Singular Value Decomposition

The definition

The SVD is a useful way to characterize a matrix. Let A be a matrix from \mathbb{R}^n to \mathbb{R}^m (or $A \in \mathbb{R}^{m \times n}$) of rank r. It can be decomposed into a sum of r rank-1 matrices:

$$A = \sum_{i=1}^{r} \sigma_i \vec{u}_i \vec{v}_i^T$$

where

- $\vec{u}_1, \dots, \vec{u}_r$ are orthonormal vectors in \mathbb{R}^m ; $\vec{v}_1, \dots, \vec{v}_r$ are orthonormal vectors in \mathbb{R}^n .
- the singular values $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$ are always real and positive.

We can also re-write the decomposition in matrix form:

$$A = U_1 S V_1^T$$

The properties of U_1 , S and V_1 are,

• U_1 is an $[m \times r]$ matrix whose columns consist of $\vec{u}_1, \dots, \vec{u}_r$. Consequently,

$$U_1^T U_1 = I_{r \times r}$$

• V_1 is an $[n \times r]$ matrix whose columns consist of $\vec{v}_1, \dots, \vec{v}_r$. Consequently,

$$V_1^T V_1 = I_{r \times r}$$

- U_1 characterizes the column space of A and V_1 characterizes the row space of A.
- *S* is an $[r \times r]$ matrix whose diagonal entries are the singular values of *A* arranged in descending order. The singular values are the square roots of the nonzero eigenvalues of A^TA (or, identically, AA^T).

The full matrix form of SVD is

$$A = U\Sigma V^T$$

where $U^TU = I_{m \times m}, V^TV = I_{n \times n}, \Sigma \in \mathbb{R}^{m \times n}$, which contains S and elsewhere zero.

The calculation

We calculate the SVD of matrix A as follows.

- (a) Pick $A^T A$ or AA^T .
- (b) i. If using A^TA , find the eigenvalues λ_i of A^TA and order them, so that $\lambda_1 \ge \cdots \ge \lambda_r > 0$ and $\lambda_{r+1} = \cdots = \lambda_n = 0$.

If using AA^T , find its eigenvalues $\lambda_1, \ldots, \lambda_m$ and order them the same way.

ii. If using $A^T A$, find orthonormal eigenvectors \vec{v}_i such that

$$A^T A \vec{v}_i = \lambda_i \vec{v}_i, \quad i = 1, \dots, r$$

If using AA^T , find orthonormal eigenvectors \vec{u}_i such that

$$AA^T\vec{u}_i = \lambda_i\vec{u}_i, \quad i = 1, \dots, r$$

iii. Set $\sigma_i = \sqrt{\lambda_i}$.

If using $A^T A$, obtain \vec{u}_i from $\vec{u}_i = \frac{1}{\sigma_i} A \vec{v}_i$, i = 1, ..., r.

If using AA^T , obtain \vec{v}_i from $\vec{v}_i = \frac{1}{\sigma_i}A^T\vec{u}_i$, i = 1, ..., r.

(c) If you want to completely construct the U or V matrix, complete the basis (or columns of the appropriate matrix) using Gram-Schmidt. Remember to orthonormalize afterwards.

The full matrix form of SVD is taken to better understand the matrix A in terms of the 3 nice matrices U, Σ, V . Often, we do not completely construct the U and V matrices.

Questions

1. SVD and Fundamental Subspaces

Define the matrix

$$A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}.$$

- (a) Find the SVD of A (compact form is fine).
- (b) Find the rank of A.
- (c) Find a basis for the kernel (or nullspace) of A.
- (d) Find a basis for the range (or columnspace) of A.
- (e) Repeat parts (a) (d), but instead, create the SVD of A^T . What are the relationships between the answers for A and the answers for A^T ?

2. Eigenvalue Decomposition and Singular Value Decomposition

We define Eigenvalue Decomposition as follows:

If a matrix $A \in \mathbb{R}^{n \times n}$ has n linearly independent eigenvectors $\vec{p}_1, \dots, \vec{p}_n$ with eigenvalues $\lambda_i, \dots, \lambda_n$, then we can write:

$$A = P\Lambda P^{-1}$$

Where columns of P consist of $\vec{p}_1, \dots, \vec{p}_n$, and Λ is a diagonal matrix with diagonal entries $\lambda_i, \dots, \lambda_n$.

Consider a matrix $A \in \mathbb{S}^n$, that is, $A = A^T \in \mathbb{R}^{n \times n}$. This is a symmetric matrix and has orthorgonal eigenvectors. Therefore its eigenvalue decomposition can be written as,

$$A = P\Lambda P^T$$

- (a) First, assume $\lambda_i \geq 0, \forall i$. Find the SVD of A.
- (b) Let one particular eigenvalue λ_j be negative, with the associated eigenvector being p_j . Succinctly,

$$Ap_j = \lambda_j p_j$$
 with $\lambda_j < 0$

We are still assuming that,

$$A = P\Lambda P^T$$

- i. What is the singular value σ_i associated to λ_i ?
- ii. What is the relationship between the left singular vector u_j , the right singular vector v_j and the eigenvector p_j ?

3. SVD and Induced 2-Norm

(a) Show that if U is an orthogonal matrix then for any \vec{x}

$$||U\vec{x}|| = ||\vec{x}||.$$

(b) Find the maximum

$$\max_{\{\vec{x}: ||\vec{x}||=1\}} ||A\vec{x}||$$

in terms of the singular values of A.

(c) Find the \vec{x} that maximizes the expression above.

Extra Practice

1. More SVD

Define the matrix

$$A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}.$$

- (a) Find the SVD of A (compact form is fine).
- (b) Find the rank of A.
- (c) Find a basis for the kernel (or nullspace) of A.
- (d) Find a basis for the range (or columnspace) of A.