Interpolacija z baricentrično formulo

Avtor: Urh Perčič

Vpisna številka: 63230481

Uvod

Razvil sem metodo barycentric interpolation za polinomsko interpolacijo funkcij na intervalih z uporabo Čebiševih točk. Rezultat je izračun interpolantov z visoko natančnostjo za različne funkcije, zmanjšanje računske zahtevnosti in optimizacija procesiranja podatkov.

Opis algoritma in implementacije

Projekt vključuje implementacijo barycentric interpolation metode za izračun vrednosti polinoma na podlagi danega niza Čebiševih točk. Glavni del implementacije zajema:

- **Generiranje Čebiševih točk**: Točke so generirane po formuli $xi = \cos(\frac{i\pi}{n})$ za interval [-1,1], s prilagoditvijo za poljuben interval [a,b].
- Baricentrična formula: Interpolacija uporablja baricentrično formulo za izračun vrednosti interpolanta na poljubni točki, ki ni nujno ena od Čebiševih točk.

Implementacijske podrobnosti

- **Podatkovni tipi**: Za shranjevanje Čebiševih točk, njihovih vrednosti in uteži je uporabljen array struktur v Javi.
- **Optimizacija**: Shranjevanje samo nujnih vrednosti za izračune, brez redundantnih podatkov.

Primeri uporabe in analiza rezultatov

Algoritem je bil preizkušen na treh različnih funkcijah:

- 1. **Eksponentna funkcija** e^{-x^2} na intervalu [-1, 1].
- 2. Funkcija sin(x)/x na intervalu [0, 10].
- 3. **Polinomska funkcija** $|x^2 2x|$ na intervalu [1,3].

Za vsako funkcijo je bil določen ustrezen nivo polinoma n, da napaka interpolacije ne presega 10^{-6} .

Testiranje

- Osnovni testi: Preverjanje pravilnosti baricentrične formule.
- Testi natančnosti: Testiranje s točkami znotraj in izven intervala interpolacije.

```
test (org.example)
testExponentialFunction()
testSineXFunction()
testPolynomialFunction()
```