Министерство науки и высшего образования Российской Федерации

Калужский филиал федерального государственного бюджетного

образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУК «Информатика и управление»
КАФЕДРА	ИУК4 «Программное обеспечение ЭВМ,
информационн	ые технологии»

Лабораторная работа №1 «Минимизация функции»

ДИСЦИПЛИНА: «Моделирование»

Выполнил: студент гр. ИУК4-72Б	(подпись)	_ (Калашников А.С.
Проверил:	(подпись)	_ (Никитенко У.В. (Ф.И.О.)
Дата сдачи (защиты): Результаты сдачи (защиты): - Балльна - Оценка:	ля оценка: :		

Цель работы: сформировать практические навыки анализа возможностей построения и выделения наиболее важных свойств объектов моделей для моделирования и использования специализированных программных пакетов и библиотек для решения задачи минимизации функции и визуализации результатов решения.

Задачи: найти минимум функции, указанной в варианте предложенным методом, сравнить результаты, выдвинуть и обосновать гипотезу целесообразности использования того или иного метода в зависимости от предложенной задачи и ее вариаций, точности результата, трудоемкости, сложности алгоритма, сложности обоснования применимости метода, вычислительной эффективности алгоритма. Визуализировать результаты.

Вариант №6

№	Выполняемые задачи			
6	1.6, 4.2, 5.6, 6.6			

Задание №1.6

Методом Ньютона найти минимум и максимум унимодальной на отрезке [a, b] функции f(x) с точностью $\varepsilon = 10^{-6}$. Предусмотреть подсчет числа итераций, потребовавшихся для достижения заданной точности.

F(x)	a	b
$2^x-ln(x)$	0.1	3

x = 0.818215; f(x) = 1.963853; n = 4

Рис. 1. Результат работы алгоритма

Рис. 2. График функции

Задание №4.2

Функция $f(x) = (-1)^n*(\cos(2nx)/n^3)$ представлена частичной суммой ряда. Построить график функции на заданном отрезке [0, 3] и найти ее минимумы и максимумы с указанной точностью 0,0001, n = 250, Методом минимизации деления отрезка пополам.

№	u(x)	X1	X2	n	E	Метод
						минимизации
4.2	$\cos(2nx)$	0	3	250	0.0001	Деления
	n^3					отрезка
						пополам

Минимум: (1.1245, -6.3 Максимум: (1.1246, 6.4

Рис. 3. Результат работы алгоритма

Рис. 4 — График функции

Задание №5.6

Найти минимум функции 2-х переменных f(x,y) с точностью $\varepsilon=10^{-6}$ на прямоугольнике $[x_1,x_2]\times[y_1,y_2].$

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Задать указанную в варианте функцию f(x,y).
- 2. Построить графики функции и поверхностей уровня f(x,y).
- 3. По графикам найти точки начального приближения к точкам экстремума.
 - 4. Найти экстремумы функции с заданной точностью.

No	f(x)	X 1	X 2	y 1	y 2
5.6	$4x^2 + y^2 + 3sin(x) - \cos(y+1)$	-2	0	-1	1

Минимум: -1.1614007466373897 Максимум: 14.012853775172447

Рис. 6. Результат работы алгоритма

Рис. 6. – Вывод графика

Рис. 6. – Вывод графика

Задание №6.6

Методом наискорейший спуск найти минимум квадратичной функции $f(x,y)=a(11)x^2+2a(12)xy+a(22)y^2+2a(13)x+2a(23)y$ с точностью $e=10^--6$ Для решения задачи многомерной минимизации использовать метод Ньютона. Построить график функции f. Предусмотреть подсчет числа итераций, потребовавшихся для достижения заданной точности. a(11)=2.5, 2a(12)=1, a(22)=2, 2a(13)=-5, 2a(23)=-10.5

A11	2A12	A22	2A13	2A23	Метод
2.5	1	2	-5	-10.5	Наискорейший
					спуск

Рис. 7 — Вывод графика

```
Минимум функции:

x = 0.5

y = 2.5

f(x, y) = -14.375

Количество итераций: 2
```

Рис. 8 – Результат работы алгоритма

Вывод: в ходе выполнения работы были сформированы практические навыки анализа возможностей построения и выделения наиболее важных свойств объектов моделей для моделирования и использования специализированных программных пакетов и библиотек для решения задачи минимизации функции и визуализации результатов решения

приложения

Листинг программы

Ex. 1

```
import math, numpy
import matplotlib.pyplot as plt
f = lambda x: 2**x - numpy.log(x)
a = 0.1
b = 3
eps = 10**-6
df = lambda x: 2**x*numpy.log(2) - (1/x)
d2f = lambda x: 2**x*(numpy.log(2)**2) + (1/x**2)
x = (a + b) / 2
err = None
n = 0
while err == None or err > eps:
    if err == None:
        err = abs(df(x))
        continue
    err = abs(df(x))
    x = x - df(x)/d2f(x)
    n += 1
print(f"x = \{x:.6f\}; f(x) = \{f(x):.6f\}; n = \{n\}")
X = numpy.linspace(a, b, int((b-a)*10))
Y = [f(x) \text{ for } x \text{ in } X]
plt.plot(X, Y)
plt.plot(x, f(x), 'ro', label='Минимум функции')
plt.legend()
plt.show()
```

Ex. 2

```
import math
import matplotlib.pyplot as plt
# Определяем функцию
def f(x, n):
    return (-1)**n* (math.cos(2*n*x) / n**3)
# Определяем метод минимизации деления отрезка пополам
def bisection method(f, a, b, eps):
    while (b - a) / 2 > eps:
         c = (a + b) / 2
         if f(c) == 0:
             return c
         elif f(c) * f(a) < 0:
         else:
             a = c
    return (a + b) / 2
# Задаем параметры
n = 250
a = 0
b = 3
eps = 0.0001
# Строим график функции
x \text{ values} = [i / 100 \text{ for } i \text{ in } range(301)]
y \text{ values} = [f(x, n) \text{ for } x \text{ in } x \text{ values}]
plt.plot(x_values, y_values)
```

```
plt.xlabel('x')
plt.ylabel('f(x)')
plt.title('Graph of f(x)')
plt.show()
# Ищем минимумы и максимумы функции
min values = []
max values = []
for i in range (1, 301):
    a = (i - 1) / 100
    b = i / 100
    if f(a, n) < f(b, n):
        min value = bisection method(lambda x: f(x, n), a, b, eps)
        min values.append(min value)
    elif f(a, n) > f(b, n):
        max_value = bisection_method(lambda x: -f(x, n), a, b, eps)
        max values.append(max value)
# Выводим результаты
print('Минимумы функции:', min values)
print('Максимумы функции:', max values)
Ex. 3
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator
import numpy as np
import math
x 1 = -2
x 2 = 0
y_1 = -1
y 2 = 1
fig, ax = plt.subplots(subplot kw={"projection": "3d"})
X = np.arange(x 1, x 2, 0.25)
Y = np.arange(y 1, y 2, 0.25)
X, Y = np.meshgrid(X, Y)
Z = 4*X**2 + Y**2 + 3* np.sin(X)-np.cos(Y+1)
surf = ax.plot surface(X, Y, Z, cmap=cm.coolwarm,
                       linewidth=0, antialiased=False)
plt.show()
levels = np.linspace(Z.min(), Z.max(), 15)
fig, ax = plt.subplots()
ax.contourf(X, Y, Z, levels=levels, cmap=cm.coolwarm, antialiased=False)
plt.show()
Ex. 4
import numpy as np
import matplotlib.pyplot as plt
from mpl toolkits.mplot3d import Axes3D
def f(x, y):
    a11 = 2.5
```

```
a12 = 0.5
    a22 = 2
    a13 = -2.5
   a23 = -5.25
   return a11 * x**2 + 2 * a12 * x * y + a22 * y**2 + 2 * a13 * x + 2 * a23
def grad(x, y):
   a11 = 2.5
   a12 = 0.5
    a22 = 2
   a13 = -2.5
   a23 = -5.25
   grad_x = 2 * al1 * x + 2 * al2 * y + 2 * al3
    grad y = 2 * a12 * x + 2 * a22 * y + 2 * a23
    return np.array([grad x, grad y])
def hessian(x, y):
   a11 = 2.5
    a12 = 0.5
   a22 = 2
   hess xx = 2 * a11
   hess xy = 2 * a12
   hess yy = 2 * a22
   return np.array([[hess_xx, hess_xy], [hess_xy, hess_yy]])
def line search(x, y, grad, direction):
    t = 1.0
    alpha = 0.5
   beta = 0.8
   while f(x + t * direction[0], y + t * direction[1]) > f(x, y) + alpha * t
* np.dot(grad, direction):
        t *= beta
    return t
def newton method(x0, y0, epsilon):
    x current = np.array([x0, y0])
    iteration = 0
   while True:
        iteration += 1
        grad current = grad(x current[0], x current[1])
        hessian current = hessian(x current[0], x current[1])
        direction = -np.linalg.inv(hessian current) @ grad current
        t = line_search(x_current[0], x_current[1], grad_current, direction)
        x next = x current + t * direction
        if np.linalg.norm(x_next - x_current) < epsilon:</pre>
```

```
x current = x next
    return x next, iteration
# Начальная точка
x0 = 0
y0 = 0
# Точность
epsilon = 1e-6
# Запуск метода Ньютона
solution, iteration = newton method(x0, y0, epsilon)
# Результат
x \min, y \min = solution
min value = f(x min, y min)
print("Минимум функции:")
print("x =", x min)
print("y =", y_min)
print("f(x, y) =", min_value)
print("Количество итераций:", iteration)
# Построение графика функции
x = np.linspace(-10, 10, 100)
y = np.linspace(-10, 10, 100)
X, Y = np.meshgrid(x, y)
Z = f(X, Y)
fig = plt.figure()
ax = plt.axes(projection='3d')
ax.plot surface(X, Y, Z, cmap='viridis')
ax.scatter(x_min, y_min, min_value, color='red', label='Минимум')
ax.set xlabel('x')
ax.set_ylabel('y')
ax.set zlabel('f(x, y)')
ax.legend()
plt.show()
```