Descrição do Formatos dos Arquivos

Problema: m-TSP

1. Arquivos de Instâncias

O arquivo de instâncias está formatado com um CSV que utiliza o caractere ';' (ponto e vírgula) como separador dos valores.

A primeira linha apresenta quantos pontos existem no problema, incluindo o depósito. A segunda linha mostra quantos vendedores devem ser considerados para construir os circuitos da solução.

	А	В	С	D	Е	F
1	QTD_PONTOS	25				
2	QTD_VENDEDORES	2				
3	444	337	0	327	475	598
4	575	37	327	0	743	425
5	1	509	475	743	0	1073
6	995	104	598	425	1073	0
7	745	141	359	199	830	253
8	809	804	593	802	860	724
9	240	303	207	428	316	781
10	751	349	307	358	767	346

A partir da terceira linha temos as informações relativas às coordenadas dos pontos e a matriz de distância. As duas primeiras colunas (área em verde na figura abaixo) correspondem às coordenadas X e Y dos pontos e a partir da terceira coluna temos a matriz de distâncias (área em amarelo).

	A	В	С	D	E	F	G
1	QTD_PONTOS	25					
2	QTD_VENDEDORES	2					
3	444	337	0	327	475	598	359
4	575	37	327	0	743	425	199
5	1	509	475	743	0	1073	830
6	995	104	598	425	1073	0	253
7	745	141	359	199	830	253	0
8	809	804	593	802	860	724	666
9	240	303	207	428	316	781	530
10	751	349	307	358	767	346	208

Vale ressaltar que a primeira linha da matriz de distâncias contém as distâncias entre o depósito e todos os demais pontos. Analogamente, a primeira coluna da matriz de distâncias representa a distância entre todos os pontos e o depósito.

2. Arquivos de Soluções

Todas as soluções devem ser salvas em um arquivo CSV utilizando ';' como delimitador. Abaixo temos um exemplo de solução.

	А	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0
1	QTD_PONTOS	25													
2	QTD_VENDEDORES	2													
3	MAIOR_CUSTO	2616													
4	VENDEDOR	CUSTO	SEQUÊNCIA												
5	V0	2524	21	12	20	24	2	6	8	1	13	15	11		
6	V1	2616	4	9	3	7	14	19	23	10	5	18	22	16	17

As duas primeiras linhas informam a quantidade de pontos do problema e a quantidade de vendedores. A terceira linha informa o maior custo dentre os vendedores, que é a função objetivo do problema.

A quarta linha possui somente os cabeçalhos e a partir da quinta linha temos (i) o código do vendedor indexado em zero, (ii) o custo do circuito do vendedor e (ii) a sequência de visita dos pontos do vendedor.

Vale ressaltar que os pontos devem ser indexados a partir de zero, sendo o ponto zero o depósito. Portanto, se a instância tem 25 pontos, o Ponto 0 será o depósito e os Pontos 1 a 24 serão os pontos que devem ser visitados. Note que as sequências de cada vendedor não devem incluir o ponto zero, pois isso é implícito no processamento do circuito, uma vez que todos os circuitos se iniciam e terminam no Ponto 0.

3. Arquivos de Relatórios

Os relatórios também devem ser feitos em formato CSV com o caractere ';' como delimitador. O objetivo é registrar os resultados do Hill-Climbing em cada iteração.

	A	В	С	D		
1	ITERAÇÃO	INICIAL	LOCAL	GLOBAL		
2	1	3398	3195	3195		
3	2	3583	3498	3195		
4	3	4268	3856	3195		
5	4	3461	3210	3195		
6	5	3169	3169	3169		
7	6	4268	3856	3169		
8	7	4039	3906	3169		
9	8	4039	3906	3169		
10	9	3461	3210	3169		
11	10	3385	3142	3142		
12	11	3490	3243	3142		

A seguir são descritos os conteúdos das 4 colunas:

- **Iteração:** Número da iteração, iniciando em 1 e terminando em *qtd iteraco*es.
- Inicial: Valor da solução aleatória gerada no início da iteração do hill-climbing.

- Local: Valor da solução ótima local, obtida após a finalização da iteração.
- Global: Melhor solução conhecida até a iteração.

Note que, usando as colunas do relatório podemos analisar a evolução do algoritmo ao longo do tempo. Abaixo temos um gráfico mostrando como a solução global melhorou ao longo das 1.000 iterações em que o algoritmo foi executado.

