

Quels sont les types de régulateurs?

- Quels sont les types de régulateurs?
 - Régulateurs Linéaires
 - Régulateurs Switching
- 2 Comment filtrer une alimentation?
- 3 Comment conçevoir un arbre d'alimentation?

i≣	Critère	Régulateur Linéaire	Régulateur Switching
\$	Coût	Faible ✓	Moyen à Élevé 🗶
i.	Complexité	Faible ✓	Moyen à Élevé 🗴
%	Efficacité	Faible 🗶	Très Efficace ✓
小	Bruit	Faible ✓	Moyen à Élevé 🗴
>4	V_{out}	$V_{out} < V_{in}$ X	$V_{out} \subseteq \mathbb{R}$ 🗸
4	Courant	Faible à Moyen 🗴	Moyen à Élevé ✔
ß	Température	Élevée 🗶	Faible à Moyenne 🗸

Quels sont les types de régulateurs?

- Quels sont les types de régulateurs?
 - Régulateurs Linéaires
 - Régulateurs Switching
- 2 Comment filtrer une alimentation?
- 3 Comment conçevoir un arbre d'alimentation?

- Régulateur très simple
 - IC
 - Pièces autours

≣	Régulateur Linéaire
\$	Faible 🗸
ii-	Faible 🗸

- Régulateur très simple
 - IC
 - Pièces autours
- Output très stable
 - PSRR

≣	Régulateur Linéaire
\$	Faible ✓
ii.	Faible 🗸
ሇ	Faible ✓

- Régulateur très simple
 - IC
 - Pièces autours
- Output très stable
 - PSRR
- $V_{in} > V_{out} > 0.5 \text{ V}$

I≡	Régulateur Linéaire
\$	Faible 🗸
÷.	Faible 🗸
ሇ	Faible 🗸
7 \$	$V_{out} < V_{in}$ X

- Régulateur très simple
 - IC
 - Pièces autours
- Output très stable
 - PSRR
- $V_{in} > V_{out} > 0.5 \text{ V}$
- Très peu efficace
 - $I_{in} = I_{out}$

• eff =
$$\frac{P_{out}}{P_{in}} = \frac{V_{out}}{V_{in}}$$

Ħ	Régulateur Linéaire
\$	Faible √
ii.	Faible 🗸
ሇ	Faible ✓
*	$V_{out} < V_{in}$ X
%	Faible 🗶

- Régulateur très simple
 - IC
 - Pièces autours
- Output très stable
 - PSRR
- $V_{in} > V_{out} > 0.5 \text{ V}$
- Très peu efficace
 - $I_{in} = I_{out}$

• eff =
$$\frac{P_{out}}{P_{in}} = \frac{V_{out}}{V_{in}}$$

- Power dissipée en chaleur!
- Limite le courant

≡	Régulateur Linéaire
\$	Faible ✓
ii.	Faible ✓
小	Faible ✓
*	$V_{out} < V_{in}$ X
%	Faible 🗶
	Élevée 🗶
4	Faible à Moyen 🗴

Régulateur Linéaire - Fonctionnement

Power Supply Ripple Reduction

$$PSRR = \frac{\Delta V_{in}}{\Delta V_{out}}$$

Power Supply Ripple Reduction

$$PSRR = \frac{\Delta V_{in}}{\Delta V_{out}}$$

$$PSRR(dB) = -20 \log \left(\frac{\Delta V_{in}}{\Delta V_{out}} \right)$$

- Réduction du bruit
- À une fréquence

$$PSRR = \frac{\Delta V_{in}}{\Delta V_{out}}$$

$$PSRR(dB) = -20 \log \left(\frac{\Delta V_{in}}{\Delta V_{out}} \right)$$

- Réduction du bruit
- À une fréquence
- Graphique PSRR
- Dépend du courant

Quand choisir un régulateur linéaire?

- \$ Low-Cost
- F Peu de courant
- Peu d'espace
- Truit très important
- % Efficacité peu importante
- **?** À utiliser avec des régulateurs switching!

Quels sont les types de régulateurs?

- Quels sont les types de régulateurs?
 - Régulateurs Linéaires
 - Régulateurs Switching
- 2 Comment filtrer une alimentation?
- 3 Comment conçevoir un arbre d'alimentation?

- 1) Que sont es types de régulateurs?
- 2 Comment filtrer une alimentation?
 - Filtrer l'entrée
 - Filtrer la sortie d'un régulateur
 - Filtrer au IC
- 3 Comment conçevoir un arbre d'alimentation?

- 1) Que la some es types de régulateurs?
- 2 Comment filtrer une alimentation?
 - Filtrer l'entrée
 - Filtrer la sortie d'un régulateur
 - Filtrer au IC
- 3 Comment conçevoir un arbre d'alimentation?

- 1) Que la sont les types de régulateurs?
- 2 Comment filtrer une alimentation?
 - Filtrer l'entrée
 - Filtrer la sortie d'un régulateur
 - Filtrer au IC
- 3 Comment conçevoir un arbre d'alimentation?

- 1 Que la sont es types de régulateurs?
- 2 Comment filtrer une alimentation?
 - Filtrer l'entrée
 - Filtrer la sortie d'un régulateur
 - Filtrer au IC
- 3 Comment conçevoir un arbre d'alimentation?

Comment conçevoir un arbre d'alimentation?

- 1 Quels sont les types de régulateurs?
- 2 Comment filtrer une alimentation?
- 3 Comment conçevoir un arbre d'alimentation?

