Applications

2/2 : Images et antécédents

14

1	1.1	ages par une application. Image directe	
2	2.1 2.2	olications injectives, surjectives, bijectives. Injectivité Surjectivité Bijectivité et application réciproque.	3
Ex	xercio	\mathbf{ces}	6

Les lettres E et F désigneront des ensembles.

1 Images par une application.

1.1 Image directe.

Définition 1.

Soit $f: E \to F$ une application et A une partie de E. On appelle **image** (directe) de A par f, et on note f(A) la partie de F ci-dessous

$$f(A) = \{ f(x) \mid x \in A \} = \{ y \in F \mid \exists x \in A \ y = f(x) \}.$$

Lorsque c'est l'image de E tout entier que l'on considère, on peut noter

$$\operatorname{Im}(f) = f(E).$$

Exemple 2.

- 1. Que vaut Im(arctan)?
- 2. Soit $\exp: z \mapsto e^z$; $\mathbb{C} \to \mathbb{C}^*$ l'exponentielle complexe. Que valent $\exp(\mathbb{R})$ et $\exp(i\mathbb{R})$?

Proposition 3.

Soit $f: E \to F$ une application. Soient A et B deux parties de E. On a

$$f(A \cup B) = f(A) \cup f(B)$$
 et $f(A \cap B) \subset f(A) \cap f(B)$.

Exemple 4.

Soit $f: x \mapsto x^2$, définie sur \mathbb{R} . Considérons $A = [2, +\infty[$, et $B =]-\infty, -2]$. Montrer que

$$f(A \cap B) \neq f(A) \cap f(B)$$
.

1.2 Image réciproque.

Définition 5.

Soient E et F deux ensembles non vides et $f: E \to F$ une application. Soit A une partie de F. On appelle **image réciproque** de A par f, et on note $f^{-1}(A)$ la partie de E ci-dessous

$$f^{-1}(A) = \{x \in E \mid f(x) \in A\}.$$

En particulier, si $y_0 \in F$, $f^{-1}(\{y_0\})$ est l'ensemble des antécédents de y_0 par f dans E.

 $\overline{\text{Si } f}: E \to F$, n'est pas bijective, **l'application** f^{-1} n'est pas définie, contrairement à l'ensemble $f^{-1}(A)$. Bref, sauf dans le cas où la réciproque existe, l'image réciproque n'est pas l'image par la réciproque...

Exemple 6.

- 1. La fonction tan étant définie sur l'ensemble que l'on sait, déterminer $\tan^{-1}(\mathbb{R}_+)$?
- 2. Soit $f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & xy \end{array} \right.$ Que valent $f^{-1}(\mathbb{R}_+)$ et $f^{-1}(\{0\})$?

Proposition 7.

Soit $f: E \to F$ une application. Soient A et B deux parties de F. On a

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$
 et $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.

2 Applications injectives, surjectives, bijectives.

2.1 Injectivité

Définition 8.

Une application $f:E\to F$ est dite **injective** si tout élément de F a au plus un antécédent dans E, ce qui s'écrit :

$$\forall x, x' \in E \quad f(x) = f(x') \implies x = x'.$$

Méthode.

- 1. Pour démontrer qu'une application $f: E \to F$ est injective :
 - On considère deux éléments x et x' de E,
 - on suppose que f(x) = f(x'),
 - on démontre que x = x'.
- 2. Pour démontrer qu'une application $f: E \to F$ n'est pas injective, il suffit d'exhiber une paire $\{x, x'\}$ d'éléments de E tels que $x \neq x'$ et f(x) = f(x').

2

D'une application $f: E \to F$ injective, on peut dire aussi que c'est une injection de E vers F.

Exemples 9.

- 1. La fonction $\sin : \mathbb{R} \to \mathbb{R}$ est-elle injective? Comment la « rendre injective »?
- 2. Soient

$$f: \left\{ \begin{array}{ccc} \mathbb{Z}^2 & \to & \mathbb{R} \\ (p,q) & \mapsto & p+\sqrt{2}q \end{array} \right. \quad \text{et} \quad g: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & xy \end{array} \right..$$

Montrer que f est injective et que g ne l'est pas.

Exemple 10.

Soit $f: X \to \mathbb{R}$, où $X \in \mathcal{P}(\mathbb{R})$. Montrer que si f est strictement monotone, alors elle est injective.

Proposition 11.

La composée de deux applications injectives est injective.

Proposition 12 (Une réciproque partielle).

Soient deux applications $f: E \to F$ et $g: F \to G$.

 $g \circ f$ est injective \implies f est injective.

2.2 Surjectivité.

Définition 13.

Une application $f: E \to F$ est dite **surjective** si tout élément de F a au moins un antécédent dans E, ce qui s'écrit :

$$\forall y \in F \quad \exists x \in E \quad y = f(x).$$

Méthode.

- 1. Pour démontrer qu'une application $f: E \to F$ est surjective :
 - On considère un élément y de F,
 - on trouve/prouve l'existence de $x \in E$ tel que y = f(x).
- 2. Pour démontrer qu'une application $f: E \to F$ n'est pas surjective, il suffit d'exhiber un élément de F n'ayant pas d'antécédent dans E par f.

D'une application $f: E \to F$ surjective, on peut dire aussi que c'est une surjection de E vers F.

Proposition 14 (Vision ensembliste de la surjectivité).

Soit $f: E \to F$ une application. On a

$$f$$
 surjective \iff Im $(f) = F$.

Exemples 15.

- 1. La fonction $\sin : \mathbb{R} \to \mathbb{R}$ est-elle surjective?
- 2. Soient

$$f: \left\{ \begin{array}{ccc} \mathbb{Z}^2 & \to & \mathbb{R} \\ (p,q) & \mapsto & p+\sqrt{2}q \end{array} \right. \quad \text{et} \quad g: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & xy \end{array} \right..$$

Montrer que g est surjective et que f ne l'est pas.

Proposition 16.

La composée de deux applications surjectives est surjective.

Proposition 17 (Une réciproque partielle).

Soient deux applications $f: E \to F$ et $g: F \to G$.

 $g \circ f$ est surjective \implies g est surjective.

2.3 Bijectivité et application réciproque.

Définition 18.

Soit une application $f: E \to F$. Elle est dite **bijective** si elle est à la fois injective et surjective, c'est-à-dire si tout élément de F possède un unique antécédent dans E, ce qui s'écrit

$$\forall y \in F \quad \exists! x \in E \quad y = f(x).$$

D'une application $f: E \to F$ bijective, on peut dire aussi que c'est une bijection de E vers F.

Définition 19.

Soit une application bijective $f: E \to F$. Tout élément $y \in F$ possède un unique antécédent dans E par f; notons-le $f^{-1}(y)$. Ceci définit la fonction **réciproque** de f.

$$f^{-1}: \left\{ \begin{array}{ccc} F & \to & E \\ y & \mapsto & f^{-1}(y) \end{array} \right. .$$

4

Proposition 20 (La réciproque est un inverse pour la composition).

Soit $f: E \to F$ une bijection et $f^{-1}: F \to E$ sa réciproque. On a

$$f^{-1} \circ f = \mathrm{id}_E$$
, et $f \circ f^{-1} = \mathrm{id}_F$.

Méthode (Calcul de la réciproque d'une fonction).

Soit $f: E \to F$ une fonction bijective et $y \in F$. S'il est possible de résoudre l'équation

$$y = f(x),$$

c'est-à-dire d'exprimer x en fonction de y, on a une expression de $f^{-1}(y)$.

Si, pour tout élément $y \in F$, on sait prouver l'existence et l'unicité d'un antécédent dans E (une solution de l'équation y = f(x)), on a prouvé la bijectivité de f.

Exemple 21.

Justifier que ch réalise une bijection de $[0, +\infty[$ dans $[1, +\infty[$ et expliciter sa réciproque.

Théorème 22 (Caract. de la bijectivité par l'existence d'un inverse pour la composition).

Soit $f \in \mathcal{F}(E, F)$ une application. Alors,

$$f$$
 est bijective \iff $(\exists g \in \mathcal{F}(F, E) : g \circ f = \mathrm{id}_E \text{ et } f \circ g = \mathrm{id}_F)$

Autrement dit, f est bijective si et seulement si elle admet un (même) « inverse » à gauche et à droite pour la composition. De plus, lorsque cet inverse g existe, $g = f^{-1}$.

Proposition 23 (Bijectivité de la réciproque).

Si $f: E \to F$ est une bijection, alors $f^{-1}: E \to F$ est une bijection et

$$(f^{-1})^{-1} = f.$$

Proposition 24 (Composée de bijections).

Si $f: E \to F$ et $g: F \to G$ sont deux bijections, alors $g \circ f$ est une bijection de E vers G et

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

Exercices

Images directes, images réciproques.

14.1 $[\blacklozenge \diamondsuit \diamondsuit]$ Soit $f: E \to F$ une application. Soient deux parties $A \subset E$ et $B \subset F$. Montrer l'égalité

$$f(A) \cap B = f(A \cap f^{-1}(B)).$$

14.2 $[\blacklozenge \blacklozenge \diamondsuit]$ Soit $f: E \to F$ une application. Soit A une partie de E et B une partie de F.

- 1. (a) Montrer que $A \subset f^{-1}(f(A))$.
 - (b) Démontrer que si f est injective, l'inclusion réciproque est vraie.
- 2. Soit B une partie de F.
 - (a) Montrer que $f(f^{-1}(B)) \subset B$.
 - (b) Démontrer que si f est surjective, l'inclusion réciproque est vraie.
- 3. Montrer que $f(f^{-1}(f(A))) = f(A)$.
- 4. Montrer que $f^{-1}(f(f^{-1}(B))) = f^{-1}(B)$.

 $\boxed{\mathbf{14.3}} \ [\spadesuit \spadesuit \spadesuit]$ Soit $f: E \to F$ une application. Montrer que

$$f$$
 est injective \iff $[\forall A, B \in \mathcal{P}(E) \ f(A \cap B) = f(A) \cap f(B)].$

Applications injectives, surjectives.

 $\boxed{14.4}$ $\boxed{\Diamond\Diamond\Diamond}$ Soient

$$f: \left\{ \begin{array}{ccc} \mathbb{N}^2 & \to & \mathbb{Z} \\ (n,p) & \mapsto & (-1)^n p \end{array} \right. \quad \text{et} \quad g: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{C} \\ x & \mapsto & \frac{1+ix}{1-ix} \end{array} \right.$$

Ces fonctions sont-elles injectives? surjectives?

14.5 $[\phi \diamondsuit \diamondsuit]$ Dans cet exercice, on admet que π est irrationnel.

Démontrer que $\cos_{\mathbb{I}\mathbb{O}}$ n'est pas injective et que $\sin_{\mathbb{I}\mathbb{O}}$ l'est.

14.6 [���] Soit l'application
$$f: \mathbb{R} \to \mathbb{R}$$
 définie par $f(x) = \begin{cases} x^2 & \text{si } x \ge 0 \\ 2x^2 & \text{si } x < 0. \end{cases}$

- 1. Montrer que f n'est pas injective.
- 2. Montrer que $f_{|\mathbb{Q}}$ (restriction de f à \mathbb{Q}) est injective.

14.7 $[\phi \diamondsuit \diamondsuit]$ Soit $f: E \to E$. Montrer que

- 1. f est injective si et seulement si $f \circ f$ est injective.
- 2. f est surjective si et seulement si $f \circ f$ est surjective.

14.8 $] \{ \spadesuit \diamondsuit \}$ Soit E un ensemble et $f: E \to E$ une application.

On suppose que $f \circ f = f$ et que f est injective ou surjective. Montrer que $f = id_E$.

Montrer que

f est surjective \iff f est injective.

$$\begin{array}{|c|c|c|c|c|} \hline {\bf 14.10} & [\blacklozenge \diamondsuit \diamondsuit] & {\rm Soit} & f : \left\{ \begin{array}{l} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & n + (-1)^n \end{array} \right. \\ \\ {\rm D\acute{e}montrer} & {\rm que} & f & {\rm est} & {\rm une} & {\rm bijection} & {\rm de} & \mathbb{N} & {\rm dans} & {\rm lui-m\acute{e}me} & {\rm et} & {\rm donner} & {\rm sa} & {\rm r\acute{e}ciproque}. \end{array}$$

On suppose $f \circ q \circ f$ bijective. Montrer que f et q le sont aussi.

$$\Phi: \left\{ \begin{array}{ccc} \mathcal{C}^1(\mathbb{R}, \mathbb{R}) & \to & \mathcal{C}^0(\mathbb{R}, \mathbb{R}) \times \mathbb{R} \\ f & \mapsto & (f', f(1)) \end{array} \right..$$

- 1. Prouver que Φ est injective.
- 2. Prouver que Φ est surjective.
- 3. Donner une expression explicite de Φ^{-1} .

$$\Phi: \left\{ \begin{array}{ccc} \mathcal{P}(E) & \to & \mathcal{P}(A) \times \mathcal{P}(B) \\ X & \mapsto & (X \cap A, X \cap B). \end{array} \right.$$

- 1. Calculer $\Phi(\emptyset)$ et $\Phi(E \setminus (A \cup B))$. Que dire de A et B si (A,\emptyset) admet un antécédent par Φ ?
- 2. Montrer que : Φ injective $\iff A \cup B = E$.
- 3. Montrer que : Φ surjective $\iff A \cap B = \emptyset$.

14.15 [$\diamond \diamond \diamond$]

On souhaite que cet exercice éclaire la caractérisation de la bijectivité par existence d'un inverse

Soit $f \in \mathcal{F}(E, F)$.

1. Démontrer que f est injective si et seulement si elle est inversible à gauche. Plus précisément, prouver l'assertion

$$f$$
 est injective $\iff \exists g \in \mathcal{F}(F, E) \ g \circ f = \mathrm{id}_E.$

2. Démontrer que f est surjective si et seulement si elle est inversible à gauche. Plus précisément, prouver l'assertion

$$f$$
 est injective \iff $\exists g \in \mathcal{F}(F, E) \ f \circ g = \mathrm{id}_F.$

Soit $f \in \mathcal{F}(E, \mathcal{P}(E))$. Montrer que f n'est pas surjective.

Indication : on pourra considérer $A = \{x \in E \mid x \notin f(x)\}.$