

همطراحی سختافزار نرمافزار

جلسه دوازدهم: مروری بر ادامه فرایند همطراحی

ارائهدهنده: آتنا عبدى

a_abdi@kntu.ac.ir

مباحث این جلسه

- مروری بر متدولوژی همطراحی
 - دنبال کردن یک نمونه ساده
 - یادآوری نکات کلی
 - مشخص کردن روال ادامه کار

فرایند همطراحی

مروری بر فرایند همطراحی

- همانگونه که گفته شد، همطراحی از توصیف سطح بالای سیستم آغاز می شود
 - در این توصیف ویژگیهای کارکردی و عملکردی
 - در ادامه و طی فرایند سنتز عملیاتی شامل موارد زیر انجام می گیرد:
 - Communication 'Scheduling 'Partitioning 'Allocation •
 - خروجی این مرحله جهت پیادهسازی به ابزار مشخص داده میشود
 - در هر مرحله اعتبارسنجی و بررسی تحقق محدودیتهای مسئله لازم است

مروری بر مراحل فرایند همطراحی

Specification

Synthesis

- Allocation
- Partitioning
- Scheduling
- Communication synthesis

<u>Implementation</u>

- Software synthesis
- Hardware synthesis
- Interface synthesis

Analysis & Validation

توصيف سيستم

- در چند جلسه گذشته به تفصیل مورد بحث قرار گرفت
 - استخراج مدل محاسباتی مفهومی
- مشخص کردن اهداف کارکردی و عملکردی سیستم بدون ورود به شیوه پیادهسازی
 - اعتبارسنجی و تحلیل توسط پیادهسازی با زبان

توصيف سيستم


```
– مدل رفتاری سیستم: B0
```

- اجزاى سيستم: سه ماژول ترتيبي B1,B2,B3

- ماژولهای B1 و B3 اتمیک

- ماژول B2 متشکل از دو زیربخش همروند


```
    ◄ - توصیف نمونه برای هریک از اجزا
    – عملیات تولیدکننده-مصرف کننده بین B4 و B6
    – تولید داده توسط B6 و مصرف آن توسط B4
    – سیگنال sync با هدف سنکرونسازی انتقال داده
```

```
B3()
{
stmt;
...
}
```

```
B6()
{
    int local;
    ...
    shared = local + 1;
    signal(sync);
}
```

```
B4()
{
   int local;
   wait(sync);
   local = shared - 1;
   ...
}
```

سنتز توام سختافزار/نرمافزار سيستم

- فرایند طراحی همزمان معماری سختافزاری و نرمافزاری یک سیستم
- مصالحه بین تصمیمهای طراحی براساس معماریهای نرمافزاری و سختافزاری گوناگون
 - این فرایند در سه مرحله انجام می گیرد و به پیادهسازی می انجامد
 - تخصیص: انتخاب اجزای سیستم
 - افراز /نگاشت: نگاشت بخشهای مختلف مدل به اجزای سیستم
 - زمانبندی: مشخص کردن ترتیب زمانی اجرا

فرايند تخصيص (Allocation)

- مشخص کردن نوع اجزا (پردازنده، حافظه، اجزای خاص)، تعداد و نحوه اتصال آنها با هدف
 - پیادهسازی عملیات موردنظر سیستم (functionality)
 - رعایت محدودیتها و الزامات عملکردی سیستم
 - نتیجه این مرحله حالت خاصی از معماری سیستم است که در جلسات گذشته مطرح شد
 - این مرحله توسط طراح انجام می گیرد و شروع فرایند جستجوی فضای حالت است

فرایند تخصیص (مثال)

نمونههایی از مدل معماری هدف

فرایند افراز (Partitioning)

- نگاشت اجزای رفتاری توصیف به اجزای موجود در معماری هدف بخش تخصیص
 - مشخص کردن واحد اجرا کننده هر بخش مدل و برقراری ارتباط بین این دو
 - نگاشت پردازهها به پردازندهها و ارتباطات به مسیرهای ارتباطی
- کیفیت این فرایند وابسته به آن است که محدودیتهای سیستم تا چه حد رعایت شوند
- الگوریتمهای مختلفی در این حیطه مطرح شدهاند که در ادامه موردمطالعه قرار می گیرند
 - ممکن است در حین این فرایند بخشهای کنترلی به توصیف سیستم افزوده شوند

فرایند بخشبندی (مثال)

فرایند بخشبندی (مثال)


```
B1_ctrl()
                       B1()
                         wait(B1_start);
 signal(B1_start);
                                               (Top data
 wait(B1_done);
                         signal(B1_done);
                                                   PE0
                                                                                                   PE1
                       B4_ctrl()
 B4()
                                                    B0
                                                                                       B1_star
                         signal(B4_start);
  int local;
                                                                            B1 ctrl
  wait(B4_start);
                         wait(B4_done);
                                                                                                        B1
                                                                                              B1 done
  wait(sync);
                                                      B2
  local = shared - 1;
                                                        B5
                        B3()
  signal(B4_done);
                                                             B6
                                                                      data, sync
                                                                                       B4_star
                                                                           B4_ctrl
                          stmt;
                                                                                                         B4
                                                                                              B4 done
 B6()
                                                                               В3
  int local;
                        B7()
  shared = local + 1;
  signal(sync);
                          stmt;
```

فرایند زمانبندی (Scheduling)

- مشخص کردن زمان اجرای ماژولهای رفتاری تخصیص داده شده به اجزای پردازشی با هدف
 - رعایت محدودیتهای عملکردی سیستم
 - رعایت وابستگی بین اجرای اجزا براساس الزامات کارکردی
 - کاهش دادن انتقال پیغام بین اجزای مختلف سیستم و سربار همگامسازی
 - پس از بخشبندی، بهمنظور رسیدن به پیادهسازی لازم است
 - زمانبندی و شیوه تعامل اجزای پردازشی مشخص شود
 - پس از توصیف لازم است مجموعه تخصیص، بخشبندی و زمانبندی مشخص شود

فرایند زمانبندی (Scheduling)

استراتزىهاى زمانبندى مختلف

- زمانبندی پویا (Dynamic Scheduling)
- مورد استفاده در مواردی که جریان اطلاعات تا زمان اجرا مشخص نمی باشد
 - مانند سیستمهای تصمیم گیر براساس رخداد یا دادههای زمان اجرا
- انتخاب روشهای این حیطه براساس شرایط از مجموعهای از تصمیمات از پیش ذخیره شده
 - در این روشها خروجی مرحله زمانبندی تفاوت چندانی با بخشبندی ندارد

استراتژیهای زمانبندی مختلف (ادامه)

- زمانبندی ایستا (Static Scheduling)
- حالتی که ترتیب نسبی اجرا بهطور کامل در زمان طراحی مشخص باشد
 - تخمین مناسبی از زمان اجرای هر بخش از توصیف داشته باشیم
- در زمان طراحی، زمانبندی مشخص شده و در حین اجرا قابل تغییر نیست
 - ممكن است هزينه همگامسازي ارسال بين اجزاي پردازشي زياد باشد
 - بهدلیل تخمین نامناسب کارایی

مدل سیستم پس از زمانبندی (مثال)

تحلیل و ارزیابی

- در هر مرحله، لازم است سیستم از طریق شبیهسازی یا تحلیل ارزیابی بررسی شود
 - کارکرد سیستم (Functionality)
 - عملکرد سیستم (معیارهای کیفی)
 - تحلیل و ارزیابی هر مرحله توسط شبیهساز یا تحلیل گرهای ایستا
 - تعامل تکراری بین سنتز توأم و ارزیابی با هدف یافتن جواب بهینه

پیادہسازی (Backend)

- نتیجه طراحی بهمنظور پیادهسازی به ابزارهای مختلف داده میشود
 - با تخصیص به پردازنده، لازم است مدل به کامپایلر پردازنده داده شود
 - بدین ترتیب توصیف طراحی به کد ماشین پردازنده هدف تبدیل میشود
- با تخصیص به ASIC لازم است مدل به ابزارهای سنتز سطح بالا داده شود
- پیادهسازی اتصالات نیز مشابه حالت قبل و توسط ابزار سنتز ارتباطات و واسط میباشد
 - مثال: تبدیل عملیات خواندن از یک پردازنده به عملیات خواندن از باس سیستم

سنتز توأم و نگاشت در جریان طراحی

- روال فرايند همطراحي
- مرور فرایند سنتز توأم و نتیحه عملیات آن

مباحث جلسه آینده

- فرايند سنتز توأم
- آشنایی با روال سنتز توأم
 - فرايند افراز

