EE23BTECH11047 - Deepakreddy P

Exercise 9.1

4 Write the first five terms of the sequence whose nth term is $\frac{2n-3}{6}$ and obtain the Z transform of the series Solution:

$$x(0) = \frac{2 \times 0 - 3}{6} = \frac{-1}{2} \tag{1}$$

$$x(0) = \frac{2 \times 0 - 3}{6} = \frac{-1}{2}$$

$$x(1) = \frac{2 \times 1 - 3}{6} = \frac{-1}{6}$$
(2)

$$x(2) = \frac{2 \times 2 - 3}{6} = \frac{1}{6} \tag{3}$$

$$x(3) = \frac{2 \times 3 - 3}{6} = \frac{1}{2} \tag{4}$$

$$x(3) = \frac{2 \times 3 - 3}{6} = \frac{6}{2}$$

$$x(4) = \frac{2 \times 4 - 3}{6} = \frac{5}{6}$$
(4)

$$x(n) = \frac{2n-3}{6} (u(n)) \tag{6}$$

Fig. 1. Plot of x(n) vs n

$$x(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z)$$
 (7)

$$X(Z) = \sum_{n = -\infty}^{\infty} x(n)Z^{-n} \tag{8}$$

$$= \sum_{n=-\infty}^{\infty} (\frac{n}{3} - \frac{1}{2})u(n)z^{-n}$$
 (9)

$$=\sum_{n=0}^{\infty} \frac{n}{3} z^{-n} - \sum_{n=0}^{\infty} \frac{1}{2} z^{-n}$$
 (10)

$$\sum_{n=0}^{\infty} \frac{n}{3} z^{-n} = \frac{1}{3} \left(\frac{Z}{(z-1)^2} \right)$$
 (11)

$$\sum_{n=0}^{\infty} \frac{1}{2} z^{-n} = \frac{1}{2} \left(\frac{1}{1 - z^{-1}} \right) \tag{12}$$

(3)
(4)
$$X(z) = \frac{1}{3} \frac{z}{(z-1)^2} - \frac{1}{2} \frac{1}{1-z^{-1}}$$

$$5z - 3z^2$$
(13)

(5)
$$X(z) = \frac{5z - 3z^2}{6(z - 1)^2}$$
 $\{z \in \mathbb{C} : z \neq 1\}$ (14)

Symbol	Parameters
x(n)	general term of the series
X(z)	Z-transform of $x(n)$
u(n)	unit step function

TABLE I Parameters