CSE_223_1.pdf: Signals, Systems, and Signal Processing

Introduction to Signals

- A signal is defined as any physical quantity that varies with time, space, or any other independent variable.
- Mathematically, a signal is a function of one or more independent variables:
 - Examples include sound waves, vibrations of a spring, tsunami waves, surface ripples on water, seismic waves, and electromagnetic waves.
 - An image is an example of a signal with two independent variables.
- **Signal Generation** is associated with a system responding to a stimulus or force. For example, in speech, the system includes the vocal cords and the vocal tract.

Systems and Signal Processing

- A **system** is a device or software that performs an operation on a signal.
 - For instance, a filter reducing noise is an example of a system.
- **Signal processing** is the operation performed by a system on a signal, which is characterized by the type of operation the system performs.
 - For example, a filter eliminates noise.
- Signal processing can be done using:
 - Analog signal processing systems.
 - Digital signal processing systems.
- Most signals encountered in science and engineering are analog in nature.
 Analog signals are functions of a continuous variable (time or space) and take on values in a continuous range. These can be processed directly by analog systems.
- **Digital signal processing systems** perform processing digitally and may use a large programmable computer, a small microprocessor, or a hardwired digital processor.

Advantages of Digital over Analog Signal Processing

- **Flexibility**: Digital processing allows easy reconfiguration by changing the program, while analog requires hardware redesign.
- Accuracy: Digital systems provide better control of accuracy requirements, while analog components have tolerances.
- Storage and Transportability: Digital signals can be stored and processed offline, which is not possible with analog signals.
- **Sophisticated Algorithms**: Digital systems allow the implementation of more sophisticated signal processing algorithms.

Classification of Signals

- Multichannel Signals: Signals generated by multiple sources or sensors (e.g., ground acceleration due to an earthquake).
- Multidimensional Signals:
 - A signal that is a function of a single independent variable is called a one-dimensional signal.
 - A signal is called an M-dimensional signal if its value is a function of \$ M \$ independent variables.
 - A black-and-white TV picture can be represented as I(x, y, t), a three-dimensional signal.
 - A color TV picture is a three-channel, three-dimensional signal with intensity functions $I_r(x, y, t)$, $I_g(x, y, t)$, and $I_b(x, y, t)$.
- Continuous-Time Signals: Defined for every value of time and take on values in a continuous interval.
- **Discrete-Time Signals**: Defined only at specific values of time, which are usually equidistant. They can arise by sampling an analog signal or by accumulating a variable over time.
- Continuous-Valued Signals: Can take on all possible values in a finite or infinite range.
- Discrete-Valued Signals: Can take on values from a finite set of possible values.
- An **analog signal** is a continuous-time, continuous-valued signal.
- A digital signal is a discrete-time signal having a set of discrete values.
- **Deterministic Signals**: Can be uniquely described by an explicit mathematical expression, a table of data, or a well-defined rule. All past, present, and future values are known precisely without any uncertainty.
- Random Signals: Cannot be accurately described by explicit mathematical formulas and evolve unpredictably.

Concept of Frequency in Continuous-Time and Discrete-Time Signals

- The nature of time (continuous or discrete) affects the nature of frequency.
- Continuous-Time Sinusoidal Signals:
 - A simple harmonic oscillation can be described as:

$$S(t) = A\sin(\omega t + \theta)$$

- For every fixed frequency \$ F \$, \$ x a(t) \$ is periodic.
- Distinct frequencies result in distinct signals.

- Increasing the frequency \$ F \$ increases the rate of oscillation.
- Mathematically, negative frequencies are introduced for convenience.

• Discrete-Time Sinusoidal Signals:

- Expressed as:

$$x(n) = A\cos(\omega n + \theta)$$
 or $x(n) = A\cos(2\pi f n + \theta)$

where \$ n \$ is the sample number, \$ A \$ is the amplitude, \$ \$ is the frequency in radians per sample, and \$ \$ is the phase in radians.

- A discrete-time sinusoid is periodic only if its frequency $\ f\ \$ is a rational number.
- Discrete-time sinusoids whose frequencies are separated by an integer multiple of \$ 2 \$ are identical.
- The highest rate of oscillation is attained when \$ = \$ or equivalently, $f = \frac{1}{2}$.

Aliasing

- The sinusoids having the frequency $|\omega|>\pi$ are the alias of the corresponding sinusoids with frequestion $|\omega|<\pi$
- Aliasing occurs because periodic sampling of a continuous-time signal maps an infinite range of frequencies into a finite range for the discrete-time signal.
 - Frequencies \$ F = F_0 + k F_s \$, where \$ k \$ is an integer, are indistinguishable from \$ F_0 \$ after sampling and are aliases of \$ F_0 \$.
 - For example, with a sampling rate $\ F_s = 40 \ Hz$, a 50 Hz signal is an alias of a 10 Hz signal.

Sampling of Analog Signals

- Sampling is the process of selecting values of an analog signal at discretetime instants.
- The relationship between continuous and discrete time variables is given by:

$$t = nT$$

where \$ T \$ is the sampling period.

• The reciprocal of \$ T \$ is the sampling rate \$ F_s \$ or sampling frequency:

$$F_s = \frac{1}{T}$$

• The relationship between analog and digital frequencies is given by:

$$f = \frac{F}{F_s}$$

The highest frequency in a discrete-time signal is $f = \frac{1}{2}$.

The Sampling Theorem

- Shannon's sampling theorem states that a continuous-time signal with no frequency components higher than \$ F_{max} \$ can be completely determined by samples taken at a rate \$ F_s 2 F_{max} \$.
 - The minimum sampling rate \$ F_s = 2 F_{max} \$ is called the Nyquist rate.
 - To avoid aliasing, the sampling rate must be selected such that \$ F_s > 2 F_{max} \$.

Quantization of Continuous-Amplitude Signals

- Quantization is the process of converting a discrete-time continuousamplitude signal into a digital signal by expressing each sample as a finite number of digits.
 - The error introduced in this process is called quantization error or quantization noise, and is given by:

$$e_q(n) = x_q(n) - x(n)$$

Quantization is an irreversible process because samples within a certain distance of a quantization level are assigned the same value.

Digital-to-Analog Conversion

• This topic is mentioned but not detailed in the document.

CSE_223_2.pdf: ntroduction to Discrete-Time Signals

What is a Discrete-Time Signal?

- A discrete-time signal is a sequence of values, denoted as **x(n)**, where **n** represents the time index, typically an integer.
- Unlike continuous-time signals, discrete-time signals are only defined at integer values of \mathbf{n} and are not defined for non-integer values of \mathbf{n} .

Graphical Representation:

Discrete-time signals are displayed as a series of discrete points on a graph. The time origin (n=0) is typically marked with a symbol (↑).

Sampling:

• Discrete-time signals are obtained by sampling an **analog signal** (xa(t)), where $\mathbf{x}(\mathbf{n})$ is defined as $\mathbf{xa}(\mathbf{nT})$, with \mathbf{T} being the sampling period.

Elementary Discrete-Time Signals

- 1. Unit Sample Sequence (Unit Impulse):
 - A signal that is $\mathbf{1}$ at n=0 and $\mathbf{0}$ everywhere else.
- 2. Unit Step Signal:
 - A signal that is 0 for n < 0 and 1 for n 0.
- 3. Unit Ramp Signal:
 - A signal whose value increases **linearly** with time for $n \geq 0$.
- 4. Exponential Signal:
 - **Real Exponential:** When the parameter **a** is real, the signal is a simple exponential.
 - Complex Exponential: If **a** is complex (i.e., **a** = $\mathbf{re}^{\hat{}}(\mathbf{j})$), the signal is a complex exponential, represented as: $-r^n * e^{(j}\theta n)$ or equivalently $r^n(\cos(\theta n) + j\sin(\theta n))$.
 - The **magnitude** of the complex exponential is $A(n) = r^n$, and the **phase** is $\emptyset(n) = \theta n$.

Classification of Discrete-Time Signals

- 1. Energy Signals and Power Signals:
 - Energy: The capacity of a signal to create a change.

$$E = \sum_{n = -\infty}^{\infty} |x[n]|^2$$

• **Power:** The rate at which energy is used or transmitted.

$$P = \lim_{N \to \infty} \frac{1}{(2N+1)} \sum_{n=-N}^{N} |x[n]|^2$$

Energy Signal:

• A signal x(n) is an energy signal if its total energy E (calculated by summing the squared magnitudes of the signal) is finite $(0 < E < \infty)$.

Power Signal:

• The average power **P** of a discrete-time signal **x(n)** is calculated as the average of the sum of the squared magnitudes of the signal. If **P** is finite and non-zero, the signal is a **power signal**.

Key Relationships:

- If \mathbf{E} is finite, $\mathbf{P} = \mathbf{0}$.
- If **E** is infinite, **P** can be finite or infinite.
- A signal cannot be both an energy signal and a power signal; they are **mutually exclusive**.
- A signal is neither an energy nor a power signal if both energy and power are infinite.
- **Practical Signals:** Most practical signals are energy signals with finite duration and amplitude. Power signals require infinite duration, making them physically impossible to generate.
- Signals with constant amplitude over an infinite duration are power signals.

2. Periodic and Aperiodic Signals:

Periodic Signal:

• A signal x(n) is periodic with **period N** if x(n+N) = x(n) for all **n**. The smallest such **N** is called the **fundamental period**.

Aperiodic Signal:

- A signal is aperiodic (or non-periodic) if no such N exists.
- 3. Symmetric (Even) and Antisymmetric (Odd) Signals:

Symmetric (Even) Signal:

• A signal $\mathbf{x}(\mathbf{n})$ is symmetric (even) if $\mathbf{x}(-\mathbf{n}) = \mathbf{x}(\mathbf{n})$.

Antisymmetric (Odd) Signal:

- A signal $\mathbf{x}(\mathbf{n})$ is antisymmetric (odd) if $\mathbf{x}(-\mathbf{n}) = -\mathbf{x}(\mathbf{n})$.
- Any arbitrary signal can be expressed as the sum of an even and an odd signal:
 - Even component: (x(n) + x(-n))/2

- Odd component: (x(n) - x(-n))/2

Simple Manipulations of Discrete-Time Signals

1. Time Shifting:

- Replacing n with n k shifts the signal in time.
 - If **k** is positive, it is a **delay**.
 - $-% \frac{1}{2}$ If \mathbf{k} is negative, it is an $\mathbf{advance}.$

2. Time Reversal (Folding):

• Replacing **n** with **-n** reflects the signal about the time origin (n = 0).

3. Time Scaling (Down-sampling):

- Replacing **n** with μn , where is an integer, scales the time base.
 - For example, y(n) = x(2n) represents **down-sampling** the signal.

4. Amplitude Modifications:

Amplitude Scaling:

• Multiplying the signal by a constant **A** scales the amplitude of every sample.

Addition of Signals:

• Adding two signals, $\mathbf{x1}(\mathbf{n})$ and x2(n), results in a new signal $\mathbf{y(n)} = \mathbf{x1}(\mathbf{n}) + \mathbf{x2}(\mathbf{n})$.

Multiplication of Signals:

• The product of two signals is calculated sample-by-sample: y(n) = x1(n) * x2(n).

Discrete-Time Systems

Definition:

• A discrete-time system is a device or algorithm that transforms a discrete-time input signal into a corresponding output signal.

Input-Output Relationship:

• The system's behavior can be described by the relationship between its **input** and **output** signals.

Block Diagram Representation:

- Basic building blocks include:
 - Adder: Sums two or more signals.
 - Constant Multiplier: Multiplies a signal by a constant.
 - **Signal Multiplier:** Multiplies two signals.
 - Unit Delay Element: Delays the signal by one sample.
 - Unit Advance Element: Advances the signal by one sample.

Classification of Discrete-Time Systems

1. Static vs. Dynamic Systems:

Static (Memoryless) System:

• The output depends only on the current input, not on past or future inputs.

Dynamic System:

• The output depends on past or future inputs, implying the system has **memory**.

2. Time-Invariant vs. Time-Variant Systems:

Time-Invariant System:

• The system's behavior doesn't change with time. Shifting the input by ${\bf k}$ samples results in the same shift in the output.

Time-Variant System:

• The system's behavior changes with time.

3. Linear vs. Nonlinear Systems:

Linear System:

• A system that satisfies the **superposition principle** (the output is the sum of the individual responses to each input signal).

Nonlinear System:

• A system that does not satisfy the superposition principle.

4. Causal vs. Noncausal Systems:

Causal System:

• The output depends only on **present** and **past** inputs, not on future inputs.

Noncausal System:

• The output depends on **future** inputs.

5. Stable vs. Unstable Systems:

Stable (BIBO) System:

• A system is stable if **bounded input** results in a **bounded output**.

Unstable System:

• If a bounded input leads to an **unbounded** output, the system is unstable.

Interconnection of Discrete-Time Systems

• Systems can be interconnected to form larger systems using configurations such as **cascade** (series) and **parallel** arrangements.

Analysis of Linear Time-Invariant (LTI) Systems

Techniques for Analysis:

• Directly solve the input-output equations or decompose the input signal into elementary components and apply linearity to find the total output.

Impulse Response:

• The **impulse response** of an LTI system is the response to an input (n-k) (the unit sample).

Convolution Sum:

• The output $\mathbf{y}(\mathbf{n})$ of an LTI system is given by the **convolution sum** of the input signal $\mathbf{x}(\mathbf{n})$ and the system's impulse response $\mathbf{h}(\mathbf{n})$: $-y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$

Correlation of Discrete-Time Signals

Objective:

• To measure the degree of similarity between two signals.

Applications:

• Used in areas such as radar, sonar, digital communications, and geology.

Crosscorrelation and Autocorrelation:

• Methods for measuring similarity between signals.