Homework #3 due November 16, 2020, Monday before recitation

(1) Consider the regular expression $E = (1+(\theta+101)^*)^*$. Draw an ε -NFA accepting the language corresponding to E above using as little number of states as possible; compute and sketch the equivalent NFA without ε -transitions; and finally compute the equivalent DFA accepting the language E above.

(2) Convert the following **DFA** to **RE** using the state elimination technique. Try to simplify the regular expression using the equivalence relations stated in class.

(3) For following languages, prove or disprove the statement that the language is regular.

(a) $\{ww^R \mid w \in (0+1)^*\}$, where w^R stands for the string w written in reverse (backwards)

(b) $\{w \mid w \text{ has same number of occurrences of } 01 \text{ and } 10 \text{ as substrings}\}$

(4) Consider the Deterministic Finite Automata,

$$A = (Q_A, \Sigma_A, \delta_A, q_{\theta A}, F_A)$$
 and $B = (Q_B, \Sigma_B, \delta_B, q_{\theta B}, F_B)$ with

 $Q_A \cap Q_B = \phi$, $\Sigma_A \cap \Sigma_B = \phi$ where ϕ stands for the null set.

Let $L_A \subseteq \Sigma_A^*$ and $L_B \subseteq \Sigma_B^*$ be the languages accepted by A and B respectively and define the interleaved language:

$$L_A \parallel L_B := \{ s \ \varepsilon (\Sigma_A \cup \Sigma_B)^* \mid s \uparrow_A \varepsilon L_A \text{ and } s \uparrow_B \varepsilon L_B \}$$

where $s \uparrow_A$ and $s \uparrow_B$ stand for the projection of s on Σ_A and Σ_B obtained by erasing all the symbols of s in Σ_B and Σ_A respectively.

(a) Define the interleaving product $A \parallel B$ of A and B as a DFA that accepts the language $L_A \parallel L_B$

- (b) Compute a **DFA** that accepts the language L = (0.1)*||(a.b)*|
- (5) Let A and B be DFAs that accept languages L_a and L_b over an alphabet Σ .
- (a) Describe algorithm(s) using the product automaton $A \times B$ to decide the following problems:
 - (i) $L_a = L_b$;
 - (ii) L_a strictly included in L_b ;
 - (iii) L_b strictly included in L_a ;
 - (iv) none of the first three!
- (b) State the complexity of your algorithm as an O function of n if the number of states of A and B are the same and are equal to n.
- (6) Problems from the main textbook

Exercise 4.1.2 ((b),(c),(h))

Exercise 4.3.3, 4.3.4

Exercises 4.4.2, 4.4.3