CS561 - ARTIFICIAL INTELLIGENCE LAB

ASSIGNMENT-5: Genetic Algorithm v/s Simulated Annealing (Read all the instructions carefully & adhere to them.)

Date: 26th September, 2022 Deadline:02nd October, 2022

Total Credit: 30

Instructions:

- 1. The assignment should be completed and uploaded by **02 Oct. 2022, 11:59 PM IST.**
- 2. Markings will be based on the correctness and soundness of the outputs. Marks will be deducted in case of plagiarism.
- 3. Proper indentation and appropriate comments are mandatory.
- 4. You should zip all the required files and name the zip file as: roll no of all group members .zip , eg. 1501cs11 1201cs03 1621cs05.zip.
- 5. Upload your assignment (**the zip file**) in the following link: https://www.dropbox.com/request/tgAgZRgFVPq6tvqsOGot

For any queries regarding this assignment you can contact: Deeksha Varshney (deeksha.varshney2695@gmail.com) or Gitanjali Kumari (gitanjali.singh228@gmail.com) or Samrat Mukherjeee (samratpisy123@gmail.com)

Questions

Genetic Algorithm:

Solve the 8 puzzle problem using a genetic algorithm. Start state (Can take any random order of numbers with B denoting a blank)

An Example:

Start state:

5	В	8
4	2	1
7	3	6

Goal State (Fixed):

5	В	8
4	2	1
7	3	6

Please use the following details as specifications for the implementations:

- 1) Initial Population (assume to be 10)
- 2) Selection (use Roulette Wheel Selection)
- 3) Crossover (high probability value to be chosen, usually above 0.6)
- 4) Mutation (low probability value to be chosen, usually below 0.2)
- 5) Fitness function:
 - a) Number of misplaced tiles
 - b) Manhattan distance.

Questions and instructions:

- 1. The output should have the following information:
 - a. On success:
 - i. Success Message
 - ii. Start State / Goal State

- iii. Total number of states explored
- iv. Total number of states to the optimal path
- v. Optimal Path
- vi. Optimal Path Cost
- vii. Time taken for execution

b. On failure:

- i. Failure Message
- ii. Start State / Goal State
- iii. Total number of states explored before termination
- 2. Compare and contrast (with justification) the results obtained from the two different Fitness functions.
- 3. Compare your results obtained in the Simulated Annealing implementations (from previous assignment) with the Genetic Algorithm implementations.
 - **a.** Take multiple examples (at least 3) of the same start state and goal state combinations and compare both algorithms.
 - **b.** Analyze the results obtained with proper justifications.
 - **c.** Describe your results on which algorithm performed better and why?
 - **d.** Describe your views on what algorithm should have performed better for this particular problem and does your intuition match the results?