Exercise: Symbolic Computation

In symbolic differentiation we are given an arithmetic expression e and the task is to compute the derivative of this expression with respect to a given variable x. The task is called symbolic differentiation because the result is not a numerical value, but rather an arithmetic expression. For example, if the expression e is given as

$$e = x \cdot \exp(x),$$

then the derivative of e with respect to x can be calculated using the product rule and is seen to be

$$\frac{d}{dx}\Big(x\cdot\exp(x)\Big) = 1\cdot\exp(x) + x\cdot\exp(x).$$

In order to be able to develop an algorithm for symbolic differentiation, we first define the set \mathcal{E} of arithmetic expressions.

1. The strings x, y and z are arithmetical expressions, we have

$$x \in \mathcal{E}$$
, $y \in \mathcal{E}$, and $z \in \mathcal{E}$.

Of course, these strings are interpreted as variables.

2. All natural numbers are arithmetical expressions:

$$n \in \mathcal{E}$$
 for all $n \in \mathbb{N}$.

- 3. If s and t are arithmetical expressions, then we have:
 - (a) $s + t \in \mathcal{E}$,
 - (b) $s t \in \mathcal{E}$,
 - (c) $s \cdot t \in \mathcal{E}$,
 - (d) $s / t \in \mathcal{E}$.
- 4. If $s \in \mathcal{E}$ and $n \in \mathbb{N}$, then $s^n \in \mathcal{E}$.

In order to be able to manipulate arithmetical expressions with a Setl program, we have to define how these expressions are represented in Setl2. There, we define a function

$$\mathtt{rep}: \mathcal{E} \to \mathtt{SETL2}.$$

This function takes an arithmetical expression as its argument and transforms it into a Setl data structure. The value rep(e) is defined by induction on e:

- 1. The representation of a variable is the corresponding string. Therefore we have rep(v) = v for all variables $v \in \{x, y, z\}$.
- 2. A number is represented by itself:

$$rep(n) = n$$
 for all $n \in \mathbb{N}$.

3.
$$rep(s+t) := [rep(s), "+", rep(t)].$$

4.
$$rep(s-t) := [rep(s), "-", rep(t)].$$

5.
$$rep(s * t) := [rep(s), "*", rep(t)].$$

6.
$$rep(s / t) := [rep(s), "/", rep(t)].$$

7.
$$\operatorname{rep}(s^n) := [\operatorname{rep}(s), "**", n] \text{ for all } n \in \mathbb{N}.$$

Exercise 1: Implement a Setl procedure diff such that diff(e, v) computes the derivate of the arithmetical expression E with respect to the variable v.

1. You will find a program skeleton for this task at the following location:

This program skeleton already contains a parser, a pretty printer and some test cases.

- 2. The representation of arithmetical expressions given above does not account for the unary minus operator "-". Therefore, an expression of the form -e has to be represented as 0 e.
- 3. The parser is not able to parse negative numbers and the unary minus operator is not supported either. However, instead of writing, for example, $-5 \cdot x$ use the expression $0 5 \cdot x$.
- 4. Remember the following rules:

(a)
$$\frac{d}{dx}(g+h) = \frac{dg}{dx} + \frac{dh}{dx},$$

(b)
$$\frac{d}{dx}(g-h) = \frac{dg}{dx} - \frac{dh}{dx},$$

(c)
$$\frac{d}{dx}(g \cdot h) = \frac{dg}{dx} \cdot h + g \cdot \frac{dh}{dx}$$

(d)
$$\frac{d}{dx} \left(\frac{g}{h} \right) = \frac{\frac{dx}{dx} \cdot h - g \cdot \frac{dh}{dx}}{h \cdot h}$$

(e)
$$\frac{d}{dx}g^n = n \cdot g^{n-1} \cdot \frac{dg}{dx}$$
 for all $n \in \mathbb{N}$

5. For testing types, Setl provides the procedure is_integer().

Exercise 2: Extend the program so that you can handle the functions exp(), ln(), sqrt(), sin(), cos(), tan(), and arctan().

Remark: The derivatives of these functions are as follows:

f(x)	$\frac{d}{dx}f$	f(x)	$\frac{d}{dx}f$
$\exp(x)$	$\exp(x)$	ln(x)	$\frac{1}{x}$
$\sin(x)$	$\cos(x)$	$\cos(x)$	$-\sin(x)$
tan(x)	$\frac{1}{\cos^2(x)}$	$\arctan(x)$	$\frac{1}{1+x^2}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$		

Hint: Don't forget to apply the chain rule!

Exercise 3: Implement a procedure simplify that takes an arithmetical expression and simplifies it using the following identities:

$$1 \cdot x = x \cdot 1 = x$$
, $0 \cdot x = x \cdot 0 = 0$, $0 + x = x + 0 = x$.

Hint: Use recursion!

Exercise 4*: Extend your program so that it can calculate the derivative of an expression of the form s^t where s and t are arbitrary arithmetical expressions. Test your implementation by computing

$$\frac{d}{dx}(x^x).$$