LISTA DE EXERCÍCIOS MÓDULO II

- 1 Quais são as relações entre as dopagens e as dimensões no emissor, base e coletor de um transistor bipolar?
- 2 Quais as relações entre as correntes e as tensões num transistor NPN e PNP?
- 3 Nos circuitos abaixo, calcule o valor de IC e VCE (VEC no item c). Considere VBE=0,7V (VEB no item c=0,7V):

Resp: a) IC=4,3mA - VCE=3,4V; b) IC=4,1mA - VCE=4,81V;

- c) IC=5,33mA VCE=6,58V;
- 4 Dadas as curvas características de entrada (a) e saída (b) de um transistor NPN, determinar:
- a) A corrente de base para VBE = 0.8V;
- b) O ganho de corrente nas condições do item a:
- c) O ganho de corrente na configuração Base Comum;
- d) O novo ganho de corrente, caso IB dobre de valor, mantida a tensão VCE;
- e) O novo ganho de corrente na configuração Base Comum.

Resp: a) IB=300uA; b) β =367 – IC=110mA; c) α =0,993 d) β =467; e) α =0,9979

5 - Um transistor na configuração EC tem as seguintes curvas características. Justifique cada valor que você inserir na tabela:

Completar a tabela abaixo (com valores aproximados), para cada uma das situações:

Situação	$V_{CB}(V)$	$V_{BE}(V)$	$V_{CE}(V)$	I _E (mA)	$I_{C}(mA)$	I _B (μA)	α	β
I		0,8	6,0			100		
II	5,3		6,0	8	3			
III			6,0			40		
IV			6,0		8,0			

Resp:

_								
Situação	$V_{CB}(V)$	$V_{BE}(V)$	$V_{CE}(V)$	$I_E(mA)$	I _C (mA)	$I_B(\mu A)$	α	β
1	5,2	0,8	6,0	4,63	4,5	30	0,994	153
lI .	5,3	0,7	6,0	1,405	1,4	5	0,996	280
III	5,15	0,85	6,0	6,84	6,8	40	0,994	170
IV	5,12	0,88	6.0	8,045	8.0	45	0,994	178

6 - Projetar o circuito de polarização do transistor (valores comerciais), no circuito abaixo, a fim de que o LED seja acionado quando a chave estiver na posição (1) e desativado quando a chave estiver na posição (2).

7 - O LED na figura requer 30 mA para emitir um nível de luz satisfatório. Portanto a corrente de coletor deve ser de aproximadamente 30mA. Para o circuito abaixo, determine a amplitude da onda quadrada necessária para assegurar que o transistor sature. Utilize o dobro de IB(min) como margem de segurança.

8 - Um circuito digital (TTL) deve acionar um motor de 110V/60Hz. Para isto é necessário projetar uma interface de potência, composta de um transistor atuando como chave sobre um relé eletromagnético. Este, por sua vez, aciona os contatos do circuito principal (potência). Projetar o circuito de polarização do transistor, levando em consideração os seguintes parâmetros:

Resp: Rc=14 Ohms (comercial 15 Ohms); Prc=37,5mW (comercial 1/8W)
Rb=860 Ohms (comercial 820 Ohms); Prb=20,5mW (comercial 1/8W)

9 - Polarize o transistor BC547 na região ativa, com corrente de emissor constante, determinando os valores comerciais dos resistores RB, RE e RC.

Dados do transistor:

- Código BC547B Silício
- V_{BE} = 0.6 V
- H_{FEmin} = 200

Dados de projeto:

- V_{CC} = 15 V
- I_C = 10mA
- V_{CE} = V_{CC}/2

Resp: RB=270 kOhms; RE=150 kOhms; RC=560 Ohms ou 680 Ohms

10 - Polarize o transistor BC547 na região ativa, com divisor de tensão na base, determinando os valores comerciais dos resistores RB1, RB2, RE e RC.

Dados do transistor:

- Código BC547B Silício
- V_{BE} = 0,6 V
- H_{FEmin} = 110

Dados de projeto:

- $V_{CC} = 10 \text{ V}$
- $I_C = 5mA$
- $V_{CE} = V_{CC}/2$

Resp: Rb1=15 kOhms ou 18kOhms; Rb2=3,3 KOhms; RE=180 Ohms ou 220 Ohms; RC=820 Ohms

11 - Considere o circuito e a curva característica do transistor da figura abaixo, e determine os valores de VCE e IC quiescentes pelo traçado da reta de carga, sabendo-se que IB=20µA

Resp: VCE=6,5 V e IC=4 mA

12 - Dados os circuitos abaixo, esboce (pelo menos dois ciclos) o sinal de entrada, o sinal de saída e calcule o ganho de tensão

Resp: a) Ganho de Tensão 2,18; b) Ganho de Tensão 5,44

VALORES COMERCIAIS DE RESISTORES

Os valores comerciais de resistores são potências de 10 multiplicadas pelos valores abaixo.

10	12	15	18	22	27
33	39	47	56	68	82

A potência dos resistores comerciais pode ser de 1/8W, 1/4/W, 1/2W, 1W, 2W, 10W, etc.Em geral, identifica-se a potência de um resistor pelo seu tamanho, ou por alguma inscrição em sua superfície (para potências a partir de 1W).

RESUMO DE EQUAÇÕES

		L EQUAÇUES		
	Transistor NPN	$V_{CE} = V_{CB} + V_{BE}$		
	Transistor PNP	$V_{EC} = V_{BC} + V_{EB}$		
Relações básicas entre correntes e		$I_E = I_C + I_B$		
tensões	Transistores NPN e PNP	$I_C = \beta \cdot I_B$		
		$I_C = \alpha \cdot I_E$		
		$\beta = h_{fe}$		
	Resistores	$R_B = \frac{V_{CC} - V_{BE}}{I_B}$ $R_C = \frac{V_{CC} - V_{CE}}{I_C}$ $I_C = \frac{V_{CC}}{R_C}$		
Polarização por Corrente de Base	Resistores	$R_C = \frac{V_{CC} - V_{CE}}{I_C}$		
Constante (NPN)	Saturação Ideal	$I_C = \frac{V_{CC}}{R_C}$		
	Corte Ideal	$V_{CE} = V_{CC}$		
		$R_E = \frac{0, 1 \cdot V_{CC}}{I_E}$ $R_B = \frac{0, 9 \cdot V_{CC} - V_{BE}}{I_{CC}}$		
Polarização por Corrente de Emissor	Resistores	$R_B = \frac{0.9 \cdot V_{CC} - V_{BE}}{I_B}$		
Constante (NPN)		$R_C = \frac{0.9 \cdot V_{CC} - V_{CE}}{I_C}$		
$V_{RE} = 0, 1 \cdot V_{CC}$ $I_C \cong I_E$	Saturação Ideal	$R_B = \frac{I_B}{I_B}$ $R_C = \frac{0.9 \cdot V_{CC} - V_{CE}}{I_C}$ $I_C = \frac{V_{CC}}{R_C + R_E}$		
	Corte Ideal	$V_{CE} = V_{CC}$		
Polarização por Divisão de Tensão	Resistores	$R_{B2} = \frac{V_{BE} + 0, 1 \cdot V_{CC}}{0, 1 \cdot I_C}$		
de Base (NPN)		$R_{B2} = \frac{V_{BE} + 0, 1 \cdot V_{CC}}{0, 1 \cdot I_C}$ $R_{B1} = \frac{V_{CC}}{0, 1 \cdot I_C} - R_{B2}$		
$V_{RE} = 0, 1 \cdot V_{CC}$ $I_C \cong I_E$		$R_E = \frac{0.1 \cdot V_{CC}}{I_E}$		
$I_{B1} \cong I_{B2} \cong 0, 1 \cdot I_{C}$		$R_C = \frac{0.9 \cdot V_{CC} - V_{CE}}{I_C}$		
	Saturação Ideal	$I_C = \frac{V_{CC}}{R_C + R_E}$		
	Corte Ideal	$V_{CE} = V_{CC}$		