PROJECT REPORT

ESTIMATED CROP YIELD USING DATA ANALYTICS

TEAM ID: PNT2022TMID37320

VARUN KUMAR [TL] - 311619104079

UDHAYA KUMAR S [TM1] -311619104077

NAVEEN KUMAR SR[TM2] - 311619104046

SANTOSHKUMAR M[TM3] - 311619104061

Project Report Format

1. INTRODUCTION

- a. Project Overview
- b. Purpose

2. LITERATURE SURVEY

- a. Existing problem
- b. References
- c. Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- a. Empathy Map Canvas
- b. Ideation & Brainstorming
- c. Proposed Solution
- d. Problem Solution fit

4. REQUIREMENT ANALYSIS

- a. Functional requirement
- b. Non-Functional requirements

5. PROJECT DESIGN

- a. Data Flow Diagrams
- b. Solution & Technical Architecture
- c. User Stories

6. PROJECT PLANNING & SCHEDULING

- a. Sprint Planning & Estimation
- b. Sprint Delivery Schedule
- c. Reports from JIRA

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

- **a**. Feature 1
- b. Feature 2
- c. Database Schema (if Applicable)

8. TESTING

- a. Test Cases
- b. User Acceptance Testing

9. RESULTS

a. Performance Metrics

10. ADVANTAGES & DISADVANTAGES

11. CONCLUSION

12. FUTURE SCOPE

13. APPENDIX

Source Code GitHub & Project Demo Link

1. INTRODUCTION

a. PROJECT OVERVIEW

Agriculture, since its invention and inception, be the prime and pre-eminent activity of every culture and civilization throughout the history of mankind. It is not only anenormous aspect of the growing economy, but it's essential for us to survive. It's also a crucial sector for Indian economy and also human future. It also contributes an outsized portion of employment. Because the time passes the requirement for production has beenincreased exponentially. So as to produce in mass quantitypeople are using technology inan exceedingly wrong way. New sorts of hybrid varieties are produced day by day. However, these varieties don't provide the essential contents as naturally produced crop. These unnatural techniques spoil the soil. It all ends up in further environmental harm. Most of these unnatural techniques are wont to avoid losses. Machine learning, a fast-growing approach that's spreading out and helping every sector in making viable decisions to create the foremost of its applications. Most devices nowadays are facilitated by models being analysed before deployment. The main concept is to increase the throughput of the agriculture sector with the Machine Learning models. Another factor that also affects the prediction is the amount of knowledge that's being given within the training period, as the number of parameters was higher

comparatively.

b. **PURPOSE**

Data Analytics is the computing process of discovering patterns in large data sets involving methods at the intersection of machine learning, statistics, and database systems. It is an interdisciplinary subfield of computer science. The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use. Data mining is the analysis step of the "knowledge discovery in databases" process, or KDD. Data mining (the analysis step of the "Knowledge Discovery inDatabases" process, or KDD), a field at the intersection of computer science and statistics, is the process that attempts to discover patterns in large data sets. It utilizes methods at the intersection of artificial intelligence, machine learning, statistics, and systems. The overall goal of the data mining process is to extract information from a data set and transform it into understandable structure for further.

2. LITERATURE SURVEY

a. EXISTING PROBLEM

Indian Agriculture sector requires innumerable types of data analytics in various sectors such as crop productivity prediction models, economic models, pest and crop disease prediction models, crop price forecasting models, etc. The frequent changes in climate conditions are affecting more in cotton production. Most of the forecasts are seasonal and are available around 1-2 months before the crop harvesting. Farmers are benefited if recommendation and forecast of particular crop are available before sowing of crop.

b. References

- 1. Kodimalar Palanivel, an approach for prediction of crop Yield using machine learning andbig Data techniques, 2020.
- Subhadra Mishra, Adaptive boosting of weak regressors for forecasting of crop production considering climatic variability: An empirical assessment, 2020.
- 3. Tanha Talaviya, Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides,2020.

c. Problem Statement Definition

- 1. Crop production in India is one of the most important sources of income and India is one of the top countries to produce crops.
- 2. Where Digital Farming and Precision Agricultureallow precise utilization of inputs like seed, water, pesticides, and fertilizers at the right timefor the crop for maximizing productivity, healthycrop production. uality, and yields.
- 3. Most of farmers practice traditional farming patterns to decide on crops to be cultivated in afield.

a. IDEATION & PROPOSED SOLUTION

c. Empathy Map Canvas

3.2 Ideation & Brainstorming

a. **Proposed Solution**

S.No.	Parameter	Description

1.	Problem Statement (Problem to besolved)	Crop production in India is one of the most important sources of income and India is one of the topcountries to producecrops. Where Digital Farming and Precision Agriculture allow precise utilization of inputs like seed, water, pesticides, and fertilizers at the right time for the crop for maximizing productivity, healthy crop production. uality, and yields. Most of farmers practice traditional farming patterns to decide on crops to be cultivated in afield.
2.	Idea / Solution description	Applying data Analytics methods for predicting thecrop production across various areas let us to estimate the optimal crop production assisting theframers to benefit from the forecast. We can comprehend the data and make wise decisions by integrating reporting, modelling, analysis, exploration, dashboards, stories, and event management with IBM Cognos Analytics. Bypresenting critical insights and analyses about ourdata on one or more pages or screens, a dashboard enables us to keep track of events or actions at a glance. In this project, we use a dashboard to view, analyse, and extract the majority of the findings.
4.	Novelty / Uniqueness Social Impact / Customer Satisfaction	To visualize the past crop yield data and to list out the crops that may yield poor production leading to loss of invested revenue and identify suitable areas fortheir production. Consideration of all factors that affect crop yield. Extreme weather conditions such as high
		temperature, heavy storms or droughts can severely disrupt crop production.
5.	Business Model (Revenue Model)	Increased amount of waste produced from the crop production may lead to a degrade of profit margin
6.	Scalability of the Solution	The acquired insights from the visualization of crop yield data must be durable in such a way that the production is fairly stable even in sudden change of conditions.

a. Problem Solution Fit

4.1Requirement Analysis

a. Functional Requirement

FR No. Functional Requirement (Epic)	Sub Requirement (Story/ Sub-Task)
--------------------------------------	-----------------------------------

FR-1	User Registration	Registration through Form
		Registration through Gmail
		Registration through LinkedIN
FR-2	User Confirmation	Confirmation via Email
		Confirmation via OTP
FR-3	User Profile	Log in
		Access the profile
FR-4	Give the required data	Take the data given by the user as the input for the
		analysis
FR-5	Analysis	Analyse the yield of crop from the data given by the
		user
FR-6	Estimationor Predict the data	Estimate the crop yield from the analysis, using the
		software from the data given by the user

$b. \ \ Non \ Functional \ Requirement$

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Crop recommendations are created andsaved, the
		these recommended crops are sown by farmers
		forincreased cropyield.
NFR-2	Security	The software keeps the users information
		moresecurely.
NFR-3	Reliability	Creating the interactive dashboards which is easy
		tounderstand and useful forthe users.
NFR-4	Performance	It is user friendly software and have
		highperformance.
NFR-5	Availability	The software application is easily available for
		everyuser andaccessing is easy for them.
NFR-6	Scalability	The proposed systemallows the implementation of
		a flexible methodology that can be used to
		estimatetheyield of cropsin different types of lands.

5.PROJECT DESIGN

5.1Data Flow Diagram

a. Solution & Technical Architecture

b. User Stories

User Type	Functional Requireme	User Story	User Story/ Task	Acceptance criteria	Priority	Release
	nt (Epic)	Numb				
		er				
Customer (Mobile user)	Registration	USN-1	As a user,I can register for the application by entering my email, password, and confirmingmypassword.	I can access my account /dashboard	High	Sprint-1
		USN-2	As a user, I will receiveconfirmation emailoncel have registered for the application	I canreceive confirmationemail& click confirm	High	Sprint-1
		USN-3	As a user, I can register for the applicationthrough Facebook	I canregister & accessthe dashboard with FacebookLogin	Low	Sprint-2
		USN-4	As a user, I can register for the applicationthrough Gmail		Medium	Sprint-1
	Login	USN-5	As a user, I can log into the application byentering email & password		High	Sprint-1
	Dashboard	USN-6	I can access the dashboard of mine.		Medium	Sprint-2

Customer	Access	USN-7	I can use my	Other than me,there is	High	Sprint-1
(Webuser)	resources		credentials for	less chanceto		
			accessing my	access		
			resources.	myresources.		
Customer		USN-8	As customer care	An executive will	High	Sprint-2
Care			executive I will always be	note down the		
Executive			available for the	customers		
			interaction with the	complaints andsolve		
			customerto clarify the	theirproblems.		
			queries.			
Administrat	Updating data	USN-9	Collecting the data and	Checking andupdating	High	Sprint-1
or			storeit	dataset		
Customer	Tools	USN-10	I can perform analysis	I have an	High	Sprint-1
tools			by tools (cognos and	easeof		
			with ML)	accessing		
				tools.		

1. PROJECT PLANNING & SCHEDULING

a. Sprint Planning & Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Login	USN-1	As a user, I can register	2	Medium	Naveen
			for the application by			KumarSR
			entering my phone			
			number and name,			

Sprint-1	Analysis and Estimation(Working and Loading the dataset)	USN-4	As a user, I can viewthe crop forecast of thepresent and upcoming days and upload the dataset and loading the dataset	3	High	Varun Kumar
Sprint-2	Analysis and Estimation(Data Visualization Charts)	USN-5	As a user, I can visualise the data of crop production to know the insights Where Average Crop Production by Seasons, the Yearly usage of Area in Crop Production, top 10 Statesin Crop YieldProduction by Area,theCrop Production by State and the Sates with Seasonal CropProduction can be known.	20	High	Santosh Kumar MUdhaya Kumar S
Sprint-3	Dashboard	USN-6	As a User, I can use Cognos Analytics with Watson Services, An interactive dashboard must be created and viewed.	20	High	Varun Kumar
Sprint-4	Analysis and Estimation(Exportati on /Export The Analytics)	USN-7	As a user, I can view the dashboard and visualization of crop production that is being exported either through email/link/pdf.	20	High	Varun Kumar

b. Sprint Delivery Schedule

Sprint	Total Story Points	Durati on	Sprint Start Date	Sprint End Date (Planne d)	Story Points Completed (as on Planned End Date)	Sprint Release Date(Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

c.	Reports From Jira
7 CODI	NG & SOLUTIONING (Explain the features added in the projec
	along with code)
7.1 Feature 1 First deve	eloping the dashboard the creating the dashboard for various

7.2 Feature 2

In this feature 2 we developed project using MLP an machine learning algorithm inorder to createthe extra feature of creating the crop recommendation for the better yield. Multi-layer perception is also known as MLP. It is fully connected dense layers, which transform any input dimension to the desired dimension. A multi-layer perception is a neural network that has multiple layers. To create a neural networkwecombine neurons together so that the outputs of some neurons are inputs of other neurons. A gentle introduction to neural networks and TensorFlow can be found here

a. DATABASE SCHEMA

8. Testing

8.1 Test Case:

A test case has components that describe input, action and an expected response, in order to determine if a feature of an application is working correctly. A test case is a set of instructions on "HOW" to validate a particular test objective/target, which when followed will tell us if the expected behavior of the system is satisfied or not.

Characteristics of a good test case:

■ Accurate: Exacts the purpose.

Economical: No unnecessary steps or words.

Traceable: Capable of being traced to requirements.

■ Repeatable: Can be used to perform the test over and over.

Reusable: Can be reused if necessary

USER ACCEPTANCE TESTING

Acceptance testing can be defined many ways, but a simple definition is the succeedswhen the software functions in a manner that can be reasonable expected by the customer. After the acceptance test has been conducted, one of the two possible conditions exists. This is to fine whether the inputs are accepted by the database or other validations. For example accept only numbers in the numeric field, date format data in the date field. Also the null check for the not nullfields. If any error occursthen show the error messages. The function of performance characteristics to specification and is accepted. A deviation from specification is uncovered and a deficiency list is created. User Acceptance Testing is a critical phase of any project and requires significant participation by the end user. It also ensures that the system meets the functional requirements.

9. RESULTS

9.1 PERFORMANCE METRIC

10. ADVANTAGES & DISADVANTAGES

ADVANTAGES

- It effectively managesvast volumes of input data.
- Following training, quicklymakes predictions.
- Even with less samples, the same accuracyratio is stillpossible.

DISADVANTAGES

- Provide high number of false positive
- Binary classification can be occurred
- Computational complexity

1. **CONCLUSION**

We presented a machine learningapproach for crop yield prediction, which demonstrated superior performance in Crop Challenge using large datasets of products. The approachused deep neural networks to make yield predictions (including yield, check yield, and yield difference) based on genotype and environment data. The carefully designed deep neural networks were able to learn nonlinear and complex relationships between genes, environmental conditions, as well as their interactions from historical data and make reasonably accurate predictions of yields for new hybrids planted in new locations with known weather conditions. Performance of the model was found to be relatively sensitive to the quality of weather prediction, which suggested the importance of weather predictiontechniques. We trained two deep neural networks, one for yield and the other for check yield, and then used the difference of their outputs as the prediction for yield difference. This model structure was found to be more effective than using one single neural networkfor yield difference, because the genotype and environment effects are more directly related to the yield and check yield than their difference. In modern era, the deep neural network is the prominent tool in agricultural industry for providing support to farmers in monitoring crop yield based on multiple parameters. Thus, the machine learning model provides high accuracy in detecting the suitable crop identification compared to other methodologies

12. FUTURE SCOPE

This project describes crop yield prediction ability of the algorithm. In future we can determine the efficient algorithm based on their accuracy metrics that will helps to choose an efficient algorithm for crop yield prediction. Our research suggests that farmers' decisions about the production of non-rice crops on different plots and the use of resources other than land, such as labour and outside inputs, continue to influence their decisions regarding the production of rice. Rice production may continue to be atomistic, with many farmersproducing tiny amounts of rice ratherthan a small number of farmers producing big amounts.

2. APPENDIX

SOURCE CODE

App.py

```
from flask import Flask, render_template, url_for,request,redirect, Markup, make_response

app=Flask(__name__)

@app.errorhandler(404)

def notFound(e):
    return redirect('/dashboard')

@app.route('/dashboard')

def dashboard():
    return render_template('dashboard.html')

@app.route('/Login', methods=['POST', 'GET'])

def Login():
    if request.method=='POST':
        return dashboard()
    else:
        return render_template('login.html')
```

```
@app.route('/story')
def story():
    return render_template('story.html')

@app.route('/report')
def report():
    return render_template('report.html')

if __name__ == "__main__":
    app.run()
```

dashboard.html

```
{% block head %}
<title>Dashboard</title>
k rel="stylesheet" href="{{url_for('static',filename='/css/style.css')}}">

{% endblock %}
```

```
{% block body %}
 nav class="navbar navbar-expand-lg bg-light">
  <div class="container-fluid">
   <a class="navbar-brand" href="#">Crop Yield Data</a>
   <button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-
target="#navbarNavAltMarkup" aria-controls="navbarNavAltMarkup" aria-expanded="false" aria-
label="Toggle navigation">
    <span class="navbar-toggler-icon"></span>
   <div class="collapse navbar-collapse" id="navbarNavAltMarkup">
    <div class="navbar-nav">
     <a class="nav-link active" href="http://localhost:5000/dashboard">Dashboard</a>
     <a class="nav-link" href="http://localhost:5000/report">Report</a>
     <a class="nav-link" href="http://localhost:5000/story">Story</a>
 <div class="mt-3">
src="https://us3.ca.analytics.ibm.com/bi/?perspective=dashboard&pathRef=.public_folders%2FCrop%2B
production%2Brepoet%2FFinal%2Bdashboard%2BEST&closeWindowOnLastView=true&ui_appba
=false&ui_navbar=false&shareMode=embedded&action=view&mode=dashboard&s
ubView=model000001846fbe6936_00000001" width="1280" height="850" frameborder="0" gesture="media"
allow="encrypted-media" allowfullscreen=""></iframe>
{% endblock %}
```

OUTPUT SCREENSHOT

G	ſΤ	Ή	TI	R	T	.T	NI	K

https://github.com/IBM-EPBL/IBM-Project-32400-1660209509

DEMO

 $https://drive.google.com/file/d/1cgZzHzvJdF1S9FCgDTkeiJYRqmcXy96E/vie\\ w?usp=share_link$