EXAMEN DE FIN D'ÉTUDES SECONDAIRES

Session 2016

ÉPREUVE ÉCRITE	Branche : Mathématiques II
Section(s) : B	N° d'ordre du candidat :
Date de l'épreuve : 23 mai 2016	Durée de l'épreuve : 4 h

Question I ((3+3)+6=12 points)

1) Résoudre : **a**)
$$7^{x+\frac{4}{3}} - 5^{3x} = 2(7^{x+\frac{1}{3}} + 5^{3x-1})$$

b)
$$\log_{x+2}(2x) = \log_{2x}(x+2)$$

2) On donne l'équation $(m+1)e^x - (m-1)e^{-x} = 2m \ (m \in \mathbb{R})$.

Discuter le nombre de solutions de cette équation suivant les valeurs de m.

Question II (1 + 5 + 8 + 2 + 2 + 4 = 22 points)

On donne la fonction f définie par $f(x) = x \cdot \ln \frac{x+1}{x}$

- 1) Déterminer le domaine de définition et le domaine de dérivabilité de f.
- 2) Etudier le comportement asymptotique de la fonction f.
- 3) a) Déterminer la fonction dérivée f de f.
 - **b**) Déterminer les limites à l'infini de f et étudier les variations de la fonction dérivée f.
 - c) En déduire le signe de la fonction dérivée f.
 - **d**) Dresser le tableau des variations et de concavité de la fonction f.
- 4) Représenter f dans un repère orthonormé du plan.
- 5) Déterminer algébriquement les coordonnées du point M du graphe de f admettant une tangente au graphe de f passant par le point P(0; 2).
- 6) Soit $\alpha \in]0$; 1]. Déterminer l'aire $A(\alpha)$ de la partie délimitée par le graphe de f, l'axe des abscisses et les droites d'équations $x = \alpha$ et x = 1. En déduire $\lim_{\alpha \to 0^+} A(\alpha)$.

Question III (3 + 3 = 6 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = \begin{cases} \frac{x}{1+e^{\left(\frac{1}{x}\right)}} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$.

- 1) Vérifier que f est continu en 0 et justifier que O(0; 0) est un point anguleux du graphe de f.
- 2) Etudier le comportement asymptotique de f à l'infini.

Question IV (3 + 3 = 6 points)

- 1) Calculer $\int_0^{\frac{\pi}{2}} \cos(x) \cdot \ln(1 + \cos x) dx$.
- 2) On donne la fonction f définie par $f(x) = \frac{1}{x^4 1}$.

Déterminer la primitive F de f sur]1; $+\infty$ [qui s'annule en $\sqrt{3}$.

(Indication: Déterminer a, b, c, $d \in \mathbb{R}$ tels que $f(x) = \frac{a}{x-1} + \frac{b}{x+1} + \frac{cx+d}{x^2+1} \ \forall \ x \in]1; +\infty[.)$

Question V (8 points)

Dans un repère orthonormé du plan, on donne le cercle c de centre A(3 ; 0) et de rayon 3 et la parabole p d'équation $x^2 - \sqrt{2}y = 0$.

- 1) Faire une figure, puis déterminer algébriquement les abscisses des points d'intersection de ces deux courbes.
- 2) Déterminer la valeur exacte et une valeur arrondie au centième de l'aire de la surface fermée délimitée par ces deux courbes et contenant le point P(1; 1).

Question VI (6 points)

Soit f la fonction définie sur [0; π] par $f(x) = \sin(x) \cdot e^{\left(\frac{x}{2}\right)}$

Déterminer la valeur exacte et une valeur arrondie au millième du volume du solide engendré par rotation autour de l'axe des abscisses de la surface comprise entre le graphe de f (ci-contre) et l'axe des abscisses.

