Exercice 1.

1) Pour chaque cas, tracer les trois rayons caractéristiques pour obtenir l'image de la flèche. Décrire cette image

Attendus :

- # Savoir modéliser une lunette astronomique avec des lentilles convergentes
- # Savoir identifier et définir l'objectif (de la lunette) et l'oculaire
- # Savoir tracer les rayons pour l'objectif et l'oculaire
- # Définir système afocal
- # Connaître le vocabulaire : axe optique, centre optique, distance focale, foyer objet, foyer image

Activité 1.

Le grossissement d'une lunette est une grandeur sans unité liée aux angles sous lesquels on observe l'objet à l'œil nu et son image à travers l'instrument.

Un objet AB (A étant sur l'axe optique ; AB est perpendiculaire à l'axe optique) situé à l'infini donne une image A_1B_1 (perpendiculaire à l'axe optique) à travers l'objectif.

L'objet A_1B_1 donne une image A'B' à travers l'oculaire.

À l'œil nu, l'objet AB est vu sous un angle θ et l'image A'B' est vue à travers la lunette sous l'angle θ' .

2) Tracer le rayon permettant de justifier la position de B_1 .

- 3) Dans le triangle $O_1F_1'B_1$, établir une relation entre l'angle θ , la longueur $F_1'B_1$ et la longueur O_1F_1' .
- 4) Dans le triangle $O_2F_2B_1$, établir une relation entre l'angle θ' , la longueur F_2B_1 et la longueur O_2F_2 .
- 5) Que peut-on dire de $F_1'B_1$ et F_2B_1 ?
- 6) Les angles θ et θ' étant « petits », simplifier et exprimer le rapport $\frac{\theta'}{\theta}$.

Attendus:

- # Identifier et positionner les angles de l'objet vu à l'œil nu et de l'objet vu à travers la lunette.
- # Établir l'expression du grossissement d'une lunette afocale.
- # Exploiter les données caractéristiques d'une lunette commerciale.

#

Exercice 2.

On représente ci-contre un faisceau lumineux délimités par deux rayons issus d'un point B d'un objet situé à l'infini. Ces rayons arrivent sur une lentille mince convergente L_1 de distance focale $f_1' = 20 \ cm$.

Une deuxième lentille mince convergente L_2 (non représentée), de distance focale $f_2^\prime=5.0~cm$ est placée sur l'axe optique de L_1 .

On prendra comme échelle 1,0 cm sur le schéma pour 5,0 cm en réalité.

- 7) Comment nomme-t-on la lentille L_1 et la lentille L_2 dans la modélisation d'une lunette astronomique afocale ?
- 8) Que signifie « afocale »?
- 9) Où l'image intermédiaire B_1 du point objet B à travers L_1 se forme-t-elle ?
- 10)Tracer le trajet du faisceau lumineux entre les lentilles L_1 et L_2 .
- 11) Où l'image B' de B_1 donnée par L_2 se forme-t-elle ?
- 12) Comment les rayons émergent-ils de L_2 ?
- 13)Prolonger les rayons émergeant de la lunette astronomique.

Exercice 3.

On schématise une lunette astronomique afocale modélisé par deux lentilles minces convergents L_1 et L_2 . Les distances focales respectives sont $f_1' = 800 \ mm$ et $f_2' = 100 \ mm$.

Rappels: Relation de conjugaison

$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{\overline{OF'}}$$

- 14) Justifier quelle lentille modélise l'objectif et quelle lentille modélise l'oculaire.
- 15) À l'aide de la relation de conjugaison, déterminer la position de l'image intermédiaire A_1B_1 de l'objet AB à travers L_1 .

- 16)La relation de conjugaison nous permet-elle de déterminer la position de l'image A'B' de l'objet A_1B_1 à travers L_2 ?
- 17)Quel est le grossissement de cette lunette astronomique?
- 18) Que peut-on dire de l'image A'B', est-elle droite ou renversée ? Est-ce un problème pour l'observateur ? Justifier.
- 19) Les rayons émergeant de L_2 sont parallèles entre eux, qu'est-ce que ce la implique pour l'observateur ? Justifier.