Feedback Control System Test 1

Instructions to candidates:

- 1. All questions are compulsory.
- 2. All questions carry equal marks.
- Using the Laplace transform pairs and the Laplace transform theorems, derive the Laplace transforms for the following time functions. Specify the theorems.
 - a. $e^{-at}\cos(\omega t)u(t)$
 - b. $t^3u(t)$
- 2 Find the inverse Laplace transform of

$$F(s) = \frac{(s+3)}{(s+2)^2(s+5)}$$

using partial fraction expansion.

- 3 Define the poles and zeros of the system described by the transfer function.
- 4 A system is represented by a relation given below

$$X(s) = R(s) \frac{100}{(s^2 + 2s + 50)}$$

if r(t) = 1.0 unit, find the values of x(t) when $t \to 0$.

Write the differential equation that is mathematically equivalent to the block diagram as shown. Assume that $r(t) = 3t^3$.

- 6 What are the steps involved in the design of control system?
- 7 Find the transfer function

$$G(s) = \frac{V_L(s)}{V(s)}$$

for network as shown in figure 1

Feedback Control System Test 1

8 Find the transfer function,

$$G(s) = \frac{X(s)}{F(s)}$$

For the translational mechanical system shown in Figure 2

9 Find the output response, c(t), for the systems shown in Figure 3.
Also find the time constant, rise time, and settling time.

What is the type and order of following system. Justify your answer.

$$G(s) = \frac{s+1}{s^2(s+2)(s+3)}$$

College of Engineering, Pune-5

(An autonomous institute of Government of Maharashtra)

Test-1 Feedback Control System

Duration: 01 hrs Max Marks: 20

1	a.	A closed loop control system is one in which the has an effect on	5
		the	
	b.	feedback is employed in control systems.	
	c.	A signal which has zero value everywhere except at t=0 where the magnitude is infinity is	
		called	
	d.	Traffic light system is the example of control system	
	e.	Stability is very important characteristic of the response	
		of the system.	
2		A positional control system with velocity feedback is shown in figure. What is the response of the system for a unit step input?	5
		$\frac{R(s)}{s(s+3)}$ $C(s)$ $0.1s+1$	
3		Find TF $X_2(s)/F(s)$ of the system	5
		$f_{v_1} = 1 \text{ N-s/m}$ $M_1 = 1 \text{ kg}$ $f_{v_2} = 1 \text{ N-s/m}$ $M_2 = 1 \text{ kg}$	
		$f_{\nu_a} = 1 \text{ N-s/m}$	
4		Discuss (i) feedback and feed-forward control system (ii) open loop and closed loop system	5

SY Computer Feedback Control System Test 2

Instructions to candidates:

- 1. All questions are compulsory.
- 2. All questions carry equal marks.
- 3. Figures to right indicates full marks.

1

- i For a second order underdamped system damping factor ζ = 0.5 and natural frequency ω_n = 3. Show these two factors graphically in s-plane
 ii Depending upon damping factor ζ classify the control systems
 iii The time response of a control system is the sum of the _____ and the _____.
 iv The _____ error is a measure of system accuracy.
 v If the characteristic equation of a system is s² + 6s + 8 = 0, the system is overlamp 1 damped.
- A unity feedback system whose open loop transfer function is given by $\frac{K}{s(sT+1)}$, when subjected to a unit step input gives underdamped response. If peak overshoot is 25% at 3 second, determine the value of K and T. By what factor K should be multiplied so that peak overshoot amplified from 25% to 75%?

10

5

Determine the stability of system using Routh-Hurwitz criteria having characteristic equation $s^6 + 3s^5 + 5s^4 + 9s^3 + 8s^2 + 6s + 4 = 0$. Also find the closed loop pole locations.

COLLEGE OF ENGINEERING, PUNE (An Autonomous Institute of Government of Maharashtra.)

END Semester Examination

Programme: B.Tech	Semester: III
Course Code:	Course Name: Feedback Control System
Branch: Computer	Academic Year: 2022-23
Duration: 3 hours	Max Marks: 60
Student PRN No.	
Instructions:	
 Figures in the Column M indicate the full Mobile phones and programmable calcula Writing anything on question paper is not Exchange/Sharing of stationery, calculator Write your PRN Number on Question Paper Perform all calculations up to 4 decimal performs Solve any Five questions Q1A i. What mathematical model permits 	tors are strictly prohibited. allowed. r etc. not allowed. per. points
systems?	2
ii. Define the transfer function.	quations written in order to evaluate
iii. What do we call the mechanical ed	luuriono

If we understand the form the mechanical equations, what step do we

Why do transfer functions for mechanical networks look identical to

the transfer function?

basis of following points

ii. Power consumption

iv. Response to external disturbances

i. Accuracy

iii. Complexity

v. Stability

vi. Cost

avoid in evaluating the transfer function?

transfer functions for electrical networks?

Instability is attributable to what part of the total response

B Compare the open loop control system and closed loop control system on the

iv.

vi.

COLLEGE OF ENGINEERING, PUNE (An Autonomous Institute of Government of Maharashtra.)

Q2A 2 2,3 Find the transfer function, $G(s) = \frac{v_o(s)}{v_l(s)}$, for following network. Solve the 6 problem using mesh analysis.

Find the transfer function, $G(s) = \frac{X_2(s)}{F(s)}$, for the translational mechanical network shown in Figure.

Q 3 A Consider a unity feedback system with closed transfer function

$$\frac{C(s)}{R(s)} = \frac{Ks + b}{s^2 + as + b}$$

Determine the open loop transfer function G(s). Find static error constant and steady state error for unit ramp input.

B A unity feedback system is characterised by an open loop transfer function 3 1,2 $G(s) = \frac{K}{s(s+10)}$

3

1,2

3 1,2

Determine the gain K so that the system will have a damping ratio of 0.5. For this value of K determine the settling time, peak overshoot and time to peak overshoot for unit step input

For the unity feedback system shown in Figure, where

$$G(s) = \frac{450(s+8)(s+12)(s+15)}{s(s+38)(s^2+2s+28)}$$

Find the steady-state errors for the following test inputs: 25 u(t), 37 t u(t), and $47t^2 u(t)$.

COLLEGE OF ENGINEERING, PUNE (An Autonomous Institute of Government of Maharashtra.)

3 1,2

- Q 4 A By means of Routh criterion, determine the stability of the system represented by the following characteristics equations. For system found to be unstable, determine the number of roots of the characteristics equation in the right half of the s plane. $s^6 + 2s^5 + s^4 + 2s^3 + 3s^2 + 4s + 5 = 0.$
 - B Determine the stability of system using Routh-Hurwitz criteria having 1,2 3 characteristic equation $s^5 + 4s^4 + 8s^3 + 8s^2 + 7s + 4 = 0$

Also find the closed loop poles.

- 3 1,2 C Determine the range of K for the system to be stable using Routh criterion. $s^3 + 3Ks^2 + (K+2)s + 4 = 0.$
- 1,2 Q 5 A Sketch the root locus for $G(s)H(s) = \frac{K}{(s+2)(s+4)(s+8)}$
 - Find K for stability 1,2 B Find K for the above system (described in Q 5 A) when it is operating with damping factor 0.6.
- 1,2 Q6A Sketch the root locus for $G(s)H(s) = \frac{K(s+3)}{s^2(s+9)}$

Find K for stability B Find dominant pole for the above system (described in Q 6 A) when the 1,2 system is operating with 0.5 damping factor.

It the ratio assuming all iii. What do we function? Equation of iv. If we underst evaluating th Free body d v. Why do trans electrical net There are d mechanical vi. Instability is	of Laplace transform of out initial conditions zero. ce call the mechanical equation motion transfer function? iagram after functions for mechanical networks irect analogies between the elevariables and components. attributable to what part of the total and the form the mechanical networks irect analogies between the elevariables and components.	s written in order to evaluate the transfer functions for the extrical variables and components and the	6
Compare the of	pen loop control system and c		6
Accuracy	Inaccurate and unreliable	Accurate and reliable	
Power consumption	consume less power	consume more power	
	Simple	Complex	
Response to external disturbances	The changes in output due to external disturbances are not corrected automatically	The changes in output due to external disturbances are corrected are	
Stability	they are generally stable	efforts are needed to design a stable system	
		Costlier	
mesh analysis. $v_i(t) \stackrel{+}{=} 1\Omega$ Writing the mesh	$ \begin{array}{c c} & + v_{r}(t) - \\ \hline & v_{r}(t) & 0000 \\ \hline & 3 & H \end{array} $ $ \begin{array}{c c} & \frac{1}{2} & F \\ \hline & i_{2}(t) & \\ & 1 & 1 & 1 \\ \hline & 1 & 1 & 1 \\ $	$l(s) = V_i(s)$ $2/s)I_2(s) = 0$	6
	It the ratio assuming alliii. What do we function? Equation of iv. If we underst evaluating the Free body down. Why do transelectrical net There are domechanical vi. Instability is Natural response the optollowing points. Accuracy Power consumption Complexity Response to external disturbances Stability Cost Find the transfermesh analysis.	It the ratio of Laplace transform of or assuming all initial conditions zero. iii. What do we call the mechanical equation function? Equation of motion iv. If we understand the form the mechanical equation evaluating the transfer function? Free body diagram v. Why do transfer functions for mechanical net electrical networks There are direct analogies between the elemechanical variables and components. vi. Instability is attributable to what part of the to Natural response Compare the open loop control system and components. Accuracy Inaccurate and unreliable Power consume less power consumption Complexity Simple Response to external disturbances are not corrected automatically Stability they are generally stable Cost Economical Find the transfer function, $G(s) = \frac{V_O(s)}{V_I(s)}$, for formesh analysis. **Prof(I) - **Prof(I	If the ratio of Laplace transform of output to the Laplace transform of input assuming all initial conditions zero. iii. What do we call the mechanical equations written in order to evaluate the transfer function? Equation of motion iv. If we understand the form the mechanical equations take, what step do we avoid in evaluating the transfer function? Free body diagram v. Why do transfer functions for mechanical networks look identical to transfer functions for electrical networks There are direct analogies between the electrical variables and components and the mechanical variables and components. vi. Instability is attributable to what part of the total response? Compare the open loop control system and closed loop control system on the basis of following points. Accuracy Inaccurate and unreliable Accurate and reliable Power consumption Complexity Simple Complex Response to external disturbances are not disturbances or corrected automatically automatically Response to external disturbances are not disturbances are corrected automatically The changes in output due to external disturbances are readed to design a stable system Cost Economical Costlier Find the transfer functions $f(s) = \frac{V_0(s)}{V_1(s)}$, for following network. Solve the problem using mesh analysis. $\frac{V_1(s)}{V_1(s)} = \frac{V_1(s)}{J_1(s)} = V_$

But
$$V_o(s) = 3s I_2(s)$$

$$\frac{I_2(s)}{V_i(s)} = \frac{s}{6s^3 + 5s^2 + 4s + 2}$$

$$\therefore I_2(s) = V_o(s)/3s$$

$$\therefore \frac{V_o(s)}{V_i(s)} = \frac{3s^2}{6s^3 + 5s^2 + 4s + 2}$$

Q2B Find the transfer function, $G(s) = \frac{X_2(s)}{F(s)}$, for the translational mechanical network shown in Figure.

Writing the equation of motion

$$(s^2 + s + 1)X_1(s) - (s + 1)X_2(s) = F(s)$$

-(s + 1)X₁(s) + (s² + s + 1)X₂(s) = 0

Solving for $X_2(s)$,

$$X_{2}(s) = \frac{\begin{vmatrix} (s^{2} + s + 1) & F(s) \\ -(s + 1) & 0 \end{vmatrix}}{\begin{vmatrix} (s^{2} + s + 1) & -(s + 1) \\ -(s + 1) & (s^{2} + s + 1) \end{vmatrix}}$$
$$= \frac{(s + 1)F(s)}{s^{2}((s^{2} + s + 1))}$$
$$\frac{X_{2}(s)}{F(s)} = \frac{(s + 1)}{s^{2}((s^{2} + 2s + 2))}$$

Consider a unity feedback system with closed transfer function Q3A

$$\frac{C(s)}{R(s)} = \frac{Ks + b}{s^2 + as + b}$$

3

Determine the open loop transfer function G(s). Find the steady state error with unit ramp

input

$$\frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)} = \frac{Ks + b}{s^2 + as + b}$$

Cross multiplying the above equation

altiplying the above equation
$$(s^{2} + as + b)G(s) = (1 + G(s))(Ks + b)$$

$$(s^{2} + as + b)G(s) = (Ks + b) + (Ks + b)G(s)$$

$$(s^{2} + as + b) - (Ks + b)[G(s)] = (Ks + b)$$

$$(Ks + b) = \frac{(Ks + b)}{(Ks + b)} = \frac{(Ks + b)}{s^{2} + (a - K)s} = \frac{(Ks + b)}{s[s + (a - K)]}$$

$$(a) = \frac{(Ks + b)}{(s^{2} + as + b) - (Ks + b)} = \frac{(Ks + b)}{s[s + (a - K)]}$$

$$(a) = \frac{(Ks + b)}{(s^{2} + as + b) - (Ks + b)} = \frac{(Ks + b)}{s[s + (a - K)]}$$

The velocity error constant

$$K_{v} = \lim_{s \to 0} sG(s)$$

$$= \lim_{s \to 0} s \times \frac{(Ks + b)}{s[s + (a - K)]} = \frac{b}{a - K}$$

Therefore, the steady state error for a unit ramp input is	
A unity feedback system is characterised by an open loop transfer function	5
ν	
$G(S) = \frac{1}{S(S+10)}$	
Determine the gain K so that the system will have a damping ratio of 0.5. For this value of K	
determine the settling time, peak overshoot and time to peak overshoot for unit step input	L
The closed loop transfer function of the given unity feedback system is	
$G(s)$ $G(s)$ $\frac{K}{s(s+10)}$ K	
$\frac{G(S)}{B(S)} = \frac{G(S)}{1 + G(S)} = \frac{G(S + 10)}{K} = \frac{K}{S^2 + 10S + K}$	
$1 + \frac{\kappa}{s(s+10)}$ $1 + \frac{\kappa}{s(s+10)}$ $s^2 + 10s + \kappa$	
Compare with standard form of transfer function of a second order system	
$\frac{1}{R(s)} = \frac{1}{s^2 + 10s + K} = \frac{1}{s^2 + 2\zeta \omega_n s + \omega_n^2}$	
$2 \times 0.5 \times \omega_n = 10$ $\therefore \omega_n = 10$	
$\therefore K = \omega_n^2 = 100$	
The settling time for 5% criterion is	
$t_{-} = \frac{4}{} = \frac{4}{} = 0.8 seconds$	Н
, 1	
The peak overshoot is	
$M_p = e^{-\pi\zeta/\sqrt{1-\zeta^2}} = e^{-\pi\times0.5/\sqrt{1-0.5^2}} = 0.163$	Н
The peak time is	
$t_p = \frac{\pi}{1000} = \frac{\pi}{100000000000000000000000000000000000$	
$\omega_d = \omega_n \sqrt{1 - \zeta^2} = 10\sqrt{1 - 0.5^2}$	
For the unity feedback system shown in Figure, where	4
450(s+8)(s+12)(s+15)	Н
$G(s) = \frac{1}{s(s+38)(s^2+2s+28)}$	П
Find the steady-state errors for the following test inputs:	Н
$25 u(t)$, $37 t u(t)$, and $47t^2 u(t)$.	
R(s) + C(s) = C(s)	Н
	Н
$g(x) = \lim_{s \to \infty} \frac{sR(s)}{sR(s)} = \lim_{s \to \infty} \frac{sR(s)}{sR(s)}$	
$s \to 0$ 1 + $G(s)$ $s \to 0$ 1 + $\frac{450(s+8)(s+12)(s+13)}{s(s+28)(s^2+2s+28)}$	
For step input $R(s) = 25/3$ $sR(s) = 0$	
$e(\infty) = \lim_{s \to 0} \frac{1}{450(s+8)(s+12)(s+15)} = 0$	
$1 + \frac{1}{s(s+38)(s^2+2s+28)}$	
For ramp input $R(s) = 37/s^2$	
$SR(S) = 6.075 \times 10^{-2}$	
$e(\infty) = \lim_{s \to \infty} \frac{1}{450(s+12)(s+15)}$	
	determine the settling time, peak overshoot and time to peak overshoot for unit step input. The closed loop transfer function of the given unity feedback system is $\frac{C(s)}{R(s)} = \frac{G(s)}{1+G(s)} = \frac{\frac{K}{s(s+10)}}{1+\frac{K}{s(s+10)}} = \frac{K}{s^2+10s+K}$ Compare with standard form of transfer function of a second order system $\frac{C(s)}{R(s)} = \frac{K}{s^2+10s+K} = \frac{\omega_n^2}{s^2+2\zeta\omega_n s+\omega_n^2}$ $\omega_n^2 = K \therefore \omega_n = \sqrt{K} \text{and}$ $2\zeta\omega_n = 10$ $2\times 0.5\times \omega_n = 10 \therefore \omega_n = 10$ $\therefore K = \omega_n^2 = 100$ The settling time for 5% criterion is $t_s = \frac{4}{\zeta\omega_n} = \frac{4}{0.5\times 10} = 0.8 \text{seconds}$ The peak overshoot is $M_p = e^{-\pi\zeta/\sqrt{1-\zeta^2}} = e^{-\pi\times 0.5/\sqrt{1-0.5^2}} = 0.163$

For parabolic input $R(s) = 47/s^3$ $e(\infty) = \lim_{s \to 0} \frac{sR(s)}{1 + \frac{450(s+8)(s+12)(s+15)}{s(s+38)(s^2+2s+28)}} = \infty$
By means of Routh criterion, determine the stability of the system represented by the following characteristics equations. For system found to be unstable, determine the number of roots of the characteristics equation in the right half of the s plane. $s^6 + 2s^5 + s^4 + 2s^3 + 3s^2 + 4s + 5 = 0$.

56	1		
S ⁵	2	1	3
s ⁴	2 × 1 – 1 × 2	2	4
	$\frac{1}{2} = 0$	$\frac{2\times3-1\times4}{}$ - 1	$2 \times 5 - 1 \times 0$
S ³	00	2 -1	2 = 5

The first element in the s^4 row its zero, whereas there are some non-zero elements in the same row. So the system is unstable. To find the location of the roots replace the first zero element by a small positive number epsilon and proceed with formation of root table

s ⁵	2	1	3	T
	ε	2	4	1
		$2 \times 3 - 1 \times 4$	$2 \times 5 - 1 \times 0$	H
s ³		2	2	
	$\varepsilon \times 2 - 2 \times 1$	= 1	= 5	
s ²	$\frac{\varepsilon}{-4\varepsilon^2+12\varepsilon-2}$	$4\varepsilon - 10$		
	$\frac{-4\varepsilon^2+12\varepsilon-2}{}$	3		
51 (-4E	$\frac{\varepsilon^{2} + 12\varepsilon - 2}{\varepsilon} \left(\frac{4\varepsilon - 10}{\varepsilon} \right) - \left(\frac{2\varepsilon - 2}{\varepsilon} \right)$ $\frac{-4\varepsilon^{2} + 12\varepsilon - 2}{\varepsilon}$	5		
	$\left(\frac{4\varepsilon-10}{\varepsilon}\right)\left(\frac{2\varepsilon-2}{\varepsilon}\right)$			
	$-\Lambda a^2 + \Delta a$	×5 0		
50	$\frac{-4\varepsilon^2+12\varepsilon-2}{\varepsilon}$	_		
	ere are 2 sign changes in the elements			

there are 2 roots of the characteristic equation in the right half of the s plane. So the system is

В	By means of Routh criterion, ddetermine the criteria having characteristic equation $s^5 + 4s^4 + 8s^3 + 8s^2 + 7s + 4 = 0$. Also find the closed loop poles.	Stability of the s plane. So the system	is	
	Also find the closed loop poles. Also find the closed loop poles.	stability of system using Routh-Hurwitz	5	
5				

S ⁵ 1			
s ⁴ 4	8		
s ⁴ 1	8	7	
3 1	2	4	
		1	

,3	$1 \times 8 - 1 \times 2 = 6$	$\frac{1 \times 7 - 1 \times 1}{1} = 6$	
s ²	$\frac{1}{6 \times 2 - 1 \times 6} = 1$	$\frac{6 \times 1 - 1 \times 0}{6} = 1$	
s ¹	$\frac{6}{1 \times 6 - 6 \times 1} = 0$	0	
.0	1	are zeros So, the Rout	C. II. The

All the elements in the s^1 are zeros. So, the Routh's test fails. The system is unstable. To complete the Routh table, form an auxiliary equation using the coefficients of the row s^2 (the row just above the row of zeroes)

$$A(s) = s^2 + 1 = 0$$

Taking the first derivative of auxiliary equation

$$\frac{d}{ds}A(s) = \frac{d}{ds}(s^2 + 1) = 0$$
$$\therefore 2s + 0 = 0$$

Replace the row of zeros by the elements of first derivative of the auxiliary equation and process with the formation of Routh table

.5 1	8	7
4 1	2	1
3 6	6	
s ² 1	1	
s^1 2	0	
s ⁰ 1		n of the Routh array pos

Since all the elements in the first column of the Routh array positive, there are no roots of characteristics equation in the right half of the s plane. Still the system is unstable due to existence of the row of zeros, which means that there must be roots on imaginary axis of the s plane. To determine the roots on imaginary axis, solve the auxiliary equation. To determine the other roots divide characteristics equation by auxiliary equation.

$$s^2 + 1 = 0$$
, $s^2 = -1$ i.e. $s = \pm j1$

To find the other poles factorize the characteristic equation

To find the other poles factorize the solution of the find the other poles factorize the
$$s^3 + 4s^4 + 8s^3 + 8s^2 + 7s + 4 = (s^2 + 1)(s^3 + 4s^2 + 7s + 4)$$

$$= (s^2 + 1)(s + 1)(s^2 + 3s + 4)$$

$$= (s^2 + 1)(s + 1)(s + 1.5 + j1.3229)(s + 1.5 - j1.3229)$$

Therefore, the poles are at

$$s = \pm j1$$
, $s = -1$, $s = -1.5 \pm j1.3229$

C Determine the range of K for the system to be stable by using Routh array. $s^3 + 3Ks^2 + (K+2)s + 4 = 0.$

QJA	Sketch the root locus for	
	$G(s)H(s) = \frac{K}{(s+2)(s+4)(s+8)}$ Find K for stability	
	Find K for stability $(s+2)(s+4)(s+8)$	
	This K for Stability	
	Number of poles 3 number of zeros 0	
	Number of root locus branches = 2	-
	Centroid = $(-2-4-8)/3 = -14/3 = -4.6667$	
	WIELD	
	$\theta = \frac{(2q+1)180^{\circ}}{}$	
	$\theta = \frac{(2q+1)180^{0}}{P-Z}; \qquad q = 0, 1, 2,, (P-Z) - 1.$ $\theta_{1} = \frac{(2 \times 0 + 1)180^{0}}{3-0} = 60^{0}; \ \theta_{2} = \frac{(2 \times 1 + 1)180^{0}}{3-0} = 180^{0};$ $\theta_{3} = \frac{(2 \times 2 + 1)180^{0}}{3-0} = 300^{0};$ Break away point = 2.0	
	$\theta_1 = \frac{(2 \times 0 + 1)180^0}{2} = 600 \cdot 0 (2 \times 1 + 1)1000$	
	$\frac{3-0}{(2\times 2+1)1900} = \frac{3-0}{3} = \frac{1900}{3}$	
16	$\theta_3 = \frac{3}{3-0} = 300^{\circ}$	
F	Break away point = -2.9	1
	w axis crossing point - 15	1
BE	4 < 718	
B F	and K for the above system (do)	
K	ind K for the above system (described in Q 5 A) when it is operating with damping setch the root locus for	
	of when it is operation	
A Sk	etch the with damping	4
	etch the root locus for	-4

.,	
	$G(s)H(s) = \frac{K(s+3)}{s^2(s+9)}$ Find K for stability
	Number of poles 3 number of zeros 1
	Number of root locus branches = 2 Centroid = -4.5
	Angle $\theta = \frac{(2q+1)180^{0}}{P-Z}; \qquad q = 0, 1, 2,, (P-Z) - 1.$
	$\theta = \frac{(2q+1)180^{0}}{P-Z}; \qquad q = 0, 1, 2,, (P-Z) - 1.$ $\theta_{1} = \frac{(2 \times 0 + 1)180^{0}}{3-1} = 90^{0}; \ \theta_{2} = \frac{(2 \times 1 + 1)180^{0}}{3-1} = 270^{0};$
	Break away point = NIL $j\omega$ axis crossing point = Nil
	K > 0 (described in O 6 A) when the system is 4
	K > 0 Find dominant pole for the above system (described in Q 6 A) when the system is 4 operating with 0.5 damping factor.
	No dominant pole