Exponential Functions MATH 1441, BCIT

Technical Mathematics for Food Technology

September 21, 2017

Functions

- Here are a few definitions,
 - function A function assigns a unique element of a set to each element of another (not necessarily distinct) set.
 - domain The domain is the set of elements to which the function assigns a unique element.
 - codomain The codomain is the set from which the function picks out elements to assign.
 - range The range is the subset of the codomain whose elements the function assigns to an element in the domain.
 - injective A function is injective if it does not assign the same element of the codomain to two distinct elements in the domain.
 - surjective A function is surjective if there are no elements in the codomain which are not assigned to an element in the domain.

Examples

What are possible domains and ranges for the following functions? Are the functions injective or surjective, given a particular domain and codomain?

$$f(x) = 2x + 3 \tag{1}$$

$$f(x) = x^2 - 1 \tag{2}$$

$$f(x) = \sqrt{x+4} \tag{3}$$

$$f(x) = \frac{1}{x+7}$$
 (4)

$$f(x) = 10^{2x}$$
 (5)

$$f(x) = 10^{2x} \tag{5}$$

Inverse Functions

If a function f from a domain to a codomain is injective, then there is a function f^{-1} from the range of f to its domain which has the following property,

$$f^{-1}(y) = x$$
 if and only if $f(x) = y$ (6)

We call f^{-1} the inverse function of f. Let, for example,

$$f(x) = 4x - 3 \tag{7}$$

Replace f(x) by y for the equation y = 4x - 3 and manipulate the equation to isolate x. Then replace x by $f^{-1}(y)$ for the inverse function

$$f^{-1}(y) = \frac{y+3}{4} \tag{8}$$

Defining Logarithms

Let f be an exponential function with a base a > 1,

$$f(x) = a^x \tag{9}$$

Considering the function graph of this exponential function, it is apparent that f is an injective and surjective function for the domain \mathbb{R} and the codomain \mathbb{R}^+ . \mathbb{R}^+ is the set of all positive real numbers. There is therefore an inverse function from \mathbb{R}^+ to the real numbers, which we shall call \log_a ,

$$\log_a(y) = x$$
 if and only if $a^x = y$ (10)

Logarithm Charts

Here is an excerpt from John Napier's logarithm chart.

Logarithm Charts I

A logarithm chart has a left-hand column for y and a right-hand column for x such that $a^x = y$. Here is an example, taking a = 10.

1	0.00000	:	:
2	0.30103	432	2.6355
3	0.47712	:	÷
4	0.60206	703	2.8470
5	0.69897	:	:
6	0.77815	303696	5.4825
7	0.84510	:	:
8	0.90309		
9	0.95424		
10	1.00000		

Logarithm Charts II

Imagine you have no calculator and you need to multiply $432 \cdot 703$. It would take a while to do by hand! Alternatively, you could use a logarithm chart, look up the logarithms for 432 and 703, add them (as opposed to multiplying!), and then look up which number corresponds to the resulting logarithm.

$$432 \cdot 703 = 10^{2.6355} \cdot 10^{2.8470} =$$

$$10^{2.6355 + 2.8470} = 10^{5.4825} = 303696$$
(11)

Properties of the Logarithm

- The domain of log_a is all the positive real numbers.
- The range of \log_a is the whole number line \mathbb{R} .
- The logarithm of y = 1 is always 0. Reason: $a^0 = 1$.
- The logarithm of the base y = a is always 1. Reason: $a^1 = a$.
- The logarithm of $y = a^x$ is always x. Reason: $a^x = a^x$.
- a to the power of $\log_a y$ is y. Reason: that's precisely the definition of the logarithmic function.

Laws of Logarithms

Here are some laws, all of which make sense in terms of what we have learned so far.

$$\log_a(AB) = \log_a A + \log_a B \tag{12}$$

$$\log_a \left(\frac{A}{B}\right) = \log_a A - \log_a B \tag{13}$$

$$\log_a(A^C) = C \cdot \log_a A \tag{14}$$

A and B must be positive real numbers for these laws to be generally valid. For example,

$$\log((-2)\cdot(-2)) \neq \log(-2) + \log(-2).$$

What Not to Do

Make sure that you **do not** apply the laws of logarithms the wrong way around!

$$\log_a(x+y) \neq \log_a x + \log_a y \tag{15}$$

$$\frac{\log_a x}{\log_a y} \neq \log_a x - \log_a y \tag{16}$$

$$(\log_a x)^3 \neq 3\log_a x \tag{17}$$

Notation: sometimes we write $\ln x$ instead of $\log_e(x)$. \log_e is also called the natural logarithm.

Change of Base Law

Suppose you know what $\log_a x$ is but you want to know what $\log_b x$ is. Consider the following equivalent equations:

$$y = \log_b x \tag{18}$$

$$b^{y} = x \tag{19}$$

$$\log_a(b^y) = \log_a x \tag{20}$$

$$y\log_a b = \log_a x \tag{21}$$

$$y = \frac{\log_a x}{\log_a b} \tag{22}$$

This proves the Change of Base Formula:

$$\log_b x = \frac{\log_a x}{\log_a b} \tag{23}$$

Exercises I

(1) Express

$$3\ln x + \frac{1}{2}\ln(x+1) \tag{24}$$

as a single logarithm.

(2) Analyze the expression

$$\log_{12}\left(\frac{x^3}{y^{\frac{1}{2}}}\right) \tag{25}$$

(3) What is

$$\ln \ln e^{e^{\ln e^x}} \tag{26}$$

Exercises II

(4) Show that

$$-\ln\left(x - \sqrt{x^2 - 1}\right) = \ln\left(x + \sqrt{x^2 - 1}\right)$$
 (27)

(5) Use the Change of Base Formula and the calculator to evaluate log_724 and log_359049 .

End of Lesson

Next Lesson: Exponential Equations