MODULE 1 / UNIT 9 HIDDEN MARKOV MODELS

Outline

- Graphical models
- Markov process
- Hidden Markov Models (HMM)
- Forward-backward algorithm
- Viterbi algorithm

Graphical Models 101

- Marriage between probability theory and graph theory
- An effective tool to represent complex structure of dependence/independence between random variable
- Vertex: a random variable
- Edge: dependency between random variables

An example graphical model


```
Is H \perp P? (marginal independence)
Is H \perp P \mid S? (conditional independence)
```

An example probability distribution

	Н	Pr(<i>H</i>)
0	Low	0.3
1	High	0.7

S			Н	Pr(<i>S H</i>)
0	Cloudy	0	Low	0.7
1	Sunny	0	Low	0.3
0	Cloudy	1	High	0.1
1	Sunny	1	High	0.9

	P		S	Pr(<i>P S</i>)
0	Absent	0	Cloudy	0.5
1	Present	0	Cloudy	0.5
0	Absent	1	Sunny	0.1
1	Present	1	Sunny	0.9

The full joint distribution

	Н	Pr(<i>H</i>)
0	Low	0.3
1	High	0.7

Н	S	P	Pr(<i>H,S,P</i>)
0	0	0	0.105
0	0	1	0.105
0	1	0	0.009
0	1	1	0.081
1	0	0	0.035
1	0	1	0.035
1	1	0	0.063
1	1	1	0.567

	S		Н	Pr(<i>S H</i>)
0	Cloudy	0	Low	0.7
1	High	0	Low	0.3
0	Cloudy	1	High	0.1
1	High	1	High	0.9

	P		S	Pr(<i>P S</i>)
0	Absent	0	Cloudy	0.5
1	Present	0	Cloudy	0.5
0	Absent	1	Sunny	0.1
1	Present	1	Sunny	0.9

Conditional distribution

Is $H \perp P \mid S$?

Н	P	S	Pr(<i>H,P S</i>)
0	0	0	0.3750
0	1	0	0.3750
1	0	0	0.1250
1	1	0	0.1250
0	0	1	0.0125
0	1	1	0.1125
1	0	1	0.0875
1	1	1	0.7875

	Н		S	Pr(<i>H S</i>)
0	Low	0	Cloudy	0.750
1	High	0	Cloudy	0.250
0	Low	1	Sunny	0.125
1	High	1	Sunny	0.875

	P		S	Pr(<i>P S</i>)
0	Absent	0	Cloudy	0.5
1	Present	0	Cloudy	0.5
0	Absent	1	Sunny	0.1
1	Present	1	Sunny	0.9

H and P are conditionally independent given S

- H and P does not have direct path in the graph
- All paths from H to P are connected through S
- In such cases, conditioning on S separates H and P

More conditional independence

Pr(A, C, D, E|B) = Pr(A|B) Pr(C|B) Pr(D|B) Pr(E|B)

Markov blanket

 Markov blanket ∂A for node A is a set of nodes composed of A's parents, children, and the other parents of its children.

 Fact : Node A is conditionally independent given its Markov blanket ∂A.

$$A \perp (U - A - \partial A) \mid \partial A$$

https://en.wikipedia.org/wiki/Markov_blanket

Markov process

Markov process: mathematical representation

$$\pi = \left(egin{array}{ll} \Pr(q_1 = S_1 = {\sf Sunny}) \ \Pr(q_1 = S_2 = {\sf Cloudy}) \ \Pr(q_1 = S_3 = {\sf Rainy}) \end{array}
ight) = \left(egin{array}{ll} 0.7 \ 0.2 \ 0.1 \end{array}
ight)$$
 $A_{ij} = \Pr(q_{t+1} = S_j | q_t = S_i)$
 $A = \left(egin{array}{ll} 0.5 & 0.3 & 0.2 \ 0.4 & 0.3 & 0.3 \ 0.1 & 0.5 & 0.4 \end{array}
ight)$

Markov process: example questions

What is the chance of rain in day 2?

• If it rains today, what is the chance of rain on the day after tomorrow?

What is the stationary distribution when T

Markov process: example questions

What is the chance of rain in day 2?

$$Pr(q_2 = S_3) = (A^T \pi)_3 = 0.24$$

If it rains today, what is the chance of rain on the day

after tomorrow?
$$\Pr(q_3 = S_3 | q_1 = S_3) = \left[(A^T)^2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right]_3 = 0.33$$

What is the stationary distribution when t is very large?

$$\mathbf{p} = A^T \mathbf{p}$$
 $p = (0.346, 0.359, 0.295)^T$

Markov process dependencies

If it rains today, what is the chance of rain on the day

after tomorrow?
$$\Pr(q_3 = S_3 | q_1 = S_3) = \left[(A^T)^2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right]_3 = 0.33$$

 If it has rained for the past 3 days in a row, what is the chance of rain on the day after tomorrow?

Markov process dependencies

• If it rains today, what is the chance of rain on the day after tomorrow?

Pr
$$(q_3 = S_3 | q_1 = S_3) = \begin{bmatrix} (A^T)^2 & 0 \\ 0 \\ 1 \end{bmatrix}_3 = 0.33$$

• If it has rained for the past 3 days in a row, what is the chance of rain on the day after tomorrow?

$$\Pr(q_5 = S_3 | q_1 = q_2 = q_3 = S_3) = \Pr(q_5 = S_3 | q_3 = S_3) = 0.33$$

Hidden Markov Models (HMMs)

 A graphical model composed of hidden states and observed data.

The hidden states follow a Markov process

 The distribution of observed data depends only on the hidden state.

An example of HMM

Hidden states:

- HIGH
- LOW

Observed data

- Sunny
- Cloudy
- Rainy

Mathematical representation of the example

• States
$$S = \{S_1, S_2\} = (\mathsf{HIGH}, \mathsf{LOW})$$

- Observed Data $O = \{O_1, O_2, O_3\} = (SUNNY, CLOUDY, RAINY)$
- Initial States $\pi_i = \Pr(q_1 = S_i)$, $\pi = \{0.7, 0.3\}$
- Transition $A_{ij} = \Pr(q_{t+1} = S_j | q_t = S_i)$

$$A = \left(\begin{array}{cc} 0.8 & 0.2\\ 0.4 & 0.6 \end{array}\right)$$

• Emission $B_{ij}=b_{q_t}(o_t)=b_{S_i}(O_j)=\Pr(o_t=O_j|q_t=S_i)$

$$B = \left(\begin{array}{ccc} 0.88 & 0.10 & 0.02 \\ 0.10 & 0.60 & 0.30 \end{array}\right)$$

Marginal probabilities

What is the chance of rain in the day 4?

0.669X0,88

Conditional probabilities

• If the observation was (SUNNY, SUNNY, CLOUDY, RAINY, RAINY) = $(O_1, O_1, O_2, O_3, O_3)$ from day 1 to day 5, what is the distribution of the hidden states on each day?

$$\Pr(q_i|o_1, o_2, o_3, o_4, o_5; \lambda = (\pi, A, B))$$

$$(1 \le i \le 5)$$

Most likely states

If the observation was
 (SUNNY, SUNNY, CLOUDY, RAINY, RAINY) = (O₁, O₁, O₂, O₃, O₃)
 from day 1 to day 5, what is the most likely combinations of
 the hidden states?

$$\arg \max_{(q_1,...,q_5)} \Pr(q_1,...,q_5|o_1,...,o_5; \lambda = (\pi, A, B))$$

Finding MLE states

Enumerating a possible state

Enumerating all possible states

q ₁₁₁	q_2	q_3	Pr(q)	Pr(o ₁ q ₁)	Pr(o ₂ q ₂)	Pr(o ₃ q ₃)	Pr(q,o)
Н	Н	پره H کا	448	.88	.02	.10	.0008
Н	Н	L X	£112	.88	.02	.60	.0012
Н	L	H a >X	0.2.056	.88	.30	.10	.0015
н	L	L	.084	.88	.30	.60	.0133
L	Н	Н	.096	.10	.02	.10	<.0001
L	Н	L	.024	.10	.02	.60	<.0001
L	L	Н	.072	.10	.30	.10	.0002
L	L	L	.108	.10	.30	.60	.0019

Brute-force calculation of MLE states

 Enumerating all possible combination of states takes O(2^T).

Is this reasonable fast or too slow? Why?

Is there a way to reduce the time complexity? How?

Naïve calculation of the conditional probabilities

$$\Pr(q_{t} = S_{i} | \boldsymbol{o}; \lambda) = \underbrace{\frac{\Pr(q_{t} = S_{i}, \boldsymbol{o}; \lambda)}{\Pr(\boldsymbol{o}; \lambda)}}_{\Pr(\boldsymbol{o}; \lambda)}$$

$$= \underbrace{\frac{\sum_{\boldsymbol{q}, \boldsymbol{l}} \Pr(\boldsymbol{o} | \boldsymbol{q}_{-t}, q_{t} = S_{i}; \lambda)}{\sum_{x \in \{S_{1}, S_{2}\}} \sum_{\boldsymbol{q}, \boldsymbol{l}} \Pr(\boldsymbol{o} | \boldsymbol{q}_{-t}, q_{t} = x; \lambda)}}_{\Pr(\boldsymbol{o} | \boldsymbol{q}_{-t}, q_{t} = x; \lambda)}$$

What is the time complexity?

Naïve calculation of the conditional probabilities

$$Pr(q_t = S_i | \boldsymbol{o}; \lambda) = \frac{Pr(q_t = S_i, \boldsymbol{o}; \lambda)}{Pr(\boldsymbol{o}; \lambda)}$$

$$= \frac{\sum_{\boldsymbol{q} \neq i} Pr(\boldsymbol{o} | \boldsymbol{q}_{-t}, q_t = S_i; \lambda)}{\sum_{x \in \{S_1, S_2\}} \sum_{\boldsymbol{q}_{-t}} Pr(\boldsymbol{o} | \boldsymbol{q}_{-t}, q_t = x; \lambda)}$$

What is the time complexity?

$$f(T) = \Theta(2^T)$$

Can we make it faster? How?

Dynamic programming solution

Dynamic programming solution

Dynamic programming solution

Identifying conditional independence

Viterbi algorithm

Calculating MLE

$$\delta_{t}(S_{i}) = \max_{\substack{(q_{1}, \dots, q_{t-1}) \\ j}} \Pr(q_{1}, \dots, q_{t-1}, q_{t} = S_{j}), o_{1}, \dots, o_{t-1}, o_{t})$$

$$= \max_{j} \left[\delta_{t-1}(S_{j}) \Pr(q_{t} = S_{i} | q_{t-1} = S_{j}) \Pr(o_{t} | q_{t} = S_{i}) \right]$$

$$\max_{j} \Pr(q, o) = \max_{j} \delta_{T}(S_{j})$$

Backtracking Viterbi (MLE) path

$$\phi_t(S_i) = \underset{j}{\operatorname{argmax}} \left[\delta_{t-1}(S_j) \Pr(q_t = S_i | q_{t-1} = S_j) \right]$$

Results from dynamic programming

A C++ implementation of Viterbi algorithm

```
double viterbiDP(IntegerVector& obs, NumericMatrix& transMtx,
                  NumericMatrix& emisMtx, NumericVector& pi,
                  int to int s,
                  NumericMatrix& delta, IntegerMatrix& phi) {
     if (delta(s, t) < 0) 
       if ( t == 0 ) delta(s, t) = (pi[s])
       else {
         int ns = (int)pi.size();
         for(int i=0; i < ns; ++i) {
           double v = viterbiDP(obs, transMtx, emisMtx, pi, t-1, i, delta, phi)
      transMtx(i, s):
           if (delta(s, t) < v) {
             delta(s, t) = v;
             phi(s, t) = i;
       delta(s, t) *= emisMtx(s, obs[t]);
     return delta(s,t);
Hyun
```

```
// [[Rcpp::export]]
List viterbiHMM(IntegerVector obs, NumericMatrix transMtx, NumericMatrix emisMtx, NumericVector pi) {
  int T = (int)obs.size();
  int ns = (int)pi.size();
 NumericMatrix delta(ns, T);
  IntegerMatrix phi(ns, T);
  std::fill(delta.begin(), delta.end(), -1);
  double ml = -1;
  IntegerVector paths(T);
  for(int i=0; i < ns; ++i) {
    double v = viterbiDP(obs, transMtx, emisMtx, pi T-1, i, delta, phi);
    if ( ml < v ) {
     ml = v;
     paths[T-1] = i;
  for(int i=T-1; i > 0; --i)
                                                               Rcpp interface
   paths[i-1] = phi(paths[i],i);
  return ( List::create(Named("ML") = ml,
                       Named("path") = paths,
                       Named("delta") = delta,
                       Named("phi") = phi
   );
```

An Example Result

```
A <- matrix(c(0.8, 0.2, 0.4, 0.6),2,2,byrow=TRUE)
B <- matrix(c(0.88, 0.10, 0.02, 0.10, 0.60, 0.30),2,3,byrow=TRUE)
pi <- c(0.7,0.3)
obs <- c(0,2,1) # SUNNY, SUNY, RAINY, RAINY, CLOUDY
viterbiHMM(obs, A, B, pi)
```

```
$ML
[1] 0.0133056
$path
[1] 0 1 1 HLL
$delta
     [,1] [,2] [,3]
[1,] 0.616 0.009856 0.0014784
[2,] 0.030 0.036960 0.0133056
$phi
    [,1] [,2] [,3]
[1,] 0 0 1
[2,] 0 0 1
```

Another example result

```
viterbiHMM(c(0,0,2,2,1), A, B, pi) S S R C
```

```
$ML
[1] 0.001686086
$path
[1] 0 0 1 1 1 HHLLL
$delta
     [,1] [,2] [,3] [,4]
[1,] 0.616 0.433664 0.006938624 0.0002081587 0.0001873428
[2,] 0.030 0.012320 0.026019840 0.0046835712 0.0016860856
$phi
    [,1] [,2] [,3] [,4] [,5]
[1,]
[2,]
```

Hy

```
NumericMatrix& emisMtx, NumericVector& pi,
Viterbi
                                           NumericMatrix& delta, IntegerMatrix& phi) {
                          int T = (int)obs.size();
Implemen-
                                                                     fill's the
                          int ns = (int)pi.size();
                          for(int i=0; i < ns; ++i)</pre>
tation
                            delta(i,0) = pi(i) * emisMtx(i, obs[0]);
                          for(int t=1; t < T; ++t) {</pre>
using , so /ve
                            for(int i=0; i < ns; ++i) {</pre>
                                                                            Solve
                              for(int j=0; j < ns; ++j)
                                double v = delta(j,t-1) * transMtx(j, i);
loopfin
                                if ( v > delta(i,t) ) {
                                  delta(i,t) = v;
                                  phi(i,t) = j;
                              delta(i,t) *= emisMtx(i, obs[t]);
                                                                       CN0026
                                             here just for
                          double ml = -1;
                          for(int i=0; i < ns; ++i) {
                            if ( delta(i,T-1) > ml ) ml = delta(i,T-1);
                          return ml;
Hyun Min Kang hmkang@umich.edu
```

double viterbiLoop(IntegerVector& obs, NumericMatrix& transMtx,

Further thoughts

- When the problem scales to larger *T* and *n*, do you see any precision problem in the current implementations of Viterbi algorithm? How can you solve it?
- What is the time complexity of the current Viterbi algorithm?
- If there are only two transition probabilities parameters, diagonal (θ) and off-diagnoal $\left(\frac{1-\theta}{n-1}\right)$, can we reduce the time complexity?

Back to the conditional probability problem

• If the observation was (SUNNY, SUNNY, CLOUDY, RAINY, RAINY) = $(O_1, O_1, O_2, O_3, O_3)$ from day 1 to day 5, what is the distribution of the hidden

$$\Pr(q_i|o_1, o_2, o_3, o_4, o_5; \lambda = (\pi, A, B))$$

$$(1 \le i \le 5)$$

states on each day?

Identifying conditional independence

$$\Pr(q_t = S_i | \boldsymbol{o}; \lambda) = \frac{\Pr(q_t = S_i, \boldsymbol{o}; \lambda)}{\Pr(\boldsymbol{o}; \lambda)} = \frac{\Pr(q_t = S_i, \boldsymbol{o}; \lambda)}{\sum_j \Pr(q_t = S_j, \boldsymbol{o}; \lambda)}$$

Identifying conditional independence

$$\Pr(q_t = S_i | \boldsymbol{o}; \lambda) = \frac{\Pr(q_t = S_i, \boldsymbol{o}; \lambda)}{\Pr(\boldsymbol{o}; \lambda)} = \frac{\Pr(q_t = S_i, \boldsymbol{o}; \lambda)}{\sum_j \Pr(q_t = S_j, \boldsymbol{o}; \lambda)}$$

Forward and backward probabilities

- **Define** $o_{t-1}^- = (o_1, \dots, o_{t-1})$ $o_{t+1}^+ = (o_{t+1}, \dots, o_T)$
- We need to compute...

$$\Pr(q_t = S_i | \boldsymbol{o}; \lambda) = \frac{\Pr(q_t = S_i, \boldsymbol{o}; \lambda)}{\Pr(\boldsymbol{o}; \lambda)} = \frac{\Pr(q_t = S_i, \boldsymbol{o}; \lambda)}{\sum_j \Pr(q_t = S_j, \boldsymbol{o}; \lambda)}$$

• From the conditional independence..

$$\begin{aligned} \Pr(q_t, \boldsymbol{o}; \lambda) &= \Pr(q_t, \boldsymbol{o}_{t-1}^-, o_t, \boldsymbol{o}_{t+1}^+; \lambda) \\ &= \Pr(\boldsymbol{o}_{t+1}^+ | q_t; \lambda) \Pr(\boldsymbol{o}_{t-1}^- | q_t; \lambda) \Pr(o_t | q_t; \lambda) \Pr(q_t | \lambda) \\ &= \Pr(\boldsymbol{o}_{t+1}^+ | q_t; \lambda) \Pr(\boldsymbol{o}_{t-1}^-, o_t, q_t; \lambda) \\ &= \beta_t(q_t) \alpha_t(q_t) \end{aligned}$$

Forward algorithm for $\alpha_t(q_t)$

• Key idea : Separate out o_t , q_t to make a recursive formula

$$(o_t, q_t) \perp o_{t-1}^- \mid q_{t-1}$$

$$\alpha_{t}(S_{i}) = \Pr(\boldsymbol{o}_{t-1}^{-}, o_{t}, q_{t} = S_{i}; \lambda)$$

$$= \sum_{j} \Pr(\boldsymbol{o}_{t-1}^{-}, o_{t}, q_{t} = S_{i}, q_{t-1} = S_{j}; \lambda)$$

$$= \sum_{j} \Pr(\boldsymbol{o}_{t-1}^{-}, q_{t-1} = S_{j}; \lambda) \Pr(q_{t} = S_{i} | q_{t-1} = S_{j}; \lambda) \Pr(o_{t} | q_{t} = S_{i}; \lambda)$$

$$= \sum_{j} \alpha_{t-1}(S_{j}) A_{ji} B_{io_{t}}$$

Loopy implementation of forward algorithm

```
void forwardLoop(IntegerVector& obs, NumericMatrix& transMtx,
               NumericMatrix& emisMtx, NumericVector& pi,
               NumericMatrix& alpha) {
  int T = (int)obs.size();
  int ns = (int)pi.size();
  for(int i=0; i < ns; ++i)
    alpha(i,0) = pi(i) * emisMtx(i, obs[0]);
  for(int t=1; t < T; ++t) {
    for(int i=0; i < ns; ++i) {
      alpha(i,t) = 0;
      for(int j=0; j < ns; ++j)</pre>
        alpha(i,t) += (alpha(j,t-1) * transMtx(j,i));
      alpha(i,t) *= emisMtx(i, obs[t]); // why did I do this?
```

Backward algorithm for $\beta_t(q_t)$

• Key idea : Separate out o_{t+1} , q_t to make a recursive formula

$$o_{t+1} \perp o_{t+2}^+ \mid q_{t+1}$$

$$\beta_{t}(S_{i}) = \Pr(\boldsymbol{o}_{t+1}^{+}|q_{t} = S_{i}; \lambda)$$

$$= \sum_{j} \Pr(\boldsymbol{o}_{t+2}^{+}, o_{t+1}, q_{t+1} = S_{j}|q_{t} = S_{i}; \lambda)$$

$$= \sum_{j} \Pr(\boldsymbol{o}_{t+2}^{+}|q_{t+1} = S_{j}; \lambda) \Pr(q_{t+1} = S_{j}|q_{t} = S_{i}; \lambda) \Pr(o_{t+1}|q_{t+1} = S_{j}; \lambda)$$

$$= \sum_{j} \beta_{t+1}(S_{j}) A_{ij} B_{j} o_{t+1}$$

Loopy implementation of backward algorithm

```
void backwardLoop(IntegerVector& obs, NumericMatrix& transMtx,
                NumericMatrix& emisMtx, NumericVector& pi,
                NumericMatrix& beta) {
  int T = (int)obs.size();
  int ns = (int)pi.size();
  for(int i=0; i < ns; ++i)</pre>
    beta(i,T-1) = 1;
  for(int t=T-2; t >=0; --t) {
    for(int i=0; i < ns; ++i) {</pre>
      beta(i,t) = 0;
      for(int j=0; j < ns; ++j)</pre>
        beta(i,t) += ( beta(j,t+1) * transMtx(i,j) * emisMtx(j, obs[t+1]) );
```

Putting two algorithms together

$$Pr(q_t, \mathbf{o}; \lambda) = \beta_t(q_t)\alpha_t(q_t)$$

$$Pr(q_t = S_i | \mathbf{o}; \lambda) = \frac{Pr(q_t = S_i, \mathbf{o}; \lambda)}{\sum_j Pr(q_t = S_j, \mathbf{o}; \lambda)}$$

$$= \frac{\beta_t(S_i)\alpha_t(S_i)}{\sum_j \beta_t(S_j)\alpha_t(S_j)}$$

```
// [[Rcpp::export]]
NumericMatrix forwardBackwardHMM(IntegerVector obs, NumericMatrix transMtx,
NumericMatrix emisMtx, NumericVector pi) {
  int T = (int)obs.size();
  int ns = (int)pi.size();
 NumericMatrix alpha(ns, T);
 NumericMatrix beta(ns, T);
  forwardLoop(obs, transMtx, emisMtx, pi, alpha);
 backwardLoop(obs, transMtx, emisMtx, pi, beta);
  NumericMatrix condProb(ns, T);
  for(int t=0; t < T; ++t) {</pre>
    double sum = 0;
    for(int i=0; i < ns; ++i)
      sum += (alpha(i,t) * beta(i,t));
    for(int i=0; i < ns; ++i)</pre>
      condProb(i,t) = alpha(i,t) * beta(i,t) / sum;
  return condProb;
```

Running examples

```
A <- matrix(c(0.8, 0.2, 0.4, 0.6),2,2,byrow=TRUE)

B <- matrix(c(0.88, 0.10, 0.02, 0.10, 0.60, 0.30),2,3,byrow=TRUE)

pi <- c(0.7,0.3)

forwardBackwardHMM(c(0,2,1), A, B, pi)
```

```
[,1] [,2] [,3]
[1,] 0.883564 0.1064799 0.131944
[2,] 0.116436 0.8935201 0.868056
```

```
forwardBackwardHMM(c(0,0,2,2,1), A, B, pi)
```

```
[,1] [,2] [,3] [,4] [,5]
[1,] 0.96782013 0.9189246 0.08374666 0.0297711 0.1089313
[2,] 0.03217987 0.0810754 0.91625334 0.9702289 0.8910687
```

(Same) further thoughts

- When the problem scales to larger *T* and *n*, do you see any precision problem in the current implementations of Viterbi algorithm? How can you solve it?
- What is the time complexity of the current Viterbi algorithm?
- If there are only two transition probabilities parameters, diagonal (θ) and off-diagnoal $\left(\frac{1-\theta}{n-1}\right)$, can we reduce the time complexity?

Summary

Graphical models

 A great tool to represent complex relationship between random variables

Hidden Markov model

- The most widely used graphical models.
- Current state only depends on previous states

Viterbi algorithm

DP algorithm similar to optimal path finding to get MLEs

Forward-backward algorithm

 DP algorithm to calculate conditional probabilities of hidden states given observations