Dataflow Analysis

Local common-subexpression elimination and dead code elimination

2

Copy Propagation

x@21 uses the definition @15?

Dataflow Analysis

- Data flow analysis:
 - Flow-sensitive: sensitive to the control flow in a function
 - Intra-procedural analysis, i.e., context-insensitive
 - Path-insensitive
- All the optimizations depend on dataflow analysis
- E.g. copy propagation

Static Program vs. Dynamic Execution

- Dynamically: Can have infinitely many possible execution paths
- Statically: Finite program
- Data flow analysis abstraction:
 - For each point in the program: combines information of all the instances of the same program point.
- Example of a data flow question:
 - Which definition defines the value used in statement "b = a"?

Reaching Definitions

- Every assignment is a definition
- A definition d reaches a point p if there exists a path from the point immediately following d to p such that d is not killed (overwritten) along that path.
- Problem statement
 - For each point in the program, determine if each definition in the program reaches the point

Data Flow Analysis Schema

- Build a flow graph (nodes = basic blocks, edges = control flow)
- Set up a set of equations between in[b] and out[b] for all basic blocks b
 - Effect of code in basic block:
 - Transfer function fb relates in[b] and out[b], for same b
 - Effect of flow of control:
 - relates out[b₁], in[b₂] if b₁ and b₂ are adjacent
- Find a solution to the equations

Effects of a Statement

```
in[B0]
B0 d0: y = 3
d1: x = 10
d2: y = 11
if e

B1 d3: x = 1
d4: y = 2

d5: z = x
d6: x = 4
```

- f_s: A transfer function of a statement s
 - abstracts the execution with respect to the problem of interest
- For a statement s(d: x = y + z)

```
out[s] = f_s(in[s]) = Gen[s] U (in[s]-Kill[s])
```

- Gen[s]: definitions generated, Gen[s] = {d}
- Kill[s]: set of all other defs to x in the rest of program
- Propagated definitions: in[s] Kill[s],

Effects of a Basic Block

f_s: A transfer function of a statement s

$$out[s] = fs(in[s]) = Gen[s] U (in[s] - Kill[s])$$

• Transfer function of a basic block B: composition of transfer functions of statements in B $f_{B0}=f_{d0} \circ f_{d1} \circ f_{d2}$

```
 \begin{aligned} & \text{out}[B] = f_B(\text{in}[B]) \\ & = f_{d1}(\ f_{d0}(\text{in}[B])\ ) \\ & = \text{Gen}[d1]\ U\ (\text{Gen}[d0]\ U\ (\ \text{in}[B]\ -\ \text{Kill}[d0])\ )\ -\ \text{Kill}[d1]\ ) \\ & = (\text{Gen}[d1]\ U\ (\text{Gen}[d0]\ -\ \text{Kill}[d1]))\ U\ (\text{in}[B]\ -\ (\text{Kill}[d0]\ U\ \text{Kill}[d1])) \\ & = \text{Gen}[B]\ U\ (\text{in}[B]\ -\ \text{Kill}[B]) \end{aligned}
```

Effects of the Edges (acyclic)

- Join node: a node with multiple predecessors
- meet operator (^): U
 in[b] = out[p₁] U out[p₂] U ... U out[p_n],
 where p₁, ..., p_n are all predecessors of b

Cyclic Graphs

Equations still hold

```
out[b] = f_b(in[b])

in[b] = out[p_1] U out[p_2] U ... U out[p_n],

p_1, ..., p_n are all predecessors of b
```

• Find: least fixed point solution

Reaching Definitions: Iterative Algorithm

Data structure?

Bit-vector: one bit for each definition, X U Y= X or Y, X-Y = X and (not Y)

- Correctness
- Precision: how good is the answer?
- Convergence: will the analysis terminate?
- Complexity: how long does it take?

```
input: control flow graph CFG = (N, E, Entry, Exit)
    out[Entry] = \emptyset
                                                         // Boundary condition
    For each basic block B other than Entry
         out[B] = \emptyset
                                                                   // Initialization
    While (Changes to any out[] occur) {
                                                         // iterate
         For each basic block B other than Entry {
              in[B] = \bigcup (out[p]), for all predecessors p of B
                                                // out[B]=gen[B] ∪ (in[B]-kill[B]) }
              out[B] = f_{B}(in[B])
                                   entry
                                             out[entry]={}
                                              in[1]={}
                                             out[1]={}
                                              in[2]={d1}
                                              out[2]={d1}
                                             in[3] = {d1}
                                d1: b = 1
                                             out[3]={d1}
                                              in[exit]
                                   exit
```

Summary of Reaching Definitions

	Reaching Definitions
Domain	Sets of definitions
Transfer function f _b	forward: out[b] = $f_b(in[b])$ $f_b(x) = Gen_b \cup (x - Kill_b)$ Gen_b : definitions in b $Kill_b$: killed defs
Meet Operation	U
Boundary Condition	out[entry] = Ø
Initial interior points	$out[b] = \emptyset$

Liveness analysis

- Definition
- A variable \mathbf{v} is live at point \mathbf{p} if the value of \mathbf{v} is used along some path in the flow graph starting at \mathbf{p} .
 - Otherwise, the variable is dead.
 - Dead code elimination in optimization
- Problem statement
 - For each basic block
 - determine if each variable is live in each basic block
 - Size of bit vector: one bit for each variable

Effects of a Basic Block (Transfer Function)

Observation: Trace uses back to the definitions

- Direction: backward, in[b] = fb(out[b])
- Transfer function for statement s: x = y + z
 - generate live variables: Use[s] = {y, z}
 - propagate live variables: out[s] Def[s], Def[s] = {x}

$$in[s] = Use[s] \cup (out(s)-Def[s])$$

Transfer function for basic block b:

$$in[b] = Use[b] \cup (out(b)-Def[b])$$

Composition of transfer functions of statements: $f_{B0}=f_{d2} \circ f_{d1} \circ f_{d0}$

Effects of the Edges

Meet operator (^):

```
out[b] = in[s_1] U in[s_2] U ... U in[s_n], where s_1, ..., s_n are all successors of b
```

- Boundary condition in[Exit] = Ø
- Equations still hold

```
in[b] = f_b(out[b])
out[b] = in[s_1] U in[s_2] U ... U in[s_n],
s_1, ..., s_n are all successors of b
```

Find: least fixed point solution

Liveness: Iterative Algorithm

- one bit for each variable
- Correctness
- Convergence: will the analysis terminate?
- Speed: how long does it take?

Dataflow-Analysis Direction

Forward analysis

 Start at the beginning of a function's CFG, work along the control edges (e.g., reaching definitions)

Backward analysis

 Start at the end of a function's CFG, work against the control edges (e.g., live variables)

Framework

	Reaching Definitions	Live Variables
Domain	Sets of definitions	Sets of variables
Direction	forward: out[b] = f _b (in[b]) in[b] = \land out[pred(b)]	<pre>backward: in[b] = f_b(out[b]) out[b] = \[in[succ(b)] \]</pre>
Transfer function f _b	$f_b(x) = Gen_b \cup (x - Kill_b)$ Gen_b : definitions in b $Kill_b$: killed defs	$fb(x) = Use_b \cup (x - Def_b)$ Use_b : used in b Def_b : defined in b
Meet Operation	U	U
Boundary Condition	out[entry] = Ø	in[exit] = Ø
Initial interior points	out[b] = Ø	in[b] = Ø

Problem "Must-Reach" Definitions

- A definition d (a = b+c) must reach point p iff
 - d appears at least once along on all paths leading to p
 - a is not redefined along any path after last appearance
 of d and before p
- How do we formulate the data flow algorithm for this problem?

Framework

	Reaching Definitions	Must-Reach Definitions
Domain	Sets of definitions	
Direction	<pre>forward: out[b] = f_b(in[b]) in[b] = \(\cdot \) out[pred(b)]</pre>	
Transfer function f _b	$f_b(x) = Gen_b \cup (x - Kill_b)$ Gen_b : definitions in b $Kill_b$: killed defs	
Meet Operation	U	
Boundary Condition	out[entry] = Ø	
Initial interior points	out[b] = Ø	

Foundation of DataFlow Analysis

- 1. Semi-lattice (set of values, meet operator)
- 2. Transfer functions
- 3. Correctness, precision and convergence
- 4. Meaning of Data Flow Solution

Purpose of a Framework

- Purpose 1
 - Prove properties of entire family of problems once and for all
 - Will the program converge?
 - What does the solution to the set of equations mean?
- Purpose 2:
 - Aid in software engineering: re-use code

The Data-Flow Framework

- Data-flow problems (F, V, ∧) are defined by
 - $-A \text{ (meet) semi-lattice } (V, \land)$
 - domain of values V
 - meet operator ∧: V x V -> V (Greatest Lower Bound)
 - idempotent: $x \wedge x = x$
 - commutative: $x \wedge y = y \wedge x$
 - associative: $x \wedge (y \wedge z) = (x \wedge y) \wedge z$
 - A family of transfer functions F: V -> V

Example of a Semi-Lattice Diagram

• $(V, \land) : V = \{x \mid \text{ such that } x \subseteq \{d_1, d_2, d_3\}\}, \land = U$

Greatest lower bound:

 $x \wedge y = first common descendant of x & y$

- A meet semi-lattice is bounded if
 - there exists a top element T (i.e., $\{\}$), such that $x \wedge T = x$ for all x.
- A bottom element \perp (i.e., $\{d_1, d_2, d_3\}$) exists, if

$$x \wedge \bot = \bot$$
 for all x.

Meet Semi-Lattices vs Partially Ordered Sets

A meet-semilattice is a partially ordered set which has a meet (or greatest lower bound) for any nonempty finite subset.

Greatest lower bound:

 $x \wedge y = first common descendant of x & y$

- Largest: top element T (i.e., $\{\}$), such that $x \land T = x$ for all x.
- Smallest: bottom element \bot (i.e., $\{d_1, d_2, d_3\}$) exists, if $x \land \bot = \bot$ for all x.

A Meet Operator Defines a Partial Order

Partial order of a meet semi-lattice

$$\leq$$
: x \leq y if and only if x \wedge y = x

$$\frac{\mathbf{z}}{\mathbf{z}} \uparrow^{\mathbf{x}} \equiv (\mathbf{x} \lor \lambda = \mathbf{x}) \equiv (\mathbf{x} \bar{\mathbf{z}} \lambda)$$

Meet operator: U

Partial order: ≤

- Properties of meet operator guarantee that ≤ is a partial order
 - Reflexive: $x \le x$
 - Antisymmetric: if $x \le y$ and $y \le x$ then x = y
 - Transitive: if $x \le y$ and $y \le z$ then $x \le z$

Drawing a Semi-Lattice Diagram

• $(x < y) \equiv (x \le y) \land (x \ne y)$

- A semi-lattice diagram:
 - Set of nodes: set of values
 - Set of edges $\{(y, x): x < y \text{ and } \neg \exists z \text{ s.t. } (x < z) \land (z < y)\}$

Summary

Three ways to define a semi-lattice:

- Set V of values + meet operator ^: V x V -> V
 - idempotent: $x \wedge x = x$
 - commutative: $x \wedge y = y \wedge x$
 - associative: $x \wedge (y \wedge z) = (x \wedge y) \wedge z$
- Set V of values + partial order with a greatest lower bound for any nonempty subset
 - Reflexive: $x \le x$
 - Antisymmetric: if $x \le y$ and $y \le x$ then x = y
 - Transitive: if $x \le y$ and $y \le z$ then $x \le z$
- A semi-lattice diagram

Another Example

Semi-lattice

- $-V = \{x \mid \text{such that } x \subseteq \{d_1, d_2, d_3\} \}$
- $\wedge = \cap$

– ≤ is

One Element at a Time

- A semi-lattice for data flow problems can get quite large:
 2ⁿ elements for n live variables/reaching definitions
- A useful technique:
 - define semi-lattice for 1 element
 - product of semi-lattices for all elements

Example: Union of definitions

$$\begin{array}{ccc}
\text{def1} & \text{def2} \\
\text{\{} & \text{\{} \\
\downarrow & \downarrow \\
\text{\{} d_1\text{\}} & \text{\{} d_2\text{\}}
\end{array}$$

For each element

 $< x_1, y_1 > \le < x_2, y_2 > \text{iff } x_1 \le y_1 \text{ and } x_2 \le y_2$

Descending Chain

 Definition: The height of a lattice is the largest number of > relations that will fit in a descending chain.

$$X_0 > X_1 > ... > X_n$$

- Height of values in reaching definitions?
- Important property: finite descending chains

The Data-Flow Framework

- Data-flow problems (F, V, ∧) are defined by
 - − A semi-lattice (V, ∧)
 - domain of values V
 - meet operator ∧: V x V -> V
 - idempotent: $x \wedge x = x$
 - commutative: $x \wedge y = y \wedge x$
 - associative: $x \wedge (y \wedge z) = (x \wedge y) \wedge z$
 - A family of transfer functions F: V -> V
 - Basic Properties f: V -> V
 - Has an identity function: $\exists f$ such that f(x) = x, for all x
 - Closed under composition: if $f_1, f_2 \in F$, $f_1 \circ f_2 \in F$

Monotonicity: 2 Equivalent Definitions

```
A framework (F, V, \land) is monotone iff
                        x \le y implies f(x) \le f(y)
E.g.: Reaching definitions: f(x) = Gen U(x - Kill), \land = U
    Let x_1 \le x_2, f(x_1)=Gen U (x_1 - Kill) \le f(x_2)= Gen U (x_2 - Kill)
Equivalently, a framework (F, V, \wedge) is monotone iff
                         f(x \land y) \leq f(x) \land f(y)
E.g.: Reaching definitions: f(x) = Gen U(x - Kill), \land = U
 f(x_1 \wedge x_2) = (Gen U ((x_1 U x_2) - Kill))
 f(x_1) \wedge f(x_2) = (Gen U (x_1 - Kill)) U (Gen U (x_2 - Kill))
               = Gen U (x_1-Kill) U (x_2-Kill) \leq (indeed =) f(x_1 \wedge x_2)
```

Distributivity

• A framework (F, V, \wedge) is distributive iff $f(x \wedge y) = f(x) \wedge f(y),$

E.g.: Reaching definitions:
$$f(x) = Gen U (x - Kill)$$
, $\wedge = U f(x_1 \wedge x_2) = (Gen U ((x_1 U x_2) - Kill))$
 $f(x_1) \wedge f(x_2) = (Gen U (x_1 - Kill)) U (Gen U (x_2 - Kill))$
 $= Gen U (x_1 - Kill) U (x_2 - Kill) = f(x_1 \wedge x_2)$

A special case of a monotone framework

Framework

	Reaching Definitions	Live Variables
Domain	Sets of definitions	Sets of variables
Direction	forward: out[b] = f _b (in[b]) in[b] = \land out[pred(b)]	<pre>backward: in[b] = fb(out[b]) out[b] = \lambda in[succ(b)]</pre>
Transfer function f _b	$f_b(x) = Gen_b \cup (x - Kill_b)$ Gen_b : definitions in b $Kill_b$: killed defs	$fb(x) = Use_b \cup (x - Def_b)$ Use_b : used in b Def_b : defined in b
Meet Operation	U	U
Boundary Condition	out[entry] = Ø	in[exit] = Ø
Initial interior points	out[b] = Ø	in[b] = Ø

General Iterative Algorithm

```
input: control flow graph CFG = (N, E, Entry, Exit)
    out[Entry] = \emptyset
                                                          // Boundary condition
     For each basic block B other than Entry
         out[B] = \emptyset
                                                                    // Initialization
    While (Changes to any out[] occur) {
                                                          // iterate
         For each basic block B other than Entry {
              in[B] = \bigcup (out[p]), for all predecessors p of B
              out[B] = f_B(in[B])
                                                // out[B]=gen[B] \cup (in[B]-kill[B]) }
input: control flow graph CFG = (N, E, Entry, Exit)
    out[Entry] = v<sub>entry</sub>
                                                          // Boundary condition
     For each basic block B other than Entry
         out[B] = T
                                                           // Initialization maximum
    While (Changes to any out[] occur) {
                                                          // iterate
         For each basic block B other than Entry {
              in[B] = \Lambda (out[p]), for all predecessors p of B // multiple paths meet
              out[B] = f_B(in[B])
                                                // transfer function
```

General Iterative Algorithm

```
input: control flow graph CFG = (N, E, Entry, Exit)
    in[Exit] = \emptyset
                                                                  // Boundary condition
     For each basic block B other than Entry
         in[B] = \emptyset
                                                                     // Initialization
    While (Changes to any in[] occur) {
                                                                   // iterate
          For each basic block B other than Entry {
              out[B] = \bigcup (in[p]), for all successors p of B
              in[B] = f_R(out[B])
                                                   // in[B]=Use[B] \cup (out[B]-Def[B])
input: control flow graph CFG = (N, E, Entry, Exit)
    in[Entry] = \mathbf{v}_{entry}
                                                           // Boundary condition
    For each basic block B other than Entry
         int[B] = T
                                                           // Initialization maximum
    While (Changes to any in[] occur) {
                                                           // iterate
          For each basic block B other than Entry {
              out[B] = \land (in[p]), for all successors p of B // multiple paths meet
              in[B] = f_B(out[B])
                                                           // transfer function
```

General Iterative Algorithm

- If the algorithm terminates, then
 the result is a solution of the dataflow problem
- If the framework is monotone, then the solution found is the maximum fixed point w.r.t. (≤)
- If the semi-lattice of the frame work is monotone and finite descending chain, then

the algorithm always terminates

monotone dataflow framework + finite descending chain

maximum fixed point solution

Behavior of iterative algorithm

- For each IN/OUT of an interior program point:
- Invariant: new value ≤ old value in any step
- Start with T (largest value)
- Proof by induction
 - 1st transfer function or meet operator: new value ≤ old value (T)
 - Meet operation:
 - Assume new inputs ≤ old inputs, then new output ≤ old output
 - Transfer function (in a monotone framework)
 - Assume new inputs ≤ old inputs, then new output ≤ old output
- Algorithm iterates until equations are satisfied
- Values do not come down unless some constraints drive them down.
- Therefore, finds the maximum solution that satisfies the equations

What Does the Solution Mean?

- IDEAL data flow solution
 - Let $f_1, ..., f_m \in F$, f_i is the transfer function for node i
 - $f_p = composition of f_{nk}, ..., f_{n1}, for each path <math>p = n_1, ..., n_k$
 - f_p = identify function, if p is an empty path
 - For each node n: \(f_{pi} \) (boundary value),
 for all possibly executed paths pi reaching n

Determining all possibly executed paths is undecidable,

Meet-Over-Paths: MOP

- Meet-Over-Paths: MOP
 - Assume every edge is traversed
 - For each node n:
 - $-MOP(n) = \wedge f_{pi}$ (boundary value), for all paths pi reaching n in CFG
- MOP VS. IDEAL
 - MOP includes more paths than IDEAL
 - MOP = IDEAL ∧ Result(Unexecuted-Paths), MOP ≤ IDEAL
 - MOP is a "larger" solution, more conservative, safe
- MOP VS. maximum fixed point (MFP)
 MFP applies meet early
 - $-MFP \le MOP \le IDEAL$
 - MFP, MOP are safe
 - If framework is distributive,MFP = MOP ≤ IDEAL

Summary

- A data flow framework
 - Semi-lattice
 - set of values (top)
 - meet operator
 - finite descending chains?
 - Transfer functions
 - summarizes each basic block
 - boundary conditions
- Properties of data flow framework:
 - Monotone framework and finite descending chains
 - ⇒ iterative algorithm converges
 - ⇒ finds maximum fixed point (MFP)
 - \Rightarrow MFP \leq MOP \leq IDEAL
 - Distributive framework
 - \Rightarrow MFP = MOP \leq IDEAL

Efficiency of Iterative Data Flow

- Assume forward data flow for this discussion
- Speed of convergence depends on the ordering of nodes


```
input: control flow graph CFG = (N, E, Entry, Exit)
    out[Entry] = \mathbf{v}_{entry}
    For each basic block B other than Entry
    out[B] = \mathbf{T}
    While (Changes to any out[] occur) {
        For each basic block B other than Entry {
            in[B] = \wedge (out[p]), for all predecessors p of out[B] = f_B(in[B])
```


Forward dataflow problem

Better order? A,B,C,D or, D,B,C,A,

Reverse Postorder

- Preorder traversal: visit the parent before its children
- Postorder traversal: visit the children then the parent
- Preferred ordering: reverse postorder
 - depth first postorder visits the farthest node as early as possible
 - reverse postorder delays visiting farthest node

postorder traversals are: DBCA and DCBA reverse postorder traversals are: ACBD and ABCD

"Reverse Post-Order" Iterative Data Flow

```
input: control flow graph CFG = (N, E, Entry, Exit)
  out[Entry] = v<sub>entry</sub>
  For each basic block B other than Entry
  out[B] = T
  While (Changes to any out[] occur) {
    For each basic block B other than Entry in reverse postorder {
      in[B] = ∧ (out[p]), for all predecessors p of
      out[B] = f<sub>B</sub>(in[B])
```

Forward dataflow problem

How to obtain reverse postorder traversal

- 1. One way is to run postorder traversal and push the nodes in a stack in postorder.
- 2. Then pop out the nodes to get the reverse postorder.

Constant Propagation/Folding

- At every basic block boundary, for each variable v
 - determine if v is a constant
 - if so, what is the value?
 - How do we know it is OK to globally propagate constants?
 - There are situations where it is incorrect:

To replace a use of x by a constant k we must know that:
 On every path to the use of x, the last assignment to x is x := k
 (Invariant #1)

Discussion

- The correctness condition is not trivial to check
- "All paths" includes paths around loops and through branches of conditionals
- Checking the condition requires global analysis
 - An analysis of the entire control-flow graph

Can we use dataflow analysis?

- Semi-lattice
 - set of values (top): V ?
 - meet operator: ∧?
 - finite descending chains?
- Transfer functions ?

Set of values

 To make the problem precise, we associate one of the following values with the variable x at every program point

Value	description
Undef	means that analysis hasn't determined if control reaches that point
С	constant c
NAC	is definitely not a constant1. Assigned by an input value2. Not a constant3. Assigned different values via paths

- The set of values: product of semi-lattices,
 one component for each variable
- Represented by a map m: Var-> V

Meet

V_1	v ₂	$\mathbf{v_1} \wedge \mathbf{v_2}$
	Undef	Undef
Undef	C_2	c ₂
	NAC	NAC
	Undef	c_1
c ₁	c ₂	NAC if $c_1!=c_2$ c_1 otherwise
	NAC	NAC
	Undef	NAC
NAC	c ₂	NAC
	NAC	NAC

- Meet: $m_1 \land m_2 = m_3$, such that $m_1(x) \land m_2(x) = m_3(x)$
- i.e., $m_1 \le m_2$ iff $m_1(x) \le m_2(x)$ for all x in Var

Transfer functions

- Assume a basic block has only 1 instruction
- Non-assignment instruction: s

f_s=identity function

Assignment s: x =e

$$f_s(m)=m'$$

- 1. m(y)=m'(y), for all variable y!=x
- 2. m'(x) is defined as follows:
 - If e= c, then m'(x)=c
 - If e= y op z, $m(y)=c_1$ and $m(z)=c_2$, then $m(x)=c_1$ op c_2
 - If e= y op z, and (m(y)=NAC or m(z)=NAC), then m'(x)=NAC
 - Otherwise, m'(x)=Undef
 - If e!=y op z (e.g., function call, assignment through a pointer), then m'(x)=NAC
- Use: x ≤ y implies f(x) ≤ f(y) to check if framework is monotone

Distributive?

- MFP<MOP
- Forward or backward?

Summary of Constant Propagation

- A useful optimization
- Illustrates:
 - abstract execution
 - an infinite semi-lattice
 - a non-distributive problem