

Semester II Examinations 2018/2019

1EM1, 1OA1, 2BA1, 2BCW1, 2BCT1,

Exam Codes

Exam Module Module Code	2BPT1, 2BS1, 2EH1, 3BS9 Second Year Arts and Science Third Year Science LINEAR ALGEBRA MA203
External Examiner Internal Examiners	Prof. Thomas Brady Prof. Graham Ellis Dr. John Burns
<u>Instructions</u>	Answer all questions.
Duration No. of Pages School	2 hours 4 pages including this page Mathematics, Statistics & Applied Mathematics
Requirements: Release in Exam venue MCQ	Yes ✓ No ☐ Yes ☐ No ✓

Q1. (a) [13 marks] Consider the following system of equations

- (i) Write down the augmented matrix for this system of equations.
- (ii) Using elementary row operations, convert the augmented matrix to reduced row echelon form.
- (iii) Write down the general solution of the system of equations.
- (b) [12 marks] For each of the following statements, declare whether the statement is true or false.
 - (i) A system of four linear equations in three unknowns cannot have a solution.
 - (ii) 3x + 3y 2z = 0 is the equation of a plane through the origin in \mathbb{R}^3 , with normal vector (3, 3, -2)
 - (iii) It is possible to determine if two lines in \mathbb{R}^3 intersect by solving an appropriate system of linear equations.

Q2. (a) [8 marks] Let

$$A = \begin{pmatrix} 1 & 1 \\ 4 & 3 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & 4 & 3 \\ 2 & 1 & 6 \end{pmatrix}.$$

Of the products AB, BA, A^2 and B^2 , compute all those that are defined.

(b) [11 marks] Use elementary row operations to find the inverse (if it exists) of the matrix A below. Determine the rank of A and the kernel of A.

$$A = \left(\begin{array}{ccc} 1 & 2 & -1 \\ 1 & 1 & -4 \\ 2 & 1 & -12 \end{array}\right).$$

(c) [6 marks] For each of the following statements, declare whether the statement is true or false.

- (i) Elementary row operations do not change the determinant of a matrix.
- (ii) Any set of three linearly independent vectors in \mathbb{R}^3 is a basis for \mathbb{R}^3 .
- (iii) If the rows of a square matrix A are linearly dependent, then A is not invertible.
- **Q3.** (a) [10 marks] Express the vector (2, -1, 4) as a linear combination of the vectors (1, -1, 0), (1, 0, 2) and (0, 1, 1). What is the span of the set of vectors $\{(1, -1, 0), (1, 0, 2), (0, 1, 1)\}$?
 - (b) [6 marks] Let $n = (n_1, n_2, n_3) \in \mathbb{R}^3$ and consider the linear map $L : \mathbb{R}^3 \to \mathbb{R}^3$ defined by $L(v) := n \times v$ (the cross product of n and v). Find the third column of the matrix for L (w.r.t. the standard basis for \mathbb{R}^3).
 - (c) [9 marks] For each of the following statements, declare whether the statement is true or false.
 - (i) If 0 is an eigenvalue of a square matrix A, then A has no inverse matrix.
 - (ii) If the characteristic polynomial of a 3×3 matrix A is $P(\lambda) = \lambda^3 6\lambda^2 + 11\lambda 6$, then 2 is an eigenvalue of A.
 - (iii) A 3×3 matrix can have four distinct eigenvalues.
- **Q4.** A marketing company analysed customer switching behaviour between mobile phone providers ONE, TWO and THREE and observed that:
 - Every year 10% of ONE customers switch to TWO and 10% switch to THREE (with 80% remaining with ONE).
 - Every year 3% of TWO customers switch to ONE and 2% switch to THREE (with 95% remaining with TWO).
 - Every year 20% of THREE customers switch to ONE and 5% switch to TWO (with 75% remaining with THREE).

- (a) [9 marks] Write down the transition matrix for this Markov process.
- (b) [8 marks] Explain why the transition matrix has 1 as an eigenvalue.
- (c) [8 marks] The marketing company predicts that TWO will (in the long term) have more that 60% of the market. Is this realistic if current trends continue? Currently ONE has 45% of the market, TWO has 25% and THREE has 30%.