Підготовка до колоквіуму

Студента 3 курсу групи МП-31 Захарова Дмитра

5 грудня 2023 р.

1. Комплексні числа, дії з ними, модуль, аргумент, тригонометрическая форма, нерівності з комплексними числами. Функції $\exp(z)$, $\ln z$, z^w . Комплексні $\sin z$ і $\cos z$.

Доволі зрозуміло, розписувати не буду.

2. Комплексна площина, зв'язна множина, компакт, лема про компакт та замкнену множину. Сферична метрика, сфера Рімана, нескінченність. Функції комплексної змінної, їхні властивості.

Комплексна площина – кожному комплексному числу z = x + iy ставимо у відповідність точку (x,y) на декартовій площині. (див. Горіанов ст. 11).

Зв'язна множина – множина $E \subset \overline{\mathbb{C}}$ називається зв'язною, якщо не існує двох відкритих множин G_1, G_2 , що задовольняють умови:

- 1. $E \subset G_1 \cup G_2$
- 2. $E \cap G_1 \cap G_2 = \emptyset$
- 3. $G_1 \cap E \neq \emptyset$, $G_2 \cap E \neq \emptyset$

Компакт – будь-яка обмежена замкнена множина $K \subset \mathbb{C}$.

Лема про компакт та замкнену множину. Нехай K – компакт, F – замкнена множина на $\mathbb C$. Якщо $K\cap F=\emptyset$, то

$$\inf_{z \in K, w \in F} |z - w| > 0$$

Доведення. Нехай $\alpha:=\inf_{z\in K,w\in F}|z-w|$. З визначення inf випливає, що існують такі послідовності $\{z_n\}_{n\in\mathbb{N}}\subset K, \{w_n\}_{n\in\mathbb{N}}\subset F,$ що $|z_n-w_n|\xrightarrow[n\to\infty]{}\alpha.$

Знайдемо підпослідовність $\{z_{n_k}\}_{k\in\mathbb{N}}$ таку, що $z_{n_k} \xrightarrow[k\to\infty]{} \widetilde{z} \in K...$

Див. Лекцію 2.

Сферична метрика. Розглядаємо сферу $x^2 + y^2 + (w - \frac{1}{2})^2 = \frac{1}{4}$. Кожній точці на сфері, ставимо у відповідність перетин Oxy з прямою, що проходить через цю точку та північний полюс (стереографічна проекція).

Кожній точці на площині відповідає єдина точка на сфері (сфера Рімана). Є неперервним зображенням сфери на площину.

Північному полюсу ставимо у відповідність ∞ . Тому маємо відображення \mathbb{S} з $\overline{\mathbb{C}} := \mathbb{C} \cup \infty$.

Окіл нескінченності це окіл північного полюсу. Сферична відстань між точками:

$$\rho_{\mathbb{S}}(z_1, z_2) = \frac{|z_1 - z_2|}{\sqrt{1 + |z_1|^2} \cdot \sqrt{1 + |z_2|^2}}, \ \rho_{\mathbb{S}}(z, \infty) = \frac{1}{\sqrt{1 + |z|^2}}$$

Функції. $f: E \to \mathbb{C}, E \subset \mathbb{C}$.

Граниия функції.

$$\lim_{z \to z_0} f(z) = A \iff \forall \epsilon > 0 \; \exists \delta(\epsilon) > 0 \; \; 0 < |z - a| < \delta \implies |f(z) - A| < \epsilon$$

 $Henepepenicmь функції. f(z) \in \mathcal{C}(\{z_0\}),$ якщо

$$\forall \epsilon > 0 \ \exists \delta(\epsilon) > 0 \ |z - z_0| < \delta \implies |f(z) - f(z_0)| < \epsilon$$

Далі див. Горіанінов ст. 21.

3. \mathbb{R} та \mathbb{C} -диференційованість, умови Коші-Рімана, голоморфність. Обчислення похідних.

 \mathbb{R} -диференційованість: якщо $\operatorname{Re} f(z)$ та $\operatorname{Im} f(z)$ є обидві диференційованими.

 \mathbb{C} -диференційованість: Беремо малу зміну $\Delta f(z)$:

$$\Delta f(z) = \Delta u + i\Delta v = u_x' \Delta x + u_y' \Delta y + iv_x' \Delta x + iv_y' \Delta y + \overline{o}(\sqrt{\Delta x^2 + \Delta y^2})$$

Якщо позначимо $u'_x + iv'_x = f'_x$ і $u'_y + iv'_y = f'_y$, то

$$\Delta f = f_x' \Delta x + f_y' \Delta y + \overline{o}(\sqrt{\Delta x^2 + \Delta y^2})$$

Враховуючи, що

$$\Delta x = \frac{\Delta z + \overline{\Delta z}}{2}, \ \Delta y = \frac{\Delta z - \overline{\Delta z}}{2i}$$

Таким чином,

$$\Delta f = f_x' \left(\frac{\Delta z + \Delta \overline{z}}{2} \right) + f_y' \left(\frac{\Delta z - \Delta \overline{z}}{2i} \right) + \overline{o}(\sqrt{\Delta x^2 + \Delta y^2})$$

$$\Delta f = \frac{\Delta z}{2} \left(f'_x - i f'_y \right) + \frac{\Delta \overline{z}}{2} \left(f'_x + i f'_y \right) = \frac{1}{2} f'_z \Delta z + \frac{1}{2} f'_{\overline{z}} \Delta \overline{z}$$

Інше визначення:

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z}$$

Властивості диференціювання – такі самі, як і в звичайному математичному аналізі (див. лекцію 2, самий кінець).

Умова Коші-Рімана. Для \mathbb{C} -диференційованості необхідно і досить, щоб f(z) була \mathbb{R} -диференційованою та $f_{\overline{z}}'=0$.

Доведення. \rightarrow

$$\Delta f = f_z' \Delta z + f_{\overline{z}}' \Delta \overline{z} + \overline{o}(|\Delta z|)$$

Якщо $f'_{\overline{z}} = 0$, то

$$\Delta f = f'_z \Delta z + \overline{o}(|\Delta z|) \implies \frac{\Delta f}{\Delta z} = f'_z + \overline{o}(1)$$

Отже, $f \in \mathbb{C}$ -диференційованою, оскільки тоді

$$\frac{\Delta f}{\Delta z} \xrightarrow[z \to 0]{} f'_x - i f'_y$$

і f_x', f_y' існують, оскільки $f \in \mathbb{R}$ -диференційованою.

—. Якщо f(z) є \mathbb{C} -диференційованою, то $\exists L=\alpha+i\beta: \frac{\Delta f}{\Delta z}=A+\overline{o}(1).$ Тоді

$$\Delta f = A\Delta z + \overline{o}(|\Delta z|) = \underbrace{\alpha \Delta x - \beta \Delta y}_{\Delta u} + i \underbrace{(\alpha \Delta y + \beta \Delta x)}_{\Delta v} + \overline{o}(|\Delta z|)$$

Отже u, v диференційовані та

$$\frac{\Delta f}{\Delta z} = f_z' + f_{\overline{z}}' \frac{\Delta \overline{z}}{\Delta z} + \overline{o}(1)$$

Ця границя існує тільки при $f'_{\overline{z}} = 0$.

Голоморфність. f(z) є голоморфною у \mathcal{H} якщо $f \in \mathcal{C}^1(\mathcal{H})$.

4. Якобіан голоморфних відображень. Геометричний сенс аргументу похідної.

Геометричний сенс аргументу похідної. Див. ст. 35. Мельник. $\lim_{\Delta z \to 0} \frac{|\Delta f|}{|\Delta z|} = |f'(z)|$. Нехай z(t) крива. Тоді, $\Delta z = z(t) - z(0), t \to 0$. arg Δz — кут між Δz та Ox. Тоді $\lim_{\Delta z \to 0} \Delta z$ — це кут нахила дотичної.

Далі третя лекція, початок.

Якобіан. Нехай маємо Якобіан для f(x,y) = u(x,y) + iv(x,y):

$$\mathbf{J}_f \triangleq \begin{bmatrix} u_x' & u_y' \\ v_x' & v_y' \end{bmatrix} = \begin{bmatrix} u_x' & u_y' \\ -u_y' & u_x' \end{bmatrix}$$

Є лінійним перетворенням:

$$\mathbf{J}_f = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} u'_x x + u'_y y \\ -u'_y x + u'_x y \end{bmatrix} \iff (u'_x - iu'_y)z = \dots$$

$$\det \mathbf{J}_f = (u_x')^2 + (u_y')^2 = |u'|^2.$$

5. Інтегрування функцій комплексного змінного. Зв'язок з криволінійними інтегралами I і II роду. Оцінка інтеграла.

Нехай $\gamma:z=z(t),t\in [\alpha,\beta]$ – деяка крива в $\mathbb C$. Довжина:

$$L(\gamma) = \sup_{\tau} \sum_{i=1}^{n} |z(t_i) - z(t_{i-1})|$$

де au розбиття $lpha = t_0 < \dots < t_n = eta$. Розглянемо дві інтегральні суми:

$$\sum_{i=1}^{n} f(z(\xi_i))(z(t_i) - z(t_{i-1})), \sum_{i=1}^{n} f(z(\xi_i))|z(t_i) - z(t_{i-1})|$$

де $\xi_i \in [t_{i-1}, t_i]$.

$$\int_{\gamma} f(z)dz = \int_{\gamma} (udx - vdy) + i \int_{\gamma} (udy + vdx)$$
$$\int_{\gamma} f(z)|dz| = \int_{\gamma} uds + i \int_{\gamma} vds$$

де f(z) = u(x,y) + iv(x,y), z = x + iy, а ds – елемент довжини. У випадку кусково-гладкої функції

$$\int_{\gamma} f(z)dz = \int_{\alpha}^{\beta} f(z(t))z'(t)dt, \ \int_{\gamma} f(z)|dz| = \int_{\alpha}^{\beta} f(z(t))|z'(t)|dt$$

Нерівність трикутників:

$$\left| \int_{\gamma} f(z) dz \right| \le \int_{\gamma} |f(z)| \cdot |dz|$$

Якщо f(z) обмежена M, тобто |f(z)| < M, то

$$\left| \int_{\gamma} f(z) dz \right| < M \cdot \ell(\gamma)$$

див. Мельник ст. 79.

6. Теорема Ньютона-Лейбніца. Інтеграл по замкненій кривій. Лема: інтеграл по колу від ступеня z-a.

Первісна — нехай $F \in \mathcal{A}(\Omega), f \in \mathcal{C}(\Omega)$. F є первісною f в області Ω , якщо

$$F'(z) = f(z) \ \forall z \in \Omega$$

Теорема Ньютона-Лейбніца. Нехай $\gamma: [\alpha, \beta] \to \mathbb{C}$ – кусково-гладка крива, шлях E_{γ} якої належить Ω . Якщо $f \in \mathcal{C}(\Omega)$ і має первісну Ψ уздовж γ , тоді

$$\int_{\gamma} f(z)dz = \Psi(\beta) - \Psi(\alpha)$$

Доведення. Нехай γ лежить в колі $K \subset \Omega$, в якому існує первісна F функції f. Тоді суперпозиція $F \circ \gamma(t)$ — первісна функції f вздовж γ , тому

$$\Psi(t) = F \circ \gamma(t) + C$$

Оскільки F'=f у K і γ – гладка крива, то $\dot{\Psi}(t)=\dot{F}(\gamma(t))\dot{\gamma}(t)$, тому

$$\int_{\gamma} f(z)dz = \int_{[\alpha,\beta]} f(\gamma(t))\dot{\gamma}(t)dt = \int_{[\alpha,\beta]} \dot{\Psi}(t)dt = \Psi(\alpha) - \Psi(\beta)$$

Якщо немає такого кола K, то ділимо $\gamma = \bigcup_m \gamma_m$, де $\gamma_m \subset K_m$ – коло $K_m \subset \Omega$.

Інтеграл по замкненій кривій. Нехай f та f' – аналітичні в \mathcal{D} . Тоді

$$\oint_{\partial \mathcal{D}} f(z)dz = 0$$

Доведення. Скористаємося теоремою Гріна. Якщо P(x,y), Q(x,y) неперервно диференційовані в \mathcal{D} , то

$$\oint_{\partial \mathcal{D}} P dx + Q dy = \iint_{\mathcal{D}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

Нехай f(x,y)=u(x,y)+iv(x,y), тоді

$$\oint_{\partial \mathcal{D}} f(z)dz = \oint_{\partial \mathcal{D}} (udx - vdy) + i \oint_{\partial \mathcal{D}} (vdx + udy)$$

Отже:

$$\oint_{\partial \mathcal{D}} f(z)dz = \oint_{\partial \mathcal{D}} \left(-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) + i \oint_{\mathcal{D}} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right)$$

За теоремою Коші-Рімана, обидва інтеграли нульові.

Лема. Інтеграл по колу від ступеня z - a.

$$\oint_{|z-a|=r} (z-a)^n = \begin{cases} 2\pi i, & n=-1\\ 0, & n \in \mathbb{Z} \setminus \{-1\} \end{cases}$$

Доведення. Якщо $n \neq -1$, тоді первісна від $(z-a)^n$ дорівнює $\frac{(z-a)^{n+1}}{n+1}$, тому інтеграл по замкненому шляху 0. Для n=-1 вводимо параметризацію $z(t)=a+re^{2\pi it}$ для $t\in [0,1]$ і тоді:

$$\oint_{|z-a|=r} \frac{1}{z-a} = \int_{[0,1]} \frac{1}{re^{2\pi it}} \cdot 2\pi i r e^{2\pi it} = 2\pi i$$

7. Теорема Коші. \mathcal{D} однозв'язна, f(z) голоморфна в \mathcal{D} , тоді

$$\oint_L f(z)dz = 0$$

Доведення. Будемо вважати, що f'(z) – неперервна. Тоді вона випливає з формули Гріна (див. попередній пункт).

8. Випадок, коли невідомо про неперервність похідної. Випадок трикутника. Загальний випадок.

Лема. Нехай f голоморфна в Ω . Тоді для довільного трикутника Δ , який разом зі своїм замиканням належить Ω ($\Delta \subset \Omega$), маємо

$$\int_{\partial^+ \Delta} f(z) dz = 0$$

де $\partial^+\Delta$ – позитивно орієнтована сторона трикутника. Див. ст. 80 Мельник.

- **9.** Теорема Коші для функцій, безперервних аж до кордону і для багатозв'язної області.
- 10. Інтегральна формула Коши.

Нехай f(z) аналітична на $\mathcal{D}, z \in \mathcal{D}$, тоді

$$f(z) = \frac{1}{2\pi i} \oint_{\partial \mathcal{D}} \frac{f(\zeta)d\zeta}{\zeta - z}$$

Малюємо коло K_r радіусу r навколо z достатньо маленьке так, що $K_r \subset \mathcal{D}$. Оскільки $\frac{f(\zeta)}{\zeta - z}$ аналітично в $\mathcal{D} \setminus K_r$, то

$$\frac{1}{2\pi i} \oint_{\partial \mathcal{D}} \frac{f(\zeta) d\zeta}{\zeta - z} = \frac{1}{2\pi i} \oint_{K_r} \frac{f(\zeta) d\zeta}{\zeta - z} = \frac{1}{2\pi i} \oint_{K_r} \frac{f(\zeta) - f(z)}{\zeta - z} d\zeta + \frac{f(z)}{2\pi i} \oint_{K_r} \frac{d\zeta}{\zeta - z} d\zeta$$

Останній інтеграл дорівнює f(z). Покажемо, що перший 0. Отже

$$\forall \epsilon > 0 \ \exists (\delta) > 0 \ |\zeta - z| < \delta \implies |f(\zeta) - f(z)| < \epsilon$$

Обиражмо $r < \delta$, тоді

$$\left| \frac{1}{2\pi i} \oint_{K_r} \frac{f(\zeta) - f(z)}{\zeta - z} d\zeta \right| \le \frac{1}{2\pi} \oint_{K_r} \frac{|f(\zeta) - f(z)|}{|\zeta - z|} |d\zeta|$$

$$= \frac{1}{2\pi r} \oint_{K_r} |f(\zeta) - f(z)| \cdot |d\zeta|$$

$$\le \frac{\epsilon}{2\pi r} \oint_{K_r} |d\zeta| = \frac{\epsilon}{2\pi r} \cdot 2\pi r = \epsilon \blacksquare$$

11. Гармонійні функції та їх зв'язок з голоморфними.

Функція u(x,y) гармонійна, якщо $u\in\mathcal{C}^2$ та $u_{x^2}''+u_{y^2}''=0$ (або просто $\Delta u=0$).

Теорема 1. f голоморфна, f(x,y) = u(x,y) + iv(x,y), тоді u гармонійна (див. лекцію 5).

Доведення.

$$u_{x^2}'' = (u_x')_x' = (v_y')_x' = (v_x')_y' = (-u_y')_y' = -u_{y^2}''$$

Теорема 2. u(x,y) гармонійна в однозв'язній \mathcal{D} . Існує v(x,y) спряжена гармонійна така, що u(x,y)+iv(x,y) голоморфна в \mathcal{D} , причому v(x,y) визначена до сталої.

Доведення. Візьмемо

$$v(x,y) := \int_{(x_0,y_0)}^{(x,y)} -u'_y dx + u'_x dy$$

Не має залежити від шляху. Є, оскільки умова $P_y' = Q_x'$ для $\int P dx + Q dy$.

Єдиність – легко доводиться.

12. Формула для похідних. Диференційовність похідних.

Наслідок інтегральної теореми Коші. За інтегральною умовою Коші за відповідними умовами для f:

$$f(z) = \frac{1}{2\pi i} \oint_{\partial \mathcal{D}} \frac{f(\zeta)d\zeta}{\zeta - z}$$

Справедливо також наступне:

$$f^{(n)}(z) = \frac{n!}{2\pi i} \oint_{\partial \mathcal{D}} \frac{f(\zeta)d\zeta}{(\zeta - z)^{n+1}}$$

Доведення. Доведемо, що $f'(z)=\frac{1}{2\pi i}\oint_{\partial\mathcal{D}}\frac{f(\zeta)d\zeta}{(\zeta-z)^2}$. Далі довести можна за індукцією. Позначимо $\eta:=\frac{f(z+\Delta z)-f(z)}{\Delta z}$

$$\eta = \left(\frac{1}{2\pi i} \oint_{\partial \mathcal{D}} \frac{f(\zeta)d\zeta}{\zeta - z - \Delta z} - \frac{1}{2\pi i} \oint_{\partial \mathcal{D}} \frac{f(\zeta)d\zeta}{\zeta - z}\right) \frac{1}{\Delta z}$$
$$= \frac{1}{2\pi i} \oint_{\partial \mathcal{D}} \frac{f(\zeta)d\zeta}{(\zeta - z - \Delta z)(\zeta - z)}$$

Тоді

$$\eta - \frac{1}{2\pi i} \oint_{\partial \mathcal{D}} \frac{f(\zeta)d\zeta}{(\zeta - z)^2} = \frac{\Delta z}{2\pi i} \oint_{\partial \mathcal{D}} \frac{f(\zeta)d\zeta}{(\zeta - z)^2 (\zeta - z - \Delta z)}$$

Помітимо тут тепер, що $|\zeta-z| \geq \mathrm{dist}(z,\partial \mathcal{D})$. Так само

$$|\zeta - z - \Delta z| \ge \operatorname{dist}(z, \partial \mathcal{D}) - |\Delta z| \ge \frac{1}{2} \operatorname{dist}(z, \partial \mathcal{D})$$

Отже

$$\left| \eta - \frac{1}{2\pi i} \oint_{\partial \mathcal{D}} \frac{f(\zeta)d\zeta}{(\zeta - z)^2} \right| \le \frac{|\Delta z|}{2\pi} \cdot \frac{\max_{\zeta \in \partial \mathcal{D}} |f(\zeta)|}{\frac{1}{2} \cdot \operatorname{dist}^3(z, \partial \mathcal{D})} \xrightarrow{\Delta z \to 0} 0$$

13. Теорема Морери.

Зворотня до теореми Коші.

Теорема. Нехай $f(z) \in \mathcal{C}(\mathcal{D})$ і $\oint_L f(z)dz = 0$, тоді $f(z) \in \mathcal{H}(\mathcal{D})$.

Доведення. По-перше, $\int_a^b f(z)dz$ не залежить від обраного шляху. Дійсно, нехай є два шляхи L_1, L_2 від a до b. В такому разі

$$\int_{L_1} f(z)dz - \int_{L_2} f(z)dz = \int_{L_1} f(z)dz + \int_{-L_2} f(z)dz = \int_{L_1 - L_2} f(z)dz = 0,$$

оскільки L_1-L_2 є замкненою кривою. Отже, $\int_{L_1} f(z)dz = \int_{L_2} f(z)dz \ \forall L_1, L_2$.

Розглянемо функцію $F(z)=\int_{[a,z]}f(\zeta)d\zeta$. Розглядаємо $\eta:=rac{F(z+\Delta z)-F(z)}{\Delta z}$

$$\eta = \frac{1}{\Delta z} \left(\int_{a}^{z + \Delta z} - \int_{a}^{z} f(\zeta) d\zeta \right) = \frac{1}{\Delta z} \int_{z}^{z + \Delta z} f(\zeta) d\zeta$$

Розглядаємо

$$\eta - f(z) = \frac{1}{\Delta z} \int_{[z,z+\Delta z]} (f(\zeta) - f(z)) d\zeta$$

Причому,

$$\left| \frac{1}{\Delta z} \int_{[z,z+\Delta z]} (f(\zeta) - f(z)) d\zeta \right| \le |\Delta z|^{-1} \cdot \max_{\zeta \in [z,z+\Delta z]} |f(\zeta) - f(z)| \cdot |\Delta z|$$

$$= \max_{\zeta \in [z,z+\Delta z]} |f(\zeta) - f(z)| \xrightarrow{\Delta z \to 0} 0$$

Отже, $|\eta - f(z)| \xrightarrow{\Delta z \to 0} 0$, отже F'(z) = f(z), тому f(z) теж голоморфна.

14. Формули для середнього значення.

Теорема. Нехай f(z) голоморфний у крузі $\mathcal{U}_r(a)$. Тоді

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a + re^{i\theta}) d\theta$$

Доведення. Використовуємо інтегральну формулу Коші:

$$f(a) = \frac{1}{2\pi i} \oint_{|z-a|=r} \frac{f(\zeta)d\zeta}{\zeta - a}$$

Підставляємо $\zeta = a + re^{i\theta}$, тоді $\dot{\zeta} = rie^{i\theta}$, тому

$$f(a) = \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(a + re^{i\theta})rie^{i\theta}d\theta}{re^{i\theta}} = \frac{1}{2\pi} \int_0^{2\pi} f(a + re^{i\theta})d\theta$$

Теорема.

$$f(a) = \frac{1}{\pi R^2} \iint_{\mathcal{U}_R(a)} f(x, y) dx dy$$

Доведення. Нехай $x=\mathrm{Re}\,a+r\cos\theta,y=\mathrm{Im}\,a+r\sin\theta.$ Тоді $r\in[0,R],\theta\in[0,2\pi].$ Тому

$$\frac{1}{\pi R^2} \iint_{\mathcal{U}_R(a)} f(x, y) dx dy = \frac{1}{\pi R^2} \int_0^R r \int_0^{2\pi} f(\operatorname{Re} a + r \cos \theta + (\operatorname{Im} a + r \sin \theta) i) d\theta dr
= \frac{1}{\pi R^2} \int_0^R r \int_0^{2\pi} f(a + r e^{i\theta}) d\theta dr = \frac{1}{\pi R^2} \int_0^R r f(a) 2\pi dr = f(a)$$

15. Теорема Вейєрштрасса. Степеневі ряди.

 $\mathcal{H}(D)$ – голоморфні на D. $\{f_n\}_{n\in\mathbb{N}}$ збігається до f, якщо

$$orall K\subset D:\ K$$
 – компакт $f_n(z)
ightrightarrows f(z)$ на K

Теорема Вейєрштрасса. $\{f_n\}_{n\in\mathbb{N}}\to_K f(z)$. Причому $\{f_n\}_{n\in\mathbb{N}}\subset\mathcal{H}(D)$. Тоді:

1. f(z) голоморфна в D.

2.
$$\forall p \in \mathbb{N} : f_n^{(p)} \to f^{(p)}$$

Доведення.

Пункт 1. Розглянемо

$$\oint_{\gamma} f_n(z)dz - \oint_{\gamma} f(z)dz = \oint_{\gamma} (f_n(z) - f(z))dz$$

 γ – компакт, оскільки замкнута обмежена множина. Тому $f_n \rightrightarrows f$ на γ . Візьмемо модуль:

$$\left| \oint_{\gamma} (f_n(z) - f(z)) dz \right| \le \max_{z \in \gamma} |f_n(z) - f(z)| \ell_{\gamma} \xrightarrow[n \to \infty]{} 0$$

Тому $\oint_{\gamma} f(z)dz = 0$, оскільки $\oint_{\gamma} f_n(z)dz = 0$, а отже f(z) неперервна на кожному компакті D, а отже і на D.

 Πy нкт 2.

$$f^{(p)}(z) = \frac{p!}{2\pi i} \oint_{|\zeta - z^0| = r} \frac{f(\zeta)d\zeta}{(\zeta - z)^{p+1}}$$

Візьмемо $\overline{B(z^0,r)}\subset D,\ z\in B(z^0,\frac{r}{2})$

$$f_n^{(p)}(z) = \frac{p!}{2\pi i} \oint_{|\zeta - z^0| = r} \frac{f_n(\zeta) d\zeta}{(\zeta - z)^{p+1}}$$

Візьмемо різницю:

$$f^{(p)}(z) - f_n^{(p)}(z) = \frac{p!}{2\pi i} \oint_{|\zeta - z^0| = r} \frac{(f(\zeta) - f_n(\zeta))d\zeta}{(\zeta - z)^{p+1}}$$

Розглядаємо модуль:

$$|f^{(p)}(z) - f_n^{(p)}(z)| \le \frac{p!}{2\pi} \cdot 2\pi r \cdot \frac{\max_{|\zeta - z^0| = r} |f(\zeta) - f_n(\zeta)|}{\left(\frac{r}{2}\right)^{p+1}}$$

Тут ми скористалися тим, що $|\zeta-z| \geq |\zeta-z^0| + |z^0-z| \geq \frac{r}{2}$. Отже,

$$|f^{(p)}(z) - f_n^{(p)}(z)| \le \frac{p! \cdot 2^{p+1}}{r^p} \max_{|\zeta - z^0| = r} |f(\zeta) - f_n(\zeta)| \xrightarrow[n \to \infty]{} 0$$

Отже $f^{(p)}(z) - f_n^{(p)}(z) \rightrightarrows 0$, тобто

$$\forall \epsilon > 0 \ \exists n_{\epsilon} \in \mathbb{N} \ \forall n \ge n_{\epsilon} : \max_{z \in B(z^0, r/2)} |f_n(z) - f(z)| < \epsilon$$

Беремо $K \subset D$. Існує скінченна кількість $B(z^j, r^j/2), j \in \{1, ..., N\}$ такі, що $K \subset \bigcup B(z^j, r^j/2)$.

Якщо ж візьмемо $n \ge \max_j n_j$, то отримаємо цю нерівність для усіх точок $z \in K$.

Наслідок. Нехай $\{f_n\}_{n\in\mathbb{N}}\subset\mathcal{H}(D)$. Нехай $\sum_{n\in\mathbb{N}}f_n$ збігається рівномірно на $\mathcal{H}(D)$. Тоді $\sum_{n\in\mathbb{N}}f_n\in\mathcal{H}(D)$ та $\sum_{n\in\mathbb{N}}f_n^{(p)}\rightrightarrows\left(\sum_{n\in\mathbb{N}}f_n(z)\right)^{(p)}$.

Доведення. Розглядаємо

$$g_N(z) := \sum_{n=1}^N f_n(z)$$

А далі використовується теорема Вейєрштрасса.

Визначення. Степеневий ряд це

$$\sum_{n=0}^{\infty} \gamma_n (z-a)^n$$

Теорема. Якщо позначимо $R:=\frac{1}{\overline{\lim}_{n\to\infty}\sqrt[n]{\gamma_n}}$, то якщо взяти $|z-a|\le r< R$, то ряд збігається рівномірно, інакше розбігається.

16. Теорема про розклад голоморфної функції в ряд Тейлора.

Теорема. Нехай $f(z) \in \mathcal{H}(D)$ і $B(a,r) \subset D$. Тоді

1.
$$\exists \{c_n\}_{n=0}^{\infty} : f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n \ \mathrm{B} \ B(a,r)$$

2.
$$c_n = \frac{f^{(n)}(a)}{n!}$$

3. $r_{\text{36iжностi}} > r$

Доведення. Візьмемо $\rho < r$. $f(z) \in \mathcal{H}(B(a,\rho)) \cap \mathcal{C}(B(a,\rho))$. Тоді:

$$z \in B(a, \rho) : f(z) = \frac{1}{2\pi i} \oint_{\partial B(a, \rho)} \frac{f(\zeta)d\zeta}{\zeta - z}$$

Помітимо, що

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - a - (z - a)} = \frac{1}{\zeta - a} \cdot \frac{1}{1 - \frac{z - a}{\zeta - a}}$$

Тому

$$\frac{1}{\zeta-z}=\sum_{n=0}^{\infty}\frac{(z-a)^n}{(\zeta-a)^{n+1}}$$
 збігається рівномірно по ζ якщо $\zeta\in\partial B(a,\rho)$

Тоді:

$$f(z) = \frac{1}{2\pi i} \oint_{\partial B(a,\rho)} d\zeta f(\zeta) \sum_{n=0}^{\infty} \frac{(z-a)^n}{(\zeta-a)^{n+1}}$$

$$= \frac{1}{2\pi i} \sum_{n=0}^{\infty} (z-a)^n \oint_{\partial B(a,\rho)} \frac{f(\zeta)d\zeta}{(\zeta-a)^{n+1}}$$

$$= \frac{1}{2\pi i} \sum_{n=0}^{\infty} \frac{2\pi i f^{(n)}}{n!} (z-a)^n = \sum_{n=0}^{\infty} \frac{f^{(n)}}{n!} (z-a)^n$$

Отже, пункти 1 та 2 вже довели.

Доводимо 3 від протилежного. Нехай $r_{\text{збіжності}} \leq r$. Візьмемо $r_{\text{зб}} < |z-a| < r$. Якщо взяти |z-a| < r збігається у точці z, але розбігається при $|z-a| > r_{\text{зб}}$. Протиріччя.

17. Наслідки Теореми про розклад. Нерівність Коші. Теорема Ліувілля.

Нерівність Коші. Нехай $f(z) \in \mathcal{H}(B(a,r))$, причому $|f(z)| \leq M$. Тоді:

$$|c_n| \le \frac{M}{2^n}$$

Доведення. Маємо формулу

$$c_n = \frac{1}{2\pi i} \oint_{\partial B(a,\rho)} \frac{f(\zeta)d\zeta}{(\zeta - a)^{n+1}}$$

Оцінюємо:

$$|c_n| \le \frac{1}{2\pi} \cdot 2\pi\rho \cdot \frac{\max|f(z)|}{\rho^{n+1}} \le \frac{M}{\rho^n}, \ \rho \to r$$

Теорема Ліувілля. Нехай $f(z) \in \mathcal{H}(\mathbb{C})$ і $|f(z)| \leq M$. Тоді $f \equiv \text{const.}$ Доведення. Розкладаємо f(z):

$$f(z) = \sum_{n=0}^{\infty} c_n z^n$$

З нерівності Коші, $|c_n| \leq \frac{M}{\rho^n}$. Спрямовуємо $\rho \to \infty$. Для $n \neq 0$ маємо

$$|c_n| \le \frac{M}{\rho^n} \xrightarrow[\rho \to \infty]{} 0 \implies c_n \equiv 0 \ \forall n > 0$$

Отже $f(z) = c_0 = \text{const.}$

Теорема.

1. $\underline{\lim}_{r\to\infty} \max_{|z|=r} |f(z)| < \infty \implies f(z) \equiv \text{const.}$

2. $\exists \alpha: \underline{\lim}_{r\to\infty} \max_{|z|=r} |f(z)| \cdot \frac{1}{z^\alpha} < \infty \implies f(z)$ поліном P(z), $\deg P(z) \leq [\alpha]$.

Доведення. Так само як попередній приклад.

18. Теорема єдності. Аналітичне продовження.

Перша теорема єдності. Якщо $f(z) \in \mathcal{H}(D), \ a \in D, \ f^{(n)}(a) = 0 \ \forall n \implies f(z) \equiv 0$

Доведення. Нехай $A = \{z \in D : \exists k \in \mathbb{N} \cup \{0\} \ f^{(k)}(z) \neq 0\}$ та $D \setminus A = \{z \in D : f^{(k)}(z) = 0 \ \forall k \in \mathbb{N} \cup \{0\}\}.$

D — зв'язна, тоді якщо доведемо, що A — відкрита, то або A порожня, або $D\setminus A$ порожня. Але $D\setminus A$ непорожня, тому A порожня, що буде означати, що $f(z)\equiv 0$.

Якщо ж $f^{(k)}(z_0) \neq 0$ і $f^{(k)}$ неперервна, то $f^{(k)}(z) \neq 0$ в околі z_0 . Тобто A – відкрита.

 $D \setminus A$ також відкрита. Беремо $z_0 \in D \setminus A$ і розкладаємо в ряд: $\exists B(z_0, r) \subset D: f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n = 0$. А якщо $f(z) \equiv 0$ в деякому околі, то і похідні теж будуть нулями.

Нулі f(z)? Нехай f(z) голоморфна в околі a.

Визначення. f(z) має нуль кратності k в a, якщо $f(z) = (z-a)^k g(z)$ в околі a, причому $g(a) \neq 0, g(a) \in \mathcal{H}(\text{окіл } a).$

Тобто
$$g(z) = \sum_{n=0}^{\infty} b_n (z-a)^n$$
, $b_0 \neq 0$. $f(z) = \sum_{n=0}^{\infty} b_n (z-a)^{n+k} = \sum_{n=k}^{\infty} c_n (z-a)^n$, $c_m = b_{m-k}$.

Тому

$$f(z) = \sum_{m=0}^{\infty} \frac{f^{(m)}(a)(z-a)^m}{m!}, \ c_m = \frac{f^{(m)}(a)}{m!}$$

Тобто $f^{(m)}(a) = 0$ для $m = 0, \dots, k-1$.

Друга форма єдності. Нехай $f(z) \in \mathcal{H}(D), f(z) = 0, O \subset D, O$ – відкрита. Тоді f(z) = 0 в D – форма першої теореми єдності.

Третя форма єдності. Нехай $f,g\in\mathcal{H}(D)$ і $f\equiv g$ на $O\subset D$. Тоді $f\equiv g$ на D.

Аналітичне продовження.

Визначення. Нехай $f(z) \in \mathcal{H}(D)$. Беремо $D \subset D_1$. І беремо $F(z) \in \mathcal{H}(D_1)$. F(z) є аналітичним продовженням f(z) на область D_1 якщо f(z) = F(z) в D.

Теорема. Якщо продовження існує, то воно єдине!

Доведення. Нехай маємо два продовження F_1, F_2 , але вони збігаються на D, а отже збігаються і на D тотожньо. Тому $F_1 \equiv F_2$.

Приклад. $f(z) = \frac{1}{1-z}$ та $\sum_{k=0}^{\infty} z^k$.

19. Нулі голоморфних функцій. Принцип несгущованості нулів.

Принцип несгущованості нулів (друга теорема єдності). Нехай $f(z) \in \mathcal{H}(D)$ та $\{z_n\}_{n \in \mathbb{N}} \to a \in D, \ f(z_n) = 0 \implies f(z) = 0.$

Доведення. Мусимо довести, що $f^{(n)}(a) = 0 \ \forall n \in \mathbb{N} \cup \{0\}.$

Від противного. Нехай $f(z)=\sum_{n=0}^{\infty}c_n(z-a)^n$. Причому $c_0=0$, оскільки $c_0=f(a)=0,\ c_n=\frac{f^{(n)}(a)}{n!}$.

Беремо $k=\min\{n:c_n\neq 0\}$ – кратність нуля в точці a. Тоді

$$f(z) = (z - a)^k \underbrace{\sum_{n=k}^{\infty} c_n (z - a)^n}_{=g(z)}$$

Тоді $g(a) = c_k \neq 0$ і $g(z) \neq 0$ в околі a.

 $0=f(z_n)=(z_n-a)^kg(z_n).$ Протиріччя, оскільки $g(z_n)\neq 0, (z_n-a)^k\neq 0,$ а $f(z_n)=0.$

20. Принцип максімуму модуля для гармонійних та голоморфних функцій.

Теорема.

1. Якщо u(z) гармонічна в D та $u(z) \not\equiv {\rm const.}$ тоді

$$\inf_{\zeta \in D} u(\zeta) < u(z) < \sup_{\zeta \in D} u(\zeta)$$

2. $f(z) \in \mathcal{H}(D)$, причому $f \not\equiv \mathrm{const.}$ Тоді

$$|f(z)| < \sup_{\zeta \in D} |f(\zeta)| \ \forall z \in D$$

Доведення.

Доведення правої частини для гармонійних функцій. Нехай $M:=\sup_{\zeta\in D}u(\zeta)$. Розглянемо дві множини: $A=\{z\in D:u(z)=M\}$ та $D\setminus A=\{z\in D:u(z)< M\}$.

Легше почати з $D \setminus A$. Оскільки функція гармонійна, то вона неперервна, а отже якщо в деякій точці u(z) < M, то так само буде і для деякого її околу.

Залишилось довести відкритість A. Нехай $z_0 \in A$. Розглянемо $\overline{B}(z_0,r) \subset D$. Маємо

$$u(z_0) = \frac{1}{\pi r^2} \iint_{B(z_0,r)} u(z) dx dy$$

 $Buna\partial o\kappa 1. B(z_0,r) \subset A$, тоді A відкрите.

Випадок 2. $\exists z_1 \in B(z_0, r) \land z_1 \not\in A$. Отже, $u(z_1) < M - \epsilon$. Отже

$$M = \frac{1}{\pi r^2} \iint_{B(z_0, r) \setminus B(z, \rho)} u(z) dx dy + \frac{1}{\pi r^2} \iint_{B(z, \rho)} u(z) dx dy$$

$$\leq \frac{1}{\pi r^2} \iint_{B(z_0, r) \setminus B(z, \rho)} M dx dy + \frac{1}{\pi r^2} \iint_{B(z, \rho)} (M - \epsilon) dx dy$$

$$= \frac{M(\pi r^2 - \pi \rho^2)}{\pi r^2} + \frac{(M - \epsilon)\pi \rho^2}{\pi r^2} = M - \frac{\epsilon \rho^2}{r^2} < M$$

2. Для голоморфних. Доведемо від протилежного. Нехай $\exists z_0 : |f(z_0)| = M = \sup_D |f(\zeta)|$, тому $f(z_0) = Me^{i\alpha}$.

Розглядаємо $g(z) = f(z)e^{-i\alpha}$. Тоді $g(z_0) = M$.

 ${\rm Re}\,g(z_0)$ гармонійна, ${\rm Re}\,g(z)\leq M,\ g(z_0)=M.$ Отже $g(z)\equiv{\rm const.}$ тоді за умовою Коші-Рімана $g(z)\equiv{\rm const.}$, $f(z)\equiv{\rm const.}$, протиріччя умові.

21. Наслідки принципу максимуму модуля: Варіант теореми Вейерштрасса, лема Шварца.

Головний наслідок. $f(z) \in \mathcal{H}(D) \cap \mathcal{C}(\overline{D}), D$ – обмежена область.

$$|f(z)| \le \max_{\partial D} |f(\zeta)|$$

Доведення. Розглядаємо |f(z)| – неперервна на \overline{D} , тобто десь досягає максимума в точці z_0 . Причому $z_0 \in \partial D$, оскільки не належить D.

Теорема Вейерштрасса в іншій формі.

Нехай $f_n(z) \in \mathcal{H}(D) \cap \mathcal{C}(\overline{D})$, D обмежена, $f_n \rightrightarrows \varphi$ на ∂D . Тоді $\exists f(z) \in \mathcal{H}(D) \cap \overline{C}(\overline{D}) : f(z) \rightrightarrows \varphi \text{ в } \overline{D}$

Доведення. Маємо

$$|f_n(z) - f_m(z)| \le \max_{\partial D} |f_n(z) - f_m(z)| \xrightarrow[n,m\to\infty]{} 0$$

Звідки $f_n \rightrightarrows f \in \mathcal{C}(\overline{D})$. Звідси одразу випливає те, що доводили.

Лема Шварца. $f(z) \in \mathcal{H}(\{z \in \mathbb{C} : |z| < 1\})$ та |f(z)| < 1 та f(0) = 0. Звідси випливає

$$|f(z)| \le |z|$$

Якщо ж $\exists z_0 \in \mathbb{C} : f(z_0) = z_0$, то $f(z) = e^{i\gamma}z, \ \gamma \in \mathbb{R}$

Відповідь. Розглядаємо

$$g(z) := \frac{f(z)}{z}$$

Розглядаємо ряд Тейлра:

$$f(z) = c_0 + c_1 z + c_2 z^2 + \dots$$

Помічаємо, що $c_0 = f(0) = 0$, тому

$$g(z) = \frac{c_1 z + c_2 z^2 + \dots}{z} = c_1 + c_2 z + \dots$$

Отже g(z) є аналітичним продовженням f(z) з 0<|z|<1 на |z|<1 і є голоморфною на |z|<1.

Розглядаємо $|z| \le r < 1$. Маємо

$$|g(z)| \le \max_{|z|=r} \frac{|f(z)|}{|z|} \le \frac{1}{r}$$

Гранично переходимо до $r \to 1$, маємо

$$|g(z)| < 1$$

Якщо ж $|g(z_0)|=1$, то $|g(z_0)|\equiv {\rm const},$ то $g(z)=ze^{i\gamma},\gamma\in\mathbb{R}.$ Отже,

$$\frac{|f(z)|}{|z|} < 1 \implies |f(z)| < |z| \blacksquare$$

22. Ряд Лорана, теорема про розкладання голоморфної функції в ряд Лорана. Едність.

Означення. Ряд Лорана:

$$\sum_{n=-\infty}^{\infty} c_n (z-a)^n \equiv \sum_{n=0}^{\infty} c_n (z-a)^n + \sum_{n=1}^{\infty} c_{-n} (z-a)^{-n}$$

Введемо $w=(z-a)^{-1},$ тоді

$$\sum_{n=1}^{\infty} c_{-n}(z-a)^{-n} = \sum_{n=1}^{\infty} c_{-n}w^{n}$$

Теорема. $f(z) \in \mathcal{H}(r < |z - a| < R)$, тоді

$$f(z) = \sum_{n=-\infty}^{+\infty} c_n (z-a)^n,$$

причому c_n визначаються однозначно.

Доведення. Візьмемо r', R' так, щоб r' < |z - a| < R'. Фіксуємо z в цьому кільці. Застосовуємо інтегральну формулу Коші для r' < |z - a| < R':

$$\begin{split} f(z) &= \frac{1}{2\pi i} \oint_{\partial(r' < |z-a| < R')} \frac{f(\zeta)d\zeta}{\zeta - z} \\ &= \frac{1}{2\pi i} \oint_{|\zeta - a| = R'} \frac{f(\zeta)d\zeta}{\zeta - z} - \frac{1}{2\pi i} \oint_{|\zeta - a| = r'} \frac{f(\zeta)d\zeta}{\zeta - z} \end{split}$$

Тепер помітимо те, шо

$$-\frac{1}{\zeta - z} = -\frac{1}{(\zeta - a) - (z - a)} = \frac{1}{z - a} \cdot \frac{1}{1 - \frac{\zeta - a}{z - a}}$$
$$= \sum_{n=0}^{\infty} \frac{(\zeta - a)^n}{(z - a)^{n+1}}$$