2.1.1 Interior and Boundary Points

Definition 2.1

Let (X, d) be a metric space. If $\mathbf{x} \in X$ and r > 0, we define the open ball of radius r centred at \mathbf{x} as

$$B_r(\mathbf{x}) := \{ \mathbf{y} \in X : d(\mathbf{x}, \mathbf{y}) < r \}.$$

In \mathbb{R}^n with the Euclidean metric $d(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||$, the open ball $B_r(\mathbf{x})$ is nothing more than the collection of points which are a distance at most r from \mathbf{x} . This generalizes the interval, since in \mathbb{R}^1 we have

$$B_r(x) = \{ y \in \mathbb{R} : |x - y| < r \} = (x - r, x + r),$$

or if we centre around 0, $B_r(0) = (-r, r)$. In \mathbb{R}^2 we get a disk of radius r,

$$B_r(\mathbf{0}) = \left\{ (x, y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} < r \right\},$$

which we recognize as being the same as $x^2 + y^2 < r^2$.

Figure 2.1: In \mathbb{R}^2 , the open ball of radius r centred at \mathbf{x} consists of all points which are a distance at most r from \mathbf{x} .

Definition 2.2

A subspace S of a metric space X is bounded if there exists an r > 0 and an $\mathbf{a} \in X$ such that $S \subseteq B_r(\mathbf{a})$.

Definition 2.3

Let (X, d) be a metric space, and $S \subseteq \mathbb{R}^n$ be an arbitrary set.

- 1. We say that $\mathbf{x} \in S$ is an interior point of S if there exists an r > 0 such that $B_r(\mathbf{x}) \subseteq S$; that is, \mathbf{x} is an interior point if we can enclose it in an open ball which is entirely contained in S.
- 2. We say that $\mathbf{x} \in S$ is a boundary point of S if for every r > 0, $B_r(\mathbf{x}) \cap S \neq \emptyset$ and $B_r(\mathbf{x}) \cap S^c \neq \emptyset$; that is, \mathbf{x} is a boundary point if no matter what ball we place around \mathbf{x} , that ball lives both inside and outside of S.

The interior of S – denoted S^{int} – is the collection of interior points of S, while boundary of S – denoted ∂S – is the collection of boundary points of S.

Figure 2.2: The point \mathbf{b} is a boundary point. No matter what size ball we place around \mathbf{b} , that ball will intersect both S and S^c . On the other hand, \mathbf{p} is an interior point, since we can place a ball around it which lives entirely within S.

We should take a moment and think about these definitions, and why they make sense. A boundary point is any point which occurs at the very fringe of the set; that is, if I push a little further I will leave the set. An interior point should be a point inside of S, such that if I move in any direction a sufficiently small distance, I stay within the set. Note that if \mathbf{x} is an interior point then we must have that $\mathbf{x} \in S$; however, boundary points do not need to be in the set. We start with a simple example.

Example 2.4

Let $S = (-1, 1] \subseteq \mathbb{R}$, endowed with the Euclidean metric. What are the interior points and the boundary points of S?

Solution. I claim that any point in (-1,1) is an interior point. To see that this is the case, let $p \in (-1,1)$ be an arbitrary point. We need to place a ball around p which lives entirely within

31

©2018- Tyler Holden

2 The Topology of \mathbb{R}^n

2.1 Open, Closed, and Everything in Between

(-1,1). To do this, assume without loss of generality that $p \ge 0$. If p=0 then we can set r=1/2 and $B_{1/2}(0)=(-1/2,1/2)\subseteq (-1,1)$. Thus assume that $p\ne 0$ and let r=(1-p)/2, which represents half the distance from p to 1. I claim that $B_r(p)\subseteq (-1,1)$. Indeed, let $x\in B_r(p)$ be any point, so that |x-p|< r by definition. Then

$$|x| = |x - p + p| \le |x - p| + p$$

 $\le r + p = \frac{1 - p}{2} + p$
 $= \frac{1 + p}{2} < 1$

where in the last inequality we have used the fact that p < 1 so 1 + p < 2. Thus $x \in (-1, 1)$, and since x was arbitrary, $B_r(p) \subseteq (-1, 1)$.

The boundary points are ± 1 , where we note that even though $-1 \notin (-1,1]$, it is still a boundary point. To see that +1 is a boundary point, let r > 0 be arbitrary, so that $B_r(p) = (1 - r, 1 + r)$. We then have

$$B_r(p) \cap (-1,1] = (1-r,1] \neq \emptyset, \qquad B_r(p) \cap (-1,1)^c = (1,1+r) \neq \emptyset,$$

as required. The proof for -1 is analogous and left as an exercise.

Example 2.5

What is the boundary of \mathbb{Q} in \mathbb{R} with the Euclidean metric?

Solution. We claim that $\partial \mathbb{Q} = \mathbb{R}$. Since both the irrationals and rationals are dense in the real numbers, we know that every non-empty open interval in \mathbb{R} contains both a rational and irrational number. Thus let $x \in \mathbb{R}$ be any real number, and r > 0 be arbitrary. The set $B_r(x)$ is an open interval around x, and contains a rational number, showing that $B_r(x) \cap \mathbb{Q} \neq \emptyset$. Similarly, $B_r(x)$ contains an irrational number, showing that $B_r(x) \cap \mathbb{Q}^c \neq \emptyset$, so $x \in \partial \mathbb{Q}$. Since x was arbitrary, we conclude that $\partial \mathbb{Q} = \mathbb{R}$.

2.1.2 Open and Closed Sets

Definition 2.6

A set S in a metric space (X,d) is said to be *open* if every point of S is an interior point; that is, S is open if for every $\mathbf{x} \in S$ there exists an r > 0 such that $B_r(\mathbf{x}) \subseteq S$. The set S is *closed* if S^c is open. Given a point $\mathbf{x} \in X$, an *open neighbourhood* of \mathbf{x} is some open set containing \mathbf{x} .

Example 2.7

The set $S = \left\{ (x,y) \in \mathbb{R}^2 : y > 0 \right\} \subseteq \mathbb{R}^2$ is open in the Euclidean metric.

32

2018- Tyler Holden

2.1 Open, Closed, and Everything in Between

2 The Topology of \mathbb{R}^n

Figure 2.3: The upper half plane is open. For any point, look at its y-coordinate p_y and use the ball of radius $p_y/2$.

Solution. We need to show that around every point in S we can place an open ball that remains entirely within S. Choose a point $\mathbf{p}=(p_x,p_y)\in S$, so that $p_y>0$, and let $r=p_y/2$. Consider the ball $B_r(\mathbf{p})$, which we claim lives entirely within S. To see that this is the case, choose any other point $\mathbf{q}=(q_x,q_y)\in B_r(\mathbf{p})$. Now

$$|q_y - p_y| \le ||\mathbf{q} - \mathbf{p}|| < r = \frac{p_y}{2}$$

which implies that $q_y > p_y - p_y/2 = p_y/2 > 0$. Since $q_y > 0$ this shows that $\mathbf{q} \in S$, and since \mathbf{q} was arbitrary, $B_r(\mathbf{p}) \subseteq S$ as required.