

Ayudantía 7

4 de octubre de 2024

Martín Atria, José Thomas Caraball, Caetano Borges

Resumen

Relación Binaria

Una relación binaria es un conjunto de pares ordenados que establece una conexión o asociación entre elementos de dos conjuntos distintos.

R es una relación binaria entre A y B si $R \subseteq A \times B$.

Propiedades de una Relación Binaria

Refleja

Una relación R es refleja si para todo elemento x en el conjunto, el par (x, x) está en R.

$$\forall x \in A, (x, x) \in R$$

Irrefleja

Una relación R es irrefleja si ningún par (x,x) está en R para cualquier x en el conjunto.

$$\forall x \in A, (x, x) \notin R$$

Simétrica

Una relación R es simétrica si para cada par (x, y) en R, también está presente el par (y, x).

$$\forall x, y \in A, (x, y) \in R \to (y, x) \in R$$

Antisimétrica

Una relación R es antisimétrica si para cualquier par (x,y) en R, si $x \neq y$, entonces el par (y,x) no está en R.

$$\forall x, y \in A, (x, y) \in R \land x \neq y \rightarrow (y, x) \notin R$$

Transitiva

Una relación R es transitiva si para cada par (x, y) y (y, z) en R, el par (x, z) también está en R.

$$\forall x, y, z \in A, (x, y) \in R \land (y, z) \in R \rightarrow (x, z) \in R$$

Conexidad

Una relación R es conexa si para cada par de elementos x,y podemos encontar a (x, y) en R, o a (y, x) en R.

$$\forall x, y \in A, (x, y) \in R \lor (y, x) \in R$$

Relación de Equivalencia

Una relación de equivalencia es una relación binaria que cumple **reflexividad**, **simetría** y **transitividad**.

A la relación se le denota como $x \sim y$.

Clase de equivalencia

Dado $x \in A$, la clase de equivalencia de x bajo \sim es el conjunto

$$[x]_{\sim} = \{ y \in A \mid x \sim y \}$$

Conjunto cuociente

Sea \sim una relación de equivalencia sobre un conjunto A. El conjunto cuociente de A con respecto a \sim es el conjunto de todas las clases de equivalencia de \sim :

$$A/\sim = \{[x] \mid x \in A\}$$

Orden Parcial

Una relación R sobre un conjunto A es un orden parcial si es **reflexiva**, **antisimétrica** y **transitiva**.

A la relación se le denota como $x \leq y$. Y diremos que el par (A, \leq) es un **orden parcial**.

Orden Total

Una relación \leq sobre un conjunto A es un orden total si es una relación de orden parcial y además es conexa.

Elemento mínimo y máximo

Sean (A, \preceq) un orden parcial, $S \subseteq A$ y $x \in A$. Diremos que:

- 1. x es una **cota inferior** de S si para todo $y \in S$ se cumple que $x \leq y$.
- 2. x es un **elemento minimal** de S si $x \in S$ y para todo $y \in S$ se cumple que $y \leq x \Rightarrow y = x$.
- 3. x es un **mínimo** en S si $x \in S$ y es cota inferior de S.

Análogamente, se definen los conceptos de cota superior, elemento maximal y máximo.

Sea (A, \preceq) un orden parcial, y sean $S \subseteq A, x \in A$.

Ínfimo y supremo

Sea (A, \preceq) un orden parcial y $S \subseteq A$. Diremos que s es un ínfimo de S si es una cota inferior, y para cualquier otra cota inferior s' se tiene que $s' \preceq s$. Es decir, el ínfimo es la mayor cota inferior. Análogamente se define el supremo de un conjunto.

1. Meme del día

2. Relaciones

Decimos que un conjunto $X \subseteq \mathbb{R}$ es **bueno para la suma** si satisface las siguientes condiciones:

- 1. $0 \in X$
- $2. \ \forall x, y \in X, x + y \in X.$

Dado un conjunto $X \subseteq \mathbb{R}$, se define en \mathbb{R} la relación \mathcal{R}_X como:

$$x\mathcal{R}_X y \leftrightarrow (x-y) \in X$$

Demuestre que si X es bueno para la suma, entonces \mathcal{R}_X es una relación refleja y transitiva.

3. Conjuntos & Relaciones de equivalencia

Sea A un conjunto cualquiera, y sean R_1 y R_2 relaciones de equivalencia sobre A. Demuestre que $R_1 \cup R_2$ es una relación de equivalencia si y solo si $R_1 \cup R_2 = R_1 \circ R_2$.

Nota: La composición de dos relaciones definidas sobre un conjunto A, denotada por $R_1 \circ R_2$, es una relación definida como

$$R_1 \circ R_2 = \{(a_1, a_2) \in A^2 \mid \exists a' \in A \text{ tal que } a_1 R_2 a' \land a' R_1 a_2 \}$$

4. Relaciones de orden

Sea $\mathbb R$ el conjunto de los números reales, se define la relación $\mathcal R$ sobre $\mathbb R^2$ de la siguiente forma:

$$(a,b)\mathcal{R}(c,d) \leftrightarrow a < c \lor (a = c \land b \le d)$$

Demuestre que $(\mathbb{R}^2, \mathcal{R})$ es un orden parcial.