- 1. Who are Data and Software Carpentry and how do we approach teaching?
- 2. What should you expect from this workshop?

- Code of Conduct (SLIDE)
- Introduce yourself and your co-instructor
- Intro exercise quick verbal intro, work in three words, something you're proud of
- Exercise & intro to etherpad name, best class you ever took, why it was so good
- encourage note-taking
 - Carpentry History & Culture more about the projects, community, and culture
 - Exercise: assessing motivation and prior knowledge

- Overview of SWC & DC
 - SWC: helps researchers develop foundational comp skills
 - DC: helps researchers work effectively with their data

- Overview of curriculum:
 - based on current state of research into effective teaching and learning techniques
 - How Learning Works theory around how people learn new things
 - Building Teaching Skill some practices to harness the knowledge learned above
 - Creating a Positive Learning Environment environment influences learning
 Carpentry History & Culture more about the projects, community, and culture
- Exercise: assessing motivation and prior knowledge

How Learning Works: The Importance of Practice

- 1. How do people learn?
- 2. Who is a typical Carpentry learner?
- 3. How can we help novices become competent practitioners?

The Importance of Practice

- Carpentries take an applied approach to teaching
 - avoid theory in favour of practise
- practise *while* learning
- regular feedback for learners and instructors
 - helps us to adjust pacing and content

The Importance of Practice

- approach is based on research of Patricia Brenner (SLIDE)
 - applied Dreyfuss model of skill acquisition to study of nurses
- Novice -> Competent Practitioner -> Expert

Mental Models

- progress between these stages facilitated by development of mental model
 - collection of concepts and facts and the relationships between them
 - example... resident of the USA, cricket captain, chef..?

Mental Models

- can distinguish between stages above by complexity of mental model
 - novice: no mental model, reason by analogy and guesswork.
 don't know enough to even ask the right questions
 - competent practitioner: model good enough for everyday, most cases
 - more about experts later
- Exercise: your mental models

Mental Models

- people at each of these stages need to be taught differently
 - novices need a framework to fit facts into before they're presented with them
 - avoid reinforcing an incorrect mental model they will fit facts into whatever framework they do have
- our primary goal is not to teach the syntax of a particular programming language
 - help them construct a working mental model so that they have something to attach facts to
 - In other words, our goal is to teach people how to think about programming and data management.

Go Slowly

- go slowly (SLIDE)
 - emphasis is on correctly categorise concepts/ideas and form connections between them
 - e.g. Shell lesson: only introduces 22 commands in ~2.5 hours
 - value is in teaching paths, history, wildcards, pipes, arguments, redirection, etc
 - allows them to reduce manual entry (tab completion) and understand that you can combine simple things into complicated processes

Misconceptions

- mental models are hardly ever built from scratch
- prior knowledge can be accurate or inaccurate (misconceptions), relevant or irrelevant
- misconceptions broadly split into three types
 - factual errors
 - broken models (e.g. motion and acceleration must be in same direction) fix by reasoning through examples
 - fundamental beliefs often deeply connected to social identity and hard to change
- our workshops focus on correcting the middle category

Formative Assessment

- how to identify misconceptions?
- two types of assessment: formative and summative (SLIDE)
 - formative: takes place during learning
 - summative: judge competence after teaching
- we use many forms of formative assessment in our workshops
 - most effective when used frequently
 - encourages reflective practice instead of simple repetition

MCQs

- MCQs are one type of formative assessment (SLIDE) more types introduced later
- put e.g. in etherpad and on screen, talk through it, exercise
- every wrong answer should be a plausible distractor with diagnostic power

Formative Assessment

- formative assessments are most powerful when instructor modifies instruction in reaction to result
- exercises
- how long do you think the average attention span is?
 - (SLIDE) every 5-15 mins is optimal for assessment matches this average

How Learning Works: Expertise and Instruction

- 1. What type of instructor is best for novices?
- 2. How are we (as instructors) different from our learners and how does this impact our teaching?

Expertise & Instruction

- what makes an expert?
 - exercise
- experts don't (necessarily) know more facts (SLIDE)
 - instead they make more connections, can proceed quickly from one step to next (SLIDE)
- when it comes to teaching, there are downsides to being an expert

Fluid Representations

- experts make use of fluid representations
 - e.g. switch effortlessly between relative, absolute paths and those stored as variables
 - other example 'character vectors' and 'strings' in R, switching between mouse and *Mus musculus*, driving different routes between locations

Error Handling

- how experts deal with errors is also different from how a novice/CP does the same
 - crucial to talk through the process as you fix errors when teaching
- exercise: diagnosis

Expert Blind Spot

- expert blind spot: forgetting/inability to imagine life *not* knowing something
 - "expert-reversal effect" experts make worse teachers
 - exercise: Blind spots
- we welcome instructors who still identify as novices/CPs.
 experts just as welcome but will need to work harder to overcome blind spots

Dismissive Language

- "just"
 - e.g. Docker, HPC cluster, adapt script to accept multiple command line arguments
- exercise
- "what questions do you have?": setting expectations

Dismissive Language

- "just"
 - e.g. Docker, HPC cluster, adapt script to accept multiple command line arguments
- exercise
- "what questions do you have?": setting expectations

You are not your learners

- motivations, priorities may differ
- things you find interesting may be boring to them
- when someone tells you that they find something hard, believe them

Coffee!

(SLIDE)

How Learning Works: Working Memory and Cognitive Load

- 1. What is cognitive load and how does it affect learning?
- 2. How can we design instruction to work with, rather than against, memory constraints?

Cognitive Load

 final topic in educational psychology is idea of cognitive load

Types of Memory

- long-term/persistent memory
 - essentially unbounded but slow access
- short-term/working memory
 - what you use to actively think about things
 - really fast
 - limited space
 - original research suggested this was 7±2 things
 - this is why phone numbers are ~this length
 - more recent research suggests it's even less than this
- important when teaching to be aware of this limit and design/pace material accordingly
 - exercise

"Chunking"

- "chunking" allows us to remember more things (SLIDES)
 - e.g. familiar patterns of letters (words) and shapes (e.g. dots on a die)
- this is why concentrating on connections between concepts is important in a workshop

Concept Maps

- formative assessment is an opportunity for learners to transfer information from short-term to long-term memory
- concept maps help us to plan our teaching to successfully manage cognitive load
 - e.g. for loop in Python
- SLIDES

Concept Maps

- don't worry if you do this and your map is too large
 - helps to judge where to insert new assessments and how to split up sections
- exercise: concept mapping

Guided Practice

- all of this is about providing guided practice
 - setup structure for learners to test their understanding and receive regular feedback
 - doesn't require learners to simultaneously master a domain's factual content and its search and problem-solving strategies
- one researcher splits cognitive load into three categories:
 - intrinsic: what they have to keep in mind in order to carry out a learning task
 - germane: the (desirable) mental effort required to create linkages between new information and old
 - extraneous: everything else that distracts or gets in the way
 - proponents of CL theory suggest that eliminating extraneous load accelerates learning
- point to faded examples in etherpad, but move on

Building Teaching Skill: Getting Feedback

- 1. How can I get feedback from learners?
- 2. How can I use this feedback to improve my teaching?

Surveys

- to help us adjust our instruction and assess the impact of our teaching, we gather feedback at various points
- provide pre- and post-workshop assessments to learners

Minute Cards

- prompt for specific types of feedback, e.g.
 - "what was most important thing you learned?"
 - "what was one this that you found confusing?"
- summarise feedback you got and talk about what you're going to do about it

One Up, One Down

Give Us Feedback

last exercise before lunch

