Note del corso di Analisi Matematica 1

Gabriel Antonio Videtta

21 marzo 2023

Analogie tra i limiti di funzioni e i limiti di successioni

Nota. Nel corso del documento, per un insieme X, qualora non specificato, si intenderà sempre un sottoinsieme generico dell'insieme dei numeri reali esteso $\overline{\mathbb{R}}$. Analogamente per f si intenderà sempre una funzione $f: X \to \overline{\mathbb{R}}$.

Esercizio 1. Dati $f: X \to \overline{\mathbb{R}}$, \overline{x} punto di accumulazione di X tale che $\forall (x_n) \subseteq X \setminus \{\overline{x}\}$ vale che $f(x_n)$ converge. Allora il limite di $f(x_n)$ è sempre lo stesso.

Esercizio 2. Data $(x_n) \subseteq \mathbb{R}$, definisco $f : \mathbb{N} \to \overline{\mathbb{R}}$ tale che $f(n) := x_n$, $\forall n \in \mathbb{N}$. Allora $f(n) \xrightarrow[n \to \infty]{} L \iff x_n \xrightarrow[n \to \infty]{} L$.

Proposizione. Siano $f: X \to \overline{\mathbb{R}}, \overline{x} \in X$ punto di accumulazione di X. Allora sono fatti equivalenti i seguenti:

- (i) $f(x) \xrightarrow[x \to \overline{x}]{} L$,
- (ii) f è continua in \overline{x} .

Dimostrazione. Si dimostrano le due implicazioni separatamente.

Osservazione. Se \overline{x} è un punto isolato di X, allora f è continua in \overline{x} . Pertanto per rendere la proposizione precedente vera, è necessario ipotizzare che \overline{x} sia un punto di accumulazione (infatti il limite in un punto isolato non esiste per definizione, mentre in tale punto f è continua).

Esercizio 3. Siano $f: X \to \mathbb{R}$ e \overline{x} punto di accumulazione di X. Siano $L \in \overline{\mathbb{R}}$ e $\tilde{f}: X \cup \{\overline{x}\} \to \overline{\mathbb{R}}$ tale che:

$$\tilde{f}(x) = \begin{cases} L & \text{se } x = \overline{x}, \\ f(x) & \text{altrimenti.} \end{cases}$$

Allora $f(x) \xrightarrow[x \to \overline{x}]{} L \iff \tilde{f}$ è continua in \overline{x} .

Osservazione. Tutte le funzioni elementari (e.g. $\sin(x)$, $\cos(x)$, $\exp(x)$, $\ln(x)$, |x|, polinomi) sono funzioni continue nel loro insieme di definizione.

Proposizione. Date $f: X \to Y \subseteq \overline{\mathbb{R}}$ e $g: Y \to \overline{\mathbb{R}}$. Sia f continua in \overline{x} e sia g continua in $f(\overline{x})$. Allora $g \circ f$ è continua in \overline{x} .

Dimostrazione. Sia I un intorno di $z=g(f(\overline{x}))$. Allora, poiché g è continua in $f(\overline{x})$, $\exists J$ intorno di $f(\overline{x}) \mid g(J) \subseteq I$. Tuttavia, poiché f è continua in \overline{x} , $\exists K$ intorno di $\overline{x} \mid f(K) \subseteq J$, da cui si conclude che $g(f(K)) \subseteq g(J) \subseteq I$. \square

Proposizione. Sia $f: X \to Y \subseteq \overline{\mathbb{R}}$, sia \overline{x} punto di accumulazione di X tale che $f(x) \xrightarrow[x \to \overline{x}]{} \overline{y}$. Se \overline{y} è un punto di accumulazione di $Y, \overline{y} \in Y \implies g$ continua in $\overline{y} \in g: Y \to \overline{\mathbb{R}}$ è tale che $g(y) \xrightarrow[y \to \overline{y}]{} \overline{z}$, allora $g(f(x)) \xrightarrow[x \to \overline{x}]{} \overline{z}$.

Esercizio 4. Mostrare che tutte le ipotesi della proposizione precedente sono necessarie, fornendo alcuni controesempi.

Proposizione. Date $f_1, f_2: X \to \mathbb{R}$ continue in \overline{x} . Allora:

- (i) $f_1 + f_2$ è continua in \overline{x} ,
- (ii) $f_1 f_2$ è continua in \overline{x} .

Dimostrazione. Sia $f := f_1 + f_2$.

(i) Poiché f_1, f_2 sono continue in \overline{x} , $\forall \varepsilon > 0$, $\exists \delta > 0 \mid |x - \overline{x}| < \delta \implies |f_1(x) - f_1(\overline{x})|, |f_2(x) - f_2(\overline{x})| \le \varepsilon$ (per ogni $\varepsilon > 0$, si prende $\delta = \min\{\delta_1, \delta_2\}$, ossia il minimo delle semilunghezze degli intorni di \overline{x}). Allora $|f(x) - f(\overline{x})| \le |f_1(x) - f_1(\overline{x})| + |f_2(x) - f_2(\overline{x})| \le 2\varepsilon$. Si conclude dunque che $\forall \varepsilon > 0$, $\exists \delta > 0 \mid |f(x) - f(\overline{x})| \le 2\varepsilon$, e quindi, poiché $2\varepsilon \xrightarrow[\varepsilon \to 0]{} 0$, che f è continua in \overline{x} .

Proposizione. Date $f_1, f_2: X \to \overline{\mathbb{R}}$, \overline{x} punto di accumulazione di X. Se $\lim_{x \to \overline{x}} f_1(x) = L_1 \in \mathbb{R}$ e $\lim_{x \to \overline{x}} f_2(x) = L_2 \in \mathbb{R}$, allora valgono i seguenti risultati:

- (i) $f_1(x) + f_2(x) \xrightarrow[x \to \overline{x}]{} L_1 + L_2$,
- (ii) $f_1(x)f_2(x) \xrightarrow[x \to \overline{x}]{} L_1L_2$.