2. Übungsblatt zur Physik IV

SS2015

Ausgabe: 13.04. Rückgabe 20.04. (vor der Vorlesung)

3. Aufgabe: Farbzentren (3 Punkte)

Ein einfaches Modell für ein Farbzentrum in einem ionischen Kristall betrachtet ein einzelnes Elektron in einem dreidimensionalen Kastenpotential (Kantenlänge a $\stackrel{\frown}{=}$ Gitterkonstante) mit unendlich hohen Wänden.

- a. Berechnen Sie den Grundzustand und die ersten beiden angeregten Zustände des Elektrons.
- b. Geben Sie den Zusammenhang zwischen der Übergangsenergie zwischen zwei Zuständen und der Gitterkonstanten a an.
- c. Berechnen Sie die Wellenlänge maximaler Absorption (Übergang: Grundzustand→
 1.angeregter Zustand) für LiF (a=4Å).

4. Aufgabe: Reziprokes Gitter (3 Punkte)

- a. Geben Sie das reziproke Gitter eines zweidimensionalen rechtwinkligen Gitters mit den Kantenlängen a und 3a und die zugehörige erste Brillouin-Zone an.
- b. Ändert sich das reziproke Gitter, wenn man von einem zentriert rechtwinkligen Gitter der gleichen Kantenlänge ausgeht?
- c. Konstruieren Sie das reziproke Gitter zu einem einfachen hexagonalen Gitter mit den Gitterkonstanten c und a (3D-Gitter). Um welchen Winkel ist dieses Gitter im Verhältnis zum direkten Gitter gedreht (Rotation um c-Achse)?

5. Aufgabe: Bragg- vs. Laue Bedingung (4 Punkte)

- a. Zeigen Sie, dass der reziproke Gittervektor \vec{G}_{hkl} senkrecht auf der (hkl)-Ebene steht und dass der Abstand zweier Netzebenen $d_{hkl}=2\pi/|\vec{G}_{hkl}|$ ist.
- b. Benutzen Sie das Ergebnis aus a) um die Äquivalenz von Laue-Bedingung zu Bragg-Bedingung für das Auftreten von Beugungsreflexen zu zeigen.