NDIR CO₂ 传感器模组

MTP40-F

美思先端 NDIR 气体传感器利用非分光红外技术(NDIR)原理对空气中的气体进行探测,拥有强抗干扰能力,灵敏度高,稳定性强,寿命长、功耗低等优势,支持自校准和手动校准两种校准方式,数据精准误差极小。适用于智能家居、智慧农场、智能建筑、暖通空调、新风系统、汽车电子等领域。

产品尺寸

单位: mm

产品参数

参数	指标
测量气体类型	CO ₂
测量原理	NDIR
测量浓度范围	400ppm~5000ppm
测量间隔	2秒
测量精度	\pm (50ppm + 5% of reading)
响应时间	T90 时间为 90 秒
操作温度范围	0-50° C
操作湿度范围	0-90% RH (非凝结)
储存温度范围	-20° C~60° C
尺寸	32.5X20.3X8.5mm (max dimensions)
供电要求	4.2V~5.5V
电流消耗	300mA 峰值电流,4mA 谷值电流,13mA 平均工作电流
寿命	10+ 年
通讯接口	Uart /IIC
PWM Output	Period: 1004ms, Pulse: 2ms~1002ms (0~5000ppm)
Alarm Output	浓度 >1000ppm 输出 1, 浓度 <800ppm 输出 0, 引脚为开漏输出模式,不可吸入电流
自校准周期	上电后第一次自校准周期为 24 小时,之后自校准周期是 7 天

最大输入参数

参数	最小值	最大值
极限环境储存温度 -40℃		85°C
极限电源电压范围	-0.3V	5.5V
引脚最大输出电流	-25mA	+25mA
引脚最大输入电流	-5uA	5uA
UART 引脚最大加载电压	-0.3V	3.5V

引脚图示

序号	定义
1	VIN: 4.2V~5.5V
2	GND
3	Alarm-OC
4	PWM
5	VCC-Out:3.3V
6	Host-TX/IIC-SDA
7	Host-RX/IIC-SCL
8	R/T
9	bCAL-in

引脚定义

引脚名称	引脚功能描述	引脚电器特性
电源引脚		
VIN(Pin 2)	电源负端	
GND (Pin1)	电源正端	有防反接保护,输入电压范围: 4.2V-5.5V
VCC-Out	传感器内部 LDO 输出,通常为 3.3V±2%。	输出电压:3.3V±2%,无过流保护
(Pin5)	一般用于串口通讯电平转换。	最大输出电流:6mA
通讯引脚		
Host-TX (Pin6)/IIC-SDA	主端系统的 UART 的 TX 引脚, 通常为客户 MCU 的 TX,或者 IIC 功能的 SDA	通常通讯电平为 3.3V,内部有 1K 串联限流电阻。 用作 IIC 功能时,引脚配置为开漏模式,使用时需要外接上拉电阻。
Host-RX (Pin7)/IIC-SCL	主端系统的 UART 的 RX 引脚, 通常为客户 MCU 的 RX,或者 IIC 功能的 SCL	通常通讯电平为 3.3V,内部有 1K 串联限流电阻。 用作 IIC 功能时,引脚配置为开漏模式,使用时需要外接上拉电阻。
功能引脚		
PWM(Pin4)	PWM 功能,用于输出 CO2 浓度。	引脚为推挽输出模式,输出 PWM 周期为 1004ms
Alarm-OC (Pin3)	报警功能,引脚为开漏输出模式。当测量浓度 > 1000ppm 时,该引脚输出高,当浓度 < 800ppm 时,该引脚输出低。	引脚为开漏输出模式,不可直接驱动负载,需外接上拉电阻。
R/T (Pin8)	这个引脚有两个功能: 1. 作为 RS485 方向控制引脚。这个引脚为开漏输出模式,可直接连接 RS485 芯片的方向使能引脚,需外接上拉电阻。此时模组 Pin6 和 Pin7 是 UART 功能。 2.UART/IIC 功能选择引脚。这个引脚在上电前接地(上电后再接地无效),模组的 Pin6 和 Pin7 是 IIC 功能。	引脚上电时为带上拉输入模式,可悬空或者接地。 作为 RS485 方向使能引脚时为开漏输出模式,需 外接上拉电阻。
bCAL-in (Pin9)	手动校准控制引脚	引脚上电时为输入模式带上拉电阻

校准功能

模组支持两种校准功能:

1. 自校准功能

MTP40 模组是精密光学模组,出厂后,由于运输,安装,焊接等各种原因,会引起模组的测量产生一定的飘移,从而精度变差。模组内置了一套自校准算法,可以周期性自动修正测量误差,使模组一直保持比较好的测量精度。模组自校准周期默认 7 天(168 小时),可通过指令调整(24 小时至 720 小时)。为了确保校准后传感器的测量精度,请确保传感器在连续工作的 7 天内,其工作环境中 CO2 的浓度至少有数小时能接近室外大气水平。

2. 手动校准功能

除了自校准功能外,传感器还可以通过手动校准功能,快速恢复精度。传感器的 Pin9(bCAL-in),是手动校准的控制引脚。把这个引脚拉低 2 秒以上,传感器就能完成校准。这个校准功能的参考浓度是户外大气中的 CO2 浓度,一般为 400PPM 左右。使用这个功能,请先把传感器置于接近户外大气 CO2 浓度的环境中,例如比较通风的地方。在通电的情况下,至少放置 20 分钟。然后拉低 Pin9(bCAL-in)2 秒以上,就可以完成校准。此外,传感器还支持软件指令来校准。详见串口通讯指令章节。

报警功能

MTP40模组支持报警输出功能,通过 Alarm-OC 引脚输出。 当测量的 CO2 浓度值 >1000ppm 时,Alarm-OC 引脚输出高电平。 当测量的 CO2 浓度值 <800PPM 时,Alarm-OC 引脚输出低电平。 注意,Alarm-OC 引脚配置为开漏输出模式,使用时需要外接上拉 电阻。如果模组发生错误,Alarm-OC 引脚就会一直保持高电平。 参考使用方法如右图

通讯协议

串口通讯

串口通讯的波特率为 9600bps,串口通讯包定义如下:

1、协议格式

帧格式说明:

字段	长度	说明
帧头	2	固定为 0x42,0x4D
指令字节	1	指令定义或传感器类型定义
命令字节	2	具体命令字
数据长度	2	大端
数据	n	大端
校验和	2	从帧头到数据最后一个字节的所有字节累加和

以下协议说明适用于气体传感器系列,指令字节为: 0xA0。

命令字节说明

命令字	说明		
0x0001	设置气压参数 (内部默认气压是 1013.0hPa)		
0x0002	读当前设置的气压值		
0x0003	读气体浓度值		
0x0004	单点修正功能(带参考浓度)		
0x0005	x0005 单点修正读取状态		
0x0006	0x0006 禁止或者使能自校准		
0x0007	读取自校准状态		
0x0008	读取自校准周期(小时数)		
0x0009	设置自校准周期(小时数)		

2、基础控制协议

功能	名称	帧头	指令字节	命令字节	数据长度	数据	校验和
设置	MCU 发送	0x42 0x4d	0xA0	0x0001	0x00 0x02	大气压值范围是 7001100(16bit 整型)	校验和
气压参数	模组返回	0x42 0x4d	0xA0	0x0001	0x00 0x00		校验和
读取当前	MCU 发送	0x42 0x4d	0xA0	0x0002	0x00 0x00		校验和
气压值	模组返回	0x42 0x4d	0xA0	0x0002	0x00 0x02	大气压值(16bit 整型)	校验和
`#!!!! !	MCU 发送	0x42 0x4d	0xA0	0x0003	0x00 0x00		校验和
读取当前 浓度值	模组返回	0x42 0x4d	0xA0	0x0003	0x00 0x05	气体浓度值(32bit 整型)和数据有效标识(8bit) 0x00:有效;0xFF:数据不可用;	校验和
单点修正	MCU 发送	0x42 0x4d	0xA0	0x0004	0x00 0x04	参考浓度的范围是 400~5000(32bit 整型)	校验和
功能(带 参考浓度)	模组返回	0x42 0x4d	0xA0	0x0004	0x00 0x01	0x01: 表示校准开始;0xff: 表示校准错误	校验和
读取单点	MCU 发送	0x42 0x4d	0xA0	0x0005	0x00 0x00		校验和
修正状态	模组返回	0x42 0x4d	0xA0	0x0005	0x00 0x01	0x00: 表示校准完成;0x01: 表示仍在校准	校验和
使能或者	MCU 发送	0x42 0x4d	0xA0	0x0006	0x00 0x01	0x00: 使能自校准;0xff : 禁止自校准	校验和
禁止自校准	模组返回	0x42 0x4d	0xA0	0x0006	0x00 0x00		校验和
读取	MCU 发送	0x42 0x4d	0xA0	0x0007	0x00 0x00		校验和
自校准状态	模组返回	0x42 0x4d	0xA0	0x0007	0x00 0x01	0x00: 使能自校准 0xff: 禁止自校准	校验和
读取	MCU 发送	0x42 0x4d	0xA0	0x0008	0x00 0x00		校验和
自校准周期	模组返回	0x42 0x4d	0xA0	0x0008	0x00 0x02	自校准周期范围:24720h	校验和
)A ==	MCU 发送	0x42 0x4d	0xA0	0x0009	0x00 0x02	自校准周期范围:24720h	校验和
设置 自校准周期	模组返回	0x42 0x4d	0xA0	0x0009	0x00 0x01	00: 正确操作;01: 输入的数据小于 24h,不予接受; 02: 输入的数据大于 720h,不予接受	校验和

3、应用示例

①设置气压参数

发送: 0x42 0x4D 0xA0 0x00 0x01 0x00 0x02 0x03 0xF5 0x02 0x2A

Device	Phase	Data	Description	Cmd.Phase.Ofs(rep)
43 43	OUT TN	42 4d a0 00 01 00 02 03 f5 02 2a 42 4d a0 00 01 00 00 01 30	BM* BM ∩	1.1.0 2.1.0

0x03F5 为 1013 的十六进制;

②读取当前气压值

发送: 0x42 0x4D 0xA0 0x00 0x02 0x00 0x00 0x01 0x31

Device	Phase	Data	Description	Cmd.Phase.Ofs(rep)
43	OUT	42 4d a0 00 02 00 00 01 31 42 4d a0 00 02 00 02 03 f5 02 2b	BM+	1.1.0 2.1.0
43	IN	42 40 a0 00 02 00 02 03 15 02 2D	DH+	2.1.0

③读取气体浓度值

发送: 0x42 0x4D 0xA0 0x00 0x03 0x00 0x00 0x01 0x32

数据有效位为 0xff,数据不可用:

Device	Phase	Data	Description	Cmd.Phase.Ofs(rep)
43	OUT	42 4d a0 00 03 00 00 01 32	BM2	1.1.0
43	IN	42 4d a0 00 03 00 05 00 00 00 00 ff 02 36	BM6	2.1.0

IIC 指令解析

模组工作于 IIC 的从机模式,可以与外部的 MCU 相连,模组内部含上拉电阻。

模组器件从地址是: 0x32 (7位地址)

模组的写操作地址是: 0x64 模组的读操作地址是: 0x65

主机发送时序:

- 1. 发送开始信号
- 2. 发送地址写(从机地址 +R/W=0x64)和检查应答
- 3. 发送读命令(0x03)和检查应答
- 4. 发送停止信号
- 5. 发送开始信号
- 6. 发送地址读(从机地址 +R/W(1)=0x65)和检查应答
- 7. 从模组读 3 个字节并发送应答
- 8. 发送停止信号

收到的3字节数据描述如下:

CO2	浓度	数据有效字节
浓度高字节		0x00/0xFF

注意:

CO2 浓度 = CO2 浓度中的高字节 *256 + 低浓度字节

数据有效字节,0x00表示数据有效,0xff表示数据无效

PWM 功能详解

PWM 的周期是 1004ms 起始阶段高电平输出 2ms 中部周期 1000ms 结束阶段低电平输出 2ms 通过 PWM 获得当前 CO2 浓度值的计算公式: Cppm = 5000*(TH-2ms)/(TH+TL-4ms) Cppm 为计算得到的 CO2 浓度值,单位是 ppm TH 为一个输出周期中输出为高电平的时间

TL 为一个输出周期中输出为低电平的时间

编号说明

包装方式

每盘数量	包装层数	包装数量	纸箱尺寸	包装材质
75	16	1200	L360*W340*H300	吸塑盘

版本历史

日期	版本	变更
2020.7.2	1.0	最初版本
2020.8.30	1.10	修改报警值
2022.7.20	1.20	增加编号说明、包装方式类目