**Тема:** Вступна частина. Визначники 2-го та 3-го порядків.

#### ПЛАН

- 1. Визначники 2-го та 3-го порядків.
- 2. Властивості визначників. Розклад визначників за елементами рядка (стовпця.
- 3. Визначники п-го порядку та їх обчислення.
- 4. Формули Крамера.
- 5. Дослідження систем лінійних рівнянь.
- 1. <u>Матриця розміром **m** х **n**</u> –це сукупність чисел, розміщених у вигляді прямокутної таблиці, яка має **m** рядків та **n** стовпців.

Матриці позначають великими літерами латинського алфавіту та круглими дужками. Така матриця має вигляд:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

або A= 
$$\begin{pmatrix} a_{i \ j} \end{pmatrix} m \cdot n$$
, A=  $\begin{pmatrix} a_{i \ j} \end{pmatrix} m \cdot n$   
 $i=1,2...m$   
 $j=1,2...n$ 

Кожен елемент  $a_{i\,j}$  матриці A має два індекси : перший вказує номер рядка, другий –номер стовпця

<u>Якщо **m**=**n**, то матриця буде квадратною. **n** –порядок матриці.</u>

<u>Визначник</u> – це число, яке знаходиться з елементів квадратної матриці за певним правилом.

Якщо квадратна матриця позначена літерою B, то її визначник позначається |B| або  $\Delta B$ ,  $\det B$ . Друга назва — <u>детермінант.</u> Визначники 2-го порядку:

$$\Delta A =$$
 $a_{11}$ 
 $a_{22}$ 
 $a_{22}$ 
 $= a_{11} \cdot a_{22} - a_{12} \cdot a_{22}$ 
допоміжна головна діагональ (-) (+)

(дорівнює різниці добутків елементів головної та допоміжної діагоналей)

$$\underline{\text{Приклад}}: \begin{vmatrix} -1 & 3 \\ 5 & 4 \end{vmatrix} = -1 \cdot 4 - 3 \cdot 5 = -4 - 15 = -19$$

#### Визначники 3-го порядку:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

а) Обчислення за правилом трикутників:



$$\Delta = a_{11} \cdot a_{22} \cdot a_{33} + a_{12} \cdot a_{23} \cdot a_{31} + a_{21} \cdot a_{32} \cdot a_{13} - a_{13} \cdot a_{22} \cdot a_{31} - a_{21} \cdot a_{12} \cdot a_{33} - a_{23} \cdot a_{32} \cdot a_{11}$$

# б) Обчислення за правилом Саріуса:

гол. діаг. допом. діаг. 
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} & a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} & a_{31} & a_{32} & a_{31} & a_{32} & a_{33} & a_{31} & a_{32} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} & a_{31} & a_{32} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} & a_{31} & a_{32} \end{vmatrix}$$

Приклад: 
$$\begin{vmatrix} -2 & 1 & 3 \\ 5 & -1 & 4 \\ 3 & 0 & 7 \end{vmatrix} = -2 \cdot (-1) \cdot 7 + 1 \cdot 4 \cdot 3 + 5 \cdot 0 \cdot 3 - 3 \cdot (-1) \cdot 3 - 1 \cdot 5 \cdot 7 - 4 \cdot 0 \cdot (-2) == 14 + 12 + 9 - 35 = 0$$

## 2. Властивості визначників.

1) Визначник при транспонуванні не змінюється (при заміні рядків на стовпці).

 $A^{T}$  - транспонована матриця

$$\Delta A = \Delta A^{T}$$

$$\begin{vmatrix} 3 & 4 \\ -2 & 5 \end{vmatrix} = 23$$

$$\begin{vmatrix} 3 & -2 \\ 4 & 5 \end{vmatrix} = 23$$

2) Якщо у визначнику поміняти місцями будь-які рядки (або стовпці), то визначник змінить знак на протилежний.

$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = -2 \qquad \begin{vmatrix} 2 & 1 \\ 4 & 3 \end{vmatrix} = 2$$

3) Якщо визначник має два однакових рядки (або стовпці), то він дорівнює нулю.

$$\begin{vmatrix} 3 & -2 \\ 3 & -2 \end{vmatrix} = 0$$

4) Якщо у визначнику усі елементи одного рядка (або стовпця) помножити на дійсне число k, то визначник зміниться також в k разів

$$\begin{vmatrix} 4 & 5 \\ 3 & 1 \end{vmatrix} = -11$$

$$\begin{vmatrix} 4k & 5k \\ 3 & 1 \end{vmatrix} = -11k$$

<u>Наслідок 1</u>. Спільний множник усіх елементів будь-якого рядка (або стовпця)

визначника можна винести за знак визначника

$$\begin{vmatrix} 6 & 4 \\ 9 & 1 \end{vmatrix} = 2 \cdot 3 \cdot \begin{vmatrix} 1 & 2 \\ 3 & 1 \end{vmatrix} = 6 \cdot (1 - 6) = -30$$

<u>Наслідок 2</u>. Якщо усі елементи будь-якого рядка (або стовпця) визначника дорівнюють нулю, то визначник дорівнює нулю.

5) Визначник, у якого відповідні елементи двох будь-яких рядків (або стовпців) пропорційні, дорівнює нулю.

Доведення випливає з властивостей 3, 4

$$\begin{vmatrix} -2 & 3 & 5 \\ 1 & 8 & -1 \\ 4 & -6 & -10 \end{vmatrix} = 0$$

6) Якщо у визначнику елементи будь-якого рядка (або стовпця) є сумою двох доданків, то він дорівнює сумі двох відповідних визначників,

$$\begin{vmatrix} a_{11} & a_{12} + b_1 & a_{13} \\ a_{21} & a_{22} + b_2 & a_{23} \\ a_{31} & a_{32} + b_3 & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{vmatrix}$$

7) Якщо до всіх елементів будь-якого рядка (або стовпця) визначника додати відповідні елементи іншого рядка (або стовпця) цього визначника, помножені на одне й те ж саме число, то визначник не зміниться

$$\begin{vmatrix} 3 & 2 & 1 \\ 1 & 2 & 3 \\ 2 & 4 & 2 \end{vmatrix} \bullet (-3) \bullet (-2) = \begin{vmatrix} 3 & 2 & 1 \\ -8 & -4 & 0 \\ -4 & 0 & 0 \end{vmatrix}$$

$$-16 = -16$$

Для обчислення визначників порядка n>3 використовують алгебраїчне доповнення.

**Мінором**  $M_{i\,j}$  елемента  $a_{i\,j}$  з визначника n-го порядку, називається визначник n-1 порядку, який одержуємо з визначника |A| шляхом викреслювання i-го рядка та j-го стовпця, на перетині яких знаходиться елемент  $a_{i\,i}$ 

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \qquad M_{23} = \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix}$$

Алгебраїчним доповненням  $A_{i\,j}$  визначника називається мінор цього елемента, взятий зі знаком  $(-1)^{i+j}$ , тобто  $A_{i\,j} = (-1)^{i+j}$   $M_{i\,j}$  Приклад: Знайти алгебраїчні доповнення до елементів  $a_{21}$  та  $a_{33}$ 

$$\begin{bmatrix} 2 & 3 & -1 \\ 1 & 4 & 2 \\ -3 & 1 & 4 \end{bmatrix}$$

$$A_{21} = (-1)^{2+1} \cdot M_{21} = -M_{21}$$
  
 $A_{33} = (-1)^{3+3} \cdot M_{33} = M_{33}$ 

$$M_{21} = \begin{vmatrix} 3 & -1 \\ 1 & 4 \end{vmatrix} = 3 \cdot 4 - (-1) \cdot 1 = 12 + 1 = 13$$

$$M = \begin{vmatrix} 2 & 3 \\ 1 & 4 \end{vmatrix} = 2 \cdot 4 - 3 \cdot 1 = 8 - 3 = 5$$

$$A_{21} = -13$$
  $A_{33} = 5$ 

<u>Теорема Лапласа</u> (розкладання визначника за елементами будь-якого рядка або стовпця).

Визначник n-го порядку дорівнює сумі добутків усіх елементів будьякого рядка (або стовпця) на відповідні їм алгебраїчні доповнення.

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{21} \cdot A_{21} + a_{22} \cdot A_{22} + a_{23} \cdot A_{23}$$

3. Для того, щоб обчислити визначник n-го порядку потрібно до нього застосовувати властивість 7 та теорему Лапласа.

Для скорочення обчислень визначника доцільно його розкласти за елементами такого рядка чи стовпця, який містить найбільшу кількість нулів. У такому випадку не треба знаходити алгебраїчні доповнення до елементів, що дорівнюють 0 (добуток 0 на будь-яке алгебраїчне доповнення дорівнює 0). Треба навчитись виконувати еквівалентні перетворення визначника, які дають можливість одержати нулі у деякому рядку або стовпці.

Приклад: Обчислити визначник 4 порядку 
$$\begin{vmatrix} 0 & 1 & 2-4 \\ -3 & 2 & 1 & 5 \\ 5 & 1-1 & 3 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2-2 & 3 & x(3) & x(-5) \\ 0 & 1 & 2-4 \\ -3 & 2 & 1 & 5 \\ 5 & 1-1 & 3 \end{vmatrix} = \begin{vmatrix} 1 & 2-2 & 3 \\ 0 & 1 & 2-4 \\ 0 & 8-5 & 14 \\ 0-9 & 9 & 12 \end{vmatrix}$$

$$= 1 \cdot A_{11} + 0 \cdot A_{21} + 0 \cdot A_{31} + 0 \cdot A_{41} =$$

$$= 1 \cdot (-1)^2 \cdot \begin{vmatrix} 1 & 2 & -4 \\ 8 & -5 & 14 \\ -9 & 9 & -12 \end{vmatrix} = 3 \cdot \begin{vmatrix} 1 & 2 & -4 \\ 8 & -5 & 14 \\ -3 & 3 & -4 \end{vmatrix} =$$

1. Розглянемо систему двох лінійних неоднорідних рівнянь з двома невіломими:

$$\begin{cases} a_{11}x + a_{12}y = b_1 \\ a_{21}x + a_{22}y = b_2 \end{cases}$$
 x та у –невідомі,

 $a_{11}, a_{12}, a_{21}, a_{22}$ -коефіцієнти при невідомих,

 $b_1$  та  $b_2$  -вільні члени.

-Якщо невідомі системи в 1-му степені, то система називається <u>лінійною</u>

-Якщо хоча б один із вільних членів не дорівнює нулю, то система називається <u>неоднорідною</u>.

$$\begin{cases} a_{11}x + a_{12}y = b_1 & \times (a_{22}) \\ a_{21}x + a_{22}y = b_2 & \times (-a_{12}) \end{cases}$$

$$\begin{cases} a_{11}a_{22}x + a_{12}a_{22}y = b_1a_{22} \\ -a_{21}a_{12}x - a_{22}a_{12}y = -b_2a_{12} \end{cases}$$

$$(a_{11} \cdot a_{22} - a_{21} \cdot a_{12}) \cdot x = b_1 \cdot a_{22} - b_2 \cdot a_{12}$$

$$x = \frac{b_1 \cdot a_{22} - b_2 \cdot a_{12}}{a_{11} \cdot a_{22} - a_{21} \cdot a_{12}}$$

В чисельнику і знаменнику знаходяться

визначники 2-го порядку

$$a_{11} \cdot a_{22} - a_{21} \cdot a_{12} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

$$b_1 \cdot a_{22} - b_2 \cdot a_{12} = \begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}$$

Позначимо  $\Delta = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$  - головний визначник системи  $\Delta \mathbf{1} = \begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}$  - допоміжний визначник системи для невідомої х

$$T$$
оді  $x = \frac{\Delta_1}{\Delta}$ 

Виключивши із системи невідому x, одержимо, що  $y = \frac{a_{11}b_2 - a_{21}b_1}{a_{11}a_{22} - a_{12}a_{21}}$ 

$$\Delta 2 = \begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}$$
 Тоді  $y = \frac{\Delta 2}{\Delta}$ 

Одержані формули для х та у називають формулами Крамера.

Приклад: Розв'язати систему за допомогою формул Крамера:

$$\begin{cases}
2x + 3y - 1 = 0 \\
x - 4y = 5
\end{cases}$$

$$\begin{cases}
2x + 3y = 1 \\
x - 4y = 5
\end{cases}$$

$$\Delta = \begin{vmatrix} 2 & 3 \\ 1 - 4 \end{vmatrix} = -11 \neq 0$$

$$\Delta 1 = \begin{vmatrix} 1 & 3 \\ 5 - 4 \end{vmatrix} = -19$$

$$\Delta 2 = \begin{vmatrix} 2 & 1 \\ 1 & 5 \end{vmatrix} = 9$$

$$x = \frac{\Delta_1}{\Delta} = \frac{-19}{-11} = \frac{19}{11}$$
  $y = \frac{\Delta_2}{\Delta} = \frac{9}{-11} = -\frac{9}{11}$ 

Перевірка –підставити в систему значення х та у: 
$$\begin{cases} x = \frac{19}{11} \\ y = -\frac{9}{11} \end{cases}$$

- 2. Дослідження системи двох лінійних неоднорідних рівнянь з двома невідомими:
- 1) Якщо  $\Delta \neq 0$ , то система має 1 розв'язок, який знаходиться за формулами Крамера.
- 2) Якщо  $\Delta = 0$ , а  $\Delta_1 \neq 0$  (або  $\Delta_2 \neq 0$ ), то система не має розв'язків.
- 3) Якщо  $\Delta = \Delta_1 = \Delta_2 = 0$ , то система має нескінченну множину розв'язків. В цьому випадку коефіцієнти при невідомих і вільні члени пропорційні. Значить, одне із рівнянь (довільне) можна відкинути, а рівняння, яке залишилось, розв'язати відносно довільного невідомого.

Приклад: 
$$2x+3y=1$$
  $x=\frac{1-3y}{2}$ , де y -  $\forall$  (довільне)

Дослідження системи трьох лінійних неоднорідних рівнянь з трьома невідомими:

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = b_1 \\ a_{21}x + a_{22}y + a_{23}z = b_2 \\ a_{31}x + a_{32}y + a_{33}z = b_3 \end{cases}$$

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\Delta 1 = \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix} \qquad \Delta 2 = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{vmatrix} \qquad \Delta 3 = \begin{vmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{vmatrix}$$

За формулами Крамера:

$$x = \frac{\Delta_1}{\Delta}$$
  $y = \frac{\Delta_2}{\Delta}$   $z = \frac{\Delta_3}{\Delta}$ 

Приклад: 
$$\begin{cases} 2x + 4y - 3z = 0 \\ x + 5y + 2z = 5 \\ 3x + y + 3z = 9 \end{cases}$$

$$\Delta = \begin{vmatrix} 2 & 4-3 \\ 1 & 5 & 2 \\ 3 & 1 & 3 \end{vmatrix} = 30 + 24 + (-3) - (-45+4+12) = 30 + 24 - 3 + 45 - 4 - 12 = 80 \neq 0$$

,

$$\Delta 1 = \begin{vmatrix} -4 & 4-3 \\ 5 & 5 & 2 \\ 9 & 1 & 3 \end{vmatrix} = -60 - 15 + 72 + 135 + 8 - 60 = 80,$$

$$\Delta 2 = \begin{vmatrix} 2-4 & -3 \\ 1 & 5 & 2 \\ 3 & 9 & 3 \end{vmatrix} = 30 - 27 - 24 + 45 - 36 + 12 = 0,$$

$$\Delta 3 = \begin{vmatrix} 2 & 4 - 4 \\ 1 & -5 & 5 \\ 3 & 1 & 9 \end{vmatrix} = 90 - 4 + 60 + 60 - 10 - 36 = 160$$

$$x = \frac{80}{80} = 1$$
  $y = \frac{0}{80} = 0$   $z = \frac{160}{80} = 2$ 

- 1) Якщо  $\Delta \neq 0$ , то система має 1 розв'язок, який знаходиться за формулами Крамера.
- 2) Якщо  $\Delta = 0$ , а хоча б один із  $\Delta i \neq 0$  (i = 1, 2, 3), то система не має розв'язків.
- 3) Якщо  $\Delta = \Delta_1 = \Delta_2 = \Delta_3 = 0$ , то система має або нескінченну множину розв'язків, або не має розв'язків.

Система буде мати нескінченну множину розв'язків, якщо одне із рівнянь системи  $\epsilon$  наслідком двох інших, або ж коефіцієнти при невідомих і вільні члени пропорційні.

Система не буде мати розв'язків, якщо коефіцієнти при відповідних невідомих пропорційні, а вільні члени не пропорційні.

$$\frac{\Pi \text{риклад:}}{6x + 3y - 6z = 3} \begin{cases} 2x + y - 3z = 1 \\ 4x + 2y - 6z = 3 \\ 6x + 3y - 9z = 7 \end{cases}$$

$$\Delta = \Delta 1 = \Delta 2 = \Delta 3 = 0$$

Коефіцієнти при невідомих пропорційні, а вільні члени не пропорційні, значить система не має розв'язків (або несумісна).

Приклад 
$$\begin{cases} 5x - y - z = 4\\ 2x - 3y - 5z = 1\\ 3x + 2y + 4z = 3 \end{cases}$$

$$\Delta = \Delta_1 = \Delta_2 = \Delta_3 = 0$$

Перше рівняння  $\epsilon$  наслідком двох других, значить система ма $\epsilon$  нескінченну множину розв'язків. Тому одне з рівнянь можна відкинути.

$$\begin{cases}
5x - y - z = 4 \\
3x + 2y + 4z = 3
\end{cases}$$

$$\begin{cases}
5x - y = 4 + z b_1 \\
3x + 2y = 3 - 4z b_2
\end{cases}$$

$$\Delta = \begin{vmatrix} 5 & -1 \\ 3 & 2 \end{vmatrix} = 13 \neq 0$$

$$\Delta 1 = \begin{vmatrix} 4+z & -1 \\ 3-4z & 2 \end{vmatrix} = 8+2z+3-4z = 11-2z$$

$$\Delta 2 = \begin{vmatrix} 5 & 4+z \\ 3 & 3-4z \end{vmatrix} = 15 - 20z - 12 - 3z = 3 - 23z$$

$$\begin{cases} x = \frac{\Delta_1}{\Delta} = \frac{11 - 2z}{13} \\ y = \frac{\Delta_2}{\Delta} = \frac{3 - 23z}{13} \\ z - \forall \end{cases}$$

Загальний розв'язок

(довільне число)

Знайдемо частковий розв'язок

при z=2: 
$$\begin{cases} x = \frac{11-4}{13} = \frac{7}{13} \\ y = \frac{3-46}{13} = -\frac{43}{13} \\ z = 2 \end{cases}$$

Додатково: Системи двох лінійних однорідних рівнянь з трьома невідомими

$$\begin{cases} a_1 x + b_1 y + c_1 z = 0 \\ a_2 x + b_2 y + c_2 z = 0 \end{cases}$$

Всі вільні члени =0, значить система однорідна

Така система завжди має нескінченну множину розв'язків. Якщо одне з рівнянь не є наслідком другого, то множину розв'язків знаходять за формулами:

$$x = k \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix}$$

$$x = k \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix} \qquad y = k \begin{vmatrix} c_1 & a_1 \\ c_2 & a_2 \end{vmatrix} \qquad z = k \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$$

$$z = k \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$$

**k**- довільне число

$$\underline{\text{Приклад}}: \begin{cases} 3x + 5y - 7z = 0 \\ x + 4z = 0 \end{cases}$$

$$x = k \begin{vmatrix} 5 & -7 \\ 0 & 4 \end{vmatrix} = 20k$$
,  $y = k \begin{vmatrix} -7 & 3 \\ 4 & 1 \end{vmatrix} = -19k$   $z = k \begin{vmatrix} 3 & 5 \\ 1 & 0 \end{vmatrix} = -5k$ 

Відповідь:  $\begin{cases} x = 20k \\ y = -19k \\ z = -5k \\ k - \forall \end{cases}$ 

Якщо одне з рівнянь  $\epsilon$  наслідком другого, то система перетворюється в одне рівняння з трьома невідомими. З цього рівняння одне з невідомих виражають через інші:

Приклад: 
$$\begin{cases} x - 4y + z = 0 \\ 3x - 12y + 3z = 0 \end{cases} \begin{cases} x = 4y - z \\ y - \forall \\ z - \forall \end{cases}$$

## Питання для самоконтролю

- 1. Визначники 2-го порядку.
- 2. Визначники 3-го порядку.
- 3. Властивості визначників.
- 4. Розклад визначників за елементами рядка (стовпця).
- 5. Визначники n-го порядку та їх обчислення.

**Тема:** Вектори. Добутки векторів.

#### ПЛАН

- 1. Лінійні дії з векторами.
- 2. Скалярний добуток та його властивості.
- 3. Довжина вектора, кут між векторами, проекції.
- 4. Розклад вектора за базисом.
- 5. п-вимірні векторні простори. Лінійна комбінація векторів.
- 6. Лінійно залежні та лінійно незалежні комбінації векторів. Базисний мінор.
- 7. Базис. Розклад вектора за даним базисом.
- 8. Ранг системи векторів

<u>Скалярні</u> величини характеризуються своїм числовим значенням (об'єм, маса, температура...). <u>Векторні</u>\* –крім числового значення мають ще й напрям (сила, швидкість...).

\*лат. Vector (переносник) ввів у 1848 р. Гамільтон

Геометрично векторна величина зображається напрямленим відрізком:

$$\overline{a}$$
 A  $\overline{AB}$  B

Модуль вектора (його довжина) позначається [a], a.

До лінійних дій з векторами належать додавання і віднімання векторів, множення вектора на число.

- 1) Додавання.
  - а) правило трикутника



б) правило паралелограма



2) Віднімання



3) Множення вектора на число (скаляр)



<u>Нульовим</u> називається вектор, початок якого збігається з кінцем  $(\bar{0})$ . Напрям його невизначений, а довжина дорівнює 0.

$$\lambda \cdot \overline{0} = \overline{0}$$

$$0 \cdot \overline{a} = 0$$

$$\lambda \cdot (\overline{a} + \overline{b}) = \lambda \overline{a} + \lambda \overline{b}$$

Одиничним називається вектор, довжина якого дорівнює одиниці.

Одиничний вектор, напрям якого збігається з напрямом вектора  $\bar{a}$ називається ортом вектора  $\stackrel{-}{a}$  і позначається  $\stackrel{-}{a}{}^0$ 

$$\bar{a}^0 = \frac{\bar{a}}{|\bar{a}|} - \text{opt}$$

 $2.\bar{i}$  та  $\bar{j}$  -одиничні вектори на осях х та у в координатній площині.

$$\overline{i} \perp \overline{j}, \quad |\overline{i}| = 1, \quad |\overline{j}| = 1$$
 $a_{\underline{y}}$ 
 $\overline{a}$ 
 $a_{\underline{x}}$ 
 $\overline{a}$ 
 $a_{\underline{x}}$ 
 $a_{\underline{x}}$ 
 $a_{\underline{x}}$ 
 $a_{\underline{x}}$ 
 $a_{\underline{x}}$ 

 $a_x$  – проекція  $\bar{a}$  на  $O_x$ 

$$a_y$$
 – проекція  $\overline{a}$  на  $O_y$  3  $\Delta ABC$ :  $\overline{AB} = \overline{AC} + \overline{CB}$ 

$$\overline{AC} = a_x \cdot \overline{i}$$
  $\overline{CB} = a_y \cdot \overline{j}$ 

Напрям  $\overline{AC}$  такий же, як і у орта  $\overline{i}$ ,  $\overline{BC}$  - у орта  $\overline{j}$ ; довжини:

$$|\overline{AC}|=a_x,$$
  $|\overline{BC}|=a_y$  - розклад вектора за ортонормованим Базисом на площині  $a_x\,i\,a_y$  -координати вектора

 $\bar{i}\; i\; \bar{j}\;$  - ортонормований базис на площині.

Записують так:  $\overline{a}(a_x; a_y)$ 

В просторі ортонормований базис утворюють вектори  $\bar{i}, \bar{j}, \bar{k}$ 

$$(\bar{i} \perp \bar{j} \perp \bar{k}, |\bar{i}| = |\bar{j}| = |\bar{k}| = 1): \qquad \qquad \bar{a} = a_x \bar{i} + a_y \bar{j} + a_z \bar{k}, \\ \bar{a} (a_x; a_y; a_z)$$



Якщо задано вектор AB, де  $A(x_1; y_1; z_1)$  –початок вектора,  $B(x_2; y_2; z_2)$ - кінець, то AB (x<sub>2</sub>-x<sub>1</sub>; y<sub>2</sub>-y<sub>1</sub>; z<sub>2</sub>-z<sub>1</sub>).

Дії з векторами в координатній формі.

1) 
$$\overline{a} = \overline{b}$$
, якщо  $a_x = b_x$ ;  $a_y = b_y$ ;  $a_z = b_z$ 

2) 
$$\lambda \overline{a} \left( \lambda a_x; \lambda a_y; \lambda a_z \right)$$

3) 
$$\bar{a} \pm \bar{b} \left( a_x \pm b_x; a_y \pm b_y; a_z \pm b_z \right)$$

Колінеарними називають вектори, якщо вони лежать на одній прямій або на паралельних прямих.



 $\overline{b} = \lambda \overline{a}$  - умова колінеарності векторів, тобто якщо вектори колінеарні, то один з них можна виразити через другий.

Якщо вектори задані в координатній формі, то відповідні координати їх пропорційні:  $\frac{\overline{a}\left(a_x;a_y;a_z\right)}{\overline{b}\left(b_x;b_y;b_z\right)}$ 

$$\frac{a_x}{b_x} = \frac{a_y}{b_y} = \frac{a_z}{b_z}$$

# Приклад: Чи колінеарні вектори

$$\frac{\overline{a} (-2; 1; -3) i \overline{b} (4; -2; -3) ?}{\frac{-2}{4} = \frac{1}{-2} = \frac{-3}{-3}}$$

$$-\frac{1}{2} = -\frac{1}{2} \neq 1$$

Вектори не колінеарні

Три вектори називаються компланарними, якщо вони лежать в одній площині, або в паралельних площинах.

3. Скалярним добутком двох векторів називається добуток довжин цих векторів на косинус кута між ними

$$\overline{a} \cdot \overline{b} = |\overline{a}| \cdot |\overline{b}| \cdot \cos(\overline{a}, \overline{b})$$
 -число!

# Властивості:

1) 
$$\bar{a} \cdot \bar{b} = \bar{b} \cdot \bar{a}$$

2) 
$$\overline{a} \cdot (\overline{b} + \overline{c}) = \overline{ab} + \overline{ac}$$

3) 
$$\lambda a \cdot \mu \bar{b} = \lambda \mu (\bar{a} \bar{b})$$

3) 
$$\lambda \overline{a} \cdot \mu \overline{b} = \lambda \mu (\overline{a} \overline{b})$$
  
4)  $\overline{a} \cdot \overline{b} = 0 <=> \overline{a} \perp \overline{b}$ 

5) 
$$\overline{a} \cdot \overline{a} = |\overline{a}| \cdot |\overline{a}| \cdot \cos(\overline{a}, \overline{a}) = |\overline{a}|^2$$
, звідки  $|\overline{a}|^2 = \sqrt{\overline{a} \cdot \overline{a}}$   $\overline{a} \cdot \overline{a} = \overline{a}^2$   $|\overline{a}| = \sqrt{(\overline{a})^2}$ 

добуток двох векторів, заданих координатами прямокутній системі координат, дорівнює сумі добутків їхніх відповідних координат:

$$\frac{\overline{a}(a_x; a_y; a_z)}{\overline{b}(b_x; b_y; b_z)}$$

$$\overline{a} \cdot \overline{b} = a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z$$

4. Довжина вектора в координатній формі: 
$$\overline{a}\left(a_{x}; a_{y}; a_{z}\right)$$
 
$$\overline{a} \cdot \overline{a} = a_{x}^{2} + a_{y}^{2} + a_{z}^{2}$$
 
$$\left|\overline{a}\right| = \sqrt{\overline{a} \cdot \overline{a}} = \sqrt{\left(\overline{a}\right)^{2}} = \sqrt{a_{x}^{2} + a_{y}^{2} + a_{z}^{2}}$$

$$\overline{a} \cdot \overline{b} = |\overline{a}| \cdot |\overline{b}| \cdot \cos(\overline{a}, \overline{b})$$

$$\overline{a} \cdot \overline{b} = |\overline{a}| \cdot |\overline{b}| \cdot \cos(\overline{a}, \overline{b})$$

$$\cos(\overline{a}, \overline{b}) = \frac{\overline{a} \cdot \overline{b}}{|\overline{a}| \cdot |\overline{b}|}$$

Напрямні косинуси вектора:



$$\overline{a}(a_x; a_y; a_z)$$

Напрямними косинусами вектора  $\overline{a}$ називаються косинуси кутів, які вектор утворює з осями координат  $O_x$ ,  $O_v$ ,  $O_z$  відповідно.

Тоді 
$$\cos \alpha = \frac{a_x}{|\overline{a}|}$$
  $\cos \beta = \frac{a_y}{|\overline{a}|}$   $\cos \gamma = \frac{a_z}{|\overline{a}|}$ 

 $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$  (сума квадратів напрямних косинусів довільного вектора дорівнює 1).

## Приклади:

1) При якому значенні у вектори будуть перпендикулярними?

$$\bar{a} (5; -4; 8)$$
 $\bar{b} (2; y-1; 4)$ 
 $\bar{a} \perp \bar{b}, \text{ якщо } \bar{a} \cdot \bar{b} = 0$ 

$$\bar{a} \cdot \bar{b} = 10\text{-}4 \text{ x (y-1)} + 32 = 46\text{-}4\text{y}$$
  
 $46\text{-}4\text{y} = 0, \ \text{y} = \frac{46}{4} = \frac{23}{2} = 11\frac{1}{2}$ 

2) вектори  $\bar{a}$  і  $\bar{b}$  колінеарні, знайти х і z:

$$\frac{a}{b} (x; 3; -2) 
b (2; 6; -z) 
\frac{x}{2} = \frac{3}{6} = \frac{-2}{-z}, 
\frac{x}{2} = \frac{1}{2} = \frac{2}{z},$$

<u>п-вимірним вектором</u> називається упорядкована множина п дійсних чисел, які називаються координатами вектора.

п-вимірний вектор можна записати як матрицю-рядок або матрицю-стовпець:

$$\overline{a} = (a_1; a_2 \dots; a_n)$$
 and  $\overline{a} = \begin{pmatrix} a_1 \\ a_2 \\ \dots \\ a_n \end{pmatrix}$ 

Число координат вектора називається розмірністю вектора.

#### Дії з **п**-вимірними векторами

- 1) Порівнюють вектори тільки однієї розмірності.
- 2)  $\bar{a} + \bar{b} = (a_1 + b_1; a_2 + b_2; \dots a_n + b_n)$
- 3)  $\lambda \cdot \bar{a} = (\lambda a_1; \lambda a_2; \dots \lambda a_n)$
- 4)  $\overline{a} + \overline{b} + \overline{c} = (\overline{a} + \overline{b}) + \overline{c}$  and  $\overline{a} + (\overline{b} + \overline{c})$
- 5) Існує нульовий вектор (всі координати якого дорівнюють 0):  $\bar{0} = (0; 0; ... 0)$
- 6) Існують одиничні вектори (у яких одна з координат дорівнює 1, а інші 0; довжина одиничного вектора дорівнює 1):

$$e_1 = (1; 0; ...0), e_2 = (0; 1; 0; ...0), ...e_n = (0; 0; ...1)$$
7)  $a + 0 = a$ 

<u>п-вимірним векторним простором</u> називається множина всіх п-вимірних векторів, в якій операції додавання векторів та множення вектора на число визначені, як в пунктах 2 і 3.

Позначається R<sup>n</sup>

<u>Зауваження:</u> Простори  $R^1$ ,  $R^2$ ,  $R^3$  є окремими випадками простору  $R^n$ . Їх можна зобразити геометрично; для n>3 простори  $R^n$  геометрично вже уявити не можна, проте вони відіграють важливу роль в науці і техніці.

- 1) У системі лінійних рівнянь з n невідомими кожне рівняння можна розглядати як (n+1) вимірний вектор; наприклад перше рівняння:  $(a_{11}; a_{12}; ...; a_{1n}; b_1)$ .
- 2) Розв'язок системи рівнянь з  $\underline{\bf n}$  невідомими є  $\underline{\bf n}$ -вимірним вектором.

3) Кожний рядок матриці  $A_{mn}$  є n-вимірним вектором, а кожний стовпець m-вимірним. Рядки називаються горизонтальними, а стовпці — вертикальними векторами матриці.

## Система п-вимірних векторів

Нехай дана система n-вимірних векторів:  $a_1; a_2; \dots a_k$ , і дані скаляри (числа):  $\lambda_1; \lambda_2; \dots \lambda_k$ . Нехай

\*  $\overline{A} = \lambda_1 \cdot \overline{a}_1 + \lambda_2 \cdot \overline{a}_2 + \dots \lambda_k \cdot \overline{a}_k$  - <u>лінійна комбінація векторів</u>, а числа  $\lambda_1, \lambda_2, \dots \lambda_k$  - лінійна комбінація векторів, а числа  $\lambda_1, \lambda_2, \dots \lambda_k$  -<u>коефіцієнти</u> лінійної комбінації.

Вираз \* визначає розклад вектора  $\overline{a}$  за векторами  $\overline{a_1}; \overline{a_2}; \dots \overline{a_k}$ .

2. Розглянемо систему з **k** n-вимірних векторів:  $a_1; a_2; ... a_k$ .

Вектори називаються <u>лінійно залежними</u>, якщо хоча б один з них можна лінійно виразити через інші.

<u>Або:</u> якщо лінійна комбінація системи векторів  $\lambda_1 \cdot a_1 + \lambda_2 \cdot a_2 + \ldots + \lambda_k \cdot a_k = 0$  рівна нулю за умови, що хоча б один із коефіцієнтів  $\lambda_i$  ( $i = 1, 2, \ldots k$ ) не дорівнює нулю, то вектори називаються лінійно залежними.

Вектори називаються <u>лінійно незалежними</u>, якщо ні один із векторів не можна лінійно виразити через інші.

<u>Або</u>: Вектори називаються лінійно незалежними, якщо їх лінійна комбінація дорівнює нулю тільки за умови, що всі  $\lambda_i = 0$  (i = 1, 2, ... k).

<u>Приклад:</u> Чи будуть вектори лінійно залежними:  $\overline{a}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \ \overline{a}_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}, \ \overline{a}_3 = \begin{pmatrix} 0 \\ 5 \end{pmatrix}$ ?

Складемо лінійну комбінацію цих векторів і знайдемо, при яких значеннях  $\lambda_i$  лінійна комбінація дорівнює 0.

$$\begin{split} &\lambda_{1} \cdot \overline{a}_{1} + \lambda_{2} \cdot \overline{a}_{2} + \lambda_{3} \cdot \overline{a}_{3} = 0 \\ &\lambda_{1} \cdot \binom{1}{2} + \lambda_{2} \cdot \binom{-2}{1} + \lambda_{3} \cdot \binom{0}{5} = 0 \\ &\binom{\lambda_{1} - 2\lambda_{2}}{2\lambda_{1} + \lambda_{2} + 5\lambda_{3}} - \text{в правій частині одержаної рівності нульовий вектор,} \end{split}$$

значить його координати повинні дорівнювати 
$$0$$
. 
$$\begin{cases} \lambda_1 - 2\lambda_2 = 0 \\ 2\lambda_1 + \lambda_2 + 5\lambda_3 = 0 \end{cases} \begin{cases} \lambda_1 - 2\lambda_2 = 0 \\ 2\lambda_1 + \lambda_2 = -5\lambda_3 \end{cases}$$
 
$$\Delta = \begin{vmatrix} 1 & -2 \\ 2 & 1 \end{vmatrix} = 1 + 4 = 5 \neq 0$$

$$\Delta_{1} = \begin{vmatrix} 0 & -2 \\ -5\lambda_{3} & 1 \end{vmatrix} = -10\lambda_{3} \qquad \Delta_{2} = \begin{vmatrix} 1 & 0 \\ 2 & -5\lambda_{3} \end{vmatrix} = -5\lambda_{3}$$

$$\lambda_{1} = \frac{\Delta_{1}}{\Delta} = \frac{-10\lambda_{3}}{5} = -2\lambda_{3} \qquad \lambda_{2} = \frac{\Delta_{2}}{\Delta} = \frac{-5\lambda_{3}}{5} = -\lambda_{3}$$

$$\lambda_{1} = -2\lambda_{3}, \quad \lambda_{2} = -\lambda_{3}, \quad \partial e \lambda_{3} - \forall \quad (\lambda_{3} \neq 0)$$

Система має нескінченну множину розв'язків за умови  $\lambda_3 - \forall, \quad \lambda_3 \neq 0$ , значить дані вектори лінійно залежні.

$$\bar{a}_3 = 2\bar{a}_1 + \bar{a}_2$$

3. Нехай дана система n-вимірних векторів:  $a_1; a_2; ... a_k$ 

<u>Рангом</u> системи п-вимірних векторів називається число, яке дорівнює найбільшому числу лінійно незалежних векторів.

<u>Базисом</u> системи векторів називається впорядкована сукупність найбільшого числа лінійно незалежних векторів цієї системи.

Значить, ранг системи векторів дорівнює числу векторів, які утворюють базис.

В одній і ті й же системі векторів може бути декілька базисів, але кількість базисних векторів в кожному базисі одна й та ж.

Щоб знайти базис системи векторів записують матрицю з координат цих векторів, записаних у вигляді матриці-стовпця. Знаходять ранг матриці, який буде дорівнювати рангу системи векторів, а базисними векторами будуть вектори, які відповідають базисним стовпцям матриці.

<u>Базисом п-вимірного векторного простору  $R^n$ </u> називається довільна впорядкована система з <u>**п**</u> лінійно незалежних векторів.

Якщо система векторів  $a_1, a_2, ... a_n \in$  базисом п-вимірного векторного простору  $\mathbb{R}^n$ , то довільний вектор цього простору можна подати у вигляді лінійної комбінації базисних векторів:

\*\* 
$$\overset{-}{a}=\alpha_1\cdot\overset{-}{a_1}+\alpha_2\cdot\overset{-}{a_2}+\ldots+\alpha_n\cdot\overset{-}{a_n}$$
, де  $\alpha_1,\alpha_2,\ldots\alpha_n$  - координати  $\overset{-}{a}$  в базисі  $\overset{-}{a_1},\overset{-}{a_2},\ldots\overset{-}{a_n}$ 

Вираз \*\* називається розкладом вектора  $\bar{a}$  за даним базисом.  $\bar{a} = (\alpha_1, \alpha_2, ... \alpha_n)$ 

Система n-вимірних векторів в  $R^n$ , яка складається більше, ніж з  $\underline{\mathbf{n}}$  векторів, завжди лінійно залежна!

В двомірному просторі базис має 2 вектори  $(\bar{i} \ \text{та} \ \bar{j})$ , а система більше 2-х векторів завжди лінійно залежна.

Система більш, ніж 3-х векторів, в тривимірному просторі також лінійно залежна.

#### Розклад вектора за даним базисом

Нехай дана система  $\underline{\mathbf{n}}$  векторів  $\overline{a}_1, \overline{a}_2, \dots \overline{a}_n$ . Потрібно перевірити, чи утворює дана система базис, і розкласти вектор  $\overline{a}$  за даним базисом.

1) Вектор  $\bar{a}$  подамо у вигляді лінійної комбінації векторів  $\bar{a}_1, \bar{a}_2, ... \bar{a}_n$ ; коефіцієнти лінійної комбінації являються координатами  $\bar{a}$ , який потрібно знайти, тому позначимо їх  $\bar{x}_1, \bar{x}_2, ... \bar{x}_n$ :

$$\bar{a} = x_1 \cdot \bar{a}_1 + x_2 \cdot \bar{a}_2 + \dots + x_n \cdot \bar{a}_n$$
 (1)

- 2) В рівності (1) замість  $\overline{a}, \overline{a_1}, \overline{a_2}, \dots \overline{a_n}$  запишемо стовпці їх координат.
- 3) Виконавши дії над одержаною рівністю у вигляді матриць, одержимо систему **n** рівнянь з **n** невідомими, яку розв'язуємо методом Жордана-Гаусса.
- Якщо система має <u>1 розв'язок</u>, то  $a_1, a_2, ... a_n$  утворюють базис і вектор a єдиним способом може бути розкладений за цим базисом.
- Якщо система рівнянь має безліч розв'язків або несумісна, то вектори  $a_1, a_2, \dots a_n$  базис не утворюють.

Зауваження: Довільний п-вимірний векторний простір має базис, який утворює система одиничних **n**-вимірних векторів:

В тривимірному просторі такими були вектори  $\bar{i}, \bar{j}, \bar{k}$ .

<u>Приклад:</u> чи утворюють вектори  $a, a_1, a_2, a_4$  базис і якщо утворюють, то розкласти  $\bar{a}$  за цим базисом:

$$\overline{a_1} = (1; 0; 1; 0)$$
 $\overline{a_2} = (2; 1; -1; 2)$ 
 $\overline{a_3} = (-1; 1; 2; -1)$ 
 $\overline{a_4} = (0; 1; 1; 1)$ 
 $\overline{a} = (2; 2; 2; 1)$ 

Розкласти вектор за даним базисом –значить записати його як лінійну комбінацію базисних векторів.

$$\overline{a} = x_{1} \cdot \overline{a}_{1} + x_{2} \cdot \overline{a}_{2} + x_{3} \cdot \overline{a}_{3} + x_{4} \cdot \overline{a}_{4} \qquad x_{i} - ?$$

$$\begin{pmatrix} 2 \\ 2 \\ 2 \\ 1 \end{pmatrix} = x_{1} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + x_{2} \cdot \begin{pmatrix} 2 \\ 1 \\ -1 \\ 2 \end{pmatrix} + x_{3} \cdot \begin{pmatrix} -1 \\ 1 \\ 2 \\ -1 \end{pmatrix} + x_{4} \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} x_{1} + 2x_{2} - x_{3} \\ x_{2} + x_{3} + x_{4} \\ x_{1} - x_{2} + 2x_{3} + x_{4} \\ 2x_{2} - x_{3} + x_{4} \end{pmatrix}$$

$$\begin{cases} x_1 + 2x_2 - x_3 = 2 \\ x_2 + x_3 + x_4 = 2 \\ x_1 - x_2 + 2x_3 + x_4 = 2 \\ 2x_2 - x_3 + x_4 = 1 \end{cases}$$

Всі стовпці основної матриці базисні, значить система має 1 розв'язок, а значить вектор  $\overline{a}$  можна єдиним способом розкласти за даним базисом. Всі чотири вектори утворюють базис.

$$x_1=1, x_2=1 x_3=1 x_4=0$$
  
В новому базисі вектор  $\bar{a}$  має координати:  $\bar{a}=(1;1;1;0)$ .  $\bar{a}=\bar{a}_1+\bar{a}_2+\bar{a}_3$ 

## Питання для самоконтролю

- 1. Лінійні дії з векторами.
- 2. Скалярний добуток та його властивості.
- 3. Довжина вектора, кут між векторами, проекції.
- 4. Розклад вектора за базисом.
- 5. п-вимірні векторні простори.
- 6. Лінійна комбінація векторів.
- 7. Лінійно залежні та лінійно незалежні комбінації векторів.
- 8. Базисний мінор.
- 9. Базис.
- 10. Розклад вектора за даним базисом.
- 11.Ранг системи векторів

**Тема**: Площина. Пряма у просторі.

#### ПЛАН

- 1. Різні види рівнянь прямої на площині.
- 2. Кут між двома прямими.
- 3. Відстань від точки до прямої.
- 4. Рівняння площини в  $R^3$ .
- 5. Взаємне розташування площин.
- 6. Рівняння прямої в  $\mathbb{R}^3$ .
- 7. Взаємне розташування прямих, прямої та площини.
- 1. Точка на площині характеризується двома координатами: абсцисою та ординатою (M (x; y)). Рівняння прямої містять координати x та у у першому степені.



Нехай дана пряма на площині.  $M_1(x_1; y_1)$  — фіксована точка прямої. M(x; y) — довільна точка прямої (змінна)

Вектор  $\bar{s} = (m; n)$  паралельний прямій.

Потрібно за цими даними скласти рівняння прямої.

Вектори  $\bar{s}$  і  $\overline{M_1M}$  колінеарні, значить їх координати пропорційні.

$$\overline{M_1M} = (x-x_1; y-y_1)$$

Умова колінеарності:

$$\frac{x-x_1}{m} = \frac{y-y_1}{n}$$

Канонічне рівняння прямої на площині

2) Перетворимо одержане рівняння прямої:

$$y - y_1 = \frac{n}{m} (x - x_1)$$

Відношення  $\frac{n}{m}$  називають <u>кутовим коефіцієнтом</u> прямої  $\frac{n}{m}$ =k

 $y - y_1 = k \cdot (x - x_1)$ 

Рівняння прямої, яка проходить через т. М в напрямі (напрям вказує k)



lpha - кут нахилу прямої до осі абсцис

$$k = tg \alpha$$

k>0 – кут гострий, k<0 – тупий

3) Перетворимо одержане рівняння:

$$y - y_1 = kx - kx_1$$

$$y = kx + \underbrace{y_1 - kx_1}_{\mathbf{4}\mathbf{4}\mathbf{4}\mathbf{C}\mathbf{7}\mathbf{0}}$$

$$y_1 - kx_1 = b$$

y = kx + b

Рівняння прямої з кутовим коефіцієнтом

b – ордината точки, в якій пряма перетинає вісь  $O_v$ 



4) Рівняння прямої, яка проходить через дві задані точки.



$$M_1(x_1; y_1)$$
  
 $M_2(x_2; y_2)$ 

Запишемо рівняння прямої:

$$y-y_1=\kappa(x-x_1)$$

$$y_2 - y_{1=K} (x_2 - x_1)$$

Так як  $M_2$  ( $x_2$ ;  $y_2$ ) лежить на прямій, то її координати задовольняють рівнянню прямої, тому замість х і у можна підставити координати т.  $M_2$  .

Розділимо обидві частини рівнянь і одержимо:

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

Рівняння прямої, яка проходить через дві задані точки

5) Загальне рівняння прямої



$$Ax + By + C = 0$$

Ax + By + C = 0 Загальне рівняння прямої, де A і В – координати нормального вектора прямої, С – вільний член

Дослідження загального рівняння прямої

а) Нехай A=0, By+C=0 – пряма, паралельна осі  $O_x$ 



б) Нехай B=0, Ax+C=0 – пряма, паралельна осі  $O_y$ 



в) С=0, Ах+Ву=0 – пряма, проходить через початок координат



6) Рівняния прямої у відрізках на осях.

$$Ax + By + C = 0$$

$$Ax + By = -C$$

$$\frac{Ax}{-C} + \frac{By}{-C} = 1$$

$$\frac{x}{-\frac{C}{A}} + \frac{y}{-\frac{C}{B}} = 1$$

$$-\frac{C}{A} = a, \quad -\frac{C}{B} = b$$

$$\frac{x}{a} + \frac{y}{b} = 1$$

Рівняння прямої у відрізках на осях



a і b - відрізки, які віднімає пряма на осях  $\mathrm{O}_{\mathrm{x}}$  та  $\mathrm{O}_{\mathrm{y}}$ 

2. Нехай дані рівняння двох прямих:  $y = k_1 x + b_1$   $y = k_2 x + b_2$ 



$$tg\,\varphi = \frac{k_2 - k_1}{1 + k_1 k_2}$$

Якщо рівняння прямих задані в загальному вигляді Ах+Ву+С=0, то

$$k = -\frac{A}{B}$$

## Умова паралельності прямих



## Умова перпендикулярності прямих



$$tg\,\varphi = \frac{k_2 - k_1}{1 + k_1 k_2}$$

$$tg 90^0 = \infty \text{ ( He ichye)}$$

$$tg \ 90^0 = \infty \ ($$
 не існує $)$   $1 + k_1 k_2 = 0$   $k_1 \cdot k_2 = -1$  або  $k_2 = -\frac{1}{k_1}$ 

3.



Нехай пряма задана рівнянням Ax+By+C=0

 $M_{0}\left( x_{0};\,y_{0}\right) -$  точка, яка не лежить на цій прямій.

$$d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$

# Приклади:

1) Записати рівняння прямої, яка проходить через точку М (-1; 2) перпендикулярно прямій 2х-у+1=0

$$y - y_1 = k \cdot (x - x_1)$$

$$y - 2 = k \cdot (x + 1)$$
$$k = -\frac{1}{k_1} = -\frac{1}{2}$$

$$y-2=-\frac{1}{2}\cdot(x+1)$$

$$2y-4=-x-1$$

$$x + 2y - 3 = 0$$

2) Загальне рівняння прямої записати у відрізках на осях і побудувати пряму:

$$2x-5y+10=0$$

$$2x - 5y = -10$$

$$\frac{2x}{-10} - \frac{5y}{-10} = 1$$

$$\frac{x}{-5} + \frac{y}{2} = 1$$

$$a = -5$$
  $b = 2$ 



3) Записати рівняння прямої, яка проходить через точки  $M_1$  (-2;5),  $M_2$  (3;5)

$$\frac{y-5}{5-5} = \frac{x+2}{3+2}$$

$$\frac{y-5}{0} = \frac{x+2}{5}$$

$$(y-5)\cdot 5 = 0\cdot (x+2)$$

$$y-5=0$$
 - пряма, паралельна осі  $O_x$ 

Додатково: Побудова система нерівностей.

Довільна пряма ділить площину на дві півплощини Ах+Ву+С=0



Ах+Ву+С≥0 або Ах+Ву+С≤0 – ці нерівності, описують множину точок, які належать одній із півплощин

Для того, щоб побудувати шукану півплощину, потрібно:

- 1) побудувати пряму Ах+Ву+С=0;
- 2) з довільної півплощини вибрати точку з відомими координатами і ці координати підставити в нерівність. Якщо зміст нерівності зберігся, то нерівність описує ту півплощину, з якої була вибрана точка. Якщо зміст нерівності не зберігся, то нерівність описує другу півплощину.

$$\begin{cases} 3x - 2y + 6 \le 0 & (1) \\ x + 5y - 10 \le 0 & (2) \\ y \ge -6 & \end{cases}$$



4. Рівняння площини в просторі містить змінні х, у та z в першому степені

Розглянемо, який вид має рівняння площини. Нехай  $M_1$  ( $x_1;\ y_1;\ z_1$ ) фіксована точка площини, М (х; у; z) – довільна точка площини (змінна)





$$\overline{M_1 M} = (x-x_1; y-y_1; z-z_1)$$

$$\overline{N} \perp \overline{M_1 M} = > \overline{N} \cdot \overline{M_1 M} = 0$$

$$\overline{\frac{M_1M}{N}} = (x-x_1; y-y_1; z-z_1)$$

$$\overline{N} \perp \overline{M_1M} => \overline{N} \cdot \overline{M_1M} = 0$$

$$A \cdot (x - x_1) + B \cdot (y - y_1) + C \cdot (z - z_1) = 0$$
 Рівняння площини, яка проходить через задану т.  $M_1$ 

перпендикулярний

Заданий вектор  $\overline{N} = (A; B; C;)$ 

нормальним вектором площини.

площині.

Він

Загальне рівняння площини

$$Ax + By + Cz - \underbrace{Ax_1 - By_1 - Cz_1}_{\text{число } D} = 0$$

$$D = -Ax_1 - By_1 - Cz_1$$

$$Ax + By + Cz + D = 0$$

D - вільний член

Для того, щоб побудувати площину в системі координат, потрібно знайти точки перетину її з осями координат.

Приклад: Побудувати площину 3х-у+2z-6=0



- 1) при x=0, y=0 2z=6 z=3
- 2) при x=0, z=0 3x=6 x=2
- 3) при x=0, z=0 -y=-6 y=-6

Дослідження загального рівняння площини.

$$Ax + By + Cz + D = 0$$

1) A = 0, By + Cz + D = 0 площина  $| | O_x$ 









4) 
$$D = 0$$
,  $Ax + By + Cz = 0$  площина проходить через початок координат



5) A = D = 0, By + Cz = 0 площина проходить через вісь Ох



6) B = D = 0, Ax + Cz = 0 площина проходить через вісь Оу



7) C = D = 0, Ax + By = 0 площина проходить через вісь Oz



8)  $A = 0, B = 0, \quad C \neq 0, D \neq 0 \quad Cz + D = 0$   $z = -\frac{D}{C}$   $B = 0, C = 0, \quad A \neq 0, D \neq 0 \quad Ax + D = 0$   $x = -\frac{D}{A}$   $A = 0, C = 0, B \neq 0, D \neq 0 \quad By + D = 0$   $y = -\frac{D}{A}$ 

 $z = -\frac{D}{C}$  площини паралельні відповідно площинам  $x = -\frac{D}{A}$  Oxy, Oyz, Oxz

9) 
$$A = B = D = 0, \quad Cz = 0, \quad z = 0 \\ B = C = D = 0, \quad Ax = 0, \quad x = 0 \\ A = C = D = 0, \quad By = 0, \quad y = 0 \end{cases} \quad \begin{array}{c} \textit{площини збігаються} \\ \textit{відповідно} \\ \textit{3 Oxy, Oyz, Oxz} \end{array}$$

Рівняння площини у відрізках на осях.

$$Ax + By + Cz + D = 0$$

$$Ax + By + Cz - D : (-D)$$

$$\frac{Ax}{-D} + \frac{By}{-D} + \frac{Cz}{-D} = 1$$

$$\frac{X}{-\frac{D}{A}} + \frac{Y}{-\frac{D}{B}} + \frac{Z}{-\frac{D}{C}} = 1$$

$$-\frac{D}{A} = a, \quad -\frac{D}{B} = b, \quad -\frac{D}{C} = c$$

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

a,b,c-відрізки, які відтинає площина на осях Ох, Оу, Оz

відповідно



5. Площини можуть бути паралельними.

$$A_1x + B_1y + C_1z + D_1 = 0$$
  
$$A_2x + B_2y + C_2z + D_2 = 0$$





Якщо площини паралельні, то їх нормальні вектори колінеарні.

$$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$$

- умова паралельності площин

2) Площини можуть бути перпендикулярними.

$$\overline{N}_1 \perp \overline{N}_2$$



$$A_1 A_2 + B_1 B_2 + C_1 C_2 = 0$$

 $A_1A_2 + B_1B_2 + C_1C_2 = 0$  - умова перпендикулярності площин

3) Кут між площинами обчислюється як косинус кута між  $\overline{N}_1 \perp \overline{N}_2$ 

$$\cos\varphi = \frac{A_1A_2 + B_1B_2 + C_1C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \cdot \sqrt{A_2^2 + B_2^2 + C_2^2}}$$

4) Відстань від точки до плошини.



$$d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

6. Довільна пряма в просторі розглядається як пряма перетину двох площин, тому рівняння прямої в загальному вигляді задається як система

рівнянь площин: 
$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$

Канонічне рівняння прямої.

$$\overline{S} = (m; n; p)$$

$$\overline{S} \mid | \overline{M_1 M} \quad \overline{M_1 M} = (x-x_1; y-y_1; z-z_1)$$

$$M_1(x_1; y_1; z_1)$$
  $M(x; y; z)$ 

$$\frac{x-x_1}{m} = \frac{y-y_1}{n} = \frac{z-z_1}{p}$$

Рівняння прямої, яка проходить через дві задані точки.

$$M_1(x_1; y_1; z_1)$$
  $M_2(x_2; y_2; z_2)$ 

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$$

7. Взаємне розташування прямих.



 $\overline{S}_1 = (m_1; n_1; p_1), \quad \overline{S}_2 = (m_2; n_2; p_2)$ Якщо прямі паралельні, то їх напрямні вектори колінеарні

$$\frac{m_1}{m_2} = \frac{n_1}{n_2} = \frac{p_1}{p_2}$$

- умова паралельності прямих

Перпендикулярні.



$$\overline{S}_1 \perp \overline{S}_2$$

$$m_1 m_2 + n_1 n_2 + p_1 p_2 = 0$$

 $m_1 m_2 + n_1 n_2 + p_1 p_2 = 0$  - умова перпендикулярності прямих

3) Кут між двома прямими дорівнює куту між їхніми напрямними векторами  $\overline{S}_1$  і  $\overline{S}_2$ .

$$\cos\varphi = \frac{m_1 m_2 + n_1 n_2 + p_1 p_2}{\sqrt{m_1^2 + n_1^2 + p_1^2} \cdot \sqrt{m_2^2 + n_2^2 + p_2^2}}$$

Взаємне розташування прямої та площини.

$$\frac{x-x_1}{m} = \frac{y-y_1}{n} = \frac{z-z_1}{p} - \text{пряма}$$

$$Ax + By + Cz + D = 0$$
 - площина

1) Паралельні.



Am+Bn+Cp=0

- умова паралельності прямої і площини

2) Перпендикулярні.  $\overline{N} \parallel \overline{S}$ 



$$\frac{A}{m} = \frac{B}{n} = \frac{C}{p}$$
 - умова перпендикулярності прямої і площини

# Питання для самоконтролю

- 1. Різні види рівнянь прямої на площині.
- 2. Кут між двома прямими.
- Відстань від точки до прямої.
   Рівняння площини в R<sup>3</sup>.
- 5. Взаємне розташування площин.
  6. Рівняння прямої в R<sup>3</sup>.
- 7. Взаємне розташування прямих, прямої та площини.

Тема: Криві та поверхні 2-го порядку.

#### ПЛАН

- 1. Криві 2-го порядку.
- 2. Поверхні 2-го порядку.
- **1.** *Лінією (кривою) другого порядку* називають множину точок площини, координати яких задовольняють рівняння  $ax^2 + by^2 + cxy + dx + ey + f = 0$ ,

де хоча б одне з чисел a,b,c відмінне від нуля.

До ліній другого порядку належать коло, еліпс, гіпербола і парабола. **Колом** називають множину точок площини, відстані яких від заданої точки цієї ж площини (центра кола) дорівнюють сталому числу (радіусу). Координати точок кола задовольняють рівняння  $(x-a)^2 + (y-b)^2 = R^2$ .

У випадку, коли центр кола розташований у початку координат ( a = b = 0 ), рівняння набуває канонічного вигляду  $x^2 + y^2 = R^2$ .



**Еліпсом** називають множину всіх точок площини, сума відстаней яких від двох даних точок цієї площини (**фокусіє**) є величина стала і більша ніж відстань між фокусами.

Розглянемо на площині точки  $F_1, F_2$  — фокуси еліпса. Розташуємо координатні осі так, щоб вісь Ox проходила через ці точки, а вісь Oy проходила через середину відрізку  $F_1F_2$  перпендикулярно до Ox.

Позначимо відстань між фокусами  $F_1, F_2 = 2c$ , а суму відстаней від довільної точки еліпсу до фокусів 2a, 2a > 2c. Тоді фокуси матимуть координати  $F_1(-c,0), F_2(c,0)$ .

За означенням довільна точка M(x, y) належить еліпсу тоді і тільки тоді, коли виконується рівність

$$\sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2} = 2a$$

Піднесемо двічи до квадрату ліву і праву частини цього рівняння, маємо

$$x^{2}(a^{2}-c^{2})+y^{2}a^{2}=a^{2}(a^{2}-c^{2})$$

Позначимо різницю  $a^2 - c^2 = b^2$ .

Тоді

$$x^{2}b^{2} + y^{2}a^{2} = a^{2}b^{2}$$

$$afo$$

$$0$$
October pipugung a kanoningan

Останнє рівняння є канонічним рівнянням еліпса.

$$A_1 A_2 = 2a \qquad B_1 B_2 = 2b$$

Величини називають

відповідно *великою* та *малою осями* еліпса.

$$a = b x^2 + y^2 = a^2$$

Якщо , то рівняння набуває вигляду

Тобто коло  $\epsilon$  частинним випадком еліпса, у якого фокуси збігаються в одну точку – центр.

Міру відхилення еліпса від кола характеризує величи-

$$\varepsilon = \frac{c}{a}$$

$$0 \le \varepsilon < 1$$

, яку називають *ексцентриситетом* еліпса.

$$F_1M$$
  $F_2M$  ки і називають фокальними падіусами точки

Відрізки і називають фокальними радіусами точки 
$$r_1 = F_1 M = \sqrt{(x+c)^2 + y^2} \quad r_2 = F_2 M = \sqrt{(x-c)^2 + y^2} \quad .$$

$$x = \pm \frac{a}{\varepsilon} = \pm \frac{a^2}{c}$$
 називають директрисами ел

Прямі називають *директрисами* еліп-са. Оскільки

0 ≤ ε < 1

$$\frac{a^2}{c} > a$$

, тобто директриси еліпса лежать поза ним.

Для директрис має місце наступне твердження.

Відношення фокальних радіусів довільної точки еліпса до відстаней цієї точки до відповідних директрис  $\epsilon$  стала величина , що дорівню $\epsilon$ ексцентриситету еліпса, тобто

$$\frac{r_1}{d_1} = \frac{r_2}{d_2} = \varepsilon$$

*Гіперболою* називають множину всіх точок площини, модуль різниці відстаней яких від двох заданих точок цієї площини (фокусів) є величина стала і менша відстані між фокусами.



 $F_1F_2 = 2c$ 

, а модуль різниці відстаней 2a, 2a < 2cПозначимо відстань між фокусами

від довільної точки гіперболи до фокусів . Тоді фокуси матимуть

$$F_1(-c,0)$$
  $F_2(c,0)$ 

координати та

M(x, y)

належить гіперболі тоді і тільки За означенням довільна точка тоді, коли виконується рівність

$$\sqrt{(x+c)^2 + y^2} - \sqrt{(x-c)^2 + y^2} = 2a$$

Після перетворень, дістаємо канонічне

рівняння гіперболи

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

$$b^2 = c^2 - a^2$$

Гіпербола складається з двох віток і має дві асимптоти

$$y = \pm \frac{b}{a} x$$

$$A_1 A_2 = 2a$$

 $A_{1}A_{2}$  = 2a називають **дійсною віссю** гіперболи, а Відрізок

$$B_1B_2=2b$$

уявною віссю. відрізок

Рівняння

$$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$$

також визначає гіперболу, яку називають спряженою до

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

гіперболи

Ексцентриситет гіперболи визначають як відношення фокальної відстані гіперболи до довжини її дійсної осі

$$\varepsilon = \frac{s}{a}, \quad \varepsilon > 1$$

$$x = \pm \frac{a}{\varepsilon} = \pm \frac{a^2}{c} \qquad a$$

Прямі , де – дійсна піввісь гіперболи називають директрисами гіперболи. Вони мають ту саму властивість, що і диркетриси еліпса:

$$\frac{r_1}{d_1} = \frac{r_2}{d_2} = \varepsilon$$



*Параболою* називають множину всіх точок площини, рівновіддалених від даної точки (фокуса) і даної прямої (директриси).

Запишемо рівняння параболи.

Нехай на площині задано фокус  $\stackrel{F}{=}$  і директрису таким чином, що відстань між ними дорівнює . Розташуємо вісь Ox так, щоб вона проходила через фокус перпендикулярно до директриси, а вісь Oy ділила навпіл відстань між фокусом і директрисою.

$$F(\frac{p}{2}, 0) \qquad x = -\frac{p}{2}$$

Тоді фокус має координати , а рівняння директриси M(x, y)

Довільна точка належить параболі тоді і тільки тоді, коли виконується рівність

$$MB = MF$$
 , де  $MB = x + \frac{p}{2}$   $MF = \sqrt{(x - \frac{p}{2})^2 + y^2}$ 

Звідси

$$x + \frac{p}{2} = \sqrt{(x - \frac{p}{2})^2 + y^2}$$

або після перетворень канонічне рівняння параболи:

$$y^2 = 2px$$

Вісь симетрії параболи називають *віссю параболи*. Точку перетину параболи з віссю називають *вершиною* параболи, а число , яке дорівнює відстані між фокусом і параболою називають *параметром параболи*.

Параметр характеризує ширину області, яку обмежує парабола (чим більше, тим ширша парабола).

Поверхнею другого порядку називають множину точок, координати яких задовольняють рівняння

$$ax^{2} + by^{2} + cz^{2} + dxy + exz + fyz + gx + hy + kz + l = 0$$

де хоча б один з коефіцієнтів відмінний від нуля. Таке рівняння називають *загальним рівнянням поверхні другого порядку*.

Як геометричний об'єкт поверхня другого порядку не зміниться при переході від однієї системи координат до іншої. Існує система координат, в якій рівняння поверхні має найпростіший (*канонічний*) вигляд.

До поверхонь другого порядку відносять циліндричні, конічні поверхні, поверхні обертання, сферу, еліпсоїд, однопорожнинний та двохпорожнинний гіперболоїди, еліптичний та гіперболічний параболоїди.

**Циліндричною поверхнею** називають поверхню, утворену множиною прямих (твірних), які перетинають задану лінію (напрямну). Найчастіше розглядають такі циліндричні поверхні, напрямні яких лежать в координатній площині, а твірні паралельні осі, що перпендикулярна до цієї площини. Наприклад, рівняння

$$f(x,y)=0$$

описує циліндричну поверхню з напрямними в площині Cz твірними, паралельними осі .

Циліндричні поверхні, напрямними яких  $\epsilon$  криві другого порядку, називають *циліндричними поверхнями другого порядку*.



$$x^2 + y^2 = R^2$$

Канонічним рівнянням *кругового циліндра*  $\varepsilon$  рівняння

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = R^2$$

У випадку

циліндр називають еліптичним.





$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = R^2$$

У випадку

*–гіперболічним* циліндром.

$$y^2 = 2pr$$

Рівняння описує параболічний циліндр.

Поверхнею, утвореною обертанням заданої плоскої кривої навколо заданої прямої (осі), розташованої в площині кривої , називають *поверхнею обертання*.

Щоб дістати рівняння поверхні обертання навколо координатної осі необхідно в рівнянні кривої залишити без змін координату, що відповідає осі обертання, а другу координату замінити на корінь квадратний з суми квадратів двох інших координат, взятий зі знаком "+" або "—".

## Приклад 1.

 $x^2 + 4y^2 = 4$  Ох Знайти ріняння поверхні обертання еліпса навколо осі **Розв'язання**.

Осі обертання відповідає координата x, отже її залишимо без змін, а  $y = \pm \sqrt{y^2 + z^2}$  координату замінимо на і підставимо у рівняння еліпса  $x^2 + 4(y^2 + z^2) = 4$ 

Звідси маємо рівняння еліпсоїда обертання



$$\frac{x^2}{4} + y^2 + z^2 = 1$$

Канонічне рівняння трьохвісного еліпсоїда



Результатом обертання гіперболи

$$\frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

навколо осі Oz є поверхня, яку називають *однопорожнинним гіперболоїдом обертання*. Його рівняння  $\frac{x^2}{b^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ 

$$\frac{x^2}{b^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

Однопорожнинним гіперболоїдом називають поверхню, яку описує рівняння

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

Результатом обертання гіперболи

$$\frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$



навколо осі  $Oy \in поверхня, яку називають$ **двопорожнинним**гіперболоїдом обертання. Його рівняння

$$\frac{x^2}{c^2} + \frac{z^2}{c^2} - \frac{y^2}{b^2} = -1$$

**Двопороженинним гіперболоїдом** називають поверхню, яку описує рівняння

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$



*Параболоїдом обермання* називають поверхню, яку утворено обертанням параболи

$$y^2 = 2pz$$

Навколо осі *Oz*. Його рівняння

$$\frac{x^2}{p^2} + \frac{y^2}{p^2} = 2z$$

Еліптичним параболоїдом називають поверхню, рівняння якої

$$\frac{x^2}{p} + \frac{y^2}{q} = 2z, \quad p, q > 0$$

Гіперболічним параболоїдом називають поверхню, рівняння якої



Цю поверхню ще називають сідлоподібною поверхнею.

**Конічною поверхнею** називають поверхню, утворену множиною прямих, що проходять через задану точку (вершину)  $\stackrel{P}{}$  і перетинають задану лінію (напрямну). Кожну з прямих, що утворюють конічну поверхню називають **твірною**.



Прикладом конічної поверхні є конус. Його канонічне рівняння  $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$ 

a = b = cУ випадку  $x^2 + y^2 = z^2$ 

маємо *прямий круговий конус* 

### ЛЕКЦІЯ 6

**Тема**: Дії над матрицями. Обернена матриця. Ранг матриці.

#### ПЛАН

- 1. Поняття матриці.
- 2. Дії з матрицями, властивості.
- 3. Обернена матриця.
- 4. Розв'язування матричних рівнянь  $A \cdot X = B$ ,  $X \cdot A = B$ ,  $A \cdot X \cdot B = C$
- 5. Розв'язування систем лінійних рівнянь за допомогою оберненої матриці.
- 6. Ранг матриці.
- 7. Методи обчислення рангу.
- 8. Теорема Кронекера-Капеллі.
- 1. Матрицею\* розміром m x n називають сукупність чисел, розміщених у вигляді прямокутної таблиці, яка має **m** рядків та **n** стовпців.

\*(поняття матриці вперше ввели англійські математики Гамільтон і Келі)

Матриці позначають великими літерами латинського алфавіту та круглими дужками. Така матриця має вигляд:

$$A_{mn} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ & \dots & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

або 
$$A = \begin{pmatrix} a_{i \ j} \end{pmatrix} m \times n$$
,  $A = \begin{pmatrix} a_{i \ j} \end{pmatrix} m \times n$   $i = 1, 2, \dots m$   $j = 1, 2, \dots n$ 

Кожен елемент  $a_{i\,j}$  матриці А має два індекси: перший вказує номер рядка, другий –номер стовпця.

\*матриці широко використовуються в плануванні виробництва та транспортних перевезень. Вони дозволяють розробляти різні варіанти плану, полегшують дослідження залежності між різними економічними показниками

За формою матриці можуть бути <u>прямокутними</u> ( $m \neq n$ ), <u>квадратними</u> (m = n), <u>матриця-рядок</u> (у якої всього один рядок), <u>матриця-стовпець</u> ( у якої всього один стовпець).

$$A_{41} = \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \\ a_{41} \end{pmatrix} \qquad B_{13} = \begin{pmatrix} b_{11} & b_{12} & b_{13} \end{pmatrix}$$

## 2. Дії з матрицями:

Порівнювати матриці можна одного розміру. Матриці рівні тоді, коли рівні їх відповідні елементи.

$$A_{mn} = B_{mn}$$
  $a_{11} = b_{11}$   $a_{12} = b_{12...}$ 

1) Транспонувати матрицю - значить замінити її рядки стовпцями або навпаки.

$$A_{23} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}, \qquad A^{T}_{23} = A_{32} = \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23} \end{pmatrix}$$

2) Додавати (віднімати) можна матриці одного розміру. Щоб додати дві матриці, потрібно додати їх відповідні елементи.

$$A_{23} + B_{23} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \end{pmatrix}$$

3) Добуток матриці на число:

щоб помножити матрицю на число, потрібно кожний елемент її помножити на це число

$$A_{22} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \qquad \lambda \cdot A_{22} = \begin{pmatrix} \lambda a_{11} & \lambda a_{12} \\ \lambda a_{21} & \lambda a_{22} \end{pmatrix}$$

З цього випливає, що за знак матриці можна виносити спільний множник всіх елементів.

Приклад: Виконати дії:

$$\overline{\begin{pmatrix} -2 & 1 & 3 \\ -4 & 5 & 0 \end{pmatrix}} - 3 \cdot \begin{pmatrix} -2 & -4 & 1 \\ 3 & -8 & 4 \end{pmatrix} = \begin{pmatrix} -2 & 1 & 3 \\ -4 & 5 & 0 \end{pmatrix} + \begin{pmatrix} 6 & 12 & -3 \\ -9 & 24 & -12 \end{pmatrix} =$$

$$= \begin{pmatrix} 4 & 13 & 0 \\ -13 & 29 & -12 \end{pmatrix}$$

<u>Діагональною матрицею</u> називається квадратна матриця, в якої всі елементи, крім елементів, які знаходяться на головній діагоналі, дорівнюють нулю.

$$A_{\partial iae.} = \begin{pmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{pmatrix}$$

<u>Одиничною матрицею</u> називається діагональна матриця, у якої кожен елемент головної діагоналі дорівнює одиниці

$$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

<u>Нульовою матрицею</u> називається матриця, у якої всі елементи дорівнюють нулю.

## 4) Добуток матриць

Матриці можна перемножати тоді, коли число стовпців першої матриці дорівнює числу рядків другої матриці

$$A_{mn} \cdot B_{nk} = C_{mk}$$

(такі матриці називаються узгодженими)

## Правило множення рядка на стовпець:

$$\underline{\text{Cxema}}: \begin{pmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{pmatrix} \times \begin{pmatrix} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \end{pmatrix}$$

Щоб визначити елементи  $c_{i\,j}$  , потрібно кожний елемент і-го рядка першої матриці помножити на відповідні елементи ј-го стовпця другої матриці і результати (добутки) додати.

Приклад: 
$$\begin{pmatrix} 2 & 1 & 0 & 4 \end{pmatrix} \cdot \begin{pmatrix} 3 & 8 \\ -1 & 9 \\ 0 & 0 \\ 1 & 1 \end{pmatrix} = C_{12}$$

$$A_{14} \qquad \qquad B_{42}$$

$$C_{12} = (-6 - 1 + 0 + 4) - 16 + 9 + 0 + 4) = (-3 - 3)$$

$$C_{55} = \begin{pmatrix} -10 - 6 & 4 - 12 - 2 \\ 0 & 0 & 0 & 0 \\ 20 & 12 & -8 & 24 & 4 \\ 40 & 24 & -16 & 48 & 8 \\ 50 & 30 & -20 & 60 & 10 \end{pmatrix}$$

## Властивості додавання:

- 1) А+В=В+А (комутативність)
- 2) A+(B+C)=(A+B)+C (асоціативність)
- 3) A+0=A (роль 0 матриці як числа 0)
- 4)  $\alpha \cdot (\beta A) = (\alpha \beta) \cdot A$
- 5)  $\alpha \cdot (A+B) = \alpha \cdot A + \alpha \cdot B$
- 6)  $(\alpha + \beta) \cdot A = \alpha \cdot A + \beta \cdot A$

## Властивості множення:

- 1)  $A \cdot B \neq B \cdot A$  (іноді  $B \cdot A$  не має змісту),
- Якщо  $A \cdot B = B \cdot A$ , то такі матриці називаються переставними
- 2)  $A \cdot (B+C) = A \cdot B + A \cdot C$  розподільний закон множення відносно додавання
- 3)  $\lambda \cdot A \cdot \mu \cdot B = \lambda \mu \cdot (AB)$
- 4)  $ABC = (AB) \cdot C = A \cdot (BC)$
- 5)  $E \cdot A = A \cdot E$  (роль E матриці як числа 1)

Приклад: Знайти добуток:

$$\frac{1}{12} \cdot \begin{pmatrix} 0 & -3 \\ 4 & 10 \end{pmatrix} \cdot \begin{pmatrix} 10 & 3 \\ -4 & 0 \end{pmatrix} = \frac{1}{12} \cdot \begin{pmatrix} 12 & 0 \\ 0 & 12 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E$$

3. Якщо в квадратній матриці всі елементи  $a_{i\,j}$  замінити на відповідні алгебраїчні доповнення  $A_{i\,j}$ , потом транспонувати матрицю, то одержимо матрицю, яка називається <u>приєднаною</u>:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \qquad \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{23} & A_{33} \end{pmatrix}^{T} = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = A *$$

<u>Визначником</u> (детермінантом) квадратної матриці A називається визначник, елементами якого  $\epsilon$  елементи матриці:

$$\det \cdot A_{33} = ig|A_{33}ig| = egin{array}{ccc|c} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{array}ig|$$
 — число!

Квадратна матриця називаються <u>виродженою</u> (<u>особливою</u>), якщо її визначник дорівнює нулю.

Квадратна матриця називається <u>невиродженою</u> (<u>неособливою</u>), якщо її визначник не дорівнює нулю.

3. Аналогічно поняттю оберненого числа в теорії чисел вводиться в лінійній алгебрі поняття оберненої матриці, але тільки для квадратних матриць.

Нехай дана квадратна матриця:

$$A_{mn} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ & \dots & & & \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

Матриця  $A^{-1}$  називається <u>оберненою</u> до матриці A якщо при множенні цієї матриці на дану як справа так і зліва одержуємо одиничну матрицю E:

$$A^{-1} \cdot A = A \cdot A^{-1} = E$$

Обернена матриця існує тільки для невиродженої матриці.

$$A^{-1} = \frac{1}{\det A} \cdot A^* = \frac{1}{\det A} \cdot \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \dots & \dots & \dots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix}$$
$$\det A = |A| \neq 0$$

Приклад: Знайти обернену матрицю для матриці А:

$$A = \begin{pmatrix} -2 & 4 & 3 \\ 1 & 5 & 1 \\ 3 & 0 & 2 \end{pmatrix}$$

$$\det A = |A| = \begin{vmatrix} -2 & 4 & 3 \\ 1 & 5 & 1 \\ 3 & 0 & 2 \end{vmatrix} = -20 + 12 - 45 - 8 = -61 \neq 0$$

$$A_{11} = \begin{vmatrix} 5 & 1 \\ 0 & 2 \end{vmatrix} = 10 \qquad A_{21} = -\begin{vmatrix} 4 & 3 \\ 0 & 2 \end{vmatrix} = -8 \qquad A_{31} = \begin{vmatrix} 4 & 3 \\ 5 & 1 \end{vmatrix} = -11$$

$$A_{12} = -\begin{vmatrix} 1 & 1 \\ 3 & 2 \end{vmatrix} = 1$$

$$A_{12} = -\begin{vmatrix} 1 & 1 \\ 3 & 2 \end{vmatrix} = 1$$
  $A_{22} = \begin{vmatrix} -2 & 3 \\ 3 & 2 \end{vmatrix} = -13$   $A_{32} = -\begin{vmatrix} -2 & 3 \\ 1 & 1 \end{vmatrix} = 5$ 

$$A_{32} = - \begin{vmatrix} -2 & 3 \\ 1 & 1 \end{vmatrix} = 5$$

$$A_{13} = \begin{vmatrix} 1 & 5 \\ 3 & 0 \end{vmatrix} = -15$$

$$A_{13} = \begin{vmatrix} 1 & 5 \\ 3 & 0 \end{vmatrix} = -15$$
  $A_{23} = -\begin{vmatrix} -2 & 4 \\ 3 & 0 \end{vmatrix} = 12$   $A_{33} = \begin{vmatrix} -2 & 4 \\ 1 & 5 \end{vmatrix} = -1$ 

$$A_{33} = \begin{vmatrix} -2 & 4 \\ 1 & 5 \end{vmatrix} = -1$$

$$A^{-1} = \frac{1}{-61} \cdot \begin{pmatrix} 10 & -8 & -11 \\ 1 & -13 & 5 \\ -15 & 12 & -14 \end{pmatrix} = \begin{pmatrix} -\frac{10}{61} & \frac{8}{61} & \frac{11}{61} \\ -\frac{1}{61} & \frac{13}{61} & -\frac{5}{61} \\ -\frac{15}{61} & -\frac{12}{61} & \frac{14}{61} \end{pmatrix}$$

Перевірка: 
$$A \cdot A^{-1} = \begin{pmatrix} -2 & 4 & 3 \\ 1 & 5 & 1 \\ 3 & 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 10 & -8 & 11 \\ 1 & -13 & 5 \\ -15 & 12 & -14 \end{pmatrix} =$$

$$= -\frac{1}{61} \cdot \begin{pmatrix} -61 & 0 & 0 \\ 0 & -61 & 0 \\ 0 & 0 & -61 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

## 2. АХ=В, де А і В-задані матриці, Х –невідома матриця

Помножимо обидві частини рівняння зліва на матрицю A<sup>-1</sup>.

$$\underbrace{A^{-1} \cdot A}_{E} \cdot X = A^{-1} \cdot B$$
, тобто  $E \cdot X = A^{-1} \cdot B$ 

так як  $E \cdot X = X$ 

Приклад: 
$$\begin{pmatrix} -2 & 4 \\ 1 & 3 \end{pmatrix} \cdot X = \begin{pmatrix} 5 & 0 \\ 2 & -3 \end{pmatrix}$$
  $\qquad \qquad A \cdot X = B$   $\qquad \qquad X = A^{-1} \cdot B$ 

Знайдемо А<sup>-1</sup>:

$$|A| = \begin{vmatrix} -2 & 4 \\ 1 & 3 \end{vmatrix} = -10 \neq 0$$

$$A_{11} = 3$$
  $A_{2} = -1$   $A_{3} = -1$ 

$$A^{-1} = -\frac{1}{10} \cdot \begin{pmatrix} -3 & -4 \\ -1 & -2 \end{pmatrix} = \frac{1}{10} \cdot \begin{pmatrix} -3 & 4 \\ 1 & 2 \end{pmatrix}$$

Тоді: 
$$X = \frac{1}{10} \cdot \begin{pmatrix} -3 & 4 \\ 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 5 & 0 \\ 2 & -3 \end{pmatrix} = \frac{1}{10} \cdot \begin{pmatrix} -7 & -12 \\ 9 & -6 \end{pmatrix}$$

Перевірка: 
$$\frac{1}{10} \cdot \begin{pmatrix} -2 & 4 \\ 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} -7 & -12 \\ 9 & -6 \end{pmatrix} = \frac{1}{10} \cdot \begin{pmatrix} 50 & 0 \\ 20 & -30 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 2 & -3 \end{pmatrix}$$

$$\underline{\text{Відповідь}} \colon X = \begin{pmatrix} -\frac{7}{10} & -\frac{6}{5} \\ \frac{9}{10} & -\frac{3}{5} \end{pmatrix}$$

6) 
$$\frac{X \cdot A = B}{X \cdot \underbrace{A \cdot A^{-1}}_{E}} = B \cdot A^{-1}$$

$$X = B \cdot A^{-1}$$

B) 
$$\underbrace{A \cdot X \cdot B = C}_{E}$$
  $\underbrace{A^{-1} \cdot A \cdot X \cdot B \cdot B^{-1}}_{E} = A^{-1} \cdot C \cdot B^{-1}$ 

$$X = A^{-1} \cdot C \cdot B^{-1}$$

4. Нехай дана система лінійних неоднорідних рівнянь:

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = b_1 \\ a_{21}x + a_{22}y + a_{23}z = b_2 \\ a_{31}x + a_{32}y + a_{33}z = b_3 \end{cases}$$

введемо позначення:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

#### основна матриця системи

Дану систему можна записати за допомогою введених позначень:

$$A \cdot X = B$$

Звідси  $X = A^{-1} \cdot B$ 

Метод розв'язування систем лінійних рівнянь за допомогою оберненої матриці можна використовувати тоді, коли матриця А невироджена.

Приклад: Розв'язати систему за допомогою оберненої матриці:

$$\begin{cases}
x - 2y + 4z = 9 \\
2x + y - z = 5 \\
3y + 4z = 11
\end{cases}$$

$$A = \begin{pmatrix} 1 & -2 & 4 \\ 2 & 1 & -1 \\ 0 & 3 & 4 \end{pmatrix}$$

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$B = \begin{pmatrix} 9 \\ 5 \\ 11 \end{pmatrix}$$

 $A \cdot X = B$ , звідси  $X = A^{-1} \cdot B$ 

$$\det A = |A| = \begin{vmatrix} 1 & -2 & 4 \\ 2 & 1 & -1 \\ 0 & 3 & 4 \end{vmatrix} = 47 \neq 0$$

$$A^{-1} = \frac{1}{47} \cdot \begin{pmatrix} 7 & 20 & -2 \\ -8 & 4 & 9 \\ 6 & -3 & 5 \end{pmatrix}$$

$$A_{11} = \begin{vmatrix} 1 & -1 \\ 3 & 4 \end{vmatrix} = 7$$
  $A_{21} = -\begin{vmatrix} -2 & 4 \\ 3 & 4 \end{vmatrix} = 20$   $A_{31} = \begin{vmatrix} -2 & 4 \\ 1 & -1 \end{vmatrix} = -2$ 

$$A_{12} = -\begin{vmatrix} 2 & -1 \\ 0 & 4 \end{vmatrix} = -8$$
  $A_{22} = \begin{vmatrix} 1 & 4 \\ 0 & 4 \end{vmatrix} = 4$   $A_{32} = -\begin{vmatrix} 1 & 4 \\ 2 & -1 \end{vmatrix} = 9$ 

$$A_{13} = \begin{vmatrix} 2 & 1 \\ 0 & 3 \end{vmatrix} = 6$$
  $A_{23} = -\begin{vmatrix} 1 & -2 \\ 0 & 3 \end{vmatrix} = -3$   $A_{33} = \begin{vmatrix} 1 & -2 \\ 2 & 1 \end{vmatrix} = 5$ 

$$X = \frac{1}{47} \cdot \begin{pmatrix} 7 & 20 & -2 \\ -8 & 4 & 9 \\ 6 & -3 & 5 \end{pmatrix} \cdot \begin{pmatrix} 9 \\ 5 \\ 11 \end{pmatrix} = \frac{1}{47} \cdot \begin{pmatrix} 141 \\ 47 \\ 94 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$x=3, y=1, z=2$$

<u>Відповідь</u>: x=3, y=1, z=2

Приклад: 
$$\begin{cases} 7x - y + z = 0 \\ 2x + 4y - z = 0 \\ x + y + z = 0 \end{cases}$$

система лінійних однорідних рівнянь

$$A = \begin{pmatrix} 7 & -1 & 1 \\ 2 & 4 & -1 \\ 1 & 1 & 1 \end{pmatrix}, \qquad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \qquad B = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$AX = B$$
,  $X = A^{-1} \cdot B$ 

$$\det A = \begin{vmatrix} 7 & -1 & 1 \\ 2 & 4 & -1 \\ 1 & 1 & 1 \end{vmatrix} = 28 + 2 + 1 - (4 - 7 - 2) = 36 \neq 0$$

Так як  $\det A \neq 0$ , то система має 1 розв'язок (x=0, y=0, z=0).

Якби  $\det A = 0$ , то система мала б нескінченну множину розв'язків.

1. Мінором матриці  $A_{mn}$  k-го порядку називається визначник k-го порядку, який складається з елементів, що знаходяться на перетині будь-яких  $\mathbf{k}$  рядків та  $\mathbf{k}$  стовпців.

Обираючи різними способами  $\underline{\mathbf{k}}$  рядків та  $\underline{\mathbf{k}}$  стовпців, одержимо деяку кількість мінорів k-го порядку.

Матриця має мінори будь-якого порядку: від першого (елементи матриці –мінори 1-го порядку) до найменшого із чисел  $\underline{\mathbf{m}}$  та  $\underline{\mathbf{n}}$ .

6. Рангом матриці A (rang A або r (A)) називається найбільший порядок її мінорів, відмінних від нуля.

### Властивості:

- 1) Ранг існує для будь-якої матриці  $A_{mn}$ , причому  $0 \le r(A) \le \min(m,n)$ .
- 2) r (A) =0 тоді і тільки тоді, коли A=0.
- 3) Для квадратної матриці n-го порядку ранг дорівнює <u>n</u>тоді і тільки тоді, коли матриця невироджена (тобто  $\ddot{\text{i}}$  визначник не дор $\dot{\text{g}}$ внює 0).

Якщо rang A=r, то любий мінор r-го порядку не рівний 0 називається базисним мінором. Базисних мінорів для матриці може бути декілька.

Якщо rang A=r, то любий мінор k-го порядку дорівнює 0, якщо k > r

- 7. Ранг матриці простіше всього знайти за допомогою елементарних (еквівалентних) перетворень:
- 1) перестановка місцями рядків (стовпців) матриці;
- 2) множення (ділення) всіх елементів любого рядка (стовпця) на будь яке число  $\lambda \neq 0$ ;
- 3) додавання до елементів будь-якого рядка (стовпця) відповідних елементів іншого рядка (стовпця), помножених на одне й те саме число;
- 4) викреслювання (відкидання) нульового рядка (стовпця) (не обов'язково).

Застосовуючи ці перетворення, в результаті одержують еквівалентні матриці, ранги яких однакові:

$$A \sim B \Rightarrow rang A = rang B$$

-За їх допомогою матрицю зводять до матриці, у якої нижче головної діагоналі всі елементи нулі. Тоді ранг матриці дорівнює кількості елементів головної діагоналі, відмінних від 0.

$$A_{34} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \end{pmatrix}$$
 rang  $(A_{34}) = 3$  (матриця має вигляд "східців", її ще називають "трикутною"

"трапецевидною")

-Другий метод знаходження ранга матриці: за допомогою елементарних перетворень в кожному рядку і в кожному стовпчику матриці одержати не більше одного, не рівного нулю, елемента. В такій матриці ненульові рядки і стовпці називаються базисними рядками і стовпцями. Тоді ранг такої матриці дорівнює числу базисних рядків (стовпців).

нульові рядки і стовпці викреслюються

Ненульових стовпців (рядків) 3, значить rang B=3, тому і rang A=3.

Мінор, складений з невикреслених елементів (тобто мінор, який складається з елементів базисних рядків і стовпців) називається базисним мінором.

$$M_3(B) = \begin{vmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = -1 \neq 0$$
  $M_3(A) = \begin{vmatrix} 1 & 2 & 0 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \end{vmatrix} \neq 0$ 

3. Розглянемо систему **m** лінійних рівнянь з **n** невідомими:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_n \end{cases}$$

<u>Основна матриця системи</u> –це матриця, елементами якої  $\epsilon$  коефіці $\epsilon$ нти при невідомих:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

<u>Розширена матриця системи</u> –це матриця основна, до якої дописано матрицю-стовпець вільних членів:

$$\widetilde{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ & \dots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_n \end{pmatrix}$$

<u>Розв'язком системи</u> називається множина дійсних чисел  $\alpha_1, \alpha_2, ... \alpha_n$ , підстановка яких у систему замість невідомих  $x_1, x_2, ... x_n$ , перетворює кожне рівняння системи у тотожність.

Система називається <u>сумісною</u>, якщо вона має хоча б один розв'язок. Сумісна система називається <u>визначеною</u>, якщо вона має єдиний розв'язок, і <u>невизначеною</u>, якщо вона має більше одного розв'язку (значить вона має нескінченну множину розв'язків).

Система, що не має розв'язку, називається несумісною.

8. Теорема Кронекера – Капеллі\*

(критерій сумісності системи)

\*Кронекер – німецький математик, Капеллі – італійський

Система лінійних рівнянь сумісна тоді і тільки тоді, коли ранг основної матриці системи дорівнює рангу розширеної матриці: rang  $\widetilde{A}$  .

- 1) Для сумісної системи:
- а) Якщо rang  $A = \text{rang } \tilde{A} = \text{n}$ , де n —число невідомих системи, то система має один розв'язок.
- б) Якщо rang  $A = \operatorname{rang} \widetilde{A} < n$ , то система має нескінченну множину розв'язків.
- 2) Якщо rang  $A < \operatorname{rang} \widetilde{A}$ , то система несумісна.

# Питання для самоконтролю

- 1. Поняття матриці.
- 2. Застосування матриці в економіці.
- 3. Дії з матрицями, властивості.
- 4. Обернена матриця.
- 5. Розв'язування матричних рівнянь  $A \cdot X = B$ ,  $X \cdot A = B$ ,  $A \cdot X \cdot B = C$
- 6. Розв'язування систем лінійних рівнянь за допомогою оберненої матриці.
- 7. Ранг матриці.
- 8. Методи обчислення рангу.
- 9. Теорема Кронекера Капеллі.

**Tema:** Системи лінійних рівнянь.

#### ПЛАН

- 1. Метод Гаусса\* розв'язування систем лінійних рівнянь (інформативно)
- 2. Метод Жордана Гаусса.
- 3. Загальний та частинний розв'язки систем лінійних рівнянь
- \* Карл Фрідріх Гаусс (1777-1855) –видатний німецький математик, астроном, фізик, геодезист.
  - 1. Нехай дана система лінійних рівнянь:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Суть метода Гаусса полягає в тому, що шляхом елементарних перетворень систему треба привести до трикутного вигляду (або трапецевидного (східчастого) вигляду): перше рівняння системи буде містити всі невідомі, крім першого; третє –всі невідомі, крім першого і т.д.:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{mn}x_n = b_m \end{cases}$$

Якщо система рівнянь буде мати один розв'язок, то останнє рівняння буде містити тільки одне останнє невідоме; якщо безліч розв'язків, то крім останнього невідомого останнє рівняння буде містити ще хоча б одне невідоме.

Зворотній хід методу Гаусса: із останнього рівняння знайдемо  $x_n$  (у випадку 1 розв'язку) або одне із невідомих через послідуючі (у випадку безлічі розв'язків); підставляючи знайдене значення в передостаннє рівняння, знайдемо  $x_{n-1}$  і т.д.

## Елементарні перетворення системи

- 1) Множення (ділення) довільного рівняння системи на число, відмінне від 0.
- 2) Додавання до обох частин одного з рівнянь системи відповідних частин другого рівняння, помножених на одне й те ж саме відмінне від 0 число.

В результаті елементарних перетворень одержимо еквівалентну даній систему. Еквівалентними (рівносильними) називаються системи, якщо вони мають одні й ті ж розв'язки.

Якщо для даної системи лінійних рівнянь записати розширену матрицю, то після виконання елементарних перетворень по методу Гаусса одержують рівними нулю елементи, що лежать нижче головної діагоналі.

- 2. Застосовуючи еквівалентні перетворення до системи лінійних рівнянь, можна одержати кожне із рівнянь в такому вигляді, коли кожне із рівнянь містить тільки одне (всі вони різні). Якщо розглядати розширену матрицю системи, то в цьому випадку рівними нулю будуть не тільки елементи, що лежать нижче головної діагоналі, а й ті елементи, що лежать вище головної діагоналі. В цьому заключається метод Жордана\*-Гаусса.
- \* Каміль Жордан (1838-1922) -французький математик
- В процесі елементарних перетворень системи можуть бути такі випадки:
- 1) Одержимо рівняння:  $0 \cdot x_1 + 0 \cdot x_2 + ... \cdot 0 \cdot x_n = 0$

Таке рівняння викидається із системи і система буде містити менше число рівнянь.

2) Одержимо рівняння  $0 \cdot x_1 + 0 \cdot x_2 + ... + 0 \cdot x_n = b$ , де  $b \neq 0 (0 = b \neq 0 ? !)$ . В цьому випадку система несумісна (розв'язків немає).

Зауваження: Так як елементарні перетворення виконуються над рівняннями системи, то в розширеній матриці їх потрібно застосовувати тільки до рядків. Мета перетворень: в кожному рядку вибрати ведучий елемент; а в кожному стовпці одержати нулі, крім ведучого елемента.

Невідомі, які відповідають базисним стовпцям матриці називаються <u>базисними</u>, а інші невідомі називаються <u>вільними</u> (у випадку, коли система має безліч розв'язків).

3. <u>Загальним</u> розв'язком системи лінійних рівнянь (у випадку безлічі розв'язків) називається розв'язок, в якому базисні невідомі виражені через вільні невідомі.

<u>Частинними</u> розв'язками системи називаються розв'язки, в яких вільні невідомі дорівнюють яким-небудь числам.

До частинних розв'язків належать:

-базисний (якщо усі вільні невідомі дорівнюють 0);

-фундаментальний (якщо одну вільну невідому прирівняти до 1, а інші до 0) (кількість фундаментальних розв'язків залежить від кількості вільних невідомих);

-невід'ємний базисний розв'язок –<u>опорний</u>

Якщо в результаті перетворень матриці одержимо число базисних стовпців рівне числу невідомих, то система має єдиний розв'язок.

Якщо число базисних стовпців менше числа невідомих, то система має безліч розв'язків.

## Приклад 1: Розв'язати систему методом Жордана-Гаусса:

$$\begin{cases} 3x_1 - 2x_2 + x_3 - 2x_5 = 2\\ x_1 + x_2 - 3x_3 + x_4 - 2x_5 = 1\\ 4x_1 - x_2 - 2x_3 + x_4 - 4x_5 = 3\\ 2x_1 - 3x_2 + 4x_3 - x_4 = 1\\ 5x_1 - 5x_3 + 2x_4 - 6x_5 = 4 \end{cases}$$

$$\widetilde{A} = \begin{pmatrix}
3 & -2 & 1 & 0 & -2 & 2 \\
1 & 1 & -3 & 1 & -2 & 1 \\
2 & -1 & -2 & 1 & -4 & 3 \\
4 & -3 & 4 & -1 & 0 & 1 \\
5 & 0 & -5 & 2 & -6 & 4
\end{pmatrix}$$

$$x(-1) \quad x(-2) \quad \begin{pmatrix}
3 & -2 & 1 & 0 & -2 & 2 \\
1 & 1 & -3 & 1 & -2 & 1 \\
3 & -2 & 1 & 0 & -2 & 2 \\
3 & -2 & 1 & 0 & -2 & 2 \\
3 & -2 & 1 & 0 & -2 & 2
\end{pmatrix}$$

~ одержали 4 рядки одинакові –це значить, що в системі буде 4 однакових рівняння, тому 3 з них можна відкинути, тобто в матриці можна викреслити 3 рядки.

Базисних стовпців 2 (третій і четвертий), а невідомих 5. Так як число базисних стовпців менше числа невідомих, то система буде мати нескінченну множину розв'язків.

 $x_3$ ,  $x_4$  –базисні невідомі  $x_1$ ,  $x_2$ ,  $x_5$  -вільні невідомі

Знайдемо загальний розв'язок системи:

$$\begin{cases} 3x_1 - 2x_2 + x_3 - 2x_5 = 2\\ 10x_1 - 5x_2 + x_4 - 8x_5 = 7 \end{cases}$$

$$\begin{cases} x_3 = 2 - 3x_1 + 2x_2 + 2x_5 \\ x_4 = 7 - 10x_1 + 5x_2 + 8x_5 \end{cases}$$
, де  $x_1, x_2, x_5 - \forall$ 

х загал. = 
$$\begin{pmatrix} x_1 \\ x_2 \\ 2 - 3x_1 + 2x_2 + 2x_5 \\ 7 - 10x_1 + 5x_{25} + 8x_5 \\ x_5 \end{pmatrix} x_1, x_2, x_5 - \forall$$

Знайдемо частинний розв'язок: нехай  $x_1=1, x_2=3, x_5=-1, тоді$ 

$$x$$
 част. =  $\begin{pmatrix} 1 \\ 3 \\ 3 \\ 4 \\ -1 \end{pmatrix}$ 

Знайдемо базисний розв'язок  $x_1=x_2==x_5=0$ 

$$X$$
 баз. =  $\begin{pmatrix} 0 \\ 0 \\ 2 \\ 7 \\ 0 \end{pmatrix}$ 

$$\frac{ \text{Приклад 2:}}{ \begin{cases} 2x_1 + 3x_2 - 4x_3 + x_4 = 2 \\ x_1 - 3x_2 + 2x_3 - x_4 = 1 \\ x_1 + 6x_2 - 6x_3 + 2x_4 = 5 \\ 3x_1 - 2x_3 = 3 \end{cases} }$$

$$\widetilde{A} = \begin{pmatrix}
2 & 3 & -4 & 1 & 2 \\
1 & -3 & 2 & -1 & 1 \\
1 & 6 & -6 & 2 & 5 \\
3 & 0 & -2 & 0 & 3
\end{pmatrix}$$

$$\sim \begin{pmatrix}
2 & 3 & -4 & 1 & 2 \\
3 & 0 & -2 & 0 & 3 \\
-3 & 0 & 2 & 0 & 1 \\
3 & 0 & -2 & 0 & 3
\end{pmatrix}$$

не має змісту

Відповідь: розв'язків немає

Приклад 3: 
$$\begin{cases} x_1 - 2x_2 + 3x_3 - x_4 = 10 \\ 2x_1 + x_2 - 3x_4 = 5 \\ 3x_1 - x_2 + x_3 - 2x_4 = 7 \\ 3x_2 - x_3 + x_4 = -7 \end{cases}$$

$$\tilde{A} = \begin{pmatrix} 1 & -2 & 3 & -1 & | & 10 \\ 2 & 1 & 0 & -3 & | & 5 \\ 3 & -1 & 1 & -2 & | & 7 \\ 0 & 3 & -1 & 1 & | & -7 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 3 & -5 & 0 & | & -13 \\ 0 & 10 & -14 & 0 & | & -38 \\ 0 & 5 & -8 & 1 & | & -23 \\ 0 & -2 & 7 & 0 & | & 16 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 3 & -5 & 0 & | & -13 \\ 0 & 10 & -14 & 0 & | & -38 \\ 0 & 5 & -8 & 1 & | & -23 \\ 0 & -2 & 7 & 0 & | & 16 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 3 & -5 & 0 & | & -13 \\ 0 & 1 & 7 & 0 & | & 13 \\ 0 & 0 & -43 & 1 & | & -88 \\ 0 & 0 & -43 & 1 & | & -88 \\ 0 & 0 & -43 & 1 & | & -88 \\ 0 & 0 & 0 & 0 & | & 2 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & -26 & 0 & | & -52 \\ 0 & 1 & 7 & 0 & | & 13 \\ 0 & 0 & -43 & 1 & | & -88 \\ 0 & 0 & 0 & 1 & | & -22 \\ 0 & 1 & 7 & 0 & | & 13 \\ 0 & 0 & -43 & 1 & | & -88 \\ 0 & 0 & 0 & 1 & | & -22 \\ 0 & 1 & 0 & 0 & | & -22 \\ 0 & 1 & 0 & 0 & | & -22 \\ 0 & 1 & 0 & 0 & | & -22 \\ 0 & 1 & 0 & 0 & | & -22 \\ 0 & 1 & 0 & 0 & | & -22 \\ 0 & 1 & 0 & 0 & | & -22 \\ 0 & 1 & 0 & 0 & | & -22 \\ 0 & 1 & 0 & 0 & | & -22 \\ 0 & 1 & 0 & 0 & | & -22 \\ 0 & 1 & 0 & 0 & | & -22 \\ 0 & 1 & 0 & 0 & | & -22 \\ 0 & 1 & 0 & 0 & | & -22 \\ 0 & 1 & 0 & 0 & | & -22 \\ 0 & 1 & 0 & 0 & | & -22 \\ 0 & 1 & 0 & 0 & | & -22 \\ 0 & 1 & 0 & 0 & | & -22 \\ 0 & 1 & 0 & 0 & | & -22 \\ 0 & 0 & 0 & 0 & | & -22 \\ 0 & 0 & 0 & 0 & | & -22 \\ 0 & 0 & 0 & 0 & | & -22 \\ 0 & 0 & 0 & 0 & | & -22 \\ 0 & 0 & 0 & 0 & | & -22 \\ 0 & 0 & 0 & 0 & | & -22 \\ 0 & 0 & 0 & 0 & | & -22 \\ 0 & 0 & 0 & 0 & | & -22 \\ 0 & 0 & 0 & 0 & | & -22 \\ 0 & 0 & 0 & 0 & | & -22 \\ 0 & 0 & 0 & 0 & | & -22 \\ 0 & 0 & 0 & 0 & | & -22 \\ 0 & 0 & 0 & 0 & | & -22 \\ 0 & 0 & 0 & 0 & | & -22 \\ 0 & 0 & 0 & 0 & | & -22 \\ 0 & 0 & 0 & 0 & | & -22 \\ 0 & 0 & 0 & 0 & | & -22 \\ 0 & 0 & 0 & 0 & | & -22 \\ 0 & 0 & 0 & 0 & | & -22 \\ 0 & 0 & 0 & 0 & | & -22 \\ 0 & 0 & 0 & 0 & | & -22 \\ 0 & 0 & 0 & 0 & | & -22 \\ 0 & 0 & 0 & 0 & | & -22 \\ 0 & 0 & 0 & 0 & | & -22 \\ 0 & 0 & 0 & 0 & | & -22 \\ 0 & 0 & 0 & 0 & | & -22 \\ 0 & 0 & 0 & 0 & | & -22 \\ 0 & 0 & 0 & 0 & | & -22 \\ 0 & 0 & 0 & 0 & | & -22 \\ 0 & 0 & 0 & 0 & |$$

Всі стовпці основної матриці базисні, значить всі невідомі базисні, система має 1 розв'язок:

$$x_1 = 0$$

$$x_2 = -1$$

$$x_3 = 2$$

$$x_4 = -2$$

# Питання для самоконтролю

- 1. Метод Гаусса\* розв'язування систем лінійних рівнянь (інформативно)
  - 2. Метод Жордана –Гаусса.
  - 3. Загальний розв'язок систем лінійних рівнянь.
  - 4. Частинний розв'язок систем лінійних рівнянь.