Summary of symmetry calculations

November 3, 2021

Contents

1 Lotka_Volterra 5

4 CONTENTS

Chapter 1

Lotka_Volterra

Run $10_32PM_03_November-2021$

Degree in tangential ansätze: 2. The system of ODEs is given by:

$$\begin{split} \frac{\mathrm{d}N}{\mathrm{d}t} &= N\left(-Pb + a\right), \\ \frac{\mathrm{d}P}{\mathrm{d}t} &= P\left(Nc - d\right). \end{split}$$

The calculated generators are:

$$X_1 = (1) \partial t$$
,

$$X_2 = (d-1) \partial t$$

$$X_{3} = \left(\frac{1}{c} + \mathbf{f}_{1}\left(t\right)\right) \partial t + \left(\frac{Na\,\mathbf{f}_{1}\left(t\right)}{c} - \frac{NPb\,\mathbf{f}_{1}\left(t\right)}{c}\right) \partial N + \left(NP\,\mathbf{f}_{1}\left(t\right) - \frac{Pd\,\mathbf{f}_{1}\left(t\right)}{c}\right) \partial P$$

Some of the generators might contain the following arbitrary functions:

 f_1

WARNING:

Some of the calculated generators did not satisfy the linearised symmetry conditions. Thus, the presented list here is not complete and consists exclusively of the calculated generators that satisfy the linearised symmetry conditions.

Equation:
$$-C_3 + \frac{C_6 b^2 e^{-2at}}{c^2} - \frac{C_6 b^2 d}{ac^2} + \frac{C_6 b^2 d e^{-2at}}{ac^2} = 0$$
 Basis functions:

$$[1.0, e^{-2at}]$$

$$C_3 = 0$$

$$C_6 = 0$$

 $\begin{aligned} & \text{Equation:} - \frac{C_{15}ace^{2dt}}{2ad^2 + 4d^3} - \frac{C_{15}cde^{2dt}}{2ad^2 + 4d^3} + \frac{C_{15}c}{a^2e^{at} + 2ade^{at}} + \frac{C_{15}ce^{dt}}{d^2} - \frac{C_{15}c}{2d^2} - \frac{C_{15}c}{2ad} + \frac{C_2ce^{dt}}{d} - \frac{C_2c}{d} - \frac{C_4b}{a} + \frac{C_4be^{-at}}{a} - C_5 + \frac{C_7bc^2e^{2dt}}{2a^3d^2 - 2a^2d^3 - 8ad^4 + 8d^5} - \frac{C_7bc^2e^{at}}{2a^4d - 6a^3d^2 + 4a^2d^3} + \frac{C_7bc^2e^{2dt}}{2a^3d^2 - 2a^2d^3 - 8ad^4 + 8d^5} - \frac{C_7bc^2e^{at}}{2a^4d - 6a^3d^2 + 4a^2d^3} - \frac{C_7bc^2e^{at}}{4a^4e^{at} + 10a^3d^{at} + 4a^2d^2e^{at}} + \frac{C_8c^2e^{2dt}}{2a^3d - a^2d^2 - ad^3} - \frac{C_7bc^2e^{at}}{a^2d^2 - ad^3} + \frac{C_7bc^2}{2a^2d^2 + 2ad^3 - 4d^4} + \frac{C_8c^2de^{2dt}}{2a^2d^2 + 2ad^3 - 4d^4} - \frac{C_8c^2e^{2dt}}{2a^3e^{at} + 5a^2de^{at} + 2ad^2e^{at}} - \frac{C_8c^2e^{at}e^{dt}}{2a^3-a^2d - ad^2} - \frac{C_8c^2e^{at}e^{dt}}{2a^3e^{at} + 5a^2de^{at} + 2ad^2e^{at}} - \frac{C_8c^2e^{at}e^{dt}}{2a^3-a^2d - ad^2} - \frac{C_8c^2e^{at}e^{dt}}{2a^3e^{at} + 5a^2de^{at} + 2ad^2e^{at}} - \frac{C_8c^2e^{at}e^{dt}}{2a^3-a^2d - ad^2} - \frac{C_8c^2e^{at}e^{dt}}{2a^3e^{at} + 5a^2de^{at} + 2ad^2e^{at}} - \frac{C_8c^2e^{at}e^{dt}}{2a^3-a^2d - ad^2} - \frac{C_8c^2e^{at}e^{dt}}{2a^3e^{at} + 5a^2de^{at} + 2ad^2e^{at}} - \frac{C_8c^2e^{at}e^{dt}}{2a^3-a^2d - ad^2} - \frac{C_8c^2e^{at}e^{dt}}{2a^3e^{at} + 5a^2de^{at} + 2ad^2e^{at}} - \frac{C_8c^2e^{at}e^{dt}}{2a^3-a^2d - ad^2} - \frac{C_8c^2e^{at}e^{dt}}{2a^3e^{at} + 5a^2de^{at} + 2ad^2e^{at}} - \frac{C_8c^2e^{at}e^{dt}}{2a^3-a^2d - ad^2} - \frac{C_8c^2e^{at}e^{at}}{2a^3-a^2d - ad^2} - \frac{$

$$[1.0, e^{at}, e^{dt}, e^{at}e^{dt}, e^{2dt}, e^{-at}]$$

$$C_2 = 0$$

$$C_4 = 0$$

$$C_{15} = 0$$

$$C_7 = 0$$

$$C_5 = 0$$

$$C_8 = 0$$

Equation: $-C_9 = 0$ Basis functions:

$$C_9 = 0$$

 $\begin{aligned} & \text{Equation:} \frac{C_{10}bdt}{a} - \frac{C_{10}b}{a} + \frac{C_{10}be^{-at}}{a} - \frac{C_{10}bd}{a^2} + \frac{C_{10}bde^{-at}}{a^2} - C_{11} + \frac{C_{13}a^2b^2}{a^3de^{at} - a^2d^2e^{at}} + \frac{2C_{13}a^2b^2}{a^3d + a^2d^2} - \frac{2C_{13}ab^2c^2}{a^2c^2de^{dt} - ac^2d^2e^{dt}} + \frac{2C_{13}ab^2d}{a^3de^{at} - a^2d^2e^{at}} + \frac{2C_{13}ab^2d}{a^3d + a^2d^2} - \frac{2C_{13}b^2c^2}{a^2de^{at}e^{dt} + ad^2e^{at}e^{dt}} + \frac{2C_{13}b^2c^2}{a^2de^{at}e^{dt} - ac^2d^2e^{at}} + \frac{C_{13}b^2d^2}{a^3de^{at} - a^2d^2e^{at}} + \frac{C_{13}b^2d^2}{a^3d + a^2d^2} - \frac{2C_{13}b^2d}{a^3d + a^2d^2} - \frac{2C_{13}b^2d}{a^2de^{at}e^{dt} + ad^2e^{at}e^{dt}} - \frac{C_{13}b^2d^2}{a^2de^{at}e^{dt} - ac^2d^2e^{at}} + \frac{C_{13}b^2d^2}{a^3de^{at} - a^2d^2e^{at}} + \frac{C_{13}b^2d^2}{a^3d + a^2d^2} - \frac{2C_{13}b^2d}{a^3d + a^2d^2} - \frac{C_{13}b^2d^2}{a^3de^{at}e^{dt} + ad^2e^{at}e^{dt}} - \frac{C_{13}b^2d^2}{a^3de^{at}e^{dt} - ac^2d^2e^{at}} + \frac{C_{13}b^2d^2}{a^3d + a^2d^2} - \frac{C_{13}b^2d^2}{a^3d + a^2d^2} - \frac{2C_{13}b^2d}{a^3d + a^2d^2} - \frac{C_{13}b^2d^2}{a^3d + a^3d^2} - \frac{C_{13}b^2d$

$$\left[e^{-at}e^{-dt}, \ 1.0, \ t, \ e^{-dt}, \ e^{-at}\right]$$

$$C_{11} = \frac{C_{13} \left(a^3 b^2 e^{at} e^{dt} - 2a^3 b^2 e^{at} + a^3 b^2 e^{dt} - a^3 b^2 + 2a^2 b^2 d e^{at} e^{dt} - 4a^2 b^2 d e^{at} + 3a^2 b^2 d e^{dt} - a^2 b^2 d - 2ab^2 d^2 e^{at} e^{dt} - a^2 d^3 e^{at} e^{dt$$

$$C_{18} = \frac{C_{13}bc}{ad} - \frac{C_{14}c}{d} - \frac{C_{16}b}{d}$$
$$C_{10} = \frac{C_{13}b}{d} - \frac{C_{14}a}{d}$$

Equation:
$$-C_{12} + \frac{C_{13}bc}{a^2e^{at}e^{dt} + ade^{at}e^{dt}} + \frac{C_{13}bc}{ad + d^2} - \frac{C_{13}bce^{-dt}}{ad} - \frac{C_{16}b}{ae^{at}e^{dt} + de^{at}e^{dt}} + \frac{C_{16}b}{a + d} = 0$$
 Basis functions:

$$\left[e^{-at}e^{-dt}, \ 1.0, \ e^{-dt}\right]$$

$$C_{16} = \frac{C_{12} \left(ae^{at}e^{dt} + de^{at}e^{dt} \right)}{be^{at}e^{dt} - b}$$

$$C_{13} = 0$$

Equation:
$$-\frac{C_{13}c^{2}}{a^{2}e^{at}e^{dt}+ade^{at}e^{dt}} - \frac{C_{13}c^{2}}{ad+d^{2}} + \frac{C_{13}c^{2}e^{-dt}}{ad} + \frac{C_{16}c}{ae^{at}e^{dt}+de^{at}e^{dt}} - \frac{C_{16}c}{a+d} - C_{17} = 0 \text{ Basis functions:}$$

$$\left[e^{-at}e^{-dt}, \ 1.0, \ e^{-dt}\right]$$

$$C_{16} = \frac{C_{17} \left(a^2 e^{2at} e^{2dt} + ade^{2at} e^{2dt} + ade^{at} e^{dt} + d^2 e^{at} e^{dt} \right)}{-ace^{2at} e^{2dt} + ace^{at} e^{dt} - cde^{at} e^{dt} + cd}$$

$$C_{13} = 0$$

The execution time of the script was:

hours 1 minutes 37 seconds.