Manipulação da Tabela Periódica

Gustavo J. V. Meira Filho

Table of contents

Objetivo	3
Bibliotecas e Importações	4
Pandas	5
Extração	 5
Manipulação de Dados	 8
Filtros	 8
Pré-Processamento e Localização	 10
Análise de Dados	 13
Visualizações Rápidas	 15
Merging	 16
Exportação	 17
Estatísticas Básicas	 18

Objetivo

Introduzir Python, manipulação de dados e visualização.

- Conceitos de programação:
 - Tipos básicos (int, float, str, list, dict)
 - Loops
 - Funções simples.
- Bibliotecas:
 - pandas (dados tabulares)
 - numpy (dados matriciais)
- Aplicações:
 - Importar uma base de dados da tabela periódica (existe em CSV no Kaggle).
 - Explorar propriedades como massa atômica, eletronegatividade, número atômico.

Bibliotecas e Importações

```
# Nativas Python
import sys
import os

# Dados Tabulares
import pandas as pd
import numpy as np

# Visualização
import plotly.graph_objects as go
import plotly.express as px
import plotly.figure_factory as ff
import plotly.io as pio
from graphmodex import plotlymodex

import matplotlib.pyplot as plt
import seaborn as sns
```

Pandas

Extração

Precisamos extrair a base de dados para conseguir trabalhar em cima dela! Para conseguirmos visualizar e manipular os dados, armazenamos ela como um objeto pandas que já possui tratamentos internos para vatorização e é a biblioteca coringa para todas as libs de visualização.

- Começando na Biblioteca
- Guia do Usuário
- Documentação

Note que a tabela periódica é um .csv na pasta data. Vamos armazenar esses dados em uma DataFrame chamada df

```
df = pd.read_csv(r'..\data\tabela_periodica.csv')

# Mostrar as 10 primeiras linhas das 4 primeiras colunas
df[['Name', 'Symbol', 'Atomic_Number', 'Atomic_Weight']].head(10)
```

	Name	Symbol	Atomic_Number	Atomic_Weight
0	Hydrogen	Н	1.0	1.007940
1	Helium	He	2.0	4.002602
2	Lithium	Li	3.0	6.941000
3	Beryllium	Be	4.0	9.012182
4	Boron	В	5.0	10.811000
5	Carbon	\mathbf{C}	6.0	12.010700
6	Nitrogen	N	7.0	14.006700
7	Oxygen	O	8.0	15.999400
8	Fluorine	\mathbf{F}	9.0	18.998403
9	Neon	Ne	10.0	20.179700

```
# Vamos usar isso no futuro!
pivot_df = df[[
    'Name', 'Symbol', 'Atomic_Number', 'Atomic_Weight',
    'Density', 'Melting_Point', 'Group', 'Period', 'Boiling_Point'
]].copy(deep=True)
```

```
# Informações sobre quantidade de inforação e tipo
pivot_df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 119 entries, 0 to 118 Data columns (total 9 columns): # Column Non-Null Count Dtype _____ _____ 0 Name 119 non-null object 1 Symbol 119 non-null object 2 Atomic_Number 119 non-null float64 3 Atomic_Weight 118 non-null float64 4 float64 Density 96 non-null 5 Melting_Point 101 non-null float64 Group 90 non-null float64 7 119 non-null Period float64 Boiling_Point 95 non-null float64 dtypes: float64(7), object(2) memory usage: 8.5+ KB # Adicionei uma nova linha vazia ao final df.loc[len(df)] = np.nan # Copiei os dados da linha 90 (índice 90) para a última linha df.iloc[-1, :] = df.iloc[90, :]# Agora estou modificando os campos desejados # da nova linha (índice len(df)-1) new idx = df.index[-1] df.loc[new_idx, 'Name'] = 'Mentira' df.loc[new_idx, 'Symbol'] = 'H' df.loc[new_idx, 'Atomic_Number'] = 90 df.loc[new_idx, 'Atomic_Weight'] = 1 df.loc[new_idx, 'Density'] = 90 df.loc[new_idx, 'Melting_Point'] = np.nan # Ordenando pelo número atômico... df = df.sort_values(by='Atomic_Number', ascending=True) # Principais estatísticas das colunas da tabela df[['Atomic_Weight', 'Density', 'Melting_Point', 'Critical_Temperature']].describe()

	Atomic_Weight	Density	Melting_Point	Critical_Temperature
count	118.000000	96.000000	101.000000	21.000000
mean	143.657694	7566.863775	1296.574455	963.735238
std	89.106843	5976.321437	883.225454	1000.908102
\min	1.000000	0.089900	14.010000	5.190000
25%	64.011750	2427.500000	544.450000	150.870000
50%	140.511825	7075.000000	1204.150000	416.900000
75%	225.250000	10332.500000	1811.150000	1766.000000
max	294.000000	22650.000000	3823.150000	3223.000000

```
# Colunas iniciais
print(df.shape)
print(df.columns, '\n')
# Aqui, estamos sobrescrevendo nossa tabela
# A partir dessa linha, só essas colunas estarão presentes!
df = df[[
    'Name', 'Symbol', 'Atomic_Number', 'Atomic_Weight',
    'Density', 'Melting_Point',
]]
# Colunas finais
print(df.shape)
print(df.columns)
(119, 82)
Index(['Name', 'Symbol', 'Atomic_Number', 'Atomic_Weight', 'Density',
       'Melting_Point', 'Boiling_Point', 'Phase', 'Absolute_Melting_Point',
       'Absolute_Boiling_Point', 'Critical_Pressure', 'Critical_Temperature',
       'Heat_of_Fusion', 'Heat_of_Vaporization', 'Heat_of_Combustion',
       'Specific_Heat', 'Adiabatic_Index', 'Neel_Point',
       'Thermal_Conductivity', 'Thermal_Expansion', 'Density_Liquid',
       'Molar_Volume', 'Brinell_Hardness', 'Mohs_Hardness', 'Vickers_Hardness',
       'Bulk_Modulus', 'Shear_Modulus', 'Young_Modulus', 'Poisson_Ratio',
       'Refractive_Index', 'Speed_of_Sound', 'Valence', 'Electronegativity',
       'ElectronAffinity', 'Autoignition_Point', 'Flashpoint',
       'DOT_Hazard_Class', 'DOT_Numbers', 'EU_Number', 'NFPA_Fire_Rating',
       'NFPA_Health_Rating', 'NFPA_Reactivity_Rating', 'RTECS_Number',
       'Alternate_Names', 'Block', 'Group', 'Period', 'Electron_Configuration',
       'Color', 'Gas_phase', 'CAS_Number', 'CID_Number', 'Gmelin_Number',
       'NSC_Number', 'Electrical_Type', 'Electrical_Conductivity',
       'Resistivity', 'Superconducting_Point', 'Magnetic_Type', 'Curie_Point',
       'Mass_Magnetic_Susceptibility', 'Molar_Magnetic_Susceptibility',
       'Volume_Magnetic_Susceptibility', 'Percent_in_Universe',
       'Percent_in_Sun', 'Percent_in_Meteorites', 'Percent_in_Earths_Crust',
       'Percent_in_Oceans', 'Percent_in_Humans', 'Atomic_Radius',
       'Covalent_Radius', 'Van_der_Waals_Radius', 'Space_Group_Name',
       'Space_Group_Number', 'HalfLife', 'Lifetime', 'Decay_Mode',
       'Quantum_Numbers', 'Neutron_Cross_Section', 'Neutron_Mass_Absorption',
       'Graph.Period', 'Graph.Group'],
      dtype='object')
(119, 6)
Index(['Name', 'Symbol', 'Atomic Number', 'Atomic Weight', 'Density',
       'Melting_Point'],
      dtype='object')
```

Manipulação de Dados

Um interesse forte é saber como localizar linhas e colunas específicas, realizar filtros booleanos, lidar com valores ausentes e assim por diante! Aqui, trabalharemos tudo isso.

Filtros

Filtrar valores é algo muito simples mas pode parecer estranho no começo. Existe um método próprio para essas operações no pandas chamado .query, mas também podemos fazer isso através de indexação.

df.query("Melting_Point <= 25")</pre>

Name	Symbol	Atomic_Number	Atomic_Weight	Density	Melting_Point
Hydrogen	H	1.0	1.00794	0.0899	14.01
Neon	Ne	10.0	20.17970	0.9000	24.56

Hummm... aparentemente a temperatura está em Kelvin e não em °C. Podemos usar um conversor de unidades como o que fizemos aula passada na função .apply(lambda x: convert_temp(x) para irmos de K -> °C. Mas aqui, para ser mais prático, faremos de uma forma mais simples!

```
df['Melting_Point'] = round(df['Melting_Point'] - 273.15, 2)

# Vamos visualizar esses átomos
df.query("Melting_Point <= 25").head(100)</pre>
```

	Name	Symbol	$Atomic_Number$	Atomic_Weight	Density	Melting_Point
0	Hydrogen	Н	1.0	1.007940	0.0899	-259.14
6	Nitrogen	N	7.0	14.006700	1.2510	-210.10
7	Oxygen	O	8.0	15.999400	1.4290	-218.30
8	Fluorine	F	9.0	18.998403	1.6960	-219.60
9	Neon	Ne	10.0	20.179700	0.9000	-248.59
16	Chlorine	Cl	17.0	35.453000	3.2140	-101.50
17	Argon	Ar	18.0	39.948000	1.7840	-189.30
34	Bromine	Br	35.0	79.904000	3120.0000	-7.30
35	Krypton	Kr	36.0	83.798000	3.7500	-157.36
53	Xenon	Xe	54.0	131.293000	5.9000	-111.80
79	Mercury	Hg	80.0	200.590000	13534.0000	-38.83
85	Radon	Rn	86.0	222.000000	9.7300	-71.00

```
df.query("Melting_Point <= -200 | Melting_Point >= 3000").head(100)
```

	Name	Symbol	Atomic_Number	Atomic_Weight	Density	Melting_Point
0	Hydrogen	Н	1.0	1.007940	0.0899	-259.14
5	Carbon	\mathbf{C}	6.0	12.010700	2260.0000	3550.00
6	Nitrogen	N	7.0	14.006700	1.2510	-210.10
7	Oxygen	O	8.0	15.999400	1.4290	-218.30
8	Fluorine	\mathbf{F}	9.0	18.998403	1.6960	-219.60
9	Neon	Ne	10.0	20.179700	0.9000	-248.59
72	Tantalum	Ta	73.0	180.947900	16650.0000	3017.00
73	Tungsten	W	74.0	183.840000	19250.0000	3422.00
74	Rhenium	Re	75.0	186.207000	21020.0000	3186.00
75	Osmium	Os	76.0	190.230000	22610.0000	3033.00

```
df[
    (df["Melting_Point"] <= -200)
    | (df["Melting_Point"] >= 3000)
].head(100)
```

	Name	Symbol	Atomic_Number	Atomic_Weight	Density	Melting_Point
0	Hydrogen	Н	1.0	1.007940	0.0899	-259.14
5	Carbon	\mathbf{C}	6.0	12.010700	2260.0000	3550.00
6	Nitrogen	N	7.0	14.006700	1.2510	-210.10
7	Oxygen	O	8.0	15.999400	1.4290	-218.30
8	Fluorine	\mathbf{F}	9.0	18.998403	1.6960	-219.60
9	Neon	Ne	10.0	20.179700	0.9000	-248.59
72	Tantalum	Ta	73.0	180.947900	16650.0000	3017.00
73	Tungsten	W	74.0	183.840000	19250.0000	3422.00
74	Rhenium	Re	75.0	186.207000	21020.0000	3186.00
75	Osmium	Os	76.0	190.230000	22610.0000	3033.00

O exemplo abaixo mostra um filtro mais complexo e, principalmente, a importância do préprocessamento dos dados. Note que os resultados que eu obtenho ao procurar por letras minúsculas e maiúsculas é diferente! Padronizar tudo minúsculo é uma boa prática na programação. Agora vem uma pergunta, para o nome do composto aplicar um .lower é uma boa prática, mas isso também é válido para o símbolo?

```
df[
     (
          (df["Melting_Point"] <= -200)
          | (df["Melting_Point"] >= 3000)
     )
     & (df['Name'].str.contains("o|h"))
].head(100)
```

	Name	Symbol	Atomic_Number	Atomic_Weight	Density	Melting_Point
0	Hydrogen	Н	1.0	1.007940	0.0899	-259.14
5	Carbon	\mathbf{C}	6.0	12.010700	2260.0000	3550.00
6	Nitrogen	N	7.0	14.006700	1.2510	-210.10

	Name	Symbol	Atomic_Number	Atomic_Weight	Density	Melting_Point
8	Fluorine	F	9.0	18.998403	1.6960	-219.60
9	Neon	Ne	10.0	20.179700	0.9000	-248.59
74	Rhenium	Re	75.0	186.207000	21020.0000	3186.00

```
df[
     (
          (df["Melting_Point"] <= -200)
          | (df["Melting_Point"] >= 3000)
     )
     & (df['Name'].str.contains("0|H"))
].head(100)
```

	Name	Symbol	Atomic_Number	Atomic_Weight	Density	Melting_Point
0	Hydrogen	Н	1.0	1.00794	0.0899	-259.14
7	Oxygen	O	8.0	15.99940	1.4290	-218.30
75	Osmium	Os	76.0	190.23000	22610.0000	3033.00

Pré-Processamento e Localização

Um filtro muito relevante é detectar a presença de valores ausentes .isna, além de duplicados, e tratá-los .fillna, replace, .dropna. .drop_duplicates.

Isso é importante pois caso nossa intenção seja tratar um modelo de regressão, por exemplo, valores ausentes não podem existir, e valores duplicados podem tendenciar nosso modelo.

```
# Agora, é possível saber exatamente quais são os valores ausentes
df[df['Density'].isna()].head(5)
```

	Name	Symbol	Atomic_Number	Atomic_Weight	Density	Melting_Point
84	Astatine	At	85.0	210.0	NaN	302.0
86	Francium	Fr	87.0	223.0	NaN	NaN
95	Americium	Am	95.0	243.0	NaN	1176.0
99	Einsteinium	Es	99.0	252.0	NaN	860.0
100	Fermium	Fm	100.0	257.0	NaN	1527.0

```
# E também os não ausentes...

df[~df['Density'].isna()].head(5)
```

	Name	Symbol	Atomic_Number	Atomic_Weight	Density	Melting_Point
0	Hydrogen	Н	1.0	1.007940	0.0899	-259.14
1	Helium	He	2.0	4.002602	0.1785	NaN
2	Lithium	Li	3.0	6.941000	535.0000	180.54
3	Beryllium	Be	4.0	9.012182	1848.0000	1287.00
4	Boron	В	5.0	10.811000	2460.0000	2075.00

```
# Ok, agora temos dois símbolos H
df.query("Symbol == 'H'")
```

	Name	Symbol	Atomic_Number	Atomic_Weight	Density	Melting_Point
0	Hydrogen	Н	1.0	1.00794	0.0899	-259.14
90	Mentira	H	90.0	1.00000	90.0000	NaN

```
# Só para demonstrar o replace() e o fillna()
df.loc[df["Symbol"] == "H"] = df.loc[df["Symbol"] == "H"].replace(90, np.nan)
df.loc[df["Symbol"] == "H"] = df.loc[df["Symbol"] == "H"].fillna(0)

df.query("Symbol == 'H'")
```

	Name	Symbol	Atomic_Number	Atomic_Weight	Density	Melting_Point
0	Hydrogen	Н	1.0	1.00794	0.0899	-259.14
90	Mentira	H	0.0	1.00000	0.0000	0.00

```
# A importância de especificar a ordem de exclusão
# Veja que aqui a gente não está sobrescrevendo nada
df.drop_duplicates(
    subset='Symbol',
    keep='last'
).query("Symbol == 'H'")
```

	Name	Symbol	Atomic_Number	Atomic_Weight	Density	Melting_Point
90	Mentira	Н	0.0	1.0	0.0	0.0

```
df = df.drop_duplicates(
    subset='Symbol',
    keep='first'
)

df.query("Symbol == 'H'")
```

	Name	Symbol	Atomic_Number	Atomic_Weight	Density	Melting_Point
0	Hydrogen	Н	1.0	1.00794	0.0899	-259.14

Também podemos renomear nossas colunas e converter seus tipos.

```
# Criando uma cópia profunda
nova_df = df.copy(deep=True)
# Renomeando
```

	Name	simbolo	n	Atomic_Weight	Density	Melting_Point
0	Hydrogen	H	1	1.008	0.0899	-259.14
1	Helium	Не	2	4.003	0.1785	NaN
2	Lithium	Li	3	6.941	535.0000	180.54
3	Beryllium	Be	4	9.012	1848.0000	1287.00
4	Boron	В	5	10.811	2460.0000	2075.00

Análise de Dados

A análise mais simples que temos é baseada em ordenamento .sort_index ou .sort_values

```
# Vamos ordenar de outra forma
nova_df.sort_values(by='Density', ascending=False).head(5)
```

	Name	simbolo	n	Atomic_Weight	Density	Melting_Point
76	Iridium	Ir	77	192.217	22650.0	2466.0
75	Osmium	Os	76	190.230	22610.0	3033.0
77	Platinum	Pt	78	195.078	21090.0	1768.3
74	Rhenium	Re	75	186.207	21020.0	3186.0
93	Neptunium	Np	93	237.000	20450.0	644.0

Uma das ferramentas mais importantes da análise de dados é o agrupamento! podemos usar o .groupby para isso.

Group	18.0	17.0	1.0	16.0	12.0
Melting_Point	117.54	290.61	298.191667	437.434	507.073333

Group	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
Melting_Point	6	6	4	3	3	3	3	3	3	3

```
# A função de pivoteamento é extremamente importante!
# Aqui no pdf faremos ela somente para alguns grupos!
pivot_df.pivot_table(
    values='Symbol',
    columns='Group',
    index='Period',
    aggfunc='first'
).fillna('-').iloc[:, list(range(0, 7)) + list(range(-7, 0))]
```

Group Period	1.0	2.0	3.0	4.0	5.0	6.0	7.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0
1.0	Н	-	-	-	-	-	-	-	-	-	-	-	-	Не
2.0	Li	Be	-	-	-	-	-	-	В	\mathbf{C}	N	O	\mathbf{F}	Ne
3.0	Na	Mg	-	-	-	-	-	-	Al	Si	Р	\mathbf{S}	Cl	Ar
4.0	K	Ca	Sc	Ti	V	Cr	Mn	Zn	Ga	Ge	As	Se	Br	Kr
5.0	Rb	Sr	Y	Zr	Nb	Mo	Tc	Cd	In	Sn	Sb	Te	I	Xe
6.0	Cs	Ba	Lu	Hf	Ta	W	Re	$_{ m Hg}$	Tl	Pb	Bi	Po	At	Rn
7.0	Fr	Ra	Lr	Rf	Db	Sg	Bh	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo

```
pivot_df['Melting_Point'] = round(pivot_df['Melting_Point'] - 273.15, 2)
pivot_df['Boiling_Point'] = round(pivot_df['Boiling_Point'] - 273.15, 2)
```

Visualizações Rápidas

df['Melting_Point'].hist();

df['Melting_Point'].plot();

Merging

```
bioquimicos = pd.DataFrame({
    'Symbol': ['H', 'C', 'N', 'O', 'P', 'S', 'Na', 'K', 'Ca',
              'Mg', 'Fe', 'Cl', 'Zn', 'Cu', 'Mn', 'Mo', 'I', 'Se'],
    'Categoria': [
        'Macronutriente', 'Macronutriente', 'Macronutriente', 'Macronutriente',
        'Macronutriente', 'Macronutriente', 'Macronutriente',
        'Macronutriente', 'Macronutriente', 'Micronutriente', 'Macronutriente',
        'Micronutriente', 'Micronutriente', 'Micronutriente',
        'Micronutriente', 'Micronutriente'
   ],
    'Função_Biológica': [
       'Presente na água e nas biomoléculas', # H
        'Base estrutural das moléculas orgânicas', # C
        'Componente de proteínas e ácidos nucleicos', # N
        'Essencial para respiração e oxidação', # 0
        'Presente em ATP e ácidos nucleicos', # P
        'Componente de aminoácidos e proteínas', # S
        'Equilíbrio osmótico e potencial de ação', # Na
        'Regulação celular e enzimática', # K
        'Estrutura óssea e sinalização celular', # Ca
        'Cofator enzimático e estabilização de ATP', # Mg
        'Transporte de oxigênio e reações redox', # Fe
        'Equilíbrio osmótico e digestão', # Cl
        'Ativação enzimática', # Zn
        'Transporte de elétrons e enzimas oxidases', # Cu
        'Fotossíntese e metabolismo energético', # Mn
        'Cofator enzimático na fixação de N', # Mo
        'Síntese de hormônios tireoidianos', # I
        'Antioxidante e defesa celular' # Se
   ]
})
# bioquimicos.to_csv(r'..\data\bioquimicos.csv', index=False)
```

bioquimicos

	Symbol	Categoria	Função_Biológica
0	Н	Macronutriente	Presente na água e nas biomoléculas
1	\mathbf{C}	Macronutriente	Base estrutural das moléculas orgânicas
2	N	Macronutriente	Componente de proteínas e ácidos nucleicos
3	O	Macronutriente	Essencial para respiração e oxidação
4	P	Macronutriente	Presente em ATP e ácidos nucleicos
5	\mathbf{S}	Macronutriente	Componente de aminoácidos e proteínas
6	Na	Macronutriente	Equilíbrio osmótico e potencial de ação
7	K	Macronutriente	Regulação celular e enzimática
8	Ca	Macronutriente	Estrutura óssea e sinalização celular
9	Mg	Macronutriente	Cofator enzimático e estabilização de ATP

	Symbol	Categoria	Função_Biológica
10	Fe	Micronutriente	Transporte de oxigênio e reações redox
11	Cl	Macronutriente	Equilíbrio osmótico e digestão
12	Zn	Micronutriente	Ativação enzimática
13	Cu	Micronutriente	Transporte de elétrons e enzimas oxidases
14	Mn	Micronutriente	Fotossíntese e metabolismo energético
15	Mo	Micronutriente	Cofator enzimático na fixação de N
16	I	Micronutriente	Síntese de hormônios tireoidianos
17	Se	Micronutriente	Antioxidante e defesa celular

```
df = pd.merge(
    df,
    bioquimicos,
    on='Symbol',
    how='left'
)

df[['Name', 'Symbol', 'Density', 'Função_Biológica']].head(10)
```

	Name	Symbol	Density	Função_Biológica
0	Hydrogen	Н	0.0899	Presente na água e nas biomoléculas
1	Helium	He	0.1785	NaN
2	Lithium	Li	535.0000	NaN
3	Beryllium	Be	1848.0000	NaN
4	Boron	В	2460.0000	NaN
5	Carbon	\mathbf{C}	2260.0000	Base estrutural das moléculas orgânicas
6	Nitrogen	N	1.2510	Componente de proteínas e ácidos nucleicos
7	Oxygen	O	1.4290	Essencial para respiração e oxidação
8	Fluorine	\mathbf{F}	1.6960	NaN
9	Neon	Ne	0.9000	NaN

```
pct_bioq = 100* len(df.query('Função_Biológica.notna()')) / len(df)
print(f'''Percentual de Elementos Bioquímicos = {pct_bioq:.2f}%''')
```

Percentual de Elementos Bioquímicos = 15.25%

Exportação

```
df.to_csv(r'..\data\tabela_periodica_bioquimica.csv', index=False)
```

Estatísticas Básicas

df[['Density', 'Melting_Point', 'Atomic_Weight']].corr()

-			
	Density	Melting_Point	Atomic_Weight
Density	1.000000	0.561877	0.728795
Melting_Point	0.561877	1.000000	0.173819
$Atomic_Weight$	0.728795	0.173819	1.000000

df[['Density', 'Melting_Point', 'Atomic_Weight']].sample(n=5)

	Density	Melting_Point	Atomic_Weight
20	2985.0	1541.00	44.95591
58	6640.0	931.00	140.90765
11	1738.0	650.00	24.30500
86	NaN	NaN	223.00000
50	6697.0	630.63	121.76000

df[['Density', 'Melting_Point', 'Atomic_Weight']].sample(frac=0.02)

	Density	Melting_Point	Atomic_Weight
18	856.0	63.38	39.0983
108	NaN	NaN	268.0000

df[['Density', 'Melting_Point', 'Atomic_Weight']].cov()

	Density	Melting_Point	Atomic_Weight
Density Melting_Point Atomic_Weight	3.549540e+07	3.030047e+06	317603.833345
	3.030047e+06	7.800872e+05	11923.579440
	3.176038e+05	1.192358e+04	7831.537030

df.Categoria.value_counts(dropna=False)

Categoria

NaN 100
Macronutriente 11
Micronutriente 7
Name: count, dtype: int64

sns.heatmap(df[['Density', 'Melting_Point', 'Atomic_Weight']].corr(), annot=True)

Adicional: preparando os dados para trabalhar com a biblioteca numpy!

df.values[1:5]

df.values[1:5].tolist()

```
[['Helium', 'He', 2.0, 4.002602, 0.1785, nan, nan, nan],
['Lithium', 'Li', 3.0, 6.941, 535.0, 180.54, nan, nan],
['Beryllium', 'Be', 4.0, 9.012182, 1848.0, 1287.0, nan, nan],
['Boron', 'B', 5.0, 10.811, 2460.0, 2075.0, nan, nan]]
```