MA1101-6 Introducción al Álgebra 2020, Otoño

Profesor: Paulina Cecchi B.

Auxiliar: Patricio Yáñez Alarcón
Correo: pyanez@dim.uchile.cl

Auxiliar 01: Lógica Proposicional

17 de Abril

Resumen

- [Tautologías básicas]: Las siguientes proposiciones son tautologías:
 - a) **Dominancia**: $p \lor V \Leftrightarrow V$, $p \land F \Leftrightarrow F$
 - b) *Identidad*: $p \wedge V \Leftrightarrow p$, $p \vee F \Leftrightarrow p$
 - c) *Idempotencia*: $p \land p \Leftrightarrow p$, $p \lor p \Leftrightarrow p$
 - d) **Doble negación**: $\neg(\neg p) \Leftrightarrow p$
 - e) **Tercio excluso**: $p \vee \overline{p} \Leftrightarrow V$
 - f) Consistencia: $p \wedge \overline{p} \Leftrightarrow F$
 - g) Absorción: $p \lor (p \land q) \Leftrightarrow p$, $p \land (p \lor q) \Leftrightarrow p$
 - h) Relajación: $p \land q \Rightarrow p, p \Rightarrow p \lor q$
 - i) Caracterización de la implicancia: $(p\Rightarrow q)\Leftrightarrow \overline{p}\vee q$
- [Álgebra Booleana]: Son tautologías:
 - Leyes de De Morgan: $\overline{p \wedge q} \Leftrightarrow \overline{p} \vee \overline{q}, \ \overline{p \vee q} \Leftrightarrow \overline{p} \wedge \overline{q}$
 - $\bullet \ \ Conmutatividad:$

 $\begin{array}{l} \text{Del } \vee : p \vee q \Leftrightarrow q \vee p \\ \text{Del } \wedge : p \wedge q \Leftrightarrow q \wedge p \end{array}$

ullet Asocia dtividad

Del $\vee : p \vee (q \vee r) \Leftrightarrow (p \vee q) \vee r$ Del $\wedge : p \wedge (q \wedge r) \Leftrightarrow (p \wedge q) \wedge r$ • Distributividad

Del \wedge con respecto al \vee : $p \wedge (q \vee r) \Leftrightarrow (p \wedge q) \vee (p \wedge r)$ Del \vee con respecto al \wedge : $p \vee (q \wedge r) \Leftrightarrow (p \vee q) \wedge (p \vee r)$

- [Tautologías relevantes]: Otras tautologías a tener en cuenta son:
 - a) **Doble implicancia**: $(p \Leftrightarrow q) \iff (p \Rightarrow q) \land (q \Rightarrow p)$
 - b) *Modus Ponens*: $p \land (p \Rightarrow q) \Rightarrow q$
 - c) Transitividad: $(p \Rightarrow q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$
 - d) Contrarecíproca: $(p \Rightarrow q) \Longleftrightarrow (\overline{q} \Rightarrow \overline{p})$
 - e) Contradicción:
 - Forma 1: $q \iff (\overline{q} \Longrightarrow F)$
 - Forma 2: $[(p \Rightarrow q) \Leftrightarrow V] \Leftrightarrow [p \land \overline{q}] \Rightarrow F$
- [Negación de cuantificadores]:
 - a) $\overline{(\exists x)p(x)} \Leftrightarrow (\forall x)\overline{p(x)}$
 - b) $\overline{(\forall x)p(x)} \Leftrightarrow (\exists x)\overline{p(x)}$
- [Existencia y unicidad]: Se define el cuantificador de existencia y unicidad (∃!) como sigue:

$$(\exists!x)p(x) \Leftrightarrow [(\exists x)p(x)] \wedge [(\forall x)(\forall y)\{(p(x) \wedge p(y)) \Rightarrow (x = y)\}]$$

P1. MÓDULO COMÚN:

Sean p, q y r proposiciones. Demuestre, sin usar tablas de verdad, que las siguientes proposiciones son tautologías:

- 1. $(p \land q \Rightarrow r) \iff (p \land \overline{r} \Rightarrow \overline{q})$
- 2. $[(p \Rightarrow \overline{q}) \land (\overline{r} \lor q) \land r] \Rightarrow \overline{p}$.
- 3. $[(p \Rightarrow q) \land (\overline{s} \Rightarrow \overline{r})] \Rightarrow [\overline{p} \lor \overline{r} \lor (q \land s)]$
 - a) Intuición: Ver que tipo de método de demostración es óptimo.

- b) Teoría: Tener claros conceptos como valores de verdad, y más que aprendidas las tautologías básicas para poder usarlas.
- c) Matraca: Decidir un método de demostración y ahora empezar a desarrollo o sacar conclusiones a partir de esto, si es el simbólico recordar justificar los pasos de buena manera.

Para la parte 1) de este ejercicio, podemos notar que nos piden demostrar una equivalencia, por lo que si logro llegar de un lado al otro a través de puras equivalencias habré hecho lo más difícil del problema. Para aterrizar ideas, también me puede ser útil recordar la equivalencia de la caracterización de la implicancia.

Para la parte 2) se deja propuesto el desarrollo simbólico, pero me es mucho más efectivo tomar en cuenta el caso divertido $p \Rightarrow q$ cuando esto es Falso, es decir, $V \Rightarrow F$ y trabajar por contradicción. Para la parte 3) se deja propuesto el desarrollo simbólico, pues es más extenso, pero de todos modos es una implicancia por lo que se puede hacer el mismo análisis del caso 2).

P2. MÓDULO COMÚN:

Sean p y q proposiciones. Se define la proposición ni p ni q, que denotaremos por $p \downarrow q$, por la siguiente tabla de verdad:

p	q	$p \downarrow q$
V	V	F
V	F	F
F	V	F
F	F	V

Cuadro 1: valores de $p \downarrow q$.

- 1. Muestre que $\overline{p} \iff p \downarrow p$ y que $p \lor q \iff \overline{(p \downarrow q)}$.
- 2. Exprese las proposiciones $(p \Rightarrow q)$ y $p \land q$ utilizando únicamente $\sim y \downarrow$.
 - a) Intuición: Me están definiendo un nuevo conectivo lógico u operador, con esto debo ser consiente que es solo es una forma de llamar, ahora comprender como funciona es primordial y a trabajar.
 - b) Teoría: Dada la base teórica anterior que debo manejar funcionará el nuevo conectivo lógico, por lo que si manejo bien lo anterior este no me será problema.
 - c) Matraca: El trabajar con tablas de verdad para la primera parte, luego ver como editar lo que me muestran para poder trabajar con algo conocido.

Para este ejercicio se debe tomar en cuenta que me están definiendo una operación nueva, que se comporta de cierta forma. Una vez con esto claro hay que ver como probar la primera parte, pero debemos tener en cuenta los puntos a favor, tenemos hasta ahora solo 2 proposiciones en juego, por lo que justificar la equivalencia a través de tablas de verdad no puede ser tan mala idea, en este caso! Para la segunda parte tenemos que tener en cuenta que la parte 1) pasa a ser un dato que podemos usar, y algo útil puede ser que si tengo conjunciones, estas las puedo escribir como disjunciones a través de negacionaes.

P3. MÓDULO COMÚN:

Considere las proposiciones $p_1, p_2, p_3, p_4, p_5, p_6$ que tienen la propiedad que la proposición $[(p_1 \iff p_2)] \Rightarrow (p_4 \Rightarrow p_3)]$ es falsa. Determinar el valor de verdad de

$$\overline{[(p_6 \vee p_5) \wedge (p_1 \wedge p_2)]} \Longleftrightarrow (p_3 \Rightarrow p_4).$$

- a) Intuición: Me dan una hipótesis, de donde debo extraer la mayor cantidad de información posible.
- b) Teoría: Manejar muy bien las propiedades de tautologías y proposiciones, para poder concluir.
- c) Matraca: Desarrollar algo la expresión y evitar la gran matraca para poder concluir con la información anterior.

Para este ejercicio lo primordial es no hacerlo por método simbólico, dado que tiene 6 valores de proposiciones lógicas. Debemos notar que me dan una hipótesis inicial, de donde yo intentaré extraer toda la información posible para poder aplicarla en el corcho grande que queremos saber le valor de verdad.

La hipótesis que nos entregan es una implicancia que es falsa, bien como ya vimos este es el caso interesante de las implicancias a estudiar, y de allí puedo extraer harta información sobre los valores de ciertas proposiciones.

Luego aplico la información recabada en el corcho gigante y concluyo de buena manera.

P4. PROPIO SECCIÓN

Considere las siguientes proposiciones:

$$p: (\exists x \in \mathbb{R}) (\forall y \in \mathbb{R}) (x \le y)$$

$$q: (\forall y \in \mathbb{R})(\exists x \in \mathbb{R})(x \leq y)$$

Indique el valor de verdad de cada una de ellas justificando su respuesta. Finalmente escriba sus negaciones.

- a) Intuición: Tendré que poder diferencias casos que todos me cumplen una propiedad con los que alguno cumple toda propiedad
- b) Teoría: Manejar bien las proposiciones lógicas para poder pasar teóricamente, al segundo nivel, que en este caso serían los cuantificadores pueden complementar el lenguaje matemático. Negación de proposiciones compuestas.
- c) Matraca: Aterrizar los casos a conjuntos que manejen, y así poder concluir que caso es cual, en caso de ser una falsa, mostrar contraejemplo.

Para la negación no negar mecánicamente, si no entenderlo.

Para este ejercicio es fundamental tener ciertas cosas claras en el sentido de la materia y de donde estamos trabajando, en este caso particular en el conjunto de los reales, por lo que debo saber que soy un conjunto denso que no tiene fin.

Además en cuanto a teoría que \forall quiere decir que todo elemento del conjunto me cumple una propiedad y que \exists quiere decir que hay al menos un elemento que me cumple dicha propiedad.

El orden en que están los cuantificadores de existencia o universal en la proposición compuesta es muy importante, invito a analizar esto, y la dependencia de las variables en este caso x e y para poder concluir de buena manera el ejercicio.

Cabe mencionar que siempre que yo quiero afirmar algo, debo justificarlo para cada elemento del conjunto, en cambio si quiero decir que algo no ocurre me basta con encontrar un contraejemplo, pues estaría $\overline{\forall}$ ssi \exists , entonces si encuentro al menos alguien que quiebre la norma, basta.

Propuestos

P5. PROPIO DE SECCIÓN

Demuestre que las proposiciones son tautología:

a)
$$(\exists y)[p(y) \Rightarrow (\forall x)p(x)]$$

- b) $(\forall x)(\exists y)(p(x) \Rightarrow p(y))$
- c) $(\exists y)(\forall x)(p(x) \Rightarrow p(y))$

P6. MÓDULO COMÚN:

Sean p, q, r, s proposiciones. Se sabe que s es verdadera y que

$$s \Rightarrow ((\overline{p} \Rightarrow q) \land (p \Rightarrow r))$$

es verdadera. Probar que $q \vee r$ es verdadera.

P7. MÓDULO COMÚN-C1.2012:

Sean p, q y r tres proposiciones.

a) Demuestre que

$$[p \Rightarrow (q \Rightarrow r)] \Leftrightarrow [(p \Rightarrow q) \Rightarrow r].$$

b) Demuestre, sin usar tablas de verdad, que

$$[p \Rightarrow (q \Rightarrow r)] \Leftrightarrow [(p \land q) \Rightarrow r].$$

Auxilian 01 - Logica
Photosiciones. De muestie, sin usar tobla de Vardad.
que som tautologías.
1- (PAQ) =>+) (=> (PAF=>9) Basta var que tememos uma equivalencia por- lo que a través de equivalencias llegaremos de um lado a otro
L=> 5° m. P wadradito de ged. L=> 5° m. P
[Png=>r] [Cátedra: 2 min 41:00
L=> (pvq)vr / de De Morgon L=> pv(qvr) / Asociatividad Como lado izq es Equivalente al lado dorecho Equivalente al lado dorecho Es Z L=> Z L=> V. L=> (pvr)vq / Asociatividad L=> (pvr)vq / Asociatividad L=> (pvr)vq / Asociatividad tautología Ypiqyr proposician de De Morgonga

/Corne, => (2) 2 [(p==) / [FV4] N F] => P / DE Morgan, v Asociativo. L=> [[P=>] V [FV4) VF] VP / Carac. => , DE Norgen. L=> 1 (pra) v (rra) vF v P / Asociativa / Commutatudos L=> (PAG) V (+AG) VF V P / Distributivi dad. (=>[[pnq)vp]v[[rnq)vF] L=> [(pvp) n(qvp)] v[(+NF)n(qvF)] / Tercio excluso L=> [VA(qvP)] V[VA(qvF)] / Dominionaia / Commutatividad. L=> (q v p) v (q v F) / Asociaturdad / Tercio excluso, Eminaria L=> (pvq)v (qvF) L=> Pv (qvq) VF Y P, q, + prosiciones L=> P v V v F L=> V. :. toutología. Vez mos por otro metodo (Gromo Es gu) => fa) , gul (=) (p=) \$) 1 (Fvq) 1+ la vinica forma de que una ful L=> p => de volut F es si V=> Figure Gentonces V > F Gm tom CGS A SUM' remos gul L=> V n frel L=> F my legatemes a contin dicción. SI FW L=> F L=> P Z=> V. lucyon gus L=> V L=> (P=> q) 1 (Fvq) 1+ L=> > la hipó tesis dete L=> (V v q) 1 (Fvq) 1+ L=> > Set falsa!!! SE conduge que como se llega a contradicción L=> qalFarle> F

Moternos que en el problema 2) lo tesolvenos a través de 2 mótodos y esto deponde lo extenso de la "matraca":= deserrollo de un ejorcicio. 3) [(p=)4) 1 (3=) F)] => [pvFv(qn5)] L=>[1-pvq) 1 (5 vF)] V Lp vF v[q15]] / Cooc =7 x3 2=) (PAG) V (5A+) V (PV FV (GAS) /De Magan L=> (PAQ) v [(5 xx) v F] v F v (qxs) /Asoc, Commot. (=> (PAQ) V[(3VF) A(FVF)] V PV (QAS) / OSHibutes, teróu Exclusión L=> (PAG) v (15 v F) v Plv (915) / Asoc, Commot idealites / Distribution L=> [(pna)vp]v(svF)v(qns) / tercio excluso, dominion L=> [(pvp)n(qvp)] v (3vF) v(qns) / Connetatividal, Asseictable L=> 1 q vp | v (3 vF) v (4 ns) 9 gulgas) vā vF VP / 2シ (9 v4), (q v5)).v s v F v P / Distribution del tercio exdex 1=> (9v5) v 5 v F vp. / Asociation L=7 q v (sv 3) v F v P / Heriso Ev duso L=) q v V v F v P / No mi mercia. L=> V in tacklogia L=> forma bastanto matraquera.

3) [(P=>q)/(3=>F)] => [pvFv(qns)] (4)
Contradicción pues! tomatemos hipótesis.
L=> P L=> F L=> F L=> (9 ns) cada uno debe ser F.
$\begin{array}{c} (2) & p & 2 = \rangle & V \\ (2) & p & 2 = \rangle & V \\ (2) & p & 2 = \rangle & V \\ (2) & p & 2 = \rangle & V \\ (2) & p & 2 = \rangle & V \\ (2) & p & 2 = \rangle & V \\ (3) & p & 2 = \rangle & P \\ (4) & p & 2 = \rangle$
$Vego \left[\left(P \Rightarrow 9 \right) \wedge \left(3 \Rightarrow F \right) \right] $
(V => F) L=>(P=19) Explosión L=> F v F Z >> V (Comtadicaión Por lo que hipó tesis talsa.

(3)

P2/ Sezm	P99	Proposiciones.
1)Se dofine	P 7 > F > F	PV9 SE comporta

P311 Sabemos [[p1 L=> P2] => (P24 => P3)] Es falso.
y debemos encontrar el valor de vol-dad de
(PG vPs) n (PAnP2) L=> (P3 => P4)
Extraigements la información de 6 Es folso, pues es a=>6 Extraigements la información de 6 Es folso, pues es a=>6 Extraigements si y solo si a L=> V A 6 L=> F. Soit a E Pr /=> Pr GS Folso, Pr 4> Pr
P1 L=> P2 L=> V Quiete as of sport of the distints valores de Vorbad; luego P1 n/2 P4=> P3 L=> F Gs deur P4 L=> V n P3 L=> F Gs falso por dominaria
Comsistencia. (P6 v P5) \wedge (P1 \wedge P2) \wedge => (P3 => P4) -> (P6 v P5) \wedge => (P3 => P4) dominance
(16 V 15) 1 / 2 / (1) / 1) (=> F L=> (P3 =>P4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

L=>

(3 xelR)(YyelR)(x &g) (Yyo 1R) (3x & 1R) (1/4 y)

du proposición p es talsa

Esto lo podemos deducir por el orden de la existemcia y el porta todo, I y t respectivamento.

indica que el "x" em cuestión existe para configuera que seza el "y". su existencia No deponde de y.

dado el contexto estay dia endo que existe un x ella

que es momor que coalquier yell, la coal Es falso, pués IR es mo acotado

· Contragemplo como es para todo (4) "g" EIR

y= x + 100 debetin compit

 $0 \le -100 = 9$ $0 \le -100 = 9$ $0 \le -100 = 9$ $0 \le -100 = 9$

Neger uma proposición composita consiste en magar todo por surarquía y megar sus proposiciónes pul internas la combian por I y vice vesa)

P: (J x & IR) (Y y & IR) (| X & 9)

P: (Y x & IR) (J y & IR) (X > 9)

q: (Y y & IR) (J x & R) (X & 9)

Com el pansa miento anteror este hace mis sentido, pues yo mo fijo "y" que puede ser cual qui er yelk, luego Ixelk, es doct, el x está subordinado al y, y existe condicionado a el luego me di ce xey lo que se tradee luego me di ce xey lo que se tradee en que cada real tiene alguem momor o igual a el.

Otra forma de justificatio es Asumiendo que es
falso y llegendo a comtradicción

si q: (Yyelk)(] xell)(xey) es falso, su negación

es vardadera q: (]yell, (Yxell)(xzy) lo cad es falso

Por parte anterior — Vego q es V

ya terminamos

Cualquier duda a pyanez @din.uchile.cl