Bayes Nets: Exact Inference

AIMA Chapter 14.4, PRML Chapter 8.4

Inference

 Inference: calculating some useful quantity from a probabilistic model (joint probability distribution)

Examples:

- Posterior marginal probability
 - $P(Q|e_1,...,e_k)$
 - E.g., what disease might I have?
- Most likely explanation:
 - $\operatorname{argmax}_{q} P(Q=q | e_1,...,e_k)$
 - E.g., what did he say?

Inference by Enumeration

General case:

Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$ Query variable: Q Hidden variables: $H_1 \dots H_r$

We want:

$$P(Q|e_1 \dots e_k)$$

Step 1: Select the entries consistent with the evidence

Step 2: Sum out H to get joint of Query and evidence

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

$$X_1, X_2, \dots X_n$$

Step 3: Normalize

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$
$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

Inference by Enumeration in Bayes Net

- The joint distribution can be computed from a BN by multiplying the conditional distributions
- Then we can do inference by enumeration

$$P(B \mid +j,+m) \propto_B P(B,+j,+m)$$

$$= \sum_{e,a} P(B,e,a,+j,+m)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(+j|a)P(+m|a)$$

Problem: sums of *exponentially many* products!

Inference by Enumeration in Bayes Net

$$P(B \mid +j,+m) \propto_B P(B,+j,+m)$$

$$= \sum_{e,a} P(B,e,a,+j,+m)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(+j|a)P(+m|a)$$

$$= P(B)P(+e)P(+a|B,+e)\frac{P(+j|+a)P(+m|+a)}{P(+j|+a)P(+m|+a)} + P(B)P(+e)P(-a|B,+e)\frac{P(+j|-a)P(+m|-a)}{P(+j|-a)P(+m|+a)} + P(B)P(-e)P(-a|B,-e)\frac{P(+j|-a)P(+m|-a)}{P(+j|-a)P(+m|-a)}$$

Lots of repeated subexpressions!

Can we do better?

- Consider uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz
 - 16 multiplies, 7 adds
 - Lots of repeated subexpressions!
- Rewrite as (u+v)(w+x)(y+z)
 - 2 multiplies, 3 adds

Variable elimination: The basic ideas

- Move summations inwards as far as possible
 - $P(B | j, m) = \alpha \sum_{e,a} P(B) P(e) P(a | B,e) P(j | a) P(m | a)$
 - $= \alpha P(B) \sum_{e} P(e) \sum_{a} P(a|B,e) P(j|a) P(m|a)$
 - Problem: $P(a \mid B,e)$ isn't a single number, it's a bunch of different numbers depending on the values of B and e
 - Solution: operate on *factors* (arrays of numbers)

Operations on Factors

Factors

- A factor is a multi-dimensional array to represent $P(Y_1 ... Y_N \mid X_1 ... X_M)$
 - If a variable is assigned (represented with lower-case), its dimension is missing from the array
 - Joint distribution: P(X,Y)
 - Entries P(x,y) for all x, y
 - Sums to 1

P(T	,	W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Selected joint: P(x,Y)
 - A slice of the joint distribution
 - Entries P(x,y) for fixed x, all y
 - Sums to P(x)

Т	W	Р
cold	sun	0.2
cold	rain	0.3

Factors

- A factor is a multi-dimensional array to represent $P(Y_1 ... Y_N \mid X_1 ... X_M)$
 - If a variable is assigned (represented with lower-case), its dimension is missing from the array
 - Single conditional: P(Y | x)
 - Entries P(y | x) for fixed x, all y
 - Sums to 1

- Family of conditionals:
 P(X | Y)
 - Multiple conditionals
 - Entries P(x | y) for all x, y
 - Sums to |Y|

_	<i>(</i>		\
P((W	col	(d)

Т	W	Р
cold	sun	0.4
cold	rain	0.6

Т	W	Р	
hot	sun	0.8	$\bigcap_{D(W L,A)}$
hot	rain	0.2	$\Big \int P(W hot)$
cold	sun	0.4	
cold	rain	0.6	$\left iggr_{} ight. P(W cold)$

Factors

- A factor is a multi-dimensional array to represent $P(Y_1 ... Y_N \mid X_1 ... X_M)$
 - If a variable is assigned (represented with lower-case), its dimension is missing from the array
 - Specified family: P(y | X)
 - Entries P(y | x) for fixed y,but for all x
 - Sums to ... who knows!

Т	W	Р	
hot	rain	0.2	$\mid P(rain hot) \mid$
cold	rain	0.6	$\left igred P(rain cold) ight $

Running Example: Traffic Domain

Random Variables

R: Raining

■ T: Traffic

■ L: Late

P(R)		
+r	0.1	
-r	0.9	

1 (I_{ij}	<i>)</i>
+r	+t	0.8
+r	-t	0.2

D(T|D)

+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

+t	+	0.3
+t	- 1	0.7
-t	+	0.1
-t	7	0.9

Running Example: Traffic Domain

Initial factors are local CPTs (one per node)

+r	0.1
-r	0.9

+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

$$P(R)$$
 $P(T|R)$ $P(L|T)$

3
7
1
9

- Any known values are selected
 - E.g. if we know $L = +\ell$, the initial factors are

+r	0.1
-r	0.9

+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

$$P(T|R) \qquad P(+\ell|T)$$

+t	+	0.3
-t	+	0.1

Operation 1: Join Factors

- First basic operation: joining factors
 - Just like a database join
 - Given multiple factors, build a new factor over the union of the variables involved
 - Each entry is computed by pointwise products

Example:

$$\forall r, t : P(r,t) = P(r) \cdot P(t|r)$$

Operation 2: Eliminate

- Second basic operation: eliminating a variable
 - Take a factor and sum out (marginalize) a variable
- Example:

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

 $\operatorname{sum} R$

P(T)

+t	0.17
-t	0.83

Inference by Enumeration in BN = Multiple Join + Multiple Eliminate

Computing P(L): Multiple Joins

+r	0.1	
-r	0.9	

Join

D_{I}	I	\mathbf{c}	7	٦)
L		ι,	1	J

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

Join

+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

+r	+t	+1	0.024
+r	+t	-	0.056
+r	-t	+1	0.002
+r	-t	-	0.018
-r	+t	+1	0.027
-r	+t	-	0.063
-r	-t	+1	0.081
-r	-t	-	0.729

P(L|T)

		_
+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

P(L|T)

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	7	0.9

Computing P(L): Multiple Elimination

A factor of exponential size!

Variable Elimination

Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables

- Idea: interleave joining and elimination!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration

Variable Elimination

- Query: $P(Q|E_1 = e_1, \dots E_k = e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize

$$i \times \mathbf{r} = \mathbf{r} \times \frac{1}{Z}$$

Traffic Domain

$$P(L) = ?$$

Inference by Enumeration

Variable Elimination

$$= \sum_{t} P(L|t) \sum_{r} P(r)P(t|r)$$
 Join on r Eliminate r

Variable Elimination

0.1

0.9

Join R

P(R,	T	')	

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
٧	+	0.01

Sum out R

Join	T
	<i>></i>

Sum out T

P(T|R)

+r

	_	
+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

P	(L	T
_	\ 	

+t	+	0.3
+t	- -	0.7
-t	+	0.1
-t	-	0.9

-r	-t	0.81	
-r	+t	0.09	
+r	-t	0.02	
+r	J+	0.08	

D	(T		1
$\boldsymbol{\varGamma}$	(L)	1	J

_			
	+t	+	0.3
	+t	-	0.7
	-t	+	0.1
	-t	-	0.9

P(T)

+t

-t

0.17

0.83

P(L|T)

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-1	0.9

P(T,L)

+t	+	0.051
+t		0.119
-t	+	0.083
-t	-	0.747

	\
1)

P(L)

+	0.134
-	0.866

Example

$$P(B|j,m) \propto P(B,j,m)$$

P(E)

P(A|B,E)

P(j|A)

P(m|A)

Choose A

P(j,m|B,E)

P(E)

P(j,m|B,E)

Example

P(B)

P(E)

P(j,m|B,E)

Choose E

P(j,m|B,E)

P(j,m|B)

Finish with B

P(B|j,m)

Variable Elimination Ordering

- Query: $P(X_n | y_1,...,y_n)$
- Two different orderings: $Z, X_1, ..., X_{n-1}$ and $X_1, ..., X_{n-1}, Z$.
- What is the size of the maximum factor generated for each of the orderings?

Variable Elimination Ordering

Z, X₁, ..., X_{n-1}

Variable Elimination Ordering

■ X₁, ..., X_{n-1}, Z

VE: Computational Complexity

- The size of the largest factor determines the time and space complexity of VE
- The elimination ordering can greatly affect the size of the largest factor.
 - E.g., previous slide's example 2ⁿ⁺¹ vs. 2²
- Does there always exist an ordering that only results in small factors?
 - No!

Reduction from 3SAT

 $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_2 \lor x_4) \land (\neg x_3 \lor \neg x_4 \lor \neg x_5) \land (x_2 \lor x_5 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (\neg x_5 \lor x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (x_4 \lor x_5 \lor x_6) \land (x_5 \lor x_6 \lor \neg x_7) \land (x_5 \lor \neg x_6 \lor x_7) \land (x_5 \lor x_6 \lor \neg x_7) \land (x_5 \lor x_7) \land (x$

$$P(X_i = 0) = P(X_i = 1) = 0.5$$

$$Y_1 = X_1 \vee X_2 \vee \neg X_3$$

. . .

$$Y_8 = \neg X_5 \lor X_6 \lor X_7$$

$$Y_{1,2} = Y_1 \wedge Y_2$$

...

$$Y_{7,8} = Y_7 \wedge Y_8$$

$$Y_{1,2,3,4} = Y_{1,2} \wedge Y_{3,4}$$

$$Y_{5,6,7,8} = Y_{5,6} \wedge Y_{7,8}$$

$$Z = Y_{1,2,3,4} \wedge Y_{5,6,7,8}$$

$$P(+z) = \sum_{\mathbf{x},\mathbf{y}} P(\mathbf{x},\mathbf{y},+z) = \sum_{\mathbf{x} \text{ s.t. } z=T} P(\mathbf{x})$$

- P(z) > 0 iff the sentence is satisfiable
- → NP-hard
- $P(z) = S \times 0.5^7$ where S is the number of satisfying assignments
- → #P-hard

When do we have tractable inference?

- Recall: Tree-Structured CSPs
 - CSP is NP-hard in general
 - If the constraint graph has no loops (i.e., tree), the CSP can be solved in linear time!

Polytrees

 A polytree is a directed graph with no undirected cycles

Variable Elimination on Polytrees

- For poly-tree BNs, the complexity of VE is *linear in the BN size* (number of CPT entries) with the following elimination ordering:
 - Convert to a factor graph
 - Take Q as the root
 - Eliminate from the leaves towards the root

Variable Elimination on Polytrees

- VE for poly-tree BNs is equivalent to
 - Sum-product message passing algorithm or belief propagation algorithm (i.e., passing messages/beliefs from leaf nodes to the root node)
 - "Messages" are just 1d factors resulted from joining/elimination

Message Passing on General Graphs

- Exact inference: Junction Tree
 Algorithm
 - Group individual nodes to form cluster nodes in such a way that the resulting network is a polytree (called a junction tree or join tree)
 - Run a sum-product-like algorithm on the junction tree.
 - *Intractable* on graphs with large cluster nodes (i.e., large tree-width).

Message Passing on General Graphs

- Approximate inference: Loopy Belief Propagation
 - Simply pass the messages on the general graph
 - Will not terminate with loops
 - Run until convergence (not guaranteed!)
 - Approximate but tractable for large graphs.
 - Sometime works well, sometimes not at all.

Summary

- Exact inference of Bayesian networks
 - Enumeration
 - exponential complexity
 - Variable Eliminating
 - worst-case exponential complexity, often better
 - VE on polytrees
 - linear complexity
 - = message passing
 - Message passing on general graphs
 - Junction Tree Algorithm
 - Loopy Belief Propagation: no longer exact