ING. TECNICA INFORMATICA DE GOSTION

FIS ICK

clave 164/631

SEPTIENBRE 2004

CUESTIONES

1. Un conductor en forma de doble pesa tiene extremos esféricos desiguales cuyos radios son de 15 y 75 cm, respectivamente (ver figura). Se mide el campo eléctrico en la superficie de la bola pequeña y es de 98 kV/m. ¿Cuál es el campo eléctrico en la otra bola?. ¿Cuál es el potencial en la superficie?

$$(A)E = 19.6 \text{ kV/m}; V = 14.7 \text{ kV}$$

B)
$$E = 98 \text{ kV/m}$$
; $V = 73.5 \text{ kV}$

C)
$$E = 98 \text{ kV/m}$$
; $V = 130.7 \text{ kV}$

D)
$$E = 19.6 \text{ kV/m}; V = 2.9 \text{ kV}$$

$$E_2 = \frac{Q_2}{\sqrt{n} E_0 E_2}$$
; $V(R_F) = \frac{S_2}{\sqrt{n} E_0 R_2} = E_2 R_2 = /4, 7 K V$

$$E_{i} = \frac{E_{i}}{\sqrt{n} \cdot 4 \cdot R_{i}^{2}}$$

$$E_{i} = \frac{V(R_{i})}{R_{i}} = \frac{V(R_{c})}{R_{i}} = \frac{19.6 \text{ KV/Ac}}{R_{i}}$$

$$V(R_{i}) = \frac{Q_{i}}{\sqrt{n} \cdot 4 \cdot R_{i}^{2}}$$

2. Una esfera hucca de radio interior
$$R_1$$
 y radio exterior R_2 tiene una densidad uniforme volumétrica de carga ρ_1 . Concentrica a esta esfera, hay otra esfera hucca de radio interior R_2 y radio exterior R_3 con densidad uniforme volumétrica ρ_2 . Determinar el valor de ρ_2 para que el campo eléctrico en puntos exteriores a las esferas $(r > R_3)$ sea nulo.

A)
$$\rho_2 = -\rho_1 R_2^3 / R_1^3$$

B)
$$\rho_2 = -\rho_1 R_1^3 / R_2^3$$

C)
$$\rho_2 = -\rho_1 R_1/R_3$$

(D)
$$\rho_2 = -\rho_1 (R_2^3 - R_1^3)/(R_2^3 - R_2^3)$$

$$T^2$$
 de baud \Rightarrow $\oint \vec{E} \cdot d\vec{s} = \frac{g_k t}{\xi_0} \Rightarrow E.40r^2 = \frac{g_k t}{g_0}$

$$E = \frac{g_k t}{40 \xi_0 I^2} = 0 \Rightarrow g_0 t, un = 0, dande$$

$$\ell_{4d} = \mathcal{C}_{2} \cdot \underbrace{\psi_{1}^{2}}_{\mathcal{S}} \left(R_{2}^{3} - R_{1}^{3}\right) + \mathcal{C}_{2} \cdot \underbrace{\psi_{2}^{2}}_{\mathcal{S}} \left(R_{3}^{3} - R_{2}^{3}\right) = 0 \Rightarrow \mathcal{C}_{2} = -\mathcal{C}_{2} \cdot \underbrace{\left(\mathcal{R}_{2}^{3} - R_{1}^{2}\right)}_{\mathcal{R}_{3}^{3} - R_{2}^{3}}$$

 3. Sea un condensador plano paraleto de sección A = 100 cm² y separación entre placas. d = 6 cm está relleno en su mitad por un dieléctrico de constante dieléctrica relativa $\epsilon_c =$ 3 (ver figura). Si la diferencia de potencial entre sus plaças es 100 V, determinar la energía electrostática almacenada en su interior.

$$C_{1} = \frac{6A}{4/2} = 26\frac{A}{4}$$

$$C_{2} = 66\frac{A}{4/2} = 266\frac{A}{4}$$

$$C_{3} = 66\frac{A}{4/2} = 266\frac{A}{4}$$

$$= 221 \times 10^{-12} F$$

 Qué carga máxima puede situarse en una esfera metálica de 6 cm de radio sin que se produzea la ruptura. diciéctrica del aire ?. Dato: el campo de ruptura del aire es 3x106 V/m.

A)
$$7.5 \times 10^{-3}$$
 (

A)
$$7.5 \times 10^{-3} \text{ C}$$
 B) $6 \times 10^{-6} \text{ C}$ (C) $1.2 \times 10^{-6} \text{ C}$

- Se tiene un condensador de placas plano-paraleias. El área de cada placa es 300 cm², y están separadas una distancia d. Si se aumenta la distancia de separación entre placas 3 cm, se observa que la diferencia de potencial entre placas aumenta 181 V. La carga Q del condensador es:
- A) 3.2 nC

C) 2.4 µC

D) 4.8 µC

$$C_1 = \frac{Q}{V_A}$$
; $d_1 = d_2 = d_4 + 3$
 $V_1 = V$; $V_2 = V_4 + 184$

$$C_1 = \mathcal{E}_0 \frac{A}{dt}$$
; $Q = C_1 V_1$ $\int_1^1 C_1 V_2 = C_2 V_2$ $\int_2^1 C_2 = \mathcal{E}_1 \frac{A}{dt}$; $Q = Q_1 V_2$

$$\Rightarrow \oint \frac{K}{d_1} V_1 = \oint \frac{K}{d_1 + 3 \times 10^{-2}} \left(V_1 + 181 \right) \Rightarrow \frac{V_1}{d_1} = \frac{V_2 + 181}{d_1 + 3 \times 10^{-2}}$$

$$C_{i} = \frac{Q_{i}}{V_{i}}$$

$$C_{i} = \frac{Q_{i}}{Q_{i}}$$

$$C_{i} = \frac{Q_{i}}{Q_{i}}$$

$$Q_{i} = \frac{Q_{i}}{Q_{i}}$$

6. A un alambre de $1.0~\mathrm{m}$ de longitud y $3.0~\mathrm{mm}$ de diâmetro se le aplica una diferencia de potencial de $10~\mathrm{V}$. Se encuentra que su resistencia es $0.017~\Omega$. Calcular la densidad de corriente del material y la resistividad del alambre.

A)
$$\rho = 1.2 \times 10^{-7} \Omega.m$$
; $j = 588.2 \text{ A/m}^2$

A)
$$\rho = 1.2 \times 10^{-7} \,\Omega.m$$
; $j = 588.2 \,A/m^2$ B) $\rho = 1.2 \times 10^{-7} \,\Omega.m$; $j = 8.3 \times 10^{7} \,A/m^2$

C)
$$\rho = 2.4 \times 10^3 \Omega \text{ m}; j = 1.7 \times 10^{13} \text{ A/m}^2$$
 D) $\rho = 3.7 \times 10^{12} \Omega \text{ m}; j = 118.2 \text{ A/m}^2$

D)
$$\rho = 3.7 \times 10^{-2} \,\Omega$$
, m; $j = 118.2 \,\text{A/m}^2$

$$R = \frac{\ell}{5} + \frac{\ell}{5} = \frac{R \pi r^2}{L} = \frac{1.20 \times 10^{-2} \text{ s.m.}}{10^{-2} \text{ s.m.}}$$

El concepio de diferencia de potencial eléctrico entre dos puntos está asociado a:

- (A)) la energía por unidad de carga que se necesita para desplazar carga eléctrica entre dos puntos
- B) el trabajo realizado para desplazar un portador de carga entre dos puntos
- C) el trabajo realizado para desplazar cierta cantidad de carga entre dos puntos
- D) la diferencia entre las energías potenciales de las cargas situadas en los dos puntos
- E) la fuerza mecánica que actúa sobre los portadores de carga quando hay una corriente entre dos puntos

8. Un electrón se desplaza sin desviarse con velocidad v=3x10² m/s al pasar por el condensador de la figura. En el interior del condensador existe un campo eléctrico de 30 V/m y un campo magnético perpendicular al campo eléctrico. ¿ Cuál es la dirección, sentido y módulo del campo magnético dentro del condensador ?

- A) 0.1 T entrante en el plano
- (B)0.1 T satiente del plano

C) 0 T

D) 0.2 T en la dirección y sentido de la velocidad

Si the alectron no be derive y
$$v = 3 \times 10^{2} \text{ m/s}$$

es the. $\Rightarrow \vec{a} = 0 \Rightarrow \vec{F}_{AA} = 0$
 $\Rightarrow \vec{F}_{AB} = \vec{F}_{AB} + \vec{F}_{My} = q\vec{E} + q(\vec{V} \times \vec{B}) = 0 \Rightarrow q\vec{E} = q\vec{V} \vec{B}$
 $\Rightarrow \vec{B} = \vec{E}_{y} = 0.1T$

9. Por un solenoide muy largo de longitud 50 cm, 500 espiras y radio 8 cm, circula una corriente de 3 A. ¿Qué fuerza (módulo, dirección y sentido) experimenta un haz de electrones al pasar por C con vetocidad de 10⁴ m/s. ?

B)
$$F=2 i + 25 j$$

C)
$$\mathbf{F}=-2\mathbf{i}-25\mathbf{j}$$

$$(D)F=0$$

E)
$$F = -2i + 3j + 4k$$

$$\vec{F}_{ny} = q(\vec{v} \wedge \vec{s})$$
, $\vec{s} = L_0 \wedge \vec{I}$ com $n = \frac{N}{L}$, adecide $\vec{s} = I$. In \vec{v} , lues $\vec{F}_{ny} = q(\vec{v} \wedge \vec{s}) = 0$.

10. Se tienen tres conductores rectilíneos e infinitas, dispuestos en los vértices de un cuadrado en el plano XY, tal y como se indica en la figura. Por cada uno de tos conductores circula una intensidad de corriente l, y cuyo sentido es el indicado en la figura. En el punto A se coloca un electrón que se mueve con una velocidad $\vec{v} = v_o \hat{k}$ (con $v_0>0$). ¿Cuál de los vectores fuerza indicados en la figura es el correcto?

B) F₂

(D)F.

PAO. A, J = 10 R (electrola), Fry = 9 (VAB) But (A) = B, (A) + B (A) + B, (A)

 $\begin{cases} \vec{8}, d\vec{l} = \ln I - B_1 2Rl = \ln I + \vec{B}_1 = \frac{\ln I}{2RL} \vec{f} \\ d \vec{8}_2 \cdot l \vec{l} = \ln I - B_1 2Rl = \ln I - B_2 = \frac{\ln I}{2RL} \quad \text{can } d = l \vec{l} \\ (\text{diagonal del washado}) : \vec{B}_2 = \frac{\ln I}{2RRL} \left[- \ln \gamma S^2 \vec{l} + \ln \gamma S^2 \vec{l} \right] \end{cases}$

= fut (-c+j)

 $\oint \vec{B}_3 \cdot d\vec{L} = \int_{10} \vec{I} \rightarrow \vec{B}_3 = I_{0} \cdot \vec{I} \rightarrow \vec{B}_3 = \int_{2R} \vec{E} \cdot \vec{E}$

BN+ (A) = 3,+3,+3, = 3m= (-2+).

Fing = 9(\$\vec{v}_1\vec{z}_{47}) = \frac{396-\vec{T}}{470\vec{v}} \bigg| \frac{z}{0} \quad \text{0} \quad \quad \text{0} \quad \text{0} \quad \quad \text{0} \quad \text{0}

Comes 900 (electron), entonies Fing = 3/9/ for to 12+1)

- la dirección de Frag es la correspondiente a Fr.

- 1. El eje Y se comporta como una distribución uniforme de carga: caracterizada por una densidad lineal $\lambda=3~\mu\text{C/m}$. En el punto (-2, 0, 0) se coloca una carga puntual $Q=-2~\mu\text{C}$.
- a) Calcular la expresión general del vector Epara un punto genérico del eje X (con x>0). Utilizar esta expresión para calcular E en el punto (4, 0, 0)
- b) Calcular of trabajo necesario para llevar una carga $q = 1 \ nC$ desde el punto A (3, 0, 0) al punto B (6, 0, 0)

NOTA: todas las coordenadas están expresadas en metros

Expresiones generales de las campos

(arga Q
$$\vec{E}_{R} = \frac{Q}{476.5^{2}} \vec{V}_{r}$$

Linea infinite de cargo

En nustro problema

$$\begin{array}{c|c}
Q & \overline{E}_{Q} & \overline{E}_{\lambda} \\
\hline
\leftarrow 2_{m} & \times & \times \\
\end{array}$$

$$\frac{E}{Q} = \frac{-2.10^{-4}}{4116.[x+2]^{2}} \vec{\lambda} = \frac{3.8 \cdot 10^{4}}{[x+2]^{2}} \vec{\lambda} = \frac{1.8 \cdot 10^{4}}{[x+2]^{2}} \vec{\lambda}$$

$$\frac{1}{E_{x}} = \frac{3.10^{-6}}{2n_{6} \times 2} = \frac{5.4.10^{6}}{2} = \frac{1}{2} \left[\frac{V_{m}}{x} \right]$$

$$\vec{E}(P) = \vec{E}_{Q} + \vec{E}_{\lambda} = \left[-\frac{1.8 \cdot 10^{4}}{(x+2)^{2}} + \frac{5.4 \cdot 10^{4}}{x} \right]$$

En el punho
$$(4,0,0)$$
 $(x=4)$
 $E(4,0,0) = 1.3.10^4 i (V/m)$

b)
$$W_{A \rightarrow B} = q \left(V_B - V_A \right)$$

$$V = - \left(\frac{8}{7} + \frac{1}{10} \right) \left(\frac{x_B}{A} \right)$$

$$\sqrt{8} - \sqrt{4} = -\int_{A}^{8} \vec{\Xi} \cdot \vec{d\ell} = -\int_{X_{A}}^{X_{B}} \vec{E} \, dx = -\int_{X_{A}}^{X_{B}} \left[-\frac{1.8 \cdot 10^{4}}{(x+2)^{2}} + \frac{5.4 \cdot 10}{x} \right]$$

$$= \int_{X_{A}}^{8} \frac{J.8 \cdot |\phi'|}{(x+2)^{2}} dx - \int_{X_{A}}^{8} \frac{5.4 \cdot |\phi'|}{x} dx = \left[-\frac{J.8 \cdot |\phi'|}{(x+2)} \right]_{3}^{6} - \left[5.4 \cdot |\phi'| \ln x \right]_{3}^{6}$$

$$\frac{Problem 0}{B_{T}} = \frac{2}{B_{1}} + \frac{1}{B_{2}} + \frac{1}{B_{3}} + \frac{1}{B_{4}}$$

$$\frac{B_{T}}{B_{T}} = \frac{1}{B_{2}} + \frac{1}{B_{3}} + \frac{1}{B_{4}}$$

$$\frac{B_{T}}{B_{T}} = \frac{1}{B_{2}} + \frac{1}{B_{3}} + \frac{1}{B_{4}}$$

$$\frac{B_{T}}{B_{T}} = \frac{1}{A_{2}} + \frac{1}{A_{3}} + \frac{1}{B_{4}}$$

$$\frac{B_{T}}{B_{T}} = \frac{1}{A_{2}} + \frac{1}{A_{3}} + \frac{1}{B_{4}}$$

$$\frac{B_{T}}{B_{T}} = \frac{1}{A_{2}} + \frac{1}{A_{3}}$$

$$\frac{B_{T}}{B_{T}} = \frac{1}{A_{2}} + \frac{1}$$

$$\overline{B}_{3}(0) = \frac{10}{20} \frac{\overline{13}}{R} (-1) = -8 \times 10^{-2} \text{ L}$$

$$\underline{B}_{4}(0) = \frac{10}{211} \frac{34}{62} (-3) = -4 \times 10^{-3} \frac{3}{5} T$$

$$\bar{B}_{\tau} = 4 \times 10^{-7} \left(-\hat{L} + \hat{J} \right) \tau \quad \text{y} \quad |B_{\tau}| = 4 \times 10^{-7} \sqrt{2} \ \tau = 56 \times 10^{-7} \ \text{T}$$

$$F_{m} = q \bar{v}_{x} \bar{B} = -16 \times 10^{-19} 3 4 \times 10^{-7} \begin{vmatrix} \hat{i} & \hat{k} \\ 0 & 0 & 1 \end{vmatrix} = \frac{1}{2} \frac{1}{9} \times 10^{-25} (\hat{i}_{x} + \hat{j}_{x}) N = \bar{F}_{ul}$$

$$F_{ul} = \frac{1}{9} \times 10^{-25} \sqrt{2} N = \frac{1}{2} \times 10^{-25} N$$

c)
$$F_m = I[\hat{\ell} \times \hat{B}]$$
 altere $\hat{\ell} = 0.9 \hat{E} \text{ m}$

$$\overline{R}_{11} = 0.5 \cdot 0.3 \quad 4 \times 10^{-3} \begin{vmatrix} \hat{c} & \hat{d} & \hat{c} \\ 0 & 0 & 1 \\ -1 & 1 & 0 \end{vmatrix} N = \begin{bmatrix} -8 & \hat{c} + \hat{d} \\ \hat{c} + \hat{d} \end{bmatrix} N_{\pm} \overline{E}_{m}$$

3. En el circuito de la figura todas las fuentes de alimentación son idénticas. Sabiendo que la potencia total disipada es de 2 W. Calcula: a) el valor de la fuente de alimentación; b) la tensión eléctrica entre los puntos A y B; c) la corriente eléctrica en todas los resistencias.

a) Valor de la fuente de alimentación

El valor de la fuente de alimentación, se deduce aplicando la condición de que la potencia disipada en las tres resistencias ($R_1=R_2=R_3=R=100$) es de 2 W, suponiendo que las correntes que atraviesan dichas resistencias son I_1 , I_2 e I_3 .

$$P_{dap} = \sum_{k=1}^{3} R_k I_k = R(I_1^2 + I_2^2 + I_3^2)$$

Para encontrar el valor de las corrientes eléctricas, debemos analizar el circuito (ver figura adjunta).

Análisis del circuito.

KVL melle 1

$$V = R_1 I_1 + V + R_2 I_3 \implies R_1 I_1 + R_3 I_3 = 0$$

Comp $R_1=R_3=R$ entonces:

$$R(I_1 + I_2) = 0 \Longrightarrow I_1 = -I_3$$

KVL malla 🔁

$$V = V - R$$
, $I_2 \Rightarrow I_3 = 0$

KYL malla B

$$R_1 I_3 = R_2 I_2 - V \Rightarrow I_1 = -\frac{V}{R_2} = -\frac{V}{R}$$

por tanto

$$I_{t} = \frac{V}{R}$$

$$I_{2} = 0$$

$$I_{3} = -\frac{V}{R}$$

Sustituyendo en la expresión de la potencia dispada:

$$P_{auxp} = R(\frac{V^4}{R^2} + 0^2 + \frac{V^4}{R^2}) = 2\frac{V^4}{R}$$

Despejando V:

$$V = \sqrt{\frac{R P_{darp}}{2}} \propto \sqrt{\frac{100.2}{2}} = 10 \ V$$

b) <u>Tensión eléctrica entre A v B</u>

Tomando el camino señalado en la figura adjunta:

 $V_{AS} = V + V = 2V = 20V$ $\downarrow^{+} V$

Corrientes eléctrices

Del análisis previo realizado en a), resulta:

$$I_1 = \frac{V}{R} = \frac{10}{100} = 0.1A$$

$$I_2 = 0$$

$$I_3 = -\frac{V}{R} = -\frac{10}{100} = -0.1A$$