Math Camp

Justin Grimmer

Professor Department of Political Science Stanford University

September 13th, 2018

Where are we going?

Probability Theory:

- 1) Mathematical model of uncertainty
- 2) Foundation for statistical inference
- 3) Continues our development of key skills
 - Proofs [precision in thinking, useful for formulating arguments]
 - Statistical computing [basis for much of what you'll do in graduate school]

Model of Probability

Three parts to our probability model

- 1) Sample space: set of all things that could happen
- 2) Events: subsets of the sample space
- 3) Probability: chance of an event

Sample Spaces: All Things that Can Happen

Definition

The sample space as the set of all things that can occur. We will collect all distinct outcomes into the set S

Known perfectly

Examples:

- 1) House of Representatives: Elections Every 2 Years
 - One incumbent: $S = \{W, N\}$
 - Two incumbents: $S = \{(W, W), (W, N), (N, W), (N, N)\}$
 - 435 incumbents: $S = 2^{435}$ possible outcomes
- 2) Number of countries signing treaties
 - $S = \{0, 1, 2, \dots, 194\}$
- 3) Duration of cabinets
 - All non-negative real numbers: $[0, \infty)$
 - $S = {x : 0 \le x < ∞}$

Key point: this defines all possible realizations

Events: Subsets of Sample Space

Definition

An event, E is a subset of the sample space.

$$E \subset S$$

Plain English: Outcomes from the sample space, collected in set Congressional Election Example

- One incumbent:
 - -F = W
 - -F = N
- Two Incumbents:

$$- E = \{(W, N), (W, W)\}$$

- $F = \{(N, N)\}$
- 435 Incumbents:
 - Outcome of 2010 election: one event
 - All outcomes where Dems retain control of House: one event

Notation: x is an "element" of a set E:

 $x \in E$

Events: Subsets of Sample Space

E is a set: collection of distinct objects.

Recall three operations on sets (like E) to create new sets:

Consider two example sets (from two incumbent example):

$$E = \{(W, W), (W, N)\}$$

$$F = \{(N, N), (W, N)\}$$

$$S = \{(W, W), (W, N), (N, W), (N, N)\}$$

Operations determine what lies in new set E^{new}

- 1) Union: ∪
 - All objects that appear in either set
 - $E^{\text{new}} = E \cup F = \{(W, W), (W, N), (N, N)\}$
- 2) Intersection: ∩
 - All objects that appear in both sets
 - $E^{\text{new}} = E \cap F = \{(W, N)\}$
 - Sometimes written as EF

- 3) Complement of set $E: E^c$
 - All objects in S that aren't in E
 - $E^c = \{(N, W), (N, N)\}$
 - $F^c = \{(N, W), (W, W)\}$
 - $S = \Re$ and E = [0, 1]. What is E^c ?
 - What is S^c ? \emptyset

Suppose E = W, F = N. Then $E \cap F = \emptyset$ (there is nothing that lies in both sets)

Events: Subsets of Sample Space

Definition

Suppose E and F are events. If $E \cap F = \emptyset$ then we'll say E and F are mutually exclusive

- Mutual exclusivity \neq independence
- E and E^c are mutually exclusive events

Examples:

- Suppose $S = \{H, T\}$. Then E = H and F = T, then $E \cap F = \emptyset$
- Suppose $S = \{(H, H), (H, T), (T, H), (T, T)\}$. $E = \{(H, H)\}$, $F = \{(H, H), (T, H)\}$, and $G = \{(H, T), (T, T)\}$
 - $E \cap F = (H, H)$
 - $E \cap G = \emptyset$
 - $F \cap G = \emptyset$
- Suppose $S = \Re_+$. $E = \{x : x > 10\}$ and $F = \{x : x < 5\}$. Then $E \cap F = \emptyset$.

Events: Subsets of the Sample Space

Definition

Suppose we have events E_1, E_2, \ldots, E_N .

Define:

$$\cup_{i=1}^N E_i = E_1 \cup E_2 \cup E_3 \cup \ldots \cup E_N$$

 $\bigcup_{i=1}^{N} E_i$ is the set of outcomes that occur at least once in E_1, \ldots, E_N . Define:

$$\cap_{i=1}^N E_i = E_1 \cap E_2 \cap \ldots \cap E_N$$

 $\bigcap_{i=1}^{N} E_i$ is the set of outcomes that occur in each E_i

Probability

- 1) Sample Space: set of all things that could happen
- 2) Events: subsets of sample space
- 3) Probability: chance of event
 - P is a function
 - Domain: all events E

Probability

Definition

All probability functions, P, satisfy three axioms:

- 1) For all events E, $0 \le P(E) \le 1$
- 2) P(S) = 1
- 3) For all sequences of mutually exclusive events $E_1, E_2, ..., E_N$ (where N can go to infinity) $P(\bigcup_{i=1}^N E_i) = \sum_{i=1}^N P(E_i)$

Probability

- Suppose we are flipping a fair coin. Then P(H) = P(T) = 1/2
- Suppose we are rolling a six-sided die. Then P(1) = 1/6
- Suppose we are flipping a pair of fair coins. Then P(H, H) = 1/4

Example: Congressional Elections

One candidate example:

- P(W): probability incumbent wins
- P(N): probability incumbent loses

Two candidate example:

- $P(\{W,W\})$: probability both incumbents win
- $P(\{W, W\}, \{W, N\})$: probability incumbent 1 wins

Full House example:

 P({All Democrats Win}) (Cox, McCubbins (1993, 2005), Party Brand Argument)

We'll use data to infer these things

Properties of Probability

We can derive intuitive properties of probability theory. Using just the axioms

Proposition

$$P(\emptyset) = 0$$

Proof.

Define
$$E_1 = S$$
 and $E_2 = \emptyset$,

$$1 = P(S) = P(S \cup \emptyset) = P(E_1 \cup E_2)$$

$$1 = P(E_1) + P(E_2)$$

$$1 = P(S) + P(\emptyset)$$

$$1 = 1 + P(\emptyset)$$

$$0 = P(\emptyset)$$

Properties of Probability

Proposition

$$P(E) = 1 - P(E^c)$$

Proof.

Note that, $S = E \cup E^c$. And that $E \cap E^c = \emptyset$. Therefore,

$$1 = P(S) = P(E \cup E^c)$$
$$1 = P(E) + P(E^c)$$
$$1 - P(E^c) = P(E)$$

In words: Probability an outcome in E happens is 1- probability an outcome in E doesn't.

Properties of Probability

Proposition

If
$$E \subset F$$
 then $P(E) \leq P(F)$.

Proof.

We can write $F = E \cup (E^c \cap F)$. (Why?)

Further,
$$(E^c \cap F) \cap E = \emptyset$$

Then

$$P(F) = P(E) + P(E^c \cap F)$$
 (Done!)

As you add more "outcomes" to a set, it can't reduce the probability.

Examples in R

Simulation: use pseudo-random numbers, computers to gain evidence for claim

Tradeoffs:

Pro Deep understanding of problem, easier than proofs

Con Never as general, can be deceiving if not done carefully (also, never a monte carlo study that shows a new method is wrong)

Walk through R code to simulate these two results

To the R code!

4.2. Three different combination rules were used. We then tried to identify the rules used to combine individual drug predictions into a combination score. Letting P() indicate probability of sensitivity, the rules used are:

$$\begin{array}{lll} P(TFAC) &=& P(T)+P(F)+P(A)+P(C)-P(T)P(F)P(A)P(C),\\ P(TET) &=& P(ET)=\max[P(E),P(T)], \text{ and} \\ &=& 1 \end{array}$$

Inclusion/Exclusion

Proposition

Suppose E_1, E_2, \ldots, E_n are events. Then

$$P(E_{1} \cup E_{2} \cup \cdots \cup E_{n}) = \sum_{i=1}^{N} P(E_{i}) - \sum_{i_{1} < i_{2}} P(E_{i_{1}} \cap E_{i_{2}}) + \cdots + (-1)^{r+1} \sum_{i_{1} < i_{2} < \cdots < i_{r}} P(E_{i_{1}} \cap E_{i_{2}} \cap \cdots \cap E_{i_{r}}) + \cdots + (-1)^{n+1} P(E_{1} \cap E_{2} \cap \cdots \cap E_{n})$$

Proof: Version 1, Intuition

- Suppose that we have an outcome.
- If it isn't in the event sequence, doesn't appear anywhere.
- If it is in the event sequence, appears once in $\bigcup_{i=1}^n E_i$ (contributes once to $P(\bigcup_{i=1}^n E_i)$.
- How many times on the other side? Suppose it appears in m of the E_i m>0

count =
$$\binom{m}{1} - \binom{m}{2} + \binom{m}{3} - \dots + (-1)^{m+1} \binom{m}{m}$$

count = $\sum_{i=1}^{m} \binom{m}{i} (-1)^{i+1}$
count = $-\sum_{i=1}^{m} \binom{m}{i} (-1)^{i}$

Proof: Version 1, intuition

$$\begin{array}{lll} \operatorname{count} &= -\sum_{i=1}^m \binom{m}{i} (-1)^i \\ \operatorname{Binomial Theorem:} & (x+y)^n = \sum_{i=0}^n \binom{n}{i} (x)^{n-i} y^i. \\ \\ 0 &= (-1+1)^m &= \sum_{i=0}^m \binom{m}{i} (-1)^i \\ \\ 0 &= 1 + \sum_{i=1}^m \binom{m}{i} (-1)^i \\ \\ 0 &= 1 - \operatorname{count} \\ 1 &= \operatorname{count} \end{array}$$

Inclusion/Exclusion

Corollary

Suppose E_1 and E_2 are events. Then

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

R Code!

Proposition

Consider events E_1 and E_2 . Then

$$P(E_1 \cap E_2) = P(E_1) - P(E_1 \cap E_2^c)$$

Proof.

$$E_1 = (E_1 \cap E_2) \cup (E_1 \cap E_2^c)$$

$$P(E_1) = P(E_1 \cap E_2) + P(E_1 \cap E_2^c)$$

$$P(E_1 \cap E_2) = P(E_1) - P(E_1 \cap E_2^c)$$

Proposition

Boole's Inequality

$$P(\bigcup_{i=1}^N E_i) \leq \sum_{i=1}^N P(E_i)$$

Proof.

Proceed by induction. Trivially true for n = 1. Now assume the proposition is true for n = k and consider n = k + 1.

$$P(\bigcup_{i=1}^{k} E_i \cup E_{k+1}) = P(\bigcup_{i=1}^{k} E_i) + P(E_{k+1}) - P(\bigcup_{i=1}^{k} E_i \cap E_{k+1})$$

$$P(E_{k+1}) - P(\bigcup_{i=1}^{k} E_i \cap E_{k+1}) \le P(E_{k+1})$$

Proof Continued

$$P(\cup_{i=1}^{k} E_{i}) \leq \sum_{i=1}^{k} P(E_{i})$$

$$P(\cup_{i=1}^{k} E_{i}) + P(E_{k+1}) - P(\cup_{i=1}^{k} E_{i} \cap E_{k+1}) \leq \sum_{i=1}^{k} P(E_{i}) + P(E_{k+1})$$

$$P(\cup_{i=1}^{k+1} E_{i}) \leq \sum_{i=1}^{k+1} P(E_{i})$$

Proposition

Bonferroni's Inequality

$$P(\cap_{i=1}^n E_i) \geq 1 - \sum_{i=1}^n P(E_i^c)$$

Proof.

$$\bigcup_{i=1}^n E_i^c = (\cap_{i=1}^n E_i)^c$$
. So,

$$P(\bigcup_{i=1}^{N} E_{i}^{c}) \leq \sum_{i=1}^{N} P(E_{i}^{c})$$

$$P(\bigcup_{i=1}^{N} E_{i}^{c}) = P((\bigcap_{i=1}^{n} E_{i})^{c}))$$

$$= 1 - P(\bigcap_{i=1}^{n} E_{i})$$

$$P(\bigcap_{i=1}^{n} E_{i}) \geq 1 - \sum_{i=1}^{n} P(E_{i}^{c})$$

Suprising Probability Facts

Formalized Probabilistic Reasoning: helps us to avoid silly reasoning

- "What are the odds" → not great, but neither are all the other non-pattens that are missed
- "There is no way a candidate has a 80% chance of winning, the forecasted vote share is only 55%" → confuses different events
- "Group A has a higher rate of some behavior, therefore most of the behavior is from group A" → confuses two different problems (explain more tomorrow)
- "This is a low probability event, therefore god designed it" → (1)
 Even if we stipulate to a low probability event, intelligent design is an assumption (2) Low probability obviously doesn't imply divine intervention. Take 100 balls and let them sort into an undetermined bins. You'll get a result, but probability of that result = 1/(10²⁹ × Number of Atoms in Universe)

Easy Problems

Surprising Probability Facts:Birthday Problem

Probabilistic reasoning pays off for harder problems Suppose we have a room full of N people. What is the probability at least 2 people have the same birthday?

- Assuming leap year counts, N=367 guarantees at least two people with same birthday (pigeonhole principle)
- For N < 367?
- Examine via simulation

Surprising Probability Facts: the E-Harmony Problem

Curse of dimensionality and on-line dating: eHarmony matches you based on compatibility in the most important areas of life - like values, character, intellect, sense of humor, and 25 other dimensions.

Suppose (for example) 29 dimensions are binary (0,1): Suppose dimensions are independent:

Pr(2 people agree) = 0.5

$$\begin{array}{lll} \mathsf{Pr}(\mathsf{Exact}) &=& \mathsf{Pr}(\mathsf{Agree})_1 \times \mathsf{Pr}(\mathsf{Agree})_2 \times \ldots \times \mathsf{Pr}(\mathsf{Agree})_{29} \\ &=& 0.5 \times 0.5 \times \ldots \times 0.5 \\ &=& 0.5^{29} \\ &\approx& 1.8 \times 10^{-9} \end{array}$$

1 in 536,870,912 people Across many "variables" (events) agreement is harder

Probability Theory

- Today: Introducing probability model
- Conditional probability, Bayes' rule, and independence