

GraphPrompt: Unifying Pre-Training and Downstream Tasks for Graph Neural Networks

Zemin Liu^{1*}, Xingtong Yu^{2*}, Yuan Fang^{3†}, Xinming Zhang ^{2†}

National University of Singapore, Singapore
 University of Science and Technology of China, China
 Singapore Management University, Singapore

In Proceeding of THE WEB CONFERENCE, APRIL 30 - MAY 4, 2023

^{*} Co-first author

[†] Corresponding author

- 1. Motivation
- 2.Challenges
- 3 .Proposed Model: GraphPrompt
- 4 .Experiment
- 5. Conclusions

Motivation

Problem 1:

 task-specific labeled data is often difficult or costly to obtain

Problem 2:

- pre-training step aims to preserve various intrinsic graph properties
- fine-tuning step aims to reduce the downstream task loss
- [1] Will Hamilton et.al. 2017. Inductive representation learning on large graphs. NIPS.
- [2] Thomas N Kipf and Max Welling. 2017. Semi-supervised classification with graph convolutional networks. ICLR.
- [3] Weihua Hu et.al. 2020. Strategies for Pre-training Graph Neural Networks. ICLR.
- [4] Ziniu Hu et.al. 2020. GPT-GNN: Generative pre-training of graph neural networks. KDD.
- [5] Pengfei Liu et.al. 2021. Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing. ACM Computing Survey.

GNNs' performance heavily depends on labeled data [1,2]

Scarce of labeled data

Pre-Training+Finetuning [3,4]

Gap between pre-train and downstream tasks[5]

Pre-Training+Prompt

- 1. Motivation
- 2.Challenges
- 3 .Proposed Model: GraphPrompt
- 4 .Experiment
- 5. Conclusions

Challenges

Challenges

- Different downstream tasks often have different objectives[6]
- Distinction between various downstream tasks

C1: How to unify pre-training with various downstream tasks on graph?
C2: How to design prompts on graphs?[7]

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. NeurIPS.

[7] Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang.2022. GPPT: Graph Pre-training and Prompt Tuning to Generalize Graph Neural Networks. SIGKDD

Figure 1: Illustration of the motivation. (a) Pre-training on graphs. (b/c) Downstream node/graph classification.

- 1. Motivation
- 2.Challenges
- 3 .Proposed Model: GraphPrompt
- 4 .Experiment
- 5. Conclusions

Proposed Method: GraphPrompt

Unified task template

Link Prediction

$$sim(\mathbf{s}_v, \mathbf{s}_a) > sim(\mathbf{s}_v, \mathbf{s}_b)$$

Node Classification(NC)

$$\tilde{\mathbf{s}}_c = \frac{1}{k} \sum_{(v_i, \ell_i) \in D, \ell_i = c} \mathbf{s}_{v_i} \qquad \qquad G_1 \quad \text{for } g_1$$

$$\ell_j = \arg\max_{c \in C} \sin(\mathbf{s}_{v_j}, \tilde{\mathbf{s}}_c)$$

Graph

Classification(GC)

$$\tilde{\mathbf{s}}_c = \frac{1}{k} \sum_{(G_i, L_i) \in \mathcal{D}, L_i = c} \mathbf{s}_{G_i}$$

 $L_j = \arg\max_{c \in C} \operatorname{sim}(\mathbf{s}_{G_j}, \tilde{\mathbf{s}}_c)$

GNN Encoder (v₀) (v₁) (v₂) (v₃) (v₄) (v₅)

$\delta = 1$ READOUT Stanks Stank

Learnable node

(c) Prompting for node classification (left) or graph classification (right)

Learnable graph

Figure 2: Overall framework of GRAPHPROMPT.

mean embedding of (sub)graphs
class label

A Notation for NC and GC

$$y = \arg \max_{c \in Y} \operatorname{sim}(\mathbf{s}_x, \tilde{\mathbf{s}}_c)$$
$$\mathbf{s}_x = \operatorname{ReadOut}(\{\mathbf{h}_v : v \in V(S_x)\})$$

Pre-Training Objective

$$\mathcal{L}_{\text{pre}}(\Theta) = -\sum_{(v,a,b)\in\mathcal{T}_{\text{pre}}} \ln \frac{\exp(\text{sim}(\mathbf{s}_v, \mathbf{s}_a)/\tau)}{\sum_{u\in\{a,b\}} \exp(\text{sim}(\mathbf{s}_v, \mathbf{s}_u)/\tau)}$$

Prompt Design

$$\mathbf{s}_{t,x} = \text{ReadOut}(\{\mathbf{p}_t \odot \mathbf{h}_v : v \in V(S_x)\})$$

- 1. Motivation
- 2.Challenges
- 3 .Proposed Model: GraphPrompt
- 4 .Experiment
- 5. Conclusions

Experiment

Node Classification and Graph Classification

Table 2: Accuracy evaluation on node classification.

All tabular results are in percent, with best bolded and runner-up underlined.

Methods	Flickr 50-shot	PROTEINS 1-shot	ENZYMES 1-shot
GCN	9.22 ± 9.49	59.60 ± 12.44	61.49 ± 12.87
GRAPHSAGE	13.52 ± 11.28	59.12 ± 12.14	61.81 ± 13.19
GAT	16.02 ± 12.72	58.14 ± 12.05	60.77 ± 13.21
GIN	10.18 ± 5.41	60.53 ± 12.19	63.81 ± 11.28
DGI	17.71 ± 1.09	54.92 ± 18.46	63.33 ± 18.13
GraphCL	18.37 ± 1.72	52.00 ± 15.83	58.73 ± 16.47
GPPT	18.95 ± 1.92	50.83 ± 16.56	53.79 ± 17.46
GraphPrompt	20.21 ± 11.52	63.03 ± 12.14	67.04 ± 11.48

Table 3: Accuracy evaluation on graph classification.

Methods	PROTEINS 5-shot	COX2 5-shot	ENZYMES 5-shot	BZR 5-shot
GCN	54.87 ± 11.20	51.37 ± 11.06	20.37 ± 5.24	56.16 ± 11.07
GRAPHSAGE	52.99 ± 10.57	52.87 ± 11.46	18.31 ± 6.22	57.23 ± 10.95
GAT	48.78 ± 18.46	51.20 ± 27.93	15.90 ± 4.13	53.19 ± 20.61
GIN	58.17 ± 8.58	51.89 ± 8.71	20.34 ± 5.01	57.45 ± 10.54
InfoGraph	54.12 ± 8.20	54.04 ± 9.45	20.90 ± 3.32	57.57 ± 9.93
GraphCL	56.38 ± 7.24	55.40 ± 12.04	$\underline{28.11} \pm 4.00$	59.22 ± 7.42
GraphPrompt	64.42 ± 4.37	59.21 ± 6.82	31.45 ± 4.32	61.63 ± 7.68

- GraphPrompt outperforms all baselines for both node classification task and graph classification task, which implies
 - GraphPrompt is able to narrow the gap between pre-training task and downstream tasks.
 - GraphPrompt could effectively derive the downstream tasks to exploit the pre-trained model in taskspecific manner.

Experiment

Figure 3: Impact of shots on few-shot node classification.

Figure 4: Impact of shots on few-shot graph classification.

- GraphPrompt consistently outperforms the baselines especially with lower shots
- For node classification task, 10 shot is sufficient for semi-supervised learning since graph is small
- For graph classification task, GraphPrompt can be surpassed by some baselines when given more shots

- 1. Motivation
- 2.Challenges
- 3 .Proposed Model: GraphPrompt
- 4 .Experiment
- 5. Conclusions

Conclusions

Problem: Pretraining-Prompting

- Unify pre-training task and downstream tasks
- Attain task-specific optima

Proposed-Model: GraphPrompt

- Unify upstream and downstream tasks via subgraph similarity
- Using prompt vector to change the feature weights of each dimension of the node embedding to guide subgraph readout

Experiment

 GraphPrompt outperforms all baselines for both node classification task and graph classification task

Thanks!

Paper, data & code available at https://xingtongyu.netlify.app/

Zemin Liu*, Xingtong Yu*, Yuan Fang†, Xinming Zhang†

GraphPrompt: Unifying Pre-Training and Downstream Tasks for Graph Neural Networks

n Proceeding of THE WEB CONFERENCE, APRIL 30 - MAY 4, 2023