Vertex of the Quadratic

Given a quadratic $r(x) = ax^2 + bx + c$ compute its value at $x_1 = -\frac{b}{2a}$ namely $r(x_1) = c - \frac{b^2}{4a}$

$$x_1 = -\frac{b}{2a}$$
 namely $r(x_1) = c - \frac{b}{4a}$
Now compute the same quadratic at $x_1 + h$, namely

 $r(x_1+h) = -\frac{b^2}{4a} + a h^2 + c$

Compute $\triangle = r(x_1 + h) - r(x_1) = a h^2$ Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the

global minimum!

Example 1. $r(x) = 3x^2 + 18x - 36$

