Lecture 4 The Singular Value Decomposition

Fang Zhu

February 27, 2023

1 Prerequisite

Lemma 1.1. Given summetrix matrix A, then the eigenvalues of A are real.

Theorem 1.1. Given symmetric matrix A, then A can be factored as

$$A = Q\Lambda Q^*$$
,

where

- Q is unitary;
- ullet Λ is diagonal, with the eigenvalues of $oldsymbol{A}$ on its dagonal.

Proof. By induction of the dimension of A.

2 Solutions

2.1 Exercise 4.1(e)

First we compute the singular values σ_i by finding the eigenvalues of A^*A :

$$\mathbf{A}^{\star}\mathbf{A} = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix},$$

the characteristic polynomial of A^*A is

$$\det(\mathbf{A}^*\mathbf{A} - \lambda \mathbf{I}) = \lambda(\lambda - 4) = 0,$$

so the singular values are $\sigma_1 = 0, \sigma_2 = 2$. For $\lambda = 4$, we have

$$\mathbf{A}^{\star}\mathbf{A} - 4\mathbf{I} = \begin{pmatrix} -2 & 2\\ 2 & -2 \end{pmatrix},$$

a unit vector in the kernel of the matrix is $\mathbf{v}_2 = \left(1/\sqrt{2}, 1/\sqrt{2}\right)^T$. For $\lambda = 0$, we have

$$\mathbf{A}^{\star}\mathbf{A} - 0\mathbf{I} = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix},$$

a unit vector in the kernel of the matrix is $v_2 = (-1/\sqrt{2}, 1/\sqrt{2})^T$. So at this point we know that

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\star} = (\boldsymbol{u}_1,\boldsymbol{u}_2) \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}.$$

Finally we can compute u_1 by the formula $\sigma_i u_i = A v_i$, this gives $u_i = (\sqrt{2}/2, \sqrt{2}/2)$, then by $u_2^* u_1 = 0$ and $||u_2||_2 = 1$ we can get a $u_2 = (-\sqrt{2}/2, \sqrt{2}/2)$. So in this full glory the SVD is

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\star} = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\star}.$$

2.2 Exercise 4.2

Assume that

$$\boldsymbol{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\alpha}_1^T \\ \boldsymbol{\alpha}_1^T \\ \vdots \\ \boldsymbol{\alpha}_m^T \end{pmatrix}$$

then we can get that matrix B

$$\boldsymbol{B} = \begin{pmatrix} a_{m1} & \cdots & a_{21} & a_{1n} \\ a_{m2} & \cdots & a_{22} & a_{12} \\ \vdots & \vdots & \ddots \vdots & \\ a_{mn} & \cdots & a_{2n} & a_{1n} \end{pmatrix} = (\boldsymbol{\alpha}_m, \cdots, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_1)$$

that is

$$m{B} = m{A}^T egin{pmatrix} 0 & 0 & \cdots 1 \ dots & dots & \ddots \ 0 & 1 & \cdots 0 \ 1 & 0 & \cdots 0 \end{pmatrix} = m{A}^T m{P}$$

it is clear that P is a othogonomal matrix since $PP^T = P^TP = I_m$, then

$$BB^T = A^T P P^T A = A^T A.$$

which means that B and A have that same signlar values.

2.3 Exercise 4.3

See matlab code.

2.4 Exercise 4.4

If A, B are unitary quivalent, we can get that A, B have the same singular values by the same argument in 4.2. It is clear that I, -I have the same singular values, but I and -I can't be unitary equivalent since $I \neq Q(-I)Q^* = -I$.

2.5 Exercise 4.5

If A is a real matrix, then by Theorem 1.1, A^*A is a real symmetric matrix and A^*A has a real eigen decomposition

$$A^{\star}A = V\Lambda V^{\star}$$

where Λ is a diagonal matrix with its entries are eigenvalues of $\mathbf{A}^{\star}\mathbf{A}$, then we can get \mathbf{U} by $\mathbf{A}\mathbf{v}_i = \sigma_i\mathbf{u}_i$, we get the real SVD of \mathbf{A} :

$$A = U\Sigma V^{\star}$$
.