לוגיקה – תרגול 13

תזכורת

משפט הקומפקטיות: תהי בוצת נוסחאות, בא ספיקה מ"מ כל תת־קבוצה סופית של בספיקה. משפט הקומפקטיות: תהי בא קבוצת נוסחאות, איך מוכיחים אי גדירות של אוסף מבנים?

- $M\left(X
 ight) =K$ ניחים בשלילה שקיימת קבוצת נסוקים ל נדע מניחים בשלילה.1
 - $K\cap M\left(Y
 ight) =\emptyset$ כך בוחרים מפורשת פסוקים מפורשת 2.
- $M\left(X\cup Y
 ight) =M\left(X
 ight) \cap M\left(Y
 ight) =K\cap M\left(Y
 ight) =\emptyset$. אינה ספיקה מאחר ש־ $X\cup Y$ אינה מוכיחים כי
 - .4 ספיקה שכל תת שכל תת קבוצה סופית $D\subseteq X\cup Y$ ספיקה.
 - . אינו אינו ולכן K הם סתירה למשפט הקומפקטיות ולכן אינו גדיר.

:1 תרגיל

יהי $au = \langle R\left(\circ,\circ\right), F\left(\circ\right), c \rangle$ יהי

הוכיחו כי אוסף המבנים הבא אינו גדיר:

 $K=\{M\ | F^{M}\left(d
ight)
eq c^{M}$ מבנה מעל au כך שלמספר סופי של איברים $d\in D^{M}$ מתקיים au

<u>תרגיל 2:</u>

יהי $au = \langle R(\circ,\circ), F(\circ)
angle$ מילון.

$$.K_1 = \left\{ M \mid F^M = R^M
ight\}$$
 יהי .1

.הוכיחו/ הפריכו: K_1 גדיר

 $.K_2 = \{M \mid \$ הוא סופי $F^M(x)
eq y$ שעבורם $(x,y) \in R^M$ הוגות .2 .2 ... הוכיחו/ הפריכו: $.K_2 = \{M \mid \ F^M(x) \neq y \}$

תרגול 13

2019 ביולי

תרגיל 1:

יהי $\tau = \langle R(\circ, \circ), F(\circ), c \rangle$ יהי

הוכיחו כי אוסף המבנים הבא אינו גדיר:

 $K = \{M \, | \, F^M(d)
eq c^M$ מתקיים $d \in D^M$ מבנה מעל au כך שלמספר סופי של איברים $M\}$

הוכחה:

- M(X) = kניח בשלילה בשלילה.1
- $Y = \Sigma_{inf} \bigcup \{ \forall x_1 \neg (F(x_1) \approx c) \}$.2
 - 3. טענת עזר
- (להוכיח) $d \in D^M$ לכל $F^M(d) \neq C^M$ אמ"מ $M \vDash \forall x_1 \neg (F(x_1) \approx c))$ $M(Y)=\emptyset$ אמ"מ אינסופי נובע שי $M\in M(\Sigma_{inf})$ אמ"מ מכך ש
 - $D_y=D\cap Y$, $D_X=D\cap X$ סופית ונסמן $D\subseteq X\cup Y$.4 יהי אם אם אח (ביותר אם שר m=1) אם אח לא המספר הגדול ביותר כך שיm=1).

$$M=\langle\underbrace{\{1,2,\ldots,m+1\}}_{D^M},\underbrace{\emptyset}_{R^M},F^M,1
angle$$

. d לכל $F^M(d)=m+1$ כאשר

:M ידי ספיקה על ידי D נשאר להוכיח נשאר

 $A^{M}(d)
eq C^{M}$ מתקיים $d \in D^{M}$ לפחות איברים וכמו כן לכל $i \leq m$ לפחות לפחות לפחות היש היש ב־ $i \leq m$ $M \models D_Y$ כלומר

 $A^{M}(d)
eq C^{M}$ מתקיים $d \in D^{M}$ מתקיים של איברים של איברים ולכן למספר סופי ולכן למספר מופי של איברים

.5 אינה גדירה לכן k אינה גדירה סתירה ל-3+4

:2 תרגיל

יהי $au = \langle R(\circ, \circ), F(\circ) \rangle$ מילון.

$$K_1 = \{M \, | \, F^M = R^M \}$$
 הוכיחו/הפריכו: K_1 גדיר.

 $K_2=\{M\mid$ הוא סופי $F^M(x)
eq y$ שעבורם $(x,y)\in R^M$ הוא סופי $\{x,y\}\in R^M$ הוא סופי .2 . גדיר K_2 גדיר הוכיחו/הפריכו

פתרון:

$$\Sigma = \{\forall x_1 \forall x_2 (F(x_1) \approx x_2) \leftrightarrow R(x_1, x_2)\}$$
 לכל השמה s מתקיים
$$\Leftrightarrow M \vDash \alpha$$

$$\Leftrightarrow \vdots$$

$$\Leftrightarrow (d_1, d_2) \in F^M$$
 אמ"מ
$$d_1, d_2 \in D^M$$
 לכל
$$M \in K_1 \Leftrightarrow F^M = R^M$$

.2 הפרכה:

אינו גדיר K_2

$$M(x) = k$$
 (x)

$$Y = \Sigma_{inf} \cup \{ orall x_1
eg (F^M(x_1) pprox x_1) \wedge R(x_1, x_1) \}$$
 (2)

:טענת עזר 3

אמ"מ
$$M\vDash \forall x_1(\lnot(F^M\approx x_1)\land R(x_1,x_1))$$
 אמ"מ $f^M(d)\neq d$ וגם $f^M(d)\neq d$ וגם $f^M(d)\neq d$ ואם $f^M(d)\neq d$ וועם $f^M(d)\neq d$ וועם $f^M(d)\neq d$ וועלה לאתר הקורס).

. . . .

נתבונן במבנה הבא מעל מילון
$$M=\langle\{1,2,\dots,m+1\},\{(x,x)|x\in D^M\},F^M\rangle$$

$$F^M(d)=\{$$
 (יועלה הפתרון)

.5 סתירה.

כלל אצבע עבור אינסוף איברים:

```
\Sigma_{inf}\cup\{orall x_1\dots משהו מקיימים מלכולם איברים ולכולם מקיימים משהו משהו אינסוף איברים ולפחות איבר אחד שמקיים משהו \Sigma_{inf}\cup\{\exists x_1 משהו שמקיים משהו שמקיימים משהו) \varphi_n=\exists x_1\dots\exists x_n\bigwedge_{1\leq i\leq j\leq n} \neg(x_I\approx x_J)\bigwedge\dots (יש אינסוף איברים שמקיימים משהו) \Sigma=\{\varphi_n|n\geq 2\}
```