Introducción a los espacios de Hilbert

Pregunta 1 (2,5 puntos) En el espacio $\mathcal{P}^2_{\mathbb{R}}[0,2]$ de los polinomios, con coeficientes reales y de grado menor o igual a dos, se define

$$\langle P, G \rangle = \int_0^2 (2-t)P(t)G(t) dt$$
.

Se pide:

a) Demuestre que $\langle \cdot, \cdot \rangle$ es un producto interno en $\mathcal{P}^2_{\mathbb{R}}[0, 2]$.

b) Determine una base ortonormal, respecto de este producto interno, del subespacio $F \subset \mathcal{P}^2_{\mathbb{R}}[0,2]$ de los polinomios, con coeficientes reales y de grado menor o igual a uno.

Solución: a) $\langle P, P \rangle = \int_0^2 (2-t) P^2(t) \, dt \ge 0$ pues $P^2(t) \ge 0$ y $2-t \ge 0$ para todo $t \in [0,2]$. Además si $\langle P, P \rangle = \int_0^2 (2-t) P^2(t) \, dt = 0$, teniendo en cuenta que el integrando es una función continua positiva en [0,2], resulta que $(2-t)P^2(t)=0$ para todo $t\in[0,2]$. Por tanto, P(t)=0 para todo $t\in[0,2)$ y en consecuencia $P \equiv 0$.

Nota: Un polinomio de grado dos que se anula en más de dos valores distintos es necesariamente el polinomio cero.

Claramente $\langle P, G \rangle = \langle G, P \rangle$ pues P(t)G(t) = G(t)P(t) para todo t.

Además para todo $\alpha,\beta\in\mathbb{R}$ y para todo $P,Q,G\in\mathcal{P}^2_{\mathbb{R}}[0,2]$ se tiene:

$$\begin{split} \langle \alpha P + \beta Q, G \rangle &= \int_0^2 (2 - t) \big(\alpha P(t) + \beta Q(t) \big) G(t) \, dt \\ &= \alpha \int_0^2 (2 - t) P(t) G(t) \, dt + \beta \int_0^2 (2 - t) Q(t) G(t) \, dt \\ &= \alpha \langle P, G \rangle + \beta \langle Q, G \rangle \end{split}$$

b) Ortonormalizamos, mediante Gram-Schmidt, la base $\{x_1, x_2\}$ de F tal que $x_1(t) = 1$ y $x_2(t) = t$ para todo $t \in [0, 2].$

De
$$\int_0^2 (2-t)1^2 dt = \left[2t - t^2/2\right]_0^2 = 4 - 2 = 2$$
 se obtiene $e_1(t) = 1/\sqrt{2}$. A su vez,

$$y_2(t) = x_2(t) - \langle x_2, e_1 \rangle e_1(t) = t - \frac{1}{\sqrt{2}} \int_0^2 (2 - t) t \frac{1}{\sqrt{2}} dt$$
$$= t - \frac{1}{2} \left[t^2 - t^3 / 3 \right]_0^2 = t - \frac{1}{2} \left(4 - \frac{8}{3} \right) = t - \frac{2}{3}$$

Como

$$\langle y_2, y_2 \rangle = \langle y_2, x_2 \rangle - \langle x_2, e_1 \rangle \langle y_2, e_1 \rangle = \langle y_2, x_2 \rangle = \int_0^2 (2 - t)(t - 2/3)t \, dt$$
$$= \left[-t^4/4 + 8t^3/9 - 2t^2/3 \right]_0^2 = -4 + \frac{8}{9} \cdot 8 - \frac{2}{3} \cdot 4 = \frac{4}{9}$$

en consecuencia, se obtiene el vector unitario $e_2(t) = \frac{3}{2}y_2(t) = \frac{3}{2}t - 1$.

Por tanto, una base ortonormal de F es $\{e_1, e_2\}$ siendo $e_1(t) = 1/\sqrt{2}$ y $e_2(t) = \frac{3}{2}t - 1$ para todo $t \in [0, 2]$.

Pregunta 2 (2 puntos)

Sea F el subespacio vectorial de $\ell^2(\mathbb{N})$ definido mediante

$$F = \{x = \{x_n\}_{n \in \mathbb{N}} \in \ell^2(\mathbb{N}) : \sum_{n=1}^{\infty} x_n = 0\}.$$

Demuestre que F es denso en ℓ^2 .

Solución: Como F es un subespacio vectorial del espacio de Hilbert $\ell^2(\mathbb{N})$, el corolario 3.10 permite asegurar que F es denso si $F^{\perp} = \{0\}$.

Observemos que para todo entero $k \ge 2$, $y^k = \{y_n^k\} \in F$ siendo $y_n^k = \begin{cases} 1 \text{ si } n = 1 \\ -1 \text{ si } k = n \\ 0 \text{ en los demás casos} \end{cases}$

En consecuencia, si $x = \{x_n\}_{n \in \mathbb{N}} \in F^{\perp}$ se cumple que $\langle x, y^k \rangle = 0$ para todo $k \in \mathbb{N}$ tal que $k \geq 2$. Por tanto, $x_1 - x_k = 0$ para todo $k \in \mathbb{N}$ tal que $k \geq 2$. Luego $x_1 = x_2 = \cdots = x_n = \cdots$. Lo anterior unido a que $\sum_{n=1}^{\infty} |x_n|^2 < \infty$ pues $x \in \ell^2(\mathbb{N})$, nos lleva a que x = 0.

Pregunta 3 (3 puntos) Sea c_{00} , el subespacio vectorial de $\ell^2(\mathbb{N})$ de las sucesiones complejas que tienen sólo un número finito de términos no nulos, dotado de la norma y del producto interno de $\ell^2(\mathbb{N})$. Sea la aplicación

 $T: c_{00} \longrightarrow \mathbb{C}$ definida para todo $x = \{x_n\}_{n \in \mathbb{N}} \in c_{00}$ mediante $T(x) = \sum_{n=1}^{\infty} (x_n/n)$

- a) Demuestre que T es una forma lineal acotada tal que $||T|| \leq \left(\sum_{n=1}^{\infty} \frac{1}{n^2}\right)^{1/2}$.
- b) Demuestre que no existe $y \in c_{00}$ tal que $T(x) = \langle x, y \rangle$ para todo $x \in c_{00}$.
- c) ¿Contradice el apartado anterior el teorema de representación de Riesz?

Solución: a) T es una forma lineal pues para todo $x, y \in c_{00}$ y para todo $\alpha, \beta \in \mathbb{C}$,

$$T(\alpha x + \beta y) = \sum_{n=1}^{\infty} \frac{\alpha x_n + \beta y_n}{n} = \alpha \sum_{n=1}^{\infty} \frac{x_n}{n} + \beta \sum_{n=1}^{\infty} \frac{y_n}{n} = \alpha T(x) + \beta T(y).$$

T es acotado pues aplicando la desigualdad de Cauchy-Schwarz en $\ell^2(\mathbb{N})$ a x y a $z=\{\frac{1}{n}\}_{n\in\mathbb{N}}\in\ell^2(\mathbb{N})$ se obtiene:

$$|T(x)| = \Big|\sum_{n=1}^{\infty} \frac{x_n}{n}\Big| = \langle x, z \rangle \le ||x|| ||z||$$

Además de la desigual dad anterior se deduce que $\|T\| \leq \|z\| = \big(\sum_{n=1}^\infty \frac{1}{n^2}\big)^{1/2}.$

- b) Veamos que no existe $y \in c_{00}$ tal que $T(x) = \langle x, y \rangle$ para todo $x \in c_{00}$. En efecto, para cualquier $y \in c_{00}$, sea $N_y \in \mathbb{N}$ tal que $y_n = 0$ para todo $n > N_y$. Sean $j \in \mathbb{N}$ tal que $j > N_y$ y $\mathbf{e}_j := \{\delta_{j,k}\}_{k=1}^{\infty}$. Se tiene que $T(\mathbf{e}_j) = \frac{1}{j}$ mientras que $\langle \mathbf{e}_j, y \rangle = 0$ y en consecuencia $T(\mathbf{e}_j) \neq \langle \mathbf{e}_j, y \rangle$.
- c) El teorema de representación de Riesz asegura que si T es una forma lineal acotada en un espacio de Hilbert \mathcal{H} entonces existe un único $y \in \mathcal{H}$ tal que $T(x) = \langle x, y \rangle$ para todo $x \in \mathcal{H}$. En este ejercicio, no se cumple la hipótesis de que c_{00} sea un espacio de Hilbert pues no es un espacio completo. Por tanto no hay contradicción.

Nota: Si en el ejercicio anterior consideramos la forma lineal acotada, \mathbf{T} , extensión de T a $\ell^2(\mathbb{N})$, que es un espacio de Hilbert, entonces sí existe un único $z \in \ell^2(\mathbb{N})$ tal que $\mathbf{T}(x) = \langle x, z \rangle$ para todo $x \in \ell^2(\mathbb{N})$, siendo precisamente $z = \{\frac{1}{n}\}_{n \in \mathbb{N}}$. No es sólo el hecho de que $z \notin c_{00}$ lo que permite asegurar la no existencia de un elemento $y \in c_{00}$ tal que $T(x) = \langle x, y \rangle$ para todo $x \in c_{00}$. Por ejemplo, si nos restringiéramos al espacio,

$$F := \{x = \{x_n\}_{n=1}^{\infty} \in \ell^2(\mathbb{N}) \colon x_n = 0 \text{ si } n > 5\}$$

se cumple que $z \notin F$ y sin embargo sí existe $y \in F$ tal que $T(x) = \langle x, y \rangle$ para todo $x \in F$.

Pregunta 4 (2,5 puntos) Sabiendo que

$$\frac{2}{\pi} + \frac{4}{\pi} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{\cos(2nx)}{4n^2 - 1}$$

es el desarrollo en serie de Fourier de la función $g(x) = |\cos x|$ en $L^2[0,\pi]$, determine el valor de

$$\sum_{n=1}^{\infty} \frac{1}{(4n^2-1)^2} \, .$$

Solución:

La sucesión

$$\left\{\sqrt{\frac{1}{\pi}}\right\} \cup \left\{\sqrt{\frac{2}{\pi}}\cos(2nx)\right\}_{n=1}^{\infty} \cup \left\{\sqrt{\frac{2}{\pi}}\sin(2nx)\right\}_{n=1}^{\infty}$$

es una base ortonormal de $L^2[0,\pi]$. La serie de Fourier de g,

$$g = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(2nx) + b_n \sin(2nx)]$$
 en $L^2(0, \pi)$,

es la serie que nos dan,

$$\frac{2}{\pi} + \frac{4}{\pi} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{\cos(2nx)}{4n^2 - 1}.$$

La igualdad de Parseval correspondiente al desarrollo es:

$$\frac{1}{\pi} \int_0^{\pi} |g(x)|^2 dx = \frac{|a_0|^2}{4} + \frac{1}{2} \sum_{n=1}^{\infty} (|a_n|^2 + |b_n|^2)$$

$$\frac{1}{\pi} \int_0^{\pi} \cos^2 x dx = \frac{4}{\pi^2} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{16}{\pi^2 (4n^2 - 1)^2}$$

$$\frac{1}{\pi} \int_0^{\pi} \frac{1 + \cos 2x}{2} dx = \frac{4}{\pi^2} + \frac{8}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{(4n^2 - 1)^2}$$

$$\frac{1}{\pi} \left[\frac{x}{2} + \frac{\sin 2x}{4} \right]_0^{\pi} = \frac{4}{\pi^2} + \frac{8}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{(4n^2 - 1)^2}$$

$$\frac{1}{2} = \frac{4}{\pi^2} + \frac{8}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{(4n^2 - 1)^2}$$

Despejando, se obtiene que

$$\sum_{n=1}^{\infty} \frac{1}{(4n^2 - 1)^2} = \left(\frac{1}{2} - \frac{4}{\pi^2}\right) \frac{\pi^2}{8} = \frac{\pi^2}{16} - \frac{1}{2}.$$