1

Control Systems

G V V Sharma*

CONTENTS

The Full Circuit referred to this problem is shown below which is a CC-CB amplifier:

1 Feedback Circuits

1

Abstract—The objective of this manual is to introduce control system design at an elementary level.

Download python codes using

1 FEEDBACK CIRCUITS

1.0.1. Complete the table entries given below:

Solution:

0.6 **Transistor** $\mathbf{C}_{\mu}(pF) |\mathbf{C}_{\pi}(pF)|$ $\mathbf{I}_{E}(mA)$ $\mathbf{r}_{\pi}(K\Omega)$ β_o $\mathbf{f}_T(MHz)$ $\mathbf{f}_{\beta}(MHz)$ $\mathbf{r}_{e}(ohm)$ $\mathbf{g}_m(mA/V)$ 2 100 500 (*a*) 2 2 4 (b) 25 10.7 2.5 500 10.7 (*c*) 100 10 100 500 2 (*d*) 100 2 (*e*) 0.1 150 1 10 500 2 (*f*) 9 800 1 80 (g)

TABLE 1.0.1: Initial table

We have to fill this table from part a to part g. We can neglect r_{π}

1.0.2. We have to find the missing values of the table.

Solution: We will solve it part by part.

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Fig. 1.0.2: Complete Circuit

1.0.3. First we will represent the given circuit using a Small Signal Equivalent Model.

Solution: The simplified small signal circuit for the above complete circuit is shown below .

Fig. 1.0.3: Small signal Model

Solution:

$$r_e = \frac{V_T}{I_E} = 25/2 = 12.5\Omega$$

$$r_e = 12.5\Omega$$

$$g_m = \frac{I_C}{V_T} = (\frac{\beta}{\beta + 1})\frac{I_E}{V_T} = (\frac{100}{100 + 1})\frac{2}{25}$$

$$g_m = 79.2 \frac{mA}{V}$$

$$r_{\pi} = \frac{\beta}{g_{m}} = \frac{100}{79.2 * 0.001} = 1.26k\Omega$$

$$r_{\pi} = 1.26k\Omega$$

$$f_{\beta} = \frac{f_T}{\beta} = \frac{500 * 10^6}{100} = 5Mhz$$

$$f_{\beta} = 5Mhz$$

$$C_{\pi} = \frac{g_m}{2_T} - C - \mu$$

$$= \frac{79.2 * 0.001}{2 * \pi * 10^8} - (2 * 10^-12)$$

$$= 23 \text{ pF}$$

$$C_{\pi} = 23pF$$

1.0.5. Part B : We have to find values of : I_e , g_m , r_π , β_o , f_T

Solution:

1.0.4. Part A : We have to find values of : r_e , g_m , r_π , C_π , f_β

$$I_E = \frac{V_T}{r_e} = \frac{25}{25} = 1mA$$

$$I_E = 1mA$$

$$g_m = \frac{I_E}{V_T} = \frac{1}{25} = 40mA/V$$

$$g_m = 40 \frac{mA}{V}$$

$$\mathbf{r}_{\pi} = \frac{1}{2\pi(C_{\pi} + C_{\mu})f_{\beta}}$$

$$= \frac{1}{2\pi(10.7+2)*10^{-12}*4*10^6}$$

$$= 3.13 \text{ k}\Omega$$

$${\rm r}_{\pi}=3.13k\Omega$$

$$\beta_o = g_m r_\pi$$

$$= 3.13*10^3 * 40 * 10^{-3}$$

$$= 125$$

$$\beta_o = 125$$

$$f_T = \beta f_\beta$$

$$= 125 * 4 * 10^{6}$$

$$= 500 \text{ MHz}$$

$$f_T = 500MHz$$

$$f_{\beta} = \frac{T}{\beta}$$

$$=\frac{500*10^6}{100}$$

$$f_{\beta} = 5MHz$$

$$g_m = \frac{\beta}{r_{\pi}}$$

$$= \frac{100}{2500}$$

$$= 40 \text{ mA/V}$$

$$g_m = 40 \frac{mA}{V}$$

$$I_E = g_m V_T = 40 * 25 = 1 mA$$

$$\mathrm{I}_E=1mA$$

$$\mathbf{r}_e = \frac{V_T}{I_F}$$

$$=\frac{25}{1}=25\Omega$$

$$r_e = 25\Omega$$

$$C_{\mu} = \frac{g_m}{2\pi} - C - \pi$$

$$=\frac{40*0.001}{2*\pi*500*10^8}-(10.7*10^{-12})$$

$$= 2.03 pF$$

$$C_{\mu} = 2.03 pF$$

1.0.6. Part C : We have to find values of : f_{β} , g_{m} , r_{e} , I_{E} , C_{μ}

Solution:

1.0.7. Part D : We have to find values of : f_{β} , g_{m} , r_{e} , r_{π} , C_{π}

Solution:

$$r_e = \frac{V_T}{I_E} = \frac{25}{10} = 2.5\Omega$$

$$r_e = 2.5\Omega$$

$$g_m = \frac{I_E}{V_T} = \frac{10}{25} = 0.4A/V$$

$$g_m = 0.4 \frac{A}{V}$$

$$r_{\pi} = \frac{\beta}{g_m} = \frac{100}{0.4} = 250\Omega$$

$$r_{\pi} = 250\Omega$$

$$f_{\beta} = \frac{T}{\beta} = \frac{500 * 10^6}{100} = 5MHz$$

$$f_{\beta} = 5MHz$$

$$C_{\pi} = \frac{g_m}{2\pi f_T} - C_{\mu}$$

$$=\frac{0.4}{2*\pi*500*10^6}-(2*10^{-12})$$

$$= 125 pF$$

$$C_{\pi} = 125 pF$$

$$r_e = \frac{V_T}{I_E} = \frac{25}{0.1} = 250\Omega$$

$$r_e = 250\Omega$$

$$g_m = \frac{I_E}{V_T} = \frac{0.1}{25} = 4mA/V$$

$$g_m = 4 \frac{mA}{V}$$

$$r_{\pi} = \frac{\beta}{g_m} = \frac{100}{0.004} = 25K\Omega$$

$$r_{\pi} = 25K\Omega$$

$$f_{\beta} = \frac{T}{\beta} = \frac{150 * 10^6}{100} = 1.5 MHz$$

$$f_{\beta} = 1.5MHz$$

$$C_{\pi} = \frac{g_m}{2\pi f_T} - C_{\mu}$$

$$= \frac{0.004}{2 * \pi * 150 * 10^6} - (2 * 10^{-12})$$

$$= 2.24 pF$$

$$C_{\pi}=2.24pF$$

1.0.9. Part F : We have to find values of : f_{β} , g_{m} , r_{e} , r_{π} , C_{π}

Solution:

1.0.8. Part E : We have to find values of : f_{β} , g_{m} , r_{e} , r_{π} , C_{π}

$$\mathbf{r}_e = \frac{V_T}{I_E} = \frac{25}{1} = 25\Omega$$

Solution:

$$r_e = 25\Omega$$

$$g_m = \frac{I_E}{V_T} = \frac{1}{25} = 40 mA/V$$

$$g_m = 40 \frac{mA}{V}$$

$$r_{\pi} = \frac{\beta}{g_m} = \frac{100}{0.004} = 2500\Omega$$

$$r_{\pi} = 2500\Omega$$

$$f_{\beta} = \frac{T}{\beta} = \frac{500 * 10^6}{10} = 50MHz$$

$$f_{\beta} = 50MHz$$

$$C_{\pi} = \frac{g_m}{2\pi f_T} - C_{\mu}$$

$$= \frac{0.04}{2 * \pi * 500 * 10^6} - (2 * 10^{-12})$$

$$= 10.7 \text{ pF}$$

$$C_{\pi} = 10.7 pF$$

$$\mathbf{r}_{\pi} = \frac{1}{2\pi(C_{\pi} + C_{\mu})f_{\beta}}$$

$$= \frac{1}{2\pi(9+1)*10^{-12}*80*10^6}$$

$$= 199 \Omega$$

$$r_{\pi} = 199\Omega$$

$$g_m = \frac{\beta}{r_{\pi}} = \frac{10}{199} = 50mA/V$$

$$g_m = 50 \frac{mA}{V}$$

$$I_E = g_m V_T = 0.05 * 0.025 = 1.25 mA$$

$$I_E = 1.25 mA$$

$$r_e = \frac{V_T}{I_E} = \frac{25}{1.25} = 20\Omega$$

$$r_e = 20\Omega$$

Part G : We have to find values of : β , f_{β} , g_m , r_e , I_E

Solution:

$$\beta = \frac{T}{f_{\beta}} = \frac{800}{80} = 10$$

$$\beta = 10$$

1.0.10. Given the following values the final table is :

Transistor	$\mathbf{I}_{E}(mA)$	$\mathbf{r}_e(ohm)$	$\mathbf{g}_m(mA/V)$	$\mathbf{r}_{\pi}(K)$	β_o	$\mathbf{f}_T(MHz)$	$\mathbf{C}_{\mu}(pF)$	$\mathbf{C}_{\pi}(pF)$	$\mathbf{f}_{\beta}(MHz)$
(a)	2	12.5	79.2	1.26	100	500	2	23	5
(b)	1	25	40	3.13	125	500	2	10.7	4
(c)	1	25	40	2.5	100	500	2.30	10.7	5
(d)	10	2.5	400	0.25	100	500	2	125	5
(e)	0.1	250	4	25	100	150	2	2.24	1.5
(<i>f</i>)	1	25	40	2.5	10	500	2	10.7	50
(g)	1.25	20	50	0.199	10	800	1	9	80

TABLE 1.0.10

1.0.11. Verify the above calculations using a Python code.

Solution:

codes/es17btech11019/es17btech11019_calc.