

Indian Institute of Technology Palakkad

Department of Computer Science and Engineering
CS5616 Computational Complexity
January - May 2024

Problem Set – 3

Total Points -50

Name: Neeraj Krishna N

Given on 29 Feb

Roll no: 112101033

Due on 11 Mar

Instructions

• Use of resources other than class notes and references is forbidden.

• Collaboration is not allowed. Credit will be given for attempts and partial answers.

1. (10 points) (RE vs co-RE) Show that the set

 $\{M \mid M \text{ halts on all inputs of length less than } 42\}$

is recursively enumerable, but is its complement is not.

Solution:

Let us construct a turing machine M' for which

 $L(M') = \{M \mid M \text{ halts on all inputs of length less than } 42\}$

M' = "

On input M,

- (1) For each $x \in \Sigma^*$, |x| < 42, Run M on x
- (2) Accept M

,,

 $M \in L$

- $\Rightarrow M$ halts on all inputs of length less than 42
- \Rightarrow step (1) of M terminates and reaches step (2)
- $\Rightarrow M'$ accepts M
- $\Rightarrow M \in L(M')$

 $M \notin L$

- $\Rightarrow M$ loops on some input of length less than 42
- \Rightarrow step (1) of M' loops when it reaches such an x

```
\Rightarrow M' loops
\Rightarrow M' does not accept M
\Rightarrow M \notin L(M')
Hence L(M') = L
Suppose complement of L is also recursively enumberable, then L would be de-
cidable since we know
                           L is decidable \Leftrightarrow Lis r.e and \overline{L} is r.e
we will show a reduction HP \leq_m L
The reduction machine \sigma on input M \# x (an instance of HP) outputs M' an
instance of L
M' =  "
On input y,
   1. Run M on x
   2. If M halts on x, accept y
we need to prove
M\#x \in \mathsf{HP} \Leftrightarrow M' \in L
M\#x \in \mathsf{HP}
\Rightarrow M halts on x
\Rightarrow M' accepts all y, hence M' halts on all inputs of length less than 42
\Rightarrow M' \in L
M\#x \notin \mathsf{HP}
\Rightarrow M loops on x
\Rightarrow M' loops on all y, hence M' halts on some inputs of length less than 42
\Rightarrow M' \notin L
```

2. (10 points) (Alternate definition for Δ_i) Let A be any language. Define \mathcal{D}^A be the class of all languages L such that L is decidable in A. Similarly, \mathcal{SD}^A be the class of all L such that L is semi-decidable in A and $\mathsf{co}\mathcal{SD}^A$ be the class of all languages whose complement is in \mathcal{SD}^A .

Since we know HP is undecidable, L is also undecidable, and thus \overline{L} is not r.e

(a) (5 points) Show that
$$\mathcal{D}^A = \mathcal{S}\mathcal{D}^A \cap \mathsf{co}\mathcal{S}\mathcal{D}^A$$
.

therefore $M\#x \in \mathsf{HP} \Leftrightarrow M' \in L$

- (b) (5 points) For any $i \geq 1$, by definition, $\Delta_i = \Sigma_i \cap \Pi_i$. Show that
 - $\Delta_i = \{L \mid \text{ there exists } A \in \Sigma_{i-1} \text{ such that } L \text{ is decidable in A} \}.$

Solution:

- (a) Suffices to prove:
 - (i) $\mathcal{D}^A \subset \mathcal{S}\mathcal{D}^A \cap co\mathcal{S}\mathcal{D}^A$
 - (ii) $\mathcal{D}^A \supset \mathcal{S}\mathcal{D}^A \cap co\mathcal{S}\mathcal{D}^A$
 - (a) Let $L \in \mathcal{D}^A$, by definition of D^A , L is decidable in A, let the total T.M be M^A

L is decidable in A

 $\Rightarrow L$ is r.e in A

 $\Rightarrow L \in \mathcal{SD}^A$

to prove $\overline{L} \in \mathcal{SD}^A$, we need to construct a T.M N^A such that $L(N^A) = \overline{L}$

 $N^A =$ "

On input x,

- i. Run M^A on x, (using the oracle A to answer queries of the form $x \in A$?)
- ii. If M^A accepts, reject
- iii. If M^A rejects, accept

,,

The above machine is total since every step is total including the step (i) since M^A is total

$$x \in \overline{L}$$

$$\Leftrightarrow x \notin L$$

$$\Leftrightarrow M^A \text{ rejects } x$$

$$\Leftrightarrow N^A \text{ accepts } x$$

$$\Leftrightarrow x \in L(N^A)$$

Hence
$$L(N^A) = \overline{L}$$

and thus \overline{L} is decidable in A

$$\Rightarrow \overline{L}$$
 is r.e in A

$$\Rightarrow \overline{L} \in \mathcal{SD}^A$$

$$\Rightarrow L \in co\mathcal{S}\mathcal{D}^A$$

and hence proved that $L \in \mathcal{D}^A \Rightarrow L \in \mathcal{SD}^A \cap co\mathcal{SD}^A$

$$\Rightarrow \mathcal{D}^A \subseteq \mathcal{S}\mathcal{D}^A \cap co\mathcal{S}\mathcal{D}^A$$

(b) Let
$$L \in \mathcal{SD}^A \cap co\mathcal{SD}^A$$

$$\Rightarrow L \in \mathcal{SD}^A \text{ and } \overline{L} \in \mathcal{SD}^A$$

 \Rightarrow there exists an OTM N_1^A accepting L and and also N_2^A accepting \overline{L} now let us construct an OTM N^A such that it accepts L and is total $N^A=$ "

On input x,

- i. Run N_1^A and N_2^A on x with time sharing, and also whenever a query of the form $x \in A$ is made, use the oracle A
- ii. If N_1^A accepts, accept
- iii. If N_2^A accepts, reject

"

$$\forall x \in \Sigma^*, x \in L \lor x \in \overline{L}$$
 but not both

$$\Rightarrow$$
either N_1^A accepts x or N_2^A accepts x

Since for each input, one of the machines is guaranteed to accept, the machine N^A halts on all inputs and hence is total

To prove
$$L(N^A) = L$$

$$x \in L$$

$$\Rightarrow N_1^A \text{ accepts } x$$

$$\Rightarrow N^A \text{ accepts } x$$

$$\Rightarrow x \in L(N^A)$$

$$x \notin L$$

$$\Rightarrow x \in \overline{L}$$

$$\Rightarrow N_2^A \text{ accepts } x$$

$$\Rightarrow N^A$$
 rejects x

$${\Rightarrow} x \not\in L(N^A)$$

Therefore $L = L(N^A)$ and hence proved that $\mathcal{SD}^A \cap co\mathcal{SD}^A \subseteq \mathcal{D}^A$

Hence
$$D^A = \mathcal{SD}^A \cap co\mathcal{SD}^A$$

(b) To prove:

$$\Delta_i = \{L \mid \exists A \in \Sigma_{i-1} \text{ such that } L \text{ is decidable in } A\}$$

or

$$\Sigma_i \cap \Pi_i = \{L \mid \exists A \in \Sigma_{i-1} \text{ such that } L \text{ is decidable in } A\}$$

Let L be such that $\exists A \in \Sigma_{i-1}$ such that L is decidable in A

$$\Rightarrow L \in \{L \mid \exists A \in \Sigma_{i-1} \text{ such that } L \text{ is decidable in } A\}$$

 $\Rightarrow L$ is semidecidable in A, (decidable languages are trivially semidecidable)

$$\Rightarrow L \in \Sigma_i$$
 From the previous question we proved that $D^A = \mathcal{SD}^A \cap co\mathcal{SD}^A$
$$\Rightarrow \text{Since } L \text{ is decidable in } A, \text{ both } L \text{ and } \overline{L} \text{ are semidecidable in } A$$

$$\Rightarrow L \in \Pi_i$$
 hence $L \in \Sigma_i \text{ and } L \in \Pi_i$
$$\Rightarrow L \in \Sigma_i \cap \Pi_i$$
 Now let $L \in \Sigma_i \cap \Pi_i$, we have to prove that $L \in \Delta_i$
$$L \in \Sigma_i$$

$$\Rightarrow \exists A \in \Sigma_{i-1} \text{ such that } L \text{ is semidecidable in } A$$

$$\Rightarrow \exists \text{ an OTM } N^A \text{ accepting } L$$

$$L \in \Pi_i$$

$$\Rightarrow \exists B \in \Sigma_{i-1} \text{ such that } \overline{L} \text{ is semidecidable in } B$$

$$\Rightarrow \exists \text{ an OTM } N^B \text{ accepting } \overline{L}$$

3. (10 points) (Closure properties of Σ_n, Π_n). Fix any $i \geq 1$. Show that Σ_i as well as Π_i are closed under intersection and union.

Solution:

Claim 1 : Σ_i closed under union $\Rightarrow \Pi_i$ closed under intersection

Claim 2: Σ_i closed under intersection $\Rightarrow \Pi_i$ closed under union

Proof of Claim 1:

 Σ_i closed under union

$$\Rightarrow \forall L_1, L_2 \in \Sigma_i, L_1 \cup L_2 \in \Sigma_i$$

$$\Rightarrow \forall L_1, L_2 \in \Sigma_i, \overline{(\overline{L_1} \cap \overline{L_2})} \in \Sigma_i$$
, by De Morgan's Law

$$\Rightarrow \forall \overline{L_1}, \overline{L_2} \in \Pi_i, (\overline{L_1} \cap \overline{L_2}) \in \Pi_i$$

$$\Rightarrow \forall L_1', L_2' \in \Pi_i, (L_1' \cap L_2') \in \Pi_i$$

 $\Rightarrow \Pi_i$ closed under intersection

Proof of Claim 2:

 Σ_i closed under intersection

$$\Rightarrow \forall L_1, L_2 \in \Sigma_i, L_1 \cap L_2 \in \Sigma_i$$

$$\Rightarrow \forall L_1, L_2 \in \Sigma_i, \overline{(\overline{L_1} \cup \overline{L_2})} \in \Sigma_i$$
, by De Morgan's Law

$$\Rightarrow \forall \overline{L_1}, \overline{L_2} \in \Pi_i, (\overline{L_1} \cup \overline{L_2}) \in \Pi_i$$

$$\Rightarrow \forall L_1', L_2' \in \Pi_i, (L_1' \cup L_2') \in \Pi_i$$

 $\Rightarrow \Pi_i$ closed under union

Suffices to prove

 Σ_i is closed under intersection and union

We'll argue using induction

Base case: i = 0 $\Sigma_0 = \Delta_0 = \Delta_1$ which is the set of decidable languages and we already know that decidable languages are closed under union and intersection

Strong Induction Hypothesis The below statement is true for all $i \leq n$

 Σ_i is closed under intersection and union

The below statement also follows from Claim 1 and claim 2

 Π_i is closed under intersection and union

Therefore we can consider both statements as Strong induction Hypothesis

To prove for i = n + 1

Let $L_1, L_2 \in \Sigma_{n+1}$

$$\Rightarrow \exists A \in \Pi_n, A \subseteq \Sigma^* \times \Sigma^*, x \in L_1 \Leftrightarrow \exists y_1, (x, y_1) \in A \text{ and }$$

$$\exists B \in \Pi_n, B \subseteq \Sigma^* \times \Sigma^*, x \in L_2 \Leftrightarrow \exists y_2, (x, y_2) \in B$$

 $\Rightarrow \exists (A \cup B) \in \Pi_n$ (by induction hypothesis) such that

$$x \in L_1 \cup L_2 \Leftrightarrow \exists y, (x, y) \in (A \cup B)$$

$$\Rightarrow L_1 \cup L_2 \in \Pi_{n+1}$$

and thus proved Σ_{n+1} is closed under union which proves Π_{n+1} is closed under intersection from the claims

Let $L_1, L_2 \in \Sigma_{n+1}$

$$\Rightarrow \exists A \in \Pi_n, A \subseteq \Sigma^* \times \Sigma^*, x \in L_1 \Leftrightarrow \exists y_1, (x, y_1) \in A \text{ and }$$

$$\exists B \in \Pi_n, B \subseteq \Sigma^* \times \Sigma^*, x \in L_2 \Leftrightarrow \exists y_2, (x, y_2) \in B$$

 $\Rightarrow \exists (A \cap B) \in \Pi_n$ (by induction hypothesis) such that

$$x \in L_1 \cap L_2 \Leftrightarrow \exists y, (x, y) \in (A \cap B)$$

$$\Rightarrow L_1 \cap L_2 \in \Pi_{n+1}$$

and thus proved Σ_{n+1} is closed under intersection which proves Π_{n+1} is closed under union from the claims

therefore we have proved that if the statement holds for all $i \leq n$, it holds for i = n + 1

and thus by principle of mathematical induction it is proved that

 $\forall i \in \mathbb{N}, \Sigma_i \text{ and } \Pi_i \text{ are closed under union and intersection}$

- 4. (20 points) (**Rice's theorem**) Identify if the following are (0) properties of SD languages, (1) non-trivial properties and (2) non-monotone properties. If (1) / (2) is true, apply Rice's theorems suitably and give your conclusions. A direct use of diagonalisation or reductions does not fetch any credit.
 - (a) (4 points) given a Turing machine M, L(M) is not regular?
 - (b) (4 points) given a Turing machine M, does there exist a non-empty regular set L' such that $L' \subseteq L(M)$?
 - (c) (4 points) given M, does M represent a DFA that accepts some string with equal number of 0s and 1s?
 - (d) (4 points) given a Turing machine M, is $L(M) \in \Pi_{42}$?

Solution:

(a) $L = \{M \mid L(M) \text{ is not regular}\}$

is a property of SD language

If there are 2 machines M_1 and M_2 accepting the same language, then it cannot be the case that $L(M_1)$ is regular and $L(M_2)$ is not regular

This is non trivial since there are turing machines which accept regular languages and turing machines which accept non-regular languages

This is also non-monotone since, there exists L_1, L_2 such that $L_1 \subseteq L_2$ and $\mathcal{P}(L_1) = 1$ and $\mathcal{P}(L_2) = 0$

$$L_2 = \Sigma^*$$
 and $L_1 = \{0^n 1^n \mid n \ge 0\}$

here L_1 is not regular which satisfies the property whereas L_2 is regular and a strict superset of L_1 which does not satisfy the property

Since the property is non-trivial, by Rice's Theorem 1, L is not decidable

Since the property is non-monotone, by Rice's Theorem 2, L is not semi-decidable

(b) $L = \{M \mid \exists L' \subseteq \Sigma^*, L' \neq \phi \text{ and } L' \subseteq L(M)\}$

This is equivalent to saying $L = \{M \mid L(M) \text{ is not empty}\}$ because

L(M) is not empty

 $\Rightarrow \exists L' \subseteq L(M)$ which is L(M) itself, such that $L' \subseteq L(M)$ i.e L' = L(M)

$$\exists L' \subseteq \Sigma^*, L' \neq \phi \text{ and } L' \subseteq L(M)$$

 $\Rightarrow L(M)$ is not empty

L(M) is not empty is a property of SD languages since if there exists 2 machines M_1 and M_2 accepting the same language, it cannot be the case that

 $L(M_1) = \phi$ and $L(M_2) \neq \phi$ or vice-versa

This is a non-trivial property, since there are turing machines accepting empty languages and there are turing machines accepting non-empty languages

This is a monotone property because

$$\forall L_1, L_2 \in \Sigma^*, \mathcal{P}(L_1) = 1 \Rightarrow \mathcal{P}(L_2) = 1$$

because if L_1 is non-empty, any superset of L_1 will be non-empty

Since, this property is non-trivial, by Rice's theorem 1, the given language is undecidable

We cannot conclude anything about semi-decidability from Rice's Theorem 2 because the language is not non-monotone

- (c) The language is
- (d) The language is

$$L = \{M \mid L(M) \in \Pi_{42}\}$$

This is a property of language since it cannot be the case that there exists M_1, M_2 accepting the same language but $L(M_1) \in \Pi_{42}$ and $L(M_2) \notin \Pi_{42}$ or vice-versa

This is non-trivial because there exists turing machines accepting $L \in \Pi_{42}$ and turing machines accepting languages $L \notin \Pi_{42}$

Hence this is undecidable by Rice's Theorem 1

This is also non-monotone because, let $L_1 \in \Pi_{42}$ and $L_2 \in \Pi_{43} \setminus \Pi_{42}$

 $\mathcal{P}(L_1) = 1$ and $\mathcal{P}(L_1 \cup L_2) = 0$ since union of L_1 and L_2 cannot be in Π_{42} since L_2 is in $\Pi_{43} \setminus \Pi_{42}$