MM 225: AI AND DATA SCIENCE

CONTINUOUS RANDOM VARIABLES

M P Gururajan and Hina A Gokhale

August 17, 2023

Guru and Hina Al and Data Science August 17, 2023 1/36

LECTURE 4: CONTINUOUS RANDOM VARIABLES

Outline

- Recall
- 2 Density functions
- Cumulative distribution function
- Some important distributions and densities

RECALL

Random variable

- Let P be the probability of a continuous random variable X
- Spinner: $P(E) = \int_E f(x) dx$
- f(x): density function
- f(x)dx: Probability of outcome x

DENSITY FUNCTIONS

6/36

Guru and Hina Al and Data Science August 17, 2023

Density function

Definition

Let X be a continuous real-valued random variable. A **density function** for X is a real-valued function f that satisfies

$$P(a \le X \le b) = \int_a^b f(x) dx \tag{1}$$

for all $a, b \in \mathbf{R}$

Remark

In this course, we only consider continuous random variables that possess a density function.

Remark

If
$$E \subset \mathbf{R}$$
, $P(X \in E) = \int_E f(x) dx$

Spinner example

Spinner

$$f(x) = \begin{cases} 1 & \text{if } 0 \le x < 1 \\ 0 & \text{otherwise} \end{cases}$$

A question

- Consider a circular target of unit radius
- Suppose darts are thrown
- What is the density function?

Methodology

- Recall the spinner case
- Consider, in this case, the dart falls in the upper half of the target, one quarter of the target and so on
- Let *E* be the subset of the target cricle of radius *x* from the centre of the circular target, let us say!
- We need $P(E) = \int_E f(x) dx$
- What is f(x)?

Answer

What is f(x)?

Link: https://www.menti.com/al35a47h2ezx

• Code: Go to menti.com and use code 1298 9480

Results

▶ Results of the poll

Answer

• Dart game with circular target of unit radius

$$f(x,y) = \begin{cases} \frac{1}{\pi} & \text{if } x^2 + y^2 \le 1\\ 0 & \text{otherwise} \end{cases}$$

CUMULATIVE DISTRIBUTION FUNCTION

Guru and Hina Al and Data Science August 17, 2023 14/36

Definition and theorem

Definition

Let X be a continuous real-valued random variable. Then the cumulative distribution function of X is defined as $F_X(x) = P(X \le x)$

Theorem

Let X be a continuous real-valued random variable with density function f(x). Then, the function defined by

$$F(x) = \int_{-\infty}^{x} f(t)dt \tag{2}$$

is the cumulative distribution function of X. Further, $\frac{d}{dx}F(x) = f(x)$

Remark

All random variables have an associated CDF.

An example

Question

Let X be the random variable obtained by squaring a real number chosen at random from [0,1] with uniform probability. What is the cumulative distribution function and density of X?

Answer

Let U be the real number: $X = U^2$. If 0 < x < 1 then. $F_X(x) = P(X < x) = P(U^2 < x) = P(U < \sqrt{x}) = \sqrt{x}$ Thus.

$$F_X(x) = \begin{cases} 0 & \text{if } x \le 0\\ \sqrt{x} & \text{if } 0 \le x \le 1\\ 1 & \text{if } x \ge 1 \end{cases}$$

This implies

$$f_X(x) = \begin{cases} 0 & \text{if } x \le 0\\ \frac{1}{2\sqrt{x}} & \text{if } 0 \le x \le 1\\ 0 & \text{if } x \ge 1 \end{cases}$$

Cumulative and density functions

Let us write a python script to plot the cumulative distribution and density functions:

$$F_X(x) = \begin{cases} 0 & \text{if } x \le 0\\ \sqrt{x} & \text{if } 0 \le x \le 1\\ 1 & \text{if } x \ge 1 \end{cases}$$

$$f_X(x) = \begin{cases} 0 & \text{if } x \le 0\\ \frac{1}{2\sqrt{x}} & \text{if } 0 \le x \le 1\\ 0 & \text{if } x \ge 1 \end{cases}$$

CDFandDF.py


```
import matplotlib.pyplot as plt
import numpy as np
import math
def F(x):
    if(x \le 0): return 0
    elif(x>0 and x <=1): return math.sqrt(x)
    else: return 1
def f(x):
    if(x \le 0): return 0
    elif(x>0 and x <=1): return 1/(2.*math.sqrt(x))
    else: return 0
```

August 17, 2023

CDFandDF.py


```
x = np.arange(-0.5, 1.5, 0.0001)
df = []
for i in range(len(x)): df.append(f(x[i]))
cdf=[]
for i in range(len(x)): cdf.append(F(x[i]))
plt.plot(x,df,color='red')
plt.plot(x,cdf,color='black')
plt.ylim([0,2])
plt.legend(["f(x)","F(x)"],loc="upper right")
plt.show()
```

August 17, 2023

Density and distribution: $X = U^2$

 $F_X(x)$ is continuous; $f_X(x)$ is not (while X is continuous)!

Another example

Question

Let Z be the random variable obtained by adding two real numbers X and Y chosen at random from [0,1] with uniform probability. Derive the cumulative distribution and density functions of Z.

Sample space

Derivation

- Sample space Ω : unit square in \mathbb{R}^2 with uniform density
- Point $\omega \in \Omega$: (x,y) where x and y are chosen randomly
- 0 < Z < 2
- E_z : Event $Z \leq z$
- ullet Shaded area in the figure: E_z for any $0 \le z \le 1$
- How does the E_z for $1 \le z \le 2$ look like?

24 / 36

August 17, 2023

$$F_Z(z) = P(Z \le z) = \text{Area of } E_z$$

$$F_Z(z) = \begin{cases} 0 & \text{if } z < 0\\ \frac{z^2}{2} & \text{if } 0 \le x \le 1\\ 1 - \frac{1}{2}(2 - z)^2 & \text{if } 1 \le z \le 2\\ 1 & \text{if } z > 2 \end{cases}$$

This implies

$$f_Z(z) = \begin{cases} 0 & \text{if } z < 0 \\ z & \text{if } 0 \le x \le 1 \\ 2 - z & \text{if } 1 \le z \le 2 \\ 0 & \text{if } z > 2 \end{cases}$$

Cumulative and density functions

Can you write a python script to plot the cumulative distribution and density functions for Z?

SOME IMPORTANT DISTRIBUTIONS AND DENSITIES

Guru and Hina Al and Data Science August 17, 2023 27/36

Continuous uniform density

Random variable U whose value represents the outcome of the experiment of choosing a real number at random from the interval [a,b]

$$f(\omega) = egin{cases} rac{1}{b-a} & ext{if } a \leq \omega \leq b \\ 0 & ext{otherwise} \end{cases}$$

Exponential density

Random variable describing the time lapse until something happens; for example, time between emission of particles from a radioactive source

$$f(\omega) = \begin{cases} \lambda \exp(-\lambda x) & \text{if } 0 \le x \le \infty \\ 0 & \text{otherwise} \end{cases}$$

 λ : any positive constant

Normal density

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\left[\frac{(x-\mu)^2}{2\sigma^2}\right]}$$
 (3)

 μ and σ : parameters representing the centre and spread of the densities

Normal density

Figure: Normal density with $\mu = 0$.

August 17, 2023

Cumulative distribution function for normal

- Area under the curve for the normal distribution: leads to error function
- Why error?
- Error function: tabulated

32 / 36

Guru and Hina Al and Data Science August 17, 2023

Binomial distribution

Let an experiment be repeated n times; every time, there are two possible outcomes, say, either success or failure, with probabilities p and q respectively; q = 1-p. Let X be the random variable that gives the number of successes in these n trials. It is distributed as binomial distribution with the distribution function $b(n, p, k) = \binom{n}{k} p^k q^{n-k}$

Poisson distribution

Let X be the random variable of an experiment which is known to be distributed as Poisson distribution with parameter λ . Then, the distribution is given by $P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$

Some remarks

- More distributions: introduced as we go along
- How to work with these distributions and densities in python: tutorials
- Before we proceed further, we will go back to some probability calculations combinatorics, conditional
- Let us go back to problem of points in the next lecture

THANK YOU!!!

36 / 36

Guru and Hina Al and Data Science August 17, 2023