU 模块

图 7: CPU 模块

5 测试结果与分析

5.1 Test1

图 8: 上板运行结果

可以看到,上板结果和运行结果吻合的很好。

6 总结 36

5.2 Test2

图 9: 上板运行结果

可以看到,上板结果和运行结果吻合的很好。

6 总结

本次实验实现了前递模块与段间寄存器控制模块,并将其加入 CPU 模块,从而实现了一个完整的五级流水线 CPU。