CSE 4020 - MACHINE LEARNING Lab 29+30 **Support Vector Machine(SVM) Submitted by: Alokam Nikhitha(19BCE2555)**

Ques: Train SVM classifier using sklearn digits dataset (i.e. from sklearn.datasets import load_digits) and then

- 1. Measure accuracy of your model using different kernels such as rbf, poly and linear.
- 2. Tune your model further using regularization and gamma parameters and try to come up with highest accuracy score.
- 3. Use 80% of samples as training data size.

Dataset Used: load_digits dataset from sklearn

Procedure:

- ➤ Using pandas, we first import the dataset into our workspace.
- ➤ The next step is to choose the independent and dependent variables that will be used in our regression model.
- ➤ After that, we divided our data into two sets: training and test.
- ➤ Then, using the 'rbf' kernel, we must initialise our Support Vector Machine classifier and fit it to the X_train and y_train attributes.
- > Use the 'linear' and 'polynomial' kernels to repeat the previous process.
- ➤ Then, using the results predicted by X_test on the 'rbf', 'linear', and 'polynomial' kernels, we establish three variables to store the X_test result
- > Finally, we compute evaluation metrics for each of the three kernels.

CODE SNIPPETS AND EXPLAINATION

```
In [1]: #Importing the Libraries
  import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  from sklearn.datasets import load_digits
```

Importing the required Libraries

```
In [2]: #Importing the digits dataset
dataset = load_digits()
```

Importing the digits Dataset

```
In [3]: # Attributes in our dataset
dataset.keys()
Out[3]: dict_keys(['data', 'target', 'frame', 'feature_names', 'target_names', 'images', 'DESCR'])
```

Listing the Attributes in our Dataset

```
In [4]: # Printing the different class lables
dataset.target_names
Out[4]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
```

Printing the Different Class Labels

```
In [5]: #Printing shape of each image
dataset.images.shape
Out[5]: (1797, 8, 8)
```

Print the image shape

Visualizing the Third Image in the Dataset

```
In [7]: # Set of Independent and Dependent Attributes
X = pd.DataFrame(dataset.data)
y = dataset.target
```

Taking the Independent and Depending Attributes

```
In [8]: #Splitting the dataset into training and test set
    from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, random_state=0)
```

Splitting the dataset into Training set and Test set

```
In [9]: # Training the Support Vector Machine Model using rbf kernel
    from sklearn.svm import SVC
    rbfClassifier = SVC(kernel='rbf', random_state=0, probability=True)
    rbfClassifier.fit(X_train, y_train)
Out[9]: SVC(probability=True, random_state=0)
```

Training the SVM Model using rbf kernel

Training SVM model using Linear kernel

```
In [11]: # Training the Support Vector Machine Model using poly kernel
    from sklearn.svm import SVC
    polClassifier = SVC(kernel='poly', random_state=0, probability=True)
    polClassifier.fit(X_train, y_train)
Out[11]: SVC(kernel='poly', probability=True, random state=0)
```

Training SVM model using poly kernel Model

```
In [12]: # Predicting results
    y_pred_rbf = rbfClassifier.predict(X_test)
    y_pred_lin = linClassifier.predict(X_test)
    y_pred_pol = polClassifier.predict(X_test)
```

Predicting Results for various Kernels

```
In [13]: from sklearn.metrics import confusion_matrix
    cm_rbf = confusion_matrix(y_test, y_pred_rbf)
    cm_lin = confusion_matrix(y_test, y_pred_lin)
    cm_pol = confusion_matrix(y_test, y_pred_pol)
```

Confusion Matrix for various Kernels

Confusion Matrix for rbf Kernel

```
In [15]: cm pol
Out[15]: array([[27, 0, 0, 0,
                           0, 0, 0,
                                     0,
                                        0,
                                            0],
             [ 0, 35, 0, 0, 0, 0, 0, 0, 0,
                                            0],
             [0, 0, 36, 0, 0, 0, 0, 0, 0, 0],
             [0, 0, 0, 29, 0, 0, 0, 0, 0, 0],
              0, 0, 0, 0, 30, 0, 0, 0, 0, 0],
               0, 0, 0, 0, 39, 0, 0,
                                        0, 1],
               0, 1, 0, 0, 0, 0, 43, 0, 0, 0],
               0, 0, 0, 0, 0, 0, 39, 0, 0],
              0, 1, 0, 0, 0, 0, 0, 38, 0],
             0, 40]], dtype=int64)
               0,
                  0,
                     0,
                        0,
                            0,
                               1,
                                  0,
                                      0,
```

Confusion Matrix for poly Kernel

Confusion Matrix for linear Kernel

```
In [16]: from sklearn.metrics import accuracy_score
    accuracy_rbf = accuracy_score(y_test, y_pred_rbf)
    accuracy_lin = accuracy_score(y_test, y_pred_lin)
    accuracy_pol = accuracy_score(y_test, y_pred_pol)
```

Calculating Accuracy for various Kernels

Printing Accuracy for Different Kernels

We can see here that the accuracy with rbf kernel is max and thus it is most suitable.

Accuracy(Linear) < Accuracy(Poly) < Accuracy(rbf)

```
from sklearn.metrics import mean_squared_error
print("Mean Squared Error with RBF kernel: \t", mean_squared_error(y_test, y_pred_rbf))
print("Mean Squared Error with Linear kernel: \t", mean_squared_error(y_test, y_pred_lin))
print("Mean Squared Error with Polynomial kernel:", mean_squared_error(y_test, y_pred_pol))

Mean Squared Error with RBF kernel: 0.225
Mean Squared Error with Linear kernel: 0.65555555555556
Mean Squared Error with Polynomial kernel: 0.2944444444444445
```

Mean Squared Errors with various Kernels

From here we can again infer that MSE in least for rbf kernel and hence it is the most suitable kernel for our dataset in Support Vector Classifier.

MSE(rbf) < MSE(Poly) < MSE(Linear)

рі	recision	recall	f1-score	support	
0	1.00	1.00	1.00	27	
1	0.97	1.00	0.99	35	
2	1.00	1.00	1.00	36	
3	1.00	1.00	1.00	29	
4	1.00	1.00	1.00	30	
5	0.97	0.97	0.97	40	
6	1.00	1.00	1.00	44	
7	1.00	1.00	1.00	39	
8	1.00	0.97	0.99	39	
9	0.98	0.98	0.98	41	
accuracy			0.99	360	
macro avg	0.99	0.99	0.99	360	
weighted avg	0.99	0.99	0.99	360	

	precision	recall	f1-score	support	
0	1.00	1.00	1.00	27	
1	0.95	1.00	0.97	35	
2	1.00	1.00	1.00	36	
3	1.00	1.00	1.00	29	
4	1.00	1.00	1.00	30	
5	0.97	0.97	0.97	40	
6	1.00	0.98	0.99	44	
7	1.00	1.00	1.00	39	
8	1.00	0.97	0.99	39	
9	0.98	0.98	0.98	41	
accuracy			0.99	360	
macro avg	0.99	0.99	0.99	360	
weighted avg	0.99	0.99	0.99	360	

n [27]: print(classif	fication_repo	rt(y_test	, y_pred_li	in))	
	precision	recall	f1-score	support	
0	1.00	1.00	1.00	27	
1	0.94	0.97	0.96	35	
2	0.97	1.00	0.99	36	
3	0.97	1.00	0.98	29	
4	0.97	1.00	0.98	30	
5	0.97	0.97	0.97	40	
6	1.00	0.98	0.99	44	
7	1.00	0.97	0.99	39	
8	0.97	0.95	0.96	39	
9	0.97	0.95	0.96	41	
accuracy			0.98	360	
macro avg	0.98	0.98	0.98	360	
weighted avg	0.98	0.98	0.98	360	

Here we have printed the classification report of Support Vector Classifier with all three kernels.

```
In [33]: rbfClassifierC=SVC(kernel='rbf' , C=0.3)
         rbfClassifierC.fit(X train,y train)
         rbfClassifierC.score(X test,y test)
Out[33]: 0.9805555555555555
In [34]: rbfClassifierC=SVC(kernel='rbf' , C=0.4)
         rbfClassifierC.fit(X train,y train)
         rbfClassifierC.score(X test,y test)
Out[34]: 0.9888888888888888
In [35]: rbfClassifierC=SVC(kernel='rbf' , C=0.5)
         rbfClassifierC.fit(X_train,y_train)
         rbfClassifierC.score(X_test,y_test)
Out[35]: 0.9888888888888888
In [36]: rbfClassifierC=SVC(kernel='rbf' , C=0.6)
         rbfClassifierC.fit(X train,y train)
         rbfClassifierC.score(X test,y test)
Out[36]: 0.9888888888888888
In [37]: rbfClassifierC=SVC(kernel='rbf' , C=0.7)
         rbfClassifierC.fit(X train,y train)
         rbfClassifierC.score(X_test,y_test)
Out[37]: 0.9916666666666667
In [38]: rbfClassifierC=SVC(kernel='rbf' , C=0.8)
         rbfClassifierC.fit(X_train,y_train)
         rbfClassifierC.score(X_test,y_test)
Out[38]: 0.9916666666666667
In [39]: rbfClassifierC=SVC(kernel='rbf' , C=0.9)
         rbfClassifierC.fit(X_train,y_train)
         rbfClassifierC.score(X_test,y_test)
Out[39]: 0.9916666666666667
```

Here we have tried to tune in the C value for rbf kernel. Initially we have used 0.3 as we increase the C value and we can see that the accuracy increases till C=0.7, after that C remains constant and there is no significant increase in models accuracy and hence the C value can be taken as C=0.7.

Result and Conclusion:

Accuracy

RBF Kernel-

Model Accuracy = 99.1667%

```
In [14]: cm_rbf
Out[14]: array([[27, 0, 0, 0, 0, 0, 0, 0, 0],
              [0, 35, 0, 0, 0, 0, 0, 0, 0],
              [0, 0, 36, 0, 0, 0, 0, 0, 0, 0],
              [0, 0, 0, 29, 0, 0, 0, 0, 0, 0],
              [0, 0, 0, 0, 30, 0, 0, 0, 0, 0],
              [0, 0, 0, 0, 0, 39, 0, 0, 0, 1],
              [0, 0, 0, 0, 0, 44, 0, 0, 0],
              [0, 0, 0, 0, 0, 0, 39, 0, 0],
              [0, 1, 0, 0, 0, 0, 0, 38, 0],
              [ 0, 0, 0, 0, 0, 1, 0, 0, 40]], dtype=int64)
In [19]: from sklearn.metrics import classification_report
        print(classification_report(y_test, y_pred_rbf))
                     precision
                              recall f1-score
                  0
                         1.00
                                  1.00
                                          1.00
                                                     27
                  1
                         0.97
                                  1.00
                                           0.99
                                                     35
                         1.00
                                  1.00
                                          1.00
                                                     36
                  3
                         1.00
                                  1.00
                                          1.00
                                                     29
                  4
                         1.00
                                  1.00
                                          1.00
                                                     30
                  5
                         0.97
                                 0.97
                                          0.97
                                                     40
                  6
                         1.00
                                                     44
                                 1.00
                                          1.00
                  7
                         1.00
                                 1.00
                                          1.00
                                                     39
                  8
                         1.00
                                 0.97
                                          0.99
                                                     39
                         0.98
                                 0.98
                                          0.98
                                                     41
                                          0.99
                                                    360
            accuracy
                         0.99
                                  0.99
                                          0.99
                                                    360
           macro avg
                        0.99
                                  0.99
                                          0.99
                                                    360
        weighted avg
```

In [24]: print(classification_report(y_test,y_pred_rbf))

precision	recall	f1-score	support
1 00	1 00	1.00	27
1.00	1.00	1.00	27
0.97	1.00	0.99	35
1.00	1.00	1.00	36
1.00	1.00	1.00	29
1.00	1.00	1.00	30
0.97	0.97	0.97	40
1.00	1.00	1.00	44
1.00	1.00	1.00	39
1.00	0.97	0.99	39
0.98	0.98	0.98	41
		0.00	360
			360
0.99	0.99	0.99	360
0.99	0.99	0.99	360
	1.00 0.97 1.00 1.00 1.00 0.97 1.00 1.00 0.98	1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.97 1.00 1.00 1.00 1.00 1.00 0.97 0.98 0.98	1.00 1.00 1.00 0.97 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.97 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 97 0.98 0.98 0.98

- Identified 0 = 27
- True 0 = 27
- Identified 1 = 34
- True 1 = 35
- Identified 2 = 36
- True 2 = 36
- Identified 3 = 29
- True 3 = 29
- Identified 4 = 30
- True 4 = 30
- Identified 5 = 39
- True 5 = 40
- Identified 6 = 44
- True 6 = 44
- Identified 7 = 39
- True 7 = 39
- Identified 8 = 39
- True 8 = 39
- Identified 9 = 40
- True 9 = 41
- Precision of 0 = 1.00
- Precision of 1 = 0.97
- Precision of 2 = 1.00
- Precision of 3 = 1.00

- Precision of 4 = 1.00
- Precision of 5 = 0.97
- Precision of 6 = 1.00
- Precision of 7 = 1.00
- Precision of 8 = 1.00
- Precision of 9 = 0.98
- Recall of 0 = 1.00
- Recall of 1 = 1.00
- Recall of 2 = 1.00
- Recall of 3 = 1.00
- Recall of 4 = 1.00
- Recall of 5 = 0.97
- Recall of 6 = 1.00
- Recall of 7 = 1.00
- Recall of 8 = 0.97
- Recall of 9 = 0.98

Linear Kernel:

Model Accuracy = 97.77%

```
cm lin
array([[27, 0, 0, 0, 0, 0, 0, 0, 0],
      [ 0, 34, 0, 0, 0, 0, 0, 0, 1,
                                     01,
      [0, 0, 36, 0, 0, 0, 0, 0, 0,
                                     0],
      [0, 0, 0, 29, 0, 0, 0, 0, 0,
                                     0],
      [0, 0, 0, 0, 30, 0, 0, 0, 0,
      [0, 0, 0, 0, 0, 39, 0, 0, 0, 1],
      [0, 1, 0, 0, 0, 43, 0, 0, 0],
      [0, 0, 0, 0, 1, 0, 0, 38, 0, 0],
      [0, 1, 1, 0, 0, 0, 0, 0, 37, 0],
      [ 0, 0, 0, 1, 0, 1, 0, 0, 39]], dtype=int64)
In [27]: print(classification_report(y_test, y_pred_lin))
                   precision recall f1-score support
                       1.00
                               1.00
                                       1.00
                                                  27
                1
                       0.94
                               0.97
                                       0.96
                2
                       0.97
                               1.00
                                       0.99
                                                 36
                3
                       0.97
                               1.00
                                       0.98
                                                 29
                       0.97
                               1.00
                                       0.98
                                                 30
                5
                       0.97
                               0.97
                                       0.97
                                                 40
                6
                       1.00
                               0.98
                                       0.99
                                                 44
                7
                       1.00
                               0.97
                                       0.99
                                                 39
                8
                       0.97
                               0.95
                                       0.96
                                                 39
                       0.97
                               0.95
                                       0.96
                                                 41
                                       0.98
                                                 360
          accuracy
                     0.98
          macro avg
                               0.98
                                       0.98
                                                 360
       weighted avg
                       0.98
                               0.98
                                       0.98
                                                 360

    Identified 0

                            = 27

    True 0

                            = 27

    Identified 1

                            = 33
  True 1
                            = 35
  • Identified 2
                            = 35

    True 2

                            = 36

    Identified 3

                            = 28
  • True 3
                            = 29
  • Identified 4
                            = 29
  • True 4
                            = 30
  • Identified 5
                            = 39
  • True 5
                            = 40
```

- Identified 6 = 44
- True 6 = 44
- Identified 7 = 39
- True 7 = 39
- Identified 8 = 38
- True 8 = 39
- Identified 9 = 40
- True 9 = 41
- Precision of 0 = 1.00
- Precision of 1 = 0.97
- Precision of 2 = 1.00
- Precision of 3 = 1.00
- Precision of 4 = 1.00
- Precision of 5 = 0.97
- Precision of 6 = 0.98
- Precision of 7 = 0.97
- Precision of 8 = 0.95
- Precision of 9 = 0.95
- Recall of 0 = 1.00
- Recall of 1 = 0.96
- Recall of 2 = 0.99
- Recall of 3 = 0.98
- Recall of 4 = 0.98
- Recall of 5 = 0.97
- Recall of 6 = 0.99
- Recall of 7 = 0.99
- Recall of 8 = 0.96
- Recall of 9 = 0.96

Poly Kernel:

Model Accuracy = 98.88%

```
In [15]: cm_pol
Out[15]: array([[27, 0, 0, 0, 0, 0, 0, 0, 0, 0],
             [0, 35, 0, 0, 0, 0, 0, 0, 0],
             [0, 0, 36, 0, 0, 0, 0, 0, 0, 0],
             [0, 0, 0, 29, 0, 0, 0, 0, 0, 0],
             [0, 0, 0, 0, 30, 0, 0, 0, 0, 0],
             [0, 0, 0, 0, 0, 39, 0, 0, 0, 1],
             [0, 1, 0, 0, 0, 0, 43, 0, 0, 0],
             [0, 0, 0, 0, 0, 0, 39, 0, 0],
             [0, 1, 0, 0, 0, 0, 0, 38, 0],
             [ 0, 0, 0, 0, 0, 1, 0, 0, 40]], dtype=int64)
In [20]: print(classification_report(y_test, y_pred_pol))
                   precision recall f1-score support
                       1.00
                              1.00
                                      1.00
                       0.95
                              1.00
                                     0.97
                       1.00
                              1.00
                                      1.00
                 3
                      1.00
                              1.00
                                      1.00
                      1.00
                              1.00
                                      1.00
                 5
                      0.97
                             0.97
                                     0.97
                 6
                      1.00
                             0.98
                                     0.99
                 7
                      1.00
                              1.00
                                      1.00
                             0.97
                      1.00
                                     0.99
                       0.98
                             0.98
                                       0.98
                                                41
                                       0.99
                                               360
           accuracy
                     0.99
          macro avg
                             0.99
                                     0.99
                                               360
        weighted avg
                       0.99
                             0.99
                                       0.99
                                               360

    Identified 0

                          = 27

    True 0

                           = 27

    Identified 1

                           = 35
   True 1
                           = 35

    Identified 2

                           = 36

    True 2

                           = 36
    Identified 3
                           = 29
    True 3
                           = 29

    Identified 4

                           = 30
    True 4
                           = 30
     Identified 5
                           = 39
   • True 5
                           = 40
     Identified 6
```

- True 6 = 44
- Identified 7 = 39
- True 7 = 39
- Identified 8 = 39
- True 8 = 39
- Identified 9 = 40
- True 9 = 41
- Precision of 0 = 1.00
- Precision of 1 = 0.95
- Precision of 2 = 1.00
- Precision of 3 = 1.00
- Precision of 4 = 1.00
- Precision of 5 = 0.97
- Precision of 6 = 1.00
- Precision of 7 = 1.00
- Precision of 8 = 1.00
- Precision of 9 = 0.98
- Recall of 0 = 1.00
- Recall of 1 = 1.00
- Recall of 2 = 1.00
- Recall of 3 = 1.00
- Recall of 4 = 1.00
- Recall of 5 = 0.97
- Recall of 6 = 0.98
- Recall of 7 = 1.00
- Recall of 8 = 0.97
- Recall of 9 = 0.98

