$9_{32} (K9a_6)$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 216472320u^{28} - 196425840u^{27} + \dots + 2595371149b - 196454684, \\ -230172u^{28} - 27804388u^{27} + \dots + 370767307a - 679741065, \ u^{29} - u^{28} + \dots + 3u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 29 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle 2.16 \times 10^8 u^{28} - 1.96 \times 10^8 u^{27} + \dots + 2.60 \times 10^9 b - 1.96 \times 10^8, \ -2.30 \times \\ 10^5 u^{28} - 2.78 \times 10^7 u^{27} + \dots + 3.71 \times 10^8 a - 6.80 \times 10^8, \ u^{29} - u^{28} + \dots + 3u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.000620799u^{28} + 0.0749915u^{27} + \cdots - 3.83846u + 1.83334 \\ -0.0834071u^{28} + 0.0756831u^{27} + \cdots - 2.93896u + 0.0756943 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.00281892u^{28} - 0.833272u^{27} + \cdots - 4.55210u - 0.116626 \\ 0.833292u^{28} - 0.836091u^{27} + \cdots - 3.22782u - 0.836111 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.00528313u^{28} + 0.821590u^{27} + \cdots - 0.672045u + 1.83325 \\ -0.0166708u^{28} + 0.0163909u^{27} + \cdots - 0.722782u + 0.816389 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.00446172u^{28} + 0.730031u^{27} + \cdots - 2.03460u + 2.48337 \\ 0.0666831u^{28} - 0.0655635u^{27} + \cdots - 1.10887u + 0.734444 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-\frac{8357107928}{2595371149}u^{28} + \frac{6279939276}{2595371149}u^{27} + \dots + \frac{20588201632}{2595371149}u + \frac{13962231674}{2595371149}u$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{29} - 5u^{28} + \dots + u - 1$
c_2, c_5	$u^{29} + u^{28} + \dots + 5u - 1$
c_3	$u^{29} - u^{28} + \dots - u - 19$
c_4	$u^{29} + u^{28} + \dots + 21u - 11$
c_{6}, c_{9}	$u^{29} + u^{28} + \dots + 3u - 1$
<i>C</i> ₇	$u^{29} + 3u^{28} + \dots + u + 1$
c ₈	$u^{29} + 11u^{28} + \dots + 3u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{29} + 3y^{28} + \dots - 5y - 1$
c_2, c_5	$y^{29} - 21y^{28} + \dots - 5y - 1$
c_3	$y^{29} + 15y^{28} + \dots + 1103y - 361$
C_4	$y^{29} + 31y^{28} + \dots - 1869y - 121$
c_{6}, c_{9}	$y^{29} + 11y^{28} + \dots + 3y - 1$
	$y^{29} - 5y^{28} + \dots + 3y - 1$
<i>c</i> ₈	$y^{29} + 15y^{28} + \dots + 175y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.647818 + 0.782212I		
a = 1.174800 + 0.131909I	4.48635 + 0.55125I	10.94303 - 0.19758I
b = 1.35368 - 1.53216I		
u = 0.647818 - 0.782212I		
a = 1.174800 - 0.131909I	4.48635 - 0.55125I	10.94303 + 0.19758I
b = 1.35368 + 1.53216I		
u = -0.559219 + 0.861588I		
a = -2.56606 + 1.18824I	1.99105 - 2.23064I	-15.0558 - 8.8774I
b = -2.19707 + 1.46012I		
u = -0.559219 - 0.861588I		
a = -2.56606 - 1.18824I	1.99105 + 2.23064I	-15.0558 + 8.8774I
b = -2.19707 - 1.46012I		
u = 0.099472 + 1.040710I		
a = -0.040185 - 0.557055I	-3.62029 - 0.98610I	-3.43918 + 1.15236I
b = -0.559691 + 0.371807I		
u = 0.099472 - 1.040710I		
a = -0.040185 + 0.557055I	-3.62029 + 0.98610I	-3.43918 - 1.15236I
b = -0.559691 - 0.371807I		
u = 0.923879 + 0.554080I		
a = -1.061880 + 0.915307I	5.89129 - 7.10658I	7.40494 + 4.09137I
b = 0.170095 + 1.380090I		
u = 0.923879 - 0.554080I		
a = -1.061880 - 0.915307I	5.89129 + 7.10658I	7.40494 - 4.09137I
b = 0.170095 - 1.380090I		
u = 0.644129 + 0.902940I		
a = -1.03409 + 1.43901I	4.11625 + 4.48763I	9.60010 - 6.67821I
b = 0.565379 + 1.269170I		
u = 0.644129 - 0.902940I		
a = -1.03409 - 1.43901I	4.11625 - 4.48763I	9.60010 + 6.67821I
b = 0.565379 - 1.269170I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.528836 + 0.980105I		
a = -0.540279 - 0.869458I	-0.15788 - 2.80514I	1.82209 + 1.85203I
b = -0.347922 - 1.350220I		
u = -0.528836 - 0.980105I		
a = -0.540279 + 0.869458I	-0.15788 + 2.80514I	1.82209 - 1.85203I
b = -0.347922 + 1.350220I		
u = -1.034250 + 0.485851I		
a = -0.549331 - 0.039451I	5.14963 - 1.80223I	13.69706 + 3.37820I
b = -0.348963 - 0.675392I		
u = -1.034250 - 0.485851I		
a = -0.549331 + 0.039451I	5.14963 + 1.80223I	13.69706 - 3.37820I
b = -0.348963 + 0.675392I		
u = 0.641135 + 0.564919I		
a = 1.42824 - 0.88660I	0.91572 - 2.15286I	5.11617 + 3.69479I
b = -0.129556 - 1.400390I		
u = 0.641135 - 0.564919I		
a = 1.42824 + 0.88660I	0.91572 + 2.15286I	5.11617 - 3.69479I
b = -0.129556 + 1.400390I		
u = -0.447738 + 0.689000I		
a = 1.79794 - 0.28016I	0.78940 - 1.37762I	5.11267 + 4.75149I
b = 1.170450 + 0.106145I		
u = -0.447738 - 0.689000I		
a = 1.79794 + 0.28016I	0.78940 + 1.37762I	5.11267 - 4.75149I
b = 1.170450 - 0.106145I		
u = 0.618739 + 1.016340I		
a = -1.74109 + 0.57301I	-0.38505 + 7.12556I	2.65443 - 8.10425I
b = -1.33104 + 1.93207I		
u = 0.618739 - 1.016340I		
a = -1.74109 - 0.57301I	-0.38505 - 7.12556I	2.65443 + 8.10425I
b = -1.33104 - 1.93207I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.111222 + 1.267020I		
a = -0.303660 + 0.158824I	-1.26594 - 5.18635I	1.49328 + 7.03100I
b = 0.107002 - 0.499750I		
u = -0.111222 - 1.267020I		
a = -0.303660 - 0.158824I	-1.26594 + 5.18635I	1.49328 - 7.03100I
b = 0.107002 + 0.499750I		
u = 0.708050 + 1.105240I		
a = 1.56079 - 0.79326I	4.19521 + 13.09990I	5.01719 - 8.12211I
b = 1.27636 - 1.94848I		
u = 0.708050 - 1.105240I		
a = 1.56079 + 0.79326I	4.19521 - 13.09990I	5.01719 + 8.12211I
b = 1.27636 + 1.94848I		
u = -0.770179 + 1.141350I		
a = 0.718662 + 0.419411I	3.17430 - 4.69569I	8.95566 + 8.13169I
b = 0.461012 + 0.914365I		
u = -0.770179 - 1.141350I		
a = 0.718662 - 0.419411I	3.17430 + 4.69569I	8.95566 - 8.13169I
b = 0.461012 - 0.914365I		
u = -0.195750 + 0.569252I		
a = 1.95836 - 0.88135I	0.70687 - 1.36069I	4.42210 + 4.47976I
b = 0.778642 - 0.497191I		
u = -0.195750 - 0.569252I		
a = 1.95836 + 0.88135I	0.70687 + 1.36069I	4.42210 - 4.47976I
b = 0.778642 + 0.497191I		
u = -0.272051		
a = 3.39557	2.30899	2.51260
b = 1.06327		

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{29} - 5u^{28} + \dots + u - 1$
c_2, c_5	$u^{29} + u^{28} + \dots + 5u - 1$
c_3	$u^{29} - u^{28} + \dots - u - 19$
c_4	$u^{29} + u^{28} + \dots + 21u - 11$
c_6,c_9	$u^{29} + u^{28} + \dots + 3u - 1$
c_7	$u^{29} + 3u^{28} + \dots + u + 1$
c ₈	$u^{29} + 11u^{28} + \dots + 3u - 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{29} + 3y^{28} + \dots - 5y - 1$
c_2, c_5	$y^{29} - 21y^{28} + \dots - 5y - 1$
c_3	$y^{29} + 15y^{28} + \dots + 1103y - 361$
c_4	$y^{29} + 31y^{28} + \dots - 1869y - 121$
c_{6}, c_{9}	$y^{29} + 11y^{28} + \dots + 3y - 1$
c_7	$y^{29} - 5y^{28} + \dots + 3y - 1$
c ₈	$y^{29} + 15y^{28} + \dots + 175y - 1$