CSCI 5521 Homework 1

John Nguyen

October 2, 2019

Problem 1

For this problem, I will use the notation $(x_i, y_i)_{i=1,\dots,n}$ instead of using the notation $(x^t, r^t)_{t=1,\dots,n}$.

(i). We want to find the values of w_1^*, w_0^* such that:

$$E(w_1, w_0 | \mathcal{Z}_{train}) = \frac{1}{N} \sum_{t=1}^{N} (y_t - (w_1 x_t + w_0))^2$$

Notice that by expanding the square, we find that:

$$E(w_1, w_0 | \mathcal{Z}_{train}) = \frac{1}{N} \sum_{t=1}^{N} (y_t - (w_1 x_t + w_0))^2 = \frac{1}{N} \sum_{t=1}^{N} (2w_0 x_t w_1 + x^2 w_1^2 - 2x_t y_t w_1 - 2w_0 y_t + w_0^2 + y_t^2)$$

Notice that $E(w_1, w_0 | \mathcal{Z}_{train})$ is a convex upward (in fact, it is quadratic with positive coefficients) function with respect to both w_1 and w_0 . Thus it is sufficient to take the partial derivatives of E with respect to w_1 or w_0 and then solve for w_1 or w_0 respectively. We will solve for the desired w_0 first:

$$\frac{\partial E}{\partial w_0} = \frac{1}{N} \sum_{t=1}^{N} (2x_t w_1 - 2y_t + 2w_0)$$

$$= \frac{1}{N} \sum_{t=1}^{N} 2x_t w_1 - \frac{1}{N} \sum_{t=1}^{N} 2y_t + \frac{1}{N} \sum_{t=1}^{N} 2w_0$$

$$= 2w_1 \overline{x} - 2\overline{y} + 2w_0$$

$$= 0$$

where $\overline{x} = \frac{1}{N} \sum_{t=1}^{N} x_t$ and $\overline{y} = \frac{1}{N} \sum_{t=1}^{n} y_t$. We now solve for w_0 :

$$w_0 = \overline{y} - w_1 \overline{x}$$

So $w_0 = \overline{y} - w_1 \overline{x}$. Notice that the desired value of w_0 is dependent on the desired value of w_1 . We will now calculate the desired value of w_1 :

$$\frac{\partial E}{\partial w_1} = \frac{1}{N} \sum_{t=1}^{N} (2w_0 x_t + 2x^2 w_1 - 2x_t y_t)$$
$$= \frac{1}{N} \sum_{t=1}^{N} 2w_0 x_t + \frac{1}{N} \sum_{t=1}^{N} 2x^2 w_1 - \frac{1}{N} \sum_{t=1}^{N} 2x_t y_t$$

We now substitute the formula we found for the desired w_0 value, $w_0 = \overline{y} - w_1 \overline{x}$:

$$\begin{split} \frac{1}{N} \sum_{t=1}^{N} 2w_0 x_t + \frac{1}{N} \sum_{t=1}^{N} 2x_t^2 w_1 - \frac{1}{N} \sum_{t=1}^{N} 2x_t y_t &= \frac{1}{N} \sum_{t=1}^{N} 2(\overline{y} - w_1 \overline{x}) x_t + \frac{1}{N} \sum_{t=1}^{N} 2x_t^2 w_1 - \frac{1}{N} \sum_{t=1}^{N} 2x_t y_t \\ &= \frac{1}{N} \sum_{t=1}^{N} 2\overline{y} x_t - \frac{1}{N} \sum_{t=1}^{N} 2w_1 \overline{x} x_t + \frac{1}{N} \sum_{t=1}^{N} 2x_t^2 w_1 - \frac{1}{N} \sum_{t=1}^{N} 2x_t y_t \\ &= 2 \frac{1}{N} \overline{y} \sum_{t=1}^{N} x_t - 2 \frac{1}{N} w_1 \overline{x} \sum_{t=1}^{N} x_t + 2 \frac{1}{N} w_1 \sum_{t=1}^{N} x_t^2 - 2 \frac{1}{N} \sum_{t=1}^{N} x_t y_t \\ &= 2 \overline{y} \overline{x} - 2w_1 \overline{x}^2 + \frac{2}{N} w_1 \sum_{t=1}^{N} x_t^2 - \frac{2}{N} \sum_{t=1}^{N} x_t y_t \end{split}$$

We now solve for w_1 :

$$w_1 = \frac{\sum_{t=1}^{N} x_t y_t - N\overline{xy}}{\sum_{t=1}^{N} x_t^2 - N\overline{x}^2}$$

Thus the optimal values of (w_1, w_0) are: $(w_1 = \frac{\sum_{t=1}^{N} x_t y_t - \overline{xy} N}{\sum_{t=1}^{N} x_t^2 - N \overline{x}^2}, w_0 = \overline{y} - w_1 \overline{x})$, i.e. $(w_1 = \frac{\sum_{t=1}^{N} x_t y_t - \overline{xy} N}{\sum_{t=1}^{N} x_t^2 - N \overline{x}^2}, w_0 = \overline{y} - (\frac{\sum_{t=1}^{N} x_t y_t - \overline{xy} N}{\sum_{t=1}^{N} x_t^2 - N \overline{x}^2}) \overline{x})$.

(ii). While we could use the method in (i), it would be cumbersome. We will calculate the optimal values in a different way.

Consider the error function:

$$\begin{split} E(v_2, v_1, v_0 | \mathcal{Z}_{train}) &= \frac{1}{N} \sum_{t=1}^{N} (y_t - (v_2 x_t^2 + v_1 x_t + v_0))^2 \\ &= \frac{1}{N} \sum_{t=1}^{N} (v_2^2 x_t^4 + 2 v_2 v_1 x_t^3 + 2 v_2 v_0 x_t^2 - 2 v_2 x_t^2 y_t + v_1^2 x_t^2 + 2 v_1 v_0 x_t - 2 v_1 x_t y_t + v_0^2 - 2 v_0 y_t + y_t^2) \end{split}$$

If we consider E only as a function of v_2 , notice that we obtain a quadratic function:

$$E(v_2, v_1, v_0 | \mathcal{Z}_{train}) = \frac{1}{N} \left[v_2^2 \sum_{t=1}^{N} x_t^4 + 2v_2 \sum_{t=1}^{N} x_t^2 (v_1 x_t + v_0 - y_t) + \sum_{t=1}^{N} (v_1 x_t + c - y_t)^2 \right]$$

Since this is a quadratic with a positive coefficient on the highest term, this function is concave upwards and attains its minimum value when $v_2 = \frac{-b}{2a}$ where $b = 2\sum_{t=1}^{N} (v_1 x_t + v_0 - y_t)$ and $a = \sum_{t=1}^{N} x_t^4$:

$$v_2 = \frac{-2\sum_{t=1}^{N} (v_1 x_t^3 + v_0 x_t^2 - y_t x_t^2)}{2\sum_{t=1}^{N} x_t^4} = \frac{-\sum_{t=1}^{N} (v_1 x_t^3 + v_0 x_t^2 - y_t x_t^2)}{\sum_{t=1}^{N} x_t^4}$$

We then cross multiply to obtain the formula:

$$v_2 \sum_{t=1}^{N} x_t^4 = -\sum_{t=1}^{N} (v_1 x_t^3 + v_0 x_t^2 - x_t^2 y_t) = \sum_{t=1}^{N} -v_1 x_t^3 - \sum_{t=1}^{N} v_0 x_t^2 + \sum_{t=1}^{N} y_t x_t^2$$

We rearrange the terms to get the formula:

$$v_2 \sum_{t=1}^{N} x_t^4 + v_1 \sum_{t=1}^{N} x_t^3 + v_0 \sum_{t=1}^{N} x_t^2 = \sum_{t=1}^{N} x_t^2 y_t$$

Which is now a linear equation. We now do the same process, except consider E to be a function of v_1 . So we obtain the quadratic:

$$v_1^2 \sum_{t=1}^{N} x_t^2 + 2v_1 \sum_{t=1}^{N} (v_2 x_t^3 + v_0 x_t - x_t y_t) + \sum_{t=1}^{N} (v_2 x_t^2 + v_0 - y_t)^2$$

which has its minimum value when $v_1 = \frac{\sum_{t=1}^{N} (v_2 x_t^3 + v_0 x_t - x_t y_t)}{\sum_{t=1}^{N} x_t^2}$. Again, by cross multiplying, we obtain the linear equation:

$$v_2 \sum_{t=1}^{N} x_t^3 + v_1 \sum_{t=1}^{N} x_t^2 + v_0 \sum_{t=1}^{N} x_t = \sum_{t=1}^{N} x_t y_t$$

We again, use the same process, considering E as a function of v_0 to obtain the quadratic:

$$v_0^2 \sum_{t=1}^{N} 1 + 2v_0 \sum_{t=1}^{N} (v_2 x_t^3 + v_1 x_t - y_t) + \sum_{t=1}^{N} (v_2 x_t^2 + v_1 x_t - y_t)^2$$

which obtains its minimum value when $v_0 = \frac{\sum_{t=1}^{N} (v_2 x_t^2 + v_1 x_t - y_t)}{N}$. By cross multiplying, we obtain the linear formula:

$$v_2 \sum_{t=1}^{N} x_t^2 + v_1 \sum_{t=1}^{N} x_t + v_0 n = \sum_{t=1}^{N} y_t$$

So we now have a system of 3 equations with 3 unknowns:

$$v_{2} \sum_{t=1}^{N} x_{t}^{4} + v_{1} \sum_{t=1}^{N} x_{t}^{3} + v_{0} \sum_{t=1}^{N} x_{t}^{2} = \sum_{t=1}^{N} x_{t}^{2} y_{t}$$

$$v_{2} \sum_{t=1}^{N} x_{t}^{3} + v_{1} \sum_{t=1}^{N} x_{t}^{2} + v_{0} \sum_{t=1}^{N} x_{t} = \sum_{t=1}^{N} x_{t} y_{t}$$

$$v_{2} \sum_{t=1}^{N} x_{t}^{2} + v_{1} \sum_{t=1}^{N} x_{t} + v_{0} n = \sum_{t=1}^{N} y_{t}$$

We can represent this system using matrices:

$$\begin{bmatrix} \sum_{t=1}^{N} x_{t}^{4} & \sum_{t=1}^{N} x_{t}^{3} & \sum_{t=1}^{N} x_{t}^{2} \\ \sum_{t=1}^{N} x_{t}^{3} & \sum_{t=1}^{N} x_{t}^{2} & \sum_{t=1}^{N} x_{t} \end{bmatrix} \begin{bmatrix} v_{2} \\ v_{1} \\ v_{0} \end{bmatrix} = \begin{bmatrix} \sum_{t=1}^{N} x_{t}^{2} y_{t} \\ \sum_{t=1}^{N} x_{t} y_{t} \\ \sum_{t=1}^{N} y_{t} \end{bmatrix}$$

Therefore, to solve for the optimal values of v_2, v_1 and v_0 , we simply compute:

$$\begin{bmatrix} v_2 \\ v_1 \\ v_0 \end{bmatrix} = \begin{bmatrix} \sum_{t=1}^{N} x_t^4 & \sum_{t=1}^{N} x_t^3 & \sum_{t=1}^{N} x_t^2 \\ \sum_{t=1}^{N} x_t^3 & \sum_{t=1}^{N} x_t^2 & \sum_{t=1}^{N} x_t \end{bmatrix}^{-1} \begin{bmatrix} \sum_{t=1}^{N} x_t^2 y_t \\ \sum_{t=1}^{N} x_t y_t \\ \sum_{t=1}^{N} y_t \end{bmatrix}$$

(iii). Professor Gopher's claim is correct. Recall the error functions we are working with: $E(w_1, w_0 | \mathcal{Z}_{train}) = \frac{1}{N} \sum_{t=1}^{N} (y_t - (w_1 x_t + w_0))^2$ and $E(v_2, v_1, v_0 | \mathcal{Z}_{train}) = \frac{1}{N} \sum_{t=1}^{N} (y_t - (v_2 x_t^2 + v_1 x_t + v_0))^2$. In both error functions, the training data $\mathcal{Z}_{train} = \{x_1, x_2, x_3, ..., x_N\}$ are a set of fixed values.

Since w_1^* and w_0^* are the optimal coefficients for minimizing the linear regression error function, E, we can say that for all $w_1, w_0 \in \mathbb{R}$, $E(w_1^*, w_0^*) \leq E(w_1, w_0)$.

On the other hand, the quadratic regression model generated in 1(ii) uses the optimal values v_2^*, v_1^* and v_0^* which minimize the quadratic regression error function $E(v_2, v_1, v_0)$. For this reason, we can say that for all $v_2, v_1, v_0 \in \mathbb{R}$, we have the inequality: $E(v_2^*, v_1^*, v_0^*) \leq E(v_2, v_1, v_0)$.

Let $v_2 = 0$, then the quadratic regression error function becomes the linear regression error function:

$$E(v_2 = 0, v_1, v_0 | \mathcal{Z}_{train}) = \frac{1}{N} \sum_{t=1}^{N} (y_t - ((0)x_t^2 + v_1x_t + v_0))^2 = \frac{1}{N} \sum_{t=1}^{N} (y_t - (v_1x_t + v_0))^2 = E(w_1 = v_1, w_0 = v_0 | \mathcal{Z}_{train})$$

Since v_1, v_0, w_1 and w_0 are all arbitrary real numbers, we find that $E(v_2 = 0, v_1, v_0 | \mathcal{Z}_{train}) = E(w_1, w_0 | \mathcal{Z}_{train})$ by substituting the changing dummy variable names, v_1 to w_1 and v_0 to w_0 .

Since v_2^*, v_1^* and v_0^* are the optimal values for quadratic regression, we find that $E(v_2^*, v_1^*, v_0^* | \mathcal{Z}_{train}) \leq E(v_2 = 0, v_1, v_0)$ for any choice of v_1 and v_0 . Choose $v_1 = w_1^*$ and $v_0 = w_0^*$. We then obtain the following inequality:

$$E(v_2^*, v_1^*, v_0^* | \mathcal{Z}_{train}) \le E(v_2 = 0, v_1 = w_1^*, v_0 = w_0^* | \mathcal{Z}_{train}) = E(w_1^*, w_0^* | \mathcal{Z}_{train})$$

So $E(v_2^*, v_1^*, v_0^* | \mathcal{Z}_{train}) \le E(w_1^*, w_0^* | \mathcal{Z}_{train})$, as desired.

(iv). False; the quadratic model may be overfitting.

In order to prove Professor Gopher's claim false, it is sufficient to prove there exists a test set \mathcal{Z}_{test} such that $E(v_2^*, v_1^*, v_0^* | \mathcal{Z}_{test}) > E(w_1^*, w_0^* | \mathcal{Z}_{test})$.

Let w_1^* and w_0^* the optimal coefficients found in 1(i) and let v_2^* , v_1^* and v_0^* be the optimal coefficients found in 1(ii). Suppose $v_2^*x^2 + v_1^*x + v_0 \neq w_1^*x + w_0$. So there exists some value $x' \in \mathbb{R}$ such that $v_2^*x'^2 + v_1^*x' + v_0 \neq w_1^*x' + w_0^*$. Let $\mathcal{Z}_{test} = \{(x', y')\}$, where $y' = w_1^*x' + w_0^*$. We now compute the testing error of the linear and quadratic models:

$$E(w_1^*, w_0^* | \mathcal{Z}_{test}) = \frac{1}{1} \sum_{t=1}^{1} (y_t - (w_1^* x_t + w_0))^2$$

$$= (y' - (w_1^* x' + w_0))^2$$

$$= (y' - w_1^* x' - w_0)^2$$

$$= ((w_1^* x' + w_0) - w_1^* x' - w_0)^2$$

$$= (w_1^* x' + w_0 - w_1^* x' - w_0)^2$$

$$= 0^2$$

$$= 0$$

$$E(v_2^*, v_1^*, v_0^* | \mathcal{Z}_{test}) = \frac{1}{1} \sum_{t=1}^{1} (y_t - (v_2^* x_t^2 + v_1^* x_t + v_0))^2$$

$$= (y' - (v_2^* x'^2 + v_1^* x' + v_0))^2$$

$$= (y' - v_2^* x'^2 - v_1^* x' - v_0)^2$$

$$= ((w_1^* x' + w_0^*) - v_2^* x'^2 - v_1^* x' - v_0)^2$$

$$= (w_1^* x' + w_0^* - v_2^* x'^2 - v_1^* x' - v_0)^2$$

Recall that $w_1^*x' + w_0 \neq v_2^*x'^2 + v_1^*x' + v_0$. Therefore, $w_1^*x' + w_0^* - v_2^*x'^2 - v_1^*x' - v_0 = \delta \neq 0$. Therefore:

$$E(v_2^*, v_1^*, v_0^* | \mathcal{Z}_{test}) = (w_1^* x' + w_0^* - v_2^* x'^2 - v_1^* x' - v_0)^2 = \delta^2$$

Since $\delta \neq 0$, we know $\delta^2 > 0$. So:

$$E(w_1^*, w_0^* | \mathcal{Z}_{test}) = 0 < \delta^2 = E(v_2^*, v_1^*, v_0^* | \mathcal{Z}_{test})$$

Now, suppose $v_2^*x^2 + v_1^*x + v_0 = w_1^*x + w_0^*$. Then for any set of points \mathcal{Z} , $E(w_1^*, w_0^*|\mathcal{Z}) = E(v_2^*, v_1^*, v_0^*|\mathcal{Z})$.

We have proven Professor Gopher's claim false by finding a test set \mathcal{Z}_{test} such that $E(w_1^*, w_0^* | \mathcal{Z}_{test}) < E(v_2^*, v_1^*, v_0^* | \mathcal{Z}_{test})$

Problem 2

(i). Let A be the matrix defined in the problem. Then:

$$tr(A) = 701$$

 $tr(A^T) = 701$
 $tr(A^TA) = 394807$
 $tr(AA^T) = 394807$

These values can be calculated by running the following code:

import numpy as np

```
A = \begin{bmatrix} [1\,,\ 1\,,\ 1\,,\ 1\,,\ 1]\,, \\ [1\,,\ 2\,,\ 3\,,\ 4\,,\ 5]\,, \\ [1\,,\ 3\,,\ 9\,,\ 27\,,\ 81]\,, \\ [1\,,\ 4\,,\ 16\,,\ 64\,,\ 256]\,, \\ [1\,,\ 5\,,\ 25\,,\ 125\,,\ 625]]
A_{-t} = \text{np.transpose}(A)
AA_{-t} = A @ A_{-t}
A_{-t}A = A_{-t} @ A
print(np.trace(A))
print(np.trace(A_{-t}))
print(np.trace(A_{-t}A))
print(np.trace(A_{-t}A))
```

- (ii). det(A) is the volume of the parallelepiped formed by the row vectors a_i^T , where a_i is the i^{th} column of A. Since the row vectors are 5 dimensional, the shape would actually be some polytope.
- (iii). We calculate A^{-1} using numpy by executing the following code: import numpy as np

$$A = \begin{bmatrix} \begin{bmatrix} 1 & , & 1 & , & 1 & , & 1 \end{bmatrix} & , \\ \begin{bmatrix} 1 & , & 2 & , & 3 & , & 4 & , & 5 \end{bmatrix} & , \\ \begin{bmatrix} 1 & , & 3 & , & 9 & , & 27 & , & 81 \end{bmatrix} & , \\ \begin{bmatrix} 1 & , & 4 & , & 16 & , & 64 & , & 256 \end{bmatrix} & , \\ \begin{bmatrix} 1 & , & 5 & , & 25 & , & 125 & , & 625 \end{bmatrix} \end{bmatrix}$$

np.linalg.inv(A)

Notice that there was no error. Therefore A is invertible, so det(A) > |0|.

(iv). From 2(iii), we know A is invertible, so A has full rank. Since $A \in \mathbb{R}^{5\times 5}$, it must be that rank(A) = 5.

Problem 3

(i). (a). See p3main.py

		Error Rates for LinearSVC with Boston50											
(b).	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10	Mean	SD	
	0.51	0.14	0.47	0.18	0.12	0.10	0.52	0.60	0.04	0.50	0.32	0.21	
	Error Rates for LinearSVC with Boston75												
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10	Mean	SD	
	0.16	0.22	0.00	0.51	0.16	0.25	0.14	0.28	0.04	0.10	0.19	0.14	
	Error Rates for LinearSVC with Digits												
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10	Mean	SD	
	0.11	0.07	0.12	0.09	0.06	0.04	0.03	0.06	0.12	0.12	0.08	0.03	
				E	rror Rate	es for SV	C with E	Boston50					
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10	Mean	SD	
	0.67	0.76	0.86	0.86	0.86	0.90	0.52	0.56	0.88	0.62	0.75	0.14	

Error Rates for SVC with Boston75											
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10	Mean	SD
0.18	0.29	0.00	0.65	0.43	0.69	0.14	0.14	0.04	0.04	0.26	0.24
Error Rates for SVC with Digits											
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10	Mean	SD
0.61	0.48	0.59	0.51	0.51	0.56	0.58	0.50	0.44	0.58	0.53	0.05
Error Rates for LogisticRegression with Boston50											
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10	Mean	SD
0.12	0.16	0.14	0.08	0.18	0.06	0.32	0.24	0.06	0.22	0.16	0.08
	Error Rates for LogisticRegression with Boston75										
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10	Mean	SD
0.08	0.12	0.00	0.16	0.16	0.12	0.10	0.12	0.04	0.06	0.09	0.05
Error Rates for LogisticRegression with Digits											
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10	Mean	SD
0.09	0.05	0.11	0.08	0.06	0.03	0.02	0.04	0.14	0.06	0.07	0.04

(ii). (a) See p3main.py

		Error Rates for LinearSVC with Boston50											
(b)	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10	Mean	SD	
	0.31	0.27	0.21	0.18	0.33	0.21	0.42	0.16	0.20	0.22	0.25	0.08	
	Error Rates for LinearSVC with Boston75												
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10	Mean	SD	
	0.26	0.12	0.16	0.13	0.13	0.23	0.20	0.13	0.15	0.23	0.17	0.05	
	Error Rates for LinearSVC with Digits												
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10	Mean	SD	
	0.09	0.08	0.08	0.07	0.08	0.09	0.09	0.09	0.10	0.09	0.09	0.01	
	Error Rates for SVC with Boston50												
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10	Mean	SD	
	0.52	0.42	0.44	0.44	0.49	0.45	0.39	0.49	0.41	0.45	0.45	0.04	
		Error Rates for SVC with Boston75											
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10	Mean	SD	
	0.27	0.25	0.27	0.27	0.27	0.25	0.24	0.25	0.26	0.26	0.26	0.01	
		Error Rates for SVC with Digits											
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10	Mean	SD	
	0.78	0.80	0.77	0.86	0.84	0.84	0.83	0.81	0.75	0.83	0.81	0.03	
				Error Ra	ates for L	ogisticR	egression	with Bo	ston50				
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10	Mean	SD	
	0.17	0.17	0.13	0.17	0.14	0.16	0.14	0.17	0.17	0.20	0.16	0.02	
					ates for L								
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10	Mean	SD	
	0.11	0.08	0.11	0.10	0.11	0.10	0.09	0.09	0.09	0.13	0.10	0.01	
					Rates for								
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10	Mean	SD	
	0.07	0.07	0.07	0.07	0.07	0.08	0.06	0.06	0.07	0.06	0.07	0.01	

Problem 4

(a). See p4main.py

		Error Rates for LinearSVC with X1										
(b).	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10	Mean	SD
	0.11	0.09	0.18	0.11	0.12	0.14	0.07	0.06	0.16	0.15	0.12	0.04
		Error Rates for LinearSVC with X2										
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10	Mean	SD
	0.05	0.00	0.07	0.00	0.03	0.02	0.01	0.01	0.04	0.03	0.03	0.02
	Error Rates for SVC with X1											
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10	Mean	SD
	0.91	0.91	0.91	0.90	0.90	0.91	0.91	0.91	0.89	0.91	0.90	0.10
		Error Rates for SVC with X2										
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10	Mean	SD
	0.91	0.91	0.91	0.90	0.90	0.91	0.91	0.91	0.83	0.87	0.89	0.03
				Error	Rates fo	or Logisti	icRegress	ion with	X1			
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10	Mean	SD
	0.09	0.07	0.16	0.10	0.10	0.03	0.07	0.06	0.14	0.13	0.09	0.04
				Error	Rates fo	or Logisti	icRegress	ion with	X2			
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10	Mean	SD
	0.05	0.00	0.06	0.01	0.03	0.02	0.01	0.01	0.04	0.03	0.02	0.02