0.1 Niektóre przydatne polecenia

0.1.1 ogólne

Diary('Plik')	Zapis sesji Matlaba	
help	Wyświetla liste dostępnych tematów pomocy	
helpwin	Otwiera interaktywne okno pomocy	
helpdesk	Otwiera plik pomocy w oknie przeglądarki internetowej	
help temat	Wyświetla pomoc na temat	
lookfor tekst	Wyświetla liste dostepnych tematów pomocy zawierających tekst	
demo	Uruchamia demonstracyjną wersję programu	
computer	Informacje o typie komputera	
clock	Wyświetla godzinę i datę jako wektor	
date	Wyświetla datę w postaci łąńcucha	
more on	Steruje stronicowaniem wyświetlania danych	
ver	Wersja i licencja MATLAB	
bench	Testuje wydajność komputera w MATLABie	

0.1.2 Infromacje o przestrzeni roboczej

who	Lista aktualnych zmiennych w przestrzeni roboczej	
whos	Lista aktualnych zmiennych w przestrzeni roboczej wraz z rozmia-	
	rem	
what	Listuje M- Mat- oraz Mex- pliki zapisane na dysku	
clear	Czyści przestrzeń roboczą, usuwając wszystkie zmienne	
clear x y z	Usuwa zmienne x,y,z	
clear all	Usuwa wszystkie zmienne i funkcje z przestrzeni roboczej	
mlock fun	Blokuje funkcję fun uniemożliwaiając usunięcie przez clear	
munlock fun	odblokowuje funkcję fun umożliwaiając usunięcie przez clear	
clc, home	Czyści okno poleceń, historia jest tracona	
clf	Czyści okno graficzne	

0.1.3 Informacje o katalogu

pwd	Wyświetla bieżący katalog roboczy
cd	Zmienia bieżacy katalog roboczy
\dim , ls	Wyświeta zawartość bieżącego katalogu roboczego
path	odczytuje lub definiuje ścieżkę wyszukiwania w MATLABie
editpath	Modyfikuje ścieżkę wyszukiwania w MATLABie
copyfile	Kopiuje plik
mkdir	Tworzy katalog

0.1.4 Zamykanie

control+C	Zatrzymuje wykonywanie bieżącego polecenia
quit, exit	Wyjście z MATLABa

0.1.5 Ćwiczenie

- Uruchom MATLAB.
- Sprawdź katalog który jest przypisany do MATLABa.

- Utwórz własny katalog i zmień katalog bieżący na swój katalog.
- Sprawdź poleceniem computer i bench walory swego komputera.
- Sprawdź wersję MATLABa.
- Otwórz plik do zapisu sesji (instrukcja **Diary**)
- Wyświetl liczbę $100 \cdot \pi$ (100*pi) w różnych formatach.

0.2 Kalkulator

Format wyświetlania liczb można zmieniać przy pomocy polecenia **format** z opcjami short, short e, long, long e, short g, long g, hex, rat, bank Operatory arytmetyczne: + - * / \hat{N} iektóre funkcje sin(), cos(), tan(), asin(), acos(), atan(), exp(), log(), log10(), sqrt(), pi

0.2.1 Ćwiczenie

Oblicz następujące wartości: (pierwiastki można zapisywać jako potęgi)

$$\bullet \ \frac{1+2^4}{\frac{1}{2+\sqrt{3}}-3}$$

•
$$\left(1 + \frac{1}{2345}\right)^{2345}$$

• 6

•
$$\left(1 + \frac{10}{23456}\right)^{23456}$$

• e^{10}

$$\bullet \quad \frac{\sqrt[2]{2} - \sqrt[4]{2}}{\sqrt[5]{2} - \sqrt[6]{2}}$$

•
$$2^{(\sqrt[3]{3})^{\pi}}$$

0.2.2 Ćwiczenie

Wyznacz przybliżenia π oraz e w postaci ułamków zwykłych. Zapisz w postaci ułamków zwykłych wyrażenia:

2

$$\bullet \quad \frac{\frac{23}{25} - \frac{23}{29}}{1.4 - \frac{3}{17 - \frac{27}{28}}}$$

$$\bullet \begin{array}{c} 0.5 - \frac{7.1 - \frac{12}{17}}{17 - \frac{27}{2 + \frac{3}{7}}} \\ \frac{3 + \frac{4}{19}}{25} - \frac{26}{29 + \frac{23}{33}} \end{array}$$

•
$$\sqrt[6]{\ln (5 + \sin^2 8)} + \arctan 5\pi$$

0.2.3 Ćwiczenie

- Dla koła o promieniu r=6,32 obliczyć pole i obwód.
- Obliczyć pole powierzchni i objętość kuli o tym promieniu.
- Obliczyć pole i objętość torusa o promieniach r=7,33 i R=22,54. Odpowiednie wzory z internetu.

0.3 Funkcje

Niektóre funkcje

 $\sin()$, $\sin()$, $\cos()$, $\cos()$, $\cos()$, $\tan()$, $\tan()$, $a\sin()$, $a\cos()$, atan(), $\exp()$, $\log()$, $\log(0)$, $\log(10)$, $\gcd()$, pi Argumenty funkcji umieszcza się w nawiasach.

0.3.1 Ćwiczenie

Oblicz:

- $\sin \frac{\pi}{2}$
- $\cos 60^{\circ}$
- $\sin 78^o$
- $\operatorname{tg} \frac{\pi}{9}$
- ln 2, 718
- log 10
- tg 89°
- $\arcsin 0, 5$
- arctg100000 (w stopniach i radianach)
- e^e
- $\ln(-4)$
- $\sqrt{-16}$
- $\arcsin(2)$
- arc cos(-10)
- $e^{2\pi i}$
- $\sin(3+4i)$
- $\sinh(4)$

0.4 Zmienne

W matlabie zmienne podstawiamy instrukcją: zmienna=wyrażenie (wyrażenie może zawierać zmienne, w tym zmienna definiowaną).

0.4.1 Ćwiczenie

Podstaw za x wartość $\frac{\pi}{6}$ i oblicz:sin x, cos x, tg x, ctg x, arc sin x, e^x Sprawdź wzory na jedynkę trygonometryczną dla kąta $\alpha=5$ oraz czy tg $x=\frac{\sin x}{\cos x}$, sprawdź wzór na jedynkę dla funkcji hiperbolicznych dla jakiejś wartości (wzór na jedynkę trygonometryczną dla funkcji hiperbolicznych znajdź w pamięci lub Internecie)

0.4.2 Ćwiczenie

Dla wartości a,b,c wypisz wzory na rozwiązania równania $ax^2 + bx + c = 0$, następnie podstawiajac za a,b,c różne wartości znajdź rozwiązania równania (należy wprowadzie zmienną delta). Rozwiąż następujące równania:

$$3x^2 - 2x - 1 = 0$$
, $-5x^2 - 6x + 5 = 0$, $x^2 - 4x + 5 = 0$, $5x^2 - x - 3 = 0$
 $121x^2 + 211x - 41 = 0$, $7x^2 + 8x + 73 = 0$

0.5 Tworzenie tablic liczb

Tablice tworzy się podstawiając za zmienną wartości oddzielone spacjami umieszczone w nawiasach kwadratowych np. $x=[1\ 2\ 3]$. Jeżeli tablica ma być macierzą to wiersze zostają zakończone średnikiem np. $y=[1\ 2;\ 3\ 4]$. Można również tworzyć automatycznie poleceniem $\mathbf{p:k:o}$ gdzie p-pierwsza wartość k-krok, o-ograniczenie od góry. Innym sposobem automatycznego tworzenia tablicy jest polecenie $\mathbf{linspace}(\mathbf{p,k,i})$ gdzie p-początek k-koniec,i-ilość wartości. Na tablicach można wyliczać wartości funkcji np .t=linspace(0,pi,10); (instrukcja zakończona średnikiem nie jest wyświetlana) i następnie $\mathbf{sin}(\mathbf{t})$.

0.5.1 Ćwiczenie

Utwórz tablicę liczb od 1 do 100. Utwórz tablicę liczb dodatnich, podzielnych przez 11 do 1000. Utwórz tablice liczb od 1 do 2 składającą sie z 70 liczb dzielacych ten odcinek na równe części. Transpozycje tablicy uzyskujemy operatorem ' np. \mathbf{A} '

Operacje na elementach tablic wykonuje się dodając kropkę przed znakiem działania .+ ./ .* kładowo A.^2 podnosi wszystkie elementy macierzy do potęgi drugiej.

0.5.2 Ćwiczenie

- Utwórz tablice a=[1 2 3] i b=[4 5 6]. Znajdź sumę, różnicę iloczyn, iloraz,transpozycję oraz pierwiastki elementów obu tablic. Spróbuj a+b', a*b, a*b', a'*b', a'*b'
- Utwórz tablice sinusów, cosinusów i tangensów katów od 0 do 90 stopni co jeden stopień.
- Utwórz po 100 wyrazów ciągów

$$* \frac{1}{n}$$

*
$$\frac{1}{n^2}$$
* $\frac{1}{\sqrt{n}}$
* $\sqrt[n]{n}$
* $(1 + \frac{1}{n})^n$
* $\frac{n^3 - 2n^2 + 4}{2n^3 + n^2 + 10n + 1}$

Sumę elementów tablicy A można uzyskac przy pomocy instrukcji sum(A)

0.5.3 Ćwiczenie

Oblicz następujące sumy (silnię oblicza funkcja factorial(n)):

- $\bullet \sum_{i=1}^{20} \frac{1}{i!}$
- $\bullet \sum_{i=1}^{20} \frac{2^i}{i!}$
- $\bullet \sum_{i=1}^{40} \frac{(-1)^i}{(2i+1)!}$
- $\bullet \sum_{i=1}^{200} \frac{(-1)^i}{i}$
- $\bullet \ \sum_{i=1}^{1000} \frac{1}{i^2}$
- $\bullet \sum_{i=1}^{50} \frac{i^2}{2^i}$

0.6 Macierze

Wprowadzanie macierzy polega na wpisywaniuw nawiasach kwadratowych elementów (podobnie jak w tablicach). Elementy wiersza oddziela się spacją, zakończenie wiersza średnikiem. Jeżeli przenosimy definicje do następnego wiersza stosuje się znak kontynuacji dots. Do elementów macierzy można odwołać się poprzez indeksy $\mathbf{A(i,j)}$. Można również podstawiać do macierzy używając indeksy. Np. $\mathbf{A(2,3)=5}$.Wymiary macierzy można odczytać instrukcją $\mathbf{si-ze(A)}$. Można wyznaczyć fragment macierzy instrukcją $\mathbf{A(p:q,s:t)}$ Użyciedwukropka : zamiast zakresu wybiera wszystkie wiersze lub kolumny. Instrukcja $\mathbf{D(9,9)=1}$ spowoduje utworzenie macierzy D o wymiarach 9x9 z elementami 0 i wskazanym elementem.

0.6.1 Ćwiczenie

- Utwórz macierz A o wymiarach 7x7 (elementy dowolne)
- Znajdź element z 3 wiersza 4 kolumny.
- Podstaw za element z 6 wiersza 3 kolumny liczbe π .
- \bullet Utwórz macierze B składającą się z 3 pierwszych wierszy i kolumn od 2 do 6 i C z trzech pierwszych kolumn, D z czterech ostatnich wierszy

Jako indeksy można używać wektory, wskazując w ten sposób na konkretne wiersze lub kolumny macierzy. Można również wybrać wiersze lub kolumny macierzy poprzez wskazanie ich przy pomocy 0 i 1. Tworzy się wektor v z zer i jedynek instrukcją logical(v) zmienia się na wartości logiczne. Następnie umieszczając w miejsce indeksów w macierzy np. A(v,:) wybieramy wiersze którym odpowiadają 1. Przykładowo $A([2\ 4],[3\ 5])$ wybiera z macierzy drugi i czwarty wiersz i trzecią i piątą kolumnę. Gdy utworzymy wektor logiczny $l=logical([1\ 0\ 1\ 0\ 1])$ to A(l,:) wybierze pierwszy, trzeci i piąty wiersz macierzy.

0.6.2 Ćwiczenie

- Utwórz macierz D składającą się z 1,3 5, wiersza i 2 i 4 kolumny macierzy A.
- Utwórz macierz E składająca się z 1,2,1, 4,1, 5 wiersza i wszystkich kolumn macierzy A.
- Utwórz macierz F z macierzy A stosując instrukcję **logical()** i wybierając 1,3,6 wiersz i 2,4,5,kolumnę.

0.6.3 Przekształcanie macierzy

Macierz można przekształcić na wektor instrukcją $\mathbf{b} = \mathbf{A}(:)$ lub macierz o innych wymiarach instrukcja $\mathbf{reshape}(\mathbf{A},\mathbf{p},\mathbf{q})$. Można dołączyć wiersz instrukcją $[\mathbf{A};\mathbf{v}]$ lub kolumnę $[\mathbf{A}\;\mathbf{u}]$. Aby usunąć fragment macierzy należy za ten fragment podstawić macierz pustą [].

0.6.4 Ćwiczenie

- Przekształć macierz A w wektor V
- Wyodrębnij z macierzy A pierwszych 6 wierszy i kolumn jako macierz G
- Przekształć powstałą macierz G na macierze 4x9,9x4, 2x18, 18x2.
- Znajdź macierz transponowaną do macierzy 4x9. Czy jest taka sama jak macierz 9x4?
- Utwórz macierz H z macierzy A usuwając 2 i 4 wiersz oraz trzecią kolumnę.
- Utwórz macierz Z 2x3 z elementami zespolonymi. Znajdź macierz transponowana do niej.

Macierze specjalne

- Eye(m,n) macierz jednostkowa jeżeli $m \neq n$ na pierwszej przekątnej są jedynki pozostałe zera.
- zeros(m,n) jak nazwa wskazuje
- ones(m,n) jw.
- rand(m,n) macierz losowa
- randn(m,n) macierz losowa o rozkładzie normalnym
- diag(v) macierz diagonalna z przekątną v
- diag(A) wyodrębnia przekątną z macierzy
- diag(A,k) –sprawdzić

0.6.5 Ćwiczenie

• Utworzyć macierz P 10 × 10 która ma na głównej przekątnej 1 a na kolejnych przekątnych wartości zwiększające się o 1.

```
1 2 3 4 5 6 7 8 9 10
2 1 2 3 4 . . ..
Podpowiedź:
```

```
diag(1*ones(10,1),0)+diag(2*ones(9,1),1)
```

- Utworzyć macierze losowe kwadratowe M i N o tych samych wymiarach i obliczyć M*N oraz M.*N, skąd wynika różnica?
- Utworzyć macierz losową C 10 × 10 i wektor losowy d 10 × 1 oraz sprawdzić rozwiązalność układu równań Cx=d.
- Rozwiązać układ równań korzystając z macierzy odwrotnej (inv()) i poprzez dzielenie macierzy $C \backslash d$.

Macierze można porównywać przy pomocy operatorów <, >, <=, >=, ==

0.6.6 Ćwiczenie

Zbadaj które z rozwiązań poprzednigo przykładu są dodatnie i podstaw je do wektora **dodatnie**.

0.7 Łańcuchy znakowe

Łańcuchy znakowe wprowadza się przy pomocy pojedynczych cudzysłowów np. k='kot Ali' Traktowany jest jako wektor wierszowy. Wpisanie w nawiasie kwadratowym dwóch łańcuchów oddzielonych spacją lub -przecinkiem powoduje ich złączenie natomiast rozdzielonych średnikem tworzy wektor, przy czym długości łańcuchów muszą być jednakowe.

0.7.1 Niektóre funkcje tekstowe

abs()	zwraca kod ASCII znaków tekstu	
char()	tworzy z łańcuchów wektor kolumnowy (a w zasadzie macierz) uzu-	
Citai ()	pełniając łańcuchy spacjami. Gdy argumentem jest tablica kodów	
	ASCII tworzy tekst	
blanka(n)	v	
blanks(n)	tworzy napis składający się z n spacji	
deblank()	usuwa spacje z początku i końca łańcucha tekstowego	
findstr(s1,s2)	wskazuje miejsce pojawienia się tekstu krótszego (s1 lub s2) w tek-	
	ście dłuższym	
int2str()	zamienia liczbę na tekst, jeżeli liczba nie jest całkowita to zostaje	
	zaokrąglona	
ischar()	bada czy argument jest tekstem	
isletter()	bada czy argument jest tekstem czy literą	
lower(),upper()	zmienia wielkość liter	
mat2str()	zamienia macierz liczbową na tekst	
num2str()	zamienia liczbę na tekst	
strcmp()	porównuje teksty	
strncmp()	porównuje pierwszych n znaków	
strcat(a,b)	łączy teksty wierszami, przy czym a i b mogą byc wektorami tek-	
	stowymi o tej samej liczbie wierszy	
strvcat()	działa podobnie jak char()	
disp('hello')	wyświetla łańcuch znaków	
fprintf(")	pozwala wyświetlić łańcuch znaków wraz z przekazanymi parame-	
	trami, np.	
	fprintf('parametr k=%d a parametr z=%g',123, 1.234)	
	za %d - zostanie podstawiona liczba całkowita 5, zaź za %g zostanie	
	podstawiona liczba zmienno+przecinkowa 1.234	

0.7.2 Ćwiczenie

Utwórz dwa wektory kolumnowe pierwszy z pięcioma imionami i drugi z pięcioma nazwiskami. Zamień pierwsze litery imienia i nazwiska na duże litery (bez względu na to czy są duże czy nie). Połącz te wektory w jeden wektor. Uporządkuj alfabetycznie. Dołącz przed każdym nazwiskiem numer kolejny.

0.7.3 Instrukcja interaktywna input('zachęta')

Instrukcja input pozwala na interaktywne wprowadzanie danych. W przypadku wprowadzania danych tekstowych instrukcja ma postać $\mathbf{x} = \mathbf{input}(\mathbf{zachęta','s'})$. Instrukcją wyprowadzająca wynik jest instrukcja $\mathbf{disp}(\mathbf{x})$. Instrukcje można umieszczać w jednej linii oddzielając je średnikami.

 $\mathbf{Przykład}$ (rozwiązanie równania z jedną niewiadomą) Wpisz poniższy przykład w w jednej linii

```
a=input('równanie ax+b=c Podaj a=');b=input('b=');c=input('c=');
disp(['x=' num2str((c-b)/a)]);
```

0.7.4 Ćwiczenie

Opierając się na powyższym przykładzie utwórz programik rozwiązujący równanie kwadratowe. Utwórz programik rozwiązujący układ trzech równań z trzema niewiadomymi (wczytywana jest macierz układu i wektor wyrazów wolnych).

0.8 wykresy

Funkcje przydatne przy tworzeniu wykresów:

plot(x,y)	instrukcja tworząca wykres
axis equal	ujednolicenie skali obu osi
xlabel()	etykieta osi x
ylabel()	etykieta osi y
title()	tytuł wykresu
$\operatorname{text}()$	napis na wykresie w określonym miejscu
axis([xmin xmax ymin ymax])	zakresy osi

Dokładny opis działania instrukcji help instrukcja

0.8.1 Ćwiczenie

Wyznacz w układzie współrzędnych punkty (1,1), (3,3), (0,7), $(-1,-\pi)$ uwaga: Uzyskanie na wykresie wielu punktów jest możliwe wpisując w instrukcji plot współrzędne kolejnych punktów $\mathbf{plot}(\mathbf{x1},\mathbf{y1},\mathbf{x2},\mathbf{y2},\ldots)$. Zaznacz punkty krzyżykiem $\mathbf{plot}(\mathbf{x},\mathbf{y},\mathbf{x}')$ i kółkiem $\mathbf{plot}(\mathbf{x},\mathbf{y},\mathbf{x}')$. Wyznacz ponownie powyższe punkty używając jednej instrukcji.

0.8.2 Ćwiczenie

Utwórz wektory z pierwszych i drugich współrzędnych powyższych punktów a następnie utwórz wykres instrukcją plot(). Utwórz kwadrat o boku=4. Utwórz trójkąt o wierzchołkach w punktach (0,0) (1,4), (2,3). Utwórz trójkąt równoboczny o boku 4.. Utwórz sześciokąt o boku 1.

Aby uzyskać wykres funkcji należy punkty umieścić wystarczająco 'gęsto' w czym pomocna jest instrukcja linspace (poprzednie zajęcia).

0.8.3 Ćwiczenie

Utwórz wykresy funkcji sin x dla $x \in <0, 2\pi>$, cos x dla $x \in <0, 2\pi>$, arc cos x dla $x \in <-1, 1>$, $x^2 \cdot \ln |x|$ dla $x \in <-5, 5>$. Do każdego wykresu dodaj tytuł oraz opisy osi, wyrównaj osie.

0.8.4 Ćwiczenie

Utwórz wykresy koła o promieniu 5, asteroidy $(x = \cos^3 t, y = \sin^3 t, t \in (0, 2\pi))$

0.8.5 Ćwiczenie

Utwórz programik rysujący wielokąt foremny o zadanej liczbie boków i i zadanej długości boku wczytywanych instrukcją input.