Informe de Proyecto

"Battery Managment System"

• Autor : Bavasso Piizzi, Tobias

• Curso : R6575

• Docentes : Marano , Fabio

Lozano , Rubén

• Curso: R6575

Diagrama en bloques

El diagrama en bloques de la *Figura 1* corresponde al diseño del Battery Managment System (BMS), en donde se pueden identificar los bloques asociados al control de carga/descarga (FET), front-end analógico (AFE) para el sensado del estado de cada celda, el medidor (GAUGE) encargado del procesamiento del estado de carga (SOC), estado de salud (SOH), y temperatura de la batería, al igual que el bloque del sistema embebido (EMBEDDED) para ser utilizado como gateway hacia un bus de comunicación.

Figura 1 - Diagrama en bloques

Esquema conexionado eléctrico

El esquema eléctrico de conexionado debe conformarse mediante 4 conectores.

Conexión Gateway

En la *Figura 2*, se observa al conector estipulado para operan como gateway del PCB, en donde hacia al exterior hay comunicación mediante puerto serial, protocolo I2C, Bus SMB y Bus CAN.

Figura 2 - Conector gateway

Conexión Batería

En cuanto a las celdas de la batería tendrán un conector individualizado, en donde se tomará un cable de cada celda en serie a la batería. El diagrama de conexión se puede observar en la *Figura 3*.

Figura 3 - Conector celdas

Conexión Carga

Para la carga del circuito y la batería se debe realizar el conexionado en los conectores en L o bien puede realizarse la sujeción del cable mediante un tornillo, arandela y tuerca.

Estos conectores se utilizan para conectar la batería y la entrada para poder cargar la misma.

Descripción funcional del circuito eléctrico

La funcionalidad del circuito es realizar el monitoreo para la protección de un pack de baterías de litio de 15 celdas, es decir que su tensión típica será de 48V. En este tipo de baterías es muy importante realizar constantemente la medición de su condición para evitar que su punto de trabajo sea perjudicial para prolongar su vida útil. Respecto a la funcionalidad específica de cada módulo la misma se detallará a continuación.

AFE

El analog front end es un nodo I2C que implementa las siguientes mediciones:

- Tensión de celda
- Corriente del pack
- Temperatura

A su vez también permite realizar el un control sobre:

- FET's de carga y descarga
- Balanceo de cargas

Todas las mediciones realizadas son transmitidas por el bus I2C, para que los demás módulos tomen las acciones de control necesarias.

Control de carga y descarga

Protección del tipo high-side para desconectar la batería mediante transistores en caso de haber algún inconveniente y no quitar la referencia de tensión al resto del circuito. Como características destacadas en esta etapa se pueden mencionar la carga y descarga mediante hardware independiente, al igual que la opción de realizar una pre carga a baja corriente en celdas que necesiten realizar una descarga profunda.

Medidor

El medidor o gauge realiza todo el monitoreo de forma programable mediante SMBUS (compatilbe I2C), para no realizar el desarrollo de código en el MCU.

Este módulo se utiliza como intergaz entre el sistema embebido y el analog front end para detectar el SOC/SOH e implementar balanceos de cargas y protecciones por diversas condiciones como exceso de temperatura/tensión/corriente.

El gauge es un medidor que realiza todo el monitoreo de forma programable mediante SMBUS (compatilbe I2C), para no realizar el desarrollo de código en el MCU.

Sistema embebido

El sistema embebido está basado en un microcontrolador que permite interconectar los módulos y otorgar una vía de salida hacia otros buses de comunicación externos.

BOM

El listado de partes se encuentra a continuación, para una mejor visualización se recomienda abrirlo desde el archivo generado por el software de diseño.

Comment	Description	Designator	Footp rint	LibR ef	Qu ant ity
PIN3		J8	SIP3	PIN3	1
Test Point		TP1, TP2, TP3, TP4, TP5, TP6, TP7, TP8, TP9, TP10, TP11, TP12, TP13, TP14, TP15, TP16, TP17, TP18, TP19, TP20, TP21	TEST POINT SMD 1	Test Point	21
FS32	ARM® Cortex®-M0+ series	U6	LQFP6	FS32	1
K118 LAT0 MLHT	Microcontroller IC 32-Bit Single-Core 48MHz 256KB (256K x 8) FLASH 64-LQFP (10x10)		4-NXP	K118 LAT0 MLHT	
BQ76 9400 0DBT	Battery Monitor for Lithium-lon and Phosphate Battery Packs,	U2	DBT00 44A_N	BQ76 9400 0DBT	1
R Ferrit e Bead	DBT0044A BLM18KG102SN1D 1K	L5	0603 FB	R BLM1 8KG1 02SN	1
BQ76 200P WR	bq76200: Low-Power, High-Side N-channel FET Driver with Pack Voltage Monitor, PW0016A	U1	PW00 16A_N	1D BQ76 200P WR	1
1.5µF 25V X7R	Capacitor	C5	0805_ HV_2	Cap 0805 _HV	1
100n F	Capacitor	C48, C49, C51, C52, C54, C55, C57	C0603	Cap 0603	7
100n F 100V X7R	Capacitor	C1, C2, C3, C4, C46, C47	C0603	Cap 0603	6
100n F 50V X7R	Capacitor	C41, C42, C43	C0603	Cap 0603	3
100p F/50V	Capacitor	C56, C59	C0603	Cap 0603	2
10nF 100V X7R	Capacitor	C6, C7	0805_ HV_2	Cap 0805 _HV	2
10μF	Capacitor	C19	1210_ 270	Cap 1210	1

10	O-m-site.	015 017	1010	0	
10µF	Capacitor	C15, C17	1210_	Сар	2
35V			270	1210	
X7R					
1μF	Capacitor	C18	0805_	Cap	1
16V			HV_2	0805	
X7R				HV	
1µF	Capacitor	C21	0805	Cap	1
16V		021	0000	0805	•
				0003	
X7R		000 005 000	00000		
1µF	Capacitor	C23, C25, C28	C0603	Cap	3
16V				0603	
X7R					
220n	Capacitor	C9, C10	C0603	Сар	2
F 16				0603	
X7R					
220n	Capacitor	C11, C12, C13, C14, C16,	C0603	Сар	17
F 16V	σαρασιτοί		00003	_	' '
		C20, C26, C30, C32, C33,		0603	
X7R		C34, C35, C36, C37, C38,			
		C39, C40			
3.3nF	Capacitor	C44, C45	C0603	Cap	2
25V				0603	
X7R					
39nF	Capacitor	C58	C0603	Сар	1
00111			00000	0603	
4 7	0	000	0005		4
4.7µF	Capacitor	C29	0805_	Сар	1
10V			HV_2	0805	
X7R				_HV	
4700	Capacitor	C22, C24, C27	C0603	Cap	3
pF				0603	
50V					
X7R					
470p	Capacitor	C8, C31	C0603	Can	2
	Capacitoi	06,031	C0003	Cap	~
F 50V				0603	
X7R					
BQ78	CEDV Li-Ion Gas Gauge	U3	DBT00	BQ78	1
350D	and Battery Management		30A_N	350D	
BTR-	Controller Companion to			BTR-	
R1	the bq769x0 Battery			R1	
	Monitoring AFE,				
	DBT0030A				
105		14 10 10 14	TD LO	1.05	1
L35	Connector, L Type Copper	J1, J2, J3, J4	TB_L3	L35	4
	Single Conductor, TH		5		
1N41	Diode, Ultrafast, 100V,	D8, D10, D16, D17, D23	SOD-	1N41	5
48W-	0.15A, SOD-123		123	48W-	
7-F				7-F	
ES3D	Diode, Ultrafast, 200V, 3A,	D3	SMC	ES3D	1
	SMC]
E3/57				- E3/57	
T				Т	

	D: 1 7 001/000	D. 10. D. D. 10. 1	1 .	14140	
MMS Z522 8BS-	Diode, Zener, 3.9 V, 200 mW, SOD-323	D12, DDNP1	sod- 323	MMS Z522 8BS-	2
7-F				7-F	
MMS Z523 2BS- 7-F	Diode, Zener, 5.6V, 200mW, SOD-323	D9, D11, D13, D14, D15, D18, D19, D20, D21, D22, D24, D25, D26, D27, D28	sod- 323	MMS Z523 2BS- 7-F	15
MMS Z524 6BS- 7-F	Diode, Zener, 16 V, 200 mW, SOD-323	D4, D5, D6	sod- 323	MMS Z524 6BS- 7-F	3
MMS Z524 8BS- 7-F	Diode, Zener, 18 V, 200 mW, SOD-323	D7, D29	sod- 323	MMS Z524 8BS- 7-F	2
NUP2 105L	Dual Line CAN Bus Protector TVS DIODE 24VWM 44VC SOT23-3	D35	SOT- 23	NUP2 105L	1
TPD1 E10B 06DP YT	ESD Protection in 0402 Package with 10 pF Capacitance and 6 V Breakdown, 1 Channel, - 40 to +125 degC, 2-pin X2SON (DPY)	U4, U5	DPY00 02A	TPD1 E10B 06DP YT	2
BLM1 8SG2 21TN 1D	Ferrite Bead, 220 ohm @ 100 MHz, 2.5 A, 0603	L1, L2, L3, L4	0603 FB	BLM1 8SG2 21TN 1D	4
Fiduc ial	Fiducial mark. There is nothing to buy or mount.	FID1, FID2, FID3, FID4	Fiduci al10- 20	Fiduc ial_1	4
TJA14 41xx	High-speed CAN transceiver	IC1	SOIC8	TJA14 41xx	1
LED GREE N	LED G	D30	LED06 03-G	LED GREE N	1
LED RED	LED R	D33, D34	LED06 03-R	LED RED	2
LED YELL OW	LED Y	D31, D32	LED06 03-Y	LED YELL OW	2
NY PMS 440 0025 PH	Machine Screw, Round, #4-40 x 1/4, Nylon, Philips panhead	H1, H2, H3, H4	NY PMS 440 0025 PH	NY PMS 440 0025 PH	4
4304 5121 2	Micro-Fit 3.0 43045 CONN HEADER VERT 12POS 3MM	J7	MOLE X_430 45121 2	4304 5121 2	1

BSS1	MOSFET, N-CH, 100V,	Q7, Q11, Q27	SOT-	BSS1	3
23	0.17A, SOT-23		23	23	
BST8	MOSFET, N-CH, 100 V,	Q14	SOT-	BST8	1
2,215	0.19 A, SOT-23		23	2,215	
CSD1	MOSFET, N-CH, 100 V,	Q2, Q3, Q4, Q5	KTT00	CSD1	4
9536	200 A, KTT0002A		02A_N	9536	
KTT				KTT	
CSD1	MOSFET, N/P-CH, 12 V,	Q8, Q9, Q10, Q12, Q13,	YJC00	CSD1	15
3381	2.1 A, 1.0x0.35x0.6mm	Q15, Q16, Q17, Q19, Q20,	03A	3381	
F4		Q21, Q22, Q23, Q24, Q25		F4	
ZXMP	MOSFET, P-CH, -100V, -	Q1, Q6, Q26	SOT-	ZXMP	3
10A1	0.6A, SOT-23		23	10A1	
3FTA				3FTA	
HEAD	PAD10-2X05-HH	J6	PAD10	HEAD	1
ER5x			-2X05-	ER5x	
2-			HH	2-	
1.27				1.27	
mm				mm	
10uF/	Polarized Capacitor	C50, C53	1206	Cap	2
16V	Tantalium		Cap	Pol	
			Tant	Tanta	
				lio	
0.0R	Resistor	RDNP4, RDNP7, RDNP8	R0603	Res	3
0.5%					
0R	Resistor	RDNP1, RDNP2, RDNP3,	R0603	Res	7
		RDNP9, RDNP10,			
		RDNP11, RDNP12			
0R	Resistor	R1, R4, R18, R98, R99	R0603	Res	5
0.5%					
1.00K	Resistor	R44	2010	Res	1
1%					
1.0K	Resistor	R20, R22, R25, R30, R33,	R0603	Res	25
5%		R37, R40, R43, R45, R49,			
		R52, R55, R59, R62, R63,			
		R64, R67, R70, R73, R76,			
		R79, R94, R95, RDNP5,			
		RDNP6			
1.0M	Resistor	R21, R96	R0603	Res	2
5%					
1.0m	Resistor	R2, R3	2010	Res	2
R 1%					
1.2K	Resistor	R5, R6, R7, R8	2512	Res	4
5%					
10.0K	Resistor	R102, R103	R0603	Res	2
10.0K	Resistor	R88, R89	R0603	Res	2
0.1%					
10.0K	Resistor	R24, R29, R32, R36, R39,	R0603	Res	15
5%		R48, R51, R54, R57, R61,			
		R66, R69, R72, R75, R78			
L	<u> </u>	,,,,	1	<u>I</u>	<u> </u>

40.0	D ! - t - ::	DO DAO DAA DAO DOZ	Docco	D -	l –
10.0 M 1%	Resistor	R9, R10, R11, R19, R27	R0603	Res	5
100.0 K 1%	Resistor	R34, R41, R47	0805_ HV_2	Res	3
100.0 K 5%	Resistor	R82, R90, R97	R0603	Res	3
100.0	Resistor	R12, R16, R17	R0603	Res	3
R 1% 100.0	Resistor	R100, R101	R0603	Res	2
100R 1%	Resistor	R80, R81	0805_ HV_2	Res 0805 HV	2
113.0 K 1%	Resistor	R93	R0603	Res	1
12.0K	Resistor	R107, R108, R109, R110, R111, R112	R0603	Res	6
220.0 K	Resistor	R83	R0603	Res	1
28.7R 1%	Resistor	R23, R28, R31, R35, R38, R46, R50, R53, R56, R60, R65, R68, R71, R74, R77	2512	Res	15
300.0 K 25pp m/°C	Resistor	R84, R85, R86, R87	R0603	Res	4
4.7K	Resistor	R105	R0603	Res	1
499.0 K 1%	Resistor	R58	R0603	Res	1
51.0K 5%	Resistor	R26	R0603	Res	1
510.0 K 5%	Resistor	R91, R92	R0603	Res	2
61.9R	Resistor	R104, R106	R0603	Res	2
620.0 R 5%	Resistor	R13, R14, R15	R0603	Res	3
750.0 R 5%	Resistor	R42	2010	Res	1
N/A	Spark Gap	E1	SPARK _GAP2	Spark Gap	1
1902 C	Standoff, Hex, 0.5"L #4-40 Nylon	H5, H6, H7, H8	Keysto ne_19 02C	1902 C	4
PTS8 15	SWITCH TACTILE SPST-NO 0.05A 12V	S1	PTS81 5SJK2 50SMT RLFS	PTS8 15	1
3950 2101 1	Terminal block, 3.5mm, 16x1, R/A, TH	J5	HEAD ER_39	3950 2101 6	1

			50210 16		
103A	Thermistor NTC, 10.0k	RT1, RT2, RT3	Therm	103A	3
T-2	ohm, 1%, Disc, 5x8.4 mm		istor_1 03AT-2	T-2	
ZXTN 1910 0CZT A	Transistor, NPN, 100 V, 5.25 A, SOT-89	Q18	SOT- 89-3	ZXTN 1910 0CZT A, Diod es Inc.	1
SMAJ 60CA	TVS DIODE 22VWM 35.5VC DO214AC. BIDIRECCIONAL	D1, D2	DO- 214AB (SMA)	SMAJ 60CA	2

Hojas de datos

Los 3 (tres) circuitos integrados principales que conforman el PCB son parte del portfolio para manejo de baterías del proveedor Texas Instruments.

Se recomienda revisar la documentación más detallada del fabricante.

BQ76200

Para revisar la documentación en mayor profundidad se recomienda revisar el enlace del Datasheet.

PIN TYP		TYPE(1)	DESCRIPTION
NAME	NO.	I/O	DESCRIPTION
BAT	2	P	Top of battery stack
CHG ⁽²⁾	16	0	Gate drive for charge FET
CHG_EN ⁽³⁾	4	1	Charge FET enable
CP_EN ⁽³⁾	5	1	Charge pump enable (internally logic OR'ed with CHG_EN and DSG_EN signals)
DSG ⁽²⁾	12	0	Gate drive for discharge FET
DSG_EN ⁽³⁾	6	1	Discharge FET enable
NC	3, 13, 15	_	No connect. Leave the pin floating
PACK	11	P	Analog input from PACK+ terminal
PACKDIV ⁽²⁾	10	0	PACK voltage after internal switch (Connect to MCU ADC via resistor divider.)
PCHG ⁽²⁾	14	0	Gate drive for precharge FET
PCHG_EN(3)	8	1	Precharge FET enable
PMON_EN ⁽³⁾	7	1	Pack monitor enable (allows connection of internal switch between PACK and PACKDIV)
VDDCP	1	0	Charge pump output. Connect a capacitor to BAT pin. Do not load this pin.
VSS	9	P	Ground reference

⁽¹⁾ P = Power Connection, O = Digital Output, AI = Analog Input, I = Digital Input, I/OD = Digital Input/Output
(2) Leave the pin float if the function is not used.
3) It is recommended to connect the pin to ground if the function is not used.

Figura 4 - BQ76200 resumen datasheet

BQ76940

Para revisar la documentación en mayor profundidad se recomienda revisar el enlace del Datasheet.

Figura 5 - BQ76940 resumen datasheet

BQ78350

Para revisar la documentación en mayor profundidad se recomienda revisar el enlace del Datasheet.

Figura 6 - BQ78350 diagrama

Ancho de trazas

Señales

Las trazas denominadas de señal, o dicho de otra forma que no requieren ningún cuidado en particular fueron utilizadas con un ancho mínimo de 0.2 mm, siendo 0.254mm el valor típico utilizado.

Batería

Las trazas asociadas al conexionado de cada celda en la batería se realizaron mediante un polígono, a fin de disminuir al máximo posible la impedancia en las mismas, a su vez como el conector se ubicó directamente enfrentado a un juego de resistencias que sirve para ecualizar las cargas de la celda en caso de ser necesario, cuyo chip resistor es R2512 no habría motivo alguno para limitar el tamaño de las conexiones.

Carga

Finalmente, todo el conexionado del circuito de carga fue dimensionado para manejar cargas de aproximadamente 30Ah, este tipo de pistas fueron implementadas también con polígonos por cuestiones de disipación térmica, si bien los transistores son perfectamente capaces de soportar la exigencia del diseño con el uso de los polígonos se evita la aparición de puntos calientes en el trazado del circuito.

Restricciones mecánicas y sujeción

La sujeción del PCB se realizará mediante 4 agujeros de sujeción del tipo M3, se recomienda utilizar unos separados roscados para sujetar la placa como se indica en la *Figura 7*. Sin embargo, tranquilamente se podría utilizar un gabinete aprovechando los agujeros de sujeción.

Figura 7 - Sujeción

Mecánicamente la única restricción mecánica que cuenta el PCB se debe a los conectores para la carga de batería. El footprint colocado corresponde al montaje de un conector igual al compartido en la *Figura 8*.

Figura 8 – Conector L35 Figura 9 – Footrprint

La flexibilidad que aporta el footprint es que permite obviar el montaje del conector y realizar el conexionado con un tornillo y tuerca.

Perforado

Tal como se mencionó anteriormente el perforado de los agujeros de sujeción deben ser realizados con un diámetro de 3.2mm para poder utilizar tornillos con rosca métrica M3.

Luego el perforado de las vías se utilizaron dos estilos como template, en ambos casos se utilizó la misma relación de aspecto entre el diámetro del agujero y su corona.

Las vías utilizadas son las siguientes:

Diámetro	0.3 mm	0.4 mm
Corona	0.6 mm	0.8 mm

Como todos los componentes se encuentran ubicados en la cara superior del PCB, se aprovecha dicha distribución para realizar el cableado de la etapa de carga y descarga con el menor cambio de caras posibles, entonces prácticamente las vías utilizadas en los polígonos son simplemente para poder manejar el calor generado.

Reglas CAD

A continuación, se comparten las reglas configuradas para realizar el diseño del BMS.

Clearance

Para las reglas de la separación entre trazas se utilizaron dos reglas, una genérica para todas las trazas, y otra más restrictiva para mantener una separación mayor con los polígonos.

Figura 10 – Reglas de separación

Width

El ancho de las trazas también fue separado en dos reglas, una general y otra particular para utilizarse en las pistas que son para alimentar circuitos integrados, o parte del módulo de los transistores FET´s.

Figura 11 – Reglas de ancho

Polígonos

Todos los polígonos están conectados mediante un termal relief, a excepción de las vías correspondientes al mismo y los transistores de potencia en donde se utilizó el estilo de conexión directa.

Proveedor

Para la fabricación de las placas se seleccionó a un proveedor del exterior, PCBWay para ser más específico para corroborar que el proveedor tenga las capacidades de fabricación se simuló la carga de los archivos gerbers en la web, arrojando las siguientes características del diseño, las cuales coinciden con las mencionadas previamente.

Figura 12 - Capacidades del proveedor

Consideraciones ruteo

Si bien múltiples cuestiones asociadas al ruteo fueron mencionadas a lo largo del documento, hay ciertas cuestiones que aún merece la pena ser destacado.

Por ejemplo hay una resistencia dentro del circuito de carga que funciona como resistencia de shunt para sensar la corriente de la batería. Esta resistencia fue ruteada al estilo de resistencia de 4 terminales para evitar introducir ruido en la medición. En la *Figura 13* Se puede observar el ruteo.

Figura 13 - Resistencia shunt

También hay resistencias que se colocan en paralelo para poder manejar su corriente circulante, se resuelve ubicarlas alejadas un poco más alejadas del resto de los componentes ya que lógicamente esas trazas pueden llegar a levantar temperaturas más elevadas que el resto de la placa.

Figura 14 – Resistencia PMOS

Otra cuestión bastante conveniente es el pinout del circuito integrado utilizado para el AFE, se aprovecha su distribución para hacer un ruteo simétrico en la medición de cada celda.

Figura 15 – Top layer AFE

Montaje y soldadura

El montaje de los componentes será realizado mediante una máquina pick and place a excepción de los 6 conectores de la placa los cuales serán insertados manualmente en una segunda etapa.

Una vez colocados los componentes SMD en su totalidad del top layer se realizará el proceso de soldado con un horno de refusión, siendo esta la primera etapa de soldado.

Luego se insertarán manualmente los conectores para su posterior soldado por la técnica de ola.

Disposición

Los componentes fueron acomodados según la disposición indicada en la *Figura 17*, allí se puede evidenciar la búsqueda de agrupar los componentes de cada módulo en un área delimitada, permitiendo mayor flexibilidad a la hora de interconectar las trazas tal como se observan en el diagrama en bloques.

Se puede identificar a los bloques según su color recuadrado.

Módulo	Color
Amarillo	AFE
Azul	Gauge
Verde	Embebido + conector de comunicación
Rosa	FET's

También vale la pena mencionar que todos los conectores se encuentran en los bordes de la placa para ser accedidos fácilmente a la hora de realizar el conexionado correspondiente.

Por último, también vale la pena destacar la ubicación de los conectores de entrada para realizar la carga del pack de batería y tratando de que aleje lo más posible de los circuitos que manejan niveles lógicos menores, como por ejemplo el microcontrolador.

Figura 18 – Disposición

Impreso terminado

Se comparten a continuación en las *Figuras 19* Y *20* El impreso finalizado.

Figura 19 – Vista superior

Figura 20 – Vista superior 3D