

CHEMISTRY

Unit 06 | Theory Book

අකාබනික රසායනය - 3

අවුෆ්බාවු මූලධර්මයට අනුව ඉලෙක්ටෝන පිරීමේදී, අවසන් ඉලෙක්ටෝනය d උපශක්ති මට්ටමට පිරෙන මූලදුවz වේ. ආවර්තිතා වගුවේ z සිට z දක්වා කාණ්ඩ z ගොනුවට අයත් වේ.

ආන්තරික ලෝහ

d ගොනුවේ මූලදවසයක් <u>මුලදවසමය අවස්ථාවේ හෝ ස්ථායි අයන අවස්ථාවක</u> දී අසම්පූර්ණයෙන් පිරි ඇති d උපශක්ති මට්ටම් වලින් සමන්විත වන්නේ නම් එම මූලදවසය ආන්තරික මූලදවසයක් වේ.

 $3\mathbf{d}$ ගොනුවේ එක ම ආන්තරික නොවන මූලදුවඃය $\mathbf{S}c$ වේ.

d ගොනුවේ මූලදුවෳ වල ආවර්තීය විචලන

කාණ්ඩය	3	4	5	6	7	8	9	10	11	12
මූලදුවාය	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn
පෝලිං විද ු ත් සෘණතාව	1.3	1.5	1.6	1.6	1.5	1.9	1.9	1.9	1.9	1.6
පරමාණුක අරය/ pm	162	147	134	128	127	126	125	125	128	137
සහසංයුජ අරය/ pm	144	132	122	118	117	117	116	115	117	125
අයනික අරය (M ²⁺)/ pm		100	93	87	81	75	79	83	87	88

- ✓ පරමාණුක අරය s ගොනුවේ මූලදවප වලට සාපේක්ෂව අඩු වන අතර ආවර්තය ඔස්සේ ඉතා කුඩා පුමාණ වලින් වෙනස් වේ. එය කෙසේද යත් ආවර්ථයේ වමේ සිට දකුණට යාමේ දී Ni දක්වා පරමාණුක අරය කුමයෙන් අඩුවන අතර එතැන් සිට Zn දක්වා නැවත වැඩිවේ.
- 🗸 විදුපුත් ඍණතාවය වමේ සිට දකුණට සුළු පුමාණ වලින් වැඩිවන අතර Mn හා Zn නි දී එය තරමක් අඩු වේ.
- ✓ අයනීකරණ ශක්තින් s හා p ගොනු වලට අතරමැදි අගයයන් දරයි.
- 🗸 අයනීකරණ ශක්තිය ආවර්ථයේ වමේ සිට දකුණට දළ වශයෙන් වැඩි වේ. නමුත් අතරමැද සුළු අඩුවීම් ද නිරීක්ෂණය වේ.

මුලදුවාසය	පළමු වන අයනිකරණ	දෙවන අයනිකරණ	තෙවන අයනිකරණ
	ශක්තිය/ kJ mol ⁻¹	ශක්තිය/ kJ mol ⁻¹	ශක්තිය/ kJ mol ⁻¹
K	418	3052	
Ca	589	1145	4912
Sc	631	1235	2389
Ti	658	1310	2652
V	650	1414	2828
Cr	653	1496	2987
Mn	717	1509	3248
Fe	759	1561	2957
Со	758	1646	3232
Ni	737	1753	3393
Cu	746	1958	3554
Zn	906	1733	3833

3d ගොනුවේ මූලදුවෘ වල විචලෘ ඔක්සිකරණාංක

- \checkmark Sc හා Zn හැර ඉතිරි මූලදුවෳයන් විචලෳ ඔක්සිකරණාංකයන් පෙන්වයි. අසම්පූර්ණ d කාක්ෂික නොමැති වීම Sc හා Zn විචලෳ ඔක්සිකරණාංක නොපෙන්වීමට හේතුවයි.
- \checkmark $3d^{10}4s^1$ විනතාසයේ පුතිඵලයක් ලෙස පොදුවේ, Cu වලට +1 ඔක්සිකරණ අංකය ලබා ගත හැකි ය. කෙසේ වෙතත්, Cr^+ අතිශයින් දුලබ වන අතර අස්ථායි වේ.
- √ d ගොනුවේ මූලළවසයකට පෙන්නුම් කළ හැකි ඉහළ ම ඔක්සිකරණ අංකය එහි 4s සහ 3d ඉලෙක්ටුෝනවල එකතුවට සමාන වේ.

මූලදුවාය	භුමි අවස්ථාම	ව් විනාහසය		ඔක්සිකරණ අවස්ථා
	10	3 <i>d</i> 4 <i>s</i>		
Se	$[Ar]3d^14s^2$	\uparrow	↑↓	+3
Ti	$[Ar]3d^24s^2$	$\uparrow \uparrow \uparrow \downarrow \downarrow \downarrow$	$\uparrow\downarrow$	(+2), +3, +4
V	$[Ar]3d^34s^2$	$\uparrow \uparrow \uparrow \uparrow$	$\uparrow\downarrow$	(+2), (+3), +4, +5
Cr	[Ar]3d ⁵ 4s ¹	$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$	\uparrow	+2, +3, (+4), (+5), +6
Mn	$[Ar]3d^54s^2$	$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$	$\uparrow \downarrow$	+2, +3, +4, (+5), (+6), +7
Fe	$[Ar]3d^64s^2$	$\uparrow\downarrow\uparrow\uparrow\uparrow\uparrow\uparrow$	↑↓	+2, +3, (+4), (+5), (+6)
Co	$[Ar]3d^74s^2$	<u> </u>	↑↓	+2, +3, (+4)
Ni	$[Ar]3d^84s^2$	$\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\downarrow\uparrow\uparrow\uparrow$	↑↓	+2, (+3), (+4)
Cu	[Ar]3d ¹⁰ 4s ¹	$\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow$	\uparrow	+1,+2, (+3), (+4)
Zn	$[Ar]3d^{10}4s^2$	$\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow$	$\uparrow \downarrow$	+2

^{*}වරහන් තුළ දුලබ ඔක්සිකරණ අවස්ථා දක්වා ඇත.

MCQ සඳහා මතක තබා ගත යුතු d ගොනුවේ ගුණ විචලනයන් සම්බන්ධ කරුණු

- 1. සියල්ල ලෝහ වේ. (Hg දුව අවස්ථාවේ පවතින ලෝහයකි.)
- 2. කාණ්ඩයක පහළට ලෝහ ගුණ වැඩි වේ.
- 3. හොඳ විදසුත් හා තාප සන්නායක වේ. (ලෝහක බන්ධන සෑදීමේදී s ඉලෙක්ටෝන හා සමහර d ඉලෙක්ටෝන සහභාගී වීම නිසා)
- 4. වැඩිම විදුසුත් සන්නායකතාවය Ag
- 5. ජලය සමඟ පුතිකියා නොපෙන්වයි.
- 6. වමේ සිට දකුණට අයනීකරණ ශක්තිය සුළු වශයෙන් වැඩි වේ. (Co හා Ni වල යම් අඩුවක් සිදු වේ.)
- 7. s ගොනුවේ මූලදුවෘ වලට වඩා අයනීකරණ ශක්ති ඉහළ වේ.
- 8. : s ගොනුවේ මූලදවෘ වලට වඩා පුතිකියාශීලීත්වයෙන් අඩු වේ.
- 9. s හා p ගොනු වලට සාපේක්ෂව දුවාංක හා තාපාංක ඉහළ වේ. (ලෝහක බන්ධන ජාලයට වැඩි *e* ගණනක් නිදහස් කරන බැවින්)
- 10. වැඩිම තාපාංකය V / අඩුම දුවාංකය හා තාපාංකය <math>Zn
- 11. වමේ සිට දකුණට විදසුත් සෘණතාවය වැඩි වේ.
- 12. 3d ගොනුවේ Zn පමණක් ආන්තරික නොවන මූලදුවෘය කි.
- 13. Mn හා Zn වල e විනකාසයේ ස්ථායීතාවය හේතුවෙන් විදුපුත් සෘණතාවය තරමක් අඩු වේ.
- 14. පරමාණුක අරය s ගොනුවේ අනුරූප මූලදුව්යන්ට වඩා අඩු වේ.
- 15. ආවර්තයක වමේ සිට දකුණට පරමාණුක අරය අඩු වේ. (Sc සිට Ni දක්වා අඩු වුව ද Ni සිට Zn දක්වා වැඩි වේ)
- 16. ඝනත්වයන් s ගොනුවේ ලෝහ වලට සාපේක්ෂව ඉහළ වේ.

3d ගොනුවේ මූලදුවෳ වල උත්පේ්රක ගුණ

අර්ධ වශයෙන් හෝ හිස් d කාක්ෂික පැවතීම හේතුවෙන් බොහෝ ආන්තරික ලෝන සහ සංයෝග උත්පේරක ලෙස හැසිරේ. මෙමඟින් d කාක්ෂිකවලට ඉලෙක්ටෝන ලබා ගැනීම හෝ දායක කිරීම සිදු කළ හැකි ය. මේ ලක්ෂණය උත්පේරක ගුණ එලදායි බව පෙන්වයි.

උදාහරණ -

හයිඩුජනීකරණය සඳහා Pd

ඇමෝනියා නයිටුප්න් ඔක්සයිඩ බවට ඔක්සිකරණය කිරීම සඳහා Pt/Rh

 SO_2 , SO_3 බවට ඔක්සිකරණය සඳහා V_2O_5

එතීන් බහුඅවයවීකරණය සඳහා $TiCl_3/Al(C_2H_5)_6$

3d ගොනුවේ මූලදුවෘ වල ඔක්සයිඩ

3d ගොනුවේ මූලදුවෳ සරල ඔක්සයිඩ වලට අමතරව සංයුක්ත ඔක්සයිඩ ද සාදයි.

උදා-

ඔක්සයිඩවල ගුණ ඔක්සිකරණ අංකය මත රඳා පවතින අතර බන්ධන ස්වභාවය ඔක්සිකරණ අංකය මත රඳා පවතී. බන්ධන ස්වභාවයේ වෙනස් වීම මඟින් ලෝහ ඔක්සයිඩවල අම්ල-භෂ්ම ස්වභාවය තීරණය කරයි. ඉහළ ඔක්සිකරණ අංක සහිත සංයෝගවල සහ-සංයුජ බන්ධන ඇති අතර ඒවා ආම්ලික වේ. අඩු ඔක්සිකරණ අංක සහිත සංයෝග අයනික ලක්ෂණ ඇති අතර ඒවා භාෂ්මික වේ.

<u>මක්සයි</u> ඩය	අම්ල-හස්ම ස්වභාවය	ඔක්සිකරණ		
		අංකය		
CrO	දුබල භාස්මික	+2	අඩු ඔක්සිකරණ අංකය	
Cr ₂ O ₃	ි හෆග්ණු	+3		
CrO ₂	දුබල ආම්ලික	+4	——— මධාව ඔක්සිකරණ අංක	
CrO ₃	ආම්ලික	+6	ඉහළ ඔක්සිකරණ අංකය	

ඔක්ස යිඩය	ආම්ලික-භාස්මික ගුණ	ඔක්සිකරණ අංක	
MnO	හාස්මි ක	+2	අඩු ඔක්සිකරණ අංක
Mn ₂ O ₃	දුබල භාස්මික	+3	
MnO ₂	උභයගුණි	+4	තරමක් ඔක්සිකරණ අංක
MnO ₃	දුර්වල ආම්ලික	+6	
Mn_2O_7	ආම්ලික	+7	ඉහළ ඔක්සිකරණ අංක

ආන්තරික ලෝහ අයනවල වර්ණ

ජලීය දුාවණවල ඇති බොහෝ ආන්තරික මූලදවෘ අයන විදසුත් චුම්බක වර්ණාවලියේ දෘශෘ පුදේශයේ ඇති විකිරණ අවශෝෂණය කර විවිධ වර්ණ නිපදවයි. මේ හැකියාව ඇති වන්නේ **අර්ධ ලෙස පිරුණු d** උප **කාක්ෂික පැවතීම** නිසා ය. $(MnO_4$ - හා CrO_4 2- වල වර්ණ ඇති වීම සිදු වන්නේ d කාක්ෂික අතර ඉලෙක්ටෝන සංකුමණ නිසා නොවේ.) තව ද s ගොනුවේ ඇති ලෝහ අයන අවර්ණ වන අතර, ඒවායේ සම්පූර්ණ ලෙස පිරුණු d උප කාක්ෂික ඇත.

අර්ධ වශයෙන් පිරුණු ${f d}$ කාස්ෂික නොපැවතීම හේතුවෙන් ජලීය ${f Sc}^{3+}$ සහ ${f Zn}^{2+}$ අයන අවර්ණ වේ.

අයනය	වර්ණය	අයනය	වර්ණය
$Se^{3+}(d^0s^0)$	අවර්ණ	$Fe^{3+}(d^5s^0)$	දුඹුරු කහ
$Ti^{4+}(d^0s^0)$	අවර්ණ	$Fe^{2+}(d^6s^0)$	ළා කොළ
$\operatorname{Cr}^{3+}(d^3s^0)$	දම්	$\operatorname{Co}^{2+}(d^7s^0)$	රෝස
$\mathrm{Mn}^{2+}(d^5s^0)$	ළා රෝස	$Ni^{2+}(d^8s^0)$	කොළ
		$\operatorname{Cu}^{2+}(d^9s^0)$	දුඹුරු
		$Cu^+(d^{10}s^0)$	අවර්ණ
		$Zn^{2+}(d^{10}s^0)$	අවර්ණ
@m² 0 200 20 20 20 20 20 20 20 20 20 20 20	26	@md = 200 10 10 10 10 10 10 10 10 10 10 10 10 1	වර්ණය
ඔක්සො ඇනායනය	වර්ණය	ඔක්සො ඇතායනය	වරණය
MnO_4	දම්	CrO_4^{2-}	කහ
MnO_4^{2-}	කොළ	$\operatorname{Cr_2O_7}^{2-}$	තැඹිලි

d ගොනුවේ ලෝහ සාදන සංයෝග හා සංගත සංකීර්ණ කෙටි සටහන්

d ගොනුවේ ලෝහ සාදන සංයෝග හා සංගත සංකීර්ණ (සම්පත් පොත)

ලෝහය	ලිගනයේ ස්වභාවය					
	H ₂ O(l)	OH (aq)	NH ₃ (aq)	CI (aq)		
Cr	$[Cr(H_2O)_6]^{3+}$	Cr(OH) ₃	Cr(OH) ₃			
	දම්	නිල්-කොළ	නිල්-කොළ			
		අවක්ෂේපය	අවක්ලේපය			
Mn	$[Mn(H_2O)_6]^{2+}$	Mn(OH) ₂	Mn(OH) ₂	[MnCl ₄] ²⁻		
	ළා දම්	සුදු/කුීම් පැහැ අවක්ෂේපය	සුදු/කීම් පැහැ අවක්ෂේපය	කොළ පැහැ කහ		
Fe	$[Fe(H_2O)_6]^{2+}$	Fe(OH) ₂	Fe(OH) ₂			
	ළා කොළ	කැත කොළ	කැත කොළ			
		අවක්ෂේපය	අවක්ෂේපය			
	$[Fe(H_2O)_6]^{3+}$	Fe(OH) ₃	Fe(OH) ₃	[FeCl ₄]		
	කහ-දූඹුරු	රතු-දුඹුරු	රතු-දුඹුරු	කහ		
	5,0	අවක්ලේපය	අවක්ෂේපය			
Co	$[Co(H_2O)_6]^{2+}$	Co(OH) ₂	$[Co(NH_3)_6]^{2+}$	[CoCl ₄] ²⁻		
	රෝස	රෝස	කහ පැහැ දුඹුරු	නිල්		
		අවක්ෂේපය	$[Co(NH_3)_6]^{3+}$			
			දුඹුරු පැහැ රතු			
Ni	$[Ni(H_2O)_6]^{2+}$	Ni(OH) ₂	[Ni(NH ₃) ₆] ²⁺	[NiCl ₄] ²⁻		
	කොළ	කොළ	නිල්	කහ		
	Ph/95e51	අවක්ෂේපය	2000 \$55	9955		
Cu	$[Cu(H_2O)_6]^{2+}$	Cu(OH) ₂	$[Cu(NH_3)_4]^{2+}$	$\left[\mathrm{CuCl_4}\right]^{2}$		
	ළා නිල්	නිල් අවක්ෂේපය	තද කහ	කහ		
Zn	$[Zn(H_2O)_6]^{2+}$	Zn(OH) ₂	$[Zn(NH_3)_4]^{2+}$	[ZnCl ₄] ²⁻		
	අවර්ණ	සුදු අවක්මේපය	අවර්ණ	අවර්ණ		
		වැඩිපුර OH				
		$[Zn(OH)_4]^{2-}$				
		අවර්ණ				

PAST PAPERS - ESSAY

- $1.\quad M$ යනු d ගොනුවේ පළමු පෙළ මූලදුවසකි. එය එහි ඉහළ ම ස්ථායී ඔක්සිකරණ අවස්ථාව MO_4^- හි දී පෙන්වයි.
 - i. M හි සම්පූර්ණ ඉලෙක්ටෝනික විනහසය ලියන්න.
 - ii. M හඳුනා ගන්න.
 - iii. ජලීය දාවණයක දී M හි ස්ථායී පහළ ම ඔක්සිකරණ අවස්ථාව ලියන්න.
 - iv. $\mathrm{MO_4^-}$ (iii) හි ඔබ සඳහන් කළ ඔක්සිකරණ අවස්ථාව ඇති විශේෂයකට පරිවර්තනය කිරීම සඳහා අවශය පුතිකාරක ලියන්න.
 - v. M හි එක් වැදගත් පුයෝජනයක් ලියන්න.

2001

- 2. M , පළමු පෙළ (3d) ආන්තරික මූලදුවයකි. මෙම මූලදුවයෙග් පරමාණු වල යුගල් නොවූ ඉලෙක්ටෝන හයක් බැගින් ඇත.
 - i. M හඳුනාගන්න.
 - ii. M හි සම්පූර්ණ ඉලෙක්ටෝනික විනහසය ලියන්න.
 - iii. M^+ අඩංගු ජලීය දුාවණයක්, NaOH සහ H_2O_2 සමඟ උණුසුම් කළ විට, සිදුවන පුතිකිුිියාව සඳහා තුලිත රසායනික සමීකරණය ලියන්න. (M සඳහා පිළිගත් රසායනික සංකේතය භාවිතා කළ යුතුය)
 - iv. ඉහත (III) හි සඳහන් පුතිකුියාව සිදුකළ පසු ලැබෙන දාවණයේ වර්ණය කුමක් ද?
 - v. ඉහත (III) හි ලැබෙන එලයේ ඔක්සිකරණ අවස්ථාවෙහි ම M පවතින M හි වෙනත් සංයෝග දෙකක් දෙන්න.
 - vi. M හි එක් වැදගත් කාර්මික පුයෝජනයක් ලියා දක්වන්න.

2002

- 3. d— ගොනුවට අයත් X මූලදුවසයේ කාබනේටය තනුක HCl සමඟ පුතිකුියා කර රෝස පැහැති දුාවණයක් සාදයි. සාන්දු HCl එකතු කළ විට මෙම දුාවණය නිල් පැහැයට හැරේ.
 - i. X හඳුනාගන්න.
 - ii. X හි සම්පූර්ණ ඉලෙක්ටෝනික විනපාසය ලියන්න.
 - iii. රෝස පැහැයට හා නිල් පැහැයට හේතුවන විශේෂයන් හඳුන්වා දී, ඒවායේ හැඩයන් නම් කරන්න.
 - iv. රෝස පැහැති විශේෂයෙහි ඇති බන්ධන වර්ග මොනවාද?
 - v. X තනුක HCl සමඟ පිරියම් කිරීමේ දී නිල් පැහැ විශේෂය නොසෑදෙන්නේ ඇයි.
 - vi. නිල් පැතැති දාවණය ජලයෙන් තනුක කළ විට නිරීක්ෂණය කළ හැක්කේ කුමක් ද?
 - vii. X හෝ එහි සංයෝග සඳහා එක් වෛදෳමය පුයෝජනයක් සහ එක් කාර්මික පුයෝජනයක් බැගින් දෙන්න.

2004

4.

- I. M යනු 3d ආන්තරික මූලළවසයකි. M ස්ථායි MO_2 ඩයිඔක්සයිඩය සාදන අතර එය සුදු පැහැති වේ.
 - i. M හඳුන්වා දෙන්න.
 - ii. M හි සම්පූර්ණ ඉලෙක්ටෝනික විනහසය ලියන්න.
 - iii. M සහ MO_2 සඳහා එක් කාර්මික පුයෝජනයක් බැගින් දෙන්න.
- II. 3d ආන්තරික මූලදුව්ව දෙකක ක්ලෝරයිඩ ජලයේ දුාවණය කොට සාදාගත් දුාවණය (S දාවණය) සමඟ කරන ලද පරීක්ෂා සහ අදාල නිරීක්ෂණ පහත දැක්වේ.

	පරීක්ෂා ව	නිරීක්ෂණය
(A)	S දුාවණයට ජලීය NaOH එකතු කරන ලදී.	නිල් කොළ අවක්ෂේපයක් ලැබුණි
(B)	S දාවණය ජලීය NaOH සහ ${ m H_2O_2}$ සමඟ රත්කොට පෙරන ලදී.	අවක්ෂේපයක් ද කහ පෙරනයක් ද ලැබුණි.
(C)	(B) හි ලැබුණු අවක්ෂේපයට සාන්දු HCl එකතු කරන ලදී.	කහ පැහැති දාවණයක් ලැබුණි.
(D)	(C) හි ලැබුණු කහ දාවණය තනුක කොට H ₂ S යවන ලදී.	කළු අවක්ෂේපයක් ලැබුණි.

- i. S දුාවණයෙහි අඩංගු කැටායන හඳුන්වා දෙන්න.
- ii. (B) පරීක්ෂණයෙන් ලද පෙරනයෙහි කහ වර්ණය ගෙන දෙන අයනයත් , (C) හි ලැබෙන දුාවණයෙහි කහ වර්ණය ගෙන දෙන අයනයත් හඳුනාදෙන්න.

- iii. ඉහත පුතිකුියාවල දී මෙම අයන දෙක සෑදීම සඳහා තුලිත රසායනික සමීකරණ ලියන්න.
- iv. (B) ති ලද පෙරනය ආම්ලික කළ විට , ඔබ නිරීක්ෂණය කිරීමට බලාපොරොත්තු වන්නේ කුමක් ද? අදාල තුලිත රසායනික සමීකරණය දෙන්න.

2005

- 5. L සහ M යනු 3d ආන්තරික මූලදවප වේ. L හැඩයෙන් චතුස්තලීය වන ඔක්සි ඇනායනයක් සාදයි. M , M^{2+} කැටායනයක් සාදයි. L හි ඔක්සි ඇනායනයේ මවුල එකක් M^{2+} මවුල පහක් සමඟ පුතිකියා කර එය M^{3+} බවට ඔක්සිකරණය කරමින් L^{2+} සාදයි. M^{3+} හා ජලීය දාවණයක් පැහැයෙන් කහ දුඹුරු වන අතර KI වලින් I_2 මුක්ත කරයි.
 - i. ඔක්සි ඇනායනයේ දී L හි ඔක්සිකරණ තත්වය අපෝහනය කරන්න.
 - ii. L හා M මූලදුවෘ මොනවාද?
 - iii. L හි ඔක්සි ඇනායනයේ රසායනික සූතුය ලියන්න.
 - iv. ${
 m M_2O_3}$, ${
 m M_2$
 - v. පුමාණාත්මක විශ්ලේෂණයේ දී පුයෝජනවත් වන $L(OH)_2$ හි එක් පුතිඛ්යාවක් දෙන්න.

2006

- 6. 3d ආන්තරික මූලදුවශයක් වන M ළා කොළ පැහැති දුාවණයක් සාදමින් තනුක H_2SO_4 සමඟ පුතිකියා කරයි. NH_4OH එකතු කළ විට , මෙම දුාවණය ළා කොළ පැහැති අවක්ෂේපයක් දෙයි. වාතයට නිරාවරණය කර තැබූ විට මෙම අවක්ෂේපය කාලයත් සමඟ කහ දුඹුරු පැහැයට හැරේ.
 - i. M හඳුනාගන්න.
 - ii. M හි වඩාත් සුලබ (ධන) ඔක්සිකරණ තත්ත්ව මොනවාද?
 - iii. (II) හි දෙන ලද , ඔක්සිකරණ තත්ව එකිනෙකින් වෙන්කර හඳුනා ගැනීම සඳහා එක් පරීක්ෂාවක් දෙන්න.
 - iv. (II) නි දෙන ලද , M නි එක් එක් ඔක්සිකරණ තත්වයන් ගේ සාන්දුණ , ඒවා මිශුණයක එකට ඇති විට නිර්ණය කිරීම සඳහා කුමයක් කෙටියෙන් දක්වන්න.
 - v. ඉහත සඳහන් කරන ලද , ලා කොළ පැහැති සහ කහ දුඹුරු පැහැති අවක්ෂේප වලට හේතු වන විශේෂයන් හඳුනා ගන්න.
 - vi. රසායනික කර්මාන්තයේ දී උත්පේුරකයක් ලෙස M භාවිතා කෙරෙන එක් අවස්ථාවක් දෙන්න.
 - vii. M නිස්සාරණය කිරීම සඳහා යොදා ගැනෙන ඔනිජ දෙකක රසායනික සූතු සහ නම් සඳහන් කරන්න.

2008

- 7. A යනු M නම් ලෝහමය මූලදුවසය අඩංගු වර්ණවත් අකාබනික ලවණයකි. A රත්කළ විට, B (M₂O₃) නම් කොළ පැහැති ශේෂයක් , C නම් අවර්ණ වායුවක් සහ ජල වාෂ්ප දෙමින් වියෝජනය වේ. A හි මවුල එකක්, B ශේෂයේ මවුල එකක් ලබා දේ. D නම් සුදු පැහැති ඝනයක් සාදමින් C වායුව රත් කරන ලද මැග්නීසියම් සමඟ ප්‍රතිකුියා කරයි. රතු ලිට්මස් නිල් පැහැයට හරවන E නම් වායුවක් ලබා දෙමින් D ජලය සමඟ ප්‍රතිකුියා කරයි. A , Na₂CO₃ දාවණයක් සමඟ රත් කළ විට ද, E වායුව සෑදේ. B නම් කොළ පැහැති ශේෂය, ක්ෂාරිය H₂O₂ දාවණයක් සමඟ උණුසුම් කළ විට කහ පැහැති දාවණයක් ලබා දේ.
 - i. A, B, C, D සහ E හඳුන්වන්න.
 - ii. අදාළ පුතිකුියා සඳහා තුලිත රසායනික සමීකරණ ලියන්න.

2009

- 8. 3d ගොනුවේ මූලදුවසයක් වන M, සූතුය 2MXO₃ . M(OH)₂ වන A සංයෝගයක් සාදයි. මෙහි X මූලදුවසය, p ගොනුවට අයත් වේ. A සංයෝගය සාන්දු HCl සමඟ පුතිකියා කර අවර්ණ ගන්ධයක් නොමැති B වායුවක් හා කහ පැහැති C දාවණයක් ලබා දෙයි. A තනුක HCl සමඟ පුතිකියා කළ විට (අවර්ණ හා ගන්ධයක් නොමැති) එම B වායුවත් M හි සංකීර්ණ අයන දෙකක් අඩංගු කොළ පැහැති D දාවණයකුත් ලබා දෙයි. D දාවණය ජලය සමඟ තනුක කළ විට ලා නිල් පැහැති E දාවණයක් ලබා දෙයි. NH₄OH සුළු පුමාණයක් E ට එකතු කළ විට නිල් පැහැති G පැවණයක් සෑදෙයි. වැඩිපුර NH₄OH වල F දාවණය වී තද නිල් පැහැති G දාවණයක් සාදයි. වැඩිපුර KI සමඟ E දාවණය පිරියම් කළ විට , එල ලෙස MI අවක්ෂේපය සහ අයඩින් පමණක් සෑදේ.
 - i. M සහ X යන මූලදුවෘ හඳුනාගන්න.

- ii. M හි ඉලෙක්ටෝනික විනපාසය දෙන්න.
- iii. M හි බනුලව පවතින ඔක්සිකරණ අංක දක්වන්න.
- iv. පනත සඳහන් දුාවණ වල වර්ණ සඳහා හේතුවන අයනික විශේෂවල සූතු ලියා ඒවායේ IUPAC නාම දෙන්න.
 - i. C දුාවණය
 - ii. D දාවණය
 - iii. E දාවණය
 - iv. G දාවණය
- v. B වායුව සහ F අවක්ෂේපය හඳුනාගන්න.
- vi. E දුාවණය වැඩිපුර KI සමඟ දක්වන පුතිතියාව සඳහා වන තුලිත රසායනික සමීකරණය දෙන්න.
- vii. KI සමඟ E හි පුතිකුියාව භාවිතා කර, සපයා ඇති A හි නියැදියක M හි ස්කන්ධ පුතිශතය පරීක්ෂණාත්මකව නිර්ණය කිරීමේ පියවර සඳහන් කරන්න.
 - ඔබේ පරීක්ෂණාත්මක දත්ත ඇසුරෙන් M හි ස්කන්ධ පුතිශතය ගණනය කරනු ලබන ආකාරය දක්වන්න.
- viii. උණු සාන්දු $\mathrm{H}_2\mathrm{SO}_4$ සමඟ වෙන් වෙන්ව M සහ X දක්වන පුතිකුියා සඳහා තුලිත සමීකරණ ලියන්න.
- ix. පහසුවෙන් ඔක්සිකරණය වන සමහර සංයෝග සමඟ භාෂ්මික තත්ව යටතේ M හි සාමාන්ෂයෙන් පවතින ලවණ රත් කළ විට , $M_2 O$ අවක්ෂේප වේ. මෙම කුියාවලිය සඳහා තුලිත අර්ධ පුතිකුියාවක් ලියා , එම පුතිකුියාවෙහි එක් වැදගත් පුයෝජනයක් දෙන්න.
- x. M හි වැදගත් වාණිජමය භාවිත දෙකක් දෙන්න.

2010

9. පහත රූපයේ A සිට I තෙක් සංයෝග වල සූතු ලියන්න. (තුලිත රසායනික සමීකරණය සහ හේතු දැක්වීම අවශ්‍ය නොවේ.) එහි සහ , අවක්ෂේප , දාවණා හා වායු හිරූපණය කිරීමට පහත දැක්වෙන සංකේත භාවිතා කරන්න.

2012

10. P අවර්ණ වායුව ජලය තුළට යවා සාදා ගන්නා Z ජලීය දාවණයක් සමඟ (1) සහ (2) පරීක්ෂණ සිදු කරන ලදී. පරීක්ෂණ හා නිරීක්ෂණ පහත දක්වා ඇත.

	පරීක්ෂණය	නිරීක්ෂණය
1)	එම දුාවණායට ආම්ලිකෘත ${ m K_2Cr_2O_7}$ දාවණයක් එක් කරන ලදී.	පැහැදිලි කොළ පැහැති දුාවණයක් ලැබුණි.
2)	එම දුාවණායට $\mathrm{H_2O_2}$ එක් කර රත් කරන ලදී. ඉන්පසු $\mathrm{BaCl_2}$ දුාවණායක් එක් කරන ලදී.	තනුක HCl නි අදාවප සුදු පැහැති අවක්ෂේපයක් සෑදුණි.

- i. P වායුව හඳුනා ගන්න. (හේතු දැක්වීම අවශෘ නැත)
- ii. 1) සහ 2) පරික්ෂණයන්හි සිදුවන පුතිඛුයා සඳහා තුලිත සමීකරණ දෙන්න.
- iii. Q වායුව Z දාවණය තුළින් යැවූ විට ළා කහ පැහැති (සුදු ලෙස පෙනිය හැකි) ආවිලතාවයක් ලැබුණි.
 - a. Q වායුව හඳුනා ගන්න. (හේතු දැක්වීම අවශෘ නැත)
 - b. මෙම පුතිකුියාව සඳහා තුලිත රසායනික සමීකරණය දෙන්න.

2013

11. ආවර්තිතා වගුවේ 3d ගොනුවේ මුලදවෘයක් සංයෝග වල පුතිකියා පහත දී ඇත.

A , B , C , D , E , F , G සහ H විශේෂ හඳුනාගන්න.

2013