1. (original): A reactive dye of formula

$$\begin{array}{c} X_1 \\ X_1 \\ Y \cdot O_2 S \end{array} \\ \begin{array}{c} (SO_3H)_r \\ (HO_3S)_n \end{array} \\ \end{array} \\ \begin{array}{c} X_1 \\ N \\ N \\ N \\ \end{array} \\ \begin{array}{c} X_2 \\ R_3 \\ N \\ N \\ N \\ \end{array} \\ \begin{array}{c} R_4 \\ N \\ N \\ N \\ \end{array} \\ \begin{array}{c} (R_5)_s \\ (SO_3H)_m \\ \end{array}$$

wherein

 R_1 , R_2 , R_3 and R_4 are each independently of the others hydrogen or unsubstituted or substituted C_1 - C_4 alkyl,

 $(R_5)_s$ denotes s identical or different substituents selected from the group halogen, sulfo, carboxy, C_1 - C_4 alkyl and C_1 - C_4 alkoxy,

B is an aliphatic bridging member,

X₁ and X₂ are halogen,

r is an integer from 0 to 2,

s is an integer from 0 to 3, and

n and m are each independently of the other a number 1 or 2, and

Z is a fibre-reactive group of formula

wherein

Hal is chlorine or bromine,

k and I are each independently of the other a number 2, 3 or 4, and

Y is vinyl or a radical -CH₂-CH₂-U and U is a group removable under alkaline conditions.

2. (currently amended): A reactive dye according to claim 1, wherein

R₁, R₂, R₃ and R₄ are each independently of the others hydrogen or C₁-C₄alkyl, especially hydrogen.

- 3. (currently amended): A reactive dye according to either claim 1-or-claim 2, wherein B is a radical of formula $-CH_2-CH(R_7)$ or $-(R_7)CH-CH_2$ wherein R_7 is C_1-C_4 alkyl, especially methyl.
- 4. (currently amended): A reactive dye according to any one of claims 1 to 3 claim 1, wherein X_1 and X_2 are chlorine.
- 5. (currently amended): A reactive dye according to any one of claims 1 to 4 claim 1, wherein n and m are in each case the number 2.
- 6. (currently amended): A reactive dye according to any one of claims 1 to 5 claim 1, wherein Z is a radical of formula

wherein

Y is vinyl or β -sulfatoethyl.

7. (currently amended): A reactive dye according to any one of claims 1 to 6 claim 1, corresponding to formula

wherein

R₂ and R₃ are hydrogen,

 $(R_5)_s$ denotes s identical or different substituents selected from the group sulfo, methyl and methoxy,

B corresponds to a radical of formula -CH₂-CH(R₇)- or -(R₇)CH-CH₂- wherein R₇ is methyl,

 X_1 and X_2 are chlorine,

s is an integer from 0 to 2, and

Z is a fibre-reactive group of formula

-SO₂-Y (2a)

wherein Y is vinyl or β -sulfatoethyl.

8. (original): A process for the preparation of a reactive dye of formula (1) according to claim 1, wherein approximately 1 molar equivalent of each of the compounds of formulae

$$Y-O_2S$$
 $(SO_3H)_r$ (3) , H_2N (4) , $Y-O_2S$ $(SO_3H)_r$ (5) , $(HO_3S)_m$ (7) , $(HO_3S)_m$ (8) and (8) (8)

are reacted with one another in a suitable order, R_1 , R_2 , R_3 , R_4 , R_5 , R_5 , R_5 , R_6 , R_7 , R_8 , R_8 , R_8 , R_9 ,

- 9. (currently amended): A method of dyeing or printing of hydroxyl-group-containing or nitrogen-containing fibre materials, which comprises contacting said materials with a tinctorially effective amount Use of a reactive dye of formula (1) according to any one of claims 1 to 7 or of a reactive dye-prepared according to claim 8 in the dyeing or printing of hydroxyl-group-containing or nitrogen-containing fibre materials claim 1.
- 10. (currently amended): <u>A method Use-according</u> to claim 9, wherein cellulosic fibre materials, especially cotton-containing fibre materials, are dyed or printed.

- 11. (original): An aqueous ink comprising a reactive dye of formula (1) according to claim 1.
- 12. (currently amended): A method of printing textile fibre materials, paper or plastics films by the inkjet printing method, which comprises contacting said materials with using an aqueous ink according to claim 11.
- 13. (new): A method according to claim 9, wherein cotton-containing fibre materials are dyed or printed.