ADA HW4

Liangquan Zhou lz2377

Thursday, October 02, 2014

Problem 2

From example 2 we know that $X_1, X_2, ... X_n \sim N(\mu_1, \sigma^2), Y_1, Y_2, ... Y_n \sim N(\mu_2, \sigma^2), \sigma = 10, \Delta = 4, \alpha = 0.05$ and power = 0.8

```
And the test is: H_0: |\mu_1 - \mu_2| = \Delta = 0 vs. H_1: \Delta > 0
```

a). Want to plot power as a function of sample size. Use normal approach to calculation the relation between power and sample size.

```
power_n = function(sample_size, alpha, delta, sigma){
  z_alpha_2 = qnorm(1 - alpha/2)
  z_beta = (sqrt(sample_size) * delta) / (sqrt(2) * sigma) - z_alpha_2
  power = pnorm(z_beta)
  return(power)
}

# alpha = 0.05, sigma = 10, delta = 4
  sample_size = seq(5, 100, by = 5)

power = power_n(sample_size, 0.05, 4, 10)

plot(sample_size, power, type="b", xlab="sample size", ylab="power",
  main = "Sample Size v.s. Power")
```

Sample Size v.s. Power

b). For effect size $\Delta = \mu_1 - \mu_2$, also use normal approach, and we can get the plot as follows:

```
power_e = function(sample_size, alpha, beta, sigma){
  ## calculate delta
  z_{alpha_2} = q_{norm(1 - alpha/2)}
  z_{beta} = q_{norm}(1 - beta)
  delta = sqrt(2) * (z_alpha_2 + z_beta) * sigma / sqrt(sample_size)
  return(delta)
}
# power = 0.8, beta = 1 - power = 0.2, alpha = 0.05, sigma = 10
sample_size = seq(5, 100, by = 5)
delta = power_e(sample_size, 0.05, 0.2, 10)
plot(sample_size, delta, type = "b", xlab = "sample size", ylab = "effective size",
  main = "Sample Size v.s. Effective Size")
```

Sample Size v.s. Effective Size

Problem 3

In this problem, $X \sim bin(n, p_1)$, $Y \sim bin(n, p_2)$, and X and Y are independent.

The test is $H_0: p_1 = p_2$ vs. $H_1: p_1 \neq p_2$. We want to do the same thing for proportion test.

- a). Want to plot the power as a function of sample size.
 - 1. Use normal approximation.

From the slides we know that

$$n = \frac{[Z_{\alpha/2}\sqrt{2\bar{p}\bar{q}} + Z_{\beta}\sqrt{p_1q_1 + p_2q_2}]^2}{(p_2 - p_1)^2}$$

and we can solve that

$$Z_{eta} = rac{\sqrt{n(p_2 - p_1)^2} - Z_{lpha/2}\sqrt{2ar{p}ar{q}}}{\sqrt{p_1q_1 + p_2q_2}}$$

```
power_normal1 = function(sample_size, alpha, p1, p2){
   q1 = 1- p1
   q2 = 1- p2
   p_mean = (p1 + p2) / 2
   q_mean = 1 - p_mean
```

```
z_alpha_2 = qnorm(1 - alpha/2)

z_beta = (sqrt(sample_size * (p2 - p1)^2) - z_alpha_2 * sqrt(2 * p_mean * q_mean)) / sqrt(p1 * q1 + p2 * q2)

power = pnorm(z_beta)

return(power)
}

# alpha = 0.05, p1 = 0.8, p2 = 0.9
sample_size = seq(5, 100, by = 5)

power = power_normal1(sample_size, 0.05, 0.8, 0.9)

plot(sample_size, power, type="b", xlab="sample size", ylab="power", main = "Sample Size v.s. Power use Normal Approximation")
```

Sample Size v.s. Power use Normal Approximation

2. Use arcsin transformation

From the slides we know that

$$n = \frac{(Z_{\alpha/2} + Z_{\beta})^2}{\Delta^2}$$

then

$$Z_{\beta} = \sqrt{n}\Delta - Z_{\alpha/2}$$

```
f = function(x) 2 * asin(sqrt(x))

power_arcsin1 = function(sample_size, alpha, p1, p2){

  delta = f(p1) - f(p2)

  z_alpha_2 = qnorm(1 - alpha/2)

  z_beta = sqrt(sample_size) * delta - z_alpha_2

  power = 1 - pnorm(z_beta)

  return(power)
}

# alpha = 0.05, p1 = 0.8, p2 = 0.9

  sample_size = seq(5, 100, by = 5)

power = power_arcsin1(sample_size, 0.05, 0.8, 0.9)

plot(sample_size, power, type = "b", xlab = "sample size", ylab = "power",
  main = "Sample Size v.s. Power use arcsin Transformation")
```

Sample Size v.s. Power use arcsin Transformation

- b). Want to plot sample size as a function of effective size.
 - $1. \ \ Use normal approximation.$

```
\#\ fix\ p1 and let delta change, calculate sample size
power_normal2 = function(p1, p2, alpha, beta){
 q1 = 1 - p1
 q2 = 1 - p2
 delta = p1 - p2
 p_mean = (p1 + p2) / 2
 q_mean = 1 - p_mean
 z_{alpha_2} = q_{norm}(1 - alpha/2)
 z_beta = qnorm(1- beta)
 sample_size = (z_alpha_2 * sqrt(2*p_mean*q_mean)+z_beta*sqrt(p1*q1+p2*q2))^2/(p2-p1)^2
 return(sample_size)
}
# set p2 > p1
p2 = seq(0.85, 1, by = 0.01)
p1 = 0.8
delta = p2 - p1
sample_size = power_normal2(p1, p2, 0.05, 1 - 0.8)
plot(delta, sample_size, type="b", main = "Delta v.s. Sample Size use Normal Approximation")
```

Delta v.s. Sample Size use Normal Approximation

2. Use arcsin transformation

```
f = function(x) 2 * asin(sqrt(x))

delta_arcsin = function(sample_size, alpha, beta){
    delta = f(p1) - f(p2)

    z_alpha_2 = qnorm(1 - alpha/2)

    z_beta = qnorm(1- beta)

    delta = (z_alpha_2 + z_beta)/sqrt(sample_size)

    return(delta)
}

# alpha = 0.05, beta = 1- power = 0.2
sample_size = seq(5, 100, by = 5)

delta = delta_arcsin(sample_size, 0.05, 0.2)
plot(delta,sample_size, type = "b", main = "Delta v.s. Sample Size use arcsin Transformation")
```

Delta v.s. Sample Size use arcsin Transformation

