Comment déterminer la région critique dans un test relatif à une proportion dans le cas de la loi binomiale ?

- 1. On précise les paramètres n et p de la loi binomiale mise en œuvre.
- 2. On construit un test bilatéral : la région d'acceptation du test est l'intervalle de fluctuation de la proportion, la région critique est son complémentaire.

Exemple. Un constructeur affirme que la probabilité qu'un de ces ordinateurs ait une panne dans les cinq ans suivant son achat est égale à 0,15. Une association de consommateurs effectue une enquête auprès de 30 personnes ayant acheté ce modèle d'ordinateur.

Sur les 30 personnes interrogées, 8 ont eu une panne dans les 5 ans suivant leur achat. Que peut-on penser de l'affirmation du constructeur au seuil de 5 % ?

1. On introduit la loi binomiale et on précise ses paramètres n et p. L'enquête peut être assimilée à un tirage aléatoire avec remise.

On note X la variable aléatoire prenant pour valeur le nombre de personnes ayant eu une panne dans les 5 ans suivant leur achat.

X suit la loi binomiale de paramètres n = 30 et p = 0,15.

2. On construit un test bilatéral permettant de vérifier l'affirmation du constructeur p=0,15. L'hypothèse nulle H_0 est p=0,15; l'hypothèse alternative H_1 est $p\neq 0,15$.

Au seuil de 5% la région d'acceptation du test est l'intervalle de fluctuation de la proportion de panne au seuil de 95%, la région critique est son complémentaire. L'intervalle de fluctuation de la proportion de panne au seuil de 95% est : $I = \left[\frac{a}{p}; \frac{b}{p}\right]$

où a est le plus petit entier tel que $P(X \le a) > 0.025$ et b est le plus petit entier tel que $P(X \le b) \ge 0.975$.

On détermine a et b à l'aide d'une calculatrice ou d'un logiciel en utilisant les probabilités cumulées croissantes. On a obtenu les valeurs suivantes :

k	0	1	2	 7	8	9	
$P(X \leq k)$	0,0076	0,048		0,9302	0,9722	0,9903	

On constate que $P(X \le 0) < 0.025$ et $P(X \le 1) > 0.025$ donc a = 1 et $P(X \le 8) < 0.975$ et $P(X \le 9) > 0.975$ donc b = 9.

L'intervalle de fluctuation de la proportion f au seuil de 95 % est $I = \begin{bmatrix} \frac{1}{30} \\ \frac{9}{30} \end{bmatrix}$

soit I = [0,03; 0,3]. La région d'acceptation du test est l'intervalle I = [0,03; 0,3].

La règle de décision est la suivante :

Si la proportion observée dans l'échantillon appartient à l on accepte H_0 sinon on rejette H_0 . L'enquête donne $f_e = \frac{8}{30}$, soit $f_e = 0,266$.

 $f_{\rm e} \in {\it I}$, on accepte l'hypothèse H_0 : au seuil de 5 %, il n'y a pas de raison de remettre en cause l'affirmation du constructeur, p=0,15.