1)
$$Y_{1} = Y_{1} = Y_{1} = Y_{2} = Y$$

	SELO ROTATION
	Based on prex problem, we can multiply by n+1
2)	$E(\hat{\sigma}_1) = \frac{n\theta}{n+1}$ to make an unbiased estimator, $\hat{\sigma}_2$.
	$\hat{\Theta}_2 = \frac{n+1}{n} \times \hat{\Theta}_1$
	$E(\hat{\Theta}_2) = \frac{n+1}{n} * E[\hat{\Theta}_1]$
	= (0+1) 0
	(vaccan) $E(\hat{G}_2) = \Phi$
1412-50	$Var\left(\hat{G}_{2}\right) = Var\left[\frac{n+1}{n}\hat{O}_{1}\right]$
4	$= \left(\frac{n+1}{n}\right)^2 Var(\hat{S}_1)$
444.00 7.74	$= \frac{(n+1)^2}{n^2} = \frac{(n+1)^2(n+2)}{(n+1)^2(n+2)}$
N 13	n (n+1)2(n+2)
	$Var(\hat{\Theta}_2) = \frac{\Theta^2}{n(n+2)}$
	MSE $(\hat{\theta}_2) = var(\hat{\theta}_2) + (Bias(\hat{\theta}_2))^2$
(3) - (3) - (1)	Because $\hat{\theta}_2$ is unbiased, $(\hat{\theta}_1)^2 = 0$.
	Because $MSE(\hat{\sigma}_2) = Var(\hat{\sigma}_2)$
	MSE (02) = 02
	n(n+2)
of all on the	

