Propiedades de Decisión de los Lenguajes Regulares

Alan Reyes-Figueroa Teoría de la Computación

(Aula 09a) 16.agosto.2023

Discusión general de "Propiedades" Algoritmos para Pertenencia, Vacuidad, Finitud, Etc.

Propiedad: Equivalencia

- ◆Dados lenguajes regulares L y M, cómo verificar si ¿L = M?
- Hay un algoritmo que envuelve la construcción del producto de dos DFA a partir de los DFA para L y M.
- Estos DFA's tienen conjuntos de estados Q y R, respectivamente.
- El DFA producto posee estados Q × R.
 - res [q, r] con q \in Q, r \in R.

DFA Producto

$$A_L = (Q, \Sigma, q_0, F_L, \delta_L), A_M = (R, \Sigma, r_0, F_M, \delta_M)$$

Construimos el producto:

- \bullet Estado inicial = $[q_0, r_0]$
- **◆Transiciones:**

$$\delta([q,r], a) = [\delta_L(q,a), \delta_M(r,a)]$$

- δ_L , δ_M son las funciones de transición de los autómatas de L y M, resp.
- Básicamente, simulamos el producto en moviéndonos en dos componentes.

Ejemplo: DFA Producto

Ejemplo: DFA Producto

Propiedades: Cerradura

- Dados lenguajes regulares L y M, y sus autómatas AFD A_L y A_M, respectivamente, podemos construir autómatas para
 - La unión L ∪ M
 - La intersección L ∩ M
 - Las diferencias L M y M L
 - La diferencia simétrica L ⊕ M
 - El complemento L^c
- Todas usan el autómata producto. (Sólo cambia la forma en cómo se definen los estados de aceptación).

Propiedades: Cerradura

Unión L ∪ M:

[q,r] es estado de aceptación si q o r (o ambos) son estados de aceptación.

• <u>Intersección L ∩ M</u>:

[q,r] es estado de aceptación si q y r (ambos) son estados de aceptación.

Diferencia L – M:

[q,r] es estado de aceptación si q es de aceptación, y r no lo es.

Diferencia Simétrica L ⊕ M:

[q,r] es estado de aceptación si q o r son estados de aceptación, pero no ambos.

Algoritmo de Equivalencia

- Los estados finales del DFA producto corresponden a aquellos pares [q, r] tales que exactamente uno de q ó r son estados finales de su respectivo DFA (pero no ambos).
- ◆Así, el autómata producto acepta w si, y sólo si, w está en exactamento uno de los lenguajes L ó M (pero no ambos).

Ejemplo: Equivalencia

Algoritmo de Equivalencia

El lenguaje asociado al DFA producto es vacío si, y sólo si, L = M.

Si recordamos, ya tenemos un algoritmo para evaluar si el lenguaje generado por un DFA es vacío.

Propiedad: Inclusión

- ◆Dados lenguajes regulares L y M, está L ⊂ M?
- ◆Tenemos un algoritmo para esto, el cual también usa el DFA producto.
- ¿Cómo definiría los estados finales [q, r] del producto para que el lenguaje acetado sea vacío, si y sólo si, L ⊆ M?

Respuesta: q es final; r no lo es.

Ejemplo: Inclusión

Nota: el único estado final es inaccesible, de modo que el lenguaje es vacío, y $L \subseteq M$.

DFA minimal

- En principio, ya que podemos verificar la equivalencia de DFAs, dado un autómata A podemos hallar el DFA con la menor cantidad de estados, que acepta el lenguaje L(A).
- ◆1a Solución: Testar todos los DFAs menores a ver si son equivalentes con A.
- Es un muy mal algoritmo.

Minimización Eficiente de estados

- Construir una tabla con todos los pares de estados.
- Si hallamos una cadena distinguida, esto es dos estados (que torna exactamente uno de ellos en un estado de aceptación), marcamos ese par.
- El algoritmo es una recursión sobre la longitud de la menor cadena distinguida.

Minimización de estados

- Eliminamos inaccesibles desde q₀.
- ◆Base: Marcamos [q, r] si exactamente uno de ellos es un estado final.
- Inducción: Marcamos [q, r] si existe algún símbolo a tal que [δ(q,a), δ(r,a)] está marcado.
- Cuando ya no hay más marcas posibles, los pares no marcados son equivalentes y pueden fusionarse en un solo estado.

Transitividad de "Indistinguibles"

- Si el estado p es indistinguible de q, y q es indistinguible de r, entonces p es indistinguible de r.
- Prueba: La salida (aceptar o no aceptar) de p y q en la entrada w es la misma, y la salida de q y r en la entrada w es la misma, así que es la misma salida para p y r.

Construcción del DFA Minimal

- Suponga q₁,...,q_k son estados indistinguibles.
- Los reemplazamos por un estado q.
- Luego, $\delta(q_1,a),...$, $\delta(q_k,a)$ son todos estados indistinguibles.
 - Punto clave: caso contrario, deberíamos haber marcado al menos un par más.
- Sea $\delta(q, a) = es$ estado representativo de ese grupo.

Recuerdan esta autómata? Fue el que construimos como ejemplo del tablero en la construcción de un AFN a un AFD.

	r	b
$\rightarrow \overline{A}$	В	С
В	D	E
C	D	F
D	D	G
Ε	D	G
* F	D	C
* G	D	G

Comenzar con marcas para los pares con uno de los estados finales F ó G.

	r	b
$\rightarrow A$	В	C
В	D	E
C	D	F
D	D	G
Ε	D	G
* F	D	C
*G	D	G

El input r no ayuda, ya que el par [B, D] no está marcado.

	r	b
$\rightarrow \overline{A}$	В	\overline{C}
В	D	Ε
C	D	F
D	D	G
Ε	D	G
* F	D	C
*G	D	G

```
G F E D C B
A X X X X X X
B X X X X X X
C X X
D X X
E X X
F X
```

Pero el input *b* distingue a {A,B,F} de {C,D,E,G}. Por ejemplo, [A, C] es marcado ya que [C, F] lo es.

	r	b
→ /	B	C
E		E
(F
		G
E		G
* F		C
*(G

[C, D] y [C, E] son marcados ya que las transiciones en b al par marcado [F, G].

r	b
В	С
D	Е
D	F
D	G
D	G
D	С
D	G
	D D D D

[A, B] es marcado ya que hay transiciones r al par marcado [B, D].

[D, E] nunca es marcado, ya que ambos imputs D, E van al mismo estado.

Reemplazamos D y E por H. El resultado es el DFA mínimo.

Eliminando estados no alcanzables

- Desafortunadamente, al combinar estados indistinguibles podríamos resultar con estados no alcanzables en el DFA "mínimo".
- Entonces, tarde o terprano, debemos remover aquellos estados que no son alcanzables desde el estado inicial.

Punto clave

- Hemos combinado estados del autómata DFA siempre que es posible.
- Pregunta: ¿Puede existir otro DFA, completamente distinto, con menor número de estados?
- Respuesta: No.
 La prueba envuelve minimizar el DFA derivado del hipotético mejor DFA.

Prueba: DFA Minimal

- Sea A nuestro DFA minimizado, y sea B un menor DFA equivalente.
- Consideramos un autómata con los estados de A y B combinados.
- Usamos "distinguible" en su forma contrapositiva:
 - Si los estados p y q son indistinguibles, entonces también lo son $\delta(q,a)$ y $\delta(p,a)$.

Indistinguibilidad

Hipótesis Inductiva

◆Todo estado q de A es indistinguible de cualquier estado de B.

◆La inducción se hace sobre la longitud n de la menor cadena que lleva desde el estado inicial de A hacia q.

Prueba - (2)

- Base: Los estados iniciales de A y B son indistinguibles, ya que L(A) = L(B).
- ◆Inducción: Suponer que w = xa es una menor cadena desde A al estado q.
- ◆Por hipótesis, x lleva A a un estado r que es indistinguible de algún estado p de B.
- •Entonces $\delta(r, a) = q$ es indistinguible de $\delta(p, a)$.

Prueba - (3)

- Sin embargo, dos estados de A no pueden ser distinguidos desde el mismo estado de B, o en caso contrario, ellos serían distinguibles uno desde el otro.
 - Esto contradice la transitividad de los "indistinguibles."
- Así, B posee al menos el mismo número de estados que A.