知乎

矩阵求导术 (下)

大躯鬼伙 粉学类好妻

已关注

干槽 Maigo 等 1.342 人特同了该文章

本文承接上篇 zhuanlan.zhihu.com/p/24...,来讲矩阵对矩阵的求导术。使用小写字母x表示标量,粗体小写字母æ表示列向量,大写字母X表示矩阵。矩阵对矩阵的求导采用了向量化的思路,常应用于二阶方法中Hessian矩阵的分析。

首先来琢磨一下定义。矩阵对矩阵的导数,需要什么样的定义?第一,矩阵 $F(p \times q)$ 对矩阵 $X(m \times n)$ 的导数应包含所有mnpq个偏导数 $\frac{\partial F_{kl}}{\partial X_{ij}}$,从而不损失信息;第二,导数与微分有简明的联系,因为在计算导数和应用中需要这个联系;第三,导数有简明的从整体出发的算法。我们先定义向量f

 $(p \times 1) 对向量 \mathbf{x} (m \times 1) 的导数 \frac{\partial \mathbf{f}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial \mathbf{f}_1}{\partial \mathbf{x}_1} & \frac{\partial \mathbf{f}_2}{\partial \mathbf{x}_1} & \cdots & \frac{\partial \mathbf{f}_p}{\partial \mathbf{x}_1} \\ \frac{\partial \mathbf{f}_1}{\partial \mathbf{x}_2} & \frac{\partial \mathbf{f}_2}{\partial \mathbf{x}_2} & \cdots & \frac{\partial \mathbf{f}_p}{\partial \mathbf{x}_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \mathbf{f}_1}{\partial \mathbf{x}_m} & \frac{\partial \mathbf{f}_2}{\partial \mathbf{x}_m} & \cdots & \frac{\partial \mathbf{f}_p}{\partial \mathbf{x}_m} \end{bmatrix} (m \times p), \ \ \mathbf{f} \ \mathbf{d} \mathbf{f} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \mathbf{d} \mathbf{x}; \ \ \mathbf{p} \mathbf{E} \mathbf{y}$

矩阵的(按列优先)向量化 $\operatorname{vec}(X) = [X_{11}, \ldots, X_{m1}, X_{12}, \ldots, X_{m2}, \ldots, X_{1n}, \ldots, X_{mn}]^T (\operatorname{mn} \times 1)$,并定义矩阵F对矩阵X的导数 $\frac{\partial F}{\partial X} = \frac{\partial \operatorname{vec}(F)}{\partial \operatorname{vec}(X)} (\operatorname{mn} \times \operatorname{pq})$ 。导数与微分有联系

 $\operatorname{vec}(dF) = \frac{\partial F}{\partial X}^T \operatorname{vec}(dX)$ 。 几点说明如下:

- 1. 按此定义,标量例矩阵 $X(m \times n)$ 的导数 $\frac{\partial f}{\partial X}$ 是 $mn \times 1$ 向量,与上篇的定义不兼容,不过二者容易相互转换。为避免混淆,用记号 $\nabla_X f$ 表示上篇定义的 $m \times n$ 矩阵,则有 $\frac{\partial f}{\partial X} = \mathbf{vec}(\nabla_X f)$ 。虽然本篇的技术可以用于标量对矩阵求导这种特殊情况,但使用上篇中的技术更方便。读者可以通过上篇中的算例试验两种方法的等价转换。
- 2. 标量对矩阵的二阶导数,又称Hessian矩阵,定义为 $\nabla_X^2 f = \frac{\partial^2 f}{\partial X^2} = \frac{\partial \nabla_X f}{\partial X}$ (mn×mn),是对称矩阵。对向量 $\frac{\partial f}{\partial X}$ 或矩阵 $\nabla_X f$ 求导都可以得到Hessian矩阵,但从矩阵 $\nabla_X f$ 出发更方便。
 3. $\frac{\partial F}{\partial X} = \frac{\partial \text{vec}(F)}{\partial X} = \frac{\partial F}{\partial \text{vec}(X)} = \frac{\partial \text{vec}(F)}{\partial \text{vec}(X)}$,求导时矩阵被向量化,弊端是这在一定程度破坏了
- 3. $\frac{\partial F}{\partial X} = \frac{\partial \text{vec}(F)}{\partial X} = \frac{\partial F}{\partial \text{vec}(X)} = \frac{\partial \text{vec}(F)}{\partial \text{vec}(X)}$, 求导时矩阵被向量化,弊端是这在一定程度破坏了矩阵的结构,会导致结果变得形式复杂;好处是多元微积分中关于梯度、Hessian矩阵的结论可以沿用过来,只需将矩阵向量化。例如优化问题中,牛顿法的更新 ΔX ,满足 $\text{vec}(\Delta X) = -(\nabla_X^2 f)^{-1} \text{vec}(\nabla_X f)$ 。
- 4 . 在资料中,矩阵对矩阵的导数还有 2 2 2 2 2 2 2 3 4 5 2 2 3 4 5

▲ 赞同 1342 ▼ ● 201 条评论 ▼ 分享 ★ 收藏

 $\frac{\partial F}{\partial X} = \left[\frac{\partial F}{\partial X_{ij}} \right] (mp \times nq)$,它能兼容上篇中的标量对矩阵导数的定义,但微分与导数的联系 \P (dF等于 $\frac{\partial F}{\partial X}$ 中逐个m×n子块分别与dX做内积)不够简明,不便于计算和应用。资料[5]综述了以上定义,并批判它们是坏的定义,能配合微分运算的才是好的定义。

然后来建立运算法则。仍然要利用导数与微分的联系 $\mathbf{vec}(dF) = \frac{\partial F}{\partial X}^T \mathbf{vec}(dX)$,求微分的方法与上篇相同,而从微分得到导数需要一些向量化的技巧:

- 1. 线性: $\operatorname{vec}(A+B) = \operatorname{vec}(A) + \operatorname{vec}(B)$ 。
- 2. 矩阵乘法: $\mathbf{vec}(\mathbf{AXB}) = (\mathbf{B}^T \otimes \mathbf{A})\mathbf{vec}(\mathbf{X})$,其中 \otimes 表示Kronecker积,A(m×n)与B(p×q)的 Kronecker积是 $\mathbf{A} \otimes \mathbf{B} = [\mathbf{A}_{ij}\mathbf{B}]$ (mp×nq)。此式证明见张贤达《矩阵分析与应用》第107-108 页。
- 3. 转置: $\mathbf{vec}(\mathbf{A}^T) = \mathbf{K}_{mn}\mathbf{vec}(\mathbf{A})$, A是m×n矩阵, 其中 \mathbf{K}_{mn} (mn×mn)是交换矩阵 (commutation matrix), 将按列优先的向量化变为按行优先的向量化。例如

$$K_{22} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}, ext{vec}(A^T) = egin{bmatrix} A_{11} \ A_{12} \ A_{21} \ A_{22} \end{bmatrix}, ext{vec}(A) = egin{bmatrix} A_{11} \ A_{21} \ A_{12} \ A_{22} \end{bmatrix}.$$

4. 逐元素乘法: $vec(A \odot X) = diag(A)vec(X)$, 其中 diag(A) (mn×mn)是用A的元素(按列优先)排成的对角阵。

观察一下可以断言,若矩阵函数F是矩阵X经加减乘法、逆、行列式、逐元素函数等运算构成,则使用相应的运算法则对F求微分,再做向量化并使用技巧将其它项交换至vec(dX)左侧,对照导数与微分的联系 $\mathrm{vec}(dF) = \frac{\partial F}{\partial X}^T \mathrm{vec}(dX)$,即能得到导数。

特别地,若矩阵退化为向量,对照导数与微分的联系 $dm{f}=rac{\partial m{f}}{\partial m{x}}^T dm{x}$,即能得到导数。

再谈一谈复合: 假设已求得 $\frac{\partial F}{\partial Y}$, 而Y是X的函数,如何求 $\frac{\partial F}{\partial X}$ 呢?从导数与微分的联系入手, $\operatorname{vec}(dF) = \frac{\partial F}{\partial Y}^T \operatorname{vec}(dY) = \frac{\partial F}{\partial Y}^T \frac{\partial Y}{\partial X}^T \operatorname{vec}(dX)$,可以推出链式法则 $\frac{\partial F}{\partial X} = \frac{\partial Y}{\partial X} \frac{\partial F}{\partial Y}$ 。

和标量对矩阵的导数相比,矩阵对矩阵的导数形式更加复杂,从不同角度出发常会得到形式不同的结果。有一些Kronecker积和交换矩阵相关的恒等式,可用来做等价变形:

- 1. $(A \otimes B)^T = A^T \otimes B^T$.
- 2. $\operatorname{vec}(\boldsymbol{a}\boldsymbol{b}^T) = \boldsymbol{b} \otimes \boldsymbol{a}$.

式法则得到 $\frac{\partial F}{\partial X} = (A \otimes B)(C \otimes D)$ 。

- 4. $K_{mn} = K_{nm}^T, K_{mn}K_{nm} = I$.
- 5. $K_{pm}(A \otimes B)K_{nq} = B \otimes A$,A是m×n矩阵,B是p×q矩阵。可以对 AXB^T 做向量化来证明,一方面, $vec(AXB^T) = (B \otimes A)vec(X)$;另一方面,

$$\operatorname{vec}(AXB^T) = K_{pm}\operatorname{vec}(BX^TA^T) = K_{pm}(A\otimes B)\operatorname{vec}(X^T) = K_{pm}(A\otimes B)K_{nq}\operatorname{vec}(X)\;.$$

接下来演示一些算例。

例1: $\mathbf{F} = \mathbf{AX}$, X是m×n矩阵, 求 $\frac{\partial \mathbf{F}}{\partial \mathbf{X}}$ 。

解:先求微分: dF=AdX ,再做向量化,使用矩阵乘法的技巧,注意在dX右侧添加单位阵: $\mathrm{vec}(dF)=\mathrm{vec}(AdX)=(I_n\otimes A)\mathrm{vec}(dX)$,对照导数与微分的联系得到 $\frac{\partial F}{\partial X}=I_n\otimes A^T$ 。

特例:如果X退化为向量,即 $m{f} = Am{x}$,则根据向量的导数与微分的关系 $dm{f} = rac{\partial m{f}}{\partial m{x}}^T dm{x}$,得到 $rac{\partial m{f}}{\partial m{x}} = A^T$ 。

例2: $f = \log |X|$, X是 $n \times n$ 矩阵, 求 $\nabla_X f$ 和 $\nabla_X^2 f$ 。

解:使用上篇中的技术可求得 $\nabla_X f = X^{-1T}$ 。为求 $\nabla_X^2 f$,先求微分: $d\nabla_X f = -(X^{-1}dXX^{-1})^T$,再做向量化,使用转置和矩阵乘法的技巧

 $\operatorname{vec}(d\nabla_X f) = -K_{nn}\operatorname{vec}(X^{-1}dXX^{-1}) = -K_{nn}(X^{-1T}\otimes X^{-1})\operatorname{vec}(dX)$,对照导数与微分的联系,得到 $\nabla_X^2 f = -K_{nn}(X^{-1T}\otimes X^{-1})$,注意它是对称矩阵。在 X 是对称矩阵时,可简化为 $\nabla_X^2 f = -X^{-1}\otimes X^{-1}$ 。

例3: $F = A \exp(XB)$,A是I×m矩阵,X是m×n矩阵,B是n×p矩阵,exp为逐元素函数,求 $\frac{\partial F}{\partial X}$

解:先求微分: $dF = A(\exp(XB) \odot (dXB))$,再做向量化,使用矩阵乘法的技巧: $\operatorname{vec}(dF) = (I_p \otimes A)\operatorname{vec}(\exp(XB) \odot (dXB))$,再用逐元素乘法的技巧: $\operatorname{vec}(dF) = (I_p \otimes A)\operatorname{diag}(\exp(XB))\operatorname{vec}(dXB)$,再用矩阵乘法的技巧: $\operatorname{vec}(dF) = (I_p \otimes A)\operatorname{diag}(\exp(XB))(B^T \otimes I_m)\operatorname{vec}(dX)$,对照导数与微分的联系得到 $\frac{\partial F}{\partial X} = (B \otimes I_m)\operatorname{diag}(\exp(XB))(I_p \otimes A^T)$ 。

解:使用上篇中的技术可求得 $\nabla_{\boldsymbol{w}}\boldsymbol{l} = \boldsymbol{x}(\sigma(\boldsymbol{x}^T\boldsymbol{w}) - \boldsymbol{y})$,其中 $\sigma(a) = \frac{\exp(a)}{1 + \exp(a)}$ 为sigmoid函 \bullet 为求 $\nabla^2_{\boldsymbol{w}}\boldsymbol{l}$,先求微分: $d\nabla_{\boldsymbol{w}}\boldsymbol{l} = \boldsymbol{x}\sigma'(\boldsymbol{x}^T\boldsymbol{w})\boldsymbol{x}^Td\boldsymbol{w}$,其中 $\sigma'(a) = \frac{\exp(a)}{(1 + \exp(a))^2}$ 为sigmoid函数的导数,对照导数与微分的联系,得到 $\nabla^2_{\boldsymbol{w}}\boldsymbol{l} = \boldsymbol{x}\sigma'(\boldsymbol{x}^T\boldsymbol{w})\boldsymbol{x}^T$ 。

推广: 样本 $(\boldsymbol{x}_1,y_1),\dots,(\boldsymbol{x}_N,y_N)$, $l=\sum_{i=1}^N\left(-y_i\boldsymbol{x}_i^T\boldsymbol{w}+\log(1+\exp(\boldsymbol{x}_i^T\boldsymbol{w}))\right)$, 求 $\nabla_{\boldsymbol{w}}l$ 和 $\nabla_{\boldsymbol{w}}^2l$ 。有两种方法,解1: 先对每个样本求导,然后相加;解2: 定义矩阵 $\boldsymbol{X}=\begin{bmatrix} \boldsymbol{x}_1^T \\ \vdots \\ \boldsymbol{x}_N^T \end{bmatrix}$, 向量 $\boldsymbol{y}=\begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}$,

将 l 写成矩阵形式 $l=-y^TXw+1^T\log(1+\exp(Xw))$,进而可以使用上篇中的技术求得 $\nabla_w l=X^T(\sigma(Xw)-y)$ 。为求 $\nabla_w^2 l$,先求微分,再用逐元素乘法的技巧: $d\nabla_w l=X^T(\sigma'(Xw)\odot(Xdw))=X^T\mathrm{diag}(\sigma'(Xw))Xdw$,对照导数与微分的联系,得到 $\nabla_w^2 l=X^T\mathrm{diag}(\sigma'(Xw))X$ 。

例5【多元logistic回归】: $l = -y^T \log \operatorname{softmax}(Wx) = -y^T Wx + \log(\mathbf{1}^T \exp(Wx))$,求 $\nabla_W l$ 和 $\nabla_W^2 l$ 。其中其中y是除一个元素为1外其它元素为0的 $m \times 1$ 列向量, $W \in m \times n$ 矩阵, $x \in n \times 1$ 列向量,l是标量。

解:上篇中已求得 $\nabla_W l = (\operatorname{softmax}(Wx) - y)x^T$ 。 为求 $\nabla_W^2 l$, 先求微分: 定义 a = Wx, $d\nabla_W l = \left(\frac{\exp(a)\odot da}{\mathbf{1}^T \exp(a)} - \frac{\exp(a)(\mathbf{1}^T (\exp(a)\odot da))}{(\mathbf{1}^T \exp(a))^2}\right)x^T = \left(\frac{\operatorname{diag}(\exp(a))}{\mathbf{1}^T \exp(a)} - \frac{\exp(a)\exp(a)^T}{(\mathbf{1}^T \exp(a))^2}\right)dax^T$ = $\left(\operatorname{diag}(\operatorname{softmax}(a)) - \operatorname{softmax}(a)\operatorname{softmax}(a)^T\right)dax^T$, 注意这里化简去掉逐元素乘法,第一项中 $\exp(a)\odot da = \operatorname{diag}(\exp(a))da$, 第二项中 $\mathbf{1}^T (\exp(a)\odot da) = \exp(a)^T da$ 。 定义矩阵 $D(a) = \operatorname{diag}(\operatorname{softmax}(a)) - \operatorname{softmax}(a)\operatorname{softmax}(a)^T$, $d\nabla_W l = D(a)dax^T = D(Wx)dWxx^T$,做向量化并使用矩阵乘法的技巧,得到 $\nabla_W^2 l = (xx^T)\otimes D(Wx)$ 。

最后做个总结。我们发展了从**整体**出发的矩阵求导的技术,**导数与微分的联系是计算的枢纽**,标量对矩阵的导数与微分的联系是 $df=\mathrm{tr}(
abla_X^T f dX)$,先对f求微分,再使用迹技巧可求得导数,特别地,标量对向量的导数与微分的联系是 $df=
abla_X^T f dx$;矩阵对矩阵的导数与微分的联系是 $df=
abla_X^T vec(dX)$,先对F求微分,再使用向量化的技巧可求得导数,特别地,向量对向量的导数与微分的联系是 $df=rac{\partial f}{\partial x}^T dx$ 。

参考资料:

1. 张贤达. 矩阵分析与应用. 清华大学 ▲ 赞同 1342 ▼ ● 201 条评论 ▼ 分享 ★ 收藏

2. Fackler, Paul L. "Notes on matrix calculus." North Carolina State University (2005).

- 3. Petersen, Kaare Brandt, and Michael Syskind Pedersen. "The matrix cookbook." *Technical University of Denmark* 7 (2008): 15.
- 4. HU, Pili. "Matrix Calculus: Derivation and Simple Application." (2012).
- 5. Magnus, Jan R., and Heinz Neudecker. "Matrix Differential Calculus with Applications in Statistics and Econometrics." Wiley, 2019.

编辑干 03-12

矩阵分析 机器学习 优化

推荐阅读

nice

▲ 赞

₩ ★★★★

例3的公式没有渲染出来

┢ 糖

Johngczhang

2017-05-11

2017-04-22

求问向量对矩阵的求导是否也适用这套方法?

┢ 特

👺 长躯鬼侠 (作者) 回复 Johnqczhang 适用啊 向量可以看成矩阵的特例

2017-05-11

┢ 赞

f8411cjh 回复 长躯鬼侠 (作者)

2018-12-17

如果x是向量,是否有VEC(x)=VEC(xT)?

★ 特

展开其他 1 条回复

M DreamYun

2017-08-08

看完上下篇,是否可以总结出如下:对于复合函数求导,如果是标量函数对矩阵求导,没有链 式法则可用;如果是矩阵对矩阵求导,有链式法则可以套用。

▲ 幣

长躯鬼侠 (作者) 回复 DreamYun

2017-08-08

你可以这么理解。不过链式法则就是源自多次求微分,所以只是形式不同,没有本质的 区别。

4 2

M DreamYun

2017-08-08

或者可以这么表达:如果不论标量还是矩阵(包括向量)对矩阵的求导,如果是按照篇二的做 法,首先都列向量化(vec),然后求导。那么对于这种形式的求导,是可以适用复合函数的 链式求导法则。其它形式的求导方法,可能不适用复合函数求导链式法则。

1

阿姓 陌烛

2017-08-26

你好,请问下,为何例二中,f对X的二阶导没有进行转置?在原文(例二中): "对照导数与 微分的关系得到......"后面的那个式子

★ 赞

▲ 赞同 1342 ▼ ● 201 条评论

▼ 分享 ★ 收藏

🗱 长躯鬼侠 (作者) 回复 陌烛 是对称矩阵, 转置等于它自己。 2017-08-2

4 2

落叶的一生 回复 长躯鬼侠(作者)

02-19

是算出来转置等于他自己嘛

▲ 赞

展开其他 1 条回复

1 陌烛

2017-08-26

还有,请问下,我怎么确定我的转换矩阵的值是多少啊?

▲ 赞

2017-08-27

你好,请问下,原文中有句话: "若矩阵函数F是矩阵X经加减乘法、行列式、逆、逐元素函 数等运算构成,则使用相应的运算法则对F求微分,再做向量化并使用技巧将其它项交换至 vec(dX)左侧,即能得到导数",那么如果F是由X卷积操作得到的,那么,对于这个卷积的运

┢ 赞

长躯鬼侠 (作者) 回复 陌烛

2017-08-28

对于卷积,你可以自己推导一下,运算法则也可以用卷积来表示,对full、valid模式在细 节上有些差异。

1

節烛

2017-08-27

你好,我还想知道下,克罗内克积和矩阵乘积,哪个的优先级大啊? ②

┢ 糖

长躯鬼侠 (作者) 回复 陌烛

2017-08-28

我没有指定Kronecker积和矩阵乘积哪个优先级高,所以都加括号了啊。

★ 赞

🌉 陌烛 回复 长躯鬼侠 (作者)

2017-09-07

蟹蟹, 我果然不适合推导数学公式(6)

┢ 赞

杳看全部 9 条回复

▲ 赞同 1342 ▼ ● 201 条评论 ▼ 分享 ★ 收藏

我想问一下,假设我有个等式 S = WX, S是m x 1向量, X是 n x 1向量, W是m x n矩阵, 🛖 使用上述的求导术去求S向量对X向量的导数。 我得到的是一个n x n的单位阵与W转置的 kronecker积啊,这个积的尺寸应该是nn x mn, 明显不对啊。

4 1

长躯鬼侠 (作者) 回复 孙培钦

2017-09-29

ds = Wdxl, x的右面是1×1的单位阵, 不是n×n的。

1

幕日落流年

2017-12-10

收益匪浅, 赞一个!

┢ 赞

※ 引线小白

2017-12-11

能区分一下行列求导就更完美了,同时使用线性变换解释一下导数与微分的关系,可能更加恰 当,和利于直觉。

1

neilfvhv

2017-12-27

问个问题, \frac {\partial F} {\partial X} = \frac {\partial vec F} {\partial vec X} 这一步是怎 么得到的?

★ 特

长躯鬼侠 (作者) 回复 neilfvhv

2017-12-27

这是定义

★ 赞