Analysis of Variance (ANOVA)

Does the mean of at least one of the groups differ from the others?

Partitioning of variation into "between groups" (group) and "within groups" (error) components

ANOVA test statistic

$$F = \frac{\text{between group variation}}{\text{within group variation}} = \frac{\text{MS}_{\text{group}}}{\text{MS}_{\text{error}}}$$

Two-group ANOVA as Regression

We can also use a geometric perspective to test whether the mean of a variable differs between two groups of subjects.

Setup a 'dummy variable' as the predictor X_g . We assign all subjects in group 1 the value 1 and all subjects in group 2 the value -1 on the dummy variable. We then regress the variable of interest, Y, on X_g .

$$y = X_g b + e$$

	R	aw	Centered		
Group	Y_i	X_{i}	y_{i}	x_i	
1	2	-1	-3	$-\frac{4}{3}$	
	3	-1	-1	$-\frac{4}{3}$ $-\frac{4}{3}$	
2	5	1	0	$\frac{2}{3}$	
	6	1	1	$\frac{2}{3}$	
	6	1	1	$\frac{2}{3}$	
	7	1	2	2 3 2 3 2 3 2 3	
Mean	5	$\frac{1}{3}$	0	0	

Two-group ANOVA as Regression, cont

- When the means are different in the two groups, X_g will be a good predictor of the variable of interest, hence \vec{y} and $\vec{x_g}$ will have a small angle between them.
- When the means in the two groups are similar, the dummy variable will not be a good predictor. Hence the angle between \vec{y} and $\vec{x_g}$ will be large.

Visual representation of F-statistic

$$\overrightarrow{y}$$
 $MS_{
m group} = rac{|ec{e}|^2}{\dim(V_x)}$
 $MS_{
m group} = \frac{|ec{e}|^2}{\dim(V_x)}$

$$F = rac{MS_{
m group}}{MS_{
m error}}$$

Multi-way ANOVA as Regression

- Exactly the same idea applies to g groups, except now instead of one grouping variable, we define g-1 grouping variables, $dim(X_g) = g-1$.
- Then we calculate the multiple regression as we did before:

$$y = Xb + e$$

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}; X = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1g} \\ 1 & x_{21} & x_{22} & \cdots & x_{2g} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{ng} \end{bmatrix};$$

Estimate b as:

$$\mathbf{b} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

How Do We Construct the Grouping Matrix, X_g ?

Two common methods are:

1 Dummy coding – define a set of g grouping variables, where values take either 0 or 1, depending on group membership, but use only the first g-1 columns:

$$U_j = egin{cases} 1, & ext{for every subject in group } j, \ 0, & ext{for all other subjects.} \end{cases}$$

and

$$X_g = [U_1, U_2, \cdots, U_{g-1}]$$

2 Effect coding – define the U_j as above, and set:

$$X_g = [U_1 - U_g, U_2 - U_g, \cdots, U_{g-1} - U_g]$$

In general, effect coding is more similar to standard ANOVA contrasts.

ANOVA: Example Data Set

	g_1	92	<i>9</i> 3	94	
	20	21	17	8	
	17	16	16	11	
	17	14	15	8	
$\overline{M_{g.}}$	18	17	16	9	$M_{} = 15$

ANOVA: Example Data Set, cont

Solving for b we find:

$$b = \begin{bmatrix} 15 \\ 3 \\ 2 \\ 1 \end{bmatrix}, \quad |\hat{y}|^2 = 150, \ |e|^2 = 40$$

Since, $\dim(\mathcal{V}_x) = 3$, and $\dim(\mathcal{V}_e) = 8$, we get:

$$F = \frac{\dim(\mathcal{V}_e)|\vec{\hat{y}}|^2}{\dim(\mathcal{V}_\chi)|\vec{e}|^2} = 10$$

Here's the more conventional ANOVA table for the same data:

Source	df	SS	MS	F	Pr(F)
Experimental Error	3 8	150 40	50 5	10	.0044
Total	11	190			