MECH 5760 Chapter 5 Assignment #4 Name: Kunal Nandanwar UML ID: 02049382

5.3f) Breakeven Analysis

Automatic machine \rightarrow Cost = \$800,000, 10 cents/cell cost Semi-automatic machine \rightarrow Cost = \$500,000, 40 cents/cell cost

Selling cost = \$1/unit

Profit of automatic machine = \$1 - \$0.1 = \$0.9/partProfit of semi-automatic machine = \$1 - \$0.4 = \$0.6/part

Assume NO salvage value, interest rate = 5%, 5-year life

 $AV_1 = -800000(A/P, 5\%, n = 5) + 0.9N = -800000(0.231) + 0.9N = -184800 + 0.9N$

 $AV_2 = -500000(A/P, 5\%, n = 5) + 0.6N = -500000(0.231) + 0.6N = -115500 + 0.6N$

Breakeven is when $AV_1 = AV_2$ and solve for N pieces

N = 231,000 pieces

To demonstrate the breakeven analysis graphically, please generate a graph (Figure 1) based on a range of x values (N parts sold) versus Y values from both machines (AV1 and AV2)

5.3g) Probabilistic Analysis

Semi-automatic machine \rightarrow Cost = \$500,000, Interest rate = 5%, 5-year life, NO salvage value, NO Taxes, 120,000 cells/year

P(B = \$0.8) = 0.8

P(B = \$1) = 0.2

P(n = 4) = 0.6

P(n = 5) = 0.4

Given B = 0.8/cell, the benefit would be 120000 * 0.8 = 96,000

PV level 1 = -500000 + 96000*3.546 = \$(159,584)

PV Compound level 1 = (159,584) * 0.48 = (76,600)

Given B = \$0.8/cell, the benefit would be 120000 * 0.8 = \$96,000

PV level 2 = -500000 + 96000*4.329 = \$(84,416)

PV Compound level 2 = \$(84,416) * 0.32 = \$(27,013)

Given B = 1/cell, the benefit would be 120000 * 1 = 120,000

PV level $3 = -500000 + 120000 * (P/A, 5\%, n = 4) \rightarrow -500000 + 120000 * (3.546) = \$(74,480)$

PV Compound level 3 = (74,480) * 0.12 = (8937.6)

Given B = 1/cell, the benefit would be 120000 * 1 = 120,000

PV level $4 = -500000 + 120000 * (P/A, 5\%, n = 5) \rightarrow -500000 + 120000 * (4.329) = $19,480$

PV Compound level 4 = (19,480) * 0.08 = 1558.4

Please complete the Table 2 for Levels 2 and 4.

Table 1: Probabilistic Analysis Calculations

Benefits/ Cell	Probability (Benefits)	Actual Profits/Y	Years (n)	Probability (Years)	Probability (B*n)	P (A,5%, n)	PV Each Level	PV Compound
\$0.80	0.8	\$96,000	4	0.6	0.48	3.546	\$(159,584)	\$ (76,600)
\$0.80	0.8	\$96,000	5	0.4	0.48	4.329	\$(159,584)	\$(70,000)
\$1.00	0.2	\$120,000	4	0.6	0.12	3.546	\$(74,480)	\$ (8,937.6)
\$1.00	0.2	\$120,000	5	0.4	0.08	4.329	\$19,480	\$1,558.4
Total	2			2	1			\$(110,992)

5.3h) Sensitivity Analysis

Semi-automatic machine \rightarrow Interest rate = 5%, cost = \$500,000, 120,000 cells/year @ \$1 profit/cell, 5-year life Current Machine cost = \$500,000

Current profit = 120,000 * 1 = \$120,000/year, current Useful Life = 5 Years

```
PV = -500000 + (B = 96000, 120000, 144000) * (P/A, 5\%, n = 4, 5, 6)
```

```
\begin{array}{l} PV_1 = -500000 + 96000 * (P/A, 5\%, n = 4) = -500000 + 96000 * 3.546 = \$ \ (\textbf{159,584}) \\ PV_2 = -500000 + 96000 * (P/A, 5\%, n = 5) = -500000 + 96000 * 4.329 = \$ \ (\textbf{84,416}) \\ PV_3 = -500000 + 96000 * (P/A, 5\%, n = 6) = -500000 + 96000 * 5.076 = \$ \ (\textbf{12,704}) \\ PV_4 = -500000 + 120000 * (P/A, 5\%, n = 4) = -500000 + 120000 * 3.546 = \$ \ (\textbf{74,480}) \\ PV_5 = -\$500,000 + \$120000 * (P/A, 5\%, n = 5) = -500000 + 120000 * 4.329 = \$\textbf{19,480} \\ PV_6 = -\$500,000 + \$120000 * (P/A, 5\%, n = 5) = -500000 + 120000 * 5.076 = \$\textbf{109,120} \\ PV_7 = -500000 + 144000 * (P/A, 5\%, n = 4) = -500000 + 144000 * 3.546 = \$\textbf{10,624} \\ PV_8 = -500000 + 144000 * (P/A, 5\%, n = 4) = -500000 + 144000 * 4.329 = \$\textbf{123,376} \\ \end{array}
```

 $PV_9 = -500000 + 144000 * (P/A, 5\%, n = 4) = -500000 + 144000 * 5.076 = $230,944$

Please fill out the rest of Table 2 below.

Table 2: Sensitivity Analysis Calculations

% Change Benefits	Resulting Benefits	% Change Years	Life (years)	PV	Row Number
-20	\$96,000	-20	4	-\$(159,584)	PV 1
-20	\$96,000	0	5	-\$(84,416)	PV 2
-20	\$96,000	20	6	-\$(12,704)	PV 3
0	\$120,000	-20	4	-\$ (74,480)	PV 4
0	\$120,000	0	5	\$19,480	PV 5
0	\$120,000	20	6	\$109120	PV 6
20	\$144,000	-20	4	\$10,624	PV 7
20	\$144,000	0	5	\$123,376	PV 8
20	\$144,000	20	6	\$230,944	PV 9

As seen from Table 2, the nominal value (0% change for both benefits and life) = \$19,480.

Taking the averages,

```
For -20% Benefit, Average = (AV\ 1 + AV\ 2 + AV3)\ /\ 3 = (-159594 - 84416 - 12704)\ /\ 3 = \$\ (85,568) For Current Benefit, Average = (AV\ 4 + AV\ 5 + AV6)\ /\ 3 = (-74480 + 19480 + 109120)\ /\ 3 = \$18,040 For +20% Benefit, Average = (AV\ 7 + AV\ 8 + AV9)\ /\ 3 = (10624 + 123376 + 230944)\ /\ 3 = \$121,648 For -20% Useful Life, Average = (AV\ 1 + AV\ 4 + AV7)\ /\ 3 = (-159594 - 74408 + 10624)\ /\ 3 = \$(74,480) For Current Useful Life, Average = (AV\ 2 + AV\ 5 + AV8)\ /\ 3 = (-84416 + 19480 + 123376)\ /\ 3 = \$19,480 For +20% Useful Life, Average = (AV\ 3 + AV\ 6 + AV9)\ /\ 3 = (-12704 + 109120 + 230944)\ /\ 3 = \$109,120
```

Please present these in a graph with three levels of Benefits and three levels of Life.

To Plot Figure 2 like graph in the textbook, in Excel, assign the three levels of Benefits then years in one column of 6 rows for x, and two successive columns of three rows each for Benefits and life.

Figure 2: Sensitivity Analysis Graph

