(43) Internationales Veröffentlichungsdatum 22. Juli 2004 (22.07.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/060261 A2

(51) Internationale Patentklassifikation7:

A61K

(21) Internationales Aktenzeichen:

PCT/EP2004/000026

(22) Internationales Anmeldedatum:

5. Januar 2004 (05.01.2004)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

103 00 049.6

3. Januar 2003 (03.01.2003)

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): MORPHOCHEM AKTIENGESELLSCHAFT FÜR KOMBINATORISCHE CHEMIE [DE/DE]; Gmunder Strasse 37-37a, 81379 München (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): ECKL, Robert [DE/DE]; Richard-Riemerschmid-Allee 67/I, 81241 München (DE). WEBER, Lutz [DE/DE]; Edelweissstrasse 8, 82110 Germering (DE). OEFNER. Christian [DE/DE]; Mühlewinkelstrasse 79108 Freiburg (DE).
- (74) Anwälte: FORSTMEYER, Dietmar usw.; Boeters & Lieck, Bereiteranger 15, 81541 München (DE).

(81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: NOVEL FACTOR VIIA INHIBITING COMPOUNDS
- WO 2004/060261 A2 |||||||||||||||| (54) Bezeichnung: NEUE VERBINDUNGEN, DIE FAKTOR VIIA INHIBIEREN

- (57) Abstract: The invention relates to the novel compounds of formula (I): These compounds are potent factor VIIa inhibitors and are therefore particularly useful for the treatment and/or the prophylaxis of thromboses, apoplexy, cardiac infarction, inflammation, arteriosclerosis and tumor diseases.
- (57) Zusammenfassung: Die vorliegende Erfindung betrifft neue Verbindungen der Formel (I). Diese Verbindungen stellen sehr wirksame Faktor VIIa Inhibitoren dar und sind deshalb vor allem bei der Behandlung und/oder Vorbeugung von Thrombosen, Apoplexie, Herzinfarkt, Entzündung, Arteriosklerose und Tumorerkrankungen von Interesse.

Neue Verbindungen, die Faktor VIIa inhibieren

Die vorliegende Erfindung betrifft neue Verbindungen mit blutgerinnungshemmender Wirkung, sogenannte Antikoagulantien. Diese Verbindungen stellen sehr wirksame Faktor VIIa-Inhibitoren dar und sind deshalb vor allem bei der Behandlung und/oder Vorbeugung von Thrombosen, Apoplexie, Herzinfarkt, Entzündung, Arteriosklerose und Tumorerkrankungen von Interesse.

Thromboembolytische Erkrankungen beruhen auf einer erhöhten Blutgerinnungsneigung bei Personen mit Risikofaktoren, wie z.B. größeren Operationen, längerer Immobilisierung, Knochenbrüchen der unteren Extremitäten, Fettleibigkeit, Blutfett-Stoffwechselstörungen, Infektionen mit gramnegativen Organismen, Krebs und höherem Alter.

Venöse Thrombosen können dazu führen, daß das von der betroffenen Vene entsorgte Gewebe ein Ödem oder eine Entzündung entwickelt. Thrombose einer tieferliegenden Vene (sogenannte "Deep Vein Thrombosis") kann zu schwerwiegenden Komplikationen wie z.B. Lungenembolie führen. Arterielle Thrombose kann zur ischämischen Nekrose des von der betroffenen Arterie versorgten Gewebes führen, wie z.B. zu myokadialem Infarkt im Falle einer betroffenen Herzkranzarterie. Weitere thromboembolytische Erkrankungen sind z.B. Arteriosklerose, Apoplexie (Schlaganfall), Angina pectoris, Claudicatio intermittens.

Faktor VIIa Inhibitoren hemmen die durch Faktor VIIa und den Gewebefaktor induzierte Bildung der Gerinnungfaktoren

Xa, IXa und Thrombin. Sie beeinflussen dadurch sowohl die durch diese Faktoren induzierte Plättchenaggregation als auch die plasmatische Blutgerinnung. Sie verhindern damit die Entstehung von Thromben und können bei der Bekämpfung bzw. Verhütung von Krankheiten, wie Thrombose, Apoplexie, Herzinfakt, Entzündung und Arteriosklerose verwendet werden. Ferner haben diese Verbindungen einen Effekt auf Tumorzellen und verhindern Metastasen. Somit können sie auch als Antitumormittel eingesetzt werden.

10

5

Eine Aufgabe der vorliegenden Erfindung bestand in der Bereitstellung neuer Faktor VIIa-Inhibitoren mit verbesserter Wirksamkeit, verringerter Nebenwirkung und/oder erhöhter Selektivität. Zudem sollten geeignete pharmazeutische Zusammensetzungen bereitgestellt werden. Diese Verbindungen bzw. Zusammensetzungen sollten parenteral oder oral, insbesondere oral verabreichbar sein.

Gegenstand der vorliegenden Erfindung ist eine Verbindung 20 der allgemeinen Formel (I):

$$R^{2}_{n}$$
 G HN R^{1} (I) HN NH_{2}

wobei

5

 R^1 ein Wasserstoffatom, ein Heteroalkyl-, ein Heteroalkyl-cycloalkyl- oder ein Heteroaralkylrest ist,

die Reste R² unabhängig voneinander Halogenatome, Hydroxy-, Amino-, Nitro- oder Thiolgruppen, Alkyl-, Alkenyl-, Alkinyl-, Heteroalkyl-, Aryl-, Heteroaryl-, Cycloalkyl, Alkylcycloalkyl-, Heteroalkylcycloalkyl-, Heterocycloalkyl-, Aralkyl- oder Heteroaralkylreste sind,

die Reste R³ unabhängig voneinander Halogenatome, Hydroxy-, Amino-, Nitro- oder Thiolgruppen, Alkyl-,
Alkenyl-, Alkinyl-, Heteroalkyl-, Aryl-, Heteroaryl-, Cycloalkyl-, Alkylcycloalkyl-, Heteroalkylcycloalkyl-,
Heterocycloalkyl-, Aralkyl- oder Heteroaralkylreste sind,

G eine Glycosylgruppe ist,

20 n gleich 0, 1, 2, 3 oder 4 ist und

m gleich 0, 1, 2, 3 oder 4 ist,

oder ein pharmakologisch akzeptables Salz, Solvat, Hydrat 25 oder eine pharmakologisch akzeptable Formulierung derselben.

Der Ausdruck Alkyl bezieht sich auf eine gesättigte, geradkettige oder verzweigte Kohlenwasserstoffgruppe, die 1 bis 12 Kohlenstoffatome, vorzugsweise 1 bis 6 Kohlenstoffatome, besonders bevorzugt 1 bis 4 Kohlen-stoffatome

aufweist, z.B. die Methyl-, Ethyl-, Propyl-, Isopropyl-, Isobutyl-, tert-Butyl, n-Hexyl-, 2,2-Di-methylbutyl- oder n-Octyl-Gruppe.

Die Ausdrücke Alkenyl und Alkinyl beziehen sich auf zumindest teilweise ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffgruppen, die 2 bis 12 Kohlenstoffatome, vorzugsweise 2 bis 6 Kohlenstoffatome, besonders bevorzugt 2 bis 4 Kohlenstoffatome aufweisen, z.

10 B. die Ethenyl-, Allyl-, Acetylenyl-, Propargyl-, Isoprenyl- oder Hex-2-enyl-Gruppe. Bevorzugt weisen Alkenylgruppen eine oder zwei (besonders bevorzugt eine) Doppelbindungen bzw. Alkinylgruppen eine oder zwei (besonders
bevorzugt eine) Dreifachbindungen auf.

15

20

Des weiteren beziehen sich die Begriffe Alkyl, Alkenyl und Alkinyl auf gegebenenfalls substituierte Gruppen, bei denen z. B. ein, zwei oder mehrere Wasserstoffatome durch ein Halogenatom (bevorzugt F oder Cl) ersetzt sind wie z. B. die 2,2,2-Trichlorethyl-, oder die Trifluormethylgruppe.

Der Ausdruck Heteroalkyl bezieht sich auf eine Alkyl-, eine Alkenyl- oder eine Alkinyl-Gruppe, in der ein oder mehrere (bevorzugt 1, 2 oder 3) Kohlenstoffatome durch ein Sauerstoff-, Stickstoff-, Phosphor-, Bor-, Selen-, Silizium- oder Schwefelatom ersetzt sind (bevorzugt Sauerstoff, Schwefel oder Stickstoff). Der Ausdruck Heteroalkyl bezieht sich des weiteren auf eine Carbonsäure oder eine von einer Carbonsäure abgeleitete Gruppe wie z.

B. Acyl, Acylalkyl, Alkoxycarbonyl, Acyloxy, Acyloxyalkyl, Carboxyalkylamid oder Alkoxycarbonyloxy.

Beispiele für Heteroalkylgruppen sind Gruppen der Formeln 5 $R^{a}-O-Y^{a}-$, $R^{a}-S-Y^{a}-$, $R^{a}-N(R^{b})-Y^{a}-$, $R^{a}-CO-Y^{a}-$, $R^{a}-O-CO-Y^{a}-$, R^a -CO-N(R^b)-Y^a-, $R^a-CO-O-Y^a-$, $R^a - N(R^b) - CO - Y^a -$ $R^{a}-O-CO-N(R^{b})-Y^{a}-$, $R^{a}-N(R^{b})-CO-O-Y^{a}-$, $R^{a}-N(R^{b})-CO-N(R^{c})-Y^{a}-$, $R^{a}-O-CO-O-Y^{a}-$, $R^{a}-N(R^{b})-C(=NR^{d})-N(R^{c})-Y^{a}-$, $R^{a}-CS-Y^{a}-$, $R^{a}-O-CS-Y^{a}-$, $R^{a}-CS-O-Y^{a}-$, $R^{a}-CS-N(R^{b})-Y^{a}-$, $R^{a}-N(R^{b})-CS-Y^{a}-$, $R^{a}-O-CS-N(R^{b})-Y^{a}-$, $R^{a}-N(R^{b})-CS-O-Y^{a}-$, $R^{a}-N(R^{b})-CS-N(R^{c})-Y^{a}-$, 10 $R^{a}-O-CS-O-Y^{a}-$, $R^{a}-S-CO-Y^{a}-$, $R^{a}-CO-S-Y^{a}-$, $R^{a}-S-CO-N(R^{b})-Y^{a}-$, $R^{a}-N(R^{b})-CO-S-Y^{a}-$, $R^{a}-S-CO-O-Y^{a}-$, $R^{a}-O-CO-S-Y^{a} R^{a}-S-CO-S-Y^{a}-$, $R^{a}-S-CS-Y^{a}-$, $R^{a}-CS-S-Y^{a}-$, $R^{a}-S-CS-N(R^{b})-Y^{a}-$, $\label{eq:Radiation} \textbf{R}^{\textbf{a}} - \textbf{N} \, (\textbf{R}^{\textbf{b}}) \, - \textbf{CS} - \textbf{S} - \textbf{Y}^{\textbf{a}} - , \quad \textbf{R}^{\textbf{a}} - \textbf{S} - \textbf{CS} - \textbf{O} - \textbf{Y}^{\textbf{a}} - , \quad \textbf{R}^{\textbf{a}} - \textbf{O} - \textbf{CS} - \textbf{S} - \textbf{Y}^{\textbf{a}} - , \quad \text{wobei} \quad \textbf{R}^{\textbf{a}} - \textbf{R}^{\textbf{a}} - \textbf{CS} - \textbf{S} - \textbf{Y}^{\textbf{a}} - , \quad \textbf{Wobei} \quad \textbf{R}^{\textbf{a}} - \textbf{R}^{\textbf{a}} - \textbf{CS} - \textbf{S} - \textbf{Y}^{\textbf{a}} - , \quad \textbf{Wobei} \quad \textbf{R}^{\textbf{a}} - \textbf{R}^{\textbf{a}} - \textbf{CS} - \textbf{S} - \textbf{S} - \textbf{Y}^{\textbf{a}} - , \quad \textbf{Wobei} \quad \textbf{R}^{\textbf{a}} - \textbf{CS} - \textbf{CS} - \textbf{S} - \textbf{S} - \textbf{Y}^{\textbf{a}} - , \quad \textbf{Wobei} \quad \textbf{R}^{\textbf{a}} - \textbf{CS} - \textbf{CS} - \textbf{S} - \textbf$ ein Wasserstoffatom, eine $C_1\text{-}C_6\text{-}Alkyl\text{-}$, eine $C_1\text{-}C_6\text{-}Alkenyl\text{-}$ 15 oder eine C_1-C_6 -Alkinylgruppe; R^b ein Wasserstoffatom, eine $C_1-C_6-Alkyl-$, eine $C_1-C_6-Alkenyl-$ oder eine C_1-C_6-Al kinylgruppe; R^c ein Wasserstoffatom, eine $C_1\text{-}C_6\text{-}Alkyl\text{-}$, eine C_1 - C_6 -Alkenyl- oder eine C_1 - C_6 -Alkinylgruppe; R^d ein Wasserstoffatom, eine $C_1\text{-}C_6\text{-}Alkyl\text{-}$, eine $C_1\text{-}C_6\text{-}Alkenyl\text{-}$ 20 oder eine C_1 - C_6 -Alkinylgruppe und Y^a eine direkte Bindung, eine $C_1-C_6-Alkylen-$, eine $C_1-C_6-Alkenylen-$ oder eine C_1-C_6- Alkinylengruppe ist, wobei jede Heteroalkylgruppe mindestens ein Kohlenstoffatom enthält und ein oder mehrere Wasserstoffatome durch Fluor- oder Chloratome ersetzt sein 25 können. Konkrete Beispiele für Heteroalkylgruppen sind Methoxy, Trifluormethoxy, Ethoxy, n-Propyloxy, Propyloxy, tert-Butyloxy, Methoxymethyl, Ethoxymethyl, Methoxyethyl, Methylamino, Ethylamino, Dimethylamino, 30 Diethylamino, iso-Propylethylamino, Methylaminomethyl, Ethylaminomethyl, Di-iso-Propyl-aminoethyl, Enolether,

Dimethylaminomethyl, Dimethyl-aminoethyl, Acetyl, Propionyl, Butyryloxy, Acetyloxy, Methoxycarbonyl, Ethoxycarbonyl, N-Ethyl-N-Methyl-carbamoyl oder N-Methylcarbamoyl. Weitere Beispiele für Heteroalkylgruppen sind Nitril-, Isonitril, Cyanat-, Thiocyanat-, Isocyanat-, Isothiocyanat und Alkylnitril-gruppen.

Der Ausdruck Cycloalkyl bezieht sich auf eine gesättigte oder teilweise ungesättigte (z. B. Cycloalkenyl) cyclische Gruppe, die einen oder mehrere Ringe (bevorzugt 1 oder 2) 10 mit 3 bis 14 Ringkohlenstoffatomen, vorzugsweise 3 bis 10 (insbesondere 3, 4, 5, 6 oder 7) Ringkohlenstoffatome aufweist. Der Ausdruck Cycloalkyl bezieht sich weiterhin auf Gruppen, bei denen ein oder mehrere Wasserstoffatome durch Fluor-, Chlor-, Brom- oder Jodatome oder OH, =O, SH, 15 =S, NH_2 , =NH oder NO_2 -Gruppen ersetzt sind also z. B. cyclische Ketone wie z. B. Cyclohexanon, 2-Cyclohexenon Cyclopentanon. Weitere konkrete oder Beispiele Cycloalkylgruppen sind die Cyclopropyl-, Cyclobutyl-, Cyclopentyl-, Spiro[4,5]-decanyl-, Norborny-, Cyclohexyl-, 20 Cyclopentenyl-, Cyclo-hexadienyl-, Decalinyl-, Cubanyl-, Bicyclo[4.3.0]nonyl-, Tetralin-, Cyclopentylcyclohexyl-, Fluorcyclohexyl- oder die Cyclohex-2-enyl-Gruppe.

Der Ausdruck Heterocycloalkyl bezieht sich auf eine Cycloalkylgruppe wie oben definiert, in der ein oder mehrere (bevorzugt 1, 2 oder 3) Ring-Kohlenstoffatome durch ein Sauerstoff-, Stickstoff-, Silizium-, Selen-, Phosphoroder Schwefelatom (bevorzugt Sauerstoff, Schwefel oder Stickstoff) ersetzt sind. Bevorzugt besitzt eine Heterocycloalkylgruppe 1 oder 2 Ringe mit 3 bis 10 (ins-

10

25

30

besondere 3, 4, 5, 6 oder 7) Ringatomen. Der Ausdruck Heterocycloalkyl bezieht sich weiterhin auf Gruppen, bei denen ein oder mehrere Wasserstoffatome durch Fluor-, Chlor-, Brom- oder Jodatome oder OH, =0, SH, =S, NH₂, =NH oder NO₂-Gruppen ersetzt sind. Beispiele sind die Piperidyl-, Morpholinyl-, Urotropinyl-, Pyrrolidinyl-, Tetrahydrothiophenyl-, Tetrahydropyranyl-, Tetrahydro-furyl-, Oxacyclopropyl-, Azacyclopropyl- oder 2-Pyrazolinyl-Gruppe sowie Lactame, Lactone, cyclische Imide und cyclische Anhydride.

Der Ausdruck Alkylcycloalkyl bezieht sich auf Gruppen, die entsprechend den obigen Definitionen sowohl Cycloalkylwie auch Alkyl-, Alkenyl- oder Alkinylgruppen enthalten, z. B. Alkylcycloalkyl-, Alkylcycloalkenyl-, Alkenylcycloalkyl- und Alkinylcycloalkylgruppen. Bevorzugt enthält eine Alkylcycloalkylgruppe eine Cycloalkylgruppe, die einen oder zwei Ringe mit 3 bis 10 (insbesondere 3, 4, 5, 6 oder 7) Ringkohlenstoffatomen enthält, und eine oder zwei Alkyl-, Alkenyl- oder Alkinylgruppen mit 1 oder 2 bis 6 Kohlenstoffatomen.

Der Ausdruck Heteroalkylcycloalkyl bezieht sich auf Alkylcycloalkylgruppen, wie oben definiert, in der ein oder mehrere (bevorzugt 1, 2 oder 3) Kohlenstoffatome durch ein Sauerstoff-, Stickstoff-, Silizium-, Selen-, Phosphoroder Schwefelatom (bevorzugt Sauerstoff, Schwefel oder Stickstoff) ersetzt sind. Bevorzugt besitzt eine Heteroalkylcycloalkylgruppe 1 oder 2 Ringe mit 3 bis 10 (insbesondere 3, 4, 5, 6 oder 7) Ringatomen und eine oder zwei Alkyl-, Alkenyl-, Alkinyl- oder Heteroalkylgruppen

Der Ausdruck Aryl bzw. Ar bezieht sich auf eine aromatische Gruppe, die einen oder mehrere Ringe mit 6 bis 14 10 Ringkohlenstoffatomen, vorzugsweise 6 bis 10 (insbesondere 6) Ringkohlenstoffatomen enthält. Der Ausdruck Aryl (bzw. Ar) bezieht sich weiterhin auf Gruppen, bei denen ein oder mehrere Wasserstoffatome durch Fluor-, Chlor-, Brom- oder Jodatome oder OH, SH, NH_2 , oder NO_2 -Gruppen ersetzt sind. 15 Beispiele sind die Phenyl-, Naphthyl-, Biphenyl-, 2-Fluorphenyl, Anilinyl-, 3-Nitrophenyl oder 4-Hydroxyphenyl-Gruppe.

Der Ausdruck Heteroaryl bezieht sich auf eine aromatische 20 Gruppe, die einen oder mehrere Ringe mit 5 bis 14 Ringatomen, vorzugsweise 5 bis 10 (insbesondere 5 oder 6) Ringatomen enthält und ein oder mehrere (bevorzugt 1, 2, 3 oder 4) Sauerstoff-, Stickstoff-, Phosphor- oder Schwefel-Ringatome (bevorzugt O, S oder N) enthält. Der Ausdruck 25 Heteroaryl bezieht sich weiterhin auf Gruppen, bei denen ein oder mehrere Wasserstoffatome durch Fluor-, Chlor-, Brom- oder Jodatome oder OH, SH, NH_2 , oder NO_2 -Gruppen ersetzt sind. Beispiele sind 4-Pyridyl-, 2-Imidazolyl-, 3-30 Phenylpyrrolyl-, Thiazolyl-, Oxazolyl-, Triazolyl-, Tetrazolyl-, Isoxazolyl-, Indazolyl-, Indoly1-,

Benzimidazolyl-, Pyridazinyl-, Chinolinyl-, Purinyl-, Carbazolyl-, Acridinyl-, Pyrimidyl-, 2,3'-Bifuryl-, 3-Pyrazolyl- und Isochinolinyl-Gruppen.

Der Ausdruck Aralkyl bezieht sich auf Gruppen, die ent-5 sprechend den obigen Definitionen sowohl Aryl- wie auch Alkyl-, Alkenyl-, Alkinyl- und/oder Cycloalkylgruppen enthalten, wie z. B. Arylalkyl-, Arylalkenyl-, Aryl-alkinyl-, Arylcycloalkyl-, Arylcycloalkenyl-, Alkylaryl-cycloalkyl- und Alkylarylcycloalkenylgruppen. Konkrete Bei-10 spiele für Aralkyle sind Toluol, Xylol, Mesitylen, Styrol, Benzylchlorid, o-Fluortoluol, 1H-Inden, Tetralin, Dihydronaphthaline, Indanon, Phenylcyclopentyl, Cyclo-hexylphenyl, Fluoren und Indan. Bevorzugt enthält eine Aralkylgruppe ein aromatisches Ringsystem (1 oder 2 15 Ringe) mit 6 bis 10 Ringkohlenstoffatomen und ein oder zwei Alkyl-, Alkenyl- und/oder Alkinylgruppen mit 1 oder 2 bis 6 Kohlenstoffatomen und/oder eine Cycloalkylgruppe mit 5 oder 6 Ringkohlenstoffatomen.

20

Der Ausdruck Heteroaralkyl bezieht sich auf eine Aralkylgruppe wie oben definiert, in der ein oder mehrere (bevorzugt 1, 2, 3 oder 4) Kohlenstoffatome durch ein Sauerstoff-, Stickstoff-, Silizium-, Selen-, Phosphor-, Boroder Schwefelatom (bevorzugt Sauerstoff, Schwefel oder
Stickstoff) ersetzt sind, d. h. auf Gruppen, die entsprechend den obigen Definitionen sowohl Aryl- bzw. Heteroaryl- wie auch Alkyl-, Alkenyl-, Alkinyl- und/oder
Heteroalkyl- und/oder Cycloalkyl- und/oder Heterocycloalkylgruppen enthalten. Bevorzugt enthält eine Heteroaralkylgruppe ein aromatisches Ringsystem (1 oder 2 Ringe)

mit 5 oder 6 bis 10 Ringkohlenstoffatomen und ein oder zwei Alkyl-, Alkenyl- und/oder Alkinylgruppen mit 1 oder 2 bis 6 Kohlenstoffatomen und/oder eine Cycloalkylgruppe mit 5 oder 6 Ringkohlenstoffatomen, wobei 1, 2, 3 oder 4 dieser Kohlenstoffatome durch Sauerstoff-, Schwefel- oder Stickstoffatome ersetzt sind.

Beispiele sind Arylheteroalkyl-, Arylheterocycloalkyl-, Arylheterocycloalkenyl-, Arylalkylheterocycloalkyl-, Arylalkenylheterocycloalkyl-, Arylalkinylheterocyclo-al-10 kyl-, Arylalkylheterocycloalkenyl-, Heteroarylalkyl-, Heteroarylalkenyl-, Heteroarylalkinyl-, Heteroarylheteroalkyl-, Heteroarylcycloalkyl-, Heteroarylcycloalkenyl-, Heteroarylheterocycloalkyl-, Heteroarylheterocycloalkenyl-, Heteroarylalkylcycloalkyl-, Heteroarylalkylhetero-15 cycloalkenyl- und Heteroarylheteroalkylheterocycloalkyl-Gruppen, wobei die cyclischen Gruppen gesättigt oder einfach, zweifach oder dreifach ungesättigt sind. Konkrete Beispiele sind die Tetrahydroisochinolinyl-, Benzoyl-, 2oder 3-Ethyl-indolyl-, 4-Methylpyridino-, 2-, 3- oder 20 4-Methoxyphenyl-, 4-Ethoxyphenyl-, 2-, 3 – oder 4-Carboxyphenylalkylgruppe.

Die Ausdrücke Cycloalkyl, Heterocycloalkyl, Alkylcyclo25 alkyl, Heteroalkylcycloalkyl, Aryl, Heteroaryl, Aralkyl
und Heteroaralkyl beziehen sich auch auf gegebenenfalls
substituierte Gruppen, in denen z. B. ein oder mehrere
Wasserstoffatome solcher Gruppen durch Fluor-, Chlor-,
Brom- oder Jodatome oder OH, =0, SH, =S, NH₂, =NH oder
30 NO₂-Gruppen ersetzt sind.

Heterocycloalkyl-, C_6-C_{10} Aryl-, C_1-C_9 Heteroaryl-, C_7-C_{12}

Aralkyl- oder C_2 - C_{11} Heteroaralkylgruppen substituiert

10 sind.

Im Kontext der vorliegenden Erfindung bezieht sich der Ausdruck Glycosylgruppe auf ein über eine α - oder β -0, S, N oder C-glycosidische Bindung (bevorzugt eine 0-glycosidische Bindung) gebundenes Saccharid (Mono- oder Oligosaccharid), insbesondere ein Monosaccharid, vorzugsweise β -D-Glucose.

Verbindungen der Formel (I) können aufgrund ihrer 20 Substitution ein oder mehrere Chiralitätszentren enthalten. Die vorliegende Erfindung umfasst daher sowohl alle reinen Enantiomere und alle reinen Diastereomere, als auch deren Gemische in jedem Mischungsverhältnis. Des weiteren sind von der vorliegenden Erfindung auch alle cis/trans-Isomeren der Verbindungen der allgemeinen Formel 25 (I) sowie Gemische davon umfasst. Des weiteren sind von der vorliegenden Erfindung alle tautomeren Formen der Verbindungen der Formel (I) umfasst.

30 Bevorzugt sind Verbindungen der Formel (I), wobei \mathbb{R}^1 ein Wasserstoffatom oder eine Gruppe der Formel COOR^4 oder

25

CONR⁵R⁶ ist, wobei R⁴, R⁵ und R⁶ unabhängig voneinander Wasserstoffatome, Alkyl-, Alkenyl-, Alkinyl-, Heteroalkyl-, Aryl-, Heteroaryl-, Cycloalkyl-, Alkylcycloalkyl-, Heteroalkylcycloalkyl-, Heterocycloalkyl-, Aralkyl- oder Heteroaralkylreste sind, oder R⁵ und R⁶ zusammen Teil eines gegebenenfalls substituierten Heteroaryl- oder Heterocycloalkylrings sind.

Weiter bevorzugt ist R^4 ein Wasserstoffatom, ein $C_1\text{-}C_4$ 10 Alkyl oder ein Benzylrest.

Besonders bevorzugt ist R^1 ein Wasserstoffatom oder eine Gruppe der Formel COOH oder COOEt.

Des weiteren bevorzugt ist R^1 eine Gruppe der Formel CONH R^5 , wobei R^5 wiederum bevorzugt eine Aralkyl-(insbesondere Benzyl-) oder eine Heteroaralkylgruppe ist.

Weiter bevorzugt sind Verbindungen der Formel (I), wobei m 20 gleich 0 ist.

Wiederum bevorzugt ist m gleich 1, wobei R³ besonders bevorzugt eine Hydroxygruppe ist, die in ortho-Position zur Amidinogruppe an den Phenylring gebunden ist.

Des weiteren bevorzugt sind Verbindungen der Formel (I), wobei n gleich 2 ist.

Wiederum bevorzugt sind die Reste R^2 unabhängig voneinander C_1-C_4 Alkyloxy-, C_1-C_4 Hydroxyalkyloxy- oder

Benzyloxygruppen; wobei R^2 besonders bevorzugt Methoxyoder Ethyloxygruppen sind.

Besonders bevorzugt sind Verbindungen der allgemeinen 5 Formel (II):

wobei X ein Wasserstoffatom, eine C_1 - C_4 Alkyloxy- oder eine Benzyloxygruppe (insbesondere eine Methoxy- oder eine Ethoxygruppe) ist; Q ein Wasserstoffatom, eine C_1 - C_4 Alkyloxy- oder eine Benzyloxygruppe (insbesondere eine Methoxy- oder eine Ethoxygruppe) ist; G eine Glycosylgruppe (insbesondere eine β -D-Glucosyloxygruppe) ist; A ein Wasserstoffatom oder eine Hydroxygruppe ist und R^1 ein Wasserstoffatom oder eine Gruppe der Formel COOH oder COOEt ist, oder pharmakologisch akzeptable Salze, Solvate, Hydrate oder pharmakologisch akzeptable Formulierungen derselben.

20

Insbesondere bevorzugt sind Verbindungen der Formeln (I) und (II), wobei die Stereochemie an dem Kohlenstoffatom,

das R^1 trägt (R) nach der Cahn-Ingold-Prelog Nomenklatur aufweist.

Beispiele für pharmakologisch akzeptable Salze der Verbin-5 dungen der Formeln (I) oder (II) sind Salze physiologisch akzeptablen Mineralsäuren wie Salzsäure, Schwefelsäure und Phosphorsäure; oder Salze von organischen Säuren wie Methansulfonsäure, p-Toluolsulfonsäure, Milchsäure, Essigsäure, fluoressigsäure, Zitronensäure, Bernsteinsäure, 10 Fumar-Maleinsäure und Salicylsäure. Verbindungen der Formeln (I) oder (II) können solvatisiert, insbesondere hydratisiert sein. Die Hydratisierung kann z.B. während des Herstellungsverfahrens oder als Folge 15 hygroskopischen Natur der anfänglich wasserfreien Verbindungen der Formeln (I) oder (II) auftreten.

Die pharmazeutischen Zusammensetzungen gemäß der vorliegenden Erfindung enthalten mindestens eine Verbindung 20 der Formeln (I) oder (II) als Wirkstoff und fakultativ Trägerstoffe und/oder Adjuvantien.

Die Pro-Drugs, die ebenfalls Gegenstand der vorliegenden Erfindung sind, bestehen aus einer Verbindung der Formeln (I) oder (II) und mindestens einer pharmakologisch akzeptablen Schutzgruppe, die unter physiologischen Bedingungen abgespalten wird, z.B. einer Alkoxy-, Aralkyloxy-, Acyl- oder Acyloxy-Gruppe, wie z.B. einer Hydroxy-, Methoxy-, Ethoxy-, Benzyloxy-, Acetyl- oder Acetyloxy-Gruppe.

Eine Verbindung oder pharmazeutische Zusammensetzung der vorliegenden Erfindung kann zur Hemmung von Faktor VIIa-Aktivität, zur Vorbeugung und/oder Behandlung von thromboembolytischen Erkrankungen, arterieller Restenose, Blutvergiftung, Krebs, akuten Entzündungen oder sonstigen 5 Erkrankungen, die durch Faktor VIIa-Aktivität vermittelt werden, und insbesondere von venösen Thrombosen, Ödemen oder Entzündungen, von "Deep Vein Thrombosis", Lungenembolien, thromboembolytischen Komplikationen größeren Operationen, bei der Gefäßchirurgie, längerer 10 Immobilisierung, Knochenbrüchen der unteren Extremitäten etc., von arteriellen Thrombosen, insbesondere Herzkranzgefäße bei myokardialem Infarkt sowie Arteriosklerose, Apoplexie, Angina pectoris, Claudicatio intermittens verwendet werden, um nur einige Indikationen 15 zu nennen.

Wie oben erwähnt, liegt die therapeutische Verwendung der Verbindungen der Formeln (I) oder (II), ihrer pharmakologisch akzeptablen Salze bzw. Solvate und Hydrate sowie Formulierungen und pharmazeutischen Zusammensetzungen im Rahmen der vorliegenden Erfindung.

Auch die Verwendung dieser Wirkstoffe zur Herstellung von 25 Arzneimitteln zur Vorbeugung und/oder Behandlung der beschriebenen Erkrankungen ist Gegenstand der vorliegenden Erfindung. Im allgemeinen werden Verbindungen der Formeln (I) oder (II) unter Anwendung der bekannten und akzeptablen Modi, entweder einzeln oder in Kombination mit 30 einem beliebigen anderen therapeutischen Mittel verabreicht. Solche therapeutisch nützlichen Mittel können auf einem der folgenden Wege verabreicht werden: oral,

als Dragees, überzogene Tabletten, Pillen, Halbz.B. feststoffe, weiche oder harte Kapseln, Emulsionen oder Suspensionen; parenteral, z.B. injizierbare Lösung; rektal als Suppositorien; durch Inhalation, z.B. als Pulverformulierung oder Spray, trans-5 dermal oder intranasal. Zur Herstellung solcher Tabletten, Pillen, Halbfeststoffe, überzogenen Tabletten, Dragees und harten Gelatinekapseln kann das therapeutisch verwendbare Produkt mit pharmakologisch inerten, anorganischen oder organischen Arzneimittelträgersubstanzen vermischt werden, 10 z.B. mit Lactose, Sucrose, Glucose, Gelatine, Malz, Silicagel, Stärke oder Derivaten derselben, Talkum, Stearinsäure oder ihren Salzen, Trockenmagermilch und dgl. Zur Herstellung von weichen Kapseln kann man Arzneimittelträgerstoffe wie z.B. pflanzliche Öle, Petroleum, tierische 15 oder synthetische Öle, Wachs, Fett, Polyole einsetzen. Zur Herstellung von flüssigen Lösungen und Sirups kann man Arzneimittelträgerstoffe wie z.B. Wasser, Alkohole, wäßrige Salzlösung, wäßrige Dextrose, Polyole, Glycerin, pflanzliche Öle, Petroleum, tierische oder synthetische 20 Öle verwenden. Für Suppositorien kann man Arzneimittelträgerstoffe wie z.B. pflanzliche Öle, Petroleum, tierische oder synthetische Öle, Wachs, Fett und Polyole verwenden. Für Aerosol-Formulierungen kann man komprimierte Gase, die für diesen Zweck geeignet sind, wie z.B. 25 Sauerstoff, Stickstoff und Kohlendioxid einsetzen. pharmazeutisch verwendbaren Mittel können auch Zusatzstoffe zur Konservierung, Stabilisierung, Emulgatoren, Süßstoffe, Aromastoffe, Salze zur Veränderung des osmotischen Drucks, Puffer, Umhüllungszusatzstoffe und 30 Antioxidantien enthalten.

Kombinationen mit anderen therapeutischen Mitteln können andere Wirkstoffe beinhalten, die gewöhnlich zur Vorbeugung und/oder Behandlung von thromboembolytischen Erkrankungen eingesetzt werden wie z.B. Warfarin etc.

5

Zur Vorbeugung und/oder Behandlung der oben beschriebenen Erkrankungen kann die Dosis der erfindungsgemäßen biologisch aktiven Verbindung innerhalb breiter Grenzen variieren und kann auf den individuellen Bedarf eingestellt werden. Im allgemeinen ist eine Dosis von $0,1~\mu\mathrm{g}$ bis 20 mg/kg Körpergewicht pro Tag geeignet, wobei eine bevorzugte Dosis 0,5 bis 4 mg/kg pro Tag ist. In geeigneten Fällen kann die Dosis auch unter oder über den oben angegebenen Werten liegen.

15

10

Die tägliche Dosis kann beispielsweise in 1, 2, 3 oder 4 Einzeldosen verabreicht werden. Auch ist es möglich, die Dosis für eine Woche als Einzeldosis zu verabreichen.

20 Die hier beschriebenen Verbindungen der allgemeinen Formeln (I) und (II) zeichnen sich gegenüber den im Stand Technik beschriebenen Verbindungen (EP0921116, WO0035858, WO0190051) durch eine geringere Toxizität, verbesserte Wirkung, verbessertes Transportverhalten und 25 eine bessere Bioverfügbarkeit (insbesondere orale Bioverfügbarkeit) aus.

Verbindungen der Formeln (I) und (II) können analog zu den in EP0921116, W00035858, W003064440, W003064378 und 30 W00190051 beschriebenen Verfahren unter Verwendung geeigneter Ausgangsmaterialien hergestellt werden.

Glycosylierte Benzaldehyde können z.B. nach den in Kleine et al. Carbohydrate Research 1985, 142, 333-337 und Brewster et al. Tetrahedron Letters 1979, 5051-5054 beschriebenen Verfahren hergestellt werden.

5

BEISPIELE

Die glycosylierten Benzaldehyde wurden nach den in Kleine al. Carbohydrate Research 1985, 142, 333-337 10 beschriebenen Verfahren hergestellt. Diese wurden anschliessend nach folgender allgemeiner Arbeitsvorschrift umgesetzt (WO03064440, WO03064378): 1 mmol Amin und 1 mmol Aldehyd werden in 20 ml Acetonitril/Wasser (Mischungsverhältnis von 1:0 bis 1:1) 30 min bei Raumtemperatur gerührt. Anschließend wird 1 mmol Isonitril 15 zugegeben und weitere 15h gerührt. Das Lösungsmittel wird im Vakuum entfernt, die Acetylgruppen mit 2M NH3 Methanol abgespalten und der Rückstand mittels HPLC gereinigt. Die Identifizierung der Verbindungen erfolgte 20 mittels MS.

Patentansprüche

1. Verbindungen der allgemeinen Formel (I):

5

15

wobei

R¹ ein Wasserstoffatom, ein Heteroalkyl-, ein Heteroalkylcycloalkyl- oder ein Heteroaralkylrest ist,

die Reste R² unabhängig voneinander Halogenatome, Hydroxy-, Amino-, Nitro- oder Thiolgruppen, Alkyl-, Alkenyl-, Alkinyl-, Heteroalkyl-, Aryl-, Heteroaryl-, Cycloalkyl-, Alkylcycloalkyl-, Heteroalkyl-cycloalkyl-, Heterocycloalkyl-, Aralkyl- oder Heteroaralkylreste sind,

die Reste R³ unabhängig voneinander Halogenatome,

Hydroxy-, Amino-, Nitro- oder Thiolgruppen, Alkyl-,

Alkenyl-, Alkinyl-, Heteroalkyl-, Aryl-, Heteroaryl-,

Cycloalkyl-, Alkylcycloalkyl-, Heteroalkyl-

G eine Glycosylgruppe ist,

5

n gleich 0, 1, 2, 3 oder 4 ist und

m gleich 0, 1, 2, 3 oder 4 ist,

- oder ein pharmakologisch akzeptables Salz, Solvat,
 Hydrat oder eine pharmakologisch akzeptable Formulierung derselben.
- 2. Verbindungen nach Anspruch 1, wobei R^1 Wasserstoffatom oder eine Gruppe der Formel COOR4 15 oder $CONR^5R^6$ ist, wobei R^4 , R^5 und R^6 unabhängig voneinander Wasserstoffatome, Alkyl-, Alkenyl-, Alkinyl-, Heteroalkyl-, Aryl-, Heteroaryl-, Cycloalkyl-, Alkylcycloalkyl-, Heteroalkylcycloalkyl-, Heterocycloalkyl-, Aralkyl- oder Heteroaralkylreste 20 oder R⁵ und R^6 zusammen Teil eines gegebenenfalls substituierten Heteroaryloder Heterocycloalkylrings sind.
- 25 3. Verbindungen nach Anspruch 1 oder 2, wobei \mathbb{R}^4 ein Wasserstoffatom, ein $C_1\text{-}C_4$ Alkyl oder ein Benzylrest ist.
- Verbindungen nach einem der Ansprüche 1 bis 3, wobei
 R¹ ein Wasserstoffatom oder eine Gruppe der Formel
 COOH oder COOEt ist.

5. Verbindungen nach einem der Ansprüche 1 bis 3, wobei R¹ eine Gruppe der Formel CONHR⁵ ist, wobei R⁵ wie in einem der vorstehenden Ansprüche definiert ist.

5

- 6. Verbindungen nach einem der Ansprüche 1 bis 5, wobei m gleich 0 ist.
- 7. Verbindungen nach einem der Ansprüche 1 bis 5, wobei

 m gleich 1 ist und R³ eine Hydroxygruppe ist, die in
 ortho-Position zur Amidinogruppe an den Phenylring
 gebunden ist.
- 8. Verbindungen nach einem der Ansprüche 1 bis 7, wobei 15 n gleich 2 ist.
 - 9. Verbindungen nach einem der Ansprüche 1 bis 8, wobei die Reste \mathbb{R}^2 unabhängig voneinander C_1 - C_4 Alkyloxy-, C_1 - C_4 Hydroxyalkyloxy- oder Benzyloxygruppen sind.

20

- 10. Pharmazeutische Zusammensetzungen, die eine Verbindung nach den Ansprüchen 1 bis 9 und fakultativ Trägerstoffe und/oder Adjuvanzien enthalten.
- 25 11. Verwendung einer Verbindung oder einer pharmazeutischen Zusammensetzung nach einem der Ansprüche 1 bis 10 zur Hemmung von Faktor VIIa.
- 12. Verwendung einer Verbindung oder einer pharmazeuti30 schen Zusammensetzung nach einem der Ansprüche 1 bis
 10 zur Herstellung eines Medikaments zur Behandlung

Erkrankungen, die

und/oder Vorbeugung von thromboembolytischen Erkrankungen, arterieller Restenose, Blutvergiftung, akuten Entzündungen, oder sonstigen

durch Faktor VIIa-Aktivität

5 vermittelt werden.

Krebs,

13. Verwendung einer Verbindung oder einer pharmazeutischen Zusammensetzung nach einem der Ansprüche 1 bis 10 zur Herstellung eines Medikaments zum Einsatz bei der Gefäßchirurgie.