Artificial Intelligence Practicals

May 12, 2020

Submitted by:-

Name: Rohit Sharma

Roll no: 5781

Email Id: rohitsdec4@gmail.com

Phone No.: 8700486627

Course: B.sc(H) Computer Science, III Year, Section-B

This document consists of the Artificial Intelligence practicals along with their output.

${\bf Contents}$

11118	doc									_		-	•				_				-					
		 		•		•	 •				•			•	 •					•		 •		 •	•	1
Question	1.	 																								•
Question	2 .	 																								4
Question	3 .	 																								Ę
Question	4.	 																								6
Question	5 .	 																								,
Question	6.	 																								8
Question	7.	 																								Ć
Question	8.	 																								10
Question	9.	 																								11
Question	10	 																								12
Question	11	 																								13
Question	12	 																								14
Question	13	 																								15
Question	14	 																								16
Question	15	 																								17
Question	16	 																								18
Question	17	 																								19
Question	18	 																								20
Question	19	 																								21
Question	20	 																								22
Question	21	 																								23
Question	22	 																								24
Question	23																									2!

Write a prolog program to calculate the sum of two numbers.

```
sum(X,Y):-
(
    R is X + Y,
    write("Sum is: "),
    write(R)
).
```

Figure 1: Solution 1 Image

Write a prolog program to find maximum of 2 numbers.

Figure 2: Solution 2 Image

Write a prolog program to implement factorial of a number N.

Figure 3: Solution 3 Image

Write a prolog program to print the Nth term of the fibonacci series.

```
generate_fib(N):-generate_fib(N, A), print(A),!.
generate_fib(2,1).
generate_fib(N,T):-
(
    N > 0
    ->(
        N1 is N-1,
        N2 is N-2,
        generate_fib(N1, T1),
        generate_fib(N2, T2),
        T is T1 + T2
    )
    ; print("Not Defined"),!
).
```

Figure 4: Solution 4 Image

Write a prolog program to implement GCD of two numbers.

```
gcd(A,B):-A1 is abs(A), B1 is abs(B), gcd(A1, B1, N1), print(N1).
gcd(0,B,N):-N is B.
gcd(A,0,N):-N is A.
gcd(A,B,N):-
   A = B
    \rightarrow N is A
    ; (
             A > B
             -> (
                      N1 is A-B,
                      gcd(N1,B, G),
                      {\tt N} is {\tt G}
                  )
                  (
                      N1 is B - A,
                      gcd(A, N1, G),
                      {\tt N} is {\tt G}
                  )
).
```

Figure 5: Solution 5 Image

Write a prolog program to calculate the power of a given number N.

Figure 6: Solution 6 Image

Write a prolog program to implement multiplication of two numbers.

```
multi(X,Y):-multi(X,Y,R), print(R).
multi(0, _, 0).
multi(_, 0, 0).
multi(X,Y,R):-
  Y > 0
    -> (
            Y1 is Y - 1,
            multi(X,Y1,R1),
            R is X + R1
        )
        (
            Y1 is Y + 1,
            multi(X,Y1,R1),
            R is -1*X + R1
        )
).
```

Figure 7: Solution 7 Image

Write a prolog program to implement towerofhanoi (N) where N represents the number of discs.

```
toh(N):-
(
    N < 0
    -> print("Not defined")
    ; power(2, N, R),
        R1 is R - 1,
        write("No of steps: "),write(R1),nl,
        toh(N, "a","b","c")
).
toh(1, A,_,C):-write("Move from "),write(A),write(" to "),write(C),nl.
toh(N, A, B, C):-
(
    N1 is N-1,
    toh(N1, A,C,B),
    write("Move from "),write(A),write(" to "),write(C),nl,
    toh(N1, B,A,C)
).
```


Figure 8: Solution 8 Image

Consider a cyclic directed graph [edge (p, q), edge (q, r), edge (q, r), edge (q, s), edge (s,t)] where edge (A,B) is a predicate indicating directed edge in a graph from a node A to a node B. Write a program to check whether there is a route from one node to another node.

```
node(p). node(q). node(r). node(s). node(t).
edge(p,q). edge(q,r). edge(r,q). edge(q,s). edge(s,t).
path(X,Y,R):-
    node(X),
    node(Y),
    X \= Y
    -> (
             edge(X,Y)
             \rightarrow R is 1
                 (
                      edge(X,Z),
                      Y = Z,
                      path(Z,Y, R2),
                      R2 = 1
                      -> R is 1
                          {\tt R} is {\tt 0}
                 )
         )
    ; R is 0
).
```

```
TERMINAL ...

?- path(p,q,X).

X = 1.

?- path(p,r,X).

X = 1.

?- path(p,s,X).

X = 1.

?- path(p,p,X).

X = 0.
```

Figure 9: Solution 9 Image

Write a prolog program to check whether X is a member of List L or not.

```
memb(A,L):-(
    memb(A,L,R),
    R = 1
    -> write(A), write(" is a member of list"),!
    ; write(A), write(" is not a member of list"),!
).
memb(H, [H|_], 1).
memb(X, [H|T], R):-
(
    X = H
    ->R is 1
    ; (
        memb(X, T, R1),
        R is R1
    )
).
```

Figure 10: Solution 10 Image

Write a prolog program to concatenate two lists to get the resultant list.

```
conc(A,B):-conc(A,B,R),write("concatenated list is: "),write(R),!.
conc([], X, X).
conc(X, [], X).
conc([H1|T1], L2, [H1|T3]):- conc(T1, L2, T3).
```

Figure 11: Solution 11 Image

Write a prolog program to reverse a given list

```
rev(X):-rev(X,R),write("reversed list is: "),write(R).
rev(X, R):-rev(X,[],R).
rev([], X, X).
rev([H1|T1], PREV, REV):-rev(T1, [H1|PREV], REV).
```

Figure 12: Solution 12 Image

Write a prolog program to check whether a list L is a palindrome or not Solution 13

```
rev(X, R):-rev(X,[],R).
rev([], X, X).
rev([H1|T1], PREV, REV):-rev(T1, [H1|PREV], REV).
palindrome(A):-rev(A,R), A = R.
```

Figure 13: Solution 13 Image

Write a prolog program to find the sum of a given list L.

```
lsum(L):-lsum(L,S),write("sum of list is: "),write(S).
lsum([], 0).
lsum([H|T], R):-
(
    lsum(T, R1),
    R is H + R1
).
```

Figure 14: Solution 14 Image

Write a prolog program to write two methods, so that they return true if their argument is a list of even or odd length respectively.

```
evenlength(L):-
(
    len(L, R1),
    0 is mod(R1,2)
).
oddlength(L):-
(
    len(L, R1),
    1 is mod(R1,2)
).
```

```
1
                        1: swipl
                                                                 ×
 TERMINAL
?- evenlength([1,2,3,4,5]).
false.
?- evenlength([1,2,3,4]).
true.
?- evenlength([]).
true.
?- oddlength([]).
false.
?- oddlength([1,2]).
false.
?- oddlength([1,2,3]).
true.
```

Figure 15: Solution 15 Image

Write a prolog program to return element at position N in a list L.

Figure 16: Solution 16 Image

Write a prolog program to remove duplicates from a given list L.

```
remove_dup(L):-remove_dup(L, R),write("List after removing duplicates is: "),write(R),!.
remove_dup([], []).
remove_dup([H|T], [H|R]):-
(
    delete_all(H, T, R1),
    remove_dup(R1, R)
).
```

Figure 17: Solution 17 Image

Write a prolog program which returns the maximum number in a list.

Figure 18: Solution 18 Image

Write a prolog program to inserts an element I into Nth position of list L.

```
insert_nth(X, P, L):-insert_nth(X, P, L, R),print(R),!.
insert_nth(X, 1, Y, [X|Y]).
insert_nth(X, P, [H|T], [H|T1]):-
(
    P1 is P - 1,
    insert_nth(X, P1, T, T1)
).
```

Figure 19: Solution 19 Image

Write a prolog program to check whether the list S is the sublist of list L or not.

```
sublist([],[]):-print("It is a sublist").
sublist([], [_|_]):-print("It is a sublist").
sublist([_|_], []):-print("Not a sublist").
sublist([H|T], [H1|T1]):-
(
    H = H1
    -> sublist(T, T1)
    ; sublist([H|T], T1)
).
```

Figure 20: Solution 20 Image

Write a prolog program that removes the element on Nth position from a list L.

```
delete_nth(P, L):-delete_nth(P, L,R), print(R),!.
delete_nth(1, [_|T], T).
delete_nth(P, [H|T], [H|T1]):-
(
    P1 is P - 1,
    delete_nth(P1, T, T1)
).
```

Figure 21: Solution 21 Image

Write a prolog program to delete X where X denotes the element whose all occurrences has to be deleted from list L

```
delete_all(X, L):-delete_all(X,L,R),write("List without element "), write(X),write(" is: "),write(R),!.
delete_all(_, [], []).
delete_all(X, [X|T], L):-delete_all(X, T, L).
delete_all(X, [H|T], [H|T1]):-delete_all(X, T, T1).
```

Figure 22: Solution 22 Image

Write a prolog program to merge two lists.

```
merge(X, Y):-merge(X, Y, R), write("Merged list is: "),write(R),!.
merge([], X, X).
merge(X, [], X).
merge([H1|T1], [H2|T2], [X|R]):-
(
    H1 < H2
    -> X is H1,
        merge(T1, [H2|T2], R)
    ; X is H2,
        merge([H1|T1], T2, R)
).
```

Figure 23: Solution 23 Image