Prior sensitivity analysis

Female, Education level - A level and above

FALSE Loading required package: Matrix

	IF	Mean	SD	lower	upper
β_1^C	436.176	1.025	0.209	0.666	1.417
β_1^N	125.967	-4.025	0.217	-4.459	-3.602
eta_2^N	128.864	-4.036	0.212	-4.467	-3.622
eta_3^N	133.356	-4.208	0.220	-4.645	-3.770
β_4^N	110.684	-3.310	0.185	-3.680	-2.953
eta_5^N	102.369	-2.922	0.176	-3.266	-2.572
eta_6^N	56.145	-1.810	0.138	-2.082	-1.546
eta_7^N	123.772	-4.117	0.219	-4.560	-3.692
β_8^N	115.218	-3.906	0.215	-4.330	-3.473
eta_9^N	126.747	-3.756	0.199	-4.162	-3.375
β_{10}^N	123.760	-3.434	0.188	-3.816	-3.073
β_{11}^N	23.813	-1.194	0.143	-1.485	-0.928
eta_{12}^N	65.891	-1.853	0.136	-2.123	-1.590
β_{13}^N	128.021	-4.393	0.230	-4.871	-3.953
β_{14}^N	129.815	-4.039	0.213	-4.472	-3.625
β_{15}^N	84.288	-2.507	0.162	-2.830	-2.190
β_{16}^N	91.618	-2.646	0.165	-2.972	-2.327
β_{17}^N	131.431	-4.202	0.220	-4.642	-3.768
β_{18}^N	133.348	-4.253	0.225	-4.718	-3.824
eta_{19}^N	130.428	-4.386	0.233	-4.864	-3.944
eta_{20}^N	127.164	-4.305	0.232	-4.765	-3.846
β_{21}^N	130.334	-4.876	0.255	-5.368	-4.356
eta_{22}^N	130.835	-4.306	0.227	-4.771	-3.869
β_{23}^N	130.323	-4.699	0.255	-5.203	-4.194
eta_{24}^N	123.671	-4.656	0.248	-5.179	-4.193

	IF	Mean	SD	lower	upper
β_{25}^N	124.629	-4.451	0.239	-4.935	-3.984
β_{26}^N	132.864	-4.575	0.242	-5.050	-4.084
β_{27}^N	134.720	-4.884	0.254	-5.391	-4.382
eta_{28}^N	134.619	-5.437	0.283	-6.023	-4.899
eta_{29}^N	137.028	-4.816	0.251	-5.324	-4.323
eta_{30}^N	117.856	-3.945	0.212	-4.372	-3.533
β_{31}^N	136.028	-4.545	0.240	-5.028	-4.077
eta_{32}^N	126.426	-3.491	0.188	-3.872	-3.131
eta_{33}^N	116.149	-3.738	0.202	-4.139	-3.339
β_{34}^N	131.689	-4.934	0.257	-5.444	-4.422
eta_{35}^N	138.143	-4.567	0.238	-5.049	-4.104
β_{36}^N	128.868	-3.433	0.190	-3.815	-3.063
β_{37}^N	136.207	-4.235	0.222	-4.678	-3.798
β^{C}_{wage}	3.129	0.201	0.110	-0.017	0.417
β^N_{wage}	1.327	0.396	0.601	-0.812	1.538
σ_1^2	381.116	0.348	0.108	0.130	0.532
σ_2^2	395.610	0.435	0.113	0.212	0.631
σ_3^2	2.673	0.849	0.040	0.775	0.930
σ_4^2	1.094	0.563	0.027	0.511	0.615
σ_5^2	1.166	0.391	0.019	0.354	0.427
σ_6^2	1.176	0.370	0.018	0.335	0.405
σ_7^2	1.063	0.616	0.029	0.560	0.672
σ_8^2	1.041	0.821	0.038	0.748	0.898
σ_9^2	1.032	0.904	0.042	0.820	0.984
σ_{10}^2	1.181	0.542	0.026	0.492	0.593
σ_{11}^2	1.073	0.699	0.033	0.634	0.763
σ_{12}^2	1.180	0.421	0.020	0.383	0.462
σ_{13}^2	1.112	0.535	0.025	0.487	0.585
σ_{14}^2	1.000	1.196	0.056	1.087	1.305
σ_{15}^2	1.019	0.868	0.040	0.792	0.950
σ_{16}^2	1.201	0.425	0.020	0.385	0.464
σ_{17}^2	1.163	0.385	0.018	0.349	0.421

	IF	Mean	SD	lower	IIDDO
		0.889			0.970
σ_{18}^2					
σ_{19}^2	1.028			0.755	
σ_{20}^2					
σ_{21}^2					
σ_{22}^2					
σ_{23}^2					
σ_{24}^2		0.427	0.021	0.386	0.469
σ_{25}^2	1.181	0.438	0.021	0.396	0.478
σ_{26}^2	1.129	0.772	0.037	0.700	0.843
σ_{27}^2	1.135	0.585	0.028	0.530	0.640
σ_{28}^2	1.107	0.651	0.031	0.592	0.713
σ_{29}^2	1.166	0.525	0.025	0.477	0.575
σ_{30}^2	1.259	0.386	0.019	0.350	0.424
σ_{31}^2	1.273	0.483	0.023	0.439	0.529
σ_{32}^2	1.220	0.412	0.020	0.373	0.452
σ_{33}^2	1.125	0.548	0.026	0.498	0.600
σ_{34}^2	1.198	0.515	0.025	0.467	0.564
σ_{35}^2	1.094	0.451	0.021	0.410	0.493
σ_{36}^2	1.086	0.561	0.027	0.510	0.614
σ^2_{37}	1.272	0.444	0.021	0.404	0.488
σ_{38}^2	1.265	0.411	0.020	0.374	0.452
σ_{39}^2	1.064	0.589	0.028	0.535	0.643
σ_{40}^2	1.200	0.373	0.018	0.338	0.408
σ_{41}^2		3.440	0.161	3.126	3.757
ϕ_1	360.855	0.537	0.112	0.338	0.752
ϕ_2	121.176	0.014	0.001	0.011	0.017
α_1	1.000	-0.466	111.802	-226.071	211.277
α_2	1.000	-0.481	111.800	-224.691	212.564
α_3	1.000	0.374	111.801	-211.327	225.953
α_4	1.000			-211.357	
α_5	1.000			-211.431	
α_6		0.348		-211.486	
~0					2.203

	IF	Mean	SD	lower	upper
α_7	1.000	0.559	111.802	-210.885	226.542
α_8	1.000	0.889	111.803	-210.865	226.412
$lpha_9$	1.044	-0.075	0.062	-0.195	0.046


```
mean(beta_Gauss[,"wage_c"]>0)

## [1] 0.9649

mean(beta_Gauss[,"wage_n"]>0)

## [1] 0.7469
```