COMPUTER SYSTEM ORGANIZATION

A modern general-purpose computer system consists of one or more CPUs and a number of device controllers connected through a common **bus** that provides access between components and shared memory (Figure 1.2). Each device controller is in charge of a specific type of device (for example, a disk drive, audio device, or graphics display). Depending on the controller, more than one device may be attached. For instance, one system USB port can connect to a USB hub, to which several devices can connect. A device controller maintains some local buffer storage and a set of special-purpose registers. The device controller is responsible for moving the data between the peripheral devices that it controls and its local buffer storage.

Typically, operating systems have a **device driver** for each device controller. This device driver understands the device controller and provides the rest of the operating system with a uniform interface to the device. The CPU and the device controllers can execute in parallel, competing for memory cycles. To ensure orderly access to the shared memory, a memory controller synchronizes access to the memory.

Figure 1.2 A typical PC computer system.

INTERRUPTS

Consider a typical computer operation: a program performing I/O. To start an I/O operation, the device driver loads the appropriate registers in the device controller. The device controller, in turn, examines the contents of these registers to determine what action to take (such as "read a character from the keyboard"). The controller starts the transfer of data from the device to its local buffer. Once the transfer of data is complete, the device controller informs the device driver that it has finished its operation. The device driver then gives control to other parts of the operating system, possibly returning the data or a pointer to the data if the operation was a read. For other operations, the device driver returns status information such as "write completed successfully" or "device busy". But how does the controller inform the device driver that it has finished its operation? This is accomplished via an **interrupt**.

Overview

Hardware may trigger an interrupt at any time by sending a signal to the CPU, usually by way of the system bus. (There may be many buses within a computer system, but the system bus is the main communications path between the major components.) Interrupts are used for many other purposes as well and are a key part of how operating systems and hardware interact.

When the CPU is interrupted, it stops what it is doing and immediately transfers execution to a fixed location. The fixed location usually contains the starting address where the service routine for the interrupt is located. The interrupt service routine executes; on completion, the CPU resumes the interrupted computation. A timeline of this operation is shown in Figure 1.3.

Interrupts are an important part of computer architecture. Each computer design has its own interrupt mechanism, but several functions are common. The interrupt must transfer control to the appropriate interrupt service routine. The straightforward method for managing this transfer would be to invoke a generic routine to examine the interrupt information.

Figure 1.3 Interrupt timeline for a single program doing output.

The routine, in turn, would call the interrupt-specific handler. However, interrupts must be handled quickly, as they occur very frequently. A table of pointers to interrupt routines can be used instead to provide the necessary speed. The interrupt routine is called indirectly through the table, with no intermediate routine needed. Generally, the table of pointers is stored in low memory (the first hundred or so locations). These locations hold the addresses of the interrupt service routines for the various devices. This array, or **interrupt vector**, of addresses is then indexed by a unique number, given with the interrupt request, to provide the address of the interrupt service routine for the interrupting device. Operating systems as different as Windows and UNIX dispatch interrupt in this manner.

The interrupt architecture must also save the state information of whatever was interrupted so that it can restore this information after servicing the interrupt. If the interrupt routine needs to modify the processor state — for instance, by modifying register values — it must explicitly save the current state and then restore that state before returning. After the interrupt is serviced, the saved return address is loaded into the program counter, and the interrupted computation resumes as though the interrupt had not occurred.

Implementation

The basic interrupt mechanism works as follows. The CPU hardware has a wire called the **interrupt-request line** that the CPU senses after executing every instruction. When the CPU detects that a controller has asserted a signal on the interrupt-request line, it reads the interrupt number and jumps to the **interrupt-handler routine** by using that interrupt number as an index into the interrupt vector. It then starts execution at the address associated with that index. The interrupt handler saves any state it will be changing during its operation, determines the cause of the interrupt, performs the necessary processing, performs a state restore, and executes a return from interrupt instruction to return the CPU to the execution state prior to the interrupt. We say that the device controller raises an interrupt by asserting a signal on the interrupt request line, the CPU catches the interrupt and dispatches it to the interrupt handler, and the handler clears the interrupt by servicing the device. Figure 1.4 summarizes the interrupt-driven I/O cycle.

The basic interrupt mechanism just described enables the CPU to respond to an asynchronous event, as when a device controller becomes ready for service. In a modern operating system, however, we need more sophisticated interrupt-handling features.

- 1. We need the ability to defer interrupt handling during critical processing.
- 2. We need an efficient way to dispatch to the proper interrupt handler for a device.
- 3. We need multilevel interrupts so that the operating system can distinguish between high- and low-priority interrupts and can respond with the appropriate degree of urgency.

In modern computer hardware, these three features are provided by the CPU and the **interrupt-controller** hardware.

Figure 1.4 Interrupt-driven I/O cycle.

Most CPUs have two interrupt request lines. One is the **nonmaskable interrupt**, which is reserved for events such as unrecoverable memory errors. The second interrupt line is **maskable**: it can be turned off by the CPU before the execution of critical instruction sequences that must not be interrupted. The maskable interrupt is used by device controllers to request service.

Recall that the purpose of a vectored interrupt mechanism is to reduce the need for a single interrupt handler to search all possible sources of interrupts to determine which one needs service. In practice, however, computers have more devices (and, hence, interrupt handlers) than they have address elements in the interrupt vector. A common way to solve this problem is to use **interrupt chaining**, in which each element in the interrupt vector points to the head of a list of interrupt handlers. When an interrupt is raised, the handlers on the corresponding list are called one by one, until one is found that can service the request. This structure is a compromise between the overhead of a huge interrupt table and the inefficiency of dispatching to a single interrupt handler.

Figure 1.5 illustrates the design of the interrupt vector for Intel processors. The events from 0 to 31, which are nonmaskable, are used to signal various error conditions. The events from 32 to 255, which are maskable, are used for purposes such as device-generated interrupts.

The interrupt mechanism also implements a system of **interrupt priority levels**. These levels enable the CPU to defer the handling of low-priority interrupts without masking all interrupts and make it possible for a high-priority interrupt to preempt the execution of a low-priority interrupt.

vector number	description
0	divide error
1	debug exception
2	null interrupt
3	breakpoint
4	INTO-detected overflow
5	bound range exception
6	invalid opcode
7	device not available
8	double fault
9	coprocessor segment overrun (reserved)
10	invalid task state segment
11	segment not present
12	stack fault
13	general protection
14	page fault
15	(Intel reserved, do not use)
16	floating-point error
17	alignment check
18	machine check
19-31	(Intel reserved, do not use)
32-255	maskable interrupts

Figure 1.5 Intel processor event-vector table.

STORAGE STRUCTURE

The CPU can load instructions only from memory, so any programs must first be loaded into memory to run. General-purpose computers run most of their programs from rewritable memory, called main memory (also called random-access memory, or RAM). Main memory commonly is implemented in a semiconductor technology called dynamic random-access memory (DRAM).

Computers use other forms of memory as well. For example, the first program to run on computer power-on is a bootstrap program, which then loads the operating system. Since RAM is volatile— loses its content when power is turned off or otherwise lost — we cannot trust it to hold the bootstrap program. Instead, for this and some other purposes, the computer uses electrically erasable programmable read-only memory (EEPROM) and other forms of firmware — storage that is infrequently written to and is nonvolatile. EEPROM can be changed but cannot be changed frequently. In addition, it is low speed, and so it contains mostly static programs and data that aren't frequently used. For example, the iPhone uses EEPROM to store serial numbers and hardware information about the device.

All forms of memory provide an array of bytes. Each byte has its own address. Interaction is achieved through a sequence of load or store instructions to specific memory addresses. The load instruction moves a byte or word from main memory to an internal register within the CPU, whereas the store instruction moves the content of a register to main memory. Aside from explicit loads and stores, the CPU automatically loads instructions from main memory for execution from the location stored in the program counter.

A typical instruction – execution cycle, as executed on a system with a **von Neumann architecture**, first fetches an instruction from memory and stores that instruction in the **instruction register**. The instruction is then decoded and may cause operands to be fetched from memory and stored in some internal register. After the instruction on the operands has been executed, the result may be stored back in memory. Notice that the memory unit sees only a stream of memory addresses. It does not know how they are generated (by the instruction counter, indexing, indirection, literal addresses, or some other means) or what they are for (instructions or data). Accordingly, we can ignore how a memory address is generated by a program. We are interested only in the sequence of memory addresses generated by the running program.

Ideally, we want the programs and data to reside in main memory permanently. This arrangement usually is not possible on most systems for two reasons:

- 1. Main memory is usually too small to store all needed programs and data permanently.
- 2. Main memory, as mentioned, is volatile it loses its contents when power is turned off or otherwise lost.

Thus, most computer systems provide **secondary storage** as an extension of main memory. The main requirement for secondary storage is that it be able to hold large quantities of data permanently.

The most common secondary-storage devices are hard-disk drives (HDDs) and nonvolatile memory (NVM) devices, which provide storage for both programs and data. Most programs (system and application) are stored in secondary storage until they are loaded into memory. Many programs then use secondary storage as both the source and the destination of their processing. Secondary storage is also much slower than main memory.

In a larger sense, however, the storage structure that we have described — consisting of registers, main memory, and secondary storage — is only one of many possible storage system designs. Other possible components include cache memory, CD-ROM or Blu-ray, magnetic tapes, and so on. Those that are slow enough and large enough that they are used only for special purposes — to store backup copies of material stored on other devices, for example — are called **tertiary storage**. Each storage system provides the basic functions of storing a datum and holding that datum until it is retrieved at a later time. The main differences among the various storage systems lie in speed, size, and volatility.

The wide variety of storage systems can be organized in a hierarchy (Figure 1.6) according to storage capacity and access time.

Figure 1.6 Storage-device hierarchy.

As a general rule, there is a trade-off between size and speed, with smaller and faster memory closer to the CPU. As shown in the figure, in addition to differing in speed and capacity, the various storage systems are either volatile or nonvolatile. Volatile storage, as mentioned earlier, loses its contents when the power to the device is removed, so data must be written to nonvolatile storage for safekeeping.

The top four levels of memory in the figure are constructed using **semiconductor memory**, which consists of semiconductor-based electronic circuits. NVM devices, at the fourth level, have several variants but in general are faster than hard disks. The most common form of NVM device is flash memory, which is popular in mobile devices such as smartphones and tablets. Increasingly, flash memory is being used for long-term storage on laptops, desktops, and servers as well.

Since storage plays an important role in operating-system structure, we will refer to it frequently in the text. In general, we will use the following terminology:

- Volatile storage will be referred to simply as **memory**. If we need to emphasize a particular type of storage device (for example, a register), we will do so explicitly.
- Nonvolatile storage retains its contents when power is lost. It will be referred to as **NVS**. The vast majority of the time we spend on NVS will be on secondary storage. This type of storage can be classified into two distinct types:
 - **Mechanical**. A few examples of such storage systems are HDDs, optical disks, holographic storage, and magnetic tape. If we need to emphasize a particular type of mechanical storage device (for example, magnetic tape), we will do so explicitly.
 - **Electrical**. A few examples of such storage systems are flash memory, FRAM, NRAM, and SSD. Electrical storage will be referred to as NVM. If we need to emphasize a particular type of electrical storage device (for example, SSD), we will do so explicitly.

Mechanical storage is generally larger and less expensive per byte than electrical storage. Conversely, electrical storage is typically costly, smaller, and faster than mechanical storage.

The design of a complete storage system must balance all the factors just discussed: it must use only as much expensive memory as necessary while providing as much inexpensive, nonvolatile storage as possible. Caches can be installed to improve performance where a large disparity in access time or transfer rate exists between two components.

I/O STRUCTURE

A large portion of operating system code is dedicated to managing I/O, both because of its importance to the reliability and performance of a system and because of the varying nature of the devices.

Recall from the beginning of this section that a general-purpose computer system consists of multiple devices, all of which exchange data via a common bus. The form of interrupt-driven I/O described in Section 1.2.1 is fine for moving small amounts of data but can produce high overhead when used for bulk data movement such as NVS I/O. To solve this problem, **direct memory access (DMA)** is used. After setting up buffers, pointers, and counters for the I/O device, the device controller transfers an entire block of data directly to or from the device and main memory, with no intervention by the CPU. Only one interrupt is generated per block, to tell the device driver that the operation has completed, rather than the one interrupt per byte generated for low-speed devices. While the device controller is performing these operations, the CPU is available to accomplish other work.

Some high-end systems use switch rather than bus architecture. On these systems, multiple components can talk to other components concurrently, rather than competing for cycles on a shared bus. In this case, DMA is even more effective. Figure 1.7 shows the interplay of all components of a computer system.

Figure 1.7 How a modern computer system works.

Hi I'm Flashee!