Đã bắt đầu vào lúc	Thứ năm, 14 Tháng mười hai 2023, 1:19 PM
Tình trạng	Đã hoàn thành
Hoàn thành vào lúc	Thứ năm, 14 Tháng mười hai 2023, 2:37 PM
Thời gian thực hiện	1 giờ 17 phút
Điểm	3,00/3,00
Điểm	10,00 của 10,00 (100 %)

Câu hỏi 1

Chính xác

Điểm 1,00 của 1,00

Implement function

```
int foldShift(long long key, int addressSize);
int rotation(long long key, int addressSize);
```

to hashing key using Fold shift or Rotation algorithm.

Review Fold shift:

The **folding method** for constructing hash functions begins by dividing the item into equal-size pieces (the last piece may not be of equal size). These pieces are then added together to give the resulting hash value.

For example:

	Test				Result
Ì	cout	<<	rotation(600101,	2);	26

Answer: (penalty regime: 0 %)

Reset answer

```
int foldShift(long long key, int addressSize)
 1
 2 •
 3
        long long tmp = key;
 4
        vector<int> arr(100);
 5
        int n = 0;
 6
        while(tmp != 0) {
 7
             arr[n] = tmp % 10;
 8
            tmp = tmp/10; ++n;
 9
10
        long long sum = 0;
        while(n > 0) {
11
12
            long long s = 0;
13
            for(int i = 0; i < addressSize; ++i) {</pre>
                 if(n - i - 1 >= 0) s = s*10 + arr[n-i-1];
14
15
16
            n -= addressSize; sum += s;
17
18
        long long t = 1;
19
        for(int i = 0; i < addressSize; ++i) t *= 10;</pre>
20
        return sum % t;
21
22
23
    int rotation(long long key, int addressSize)
24
25
        long long tmp = key;
26
        vector<int> arr(100);
        int n = 0;
27
28
        while(tmp != 0) {
             arr[n] = tmp % 10;
29
30
             tmp = tmp/10; ++n;
31
32
        tmp = arr[0];
        for(int i = 0; i < n-1; ++i) arr[i] = arr[i+1];
33
34
        arr[n - 1] = tmp;
35
        long long sum = 0;
36 •
        while(n > 0) {
37
            long long s = 0;
38
            for(int i = 0; i < addressSize; ++i) {</pre>
39
                 if(n - i - 1 >= 0) s = s*10 + arr[n-i-1];
40
41
            n -= addressSize; sum += s;
42
```

```
long long t = 1;
for(int i = 0; i < addressSize; ++i) t *= 10;
return sum % t;
}</pre>
```

	Test	Expected	Got	
~	<pre>cout << rotation(600101, 2);</pre>	26	26	~

Passed all tests! ✓

Điểm cho bài nộp này: 1,00/1,00.

Câu hỏi 2

Chính xác

Điểm 1,00 của 1,00

Implement three following hashing function:

```
long int midSquare(long int seed);
long int moduloDivision(long int seed, long int mod);
long int digitExtraction(long int seed, int* extractDigits, int size);
```

Note that:

In midSquare function: we eliminate 2 last digits and get the 4 next digits.

In digitExtraction: extractDigits is a sorted array from smallest to largest index of digit in seed (index starts from 0). The array has size size.

For example:

Test	Result
<pre>int a[]={1,2,5}; cout << digitExtraction(122443,a,3);</pre>	223
<pre>cout <<midsquare(9452);< pre=""></midsquare(9452);<></pre>	3403

Answer: (penalty regime: 0, 0, 0 %)

Reset answer

```
long int midSquare(long int seed)
 2 •
 3
        int square = seed * seed;
 4
        return (square / 100) % 10000; // Bo 2 cuoi lay 4 cai tiep theo
 5
 6
    long int moduloDivision(long int seed, long int mod)
 7
        return seed % mod; // chia lay du thoi
 8
 9
    long int digitExtraction(long int seed,int* extractDigits,int size)
10
11 •
12
        vector<int> digits;
13
        while(seed > 0) {
            digits.push_back(seed % 10);
14
15
            seed /= 10;
16
17
        std::reverse(digits.begin(), digits.end());
18
        long int sum = 0;
        for (int i = 0; i < size; ++i) {
19
            if (extractDigits[i] < int(digits.size()))</pre>
20
                sum = sum * 10 + digits[extractDigits[i]];
21
22
23
        return sum;
24
```

	Test	Expected	Got	
~	<pre>int a[]={1,2,5}; cout << digitExtraction(122443,a,3);</pre>	223	223	~
~	<pre>cout <<midsquare(9452);< pre=""></midsquare(9452);<></pre>	3403	3403	~

Passed all tests! 🗸

Điểm cho bài nộp này: 1,00/1,00.

Câu hỏi 3

Chính xác

Điểm 1,00 của 1,00

There are n people, each person has a number between 1 and 100000 (1 \le n \le 100000). Given a number target. Two people can be matched as a **perfect pair** if the sum of numbers they have is equal to target. A person can be matched no more than 1 time.

Request: Implement function:

```
int pairMatching(vector<int>& nums, int target);
```

Where nums is the list of numbers of n people, target is the given number. This function returns the number of **perfect pairs** can be found from the list.

Example:

The list of numbers is {1, 3, 5, 3, 7} and target = 6. Therefore, the number of **perfect pairs** can be found from the list is 2 (pair (1, 5) and pair (3, 3)).

Note:

In this exercise, the libraries iostream, string, cstring, climits, utility, vector, list, stack, queue, map, unordered_map, set, unordered_set, functional, algorithm has been included and namespace std are used. You can write helper functions and classes. Importing other libraries is allowed, but not encouraged, and may result in unexpected errors.

For example:

Test	Result
<pre>vector<int>items{1, 3, 5, 3, 7}; int target = 6; cout << pairMatching(items, target);</int></pre>	2
<pre>int target = 6; vector<int>items{4,4,2,1,2}; cout << pairMatching(items, target);</int></pre>	2

Answer: (penalty regime: 0, 0, 0, 5, 10, ... %)

Reset answer

```
1 ▼ int pairMatching(vector<int>& nums, int target) {
 2
        unordered_map<int, int> m;
 3
        int pairs = 0;
        for(int i = 0; i < int(nums.size()); ++i) {</pre>
 4 .
 5 🔻
             if(m[target - nums[i]] > 0) {
 6
                 ++pairs;
 7
                 --m[target - nums[i]];
 8
 9
             else {
                 ++m[nums[i]];
10
11
12
        return pairs;
13
14
```

	Test	Expected	Got	
~	<pre>vector<int>items{1, 3, 5, 3, 7}; int target = 6; cout << pairMatching(items, target);</int></pre>	2	2	~

Passed all tests! ✓

Chính xác

Điểm cho bài nộp này: 1,00/1,00.

BÁCH KHOA E-LEARNING

WEBSITE

HCMUT

MyBK

BKSI

LIÊN HỆ

- ♀ 268 Lý Thường Kiệt, P.14, Q.10, TP.HCM
- (028) 38 651 670 (028) 38 647 256 (Ext: 5258, 5234)
- elearning@hcmut.edu.vn

Copyright 2007-2022 BKEL - Phát triển dựa trên Moodle