# Lógica de predicados

Clase 9

IIC 1253

Prof. Pedro Bahamondes

# Outline

#### Más allá de la lógica proposicional

Sintaxis de predicados

Semántica de predicados

Equivalencia y consecuencia

Epílogo

# El problema de consecuencia lógica

El siguiente es un caso de consecuencia lógica

Todas las personas son mortales.

Sócrates es persona.

Por lo tanto, Sócrates es mortal.

¿Podemos modelarlo/explicarlo con lógica proposicional?





Necesitamos más poder...

¿Qué le falta a la lógica proposicional?

# Necesitamos más poder...

¿Qué le falta a la lógica proposicional?

- Objetos de un cierto conjunto
- Predicados sobre objetos
- Cuantificadores: para todo y existe

# Necesitamos más poder...

¿Qué le falta a la lógica proposicional?

- Objetos de un cierto conjunto
- Predicados sobre objetos
- Cuantificadores: para todo y existe

Estudiaremos una nueva lógica con estos elementos

Esta lógica nos permitirá expresar estructuras complejas

# Objetivos de la clase

- □ Comprender el concepto de predicado
- □ Comprender sintaxis de predicados compuestos
- Comprender semántica de la lógica de predicados
- □ Identificar equivalencia lógica en predicados

# Outline

Más allá de la lógica proposicional

Sintaxis de predicados

Semántica de predicados

Equivalencia y consecuencia

Epílogo

### Ejemplos (versión 1.0)

¿Cuáles de los siguientes enunciados son proposiciones?

- x es par
- x ≤ y
- x △ y

(¿qué diablos es  $\triangle$ ?)

 $x \triangleleft y = z$ 

(¿qué diablos es ⊲?)

No admiten valor de verdad hasta ser evaluados e interpretados

```
Ejemplos (versión 2.0)
```

Las siguientes son proposiciones

- 2 es par
- **■** 2 ≤ 4
- 'h' △ 'hola' (cuando △ se interpreta como "es substring de")
- $4 \triangleleft 1 = 41$  (cuando  $\triangleleft$  se interpreta como suma de naturales)

El valor de verdad depende de: un dominio y la interpretación de los símbolos

#### Definición

Un predicado P(x) es una afirmación abierta, cuyo valor de verdad depende del objeto en el cual es evaluado.

### **Ejemplos**

- P(x) := x es par
- R(x) := x es primo
- M(x) := x es mortal

#### Definición

Para un predicado P(x) y un valor a, la valuación P(a) es el valor de verdad del predicado P(x) en a.

### **Ejemplos**

$$P(x) \coloneqq x \text{ es par } R(x) \coloneqq x \text{ es primo } M(x) \coloneqq x \text{ es mortal}$$

- P(2) = 1
- P(3) = 0
- R(7) = 1
- M(Socrates) = 1
- M(Zeus) = 0

#### Definición

Un predicado n-ario  $P(x_1,...,x_n)$  es una afirmación con n variables, cuyo valor de verdad depende de los objetos en el cual es evaluado.

#### Definición

Para un predicado n-ario  $P(x_1,...,x_n)$  y valores  $a_1,...,a_n$ , la valuación  $P(a_1,...,a_n)$  es el valor de verdad de P en  $a_1,...,a_n$ .

### **Ejemplos**

$$O(x,y) := x \le y$$
  $S(x,y,z) := x + y = z$   $Padre(x,y) := x$  es padre de  $y$ 

- O(2,3) = 1
- S(5,10,15) = 1
- S(4,12,1) = 0
- Padre(Homero, Bart) = 1

# Predicados y Dominio

#### Observación

Todos los predicados están restringidos a un dominio (no vacío) de evaluación.

## **Ejemplos**

$$O(x,y) \coloneqq x \le y$$
,  $S(x,y,z) \coloneqq x + y = z$ ,  $Padre(x,y) \coloneqq x$  es padre de  $y$ 

O(x,y) :=  $x \le y$  sobre  $\mathbb{N}$ S(x,y,z) := x + y = z sobre  $\mathbb{Q}$ 

Padre(x) := x es padre de y sobre el conjunto de todas las personas

# Predicados y Dominio

#### Observación

Todos los predicados están restringidos a un dominio (no vacío) de evaluación.

#### Notación

- Para un predicado  $P(x_1,...,x_n)$  diremos que  $x_1,...,x_n$  son variables libres de P.
- Un predicado 0-ario es un predicado sin variables y tiene valor de verdadero o falso sin importar la valuación.

# Sintaxis de predicados

#### Definición (incompleta)

Diremos que  $\varphi$  es un predicado compuesto si es

- 1. un predicado
- 2. la negación (¬) de un predicado compuesto
- conjunción (∧), disyunción (∨), implicancia (→) o bidireccional (↔) de predicados compuestos sobre el mismo dominio

Observemos que hasta aquí, la sintaxis es análoga al caso de fórmulas proposicionales

### **Valuaciones**

#### Definición

La valuación de un predicado compuesto corresponde a la valuación recursiva de sus conectivos lógicos y predicados básicos.

#### **Ejemplos**

 $P(x) := x \text{ es par y } O(x, y) := x \le y \text{ sobre } \mathbb{N}$ :

- $\varphi(x) \coloneqq \neg P(x)$
- $\psi(x,y,z) \coloneqq O(x,y) \wedge O(y,z)$
- $\bullet (x,y) := (P(x) \land P(y)) \to O(x,y)$
- $\varphi(4) = 0$

### Cuantificador universal

#### Definición

Sea  $\varphi(x, y_1, ..., y_n)$  un predicado compuesto con dominio D. Definimos el cuantificador universal como

$$\forall x(\varphi(x, y_1, ..., y_n)).$$

Diremos que x es la variable cuantificada e  $y_1, ..., y_n$  son las variables libres.

#### Definición

Para  $b_1, ..., b_n$  en D, definimos la valuación:

$$\forall x(\varphi(a,b_1,...,b_n))=1$$

si **para todo** a en D se tiene que  $\varphi(a, b_1, ..., b_n) = 1$ , y 0 en otro caso.

### Cuantificador universal

#### **Ejemplos**

Para los predicados P(x) := x es par y  $O(x, y) := x \le y$  sobre  $\mathbb{N}$ :

$$\psi(y) := \forall x(O(x,y)) \quad \cdots \quad \psi(2) = \forall x(O(x,2))$$

$$\theta(x) := \forall y(O(x,y)) \quad \cdots \quad \theta(0) = \forall y(O(0,y))$$

$$\varphi \coloneqq \forall x (P(x))$$

$$\varphi' := \forall x (P(x) \lor \neg P(x))$$

### Cuantificador existencial

#### Definición

Sea  $\varphi(x, y_1, ..., y_n)$  un predicado compuesto con dominio D. Definimos el cuantificador existencial como

$$\exists x(\varphi(x, y_1, ..., y_n)).$$

Diremos que x es la variable cuantificada y  $y_1, ..., y_n$  son las variables libres.

#### Definición

Para  $b_1, ..., b_n$  en D, definimos la valuación:

$$\exists x(\varphi(x,b_1,...,b_n))=1$$

si **existe** a en D tal que  $\varphi(a, b_1, ..., b_n) = 1$ , y 0 en otro caso.

### Cuantificador existencial

#### **Ejemplos**

Para los predicados P(x) := x es par y  $O(x, y) := x \le y$  sobre  $\mathbb{N}$ :

$$\psi(y) := \exists x (O(x,y)) \quad \cdots \quad \psi(2) = \exists x (O(x,2))$$

$$\bullet(x) \coloneqq \exists y (O(x,y)) \quad \cdots \quad \theta(0) = \exists y (O(0,y))$$

$$\varphi(x,y) := \exists z (O(x,z) \land O(z,y) \land x \neq z \land y \neq z) \quad \cdots \quad \varphi(1,2)$$

$$\beta \coloneqq \exists x (P(x))$$

# Es posible combinar cuantificadores

#### **Ejemplos**

Para los predicados P(x) := x es par y  $O(x, y) := x \le y$  sobre  $\mathbb{Z}$ :

- $\forall x(\forall y(O(x,y)))$
- $\exists x(\exists y(O(x,y)))$
- $\forall x(\exists y(O(x,y)))$
- $\exists x(\forall y(O(x,y)))$
- $\forall x (P(x) \to \exists y (O(x,y)))$

# Sintaxis de predicados (v.2.0)

### (re)Definición

Diremos que  $\varphi$  es un predicado compuesto (o también fórmula) si es:

- 1. un predicado básico,
- 2. negación (¬) de un predicado compuesto
- conjunción (∧), disyunción (∨), implicancia (→), bidireccional (↔) de predicados compuestos sobre el mismo dominio o
- la cuantificación universal (∀) o existencial (∃) de un predicado compuesto.

### (re)Definición

La valuación de un predicado compuesto corresponde a la valuación recursiva de sus cuantificadores, conectivos lógicos y predicados básicos.

# Outline

Más allá de la lógica proposicional

Sintaxis de predicados

Semántica de predicados

Equivalencia y consecuencia

Epílogo

¿Son estas fórmulas equivalentes?

$$\forall x (\exists y (x \leq y)) \stackrel{?}{=} \exists x (\forall y (x \leq y))$$

Depende del dominio y la interpretación del símbolo  $\leq$ .

#### Notación

Desde ahora, para un dominio D diremos que:

- $P(x_1,...,x_n)$  es un símbolo de predicado y
- $P^D(x_1,...,x_n)$  es el predicado sobre D.

#### Definición

Sean  $P_1, ..., P_m$  símbolos de predicados.

Una interpretación  $\mathcal{I}$  para  $P_1, ..., P_m$  está compuesta de:

- lacksquare un dominio D que denotaremos  $\mathcal{I}(\textit{dom})$  y
- lacksquare un predicado  $P_i^D$  que denotaremos por  $\mathcal{I}(P_i)$  para cada símbolo  $P_i$ .

### Ejemplos

#### **Ejemplos**

$$\mathcal{I}_1(\textit{dom}) \coloneqq \mathbb{N}$$

#### **Ejemplos**

$$\mathcal{I}_1(dom) \coloneqq \mathbb{N}$$
  
 $\mathcal{I}_1(P) \coloneqq x \neq 1$ 

#### **Ejemplos**

$$\mathcal{I}_1(\textit{dom}) \coloneqq \mathbb{N}$$
 $\mathcal{I}_1(P) \coloneqq x \neq 1$ 
 $\mathcal{I}_1(O) \coloneqq y \text{ es múltiplo de } x$ 

#### **Ejemplos**

$$\mathcal{I}_1(\textit{dom}) \coloneqq \mathbb{N} \qquad \qquad \mathcal{I}_2(\textit{dom}) \coloneqq \mathbb{Z}$$
 
$$\mathcal{I}_1(P) \coloneqq x \neq 1$$
 
$$\mathcal{I}_1(O) \coloneqq y \text{ es múltiplo de } x$$

#### **Ejemplos**

$$\mathcal{I}_1(\textit{dom}) \coloneqq \mathbb{N} \qquad \qquad \mathcal{I}_2(\textit{dom}) \coloneqq \mathbb{Z}$$
 
$$\mathcal{I}_1(P) \coloneqq x \neq 1 \qquad \qquad \mathcal{I}_2(P) \coloneqq x < 0$$
 
$$\mathcal{I}_1(O) \coloneqq y \text{ es múltiplo de } x$$

#### **Ejemplos**

$$\mathcal{I}_1(\textit{dom}) \coloneqq \mathbb{N}$$
  $\mathcal{I}_2(\textit{dom}) \coloneqq \mathbb{Z}$   $\mathcal{I}_1(P) \coloneqq x \neq 1$   $\mathcal{I}_2(P) \coloneqq x < 0$   $\mathcal{I}_1(O) \coloneqq y \text{ es múltiplo de } x$   $\mathcal{I}_2(O) \coloneqq x + y = 0$ 

#### Definición

Sean  $\varphi(x_1,...,x_n)$  una fórmula e  $\mathcal{I}$  una interpretación de los símbolos en  $\varphi$ . Diremos que  $\mathcal{I}$  satisface  $\varphi$  sobre  $a_1,...,a_n$  en  $\mathcal{I}(dom)$ :

$$\mathcal{I} \vDash \varphi(a_1,..,a_n)$$

si  $\varphi(a_1,...,a_n)$  es verdadero al interpretar cada símbolo en  $\varphi$  según  $\mathcal{I}$ .

### **Ejemplos**

- $\mathcal{I}_1 \vDash \forall x (\exists y (P(y) \land O(x,y)))$
- $I_2 \not\models \forall x (\exists y (P(y) \land O(x,y)))$

### Interpretaciones

#### Definición

Sean  $\varphi(x_1,...,x_n)$  una fórmula e  $\mathcal{I}$  una interpretación de los símbolos en  $\varphi$ . Diremos que  $\mathcal{I}$  satisface  $\varphi$  sobre  $a_1,...,a_n$  en  $\mathcal{I}(dom)$ :

$$\mathcal{I} \vDash \varphi(a_1,..,a_n)$$

si  $\varphi(a_1,...,a_n)$  es verdadero al interpretar cada símbolo en  $\varphi$  según  $\mathcal{I}$ .

Si  $\mathcal{I}$  no satisface  $\varphi$  sobre  $a_1,...,a_n$  en  $\mathcal{I}(dom)$  lo denotamos como:

$$\mathcal{I} \not\models \varphi(\mathsf{a}_1,..,\mathsf{a}_n)$$

Observe que el símbolo ⊨ en predicados indica satisfactibilidad

# Outline

Más allá de la lógica proposicional

Sintaxis de predicados

Semántica de predicados

Equivalencia y consecuencia

Epílogo

#### Definición

Sean  $\varphi(x_1,...,x_n)$  y  $\psi(x_1,...,x_n)$  dos fórmulas en lógica de predicados. Decimos que  $\varphi$  y  $\psi$  son <mark>lógicamente equivalentes</mark>, lo que denotamos por

$$\varphi \equiv \psi$$

si para toda interpretación  $\mathcal{I}$  y para todo  $a_1,...,a_n$  en  $\mathcal{I}(dom)$  se cumple que

$$\mathcal{I} \vDash \varphi(a_1,..,a_n)$$
 si y sólo si  $\mathcal{I} \vDash \psi(a_1,..,a_n)$ 

#### Caso especial

Si  $\varphi$  y  $\psi$  son oraciones (no tienen variables libres) equivalentes, entonces para toda interpretación  $\mathcal{I}$ :

$$\mathcal{I} \vDash \varphi$$
 si y sólo si  $\mathcal{I} \vDash \psi$ 

#### Observación

Todas las equivalencias de lógica proposicional son equivalencias en lógica de predicados.

### **Ejemplos**

Para fórmulas  $\varphi$ ,  $\psi$  y  $\theta$  en lógica de predicados:

- 1. Conmutatividad:  $\varphi \land \psi \equiv \psi \land \varphi$
- 2. **Asociatividad:**  $\varphi \wedge (\psi \wedge \theta) \equiv (\varphi \wedge \psi) \wedge \theta$
- 3. **Idempotencia:**  $\varphi \land \varphi \equiv \varphi$
- 4. **Doble negación:**  $\neg(\neg\varphi) \equiv \varphi$
- 5. **Distributividad:**  $\varphi \land (\psi \lor \theta) \equiv (\varphi \land \psi) \lor (\varphi \land \theta)$
- 6. **De Morgan:**  $\neg(\varphi \land \psi) \equiv \neg \varphi \lor \neg \psi$
- 7. ...

### ¿Hay más equivalencias en predicados?

### **Ejemplos**

Las siguientes fórmulas también son lógicamente equivalentes:

1. 
$$\forall x (P(x) \rightarrow R(x)) \equiv \forall x (\neg P(x) \lor R(x))$$

2. 
$$\forall x(P(x)) \rightarrow \exists y(R(y)) \equiv \neg \exists y(R(y)) \rightarrow \neg \forall x(P(x))$$

Tenemos nuevas equivalencias además de las ya mencionadas:

Teorema

Tenemos nuevas equivalencias además de las ya mencionadas:

Teorema

$$\neg \forall x (\varphi(x)) \equiv \exists x (\neg \varphi(x))$$

Tenemos nuevas equivalencias además de las ya mencionadas:

Teorema

$$\neg \forall x (\varphi(x)) \equiv \exists x (\neg \varphi(x))$$
$$\neg \exists x (\varphi(x)) \equiv \forall x (\neg \varphi(x))$$

Tenemos nuevas equivalencias además de las ya mencionadas:

Teorema

$$\neg \forall x (\varphi(x)) \equiv \exists x (\neg \varphi(x))$$
$$\neg \exists x (\varphi(x)) \equiv \forall x (\neg \varphi(x))$$
$$\forall x (\varphi(x) \land \psi(x)) \equiv \forall x (\varphi(x)) \land \forall x (\psi(x))$$

Tenemos nuevas equivalencias además de las ya mencionadas:

Teorema

$$\neg \forall x (\varphi(x)) \equiv \exists x (\neg \varphi(x))$$

$$\neg \exists x (\varphi(x)) \equiv \forall x (\neg \varphi(x))$$

$$\forall x (\varphi(x) \land \psi(x)) \equiv \forall x (\varphi(x)) \land \forall x (\psi(x))$$

$$\exists x (\varphi(x) \lor \psi(x)) \equiv \exists x (\varphi(x)) \lor \exists x (\psi(x))$$

Tenemos nuevas equivalencias además de las ya mencionadas:

Teorema

Sea  $\varphi(x), \psi(x)$  fórmulas con x su variable libre. Entonces:

$$\neg \forall x (\varphi(x)) \equiv \exists x (\neg \varphi(x))$$

$$\neg \exists x (\varphi(x)) \equiv \forall x (\neg \varphi(x))$$

$$\forall x (\varphi(x) \land \psi(x)) \equiv \forall x (\varphi(x)) \land \forall x (\psi(x))$$

$$\exists x (\varphi(x) \lor \psi(x)) \equiv \exists x (\varphi(x)) \lor \exists x (\psi(x))$$

¿Qué nos dicen estos teoremas?

Tenemos nuevas equivalencias además de las ya mencionadas:

Teorema

Sea  $\varphi(x), \psi(x)$  fórmulas con x su variable libre. Entonces:

$$\neg \forall x (\varphi(x)) \equiv \exists x (\neg \varphi(x))$$

$$\neg \exists x (\varphi(x)) \equiv \forall x (\neg \varphi(x))$$

$$\forall x (\varphi(x) \land \psi(x)) \equiv \forall x (\varphi(x)) \land \forall x (\psi(x))$$

$$\exists x (\varphi(x) \lor \psi(x)) \equiv \exists x (\varphi(x)) \lor \exists x (\psi(x))$$

¿Qué nos dicen estos teoremas?

Ejercicio (propuesto ★)

Demuestre los teoremas.

### Ejercicio

¿Son ciertas las siguientes equivalencias?

 $\forall x (\exists y (\varphi(x,y))) \stackrel{?}{=} \exists x (\forall y (\varphi(x,y)))$ 

### Ejercicio

¿Son ciertas las siguientes equivalencias?

- $\forall x(\exists y(\varphi(x,y))) \stackrel{?}{=} \exists x(\forall y(\varphi(x,y)))$
- $\forall x (\varphi(x) \lor \psi(x)) \stackrel{?}{=} \forall x (\varphi(x)) \lor \forall x (\psi(x))$



### Ejercicio

¿Son ciertas las siguientes equivalencias?

- $\forall x(\exists y(\varphi(x,y))) \stackrel{?}{=} \exists x(\forall y(\varphi(x,y)))$
- $\forall x (\varphi(x) \lor \psi(x)) \stackrel{?}{=} \forall x (\varphi(x)) \lor \forall x (\psi(x))$
- $\exists x (\varphi(x) \land \psi(x)) \stackrel{?}{\equiv} \exists x (\varphi(x)) \land \exists x (\psi(x))$

### Ejercicio

¿Son ciertas las siguientes equivalencias?

- $\forall x(\exists y(\varphi(x,y))) \stackrel{?}{=} \exists x(\forall y(\varphi(x,y)))$
- $\forall x (\varphi(x) \vee \psi(x)) \stackrel{?}{=} \forall x (\varphi(x)) \vee \forall x (\psi(x))$
- $\exists x (\varphi(x) \land \psi(x)) \stackrel{?}{\equiv} \exists x (\varphi(x)) \land \exists x (\psi(x))$

Para probar no-equivalencia basta con proporcionar una interpretación que satisface solo a una de las fórmulas comparadas

Las siguientes definiciones nos ayudan a extender el concepto de consecuencia lógica.

#### Definición

Para un conjunto  $\Sigma$  de fórmulas, decimos que  $\mathcal I$  satisface  $\Sigma$  sobre  $a_1,...,a_n$  en  $\mathcal I(dom)$  si:

$$\mathcal{I} \vDash \varphi(a_1, ..., a_n)$$
 para toda  $\varphi \in \Sigma$ 

Notación:  $\mathcal{I} \models \Sigma(a_1, ..., a_n)$ 

#### Definición

Una fórmula  $\varphi$  es consecuencia lógica de un conjunto de fórmulas  $\Sigma$ , lo que denotamos por:

$$\Sigma \vDash \varphi$$

si para toda interpretación  $\mathcal{I}$  y  $a_1,...,a_n$  en  $\mathcal{I}(dom)$  se cumple que:

si 
$$\mathcal{I} \models \Sigma(a_1, ..., a_n)$$
 entonces  $\mathcal{I} \models \varphi(a_1, ..., a_n)$ 

### **Ejemplos**

¿Cuáles son consecuencias lógicas válidas?

$$\{ \forall x (\varphi(x)) \land \forall x (\psi(x)) \} \vDash \forall x (\varphi(x) \land \psi(x))$$

$$\exists x(\varphi(x)) \land \exists x(\psi(x)) \} \vDash \exists x(\varphi(x) \land \psi(x))$$

$$\{ \forall x (\exists y (\varphi(x,y))) \} \vDash \exists x (\forall y (\varphi(x,y)))$$

¿Existe algún algoritmo que nos permita resolver este problema? ¿Qué tal nuestro sistema deductivo de lógica proposicional?

## Reglas de inferencia

Además de las reglas de inferencia de lógica proposicional (**resolución** y **factorización**), podemos considerar las siguientes reglas:

1. Especificación universal:

$$\frac{\forall x (\varphi(x))}{\varphi(a) \text{ para cualquier } a}$$

2. Generalización universal:

$$\frac{\varphi(a) \text{ para un } a \text{ arbitrario}}{\forall x (\varphi(x))}$$

## Reglas de inferencia

**Además** de las reglas de inferencia de lógica proposicional (resolución y factorización), podemos considerar las siguientes reglas:

3. Especificación existencial:

$$\frac{\exists x (\varphi(x))}{\varphi(a) \text{ para algún } a \text{ (nuevo)}}$$

4. Generalización existencial:

$$\varphi(a)$$
 para algún  $a$ 

$$\exists x (\varphi(x))$$

Finalmente, podemos establecer la noción de argumento válido.

### Ejercicio

¿Es válido el siguiente argumento? Modele y demuestre usando un sistema deductivo.

- Premisa 1: Todas las personas son mortales.
- Premisa 2: Sócrates es persona.
- Conclusión: Sócrates es mortal.

Finalmente, podemos establecer la noción de argumento válido.

### Ejercicio

Consideremos los siguientes predicados:

- P(x) := x es persona
- M(x) := x es mortal

Podemos modelar el problema de la siguiente forma:

$$\frac{P(s)}{M(s)}$$

#### Ejercicio

Debemos mostrar que

$$\{\forall x(P(x) \rightarrow M(x)), P(s)\} \models M(s)$$

por regla de implicancia esto es equivalente a

$$\{\forall x(\neg P(x) \lor M(x)), P(s)\} \vDash M(s)$$

Consideremos  $\Sigma = \{ \forall x (\neg P(x) \lor M(x)), P(s), \neg M(s) \}$ . Entonces,

- (1)  $\forall x (\neg P(x) \lor M(x)) \in \Sigma$
- (2)  $\neg P(s) \lor M(s)$  especificación universal de (1)
- (3)  $P(s) \in \Sigma$
- (4) M(s) resolución de (2),(3)
- (5)  $\neg M(s) \in \Sigma$
- (6)  $\Box$  resolución de (4),(5)

# Outline

Más allá de la lógica proposicional

Sintaxis de predicados

Semántica de predicados

Equivalencia y consecuencia

Epílogo

## Objetivos de la clase

- □ Comprender el concepto de predicado
- □ Comprender sintaxis de predicados compuestos
- Comprender semántica de la lógica de predicados
- □ Identificar equivalencia lógica en predicados