Design Mechanisms

Any existing design can be improved (Inspiration behind designing)

- Parallel Jaw Pliers

https://www.youtube.com/watch?v=8uxwHwmi55s (Use)
https://www.youtube.com/watch?v=TbdkXOo0z94 (Mechanism)

Some Basic tools you'll be using

- nut-bolt, screws, washers, hammer, wrench, pliers

MECHANICAL COMPONENTS

Gears

Gears are toothed cylindrical or conical wheels used for power transmission with or without speed reduction

Types of gears:

- Spur transmitting power between parallel shafts
- Helical can be used for non parallel shafts
- rack and pinion convert rotation to linear motion
- Bevel transmitting power between perpendicular intersecting shafts
- Hypoid similar to bevel but there is shafts can be offset
- Worm and worm wheel large speed reduction possible

Bearings

They support the shaft at the same time allow rotation with very low friction.

- Rotary Bearings
- Linear Bearings

ACTUATORS

An **actuator** is a component of a machine that is responsible for moving and controlling a mechanism or system, or in simple terms a mover.

Types of actuators:

- Electric
 - DC motors
 - Servo motor
 - Stepper motor
 - Linear actuator
- Hydraulic
- Pneumatic
- Mechanical

Rack and pinion is a type of mechanical actuator that converts one form of motion to another

MACHINES

- Drill, grinder, lathe, saw
- CNC

SOME COMMON DESIGN MECHANISMS

CAM mechanism

•

CAM

Linkage Mechanism

Linkage: A system of <u>links</u> connected at <u>joints</u> with rotary or linear bearings

- Link: A rigid body that possess at least 2 nodes, which are the attachment points to other links
- Joint (kinematic pairs): Connection between two or more links at their nodes, which allows motion to occur between the links

Degree of Freedom: The number of input motions required in order to provide the desired output. For most cases, the DoF is equal to the number of actuators in a device.

4-Bar Linkage Mechanisms

4-Bar Linkage mechanisms are the most used form of linkage mechanisms.

The 4 types of links used in this mechanism are:

Fixed link, crank, coupler, rocking arm

https://www.youtube.com/watch?v=KBFFwgCCP0U

However this is the most basic form and several modifications have already been done on this.

- 4 bar parallelogram
- Crank slider mechanism

https://www.cs.cmu.edu/~rapidproto/mechanisms/chpt5.html

HOECKENS mechanism

Hoeckens mechanism is a type of 4 bar linkage mechanism that converts a rotational motion into an approximate straight line motion.

https://www.youtube.com/watch?v= KWfkewD0Rg

A walking machine using Hoeckens mechanism https://www.youtube.com/watch?v=2fwz9vatJR0

(EXTRA: Combining hoeckens with jansen https://www.youtube.com/watch?v=ebb8FotCfE0)

Reciprocating Motions : It is a term used for repetitive up-down or back-forth linear motion. Most of the following mechanisms will involve the use of this motion

SLIDER CRANK Mechanism

Crank are the opposite of CAMs that is they are used to convert translational motion to rotational motion.

https://www.youtube.com/watch?v=ZO8QEG4x0wY

Crankshaft mechanism is mainly used in car designs.

SCOTCH YOKE mechanism

The **Scotch Yoke** (also known as slotted link **mechanism**) is a reciprocating motion **mechanism**, converting the linear motion of a slider into rotational motion, or vice versa. The piston or other reciprocating part is directly coupled to a sliding **yoke** with a slot that engages a pin on the rotating part.(wiki)

https://www.youtube.com/watch?v=hsaoTo1vuY4

You can also modify the scotch yoke mechanism to create different motions. One such possibility involves removing the constraints keeping the shaft linear and adding a hinge on one side. This will replicate a waving motion.

Lead Screw