Edge Colouring

Eeo Jun

as small as possible

$$\varphi$$
: $E \mapsto \mathcal{C}$

$$\forall uv, ut \in E : \varphi(uv) \neq \varphi(ut)$$

(Adjacent edges should receive a different colour)

Vizing's Theorem

Deliverables

- **B.1** Implement MG Heuristic
- **B.2** Implement VH Heuristic
- B.3 VH vs MG
- **B.4** Erdos & Wilson's results
- **I.1** Investigate HZ Conjecture
- **I.2** Investigate Bad Cores Problem
- **I.3** Implement CB Heuristic
- A.1 Use Hamilton
- A.2 Derive Conjectures from I.1, I.2
- A.3 Run on larger benchmark graphs

Misra & Gries Heuristic

 α_{k-1} α_i α_i α_i α_i α_i α_i

B.1 MG Heuristic
B.2 VH Heuristic
B.3 VH vs MG
B.4 Random graphs

Vizing Heuristic

B.1 MG Heuristic
B.2 VH Heuristic
B.3 VH vs MG
B.4 Random graphs

- Based on constructive proof in Gould 1998 (Graph Theory)
- Idea:
 - try to make an edge-colouring with only Δ colours
 - fail => use Δ +1

Bitsets

B.1 MG Heuristic

B.2 VH Heuristic

B.3 VH vs MG

B.4 Random graphs

Edge Sampling

B.1 MG Heuristic **B.2 VH Heuristic**B.3 VH vs MG

B.4 Random graphs

Adjacency Matrix

Edge Sampling

B.1 MG Heuristic **B.2 VH Heuristic**B.3 VH vs MG

B.4 Random graphs

VH vs MG

Benchmark	Δ	$\Delta \mathbf{V}\mathbf{h}$	MG	CB	Slowdown
myciel3	5	5	6	5	1.56
myciel4	11	11	12	11	1.59
myciel5	23	23	23	23	7.28
myciel6	47	47	47	47	4.48
myciel7	95	95	95	95	6.51
le450_5a	42	42	42	42	4.16
le450_5b	42	42	43	42	3.94
le450_5c	66	66	67	66	6.43

B.1 MG HeuristicB.2 VH HeuristicB.3 VH vs MGB.4 Random graphs

5.97

...

68

68

69

68

le450_5d

We got the same results!

Erdos & Renyi Model

B.1 MG Heuristic B.2 VH Heuristic B.3 VH vs MG **B.4 Random graphs**

$G \sim \mathcal{G}(n,p)$

- Graph has **n** nodes
- $P(uv \in E) = p$

Implement Counting-Based Heuristic

Run on Large Benchmark Graphs

A.1 Use Hamilton
A.2 Make Conjectures
A.3 Large Benchmarks

I.3 CB heuristic

Hilton-Zhao Conjecture

Any graph G with max degree $\Delta >= 4$ and a core of degree 2 is Class 2 iff G satisfies:

$$|E| > \lfloor \frac{|V|}{2} \rfloor \Delta$$

I.1 HZ conjecture

- I.2 Bad cores
- I.3 CB heuristic

 Δ =5, our experiments:

Δ			
6	$4P_1 \times C_5$	$C_4 \times C_3$	
7	$5P_1 \times C_6$ $5P_1 \times (C_3 + C_3)$	$C_5 \times C_4$	
8	$6P_1 \times C_7$ $6P_1 \times (C_3 + C_4)$	$C_6 \times C_5 $ $(C_3 + C_3) \times C_5$	$C_3 \times H$

1 <= n <= 12: Brute force

13 <= n <= 30:

Generate all core graphs + ExtendCore
Generate random degree sequences + graph
realisation algorithm

n >= 30:

Generate random degree sequences + graph realisation algorithm

Bad Cores Problem

Graph H is a bad core if ∃G s.t.:

- 1. G's core is H,
- 2. G is Class 2, and
- 3. G satisfies (underfull):

$$|E| \le \lfloor \frac{|V|}{2} \rfloor \Delta$$

I.1 HZ conjectureI.2 Bad coresI.3 CB heuristic

1 <= n <= 12: Brute force

13 <= n <= 30: Test random graphs from G(n,p) ($p \in \{0.25, 0.5, 0.75, 0.85\}$)

Figure 7: Extensions and cores (in grey) for K_4 and K_6 , respectively.

Figure 8: Extension and core for K_n (even $n \ge 8$)

 $K_5: (1, 6^4, 7^5)$ $K_n: (1, n^2, (n+1)^2, (n+2)^n)$

For K_n (odd n, n >= 5)

I.1 HZ conjecture
I.2 Bad cores

I.3 CB heuristic

$$(n-1)P_1 \times C_n \quad (n \ge 3)$$

Use Hamilton

A.1 Use Hamilton
A.2 Make Conjectures
A.3 Large Benchmarks

Extra: Heuristic Techniques

Simple Case

Harder Case

Kempe Exchange

Not really helping...

