NASA Technical Memorandum 86298

P-51 97755

STANDARD TEST EVALUATION OF GRAPHITE FIBER/RESIN MATRIX COMPOSITE MATERIALS FOR IMPROVED TOUGHNESS

(NASA-TM-86298) STANCARD TEST EVALUATION OF GRAPHITE FIEER/BESIN MATRIX CONFOSITE MATERIALS FOR IMPROVED TOUGENESS (NASA) Avail: NTIS EC A04/HF CSCL 11D N87-28618

Unclas G3/24 0097755

ANDREW J. CHAPMAN

SEPTEMBER 1984

release will be three (3) years from date indicated on the document.

Langley Research Center Hampton, Virginia 23665

INTRODUCTION

Composite structures technology for large transport aircraft has been under development for several years through contracts sponsored by the NASA Aircraft Energy Efficiency (ACEE) Project Office. Secondary and empennage composite components, developed to replace metal structures on existing transport aircraft, have demonstrated weight reduction of 20 to 28 percent. The success of the NASA sponsored programs has encouraged manufacturers to apply composite structures in numerous components of their new generation transport aircraft. To translate the weight saving potential of composites into significant increases in aircraft operating efficiency, NASA is currently sponsoring programs with the commercial transport manufacturers to develop the technology data base required to design and build composite wing and fuselage structures. However, realizing the full potential of composites in strength critical designs of transport wing and fuselage structures may depend upon improvements in current material systems to achieve higher design strains (see refs. 1 and 2). A significant effort is underway by both NASA and the material suppliers to improve ductility and interlaminar toughness, yet retain other desirable features such as mechanical properties, processability, and environmental stability.

To promote systematic evaluation of the evolving new materials, NASA and the commercial transport manufacturers have selected and standardized a set of five common tests for characterizing the toughness of resin matrix/graphite fiber composites. Procedures and specifications for these tests are described in reference 3. Notch sensitivity is evaluated through open hole tension and open hole compression tests. Impact damage tolerance is evaluated through compression tests following impact at a selected energy level. Resistance to delamination is evaluated through tension edge-delamination tests and double cantilever beam tests.

This report summarizes standard test results from ten toughened resin/graphite fiber materials. The tests were performed by the transport manufacturers on their initial selection of newer, toughened resin composites. Selection of these materials does not represent an endorsement of, or commitment to use any particular material.

TESTS AND MATERIALS

Specifications for the standard tests are described in detail in reference 3. Each specification includes specimen dimensions, laminate orientation, test apparatus, test procedure, and requirements for reporting data. The standard tests are listed with a description of the specimens in table 1. Specimen configurations are shown in figure 1.

The composite materials are listed in table 2 which identifies the resin matrix, the reinforcing graphite fiber, and the company performing the test. Each company, in general, evaluated their choice of one or two materials. However, in some cases it was not possible to subject every material to the complete array of tests.

RESULTS

Results of the five standard tests are presented in tables 3 through 7. Performance of materials in each test is compared in figures 2 through 7. The materials evaluated for improved toughness are compared with a widely used composite material, AS4/3502, which represents a baseline for indicating improvements in performance.

Open Hole Tension (ST-3)

Results of open hole tension tests are presented in table 3, and average values of strain-to-failure are compared in figure 2. The highest open-hole-tension failure strains were obtained for CHS/5245 and AS6/5245. Each of these materials combined a high strain fiber with the 5245 bismaleimide resin system. Tension failure strains for these materials were 8300 to 8360 microstrain, which represents a 37 percent improvement over the baseline AS4/3502.

Four materials failed at tension strains between 7300 and 7800 microstrain which represent 21 to 30 percent improvement over the baseline. Three of these materials, CHS/1504, AS6/2220-3, and AS4/2220-3, were modified epoxies with higher strain CHS or AS6 fibers, or intermediate strain AS4 fibers. The fourth material in this group combined AS4 fibers with 5245 bismaleimide resin. The remaining three materials failed at strains between 6100 and 6700 microstrain which represent no more than an 11 percent improvement over the baseline.

Open Hole Compression (ST-4)

Results of open-hole compression tests are presented in table 4 and average values of strain-to-failure are compared in figure 3. The highest open-hole compression strain was obtained for AS4/5245 which combined the intermediate strain, larger diameter AS4 fiber with 5245 resin. Compression failure strain for this material averaged slightly higher than 7000 microstrain which represents a 53 percent improvement over the baseline AS4/3502.

Compression tests of two other materials, AS4/2220-3 and CHS/2566, resulted in strains-to-failure between 5700 and 6000 microstrain which represent 25 to 29 percent improvement over the baseline. Although AS6/5245 exhibited the highest tension strain level of the materials tested, compression strain to failure of this material represented only an 8-percent improvement over the baseline.

The highest notched tension and compression properties were obtained with materials containing 5245 bismaleimide resin system. The highest notched tension properties were obtained with high strain-to-failure, small diameter CHS and AS6 fibers, while the highest notched compression properties were obtained with larger diameter intermediate strain AS4 fibers. These materials exhibited 37 percent improvement over the baseline in tension tests and 53 percent improvement in compression. One material which performed well in both tension and compression, AS4/2220-3, combined intermediate strain AS4 fibers with a modified epoxy system. This material exhibited a 30 percent improvement over the baseline in tension and a 25 percent improvement in compression.

Compression After Impact (ST-1)

Compression after impact test results are presented in table 5. The standard test impact energy specified in reference 3 is 20 ft-lb, however, several materials were subjected to impact energies from 20 to 42 ft-lb before compression tests. Compression failure strain after impact at 20 ft-lb is compared in figure 4. The highest strain-to-failure was exhibited by AS4/2220-3 which failed at 6370 microstrain, a 58 percent improvement over the baseline AS4/3502. Four other materials, AS6/5245, AS4/5245, CHS/2566, and C/982, failed at strain levels between 5257 and 5350 microstrain which represent 31 to 33 percent improvement over the baseline.

The comparatively high compression after impact performance of several materials, including AS4/2220-3, AS4/5245, and CHS/2566, is consistent with good performance in notched tension and compression tests. However, several other materials which performed well in compression after impact tests, such as AS6/5245 and C/982, did not perform well in both notched tension and notched compression tests. In general, it would appear that, while compression after impact performance of several materials was consistent with results from notched laminate tests, the notched laminate test results alone did not clearly indicate which materials would have superior compression after impact performance.

Impact damage area resulting from 20 ft-1b impact energy is compared in figure 5. Damage area was measured by ultrasonic through transmission (C-skan). The materials sustaining the smallest damage area, AS4/2220-3, AS4/5245, CHS/2566, and AS6/5245, also exhibited high compression after impact performance as shown in figure 4. Two materials, CHS/1504 and CHS/5245, sustained greater damage than the baseline AS4/3502 although compression after impact performance of both materials was higher than the baseline.

Detailed studies of damage tolerance of composites are reported in references 4 through 6.

Edge Delamination Tension (ST-2)

The edge delamination tension test (ST-2) measures the total strain-energy-release rate for delamination onset, G, which includes components due to interlaminar or peel stress, $G_{\rm I}$, and interlaminar shear stress, $G_{\rm II}$. An analysis for determining strain-energy-release rate from edge delamination tension tests is described in reference 7. Further investigations using this test are described in references 8 and 9. Results of the edge delamination tension tests are presented in table 6. Two different laminate orientations were tested: an eleven-ply $[(\pm 30)_2/90/90]_{\rm S}$ laminate, and an eight-ply $(\pm 35/0/90)$ laminate. The relative interlaminar tension component, $G_{\rm I}$, and in-plane shear component, $G_{\rm II}$, are dependent on laminate orientation and have been determined for these two laminates using finite element analysis (ref. 8). For the $[(\pm 30)_2/90/90]_{\rm S}$ laminate, $G_{\rm I}$ is approximately 57 percent of $G_{\rm I}$ and for the $[\pm 35/0/90]_{\rm S}$ laminate, $G_{\rm I}$ is approximately 90 percent of $G_{\rm I}$.

The total critical strain-energy-release rate, G, is directly proportional to the strain at delamination onset which is compared for the materials tested in figure 6. Four materials exhibited superior resistance to delamination; these were CHS/1504, CHS/5245, AS4/2220-1, and 5 mil lamina T300/914. The use of 5 mil thickness prepreg tape instead of 10 mil thickness dramatically improved delamination resistance of T300/914. The relative performance of materials was the same for the two laminate orientations.

The interlaminar fracture toughness energy, $G_{\rm C}$, is the critical value of the strain-energy-release rate required to initiate delamination (ref. 7) at the delamination onset strain shown in figure 6. Values of $G_{\rm C}$, calculated according to the procedures described in references 3 and 7, are compard in figure 7. The relative ranking of $G_{\rm C}$ in figure 7 correspond to those in figure 6 for delamination onset strain. The component of interlaminar-fracture-toughness due to peel stress, $G_{\rm IC}$, is also shown in figure 7. The $G_{\rm IC}$ components for the two laminates compare closely for all materials, except CHS/5245, which exhibited the highest $G_{\rm C}$ values.

Double Cantilever Beam (ST-5)

The double cantilever beam test provides a direct measure of the strain-energy-release rate component due to interlaminar tension or peel stress, $G_{\rm I}$. This test is described in reference 3 as ST-5. A development of the underlying analysis for this test together with experimental results is presented in reference 10. Results for double cantilever beam tests, which have been completed for only three materials, are presented in table 7. Interlaminar fracture toughness values due to peel stress, $G_{\rm I}$, determined from the double cantilever beam test data, are compared in figure 7 with $G_{\rm I}$ values calculated from the edge delamination tension tests. For CHS/5245, the $G_{\rm I}$ values from double cantilever beam tests and edge delamination tests agree closely. Discrepancies between double cantilever beam and edge delamination test results, such as shown by the AS4/2220-3 data, are discussed in references 8 and 11. Complete data are, at present, not available to compare results of these two test methods for all materials represented in this report.

Interlaminar Fracture Toughness

A comparison of compression failure strain after impact (fig. 4) with interlaminar fracture toughness (fig. 7) shows lower impact performance for materials having higher interlaminar fracture toughness. Poor correlation between the two tests may be due to the difference in the properties interrogated. Impact damage and resulting reduction in compression properties are controlled by fiber as well as matrix properties. Results of the notched laminate tests and tests after impact show a strong dependence on the type of fiber used in a given resin system. Conversely, the edge delamination tension tests, and especially the double cantilever beam tests, are primarily evaluations of resin properties.

CONCLUDING REMARKS

Ten resin matrix/graphite fiber composite materials have been evaluated for improved toughness using a series of five standard tests selected by NASA and the commercial aircraft manufacturers. These tests evaluated open hole tension and compression performance, compression performance after impact at energy levels of 20 ft-lb, and resistance to delamination. Performance was evaluated by comparison with a widely used composite system, AS4/3502. Results of these tests may be summarized as follows:

- 1. Materials containing 5245 bismaleimide resin matrix exhibited superior performance in notched tension and compression tests. These materials exhibited superior notched tension performance when combined with high strain AS6 or Celion fibers, and were superior in compression when combined with intermediate strain AS4 fibers. Notched tension performance of AS6/5245 and CHS/5245 was 37 percent higher than the baseline material, AS4/3502. Notched compression performance of AS4/5245 was 53 percent higher than the baseline.
- 2. A material consisting of 2220-3 epoxy matrix in combination with AS4 fibers exhibited superior performance in compression tests after 20 ft-lb impact and performed well in both notched tension and notched compression tests. Compression strain-to-failure of AS4/2220-3 after 20 ft-lb impact was 58 percent greater than the baseline AS4/3502.
- 3. Resistance to delamination, as measured by edge delamination tests, did not correlate with resistance to impact damage. Materials exhibiting the highest resistance to delamination (interlaminar fracture toughness energy) actually exhibited comparatively low compression failure strain after impact.

REFERENCES

- Bohon, H. L.; Chapman, A. L.; and Leybold, H. A.: Ground Test Experience With Large Composite Structures for Commercial Transports, NASA TM 84627, March 1983.
- 2. Bohon, H. L.; and Davis, J. G.: Composites for Large Transport Facing the Challenge. Aerospace America, Vol. 22, No. 6, June 1984.
- Standard Tests for Toughened Resin Composites. NASA Reference Publication 1092, Revised Edition, July 1983.
- 4. Starnes, J. H.; Rhodes, M. D.; and Williams, J. G.: Effect of Impact
 Damage and Holes on the Compressive Strength of a Graphite/Epoxy
 Laminate.
 Nondestructive Evaluation and Flaw Criticality for Composite
 Materials.

 ASTM STP 696, 1979.
- Starnes, J. H.; and Williams, J. G.: Failure Characteristics of Graphite/Epoxy Structural Components Loaded in Compression. NASA TM-84552, September 1982.
- 6. Williams, J. G., and Rhodes, M. D.: Effect of Resin on Impact Damage Tolerance of Graphite/Epoxy Laminates. Composite Materials: Testing Design (Sixth Conference). ASTM STP 787, 1982.
- 7. O'Brien, T. K.: Characterization of Delamination Onset and Growth in a Composite Laminate. Damage in Composites, ASTM STP 775, June 1982.

 Also NASA TM-81940, 1981.
- 8. O'Brien, T. K.; Johnston, N. J.; Morris, D. H.; and Simonds, R. A.:
 A Simple Test for the Interlaminar Fracture Toughness of Composites.
 SAMPLE Journal, Vol. 18, No. 4, July/August 1982.
- 9. O'Brien, T. K.: Mixed-Modes Strain-Energy-Release Rate Effects on Edge Delamination of Composites. NASA TM-84592, January 1983.
- 10. Ashizawa, M.: Improving Damage Tolerance of Laminated Composites Through the Use of New Tough Resins. Douglas Paper 7250, January 1983. Presented at Sixth Conference on Fibrous Composites in Structural Design, New Orleans, LA, January 24-27, 1983.
- 11. Williams, J. G.; O'Brien, T. K.; and Chapman, A. J.: Comparison of Toughened Composite Laminates Using NASA Standard Damage Tolerance Tests. NASA Conference Publication 2321, August 1984, pp. 51-73.

					Constitution of the control of the c
LENGTH, IN.	12.5	10.00	12.00	12.50	9.00
WIDTH, IN.	BEFORE 7.00 AFTER IMPACT 5.00	1.50	2.00	5.00	1.50
THICKNESS WIDTH, (NOMINAL) IN.	0.25		0.25	0.25	0.12
NO. OF PLIES		8		1	1
PLY ORIENTATION	(+45/0/-45/90) _{ns}	A (±30/±30/90/ <u>90)</u> B (±35/0/90) _S	(+45/0/-45/90) ns	, (+45/0/-45/90) ns	u(0)
TEST TYPE	COMPRESSION AFTER IMPACT	EDGE DELAMINATION TENSION	OPEN HOLE TENSION	OPEN HOLE COMPRESSION	DOUBLE CANTILEVER BEAM
TEST DESIG- NATOR	ST-1	ST-2	ST-3	ST-4	ST-5

TABLE 2-MATERIALS EVALUATED IN STANDARD TESTS

		SECA.SE AB-4	MENCULES A9-6	DELAMENE DELIGH		
30				8		·
- 1	914 2860					8
CEA - CENTY	2000			-	38	·
HEXOEIL	1804				201	
NAMESO	5245	BCAC	BCAC		201	
	2220-1	361			·	
MENCALES	2220-1 2220-3	BCAC	BCAC			
	3602	201		·		

8

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 3.- STANDARD TEST-3: OPEN HOLE TENSION-

(a) CHS/1504 tension test results

Resin content: 35.9%											
Specimen identification	Thickness,	Width,	Hole diameter, in.	Failure load, kips	Failure stress, ksi	Failure strain, µin./in.	Modulus, msi				
211-10	0.271	1.955	0.250	24.14	45.63	6768	6.74				
-12	.268	2.003	.250	31.95	59.50	8398	7.19				
Average				•	52.57	7583	6.965				

(b) CHS/5245 tension test results

	Resin content: 31.3%											
Specimen identification	Thickness,	Width,	Hole diameter, in.	Failure load, kips	Failure stress, ksi	Failure strain, µin./in.	Modulus, msi					
248-4	0.258	2.006	0.250	31.71	61.26	8200	7.42					
- 5	. 260	2.009	.250	31.56	,61.42	8600	6.92					
-6	.255	2.004	.250	30.89	60.47	8000	7.50					
Average					61.05	8300	7.28					

TABLE 3.- Continued

(c) AS6/5245C tension test results

	Resin content: 34%											
Specimen identification	Thickness,	Width, in.	Hole diameter, in.	Failure load, kips	Failure stress, ksi	Failure strain, µin./in.	Modulus, msi					
ST3-2D-1	0.284	1.998	0.250	37.97	66.92	8550						
-2	. 282	1.994	.250	35.07	62.37	8230						
-3	.285	1.995	•250	38.24	67.26	8300						
Average					65.52	8360						

(d) AS6/2220-3 tension test results

	Resin content: 34%											
Specimen identification	Thickness,	Width,	Hole diameter, in.	Failure load, kips	Failure stress, ksi	Failure strain, µin./in.	Modulus, msi					
ST3-1D-1	0.297	1.996	0.250	32.26	54.42	7340						
-2	.295	1.998	.250	30.97	52.54	7140						
-3	. 299	1.998	•250	32,25	53.98	7400						
Average					53.65	7293						

TABLE 3.- Continued

(e) AS4/5245 tension test results

	Resin content: 34%											
Specimen identification	Thickness,	Width,	Hole diameter, in.	Failure load, kips	Failure stress, ksi	Failure strain, µin./in.	Modulus, msi					
ST3-3D-1	0.268	2.001	0.2494	31.51	58.76	7400						
-2	. 266	2.002	.2492	32.04	60.16	7540						
-3	.268	2.002	.2490	31.34	58.41	7350						
-4	.266	2.001	.2499	31.73	59.61	7700						
Average					59.24	7500						

(f) AS4/2220-3 tension test results

	Resin content: 34%											
Specimen identification	Thickness,	Width, in.	Hole diameter, in.	Failure load, kips	Failure stress, ksi	Failure strain, µin./in.	Modulus, msi					
P1-20	0.295	2.00	0.251	31.0	52.4	7820	6.7					
-21	.292	2.00	.251	31.3	52.9	7900	6.7					
-22	.295	2.00	.251	30.7	51.9	7750	6.7					
Average					52.4	7820	-					

TABLE 3.- Continued

(g) AS4/2220-1 tension test results

	Resin content: 34.3%											
Specimen identification	Thickness,	Width,	Hole diameter, in.	Failure load, kips	Failure stress, ksi	Failure strain, µin./in.	Modulus, msi					
12-1	0.2592	1.996	0.250	25.81	49.59	6778	7.36					
-1	• 2570	1.997	. 250	24.93	48.57	6474	7.50					
-3	.2564	1.999	•250	25.28	49.34	6918	7.13					
Average					49.27	6723	7.33					

(h) CHS/2566 tension test results

	Resin content: 30.0%											
Specimen identification	Thickness,	Width,	Hole diameter, in.	Failure load, kips	Failure stress, ksi	Failure strain, µin./in.	Modulus, msí					
ST 3-1	0.132	1.900	0.250	15.05	60.01							
-2	.135	1.950	•250	16.20	61.53							
-3	.131	2.009	•250	15.26	57.76							
Average					59.77							

TABLE 3.- Continued

(i) C/982 tension test results

Resin content: 36.33%											
Specimen identification	Thickness,	Width, in.	Hole diameter, in.	Failure load, kips	Failure stress, ksi	Failure strain, µin./in.	Modulus, msi				
13-1	0.2978	2.000	0.250	28.84	48.42	6647	7.28				
-2	•3065	2.000	. 250	28.74	46.89	6530	7.18				
-3	.3065	2.000	•250	29.39	47.94	6313	7.59				
Average	,				47.75	6496	7.35				

(j) T300/914 tension test results

	Resin content: 29.5%											
Specimen identification	Thickness,	Width,	Hole diameter, in.	Failure load, kips	Failure stress, ksi	Failure strain, µin./in.	Modulus, msi					
ST 3-1	0.238	2.000	0.250	19.75	41.492	5730	7.6					
-2	.248	2.003	•250	24.00	48.290	6750	7.5					
-3	.248	2.000	.250	21.50	43.347	5910	7.3					
Average					44.376	6130	7.47					

(k) AS4/3502 tension test results

TABLE 3.- Concluded

	Resin content: 35%												
Specimen identification	Thickness,	Width, in.	Hole diameter, in.	Failure load, kips	Failure stress, ksi	Failure strain, µin./in.	Modulus, msi						
15-7	0.265	2.007	0.277	31.43	59.20	6220	9.72						
15-8	.258	2.005	.254	32.28	62.44	6028	10.33						
16-5	.262	2.005	.253	32.79	62.41	5866	10.28						
Average					61.35	6038							

TABLE 4.- STANDARD TEST-4: OPEN HOLE COMPRESSION

(a) CHS/1504 compression test results

	Resin content: 33.7%											
Specimen identification	Thickness,	Width,	Hole diameter, in.		Failure stress, ksi	Failure strain, µin./in.	Compression modulus, msi					
210-3	0.271	5.000	1.00	-47.56	-36.0	-5609	6.46					
-4	.271	5.002	1.00	-44.61	-32.9	-5227	6.69					
- 5	•269	5.001	1.00	-44.34	-33.0	-5190	6.32					
Average					-33.97	-53 <u>4</u> 2	6.49					

(b) CHS/5245 compression test results

	Resin content: 33.0%											
Specimen identification	Thickness,	Width, in.	Hole diameter, in.	Failure load, kips	Failure stress, ksi	Failure strain, µin./in.	Compression modulus, msi					
243-3	0.263	5.000	1.00	-45.89	-34.85	-5292	6.64					
-4	.265	4.999	1.00	-51.86	-39.13	-5800	6.58					
-5	•266	5.000	1.00	-44.17	-33.16	-5154	6.55					
Average	·				-35.71	-5415	6.59					

TABLE 4.- Continued

(c) AS6/5245C compression test results

	Resin content: 34%											
Specimen identification	Thickness,	Width,	Hole diameter, in.	Failure load, kips	Failure stress, ksi	Failure strain, µin./in.	Compression modulus, msi					
ST4-2D-1	0.286	4.995	0.998	-47.0	~32.9	-5050						
-2	. 280	4.994	1.000	-45.0	-32.2	-4808						
-3	•282	4.994	•996	-46.6	-33.1	-4963						
Average	·				-32.7	-4940						

(d) AS6/2220-3 compression test results

	Resin content: 34%											
Specimen identification	Thickness,	Width,	Hole diameter, in.	Failure load, kips	Failure stress, ksi	Failure strain, µin./in.	Compression modulus, msi					
ST4-1D-1	0.298	4.995	1.001	-48.4	-32.5	-5038						
-2	.294	4.996	1.008	-50.7	-34.5	-5326						
-3	.300	4.993	1.002	-47.9	-32.0	-4988						
Average					-33.0	-5117	·					

TABLE 4.- Continued

(e) AS4/5245 compression test results

•	Resin content: 34.0%											
Specimen identification	Thickness,	Width, in.	Hole diameter, in.	Failure load, kips	Failure stress, ksi	Failure strain, µin./in.	Compression modulus, msi					
ST4-3D-1	0.266	5.000	1.017	-52.4	-39.4	-6780						
-2	.267	5.000	1.007	-56.2	-42.1	-730 0	·					
-3	.265	5.000	1.000	-51.1	-38.6							
Average					-40.0	-7040						

(f) AS4/2220-3 compression test results

	Resin content: 34%											
Specimen identification	Thickness,	Width,	Hole diameter, in.	Failure load, kips	Failure stress, ksi	Failure strain, µin./in.	Compression modulus, msi					
P1-1	0.294	4.999	1.000	-53.1	-35.9	-5880	6.7					
-2	.289	4.995	1.001	-56.5	-38.2	-6150	6.4					
-3	. 294	4.994	1.000	-48.8	-33.0	-5250	6.7					
Average					-35.7	-5760	6.6					

TABLE 4.- Continued

(g) AS4/2220-1 compression test results

	Resin content: 34.32%											
Specimen identification	Thickness,	Width,	Hole diameter, in.	Failure load, kips	Failure stress, ksi	Failure strain, µin./in.	Compression modulus, msi					
2-2-12B	0.256	5.000	1.000	-39.94	-31.20	-4720	6.56					
2-3-12A	. 255	5.000	.998	-40.78	-31.98	-4800	6.75					
2-3-12B	•257	5.000	•997	-38.65	-30.08	<u>-4620</u>	6.61					
Average					-31.09	-4713	6.64					

(h) CHS/2566 compression test results

	Resin content: 30.0%											
Specimen identification	Thickness,	Width,	Hole diameter, in.	Failure load, kips	Failure stress, ksi	Failure strain, µin./in.	Compression modulus, msi					
ST4-B1	0.281	5.031	1.000	-55.00	-38.91	-6100						
-B2	.278	5.039	1.000	-54.20	-38.69	-5837						
-B3	• 281	5.042	1.000	-55.00	-38.91	-5852						
Average					-38.84	-5930						

TABLE 4.- Continued

(i) C/982 compression test results

Resin content: 36.33%											
Specimen identification	Thickness,	Width,	Hole diameter, in.	Failure load, kips	Failure stress, ksi	Failure strain, µin./in.	Compression modulus, msi				
2-2-13B	0.303	5.001	1.000	-44.13	-29.12	-4750	6.34				
2-3-13A	.307	5.000	.998	-46.09	-30.03	-4950	6.43				
2-3-13B	.306	5.000	.999	-49.16	-32.13	<u>-5180</u>	6.21				
Average					-30.42	-4960	6.33				

(j) T300/914 compression test results

Resin content: 29.5%											
Specimen identification	Thickness,	Width,	Hole diameter, in.	Failure load, kips	Failure stress, ksi	Failure strain, µin./in.	Compression modulus, msi				
ST-4A	0.2432	5.000	1.000	-42.50	-34.95	-5100	6.85				
-4B	.2499	5.000	1.000	-46.70	-37.37	-5900	6.33				
-4C	.2473	5.000	1.000	-43.50	-35.18	-5200	6.77				
Average					-35.83	-5401	6.65				

TABLE 4.- Concluded

(k) AS4/3502 compression test results

	Resin content: 35.1%											
Specimen identification	Thickness,	Width,	Hole diameter, in.	Failure load, kips		Failure strain, µin./in.	Compression modulus, msi					
15-4B	0.263	5.003	0.999	-51.44	-39.07	-4594	8.35					
16-1A	.274	5.002	.993	-48.80	-35.56	-4304	8.16					
16-1B	.274	5.001	•998	-52.69	-38.44	-4899	7.66					
Average					-37.69	-4599						

TABLE 5.- STANDARD TEST-1: COMPRESSION AFTER IMPACT

(a) CHS/1504 compression test results

			Resin	Resin content: 33.7%	33.7%				
Specimen identification	Thickness, in.	Width, in.	<pre>Impact energy, ft-lb</pre>	Impact width, in.	Impact area, in.2	Failure load, kips	Failure stress, ksi	Failure strain, µin./in.	Modulus, msi
211-1A	0.266	2.000	20	2.12	3.55	-42.88	-32.24	-4806	7.33
- 1B	.268	4.999	20	2.14	3.45	-40.69	-30.37	-4658	6.53
-2A	.269	5.000	20	2.18	3.55	-44.21	-32.87	-5218	5.84
Average				2.15	3.52		-31.83	-4894	6.57
211-2B	0.270	2.000	30	2.48	4.55	-36.10	-26.74	-4181	6.18
-3A	.268	2.000	30	2.58	5.10	-34.66	-25.87	-3871	6.72
-3B	.269	2.000	30	2.66	5.45	-34.71	-25.81	-3964	6.54
Average				2.57	5.03		-26.14	-4005	6.48

TABLE 5.- Continued

(b) CHS/5245 compression test results

			Resin (Resin content:	31.3%				
Specimen identification	Thickness, in.	Width, in.	Impact energy, ft-lb	Impact width, in.	Impact area, in.	Failure load, kips	Failure stress, ksi	Failure strain, µin/in.	Modulus, msi
248-1A	0.258	5.019	20	2.00	2.95	-39,36	-30.4	-4400	6.85
-1B	.258	5.021	20	2.00	2.95	-40.06	-30.9	-4400	6.94
-2A	.259	5.021	20	1.95	3.00	-39.70	-30.6	-4400	6.91
Average				1.98	2.97		-30.6	-4400	06*9
248-9B	0.259	5.022	30	2,55	4.90	-32.81	-25.2	-3700	6.84
-3A	.258	5.022	30	2.45	4.35	-32.40	-25.0	-3600	6.83
-3B	258	5.021	30	2.30	4.10	-33.09	-25.6	-3700	6.78
Average				2.43	4.45		-25.3	-3700	6.82

TABLE 5.- Continued

(c) AS6/5245C compression test results

	Modulus, msi			, '							
	Failure strain, µin/in.	-4600	-4675	-4638	-4213	-4258	-4235	-5345	-5425	-5285	-5352
	Failure stress, ksi	-30.1	-29.9	-30.0	-26.8	-27.9	-27.4	-35.7	-37.2	-35.2	-36.0
	Failure load, kips	-42.2	-42.7		-38.1	-39.6		-51.7	-52.3	-51.0	
34%	Impact area, in.2	3.25	3.46	3,36	4.30	4.27	4.28	2,20	1,55	1,88	1.88
Resin content:	Impact width, in.	2.0	2.0		2.2	2.6		9*1	1.3	1.5	
Resin	Impact energy, ft-lb	34	34		42	42		23	23	23	
	Width, in.	4.990	4.991		4.992	4.991		4.992	4.992	4.994	·
	Thickness, in.	0.281	.286		0.285	.284		0.290	.282	.290	,
	Specimen identification	ST1-2D-1	-2	Average	ST1-2D-3		Average	ST1-2D-4	សួ	9	Average

TABLE 5.- Continued

(d) AS6/2220-3 compression test results

			Resin	Resin content: 34.0%	34.0%				
Specimen identification	Thickness, in.	Width, in.	Impact energy, ft-lb	Impact width,	Impact area, in.2	Failure load, kips	Failure stress, ksi	Failure strain, µin/in.	Modulus, msi
ST1-1D-1	0.296	4.991	34	2.0	3.60	-37.4	-25.3	-3883	
2	.297	4.992	34	2.0	3.65	-39.2	-26.4	-4175	
Average	·			2.0	3.62		-25.9	-4029	
ST1-1D-3	0.297	4.994	42	2.6	4.86	-36.1	-24.3	-3958	
· .	.296	4.994	42	2.4	4.39	-38.0	-25.7	-4175	
Average			-	2.5	4.62		-25.0	-4067	
ST1-1D-4	0.299	4.995	23	1.6	1.20	-53.6	-35.9	-5552	
<u>ν</u>	.295	4.996	23	1.3	2.30	-47.3	-32.1	-4883	
9-	.298	4.995	23	1.5	2.10	-41.3	-27.7	-4163	
Average				1.5	1.87		-31.9	-4866	

TABLE 5.- Continued

(e) AS4/5245C compression test results

Specimen Tidentification ST1-3D-4 -9 -2 Average ST1-3D-1	Thickness, in. 0.267 .266 .266	width, in. 4.999 4.998 5.001	Impact energy, ft-lb 21 21 21 31	act Impact rgy, width, -1b in. 1 1.30 1 1.45 1 1.40	Impact area, in. 2 1.42 1.77 1.57 1.59	Failure load, kips -44.6 -44.9	Failure stress, ksi -33.4 -33.8 -33.4 -33.5	Failure strain, pin/in. -5200 -5340 -5450 -5330	Modulus, msi
	.268	4.999	31	2.10	3.04	-39.8	-29.7 -31.8 -30.2	-4620 -5190 -4770	
1	0.266 .263	4.995 4.995 5.001	38 38 38	1.85 2.10 2.20	3.30	-35.2 -32.7 -40.0	-26.5 -24.9 -29.8 -27.1	-4160 -3880 -4960 -4330	

TABLE 5.- Continued

(f) AS4/2220-3 compression test results

	Failure Failure Failure Modulus, load, stress, strain, msi kips ksi µin/in.	-93.9 -63.4 -11.450 6.7	-59.0 -39.9 -6.530 6.9	-58.2 -39.3 -6 500 6.7	-56.3 -38.0 -6 080 6.9	-39.1 -6 370 6.8	-41.4 -28.0 -4.350 6.7	-46.1 -31.1 -4 930 6.7	-29.5 -4 640 6.7
34%	Impact Fai area, lo in. ki	.6- 0	1.23 -59	1.05 -5	1.19	1.16	2.05 -4	2.37 -4	2.44
Resin content:	Impact Inwidth, a		•					· · · · · · · · · · · · · · · · · · ·	
Resin	Impact energy, ft-1b	0	20	20	20		30	30	
	Width, in.	4.973	4.970	4.972	4.971		4.981	4.973	
	Thickness, in.	0.294	.290	.292	. 293		0.292	.292	
	Specimen identification	P1-4	-5	9	-7	Average	P1-8	6-1	Average

TABLE 5.- Continued

(g) AS4/2220-1 compression test results

			Resin c	Resin content: 34.32%	34.32%				
Specimen identification	Thickness, in.	Width, in.	Impact energy, ft-1b	Impact width, in.	Impact area, in.	Failure load, kips	Failure stress, ksi	Failure strain, µin/in.	Modulus, msi
2-4-12A	0.255	5.001	20	1.40	1.81	-35.71	-28.00	-4160	06*9
2-4-12B	.259	2.000	20	1.50	2.02	-32,70	-25.25	-3930	6.64
2-5-12A	.255	4.963	20	1.47	1.99	-32.96	-26.04	-4060	6.80
Average			-		1.94		-26.43	-4050	6.78

(h) CHS/2566 compression test results

			Resin	Resin content: 30.0%	30.0%				
Specimen identification	Thickness, in.	Width, in.	Impact energy, ft-lb	Impact width, in.	<pre>Impact Impact Failure width, area, load, in. in. kips</pre>	Failure load, kips	Failure stress, ksi	Failure strain, µin/in.	Modulus, msi
ST1-B1	0.276	5.024	20	2.68	1.387 -49.00	-49.00	-35.34	-5251	
-B2	.276	5.052	20	2.14	1.394	1.394 -47.90	-34.35		
-B3	.276	2.000	20	1.76	1.365	1.365 -47.80	-35.02	-5283	
Average					1.38		-34.90	-5267	

TABLE 5.- Continued

(i) C/982 compression test results

			Resin c	Resin content:	36.33%			·	
						3.1.1.20	Fai lure	Failure	Moduling
Specimen	Thickness,	Width,	Impact energy,	Impact width,	Impact area, in.	load, kips	stress, ksi	strain, µin/in.	msi
identification	+11.4		ICTID						3
2-4-138	0.309	2.000	50	1.78	2.61	-50.74	-32.84	-5480	6.04
\$00 - \$ 1-7		7 006	00	1.90	2.94	-49.78	-32,36	-5410	6.01
2-4-13B	• 308	4.933	2				- 29 85	-4880	6.18
2-5-13A	.304	2.000	20	1.50	1.82	-45.37	20.67		
1					2.46		-31.68	-5257	90.9
Average									

(j) T300/914 compression test results

			Resin	Resin content:	29.5%				
					1	Day 1 11 Pro	Failure	Failure	Modulus.
Specimen	Thickness,	width,	Impact energy,	Impact width,	width, area, load,	load, kips	stress, ksi	strain, µin/in.	msi
identification	1n.	7110	tt-1D		L				
4 F E C	0.247	5.031	30		3.0	-23.00	-18.51	-2620	7.06
#) - 1 0		n 031	30		3.0	-23.20	-18.97	-2610	7.27
ST-1B	.243	50.0		-			-18 74	-2615	7.17
Average					3.0		•		

TABLE 5.- Concluded

(k) AS4/3502 compression test results

			Resin o	Resin content:	35.1%				
Specimen identification	Thickness, in.	Width, in.	Impact energy, ft-1b	Impact width, in.	Impact area, in.	Failure load, kips	Failure stress, ksi	Failure strain, µin/in.	Modulus, msi
15-1A	0.268	5.013	20		2.30	-45.79	-34.07	-3937	8.56
-2A	.259	5.015			2,35	-44.80	-34.51	-3868	96*8
-4A	.275	5.003			2.85	-46.17	-33.56	-4141	8.14
22-1A	•269	4.999			3.20	-43.67	-32.49	-4082	8.20
-18	.269	4.999			2.85	-46.09	-34.32	-4024	8.94
Average				•	2.71		-33.79	-4010	8.55
15-2B	0.273	5.014	30		3.15	-42,91	-31.81	-3741	9.16
-3A	.269	5.012			4.90	-41.09	-30.02	-3392	8.52
3B	.275	5.013	>		4.20	-39.29	-28.49	-3392	8.32
Average					4.08		-30.11	-3508	8.67

TABLE 6.- STANDARD TEST-2: EDGE DELAMINATION TENSION

(a) CHS/1504 edge delamination test results

	Interlaminar	fracture toughness,	g_{c} , $\frac{in1b}{in.2}$	1.071	1.020	1.054	.701	696*	0.963
		Secant modulus,	msi				7.75	7.63	7.69
s (06		Tensile modulus,		8.70	8.85	8.81	8.18	8.65	8.64
n (±35/0/ 31.7%		Failure strain,	μin./in.				13 388	14 207	13 798
Laminate orientation (±35/0/90) _s Resin content: 31.7%		Delamination Thickness, Width, onset strain,	uin./in.	6075	2600	5775	6450	2900	2960
Lamin		Width.	in.	1.505	1,505	1.504	1.505	1.506	
		Thickness.		0.046	.046	.046	• 046	.046	
		Specimen	identification	216-1	-2	3	بر.	-11	Average

		Laminat	Laminate orientation (±30/±30/90/90) Resin content: 30.6%	(±30/±30/90 30.6%	s(06/0		
			_		Tensile	Secant	Interlaminar fracture
Specimen identification	Thickness, in.	width, in.	onset strain, µin./in.	strain, µin./in.	modulus, msi	modulus, msi	toughness, G_c , $\frac{in - 1b}{in \cdot 2}$
215-1	0.061	1.505	4438		7.38	7.06	1.425
-2	.063	1.505	4850		7.40	7.40	1.716
-3	• 063	1.505	4662		7.32	7.32	1.532
-4	.062	1.506	4725		7.28	7.44	1.546
5	.062	1.506	4588		7.56	7.83	1.641
Average			4653		7.39	7.41	1.572

TABLE 6.- Continued

(b) CHS/5245 edge delamination test results

·		Lami	Laminate orientation (±35/0/90) _S Resin content: 28.3%	n (±35/0/9 : 28.3%	s (06		
Specimen identification	Thickness, in.	Width, in.	Delamination onset strain, uin./in.	Failure strain, uin./in.	Tensile modulus, msi	Secant modulus, msi	Interlaminar fracture toughness,
							Gc' in. 2
247-1	0.0436	1.503	6200	-	9.42	8.85	1,25
4-	.0431	1.507	0009		9.34	8.72	1.23
5-	.0434	1.507	6400		9.37	8.79	1.24
-2	.0432	1.500	6200	13 800	9.17	8.95	1.24
6	.0431	1.505	6200	13 700	9.19	8.74	1.23
Average			6200	13 800	9.30	8.81	1.24

		Laminat	Laminate orientation (±30/±30/90/90) Resin content: 29.1%	(±30/±30/90	s (<u>06</u> /0		
Specimen identification	Thickness, in.		Delamination Width, onset strain, in. pin./in.	1 ft /n -1	Tensile modulus, msi	Secant modulus, msi	Interlaminar fracture toughness, G, in. 1b
246-3	090.0	1.508	6200		7.45	7.18	2.84
4-	090•	1.507	2900	,	7.60	7.28	2.57
5-	090•	1.506	6400		7.33	7.47	3.02
ī	090•	1.508	0009	17 800	7.63	7.63	2.66
-2	090•	1.508	0009	20 700	7.63	7.63	2.66
Average			6100	19 200	7.53	7.44	2.75

(c) AS6/5245C edge delamination test results

TABLE 6.- Continued

	Lan		rientat: In conte		5/0/90) _s l%		
Specimen	Thickness,	Width,	Delamin onset s	strain,	Failure strain,	Tensile modulus,	Interlaminar fracture toughness,
identification	in.	in.	(a)	(b)	μin./in.	msi	$G_{c}, \frac{\text{inlb}}{\text{in.}^2}$
ST2-2F-1	0.061	1.500	4100	4000	14 400	9.29	0.75
-2	.061	1.500	4240	4100	15 750	8.35	•79
-3	.059	1.497	4300	4200		8.43	.80
-4	.061	1.499	4540	4540		8.11	.97
-5	.061	1.497	4150	4000		9.06	.75
Average			4270	4170		8.65	0.81

	Lamina		ntation in conte		30/90/ <u>90</u>) %	3	,
	Thickness,	Width,	Delamin onset s µin.	strain,	Tensile modulus,	Secant modulus,	Interlaminar fracture toughness,
identification	in.	in.	(a)	(b)	msi	msi	$G_{c'} \frac{\text{inlb}}{\text{in.}^2}$
ST2-2E-1	0.079	1.494	3650	3550	7.72		1.27
-2	.078	1.493	3760	3600	7.36		1.29
-3	.079	1.497	2900	2900	7.68		•85
-4	.080	1.493	3000	3000	7.46		.92
-5	.079	1.495		3200	7.85		1.03
Average			3330	3250	7.61		1.07

 $^{^{\}rm a}{\rm Strain}$ at first deviation from linear stress-strain curve. $^{\rm b}{\rm Strain}$ at first visible delamination.

(d) AS6/2220-3 edge delamination test results

TABLE 6.- Continued

	La		rientat in conte		5/0/90) _s		•
Specimen	Thickness,	Width,	Delami onset µin.	strain,	Failure strain,	Tensile modulus,	Interlaminar fracture toughness,
identification	in.	in.	(a)	(b)	μin./in.	msi	$G_{c'} \frac{\text{inlb}}{\text{in.}^2}$
ST2-1F-1	0.062	1.499	3500	3400	12 500	9.68	0.64
-2	.063	1.499	4400	4100	13 300	8.66	.94
-3	.062	1.499	5400	4250		8.18	1.00
-4	•062	1.498	3970	3970		8.61	87
Average			4320	3930		8.78	0.86

	Lamin	ate orie Res	ntation in conte	(±30/±	30/90/ 90) %	S	
Specimen identification	Thickness,		Delami onset µin.	strain,	Tensile modulus,	Secant modulus,	Interlaminar fracture toughness,
Identification	II.•	in.	(a)	(b)	msi	msi	$G_{c}, \frac{\text{inlb}}{\text{in.}^2}$
ST2-1E-1	0.083	1.495	3050	2750	7.25		0.92
-2	.084	1.495	3250	3100	6.83		1.19
-3	.083	1.496	3050	3050	7.03	·	1.13
-4	.084	1.496	3650	3650	6.94	• •	1.64
-5	.084	1.495	3250	3100	6.12		1.19
Average			3250	3130	6.83		1.21

^aStrain at first deviation from linear stress-strain curve. ^bStrain at first visible delamination.

TABLE 6.- Continued

(e) AS4/2220-3 edge delamination test results

	Lar		rientati in conte		5/0/90) _s		
Specimen	Thickness,	Width,	Delamin onset s µin./	train,	Failure strain,	Tensile modulus,	Interlaminar fracture toughness,
identification	in.	in.	(a)	(b)	μin./in.	msi	$G_{c}, \frac{inlb}{in.2}$
1–1	0.0609	1.519	3600			8.96	0.45
1-2	.0605	1.522	4400			8.56	.67
1-3	.0608	1.520	3700	•		8.89	•47
1-4	.0608	1.522	4700			8.72	.77
1-5	.0606	1.521	4000			8.71	55
Average			4080				0.58

	Lamin	ate orie Res	ntation in conte	(±30/± nt: 34	30/90/ 90) %	s	
Specimen identification	Thickness, in.	Width,	Delamir onset s µin.,	strain,	Tensile modulus, msi	Secant modulus, msi	Interlaminar fracture toughness,
			(a)	(b)			$G_{c}, \frac{1n1b}{in.^2}$
2-1	0.0815	1.509	3800		6.69		1.09
2-2	.0819	1.507	3800		5.89		1.09
2-3	.0822	1.507	3000		7.23		•68
2-4	.0820	1.506	3600		6.71	·	•98
2-5	.0819	1.505	2200	` .	7.69		.36
Average			3280				0.84

 $^{^{\}rm a}{\rm Strain}$ at first deviation from linear stress-strain curve. $^{\rm b}{\rm Strain}$ at first visible delamination.

TABLE 6.- Continued

(f) AS4/2220-1 edge delamination test results

	La		rientat n conten		5/0/90) _s 6%		
Specimen identification	Thickness,	Width,	Delamin onset s µin.	strain,	Failure strain, µin./in.	Tensile modulus,	Interlaminar fracture toughness,
rdentification	±11.•	±11.•	(a)	(b)	пти	MS I	$G_{c}, \frac{\text{in} \cdot -1b}{\text{in} \cdot 2}$
40-1	0.043	1.498	6060		·	8.94	1.308
-2	.044	1.497	6080			8.76	1.348
-3	.044	1.497	5508			8.70	1.106
-4	.045	1.497	6000		13 040	8.53	1.342
-5	.044	1.496	5370		. 12 225	8.99	1.051
Average			5804				1.231

	Lamin	ate orie Resi	ntation n conten	(±30/± t: 28.	30/90/ 90) 6%	5	
Specimen identification	Thickness,	Width,	Delamin onset s	strain,	Tensile modulus, msi	Secant modulus, msi	Interlaminar fracture toughness,
rdentification	111.	111•	(a)	(b)	МЭТ	ms I	$G_{c}, \frac{\text{in1b}}{\text{in.}^2}$
39-1	0.058	1.504	4675		7.28	7.11	1.732
2	.058	1.504	5140		7.46	7.07	2.094
-3	.059	1.502	5075		7.36	7.24	2.077
-4	.058	1.504	4526	·	7.48	7.16	1.624
- 5	.059	1.503	5170		7.41	7.18	2.155
Average			4917				1.935

 $^{^{\}rm a}_{\rm L}{\rm Strain}$ at first deviation from linear stress-strain curve.

TABLE 6.- Continued

(g) T300/914 edge delamination test results, ply thickness = 0.010 in.

	La	minate o Resir	rientati n conten		5/0/90) _s 5%		
Specimen identification	Thickness,	Width,	Delamir onset s µin./	strain,	Failure strain, µin./in.	Tensile modulus, msi	
Identification	1110	111.	(a)	(b)	μιπογιπο	MO I	$G_{c}, \frac{inlb}{in.2}$
ST-2F	0.0700	1.5374	3060		8250	8.80	0.496
-2G	.0712	1.5331	3130		6000	9.03	•527
-2Н	.0708	1.5337	3060		6750	9.37	•501
-21	.0699	1.5365	3060		7000	8.87	. •495
-2J	.0706	1.5340	3000		7000	8.62	
Average			3062				0.500

	Lamina		ntation n conten		0/90/ ⁹⁰) 5%	5	
Specimen	Thickness,	Width,	Delamir onset s µin./	train,	Tensile modulus,	Secant modulus,	Interlaminar fracture toughness,
identification	in.	in.	(a)	(b)	msi	msi	$G_c, \frac{\text{inlb}}{\text{in.}^2}$
ST-2A	0.1082	1.5043	2630		7.45		0.949
-2B	.1133	1.5042	2500	·	7.25		.898
-2C	.1042	1.4917	3000	,	7.51		1.190
-2D	.1140	1.4956	2750		7.44		1.090
-2E	.1103	1.5012	2840		7.64		1.130
Average	·		2744				1.050

 $^{^{\}rm a}{\rm Strain}$ at first deviation from linear stress-strain curve. $^{\rm b}{\rm Strain}$ at first visible delamination.

TABLE 6.- Continued

(h) T300/914 edge delamination test results, ply thickness = 0.005 in

	La		rientati in conte		5/0/90) _s		
Specimen	Thickness,		Delamin onset s µin.,	strain,	Failure strain,	Tensile modulus,	
identification	in.	in.	(a)	(b)	μin./in.	msi	$G_{c}, \frac{\text{inlb}}{\text{in.}^2}$
ST25-6	0.0424	1.512	6500		9 125	9.14	1.35
-7	.0449	1.509	6200		7 500	8.86	1.30
-8	•0450	1.514	6825		11 250	8.92	1.58
-9	•0451	1.509	6300		9 750	8.82	1.35
-10	.0443	1.503	7000		9 750	8.88	1.64
Average			6565		9 475	8.92	1.44

	Lamina		ntation in conte		30/90/ 90) %	S	
Specimen	Thickness,	Width,	Delamin onset s µin.,	strain,	Tensile modulus,	Secant modulus,	1
identification	in.	in.	(a)	(b)	msi	msi	$G_c, \frac{\text{inlb}}{\text{in.}^2}$
ST25-1	0.0633	1.509	5875	·	6.98	6.42	2.77
-2	.0633	1.507	5000		6.71	6.76	2.01
-3	.0580	1.510	5375		7.25	7.27	2.12
-4	.0623	1.512	5000		7.17	7.00	1.97
-5	.0613	1.511	5125		7.37	7.24	2.04
Average			5275		7.10	6.94	2.18

 $^{^{\}rm a}{\rm Strain}$ at first deviation from linear stress-strain curve. $^{\rm b}{\rm Strain}$ at first visible delamination.

TABLE 6.- Concluded

(i) AS4/3502 edge delamination test results

	La		orientati n conten		5/0/90) _s 1%		7
Specimen identification	Thickness,	Width,	Delamin onset s µin.,	strain,	Failure strain, µin./in.	Tensile modulus, msi	
Identification		111.	(a)	(b)	рти•/ти•	mo I	$G_{c}, \frac{\text{inlb}}{\text{in.}^2}$
20-1	0.040	1.506	4550	5539		9.94	0.55
-2	.039	1.503	4980	5542		10.30	.81
-3	•039	1.506	5000	5304		10.22	.78
-4	•039	1.506	4810	4810	11 690	10.10	.67
-11	.040	1.506	4900	5000	11 010	9.97	.65
Average			4848	5239	11 350	10.11	0.69

	Lamin	ate orie Resi	ntation n conten	(±30/±	30/90/ 90) 8%	3	
Specimen	Thickness,	Width,	Delamin onset s µin.,	strain,	Tensile modulus,	1	·
identification	in.	in.	(a)	(b)	msi	msi	G _c , inlb in. ²
19-1	0.054	1.511	2940	3400	8.40		0.58
-2	.054	1.511	2970	3250	8.30		•57
-3	.054	1.511	3140	3240	8.19		•61
-4	.055	1.510	2730	3168	8.54		.54
-5	.054	1.510	3095	3095	8.40		.64
Average			2975	3231	8.37	i,	0.59

 $^{^{\}rm a}$ Strain at first deviation from linear stress-strain curve. $^{\rm b}$ Strain at first visible delamination.

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 7.- STANDARD TEST-5: DOUBLE CANTILEVER BEAM

(a) CHS/5245 double cantilever beam test data

GI-in-Is 1.18 1.42 1.25 1.21 1.26 P5, 2 9 S ß S δ₅, 6.06 1.48 6.11 1.49 6.04 1.46 6.05 1.72 in. in. P4' 7 1p ω 9 9 1.04 in. 5.07 1.03 5.07 1.08 5.05 1.01 A4' 5.06 in. (P3,) 9 σ ω ω (0) 24 δ3, 69. 99• •68 in. 4.10 0.70 4.10 4.04 4.08 in. orientation: P2, 2 10 19 12 10 0.40 .40 62, .38 •39 in. Laminate 3.13 3.08 3.07 3.07 A2, in. P1, 14 **1**P 15 13 13 .18 18 .18 6ء، in. 2.19 0.21 2.10 2.10 2.05 A1, in. Width, 1.504 1.504 1.505 1.505 in. Thickness, .1246 .1280 .1225 0.1356 in. identification Specimen Average 249-1 7 -5

ORIGINAL PAGE 12 OF POOR QUALITY

TABLE 7.- Continued

(b) AS4/2220-3 double cantilever beam test data

Specimen Thickness, width, in. A1, in.lb in. in.lb					Lamin	ate or	Laminate orientation: (0) _n) :uc	u(0)					
Thickness, Width, A ₁ , P ₁ δ ₁ , A ₂ , P ₂ δ ₂ , A ₃ , P ₃ δ ₃ , A ₄ , P ₄ δ ₄ , A ₅ , A ₅ , P ₅ δ ₅ , In. I														*
in. in. in-lb in	i co	m i ckness.	Width.	A1,	P1 611	A2,	P2 62,	A3,	P3 63,	A41	P4 64'	A5,		$^{ m G_{IC}}_{ m in-lb}$
0.5 2.60 3.30 0.3049 4.10 0.3705 4.80 0.2882 5.65 0.3920 .5 2.95 3.50 .253 4.30 .3795 4.90 .281 .5 2.75 3.35 .186 3.90 .253 4.40 .294	speciment identification		in.	in.	in-lb	in.	in-lb	in.	in-lb	in.	in-1b	in.		in
.5 2.95 3.50 .253 4.30 .3795 4.90 .281 .5 2.75 3.35 .186 3.90 .253 4.40 .294	-		0.5	2.60		3.30	0.3049	4.10	0.3705	4.80	0.2882	5.65	0.3920	68.0
.5 2.75 3.35 .186 3.90 .253 4.40 .294	- ^		2.	2.95		3.50	.253	4.30		4.90	.281			.94
	1 6		ທີ	2.75		3,35	•186	3.90		4.40	.294			. 89
Average	·			· .	• •							-		06.0
	Average													

 $^*G_{Ic}$ calculated by energy-area integration method.

ORIGINAL FACE IS OF POOR QUALITY

TABLE 7.- Concluded

(c) CHS/2566 double cantilever beam test data

				•		Lan	inate	Laminate orientation: $(0)_n$	tation	0) :1). n				-				
	Specimen	Thickness, Width, A1, 61,	Width,	A ₁ ,	61,	P1,	A2,	P_1 , A_2 , δ_2 , P_2 , A_3 , δ_3 , P_3 , A_4 , δ_4 , δ_4 , P_4 , A_5 , δ_5 , P_5 , $\frac{G}{in^2 f_b}$	P2,	A3,	٥3،	P3,	A4,	٥4،	P4'	A5,	۶۶،	P5,	G _I E,
	identification	·ui.	in.	in.	in.	1b	in.	in.	1b	in.	in.	1b	in.	in.	1b	in.	in.	119	in ²
	ST5-B1	0.130	1.512 2.71 0.432	2.71	0.432	•	3.74	4.40 3.74 0.78 11.3 5.07 1.45 9.10 6.09 2.03 7.60	11.3	5.07	1.45	9.10	60*9	2.03	7.60				2.19
	-82	.131	1.508 2.70 .424 15.20 3.87 .808 10.80 5.18 1.40 8.30 6.38 2.08 6.95	2.70	.424	15.20	3.87	808	10.80	5.18	1.40	8.30	6.38	2.08	6.95			···	2.10
41	-B3	.136	1.508 2.72 .400 1	2.72	.400	15.70	3.80	5.70 3.80 .780 12.40 4.98 1.324 10.30 6.06 1.86 8.10	12.40	4.98	1.324	10.30	90.9	1.86	8.10				2.29
	Average																		2.19

ORIGINAL PAGE 16 OF POOR QUALITY

compression after

Impact specimen (c) Standard Test-1

open hale compression specimen

(b) Standard Test-4,

(a) Standard Test-3

open hote speckmen Figure 1 - Standard Test Specimen Configurations (Dimensions are in Inches

Teflon separator

- Piano hinge (stock item)

-Dots indicate location of thickness and width measurements

Grip //

Figure 2 - Open Hole Tension Failure Strain

Figure 3 - Open Hole Compression Failure Strain

Figure 4 - Compression Failure Strain after 20 Ft-Lb Impact

Figure 5 - Impact Damage Area after 20 Ft-Lb Impact

ORIGINAL PAGE IS OF POOR QUALITY

Figure 6 - Strain at Delamination Onset from Tension Edge Delamination Tests

ORIGINAL PAGE 15 OF POOR QUALITY

Figure 7 - Interlaminar Fracture Toughness Energy

	1				
1. Report No. NASA TM-86298	2. Government Accession	No.		3. Recip	pient's Catalog No.
4. Title and Subtitle				5. Repo	ort Date
Standard Test Evaluation	of Granhite Fiber	/Recin	Matriv		tember 1984
Composite Materials for			TIQUI IX		orming Organization Code 06-13
7. Author(s)		-4		8. Perfo	orming Organization Report No.
Andrew J. Chapman			1	10 Work	Unit No.
9. Performing Organization Name and Addre	38		·	IO. WOLK	Offic No.
NASA Langley Research Ce Hampton, VA 23665	nter				ract or Grant No.
12 Spannering Assess Name and Address		·.		13. Туре	of Report and Period Covered
12. Sponsoring Agency Name and Address National Agency Name and Address	Space Administrat	ion			chnical Memorandum
National Aeronautics and Washington, DC 20546	Space Administrat	TON		14. Spon	soring Agency Code
15. Supplementary Notes					**************************************
NASA is sponsoring progra technology data base restructures. To realize strength critical design interlaminar toughness a materials, NASA and the standardized a set of fi and compression performal level of 20 ft-lb, and regraphite fiber composite their performance is compared to the standardized and compression performance is compared to the standardized to the st	equired to design the full potential s, material system re being sought. commercial transpove common tests. nce, compression pesistance to delams have been evaluated.	and bui of com as havin To prom ort manu These t performa ination ted usi	Id compaposite and improvement of the system	osite struct ved du temati ers hav aluate ter imp toughe serie	wing and fuselage tures in these uctility and ic evaluation of new we selected and e open hole tension bact at an energy ened resin matrix/ es of tests, and
·		S ₀ - 1			
		,			
17. Key-Words (Suggested by Author(s))	Ţ1	8. Distributi	on Statemer	nt .	
Composite Materials Improved Toughness Damage Tolerance		Subjec	ct Cate	jory 2	4
19. Security Classif. (of this report)	20. Security Classif. (of this pa	ge)	21. No. of	Pages	22. Price
Unclassified	Unclassified		50		

Available: NASA's Industrial Applications Centers