

SIMULATIONS AND BOOTSTRAPPING

Jeff Goldsmith, PhD Department of Biostatistics

Repeated sampling

- "Repeated sampling" is a conceptual framework that underlies almost all of statistics
 - Repeatedly draw random samples of the same size from a population
 - For each sample, compute the mean
 - The distribution of the sample mean converges to a Normal distribution
- Repeated sampling doesn't happen in reality
 - Data are difficult and expensive to collect
 - You get your data, and that's pretty much it
- Repeated sampling can happen on a computer

Simulation

- Hard to overstate how important and useful simulations are in statistics
- Basic idea is to generate repeated samples under a process you design
 - Define a data generating mechanism (e.g. a Normal distribution)
 - Draw a random sample from that data generating mechanism
 - Analyze the sample (e.g. compute the sample mean)
 - Repeat
 - Understand the analysis approach under repeated sampling

Simulation

- Hard to overstate how important and useful simulations are in statistics
- Basic idea is to generate repeated samples under a process you design
 - Define a data generating mechanism (e.g. a Normal distribution)
 - Draw a random sample from that data generating mechanism
 - Analyze the sample (e.g. compute the sample mean)
 - Repeat
 - Understand the analysis approach under repeated sampling
- Might vary the underlying process to inspect changes
 - Different sample size
 - Different covariate effect

Coding a simulation

- Simulations are natural in the context of iteration.
- Write a function (or functions) to:
 - Define data generating mechanism
 - Draw a sample
 - Analyze the sample
 - Return object of interest
- Use a loop / loop function to repeat many times
- Inspect the properties of your analysis ...

Coding a simulation

- Simulations are natural in the context of iteration
- Write a function (or functions) to:
 - Define data generating mechanism
 - Draw a sample
 - Analyze the sample
 - Return object of interest
- Use a loop / loop function to repeat many times
- Inspect the properties of your analysis ...

...under repeated sampling!!!

Coding a simulation

- Simulations are natural in the context of iteration
- Write a function (or functions) to:
 - Define data generating mechanism
 - Draw a sample
 - Analyze the sample
 - Return object of interest
- Use a loop / loop function to repeat many times
- Inspect the properties of your analysis ...

...under repeated sampling!!!

Bootstrapping

- Hard to overstate how important and useful bootstrapping is in statistics
- Basic idea is to mimic repeated sampling with the one sample you have
 - That sample is draw at random from your population
 - You'd like to draw more samples, but you can't
 - So you draw a bootstrap sample from the one sample you have
 - The bootstrap sample has the same size as the original sample, and is drawn with replacement
 - Repeat

Why bootstrap?

- The repeated sampling framework often provides useful theoretical results under certain assumptions or asymptotics
 - Sample means follow a known distribution
 - Regression coefficients follow a known distribution
 - Odds ratios follow a known distribution
- If your assumptions aren't met, or your sample isn't large enough for asymptotics, you can't use the "known distribution"
- Bootstrapping gets you back to repeated sampling, and uses an empirical rather than a theoretical distribution for your statistic of interest

Coding the bootstrap

- Bootstrapping is natural in the context of iteration
- Write a function (or functions) to:
 - Draw a sample with replacement
 - Analyze the sample
 - Return object of interest
- Repeat this process many times
- Keeping track of the bootstrap samples, analyses, and results in a single data frame organizes the process and prevents mistakes

Coding the bootstrap

- Bootstrapping is natural in the context of iteration
- Write a function (or functions) to:
 - Draw a sample with replacement
 - Analyze the sample
 - Return object of interest
- Repeat this process many times
- Keeping track of the bootstrap samples, analyses, and results in a single data frame organizes the process and prevents mistakes

That's why you use LIST COLUMNS!!

Coding the bootstrap

- Bootstrapping is natural in the context of iteration
- Write a function (or functions) to:
 - Draw a sample with replacement
 - Analyze the sample
 - Return object of interest
- Repeat this process many times

 Keeping track of the bootstrap samples, analyses, and results in a single data frame organizes the process and prevents mistakes

That's why you use LIST COLUMNS!!