2021/3/20 Sampling data

The open source CFD toolbox

Home Products Services Download Code Documentation Community Governance News	

About us Contact Jobs Legal

FOLLOW US ON LW

User Guide

Contents

- 1 Introduction
- ± 2 OpenFOAM cases
- ± 3 Running applications
- ± 4 Mesh generation and
- ± 5 Models and physical properties
- ± 6 Solving
- ± 7 Post-processing
- 7.1 paraFoam
- 7.2 Post-processing with Fluent
- 7.3 Post-processing with **EnSight**
- 7.4 Sampling data
- ± A Reference

Index

7.4 Sampling data

OpenFOAM provides a set of sampling function objects to sample field data, either through a 1D line for plotting on graphs or a 2D plane and 3D surfaces for displaying as images. Each sampling tool is specified in a dictionary either in the main functions dictionary of the control Dict file, or separate files in the case system directory. The data can be written in a range of formats including well-known graphing packages such as Grace/xmgr, gnuplot and jPlot.

The plateHole tutorial case in the \$FOAM_TUTORIALS/stressAnalysis/solidDisplacementFoam directory also contains an example for 1D line sampling:

```
17
     setConfig
18
     {
19
          axis
20
21
     // Must be last entry
22
     #includeEtc "caseDicts/postProcessing/graphs/graph.cfg"
23
24
25
```

Keyword	Options	Description		
interpolationScheme	cel1	Cell-centre value assumed constant over cell		
	cellPoint	Linear weighted interpolation using cell values		
	cellPointFace	Mixed linear weighted / cell-face interpolation		
	pointMVC	Point values only (Mean Value Coordinates)		
	cellPatchConstrained	As cell but uses face value on boundary faces		
setFormat	raw	Raw ASCII data in columns		
	gnuplot	Data in gnuplot format		
	xmgr	Data in Grace/xmgr format		
	jplot	Data in jPlot format		
	vtk	Data in VTK format		
	ensight	Data in EnSight format		
	CSV	Data in CSV format		
surfaceFormat	nul1	Suppresses output		
	foamFile	points, faces, values file		
	dx	DX scalar or vector format		
	vtk	VTK ASCII format		
	raw	xyz values for use with e.g.gnuplot splot		
	stl	ASCII STL; just surface, no values		
	ensight	EnSight surface format		
	boundaryData	A form that can be used with timeVaryingMapped boundary conditions		
	starcd	Nastran surface format		
	nastran			
fields	List of fields to be samp	led, e.g. for velocity U:		
	U	Writes all components of ${f U}$		
sets	List of 1D sets subdiction	naries — see Table 7.4		
surfaces	List of 2D surfaces subo	st of 2D surfaces subdictionaries — see Table 7.5 and Table 7.6		

Table 7.3: keyword entries for sampleDict.

```
The dictionary contains the following entries:
interpolationScheme
     the scheme of data interpolation;
     the locations within the domain that the fields are line-sampled (1D).
     the locations within the domain that the fields are surface-sampled (2D).
setFormat
     the format of line data output;
surfaceFormat
     the format of surface data output;
fields
```

the fields to be sampled;

The interpolationScheme includes cellPoint and cellPointFace options in which each 多面体cell is decomposed into 特特拉赫 德拉and the sample values are interpolated from values at the tetrahedra vertices. With cellPoint, the tetrahedra vertices include the polyhedron cell centre and 3 face vertices. The vertex coincident with the cell centre inherits the cell centre field value and the other vertices take values interpolated from cell centres. With cellPointFace, one of the tetrahedra vertices is also coincident with a face centre, which inherits field values by conventional interpolation schemes using values at the centres of cells that the face intersects.

The setFormat entry for line sampling includes a raw data format and formats for gnuplot, Grace/xmgr and jPlot graph drawing packages. The data are written into a sets directory within the case directory. The directory is split into a set of time directories and the data files are contained therein. Each data file is given a name containing the field name, the sample set name, and an extension relating to the output format, including .xy for raw data, .agr for Grace/xmgr and .dat for jPlot. The gnuplot format has the data in raw form with an additional commands file, with .gplt extension, for generating the graph. Note that any existing sets directory is deleted when sample is run.

The surfaceFormat entry for surface sampling includes a raw data format and formats for gnuplot, Grace/xmgr and jPlot graph drawing packages. The data are written into a surfaces directory within the case directory. The directory is split into time directories and files are written much as with line sampling.

The \mathtt{fields} list contains the fields that the user wishes to sample. The sample utility can parse the following restricted set of functions to enable the user to manipulate vector and tensor fields, e.g. for \mathtt{U} :

U. component (n

writes the nth component of the vector/tensor, $n = 0, 1 \dots$;

 $mag\left(U\right)$

writes the magnitude of the vector/tensor.

The sets list contains sub-dictionaries of locations where the data is to be sampled. The sub-dictionary is named according to the name of the set and contains a set of entries, also listed in Table 7.4, that describes the locations where the data is to be sampled. For example, a uniform sampling provides a uniform distribution of nPoints sample locations along a line specified by a start and end point. All sample sets are also given: a type; and, means of specifying the length ordinate on a graph by the axis keyword.

Dequired option							
Required entries							
Sampling type	Sample locations	name	axis	start	end	nPoints	points
uniform	Uniformly distributed points on a line	•	•	•	•	•	,
face	Intersection of specified line and cell faces	•	•	•	•		
midPoint	Midpoint between line-face intersections	•	•	•	•		
midPointAndFace	Combination of midPoint and face	•	•	•	•		
cloud	Specified points	•	•				•
patchCloud	Sample nearest points on selected patches	•	•				•
patchSeed	Randomly sample on selected patches	•	•				•
polyLine	Specified points (uses particle tracking)	•	•				•
triSurfaceMeshPointSet	Sample points on a triangulated surface	•	•				•

Entries	Description	Options	
type	Sampling type	see list above	
axis	Output of sample location	x x ordinate	
		y $oldsymbol{y}$ ordinate	
		z z ordinate	
		xyz xyz coordinate	s
		distance distance from po	int 0
start	Start point of sample line	e.g.(0.0 0.0 0.0)	
end	End point of sample line	e.g. (0. 0 2. 0 0. 0)	
nPoints	Number of sampling points	e.g.200	
points	List of sampling points		

Table 7.4: Entries within sets sub-dictionaries.

The surfaces list contains sub-dictionaries of locations where the data is to be sampled. The sub-dictionary is named according to the name of the surface and contains a set of entries beginning with the type: either a plane, defined by point and normal direction, with additional sub-dictionary entries specified in Table 7.5; or, a patch, coinciding with an existing boundary patch, with additional sub-dictionary entries specified in Table 7.6.

Keyword	Description	Options
basePoint	Point on plane	e.g.(0 0 0)
normalVector	Normal vector to plane	e.g.(1 0 0)
interpolate	Interpolate data?	true/false
triangulate	Triangulate surface? (optional)	true/false

Table 7.5: Entries for a plane in surfaces sub-dictionaries.

Keyword	Description	Options		
patchName	Name of patch	e.g.movingWall		
interpolate	Interpolate data?	true/false		
triangulate	Triangulate surface? (optional)	true/false		

Table 7.6: Entries for a patch in surfaces sub-dictionaries.

Design by 1234.info | Modified by OpenCFD | Content generated using tex4ht XHTML 1.0 | CSS 2.0