421 HW 4 Group

change this to your names

You may use Subring Test Theorem 3.6 for your justifications in Section 3.1.

Problem (3.2.13). Let S and T be subrings of a ring R. In (a) and (b), if the answer is "yes," prove it. If the answer is "no," give a counterexample.

- (a) Is $S \cap T$ a subring of R?
- (b) Is $S \cup T$ a subring of R?

Solution. (a)

Let a be an element of $S \cap T$, and let b be an element of $S \cap T$.

Since $a \in S \cap T$ and $b \in S \cap T$, $a \in S$ and $a \in T$, and $b \in S$ and $b \in T$.

Since $a \in S$ and $b \in S$, $ab \in S$ and $a + b \in S$ since S is a ring. Similarly, $ab \in T$ and $a+b \in T$. Since $ab \in S$ and $ab \in T$, $ab \in S \cap T$, so $S \cap T$ is closed under multiplication. Similarly, $a+b \in S$ and $a+b \in T$, so $a+b \in S \cap T$, so $S \cap T$ is closed under addition.

Since $S \neq \emptyset$ (because S is a ring), there exists $s \in S$. Since $s \in S$, s has an additive inverse -s. $s + (-s) = 0_R$ (because addition in S is the same as addition in R), so, by closure of addition, $0_R \in S$. Similarly, $0_R \in T$. Therefore, $0_R \in S \cap T$, so $S \cap T$ is nonempty.

By the Subring Test Theorem, $S \cap T$ is a subring of R.

(b)

 $\{0,2,4\}$ and $\{0,3\}$ are both subrings of \mathbb{Z}_6 . However, $\{0,2,3,4\}$ is not closed under addition $(2+3=5,2+3 \notin \{0,2,3,4\})$, so not necessarily a subring.

Problem (3.2.25). Let S be a subring of a ring R with identity.

- (a) If S has an identity, show by example that 1_S may not be the same as 1_R .
- (b) If both R and S are integral domains, prove that $1_S = 1_R$.

Solution. (a)

 \mathbb{Z}_6 has an identity 1, but its subring consisting of elements $\{0, 2, 4\}$ has 4 as a multiplicative identity.

(b)

Since S is a subring of R, $1_S \in R$.

Problem (3.2.31). A **Boolean ring** is a ring R with identity in which $x^2 = x$ for every $x \in R$. For examples, see Exercises 19 and 44 in Section 3.1. If R is a Boolean ring, prove that

- (a) $a + a = 0_R$ for every $a \in R$, which means that a = -a. [Hint: Expand $(a + a)^2$.]
- (b) R is commutative. [Hint: Expand $(a+b)^2$.]

Solution. (a)

$$(a+a)^2 = (a+a)^2$$
$$a^2 + a^2 + a^2 + a^2 = a + a$$
$$a + a + a + a = a + a$$
$$a + a = 0$$
$$a = -a$$

(b)

$$(a+b)^{2} = (a+b)^{2}$$

$$a+b = (a+b)(a+b)$$

$$a+b = a^{2} + ab + ba + b^{2}$$

$$a+b = a+ab+ba+b$$

$$0 = ab+ba$$

$$-ba = ab$$

$$ba = ab$$

Problem (3.2.DK1). Let R be a ring with identity. Prove that if $1_R = 0_R$, then $R = \{0_R\}$. That is, R is the zero ring.

Solution. Let a be any element of R.

$$0a = 0$$
 by Theorem 3.5
 $1a = a$
 $0 = 1$
 $0a = 1a$
 $0 = a$

Any element a is equal to 0, so every element of R is equal to 0. Since all elements are 0, $R = \{0_R\}$.