Generic NiCR PROM Family 53/63XXX-1 53/63XXX-2

Features/Benefit

- From 256 Bit to 8192 Bit memory
- · 4-bit-wide and 8-bit-wide for byte oriented applications
- -1 series for standard performance
- · -2 series for enhanced performanced
- Reliability proven nichrome fusible links (qualified for MIL-M-38510)
- PNP inputs for low input current
- . Compatible pin configurations for upward expansion

Application

- Microprogram store
- Microprocessor program store
- · Look up table
- · Character generator
- Random logic
- Code converter

Description

The 53/63XX series generic PROM family offers a wide selection of size and organizations. The 4-bit wide PROMs range from 256x4 to 2048x4 and feature upward/downward pin out compatibility in the space saving 16 and 18 pin packages. The 8-bit wide PROMs range from 32x8 to 1024x8 in a wide selection of package size including the space saving SKINNYDIP™ 24-pin .300 inch wide package. ALL PROMs have the same programming specifications allowing a single generic programmer.

The family features low input current PNP inputs, full Schottky clamping, three-state and open collector outputs. The nichrome fuses store a logical high and are programmed to the low state. Special on chip circuitry and extra fuses provide preprogramming tests which assure high programming yields and high reliability.

The 63 series is specified for operation over the commercial temperature and voltage range. The 53 series is specified for the military ranges.

Generic PROM Selection Guide

	MEMORY			KAGE	DEVICE	TYPE	OUTPUT
SIZE	ORGANIZA	TION	PINS	TYPE	COMMERCIAL	MILITARY	WIDTH
1K	256x4	OC TS	16	N, J, F, W	6300-1 6301-1	5300-1 5301-1	
2K	512x4	OC TS	16	N. J. F. W	(5) 6305-1 6306-1	5305-1 5306-1	4-bit-wide
4K	1024x4	OC TS	18	N, J	6352-1 6353-1, -2	5352-1 5353-1, -2	4-bit-wide
8K	2048x4	OC TS	18	J	6388-1 6389-1, -2	5388-1 5389-1, -2	
1/4 K	32x8	OC TS	16	N, J, F, W	6330-1 6331-1	5330-1 5331-1	
2K	256x8	OC TS	20	N, J, F	6308-1 6309-1	5308-1 5309-1	
		TS	24)	J	6336-2		8-bit-wide
ALZ	540.0	OC TS	24 (28)	N,JS*,F(L)	6340-1 6341-1, -2	5340-1 5341-1, -2	o sit wide
4K	512x8	OC TS	20	N, J	6348-1 6349-1, -2	5348-1 5349-1, -2	
8K	1024×8	OC TS	24	N,J,JS*,F	6380-1, -2 6381-1, -2	5380-1, -2 5381-1, -2	

JS is the .300 inch wide SKINNYDIP™ package.

Monolithic MM Memories

Absolute Maximum Ratings

Supply voltage V _{CC} -0.5V to 7	V
Input voltage	V
Off-state output voltage0.5V to 5.5'	V
Storage temperature range65° C to + 150°C	2

Operating Conditions

SYMBOL	PARAMETER MI		MILITARY MIN NOM MAX		COMMERCIAL MIN NOM MAX		UNIT	
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	٧
TA	Operating free-air temperature	-55		125	0		75	°C

Electrical Characteristics Over Operating Conditions

SYMBOL	PARAMETER	1	TEST CONDITIONS		-1 SERIES MIN MAX	-2 SERIES MIN MAX	UNIT
VIL	Low-level input voltage				0.8	0.8	٧
VIH	High-level input voltage				2	2	٧
ViC	Input clamp voltage	V _{CC} = MIN	I _I = -18mA		-1.5	-1.5	٧
I _I L	Low-level input current	V _{CC} = MAX	V _I = 0.45V		-0.25	-0.25	mA
lн	High-level input current	V _{CC} = MAX	$V_I = 4.5V$ (Progr $V_I = V_{CC} MAX$ (C	am pin) ther pins)	40	40	μА
V _{OL}	Low-level output voltage	V _{CC} = MIN V _{IL} = 0.8V	MIL I _{OL} = 12mA		0.5	0.5	v
·OL		V _{IH} = 2V	COM I _{OL} = 16mA				
Vон	High-level output voltage *	V _{CC} = MIN V _{IL} = 0.8V	MIL IOH = -2mA			0.4	v
TOH	- Ng	V _{IH} = 2V	COM I _{OH} = -3.2mA		2.4	2.4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
lozL			V _O = 0.5V		-100	-40	μΑ
lozh	Off-state output current *	V _{CC} = MAX	V _O = 2.4V		100	40) μ A
	On an adjusted suits at surrout	rent $V_{CC} = MAX$ $V_{O} = 2.4V$ $V_{O} = 5.5V$			100	40	
ICEX	Open collector output current					100	μΑ
los	Output short-circuit current*†	V _{CC} = 5V	V _O = 0V		-20 -90	-20 -90	mA
			'30. '31.		125		
		1	'00. '01.		130	_	
			'05. '06.		130		
		V _{CC} = MAX	'08. '09. '36.		155	155	_
	!	All inputs	'40, '41, '48, '49	MIL	155	175	
^l cc	Supply current	grounded. All		СОМ	155	155	mA
- '		outputs open	'52, '53		175	140	1
		Carpato oport	'88, '89	MIL	170	170	-
				СОМ	170	155	-
			80, 81	COM	175 175	175 170	-

^{*} Thre-state only.

^{*} Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

Switching Characteristics

Over Commercial Operating Conditions

DEVICE TYPE	t _{AA} (ns) ADDRESS ACCESS TIME	t _{EA} AND t _{ER} (ns) ENABLE ACCES AND RECOVERY TIME	CONDITIONS (See standard test load)	
	MAX	MAX	R1 (Ω)	R2 (11)
6300-1, 6301-1	55	30		
6305-1, 6306-1	60	30		600
6308-1, 6309-1	70	30		
6330-1, 6331-1	50	30		
. 6336-2	70	30		
6340-1, 6341-1	70	30		
6341-2	55	30		
6348-1, 6349-1	70	30	000	
6349-2	55	30	300	
6352-1, 6353-1	60	30		
6353-2	50	30		
6388-1, 6389-1	70	30		
6389-2	55	30		
6380-1, 6381-1	90	40		
6380-2	70	30		
6381-2	55	30		

Over Military Operating Conditions

DEVICE TYPE	t _{AA} (ns) ADDRESS ACCESS TIME	t _{EA} AND t _{ER} (ns) ENABLE ACCES AND RECOVERY TIME	CONDITIONS (See standard test load)		
	MAX	MAX	R1 (Ω)	R2 (Ω)	
5300-1, 5301-1	75	40			
5305-1, 5306-1	75	40			
5308-1, 5309-1	80	40			
5330-1, 5331-1	60	40			
5336-2	80	40		750	
5340-1, 5341-1	80	40			
5341-2	70	40			
5348-1, 5349-1	80	40	075		
5349-2	70	40	375		
5352-1, 5353-1	75	40			
5353-2	65	30			
5388-1, 5389-1	100	40			
5389-2	70	40			
5380-1, 5381-1	125	40			
5380-2	90	40			
5381-2	70	40			

53/6331

53/6301

53/6336 53/6341 53/6349

Typical I_{CC} vs Temperature

Typical TAA vs Temperature

53/6353

Typical I_{CC} vs Temperature

Typical T_{AA} vs Temperature

NOTE: Typical characteristic curves are for three-state devices. Equivalent open collector devices decrease in I_{CC} approximately 10 mA and increase in T_{AA} approximately 6 ns.

Switching Test Load

Definition of Timing Diagram

WAVEFORM INPUTS OUTPUTS

DON'T CARE: CHANGING: STATE UNKNOWN

NOT APPLICABLE

MUST BE STEADY

OUTPUTS

CHANGING: STATE UNKNOWN

CHANGING: STATE UNKNOWN

WILL BE STEADY

3

Definition of Waveforms

NOTES: 1. Input pulse amplitude 0V to 3.0V.

- 2. Input rise and fall times 2-5ns from 1.0V to 2.0V.
- 3. Input access measured at the 1.5V level.
- 4. t_{AA} is tested with switch S_1 closed, C_L = 30pF and measured at 1.5V output level.
- 5. For open collector devices, TEA and TER are measured at the 1.5V output level with S_1 closed and C_L = 30pF.
- For three-state devices, TEA is measured at the 1.5V output level with C_L = 30pF. S₁ is open for high impedance to "1" test and closed for high impedance to "0" test.

TER is tested with C_L = 5pF, S_1 is open for "1" to high impedance test, measured at V_{OH} = 0.5V output level; S_1 is closed for "0" to high impedance test measured at V_{OL} + 0.5V output level.

Commercial Programmers

Monolithic Memories PROMs are designed and tested to give a programming yield greater than 97%. If your programming yield is lower, check you programmer. It may not be properly calibrated. (See Figure 1).

Programming is final manufacturing—it must be quality-controlled. Equipment must be calibrated as a regular

PROM PROGRAMMING EQUIPMENT INFORMATION

SOURCE AND LOCATION

Data I/O Corp. P.O. Box 308 Issaquah, WA 98027

Kontron Electronic, Inc. 630 Price Ave. Redwood City, CA 94036 routine, ideally under the actual conditions of use. Each time a new board or a new programming module is inserted, the whole system should be checked. Both timing and voltages must meet published specifications for the device.

Remember—The best PROMs available can be made unreliable by improper programming techniques.

Digelec Inc. 7335 E. Acoma DR Suite 103 Scottsdale, AZ 85260

3-58

NiCr PROM Programming Instructions 53/63XX

Description

The 53/63XX Generic PROM Family is manufactured with outputs high in all storage locations. To make an output low at

Programming Procedure (See Figure 1)

- 1. Apply the desired address to the inputs.
- 2. Enable Inputs may be left at any state. *
- 3. Apply 5.5V to VCC.
- Apply V_{PP} to the program pin. (This step is not used on the 32x8 PROM) *
- Apply V_{OUT} to the output to be programmed.
- 6. Remove VOUT.
- 7. Remove Vpp.
- Verification may be performed after each bit or word or after completing the programming of all memory locations.

In order to avoid misprogramming the PROM only one output at time is to be programmed. Outputs not being programmed should be connected to V_{CC} via 5K Ω resistors.

The 5330/1 and 6330/1 do not have a program pin. For these devices the
output only is used in programming a particular selected bit and the device
must be in the disabled state.

A particular word, a nichrome fusible link must be opened. This procedure is called programming.

Verification Procedure (See Figure 2)

- 1. Enable the device
- 2. To verify low-state:
 - 2A. Apply an address where the output should be low.
 - 2B. Apply 4.2V to V_{CC}
 - 2C. Load the output with IOI = 12 mA.
 - 2D. Check that the output is less than 0.8V.
- 3. To verify High-state:
 - 3A. Apply an address where the output should be high.
 - 3B. Apply 6V to VCC.
 - 3C. Load the output with $I_{OH} = -0.3$ mA.
 - 3D. Check that the output is higher than 4.5V.

Programming Parameters Do not test these parameters or you will program the device.

SYMBOL	PARAMETER	CONDITIONS TA = +25° C	FIGURE	MIN	LIMITS TYP	MAX	UNIT
t _R	Slew rate of Programming Pulses†			0.3		0.5	V/μs
VCCP	VCC During Programming			5.4	5.5	5.6	V
	Maximum Duty Cycle					25	%
V _{PP}	Programming Voltage on Program Pin*		1	27		33	V
Vout	Programming Voltage on Output Pin *		1	20		26	V
t _{D1}	D. In the transport VOLET		,	0	10	20	μs
t _{D2}	Delay between VPP and VOUT			0	0.5	1	
tp	Pulse width of VOUT		1	10		40	μs
V _{OLV}	VOL during verification	Chip enabled IOL = 12 mA VCC = 4.2V	2	•		0.8	V
V _{OHV}	VOH during verification	Chip enabled IOH = 0.3 mA VCC = 6V	2	4.5			V

Voltage supply must be capable of supplying at least 240 mA

TWX: 910-338-2376

[†]Leading edge of VPP and VOUT

Figure 1. Programming Timing Diagram

Optimized Programming Algorithm

- 1. Pulse all fuses to be programmed with single, minimum voltage programming pulses (line 1 in the table).
- Verify all fuses at low VCC (4.2V). During this step, unprogrammed fuses are pulsed up to eight more times (see table).
- 3. Re-verify at low VCC (4.2V) and high VCC (6V).

PULSE Number	PROGRAM PIN VOLTAGE	OUTPUT VOLTAGE
1 to 3	27V	20V
4 to 6	30V	23V
7 to 9	33V	26V