DMS_POS

S 16 373

5/8/2022

Load the libraries

```
library(tidyverse)
library(survival)
library(ggfortify)
library(survminer)
library(rms)
library(dynpred)
library(MASS)
library(CPE)
library(scatterplot3d)
library(plotly)
```

Read the data sets

Merge two data sets

```
data_merge <- rbind(Home , Overseas)</pre>
```

Filter the data of DM de Silva

```
bt <- data_merge %>% filter(grepl('DM de Silva' , Striker))
```

$1) Analysis \ for \ different \ batting \ position$

```
bt_ps <- bt \%% filter(bat_position == c(5,6,7))
DMS_diff_pos <- survdiff(Surv(cum_balls , wicket) ~ bat_position, data = bt_ps)
DMS_diff_pos
## survdiff(formula = Surv(cum_balls, wicket) ~ bat_position, data = bt_ps)
##
##
                    N Observed Expected (0-E)^2/E (0-E)^2/V
                             3
                                   2.65
                                           0.0469
## bat_position=5 85
                                                     0.0725
                             2
                                   2.65
## bat position=6 125
                                           0.1589
                                                     0.2610
                             3
                                   2.70
                                           0.0325
                                                     0.0499
## bat_position=7 79
##
## Chisq= 0.3 on 2 degrees of freedom, p= 0.9
```

The p value is greater than 0.05. Therefore we cannot see a significant difference between the batting positions 5,6 and 7.

batting position 5

Filter the first bat_position

```
DMS_P_5<- bt %>% filter(bat_position == 5)
```

Cox model

cum boundaries

```
DMS_P_5_cut <- survSplit(DMS_P_5 , cut = 30 , end = "cum_balls" , event = "wicket" , start = "start" ,
DMS_P_5_cut$hv1 <- DMS_P_5_cut$cum_runs * (DMS_P_5_cut$start < 30)
DMS_P_5_cut$hv2 <- DMS_P_5_cut$cum_runs * (DMS_P_5_cut$start >= 30)
cox_DMS_P_5_heav <- coxph(Surv(start,cum_balls , wicket) ~</pre>
                           cum_singles +hv1 + hv2 + cum_boundaries + ridge(cum_dotBalls) + cluster (id
                         data = DMS_P_5_cut)
summary(cox_DMS_P_5_heav)
## Call:
## coxph(formula = Surv(start, cum_balls, wicket) ~ cum_singles +
##
      hv1 + hv2 + cum_boundaries + ridge(cum_dotBalls), data = DMS_P_5_cut,
##
      cluster = id)
##
##
    n= 308, number of events= 10
##
                      coef
                             se(coef) se2
                                             Chisq DF p
                      -0.8116 0.2137 0.2816 14.42 1 1.5e-04
## cum_singles
## hv1
                      -0.6365 0.1884
                                      0.2886 11.41 1 7.3e-04
## hv2
```

0.4270 1.5114 1.5041 0.08 1 7.8e-01

ridge(cum_dotBalls) -0.8309 0.1759 0.2300 22.31 1 2.3e-06

```
##
##
                       exp(coef) exp(-coef) lower .95 upper .95
## cum_singles
                                     2.2515
                                              0.29214
                          0.4441
                                                         0.6752
                          0.5292
                                     1.8898
                                              0.36575
                                                         0.7656
## hv1
## hv2
                          1.0623
                                     0.9414
                                              0.76232
                                                         1.4802
                                     0.6525
                                              0.07924
                                                        29.6438
## cum boundaries
                          1.5327
## ridge(cum dotBalls)
                          0.4357
                                     2.2953
                                              0.30863
                                                         0.6150
## Iterations: 5 outer, 22 Newton-Raphson
## Degrees of freedom for terms= 0.9 0.9 1.0 1.0 0.5
## Concordance= 0.98 (se = 0.009)
## Likelihood ratio test= 56.06 on 4.3 df,
```

Test pH assumptions

```
test_DMS_P_5 <- cox.zph(cox_DMS_P_5_heav)
test_DMS_P_5</pre>
```

```
## cum_singles 1.37265 0.92 0.22
## hv1 0.61356 0.91 0.40
## hv2 0.36796 1.00 0.54
## cum_boundaries 0.15329 0.95 0.68
## ridge(cum_dotBalls) 0.00196 0.51 0.81
## GLOBAL 1.56081 4.30 0.85
```

Plot the survival curve

coeffient plot

```
coef_plot_DMS_P_5 <- ggforest(cox_DMS_P_5_heav , data = DMS_P_5_cut,fontsize = 1.2) +
    theme(axis.title = element_text(size = 15),axis.text = element_text(size = 14))
coef_plot_DMS_P_5</pre>
```


Area under the curve

```
AUC(Surv(start,cum_balls , wicket) ~ cum_singles +hv1 + hv2 + cum_boundaries + ridge(cum_dotBalls) + cluster (id) , data = DMS_P_5_cut
```

```
VANC(t)

VAN
```

```
## $AUCt
##
                  AUC
      time
## 1
         5 0.9662921
## 2
        13 0.9484536
## 3
        14 0.9513514
        15 0.9604520
## 4
## 5
        20 0.9520548
## 6
        21 0.9285714
        26 0.8067227
## 7
## 8
        28 0.7678571
## 9
        41 0.9687500
        52 1.0000000
## 10
##
## $AUC
## [1] 0.9267241
```

batting position 6

$Filter\ the\ first\ bat_position$

```
DMS_P_6<- bt %>% filter(bat_position == 6)
```

Cox model

```
DMS_P_6_cut <- survSplit(DMS_P_6 , cut = 30 , end = "cum_balls" , event = "wicket" , start = "start" ,
DMS_P_6_cut$hv1 <- DMS_P_6_cut$cum_runs * (DMS_P_6_cut$start < 30)
DMS_P_6_cut$hv2 <- DMS_P_6_cut$cum_runs * (DMS_P_6_cut$start >= 30)
cox_DMS_P_6_heav <- coxph(Surv(start,cum_balls , wicket) ~</pre>
                            cum_singles +hv1 + hv2 + cum_boundaries + ridge(cum_dotBalls) + cluster (id
                          data = DMS_P_6_cut)
summary(cox_DMS_P_6_heav)
## Call:
## coxph(formula = Surv(start, cum_balls, wicket) ~ cum_singles +
##
      hv1 + hv2 + cum_boundaries + ridge(cum_dotBalls), data = DMS_P_6_cut,
##
       cluster = id)
##
##
    n= 481, number of events= 13
##
##
                       coef
                               se(coef) se2
                                               Chisq DF p
                       -0.3886 0.31262 0.4178 1.55 1 2.1e-01
## cum_singles
## hv1
                       -1.0882 0.26448 0.3913 16.93 1 3.9e-05
## hv2
                       -0.6775 0.12980 0.2435 27.24 1 1.8e-07
## cum_boundaries
                        4.3455 0.90895 1.5090 22.86 1 1.7e-06
## ridge(cum_dotBalls) -0.4052 0.09713 0.1168 17.40 1 3.0e-05
##
##
                       exp(coef) exp(-coef) lower .95 upper .95
## cum_singles
                          0.6780
                                    1.47498
                                               0.3674
                                                         1.2512
## hv1
                          0.3368
                                    2.96905
                                               0.2006
                                                         0.5656
## hv2
                          0.5079
                                    1.96889
                                               0.3938
                                                         0.6550
## cum_boundaries
                         77.1285
                                    0.01297
                                              12.9872 458.0521
## ridge(cum_dotBalls)
                          0.6669
                                    1.49958
                                               0.5513
                                                         0.8067
##
## Iterations: 4 outer, 17 Newton-Raphson
## Degrees of freedom for terms= 1.0\ 1.0\ 1.0\ 1.0\ 0.4
## Concordance= 0.982 (se = 0.006)
## Likelihood ratio test= 69.23 on 4.38 df,
                                               p = 6e - 14
```

Test pH assumptions

```
test_DMS_P_6 <- cox.zph(cox_DMS_P_6_heav)
test_DMS_P_6</pre>
```

```
## cum_singles 1.82484 0.99 0.17
## hv1 0.36732 1.00 0.54
## hv2 0.61602 0.97 0.42
## cum_boundaries 1.30194 1.00 0.25
## ridge(cum_dotBalls) 0.00299 0.43 0.73
## GLOBAL -8.14787 4.38 1.00
```

Plot the survival curve

coeffient plot

```
coef_plot_DMS_P_6 <- ggforest(cox_DMS_P_6_heav , data = DMS_P_6_cut,fontsize = 1.2) +
    theme(axis.title = element_text(size = 15),axis.text = element_text(size = 14))
coef_plot_DMS_P_6</pre>
```


Area under the curve

```
AUC(Surv(start,cum_balls , wicket) ~ cum_singles +hv1 + hv2 + cum_boundaries + ridge(cum_dotBalls) + cluster (id) , data = DMS_P_6_cut
```



```
## $AUCt
##
                    AUC
## 1
         4 0.956621005
## 2
         6 0.946472019
        10 0.945205479
## 3
        27 0.792035398
## 4
## 5
        30 0.004901961
        31 0.938775510
## 7
        41 0.829787234
## 8
        49 0.714285714
## 9
        52 0.750000000
## 10
        55
                    NaN
##
## $AUC
## [1] 0.8173769
```

7th batting position

 $Filter\ the\ second\ bat_position$

```
DMS_P_7 <- bt %>% filter(bat_position == 7)
```

Cox model

```
DMS_P_7_cut <- survSplit(DMS_P_7 , cut = 30 , end = "cum_balls" , event = "wicket" , start = "start" ,
DMS_P_7_cut $hv1 <- DMS_P_7_cut $cum_runs * (DMS_P_7_cut $start < 30)
 DMS_P_7_cut $hv2 \leftarrow DMS_P_7_cut $cum_runs * (DMS_P_7_cut $start >= 30) 
cox_DMS_P_7_heav <- coxph(Surv(start,cum_balls , wicket) ~</pre>
                           cum_singles +hv1 + hv2 + cum_boundaries + ridge(cum_dotBalls) + cluster (id
                         data = DMS_P_7_cut)
summary(cox_DMS_P_7_heav)
## Call:
## coxph(formula = Surv(start, cum_balls, wicket) ~ cum_singles +
##
      hv1 + hv2 + cum_boundaries + ridge(cum_dotBalls), data = DMS_P_7_cut,
##
      cluster = id)
##
##
    n= 322, number of events= 5
##
                                             Chisq DF p
##
                      coef
                              se(coef) se2
                      -0.67167 0.45615 0.7074 2.17 1 0.14000
## cum_singles
## hv1
                       ## hv2
                      -1.56929 0.45005 84.8417 12.16 1 0.00049
## cum boundaries
                      1.17774 1.01477 2.4873 1.35 1 0.25000
## ridge(cum_dotBalls) -0.12894 0.16167 0.1005 0.64 1 0.43000
##
##
                      exp(coef) exp(-coef) lower .95 upper .95
## cum_singles
                        0.5109
                                1.9575
                                            0.20894
                                                     1.249
                                   0.9832
## hv1
                         1.0171
                                            0.87603
                                                        1.181
## hv2
                         0.2082
                                   4.8032 0.08618
                                                       0.503
## cum_boundaries
                         3.2470
                                   0.3080 0.44434
                                                       23.728
## ridge(cum_dotBalls)
                         0.8790
                                   1.1376
                                           0.64031
                                                       1.207
## Iterations: 4 outer, 80 Newton-Raphson
## Degrees of freedom for terms= 1.0 1.0 1.0 1.0 0.5
## Concordance= 0.914 (se = 0.067)
## Likelihood ratio test= 21.81 on 4.53 df, p=4e-04
```

Test pH assumptions

Plot the survival curve

coeffient plot

```
coef_plot_DMS_P_7 <- ggforest(cox_DMS_P_7_heav , data = DMS_P_7_cut,fontsize = 1.2) +
    theme(axis.title = element_text(size = 15),axis.text = element_text(size = 14))
coef_plot_DMS_P_7</pre>
```


Area under the curve

```
AUC(Surv(start,cum_balls , wicket) ~ cum_singles +hv1 + hv2 + cum_boundaries + ridge(cum_dotBalls) + cluster (id) , data = DMS_P_7_cut
```



```
## $AUCt
##
     time
                AUC
## 1
        5 0.9556314
       10 0.9389313
       49 0.8750000
## 3
## 4
       50 0.9523810
## 5
       70
                NaN
##
## $AUC
## [1] 0.945
```

Survival curve

```
DMSSurvPlotPos <- ggarrange(cox_plot_DMS_P_5,cox_plot_DMS_P_6,cox_plot_DMS_P_7)
DMSSurvPlotPos</pre>
```

Survival curve for DM de Silva for the 5th batting position

Survival curve for DM de Silva for the 6th batting position

Survival curve for DM de Silva for the 7th batting position

Upload to texStudio

```
filepath <- "~/Research/Thesis_S16373/images/"
postscript(file = paste0(filepath, "DMSSurvPlotPos.eps"), width = 10, height = 7, horizontal = FALSE)
DMSSurvPlotPos
dev.off()</pre>
```

Aalen model


```
filepath <- "~/Research/Thesis_S16373/images/"
postscript(file = paste0(filepath, "DMSAalenPos.eps"), width = 10, height = 20, horizontal = FALSE)
DMSAalenPos
dev.off()</pre>
```