# 浙江大学 20<u>12</u> - 20<u>13</u> 学年<u>春季</u>学期

## 《Artificial Intelligence》课程期末考试试卷

|     | 课程号                                                                     | : 21190                               | <u>770</u> ,开         | F课学院                                                       | Æ: <u>_</u> 计算                                | 机科学与                                               | 技术学                                                          | 完_                                 |                 |
|-----|-------------------------------------------------------------------------|---------------------------------------|-----------------------|------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|------------------------------------|-----------------|
|     | 考试试                                                                     | 卷: A 卷                                | 、B 卷( <sup>-</sup>    | 请在选为                                                       | 定项上打                                          | <b>√</b> )                                         |                                                              |                                    |                 |
|     | 考试形                                                                     | 式:闭、                                  | <del>开</del> 卷(请      | 青在选定                                                       | 至项上打 ·                                        | /),允·                                              | 许带                                                           | /                                  | 入场              |
|     | 考试日                                                                     | 期:20                                  | 13 年                  | <u>4</u> 月 <u>29</u>                                       | <u>9</u> 日,考i                                 | 式时间:                                               | 120 5                                                        | 分钟                                 |                 |
|     |                                                                         |                                       | 诚信                    | 考试,                                                        | 沉着应为                                          | ,杜绝 <sup>5</sup>                                   | 违纪。                                                          |                                    |                 |
|     | 考生姓                                                                     | 名:                                    |                       | 学号                                                         | :                                             |                                                    | 所属院系                                                         | <b>:</b>                           |                 |
| 题序  | _                                                                       | =                                     | =                     | 四                                                          | 五.                                            | 六                                                  | 七                                                            | 八                                  | 总 分             |
| 得分  |                                                                         |                                       |                       |                                                            |                                               |                                                    |                                                              |                                    |                 |
| 评卷人 |                                                                         |                                       |                       |                                                            |                                               |                                                    |                                                              |                                    |                 |
| 2)  | AI attem<br>many def<br>Humanly<br>In 1950, A<br>would res<br>cannot te | initions of  Alan Turinally be into   | t to under AI that ca | stand bu<br>an be org<br>ed an app<br>a human<br>en respon | ganized in and proach, na interroga nses come | to four cat Acting Ra  med  tor, after   from a pe | tegories: T<br>tionally.<br>, t<br>posing son<br>rson or fro | Thinking to test whet ne written o | _               |
|     | hypothes                                                                | ction that it is by philo lating thin | sophers, a            | nd asser                                                   | tion that i                                   | nachines t                                         | hat do so                                                    |                                    | y thinking (not |
|     | data com<br>are know                                                    | prises exa<br>n as<br>of a set of i   | mples of tl           | he input<br>earning<br>ors witho                           | vectors al                                    | ong with t<br>Applicatio                           | heir corre                                                   |                                    |                 |

| 5)  | Assume the sum-of-squares error function is defined by E(w), then the root-mean-square                                                                                                          |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | error function can be defined by                                                                                                                                                                |
| 6)  | Data points that are drawn independently from the same distribution are said to be, which is often abbreviated to                                                                               |
| 7)  | Given multivariate Gaussian distribution $N(x \mu,\Sigma)$ , then Mahalanobis distance $\Delta$ is defined by                                                                                   |
| 8)  | For a given probability distribution $p(x w)$ , if we choose a prior $p(w)$ , then the posterior distribution $p(w x)$ will have the same functional form as the prior. This property is called |
| 9)  | In generalized linear models, if activation function is logistic sigmoid function f(.), then the corresponding link function is                                                                 |
| 10) | The generalized linear model based on a probit activation function is known as  The inverse probit function can be constructed by the                                                           |
|     | function of a zero mean, unit variance Gaussian $N(x 0,1)$ .                                                                                                                                    |
| 2.  | Multiple Choice (20 points)                                                                                                                                                                     |
| 1)  | Which of the following statements about ML problems is false?                                                                                                                                   |
|     | A. The regression is one of unsupervised learning problems.                                                                                                                                     |
|     | B. The classification is one of supervised learning problems.                                                                                                                                   |
|     | C. The clustering is one of unsupervised learning problems.                                                                                                                                     |
|     | D. The density estimation is one of unsupervised learning problems.                                                                                                                             |
| 2)  | In regression problems, we often need to minimize an error function that measures the misfit between the function output and the training set data points. For a given model, assume we         |
|     | have evaluated the sum-of-squares error $E_1(w)$ and $E_2(w)$ for two test data sets $D_1$ and $D_2$ with                                                                                       |
|     | different size. We also computed the corresponding root-mean-square error E <sub>rms1</sub> (w) and                                                                                             |
|     | E <sub>rms2</sub> (w). Which of the following discriminant condition can lead to the conclusion that this                                                                                       |
|     | model has better fitting performance on test set D <sub>1</sub> ?                                                                                                                               |
|     | A. $E_1(w) < E_{rms1}(w)$ B. $E_1(w) < E_2(w)$                                                                                                                                                  |
|     | C. $E_{rms1}(w) < E_{rms2}(w)$ D. $E_{rms1}(w) < E_{1}(w)$                                                                                                                                      |

| 3) | Consider a polynomial curve fitting problem. If the fitted curve oscillates wildly through each                                                                                           |  |  |  |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|    | point and achieve bad generalization by making accurate predictions for new data, we say<br>this behavior is over-fitting. Which of the following methods cannot be used to control over- |  |  |  |  |  |  |
|    |                                                                                                                                                                                           |  |  |  |  |  |  |
|    | fitting?                                                                                                                                                                                  |  |  |  |  |  |  |
|    | A. Use fewer training data                                                                                                                                                                |  |  |  |  |  |  |
|    | B. Add validation set, use Cross-validation                                                                                                                                               |  |  |  |  |  |  |
|    | C. Add a regularization term to an error function                                                                                                                                         |  |  |  |  |  |  |
|    | D. Use Bayesian approach with suitable prior                                                                                                                                              |  |  |  |  |  |  |
| 4) | Assume D is the observed data set and w is model parameter. Which of the following                                                                                                        |  |  |  |  |  |  |
|    | statements about likelihood function p(D w) is false?                                                                                                                                     |  |  |  |  |  |  |
|    | A. It expresses how probable the observed data set is for different settings of the parameter vector w.                                                                                   |  |  |  |  |  |  |
|    | B. The likelihood is not a probability distribution over w.                                                                                                                               |  |  |  |  |  |  |
|    | C. Its integral with respect to w must be equal to one.                                                                                                                                   |  |  |  |  |  |  |
|    |                                                                                                                                                                                           |  |  |  |  |  |  |
|    | D. Maximizing the likelihood function is equivalent to minimizing the error.                                                                                                              |  |  |  |  |  |  |
| 5) | Which of the following statements about the Fisher's criterion is correct?                                                                                                                |  |  |  |  |  |  |
|    | A. It maximizes the separation between the projected class means as well as the total within-                                                                                             |  |  |  |  |  |  |
|    | class variance.                                                                                                                                                                           |  |  |  |  |  |  |
|    | B. It minimizes the separation between the projected class means as well as the total within-<br>class variance.                                                                          |  |  |  |  |  |  |
|    | C. It maximizes the separation between the projected class means as well as the inverse of                                                                                                |  |  |  |  |  |  |
|    | the total within-class variance.                                                                                                                                                          |  |  |  |  |  |  |
|    | D. It minimizes the separation between the projected class means as well as the inverse of the                                                                                            |  |  |  |  |  |  |
|    | total within-class variance.                                                                                                                                                              |  |  |  |  |  |  |
| 6) | Given two Gaussian distribution $N(x 0,1)$ and $N(x 1,1)$ , which of the following formula is                                                                                             |  |  |  |  |  |  |
|    | correct?                                                                                                                                                                                  |  |  |  |  |  |  |
|    | A. $N(0.5 0.1) > N(0.5 1.1)$ B. $N(1 0.1) = N(0 1.1)$                                                                                                                                     |  |  |  |  |  |  |
|    | C. $N(0.5 0,1) < N(0.5 1,1)$ D. $N(0 0,1) = N(0 1,1)$                                                                                                                                     |  |  |  |  |  |  |
| 7) | Which of the following statements about the kernel function is false?                                                                                                                     |  |  |  |  |  |  |
| 1  | A. The kernel function is a symmetric function.                                                                                                                                           |  |  |  |  |  |  |
| ]  | B. The simplest example of a kernel function is $k(x, x') = x^{T}x'$ .                                                                                                                    |  |  |  |  |  |  |
| (  | C. The feature vector that corresponds to the Gaussian kernel has infinite dimensionality.                                                                                                |  |  |  |  |  |  |

- D. We cannot construct new kernels by using simpler kernels.
- Assume the precision matrix is given by  $R = \begin{pmatrix} A + A^T L A & -A^T L \\ -L A & L \end{pmatrix}$ , then the corresponding covariance matrix  $\Sigma = \mathbf{R}^{-1} = \begin{pmatrix} \Sigma_{11} & \mathbf{\Lambda}^{-1} \mathbf{A}^T \\ \mathbf{A} \mathbf{\Lambda}^{-1} & \mathbf{L}^{-1} + \mathbf{A} \mathbf{\Lambda}^{-1} \mathbf{A}^T \end{pmatrix}$ , find the expression of  $\Sigma_{11} =$ **A.**  $L^{-1}$  **B.**  $\Lambda^{-1}$  **C.**  $A^{T}$  **D.**  $A^{-1}$

- For a 2D multivariate Gaussian distribution N(x|  $\mu$ ,  $\Sigma$ ), if  $\Sigma = \begin{pmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{pmatrix}$ ,  $\sigma_1^2 > \sigma_2^2$ , which of the following figures is the contour of constant probability density of this Gaussian distribution?



- 10) For the 'Old Faithful' data shown on the following figure, which probabilistic model can represent it more accurately? \_\_\_\_
  - A. Gaussian distribution
  - **B.** Mixture of Gaussians
  - C. Dirichlet distribution
  - D. Wishart distribution



- 3. Calculus, Analysis and Proof (50 points)
- 1) Consider the multivariate Gaussian distribution given by Appendix 1.(b). By writing the precision matrix (inverse covariance matrix)  $\Lambda = \Sigma^{-1}$  as the sum of symmetric matrix  $\mathbf{S} = (\Lambda + \Lambda^T)/2$  and anti-symmetric matrix  $\mathbf{A} = (\Lambda \Lambda^T)/2$ , show that:
  - (a) the inverse matrix S<sup>-1</sup> is symmetric. (3 points)
  - (b) the anti-symmetric term A does not appear in the exponent of the Gaussian for  $\Lambda = S + A \text{ , such that } (x \mu)^T \Sigma^{-1} (x \mu) = (x \mu)^T S (x \mu) \text{ . (4 points)}$

2) Assume an eigenvalue decomposition of the covariance matrix  $\Sigma$  is given by  $\Sigma = U\Lambda U^{-1}$ , where  $U = (\mathbf{u}_1, ..., \mathbf{u}_D)$ ,  $U^T U = I$ ,  $\Lambda = diag(\lambda_i)$ , i = 1, ..., D, show that:

(a)  $\Sigma^{-1} = U\Lambda^{-1}U^T$  (4 points)

**(b)** 
$$|\Sigma| = \prod_{i=1}^{D} \lambda_i$$
 (4 points)

- 3) Given a data set  $\mathbf{X} = (\mathbf{x}_1, ..., \mathbf{x}_N)^T$  in which the observations  $\{\mathbf{x}_n\}$  are assumed to be drawn independently from a multivariate Gaussian distribution given by Appendix 1.(b).
  - (a) Find the likelihood function  $p(X | \mu, \Sigma)$  (2 points)

- (b) Find the log likelihood function  $\ln p(X | \mu, \Sigma)$  (4 points)
- (c) Find the maximum likelihood solution of the mean  $\,\mu_{\text{ML}}\,$  (4 points)

(d) Find the maximum likelihood solution of the covariance  $\Sigma_{\it ML}$  (5 points)

4) Assume the error function with a regularization term in regression has given by  $E(\mathbf{w}) = \frac{1}{2} \|\mathbf{t} - \mathbf{\Phi} \mathbf{w}\|^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2, \text{ where t is the target vector, } \lambda \text{ is the regularization}$  coefficient and  $\mathbf{\Phi}$  is the design matrix. Find the solution of  $\mathbf{w}$  by minimizing  $E(\mathbf{w})$ . (10 points)

- 5) Consider a linear discriminant function  $y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$  for two classes in 2-dimensional input space, the geometry is shown in the following figure. An input vector  $\mathbf{x}$  is assigned to class  $C_1$  if  $y(\mathbf{x}) \ge 0$  and to class  $C_2$  otherwise. The corresponding decision boundary is therefore defined by the relation  $y(\mathbf{x}) = 0$ , which corresponds to the line  $\Omega$  in figure. Prove that:
  - (a) The vector  $\,w$  is orthogonal to every vector lying within the decision surface  $\,\Omega$  . (5 points)
  - (b) The perpendicular distance r of arbitrary input vector x from the decision surface is  $r = \frac{y(\mathbf{x})}{\|\mathbf{w}\|}$ . (5 points)



### **Appendix:**

#### 1. Probability distributions:

(a) Single variable Gaussian: 
$$N(x \mid \mu, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

(b) D-dimensional multivariate Gaussian:

$$N(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{\left|\boldsymbol{\Sigma}\right|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\},$$

$$-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}) = -\frac{1}{2} \mathbf{x}^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} \mathbf{x} + \mathbf{x}^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} + const$$

(c) **Beta:** 
$$Beta(\mu \mid a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \mu^{a-1} (1-\mu)^{b-1}$$

(d) Dirichlet:

$$Dir(\mathbf{\mu} \mid \mathbf{\alpha}) = C(\mathbf{\alpha}) \prod_{k=1}^{K} \mu_k^{\alpha_k - 1}, \mathbf{\mu} = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_K \end{pmatrix}, \mathbf{\alpha} = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_K \end{pmatrix}, 0 \le \mu_k \le 1, \sum_{k=1}^{K} \mu_k = 1$$

(e) **Gamma:** 
$$Gam(\tau \mid a, b) = \frac{1}{\Gamma(a)} b^a \tau^{a-1} e^{-b\tau}, a > 0, b > 0, \tau > 0$$

#### 2. Matrix calculus

(a) 
$$(AB)^T = B^T A^T, \quad A^{-1}A = AA^{-1} = I, \quad (AB)^{-1} = B^{-1}A^{-1}$$

(b) 
$$Tr(\mathbf{AB}) = Tr(\mathbf{BA}), \quad Tr(\mathbf{ABC}) = Tr(\mathbf{CAB}) = Tr(\mathbf{BCA}), \quad |\mathbf{AB}| = |\mathbf{A}||\mathbf{B}|$$

(c) 
$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} M & -MBD^{-1} \\ -D^{-1}CM & D^{-1} + D^{-1}CMBD^{-1} \end{pmatrix}, M = (A - BD^{-1}C)^{-1}$$

(d) 
$$\frac{\partial (\mathbf{x}^T \mathbf{a})}{\partial \mathbf{x}} = \frac{\partial (\mathbf{a}^T \mathbf{x})}{\partial \mathbf{x}} = \mathbf{a} \qquad \frac{\partial \mathbf{a}^T \mathbf{X}^{-1} \mathbf{b}}{\partial \mathbf{X}} = -\mathbf{X}^{-T} \mathbf{a} \mathbf{b}^T \mathbf{X}^{-T} \qquad \frac{\partial \mathbf{x}^T \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = (\mathbf{A} + \mathbf{A}^T) \mathbf{x}$$

(e) Assume 
$$\Lambda$$
 is symmetric matrix, then  $\frac{\partial}{\partial \mathbf{x}} (\mathbf{x} - \mathbf{\mu})^T \Lambda (\mathbf{x} - \mathbf{\mu}) = 2\Lambda (\mathbf{x} - \mathbf{\mu})$ 

(f) 
$$\frac{\partial}{\partial \mathbf{w}} (\mathbf{t} - \mathbf{\Phi} \mathbf{w})^T (\mathbf{t} - \mathbf{\Phi} \mathbf{w}) = -2\mathbf{\Phi}^T (\mathbf{t} - \mathbf{\Phi} \mathbf{w}), \quad \frac{\partial}{\partial \mathbf{w}} \|\mathbf{w}\|^2 = \frac{\partial}{\partial \mathbf{w}} \mathbf{w}^T \mathbf{w} = 2\mathbf{w}$$

(g) 
$$\frac{\partial}{\partial \mathbf{W}} Tr \left[ (\mathbf{T} - \mathbf{\Phi} \mathbf{W}) (\mathbf{T} - \mathbf{\Phi} \mathbf{W})^T \right] = -2\mathbf{\Phi}^T (\mathbf{T} - \mathbf{\Phi} \mathbf{W})$$

**(h)** 
$$\frac{\partial}{\partial \mathbf{A}} \ln |\mathbf{A}| = (\mathbf{A}^{-1})^T$$
, if  $\mathbf{A} = diag(\lambda_i)$ ,  $i = 1, ..., D$ , then  $|\mathbf{A}| = \prod_{i=1}^D \lambda_i$ 

## 《Artificial Intelligence》

## Final Examination Answer Sheet

| Name: _ | S                 | tudent ID:       | Dept.: |     |   |       |
|---------|-------------------|------------------|--------|-----|---|-------|
| Section | 1                 | 2                |        | 3   |   | Total |
| Score   |                   |                  |        |     |   |       |
| eviewer |                   |                  |        |     |   |       |
| 1. Fill | in the blanks (30 | points, 2pt/per  | )      |     |   |       |
|         |                   |                  |        |     |   |       |
|         |                   |                  |        |     |   |       |
|         |                   |                  |        |     |   |       |
|         |                   |                  |        |     |   |       |
|         |                   |                  |        |     |   |       |
|         |                   |                  |        |     |   |       |
|         |                   |                  |        |     |   |       |
|         |                   |                  |        |     |   |       |
| 8)      |                   |                  |        |     |   |       |
| 9)      |                   |                  |        |     |   |       |
| 10)     |                   |                  |        |     |   |       |
|         |                   |                  |        |     |   |       |
| 2. Mul  | tiple Choice (20  | points, 2pt/per) | 1      | T T | Q | 0 1   |

| 3. Calculus, Analysis and Proof (50 points) |
|---------------------------------------------|
| 1) (7 points)                               |
| (a) (3 points)                              |
|                                             |
|                                             |
|                                             |
| (b) (4 points)                              |
| (b) (1 points)                              |
|                                             |
|                                             |
|                                             |
|                                             |
| 2) (8 points)                               |
| (a) (4 points)                              |
|                                             |
|                                             |
|                                             |
|                                             |
| (b) (4 points)                              |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
| 3) (15 points)                              |
| (a) (2 points)                              |

| (b) (4 points) |
|----------------|
|                |
| (c) (4 points) |
|                |
| (d) (5 points) |
|                |
|                |
| 4) (10 points) |
|                |
|                |

5) (10 points)



(a) (5 points)

(b) (5 points)