

BİLGİSAYAR MÜHENDİSLİĞİNE GİRİŞ

DERS 3 Sayı Sistemleri

- Onluk, İkilik, Sekizlik ve Onaltılık sistemler
- Dönüşümler
- ▶ Tümleyen aritmetiği

Giriş

- Bilgisayar dış dünyadan verileri sayılar aracılığı ile kabul eder.
- Günümüz teknolojisinde bu işlem ikilik sayı sistemin ile gerçekleştirilir.
- İkilik sayı sistemindeki sayılarda 0 ve 1 olmak üzere iki farklı değerden oluştuğu için bilgisayar donanımında iki farklı gerilim seviyesi kullanılarak temsil edilir.
- İkilik sayı sisteminin yanında, sekizlik ve onaltılık gibi sayı sistemleri de bilgisayar ortamında birçok ara işlemlerde kullanılmaktadır.

Sayısal verilere örnekler

Sayısal verilere örnekler

Sayı sistemleri

- Genel olarak bir S sayı sisteminin ifadesi:
 - $523 = 5.10^2 + 2.10^1 + 3.10^0$

$$S = d_n R^n + d_{n-1} R^{n-1} + \dots + d_2 R^2 + d_1 R^1 + d_0 R^0$$

- ▶ Burada rakamlar d, taban R ile gösterilir.
- Virgülden sonrasını ifade etmek için

$$S = d_n R^n + d_{n-1} R^{n-1} + \dots + d_2 R^2 + d_1 R^1 + d_0 R^0, \ d_1 R^{-1} + d_2^{-2} + d_3 R^{-3} + \dots$$

Onluk (Decimal) sistem

▶ Genel ifade:

$$\begin{aligned} Decimal &= d_n 10^n + ... + d_3 10^3 + d_2 10^2 + d_1 10^1 + d_0 10^0, d_{-1} 10^{-1} + d_{-2} 10^{-2} + d_{-2} 10^{-3} + ... \end{aligned}$$

► digit: 0,1,2,3,4,5,6,7,8,9

Örnek: 2016,2017

$$2016,2017 = 2 \times 10^{3} + 0 \times 10^{2} + 1 \times 10^{1} + 6 \times 10^{0} + 2 \times 10^{-1} + 0$$
$$\times 10^{-2} + 1 \times 10^{-3} + 7 \times 10^{-4}$$

Genel ifade:

Binary =
$$d_n 2^n + ... + d_3 2^3 + d_2 2^2 + d_1 2^1 + d_0 2^0$$
,
 $d_{-1} 2^{-1} + d_{-2} 2^{-2} + d_{-2} 2^{-3} + ...$

Sayıların iki tabanında sunumu		
10 tabanı	2 tabanı	
0	00000000	
1	00000001	
2	00000010	
3	00000011	
4	00000100	
5	00000101	
•••		
65	01000001	
66	01000010	
67	01000011	
254	11111110	
255	11111111	

10111010

MSB En anlamlı bit (Most Significant Bit)

LSB En anlamsız bit (Least Significant Bit)

Binary → Decimal

İkilik sistemden onluk sisteme dönüşüm

Örnek:

$$(1001)_2 = ?$$

$$(1001)_2 = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$
$$= 8 + 1$$
$$= 9$$

Örnek:

$$(10110101)_2 = ?$$

$$(10110101)_2 = 1 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$
$$= 128 + 32 + 16 + 4 + 1$$
$$= 181$$

Binary → **Decimal**

İkilik sistemden onluk sisteme dönüşüm

Örnek: 8 bit ile ifade edilebilecek en büyük sayı nedir?

$$(111111111)_2 = 1 \times 2^7 + 1 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$
$$= 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1$$
$$= 255$$

Binary → **Decimal**

İkilik sistemden onluk sisteme dönüşüm

Örnek:
$$(101.101)_2 = (?)_{10}$$

$$(101.101)_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$$
$$= 4 + 1 + 1/2 + 1/8$$
$$= 5.75$$

Decimal → **Binary**

Onluk sistemden ikilik sisteme dönüşüm

$$23 = 2^4 + 2^2 + 2^1 + 2^0$$

$$23 = (10111)_2$$

$$X_2 = (10111)_2$$

Decimal → **Binary**

Onluk sistemden ikilik sisteme dönüşüm

Örnek:

$$(155)_{10} = (?)_2$$

<u>İşlem</u>	<u>Bölüm</u>	<u>Kalan</u>	
155/2	77	1	LSB
77/2	38	1	
38/2	19	0	
19/2	9	1	$(10011011)_2$
9/2	4	1	
4/2	2	0	
2/2	1	0	
1	\rightarrow	1	MSB

Decimal → **Binary**

Onluk sistemden ikilik sisteme dönüşüm

İşlem	Bölüm	Kalan	
7/2	3	1	1
3/2	1	1	
1	\rightarrow	1	

Örnek: $(7.625)_{10} = (?)_2$

İşlem	Çarpım	Tam kısım		
0.625×2	2 = 1.25	1		MSB
0.25×2	= 0.50	0	ı	
0.50×2	=1.0	1	•	LSB

 $(111.101)_2$

Decimal → **Binary**

Onluk sistemden ikilik sisteme dönüşüm

Örnek: $(0.85)_{10} = (?)_2$

İşlem	Çarpım	Tam kısım	
0.85×2	=1.70	1	
0.70×2	=1.40	1	
0.40×2	= 0.80	0	
0.80×2	=1.60	1	1
0.60×2	=1.20	1	

$$(0.85)_{10} = (11011)_2$$

İşlemler devam ettirilebilir.

Toplama:

Çıkarma:

Çarpma 101 <u>x 11</u> 101 +101 1111

Bölme

CHANGE OF THE PARTY OF THE PART

Sekizli (Octal) Sayı Sistemi

$$D = d_n 8^n + \dots + d_3 8^3 + d_2 8^2 + d_1 8^1 + d_0 8^0, d_{-1} 8^{-1} + d_{-2} 8^{-2} + d_{-2} 8^{-3} + \dots$$

- Sekizli sayı sistemi, ikili sayıları gösterimini basitleştirmek için kullanılır.
- ► Geçmiş yıllarda, 12-bit, 24-bit veya 36-bit gibi 3 ile bölünebilen kelime uzunluğuna sahip bilgisayarlarda kullanılmıştır.
- Günümüzde, 16 bit, 32 bit veya 64 bit gibi kelime uzunluğu sekize bölünen bilgisayarlarda yerini onaltılık sayı sistemine bırakmıştır.

Sekizli (Octal) Sayı Sistemi

Octal → Decimal

Sekizlik sistemden onluk sisteme dönüşüm

• $(37246)_8 = (16038)_{10}$

http://calculator.tutorvista.com/octal-calculator.html

Sekizli (Octal) Sayı Sistemi

Decimal → **Octal**

Onluk sistemden sekizlik sisteme dönüşüm

•
$$(217)_{10} = (331)_8$$

•
$$(37)_{10} = (45)_8$$

http://helpdev.com.br/2013/09/19/java-conversao-de-base-numerica-binario-decimal-octal-hexa/

CONTRACTOR OF THE PROPERTY OF

Onaltılık - Hexadecimal Sayı Sistemi

$$H = d_n 16^n + \dots + d_3 16^3 + d_2 16^2 + d_1 16^1 + d_0 16^0, d_{-1} 16^{-1} + d_{-2} 16^{-2} + d_{-2} 16^{-3} + \dots$$

- Sekizli sayı sistemi gibi ikili sayıları gösterimini basitleştirmek için kullanılır.
- Günümüz bilgisayar sistemlerinde yaygın olarak başvurulur.
- Örnekler:
 - Görüntü renk kodları
 - Adres kodları
 - Makine kodları vb..

Onaltılık - Hexadecimal Sayı Sistemi

- Onaltılık sistemde rakamlar:
 - ► 0,1,2,3,4,5,6,7,8,9,A,B,C,D

Decimal	0	1	 9	10	11	12	13	14	15
Hexadecimal	0	1	 9	A	В	C	D	E	F

Onaltılık - Hexadecimal Sayı Sistemi

Decimal → **Hexadecimal**

Onluk sistemden onaltılık sisteme dönüşüm

Örnek:	İşlem	Bölüm	Kalan	LSB
	333/16		D	
$(333)_{10} = (?)_{16}$	20/16	1	4	$(14D)_{16}$
	1	\rightarrow	1	MSB

Onaltılık - Hexadecimal Sayı Sistemi

Hexadecimal→**Decimal**

Onaltılık sistemden onluk sisteme dönüşüm

$$(14D)_{16} = 1 \times 16^2 + 4 \times 16^1 + 13 \times 16^0$$

$$(14D)_{16} = (?)_{10} = 256 + 64 + 13$$

= 333

Örnek:
$$(11101)_2 = (?)_8$$

$$(11101)_2 = (29)_{10}$$

 $(29)_{10} = (35)_8$

Örnek: $(2574)_8 = (?)_2$

Örnek: $(2FA5)_{16} = (?)_2$

Örnek:

$$(F51A)_{16} = (?)_{8}$$

$$(F51A)_{16} = (1111010100011010)_{2}$$

$$(001|111|010|100|011|010)_{2}$$

$$(172432)_{8}$$

- Bilgisayarlarda çıkarma işlemini gerçekleştirmek için tümleyen aritmetiği kullanılır. M iki tabanında bir sayı, N bu sayının basamak adedi olmak üzere M sayısının 1 ve 2 tümleyeni aşağıdaki gibi belirlenir:
 - ▶ 1 tümleyen aritmetiği
 - 2 tümleyen aritmetiği
 - ▶ Örnek: 1010

$$r = 2^N - (M)_2 - 1$$

$$r = 2^N - (M)_2$$

- ▶ 1 tümleyeni: 10000-1010-1=1111-1010=0101 (bitlerin terslenmiş hali)
- ▶ 2 tümleyeni: 10000-1010=0110 veya 1 tümleyeni+1

$\begin{array}{c} SayI & 1 \text{ tümleyeni} \\ 0 \rightarrow 1 \\ 1 \rightarrow 0 \\ 1111 \rightarrow 0000 \\ 1010 \rightarrow 0101 \\ 10100011 \rightarrow 01011100 \end{array}$

$$r = 10 - 0 - 1 = 1$$

Sayını her bir bitini tersleyerek 1 tümleyeni belirlenir

$$r = 1000000000 - 101000111 - 1 = 101011100$$

2 tümleyeni

Pratikte 2 tümleyenini hesaplamak için 1 tümleyeni hesaplanır ve sonuca 1 eklenir.

Sayı 1 tümleyeni 2 tümleyeni $1111 \rightarrow 0000 \rightarrow 0001$ $1010 \rightarrow 0101 \rightarrow 0110$ $1011 \rightarrow 0100 \rightarrow 0101$

2 tümleyeni ile çıkarma işlemi

- M-N işlemini gerçekleştirmek için
- N sayısının negatifi ile M sayısı toplanır.
- M-N=M+(-N)

Örnek:

2 tümleyeni ile çıkarma işlemi

- M-N işlemini gerçekleştirmek için
- N sayısının negatifi ile M sayısı toplanır.
- M-N=M+(-N)

Örnek:

En yüksek değerli bitin 1 olması sayının negatif olduğunu gösterir. Bu değerin ne olduğunu öğrenmek için, sayının tekrar 2 tümleyenini alırsak 0110 olduğu görülür venegatiftir (-0110)

2 tümleyeni ile çıkarma işlemi

İşaretli sayı	Onluk değeri
0000	0
0001	1
0010	2
0011	3
<mark>0</mark> 100	4
0101	5
<mark>0</mark> 110	6
0111	7

İşaretli sayı	Onluk değeri
1 000	-8
1 001	-7
1 010	-6
1 011	-5
1 100	-4
1 101	-3
1 110	-2
1 111	-1

Negatif (1 ile başlayan sayılarda) sayının değerini anlamak için 2 tümleyenini alınıp önüne – işareti yazarız. Örneğin: 1101 sayısı onluk 13 sayısına karşılık gelirken, eğer bu işaretli sayı ise -0011=-3 sayısına karşılık gelmektedir.

Ders bitti

Erciyes Üniversitesi Selçuk Üniversitesi Sakarya Üniversitesi Kahramanmaraş Sütçü İmam Üniversitesi ders notları kaynak ve içerik olarak kullanılmıştır.