Math 140A: Homework 2

Merrick Qiu

\mathbf{A}

Let $\epsilon > 0$ and x > 0 be real numbers. If $x \le \epsilon$, we can choose a such that 0 < a < x from property (2). If $x > \epsilon$, we need to choose some $x - \epsilon < a < x$ for $0 < x - a < \epsilon$ to hold.

Choose $b \in A$ such that $0 < b < \epsilon$ using property (2). By property (1), we can repeatedly add b to itself to get another element in A, so $nb \in A$ for all positive integers n.

By the archimedean principle we know that there exists some $nb > x - \epsilon$, and if we choose the smallest such n we know that $x - \epsilon < nb < x$ since $b < \epsilon$. Therefore for every x there exists $a \in A$ where $0 < x - a < \epsilon$.

\mathbf{B}

- 1. We can use the bijection $f:(a,b)\to(c,d), f(x)=c+(x-a)\cdot\frac{d-c}{b-a}$.
- 2. We can use the bijection $g:[a,b]\to [c,d], g(x)=c+(x-a)\cdot \frac{d-c}{b-a}$.
- 3. Let $g:[a,b]\to [0,1]$ from part (2) and $f(x):(0,1)\to (c,d)$ from part (1). Let $h:[0,1]\to (0,1)$

$$f(x) = \begin{cases} \frac{1}{2} & x = 0\\ \frac{1}{n+2} & x = \frac{1}{n}\\ x & \text{otherwise} \end{cases}$$

We can use the bijection $k:[a,b]\to(c,d), k(x)=f(h(g(x))).$

4. Let $k:[a,b]\to (-\frac{\pi}{2},\frac{\pi}{2})$ from (3). We can use $l:[a,b]\to \mathbb{R}, l(x)=\tan(h(x)).$

 \mathbf{C}

7

1. For the base case n=1, $b^1-1\geq 1(b-1).$ Assume that $b^k-1\geq k(b-1).$ This implies that $b^{k+1}-1\geq (k+1)(b-1)$ since

$$\begin{split} b^{k+1} - 1 &= b \cdot b^k - 1 \\ &= b(b^k - 1) + (b - 1) \\ &\geq b(k(b - 1)) + (b - 1) \\ &= (b - 1)(bk + 1) \\ &\geq (b - 1)(k + 1). \end{split}$$

Thus, $b^n - 1 \ge n(b-1)$ for all positive integers n.

- 2. Substituting in $b^{\frac{1}{n}} \to b$ into the previous step implies $b-1 \ge n(b^{\frac{1}{n}}-1)$ for all positive integers n.
- 3. $n > \frac{b-1}{t-1}$ implies n(t-1) > b-1. Since $b-1 \ge n(b^{\frac{1}{n}}-1)$, we have that $n(t-1) > b-1 \ge n(b^{\frac{1}{n}}-1)$. This then implies $n(t-1) > n(b^{\frac{1}{n}}-1)$ which implies $t > b^{\frac{1}{n}}$.
- 4. Applying part (c) with $t = yb^{-w}$ yields $b^{\frac{1}{n}} < yb^{-w}$. This then implies that $b^{w+\frac{1}{n}} < y$ when the conditions in part (c) are met. $b^w < y$ implies that t > 1, but since there needs to be $n > \frac{b-1}{t-1}$, this statement is only true for sufficiently large n.
- 5. If in (d) we used $t = y^{-1}b^w$, we would find that $b^{w-\frac{1}{n}} > y$.
- 6. Suppose that $b^x \neq y$. Then either $b^x < y$ or $b^x > y$. If $b^x < y$ then we can pick $x + \frac{1}{n}$ for a sufficiently large n such that $b^{w + \frac{1}{n}} < y$ by part (d). This would lead to a contradiction since it would imply that $x \neq \sup A$ since x is not an upper bound.

Likewise if $b^x>y$ then we can pick $x-\frac{1}{n}$ for a sufficiently large n such that $b^{w-\frac{1}{n}}>y$ by part (e). This would lead to a contradiction since it would also imply that $x\neq\sup A$ since x is not the best upper bound. Therefore $b^x=y$.

7. Since the supremum is unique, x is unique.

13

In the case where $|x| - |y| \ge 0$ then we need to prove that $|x| - |y| \le |x - y|$.

$$|x| = |x - y + y| \le |x - y| + |y| \implies |x| - |y| \le |x - y|.$$

In the case where |x|-|y|<0 then we need to prove that $|y|-|x|\leq |x-y|.$

$$|y| = |y - x + x| \le |y - x| + |x| \implies |y| - |x| \le |x - y|.$$

14

Let z = a + bi. $z\bar{z} = 1$ implies $a^2 + b^2 = 1$.

$$|1+z|^2 + |1-z|^2 = (1+a)^2 + b^2 + (1-a)^2 + b^2$$

$$= (1+2a+a^2) + (1-2a+a^2) + 2b^2$$

$$= 2 + (2a^2 + 2b^2)$$

$$= 4$$

17

$$|x+y|^2 + |x-y|^2 = (x+y) \cdot (x+y) + (x-y) \cdot (x-y)$$
$$= |x|^2 + 2x \cdot y + |y|^2 + |x|^2 - 2x \cdot y + |y|^2$$
$$= 2|x|^2 + 2|y|^2$$

The sum of the areas of all squares drawn on the sides of a parallelograms is equal to the squares formed from the diagonals of the parallelogram.

Extra Practice Problem

1.

$$\begin{split} \lambda \sum z_j \bar{w}_j &= \lambda(z, w) \\ &= \sum \lambda z_j \bar{w}_j = (\lambda z, w) \\ &= \sum z_j \overline{\overline{\lambda} w}_j = (z, \overline{\lambda} w) \end{split}$$

2. $z_j\overline{z_j}$ is always nonnegative so the sum is as well. Forward direction can be proved by contradiction. Backwards is trivial.

3.

$$(z, w) = \sum z_j \overline{w}_j$$

$$= \sum \overline{w_j \overline{z}_j}$$

$$= \sum w_j \overline{z}_j$$

$$= \overline{(w, z)}$$

4. Use pythagorean theorem since u and w are orthogonal.