Chapter 12: Mass-Storage Systems

Chapter 12: Mass-Storage Systems

- Overview of Mass Storage Structure
- Disk Structure
- Disk Attachment
- Disk Scheduling
- Disk Management
- RAID Structure
- Operating System Issues

Objectives

- Describe the physical structure of secondary storage devices and the resulting effects on the uses of the devices
- Explain the performance characteristics of massstorage devices
- Discuss operating-system services provided for mass storage

Overview of Mass Storage Structure

- Magnetic disks are mainstream of secondary storage
- Solid-state disks (SSD) will replace magnetic disk as the secondary storage

Overview (Cont.)

- Removable
- Drive attached to computer via I/O bus
 - Buses vary, including EIDE, ATA, SATA, USB, Fiber Channel, SCSI, IEEE 1394
 - Host controller in computer uses bus to talk to disk controller built into drive

Moving-head Disk Machanism

Disk Structure

- Disk drives are addressed as large 1-dimensional arrays of *logical blocks*
 - The logical block is the smallest unit of transfer.
 - Usually 512 bytes or 1024 bytes
- The 1-dimensional array of logical blocks is mapped into the sectors of the disk sequentially.
 - Each sector is 512 bytes

Disk Attachment

- Host-attached storage accessed through I/O ports talking to I/O busses
- SCSI itself is a bus, up to 16 devices on one cable, SCSI initiator requests operation and SCSI targets perform tasks
 - Each target can have up to 8 logical units (disks attached to device controller
- **FC** is high-speed serial architecture
 - Can be switched fabric with 24-bit address space the basis of storage area networks (SANs) in which many hosts attach to many storage units
 - Can be arbitrated loop (FC-AL) of 126 devices

Network-Attached Storage

- Network-attached storage (NAS) is storage made available over a network
 - NFS and CIFS are common protocols
 - Implemented via remote procedure calls (RPCs) between host and storage
 - New iSCSI protocol uses IP network to carry the SCSI

protocol

Storage Area Network

- Common in large storage environments (and becoming more common)
- Multiple hosts attached to multiple storage arrays

Disk Scheduling

- The OS is responsible for using disks efficiently
 - Having a fast access time and disk bandwidth
- Access time has two major components
 - Seek time is the time to move the heads to the cylinder containing the desired sector.
 - Rotational latency is the additional time waiting for the desired sector rotated to the head.
- Minimize seek time
 - Seek time ≈ seek distance

Disk Scheduling (Cont.)

- Several algorithms exist to schedule the servicing of disk I/O requests.
- We illustrate them with a request queue (0-199).

98, 183, 37, 122, 14, 124, 65, 67

Head pointer 53

FCFS

Illustration shows total head movement of 640 cylinders.

SSTF (Shortest Seek Time First)

- Selects the request with the minimum seek time from the current head position.
- SSTF scheduling is a form of SJF scheduling
 - Starvation

SSTF (Cont.)

Illustration shows total head movement of 236 cylinders.

SCAN

- Algorithm
 - The disk arm starts at one end of the disk
 - Moves toward the other end
 - Servicing requests until it gets to the other end
 - The head movement is reversed and servicing continues.
- Sometimes called the elevator algorithm.

SCAN (Cont.)

Illustration shows total head movement of 208 cylinders.

C-SCAN (Circular SCAN)

- Provides a more uniform wait time than SCAN.
 - The head moves from one end to the other
 - Servicing requests as it goes
 - When it reaches the other end, however, it immediately returns to the beginning of the disk, without servicing any requests on the return trip.

C-SCAN (Cont.)

C-LOOK

- Version of C-SCAN
 - Arm only goes as far as the last request in each direction
 - Then reverses direction immediately
 - Without first going all the way to the end of the disk

C-LOOK (Cont.)

Selecting a Disk-Scheduling Algorithm

- Performance depends on the number and types of requests.
 - SSTF is common and has a natural appeal
 - SCAN and C-SCAN perform better for heavy load
- Requests for disk service can be influenced by the file-allocation method.
- The disk-scheduling algorithm should be a separate module
 - Allowing it to be replaced with a different algorithm
- Either SSTF or LOOK is a reasonable choice for the default algorithm.

Disk Management

- Low-level formatting, or physical formatting
 - Dividing a disk into sectors that the disk controller can read and write.
- Construct file system on the disk.
 - Partition the disk into one or more groups of cylinders.
 - Logical formatting or "making a file system".
- Bad blocks
 - Marked by file system
 - Sector sparing and sector slipping

Booting from a Disk in Windows 2000

RAID Structure

- RAID
 - Redundancy Arrays of Inexpensive Disk
- Uses a group of disks as one storage unit
- Improve performance and reliability by storing redundant data.
 - Mirroring or shadowing keeps duplicate of each disk
 - Block interleaved parity uses much less redundancy
- RAID is arranged into six different levels

RAID Levels

RAID Levels

Operating System Issues

- Major OS jobs are to manage physical devices and to present a virtual machine abstraction to applications
- For hard disks, the OS provides two abstraction:
 - Raw device an array of data blocks.
 - File system the OS queues and schedules the interleaved requests from several applications.

End of Chapter 12

