

Ciência da Computação e Sistemas de Informação PESQUISA OPERACIONAL (PO)

MÉTODO SIMPLEX

Prof. Arthur arthur.battaglia@docente.unip.br 2021/2

Fonte: Pesquisa Operacional – 2a edição – Daniel Augusto Moreira

Vamos retomar o caso estudado no Exemplo 1:

Maximização do lucro na venda dos produtos A e B

Há 3 restrições:

- Quantidade de horas disponíveis da máquina M1
- Quantidade de horas disponíveis da máquina M2
- Limite da demanda do produto B

A formulação completa é:

- Maximizar 80x + 60y
- $4x + 6y \le 24$
- $4x + 2y \le 16$
- $0x + 1y \le 3$ (é o mesmo que $y \le 3$)
- x ≥ 0
- y ≥ 0

É possível transformar as inequações (que refletem as restrições) em equações, acrescentando novas variáveis a cada uma delas.

Por exemplo:

De: 4x + 6y ≤ 24

• Para: $4x + 6y + s_1 = 24$

Essa nova variável s₁ é chamada de variável de folga.

O nome folga é dado porque muitas vezes pode-se associar essa variável a recursos não utilizados ou não aproveitados.

No caso da equação $4x + 6y + s_1 = 24$, a variável s_1 representa o total de horas disponíveis na máquina M1 não utilizado.

Por exemplo, se x=0 e y=3 (o ponto T(0,3) no gráfico do Exemplo 3) temos:

$$4(0) + 6(3) + s_1 = 24$$
ou seja
$$s_1 = 24 - 18 = 6$$

Isto significa que no ponto T (vide Exemplo 3) haverá 6 horas de disponibilidade da máquina M1 que não serão utilizadas.

Continuando na mesma linha de raciocínio para as demais inequações:

$$4x + 2y + s_2 = 16$$

 $0x + 1y + s_3 = 3$

A variável s₂ representa a quantidade de horas disponíveis da máquina M2 e que não serão utilizadas.

A variável s₃ representa a demanda possível do produto B que não será atendida (o máximo são 3 unidades do produto B).

Utilizando o mesmo ponto T (vide Exemplo 3) como exemplo, temos:

$$4x + 2y + s_2 = 16$$

$$4(0) + 2(3) + s_2 = 16$$

$$S_2 = 16 - 6 = 10$$

o que significa que no ponto T haverá 10 horas disponíveis na máquina M2 não utilizadas.

Utilizando o mesmo ponto T (vide Exemplo 3) como exemplo, temos:

$$0x + 1y + s_3 = 3$$

$$0 + 1(3) + s_3 = 3$$

$$s_3 = 3 - 3 = 0$$

o que significa que no ponto T são produzidas 3 unidades do produto B.

Quando uma variável de folga não aparecer em uma inequação, adota-se coeficiente 0 (zero).

Na função objetivo todas as variáveis de folga devem constar com coeficiente zero.

Retomando o caso do Exemplo 1, a função objetivo é maximizar:

$$80x + 60y + 0s_1 + 0s_2 + 0s_3$$

considerando:

$$4x + 6y + 1s_1 + 0s_2 + 0s_3 = 24$$

$$4x + 2y + 0s_1 + 1s_2 + 0s_3 = 16$$

$$0x + 1y + 0s_1 + 0s_2 + 1s_3 = 3$$

O que temos aqui é um sistema indeterminado, ou seja, há 5 incógnitas $(x, y, s_1, s_2 e s_3)$ e apenas 3 equações:

$$80x + 60y + 0s_1 + 0s_2 + 0s_3$$

$$4x + 6y + 1s_1 + 0s_2 + 0s_3 = 24$$

$$4x + 2y + 0s_1 + 1s_2 + 0s_3 = 16$$

$$0x + 1y + 0s_1 + 0s_2 + 1s_3 = 3$$

Um sistema é indeterminado quando a quantidade de incógnitas é maior que o número de equações.

SOLUÇÃO NÃO BÁSICA

Se fixarmos os valores de algumas variáveis o número de variáveis desconhecidas torna-se igual ao número de equações, e o sistema torna-se determinado, ou seja, será possível determinar o valor das variáveis desconhecidas restantes.

No caso do Exemplo 1, vamos fixar o valor de duas variáveis para obter o valor das outras três.

Iremos fixar o valor das variáveis (duas a duas) como 0 (zero). As duas variáveis igualadas a zero são chamadas de uma solução não básica.

SOLUÇÃO BÁSICA

As variáveis restantes calculadas são chamadas de uma solução básica.

Uma solução básica pode ser possível, ou não, dependendo das restrições.

Voltando ao caso do Exemplo 3, temos o gráfico da solução final:

MÉTODO SIMPLEX

O gráfico mostra a região permissível (de solução) e os pontos extremos para a maximização.

Cada ponto extremo tem um par de coordenadas (x,y).

A solução de um problema de programação linear está em um dos pontos extremos da região permissível.

Ciência da Computação e Sistemas de Informação PESQUISA OPERACIONAL (PO)

MÉTODO SIMPLEX

Prof. Arthur arthur.battaglia@docente.unip.br 2021/2

Fonte: Pesquisa Operacional - 2a edição - Daniel Augusto Moreira