

Schriftliche Maturitätsprüfung 2009

Kantonsschule Reussbühl

Schwerpunktfach Physik und Anwendungen der Mathematik

Prüfende Lehrpersonen	Yves Gärtner (<u>yves.gaertner@edulu.ch</u>) Luigi Brovelli (<u>luigi.brovelli@edulu.ch</u>)
Klassen	6c / 6K
Prüfungsdatum	2. Juni 2009
Prüfungsdauer	3 Stunden
Erlaubte Hilfsmittel	Taschenrechner V-200, Formelsammlung "Fundamentum" mit Beiblättern
Anweisungen zur Lösung der Prüfung	Verwenden Sie für jede Aufgabe einen neuen Bogen.
	Alle verwendeten Symbole sind zu definieren (sofern nicht im Aufgabentext definiert).
	Formeln, welche nicht der Formelsammlung entnommen werden, sind zu beweisen oder zu begründen.
	Bei den Aufgaben 1, 2 und 3 sind alle algebraischen Um- formungen und alle Berechnungen manuell auszuführen. Der V-200 darf nur für numerische Berechnungen oder zur Kontrolle benützt werden.
	Wenn Sie für eine Teilaufgabe ein Resultat einer vorherge- henden Teilaufgabe verwenden müssen, welche Sie nicht gelöst haben, können Sie mit einem selbstgewählten Wert weiter rechnen. Dieser ist dann aber deutlich zu kenn- zeichnen.
Anzahl erreichbarer Punkte	Aufgabe 1: 10 Aufgabe 2: 10 Aufgabe 3: 10 Aufgabe 4: 7 Aufgabe 5: 8 Aufgabe 6: 7 Aufgabe 7: 8 Total: 60 Notenmassstab: 48 Punkte = Note 6
Anzahl Seiten (inkl. Titelblatt)	4

Wir wünschen Ihnen viel Erfolg!

Aufgabe 1: Komplexe Funktionen (10 Punkte)

Gegeben sind die beiden komplexen Funktionen $f: C \to C: z \mapsto iz + 3 + 2i$ und $h: C \setminus \{0\} \to C: z \mapsto \frac{-2}{z} + 2$.

- a) Berechnen Sie die Nullstellen und die Fixpunkte der beiden Funktionen.
- b) Berechnen Sie die 2 Stellen z_1 und z_2 , bei denen die beiden Funktionen je den gleichen Wert ergeben ("Schnittstellen").
- c) Berechnen Sie das Bild der Geraden g, die durch die beiden Fixpunkte q_1 und q_2 der Funktion h geht (s. Teil a)). Was stellt diese Bildmenge dar?
 - Falls Sie Teil a) nicht gelöst haben, verwenden Sie bei Teilaufgabe c) statt den Fixpunkten von h die Punkte $q_1 = 1 \frac{\pi}{2}i$ und $q_2 = \frac{1}{3}(3 2.1i)$.
- d) Berechnen Sie das Urbild der x-Achse unter der Funktion f. Was stellt dieses Urbild dar?

Aufgabe 2: Diffentialgleichung (10 Punkte)

Die DGL 1. Ordnung $y' = (1 - y) \sin(x)$ ist gegeben.

- a) Erstellen Sie in einem Koordinatensystem ein Richtungsfeld der DGL, indem Sie bei allen Punkten G(x|y), deren x-Koordinate ein ganzzahliges Vielfache von $\frac{\pi}{4}$ ist (also $x = ..., -\frac{1}{4}\pi, 0, \frac{1}{4}\pi, \frac{1}{2}\pi, \frac{3}{4}\pi, \pi, ...)$ und deren y-Koordinate eine ganze Zahl ist, ein Stück der Tangente mit Steigung y'(x, y) zeichnen. (Grösse des darzustellenden Bereiches: $-1 \le x \le 3.5, \ 0 \le y \le 4$; 1 Einheit $\stackrel{\circ}{=}$ 2 Häuschen für beide Koordinatenachsen)
- b) Zeichnen Sie in ihrem Richtungsfeld eine möglichst gute Approximation für die Lösungskurve der DGL durch den Punkt $P(\frac{\pi}{2}/2)$ ein, indem Sie nur die eingezeichneten Informationen verwenden.
- c) Wie lautet die Gleichung der Isoklinenschar der DGL?
- d) Berechnen Sie die Lösungsmenge y_H der zur gegeben DGL homogenen DGL mit der Methode der Separation der Variablen.
- e) Berechnen Sie eine partikuläre Lösung y_p der inhomogenen DGL durch die Methode der Variation der Konstanten und geben Sie dann die gesamte Lösungsmenge der DGL an.
- f) Berechnen Sie diejenige Lösung der DGL, deren Graph durch den Punkt $P(\frac{\pi}{2}/2)$ geht.

Aufgabe 3: Unabhängige Aufgaben (10 Punkte)

a) Bestimmen Sie die Fixelemente (Fixpunkte, Fixpunktgeraden, Fixgeraden, falls vor-

handen) der affinen Abbildung
$$\alpha: IR^2 \to IR^2: \vec{x} \mapsto \begin{pmatrix} 0 & -\frac{3}{2} \\ -\frac{1}{3} & \frac{1}{2} \end{pmatrix} \vec{x} + \begin{pmatrix} 3 \\ 1 \end{pmatrix}.$$

b) Entwickeln Sie die Funktion $f: -1; \infty[\to IR : x \mapsto \frac{1}{(x+1)^2}$ in ihre Taylor-Reihe p(x) bei

der Entwicklungsstelle $x_0 = 0$ und ermitteln Sie den maximalen Konvergenzbereich ID der Taylor-Reihe. Untersuchen Sie dann, ob die Funktion f im positiven Teil von ID durch ihre Potenzreihe p(x) dargestellt werden kann, indem Sie $\lim_{n\to\infty} \left|R_{n+1}(x)\right|$ für $x \in ID \cap]0;\infty[$ betrachten. Verwenden Sie dabei, dass gilt:

$$\lim_{x\to\infty} x^m \cdot a^{-x} = 0 \text{ für alle } m \in IN \text{ und alle } a > 1.$$

Hinweis: $R_{n+1}(x) = f(x) - p_n(x)$ ist das Restglied der Funktion f bez. den Taylor-

Polynomen
$$p_n(x)$$
; Cauchy-Form: $R_{n+1}(x_0 + h) = \frac{h^{n+1}}{n!}(1-\eta)^n f^{(n+1)}(x_0 + \eta h)$ für ein $\eta \in]0;1[$ und $x_0 + h \in ID$

Aufgabe 4: Magnetismus (7 Punkte)

Ein einfach ionisiertes, positiv geladenes Quecksilberatom (Masse: $m_{Hg} = 3.33 \cdot 10^{-25} \, \mathrm{kg}$) fliegt mit einer Geschwindigkeit von 25'000m/s in ein scharf abgegrenztes, homogenes Magnetfeld und beschreibt die rechts eingezeichnete halbkreisförmige Bahn.

- a) Zeichnen Sie an zwei verschiedenen Orten der Bahn qualitativ die Lorentzkraft auf das Ion ein.
- b) Zeichnen Sie die Richtung des Magnetfeldes ein.
- c) Berechnen Sie die magnetische Flussdichte. Beweisen oder begründen Sie die Formel, die Sie dazu verwenden.
- d) Durch ein zusätzliches elektrisches Feld soll erreicht werden, dass das Ion ohne Ablenkung durch das Magnetfeld fliegt. Bestimmen Sie die Feldstärke des elektrischen Feldes und zeichnen Sie seine Richtung ein.

Aufgabe 5: Wärmelehre (8 Punkte)

Ein mit 112g Stickstoff (N₂) gefüllter Behälter von 0.1m³ Volumen steht unter einem Druck von 1bar. Er ist mit einem beweglichen Kolben verschlossen.

- a) Welche Temperatur herrscht im Behälter?
- b) Der Stickstoff wird nun unter konstantem Druck um 50K erwärmt. Wie viel Wärme muss zugeführt werden?
- c) Welche Arbeit verrichtet das Gas dabei?
- d) Nimmt die innere Energie des Gases dabei zu oder ab? Um wie viel?

Aufgabe 6: Relativitätstheorie (7 Punkte)

Ein utopisches Raumschiff fliegt mit 50% der Lichtgeschwindigkeit von Planet X zu Planet Y. Im Bezugssystem S ruhen die beiden Planeten, im Bezugssystem S' ruht das Raumschiff. Die Distanz der beiden Planeten beträgt (im System S) 6 Lichtjahre.

Wir definieren folgende Ereignisse:

Ereignis A: Start des Raumschiffes auf Planet X ($x_A = x_A' = 0$ und $t_A = t_A' = 0$)

Ereignis B: Gleichzeitig mit dem Start (im System S) wird auf Planet Y ein Lichtsignal in

Richtung X gestartet.

Ereignis C: Das Lichtsignal trifft auf das Raumschiff.

Berechnen Sie die Raum- und Zeitkoordinaten der Ereignisse B und C in beiden Bezugssystemen.

Aufgabe 7: Kernphysik (8 Punkte)

Eine Person der Masse 65kg nimmt mit insgesamt 8000Bq Kobalt-60 (Co-60) verseuchte Lebensmittel auf.

- a) Geben Sie von Kobalt-60 Zerfallsart, Halbwertszeit, Zerfallskonstante und die bei einem Zerfall frei werdende Energie an.
- b) Schreiben Sie die vollständige Zerfallsgleichung von Kobalt-60 auf.
- c) Wie gross ist die Aktivität des aufgenommenen Kobalts ein Jahr später (unter der Annahme, dass kein Kobalt ausgeschieden wurde)?
- d) Wie gross sind die von der Person innerhalb dieses Jahres aufgenommene Energiedosis und Äquivalentdosis unter der Annahme, dass die gesamte Zerfallsenergie vom Körper aufgenommen und dass kein Kobalt ausgeschieden wurde?