Notes

March 24, 2014

homework

#10

looking for solutions to $x_1 + x_2 + \cdots + x_k = r, 0 \le x_i \le n_i$. If there is a solution to this equation that satisfies this, then you should be able to use in/ex principle to show that the intersection is \emptyset . A_i =solutions to plynomial such that $x_i > n_i$. Show that $A_1 \cap A_2 \cap \cdots \cap A_k = \emptyset$

#24a

find # of ways to place 6 nonattacking rooks on the board shown. $= 6! - r_1 5! + r_2 4! - r_3 3! + r_4 2! - r_5 1! + r_6 0!$

$$r_i=$$
 # of ways to place i rooks on forbidden positions $r_1=6$ number of forbidden positions $r_2=\binom{3}{2}\cdot 2^2$ pick 2 rows, pick one of 2 spots in each row $r_3=2^3$ $r_4=0$ $r_5=0$ $r_6=0$

project fun time

inverse of a permutation.

321547896 123456789 321549678

use combinatorial collection template to edit.

resources

sage reference manual, wolfram mathworld, wikipedia, arxiv.org

links in statistic thingie to oeis

link from wiki to statistics page.

dyck paths and permutations are most well developed examples. example: [[St000013]]