Course Project - Machine Learning

Elizabeth M. Trujillo

2022-11-30

BACKGROUND Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively. These type of devices are part of the quantified self movement – a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior, or because they are tech geeks. One thing that people regularly do is quantify how much of a particular activity they do, but they rarely quantify how well they do it. In this project, your goal will be to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants. They were asked to perform barbell lifts correctly and incorrectly in 5 different ways. More information is available from the website here: http://groupware.les.inf.puc-rio.br/har (http://groupware.les.inf.puc-rio.br/har) (see the section on the Weight Lifting Exercise Dataset).

knitr::opts_chunk\$set(echo = TRUE)

#Check and change directory

#Load necessary packages

install.packages("writexl")

#Import training data

#Import testing data library(readxl)

#View the excel sheets View(pml_testing) dim(pml_testing) #There are 20 observations and 159 variables in the Training dataset

View(pml_training) dim(pml_training) #There are 16383 observations and 159 variables in the Testing dataset

Data Reference: "Ugulino, W.; Cardador, D.; Vega, K.; Velloso, E.; Milidiu, R.; Fuks, H. Wearable Computing: Accelerometers' Data Classification of Body Postures and Movements"

Create a report describing how you built your model, how you used cross validation, what you think the expected out of sample error is, #and why you made the choices you did. You will also use your #prediction model to predict 20 different test cases.

#Load necessary packages install.packages("caret")

#Clean Training and Testing datasets by removing missing values

```
testingData <- pml_testing[, colSums(is.na(pml_testing)) == 0]
dim(testingData)</pre>
```

```
## [1] 20 126
```

#There are 20 observation and 126 variables

View(testingData)

```
trainingData<- pml_training[, colSums(is.na(pml_training)) == 0]
dim(trainingData)</pre>
```

```
## [1] 16383 125
```

#There are 16383 obervations and 125 variables

View(trainingData)

#Setting up the Training dataset for prediction. I split the training dataset into #65% as the train data and 35% as the test data. I can then calculate the sample error #from this split dataset.

```
set.seed(1500)
library(caret)
inTrain <- createDataPartition(trainingData$classe, p = 0.65, list = FALSE)
trainData <- trainingData[inTrain, ]
testData <- trainingData[-inTrain, ]
dim(trainData)</pre>
```

```
## [1] 10652 125
```

#There are 10652 observations and 125 variables in the training data

```
dim(testData)
```

```
## [1] 5731 125
```

#There at 5731 observations and 125 variables in the testing data

#After removing missing values above, I will remove any values that are close to zero

```
nearZero <- nearZeroVar(trainData)
trainData <- trainData[, -nearZero]
testData <- testData[, -nearZero]
dim(trainData)</pre>
```

```
## [1] 10652 57
```

#There are 10652 observations and 57 variables in the training data

```
dim(testData)
```

```
## [1] 5731 57
```

#There are 5731 observations and 57 variables in the testing data

View(trainData) View(testData)

#Create model based predictions by using Baye's Theorem to identify optimal classifiers. Use #linear disciminant analysis (Ida) and Naive Bayes (nb)

#Prediction

View(plda) View(pnd)

```
table(plda,pnd)
```

```
##
       pnd
## plda
           Α
                В
                      С
                           D
                                 Е
##
      A 1770
                96
                     78
                         106
                                 0
##
      В 115
               827
                    109
                          75
                                25
##
         375
                75 827
                                3
                          55
      С
##
      D
         233
                14
                    121
                         740
                                16
##
      Ε
                      0
                            2
                                65
```

#Compare the results using two exercises

```
equalPredictions = (plda == pnd)
qplot(yaw_forearm, yaw_dumbbell, geom=c("point", "smooth"), colour=equalPredictions, dat
a=testData)
```

```
## Warning: `qplot()` was deprecated in ggplot2 3.4.0.
```

```
## geom_smooth() using method = 'gam' and formula = 'y ~ s(x, bs = cs')'
```


#Predict with Random Forests

#Create model based predictions by using Random Forests (rf). Use data that was previously cleaned.

```
mod_rf1$finalModel
```

```
##
## Call:
##
    randomForest(x = x, y = y, mtry = param$mtry)
##
                  Type of random forest: classification
##
                        Number of trees: 500
## No. of variables tried at each split: 31
##
##
           OOB estimate of error rate: 0.1%
## Confusion matrix:
##
                           E class.error
## A 3627
                  0
                       0
                           0 0.000000000
        2 2466
                            0 0.0012150668
## B
                  1
                       0
## C
             1 2223
                            0 0.0008988764
## D
                  6 2085
                            0 0.0028694405
## E
                       0 240 0.0000000000
```

#Determine the accuracy by using the test data

```
library(randomForest)
```

```
## randomForest 4.7-1.1

## Type rfNews() to see new features/changes/bug fixes.

##
## Attaching package: 'randomForest'

## The following object is masked from 'package:ggplot2':
##
## margin

tree2 <- getTree(mod_rf1$finalModel, k=2)
tree2</pre>
```

					<u></u>	-	
##		left daughter	right daughter	split var	split point	status	prediction
##	1	2	3	49	-3.305000e+01	1	0
##	2	4	5	40	1.035000e+00	1	0
##	3	6	7	46	4.395000e+02	1	0
##	4	8	9	60	7.760000e+02	1	0
##	5	0	0	0	0.000000e+00	-1	2
##		10	11	8	2.415000e+02	1	0
##		12	13	38		1	0
##		0	0	0	0.000000e+00	-1	1
##		0	0	0	0.000000e+00	-1	2
##		14	15		-7.250000e+01	1	0
##		16	17	10	1.535000e+01	1	0
##		18	19		-2.940000e+00	1	0
##		20	21	8	8.650000e+01	1	0
##		22		10	2.575000e+01	1	0
##		24	25	8	1.290000e+02	1	0
##		26	27	8	2.600000e+02	1	0
##		28	29	6	1.322838e+09	1	0
##		0	0	0	0.000000e+00	-1	2
##		30	31	6	1.322838e+09	1	0
##		0	0	0	0.000000e+00	-1	5
##		32	33	6	1.322673e+09	1	0
## ##		34	35	6	1.323095e+09	1	0
##		36	37	8	6.850000e+01	1	0
##		38	39	29	2.660000e+02	1	0
## ##		0	0	0	0.000000e+00 0.000000e+00	-1 -1	1
##		0	0 41	0	-5.535000e+02	1	2
##		40	0	0	0.000000e+00	_1 _1	1
##		42	43	6	1.323095e+09	1	0
##		44	45	_	-1.850000e+01	1	0
##		0	0	0	0.000000e+00	-1	4
##		0	0	0	0.000000e+00	-1	1
##		46	47	11	1.655000e+02	1	0
##		48	49	6	1.323095e+09	1	0
##		0	0	0	0.000000e+00	-1	4
##		0	0	0	0.000000e+00	-1	1
##		50	51	8	8.900000e+01	1	0
##		0	0	0	0.000000e+00	-1	5
##		0	0	0	0.000000e+00	-1	2
##		52	53	10	-4.325000e+01	1	0
##	41	54	55	47	-2.650000e+01	1	0
##	42	56	57	45	4.960000e+02	1	0
##	43	58	59	8	8.295000e+02	1	0
##	44	0	0	0	0.000000e+00	-1	3
##	45	0	0	0	0.000000e+00	-1	2
##	46	60	61	9	8.750000e-01	1	0
##	47	62	63	6	1.322833e+09	1	0
##	48	64	65	8	2.450000e+01	1	0
##	49	66	67	8	1.065000e+02	1	0
##	50	0	0	0	0.000000e+00	-1	2
##	51	68	69	6	1.323095e+09	1	0

, _	, 22,	J-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Course	e i roject i viacinne Ecarini	15	
	##	52	70	71	11	1.700000e+02	1	0
	##	53	72	73	8	3.645000e+02	1	0
	##	54	74	75	6	1.323084e+09	1	0
	##	55	76	77	8	2.785000e+02	1	0
	##	56	78	79	49	4.200000e+01	1	0
	##	57	80	81	54	8.650000e-01	1	0
	##	58	0	0	0	0.000000e+00	-1	4
	##	59	0	0	0	0.000000e+00	-1	3
	##	60	82	83	8	4.535000e+02	1	0
	##	61	84	85	8	2.450000e+02	1	0
	##	62	0	0	0	0.000000e+00	-1	2
	##	63	0	0	0	0.000000e+00	-1	3
	##	64	86	87	27	-1.220000e+00	1	0
	##	65	88	89	6	1.323095e+09	1	0
	##	66	90	91	57	-1.060000e+02	1	0
	##	67	0	0	0	0.000000e+00	-1	4
	##	68	0	0	0	0.000000e+00	-1	3
	##	69	0	0	0	0.000000e+00	-1	4
	##	70	92	93	24	-7.765000e+01	1	0
	##	71	94	95	55	-1.420000e+02	1	0
	##	72	96	97	20	5.545000e+02	1	0
	##	73	98	99	8	5.655000e+02	1	0
	##	74	100	101	8	4.365000e+02	1	0
		75	102	103	36	1.084798e+01	1	0
	##	76	0	0	0	0.000000e+00	-1	3
	##	77	104	105	35	-9.439044e+01	1	0
	##	78	0	0	0	0.000000e+00	-1	2
	##	79	0	0	0	0.000000e+00	-1	4
	##	80	106	107	10	2.675000e+01	1	0
	##	81	0	0	0	0.000000e+00	-1	2
		82	0	0	0	0.000000e+00	-1	2
	##	83	108	109	55	-8.300000e+01	1	0
	##		0	0	0	0.000000e+00	-1	4
	##		110	111	37	-6.750715e+01	1	0
	##		0	0	0	0.000000e+00	-1	5
	##		0	0	0	0.000000e+00	-1	4
	##		112	113	18	-8.800000e+01	1	0
	##		0	0	0	0.000000e+00	-1	2
	##		0	0	0	0.000000e+00	-1	3
	##		0	0	0	0.000000e+00	-1	2
	##		114	115	34	5.940000e+02	1	0
	##		116	117		-1.565000e+02	1	0
	##		0	0	0	0.000000e+00	-1	1
	##		0	0	0	0.000000e+00	-1	2
	##		0	0	0	0.000000e+00	-1	4
	##		118	119	29	1.110000e+02	1	0
	##		120	121	6	1.323084e+09	1	0
	##		122	123	9	1.255000e+02	1	0
		100	0	0	0	0.000000e+00	-1	1
		101	124	125	46	3.855000e+02	1	0
		102	126	127	6	1.323084e+09	1	0
	##	103	128	129	11	-9.300000e+01	1	0

					J	0	
#	# 104	130	131	42	-1.700000e+01	1	0
#	# 105	132	133	10	-4.255000e+01	1	0
#	# 106	0	0	0	0.000000e+00	-1	1
#	# 107	0	0	0	0.000000e+00	-1	2
#	# 108	0	0	0	0.000000e+00	-1	4
#	# 109	134	135	8	6.320000e+02	1	0
#	# 110	136	137	55	-1.070000e+02	1	0
#	# 111	0	0	0	0.000000e+00	-1	2
#	# 112	0	0	0	0.000000e+00	-1	1
#	# 113	138	139	6	1.323084e+09	1	0
#	# 114	0	0	0	0.000000e+00	-1	3
#	# 115	0	0	0	0.000000e+00	-1	2
#	# 116	0	0	0	0.000000e+00	-1	2
#	# 117	0	0	0	0.000000e+00	-1	3
#	# 118	0	0	0	0.000000e+00	-1	2
#	# 119	0	0	0	0.000000e+00	-1	1
#	# 120	140	141	6	1.322833e+09	1	0
#	# 121	0	0	0	0.000000e+00	-1	4
#	# 122	142	143	8	6.125000e+02	1	0
#	# 123	144	145	8	6.125000e+02	1	0
#	# 124	146	147	9	1.230000e+02	1	0
#	# 125	148	149	6	1.322838e+09	1	0
#	# 126	0	0	0	0.000000e+00	-1	2
#	# 127	0	0	0	0.000000e+00	-1	4
#	# 128	0	0	0	0.000000e+00	-1	4
#	# 129	0	0	0	0.000000e+00	-1	2
#	# 130	150	151	10	1.495000e+01	1	0
#	# 131	152	153	15	-9.000000e-02	1	0
#	# 132	154	155	9	1.225000e+02	1	0
#	# 133	156	157	55	-9.950000e+01	1	0
#	# 134	0	0	0	0.000000e+00	-1	3
#	# 135	0	0	0	0.000000e+00	-1	2
#	# 136	0	0	0	0.000000e+00	-1	4
#	# 137	0	0	0	0.000000e+00	-1	2
#	# 138	0	0	0	0.000000e+00	-1	2
#	# 139	0	0	0	0.000000e+00	-1	5
#	# 140	158	159	57	-1.230000e+02	1	0
#	# 141	160	161	11	-9.355000e+01	1	0
#	# 142	0	0	0	0.000000e+00	-1	4
#	# 143	162	163	34	5.925000e+02	1	0
	# 144	0	0	0	0.000000e+00	-1	4
#	# 145	0	0	0	0.000000e+00	-1	3
	# 146	164	165	36	6.018112e+01	1	0
#	# 147	0	0	0	0.000000e+00	-1	2
	# 148	0	0	0	0.000000e+00	-1	2
	# 149	0	0	0	0.000000e+00	-1	3
	# 150	166	167	15	-2.200000e-01	1	0
	# 151	0	0	0	0.000000e+00	-1	4
	# 152	168	169		-1.440000e+02	1	0
	# 153	170	171		-8.825000e+01	1	0
	# 154	172	173	8	6.405000e+02	1	0
#	# 155	174	175	6	1.322833e+09	1	0

_	, 22, 4	7 1 1 1 1 1			Course	of roject Machine Learn	mg	
	##	156	176	177	6	1.322673e+09	1	0
	##	157	178	179	8	3.135000e+02	1	0
	##	158	180	181	36	-5.045274e+01	1	0
	##	159	0	0	0	0.000000e+00	-1	2
	##	160	0	0	0	0.000000e+00	-1	4
	##	161	182	183	16	-2.350000e+01	1	0
	##	162	184	185	30	1.115000e+02	1	0
	##	163	186	187	9	6.810000e+01	1	0
	##	164	0	0	0	0.000000e+00	-1	1
	##	165	0	0	0	0.000000e+00	-1	4
	##	166	188	189	31	-3.450000e+01	1	0
	##	167	190	191	11	4.390000e+00	1	0
	##	168	0	0	0	0.000000e+00	-1	3
	##	169	0	0	0	0.000000e+00	-1	4
	##	170	192	193	36	-1.906337e+00	1	0
	##	171	0	0	0	0.000000e+00	-1	1
	##	172	194	195	23	3.010000e+01	1	0
	##	173	0	0	0	0.000000e+00	-1	1
	##	174	196	197	6	1.322833e+09	1	0
	##	175	198	199	40	-2.400000e-01	1	0
	##	176	200	201	6	1.322673e+09	1	0
	##	177	202	203	8	3.760000e+02	1	0
	##	178	0	0	0	0.000000e+00	-1	4
	##	179	204	205	6	1.322673e+09	1	0
	##	180	0	0	0	0.000000e+00	-1	3
	##	181	0	0	0	0.000000e+00	-1	1
	##	182	0	0	0	0.000000e+00	-1	4
	##	183	0	0	0	0.000000e+00	-1	3
	##	184	206	207	39	-1.950000e-01	1	0
	##	185	208	209	51	2.450000e+01	1	0
	##	186	0	0	0	0.000000e+00	-1	4
	##	187	0	0	0	0.000000e+00	-1	1
	##	188	0	0	0	0.000000e+00	-1	4
	##	189	0	0	0	0.000000e+00	-1	3
	##	190	210	211	15	4.000000e-02	1	0
	##	191	0	0	0	0.000000e+00	-1	4
	##	192	0	0	0	0.000000e+00	-1	2
	##	193	0	0	0	0.000000e+00	-1	3
	##	194	0	0	0	0.000000e+00	-1	4
	##	195	0	0	0	0.000000e+00	-1	2
	##	196	0	0	0	0.000000e+00	-1	1
	##	197	0	0	0	0.000000e+00	-1	2
	##	198	0	0	0	0.000000e+00	-1	3
	##	199	0	0	0	0.000000e+00	-1	4
	##	200	212	213	59	6.585000e+02	1	0
	##	201	0	0	0	0.000000e+00	-1	3
	##	202	214	215	6	1.323084e+09	1	0
	##	203	216	217	9	1.255000e+02	1	0
	##	204	218	219	10	7.000000e-02	1	0
	##	205	220	221	42	-4.550000e+01	1	0
	##	206	0	0	0	0.000000e+00	-1	2
	##	207	222	223	7	8.883515e+05	1	0

,					3	0	
##	208	0	0	0	0.000000e+00	-1	3
##	209	0	0	0	0.000000e+00	-1	2
##	210	0	0	0	0.000000e+00	-1	3
##	211	0	0	0	0.000000e+00	-1	2
##	212	224	225	56	-1.545000e+02	1	0
##	213	226	227	11	-8.900000e+01	1	0
##	214	0	0	0	0.000000e+00	-1	1
##	215	0	0	0	0.000000e+00	-1	2
##	216	228	229	34	-3.715000e+02	1	0
##	217	230	231	33	2.095000e+02	1	0
##	218	0	0	0	0.000000e+00	-1	4
##	219	232	233	6	1.322673e+09	1	0
##	220	234	235	8	5.650000e+02	1	0
##	221	236	237	42	3.500000e+00	1	0
##	222	0	0	0	0.000000e+00	-1	3
##	223	238	239	51	3.600000e+01	1	0
##	224	240	241	37	-7.877347e+01	1	0
##	225	0	0	0	0.000000e+00	-1	1
##	226	0	0	0	0.000000e+00	-1	2
##	227	0	0	0	0.000000e+00	-1	4
##	228	242	243	47	3.550000e+01	1	0
##	229	244	245	32	-3.520000e+02	1	0
##	230	246	247	10	-4.180000e+01	1	0
##	231	0	0	0	0.000000e+00	-1	3
##	232	248	249	47	3.375000e+02	1	0
##	233	0	0	0	0.000000e+00	-1	2
##	234	250	251	46	3.785000e+02	1	0
##	235	252	253	33	3.790000e+02	1	0
##	236	254	255	8	3.775000e+02	1	0
##	237	256	257	11	-9.325000e+01	1	0
##	238	0	0	0	0.000000e+00	-1	2
##	239	0	0	0	0.000000e+00	-1	1
##	240	0	0	0	0.000000e+00	-1	1
##	241	0	0	0	0.000000e+00	-1	2
##	242	0	0	0	0.000000e+00	-1	3
##	243	258	259	1	5.000000e-01	1	0
##	244	0	0	0	0.000000e+00	-1	3
##	245	260	261	40	-8.050000e-01	1	0
##	246	0	0	0	0.000000e+00	-1	2
##	247	0	0	0	0.000000e+00	-1	4
##	248	262	263	46	2.505000e+02	1	0
##	249	0	0	0	0.000000e+00	-1	2
##	250	264	265	49	2.135000e+01	1	0
##	251	266	267	49	1.221000e+01	1	0
##	252	268	269	9	7.000000e-01	1	0
	253	0	0	0	0.000000e+00	-1	3
	254	270	271	8	3.540000e+02	1	0
	255	272	273	6	1.322833e+09	1	0
	256	0	0	0	0.000000e+00	-1	4
	257	0	0	0	0.000000e+00	-1	2
	258	0	0	0	0.000000e+00	-1	4
##	259	0	0	0	0.000000e+00	-1	2

121.	22,4:.	34 PIVI			Cours	e Project - Machine Learn	ing	
	##	260	0	0	0	0.000000e+00	-1	3
	##	261	274	275	26	-4.200000e+00	1	0
	##	262	276	277	45	-4.485000e+02	1	0
	##	263	278	279	53	4.135000e+00	1	0
	##	264	0	0	0	0.000000e+00	-1	3
	##	265	280	281	8	4.765000e+02	1	0
	##	266	0	0	0	0.000000e+00	-1	3
	##	267	0	0	0	0.000000e+00	-1	4
	##	268	0	0	0	0.000000e+00	-1	3
	##	269	282	283	19	1.655000e+02	1	0
	##	270	0	0	0	0.000000e+00	-1	1
	##	271	284	285	7	6.803120e+05	1	0
	##	272	286	287	46	3.360000e+02	1	0
	##	273	288	289	27	9.800000e-01	1	0
	##	274	0	0	0	0.000000e+00	-1	3
	##	275	290	291	20	5.945000e+02	1	0
	##	276	292	293	39	3.600000e-01	1	0
	##	277	0	0	0	0.000000e+00	-1	1
	##	278	0	0	0	0.000000e+00	-1	1
	##	279	0	0	0	0.000000e+00	-1	2
	##	280	0	0	0	0.000000e+00	-1	3
	##	281	0	0	0	0.000000e+00	-1	4
	##	282	0	0	0	0.000000e+00	-1	4
	##	283	0	0	0	0.000000e+00	-1	3
	##	284	0	0	0	0.000000e+00	-1	3
	##	285	0	0	0	0.000000e+00	-1	2
	##	286	0	0	0	0.000000e+00	-1	3
	##	287	294	295	33	1.500000e+02	1	0
	##	288	296	297	43	-3.650000e+01	1	0
		289	0	0	0	0.000000e+00	-1	2
		290	298	299	29	-1.905000e+02	1	0
		291	300	301	29	-2.965000e+02	1	0
		292	0	0	0	0.000000e+00	-1	3
		293	302	303	47	2.480000e+02	1	0
		294	0	0	0	0.000000e+00	-1	3
		295	0	0	0	0.000000e+00	-1	1
		296	0	0	0	0.000000e+00	-1	3
		297	0	0	0	0.000000e+00	-1	4
		298	0	0	0	0.000000e+00	-1	4
		299	0	0	0	0.000000e+00	-1	3
		300	0	0	0	0.000000e+00	-1	3
		301	0	0	0	0.000000e+00	-1	4
		302	0	0	0	0.000000e+00	-1	4
	##	303	0	0	0	0.000000e+00	-1	2
- 1								

#Predict new values

table(predict_rf1, testData\$classe)

```
##
## predict_rf1
##
              A 1953
##
                    0 1327
              С
##
                          1 1193
##
              D
                          0
                                0 1124
                          0
                                         128
##
```

qplot(yaw_forearm, yaw_dumbbell, geom=c("point", "smooth"), colour=predict_rf1, data=tes
tData, main= "New_data_Predictions")

```
## geom_smooth() using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'
```


#Validate the data from random forest and use prediction model for the Final quiz Results <- predict(mod_rf1, newdata=testData) Results