

PATENT ABSTRACTS OF JAPAN

(11) Publication number : 09-265993

(43) Date of publication of application : 07.10.1997

(51) Int.Cl.

H01M 4/86
H01M 4/88
H01M 8/02
H01M 8/10

(21) Application number : 08-077014

(71) Applicant : MAZDA MOTOR CORP

(22) Date of filing : 29.03.1996

(72) Inventor : HIRANO SHINICHI
FUJIKAWA FUTOSHI

(54) SOLID POLYMER TYPE FUEL CELL

(57) Abstract:

PROBLEM TO BE SOLVED: To provide an electrode structure for a fuel cell, which can make a power generation efficiency effective, and is costwise favorable in the solid polymer type fuel cell.

SOLUTION: As for a catalyst layer 43, PTFE dispersion solution of 160 mg with a weight ratio of 55%, is prepared into the same solution of 158mg by coordinating carbon black carrying platinum with a weight ratio of 20%. Out of two kinds of prepared dispersion solution for catalyst layers, dispersion solution for a second catalyst layer is sprayed first over the surface of a dispersion layer for a partially fabricated item formed with the aforesaid dispersion layer, so that the catalyst layer 43 is thereby formed. Similarly with the case of forming the aforesaid dispersion layer, sintering of a PTFE is kept roughly for one hour at the transition temperature of glass around (300 to 350°C under a nitrogen atmosphere within an electric furnace. The application of sputtering of material composed of platinum carrying carbon black composites as raw material over the surface formed with the catalyst layer 43 of a dispersion layer and carbon black joining body, enables a sputtered thin film to be thereby formed. The quantity of sputtered platinum within the sputtered thin film shall be finally 0.05mg/cm². Besides, the quantity of carbon black within the sputtered thin film is roughly identical to platinum in an atomic number ratio.

LEGAL STATUS

[Date of request for examination] 14.01.2003
[Date of sending the examiner's decision of rejection]
[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]
[Date of final disposal for application]
[Patent number] 3711545
[Date of registration] 26.08.2005
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

*** NOTICES ***

**JPO and INPIT are not responsible for any
damages caused by the use of this translation.**

1. This document has been translated by computer. So the translation may not reflect the original precisely.
 2. **** shows the word which can not be translated.
 3. In the drawings, any words are not translated.
-

CLAIMS**[Claim(s)]**

[Claim 1] The polymer electrolyte fuel cell characterized by preparing the catalyst bed of the thin film condition containing the catalyst matter in which mass transfer is possible in the polymer electrolyte fuel cell which prepared the anode side catalyst electrode in one solid-state polyelectrolyte film side, and prepared the cathode side catalyst electrode in the another side side in the solid-state polyelectrolyte film interface side of the oxygen reduction reaction catalyst bed in said cathode side catalyst electrode.

[Claim 2] The polymer electrolyte fuel cell characterized by the thickness of the catalyst bed of said thin film condition being 1 micrometer or less in claim 1.

[Claim 3] The polymer electrolyte fuel cell characterized by being the platinum content spatter thin film catalyst bed in which the catalyst bed of said thin film condition was formed of a direct current or alternating current sputtering in claim 1.

[Claim 4] A platinum content [in / on claim 1 and / said catalyst bed] is about 0.01 mg/cm². Polymer electrolyte fuel cell characterized by being above.

[Claim 5] It is the electrode structure of the fuel cell characterized by the platinum content in said catalyst bed being 10 - 60% of the weight of the range to the carbon black which is catalyst support in claim 1.

[Claim 6] Electrode structure of the fuel cell characterized by consisting of compound spatter thin films which formed the composite material with which said catalyst bed consists of platinum and a hydrophilic ingredient by DC sputtering or alternating current sputtering in claim 1.

[Claim 7] Electrode structure of the fuel cell characterized by being the platinum content alloy spatter thin film with which said catalyst bed was formed of DC sputtering or RF sputtering in claim 1.

[Translation done.]

*** NOTICES ***

JPO and INPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. **** shows the word which can not be translated.
3. In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]**[0001]**

[Industrial Application] This invention relates to the structure of the electrode of an electrolyte membrane mold fuel cell.

[0002]

[Description of the Prior Art] A fuel cell tends to use the power based on the oxidation reduction reaction through an electrolyte for various applications, and it is constituted so that an electrode may be arranged on electrolytic both sides, for this reason reactant gas may be supplied and power can be collected. The polymer electrolyte fuel cell is known as one gestalt of a fuel cell. The gas-passageway slot for supplying the generation-of-electrical-energy component, i.e., solid-state macromolecule, electrode zygote and reactant gas which are constituted by generally putting the solid-state macromolecule electrolysis film of hydrogen ion conductivity by the carbon electrode which supported the platinum catalyst is prepared, and a solid-state macromolecule membrane type fuel cell has the structure which carried out the laminating of the gas separation member which supports a generation-of-electrical-energy component from both sides. And fuel gas is supplied to one electrode, oxidant gas is supplied to the electrode of another side, and electrical energy is extracted by transforming fuel gas and the chemical energy of oxygen into direct electrical energy. In a polymer electrolyte fuel cell, if the electrochemical reaction by hydrogen and oxygen arises, while a current will occur in inter-electrode, water generates to a cathode side. And in the polymer electrolyte fuel cell, since operating temperature is low temperature comparatively with about 80 degrees C as compared with other fuel cells, it is suitable for the power source of a portable mold, especially the power source for electric vehicles.

[0003] However, to use as an object for automobiles, it is necessary to secure the hydrogen gas which is a fuel by automobile by the reformer of the tank of a portable mold, or a portable mold etc. On the other hand, as oxidant gas, air is used from the reason of lightweightizing of a system, a cost side, etc. In this case, since oxygen tension falls with 5 by about 1/as compared with pure oxygen, the problem of an oxygen reduction reaction rate and mass transfer arises in the reaction of a fuel cell. The approach of compressing air and generally, supplying to a fuel cell is taken to this problem. However, in order to consume the energy for driving an air compression equipment in this case, the energy efficiency of that part and the whole fuel cell should be noticed about falling. Various technique is proposed in order that a hypoxia part draft may also attain high energy efficiency in view of such a situation. For example, the thing for which catalytic activity is raised by making the catalyst matter (a platinum catalyst usually having activity to an oxidation reduction reaction in the state of about 80-degree C low temperature) atomize, Raising fixable [of the catalyst matter] by corrosion-proof carbon support, and anode gas, Raising catalytic activity etc. is known by forming the platinum spatter thin film in which the catalyst matter is made unevenly distributed in the 3 **** reaction field which consists cathode gas of an ion conductor, catalyst matter, and reactant gas. By forming a platinum spatter thin film in a catalyst bed front face, the surface area which demonstrates the electrochemical property of a catalyst improves, and oxygen reduction labile improves.

[0004] However, there are the following problems about forming a platinum spatter thin film in a catalyst bed front face. That is, when the platinum spatter thin film formed in the solid-state polyelectrolyte film front face of an electrode checks migration of moisture etc. for a catalyst bed front face by the bonnet and this, it is a problem of it becoming impossible to improve the generation efficiency of the whole fuel cell. The technique it was made to raise the engine performance of a fuel

cell is indicated by JP,7-134995,A by removing efficiently the generation water generated in a cathode electrode side. It is the fuel cell which equipped the above-mentioned official report with the electrolyte membrane which consists of a solid-state macromolecule, the fuel electrode arranged on both sides of this electrolyte membrane, and the air pole, and the catalyst bed of an air pole is constituted from a carbon particle from which the front face became hydrophobicity, and a catalyst supported by this carbon particle, and what constituted the catalyst bed of a fuel electrode from a carbon particle from which the front face became a hydrophilic property, and a catalyst supported by this carbon particle is indicated. By the air side, the problem of the flooding by generation water is solved by this, and it is supposed in the fuel electrode side that the dryness of a fuel electrode side electrolyte will be cancelable.

[0005]

[Problem(s) to be Solved] The fuel cell indicated by above-mentioned JP,7-134995,A tends to offer the structure which controls effectively supply and abatement of the moisture by the side of the anode of an electrode, or a cathode, and, so to speak, tends to improve the cell engine performance from the field of mass transfer. With this configuration, it is not what took into consideration synthetically the factor of both problems of catalytic activity which what can do so effectiveness fixed in 1st page described above, and mass transfer, and has fixed limitation nature in a cell engine-performance improvement effect. This invention was constituted in view of the above situations, by different technique from the well-known thing indicated by above-mentioned JP,7-34993,A etc., can improve the engine performance and aims at moreover offering the electrode structure of the advantageous fuel cell also in cost.

[0006]

[Means for Solving the Problem] In order to attain the above-mentioned object, this invention is constituted as follows. That is, this invention is characterized by preparing the catalyst bed of the thin film condition containing the catalyst matter in which mass transfer is possible in the solid-state polyelectrolyte film interface side of the oxygen reduction reaction catalyst bed in said cathode side catalyst electrode in the polymer electrolyte fuel cell which prepared the anode side catalyst electrode in one solid-state polyelectrolyte film side, and prepared the cathode side catalyst electrode in the another side side. the catalyst bed of this thin film condition containing platinum as for example, catalyst matter, and constituting -- ** -- it is desirable and sputtering of the composite material of platinum, a platinum alloy or platinum, and support ingredients, such as carbon, vacuum evaporationo, etc. can use the means of the arbitration which can form a thin film in a catalyst bed front face in the state of [above-mentioned] a particle with the non-balancing-like means. The hygroscopic moisture as reactant gas and proton H⁺ and a reaction medium, generation moisture, etc. mean that it has the structure as a movable medium, and the semantics "mass transfer is possible for the above" does not mean the dense film which consists of a metal texture. Preferably, the thickness of the catalyst bed of said thin film condition is 1 micrometer or less.

[0007] One of the desirable modes of the catalyst bed of said thin film condition is the platinum content spatter thin film catalyst bed formed of a direct current or alternating current sputtering. moreover, a platinum content [in / preferably / the catalyst bed of a thin film condition] -- about 0.01 to 0.1 mg/cm² it is -- polymer electrolyte fuel cell characterized by things. As for the platinum content in the catalyst bed of said thin film condition, it is desirable that it is 10 - 60% of the weight of the range to the carbon black which is catalyst support. As for the catalyst bed of said thin film condition, it is desirable to consist of compound spatter thin films formed of a direct current or an alternating current, especially RF sputtering including hydrophilic ingredients, such as platinum as catalyst matter and carbon black. Furthermore, said catalyst bed can also be used as the platinum content alloy spatter thin film formed of sputtering.

[0008]

[Embodiment of the Invention] The electrode reaction of a fuel cell is produced inside the catalyst bed of the both sides of an electrolyte membrane, and the energy which can be taken out from a fuel cell increases, so that the reaction is active. That is, the engine performance of a fuel cell improves. However, labile falls as the current produced by the above-mentioned electrode reaction is not uniform in the thickness direction of a catalyst bed, the location nearer to the interface of an electrolyte membrane is more active and it separates from an interface. This invention is made paying attention to the actual condition of the electrode reaction phenomenon in such a fuel cell, and it is constituted so that a more active reaction may be urged in the catalyst bed field near [which electrode reaction produces most actively] the electrolyte membrane interface. That is, [near the electrolyte membrane of a catalyst

bed], in order to make the environment where electrode reaction is promoted, the catalyst bed of the thin film condition in which mass transfer with a high catalyst matter consistency is possible is formed. In a desirable mode, a high ion conductor consistency is given corresponding to this. (The proton, i.e., H+, which has moved through an electrolyte membrane from the anode side by the above-mentioned configuration of this invention Association by the side of the cathode of the electron which is collected in an anode electrode, does external work, and is supplied to a cathode electrode via an external circuit, and the oxygen supplied to a cathode electrode can be made to perform most efficiently.) That is, while an oxidation reduction reaction rate is highly maintainable with this invention, the mass transfer resistance which leads the catalyst bed arranged at the electrolyte membrane of a fuel cell and its both sides and a diffusion layer can be stopped low as much as possible.

[0009] Typically, the catalyst matter is platinum or a platinum alloy (Pt/Cr, Pt/Co, Pt/Rh, Pt/nickel), and the thing which made the above-mentioned catalyst matter support by making into support the carbon black which has conductivity and corrosion resistance by salt reduction etc. is used for it. A catalyst matter consistency is adjusted by changing the weight ratio of the catalyst matter and support. In forming the catalyst bed of a thin film condition, it is desirable to use the composite material which combined platinum like platinum support carbon black, i.e., the catalyst matter, and a hydrophilic ingredient. Thus, by combining a hydrophilic ingredient and platinum, there is an advantage that a good mass transfer property is easily securable. It sets to form the catalyst bed of a thin film condition, and, typically, spatter thin film about 1 micrometer or less is formed in the front face of the usual catalyst bed by sputtering using composite material with the above catalyst matter, a catalyst matter content alloy, or a catalyst matter-hydrophilic-property ingredient. The platinum consistencies in this spatter thin film are 0.01 mg/cm². It is 0.03 - 0.07 mg/cm² preferably above. It is the range. It is because it not only becomes disadvantageous in cost, but the amount of platinum will increase and the adverse effect to mass transfer will become remarkable, if it is too thick to press down this spatter thin film to 1 micrometer or less. Moreover, the fluororesin which has a sulfonic group as the above-mentioned ion conductor is raised.

[0010]

[Example] Hereafter, the example of this invention is explained.
(Solid-state polyelectrolyte membrane electrode zygote concerning the example of this invention)
The outline of the cross section of the fuel cell which consists of a single solid-state polyelectrolyte membrane electrode zygote concerning one example of this invention is shown in the whole structural drawing 1. The fuel cell 1 of this example has basic structure equipped with the oxidation electrode 3, i.e., an anode electrode, with which the solid-state polyelectrolyte film 2 is supplied to the hydrogen as a fuel in preparation for a center at the side of one of these, and the reduction pole 4, i.e., a cathode electrode, where the air as a source of oxygen for a reduction reaction is supplied to an another side side. The anode electrode 3 is constituted by carrying out the laminating of the catalyst bed 33 to diffusion layer 32 pan, and joining to it to the inside, at the carbon cross 31 and its inside. And the fluting gas division plate 30 which has the current collection function of the power which gas separated and generated is formed in the outside of the anode electrode 3. For the fluting gas division plate 30, the hydrogen gas which is fuel gas about the interior is proton H+. It has the slot with a depth [for forming the anode gas path 34 which circulates supplying an electrolyte membrane side] of about 1mm.

[0011] An anode lateral electrode zygote consists of an anode electrode 3 and a fluting gas division plate 30. The field contact section with the diffusion layer 32 of the carbon cross 31 constitutes the current collection section which collects the electron generated from a hydrogen molecule. The cathode electrode side also has same composition and it has the laminating junction structure of the carbon cross 41, a diffusion layer 42, and a catalyst bed 43. And the outside of the carbon cross 41 is equipped with the fluting gas division plate 40, and it has the role which dissociates so that gas may not carry out the short pass of the slot which extends oxygen gas being crooked in a carbon cross front face again so that there may be no leakage appearance in the exterior. And the fluting gas division plate 40 is proton H+ from an electrolyte membrane side. It has the slot which forms the cathode gas passageway 44 which circulates the oxygen which contacts and generates water. A cathode lateral electrode zygote consists of a cathode electrode 4 and a fluting gas division plate 40. (The proton, i.e., H+, which has moved through an electrolyte membrane 2 from the anode side as the above-mentioned configuration shows to drawing 1 notionally It is combined by the cathode electrode side with the electron which is collected in the anode electrode 3, does external work, and is supplied to the cathode electrode 4 via an external circuit.) That is, it is proton H+ by taking an electron from a hydrogen molecule in an anode electrode side. Proton H+ which was generated and was conducted through the electrolyte membrane 2 in the cathode

electrode side The electron from the external circuit which has an external load, and the oxygen molecule supplied from a cathode gas passageway react, and a water molecule generates.

[0012] The detail in the laminating condition of resulting in the cathode electrode 4 is shown in drawing 2 from the middle electrolyte membrane 2 of each electrodes 3 and 4, a catalyst bed 43 is formed in the outside of an electrolyte membrane 2, and the platinum-carbon black compound spatter thin film 431 is formed in the electrolyte membrane side front face of the catalyst bed. And a diffusion layer 42 is formed in the outside of a catalyst bed 43, and the carbon cross 41 is further joined and constituted by the outside.

In a solid-state polyelectrolyte membrane electrode zygote, the carbon cross carbon crosses 31 and 41 are parts which accomplish the substratum of the electrode section of the fluting gas division plates 30 and 40 arranged immediately inside, and have a role of a current collection member which bears migration of the electron fundamentally built over the above-mentioned anode electrode reaction and cathode electrode reaction. Furthermore, it is desirable that the mass transfer in each electrodes 3 and 4 especially anode gas, and cathode gas can be effectively supplied now to the 3 **** reaction field which consists of an ion conductor, catalyst matter, and reactant gas, and that the moisture generated in the cathode electrode 4 can be effectively discharged now. In this example, the anode side carbon cross 31 and the cathode side carbon cross 41 use the carbon cross constituted by each weaving carbon fiber. trade name of the product [cross / which is used as an electrode in this example / carbon] made from U.S. E-TEK: "A" Cloth it is -- 116 g/m² and thickness of weight are about 0.35mm. In constituting the electrode of this example, with the fluororesin (polytetrafluoroethylene (it is called Following PTFE)) distribution solution (PTFE with a particle size of about 0.2 micrometers is carrying out stable distribution with the surface active agent of 54 - 55 ***** rare ***** and the specified quantity (provided as trade name TEFLON FEP120-J from Dupont-Mitsui Fluorochemicals, Inc.)), surface treatment of a carbon cross was performed and water repellence was given. The water-repellent treatment of this carbon cross wiped off the excessive solution through the filter paper, after dipping the above-mentioned carbon cross for 5 minutes into the solution which diluted with deionized water the solution which distributed PTFE with the surfactant to 49% of the weight, and it made PTFE sinter at the temperature of about 340 degrees C in the electric furnace of nitrogen-gas-atmosphere mind after that for 1 hour.

[0013] A diffusion layer diffusion layer is established so that it may contact with a catalyst bed inside a carbon cross, and it must demonstrate a current collection function effectively as a medium which intervenes between a catalyst bed and an electrode while it needs to function as mass transfer from a catalyst bed being performed effectively as opposed to a catalyst bed like an electrode. The diffusion layer consists of these examples as a sintered compact of carbon black and PTFE. Both weight ratio is 6:4 and the consistencies per the unit area are 2.4mg and 1.6mg, respectively. in addition -- as carbon black -- Cabot Corporation from -- brand-name Vulcan XC-72 (surface area of about 250m² / g) currently offered was used.

389mg of PTFE distribution solutions of manufacture carbon black 315mg of a diffusion layer and the above-mentioned marketing was mixed with 40ml pure water and 40ml isopropanol, and it was made to distribute using an ultrasonic washer. It sprayed using a spray on the carbon cross which gave this distributed preparation liquid a water-repellent finish as the above-mentioned electrode, and making it dry using a dryer. The rate at which the above-mentioned distributed solution adheres on a carbon cross is 5 - 30%. The carbon cross which formed the diffusion layer with about 50kg roller was compressed into the thickness of about 0.2-0.5mm after spray completion. Next, the diffusion layer was formed on the carbon cross by making PTFE sinter at about 300 degrees C - 350 degrees C in the electric furnace of the above-mentioned nitrogen-gas-atmosphere mind for about 1 hour.

[0014] In the example of a catalyst bed (cathode electrode side) book, it has the thickness of about 40 micrometers as the whole catalyst bed by the side of a cathode electrode. A platinum support carbon black spatter thin film is formed in the electrolyte membrane side front face of a catalyst bed 43 of sputtering. The thickness of the spatter thin film itself is formed in about 1 micrometer or less. However, the region of influence of the catalyst bed to which platinum support carbon black adheres by sputtering since the front face of a catalyst bed is porosity reaches the range of about 5 micrometers. Therefore, a spatter thin film field is set to about 5 micrometers by this example. Therefore, the thickness of a catalyst bed (20%Pt/C (percentage by weight)) is set to about 35 micrometers. The mean particle diameter of the platinum in this catalyst bed is about 2.5nm. The presentation of each catalyst bed is as being shown in drawing 3 . In addition, it is Aciplex-S (1004) which Nafion is the trade name polymer content liquid of

the electrolyte membrane offered from Du Pont in drawing 3, and shows the structure of the polymer to drawing 4. It is the same. This polymer content liquid Nafion distributes the polymer of the specified quantity in the solution which carried out equivalent mixing of water and the ethanol. The thing of 5wt percent is being used for the concentration of a polymer in this example. Manufacture of the catalyst bed by the side of a cathode electrode is explained. In forming a catalyst bed, the distributed solution containing the raw material of the specified quantity is prepared first. a catalyst bed 43 -- a weight ratio -- the carbon black which supported 20% of platinum -- 160mg and a weight ratio -- 158mg was prepared for 55% of PTFE distribution solution (TEFLON FEP120-J), this was mixed with 40ml [of pure water], and isopropanol 40ml, and it was made to distribute using an ultrasonic washer PTFE with a particle size of about 0.2 micrometers is carrying out stable distribution with the surfactant of 54 - 55 ***** rare ***** and the specified quantity into the above-mentioned PTFE distribution solution. Next, the distributed solution for catalyst beds prepared above was sprayed on the field of the diffusion layer of the half-finished products which formed the above-mentioned diffusion layer using the spray, and the catalyst bed 43 was formed.

[0015] And sintering processing of PTFE was performed over about 1 hour like the case of the above-mentioned diffusion layer formation near the glass transition temperature of PTFE (about 300-350 degrees C) in the electric furnace of nitrogen-gas-atmosphere mind. Next, the spatter thin film was formed by performing sputtering which uses platinum support carbon composite material as a raw material to the diffusion layer-carbon cross zygote with which the catalyst bed 43 was formed in the front face. Performing sputtering in low voltage argon atmosphere (2.7Pa), acceleration voltage was 1.8kV and the plate current was 80mA. In this case, the rates of sedimentation were 0.3microg/cm² / s. final -- the amount of spatter platinum in a spatter thin film -- 0.05 mg/cm² it was . In addition, the amount of carbon in a spatter thin film was tales doses mostly in platinum and an atomic ratio. Next, the above-mentioned polyelectrolyte solution Nafion was applied from the front face of the spatter thin film of the solid-state polyelectrolyte membrane electrode zygote half-finished products which consist of the carbon cross 41 formed as mentioned above, a diffusion layer 42 on this carbon cross, and a catalyst bed 43 on a diffusion layer. In this example, Nafion was immersed in the suitable brush, Nafion was included, and it applied to the front face of the spatter thin film 431. coverage -- about 0.6 mg/cm² it was .

[0016] (Anode electrode side) The catalyst bed by the side of the anode electrode of this example consists of monolayers which made the catalyst consistency homogeneity. And it is what supported platinum to the above-mentioned carbon black (Vulcan XC-72) (20%Pt/C, average platinum particle size of 2.5nm) 0.4 mg/cm² In the same way as the technique of forming the catalyst bed by the side of the above-mentioned cathode for a catalyst bed so that it may become, it formed by performing spraying on the diffusion layer front face of dispersion liquid, and sintering processing of subsequent PTFE. In this case, the amount of carbon black is a catalyst bed, and diffusion layer bubble *** about 4.0 mg/cm². It prepared so that it might become extent. And it could be about 0.35mm as the whole anode lateral electrode zygote.

Electrolyte membrane solid-state polyelectrolyte film is imperforation polymeric materials, and can consist of fluororesins (polytetrafluoroethylene (it is called Following PTFE)). trade name provided with the electrolyte membrane of this example from Asahi Chemical Co., Ltd.: Aciplex-S (1004) it is . The thickness is about two to 6 mil (about 50-150 micrometers) extent. This chemical structure is as being shown in drawing 4 . According to the fundamental actuation in a polymer electrolyte fuel cell, as described above, the reaction at which an electron is taken from the hydrogen which is fuel gas arises with an anode electrode, and an electron and a hydrogen ion (proton H⁺) are generated by this, an electron passes along a load, and on the other hand, proton H⁺ conducts the inside of an electrolyte membrane, and reaches a cathode electrode. It sets to a cathode electrode and is proton H⁺. Reaction water is generated when oxygen reacts. That is, an electrolyte membrane is proton H⁺ so that clearly from the above-mentioned basic actuation. While playing the role conducted to a cathode side, unreacted hydrogen gas has the role which prevents advancing into a cathode side in the state of a molecule. In addition, proton H⁺ Since it moves with a water molecule in moving toward a cathode side in the inside of an electrolyte membrane, the electrolyte membrane must also have the water molecule possession function which holds the water molecule for it. Moreover, in the electrolyte membrane which has an ion conductor radical (this example sulfonic group), about 500 to 1500 (g/eq) thing is desirable, the ratio, i.e., the sulfonic group equivalent, of weight of a sulfonic group per unit weight. An electrolyte membrane is (1) proton H⁺. The thing of arbitration can be used if this condition that needs to have a

separation function for isolating the hydrogen gas of a conduction function and (2) anode gas paths and the oxygen gas (air) of a cathode gas passageway and a (3) predetermined water retention function is fulfilled. A cathode side catalyst bed is formed in an anode side catalyst bed and cathode side at the anode side of an electrolyte membrane.

[0017] As it was the formation above of an electrode zygote, after constituting an anode lateral electrode zygote and a cathode lateral electrode zygote, the cathode lateral electrode zygote and the anode lateral electrode zygote were joined on both sides of the solid-state polyelectrolyte film sense doubling and between them with the position in which a catalyst bed side meets, respectively. And on both sides of the solid-state polyelectrolyte film, it fixes using a press fixture, and they are about 25 kgf/cm² per unit area of an electrode zygote at the temperature of about 155 degrees C. The solid-state polyelectrolyte membrane electrode zygote was manufactured by carrying out a hotpress by the pressure.

(Solid-state polyelectrolyte membrane electrode zygote concerning the example of a comparison) The configuration of the example of a comparison constituted the cathode lateral electrode as well as an anode lateral electrode from the single catalyst bed. In order to form a catalyst bed, the distributed solution was prepared like the example. In this case, platinum support carbon black (Vulcan XC-72) prepared dispersion liquid for 20% of platinum weight ratio Pt/C like the above using 160mg and a 158 mg PTFE distribution solution (FEP120-J), and formed the catalyst bed by spraying by the spray. In addition, the deposit efficiency of the dispersion liquid by spraying is 15 - 20% of the amount of spraying. Sintering processing was performed similarly after that. Other configurations are the same as an example. Thus, it experimented in the generation of electrical energy by the fuel cell which consists of a solid-state polyelectrolyte membrane electrode zygote concerning the example and the example of a comparison which were formed. In the fuel cell concerning the example of this invention, it is related with a generated voltage as compared with the thing concerning the example of a comparison, and is 500 mA/cm². It became clear that it set and about 50mV became high. This means that the generation efficiency of a fuel cell improves from about 60% to 65%. According to this experimental result in the fuel cell configuration which consists of a single solid-state polyelectrolyte membrane electrode zygote, in the fuel cell which consists of many laminated structures, the improvement in generation efficiency will become remarkable.

[0018] In addition, although two-layer [from which a catalyst consistency differs] constituted the catalyst bed by the side of a cathode electrode from this example, the laminating of the layer from which much more consistencies differ can be carried out, and it can also be constituted. In this case, a laminating is carried out so that the catalyst consistency by the side of an electrolyte membrane may become high. Moreover, it is not necessary to necessarily carry out an anode electrode in this way, and although formed by the catalyst bed which has a single uniform catalyst consistency, it can carry out the laminating of the layer from which two or more catalyst consistencies differ like a cathode electrode, and can also constitute it from this example. Furthermore, although the catalyst bed was constituted from this example by carrying out the laminating of the layer from which a catalyst consistency differs, respectively, you may be a single layer as long as it is the configuration that a catalyst density gradient decreases toward a diffusion layer side from an electrolyte membrane side. Furthermore, in manufacture of a catalyst bed, if it is the technique from which the above catalyst inclination is acquired, in order not to be based on a spray and brush spreading but to form an about 10-100-micrometer thin film, the means of well-known arbitration can be used.

[0019]

[Effect of the Invention] As described above, in this invention, improvement in generation efficiency can be aimed at in a solid-state polyelectrolyte film fuel cell, without moreover increasing a manufacturing cost with an easy configuration.

[Translation done.]

* NOTICES *

JPO and INPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. **** shows the word which can not be translated.
3. In the drawings, any words are not translated.

DRAWINGS

[Drawing 2]

[Drawing 3]

	スパッタ薄膜	触媒層
Pt/C (%)	20+スパッタ	20
Pt (mg/cm ²)	0.10	0.35
C (mg/cm ²)	0.2	1.4
PTFE (mg/cm ²)	0.2	0.9
Nafion (mg/cm ²)	0.1	0.5
厚み (μm)	5	35

[Drawing 1]

[Drawing 4]

[Translation done.]

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開平9-265993

(43) 公開日 平成9年(1997)10月7日

(51) Int.Cl. ⁶	識別記号	序内整理番号	F I	技術表示箇所
H 01 M	4/86		H 01 M 4/86	M
	4/88		4/88	K
	8/02		8/02	E
	8/10		8/10	Z

審査請求 未請求 請求項の数7 OL (全7頁)

(21) 出願番号 特願平8-77014

(22) 出願日 平成8年(1996)3月29日

(71) 出願人 000003137

マツダ株式会社

広島県安芸郡府中町新地3番1号

(72) 発明者 平野 伸一
広島県安芸郡府中町新地3番1号 マツダ
株式会社内

(72) 発明者 藤川 太
広島県安芸郡府中町新地3番1号 マツダ
株式会社内

(74) 代理人 弁理士 中村 稔 (外7名)

(54) 【発明の名称】 固体高分子型燃料電池

(57) 【要約】

【課題】 固体高分子型燃料電池において、発電効率を有效地にすることことができ、しかもコスト的にも有利な燃料電池の電極構造を提供する。

【解決手段】 触媒層43については、重量比20パーセントの白金を担持したカーボンブラックを160mg、重量比55%のPTFE分散溶液(TEFLON FEP120-J)を158mgとを調製した。調製した2種類の触媒層用の分散溶液の内、先ず第2触媒層用の分散溶液をスプレーを用いて上記の拡散層を形成した半製品の拡散層の面上に吹きつけて、触媒層43を形成した。上記拡散層形成の場合と同様に、窒素雰囲気の電気炉中でPTFEのガラス転移温度付近(約300~350°C)でPTFEの焼結処理を約1時間かけて行った。触媒層43が表面に形成された拡散層-カーボンクロス接合体に白金担持カーボンブラック複合材料を原料とするスパッタリングを施すことによってスパッタ薄膜を形成した。最終的にスパッタ薄膜中のスパッタ白金量は、0.05mg/cm²であった。なおスパッタ薄膜中のカーボンブラック量は白金と原子数比でほぼ同量であった。

1

【特許請求の範囲】

【請求項1】 固体高分子電解質膜の一方の側にアノード側触媒電極を設け、他方の側にカソード側触媒電極を設けた固体高分子型燃料電池において、前記カソード側触媒電極における酸素還元反応触媒層の固体高分子電解質膜界面側に触媒物質を含有する物質移動可能な薄膜状態の触媒層を設けたことを特徴とする固体高分子型燃料電池。

【請求項2】 請求項1において、前記薄膜状態の触媒層の厚さが $1\text{ }\mu\text{m}$ 以下であることを特徴とする固体高分子型燃料電池。

【請求項3】 請求項1において、前記薄膜状態の触媒層が直流もしくは交流スパッタリングによって形成された白金含有スパッタ薄膜触媒層であることを特徴とする固体高分子型燃料電池。

【請求項4】 請求項1において、前記触媒層における白金含有量は約 0.01 mg/cm^2 以上であることを特徴とする固体高分子型燃料電池。

【請求項5】 請求項1において、前記触媒層における白金含有量は触媒担持体であるカーボンブラックに対して $10\sim60\text{ 重量\%}$ の範囲であることを特徴とする燃料電池の電極構造。

【請求項6】 請求項1において、前記触媒層が白金と親水性材料からなる複合材料を直流スパッタリングあるいは交流スパッタリングにより形成した複合スパッタ薄膜から構成されていることを特徴とする燃料電池の電極構造。

【請求項7】 請求項1において、前記触媒層が直流スパッタリングもしくは高周波スパッタリングによって形成された白金含有合金スパッタ薄膜であることを特徴とする燃料電池の電極構造。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は、電解質膜型燃料電池の電極の構造に関する。

【0002】

【従来の技術】 燃料電池は電解質を介しての酸化還元反応に基づく電力をさまざまな用途に利用しようとするものであって、このために電解質の両側に電極を配して反応ガスを供給して電力を回収できるように構成している。燃料電池の1つの形態として固体高分子型燃料電池が知られている。固体高分子膜型燃料電池は、一般的に、水素イオン導電性の固体高分子電解膜を白金触媒を担持したカーボン電極で挟み込んで構成される発電素子すなわち固体高分子-電極接合体及び反応ガスを供給するためのガス通路構が設けられ、発電素子を両側から支持するガス分離部材とを積層した構造を有する。そして、一方の電極に燃料ガスを供給し、他方の電極に酸化剤ガスを供給して、燃料ガスと酸素の化学エネルギーを直接電気エネルギーに変換することによって電気エネル

2

ギーを抽出するようになっている。固体高分子型燃料電池において、水素と酸素による電気化学反応が生じると電極間に電流が発生するとともに、カソード側に水が生成する。そして、固体高分子型燃料電池においては、他の燃料電池と比較して動作温度が約 80°C と比較的低温であるために、可搬型の電源、特に電気自動車用のパワーソースに適している。

【0003】 しかし、自動車用として用いる場合には、燃料である水素ガスは、可搬型のタンク又は可搬型の改質装置等により自動車で確保する必要がある。一方、酸化剤ガスとしては、システムの軽量化、コスト面等の理由から空気が使用される。この場合、純酸素に比較して酸素分圧が約 $1/5$ と低下するので、燃料電池の反応の中で酸素還元反応速度及び物質移動の問題が生じる。この問題に対して、一般的には、空気を圧縮して燃料電池に供給する方法が取られる。しかし、この場合、空気圧縮装置を駆動するためのエネルギーを消費するために、その分、燃料電池全体のエネルギー効率は低下することに注意すべきである。このような事情に鑑み、低酸素分圧下でも高いエネルギー効率を達成するために、さまざまな手法が提案されている。たとえば、触媒物質(80°C 程度の低温状態で酸化還元反応に対し活性を有するのは通常は白金触媒である)を微粒化させることによって触媒活性を向上させること、耐腐食カーボン担持によって触媒物質の定着性を向上させること、アノードガス、カソードガスをイオン伝導体、触媒物質及び反応ガスとからなる三界相反応領域において触媒物質を偏在させる白金スパッタ薄膜を形成することによって触媒活性を向上させること、等が知られている。白金スパッタ薄膜を触媒層表面に形成することによって触媒の電気化学的特性を發揮する表面積が向上し、酸素還元反応活性が向上する。

【0004】 しかし、白金スパッタ薄膜を触媒層表面に形成することについては以下のようないわゆる問題がある。すなわち電極の固体高分子電解質膜表面に形成した白金スパッタ薄膜が触媒層表面を覆い、これによって水分等の移動を阻害することによって燃料電池の全体の発電効率を改善することができなくなるという問題である。特開平7-134995号公報には、カソード電極側で発生する生成水を効率的に除去することによって燃料電池の性能を向上させるようにした技術が開示されている。上記公報には、固体高分子からなる電解質膜とこの電解質膜の両側に配置した燃料極と空気極とを備えた燃料電池であって、空気極の触媒層は、表面が疎水性となった炭素粒子と該炭素粒子に担持された触媒とで構成し、燃料極の触媒層は、表面が親水性となった炭素粒子と該炭素粒子に担持された触媒とで構成したもののが開示されている。これによって空気側では生成水によるフラッディングの問題を解消し、燃料極側では、燃料極側電解質の乾燥状態を解消できるとしている。

30

20

30

40

50

【0005】

【解決しようとする課題】上記特開平7-134995号に開示される燃料電池は、電極のアノード側またはカソード側の水分の供給及び排除を効果的に制御する構造を提供するものであって、いわば物質移動の面から電池性能を改善しようとするものである。この構成では、1面的には一定の効果を奏すことができるものの、上記したような触媒活性及び物質移動の問題の両方の要因を総合的に勘案したものではなく、電池性能改善効果において一定の限界性を有するものである。本発明は、以上のような事情に鑑みて構成されたもので、上記特開平7-34993号公報等に開示される公知のものとは異なる手法によって、性能を改善することができ、しかもコスト的にも有利な燃料電池の電極構造を提供することを目的とする。

【0006】

【課題を解決するための手段】上記目的を達成するため、本発明は以下のように構成される。すなわち、本発明は、固体高分子電解質膜の一方の側にアノード側触媒電極を設け、他方の側にカソード側触媒電極を設けた固体高分子型燃料電池において、前記カソード側触媒電極における酸素還元反応触媒層の固体高分子電解質膜界面側に触媒物質を含有する物質移動可能な薄膜状態の触媒層を設けたことを特徴とする。この薄膜状態の触媒層は、例えば触媒物質として白金を含有するもので構成することがが望ましく、白金、白金合金あるいは白金とカーボンなどの担持材料との複合材料のスパッタリング、蒸着等、非平衡的手段によって上記微粒子状態で触媒層表面に薄膜を形成することができる任意の手段を用いることができる。上記の「物質移動が可能」なという意味は、反応ガス、プロトンH⁺、反応媒体としての湿分、生成水分等が移動可能な媒体としての構造を有するという意味であり、金属組織からなる密な膜を意味しない。好ましくは、前記薄膜状態の触媒層の厚さは1μm以下である。

【0007】前記薄膜状態の触媒層の好ましい態様の1つは、直流あるいは交流スパッタリングによって形成された白金含有スパッタ薄膜触媒層である。また、好ましくは、薄膜状態の触媒層における白金含有量は約0.01~0.1mg/cm²であることを特徴とする固体高分子型燃料電池。前記薄膜状態の触媒層における白金含有量は触媒担持体であるカーボンブラックに対して10~60重量%の範囲であることが好ましい。前記薄膜状態の触媒層は触媒物質としての白金とカーボンブラック等の親水性材料を含んで直流あるいは交流特に、高周波スパッタリングによって形成された複合スパッタ薄膜から構成されているのが好ましい。さらに、前記触媒層をスパッタリングによって形成された白金含有合金スパッタ薄膜とすることもできる。

【0008】

【発明の実施の形態】燃料電池の電極反応は、電解質膜の両側の触媒層の内部で生じ、その反応が活発であるほど燃料電池から取り出すことができるエネルギーは増大する。すなわち、燃料電池の性能は向上する。しかし、上記電極反応によって生じる電流は、触媒層の厚さ方向に一様ではなく、電解質膜の界面に近い位置ほど活発であり、界面から離れるにしたがって、反応活性は低下する。本発明はこのような燃料電池における電極反応現象の実態に着目してなされたものであって、電極反応の最も活発に生じる電解質膜界面近傍の触媒層領域においてより活発な反応を促すように構成するものである。すなわち、触媒層の電解質膜近傍においては、電極反応が促進される環境を作るために触媒物質密度の高い物質移動可能な薄膜状態の触媒層を形成する。好ましい態様では、これに対応して高いイオン伝導体密度を与える。本発明の上記構成によってアノード側から電解質膜を介して移動してきたプロトンすなわちH⁺とアノード電極において集電されて外部仕事をして外部回路を経由してカソード電極に供給される電子とカソード電極に供給される酸素とのカソード側における結合を最も効率的に行わせることができる。すなわち本発明によって酸化還元反応速度を高く維持することができるとともに、燃料電池の電解質膜及びその両側に配置される触媒層、拡散層を通じての物質移動抵抗を極力低く抑えることができるものである。

【0009】触媒物質は、代表的には白金または白金合金(Pt/Cr, Pt/Co, Pt/Rh, Pt/Ni)等であり、塩還元法などで導電性と耐腐食性を有するカーボンブラックを担持体として上記触媒物質を担持させたものを使用する。触媒物質密度は触媒物質と担持体との重量比を変化させることによって調節する。薄膜状態の触媒層を形成するにあたっては、白金担持カーボンブラックのような白金すなわち触媒物質と親水性材料とを組み合わせた複合材料を用いるのが好ましい。このように親水性材料と白金とを組合せることによって、良好な物質移動特性を容易に確保できるという利点がある。薄膜状態の触媒層を形成するにおいて、代表的には、上記のような触媒物質、触媒物質含有合金あるいは、触媒物質-親水性材料との複合材料を使用して通常の触媒層の表面にスパッタリングによって約1μm以下のスパッタ薄膜を形成する。このスパッタ薄膜における白金密度は0.01mg/cm²以上好ましくは、0.03~0.07mg/cm²の範囲である。このスパッタ薄膜を1μm以下に抑えるのは、厚すぎると白金量が増大してコスト的に不利となるだけでなく、物質移動への悪影響が顕著となるからである。また、上記のイオン伝導体としてはスルホン酸基を有するフッ素樹脂などがあげられる。

【0010】

【実施例】以下、本発明の実施例について説明する。
50 (本発明の実施例にかかる固体高分子電解質膜電極接合

体)

全体構造

図1には、本発明の1実施例にかかる单一の固体高分子電解質膜電極接合体からなる燃料電池の断面の概略が示されている。本例の燃料電池1は中央に固体高分子電解質膜2を備えその一方の側に燃料としての水素が供給される酸化電極すなわちアノード電極3、他方の側に還元反応用の酸素源としての空気が供給される還元極すなわちカソード電極4を備える基本構造になっている。アノード電極3は、カーボンクロス31、その内側に拡散層32さらにその内側に触媒層33を積層して接合することによって構成されている。そして、アノード電極3の外側には、ガスの分離及び発電した電力の集電機能を有する溝付ガス分離板30が設けられている。溝付ガス分離板30は、内部を燃料ガスである水素ガスがプロトン H^+ を電解質膜側に供給しつつ流通するアノードガス通路34を画成するための深さ約1mmの溝を備えている。

【0011】アノード電極3と溝付ガス分離板30とでアノード側電極接合体を構成する。カーボンクロス31の拡散層32との面接触部は、水素分子から発生する電子を集電する集電部を構成する。カソード電極側も同様な構成になっており、カーボンクロス41、拡散層42、触媒層43の積層接合構造を有する。そしてカーボンクロス41の外側には溝付ガス分離板40を備えており、酸素ガスが外部に漏れ出ないようにまた、カーボンクロス表面を屈曲しつつ延びる溝をガスがショートパスしないように分離を行なう役割をもつ。そして、溝付ガス分離板40は、電解質膜側からのプロトン H^+ と接触して水を生成する酸素を流通させるカソードガス通路44を画成する溝を有している。カソード電極4と溝付ガス分離板40とでカソード側電極接合体を構成する。上記構成によって図1に概念的に示すようにアノード側から電解質膜2を介して移動してきたプロトンすなわち H^+ とアノード電極3において集電されて外部仕事をして外部回路を経由してカソード電極4に供給される電子とのカソード電極側で結合される。すなわちアノード電極側では、水素分子が電子を奪われることによってプロトン H^+ が発生し、カソード電極側では、電解質膜2を介して伝導されたプロトン H^+ と外部負荷を有する外部回路からの電子とカソードガス通路から供給される酸素分子とが反応して水分子が生成する。

【0012】各電極3、4の中間の電解質膜2からカソード電極4に至る積層状態の詳細が図2に示されており、電解質膜2の外側には触媒層43が設けられ、その触媒層の電解質膜側表面には、白金-カーボンブラック複合スパッタ薄膜431が形成されている。そして、触媒層43の外側に拡散層42が設けられ、さらにその外側にカーボンクロス41が接合されて構成される。

カーボンクロス

カーボンクロス31、41は、固体高分子電解質膜電極接合体において、溝付ガス分離板30、40のすぐ内側に配置される電極部分の基層を成す部分であって、基本的に上記のアノード電極反応、カソード電極反応にかかる電子の移動を担う集電部材としての役割を持つ。さらに、各電極3、4における物質移動、特にアノードガス、カソードガスをイオン伝導体、触媒物質及び反応ガスとからなる三界相反応領域に対して効果的に供給することができるようになっていること、およびカソード電極4において発生する水分の排出を効果的に行なうことができるようになっていることが望ましい。本例においては、アノード側カーボンクロス31およびカソード側カーボンクロス41はいずれもカーボン繊維を織って構成されるカーボンクロスを用いる。本例において電極として使用されるカーボンクロスは米国E-T-EK社製の商品名：“A” Clothであり、重量は、116g/m²、厚さは、約0.35mmである。本例の電極を構成するに当たってフッ素樹脂（ポリテトラフルオロエチレン（以下PTFEという））分散溶液（約0.2μm程度の粒径のPTFEが54～55重量パーセント含まれており、所定量の界面活性剤とともに安定分散している（三井・デュポンフロロケミカル（株）から商品名TEFLON FEP120-Jとして提供されている））によってカーボンクロスの表面処理を行い撥水性を付与した。このカーボンクロスの撥水化処理は、PTFEを界面活性剤とともに分散させた溶液を脱イオン水で49重量%に希釈した溶液中に上記カーボンクロスを5分間浸した後濾紙で余分な溶液を拭き取り、その後、窒素雰囲気の電気炉中で温度約340℃で1時間PTFEを焼結させた。

30 拡散層

拡散層は、カーボンクロスの内側に触媒層と接触するように設けられるものであって、電極と同様に触媒層に対し、および触媒層からの物質移動が効果的に行われるよう機能する必要があるとともに、触媒層と電極との間に介在する媒体として集電機能を効果的に発揮するものでなければならない。本例では、拡散層は、カーボンブラックとPTFEとの焼結体として構成されている。両者の重量比は、6:4であり、その単位面積当たりの密度は、それぞれ2.4mg、1.6mgである。なお、カーボンブラックとしては、Cabot Corporationから提供されている商標名Vulcan XC-72（表面積約250m²/g）を用いた。

50 拡散層の製造

カーボンブラック315mgと上記市販のPTFE分散溶液389mgを40mlの純水および40mlのイソプロパノールとともに混合し、超音波洗浄器を用いて分散させた。この分散調製液を上記の電極として撥水処理したカーボンクロス上にスプレーを用いドライヤーを用いて乾燥させながら吹きつけた。上記分散溶液がカーボンクロス上に付着する率は5～30%である。吹きつけ

7

完了後、約50kgのローラーによって拡散層を形成したカーボンクロスを約0.2~0.5mmの厚さに圧縮した。次に、上記の窒素雰囲気の電気炉中で約300℃~350℃で約1時間PTFEを焼結させることによってカーボンクロス上に拡散層を形成した。

【0014】触媒層

(カソード電極側) 本例では、カソード電極側の触媒層全体として約40μmの厚さを有する。触媒層43の電解質膜側表面には、スパッタリングによって白金担持カーボンブラック薄膜が形成される。スパッタ薄膜自体の膜厚はほぼ1μm以下に形成される。しかし、触媒層の表面が多孔質になっているためにスパッタリングによって白金担持カーボンブラックが付着する触媒層の影響領域は、約5μmの範囲に及ぶ。従ってスパッタ薄膜領域は本例では、約5μmとなる。したがって触媒層(20%Pt/C(重量パーセント))の厚さは約35μmとなる。この触媒層における白金の平均粒径は約2.5nmである。各触媒層の組成は、図3に示す通りである。なお、図3において、Nafionは、デュポン社から提供される電解質膜の商品名ポリマー含有液であり、そのポリマーの構造は、図4に示すAciplex-S(1004)と同様のものである。このポリマー含有液Nafionは、水とエタノールを等量混合した溶液中に所定量のポリマーを分散させたものである。本例では、ポリマーの濃度は、5wtパーセントのものを使用している。カソード電極側の触媒層の製造について説明する。触媒層を形成するに当たってまず、所定量の原料を含む分散溶液を調製する。触媒層43については、重量比20パーセントの白金を担持したカーボンブラックを160mg、重量比5.5%のPTFE分散溶液(TEFLON FEP120-J)を158mgとを調製し、これを純水40mlおよびイソプロパノール40mlと混合し超音波洗浄器を用いて分散させた。上記PTFE分散溶液においては約0.2μm程度の粒径のPTFEが54~55重量パーセント含まれており、所定量の界面活性剤とともに安定分散している。つぎに、上記で調製した触媒層用の分散溶液をスプレーを用いて上記の拡散層を形成した半製品の拡散層の面上に吹きつけて、触媒層43を形成した。

【0015】そして、上記拡散層形成の場合と同様に、窒素雰囲気の電気炉中でPTFEのガラス転移温度付近(約300~350℃)でPTFEの焼結処理を約1時間かけて行った。次に触媒層43が表面に形成された拡散層-カーボンクロス接合体に白金担持カーボン複合材料を原料とするスパッタリングを施すことによってスパッタ薄膜を形成した。スパッタリングは低圧アルゴン雰囲気中(2.7Pa)で行い、加速電圧は、1.8kV、プレート電流は、80mAであった。この場合堆積速度は0.3μg/cm²/sであった。最終的にスパッタ薄膜中のスパッタ白金量は、0.05mg/cm²であった。なおスパッタ薄膜中のカーボン量は白金と原

8

子数比ではほぼ同量であった。次に上記のようにして形成したカーボンクロス41、このカーボンクロス上の拡散層42、拡散層上の触媒層43からなる固体高分子電解質膜電極接合体半製品のスパッタ薄膜の表面上から上記の高分子電解質溶液Nafionを塗布した。本例では、Nafionを適当なブラシに浸漬してNafionを含ませてスパッタ薄膜431の表面に塗布した。塗布量は約0.6mg/cm²であった。

【0016】(アノード電極側) 本例のアノード電極側の触媒層は触媒密度を均一とした単一層から構成されている。そして、上記のカーボンブラック(Vulcan XC-72)に白金を担持したもの(20%Pt/C、平均白金粒径2.5nm)を0.4mg/cm²となるように触媒層を上記カソード側の触媒層を形成する手法と同じ要領で、分散液の拡散層表面への吹きつけおよびその後のPTFEの焼結処理を行なうことによって形成した。この場合、カーボンブラックの量は、触媒層、拡散層あわせて約4.0mg/cm²程度となるよう調製した。そしてアノード側電極接合体全体として約0.35mm程度とした。

電解質膜

固体高分子電解質膜は、無孔性の高分子材料であって、フッ素樹脂(ポリテトラフルオロエチレン(以下PTFEという))から構成することができる。本例の電解質膜は、旭化成(株)から提供される商品名:Aciplex-S(1004)である。その厚さは、約2~6mil(約50~150μm)程度である。この化学構造は、図4に示す通りである。上記したように固体高分子型燃料電池における基本的な動作によれば、アノード電極で燃料ガスである水素から電子が奪われる反応が生じ、これによって電子と水素イオン(プロトンH⁺)が発生し、電子は負荷を通り、一方プロトンH⁺は、電解質膜中を伝導してカソード電極に到達する。カソード電極において、プロトンH⁺は、酸素の反応することによって反応水を生成する。すなわち、電解質膜は上記の基本動作から明らかなようにプロトンH⁺をカソード側に伝導する役割を果たすとともに、未反応水素ガスが分子状態でカソード側に進入することを防止する役割を持つものである。なおプロトンH⁺が電解質膜中をカソード側に向かって移動する場合には水分子を伴って移動するので、電解質膜は、このための水分子を保有する水分子保有機能も有していないなければならない。また、イオン伝導体基(本例ではスルホン酸基)を有する電解質膜では単位重量当たりのスルホン酸基の重量の比すなわちスルホン酸基当量は、約500~1500(g/eq)でことが好ましい。電解質膜は、(1)プロトンH⁺の伝導機能、(2)アノードガス通路の水素ガスとカソードガス通路の酸素ガス(空気)とを隔離するためのセパレーション機能、および(3)所定の保水機能を有する必要がある50 この条件を満たすものであれば、任意のものを使用する

9

ことができる。電解質膜のアノード側にはアノード側触媒層、カソード側にはカソード側触媒層が形成される。

【0017】電極接合体の形成

上記のようにしてアノード側電極接合体およびカソード側電極接合体を構成した後、カソード側電極接合体およびアノード側電極接合体をそれぞれ触媒層側が対面する姿勢で向き合わせ、その間に固体高分子電解質膜を挟んで接合した。そして、固体高分子電解質膜を挟んでプレス治具を用いて固定し、約155℃の温度で電極接合体の単位面積当たり約 25 kg f/cm^2 の圧力でホットプレスすることにより固体高分子電解質膜電極接合体を製造した。

(比較例にかかる固体高分子電解質膜電極接合体) 比較例の構成では、カソード側電極もアノード側電極と同様に単一の触媒層から構成した。触媒層を形成するために実施例と同様に分散溶液を調製した。この場合、白金担持カーボンブラック (Vulcan XC-72) は白金重量比 Pt/C 20 パーセントを 160 mg、PTFE 分散溶液 (FEP120-J) 158 mg を用いて上記と同様に分散液を調製し、スプレーによる吹きつけによって触媒層を形成した。なお、吹きつけによる分散液の付着率は吹きつけ量の 15~20% である。その後同様に焼結処理を行なった。他の構成は、実施例と同じである。このようにして形成した実施例および比較例にかかる固体高分子電解質膜電極接合体からなる燃料電池による発電の実験を行なった。本発明の実施例にかかる燃料電池では、比較例にかかるものに比して発生電圧に関し、 500 mA/cm^2 において約 50 mV 程度高くなることが判明した。このことは、燃料電池の発電効率が約 60% から 65% に向上することを意味するものである。単一の固体高分子電解質膜電極接合体からなる燃料電池構成におけるこの実験結果によれば、多数の積層構造から成る燃料電池においては発電効率の向上は顕著なものとなる。

【0018】なお、本例では、カソード電極側の触媒層

10

を触媒密度が異なる 2 層によって構成したが、さらに多くの密度が異なる層を積層して構成することもできる。この場合、電解質膜側の触媒密度が高くなるように積層する。また、本例では、アノード電極は单一の均一な触媒密度を有する触媒層によって形成したが、かならずしもこのようにする必要はなく、カソード電極と同様に複数の触媒密度の異なる層を積層して構成することもできる。さらに、本例では、触媒密度の異なる層をそれぞれ積層することによって、触媒層を構成したが、触媒密度勾配が電解質膜側から拡散層側に向かって減少するような構成であれば単一の層であってもよい。さらに、触媒層の製造において、上記のような触媒勾配が得られる手法であれば、スプレー、ブラシ塗布によらず薄い 10~100 μm 程度の薄い層を形成するために、公知の任意の手段を用いることができる。

【0019】

【発明の効果】 上記したように、本発明では、固体高分子電解質膜燃料電池において、簡単な構成でしかも製造コストを増大させることなく、発電効率の向上を図ることができる。

【図面の簡単な説明】

【図1】本発明の1実施例にかかる固体高分子型燃料電池の電極接合体の概略断面図、

【図2】図1の燃料電池の各層の積層状態を示す断面図

【図3】カソード側触媒層の組成を示すグラフ、

【図4】イオン伝導体を構成する PTFE の構造の一例を示す図である。

【符号の説明】

- | | |
|-----|-----------|
| 1 | 燃料電池 |
| 2 | 固体高分子電解質膜 |
| 3 | アノード電極 |
| 4 | カソード電極 |
| 43 | 触媒層 |
| 431 | スパッタ薄膜 |

30

43

431

スパッタ薄膜

【図2】

【図3】

	スパッタ薄膜	触媒層
Pt/C (%)	20+スパッタ	20
Pt (mg/cm ²)	0.10	0.35
C (mg/cm ²)	0.2	1.4
PTFE (mg/cm ²)	0.2	0.9
Nafion (mg/cm ²)	0.1	0.5
厚み (μm)	5	35

【図1】

【図4】

