

מערכות ספרתיות

4

- •אופרטור אוניברסלי
- NOR ו NAND מימוש•
 - •מפות קרנו
- •שיטת האמפליקנטים
 - •משתני טבלה
 - סיכונים סטטיים•

ד"ר רון שמואלי

אוניברסליות של פונקציות בוליאניות

- **משפט**: סט של אופרטורים הוא אוניברסלי אם ורק אם, ניתן לבטא כל פונקציה בוליאנית במונחים של האופרטורים בסט.
 - :הסט האקסיומטי
 - x+y=(x'y')' : לפי דמורגן
 - xy=(x'+y')' ∶לפי דמורגן •

	(המשך)	בוליאניות	ונקציות	ברסליות של פו פונקציה NOR: – מימוש NOT – מימוש OR פונקציה NAND:	• n	
				חימוש NOT – מימוש – AND –		
2011		(c) Dr. Ro	n Shmueli		3	

בדיקת אוניברסליות של פונקציה כלשהיא.

- בבדיקת אוניברסליות אסור שימוש בקבועים אלא אם נתון אחרת.
- כלל (חלש): במידה והצבנו את אותו משתנה בכל משתני האופרטור, וקיבלנו את המשלים למשתנה – אזי יש סיכוי שהאופרטור אוניברסלי. אחרת האופרטור אינו אוניברסלי. (הכלל תקף רק כאשר אסור שימוש בקבועים)

 \rightarrow אופרטור $f \rightarrow$

- f(xyz)=x'yz+xy'+y'z' דוגמא: האם f אופרטור אוניברסלי
 - g(xyz)=x'yz+xy'+y'z דוגמא: נתון g אופרטור אוניברסלי g אחם g אוניברסלי ק_{1,1} אוניברסלי

מימוש פונקציות לוגיות כלשהן בעזרת שערי NOR

• כדאי לצאת מ POS מינימלי - דוגמא:

מימוש פונקציות לוגיות כלשהן בעזרת שערי NAND

• כדאי לצאת מיצוג SOP מינימלי

- דוגמא:

נתון האופרטור $f(xyz)=xy\oplus yz\oplus 1$ אוניברסלי? $f(xyz)=a\oplus b$ אוניברסלי? $g(ab)=a\oplus b$ את $g(ab)=a\oplus b$ את $g(ab)=a\oplus b$ את $g(ab)=a\oplus b$

(م)	D۳	Don	Shm	اميي
いしょ	UI.	RUH	OH HE	ıucı

שיטות לפישוט ומינימיזציה של פונקציות לוגיות

- פונקציה מינימלית ביחס לאילוצי תכנון:
 - מינימום רכיבים ביחס למינימום שערים.
- אמינות הפונקציה הלוגית סיכונים סטטיים.
 - Fan In -
 - Fan Out -
 - פיזור הספק
- בקורס שלנו: **פונקציה מינימלית = מינימום שערים** (אלא אם צויין אחרת)

011

קריטריונים לפונקציה מינימלית

• הַפּונָקצַיות הבאות זהות (בעלות אותה טבלת אמת)

$$f1(xyz) = x' y' z + x' yz + xyz' + xyz.....$$

 $f2(xyz) = x' z + yz + xy.....$
 $f3(xyz) = x' z + xy....$
 $f1 = f2 = f3$

:נגדיר

.f של (POS) SOP מספר אברי המכפלה (סכום) בביטוי $P_{\rm f}$

 ${\sf f}$ של (POS) SOP מספר הליטרלים בביטוי ${\sf q}_{\sf f}$

• הגדרה:

עבור פונקציות זהות, המינימלית שבינן היא זו המקיימת: $q_{f_3}\text{=}\min(q_{f_3}q_{f_2}q_{f_1}) \qquad P_{f_3}\text{=}\min(P_{f_3}P_{f_2}P_{f_1})$

(८)	Πr	Don	Shm	نامانا
(C)	DI.	ROH	211111	ueii

Karnough Map מפות קרנו

• הצגה של טבלת אמת בעזרת מפה דו מימדית

a	b	f	g
0	0	0	
0	1	0	
1	0	1	
1	1	1	

a b	a' O	a 1
b′ O	0	2
b 1	1	3

a	a'	a
b	0	1
b' o		
b 1		

מינימלי g מינימלי g(ab)=a'b'+ab' –

(c) Dr. Ron Shmueli

הטכניקה לשימוש במפת קרנו:

- במפת קרנו 2ⁿ תאים.
- הקפת כל קבוצות ה-"1"-ים ("0") הכי גדולות שאפשר.
 - גודל קבוצה בחזקות 2 (..... 1,2,4,8).
 - ההקפה בצורת מרובע פשוט.
- אסור שהקפה אחת תהיה תת קבוצה של הקפה אחרת.
 - מפת קרנו היא ציקלית.
- <u>הפונקציה המינימלית:</u> בעלת המספר הקטן ביותר של הקפות הכי גדולות שאפשר.

/_\	Ο	D	Cl	1:
(C)	Dr.	Kon	Shm	uell

עומפיקה ומפיקה BCD אחת ומפיקה 1=1אם הספרה מתחלקת ב 4 או 5 ללא שארית

11

מצא פונקציה (g(abcd) מינימלית אשר תגרום לפונקציה
 h(abcd) הנתונה להיות דואלית לעצמה.

h(abcd)=a'bc+acd+bd+g(abcd)

(c) D

(c)) Dr.	Ron	Shm	ueli
(\mathbf{v})	, 01.	11011	011111	a on

מימוש מינמלי של מערכת לוגית מרובת יציאות

• נתונות:

- $f_1(abcd) = \sum (0,1,4,5,8,12)$
- $f_2(abcd)=\sum (1, 5, 10, 14)$
- $f_3(abcd)=\sum(0, 2,4,6,10,14)$

• ממש מינימלית

מפות קרנו עם משתני מפה

- מאפשר לתאר פונקציה של יותר מ n משתנים בעזרת
 מפת קרנו של n משתנים.
- x o 1 o B 1 1 o A'

• לדוגמא נתונה (f(x,y,A,B ע"י מפת קרנו הבאה:

1. פתרון בוליאני (לא מינימלי)

Х	У	f
0	0	В
0	1	0
1	0	1

2. פתרון מינימלי – הרחבת מפת קרנו.

1	00	01	11	10
00	0	4	12	8
01	1	5	13	9
11	3	7	15	11
10	2	6	14	10

דוגמא
 x y F
o 1 C F(x,y,A,B) • תן SOP קנוני ל
1 o B' F(x,y,A,B) מינימלי ל SOP תן SOP מינימלי ל
00 01 11 10 00 4 12 8 01 1 5 13 9 01 3 7 15 11 11 2 6 14 10
2011 (c) Dr. Ron Shmueli 21

, ,	_	_		
()	Πr	Don	Shm	ιιΔΙ
いしょ	DI.	NULL	JHH	ucı

(ﺭ,) Dr	Ron	Shm	ueli
(U	<i>)</i> DI.	NOH	JIIIII	uCII

(C)	Dr.	Ron	Shm	ueli
(~	, —		•	•. •

סיכון סטטי פוטנציאלי מסוג 1

- בסיכון זה מוצא המעגל יורד רגעית מ1 ל
- נגרם בגלל מימוש SOP מינימלי של פונקציה
 - קורה בנקודת ההשקה של אימפליקנטים.
- המשתנה הגורם לסיכון אינו קבוע בנקודת ההשקה.
- תיקון הסיכון ע"י הוספת אמפליקנט בנקודת ההשקה.

סיכון סטטי פוטנציאלי מסוג ס

25

- בסיכון זה מוצא המעגל עוךה רגעית מ0 ל 1 •
- נגרם בגלל מימוש POS מינימלי של פונקציה
 - קורה בנקודת ההשקה של אימפליקנטים.
- המשתנה הגורם לסיכון אינו קבוע בנקודת ההשקה.
- תיקון הסיכון ע"י הוספת אמפליקנט בנקודת ההשקה.
- נק השקה עם don't care לא מהווה סיכון!! מדוע?

- f(wxyz)=y'w'+x'y+xzw נתונה הפונקציה
 - סמן סיכונים במפת קרנו
 - איזה משתנים גורמים לסיכונים
 - תקן את הסיכונים

	00	01	11	10
00	0	4	12	8
01	1	5	13	9
11	3	7	15	11
10	2	6	14	10

2011

(c) Dr. Ron Shmueli

- במעגל המתואר •
- $f_1=(w+z)(w'+x'+z)(x'+y'+z)$ מומשה ע"י $f_1=(w+z)(w'+x'+z)(x'+y'+z)$ מומשה $f_2=wyz'+w'xy+zx$ הפונקציה $f_2=xyz'+w'xy+zx$
 - ? G איזה משתנים גורמים לסיכונים סטטיים ב •
- מצא f₃ ו f₄ מינימליות כך ש T תהיה שווה ל G ללא סיכונים.

	00	01	11	10
00	0	4	12	8
01	1	5	13	9
11	3	7	15	11
10	2	6	14	10

שיטת האפמליקנטים של Quin McCluskey שיטת האפמליקנטים

ר אימפליקנט (Implicant) - אימפליקנט (או סכום) של ליטרלים ו f פונקציה, אם p שייך ל f – אזי q נקרא אימפליקנט של f. f=xw+yz p=wxy' • לדוגמא: p+f= pf= PI – (Prime Implicant) אימפליקנט ראשי – הוא אמפליקנט ראשי של f אם p שייך ל p הוא אמפליקנט ראשי של p – של אחד הליטרלים מ p תיצור מכפלה חדשה שאינה שיכת ל f . Essential Prime) אימפּלִיקנט ראשי הכרחי EPI - (Implicant יקרא אמפליקנט ראשי הכרחי f אימפליקנט ראשי הכרחי אם הוא מכסה לפחות מינטרם (מקסטרם) אחד של f, שלא מכוסה ע"י אמפליקנט ראשי אחר. don't care לדבר על וEPI • (c) Dr. Ron Shmueli

(c)) Dr	Don	Shmue	اد
いしょ	, וטו	IVOLL	JIIIIU	기

- נתונה פונקציה (f(abcd) ע"י טבלת ה- PI שלה.
 - ? האפשריות f(abcd) האפשריות •

	1	2	6	11
P1	Х	Х	Х	
P2	Х			Х
P ₃	X			

2011 (c) Dr. Ron Shmueli

31

	2	3	5	12	13	mj	mk
P1=b'c	Х	Х					X
Pl ₂	Х					X	
PI3=ab				Х	Х		
PI4			Х		Х		
PI ₅				Х		X	
PI6							Х

- נתונה טבלת PI של הפונקציה (abcd) עם נעלמים
- השלם את הטבלה נמק בקצרה
 סדר מציאת נעלמים
- f קנוני ומינימלי ל SOP תו ביטוי

(c)	Dr	Ron	Shmi	نوان
いしょ	レI・	RUH	JIIIII	utii