Appendices

Appendix-I

Butterworth polynomials in standard and factored forms

			St	andard fo	rm					
		$B_N(s)$	$=a_ns^n+$	$a_{n-1}s^{n-1}$	$+\cdots+a$	$a_1 s + a_0$				
a_7	a_6	a_5	a_4	a_3	a_2	a_1	a_0	n		
			-,			1	1	1		
					1	$\sqrt{2}$	1	2		
				1	2	2	1	3		
			1	2.613	3.414	2.613	1	4		
		1	3.236	5.236	5.236	3.236	1	5		
	1	3.864	7.464	9.141	7.464	3.864	1	6		
1	4.494	10.103	14.606	14.606	10.103	4.494	1	7		
				Factored 1	form					
				$B_N(s)$				n		
							s+1	1		
						$s^2 + \sqrt{2}$	2s+1	2		
					$(s^2 +$	-s + 1)(s + 1)	(x + 1)	3		
			$(s^2 + 0)$	76536s +	$-1)(s^2 +$	1.84776	(1 + 1)	4		
	$(s^2 + 0.76536s + 1)(s^2 + 1.84776s + 1)$ $(s+1)(s^2 + 0.6180s + 1)(s^2 + 1.6180s + 1)$									
$(s^2 + 0.5176s + 1)(s^2 + \sqrt{2}s + 1)(s^2 + 1.9318s + 1)$										
(s +	$(s^2 + 1)(s^2 + 1)$	0.4450s -	$+1)(s^2 +$	1.2456s	$+1)(s^2 +$	- 1.8022s	+1)	7		
			Butterwo	orth filter		1				

Appendix-II

Polynomials $V_N(s)$ used in Chebyshev I filter design for $\frac{1}{2}$, 1, 2, and 3 dB ripples

Chebyshev filter
$$H_N(s) = \frac{K_N}{V_N(s)}$$
, where $K_N = \begin{cases} \frac{b_0}{\sqrt{1+\epsilon^2}} & \text{for } N \text{ even} \\ b_0 & \text{for } N \text{ odd} \end{cases}$

$$V_N(s) = s^N + b_{N-1}s^{N-1} + \dots + b_1s + b_0$$

N	b_0	<i>b</i> ₁	<i>b</i> ₂	<i>b</i> ₃	b4	b ₅ .	b ₆	b7	b ₈	b 9
		1	a. ½	dB Ripple (ϵ =	: 0.3493114, <i>\epsilon</i>	$^2 = 0.122018$	4)		- 0	
1	2.8627752									
2	1.5162026	1.4256245								
3	0.7156938	1.5348954	1.2529130	1 1072056						
4	0.3790506	1.0254553	1.7168662	1.1973856	1 1724000					
5	0.1789234	0.7525181	1.3095747	1.9373675	1.1724909	1.1591761				
6	0.0947626	0.4323669	1.1718613	1.5897635	2.1718446 1.8694079	2.4126510	1.1512176			
7	0.0447309	0.2820722	0.7556511	1.6479029			2.6567498	1.1460801		
8	0.0236907	0.1525444	0.5735604	1.1485894	2.1840154	2.1492173 2.7814990	2.4293297	2.9027337	1.1425705	
9	0.0111827	0.0941198	0.3408193	0.9836199	1.6113880		3.4409268	2.7097415	3.1498757	1.1400664
10	0.0059227	0.0492855	0.2372688	0.6269689	1.5274307	2.1442372	3.4409208	2.7097413	3.1496737	1.1400004
	2 00			8 +						
			b. 1	dB Ripple (ϵ	= 0.5088471,	$\epsilon^2 = 0.2589$	254)			
1	1.9652267									
2	1.1025103	1.0977343								
3	0.4913067	1.2384092	0.9883412							
4	0.2756276	0.7426194	1.4539248	0.9528114						
5	0.1228267	0.5805342	0.9743961	1.6888160	0.9368201					
3392	0.0689069	0.3070808	0.9393461	1.2021409	1.9308256	0.9282510				
6	0.0307066	0.3070303	0.5486192	1.3575440	1.4287930	2.1760778	0.9231228			
7		0.2130712	0.3488152	0.8468243	1.8369024	1.6551557	2.4230264	0.9198113		
8	0.0172267	0.1073447	0.2441864	0.7863109		2.3781188	1.8814798			
9	0.0076767	0.0700048	0.2441004	0.7005107	1.2444914	1.6129856	2.9815094	2.1078524	2.9194657	0.915932

N	b_0	b_1	<i>b</i> ₂	<i>b</i> ₃	b4	b ₅	b ₆	b7	b8	bg
		9-7-14	c. 2	dB Ripple (ε	= 0.7647831,	$\epsilon^2 = 0.5848$	932)	0 = 30 tel	stera = voi	930023
1	1.3075603									
2	0.6367681	0.8038164								
3	0.3268901	1.0221903	0.7378216							
4	0.2057651	0.5167981	1.2564819	0.7162150						
5	0.0817225	0.4593491	0.6934770	1.4995433	0.7064606					
6	0.0514413	0.2102706	0.7714618	0.8670149	1.7458587	0.7012257				
7	0.0204228	0.1660920	0.3825056	1.1444390	1.0392203	1.9935272	0.6978929			
8	0.0128603	0.0729373	0.3587043	0.5982214	1.5795807	1.2117121	2.2422529	0.6960646		
9	0.0051076	0.0543756	0.1684473	0.6444677	0.8568648	2.0767479	1.3837464	2.4912897		
0	0.0031070	0.0233347	0.1440057	0.3177560	1.0389104	1.1585287	2.6362507	1.5557424	2.740603	2 0.693690
			d. 3	dB Ripple (ϵ	= 0.9976283,	$\epsilon^2 = 0.99520$	623)			
1	1.0023773									
2	0.7079478	0.6448996	0.5050404							
3	0.2505943	0.9283480	0.5972404							
3										
4	0.1769869	0.4047679	1.1691176	0.5815799	0.5744206					
	0.0626391	0.4079421	0.5488626	1.4149847	0.5744296	0.5706979				
4		0.4079421 0.1634299	0.5488626 0.6990977	1.4149847 0.6906098	1.6628481	0.5706979	0.5684201			
4 5	0.0626391 0.0442467 0.0156621	0.4079421 0.1634299 0.1461530	0.5488626 0.6990977 0.3000167	1.4149847 0.6906098 1.0518448	1.6628481 0.8314411	1.9115507	0.5684201 2.1607148	0.5669476		
4 5 6	0.0626391 0.0442467 0.0156621 0.0110617	0.4079421 0.1634299 0.1461530 0.0564813	0.5488626 0.6990977 0.3000167 0.3207646	1.4149847 0.6906098 1.0518448 0.4718990	1.6628481 0.8314411 1.4666990	1.9115507 0.9719473	2.1607148			
4 5 6 7	0.0626391 0.0442467 0.0156621	0.4079421 0.1634299 0.1461530	0.5488626 0.6990977 0.3000167	1.4149847 0.6906098 1.0518448	1.6628481 0.8314411	1.9115507		0.5669476 2.4101346 1.2526467		

Zeros of polynomial $V_N(s)$ derived from the Chebyshev I approximation for $\frac{1}{2}$, 1, 2, and 3 dB ripples

Chebyshev filter $H_N(s) = \frac{K_N}{V_N(s)}$, where $K_N = \begin{cases} b_0 & \text{for } N \text{ odd} \\ \frac{b_0}{\sqrt{1+s^2}} & \text{for } N \text{ even} \end{cases}$

N = 1	N=2	N=3	N = 4	N=5	N=6	N = 7	N = 8	N = 9	N = 10
				a. $\frac{1}{2}$ dB Ripple (ϵ	$\epsilon = 0.3493114, \ \epsilon$	2 = 0.1220184	f and the gr		
-2.8627752	$\begin{array}{ccc} -0.7128122 \\ \pm j1.0040425 \end{array}$	-0.6264565	-0.1753531 $\pm j1.0162529$	-0.3623196	-0.0776501 $\pm j1.0084608$	-0.2561700	-0.0436201 $\pm j 1.0050021$	-0.1984053	-0.0278994 $\pm j 1.0032732$
		-0.3132282 $\pm j1.0219275$	-0.4233398 $\pm j0.4209457$	-0.1119629 $\pm j1.0115574$	-0.2121440 $\pm j0.7382446$	-0.0570032 $\pm j1.0064085$	-0.1242195 $\pm j0.8519996$	-0.0344527 $\pm j 1.0040040$	-0.0809672 $\pm j0.9050658$
				-0.2931227 $\pm j0.6251768$	-0.2897940 $\pm j0.2702162$	-0.1597194 $\pm j0.8070770$	-0.1859076 $\pm j0.5692879$	-0.0992026 $\pm j0.8829063$	-0.1261094 $\pm j0.7182643$
						-0.2308012 $\pm j0.4478939$	-0.2192929 $\pm j0.1999073$	-0.1519873 $\pm j0.6553170$	-0.1589072 $\pm j0.4611541$
	1 1 0007339							-0.1864400 $\pm j0.3486869$	-0.1761499 $\pm j0.1589029$
				b. 1 dB Ripple ($\epsilon = 0.5088471, \ \epsilon$	$e^2 = 0.2589254$)		106032 - 0.6436	a01 (C)
-1.9652267	-0.5488672 $\pm j0.8951286$	-0.4941706	-0.1395360 $\pm j0.98333792$	-0.2894933	-0.0621810 $\pm j0.9934115$	-0.2054141	-0.0350082 $\pm j0.9964513$	-0.1593305	-0.0224144 $\pm j0.997775$
		-0.2470853 $\pm j0.9659987$	-0.3368697 $\pm j0.4073290$	-0.0894584 $\pm j0.9901071$	-0.1698817 $\pm j0.7272275$	-0.0457089 $\pm j0.9952839$	-0.0996950 $\pm j0.8447506$	-0.0276674 $\pm j0.9972297$	-0.1013166 $\pm j0.714323$
				-0.2342050 $\pm j0.6119198$	-0.2320627 $\pm j0.2661837$	-0.1280736 $\pm j0.7981557$	-0.1492041 $\pm j0.5644443$	-0.0796652 $\pm j0.8769490$	-0.0650493 $\pm j0.9001063$
						-0.1850717 $\pm j0.4429430$	-0.1759983 $\pm j0.1982065$	-0.1220542 $\pm j0.6508954$	-0.1276664 $\pm j0.4586271$
								-0.1497217	-0.1415193

N = 1	N=2	N=3	N=4	N=5	N=6	N=7	N=8	N=9	N = 10
				c. 2 dB Ripple	$(\epsilon = 0.7647831,$	$\epsilon^2 = 0.5848932$			
-1.3075603	-0.4019082 $\pm j \ 0.6893750$	-0.3689108	-0.1048872 $\pm j \ 0.9579530$	-0.2183083	-0.0469732 $\pm j0.9817052$		-0.0264924 $\pm j0.9897870$		08 -0.016975 $\pm j0.993486$
		-0.1844554 $\pm i0.9230771$	-0.2532202 $\pm j0.3967971$	-0.0674610 $\pm j0.9734557$	-0.1283332 $\pm j0.7186581$	-0.0345566 $\pm j0.9866139$			
		1565		-0.1766151 $\pm j0.6016287$		-0.0968253 $\pm j0.7912029$			
					-2	-0.1399167 $\pm i0.4390845$	이 아이들이 그 아이를 하는데 하는데 그 모든데 그 모든	-0.092407 $\pm j0.647447$	
								-0.1133549 $\pm j0.344499$	
		8 1 8 E		d. 3 dB Ripple (ϵ	$= 0.9976283, \epsilon^2$	= 0.9952623)			ğ
1.0023773	-0.3224498	-0.2986202	-0.0851704 $\pm j0.9464844$	-0.1775085		-0.1264854	-0.0215782 $\pm j0.9867664$	-0.0982716	-0.0138320 $\pm j0.9915418$
	±j0.7771576	-0.1493101	-0.2056195 $\pm j0.3920467$	-0.0548531 $\pm j0.9659238$	-0.1044450 $\pm j0.7147788$	0.0201.00			-0.0401419 $\pm j0.8944827$
		$\pm j0.9038144$	±J0.3920407	-0.1436074 $\pm j0.5969738$	-0.1426745 $\pm j0.2616272$	-0.0788623 $\pm j0.7880608$		±j0.8701971	-0.0625225 $\pm j0.7098655$
				110.5505720		-0.1139594 $\pm j0.4373407$	±j0.1962800	±j0.6458839	-0.0787829 $\pm j0.4557617$
						9 8		-0.0923451 $\pm j0.3436677$	-0.0873316 $\pm j0.1570448$
		20 20 20 20 20 20 20 20 20 20 20 20 20 2	2 3 2 2	- E		· · · · · · · · · · · · · · · · · · ·			