1 準備

1.1 複素平面の位相

定義. $\alpha \in \mathbb{C}, r \in \mathbb{R}_{>0}$ に対して、開球と閉球をそれぞれ

$$U(\alpha;r) = \{z \in \mathbb{C} : |z - \alpha| < r\}, \quad D(\alpha;r) = \{z \in \mathbb{C} : |z - \alpha| \le r\}$$

と定義する。 $\mathbb C$ は $U(\alpha;r)$ という形の部分集合全体が開基となるような位相が入るものとし、 $\widehat{\mathbb C}=\mathbb C\cup\{\infty\}$ をアレキサンドロフの一点コンパクト化とする。すなわち、 $\widehat{\mathbb C}$ の開集合は $\mathbb C$ の開集合であるか、または補集合が $\mathbb C$ の有界閉集合であるような部分集合である。

注 1.1. \widehat{C} は二次元球面 S^2 と同相である。

定義. 位相空間 X の部分集合 A がコンパクトであるとは、A の任意の開被覆に有限部分被覆が存在することである。

言い換えると、任意の X の開集合からなる族 $\mathfrak{U}=\{U_i\}_{i\in I}$ について、 $A\subseteq\bigcup_{i\in I}U_i$ ならば、 $i_1,\cdots,i_n\in I$ で $A\subseteq U_{i_1}\cup\cdots\cup U_{i_n}$ となるものが存在することである。

定理 1.1. (Heine-Borel の被覆定理)

 \mathbb{C} の部分集合 A がコンパクトであることと有界閉集合であることは同値。

[証明]. 略。 □

定義.位相空間 X が連結であるとは、開かつ閉集合が X と \emptyset のみであることをいう。X の部分集合 A が連結であるとは、相対位相を入れたとき連結であることをいう。

定義.位相空間 X の部分集合 A が弧状連結であるとは、任意の $x,y\in A$ に対して連続写像 $f:[0,1]\to A$ で f(0)=x,f(1)=y となるものが存在することをいう。

命題 1.2. 弧状連結ならば連結である。

「証明]. [0,1] は連結であることと、連続写像による連結な集合の像は再び連結であること用いる。

命題 1.3. $\mathbb C$ の部分集合 A が連結ならば弧状連結である。

[証明]. $x\sim y$ を「連続写像 $f:[0,1]\to A$ で f(0)=x, f(1)=y となるものが存在する」と定義する。この 二項関係は同値関係になることが言える。

 $A \neq \emptyset$ としてよい。連結であることを仮定して、適当な $x \in X$ を取り、 $A_0 = \{y \in A: x \neq y\}, A_1 = A - A_0$ とおく。 A_0 も A_1 も開集合であることを示そう。

 $y\in A_0$ とすると r>0 で $U(y;r)\subseteq A$ となるものがある。 $z\in U(y;r)$ は y と線分で結ぶことで $y\sim z$ が言える。よって $x\sim y$ とあわせて $x\simeq z$ となって、 $z\in A_0$. したがって、 $U(y;r)\subseteq A_0$ で、つまり A_0 は開集

合。

 $y \in A_1$ とすると r>0 で $U(y;r)\subseteq A$ となるものがある。 $z\in U(y;r)$ は y と線分で結ぶことで $y\sim z$ が言える。よって $x\sim z$ と改定すると $x\simeq y$ となって矛盾。したがって、 $U(y;r)\subseteq A_1$ で、つまり A_1 は開集合。 $x\in A_0$ だから、 $A_0\neq\emptyset$. A は連結であるから、 $A_0=A$.

定義. 領域とは、 © の連結な開部分集合のことである。

例 1.1. 開球は領域である。

命題 1.4. \mathbb{C} の領域 A の任意の 2 点は A 内の折れ線で結ぶことができる。

[証明]. まず、a,b を結ぶ曲線 $f:[0,1]\to A$ が存在する。 $\gamma=f([0,1])$ は連続写像による像だからコンパクト。よって、 γ の開被覆 $\{U(\alpha;r)\subseteq A:\alpha\in\gamma,r>0\}$ は有限個の部分被覆 $\{U(\alpha_1;r_1),\cdots U(\alpha_n;r_n)\}$ を持つ。開球の中では任意の 2 点を線分で結べることから、f が一様連続であることとか、各開集合の逆像たちのなす [0,1] のルベーグ数とかをいろいろ考えれば折れ線で結べることが言えるよ(後は自分でやってね)。

1.2 一樣収束

1.2 節では領域 Ω を固定する。

定義.

関数列 $f_n:\Omega\to\mathbb{C}$ が関数 $f:\Omega\to\mathbb{C}$ に各点収束するとは、任意の $z\in\Omega$ に対して、 $\lim_{n\to\infty}f_n(z)=f(z)$ と かること

関数列 $f_n:\Omega\to\mathbb{C}$ が関数 $f:\Omega\to\mathbb{C}$ 一様収束するとは、任意の $\epsilon>0$ に対して、ある N があって、任意の $n>N,\ z\in\Omega$ に対し $|f_n(z)-f(z)|<\varepsilon$ となること。

一様収束するなら各点収束するのは定義より明らかである。

定理 1.5.

各 f_n が連続で、f に一様収束するならば f は連続である。

[証明]. $z\in\Omega$ とする。 $\varepsilon>0$ とする。一様収束性より、ある n で、全ての $w\in\Omega$ に対して $|f_n(w)-f(w)|<\varepsilon$ となるものがある。

 f_n は連続だから、 $\delta>0$ で、 $|w-z|<\delta\Rightarrow |f_n(w)-f_n(z)|<\varepsilon$ となるものがある。 $|w-z|<\delta$ のとき、

$$|f(w)-f(z)| \leq |f(w)-f_n(w)| + |f_n(w)-f_n(z)| - |f_n(z)-f(z)| < 3\varepsilon$$
 だから、連続である。

定理 1.6.

各 f_n が連続であるとする。 $\{f_n\}$ がある関数に一様収束すること、コーシーの条件: 任意の $\varepsilon>0$ に対して、N が存在して、任意の $z\in\Omega,\,n,m>N$ に対し $|f_n(z)-f_m(z)|$ が成立することは同値。

[証明]. f に一様収束するとすれば、 $\varepsilon>0$ に対し、N で $z\in\Omega, n>N$ のとき $|f(z)-f_n(z)|<\varepsilon$ となる。 n,m>N なら $|f_n(z)-f_m(z)|\leq |f_n(z)-f(z)|+|f(z)-f_m(z)|<2\varepsilon$ だから、コーシーの条件は満たされている。

逆に、コーシーの条件を満たすとすると、 $z \in \Omega$ を固定したとき、数列 $\{f_n(z)\}_n$ はコーシー列である。したがってある値に収束するので、それを f(z) とおこう。 $\varepsilon > 0$ とする。

arepsilon>0 としよう。ある N があって、 $z\in\Omega,\,n,m>N$ のとき $|f_n(z)-f_m(z)|<\epsilon$ となる。

m>N とする。f(z) の定義より、ある M があって、n>M なら $|f_n(z)-f(z)|<\varepsilon$ となる。n>N,M を適当に取ると、 $|f(z)-f_m(z)|\leq |f(z)-f_n(z)|+|f_n(z)-f_m(z)|<2\varepsilon$.

つまり、任意の $\varepsilon>0$ に対して N が存在して、 $z\in\Omega,\,m>N$ のとき $|f(z)-f_m(z)|<2\varepsilon$ となる。これは一様収束することを示している。

定義.関数列 $f_n:\Omega\to\mathbb{C}$ が $f:\Omega\to\mathbb{C}$ に広義一様収束するとは、任意のコンパクト集合 $K\subset\Omega$ 上で $f_n|K$ が f|K に一様収束することをいう。

 Ω の関数列 $\{f_n\}_{n\in\mathbb{N}}$ を、各自然数 n に対して、領域 Ω_n とその上の関数 $f_n:\Omega_n\to\mathbb{C}$ で、以下の条件を満たすものとする:

- $\Omega = \bigcup_n \Omega_n$
- 任意のコンパクト集合 $K \subseteq \Omega$ に対して n_0 があって、 $n > n_0 \implies K \subseteq \Omega_n$

このときも広義一様収束の定義を当てはめることができる。以下に述べる定理の仮定をこれに直しても、似た 証明ができることに注意する。

定理 1.7.

連続な関数列 f_n が f に、連続な関数列 g_n が g にそれぞれ広義一様収束するとして、h を Ω 上の連続な関数とする。このとき、 $f_n\pm g_n$ は $f\pm g$ に、 f_ng_n は fg に、 hf_n は hf に広義一様収束する。

[証明]. 最後だけ証明する。 $K\subseteq\Omega$ をコンパクト集合とする。 $\epsilon>0$ として、|h(z)| の K での最大値を M としよう。M=0 のときは証明することはない。

M>0 のとき、仮定より N があって、 $z\in\Omega,\,n>N$ なら $|f_n(z)-f(z)|<\varepsilon/M$ となる。このとき、 $|h(z)f_n(z)-h(z)f(z)|< M\varepsilon/M=\varepsilon$ なので、K 上で一様収束する。

定義.

$$\sum_{n=1}^\infty f_n(z)$$
 が $f(z)$ に一様収束するとは、部分和 $s_N(z)=\sum_{n=1}^N f_n(z)$ が $f(z)$ に一様収束することをいう。

2 参考文献

[1] L. V. Ahlfors: 複素解析 2008 年