

IRF054SMD

MECHANICAL DATA

Dimensions in mm (inches)

0.89 (0.035) 3.70 (0.146) min. 3.70 (0.146) 3.41 (0.134) 3.41 (0.134) 3 4.14 3.84 16.02 (0.631) 15.73 (0.619) 10.69 (0.421) 10.39 (0.409) 9.67 (0.381) 9.38 (0.369) 11.58 (0.456) 11.28 (0.444)

N-CHANNEL POWER MOSFET

 V_{DSS} **60V** I_{D(cont)} 45A R_{DS(on)} 0.027Ω

FEATURES

- HERMETICALLY SEALED SURFACE MOUNT PACKAGE
- SMALL FOOTPRINT EFFICIENT USE OF PCB SPACE.
- SIMPLE DRIVE REQUIREMENTS
- LIGHTWEIGHT
- HIGH PACKING DENSITIES

SMD1 PACKAGE

Pad 1 - Gate

Pad 2 – Drain

Pad 3 - Source

IRFNxxx also available with Note: pins 1 and 3 reversed.

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

$\overline{V_{GS}}$	Gate – Source Voltage	±20V		
I_{D}	Continuous Drain Current (V _{GS} = 0 , T _{case} = 25°C)	45A		
I_{D}	Continuous Drain Current (V _{GS} = 0 , T _{case} = 100°C)	28A		
I_{DM}	Pulsed Drain Current ¹	180A		
P_{D}	Power Dissipation @ T _{case} = 25°C	100W		
	Linear Derating Factor	0.8W/°C		
E _{AS}	Single Pulse Avalanche Energy ²	480mJ		
dv/dt	Peak Diode Recovery ³	4.5V/ns		
T_J , T_stg	Operating and Storage Temperature Range	−55 to 150°C		
TL	Package Mounting Surface Temperature (for 5 sec)	300°C		
$R_{ heta JC}$	Thermal Resistance Junction to Case	1.25°C/W		
$R_{\thetaJ-PCB}$	Thermal Resistance Junction to PCB (Typical)	3°C/W		
Mataa				

Notes

- 1) Pulse Test: Pulse Width \leq 300ms, $\delta \leq$ 2%
- 2) @ V_{DD} = 25V , L \geq 0.3mH , R_G = 25 Ω , Peak I_L = 45A , Starting T_J = 25°C
- 3) @ $I_{SD} \le 45 A$, $di/dt \le 200 A/\mu s$, $V_{DD} \le BV_{DSS}$, $T_J \le 125 ^{\circ}C$, SUGGESTED $R_G = 2.35 \Omega$

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

ELECTRICAL CHARACTERISTICS (T_{amb} = 25°C unless otherwise stated)

	Parameter	Test Conditions		Min.	Тур.	Max.	Unit		
	STATIC ELECTRICAL RATINGS	•	•		-				
BV _{DSS}	Drain – Source Breakdown Voltage	$V_{GS} = 0$	I _D = 1mA	60			V		
ΔBV_{DSS}	Temperature Coefficient of	Reference to 25°C			0.00		\//°C		
ΔT_{J}	Breakdown Voltage	$I_D = 1mA$			0.68		V/°C		
R _{DS(on)}	Static Drain – Source On–State	V _{GS} = 10V	I _D = 28A		0.027				
	Resistance ¹	V _{GS} = 10V	I _D = 45A			0.031	Ω		
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	$I_D = 250 \mu A$	2		4	V		
9 _{fs}	Forward Transconductance ¹	V _{DS} ≥ 15V	I _{DS} = 28A	20			S(\O)		
I _{DSS}	Zero Gate Voltage Drain Current	$V_{GS} = 0$	$V_{DS} = 0.8BV_{DSS}$			25	μΑ		
			$T_J = 125$ °C			250			
I _{GSS}	Forward Gate – Source Leakage	V _{GS} = 20V				100			
I _{GSS}	Reverse Gate – Source Leakage	$V_{GS} = -20V$				-100	- nA		
	DYNAMIC CHARACTERISTICS								
C _{iss}	Input Capacitance	V _{GS} = 0			4600				
C _{oss}	Output Capacitance	$V_{DS} = 25V$		2000		pF			
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		340					
Qg	Total Gate Charge ¹	V _{GS} = 10V	I _D = 45A	00	400				
		$V_{DS} = 0.5BV_{DSS}$		80		180	nC		
Q _{gs}	Gate – Source Charge ¹	I _D = 45A		20		45			
Q _{gd}	Gate - Drain ("Miller") Charge ¹	$V_{DS} = 0.5BV_{DSS}$	34		105	nC			
t _{d(on)}	Turn-On Delay Time		V _{DD} = 30V			33	- ns		
t _r	Rise Time					180			
t _{d(off)}	Turn-Off Delay Time	$I_D = 45A$				100			
t _f	Fall Time	$R_{\rm G} = 2.35\Omega$	$R_G = 2.35\Omega$			100			
	SOURCE - DRAIN DIODE CHARAC	TERISTICS					.1		
I _S	Continuous Source Current					45			
I _{SM}	Pulse Source Current ²					180	A		
V _{SD}	Diode Forward Voltage	I _S = 45A	T _J = 25°C						
		$V_{GS} = 0$				2.5	V		
t _{rr}	Reverse Recovery Time	I _F = 45A	$T_J = 25^{\circ}C$			280	ns		
Q _{rr}	Reverse Recovery Charge	d _i / d _t ≤ 100A/μs	$V_{DD} \le 50V$			2.2	μС		
t _{on}	Forward Turn-On Time				Negligible				
	PACKAGE CHARACTERISTICS								
L _D	Internal Drain Inductance (from centre of	f drain pad to die)		0.8		nH			
L _S	Internal Source Inductance (from centre	of source pad to end of		2.8					

Notes

- 1) Pulse Test: Pulse Width \leq 300ms, $\delta \leq$ 2%
- 2) Repetitive Rating Pulse width limited by maximum junction temperature.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk