Package 'RAFPALdb'

March 22, 2016
Title R-AFPALdb package.
Version 0.0.0.9000
Description Package dedicated to the interaction with and extraction of data stored in AFAPLdb.
Depends R (>= 3.2.2)
License ``Use it at your own risk" license.
LazyData true
RoxygenNote 5.0.1.9000
Imports RMySQL,
rjson,
sp,
ncdf4,
raster,
ade4,
maptools

R topics documented:

Connect	2
correlationPlot	3
digitizeR	4
Disconnect	4
exportMonteCarloInterpolation	4
exportMonteCarloStacking	5
extractTRACE	5
getAgeList	6
getAltitude	ϵ
getBio	7
getBiome	7
getChronoAgeList	7
getChronoDataList	8
getChronoFromDataID	8
getChronologyList	9
getColorGradient	9
getData 1	10
getDatasetFromReference	1
getDatasetFromSite	1
getDatasetList	12

2 Connect

removeSample	
plotTRACE	
plotCountries	25 25
openTRACE	24 25
openArticle	24 24
Monte Carlo Stacking	23
Monte Carlo Interpolation	23
Monte Carlo Literary alating	22
makeTransparent	22
Interpolation.init	21
getTmpr_min	21
getTmpr_mean	21
getTmpr_max	20
getTaxalist	
getSiteRegionList	20
getSiteList	19 20
getSiteFromXY	19
getSiteFromRegion	18
getSiteFromReference	18
getSiteFromDataID	17
getRefSiteList	17
getReferenceList	16
getReferenceFromXY	16
getReferenceFromSite	15
getReferenceFromRegion	15
getReferenceFromDataID	14
getPrecip	14
getPET	14
getInsolation	13
getDistrib	

Connect

Connection to the database

Description

This function allows you to connect to AFPALdb.

Usage

```
Connect(user = -1, pass = -1, host = -1)
```

Arguments

user User. pass Password.

host Adresse of the server. Default 'localhost'.

correlationPlot 3

Examples

```
Connect(user="root",pass="root123")
```

 ${\tt correlationPlot}$

Generate a correlation plot.

Description

This figure measures the correlation between two records at different periods and with different time windows.

Usage

```
correlationPlot(x1, x2, xmn, xmx, xstep, ymn = 0, ymx = xmx, ystep,
  Contour = FALSE, exportPDF = TRUE, savePDF = paste(getwd(),
  "/CorrelationPlot.pdf", sep = ""), title = "CorrelationPlot",
  xlab = "Age", ylab = "Width")
```

Arguments

x1	Record to be compared. x1 must be a two-column matrix/data frame with time in the first column /and the variable to compare.
x2	Idem.
xmn	Date of beginning of the comparison.
xmx	Date of end of the comparison.
xstep	Temporal interval between two measures.
ymn	Minimum size of window to be measured.
ymx	Maximum size of window to be measured. Default is a global measure of the correlation of the two records.
ystep	Steps of the correlation window.
Contour	Boolean. If TRUE, contours at every 0.1 point of correlation will be added to the figure.
exportPDF	Boolean. If TRUE, the graphic will be saved in the file named 'savePDF'.
savePDF	Address and Name of the file. Default if 'CorrelationPlot.pdf' in the working directory.
title	Title to display on the graphic.
xlab	Label of the x-axis.
ylab	

Examples

 $\label{lem:cond_Name} $$d1=\text{getData}(Citation_Key="Chase_etal_2013", Record_Name="SWP-1-1", Proxy.Uncer=FALSE, Chrono.Uncer=FALSE, Proxy.Uncer=FALSE, Proxy.Uncer=FALSE,$

digitizeR

DigitizeR software

Description

Starts the digitizeR software.

Usage

```
digitizeR()
```

Examples

digitizeR()

Disconnect

Disconnect the user from the database

Description

This function disconnects the AFPALdb.

Usage

Disconnect()

Examples

Disconnect()

 ${\tt exportMonteCarloInterpolation}$

Export interpolated reconstructions into .csv and .pdf files.

Description

Export interpolated reconstructions into .csv and .pdf files.

Usage

```
exportMonteCarloInterpolation(dat, saveData = getwd())
```

Arguments

dat The classic Monte-Carlo object generated by Interpolation.init(). saveData Folder where to save the outputs (in the working folder by default).

Examples

exportMonteCarloInterpolation(Pella.init)

exportMonteCarloStacking

Export stacked reconstructions into .csv and .pdf files.

Description

Export stacked reconstructions into .csv and .pdf files.

Usage

```
exportMonteCarloStacking(dat, saveData = getwd(), vline = seq(min(dat$XX),
    max(dat$XX), length.out = 11), XLAB = "Age")
```

Arguments

dat The classic Monte-Carlo object generated by Interpolation.init(). saveData Folder where to save the outputs (in the working folder by default).

vline List of position from where to draw a vertical dashed lines (the total xrange is

divided in 10 equal intervals by default).

XLAB Label of the x-axis.

Examples

```
exportMonteCarloStacking(Pella.init,XLAB="Age (cal BP)")
```

extractTRACE

Extract data from TRACE.

Description

Extract data from TRACE.

Usage

```
extractTRACE(gridcells, var, month = 1, decadal = TRUE, layer = "",
  exportCSV = FALSE, saveCSV = paste(getwd(), "/Extract_", var, ".csv", sep
  = ""), tmin = -50, tmax = 22000)
```

Arguments

gridcells	Coordinates of the pixels of interest (lon1, lat1, lon2, lat2,).
var	$Variable\ of\ interest\ (TS/PRECC/PRECT/AI/MAP/MAT/PET/TSMN/TSMX/SOLIN).$
month	A vector of values comprised between 1 and 12.
decadal	Boolean to select between annual (FALSE) or averaged by decade (TRUE, default) timeseries.
layer	The layer to extract from the netcdf file.
exportCSV	Boolean to export the results in a csv.
saveCSV	Address of the file. Default is "Extract_var.csv" in the working directory.
tmin	Subset of the 22,000 years of simulation.
tmax	Subset of the 22,000 years of simulation.

6 getAltitude

Examples

```
\label{thm:total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total_total
```

getAgeList

Get the Age table.

Description

This function allows you to get all the entries from the AFPALdb.C14 table.

Usage

```
getAgeList(ORDERBY = "LabCode")
```

Arguments

ORDERBY

Set of variables (separated by a comma) to order the results by. Results sorted by 'LabCode' by default.

Examples

```
Age=getAgeList()
Age=getAgeList("LabCode")
```

getAltitude

Get the Altitude table.

Description

This function allows you to get all the entries from the AFPALdb.Altitude table.

Usage

```
getAltitude()
```

```
altitude=getAltitude()
```

getBio 7

getBio

Get the bio table.

Description

This function allows you to get all the entries from the AFPALdb.bio table.

Usage

getBio()

Examples

bio=getBio()

getBiome

Get the Biome table.

Description

This function allows you to get all the entries from the AFPALdb.Biome table.

Usage

getBiome()

Examples

biome=getBiome()

 ${\tt getChronoAgeList}$

Get the ChronoC14 table.

Description

This function allows you to get all the entries from the AFPALdb.ChronoC14 table.

Usage

```
getChronoAgeList(ORDERBY = "Chrono_ID,LabCode")
```

Arguments

ORDERBY

Set of variables (separated by a comma) to order the results by. Results sorted by 'Chrono_ID x LabCode' by default.

```
chronocAge=getChronoAgeList()
chronocAge=getChronoAgeList("LabCode")
```

getChronoDataList

Get the ChronoData table.

Description

This function allows you to get all the entries from the AFPALdb.ChronoData table.

Usage

```
getChronoDataList(ORDERBY = "Chrono_ID,Dataset_ID")
```

Arguments

ORDERBY

Set of variables (separated by a comma) to order the results by. Results sorted by 'Chrono_ID x Dataset_ID' by default.

Examples

```
chronodata=getChronoDataList()
chronodata=getChronoDataList("Dataset_ID")
```

getChronoFromDataID

Extract datasets from the database

Description

This function allows you to extract the chronology of a dataset identified by its ID.

Usage

```
getChronoFromDataID(Dataset_ID, Uncertainties = FALSE)
```

Arguments

Dataset_ID ID of the dataset that needs its little chronology.

Uncertainties Boolean value for the extraction of chronological uncertainties.

```
chrono1=getChronoFromDataID(49)
chrono2=getChronoFromDataID(49,TRUE)
```

getChronologyList 9

getChronologyList Get the Chronology table.

Description

This function allows you to get all the entries from the AFPALdb.Chronology table, except the data.

Usage

```
getChronologyList(ORDERBY = "Chrono_ID")
```

Arguments

ORDERBY Set of variables (separated by a comma) to order the results by. Results sorted

by 'Chrono_ID' by default.

Examples

```
chronology=getChronologyList()
chronology=getChronologyList("Record_Name")
```

getColorGradient

Open a SSH tunnel with the server to open a distant file.

Description

This functions opens a SSH tunnel with the server to open a distant file.

Usage

```
getColorGradient(name = "", reverse = FALSE)
```

Arguments

name Name of the gradient. If empty or mispelled, the user will have to select from

the list of available gradients.

reverse Boolean to reverse the color gradient.

```
getColorGradient()
```

10 getData

getData

Extract chronologies from the database

Description

This function allows you to extract JSON objects (chronology containers) from AFPALdb.

This function allows you to extract JSON objects (data containers) from AFPALdb.

Usage

```
getData(Site_Name = "", Record_Name = "", Citation_Key = "", Proxy = "",
    Proxy.Uncer = FALSE, Dataset_ID = -1, Chronology = TRUE,
    Chrono.Uncer = FALSE)

getData(Site_Name = "", Record_Name = "", Citation_Key = "", Proxy = "",
    Proxy.Uncer = FALSE, Dataset_ID = -1, Chronology = TRUE,
    Chrono.Uncer = FALSE)
```

Arguments

Site_Name Name of the site.

Record_Name Name of the specific record requested.

Citation_Key Reference associated to the dataset requested.

Proxy Type of proxy of dataset requested.

Dataset_ID ID of the requested dataset.

Chrono_ID ID of the requested dataset.

Site_Name Name of the site.

Citation_Key Reference associated to the dataset requested.

Proxy Type of proxy of dataset requested.

```
d0=getData() # Returns NULL
d1=getData(Site_Name="Seweweekspoort")
d2=getData(Proxy="d13C")
d3=getData(Citation_Key="Chase_etal_2013")
d4=getData(Citation_Key="Chase_etal_2013", Record_Name="SWP-1-1")
d0=getData() # Returns NULL
d1=getData(Site_Name="Seweweekspoort")
d2=getData(Proxy="d13C")
d3=getData(Citation_Key="Chase_etal_2013")
d4=getData(Citation_Key="Chase_etal_2013", Record_Name="SWP-1-1", Proxy.Uncer=TRUE, Chrono.Uncer=TRUE)
```

```
getDatasetFromReference
```

Get a list of datasets associated to a given reference.

Description

This function allows you to get a list of datasets associated to a given reference. This function DOES NOT return data, just information about the dataset.

Usage

```
getDatasetFromReference(Citation_Key, fullRef = FALSE,
   ORDERBY = "Record_Name")
```

Arguments

Citation_Key Citation key.

fullRef Boolean. TRUE returns all the details of the site.

ORDERBY Field name to sort the output table. Default 'Record_Name'.

Examples

```
getDatasetFromReference("Chase_etal_2013")
getDatasetFromReference("Tierney_etal_2008",ORDERBY="Proxy")
```

getDatasetFromSite

Get a list of datasets associated to a given site.

Description

This function allows you to get a list of datasets associated to a given site. This function DOES NOT return data, just information about the dataset.

Usage

```
getDatasetFromSite(Site_ID = -1, Site_Name = "", Record_Name = "",
fullRef = FALSE, ORDERBY = "Record_Name")
```

Arguments

fullRef Boolean. TRUE returns all the details of the site.

ORDERBY Field name to sort the output table. Default 'Record_Name'.

Citation_Key Citation key.

```
getDatasetFromSite(Site_ID=1)
getDatasetFromSite(Site_Name="Seweweekspoort")
getDatasetFromSite(Record_Name="SWP-1-1")
```

12 getDataSSH

getDatasetList	Get the Dataset table.
gc tbatasc tList	Oct the Dataset table.

Description

This function allows you to get all the entries from the AFPALdb.Reference table, except the data.

Usage

```
getDatasetList(ORDERBY = "Dataset_ID")
```

Arguments

ORDERBY Set of variables (separated by a comma) to order the results by. Results sorted

by 'Dataset_ID' by default.

Examples

```
dataset=getDatasetList()
dataset=getDatasetList("Proxy")
dataset=getDatasetList("Record_Name,Citation_Key")
```

getDataSSH

Open a SSH tunnel with the server to open a file.

Description

This functions opens a SSH tunnel with the server to open a file.

Usage

```
getDataSSH(file, header = TRUE, sep = ",")
```

Arguments

file Complete address of the file. header Boolean (used in read.table).

sep Column separator (used in read.table).

```
head(getDataSSH("/home/emmanuel.chevalier/Bureau/*.csv"))
```

getDistrib 13

Description

This function allows you to get all the entries from the AFPALdb.distrib table.

Usage

```
getDistrib()
```

Examples

```
distrib=getDistrib()
```

Description

This function allows to extract monthly insolation values at 500 years resolution between present and 100,000 years ago.

Usage

```
getInsolation(lat, month, from = 0, to = 1e+05)
```

Arguments

lat	Latitude of the desired insolation. Integer between -90 and 90.
month	Month of the desired insolation. Can be either an integer between 1 and 12 or a string among jan/feb/mar/apr/may/jun/jul/aug/sep/oct/nov/dcm.
from	Beginning of the desired period of time. Default is '0'.
to	End of the desired period of time. Default is '100,000'.

```
getInsolation(65, "aug", 0, 35000)
getInsolation(-30, "dec", 10000, 0000)
```

getPET

Get the PET table.

Description

This function allows you to get all the entries from the AFPALdb.PET table.

Usage

```
getPET()
```

Examples

```
pet=getPET()
```

getPrecip

Get the precip table.

Description

This function allows you to get all the entries from the AFPALdb.precip table.

Usage

```
getPrecip()
```

Examples

```
precip=getPrecip()
```

getReferenceFromDataID

Get the reference associated to a dataset.

Description

This function allows you to get the reference associated to a dataset.

Usage

```
getReferenceFromDataID(Dataset_ID, fullRef = FALSE)
```

Arguments

fullRef Boolean. TRUE returns all the details of the reference.

Region Name of the region.

```
getReferenceFromDataID(1)
getReferenceFromDataID(2,TRUE)
```

```
getReferenceFromRegion
```

Get a list of studies performed in a given Region.

Description

This function allows you to get a list of studies performed in a given Region.

Usage

```
getReferenceFromRegion(Region, fullRef = FALSE, ORDERBY = "Citation_Key")
```

Arguments

Region Name of the region.

fullRef Boolean. TRUE returns all the details of the reference.

ORDERBY Field name to sort the output table. Default 'Citation_Key'.

Examples

```
getReferenceFromRegion("SRZ")
getReferenceFromRegion("WRZ",TRUE,ORDERBY="Site_Name")
```

getReferenceFromSite

Get a list of references associated to a given site.

Description

This function allows you to get a list of references associated to a given site.

Usage

```
getReferenceFromSite(Site_ID = -1, Site_Name = "", Record_Name = "",
fullRef = FALSE, ORDERBY = "Citation_Key")
```

Arguments

Site_ID ID of the site.
Site_Name Name of the site.
Record_Name Name of the record.

fullRef Boolean. TRUE returns all the details of the reference.

ORDERBY Field name to sort the output table. Default 'Citation_Key'.

```
d1=getReferenceFromSite(Site_Name="Seweweekspoort")
d2=getReferenceFromSite(Site_ID=1,fullRef=FALSE,ORDERBY="Journal")
d3=getReferenceFromSite(Record_Name="SWP-1-1",fullRef=TRUE)
```

16 getReferenceList

getReferenceFromXY Get a list of studies performed in a given area.

Description

This function allows you to get a list of studies performed in a given area.

Usage

```
getReferenceFromXY(xmn, xmx, ymn, ymx, fullRef = FALSE,
   ORDERBY = "Citation_Key")
```

Arguments

xmn	Lower bound of the longitudinal range.
xmx	Upper bound of the longitudinal range.
ymn	Lower bound of the latitudinal range.
ymx	Upper bound of the latitudinal range.

fullRef Boolean. TRUE returns all the details of the reference.

ORDERBY Field name to sort the output table. Default 'Citation_Key'.

Examples

```
\label{lem:getReferenceFromXY(20,30,-30,-20,0RDERBY="Site_Name")} getReferenceFromXY(25,30,-30,-20,fullRef=TRUE) \\ getReferenceFromXY(25,20,-30,-20) \\
```

getReferenceList

Get the Reference table.

Description

This function allows you to get all the entries from the AFPALdb.Reference table.

Usage

```
getReferenceList(ORDERBY = "Citation_Key")
```

Arguments

ORDERBY Set of variables (separated by a comma) to order the results by. Results sorted

by 'Citation_Key' by default.

```
ref=getReferenceList()
ref=getReferenceList("Citation_Key")
```

getRefSiteList 17

getRefSiteList

Get the RefSite table.

Description

This function allows you to get all the entries from the AFPALdb.RefSite table.

Usage

```
getRefSiteList(ORDERBY = "Citation_Key,Record_Name")
```

Arguments

ORDERBY

Set of variables (separated by a comma) to order the results by. Results sorted by 'Citation_Key x Record_Name' by default.

Examples

```
refsite=getRefSiteList()
refsite=getRefSiteList("Record_Name")
```

getSiteFromDataID

Get the site associated to a dataset.

Description

This function allows you to get the site associated to a dataset.

Usage

```
getSiteFromDataID(Dataset_ID, fullRef = FALSE)
```

Arguments

fullRef Boolean. TRUE returns all the details of the site.

Region Name of the region.

```
getSiteFromDataID(1)
getSiteFromDataID(2,TRUE)
```

18 getSiteFromRegion

getSiteFromReference Get a list of references associated to a given site.

Description

This function allows you to get a list of references associated to a given site.

Usage

```
getSiteFromReference(Citation_Key, fullRef = FALSE, ORDERBY = "Site_Name")
```

Arguments

Citation_Key Citation key.

fullRef Boolean. TRUE returns all the details of the site.

ORDERBY Field name to sort the output table. Default 'Site_Name'.

Examples

```
getSiteFromReference("Chase_etal_2013")
getSiteFromReference("Tierney_etal_2008",TRUE)
```

getSiteFromRegion

Get a list of sites part of a given Region.

Description

This function allows you to get a list of sites part of a given Region.

Usage

```
getSiteFromRegion(Region, fullRef = FALSE, ORDERBY = "Site_Name")
```

Arguments

Region Name of the region.

fullRef Boolean. TRUE returns all the details of the reference.

ORDERBY Field name to sort the output table. Default 'Site_Name'.

```
getSiteFromRegion("SRZ")
getSiteFromRegion("WRZ",TRUE)
```

getSiteFromXY 19

getSiteFromXY Get a list of studies performed in a given area.	getSiteFromXY	Get a list of studies performed in a given area.	
--	---------------	--	--

Description

This function allows you to get a list of studies performed in a given area.

Usage

```
getSiteFromXY(xmn, xmx, ymn, ymx, fullRef = FALSE, ORDERBY = "Site_Name")
```

Arguments

xmn	Lower bound of the longitudinal range.
xmx	Upper bound of the longitudinal range.
ymn	Lower bound of the latitudinal range.
ymx	Upper bound of the latitudinal range.

fullRef Boolean. TRUE returns all the details of the site.

ORDERBY Field name to sort the output table. Default 'Site_Name'.

Examples

```
getSiteFromXY(20,30,-30,-20)
getSiteFromXY(25,30,-30,-20)
getSiteFromXY(25,20,-30,-20,ORDERBY="Lat")
```

getSiteList

Get the Site table.

Description

This function allows you to get all the entries from the AFPALdb.Site table.

Usage

```
getSiteList(ORDERBY = "Site_Name")
```

Arguments

ORDERBY Set of variables (separated by a comma) to order the results by. Results sorted

by 'Site_Name' by default.

```
sites=getSiteList()
sites=getSiteList(ORDERBY="Site_ID")
sites=getSiteList("Site_Name")
```

20 getTmpr_max

getSiteRegionList

Get the SiteRegion table.

Description

This function allows you to get all the entries from the AFPALdb.SiteRegion table.

Usage

```
getSiteRegionList(ORDERBY = "Region")
```

Arguments

ORDERBY

Set of variables (separated by a comma) to order the results by. Results sorted by 'Region' by default.

Examples

```
siteregion=getSiteRegionList()
siteregion=getSiteRegionList("SRZ")
```

getTaxalist

Get the Taxalist table.

Description

This function allows you to get all the entries from the AFPALdb.Taxalist table.

Usage

```
getTaxalist()
```

Examples

```
taxalist=getTaxalist()
```

getTmpr_max

Get the tmpr_max table.

Description

This function allows you to get all the entries from the AFPALdb.tmpr_max table.

Usage

```
getTmpr_max()
```

```
tmpr_max=getTmpr_max()
```

getTmpr_mean 21

getTmpr_mean

Get the tmpr_mean table.

Description

This function allows you to get all the entries from the AFPALdb.tmpr_mean table.

Usage

```
getTmpr_mean()
```

Examples

```
tmpr_mean=getTmpr_mean()
```

getTmpr_min

Get the tmpr_min table.

Description

This function allows you to get all the entries from the AFPALdb.tmpr_min table.

Usage

```
getTmpr_min()
```

Examples

```
tmpr_min=getTmpr_min()
```

Interpolation.init

Function used to initiate the Monte-Carlo process. It will extract the data from FPALdb and group them into a Monte-Carlo object.

Description

Function used to initiate the Monte-Carlo process. It will extract the data from FPALdb and group them into a Monte-Carlo object.

Usage

```
Interpolation.init(sites, variable, time.range, time.resol, NREP = 50000,
   Citation_Keys = rep("", length(sites)))
```

22 MonteCarloCentring

Arguments

sites List of sites to be used in the process.

variable Variable of interest.

time.range Minimum and maximum values of th period of interest. Does not necessary

encompass the total temporal range of the records.

time.resol Resolution of the record.

NREP Number of scenarios to generate (default 50,000). Citation_Keys Number of scenarios to generate (default 50,000).

Examples

Pella.init = Interpolation.init (sites = c("PEL-1-1", "PEL-1-4a"), variable = "ReconAI", time.range = c(0,50000), time.

makeTransparent

Add transparency to a color.

Description

Add transparency to a color.

Usage

```
makeTransparent(color, alpha = 0.5)
```

Arguments

color List of colors.

alpha Degree of transparency (0: full transparency, 1: no transparency).

Examples

```
\label{eq:plot1:20,1:20,col=getColorGradient("Rd2Bl20"),pch=15,cex=5)} \\ points(1:20,1:20+2,col=makeTransparent(getColorGradient("Rd2Bl20"),alpha=0.5),pch=15,cex=5) \\
```

MonteCarloCentring

Automatically calculates an optimum centring value for the stacking.

Description

Automatically calculates an optimum centring value for the stacking.

Usage

```
MonteCarloCentring(dat, ref, overlap)
```

Arguments

dat The classic Monte-Carlo object generated by Interpolation.init().

ref String that indicates the sequence of reference.

overlap Vector that indicates for each site the period to consider for the overlap, e.g.

c("site1",0,10000,"site2",3000,11000,"site3",350,8000)

Examples

Pella.init=MonteCarloCentring(Pella.init,"PEL-1-1",c("PEL-1-4a",100,1200))

MonteCarloInterpolation

Interpolate individually each reconstruction.

Description

Interpolate individually each reconstruction.

Usage

MonteCarloInterpolation(dat, exportData = FALSE, saveData = getwd())

Arguments

dat The classic Monte-Carlo object generated by Interpolation.init().

exportData Boolean (default FALSE) to save the individual interpolations.

saveData Folder where to save the outputs (in the working folder by default).

Examples

Pella.init=MonteCarloInterpolation(Pella.init,exportData=TRUE)

MonteCarloStacking Perform the Monte-Carlo stacking.

Description

Perform the Monte-Carlo stacking.

Usage

MonteCarloStacking(dat, exportData = FALSE, saveData = getwd())

Arguments

dat The classic Monte-Carlo object generated by Interpolation.init().

exportData Boolean (default FALSE) to save the individual interpolations.

saveData Folder where to save the outputs (in the working folder by default).

centring A vector of values to center data. Using the output of MonteCarloCentring() is

recommended.

24 openTRACE

Examples

 ${\tt Pella.init=MonteCarloStacking(Pella.init,exportData=TRUE)}$

openArticle

Function that opens pdf files from a reference or an author.

Description

Function that opens pdf files from a reference or an author.

Usage

```
openArticle(Citation_Key = "", Author = "")
```

Arguments

Citation_Key Key of the reference.

Author Name of the author. Selection on the terminal possible if many references cor-

respond to the name.

Examples

```
openArticle("Baker_etal_2014")
openArticle(Author="Scott")
```

openTRACE

Open a TRACE file

Description

Open a TRACE file.

Usage

```
openTRACE(var, month = 1, decadal = TRUE, layer = "")
```

Arguments

var Variable of interest (TS/PRECC/PRECT/AI/MAP/MAT/PET/TSMN/TSMX/SOLIN).

month A value between 1 and 12.

decadal Boolean to select between annual (FALSE) or averaged by decade (TRUE, de-

fault) timeseries.

layer The layer to extract from the netcdf file.

```
TS=openTRACE("TS",month=4,decadal=TRUE)
```

plotCountries 25

plotCountries

Add countries to a plot.

Description

Add countries to a plot.

Usage

```
plotCountries(EXT = c(-180, 180, -90, 90), add = FALSE)
```

Arguments

EXT Extension of the plot(xmin, xmax, ymin, ymax).

add Boolean. If TRUE (default), add countries borders to an existing plot.

Examples

```
\verb|plotCountries(EXT=c(0,40,-40,0),add=FALSE)||
```

 $\verb|plotCountriesByName| \\$

Add countries to a plot.

Description

Add countries to a plot.

Usage

```
plotCountriesByName(countries = c("South Africa"), add = FALSE)
```

Arguments

countries List of countries to be plotted.

add Boolean. If TRUE (default), add countries borders to an existing plot.

```
plotCountriesByName(countries=c("South Africa", "Lesotho", "Namibia", "Botswana", "Swaziland"), add=FALSE)
```

26 removeSample

plotTRACE Extract data from TRACE.

Description

Extract data from TRACE.

Usage

```
plotTRACE(dat, exportPDF = FALSE, savePDF = paste(getwd(), "/plotTRACE.pdf",
    sep = ""), add.contours = TRUE, add.countries = TRUE, WIDTH = 5.51,
    HEIGHT = 5.51, legend = "bottom", EXT = c(-180, 180, -90, 90),
    COL = getColorGradient("Rd2Bl20"))
```

Arguments

dat Matrix to be plotted.

exportPDF Boolean. TRUE to generate a pdf of the figure.

savePDF Address and name of the pdf. Default is "plotTRACE.pdf" in the working direc-

tory.

add.contours Boolean to add contours on the figure.

WIDTH The width of the figure in inches.

HEIGHT The height of the figure in inches.

legend Position of the legend (top/right/bottom/left/none).

EXT Extension of the plot(xmin, xmax, ymin, ymax).

COL Color gradient.

add.contries Boolean to add country borders on the figure.

Examples

```
plotTRACE(dat=openTRACE("TS",month=4,decadal=TRUE))
```

 ${\tt removeSample}$

Remove a sample from a Monte-Carlo object.

Description

Remove a sample from a Monte-Carlo object.

Usage

```
removeSample(dat, n, site)
```

Arguments

dat The classic Monte-Carlo object generated by Interpolation.init().

n ID of the sample(s) to remove.

site Name of the Record to remove samples from.

verticalPlot 27

Examples

```
Pella.init=removeSample(Pella.init,21,"PEL-1-1")
```

verticalPlot	Generate a correlation plot.
VCI CICALI IOC	denerate a corretation prot.

Description

This figure measures the correlation between two records at different periods and with different time windows.

Usage

```
verticalPlot(dat, x.range = range(unlist(lapply(dat, function(z)
  return(range(z[, 1], na.rm = TRUE))))), xstep = 1000, reverse = rep(FALSE,
  length(dat)), ystep = unlist(lapply(dat, function(z)
  return(round(diff(range(z[, 2]))/6, 1)))), adjust = TRUE,
  relativeHeight = rep(1, length(dat)), COL = sample(colors(), length(dat)),
  CEX = 1, exportPDF = TRUE, savePDF = paste(getwd(), "/VerticalPlot.pdf",
  sep = ""), xlab = "Age", WIDTH = 3.54, HEIGHT = 9)
```

Arguments

dat	A list of two-columns matrixes that contains the data to plot.
x.range	Min and max values to plot on the x-axis. Default values are calculated from the min and max values from 'dat'.
xstep	Distance between vertical lines.
reverse	Vector of boolean values that indicates whether the record should be plotted upside down. Default is FALSE.
ystep	Vector that contains the distance between tickmarks on the y-axes. Dafault is 1/6th of the total range.
adjust	Set to TRUE (default) to reduce the white space between the curves.
relativeHeight	Vector that indicates the relative height each curve should add. By default, all curves have the same space allocated.
COL	Vector of colors. Random selection of color by default.
CEX	Size of the text. Default to 1.
exportPDF	Boolean to indicate whether the figure should be save in a pdf.
savePDF	Adress and name of the pdf. Default is "VarticalPlot.pdf" in the working directory.
xlab	Label of the x-axis.
WIDTH	Width of the pdf in inches (Default is 3.54in=90mm).
HEIGHT	Height of the pdf in inches (Default is 9in=22-230mm).

28 verticalPlot

Examples

d1=getData(Citation_Key="Chase_etal_2013",Record_Name="SWP-1-1",Proxy.Uncer=FALSE,Chrono.Uncer=FALSE,Proxy.d2=getData(Citation_Key="Chase_etal_2013",Record_Name="SWP-1-1",Proxy.Uncer=FALSE,Chrono.Uncer=FALSE,Proxy.d3=getData(Citation_Key="Chase_etal_2013",Record_Name="SWP-1-5",Proxy.Uncer=FALSE,Chrono.Uncer=FALSE,Proxy.d4=getData(Citation_Key="Chase_etal_2013",Record_Name="SWP-1-5",Proxy.Uncer=FALSE,Chrono.Uncer=FALSE,Proxy.dat=list("SWP11-d15N"=d1,"SWP11-d13C"=d2,"SWP15-d13C"=d3,"SWP15-d15N"=d4)
verticalPlot(dat,adjust=TRUE,reverse=c(TRUE,FALSE,FALSE,TRUE),x.range=c(0,8000),xstep=1000,xlab="Age (Cal Example of Cal Example of Ca

Index

*Topic Chronology	getReferenceFromXY, 16
getChronoFromDataID, 8	*Topic getSite
getData, 10	getSiteFromDataID, 17
*Topic Dataset	getSiteFromReference, 18
${\tt getChronoFromDataID}, 8$	getSiteFromRegion, 18
getData, 10	getSiteFromXY, 19
*Topic Monte-Carlo	*Topic getTable
${\tt exportMonteCarloInterpolation, 4}$	getAgeList, 6
exportMonteCarloStacking,5	getAltitude, 6
Interpolation.init, 21	getBio, 7
MonteCarloCentring, 22	getBiome, 7
MonteCarloInterpolation, 23	<pre>getChronoAgeList, 7</pre>
MonteCarloStacking, 23	${ t getChronoDataList, 8}$
removeSample, 26	<pre>getChronologyList,9</pre>
*Topic Plot	getDatasetList, 12
correlationPlot, 3	getDistrib, 13
exportMonteCarloInterpolation, 4	getPET, 14
exportMonteCarloStacking, 5	getPrecip, 14
getColorGradient, 9	getReferenceList, 16
makeTransparent, 22	getRefSiteList, 17
plotCountries, 25	getSiteList, 19
plotCountriesByName, 25	<pre>getSiteRegionList, 20</pre>
plotTRACE, 26	getTaxalist, 20
verticalPlot, 27	<pre>getTmpr_max, 20</pre>
*Topic TRaCE	<pre>getTmpr_mean, 21</pre>
extractTRACE, 5	<pre>getTmpr_min, 21</pre>
openTRACE, 24	*Topic pdf
plotTRACE, 26	openArticle, 24
*Topic connection	
Connect, 2	Connect, 2
Disconnect, 4	correlationPlot, 3
getDataSSH, 12	digitizeR,4
*Topic getDataset	Disconnect, 4
getDatasetFromReference, 11	
getDatasetFromSite, 11	exportMonteCarloInterpolation, 4
*Topic getData	exportMonteCarloStacking, 5
getData, 10	extractTRACE, 5
*Topic getInsolation	
getInsolation, 13	getAgeList, 6
*Topic getReference	getAltitude, 6
getReferenceFromDataID, 14	getBio, 7
getReferenceFromRegion, 15	getBiome, 7
<pre>getReferenceFromSite, 15</pre>	<pre>getChronoAgeList, 7</pre>

30 INDEX

```
getChronoDataList, 8
getChronoFromDataID, 8
getChronologyList, 9
getColorGradient, 9
getData, 10
getDatasetFromReference, 11
getDatasetFromSite, 11
getDatasetList, 12
getDataSSH, 12
getDistrib, 13
getInsolation, 13
getPET, 14
getPrecip, 14
getReferenceFromDataID, 14
{\tt getReferenceFromRegion}, 15
getReferenceFromSite, 15
getReferenceFromXY, 16
getReferenceList, 16
getRefSiteList, 17
getSiteFromDataID, 17
getSiteFromReference, 18
getSiteFromRegion, 18
getSiteFromXY, 19
getSiteList, 19
getSiteRegionList, 20
getTaxalist, 20
getTmpr_max, 20
getTmpr_mean, 21
\texttt{getTmpr\_min}, \textcolor{red}{21}
Interpolation.init, 21
makeTransparent, 22
MonteCarloCentring, 22
MonteCarloInterpolation, 23
MonteCarloStacking, 23
openArticle, 24
openTRACE, 24
plotCountries, 25
plotCountriesByName, 25
plotTRACE, 26
removeSample, 26
verticalPlot, 27
```