TOPOLOGY - HOMEWORK 08

Due: 2020 May 14th, 10:00AM

Question 1. Consider $X = \{0\} \cup \{1/n : n \in \mathbb{N}\}$ with the subspace topology inherited from \mathbb{R} . Show that X is homeomorphic to the one-point compactification $(\mathbb{N} \cup \{\infty\}, \mathcal{T}')$ of $(\mathbb{N}, \mathcal{T})$, where \mathcal{T} is the standard (discrete) topology on \mathbb{N} .

Question 2. Show that $(\mathbf{R}^{\omega}, \mathcal{T}_p)$ has no one-point compactification. (Hint: is \mathbf{R}^{ω} locally compact?)

Question 3. Show that if X_i is separable for each $i \in \mathbb{N}$, then the product space $(\prod_{i \in \mathbb{N}} X_i, \mathcal{T}_p)$ is separable.

Question 4. Consider the space $(\mathbf{R}, \mathcal{T}_l)$ with \mathcal{T}_l being generated by the basis $\{[a,b): a,b \in \mathbf{R}, a < b\}$.

Show that **R** is Lindelöf with respect to \mathcal{T}_l , and that $\mathbf{R} \times \mathbf{R}$ is not Lindelöf with respect to the product topology arising from \mathcal{T}_l . (Hint: Munkres' book.)

Question 5. Let (X, d) be a metric space. Show that the following properties are equivalent:

- (i) X is second countable,
- (ii) X is Lindelöf,
- (iii) X is separable.

(Hint: for (ii) \Rightarrow (i), consider $\{B(x, 1/n) : x \in X, n \in \mathbb{N}\}$; fix n and run x first.)