Peppy Poké Pipper Pals
COMP 333 - Github
FINAL PROJECT

1.

Topic & Defined ML Tasks

Topic

Goal: Housing Price Predictor

- Predict house prices in Montreal:
 - o Based on Bedrooms, location, bath, sqft, etc...
- Apply the following tools and disciplines for Data Analytics:
 - Data Collection
 - Data Integration
 - Data Cleaning
 - Data Transformation
 - Data Visualization
 - Machine learning outcomes and Modeling

Machine Learning

- Create machine learning model to predict new unsold house prices based on sold properties.
- Datasets to evaluate:
 - Model without data cleaning (DC) and transformation (DT).
 - Model with applied Data Analytic techniques.
- Performance measures
 - o RMSE, MAE, R²

2. Data Collection

Datasets

- Residential property prices from duProprio scraped in March 2022 from:
 - www.kaggle.com/montreal-property-price/
 Contains price, region, address, bedrooms, bathrooms, living area,
 lot dimension
- Canada Revenue Agency income tax filed per postal code region from 2021 Tax year:
 - www.canada.ca/individual-tax-statistics-fsa/
 FSA (forward sortation Area), total tax reports filed, total income, net income, taxable income
- 3. Statistics Canada (from 2021 census) population count and number of private dwellings per postal code region:
 - www12.statcan.gc.ca/2021/population/
 Postal code, population, total private dwellings

Storage System

 Datasets are stored as Excel and csv files on Google Drive between data cleaning and merging phases.

Workflow:

3.

Data Integration

Schema Integration

Add income, population count and number of private dwellings as features to the property dataset.

Property dataset

Street address and borough without postal code

address	region
5185-5187 RUE	Mercier / Hochelaga /
DESMARTEAU	Maisonneuve
417-8635 RUE	Villeray / St-Michel /
LAJEUNESSE	Parc-Extension
8517-A-8515-8517 avenue	Villeray / St-Michel /
de l'esplanade	Parc-Extension

Income Data & Census Data

First three characters of the Postal Code Forward Sortation Area (FSA)

FSA	Total Income	Geographic code	Population	Total pvt dwlgs
G0A	3.444018e+09	ном	1202	763
G0C	1.618508e+09	H1A	32516	14287
G0E	1.489380e+08	H1B	20160	9400

Data Mapping and ER

Idea: Regional datasets are based on FSA.

Goal: Get first three characters of postal code for housings.

- 1. Retrieve <u>longitude</u> and <u>latitude</u> for each address.
 - Geocoders by Awesome Table.
 - uses Google maps to set coordinates using street address.
- 2. Get postal code from the coordinates.
 - Nominatim from Geopy.Geocoders
 - Reverse geocoding to get only the postcode using Longitude and Latitude.
- 3. String operations to <u>split</u> the postal code to get the first three characters.
 - In python notebook.

Distribution of Listings

General View

Aggregated View

4.
Data Cleaning

Conversion of Data Types

1. Numerical data extraction - all entries were strings

living area	bathrooms	bedrooms	
Lot dimensions\n2,176 ft²	Bathrooms + Half baths\n 1	Bedrooms\n 3	
Living space area (basement exclu.)\n957 ft²	Bathrooms + Half baths\n 1	Bedrooms\n 2	
Lot dimensions\n2,850 ft²	Bathrooms + Half baths\n 3	Bedrooms\n 8	

pric	
\$545,000\n\n\n\n\n\n\n\n\n\	82
\$399,000\n\n\n\n\n\n\n\n\n\	192
\$500,000\n\n\n\n\n\n\n\n\n\.	280

2. Some entries were shifted to the left. (In the wrong column)

Bedrooms 3	Bathrooms + Half baths	1	+1	Lot dimensions2,259 ft ²
Bedrooms 4	Bathrooms + Half baths	2	+1	Living space area (basem
Bathrooms + Half baths	Living space area (basement exclu.)357 f NaN			

Cleaning of Null Values

Removal

o Entire null rows and entire null columns were removed from all three sets:

		price	region	address	bedrooms	bathrooms	living area	lot_dimension
Ī	3	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	15	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	27	NaN	NaN	NaN	NaN	NaN	NaN	NaN

Imputation

The median is better than the mean as a replacement of null values since the null columns are heavily skewed. (Outliers!)

Median price: 580000.0 Median full_baths: 1.0 Median living_surface_ft2: 1060.5

Cleaning of Outliers

- Create histograms to check for outliers.
- Some features are heavily skewed, indicating possible outliers

Property Price Outliers

Two outliers!

- Between 5-7.5 million
- Above 17.5 million

Solution:

Remove any house over
 \$1.5 million and keeping
 square feet between 300
 and 4000.

Number of Bedrooms Outliers

Four outliers:

- Remove all houses with over 15 bedrooms
- Absurd properties will highly skew the data

Result of Outlier Cleaning

Before cleaning:

• After cleaning:

5.

Data

Transformation

Data Scaling (MinMaxScaler)

- Had no impact on correlation of features to price.
- Scale features with low numbers between 0 and 1:

• Result: (Only changing range)

Data Normalization (StandardScaler)

- Had no impact on correlation of features to price.
- Fit high-numbered data into standard distributions:

Result: (zero mean and standard deviation of 1)

Data Encoding

Changed FSA (part of Postal Code) from categorical to numerical:

```
#changing FSA from categorical to numerical
encoder = LabelEncoder()
FSA_cat = properties['FSA']
FSA_cat_encoded = encoder.fit_transform(FSA_cat)
```

6.
Data Visualization and ETL

Tools

- Jupyter Notebook
- Google Colab
- Sklearn
- Geopy geocoders
- Pandas
- Draw.io

- Numpy
- Alteryx
- Tableau
- Seaborn
- Plotly

Correlation Before Cleaning

Correlation After Cleaning

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

-0.4

 Number of bedrooms is a strong predictor

Correlation After More Cleaning

- 0.6

- 0.4

- 0.2

- 0.0

-0.2

-0.4

very strong correlation with price (0.66)

Scatter plot: price vs features

ETL to Find Features

- Create Heatmaps to isolate strongest correlations
- Create new feature to obtain higher correlation:

Heatmap: price vs postal code

Price Range

Price range and postal code

It can be seen that Anjou (H1M)
 has the most expensive houses

Feature Engineering

Create new feature <u>bed_baths</u>

```
properties_noOutliers['Bed_Baths'] =
    properties_noOutliers['Num_beds'] +
    properties_noOutliers['full_baths'] +
    properties_noOutliers['half_baths']
```

- Recreate heatmap
 - Bed_baths is now feature with higher correlation to price (0.66)
 - 1.1 greater than number of beds

Dashboards

- 1. Initial impressions on the properties dataset at a glance
 - a. Detailed view of selected charts
- 2. General view of demographics based on regions and FSA

1. Initial impressions on the properties dataset at a glance

Regions with most listings

Properties for sale at a glance with average price per region

Most expensive regions

A more granulated distribution with average price per FSA

Features that seem to be correlated with the price

2. General view of demographics based on regions and FSA

listings

© 2023 Mapbox © OpenStreetMap

Total pvt dwlgs =

7.
Machine Learning
Outcomes

Performance Metrics

- Models
 - Random Forest and Linear Regression
 - Linear Regression performed better than Random Forest
 Model
- Metrics
 - RMSE (Root Mean Square Error)
 - Aim for lowest value possible
 - MAE (Mean Absolute Error)
 - Aim for lowest value possible
 - R² (Correlation Coefficient)
 - Aim for closest value to 1

Model Performance (Linear R.)

Scores **Before Cleaning**:

Accuracy score: 35.01

• RMSE: 391571

MAE: 216488

• R2: 0.35

Scores After Cleaning:

Accuracy score: 57.28

• RMSE: 178311

MAE: 137133

• R2: 0.57

Machine Learning Conclusions

Inaccuracies could be due to:

- Dataset with <u>lots of inconsistent values after outlier detection</u>.
 - Lots of housings with really large surfaces selling for average prices.
 (3324082sqft worth \$365'000 in Cote-des-Neiges. That's 57 football fields!)
 - Lots of housings with really small surfaces selling for really high prices. (A really small one bedroom: 563sqft for \$1'800'000)
- We have lots of info about the properties' regions, but we lack descriptive data about the contents of the properties themselves. (No distinction between apartment, condo, house, mansion, etc.)