

National University of Computer & Emerging Sciences (KARACHI CAMPUS)

Chapter: Vectors (EE117)		Worksheet#1a. (Sec:)
Definition & Example of Ve	ctor:	
Position Vector & Displacen	ment Vector:	
Equal Vectors & Negative o	f a Vector:	
Scalar Multiplication of a V	ector:	
Unit Vector:		
Resolution of Vector:		
Method of Vector Addition:		
i. Head to Tail Rule	ii. Parallelogram Law	iii. Law of Cosine

National University of Computer & Emerging Sciences (KARACHI CAMPUS)

Chapter: Vectors (EE117)

Worksheet#1b. (Sec: ____)

- Q1. Using the vectors shown, find the following:
 - a) u+v+3w
 - b) 2u+3w+v
 - c) 3u+6v-5w

Q2. Find the value of resultant?

- Q3. The magnitudes of two vectors **A** and **B** are A = 12 units and B = 8 units. Which of the following pairs of numbers represents the *largest* and *smallest* possible values for the magnitude of the resultant vector $\mathbf{R} = \mathbf{A} + \mathbf{B}$? Explain your answer.
 - (a) 14.4 units,4 units (b) 12 units, 8 units (c) 20 units, 4 units (d) none of these answers.
- Q4. A pedestrian moves 6.00 km east and then 13.0 km north. Find the magnitude and direction of the resultant displacement vector using the graphical method.
- Q5. Vector A has a magnitude of 8.00 units and makes an angle of 45.0° with the positive x axis. Vector B also has a magnitude of 8.00 units and is directed along the negative x axis. Using graphical methods, find
 - (a) the vector sum $\mathbf{A} + \mathbf{B}$ and (b) the vector difference $\mathbf{A} \mathbf{B}$.
- Q6. Each of the displacement vectors **A** and **B** shown in Fig. 1(a) has a magnitude of 3.00 m. Find graphically (a) **A+B**, (b) **A-B**, (c) **B-A**, (d) **A-2B**. Report all angles counterclockwise from the positive x axis.

- Q7. Is it possible to add a vector quantity to a scalar quantity? Explain.
- Q8. If the component of vector \mathbf{A} along the direction of vector \mathbf{B} is zero, what can you conclude about the two vectors?