Module Code: MATH201701

Module Title: Real Analysis ©UNIVERSITY OF LEEDS

School of Mathematics

Semester Two 202122

Calculator instructions:

• You are not allowed to use a calculator in this exam.

Dictionary instructions:

• You are not allowed to use your own dictionary in this exam. A basic English dictionary is available to use. Raise your hand and ask an invigilator if you need it.

Exam information:

- There are 3 pages to this examination.
- There will be **2 hours 30 minutes** to complete this examination.
- Answer all questions.
- The numbers in brackets indicate the marks available for each question.

- **1.** Let D be a subset of \mathbb{R} , a be a point in D and $f:D\to\mathbb{R}$. Give precise mathematical definitions of the following terms.
 - (a) a is a cluster point of D.
 - (b) f is **continuous** at a.
 - (c) f is **differentiable** at a.
 - (d) f is **bounded above**.
 - (e) f attains a maximum at a.
 - (f) f is unbounded below.
 - (g) f is increasing.
 - (h) f is strictly decreasing.

[16]

2. Let $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$, f(x) = 2/x. Give a direct $\varepsilon - \delta$ proof that

$$\lim_{x \to 3} f(x) = \frac{2}{3}.$$

[10]

- 3. (a) State, but do not prove, the Mean Value Theorem.
 - (b) Let $f: \mathbb{R} \to \mathbb{R}$ be **twice** differentiable, and assume that

$$f(0) = 1,$$
 $f(1) = 0,$ $f(2) = 3.$

Prove that there exists $c \in (0,2)$ such that f''(c) > 2.

[10]

4. (a) Let f be the function

$$f: [0,2] \to \mathbb{R}, \qquad f(x) = \begin{cases} 0, & x \in [0,1), \\ 1, & x = 1, \\ 2, & x \in (1,2]. \end{cases}$$

and \mathscr{D} be the dissection

$$\mathcal{D} = \{0, 0.8, 1.2, 2\}.$$

- (i) Compute, $u_{\mathscr{D}}(f)$ and $l_{\mathscr{D}}(f)$, the upper and lower Riemann sums of f with respect to \mathscr{D} .
- (ii) Write down a **refinement** \mathcal{D}' of \mathcal{D} such that

$$l_{\mathscr{D}}(f) = l_{\mathscr{D}'}(f) < u_{\mathscr{D}'}(f) < u_{\mathscr{D}}(f).$$

Verify your claim by computing $u_{\mathscr{D}'}(f)$ and $l_{\mathscr{D}'}(f)$.

(b) Prove that every increasing function $f:[a,b]\to\mathbb{R}$ is Riemann integrable. You may use, without proof, the following theorem taken from the lecture notes:

Theorem 4.21 A bounded function $f:[a,b]\to\mathbb{R}$ is Riemann integrable if and only if there exists a sequence \mathcal{D}_n of dissections of [a,b] such that

$$u_{\mathcal{D}_n}(f) - l_{\mathcal{D}_n}(f) \to 0.$$

[20]

5. Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be the functions defined by

$$f(x) = x \cos x, \qquad g(x) = \int_0^{x^2} f.$$

Compute $g'(\sqrt{\pi})$. Rigorously justify your answer.

[6]

- **6.** (a) Let $f: D \to \mathbb{R}$ be a bounded function. Define its **sup norm**, denoted ||f||.
 - (b) Let $f_n: D \to \mathbb{R}$ be a sequence of bounded functions. What does it mean to say that (f_n) converges uniformly?
 - (c) For each $n \in \mathbb{Z}^+$, let $f_n : [0,1] \to \mathbb{R}$ be the function

$$f_n(x) = \frac{x}{1 + (x/2)^n}.$$

- (i). Prove that (f_n) converges uniformly to some function $f:[0,1]\to\mathbb{R}$, identifying this function.
- (ii). Hence or otherwise, compute

$$\lim_{n\to\infty}\int_0^1 f_n.$$

Explain your reasoning.

[18]

7. Exactly sum the series $\sum_{n=1}^{\infty} (-1)^n \frac{n}{2^{2n+1}}$. Clearly explain your reasoning.

[10]

8. (a) Let $f:[0,1] \to [0,1]$ be increasing. Prove that f has a fixed point, that is, there exists $c \in [0,1]$ such that f(c) = c.

 $\mathbf{Warning}$: you may \mathbf{not} assume that f is continuous.

Hint: Consider the set $A = \{x \in [0,1] : f(x) \ge x\}$.

(b) Let $g:(0,1)\to (0,1)$ be an increasing function. Does it still follow that g has a fixed point? If so, prove it. If not, give a counterexample.

[10]

Page 3 of 3