ECE 470/570.S Software Receiver Technologies

Instructor: Jade Morton

Lecture 2 GPS Signal Structure

Today's Topics

- 1. Basic composition of GPS signals/modulation scheme
- 2. Basic signal concepts:
 - PRN code, chipping rate
 - BPSK
 - Time domain vs. frequency domain
 - Spectrum, bandwidth
 - Square pulse properties
 - Spread spectrum
- 3. GPS signal mathematics representation

PART 1 Basic Composition of GPS Signals/Modulation Scheme

GPS Signals Spectral Allocations (M-code not included)

GPS Satellite Signals Summary (not include M-code)

Band	L1		L2				L5
Carrier freq (GHz)	1.57542		1.2276			1.17645	
Code	CA	P(Y)	P(Y)	CM	CL	CA	
Code length (chips)	1023	23,017,555.5		10,230	767,250	1	0,230
Code period	1 ms	1 wk		20 ms	1.5 s	1 ms	
Chip rate (MHz)	1.023	10.23		1.023		10.23	
Data rate (bps)		50			Data less	50*	Data less
Max power at receiver (dBW)	-157.7	-160.7	-163.7	-160 -154		-154	

Current GPS Signal Frequency Relationships

Current GPS Signal Modulation at L1

GPS Signal Modulation Format at L2

GPS Signal Modulation at L5

PART 2 Basic Signal Concepts (A Review)

Pseudorandom (PRN) Sequence and Chipping Rate

Definition:

A binary sequence of "0"s and "1"s satisfying 3 conditions:

- 1. 50% are "0" and 50% are "1".
- 2. 50% of all run lengths ("0" and "1") are 1; 25% are of length 2; 12.5% are of length 3;
- 3. If a sequence is shifted, the resulting sequence will have an equal number of agreements and disagreements with the original sequence.

BPSK: Binary Phase Shift Keying

Given a carrier: $s_c(t) = A\cos(\omega_c t + \varphi)$

Its <u>phase</u> modulated version is: $s_{cm}(t) = A\cos(\omega_c t + \varphi + \theta(t))$

For BPSK, $\theta(t)$ can take 2 values: 0 and π

$$s_{cm}(t) = \begin{cases} A\cos(\omega_c t + \varphi) & \theta(t) = 0 \\ -A\cos(\omega_c t + \varphi) & \theta(t) = \pi \end{cases}$$

BPSK modulation ←→Binary Amplitude Shift Keying:

$$s_{cm}(t) = p(t)A\cos(\omega_c t + \varphi)$$

p(t) takes 2 values: 1 and -1

A BPSK Example:

A Basic Modulation Operation: Exclusive-or \oplus

$$A \oplus B = A\overline{B} + \overline{A}B$$

A	В	A⊕B	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

An Exclusive-or ⊕ Operation Example:

Sampling Concept

Sample interval

$$\Delta t = \frac{1}{f_s}$$

Total number of samples

$$N = \frac{L}{\Delta t}$$

Signal Frequency Domain Representation

Periodic Signal Discrete Time Fourier Series (DT FS):

$$x[n] = \sum_{k=< N>} X[k]e^{jk\frac{2\pi}{N}n}$$

$$X[k] = \frac{1}{N} \sum_{n=< N>} x[n] e^{-jk\frac{2\pi}{N}n}$$

Both are periodic with period=N

Spectral Resolution and Bandwidth

Spectral resolution:
$$\Delta f = \frac{1}{L}$$

Bandwidth:
$$B = N\Delta f = \frac{1}{\Delta t} = f_s$$

$$X[k] \Rightarrow X(k\Delta f) = X(f)$$

 $x(t) = x(n\Delta t) \Rightarrow x[n]$

Time duration
$$L$$
 Spectral span B

Time step size $\Delta t = \frac{1}{B}$ Frequency resolution $\Delta f = \frac{1}{L}$

Examples:

What are Fourier series (spectrum) for these two signals?

(1).
$$x[n] = \sin \omega_0 n$$
 $\omega_0 = \frac{2\pi}{N}$

(2). Periodic square wave

Example (1) Analytical Solution:

For
$$k \neq \pm 1$$
 $X[k] = 0$

$$X[n] = \sin \omega_0 n$$

$$X[1] = \frac{1}{2j} \quad X[-1] = -\frac{1}{2j}$$

$$X[k] \quad 0 \quad 1$$

$$-\frac{1}{2j}$$

Example 1 MatLab Solution

Signal parameters: a=1; T=5; fs=1; L=10;


```
Example 1
MatLab
Code
```

```
%---Signal parameters
a=1;
                             % Amplitude
T=5:
                             % Signal period in second
fs=1;
                             % Sampling frequency in Hz
                             % In between sample time interval
dt=1/fs;
L=10;
                             %Data length in seconds
df=1/L;
                             %Spectrum frequency interval
                             %Total number of samples
N=L/dt;
n=0:N-1;
                             %Sample index vector
t=dt*n;
                             %Time vector
f=df*n;
                             %Frequency vector
%---Generate time domain carrier signal and spectrum
carrier=a*sin(2*pi*t/T);
                             %Carrier samples
fCarrier=fft(carrier)/N;
                             %Carrier spectral samples
% Plot results
figure(1);
subplot(511); stem(t, carrier); grid on; xLabel('Time (s)');yLabel('Carrier');
subplot(512); stem(f, real(fCarrier), 'ro'); grid on; yLabel('Real');
subplot(513); stem(f, imag(fCarrier),'ro');grid on;yLabel('Imag');
subplot(514); stem(f,abs(fCarrier)); grid on; yLabel('Magnitude');
subplot(515); stem(f,angle(fCarrier)*r2d); grid on; xLabel('Frequency (Hz)');
```


Example (2) Analytical Solution:

$$\Pi(N_1, N) \qquad \text{DTFS} \qquad X[k] = \frac{1}{N} \frac{\sin(\frac{2N_1 + 1}{N} k\pi)}{\sin(\frac{1}{N} k\pi)}$$

Example 2 MatLab Solution

Signal parameters: a=1; Period=10; Duty Cycle=30%; fs=1; L=10;

Example 2 MatLab Code	%Signal parameters a=1;	% Amplitude				
	TSqr=5;	% Signal period in second				
	dutyCycle=30;	% Duty cycle in percentage				
	fs=1;	% Sampling frequency in Hz				
	dt=1/fs;	% In between sample time interval				
	L=10;	%Data length in seconds				
	df=1/L;	%Spectrum frequency interval				
	N=L/dt;	%Total number of samples				
	n=0:N-1;	%Sample index vector				
	t=dt*n;	%Time vector				
	f=df*n;	%Frequency vector				
	%Generate time domain pulse signal and spectrum					
	t0 = floor(dutyCycle/100*TSqr/2); % Number of samples shifted left code=(square(2*pi*fSqr*(t+t0),dutyCycle)+1)/2; %Square wave samples fCode=fft(code)/N; %Square wave spectrum					
	% Plot results subplot(511);stem(t, code); grid on; xLabel('Time (s)'); yLabel('Code'); subplot(512);stem(f, real(fCode),'ro');grid on; yLabel('Real'); subplot(513);stem(f, imag(fCode),'ro');grid on; yLabel('Imag'); subplot(514);stem(f,abs(fCode));grid on;yLabel('Magnitude');					
MIAMI UNIVERSITY	subplot(515);stem(f,angle(fCode)*r2d); grid on; xLabel('Frequency (H					

Generating Signals in MatLab Code Essentials

- 1. Basic time domain signal parameters:
 - Period *T*, amplitude *a*, phase *phi*
 - Sampling frequency $fs \rightarrow time resolution <math>dt = 1/fs$
 - Data length *L*
- 2. Frequency domain parameters
 - Frequency resolution df = 1/L
 - Spectral coverage $\mathbf{B} = 1/fs$
- 3. Sample vector
 - Number of samples per period: N=L/dt
 - Sample index vector: n = 0:N-1
- 4. Time and frequency vector
 - Time vector: t = dt * n
 - Frequency vector: $\mathbf{f} = df^*n$
- 5. Time signal vector definition
- 6. Frequency domain transformation
- 7. Plot results

Things to Watch

- Changing T
- Changing phase
- Changing duty cycle
- Changing fs
- Changing L

Spread Spectrum

A narrow band signal when modulated by a binary sequence, the spectrum of the signal became broadened.

The spectrum spread is proportional to the chipping rate 1/Tc

If
$$x[n] \Leftrightarrow X[k]$$

Then based on frequency shift property:

$$x[n]\sin(m\omega_o n) \Leftrightarrow \frac{1}{2j}(X[k+m]-X[k-m])$$

BW are determined by N_I/N Smaller $N_I/N \rightarrow \text{larger BW} \rightarrow \text{more spread}$

Product of Example 1 and Example 2 signal

Spread Spectrum Analysis

$$x[n]\sin(m\omega_o n) \Leftrightarrow \frac{1}{2j}(X[k+m]-X[k-m])$$

PART 3 GPS Signal Mathematical Representation

GPS L1 Civil Signal Generation:

L1 GPS Signal Mathematical Representation

$$s_{L1} = s_C + s_P (3.1)$$

$$s_C = \sqrt{2}AC(t)D(t)\sin[2\pi(f_{L1} + f_D)t + \varphi]$$
 (3.2)

$$s_P = AP(t)D(t)\cos[2\pi(f_{L1} + f_D)t + \varphi]$$
 (3.3)

A: Protected signal amplitude

 f_{Ll} : L1 carrier frequency 1.57542GHz

 f_D : L1 carrier frequency Doppler shift

 φ : L1 carrier frequency phase

C(*t*): CA code

P(t): P code

D(t): Nav data

GPS L1 Signal Relative Time Scale

Reading and Assignment 2

- Today's coverage:
 - Misra and Enge, ch. 8.4
- Next lecture Topic: CA Code Generation and Properties
- Assignment #2:
 - A discrete periodic square wave signal has period N and duty cycle is 50%.
 Derive its frequency domain representation (its Fourier series). Write a MatLab program to verify your results and plot its spectrum. Of course, when you write your Matlab program, you will need to assign specific values to N. You can use N=5 and 6 to test your results.
 - Hint: If you have forgotten about how to do DFT, consult the book Signals and Systems by Oppenheim and Williski, Prentice Hall, 1997. If you have used a different textbook for ECE 306, you can consult that book as well.
 - Due: Friday, Jan. 21, 5PM.

