Visualizing and Predicting Heart Diseases with an Interactive Dash Board

Team I'd: PNT2022TMID10855

Submitted by,

Durga S Kiruba T Karpagalakshmi Aiswarya Jeyabrinda S

ABSTRACT

Predicting and diagnosing heart disease is the biggest challenge in the medical industry and it is based on factors like physical examination, symptoms and signs of the patient. To overcome these problems, prediction of heart disease is being done by using machine learning algorithms and data mining techniques, it has become easy to perform automatic diagnosis in hospitals as they are playing vital role in this regard. Heart disease can be predicted by performing analysis on patient's different health parameters. Factors which influence heart diseases are cholesterol level of the body, smoking habit, and obesity, family history of diseases, blood pressure and working environment. In the project, the model experimented with Logistic Regression is proposed in Jupyter notebook and the data visualization is made with the help of IBM COGNOS and creating an Interactive Dashboard. Finally, the best results were obtained by Logistic Regression with the score of 83%.

TABLE OF CONTENTS

1. INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose

2. LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4. PROJECT DESIGN ANALYSIS

- 4.1 Data Flow Diagrams
- 4.2 Solution & Technical Architecture
- 4.3 User Stories

5. PROJECT PLANNING & SCHEDULING

5.1 Sprint Delivery Schedule

6. CODING & SOLUTIONING

7. TESTING

- 8.1 Test Cases
- 8.2 User Acceptance Testing

8. RESULTS

9.1 Performance Metrics

9. ADVANTAGES & DISADVANTAGES

10. FUTURE SCOPE

11. APPENDIX

Source Code GitHub & Project Demo Link

1.INTRODUCTION

1.1 PROJECT OVERVIEW

Machine learning (ML) proves to be effective in assisting in making decisions and predictions from the large quantity of data produced by the healthcare industry. The dataset holds 270 records with 14 attributes such as age, chest pain type, blood pressure, blood glucose level, ECG in rest, heart rate and four types of chest pain. We'll be applying Machine Learning approaches(and eventually comparing them) for classifying whether a person is suffering from heart disease or not.

1.2 PURPOSE

Prediction is one of the area where machine learning plays a vital role, our topic is to predict heart diseases by processing patient's dataset and a data of patients i.e., user of whom we need to predict the chance of occurrence of a heart diseases. Finally we classify patients that are at risk of getting a heart disease or not and also this method is totally cost efficient.

2. LITERATURE SURVEY

2.1 EXISTING PROBLEM

1. The Efficient predication on Diseases: Data Analysis

Soumya Ranjan Jena ,July 2020

Healthcare industries generate massive amounts of data, known as big data, which contains hidden knowledge or patterns for decision making.

2. Heart Diseases prediction in machine leaning approach.

Dnyaneshwari Mahajan ,June-2020

Thehuman body Heart disease is the leading cause of death worldwide. Diseases. Some symptoms include chest pain, a faster heartbeat, and dizziness.

3.HEART DISEASES USING MACHINE LEARNING.

Yuvraj Nikhate , August 2020

Heart disease is one of the leading causes of death worldwide. Every year, approximately 17.9 million people die. Cardiovascular diseases are conditions that affect the heart and blood vessels.

4.HEART DISEASES PREICION USING DATA MININGAPPRAOCH.

M. Preethi, June 2020

This paper discusses data mining, big data, and machine learning models for predicting heart disease. Data mining and machine learning are important components in developing a model for a medical system to predict heart disease or cardiovascular disease.

5.HEART DISEASES PREDIACTION USING DATAANALYTCS

Mrs. Mehdi Khundmir Iliyas

Early detection of heart disease may reduce the death rate to some extent. This software aids in the early detection of heart disease. Nowadays, healthcare organizations generate massive amounts of data that are disorganized.

2.2 REFERENCE

- Dr.A.V.Senthil Kumar, "Heart Disease Prediction Using Data Mining preprocessing and Hierarchical Clustering", International Journal of Advanced Trends in Computer Science and Engineering, Volume-4, No.6, pp.07-18, 2015.
- Um a.K, M.Hanumathappa, "Heart Disease Prediction Using Classification Techniques with Feature Selection Method", Adarsh Journal of Information Technology, Volume-5, Issue-2, pp.22-29, 2016.
- Himanshu Sharma, M.A.Rizvi, "Prediction of Heart Disease using Machine Learning Algorithms: A Survey", International Journal on Recent and Innovation Trends in Computing and Communication, Volume 5, Issue-8, pp. 99-104, 2017.

S.Suguna, Sakthi Sakunthala.N ,S.Sanjana, S.S.Sanjhana, "A Survey on Prediction of Heart Disease using Big data Algorithms", International Journal of Advanced Research in Computer Engineering & Technology, Volume-6, Issue-3, pp. 371-378, 2017.

2.3 PROBLEM STATEMENT DEFINITION.

Heart Diseases remain the biggest cause of deaths for the last two decades. Recently computer technology and machine learning techniques are used to develop software to assist doctors in making appropriate decision of heart disease in an early stage. The diagnosis of heart disease depends on clinical and pathological data. Heart disease prediction system can assist medical professionals in predicting status of heart disease, based on the clinical data of patients.

Doctors may sometime fail to take an accurate decision in predicting heart disease risk level, therefore heart disease prediction systems are useful in such cases to get accurate results. There are many tools available for performing this task but all of them have some flaws. Most of the tools cannot handle big data and hence predicting heart disease would be a tedious task. In this project we are making an effort to predict the risk level of the huge datasets of patients.

3.IDEATION & PROPOSED SOLUTION

3.1 EMPATHY MAP

It's easy to jump straight into value proposition design. That is the core of your business and where the revenue or exchange of value will come from. However, trying to provide value to a misunderstood customer is very risky business. Do you have your blinkers on? Try using this canvas before you design your value proposition to make sure your offer nails exactly what your customer wants, needs, or may pleasantly surprise them! Keep asking yourself "why would they care?". What problem are you solving? What opportunity are you creating? In this empathy map what customer think and feels. this map shows the pain and gain of the customer and what do their hear about the problem. this is the easy way to understand the problem statement.

3.2 IDEATION & BRAINSTORMING

Brainstorming is a method of generating ideas and sharing knowledge to solve a particular commercial or technical problem, in which participants are encouraged to think without interruption. Brainstorming is a group activity where each participant shares their ideas as soon as they come to mind.

3.3 PROPOSED SOLUTION

To over come this we are implementing regression in order to achieve accurate results in less time. Machine learning is given a major priority in modern life in many application and in healthcare sector. Prediction is one of areas where machine learning plays a vital role, Our topic is to predict heart diseases by processing patient's dataset and a data of patients i.e., user of whom we need to predict the chances of occurrence of the heart diseases. A csv file is given as input. After the successful completion of operation the result is predicted and displayed.

4.PROJECT DESIGN

4.1 DATA FLOW DIAGRAM

A data flow diagram (DFD) is a graphical or visual representation using a standardized set of symbols and notations to describe a business's operations through data movement.

4.2 SOLUTION AND TECHNICAL ARCHITECTURE

A solution architecture (SA) is an architectural description of a specific solution. SAs combine guidance from different enterprise architecture viewpoints (business, information and technical), as well as from the enterprise solution architecture (ESA).

4.3 USER STORIES

User Stories

Use the below template to list all the user stories for the product.

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer	login		Can login and enter the data to know the details	Can receive the confirmation	high	Sprint-1
Patient details	View in data set		As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
Dataset insertion			As a user, I can register for the application through Facebook	I can register & access the dashboard with Facebook Login	Low	Sprint-2
Disease are verified			As a user, I can register for the application through Gmail		Medium	Sprint-1
predictied			As a user, I can log into the application by entering email & password		High	Sprint-1

5.PROJECT PLANNING & SCHEDULING

TITLE	DESCRIPTION	DATE
Literature Survey & Information Gathering	Literature survey on the selected project & gathering information by referring technical papers, research publications etc.	26 September 2022
Prepare Empathy Map	Prepare Empathy Map Canvas to capture the user Pains & Gains, Prepare list of problem statements	19 September 2022
Ideation	List the ideas by organizing the brainstorming session and prioritize the top 3 ideas based on the feasibility & importance.	19 September 2022
Proposed Solution	Prepare the proposed solution document, which includes the novelty, feasibility of idea, business model, social impact, scalability of solution, etc.	1 October 2022
Problem Solution Fit	Prepare problem - solution fit document.	1 October 2022
Solution Architecture	Prepare a solution architecture document.	22 October 2022

Data Flow Diagrams	Draw the data flow diagrams and submitfor review.	15 OCTOBER 2022
Technology Architecture	Architecture diagram.	16 OCTOBER 2022
Prepare Milestone & Activity List	Prepare the milestones &activity list of the project.	24 OCTOBER 2022
Project Development - Delivery of Sprint-1, 2, 3 & 4	Develop & submit thedeveloped code by testing it.	5 NOVEMBER 2022

6.CODING & SOLUTIONING

Importing Necessary Libraries

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns

Loading Data

| data=pd.read csv("C:/Users/admin/Downloads/Heart_Disease_Prediction (1).csv")
| data=pd.read csv("C:/Users/admin/Downloads/H

 Age
 Sex
 Cholesterol
 over 120
 results
 HR
 Caterons
 of ST
 Number of ST
 Nu

data.info()

<class
'pandas.core
.frame.DataF
rame'>
RangeIndex:
270 entries,
0 to 269
Data columns
(total 14

columns):

Column Non-Null Count Dtype

0	Age	2 non- 7 null 0	int64
1	Sex	2 non- 7 null 0	int64
2	Chest pain type	2 non- 7 null 0	int64
3	ВР	2 non- 7 null 0	int64
4	Cholesterol	2 non- 7 null 0	int64
5	FBS over 120	2 non- 7 null 0	int64
6	EKG results	2 non- 7 null 0	int64
7	Max HR	2 non- 7 null 0	int64
8	Exercise angina	2 non- 7 null 0	int64
9	ST depression	2 non-	float

		7 0	null	64
1	Slope of ST	2 7 0	non- null	int64
1 1	Number of vessels fluro	2 7 0	non- null	int64
1 2	Thallium	2 7 0	non- null	int64
1 3	Heart Disease	2 7 0	non- null	objec t
dtypes float6 int64(object memory 29.7+	4(1), 12), (1) usage:			

Out[8]:

Age Sex Chestpain FBS over EKG Exercise ST Slope of A

Exploratory Data Analysis

data.shape

Out[7]: (270, 14)

			type BP	Oliviesteroi	results	Max Hi ang n	ji sion	ST
co un t	270.0000 270.0000		270.000000 270.000000	270.0000 270.0000				270.00 2 0000
m ea n	54.4333 778	0.677	3.174074 131.344444		259 1.0222).14 22 148		2	1.5851 85
st d	9.1090 195	0.468	0.950090 17.8616 08		237 0.9978 355 91 906	23.16571 0.47 95	0	0.6143 90
mi n	29.0000 000	0.000	1.000000 94.0000 00		0.000 0.00 0.00 0.00		0	1.0000
25 %	48.0000 000	0.000	3.000000 120.000000		0.000 0.00 0.00 0.00		0	1.0000
	55.000000 0.000000	1.000000 0.80000	3.000000 130.0000 2.000000	000 245.000000	0.000000	2.000000 153.500000	50%)	
75% 00	61.0000	1.000 000	4.000000 140.000000	280.0000 00	0.000 2.00 000			.60 2.0000 00 00

max	77.0000	1.000 000	4.000000 200.000000	564.0000 00	1.000 000	2.0000 00	202.0000 00	1.0000 00	6.20 000	3.0000
00										

Correlation Matrix

Data Visualization

In [22]: sns.countplot(data['Heart Disease'])

C:\Users\admin\anaconda8\lib\site-packages\seaborn_decorators.py:26: FutureWarning: Fass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be 'data', and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[22]: <AmesSubplot:xlabel='Heart Disease', ylabel='count'>


```
plt.figure(figsise=(25,12))
sns.barplot(x=data.Age.value_counts().index,y=data.Age.value_counts().values)
```

Out[40]: <AxesSubplot:>


```
minAge=min(data.Age)
maxAge=max(data.Age)
meanAge=data.Age.mean()
print('Min Age:',minAge)
print('Max Age:',maxAge)
print('Mean Age:',meanAge)
```

```
marage: ', marage)

M
i
n
A
g
e
:
2
9
M
a
x
A
g
e
:
7
7
```

```
Young = data[(data.Age>=29)&(data.Age<40)]
      Out[53]:
                                120
                                100
                                  80
                            count
                                 60
                    Middle = data[(data.Age>=40)&(data.Age<55)]
Elder = data[(data.Age>55)]
plt.figure(figatise=(15,8))
sns.barplot(x=['young ages', 'middle ages', 'elderly ages'],y=[len(Young),len(Middle),len(Elder)])
      Out[49]: <AxesSubplot:>
                    120
                    100
                     80
                     20
                                             young ages
                                                                                              middle ages
                                                                                                                                                elderly ages
```



```
In [53]:

sns.countplot(data['Chest pain type'])

C:\Users\admin\anacondaP\lib\site=packages\seaborn\_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: m. from version 0.12, the only valid positional argument will be 'data', and passing other arguments without an explicit keyword will result in an error or misinterpretation.

<a href="https://docs.py.com/decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: his order arguments will be 'data', and passing other arguments without an explicit keyword will result in an error or misinterpretation.

<a href="https://docs.py.com/decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: his order arguments will be 'data', and passing other argu
```


Out[24]: <AxesSubplot:xlabel='Sex', ylabel='count'>


```
In [53]:

sns.countplot(data['Chest pain type'])

C:\Users\admin\anacondaP\lib\site=packages\seaborn\_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: m. from version 0.12, the only valid positional argument will be 'data', and passing other arguments without an explicit keyword will result in an error or misinterpretation.

<a href="https://docs.py.com/decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: his order arguments will be 'data', and passing other arguments without an explicit keyword will result in an error or misinterpretation.

<a href="https://docs.py.com/decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: his order arguments will be 'data', and passing other argu
```


Out[24]: <AxesSubplot:xlabel='Sex', ylabel='count'>

Confusion Matrix

7.TESTING

7.1 TEST CASES

A test case is nothing but a series of step executed on a product, using a predefined set of input data, expected to produce a predefined set of outputs, in a given environment. It describes "how" to implement those test cases. Test case specifications are useful as it enlists the specification details of the items. The purpose of testing is to discover errors. Testing is the process of trying to discover every conceivable fault or weakness in a work product. It provide a way to check the functionality of component, sub assemblies, assemblies and/or a finished product. It is the process of exercising software with the intent of ensuring that the software system meets its requirement and user expectation and does not fail in an unacceptable manner. There are various types of testing. Each test type addressing a specific testing requirement.

The testing report are submitted in github account.

7.2 USER ACCEPTANCE TESTING

User acceptance testing is a critical phase of any project and requires significant participant by the end user. It also ensure that the system meets the functional requirement.

8. RESULTS

8.1 PERFORMANCE METRICS

Confusion Matrix

Accuracy 83%

9.ADVANTAGE & DISADVANTAGE

ADVANTAGE

- 1. The advantage of this model are high performance and accuracy rate.
- 2.It is very flexible and high rates of success are achieved.
- 3. The application when implemented using random forests has more accuracy rate when compare to other algorithm. In this system, we achieve around 83%.

10. FUTURE SCOPE

In the future, various other metrics like throughput, average time, resources utilizing, waiting time, etc. can be considered. In the future, author will work to optimize the cloud resources further and enhance cloud-based application performance, such as considering more SLA (service level agreement) parameters. For example, the algorithm will be tested based on the number of violation and the migration count for better performance. Also, the algorithm will be comprehensively compared to other existing algorithm in the literature.

PROJECT DEMO LINK

heart prediction

