Import the necessary libraries

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Dataset to be imported which to be analysed.

In [5]:

df = pd.read_excel("C:\\Users\\VIMAL MADHAN\\Desktop\\pga15 python\\HeartDiseasePrediction.

Now the dataset will showing all details inform of table by rows and columns

In [6]:

df

Out[6]:

	age	gender	chest_pain	rest_bps	cholestrol	fasting_blood_sugar	rest_ecg	thalach	exe
0	63	1	3	145	233	1	0	150	
1	37	1	2	130	250	0	1	187	
2	41	0	1	130	204	0	0	172	
3	56	1	1	120	236	0	1	178	
4	57	0	0	120	354	0	1	163	
298	57	0	0	140	241	0	1	123	
299	45	1	3	110	264	0	1	132	
300	68	1	0	144	193	1	1	141	
301	57	1	0	130	131	0	1	115	
302	57	0	1	130	236	0	0	174	

303 rows × 14 columns

now we using set_option in pandas to display max columns or rows from the table

In [10]: pd.set_option('display.max_rows',500)

In [11]:

df									
8	52	1	2	172	199	1	1	162	0
9	57	1	2	150	168	0	1	174	0
10	54	1	0	140	239	0	1	160	0
11	48	0	2	130	275	0	1	139	0
12	49	1	1	130	266	0	1	171	0
13	64	1	3	110	211	0	0	144	1
14	58	0	3	150	283	1	0	162	0
15	50	0	2	120	219	0	1	158	0
16	58	0	2	120	340	0	1	172	0
17	66	0	3	150	226	0	1	114	0
18	43	1	0	150	247	0	1	171	0
19	69	0	3	140	239	0	1	151	0 🗸
<									>

Now we are extracting the number of rows and columns in the dataset

```
In [12]:

df.shape

Out[12]:
  (303, 14)
```

This shows that how much rows and columns are in the dataset

EXPLORATORY DATA ANALYSIS(EDA)

Before building the model, first we have to analyse whether there is any missing values in the dataset

```
In [13]:

df.isna().sum().sum()

Out[13]:
```

Now, it is confirmed that there is no missing or null values in the dataset and we can proceed for further process

```
In [ ]:
```

We have to get the basic informations of each and every attributes in our dataset

```
In [14]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):
#
    Column
                       Non-Null Count Dtype
    -----
                        -----
0
                        303 non-null
                                      int64
    age
1
    gender
                        303 non-null
                                      int64
2 chest_pain
                       303 non-null
                                      int64
   rest bps
                       303 non-null int64
4
    cholestrol
                                     int64
                       303 non-null
5
    fasting_blood_sugar 303 non-null
                                    int64
6 rest ecg
                       303 non-null int64
7
   thalach
                       303 non-null int64
8
    exer_angina
                                      int64
                       303 non-null
9
    old_peak
                       303 non-null float64
10 slope
                        303 non-null int64
11 ca
                       303 non-null int64
12 thalassemia
                       303 non-null
                                      int64
                        303 non-null
                                      int64
13 target
dtypes: float64(1), int64(13)
memory usage: 33.3 KB
In [ ]:
```

Descriptive statistics for the given data

In [15]:

df.describe()

Out[15]:

	age	gender	chest_pain	rest_bps	cholestrol	fasting_blood_sugar	rest
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.00
mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.52
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.52
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.00
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.00
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.00
75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.00
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.00

CORRELATION comparision between each and every variables

Correlation > 0 = Positive correlation

correlation < 0 = Negative Correlation

correlation == 0 = No correlation

In [16]:

df_corr=df.corr()

In [17]:

df_corr

Out[17]:

age	gender	chest_pain	rest_bps	cholestrol	fasting_blood_sugar	rest_ecg	thalach	exer
000	-0.098447	-0.068653	0.279351	0.213678	0.121308	-0.116211	-0.398522	0
447	1.000000	-0.049353	-0.056769	-0.197912	0.045032	-0.058196	-0.044020	0
653	-0.049353	1.000000	0.047608	-0.076904	0.094444	0.044421	0.295762	-0
351	-0.056769	0.047608	1.000000	0.123174	0.177531	-0.114103	-0.046698	0
678	-0.197912	-0.076904	0.123174	1.000000	0.013294	-0.151040	-0.009940	0
308	0.045032	0.094444	0.177531	0.013294	1.000000	-0.084189	-0.008567	0
3211	-0.058196	0.044421	-0.114103	-0.151040	-0.084189	1.000000	0.044123	-0
522	-0.044020	0.295762	-0.046698	-0.009940	-0.008567	0.044123	1.000000	-0
801	0.141664	-0.394280	0.067616	0.067023	0.025665	-0.070733	-0.378812	1
013	0.096093	-0.149230	0.193216	0.053952	0.005747	-0.058770	-0.344187	0
814	-0.030711	0.119717	-0.121475	-0.004038	-0.059894	0.093045	0.386784	-0
326	0.118261	-0.181053	0.101389	0.070511	0.137979	-0.072042	-0.213177	С
001	0.210041	-0.161736	0.062210	0.098803	-0.032019	-0.011981	-0.096439	0
439	-0.280937	0.433798	-0.144931	-0.085239	-0.028046	0.137230	0.421741	-0

Since when there are lesser attributes it will be convinient for using Heatmap which gives the graphical correlation between each and every attributes

In [22]:

```
plt.figure(figsize=(13,8))
sns.heatmap(df_corr,annot = True,cmap = 'RdBu')
```

Out[22]:

<AxesSubplot:>

In [24]:

df.head(15)

Out[24]:

	age	gender	chest_pain	rest_bps	cholestrol	fasting_blood_sugar	rest_ecg	thalach	exei
0	63	1	3	145	233	1	0	150	
1	37	1	2	130	250	0	1	187	
2	41	0	1	130	204	0	0	172	
3	56	1	1	120	236	0	1	178	
4	57	0	0	120	354	0	1	163	
5	57	1	0	140	192	0	1	148	
6	56	0	1	140	294	0	0	153	
7	44	1	1	120	263	0	1	173	
8	52	1	2	172	199	1	1	162	
9	57	1	2	150	168	0	1	174	
10	54	1	0	140	239	0	1	160	
11	48	0	2	130	275	0	1	139	
12	49	1	1	130	266	0	1	171	
13	64	1	3	110	211	0	0	144	
14	58	0	3	150	283	1	0	162	
<									>

Relation between two variables

In [28]:

```
sns.lmplot(x='age',y='cholestrol',hue = 'target',data=df)
```

Out[28]:

<seaborn.axisgrid.FacetGrid at 0x239b43c6808>

The above graph gives the relationship between age and cholestrol with respect to target.

In [29]:

```
sns.lmplot(x='age',y='rest_bps',hue = 'target',data=df)
```

Out[29]:

<seaborn.axisgrid.FacetGrid at 0x239b3d81ac8>

The above graph gives the relationship between age and rest_bps with respect to target.

Outliers detection

In [31]:

sns.factorplot(x='chest_pain',y='cholestrol',hue='target',data=df,kind='box')

Out[31]:

<seaborn.axisgrid.FacetGrid at 0x239b4487c08>

In [33]:

```
sns.factorplot(x='thalassemia',y='cholestrol',hue='target',data=df,kind='box')
```

Out[33]:

<seaborn.axisgrid.FacetGrid at 0x239b58e54c8>

Counting variables

In [34]:

```
sns.countplot(df['target'])
```

C:\Users\VIMAL MADHAN\AppData\Roaming\Python\Python37\site-packages\seaborn _decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data `, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

Out[34]:

<AxesSubplot:xlabel='target', ylabel='count'>

In [36]:

```
sns.countplot(df['chest_pain'],hue=df['target'])
```

C:\Users\VIMAL MADHAN\AppData\Roaming\Python\Python37\site-packages\seaborn _decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

Out[36]:

<AxesSubplot:xlabel='chest_pain', ylabel='count'>

Analysing Distribution

In [97]:

```
x=df['cholestrol'][df['target']==1]
y=df['cholestrol'][df['target']==0]
sns.distplot(x,rug=True,label=1);
sns.distplot(y,rug=True,label=0);
plt.legend()
```

C:\Users\VIMAL MADHAN\AppData\Roaming\Python\Python37\site-packages\seaborn \distributions.py:2551: FutureWarning: `distplot` is a deprecated function a nd will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

C:\Users\VIMAL MADHAN\AppData\Roaming\Python\Python37\site-packages\seaborn
\distributions.py:2055: FutureWarning: The `axis` variable is no longer used
and will be removed. Instead, assign variables directly to `x` or `y`.
 warnings.warn(msg, FutureWarning)

C:\Users\VIMAL MADHAN\AppData\Roaming\Python\Python37\site-packages\seaborn \distributions.py:2551: FutureWarning: `distplot` is a deprecated function a nd will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

C:\Users\VIMAL MADHAN\AppData\Roaming\Python\Python37\site-packages\seaborn
\distributions.py:2055: FutureWarning: The `axis` variable is no longer used
and will be removed. Instead, assign variables directly to `x` or `y`.
 warnings.warn(msg, FutureWarning)

Out[97]:

<matplotlib.legend.Legend at 0x239b9422208>

In [60]:

```
sns.distplot(df['thalach'],rug=True);
```

C:\Users\VIMAL MADHAN\AppData\Roaming\Python\Python37\site-packages\seaborn \distributions.py:2551: FutureWarning: `distplot` is a deprecated function a nd will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

C:\Users\VIMAL MADHAN\AppData\Roaming\Python\Python37\site-packages\seaborn
\distributions.py:2055: FutureWarning: The `axis` variable is no longer used
and will be removed. Instead, assign variables directly to `x` or `y`.
 warnings.warn(msg, FutureWarning)

Multi-dimensional comparision

In [61]:

df.head()

Out[61]:

	age	gender	chest_pain	rest_bps	cholestrol	fasting_blood_sugar	rest_ecg	thalach	exer_
0	63	1	3	145	233	1	0	150	
1	37	1	2	130	250	0	1	187	
2	41	0	1	130	204	0	0	172	
3	56	1	1	120	236	0	1	178	
4	57	0	0	120	354	0	1	163	

< >>

In [63]:

sns.catplot(x='gender',y='cholestrol',data=df,hue='target',col='chest_pain',col_wrap=2,kind

Out[63]:

<seaborn.axisgrid.FacetGrid at 0x239b7659888>

In [64]:

sns.catplot(x='gender',y='cholestrol',data=df,hue='target',col='chest_pain',col_wrap=2,kind

Out[64]:

<seaborn.axisgrid.FacetGrid at 0x239b7660208>


```
In [ ]:

In [ ]:
```

Now, the dataset given is to analyse the classifications, so we can use following classification methods,

```
1.LOGISTIC REGRESSION

2.RANDOM FOREST

3.NAIVE BAYES

4.KNN

5.SVM

In [65]:

df.head()

Out[65]:
```

	age	gender	chest_pain	rest_bps	cholestrol	fasting_blood_sugar	rest_ecg	thalach	exer_
0	63	1	3	145	233	1	0	150	
1	37	1	2	130	250	0	1	187	
2	41	0	1	130	204	0	0	172	
3	56	1	1	120	236	0	1	178	
4	57	0	0	120	354	0	1	163	
<									>

Now we have to separate the independent and dependent variables in the dataset

```
In [66]:
x_ind=df.drop(['target'],axis=1)
In [67]:
y_dep=df['target']
```

Before building the model, the dataset have to split by

means of train and test and train_test_split is used for splitting the dataset

Train_split = 80%
Test split = 20%

In [69]:

from sklearn.model_selection import train_test_split

In [70]:

x_train,x_test,y_train,y_test=train_test_split(x_ind,y_dep,test_size=0.2,random_state=5)

Now the dataset is splitted with respect to,

x_train = 80% of independent data

x_test = 20% of independent data

y_train = 80% of dependent data

y_test = 20% of dependent data

MODEL BUILDING

In []:

LOGISTIC REGRESSION

Logistic regression is mainly used to predict binary classification.

Initially it will be predicting the values of 0 and 1 by default threshold value of 0.5.

To improve the accuracy we have to use ROC curve and to find the threshold value at which state it will gaining maximum accuracy

To find the p-values we have to use STATSMODELS library and LOGIT function

In [71]:

import statsmodels.api as sm

In [72]:

```
my_fit=sm.Logit(y_train,x_train)
```

In [73]:

```
p_value=my_fit.fit()
```

Optimization terminated successfully.

Current function value: 0.364027

Iterations 7

In [74]:

```
p_value.summary2()
```

Out[74]:

Out[/4].						
Model:	Model: Logit Pseudo R-squared:			squared:	0.4	170
Dependent Variable:		target		AIC:	202.18	392
Date: 2	2021-01-0	5 11:30		BIC:	247.54	154
No. Observations:		242	Log-Likelihood: LL-Null: LLR p-value: Scale:		-88.0)95
Df Model:		12			-166.34	
Df Residuals:		229			2.7162e	-27
Converged:		1.0000			1.00	000
No. Iterations:		7.0000				
	Coef.	Std.Err.	z	P> z	[0.025	0.975]
age	0.0129	0.0214	0.6015	0.5475	-0.0291	0.0548
gender	-1.9024	0.5157	-3.6889	0.0002	-2.9132	-0.8917
chest_pain	0.8209	0.2061	3.9835	0.0001	0.4170	1.2248
rest_bps	-0.0177	0.0105	-1.6848	0.0920	-0.0383	0.0029
cholestrol	-0.0061	0.0041	-1.4863	0.1372	-0.0141	0.0019
fasting_blood_sugar	0.0443	0.5599	0.0791	0.9370	-1.0531	1.1417
rest_ecg	0.6516	0.3818	1.7066	0.0879	-0.0967	1.3998
thalach	0.0378	0.0097	3.9149	0.0001	0.0189	0.0567
exer_angina	-0.9961	0.4581	-2.1743	0.0297	-1.8940	-0.0982
old_peak	-0.3785	0.2403	-1.5753	0.1152	-0.8494	0.0924
slope	0.5233	0.3855	1.3574	0.1747	-0.2323	1.2789
са	-0.7332	0.2123	-3.4543	0.0006	-1.1492	-0.3172
thalassemia	-0.7915	0.3113	-2.5427	0.0110	-1.4016	-0.1814

From this summary we have to find that which variables are significant or not, when the variables are not significant for 5% level of significance we have to drop that column and compare AIC value of the particular column with overall column when overall < individual AIC we should not drop the column and when vice versa we have to drop the column and can have the clearnce upto 2% level.

In [82]:

```
x_train,x_test,y_train,y_test=train_test_split(x_ind,y_dep,test_size=0.2,random_state=5)
x_train.drop('age',inplace=True,axis=1)
my_fit=sm.Logit(y_train,x_train)
p_value=my_fit.fit()
p_value.summary2()
```

Optimization terminated successfully.

Current function value: 0.364782

Iterations 7

Out[82]:

Model:		Logit	git Pseudo R-squared:		0.4	169
Dependent Variable:		target	AIC:		200.55	546
Date: 2	2021-01-0	5 11:49	242 Log-Likelihood: 11 LL-Null: 230 LLR p-value:		242.42	219
No. Observations:		242			-88.2	277
Df Model:		11			-166	.34
Df Residuals:		230			8.3075e	-28
Converged:		1.0000			1.00	000
No. Iterations:		7.0000				
	Coef.	Std.Err.	Z	P> z	[0.025	0.975]
gender	-1.9040	0.5117	-3.7207	0.0002	-2.9070	-0.9010
chest_pain	0.8262	0.2055	4.0202	0.0001	0.4234	1.2290
rest_bps	-0.0149	0.0094	-1.5876	0.1124	-0.0332	0.0035
cholestrol	-0.0053	0.0039	-1.3702	0.1706	-0.0129	0.0023
fasting_blood_sugar	0.0772	0.5556	0.1390	0.8894	-1.0118	1.1662
rest_ecg	0.6662	0.3788	1.7586	0.0786	-0.0763	1.4086
thalach	0.0376	0.0096	3.8984	0.0001	0.0187	0.0565
exer_angina	-0.9673	0.4530	-2.1353	0.0327	-1.8552	-0.0794
old_peak	-0.3552	0.2353	-1.5093	0.1312	-0.8165	0.1061
slope	0.5455	0.3834	1.4231	0.1547	-0.2058	1.2969
са	-0.7134	0.2102	-3.3937	0.0007	-1.1255	-0.3014
	0 7574	0.0040	0.4047	0.0400	4.05.40	0.4500

thalassemia -0.7574 0.3048 -2.4847 0.0130 -1.3548 -0.1599

In [76]:

```
x_train,x_test,y_train,y_test=train_test_split(x_ind,y_dep,test_size=0.2,random_state=5)
x_train.drop('rest_bps',inplace=True,axis=1)
my_fit=sm.Logit(y_train,x_train)
p_value=my_fit.fit()
p_value.summary2()
```

Optimization terminated successfully.

Current function value: 0.370042

Iterations 7

Out[76]:

Model:		Logit	Pseudo R-	squared:	0.462	
Dependent Variable:		target		AIC:	203.10	003
Date: 2	2021-01-0	5 11:43		BIC:	244.96	676
No. Observations:		242	Log-Likelihood: LL-Null: LLR p-value: Scale:		-89.5	550
Df Model:		11			-166	.34
Df Residuals:		230			2.7578e	-27
Converged:		1.0000			1.00	000
No. Iterations:		7.0000				
	Coef.	Std.Err.			[0.025	0.975]
age	-0.0034	0.0188	-0.1824	0.8553	-0.0404	0.0335
gender	-1.8350	0.4995	-3.6732	0.0002	-2.8141	-0.8559
chest_pain	0.7713	0.2014	3.8304	0.0001	0.3766	1.1659
cholestrol	-0.0061	0.0039	-1.5398	0.1236	-0.0138	0.0017
fasting_blood_sugar	-0.0641	0.5452	-0.1176	0.9064	-1.1326	1.0044
rest_ecg	0.6244	0.3744	1.6677	0.0954	-0.1095	1.3583
thalach	0.0299	0.0081	3.6722	0.0002	0.0139	0.0458
exer_angina	-1.1259	0.4442	-2.5346	0.0113	-1.9965	-0.2553
old_peak	-0.4325	0.2337	-1.8507	0.0642	-0.8906	0.0255
slope	0.4735	0.3812	1.2421	0.2142	-0.2737	1.2207
са	-0.7054	0.2094	-3.3692	0.0008	-1.1158	-0.2951
thalassemia	-0.8119	0.3061	-2.6525	0.0080	-1.4118	-0.2120

In [77]:

```
x_train,x_test,y_train,y_test=train_test_split(x_ind,y_dep,test_size=0.2,random_state=5)
x_train.drop('cholestrol',inplace=True,axis=1)
my_fit=sm.Logit(y_train,x_train)
p_value=my_fit.fit()
p_value.summary2()
```

Optimization terminated successfully.

Current function value: 0.368520

Iterations 7

Out[77]:

Model:		Logit Pseudo R-squared:		0.4	164	
Dependent Variable:		target		AIC:	202.36	35
Date: 2	2021-01-0	5 11:44		BIC:	244.23	307
No. Observations:		242	Log-Likelihood:		-89.1	182
Df Model:		11	LL-Null:		-166	.34
Df Residuals:		230	LLR	p-value:	1.9489e	-27
Converged:		1.0000	Scale:		1.00	000
No. Iterations:		7.0000				
	Coef.	Std.Err.	z	P> z	[0.025	0.975]
age	0.0030	0.0197		0.8769	-0.0355	0.0416
gender	-1.7037	0.4867		0.0005	-2.6576	-0.7499
chest_pain	0.8190	0.2043		0.0001	0.4185	1.2195
rest_bps	-0.0183	0.0105		0.0811	-0.0388	0.0023
fasting_blood_sugar	0.0623	0.5505		0.9099	-1.0166	1.1412
rest_ecg	0.7178	0.3735		0.0546	-0.0142	1.4498
thalach	0.0324	0.0087		0.0002	0.0154	0.0494
exer_angina	-1.0353	0.4489		0.0211	-1.9151	-0.1555
old_peak	-0.4179	0.2363		0.0769	-0.8810	0.0452
slope				0.2081	-0.2675	1.2277
са				0.0007	-1.1140	-0.2990

thalassemia -0.8474 0.3051 -2.7775 0.0055 -1.4454 -0.2494

In [78]:

```
x_train,x_test,y_train,y_test=train_test_split(x_ind,y_dep,test_size=0.2,random_state=5)
x_train.drop('fasting_blood_sugar',inplace=True,axis=1)
my_fit=sm.Logit(y_train,x_train)
p_value=my_fit.fit()
p_value.summary2()
```

Optimization terminated successfully.

Current function value: 0.364040

Iterations 7

Out[78]:

ľ	Model:		Logit I	Pseudo R-	squared:	0.470
Dependent Va	riable:		target		AIC:	200.1955
	Date: 20	021-01-05	11:45		BIC:	242.0628
No. Observa	ations:		242	Log-Lik	kelihood:	-88.098
Df N	Model:		11		LL-Null:	-166.34
Df Resi	duals:		230	LLR	7.0132e-28	
Conv	erged:	1	.0000		Scale:	1.0000
No. Itera	ations:	7	.0000			
	Coef.	Std.Err.	Z	z P> z	[0.025	0.975]
age	0.0130	0.0213	0.6124	0.5403	-0.0287	0.0548
gender	-1.8990	0.5140	-3.6943	0.0002	-2.9065	-0.8915
chest_pain	0.8233	0.2040	4.0351	0.0001	0.4234	1.2232
rest_bps	-0.0176	0.0104	-1.6853	0.0919	-0.0381	0.0029
cholestrol	-0.0061	0.0041	-1.4884	0.1367	-0.0141	0.0019
rest_ecg	0.6508	0.3817	1.7052	0.0882	-0.0972	1.3989
thalach	0.0378	0.0097	3.9164	0.0001	0.0189	0.0567
exer_angina	-0.9951	0.4582	-2.1719	0.0299	-1.8931	-0.0971
old_peak	-0.3804	0.2392	-1.5901	0.1118	-0.8492	0.0885
slope	0.5184	0.3803	1.3630	0.1729	-0.2270	1.2639
ca	-0.7312	0.2107	-3.4708	0.0005	-1.1440	-0.3183

In [79]:

```
x_train,x_test,y_train,y_test=train_test_split(x_ind,y_dep,test_size=0.2,random_state=5)
x_train.drop('rest_ecg',inplace=True,axis=1)
my_fit=sm.Logit(y_train,x_train)
p_value=my_fit.fit()
p_value.summary2()
```

Optimization terminated successfully.

Current function value: 0.370131

Iterations 7

Out[79]:

Model:		Logit	Pseudo R-squared:		0.462	
Dependent Variable:		target AIC		AIC:	203.1434	
Date: 2	2021-01-0	5 11:45		BIC:	245.01	107
No. Observations:		242	Log-Lil	kelihood:	-89.5	572
Df Model:	11		LL-Null:		-166.34	
Df Residuals:		230	LLR p-value:		2.8144e-27	
Converged:		1.0000	Scale:		1.0000	
No. Iterations:		7.0000				
	Coef.	Std.Err.	z	P> z	[0.025	0.9751
300	0.0156	0.0211		0.4583	-0.0257	0.0569
age						
gender	-1.9436	0.5091	-3.8180	0.0001	-2.9413	-0.9458
chest_pain	0.7686	0.2002	3.8395	0.0001	0.3763	1.1610
rest_bps	-0.0172	0.0104	-1.6467	0.0996	-0.0377	0.0033
cholestrol	-0.0071	0.0041	-1.7539	0.0794	-0.0151	0.0008
fasting_blood_sugar	0.0200	0.5530	0.0362	0.9711	-1.0638	1.1039
thalach	0.0397	0.0096	4.1212	0.0000	0.0208	0.0586
exer_angina	-0.9675	0.4563	-2.1204	0.0340	-1.8618	-0.0732
old_peak	-0.3674	0.2375	-1.5471	0.1219	-0.8329	0.0981
slope	0.5503	0.3775	1.4577	0.1449	-0.1896	1.2902
ca	-0.7330	0.2124	-3.4509	0.0006	-1.1493	-0.3167

In [80]:

```
x_train,x_test,y_train,y_test=train_test_split(x_ind,y_dep,test_size=0.2,random_state=5)
x_train.drop('old_peak',inplace=True,axis=1)
my_fit=sm.Logit(y_train,x_train)
p_value=my_fit.fit()
p_value.summary2()
```

Optimization terminated successfully.

Current function value: 0.369389

Iterations 7

Out[80]:

Model:	Logit		Pseudo R-squared:		0.463	
Dependent Variable:	target		AIC:		202.7841	
Date: 2	2021-01-0	5 11:46		BIC:	244.65	514
No. Observations:		242	Log-Lil	kelihood:	-89.3	392
Df Model:	11		LL-Null:		-166.34	
Df Residuals:	230 LL		LLR	p-value:	2.3761e	-27
Converged:	1.0000 Scale:		1.0000			
No. Iterations:		7.0000				
	Coef.	Std.Err.	z	P> z	[0.025	0.975]
age	0.0078	0.0210	0.3685	0.7125	-0.0335	0.0490
gender	-2.0026	0.5070	-3.9500	0.0001	-2.9962	-1.0089
chest_pain	0.8009	0.2028	3.9488	0.0001	0.4034	1.1984
rest_bps	-0.0198	0.0102	-1.9497	0.0512	-0.0397	0.0001
cholestrol	-0.0068	0.0040	-1.7093	0.0874	-0.0147	0.0010
fasting_blood_sugar	0.1244	0.5528	0.2251	0.8219	-0.9590	1.2078
rest_ecg	0.6246	0.3720	1.6791	0.0931	-0.1045	1.3537
thalach	0.0384	0.0094	4.0717	0.0000	0.0199	0.0569
exer_angina	-1.0185	0.4514	-2.2564	0.0240	-1.9033	-0.1338
slope	0.8239	0.3301	2.4957	0.0126	0.1769	1.4709

0.2085 -3.8038 0.0001 -1.2016 -0.3844

0.3029 -2.5420 0.0110 -1.3637 -0.1763

ca -0.7930

thalassemia -0.7700

In [81]:

```
x_train,x_test,y_train,y_test=train_test_split(x_ind,y_dep,test_size=0.2,random_state=5)
x_train.drop('slope',inplace=True,axis=1)
my_fit=sm.Logit(y_train,x_train)
p_value=my_fit.fit()
p_value.summary2()
```

Optimization terminated successfully.

Current function value: 0.367773

Iterations 7

Out[81]:

Model:		Logit	Pseudo R-squared:		0.465	
Dependent Variable:		target	AIC:		202.0023	
Date: 2	2021-01-0	5 11:46	BIC:		243.8696	
No. Observations:		242	Log-Likelihood:		-89.001	
Df Model:		11	LL-Null:		-166.34	
Df Residuals:		230	LLR p-value:		1.6439e-27	
Converged:		1.0000	Scale:		1.0000	
No. Iterations:		7.0000				
	Coef.	Std.Err.	z	P> z	[0.025	0.975]
age	0.0157	0.0214	0.7341	0.4629	-0.0263	0.0577
gender	-1.8216	0.5040	-3.6143	0.0003	-2.8094	-0.8338
chest_pain	0.7998	0.2042	3.9175	0.0001	0.3996	1.1999
rest_bps	-0.0167	0.0105	-1.5989	0.1098	-0.0373	0.0038
cholestrol	-0.0057	0.0041	-1.3976	0.1622	-0.0136	0.0023
fasting_blood_sugar	-0.0669	0.5454	-0.1226	0.9024	-1.1359	1.0022
rest_ecg	0.6794	0.3803	1.7864	0.0740	-0.0660	1.4247
thalach	0.0410	0.0094	4.3490	0.0000	0.0225	0.0594
exer_angina	-1.0566	0.4577	-2.3086	0.0210	-1.9536	-0.1596
old_peak	-0.5387	0.2126	-2.5341	0.0113	-0.9553	-0.1220
са	-0.6767	0.2029	-3.3355	0.0009	-1.0743	-0.2790

thalassemia -0.8080 0.3117 -2.5919 0.0095 -1.4190 -0.1970

```
In [83]:
x_train,x_test,y_train,y_test=train_test_split(x_ind,y_dep,test_size=0.2,random_state=5)
x_train.drop('slope',inplace=True,axis=1)
my_fit=sm.Logit(y_train,x_train)
p_value=my_fit.fit()
p_value.summary2()
Optimization terminated successfully.
           Current function value: 0.367773
           Iterations 7
Out[83]:
            Model:
                               Logit Pseudo R-squared:
                                                            0.465
Dependent Variable:
                              target
                                                  AIC:
                                                         202.0023
             Date: 2021-01-05 11:51
                                                  BIC:
                                                         243.8696
   No. Observations:
                                        Log-Likelihood:
                                                          -89.001
                                242
          Df Model:
                                               LL-Null:
                                                          -166.34
                                 11
                                          LLR p-value: 1.6439e-27
      Df Residuals:
                                230
                             1.0000
                                                           1.0000
        Converged:
                                                Scale:
                             7.0000
      No. Iterations:
                       Coef. Std.Err.
                                                 P>|z|
                                                        [0.025
                                                                 0.975]
                      0.0157
                               0.0214
                                       0.7341 0.4629
                                                       -0.0263
                                                                0.0577
             gender -1.8216
                               0.5040 -3.6143 0.0003
                                                       -2.8094
                                                               -0.8338
                      0.7998
                               0.2042
                                       3.9175 0.0001
                                                       0.3996
          chest_pain
                                                                1.1999
                     -0.0167
                               0.0105 -1.5989 0.1098
                                                      -0.0373
           rest_bps
                                                                0.0038
          cholestrol
                    -0.0057
                               0.0041 -1.3976 0.1622 -0.0136
                                                                0.0023
fasting_blood_sugar
                     -0.0669
                               0.5454 -0.1226 0.9024
                                                      -1.1359
                                                                1.0022
                      0.6794
                               0.3803
                                       1.7864
                                               0.0740
                                                       -0.0660
                                                                1.4247
            rest_ecg
                      0.0410
                               0.0094
                                       4.3490
                                               0.0000
                                                       0.0225
             thalach
                                                                0.0594
                     -1.0566
                               0.4577
                                      -2.3086
                                               0.0210
                                                       -1.9536
        exer_angina
                                                               -0.1596
           old_peak
                     -0.5387
                               0.2126
                                      -2.5341
                                               0.0113
                                                       -0.9553
                                                               -0.1220
                      -0.6767
                               0.2029
                                      -3.3355
                                               0.0009
                                                       -1.0743
                                                               -0.2790
                 ca
```

In []:

thalassemia

-0.8080

Since every AIC values are at 2% clearance level so we no need to drop those columns

0.3117 -2.5919 0.0095 -1.4190 -0.1970

```
In [84]:
x_train,x_test,y_train,y_test=train_test_split(x_ind,y_dep,test_size=0.2,random_state=5)
In [85]:
from sklearn.linear_model import LogisticRegression
In [86]:
model_lr=LogisticRegression()
model_lr_fit=model_lr.fit(x_train,y_train)
C:\Users\VIMAL MADHAN\AppData\Roaming\Python\Python37\site-packages\sklearn
\linear_model\_logistic.py:764: ConvergenceWarning: lbfgs failed to converge
(status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html (https://scik
it-learn.org/stable/modules/preprocessing.html)
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regre
ssion (https://scikit-learn.org/stable/modules/linear_model.html#logistic-re
gression)
  extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)
In [87]:
y_pred_lr=model_lr_fit.predict(x_test)
In [88]:
y_pred_lr
Out[88]:
array([1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0,
       1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0,
       0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0], dtype=int64)
In [89]:
# To find the accuracy and the errors we have to import confusion_matrix and accuracy_score
In [90]:
from sklearn.metrics import confusion_matrix,accuracy_score
In [91]:
confusion_matrix(y_test,y_pred_lr)
Out[91]:
array([[27, 3],
       [ 2, 29]], dtype=int64)
```

In [92]:

```
acc_lr=accuracy_score(y_test,y_pred_lr)
```

In [93]:

```
print('The accuracy score for Logistic regression model using gini method :',acc_lr*100)
```

The accuracy score for Logistic regression model using gini method : 91.8032 7868852459

ROC curve

In [98]:

from sklearn import metrics

In [99]:

```
y_pred_prob=model_lr.predict_proba(x_test)[:,1]
fpr,tpr,_=metrics.roc_curve(y_test,y_pred_prob)
```

In [100]:

```
plt.plot(fpr,tpr,label='ROC_CURVE')
plt.legend()
```

Out[100]:

<matplotlib.legend.Legend at 0x239b94ef988>


```
In [101]:
update roc=LogisticRegression(class weight='balanced')
update_roc.fit(x_train,y_train)
C:\Users\VIMAL MADHAN\AppData\Roaming\Python\Python37\site-packages\sklearn
\linear_model\_logistic.py:764: ConvergenceWarning: lbfgs failed to converge
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html (https://scik
it-learn.org/stable/modules/preprocessing.html)
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regre
ssion (https://scikit-learn.org/stable/modules/linear_model.html#logistic-re
gression)
 extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)
Out[101]:
LogisticRegression(class_weight='balanced')
In [267]:
thr=np.where(update_roc.predict_proba(x_test)[:,1]>0.48995,1,0)
In [268]:
acc_log=accuracy_score(y_test,thr)
In [269]:
print('The accuracy_score for Logistic regression using ROC curve is :',acc_log*100)
The accuracy_score for Logistic regression using ROC curve is: 88.524590163
93442
In [ ]:
In [ ]:
```

NAIVE BAYES

This model is based on bayes theorom

this model will gives the accuracy based on individual probability

This model is used only for classification

```
from sklearn.naive_bayes import GaussianNB
In [160]:
model_nb=GaussianNB()
model_nb.fit(x_train,y_train)
Out[160]:
GaussianNB()
This works based on Gaussian or normal distribution
In [161]:
y_pred_nb=model_nb.predict(x_test)
In [162]:
confusion_matrix(y_test,y_pred_nb)
Out[162]:
array([[26, 4],
       [ 4, 27]], dtype=int64)
In [163]:
acc_nb=accuracy_score(y_test,y_pred_nb)
In [164]:
print('The accuracy score for Naive Bayes model is :',acc_nb*100)
The accuracy score for Naive Bayes model is: 86.88524590163934
```

RANDOM FOREST

It is used for both classification and Regression analysis

Random forest can have many number of trees and it is predicted by means of GINI or ENTROPY

Both GINI and ENTROPY methods are used to minimize the impurities

```
In [165]:
```

In [159]:

```
from sklearn.ensemble import RandomForestClassifier
```

criteria = GINI

```
In [166]:
model_rf=RandomForestClassifier(n_estimators=5,random_state=5)
In [167]:
model_rf.fit(x_train,y_train)
Out[167]:
RandomForestClassifier(n_estimators=5, random_state=5)
In [168]:
y_pred_rf=model_rf.predict(x_test)
In [169]:
y_pred_rf
Out[169]:
array([0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0,
      1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0,
      1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0], dtype=int64)
To find the accuracy and the errors we have to import
```

confusion matrix and accuracy score

```
In [170]:
from sklearn.metrics import confusion_matrix,accuracy_score
In [171]:
confusion_matrix(y_test,y_pred_rf)
Out[171]:
array([[26, 4],
       [ 2, 29]], dtype=int64)
In [172]:
acc_rf=accuracy_score(y_test,y_pred_rf)
```

Accuracy score using GINI in RANDOMFOREST

```
In [173]:
print('The accuracy score for random forest model using gini method :',acc_rf*100)
```

The accuracy score for random forest model using gini method: 90.1639344262 295

HYPER PARAMETERS

We have to import Randomized search cv library to find the hyper parameters

```
In [176]:
from sklearn.model_selection import RandomizedSearchCV
In [181]:
parameters={'n_estimators':(100,200,300,400,800),'criterion':('gini','entropy'),
           'max_features':('auto','sqrt','log2'),'min_samples_split':(2,4,6,8)}
In [182]:
rf_grid=RandomizedSearchCV(RandomForestClassifier(),param_distributions=parameters,cv=5)
In [183]:
rf_grid.fit(x_train,y_train)
Out[183]:
RandomizedSearchCV(cv=5, estimator=RandomForestClassifier(),
                   param_distributions={'criterion': ('gini', 'entropy'),
                                         'max_features': ('auto', 'sqrt',
                                                           'log2'),
                                         'min_samples_split': (2, 4, 6, 8),
                                         'n_estimators': (100, 200, 300, 400,
                                                          800)})
In [180]:
rf_grid.best_estimator_
Out[180]:
RandomForestClassifier(criterion='entropy', max_features='sqrt',
                       min_samples_split=8, n_estimators=300)
In [184]:
best_model=RandomForestClassifier(criterion='entropy', max_features='sqrt',
                       min samples split=8, n estimators=300)
In [185]:
best_model.fit(x_train,y_train)
Out[185]:
RandomForestClassifier(criterion='entropy', max_features='sqrt',
                       min_samples_split=8, n_estimators=300)
In [186]:
y_pred_rfhp=best_model.predict(x_test)
```

KNEIGHBORS CLASSIFIER

KNN is mainly used to find the correct category to which the output have to fall in the particular category

TWO METHODS IN KNN:

1.Square Root

2.Error method

From sklearn importing the kneighbors classifier model

```
In [190]:
```

from sklearn.neighbors import KNeighborsClassifier

WE have to normalize the X_train and x_test values using standard scalar to get the values within the range and to avoid the spread

```
In [191]:
```

from sklearn.preprocessing import StandardScaler

```
In [192]:
norm=StandardScaler()

In [193]:
x_train1=norm.fit_transform(x_train)
x_test1=norm.fit_transform(x_test)

SQUARE ROOT METHOD

In [194]:
(x_train1.shape[0])**(0.5)
Out[194]:
15.556349186104045
```

The square root of x_train rows should be used in n_neighbors for square root method

```
In [195]:
mod_knn=KNeighborsClassifier(n_neighbors=15 ,p=2,metric='euclidean')
mod_knn.fit(x_train1,y_train)
Out[195]:
KNeighborsClassifier(metric='euclidean', n_neighbors=15)
In [196]:
y_pred_knnsq=mod_knn.predict(x_test1)
In [197]:
confusion_matrix(y_test,y_pred_knnsq)
Out[197]:
array([[23, 7],
       [ 2, 29]], dtype=int64)
In [198]:
acc_knnsq=accuracy_score(y_test,y_pred_knnsq)
In [199]:
print('The accuracy score of KNN model using Square method is :',(acc_knnsq)*100)
```

The accuracy score of KNN model using Square method is: 85.24590163934425

ERROR METHOD

```
In [202]:
```

```
error_pred=[]
for i in range (1,40):
    knn_new=KNeighborsClassifier(n_neighbors=i)
    knn_new.fit(x_train1,y_train)
    y_pred_knnerr=knn_new.predict(x_test1)
    error_pred.append(np.mean(y_test != y_pred_knnerr))
```

In [204]:

```
plt.plot(range(1,40),error_pred,color='Blue',markerfacecolor='Green',marker='o',linestyle='
```

Out[204]:

[<matplotlib.lines.Line2D at 0x239ba9fb448>]

In [205]:

```
mod_knn_err=KNeighborsClassifier(n_neighbors=9 ,p=2,metric='euclidean')
mod_knn_err.fit(x_train1,y_train)
```

Out[205]:

KNeighborsClassifier(metric='euclidean', n_neighbors=9)

In [206]:

```
y_pred_knnerr=mod_knn.predict(x_test1)
```

In [207]:

```
confusion_matrix(y_test,y_pred_knnerr)
```

Out[207]:

```
array([[23, 7], [ 2, 29]], dtype=int64)
```

In [208]:

```
acc_knnsq=accuracy_score(y_test,y_pred_knnerr)
```

```
In [209]:
print('The accuracy score of KNN model using error method is :',(acc_knnsq)*100)
```

The accuracy score of KNN model using error method is: 85.24590163934425

SUPPORT VECTOR MACHINE

It is used to find the correct category for which the values to be predicted.

It is used only for classification

```
It will be prediction using margin and data points
In [210]:
from sklearn.svm import SVC
In [211]:
model_svm=SVC(kernel='linear')
model_svm.fit(x_train1,y_train)
Out[211]:
SVC(kernel='linear')
In [212]:
model_svm.n_support_
Out[212]:
array([51, 52])
In [217]:
y_pred_svm = model_svm.predict(x_test1)
In [218]:
confusion_matrix(y_test,y_pred_svm)
Out[218]:
array([[26, 4],
       [ 2, 29]], dtype=int64)
In [219]:
acc_svm=accuracy_score(y_test,y_pred_svm)
In [220]:
print('The accuracy score for SVM is :', acc_svm)
The accuracy score for SVM is: 0.9016393442622951
```

Ensembling -VOTING CLASSIFIER

```
In [221]:
model1 = LogisticRegression()
model2 = RandomForestClassifier()
model3 = GaussianNB()
model4 = KNeighborsClassifier()
model5 = SVC()
In [222]:
model1.fit(x_train,y_train)
model2.fit(x_train,y_train)
model3.fit(x_train,y_train)
model4.fit(x_train,y_train)
model5.fit(x_train,y_train)
C:\Users\VIMAL MADHAN\AppData\Roaming\Python\Python37\site-packages\sklearn
\linear_model\_logistic.py:764: ConvergenceWarning: lbfgs failed to converge
(status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html (https://scik
it-learn.org/stable/modules/preprocessing.html)
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regre
ssion (https://scikit-learn.org/stable/modules/linear_model.html#logistic-re
gression)
  extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)
Out[222]:
SVC()
In [223]:
pred1=model1.predict(x test)
pred2=model2.predict(x_test)
pred3=model3.predict(x_test)
pred4=model4.predict(x test)
pred5=model5.predict(x test)
```

In [224]:

```
import statistics as st
final_predict=np.array([])
for i in range(0,len(x_test)):
    final_predict=np.append(final_predict,st.mode([pred1[i],pred2[i],pred3[i],pred4[i],pred
```

```
In [225]:
final_predict=pd.DataFrame(final_predict)
In [230]:
final_predict.head(10)
Out[230]:
    0
 0 1.0
 1 0.0
 2 0.0
 3 0.0
 4 1.0
 5 0.0
 6 1.0
 7 0.0
 8 1.0
 9 1.0
In [231]:
x_test.shape
Out[231]:
(61, 13)
In [232]:
y_test.shape
Out[232]:
(61,)
In [233]:
final_predict.shape
Out[233]:
(61, 1)
In [234]:
confusion_matrix(y_test,final_predict)
Out[234]:
array([[25, 5],
       [ 3, 28]], dtype=int64)
```

```
In [235]:
acc_vc=accuracy_score(y_test,final_predict)
In [236]:
print('The accuracy score for voting classifier emsembling :',acc_vc*100)
The accuracy score for voting classifier emsembling : 86.88524590163934
In [ ]:
```

MAXIMUM ACCURACY

```
In [270]:
```

In [271]:

accuracy

Out[271]:

	model	accuracy_score
0	Logistic_Regression	0.885246
1	Naive_Bayes	0.868852
2	Random_Forest	0.885246
3	KNN	0.852459
4	SVM	0.901639

In [272]:

```
accuracy['accuracy_score'].max()
```

Out[272]:

0.9016393442622951

HIGH ACCURACY MODEL