រូនីស្ពីស៊ីលេនិចនៃឧស្ទ័ល The Kinetic Theory of Gases

- 🤰. ចូរពោលទ្រឹស្តីស៊ីនេទិចនៃឧស្ម័ន។
- 💆. ចូរសរសេរសមីការភាពនៃឧស្ម័នបរិសុទ្ធ។
- ៣. ចូរសរសេររូបមន្តថាមពលស៊ីនេទិចមធ្យមនៃម៉ូលេគុលឧស្ម័ននីមួយៗ។
- 💪 ចូរសរសេររូបមន្តថាមពលស៊ីនេទិចសរុបនៃម៉ូលេគុលឧស្ម័ន។
- 🕻. ចូរសរសេររូបមន្តល្បឿនប្ញសការេនៃការេល្បឿនមធ្យមម៉ូលេគុលឧស្ម័ន។
- f b. ប្រសិនបើអ្នកអាចប្រើពោះ និងសាច់ដុំទ្រូងដើម្បីបន្ថយមាឧរបស់ខ្លួនអ្នកបាន 20% តើសម្ពាធដែលអ្នកត្រូវធ្វើនេះស្មើប៉ុន្មាន ?
- $m{\emptyset}$. ផង់នីមួយៗមានម៉ាស m_0 និងផ្លាស់ទីដោយល្បឿន v តាមបណ្ដោយអ័ក្ស \overrightarrow{ox} ។ គេដឹងថាក្នុងផ្ទៃ $1 mm^2$ និងក្នុង 1s មានផង់ចំនួន 10^{15} ទៅទង្គិចនឹងផ្ទៃនោះ។ ចូររកសម្ពាធរបស់ផង់លើផ្ទៃប៉ះ។ គេឲ្យ $m_0=9.1 \times 10^{-31} kg$ និង $v=8 \times 10^7 m/s$ ។ គេសន្មត ទង្គិចរវាងផង់ និងផ្ទៃប៉ះជាទង្គិចស្ងក់។
- **ន៍.** គេបាញ់ផង់ឲ្យផ្លាស់ទីតាមបណ្ដោយអ័ក្ស \overline{ox} ដែលកែងនឹងផ្ទៃរបស់អេក្រង់មួយ។ គេដឹងថា ផង់នីមួយៗមានម៉ាស m_0 និងល្បឿន v_0 ។ គេដឹងថា ក្នុង $1.25 \mathrm{mm}^2$ ផ្ទៃរបស់អេក្រង់មានផង់ចំនួន 4×10^{14} ទៅទង្គិចរៀងរាល់វិនាទី។ គេសន្មតថា ទង្គិចនោះជាទង្គិចស្ងក់។ គណនាល្បឿនរបស់ផង់ដែលផ្លាស់ទីតាមអ័ក្ស \overline{ox} ។ បើគេដឹងថា សម្ពាធដែលកើតឡើងដោយសារការទង្គិចរបស់ផង់លើផ្ទៃអេក្រង់គឺ $P=3.64 \times 10^{-3} \mathrm{N/m}^2, \ m_0=9.1 \times 10^{-31} \mathrm{kg}$ ។
- $m{\xi}$. ផង់នីមួយមានម៉ាស m_0 នឹងផ្លាស់ទីដោយល្បឿន v តាមបណ្ដោយអ័ក្ស \overrightarrow{ox} ។ គេដឹងថាក្នុងផ្ទៃ $2mm^2$ និងក្នុងមួយវិនាទីមានផង់ចំនួន 2×10^{15} ទៅទង្គិចនឹងផ្ទៃនោះ។ គេឲ្យ: $m_0 = 9.1 \times 10^{-31} {
 m kg}$ និង $v = 5 \times 10^7 {
 m m/s}$ ។ គេសន្មតថា ទង្គិចរវាងផង់ និងផ្ទៃប៉ះជាទង្គិចស្ងក់។
 - (<mark>ក</mark>) គណនាកម្លាំងសរុបដែលផង់មានអំពើលើផ្ទៃប៉ះ។
- (ខ) គណនាសម្ពាធសរុបរបស់ផង់លើផ្ទៃប៉ះ។
- **១០.** ប្រូតុងមួយមានម៉ាស $m_p=1.67 imes 10^{-27} kg$ ផ្លាស់ទីដោយល្បឿន v តាមបណ្ដោយអ័ក្ស \overline{ox} ក្នុងមាឌមួយមានរាងជាគូបដែលទ្រនុងនីមួយ ៗមានរង្វាស់ 3 mm ប្រូតុងផ្លាស់ពីផ្ទៃម្ខាងទៀតក្នុង 2 ns។ គេសន្មត់ថា ទង្គិចរវាងប្រូតុង និងផ្ទៃខាងនៃគូបជាទង្គិចស្ទក់។
 - (ក) រកល្បឿនដើមប្រូតុង នៅខណៈវាចាប់ផ្ដើមចេញពីផ្ទៃខាងនៃគូប។
 - (ខ) រកសម្ពាធរបស់ប្រូតុងលើផ្ទៃខាងនៃគូប។
 - (គ) គេដឹងថាក្នុងរយៈពេល $2\mathrm{ns}$ មានចំនួនប្រូតុង $2 imes 10^6$ ទៅទង្គិចនឹងផ្ទៃខាងនៃគូប។ រកសម្ពាធសរុបរបស់ប្រូតុងលើផ្ទៃខាងនៃគូប។
- **១១.** អេឡិចត្រុងមួយមានម៉ាស $m_e=9.1 imes10^{-31}{
 m kg}$ ផ្លាស់ទីដោយល្បឿន v តាមបណ្ដោយអ័ក្ស $\overline{
 m ox}$ ក្នុងមាឌមួយមានរាងជាគូបដែលទ្រនុងនឹមួយៗមានរង្វាស់ $5{
 m mm}$ ប្រូតុងផ្លាស់ពីផ្ទៃម្ខាងទៀតក្នុង $25{
 m ns}$ ។ គេសន្មត់ថា ទង្គិចរវាងប្រូតុង និងផ្ទៃខាងនៃគូបជាទង្គិចស្ងក់។
 - (ក) រកល្បឿនដើមអេឡិចត្រុង នៅខណៈវាចាប់ផ្ដើមចេញពីផ្ទៃខាងនៃគូប។
 - (ខ) រកសម្ពាធរបស់អេឡិចត្រុងលើផ្ទៃខាងនៃគូប។
 - (គ) គេដឹងថាក្នុងរយៈពេល $25 \mathrm{ns}$ មានចំនួនអេឡិចត្រុង 2×10^{10} ទៅទង្គិចនឹងផ្ទៃខាងនៃគូប។ រកសម្ពាធសរុបរបស់អេឡិចត្រុងមានលើផ្ទៃខាងនៃគូប។
- ១២. អេឡិចត្រុងមួយមានម៉ាស $m_e=9.1 imes10^{-31} kg$ ផ្លាស់ទីដោយល្បឿន v តាមបណ្ដោយអ័ក្ស \overrightarrow{ox} ក្នុងមាឌមួយមានរាងជាគូបដែលទ្រនុងនី មួយៗមានរង្វាស់ 2mm ប្រូតុងផ្លាស់ពីផ្ទៃម្ខាងទៀតក្នុង 25ns។ គេសន្មត់ថា ទង្គិចរវាងប្រូតុង និងផ្ទៃខាងនៃគូបជាទង្គិចខ្ទាត។
 - (ក) រកល្បឿនដើមអេឡិចត្រុង នៅខណៈវាចាប់ផ្ដើមចេញពីផ្ទៃខាងនៃគូប។
 - (ខ) រកសម្ពាធរបស់អេឡិចត្រុងលើផ្ទៃខាងនៃគូប។
 - (គ) គេដឹងថាក្នុងរយៈពេល $25 \mathrm{ns}$ មានចំនួនអេឡិចត្រុង 25×10^6 ទៅទង្គិចនឹងផ្ទៃខាងនៃគូប។ រកសម្ពាធសរុបរបស់អេឡិចត្រុងមានលើផ្ទៃខាងនៃគូប។

- ${rac{9}{m}}$. អាតូមអ៊ីដ្រូសែនមួយមានម៉ាស ${rac{m}{m}}$ ផ្លាស់ទីដោយល្បឿន ${
 m v}=1500{
 m km/s}$ តាមបណ្ដោយអ័ក្ស ${
 m ox}$ ក្នុងមាឌមួយមានរាងគូបដែលទ្រនុងនីមួយ មានរង្វាស់ ${rac{3}{mm}}$ ។ អ៊ីដ្រូសែន ផ្លាស់ទីពីផ្ទៃម្ខាងទៅម្ខាងទៀត។ គេសន្មតថាសន្មត់ថា ទង្គិចរវាងអ៊ីដ្រូសែន និងផ្ទៃខាងនៃគូបជាទង្គិចខ្នាត។
 - (ក) រករយៈពេលដែលអាតូមអ៊ីដ្រូសែនទៅប៉ះនឹងផ្ទៃម្ខាងទៀតនៃគូប។
 - (2) គេដឹងថាក្នុងរយៈពេល $2 {
 m ns}$ មានចំនួនអាតូមអ៊ីដ្រូសែន 2×10^6 ទៅទង្គិចនឹងផ្ទៃខាងនៃគូបហើយផ្ទៃខាងរងនៅសម្ពាធសរុប $27.83 \times 10^{-2} {
 m N/m^2}$ ។ រកម៉ាសអាតូមអ៊ីដ្រូសែនមួយ។
- \mathfrak{D} ៤. ឧស្ម័នបរិសុទ្ធមួយមានមាឌ $V=100 \mathrm{cm}^3$ ស្ថិតក្រោមសម្ពាធ $2.00 \times 10^5 \mathrm{Pa}$ នៅសីតុណ្ហភាព $20^{\circ}\mathrm{C}$ ។ តើឧស្ម័ននោះមានប៉ុន្មានម៉ូល ? $(\mathrm{R}=8.31\mathrm{J/mol\cdot K})$
- **១៤**. ឧស្ម័នបរិសុទ្ធមួយមាន $n=0.08 imes 10^{-1} mol$ មានសម្ពាធ $P=5.00 imes 10^5 Pa$ នៅសីតុណ្ហភាព $60^{\circ} C$ ។ តើឧស្ម័ននោះមានមាឌប៉ុន្មាន ?
- ${\mathfrak D}$ ិ. នៅសីតុណ្ហភាព $293{
 m K}$ និងសម្ពាធ $5{
 m atm}$ មេតាន $1{
 m kmol}$ មានម៉ាស $16.0{
 m kg}$ ។ គណនាម៉ាសមាឌនៃមេតានក្នុងលក្ខខណ្ឌខាងលើ។
- ១៧. នៅក្នុងបំពង់បិទជិតដែលមានមាឌ 20mL នៅសីតុណ្ហភាពកំណត់មួយយ៉ាងទាបមានតំណក់នីត្រូសែនរាវមានម៉ាស $50 \mathrm{mg}$ ។ គណនាសម្ពាធនីត្រូសែននៅក្នុងបំពង់នោះ កាលណាបំពង់នោះមានសីតុណ្ហភាព $300 \mathrm{K}$ ដោយសន្មតថានីត្រូសែននេះជាឧស្ម័នបរិសុទ្ធ។ គេឲ្យ: $\mathrm{R} = 8.31 \mathrm{J/mol} \cdot \mathrm{K}$ ។
- \mathfrak{I} ៨. ធុងមួយមានផ្ទុកអេល្យូម $2.00\mathrm{mol}$ នៅសីតុណ្ហភាព $27^{\circ}\mathrm{C}$ ។ គេសន្មតថាអេល្យូមជាឧស្ម័នបរិសុទ្ធ។
 - (<mark>ក</mark>) គណនាតម្លៃមធ្យមនៃថាមពលស៊ីនេទិចរបស់ម៉ូលេគុលនីមួយៗ
 - (ខ) គណនាថាមពលស៊ីនេទិចសរុបរបស់ម៉ូលេគុលទាំងអស់។ ${\rm freg} \colon k_{\rm B} = 1.38 \times 10^{-23} {\rm J/K}, \; R = 8.31 {\rm J/mol\cdot K} \, {\rm Y}$
- **១៩.** នៅក្នុងធុងមួយដែលមានមាខ $2.00 \mathrm{mL}$ មានឧស្ម័នដែលមានម៉ាស $50 \mathrm{mg}$ និងសម្ពាធ $100 \mathrm{kPa}$ ។ ម៉ាសរបស់មូលេគុលនៃឧស្ម័ននីមួយៗគឺ $8.0 \times 10^{-26} \mathrm{kg}$ ។
 - (ក) រកចំនួនម៉ូលេគុលនៃឧស្ម័ននោះ។
 - (ខ) រកតម្លៃមធ្យមនៃថាមពលស៊ីនេទិចរបស់ម៉ូលេគុលនីមួយៗ។ គេឲ្យ: ${
 m k}=1.38 imes 10^{-23} {
 m J/K}$
- **២០.** ចូរគណនាឬសការេនៃការេល្បឿនមធ្យមរបស់អាតូមអេល្យុមនៅសីតុណ្ហភាព $20.0^{\circ}\mathrm{C}$ ។ ម៉ាសម៉ូលអេល្យុមគឺ $4.00 \times 10^{-3}\mathrm{kg/mol}$ ។ គេឲ្យ: $\mathrm{R} = 8.31\mathrm{J/mol} \cdot \mathrm{K}$ ។
- **២១.** រកប្ញសការេនៃការេល្បឿនមធ្យមរបស់ម៉ូលេគុលអុកស៊ីសែននៅសីតុណ្ហភាព $200^{\circ}\mathrm{C}$ ។ ម៉ាសម៉ូលអុកស៊ីសែន $32 \times 10^{-3}\mathrm{kg/mol}$ និង $\mathrm{R} = 8.31\mathrm{J/mol} \cdot \mathrm{K}$ ។
- f Uប. (\ref{n}) គណនាម៉ាសម៉ូលេគុលនៃអ៊ីដ្រូសែន ។ គេឲ្យម៉ាសម៉ូលគឺ $M=2.00 imes10^{-3}{
 m kg/mol}$ និងចំនួនអាវ៉ូកាដ្រូ $N_{
 m A}=6.02 imes10^{23}/{
 m mol}$ ។
 - (ខ) គណនាតម្លៃប្ញសការេនៃការេល្បឿនមធ្យមរបស់ឧស្ម័នអ៊ីដ្រូសែននៅសីតុណ្ហភាព $100^{\circ}\mathrm{C}$ ។
 - (គ) គណនាតម្លៃមធ្យមនៃថាមពលស៊ីនេទិចរបស់ម៉ូលេគុលនៃឧស្ម័នអ៊ីដ្រូសែននីមួយៗនៅសីតុណ្ហភាព $100^{\circ}\mathrm{C}$ ។ គេឲ្យ: $\mathrm{k}=1.38 \times 10^{-23}\,\mathrm{M}$
- **២៣.** ដោយប្រើតម្លៃលេខ 1,3,7 និង 8 ចូរបង្ហាញថា ឬសការេនៃការេល្បឿនមធ្យម $m v_{rms}$ ខុសគ្នាពីតម្លៃមធ្យម $m v_{av}$ របស់វា។
- $m{arphi}_{m{d}}$. ចូរកំណត់រកល្បឿន $v_{
 m rms}$ របស់ម៉ូលេគុលឧស្ម័នអុកស៊ីសែន (O_2) និងអាសូត (N_2) ក្នុងបន្ទប់មួយដែលមានសីតុណ្ហភាព $20^{\circ}{
 m C}$ ។
- $m{f v}_{m k}$. (ក) បង្ហាញថាល្បឿន ${
 m v}_{
 m rsm}$ នៃឧស្ម័នបរិសុទ្ធ អាចសរសេរជាទម្រង់មួយទៀតគឺ ${
 m v}_{
 m rms}=\sqrt{rac{3P}{
 ho}}$ ដែល ho ជាដង់ស៊ីតេ ឬហៅថាម៉ាសមាឌ ហើយ ${
 m P}$ ជាសម្ពាធ។
 - (2) ល្បឿន $v_{\rm rms}$ របស់ម៉ូលេគុលឧស្ម័នមួយប្រភេទស្មើ $450 {
 m m/s}$ ។ ប្រសិនបើវាស្ថិតនៅសម្ពាធបរិយាកាស តើដងស៊ីតេរបស់ឧស្ម័ននោះស្មើប៉ុន្មាន?