

1. Overview of Al Workflows	2. Why Postgres as a vector store	3. Storing and managing vectors	4. Querying the vector store
Look at high-level architecture - LLMs, vector stores and JSON Look at key vocabulary and concepts (embeddings, vectors, hybrid queries, etc.)	What is a vector store? Key concepts and use cases. Why Postgres and how does it compare with other market tools Setting up Postgres with vector capabilities (pgvector) Lab: Install and configure Postgres using Docker	Generating embeddings: Overview of tools and workflows Storing and organizing embeddings in Postgres Strategies for handling large datasets including chunking Dense and sparse vectors Lab: Generate embeddings for a dataset and store them	Techniques for similarity search: k-NN, cosine similarity Using indexes to optimize vector queries Reranking results Lab: Query stored vectors to retrieve similar items (document/image search)
5. Querying LLMs with retrieved data	6. NoSQL with JSON in Postgres	7. Integrating Vector, Relational and JSON Data	8. Putting it all together
Recap on querying LLMs vis APIs Best practices for combining vector retrieval with LLM prompts Prompt configuration parameters (temperature, top-k, etc) Lab: Build a pipeline where vector store results enhance LLM responses (context-aware Q&A, etc)	Overview of JSON/JSONB support in Postgres Querying JSONB data with SQL Indexing JSONB data for performance Lab: Design a schema mixing vector, relational and JSONB data for a sample project	Building hybrid queries to power advanced workflows Case study: Combining embeddings, metadata (relational) and configurations (JSON) Lab: Implement a hybrid query to support a sample AI use case	Full stack pipeline demo: Retrieve data, query the LLM and return results Debugging and optimising the workflow Spotlight on LLM frameworks Lab: Build a working application combining all elements

Leveraging Multiple Data Types for Al-Powered Workflows

⊀ Key Points:

- AI applications require multiple types of data:
 - · Relational (structured metadata like categories, timestamps, user data).
 - · Vector embeddings (semantic meaning and similarity).
 - JSONB (flexible, semi-structured configurations and additional attributes).
- Hybrid queries allow rich, context-aware data retrieval.

⊀ Key Takeaway:

Hybrid queries improve AI workflows by combining structured, unstructured, and semantic search capabilities.

Breaking Down the Query Stack

- 1 Relational Data (PostgreSQL Table Columns)
 - Stores structured fields (e.g., id, name, created_at).
 - Enables fast lookups and filtering using indexes.
- **♦** 2 Vector Data (pgvector for Embeddings)
 - Stores semantic representations of text/images.
 - Enables nearest neighbor search for similarity matching.
- ♦ 3 JSONB Data (Flexible Attributes & Configurations)
 - Stores semi-structured data (e.g., {"price": 29.99, "stock": 100}).
 - Allows flexible querying and updates without schema changes.

⊀ Key Takeaway:

Each data type serves a different purpose, and combining them makes AI retrieval more powerful.

Query Flow: Retrieving Context-Rich Data

- $lue{1}$ User Query ightarrow Generate Vector Embedding
 - Convert text query into an embedding using bge-m3.
- $oxed{2}$ Vector Similarity Search ightarrow Retrieve Relevant Entries
 - Use pgvector to find the most similar stored items.
- \blacksquare Relational Filtering \rightarrow Narrow Down Results
 - Apply filters (e.g., WHERE category = 'programming').
- ${\color{red} 4}$ JSONB Extraction ${\color{red}
 ightarrow}$ Enrich Data with Additional Fields
 - Fetch relevant metadata (e.g., price, configuration, availability).

Real-World Scenarios That Benefit from Hybrid Data

☑ Semantic Search + Metadata Filtering

• Find similar research papers but filter only by peer-reviewed publications.

☑ Personalized Recommendations

• Retrieve movies similar to "Inception", then filter by user preferences (JSONB settings).

☑ AI-Powered Knowledge Retrieval

• Find similar troubleshooting issues, but prioritize ones from recent cases.

Optimizing Multi-Modal Queries in PostgreSQL

☑ Use Indexing for Performance

- GIN indexes for JSONB
- IVFFLAT or HNSW indexes for pgvector

☑ Limit Query Scope for Efficiency

• Use LIMIT, WHERE, and ORDER BY to reduce search space.

Normalize Data When Necessary

Store high-frequency relational fields separately to avoid JSONB bloating.

☑ Cache Query Results for AI Pipelines

• Precompute and store results for **frequent queries** to improve response times.

Apply Hybrid Querying in a Real-World AI Use Case (Hands-on Lab)
•Design a real-world query that fetches relevant vector-based results, filters them using relational metadata, and enriches responses with JSONB fields.
•Implement a case study demonstrating multi-source AI retrieval (e.g., retrieving books, filtering by metadata, and adjusting configurations dynamically).

