Aufgabenblatt 8: MPI-Jacobi-Hybrid-Leistungsanalyse

Gruppe: CaesarBaurMueller

December 10, 2022

Leistungsanalyse

Im Folgenden haben wir die Runtimes der verschiedenen Aufrufe des hybriden OpenMP-MPI-Programms dargestellt. Alle Werte sind in Sekunden angegeben.

Table 1: Leistungsanalyse der hybriden Jacobi-MPI-Implementierung auf den Nodes west1, west3 und west4

Parameters	Runtime 1	Runtime 2	Runtime 3	Average
12 Processes, 1 Thread	35.875082	35.678267	35.760198	35.771182
24 Processes, 1 Thread	31.245743	30.489378	30.935176	30.890099
1 Processes, 12 Threads	418.689716	418.769830	418.814418	418.757988
1 Process, 24 Threads	420.622928	418.811581	418.805169	419.413225
2 Process, 6 Threads	207.886090	208.154691	208.584383	208.208388
2 Processes, 12 Threads	207.843282	210.080138	207.777904	208.567108
12 Processes, 2 Threads	36.321066	35.980709	36.190474	36.164083

Eine andere graphische Darstellung findet sich in der folgenden Grafik:

Figure 1: Leistungsanalyse der hybriden Jacobi-MPI-Implementierung auf den Nodes west1, west3 und west4

Wir können aus den Ergebnissen ableiten, dass unsere OpenMP-Parallelisierung vermutlich nicht richtig funktioniert. Die MPI-Parallelisierung hingegen schon. Falls die OpenMP Parallelisierung funktionieren ordnungsgemäß funktionieren würde, würde dies bedeuten dass OpenMP im Zusammenspiel mit MPI unwirksam würde. Erkennbar ist dies aus den nahezu identischen Laufzeiten der OpenMP-Runtimes mit den (hier nicht aufgeführten) sequentiellen Ergebnissen (ca. 418s).

Die MPI-Parallelisierung hingegen funktioniert gut und erreicht einen Speedup von ca. 14 mit 24 Prozessen.