

Lecture 10 Topic 3 Second Law of Thermodynamics

Topics

3.2 Carnot cycles

Reading:

Ch 5: 5.3 – 5.9 Borgnakke & Sonntag Ed. 8

Ch 6: 6-5 – 6-11 Cengel and Boles Ed. 7

3.1 Revisiting Second Law Statements

Lecture 9 takeaway

- Cannot convert HEAT energy to 100% WORK energy (Kelvin-Planck statement)
- $\eta_{TH} = \dot{W}_{net} / \dot{Q}_H < 100\%$

- If $\eta_{TH} < 100\%$, what is the maximum efficiency that is achievable?
- Introduction to a "reversible process"

Reversible process

- Process that can be reversed without leaving any trace on the <u>system</u> or <u>surroundings</u>.
- Can reverse the process and will go back to original state without any disturbance

<u>Irreversible process</u>

- Process that cannot go back to its original state without any change to system or surroundings
- Example:
 - Membrane separating two gases
 - Membrane bursts, mixing $N_2 + O_2$
 - Cannot "naturally" return components to original state

3.2.1 Reversible and Irreversible Processes

Common irreversible processes

- a) Fast compression / expansion
- b) Unrestrained expansion
- Friction
- Mixing
- Chemical reaction
- Heat transfer at large temperature difference

e) Chemical Rxn

a) Fast compression / expansion

b) Unrestrained expansion

Most practical applications have irreversible processes

3.2.2 Reversible Processes

Why study reversible processes?

- Understand theoretical limits of real process
- Determines maximum thermal efficiency that is theoretically achievable.

Quasi-equilibrium process

- Approximation of a reversible process
- Infinitesimal changes of δQ and δW from surroundings

- Nicolas Sadi Carnot (1769-1832)
- Devised reversible cycle for conceptual theory (e.g. max theoretical η_{TH})

The Carnot Cycle

Process 1-2: Reversible isothermal heat addition. System remains constant at high temperature, T_H . System performs work (expansion).

Process 2-3: Reversible, adiabatic expansion. System does work as system temperature decreases from T_H to T_L .

Process 3-4: Reversible isothermal heat rejection. System remains at constant low temperature, T_L . Work is performed on system (compression).

Process 4-1: Reversible adiabatic compression. Work performed on system as system's temperature increases from T_I to T_{H^L}

- Nicolas Sadi Carnot (1769-1832)
- Devised reversible cycle for conceptual theory (e.g. max theoretical η_{TH})

The Carnot Cycle

- Nicolas Sadi Carnot (1769-1832)
- Devised reversible cycle for conceptual theory (e.g. max theoretical η_{TH})

Carnot cycle applied to a heat engine (steam power plant)

The Carnot Cycle

- Nicolas Sadi Carnot (1769-1832)
- Devised reversible cycle for conceptual theory (e.g. max theoretical η_{TH})

Carnot cycle applied to a heat pump / refrigeration cycle

The Carnot Cycle

3.2.3 Carnot Cycle Efficiency

Propositions regarding Carnot Cycle Efficiency

- Consider the heat engines operating between temperature reservoirs $T_H > T_L$
 - 1. Irreversible
 - 2. Reversible
 - 3. Reversible
 - a) Efficiency of the irreversible heat engine is less than that of the reversible heat engine
 - $\eta_{th, irreversible} < \eta_{th, reversible}$
 - $\eta_{th, reversible} = \eta_{th, Carnot}$
 - Maximum efficiency: $\eta_{th, Carnot}$
 - b) Reversible heat engines will have the same efficiency
 - $\eta_{th,Carnot} = 1 \frac{Q_L}{Q_H} \rightarrow \eta_{th,Carnot} = 1 f(T_H, T_L)$
 - $\eta_{th,Carnot}$ is a function of temperature

- Consider reversible heat engines A, B, C
 - a) Engines A and C supplied with Q₁ from reservoir T₁
 - b) Engines B and C reject Q₃ to reservoir T₃
 - c) Engine A rejects Q₂ to reservoir T₂
 - d) Q₂ supplied to Engine B from reservoir T₂
- Engine A+B will have the same efficiency as engine C
- Thermal efficiency: $\eta_{th} = W/Q_{IN} = (Q_{IN} Q_{out})/Q_{IN}$

•
$$\eta_{th,A} = 1 - Q_2/Q_1$$
 & $Q_2/Q_1 = \psi(T_1, T_2)$

•
$$\eta_{th,B} = 1 - Q_3/Q_2$$
 & $Q_3/Q_2 = \psi(T_2, T_3)$

•
$$\eta_{th,C} = 1 - Q_3/Q_1$$
 & $Q_3/Q_1 = \psi(T_1, T_3)$

• ψ is a functional relationship

Functional relations of the three Carnot cycles:

$$\frac{Q_1}{Q_2} = \psi(T_1, T_2)$$
 $\frac{Q_2}{Q_3} = \psi(T_2, T_3)$ $\frac{Q_1}{Q_3} = \psi(T_1, T_3)$

- Take: $\frac{Q_1}{Q_3} = \frac{Q_1}{Q_2} \times \frac{Q_2}{Q_3} \to \psi(T_1, T_3) = \psi(T_1, T_2) \times \psi(T_2, T_3)$
- Left hand side is independent of T₂
- Right hand side must also be independent of T₂
- The function, ψ , must be such that

$$\psi(T_1, T_2) = \frac{f(T_1)}{f(T_2)}$$
 $\psi(T_2, T_3) = \frac{f(T_2)}{f(T_3)}$

• Thus,
$$\psi(T_1, T_3) = \frac{f(T_1)}{f(T_2)} \times \frac{f(T_2)}{f(T_3)} = \frac{f(T_1)}{f(T_3)}$$

•
$$\frac{Q_1}{Q_3} = \psi(T_1, T_3) = \frac{f(T_1)}{f(T_3)}$$

General form

$$Q_1 = \psi(T_1, T_3) = \frac{f(T_1)}{f(T_3)}$$

• Simplest form of f is the absolute temperature, f(T)=T.

$$\frac{Q_1}{Q_3} = \frac{(T_1)}{(T_3)}$$
 or more generally $\frac{Q_H}{Q_L} = \frac{(T_H)}{(T_L)}$

The Carnot thermal efficiency becomes

$$\eta_{th,rev}=1-\frac{Q_3}{Q_1}\to 1-\frac{T_3}{T_1}$$
 more generally
$$\eta_{th,rev}=1-\frac{Q_L}{Q_H}\to 1-\frac{T_L}{T_H}$$
 Q's become T's

• Relationships of η_{th} for heat engines:

$$\eta_{th} \begin{cases} < \eta_{th, rev} & \text{irreversible heat engine} \\ = \eta_{th, rev} & \text{reversible heat engine} \\ > \eta_{th, rev} & \text{impossible heat engine} \end{cases}$$

- Remember for Carnot
 - Temperature is in absolute units (Kelvin)

$$- \eta_{th,Carnot} = 1 - \frac{Q_L}{Q_H} \rightarrow 1 - \frac{T_L}{T_H}$$

Heat Pump and Refrigeration

•
$$COP_{HP} = \beta' = \frac{Q_H}{Q_H - Q_L} \underset{Carnot}{=} \frac{T_H}{T_H - T_L}$$

•
$$COP_{REF} = \beta = \frac{Q_L}{Q_H - Q_L} \underset{Carnot}{=} \frac{T_L}{T_H - T_L}$$

•
$$COP_{Carnot} > COP_{real}$$

3.2.5 Examples

Example 3.2:

An air conditioner maintains a house at $T_L = 20^{\circ}\text{C}$ with a maximum power input of $\dot{W}_{IN} = 1.2$ kW. Hot outside air leaks into the house as $\dot{Q}_{leak} = 0.6(T_H - T_L)$ [kW]. The refrigeration COP is $\beta = 0.6\beta_{CARNOT}$. Find the maximum outside temperature, T_H , for which the air conditioner until provides sufficient cooling.

Ans: 311.9 K or 38.8°C

Extra:

- a) Determine the cooling capacity of the air conditioner in kW.
- b) If the heat pump operated on the Carnot cycle, how much would \dot{W}_{IN} decrease to maintain the same cooling capacity?