

anderson.rocha@ic.unicamp.br

http://www.ic.unicamp.br/~rocha

Reasoning for Complex Data (RECOD) Lab. Institute of Computing, Unicamp

Av. Albert Einstein, 1251 - Cidade Universitária CEP 13083-970 • Campinas/SP - Brasil

Identificação de Scanners e Impressoras

Organização

Organização

- Introdução
- Impressoras (Laser e Inkjet)
 - Funcionamento
 - Fraudes
 - Técnicas

- Scanners
 - Funcionamento
 - Técnicas
 - Resultados
- Conclusão
- Referências

Introdução

Introdução

- Motivação
 - Foram gastos US\$633M/ano em combate a pirataria nos anos de 1995-2001;
 - Validar cópias legais;
 - Falsificação de documentos ("scan-print");

Introdução

- Técnicas para identificação de impressoras e scanners [Chiang et al. 2009]
- Análise de ruído considerando as propriedades de captura unidimensionais e periódicas do scanner [Khanna et al. 2009]

- Características intrínsecas
 - Defeitos de fábricação (invisível ao olho humano)
- Características extrínsecas
 - Imprimir marca d'água

Pipeline de uma impressora

- Podemos inserir informação no documento, afim de usá-las como marca d'água;
- A primeira técnica é colocar informações no processo de interpretação dos comandos e conversão de cores;
 - Porém esse método é pouco utilizado, pois ele ocorre dentro do driver, e é fácil de desfazer.

- Outra técnica, é iserir essas marcas d'águas dentro do hardware da impressora;
 - Para fazer algum tipo de alteração, é preciso mexer no firmware da impressora.

Impressora Laser

- Electrophotographic printer
- Rolo magnetizado com tinta (tonner)
- Diodo retira a carga em certos pontos (forma a imagem a ser impressa)
- Folha passa pelo rolo e absorve a tinta

Impressora Laser

Funcionamento

© P. Chiang

Impressora Laser

- Como obter a "assinatura" de uma impressora Laser?
- Imperfeições nas engrenagens do sistema da impressara, geram um efeito periódico que pode ser explorado como uma assinatura;
- Esse efeito cria linhas (claras ou escuras) ao longo da impressão, e pode ser atribuído à uma única impressora.

- Três componentes principais
 - Cabeça de impressão
 - Cartucho
 - Mecanismo de avanço do papel

Funcionamento

© P. Chiang

- Funcionamento parecido com o do scanner
 - A cabeça move de um lado para o outro e o mecanismo de avanço do papel move o papel na direção perpendicular;
- Unidirecional X Bidirecional
 - Nas impressoras unidirecionais, a cabeça de impressão, libera tinta em um único sentido, já a bidirecional, em ambos;

Funcionamento

© P. Chiang

- A cabeça de impressão, possui pequenos furos, por onde sai a gota de tinta;
- Esse furos são localizados em duas linhas;
- Nas impressão bidirecional, existe sobreposição das gotas de tinta, pois o papel é movido de I/N, onde N é a largura da cabeça de impressão.

- Como obter a "assinatura" de uma impressora Inkjet?
- Imperfeições no mecanismo de engrenagens;
- Química da tinta;
- Erro no avanço do papel;
- Falhas na cabeça de impressão;
- Imperfeições devido a velocidade de impressão.

Imperfeições devido a velocidade de impressão.

© P. Chiang

- a) 15 inch/sec, left-to-right
- b) 45 inch/sec, left-to-right
- c) 45 inch/sec, right-to-left

- Vamos apresentar duas técnicas para atribuir um documento à uma impressora específica;
 - Inserção de pontos amarelos no documento;
 - Shift de linhas e caracteres;

- Nas impressoras do tipo *Inkjet*, é possível inserir uma matriz 15 X 8 pontos;
- Essa matriz é feita de pontos amarelos, que são praticamente invisíveis ao olho humano, quando na luz ambiente;
- Essa matriz armazena informações da impressora de origem, como:
 - Data e Número de Série.

- Porém, existe uma maneira muito simples de burlar essa técnica;
- Basta imprimir uma folha em branco em uma impressora colorida, afim de obter a matriz dela;
- E imprimir o documento na mesma folha, mas em uma impressora monocromática, pois ela não é capaz de imprimir a matriz.

- A segunda técnica, faz um shift de 1/600 de polegada em algumas linhas do documento;
- Esse shift é característico de cada impressora.
- Dessa forma, não é possível fazer ataques do tipo "scan-print";
- Mas, softwares de leitura de caracteres, podem quebrar essa técnica.

- Três componentes principais
 - Luz;
 - Espelhos e sensores;
 - Motor de passo.
- Utilizar os defeitos desses componentes para atribuição.

Funcionamento

© P. Chiang

Pipeline de um scanner

- A resolução nativa de um scanner é dada pela resolução do sensor (horizontal) e do motor de passo (vertical);
- Captura de imagens fora da resolução nativa, podem ser feitas de duas maneiras:
 - Sub-amostragem;
 - Amostragem normal, seguida de ajustes.

- Como obter a "assinatura" de um scanner?
- Similar as câmeras digitais, porém os resultados mostraram pouco acerto [Lukas et al. 2006];
- Três tipos de ruídos:
 - Dead pixels, pixel trap;
 - Ruído padrão;
 - Ruído aleatório.

Filtro de redução de ruído

$$I_{noise}^k = I^k - I_{denoised}^k$$

Com K imagens, podemos contruir um padrão de referência de um *scanner*

$$\widetilde{I}_{noise}^{array}(i,j) = \frac{1}{K} \sum_{k=1}^{K} I_{noise}^{k}(i,j);$$

$$1 \le i \le M$$
 e $1 \le j \le N$

Correlação entre um padrão de referência e a assinatura de um scanner

$$C(X,Y) = \frac{(X-\overline{X})\cdot(Y-\overline{Y})}{||X-\overline{X}||\cdot||Y-\overline{Y}||}$$

Pipeline da técnica

© N. Khanna

Pipeline da técnica

Média dos ruídos das linhas e colunas

$$I_{\text{noise}} = I - I_{\text{denoised}}$$

$$\widetilde{I}_{\text{noise}}^r(1,j) = \frac{1}{M} \sum_{i=1}^M I_{\text{noise}}(i,j); \quad 1 \le j \le N$$

$$\widetilde{I}_{\text{noise}}^c(i,1) = \frac{1}{N} \sum_{j=1}^N I_{\text{noise}}(i,j); \quad 1 \le i \le M.$$

Correlação das linhas e colunas

$$\rho_{\text{row}}(i) = \mathbf{C} \left(\widetilde{I}_{\text{noise}}^r, I_{\text{noise}}(i,.) \right)$$
$$\rho_{col}(j) = \mathbf{C} \left(\widetilde{I}_{\text{noise}}^c, I_{\text{noise}}(.,j) \right).$$

 \blacktriangleright É esperado que ρ_{row} seja maior que ρ_{col} por causa da periodiciosidade do sensor;

- A média, o desvio padrão, assimetria e a curtose de ρ_{row} e ρ_{col} são os 8 primeiros descritores;
- O desvio padrão, assimetria e a curtose de Inoise, row e Inoise, col formam 14 descritores;
- O último descritor é dado por:

$$f_{15} = \left(1 - \frac{\frac{1}{N} \sum_{j=1}^{N} \rho_{\text{col}}(j)}{\frac{1}{M} \sum_{i=1}^{M} \rho_{\text{row}}(i)}\right) * 100$$

- Ao final de vários filtros, o autor chega em um vetor de 204-D, descritores;
- Classificador SVM com vetor de 10-D;
 - As 10-D, são combinações lineares das 204-D inicias;

Scanners utilizados

	Marca / Modelo	Sensor	Resolução Nativa
Sı	Epson Perfetion 4490-Photo	CCD	4800 DPI
S ₂	HP ScanJet 6300c-I	CCD	1200 DPI
S ₃	HP ScanJet 6300c-2	CCD	1200 DPI
S ₄	HP ScanJet 8250	CCD	4800 DPI
S ₅	Mustek 1200 III Ep	CCD	1200 DPI
S ₆	Visoneer OneTouch 7300	CIS	1200 DPI
S ₇	Canon LiDE 25	CIS	1200 DPI
S ₈	Canon LiDE 70	CIS	1200 DPI
S ₉	OpticSlim 2420	CIS	1200 DPI
S ₁₀	Visoneer OneTouch 7100	CCD	1200 DPI
SII	Mustek ScanExpress A3	CCD	600 DPI

- Método de seleção dos scanners e imagens:
 - \bullet S₁, S₂, S₃, S₄, S₆, S₇ e S₉;
 - 40 Imagens por scanner;
 - Cortadas em imagens de 1024x768;
 - Total de 200 imagens por scanner.

Corte

В0	ВІ	B2	B3	B4
B5	B6	B7	B8	B9
•••	•••			

Exemplos de Imagens

© N. Khanna

▶ Subimagens - Classes separadas JPEG (Q=70)

								Pred	licted						
		S_1^1	S_1^2	S_2^1	S_{2}^{2}	S_3^1	S_{3}^{2}	S_4^1	S_4^2	S_6^1	S_{6}^{2}	S_7^1	S_7^2	S_9^1	S_9^2
	S_1^1	88.8	10.3	0	0.3	0.1	0.0	0.1	0	0	0	0.1	0.3	0	0.0
	S_1^2	22.8	76.1	0	0	0.0	0.3	0	0	0	0	0.0	0.7	0	0
	S_2^1	0	0	64.8	24.9	5.5	3.6	0.0	0.1	0.2	0	0.8	0	0.1	0
	S_2^2	0.3	0	20.2	57.9	7.4	12.2	0.5	0	0.2	0	0.3	0.5	0.5	0
	S_3^1	0.7	0.1	2.2	7.2	60.0	26.5	0	0.3	1.3	0.5	0.0	0	1.0	0.2
	S_3^2	0.4	0.0	4.9	11.2	18.7	60.1	0.0	0	0.2	0	1.3	0.5	1.7	0.8
Actual	S_4^1	0.5	0	0	0	0	0	88.5	11.0	0	0	0	0	0	0
	S_4^2	0	0	0.0	0	0.1	0	8.9	91.0	0	0	0	0	0	0
	S_6^1	0	0	0	0.1	1.3	0.2	0	0	73.2	20.2	0.3	0	3.8	0.9
	S_6^2	0	0	0	0.1	0.2	0.3	0	0	31.6	64.5	0.8	0.3	1.4	0.9
	S_7^1	0	0	0.7	0.1	0.2	1.2	0	0	0.1	0	72.2	22.0	1.5	2.1
	S_7^2	1.0	0.7	0	0.3	0.2	2.0	0	0	0	0	20.0	71.9	0.3	3.4
	S_9^1	0	0	0.0	0.1	0.7	0.9	0.0	0	3.5	1.9	1.0	0.5	72.3	19.1
	S_9^2	0	0	0	0	0.3	1.2	0	0	2.0	1.7	1.8	2.1	23.0	67.9

Subimagens - Classe única JPEG (Q=70)

		Predicted									
		S_1	S_2	S_3	S_4	S_6	S_7	S_{9}			
	S_1	99.2	0.2	0.2	0.0	0	0.4	0			
	S_2	0.1	83.3	15.6	0.3	0.0	0.5	0.1			
30	S_3	0.7	10.1	85.3	0.2	1.4	0.8	1.6			
Actual	S_4	0.5	0	0	99.5	0	0	0			
	S_6	0	0.3	0.9	0	93.9	0.6	4.2			
	S_7	1.1	0.7	1.1	0	0.0	92.9	4.2			
	S_9	0	0	1.8	0	5.2	3.0	90.0			

Subimagens - Classe única TIFF (Resolução não nativa)

			Predicted										
		S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8	S_9	S_{10}	S_{11}	
	S_1	100	0	0	0	0	0	0	0	0	0	0	
	S_2	0	93.2	6.8	0	0	0	0	0	0	0	0	
	S_3	0	10.1	89.9	0	0	0	0	0	0	0	0	
	S_4	0	0	0	100	0	0	0	0	0	0	0	
	S_5	0	0	0	0	100	0	0	0	0	0	0	
Actual	S_6	0	0	0	0	0	100	0	0	0	0	0	
	S_7	0	0	0	0	0	0	100	0	0	0	0	
	S_8	0	0	0	0	0	0	0	100	0	0	0	
	S_9	0	0	0	0	0	0	0	0	100	0	0	
	S_{10}	0.3	0	0	0	0	0	0	0.2	0	99.5	0	
	S_{11}	0	0	0	0	0	0	0	0	0	0	100	

Conclusões

Conclusão

- Modelo para impressoras se baseia na maioria das vezes nos defeitos mecânicos do equipamento;
- É possível distiguir entre dois scanners da mesma marca/modelo;
- Método é robusto tanto para imagens scaneadas em resolução nativa quato não nativa;

Referências

Referências

- 1. **Bulan, Orhan, Junwen Mao e Gaurav Sharma**: Geometric distortion signatures for printer identification. Acoustics, Speech, and Signal Processing, IEEE International Conference on, 0:1401–1404, 2009.
- 2. Chiang, Pei ju, Gazi N. Ali, Aravind K. Mikkilineni, Edward J. Delp, Jan P. Allebach e George T. c. Chiu: Extrinsic signatures embedding using exposure modulation for information hiding and secure printing in electrophotographic devices. In Proceedings of the IS&T's NIP20: International Conference on Digital Printing Technologies, páginas 295–300, 2004.
- 3. **Gou, H., A. Swaminathan e M. Wu**: Robust scanner identification based on noise features. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume 6505 de Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, fevereiro 2007.
- 4. **Kee, Eric e Hany Farid**: Printer profiling for forensics and ballistics. In MM&Sec '08: Proceedings of the 10th ACM workshop on Multimedia and security, páginas 3–10, New York, NY, USA, 2008. ACM, ISBN 978-1-60558-058-6.
- 5. **Khanna, N., A.K. Mikkilineni e E.J. Delp**: Scanner Identification Using Feature-Based Processing and Analysis. Information Forensics and Security, IEEE Transactions on, 4(1):123 –139, mar. 2009, ISSN 1556-6013.

Obrigado!