Fault Localization & Relevance Analysis

Matthias Heizmann, Christian Schilling, Numair Mansur

June 4, 2017

Definition 1 (Execution). Let π be an error trace of length n. An execution of π is a sequence of states $s_0, s_1...s_n$ such that $s_i, s_{i+1} \models T$, where T is the transition formula of $\pi[i]$.

Let ϵ represent the set of all possible executions of the error trace.

Definition 2 (Blocking Execution). An execution of a trace π of size n is called a blocking execution if there exists a sequence of states $s_0, s_1...s_j$ where $i < j \le n$ such that $s_i, s_{i+1} \models T[i]$, where T[i] is the transition formula of $\pi[i]$ and there exists an assume statement in the trace π at position j such that $s_i \not\Rightarrow guard(\pi[j])$.

Definition 3 (Relevancy of an assignment statement). Let β represent the set of all blocking executions of a trace π . Let there be an assignment statement of the form x := t at position i. Let π' represent the trace that we get after replacing $\pi[i]$ with a havoc statement of the form havoc(x) and let β' represent the set of all blocking executions for π' .

We say that the assignment statement $\pi[i]$ is relevant if the trace after the replacement has strictly more blocked executions than the trace before the replacement, i.e if $\beta \subseteq \beta'$.

Lemma 1 (bla bla). bla bla bla

Theorem 1 (Relevancy). Let π be an error trace of length n and $\pi[i]$ be an assignment statement at position i having the form x:=t, where x is a variable and t is an expression. Let P and Q be two predicates where $P=\neg WP(False,\pi[i,n])$ and $Q=\neg WP(False,\pi[i+1,n])$. The statement $\pi[i]$ is relevant iff:

$$P \not\Rightarrow WP(Q, havoc(x))$$

Proof. bla bla bla