Université Pierre et Marie Curie License LM125 Année 2009-2010 3S-1

Contrôle continu 1

Question de cours

Soient A et B deux matrices de $\mathcal{M}_n(\mathbf{C})$, de coefficients a_{ij} et b_{ij} . On pose S = A + B et P = AB. Expliciter les coefficients s_{ij} et p_{ij} de S et de P.

Exercice 1 Soit $M = \begin{pmatrix} -10 & 18 \\ -6 & 11 \end{pmatrix}$ et $P = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$.

- Calculer, si elle existe, l'inverse de P, P^{-1} .
- Calculer $D = P^{-1}MP$. Que peut-on dire sur D et M?
- Calculer D^n .
- Montrer que $M^n = PD^nP^{-1}$.
- Calculer M^n .

Exercice 2

Résoudre le système $\left\{ \begin{array}{l} 2x+3y+z=4\\ x+y-2z=1\\ x+4y+z=1 \end{array} \right.$

Résoudre, en fonction du paramètre α , le système $\left\{\begin{array}{l} \cos\alpha\ x-\sin\alpha\ y=0\\ \sin\alpha\ x-\cos\alpha\ y=0 \end{array}\right.$

Exercice 3

Soit $A \in \mathcal{M}_n(\mathbf{C})$. On suppose qu'il existe α et β tels que $M^2 = \alpha M + \beta I_n$.

- Montrer que, pour tout $n \ge 0$, il existe α_n et β_n tels que $M^n = \alpha_n M + \beta_n I_n$. (On ne demande pas les expressions de α_n et β_n).
- On suppose que β est non nul. Calculer M^{-1} .
- Montrer que pour toute matrice $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ de $\mathcal{M}_2(\mathbf{C})$, il existe α et β tels que $M^2 = \alpha M + \beta I_n$. Les expliciter, et calculer M^{-1} quand cela est possible.

Exercice 4

Inverser, quand c'est possible, les matrices $A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 0 \\ 1 & 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix}$

1