Advanced Shape Analysis

Ryan N. Felice

Surface Semi-landmarks

The Problem

Semi-automated patching

Morpho R package

Accepted: 11 July 2021

DOI: 10.1111/2041-210X.13689

RESEARCH ARTICLE

ALPACA: A fast and accurate computer vision approach for automated landmarking of three-dimensional biological structures

Arthur Porto^{1,2} | Sara Rolfe^{3,4} | A. Murat Maga^{4,5}

https://toothandclaw.github.io

Pseudolandmarks-Auto3dGm

- A Statistical Pipeline for Identifying Physical Features that Differentiate Classes of 3D Shapes
- Bruce Wang^{1,2,*}, Timothy Sudijono^{3,*}, Henry Kirveslahti^{4,*}, Tingran Gao⁵, Douglas M. Boyer⁶, Sayan Mukherjee^{4,7-9,†}, and Lorin Crawford^{10,†}

Deterministic Atlas Analysis

Deterministic Atlas Analysis

RESEARCH Open Access

Assessing the application of landmark-free morphometrics to macroevolutionary analyses

Deterministic Atlas Analysis

How much firepower do I need?

VS.

Modelling High Dimensional Data

- What do we mean by high dimensional data?
- N = number of observations
- P = number of variables

	Trait 1	Trait 2	Trait 3
Species 1			
Species 2			
Species 3			
Species 4			
Species 5			
Species 6			
Species 7			

		Trait 1	Trait 2	Trait 3	Trait 4	Trait 5	Trait 6
	Species 1						
	Species 2						
	Species 3						
	Species 4						

Modelling High Dimensional Data

- Who cares?
- Everything is linear models
- Estimating F-statistic and likelihood of linear models with p>N is impossible (you can't invert a matrix that has p>N)
- "Curse of dimensionality"

$$y = X\beta + \sigma$$

$$F = rac{\widehat{oldsymbol{eta}}^ op (oldsymbol{X}^ op oldsymbol{X}) \widehat{oldsymbol{eta}}/p}{\widehat{\sigma}^2}$$

The Solution:

- RRPP: Residual randomization in permutation procedure
- F-statistic (and significance) is computed by randomizing the residuals of the model and comparing to a null

$$F = \frac{MS_{Model}}{MS_{residuals}}$$

The Solution:

- RRPP: Residual randomization in permutation procedure
- F-statistic (and significance) is computed by randomizing the residuals of the model and comparing to a null

Recommendations:

- 1) Always think about what methods are appropriate for your data
- 2) Use procD.lm or procD.pgls functions in geomorph or lm.rrpp in the RRPP package

https://doi.org/10.1111/2041-210X.13029