

Universidad Nacional Autónoma de México

Facultad de Ingeniería Bases de Datos

Profesor(a): <u>Ing. Fernando Arreola Franco</u> Semestre 2025-2

Tarea 5

Grupo: 1

Alumno:

Nava Benítez David Emilio

No. de Cuenta:

320291599

Axiomas de Armstrong

Sea F un conjunto de dependencias funcionales. El cierre de F, denotado por F+, es el conjunto de todas las dependencias funcionales implicadas lógicamente en F. Dado F, se puede calcular F+ directamente a partir de la definición formal de dependencia funcional. Si F fuera de gran tamaño, este proceso sería prolongado y difícil. Los axiomas, o reglas de inferencia, proporcionan una técnica más sencilla para el razonamiento sobre las dependencias funcionales. Aplicando las tres reglas siguientes repetidamente, se puede hallar todo F+, dado F. Este conjunto de reglas se denomina axiomas de Armstrong en honor de la persona que las propuso por primera vez.

Axioma de reflexividad

Si α es un conjunto de atributos y $\beta \subseteq \alpha$, entonces se cumple que $\alpha \to \beta$

$$\alpha = \{A, B, C, D, E\} \ y \ \beta = \{A, B, C\} \ entonces \ \alpha \rightarrow \beta$$

$$\alpha = \{A, B, C, D, E\} \ y \ \beta = \{A, B, C, D, E\} \ entonces \ \alpha \rightarrow \beta. \ DF \ trivial$$

Axioma de Transitividad

Si se cumple que $\alpha \to \beta$ y γ es un conjunto de atributos, entonces se cumple que $\gamma\alpha \to \gamma\beta$.

$$\alpha = \{A, B, C, D, E\} \ y \ \beta = \{A, B, C\} \ entonces \ \alpha \rightarrow \beta$$

$$\gamma = \{X, Y\} \ y \ \alpha = \{A, B, C, D, E, X, Y\} \ y \ \beta = \{A, B, C, X, Y\} \ entonces \ \alpha \rightarrow \beta$$

Regla de la transitividad

Si se cumple que $\alpha \to \beta$ y también se cumple que $\beta \to \gamma$, entonces se cumple que $\alpha \to \gamma$.

$$\alpha = \{A, B, C, D, E\} \ y \ \beta = \{A, B, C\} \ entonces \ \alpha \rightarrow \beta$$

$$\gamma = \{A, B\} \ entonces \ \beta \rightarrow \gamma \ entonces \ \alpha \rightarrow \gamma$$

Aunque los axiomas de Armstrong son completos, resulta difícil utilizarlos directamente para el cálculo de F+ . Para simplificar más las cosas se relacionan unas reglas adicionales.

- Regla de la unión.

Si se cumple que $\alpha \to \beta$ y que $\alpha \to \gamma$, entonces se cumple que $\alpha \to \beta \gamma$

Regla de la descomposición

Si se cumple que $\alpha \to \beta \gamma$ entonces se cumple que $\alpha \to \beta \gamma$ que $\alpha \to \gamma$

- Regla de la pseudotransitividad

Si se cumple que $\alpha \to \beta$ y que $\gamma\beta \to \zeta$ entonces se cumple que $\alpha\gamma \to \zeta$

Referencias

[1] Diseño de Bases de Datos Relacionales. Presentación Bases de Datos I, UNLU. Accedido el 22 de marzo de 2025. [En línea] https://www.grch.com.ar/docs/bd/apuntes/Dise%C3%B1o%20de%20BD%20relacionales.pdf