N.	Utech
Name :	
Roll No.:	
Invigilator's Signature :	

ELECTROMAGNETIC THEORY AND TRANSMISSION LINES

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) The point P(1, 3, 5) in the Cartesian co-ordinate system is P(..., ..., ...) in the Cylindrical co-ordinate system
 - a) $3.16, 71.565^{\circ}, 5$
 - b) $3.162, 5, 71.565^{\circ}$
 - c) 5.916, 32.11°, 3.162
 - d) 5.916, 3.162, 32.11°

4304 [Turn over

ii)	Wh	ich of the following	g is zero ?	SIGSII -	
	a)	grad div	b)	curl grad	
	c)	div grad	d)	curl curl.	
iii)	The	e unit of electric field intensity is			
	a)	Volt	b)	Volt/m	
	c)	Coulomb/m	d)	Weber/m.	
iv)	On	a perfect conductor surface			
	a)	The tangential component of <i>B</i> a	_	nt of E and normal	
	b)	The tangential surface current of	_	of H is equal to the	
	c)	The normal com	ponent of	D is the surface charge	
	d)	All of these.			
v)	The	The rate of energy flow is given by			
	a)	Maxwell Equation	n		
	b)	Poynting Vector			
	c)	Poisson Equation	1		
	d)	Equation of Cont	tinuity.		
4304			2		

- vi) The characteristic impedance of a transmission line i
 - a) directly proportional to its length
 - b) inversely proportional to its length
 - c) independent of its length
 - d) directly proportional to square root of its length.
- vii) For a line of characteristic impedance Z_0 , terminated by a load impedance $Z=Z_0/3$, the reflection coefficient is
 - a) 1/3

b) 2/3

c) -1/3

- d) -1/2.
- viii) Reflector in Yagi-Uda antenna is
 - a) active element
- b) driven element
- c) identical to dipole
- d) parasitic element.
- ix) A short-circuited transmission line stub is preferred in stub-matching than an open-ended stub because
 - a) Short-circuited stub does not radiate
 - b) It is easy to maintain short-circuit
 - c) Length of short-circuit stub is less
 - d) none of these.

- x) If E_0 and B_0 be the amplitude of electric field and magnetic field associated with an electromagnetic wave propagating in space, then $E_0 \, / \, B_0$ is
 - a) $\sqrt{\frac{\mu_0}{\epsilon_0}}$

b) $\sqrt{\frac{\epsilon_0}{\mu_0}}$

c) $\sqrt{\mu_0 \epsilon_0}$

- d) $\frac{1}{\sqrt{\mu_0 \epsilon_0}}$.
- xi) Voltage standing wave ratio of a matched transmission line is
 - a) Zero

b) Infinity

c) Unity

- d) None of these.
- xii) Poynting vector for e.m. wave has unit
 - a) W/m

b) W/m^2

c) W^2/m

d) $(W/m)^2$.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

- 2. Find the directional derivative of $\phi = x^2yz + 4xz^2$ at (1, -2, -1) in the direction 2i j 2k.
- 3. a) What is divergence theorem?
 - b) Prove that $\nabla \cdot (\phi A) = (\nabla \phi) = (\nabla \phi) \cdot A + \phi (\nabla \cdot A)$.

2 + 3

- 4. What are the transmission line parameters? Mention the different modes of transmission lines.
- 5. a) Write down the Maxwell's equations in integral form
 - b) What is the relation between decibel and neper? 4 + 1
- 6. Derive the relation between antenna aperture and effective height of an antenna.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) In the cylindrical region 0 < r < 0.5m, $J = 4.5 e^{-2r} a_z$ Amp/m². Determine $H = H_{_{\varpi}}A_{_{\varpi}}$ everywhere.
 - b) Prove that Curl H = J
 - c) An magnetic field intensity due to a current source is given by $H = y \cos(ax) a_x (y + e^x) a_z$. Describe the current density over the YZ plane. 5 + 5 + 5
- 8. a) What is 'Biot-Savart's law in magnetostatics?
 - b) If a infinite long wire of negligible cross section is carrying current I. Find the magnetic field intensity at a distance r from the wire.
 - c) What is Magnetic vector potential?

- d) Using integral form of Ampere's circuit law find the magnetic field intensity inside the infinite long straight wire carrying steady current I. 2 + 5 + 3 + 5
- 9. a) Explain directivity of an antenna with an example. 3
 - b) Give the relation between directivity and gain of an antenna. What is the limit of efficiency factor of an antenna?
 3
 - c) What are half power beam width (HPBW) and beam width between flint nulls (BWFN)?
 - d) Define radiation resistance of folded dipole antenna.Why is it beneficial for our TV reception antenna?
- 10. a) Differentiate between a plane wave and a uniform plane wave.
 - b) Explain the 'quarter-wave transformer' technique of matching.
 - c) A distorionless transmission line has Z_0 = 50 Ohm and a phase constant of 3rd/m at 10 MHz. Find the inductance and the capacitance of this line.

4304 6

- d) A lossless, half wavelength line has $Z_0 = 50$ Ohm, and is terminated in a load resistance of 100 Ohm. Determine
 - (i) Reflection coefficient
 - (ii) VSWR
 - (iii) Z_{\min}
 - (iv) Z_{max} .

2 + 5 + 3 + 5

- 11. Write short notes on any *three* of the following: $3 \times 5 = 15$
 - a) Gradient of a scalar field
 - b) Boundary conditions for electric and magnetic fields
 - c) Distortionless transmission line
 - d) Use of transmission line as circuit element
 - e) Basic antenna elements.