Package 'HTGM3D'

May 30, 2025

Version 1.0

Date 2025-05-27

Title Three Dimensional High Throughput 'GoMiner'

Author Barry Zeeberg [aut, cre]

Depends R (>= 4.2.0)

Imports minimalistGODB, GoMiner, HTGM, HTGM2D, grDevices, stats, R2HTML, rgl, vprint, randomGODB, stringr

LazyData true

LazyDataCompression xz

Description The Gene Ontology (GO) Consortium https://geneontology.org/ organizes genes into hierarchical categories based on biological process (BP), molecular function (MF) and cellular component (CC, i.e., subcellular localization). Tools such as 'GoMiner' (see Zeeberg, B.R.,

Feng, W., Wang, G. et al. (2003) <doi:10.1186/gb-2003-4-4-r28>) can leverage GO to perform ontological analysis of microarray and proteomics studies, typically generating a list of significant functional categories. To capture the benefit of all three ontologies, I developed 'HTGM3D', a three-dimensional version of 'GoMiner'.

License GPL (>= 2)

Encoding UTF-8

VignetteBuilder knitr

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

RoxygenNote 7.3.2

Config/testthat/edition 3

NeedsCompilation no

Repository CRAN

Date/Publication 2025-05-30 09:10:05 UTC

Contents

	blackBodyRadiationColors	2
	catNum3	3
	cluster52	3
	graphIt	4
	Housekeeping_Genes	4
	HTGM3D	5
	HTGM3Ddriver	6
	insertCatSize	7
	interactWithGraph3D	8
	Jaccard3	9
	plot3Dmat	9
	pruneCatGenes	10
	showGenes	11
	subMatDiffs	11
	x_cg	12
	x_1	12
	x_m11	13
	x_mat	13
	x_mat3d	13
Index		14

black Body Radiation Colors

black Body Radiation Colors

Description

set up color scale for black body spectrum

Usage

```
blackBodyRadiationColors(x, max_value = 1)
```

Arguments

```
x numeric should be between 0 (black) and 1 (white)
max_value numeric maximum value to be used for scaling
```

Details

I obtained this by copy and paste from internet (reference unknown)

Value

returns no value, but has side effect of generating color map

catNum3

Examples

```
colors.blackBody <- rev(blackBodyRadiationColors(seq(0.3,1,length.out=20)))</pre>
```

catNum3

catNum3

Description

assign the axis coordinate number to be used for the plotting position for each category

Usage

```
catNum3(1)
```

Arguments

1

list each component corresponds to an ontology branch, and contains the decreasing sorted tabulation of output of the number of times that a category appears in a triplet

Details

```
a component of 1 is like: GO_0005515__protein_binding GO_0042802__identical_protein_binding GO_0005178__integrin_binding 38 4 3
#' a component of 11 is like: GO_0005515__protein_binding GO_0042802__identical_protein_binding GO_0005178__integrin_binding 1 2 3
```

Value

returns a list each component corresponds to an ontology branch, and contains a vector of category plotting positions

Examples

```
#load("data/x_1.RData")
catNum3(x_1)
```

cluster52

HTGM3D data set

Description

HTGM3D data set

Usage

```
data(cluster52)
```

graphIt	graphIt

Description

annotate a selected point in the 3d graphic

Usage

```
graphIt(mat3d, sp, w, r, verbose)
```

Arguments

mat3d	component of HTGM3Ddriver()	output list

sp integer vector containing c(x,y,z) coordinated of point

w integer line number within mat3d

r numeric max value of x,y,z ranges

verbose integer vector representing vprint classes

Value

returns no value, but has side effect of annotating the 3D graph

Housekeeping_Genes HTGM3D data set

Description

HTGM3D data set

Usage

data(Housekeeping_Genes)

HTGM3D 5

|--|

Description

compute matrix to use as input to plot3d()

Usage

```
HTGM3D(dir, geneList, GOGOA3, thresh1, thresh3, mn, mx, pcgMN, pcgMX, verbose)
```

Arguments

dir	character string full path name to the directory acting as result repository
geneList	character vector of user-supplied genes of interest
GOGOA3	return value of subsetGOGOA()
thresh1	numerical acceptance threshold for individual ontologies
thresh3	numerical acceptance threshold for joint ontology
mn	integer min category size threshold passed to trimGOGOA3()
mx	integer max category size threshold passed to trimGOGOA3()
pcgMN	integer param passed to pruneCatGenes
pcgMX	integer param passed to pruneCatGenes

Value

verbose

returns matrix containing information that provides the input needed for running plot3d()

integer vector representing vprint classes

6 HTGM3Ddriver

HTGM3Ddriver

HTGM3Ddriver

Description

driver to invoke HTGM3D()

Usage

```
HTGM3Ddriver(
dir,
geneList,
GOGOA3,
thresh1,
thresh3,
mn,
mx,
pcgMN,
pcgMX,
verbose
)
```

Arguments

dir character string full path name to the directory acting as result repository

geneList character vector of user-supplied genes of interest

GOGOA3 return value of subsetGOGOA()

thresh1 numerical acceptance threshold for individual ontologies

thresh3 numerical acceptance threshold for joint ontology

mn integer min category size threshold passed to trimGOGOA3()
mx integer max category size threshold passed to trimGOGOA3()

pcgMN integer param passed to pruneCatGenes
pcgMX integer param passed to pruneCatGenes
verbose integer vector representing vprint classes

Details

suggested standardized class codes for vprint() -1 = developer debugging only 0 = constitutively turned on 1 = help for new user 2 = follow progress of long computation 3 = primary results 4 = meta information (e.g. dims of a matrix before and after trimming) 5 = warnings 6 = errors

Value

returns matrix containing information that provides the input needed for running plot3d()

insertCatSize 7

Examples

insertCatSize

insertCatSize

Description

compute fraction of total genes in the entire ontology that map to each category, and insert column into matrix mat

Usage

```
insertCatSize(mat, GOGOA3)
```

Arguments

mat return value of Jaccard3()
GOGOA3 return value of subsetGOGOA()

Value

returns augmented version of matrix mat

```
## Not run:
# GOGOA3.RData is too large to include in the R package
# so I need to load it from a file that is not in the package.
# Since this is in a file in my own file system, I could not
# include this as a regular example in the package.
# you can generate it using the package 'minimalistGODB'
# or you can retrieve it from https://github.com/barryzee/GO/tree/main/databases
```

interactWithGraph3D

```
load("/Users/barryzeeberg/personal/GODB_RDATA/goa_human/GOGOA3_goa_human.RData")
mat2<-insertCatSize(x_mat,GOGOA3)
## End(Not run)</pre>
```

interactWithGraph3D

interactWithGraph3D

Description

rotate the 3d graph and/or select a point within the 3D graph, and annotate that point

Usage

```
interactWithGraph3D(mat3d, maxfract = 1, newWindow = TRUE, verbose = TRUE)
```

Arguments

mat3d component of HTGM3Ddriver() output list

maxfract numeric upper threshold for category size to display

newWindow Boolean if TRUE open new window to avoid over writing current window

verbose integer vector representing vprint classes

Value

returns no value, but has side effect of annotating the 3D graph

```
if(interactive()){
#load("data/x_mat3d.RData")
interactWithGraph3D(x_mat3d)
}
```

Jaccard3 9

|--|--|--|

Description

compute the number of genes in the intersection of categories from 3 ontology branches

Usage

```
Jaccard3(dir, m, thresh1 = 3, thresh3 = 3, verbose = 2)
```

Arguments

dir character string full path name to the directory acting as result repository

m return value of pruneCatGenes()
thresh1 parameter passed to Jaccard3()
thresh3 parameter passed to Jaccard3()

verbose integer vector representing vprint classes

Value

returns matrix tabulating genes in the intersection of categories from 3 ontology branches also has side effect of saving files containing those genes

Examples

```
#load("data/x_m11.RData")
Jaccard3(tempdir(),x_m11,thresh1=3,thresh3=3,verbose=1:5)
```

plot3Dmat plot3Dmat

Description

compute x,y,z coordinates for each triplet

Usage

```
plot3Dmat(mat, 1)
```

Arguments

mat return value of HTGM3D()

1 return value of catNum3()

pruneCatGenes

Value

augmented version of matrix containing x,y,z coordinates for each triplet

Examples

```
#load("data/x_mat.RData")
#load("data/x_1.RData")
p3<-plot3Dmat(x_mat,x_1)</pre>
```

pruneCatGenes

pruneCatGenes

Description

eliminate those categories to which no genes map

Usage

```
pruneCatGenes(m, mn = 2, mx = 200)
```

Arguments

m the return value of catGenes()

mn integer min category size threshold passed to trimGOGOA3()

mx integer max category size threshold passed to trimGOGOA3()

Value

returns pruned version of matrix m

```
#load("data/x_cg.RData")
m<-pruneCatGenes(x_cg,2,200)</pre>
```

showGenes 11

Description

open gene list in a textEdit window

Usage

```
showGenes(mat3d, w, range, npad)
```

Arguments

mat3d component of HTGM3Ddriver() output list

w integer line number within mat3d

range list of ranges

npad integer number of blanks for padding

Value

returns no value, but has side effect of opening textEdit

subMatDiffs subMatDiffs

Description

retrieve submatrices of common rownames and colnames, and report differences

Usage

```
subMatDiffs(m1, m2, verbose = 3)
```

Arguments

m1 matrix m2 matrix

verbose integer vector representing vprint classes

Details

compare submatrices of m1 and m2 that have common rownames and colnames

12 x_1

Value

returns no values

Examples

```
rn<-c("a","b","c")
cn<-c("a","b","c","d")
m1<-matrix(1:12,nrow=length(rn),ncol=length(cn))
rownames(m1)<-rn
colnames(m1)<-cn
m2<-m1
subMatDiffs(m1,m2)

m3<-m1
m3[1,1]<-0
m3[1,2]<-0
subMatDiffs(m1,m3)

m4<-m3
colnames(m4)<-c("aa","b","c","d")
subMatDiffs(m1,m4)</pre>
```

x_cg

HTGM3D data set

Description

HTGM3D data set

Usage

```
data(x_cg)
```

 x_1

HTGM3D data set

Description

HTGM3D data set

Usage

```
data(x_1)
```

x_m11 13

 x_m11

HTGM3D data set

Description

HTGM3D data set

Usage

 $data(x_m11)$

 x_mat

HTGM3D data set

Description

HTGM3D

Usage

data(x_mat)

 x_mat3d

HTGM3D data set

Description

HTGM3D

Usage

data(x_mat3d)

Index

```
black Body Radiation Colors, \\ 2
catNum3, 3
cluster52, 3
graphIt, 4
Housekeeping_Genes, 4
HTGM3D, 5
HTGM3Ddriver, 6
insertCatSize, 7
interactWithGraph3D, 8
Jaccard3, 9
plot3Dmat, 9
{\tt pruneCatGenes}, \textcolor{red}{10}
showGenes, 11
subMatDiffs, 11
x_cg, 12
x_1, 12
x_m11, 13
x_mat, 13
x_mat3d, 13
```