

Importance Sampling and Radon-Nikodym Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event

Absolute Continuity

Examples and Applications

Statistical Interpretation

Importance Sampling and Radon-Nikodym Derivatives

Steven R. Dunbar

Outline

Importance Sampling and Radon-Nikodym Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and Applications

Statistical Interpretation

- Sampling with respect to 2 distributions
- Rare Event Simulation
- Absolute Continuity
- Examples and Applications
- 5 Statistical Interpretation

More than one way to evaluate a statistic

Importance Sampling and Radon-Nikodym Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and Applications

Statistical Interpretation A statistic for X with pdf u(x) is

$$A = \mathbb{E}_u [F(X)] = \int F(x)u(x) dx$$

Suppose $\boldsymbol{v}(\boldsymbol{x})$ is another probability density such that

$$L(x) = \frac{u(x)}{v(x)}$$

is well-defined.

Then

$$A = \mathbb{E}_v \left[F(X)L(X) \right] = \int F(x) \frac{u(x)}{v(x)} v(x) \, dx$$

Likelihood ratio

Importance Sampling and Radon-Nikodym Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and Applications

Statistical Interpretation The likelihood ratio is

$$L(x) = \frac{u(x)}{v(x)}$$

SO

$$A = \mathbb{E}_u [F(X)] = \mathbb{E}_v [F(X)L(X)]$$

To get A we can either:

- ullet take samples with density u(x) calculate with F; or
- take samples with density v(x), calculate with $F \cdot L$.

Good choice of likelihood ratio

Importance Sampling and Radon-Nikodym Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and Applications

Statistical Interpretation How should we seek v(x) and corresponding L(x)?

Reduction of variance is a good criterion: Want

$$\operatorname{Var}_{v}\left[F(X)L(X)\right] = \mathbb{E}_{v}\left[\left(F(X)L(X)\right)^{2}\right] - A^{2}$$

less than

$$\operatorname{Var}_{u}[F(X)] = \mathbb{E}_{u}[(F(X))^{2}] - A^{2}$$

Example: Large values for a normal r.v.

Importance Sampling and Radon-Nikodym Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and Applications

Statistical Interpretation Suppose $X \sim N(0,1)$ and we wish to evaluate $\mathbb{P}\left[X > 4\right]$

R code for probability:

1 - pnorm(4)

The output

[1] 3.167124e-05

Sampling

Importance Sampling and Radon-Nikodym Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and Applications

Statistical Interpretation

Code for sampling

```
sample <- rnorm(10^5)
sum( sample > 4 )
sample[ which(sample > 4) ]
```

The output

[1] 6

[1] 4.110055 4.970314 4.026803 4.133050 4.014239

Most of the sample doesn't count, "wasted effort". The samples with X>4 are only a little larger than 4.

A better choice of sampling PDF

Importance Sampling and Radon-Nikodym Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and Applications

Statistical Interpretation Draw samples from N(4,1) instead. Put most of the weight in sampling near 4.

Likelihood ratio is

$$L(x) = \frac{u(x)}{v(x)} = \frac{ke^{-x^2/2}}{ke^{-(x-4)^2/2}} = e^{4^2/2}e^{-4x}.$$

New sampling

Importance Sampling and Radon-Nikodym Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and Applications

Statistical Interpretation The v-method, with sample draw according to the new pdf:

$$\mathbb{P}_{N(0,1)}[X > 4] = \int_{4}^{\infty} L(X)v(x) \, dx \approx \frac{1}{N} \sum_{v_k > 4} L(v_k)$$
$$= \frac{e^{4^2/2}}{N} \sum_{v_k > 4} e^{-4v_k}$$

New sampling example

Importance Sampling and Radon-Nikodvm Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and Applications

Statistical Interpretation

Code for sampling

```
vsample \leftarrow rnorm(10^5,4,1)
usevsample <- vsample[which(vsample > 4)]
Pv \leftarrow exp(4^2/2)*sum(exp(-4*usevsample))/10^5
Pv
```

The output

[1] 3.17203e-05

Intuition behind Importance Sampling

Importance Sampling and Radon-Nikodym Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and Applications

Statistical Interpretation About half the samples are counted, but they are counted with a small weight.

A lot of small weight hits give a lower variance estimator than a few large weight hits.

Importance Sampling and Radon-Nikodym Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and Applications

Statistical Interpretation Variance for the naive sampling:

$$P = \mathbb{P}_{N(0,1)}[X > 4] = \int \mathbf{1}_{[X > 4]}(x) \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx$$

$$\operatorname{Var}_{u}[F(X)] = \mathbb{E}_{u}[(F(X))^{2}] - P^{2}$$

$$= \int (\mathbf{1}_{[X>4]}(x))^{2} \frac{e^{-x^{2}/2}}{\sqrt{2\pi}} dx$$

$$= P - P^{2}$$

$$\approx P$$

Variance is same order as P. (The standard deviation will be relatively large compared to P.)

Importance Sampling and Radon-Nikodvm Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and **Applications**

Statistical Interpretation

Naive Sample Variance

 $P <- sum((sample > 4)^2)/10^5$ P-P^2

Results

[1] 5.99964e-05

Importance Sampling and Radon-Nikodym Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and Applications

Statistical Interpretation Importance sampling: $L(x) = e^{4^2/2}e^{-4x}$

Variance for importance sampling:

$$\operatorname{Var}_{v}[F(X)] = \mathbb{E}_{u}\left[(F(X)L(X))^{2} \right] - P^{2}$$

$$= \int (\mathbf{1}_{[X>4]}(x)e^{4^{2}/2}e^{-4x})^{2} \frac{e^{-(x-4)^{2}/2}}{\sqrt{2\pi}} dx - P^{2}$$

Importance Sampling and Radon-Nikodym Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and Applications

Statistical Interpretation

Importance Sample Variance

```
secmomv <- sum((exp(4^2/2)*exp(-4*usevsample))^2
secmomv - Pv^2</pre>
```

Results

[1] 4.550243e-09

Importance Sampling and Radon-Nikodym Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and Applications

Statistical Interpretation What is best normal distribution N(b,1) for importance sampling of $P = \mathbb{P}_{N(0,1)}[X > 4]$?

After some calculation with L(x):

$$\operatorname{Var}_{v}\left[\mathbf{1}_{[X>4]}\right] = e^{b^{2}}(1 - \Phi(b+4)) - P^{2}$$

($\Phi(x)$ is the cdf of the N(0,1) distribution.)

Importance Sampling and Radon-Nikodym Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and Applications

Statistical Interpretation Unfortunately, $(1-\Phi(b+4))$ is 0 to precision-levels for $3\leq b\leq 5$ leading to severe numerical error in ${\rm e}^{b^2}(1-\Phi(b+4))-P^2.$

Use standard asymptotic estimates for the normal cdf tail:

$$\frac{1}{\sqrt{2\pi}(b+5)} \left(e^{-(b+4)^2/2} - e^{-(b+5)^2/2} \right) \le 1 - \Phi(x)$$

$$\le \frac{1}{\sqrt{2\pi}(b+4)} \left(e^{-(b+4)^2/2} \right)$$

Importance Sampling and Radon-Nikodym Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and Applications

Statistical Interpretation

Using the estimates

with L(x) provides algebraic simplification which reduces numerical error.

Using a N(b,1) with $b \approx 4.1$ gives minimum variance.

New Measures from Old

Importance Sampling and Radon-Nikodym Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and Applications

Statistical Interpretation If $\mathbb Q$ is a probability, can define a new probability measure

$$d\mathbb{P} = L(x) \ d\mathbb{Q}$$

provided

- $L(x) \ge 0$ (almost surely w.r.t. \mathbb{Q}).
- $\int_{\Omega} L(x) d\mathbb{Q} = 1.$

Then

$$\mathbb{E}_{\mathbb{P}}\left[F(X)\right] = \mathbb{E}_{\mathbb{Q}}\left[F(X)L(X)\right]$$

Relation between measures

Importance Sampling and Radon-Nikodym Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and Applications

Statistical Interpretation Ask the reverse question: Given measures $\mathbb P$ and $\mathbb Q$, is there an L(x) relating them?

Necessary condition: $\mathbb{Q}[B] = 0 \implies \mathbb{P}[B] = 0$ because

$$\mathbb{P}[B] = \mathbb{E}_{\mathbb{P}}\left[\mathbf{1}_{B}(X)\right] = \mathbb{E}_{\mathbb{Q}}\left[\mathbf{1}_{B}(X)L(X)\right] = 0$$

"Impossible under $\mathbb Q$ is also impossible under $\mathbb P$."

Absolute Continuity

Importance Sampling and Radon-Nikodvm Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and **Applications**

Statistical Interpretation If $\mathbb{Q}[B] = 0 \implies \mathbb{P}[B] = 0$ we say \mathbb{P} is absolutely continuous w.r.t. \mathbb{Q} and write $\mathbb{P} \ll \mathbb{Q}$.

"Impossible under \mathbb{Q} is also impossible under \mathbb{P} ."

Radon-Nikodym Theorem

Importance Sampling and Radon-Nikodym Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and Applications

Statistical Interpretation The R-N Theorem says the necessary condition of absolute continuity is also sufficient:

Radon-Nikodym Theorem

- \mathbb{P} and \mathbb{Q} are probability measures on common σ -algebra \mathcal{F} ; and
- ullet I is absolutely continuous w.r.t. $\mathbb Q$

then there is a function

$$L(x) = \frac{\mathrm{d}\mathbb{P}}{\mathrm{d}\mathbb{Q}}.$$

so that

$$\mathbb{E}_{\mathbb{P}}\left[F(X)\right] = \mathbb{E}_{\mathbb{Q}}\left[F(X)L(X)\right].$$

Completely Singular

Importance Sampling and Radon-Nikodym Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and Applications

Statistical Interpretation If there is a B with $\mathbb{P}[B]=0$ and $\mathbb{Q}[B]=1$ we say \mathbb{Q} is completely singular w.r.t. \mathbb{P} .

Note: $\mathbb{P}[B^C]=1$ and $\mathbb{Q}[B^C]=0$ so then \mathbb{P} is completely singular w.r.t. \mathbb{Q} and we write

$$\mathbb{P}\perp\mathbb{Q}$$

Simple Example 1

Importance Sampling and Radon-Nikodym Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and Applications

Statistical Interpretation • $X \sim U([0,1])$ with probability \mathbb{P}

• $Y \sim N(0,1)$ with probability \mathbb{Q}

Then

- \mathbb{P} is absolutely continuous w.r.t. \mathbb{Q} ($\mathbb{Q}[B] = 0 \implies \mathbb{P}[B] = 0$)
- ullet $\mathbb Q$ is *not* absolutely continuous w.r.t. $\mathbb P$

(
$$\mathbb{P}[1,2] = 0$$
 but $\mathbb{Q}[1,2] \approx 0.136$)

Simple Example 2

Importance Sampling and Radon-Nikodym Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and Applications

Statistical Interpretation $\bullet \ X \in \mathbb{R}^2$, $X \sim N((0,0),I_{2,2})$ with probability \mathbb{P}

ullet $Y=X/\|X\|$, $Y\sim U(S^1)$ with probability $\mathbb Q$

Then

- $\bullet \ \mathbb{P}[S^1] = 0 \ \text{and} \ \mathbb{Q}[S^1] = 1$
- $\bullet \mathbb{P} \perp \mathbb{Q}.$

Sophisticated Example

Importance Sampling and Radon-Nikodym Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and Applications

Statistical Interpretation ullet $X \sim U([0,1])$ with probability ${\mathbb P}$

 \bullet Y has the Cantor distribution on [0,1], with probability $\mathbb Q$

Then

- Q has a continuous c.d.f. (Devil's staircase), but the p.d.f. does not exist in any easy sense.
- $\bullet \mathbb{P} \perp \mathbb{Q}.$

This example shows that absolute continuity and completely singular are extensions of the "calculus" definitions for functions from real analysis.

Example of an R-N derivative

Importance Sampling and Radon-Nikodym Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and Applications

Statistical Interpretation

Previous sampling example:

- $X \sim N(0,1)$, with probability \mathbb{P} , p.d.f. $e^{-x^2/2}$
- ullet $Y\sim N(4,1)$, with probability $\mathbb Q$, p.d.f $\mathrm{e}^{-(x-4)^2/2}$

$$\frac{\mathrm{d}\mathbb{P}}{\mathrm{d}\mathbb{Q}} = \mathrm{e}^{4^2/2} \mathrm{e}^{-4x}$$

Bigger example of an R-N derivative

Importance Sampling and Radon-Nikodym Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and Applications

Statistical Interpretation

•
$$X \in \mathbb{R}^n$$
, $X \sim N(\mathbf{0}, C_{n,n})$, $H = C^{-1}$.

$$\bullet \ Y \in \mathbb{R}^n \text{, } Y \sim N(\mu, C_{n,n}) \text{, } H = C^{-1}.$$

$$u(x) = k_n e^{-\mathbf{x}^T H \mathbf{x}/2}$$

$$v(x) = k_n e^{-(\mathbf{x}^T - \mu)H(\mathbf{x} - \mu)/2}$$

$$= k_n e^{-\mu^T H \mu/2} e^{\mu^T H \mathbf{x}} e^{-\mathbf{x}^T H \mathbf{x}/2}$$

Continuation, Bigger Example

Importance Sampling and Radon-Nikodym Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and Applications

Statistical Interpretation Let

$$\mu^T H = \nu^T$$
$$H\mu = \nu$$
$$\mu = C\nu$$

so

$$\frac{\mathrm{d}\mathbb{P}}{\mathrm{d}\mathbb{Q}} = \mathrm{e}^{\nu^T \mu/2} \mathrm{e}^{-\nu^T x}$$

Deciding the Distribution

Importance Sampling and Radon-Nikodym Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and Applications

Statistical Interpretation Have a single sample point: X. Is:

- $X \sim \mathbb{P}$ (null hypothesis); or
- $\bullet \ \, X \sim \mathbb{Q} \ \, \text{(alternate hypothesis)}$

Test: Criterion is set B:

- If $x \in B$ say \mathbb{Q}
- $\bullet \ \ \text{If} \ x \in B^C \ \text{say} \ \mathbb{P}$

Types of errors

Importance Sampling and Radon-Nikodym Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and Applications

Statistical Interpretation

- Type I error is saying $\mathbb Q$ when truth is $\mathbb P$ (reject null and accept alternative when null is true)
- Type II error is saying \mathbb{P} when truth is \mathbb{Q} (accept null and reject alternative when null is false)

(Usually we believe) Type I errors are worse than Type II

Confidence in the test

Importance Sampling and Radon-Nikodym Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and Applications

Statistical Interpretation The confidence in the procedure is $\mathbb{P}\left[B^{C}\right]=1-\mathbb{P}\left[B\right]$, probability of accepting null, when the null is true.

The power in the procedure is $\mathbb{Q}[B]$ of rejecting null, when the null is false.

If $\mathbb{Q} \perp \mathbb{P}$, there is a test with 100% confidence and 100% power.

Conversely, If there is a test with 100% confidence and 100% power, then $\mathbb{Q} \perp \mathbb{P}$,

Neyman-Pearson Lemma

Importance Sampling and Radon-Nikodym Derivatives

> Steven R. Dunbar

Sampling with respect to 2 distributions

Rare Event Simulation

Absolute Continuity

Examples and Applications

Statistical Interpretation A test is efficient if there is no way to increase the confidence without decreasing the power.

Neyman-Pearson Lemma

If B is efficient, then there is L_0 such that

$$B = \left\{ x : \frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\mathbb{P}} > L_0 \right\}$$