Prof. Dr. Werner Vogelsang, Institut für Theoretische Physik, Universität Tübingen

Homework problems Classical Field Theory – SoSe 2022 – Set 2 due May 03 in lecture

Problem 4:

Write the following expressions in such a way that they do not contain the metric tensor any longer:

(a) $x^{\mu}y^{\nu}g_{\mu\lambda}g^{\lambda}_{\nu}$,

(b) $g^{\rho\sigma} g_{\rho}^{\alpha} x^{\mu} g_{\mu\nu} y_{\beta} g_{\alpha\sigma} .$

Problem 5:

The Lorentz transformation for a general boost (boost velocity $\vec{V}=c\vec{\beta}$ in an arbitrary direction) is given by

$$ct' = \gamma \left(ct - \vec{x} \cdot \vec{\beta} \right),$$

$$\vec{x}' = \vec{x} + (\gamma - 1) \frac{(\vec{x} \cdot \vec{\beta}) \vec{\beta}}{\beta^2} - \gamma \vec{\beta} ct.$$

Here, $\beta^2 = \vec{\beta}^2$, and as usual $\gamma = 1/\sqrt{1-\beta^2}$.

(a) Write the transformation in the form

$$x' = \Lambda x$$
,

where x', x are the corresponding four-vectors in the two frames, and present the 4×4 matrix Λ explicitly.

- (b) Convince yourself that the transformation leaves the scalar product of two four-vectors invariant.
- (c) Show that in the special case $\vec{\beta} = (0, \beta^y, \beta^z)$, the transformation leaves the four-dimensional integration measure $d^4x = dx^0 dx^1 dx^2 dx^3$ invariant.

Problem 6:

- (a) $x = (x^0, x^1, x^2, x^3)$ is the four-vector of a space-time point. Let a be another four-vector. As usual, $x \cdot a \equiv x_{\mu}a^{\mu}$. Which of the quantities
 - (i) $\phi(x) = e^{-(x \cdot x)/(a \cdot a)}$,

 - (ii) $\phi(x) = \frac{a \cdot a}{x \cdot x + a \cdot a x^0 a^0}$, (iii) $\phi(x) = \frac{a \cdot x}{(x+a) \cdot (x+a)}$,

is a Lorentz scalar?

(b) For those quantities in (a) that are scalars, compute the gradient $\partial^{\mu}\phi(x)$. How does the result transform under Lorentz transformations?

Problem 7: (a little more difficult)

In an inertial system IS we observe the four-velocity of an object as

$$(u^{\mu}) = rac{1}{\sqrt{1 - v(t)^2/c^2}} \begin{pmatrix} c \\ v(t) \\ 0 \\ 0 \end{pmatrix}.$$

Here, $v(t) = dx^1/dt$, with time and spatial components as measured in IS. We now transform to another inertial system IS' that moves with speed V in positive x^1 -direction relative to IS. Verify explicitly that u transforms as a four-vector under this transformation.

Help: Argue that the four-velocity in IS' must be of the form

$$(u'^{\mu}) = \frac{1}{\sqrt{1 - (v'(t'))^2/c^2}} \begin{pmatrix} c \\ v'(t') \\ 0 \\ 0 \end{pmatrix},$$

and use the Lorentz transformation between IS and IS' to obtain the relation between v and v'.