HTTPS性能优化

罗成/腾讯资深研发工程师

[北京站]

InfoQ

促进软件开发领域知识与创新的传播

关注InfoQ官方微信 及时获取ArchSummit 大会演讲视频信息

QCon 全球软件开发大会 [北京站] 2017年4月16-18日 北京 - 国家会议中心

咨询热线: 010-64738142

个人简介

....

知平ID: helloworlds

知乎专栏:《<u>HTTPS原理和实践</u>》 https://zhuanlan.zhihu.com/https

大纲

計算性能分析与优化

- 无秘钥加载
- 证书优化

HTTPS 是互联网的趋势

- HTTPS的优势
 - 内容加密
 - ▶ 身份认证
 - 消息校验

为什么66%的网站不支持HTTPS?

●慢

▶ 移动端慢500ms以上

●豊

-- 増加服务器成本 - HTTPS性能不到HTTP 1/10

- → HHPS性
- ◆ 由请繁琐
- ◆ 价格不一
- ◆ 容易过期、失效

■ HTTPS

HTTPS为什么增加服务器成本?

●算法

- openssi speed
- 对称加密,非对称密钥 交换,签名算法,一致 性校验算法

●协议

- > 完全握手
 - 函数级耗时

●系统

- 热点事件
- 工程实现

系统

协议 算法

计算性能的分析维度

计算性能分析---对称加密、一致性校验算法测试

openssl speed -elapsed evp

算法名	毎秒处理的字 节数(块大小 为1K)	处理4K字节需要的时间
AES-128 CBC	117499.22k	0.00003s
AES-192 CBC	97594.71k	0.00004s
AES-256 CBC	83456.68k	0.000047s
SHA1	488445.95k	0.000008s
SHA256	193084.22k	0.00002s
RC4	623545.69k	0.0000064s
AES-128 GCM	1120621.23k	0.0000035s
AES-256 GCM	981585.24k	0.000004s
CHACHA20 POLY1305	205781.33k	0.000019s

计算性能分析---密钥交换、签名算法测试

- openssl speed RSA
 - RSA签名计算一秒钟最多809次

算法名	Sign	Verify	Sign/s	Verify/s
RSA 2048	0.001235s	0.000037s	809.4	27339.7
DSA 2048	0.000435s	0.000463s	2297.0	2161.6
Ecdsa(nistp256)	0.0001s	0.0001s	16576.9	7012.4

计算性能分析---握手协议的耗时

计算性能分析---热点事件

•perf record / flame graph

计算性能分析结论

- ●完全握手
 - ▶ 性能降低至普诵HTTP性能的10%以下
- ●RSA算法对性能的影响
 - > 消耗整体性能的75%左右
- ●ECC椭圆曲线୬ 约占整体计算量的7%
- ●对称加解密及MAC计算
 - 对性能影响很小(微秒级别)

如何优化计算性能?

●减少完全握手

- > 分布式session cache
 - ▶ 全局Session ticket
- ➤ 自定义session ticket

 ●RSA异步代理计算
- ●对称加密优化

VS

简化握手

协议层面实现简化握手

Session Resumption

---工程实现的局限

- ●nginx单机多进程间共享
- ●Openssl同步
- ●多接入机环境 ▶ 命中率低

接入机集群 Nginx

Nginx

Nginx

Session Resumption

---全局session ticket

openssl生成key
 openssl rand 48 >key1

Nginx配置: ssl_session_ticket_key key1; ssl_session_ticket_key pre.key;

Session Resumption---self session ticket

- ●完全握手的场景
 - ➤ App,浏览器,OS重启
 - > 基干内存 @no ticket 接入机生群 Nginx Nginx

KEY1

- 安全性分析
 - ▶ 私有路径

- ●算法分离
 - > RSA , ECDHE_RSA , DHE RSA

完全握手性能优化

---RSA异步代理计算

- ●代理计算
 - ➤ 硬件加速卡 , GPU , 空闲CPU
- ●异步执行
 - Openssl状态机

代理 执行计算

算法 分离

RSA异步代理计算---算法分离

Geekbangs InfoQ

异步代理计算---工程实现

●Nginx

- Event/ngx event openssl engine.c
- 模块无法实现

Openssl

- Ssl/s3_srvr.c
- ▶ 1.1.0支持异步
 ●性能65000 cps,提升了3.5倍
 - > ecdhe rsa

●优先使用NIST p256

ECC椭圆曲线优化

●Openssl版本 ➤ 1.0.1l Openssl1.1.0b

• Openssiz.z.ob			
- 1	算法名	0P/s	0P
ecdh	(nistp192)	0.0003s	3805.3
ecdh	(nistp224)	0.0004s	2808.8
ecdh	(nistp256)	0.0001s	10271.9
ecdh	(nistp384)	0.0009s	1176.0

Openssl1.0.1e

管注名	OP/e	NP.
ecdh (nistp256)	0.0004s	2548. 8
ecdh	0.0008s	1192.8

块式对称加密算法的优化

●AFS-GCM

▶ 性能最高

●AES-NI

- ▶ 性能提升5倍左右
- EVP_EncryptInit_ex vs AES_encryptOPENSSL ia32cap="~0x200000200000000"
- openssl speed -elapsed -evp aes-128-gcm ●高性能CPU

●高性能CPU → TCO

流式对称加密算法的优化

- Chacha20-Poly1305
 - 2 45 ULAKARATI

- RC4
 - ➤ SSLv3,安全性强于AES-CBC

大纲

■ 计算性能分析与优化

- 无秘钥加载
- 证书优化

Keyless无秘钥加载---同机部署的风险

- ●私钥是安全的根本
- ●同机部署
- ➢ 接入服务器
- ●泄露风险大
 - > CDN
 - > 金融客户

大纲

- 计算性能分析与优化
- 无秘钥加载
- 证书优化

个人用户的选择---Let's Encrypt

●优点

- ▶ 免费,开源
 ▶ 自动部署
- ●缺点
 - > DV
 - ▶ 风险高▶ 兼容性低
- ●建议
 - ▶ 推荐个人用户

欢迎访问我的知乎专栏:

《HTTPS原理和实践》

DV不安全

企业用户的证书选择

●云

腾讯云、阿里云、AWS等

●EV && OV

- 申请简单、成本低
- 白丰证书品牌

SSL证书

SSL证书(SSL Certificates)提供了安全事故是(SSL)证书的一丛式服务,包括证书中 # ##UDDOODS HISBORISHDRY (CATHODOPPEDO - SATURED IN 功度用標件 HTTPS 解决方案

dk MASTI DV SSL 证书の原由語!

●RSA

- 事容性好
 - ▶ 服务端性能差

ECDSA

证书签名的选择---RSA or ECDSA?

- 兼容性差
 - ◆ XP不支持
- ◆ 支持ECDHE, 但系统缺少root ca ▶ 服务端性能好, 客户端性能差
- ●同时支持

拘覧器	最低版本
Apple Safari	4 (On ECC Compatible OS)
Google Chrome	1.0 (On ECC Compatible OS)
Microsoft Internet Explorer	7 (On ECC Compatible OS)
Mozilla Firefox*	2. 0

操作系统	最低版本
Apple OS X	0S X 10.6
Google Android	4.0
Microsoft Windows	Windows Vista
Red Hat Enterprise Linux	6.5

证书的问题

--- 兼容SHA1、SHA256

- SHA1 or SHA256
 - SHA1不安全
 - ➤ SHA2兼容性差
- ▼ 不支持SNI = 不支持SHA2?
- Nginx配置
 - ▶ 证书一 server name空

●更广

- ➤ http2主流实现强制使用https
- ➤ ATS 强制使用HTTPS
- > Chrome mark http unsecure

●更强

- > RSA 2048 -> 4096
- ➤ RSA -> ECC

●更快

- ➤ Tls1.3
- > QUIC

●更开放

Let's encrypt

HTTPS的发展趋势

THANKS

[北京站]

