$Alg\`ebre$

$Polyn\^omes$

Denis Vekemans *

Exercice 1 Soit le polynôme $P = X^4 + 5X^3 + 10X^2 + 12X + 8$.

- 1. Démontrer que -2 est racine double du polynôme P.
- 2. Factoriser P dans $\mathbb{R}[X]$.
- 3. Déduire les racines de P dans \mathbb{C} .

Exercice 2 Soit le polynôme $P = X^4 + X^2 + 1$.

- 1. Déterminer les racines de P dans \mathbb{C} .
- 2. Factoriser P dans $\mathbb{C}[X]$.
- 3. En déduire une factorisation de P dans $\mathbb{R}[X]$.

Exercice 3 Soit $n \in \mathbb{N}$. Soit le polynôme $P_n = X^n$.

- 1. Déterminer le reste de la division euclidienne de P_n par $A_1 = X^2 3X 4$.
- 2. Déterminer le reste de la division euclidienne de P_n par $A_2 = X^2 + 1$.

Exercice 4 Soit le polynôme $P = X^4 - 4X^3 + 5X^2 - 2X - 6$.

- 1. On se propose de démontrer que P n'a pas de racine double.
 - (a) On se propose d'effectuer la division euclidienne de 2P par $\frac{1}{2}P'$. On note R le reste de cette division euclidienne.
 - (b) Effectuer la division euclidienne de $\frac{1}{2}P'$ par R. On note T le reste de cette division euclidienne.
 - (c) Démontrer que si a est une racine double de P, alors a est racine de R et de T.
 - (d) Démontrer que P n'a pas de racine double.
- 2. On se propose de factoriser P dans $\mathbb{R}[X]$.
 - (a) On pose X = Y + 1 et Q(Y) = P(Y + 1). Calculer Q(Y).

^{*}Laboratoire de mathématiques pures et appliquées Joseph Liouville ; 50, rue Ferdinand Buisson BP 699 ; 62 228 Calais cedex ; France

- (b) Calculer les racines de Q dans \mathbb{C} . En déduire les racines de P dans \mathbb{C} .
- (c) Factoriser P dans $\mathbb{C}[X]$, puis dans $\mathbb{R}[X]$.

Exercice 5 Soit le polynôme $P = X^4 + 2X^3 - X^2 - 2X + 10$. Pour tout $z \in \mathbb{C}$, on pose $P(z) = z^4 + 2z^3 - z^2 - 2z + 10$.

- 1. Soit $x \in \mathbb{R} \setminus \{0\}$. Donner l'expression de P(x(1+i)) sous forme P(x(1+i)) = Q(x) + iR(X), où Q et R sont des polynômes à coefficients réels.
- 2. Les équations Q(x) = 0 et R(x) = 0 ont-elles des racines communes?
- 3. Donner deux racines complexes conjuguées de l'équation P(z) = 0.
- 4. Factoriser P sous forme d'un produit de deux trinômes du second degré à coefficients réels et en déduire les racines complexes de P.

Exercice 6 Déterminer les réels p et q pour que le polynôme $P = X^3 + pX + q$ soit divisible par le polynôme $Q = X^2 + 3X - 1$.

Exercice 7 Soit $n \in \mathbb{N}$. Montrer que le polynôme $X^2 - X + 1$ divise le polynôme $P_n = (X - 1)^{n+2} + X^{2n+1}$.

Exercice 8 Soit $n \in \mathbb{N} \setminus \{0, 1\}$. Calculer le reste de la division euclidienne du polynôme $P_n = (X - 3)^{2n} + (X - 2)^n - 2$ par le polynôme $(X - 2)^2$.

Exercice 9 Factoriser dans $\mathbb{R}[X]$ le polynôme $P = X^6 + 1$.

Exercice 10 Déterminer $\lambda \in]0, \infty[$ tel que le polynôme $P = X^3 - 3X + \lambda$ ait une racine double. Quelle est alors l'autre racine de P?

Exercice 11 Soit $n \in \mathbb{N}$. Montrer que le polynôme $P_n = 1 + X + \frac{X^2}{2} + \frac{X^3}{3!} + \ldots + \frac{X^n}{n!}$ n'a pas de racine multiple.

Exercice 12 Déterminer tous les polynômes P tels que $(X^2 + 1)P'' - 6P = 0$ et P(1) = 2.

Exercice 13 Soit le polynôme $P = X^4 + 12X - 5$. Factoriser P dans $\mathbb{R}[x]$ puis dans $\mathbb{C}[X]$ sachant qu'il admet deux racines dont le produit vaut -1.

Exercice 14 Résoudre le système en $(x, y, z) \in \mathbb{R}^3$:

$$\begin{cases} x + y + z = 2 \\ xyz = -\frac{1}{2} \\ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{2} \end{cases}.$$

Exercice 15 Soit $n \in \mathbb{N} \setminus \{0\}$. Factoriser le polynôme

$$P_n = 1 - X + \frac{X(X-1)}{2!} - \frac{X(X-1)(X-2)}{3!} + \ldots + (-1)^n \frac{X(X-1)(X-2) \ldots (X-n+1)}{n!}.$$

Exercice 16 Déterminer tous le polynômes $P \in \mathbb{R}[X]$ tels que P' divise P.

Références

- [1] M. Gran, fiches de TD (L1), Université du Littoral Côte d'Opale.
- [2] M. Serfati, Exercices de mathématiques. 1. Algèbre, Belin, Collection DIA, 1987.
- [3] D. Duverney, S. Heumez, G. Huvent, Toutes les mathématiques Cours, exercices corrigés MPSI, PCSI, PTSI, TSI, Ellipses, 2004.