Predictive Analytics (ISE529)

Multiple Linear Regression

Dr. Tao Ma ma.tao@usc.edu

Tue/Thu, May 22 - July 1, 2025, Summer

School of Engineering
Daniel J. Epstein
Department of Industrial
and Systems Engineering

Outline

- Multiple Linear Regression
- Hypothesis Tests
- Confidence Intervals
- Model Adequacy Checking
- Other Considerations in Regression Modeling
- Selection of Important Variables
- Multicollinearity

MULTIPLE LINEAR REGRESSION

Multiple Regression Model

A regression model that contains more than one regressor variable is called a **multiple regression model**.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon$$

Suppose that n > k observations are available and let x_{ij} denote the *i*th observation or level of variable x_j . The observations are

$$(y_i \ x_{i1}, x_{i2, \dots} \ x_{ik}), \quad i = 1, 2, \dots, n \text{ and } n > k$$

Data set looks like:

<u>y</u>	<i>X</i> ₁	X_2	•••	X_k
<i>y</i> ₁	<i>X</i> ₁₁	<i>X</i> ₁₂	•••	X _{1 <i>k</i>}
<i>y</i> ₂	<i>X</i> ₂₁	<i>X</i> ₂₂	•••	\mathbf{x}_{2k}
y_n	X_{n1}	X_{n2}	•••	X_{nk}

A regression coefficient β_j estimates the expected change in Y per unit change in X_j , with all other predictors held fixed.

LEAST SQUARE ESTIMATION

Method of Least Square

The method of least square may be used to estimate the regression coefficients. The objective function is

$$L = \sum_{i=1}^{n} \epsilon_{i}^{2} = \sum_{i=1}^{n} \left(y_{i} - \beta_{0} - \sum_{j=1}^{k} \beta_{j} x_{ij} \right)^{2}$$

Find β_0 , β_1 , ..., β_k to minimize L.

$$\frac{\partial L}{\partial \beta_j}\bigg|_{\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k} = -2\sum_{i=1}^n \left(y_i - \hat{\beta}_0 - \sum_{j=1}^k \hat{\beta}_j x_{ij} \right) = 0$$

$$\frac{\partial L}{\partial \beta_{j}}\Big|_{\hat{\beta}_{0},\hat{\beta}_{1},...,\hat{\beta}_{k}} = -2\sum_{i=1}^{n} \left(y_{i} - \hat{\beta}_{0} - \sum_{j=1}^{k} \hat{\beta}_{j} x_{ij}\right) x_{ij} = 0 \quad j = 1, 2, ..., k$$

Method of Least Square

The normal equations are shown below.

$$n\hat{\beta}_{0} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i1} + \hat{\beta}_{2} \sum_{i=1}^{n} x_{i2} + \dots + \hat{\beta}_{k} \sum_{i=1}^{n} x_{ik} = \sum_{i=1}^{n} y_{i}$$

$$\hat{\beta}_{0} \sum_{i=1}^{n} x_{i1} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i1}^{2} + \hat{\beta}_{2} \sum_{i=1}^{n} x_{i1} x_{i2} + \dots + \hat{\beta}_{k} \sum_{i=1}^{n} x_{i1} x_{ik} = \sum_{i=1}^{n} x_{i1} y_{i}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\hat{\beta}_{0} \sum_{i=1}^{n} x_{ik} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{ik} x_{i1} + \hat{\beta}_{2} \sum_{i=1}^{n} x_{ik} x_{i2} + \dots + \hat{\beta}_{k} \sum_{i=1}^{n} x_{ik}^{2} = \sum_{i=1}^{n} x_{ik} y_{i}$$

Method of Least Square

The matrix form of the normal equations is shown below.

	$\sum_{i=1}^{n} x_{i1}$	$\sum_{i=1}^{n} x_{i2}$	•••	$\sum_{i=1}^{n} x_{ik}$	$\left\lceil \hat{eta}_0 ight ceil$	$\left[\sum_{i=1}^{n} y_{i} \right]$
$\sum_{i=1}^{n} x_{i1}$		$\sum_{i=1}^{n} x_{i1} x_{i2}$	•••	$\sum_{i=1}^{n} x_{i1} x_{ik}$	$\left \hat{\beta}_1 \right =$	$\left \sum_{i=1}^{n} x_{i1} y_{i} \right $
:	÷	:		:	:	
$\sum_{i=1}^{n} x_{ik}$	$\sum_{i=1}^{n} x_{ik} x_{i1}$	$\sum_{i=1}^{n} x_{ik} x_{i2}$	•••	$\sum_{i=1}^{n} x_{ik}$ $\sum_{i=1}^{n} x_{i1}x_{ik}$ \vdots $\sum_{i=1}^{n} x_{ik}^{2}$	$\left\lfloor \hat{eta}_k ight floor$	$\left[\sum_{i=1}^{n} x_{ik} y_{i}\right]$

Table 1 Wire Bond Data

Observation	Pull	Wire Length	Die	Observation	Pull	Wire	Die Height
Number	Strength	x_1	Height	Number	Strength	Length	x_2
	у		x_2		У	x_1	
1	9.95	2	50	14	11.66	2	360
2	24.45	8	110	15	21.65	4	205
3	31.75	11	120	16	17.89	4	400
4	35.00	10	550	17	69.00	20	600
5	25.02	8	295	18	10.30	1	585
6	16.86	4	200	19	34.93	10	540
7	14.38	2	375	20	46.59	15	250
8	9.60	2	52	21	44.88	15	290
9	24.35	9	100	22	54.12	16	510
10	27.50	8	300	23	56.63	17	590
11	17.08	4	412	24	22.13	6	100
12	37.00	11	400	25	21.15	5	400
13	41.95	12	500				

Figure 1 Matrix of scatter plots for the wire bond pull strength data in Table 1.

Specifically, we will fit the multiple linear regression model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

where y = pull strength, $x_1 = \text{wire length}$, and $x_2 = \text{die height}$.

From the data in Table 1 we calculate

$$n = 25, \sum_{i=1}^{25} y_i = 725.82, \sum_{i=1}^{25} x_{i1} = 206, \sum_{i=1}^{25} x_{i2} = 8,294$$

$$\sum_{i=1}^{25} x_{i1}^2 = 2,396, \sum_{i=1}^{25} x_{i2}^2 = 3,531,848, \sum_{i=1}^{25} x_{i1}x_{i2} = 77,177$$

$$\sum_{i=1}^{25} x_{i1}y_i = 8,008.47, \sum_{i=1}^{25} x_{i2}y_i = 274,816.71$$

For the model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$, the normal equations are

$$n\hat{\beta}_{0} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i1} + \hat{\beta}_{2} \sum_{i=1}^{n} x_{i2} = \sum_{i=1}^{n} y_{i}$$

$$\hat{\beta}_{0} \sum_{i=1}^{n} x_{i1} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i1}^{2} + \hat{\beta}_{2} \sum_{i=1}^{n} x_{i1} x_{i2} = \sum_{i=1}^{n} x_{i1} y_{i}$$

$$\hat{\beta}_{0} \sum_{i=1}^{n} x_{i2} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i1} x_{i2} + \hat{\beta}_{2} \sum_{i=1}^{n} x_{i2}^{2} = \sum_{i=1}^{n} x_{i2} y_{i}$$

Inserting the computed quantities into the normal equations, we obtain

$$25\hat{\beta}_{0} + 206\hat{\beta}_{1} + 8294\hat{\beta}_{2} = 725.82$$

$$206\hat{\beta}_{0} + 2396\hat{\beta}_{1} + 77,177\hat{\beta}_{2} = 8,008.47$$

$$8294\hat{\beta}_{0} + 77,177\hat{\beta}_{1} + 3,531,848\hat{\beta}_{2} = 274,816.71$$

The solution to this set of equations is

$$\hat{\beta}_0 = 2.26379, \quad \hat{\beta}_1 = 2.74427, \quad \hat{\beta}_2 = 0.01253$$

Therefore, the fitted regression equation is

$$\hat{y} = 2.26379 + 2.74427x_1 + 0.01253x_2$$

Practical Interpretation: this equation can be used to predict pull strength for pairs of values of the regressor variables wire length (x_1) and die height (x_2) .

Matrix Representation

For computation convenience, the multiple regression model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + \varepsilon_i$$
 $i = 1, 2, \dots, n$

can be written in matrix form as

$$Y = X\beta + \varepsilon$$

where

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \quad \mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1k} \\ 1 & x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{nk} \end{bmatrix} \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix} \text{ and } \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

Matrix Representation

We wish to find the vector of least square estimates that minimizes:

$$\min_{\beta} L(\beta) = \sum_{i=1}^{n} \varepsilon_{i}^{2} = \varepsilon' \varepsilon = (y - X\beta)' (y - X\beta)$$

The resulting least square estimate is

$$\hat{\beta} = (X'X)^{-1} X'y$$

The fitted regression model in matrix form is

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$$

$$\hat{y}_{i} = \hat{\beta}_{0} + \sum_{i=1}^{k} \hat{\beta}_{j} x_{ij}$$
 $i = 1, 2, ..., n$

Estimating σ^2

The difference between the observation y_i and the fitted value \hat{y}_i is a **residual**, say, $\varepsilon_i = y_i - \hat{y}_i$. The $(n \times 1)$ vector of residuals is denoted by $\varepsilon = y - \hat{y}$

An unbiased estimator of σ^2 is

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n \varepsilon_i^2}{n-p} = \frac{SS_E}{n-p}$$

Re-estimate previous example with the matrix approach, the model matrix X and y vector for this model are

	1	2	50		9.95	
	1	8	110		24.45	
	1	11	120		31.75	
	1	10	550		35.00	
	1	8	295		25.02	
	1	4	200		16.86	
	1	2	375		14.38	
	1	2	52		9.60	
	1	9	100		24.35	
	1	8	300		27.50	
	1	4	412		17.08	
	1	11	400		37.00	
X =	1	12	500	y =	41.95	
	1	2	360		11.66	
	l					I

	1	11	400		37.00
X =	1	12	500	<i>y</i> =	41.95
	1	2	360		11.66
	1	4	205		21.65
	1	4	400		17.89
	1	20	600		69.00
	1	1	585		10.30
	1	10	540		34.93
	1	15	250		46.59
	1	15	290		44.88
	1	16	510		54.12
	1	17	590		56.63
	1	6	100		22.13
	1	5	400		21.15

The X'X matrix is

$$\mathbf{X'X} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 2 & 8 & \cdots & 5 \\ 50 & 110 & \cdots & 400 \end{bmatrix} \begin{vmatrix} 1 & 2 & 50 \\ 1 & 8 & 110 \\ \vdots & \vdots & \vdots \\ 1 & 5 & 400 \end{vmatrix}$$

$$= \begin{bmatrix} 25 & 206 & 8,294 \\ 206 & 2,396 & 77,177 \\ 8,294 & 77,177 & 3,531,848 \end{bmatrix}$$

and the X'y vector is

$$\mathbf{X'y} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 2 & 8 & \cdots & 5 \\ 50 & 110 & \cdots & 400 \end{bmatrix} \begin{bmatrix} 9.95 \\ 24.45 \\ \vdots \\ 21.15 \end{bmatrix} = \begin{bmatrix} 725.82 \\ 8,008.47 \\ 274,816.71 \end{bmatrix}$$

$$\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

$$\begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = \begin{bmatrix} 25 & 206 & 8,294 \\ 206 & 2,396 & 77,177 \\ 8,294 & 77,177 & 3,531,848 \end{bmatrix}^{-1} \begin{bmatrix} 725.82 \\ 8,008.37 \\ 274,811.31 \end{bmatrix}$$

$$= \begin{bmatrix} 0.214653 & -0.007491 & -0.000340 \\ -0.007491 & 0.001671 & -0.000019 \\ -0.000340 & -0.000019 & +0.0000015 \end{bmatrix} \begin{bmatrix} 725.82 \\ 8,008.47 \\ 274,811.31 \end{bmatrix}$$

$$= \begin{bmatrix} 2.26379143 \\ 2.74426964 \\ 0.01252781 \end{bmatrix}$$

Therefore, the fitted regression model is

$$\hat{y} = 2.26379 + 2.74427x_1 + 0.01253x_2$$

This is identical to the results obtained by least square method.

We can obtain the **fitted values** by substituting each observation (x_{i1}, x_{i2}) , i = 1, 2, ..., n, into the equation. For example, the first observation has $x_{11} = 2$ and $x_{12} = 50$, and the fitted value is

$$\hat{\mathbf{y}}_1 = 2.26379 + 2.74427 \mathbf{x}_{11} + 0.01253 \mathbf{x}_{12}$$
$$= 2.26379 + 2.74427(2) + 0.01253(50)$$
$$= 8.38$$

The corresponding observed value is $y_1 = 9.95$. The *residual* corresponding to the first observation is

$$\varepsilon_1 = y_1 - \hat{y}_1$$

= 9.95 - 8.38
= 1.57

Table 2 displays all 25 fitted values and the corresponding residuals.

Table 2 observations, fitted Values, and residuals

Observation Number	y_i	$\hat{\mathcal{Y}}_i$	$e_i = y_i - \hat{y}_i$	Observation Number	y_i	$\hat{\mathcal{Y}}_i$	$e_i = y_i - \hat{y}_i$
1	9.95	8.38	1.57	14	11.66	12.26	-0.60
2	24.45	25.60	-1.15	15	21.65	15.81	5.84
3	31.75	33.95	-2.20	16	17.89	18.25	-0.36
4	35.00	36.60	-1.60	17	69.00	64.67	4.33
5	25.02	27.91	-2.89	18	10.30	12.34	-2.04
6	16.86	15.75	1.11	19	34.93	36.47	-1.54
7	14.38	12.45	1.93	20	46.59	46.56	0.03
8	9.60	8.40	1.20	21	44.88	47.06	-2.18
9	24.35	28.21	-3.86	22	54.12	52.56	1.56
10	27.50	27.98	-0.48	23	56.63	56.31	0.32
11	17.08	18.40	-1.32	24	22.13	19.98	2.15
12	37.00	37.46	-0.46	25	21.15	21.00	0.15
13	41.95	41.46	0.49				

Code Example


```
import numpy as np
import pandas as pd
from matplotlib.pyplot import subplots
import statsmodels.api as sm
from statsmodels.stats.outliers_influence \
    import variance_inflation_factor as VIF
from statsmodels.stats.anova import anova_lm
```

Multiple Linear Regression

- response variable = PullStrength
- predictors = 'WireLength', 'DieHeight'
- use statsmodels to implement regression methods.

```
res1 = np.dot(np.transpose(X),X)
print(res1)

inv = np.linalg.inv(res1)
print(inv)

res2 = np.dot(np.transpose(X),y)
print(res2)

Belta = inv@res2
print(Belta)

model = sm.OLS(y, X)
results = model.fit()

results.summary()
```

Computer Output

Table 3 Multiple Regression Output by MiniTab for the Wire Bond Pull Strength Data Regression Analysis: Strength versus: Length, Height

The regression equation is Strength = 2.26 + 2.74 Length + 0.0125 Height

Predictor Coef SE Coef P VIF 2.264 1.060 Constant 2.14 0.044 Length 2.74427 0.09352 29.34 0.000 1.2 0.002798 4.48 0.000 1.2 Height 0.012528

S = 2.288 R-Sq = 98.1% R-Sq (adj) = 97.9%

PRESS = 156.163 R-Sq (pred) = 97.44%

Analysis of Variance

Source DF SS MS F 572.17 5990.8 Regression 2995.4 0.000 Residual Error 22 115.2 5.2 Total 24 6105.9

Source DF Seq SS Length 1 5885.9 Height 1 104.9

Table 3 (Cont'd)

Predicted Values for New Observations

New Obs Fit SE Fit 95.0% CI 95.0% PI 1 27.663 0.482 (26.663, 28.663) (22.814, 32.512)

Values of Predictors for New Observations

News Obs Length Height 1 8.00 275

HYPOTHESIS TEST

Test on Overall Regression Model

The appropriate hypotheses for overall regression are

$$\boldsymbol{H}_0: \beta_1 = \beta_2 = \dots = \beta_k = 0$$

$$H_A: \beta_j \neq 0$$
 for at least one j

The test statistic is

$$F_0 = \frac{SS_R/k}{SS_F/(n-p)} = \frac{MS_R}{MS_F} \sim f_{k,p}$$

Table 4 Analysis of Variance

Source of		Degrees of		
Variation	Sum of Squares	Freedom	Mean Square	F_0
Regression	SS_R	k	MS_R	MS_R/MS_E
Error or residual	SS_E	n-p	MS_E	
Total	SS_T	n-1		

We will test for significance of regression (with $\alpha = 0.05$) using the wire bond pull strength data from previous example. The total sum of squares is

$$SS_T = \mathbf{y}'\mathbf{y} - \frac{\left(\sum_{i=1}^n y_i\right)^2}{n} = 27,178.5316 - \frac{(725.82)^2}{25}$$
$$= 6105.9447$$

The regression or model sum of squares is computed as follows:

$$SS_R = \hat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{y} - \frac{\left(\sum_{i=1}^n y_i\right)^2}{n} = 27,063.3581 - \frac{(725.82)^2}{25}$$
$$= 5990.7712$$

and by subtraction

$$SS_E = SS_T - SS_R = \mathbf{y}'\mathbf{y} - \mathbf{\beta}'\mathbf{X}'\mathbf{y} = 115.1716$$

Table 5 Outcome of Test for Significance of Regression

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	f_0	P-value
Regression	5990.7712	2	2995.3856	572.17	1.08E-19
Error or residual	115.1735	22	5.2352		
Total	6105.9447	24			

Since $f_0 > f_{0.05,2,22} = 3.44$ (or since the *P*-value is considerably smaller than $\alpha = 0.05$), we reject the null hypothesis and conclude that pull strength is linearly related to either wire length or die height, or both.

Note that rejection of H_0 does not necessarily imply that the relationship found is an appropriate model for predicting pull strength as a function of wire length and die height. Further tests of model adequacy are required before we can be comfortable using this model in practice.

Properties of Coefficients

Unbiased estimators:

$$E(\hat{\beta}) = E\left[(X'X)^{-1} X'Y \right]$$

$$= E\left[(X'X)^{-1} X'(X\beta + \varepsilon) \right]$$

$$= E\left[(X'X)^{-1} X'X\beta + (X'X)^{-1} X'\varepsilon \right]$$

$$= \beta$$

Covariance Matrix:

$$C = (X'X)^{-1} = \begin{bmatrix} C_{00} & C_{01} & C_{02} \\ C_{10} & C_{11} & C_{12} \\ C_{20} & C_{21} & C_{22} \end{bmatrix}$$

Properties of Coefficients

Variances and covariances for individual coefficient:

$$Var(\hat{\beta}_{j}) = \sigma^{2}C_{jj}, \qquad j = 0, 1, 2$$

$$Cov(\hat{\beta}_{i}, \hat{\beta}_{j}) = \sigma^{2}C_{ij}, \qquad i \neq j$$

In general,

$$Cov(\hat{\beta}) = \sigma^2 (XX)^{-1} = \sigma^2 C$$

Tests on Individual Coefficient

The hypotheses for testing the significance of any individual regression coefficient:

$$H_0: \beta_j = \beta_{j0}$$

$$H_1: \beta_j \neq \beta_{j0}$$

The test statistic is

$$T_0 = \frac{\hat{\beta}_j - \beta_{j0}}{\sqrt{\sigma^2 C_{jj}}} = \frac{\hat{\beta}_j - \beta_{j0}}{se(\hat{\beta}_j)}$$

- Reject H_0 if $|t_0| > t_{\alpha/2, n-p}$
- This is called a **partial** or **marginal test** in multiple linear regression.

Consider the wire bond pull strength data and suppose that we want to test the hypothesis that the regression coefficient for x_2 (die height) is zero. The hypotheses are

$$H_0: \beta_j = 0$$

$$H_1: \beta_i \neq 0$$

The main diagonal element of the $(\mathbf{X}'\mathbf{X})^{-1}$ matrix corresponding to $\hat{\beta}_2$ is $C_{22} = 0.0000015$, so the *t*-statistic is

$$t_0 = \frac{\hat{\beta}_2}{\sqrt{\hat{\sigma}^2 C_{22}}} = \frac{0.01253}{\sqrt{(5.2352)(0.0000015)}} = 4.477$$

Since $t_{0.025, 22} = 2.074$, we reject H_0 : $\beta_2 = 0$ and conclude that the variable x_2 (die height) contributes significantly to the model. We could also have used a P-value to draw conclusions. The P-value for $t_0 = 4.477$ is P = 0.0002, so with $\alpha = 0.05$ we would reject the null hypothesis.

CONFIDENCE INTERVALS

CI on Coefficient

Definition

A $100(1 - \alpha)\%$ confidence interval on the regression coefficient β_j , j = 0, 1, ..., k in the multiple linear regression model is given by

$$\hat{\beta}_{j} - \boldsymbol{t}_{\alpha/2, \boldsymbol{n}-\boldsymbol{p}} \sqrt{\hat{\sigma}^{2} \boldsymbol{C}_{jj}} \leq \beta_{j} \leq \hat{\beta}_{j} + \boldsymbol{t}_{\alpha/2, \boldsymbol{n}-\boldsymbol{p}} \sqrt{\hat{\sigma}^{2} \boldsymbol{C}_{jj}}$$

Construct a 95% confidence interval on the parameter β_1 in the wire bond pull strength problem. The point estimate of β_1 is $\hat{\beta}_1 = 2.74427$ and the diagonal element of $(\mathbf{X'X})^{-1}$ corresponding to β_1 is $C_{11} = 0.001671$. The estimate of σ^2 is $\hat{\sigma}^2 = 5.2352$, and $t_{0.025,22} = 2.074$. Therefore, the 95% CI on β_1 is computed as

$$2.74427 - (2.074)\sqrt{(5.2352)(.001671)} \le \beta_1 \le 2.74427$$
$$+ (2.074)\sqrt{(5.2352)(.001671)}$$

which reduces to

$$2.55029 \le \beta_1 \le 2.93825$$

CI on the Mean Response

The mean response at a point x_0 is estimated by

$$\hat{\mu}_{Y|x_0} = x_0' \hat{\beta}$$

The variance of the estimated mean response is

$$Var(\hat{\mu}_{Y|x_0}) = \sigma^2 x_0' (X'X)^{-1} x_0$$

Definition

For the multiple linear regression model, a 100(1 - a)% confidence interval on the mean response at the point $x_{01}, x_{02}, ..., x_{0k}$ is

$$\hat{\mu}_{Y|x_0} - t_{\alpha/2, n-p} \sqrt{\hat{\sigma}^2 x_0' (X'X)^{-1} x_0} \\
\leq \mu_{Y|x_0} \leq \hat{\mu}_{Y|x_0} + t_{\alpha/2, n-p} \sqrt{\hat{\sigma}^2 x_0' (X'X)^{-1} x_0}$$

Construct a 95% CI on the mean pull strength for a wire bond with wire length x_1 = 8 and die height x_2 = 275. Therefore, plug in the value of predictor vector to the model.

$$\boldsymbol{x}_0 = \begin{bmatrix} 1 \\ 8 \\ 275 \end{bmatrix}$$

The estimated mean response at this point is found as

$$\hat{\mu}_{Y|x_0} = x_0' \hat{\beta} = \begin{bmatrix} 1 & 8 & 275 \end{bmatrix} \begin{bmatrix} 2.26379 \\ 2.74427 \\ 0.01253 \end{bmatrix} = 27.66$$

The variance of $\hat{\mu}_{Y|X_0}$ is estimated by

$$\hat{\mathbf{\sigma}}^{2}\mathbf{x}_{0}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_{0} = 5.2352 \begin{bmatrix} 1 & 8 & 275 \end{bmatrix} \begin{bmatrix} .214653 & -.007491 & -.000340 \\ -.007491 & .001671 & -.000019 \\ -.000340 & -.000019 & .0000015 \end{bmatrix} \begin{bmatrix} 1 \\ 8 \\ 275 \end{bmatrix}$$

$$=5.2352(0.0444)=0.23244$$

Therefore, a 95% CI on the mean pull strength at this point is found as

$$27.66 - 2.074 \sqrt{0.23244} \le \mu_{Y|x_0} \le 27.66 + 2.074 \sqrt{0.23244}$$

which reduces to

$$26.66 \le \mu_{Y|x_0} \le 28.66$$

CI on Prediction

A point estimate of the future observation Y_0 is

$$\hat{\boldsymbol{y}}_0 = \boldsymbol{x}_0' \hat{\boldsymbol{\beta}}$$

A $100(1-\alpha)\%$ prediction interval for this future observation is

$$\hat{y}_0 - t_{\alpha/2, n-p} \sqrt{\hat{\sigma}^2 (1 + x_0' (X'X)^{-1} x_0)}$$

$$\leq Y_0 \leq \hat{y}_0 + t_{\alpha/2, n-p} \sqrt{\hat{\sigma}^2 (1 + x_0' (X'X)^{-1} x_0)}$$

Construct a 95% prediction interval on the wire bond pull strength when the wire length is $x_1 = 8$ and the die height is $x_2 = 275$. Note that $x_0' = \begin{bmatrix} 1 & 8 & 275 \end{bmatrix}$, and the point estimate of the pull strength is $\hat{y}_0 = x_0' \hat{\beta} = 27.66$. Also, the calculated $x_0'(X'X)^{-1}x_0 = 0.04444$. Therefore, we have

$$27.66 - 2.074\sqrt{5.2352(1+0.0444)} \le Y_0 \le 27.66 + 2.074\sqrt{5.2352(1+0.0444)}$$

and the 95% prediction interval is

$$22.81 \le Y_0 \le 32.51$$

Notice that the prediction interval is wider than the confidence interval on the mean response at the same point.

MODEL ADEQUACY CHECKING

The Coefficient of Determination

$$R^2 = \frac{SS_R}{SS_T} = 1 - \frac{SS_E}{SS_T}$$

For the wire bond pull strength data, we find that $R^2 = SS_R / SS_T = 5990.7712 / 6105.9447 = 0.9811$.

Thus, the model accounts for about 98% of the variability in the pull strength response.

The adjusted
$$R^2$$
 is $R_{\text{adj}}^2 = 1 - \frac{SS_E/(n-p)}{SS_T/(n-1)}$

The adjusted R^2 statistic penalizes the analyst for adding terms to the model.

It can help guard against overfitting (including regressors that are not useful).

A normal probability plot of the residuals is shown in Fig. 2. No severe deviations from normality are obviously apparent, although the two largest residuals (ε_{15} = 5.84 and ε_{17} = 4.33) do not fall extremely close to a straight line drawn through the remaining residuals.

Figure 2 Normal probability plot of residuals.

The standardized residuals

$$d_i = \frac{\mathcal{E}_i}{\sqrt{MS_E}} = \frac{\mathcal{E}_i}{\sqrt{\hat{\sigma}^2}}$$

are often more useful than the ordinary residuals when assessing residual magnitude. For the wire bond strength example, the standardized residuals corresponding to ε_{15} and ε_{17} are $d_{15} = 5.84/\sqrt{5.2352} = 2.55$ and $d_{17} = 4.33/\sqrt{5.2352} = 1.89$, and they do not seem unusually large.

The residuals are plotted against \hat{y} in Fig. 3, and against x_1 and x_2 in Figs. 4 and 5, respectively. The two largest residuals, ε_{15} and ε_{17} , are apparent. **Figure 4** gives some indication that the model **underpredicts** the pull strength for assemblies with short wire length $(x_1 \le 6)$ and long wire length $(x_1 \ge 15)$ and **overpredicts** the strength for assemblies with intermediate wire length $(7 \le x_1 \le 14)$. The same impression is obtained from Fig. 3.

Figure 3 Plot of residuals against \hat{y} .

Either the relationship between strength and wire length is not linear (requiring that a term involving x_1^2 , say, be added to the model), or other regressor variables not presently in the model affected the response.

Figure 4 Plot of residuals against x_1 .

Figure 5 Plot of residuals against x_2 .

OTHER CONSIDERATIONS IN THE REGRESSION MODEL

Interactions

In our previous analysis of the Advertising data, we assumed that the effect on sales of increasing one advertising medium is independent of the amount spent on the other media.

For example, the linear model

$$\widehat{\mathtt{sales}} = \beta_0 + \beta_1 \times \mathtt{TV} + \beta_2 \times \mathtt{radio} + \beta_3 \times \mathtt{newspaper}$$

states that the average effect on sales of a one-unit increase in TV is always β_1 , regardless of the amount spent on radio.

But suppose that spending money on radio advertising actually increases the effectiveness of TV advertising, so that the slope term for TV should increase as radio increases.

In marketing, this is known as a **synergy** effect, and in statistics it is referred to as an **interaction** effect.

Modelling Interaction

- When levels of either TV or radio are low, then the true sales are lower than predicted by the linear model.
- But when advertising is split between the two media, then the model tends to underestimate sales.

Model takes the form

sales =
$$\beta_0 + \beta_1 \times TV + \beta_2 \times radio + \beta_3 \times (radio \times TV) + \epsilon$$

= $\beta_0 + (\beta_1 + \beta_3 \times radio) \times TV + \beta_2 \times radio + \epsilon$.

Results:

	Coefficient	Std. Error	t-statistic	p-value
Intercept	6.7502	0.248	27.23	< 0.0001
TV	0.0191	0.002	12.70	< 0.0001
radio	0.0289	0.009	3.24	0.0014
${ t TV}{ imes { t radio}}$	0.0011	0.000	20.73	< 0.0001

Modelling Interaction

- The results in this table suggests that interactions are important.
- The p-value for the interaction term TV×radio is extremely low, indicating that there is strong evidence for H_A : $\beta_3 \neq 0$.
- The R^2 for the interaction model is 96.8%, compared to only 89.7% for the model without an interaction term.
- This means that (96.8 89.7)/(100 89.7) = 69% of the unexplained variability in sales has been explained by the interaction term.
- The coefficient estimates in the table suggest that an increase in TV advertising of \$1,000 is associated with increased sales of

$$(\hat{\beta}_1 + \hat{\beta}_3 \times \text{radio}) \times 1000 = 19 + 1.1 \times \text{radio}$$
 units.

■ An increase in radio advertising of \$1,000 will be associated with an increase in sales of

$$(\hat{\beta}_2 + \hat{\beta}_3 \times TV) \times 1000 = 29 + 1.1 \times TV$$
 units.

Modelling Interaction

• Sometimes it is the case that an interaction term has a very small *p*-value, but the associated main effects (in this case, TV and radio) do not.

The **hierarchy principle**:

- If we include an interaction in a model, we should also include the main effects, even if the *p*-values associated with their coefficients are not significant.
- The rationale for this principle is that interactions are hard to interpret in a model without main effects their meaning is changed.
- Specifically, the interaction terms also contain main effects, if the model has no main effect terms.

Modelling Nonlinearity

The figure suggests polynomial regression on Auto data may provide a better fit.

$$mpg = \beta_0 + \beta_1 \times horsepower + \beta_2 \times horsepower^2 + \epsilon$$

	Coefficient	Std. Error	t-statistic	p-value
Intercept	56.9001	1.8004	31.6	< 0.0001
horsepower	-0.4662	0.0311	-15.0	< 0.0001
${ t horsepower}^2$	0.0012	0.0001	10.1	< 0.0001

Polynomial Regression Models

The linear model $Y = X\beta + \varepsilon$ is a general model that can be used to fit any relationship that is **linear in the unknown parameters** β . This includes the important class of **polynomial regression models**.

For example, the second-degree polynomial in one variable

$$Y = \beta_0 + \beta_1 x + \beta_{11} x^2 + \varepsilon$$

and the second-degree polynomial in two variables

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{12} x_1 x_2 + \varepsilon$$

are linear regression models.

Sidewall panels for the interior of an airplane are formed in a 1500-ton press. The unit manufacturing cost varies with the production lot size. The data shown below give the average cost per unit (in hundreds of dollars) for this product (y) and the production lot size (x).

 У	1.81	1.70	1.65	1.55	1.48	1.40
 X				35	l	50
 У	1.30	1.26	1.24	1.21	1.20	1.18
 Χ	60	65	70	75	80	90

The scatter diagram, shown in Fig. 5, indicates that a second-order polynomial may be appropriate.

Figure 5 Data for airplane sidewall

We will fit the model

$$Y = \beta_0 + \beta_1 x + \beta_{11} x^2 + \varepsilon$$

The y vector, the model matrix X and the β vector are as follows:

$$\mathbf{y} = \begin{bmatrix} 1.81 \\ 1.70 \\ 1.65 \\ 1.55 \\ 1.48 \\ 1.40 \\ 1.30 \\ 1.26 \\ 1.24 \\ 1.21 \\ 1.20 \\ 1.18 \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} 1 & 20 & 400 \\ 1 & 25 & 625 \\ 1 & 30 & 900 \\ 1 & 35 & 1225 \\ 1 & 40 & 1600 \\ 1 & 50 & 2500 \\ 1 & 60 & 3600 \\ 1 & 65 & 4225 \\ 1 & 70 & 4900 \\ 1 & 75 & 5625 \\ 1 & 80 & 6400 \\ 1 & 90 & 8100 \end{bmatrix} \qquad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_{11} \end{bmatrix}$$

Solving the normal equations $X' X \hat{\beta} = X' y$ gives the fitted model

$$\hat{\mathbf{y}} = 2.19826629 - 0.02252236\mathbf{x} + 0.00012507\mathbf{x}^2$$

TABLE • 6 Test for Significance of Regression for the Second-Order Model for airplane sidewall **Source of**

Variation	Sum of Squares	Degrees of Freedom	Mean Square	f_0	<i>P</i> -value
Regression	0.52516	2	0.26258	1762.28	2.12E-12
Error	0.00134	9	0.00015		
Total	0.5265	11			

The test for significance of the overall regression is shown in Table 6. Since $f_0 = 1762.3$ is significant at 1%, we conclude that **at least** one of the parameters β_{10} and β_{11} is not zero.

Qualitative or Categorical Predictors

Many problems may involve qualitative or categorical variables.

The usual method for the different levels of a qualitative variable is to use **indicator** variables.

For example, to introduce the effect of two different operators into a regression model, we could define an indicator variable as follows:

$$x = \begin{cases} 0 \text{ if the observation is from operator 1} \\ 1 \text{ if the observation is from operator 2} \end{cases}$$

Surface Finish A mechanical engineer is investigating the surface finish of metal parts produced on a lathe and its relationship to the speed (in revolutions per minute) of the lathe. The data are shown in Table 7. Note that the data have been collected using two different types of cutting tools. Since the type of cutting tool likely affects the surface finish, we will fit the model

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

where Y is the surface finish, x_1 is the lathe speed in revolutions per minute, and x_2 is an indicator variable denoting the type of cutting tool used; that is,

$$x_2 = \begin{cases} 0, \text{ for tool type } 302\\ 1, \text{ for tool type } 416 \end{cases}$$

TABLE • 7 Surface Finish Data

Observation Number, <i>i</i>	Surface Finish <i>y_i</i>	RPM	Type of Cutting Tool	Observation Number, <i>i</i>	Surface Finish <i>y_i</i>	RPM	Type of Cutting Tool
1	45.44	225	302	11	33.50	224	416
2	42.03	200	302	12	31.23	212	416
3	50.10	250	302	13	37.52	248	416
4	48.75	245	302	14	37.13	260	416
5	47.92	235	302	15	34.70	243	416
6	47.79	237	302	16	33.92	238	416
7	52.26	265	302	17	32.13	224	416
8	50.52	259	302	18	35.47	251	416
9	45.58	221	302	19	33.49	232	416
10	44.78	218	302	20	32.29	216	416

The parameters in this model may be easily interpreted. If $x_2 = 0$, the model becomes

$$Y = \beta_0 + \beta_1 x_1 + \varepsilon$$

which is a straight-line model with slope β_1 and intercept β_0 . However, if $x_2 = 1$, the model becomes

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 (1) + \varepsilon = (\beta_0 + \beta_2) + \beta_1 x_1 + \varepsilon$$

which is a straight-line model with slope β_1 and intercept $\beta_0 + \beta_2$. Thus, the model $Y = \beta_0 + \beta_1 x + \beta_2 x_2 + \varepsilon$ implies that surface finish is linearly related to lathe speed and that the slope β_1 does not depend on the type of cutting tool used. However, the type of cutting tool does affect the intercept, and β_2 indicates the change in the intercept associated with a change in tool type from 302 to 416.

The model matrix X and y vector for this problem are as follows:

	1	225	0		$\lceil 45.44 \rceil$
	1	200	0		42.03
	1	250	0		50.10
	1	245	0		48.75
	1	235	0		47.92
	1	237	0		47.79
	1	265	0		52.26
	1	259	0		50.52
$\mathbf{X} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	1	221	0		45.58
	1	218	0	$y = \frac{1}{2}$	44.78
	1	224	1		33.50
	1	212	1		31.23
	1	248	1		37.52
	1	260	1		37.13
	1	243	1		34.70
	1	238	1		33.92
	1	224	1		32.13
	1	251	1		35.47
	1	232	1		33.49
	1	216	1_		32.29

The fitted model is

$$\hat{y} = 14.27620 + 0.14115x_1 - 13.28020x_2$$

The analysis of variance for this model is shown in Table 8.

TABLE • 8 Analysis of Variance for Surface Finish Example

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	f_0	<i>P</i> -value
Regression	1012.0595	2	506.0297	1103.69	1.02E-18
$SS_R(\beta_1 \beta_0)$	130.6091	1	130.6091	284.87	4.70E-12
$SS_R(\beta_2 \beta_1, \beta_0)$	881.4504	1	881.4504	1922.52	6.24E-19
Error	7.7943	17	0.4585		
Total	1019.8538	19			

Note that the hypothesis H_0 : $\beta_1 = \beta_2 = 0$ (significance of regression) would be rejected at any reasonable level of significance because the p value is very small.

This table also contains the sums of squares

$$SS_R = SS_R(\beta_1, \beta_2 | \beta_0)$$
$$= SS_R(\beta_1 | \beta_0) + SS_R(\beta_2 | \beta_1, \beta_0)$$

hence, a test of the hypothesis H_0 : $\beta_2 = 0$ made. Since this hypothesis is also rejected, we conclude that **tool type** has an effect on surface finish.

Categorical variable more than two levels School of Engineering

With more than two levels, we create additional dummy variables. For example, for the **ethnicity** variable we create two dummy variables. The first could be

$$\boldsymbol{x}_{i1} = \begin{cases} 0, & \text{if } \boldsymbol{i} \text{th person is not Asian} \\ 1, & \text{if } \boldsymbol{i} \text{th person is Asian} \end{cases}$$

the second could be

$$x_{i2} = \begin{cases} 0, & \text{if } i \text{th person is not Caucasian} \\ 1, & \text{if } i \text{th person is Caucasian} \end{cases}$$

Categorical variable more than two levels School of Engineering

Then both of these variables can be used in the regression equation in order to obtain the model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if } i \text{th person is Asian} \\ \beta_0 + \beta_2 + \epsilon_i & \text{if } i \text{th person is Caucasian} \\ \beta_0 + \epsilon_i & \text{if } i \text{th person is AA.} \end{cases}$$

There will always be one fewer dummy variable than the number of levels. The level with no dummy variable — African American in this example — is known as the baseline.

	Coefficient	Std. Error	t-statistic	p-value
Intercept	531.00	46.32	11.464	< 0.0001
ethnicity[Asian]	-18.69	65.02	-0.287	0.7740
ethnicity[Caucasian]	-12.50	56.68	-0.221	0.8260

SELECTION OF VARIABLES

The extra sum of squares method

A general form of the model can be written:

$$y = X\beta + \varepsilon = X_1\beta_1 + X_2\beta_2 + \varepsilon$$

where X_1 represents the columns of X associated with β_1 and X_2 represents the columns of X associated with β_2

The general regression significance test or the extra sum of squares method:

$$oldsymbol{eta} = egin{bmatrix} oldsymbol{eta}_1 \ oldsymbol{eta}_2 \end{bmatrix}$$

We wish to test the hypotheses:

$$H_0$$
: $\beta_1 = 0$

$$H_1$$
: $\beta_1 \neq 0$

The extra sum of squares method

For the full model:

$$SS_{R}(\beta) = \hat{\beta}' X' y - \frac{\left(\sum_{i=1}^{n} y_{i}\right)^{2}}{n} \qquad (p = k + 1 \text{ degrees of freedom})$$

$$MS_E = \frac{\mathbf{y}'\mathbf{y} - \mathbf{\beta}'\mathbf{X}'\mathbf{y}}{n - p}$$

If H_0 is true, the reduced model is

$$\mathbf{y} = \mathbf{X}_2 \mathbf{\beta}_2 + \mathbf{\epsilon}$$

$$SS_{R}(\beta_{2}) = \hat{\beta}'_{2} X'_{2} y - \frac{\left(\sum_{i=1}^{n} y_{i}\right)^{2}}{n} \qquad (p - r \text{ degrees of freedom})$$

Partial F-test

The test statistic is:
$$F_0 = \frac{SS_R(\beta_1 | \beta_2)/r}{MS_E}$$

where
$$SS_R(\beta_1 | \beta_2) = SS_R(\beta) - SS_R(\beta_2)$$

Reject H_0 if $f_0 > f_{\alpha, r, n-p}$

The test is often referred to as a **partial** *F***-test**

Consider the wire bond pull-strength data. We will investigate the contribution of two new variables, x_3 and x_4 , to the model using the **partial** F-test approach. The new variables are explained at the end of this example. That is, we wish to test

$$H_0: \beta_3 = \beta_4 = 0$$
 $H_1: \beta_3 \neq 0$ or $\beta_4 \neq 0$

To test this hypothesis, we need the **extra sum of squares** due to β_3 and β_4 or

$$SS_{R}(\beta_{4}, \beta_{3}|\beta_{2}, \beta_{1}, \beta_{0}) = SS_{R}(\beta_{4}, \beta_{3}, \beta_{2}, \beta_{1}, \beta_{0}) - SS_{R}(\beta_{2}, \beta_{1}, \beta_{0})$$
$$= SS_{R}(\beta_{4}, \beta_{3}, \beta_{2}, \beta_{1}|\beta_{0}) - SS_{R}(\beta_{2}, \beta_{1}|\beta_{0})$$

In example of Wire Bond Strength, we calculated

$$SS_R(\beta_2, \beta_1 | \beta_0) = \beta' \mathbf{X}' \mathbf{y} - \frac{\left(\sum_{i=1}^n y_i\right)^2}{n} = 5990.7712 \text{ (two degrees of freedom)}$$

The output shows only x_1 and x_2 as predictors.

If we fit the model $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4$, we can use the same matrix formula.

The analysis of variance shows that

$$SS_R(\beta_4, \beta_3, \beta_2, \beta_1 | \beta_0) = 6024.0$$
 (four degrees of freedom)

Therefore,

$$SS_R(\beta_4, \beta_3, | \beta_2, \beta_1, \beta_0) = 6024.0 - 5990.8 = 33.2$$
 (two degrees of freedom)

This is the **increase** in the regression sum of squares due to adding x_3 and x_4 to a model already containing x_1 and x_2 . To test H_0 , calculate the test statistic

$$f_0 = \frac{SS_R(\beta_4, \beta_3 | \beta_2, \beta_1, \beta_0)/2}{MS_E} = \frac{33.2/2}{4.1} = 4.05$$

Note that MS_E from the **full model** using x_1 , x_2 , x_3 and x_4 is used in the denominator of the test statistic. Because $f_{0.05, 2, 20} = 3.49$, we reject H_0 and conclude that **at least** one of the new variables contributes significantly to the model. Further analysis and tests will be needed to refine the model and determine if **one or both** of x_3 and x_4 are important.

The mystery of the new variables can now be explained. These are quadratic powers of the original predictors wire length and wire height. That is, $x_3 = x_1^2$ and $x_4 = x_2^2$. A test for quadratic terms is a common use of partial *F*-tests.

OTHER METHODS FOR SELECTION OF VARIABLES

Important Indicators

The indicators that are often used to measure the performance of regression models include:

Akaike information criterion (AIC)

$$AIC = -2\ln(L) + 2p$$

where,

p = number of estimated parameters in the model

L = the likelihood of the model

$$\ln(L) = -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln(\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^n \varepsilon_i^2 = -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln(\sigma^2) - \frac{n}{2}\ln(\sigma^2)$$

$$AIC = 2p + n\ln(2\pi) + n\ln(MSE) + n = 2p + n\ln(MSE) + C$$

Lower AIC values indicate a better-fit model, and a model with a Δ AIC (the difference between the two AIC values being compared) of more than -2 is considered significantly better than the model it is being compared to.

Important Indicators

The indicators that are often used to measure the performance of regression models include:

Bayesian information criterion (BIC)

$$BIC = -2\ln(L) + p\ln(n)$$

where,

p = number of estimated parameters in the model

L = the likelihood of the model

n =sample size

$$\ln(L) = -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln(\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^n \varepsilon_i^2 = -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln(\sigma^2) - \frac{n}{2}\ln(\sigma^2)$$

$$BIC = p \ln(n) + n \ln(2\pi) + n \ln(MSE) + n = p \ln(n) + n \ln(MSE) + C$$

The model giving smallest BIC over the whole set of candidates is preferred. BIC attempts to mitigate the risk of overfitting by introducing the penalty term p*ln(n), which grows with the number of parameters. BIC has preference for simpler models compared to AIC.

Important Indicators

The indicators that are often used to measure the performance of regression models include:

• C_p statistic, a measure of the total mean square error for the regression model.

$$C_p = \frac{SS_E(p)}{\hat{\sigma}^2} - n + 2p$$

where $\hat{\sigma}^2$ the mean square error from the **full** p term model. Choose a model where C_p is close to p.

• Adjusted R^2

$$R_{adj}^2 = 1 - \frac{SS_E/(n-p)}{SS_T/(n-1)}$$
 versus $R^2 = \frac{SS_R}{SS_T} = 1 - \frac{SS_E}{SS_T}$

Cross-validation (CV)

$$PRESS = \sum_{i=1}^{n} (y_i - \hat{y}_{(i)})^2 = \sum_{i=1}^{n} \left(\frac{\mathcal{E}_i}{1 - h_{ii}} \right)^2$$

where h_{ii} is diagonal elements of Hat Matrix, the variance of the fitted value \hat{y}_i Choose a model with the smallest *PRESS* value.

The most direct approach is called all subsets or best subsets regression: we compute the least squares fit for all possible subsets and then choose between them based on some criterion that balances training error with model size.

However, we often can't examine all possible models, since they are 2^p of them; for example, when p = 40, there are over a billion models!

Instead, we need an automated approach that searches through a subset of them. We discuss two commonly use approaches next.

Wine Quality taste-testing 38 brands of pinot noir wine, the response variable is y = quality, and we wish to find the "best" regression equation that relates quality to the other five parameters.

Figure 6 is the matrix of scatter plots for the wine quality data. We notice that there are some indications of possible linear relationships between quality and the regressors, but there is no obvious visual impression of which regressors would be appropriate.

Table 8 lists the all-possible regressions output. In this analysis, we present the best **three** equations for each **subset** size with indicators R^2 , R_{adj}^2 , C_p , and $S = \sqrt{MS_E}$ for each model.

Figure 6 is the matrix of scatter plots for the wine quality data

TABLE • 8 All Possible Regressions Computer Output for the Wine Quality Data

Best Subsets Regression: Quality versus		Clarity, Aroma,							
Response is qua	ality								
									Ο
					C				a
					1			F	k
					a	A		1	i
					r	r	В	a	n
					i	O	O	V	e
					t	m	d	O	S
Vars	R-Sq	R-Sq (adj)	С–р	S	y	a	у	r	\mathbf{S}
1	62.4	61.4	9.0	1.2712				X	
1	50.0	48.6	23.2	1.4658		X			
1	30.1	28.2	46.0	1.7335			X		
2	66.1	64.2	6.8	1.2242				X	X
2	65.9	63.9	7.1	1.2288		X		X	
2	63.3	61.2	10.0	1.2733	X			X	
3	70.4	67.8	3.9	1.1613		X		X	X
3	68.0	65.2	6.6	1.2068	X			X	X
3	66.5	63.5	8.4	1.2357			X	X	X
4	71.5	68.0	4.7	1.1568	X	X		X	X
4	70.5	66.9	5.8	1.1769		X	X	X	X
4	69.3	65.6	7.1	1.1996	X		X	X	X
5	72.1	67.7	6.0	1.1625	X	X	X	X	X

From Table 8 we see that the three-variable equation with x_2 = aroma, x_4 = flavor, and x_5 = oakiness produces the minimum C_p equation, whereas the four-variable model, which adds x_1 = clarity to the previous three regressors, results in maximum R_{adj}^2 (or minimum MS_E).

The three-variable model is

$$\hat{y} = 6.47 + 0.580x_2 + 1.20x_4 - 0.602x_5$$

and the four-variable model is

$$\hat{y} = 4.99 + 1.79x_1 + 0.530x_2 + 1.26x_4 - 0.659x_5$$

Forward Selection

- Begin with the null model a model that contains an intercept but no predictors.
- Fit p simple linear regressions and add to the null model the variable that results in the lowest RSS.
- Add to that model the variable that results in the lowest SS_E amongst all two-variable models.
- Continue until some stopping rule is satisfied

For example, when all remaining variables have a *p*-value above some threshold.

Forward Stepwise Regression

TABLE 9 Stepwise Regression Output for the Wine Quality Data **Forward Stepwise Regression**; Quality versus Clarity, Aroma, ... Response is Quality on 5 predictors, with N = 38

Step	1	2	3
Constant	4.941	6.912	6.467
Flavor	1.57	1.64	1.20
T-Value	7.73	8.25	4.36
P-Value	0.000	0.000	0.000
Oakiness		-0.54	-0.60
T-Value		-1.95	-2.28
P-Value		0.059	0.029
Aroma			0.58
T-Value			2.21
P-Value			0.034
S	1.27	1.22	1.16
R-Sq	62.42	66.11	70.38
R-Sq(adj)	61.37	64.17	67.76
<u>C</u> –p	9.0	6.8	3.9

Backward Selection

- Start with all variables in the model.
- Remove the variable with the largest *p*-value that is, the variable that is the least statistically significant.
- The new (p-1) variable model is fit, and the variable with the largest p-value is removed.
- Continue until a stopping rule is reached.

For instance, we may stop when all remaining variables have a significant *p*-value defined by some significance threshold.

Backward Elimination

TABLE 10 Backward Elimination Output for the Wine Quality Data **Backward elimination**. Response is Quality on 5 predictors, with N = 38

Step	1	2	3
Constant	3.997	4.986	6.467
Clarity	2.3	1.8	
T-Value	1.35	1.12	
P-Value	0.187	0.269	
Aroma	0.48	0.53	0.58
T-Value	1.77	2.00	2.21
P-Value	0.086	0.054	0.034
Body	0.27		
T-Value	0.82		
P-Value	0.418		
Flavor	1.17	1.26	1.20
T-Value	3.84	4.52	4.36
P-Value	0.001	0.000	0.000
Oakiness	-0.68	-0.66	-0.60
T-Value	-2.52	-2.46	-2.28
P-Value	0.017	0.019	0.029
S	1.16	1.16	1.16
R-Sq	72.06	71.47	70.38
R-Sq(adj)	67.69	68.01	67.76
C-p	6.0	4.7	3.9

MULTI-COLLINEARITY

Multi-collinearity

The presence of multi-collinearity can be detected in several ways. Two of the more easily understood of these are:

1. The variance inflation factors (VIF) are very useful measures of multi-collinearity. The larger the VIF, the more severe the multi-collinearity. Some authors have suggested that if any VIF >10, multi-collinearity is a problem. Other authors consider this value should be less than 4 or 5.

$$Var(\hat{\beta}_{j}) = \sigma^{2}C_{jj}, \quad j = 0, 1, 2$$

$$Let \ C_{jj} = \frac{1}{1 - R_{j}^{2}}$$

$$VIF(\beta_{j}) = \frac{1}{(1 - R_{j}^{2})} \qquad j = 1, 2, ..., k$$

2. If the *F*-test for significance of regression is significant, but tests on the individual regression coefficients are not significant, multi-collinearity may be present.

Multi-collinearity

The presence of multi-collinearity can be detected in several ways. Two of the more easily understood of these are:

1. The variance inflation factors (*VIF*) are very useful measures of multicollinearity. The larger the VIF, the more severe the multi-collinearity. Some authors have suggested that if any VIF >10, multi-collinearity is a problem. Other authors consider this value should be less than 4 or 5.

$$Var(\hat{\beta}_i) = \sigma^2 C_{ii}, \quad j = 0, 1, 2$$

where C_{ii} is the diagonal elements of the matrix $(X'X)^{-1}$.

Let
$$C_{jj} = \frac{1}{1 - R_j^2}$$
 then $VIF(\beta_j) = \frac{1}{(1 - R_j^2)}$ $j = 1, 2, ..., k$

where R_j^2 is the **coefficient** of multiple **determination** resulting from regressing x_j on the other (k-1) regressor variables. R_j^2 is a measure of the correlation between x_j and the other regressors. Any *VIF* that exceeds 1 indicates some level of multicollinearity in the data.