Formal languages and Automata 形式语言与自动机

Chapter4 CONTEXT-FREE LANGUAGES

Beijing University of Posts and Telecommunications 北京邮电大学

刘咏彬 liuyb@bupt.edu.cn

2023.11

文法类型	文法	所接受的语言	自动机
0型 Type-0	Unrestricted Grammar	递归可枚举语言 Recursively Enumerable Language	图灵机 Turing Machine
1型 Type-1	上下文有关文法 Context Sensitive Grammar $α \rightarrow β 均有 \\ β \geq α $	上下文相关语言 Context Sensitive Language G: S→aBC aSBC CB →BC aB→ab bB→bb bC→bc cC→cc L(G)={a^nb^nc^n n≥1}	线性有界自动机 Linear Bounded Automaton
2型 Type-2	上下文无关文法 Context Free Grammar α→β均有 β ≥ α ,并且α∈V	上下文无关语言 Context Free language G: S→0A, A→S1 1 L(G)={0 ⁿ 1 ⁿ n≥1}	下推自动机 Pushdown Automaton
3型 Type-3	正则文法(左线性文法、右线性文法) Regular Grammar $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	正则语言 Regular Language {00, 01, 10, 11}* {aa}+{bbb}*##{cc} +	有限状态自动机 Finite State Automaton

About Context-free Languages

- Regular languages is a proper subset of the family of context-free languages.
- The membership problem (given a grammar G and a string w, find if $w \in L(G)$) is much more complicated here than it is for regular languages.
- Parsing involves not only membership, but also finding the specific derivation that leads to w.
- Brute force parsing is so inefficient that it is rarely used.

5.1 CONTEXT-FREE GRAMMARS

- The productions in a context-free grammar
 - The left side must be a single variable
 - The right side can be anything

DEFINITION 5.1

A grammar G = (V, T, S, P) is said to be **context-free** if all productions in P have the form

$$A \to x$$

where $A \in V$ and $x \in (V \cup T)^*$.

A language L is said to be context-free if and only if there is a context-free grammar G such that L = L(G).

The grammar $G = (\{S\}, \{a, b\}, S, P)$, with productions

$$S \to aSa,$$

 $S \to bSb,$
 $S \to \lambda,$

not only contextfree, but linear

is context-free. A typical derivation in this grammar is

$$S \Rightarrow aSa \Rightarrow aaSaa \Rightarrow aabSbaa \Rightarrow aabbaa$$
.

This, and similar derivations, make it clear that

$$L(G) = \{ww^R : w \in \{a, b\}^*\}.$$

The language is context-free, but as shown in Example 4.8, it is not regular.

The grammar G, with productions

$$S \rightarrow abB,$$

 $A \rightarrow aaBb,$
 $B \rightarrow bbAa,$
 $A \rightarrow \lambda,$

is context-free. We leave it to the reader to show that

$$L(G) = \{ab (bbaa)^n bba (ba)^n : n \ge 0\}.$$

The language

$$L = \{a^n b^m : n \neq m\}$$

is context-free.

To show this, we need to produce a context-free grammar for the language. The case of n = m is solved in Example 1.11 and we can build on that solution. Take the case n > m. We first generate a string with an equal number of a's and b's, then add extra a's on the left. This is done with

$$S \to AS_1,$$

 $S_1 \to aS_1b|\lambda,$
 $A \to aA|a.$

We can use similar reasoning for the case n < m, and we get the answer

$$S \to AS_1|S_1B,$$

 $S_1 \to aS_1b|\lambda,$
 $A \to aA|a,$
 $B \to bB|b.$

The resulting grammar is context-free, hence L is a context-free language. However, the grammar is not linear.

Consider the grammar with productions

$$S \to aSb|SS|\lambda$$
.

This is another grammar that is context-free, but not linear. Some strings in L(G) are abaabb, aababb, and ababab. It is not difficult to conjecture and prove that

$$L = \{w \in \{a, b\}^* : n_a(w) = n_b(w) \text{ and } n_a(v) \ge n_b(v),$$

where v is any prefix of w . (5.1)

We can see the connection with programming languages clearly if we replace a and b with left and right parentheses, respectively. The language L includes such strings as (()) and () () () and is in fact the set of all properly nested parenthesis structures for the common programming languages.

Leftmost and Rightmost Derivations (最左推导、最右推导)

- G = ({A, B, S}, {a, b}, S, P) with productions
 - 1. $S \rightarrow AB$.
 - 2. $A \rightarrow aaA$.
 - $3. A \rightarrow \lambda.$
 - 4. $B \rightarrow Bb$.
 - 5. B $\rightarrow \lambda$.

yield the same sentence

use the same productions

Consider now the two derivations

$$S \stackrel{1}{\Rightarrow} AB \stackrel{2}{\Rightarrow} aaAB \stackrel{3}{\Rightarrow} aaB \stackrel{4}{\Rightarrow} aaBb \stackrel{5}{\Rightarrow} aab$$

and

$$S \stackrel{1}{\Rightarrow} AB \stackrel{4}{\Rightarrow} ABb \stackrel{2}{\Rightarrow} aaABb \stackrel{5}{\Rightarrow} aaAb \stackrel{3}{\Rightarrow} aab.$$

DEFINITION 5.2

A derivation is said to be **leftmost** if in each step the leftmost variable in the sentential form is replaced. If in each step the rightmost variable is replaced, we call the derivation **rightmost**.

EXAMPLE 5.5

Consider the grammar with productions

$$S \to aAB$$
,

$$A \rightarrow bBb$$
,

$$B \to A|\lambda$$
.

Then

$$S \Rightarrow aAB \Rightarrow abBbB \Rightarrow abAbB \Rightarrow abbBbbB \Rightarrow abbbbB \Rightarrow abbbb$$

is a leftmost derivation of the string abbb. A rightmost derivation of the same string is

$$S \Rightarrow aAB \Rightarrow aA \Rightarrow abBb \Rightarrow abAb \Rightarrow abbBbb \Rightarrow abbbb.$$

Derivation Trees (推导树)

- A second way of showing derivations, independent of the order in which productions are used, is by a derivation or parse tree (推导树、解析树).
- A derivation tree is an ordered tree (有序数) in which nodes are labeled with the left sides of productions and in which the children of a node represent its corresponding right sides.

Derivation Trees (推导树)

DEFINITION 5.3

Let G = (V, T, S, P) be a context-free grammar. An ordered tree is a derivation tree for G if and only if it has the following properties.

- 1. The root is labeled S.
- **2.** Every leaf has a label from $T \cup \{\lambda\}$.
- **3.** Every interior vertex (a vertex that is not a leaf) has a label from V.
- **4.** If a vertex has label $A \in V$, and its children are labeled (from left to right) $a_1, a_2, ..., a_n$, then P must contain a production of the form

$$A \to a_1 a_2 \cdots a_n$$
.

5. A leaf labeled λ has no siblings, that is, a vertex with a child labeled λ can have no other children.

A tree that has properties 3, 4, and 5, but in which 1 does not necessarily hold and in which property 2 is replaced by

2a. Every leaf has a label from $V \cup T \cup \{\lambda\}$,

is said to be a **partial derivation tree**.

The string of symbols obtained by reading the leaves of the tree from left to right, omitting any λ' s encountered, is said to be the yield (果、结果) of the tree.

Sentential Form and Derivation Tree

THEOREM 5.1

Let G = (V, T, S, P) be a context-free grammar. Then for every $w \in L(G)$, there exists a derivation tree of G whose yield is w. Conversely, the yield of any derivation tree is in L(G). Also, if t_G is any partial derivation tree for G whose root is labeled S, then the yield of t_G is a sentential form of G.

Proof by induction on the number of steps in the derivation. (略)

leftmost derivation

 $S \Rightarrow aAB \Rightarrow abBbB \Rightarrow abAbB$

⇒ abbB ⇒ abbA ⇒ abbbBb

⇒ abbbb

rightmost derivation

 $S \Rightarrow aAB \Rightarrow aAA \Rightarrow aAbBb$

⇒ aAbb ⇒ abBbbb ⇒ abbbb

5.2 PARSING AND AMBIGUITY (分析和二义性)

- An algorithm that can tell us whether w is in L(G) is a membership algorithm (成员资格判定算法).
- The term parsing (分析) describes finding a sequence of productions by which a $w \in L(G)$ is derived.

Consider the grammar

$$S \to SS |aSb| bSa |\lambda|$$

and the string w = aabb. Round one gives us

- 1. $S \Rightarrow SS$,
- **2**. $S \Rightarrow aSb$,
- 3. $S \Rightarrow bSa$,
- 4. $S \Rightarrow \lambda$.

round one

Look at all productions of the form

$$S \rightarrow x$$

The last two of these can be removed from further consideration for obvious reasons. Round two then yields sentential forms

$$S \Rightarrow SS \Rightarrow SSS$$
,
 $S \Rightarrow SS \Rightarrow aSbS$,
 $S \Rightarrow SS \Rightarrow bSaS$,
 $S \Rightarrow SS \Rightarrow S$,

round two

Apply all applicable productions to the leftmost variable of sentential form 1

which are obtained by replacing the leftmost S in sentential form 1 with all applicable substitutes. Similarly, from sentential form 2 we

with all applicable substitutes. Similarly, from sentential form 2 we get the additional sentential forms

$$S \Rightarrow aSb \Rightarrow aSSb,$$

 $S \Rightarrow aSb \Rightarrow aaSbb,$
 $S \Rightarrow aSb \Rightarrow abSab,$
 $S \Rightarrow aSb \Rightarrow ab.$

round two

Apply all applicable productions to the leftmost variable of sentential form 2

Again, several of these can be removed from contention. On the next round, we find the actual target string from the sequence

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$
.

Therefore, *aabb* is in the language generated by the grammar under consideration.

- With w = abb, the method will go on producing trial sentential forms indefinitely (无限期地) unless we build into it some way of stopping.
- This difficulty comes from the productions $S \rightarrow \lambda$

Flaws of Exhaustive Search Parsing

- Exhaustive search parsing flaws
 - Tediousness(冗长)
 - Possibly never terminates for strings not in L(G).
- Simplification of CFGs (descripted in Chapter6)
 - Rule out A \rightarrow λ as well as those of the form A \rightarrow B.

EXAMPLE 5.8

The grammar

$$S \rightarrow SS |aSb| bSa |ab| ba$$

satisfies the given requirements. It generates the language in Example 5.7 without the empty string.

Given any $w \in \{a, b\}^+$, the exhaustive search parsing method will always terminate in no more than |w| rounds. This is clear because the length of the sentential form grows by at least one symbol in each round. After |w| rounds we have either produced a parsing or we know that $w \notin L(G)$.

Exhaustive Search Parsing Method (穷举搜索分析析方法)

• THEOREM 5.2

Suppose that G = (V, T, S, P) is a context-free grammar that does not have any rules of the form

$$A \rightarrow \lambda$$

or

$$A \rightarrow B$$
.

where A, B \in V . Then the exhaustive search parsing method can be made into an algorithm that, for any $w \in \Sigma^{\square}$, either produces a parsing of w or tells us that no parsing is possible.

Proof: For each sentential form, consider both its length and the number of terminal symbols. Each step in the derivation increases at least one of these. Since neither the length of a sentential form nor the number of terminal symbols can exceed |w|, a derivation cannot involve more than 2 |w| rounds, at which time we either have a successful parsing or w cannot be generated by the grammar.

CFG Parse Algorithm Exists

- Complexity of Exhaustive Search Parsing
 - If we restrict ourselves to leftmost derivations, we can have no more than |P| sentential forms after one round, no more than |P|² sentential forms after the second round, and so on.
 - The total number of sentential forms cannot exceed

$$M = |P| + |P|^2 + \cdots + |P|^{2|w|} = O(P^{2|w|+1}).$$

● THEOREM 5.3 (略)

For every context-free grammar there exists an algorithm that parses any $w \in L(G)$ in a number of steps proportional(成正比) to $|w|^3$.

Simple Grammar (简单文法)

DEFINITION 5.4

A context-free grammar G = (V, T, S, P) is said to be a simple grammar or s-grammar if all its productions are of the form

$$A \rightarrow ax$$
,

where $A \in V$, $a \in T, x \in V^{\square}$, and any pair (A, a) occurs at most once in P.

EXAMPLE 5.9

The grammar

$$S \rightarrow aS |bSS| c$$

Each derivation step produces one terminal symbol

 The whole process must be completed in no more than |w| steps.

is an s-grammar. The grammar

$$S \rightarrow aS |bSS| aSS|c$$

is not an s-grammar because the pair (S, a) occurs in the two productions $S \to aS$ and $S \to aSS$.

Ambiguous (二义性的)

• DEFINITION 5.5

A context-free grammar G is said to be ambiguous (有二义性的) if there exists some $w \in L(G)$ that has at least two distinct derivation trees. Alternatively, ambiguity implies the existence of two or more leftmost or rightmost derivations.

EXAMPLE 5.10 The grammar in Example 5.4, with productions $S \to aSb|SS|\lambda$, is ambiguous. The sentence aabb has the two derivation trees shown in Figure 5.4. b λ S S a a FIGURE 5.4

Consider the grammar G = (V, T, E, P) with

$$V = \{E, I\},$$

 $T = \{a, b, c, +, *, (,)\},$

and productions

$$\begin{split} E &\rightarrow I, \\ E &\rightarrow E + E, \\ E &\rightarrow E * E, \\ E &\rightarrow (E), \\ I &\rightarrow a \, |b| c \, . \end{split}$$

FIGURE 5.5 Two derivation trees for a + b*c.

To rewrite the grammar in Example 5.11 we introduce new variables, taking V as $\{E, T, F, I\}$, and replacing the productions with

$$E \rightarrow T,$$
 $T \rightarrow F,$
 $F \rightarrow I,$
 $E \rightarrow E + T,$
 $T \rightarrow T * F,$
 $F \rightarrow (E),$
 $I \rightarrow a |b| c.$

An equivalent unambiguous grammar to EXAMPLE 5.11.

FIGURE 5.6

Inherently Ambiguous(固有二义性的)

 In some instances, removing ambiguity is not possible because the ambiguity is in the language.

DEFINITION 5.6

If L is a context-free language for which there exists an unambiguous grammar, then L is said to be unambiguous. If every grammar that generates L is ambiguous, then the language is called inherently ambiguous.

The language

$$L = \{a^n b^n c^m\} \cup \{a^n b^m c^m\},\$$

with n and m nonnegative, is an inherently ambiguous context-free language.

That L is context-free is easy to show. Notice that

$$L = L_1 \cup L_2$$
,

where L_1 is generated by

$$S_1 \to S_1 c | A,$$

 $A \to aAb | \lambda$

and L_2 is given by an analogous grammar with start symbol S_2 and productions

$$S_2 \to aS_2|B,$$

 $B \to bBc|\lambda.$

Then L is generated by the combination of these two grammars with the additional production

$$S \to S_1 | S_2$$
.

The grammar is ambiguous since the string $a^nb^nc^n$ has two distinct derivations, one starting with $S \Rightarrow S_1$, the other with $S \Rightarrow S_2$.

END