MÉTODOS MATEMÁTICOS DE LA INFORMÁTICA

5. Aproximación de Funciones por Polinomios.

- 5.1. Calcula los poliomios de Taylor de grado 2 de las siguientes funciones centrados en los puntos que se indican.

- a) $f(x) = \sin x$, centrado en $a = \pi$. b) $f(x) = \sqrt{1+x}$, c) $f(x) = (\ln x)^2$, a = 1. d) $f(x) = e^x$, a = 1. e) $f(x) = \frac{x}{1+x^2}$, a = 0. f) $f(x) = \frac{\cos x}{x+1}$, a = 0.
 - **5.2.** Determina el origen de las siguientes expresiones.
- a) $\sin x \simeq 1 + x$ si $x \simeq \pi$. b) $\sqrt{1 + x} \simeq 1 + \frac{x}{2} \frac{x^2}{8}$ si $|x| \simeq 0$.
- c) $(\ln x)^2 \simeq (x-1)^2$ si $x \simeq 1$. d) $e^x \simeq e(1+(x-1)+\frac{(x-1)^2}{2})$ si $x \simeq 1$.
- e) $\frac{x}{1+x^2} \simeq x$ si $|x| \simeq 0$. f) $\frac{\cos x}{1+x} \simeq 1-x+\frac{x^2}{2}$ si $|x| \simeq 0$.
 - 5.3. Encuentra una estimación del error máximo que se puede cometer al tomar:
- 1) 1 + x en lugar de sen x si $x \in [3, 1, 3, 2]$.
- 2) $1 + \frac{x}{2} \frac{x^2}{8}$ en lugar de $\sqrt{1+x}$ si $x \in [-0, 2, 0, 2]$.
- 3) $(x-1)^2$ en lugar de $(\ln x)^2$ si $x \in [0,7,1,3]$.
- 4) $e(1 + (x 1) + \frac{(x 1)^2}{2})$ en lugar de e^x si $x \in [0, 8, 1, 2]$.
- 5) $e(1 + (x 1) + \frac{(x-1)^2}{2})$ en lugar de e^x si $x \in [0, 4, 1, 6]$.
 - 5.4. Explica la siguiente desigualdad

$$|\operatorname{sen}(a+h) - (\operatorname{sen} a + h \cos a)| \le \frac{1}{2}h^2.$$

- **5.5.** Un hilo pesado, bajo la acción de la gravedad, se comba formando la catenaria y = $a\cosh\frac{x}{a}$. Demuestra que, para valores pequeños de |x|, la forma que toma el hilo puede ser representada por la parábola $y = a + \frac{x^2}{2a}$.
- 5.6. Calcula las series de Taylor de las funciones siguientes centradas en los puntos que se indican.
- a) $f(x) = e^x$, centrada en a = 1. b) $f(x) = (x 1)e^{x+1}$, a = 1. c) $f(x) = e^x(x 1)^5$, en a = 1. d) $f(x) = \cos x$, $a = \frac{\pi}{4}$. e) $f(x) = \sin x$, $a = \pi$. f) $f(x) = \frac{\sin x}{(x \pi)}$, en $a = \pi$. g) $f(x) = e^{-x^2}$, a = 0. h) $f(x) = \ln(1 + x^2)$, a = 0. i) $f(x) = \frac{1}{1 + x^4}$, a = 0.
- - **5.7.** Calcula los siguientes números con un error inferior a 10^{-3} ;
- 2) e^{-1} . 3) arctan 1. 4) $\ln 2$. 1) sen 1.