URI Online Judge | 1773

Preso no Castelo

Por Cristhian Bonilha, UTFPR Serazil

Timelimit: 1

Você está preso em um castelo com **N** salas e **M** corredores. As salas são enumeradas com números entre 1 e **N**, e você inicialmente está na sala de número 1. Cada um dos **M** corredores liga duas salas distintas. Para tentar encontrar a saída você decidiu visitar todas as salas deste castelo.

Todas estas salas, com exceção da sala de número 1 onde você está, precisam de uma chave para que possam ser visitadas. Para sua sorte, você encontrou algumas anotações no chão, dizendo onde estão todas estas chaves. Por exemplo, sejam S e D duas salas distintas do castelo, para visitar a sala D é preciso antes visitar a sala S que contém a chave que abre a sala D.

Dadas as informações sobre as salas, corredores e as posições das chaves, descubra se é possível visitar todas as salas do castelo.

Entrada

Haverá no máximo 70 casos de tests. Cada caso de teste inicia com dois inteiros \mathbf{N} e \mathbf{M} , indicando o número de salas e corredores do castelo ($2 \le \mathbf{N} \le 10^3$, $1 \le \mathbf{M} \le 10^4$).

Em seguida haverá **M** linhas contendo dois inteiros **A** e **B** cada, indicando que há um corredor que liga a sala **A** e **B**, o qual pode ser atravessado em ambas as direções $(1 \le A, B \le N)$.

Em seguida haverá N-1 inteiros k_2 , k_3 , ..., k_N , indicando que na sala k_i você pode encontrar a chave que abre a sala i ($1 \le k_i \le N$, para todo $2 \le i \le N$). Note que não é dada a sala que contém a chave da sala 1, pois tal sala já está aberta.

A entrada termina com final de arquivo (EOF).

Saída

Se for possível visitar todas as salas deste castelo imprima a palavra "sim", caso contrário imprima a palavra "nao".

Exemplo de Entrada	Exemplo de Saída
4 3	sim
1 2	nao
2 3	
3 4	
1 2 3	
4 3	
1 2	
2 3	
3 4	
3 1 2	