

напруга прикладена і до гілки з опором X_2 , тому будуємо вектор струму $\underline{\mathbf{I}}_2$, що тече через цей опір, випереджаючим вектор напруги $\underline{\mathbf{U}}_{ac}$ на кут в 90°. Побудувавши обидва вектори струму $\underline{\mathbf{I}}_1$ та $\underline{\mathbf{I}}_2$ і користуючись першим законом Кірхгофа, будуємо вектор струму $\underline{\mathbf{I}}_3$ за правилом паралелограма. Далі з точки c будуємо вектор напруги $\underline{\mathbf{U}}_{cd}$ на резисторі R_3 , який співпадає з напрямком струму $\underline{\mathbf{I}}_3$, і отримуємо точку d. Із точки d будуємо вектор напруги $\underline{\mathbf{U}}_{de}$, на індуктивності з опором X_3 , який випереджує напрямок струму $\underline{\mathbf{I}}_3$ на кут 90°, і отримуємо точку e. Далі із точки e будуємо вектор напруги $\underline{\mathbf{U}}_{ef}$ на конденсаторі з опором X_4 , який відстає від вектора струму $\underline{\mathbf{I}}_3$ на кут 90°, та отримуємо точку f. З'єднуючи точки f і a отримуємо вектор напруги $\underline{\mathbf{U}}_{fa}$, який в свою чергу є вектором вхідної напруги $\underline{\mathbf{E}}$. Внаслідок побудов отримано суміщену векторну діаграму струмів і топографічну діаграму напруг.

3. Порядок виконання роботи

1. Для виконання даної лабораторної роботи можна використовувати лабораторний стенд №8 або скористатися магазинами резисторів, індуктивностей та ємностей. Але в будьякому випадку необхідно зібрати вимірювальну частину схеми рис.19 і по черзі, підключаючи до виходу схеми елементи, вказані в табл.7, провести необхідні вимірювання.

Таблиця7

Параметри	R1	R 2	L,	R4	C
U,B	19, 2	16,3	195	18,1	201.
I,A	184,2.	7:8	120	WE	70 Z
ф, град.	0	0	75	0	-32

2. Використовуючи дані табл.7, розрахувати значення активних опорів резисторів R1, R2, R_K , R4, R_C і значення реактивних опорів індуктивності та ємності X_K , X_C . З'ясувати у викладача кількість джерел ЕРС, позначення та значення іх напруги у схемі, при яких необхідно розрахувати задане коло, і методи аналізу цього ланцюга. Всі ці дані занесить у табл.8.

Таблиця 8

E_1 ,B	E_2 ,B	E_3 ,B	<i>R</i> 1,Ом	R2,Ом	Рк , Ом	$X_{\rm K}$,Ом	R4,Ом	R_{C} ,OM	X_{C} ,Ом
25		-	167,2	232	22,14	45,63	102,7	2-7,1	-1417
			1: 2	22	,	,	44		

3. Розрахувати відповідно до завдання електричний ланцюг (рис 20), використовуючи символічний метод розрахунку, тобто необхідно визначити діючі значення струмів схеми заданими методами та діючі значення напруг на елементах кола. Перевірити

33