TABLE DES MATIÈRES

Ι	Modèle de Lieb-Liniger et approche Bethe Ansatz	3
1	Introduction au gaz de bosons unidimensionnels 1.1 Motivations et contexte physique	55 110 110 110 110 110
2	Bethe Ansatz et solution exacte du modèle de Lieb-Liniger 2.1 Problème à deux corps	
Π	Relaxation des systèmes quantiques isolés et phénomènes d'équilibre	9
3	Équilibre thermique et ensemble de Gibbs : chaos quantique 3.1 Thermodynamique du gaz de Lieb-Liniger à température nulle 3.2 Excitations élémentaires à température nulle 3.3 Physique statistique de l'ensemble de Gibbs 3.4 Chaos quantique et brisure de l'intégrabilité 3.5 Entropie de Yang-Yang et principe de maximisation	11 11 11 11 12 12
4	Équilibre non thermique et ensemble de Gibbs généralisé : ergodicité 4.1 Intégrabilité et charges conservées	13 13 13 13 15
Π	I Dynamique hors-équilibre et hydrodynamique généralisée	17
5	Hydrodynamique et régimes asymptotiques 5.1 Hydrodynamique classique des systèmes chaotiques	

	5.3	Équation d'hydrodynamique généralisée (GHD)	19
6	Flu	ctuations et corrections à l'hydrodynamique généralisée	21
	6.1	Fluctuations de la distribution de rapidité	21
	6.2	Ordre 2 des corrections et rôle de l'entropie de Yang-Yang	23
	6.3	Confrontation entre hydrodynamique classique et hydrodynamique généralisée	23

Première partie

Modèle de Lieb-Liniger et approche Bethe Ansatz

1

INTRODUCTION AU GAZ DE BOSONS UNIDIMENSIONNELS

Contents

1.1	Motivations et contexte physique	5
1.2	Description du modèle de Lieb-Liniger	5
1.3	Propriétés fondamentales et régimes asymptotiques	5
1.4	Théorie linéarisée pour le régime de quasi-condensat	5
	1.4.1 Équation de Gross-Pitaevskii	5
	1.4.2 Transformation de Bogoliubov pour système homogène	5

- 1.1 Motivations et contexte physique
- 1.2 Description du modèle de Lieb-Liniger
- 1.3 Propriétés fondamentales et régimes asymptotiques
- 1.4 Théorie linéarisée pour le régime de quasi-condensat
- 1.4.1 Équation de Gross-Pitaevskii
- 1.4.2 Transformation de Bogoliubov pour système homogène

BETHE ANSATZ ET SOLUTION EXACTE DU MODÈLE DE LIEB-LINIGER

Cont	ents		
	2.1	Problème à deux corps	7
	2.2	Problème à N corps	7
	2.3	Condition aux bords périodiques et équation de Bethe Ansatz	7
2.1	Pro	oblème à deux corps	
2.2	Pro	oblème à N corps	

2.3 Condition aux bords périodiques et équation de Bethe Ansatz

Deuxième partie

Relaxation des systèmes quantiques isolés et phénomènes d'équilibre

3

ÉQUILIBRE THERMIQUE ET ENSEMBLE DE GIBBS : CHAOS QUANTIQUE

Contents

3.1	Thermodynamique du gaz de Lieb-Liniger à température nulle	11
3.2	Excitations élémentaires à température nulle	11
3.3	Physique statistique de l'ensemble de Gibbs	11
3.4	Chaos quantique et brisure de l'intégrabilité	12
3.5	Entropie de Yang-Yang et principe de maximisation	12

- 3.1 Thermodynamique du gaz de Lieb-Liniger à température nulle
- 3.2 Excitations élémentaires à température nulle
- 3.3 Physique statistique de l'ensemble de Gibbs

On écrit l'observable énergie et nombre :

$$\hat{\mathcal{N}} = \sum_{\{\theta_a\}} \left(\sum_{a=1}^N 1 \right) |\{\theta_a\}\rangle \langle \{\theta_a\}|, \tag{3.1}$$

$$\hat{\mathcal{E}} = \sum_{\{\theta_a\}} \left(\sum_{a=1}^{N} \varepsilon(\theta_a) \right) |\{\theta_a\}\rangle \langle \{\theta_a\}|, \tag{3.2}$$

avec $\sum_{a=1}^{N} 1 \equiv \langle \hat{\mathcal{N}} \rangle_{\{\theta_a\}} \doteq \langle \{\theta_a\} | \hat{\mathcal{N}} | \{\theta_a\} \rangle$ et $\sum_{a=1}^{N} \varepsilon(\theta_a) \equiv \langle \hat{\mathcal{E}} \rangle_{\{\theta_a\}} \doteq \langle \{\theta_a\} | \hat{\mathcal{E}} | \{\theta_a\} \rangle$. La probabilité que le système soit dans configuration $\{\theta_a\}$ est

$$P_{\{\theta_a\}} = \frac{e^{-\beta(\langle \hat{\mathcal{E}} \rangle_{\{\theta_a\}} - \mu \langle \hat{\mathcal{N}} \rangle_{\{\theta_a\}})}}{Z_{thermal}} = \frac{e^{-\beta \sum_{a=1}^{N} (\varepsilon(\theta_a) - \mu)}}{Z_{thermal}}$$
(3.3)

avec la fonction de partition $Z_{thermal} = \sum_{\{\theta_a\}} e^{-\beta \left(\langle \hat{\pmb{\mathcal{E}}} \rangle_{\{\theta_a\}} - \mu \langle \hat{\pmb{\mathcal{N}}} \rangle_{\{\theta_a\}}\right)} = \sum_{\{\theta_a\}} e^{-\beta \sum_{a=1}^N (\varepsilon(\theta_a) - \mu)}$

$$\langle \hat{\mathcal{N}} \rangle = \frac{1}{\beta} \frac{\partial \ln Z}{\partial \mu} \Big|_{T}, \qquad \Delta_{\hat{\mathcal{N}}}^{2} = \frac{1}{\beta^{2}} \frac{\partial^{2} \ln Z}{\partial \mu^{2}} \Big|_{T} = \frac{1}{\beta} \frac{\partial \langle \hat{\mathcal{N}} \rangle}{\partial \mu} \Big|_{T}$$
 (3.4)

$$\langle \hat{\mathcal{E}} - \mu \hat{\mathcal{N}} \rangle = -\frac{\partial \ln Z}{\partial \beta} \Big|_{\mu}, \qquad \Delta_{\hat{\mathcal{E}} - \mu \hat{\mathcal{N}}}^2 = \frac{\partial^2 \ln Z}{\partial \beta^2} \Big|_{\mu} = -\frac{\partial \langle \hat{\mathcal{E}} - \mu \hat{\mathcal{N}} \rangle}{\partial \beta} \Big|_{\mu}$$
(3.5)

$$\langle \hat{\boldsymbol{\mathcal{E}}} \rangle = \left[\frac{\mu}{\beta} \frac{\partial}{\partial \mu} \right]_T - \frac{\partial}{\partial \beta}_{\mu} \ln Z, \qquad \Delta_{\hat{\boldsymbol{\mathcal{E}}}}^2 = \left[\frac{\mu}{\beta} \frac{\partial}{\partial \mu} \right]_T - \frac{\partial}{\partial \beta}_{\mu} \right]^2 \ln Z = \left[\frac{\mu}{\beta} \frac{\partial}{\partial \mu} \right]_T - \frac{\partial}{\partial \beta}_{\mu} \langle \hat{\boldsymbol{\mathcal{E}}} \rangle$$
(3.6)

La matrice densité thermique est :

$$\hat{\boldsymbol{\rho}}_{thermal} = \frac{e^{-\beta \hat{\boldsymbol{H}}}}{Z_{thermal}},\tag{3.7}$$

$$\hat{\boldsymbol{\rho}}_{thermal} = \frac{e^{-\beta \hat{\boldsymbol{H}}}}{Z_{thermal}}, \qquad (3.7)$$

$$e^{-\beta \hat{\boldsymbol{H}}} = \sum_{\{\theta_a\}} e^{-\beta \sum_{a=1}^{N} (\varepsilon(\theta_a) - \mu)} |\{\theta_a\}\rangle \langle \{\theta_a\}| \qquad (3.8)$$

Chaos quantique et brisure de l'intégrabilité 3.4

Entropie de Yang-Yang et principe de maximisation 3.5

4

ÉQUILIBRE NON THERMIQUE ET ENSEMBLE DE GIBBS GÉNÉRALISÉ : ERGODICITÉ

Contents

4.1	Intégrabilité et charges conservées	13
4.2	Dynamique hors équilibre et relaxation des systèmes isolés	13
4.3	Physique statistique appliquée aux systèmes intégrables	13
4.4	Entropie de Yang-Yang généralisée	15

- 4.1 Intégrabilité et charges conservées
- 4.2 Dynamique hors équilibre et relaxation des systèmes isolés
- 4.3 Physique statistique appliquée aux systèmes intégrables

On peut commence à généraliser avec l'opérateur :

$$\hat{\mathcal{O}}_i = \sum_{\{\theta_a\}} \langle \hat{\mathcal{O}}_i \rangle_{\{\theta_a\}} |\{\theta_a\}\rangle \langle \{\theta_a\}| \tag{4.1}$$

 $\hat{\mathcal{O}}_i \in \{\hat{\mathcal{N}}, \hat{\mathcal{E}} - \mu \hat{\mathcal{N}}\}\$ tel que $\sum_i \beta_i \langle \hat{\mathcal{O}}_i \rangle_{\{\theta_a\}} = \beta \left(\langle \hat{\mathcal{E}} \rangle_{\{\theta_a\}} - \mu \langle \hat{\mathcal{N}} \rangle_{\{\theta_a\}} \right)$ et pour simplifier ici $Z \equiv Z_{thermal}$:

Point clé n° 1. Sa moyenne, variance et équartype de l'observable :

$$\langle \hat{\mathcal{O}}_i \rangle = \sum_{\{\theta_a\}} \langle \hat{\mathcal{O}}_i \rangle_{\{\theta_a\}} \underbrace{\frac{e^{-\sum_i \beta_i \langle \hat{\mathcal{O}}_i \rangle_{\{\theta_a\}}}}{Z}}_{= -\frac{1}{Z} \frac{\partial Z}{\partial \beta_i} \Big)_{\beta_{j \neq i}} = -\frac{\partial \ln Z}{\partial \beta_i} \Big)_{\beta_{j \neq i}}$$
(4.2)

$$\langle \hat{\mathcal{O}}_i^2 \rangle = \sum_{\{\theta_a\}} \langle \hat{\mathcal{O}}_i \rangle_{\{\theta_a\}}^2 \frac{e^{-\sum_i \beta_i \langle \hat{\mathcal{O}}_i \rangle_{\{\theta_a\}}}}{Z} = \frac{1}{Z} \frac{\partial^2 Z}{\partial {\beta_i}^2} \bigg)_{\beta_{j \neq i}}$$

$$\Delta_{\hat{\mathcal{O}}_{i}}^{2} = \left\langle \left(\hat{\mathcal{O}}_{i} - \langle \hat{\mathcal{O}}_{i} \rangle \right)^{2} \right\rangle = \left\langle \hat{\mathcal{O}}_{i}^{2} \right\rangle - \left\langle \hat{\mathcal{O}}_{i} \right\rangle^{2} = \frac{1}{Z} \frac{\partial^{2} Z}{\partial \beta_{i}^{2}} \Big)_{\beta_{j \neq i}} - \left(\frac{1}{Z} \frac{\partial Z}{\partial \beta_{i}} \right)_{\beta_{j \neq i}} \right)^{2}$$

$$(4.3)$$

$$= \frac{\partial}{\partial \beta_i} \left(\frac{1}{Z} \frac{\partial Z}{\partial \beta_i} \right)_{\beta_{j \neq i}} = \frac{\partial^2 \ln Z}{\partial {\beta_i}^2} \Big)_{\beta_{j \neq i}} = -\frac{\partial \langle \hat{\mathcal{O}}_i \rangle}{\partial \beta_i} \Big)_{\beta_{j \neq i}}$$
(4.4)

si $\hat{\mathcal{O}}_i = \hat{\mathcal{N}}$ alors $\beta_i = -\beta \mu$ et si $\hat{\mathcal{O}}_i = \hat{\mathcal{E}} - \mu \hat{\mathcal{N}}$ alors $\beta_i = \beta$.

$$\langle \hat{\mathcal{O}}_i \rangle = \sum_{\{\theta_a\}} \langle \{\theta_a\} | \hat{\mathcal{O}}_i | \{\theta_a\} \rangle \frac{e^{-\sum_i \beta_i \langle \hat{\mathcal{O}}_i \rangle_{\{\theta_a\}}}}{Z}, \tag{4.5}$$

$$= \sum_{\{\theta_b\}} \langle \{\theta_b\} | \hat{\mathcal{O}}_i \sum_{\{\theta_a\}} \frac{e^{-\sum_i \beta_i \langle \hat{\mathcal{O}}_i \rangle_{\{\theta_a\}}}}{Z} | \{\theta_a\} \rangle \langle \{\theta_a\} | \{\theta_b\} \rangle, \tag{4.6}$$

$$= Tr(\hat{\mathcal{O}}_i\hat{\boldsymbol{\rho}}) \tag{4.7}$$

avec $\hat{\boldsymbol{\rho}} = \sum_{\{\theta_a\}} \frac{e^{-\sum_i \beta_i \langle \hat{\boldsymbol{O}}_i \rangle_{\{\theta_a\}}}}{Z} |\{\theta_a\}\rangle \langle \{\theta_a\}|$ et $Z = \sum_{\{\theta_a\}} e^{-\sum_i \beta_i \langle \hat{\boldsymbol{O}}_i \rangle_{\{\theta_a\}}}$ tel que $Tr(\hat{\boldsymbol{\rho}}) = 1$

La matrice densité GGE avec $Z \equiv Z_{GGE}$ est :

$$\hat{\boldsymbol{\rho}}_{GGE}[f] = \sum_{\{\theta_a\}} \frac{e^{-\sum_{i=1}^{\infty} \beta_i \langle \hat{\boldsymbol{O}}_i \rangle_{\{\theta_a\}}}}{Z} |\{\theta_a\}\rangle \langle \{\theta_a\}|. \tag{4.8}$$

Dans le cas thermique, on peut remarquer que $\langle \hat{\mathcal{N}} \rangle_{\{\theta_a\}} \propto \sum_{a=1}^N \theta_a^0$ et $\langle \hat{\mathcal{E}} \rangle_{\{\theta_a\}} \propto \sum_{a=1}^N \theta_a^2$. On peut donc réécrire $\sum_{i=1}^\infty \beta_i \langle \hat{\mathcal{O}}_i \rangle_{\{\theta_a\}}$

$$\sum_{i=1}^{\infty} \beta_i \langle \hat{\mathcal{O}}_i \rangle_{\{\theta_a\}} = \sum_{i=0}^{\infty} \alpha_i \sum_{a=1}^{N} \theta_a^i$$
(4.9)

et pour chaque $a \in [1, N]$: $\sum_i \alpha_i \theta_a^i$ converge donc on peut échanger les deux sommes soit

$$\sum_{i=1}^{\infty} \beta_i \langle \hat{\mathcal{O}}_i \rangle_{\{\theta_a\}} = \sum_{a=1}^{N} f(\theta_a)$$
(4.10)

avec $f(\theta) = \sum_{i=0}^{\infty} \alpha_i \theta^i.$ Et on peut réecrire la matrice densité :

$$\hat{\boldsymbol{\rho}}_{GGE}[f] = \frac{e^{-\hat{\mathbf{Q}}[f]}}{Z_{GGE}},\tag{4.11}$$

$$e^{-\hat{\mathbf{Q}}[f]} = \sum_{\{\theta_a\}} e^{-\sum_{a=1}^N f(\theta_a)} |\{\theta_a\}\rangle \langle \{\theta_a\}|$$

$$(4.12)$$

pour une certaine fonction f relié à la charge $\hat{\boldsymbol{Q}}[f] = \sum_{\{\theta_a\}} \left(\sum_{a=1}^N f(\theta_a)\right) |\{\theta_a\}\rangle \langle \{\theta_a\}|$. Et on peut réecrire la probabilité de la configuration $\{\theta_a\}: P_{\{\theta_a\}} = \langle \{\theta_a\}|\hat{\boldsymbol{\rho}}_{GGE}[f]|\{\theta_a\}\rangle = e^{-\sum_{a=1}^N f(\theta_a)} \ /Z$ avec $Z = \sum_{\{\theta_a\}} e^{-\sum_{a=1}^N f(\theta_a)}$.

Nous aimerions calculer les valeurs d'attente par rapport à cette matrice de densité, par exemple La moyenne GGE d'un observable s'écrit ,

Point clé n° 2.

$$\langle \hat{\mathcal{O}} \rangle_{GGE} \doteq \frac{\operatorname{Tr}(\hat{\mathcal{O}}\hat{\boldsymbol{\rho}}_{GGE}[f])}{\operatorname{Tr}(\hat{\boldsymbol{\rho}}_{GGE}[f])} = \frac{\operatorname{Tr}(\hat{\mathcal{O}}e^{-\hat{\boldsymbol{Q}}[f]})}{\operatorname{Tr}(e^{-\hat{\boldsymbol{Q}}[f]})} = \frac{\sum_{\{\theta_a\}} \langle \{\theta_a\} | \hat{\mathcal{O}} | \{\theta_a\} \rangle e^{-\sum_{a=1}^{N} f(\theta_a)}}{\sum_{\{\theta_a\}} e^{-\sum_{a=1}^{N} f(\theta_a)}}$$
(4.13)

pour une certaine observable $\hat{\mathcal{O}}$.

4.4 Entropie de Yang-Yang généralisée

Troisième partie

Dynamique hors-équilibre et hydrodynamique généralisée

5

HYDRODYNAMIQUE ET RÉGIMES ASYMPTOTIQUES

Cont	ents		
	5.1	Hydrodynamique classique des systèmes chaotiques	19
	$\bf 5.2$	Hydrodynamique des systèmes intégrables et distribution de rapidité	19
	5.3	Équation d'hydrodynamique généralisée (GHD)	19
5.1	Hy	drodynamique classique des systèmes chaotiques	
5.2	Hy	drodynamique des systèmes intégrables et distribution de rapidi	té
5.3	Éaı	uation d'hydrodynamique généralisée (GHD)	

6

FLUCTUATIONS ET CORRECTIONS À L'HYDRODYNAMIQUE GÉNÉRALISÉE

Contents

6.1	Fluctuations de la distribution de rapidité	21
6.2	Ordre 2 des corrections et rôle de l'entropie de Yang-Yang	23
6.3	Confrontation entre hydrodynamique classique et hydrodynamique généralisée	23

6.1 Fluctuations de la distribution de rapidité

Dans ce chapitre, nous nous intéressons aux fluctuations de la distribution de rapidité $\delta\Pi$ autour d'une distribution de référence Π^c , qui maximise la contribution à la fonction de partition des états, exprimée comme une fonctionnelle de la distribution Π :

$$\mathcal{Z} = \sum_{\Pi} \exp(-\mathcal{A}(\Pi)).$$

Dans la section Entropie de Yang-Yang (??), l'action $\mathcal{A}(\Pi)$ s'écrit sous la forme :

$$\mathcal{A}(\Pi) \doteq -\mathcal{S}_{YY}(\Pi) + \int f(\theta)\Pi(\theta) d\theta,$$

où S_{YY} est la fonctionnelle d'entropie de Yang-Yang, définie dans (??), et f est la fonction paramétrant les charges, introduite dans (??).

Dans cette même section Entropie de Yang-Yang (??), nous avons établi un lien entre f et Π^c .

Nous poursuivons à présent avec cette définition de l'action de classe C^2 et admetant une distribution critique Π^c tel que sa différentielle en ce point critique soit nulle $d\mathcal{A}_{\Pi^c} = 0$ (??) de sorte que d'aprés la formule de Taylor-Youg

$$\mathcal{A}(\Pi^c + \delta \Pi) \quad \mathop{=}_{\delta \Pi \to 0} \quad \mathcal{A}(\Pi^c) + \frac{1}{2} \left. \frac{\delta^2 \mathcal{A}}{\delta \Pi^2} \right|_{\Pi^c} (\delta \Pi)^2 + \mathcal{O}((\delta \Pi)^3),$$

une expression quadratique pour l'action à l'ordre dominant en $\delta\Pi$ avec $\left.\frac{\delta^2 \mathcal{A}}{\delta\Pi^2}\right|_{\Pi^c}$ la forme quadratique définie positive (Fig (??)).

On discrétise l'axe des rapidités en petite cellule de rapidité $[\theta, \theta + \delta\theta]$, qui contient $\Pi(\theta)\delta\theta$ rapidités. Avec ces petites tranches, la forme quadratique s'écrit :

$$\left. \frac{\delta^2 \mathcal{A}}{\delta \Pi^2} \right|_{\Pi^c} (\delta \Pi) \quad = \quad \sum_{a,b \mid \text{tranche}} \delta \Pi(\theta_a) \frac{\partial^2 \mathcal{A}}{\partial \delta \Pi(\theta_a) \partial \delta \Pi(\theta_b)} (\Pi^c) \delta \Pi(\theta_b).$$

Les fluctuations s'écrivent donc :

$$\begin{split} \langle \delta \Pi(\theta) \delta \Pi(\theta') \rangle &= \frac{\int d\delta \Pi \, \delta \Pi(\theta) \delta \Pi(\theta') \exp\left(-\frac{1}{2} \sum_{a,b \mid \text{tranche}} \delta \Pi(\theta_a) \frac{\partial^2 \mathcal{A}}{\partial \delta \Pi(\theta_a) \partial \delta \Pi(\theta_b)} (\Pi^c) \delta \Pi(\theta_b)\right)}{\int d\delta \Pi \exp\left(-\frac{1}{2} \sum_{a,b \mid \text{tranche}} \delta \Pi(\theta_a) \frac{\partial^2 \mathcal{A}}{\partial \delta \Pi(\theta_a) \partial \delta \Pi(\theta_b)} (\Pi^c) \delta \Pi(\theta_b)\right)} \\ &= \left(\mathbf{A}^{-1}\right)_{\theta,\theta'} \end{split}$$

La matrice hessienne $\mathbf{A}_{\theta,\theta'} \equiv \frac{\partial^2 \mathcal{A}}{\partial \delta \Pi(\theta) \partial \delta \Pi(\theta')} (\Pi^c)$, au point critique Π^c , s'écrit

$$\hat{A} = \hat{A}^{(0)} + \delta\theta\hat{V}$$

avec

$$\begin{array}{lcl} A_{\theta,\theta'}^{(0)} & = & \left(\frac{\left(\Pi^{c}/\Pi_{s}^{c}\right)^{-1}}{\Pi_{s}^{c}-\Pi^{c}}\right)(\theta)\delta\theta\delta_{\theta,\theta'}, \\ V_{\theta,\theta'} & = & \left\{-\left[\left(\frac{1}{\Pi_{s}^{c}-\Pi^{c}}\right)(\theta)+\left(\frac{1}{\Pi_{s}^{c}-\Pi^{c}}\right)(\theta')\right]\frac{\Delta(\theta'-\theta)}{2\pi}+\int d\theta''\left(\frac{\Pi^{c}/\Pi_{s}^{c}}{\Pi_{s}^{c}-\Pi^{c}}\right)(\theta'')\frac{\Delta(\theta''-\theta)}{2\pi}\frac{\Delta(\theta''-\theta')}{2\pi}\right\} \ \delta\theta \end{array}$$

Point clé n° 3. Donc une a l'ordre un en $\delta\theta(\hat{A}^{(0)})^{-1}\hat{V}$

$$\langle \delta \Pi(\theta) \delta \Pi(\theta') \rangle = ((\Pi_s^c - \Pi^c) \Pi^c / \Pi_s^c)(\theta) \delta_{\theta,\theta'} / \delta \theta + \mathscr{F}(\theta,\theta'),$$

avec

$$\begin{split} \mathscr{F}(\theta,\theta') &= \left[(\Pi_s^c - \Pi^c)(\theta) + (\Pi_s^c - \Pi^c)(\theta') \right] \frac{\Pi^c}{\Pi_s^c}(\theta) \frac{\Pi^c}{\Pi_s^c}(\theta') \frac{\Delta(\theta' - \theta)}{2\pi} \\ &- \left[(\Pi_s^c - \Pi^c)(\theta)(\Pi_s^c - \Pi^c)(\theta') \right] \frac{\Pi^c}{\Pi_s^c}(\theta) \frac{\Pi^c}{\Pi_s^c}(\theta') \int d\theta'' \left(\frac{\Pi^c/\Pi_s^c}{\Pi_s^c - \Pi^c} \right) (\theta'') \frac{\Delta(\theta'' - \theta)}{2\pi} \frac{\Delta(\theta'' - \theta')}{2\pi} \end{split}$$

- 6.2 Ordre 2 des corrections et rôle de l'entropie de Yang-Yang
- 6.3 Confrontation entre hydrodynamique classique et hydrodynamique généralisée