Unit 2: Symbol Mapping and TX Filtering

EL-GY 6013: DIGITAL COMMUNICATIONS

PROF. SUNDEEP RANGAN

Learning Objectives

- ☐ Describe the steps in symbol mapping and pulse shaping
- Describe the common modulation methods:
 - BPSK, QPSK, M-QAM.
 - For each, compute the minimum distance and symbol energy
- □ Compute the data rate as a function of the modulation and symbol rate
- □ Compute the TX spectrum given pulse shape and DTFT of the symbols
- ☐ Compute the PSD as a function of the pulse shape and symbol energy
- ☐ Specify TX filter requirements based on bandwidth and other requirements
- ☐ Describe the ideal sinc pulse in time domain and frequency domain
- ☐ Design a digital and analog filter given bandwidth constraints

This Unit

Outline

- Symbol mapping
- □DAC and pulse shaping
- ☐ Fourier analysis and bandwidth of TX filtering
- ☐ Power spectral density analysis
- ☐ Sinc pulse and Ideal low pass filtering
- □ Digitally implementing pulse shaping

Last Unit: Up- and Down-Conversion

- □ Upconversion in TX: Convert an analog baseband IQ to real passband
- □ Downconversion in RX: Convert real passband to analog IQ
- ☐ But, baseband signal is complex and analog
- ☐ How do we transmit digital information?

Simple Idea

- ☐ How do we transmit digital information over an analog channel?
- ☐ Simple idea: At the transmitter
 - ∘ Take a sequence of bits $b[k] \in \{0,1\}$ e.g. 010010 ...
 - Divide time into intervals T
 - ∘ For $t \in [kT, (k+1)T)$:

$$u(t) = \begin{cases} A & \text{if } b_k = 1 \\ -A & \text{if } b_k = 0 \end{cases}$$

- ☐ At the receiver:
 - Measure u(t) in interval [kT, (k+1)T)
 - Determine if b[k] = 0 or 1

Simple Idea: Continued

- ☐ Simple idea exhibits three key steps:
- ☐ Step 1. Map bits to symbols:

$$\circ s[n] = \begin{cases} A & \text{if } b[n] = 1 \\ -A & \text{if } b[n] = 0 \end{cases}$$

- Step 2. Modulate to a pulse u(t) = s[n] for $t \in [nT, (n+1)T)$
- ☐Step 3. Upconvert

Bits $0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0$

Digital Modulation General Procedure

- ☐ Most communication systems follow the same three steps
 - Step 1: Bit to symbol map
 - Step 2: Pulse shaping
 - Step 3: Upconversion (done in last class)

Step 1: Symbol Mapping

☐Generally done in three steps:

- Step 1: Bit to symbol map
- Step 2: Pulse shaping
- Step 3: Upconversion (done in last class)

Step 1: Bit to Symbol Mapping

- $\Box b[k] \in \{0,1\}$ = sequence of bits.
- $\square x[n] \in \{0,1,...,M-1\}$ = sequence of symbol indices
- \square s[n] \in { s_1 , ..., s_M } = sequence of complex symbols
- \square Modulation rate: $R_{mod} = \log_2 M$ bits per symbol
- \square Symbol period: One symbol every T seconds.
- \square Bit rate of $R = R_{mod}/T$ bits per second

Ex. with M=4 symbols R_{mod} =2 bits per symbol

Example: BPSK

☐1 bit per symbol

$$\square s[n] = \begin{cases} 1 & x[n] = 1 \\ -1 & x[n] = 0 \end{cases}$$

☐ Symbol is always real

Example 2: 4-PAM and QPSK

- ☐ Two bits per symbol
- ■4-PAM: Symbols are multi-level real.
- □QPSK: Symbol is complex
 - $\circ s[n] = s_c[n] + js_s[n]$
 - Has I and Q parts
- ☐ Draw bit to symbol mapping table on board

Higher-Order Modulation

- ☐ Constellations go up to 1024 in wireline communications
- ☐ Wireless is typically limited to 64-QAM (6 bits per symbol)
- ☐ High order modulation:
 - Will see need very low noise to detect high order modulation correctly

Example Problem

- □ Given bit sequence: b = (1,0,0,1,1,1,...)
- ☐ What are the first 3 symbols under the QPSK mapping
- □ Suppose the symbol rate is $f_{sym} = 1/T = 20 Msym/s$.
- ■What is the data rate?

QPSK/4PSK/4QAM

Outline

- □ Symbol mapping
- DAC and pulse shaping
 - ☐ Fourier analysis and bandwidth of TX filtering
 - ☐ Power spectral density analysis
 - ☐ Sinc pulse and Ideal low pass filtering
 - □ Digitally implementing pulse shaping

Step 2: DAC and Pulse Shaping

- ☐Generally done in three steps:
 - Step 1: Bit to symbol map
 - Step 2: Pulse shaping
 - Step 3: Upconversion (done in last class)

Digital-Analog Conversion (DAC)

- ☐ Simplest idea for generating baseband signal:
- \square Send s[n] during symbol $n: u(t) = s[n], t \in [nT, (n+1)T)$
- ☐ Use DAC converter: Sometimes called zero-order-hold
- \square Symbol rate = 1/T
- ☐ For complex symbols, use two DACs (one for I, one for Q)
 - Then upconvert in analog

Problem with DAC only solution

- ☐ Benefits of using a DAC for modulation
 - Simple to implement
 - Easy to detect symbols at receiver (just sample in middle of symbol period)
 - Used in many examples: e.g. digital signals in circuits. Modulate bits 0,1 to voltages 0, V
- ☐But, problems:
 - \circ Signal u(t) requires high bandwidth due to fast transitions
 - Not acceptable for bandlimited transmissions

DAC + Filtering

DAC output before filtering Filtered signal

- Solution: Add low-pass filter to DAC output.
- ☐ Removes high frequency components
- **Questions**:
 - Can we still recover s[n] from signal u(t)?
 - How do we measure the bandwidth of the signal
 - What is the effect of the filter on the bandwidth

Infinite Pulse Series Representation

☐ Can write DAC output as:

$$u_{DAC}(t) = \sum_{n=-\infty}^{\infty} s[n]h_{DAC}(t-nT), \qquad h_{DAC}(t) = Rect(t/T)$$

☐ Then filtered output is:

$$u(t) = h_{LPF}(t) * u_{DAC}(t) = \sum_{n=-\infty}^{\infty} s[n]p(t-nT), \qquad p(t) = h_{DAC}(t) * h_{LPF}(t)$$

□ Pulse shape: $p(t) = h_{DAC}(t) * h_{LPF}(t)$

Theoretical Pulse Shape Model

Physical implementation

- ☐ Can model DAC + LPF via filtered pulse train
- $\square u_{\delta}(t) = \sum_{n} s[n]\delta(t nT), \quad u(t) = p(t) * u_{\delta}(t) = \sum_{n} s[n]p(t nT)$

Zero ISI Pulse

- □ Consider linear modulation: $u(t) = \sum_{n} s[n]p(t nT)$
- \square Question: Can we recover s[n] from u(t)?
- □ Definition: A pulse p(t) is a zero ISI pulse if p(0) = 1 and p(nT) = 0 for all $n \neq 0$
 - ISI = intersymbol interference
- \square If p(t) is a zero ISI then: s[n] = u(nT)
- \square Design idea: Find a zero ISI pulse, then recover symbols s[n] by sampling u(nT)

Simple Pulse Shapes

- ☐ Pictures on board
- ☐ Rectangular pulse: Leads to zero-order-hold
- ☐ Triangular pulse: Leads to linear interpolation
- ☐ Zero ISI condition

Sample Problem

- □ Suppose the complex symbols are: s[n] = (1 + j, 1 j, -1 + j)
- \square Given pulse p(t) as shown to right
- \square Draw the real and imaginary components of u(t)
- \square Where would you sample u(t) to recover s[n]?

Units in Linear Modulation

- $\square \text{Suppose } u(t) = \sum_{n} s[n]p(t nT)$
- \square Units for u(t):
 - $|u(t)|^2$ represents instantaneous power
 - \circ So, typically in this class $|u(t)|^2$ in W or mW
 - \circ But, u(t) could also be in volts, volts/m (electric field).
 - In these cases, $|u(t)|^2$ is proportional to power.
- \square Units for s[n] and p(t):
 - Many possible units
 - Convention in this class: $|s[n]|^2$ will have units of energy per sample (e.g. J or mJ/sample)
 - $|p(t)|^2$ will have the units of samples per second (e.g. Hz, MHz, ...)
 - Then product $|s[n]|^2|p(t)|^2$ will have units energy/time=power

Outline

- □ Symbol mapping
- □DAC and pulse shaping
- Fourier analysis and bandwidth of TX filtering
 - ☐ Power spectral density analysis
 - ☐ Sinc pulse and Ideal low pass filtering
 - □ Digitally implementing pulse shaping

Bandwidth and US Spectral Allocations

Bandwidth: A Basic Resource

- ☐ Limited by:
 - Nature of the medium. Most channels can transmit only limited range of frequencies
 - Ownership / allocations
- ☐ We will see that data rate is proportional to bandwidth
 - Assuming power per unit bandwidth is constant
- ☐ Basic questions:
 - How do we measure bandwidth?
 - What is the bandwidth of linearly modulated signals?

Fourier Transform of Modulated Signal

- \square Want to measure occupied bandwidth of u(t)
- \square Look at FT U(f)
- \square Problem: How do we compute FT of U(f) ?
- ☐ Depends on two factors:
 - DTFT of s[n]
 - Pulse shape filter response P(f)

Review of DTFT

- \square Given discrete-time sequence s[n]
- $\Box \mathsf{DTFT:} \ S(\Omega) = \sum_n s[n] e^{-j\Omega n}$
- Inverse DTFT: $s[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} S(\Omega) e^{j\Omega n} d\Omega$
- \square Note $S(\Omega)$ is always a 2π periodic signal
- $\square \Omega$ is the discrete frequency. Units is radians per sample.

Common DTFT Pairs

Time domain	Frequency domain
x[n]	X _{2π} (ω)
$\delta[n]$	$X_{2\pi}(\omega)=1$
$\delta[n-M]$	$X_{2\pi}(\omega)=e^{-i\omega M}$
$\sum_{m=-\infty}^{\infty} \delta[n-Mm]$	$X_{2\pi}(\omega) = \sum_{m=-\infty}^{\infty} e^{-i\omega Mm} = \frac{2\pi}{M} \sum_{k=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi k}{M}\right)$
	$X_o(\omega) = rac{2\pi}{M} \sum_{k=-(M-1)/2}^{(M-1)/2} \delta\left(\omega - rac{2\pi k}{M} ight) ext{ odd } M$
	$X_{\sigma}(\omega) = rac{2\pi}{M} \sum_{k=-M/2+1}^{M/2} \delta\left(\omega - rac{2\pi k}{M} ight)$ even M
u[n]	$X_{2\pi}(\omega) = rac{1}{1-e^{-i\omega}} + \pi \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k)$
	$X_o(\omega) = rac{1}{1-e^{-i\omega}} + \pi \cdot \delta(\omega)$
$a^nu[n]$	$X_{2\pi}(\omega)=rac{1}{1-ae^{-i\omega}}$
	$X_{\sigma}(\omega) = 2\pi \cdot \delta(\omega + a), ext{-π < a < π}$
e^{-ian}	$X_{2\pi}(\omega) = 2\pi \sum_{k=-\infty}^{\infty} \delta(\omega + a - 2\pi k)$

☐See Wikipedia

$\cos(a\cdot n)$	$egin{aligned} X_o(\omega) &= \pi \left[\delta \left(\omega - a ight) + \delta \left(\omega + a ight) ight], \ X_{2\pi}(\omega) \ & ext{$igsim} \sum_{k=-\infty}^{\infty} X_o(\omega - 2\pi k) \end{aligned}$
$\sin(a\cdot n)$	$X_o(\omega) = rac{\pi}{i} \left[\delta \left(\omega - a ight) - \delta \left(\omega + a ight) ight]$
$\mathrm{rect}\left[\frac{n-M/2}{M}\right]$	$X_o(\omega) = rac{\sin[\omega(M+1)/2]}{\sin(\omega/2)} e^{-rac{i\omega M}{2}}$
$\mathrm{sinc}(W(n+a))$	$X_o(\omega) = rac{1}{W} \operatorname{rect}\Bigl(rac{\omega}{2\pi W}\Bigr) e^{ia\omega}$
$\mathrm{sinc}^2(Wn)$	$X_o(\omega) = rac{1}{W} \operatorname{tri} \Bigl(rac{\omega}{2\pi W}\Bigr)$

Fourier Analysis of Modulation

- \square Computing U(f) follows three steps:
- \square Compute $S(\Omega)$. This is 2π periodic
- $\Box \text{Compute } U_{\delta}(f) = S(2\pi fT) = S\left(\frac{2\pi f}{f_S}\right)$
 - Vertical scale is unchanged
 - Digital frequency Ω mapped to $f = \frac{\Omega}{2\pi T} = \frac{\Omega f_S}{2\pi}$
 - This is periodic with period $\frac{1}{T} = f_s$
- \square Compute $U(f) = P(f)U_{\delta}(f)$

Example Problem: Part 1

- \square Given $S(\Omega)$ as shown
- $\square \text{Suppose } f_S = \frac{1}{T} = 20 \text{ MHz}$
- \square Draw $U_{\delta}(f)$
- - $U_{\delta}(f)$ has period $f_{s}=20~\mathrm{MHz}$
 - Same vertical scale as $S(\Omega)$
 - $\Omega = 0.8\pi$ maps to $f = \frac{0.8\pi}{2\pi}(20) = 8$ MHz
 - $\Omega = \pi$ maps to $f = \frac{\pi}{2\pi}(20) = 10$ MHz

Example Problem: Part 2

□Suppose filter is:

$$P(f) = \begin{cases} 1 & |f| < 10 \\ 0.1 & |f| \in [10,30) \\ 0 & \text{else} \end{cases}$$

- \square Draw P(f) and U(f)
- **□** Solution
 - Use equation to draw P(f)
 - Get U(f) from $U(f) = P(f)U_{\delta}(f)$
 - In this case, filter attenuates two sidelobes

Outline

- □ Symbol mapping
- □DAC and pulse shaping
- ☐ Fourier analysis and bandwidth of TX filtering
- Power spectral density analysis
 - ☐ Sinc pulse and Ideal low pass filtering
 - □ Digitally implementing pulse shaping

Review: PSD of a Continuous-Time Signal

- \square Let x(t) be a power signal
- \square Select frequency f_0 to measure PSD
- ☐ Filter with narrowband filter

$$\circ y(t) = h(t) * x(t)$$

•
$$H(f) = 1$$
 for $|f - f_0| \le \Delta/2$

- \square Measure power P_y
- \square PSD at f_0 is defined as

$$S_{x}(f_{0}) \coloneqq \lim_{\Delta \to 0} \frac{1}{\Delta} P_{y}$$

- ☐ Can show this is equivalent to window definition
- ☐ Reveals how much power is in a certain frequency

PSD of a Discrete-Time Signal

- □ Can define PSD of a discrete-time power signal similarly
- \square Let x[n] be a discrete-time signal
- \square Select frequency Ω_0 to measure PSD
- ☐ Filter with narrowband filter

$$\circ y[n] = h[n] * x[n]$$

$$\cdot H(\Omega) = 1 \text{ for } |\Omega - \Omega_0| \leq \Delta/2$$

- $\square \text{Measure power } P_y = \lim_{N} \frac{1}{2N} \sum_{n=-N}^{N} |y[n]|^2$
- \square PSD at Ω_0 is defined as

$$S_{x}(\Omega_{0}) \coloneqq \lim_{\Delta \to 0} \frac{1}{\Delta} P_{y}$$

 $H(\Omega)$: Narrowband filter around Ω_0

Power meter

Units of Discrete-Time PSD

- \square Recall, by convention: $|s[n]|^2$ has units of energy (e.g. Joules)
- $\square \text{Power } P = \lim_{N} \frac{1}{2N} \sum_{n=-N}^{N} |s[n]|^2$
 - Units are energy per sample
 - Or, simply energy (e.g. Joules)
- ☐ Discrete-time PSD:
 - $S_s(\Omega) = \lim_{\delta} \frac{1}{\delta}$ Power in freq bin
 - Units are energy per sample per radian
- ☐ In dB scale: dBJ / radian or dBmJ per radian

Symbol Mean and Energy

□Consider a linear modulated signal:

$$u(t) = \sum_{n=-\infty}^{\infty} s[n]p(t-nT)$$

- ■What is its PSD?
- \square Assume $s[n] \in \{s_1, ..., s_M\}$. M constellation points
- □ Define symbol mean and symbol energy:

$$\bar{s} = \frac{1}{M} \sum_{m=1}^{M} s_m, \qquad E_S = \frac{1}{M} \sum_{m=1}^{M} |s_m - \bar{s}|^2$$

PSD of a Linear Modulated Signal

■ Suppose: Output of ideal DAC is

$$u_{\delta}(t) = \sum_{n=-\infty}^{\infty} s[n]\delta(t - nT)$$

☐ After pulse shaping:

$$u(t) = p(t) * u_{\delta}(t) = \sum_{n = -\infty}^{\infty} s[n]p(t - nT)$$

- \square Suppose s[n] is a discrete-time power signal with digital PSD $S_s(\Omega)$

$$S_{u_{\delta}}(f) = \frac{1}{T} S_{s}(2\pi f T),$$

Theorem: PSD of
$$u_{\delta}(t)$$
 and $u(t)$
$$S_{u_{\delta}}(f) = \frac{1}{T}S_{s}(2\pi fT), \qquad S_{u}(f) = \frac{1}{T}S_{s}(2\pi fT)|P(f)|^{2}$$

• Note that $S_s(2\pi fT)$ is periodic with period $\frac{1}{T}$.

Units of PSD Formula

- \square From previous slide: $S_u(f) = \frac{1}{T}S_S(2\pi fT)|P(f)|^2$
 - $|p(t)|^2$ has units samples/second or frequency
 - $|P(f)|^2$ has units samples/Hz or samples x time
 - Why? Since $\int |P(f)|^2 df = \int |p(t)|^2 dt$
 - \circ $S(2\pi fT)$ has units energy per sample
- ☐ Hence units of

$$S_u(f) = \frac{1}{\text{time}} \times \frac{\text{energy}}{\text{sample}} \times (\text{sample} \times \text{time}) = \text{energy}$$

- This is consistent with our earlier units:
- Units of $S_u(f)$ is power / Hz = energy

Special Case: IID Symbols

- □ Suppose: Output of ideal DAC is $u_{\delta}(t) = \sum_{n=-\infty}^{\infty} s[n]\delta(t-nT)$
- \square After pulse shaping: $u(t) = p(t) * u_{\delta}(t) = \sum_{n=-\infty}^{\infty} s[n]p(t-nT)$
- ■Suppose that:
 - Assume s[n] are uncorrelated and zero mean
 - Average symbol energy: $E_s = E|s[n]|^2$
- $\Box \text{Then } S_{S}(\Omega) = E_{S}$
- $\square S_{u_{\delta}}(f) = \frac{1}{T} E_{S},$
- $\square S_u(f) = \frac{1}{T} E_S |P(f)|^2$
- $\square \text{Power } P_u = \frac{1}{T} E_S ||p||^2$

Example Problem: Part 1

- \square Given PSD of $s[n] S_s(\Omega)$ as shown with C=0.1
- $\square \text{Suppose } f_S = \frac{1}{T} = 20 \text{ MHz}$
- \square Draw PSD of $U_{\delta}(f)$
- - $S_{\delta}(f)$ has period $f_{S}=20~\mathrm{MHz}$
 - Vertical scaled by $\frac{1}{T}$
 - $\Omega = 0.7\pi$ maps to $f = \frac{0.7\pi}{2\pi}(20) = 7$ MHz
 - $\Omega = \pi$ maps to $f = \frac{\pi}{2\pi}(20) = 10$ MHz

Example Problem: Part 2

- $\square \text{Now suppose } p(t) = sinc\left(\frac{t}{T}\right)$
- \square Draw $S_u(f)$
- Solution:
 - \circ P(f) = TRect(fT)
 - $\circ |P(f)|^2 = T^2 Rect(fT)$
 - \circ Scales low-pass signal by T^2
 - Removes all sideloble
- ☐ Total power in the signal:
 - Area of a trapezoid

$$P_u = \int S_u(f)df = \frac{cT}{2T}[0.7 + 1] = 0.85C$$

Measuring Bandwidth

- \square PSD of modulated bits is $S_u(f) = \frac{1}{T}E_S|P(f)|^2$
 - Complex baseband signal
 - \circ After upconversion will be shifted to $\pm f_c$
- \square Definition: Signal is exactly band-limited to $|f| \leq W$
 - \circ if $S_u(f) = 0$ for $|f| \ge W$
- \square Exact bandwidth = 2W
- \square Approximate BW: Typically require $S_u(f) \approx 0$ for $|f| \geq W$
- □ Different measures of approximate bandwidth
 - 3 dB bandwidth
 - 98% bandwidth, ...

Examples

☐ Recangular pulse:

$$p(t) = \frac{1}{T} I_{\left[-\frac{T}{2}, \frac{T}{2}\right]} \Rightarrow |P(f)|^2 = sinc^2(fT)$$

99% bandwidth = 10.1/T, 90% BW = 0.85/T

 \square Sinusoidal pulse (for T=1):

$$p(t) = \sqrt{2}\sin(\pi t)I_{[0,1]}(t)$$
$$|P(f)|^2 = \frac{8}{\pi^2} \frac{\cos^2 \pi f}{(1 - 4f^2)^2}$$

- No discontinuities. Less very high frequency components
- 99% bandwidth = 1.2/T

Spectral Masks

- ☐ Bandwidths for wireless devices are regulated
 - Must transmit most energy in some specified band
 - Ensures no interference between channels
- ☐ Constraints are specified by a spectral mask
 - Represents maximum power level in each band
- ☐ Emissions outside the main band typically very low
 - At least 20 to 40 dB below main lobe

Channels for 802.11ad Each channel is 2.16 GHz

Signal Bandwidth and Excess Bandwidth

- ☐ Usually, signal of interest is contained in smaller band
 - Signal bandwidth < occupied bandwidth
- □ Excess bandwidth = Occupied Signal bandwidth
 - Allows a transition region
 - Filters cannot roll off infinitely fast
- \square 802.11ad example:
 - Sample rate typically 1.76 Gsamp/s
- ☐ Lower frequencies, excess bandwidth is even smaller
 - Ex. LTE 20 MHz channel
 - Signal bandwidth = 18 MHz
 - Excess bandwidth $\approx 10\%$

Spectral mask for 802.11ad

Excess bandwidth=22%

Outline

- □ Symbol mapping
- □DAC and pulse shaping
- ☐ Fourier analysis and bandwidth of TX filtering
- ☐ Power spectral density analysis
- Sinc pulse and Ideal low pass filtering
 - □ Digitally implementing pulse shaping

Design Goals

- ☐ Want to design pulse with two goals
- □Goal 1. Bandwidth limits:
 - Most systems (esp. RF) impose bandwidth limits on transmissions.
 - PSD of modulated bits is $S_u(f) = \frac{1}{T}E_S|P(f)|^2$
 - Want $|P(f)|^2 \approx 0$ for $|f| \geq W$ where W is (single-sided) bandwidth limit
- \square Goal 2: Recover symbols s[n] from u(t)
 - Sufficient condition: Use zero ISI pulse
 - Then recover with correct sampling
- □Can we find a pulse shape satisfying both goals?

Sinc Pulse

- \square Use sinc pulse p(t) = sinc(t/T)
- Satisfies zero ISI condition:

$$p(nT) = 0 \text{ for } n \neq 0$$

☐ Pulse shape frequency response:

$$P(f) = TRect(fT)$$

$$P(f) = 0 \text{ for } |f| > 1/2T$$

- \square Two-sided bandwidth is = 1/T
- ☐ Conclusion: sinc pulse satisfies two goals
 - \circ If BW limit > 1/T

Sinc Pulse Shaping Illustrated

- ■BPSK symbols
- ☐ Sinc pulse interpolates the symbols exactly
- No out of band emissions
- ■But:
 - Waveform varies rapidly between samples
 - Synchronization offsets will cause errors
 - High peak-to-average ratio
 - Needs an infinite length to implement

Cosine Filtering

- \square Set of filters parametrized by β
 - $\beta \in [0,1]$ is called the rolloff
- \square Excess bandwidth percentage β
- $\Box \beta = 0 \Rightarrow \text{Ideal sinc filter}$
 - No excess bandwidth.
- $\Box \beta > 0$
 - Creates excess bandwidth
 - But, allows shorter filter

Cosine Filtering Illustrated

- □ Plotted to the right:
 - BPSK symbols filtered with raised cosine filters
- \square Higher values of β
 - Symbol transitions are faster
 - More out-of-band emissions
 - But, less peak-to-average
 - Less variations between symbols

Outline

- □ Symbol mapping
- □DAC and pulse shaping
- ☐ Fourier analysis and bandwidth of TX filtering
- ☐ Power spectral density analysis
- ☐ Sinc pulse and Ideal low pass filtering
- Digitally implementing pulse shaping

Problems with Analog LPF solution

- □ Up to now, we have assumed simple two stage linear modulation
 - DAC followed by LPF
- ☐ Challenges: LPF must be implemented in analog.
 - Want LPF filter to approximate ideal Rectangular response
 - Difficult to implement in analog
 - Analog filters typically have limited roll-off

Practical Pulse Shaping Block Diagram

- ☐ Practical pulse shaping:
 - Combination of analog and digital filtering

Practical Pulse Shaping

- \square Start with symbols s[n] at f_0
- \square Upsample by M with zero insertion

$$\circ s_M[k] = \begin{cases} s[n] & k = Mn \\ 0 & k \neq Mn \end{cases}$$

- \Box Digitally filter with $H_{dig}(\Omega)$
- \square Pulse shape with DAC $p_{dac}(t)$
- \square Analog filter $H_{ana}(f)$

Frequency Domain Analysis 1

- $\square S(\Omega) = \mathsf{DTFT} \ \mathsf{of} \ s[n] \ \mathsf{at} \ \mathsf{symbol} \ \mathsf{rate} \ f_0$
- ☐ Step 1: Upsample with zero insertion:

$$S_M[k] = \begin{cases} S[n] & k = Mn \\ 0 & k \neq Kn \end{cases} S_M(\Omega) = S(M\Omega)$$

- \circ Upsampled signal has symbol rate $f_{s1} = M f_{s0}$
- \square Step 2: Digital filter with DTFT $H_{dig}(\Omega)$

$$x[k] = h_{dig}[k] * s_M[k] \Rightarrow X(\Omega) = H_{dig}(\Omega)S_M(\Omega)$$

- Design filter to have cutoff at $\Omega = \pi/M$
- Theoretically, can use infinite sinc
- But, in practice use long FIR filter

Frequency Domain Interpretation 2

☐ Step 3: DAC and analog filtering

Create an impulse train

$$x_{\delta}(t) = \sum_{k} x[k]\delta(t - nT/M) \Rightarrow X_{\delta}(f) = X\left(\frac{2\pi fT}{M}\right)$$

- Repeated images once every $M/T = f_1 = Mf_0$
- Then,

$$U(f) = X_{\delta}(f)P_{dac}(f)H_{ana}(f)$$

- Cut-off frequency of $H_{ana}(f)$ at f_0
- Removes images f_1 , $2f_1$, ...

Images 1

- ☐Complex symbols
- Upsampling w/zero insertion (M = 2 shown)
- ☐ Digital filtering

Cutoff= $\frac{\pi}{2}$

Images 2

☐Pulse train

□DAC and analog filtering

Power Spectral Density

 \square Suppose symbols s[n] are i.i.d. with

$$E(s[n]) = 0, E|s[n]|^2 = E_s$$

 \square Can show PSD of u(t) is:

$$S_u(f) = \frac{E_s}{MT_0} |P(f)|^2$$

• Effective pulse shape: $P(f) = H_{dig} \left(\frac{2\pi f}{M f_0} \right) P_{dac}(f) H_{ana}(f)$

Effective Pulse Shape

☐ Can show that the resulting signal is

$$u(t) = \sum s[n]p(t - nT)$$

☐ Effective pulse shape is:

$$p(t) = \sum_{k} h_{dig}[k]g\left(t - \frac{k}{M}T\right)$$

$$g(t) = h_{ana}(t) * p_{dac}(t)$$