Learning from Networks

Graph Analytics: Clustering Coefficient

Fabio Vandin

October 23rd, 2024

(Local) Clustering Coefficient

Another interesting feature for nodes/graphs: the number of triangles involving a node or in the graph.

Number of triangles:

- a node belongs to: local clustering coefficient
- in the graph: <u>clustering</u> coefficient

Idea: is a measure of the degree to which nodes in a neighborhood/graph tend to *cluster* together.

Local Clustering Coefficient

Let G = (V, E) be a weighted/unweighted graph.

Given $v \in V$:

• let $\mathcal{N}(v)$ be the set of neighbours of v in G:

$$\mathcal{N}(v) = \{u : (v, u) \in E\}.$$

• let $|deg(v)| = |\mathcal{N}(v)|$ be the degree of v

Definition

For a node $v \in V$, its local clustering coefficient cc(v) of v is:

$$cc(v) = \frac{|\{(u_1, u_2) : u_1 \in \mathcal{N}(v), u_2 \in \mathcal{N}(v), (u_1, u_2) \in E\}|}{deg(v)(deg(v) - 1)}$$

(°,1)

Note: cc(v) is the <u>fraction of triangles containing v among all the potential</u> triangles containing v

Clustering Coefficient

Let G = (V, E) be a weighted/unweighted graph with |V| = n.

Definition The clustering coefficient cc(G) of G is: $cc(G) = \frac{|\{(u,v,z): (u,v) \in E, (v,z) \in E, (z,u) \in E\}|}{6\binom{n}{3}}$ # triving it for the control of the contro

Clustering Coefficient

Sometimes the average local clustering coefficient is used as well:

Definition

The average local clustering coefficient $avg_{lcc}(G)$ of G is:

$$avg_{lcc}(G) = \frac{1}{n} \sum_{v \in V} cc(v)$$

(Local) Clustering Coefficient: Example

Example: Real-World Networks have High Clustering Coefficient

Published: 04 June 1998

Collective dynamics of 'small-world' networks

Nature 393, 440–442 (1998) | Cite this article

Table 1 Empirical examples of small-world networks							
	L_{actual}	\mathcal{L}_{random}	C_{actual}	C_{random}			
Film actors	3.65	2.99	0.79	0.00027			
Power grid	18.7	12.4	0.080	0.005			
C. elegans	2.65	2.25	0.28	0.05			

Example: Clustering Coefficient of Networks from Different Domains

The structure and function of complex networks

M. E. J. Newman

Department of Physics, University of Michigan, Ann Arbor, MI 48109, U.S.A. and Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, U.S.A.

	network	type	n	m	$C^{(1)}$	$C^{(2)}$
social	film actors	undirected	449 913	25 516 482	0.20	0.78
	company directors	undirected	7 673	55 392	0.59	0.88
	math coauthorship	undirected	253 339	496 489	0.15	0.34
	physics coauthorship	undirected	52 909	245 300	0.45	0.56
	biology coauthorship	undirected	1520251	11 803 064	0.088	0.60
	telephone call graph	undirected	47 000 000	80 000 000		
	email messages	directed	59 912	86 300		0.16
	email address books	directed	16 881	57 029	0.17	0.13
	student relationships	undirected	573	477	0.005	0.001
	sexual contacts	undirected	2810			
information	WWW nd.edu	directed	269 504	1497135	0.11	0.29
	WWW Altavista	directed	203 549 046	2 130 000 000		
	citation network	directed	783 339	6716198		
	Roget's Thesaurus	directed	1 022	5 103	0.13	0.15
.=	word co-occurrence	undirected	460 902	17 000 000		0.44
	Internet	undirected	10697	31 992	0.035	0.39
귾	power grid	undirected	4 941	6 594	0.10	0.080
gic	train routes	undirected	587	19603		0.69
technological	software packages	directed	1 439	1 723	0.070	0.082
	software classes	directed	1 377	2 213	0.033	0.012
	electronic circuits	undirected	24 097	53 248	0.010	0.030
	peer-to-peer network	undirected	880	1 296	0.012	0.011
	metabolic network	undirected	765	3 686	0.090	0.67
biological	protein interactions	undirected	2115	2 240	0.072	0.071
	marine food web	directed	135	598	0.16	0.23
	freshwater food web	directed	92	997	0.20	0.087
	neural network	directed	307	2 359	0.18	0.28

Computing the Local Clustering Coefficient: One Node

Given $v \in V$, how can we compute its local clustering coefficient cc(v)?

Computing the Local Clustering Coefficient: One Node (continue)

```
Algorithm LCC(G, v)
Input: graph G = (V, E) with |V| = n and |E| = m; v \in V
Output: clustering coefficient cc<sub>v</sub> of v
num_{+} \leftarrow 0:
forall u_1 \in \mathcal{N}(v) do
      forall u_2 \in \mathcal{N}(v) do
 if u_1 \neq u_2 and (u_1, u_2) \in E then u_1 \neq u_2 \text{ and } (u_1, u_2) \in E then u_1 \neq u_2 \text{ and } (u_1, u_2) \in E
deg_v \leftarrow |\mathcal{N}(v)|;
return \frac{num_t}{de\sigma_s(de\sigma_s=1)};
```

Complexity?

Computing the Local Clustering Coefficients

How to compute the clustering coefficient for all nodes in a network?

```
Algorithm LCCs(G)

Input: graph G = (V, E) with |V| = n and |E| = m

Output: clustering coefficient cc_v of v for each v \in V

forall v \in V do

cc_v \leftarrow LCC(G, v);

return values cc_v;
```

Complexity?

Approximating Local Clustering Coefficients

We want to approximate the local clustering coefficient cc(v) of all vertices $v \in V$.

We want efficient algorithms for large graphs: consider the *semi-streaming* model:

- G is stored on disk as a list of edges; in general: arbitrary order
- no random access is possible
- only sequential access is allowed
- the memory size is much smaller than the size of G

Goal: limited number of sequential scans of the data stored in secondary memory

Approximating Local Clustering Coefficients

Assume we have:

- graph G = (V, E) with n = |V|, m = |E|
- memory:
 - M edges, with $M \ll m$;
 - n space for the vertices (e.g., a constant number of counters for each vertex)

Goal: approximate the local clustering coefficient cc(v) of all vertices $v \in V$ with few (one?) scans of the data

A First Sampling Approach

Idea:

- build a sample S by sampling each edge with probability p
- count the number of triangles t_v^S in S incident to each vertex $v \in V$

How should we fix the probability p?

If we fix $p = \frac{M}{m}$, then at the end we will sample $\approx M$ edges

How many passes are needed?

Only 1 pass (to compute 5)

What about the degree?

Can be computed in the same pass!

A First Sampling Algorithm

```
Algorithm EstimateLCC(G, M)
Input: stream \Sigma of edges for graph G = (V, E) with |V| = n
            and |E| = m; edge memory size M
Output: estimate cc_v of clustering coefficient of v, \forall v \in V
S \leftarrow \emptyset; p \leftarrow M/m;
t_{v}^{S} \leftarrow 0 for all v \in V; deg_{v} \leftarrow 0 for all v \in V;
foreach edge (u, v) from \Sigma do
     deg_v \leftarrow deg_v + 1; deg_u \leftarrow deg_u + 1;
     if SampleElement((u,v),p) then
          S \leftarrow S \cup \{(u,v)\};
     \mathcal{N}_{uv}^{\mathcal{S}} \leftarrow \mathcal{N}^{\mathcal{S}}(u) \cap \mathcal{N}^{\mathcal{S}}(v);
          forall c \in \mathcal{N}_{\mu\nu}^{S} do
          t_{v}^{S} \leftarrow t_{v}^{S} + 1:
     \begin{vmatrix} t_u^{\mathsf{v}} \leftarrow t_u^{\mathsf{v}} + 1; \\ t_c^{\mathsf{S}} \leftarrow t_c^{\mathsf{S}} + 1; \end{vmatrix}
cc_v \leftarrow 2t_v^S/(deg_v(deg_v-1)) for all v \in V;
```

return cc_{v} for all $v \in V$;

A First Sampling Algorithm

Notes:

- SampleElement((u, v), p) returns True with probability p, and False with probability 1 p
- $\mathcal{N}^{S}(u)$ = neighbours of u considering only edges in the sample S

Anything missing?

Analysis

What is the expectation of cc_v ?

A Simple Improvement

```
Algorithm ImprovedEstimateLCC(G, M)
Input: stream \Sigma of edges for graph G = (V, E) with |V| = n
           and |E| = m; edge memory size M
Output: estimate cc_v of clustering coefficient of v, \forall v \in V
S \leftarrow \emptyset; p \leftarrow M/m;
t_v^S \leftarrow 0 for all v \in V; deg_v \leftarrow 0 for all v \in V;
foreach edge (u, v) from \Sigma do
     deg_v \leftarrow deg_v + 1; deg_u \leftarrow deg_u + 1;
    \mathcal{N}_{u,v}^{\mathcal{S}} \leftarrow \mathcal{N}^{\mathcal{S}}(u) \cap \mathcal{N}^{\mathcal{S}}(v);
    forall c \in \mathcal{N}_{uv}^{S} do
     t_v^S \leftarrow t_v^S + 1;
t_u^S \leftarrow t_u^S + 1;
t_c^S \leftarrow t_c^S + 1;
     if SampleElement((u,v),p) then
     S \leftarrow S \cup \{(u,v)\};
cc_v \leftarrow 2t_v^S/(deg_v(deg_v-1)) for all v \in V;
return cc_v for all v \in V:
```

A Simple Improvement

Notes:

- SampleElement((u, v), p) returns True with probability p, and False with probability 1 p
- $\mathcal{N}^{S}(u)$ = neighbours of u considering only edges in the sample S

Anything missing?

Analysis

What is the expectation of cc_v ?

Analysis: Space

How many edges are stored by the two algorithms above?

Note that |S| is r.v.... Distribution?

$$|S| \sim Bin(m, p) = Bin(m, M/m)$$

$$\mathbb{E}[|S|] = M$$

But this is only in expectation!

What if we need to make sure that we do not store more than M edges?

Moreover, the memory is filled only at the end of the algorithm: in some sense we are wasting space during the execution.

How can we fix the problems above?

Reservoir Sampling

```
Algorithm ReservoirSampling(\Sigma, M)
Input: stream \Sigma of elements; sample size M
Output: at each step, S is a random sample of all elements
           seen up to that step in the stream
S \leftarrow \emptyset: t \leftarrow 0:
foreach \times from \Sigma do
    t \leftarrow t + 1:
   if t \leq M then S \leftarrow S \cup \{x\};
    else
        if SampleElement(x, M/t) then
    remove element from S chosen uniformly at random; S \leftarrow S \cup \{x\};
```

Note: the knowledge of the stream size is not required!

Example

Analysis

Proposition

Let $\Sigma = x_1, x_2, \ldots$ For any step $t \geq M$:

- i) |S| = M
- ii) for each $x \in x_1, x_2, \dots, x_t$, we have $\Pr[x \in S] = M/t$

Final Algorithm

Combines the simple improved algorithm with the reservoir sampling

Exercise

Write the pseudocode of the final algorithm.

Analysis

- $\mathbb{E}[cc_v] = cc(v) \ \forall v \in V$
- what about concentration results?

Difficult! The appearance of triangles in the sample *S* are not independent!

See De Stefani et al. (2017) and Lee et al. (2020) for some results.

Experimental Evaluation

The VLDB Journal (2020) 29:1501-1525 https://doi.org/10.1007/s00778-020-00624-7

REGULAR PAPER

Temporal locality-aware sampling for accurate triangle counting in real graph streams

Dongjin Lee¹ · Kijung Shin² · Christos Faloutsos³

Received: 11 November 2019 / Revised: 25 April 2020 / Accepted: 28 July 2020 / Published online: 12 August 2020 © Springer-Verlag GmbH Germany, part of Springer Nature 2020

Name	# Nodes	# Edges	# Triangles	Description
<u>Ar</u> Xiv	30, 565	346, 849	988, 009	Citation
<u>Fa</u> cebook	61,096	614, 797	1, 756, 259	Friendship
<u>Em</u> ail	86, 978	297, 456	1, 180, 387	Email
<u>Yo</u> utube	3, 181, 831	7, 505, 218	7, 766, 821	Friendship
Patent	3, 774, 768	16, 518, 947	7, 515, 023	Citation
FF-Small	3, 000, 000	23, 345, 764	94, 648, 815	Synthetic
FF-Large	10, 000, 000	87, 085, 880	426, 338, 480	Synthetic
BA-Small	3, 000, 000	10^{8}	1, 958, 656	Synthetic
BA-Large	10, 000, 000	10 ⁹	60, 117, 894	Synthetic
ER	1,000,000	10^{11}	1.333×10^{15}	Synthetic

Running Time

Accuracy

Examples

