Asymptotic Analysis Cheatsheet

- Order Notations:
 - $f(n) \in O(g(n))$ if $\exists c > 0$ and $n_0 > 0$ such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$
 - o f "grows no faster than" g
 - $f(n) \in \Omega(g(n))$ if $\exists c > 0$ and $n_0 > 0$ such that $0 \le cg(n) \le f(n) \ \forall n \ge n_0$
 - \circ f "grows no slower than" g
 - $f(n) \in \Theta(g(n))$ if $\exists c_1, c_2 > 0$ and $n_0 > 0$ such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n) \ \forall \ n \ge n_0$
 - \circ f ang g have the same complexity
 - $f(n) \in o(g(n))$ if $\forall c > 0, \exists n_0 > 0$ such that $0 \le f(n) < cg(n) \ \forall n \ge n_0$
 - \circ f has lower complexity than g
 - $f(n) \in \omega(g(n))$ if $\forall c > 0, \exists n_0 > 0$ such that $0 \le cg(n) < f(n) \ \forall n \ge n_0$
 - \circ f has higher complexity than g
- Suppose $L = \lim_{n \to \infty} \frac{f(n)}{g(n)}$
 - If L = 0 then $f \in o(g)$
 - If $0 < L < \infty$ then $f \in \Theta(g)$
 - If $L = \infty$ then $f \in \omega(g)$
- L'Hopital's Rule:
 - $\blacksquare \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \text{ if it exists}$
- $f \in O(g)$ and $f \in \Omega(g) \iff f \in \Theta(g)$
- Important/useful facts: