NOIP2020模拟赛

考试时间4h

一. 题目概况

	T1	T2	T3	T4
中文题目名称	二次剩余	倍数区间	飞翔的 鸟	ZYT的答 案
英文题目与子目 录名	two	interval	bird	score
可执行文件名	two	interval	bird	score
输入文件名	two.in	interval.in	bird.in	score.in
输出文件名	two.out	interval.out	bird.out	score.out
每个测试点时限	1s	1s	1s	1s
测试点数目	10	10	10	20
每个测试点分值	10	10	10	5
附加样例文件	有	有	无	有
结果比较方式	文本比 较	文本比较	文本比 较	文本比较
题目类型	传统题	传统题	传统题	传统题
运行内存上限	512MB	512MB	512MB	512MB
提交源程序文件 名	two.cpp	interval.cpp	bird.cpp	score.cpp

二.注意事项

1. 文件名(程序名和输入输出文件名)必须使用英文小写。

- 2. 结果比较方式为忽略行末空格及文末回车的全文比较。
- 3. C++中函数main()的返回值类型必须是int,程序正常结束时的返回值必须是0。
- 4. 只提供windows格式附加样例文件。
- 5. 评测在ubuntu下进行。
- 6. 编译时不打开任何优化选项,编译器版本为g++4.8.4,且不支持C++11

二次剩余

【问题描述】

ZYT喜欢数二次函数(雾),他手上有n个二次函数

每个二次函数可以用两个值描述:对称轴m,最小值k,即 $f(x)=(x-m)^2+k$

现在有q次操作,每次操作可以描述为

1.插入一个二次函数(m,k)

2.(x,t)删除所有 $f(x) \leq t$ 的二次函数

每次操作过后,输出二次函数还剩余多少个

【输入格式】

第一行读入两个数n,q

然后n行,每行两个数m,k描述一个二次函数

然后q行每行描述一个操作1, m, k或者2, x, t

【输出格式】

输出q行,第i行表示第i次操作后剩余多少个二次函数

【输入输出样例】

two.in	two.out
4 2 802 1072 734 4291 6 9316 934 38022 2 21679 46811 1 1 40887	4 5

【数据规模与约定】

对于所有的数据,保证 $n,q,m,k,x,t \in [1,1e5]$

	$n,q \leq$	$m \leq$
1	1000	100000
2	5000	100000
3	10000	100000
4	20000	100000
5	100000	1000
6	100000	1000
7	100000	100000
8	100000	100000
9	100000	100000
10	100000	100000

倍数区间

【问题描述】

给定一个序列 a_1, a_2, \cdots, a_n

一个合法的区间[L,R]满足 $\exists k \in [L,R], \forall i \in [L,R], a_k | a_i$

即存在一个数 a_k ,满足区间内所有数都是 a_k 的倍数

求最长的合法区间并输出这些区间的左端点

【输入格式】

一行一个数n, 然后下一行n个数 a_1, \dots, a_n

【输出格式】

一行两个数a, b表示最长区间的个数a和最长区间的R - L = b

然后一行按照递增顺序输出每个最长的区间的左端点

【输入输出样例】

interval.in	interval.out
5	13
46936	2

interval.in	interval.out
5	5 0
235711	12345

【数据规模与约定】

对于所有的数据,保证 $n \leq 5 \cdot 10^5, a_i < 2^{31}$

	n	$a_i <$
1	100	2^{31}
2	600	2^{31}
3	2000	2^{31}
4	20000	1001
5	20000	100001
6	20000	100001
7	100000	2^{31}
8	300000	2^{31}
9	500000	2^{31}
10	500000	2^{31}

飞翔的鸟

【问题描述】

ZYT在玩Flappy Bird的简单模式

他的Flappybird每次移动只能是从(x,y)到 (x+1,y)(x+1,y-1)(x+1,y+1),且y不能超过 $[1,k]\cap\mathbb{Z}$ 的范围

简单模式下,只有一个位置会出现上下两个障碍物a,b,表示覆盖了 $y \in [1,a]$ 和 $y \in [b,k]$ 的部分

ZYT要从 $(1,\frac{k}{2})$ 飞到 $(n,\frac{k}{2})(2|k)$,现在只知道障碍物在[2,n-1]中的某一个位置随机出现

求期望可行的飞行路径数量 $\mod 10^9 + 7$

【输入格式】

一行两个数n, k, a, b如题意

【输出格式】

一行表示期望的方案数 $\mod 10^9 + 7$

【输入输出样例】

bird.in	bird.out
5 4 1 3	66666679

$$\frac{7+9+7}{3}$$

bird.in	bird.out
5 6 2 5	13

bird.in	bird.out
100 20 4 14	725315636

【数据规模与约定】

对于所有的数据点,满足 $3 \leq n \leq 10^9, 1 \leq a < b \leq k \leq 130$ 且k为偶数

#	$n \le$	$k \leq$
1	100	70
2	1000	70
3	10000	70
4	100000	70
5	1000000	60
6	10^{9}	30
7	10^{9}	70
8	10^{9}	90
9	10^{9}	110
10	10^{9}	130

ZYT的答案

【问题描述】

ZL中学由n栋教学楼组成,用n-1条道路连接成一棵树

为了pass期末考,ZYT取得了m份答案,但是由于交接不便,这m份答案被藏在在这些教学楼中,每一份答案都被一把钥匙锁在盒子里。

已知这m份答案的位置 y_i 以及的每份答案的钥匙的位置 x_i ,每一份答案对于提高他的期末考成绩都有一定的影响,用一个值 w_i 表示

但是由于不确定答案的真实性, w_i 可能会是负数

这天ZYT准备拿这些答案,但是由于ZYT的行动方式过于诡异,如果经过同一个地方两次就会被抓去训话

ZYT可以从任意一个地方开始行动,在任意一个地方结束行动,且每到达一栋教学楼后,他**一定会**先收集钥匙,**一定会**再拿取答案。

请你帮ZYT拿到最好的期末考分数,即最大的 w_i 之和

【输入格式】

第一行输入两个正整数n和m表示教学楼数量和答案数量

接下来n-1行,每行两个整数a和b描述一条道路

接下来m行,每行三个整数 x_i, y_i, w_i 描述份答案

【输出格式】

一行,输出ZYT的最好分数,保证答案>0。

【输入输出样例】

score1.in	score1.out
42	
12	
23	100
3 4	100
1 1 100	
2 4 -5	

score2.in	score2.out
43	
12	
13	
1 4	8
2 1 1	
132	
135	

【数据规模与约定】

对于所有的数据点,满足 $n,m \leq 10^5, |w_i| \leq 1000$

	$n \le$	$m \leq$	特殊性质
1	10	10	无
2	100	100	无
3	100	1000	无
4	1000	1000	无
5	100000	15	无
6	100000	15	无
7	100000	100000	$x_i = y_i$
8	100000	100000	$x_i = y_i$
9	100000	100000	$x_i = y_i$
10	100000	100000	$x_i = y_i$
11	100000	100000	$x_i = 1$
12	100000	100000	$x_i = 1$
13	100000	100000	树为一条链
14	100000	100000	树为一条链
15	100000	100000	树为一条链
16	100000	100000	树为一条链
17	100000	100000	无
18	100000	100000	无
19	100000	100000	无
20	100000	100000	无