```
In [2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
plt.style.use('ggplot')
mpl.rcParams['figure.figsize'] = (10,8)
```

In [3]: #Reading the data
 df = pd.read_csv('datsets/cloud/cloudlet-prey-decreasing-predator.csv'
)
 print(df)

	VM	Number	Cloudlet	Number
0		60.00		80.00
1		34.73		66.19
2		18.97		69.16
3		11.40		82.47
4		8.33		103.14
5		7.99		132.47
6		11.21		168.11
7		23.44		197.33
8		55.89		180.68
9		76.83		112.69
10		53.72		72.76
11		28.69		64.30
12		15.14		71.04
13		9.29		87.74
14		7.23		114.07
15		8.34		150.29
16		15.28		189.09
17		40.13		200.55
18		77.98		137.38
19		64.06		78.36


```
In [5]:
        n = df['VM Number'].count()
                                                    #Number of samples
                                                    #The sum of x^2
        p = np.sum(np.square(df['VM Number']))
        q = df['VM Number'].sum()
                                                    #The sum of x
        r = np.sum(df['VM Number']*df['Cloudlet Number'])
                                                              #The sum of the p
        roduct of x and y
        s = df['Cloudlet Number'].sum()
                                                          #The sum of y^2
        #Print all of the above
        print("The number of samples is:\t\t\t", n)
        print("The sum of (VM Number)^2 is:\t\t\t", p)
        print("The sum of VM Number is:\t\t\t", q)
        print("The sum of VM Number*Cloudlet Number is:\t", r)
        print("The sum of Cloudlet Number is:\t\t\t",s)
```

```
The number of samples is:

The sum of (VM Number)^2 is:

The sum of VM Number is:

The sum of VM Number is:

The sum of Cloudlet Number is:

20

31305.6275000000000

628.6500000000001

72926.8294

The sum of Cloudlet Number is:

2357.82
```

```
In [6]: m = (1/((n*p) - (q**2)))*((n*r) - (q*s)) #The slope of the line c = (1/((n*p) - (q**2)))*((p*s) - (r*q)) #The y-intercept of the line print("The slope of the estimated line is:\t\t", m) print("The y-intercept of the estimated line is:\t", c)
```

The slope of the estimated line is: -0.10266674307393207 The y-intercept of the estimated line is: 121.11807240167138

```
In [7]: #To visualize the estimated line, create an x-vs-y set using m and c
    x = [x/10 for x in range (0, 1000)]
    y = [m*xi + c for xi in x]

#Plot again to visualize how the estimated line fairs against the orig
    inal data
    #orig, = plt.plot(df['M (g)'], df['T (s)'], label = "Actual")
    plt.scatter(df['VM Number'], df['Cloudlet Number'])
    est, = plt.plot(x, y, label = "Estimated",color='y')
    plt.xlabel('VM Number')
    plt.ylabel('Cloudlet Number')
    plt.legend(handles=[est])
    plt.show()
    #plt.clf()
```



```
In [8]: #Finding the error
error = 0.0
for index, row in df.iterrows():
    error += ((m*row['VM Number'] + c) - row['Cloudlet Number'])**2 #
    (Estimated - original)^2
error/=n

print("The mean squared error is:\t\t", error)
print("The root means squared error is:\t", error**(0.5))
```

The mean squared error is: 2188.5029793548742
The root means squared error is: 46.78143840621913