In the claims:

Amend claims 1, 6, 7, 11, 17, 19 and 20 of claims 1-24.

1	1. (Currently Amended) A magnetic head assembly having a head surface
2	comprising:
3	a write head including:
4	ferromagnetic first and second pole pieces that have a yoke portion located between
5	a pole tip portion and a back gap portion;
6	a nonmagnetic write gap layer located between the pole tip portions of the first and
7	second pole pieces;
8	an insulation stack with at least one coil layer embedded therein located between
9	the yoke portions of the first and second pole pieces:
10	the first and second pole pieces being connected at their back gap portions;
11	the pole tip portion of the first pole piece having non-overlapping first and second
12	components wherein the first component forms a portion of the head surface and the
13	second component is recessed from the head surface and is magnetically connected to the
14	first component; and
15	the first and second components having a height into the head assembly which is measured
16	from a centerline that is perpendicular to said head surface;
17	each of the first and second components being located along said centerline so that the
18	centerline bisects each of the first and second components with the second component being an
19	extension of the first component into the head assembly along the centerline;
20	the second component having a width that is less than a width of the first component
21	wherein said widths are parallel to the head surface and parallel to a major plane of the write gap
22	layer;
23	a read head; and
24	the first pole piece being located between the read head and the second pole piece.
1	2. (Previously Presented) A magnetic head assembly as claimed in claim 1
2	further comprising:
3	the first pole piece having a third component that is recessed from the head surface and that
4	has a width that is parallel to the head surface and the major plane of the write gap layer;
5	the second component interconnecting the first and third components; and
6	the width of the third component being greater than the width of the second component.

1	3. (Previously Presented) A magnetic head assembly having an air bearing surface
2	(ABS) and comprising:
. 3	a write head including:
4	ferromagnetic first and second pole piece layers that have a yoke portion located
. 5	between a pole tip portion and a back gap portion;
6	a nonmagnetic write gap layer located between the pole tip portions of the first and
7	second pole piece layers;
8	an insulation stack with at least one coil layer embedded therein located between
9	the yoke portions of the first and second pole piece layers;
10	the first and second pole piece layers being connected at their back gap portions;
11	the pole tip portion of the first pole piece layer having first and second components
12	wherein the first component forms a portion of the ABS and the second component is
13	recessed from the ABS and is magnetically connected to the first component;
14	the second component having a width that is less than a width of the first
15	component wherein said widths are parallel to the ABS and parallel to a major plane of the
16	write gap layer;
17	the first pole piece layer having a third component that is recessed from the ABS
18	and having a width that is parallel to the ABS and the major thin film plane of the write
19	gap layer;
20	the second component interconnecting the first and third components;
21	the width of the third component being greater than the width of the second
22	component;
23	the first pole piece layer having a base layer and a pedestal wherein the pedestal
24	forms a portion of the ABS; and
25	the pedestal interconnecting the base layer and the first component.

1	4.	(Previously Presented)	A magnetic head assembly as claimed in claim 1 further
2	comprising:		·
3		ad head including:	
4		a read sensor;	
5		nonmagnetic electrically	nonconductive first and second read gap layers;
6			cated between the first and second read gap layers;
7		a ferromagnetic first shie	
8		•	gap layers being located between the first shield layer and
9	the fir	st pole piece.	
1	5.	(Previously Presented)	A magnetic head assembly as claimed in claim 4 further
2	comprising:		
3	the first	st pole piece having a third	component that is recessed from the ABS and has a width
4	that is paralle	I to the head surface and a	major plane of the write gap layer;
5	the se	cond component intercon	necting the first and third components; and
6	the w	dth of the third componer	nt being greater than the width of the second component.
1	6.	(Currently Amended)	A magnetic head assembly having an air bearing surface
2	(ABS) and co	omprising:	
3	a writ	e head including:	
4		ferromagnetic first and	second pole piece layers that have a yoke portion located
5	betwe	en a pole tip portion and	a back gap portion;
6		a nonmagnetic write gap	layer located between the pole tip portions of the first and
7	secon	d pole piece layers;	
8		an insulation stack with	at least one coil layer embedded therein located between
9	the yo	oke portions of the first an	d second pole piece layers;
10		the first and second pole	e piece layers being connected at their back gap portions;
11		the pole tip portion of the	e first pole piece layer having first and second components
12	where	ein the first component fo	orms a portion of the ABS and the second component is
13	reces	sed from the ABS and is n	nagnetically connected to the first component;

14	the first and second components having a height into the head assembly which is
15	measured from a centerline that is perpendicular to said ABS;
16	each of the first and second components being located along said centerline so that
17	the centerline bisects each of the first and second components with the second component
18	being an extension of the first component into the head assembly along the centerline;
19	the second component having a width that is less than a width of the first
20	component wherein said widths are parallel to the ABS and parallel to a major plane of the
21	write gap layer;
22	the first pole piece layer having a third component that is recessed from the ABS
23	and having a width that is parallel to the ABS and the major thin film plane of the write
24	gap layer;
25	the second component interconnecting the first and third components;
26	the width of the third component being greater than the width of the second
27	component;
28	the first pole piece layer having a base layer and a pedestal wherein the pedestal
29	forms a portion of the ABS; and
30	the pedestal interconnecting the base layer and the first component.;
31	a read head including:
32	a read sensor;
33	nonmagnetic electrically nonconductive first and second read gap layers;
34	the read sensor being located between the first and second read gap layers;
35	a ferromagnetic first shield layer; and
36	the first and second read gap layers being located between the first shield layer and
37	the first pole piece layer.
1	7. (Currently Amended) A magnetic disk drive including at least one magnetic
2	head assembly that has a head surface and that includes a write head and a read head, comprising:
3	the write head including:
4	ferromagnetic first and second pole pieces that have a yoke portion located between
5	a pole tip portion and a back gap portion;
6	a nonmagnetic write gap layer located between the pole tip portions of the first and
7	second pole pieces:

8 an insulation stack with at least one coil layer embedded therein located between 9 the yoke portions of the first and second pole pieces: the first and second pole pieces being connected at their back gap portions; 10 11 the pole tip portion of the first pole piece having non-overlapping first and second 12 components wherein the first component forms a portion of the head surface and the 13 second component is recessed from the head surface and is magnetically connected to the 14 first component; and 15 the first and second components having a height into the head assembly which is 16 measured from a centerline that is perpendicular to said head surface; 17 each of the first and second components being located along said centerline so that 18 the centerline bisects each of the first and second components with the second component 19 being an extension of the first component into the head assembly along the centerline; 20 the second component having a width that is less than a width of the first 21 component wherein said widths are parallel to the head surface and parallel to a major 22 plane of the write gap layer; 23 the read head including: 24 a read sensor; 25 nonmagnetic electrically nonconductive first and second read gap layers; 26 the read sensor being located between the first and second read gap layers; 27 a ferromagnetic first shield layer; and 28 the first and second read gap layers being located between the first shield layer and 29 the first pole piece; 30 the first pole piece being located between the read head and the second pole piece; 31 a housing; 32 a magnetic disk rotatably supported in the housing; 33 a support mounted in the housing for supporting the magnetic head assembly with said 34 head surface facing the magnetic disk so that the magnetic head assembly is in a transducing 35 relationship with the magnetic disk; 36 a spindle motor for rotating the magnetic disk; 37 an actuator positioning means connected to the support for moving the magnetic head 38 assembly to multiple positions with respect to said magnetic disk; and

	gradient de la company de
39	a processor connected to the magnetic head assembly, to the spindle motor and to the
40	actuator positioning means for exchanging signals with the magnetic head assembly, for
.41	controlling movement of the magnetic disk and for controlling the position of the magnetic head
42	assembly.
1	8. (Previously Presented) A magnetic disk drive as claimed in claim 7 further
2	comprising:
3	the first pole piece layer having a third component that is recessed from the head surface
4	and has a width that is parallel to the head surface and the major plane of the write gap layer;
5	the second component interconnecting the first and third components; and
6	the width of the third component being greater than the width of the second component.
1	9. (Previously Presented) A magnetic disk drive including at least one magnetic
2	head assembly that has an air bearing surface (ABS) and that includes a write head and a read
3	head, comprising:
. 4	the write head including:
5	ferromagnetic first and second pole piece layers that have a yoke portion located
6	between a pole tip portion and a back gap portion;
7	a nonmagnetic write gap layer located between the pole tip portions of the first and
8	second pole piece layers;
9	an insulation stack with at least one coil layer embedded therein located between
10	the yoke portions of the first and second pole piece layers;
11	the first and second pole piece layers being connected at their back gap portions;
12	the pole tip portion of the first pole piece layer having first and second components
13	wherein the first component forms a portion of the ABS and the second component is
14	recessed from the ABS and is magnetically connected to the first component;
15	the second component having a width that is less than a width of the first
16	component wherein said widths are parallel to the ABS and parallel to a major thin film
17	plane of the write gap layer;
18	the read head including:
19	a read sensor;
20	nonmagnetic electrically nonconductive first and second read gap layers;

21	the read sensor being located between the first and second read gap layers;
22	a ferromagnetic first shield layer;
.23	the first and second read gap layers being located between the first shield layer and
24	the first pole piece layer;
25	the first pole piece layer having a base layer and a pedestal wherein the pedestal
26	forms a portion of the ABS; and
27	the pedestal interconnecting the base layer and the first component-;
28	a housing;
29	a magnetic disk rotatably supported in the housing;
30	a support mounted in the housing for supporting the magnetic head assembly with said
31	ABS facing the magnetic disk so that the magnetic head assembly is in a transducing relationship
32	with the magnetic disk;
33	a spindle motor for rotating the magnetic disk;
34	an actuator positioning means connected to the support for moving the magnetic head
35	assembly to multiple positions with respect to said magnetic disk; and
.36	a processor connected to the magnetic head assembly, to the spindle motor and to the
37	actuator positioning means for exchanging signals with the magnetic head assembly, for
38	controlling movement of the magnetic disk and for controlling the position of the magnetic head
39	assembly.
1	10. (Original) A magnetic disk drive as claimed in claim 9 further comprising:
2	the first pole piece layer having a third component that is recessed from the ABS and has
3	a width that is parallel to the ABS and the major thin film planes of the layers of the sensor;
4	the second component interconnecting the first and third components; and
5	the width of the third component being greater than the width of the second component.
1	11. (Currently Amended) A method of making a magnetic head assembly having a
2	head surface comprising the steps of:
3	making a write head including the steps of:
4	forming ferromagnetic first and second pole pieces that have a yoke portion located
5	between a pole tip portion and a back gap portion;

6	forming a nonmagnetic write gap layer between the pole tip portions of the first and
7	second pole pieces;
8	forming an insulation stack with at least one coil layer embedded therein between
9	the yoke portions of the first and second pole pieces;
10	connecting the first and second pole pieces at their back gap portions;
11	forming the pole tip portion of the first pole piece with non-overlapping first and
12	second components wherein the first component forms a portion of the head surface and
13	the second component is recessed from the head surface and is magnetically connected to
14	the first component;
15	forming the first and second components with a height into the head assembly
16	which is measured from a centerline that is perpendicular to said head surface;
17	forming each of the first and second components along said centerline so that the
18	centerline bisects each of the first and second components with the second component
1,9	being an extension of the first component into the head assembly along the centerline,
20	forming the second component with a width that is less than a width of the first
21	component wherein said widths are parallel to the head surface and parallel to a major
22	plane of the write gap layer; and
23	forming a read head with the first pole piece located between the read head and the
24	second pole piece.
1	12. (Previously Presented) A method of making a magnetic head assembly as
2	claimed in claim 11 further comprising the steps of:
3	forming the first pole piece layer with a third component that is recessed from the head
4	surface and with a width that is parallel to the head surface and the major plane of the write gap
5	layer;
6	forming the second component interconnecting the first and third components; and
7	forming the width of the third component greater than the width of the second component.
1	13. (Previously Presented) A method of making a magnetic head assembly having
2	an air bearing surface (ABS) and comprising the steps of:
3	making a write head including the steps of:
4	forming ferromagnetic first and second pole piece layers that have a yoke portion
5	located between a pole tip portion and a back gap portion;

forming a nonmagnetic write gap layer between the pole tip portions of the first and 7 second pole piece layers; 8 forming an insulation stack with at least one coil layer embedded therein between 9 the yoke portions of the first and second pole piece layers; .10 connecting the first and second pole piece layers at their back gap portions; 11 forming the pole tip portion of the first pole piece layer with first and second 12 components wherein the first component forms a portion of the ABS and the second 13 component is recessed from the ABS and is magnetically connected to the first component; 14 and 15 forming the second component with a width that is less than a width of the first 16 component wherein said widths are parallel to the ABS and parallel to a major thin film 17 plane of the write gap layer; 18 forming the first pole piece layer with a third component that is recessed from the 19 ABS and with a width that is parallel to the ABS and the major thin film plane of the write . 20 gap layer; 21 forming the second component interconnecting the first and third components; .22 forming the width of the third component greater than the width of the second 23 component; 24 forming the first pole piece layer with a base layer and a pedestal wherein the 25 pedestal forms a portion of the ABS; and 26 forming the pedestal interconnecting the base layer and the first component. 1 14. (Previously Presented) A method of making a magnetic head assembly as 2 claimed in claim 11 further comprising the steps of: 3 making the read head including the steps of: 4 forming a read sensor; 5 forming nonmagnetic electrically nonconductive first and second read gap layers 6 with the read sensor located between the first and second read gap layers; and 7 forming a ferromagnetic first shield layer with the first and second read gap layers 8 located between the first shield layer and the first pole piece.

6

1	15. (Previously Presented) A method of making a magnetic head assembly as
2	claimed in claim 14 further comprising the steps of:
. 3	forming the first pole piece with a third component that is recessed from the head surface
4	and with a width that is parallel to the head surface and the major plane of the write gap layer;
. 5	forming the second component interconnecting the first and third components; and
6	forming the width of the third component greater than the width of the second component.
1	16. (Previously Presented) A method of making a magnetic head assembly having
2	an air bearing surface (ABS) and comprising the steps of:
3	making a write head including the steps of:
4	forming ferromagnetic first and second pole piece layers that have a yoke portion
. 5	located between a pole tip portion and a back gap portion;
6	forming a nonmagnetic write gap layer between the pole tip portions of the first and
7	second pole piece layers;
8	forming an insulation stack with at least one coil layer embedded therein between
9	the yoke portions of the first and second pole piece layers;
10	connecting the first and second pole piece layers at their back gap portions;
11	forming the pole tip portion of the first pole piece layer with first and second
12	components wherein the first component forms a portion of the ABS and the second
13	component is recessed from the ABS and is magnetically connected to the first component;
14	and
15	forming the second component with a width that is less than a width of the first
16	component wherein said widths are parallel to the ABS and parallel to a major thin film
17	plane of the write gap layer;
18	forming the first pole piece layer with a third component that is recessed from the
19	ABS and with a width that is parallel to the ABS and the major thin film plane of the write
20	gap layer;
21	forming the second component interconnecting the first and third components;
22	forming the width of the third component greater than the width of the second
23	component;
24	forming the first pole piece layer with a base layer and a pedestal wherein the
25	pedestal forms a portion of the ABS; and

20	forming the pedestal interconnecting the base layer and the first component.;
27	making a read head including the steps of:
28	forming a read sensor;
29	forming nonmagnetic electrically nonconductive first and second read gap layers
30	with the read sensor located between the first and second read gap layers; and
31	forming a ferromagnetic first shield layer with the first and second read gap layers
32	located between the first shield layer and the first pole piece layer.
1	17. (Currently Amended) A magnetic head assembly having a head surface and
2	comprising:
3	a write head including:
4	ferromagnetic first and second pole pieces that have a yoke portion located between
5	a pole tip portion and a back gap portion;
6	a nonmagnetic write gap layer located between said pole tip portions;
7	an insulation stack with at least one coil layer embedded therein located between
8	said yoke portions;
9	the first and second pole pieces being connected at their back gap portions; and
10	the pole tip portion having of the first pole piece having a full portion and a
11	reduced cross-section portion wherein the full portion forms a portion of the head surface
12	and the reduced cross-section portion is located entirely within a region which is recessed
13	from said head surface;
14	the first and second portions having a height into the head assembly which is
15	measured from a centerline that is perpendicular to said head surface;
16	each of the first and second portions being located along said centerline so that the
17	centerline bisects each of the first and second portions with the second portion being an
18	extension of the first portion into the head assembly along the centerline;
19	a read head; and
20	the first pole piece being located between the read head and the second pole piece.

1	18. (Previously Presented) A magnetic head assembly as claimed in claim 17 furt	her	
2	comprising:		
3	the read head including:		
4	a read sensor;		
5	nonmagnetic electrically nonconductive first and second read gap layers;		
6	the read sensor being located between the first and second read gap layers;		
7	a ferromagnetic first shield layer; and		
8	the first and second read gap layers being located between the first shield layer	and	
9	the first pole piece.		
1	19. (Currently Amended) A magnetic disk drive including at least one magne	etic	
2	head assembly that has a head surface and that includes a write head and a read head, comprisi	ng:	
3	the write head including:		
4	ferromagnetic first and second pole pieces that have a yoke portion located between	een	
5	a pole tip portion and a back gap portion;		
6	a nonmagnetic write gap layer located between said pole tip portions;		
7	an insulation stack with at least one coil layer embedded therein located between	een	
8	said yoke portions;		
9	the first and second pole pieces being connected at their back gap portions; an	ıd	
10	the pole tip portion having of the first pole piece having a full portion and	<u>d</u> a	
11	reduced cross-section portion wherein the full portion forms a portion of the head surf	<u>ace</u>	
12	and the reduced cross-section portion is located entirely within a region which is reces	sed	
13	from said head surface;		
14	the first and second portions having a height into the head assembly which	ı is	
15	measured from a centerline that is perpendicular to said head surface;		
16	each of the first and second portions being located along said centerline so that	the	
17	centerline bisects each of the first and second portions with the second portion being	<u>an</u>	
18	extension of the first portion into the head assembly along the centerline;		
19	the read head including:		
20	a read sensor;		
21	nonmagnetic electrically nonconductive first and second read gap layers;		
22	the read sensor being located between the first and second read gap layers;		
23	a ferromagnetic first shield layer; and		

24	the first and second read gap layers being located between the first shield layer and
25	the first pole piece layer;
26	the first pole piece being located between the read head and the second pole piece;
27	a housing;
28	a magnetic medium supported in the housing;
29	a support mounted in the housing for supporting the magnetic head assembly with said
30	head surface facing the magnetic medium so that the magnetic head assembly is in a transducing
31	relationship with the magnetic medium; and
32	a processor connected to the magnetic head assembly for exchanging signals with the
33	magnetic head assembly.
1	20. (Currently Amended) A method of making a magnetic head assembly having
2	a head surface and comprising the steps of:
3	making a write head including the steps of:
4	forming ferromagnetic first and second pole pieces with a yoke portion located
5	between a pole tip portion and a back gap portion;
6	forming a nonmagnetic write gap layer between said pole tip portions;
7	forming an insulation stack with at least one coil layer embedded therein between
8	said yoke portions;
9	connecting the first and second pole pieces at their back gap portions; and
10	forming the pole tip portion of the first pole piece with a full portion and with a
11	reduced cross-section portion wherein the <u>full portion forms a portion of the head surface</u>
12	and the reduced cross-section portion is located entirely within a region which is recessed
13	from said head surface; and
14	forming the first and second portions with a height into the head assembly which
15	
	is measured from a centerline that is perpendicular to said head surface;
16	forming each of the first and second portions along said centerline so that the
17	centerline bisects each of the first and second portions with the second portion being an
18	extension of the first portion into the head assembly along the centerline;
19	forming a read head with the first pole piece located between the read head and the
20	second pole piece.

1	21. (Fleviously Flesented) A magnetic nead assembly that has a nead surface
2	comprising:
3	a write head including:
4	ferromagnetic first and second pole piece layers that have a yoke portion located
5	between a pole tip portion and a back gap portion;
6	a nonmagnetic write gap layer located between the pole tip portions of the first and
7	second pole piece layers,
8	an insulation stack with at least one coil layer embedded therein located between
9	the yoke portions of the first and second pole piece layers;
10	the first and second pole piece layers being connected at their back gap portions;
11	the pole tip portion of the first pole piece layer having first and second components
12	wherein the first component forms a portion of the head surface and the second component
13	is recessed from the head surface and is magnetically connected to the first component;
14	the second component having a width that is less than a width of the first
15	component wherein said widths are parallel to the head surface and parallel to a major thin
16	film plane of the write gap layer;
17	the first pole piece layer having a base layer and a pedestal wherein the pedestal
18	forms a portion of the head surface and is located between the head surface and the
19	insulation stack; and
20	the pedestal interconnecting the base layer and the first component.
1	22. (Previously Presented) A magnetic head assembly as claimed in claim 21 further
2	comprising:
3	a read head; and
4	the first pole piece layer being located between the read head and the second pole piece
5	layer.
1	23. (Previously Presented) A method of making a magnetic head assembly that has
2	a head surface comprising the steps of:
3	making a write head including the steps of:
4	forming ferromagnetic first and second pole piece layers that have a yoke portion
5	located between a pole tip portion and a back gap portion.

6 forming a nonmagnetic write gap layer between the pole tip portions of the first and 7 second pole piece layers; 8 forming an insulation stack with at least one coil layer embedded therein located 9 between the yoke portions of the first and second pole piece layers; · 10 connecting the first and second pole piece layers at their back gap portions; 11 forming the pole tip portion of the first pole piece layer with first and second 12 components wherein the first component forms a portion of the head surface and the 13 second component is recessed from the head surface and is magnetically connected to the 14 first component; 15 forming the second component with a width that is less than a width of the first 16 component wherein said widths are parallel to the head surface and parallel to a major thin 17 film plane of the write gap layer; 18 forming the first pole piece layer with a base layer and a pedestal wherein the 19 pedestal forms a portion of the head surface and is located between the head surface and 20 the insulation stack; and . 21 forming the pedestal to interconnect the base layer and the first component. 1 24. (Previously Presented) A method as claimed in claim 23 further comprising the 2 step of: 3 forming a read head with the first pole piece layer located between the read head and the 4 second pole piece layer.