(Hetero)cyclylcarboxanilide zur Bekämpfung von Schadpilzen

Beschreibung

Die vorliegende Erfindung betrifft (hetero)cyclische Carbonsäureanilide mit einer Oximetherfunktion und deren Verwendung zur Bekämpfung von Schadpilzen.

Die WO 02/08195 beschreibt fungizid wirksame 1,3-Dimethyl-5-fluorpyrazol-4-carbonsäureanilide, die in der 2-Position des Phenylrings eine Phenylgruppe mit Oximethergruppe aufweisen. Aus der WO 02/08197 sind strukturell ähnliche Hetarylanilide bekannt. Die WO 98/03500 beschreibt Carbanilide, die am Phenylring u. a. auch eine Oximarylether-Gruppe aufweisen können. Beispiele werden hierfür jedoch nicht gegeben.

Die dort beschriebenen (Heteroaryl)carbonsäureanilide sind jedoch insbesondere bei niedrigen Aufwandmengen nicht in vollem Umfang zufriedenstellend. Aufgabe der vorliegenden Erfindung war es, neue (Heterocyclyl)carbonsäureanilid-Derivate zur Verfügung zu stellen.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, fungizid wirkende Verbindungen bereitzustellen, die die Nachteile der aus dem Stand der Technik bekannten Verbindungen überwinden und insbesondere eine verbesserte Wirkung bei niedrigen Aufwandmengen zeigen. Außerdem sollten diese Verbindungen eine gute Nutzpflanzenverträglichkeit aufweisen und möglichst keine oder nur eine geringe Schädlichkeit gegenüber tierischen Nützlingen zeigen.

Diese Aufgabe wird durch die im Folgenden beschriebenen (Hetero)cyclylcarboxanilide der allgemeinen Formel I und durch ihre landwirtschaftlich verträglichen Salze gelöst.

30 Die vorliegende Erfindung betrifft daher (Hetero)cyclylcarboxanilide der allgemeinen Formel 1,

$$A = \begin{pmatrix} R^2 \\ N \\ R^1 \end{pmatrix} \begin{pmatrix} R^{3m} \\ R^{4m} \end{pmatrix} \begin{pmatrix} R^{4m} \\ R^5 \end{pmatrix} \begin{pmatrix} R^6 \\ R^5 \end{pmatrix} \begin{pmatrix} R^6 \\ R^5 \end{pmatrix}$$

PEST AVAILABLE COPY

in denen die Variablen die folgenden Bedeutungen haben:

- A Phenyl oder ein wenigstens einfach ungesättigter 5- oder 6-gliedrigen Heterocyclus mit 1, 2 oder 3, unter N, O, S, S(=O) und S(=O)₂ ausgewählten Heteroatomen als Ringglieder, wobei Phenyl und der wenigstens einfach ungesättigte 5- oder 6-gliedrige Heterocyclus unsubstituiert sein können oder 1, 2 oder 3 Reste R^a tragen können, wobei
- für Halogen, Nitro, CN, C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₄-Alkenyl,

 C₂-C₄-Alkinyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, C₃-C₆-Halogencycloalkyl,

 C₂-C₄-Halogenalkenyl, C₂-C₄-Halogenalkinyl, C₁-C₄-Halogenalkoxy oder

 Phenyl steht, wobei Phenyl unsubstituiert sein kann oder ein, zwei oder drei

 Reste R^b trägt, die ausgewählt sind unter Halogen, Nitro, CN, C₁-C₄-Alkyl,

 C₃-C₆-Cycloalkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₁-C₄-Alkoxy,

 C₁-C₄-Halogenalkyl, C₃-C₆-Halogencycloalkyl, C₂-C₄-Halogenalkenyl,

 C₂-C₄-Halogenalkinyl und C₁-C₄-Halogenalkoxy;
 - Y Sauerstoff oder Schwefel;

5

- 20 R¹ H, OH, C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, C₃-C₆-Halogencycloalkyl oder C₁-C₄-Halogenalkoxy;
 - Halogen, Nitro, CN, C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, C₃-C₆-Halogencycloalkyl, C₂-C₄-Halogenalkenyl, C₂-C₄-Halogenalkinyl oder C₁-C₄-Halogenalkoxy;
- R^{3m}, R^{4m} jeweils unabhängig voneinander Halogen, Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, Phenyl, Phenyl-C₁-C₄-alkyl, Phenyl-C₂-C₄-alkenyl, Phenyl-C₂-C₄-alkinyl, C₁-C₆-Halogenalkyl,
 C₃-C₆-Halogencycloalkyl, C₂-C₆-Halogenalkenyl, C₂-C₆-Halogenalkinyl, Phenyl-C₁-C₄-halogenalkyl, Phenyl-C₂-C₄-halogenalkenyl oder Phenyl-C₂-C₄-halogenalkinyl, wobei Phenyl oder der Phenylteil von Phenyl-C₁-C₄-alkyl, Phenyl-C₂-C₄-alkenyl, Phenyl-C₂-C₄-alkinyl, Phenyl-C₁-C₄-halogenalkyl, Phenyl-C₂-C₄-halogenalkenyl und Phenyl-C₂-C₄-halogenalkinyl unsubstituiert sein können oder ein, zwei oder drei Reste R^b tragen können; für m = 2 oder 3, die Variablen R³², R⁴² beziehungsweise R³³, R⁴³ auch für C₁-C₆-Alkoxy stehen können;

Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, Phenyl, Phenyl-C₁-C₄-alkyl, Phenyl-C₂-C₄-alkenyl, Phenyl-C₂-C₄-alkinyl, C₁-C₆-Halogenalkyl, C₃-C₆-Halogencycloalkyl, C₂-C₆-Halogenalkenyl, C₂-C₆-Halogenalkinyl, Phenyl-C₁-C₄-halogenalkyl, Phenyl-C₂-C₄-halogenalkenyl oder Phenyl-C₂-C₄-halogenalkinyl, wobei Phenyl oder der Phenylteil von Phenyl-C₁-C₄-alkyl, Phenyl-C₂-C₄-alkenyl, Phenyl-C₂-C₄-alkinyl, Phenyl-C₁-C₄-halogenalkyl, Phenyl-C₂-C₄-halogenalkenyl, Phenyl-C₂-C₄-halogenalkinyl unsubstituiert sein können oder ein, zwei oder drei Reste R^b tragen können;

10

15

5

- Wasserstoff, C₁-C₈-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₈-Alkenyl, C₂-C₈-Alkinyl, C₁-C₈-Halogenalkyl, C₃-C₆-Halogencycloalkyl, C₂-C₈-Halogenalkenyl, C₂-C₈-Halogenalkinyl, Phenyl, Naphthyl, Phenyl-C₁-C₆-alkyl, Naphthyl-C₁-C₆-alkyl, Phenyl-C₂-C₆-alkenyl, Phenyl-C₂-C₆-alkinyl, Phenyl-C₁-C₆-halogenalkyl, Phenyl-C₂-C₆-halogenalkenyl oder Phenyl-C₂-C₆-halogenalkinyl, wobei Phenyl und Naphthyl in den 9 zuletzt genannten Gruppen unsubstituiert sein können oder 1, 2 oder 3 unter R^b und R⁷ ausgewählte Substituenten tragen können, wobei R⁷ für-(CR⁸)=NOR⁹ steht, worin
- 20 R⁸ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Halogenalkyl, C₃-C₆-Halogencycloalkyl, C₂-C₆-Halogenalkenyl, C₂-C₆-Halogenalkinyl, Phenyl, Benzyl; wobei Phenyl und die Phenylgruppe in Benzyl unsubstituiert sein können oder ein, zwei oder drei Reste R^b tragen können; und

25

R⁹ C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Halogenalkyl, C₃-C₆-Halogencycloalkyl, C₂-C₆-Halogenalkenyl, C₂-C₆-Halogenalkinyl, Phenyl, Phenyl-C₁-C₄-alkyl, Phenyl-C₁-C₄-alkyl, Phenyl-C₁-C₄-alkenyl, Phenyl-C₂-C₄-alkenyl, Phenyl-C₂-C₄-alkinyl, Phenyl-C₂-C₄-alkinyl, Phenyl-C₂-C₄-alkinyl, Phenyl-C₁-C₄-alkyl, Phenyl-C₁-C₄-alkyl, Phenyl-C₁-C₄-alkenyl, Phenyl-C₂-C₄-alkenyl, Phenyl-C₂-C₄-alkenyl, Phenyl-C₂-C₄-alkinyl und Phenyl-C₂-C₄-halogenalkinyl unsubstituiert sein können oder ein, zwei oder drei Reste R^b tragen können;

n 0, 1, 2, 3 oder 4; und

m 1, 2 oder 3;

und deren landwirtschaftlich brauchbaren Salze.

Die vorliegende Erfindung betrifft außerdem die Verwendung der (Hetero)cyclylcarboxanilide der allgemeinen Formel I und deren landwirtschaftlich brauchbaren Salze als Fungizide sowie diese enthaltende Pflanzenschutzmittel.

Die vorliegende Erfindung betrifft weiterhin ein Verfahren zur Bekämpfung von pflanzenpathogenen Pilzen (Schadpilzen), das dadurch gekennzeichnet ist, dass man die
Schadpilze, deren Lebensraum oder die von ihnen freizuhaltenden Pflanzen, Flächen,
Materialien oder Räume mit einer fungizid wirksamen Menge eines (Hetero)cyclylcarboxanilids der allgemeinen Formel I und/oder einem landwirtschaftlich brauchbaren Salz von I behandelt.

15

20

Die Verbindungen der Formel I können je nach Substitutionsmuster ein oder mehrere Chiralitätszentren aufweisen und liegen dann als Enantiomeren- oder Diastereomerengemische vor. Gegenstand der Erfindung sind sowohl die reinen Enantiomere oder Diastereomere als auch deren Gemische. Geeignete Verbindungen der Formel I umfassen auch alle möglichen Stereoisomere (cis/trans-Isomere) und Gemische davon.

25

Unter landwirtschaftlich brauchbaren Salzen kommen vor allem die Salze derjenigen Kationen oder die Säureadditionssalze derjenigen Säuren in Betracht, deren Kationen beziehungsweise Anionen die fungizide Wirkung der Verbindungen I nicht negativ beeinträchtigen. So kommen als Kationen insbesondere die Ionen der Alkalimetalle, vorzugsweise Natrium und Kalium, der Erdalkalimetalle, vorzugsweise Calcium, Magnesium und Barium, und der Übergangsmetalle, vorzugsweise Mangan, Kupfer, Zink und Eisen, sowie das Ammoniumion, das gewünschtenfalls ein bis vier C₁-C₄-Alkylsubstituenten und/oder einen Phenyl- oder Benzylsubstituenten tragen kann, vorzugsweise Diisopropylammonium, Tetramethylammonium, Tetrabutylammonium, Trimethylbenzylammonium, des weiteren Phosphoniumionen, Sulfoniumionen, vorzugsweise Tri(C₁-C₄-alkyl)sulfonium und Sulfoxoniumionen, vorzugsweise Tri(C₁-C₄-alkyl)sulfonium und Sulfoxoniumionen, vorzugsweise Tri(C₁-C₄-alkyl)sulfoxonium, in Betracht.

35 A

30

Anionen von brauchbaren Säureadditionssalzen sind in erster Linie Chlorid, Bromid, Fluorid, Hydrogensulfat, Sulfat, Dihydrogenphosphat, Hydrogenphosphat, Phosphat, Nitrat, Hydrogencarbonat, Carbonat, Hexafluorosilikat, Hexafluorophosphat, Benzoat, sowie die Anionen von C₁-C₄-Alkansäuren, vorzugsweise Formiat, Acetat, Propionat

und Butyrat. Sie können durch Reaktion von I mit einer Säure des entsprechenden Anions, vorzugsweise der Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure. Phosphorsäure oder Salpetersäure, gebildet werden.

- Bei den in den vorstehenden Formeln angegebenen Definitionen der Variablen werden Sammelbegriffe verwendet, die allgemein repräsentativ für die jeweiligen Substituenten stehen. Die Bedeutung Cn-Cm gibt die jeweils mögliche Anzahl von Kohlenstoffatomen in dem jeweiligen Substituenten oder Substituententeil an. Sämtliche Kohlenstoffketten, also alle Alkyl-, Halogenalkyl-, Phenylalkyl-, Alkenyl-, Halogenalkenyl-, Phenylalkenyl-, Alkinyl-, Halogenalkinyl- und Phenylalkinyl-Teile können geradkettig oder verzweigt sein. Halogenierte Substituenten tragen vorzugsweise ein bis fünf gleiche oder verschiedene Halogenatome. Die Bedeutung Halogen steht jeweils für Fluor, Chlor, Brom oder lod.
- 15 Ferner stehen beispielsweise:
 - C₁-C₄-Alkyl für: CH₃, C₂H₅, CH₂-C₂H₅, CH(CH₃)₂, n-Butyl, CH(CH₃)-C₂H₅, CH₂-CH(CH₃)₂ oder C(CH₃)₃;
- C₁-C₄-Halogenalkyl: für einen C₁-C₄-Alkylrest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder lod substituiert ist, also z.B. CH₂F, CHF₂, CF₃, CH₂Cl, CH(Cl)₂, C(Cl)₃, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 2-Fluorethyl, 2-Chlorethyl, 2-Bromethyl, 2-Iodethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, C₂F₅, 2-Fluorpropyl, 3-Fluorpropyl, 2,2-Difluorpropyl, 2,3-Difluorpropyl, 2-Chlorpropyl, 3-Chlorpropyl, 3-Fluorpropyl, 2,3-Dichlorpropyl, 2-Brompropyl, 3-Brompropyl, 3,3,3-Trifluorpropyl, 3,3,3-Trichlorpropyl, CH₂-C₂F₅, CF₂-C₂F₅, 1-(Fluormethyl)-2-fluorethyl, 1-(Chlormethyl)-2-chlorethyl, 1-(Brommethyl)-2-bromethyl, 4-Fluorbutyl, 4-Chlorbutyl, 4-Brombutyl oder Nonafluorbutyl;
- C₁-Cଃ-Alkyl: für einen C₁-C₄-Alkylrest wie vorstehend genannt, oder für z.B. n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl oder 1-Ethyl-2-methylpropyl, vor-

zugsweise für CH₃, C₂H₅, CH₂-C₂H₅, CH(CH₃)₂, n–Butyl, C(CH₃)₃, n–Pentyl, n-Heptyl oder n-Octyl;

- C₁-C₈-Halogenalkyl: für einen C₁-C₈-Alkylrest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder lod substituiert ist, also z.B. für einen der unter C₁-C₄-Halogenalkyl genannten Reste oder für 5-Fluor-1-pentyl, 5-Chlor-1-pentyl, 5-Brom-1-pentyl, 5-Iod-1-pentyl, 5,5,5-Trichlor-1-pentyl, Undecafluorpentyl, 6-Fluor-1-hexyl, 6-Chlor-1-hexyl, 6-Brom-1-hexyl, 6-Iod-1-hexyl, 6,6,6-Trichlor-1-hexyl oder Dodecafluorhexyl;
- C₂-C₄-Alkenyl: ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 4 Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position, z.B. Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Buten-1-yl, 1-Buten-2-yl, 1-Buten-3-yl, 2-Buten-1-yl, 1-Methyl-prop-1-en-1-yl, 2-Methyl-prop-1-en-1-yl, 1-Methyl-prop-2-en-1-yl;
 - C₂-C₆-Alkenyl: für C₂-C₄-Alkenyl wie vorstehend genannt sowie z. B. für n-Penten-1-yl, n-Penten-2-yl, n-Penten-3-yl, n-Penten-4-yl,
 1-Methyl-but-1-en-1-yl, 2-Methyl-but-1-en-1-yl,
 1-Methyl-but-2-en-1-yl, 2-Methyl-but-2-en-1-yl,
- 1-Methyl-but-2-en-1-yl, 2-Methyl-but-2-en-1-yl, 3-Methyl-but-2-en-1-yl,
 1-Methyl-but-3-en-1-yl, 2-Methyl-but-3-en-1-yl, 3-Methyl-but-3-en-1-yl,
 1,1-Dimethyl-prop-2-en-1-yl, 1,2-Dimethyl-prop-1-en-1-yl,
 1,2-Dimethyl-prop-2-en-1-yl, 1-Ethyl-prop-1-en-2-yl, 1-Ethyl-prop-2-en-1-yl,
 n-Hex-1-en-1-yl, n-Hex-2-en-1-yl, n-Hex-3-en-1-yl, n-Hex-4-en-1-yl.
- n-Hex-5-en-1-yl, 1-Methyl-pent-1-en-1-yl, 2-Methyl-pent-1-en-1-yl, 3-Methyl-pent-1-en-1-yl, 4-Methyl-pent-1-en-1-yl, 1-Methyl-pent-2-en-1-yl, 2-Methyl-pent-2-en-1-yl, 4-Methyl-pent-2-en-1-yl, 4-Me
 - 1-Methyl-pent-3-en-1-yl, 2-Methyl-pent-3-en-1-yl, 3-Methyl-pent-3-en-1-yl, 4-Methyl-pent-3-en-1-yl, 1-Methyl-pent-4-en-1-yl, 2-Methyl-pent-4-en-1-yl,
- 3-Methyl-pent-4-en-1-yl, 4-Methyl-pent-4-en-1-yl, 1,1-Dimethyl-but-2-en-1-yl, 1,1-Dimethyl-but-3-en-1-yl, 1,2-Dimethyl-but-1-en-1-yl, 1,2-Dimethyl-but-2-en-1-yl, 1,2-Dimethyl-but-3-en-1-yl,
 - 1,3-Dimethyl-but-1-en-1-yl, 1,3-Dimethyl-but-2-en-1-yl, 1,3-Dimethyl-but-3-en-1-yl, 2,2-Dimethyl-but-3-en-1-yl,
- 2,3-Dimethyl-but-1-en-1-yl, 2,3-Dimethyl-but-2-en-1-yl,2,3-Dimethyl-but-3-en-1-yl, 3,3-Dimethyl-but-1-en-1-yl,
 - 3,3-Dimethyl-but-2-en-1-yl, 1-Ethyl-but-1-en-1-yl, 1-Ethyl-but-2-en-1-yl, 1-Ethyl-but-3-en-1-yl, 2-Ethyl-but-1-en-1-yl, 2-Ethyl-but-2-en-1-yl,

- 2-Ethyl-but-3-en-1-yl, 1,1,2-Trimethyl-prop-2-en-1-yl, 1-Ethyl-1-methyl-prop-2-en-1-yl, 1-Ethyl-2-methyl-prop-1-en-1-yl oder 1-Ethyl-2-methyl-prop-2-en-1-yl;
- C₂-C₄-Halogenalkenyl: für ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 4 Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position (wie vorstehend genannt), wobei in diesen Gruppen die Wasserstoffatome teilweise oder vollständig gegen Halogenatome wie vorstehend genannt, insbesondere Fluor, Chlor und Brom, ersetzt sind, also z.B. 2-Chlorallyl, 3-Chlorallyl, 2,3-Dichlorallyl, 3,3-Dichlorallyl, 2,3-Trichlorallyl, 2,3-Dibromallyl, 2,3-Di
- C₂-C₆-Halogenalkenyl: für C₂-C₆-Alkenyl wie vorstehend genannt, das partiell oder vollständig durch Fluor, Chlor, Brom und/oder lod substituiert ist, z.B für die bei C₂-C₄-Halogenalkenyl genannten Reste;
- C₂-C₄-Alkinyl: geradkettige oder verzweigte Kohlenwasserstoffgruppen mit 2 bis 4 Kohlenstoffatomen und einer Dreifachbindung in einer beliebigen Position, z.B.
 Ethinyl, 1-Propinyl, 2-Propinyl (=Propargyl), 1-Butinyl, 2-Butinyl, 3-Butinyl und 1-Methyl-2-propinyl;
- C₂-C₆-Alkinyl: für geradkettige oder verzweigte Kohlenwasserstoffgruppen mit 2 bis 6 Kohlenstoffatomen und einer Dreifachbindung in einer beliebigen Position,
 z.B. Ethinyl, Prop-1-in-1-yl, Prop-2-in-1-yl, n-But-1-in-1-yl, n-But-1-in-3-yl, n-But-1-in-4-yl, n-But-1-in-4-yl, n-Pent-1-in-3-yl, n-Pent-1-in-5-yl, n-Pent-1-in-5-yl, n-Pent-1-in-5-yl, n-Pent-2-in-4-yl, n-Pent-2-in-5-yl, 3-Methyl-but-1-in-3-yl, n-Hex-1-in-1-yl, n-Hex-1-in-3-yl, n-Hex-1-in-4-yl, n-Hex-2-in-1-yl, n-Hex-2-in-4-yl, n-Hex-2-in-5-yl, n-Hex-2-in-5-yl, n-Hex-3-in-1-yl, n-Hex-3-in-2-yl, 3-Methyl-pent-1-in-1-yl, 3-Methyl-pent-1-in-3-yl, 3-Methyl-pent-1-in-4-yl und 4-Methyl-pent-2-in-5-yl;
- C₂-C₄-Halogenalkinyl: für ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 4 Kohlenstoffatomen und einer Dreifachbindung in einer beliebigen Position (wie vorstehend genannt), wobei in diesen Gruppen die Wasserstoffatome teilweise oder vollständig gegen Halogenatome wie vorstehend

genannt, insbesondere Fluor, Chlor und Brom, ersetzt sein können, also z.B. 1,1-Difluorprop-2-in-1-yl, 4-Fluorbut-2-in-1-yl, 4-Chlorbut-2-in-1-yl oder 1,1-Difluorbut-2-in-1-yl,

- C₂-C₆-Halogenalkinyl: für C₂-C₆-Alkinyl wie vorstehend genannt, das partiell oder vollständig durch Fluor, Chlor, Brom und/oder lod substituiert ist, z.B für die bei C₂-C₄-Halogenalkinyl genannten Reste;
- C₁-C₄-Alkoxy: für OCH₃, OC₂H₅, OCH₂-C₂H₅, OCH(CH₃)₂, n-Butoxy, OCH(CH₃)-C₂H₅, OCH₂-CH(CH₃)₂ oder OC(CH₃)₃;
- C₁-C₄-Halogenalkoxy: für einen C₁-C₄-Alkoxyrest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder lod substituiert ist, also z.B. OCH₂F, OCHF₂, OCF₃, OCH₂Cl, OCH(Cl)₂, OC(Cl)₃, Chlorfluormethoxy, Dichlorfluormethoxy, Chlordifluormethoxy, 2-Fluorethoxy, 2-Chlorethoxy, 2-Bromethoxy, 2-lodethoxy, 2,2-Difluorethoxy, 2,2-Trifluorethoxy, 2-Chlor-2-fluorethoxy, 2-Chlor-2-fluorethoxy, 2-Chlor-2-fluorethoxy, 2-Chlor-2-fluorethoxy, 2-Chlor-2-fluorethoxy, 2-Chlorpropoxy, 3-Fluorpropoxy, 2,2-Difluorpropoxy, 2,3-Difluorpropoxy, 2-Chlorpropoxy, 3-Chlorpropoxy, 2,3-Dichlorpropoxy, 2-Brompropoxy, 3-Brompropoxy, 3-Chlorpropoxy, 3-Trifluorpropoxy, 3-Trichlorpropoxy, OCH₂-C₂F₅, OCF₂-C₂F₅, 1-(CH₂F)-2-fluorethoxy, 1-(CH₂Cl)-2-chlorethoxy, 1-(CH₂Br)-2-bromethoxy, 4-Fluorbutoxy, 4-Chlorbutoxy, 4-Brombutoxy oder Nonafluorbutoxy, vorzugsweise für OCHF₂, OCF₃, Dichlorfluormethoxy, Chlordifluormethoxy oder 2,2,2-Trifluorethoxy;

- C₃-C₆-Cycloalkyl: für Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl;
- C₃-C₆-Cycloalkyl, das gegebenenfalls mit Halogen ein- oder mehrfach substituiert ist: für einen C₃-C₆-Cycloalkylrest wie vorstehend genannt, der unsubstituiert ist oder partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z. B. für 1-Chlorcyclopropyl, 1-Fluorcyclopropyl, 2-Chlorcyclopropyl, 2-Fluorcyclopropyl, 4-Chlorcyclohexyl, 4-Bromcyclohexyl;
- Phenyl-C₁-C₄-alkyl: für C₁-C₄-Alkyl, welches mit Phenyl substituiert ist, z.B. für
 Benzyl, 1- oder 2-Phenylethyl, 1-, 2- oder 3-Phenylpropyl, wobei der Phenylteil unsubstituiert sein kann oder 1, 2 oder 3 Reste R^b tragen kann, worin R^b ausgewählt ist unter Halogen, Nitro, CN, C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl und C₁-C₄-Alkoxy, wobei die 5 zuletzt genannten Gruppen durch

Halogen substituiert sein können;

20

30

- Phenyl-C₁-C₄-halogenalkyl: für C₁-C₄-Halogenalkyl, welches mit Phenyl substituiert ist, wobei der Phenylteil unsubstituiert sein kann oder 1, 2 oder 3 Reste R^b
 tragen kann, worin R^b ausgewählt ist unter Halogen, Nitro, CN, C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl und C₁-C₄-Alkoxy, wobei die 5 zuletzt genannten Gruppen durch Halogen substituiert sein können;
- Phenyl-C₂-C₄-alkenyl: für C₂-C₄-Alkenyl, welches mit Phenyl substituiert ist, z.B.
 für 1- oder 2-Phenylethenyl, 1-Phenylprop-2-en-1-yl, 3-Phenyl-1-propen-1-yl,
 3-Phenyl-2-propen-1-yl, 4-Phenyl-1-buten-1-yl oder 4-Phenyl-2-buten-1-yl; wobei der Phenylteil von unsubstituiert sein oder 1, 2 oder 3 Reste R^b tragen kann, worin R^b ausgewählt ist unter Halogen, Nitro, CN, C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl und C₁-C₄-Alkoxy, wobei die 5 zuletzt genannten
 Gruppen durch Halogen substituiert sein können;
 - Phenyl-C₂-C₄-halogenalkenyl: für C₂-C₄-Halogenalkenyl, welches mit Phenyl substituiert ist, wobei der Phenylteil unsubstituiert sein kann oder 1, 2 oder 3 Reste R^b tragen kann, worin R^b ausgewählt ist unter Halogen, Nitro, CN, C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl und C₁-C₄-Alkoxy, wobei die 5 zuletzt genannten Gruppen durch Halogen substituiert sein können;
- Phenyl-C₂-C₄-alkinyl: für C₂-C₄-Alkinyl, welches mit Phenyl substituiert ist, z.B. für 1-Phenyl-2-propin-1-yl, 3-Phenyl-1-propin-1-yl, 3-Phenyl-2-propin-1-yl,
 4-Phenyl-1-butin-1-yl oder 4-Phenyl-2-butin-1-yl; wobei der Phenylteil von Phenyl-C₂-C₄-alkinyl unsubstituiert sein oder 1,2 oder 3 Reste R^b tragen kann, worin R^b ausgewählt ist unter Halogen, Nitro, CN, C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl und C₁-C₄-Alkoxy, wobei die 5 zuletzt genannten Gruppen durch Halogen substituiert sein können;
 - Phenyl-C₂-C₄-halogenalkinyl: für C₂-C₄-Halogenalkinyl, welches mit Phenyl substituiert ist, wobei der Phenylteil unsubstituiert sein kann oder 1, 2 oder 3 Reste R^b tragen kann, worin R^b ausgewählt ist unter Halogen, Nitro, CN, C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl und C₁-C₄-Alkoxy, wobei die 5 zuletzt genannten Gruppen durch Halogen substituiert sein können;
 - wenigstens einfach ungesättigter Heterocyclus mit 5 oder 6 Ringgliedern: ein monocyclische Heterocyclus, der ein, zwei oder drei unter O, S, S(=O), S(=O)₂

und N ausgewählte Ringglieder aufweist und der wenigstens einfach ungesättigt oder vollständig ungesättigt, d.h. aromatisch ist. Beispiele hierfür sind Furyl wie 2-Furyl und 3-Furyl, Thienyl wie 2-Thienyl und 3-Thienyl, Pyrrolyl wie 2-Pyrrolyl und 3-Pyrrolyl, Isoxazolyl wie 3-Isoxazolyl, 4-Isoxazolyl und 5-Isoxazolyl, Isothiazolvl wie 3-Isothiazolyl, 4-Isothiazolyl und 5-Isothiazolyl, Pyrazolyl wie 5 3-Pyrazolyl, 4-Pyrazolyl und 5-Pyrazolyl, Oxazolyl wie 2-Oxazolyl, 4-Oxazolyl und 5-Oxazolyl, Thiazolyl wie 2-Thiazolyl, 4-Thiazolyl und 5-Thiazolyl, Imidazolyl wie 2-Imidazolyl und 4-Imidazolyl, Oxadiazolyl wie 1,2,4-Oxadiazol-3-yl, 1,2,4-Oxadiazol-5-yl und 1,3,4-Oxadiazol-2-yl, Thiadiazolyl wie 1,2,4-Thiadiazol-3-yl, 1,2,4-Thiadiazol-5-yl und 1,3,4-Thiadiazol-2-yl, Triazolyl 10 wie 1,2,4-Triazol-1-yl, 1,2,4-Triazol-3-yl und 1,2,4-Triazol-4-yl, Pyridinyl wie 2-Pyridinyl, 3-Pyridinyl und 4-Pyridinyl, Pyridazinyl wie 3-Pyridazinyl und 4-Pyridazinyl, Pyrimidinyl wie 2-Pyrimidinyl, 4-Pyrimidinyl und 5-Pyrimidinyl, 2-Pvrazinyl, 1,3,5-Triazin-2-yl und 1,2,4-Triazin-3-yl, 1,2-Dihydrofuran-2-yl, 15 1,2-Dihydrofuran-3-yl, 1,2-Dihydrothiophen-2-yl, 1,2-Dihydrothiophen-3-yl, 2,3-Dihydropyran-4-yl, 2,3-Dihydropyran-5-yl, 2,3-Dihydropyran-6-yl, 5,6-Dihydro-4H-pyran-3-yl, 2,3-Dihydrothiopyran-4-yl, 2,3-Dihydrothiopyran-5-yl, 2,3-Dihydrothiopyran-6-yl, 5,6-Dihydro-4H-thiopyran-3-yl, 5,6-Dihydro-[1,4]dioxin-2-vl, 5.6-Dihydro-[1,4]dithiin-2-yl oder 5,6-Dihydro-[1,4]oxathiin-3-yl, insbesonde-20 re Pyridyl, Thiazolyl und Pyrazolyl.

Im Hinblick auf die fungizide Wirksamkeit der erfindungsgemäßen Verbindungen I sind solche Verbindungen der Formel I bevorzugt, worin A für einen cyclischen Rest A-1 bis A-6:

$$R^{a2}$$
 $(A-1)$
 R^{a3}
 R^{a3}
 R^{a3}
 R^{a3}
 R^{a3}
 R^{a3}
 R^{a3}
 R^{a4}
 R^{a4}
 R^{a4}

15

20

25

30

steht, in denen * die Bindungsstelle an C(=Y) angibt und die Variablen die folgende Bedeutung haben:

- X, X₁ jeweils unabhängig voneinander N oder CR^c, wobei R^c für H steht oder die für R^b genannten Bedeutungen aufweist. Insbesondere steht R^c für Wasserstoff;
- W S oder N-R^{a4}, worin R^{a4} für Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl,

 C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl oder Phenyl steht, das unsubstituiert sein kann oder 1, 2 oder 3 Reste R^b tragen kann, wobei R^{a4} insbesondere Wasserstoff,

 C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl bedeutet;
 - U Sauerstoff oder Schwefel;
 - Z S, S(=O), S(=O)₂ oder CH_2 , besonders bevorzugt S oder CH_2 ;
 - Wasserstoff, C₁-C₄-Alkyl C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy oder Halogen, besonders bevorzugt Wasserstoff, Halogen, C₁-C₂-Alkyl, C₁-C₂-Alkoxy, C₁-C₂-Fluoralkoxy oder C₁-C₂-Fluoralkyl;
 - R^{a2} jeweils unabhängig voneinander Wasserstoff, Halogen, Nitro, CN, C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₁-C₄-Alkoxy, wobei die 5 zuletzt genannten Gruppen durch Halogen substituiert sein können; und
 - R^{a3} Wasserstoff, Halogen, Nitro, CN, C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₁-C₄-Alkoxy, wobei die 5 zuletzt genannten Gruppen durch Halogen substituiert sein können, besonders bevorzugt Wasserstoff, Fluor, Chlor oder C₁-C₄-Alkyl.
 - In den Resten der Formeln A-1, A-2, A-3, A-4, A-5 und A-6 haben die Variablen R^{a1}, R^{a2} und R^{a3} insbesondere die folgenden Bedeutungen:

R^{a1} Wasserstoff, Halogen, insbesondere Fluor oder Chlor, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl, besonders bevorzugt Halogen, Trifluormethyl oder Methyl;

R^{a2} Wasserstoff; und

5

10

R^{a3} Halogen, insbesondere Fluor oder Chlor, oder Methyl.

In Formel A-2 steht W vorzugsweise für eine Gruppe N-R^{a4}, worin R^{a4} die zuvor genannten Bedeutungen und insbesondere die als bevorzugt angegebenen Bedeutungen aufweist.

Sofern X in den Formeln A-1, A-2, A-3 oder A-4 für eine Gruppe C-R^c steht, bedeutet R^c vorzugsweise Wasserstoff.

15 Insbesondere steht X in den Formeln A-2, A-3 und A-4 für N. In Formel A-1 steht X insbesondere für CH.

In den Formeln A-1 und A-6 steht X₁ insbesondere für N.

20 Beispiele für Reste A-1 sind insbesondere:

worin *, R^{a1}, R^{a2} und R^c die zuvor genannten und insbesondere die bevorzugten Be-25 deutungen aufweisen.

Beispiele für Reste A-2 sind insbesondere:

15

worin *, R^{a1}, R^{a3}, R^{a4} und R^c die zuvor genannten und insbesondere die bevorzugten Bedeutungen aufweisen.

Beispiele für Reste A-3 sind insbesondere:

worin *, R^{a1}, R^{a3} und R^c die zuvor genannten und insbesondere die bevorzugten Bedeutungen aufweisen.

Beispiele für Reste A-4 sind insbesondere:

worin * , R^{a1} , R^{a3} und R^c die zuvor genannten und insbesondere die bevorzugten Bedeutungen aufweisen.

20 Beispiele für A-5 sind insbesondere:

worin * und R^{a1} die zuvor genannten und insbesondere die bevorzugten Bedeutungen aufweisen.

5

Beispiele für A-6 sind insbesondere:

worin *, R^{a1}, R^{a2} und R^c die zuvor genannten und insbesondere die bevorzugten Bedeutungen aufweisen.

10

Beispiele für Reste A sind: 2-Chlorphenyl, 2-Trifluormethyl-phenyl,

- 2-Difluormethyl-phenyl, 2-Methyl-phenyl, 2-Chlor-pyridin-3-yl,
- 2-Trifluormethyl-pyridin-3-yl, 2-Difluormethyl-pyridin-3-yl, 2-Methyl-pyridin-3-yl,
- 4-Methyl-pyrimidin-5-yl, 4-Trifluormethyl-pyrimidin-5-yl, 4-Difluormethyl-pyrimidin-5-yl,
- 15 1-Methyl-3-trifluormethyl-pyrazol-4-yl, 1-Methyl-3-difluormethyl-pyrazol-4-yl,
 - 1,3-Dimethyl-pyrazol-4-yl, 1-Methyl-3-trifluormethyl-5-fluor-pyrazol-4-yl,
 - 1-Methyl-3-difluormethyl-5-fluor-pyrazol-4-yl,
 - 1-Methyl-3-trifluormethyl-5-chlor-pyrazol-4-yl, 1-Methyl-3-trifluormethyl-pyrrol-4-yl,
 - 1-Methyl-3-difluormethyl-pyrrol-4-yl, 2-Methyl-4-trifluormethyl-thiazol-5-yl,
- 20 2-Methyl-4-difluormethyl-thiazol-5-yl, 2,4-Dimethyl-thiazol-5-yl,
 - 2-Methyl-5-trifluormethyl-thiazol-4-yl, 2-Methyl-5-difluormethyl-thiazol-4-yl,
 - 2,5-Dimethyl-thiazol-4-yl, 2-Methyl-4-trifluormethyl-oxazol-5-yl,
 - 2-Methyl-4-difluormethyl-oxazol-5-yl, 2,4-Dimethyl-oxazol-5-yl,
 - 2-Trifluormethyl-thiophen-3-yl, 5-Methyl-2-trifluormethyl-thiophen-3-yl,
- 25 2-Methyl-thiophen-3-yl, 2,5-Dimethyl-thiophen-3-yl, 3-Trifluormethyl-thiophen-2-yl,
 - 3-Methyl-thiophen-2-yl, 3,5-Dimethyl-thiophen-2-yl,
 - 5-Methyl-3-trifluormethyl-thiophen-2-yl, 2-Trifluormethyl-furan-3-yl,
 - 5-Methyl-2-trifluormethyl-furan-3-yl, 2-Methyl-furan-3-yl, 2,5-Dimethyl-furan-3-yl,
 - 2-Methyl-5,6-dihydro-[1,4]oxathiin-3-yl, 2-Methyl-5,6-dihydro-4H-thiopyran-3-yl.

Besonders bevorzugt steht A für einen Rest A-1a, A-2a oder A-3a,

$$R^{a2}$$
, R^{a4}
, R^{a4}
, R^{a4}
, R^{a1}
, R^{a1}
, R^{a1}
, R^{a1}
, R^{a1}
, R^{a2}
, R^{a3}
, R^{a2}
, R^{a3}
, R^{a3}
, R^{a3}
, R^{a3}
, R^{a3}
, R^{a4}
,

worin *, Ra1, Ra2, Ra3 und Ra4 die zuvor genannten Bedeutungen und insbesondere die 5 bevorzugten Bedeutungen aufweisen.

Bevorzugt sind Reste A-1a mit Ra1 gleich Wasserstoff, Halogen, C1-C2-Alkyl. C₁-C₂-Alkoxy, C₁-C₂-Fluoralkoxy oder C₁-C₂-Fluoralkyl; insbesondere Wasserstoff, 10 Chlor, Brom, Fluor, Methyl, Ethyl, Methoxy, Trifluormethyl, Difluormethyl, Trifluormethoxy oder Difluormethoxy, ganz besonders bevorzugt Fluor, Brom, Chlor, Methyl oder Trifluormethyl, und speziell Chlor; mit Ra2 gleich Wasserstoff, Halogen, Nitro, CN, C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₁-C₄-Alkoxy, wobei die 5 zuletzt genannten Gruppen durch Halogen substituiert sein können, speziell Wasserstoff.

15

20

25

Bevorzugt sind Reste A-2a mit: Ra1 gleich Wasserstoff, Halogen, C1-C2-Alkyl, C₁-C₂-Alkoxy, C₁-C₂-Fluoralkoxy oder C₁-C₂-Fluoralkyl, insbesondere Wasserstoff, Chlor, Brom, Fluor, Methyl, Ethyl, Methoxy, Trifluormethyl, Difluormethyl, Trifluormethoxy oder Difluormethoxy, ganz besonders bevorzugt Fluor, Brom. Chlor, Methyl oder Trifluormethyl, speziell Trifluormethyl; Ra3 gleich Wasserstoff, Halogen, Nitro, CN, C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₁-C₄-Alkoxy, wobei die 5 zuletzt genannten Gruppen durch Halogen substituiert sein können, vorzugsweise Wasserstoff, Halogen und C₁-C₄-Alkyl, insbesondere Halogen, Wasserstoff; und speziell Wasserstoff; und R^{a4} gleich Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl oder Phenyl steht, das unsubstituiert sein kann oder 1, 2 oder 3 Reste Rb tragen kann, vorzugsweise Wasserstoff, C1-C4-Alkyl oder C₁-C₄-Halogenalkyl, speziell Methyl;

Bevorzugt sind Reste A-3a mit: Ra1 gleich Wasserstoff, Halogen, C1-C2-Alkyl. 30 C₁-C₂-Alkoxy, C₁-C₂-Fluoralkoxy oder C₁-C₂-Fluoralkyl, insbesondere Wasserstoff. Chlor, Brom, Fluor, Methyl, Ethyl, Methoxy, Trifluormethyl, Difluormethyl, Trifluormethoxy oder Difluormethoxy, ganz besonders bevorzugt Fluor, Brom, Chlor, Methyl oder Trifluormethyl, speziell Trifluormethyl; R^{a3} gleich Wasserstoff, Halogen, Nitro, CN, C_1 - C_4 -Alkyl, C_3 - C_6 -Cycloalkyl, C_2 - C_4 -Alkenyl, C_2 - C_4 -Alkinyl, C_1 - C_4 -Alkoxy, wobei die 5 zuletzt genannten Gruppen durch Halogen substituiert sein können, vorzugsweise Wasserstoff, Halogen oder C_1 - C_4 -Alkyl, insbesondere Wasserstoff, Methyl und speziell Methyl.

Besonders bevorzugt ist A ausgewählt unter:

A-1a mit R^{a1} = Halogen, speziell Chlor und R^{a2} = Wasserstoff;

A-2a mit $R^{a1} = C_1 - C_2$ -Fluoralkyl, speziell Trifluormethyl, $R^{a3} = Wasserstoff$ und $R^{a4} =$

10 C₁-C₄-Alkyl, speziell Methyl; und

A-3a mit $R^{a1} = C_1 - C_2$ -Fluoralkyl, speziell Trifluormethyl und $R^{a3} = C_1 - C_4$ -Alkyl, speziell Methyl.

Im Hinblick auf ihre fungizide Wirksamkeit sind (Hetero)cyclylcarboxanilide der allgemeinen Formel I bevorzugt, worin die Variablen Y, R¹, R², R^{3m}, R^{4m}, R⁵, R⁶, n und m unabhängig voneinander und vorzugsweise in Kombination die folgenden Bedeutungen aufweisen:

Y O;

20

25

15

5

- R¹ Wasserstoff, OH, C₁-C₄-Alkyl, insbesondere H, OH oder Methyl und speziell H;
- R² C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, Nitro, Cyano oder Halogen; besonders bevorzugt C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Nitro, Cyano oder Halogen und speziell Methyl, Methoxy, Fluor, Chlor, Brom, Nitro oder Cyano;
 - n 0 oder 1, besonders bevorzugt 0;
- 30 R^{3m}, R^{4m} jeweils unabhängig voneinander für Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₃-C₆-Cycloalkyl oder C₃-C₆-Halogencycloalkyl, Phenyl, das unsubstituiert sein kann oder ein, zwei oder drei Reste R^b tragen kann; vorzugsweise Wasserstoff oder C₁-C₄-Alkyl; speziell: R³¹ und R⁴¹ jeweils unabhängig voneinander Wasserstoff, Methyl, Ethyl;

35

m 1;

- R⁵ Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₃-C₆-Cycloalkyl, C₃-C₆-Cycloalkyl, C₃-C₆-Halogencycloalkyl, Phenyl, Phenyl-C₁-C₄-alkyl, Phenyl-C₁-C₄-halogenalkyl, wobei Phenyl in den drei zuletzt genannten Resten unsubstituiert sein kann oder ein, zwei oder drei Reste R^b tragen kann; vorzugsweise Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, Phenyl, das unsubstituiert sein kann oder ein, zwei oder drei Reste R^b tragen kann;
- R⁶ C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₃-C₆-Cycloalkyl, C₃-C₆-Halogencycloalkyl, C₂-C₆-Alkenyl, C₂-C₆-Halogenalkenyl, C₂-C₄-Alkinyl, C₂-C₄-Halogenalkinyl, Phenyl-C₁-C₂-alkyl oder Phenyl, wobei Phenyl in den zwei zuletzt genannten Resten unsubstituiert sein kann oder ein oder zwei Halogengruppen, speziell Fluor oder Chlor tragen kann.
- Besonders bevorzugt sind außerdem die (Heterocyclyl)carboxanilide der allgemeinen Formel I, worin R¹, R², R^{3m}, R^{4m}, R⁵, R⁶, n und m die zuvor genannten und insbesondere die bevorzugten Bedeutungen aufweisen, Y für Sauerstoff steht und A ausgewählt ist unter:
- A-1, worin X und X₁ jeweils für Stickstoff stehen, R^{a1} die zuvor genannten, insbesondere die bevorzugten Bedeutungen aufweist und speziell für Methyl, Trifluormethyl, Chlor, Brom oder Fluor steht; R^{a2} die zuvor genannten Bedeutungen hat und speziell für Wasserstoff steht;
- A-2, worin X für N steht, W für S steht, R^{a1} die zuvor genannten, insbesondere die bevorzugten Bedeutungen aufweist und speziell für Methyl, Fluor, Chlor, Brom oder Trifluormethyl steht; R^{a3} die zuvor genannten, insbesondere die bevorzugten Bedeutungen aufweist und speziell für Wasserstoff steht;
- A-2, worin X für CH steht, W für N-R^{a4} steht mit R^{a4} gleich C₁-C₄-Alkyl, speziell Methyl, 30 R^{a1} die zuvor genannten, insbesondere die bevorzugten Bedeutungen aufweist und speziell für Methyl, Fluor, Chlor, Brom oder Trifluormethyl steht; R^{a3} die zuvor genannten, insbesondere die bevorzugten Bedeutungen aufweist und speziell für Wasserstoff steht;
- A-3, worin U für O steht, X für N steht, R^{a1} die zuvor genannten, insbesondere die bevorzugten Bedeutungen aufweist und speziell für Methyl, Fluor, Chlor, Brom oder Trifluormethyl steht; R^{a3} die zuvor genannten, insbesondere die bevorzugten Bedeutungen aufweist und speziell für Wasserstoff oder Methyl steht;

WO 2005/063692 PCT/EP2004/014622

A-3, worin U für S steht, X für CH steht, R^{a1} die zuvor genannten, insbesondere die bevorzugten Bedeutungen aufweist und speziell für Methyl, Fluor, Chlor, Brom oder Trifluormethyl steht; R^{a3} die zuvor genannten, insbesondere die bevorzugten Bedeutungen aufweist und speziell für Wasserstoff oder Methyl steht;

5

10

15

20

25

30

A-4, worin U für O steht, X für CH oder N steht, R^{a1} die zuvor genannten, insbesondere die bevorzugten Bedeutungen aufweist und speziell für Methyl, Fluor, Chlor, Brom oder Trifluormethyl steht; R^{a3} die zuvor genannten, insbesondere die bevorzugten Bedeutungen aufweist und speziell für Wasserstoff oder Methyl steht;

A-4, worin U für S steht, X für CH oder N steht, R^{a1} die zuvor genannten, insbesondere die bevorzugten Bedeutungen aufweist und speziell für Methyl, Fluor, Chlor, Brom oder Trifluormethyl steht; R^{a3} die zuvor genannten, insbesondere die bevorzugten Bedeutungen aufweist und speziell für Wasserstoff oder Methyl steht;

A-5, worin U für Sauerstoff, Z für CH₂, S, S(=O) oder S(=O)₂ steht und R^{a1} die zuvor genannten, insbesondere die bevorzugten Bedeutungen aufweist und speziell für Methyl, Fluor, Chlor, Brom oder Trifluormethyl steht;

A-6, worin X_1 für Stickstoff steht, R^{a2} die zuvor genannten, Bedeutungen aufweist und speziell für Wasserstoff steht; R^{a1} die zuvor genannten, insbesondere die bevorzugten Bedeutungen aufweist und speziell für Methyl, Fluor, Chlor, Brom oder Trifluormethyl steht.

Insbesondere sind im Hinblick auf ihre Verwendung als Fungizide und Wirkstoffe zur Bekämpfung von Schädlingen die in den folgenden Tabellen 1 bis 42 zusammengestellten Einzelverbindungen der Formel IA (Verbindungen I mit $R^1 = H$, n = 0) bevorzugt, in denen die Variablen R^5 , R^6 , R^{3m} , R^{4m} und m jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen und die Variable A die in der jeweiligen Tabelle angegebene Bedeutung aufweist. Bei Verbindungen, die Doppelbindungen enthalten, sind sowohl die isomerenreinen E-Isomeren, Z-Isomeren wie auch Isomerengemische davon umfasst.

Tabelle A:

Nr.	R⁵	R ⁶	(C(R ^{3m})(R ^{4m})) _m
1	Н	CH₃	-CH ₂ -
2	Н	C ₂ H ₅	-CH ₂ -
3	Н	CH₂CH₂CH₃	-CH ₂ -
4	Н	CH(CH ₃)₂	-CH ₂ -
5	Н	CH₂CH₂CH₃	-CH ₂ -
6	Н	i-C₄H ₉	-CH ₂ -
7	Н	s-C ₄ H ₉	-CH ₂ -
8	Н	C(CH ₃) ₃	-CH ₂ -
9	Н	CH ₂ CH ₂ CH ₂ CH ₃	-CH ₂ -
10	Н	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH ₂ -
11	Н	Cyclopentyl	-CH ₂ -
12	Н	Cyclohexyl	-CH ₂ -
13	Н	Allyl	-CH ₂ -
14	H	But-2-en-1-yl	-CH ₂ -
15	Н	4-Chlor-but-2-en-1-yl	-CH ₂ -
16	Н	Propargyl	-CH ₂ -
17	Н	C ₆ H ₅	-CH₂-
18	Н	C ₆ H ₅ CH ₂	-CH ₂ -
19	Н	2-Phenyleth-1-yl	-CH₂-
20	Н	4-Cl-C ₆ H ₄	-CH ₂ -
21	Н	4-F-C ₆ H ₄	-CH₂-
22	Н	CH ₃	-CH(CH ₃)-
23	Н	C ₂ H ₅	-CH(CH₃)-
24	Н	CH ₂ CH ₂ CH ₃	-CH(CH₃)-
25	Н	CH(CH ₃) ₂	-CH(CH ₃)-
26	Н	CH ₂ CH ₂ CH ₃	-CH(CH₃)-
27	Н	i-C₄H ₉	-CH(CH₃)-

Nr.	R⁵	R ⁶	$(C(R^{3m})(R^{4m}))_m$
28	H	s-C ₄ H ₉	-CH(CH₃)-
29	Н	C(CH ₃) ₃	-CH(CH ₃)-
30	Н	CH ₂ CH ₂ CH ₂ CH ₃	-CH(CH₃)-
31	Н	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH(CH₃)-
32	Н	Cyclopentyl	-CH(CH ₃)-
33	Н	Cyclohexyl	-CH(CH ₃)-
34	Н	Allyl	-CH(CH ₃)-
35	Н	But-2-en-1-yl	-CH(CH ₃)-
36	Н	4-Chlor-but-2-en-1-yl	-CH(CH ₃)-
37	Н	Propargyl	-CH(CH ₃)-
38	Н	C ₆ H ₅	-CH(CH ₃)-
39	Н	C ₆ H ₅ CH ₂	-CH(CH ₃)-
40	Н	2-Phenyleth-1-yl	-CH(CH ₃)-
41	Н	4-Cl-C ₆ H ₄	-CH(CH₃)-
42	Н	4-F-C ₆ H ₄	-CH(CH ₃)-
43	H	CH₃	-CH(C ₂ H ₅)-
44	Н	C ₂ H ₅	-CH(C ₂ H ₅)-
45	Н	CH₂CH₂CH₃	-CH(C ₂ H ₅)-
46	Н	CH(CH ₃) ₂	-CH(C ₂ H ₅)-
47	Н	CH₂CH₂CH₃	-CH(C₂H₅)-
48	H	i-C ₄ H ₉	-CH(C ₂ H ₅)-
49	H	s-C ₄ H ₉	-CH(C ₂ H ₅)-
50	Н	C(CH₃)₃	-CH(C ₂ H ₅)-
51	H	CH₂CH₂CH₂CH₃	-CH(C₂H₅)-
52	Н	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH(C ₂ H ₅)-
53	Н	Cyclopentyl	-CH(C ₂ H ₅)-
54	Н	Cyclohexyl	-CH(C ₂ H ₅)-
55	H	Aliyi	-CH(C ₂ H ₅)-
56	Н	But-2-en-1-yl	-CH(C ₂ H ₅)-
57	Н	4-Chlor-but-2-en-1-yl	-CH(C ₂ H ₅)-
58	H	Propargyl	-CH(C₂H₅)-
59	Н	C ₆ H ₅	-CH(C ₂ H ₅)-
60	Н	C ₆ H ₅ CH ₂	-CH(C ₂ H ₅)-
61	Н	2-Phenyleth-1-yl	-CH(C ₂ H ₅)-
62	Н	4-Cl-C ₆ H ₄	-CH(C ₂ H ₅)-
63	Н	4-F-C ₆ H ₄	-CH(C₂H₅)-

Nr.	R⁵	R ⁶	$(C(R^{3m})(R^{4m}))_m$
64	Н	CH₃	-C(CH ₃) ₂ -
65	Н	C₂H₅	-C(CH ₃) ₂ -
66	Н	CH₂CH₂CH₃	-C(CH ₃) ₂ -
67	Н	CH(CH₃)₂	-C(CH ₃) ₂ -
68	Н	CH₂CH₂CH₃	-C(CH ₃) ₂ -
69	Н	i-C ₄ H ₉	-C(CH ₃) ₂ -
70	Н	s-C ₄ H ₉	-C(CH ₃) ₂ -
71	Н	C(CH ₃) ₃	-C(CH ₃) ₂ -
72	Н	CH ₂ CH ₂ CH ₂ CH ₃	-C(CH ₃) ₂ -
73	Н	CH₂CH₂CH₂CH₂CH₃	-C(CH ₃) ₂ -
74	H	Cyclopentyl	-C(CH ₃) ₂ -
75	Н	Cyclohexyl	-C(CH ₃) ₂ -
76	Н	Allyl	-C(CH ₃) ₂ -
77	H	But-2-en-1-yl	-C(CH ₃) ₂ -
78	Н	4-Chlor-but-2-en-1-yl	-C(CH ₃) ₂ -
79	Н	Propargyl	-C(CH ₃) ₂ -
80	Н	C ₆ H ₅	-C(CH ₃) ₂ -
81	Н	C ₆ H ₅ CH ₂	-C(CH ₃) ₂ -
82	Н	2-Phenyleth-1-yl	-C(CH ₃) ₂ -
83	Н	4-CI-C ₆ H ₄	-C(CH ₃) ₂ -
84	H	4-F-C ₆ H ₄	-C(CH ₃) ₂ -
85	H	CH₃	-CH ₂ CH ₂ -
86	Н	C ₂ H ₅	-CH ₂ CH ₂ -
87	Н	CH₂CH₂CH₃	-CH ₂ CH ₂ -
88	Н	CH(CH₃)₂	-CH ₂ CH ₂ -
89	Н	CH ₂ CH ₂ CH ₂ CH ₃	-CH₂CH₂-
90	Н	i-C ₄ H ₉	-CH ₂ CH ₂ -
91	Н	s-C ₄ H ₉	-CH ₂ CH ₂ -
92	Н	C(CH ₃) ₃	-CH ₂ CH ₂ -
93	Н	CH ₂ CH ₂ CH ₂ CH ₃	-CH ₂ CH ₂ -
94	Н	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH ₂ CH ₂ -
95	Н	Cyclopentyl	-CH ₂ CH ₂ -
96	Н	Cyclohexyl	-CH ₂ CH ₂ -
97	Н	Allyl	-CH₂CH₂-
98	Н	But-2-en-1-yl	-CH₂CH₂-
99	Н	4-Chlor-but-2-en-1-yl	-CH ₂ CH ₂ -

Nr.	R ⁵	IR ⁶	$(C(R^{3m})(R^{4m}))_m$
100	H	Propargyl	-CH ₂ CH ₂ -
101	H	C ₆ H ₅	-CH ₂ CH ₂ -
102	- ''	C ₆ H ₅ CH ₂	-CH ₂ CH ₂ -
103	H	2-Phenyleth-1-yl	-CH ₂ CH ₂ -
103	H	4-CI-C ₆ H ₄	-CH ₂ CH ₂ -
104	H	4-F-C ₆ H ₄	
			-CH ₂ CH ₂ -
106	Н	CH₃	-CH(CH₃)CH₂-
107	H	C ₂ H ₅	-CH(CH₃)CH₂-
108	H	CH₂CH₂CH₃	-CH(CH₃)CH₂-
109	H	CH(CH ₃) ₂	-CH(CH₃)CH₂-
110	H	CH₂CH₂CH₃	-CH(CH₃)CH₂-
111	Н	i-C ₄ H ₉	-CH(CH ₃)CH ₂ -
112	Н	s-C ₄ H ₉	-CH(CH ₃)CH ₂ -
113	Н	C(CH ₃) ₃	-CH(CH₃)CH₂-
114	Н	CH ₂ CH ₂ CH ₂ CH ₃	-CH(CH ₃)CH ₂ -
115	H	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH(CH₃)CH₂-
116	Н	Cyclopentyl	-CH(CH ₃)CH ₂ -
117	H	Cyclohexyl	-CH(CH ₃)CH ₂ -
118	Н	Allyl	-CH(CH ₃)CH ₂ -
119	H	But-2-en-1-yl	-CH(CH₃)CH₂-
120	Н	4-Chlor-but-2-en-1-yl	-CH(CH₃)CH₂-
121	H	Propargyl	-CH(CH₃)CH₂-
122	Н	C ₆ H ₅	-CH(CH ₃)CH ₂ -
123	Н	C ₆ H ₅ CH ₂	-CH(CH₃)CH₂-
124	Н	2-Phenyleth-1-yl	-CH(CH ₃)CH ₂ -
125	Н	4-CI-C ₆ H ₄	-CH(CH ₃)CH ₂ -
126	Н	4-F-C ₆ H ₄	-CH(CH ₃)CH ₂ -
127	Н	CH₃	-CH ₂ CH(CH ₃)-
128	Н	C ₂ H ₅	-CH ₂ CH(CH ₃)-
129	Н	CH₂CH₂CH₃	-CH ₂ CH(CH ₃)-
130	Н	CH(CH ₃)₂	-CH ₂ CH(CH ₃)-
131	Н	CH₂CH₂CH₃	-CH ₂ CH(CH ₃)-
132	Н	i-C ₄ H ₉	-CH ₂ CH(CH ₃)-
133	H	s-C ₄ H ₉	-CH ₂ CH(CH ₃)-
134	H	C(CH ₃) ₃	-CH ₂ CH(CH ₃)-
135	Н	CH ₂ CH ₂ CH ₂ CH ₃	-CH ₂ CH(CH ₃)-
<u> </u>			

Nr.	R ⁵	R ⁶	$(C(R^{3m})(R^{4m}))_m$
136	H	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH ₂ CH(CH ₃)-
137	Н	Cyclopentyl	-CH ₂ CH(CH ₃)-
138	H	Cyclohexyl	-CH ₂ CH(CH ₃)-
139	Н	Allyl	-CH ₂ CH(CH ₃)-
140	Н	But-2-en-1-yl	-CH ₂ CH(CH ₃)-
141	Н	4-Chlor-but-2-en-1-yl	-CH ₂ CH(CH ₃)-
142	Н	Propargyl	-CH ₂ CH(CH ₃)-
143	Н	C ₆ H ₅	-CH ₂ CH(CH ₃)-
144	Н	C ₆ H ₅ CH ₂	-CH ₂ CH(CH ₃)-
145	Н	2-Phenyleth-1-yl	-CH ₂ CH(CH ₃)-
146	Н	4-Cl-C ₆ H ₄	-CH ₂ CH(CH ₃)-
147	Н	4-F-C ₆ H ₄	-CH ₂ CH(CH ₃)-
148	H	CH₃	-CH(CH ₃)CH(CH ₃)-
149	H	C₂H₅	-CH(CH ₃)CH(CH ₃)-
150	Н	CH₂CH₂CH₃	-CH(CH ₃)CH(CH ₃)-
151	Н	CH(CH ₃) ₂	-CH(CH ₃)CH(CH ₃)-
152	Н	CH₂CH₂CH₃	-CH(CH ₃)CH(CH ₃)-
153	Н	i-C₄H ₉	-CH(CH₃)CH(CH₃)-
154	H	s-C ₄ H ₉	-CH(CH ₃)CH(CH ₃)-
155	Н	C(CH ₃) ₃	-CH(CH ₃)CH(CH ₃)-
156	H	CH₂CH₂CH₂CH₃	-CH(CH ₃)CH(CH ₃)-
157	H	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH(CH ₃)CH(CH ₃)-
158	Н	Cyclopentyl	-CH(CH ₃)CH(CH ₃)-
159	H	Cyclohexyl	-CH(CH ₃)CH(CH ₃)-
160	Н	Allyl	-CH(CH ₃)CH(CH ₃)-
161	Н	But-2-en-1-yl	-CH(CH ₃)CH(CH ₃)-
162	H	4-Chlor-but-2-en-1-yl	-CH(CH ₃)CH(CH ₃)-
163	Н	Propargyl	-CH(CH ₃)CH(CH ₃)-
164	Н	C ₆ H ₅	-CH(CH ₃)CH(CH ₃)-
165	Н	C ₆ H ₅ CH ₂	-CH(CH ₃)CH(CH ₃)-
166	Н	2-Phenyleth-1-yl	-CH(CH ₃)CH(CH ₃)-
167	H	4-CI-C ₆ H ₄	-CH(CH ₃)CH(CH ₃)-
168	Н	4-F-C ₆ H ₄	-CH(CH ₃)CH(CH ₃)-
169	Н	CH ₃	-CH ₂ CH ₂ CH ₂ -
170	Н	C₂H₅	-CH ₂ CH ₂ CH ₂ -
171	Н	CH₂CH₂CH₃	-CH ₂ CH ₂ CH ₂ -

Nr.	R ⁵	R ⁶	(C(R ^{3m})(R ^{4m})) _m
172	H	CH(CH₃)₂	-CH ₂ CH ₂ CH ₂ -
173	H	CH₂CH₂CH₃	-CH ₂ CH ₂ CH ₂ -
174	Н	i-C ₄ H ₉	-CH ₂ CH ₂ CH ₂ -
175	Н	s-C ₄ H ₉	-CH ₂ CH ₂ CH ₂ -
176	H	C(CH ₃) ₃	-CH ₂ CH ₂ CH ₂ -
177	Н	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH ₂ CH ₂ CH ₂ -
178	H	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH ₂ CH ₂ CH ₂ -
179	Н	Cyclopentyl	-CH ₂ CH ₂ CH ₂ -
180	Н	Cyclohexyl	-CH ₂ CH ₂ CH ₂ -
181	Н	Allyl	-CH ₂ CH ₂ CH ₂ -
182	Н	But-2-en-1-yl	-CH ₂ CH ₂ CH ₂ -
183	Н	4-Chlor-but-2-en-1-yi	-CH ₂ CH ₂ CH ₂ -
184	H	Propargyl	-CH ₂ CH ₂ CH ₂ -
185	Н	C ₆ H ₅	-CH ₂ CH ₂ CH ₂ -
186	Н	C ₆ H ₅ CH ₂	-CH ₂ CH ₂ CH ₂ -
187	Н	2-Phenyleth-1-yl	-CH ₂ CH ₂ CH ₂ -
188	Н	4-CI-C ₆ H ₄	-CH ₂ CH ₂ CH ₂ -
189	Н	4-F-C ₆ H ₄	-CH ₂ CH ₂ CH ₂ -
190	CH₃	CH₃	-CH ₂ -
191	CH₃	C ₂ H ₅	-CH ₂ -
192	CH₃	CH₂CH₂CH₃	-CH ₂ -
193	CH₃	CH(CH ₃) ₂	-CH₂-
194	CH₃	CH ₂ CH ₂ CH ₃	-CH₂-
195	CH₃	i-C ₄ H ₉	-CH₂-
196	CH₃	s-C ₄ H ₉	-CH ₂ -
197	CH ₃	C(CH ₃) ₃	-CH₂-
198	CH ₃	CH₂CH₂CH₂CH₃	-CH₂-
199	CH ₃	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH ₂ -
200	CH ₃	Cyclopentyl	-CH ₂ -
201	CH ₃	Cyclohexyl	-CH ₂ -
202	CH₃	Allyl	-CH ₂ -
203	CH₃	But-2-en-1-yl	-CH ₂ -
204	CH₃	4-Chlor-but-2-en-1-yl	-CH₂-
205	CH₃	Propargyl	-CH ₂ -
206	CH₃	C ₆ H ₅	-CH ₂ -
207	CH₃	C ₆ H ₅ CH ₂	-CH ₂ -

Nr.	R⁵	R ⁶	$(C(R^{3m})(R^{4m}))_m$
208	CH₃	2-Phenyleth-1-yl	-CH ₂ -
209	CH₃	4-CI-C ₆ H ₄	-CH ₂ -
210	CH ₃	4-F-C ₆ H ₄	-CH ₂ -
211	CH ₃	CH ₃	-CH(CH ₃)-
212	CH ₃	C ₂ H ₅	-CH(CH ₃)-
213	CH ₃	CH₂CH₂CH₃	-CH(CH ₃)-
214	CH ₃	CH(CH ₃) ₂	-CH(CH ₃)-
215	CH ₃	CH₂CH₂CH₃	-CH(CH ₃)-
216	CH ₃	i-C ₄ H ₉	-CH(CH₃)-
217	CH ₃	s-C ₄ H ₉	-CH(CH ₃)-
218	CH ₃	C(CH ₃) ₃	-CH(CH ₃)-
219	CH ₃	CH ₂ CH ₂ CH ₂ CH ₃	-CH(CH ₃)-
220	CH₃	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH(CH ₃)-
221	CH₃	Cyclopentyl	-CH(CH ₃)-
222	CH₃	Cyclohexyl	-CH(CH₃)-
223	CH₃	Allyl	-CH(CH ₃)-
224	CH₃	But-2-en-1-yl	-CH(CH ₃)-
225	CH₃	4-Chlor-but-2-en-1-yl	-CH(CH₃)-
226	CH ₃	Propargyl	-CH(CH ₃)-
227	CH₃	C ₆ H ₅	-CH(CH ₃)-
228	CH₃	C ₆ H ₅ CH ₂	-CH(CH ₃)-
229	CH ₃	2-Phenyleth-1-yl	-CH(CH ₃)-
230	CH₃	4-CI-C ₆ H ₄	-CH(CH ₃)-
231	CH₃	4-F-C ₆ H ₄	-CH(CH ₃)-
232	CH₃	CH ₃	-CH(C ₂ H ₅)-
233	CH ₃	C₂H₅	-CH(C ₂ H ₅)-
234	CH ₃	CH ₂ CH ₂ CH ₃	-CH(C ₂ H ₅)-
235	CH₃	CH(CH₃)₂	-CH(C ₂ H ₅)-
236	CH ₃	CH₂CH₂CH₃	-CH(C ₂ H ₅)-
237	CH ₃	i-C ₄ H ₉	-CH(C ₂ H ₅)-
238	CH ₃	s-C ₄ H ₉	-CH(C₂H₅)-
239	CH₃	C(CH ₃) ₃	-CH(C₂H₅)-
240	CH₃	CH ₂ CH ₂ CH ₂ CH ₃	-CH(C ₂ H ₅)-
241	CH₃	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH(C₂H₅)-
242	CH ₃	Cyclopentyl	-CH(C₂H₅)-
243	CH ₃	Cyclohexyl	-CH(C ₂ H ₅)-

Nr.	R⁵	R ⁶	(C(R ^{3m})(R ^{4m})) _m
244	CH ₃	Allyl	-CH(C ₂ H ₅)-
245	CH ₃	But-2-en-1-yl	-CH(C ₂ H ₅)-
246	CH ₃	4-Chlor-but-2-en-1-yl	-CH(C ₂ H ₅)-
247	CH₃	Propargyl	-CH(C ₂ H ₅)-
248	CH ₃	C ₆ H ₅	-CH(C ₂ H ₅)-
249	CH ₃	C ₆ H ₅ CH ₂	-CH(C ₂ H ₅)-
250	CH ₃	2-Phenyleth-1-yl	-CH(C ₂ H ₅)-
251	CH₃	4-CI-C ₆ H ₄	-CH(C ₂ H ₅)-
252	CH ₃	4-F-C ₆ H ₄	-CH(C ₂ H ₅)-
253	CH ₃	CH₃	-C(CH ₃) ₂ -
254	CH₃	C₂H₅	-C(CH ₃) ₂ -
255	CH₃	CH₂CH₂CH₃	-C(CH ₃) ₂ -
256	CH ₃	CH(CH₃)₂	-C(CH ₃) ₂ -
257	CH₃	CH₂CH₂CH₃	-C(CH ₃) ₂ -
258	CH₃	i-C ₄ H ₉	-C(CH ₃) ₂ -
259	CH₃	s-C ₄ H ₉	-C(CH ₃) ₂ -
260	CH ₃	C(CH ₃) ₃	-C(CH ₃) ₂ -
261	CH ₃	CH ₂ CH ₂ CH ₂ CH ₃	-C(CH ₃) ₂ -
262	CH₃	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-C(CH ₃) ₂ -
263	CH₃	Cyclopentyl	-C(CH ₃) ₂ -
264	CH ₃	Cyclohexyl	-C(CH ₃) ₂ -
265	CH₃	Allyl	-C(CH ₃) ₂ -
266	CH₃	But-2-en-1-yl	-C(CH ₃) ₂ -
267	CH ₃	4-Chlor-but-2-en-1-yl	-C(CH ₃) ₂ -
268	CH₃	Propargyl	-C(CH ₃) ₂ -
269	CH ₃	C ₆ H ₅	-C(CH ₃) ₂ -
270	CH ₃	C ₆ H ₅ CH ₂	-C(CH ₃) ₂ -
271	CH₃	2-Phenyleth-1-yl	-C(CH ₃) ₂ -
272	CH₃	4-CI-C ₆ H₄	-C(CH ₃) ₂ -
273	CH ₃	4-F-C ₆ H ₄	-C(CH ₃) ₂ -
274	CH₃	CH ₃	-CH ₂ CH ₂ -
275	CH₃	C₂H₅	-CH ₂ CH ₂ -
276	CH₃	CH ₂ CH ₂ CH ₃	-CH ₂ CH ₂ -
277	CH₃	CH(CH ₃) ₂	-CH ₂ CH ₂ -
278	CH ₃	CH ₂ CH ₂ CH ₃	-CH₂CH₂-
279	CH₃	i-C ₄ H ₉	-CH ₂ CH ₂ -

Nr.	R ⁵	R ⁶	(C(R ^{3m})(R ^{4m})) _m
280	CH₃	s-C ₄ H ₉	-CH ₂ CH ₂ -
281	CH ₃	C(CH ₃) ₃	-CH ₂ CH ₂ -
282	CH ₃	CH₂CH₂CH₂CH₃	-CH ₂ CH ₂ -
283	CH ₃	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH ₂ CH ₂ -
284	CH ₃	Cyclopentyl	-CH ₂ CH ₂ -
285	CH ₃	Cyclohexyi	-CH ₂ CH ₂ -
286	CH ₃	Allyl	-CH ₂ CH ₂ -
287	CH ₃	But-2-en-1-yl	-CH ₂ CH ₂ -
288	CH ₃	4-Chlor-but-2-en-1-yl	-CH ₂ CH ₂ -
289	CH ₃	Propargyl	-CH ₂ CH ₂ -
290	CH ₃	C ₆ H ₅	-CH ₂ CH ₂ -
291	CH₃	C ₆ H ₅ CH ₂	-CH ₂ CH ₂ -
292	CH ₃	2-Phenyleth-1-yl	-CH ₂ CH ₂ -
293	CH ₃	4-CI-C ₆ H ₄	-CH ₂ CH ₂ -
294	CH ₃	4-F-C ₆ H ₄	-CH ₂ CH ₂ -
295	CH ₃	CH₃	-CH(CH₃)CH₂-
296	CH₃	C ₂ H ₅	-CH(CH ₃)CH ₂ -
297	CH₃	CH₂CH₂CH₃	-CH(CH ₃)CH ₂ -
298	CH₃	CH(CH ₃) ₂	-CH(CH ₃)CH ₂ -
299	CH₃	CH₂CH₂CH₃	-CH(CH ₃)CH ₂ -
300	CH₃	i-C ₄ H ₉	-CH(CH ₃)CH ₂ -
301	CH ₃	s-C ₄ H ₉	-CH(CH ₃)CH ₂ -
302	CH₃	C(CH ₃) ₃	-CH(CH ₃)CH ₂ -
303	CH₃	CH ₂ CH ₂ CH ₂ CH ₃	-CH(CH ₃)CH ₂ -
304	CH₃	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH(CH ₃)CH ₂ -
305	CH₃	Cyclopentyl	-CH(CH ₃)CH ₂ -
306	CH₃	Cyclohexyl	-CH(CH ₃)CH ₂ -
307	CH₃	Allyl	-CH(CH ₃)CH ₂ -
308	CH₃	But-2-en-1-yl	-CH(CH ₃)CH ₂ -
309	CH₃	4-Chlor-but-2-en-1-yl	-CH(CH ₃)CH ₂ -
310	CH₃	Propargyl	-CH(CH ₃)CH ₂ -
311	CH₃	C ₆ H ₅	-CH(CH ₃)CH ₂ -
312	CH₃	C ₆ H ₅ CH ₂	-CH(CH ₃)CH ₂ -
313	CH₃	2-Phenyleth-1-yl	-CH(CH ₃)CH ₂ -
314	CH₃	4-Cl-C ₆ H ₄	-CH(CH ₃)CH ₂ -
315	CH₃	4-F-C ₆ H ₄	-CH(CH ₃)CH ₂ -

Nr.	R⁵	R ⁶	$(C(R^{3m})(R^{4m}))_m$
316	CH ₃	CH₃	-CH ₂ CH(CH ₃)-
317	CH ₃	C ₂ H ₅	-CH ₂ CH(CH ₃)-
318	CH ₃	CH ₂ CH ₂ CH ₃	-CH ₂ CH(CH ₃)-
319	CH ₃	CH(CH ₃) ₂	-CH ₂ CH(CH ₃)-
320	CH ₃	CH ₂ CH ₂ CH ₂ CH ₃	-CH ₂ CH(CH ₃)-
321	CH ₃	i-C ₄ H ₉	-CH ₂ CH(CH ₃)-
322	CH ₃	s-C ₄ H ₉	-CH ₂ CH(CH ₃)-
323	CH ₃	C(CH ₃) ₃	-CH ₂ CH(CH ₃)-
324	CH ₃	CH ₂ CH ₂ CH ₂ CH ₃	-CH ₂ CH(CH ₃)-
325	CH ₃	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH ₂ CH(CH ₃)-
326	CH₃	Cyclopentyl	-CH ₂ CH(CH ₃)-
327	CH ₃	Cyclohexyl	-CH ₂ CH(CH ₃)-
328	CH ₃	Allyl	-CH ₂ CH(CH ₃)-
329	CH ₃	But-2-en-1-yl	-CH ₂ CH(CH ₃)-
330	CH₃	4-Chlor-but-2-en-1-yl	-CH ₂ CH(CH ₃)-
331	CH₃	Propargyl	-CH ₂ CH(CH ₃)-
332	CH₃	C ₆ H ₅	-CH₂CH(CH₃)-
333	CH₃	C ₆ H ₅ CH ₂	-CH₂CH(CH₃)-
334	CH₃	2-Phenyleth-1-yl	-CH₂CH(CH₃)-
335	CH₃	4-CI-C ₆ H ₄	-CH₂CH(CH₃)-
336	CH₃	4-F-C ₆ H ₄	-CH₂CH(CH₃)-
337	CH₃	CH₃	-CH(CH₃)CH(CH₃)-
338	CH₃	C₂H₅	-CH(CH₃)CH(CH₃)-
339	CH₃	CH₂CH₂CH₃	-CH(CH₃)CH(CH₃)-
340	CH₃	CH(CH₃)₂	-CH(CH₃)CH(CH₃)-
341	CH₃	CH₂CH₂CH₃	-CH(CH₃)CH(CH₃)-
342	CH₃	i-C ₄ H ₉	-CH(CH₃)CH(CH₃)-
343	CH₃	s-C ₄ H ₉	-CH(CH₃)CH(CH₃)-
344	CH₃	C(CH₃)₃	-CH(CH₃)CH(CH₃)-
345	CH₃	CH₂CH₂CH₂CH₃	-CH(CH₃)CH(CH₃)-
346	CH₃	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH(CH₃)CH(CH₃)-
347	CH₃	Cyclopentyl	-CH(CH₃)CH(CH₃)-
348	CH₃	Cyclohexyl	-CH(CH ₃)CH(CH ₃)-
349	CH₃	Allyl	-CH(CH ₃)CH(CH ₃)-
350	CH₃	But-2-en-1-yl	-CH(CH ₃)CH(CH ₃)-
351	CH₃	4-Chlor-but-2-en-1-yl	-CH(CH₃)CH(CH₃)-

			
Nr.	R ⁵	R ⁶	$(C(R^{3m})(R^{4m}))_m$
352	CH ₃	Propargyl	-CH(CH ₃)CH(CH ₃)-
353	CH₃	C ₆ H ₅	-CH(CH ₃)CH(CH ₃)-
354	CH₃	C ₆ H ₅ CH ₂	-CH(CH ₃)CH(CH ₃)-
355	CH₃	2-Phenyleth-1-yl	-CH(CH ₃)CH(CH ₃)-
356	CH₃	4-CI-C ₆ H ₄	-CH(CH ₃)CH(CH ₃)-
357	CH₃	4-F-C ₆ H ₄	-CH(CH ₃)CH(CH ₃)-
358	CH₃	CH₃	-CH ₂ CH ₂ CH ₂ -
359	CH₃	C ₂ H ₅	-CH ₂ CH ₂ CH ₂ -
360	CH₃	CH₂CH₂CH₃	-CH ₂ CH ₂ CH ₂ -
361	CH₃	CH(CH ₃) ₂	-CH ₂ CH ₂ CH ₂ -
362	CH₃	CH₂CH₂CH₃	-CH ₂ CH ₂ CH ₂ -
363	CH₃	i-C ₄ H ₉	-CH ₂ CH ₂ CH ₂ -
364	CH₃	s-C ₄ H ₉	-CH ₂ CH ₂ CH ₂ -
365	CH₃	C(CH ₃) ₃	-CH ₂ CH ₂ CH ₂ -
366	CH₃	CH₂CH₂CH₂CH₃	-CH ₂ CH ₂ CH ₂ -
367	CH₃	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH ₂ CH ₂ CH ₂ -
368	CH₃	Cyclopentyl	-CH ₂ CH ₂ CH ₂ -
369	CH₃	Cyclohexyl	-CH ₂ CH ₂ CH ₂ -
370	CH₃	Allyl	-CH ₂ CH ₂ CH ₂ -
371	CH₃	But-2-en-1-yl	-CH ₂ CH ₂ CH ₂ -
372	CH₃	4-Chlor-but-2-en-1-yl	-CH ₂ CH ₂ CH ₂ -
373	CH₃	Propargyl	-CH ₂ CH ₂ CH ₂ -
374	CH₃	C ₆ H ₅	-CH ₂ CH ₂ CH ₂ -
375	CH₃	C ₆ H ₅ CH ₂	-CH₂CH₂CH₂-
376	CH₃	2-Phenyleth-1-yl	-CH₂CH₂CH₂-
377	CH₃	4-CI-C ₆ H ₄	-CH₂CH₂CH₂-
378	CH₃	4-F-C ₆ H ₄	-CH ₂ CH ₂ CH ₂ -
379	C ₂ H ₅	CH ₃	-CH₂-
380	C ₂ H ₅	C ₂ H ₅	-CH₂-
381	C ₂ H ₅	CH ₂ CH ₂ CH ₃	-CH₂-
382	C ₂ H ₅	CH(CH ₃) ₂	-CH₂-
383	C ₂ H ₅	CH ₂ CH ₂ CH ₂ CH ₃	-CH ₂ -
384	C ₂ H ₅	i-C₄H ₉	-CH ₂ -
385	C ₂ H ₅	s-C ₄ H ₉	-CH ₂ -
386	C ₂ H ₅	C(CH ₃) ₃	-CH ₂ -
387	C₂H₅	CH₂CH₂CH₂CH₃	-CH₂-

Nr.	R ⁵	R ⁶	(C(R ^{3m})(R ^{4m})) _m
388	C ₂ H ₅	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH ₂ -
389	C ₂ H ₅	Cyclopentyl	-CH ₂ -
390	C ₂ H ₅	Cyclohexyl	-CH ₂ -
391	C ₂ H ₅	Allyl	-CH ₂ -
392	C ₂ H ₅	But-2-en-1-yl	-CH ₂ -
393	C ₂ H ₅	4-Chlor-but-2-en-1-yl	-CH ₂ -
394	C ₂ H ₅	Propargyl	-CH ₂ -
395	C ₂ H ₅	C ₆ H ₅	-CH ₂ -
396	C ₂ H ₅	C ₆ H ₅ CH ₂	-CH ₂ -
397	C ₂ H ₅	2-Phenyleth-1-yl	-CH ₂ -
398	C ₂ H ₅	4-CI-C ₆ H ₄	-CH ₂ -
399	C ₂ H ₅	4-F-C ₆ H ₄	-CH ₂ -
400	C ₂ H ₅	CH₃	-CH(CH₃)-
401	C ₂ H ₅	C ₂ H ₅	-CH(CH₃)-
402	C ₂ H ₅	CH₂CH₂CH₃	-CH(CH ₃)-
403	C ₂ H ₅	CH(CH ₃) ₂	-CH(CH₃)-
404	C ₂ H ₅	CH ₂ CH ₂ CH ₃	-CH(CH₃)-
405	C ₂ H ₅	i-C₄H ₉	-CH(CH₃)-
406	C ₂ H ₅	s-C ₄ H ₉	-CH(CH ₃)-
407	C ₂ H ₅	C(CH ₃) ₃	-CH(CH₃)-
408	C ₂ H ₅	CH ₂ CH ₂ CH ₂ CH ₃	-CH(CH ₃)-
409	C ₂ H ₅	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH(CH₃)-
410	C ₂ H ₅	Cyclopentyl	-CH(CH₃)-
411	C₂H₅	Cyclohexyl	-CH(CH₃)-
412	C ₂ H ₅	Allyl	-CH(CH₃)-
413	C ₂ H ₅	But-2-en-1-yl	-CH(CH₃)-
414	C ₂ H ₅	4-Chlor-but-2-en-1-yl	-CH(CH₃)-
415	C ₂ H ₅	Propargyl	-CH(CH ₃)-
416	C ₂ H ₅	C ₆ H ₅	-CH(CH ₃)-
417	C ₂ H ₅	C ₆ H ₅ CH ₂	-CH(CH ₃)-
418	C ₂ H ₅	2-Phenyleth-1-yl	-CH(CH₃)-
419	C ₂ H ₅	4-CI-C ₆ H ₄	-CH(CH ₃)-
420	C ₂ H ₅	4-F-C ₆ H ₄	-CH(CH ₃)-
421	C ₂ H ₅	CH₃	-CH(C ₂ H ₅)-
422	C ₂ H ₅	C₂H₅	-CH(C ₂ H ₅)-
423	C ₂ H ₅	CH₂CH₂CH₃	-CH(C ₂ H ₅)-

Nr.	R⁵	R ⁶	(C(R ^{3m})(R ^{4m})) _m
424	C ₂ H ₅	CH(CH ₃)₂	-CH(C ₂ H ₅)-
425	C ₂ H ₅	CH₂CH₂CH₂CH₃	-CH(C ₂ H ₅)-
426	C ₂ H ₅	i-C ₄ H ₉	-CH(C ₂ H ₅)-
427	C ₂ H ₅	s-C ₄ H ₉	-CH(C ₂ H ₅)-
428	C ₂ H ₅	C(CH ₃) ₃	-CH(C ₂ H ₅)-
429	C ₂ H ₅	CH ₂ CH ₂ CH ₂ CH ₃	-CH(C ₂ H ₅)-
430	C ₂ H ₅	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH(C ₂ H ₅)-
431	C ₂ H ₅	Cyclopentyl	-CH(C ₂ H ₅)-
432	C ₂ H ₅	Cyclohexyl	-CH(C ₂ H ₅)-
433	C ₂ H ₅	Allyl	-CH(C ₂ H ₅)-
434	C ₂ H ₅	But-2-en-1-yl	-CH(C₂H₅)-
435	C ₂ H ₅	4-Chlor-but-2-en-1-yl	-CH(C₂H₅)-
436	C ₂ H ₅	Propargyl	-CH(C ₂ H ₅)-
437	C ₂ H ₅	C ₆ H ₅	-CH(C₂H₅)-
438	C ₂ H ₅	C ₆ H ₅ CH ₂	-CH(C ₂ H ₅)-
439	C ₂ H ₅	2-Phenyleth-1-yl	-CH(C₂H₅)-
440	C ₂ H ₅	4-CI-C ₆ H ₄	-CH(C ₂ H ₅)-
441	C₂H₅	4-F-C ₆ H ₄	-CH(C ₂ H ₅)-
442	C ₂ H ₅	CH₃	-C(CH ₃) ₂ -
443	C ₂ H ₅	C₂H₅ .	-C(CH ₃) ₂ -
444	C₂H₅	CH₂CH₂CH₃	-C(CH ₃) ₂ -
445	C ₂ H ₅	CH(CH ₃) ₂	-C(CH ₃) ₂ -
446	C ₂ H ₅	CH₂CH₂CH₃	-C(CH ₃) ₂ -
447	C ₂ H ₅	i-C₄H ₉	-C(CH ₃) ₂ -
448	C ₂ H ₅	s-C ₄ H ₉	-C(CH ₃) ₂ -
449	C₂H₅	C(CH ₃) ₃	-C(CH ₃) ₂ -
450	C ₂ H ₅	CH₂CH₂CH₂CH₃	-C(CH ₃) ₂ -
451	C ₂ H ₅	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-C(CH ₃) ₂ -
452	C ₂ H ₅	Cyclopentyl	-C(CH ₃) ₂ -
453	C ₂ H ₅	Cyclohexyl	-C(CH ₃) ₂ -
454	C ₂ H ₅	Allyl	-C(CH ₃) ₂ -
455	C ₂ H ₅	But-2-en-1-yl	-C(CH ₃) ₂ -
456	C ₂ H ₅	4-Chlor-but-2-en-1-yl	-C(CH ₃) ₂ -
457	C₂H₅	Propargyl	-C(CH ₃) ₂ -
458	C ₂ H ₅	C ₆ H ₅	-C(CH ₃) ₂ -
459	C ₂ H ₅	C ₆ H ₅ CH ₂	-C(CH ₃) ₂ -

Nr.	R⁵	R ⁶	(C(R ^{3m})(R ^{4m})) _m
460	C ₂ H ₅	2-Phenyleth-1-yl	-C(CH ₃) ₂ -
461	C ₂ H ₅	4-CI-C ₆ H ₄	-C(CH ₃) ₂ -
462	C ₂ H ₅	4-F-C ₆ H ₄	-C(CH ₃) ₂ -
463	C ₂ H ₅	CH₃	-CH ₂ CH ₂ -
464	C ₂ H ₅	C ₂ H ₅	-CH ₂ CH ₂ -
465	C ₂ H ₅	CH₂CH₂CH₃	-CH ₂ CH ₂ -
466	C ₂ H ₅	CH(CH ₃) ₂	-CH ₂ CH ₂ -
467	C ₂ H ₅	CH₂CH₂CH₃	-CH ₂ CH ₂ -
468	C ₂ H ₅	i-C ₄ H ₉	-CH ₂ CH ₂ -
469	C ₂ H ₅	s-C ₄ H ₉	-CH ₂ CH ₂ -
470	C ₂ H ₅	C(CH ₃) ₃	-CH ₂ CH ₂ -
471	C ₂ H ₅	CH₂CH₂CH₂CH₃	-CH ₂ CH ₂ -
472	C ₂ H ₅	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH ₂ CH ₂ -
473	C ₂ H ₅	Cyclopentyl	-CH ₂ CH ₂ -
474	C ₂ H ₅	Cyclohexyl	-CH ₂ CH ₂ -
475	C ₂ H ₅	Allyi	-CH ₂ CH ₂ -
476	C ₂ H ₅	But-2-en-1-yl	-CH ₂ CH ₂ -
477	C ₂ H ₅	4-Chlor-but-2-en-1-yl	-CH ₂ CH ₂ -
478	C ₂ H ₅	Propargyl	-CH ₂ CH ₂ -
479	C ₂ H ₅	C ₆ H ₅	-CH ₂ CH ₂ -
480	C ₂ H ₅	C ₆ H ₅ CH ₂	-CH ₂ CH ₂ -
481	C ₂ H ₅	2-Phenyleth-1-yl	-CH ₂ CH ₂ -
482	C ₂ H ₅	4-Cl-C ₆ H ₄	-CH₂CH₂-
483	C ₂ H ₅	4-F-C ₆ H ₄	-CH₂CH₂-
484	C ₂ H ₅	CH₃	-CH(CH ₃)CH ₂ -
485	C ₂ H ₅	C ₂ H ₅	-CH(CH ₃)CH ₂ -
486	C ₂ H ₅	CH₂CH₂CH₃	-CH(CH₃)CH₂-
487	C ₂ H ₅	CH(CH ₃) ₂	-CH(CH ₃)CH ₂ -
488	C ₂ H ₅	CH₂CH₂CH₃	-CH(CH ₃)CH ₂ -
489	C ₂ H ₅	i-C₄H ₉	-CH(CH ₃)CH ₂ -
490	C ₂ H ₅	s-C ₄ H ₉	-CH(CH ₃)CH ₂ -
491	C ₂ H ₅	C(CH ₃) ₃	-CH(CH₃)CH₂-
492	C ₂ H ₅	CH ₂ CH ₂ CH ₂ CH ₃	-CH(CH₃)CH₂-
493	C ₂ H ₅	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH(CH ₃)CH ₂ -
494	C₂H₅	Cyclopentyl	-CH(CH ₃)CH ₂ -
495	C ₂ H ₅	Cyclohexyl	-CH(CH₃)CH₂-

Nr.	R ⁵	R ⁶	$(C(R^{3m})(R^{4m}))_m$
496	C ₂ H ₅	Allyl	-CH(CH ₃)CH ₂ -
497	C ₂ H ₅	But-2-en-1-yl	-CH(CH ₃)CH ₂ -
498	C ₂ H ₅	4-Chlor-but-2-en-1-yl	-CH(CH ₃)CH ₂ -
499	C ₂ H ₅	Propargyl	-CH(CH ₃)CH ₂ -
500	C ₂ H ₅	C ₆ H ₅	-CH(CH₃)CH₂-
501	C ₂ H ₅	C ₆ H ₅ CH ₂	-CH(CH ₃)CH ₂ -
502	C ₂ H ₅	2-Phenyleth-1-yl	-CH(CH₃)CH₂-
503	C ₂ H ₅	4-CI-C ₆ H ₄	-CH(CH ₃)CH ₂ -
504	C ₂ H ₅	4-F-C ₆ H ₄	-CH(CH ₃)CH ₂ -
505	C ₂ H ₅	CH₃	-CH ₂ CH(CH ₃)-
506	C ₂ H ₅	C ₂ H ₅	-CH ₂ CH(CH ₃)-
507	C ₂ H ₅	CH₂CH₂CH₃	-CH ₂ CH(CH ₃)-
508	C ₂ H ₅	CH(CH₃)₂	-CH₂CH(CH₃)-
509	C ₂ H ₅	CH ₂ CH ₂ CH ₃	-CH ₂ CH(CH ₃)-
510	C ₂ H ₅	i-C ₄ H ₉	-CH₂CH(CH₃)-
511	C ₂ H ₅	s-C ₄ H ₉	-CH₂CH(CH₃)-
512	C ₂ H ₅	C(CH ₃) ₃	-CH₂CH(CH₃)-
513	C ₂ H ₅	CH ₂ CH ₂ CH ₂ CH ₃	-CH₂CH(CH₃)-
514	C₂H₅	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH₂CH(CH₃)-
515	C ₂ H ₅	Cyclopentyl	-CH₂CH(CH₃)-
516	C ₂ H ₅	Cyclohexyl	-CH₂CH(CH₃)-
517	C₂H₅	Allyl	-CH₂CH(CH₃)-
518	C₂H₅	But-2-en-1-yl	-CH₂CH(CH₃)-
519	C ₂ H ₅	4-Chlor-but-2-en-1-yl	-CH₂CH(CH₃)-
520	C ₂ H ₅	Propargyl	-CH₂CH(CH₃)-
521	C ₂ H ₅	C ₆ H ₅	-CH₂CH(CH₃)-
522	C₂H₅	C ₆ H ₅ CH ₂	-CH₂CH(CH₃)-
523	C₂H₅	2-Phenyleth-1-yl	-CH₂CH(CH₃)-
524	C₂H₅	4-CI-C ₆ H ₄	-CH₂CH(CH₃)-
525	C₂H₅	4-F-C ₆ H ₄	-CH ₂ CH(CH ₃)-
526	C ₂ H ₅	CH ₃	-CH(CH₃)CH(CH₃)-
527	C₂H₅	C ₂ H ₅	-CH(CH ₃)CH(CH ₃)-
528	C ₂ H ₅	CH₂CH₂CH₃	-CH(CH ₃)CH(CH ₃)-
529	C₂H₅	CH(CH ₃) ₂	-CH(CH ₃)CH(CH ₃)-
530	C₂H₅	CH₂CH₂CH₃	-CH(CH ₃)CH(CH ₃)-
531	C₂H₅	i-C₄H ₉	-CH(CH ₃)CH(CH ₃)-

Nr.	R ⁵	R ⁶	$(C(R^{3m})(R^{4m}))_m$
532	C ₂ H ₅	s-C ₄ H ₉	-CH(CH ₃)CH(CH ₃)-
533	C ₂ H ₅	C(CH ₃) ₃	-CH(CH ₃)CH(CH ₃)-
534	C ₂ H ₅	CH ₂ CH ₂ CH ₂ CH ₃	-CH(CH ₃)CH(CH ₃)-
535	C ₂ H ₅	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH(CH ₃)CH(CH ₃)-
536	C ₂ H ₅	Cyclopentyl	-CH(CH ₃)CH(CH ₃)-
537	C ₂ H ₅	Cyclohexyl	-CH(CH ₃)CH(CH ₃)-
538	C ₂ H ₅	Allyl	-CH(CH ₃)CH(CH ₃)-
539	C ₂ H ₅	But-2-en-1-yl	-CH(CH ₃)CH(CH ₃)-
540	C ₂ H ₅	4-Chlor-but-2-en-1-yl	-CH(CH ₃)CH(CH ₃)-
541	C ₂ H ₅	Propargyl	-CH(CH ₃)CH(CH ₃)-
542	C ₂ H ₅	C ₆ H ₅	-CH(CH ₃)CH(CH ₃)-
543	C ₂ H ₅	C ₆ H ₅ CH ₂	-CH(CH ₃)CH(CH ₃)-
544	C ₂ H ₅	2-Phenyleth-1-yl	-CH(CH ₃)CH(CH ₃)-
545	C ₂ H ₅	4-CI-C ₆ H ₄	-CH(CH ₃)CH(CH ₃)-
546	C ₂ H ₅	4-F-C ₆ H ₄	-CH(CH ₃)CH(CH ₃)-
547	C ₂ H ₅	CH₃	-CH ₂ CH ₂ CH ₂ -
548	C ₂ H ₅	C₂H₅	-CH ₂ CH ₂ CH ₂ -
549	C ₂ H ₅	CH₂CH₂CH₃	-CH ₂ CH ₂ CH ₂ -
550	C ₂ H ₅	CH(CH₃)₂	-CH ₂ CH ₂ CH ₂ -
551	C ₂ H ₅	CH ₂ CH ₂ CH ₂ CH ₃	-CH ₂ CH ₂ CH ₂ -
552	C ₂ H ₅	i-C ₄ H ₉	-CH ₂ CH ₂ CH ₂ -
553	C ₂ H ₅	s-C ₄ H ₉	-CH ₂ CH ₂ CH ₂ -
554	C ₂ H ₅	C(CH ₃) ₃	-CH ₂ CH ₂ CH ₂ -
555	C ₂ H ₅	CH ₂ CH ₂ CH ₂ CH ₃	-CH ₂ CH ₂ CH ₂ -
556	C ₂ H ₅	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH ₂ CH ₂ CH ₂ -
557	C ₂ H ₅	Cyclopentyl	-CH ₂ CH ₂ CH ₂ -
558	C ₂ H ₅	Cyclohexyl	-CH ₂ CH ₂ CH ₂ -
559	C ₂ H ₅	Allyl	-CH ₂ CH ₂ CH ₂ -
560	C ₂ H ₅	But-2-en-1-yl	-CH ₂ CH ₂ CH ₂ -
561	C ₂ H ₅	4-Chlor-but-2-en-1-yl	-CH ₂ CH ₂ CH ₂ -
562	C ₂ H ₅	Propargyl	-CH ₂ CH ₂ CH ₂ -
563	C ₂ H ₅	C ₆ H ₅	-CH ₂ CH ₂ CH ₂ -
564	C₂H₅	C ₆ H ₅ CH ₂	-CH ₂ CH ₂ CH ₂ -
565	C ₂ H ₅	2-Phenyleth-1-yl	-CH ₂ CH ₂ CH ₂ -
566	C ₂ H ₅	4-CI-C ₆ H ₄	-CH ₂ CH ₂ CH ₂ -
567	C ₂ H ₅	4-F-C ₆ H ₄	-CH ₂ CH ₂ CH ₂ -

Nr.	R⁵	R ⁶	(C(R ^{3m})(R ^{4m})) _m
568	CH₂CH₂CH₃	CH₃	-CH₂-
569	CH₂CH₂CH₃	C ₂ H ₅	-CH₂-
570	CH₂CH₂CH₃	CH₂CH₂CH₃	-CH ₂ -
571	CH₂CH₂CH₃	CH(CH ₃) ₂	-CH ₂ -
572	CH₂CH₂CH₃	CH₂CH₂CH₃	-CH ₂ -
573	CH₂CH₂CH₃	i-C ₄ H ₉	-CH ₂ -
574	CH ₂ CH ₂ CH ₃	s-C ₄ H ₉	-CH ₂ -
575	CH₂CH₂CH₃	C(CH ₃) ₃	-CH ₂ -
576	CH₂CH₂CH₃	CH ₂ CH ₂ CH ₂ CH ₃	-CH ₂ -
577	CH ₂ CH ₂ CH ₃	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH ₂ -
578	CH ₂ CH ₂ CH ₃	Cyclopentyl	-CH ₂ -
579	CH ₂ CH ₂ CH ₃	Cyclohexyl	-CH ₂ -
580	CH ₂ CH ₂ CH ₃	Aliyi	-CH ₂ -
581	CH₂CH₂CH₃	But-2-en-1-yl	-CH ₂ -
582	CH₂CH₂CH₃	4-Chlor-but-2-en-1-yl	-CH ₂ -
583	CH₂CH₂CH₃	Propargyl	-CH ₂ -
584	CH₂CH₂CH₃	C ₆ H ₅	-CH ₂ -
585	CH₂CH₂CH₃	C ₆ H ₅ CH ₂	-CH ₂ -
586	CH ₂ CH ₂ CH ₃	2-Phenyleth-1-yl	-CH₂-
587	CH₂CH₂CH₃	4-CI-C ₆ H ₄	-CH ₂ -
588	CH₂CH₂CH₃	4-F-C ₆ H ₄	-CH ₂ -
589	CH₂CH₂CH₃	CH₃	-CH(CH₃)-
590	CH₂CH₂CH₃	C ₂ H ₅	-CH(CH ₃)-
591	CH₂CH₂CH₃	CH₂CH₂CH₃	-CH(CH₃)-
592	CH₂CH₂CH₃	CH(CH ₃) ₂	-CH(CH ₃)-
593	CH₂CH₂CH₃	CH ₂ CH ₂ CH ₃	-CH(CH₃)-
594	CH₂CH₂CH₃	i-C₄H ₉	-CH(CH₃)-
595	CH₂CH₂CH₃	s-C ₄ H ₉	-CH(CH ₃)-
596	CH₂CH₂CH₃	C(CH ₃) ₃	-CH(CH₃)-
597	CH₂CH₂CH₃	CH ₂ CH ₂ CH ₂ CH ₃	-CH(CH ₃)-
598	CH₂CH₂CH₃	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH(CH ₃)-
599	CH₂CH₂CH₃	Cyclopentyl	-CH(CH ₃)-
600	CH₂CH₂CH₃	Cyclohexyl	-CH(CH₃)-
601	CH₂CH₂CH₃	Allyl	-CH(CH₃)-
602	CH₂CH₂CH₃	But-2-en-1-yl	-CH(CH₃)-
603	CH₂CH₂CH₃	4-Chlor-but-2-en-1-yl	-CH(CH ₃)-

Nr.	R⁵	R ⁶	$(C(R^{3m})(R^{4m}))_m$
604	CH₂CH₂CH₃	Propargyl	-CH(CH ₃)-
605	CH ₂ CH ₂ CH ₃	C ₆ H ₅	-CH(CH₃)-
606	CH₂CH₂CH₃	C ₆ H ₅ CH ₂	-CH(CH₃)-
607	CH ₂ CH ₂ CH ₃	2-Phenyleth-1-yl	-CH(CH₃)-
608	CH ₂ CH ₂ CH ₃	4-Cl-C ₆ H ₄	-CH(CH₃)-
609	CH ₂ CH ₂ CH ₃	4-F-C ₆ H ₄	-CH(CH ₃)-
610	CH ₂ CH ₂ CH ₃	CH₃	-CH ₂ CH ₂ -
611	CH ₂ CH ₂ CH ₃	C ₂ H ₅	-CH ₂ CH ₂ -
612	CH ₂ CH ₂ CH ₃	CH₂CH₂CH₃	-CH ₂ CH ₂ -
613	CH ₂ CH ₂ CH ₃	CH(CH₃)₂	-CH ₂ CH ₂ -
614	CH ₂ CH ₂ CH ₃	CH ₂ CH ₂ CH ₂ CH ₃	-CH ₂ CH ₂ -
615	CH₂CH₂CH₃	i-C ₄ H ₉	-CH ₂ CH ₂ -
616	CH₂CH₂CH₃	s-C ₄ H ₉	-CH ₂ CH ₂ -
617	CH₂CH₂CH₃	C(CH ₃) ₃	-CH ₂ CH ₂ -
618	CH ₂ CH ₂ CH ₃	CH₂CH₂CH₂CH₃	-CH ₂ CH ₂ -
619	CH ₂ CH ₂ CH ₃	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH ₂ CH ₂ -
620	CH₂CH₂CH₃	Cyclopentyl	-CH ₂ CH ₂ -
621	CH₂CH₂CH₃	Cyclohexyl	-CH₂CH₂-
622	CH₂CH₂CH₃	Allyl	-CH₂CH₂-
623	CH₂CH₂CH₃	But-2-en-1-yl	-CH ₂ CH ₂ -
624	CH ₂ CH ₂ CH ₃	4-Chlor-but-2-en-1-yl	-CH ₂ CH ₂ -
625	CH₂CH₂CH₃	Propargyl	-CH₂CH₂-
626	CH₂CH₂CH₃	C ₆ H ₅	-CH₂CH₂-
627	CH₂CH₂CH₃	C ₆ H ₅ CH ₂	-CH₂CH₂-
628	CH₂CH₂CH₃	2-Phenyleth-1-yl	-CH₂CH₂-
629	CH₂CH₂CH₃	4-CI-C ₆ H ₄	-CH₂CH₂-
630	CH₂CH₂CH₃	4-F-C ₆ H ₄	-CH₂CH₂-
631	CH₂CH₂CH₃	CH₃	-CH₂CH₂CH₂-
632	CH₂CH₂CH₃	C ₂ H ₅	-CH₂CH₂CH₂-
633	CH₂CH₂CH₃	CH₂CH₂CH₃	-CH₂CH₂CH₂-
634	CH₂CH₂CH₃	CH(CH ₃) ₂	-CH ₂ CH ₂ CH ₂ -
635	CH₂CH₂CH₃	CH ₂ CH ₂ CH ₃	-CH₂CH₂CH₂-
636	CH₂CH₂CH₃	i-C₄H ₉	-CH₂CH₂CH₂-
637	CH₂CH₂CH₃	s-C ₄ H ₉	-CH ₂ CH ₂ CH ₂ -
638	CH₂CH₂CH₃	C(CH ₃) ₃	-CH₂CH₂CH₂-
639	CH₂CH₂CH₃	CH ₂ CH ₂ CH ₂ CH ₃	-CH ₂ CH ₂ CH ₂ -

Ñr.	R⁵	R ⁶	(C(R ^{3m})(R ^{4m})) _m
640	CH ₂ CH ₂ CH ₃	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH ₂ CH ₂ CH ₂ -
641	CH ₂ CH ₂ CH ₃	Cyclopentyl	-CH ₂ CH ₂ CH ₂ -
642	CH ₂ CH ₂ CH ₃	Cyclohexyl	-CH ₂ CH ₂ CH ₂ -
643	CH ₂ CH ₂ CH ₃	Allyl	-CH ₂ CH ₂ CH ₂ -
644	CH ₂ CH ₂ CH ₃	But-2-en-1-yl	-CH ₂ CH ₂ CH ₂ -
645	CH ₂ CH ₂ CH ₃	4-Chlor-but-2-en-1-yl	-CH₂CH₂CH₂-
646	CH ₂ CH ₂ CH ₃	Propargyl	-CH ₂ CH ₂ CH ₂ -
647	CH₂CH₂CH₃	C ₆ H ₅	-CH₂CH₂CH₂-
648	CH ₂ CH ₂ CH ₃	C ₆ H ₅ CH ₂	-CH ₂ CH ₂ CH ₂ -
649	CH ₂ CH ₂ CH ₃	2-Phenyleth-1-yl	-CH ₂ CH ₂ CH ₂ -
650	CH ₂ CH ₂ CH ₃	4-CI-C ₆ H ₄	-CH ₂ CH ₂ CH ₂ -
651	CH ₂ CH ₂ CH ₃	4-F-C ₆ H ₄	-CH₂CH₂CH₂-
652	CH(CH ₃) ₂	CH₃	-CH₂-
653	CH(CH ₃) ₂	C ₂ H ₅	-CH₂-
654	CH(CH ₃) ₂	CH₂CH₂CH₃	-CH ₂ -
655	CH(CH ₃) ₂	CH(CH ₃) ₂	-CH₂-
656	CH(CH ₃) ₂	CH ₂ CH ₂ CH ₃	-CH ₂ -
657	CH(CH ₃) ₂	i-C ₄ H ₉	-CH ₂ -
658	CH(CH ₃) ₂	s-C ₄ H ₉	-CH ₂ -
659	CH(CH ₃) ₂	C(CH ₃) ₃	-CH₂-
660	CH(CH ₃) ₂	CH ₂ CH ₂ CH ₂ CH ₃	-CH₂-
661	CH(CH ₃) ₂	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH₂-
662	CH(CH ₃) ₂	Cyclopentyl	-CH₂-
663	CH(CH ₃) ₂	Cyclohexyl	-CH₂-
664	CH(CH ₃) ₂	Allyl	-CH₂-
665	CH(CH ₃) ₂	But-2-en-1-yl	-CH₂-
666	CH(CH ₃) ₂	4-Chlor-but-2-en-1-yl	-CH₂-
667	CH(CH ₃) ₂	Propargyl	-CH₂-
668	CH(CH ₃) ₂	C ₆ H ₅	-CH₂-
669	CH(CH ₃) ₂	C ₆ H ₅ CH ₂	-CH ₂ -
670	CH(CH ₃) ₂	2-Phenyleth-1-yl	-CH₂-
671	CH(CH ₃) ₂	4-CI-C ₆ H ₄	-CH₂-
672	CH(CH ₃) ₂	4-F-C ₆ H ₄	-CH ₂ -
673	CH(CH ₃) ₂	CH₃	-CH(CH₃)-
674	CH(CH ₃) ₂	C ₂ H ₅	-CH(CH₃)-
675	CH(CH ₃) ₂	CH₂CH₂CH₃	-CH(CH₃)-

Nr.	R ⁵	R ⁶	$(C(R^{3m})(R^{4m}))_m$
676	CH(CH ₃) ₂	CH(CH₃)₂	-CH(CH ₃)-
677	CH(CH ₃) ₂	CH ₂ CH ₂ CH ₃ -CH(CH ₃)-	
678	CH(CH ₃) ₂	i-C ₄ H ₉	-CH(CH₃)-
679	CH(CH ₃) ₂	s-C ₄ H ₉	-CH(CH₃)-
680	CH(CH ₃) ₂	C(CH ₃) ₃	-CH(CH₃)-
681	CH(CH ₃) ₂	CH ₂ CH ₂ CH ₂ CH ₃	-CH(CH₃)-
682	CH(CH ₃) ₂	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH(CH₃)-
683	CH(CH ₃) ₂	Cyclopentyl	-CH(CH ₃)-
684	CH(CH ₃) ₂	Cyclohexyl	-CH(CH₃)-
685	CH(CH ₃) ₂	Allyl	-CH(CH₃)-
686	CH(CH ₃) ₂	But-2-en-1-yl	-CH(CH₃)-
687	CH(CH ₃) ₂	4-Chlor-but-2-en-1-yl	-CH(CH₃)-
688	CH(CH ₃) ₂	Propargyl	-CH(CH ₃)-
689	CH(CH ₃) ₂	C ₆ H ₅	-CH(CH ₃)-
690	CH(CH ₃) ₂	C ₆ H ₅ CH ₂	-CH(CH ₃)-
691	CH(CH ₃) ₂	2-Phenyleth-1-yl	-CH(CH₃)-
692	CH(CH ₃) ₂	4-CI-C ₆ H ₄	-CH(CH ₃)-
693	CH(CH ₃) ₂	4-F-C ₆ H ₄	-CH(CH ₃)-
694	CH(CH ₃) ₂	CH₃	-CH₂CH₂-
695	CH(CH ₃) ₂	C ₂ H ₅	-CH ₂ CH ₂ -
696	CH(CH ₃) ₂	CH₂CH₂CH₃	-CH ₂ CH ₂ -
697	CH(CH ₃) ₂	CH(CH ₃) ₂	-CH₂CH₂-
698	CH(CH ₃) ₂	CH ₂ CH ₂ CH ₂ CH ₃	-CH ₂ CH ₂ -
699	CH(CH ₃) ₂	i-C ₄ H ₉	-CH₂CH₂-
700	CH(CH₃)₂	s-C₄H ₉	-CH₂CH₂-
701	CH(CH ₃) ₂	C(CH ₃) ₃	-CH₂CH₂-
702	CH(CH ₃) ₂	CH ₂ CH ₂ CH ₂ CH ₃	-CH₂CH₂-
703	CH(CH ₃) ₂	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH₂CH₂-
704	CH(CH ₃) ₂	Cyclopentyl	-CH ₂ CH ₂ -
705	CH(CH₃)₂	Cyclohexyl	-CH₂CH₂-
706	CH(CH ₃) ₂	Allyl	-CH ₂ CH ₂ -
707	CH(CH ₃) ₂	But-2-en-1-yl	-CH ₂ CH ₂ -
708	CH(CH ₃) ₂	4-Chlor-but-2-en-1-yl	-CH ₂ CH ₂ -
709	CH(CH₃)₂	Propargyl	-CH ₂ CH ₂ -
710	CH(CH₃)₂	C ₆ H ₅	-CH ₂ CH ₂ -
711	CH(CH ₃) ₂	C ₆ H ₅ CH ₂	-CH ₂ CH ₂ -

Nr.	R⁵	R ⁶	$(C(R^{3m})(R^{4m}))_m$
712	CH(CH ₃) ₂	2-Phenyleth-1-yl	-CH ₂ CH ₂ -
713	CH(CH ₃) ₂	4-CI-C ₆ H ₄	-CH₂CH₂-
714	CH(CH ₃) ₂	4-F-C ₆ H ₄	-CH ₂ CH ₂ -
715	CH(CH ₃) ₂	CH ₃	-CH ₂ CH ₂ CH ₂ -
716	CH(CH ₃) ₂	C ₂ H ₅	-CH ₂ CH ₂ CH ₂ -
717	CH(CH ₃) ₂	CH₂CH₂CH₃	-CH ₂ CH ₂ CH ₂ -
718	CH(CH ₃) ₂	CH(CH ₃) ₂	-CH₂CH₂CH₂-
719	CH(CH ₃) ₂	CH ₂ CH ₂ CH ₃	-CH ₂ CH ₂ CH ₂ -
720	CH(CH ₃) ₂	i-C ₄ H ₉	-CH ₂ CH ₂ CH ₂ -
721	CH(CH ₃) ₂	s-C ₄ H ₉	-CH₂CH₂CH₂-
722	CH(CH ₃) ₂	C(CH ₃) ₃	-CH ₂ CH ₂ CH ₂ -
723	CH(CH ₃) ₂	CH₂CH₂CH₂CH₃	-CH ₂ CH ₂ CH ₂ -
724	CH(CH ₃) ₂	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH ₂ CH ₂ CH ₂ -
725	CH(CH ₃) ₂	Cyclopentyl	-CH ₂ CH ₂ CH ₂ -
726	CH(CH ₃) ₂	Cyclohexyl	-CH ₂ CH ₂ CH ₂ -
727	CH(CH ₃) ₂	Allyl	-CH₂CH₂CH₂-
728	CH(CH ₃) ₂	But-2-en-1-yl	-CH ₂ CH ₂ CH ₂ -
729	CH(CH ₃)₂	4-Chlor-but-2-en-1-yl	-CH₂CH₂CH₂-
730	CH(CH ₃)₂	Propargyl	-CH₂CH₂CH₂-
731	CH(CH ₃) ₂	C ₆ H ₅	-CH ₂ CH ₂ CH ₂ -
732	CH(CH ₃) ₂	C ₆ H ₅ CH ₂	-CH₂CH₂CH₂-
733	CH(CH ₃) ₂	2-Phenyleth-1-yl	-CH₂CH₂CH₂-
734	CH(CH ₃) ₂	4-CI-C ₆ H ₄	-CH₂CH₂CH₂-
735	CH(CH ₃) ₂	4-F-C ₆ H ₄	-CH₂CH₂CH₂-
736	C ₆ H ₅	CH₃	-CH₂-
737	C ₆ H ₅	C₂H₅	-CH₂-
738	C ₆ H ₅	CH₂CH₂CH₃	-CH₂-
739	C ₆ H ₅	CH(CH ₃) ₂	-CH ₂ -
740	C ₆ H ₅	CH ₂ CH ₂ CH ₃	-CH ₂ -
741	C ₆ H ₅	i-C ₄ H ₉	-CH₂-
742	C ₆ H ₅	s-C₄H ₉	-CH₂-
743	C ₆ H ₅	C(CH ₃) ₃	-CH₂-
744	C ₆ H ₅	CH₂CH₂CH₂CH₃	-CH ₂ -
745	C ₆ H ₅	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH₂-
746	C ₆ H ₅	Cyclopentyl	-CH ₂ -
747	C ₆ H ₅	Cyclohexyl	-CH₂-

Nr.	R⁵	R ⁶	(C(R ^{3m})(R ^{4m})) _m
748	C ₆ H ₅	Allyl	-CH ₂ -
749	C ₆ H ₅	But-2-en-1-yl	-CH ₂ -
750	C ₆ H ₅	4-Chlor-but-2-en-1-yl	-CH ₂ -
751	C ₆ H ₅	Propargyl	-CH ₂ -
752	C ₆ H ₅	C ₆ H ₅	-CH ₂ -
753	C ₆ H ₅	C ₆ H ₅ CH ₂	-CH ₂ -
754	C ₆ H ₅	2-Phenyleth-1-yl	-CH ₂ -
755	C ₆ H ₅	4-CI-C ₆ H ₄	-CH ₂ -
756	C ₆ H ₅	4-F-C ₆ H ₄	-CH ₂ -
757	C ₆ H ₅	CH₃	-CH(CH ₃)-
758	C ₆ H ₅	C₂H₅	-CH(CH ₃)-
759	C ₆ H ₅	CH ₂ CH ₂ CH ₃	-CH(CH ₃)-
760	C ₆ H ₅	CH(CH ₃) ₂	-CH(CH₃)-
761	C ₆ H ₅	CH ₂ CH ₂ CH ₃	-CH(CH ₃)-
762	C ₆ H ₅	i-C₄H ₉	-CH(CH₃)-
763	C ₆ H ₅	s-C₄H ₉	-CH(CH ₃)-
764	C ₆ H ₅	C(CH ₃) ₃	-CH(CH ₃)-
765	C ₆ H ₅	CH ₂ CH ₂ CH ₂ CH ₃	-CH(CH₃)-
766	C ₆ H ₅	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH(CH ₃)-
767	C ₆ H ₅	Cyclopentyl	-CH(CH ₃)-
768	C ₆ H ₅	Cyclohexyl	-CH(CH ₃)-
769	C ₆ H ₅	Allyl	-CH(CH₃)-
770	C ₆ H ₅	But-2-en-1-yl	-CH(CH₃)-
771	C ₆ H ₅	4-Chlor-but-2-en-1-yl	-CH(CH ₃)-
772	C ₆ H ₅	Propargyl	-CH(CH₃)-
773	C ₆ H ₅	C ₆ H ₅	-CH(CH₃)-
774	C ₆ H ₅	C ₆ H ₅ CH ₂	-CH(CH₃)-
775	C ₆ H ₅	2-Phenyleth-1-yl	-CH(CH₃)-
776	C ₆ H ₅	4-Cl-C ₆ H ₄	-CH(CH₃)-
777	C ₆ H ₅	4-F-C ₆ H ₄	-CH(CH₃)-
778	C ₆ H ₅	CH ₃	-CH ₂ CH ₂ -
779	C ₆ H ₅	C₂H₅	-CH ₂ CH ₂ -
780	C ₆ H ₅	CH₂CH₂CH₃	-CH ₂ CH ₂ -
781	C ₆ H ₅	CH(CH ₃) ₂	-CH₂CH₂-
782	C ₆ H ₅	CH₂CH₂CH₃	-CH ₂ CH ₂ -
783	C ₆ H ₅	i-C₄H ₉	-CH ₂ CH ₂ -

Nr.	R⁵	R ⁶	(C(R ^{3m})(R ^{4m})) _m
784	C ₆ H ₅	s-C ₄ H ₉	-CH ₂ CH ₂ -
785	C ₆ H ₅	C(CH₃)₃	-CH ₂ CH ₂ -
786	C ₆ H ₅	CH₂CH₂CH₂CH₃	-CH ₂ CH ₂ -
787	C ₆ H ₅	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH ₂ CH ₂ -
788	C ₆ H ₅	Cyclopentyl	-CH ₂ CH ₂ -
789	C ₆ H ₅	Cyclohexyl	-CH ₂ CH ₂ -
790	C ₆ H ₅	Allyl	-CH ₂ CH ₂ -
791	C ₆ H ₅	But-2-en-1-yl	-CH ₂ CH ₂ -
792	C ₆ H ₅	4-Chlor-but-2-en-1-yl	-CH₂CH₂-
793	C ₆ H ₅	Propargyl	-CH ₂ CH ₂ -
794	C ₆ H ₅	C ₆ H ₅	-CH₂CH₂-
795	C ₆ H ₅	C ₆ H ₅ CH ₂	-CH ₂ CH ₂ -
796	C ₆ H ₅	2-Phenyleth-1-yl	-CH ₂ CH ₂ -
797	C ₆ H ₅	4-CI-C ₆ H ₄	-CH₂CH₂-
798	C ₆ H ₅	4-F-C ₆ H ₄	-CH ₂ CH ₂ -
799	C ₆ H ₅	CH₃	-CH₂CH₂CH₂-
800	C ₆ H ₅	C₂H₅	-CH₂CH₂CH₂-
801	C ₆ H ₅	CH ₂ CH ₂ CH ₃	-CH₂CH₂CH₂-
802	C ₆ H ₅	CH(CH ₃) ₂	-CH₂CH₂CH₂-
803	C ₆ H ₅	CH ₂ CH ₂ CH ₃	-CH ₂ CH ₂ CH ₂ -
804	C ₆ H ₅	i-C₄H ₉	-CH₂CH₂CH₂-
805	C ₆ H ₅	s-C ₄ H ₉	-CH ₂ CH ₂ CH ₂ -
806	C ₆ H ₅	C(CH ₃) ₃	-CH₂CH₂CH₂-
807	C ₆ H ₅	CH₂CH₂CH₂CH₃	-CH₂CH₂CH₂-
808	C ₆ H ₅	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-CH₂CH₂CH₂-
809	C ₆ H ₅	Cyclopentyl	-CH₂CH₂CH₂-
810	C ₆ H ₅	Cyclohexyl	-CH₂CH₂CH₂-
811	C ₆ H ₅	Allyl	-CH ₂ CH ₂ CH ₂ -
812	C ₆ H ₅	But-2-en-1-yl	-CH ₂ CH ₂ CH ₂ -
813	C ₆ H ₅	4-Chlor-but-2-en-1-yl	-CH₂CH₂CH₂-
814	C ₆ H ₅	Propargyl	-CH₂CH₂CH₂-
815	C ₆ H ₅	C ₆ H ₅	-CH ₂ CH ₂ CH ₂ -
816	C ₆ H ₅	C ₆ H ₅ CH ₂	-CH ₂ CH ₂ CH ₂ -
817	C ₆ H ₅	2-Phenyleth-1-yl	-CH₂CH₂CH₂-
818	C ₆ H ₅	4-CI-C ₆ H ₄	-CH₂CH₂CH₂-
819	C ₆ H ₅	4-F-C ₆ H ₄	-CH ₂ CH ₂ CH ₂ -

 $s-C_4H_9$: $-CH(CH_3)(C_2H_5)$; $i-C_4H_9$: $-CH_2CH(CH_3)_2$;

Allyl: -CH₂CH=CH₂;

5 Propargyl: -CH₂C≡CH;

Tabelle 1:

Verbindungen der allgemeinen Formel IA, worin A für 2-Chlorphenyl steht und R⁵, R⁶ und (C(R^{3m})(R^{4m}))_m für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 2:

Verbindungen der allgemeinen Formel IA, worin A für 2-Trifluormethylphenyl steht und R⁵, R⁶ und (C(R^{3m})(R^{4m}))_m für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 3:

20

30

35

Verbindungen der allgemeinen Formel IA, worin A für 2-Difluormethylphenyl steht und R⁵, R⁶ und (C(R^{3m})(R^{4m}))_m für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

25 Tabelle 4:

Verbindungen der allgemeinen Formel IA, worin A für 2-Methylphenyl steht und R^5 , R^6 und $(C(R^{3m})(R^{4m}))_m$ für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 5:

Verbindungen der allgemeinen Formel IA, worin A für 2-Chlorpyridin-3-yl steht und R^5 , R^6 und $(C(R^{3m})(R^{4m}))_m$ für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 6:

Verbindungen der allgemeinen Formel IA, worin A für 2-Trifluormethylpyridin-3-yl steht und R⁵, R⁶ und (C(R^{3m})(R^{4m}))_m für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

5 Tabelle 7:

Verbindungen der allgemeinen Formel IA, worin A für 2-Difluormethylpyridin-3-yl steht und R^5 , R^6 und $(C(R^{3m})(R^{4m}))_m$ für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

10

15

Tabelle 8:

Verbindungen der allgemeinen Formel IA, worin A für 2-Methylpyridin-3-yl steht und R⁵, R⁶ und (C(R^{3m})(R^{4m}))_m für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 9:

Verbindungen der allgemeinen Formel IA, worin A für 4-Methylpyridimidin-5-yl steht und R⁵, R⁶ und (C(R^{3m})(R^{4m}))_m für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 10:

Verbindungen der allgemeinen Formel IA, worin A für 4-Trifluormethylpyrimidin-5-yl steht und R⁵, R⁶ und (C(R^{3m})(R^{4m}))_m für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 11:

30

Verbindungen der allgemeinen Formel IA, worin A für 4-Difluormethylpyrimidin-5-yl steht und R^5 , R^6 und $(C(R^{3m})(R^{4m}))_m$ für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

35 Tabelle 12:

Verbindungen der allgemeinen Formel IA, worin A für 1-Methyl-3-trifluormethylpyrazol-4-yl steht und R^5 , R^6 und $(C(R^{3m})(R^{4m}))_m$ für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

5 Tabelle 13:

Verbindungen der allgemeinen Formel IA, worin A für 1-Methyl-3-difluormethylpyrazol-4-yl steht und R^5 , R^6 und $(C(R^{3m})(R^{4m}))_m$ für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

10

15

Tabelle 14:

Verbindungen der allgemeinen Formel IA, worin A für 1,3-Dimethylpyrazol-4-yl steht und R⁵, R⁶ und (C(R^{3m})(R^{4m}))_m für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 15:

Verbindungen der allgemeinen Formel IA, worin A für 1-Methyl-3-trifluormethyl-5-20 fluorpyrazol-4-yl steht und R⁵, R⁶ und (C(R^{3m})(R^{4m}))_m für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 16:

Verbindungen der allgemeinen Formel IA, worin A für 1-Methyl-3-difluormethyl-5-fluorpyrazol-4-yl steht und R⁵, R⁶ und (C(R^{3m})(R^{4m}))_m für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 17:

30

Verbindungen der allgemeinen Formel IA, worin A für 1-Methyl-3-trifluormethyl-5-chlor-pyrazol-4-yl steht und R^5 , R^6 und $(C(R^{3m})(R^{4m}))_m$ für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

35 Tabelle 18:

Verbindungen der allgemeinen Formel IA, worin A für 1-Methyl-3-trifluormethylpyrol-4-yl steht und R^5 , R^6 und $(C(R^{3m})(R^{4m}))_m$ für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

5 Tabelle 19:

Verbindungen der allgemeinen Formel IA, worin A für 1-Methyl-3-difluormethylpyrol-4-yl steht und R^5 , R^6 und $(C(R^{3m})(R^{4m}))_m$ für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

10

15

Tabelle 20:

Verbindungen der allgemeinen Formel IA, worin A für 2-Methyl-4-trifluormethylthiazol-5-yl steht und R⁵, R⁶ und (C(R^{3m})(R^{4m}))_m für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 21:

Verbindungen der allgemeinen Formel IA, worin A für 2-Methyl-4-difluormethylthiazol-20 5-yl steht und R⁵, R⁶ und (C(R^{3m})(R^{4m}))_m für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 22:

Verbindungen der allgemeinen Formel IA, worin A für 2,4-Dimethylthiazol-5-yl steht und R⁵, R⁶ und (C(R^{3m})(R^{4m}))_m für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 23:

30

Verbindungen der allgemeinen Formel IA, worin A für 2-Methyl-5-trifluormethylthiazol-4-yl steht und R^5 , R^6 und $(C(R^{3m})(R^{4m}))_m$ für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

35 Tabelle 24:

Verbindungen der allgemeinen Formel IA, worin A für 2-Methyl-5-difluormethylthiazol-4-yl steht und R^5 , R^6 und $(C(R^{3m})(R^{4m}))_m$ für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

5 Tabelle 25:

Verbindungen der allgemeinen Formel IA, worin A für 2,5-Dimethylthiazol-4-yl steht und R^5 , R^6 und $(C(R^{3m})(R^{4m}))_m$ für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

10

15

Tabelle 26:

Verbindungen der allgemeinen Formel IA, worin A für 2-Methyl-4-trifluormethyloxazol-5-yl steht und R⁵, R⁶ und (C(R^{3m})(R^{4m}))_m für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 27:

Verbindungen der allgemeinen Formel IA, worin A für 2-Methyl-4-difluormethyloxazol-20 5-yl steht und R⁵, R⁶ und (C(R^{3m})(R^{4m}))_m für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 28:

Verbindungen der allgemeinen Formel IA, worin A für 2,4-Dimethyloxazol-5-yl steht und R⁵, R⁶ und (C(R^{3m})(R^{4m}))_m für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 29:

30

Verbindungen der allgemeinen Formel IA, worin A für 2-Trifluormethylthiophen-3-yl steht und R^5 , R^6 und $(C(R^{3m})(R^{4m}))_m$ für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

35 Tabelle 30:

Verbindungen der allgemeinen Formel IA, worin A für 5-Methyl-2-trifluormethylthiophen-3-yl steht und R⁵, R⁶ und (C(R^{3m})(R^{4m}))_m für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

5 Tabelle 31:

Verbindungen der allgemeinen Formel IA, worin A für 2-Methylthiophen-3-yl steht und R^5 , R^6 und $(C(R^{3m})(R^{4m}))_m$ für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

10

15

Tabelle 32:

Verbindungen der allgemeinen Formel IA, worin A für 2,5-Dimethylthiophen-3-yl steht und R^5 , R^6 und $(C(R^{3m})(R^{4m}))_m$ für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 33:

Verbindungen der allgemeinen Formel IA, worin A für 3-Trifluormethylthiophen-2-yl steht und R⁵, R⁶ und (C(R^{3m})(R^{4m}))_m für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 34:

Verbindungen der allgemeinen Formel IA, worin A für 3-Methylthiophen-2-yl steht und R⁵, R⁶ und (C(R^{3m})(R^{4m}))_m für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 35:

30

Verbindungen der allgemeinen Formel IA, worin A für 3,5-Dimethylthiophen-2-yl steht und R^5 , R^6 und $(C(R^{3m})(R^{4m}))_m$ für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

35 Tabelle 36:

Verbindungen der allgemeinen Formel IA, worin A für 5-Methyl-3trifluormethylthiophen-2-yl steht und R⁵, R⁶ und (C(R^{3m})(R^{4m}))_m für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

5 Tabelle 37:

Verbindungen der allgemeinen Formel IA, worin A für 2-Trifluormethyfuran-3-yl steht und R⁵, R⁶ und (C(R³m)(R⁴m))_m für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

10

15

Tabelle 38:

Verbindungen der allgemeinen Formel IA, worin A für 5-Methyl-2-trifluormethyfuran-3-yl steht und R^5 , R^6 und $(C(R^{3m})(R^{4m}))_m$ für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 39:

Verbindungen der allgemeinen Formel IA, worin A für 2-Methylfuran-3-yl steht und R⁵, R⁶ und (C(R³m)(R⁴m))_m für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 40:

Verbindungen der allgemeinen Formel IA, worin A für 2,5-Dimethylfuran-3-yl steht und R⁵, R⁶ und (C(R^{3m})(R^{4m}))_m für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 41:

30

Verbindungen der allgemeinen Formel IA, worin A für 2-Methyl-5,6-dihydro-[1,4]oxathiin-3-yl steht und R⁵, R⁶ und (C(R^{3m})(R^{4m}))_m für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

35 Tabelle 42:

Verbindungen der allgemeinen Formel IA, worin A für 2-Methyl-5,6-dihydro-4H-thiopyran-3-yl steht und R^5 , R^6 und $(C(R^{3m})(R^{4m}))_m$ für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Die erfindungsgemäßen Verbindungen der Formel I können in Analogie zu an sich bekannten Verfahren aus dem Stand der Technik hergestellt werden, beispielsweise gemäß Schema 1 durch Umsetzung aktivierter (Heterocyclyl)carbonsäurederivate II mit einem Anilin III [Houben-Weyl: "Methoden der organ. Chemie", Georg-Thieme-Verlag, Stuttgart, New York 1985, Band E5, S. 941-1045.]. Aktivierte Carbonsäurederivate II
 sind beispielsweise Halogenide, Aktivester, Anhydride, Azide, z.B. Chloride, Fluoride, Bromide, para-Nitrophenylester, Pentafluorphenylester, N-Hydroxysuccinimidester, Hydroxybenzotriazol-1-yl-ester. In Schema 1 weisen die Reste A, Y, R¹, R², R³m, R⁴m, R⁵, R⁶, n und m die zuvor genannten Bedeutungen und insbesondere die als bevorzugt genannten Bedeutungen auf.

15 Schema 1:

20

Die Wirkstoffe I können beispielsweise auch durch Umsetzung der Säuren IV mit einem Anilin III in Gegenwart eines Kupplungsreagenzes gemäß Schema 2 hergestellt werden. In Schema 2 weisen die Reste A, Y, R¹, R², R^{3m}, R^{4m}, R⁵, R⁶, n und m die zuvor genannten Bedeutungen und insbesondere die als bevorzugt genannten Bedeutungen auf.

25 Schema 2:

Geeignete Kupplungsreagenzien sind beispielsweise:

- Kupplungsreagenzien auf Carbodiimid-Basis, z.B. N,N'-Dicyclohexylcarbodiimid [J.C. Sheehan, G.P. Hess, J. Am. Chem. Soc. 1955, 77, 1067], N-(3-Dimethylaminopropyl)-N'-ethyl-carbodiimid;
- Kupplungsreagenzien, die gemischte Anhydride mit Kohlensäureestern bilden, z.B. 2-Ethoxy-1-ethoxycarbonyl-1,2-dihydrochinolin [B. Belleau, G. Malek, J. Amer. Chem. Soc. 1968, 90, 1651.], 2-iso-Butyloxy-1-iso-butyloxycarbonyl-1,2-dihydrochinolin [Y. Kiso, H. Yajima, J. Chem. Soc., Chem. Commun. 1972, 942.];
 - Kupplungsreagenzien auf Phosphonium-Basis, z.B. (Benzotriazol-1-yloxy)-tris-(dimethylamino)-phosophonium-hexafluorophosphat [B. Castro, J.R. Domoy, G. Evin, C. Selve, Tetrahedron Lett. 1975, 14, 1219.], (Benzotriazol-1-yl-oxy)tripyrrolidinophosphonium-hexafluorophosphat [J. Coste et.al., Tetrahedron Lett. 1990, 31, 205.];
- Kupplungsreagenzien auf Uroniumbasis bzw. mit Guanidinium-N-oxid-Struktur, z.B. N,N,N',N'-Tetramethyl-O-(1H-benzotriazol-1-yl)-uronium-hexafluorophosphat
 [R. Knorr, A. Trzeciak, W. Bannwarth, D. Gillessen, Tetrahedron Lett. 1989, 30, 1927.], N,N,N',N'-Tetramethyl-O-(benzotriazol-1-yl)-uronium-tetrafluoroborat, (Benzotriazol-1-yloxy)-dipiperidinocarbenium-hexafluorophosphat [S. Chen, J. Xu, Tetrahedron Lett. 1992, 33, 647.];
 - Kupplungsreagenzien, die Säurechloride bilden, z.B. Phosphorsäure-bis-(2-oxo-oxazolidid)-chlorid [J. Diago-Mesequer, Synthesis 1980, 547.].

Verbindungen I mit R^1 = gegebenenfalls mit Halogen substituiertes Alkyl oder gegebenenfalls substituiertes Cycloalkyl können auch durch Alkylierung der Amide I (worin R^1 für Wasserstoff steht und die gemäß Schema 1 oder 2 zugänglich sind) mit geeigneten Alkylierungsmitteln in Gegenwart von Basen hergestellt werden, siehe Schema 3.

Schema 3:

10

20

25

$$A = H$$

$$(I) \{ mit \ R^1 = H \}$$

Die (Heterocyclyl)carbonsäuren IV können nach literaturbekannten Verfahren hergestellt werden und daraus sind die (Heterocyclyl)carbonsäuren-Derivate II nach literaturbekannten Verfahren herstellbar [beispielsweise EP 0589313, EP 915868, US 4,877,441].

Die Aniline III können beispielsweise gemäß dem Schema 4 hergestellt werden. In Schema 4 weisen die Reste R¹, R², R^{3m}, R^{4m}, R⁵, R⁶, n und m die zuvor genannten Bedeutungen und insbesondere die als bevorzugt genannten Bedeutungen auf. Die Verbindungen V und X sind literaturbekannt oder können nach literaturbekannten Verfahren hergestellt werden.

Schema 4:

10

15

20

5

In Schritt a in Schema 4 setzt man den Nitroaromaten XI, worin X' für Halogenid, beispielsweise Chlorid oder Fluorid steht, mit einem Ketoalkohol V im Sinne einer nucleophilen aromatischen Substitution um, wobei man den Nitrophenylether VII erhält. Die Umsetzung erfolgt in Anlehnung an bekannte Verfahren, beispielsweise nach Organikum, 21. Auflage, Wiley-VCH 2001, S. 394ff. S. Raeppel, F. Raeppel, J. Suffert; *Synlett* [SYNLES] 1998, (7), 794-796. R. Beugelmans, A. Bigot, J. Zhu; *Tetrahedron Lett* [TE-LEAY] 1994, 35 (31), 5649-5652. Die Umsetzung erfolgt üblicherweise in Gegenwart einer Base. Geeignete Basen sind Alkalimetallcarbonate, Erdalkalimetallcarbonate wie Natriumcarbonat, Kaliumcarbonat, Calciumcarbonat, Magnesiumcarbonat, Alkalimetallhydroxide oder Erdalkalimetallhydroxide wie Natriumhydroxid oder Kaliumhydroxid. In der Regel führt man die Umsetzung in einem inerten organischen Lösungsmittel durch. Als Lösungsmittel kommen Ether wie Diethylether, Methyl-tert-butylether, Dioxan, Tetrahydrofuran, Ethylenglycoldimethylether, Diethylenglycol in Betracht.

25

In Schritt b reduziert man den Nitrophenylether VII zum Aminophenylether VIII, beispielsweise wie im Organikum, 21. Auflage, Wiley-VCH 2001, S. 627ff beschrieben. Die katalytische Reduktion der Nitrogruppe des Nitrophenylethers VII erfolgt in der Regel mit Hydrazin als Wasserstoffquelle und in Gegenwart von Raney-Nickel als Kataly-

sator. Die Reduktion erfolgt in der Regel in einem inerten Lösungsmittel, beispielsweise in einem C₁-C₄-Alkohol wie Methanol oder Ethanol. Die Reduktion des Nitrophenylethers VII zum Aminophenylether VIII kann beispielsweise durch Umsetzung des Nitrophenylethers VII mit einer Metallverbindung wie Zinn(II)-chlorid unter sauren Reaktionsbedingungen wie konzentrierter Salzsäure erfolgen.

In Schritt c setzt man den Aminophenylether VIII mit einem Hydroxylamin X beziehungsweise dem Säureadditionssalz davon, vorzugsweise das Hydrochloridsalz, um. Die Umsetzung erfolgt in der Regel in einem Lösungsmittel. Geeignete Lösungsmittel sind beispielsweise C₁-C₄-Alkohole oder C₁-C₄-Alkohol/Wasser-Gemische. Die Umsetzung kann in Gegenwart einer Base stattfinden. Geeignete Basen sind aromatische Amine wie Pyridin oder Alkalimetallhydroxide oder Erdalkalimetallhydroxide wie Natriumhydroxid, Kaliumhydroxid oder Calciumhydroxid. Die Oximierung der Ketogruppe in X kann beispielsweise in Anlehnung an Organikum, 21. Auflage, Wiley-VCH 2001, S. 467 oder D. Dhanak, C. Reese, S. Romana, G. Zappia, J. Chem. Soc. Chem. Comm. 1986 (12), 903-904, DE 3004871 oder AU 580091 erfolgen.

Alternativ können die Aniline III auch gemäß Schema 5 hergestellt werden. In Schema 5 weisen die Reste R¹, R², R^{3m}, R^{4m}, R⁵, R⁶, X', n und m die zuvor genannten Bedeutungen und insbesondere die als bevorzugt genannten Bedeutungen auf.

Schema 5:

5

10

15

20

25 Schritt d in Schema 5 erfolgt analog zu Schritt a in Schema 4. Schritt e in Schema 5 erfolgt analog zu Schritt b in Schema 4.

Das Oxim IX ist auch durch Umsetzung des Nitrophenylethers VII mit dem Hydroxylamin X oder dem Säureadditionssalz von X in Anlehnung an das in Schritt a in Schema 4 beschriebene Verfahren erhältlich.

Das Oxim VI ist beispielsweise durch Umsetzung des Ketoalkohols V mit dem Hydroxylamin X oder dem Säureadditionssalz von X in Anlehnung an das in Schritt a in Schema 4 beschriebene Verfahren erhältlich.

Die erfindungsgemäßen Verbindungen I können auch gemäß Schema 6 hergestellt werden. In Schema 6 weisen die Reste A, Y, R¹, R², R^{3m}, R^{4m}, R⁵, R⁶, n und m die zuvor genannten Bedeutungen und insbesondere die als bevorzugt genannten Bedeutungen auf, Hal, Hal' stehen unabhängig voneinander für Halogen, beispielsweise für Chlorid, Bromid oder lodid.

15 Schema 6:

20

25

In Schritt f in Schema 6 setzt man das Aminophenol XI mit einem (Heterocyclyl)carbonsäurehalogenid XII um, wobei man das Anilid XIII erhält. Üblicherweise führt man die Umsetzung in Gegenwart einer Base durch, beispielsweise ein tertiäres Amin wie Trimethylamin oder Triethylamin. In der Regel führt man die Umsetzung in einem inerten organischen Lösungsmittel durch. Als Lösungsmittel kommen beispielsweise Ether wie Diethylether, Methyl-tert-butylether, Dioxan, Tetrahydrofuran, Ethylenglycoldimethylether, Diethylenglycol oder chlorierte Kohlenwasserstoffe wie Dichlormethan, Dichlorethan oder Trichlormethan in Betracht.

Die Umsetzung des Anilids XIII mit dem Keton XIV in Schritt g in Schema 6 kann in Gegenwart einer Base erfolgen. Geeignete Basen sind Alkalimetallcarbonate, Erdalkalimetallcarbonate wie Natriumcarbonat, Kaliumcarbonat, Calciumcarbonat, Magnesiumcarbonat, Alkalimetallhydroxide oder Erdalkalimetallhydroxide wie Natriumhydroxid oder Kaliumhydroxid. In der Regel führt man die Umsetzung in einem inerten organischen Lösungsmittel durch. Als Lösungsmittel kommen beispielsweise Carbonsäureamide wie N,N-Dimethylformamid, Diethylformamid oder Dimethylacetamid in Betracht.

Die Umwandlung der Verbindung XIV in die Verbindung I in Schritt h in Schema 6 erfolgt beispielsweise in Anlehnung an Schritt c in Schema 4.

Die Verbindungen I eignen sich als Fungizide. Sie zeichnen sich durch eine hervorragende Wirksamkeit gegen ein breites Spektrum von pflanzenpathogenen Pilzen, insbesondere aus der Klasse der Ascomyceten, Deuteromyceten, Phycomyceten und Basidiomyceten, aus. Sie sind zum Teil systemisch wirksam und können im Pflanzenschutz als Blatt- und Bodenfungizide eingesetzt werden.

Besondere Bedeutung haben sie für die Bekämpfung einer Vielzahl von Pilzen an verschiedenen Kulturpflanzen wie Weizen, Roggen, Gerste, Hafer, Reis, Mais, Gras, Bananen, Baumwolle, Soja, Kaffee, Zuckerrohr, Wein, Obst- und Zierpflanzen und Gemüsepflanzen wie Gurken, Bohnen, Tomaten, Kartoffeln und Kürbisgewächsen, sowie an
den Samen dieser Pflanzen.

25 Speziell eignen sie sich zur Bekämpfung folgender Pflanzenkrankheiten:

- Alternaria-Arten an Gemüse und Obst,
- Botrytis cinerea (Grauschimmel) an Erdbeeren, Gemüse, Zierpflanzen und Reben,
- 30 Cercospora arachidicola an Erdnüssen,

5

- Erysiphe cichoracearum und Sphaerotheca fuliginea an Kürbisgewächsen,
- Erysiphe graminis (echter Mehltau) an Getreide,
- Fusarium- und Verticillium-Arten an verschiedenen Pflanzen,
- Helminthosporium-Arten an Getreide,
- Mycosphaerella-Arten an Bananen und Erdnüssen,
 - Phytophthora infestans an Kartoffeln und Tomaten,
 - Plasmopara viticola an Reben,
 - Podosphaera leucotricha an Äpfeln,

- Pseudocercosporella herpotrichoides an Weizen und Gerste,
- Pseudoperonospora-Arten an Hopfen und Gurken,
- Puccinia-Arten an Getreide,
- Pyricularia oryzae an Reis,
- 5 Rhizoctonia-Arten an Baumwolle, Reis und Rasen,
 - Septoria nodorum an Weizen,
 - Sphaerotheca fuliginea (Gurkenmehltau) an Gurken,
 - Uncinula necator an Reben,
 - Ustilago-Arten an Getreide und Zuckerrohr, sowie
- 10 Venturia-Arten (Schorf) an Äpfeln und Birnen.
 - Septoria tritici
 - Pyrenophora-Arten
 - Leptosphaeria nodorum
 - Rhynchosporium-Arten
- 15 Typhula-Arten

Die Verbindungen I eignen sich außerdem zur Bekämpfung von Schadpilzen wie *Pae- cilomyces variotii* im Materialschutz (z.B. Holz, Papier, Dispersionen für den Anstrich, Fasern bzw. Gewebe) und im Vorratsschutz.

20

Die Verbindungen I werden angewendet, indem man die Pilze oder die vor Pilzbefall zu schützenden Pflanzen, Saatgüter, Materialien oder den Erdboden mit einer fungizid wirksamen Menge der Wirkstoffe behandelt. Die Anwendung kann sowohl vor als auch nach der Infektion der Materialien, Pflanzen oder Samen durch die Pilze erfolgen.

25

Die fungiziden Mittel enthalten im allgemeinen zwischen 0,1 und 95, vorzugsweise zwischen 0,5 und 90 Gew.-% Wirkstoff.

Die Aufwandmengen liegen bei der Anwendung im Pflanzenschutz je nach Art des gewünschten Effektes zwischen 0,01 und 2,0 kg Wirkstoff pro ha.

Bei der Saatgutbehandlung werden im allgemeinen Wirkstoffmengen von 0,001 bis 0,1 g, vorzugsweise 0,01 bis 0,05 g je Kilogramm Saatgut benötigt.

Bei der Anwendung im Material- bzw. Vorratsschutz richtet sich die Aufwandmenge an Wirkstoff nach der Art des Einsatzgebietes und des gewünschten Effekts. Übliche Aufwandmengen sind im Materialschutz beispielsweise 0,001 g bis 2 kg, vorzugsweise

0,005 g bis 1 kg Wirkstoff pro Qubikmeter behandelten Materials.

5

10

15

20

25

30

Die Verbindungen I können in die üblichen Formulierungen überführt werden, z.B. Lösungen, Emulsionen, Suspensionen, Stäube, Pulver, Pasten und Granulate. Die Anwendungsform richtet sich nach dem jeweiligen Verwendungszweck; sie soll in jedem Fall eine feine und gleichmäßige Verteilung der erfindungsgemäßen Verbindung gewährleisten.

Die Formulierungen werden in bekannter Weise hergestellt, z.B. durch Verstrecken des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gewünschtenfalls unter Verwendung von Emulgiermitteln und Dispergiermitteln, wobei im Falle von Wasser als Verdünnungsmittel auch andere organische Lösungsmittel als Hilfslösungsmittel verwendet werden können. Als Hilfsstoffe kommen dafür im wesentlichen in Betracht: Lösungsmittel wie Aromaten (z.B. Xylol), chlorierte Aromaten (z.B. Chlorbenzole), Paraffine (z.B. Erdölfraktionen), Alkohole (z.B. Methanol, Butanol), Ketone (z.B. Cyclohexanon), Amine (z.B.Ethanolamin, Dimethylformamid) und Wasser; Trägerstoffe wie natürliche Gesteinsmehle (z.B. Kaoline, Tonerden, Talkum, Kreide) und synthetische Gesteinsmehle (z.B. hochdisperse Kieselsäure, Silikate); Emulgiermittel wie nichtionogene und anionische Emulgatoren (z.B. Polyoxyethylen-Fettalkohol-Ether, Alkylsulfonate und Arylsulfonate) und Dispergiermittel wie Lignin-Sulfitablaugen und Methylcellulose.

Als oberflächenaktive Stoffe kommen Alkali-, Erdalkali-, Ammoniumsalze von Ligninsulfonsäure, Naphthalinsulfonsäure, Phenolsulfonsäure, Dibutylnaphthalinsulfonsäure, Alkylarylsulfonate, Alkylsulfate, Alkylsulfonate, Fettalkoholsulfate und Fettsäuren sowie deren Alkali- und Erdalkalisalze, Salze von sulfatiertem Fettalkoholglykolether, Kondensationsprodukte von sulfoniertem Naphthalin und Naphthalinderivaten mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphtalinsulfonsäure mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctylphenol, Octylphenol, Nonylphenol, Alkylphenolpolyglykolether, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether, ethoxyliertes Polyoxypropylen, Laurylalkoholpolyglykoletheracetal, Sorbitester, Ligninsulfitablaugen und Methylcellulose in Betracht.

Zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldispersionen kommen Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Benzol,

Toluol, Xylol, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Chloroform, Tetrachlorkohlenstoff, Cyclohexanol, Cyclohexanon, Chlorbenzol, Isophoron, stark polare Lösungsmittel, z.B. Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidon, Wasser, in Betracht.

5

20

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate, können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind z.B. Mineralerden, wie Silicagel, Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Attaclay, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie z.B. Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver und andere feste Trägerstoffe.

Die Formulierungen enthalten im allgemeinen zwischen 0,01 und 95 Gew.-%, vorzugsweise zwischen 0,1 und 90 Gew.-% des Wirkstoffs. Die Wirkstoffe werden dabei in einer Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR-Spektrum) eingesetzt.

Beispiele für Formulierungen sind:

- 25 I. 5 Gew.-Teile einer erfindungsgemäßen Verbindung werden mit 95 Gew.-Teilen feinteiligem Kaolin innig vermischt. Man erhält auf diese Weise ein Stäubemittel, das 5 Gew.-% des Wirkstoffs enthält.
- 30 Gew.-Teile einer erfindungsgemäßen Verbindung werden mit einer Mischung aus 92 Gew.-Teilen pulverförmigem Kieselsäuregel und 8 Gew.-Teilen Paraffinöl, das auf die Oberfläche dieses Kieselsäuregels gesprüht wurde, innig vermischt. Man erhält auf diese Weise eine Aufbereitung des Wirkstoffs mit guter Haftfähigkeit (Wirkstoffgehalt 23 Gew.-%).
- 35 III. 10 Gew.-Teile einer erfindungsgemäßen Verbindung werden in einer Mischung gelöst, die aus 90 Gew.-Teilen Xylol, 6 Gew.-Teilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 2 Gew.-Teilen Calciumsalz der Dodecylbenzolsulfonsäure und 2 Gew.-Teilen des Anla-

58
gerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht (Wirkstoff-

gerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht (Wirkstoffgehalt 9 Gew.-%).

PCT/EP2004/014622

IV. 20 Gew.-Teile einer erfindungsgemäßen Verbindung werden in einer Mischung gelöst, die aus 60 Gew.-Teilen Cyclohexanon, 30 Gew.-Teilen Isobutanol, 5 Gew.-Teilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 5Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht (Wirkstoffgehalt 16 Gew.-%).

WO 2005/063692

15

10 V. 80 Gew.-Teile einer erfindungsgemäßen Verbindung werden mit 3 Gew.-Teilen des Natriumsalzes der Diisobutylnaphthalin-alpha-sulfonsäure, 10 Gew.-Teilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 7 Gew.-Teilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen (Wirkstoffgehalt 80 Gew.-%).

VI. Man vermischt 90 Gew.-Teile einer erfindungsgemäßen Verbindung mit 10 Gew.-Teilen N-Methyl-a-pyrrolidon und erhält eine Lösung, die zur Anwendung in Form kleinster Tropfen geeignet ist (Wirkstoffgehalt 90 Gew.-%).

- VII. 20 Gew.-Teile einer erfindungsgemäßen Verbindung werden in einer Mischung gelöst, die aus 40 Gew.-Teilen Cyclohexanon, 30 Gew.-Teilen Isobutanol, 20 Gew.-Teilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gew.-Teilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.
- VIII. 20 Gew.-Teile einer erfindungsgemäßen Verbindung werden mit 3 Gew.-Teilen des Natriumsalzes der Diisobutylnaphthalin-α-sulfonsäure, 17 Gew.-Teilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gew.-Teilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen. Durch feines Verteilen der Mischung in 20 000 Gew.-Teilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew.-% des Wirkstoffs enthält.
- 10 Gew.-Teile der erfindungsgemäßen Verbindung werden in 63 Gew.-Teilen Cyclohexanon, 27 Gew.-Teilen Dispergiermittel (beispielsweise eine Mischung aus 50 Gew.-Teilen des Anlagerungsprodukts von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 50 Gew.-Teilen des Anlagerungsprodukts von 40 Mol Ethylenoxid an 1 Mol Isooctylphenol und 50 Gew.-Teilen des Anlagerungsprodukts von 40 Mol Ethylenoxid an 1 Mol Isooctylphenol und 50 Gew.-Teilen des Anlagerungsprodukts von 40 Mol Ethylenoxid an 1 Mol Isooctylphenol und 50 Gew.-Teilen des Anlagerungsprodukts von 40 Mol Ethylenoxid an 1 Mol Isooctylphenol und 50 Gew.-Teilen des Anlagerungsprodukts von 40 Mol Ethylenoxid an 1 Mol Isooctylphenol und 50 Gew.-Teilen des Anlagerungsprodukts von 40 Mol Ethylenoxid an 1 Mol Isooctylphenol und 50 Gew.-Teilen des Anlagerungsprodukts von 40 Mol Ethylenoxid an 1 Mol Isooctylphenol und 50 Gew.-Teilen des Anlagerungsprodukts von 40 Mol Ethylenoxid an 1 Mol Isooctylphenol und 50 Gew.-Teilen des Anlagerungsprodukts von 40 Mol Ethylenoxid an 4 Mol Isooctylphenol und 50 Gew.-Teilen des Anlagerungsprodukts von 40 Mol Ethylenoxid an 4 Mol Isooctylphenol und 50 Gew.-Teilen des Anlagerungsprodukts von 40 Mol Isooctylphenol und 50 Gew.-Teilen des Anlagerungsprodukts von 40 Mol Isooctylphenol und 50 Gew.-Teilen des Anlagerungsprodukts von 40 Mol Isooctylphenol und 50 Gew.-Teilen des Anlagerungsprodukts von 40 Mol Isooctylphenol und 50 Gew.-Teilen des Anlagerungsprodukts von 40 Mol Isooctylphenol und 50 Gew.-Teilen des Anlagerungsprodukts von 40 Mol Isooctylphenol und 50 Gew.-Teilen des Anlagerungsprodukts von 40 Mol Isooctylphenol und 50 Gew.-Teilen des Anlagerungsprodukts von 40 Mol Isooctylphenol und 50 Gew.-Teilen des Anlagerungsprodukts von 40 Mol Isooctylphenol und 50 Gew.-Teilen des Anlagerungsprodukts von 40 Mol Isooctylphenol und 50 Gew.-Teilen des Anlagerungsprodukts von 40 Mol Isooctylphenol und 50 Gew.-Teilen des Anlagerungsprodukts von 40 Mol Isooctylphenol und 50 Gew.-Teilen des Anlagerungsprodukts von 40 Mol Isooctylphenol und 50 Gew.-

lenoxid an 1 Mol Ricinusöl) gelöst. Die Stammlösung wird anschließend durch Verteilen in Wasser auf die gewünschte Konzentration verdünnt, z.B. auf eine Konzentration im Bereich von 1 bis 100 ppm.

Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, z.B. in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln, Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich ganz nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

Wässrige Anwendungsformen können aus Emulsionskonzentraten, Pasten oder netzbaren Pulvern (Spritzpulver, Öldispersionen) durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substanzen als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermitttel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

15

20

25

30

35

Die Wirkstoffkonzentrationen in den anwendungsfertigen Zubereitungen können in größeren Bereichen variiert werden. Im allgemeinen liegen sie zwischen 0,0001 und 10%. Häufig reichen bereits geringe Wirkstoffmengen an Verbindung I in der anwendungsfertigen Zubereitung aus, z.B. 2 bis 200 ppm. Ebenso sind anwendungsfertige Zubereitungen mit Wirkstoffkonzentrationen im Bereich von 0,01 bis 1 % bevorzugt.

Die Wirkstoffe können auch mit gutem Erfolg im Ultra-Low-Volume-Verfahren (ULV) verwendet werden, wobei es möglich ist, Formulierungen mit mehr als 95 Gew.-% Wirkstoff oder sogar den Wirkstoff ohne Zusätze auszubringen.

Zu den Wirkstoffen können Öle verschiedenen Typs, Herbizide, Fungizide, andere Schädlingsbekämpfungsmittel, Bakterizide, gegebenenfalls auch erst unmittelbar vor der Anwendung (Tankmix), zugesetzt werden. Diese Mittel können zu den erfindungsgemäßen Mitteln im Gewichtsverhältnis 1:10 bis 10:1 zugemischt werden.

Die erfindungsgemäßen Mittel können in der Anwendungsform als Fungizide auch zusammen mit anderen Wirkstoffen vorliegen, der z.B. mit Herbiziden, Insektiziden,

WO 2005/063692 PCT/EP2004/014622 60

Wachstumsregulatoren, Fungiziden oder auch mit Düngemitteln. Beim Vermischen der Verbindungen I bzw. der sie enthaltenden Mittel in der Anwendungsform als Fungizide mit anderen Fungiziden erhält man in vielen Fällen eine Vergrößerung des fungiziden Wirkungsspektrums.

5

Die folgende Liste von Fungiziden, mit denen die erfindungsgemäßen Verbindungen gemeinsam angewendet werden können, soll die Kombinationsmöglichkeiten erläutern, nicht aber einschränken:

- Schwefel, Dithiocarbamate und deren Derivate, wie Ferridimethyldithiocarbamat, Zinkdimethyldithiocarbamat, Zinkethylenbisdithiocarbamat, Manganethylenbisdithiocarbamat, Manganezink-ethylendiamin-bis-dithiocarbamat, Tetramethylthiu-ramdisulfide, Ammoniak-Komplex von Zink-(N,N-ethylen-bis-dithiocarbamat), Ammoniak-Komplex von Zink-(N,N'-propylen-bis-dithiocarbamat), Zink-(N,N'-propylen-bis-dithiocarbamat), N,N'-Polypropylen-bis-(thiocarbamoyl)disulfid;
 - Nitroderivate, wie Dinitro-(1-methylheptyl)-phenylcrotonat, 2-sec-Butyl-4,6-dinitrophenyl-3,3-dimethylacrylat, 2-sec-Butyl-4,6-dinitrophenyl-isopropylcarbonat, 5-Nitro-isophthalsäure-di-isopropylester;
- heterocyclische Substanzen, wie 2-Heptadecyl-2-imidazolin-acetat, 2,4-Dichlor-6 (o-chloranilino)-s-triazin, O,O-Diethyl-phthalimidophosphonothioat, 5-Amino-1[bis-(dimethylamino)-phosphinyl]-3-phenyl-1,2,4- triazol, 2,3-Dicyano-1,4dithioanthrachinon, 2-Thio-1,3-dithiolo[4,5-b]chinoxalin, 1-(Butylcarbamoyl)-2benzimidazol-carbaminsäuremethylester, 2-Methoxycarbonylaminobenzimidazol, 2-(Furyl-(2))-benzimidazol, 2-(Thiazolyl-(4))-benzimidazol, N (1,1,2,2-Tetrachlorethylthio)-tetrahydrophthalimid, N-Trichlormethylthiotetrahydrophthalimid, N-Trichlormethylthio-phthalimid,
- N-Dichlorfluormethylthio-N',N'-dimethyl-N-phenyl-schwefelsäure- diamid, 5-Ethoxy-3-trichlormethyl-1,2,3-thiadiazol, 2-Rhodanmethylthiobenzthiazol, 1,4-Dichlor-2,5-dimethoxybenzol, 4-(2-Chlorphenylhydrazono)-3-methyl-5-isoxazolon, Pyridin-2-thio-1-oxid, 8-Hydroxychinolin bzw. dessen Kupfersalz, 2,3-Dihydro-5-carboxanilido-6-methyl-1,4-oxathiin, 2,3-Dihydro-5-carboxanilido-6-methyl-1,4-oxathiin-4,4-dioxid, 2-Methyl-5,6-dihydro-4H-pyran-3-carbonsäure-anilid, 2-Methyl-furan-3-carbonsäureanilid, 2,5-Dimethyl-furan-3-carbonsäureanilid, 2,4,5-Trimethyl-furan-3-carbonsäureanilid, 2,5-Dimethyl-furan-3-carbonsäurecyclohexylamid, N-Cyclohexyl-N-methoxy-2,5-dimethyl-furan-3-carbonsäureamid, 2-Methyl-benzoesäure-anilid, 2-lod-benzoesäure-anilid, N-Formyl-N-morpholin-2,2,2-trichlorethylacetal, Piperazin-1,4-diylbis-1-(2,2,2-

trichlorethyl)-formamid, 1-(3,4-Dichloranilino)-1-formylamino-2,2,2-trichlorethan,

- 2,6-Dimethyl-N-tridecyl-morpholin bzw. dessen Salze, 2,6-Dimethyl-N-cyclododecyl-morpholin bzw. dessen Salze, N-[3-(p-tert.-Butylphenyl)-2-methylpropyl]-cis-2,6-dimethyl-morpholin, N-[3-(p-tert.-Butylphenyl)-2-methylpropyl]-piperidin, 1-[2-(2,4-Dichlorphenyl)-4-ethyl-1,3-dioxolan-2-yl-ethyl]-1H-1,2,4-triazol, 1-[2-(2,4-Dichlorphenyl)-4-n-propyl-1,3-dioxolan-2-yl-ethyl]-1H-1,2,4-triazol, N-(n-Propyl)-N-(2,4,6-trichlorphenoxyethyl)-N'-imidazol-yl-harnstoff, 1-(4-Chlorphenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanon, 1-(4-Chlorphenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanol, (2RS,3RS)-1-[3-(2-Chlorphenyl)-2-(4-fluorphenyl)-oxiran-2-ylmethyl]-1H-1,2,4-triazol, α-(2-Chlorphenyl)-α-(4-chlorphenyl)-5-pyrimidin-methanol, 5-Butyl-2-dimethylamino-4-hydroxy-6-methyl-pyrimidin, Bis-(p-chlorphenyl)-3-pyridinmethanol, 1,2-Bis-(3-ethoxycarbonyl-2-thioureido)-benzol, 1,2-Bis-(3-methoxycarbonyl-2-thioureido)-benzol,
- Strobilurine wie Methyl-E-methoxyimino-[α -(o-tolyloxy)-o-tolyl]acetat, Methyl-E-2 {2-[6-(2-cyanophenoxy)-pyrimidin-4-yloxy]-phenyl}-3-methoxyacrylat, Methyl-E-methoxyimino-[α-(2-phenoxyphenyl)]-acetamid, Methyl-E-methoxyimino-[α -(2,5-dimethylphenoxy)-o-tolyl]-acetamid,
 - Anilinopyrimidine wie N-(4,6-Dimethylpyrimidin-2-yl)-anilin, N-[4-Methyl-6-(1-propinyl)-pyrimidin-2-yl]-anilin, N-[4-Methyl-6-cyclopropyl-pyrimidin-2-yl]-anilin,
- Phenylpyrrole wie 4-(2,2-Difluor-1,3-benzodioxol-4-yl)-pyrrol-3-carbonitril,
 - Zimtsäureamide wie 3-(4-Chlorphenyl)-3-(3,4-dimethoxyphenyl)acrylsäuremorpholid,
- sowie verschiedene Fungizide, wie Dodecylguanidinacetat, 3-[3-(3,5-Dimethyl-2-oxycyclohexyl)-2-hydroxyethyl]-glutarimid, Hexachlorbenzol, DL-25 Methyl-N-(2,6-dimethyl-phenyl)-N-furoyl(2)-alaninat, DL-N-(2,6-Dimethyl-phenyl)-N-(2'-methoxyacetyl)-alanin-methyl- ester, N-(2,6-Dimethylphenyl)-N-chloracetyl-D,L-2-aminobutyrolacton, DL-N-(2,6-Dimethylphenyl)-N-(phenylacetyl)alaninmethylester, 5-Methyl-5-vinyl-3-(3,5-dichlorphenyl)-2,4-dioxo-1,3oxazolidin, 3-[3,5-Dichlorphenyl(-5-methyl-5-methoxymethyl]-1,3-oxazolidin-2,4dion, 3-(3,5-Dichlorphenyl)-1-isopropylcarbamoylhydantoin, N-(3,5-30 Dichlorphenvl)-1,2-dimethylcyclopropan-1,2-dicarbonsäureimid, 2-Cyano-[N-(ethylaminocarbonyl)-2-methoximino]-acetamid, 1-[2-(2,4-Dichlorphenyl)-pentyl]-1H-1,2,4-triazol, 2,4-Difluor-α-(1H-1,2,4-triazolyl-1-methyl)-benzhydrylalkohol, N-(3-Chlor-2,6-dinitro-4-trifluormethyl-phenyl)-5-trifluormethyl-3-chlor-2aminopyridin, 1-((bis-(4-Fluorphenyl)-methylsilyl)-methyl)-1H-1,2,4-triazol. 35

Herstellungsbeispiele:

Beispiel 1:

2-Chlor-N-(2-(2-benzyloxyimino-1-methyl-n-propoxy)-phenyl)-nicotinsäureamid

1.1 2-Chlor-N-(2-hydroxy-phenyl)-nicotinsäureamid

Zu einer Lösung von 13,1 g ortho-Aminophenol und 24,2 g Triethylamin in 200 ml Dichlormethan gab man bei 10°C eine Lösung von 21 g 2-Chlornicotinsäurechlorid in 100 ml Dichlormethan und rührte 1 Stunde bei 10°C und 60 h bei Raumtemperatur. Danach engte man das Reaktionsgemisch im Vakuum ein und nahm den erhaltenen Rückstand in Ethylacetat auf. Man wusch die organische Phase zweimal mit verd. Salzsäure und 3%iger Natronlauge. Nach dem Trocknen über Natriumsulfat dampfte man das Lösungsmittel im Vakuum ab, wobei man 27.6 g der Titelverbindung mit einem Schmelzpunkt von 142-145°C erhielt.

15

20

25

35

10

5

1.2 2-Chlor-N-(2-(1-methyl-2-oxo-n-propoxy)-phenyl)-nicotinsäureamid

Eine Lösung von 1,24 g 2-Chlor-N-(2-hydroxy-phenyl)-nicotinsäureamid, 1,58 g 3-Brombutan-2-on und 0,34 g Kaliumcarbonat in 20 ml N,N-Dimethylformamid rührte man 1 h bei Raumtemperatur und anschließend 2 h bei 60°C. Danach gab man eine Mischung aus Wasser und Ethylacetat zu und trennte die Phasen. Die wässrige Phase extrahierte man zweimal mit Ethylacetat. Die vereinigte organische Phase wurde mit gesättigter NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und im Vakuum eingeengt. Den erhaltenen Rückstand reinigte man chromatographisch an Kieselgel (Eluierungsmittel: Cyclohexan/Methyl-tert-butylether) und erhielt nach dem Abdampfen des Eluierungsmittels 1,0 g der Titelverbindung als Öl.

30 1.3 2-Chlor-N-(2-(2-benzyloxyimino-1-methyl-n-propoxy)-phenyl)nicotinsäureamid

Zu einer Lösung von 0,36 g 2-Chlor-N-(2-(1-methyl-2-oxo-n-propoxy)-phenyl)nicotinsäureamid und 0,12 g Pyridin in 10 ml Methanol gab man 0,18 g O-Benzylhydroxylamin. Man rührte 15 Minuten bei Raumtemperatur, engte das Lösungsmittel im
Vakuum ein und nahm den erhaltenen Rückstand in Methyl-tert-butylether auf. Man
wusch das Gemisch mit 1%iger Salzsäure und ges. NaCl-Lösung, trocknete über Natriumsulfat und engte das Gemisch im Vakuum ein. Die ausgefallenen Kristalle filtrierte

man ab und trocknete sie im Vakuum, wobei man 0,3 g der Titelverbindung mit einem Schmelzpunkt von 53-55°C erhielt.

In analoger Weise wurden die in Tabelle 43 angegebenen Verbindungen der Formel IA hergestellt.

Tabelle 43:

(IA) {mit
$$R^1 = H$$
, $n = 0$ und $R^{41} = H$ }

Nr.	Α	R ³¹	R ⁵	R ⁶	Schmp. [°C]; Konsistenz	spektroskopische Daten
IA-1	2-Chlor- pyridin-3-yl	СН₃	CH₃	C ₆ H ₅ CH ₂	53-55	
IA-2	2-Chlor- pyridin-3-yl	CH₃	CH₃	Allyl	Öl	¹ <i>H-NMR (CDCl₃), δ [ppm]:</i> 1.57 (d, 3H); 1.83 (s, 3H); 4.58 (m, 2H); 5.04 (m, 1H); 5.18-5.31 (m, 2H); 5.93 (m, 1H); 6.99-7.10 (m, 3H); 7.22 (m, 1H); 8.18 (m, 1H); 8.51 (m, 1H); 9.22 (s _{breit} , 1H).
IA-3	2-Chlor- pyridin-3-yl	CH₃	CH₃	trans-2- Buten-1- yl	Öl	¹ <i>H-NMR</i> (<i>CDCl</i> ₃), δ [<i>ppm</i>]: 1.57 (d, 3H); 1.70 (m, 3H); 1.80 (s, 3H); 4.49 (m, 2H); 5.02 (q, 1H); 5.58-5.80 (m, 2H); 6.99-7.10 (m, 3H); 7.22 (m, 1H); 8.16 (m, 1H); 8.51 (m, 2H); 9.20 (s _{breit} , 1H).
IA-4	2-Methyl- 4-trifluor- methyl- thiazol-5-yl	СН₃	CH₃	CH₃	Öl	¹ <i>H-NMR (CDCl₃), δ [ppm]:</i> 1.52 (d, 3H); 1.77 (s, 3H); 2.79 (s, 3H); 3.90 (s, 3H); 5.01 (q, 1H); 6.93-7.11 (m, 4H); 8.43 (m, 1H); 8.70 (m, 1H).

<u> </u>	-	R ³¹	R⁵	R ⁶	Cohmp [9C]	analdraakaniasha Datan
Nr.	Α	H.	H.	l L	Schmp. [°C];	spektroskopische Daten
					Konsistenz	
IA-5	2-Methyl- 4-trifluor- methyl- thiazol-5-yl	CH₃	CH₃	trans-3- Chlorallyl	Öl	¹ <i>H-NMR (CDCl₃), δ [ppm]:</i> 1.53 (d, 3H); 1.77 (s, 3H); 2.75 (s, 3H); 4.53 (d, 2H); 5.01 (q, 1H); 6.07 (m, 1H); 6.20-6.33 (m, 1H); 6.93-7.11 (m, 3H); 8.45 (m, 1H); 8.84 (s _{breit} , 1H).
IA-6	1-Methyl- 3-trifluor- methyl- pyrazol-4- yl	CH₃	CH₃	trans-3- Chlorallyl	Öl	¹ <i>H-NMR (CDCl₃), δ [ppm]:</i> 1.53 (d, 3H); 1.79 (s, 3H); 3.95 (s, 3H); 4.54 (d, 2H); 5.00 (q, 1H); 6.08 (m, 1H); 6.17-6.29 (m, 1H); 6.96-7.10 (m, 2H); 8.10 (m, 1H); 8.45 (m, 1H); 8.59 (s _{breit} , 1H).
IA-7	1-Methyl- 3-trifluor- methyl- pyrazol-4- yl	CH₃	CH₃	CH₃	100-102	
IA-8	1-Methyl- 3-trifluor- methyl- pyrazol-4- yl	CH₃	CH₃	C ₆ H ₅ CH ₂	Öl	¹ <i>H-NMR (CDCl₃), δ [ppm]:</i> 1.58 (d, 3H); 1.80 (s, 3H); 3.95 (s, 3H); 4.98 (m, 1H); 5.17 (s, 2H); 6.82-6.99 (m, 3H); 7.25-7.45 (m, 4H); 8.07 (m, 1H); 8.46 (m, 1H); 8.59 (s _{breit} , 1H).
IA-9	2-Chlor- pyridin-3-yl	CH₃	CH₃	CH(CH₃)₂	Öl	¹ <i>H-NMR (CDCl₃), δ [ppm]:</i> 1.20 (m, 6H); 1.53 (d, 3H); 1.80 (s, 3H); 4.29 (m, 1H); 5.03 (m, 1H); 6.95-7.15 (m, 3H); 7.43 (m, 1H); 8.31 (m, 1H); 8.47-8.51 (m, 2H); 9.23 (s _{brelt} , 1H).
IA- 10	2-Chlor- pyridin-3-yl	CH₃	CH₃	trans-3- Chlorallyl	Öl	¹ <i>H-NMR (CDCl₃), δ [ppm]:</i> 1.57 (d, 3H); 1.80 (s, 3H); 4.52 (d, 2H); 5.01 (q, 1H); 6.09 (m, 1H); 6.18-6.30 (m, 1H); 6.99-7.13 (m, 3H); 7.03 (m, 1H); 8.35 (m, 1H); 8.51 (m, 2H); 9.21 (s _{breft} , 1H).
IA-	2-Chlor-	CH₃	CH₃	CH₃	74-75	
11	pyridin-3-yl	1		i e	1	i e

Nr.	A	R ³¹	R ⁵	R ⁶	Schmp. [°C]; Konsistenz	spektroskopische Daten
12	pyridin-3-yl					1.25 (d, 3H); 1.58 (d, 3H); 1.80 (s, 3H); 4.11 (m, 2H); 5.02 (m, 1H); 6.97-7.10 (m, 3H); 7.47 (m, 1H); 8.31 (m, 1H); 8.23-8.28 (m, 2H); 9.22 (s _{breit} , 1H).

Allyl:

CH₂CH=CH₂;

Schmp.:

Schmelzpunkt

5 Anwendungsbeispiele:

Die Wirkstoffe wurden als Stammlösung aufbereitet mit 0,25 Gew.-% Wirkstoff in Aceton oder Dimethylsulfoxid (DMSO). Dieser Lösung wurde 1 Gew.-% Emulgator Uniperol® EL (Netzmittel mit Emulgier- und Dispergierwirkung auf der Basis ethoxylierter Alkylphenole) zugesetzt und entsprechend der gewünschten Konzentration mit Wasser verdünnt.

Kurative Wirksamkeit gegen Weizenbraunrost

Blätter von in Töpfen gewachsenen Weizensämlingen der Sorte "Kanzler" wurden mit Sporen des Braunrostes (*Puccinia recondita*) bestäubt. Danach wurden die Töpfe für 24 Stunden in eine Kammer mit hoher Luftfeuchtigkeit (90 bis 95 %) und 20 bis 22 °C gestellt. Während dieser Zeit keimten die Sporen aus und die Keimschläuche drangen in das Blattgewebe ein. Die infizierten Pflanzen wurden am nächsten Tag mit einer wässrigen Suspension in der unten angegebenen Wirkstoffkonzentration bis zur Tropfnässe besprüht. Die Suspensionen oder Emulsionen wurden wie oben beschrieben hergestellt. Nach dem Antrocknen des Spritzbelages wurden die Versuchspflanzen im Gewächshaus bei Temperaturen zwischen 20 und 22 °C und 65 bis 70 % relativer Luftfeuchtigkeit für 7 Tage kultiviert. Danach wurde das Ausmaß der Rostpilzentwicklung auf den Blättern ermittelt.

Nr.	Befall bei 63 ppm (% Blattfläche)
IA-4	0
IA-5	7
IA-7	3
unbehandelt	90

Protektive Wirksamkeit gegen Puccinia recondita an Weizen (Weizenbraunrost)

5

10

Blätter von in Töpfen gewachsenen Weizensämlingen der Sorte "Kanzler" wurden mit einer wässrigen Suspension in der unten angegebenen Wirkstoffkonzentration bis zur Tropfnässe bestäubt. Am nächsten Tag wurden die behandelten Pflanzen mit Sporen des Weizenbraunrostes (*Puccinia recondita*) bestäubt. Anschließend wurden die Pflanzen für 24 Stunden in eine Kammer mit hoher Luftfeuchtigkeit (90 bis 95 %) und 20 bis 22 °C gestellt. Während dieser Zeit keimten die Sporen aus und die Keimschläuche drangen in das Blattgewebe ein. Am folgenden Tag wurden die Versuchspflanzen ins Gewächshaus zurückgestellt und bei Temperaturen zwischen 20 und 22 °C und 65 bis 70 % relativer Luftfeuchtigkeit für weitere 7 Tage kultiviert. Danach wurde das Ausmaß der Rostentwicklung auf den Blättern visuell ermittelt.

Nr.	Befall bei 63 ppm (% Blattfläche)
IA-1	10
IA-4	3
IA-5	3
IA-6	5
IA-7	3
IA-8	3
IA-9	5
IA-10	5
IA-11	10
IA-12	3
unbehandelt	90

15

20

25

30

Patentansprüche

1. (Hetero)cyclylcarboxanilide der allgemeinen Formel I,

$$A = \begin{pmatrix} (R^2) \\ R^3m \\ R^4m \end{pmatrix} = \begin{pmatrix} R^6 \\ R^5 \end{pmatrix}$$

$$(I)$$

in denen die Variablen die folgenden Bedeutungen haben:

A Phenyl oder ein wenigstens einfach ungesättigter 5- oder 6-gliedrigen Heterocyclus mit 1, 2 oder 3, unter N, O, S, S(=O) und S(=O)₂ ausgewählten Heteroatomen als Ringglieder, wobei Phenyl und der wenigstens einfach ungesättigte 5- oder 6-gliedrige Heterocyclus unsubstituiert sein können oder 1, 2 oder 3 Reste R^a tragen können, wobei

für Halogen, Nitro, CN, C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, C₃-C₆-Halogencycloalkyl, C₂-C₄-Halogenalkenyl, C₂-C₄-Halogenalkinyl, C₁-C₄-Halogenalkoxy oder Phenyl steht, wobei Phenyl unsubstituiert sein kann oder ein, zwei oder drei Reste R^b trägt, die ausgewählt sind unter Halogen, Nitro, CN, C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, C₃-C₆-Halogencycloalkyl, C₂-C₄-Halogenalkenyl, C₂-C₄-Halogenalkinyl und C₁-C₄-Halogenalkoxy;

Y Sauerstoff oder Schwefel;

R¹ H, OH, C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, C₃-C₆-Halogencycloalkyl oder C₁-C₄-Halogenalkoxy;

R² Halogen, Nitro, CN, C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, C₃-C₆-Halogencycloalkyl, C₂-C₄-Halogenalkenyl, C₂-C₄-Halogenalkoxy;

10

25

30

35

40

- R^{3m}, R^{4m} jeweils unabhängig voneinander Halogen, Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, Phenyl, Phenyl-C₁-C₄-alkyl, Phenyl-C₂-C₄-alkenyl, Phenyl-C₂-C₄-alkinyl, C₁-C₆-Halogenalkyl, C₃-C₆-Halogencycloalkyl, C₂-C₆-Halogenalkenyl, C₂-C₆-Halogenalkinyl, Phenyl-C₁-C₄-halogenalkyl, Phenyl-C₂-C₄-halogenalkenyl oder Phenyl-C₂-C₄-halogenalkinyl, wobei Phenyl oder der Phenylteil von Phenyl-C₁-C₄-alkyl, Phenyl-C₂-C₄-alkenyl, Phenyl-C₂-C₄-alkinyl, Phenyl-C₁-C₄-halogenalkyl, Phenyl-C₂-C₄-halogenalkenyl und Phenyl-C₂-C₄-halogenalkinyl unsubstituiert sein können oder ein, zwei oder drei Reste R^b tragen können; für m = 2 oder 3, die Variablen R³², R⁴² beziehungsweise R³³, R⁴³ auch für C₁-C₆-Alkoxy stehen können;
- Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, Phenyl, Phenyl-C₁-C₄-alkyl, Phenyl-C₂-C₄-alkenyl, Phenyl-C₂-C₄-alkinyl,
 C₁-C₆-Halogenalkyl, C₃-C₆-Halogencycloalkyl, C₂-C₆-Halogenalkenyl, C₂-C₆-Halogenalkinyl, Phenyl-C₁-C₄-halogenalkyl, Phenyl-C₂-C₄-halogenalkenyl oder Phenyl-C₂-C₄-halogenalkinyl, wobei Phenyl oder der Phenylteil von Phenyl-C₁-C₄-alkyl, Phenyl-C₂-C₄-alkenyl, Phenyl-C₂-C₄-alkinyl, Phenyl-C₁-C₄-halogenalkyl, Phenyl-C₂-C₄-halogenalkenyl, Phenyl-C₂-C₄-halogenalkinyl unsubstituiert sein können oder ein, zwei oder drei Reste R^b tragen können;
 - R⁶ Wasserstoff, C₁-C₈-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₈-Alkenyl, C₂-C₈-Alkinyl, C₁-C₈-Halogenalkyl, C₃-C₆-Halogencycloalkyl, C₂-C₈-Halogenalkenyl, C₂-C₈-Halogenalkinyl, Phenyl, Naphthyl, Phenyl-C₁-C₆-alkyl, Naphthyl-C₁-C₆-alkyl, Phenyl-C₂-C₆-alkenyl, Phenyl-C₂-C₆-alkinyl, Phenyl-C₁-C₆-alkinyl, Phenyl-C₂-C₆-halogenalkyl, Phenyl-C₂-C₆-halogenalkenyl oder Phenyl-C₂-C₆-halogenalkinyl, wobei Phenyl und Naphthyl in den 9 zuletzt genannten Gruppen unsubstituiert sein können oder 1, 2 oder 3 unter R^b und R⁷ ausgewählte Substituenten tragen können, wobei R⁷ für-(CR⁸)=NOR⁹ steht, worin
 - R⁸ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Halogenalkyl, C₃-C₆-Halogencycloalkyl, C₂-C₆-Halogenalkenyl, C₂-C₆-Halogenalkinyl, Phenyl, Benzyl; wobei Phenyl und die Phenylgruppe in Benzyl unsubstituiert sein können oder ein, zwei oder drei Reste R^b tragen können; und
 - R⁹ C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Halogenalkyl, C₃-C₆-Halogencycloalkyl, C₂-C₆-Halogenalkenyl,

15

20

25

30

(A-6)

 $C_2\text{-}C_6\text{-Halogenalkinyl}, \text{ Phenyl}, \text{ Phenyl-}C_1\text{-}C_4\text{-alkyl}, \text{ Phenyl-}C_1\text{-}C_4\text{-halogenalkyl}, \text{ Phenyl-}C_2\text{-}C_4\text{-alkenyl}, \text{ Phenyl-}C_2\text{-}C_4\text{-halogenalkenyl}, \text{ Phenyl-}C_2\text{-}C_4\text{-alkinyl}, \text{ Phenyl-}C_2\text{-}C_4\text{-halogenalkinyl}, \text{ wobei Phenyl und die Phenylgruppe in Phenyl-}C_1\text{-}C_4\text{-alkyl}, \text{ Phenyl-}C_1\text{-}C_4\text{-alkenyl}, \text{ Phenyl-}C_2\text{-}C_4\text{-alkenyl}, \text{ Phenyl-}C_2\text{-}C_4\text{-alkinyl und Phenyl-}C_2\text{-}C_4\text{-halogenalkinyl unsubstituiert sein können oder ein, zwei oder drei Reste Rb tragen können;}$

10 n 0, 1, 2, 3 oder 4; und

m 1, 2 oder 3;

(A-4)

und die landwirtschaftlich brauchbaren Salze davon.

2. (Hetero)cyclylcarboxanilide der allgemeinen Formel I, worin A für einen Rest der allgemeinen Formeln

$$R^{a2} \xrightarrow{*} R^{a1}$$

$$(A-1)$$

$$(A-2)$$

$$R^{a3} \xrightarrow{*} R^{a1}$$

$$(A-3)$$

$$R^{a3} \xrightarrow{*} R^{a1}$$

$$R^{a3} \xrightarrow{*} R^{a1}$$

$$R^{a3} \xrightarrow{*} R^{a1}$$

steht, worin * die Bindungsstelle an C(=Y) bedeutet und die Variablen die folgende Bedeutung haben:

X, X₁ jeweils unabhängig voneinander N oder CR^c, wobei R^c für H steht oder die für R^b genannten Bedeutungen aufweist;

(A-5)

W S oder N-R^{a4}, worin R^{a4} für Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy oder Phenyl steht, das unsubstituiert sein kann oder 1, 2 oder 3 Reste R^b tragen kann;

20

30

- U Sauerstoff oder Schwefel;
- $Z = S_1 S(=0), S(=0)_2 \text{ oder } CH_2;$

R^{a1} Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy oder Halogen;

- jeweils unabhängig voneinander Wasserstoff, Halogen, Nitro, CN,

 C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₁-C₄-Alkoxy,

 wobei die 5 zuletzt genannten Gruppen durch Halogen substituiert sein
 können; und
- Hais Wasserstoff, Halogen, Nitro, CN, C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₁-C₄-Alkoxy, wobei die 5 zuletzt genannten Gruppen durch Halogen substituiert sein können.
 - 3. (Hetero)cyclylcarboxanilide der allgemeinen Formel I nach Anspruch 2, worin R^{a1} für Wasserstoff, Halogen, C₁-C₂-Alkyl, C₁-C₂-Alkoxy oder C₁-C₂-Fluoralkyl steht.
 - 4. (Hetero)cyclylcarboxanilide der allgemeinen Formel I nach Anspruch 2 oder 3, worin A für einen Rest der Formel Å-1a, A-2a oder A-3a steht,

$$R^{a2}$$
, R^{a4}
, R^{a4}
, R^{a4}
, R^{a4}
, R^{a4}
, R^{a1}
, R^{a1}
, R^{a1}
, R^{a1}
, R^{a2}
, R^{a3}
, R^{a4}
,

- worin R^{a1}, R^{a2}, R^{a3} und R^{a4} die in Anspruch 2 genannten Bedeutungen aufweisen.
 - 5. (Hetero)cyclylcarboxanilide der allgemeinen Formel I nach Anspruch 4, worin A für einen Rest A-1a mit R^{a1} = Halogen und R^{a2} = Wasserstoff, oder für einen Rest A-2a mit R^{a1} = C_1 - C_2 -Fluoralkyl, R^{a3} = Wasserstoff und R^{a4} = C_1 - C_4 -Alkyl oder für einen Rest A-3a mit R^{a1} = C_1 - C_2 -Fluoralkyl und R^{a3} = C_1 - C_4 -Alkyl steht.
 - 6. (Hetero)cyclylcarboxanilide der allgemeinen Formel I nach einem der vorhergehenden Ansprüche, worin R¹ für Wasserstoff steht.

- 7. (Hetero)cyclylcarboxanilide der allgemeinen Formel I nach einem der vorhergehenden Ansprüche, worin R² für C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, Nitro, Cyano oder Halogen steht.
- 5 8. (Hetero)cyclylcarboxanilide der allgemeinen Formel I nach einem der vorhergehenden Ansprüche, worin n für 0 oder 1 steht.
 - 9. (Hetero)cyclylcarboxanilide der allgemeinen Formel I nach einem der vorhergehenden Ansprüche, worin m für 1 steht.
- (Hetero)cyclylcarboxanilide der allgemeinen Formel I nach Anspruch 9, worin R³¹ und R⁴¹ jeweils unabhängig voneinander für Wasserstoff oder C₁-C₄-Alkyl stehen.

40

- 11. (Hetero)cyclylcarboxanilide der allgemeinen Formel I nach einem der vorhergehenden Ansprüche, worin R⁵ für Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl; C₃-C₆-Cycloalkyl, C₃-C₆-Halogencycloalkyl, Phenyl, Phenyl-C₁-C₄-alkyl, Phenyl-C₁-C₄-halogenalkyl steht, wobei Phenyl in den drei zuletzt genannten Resten unsubstituiert sein kann oder ein, zwei oder drei Reste R^b tragen kann.
- 12. (Hetero)cyclylcarboxanilide der allgemeinen Formel I nach einem der vorhergehenden Ansprüche, worin R⁶ für C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₂-C₆-Cycloalkyl, C₃-C₆-Halogencycloalkyl, C₂-C₆-Alkenyl, C₂-C₆-Halogenalkenyl, C₂-C₄-Alkinyl, C₂-C₄-Halogenalkinyl, Phenyl-C₁-C₂-alkyl oder Phenyl steht, wobei Phenyl in den zwei zuletzt genannten Resten unsubstituiert sein kann oder ein oder zwei Halogengruppen tragen kann.
 - 13. (Hetero)cyclylcarboxanilide der allgemeinen Formel I nach einem der vorhergehenden Ansprüche, worin Y für Sauerstoff steht.
- 30 14. Verwendung von (Hetero)cyclylcarboxaniliden der allgemeinen Formel I gemäß einem der vorhergehenden Ansprüche und von deren landwirtschaftlich brauchbaren Salzen zur Bekämpfung von Schadpilzen.
- 15. Pflanzenschutzmittel, enthaltend mindestens ein (Hetero)cyclylcarboxanilid der allgemeinen Formel I gemäß einem der Ansprüche 1 bis 13 oder ein landwirtschaftlich brauchbares Salz davon.
 - 16. Verfahren zur Bekämpfung von Schadpilzen, dadurch gekennzeichnet, dass man die Schadpilze, deren Lebensraum oder die von ihnen freizuhaltenden Pflanzen, Flächen, Materialien oder Räume mit einer fungizid wirksamen Menge mindes-

WO 2005/063692 PCT/EP2004/014622 72

tens eines (Hetero)cyclylcarboxanilids der allgemeinen Formel I gemäß einem der Ansprüche 1 bis 13 oder eines landwirtschaftlich brauchbaren Salzes davon behandelt.

INTERNATIONAL SEARCH REPORT

Internation No PCT/EP2004/014622

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C07C251/38 C07E C07D213/82 C07D207/34 C07D263/34 C07D277/56 C07D279/12 C07D307/30 C07D307/54 C07D307/71 C07D333/38 A01N43/56 A01N43/74 A01N43/10 A01N43/40 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) CO7D A01N IPC 7 CO7C Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ' Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. 1,14-16A WO 02/08197 A (BAYER AKTIENGESELLSCHAFT; ELBE, HANS-LUDWIG; RIECK, HEIKO; DUNKEL, RAL) 31 January 2002 (2002-01-31) cited in the application abstract Α EP 1 118 609 A (BASF AKTIENGESELLSCHAFT) 1,14-1625 July 2001 (2001-07-25) abstract X Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docudocument referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 9 March 2005 18/03/2005 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016 Fitz, W

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/EP2004/014622

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
WO 0208197 A	31-01-2002	DE	10122447 A1	18-04-2002
		ΑU	7848001 A	05-02-2002
		BR	0112676 A	24-06-2003
		CN	1444564 A	24-09-2003
		MO	0208197 A1	31-01-2002
		EP	1305292 A1	02-05-2003
		HU	0301661 A2	28-08-2003
		JP	2004504383 T	12-02-2004
		PL	360081 A1	06-09-2004
		US	2004039043 A1	26-02-2004
		ZA	200300633 A	12-02-2004
EP 1118609 A	25-07-2001	EP	1118609 A2	25-07-2001
		JP	2001226339 A	21-08-2001
		US	2002082303 A1	27-06-2002

INTERNATIONALER RECHERCHENBERICHT

Internation es Aktenzeichen
PCT/EP2004/014622

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C07C251/38 C07D213/82 CO7D207/34 C07D263/34 C07D277/56 C07D333/38 C07D279/12 C07D307/30 C07D307/54 C07D307/71 A01N43/10 A01N43/56 A01N43/74 A01N43/40 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 C07C C07D AO1N Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal, WPI Data, CHEM ABS Data C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. Kategorie⁴ 1,14-16 Α WO 02/08197 A (BAYER AKTIENGESELLSCHAFT; ELBE, HANS-LUDWIG; RIECK, HEIKO; DUNKEL, RAL) 31. Januar 2002 (2002-01-31) in der Anmeldung erwähnt Zusammenfassung EP 1 118 609 A (BASF AKTIENGESELLSCHAFT) 1.14 - 16Α 25. Juli 2001 (2001-07-25) Zusammenfassung Siehe Anhang Patentfamilie Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Besondere Kategorien von angegebenen Veröffentlichungen °A° Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zwelfelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung soll oder die aus einem anderen besonderen Grund angegeben ist (wie kann nicht als auf erfinderischer Tätigkeit berühend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist ausoeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist dem beanspruchten Prioritätsdatum veröffentlicht worden ist Absendedatum des Internationalen Recherchenberichts Datum des Abschlusses der internationalen Recherche 18/03/2005 9. März 2005 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Fitz, W

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internation es Aktenzeichen
PCT/EP2004/014622

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 0208197	A	31-01-2002	DE	10122447 A1	18-04-2002
			AU	7848001 A	05-02-2002
			BR	0112676 A	24-06-2003
			CN	1444564 A	24-09-2003
			WO	0208197 A1	31-01-2002
			EΡ	1305292 A1	02-05-2003
			HU	0301661 A2	28-08-2003
			JP	2004504383 T	12-02-2004
			PL	360081 A1	06-09-2004
			US	2004039043 A1	26-02-2004
			ZA	200300633 A	12-02-2004
EP 1118609	Α	25-07-2001	EP	1118609 A2	25-07-2001
			JP	2001226339 A	21-08-2001
			US	2002082303 A1	27-06-2002