FRACTAL EN PYTHON. UN ARBOL EN COLOR

1. Explicacion del código

```
import turtle
import random
         #Variables globales
        RAND = 35 #ángulo de inclinación para las ramas
RAND = 40 #factor de aleatoriedad del ángulo de inclinación (grados)
REL = 4/5 #relación entre la rama y las sub ramas
RANDT = 50 #factor de aleatoriedad en el tamaño de las ramas (%)
        RANDI = 50 #factor de ateatoriedad en et tamano de tas ramas
GROSORTRONCO = 0 #pixeles que se le suman al grosor del árbol
TAMINIC = 70 #tamaño del tronco inicial en pixeles
TAMHOJA = 10 #tamaño de la hoja
ANGHOJA = 70 #ángulo de las puntas de las hojas (180 = círcul
        ANGHOJA = 70 #unguto de las puntas de las nojas (180 = ctreutos)
PROF = 9 #cantidad de níveles en el árbol (más de 10 puede durarmucho dibujándose)
CTRONCO = (139,69,19) #color del tronco. tres números entre 0 y 255
CTRONCOVAR = 40 #factor de aleatoriedad en el color del tronco
CHOJAS = (42,147,17) #color de las hojas
CHOJASVAR = 100 #factor de aleatoriedad en el color de las hojas
        CHOJASVAR = 100 #factor de aleatoriedad en el color de las hojas
CFONDO = (255,255,255) #color de fondo
         #Función que dibuja un árbol fractal
21
22
        # Entradas:# t: tamaño del segmento inicial en pixeles
# d: profundidad total del árbol
         # Salidas:# Dibujo del árbol en pantalla
# Restricciones: no
23
        def arbol(t, d):
    if d==0:
27
                            turtle.forward(t)
28
                            hoja(TAMHOJA, ANGHOJA)
29
                            turtle.penup()
turtle.back(t)
30
31
32
                            turtle.pendown()
                             turtle.color(CTRONCO)
                             return
```

La primera rama del código es una definición de las variables que vamos a estar utilizando, por ejemplo, el ángulo de las ramas, el color de las hojas, el tamaño inicial del tronco o la relación de tamaño entre las ramas y el tronco. También se ve la definición de lo que es el árbol, lo primero, la T, es el tamaño inicial del segmento y D la profundidad. Si la profundidad es 0, se inicia el proceso de dibujar el tronco inicial, y vuelve hacia atrás "return". Cuando ha dibujado el tronco, se empiezan a dibujar las curvaturas con grado, tamaño y color aleatorio de las ramas que crecen con proporción 4/5 como vemos abajo aunque el color siempre dentro de los parámetros que escribimos arriba.

```
angulo1 = ANG + random.randrange(-RAND, RAND+1)
                 angulo2 = ANG + random.randrange(-RAND, RAND+1)
tamano = t + t*random.randrange(-RANDT, RANDT+1)/100
colortronco = variacioncolor(CTRONCO, CTRONCOVAR)
                                                                                                                                        Al terminar esta función se pasa a
                                                                                                                                        definir las hojas con su variación
                 turtle.color(colortronco)
turtle.pensize(d+GROSORTRONCO)
turtle.forward(tamano)
                                                                                                                                        de color, tamaño, ángulo de la
                 turtle.left(angulo1)
arbol(t*REL, d-1)
                                                                                                                                        punta de la hoja, y profundidad.
44
                 turtle.right(angulo1+angulo2)
arbol(t*REL, d-1)
turtle.color(colortronco)
47
48
49
                 turtle.left(angulo2)
turtle.penup()
turtle.back(tamano)
                 turtle.pendown()
# Función que dibuja una hoja# Entradas:
                  # t: tamaño de la hoja# a: ángulo de las puntas de las hojas# Salidas:
                  # Dibujo de una hoja en la posición actual de la tortuga
                  # Restricciones: n
     def hoja(t, a):
   turtle.color(variacioncolor(CHOJAS, CHOJASVAR))
55
56
57
58
59
60
           turtle.begin_fill()
turtle.right(a/2)
turtle.circle(t, a)
           turtle.left(180-a)
           turtle.circle(t, a)
turtle.left(180-a/2)
61
62
           turtle.end_fill()
                          Función que genera una variación de un color en RGB
                       # Entradas:
                       # color: tupla con tres valores enteros entre 0 v 255
                       # Color: Eupla con tres valores enteros entero y y solores RGB
# var: cantidad máxima de variación permitida en los valores RGB
# Salidas:# Tupla de tres valores enteros entre 0 y 255 que es una variación# del color original.
                    # Restricciones: no
```

```
70
     def variacioncolor(color, var):
         Rd = random.randrange(-var, var+1)
                                                      En este apartado pasamos a definir las
72
         Gd = random.randrange(-var, var+1)
         Bd = random.randrange(-var, var+1)
                                                      variaciones de color en RGB, arriba
         R, G, B = color
R += Rd
G += Gd
74
 75
                                                      definimos el color marrón como
76
         B += Bd
                                                      (139,69,19) y el verde como
         if R > 255:
R = 255
 78
                                                      (42,147,17). También arriba definimos
 79
         elif R < 0:
80
                                                      los porcentajes de variabilidad de los
         R = 0
if G > 255:
81
22
                                                      colores, que pusimos en 100% para que
              G = 255
23
         elif G < 0:
84
                                                      cada hoja fuese de un color, al igual
85
             G = 0
         if B > 255:
B = 255
86
                                                      que las ramas.
87
         elif B < 0:
B = 0
88
89
         return R, G, B
90
91
                  # Funcion que inicia la posicion de la tortuga e invoca la funcion
92
93
                  # de dibujar arbol fractal
94
95
    def init():
                                                      Por ultimo este bloque de
96
         turtle.speed(100)
97
         turtle.colormode(255)
                                                      código lo utilizamos para
98
         turtle.clear()
99
         turtle.penup()
                                                      dibujar el fractal con todas
100
         turtle.home()
101
         turtle.left(90)
                                                      las definiciones y variables
102
         turtle.back(200)
                                                      que hemos "explicado" y
103
         turtle.pendown()
104
         turtle.hideturtle()
                                                      determinado antes.
105
         turtle.color(CTRONCO)
106
         turtle.bgcolor(CFONDO)
         arbol(TAMINIC, PROF)
107
108
         turtle.done()
```

109 110 init()

Esta última línea de código inicia el código INIT que es el fractal.

2. Imágenes del resultado de este fractal

Ya que este fractal tiene variabilidad en aspectos como el ángulo de las ramas o el grosor, cada vez que se ejecuta se consigue un resultado diferente.

3. Conclusión

Con los fractales se pueden conseguir cosas bastante increíbles, mas aun si sabe dominar este tipo de códigos. Es capaz de generar formas muy creativas.