CIE6020 Assignment 4

Due: 23:55, 10 April 2019

1. Fano's inequality. Consider a random variable X over $\{1, 2, ..., m\}$ with $\Pr(X = i) = p_i, i = 1, 2, ..., m$, where $p_1 \geq p_2 \geq \cdots \geq p_m$. The minimal probability of error predictor when there is no information about the instance of X is $\hat{X} = 1$, the most probable value of X, with resulting probability of error $P_e = 1 - p_1$. Maximize H(X) subject to the constraint $1 - p_1 = P_e$ to find a bound on P_e in terms of H(X). This is Fano's inequality in the absence of conditioning.

Solution: The minimal probability of error predictor of X is $\hat{X} = 1$. The probability of error is $P_e = 1 - p_1$. We maximize H(X) for a given P_e . Write

$$H(X) = -p_1 \log p_1 - \sum_{i=2}^{m} p_i \log p_i$$

$$= -p_1 \log p_1 - \sum_{i=2}^{m} P_e \frac{p_i}{P_e} \log \frac{p_i}{P_e} - P_e \log P_e$$

$$= H(P_e) + P_e H\left(\frac{p_2}{P_e}, \frac{p_3}{P_e}, \cdots, \frac{p_m}{P_e}\right)$$

$$\leq H(P_e) + P_e \log(m-1),$$

since the maximum of $H(\frac{p_2}{P_e}, \frac{p_3}{P_e}, \cdots, \frac{p_m}{P_e})$ is attained by an uniform distribution. Hence any X that can be predicted with a probability of error P_e must satisfy

$$H(X) \le H(P_e) + P_e \log(m-1),$$

which is the unconditional form of Fano's inequality. We can weaken this inequality to obtain an explicit lower bound for P_e ,

$$P_e \ge \frac{H(X) - 1}{\log(m - 1)}.$$

2. Z-channel. The Z-channel is a binary input and binary output channel with the transition probabilities W(y|x) given by

$$W = \begin{bmatrix} 1 & 0 \\ p & 1 - p \end{bmatrix}.$$

See an illustration in the figure below.

Find the capacity of the Z-channel and the maximizing input probability distribution.

Solution: Let X be the input and Y be the output of the Z-channel, where $f_X(0) = q$ and $f_X(1) = 1 - q$. We can calculate that $f_Y(0) = f_X(0) + pf_X(1) = q + p(1-q) = p + q - pq$ and $f_Y(1) = (1-p)f_X(1) = (1-p)(1-q)$.

Thus, the mutual information

$$I(X;Y) = H(Y) - H(Y|X)$$

= $H(q + p - pq) - f_X(0)H(Y|X = 0) - f_X(1)H(Y|X = 1)$
= $h(q + p - pq) - (1 - q)h(p)$,

where $h(p) = -p \log p - (1-p) \log (1-p)$ is the binary entropy function.

By $h'(p) = \ln \frac{1-p}{p}$, we have

$$\frac{dI(X;Y)}{dq} = (1-p)\log\frac{1-p-q+pq}{q+p-pq} + h(p).$$

By solving $\frac{dI(X;Y)}{dq} = 0$, we get

$$q = \frac{1}{1-p} \left(\frac{1}{1+2^{-\frac{h(p)}{1-p}}} - p \right).$$

Substituting the above value of q into I(X;Y), we have

$$C = h\left(\frac{1}{1+2^{-\frac{h(p)}{1-p}}}\right) - h(p) + \frac{h(p)}{1-p}\left(\frac{1}{1+2^{-\frac{h(p)}{1-p}}} - p\right).$$

3. Consider the discrete memoryless channel $Y = X + Z \pmod{11}$, where the alphabet of X is $\{0, 1, \ldots, 10\}$ and Z is uniformly distributed on $\{1, 2, 3\}$. Assume Z is independent of X. Find the capacity of this channel and the maximizing input probability distribution.

Solution: The mutual information between X and Y is

$$I(X;Y) = H(Y) - H(Y|X) = H(Y) - H(X+Z|X) = H(Y) - H(Z|X)$$

since Z is independent of X, then H(Z|X) = H(Z) = log3

$$H(Y) = -\sum_{i=1}^{11} P(Y = i - 1) log P(Y = i - 1)$$

 $H(Y) = -\sum_{i=1}^{11} P(Y = i - 1) log P(Y = i - 1)$ Simply, we have H(Y) achieve maximum when Y is uniformly distributed, which

$$C = \max_{p(x)} I(X;Y) = -\sum_{i=1}^{11} \frac{1}{11} log \frac{1}{11} - log 3 = log \frac{11}{3}$$

this can be achieved when Y is uniformly distributed, where by symmetric X is uniformly distributed.

4. Consider a channel with the input and output alphabet $\{0,1\}$. The ith input X_i and the *i*th output Y_i , i = 1, 2, ... are related by

$$Y_i = X_i + U_i$$

where the addition is modulo 2 and U_i has distribution $\Pr\{U_i = 1\} = 1 - \Pr\{U_i = 1\}$ $0\} = q$. Here U_j and $(X_i, i = 1, ...)$ are independent.

(a) When U_i , $i = 1, 2, \ldots$ and $(X_j, j = 1, \ldots)$ are independent, show the channel is a memoryless binary symmetric channel and give its capacity.

(Hint: show that for any integer n > 0,

$$\Pr\{Y_i = y_i, i = 1, \dots, n | X_i = x_i, i = 1, \dots, n\} = \prod_{i=1}^n \Pr\{Y_i = y_i | X_i = x_i\},$$

i.e., the channel is memoryless.)

Solution: First,

$$\Pr\{Y_i = y | X_i = x\} = \Pr\{U_i = y - x | X_i = x\}$$
$$= \Pr\{U_i = y - x\}$$
$$\triangleq W(y|x).$$

We know that W(1|0) = W(0|1) = q and W(0|0) = W(1|1) = 1 - q. Write

$$\Pr\{Y_{i} = y_{i}, i = 1, \dots, n | X_{i} = x_{i}, i = 1, \dots, n\}$$

$$= \frac{\Pr\{U_{i} = y_{i} - x_{i}, X_{i}, i = 1, \dots, n\}}{\Pr\{X_{i} = x_{i}, i = 1, \dots, n\}}$$

$$= \Pr\{U_{i} = y_{i} - x_{i}, i = 1, \dots, n\}$$

$$= \prod_{i=1}^{n} \Pr\{U_{i} = y_{i} - x_{i}\}$$

$$= \prod_{i=1}^{n} W(y_{i}|x_{i}).$$

Therefore, the channel is memoryless and binary symmetry.

The capacity of the channel is 1 - H(q).

(b) When $U_i = U_{i+1}, i = 1, 3, 5, ...$, and $U_i, i = 1, 3, 5, ...$ and $(X_j, j = 1, ...)$ are independent, show that the channel is not memoryless.

(Hint: calculate $\Pr\{Y_1 = y_1, Y_2 = y_2 | X_1 = x_1, X_2 = x_2\}$ and show that it is not the same as $\Pr\{Y_1 = y_1 | X_1 = x_1\} \Pr\{Y_2 = y_2 | X_2 = x_2\}$.)

Solution: Let

$$W_2(y_1, y_2|x_1, x_2) \triangleq \Pr\{Y_1 = y_1, Y_2 = y_2|X_1 = x_1, X_2 = x_2\}$$

= $\Pr\{U_1 = y_1 - x_1, U_2 = y_2 - x_2\}.$

As $U_1 = U_2$, we have for $x, y \in \{0, 1\}$,

$$W_2(x, y|x, y) = 1 - q,$$

 $W_2(x + 1, y + 1|x, y) = q.$

As $W^2 \neq W_2$, the channel is not memoryless.

(c) Under the condition of (b), the channel can be equivalent to a DMC by combining two consecutive uses of the channel. Give the transition matrix of this DMC, and calculate its capacity.

Solution: W_2 as the transition matrix. Let X' and Y' be the input and output of this channel. We have

$$I(X'; Y') = H(Y') - H(Y'|X')$$

= $H(Y') - H(q)$
< $2 - H(q)$.

As the maximum can be achieved by the uniform distribution of X', the capacity of the channel is 2 - H(p).

(d) Assume you are given a set of capacity achieving codes for the memoryless binary symmetric channel under the condition of (a). Using these codes, construct a capacity achieving code for the channel under the condition of (b).

Solution: Consider an (n, M) code C for the binary symmetric DMC. We can modify this code to one for DMC $\{W_2\}$ of the same error probability and rate $1 + \log M/n$. For each codeword (x_1, x_2, \ldots, x_n) of C, and n bits (y_1, y_2, \ldots, y_n) , we form a new codeword for W_2 , where the i-th input is $(x_i, x_i + y_i)$.

This code has $M2^n$ codewords. Suppose the channel input is $(x_i, x_i + y_i), i = 1, \ldots, n$ and the corresponding output is $(u_i, v_i), i = 1, \ldots, n$. Then $y_i = 1, \ldots, n$

 $u_i + v_i$ and $(u_i, i = 1, ..., n)$ can be used to decode $(x_i, i = 1, ..., n)$ using the decoding algorithm of C.

5. Consider a stochastic process U_1, U_2, \ldots with $U_i \in \mathcal{U}$, a finite set, such that the entropy rate H exists and $-\frac{1}{n}\log p(U_1, U_2, \ldots, U_n) \to H$ in probability. For any integer n > 0 and real number $\epsilon > 0$, find a subset $A_{\epsilon}^{(n)} \subset \mathcal{U}^n$ such that $|A_{\epsilon}^{(n)}| \leq 2^{n(H+\epsilon)}$ and $\Pr\{(U_1, \ldots, U_n) \in A_{\epsilon}^{(n)}\} > 1 - \epsilon$ when n is sufficiently large.