

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Doctorado en Modelación Matemática

00049

PROGRAMA DE ESTUDIOS

MBRE DE LA ASIGNATURA		
	Series de tiempo	
25.15		
SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Estudiar las nociones, resultados y teoría de las series de tiempo. Además, de guiar al estudiante a analizar, modificar y extrapolar los conceptos adquiridos aplicados a la modelación estadística.

TEMAS Y SUBTEMAS

1. Introducción

- 1.1. La distribución normal multivariada y propiedades.
- 1.2. Esperanza, covarianza y correlación.
- 1.3. Definición y propiedades de series de tiempo.
- 1.4. Componentes de una serie de tiempo.
- 1.5. Método Box-Jenkins.

2. Modelos de promedios móviles y autorregresivos

- 2.1. Procesos estocásticos estacionarios.
- 2.2. Modelos de medias móviles MA(q).
- 2.3. Modelos autorregresivo AR(p).
- 2.4. Modelos ARMA(p,q).
- 2.5. Modelos ARIMA(p,d,q).

3. Estimación

- 3.1. Estimación de las autocovarianzas.
- 3.2. Identificación de los modelos.
- 3.3. Función de mínimos cuadrados.
- 3.4. Estimadores de Yule-Walker.
- 3.5. El estimador de Burg.
- 3.6. Función de máxima verosimilitud del modelo ARMA(p,q).

4. Verificación y Predicción

- 4.1. Etapa de Verificación.
- 4.2. Etapa de Predicción

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por parte del profesor, poniendo énfasis en los resultados y en las técnicas de demostración. Los estudiantes acudirán a asesorías extra clase. Solución de problemas relacionados con el tema.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Se aplican por lo menos tres exámenes parciales cuyo promedio equivale al 50% de la calificación final, el 50% restante se obtiene de un examen final. Otras actividades que se consideran para la evaluación son las participaciones en clase, asistencias a clases y el cumplimiento de tareas.

BIBLIOGRAFÍA

Básica:

- 1. Introduction to Time Series and Forecasting; Brockwell, P. J & Davis, R. A, Springer, 2016.
- 2. Time Series Analysis & Forecasting; Bisgaard, S., & Kulahci, M, Wiley, 2011.
- 3. Time Series Analysis; Box, G. Jenkins, G. & Reisenl, G, Prentice, 2008.

Universidad Tecnológica de la Mixteca Clave DGP: 200089

Doctorado en Modelación Matemática

00050

PROGRAMA DE ESTUDIOS

Consulta:

- 1. Linear Models and Time Series Analysis; M. S. Paolella, Wiley, 2018.
- 2. Forecasting with Box-Jenkins Models; Pankratz, A, Wiley, 1983.
 3. Time Series Apply to Finance with R & S-plus; Ngai, H, C, Wiley, 2010.

PERFIL PROFESIONAL DEL DOCENTE

Estudios de Doctorado en Matemáticas o en Matemáticas Aplicadas.

Vo.Bo

DR. JOSÉ ANIBAL ARIAS AGUILAR

JEFE DE LA DIVISIÓN DE ESTUDIOS DE POSGRADO

DE POSGRADO

AUTORIZÓ

DR. RAFAEL MARTÍNEZ MARTÍNEZ

VICE-RECTOR ACADÉMICO /ICE-RECTORIA ACADÉMICA