# 实验四 时序器件实验

# 一、实验目的

- 1. 掌握常见时序器件的逻辑功能和使用方法。
- 2. 掌握时序器件的级联扩展的方法。
- 3. 掌握使用时序器件实现数字系统设计的步骤。

### 二、实验设备与器材

- 1、数字逻辑电路实验箱。
- 2、芯片

| 74HC00  | 四路两输入与非门     | 1片  |
|---------|--------------|-----|
| 74HC02  | 四路两输入或非门     | 1片  |
| 74HC74  | 双D触发器        | 2 片 |
| 74HC161 | 四位二进制异步清零计数器 | 1片  |
| 74HC163 | 四位二进制同步清零计数器 | 1片  |
| 74LS194 | 双向移位寄存器      | 2 片 |

### 三、实验内容及实验步骤

- 1、分别利用 1 片 74 HC161 清零端加一个逻辑门电路设计并实现 0, 1, ..., 11 模 12 的计数器;以及 1 片利用 74HC163 的置数端加一个逻辑门电路,设计并实现 3, 4, 5, ..., 14 模 12 的计数器,分别将输出连接到一个 7 段数码管显示。
- 1).写出设计步骤.

使用 74HC161 的清零端,当计数达到 11 时,使用门电路将输出转换为清零端的有效状态,之后计数为 0,重复 0-11 计数.

使用 74HC163 的置数端,当计数达到 14 时,使用门电路将输出端转换为置位端的有效状态,并给输入赋值,使置位后状态是 3,之后循环 3-14 计数.

#### 2).写出状态转移表

74HC161+清零端 74HC163+置位端

| 现态(S) | 次态(S*) | 现态(S) | 次态(S*)     |
|-------|--------|-------|------------|
| SØ    | S1     | S3    | S4         |
| S1    | S2     | S4    | S5         |
| 52    | S3     | S5    | S6         |
| S3    | S4     | S6    | S7         |
| S4    | S5     | S7    | S8         |
| S5    | S6     | S8    | S9         |
| S6    | S7     | S9    | S10        |
| S7    | S8     | S10   | S11        |
| S8    | S9     | S11   | S12        |
| S9    | S10    | S12   | S13        |
| S10   | S11    | S13   | S14        |
| S11   | S0     | S14   | <b>S</b> 3 |

#### 3).写出逻辑表达式.

#### 74HC161:

A = 0; B = 0; C = 0; D = 0;  
ENT = 1; ENP = 1; LD\_L = 1;  

$$CLR_L = \overline{QC * QD}$$
;  
74HC163:  
A = 1; B = 1; C = 0; D = 0;  
ENT = 1; ENP = 1;  $CLR_L = 1$ ;  
 $LD_L = \overline{QB * QC * QD}$ ;

4).画出电路图,并在 logisim 中模拟验证,提交 logisim 电路源程序。



5).通过实验分析验证所设计的电路是否正确



2、利用 3 片 74HC163(74HC161)及少量逻辑门电路,设计自己学号后 3 位(如果后 3 位学号小于 100 的,则加上 100 后,进行计数)的 BCD 加法计数器,输入 1Hz 的连续脉冲累加计数,并将输出连接到三个 7 段数码管显示。

#### 1).写出设计步骤.

使用 3 片 74HC163;先进行级联,再整体清零。 当个位计数达到 9 时,将十位的 ENP,ENT 与个位的 CLEAR\_L 输入赋值为 1; 当个位和十位计数都达到 9 时,将十位的 CLEAR\_L 和百位的 ENP,ENT 输入赋值为

#### 1;

当个位,十位,百位计数分别达到4,2,5时,将三位的CLEAR\_L输入赋值为1,整体 计数重新回到 000;

#### 2).写出状态转移表

| 个位,   | 十位     | Ĕ     | ī位     |
|-------|--------|-------|--------|
| 现态(S) | 次态(S*) | 现态(S) | 次态(S*) |
| SØ    | S1     | SØ    | S1     |
| S1    | S2     | S1    | S2     |
| S2    | S3     | S2    | S3     |
| S3    | S4     | S3    | S4     |
| S4    | S5     | S4    | S5     |
| S5    | S6     | S5    | SØ     |
| S6    | S7     |       |        |
| S7    | S8     |       |        |
| S8    | S9     |       |        |
| S9    | SØ     |       |        |

3).写出逻辑表达式.(下标 0 1 2 分别代表个位 十位 百位对应的输入输出)

个位: A = 0; B = 0; C = 0; D = 0;  
ENT = 1; ENP = 1; LD\_L = 1;  
CLR\_L0 = 
$$\overline{QD0*QA0*QC2*QA2*QB1*QC0}$$
  
+位: A = 0; B = 0; C = 0; D = 0;  
ENT = ENP = QD0\*QA0; LD\_L = 1;  
CLR\_L1 =  $\overline{QD1*QA1*QD0*QA0*QC2*QA2*QB1*QC0}$ ;  
百位: A = 0; B = 0; C = 0; D = 0;  
ENT = ENP = QD1\*QA1\*QD0\*QA0; LD\_L = 1;  
CLR\_L2 =  $\overline{QC2*QA2*QB1*QC0}$ ;

4).画出电路图,并在 logisim 中验证,提交 logisim 电路源程序。



5).通过实验分析验证所设计的电路是否正确



3、利用一片 74LS194、74HC86 和 74HC02,利用 74LS194 左移功能,实现一种 4 位的包含全 0 状态的线性反馈移位计数器 LSFR。观察输出端的状态变化,将结果记录下来,并连接到 7 段数码管显示。

# 1).写出设计步骤.



以上图为基础,在 1000 左侧添加 0000 态,状态按逆时针方向变换. 使用左移功能,故低位处于二进制码的右端便可对应左移功能.

# 2).写出状态转移表

| 现态S(DCBA)               | 次态·S*(QD QC QB QA)      | Lin |
|-------------------------|-------------------------|-----|
| 50 (0000)               | 58 (1000)               | i   |
| 58 (1000)               | 54 (0100)               | 0   |
| 54 (0100)               | 52 (00/0)               | 0   |
| 52 (00 0)               | 59 (1001)               | 1   |
| 59 (1001)               | S12 (1100)              | l   |
| 512 (1100)              | 56 (0110)               | 0   |
| 56 (0110)               | SII ([0]1)              | 1   |
| SII (1011)              | S5 (0 01)               | 0   |
| S5 (0 l01)              | S10 (1010)              | 1   |
| SIO (1010)              | s13 (1101)              | i   |
| 513 (1101)              | s14 (1110)              | 1   |
| SI4 (1110)              | SIS (1111)<br>S7 (0011) | 1   |
| S15 (1111)<br>S7 (0111) | S3 (0011)               | 0   |
| 53 (00(1)               | SI (0001)               | 0   |
| SI (0001)               | so (0000)               | 0   |

3).写出逻辑表达式.

CLR\_L = 1; S1 = 1; S0 = 0; A = 0; B = 0; C = 0; D = 0; Rin = 0; Lin =  $QA^QB^A(\overline{QB} + QC + \overline{QD})$ ;

4).画出电路图,并在 logisim 中验证,提交 logisim 电路源程序。



5).通过实验分析验证所设计的电路是否正确



- 4、利用 74LS194 左移功能和少量门电路,完成二进制序列"1000111101"的循环生成,并通过 L0-L9 指示灯显示。
- 1).写出设计步骤.

使用两个 74LS194 芯片,将输出和 Lin 同时接入指示灯,可以显示 10 位,两个芯片电路图相同,但是初始状态不同,故可以实现 10 位二进制数的循环生成.

2).写出状态转移表

| THE RESERVE OF THE PARTY OF THE |                | 1.  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|
| IR态 S (ABCD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 次态S*(QAQBQCQD) | Lin |
| \$ SI (1000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s8 (000l)      | 1   |
| 58 (0001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SI2 (0011)     | 1   |
| 512 (0011)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S14 (O111)     | 1   |
| 514 (0111)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SIS (1111)     | 1   |
| 515 (1111)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 57 (1110)      | 0   |
| 57 (1110)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 511 (1101)     | 1   |
| 511 (1101)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 513 (1011)     | 1   |
| 513 (1011)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 56 (0110)      | 0   |
| 56 (0110)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 53 (1100)      | 0   |
| 53 (1100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SI (1000)      | 0   |

3).写出逻辑表达式.



 $\mathsf{Lin} \; = \; \bar{C} * D + \bar{A} * D + \bar{B} * \bar{C} + A * C * \bar{D} \; ;$ 

4). 画出电路图,并在 logisim 中验证,提交 logisim 电路源程序。



5).通过实验分析验证所设计的电路是否正确



### 四、实验报告要求

- 1. 画出实验内容中的详细实验原理图。
- 2. 记录、整理实验数据,并对实验结果进行分析。
- 3. 提交所有的 logisim 电路图源文件--.circ 文件
- 4. 比较反馈清零法和反馈置数法的异同
  - (1)相同:都适用于利用 n 位二进制计数器实现模 m 计数器( $m<2^n$ );
  - (2)不同:清零法只能从0-m-1计数,置数法可以从k-k+m-1计数( $k<2^n-m$ );清零法适用于有清零输入端的计数器,置数法适用于有预置数功能的计数器;
- 5. 总结利用计数器实现任意进制计数器的方法。

利用 n 位二进制计数器实现模 m 计数器:

若  $m<2^n$ ,使用清零法或者置数法;

清零法: 当计数达到 m-1 时,利用同步清零端将下一状态强制为 0000;

置数法: 利用进位输出信号 RCO 或者使用门电路在某一状态使同步预置数端有效,将初始赋值置入并输出.

否则,先进行级联,再使用清零或置数;若 m 可以分解为 m=m1\*m2,则可以分别 实现 m1 和 m2,再级联.

6. 设计一个自启动 4 位扭环计数器的原理图。

参考 ppt8-2 第 21 页:



- 7. 利用 74LS194 设计实现八位二进制数数据的并行/串行转换原理图。
  - (1)串入串出



(2) 串入并出



(3)并入串出,需要先设置 S1S0 为 11 进行载入,之后设置为 01 进行右移;



(4)并入并出,使用载入功能

