

Задачу следует решать с оговоркой, что мы рассматриваем движение в тех пределах, пока они являются системой (брусок не слетает с доски).

Случай I. Сила f больше $\vec{f}_{R_{\text{покоя}}}$. Учтем, что

$$|f_{R_{mM}}| = |f_{R_{Mm}}| = \mu|N| = \mu|P| = \mu mg \tag{1}$$

Движение доски в лабораторной СО:

$$m\vec{a}_{\mu} = M\vec{g} + \vec{P} + \vec{f}_{R_{Mm}} \tag{2}$$

в проеции на
$$x$$
: $Ma_{\rm A} = \mu mg \Longrightarrow a_{\rm A} = \mu g \frac{m}{M}$ (3)

Движение бруска в лабораторной СО:

$$m\vec{a}_6 = m\vec{g} + \vec{N} + \vec{f} + \vec{f}_{R_{mM}}$$
 (4)

в проеции на
$$x'$$
: $ma_6 = f - \mu mg \Longrightarrow a_6 = \frac{1}{m}(f - \mu mg)$ (5)

Случай II. Сила f меньше $\vec{f}_{R_{\text{покоя}}}$, система тел движется как MT.

$$a_6 = a_{\mathrm{A}},\tag{6}$$

$$(m+M)\vec{a}_6 = \vec{f} \tag{7}$$

в проеции на
$$x'$$
: $(m+M)a_6 = \vec{f} \Longrightarrow a_6 = a_{\mathcal{A}} = \frac{f}{m+M}$ (8)

Переход І–ІІ. В переходный момент времени t^* можем приравнять (3) и (8), учитывая, что по условию $f = \alpha t$:

$$\mu g \frac{m}{M} = \frac{f}{m+M} \Longrightarrow t^* = \mu g \frac{m(m+M)}{\alpha M} \tag{9}$$