Bayesian Nonparametric Models for Sparse Bipartite Networks

Candidate: Andrea Ferrero^{1,2}

Supervisor: Saverio Ranciati¹

Co-supervisors: Julyan Arbel², Tâm Le Minh²

¹Department of Statistical Sciences "Paolo Fortunati" University of Bologna

²Statify team Inria Center of University of Grenoble Alpes

Overview

- Network Models and Exchangeability
- 2 Bayesian Nonparametrics (BNP)
- Sparsity Results
- Bayesian Model Estimation

Networks Structures

Sparsity

Dense

Sparse

Definitions

For a **growing graph sequence** $(\mathcal{Y}_n)_{n\in\mathbb{N}}$ (nodes and edges keep growing):

Dense

The number of edges grows at least quadratically with the nodes.

$$e(\mathcal{Y}_n) = \Omega(v(\mathcal{Y}_n)^2)$$

Sparse

The number of edges grows **sub-quadratically** with the nodes.

$$e(\mathcal{Y}_n) = o(v(\mathcal{Y}_n)^2)$$

Equivalently, the sequence is **sparse** if the density converges to zero:

$$d(\mathcal{Y}_n) = \frac{e(\mathcal{Y}_n)}{v(\mathcal{Y}_n)^2} \xrightarrow{n \to \infty} 0.$$

Network Models

Network models represent probability distributions over the space of possible graphs.

$$\mathsf{Pr}(\mathcal{Y}) = \mathsf{Pr}\left(\begin{array}{c} \textcircled{c} \\ \textcircled{b} \end{array}\right) = ?$$

Node Exchangeable Models

Most network models in the literature assume **node exchangeability**, i.e. **invariance** of the distribution under **permutation of nodes**. Reasonable when **node labels** are uninformative.

$$\Pr(\mathcal{Y}_A) = \Pr(\mathcal{Y}_B)$$

Edge Exchangeable Models

Edge exchangeability assumes invariance of the distribution under permutation of edges (the order of arrival).

$$\mathsf{Pr}(\mathcal{Y}_{A}) = \mathsf{Pr}(\mathcal{Y}_{C})$$

Implications of Exchangeability

Overview

- Network Models and Exchangeability
- 2 Bayesian Nonparametrics (BNP)
- Sparsity Results
- Bayesian Model Estimation

Outline

Dirichlet Process

The Dirichlet Process is a distribution over probability distributions (Ferguson, 1973).

$$G \sim \mathsf{DP}(\alpha, G_0), \quad \alpha > 0$$

 $X_1, \dots, X_n \mid G \stackrel{\mathrm{i.i.d.}}{\sim} G,$

where α is the **concentration** parameter, and G_0 is a **probability distribution** (on the same space Θ of the random variables X_i).

Property: G is discrete \Rightarrow Samples from G contain **ties** with positive probability.

Chinese Restaurant Process

The probability of observing a new or an old value from a Dirichlet Process follows what is called the *Chinese Restaurant Process* (CRP).

Dirchlet Process CRP

Let n_k be the frequency of the k-th unique value in the sample $X_{1:n} = X_1, \dots, X_n$.

$$\Pr(X_{n+1} = \text{Old k-th value} \mid X_{1:n}) = \frac{n_k}{\alpha + n}$$

$$\Pr(X_{n+1} = \text{New value} \mid X_{1:n}) = \frac{\alpha}{\alpha + n}$$

Pitman-Yor Process

The Pitman-Yor Process is an extension of the DP (Pitman and Yor, 1997).

$$G \sim \mathsf{PY}(lpha, \sigma, G_0), \quad \sigma \in [0, 1)$$
 $X_1, \dots, X_n \mid G \overset{\mathrm{i.i.d.}}{\sim} G.$

Connection: $\sigma = 0 \Rightarrow PY$ and DP coincide.

Pitman-Yor CRP Construction

Pitman-Yor Process CRP

Let n_k be the frequency of the k-th unique value in the sample $X_{1:n} = X_1, \ldots, X_n$, and let K_n be the number of unique values.

$$\Pr(X_{n+1} = \text{Old k-th value} \mid X_{1:n}) = \frac{n_k - \sigma}{\alpha + n}$$

$$\Pr(X_{n+1} = \text{New value} \mid X_{1:n}) = \frac{\alpha + \sigma K_n}{\alpha + n}$$

BNP Generative Model: Unipartite Case

BNP Generative Model: Bipartite Case

Hierarchical Model

$$G_A \sim \mathsf{PY}(lpha_A, \sigma_A, G_0)$$
 $G_B \sim \mathsf{PY}(lpha_B, \sigma_B, G_0)$
 $Y_1, \dots, Y_n \mid G_A, G_B \stackrel{i.i.d.}{\sim} G_A \times G_B$

Overview

- Network Models and Exchangeability
- 2 Bayesian Nonparametrics (BNP)
- Sparsity Results
- Bayesian Model Estimation

Binarisation

Sparsity in Binary Graphs with PY Model

Proposition: Bipartite PY Model is Sparse

Proposition

The growing bipartite graph sequence $(\mathcal{H}_n)_{n\in\mathbb{N}}$ produced by the PY process is sparse:

$$d(\mathcal{H}_n) = \frac{e(\mathcal{H}_n)}{v_A(\mathcal{H}_n)v_B(\mathcal{H}_n)} \xrightarrow[n \to \infty]{\text{a.s.}} 0,$$

for either σ_A or σ_B in (0,1).

The proof technique follows closely that of Crane and Dempsey (2018) for the unipartite case.

Remarks:

- If either $\sigma_A = 0$ or $\sigma_B = 0$, sparsity is preserved (Asymmetric DP × PY).
- If $\sigma_A = \sigma_B = 0$, sparsity is not guaranteed (Symmetric DP × DP)

Simulation Studies: Symmetric PY Model

$$\mathsf{PY}(5,\sigma_{A}) \times \mathsf{PY}(5,\sigma_{B}), \sigma_{A} = \sigma_{B} = \sigma$$

Simulation Studies: Asymmetric PY Model

$$\mathsf{DP}(5) \times \mathsf{PY}(5, \sigma_B), \sigma_A = 0$$

Simulation Studies: Symmetric DP Model

$$\mathsf{DP}(\alpha_A) \times \mathsf{DP}(\alpha_B), \alpha_A = \alpha_B = \alpha$$

Overview

- Network Models and Exchangeability
- 2 Bayesian Nonparametrics (BNP)
- Sparsity Results
- 4 Bayesian Model Estimation

Bayesian Model

Posterior Convergence: $DP(5) \times PY(5, 0.7)$

Edges $\frac{10^2}{10^3} \frac{10^4}{10^4} \frac{10^5}{10^5}$

- Posterior distributions converge towards true parameter values (red dashed lines)
- Convergence is weaker in group A with $\sigma_A=0$

Real Data

- Plants and Pollinators network data from forests in Piedmont North Carolina.
- Source: Web of Life.
 Original article: Motten (1986).
- 143 unique edges, 2225 observed interactions (sample size).
- 13 Plants (Group A)44 Pollinators (Group B).
- Density of 0.25.

Real Data: Posteriors

Real Data: Posterior Predictive Check

Test for Sparsity

We want to formally test if one group is inducing sparsity.

$$\mathrm{H}_0:\sigma<\delta\quad\mathrm{H}_1:\sigma>\delta\,,\quad \text{for δ close to 0}.$$

The **Bayes Factor** tells us what is the strength of the evidence in favour of H_0 , as a ratio of the probabilities of observing the data under the null over the alternative hypothesis:

$$\underbrace{\frac{\textit{p}(\sigma \mid \textit{Y}_{1:n}, \textit{H}_0)}{\textit{p}(\sigma \mid \textit{Y}_{1:n}, \textit{H}_1)}}_{\text{Posterior Odds}} = \underbrace{\frac{\textit{p}(\textit{Y}_{1:n} \mid \sigma, \textit{H}_0)}{\textit{p}(\textit{Y}_{1:n} \mid \sigma, \textit{H}_1)}}_{\text{Bayes Factor}} \times \underbrace{\frac{\textit{p}(\sigma \mid \textit{H}_0)}{\textit{p}(\sigma \mid \textit{H}_1)}}_{\text{Prior Odds}}.$$

Bayes Factor on Real Data

H ₀ :	$\sigma_{A} < \delta$		$\sigma_B < \delta$	
δ	BF	log ₁₀ BF	BF	log ₁₀ BF
0.01	26.69	1.43	3.55	0.55
0.05	47.54	1.68	5.33	0.73
0.10	117.90	2.07	8.85	0.95

Table: Bayes Factors for the discount parameters relative to threshold δ .

References

- Diana Cai, Trevor Campbell, and Tamara Broderick. Edge-exchangeable graphs and sparsity. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett, editors, *Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain*, pages 4242–4250, 2016. URL
- https://proceedings.neurips.cc/paper/2016/hash/1a0a283bfe7c549dee6c638a05200e32-Abstract.html.

 Harry Crane and Walter Dempsey. Edge Exchangeable Models for Interaction Networks. *Journal of the American*
- Statistical Association, 113(523):1311–1326, 2018. doi: 10.1080/01621459.2017.1341413.
- Thomas S. Ferguson. A Bayesian analysis of some nonparametric problems. *The Annals of Statistics*, 1(2):209–230, 1973.
- S. E. M. P. Franssen and A. W. van der Vaart. Empirical and full bayes estimation of the type of a pitman-yor process. arXiv preprint arXiv:2208.14255, 2022.
- Alexander F. Motten. Pollination Ecology of the Spring Wildflower Community of a Spring Wildflower Community. *Ecological Monographs*, 56(1):21–42, 1986. ISSN 00129615. URL http://www.jstor.org/stable/2937269.
- Peter Orbanz and Daniel Roy. Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 37, 2013. doi: 10.1109/TPAMI.2014.2334607.
- Jim Pitman and Marc Yor. The two-parameter Poisson–Dirichlet distribution derived from a stable subordinator. *Annals of Probability*, 25(2):855–900, 1997.