主管 领导 审核 签字

哈尔滨工业大学(深圳)2020/2021 学年秋季学期

高等数学 A 试题(期末)

题号	_	=	Ξ	四	五	六	七	八	九	+	总分
得分											
阅卷人											

注意行为规范 遵守考场纪律

一、填空题(每小题 2 分,共四小题,满分 8 分)

1.
$$\int_0^{+\infty} e^{-2x} dx =$$

$$2. \frac{\mathrm{d}}{\mathrm{d}x} \left(\int_0^x \cos(x-t)^2 \, \mathrm{d}t \right) = \underline{\qquad}$$

3.
$$\lim_{n \to \infty} \left(\frac{n}{n^2 + 1} + \frac{n}{n^2 + 2^2} + \dots + \frac{n}{n^2 + n^2} \right) = \underline{\hspace{1cm}}$$

一、填空题(每小题 2 分,共四小题,满约 1. $\int_0^{+\infty} e^{-2x} dx =$ _______.

2. $\frac{d}{dx} \left(\int_0^x \cos(x-t)^2 dt \right) =$ ______.

3. $\lim_{n \to \infty} \left(\frac{n}{n^2 + 1} + \frac{n}{n^2 + 2^2} + \dots + \frac{n}{n^2 + n^2} \right) =$ ______.

4. 微分方程 $yy'' + (y')^2 = 0$ 满足初值的是______.

老______.

二、选择题(每小题 2 分,共四小题,满约项中只有一个是符合题目要求的,把所选1. 设函数 $f(x) = \sec x$ 在 x = 0 处的二阶().

(A) $a = 1, b = \frac{1}{2}$; (B) $a = 1, b = -\frac{1}{2}$; (C) 2. 设 y = y(x) 是方程 $y \ln y - x + y = 0$ 所确的 4. 微分方程 $yy'' + (y')^2 = 0$ 满足初值条件 $y|_{x=0} = 1, y'|_{x=0} = \frac{1}{2}$ 的特解

二、选择题(每小题2分,共四小题,满分8分,每小题中给出的四个选 项中只有一个是符合题目要求的, 把所选项的字母填在题后的括号内)

1. 设函数 $f(x) = \sec x$ 在 x = 0 处的二阶泰勒多项式为 $1 + ax + bx^2$,则

(A)
$$a = 1, b = \frac{1}{2}$$
; (B) $a = 1, b = -\frac{1}{2}$; (C) $a = 0, b = \frac{1}{2}$; (D) $a = 0, b = -\frac{1}{2}$.

2. 设y = y(x)是方程 $y \ln y - x + y = 0$ 所确定的隐函数,则曲线y = y(x)在点

(1,1) 处的曲率 K = ().

(A)
$$\frac{\sqrt{5}}{15}$$
; (B) $\frac{\sqrt{5}}{25}$; (C) $\frac{\sqrt{3}}{8}$; (D) $\frac{3\sqrt{3}}{16}$.

- 3. 曲线段 $y = \int_0^x \tan t dt \left(0 \le x \le \frac{\pi}{4}\right)$ 的弧长等于().
- (A) $\sqrt{3}$; (B) $2\sqrt{3}-1$; (C) $2\ln 2$; (D) $\ln(\sqrt{2}+1)$.

4. (如图所示)设有一个质量为M、长为L的均匀细杆 AB,在 AB 的延长线上靠近 B 端处有一质量为m 的质点 C,此质点到 B 的距离为 a,则细杆 AB 与质点 C 之间的相互吸引力的大小等于().

(提示: 距离为r的两个质量分别为 m_1 和 m_2 的质点之间的引力大小为 $\frac{Gm_1m_2}{r^2}$,其中G为引力系数)

(A)
$$\frac{GMm}{a(L+a)}$$
; (B) $\frac{GMm}{L(L+a)}$; (C) $\frac{GMm}{a(L+2a)}$; (D) $\frac{GMm}{L(L+2a)}$.

三、(6分) 给定函数
$$y = f(x) = \frac{x^3}{(x+1)^2} + 3$$
,

- (1) 求函数 f(x) 的单调区间与极值, 曲线 y = f(x) 的凸凹区间与拐点;
- (2) 求曲线 y = f(x) 的渐近线,并作函数 y = f(x) 的图形.

五、 (5分) 记曲线段 $x^2 + y^2 = 4(y \ge 0, 0 \le x \le 1)$ 与直线 x = 0, x = 1 及 x 轴所围成的平面图形为 D,

- (1) 求平面图形 D的面积;
- (2) 求图形D分别绕x轴、绕y轴旋转一周所成旋转体的体积.

六、 $(4 \, \mathcal{G})$ 设函数 f(x) 在闭区间 [0,1] 上可导,且 $f(1)-2\int_0^{\frac{1}{2}}xf(x)\,\mathrm{d}x=0$,证明: 在开区间 (0,1) 内至少存在一点 ξ , 使得 $f'(\xi)=-\frac{f(\xi)}{\xi}$.

八、 (4分) 设 $a_n = \int_0^{\frac{\pi}{2}} \sin^n x \cos^2 x \, dx \ (n = 0, 1, 2, \dots)$,

- (1) 证明: 数列 $\{a_n\}$ 单调减少,且 $a_n = \frac{n-1}{n+2}a_{n-2}$ $(n=2,3,\cdots)$;
- (2) 求极限 $\lim_{n\to\infty} \frac{a_n}{a_{n-1}}$.