Ejercicio No. 1 (25%) – Convierta las siguientes expresiones regulares en autómatas finitos deterministas (para ello deberá primero convertir las expresiones regulares a AFN y luego convertir a AFD). Muestre todo su procedimiento, i.e., AFN construido con Thompson, tabla de transición, conversión a AFD. Para el inciso g, interprete \ como un escape de carácter, i.e., \(\lambda\) significa que su regex reconoce el caracter (.

a) (a|t)c

Estado	а	b	С	ε
1	()	()	()	2, 4
2	3	()	()	()
3	()	()	6	()
4	()	5	()	()
5	()	()	6	()
6	()	()	()	()

Paso 3: Convertir AFN a AFD

1.
$$\{1\} = \{\epsilon - \text{closure}(1)\} = \{1, 2, 4\}$$

2. De
$$\{1, 2, 4\}$$
, con a: $\{\epsilon\text{-closure}(3)\} = \{3\}$

3. De
$$\{1, 2, 4\}$$
, con b: $\{\epsilon\text{-closure}(5)\} = \{5\}$

4. De
$$\{3\}$$
, con c: $\{\epsilon\text{-closure}(6)\} = \{6\}$

5. De
$$\{5\}$$
, con c: $\{\epsilon\text{-closure}(6)\} = \{6\}$

Estado AFN	а	b	С	ε
{1, 2, 4}	Α	{3}	{5 }	()
{3}	В	()	()	{6}
{5}	С	()	()	{6}
{6}	D	()	()	

Estado	а	b	С
Α	В	С	()
В	()	()	D
С	()	()	D
D	()	()	()

b)
$$(a|b) *$$

Estado	а	b	ε
1	()	()	2,4
2	3	()	()
3	()	()	1
4	()	5	()
5	()	()	1

Paso 3: Convertir AFN a AFD

- 1. {1} = {ε-closure(1)} = {1, 2, 4}
- 2. De $\{1, 2, 4\}$, con a: $\{\epsilon\text{-closure}(3)\} = \{3\}$
- 3. De $\{1, 2, 4\}$, con b: $\{\epsilon\text{-closure}(5)\} = \{5\}$
 - 4. De $\{3\}$, con a: $\{\epsilon\text{-closure}(3)\} = \{3\}$
 - 5. De $\{5\}$, con b: $\{\epsilon\text{-closure}(5)\} = \{5\}$

Estado AFN	Estado AFD	а	b
{1,2,4}	Α	{3}	{5}
{3}	В	{3}	{5}
{5}	С	{3}	{5}

Estado	а	b
Α	В	С
В	В	С
С	В	С

Estado	а	В	ε
1	()	()	2,4
2	3	()	()
3	2	()	()
4	()	()	5
5	()	6	()
6	()	5	()

Paso 3: Convertir AFN a AFD

- 1. $\{1\} = \{\epsilon closure(1)\} = \{1, 2, 4, 5\}$
- 2. De $\{1, 2, 4, 5\}$, con a: $\{\epsilon\text{-closure}(3)\} = \{3\}$
- 3. De $\{1, 2, 4, 5\}$, con b: $\{\epsilon\text{-closure}(6)\} = \{6\}$
 - 4. De $\{3\}$, con a: $\{\epsilon\text{-closure}(2)\} = \{2, 3\}$
 - 5. De $\{6\}$, con b: $\{\epsilon\text{-closure}(5)\} = \{5, 6\}$

Estado AFN	Α	b
{1,2,4,5}	{2,3}	{5,6}
{2,3}	{2,3}	{5,6}
{5,6}	{2,3}	{5,6}

Estado AFN	Α	b
Α	В	С
В	В	С
С	В	С

d)
$$((\varepsilon|a)|b*)*$$

Estado	а	b	ε
1	()	()	2
2	()	()	()
3	4	()	()
4	()	()	()
5	()	()	1,3,6
6	()	()	7
7	()	8	()
8	()	()	6

Paso 3: Convertir AFN a AFD

- 1. $\{5\} = \{\epsilon \text{closure}(5)\} = \{1, 2, 3, 4, 5, 6, 7\}$
- 2. De $\{1, 2, 3, 4, 5, 6, 7\}$, con a: $\{\epsilon$ -closure $(4)\}$ = $\{4\}$
- 3. De $\{1, 2, 3, 4, 5, 6, 7\}$, con b: $\{\epsilon\text{-closure}(8)\} = \{8, 6, 7\}$
 - 4. De {4}, con a: {}
 - 5. De {8, 6, 7}, con b: {ε-closure(8)} = {8, 6, 7}

Estado AFN	Estado AFD	а	b
{1,2,3,4,5,6,7}	Α	{4}	{8,6,7}
{4}	В	()	()
{8,6,7}	С	()	{8,6,7}

Estado AFN	а	b
Α	В	С
В	()	()
С	()	С

e)
$$(a|b) * abb(a|b) *$$

Estado	а	b	ε
1	()	()	2,4
2	3	()	()
3	()	()	1
4	()	5	()
5	()	()	1
6	7	()	()
7	()	8	()
8	()	()	9,12
9	()	()	10,12
10	11	()	()
11	()	()	()
12	()	13	()
13	()	()	()

Paso 3: Convertir AFN a AFD

1.
$$\{1\} = \{\epsilon - closure(1)\} = \{1, 2, 4\}$$

2. De
$$\{1, 2, 4\}$$
, con a: $\{\epsilon\text{-closure}(3)\} = \{3\}$

3. De
$$\{1, 2, 4\}$$
, con b: $\{\epsilon\text{-closure}(5)\} = \{5\}$

4. De $\{3\}$, con a: $\{\epsilon\text{-closure}(1)\} = \{1, 2, 4, 3\}$

5. De {5}, con b: {ε-closure(8)} = {8, 9, 10, 12}

6. De $\{8, 9, 10, 12\}$, con a: $\{\epsilon\text{-closure}(11)\} = \{11\}$

7. De {8, 9, 10, 12}, con b: {ε-closure(13)} = {13}

Estado AFN	Estado AFD	а	b
{1,2,4}	Α	{3}	{5}
{3}	В	{1,2,4,3}	{5}
{5}	С	()	{8,9,10,12}
{8,9,10,12}	D	{11}	{13}
{1,2,4,3}	E	{1,2,4,3}	{5}
{11}	F	{1,2,4,3}	{5}
{13}	G	{1,2,4,3}	{5}

Estado	а	b
А	В	С
В	E	С
С	()	D
D	F	G
E	E	С
F	E	С
G	E	С

Paso 3: Convertir AFN a AFD

1. $\{1\} = \{\epsilon - closure(1)\} = \{1, 2, 4\}$

2. De
$$\{1, 2, 4\}$$
, con 0: $\{\epsilon$ -closure $(3)\}$ = $\{3\}$

3. De
$$\{1, 2, 4\}$$
, con 1: $\{\epsilon\text{-closure}(6)\} = \{6\}$

6. De $\{9\}$, con 0: $\{\epsilon$ -closure $(7, 8)\} = \{7, 8\}$

7. De {8}, con 0: $\{\epsilon\text{-closure}(9)\} = \{9\}$

Estado AFN	Estado AFD	0	1
{1,2.4}	А	{3}	{6}
{3}	В	{9}	()
{6}	С	{8}	()
{9}	D	{7,8}	()
{8}	E	{9}	()
{7,8}	F	{9}	()

Estado	0	1
А	В	С
В	D	()
С	E	()
D	F	()
E	D	()
F	D	()

$g) \quad if \setminus ([ae] + \setminus) \setminus \{[ei] + \setminus\} (\setminus n(else \setminus \{[jl] + \setminus\}))?$

Estado	i	f	а	е	()	{	}	n	ı	S	j	ε
1	2												
2		3											
3					4								4
4			5	5									
5						6							
6							7						
7				8									
8								9					
9									10				
10										11			
11											12		
12										14			13
13													
14												15	
15													

Tabla de estado AFD

Estado	i	f	а	е	()	{	}	n	I	S	j	3
Α	В												
В		С											
С					D								D
D			Е	Е									
E						F							
F							G						
G													
Н								I					
1									J				
J										K			
K											L		
L												М	
М													N
N													
0													

$\textbf{h)} \ \ [ae03] + @[ae03] + .(com|net|org)(.(gt|cr|co))?$

Estado	а	е	0	3	@		С	0	m	n	t	g	r	3
1	2	2	2	2										
2	2	2	2	2	3									
3						4								
4	5	5	5	5										
5	5	5	5	5										
6						6								
7							7							
8								8						
9									9					
10										10				
11											11			
12												12		
13													13	
14														14

Tabla de estado AFD

Estado	а	е	0	3	@		С	0	m	n	t	g	r	3
Α	В	В	В	В										
В	В	В	В	В	С									
С						D								
D	E	E	Е	Е										
E	Ε	E	Е	Е		F								
F							G							
G								Н						
Н									1					
I										J				
J											K			
K												L		
L													М	
М														