PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1																	2
H																	He
3	4	1										5	6	7	8	9	10
														l ′	_	_	
Li 6.941	Be 9.012											B	C	N 14.01	O 16.00	F 19.00	Ne 20.18
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	181.0	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac	Rf	Ha	Sg	Ns	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
(223)	226.0	227.0	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)	(284)	(289)	(290)	(293)	(294)	(294)

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	231.0	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Chemistry 112

Spring 2022

Henry's Law: C = kP

Raoult's Law:

 $P_{\text{solvent}} = P_{\text{solvent}}^{\circ} \cdot \chi_{\text{solvent}}$ and $\Delta P = P_{\text{solv}}^{o} - P_{\text{solv}} = \chi_{\text{solute}} P_{\text{solv}}^{o}$

Boiling Point Elevation: $\Delta T_B = k_B m$

Freezing Point Depression: $\Delta T_F = k_F m$

Osmotic Pressure: $\Pi = MRT$

760 torr = 1 atm

R = 0.0821 L•atm/mol•K

 $R = 8.314 \text{ J/mol} \cdot \text{K}$

 $0 \, ^{\circ}\text{C} = 273.15 \, \text{K}$

 $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

 $1 \text{ m} = 100 \text{ cm} = 1000 \text{ mm} = 10^6 \text{ } \mu\text{m} = 10^9 \text{ nm} = 10^{10} \text{ Å}$

density of water: $\rho = 1.00 \text{ g/ml} = 1.00 \text{ kg/L}$

$$aA + bB \rightleftharpoons cC + dD$$

$$K_{eq} = \frac{[C]c[D]d}{[A]a[B]b} \qquad Q = \frac{[C]c[D]d}{[A]a[B]b}$$

$$Q = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

$$K_p = K_c(RT)^{\Delta_n}$$

$$ay^2 + by + c = 0$$

$$[H_3O^+][OH^-] = 1 \times 10^{-14} = K_w$$

$$pH + pOH = 14.00 = pK_w$$

$$pH = -\log[H_3O^+]$$

$$[H_3O^+] = 10^{-pH}$$

$$pOH = -log[OH^-]$$

$$[OH^{-}] = 10^{-pOH}$$

$$K_a = \frac{[H_3O^+][A^-]}{[HA]}$$

$$K_b = \frac{[BH^+][OH^-]}{[B]}$$
 or $\frac{[HA][OH^-]}{[A^-]} \frac{[HA][OH^-]}{[A^-]}$

 $K_a K_b = K_w \quad pK_a + pK_b = pK_w$

$$pH = pK_a + log \frac{n_b}{n_a} = pK_a + log \frac{C_b}{C_a}$$

$$aA + bB \quad \rightarrow \quad cC + dD \qquad \text{rate} = -\frac{\Delta [A]}{a\Delta t} = -\frac{\Delta [B]}{b\Delta t} = +\frac{\Delta [C]}{c\Delta t} = +\frac{\Delta [D]}{d\Delta t}$$

 $rate = k[A]^x[B]^y$

$$rate = k[A]^0$$

$$[A] = [A]_0 - kt$$

rate =
$$k[A]^0$$
 $[A] = [A]_0 - kt$ $t_{1/2} = [A]_0 / 2k$

$$rate = k[A]^{1}$$

rate =
$$k[A]^1$$
 $[A] = [A]_0 e^{-kt}$

$$\ln[A] = \ln[A]_0 - kt$$

$$t_{1/2} = 0.693/k$$

 $k = Ae^{(-Ea/RT)} \qquad ln(k) = ln(k)$

$$k = Ae^{(-Ea/RT)}$$

$$ln(k) = ln(A) - E_a/R (1/T)$$

$$\ln \frac{k_1}{k_2} = \frac{-E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

$$w = -P\Delta V$$

$$1 L \cdot atm = 101.3 J$$

$$q_{surr} = -q_{system}$$

$$\Delta E = q + w$$

$$\Delta E = q + w$$
 $\Delta H = \Delta E + P\Delta V$

$$\Delta H = \Delta E + \Delta nRT$$

$$\Delta G = \Delta H - T\Delta S$$

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

$$\Delta G^{\circ} = -RT \ln K_{eq}$$

$$K_{eq} = e^{-\Delta G^{\circ}/RT}$$

$$InK_{eq} = \frac{\Delta S^{\circ}}{R} - \frac{\Delta H^{\circ}}{RT}$$

$$\ln\left(\frac{K_1}{K_2}\right) = \frac{\Delta H^0}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

$$1 V = 1 J/C$$

1 V = 1 J/C
$$\Delta G^{\circ} = -nFE^{\circ}$$

$$1F = 96,485 \text{ C/mol e}$$

$$E^{\circ} = \frac{RT}{nF} \ln K_{eq}$$

$$E^{\circ} = \frac{RT}{nF} \ln K_{eq}$$
 $E = E^{\circ} - \frac{RT}{nF} \ln Q$

at 298K,
$$E = E^{\circ} - (0.0591/n) \log Q$$