(Computer Exercise)

Department of Computer Science Pattern Recognition

A First Simulation Example on Designing and Assessing a Regression Function (cont.)

• Similar to the previous simulation on linear model, this time assume that Y is related to X as follows

$$Y = \sin X + \varepsilon$$
,

where X is uniformally distributed in $[-\pi, \pi]$; and $\varepsilon \sim \mathcal{N}(0, 0.1)$. Notice that, in this case $\sigma_{Y|X}^2$ is constant.

- Build different models, intercept, first order, second order, ..., p^{th} order.
- For each model generate the following figures:
 - a figure showing the true model, $EY|X = \sin X$, along with the 500 fits.
 - a figure showing (vs. n_{tr}): the risk of the true model $E_{x_0} \sigma_{Y|X=x_0}^2$, the average bias $E_{x_0} Bias^2(\widehat{y}_0, y_0)$, the average variance $E_{x_0} Var_{\mathbf{tr}}(\widehat{y}_0)$, and the mean error $E_{x_0} E_{\mathbf{tr}} err_{\mathbf{tr}}(x_0) = E_{\mathbf{tr}} E_{x_0} err_{\mathbf{tr}}(x_0) = E_{\mathbf{tr}} err_{\mathbf{tr}}$; verify that

$$\mathop{\mathbf{E}}_{\mathbf{tr}} err_{\mathbf{tr}} = \mathop{\mathbf{E}}_{x_0} \sigma_{Y|X=x_0}^2 + \mathop{\mathbf{E}}_{x_0} Bias^2\left(\widehat{y}_0, y_0\right) + \mathop{\mathbf{E}}_{x_0} \mathop{\mathbf{Var}}_{\mathbf{tr}}\left(\widehat{y}_0\right).$$

- For each n_{tr} , generate a figure (vs. the complexity p), that shows the L.H.S and the three terms of the R.H.S. of the equation above.
- For each n_{tr} , what is the best model for this problem?