Recitation 2

Geometric Derivation of SVMs

Brett Bernstein

CDS at NYU

February 9, 2017

Intro Question

Question

You have been given a data set (x_i, y_i) for i = 1, ..., n where $x_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$. Assume $w \in \mathbb{R}^d$ and $a \in \mathbb{R}$.

- Suppose $y_i(w^Tx_i + a) > 0$ for all i. Use a picture to explain what this means when d = 2.
- ② Fix M > 0. Suppose $y_i(w^Tx_i + a) \ge M$ for all i. Use a picture to explain what this means when d = 2.

Component of v_1, v_2 in the direction w

Level Surfaces of $f(v) = w^T v$ with $||w||_2 = 1$

Sides of the Hyperplane $w^T v = 15$

Signed Distance from x_1, x_2 to Hyperplane $w^T v = 20$

Linearly Separable

Definition

We say (x_i, y_i) for i = 1, ..., n are *linearly separable* if there is a $w \in \mathbb{R}^d$ and $a \in \mathbb{R}$ such that $y_i(w^Tx_i + a) > 0$ for all i. The set $\{v \in \mathbb{R}^d \mid w^Tv + a = 0\}$ is called a *separating hyperplane*.

Linearly Separable Data

Many Separating Hyperplanes Exist

Maximum Margin Separating Hyperplane

Soft Margin SVM (unlabeled points have $\xi_i = 0$)

Questions

Questions

- If your data is linearly separable, which SVM (hard margin or soft margin) would you use?
- Explain geometrically what the following optimization problem computes:

minimize_{w,a,\xi}
$$\frac{1}{n} \sum_{i=1}^{n} \xi_i$$
 subject to $y_i(w^T x_i + a) \ge 1 - \xi_i$ for all i $||w||_2^2 \le r^2$ $\xi_i \ge 0$ for all i .

Optimize Over Cases Where Margin Is At Least 1/r

Overfitting: Tight Margin With No Misclassifications

Training Error But Large Margin

