MCQs: Solutions of Trigonometric Equations (Chapter 14, High Difficulty)

This document contains 20 high-difficulty multiple-choice questions (MCQs) for Chapter 14: Solutions of Trigonometric Equations, based on Exercise 14.1, Mathematics (Part-I). Each question has four options, with only one correct answer. All angles are in radians, and solutions are exact. These questions test advanced concepts, including quadratic equations, multiple-angle identities, sum-to-product transformations, and general solutions.

1. What is the general solution of $3\tan^2\theta + 2\sqrt{3}\tan\theta + 1 = 0$? (Q.3)

(a)
$$\theta = \frac{5\pi}{6} + n\pi, \frac{11\pi}{6} + n\pi$$

(b)
$$\theta = \frac{\pi}{3} + n\pi, \frac{4\pi}{3} + n\pi$$

(c)
$$\theta = \frac{\pi}{6} + 2n\pi, \frac{5\pi}{6} + 2n\pi$$

(d)
$$\theta = \frac{\pi}{4} + n\pi, \frac{3\pi}{4} + n\pi$$

Answer: (a)
$$\theta = \frac{5\pi}{6} + n\pi, \frac{11\pi}{6} + n\pi$$

2. What is the general solution of $\tan^2 \theta - \sec \theta - 1 = 0$? (Q.4)

(a)
$$\theta = \frac{\pi}{3} + 2n\pi, \frac{5\pi}{3} + 2n\pi, \pi + 2n\pi$$

(b)
$$\theta = \frac{\pi}{6} + n\pi, \frac{5\pi}{6} + n\pi$$

(c)
$$\theta = \frac{\pi}{4} + n\pi, \frac{3\pi}{4} + n\pi$$

(d)
$$\theta = \frac{2\pi}{3} + 2n\pi, \frac{4\pi}{3} + 2n\pi$$

Answer: (a)
$$\theta = \frac{\pi}{3} + 2n\pi, \frac{5\pi}{3} + 2n\pi, \pi + 2n\pi$$

3. For $2\sin\theta + \cos^2\theta - 1 = 0$, what is the general solution? (Q.5)

(a)
$$\theta = n\pi, \frac{\pi}{3} + 2n\pi, \frac{5\pi}{3} + 2n\pi$$

(b)
$$\theta = \frac{\pi}{6} + n\pi, \frac{5\pi}{6} + n\pi$$

(c)
$$\theta = \frac{\pi}{2} + n\pi, \frac{3\pi}{2} + n\pi$$

(d)
$$\theta = \frac{\pi}{4} + n\pi, \frac{3\pi}{4} + n\pi$$

Answer: (a)
$$\theta = n\pi, \frac{\pi}{3} + 2n\pi, \frac{5\pi}{3} + 2n\pi$$

4. What is the general solution of $4\sin^2\theta - 8\cos\theta + 1 = 0$? (Q.8)

(a)
$$\theta = \frac{\pi}{3} + 2n\pi, \frac{5\pi}{3} + 2n\pi$$

(b)
$$\theta = \frac{\pi}{6} + n\pi, \frac{5\pi}{6} + n\pi$$

(c)
$$\theta = \frac{\pi}{4} + n\pi, \frac{3\pi}{4} + n\pi$$

(d)
$$\theta = \frac{2\pi}{3} + 2n\pi, \frac{4\pi}{3} + 2n\pi$$

Answer: (a) $\theta = \frac{\pi}{3} + 2n\pi, \frac{5\pi}{3} + 2n\pi$

5. What is the general solution of $\sqrt{3} \tan x - \sec x - 1 = 0$? (Q.9)

(a)
$$\theta = \frac{\pi}{3} + 2n\pi, \frac{5\pi}{3} + 2n\pi, \pi + 2n\pi$$

(b)
$$\theta = \frac{\pi}{6} + n\pi, \frac{5\pi}{6} + n\pi$$

(c)
$$\theta = \frac{\pi}{4} + n\pi, \frac{3\pi}{4} + n\pi$$

(d)
$$\theta = \frac{2\pi}{3} + 2n\pi, \frac{4\pi}{3} + 2n\pi$$

Answer: (a) $\theta = \frac{\pi}{3} + 2n\pi, \frac{5\pi}{3} + 2n\pi, \pi + 2n\pi$

6. For $\cos 2x = \sin 3x$, what is the general solution? (Q.10)

(a)
$$x = \frac{\pi}{2} + 2n\pi, \frac{\pi}{10} + 2n\pi, \frac{9\pi}{10} + 2n\pi, \frac{13\pi}{10} + 2n\pi, \frac{17\pi}{10} + 2n\pi$$

(b)
$$x = \frac{\pi}{3} + n\pi, \frac{4\pi}{3} + n\pi$$

(c)
$$x = \frac{\pi}{6} + 2n\pi, \frac{5\pi}{6} + 2n\pi$$

(d)
$$x = \frac{\pi}{4} + n\pi, \frac{3\pi}{4} + n\pi$$

Answer: (a) $x = \frac{\pi}{2} + 2n\pi, \frac{\pi}{10} + 2n\pi, \frac{9\pi}{10} + 2n\pi, \frac{13\pi}{10} + 2n\pi, \frac{17\pi}{10} + 2n\pi$

7. What is the general solution of $\sec 3\theta = \sec \theta$? (Q.11)

(a)
$$\theta = \frac{n\pi}{2}$$

(b)
$$\theta = \frac{\pi}{3} + n\pi, \frac{4\pi}{3} + n\pi$$

(c)
$$\theta = \frac{\pi}{6} + n\pi, \frac{5\pi}{6} + n\pi$$

(d)
$$\theta = \frac{\pi}{4} + n\pi, \frac{3\pi}{4} + n\pi$$

Answer: (a) $\theta = \frac{n\pi}{2}$

8. What is the general solution of $\tan 2\theta + \cot \theta = 0$? (Q.12)

(a)
$$\theta = (2n+1)\frac{\pi}{2}$$

(b)
$$\theta = \frac{\pi}{3} + n\pi, \frac{4\pi}{3} + n\pi$$

(c)
$$\theta = \frac{\pi}{6} + n\pi, \frac{5\pi}{6} + n\pi$$

(d)
$$\theta = \frac{\pi}{4} + n\pi, \frac{3\pi}{4} + n\pi$$

Answer: (a) $\theta = (2n+1)\frac{\pi}{2}$

9. What is the general solution of $\sin 2x + \sin x = 0$? (Q.13)

(a)
$$x = n\pi, \frac{\pi}{3} + 2n\pi, \frac{5\pi}{3} + 2n\pi$$

(b)
$$x = \frac{\pi}{6} + n\pi, \frac{5\pi}{6} + n\pi$$

(c)
$$x = \frac{\pi}{2} + n\pi, \frac{3\pi}{2} + n\pi$$

(d)
$$x = \frac{\pi}{4} + n\pi, \frac{3\pi}{4} + n\pi$$

Answer: (a) $x = n\pi, \frac{\pi}{3} + 2n\pi, \frac{5\pi}{3} + 2n\pi$

10. What is the general solution of $\sin 4x - \sin 2x = \cos 3x$? (Q.14)

(a)
$$x = (2n+1)\frac{\pi}{6}, \frac{\pi}{6} + 2n\pi, \frac{5\pi}{6} + 2n\pi$$

(b)
$$x = \frac{n\pi}{3}, \frac{\pi}{12} + \frac{n\pi}{2}, \frac{5\pi}{12} + \frac{n\pi}{2}$$

(c)
$$x = \frac{\pi}{3} + n\pi, \frac{2\pi}{3} + n\pi$$

(d)
$$x = \frac{7\pi}{24} + \frac{n\pi}{2}, \frac{11\pi}{24} + \frac{n\pi}{2}$$

Answer: (a) $x = (2n+1)\frac{\pi}{6}, \frac{\pi}{6} + 2n\pi, \frac{5\pi}{6} + 2n\pi$

11. What is the general solution of $\sin x + \cos 3x = \cos 5x$? (Q.15)

(a)
$$x = n\pi, \frac{7\pi}{24} + \frac{n\pi}{2}, \frac{11\pi}{24} + \frac{n\pi}{2}$$

(b)
$$x = \frac{\pi}{3} + n\pi, \frac{4\pi}{3} + n\pi$$

(c)
$$x = \frac{\pi}{6} + n\pi, \frac{5\pi}{6} + n\pi$$

(d)
$$x = \frac{\pi}{2} + n\pi, \frac{3\pi}{2} + n\pi$$

Answer: (a) $x = n\pi, \frac{7\pi}{24} + \frac{n\pi}{2}, \frac{11\pi}{24} + \frac{n\pi}{2}$

12. What is the general solution of $\sin 3x + \sin 2x + \sin x = 0$? (Q.16)

(a)
$$x = \frac{n\pi}{2}, \frac{2\pi}{3} + 2n\pi, \frac{4\pi}{3} + 2n\pi$$

(b)
$$x = \frac{\pi}{3} + n\pi, \frac{4\pi}{3} + n\pi$$

(c)
$$x = \frac{\pi}{6} + n\pi, \frac{5\pi}{6} + n\pi$$

(d)
$$x = \frac{\pi}{4} + n\pi, \frac{3\pi}{4} + n\pi$$

Answer: (a) $x = \frac{n\pi}{2}, \frac{2\pi}{3} + 2n\pi, \frac{4\pi}{3} + 2n\pi$

13. What is the general solution of $\sin 7x - \sin x = \sin 3x$? (Q.17)

(a)
$$x = \frac{n\pi}{3}, \frac{\pi}{12} + \frac{n\pi}{2}, \frac{5\pi}{12} + \frac{n\pi}{2}$$

(b)
$$x = \frac{\pi}{3} + n\pi, \frac{4\pi}{3} + n\pi$$

(c)
$$x = \frac{\pi}{6} + n\pi, \frac{5\pi}{6} + n\pi$$

(d)
$$x = \frac{\pi}{4} + n\pi, \frac{3\pi}{4} + n\pi$$

Answer: (a) $x = \frac{n\pi}{3}, \frac{\pi}{12} + \frac{n\pi}{2}, \frac{5\pi}{12} + \frac{n\pi}{2}$

14. What is the general solution of $\sin x + \sin 3x + \sin 5x = 0$? (Q.18)

(a)
$$x = \frac{n\pi}{3}, \frac{\pi}{3} + n\pi, \frac{2\pi}{3} + n\pi$$

(b)
$$x = \frac{\pi}{6} + n\pi, \frac{5\pi}{6} + n\pi$$

(c)
$$x = \frac{\pi}{2} + n\pi, \frac{3\pi}{2} + n\pi$$

(d)
$$x = \frac{\pi}{4} + n\pi, \frac{3\pi}{4} + n\pi$$

Answer: (a) $x = \frac{n\pi}{3}, \frac{\pi}{3} + n\pi, \frac{2\pi}{3} + n\pi$

15. What is the general solution of $\sin \theta + \sin 3\theta + \sin 5\theta + \sin 7\theta = 0$? (Q.19)

(a)
$$\theta = \frac{n\pi}{4}, (2n+1)\frac{\pi}{4}, (2n+1)\frac{\pi}{2}$$

(b)
$$\theta = \frac{\pi}{3} + n\pi, \frac{4\pi}{3} + n\pi$$

(c)
$$\theta = \frac{\pi}{6} + n\pi, \frac{5\pi}{6} + n\pi$$

(d)
$$\theta = \frac{\pi}{2} + n\pi, \frac{3\pi}{2} + n\pi$$

Answer: (a) $\theta = \frac{n\pi}{4}, (2n+1)\frac{\pi}{4}, (2n+1)\frac{\pi}{2}$

16. What is the general solution of $\cos \theta + \cos 3\theta + \cos 5\theta + \cos 7\theta = 0$? (Q.20)

(a)
$$\theta = (2n+1)\frac{\pi}{4}, (2n+1)\frac{\pi}{2}$$

(b)
$$\theta = \frac{\pi}{3} + n\pi, \frac{4\pi}{3} + n\pi$$

(c)
$$\theta = \frac{\pi}{6} + n\pi, \frac{5\pi}{6} + n\pi$$

(d)
$$\theta = \frac{\pi}{4} + n\pi, \frac{3\pi}{4} + n\pi$$

Answer: (a)
$$\theta = (2n+1)\frac{\pi}{4}, (2n+1)\frac{\pi}{2}$$

17. Which identity is key to solving $\sin 7x - \sin x = \sin 3x$? (Q.17)

(a)
$$\sin a - \sin b = 2\cos\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right)$$

(b)
$$\sin a + \sin b = 2\sin\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)$$

(c)
$$\cos a - \cos b = -2\sin\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right)$$

(d)
$$\sin 2x = 2\sin x \cos x$$

Answer: (a)
$$\sin a - \sin b = 2\cos\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right)$$

18. In solving $\sin \theta + \sin 3\theta + \sin 5\theta + \sin 7\theta = 0$, what is the first step? (Q.19)

(a) Group as
$$(\sin 7\theta + \sin \theta) + (\sin 5\theta + \sin 3\theta)$$

(b) Apply
$$\sin 2x = 2\sin x \cos x$$

(c) Factor out
$$\sin \theta$$

(d) Use
$$\tan^2 \theta = \sec^2 \theta - 1$$

Answer: (a) Group as
$$(\sin 7\theta + \sin \theta) + (\sin 5\theta + \sin 3\theta)$$

19. Why does $4\sin^2\theta - 8\cos\theta + 1 = 0$ yield $\cos\theta = -\frac{5}{2}$ as an invalid solution? (Q.8)

(a)
$$\cos \theta \le 1$$

(b)
$$\sin \theta \le 1$$

(c)
$$\tan \theta$$
 is undefined

Answer: (a)
$$\cos \theta \le 1$$

20. What is a common mistake when solving $\cos 2x = \sin 3x$? (Q.10)

(a) Forgetting to account for all solutions from the cubic equation

(b) Using the wrong period (
$$\pi$$
 instead of 2π)

(c) Applying
$$\sin^2 x + \cos^2 x = 1$$
 incorrectly

(d) Ignoring quadrant rules for
$$\sin x$$

Answer: (a) Forgetting to account for all solutions from the cubic equation