Collective minimum contributions to address the ratchet effect in social dilemmas

[🗱 work in progress]

Carlo Galliera,b

joint work with Marius Altb, Martin Kesternichb,c, and Bodo Sturmb,d

^a Free University of Bozen-Bolzano

^b ZEW – Leibniz Centre for European Economic Research

^c Kassel University

^d Leipzig University of Applied Sciences

Motivation

Ratchet-up mechanism & Paris Agreement UNFCCC (2015, Article 3)

Source: IGES

'As nationally determined contributions to the global response to climate change, all Parties are to undertake and communicate efforts [...] the efforts of all Parties will present progression over time [...]'

Motivation

2021 United Nations Climate Change Conference (COP26)

• Nationally determined contributions: Ratcheting condition is not met sufficiently

Chaudhuri (1998, JEBO), Charness et al. (2011, JOLE)...

• Agents subject to performance pay strategically restrict their true capacity, because they anticipate that higher levels of output will be met with increased requirements

Chaudhuri (1998, JEBO), Charness et al. (2011, JOLE)...

• Agents subject to performance pay strategically restrict their true capacity, because they anticipate that higher levels of output will be met with increased requirements

Amano & Ohashi (2018, DP)

• Firms [Japanese televisions] strategically hold back on energy efficiency to be able to continue less efficient products for the foreseeable future

Chaudhuri (1998, JEBO), Charness et al. (2011, JOLE)...

• Agents subject to performance pay strategically restrict their true capacity, because they anticipate that higher levels of output will be met with increased requirements

Amano & Ohashi (2018, DP)

• Firms [Japanese televisions] strategically hold back on energy efficiency to be able to continue less efficient products for the foreseeable future

Gallier & Sturm (2021, JEBO)

• Agents in a repeated social dilemma restrict cooperation in order to reduce the risk of being free-ridden

Gallier & Sturm (2021, JEBO)

Ratchet effect: Ratcheting is detrimental

- ◆ Ratcheting increases the risk of being free-ridden
- Ratcheting decreases overall public good provision

Motivation | Contribution

How to counteract the ratchet effect in social dilemmas?

Motivation | Contribution

How to counteract the ratchet effect in social dilemmas?

Collective minimum contribution: Lowest common denominator

```
Orzen (2008, DP), Dannenberg et al. (2014, Economica) ...
```

- Agents propose a collective minimum contribution
- They are required to contribute at least the lowest common denominator of all proposals

- Individual contributions: Ratchet-up mechanism Gallier & Sturm (2021, JEBO)
 - Each contribution at least as high as the previous

Motivation | Research questions

☐ Do collective minimum contributions counteract the ratchet effect?

Motivation | Research questions

Do collective minimum contributions counteract the ratchet
effect?
Is the effect strong enough to increase efficiency compared to
a voluntary contribution mechanism?

Motivation | Research questions

Do collective minimum contributions counteract the ratchet effect?
Is the effect strong enough to increase efficiency compared to a voluntary contribution mechanism?
Does the effect depend on whether collective minimum contributions are binding or non-binding?

Duffy et al. (2007, JPubE)

Public good needs time to accumulate and provide benefits

- n identical individuals, $i \in \{1, \dots, n\}$
- In each round $t \in \{1, \dots, T\}$
 - i receives an endowment of w
 - i decides upon contribution to public good g_{i,t}
 - $G_t = \sum_{j=1}^n g_{j,t}$ is the sum of public good contributions in t
 - individual payoff of $\pi_{i,t}(w-g_{i,t},G_t)$

Duffy et al. (2007, JPubE)

Public good needs time to accumulate and provide benefits

- n identical individuals, $i \in \{1, \dots, n\}$
- In each round $t \in \{1, \cdots, T\}$
 - i receives an endowment of w
 - i decides upon contribution to public good $g_{i,t}$
 - $G_t = \sum_{j=1}^n g_{j,t}$ is the sum of public good contributions in t
 - individual payoff of $\pi_{i,t}(w-g_{i,t},G_t)$

'Payday is at the end': At the end of T, i consumes the cumulated benefits of what is left in her private account and what has been contributed to the public good

At the end of period T:

$$\Pi_{i} = \sum_{t=1}^{T} \pi_{i,t}(w - g_{i,t}, G_{t})
= \sum_{t=1}^{T} \psi(w - g_{i,t}) + \sum_{t=1}^{T} \phi(G_{t}) - \sum_{t=1}^{T} \tau
= \alpha \sum_{t=1}^{T} (w - g_{i,t}) - \beta \sum_{t=1}^{T} (w - g_{i,t})^{2} + \gamma \sum_{t=1}^{T} G_{t} - \sum_{i=1}^{T} \tau
 with
0 \le g_{i,t} \le w
 and
\alpha, \beta, \gamma, \tau > 0 \text{ with } \gamma < \alpha$$

$$\Pi_i = \sum_{i=1}^T \pi_{i,t}(w - g_{i,t}, G_t)$$

Social optimum

$$G_i^{\circ} = \sum_{t=1}^{\infty} g_{i,t}^{\circ}$$

$$= T(w + \frac{n\gamma - \alpha}{2\beta})$$

Nash equilibrium

$$G_i^* = \sum_{t=1}^r g_{i,t}^*$$
$$= T(w + \frac{\gamma - \alpha}{2\beta})$$

Exp. design: Structure

Exp. design: Structure

Exp. design: Structure

Exp. design: Collective-choice stage

In **Period 0**, all players propose a public good contribution level. The *lowest common denominator* determines the collective minimum contribution

- \square Individual proposals: $\tilde{g}_i \in \{0, w\}$
- \square Collective minimum contribution: $g_{min} = min\{\tilde{g}_{i \in S}\}$

Exp. design: Collective-choice stage

In Period 0, all players propose a public good contribution level.

The *lowest common denominator* determines the collective minimum contribution

- \square Individual proposals: $\tilde{g}_i \in \{0, w\}$
- \square Collective minimum contribution: $g_{min} = min\{\tilde{g}_{i \in S}\}$
- ► Non-binding collective minimum contribution
 - In Period 1, players can freely decide upon their contributions to the public good, i.e.,

$$0 \leq g_{i,1} \leq w$$

Exp. design: Collective-choice stage

In Period 0, all players propose a public good contribution level.

The *lowest common denominator* determines the collective minimum contribution

- \square Individual proposals: $\tilde{g}_i \in \{0, w\}$
- \square Collective minimum contribution: $g_{min} = min\{\tilde{g}_{i \in S}\}$
- ► Non-binding collective minimum contribution
 - In Period 1, players can freely decide upon their contributions to the public good, i.e.,

$$0 \leq g_{i,1} \leq w$$

- **▶** Binding collective minimum contribution
 - In Period 1, players have to contribute at least the collective minimum contribution, i.e.,

$$g_{min} \leq g_{i,1} \leq w$$

Exp. design: contribution stage

From $\bf Period~1$ onward, players have to decide about their individual contributions to the public good

Exp. design: contribution stage

From **Period 1** onward, players have to decide about their individual contributions to the public good

- ► Voluntary contribution mechanism
 - Players can freely decide upon their contributions:

$$0 \le g_{i,t} \le w \ \forall t$$

Exp. design: contribution stage

From $\operatorname{Period} 1$ onward, players have to decide about their individual contributions to the public good

- ► Voluntary contribution mechanism
 - Players can freely decide upon their contributions:

$$0 \le g_{i,t} \le w \ \forall t$$

- ▶ Ratchet-up mechanism
 - **3** Each contribution at least as high as the previous:

$$0 \le g_{i,1} \le w$$
 and $g_{i,t-1} \le g_{i,t} \le w \ \forall t > 1$

Voluntary contribution mechanism (BASE)

- No collective minimum contribution
- ★ No ratchet-up mechanism
- Players can freely decide upon their contributions:

$$0 \leq g_{i,t} \leq w \ \forall t$$

Voluntary contribution mechanism (BASE)

- X No collective minimum contribution
- ★ No ratchet-up mechanism
- Players can freely decide upon their contributions:

$$0 \le g_{i,t} \le w \ \forall t$$

Ratcheting (RAT)

- ✗ No collective minimum contribution
- + Ratchet-up mechanism
- Each contribution at least as high as the previous:

$$0 \le g_{i,1} \le w$$
 and $g_{i,t-1} \le g_{i,t} \le w \ \forall t > 1$

Non-binding minimum ratcheting (NBminRAT)

- + Non-binding collective minimum contribution
- + Ratchet-up mechanism
- Non-binding minimum & each contribution at least as high as the previous:

$$0 \leq g_{i,1} \leq w$$
 and $g_{i,t-1} \leq g_{i,t} \leq w \ \forall t > 1$

Binding minimum ratcheting (BminRAT)

- + Binding collective minimum contribution
- + Ratchet-up mechanism
- Binding minimum & each contribution at least as high as the previous:

$$g_{min} \leq g_{i,1} \leq w$$
 and $g_{i,t-1} \leq g_{i,t} \leq w \ \forall t > 1$

Procedure (aka the odyssey)

#1 - June 2020

MaXLab

Procedure (aka the odyssey)

- #1 June 2020
- **m** MaXLab
- </>> z-Tree
- Covid first wave
- #2 November 2020
- MaXLab
- </>
 </>
 z-Tree
- Hygiene concept
- Covid second wave

Procedure (aka the odyssey)

#1 - June 2020

- </>> z-Tree
- Covid first wave

#2 - November 2020

- MaXLab
- </>
 </>
 z-Tree
- Hygiene concept
- Covid second wave

#3 - July 2021

- Fully online
- </> o-Tree

#4 - October 2021

- Fully online
- </>
 o-Tree

#5 - February 2022

- Fully online
- </> o-Tree

Procedure | Overview

Treatment	Ratchet-up mechanism	Collective minimum contribution	
BASE	×	×	39 ⁴³
RAT	+	×	37 ⁴³
NBminRAT	+	non-binding	18
BminRAT	+	binding	22
		Total	116

Procedure | Overview

Treatment	Ratchet-up Collective minimum contribution		
BASE	×	×	39 ⁴³
RAT	+	×	37 ²³
NBminRAT	+	non-binding	18
BminRAT	+	binding	22
		Total	116

Recycled base and weakR data from Gallier & Sturm (2021):

→ BASE: 30 *base* + 9 NEW

→ RAT: 27 weakR + 10 NEW

📬 First results | How to ...

Outcome variable: Cooperation rate $c_{i,t} = (\frac{g_{i,t} - g_{i,t}^*}{g_{i,t}^\circ - g_{i,t}^*}) * 100\%$

- ightharpoonup Nash equilibrium $g_{i,t}^* \Rightarrow c_{i,t} = 0\%$
- \Rightarrow Social optimum $g_{i,t}^{\circ} \Rightarrow c_{i,t} = 100\%$

😋 First results | Plausibility check

Obs. 0. Ratcheting is (still) detrimental. Overall, cooperation rates in **RAT** are lower than those in **BASE** (p = 0.0105)

♥ First results | Overview

♥ First results | Cooperation rates

Obs. 1. Overall, cooperation rates in **BminRAT** are higher than those in **RAT** (p = 0.0002)

Cooperation First results | Cooperation rates

Obs. 2. Overall, cooperation rates in **BminRAT** are *weakly* higher than those in **BASE** (p = 0.09531)

Cooperation rates

Obs. 3. Cooperation rates in **NBminRAT** are neither different from those in **RAT** nor **BASE**

📬 First Results | Decomposition

Why does BminRAT work and NBminRAT not?

🗱 First Results | Decomposition

Why does BminRAT work and NBminRAT not?

Cooperation rate	Minimum cooperation rate	Excess cooperation rate
Panel A. NBminRAT		
24.23*** (6.115)	20.95*** (6.778)	3.28 (4.634)
Panel B. BminRAT		
43.96*** (5.736)	32.12*** (6.633)	11.84*** (2.192)

Obs. 4. Overall, cooperation rates in **BminRAT** are higher than those in **NBminRAT** (p = 0.0239)

👣 First Results | Minimum cooperation rates

Obs. 5. Minimum cooperation rates in **BminRAT** exceed those in **NBminRAT** in Phase 3 (p = 0.0269) and 4 (p = 0.0553)

First Results | Excess cooperation rates

Obs. 6. Excess cooperation rates in **BminRAT** exceed those in **NBminRAT** in Phase 5 (p = 0.0050)

Summary & conclusion

- ☐ Ratchet effect
 - Participants reduce cooperation at the beginning of the game
 - Positive trend is not strong enough to compensate initial loss
 - → Ratchet-up mechanism decreases overall efficiency

Summary & conclusion

- ☐ Ratchet effect
 - Participants reduce cooperation at the beginning of the game
 - Positive trend is not strong enough to compensate initial loss
 - → Ratchet-up mechanism decreases overall efficiency
- □ Collective minimum contributions
 - Binding minimum contributions counteract the ratchet effect
 - Non-binding minimum contributions do not have an effect

Summary & conclusion

☐ Ratchet effect

- Participants reduce cooperation at the beginning of the game
- Positive trend is not strong enough to compensate initial loss
- → Ratchet-up mechanism decreases overall efficiency

□ Collective minimum contributions

- Binding minimum contributions counteract the ratchet effect
- Non-binding minimum contributions do not have an effect
- → Ratchet-up mechanism: No easy fix, because of the lack of instruments to enforce binding commitments at the international level

Thank you!

If you have questions or comments, please let me know

Appendix

Related Literature

Minimum contribution levels in social dilemmas

Static minimum contribution levelsAndreoni (1993), Eckel et al. (2005), Gronberg et al. (2012) ...

- Decisions do not have dynamic implications for future minimum contribution levels
- Do not completely crowd out voluntary contributions and increase public good provision

Dynamic minimum contribution levelsDorsey (1992), Kurzban et al. (2001), Gallier & Sturm (2021) ...

- Decisions act as benchmark for future contribution levels
- Set incentive to strategically restrict contributions and can decrease overall public good provision

Related Literature

Chaudhuri (1998), Charness et al. (2011)...

• Agents subject to performance pay strategically restrict their true capacity, because they anticipate that higher levels of output will be met with increased requirements

Related Literature

Chaudhuri (1998), Charness et al. (2011)...

• Agents subject to performance pay strategically restrict their true capacity, because they anticipate that higher levels of output will be met with increased requirements

Amano & Ohashi (2018)

• Firms (Japanese televisions) strategically hold back on energy efficiency to be able to continue less efficient products for the foreseeable future

Related literature

Dorsey (1992), Kurzban et al. (2001)

If contributions can be constantly revised, ratcheting

- decreases the risk of being exploited
- increases overall public good provision

Related literature

Dorsey (1992), Kurzban et al. (2001)

If contributions can be constantly revised, ratcheting

- decreases the risk of being exploited
- increases overall public good provision

Gallier & Sturm (2021)

If contributions cannot be constantly revised, ratcheting

- increases the risk of being exploited
- decreases overall public good provision

Hypotheses

Purely self-interested & rational players

H1. ratcheting & non-binding collective minimum contribution:

$$G^* = G^{BASE^*} = G^{RAT^*} = G^{NBminRAT^*}$$

H2. ratcheting & binding collective minimum contribution:

$$G^{\circ} = G^{BminRAT^*}$$

Procedure

Treatments	Period	G&S (2021)	NEW	<i>p</i> -value	
Panel A. base vs. BASE					
	Avg.	0.3981	0.3238	0.4971	
	1	0.4942	0.4298	0.6127	
	2	0.4410	0.3621	0.5365	
	3	0.4152	0.3514	0.5965	
	4	0.3535	0.2784	0.4454	
	5	0.2866	0.1973	0.2815	
Panel B. weakR vs. RAT					
	Avg.	0.2234	0.3021	0.4476	
	1	0.1125	0.2246	0.2964	
	2	0.1799	0.2710	0.3812	
	3	0.2299	0.3078	0.4635	
	4	0.2708	0.3373	0.5189	
	5	0.3237	0.3699	0.6508	

♦ G&S (2021) vs. NEW: It makes no difference

Power analysis: priors & calculation

Ratchet-up mechanism

Gallier & Sturm (2021). With ratcheting:

- \bullet Avg. contribution of ≈ 32
- \odot Standard deviation of ≈ 13

Collective minimum contribution

Dannenberg et al. (2014). With minimum contribution stage:

Effect size of 80 %

Calculation

- Resources: pwr package for R
- Two-sample t test (two sided, equal standard deviation)
- Effect sizes between: 1 % and 100 %

Power analysis: results

 \odot 20 groups per treatment sufficient to detect an effect size of more than 35 %

(Very) First results | Contributions

BminRAT vs. BASE: Short- & long-run

Period						
	1	2	3	4	5	Avg.
Panel A	A. Phase 1					
	-22.4161***	-8.1756	-5.2925	4.1282	10.7716	-4.1969
Panel B. Phase 2						
	-20.1395**	-10.7972	-6.3213	3.2432	12.3714	-4.3287
Panel 0	C. Phase 3					
	2.0400	13.2615	16.1445	26.4068***	30.9856***	17.7677**
Panel [D. Phase 4					
	11.9410	16.7957*	21.7910**	27.2828***	38.5124***	23.2647***
Panel E	E. Phase 5					
	8.7432	14.4079	21.7117**	28.1197***	43.8353***	23.3636**
Panel F	Avg.					
	-3.9663	5.0984	9.6067	17.8361***	27.2953***	11.1740*

◆ Especially in the long-run - in late Periods of late Phases - cooperation rates in BminRAT are higher than those in BASE

Thank you!