Arytmetyka dwójkowa

Konwersja liczb w kodach naturalnych

Kod liczbowy naturalny

$$L(A_p) = a_{n-1}p^{n-1} + a_{n-2}p^{n-2} + \dots + a_1p^1 + a_0p^0 + a_{-1}p^{-1} + a_{-2}p^{-2} + \dots$$

$$A_{10} = 245,67 = 2 \cdot 10^2 + 4 \cdot 10^1 + 5 \cdot 10^0 + 6 \cdot 10^{-1} + 7 \cdot 10^{-2} \qquad ND$$

$$A_2 = 101.101 = 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 + 1 \cdot 2^{-1} + 1 \cdot 2^{-3} \qquad NB$$

Uzupełnienie liczb do podstawy **p** i długości części całkowitej **n**

$$Up(L) = p^{n} - L \ dla \ L > 0$$

$$U10(3480) = 10^{4} - 3480 = 6520$$

$$U10(0,4947) = 1 - 0,4947 = 0,5053$$

$$U2(10110) = 01010$$

 $U2(01.1101 = 10.0011$

Reguła praktyczna Uzupełnienie U2 liczby nieujemnej binarnej otrzymuje się przez:

- pozostawienie wszystkich mniej znaczących zer bez zmiany i pierwszej najmniej znaczącej jedynki
- a następnie negację wszystkich pozostałych bitów

Zapis liczb dwójkowych w kodzie ZM i ZU2

Znak wprowadzany jest w postaci odrębnego bitu 1 oznacza (-) minus

0 oznacza (+) plus

W kodzie ZM liczby dodatnie i ujemne o tych samych wartościach bezwzględnych różnią się tylko bitem znaku

$$+12_{10} \mapsto 0.1100_2$$
 $+0.75_{10} \mapsto 0.1100_2$
 $-12_{10} \mapsto 1.1100_2$ $-0.75_{10} \mapsto 1.1100_2$

W **kodzie ZU2** liczby dodatnie zapisywane są jak liczby w kodzie ZM liczby ujemne reprezentowane są przez bit znaku równy 1i przez uzupełnienie modułu do 2

$$\begin{array}{ll} +12_{10} \mapsto 0.1100_2 & +0.75_{10} \mapsto 0.1100_2 \\ -12_{10} \mapsto 1.0100_2 & -0.75_{10} \mapsto 1.0100_2 \end{array}$$

Arytmetyka na liczbach dwójkowych bez znaku

Dodawanie

$$P = 1011 L(P) = 11$$

 $Q = 1101 L(Q) = 13$
 $Y = 11000 L(Y) = 24$

Reguly dodawania

	Argumenty	Wynik			
c_i	p_i	q_i	f_i	c_{i+1}	
0 0 0 0 1 1		0 1 0 1 0 1 0	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 1 0 1	

Odejmowanie

$$\begin{array}{ccc}
54 & 54 & 54 \\
-30 & +U(30) & +70 \\
\hline
24 & (1)24
\end{array}$$

$$\begin{array}{c}
110110 \\
+100010 \\
\hline
(1)011000 & \mapsto +24
\end{array}$$

Mnożenie

$$L(P) \qquad 23$$

$$L(Q) \qquad \times 11$$

$$253$$

$$\begin{array}{r}
10111 \\
\times 1011 \\
\hline
10111 \\
+10111 \\
\hline
1000101 \\
+10111 \\
\hline
111111101 \mapsto 253
\end{array}$$

Dzielenie

$$\begin{array}{r}
\underline{1000100.11} & \mapsto 68,75 \\
\underline{101011000} & \div 101 & 344 \div 5 = 68,8 \\
\underline{011} \\
(1)\overline{00000110} \\
\underline{011} \\
(1)\overline{001000} \\
\underline{011} \\
(1)\overline{0110} \\
011
\end{array}$$

(1)001

Dodawanie i odejmowanie na liczbach ze znakiem

Działania w kodzie ZU2

mnożenie liczb ZM

 $Xz \oplus Yz = 1$ liczba ujemna

ExOR dla bitów znaku

mnożna przepisywana jest pod jedynki mnożnika

$$\frac{13}{16} \cdot \frac{9}{16} = 0,457031$$

wstecz

$$\frac{13}{16} \cdot \frac{11}{16} = \frac{143}{256}$$

sprawdzenie

$$x \bullet y = \frac{128 + 8 + 4 + 2 + 1}{16 \bullet 16} = \frac{143}{256}$$

mnożenie liczb ZU2

metoda Bootha

$$y_n y_{n+1} = 0 \ 1 \quad \blacktriangleright \quad +X^d \quad \rightarrow$$
 $y_n y_{n+1} = 1 \ 0 \quad \blacktriangleright \quad -X^d \quad \rightarrow$
 $y_n y_{n+1} = 0 \ 0 \quad \blacktriangleright \quad \rightarrow$
 $y_n y_{n+1} = 1 \ 1 \quad \blacktriangleright \quad \rightarrow$

Mnożenie (+6)*(+4)

$$y_n y_{n+1} = 0 \ 1 \quad \blacktriangleright \quad +X^d \quad - = 0 \ 1 \quad - = 0 \quad - = 0 \ 1 \quad - = 0 \quad - = 0 \ 1 \quad - = 0 \quad - = 0 \ 1 \quad - = 0 \quad - = 0 \ 1 \quad - = 0 \quad - = 0 \ 1 \quad - =$$

$$y_n y_{n+1} = 0 \ 0 \ \blacktriangleright \ -$$

$$y_n y_{n+1} = 1 1 \blacktriangleright$$

Mnożenie (+6)*(-4)

$$y_n y_{n+1} = 0.1 \triangleright +X^d$$

$$y_n y_{n+1} = 1 \ 0 \quad \blacktriangleright \quad -X^d \quad -$$

$$y_n y_{n+1} = 0 \ 0 \ \blacktriangleright \ -$$

$$y_n y_{n+1} = 1 1 \blacktriangleright$$

Mnożenie (+6)*(-6)

	X +0 1 1 0
	Y -0110
	X ^d 0.0 1 1 0
	Yd 1.1 0 1 0 (0)
$y_4y_5=00$	0
$y_3y_4=10$	1.1 0 1 0 0 🔪
7 0 7	1.1 1 0 1 0 0
$y_2y_3=01$	<u>0.0 1 1 0</u>
7 2 7 0	0.0 0 1 1 0 0
	0.0 0 0 1 1 0 0
$y_1y_2 = 10$	<u>1.1 0 1 0</u>
- · · · <u>-</u>	1.1 0 1 1 1 0 0 🦠
	1.1 1 0 1 1 1 0 0
$y_0 y_1 = 11$	brak operacji =-36

$$y_n y_{n+1} = 0 \ 1 \quad \blacktriangleright \quad +X^d \quad \rightarrow$$
 $y_n y_{n+1} = 1 \ 0 \quad \blacktriangleright \quad -X^d \quad \rightarrow$
 $y_n y_{n+1} = 0 \ 0 \quad \blacktriangleright \quad \rightarrow$
 $y_n y_{n+1} = 1 \ 1 \quad \blacktriangleright \quad \rightarrow$

Zmiennoprzecinkowa reprezentacja liczb

W stałoprzecinkowej reprezentacji liczb położenie punktu dziesiętnego (kropki) jest stałe niezależne od wielkości liczb

np. format dziesięciocyfrowy XXXXXXXXXX

A = 47567,81

B = 0,00007599998 wówczas B = 0,00007

w przypadku mnożenia (A*B) błąd względny wynosi wówczas 7,89% a dla liczby B=0,00007999998 błąd względny wynosi 12,5%

Należy przeprowadzić skalowanie liczby A= 47567,81= 0,47567*10^5 B=0,00007999998= 0,799999 *10^-4 błąd względny = 0,0029%

Zmiennoprzecinkowa reprezentacja liczb

Liczbę L w formacie zmiennoprzecinkowym przedstawia się jako

$$L=L(M*W)=L(M)*p^{dL(W)}$$

gdzie: - <u>słowo M</u>- mantysa, liczba ułamkowa ze znakiem przedstawiona w jednym z trzech kodów ZM, ZU1, ZU2

<u>słowo W</u>- wykładnik (cecha) liczba całkowita ze znakiem przedstawiona w jednym z trzech kodów (niekoniecznie tym samym co M)

- p wspólna podstawa kodów dla słów W i M
- d liczba naturalna zwykle równa 1

Liczba zmiennoprzecinkowa jest znormalizowana kiedy mantysa spełnia warunek

$$p^{-d} \leq |L(M)| < 1$$

Zmiennoprzecinkowa reprezentacja liczb

Przykład Liczbę L = -4,25 przedstawić w dwójkowym zapisie zmiennoprzecinkowym przyjmując słowa jednobajtowe

$$ZM(L) = 1.100.01$$

$$ZU2(L) = 1.011.11$$

$$2^{-1} = 0.5 \le |L(M)| < 1$$

$$L=L(1.0111100)*2^3$$

$$M*W = 1.01111100 \ 0.0000011$$

M

W

Sprawdzenie

$$L(M)*p^{L(W)=} - [1-(1/4+1/8+1/16+1/32)]*2^3 = -(1-0,46875)*8 = -4,25$$

Przykład mnożenia dużej i małej liczby

Mnożenie liczb zmiennoprzecinkowych

743,81*0,0007599=0,565221219

10111001111,11 * ,0000 0000 0001 1000 1110=

.1011100111111 *2^(11) * .1 1000 111*2^(-11)=

Przyjmując, że do zapisu liczby dostępnych jest 8 pól, mantysy przyjmują postać i w celu wykonania mnożenia są one **mnożone**

Natomiast wykładniki są sumowane 11+(-11)=0

 $2^{0}=1$

•			1												
+	1		1 0		1 1	_	_	1 0	1						
1 +	0	0	0	1	0	1			1 1	1	0	0	1		
1 +	0	0	0	1	1	0	1 1	_	0 1				1 0	1	
1 +	0	0	0	1	1	1	1	0 1	0 0	_	1 1	_	1 0	1 0	1
0, 1	0	0	0	1	1	1	1	1	1	0	0	1	1	1	1

0, 1/2 0 1/8 0 1/32 1/64 1/ 1/ 128 256

=0,558594

Dodawanie liczb zmiennoprzecinkowych

W celu dodania liczb zmiennoprzecinkowych należy sprowadzić je do zapisu stałoprzecinkowego i dodać

+ 000 0000 0000 ,0000 0000 0001 1000 1110

= 101 1100 1111 ,1100 0000 0001 1000 1110

743,81+0,0007599=743,8107599

W praktyce wynikiem dodawania dużej i małej liczby jest duża liczba

czyli w zapisie zmiennoprzecinkowym dla powyższego przykładu

Format IEEE 754

Standard IEEE 754(-1985, -2008) definiuje dwie podstawowe klasy binarnych liczb zmiennoprzecinkowych:

←binary 32 - pojedynczej precyzji (ang. single-precision)

←binary 64 - podwó jnej precyzji (ang. double-precision)

Format	Bit znaku	Bity cechy	Bity mantysy
32 bity - pojedyncza precyzja	1 bit	8 bitów	23 bity
64 bity - podwójna precyzja	1 bit	11 bitów	52 bity

Standard IEEE 754-2008 rozszerza też wersję IEEE 754-1985 o definicje kilku formatów dziesiętnych liczb zmiennoprzecinkowych

Format IEEE 754

Reprezentacja zmiennoprzecinkowa IEEE 754 pojedynczej precyzji

- bit znaku: 0 oznacza liczbę dodatnią, 1 ujemną
- cecha zapisywana jest w kodzie z nadmiarem (dla 8-mio bitowego zapisu nadmiar wynosi 127, zatem w polu cechy można zapisać wartości od -127 do 128)
- mantysa zapisywana jest w stałoprzecinkowym kodzie U1.