CS5489 - Machine Learning

Lecture 10a - Deep Learning

Dr. Antoni B. Chan

Dept. of Computer Science, City University of Hong Kong

Outline

- · Going deeper
 - ReLU and Batchnorm
- Optimization methods
- · Deep architectures and Image classification
- · Transfer learning

Problems with Going Deeper

- Vanishing Gradient Problem 1
 - successive multiplications of small gradients gives smaller gradients, and converges to 0
 - the gradients backpropagated to the first few layers has small signal.
- · Example: for 4-layers,

$$\frac{dL}{d\mathbf{a}_{i}} = \frac{d\mathbf{g}_{1}^{T}}{d\mathbf{a}_{i}} \frac{d\mathbf{z}_{1}^{T}}{d\mathbf{g}_{1}} \frac{d\mathbf{g}_{2}^{T}}{d\mathbf{g}_{1}} \frac{d\mathbf{z}_{2}^{T}}{d\mathbf{g}_{2}} \frac{d\mathbf{z}_{2}^{T}}{d\mathbf{g}_{2}} \frac{d\mathbf{g}_{3}^{T}}{d\mathbf{g}_{2}} \frac{d\mathbf{z}_{3}^{T}}{d\mathbf{g}_{3}} \frac{d\mathbf{g}_{4}^{T}}{d\mathbf{g}_{3}} \frac{d\mathbf{f}^{T}}{d\mathbf{g}_{4}} \frac{dL}{d\mathbf{f}}$$

- Vanishing Gradient Problem 2
 - ullet using backprop, the gradient at a node is the summation over $O(H^D)$ paths
 - *D* is the number of layers to the output layer.
 - $\circ H$ is the number of nodes in the layer.
 - the original loss signal gets "washed out".

Dataset Size

- a "small" network with just 40 inputs, 30 hidden nodes, and 1 output has ~1200 parameters.
- if we don't have enough samples:
 - large variance in the parameter estimator (what you get may be far from the truth)
 - o deeper networks are more complex, which are easier to overfit the training data.
- How many samples do we need?
 - Theorem (Bartlett, Maiorov, Meir, 1998)

Suppose $\mathcal N$ is a feed-forward network with W weights, L layers, and all non-output gates having a fixed piecewise-polynomial activation function with a fixed number of pieces (e.g., ReLU). Then $VCdim(\mathcal N) = O(WL\log W + WL^2).$

- If the sample size is large compared to the VC dimension, then the learned classifier will generalize well.
 - ullet for the same number of parameters, the deeper network requires more data (WL^2).
 - increasing the number of weights, requires a super-linear increase in sample size ($W\log W$).

ReLU activation function

- Rectified Linear Unit: $\operatorname{ReLU}(z) = \max(0,z)$
 - easier to train with: gradient is either 0 or 1.
 - faster: don't need to calculate exponential
 - sparse representation: most nodes will output zero.

In [10]:

actfig

Out[10]:

Advantage of Sparsity

- if a hidden node h=0, then $\frac{dL}{dh}=0$.
 - This blocks some paths when computing the gradients.
 - Gradient signal is less washed out.
 - Reduces the vanishing gradient problem.

Better Network Parameterization

 There are equivalent parameterizations of the network by scaling up/down the weights in successive layers.

•
$$f(\mathbf{x}) = \mathbf{A}^T r(\mathbf{B}^T \mathbf{x}) = \frac{1}{\epsilon} \mathbf{A}^T r(\epsilon \mathbf{B}^T \mathbf{x})$$

• $\epsilon > 0$ and $r(\cdot)$ is the ReLU activation.

- Problem:
 - "internal covariate shift" change in the distribution of activations during training, due to changes in the parameters.

Why is it bad?

- suppose, we have a linear network:
 - $y = xw_1w_2w_3w_4$
 - gradient of each layer is (g_1, \dots, g_4)
- update the parameters with GD:
 - $y = x(w_1 \eta g_1)(w_2 \eta g_2)(w_3 \eta g_3)(w_4 \eta g_4)$
 - \circ there are many higher-order terms, e.g., $w_1w_2\eta^2g_3g_4$
 - although w_i are updated independently, they strongly affect each other.
 - hence, if the distribution of activations changes in 1 layer, then all layers are affected, and we need to adjust other layers.

Solution: Batch Normalization

- For each node in each layer, normalize the outputs to zero mean and unit variance, over each mini-batch.
 - this is analogous to the idea of normalizing the input feature vector to (0,1) Gaussian with standard ML models!
- Place batchnorm layer after linear transformation.

- Let $\{y_i\}_{i=1}^N$ be the output of the linear transform in one minibatch.
- For each node (dimension) in the layer:
 - \circ normalize: $\hat{y}_i = rac{y_i \mu}{\sqrt{\sigma^2 + \epsilon}}$
 - $\circ~\mu,\sigma^2$ are the mean and variance of $\{y_i\}$ in the mini-batch.
 - \circ ϵ is a small constant for numerical stability.
 - \circ scale-shift: $z_i = \gamma \hat{y}_i + eta$

- $\circ \gamma, \beta$ are learnable parameters
- puts the output in the proper regime of the non-linear activation.
- The final distribution has mean β and variance γ^2 .
- · Notes:
 - batchnorm is applied to each node independently.
 - should put the batchnorm layer after the linear transformation layer.
 - the bias of the linear layer is not necessary since it is removed by batchnorm
- Training:
 - gradients can be computed through the batchnorm layer as usual.
- Training effects:
 - training is accelerated; can use higher learning rates
 - more stable gradients during training
 - o increasing the scale of the activations decreases the gradient
 - self-correcting stabilization.
 - better generalization
 - no need for dropout or L2 regularization.

Example: MNIST

- for each Conv2D/Dense layer:
 - change activation to linear (default); remove bias term
 - append batch-norm and ReLU activation

```
In [11]:
            def build_nn():
                K.clear session() # cleanup
                # initialize random seed
                random.seed(4487); tf.random.set_seed(4487)
                # build the network
                nn = Sequential()
                nn.add(Conv2D(10, (5,5), strides=(2,2), input_shape=(28,28,1),
                              padding='same', use_bias=False))
                nn.add(BatchNormalization(axis=3)) # apply batchnorm on channels
                nn.add(Activation("relu"))
                nn.add(Conv2D(40, (5,5), strides=(2,2), padding='same', use_bias=False))
                nn.add(BatchNormalization(axis=3))
                nn.add(Activation("relu"))
                nn.add(Conv2D(80, (5,5), strides=(1,1), padding='same', use_bias=False))
                nn.add(BatchNormalization(axis=3))
                nn.add(Activation("relu"))
                nn.add(Flatten())
                nn.add(Dense(units=50, use bias=False))
                nn.add(BatchNormalization())
                nn.add(Activation("relu"))
                nn.add(Dense(units=10, activation='softmax'))
                return nn
In [12]:
            nn = build_nn()
```

```
In [12]: nn = build_nn()
# setup early stopping callback function
```

Epoch 00025: early stopping

- · Test results
 - compared with L2-regularization (0.966), dropout (0.968), ensemble (0.970)

```
In [13]: plot_history(history)

predY = argmax(nn.predict(testI, verbose=False), axis=-1)
acc = metrics.accuracy_score(testY, predY)
print("test accuracy:", acc)
```

test accuracy: 0.9804

Outline

- Going deeper
 - ReLU and Batchnorm
- Optimization methods
- · Deep architectures and Image classification
- Transfer learning

Optimization with SGD

 Ideally, we would I ike to use all the samples to compute the gradient, but this is too time consuming.

- Use a *minibatch* (a few samples) at a time to estimate the gradient.
 - creates an unbiased estimator of the gradient.
 - the variance (expected squared error) depends on the number of samples.
 - i.e., the estimated gradient is *noisy*.

Learning rates

- **Problem:** For gradient descent, at the minimum we should have $rac{dL}{d\mathbf{w}}=0$.
- What about for SGD?
 - at the minimum $\frac{dL}{d\mathbf{w}} \neq 0$ because of noise in the gradient.
 - SGD still moves around.
- Solution: reduce the learning rate during the epochs.
 - Examples: for iteration/epoch k,
 - \circ linear change: $\eta_k = (1-\alpha)\eta_0 + \alpha\eta_T$, where $\alpha = k/T$, and η_0, η_T given.
 - \circ decay: $\eta_k = rac{1}{1+\delta k} \eta_0$, where $0 < \delta < 1$.
 - we want a small learning rate when we are close to the minimum.
 - needs to be set empirically by examining the learning curves.

Example: Keras decay

- use the built-in decay parameter.
 - applied after each batch.

```
In [14]:
    plt.figure(figsize=(5,3))
    its = arange(0,50*5400/50) # 50 epochs, 5400/50 iterations per epoch
    lr = 0.02*(1./(1+its*1e-3))
    plt.plot(its, lr)
    plt.grid(); plt.xlabel('iteration (batch)'); plt.ylabel('learning rate');
```

```
0.0200

0.0175

0.0150

0.0125

0.0100

0.0075

0.0050

0.0025

0 1000 2000 3000 4000 5000

iteration (batch)
```

```
In [15]: nn = build_nn()
# compile and fit the network
```

```
In [16]: plot_history(history)

predY = argmax(nn.predict(testI, verbose=False), axis=-1)
acc = metrics.accuracy_score(testY, predY)
print("test accuracy:", acc)
```

test accuracy: 0.9805

Adaptive schedule

- reduce the learning rate when the validation loss no longer improves
 - similar to early stopping criteria
- implemented as a callback function

Epoch 00025: ReduceLROnPlateau reducing learning rate to 0.0019999999552965165.

Epoch 00030: ReduceLROnPlateau reducing learning rate to 0.0001999999862164259.

Epoch 00035: ReduceLROnPlateau reducing learning rate to 1.9999998039565982e-05.

Epoch 00040: ReduceLROnPlateau reducing learning rate to 1.99999976757681e-06.

Epoch 00045: ReduceLROnPlateau reducing learning rate to 1.99999976757681e-07.

Epoch 00050: ReduceLROnPlateau reducing learning rate to 1.9999997391551008e-08.

```
In [19]: plot_history(history)

predY = argmax(nn.predict(testI, verbose=False), axis=-1)
acc = metrics.accuracy_score(testY, predY)
print("test accuracy:", acc)
```

test accuracy: 0.9803

Fixed schedule

- specify our own schedule using callback LearningRateScheduler
- pass a schedule function
 - inputs are the epoch and current learning rate.
 - outputs the learning rate for this epoch.

```
In [28]:
    def sc(epoch, curlr):
        alpha = minimum(epoch/50, 1.)
        return 0.02*(1-alpha)+0.0001*alpha
        epoch = arange(0,70)
        plt.figure(figsize=(5,2))
        plt.plot(epoch, sc(epoch, None))
        plt.grid(); plt.xlabel('epoch'); plt.ylabel('learning rate');
```



```
In [22]: plot_history(history)

predY = argmax(nn.predict(testI, verbose=False), axis=-1)
acc = metrics.accuracy_score(testY, predY)
print("test accuracy:", acc)
```

test accuracy: 0.9799

Momentum

- Problem: The estimated gradient is noisy, can jump around.
- Solution: keep a running average of the gradients across mini-batches.
 - ullet velocity: $\mathbf{v}^{(t)} = lpha \mathbf{v}^{(t-1)} \eta rac{dL}{d\mathbf{w}} ig|_{\mathbf{w}^{(t-1)}}$
 - accumulate the gradients
 - $\circ \alpha$ is the momentum hyperparameter; how much it exponentially decays.
 - ullet parameter update: $\mathbf{w}^{(t)} \leftarrow \mathbf{w}^{(t-1)} + \mathbf{v}^{(t)}$
- Example:
 - red path is using momentum
 - black arrows show the gradient directions at each step
 - without momentum, the path would oscillate wildly.

Nesterov Momentum

- Compute the gradient after the current velocity is applied.
 - $oldsymbol{v}$ interim update: $ilde{\mathbf{w}} = \mathbf{w}^{(t-1)} + lpha \mathbf{v}^{(t-1)}$
 - $\begin{array}{l} \bullet \ \ \text{velocity:} \ \mathbf{v}^{(t)} = \alpha \mathbf{v}^{(t-1)} \eta \frac{dL}{d\mathbf{w}}\big|_{\tilde{\mathbf{w}}} \\ \bullet \ \ \text{parameter update:} \ \mathbf{w}^{(t)} \leftarrow \mathbf{w}^{(t-1)} + \mathbf{v}^{(t)} \end{array}$
- Adds a correction factor to improve convergence (for convex batch case)

Why does SGD work?

- The loss function has many local minima
- SGD adds "noise" to the true gradient.
 - the noise allows escaping/avoiding/jumping over small local minima.
- Example:
 - red arrow = true gradient
 - green arrow = added noise
 - black arrow = computed gradient

SGD smoothes the loss function

• the added gradient noise is equivalent to convolving the loss function with the noise density.

• higher learning rate -> larger noise -> smoother loss

higher learning rate -> larger noise -> smoother loss

- smoother loss removes the local minimum, making it easier to get near the global minimum.
 - but not exactly on it.

need to reduce the learning rate in stages to converge to the global optimum.

Optimization with Adaptive Learning Rates

- Introduce a separate learning rate for each parameter, and automatically adapt the learning rates during optimization.
- AdaGrad (keras.optimizers.Adagrad)
 - adapt individual learning rates by dividing by the square-root of the gradient energy accumulated over the iterations.

$$\circ \mathbf{g} = \frac{dL}{d\mathbf{w}}$$

$$egin{array}{ll} \circ & \mathbf{r}^{(t)} = \mathbf{r}^{(t-1)} + \mathbf{g}^2 \ \circ & \mathbf{w}^{(t)} = \mathbf{w}^{(t-1)} - rac{\eta}{\delta + \sqrt{\mathbf{r}}} \mathbf{g} \end{array}$$

- (operations are element-wise)
- RMSProp (keras.optimizers.RMSprop)
 - use exponential decay on the accumulated energy:

$$\mathbf{r}^{(t)} = \rho \mathbf{r}^{(t-1)} + (1-\rho) \mathbf{g}^2$$

- Adam (keras.optimizers.Adam)
 - use momentum with exponential weighting to estimate the gradient and gradient energy.

$$\mathbf{s}^{(t)} = \rho_1 \mathbf{s}^{(t-1)} + (1 - \rho_1) \mathbf{g}$$

$$\mathbf{r}^{(t)} = \rho_2 \mathbf{r}^{(t-1)} + (1 - \rho_2) \mathbf{g}^2$$

adds a bias correction for these two estimates.

$$\circ \ \mathbf{\hat{s}}^{(t)} = \frac{1}{1 - \rho_1^t} \mathbf{s}^{(t)}$$
$$\circ \ \mathbf{\hat{r}}^{(t)} = \frac{1}{1 - \rho_2^t} \mathbf{r}^{(t)}$$

update:

$$\mathbf{w}^{(t)} = \mathbf{w}^{(t-1)} - rac{\eta}{\delta + \sqrt{\mathbf{\hat{r}}^{(t)}}} \mathbf{\hat{s}}^{(t)}$$

Example

• change the optimizer when compiling the network.

Epoch 00012: early stopping

```
In [25]: plot_history(history)

predY = argmax(nn.predict(testI, verbose=False), axis=-1)
acc = metrics.accuracy_score(testY, predY)
print("test accuracy:", acc)
```

test accuracy: 0.9608

Which optimizer is best?

- there's no best optimizer...
- based on the problem and own familiarity with tuning the hyperparmeters.