NCC Level-4 Diploma in Computing Databases

Candidates Name:	atema Akter		
ID No :	00154713		
Module Title :	Databases		
Assignment Title :	Rouse Gardens		
Examination Cycle:	une 2016		
Candidate attempting to gain an unfair advantage or colluding in anyway whatsoever (other than on joint assignments) are liable to be disqualified. Plagiarism is an offence.			
Expected candidate time allocation: 35 to 40 hours			
Mark	Moderated	Final	
	Mark	Mark	
Marker's comment:			

Statement of Confirmation of Own Work

Programmed /qualification name: Databases

Student Declaration:

I have read and understood the NCC Education's policy on Academic Dishonesty and Plagiarism.

I can confirm the following details:

Student ID/Registration number : 00154713

Name : Fatema Akter

Center Name : Daffodil International Academy.

Module Name : Databases

Assignment Title : Rouse Gardens

Number of Words : 1,504

I confirm that this is my own and that I have not plagiarized any part of it. I have also noted the assessment criteria and pass mark for assignments.

Due Date: 12/04/2016

Submitted Date: 11/04/2016

Student Signature: Fatema Akter

ACKNOWLEDGEMENT

At the beginning I would like to render thanks to the almighty Allah. And so I would wish to show my special thanks, gratitude to my teacher *Mr. Shomon Hossian* well as all other teachers. I did a great deal of research and I came to know about so many recalls and it helped to increase my knowledge.

Once more, I would wish to give thanks all of them who helped me to complete this Assignment.

Table of Contents

Introd	uction:	5
Task-	1	6
(a)	Produce Entity Relationship model:	6
R	lecord for the entity name:	6
Е	ntity Relationship Model:	6
(b)	Show the steps normalized sample data:	7
	1 st normalization:	7
	2 nd normalization:	9
	3 rd normalization:	10
(c)	Data dictionary for entity relationship model with attributes:	11
Task-2	2	12
(a)	Created all table using SQL:	12
(b)	Enter data all the order and product:	19
(c)	Enter data for the entire component:	22
(d)	Enter data on staff and services:	25
(e)	Query for all the service of particular customer:	29
(f)	Selected query the staff assigned to a service:	30
(g)	Selected query all the customer details for deliveries:	31
(h)	Count queries all the service which involves gray Crowley:	31
(i)	Shows query the components for the product type 'Green House':	32
(j)	Update the records for 33 so that Gray Crowley:	33
(k)	Update the record for staff Ben Johnson:	35
(I)	Update order job center Gary Crowley involved shed construction:	36
(m)	Update any session involved Anita Agneson:	37
(n)	Deleted the record for Anita Agnson:	39
Task-	3	41
Ass	sessment:	41
Concl	usion:	43
Ribliod	graphy	44

Introduction:

Now I am going to speak assignment *Database*, in this assignment topic the *rouse gardens*. The assignment *contains three parts*, such as *Task-1: Design*, *Task-2: Data Entry and Data Manipulation and Task-3: Assessment*. This assignment will enable me to show my *knowledge* and understanding of Database.

Task-1

(a) Produce Entity Relationship model:

Record for the entity name:

Here I have use some entity including this:

- > customer tab
- cus_order
- > order_product
- order_service
- order_staff
- product_tab
- service_tab
- staff_tab

Entity Relationship Model:

(Wesley, (2009))

Fig. 1

(b) Show the steps normalized sample data:

Normalization:

This process of *moving from data* that is not in a relational from, to a relation, and finally to a set of *ideal relation* is known *as normalization*. There are *three types* of *normalization*. Such as:

- 1st Normalization
- 2nd Normalization and
- 3rd Normalization form

Described three normalization forms:

- 1st Normalization:
 - 1st normalization database is without duplication data. This assignment has two duplication data table.
 - > These are "order and services" table and "details and order" table
 - ➤ I have *divided* into *three tables* from two table which we do not use any *duplicate data*.
 - > This process name is 1st normalization.

"Without duplicate" data table:

• Table for "cus_order"

Fig. 2

• Table for "order_service"

Fig. 3

Table for "order_staff"

Fig. 4

• 2nd Normalization:

- We know that where *primary key* and *foreign key* will be database system that database is a 2nd normalization
- Our database is a 2nd normalization system. Because our database system have primary key and foreign key.

Screen short for primary key and foreign key:

Fig. 5

• 3rd Normalization:

- > 3rd normalization is that no data dependency. That means database will be without data dependency.
- Our data base is a 3rd normalization database system because I have don't use any dependency data.

(Codd, (1970)

"No dependency" data table:

Fig. 6

Fig. 7

(c)Data dictionary for entity relationship model with attributes:

Entity Name	Attributes	Length	Key	Туре
customer_tab	customer_id	40	PRIMARY KEY	int
	customer_name	50	NOT NULL	varchar
	customer_email	50	NOT NULL	varchar
	customer_phonenumber	50	NOT NULL	varchar
	customer_type	50	NOT NULL	varchar
	customer_company	50	NOT NULL	varchar
cus_order	order_id	20	PRIMARY KEY	int
	customer_id	40	FOREIGN KEY	int
order_product	order_id	20	FOREIGN KEY	int
	product_id	40	FOREIGN KEY	varchar
order_service	service_sl	40	PRIMARY KEY	int
	order_id	20	FOREIGN KEY	int
	service_id	40	FOREIGN KEY	int
order_staff	order_id	20	FOREIGN KEY	int
	staff_id	40	FOREIGN KEY	int
product_tab	product_id	40	PRIMARY KEY	varchar
	product_name	50	NOTNULL	varchar
	product_type	50	NOTNULL	varchar
	component	200	NOTNULL	varchar
service_tab	service_id	40	PRIMARY KEY	int
	service_name	50	NOTNULL	varchar
staff_tab	staff_id	40	PRIMARY KEY	int
	staff_name	50	NOTNULL	varchar
	staff_phonenumber	50	NOTNULL	varchar
	staff_email	50	NOTNULL	varchar

Fig. 8

Task-2

(a) Created all table using SQL:

This code for database creation

CREATE DATABASE IF NOT EXISTS 'db_assignment' DEFAULT CHARACTER SET latin1 COLLATE latin1_swedish_ci;
USE 'db_assignment';

Fig. 9

This picture for all database tables

Fig. 10

"customer_tab" table:

This table for "customer_tab"

Fig. 11

Code for "customer_tab" table

```
CREATE TABLE IF NOT EXISTS `customer_tab` (
   `customer_id` int(40) NOT NULL,
   `customer_name` varchar(50) NOT NULL,
   `customer_e-mail` varchar(50) NOT NULL,
   `customer_phonenumber` varchar(50) NOT NULL,
   `customer_type` varchar(50) NOT NULL,
   `customer_type` varchar(30) NOT NULL,
   `customer_company` varchar(30) NOT NULL,
   PRIMARY KEY (`customer_id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;
```

Fig. 12

"cus_order" table:

Alter table code for "cus order"

```
ALTER TABLE `cus_order`

ADD CONSTRAINT `cus_order_ibfk_1` FOREIGN KEY (`customer_id`) REFERENCES `customer_tab` (`customer_id`);
```

Fig. 13

This table for "cus_order"

Fig. 14

Code for "cus_order" table

```
CREATE TABLE IF NOT EXISTS `cus_order` (
   `order_id` int(20) NOT NULL AUTO_INCREMENT,
   `customer_id` int(40) NOT NULL,
   PRIMARY KEY (`order_id`),
   KEY `customer_id` (`customer_id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=77 ;
```

Fig. 15

"order_product" table:

Alter table code for "order_product"

```
ALTER TABLE 'order_product'

ADD CONSTRAINT 'order_product_ibfk_1' FOREIGN KEY ('order_id') REFERENCES 'cus_order' ('order_id'),

ADD CONSTRAINT 'order_product_ibfk_2' FOREIGN KEY ('product_id') REFERENCES 'product_tab' ('product_id');
```

Fig. 16

• This table for "order product"

Fig. 17

• Code for "order_product" table

```
CREATE TABLE IF NOT EXISTS `order_product` (
   `order_id` int(20) NOT NULL,
   `product_id` varchar(40) NOT NULL,
   PRIMARY KEY (`order_id`, `product_id`),
   KEY `product_id` (`product_id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;
```

Fig. 18

"order_service" table:

• Alter table code for "order_service"

```
ALTER TABLE 'order_service'

ADD CONSTRAINT 'order_service_ibfk_1' FOREIGN KEY ('order_id') REFERENCES 'cus_order' ('order_id'),

ADD CONSTRAINT 'order_service_ibfk_2' FOREIGN KEY ('service_id') REFERENCES 'service_tab' ('service_id');
```

Fig. 19

This table for "order_service"

Fig. 20

• Code for "order_service" table

```
CREATE TABLE IF NOT EXISTS 'order_service' (
    'service_sl' int(40) NOT NULL,
    'order_id' int(20) NOT NULL,
    'service_id' int(40) NOT NULL,
    PRIMARY KEY ('service_sl'),
    KEY 'order_id' ('order_id'),
    KEY 'service_id' ('service_id')
) ENGINE=InnoDB DEFAULT CHARSET=latin1;
```

Fig. 21

"order_staff" table:

Alter table code for "order_staff"

```
ALTER TABLE `order_staff`

ADD CONSTRAINT `order_staff_ibfk_1` FOREIGN KEY (`order_id`) REFERENCES `cus_order` (`order_id`),

ADD CONSTRAINT `order_staff_ibfk_2` FOREIGN KEY (`staff_id`) REFERENCES `staff_tab` (`staff_id`);
```

Fig. 22

• This table for "order-staff"

Fig. 23

• Code for "order_staff" table

```
CREATE TABLE IF NOT EXISTS `order_staff` (
   `order_id` int(20) NOT NULL,
   `staff_id` int(40) NOT NULL,
   PRIMARY KEY (`order_id`, `staff_id`),
   KEY `staff_id` (`staff_id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;
```

Fig. 24

"product_tab" table:

This table for "product_tab"

Fig. 25

Code for "product_tab" table

Fig. 26

"Service tab" table:

This table for "service_tab"

Fig. 27

• Code for "service tab" table

```
CREATE TABLE IF NOT EXISTS `service_tab` (
   `service_id` int(40) NOT NULL,
   `service_name` varchar(50) NOT NULL,
   PRIMARY KEY (`service_id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;
```

Fig. 28

"Staff_tab" table:

This table for "staff_tab"

Fig. 29

• Code for "staff_tab" table

```
CREATE TABLE IF NOT EXISTS 'staff_tab' (
    'staff_id' int(40) NOT NULL,
    'staff_name' varchar(50) NOT NULL,
    'staff_phonenumber' varchar(50) NOT NULL,
    'staff_e-mail' varchar(50) NOT NULL,
    PRIMARY KEY ('staff_id')
) ENGINE=InnoDB DEFAULT CHARSET=latin1;
```

Fig. 30

(Connolly, (2004))

(b)Enter data all the order and product:

"cus_order" table:

Table for "cus_order"

Fig. 31

• Output for "cus_order" table

Fig. 32

Insert values for "cus_order"

```
INSERT INTO `cus_order` (`order_id`, `customer_id`) VALUES
(33, 101),
(11, 102),
(76, 103);
```

Fig. 33

"product_tab" table:

Table for "product_tab"

Fig. 34

Output for "product_tab"

Fig. 35

Insert values for "product_tab"

```
INSERT INTO 'product tab' ('product_id', 'product_name', 'product_type', 'component') VALUES

('A1', 'Small Green House', 'Green House', '20 vertical glass \r\npanels, 2 side \r\nframes, 2 front \r\nframes, 2 roof \r\nsections, 1 door \r\nframe.'),

('A2', 'Large Green House', 'Green House', '40 vertical glass \r\npanels, 4 side \r\nframes, 2 front \r\nframes, 4 roof \r\nsections, 1 door \r\nframe'),

('B1', 'Small Shed', 'Shed', '35 Standard Timber \r\nplanks. 60 \r\nBrackets, 1 door \r\nsection'),

('B2', 'Large Shed', 'Shed', '60 Standard Timber \r\nplanks. 120 \r\nBrackets. 1 door \r\nsection');
```

Fig. 36

"order_product" table:

• Table for "order_product"

Fig. 37

• Output for "order_product"

Fig. 38

• Insert values for "order_product"

```
INSERT INTO `order_product` (`order_id`, `product_id`) VALUES
(33, 'A1'),
(33, 'A2'),
(76, 'B1'),
(11, 'B2');
```

Fig. 39

(c)Enter data for the entire component: "product tab" table:

Table for "product_tab"

Fig. 40

Output for "product_tab"

Fig. 41

Insert values for "product tab"

```
INSERT INTO `product_tab` (`product_id`, `product_name`, `product_type`, `component`) VALUES
('A1', 'Small Green House', 'Green House', '20 vertical glass \r\npanels, 2 side \r\nframes, 2 front \r\nframes, 2 roof \r\nsections, 1 door \r\nframe.'),
('A2', 'Large Green House', 'Green House', '40 vertical glass \r\npanels, 4 side \r\nframes, 2 front \r\nframes, 4 roof \r\nsections, 1 door \r\nframe'),
('B1', 'Small Shed', 'Shed', '35 Standard Timber \r\nplanks. 60 \r\nBrackets, 1 door \r\nsection'),
('B2', 'Large Shed', 'Shed', '60 Standard Timber \r\nplanks. 120 \r\nBrackets. 1 door \r\nsection');
```

Fig. 42

"customer_tab" table:

Table for "customer_tab"

Fig. 43

Output for "customer_tab"

Fig. 44

• Insert values for "customer_tab"

```
INSERT INTO `customer_tab` (`customer_id`, `customer_name`, `customer_e-mail`, `customer_phonenumber`, `customer_type`, `customer_company`) VALUES
(101, 'John Herring', 'PrivateIndividual@gmail.com', '+19293652546', 'Private', 'Individual'),
(102, 'Robinson Cars', 'robinson_cars@gmail.com', '+19293652522', 'Private', 'Company'),
(103, 'Walton Job Center', 'walton_job_center@gmail.com', '+19293652544', 'Public', 'Organisation');
```

Fig. 45

"cus_order" table:

• Table for "cus_order"

Fig. 46

Output for "cus_order"

Fig. 47

• Insert values for "cus_order"

```
INSERT INTO `cus_order` (`order_id`, `customer_id`) VALUES
(33, 101),
(11, 102),
(76, 103);
```

Fig. 48

(d)Enter data on staff and services: "service_tab" table:

• Table for "service_tab"

Fig. 49

Output for "service_tab"

Fig. 50

Insert values for "service_tab"

```
INSERT INTO `service_tab` (`service_id`, `service_name`) VALUES
(401, 'Delivery'),
(402, 'Shed Construction'),
(403, 'Green House Construction');
```

Fig. 51

"staff_tab" table:

Table for "staff_tab"

Fig. 52

Output for "staff_tab"

Fig. 53

Insert values for "staff_tab"

```
INSERT INTO `staff_tab` (`staff_id`, `staff_name`, `staff_phonenumber`, `staff_e-mail`) VALUES
(104, 'Ben Robert', '+19293652588', 'benjohnson@gmail.com'),
(105, 'Gary Crowley', '+19293652500', 'grary_crowley@gmail.com'),
(106, 'Anita Magneson', '+19293652501', 'anita_magneson@gmail.com'),
(107, 'Abel Mawuge', '+19293652502', 'abel_mawuge@gmail.com'),
(108, 'Satpal Singh', '+19293652503', 'satpal_singh@gmail.com');
```

Fig. 54

"order_services" table:

• Table for "order_service"

Fig. 55

Output for "order_service"

Fig. 56

Insert values for "order_service"

```
INSERT INTO `order_service` (`service_sl`, `order_id`, `service_id`) VALUES
(3121, 11, 401),
(3434, 33, 402),
(3439, 33, 403),
(3878, 76, 401),
(4343, 33, 401),
(6766, 11, 401);
```

Fig. 57

"order_staff" table:

Table for "order_staff"

Fig. 58

Output for "order_staff"

Fig. 59

• Insert values for "order_staff"

```
INSERT INTO `order_staff` (`order_id`, `staff_id`) VALUES
(33, 104),
(76, 104),
(11, 105),
(33, 105),
(11, 106),
(11, 107),
(33, 107),
(76, 107);
```

Fig. 60

(Anon., n.d.)

(e)Query for all the service of particular customer:

· Here screen short for query.

```
1 SELECT Service_id, Service_name
2 FROM service_tab st
3 WHERE st.Service id
4 IN (SELECT DISTINCT(service_id))
5 FROM order_service os
6 WHERE os.Order_id in (SELECT Order_id)
7 FROM cus_order co
8 WHERE co.Customer_id in (SELECT Customer_id)
9
10
WHERE Customer_type='Private')))
```

Fig. 61

Output query

Fig. 62

(f) Selected query the staff assigned to a service:

• Where select staff_name take from order_staff tabel

```
1 SELECT DISTINCT(st.Staff_id), staff_name
2 FROM order staff_os,staff_tab st
3 WHERE os.Staff_id=st.Staff_id
4
```

Fig. 63

Output query

Fig. 64

(g)Selected query all the customer details for deliveries:

 Here customer_id from customer_tab table and cus_order and order_id from order_service where service_id=401

```
1 select Customer_ID, Customer_Name, Customer_Type, Customer_company
2 FROM customer_tab ct
3 WHERE ct.Customer_id IN(SELECT DISTINCT(Customer_id)
4 FROM cus_order co
5 WHERE co.Order_id in (SELECT Order_id
6 FROM order_service
7 WHERE Service_id=401))
8
```

Fig. 65

Output query

Fig. 66

(h)Count queries all the service which involves gray Crowley:

Query for gray Crowley all service

```
1 SELECT count (order_id) AS services
2 FROM order staff os
3 WHERE os.staff_id=(SELECT
4 staff_id
5 FROM staff tab
6 WHERE staff_name='Gary Crowley')
7
```

Fig. 67

Output query

Fig. 68

- (i) Shows query the components for the product type 'Green House':
- Query code for component where product_type is "Green House"

```
1 SELECT product_id,product_name,product_type,component
2 FROM product_tab
3 where product_type="Green House"
```

Fig. 69

Output query

Fig. 70

(Benyon-Davis, (2003),(2004))

(j) Update the records for 33 so that Gray Crowley:

- Table for before update
- update order_staff table where staff_id 105 update will be 106 where order_id 33

Fig. 71

Update query code

```
1 UPDATE order_staff SET staff_id="106"
2 WHERE staff_id="105" AND order_id= 33
3
4
```

Fig. 72

This screen short for after update query

```
✓ 1 row affected. (Query took 0.0670 sec)
UPDATE order_staff SET staff_id = "106" WHERE staff_id = "105" AND order_id = 33
```

Fig. 73

• Table for after update

Fig. 74

(k)Update the record for staff Ben Johnson:

- Table for before update
- Update staff_tab table where staff_name Ben Johnson update will be Ben Robert

Fig. 75

Update query code

```
1 UPDATE staff_tab set staff_name="Ben Robert"
2 WHERE staff name="Ben Johnson" AND
3 staff_id="104"
```

Fig. 76

This screen short for after update query

```
✓ 1 row affected. (Query took 0.0380 sec)
UPDATE staff_tab SET staff_name = "Ben Robert" WHERE staff_name = "Ben Johnson" AND staff_id = "104"
```

Fig. 77

· Table for after update

Fig. 78

(I) Update order job center Gary Crowley involved shed construction:

- Table for before update
- Update order_service table where service_id 401 update will be 402 where order_id 11

Fig. 79

Update query code

```
1 UPDATE order_service SET service_id=401
2 WHERE order_id=11 AND service_id=402
3
```

Fig. 80

• This screen short for after update query

```
1 row affected. (Query took 0.0600 sec)

UPDATE order_service SET service_id =401 WHERE order_id =11 AND service_id =402
```

Fig. 81

• Table for after update

Fig. 82

(m) Update any session involved Anita Agneson:

- Table for before update
- Update order_staff table where staff_id 106 update will be 108 where order_id 11

Fig. 83

Update query code

```
1 UPDATE order_staff SET staff_id=106
2 WHERE order_id=11 AND staff_id=108
3 AND order_id=11
```

Fig. 84

This screen short for successfully query update

```
I row affected.
UPDATE `db_assignment`.`order_staff` SET `staff_id` = '105' WHERE `order_staff`.`order_id` =11 AND `order_staff`.`staff_id` =106;
```

Fig. 85

• Table for after update

Fig. 86

(n)Deleted the record for Anita Agnson:

- Table for before delete
- Delete order_staff table where staff_id 107 that means Anita Agnson staff_id is 107

Fig. 87

Query code for delete

```
1 Delete from order_staff
2 where staff_id=107
```

Fig. 88

• After this message box is show than click on ok for delete

Fig. 89

This screen short for successfully query deleted

Fig. 90

- Table for after deleted
- Here two row are deleted

Fig. 91

(Hall., (2001))

Task-3

Assessment:

Requirement assessment:

- For this assignment I have used SQL server. (My SQL version is v3.2.1).
- I have access server used by *local host*.
- Then I have created database name. My database name is "db_assignment".
- Then I have created data 8 tables for keeping and store data.
- Then I have created *data relationship* between *primary and foreign key*. The data table will be *3rd normalization* from.
- Then I have completed data dictionary with attributes.
- After I have *input query*. My query run successfully.

Provides Assessment with requirement table:

Task	Requirement	Performed Task	Remark
	Entity relationship	Analysis requirement and then Created entity	
	model	relationship	
To all 4	Normalized form	Fully used 3 rd normalization form and reduce	
Task 1		table <i>complicity</i>	
	Data Table	Provides <i>data dictionary</i> , data types, primary and	
		foreign keys. without data <i>redundancy</i>	
	Table	Created database with table using SQL.	
	Enter data	Keeping and store data orders, products,	done
		component, without data lost	dono
		Show components	
Task 2			
Task 2		Input staffs and service data list which provides	
		current and existing process	
	Query	Provides services for a <i>particular customer</i>	
		which no data duplication.	
		Query which provides the staff assigned to	
		service.	

Update record Update record	query which provides customer details for delivery query that count all the services which involved Gray Crowley query which show the components of the product types update order_staff where Gray Crowley update will be delivery which order 33 Update where Ben Johnson update will be Ben Robert	done
Update order	Update order_service table Walton Job Center which Gary Crowley involved	
Update session	Update session for <i>Anita Agneson</i> involved	
Deleted record	Delete record for Anita Agnson	

Conclusion:

I have described all the *process* with *screenshot* which I have followed for *design of database*. I have completed *all the requirement in this assignment and the* data query will be run successfully. I have *gain a lot of knowledge* in this assignment.

Bibliography

- Anon., n.d. *System_R/SQL_Reunion_95/*. [Online] Available at: http://www.mcjones.org/ [Accessed 5 April 2016].
- Benyon-Davis, P..T.&.B.C., (2003),(2004). *Database Systems*, *Database*. 3rd ed. Palgrave Macmillan. Chapters 11, 12 & 13.Connolly.
- Codd, E.F., (1970. A Relational Model for Large Shared Data Banks. Retrieved on 20/05/11 from.
- Connolly, T.&.B.C., (2004). *Practical Approach to Design, Implementation, and Management*. 4th ed. Database SystemsA.
- Hall., P., (2001). Understanding Relational Database Query Languages, Chapter 5. 1st ed.
- Wesley, A., (2009). Chapter 1 of Connolly, Database Systems: A Practical Approach to Design. 5th ed.