Příklady z Diskrétní matematiky 2017-10-16

Množiny a relace

Russelův paradox

O množině x řekneme, že je divoká, pokud $x \in x$; v opačném případě je x krotká. Kdyby existovala množina U všech množin, můžeme z ní vydělit podmnožinu K všech krotkých množin. Je ale K divoká, nebo krotká? Ani jedno: pokud $K \in K$, pak $K \notin K$, a naopak. Tedy množina všech množin neexistuje.

3 operace

Určete maximální počet různých množin, které lze získat ze dvou zadaných množin operacemi průniku, sjednocení a množinového rozdílu.

Vlastnosti relací

Dokažte, že pro relaci R na množině X platí:

- a) R je reflexivní $\Leftrightarrow \Delta_X \subseteq R$, kde $\Delta_X = \{(x, x) \mid x \in X\}$.
- b) R je symetrická $\Leftrightarrow R = R^{-1}$.
- c) R je antisymetrická $\Leftrightarrow R \cup R^{-1} \subseteq \Delta_X$.
- d) R je $tranzitivni \Leftrightarrow R \circ R \subseteq R$.

Relace podobojí

Najděte relaci na {1, 2, 3, 4}, která je současně symetrická i antisymetrická.

Relace podžádnou

Najděte relaci na $\{1,2,3,4\}$, která není ani symetrická, ani antisymetrická.

Prostá funkce

Dokažte, že funkce na konečné množině je prostá pravě tehdy, když je na. Platí to i pro nekonečnou množinu?

Skládání relací

Jak vypadá relace $R \circ R$, označuje-li R:

- a) relaci rovnosti na množině N,
- b) relaci \leq na \mathbb{N} ,
- c) relaci < na N,
- d) relaci < na \mathbb{R} .

Něco navíc:

Stejné potence

Dokažte, že pokud se potence dvou množin rovnají, pak se rovnají i množiny samy. Tedy že $2^A = 2^B \Rightarrow A = B$ pro libovolné množiny A, B.