Combinatoire énumérative et bijective de différentes familles de chemins de Dyck avec trous d'air

Jean-Luc Baril, Sergey Kirgizov, <u>Rémi Maréchal</u>, Helmut Prodinger, Vincent Vajnovszki

Université de Bourgogne (LIB, CombNet), Université de Caen-Normandie (GREYC, AMACC)

19 novembre 2024

Sommaire

- 1 Un brève introduction à la combinatoire énumérative
- 2 Chemins de Dyck avec trous d'air
 - Motivation
 - Énumération
 - Motifs et statistiques
 - Exemple de sous-ensemble
- 3 Grands chemins de Dyck avec trous d'air
- 4 Chemins de Dyck obliques avec trous d'air
- 5 Directions de recherche

Sommaire

- 1 Un brève introduction à la combinatoire énumérative
- 2 Chemins de Dyck avec trous d'air
 - Motivation
 - Énumération
 - Motifs et statistiques
 - Exemple de sous-ensemble
- 3 Grands chemins de Dyck avec trous d'air
- 4 Chemins de Dyck obliques avec trous d'air
- 5 Directions de recherche

Grossièrement : objets mathématiques répondant à une certaine définition, et qui forment des ensembles finis. Généralement, on range dans un même ensemble les objets qui ont la même « taille ».

Exemple

Un mot binaire est une suite finie de 0 et de 1. La taille d'un mot binaire est le nombre de chiffres qui le compose. Pour tout $n \geqslant 0$, on note \mathcal{B}_n l'ensemble des mots binaires de taille n. On a par exemple :

 $1001011110 \in \mathcal{B}_9$.

Combinatoire générale : [Knuth '73, Stanley '97-'99]

Autres exemples d'objets combinatoires

Intro

Énumérer?

Combien existe-t-il de mots binaires de taille n? → 2 choix pour le premier chiffre, 2 choix pour le deuxième, etc.

Proposition

Pour tout n, il y a

$$\underbrace{2 \times 2 \times \ldots \times 2}_{n \text{ fois}}$$

soit 2ⁿ mots binaires de taille n. Autrement dit :

$$\forall n \geqslant 0, |\mathcal{B}_n| = 2^n.$$

Suite énumérative pour les mots binaires :

1, 2, 4, 8, 16, 32, 64, . . .

(puissances de 2)

Chemins de Dyck (classiques)

Chemins composés de pas vers le haut et vers le bas, obéissant aux règles suivantes :

- ils restent confinés dans le quadrant Nord-Est du réseau \mathbb{Z}^2 ;
- ils commencent à l'origine de \mathbb{Z}^2 ;
- ils finissent sur l'axe des abscisses.

Enumération moins immédiate que celle des mots binaires. . .

Combinatoire de chemins : [Asinowski-Banderier-Roitner '20, Banderier-Bousquet-Mélou-Denise-Flajolet '02, Banderier-Flajolet '02, Banderier-Wallner '17, Bousquet-Mélou-Mishna '10, Humphreys '10, Kauers-Yatchak '15, Kurkova-Raschel '12] Chemins de Dyck : [Stanley '97-'99-'15]

Notations et outils

 \mathcal{D}_n : chemins de Dyck de taille n (c.-à-d. à n pas) D : série génératrice des chemins de Dyck, c.-à-d. :

$$D(x) := \sum_{n \geqslant 0} |\mathcal{D}_n| \cdot x^n$$

On n'arrive pas à trouver $|\mathcal{D}_n|$ directement... \longrightarrow Cherchons l'expression de D(x), qui contient la même information.

Intro

On peut toujours couper un chemin de Dyck (non vide) au moment où il retombe à hauteur 0 pour la première fois.

Décomposition des chemins de Dyck

Intro

Cela donne une moitié gauche, qui est un chemin de Dyck qui ne retombe à hauteur 0 qu'à la fin, et une moitié droite, qui est un chemin de Dyck générique (éventuellement vide).

Décomposition des chemins de Dyck

En mettant à part les deux pas extrêmes de la moitié gauche, il reste entre eux un chemin de Dyck générique (éventuellement vide). Finalement, cela se traduit par l'équation suivante :

$$D(x) = 1 + \underbrace{x^2}_{\text{pas noirs}} \underbrace{D(x)}_{\text{gauche}} \cdot \underbrace{D(x)}_{\text{droite}}.$$

Énumération

Après résolution, l'équation donne :

$$D(x) = \frac{1 \pm \sqrt{1 - 4x^2}}{2x^2},$$

mais seule la solution avec un signe $\ll - \gg$ a du sens.

Proposition

On a:

$$D(x) = \frac{1 - \sqrt{1 - 4x^2}}{2x^2} = 1 + x^2 + 2x^4 + 5x^6 + 14x^8 + 42x^{10} + \dots$$

Suite énumérative pour les chemins de Dyck :

1, 1, 2, 5, 14, 42, . . .

(nombres de Catalan)

Sommaire

- 2 Chemins de Dyck avec trous d'air
 - Motivation
 - Énumération
 - Motifs et statistiques
 - Exemple de sous-ensemble
- 3 Grands chemins de Dyck avec trous d'air
- Chemins de Dyck obliques avec trous d'air

Sommaire

- 1 Un brève introduction à la combinatoire énumérative
- 2 Chemins de Dyck avec trous d'air
 - Motivation
 - Énumération
 - Motifs et statistiques
 - Exemple de sous-ensemble
- 3 Grands chemins de Dyck avec trous d'air
- 4 Chemins de Dyck obliques avec trous d'air
- 5 Directions de recherche

cDota.

Motivation : tri à pile

cDota.

Motivation : tri à pile

Tris à pile : [Knuth '73, Krattenthaler '01]

cDota.

Motivation : tri à pile

cDota.

cDota.

cDota.

cDota.

cDota.

cDota.

cDota.

→ Idée : condenser les dépilements successifs en une seule étape.

Définition

Un cDta. est un chemin non vide composé de pas vers le haut U=(1,1) et de pas vers le bas $D_k=(1,-k)$ (où $k\geqslant 1$), obéissant aux règles suivantes :

- il reste confiné dans le quadrant Nord-Est du réseau \mathbb{Z}^2 ;
- il commence à l'origine de \mathbb{Z}^2 ;
- il finit sur l'axe des abscisses ;
- il ne contient jamais deux pas vers le bas consécutifs.

Chemins avec catastrophes: [Banderier-Wallner '17]

Quelques notations

 α^{\sharp} : « monté » du cDta. α On ajoute \cup au début du chemin, et on change le dernier pas D_k du chemin en D_{k+1} .

Le monté du cDta. UUD2UD est UUUD2UD2.

 α^{\flat} : « baissé » du cDta. α Il s'agit de l'opération inverse (le baissé de UUUD₂ UD₂ est UUD_2UD).

Sommaire

- 1 Un brève introduction à la combinatoire énumérative
- 2 Chemins de Dyck avec trous d'air
 - Motivation
 - Énumération
 - Motifs et statistiques
 - Exemple de sous-ensemble
- 3 Grands chemins de Dyck avec trous d'air
- 4 Chemins de Dyck obliques avec trous d'air
- 5 Directions de recherche

Énumérer les cDta

 \mathcal{T}_n : cDta. de taille n (c.-à-d. à n pas)

T : série génératrice des cDta., c.-à-d. :

$$T(x) := \sum_{n \geqslant 0} |\mathcal{T}_n| \cdot x^n$$

La décomposition précédente des chemins de Dyck classiques ne fonctionne pas aussi immédiatement pour les cDta. :

U n'est pas un cDta.!

→ Il faut introduire différents cas de figure.

Décomposition des cDta.

Cas (i): UD

Contribution: x^2

Cas (ii) : $UD \cdot \beta$

Contribution : $x^2 \cdot T(x)$

Cas (iii) : α^{\sharp}

Contribution : $x \cdot T(x)$

Cas (iv) : $\alpha^{\sharp} \cdot \beta$

Contribution : $x \cdot T(x) \cdot T(x)$

Série génératrice des cDta.

On a donc:

$$T(x) = x^2 + x^2 \cdot T(x) + x \cdot T(x) + x \cdot T(x)^2$$
.

Proposition

On a:

$$T(x) = \frac{1 - x - x^2 - \sqrt{x^4 - 2x^3 - x^2 - 2x + 1}}{2x}$$
$$= x^2 + x^3 + 2x^4 + 4x^5 + 8x^6 + 17x^7 + \dots$$

Suite énumérative pour les cDta. :

$$1,1,2,4,8,17,\ldots$$
 (nombres de Catalan généralisés, OEIS A004148)

1, 1, 2, 4, 8, 17, ...?

Cette même suite énumère une autre famille d'objets combinatoires : les chemins de Motzkin sans pic.

Cette même suite énumère une autre famille d'objets combinatoires : les chemins de Motzkin sans pic.

Cette même suite énumère une autre famille d'objets combinatoires : les chemins de Motzkin sans pic.

1, 1, 2, 4, 8, 17, ...?

Cette même suite énumère une autre famille d'objets combinatoires : les chemins de Motzkin sans pic.

--- Cela signifie qu'il existe une bijection entre ces chemins et les cDta.! Le mieux est d'en trouver une qui soit « élégante ».

Chemins de Motzkin: [Barcucci-Pinzani-Sprugnoli '91, Bernhart '99, Donaghey-Shapiro '97, Motzkin '48, Stanley '97-'99]

cDota.

Exemple de bijection ψ

cDta.

Exemple de bijection ψ

Exemple

On a:

Sommaire

- 1 Un brève introduction à la combinatoire énumérative
- 2 Chemins de Dyck avec trous d'air
 - Motivation
 - Énumération
 - Motifs et statistiques
 - Exemple de sous-ensemble
- 3 Grands chemins de Dyck avec trous d'air
- 4 Chemins de Dyck obliques avec trous d'air
- 5 Directions de recherche

Motifs dans les cDta.

Dans ce contexte, un motif est une suite consécutive de pas.

Exemple

Le cDta. UDUUDUD₂ contient le motif UUD, mais évite D₄₂.

Motifs dans les cDta.

Dans ce contexte, un motif est une suite consécutive de pas.

Exemple

Le cDta. $UDUUDUD_2$ contient le motif UUD, mais évite D_{42} .

→ Série génératrice bivariée :

(cDta. de taille *n* avec *k* occurrences de m) $\cdot x^n \cdot y^k$ $n.k \ge 0$

Motifs dans les cDta

Dans ce contexte, un motif est une suite consécutive de pas.

Exemple

Le cDta. $UDUUDUD_2$ contient le motif UUD, mais évite D_{42} .

→ Série génératrice bivariée :

(cDta. de taille *n* avec *k* occurrences de *m*) $\cdot x^n \cdot y^k$ $n.k \ge 0$

Exemple

Distribution du motif DU:

$$x^{2} + x^{3} + (y+1)x^{4} + (2y+2)x^{5} + (y^{2} + 3y + 4)x^{6} + \dots$$

Motifs: [Bóna '04, Bousquet-Mélou-Claesson-Dukes-Kitaev '10, Kitaev '11, Lothaire '97]

Popularité d'un motif

La popularité d'un motif m est une information moins précise que la distribution : ici, on s'intéresse à la série génératrice

$$\sum_{n \ge 0} \# (\text{occurrences de } m \text{ parmi } \underline{\text{tous}} \text{ les cDta. de taille } n) \cdot x^n$$

Si m(x, y) est l'expression qui donne la distribution du motif m, alors la popularité de m est donnée par :

$$\partial_y \left(m(x,y) \right) \Big|_{y=1}$$

Exemple

Popularité du motif DU :

$$x^4 + 2x^5 + 5x^6 + \dots$$

cDota.

Exemples de popularités étudiées

Motif	Popularité du motif dans $(\mathcal{T}_n)_{n\geqslant 2}$	Entrée OEIS
U	1, 2, 5, 13, 32, 80, 201, 505, 1273, 3217	A110320
D	1, 0, 2, 3, 7, 17, 40, 97, 238, 587	A051291
$Pic = \sum_{k \ge 1} UD_k$	1, 1, 3, 7, 16, 39, 95, 233, 577, 1436	A203611
Retour à hauteur 0	1, 1, 3, 6, 13, 29, 65, 148, 341, 793	A093128
Catastrophe	0, 1, 1, 4, 8, 19, 44, 102, 239, 563	
$\Delta_k = U^k D_k$	$0, \ldots, 0, 1, 0, 2, 3, 7, 17, 40, 97, 238, 587$	A051291
	k-1 zéros	
$\Delta_{\geqslant k} = \sum_{\ell \geqslant k} \Delta_\ell$	$0, \dots, 0, 1, 1, 3, 6, 13, 30, 70, 167, 405$	A201631 (u _n)
	$k{-}1$ zéros	
$\Delta_{\leqslant k} = \sum_{1 \leqslant \ell \leqslant k} \Delta_{\ell}$	$\Delta_{\leqslant 1}$ 1, 0, 2, 3, 7, 17, 40, 97, 238, 587	$u_n - u_{n-k}$
	$\Delta_{\leqslant 2}$ 1, 1, 2, 5, 10, 24, 47, 137, 335, 825,	
	$\Delta_{\leqslant 3} 1, 1, 3, 5, 12, 27, 64, 154, 375, 922, \dots$	
	;	

A201631?

L'entrée A201631 de l'OEIS énumère les promenades de Fibonacci de module 2 (ou « d'angle central 180° »).

L : demi-tour dans le sens anti-horaire

R : demi-tour dans le sens horaire

→ LLLLRRLRLRLRLRLRLRLR. La promenade doit revenir à son point de départ, et les L doivent être isolés (sauf éventuellement au début de la promenade).

Promenades de Fibonacci : [Luschny '11, Wienand '11]

Lien avec les popularités

Proposition

Pour tout $k \ge 1$ et pour tout $n \ge 2$, il y a autant de promenades de Fibonacci de module 2 de longueur 2n qu'il y a d'occurrences des motifs $\{U^{\ell}D_{\ell}; \ell \geq k\}$ parmi tous les cDta. de taille n+k+1.

Exemple (k = 1, n = 3)

Il y a 6 promenades de longueur 6, et il y a 6 occurrences des motifs UD, UUD₂, UUUD₃, ... parmi les cDta. de taille 5.

motif $m \longrightarrow \text{satistique } \mathbf{m}$.

 $\mathbf{m}(x)$: nombre total d'occurrences du motif m dans l'objet x.

 $\mathbf{m}(X)$: nombre total d'occurrences du motif m parmi les éléments de l'ensemble X (c.-à-d. popularité de m dans X).

 $\ll f: X \longrightarrow Y$ transporte la statistique **a** vers la statistique **b** » :

$$\forall x \in X, \ \mathbf{a}(x) = \mathbf{b}(f(x)).$$

 \longrightarrow On notera alors $f(\mathbf{a}) = \mathbf{b}$.

Statistiques: [Deutsch '99, Deutsch-Elizalde '03, Deutsch-Shapiro '01, Elizalde '11, Flajolet '80, Kostov '09, Prodinger-Wagner '07]

cDota

Statistiques : transport par ψ

Proposition

cDta

Pour tout $n \ge 2$ et tout $k \ge 1$, on a :

- $\psi|_{\mathcal{T}}(\mathsf{U}) = \mathsf{F} + \mathsf{U} = \mathsf{F} + \mathsf{D}$;
- $\psi|_{\mathcal{T}_{\mathbf{D}}}(\mathbf{D}) = \psi|_{\mathcal{T}_{\mathbf{D}}}(\mathbf{UD}) = 1_{\mathbf{F}} + \mathbf{UFD} + 1_{\mathbf{U}\mathcal{M}\mathbf{D}} + \mathbf{U}^2\mathcal{M}\mathbf{D}^2$;
- $\psi|_{\mathcal{T}}(\mathsf{DU}) = \mathsf{UFD} + \mathsf{U}^2 \mathcal{M} \mathsf{D}^2$;
- $\psi|_{\mathcal{T}}(\mathsf{UU}) = \mathsf{F} \hat{1}$;
- $\psi|_{\mathcal{T}_{\mathbf{c}}}(\Delta_k) = 1_{\mathbf{F}^k} + \mathsf{UF}^k\mathsf{D} + 1_{\mathbf{F}^{k-1}\mathsf{UMD}} + \mathsf{UF}^{k-1}\mathsf{UMD}^2$;
- $\psi|_{\mathcal{T}}(\mathsf{Pic}) = \mathsf{U} + \hat{1}$;
- $\psi|_{\mathcal{T}_{\sigma}}(\mathsf{Ret}) = \hat{n} \mathsf{DerF}$;
- $\psi|_{\mathcal{T}_{\bullet}}(\mathsf{ADer}) = \mathsf{Ret}.$

Sommaire

- 1 Un brève introduction à la combinatoire énumérative
- 2 Chemins de Dyck avec trous d'air
 - Motivation
 - Énumération
 - Motifs et statistiques
 - Exemple de sous-ensemble
- 3 Grands chemins de Dyck avec trous d'air
- 4 Chemins de Dyck obliques avec trous d'air
- 5 Directions de recherche

cDta. bornés en hauteur

On contraint les cDta. à ne jamais dépasser une certaine hauteur fixée t > 0.

 $\mathcal{T}_n^{[0,t]}$: cDta. de taille *n* qui ne dépassent pas la hauteur *t*.

La décomposition précédemment vue pour les chemis de Dyck classiques ne fonctionne pas aussi immédiatement pour ces chemins bornés. Celle des cDta. (non bornés) ne s'applique pas aussi bien non plus.

--- On va chercher à résoudre un système linéaire qui fait intervenir la série génératrice des cDta. bornés.

Notations

 f_k^t : série génératrice des préfixes de cDta. bornés par t, dont le dernier pas est un pas vers le haut U, et dont la hauteur finale est k.

 g_{k}^{t} : série génératrice des préfixes de cDta. bornés par t, dont le dernier pas est un pas vers le bas D_{ℓ} , et dont la hauteur finale est k.

 \longrightarrow La série génératrice des cDta. bornés par t est exactement g_0^t .

Récurrences

Fixons un préfixe de cDta. borné par t qui finit à hauteur k après un pas U.

Ce raisonnement donne lieu à l'équation suivante :

$$\forall 1 \leqslant k \leqslant t, \qquad f_k^t(x) = x \cdot \left(f_{k-1}^t(x) + g_{k-1}^t(x) \right).$$

Autres récurrences :

$$\begin{cases} f_0^t(x) &= 1 \\ \forall 1 \leq k \leq t, & f_k^t(x) &= x \cdot \left(f_{k-1}^t(x) + g_{k-1}^t(x) \right) \\ \forall 0 \leq k \leq t - 1, & g_k^t(x) &= x \cdot \sum_{i=k+1}^t f_i^t(x) \\ g_t^t(x) &= 0 \end{cases}$$

Le « 1 » sert à rendre les calculs ultérieurs plus commodes.

cDota.

Forme matricielle

cDta.

$$\begin{bmatrix} -1 & & & 0 & & \\ x & -1 & & x & 0 & & \\ & \ddots & \ddots & & \ddots & \ddots & \\ & x & -1 & & x & 0 \\ \hline 0 & x & \dots & x & -1 & & \\ & 0 & \ddots & \vdots & & \ddots & \\ & & \ddots & x & & \ddots & \\ & & 0 & & & -1 \end{bmatrix}$$

$$\begin{bmatrix} f_0^t(x) \\ \vdots \\ \vdots \\ f_t^t(x) \\ \hline g_0^t(x) \\ \vdots \\ \vdots \\ g_t^t(x) \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Résultats pour $t = 1, \dots, 4$

Proposition

On a:

$$g_0^1 = \frac{x^2}{1-x^2} = x^2 + x^4 + x^6 + x^8 + x^{10} + \dots$$

$$g_0^2 = \frac{x^2(1+x-x^2)}{x^4 - x^3 - 2x^2 + 1} = x^2 + x^3 + x^4 + 3x^5 + 2x^6 + 6x^7 + 6x^8 + 11x^9 + 16x^{10} + \dots$$

$$g_0^3 = \frac{x^2(x^4 - 2x^3 - x^2 + x + 1)}{(x^3 - 2x^2 - x + 1)(1+x-x^3)}$$

$$= x^2 + x^3 + 2x^4 + 3x^5 + 7x^6 + 9x^7 + 22x^8 + 32x^9 + 66x^{10} + \dots$$

$$g_0^4 = \frac{-x^8 + 3x^7 - 3x^5 - 2x^4 + x^3 + x^2}{x^8 - 3x^7 - x^6 + 5x^5 + 4x^4 - 3x^3 - 4x^2 + 1}$$

$$= x^2 + x^3 + 2x^4 + 4x^5 + 7x^6 + 16x^7 + 27x^8 + 63x^9 + 112x^{10} + \dots$$

1, 1, 1, 3, 2, 6, 6, 11, 16, ...?

Entrée A062200 de l'OEIS : compositions d'entiers dont les parties ont des parités alternantes.

 \mathcal{C}_n : compositions de *n* dont les parties ont des parités alternantes.

Exemple

On a $(4,1,2,1) \in C_8$ mais $(3,1,2,2) \notin C_8$.

→ Là encore, il y a une bijection « élégante » à trouver.

Compositions: [Heubach-Mansour '17, Hoggat-Bicknell '75, Mansour-Shattuck-Wilson '14]

Exemple de bijection ϑ

On fixe un cDta. ne dépassant pas la hauteur 2, et on met de côté ses deux pas extrêmes.

Exemple de bijection ϑ

On fixe un cDta. ne dépassant pas la hauteur 2, et on met de côté ses deux pas extrêmes. On découpe ce qui reste en blocs; on place les coupures entre deux blocs consécutifs au milieu de chaque occurrence des motifs UU et UD_2 .

Exemple de bijection ϑ

On fixe un cDta. ne dépassant pas la hauteur 2, et on met de côté ses deux pas extrêmes. On découpe ce qui reste en blocs; on place les coupures entre deux blocs consécutifs au milieu de chaque occurrence des motifs UU et UD_2 . La liste des longueurs des blocs obtenus est la composition cherchée.

Exemple

On a:

$$\mathcal{T}_{15}^{[0,2]} \ni UUD_2UUDUD_2UDUDUUD_2 \stackrel{\vartheta}{\longmapsto} (1,2,3,6,1) \in \mathcal{C}_{13}.$$

Sommaire

- Chemins de Dyck avec trous d'air
 - Motivation
 - Énumération
 - Motifs et statistiques
 - Exemple de sous-ensemble
- 3 Grands chemins de Dyck avec trous d'air
- Chemins de Dyck obliques avec trous d'air

Définition

Un gcDta. est un chemin non vide composé de pas vers le haut U=(1,1) et de pas vers le bas $D_k=(1,-k)$ (où $k\geqslant 1$), obéissant aux règles suivantes :

- il reste confiné dans la moitié Est du réseau \mathbb{Z}^2 ;
- il commence à l'origine de \mathbb{Z}^2 ;
- il finit sur l'axe des abscisses;
- il ne contient jamais deux pas vers le bas consécutifs.

En somme, c'est un cDta. qui a le droit de passer sous l'axe des abscisses.

Énumération

Proposition

La série génératrice G des gcDta. est donnée par :

$$G(x) = \frac{x((1+2x+2x^2-x^3)R+x^5-3x^4+x^3-x^2+3x-1)}{(1+x+x^2)(1-3x+x^2)(1+x-x^2+R)}$$

avec $R = \sqrt{x^4 - 2x^3 - x^2 - 2x + 1}$. Le développement de Taylor de G(x) est $2x^2 + 3x^3 + 7x^4 + 17x^5 + 40x^6 + 97x^7 + \dots$, et ses coefficients correspondent à l'entrée A051291 de l'OEIS.

Remarque

Nous n'avons pas trouvé de bijection entre les gcDta. et d'autres objets comptés par A051291.

gcDta. bornés

On contraint les gcDta. à ne jamais dépasser une certaine hauteur fixée t>0, et à ne jamais plonger en dessous de la profondeur -t<0.

 $\mathcal{G}_n^{[-t,t]}$: gcDta. dont l'ordonnée reste comprise entre -t et t.

De façon analogue à ce qui a été fait pour les cDta. bornés, on va poser un système linéaire qui fait intervenir la série génératrice des gcDta. bornés.

Notations et système linéaire

 f_k^t : série génératrice des préfixes de gcDta. bornés entre -t et t, dont le dernier pas est un pas vers le haut U, et dont l'ordonnée finale est k.

 g_k^t : série génératrice des préfixes de gcDta. bornés entre -t et t, dont le dernier pas est un pas vers le bas D_ℓ , et dont l'ordonnée finale est k.

 \longrightarrow La série génératrice des gcDta. bornés entre -t et t est exactement $f_0^t + g_0^t$.

Système linéaire

$$\begin{cases} f_{-t}^{t} &= 0 \\ \forall -t+1 \leqslant k \leqslant t, \ k \neq 0, & f_{k}^{t}(x) &= x \left(f_{k-1}^{t}(x) + g_{k-1}^{t}(x) \right) \\ f_{0}^{t}(x) &= 1 + x \left(f_{-1}^{t}(x) + g_{-1}^{t}(x) \right) \\ \forall -t \leqslant k \leqslant t-1, & g_{k}^{t}(x) &= x \sum_{i=k+1}^{t} f_{k}^{t}(x) \\ g_{t}^{t}(x) &= 0 \end{cases}$$

Une fois de plus, le « 1 » sert à rendre les calculs ultérieurs plus commodes. Il faudra donc en fait donner l'expression de $f_0^t(x)-1+g_0^t(x)$.

Proposition

On a:

$$\begin{split} f_0^1 - 1 + g_0^1 &= \frac{x^2(2 + x - x^2)}{x^4 - x^3 - 2x^2 + 1} \\ &= 2x^2 + x^3 + 3x^4 + 4x^5 + 5x^6 + 10x^7 + 11x^8 + 21x^9 + 27x^{10} + \dots \\ f_0^2 - 1 + g_0^2 &= \frac{x^2(x^2 - x - 1)(2 + 3x + x^2 - x^3)}{x^7 - 2x^6 - 3x^5 + 2x^4 + 6x^3 + 3x^2 - x - 1} \\ &= 2x^2 + 3x^3 + 5x^4 + 13x^5 + 22x^6 + 48x^7 + 93x^8 + 190x^9 + 375x^{10} + \dots \\ f_0^3 - 1 + g_0^3 &= \frac{x^2(1 - x)(1 + 2x + x^2 - x^3)(2 + x - 4x^2 - 4x^3 + x^4 + 3x^5 - x^6)}{x^{12} - 5x^{11} + 4x^{10} + 10x^9 - 4x^8 - 19x^7 - 4x^6 + 17x^5 + 11x^4 - 5x^3 - 6x^2 + 1} \\ &= 2x^2 + 3x^3 + 7x^4 + 15x^5 + 36x^6 + 75x^7 + 176x^8 + 386x^9 + 869x^{10} + \dots \end{split}$$

2, 1, 3, 4, 5, 10, 11, 21, 27, ...?

Entrée A122514 de l'OEIS : compositions d'entiers dont les parties ont des parités alternantes, dont la première partie est impaire, et dont la dernière partie est paire.

 C_n : compositions de n qui répondent aux contraintes précédentes.

Exemple

On a $(1,2,1,4) \in C_8$ mais $(2,1,4,1) \notin C_8$.

Proposition

Pour tout $n \ge 2$, il existe une bijection entre $\mathcal{G}_n^{[-1,1]}$ et \mathcal{C}_{n+3} .

Exemple de bijection ξ

On fixe un élément de $\mathcal{G}_n^{[-1,1]}$, que l'on découpe en blocs selon les occurrences des motifs UU et UD_2 . On note les blocs B_1, B_2, \ldots, B_r .

Exemple de bijection ξ

On fixe un élément de $\mathcal{G}_n^{[-1,1]}$, que l'on découpe en blocs selon les occurrences des motifs UU et UD_2 . On note les blocs B_1, B_2, \ldots, B_r . On considère l'opération ς suivante :

$$\varsigma(x_r,\dots,x_1) = \left\{ \begin{array}{ll} (x_r+1,x_{r-1},\dots,x_2,x_1+2) & x_{r-1} \text{ et } x_1 \text{ pairs} \\ (x_r+1,x_{r-1},\dots,x_2,x_1,2) & x_{r-1} \text{ pair},x_1 \text{ impair} \\ (1,x_r,x_{r-1},\dots,x_2,x_1+2) & x_{r-1} \text{ impair},x_1 \text{ pair} \\ (1,x_r,x_{r-1},\dots,x_2,x_1,2) & x_{r-1} \text{ et } x_1 \text{ impairs} \end{array} \right.$$

On fixe un élément de $\mathcal{G}_n^{[-1,1]}$, que l'on découpe en blocs selon les occurrences des motifs UU et UD_2 . On note les blocs B_1, B_2, \ldots, B_r . On considère l'opération ς suivante :

$$\varsigma(x_r,\dots,x_1) = \left\{ \begin{array}{ll} (x_r+1,x_{r-1},\dots,x_2,x_1+2) & x_{r-1} \text{ et } x_1 \text{ pairs} \\ (x_r+1,x_{r-1},\dots,x_2,x_1,2) & x_{r-1} \text{ pair},x_1 \text{ impair} \\ (1,x_r,x_{r-1},\dots,x_2,x_1+2) & x_{r-1} \text{ impair},x_1 \text{ pair} \\ (1,x_r,x_{r-1},\dots,x_2,x_1,2) & x_{r-1} \text{ et } x_1 \text{ impairs} \end{array} \right.$$

et on pose
$$\xi(B_1B_2...B_r) := \varsigma(|B_r|, |B_{r-1}|, ..., |B_1|).$$

On fixe un élément de $\mathcal{G}_n^{[-1,1]}$, que l'on découpe en blocs selon les occurrences des motifs UU et UD_2 . On note les blocs B_1, B_2, \ldots, B_r . On considère l'opération ς suivante :

$$\varsigma(x_r,\dots,x_1) = \left\{ \begin{array}{ll} (x_r+1,x_{r-1},\dots,x_2,x_1+2) & x_{r-1} \text{ et } x_1 \text{ pairs} \\ (x_r+1,x_{r-1},\dots,x_2,x_1,2) & x_{r-1} \text{ pair},x_1 \text{ impair} \\ (1,x_r,x_{r-1},\dots,x_2,x_1+2) & x_{r-1} \text{ impair},x_1 \text{ pair} \\ (1,x_r,x_{r-1},\dots,x_2,x_1,2) & x_{r-1} \text{ et } x_1 \text{ impairs} \end{array} \right.$$

et on pose
$$\xi(B_1B_2...B_r) := \varsigma(|B_r|, |B_{r-1}|, ..., |B_1|).$$

Exemple

On a:

$$\mathcal{G}_{15}^{[-1,1]}\ni UD_2UUDUD_2UDUDUUD \overset{\xi}{\longmapsto} (3,6,3,2,1,2) \in \mathcal{C}_{18}.$$

Sommaire

- 1 Un brève introduction à la combinatoire énumérative
- 2 Chemins de Dyck avec trous d'air
 - Motivation
 - Énumération
 - Motifs et statistiques
 - Exemple de sous-ensemble
- 3 Grands chemins de Dyck avec trous d'air
- 4 Chemins de Dyck obliques avec trous d'air
- 5 Directions de recherche

Définition

Un cDota. est un chemin non vide composé de pas vers le haut U=(1,1), de pas vers le bas $D_k=(1,-k)$ (où $k\geqslant 1$), et de pas vers la gauche L=(-1,-1), obéissant aux règles suivantes :

- ullet il reste confiné dans le quadrant Nord-Est du réseau \mathbb{Z}^2 ;
- il commence à l'origine de \mathbb{Z}^2 ;
- il finit sur l'axe des abscisses;
- il ne contient jamais deux pas vers le bas consécutifs;
- les motifs *LU* et *UL* n'apparaissent jamais.

En somme, c'est un cDta. qui dispose d'un troisième type de pas.

Notations

 f_k : série génératrice des préfixes de cDota. dont le dernier pas est un pas vers le haut U, et dont la hauteur finale est k.

 g_k : série génératrice des préfixes de cDota., dont le dernier pas est un pas vers le bas D_ℓ , et dont la hauteur finale est k.

 h_k : série génératrice des préfixes de cDota., dont le dernier pas est un pas vers la gauche L, et dont la hauteur finale est k.

 \longrightarrow La série génératrice des cDota. est exactement $g_0 + h_0$.

Notations

 f_k : série génératrice des préfixes de cDota. dont le dernier pas est un pas vers le haut U, et dont la hauteur finale est k.

 g_k : série génératrice des préfixes de cDota., dont le dernier pas est un pas vers le bas D_ℓ , et dont la hauteur finale est k.

 h_k : série génératrice des préfixes de cDota., dont le dernier pas est un pas vers la gauche L, et dont la hauteur finale est k.

 \longrightarrow La série génératrice des cDota. est exactement $g_0 + h_0$. Cette fois-ci, le système linéaire vérifié par ces séries génératrices aura un nombre infini d'équations. Pas de résolution matricielle, donc...

Système linéaire et variables auxiliaires

$$\begin{cases} f_0(x) &= 1 \\ \forall k \geq 1, & f_k(x) &= x (f_{k-1}(x) + g_{k-1}(x)) \\ \forall k \geq 0, & g_k(x) &= x \sum_{i=1}^{\infty} (f_{k+i}(x) + h_{k+i}(x)) \\ \forall k \geq 0, & h_k(x) &= x (g_{k+1}(x) + h_{k+1}(x)) \end{cases}$$

Le « 1 » sert encore une fois à rendre les calculs ultérieurs plus commodes.

Système linéaire et variables auxiliaires

$$\begin{cases} f_0(x) &= 1 \\ \forall k \geq 1, & f_k(x) &= x \left(f_{k-1}(x) + g_{k-1}(x) \right) \\ \forall k \geq 0, & g_k(x) &= x \sum_{i=1}^{\infty} \left(f_{k+i}(x) + h_{k+i}(x) \right) \\ \forall k \geq 0, & h_k(x) &= x \left(g_{k+1}(x) + h_{k+1}(x) \right) \end{cases}$$

Le « 1 » sert encore une fois à rendre les calculs ultérieurs plus commodes.

On pose
$$F(u) = \sum_{k \ge 0} f_k(x) \cdot u^k$$
, $G(u) = \sum_{k \ge 0} g_k(x) \cdot u^k$, et $H(u) = \sum_{k \ge 0} h_k(x) \cdot u^k$, et on cherche l'expression de $G(0) + H(0)$.

Réécriture du système

$$\left\{ \begin{array}{lll} F(u) & = & 1 + xu \left(F(u) + G(u) \right) \\ G(u) & = & \frac{x}{1-u} \left(F(1) - F(u) + H(1) - H(u) \right) \\ H(u) & = & \frac{x}{u} \left(H(u) - H(0) + G(u) - G(0) \right) \end{array} \right.$$

$$\begin{cases}
F(u) &= 1 + xu (F(u) + G(u)) \\
G(u) &= \frac{x}{1-u} (F(1) - F(u) + H(1) - H(u)) \\
H(u) &= \frac{x}{u} (H(u) - H(0) + G(u) - G(0))
\end{cases}$$

Résolution partielle :

$$F(u) = \frac{u\,x^2\,(u-x)\,(F(1)+H(1)) + u\,x^3(G(0)+H(0)) - u^2 + (x+1)\,u + x^2 - x}{u^3x - 2u\,x^3 - u^2x + x^2u - u^2 + xu + x^2 + u - x},$$

$$G(u) = -\frac{x\left(\left(xu-1\right)\left(u-x\right)\left(F(1)+H(1)\right)+\left(x^2u-x\right)\left(G(0)+H(0)\right)+u-x\right)}{u^3x-2u\,x^3-u^2x+x^2u-u^2+xu+x^2+u-x},$$

$$H(u) = -\frac{\left(\left(x^2u + \left(u^2 - u\right)x - u + 1\right)\left(G(0) + H(0)\right) + x\left(xu - 1\right)\left(F(1) + H(1)\right) + x\right)x}{u^3x - 2u\,x^3 - u^2x + x^2u - u^2 + xu + x^2 + u - x}.$$

Méthode du noyau

Dénominateur identique entre les trois fractions. Polynôme cubique en u (de racines $s_1(x)$, $s_2(x)$, et $s_3(x)$). Deux des trois racines (s_2 et s_3) possèdent un développement de Taylor en x=0, l'autre (s_1) non.

Méthode du noyau

Dénominateur identique entre les trois fractions. Polynôme cubique en u (de racines $s_1(x)$, $s_2(x)$, et $s_3(x)$). Deux des trois racines (s_2 et s_3) possèdent un développement de Taylor en x=0, l'autre (s_1) non. D'après la méthode du noyau, on peut simplifier le dénominateur et le numérateur de chaque fraction par $(u-s_2(x))\cdot (u-s_3(x))$, ce qui permet d'obtenir de nouvelles équations pour trouver les conditions initiales.

Méthode du noyau

Dénominateur identique entre les trois fractions. Polynôme cubique en u (de racines $s_1(x)$, $s_2(x)$, et $s_3(x)$). Deux des trois racines (s_2 et s_3) possèdent un développement de Taylor en x=0, l'autre (s_1) non. D'après la méthode du noyau, on peut simplifier le dénominateur et le numérateur de chaque fraction par $(u-s_2(x))\cdot (u-s_3(x))$, ce qui permet d'obtenir de nouvelles équations pour trouver les conditions initiales.

Après simplifications, on a :

$$\begin{cases} F(u) &= \frac{1-x^2(F(1)+H(1))}{x(s_1(x)-u)} \\ G(u) &= \frac{x(F(1)+H(1))}{s_1(x)-u} \\ H(u) &= \frac{x(G(0)+H(0))}{s_1(x)-u} \end{cases}$$

Méthode du noyau :

[Banderier-Bousquet-Mélou-Denise-Flajolet-Gouyou-Beauchamps '02, Banderier-Flajolet '02, Knuth '73, Prodinger '04]

Résolution finale

Proposition

On a:

$$F(u) = \frac{s_1(x)}{s_1(x) - u}, \qquad G(u) = \frac{1 - s_1(x) \cdot x}{x(s_1(x) - u)},$$

et

$$H(u) = \frac{1 - s_1(x) \cdot x}{(s_1(x) - u)(s_1(x) - x)},$$

avec

$$s_1(x) = \frac{A}{6x} + \frac{4x^4 - 2x^3 - \frac{4}{3}x^2 - \frac{2}{3}x + \frac{2}{3}}{xA} + \frac{x+1}{3x},$$

$$A = \left(72x^5 - 72x^4 + 44x^3 + 12Bx - 48x^2 - 12x + 8\right)^{\frac{1}{3}},$$

et

$$B = \sqrt{-96x^{10} + 144x^9 + 60x^8 - 108x^7 - 24x^6 - 48x^5 + 81x^4 - 18x^2 + 12x - 3}.$$

Énumération des cDota.

Corollaire

La série génératrice des cDota. est donnée par :

$$G(0) + H(0) = \frac{x \cdot s_1(x) - 1}{x(x - s_1(x))},$$

et son développement de Taylor est :

$$x^2 + x^3 + 3x^4 + 5x^5 + 13x^6 + 26x^7 + 64x^8 + 143x^9 + \dots$$

Sous-ensembles des cDota.

« cDota. sans vallée » : cDota. qui évite le motif $D_k U$ pour tout $k \ge 1$.

« cDota. sans vallée en zigzag » : cDota. sans vallée qui évite le motif LL .

Énumération

Suite énumérative des préfixes de cDota. sans vallée :

A130137
$$(1, 2, 3, 5, 7, 11, 16, 25, 37, \ldots)$$

→ Même suite que les mots binaires qui évitent les motifs 00 et 0110.

Suite énumérative des cDota. sans vallée en zigzag :

A103632
$$(1, 1, 2, 2, 3, 4, 6, 8, \ldots)$$

 \longrightarrow Même suite que les compositions d'entiers palindromiques dont les parties sont dans $\{2, 1, 3, 5, 7, 9, \ldots\}$.

Exemple I de bijection χ

lci, on définit $\overline{m_1m_2\dots m_{n-1}m_n}:=m_1m_2\dots m_{n-1}1$ pour tout mot binaire $m_1m_2\dots m_{n-1}m_n$.

Exemple

On a:

$$\chi(U^4DLD_2) = 011110.$$

Tableau des premières valeurs de χ

n	α	$\chi(\alpha)$
1	U	ε
2	UD	0
	UU	1
3	UUD	01
	UUD_2	10
	UUU	11
4	UUDL	010
	UUUD	011
	$UUUD_2$	101
	$UUUD_3$	110
	UUUU	111

Exemple II de bijection ω

On pose $\omega(UD) = \varepsilon$, $\omega(U^2D_2) = (1)$, $\omega(U^2DL) = (2)$, et $\omega(U^3D_2L) = (3)$, puis on finit de définir ω comme suit :

lci, on définit la notation $_{+2}(\bullet)_{+2}$ de la manière suivante :

$$_{+2}(x_1)_{+2} := (x_1 + 4)$$
 $_{+2}(x_1, x_2, \dots, x_{n-1}, x_n)_{+2} := ((x_1 + 2), x_2, \dots, x_{n-1}, (x_n + 2))$

Tableau des premières valeurs de ω

n	α	$\omega(\alpha)$
2	UD	ϵ
3	UUD_2	(1)
4	$UUUD_3$	(1,1)
	UUDL	(2)
5	UUUUD ₄	(1, 1, 1)
	$UUUD_2L$	(3)
6	$UUUUUD_5$	(1, 1, 1, 1)
	$UUUUD_3L$	(1, 2, 1)
	UUUDLD	(2,2)
7	UUUUUUD ₆	(1,1,1,1,1)
	$UUUUUD_4L$	(1, 3, 1)
	$UUUUDLD_2$	(2, 1, 2)
	$UUUUD_2LD$	(5)

Sommaire

- Chemins de Dyck avec trous d'air
 - Motivation
 - Énumération
 - Motifs et statistiques
 - Exemple de sous-ensemble
- 3 Grands chemins de Dyck avec trous d'air
- Chemins de Dyck obliques avec trous d'air
- 5 Directions de recherche

Quelques questions à explorer

- Génération aléatoire uniforme des cDta.
- Génération exhaustive efficace des cDta.
- Calcul algorithmique de la série génératrice des cDta. qui évitent un motif donné
- Établir davantage de bijections entre les chemins à trous d'air et d'autres objets combinatoires
- Structure de treillis?

Quelques questions à explorer

- Génération aléatoire uniforme des cDta.
- Génération exhaustive efficace des cDta.
- Calcul algorithmique de la série génératrice des cDta. qui évitent un motif donné
- Établir davantage de bijections entre les chemins à trous d'air et d'autres objets combinatoires
- Structure de treillis?

Merci!