Modelo del segundo parcial

- 1. Dibujar el árbol correspondiente y realizar el recorrido faltante según corresponda
 - a. forma polaca= ACDPOEQMBFSTHJ, Infija usual= PDOCQEMASFTBHJ
 - b. polaca inversa= 651^*2193*-*/
 - i. Evaluar el resultado.
 - c. Polaca= IACQTDJZKBFHGEYPX, Infija usual= QCTADZJKIHFGBEPYX
- 2. Dados los siguientes árboles realizar los tres recorridos

- 3. Hallar el camino de costo mínimo en las siguientes redes de transporte desde el nodo que se indique
 - a. Desde el nodo "a"

b. Desde el nodo "c"

4. Hallar el flujo máximo utilizando el algoritmo de Ford-Fulkerson en las siguientes redes de transporte

a.

b.

5. Definir los siguientes autómatas finitos deterministas; indicar tres cadenas aceptadas y tres no aceptadas, si es posible dar una generalización

a.

- 6. Resolver formalmente las siguientes situaciones y dar el rango de las soluciones posibles
 - a. Un coleccionista de arte ha adquirido varias obras entre pinturas y dibujos, las pinturas le han costado \$649 y los dibujos \$132. Cuando el coleccionista llega a casa, ha gastado \$2761. ¿Cuánto dibujo y cuantas pinturas ha comprado?
 - b. Queremos echar 35 litros de nafta a un depósito. Para ello, tenemos dos bidones, de 2 y 5 litros respectivamente. ¿Es posible medir 35 litros con nuestros bidones? ¿Por qué? En caso afirmativo, dar todas las combinaciones posibles. (Observación: sólo es posible agregar líquido al depósito, no sacar).
- 7. Resolver las siguientes ecuaciones de congruencia, dar todas las soluciones posibles (soluciones generales)
 - i. $5x +2 \equiv 4 \pmod{7}$
 - ii. $8x + 23 \equiv 44 \pmod{77}$
 - iii. $13x 25 \equiv 14 \pmod{23}$
 - iv. $15x + 21 \equiv -4 \pmod{17}$
 - v. $51x + 222 \equiv 421 \pmod{751}$
- 8. Hallar el inverso multiplicativo, si existe, de
 - a. Hallar, si es posible, el inverso multiplicativos de 57 en \mathbf{Z}_{737} .
 - b. Hallar, si es posible, el inverso multiplicativos de 37 en \mathbf{Z}_{527} .
 - c. Hallar, si es posible, el inverso multiplicativos de 23 en \mathbf{Z}_{1006} .
 - d. Hallar, si es posible, el inverso multiplicativos de 77 en \mathbf{Z}_{323} .
 - e. Hallar, si es posible, el inverso multiplicativos de 327 en \mathbf{Z}_{1111} .