

Advanced Micro-controllers - ARM

DESD @ Sunbeam Infotech

Development of the ARM Architecture

Development of the ARM Architecture

- - Cortex-A8 architecture v7-A, with a 13-stage pipeline
 - Cortex-A9 architecture v7-A, with an 8-stage pipeline

Instruction Cache: Stores code/instrus.

Data Cache: stores data only.

Unified Cache: Stores code + Data.

terminal Iscpu

Iscpu

num of sockets: 1 (?)

Cares ber 200kst: A (2) - bytigg coes

threads per core: 2 (9) - Jugical cores (SMT)

CPUS: 8 = Sockets x cores x threads

Embedded Processors

Application Processors

Agenda

Introduction

ARM Architecture Overview

ARMv7-AR Architecture

Programmer's Model

Memory Systems

ARMv7-M Architecture

Programmer's Model

Memory Systems

Floating Point Extensions

ARM System Design

Software Development Tools

Architecture ARMv7 profiles

- Application profile (ARMv7-A)
 - Memory management support (MMU)
 - Highest performance at low power
 - Influenced by multi-tasking OS system requirements
 - TrustZone and Jazelle-RCT for a safe, extensible system
 - e.g. Cortex-A5, Cortex-A9
- Real-time profile (ARMv7-R)
 - Protected memory (MPU)
 - Low latency and predictability 'real-time' needs
 - Evolutionary path for traditional embedded business
 - e.g. Cortex-R4
- Microcontroller profile (ARMv7-M, ARMv7E-M, ARMv6-M)
 - Lowest gate count entry point
 - Deterministic and predictable behavior a key priority
 - · Deeply embedded use (bare metal porgramonity)
 - e.g. Cortex-M3

Interrupt Latercy

- Time form queived of info till beginning execution of ISR

Which architecture is my processor?

Agenda

Introduction

ARM Architecture Overview

ARMv7-AR Architecture

Programmer's Model

Memory Systems

ARMv7-M Architecture

Programmer's Model

Memory Systems

Floating Point Extensions

ARM System Design

Software Development Tools

Architecture ARMv7-AR profiles

- Application profile (ARMv7-A)
 - Memory management support (MMU)
 - Highest performance at low power
 - Influenced by multi-tasking OS system requirements
 - e.g. Cortex-A5, Cortex-A8, Cortex-A9, Cortex-A15
- Real-time profile (ARMv7-R)
 - Protected memory (MPU)
 - Low latency and predictability 'real-time' needs
 - Evolutionary path for traditional embedded business
 - e.g. Cortex-R4, Cortex-R5

Cortex-A8

- ARMv7-A Architecture
 - · Thumb-2 > Execution Environment
 - Thumb-2EE (Jazelle-RCT)
 - TrustZone extensions
- Custom or synthesized design
- MMU AMBA Bus + Advanced exerded Interface
- 64-bit or 128-bit AXI Interface
- L1 caches
 - 16 or 32KB each
- Unified L2 cache
 - 0-2MB in size
 - 8-way set-associative ~
- Dual-issue, super-scalar 13-stage pipeline
 - Branch Prediction & Return Stack
 - NEON and VFP implemented at end of pipeline

SIMD Floating point

- Optional features
 - VFPv3 Vector Floating-Point
 - NEON media processing engine

Cortex-A9

- ARMv7-A Architecture
 - Thumb-2, Thumb-2EE
 - TrustZone support
- Variable-length Multi-issue pipeline
 - Register renaming
 - Speculative data prefetching
 - Branch Prediction & Return Stack
- 64-bit AXI instruction and data interfaces
- TrustZone extensions
- L1 Data and Instruction caches
 - 16-64KB each
 - 4-way set-associative

- PTM instruction trace interface
- IEM power saving support
- Full Jazelle DBX support
- VFPv3-D16 Floating-Point Unit (FPU) or NEON™ media processing engine

Cortex-A15 MPCore

- 1-4 processors per cluster
- Fixed size L1 caches (32KB)
- Integrated L2 Cache
 - 512KB 4MB
- System-wide coherency support with AMBA 4 ACE
- Backward-compatible with AXI3 interconnect
- Integrated Interrupt Controller
 - 0-224 external interrupts for entire cluster
- CoreSight debug
- Advanced Power Management
- Large Physical Address Extensions (LPAE) to ARMv7-A Architecture
- Virtualization Extensions to ARMv7-A Architecture

Data Sizes and Instruction Sets

- ARM is a 32-bit load / store RISC architecture
 - The only memory accesses allowed are loads and stores
 - Most internal registers are 32 bits wide
 - Most instructions execute in a single cycle
- When used in relation to ARM cores
 - Halfword means 16 bits (two bytes)
 - Word means 32 bits (four bytes)
 - > Doubleword means 64 bits (eight bytes)
- ARM cores implement two basic instruction sets
 - ARM instruction set instructions are all 32 bits long
 - Thumb instruction set instructions are a mix of 16 and 32 bits
 - Thumb-2 technology added many extra 32- and 16-bit instructions to the original 16-bit Thumb instruction set
- Depending on the core, may also implement other instruction sets
 - ✓ VFP instruction set 32 bit (vector) floating point instructions
 - NEON instruction set 32 bit SIMD instructions
 - Jazelle-DBX provides acceleration for Java VMs (with additional software support)
 - Jazelle-RCT provides support for interpreted languages

Processor Modes

- ARM has seven basic operating modes
 - Each mode has access to its own stack space and a different subset of registers
 - Some operations can only be carried out in a privileged mode

Software Interrupt is Used for OS System Colls

Exception - Exception	Mode	Description		SysCalls are from
1) reset mode	Supervisor (SVC)	Entered on reset and when a Supervisor call (earli		exposed by the kernel so that user programs can access kernel functionality. Data processity, Control/Jump, Status over manip,
2) Software interrupt 0 3) Fig interrupt E	FIQ	Entered when a high priority (fast) interrupt is raised		
(4) irg interrupt 5	IRQ	Entered when a normal priority interrupt is raised		
(5) prefetch about (5)	Abort	Used to handle memory access violations		
7 undef	<u>Undef</u>	Used to handle undefined instructions		• • •
	System	Privileged mode using the same registers as User mode		
	<u>User</u>	Mode under which most Applications / OS tasks run	Unprivileged mode	-> Data processity, Control/Jump,

The ARM Register Set

The Registers

- ARM has 37 registers all of which are 32-bits long.
 - 1 dedicated program counter
 - 1 dedicated current program status register (cps->)
 - 5 dedicated saved program status registers (Sps-4)
 - 30 general purpose registers
- The current processor mode governs which of several banks is accessible. Each mode can access
 - a particular set of r0-r12 registers
 - a particular r13 (the stack pointer, sp) and r14 (the link register, lr)
 - the program counter, r15 (pc)
 - the current program status register, cpsr

Privileged modes (except System) can also access

a particular spsr (saved program status register)

Program Counter (r15)

- When the processor is executing in ARM state:
 - All instructions are 32 bits wide
 - All instructions must be word aligned (address or 4)
 - Therefore the pc value is stored in bits [31:2] with bits [1:0] undefined (as instruction cannot be halfword or byte aligned).
- When the processor is executing in Thumb state:
 - All instructions are 16 bits wide
 - All instructions must be halfword aligned
 - Therefore the pc value is stored in bits [31:1] with bit [0] undefined (as instruction cannot be byte aligned).
- When the processor is executing in Jazelle state:
 - All instructions are 8 bits wide
 - Processor performs a word access to read 4 instructions at once

Thank you!

Nilesh Ghule <nilesh@sunbeaminfo.com>

