Numerical Analysis and Programming

Lab Worksheet #12

We will simulate a spontaneous decay process of nuclei in this exercise. The decay rate of the radioactive nuclei is given by

$$\frac{dN}{dt} = -\frac{1}{\tau}N$$

where N is the number of undecayed nuclei at time t, and τ is the life-time. Rewrite the equation in the discrete time, and set $\Delta t = 1$, we have

$$\Delta N = -\frac{1}{\tau}N = -\lambda N$$

The probability of a nucleus to decay per generation is then λ with $0 \le \lambda \le 1$.

- 1. Assume at the beginning we have $N_0=10000~{\rm Co^{60}}$ nuclei with a half-life $t_{1/2}=5.27$ years. Notice $t_{1/2}=\tau \ln(2)$. Write a program to simulate the decay process with the updating scheme:
 - (a) Scan through each nucleus. Examine whether the nucleus has decayed. If not, generate a random number r between 0 and 1.
 - (b) If $r < \lambda$ then mark the nucleus as decayed, otherwise the nucleus remains undecayed.
 - (c) Repeat the process until no nucleus is found undecayed.

Assume Δt = 1 month and monitor the number of the undecayed nuclei. Estimate the half-life from your data.