Predicting Thermal Conductivity and Oxide Scale Thickness in ZrB₂ Composites: A Machine Learning Approach

M.TECH THESIS DEFENCE

by

Karthikeya Pervela (21106018)

Under the supervision of

Prof. Kantesh Balani

Department of Materials Science & Engineering Indian Institute of Technology Kanpur

Presentation outline

- Need for UHTCs', classification and properties of UHTCs'
- •Review of studies on thermal conductivity and improving oxidation resistance of ZrB₂ and its composites
- •Objectives of this study and work plan incorporating synthetic minority oversampling technique (SMOTE)
- Machine Learning methodology for predicting thermal conductivity and oxidation resistance
- •Results and Discussion : Machine Learning Findings and Analysis
- Conclusive Remarks: Model performance and statistically affecting factors
- Future scope of work : Connecting experimental and Modelling framework with Bayesian optimization

Need for Ultra High Temperature Ceramics (UHTCs)

Characteristics of hypersonic flow

a. Mach 7 hypersonic CFD simulation: heat transfer

b. X-51A: record-breaking Mach 5+ scramjet flight (210 sec)

Aerospace advances need advanced materials for hypersonic flight and re-entry

Classification and Properties of UHTCs

			Material	Crystal	Melting temperature	Density	CTE, α	Thermal conductivity	Electrical resistivity		modulus Pa)	Hardness
				structure	(℃)	(g·cm ⁻³)	$(10^{-6} \mathrm{K}^{-1})$	$(W \cdot m^{-1} \cdot K^{-1})$	(μΩ·cm)	Cal.	Exp.	(GPa)
			-									
			TaB_2	HCP	3040	12.5	8.2–8.8	10.9–16.0	33	497	551	19.6
	_	→ Borides	TiB_2	HCP	3225	4.5	7.6–8.6	64.4	16–28.4	583	575	24.0
		Donacs	ZrB_2	HCP	3245	6.1	5.5-8.3	57.9	9.2	523	489	23.0
			HfB_2	HCP	3380	11.2	6.3–7.6	51.6	8.8–11	535	451	28.0
(0												
			TiC	FCC	3100	4.9	7.5–7.7	17–21	52.5	455	437	30.0
$oxed{oxed}$		→ Carbides	ZrC	FCC	3530	6.6	6.82	20.61	68.0	436	387	25.0
		Carbides	TaC	FCC	3800	14.5	6.6-8.4	22.2	30-42.1	550	537	17.0
UHTCs			HfC	FCC	3900	12.8	6.3	22.2	45.0	537	461	24.2
			_									
			TaN	FCC	2900	13.4	3.2	8.3	128–135	490	490	10.8
		→ Nitrides	TiN	FCC	2950	5.4	9.35	29.1	21.7	463	400	18.6
		Tittingo	ZrN	FCC	2950	7.3	7.24	20.9	13.6	390	384	15
			HfN	FCC	3385	13.9	6.5	21.6	33	411	398	16.1

Why Borides?

Materials	Advantages	Disadvantages
Carbon based	• Short duration	Non- ReusableLow oxidation resistance
Borides	ReusableOxidation resistance	BrittleReinforcements required
Carbides	 Relatively high melting points 	 Lower oxidation resistance

Temperature capability vs. thermal conductivity for superalloys, CMCs, UHTCs

Literature review

Thermal conductivity: Carbides and Silicide's

Author	Effect on Thermal Conductivity	Attributed Factor
Loehman et al	Decreasing thermal conductivity with increasing SiC content (5vol% to 20vol%)	Inverse relationship between SiC content and thermal conductivity
Wang et al	Relatively lower thermal conductivity for ZrB ₂ -SiC composites	Average particle size of the SiC
Andrievskii et al	Overall reduction in thermal conductivity with increasing ZrC content	Content of ZrC
Fridlender et al	Decreasing thermal conductivity with increasing ZrC content	Content of ZrC
Hassan et al	Better thermal conductivity compared with HfB ₂ –SiC composite	Better sintering of ZrB ₂ -SiC composite
Monteverde et al	Increased thermal conductivity	MoSi ₂ content
Guo et al	Decreased thermal conductivity with increasing MoSi ₂ content	MoSi ₂ content, interfacial thermal resistance at ZrB ₂ /MoSi ₂ grain boundaries
Guo et al	Decreased thermal conductivity with increasing ZrSi ₂ content	ZrSi ₂ content, interfacial thermal resistance

Oxidation resistance

Author	Effect on oxidation resistance	Attributed Factor
Fahrenholtz et al	Increases and then it decreases(727°C - 2227°C)	${ m B_2O_3}$ initially dominates vaporization, then it is disrupted at 1527°C and at 2227°C no protective scale of ${ m B_2O_3}$
Tripp et al	800°C-1400°C Increases till 1100°C (decreasing time dependence) post that temperature decreases	B ₂ O ₃ (l) limits O2 diffusion
Clougherty et al.	Conversion depths five times smaller than monolithic ZrB ₂ (20 vol% SiC).	SiC addition and SiC depletion zone formation
Rezaie et al	Absence of boria in outer glass layer at 1500°C (air) (30 vol% SiC)	Selective volatilization of boria
Tripp et al	Significant improvements up to at least 1400°C (20 vol% SiC)	Borosilicate formation due to SiC inclusion
Fahrenholtz et al	Porous ZrO ₂ scale without boria/silica/borosilicate in low pO ₂ environment (30 vol% SiC)	Low pO ₂ favoring active SiC oxidation and leaving ZrB ₂ unaffected
Shugart et al	Three distinct layers above 1627°C: borosilicate glass, ZrO ₂ with borosilicate, SiC depleted zone (30 vol%)	Dependence on free energy of formation of reactions and SiC content

8

Gap in the literature

- Thermal conductivity dependency on various parameters of powder purity, powder geometry, initial composition, synthesizing methods and microstructural parameters such as porosity and mean grain size
- **Equal emphasis needed to put on computational approaches for better design of application specific design**
- Lack of synergistic approach, computational and experimental.

Objectives

Build Machine Learning models to forecast the thermal conductivity and oxide scale thickness of ZrB₂ composites.

Understand the correlation between compositions, microstructure properties and thermal conductivity & oxide scale thickness.

Deduce which parameters from above mentioned affect the thermal conductivity and oxide scale the most statistically.

Machine Learning: Tenth hour hero

Author	Property predicted	Model used	Description
Antonio Vinci et al	Flexural Strength	Random Forest, Regression Tree	Key independent variables: SiC content, fiber volume, SiC/fiber ratio, ceramic matrix volume, geometrical porosity
Antonio Vinci et al	Fracture Toughness	Random Forest	Most influential variable: SiC/fiber ratio
Han et al	Young's Modulus, Flexural Strength, Fracture Toughness	Random Forest, Multilayer Perceptron	Material properties predicted based on chemical composition, sintering parameters, testing temperature, relative density, grain size
Bianco et al	Oxide Scale Thickness	Random Forest Regressor	Design elements and simulated environmental factors

Work Plan

Input feature list

Construction of dataset for thermal conductivity

INITIAL DATASET (90 compositions)

Constituents	Vol % Fractions	Relative Density %	Temperature °C	Thermal Conductivity Wm ⁻¹ K ⁻¹
ZrB ₂	1000000	85	25	25
ZrB ₂ , MoSi ₂	70 30	98.8	25	18.421
ZrB_2 , ZrC	50 50	100	900	81
ZrB ₂ , SiC	70 30	99.6	1330	51
ZrB ₂ , SiC, ZrC	55 20 20	98	25	82
ZrB ₂ , SiC, ZrC	51 33 16	96.5	25	60

Majority class samples

Minority class samples

Synthetic samples

Testing temperature is divided into 4 - bins for each composition.

51 points \rightarrow T < 100 °C

6 points \rightarrow 500 °C < T <=1000 °C

9 points \rightarrow 1000 °C < T <=1500 °C

24 points \rightarrow T > 1500 °C

IMBALANCED DATASET

51 + 6 + 9 + 24 = 90 Compositions

Construction of dataset for oxide scale thickness

INITIAL DATASET (84 compositions)

Constituents	Vol % fractions	Relative Density %	Mean Grain Size µm	Temperature °C	Time mins	Oxide thickness µm
ZrB ₂ SiC	70 30	97.9	7	1200	720	25
ZrB ₂ SiC	1000	67.6	5.84	1300	33.33	69
ZrB ₂ SiC	70 30	97.5	3.88	1700	300	229
ZrB_2SiC	80 20	98.3	2.10	1100	60	15

Testing temperature is divided into 4 - bins for each composition.

44 points \rightarrow 800<=T < 1200 °C

14 points \rightarrow 1200 °C < T <=1600 °C

9 points \rightarrow T > 1600 °C

IMBALANCED DATASET

51 + 6 + 9 + 24 = 90 Compositions

Balancing the dataset for thermal conductivity

Balancing the dataset for oxide scale thickness

Results: Machine Learning Findings and Analysis

Correlations: Thermal conductivity

Parameters	Correlation with Thermal Conductivity
Temperature	-0.36
TaSi ₂	-0.31
ZrC	-0.18
TiB ₂	-0.09
B_4C	-0.05
Si ₃ N ₄	-0.03
SiC	-0.01
ZrB_2	0.09
ZrSi ₂	0.09
MoSi ₂	0.12
Relative Density	0.35

Correlations: Oxide scale thickness

Parameters	Correlation with oxide scale thickness
Temperature	0.67
Relative Density	0.24
ZrB_2	0.14
Mean Grain Size	0.12
Time Temp	-0.02
SiC	-0.14

Thermal conductivity model results

Experimental Thermal Conductivity (Wm⁻¹K⁻¹)

Thermal conductivity model results

Oxide scale thickness model results

Oxide scale thickness model results

Box plots for mean absolute error from XGBR model for oxide thickness prediction before SMOTE

Range	MAE μm
800°C<=T<=1200°C	37.70
1200°C <t<=1600°c< td=""><td>44.51</td></t<=1600°c<>	44.51
T > 1600°C	148.52

Box plots for mean absolute error from XGBR model for oxide thickness prediction after SMOTE

Range	MAE μm
800°C<=T<=1200°C	52.47
1200°C <t<=1600°c< td=""><td>51.11</td></t<=1600°c<>	51.11
T > 1600°C	69.42

Summary

Schematic illustration summarizing the overview of thermal conductivity

Summary

Schematic illustration summarizing the overview of oxide scale thickness

Conclusion

- In this work we established a data driven model to predict thermal conductivity and oxide scale thickness in ZrB₂ composites.
- The model achieved reasonable accuracy (MAE of 8.95 Wm⁻¹K⁻¹ and R-squared of 0.66 for thermal conductivity) despite limitations in the data.
- \triangleright Key factors affecting thermal conductivity are relative density, temperature and ZrB₂ content.
- Like thermal conductivity, oxide scale thickness prediction is improved using the XGBoost model (R-squared value increased from 0.83 to 0.88).
- Key factors affecting oxide scale thickness are temperature and SiC content (positive and negative correlation respectively).

Future scope

Due to limited time, some extensions of the current work is suggested:

- Current models utilization of experimentally derived parameters, modeling argument is weakened due to this gap, especially evident in predicting oxide scale thickness using mean grain size.
- ☐ First step in synergizing the experimental and computational modelling has yet to be explored in UHTC space.
- □ Due to its efficiency, combining, experimental design with Bayesian optimization (ML model built on initial experimental data and acquisition function which drives the search for exploring and exploiting) can benefit on designing the target property materials.

Acknowledgement

I want to extend my sincere thanks to:

- Prof. Kantesh Balani (for giving me another chance)
- •Lab members and staff of Biomaterials Processing and Characterization lab
- •Members of the Materials Science and Engineering (MSE) Department and PK Kelkar Library staff for their allround help and support.
- •Special thanks to Dr. Rubia Hassan for helping me with initial problem formulation, thesis structuring and Dr. Shipra Bajpai for thesis writing.
- •To my incredible friends and my ever-supportive mom for unwavering faith in me.

90 Th Thorium 232.03806 79 **Au** Gold 196.966569 7
Nitrogen
14.0067

19

K

Potassium
39.0983

39 **Y** Yttrium 88.90585 8 Oxygen 15.9994 92 **U** Uranium 238.02891