$12n_{0748} \ (K12n_{0748})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 5.55332 \times 10^{75} u^{50} + 2.14999 \times 10^{75} u^{49} + \dots + 1.63199 \times 10^{76} b - 9.50449 \times 10^{76}, \\ &- 1.00920 \times 10^{77} u^{50} - 6.14195 \times 10^{76} u^{49} + \dots + 4.89597 \times 10^{76} a + 2.60239 \times 10^{78}, \ u^{51} + u^{50} + \dots + 9u - 12 \\ I_2^u &= \langle u^{11} + 3u^{10} - 6u^9 - 5u^8 + 19u^7 - 14u^6 - 34u^5 + 34u^4 + 25u^3 - 24u^2 + 5b + u + 8, \\ &- 19u^{11} + 3u^{10} + 89u^9 - 75u^8 - 136u^7 + 321u^6 + 41u^5 - 531u^4 + 80u^3 + 341u^2 + 5a - 64u - 47, \\ &- u^{12} - 5u^{10} + 3u^9 + 9u^8 - 16u^7 - 7u^6 + 31u^5 + 3u^4 - 24u^3 - 2u^2 + 5u + 1 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 63 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $I. \\ I_1^u = \langle 5.55 \times 10^{75} u^{50} + 2.15 \times 10^{75} u^{49} + \dots + 1.63 \times 10^{76} b - 9.50 \times 10^{76}, \ -1.01 \times 10^{77} u^{50} - 6.14 \times 10^{76} u^{49} + \dots + 4.90 \times 10^{76} a + 2.60 \times 10^{78}, \ u^{51} + u^{50} + \dots + 9u - 9 \rangle$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2.06129u^{50} + 1.25449u^{49} + \dots + 156.424u - 53.1538 \\ -0.340279u^{50} - 0.131740u^{49} + \dots - 5.95216u + 5.82387 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -3.63256u^{50} - 2.37017u^{49} + \dots - 340.652u + 80.1409 \\ -0.228512u^{50} - 0.176770u^{49} + \dots - 38.9007u + 9.50612 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1.72101u^{50} + 1.12275u^{49} + \dots + 150.472u - 47.3299 \\ -0.340279u^{50} - 0.131740u^{49} + \dots - 5.95216u + 5.82387 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1.72101u^{50} + 1.12275u^{49} + \dots + 150.472u - 47.3299 \\ -0.570525u^{50} - 0.285333u^{49} + \dots + 298.052u - 76.5104 \\ 0.639941u^{50} + 0.374469u^{49} + \dots + 59.0371u - 16.4493 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 2.49701u^{50} + 1.54348u^{49} + \dots + 299.015u - 60.0611 \\ 0.639941u^{50} + 0.374469u^{49} + \dots + 59.0371u - 16.4493 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -3.39441u^{50} - 1.99256u^{49} + \dots + 330.150u + 85.1843 \\ -1.49048u^{50} - 1.03131u^{49} + \dots - 138.506u + 38.2645 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2.02479u^{50} - 1.32882u^{49} + \dots - 189.222u + 38.3733 \\ -1.71640u^{50} - 1.07355u^{49} + \dots - 148.388u + 42.1932 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $23.5676u^{50} + 14.4075u^{49} + \cdots + 1956.28u 544.212$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{51} - 2u^{50} + \dots - 2798u - 211$
c_{2}, c_{5}	$u^{51} + 2u^{50} + \dots - 10u + 1$
c_{3}, c_{7}	$u^{51} - 2u^{50} + \dots - 110u - 11$
c_4, c_9	$u^{51} + u^{50} + \dots + 9u - 9$
c_6, c_{10}	$u^{51} - 2u^{50} + \dots - 17u + 1$
c_8, c_{11}, c_{12}	$u^{51} - 18u^{49} + \dots + 13u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{51} + 70y^{50} + \dots + 9533684y - 44521$
c_2, c_5	$y^{51} - 10y^{50} + \dots + 26y - 1$
c_3, c_7	$y^{51} - 40y^{50} + \dots + 12914y - 121$
c_4, c_9	$y^{51} - 51y^{50} + \dots + 6489y - 81$
c_6, c_{10}	$y^{51} - 8y^{50} + \dots + 181y - 1$
c_8, c_{11}, c_{12}	$y^{51} - 36y^{50} + \dots + 279y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.966312 + 0.028011I		
a = -0.536822 - 0.279028I	3.13672 - 0.62690I	0
b = 0.882354 - 0.296412I		
u = 0.966312 - 0.028011I		
a = -0.536822 + 0.279028I	3.13672 + 0.62690I	0
b = 0.882354 + 0.296412I		
u = -0.752807 + 0.539036I		
a = -0.872796 + 0.719742I	2.93432 - 5.19831I	0. + 6.04454I
b = 0.459364 - 0.125960I		
u = -0.752807 - 0.539036I		
a = -0.872796 - 0.719742I	2.93432 + 5.19831I	0 6.04454I
b = 0.459364 + 0.125960I		
u = 1.08285		
a = -0.166192	-8.81786	0
b = -1.36678		
u = -0.237795 + 0.803808I		
a = 0.997700 + 0.304588I	-1.59127 + 1.64954I	-10.79264 - 4.97589I
b = -0.237661 + 0.548165I		
u = -0.237795 - 0.803808I		
a = 0.997700 - 0.304588I	-1.59127 - 1.64954I	-10.79264 + 4.97589I
b = -0.237661 - 0.548165I		
u = -1.229440 + 0.096772I		
a = -0.45337 + 1.83496I	3.25985 - 4.40630I	0
b = 0.96203 - 1.87253I		
u = -1.229440 - 0.096772I		
a = -0.45337 - 1.83496I	3.25985 + 4.40630I	0
b = 0.96203 + 1.87253I		
u = -1.23712		
a = 1.45818	-3.66174	0
b = -0.238614		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.205562 + 0.732617I		
a = 0.314612 - 0.527449I	-3.85278 - 3.00372I	-11.66965 + 6.00585I
b = -0.548118 - 0.948146I		
u = -0.205562 - 0.732617I		
a = 0.314612 + 0.527449I	-3.85278 + 3.00372I	-11.66965 - 6.00585I
b = -0.548118 + 0.948146I		
u = 0.572928 + 1.104770I		
a = -0.206310 - 0.298977I	-0.44013 + 9.46101I	0
b = 0.320739 - 0.725671I		
u = 0.572928 - 1.104770I		
a = -0.206310 + 0.298977I	-0.44013 - 9.46101I	0
b = 0.320739 + 0.725671I		
u = -1.223810 + 0.312977I		
a = -0.32338 + 1.52316I	1.53528 - 5.83376I	0
b = -0.38353 - 2.16692I		
u = -1.223810 - 0.312977I		
a = -0.32338 - 1.52316I	1.53528 + 5.83376I	0
b = -0.38353 + 2.16692I		
u = 1.304010 + 0.126559I		
a = -0.351078 - 0.800505I	3.37052 + 0.99994I	0
b = 0.73472 + 1.28447I		
u = 1.304010 - 0.126559I		
a = -0.351078 + 0.800505I	3.37052 - 0.99994I	0
b = 0.73472 - 1.28447I		
u = -1.289750 + 0.452317I		
a = 0.550918 - 0.357255I	-1.04630 - 1.13129I	0
b = 0.193129 + 0.814567I		
u = -1.289750 - 0.452317I		
a = 0.550918 + 0.357255I	-1.04630 + 1.13129I	0
b = 0.193129 - 0.814567I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.131606 + 0.597948I		
a = 0.755619 + 0.012297I	-0.317906 + 1.195420I	-3.90544 - 5.43225I
b = -0.236259 + 0.347071I		
u = 0.131606 - 0.597948I		
a = 0.755619 - 0.012297I	-0.317906 - 1.195420I	-3.90544 + 5.43225I
b = -0.236259 - 0.347071I		
u = 1.385030 + 0.283021I		
a = 0.04231 - 1.92490I	1.21275 + 6.65866I	0
b = -0.77123 + 2.30254I		
u = 1.385030 - 0.283021I		
a = 0.04231 + 1.92490I	1.21275 - 6.65866I	0
b = -0.77123 - 2.30254I		
u = -1.46412 + 0.01784I		
a = -0.244361 - 1.204180I	5.76286 - 1.13846I	0
b = -0.79728 + 1.66527I		
u = -1.46412 - 0.01784I		
a = -0.244361 + 1.204180I	5.76286 + 1.13846I	0
b = -0.79728 - 1.66527I		
u = 0.514876		
a = 3.02685	-10.7307	10.2750
b = 0.317888		
u = 1.48372 + 0.08688I		
a = 0.167132 - 1.009410I	4.37936 + 0.98278I	0
b = 0.37784 + 1.38305I		
u = 1.48372 - 0.08688I		
a = 0.167132 + 1.009410I	4.37936 - 0.98278I	0
b = 0.37784 - 1.38305I		
u = 1.49336 + 0.11013I		
a = -0.41151 - 1.40552I	7.35814 + 6.04698I	0
b = -0.51248 + 1.86936I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.49336 - 0.11013I		
a = -0.41151 + 1.40552I	7.35814 - 6.04698I	0
b = -0.51248 - 1.86936I		
u = -0.491947		
a = 1.66651	-1.36137	-6.25410
b = -0.0705730		
u = -0.399561 + 0.244629I		
a = -2.11272 - 0.74059I	1.00696 - 4.56920I	-3.90257 + 5.25320I
b = 0.615884 - 1.246730I		
u = -0.399561 - 0.244629I		
a = -2.11272 + 0.74059I	1.00696 + 4.56920I	-3.90257 - 5.25320I
b = 0.615884 + 1.246730I		
u = -1.50785 + 0.38384I		
a = -0.017099 + 1.147920I	4.58888 - 5.41893I	0
b = -0.35140 - 1.57334I		
u = -1.50785 - 0.38384I		
a = -0.017099 - 1.147920I	4.58888 + 5.41893I	0
b = -0.35140 + 1.57334I		
u = 1.57518 + 0.19913I		
a = -0.200647 + 1.350350I	10.54910 + 8.09027I	0
b = 0.06483 - 2.13765I		
u = 1.57518 - 0.19913I		
a = -0.200647 - 1.350350I	10.54910 - 8.09027I	0
b = 0.06483 + 2.13765I		
u = -0.407564		
a = 1.19912	-2.57791	9.00240
b = -1.34717		
u = -1.61819 + 0.08048I		
a = -0.265175 - 1.291110I	11.95830 - 0.22760I	0
b = 0.19764 + 2.01735I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.61819 - 0.08048I		
a = -0.265175 + 1.291110I	11.95830 + 0.22760I	0
b = 0.19764 - 2.01735I		
u = -1.58168 + 0.38198I		
a = -0.17902 - 1.40951I	6.4507 - 14.7902I	0
b = 0.91256 + 2.00149I		
u = -1.58168 - 0.38198I		
a = -0.17902 + 1.40951I	6.4507 + 14.7902I	0
b = 0.91256 - 2.00149I		
u = -0.364492		
a = -2.15420	-6.63015	-21.7480
b = -1.45022		
u = 1.63613 + 0.31897I		
a = -0.126349 + 1.180690I	7.91149 + 6.61409I	0
b = 0.85837 - 1.71259I		
u = 1.63613 - 0.31897I		
a = -0.126349 - 1.180690I	7.91149 - 6.61409I	0
b = 0.85837 + 1.71259I		
u = 0.169849 + 0.057002I		
a = -7.63550 - 0.35036I	0.100763 + 0.877365I	-4.31516 - 3.77329I
b = 0.860446 - 0.474071I		
u = 0.169849 - 0.057002I		
a = -7.63550 + 0.35036I	0.100763 - 0.877365I	-4.31516 + 3.77329I
b = 0.860446 + 0.474071I		
u = 1.87867		
a = 0.431311	1.07210	0
b = -0.853122		
u = -0.19520 + 1.90391I		
a = 0.0437236 + 0.0504691I	-0.098440 - 0.706098I	0
b = -0.097631 + 0.463019I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.19520 - 1.90391I		
a = 0.0437236 - 0.0504691I	-0.098440 + 0.706098I	0
b = -0.097631 - 0.463019I		

$$\text{II. } I_2^u = \\ \langle u^{11} + 3u^{10} + \dots + 5b + 8, \ -19u^{11} + 3u^{10} + \dots + 5a - 47, \ u^{12} - 5u^{10} + \dots + 5u + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{19}{5}u^{11} - \frac{3}{5}u^{10} + \dots + \frac{64}{5}u + \frac{47}{5} \\ -\frac{1}{5}u^{11} - \frac{3}{5}u^{10} + \dots - \frac{1}{5}u - \frac{8}{5} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{12}{5}u^{11} + \frac{9}{5}u^{10} + \dots - \frac{97}{5}u - \frac{51}{5} \\ -\frac{2}{5}u^{11} - \frac{6}{5}u^{10} + \dots + \frac{33}{5}u + \frac{14}{5} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{18}{5}u^{11} - \frac{6}{5}u^{10} + \dots + \frac{63}{5}u + \frac{39}{5} \\ -\frac{1}{5}u^{11} - \frac{3}{5}u^{10} + \dots - \frac{1}{5}u - \frac{8}{5} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{18}{5}u^{11} - \frac{6}{5}u^{10} + \dots + \frac{63}{5}u + \frac{39}{5} \\ -\frac{8}{5}u^{11} + \frac{1}{5}u^{10} + \dots + \frac{101}{5}u + \frac{33}{5} \\ -\frac{2}{5}u^{11} - \frac{6}{5}u^{10} + \dots + \frac{101}{5}u + \frac{33}{5} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{11}{5}u^{11} - \frac{2}{5}u^{10} + \dots + \frac{68}{5}u + \frac{24}{5} \\ -\frac{2}{5}u^{11} - \frac{6}{5}u^{10} + \dots + \frac{18}{5}u - \frac{15}{5} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{17}{5}u^{11} - \frac{6}{5}u^{10} + \dots + \frac{18}{5}u - \frac{15}{5} \\ \frac{3}{5}u^{11} + \frac{4}{5}u^{10} + \dots + \frac{18}{5}u - \frac{15}{5} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{22}{5}u^{11} + \frac{9}{5}u^{10} + \dots + \frac{18}{5}u - \frac{15}{5} \\ -\frac{3}{5}u^{11} + \frac{1}{5}u^{10} + \dots - \frac{97}{5}u - \frac{31}{5} \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes
$$= -\frac{1}{5}u^{11} - \frac{33}{5}u^{10} - \frac{9}{5}u^9 + 27u^8 - \frac{74}{5}u^7 - \frac{216}{5}u^6 + \frac{439}{5}u^5 + \frac{176}{5}u^4 - 135u^3 - \frac{71}{5}u^2 + \frac{294}{5}u - \frac{43}{5}u^2 + \frac{294}{5}u^4 - \frac{216}{5}u^4 -$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{12} - u^{11} + \dots + 6u - 1$
c_2	$u^{12} + 3u^{11} + \dots + 2u - 1$
c_3	$u^{12} - u^{11} + \dots + 15u^2 - 1$
c_4	$u^{12} - 5u^{10} + \dots + 5u + 1$
c_5	$u^{12} - 3u^{11} + \dots - 2u - 1$
<i>c</i> ₆	$u^{12} - u^{11} + \dots + u - 1$
c ₇	$u^{12} + u^{11} + \dots + 15u^2 - 1$
c_8	$u^{12} + u^{11} + \dots - 5u + 1$
<i>c</i> ₉	$u^{12} - 5u^{10} + \dots - 5u + 1$
c_{10}	$u^{12} + u^{11} + \dots - u - 1$
c_{11}, c_{12}	$u^{12} - u^{11} + \dots + 5u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{12} + 7y^{11} + \dots - 4y + 1$
c_{2}, c_{5}	$y^{12} - 13y^{11} + \dots - 6y + 1$
c_{3}, c_{7}	$y^{12} - 11y^{11} + \dots - 30y + 1$
c_4, c_9	$y^{12} - 10y^{11} + \dots - 29y + 1$
c_6, c_{10}	$y^{12} - 7y^{11} + \dots - 13y + 1$
c_8, c_{11}, c_{12}	$y^{12} - 15y^{11} + \dots - 27y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.21822		
a = 1.79757	-4.03710	-18.0780
b = -0.601851		
u = -1.27309		
a = 0.277397	-7.88309	-1.62320
b = 1.16135		
u = -1.268290 + 0.330427I		
a = -0.58188 + 1.78206I	2.50992 - 6.48574I	-1.33595 + 8.54705I
b = -0.09657 - 2.27913I		
u = -1.268290 - 0.330427I		
a = -0.58188 - 1.78206I	2.50992 + 6.48574I	-1.33595 - 8.54705I
b = -0.09657 + 2.27913I		
u = 1.320490 + 0.182645I		
a = -0.416916 - 1.142720I	3.03542 + 2.75700I	-4.31533 - 2.69611I
b = 1.12535 + 1.50126I		
u = 1.320490 - 0.182645I		
a = -0.416916 + 1.142720I	3.03542 - 2.75700I	-4.31533 + 2.69611I
b = 1.12535 - 1.50126I		
u = 0.638711		
a = -0.671197	-6.24905	0.243470
b = -1.41524		
u = -1.48898		
a = 0.537683	1.74863	-2.66980
b = -0.370407		
u = 0.72640 + 1.30991I		
a = -0.191140 + 0.258916I	-0.304228 + 0.769223I	-12.9708 + 6.3200I
b = 0.005412 + 0.445100I		
u = 0.72640 - 1.30991I		
a = -0.191140 - 0.258916I	-0.304228 - 0.769223I	-12.9708 - 6.3200I
b = 0.005412 - 0.445100I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.411452		
a = -3.50522	-10.9545	-25.9780
b = -0.610386		
u = -0.240615		
a = 2.94363	-2.84629	-21.6500
b = -1.23188		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ (u^{12} - u^{11} + \dots + 6u - 1)(u^{51} - 2u^{50} + \dots - 2798u - 211) $
c_2	$(u^{12} + 3u^{11} + \dots + 2u - 1)(u^{51} + 2u^{50} + \dots - 10u + 1)$
c_3	$ (u^{12} - u^{11} + \dots + 15u^2 - 1)(u^{51} - 2u^{50} + \dots - 110u - 11) $
c_4	$(u^{12} - 5u^{10} + \dots + 5u + 1)(u^{51} + u^{50} + \dots + 9u - 9)$
c_5	$(u^{12} - 3u^{11} + \dots - 2u - 1)(u^{51} + 2u^{50} + \dots - 10u + 1)$
c_6	$(u^{12} - u^{11} + \dots + u - 1)(u^{51} - 2u^{50} + \dots - 17u + 1)$
c_7	$ (u^{12} + u^{11} + \dots + 15u^2 - 1)(u^{51} - 2u^{50} + \dots - 110u - 11) $
c_8	$(u^{12} + u^{11} + \dots - 5u + 1)(u^{51} - 18u^{49} + \dots + 13u - 1)$
c_9	$(u^{12} - 5u^{10} + \dots - 5u + 1)(u^{51} + u^{50} + \dots + 9u - 9)$
c_{10}	$(u^{12} + u^{11} + \dots - u - 1)(u^{51} - 2u^{50} + \dots - 17u + 1)$
c_{11}, c_{12}	$(u^{12} - u^{11} + \dots + 5u + 1)(u^{51} - 18u^{49} + \dots + 13u - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y^{12} + 7y^{11} + \dots - 4y + 1)(y^{51} + 70y^{50} + \dots + 9533684y - 44521)$
c_2, c_5	$(y^{12} - 13y^{11} + \dots - 6y + 1)(y^{51} - 10y^{50} + \dots + 26y - 1)$
c_3, c_7	$(y^{12} - 11y^{11} + \dots - 30y + 1)(y^{51} - 40y^{50} + \dots + 12914y - 121)$
c_4, c_9	$(y^{12} - 10y^{11} + \dots - 29y + 1)(y^{51} - 51y^{50} + \dots + 6489y - 81)$
c_6, c_{10}	$(y^{12} - 7y^{11} + \dots - 13y + 1)(y^{51} - 8y^{50} + \dots + 181y - 1)$
c_8, c_{11}, c_{12}	$(y^{12} - 15y^{11} + \dots - 27y + 1)(y^{51} - 36y^{50} + \dots + 279y - 1)$