Homework 7

1 Let (M, G) be a Riemannian manifold. Let C be a curve on M starting at the point \mathbf{p}_1 and ending at the point \mathbf{p}_2 .

Define an operator $P_C: T_{\mathbf{p}_1}M \to T_{\mathbf{p}_2}M$.

Explain why the parallel transport P_C is a linear orthogonal operator.

Let the points \mathbf{p}_1 and \mathbf{p}_2 coincide, so that C is a closed curve.

Let **a** be a vector attached at the point \mathbf{p}_1 , and $\mathbf{b} = P_C(\mathbf{a})$.

Consider operator P_C^2 . Suppose that $P_C(\mathbf{a}) = \mathbf{b}$ and $P_C^2(\mathbf{a}) = -\mathbf{a}$. Show that vectors \mathbf{a} and \mathbf{b} are orthogonal to each other. (Exam question 2016)

2 Consider plane \mathbf{R}^2 equipped with Riemannian metric $G = \sigma(x,y)(dx^2 + dy^2)$.

Consider in this Riemannian manifold upper half-circle equipped with two different parameterisations

$$C_1: \begin{cases} x = R\cos t \\ y = R\sin t \end{cases}, \quad 0 \le t \le \pi, \qquad C_2: \begin{cases} x = R\cos 2t \\ y = R\sin 2t \end{cases}, \quad 0 \le t \le \frac{\pi}{2}$$

Write down explicitly equations of motion defining parallel transport for the curve C_1 .

Show explicitly that operator of parallel transport is not changed if we change C_1 on C_2 .

3 Consider the Lagrangian of a free particle $L = \frac{1}{2}g_{ik}\dot{x}^i\dot{x}^k$ for Riemannian manifold with a metric $G = g_{ik}dx^idx^k$. Write down the Euler-Lagrange equations of motion for this Lagrangian and compare them with differential equations for geodesics on this Riemannian manifold.

In fact show that

$$\underbrace{\frac{\partial L}{\partial x^i} = \frac{d}{dt} \frac{\partial L}{\partial \dot{x}^i}}_{} \quad \Leftrightarrow \underbrace{\frac{d^2 x^i}{dt^2} + \Gamma^i_{km} \dot{x}^k \dot{x}^m = 0}_{}, \quad (1)$$

Euler-Lagrange equations Equations for geodesics

where

$$\Gamma_{km}^{i} = \frac{1}{2}g^{ij}\left(\frac{\partial g_{jk}}{\partial x^{m}} + \frac{\partial g_{jm}}{\partial x^{k}} - \frac{\partial g_{km}}{\partial x^{j}}\right). \tag{2}$$

- 4 Write down the Lagrangian of a free particle $L = \frac{1}{2}g_{ik}\dot{x}^i\dot{x}^k$ and using the Euler-Lagrange equations for this Lagrangian calculate the Christoffel symbols (the Christoffel symbols of the Levi-Civita connection) for
 - a) for the sphere of radius R
 - b) for the Lobachevsky plane

Compare with the results that you obtained using straightforwardly formula (2) or using formulae for induced connection.

- **5** Find geodesics on cylinder
- a) using straightforwardly equations for geodesics,
- b) using the fact that geodesic is shortest.
- 6* Find geodesics on sphere and cylinder
- a) using straightforwardly equations for geodesics,
- b) using the fact that geodesic is shortest.
- 7 Great circle is a geodesic.

Every geodesic is a great circle.

Are these statements correct?

Make on the base of these statements correct statements and justify them.

8 On the unit sphere $x^2 + y^2 + z^2 = 1$ in \mathbf{E}^3 consider the curve C defined by the equation $\cos \theta - \sin \theta \sin \varphi = 0$ in spherical coordinates.

Show that in the process of parallel transport along the curve C an arbitrary tangent vector to the curve remains tangent to the curve. (Exam question 2016)