Exercise 9.1. Let $A \in \mathbb{R}^{n \times n}$. In the typical decomposition

$$A = D - L - U,$$

assume that L=0, i.e. A is an upper triangular matrix. Show that in this case

$$\mathcal{L} = \mathcal{J}$$
.

That is, the Jacobi method is identical to the Gauss-Seidel method.

Suggested Solution. We have that

$$A = D - L - U$$
 with $L = 0$

and therefore

$$\mathcal{J} = D^{-1}(L+U) \stackrel{L=0}{=} D^{-1}U$$
$$\mathcal{L} = (D-L)^{-1}U \stackrel{L=0}{=} D^{-1}U.$$

Exercise 9.2. There are positive definite matrices for which the Jacobi method does not converge. Consider for $\alpha \in \mathbb{R}$ the matrix

$$A = \begin{pmatrix} 1 & \alpha & \alpha \\ \alpha & 1 & \alpha \\ \alpha & \alpha & 1 \end{pmatrix}.$$

(a) Determine the Jacobi operator \mathcal{J} corresponding to the matrix A.

Suggested solution:

We have that A = D - L - U, where

$$D = E, \quad L = \begin{pmatrix} 0 & 0 & 0 \\ -\alpha & 0 & 0 \\ -\alpha & -\alpha & 0 \end{pmatrix}, \quad U = \begin{pmatrix} 0 & -\alpha & -\alpha \\ 0 & 0 & -\alpha \\ 0 & 0 & 0 \end{pmatrix}.$$

Thus

$$\mathcal{J} = D^{-1}(L+U) = \begin{pmatrix} 0 & -\alpha & -\alpha \\ -\alpha & 0 & -\alpha \\ -\alpha & -\alpha & 0 \end{pmatrix}.$$

(b) Determine all $\alpha \in \mathbb{R}$ for which the Jacobi method converges.

Suggested solution:

Determine the eigenvalues of \mathcal{J} : (To avoid having to find zeros of a third degree polynomial, we first apply elementary row or column transformations to calculate the determinant. In this way, we can split off a linear factor of $\chi_{\mathcal{J}}$. Another possibility is offered by the statement that $\lambda = \alpha$ is an obvious eigenvalue of \mathcal{J} .) For the characteristic polynomial we obtain

$$-\chi_{\mathcal{J}}(\lambda) \stackrel{1)}{=} \begin{vmatrix} \lambda & \alpha & \alpha \\ \alpha & \lambda & \alpha \\ \alpha & \alpha & \lambda \end{vmatrix} \stackrel{2)}{=} \begin{vmatrix} \lambda - \alpha & \alpha - \lambda & 0 \\ \alpha & \lambda & \alpha \\ \alpha & \alpha & \lambda \end{vmatrix} \stackrel{3)}{=} \begin{vmatrix} \lambda - \alpha & 0 & 0 \\ \alpha & \lambda + \alpha & \alpha \\ \alpha & 2\alpha & \lambda \end{vmatrix}$$
$$= (\lambda - \alpha) [(\lambda + \alpha)\lambda - 2\alpha^{2}]$$
$$= (\lambda - \alpha)^{2}(\lambda + 2\alpha).$$

Here, we used in

- 1) the multilinearity of determinant functions
- 2) substracting the 2nd row from the 1st
- 3) adding the 1st column to the second

This means

$$\sigma(\mathcal{J}) = \{\alpha, -2\alpha\}$$

and

$$\rho(\mathcal{J}) < 1 \quad \Leftrightarrow \quad |-2\alpha| < 1 \wedge |\alpha| < 1 \quad \Leftrightarrow \quad |\alpha| < \frac{1}{2}.$$

Consequently, the Jacobi method converges exactly when $|\alpha| < \frac{1}{2}$ by Prop. 3.4.

(c) For which $\alpha \in \mathbb{R}$ is the matrix A positive definite, but the Jacobi method does not converge?

Suggested solution:

Since A is symmetric, we have that: A is pos. definite \Leftrightarrow all eigenvalues are strictly positive. We need to check, for which α all eigenvalues are strictly positive. To compute the characteristic polynomial of A, we substitute λ by $1 - \lambda$ in $^{1)}$ to obtain

$$\chi_A(\lambda) = 0 \Leftrightarrow -\chi_{\mathcal{J}}(1-\lambda) = 0 \Leftrightarrow (1-\lambda) \in \sigma(\mathcal{J}) \Leftrightarrow \sigma(A) = \{1-\alpha, 1+2\alpha\}.$$

Hence A is pos. definite exactly when $-\frac{1}{2} < \alpha < 1$. In consequence, we can conclude that A is positive definite and the Jacobi method does not converge in gerneral exactly when $\frac{1}{2} \le \alpha < 1$.

Exercise 9.3. Consider the iteration method $x^{(k+1)} = \Phi(x^{(k)})$ with $\Phi(x) = Tx + c$, but this time with the additional assumption that T is nilpotent. That is, there exists an $N \in \mathbb{N}$ s.t.

$$T^N = 0.$$

Show that

(a) $\rho(T) = 0$. What does that mean for the convergence of the iteration method?

Suggested solution:

From Exercise 4.3 we know that $\sigma(T) = \{0\}$ and hence $\rho(T) = 0$. According to Prop. 3.4, the iteration method

$$x^{(k+1)} = \Phi(x^{(k)}) = Tx^{(k)} + c$$

therefore converges for all initial vectors $x^{(0)}$ to the unique fixed point \hat{x} of Φ .

(b) The iteration method gives the exact solution for each starting vector $x^{(0)}$ after N iterations at the latest.

Suggested solution:

Let \hat{x} be the exact solution, i.e. the fixed point of Φ . Then by definition of Φ and since \hat{x} is a fixed point we can conclude

$$||x^{(N)} - \hat{x}|| = ||T(x^{(N-1)} - \hat{x})||$$

$$= ||T^{2}(x^{(N-2)} - \hat{x})||$$

$$\vdots \qquad \vdots$$

$$= ||T^{N}(x^{(0)} - \hat{x})|| = 0.$$

Therefore it is $x^{(N)} = \hat{x}$, i.e. the iteration method attains the solution after N iterations at the latest.

Exercise 9.4. Let the iteration procedure

$$x^{(k+1)} = \Phi(x^{(k)})$$

with any starting vector $x^{(0)} \in \mathbb{R}^n$ be given and let it be defined by the affine-linear mapping

$$\Phi(x) = Tx + c$$

for some matrix $T \in \mathbb{R}^{n \times n}$ and fixed $c \in \mathbb{R}^n$.

(a) Under which conditions is there always exactly one fixed point of Φ ?

Suggested solution:

There is exactly one fixed point if and only if $\rho(T) < 1$ (cf. Prop. 3.4). Alternatively one can use Prop. 3.3. For this, one needs a compatible matrix norm $\|\cdot\|_*$ s.t. $\|T\|_* < 1$.

(b) Suppose you know according to the construction of your method that Φ has a fixed point \hat{x} . For $\rho(T) \geq 1$ and $\lambda_{\max} \in \mathbb{R}$ ($\lambda_{\max} = \text{largest absolute eigenvalue of } T$), specify an initial guess $x^{(0)}$ for which the iteration method does not converge.

Suggested solution:

Let $\rho(T) \geq 1$ and therefore $|\lambda_{\max}| \geq 1$. Let further v be an eigenvector corresponding to λ_{\max} . Setting

$$x^{(0)} \coloneqq v + \hat{x},$$

where \hat{x} denotes a fixed point of Φ , we obtain

$$||x^{(n)} - \hat{x}|| = ||T(x^{(n-1)} - \hat{x})||$$

$$= ||T^{2}(x^{(n-2)} - \hat{x})||$$

$$\vdots \qquad \vdots$$

$$= ||T^{n}(\underbrace{x^{(0)} - \hat{x}})||$$

$$= ||T^{n}v||$$

$$= ||\lambda_{\max}^{n}v||$$

$$= ||\lambda_{\max}^{n}||v|| \to \begin{cases} \infty & \text{for } |\lambda_{\max}| > 1 \\ ||v|| & \text{for } |\lambda_{\max}| = 1 \end{cases}.$$

The error therefore does not tend to zero and thus the method does not converge for the above initial value.