Προβλήματα Ικανοποίησης Περιορισμών (CSPs)

2ο Φροντιστήριο

Maintaining Arc Concisteny (AC-3)

- Μεταβλητές: ν₁, ν₂, ν₃, ν₄, ν₅
- Πεδία ορισμού:

$$O$$
 $D_1 = D_4 = \{0, 1, 2\}$

$$O$$
 $D_2 = \{1, 2\}$

$$\circ$$
 $D_3 = \{1, 2, 3\}$

$$O D_5 = \{2, 3\}$$

- Σειρά ανάθεσης τιμών: v_1 , v_2 , v_3 , v_4 , v_5 .
- Σειρά επιλογής τιμών: 0, 1, 2, 3.
- Εφαρμόστε τον αλγόριθμο MAC.

Maintaining Arc Concisteny (AC-3)

- Αρχικά όλες οι ακμές είναι συνεπείς.
- $v_1 = 0 \rightarrow D_4 = \{1,2\} \rightarrow \pi \rho \epsilon \pi \epsilon i \ v \alpha \ \epsilon \xi \epsilon \tau \alpha \sigma \sigma \sigma \mu \epsilon \tau i \zeta \ \alpha \kappa \mu \epsilon \zeta : \ (v_2, v_4), \ (v_3, v_4), \ (v_5, v_4)$
 - \circ $(V_2, V_4) \rightarrow OK$
 - \circ $(V_3, V_4) \rightarrow OK$
 - $\circ \quad (\mathsf{V}_{\mathsf{5}},\,\mathsf{V}_{\mathsf{4}}) \mapsto \mathsf{OK}$
- $v_2 = 1 \rightarrow D_3 = \{2,3\}, D_4 = \{2\} \rightarrow \pi \rho \epsilon \pi \epsilon i \ v \alpha \ \epsilon \lambda \epsilon \gamma \xi o u \mu \epsilon \tau i \varsigma \ \alpha \kappa \mu \epsilon \varsigma \ (v_4, v_3), \ (v_5, v_3), \ (v_5, v_4), \ (v_5, v_4)$:
 - $\bigcirc \quad (\mathsf{V}_{\mathsf{A}}, \, \mathsf{V}_{\mathsf{3}}) \mapsto \mathsf{OK}$
 - \circ $(V_5, V_3) \rightarrow OK$

 - \circ (v₅, v₄) → μη συνεπής → D₅ = {3} → πρέπει να εξετάσουμε τις ακμές: (v₃, v₅), (v₄, v₅)

 - $(v₅, v₃) → μη συνεπής → D₅ = {} → δοκιμάζουμε την επόμενη τιμή στη <math> v₂$

Maintaining Arc Concisteny (AC-3)

Λύση: $v_1 = 0$, $v_2 = 2$, $v_3 = 3$, $v_4 = 1$, $v_5 = 2$