Linear Transformation

Linear Transformation

Linear Transformation
Change of Basis and Diagonalization

Linear Transformation

Linear transformations can be viewed as an extension of the notion of a matrix to general vector spaces.

Def. Linear Transformation

Let U and V be vector spaces, and let T be a function from U to V, $T:U\to V$. We say that T is a linear transformation if \forall \mathbf{u} , $\mathbf{v}\in U$ and all scalars a, we have:

1.
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$
.

2.
$$T(a\mathbf{u}) = aT(\mathbf{u})$$

Remark. $T(c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_n\mathbf{v}_n) = c_1T(\mathbf{v}_1) + c_2T(\mathbf{v}_2) + \dots + c_nT(\mathbf{v}_n).$

Linear Transformation Using Basis in \mathbb{R}^n

Let V be vector space with basis $S=\{\mathbf{u}_1,\mathbf{u}_2,\cdots,\mathbf{u}_p\}$. Let linear transformation $T:V\to U$. For any vector $\mathbf{v}\in V$, we have

$$\mathbf{v} = a_1 \mathbf{u}_1 + a_2 \mathbf{u}_2 + \dots + a_p \mathbf{u}_p$$

$$T(\mathbf{v}) = a_1 T(\mathbf{u}_1) + a_2 T(\mathbf{u}_2) + \dots + a_p T(\mathbf{u}_p)$$
(1)

Th. Let $T: \mathcal{R}^n \to \mathcal{R}^m$ be a linear transformation, and let $\mathbf{e}_1, \mathbf{e}_2, \cdots \mathbf{e}_n$ be the unit vectors in \mathcal{R}^n . If A is an $(m \times n)$ matrix defined by:

$$A = [T(\mathbf{e}_1), T(\mathbf{e}_2), \dots, T(\mathbf{e}_n)]$$
(2)

Then we have $T(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathcal{R}^n$.

Proof.:

$$\mathbf{x} = \sum_{i=1}^{n} x_i \mathbf{e}_i$$

$$T(\mathbf{x}) = \sum_{i=1}^{n} x_i T(\mathbf{e}_i) = A\mathbf{x}$$
(3)

The Matrix of Transformation

Suppose that U and V both have finite dimension, say dim(U)=n and dim(V)=m. We have that U is isomorphic to R^n and V is isomorphic to R^m . Let B be a basis for U and C be a basis for V. Then each vector $\mathbf{u} \in U$ and $\mathbf{v} \in V$ can be represented by the vectors $[\mathbf{u}]_B \in R^n$ and $[\mathbf{v}]_C \in R^m$. Then the linear transformation $T: U \to V$ can be represented by an $(m \times n)$ matrix Q in the sense that if $T(\mathbf{u}) = \mathbf{v}$, then $Q[\mathbf{u}]_B = [\mathbf{v}]_C$.

Def. The Matrix of a Transformation

Let $T:U\to V$ be a linear transformation, where dim(U)=n and dim(V)=m. Let $B=\{\mathbf{u}_1,\mathbf{u}_2,\cdots,\mathbf{u}_n\}$ be a basis for U and let $C=\{\mathbf{v}_1,\mathbf{v}_2,\cdots,\mathbf{v}_m\}$ be a basis for V. The **matrix representation** for T with respect to the bases B and C is the $(m\times n)$ matrix Q defined by:

$$Q = [\mathbf{Q}_1, \mathbf{Q}_2, \cdots, \mathbf{Q}_n].$$

$$\mathbf{Q}_j = [T(\mathbf{u}_j)]_C$$
(4)

and we have:

$$Q[\mathbf{u}]_B = [\mathbf{v}]_C \text{ if } T(\mathbf{u}) = \mathbf{v}. \tag{5}$$

Proof.

$$[\mathbf{u}]_B = [b_1, b_2, \cdots, b_n]^T.$$

$$Q[\mathbf{u}]_B = \sum_{i=1}^n b_i \mathbf{Q}_i = \sum_{i=1}^n b_i [T(\mathbf{u}_i)]_C = [T(\sum_{i=1}^n b_i T(\mathbf{u}_i))]_C = [T(\mathbf{u})]_C = [\mathbf{v}]_C.$$
(6)

Th. The Representation Theorem

Let $T:U\to V$ be a linear transformation, where dim(U)=n and dim(V)=m. Let B and C be bases for U and V, and let Q be the matrix of T relative to B and C. If $\mathbf u$ is a vector in U and $T(\mathbf u)=\mathbf v$, then:

$$Q[\mathbf{u}]_B = [\mathbf{v}]_C \tag{7}$$

Moreover, Q is the unique matrix that satisfies the equation above.

Corollary. Let T_1 , T_2 and T be transformation from U to V and let Q_1 , Q_2 and Q be the matrix representations with respect to B and C for T_1 , T_2 and T. Then:

- 1. $Q_1 + Q_2$ is the matrix representation for $T_1 + T_2$ with respect to B and C.
- 2. For a scalar a, aQ is the matrix representation for aT with respect to B and C.

Composition

Th. Let $T:U\to V$ and $S:V\to W$ be linear transformations, and suppose dim(U)=n, dim(V)=m and dim(W)=k. Let B, C, D be bases for U, V and W. If the matrix for T relative to B and C is $Q_{m\times n}$ and the matrix for S relative to C and D is $P_{k\times m}$, then the matrix representation for $S\circ T$ is PQ.

Let V and W be subspaces, and let $T:V\to W$ be a linear transformation. The **null space** of T, denoted by $\mathcal{N}(T)$, is the subset of V given by:

$$\mathcal{N}(T) = \{ \mathbf{v} | \mathbf{v} \in V \text{ and } T(\mathbf{v}) = \theta_{\mathbf{W}} \}$$
(8)

The **range** of T, denoted by $\mathcal{R}(T)$, is the subset of W defined by:

$$\mathcal{R}(T) = \{ \mathbf{w} | \mathbf{w} \in W \text{ and for some } \mathbf{v} \in V, \text{ we have } \mathbf{w} = T(\mathbf{v}) \}. \tag{9}$$

We know that there exists a matrix A s.t. $T(\mathbf{x}) = A\mathbf{x}$. In this case we have:

- 1. $\mathcal{N}(T) = \mathcal{N}(A)$.
- 2. $\mathcal{R}(T) = \mathcal{R}(A)$.

Def. One to One Linear Transformation

We say a linear transformation $T: U \to V$ in **one to one** if $T(\mathbf{u}) = T(\mathbf{v})$ implies $\mathbf{u} = \mathbf{v}$ for all \mathbf{u} and \mathbf{v} in U.

Remark. One to one linear transformation has strong relation with unique solution $A\mathbf{x} = \mathbf{b}$.

Th. Let $T:U\to V$ be a linear transformation. Then:

- 1. $T(\theta_U) = \theta_V$.
- 2. $\mathcal{N}(T)$ is a subspace of U.
- 3. $\mathcal{R}(T)$ is a subspace of V.
- 4. T is one to one if and only if $\mathcal{N}(T) = \{\theta_U\}$; that is, T is one to one if and only if $\operatorname{nullity}(T) = 0$.

Th. [for finite-dimensional vector space only]

Let $T:U\to V$ be a linear transformation and let U be p-dimensional, where $B=\{{\bf u}_1,{\bf u}_2,\cdots,{\bf u}_p\}$ is a basis for U.

- 1. $\mathcal{R}(T) = Sp\{T(\mathbf{u}_1), T(\mathbf{u}_2), \cdots, T(\mathbf{u}_n)\}.$
- 2. T is one to one if and only if $\{T(\mathbf{u}_1), T(\mathbf{u}_2), \cdots, T(\mathbf{u}_p)\}$ is linearly independent in V.
- 3. rank(T) + nullity(T) = p.

Def. Operations with Linear Transformations

Let U and V be vector spaces and let T_1 and T_2 be linear transformations, where $T_1:U\to V$ and $T_2:U\to V$.

- 1. **Sum**: $T_3: U \to V$, $T_3 = T_1 + T_2$ means $T_3(\mathbf{u}) = T_1(\mathbf{u}) + T_2(\mathbf{u})$.
- 2. Scalar Product: aT denotes $(aT)(\mathbf{u}) = a(T(\mathbf{u}))$.
- 3. **Composition**: Let U, V, W be vector space, let S and T be linear transformations, where $S: U \to V$ and $T: V \to W$. The composition, $L = T \circ S$, of S and T is defined to be function $L: U \to W$ given by $L(\mathbf{u}) = T(S(\mathbf{u}))$.

A function $f: X \to Y$ is **onto** provided that $\mathcal{R}(f) = Y$. A linear transformation $T: U \to V$ is **onto** provided that $\mathcal{R}(T) = V$.

Def. Inverse

Let $f:X\to Y$ be a function. If f is both one to one and onto, then the **inverse** of f, denoted by $f^{-1}:Y\to X$, is the function defined by:

$$f^{-1}(y) = x \text{ if and only if } f(x) = y.$$
(10)

Therefore, if $T:U\to V$ is a linear transformation that is both one to one and onto, then the inverse function $T^{-1}:V\to U$ is defined.

Def. Invertible Linear Transformations

A linear transformation $T:U\to V$ that is both one to one and onto is called an **invertible** linear transformation.

Th. Let U and V be vector spaces, and let $T:U\to V$ be an invertible linear transformation. Then:

- 1. $T^{-1}:V\to U$ is a linear transformation.
- 2. T^{-1} is invertible and $(T^{-1})^{-1} = T$.
- 3. $T^{-1} \circ T = I_U$ and $T \circ T^{-1} = I_V$, where I_U and I_V are the identity transformations on U and V.
- 4. For each vector $\mathbf{b} \in V$, $\mathbf{x} = T^{-1}(\mathbf{b})$ is the unique solution of $T(\mathbf{x}) = \mathbf{b}$.
- 5. If S and T are invertible and $S\circ T$ is defined, then $S\circ T$ is invertible and $(S\circ T)^{-1}=T^{-1}\circ S^{-1}.$

Note. Almost all properties of invertible matrix can be used in invertible linear transformation.

What is isomorphic

Suppose invertible transformation $T:U\to V$ is both one to one and onto, T established an exact pairing between elements of U and V. Moreover, because T is a linear transformation, this pairing preserves algebraic properties. Therefore, although U and V may be different sets, they may be regraded as indistinguishable(or equivalent) algebraically. Stated another way, U and V both represent just one underlying vector space but perhaps with different "labels" for the elements. The invertible linear transformation T acts as a translation from one set of labels to another.

Def. Isomorphic Vector Space

If U and V are vector spaces and if $T:U\to V$ is an invertible linear transformation, then U and V are said to be **isomorphic vector space**. Also, an invertible transformation T is called an **isomorphism**.

Th. If U is a real n-dimensional vector space, then U and \mathbb{R}^n are isomorphic.

Change of Basis and Diagonalization

A linear transformation from U to V can be represented as an $(m \times n)$ matrix when dim(U) = n and dim(V) = m. A consequence of this representation is that properties of transformations can be studied by examining their corresponding matrix representations.

For change of basis, we consider only transformations from V to V. If we are interested in the properties of T, then it is reasonable to search for a basis for V that makes the matrix representation of T as simple as possible. Finding such a basis is the subject of this section.

Def. Diagonalizable Transformations

If T is a linear transformation with a matrix representation that is diagonal, then T is called diagonalizable.

Def. Eigenvalue and Eigenvector in General Vector Space Setting

A scalar λ is called an **eigenvalue** for a linear transformation $T:V\to V$ provided that there is a **nonzero** vector $\mathbf{v}\in V$ such that $T(\mathbf{v})=\lambda\mathbf{v}$. \mathbf{v} is called an **eigenvector** for T corresponding to λ .

Th. Let V be an n-dimensional vector space. A linear transformation $T:V\to V$ is diagonalizable if and only if there exists a basis for V consisting of eigenvectors for T.

Th. Change of Basis

Let B and C be bases for the vector space V, with $B = \{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n\}$, and let $P_{n \times n}$ be the matrix given by $P = [\mathbf{P}_1, \mathbf{P}_2, \cdots, \mathbf{P}_n]$, where the ith column of P is:

$$\mathbf{P}_i = [\mathbf{u}_i]_C \tag{11}$$

Then P is nonsingular matrix and

$$[\mathbf{v}]_C = P[\mathbf{v}]_B \tag{12}$$

The matrix P is called the **transition matrix**. Since P is nonsingular, we have

$$[\mathbf{v}]_B = P^{-1}[\mathbf{v}]_C \tag{13}$$

Proof.: The linear transformation here is $T:V\to V$, or $T(\mathbf{v})=\mathbf{v}$. Then the **The Representation Theorem** applies. For the fact that P is nonsingular, we have:

$$\sum_{i=1}^{n} a_i \mathbf{P}_i = \sum_{i=1}^{n} a_i [\mathbf{u}_i]_C = \sum_{i=1}^{n} [a_i \mathbf{u}_i]_C = [\theta]_C$$
And we have:
$$\sum_{i=1}^{n} a_i \mathbf{u}_i = \theta$$
(14)

Matrix Representation and Change of Basis

Given a basis B, the relationship between the matrix representations of a linear transformation with respect to two different bases suggests how to determine a basis C such that the matrix relative to C is simpler matrix.

Th. Let B and C be bases for the n-dimensional vector space V, and let $T:V\to V$ be a linear transformation. If Q_1 is the matrix of T with respect to B and if Q_2 is the matrix of T with respect to C, then:

$$Q_2 = P^{-1}Q_1P (15)$$

where P is the transition matrix from C to B.

Proof. \forall $\mathbf{v} \in V$, we have

$$Q_2[\mathbf{v}]_C = [\mathbf{v}]_C = P^{-1}[\mathbf{v}]_B = P^{-1}Q_1[\mathbf{v}]_B = P^{-1}Q_1P[\mathbf{v}]_C$$
(16)

and Q_2 is unique, so

$$Q_2 = P^{-1}Q_1P (17)$$

Application in Eigenvalue

If Q is similar to a diagonal matrix R. If we choose $\{S_1, S_2, \dots, S_n\}$ to be a basis of R^n consisting of eigenvectors for Q, then

$$R = S^{-1}QS = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix}$$
 (19)

where d_i are eigenvalues for Q and where $Q\mathbf{S}_i = d_i\mathbf{S}_i$.