

Общероссийский математический портал

М. И. Гордин, О центральной предельной теореме для стационарных процессов, Докл. АН СССР, 1969, том 188, номер 4, 739–741

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением

http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 73.232.239.48

14 июня 2019 г., 17:09:37

Доклады Академии наук СССР 1969. Том 188, № 4

УДК 519.217

МАТЕМАТИКА

м. и. гордин

О ЦЕНТРАЛЬНОЙ ПРЕДЕЛЬНОЙ ТЕОРЕМЕ ДЛЯ СТАЦИОНАРНЫХ ПРОЦЕССОВ

(Представлено академиком Ю. В. Линником 26 II 1969)

В настоящей заметке показывается, что центральная предельная теорема (ц.п.т.) для некоторых классов стационарных в узком смысле случайных процессов может быть получена из ц.п.т. для стационарных последовательностей мартингал-разностей.

Предположим, что задано пространство X с σ -алгеброй множеств M и вероятностной мерой P. Пространства \mathbf{L}_p соответствуют мере P; $|f|_p$ — норма функции f в \mathbf{L}_p .

Если σ -алгебра L содержится в M, то H(L) обозначает гильбертово пространство тех функций из \mathbf{L}_2 , которые измеримы относительно L.

Символом \hat{P}_G обозначается ортопроектор на замкнутое подпространство $G \subset H = \mathbf{L}_2$.

Пусть T — эргодический автоморфизм пространства X с мерой P, M_0 — такая σ -алгебра, что $\mathbf{T}^{-1}(M_0) \subset M_0$. Ссотношение $Uf(x) = f(\mathbf{T}x)$ определяет в H унитарный оператор.

Положим, наконец, $M_h = \mathbf{T}^{-h}(M_0)$, $H_h = H(M_h) = U^h H_0$, $S_h = H_h \ominus H_{h+1}$. Через R обозначим линейное пространство таких элементов $g \in H$, что $g \in H_h \ominus H_l$ при некоторых k и $l, -\infty < k \le l < \infty$.

Tеорема 1. $\Pi y c \tau b f \subseteq L_2 u$

$$\inf_{g \in \mathbb{R}} \overline{\lim}_{n \to \infty} \left| \frac{\sum_{k=0}^{n-1} U^k(f-g)}{\sqrt{n}} \right|_{\mathfrak{S}} = 0.$$

Тогда существует

$$\lim_{n\to\infty} \left| \sum_{k=0}^{n-1} U^k f \right|_2 / \sqrt{n} = \sigma \tag{1}$$

и

$$\mathbf{P}\left\{\sum_{k=0}^{n-1} U^k f / \sqrt[n]{n} < z\right\} \xrightarrow[n \to \infty]{} \frac{1}{\sigma \sqrt[n]{2\pi}} \int_{-\infty}^{z} e^{-u^2/2\sigma^2} du. \tag{2}$$

Наметим доказательство теоремы. Пусть $\epsilon_p>0,\ \epsilon_p {\underset{p \to \infty}{\longrightarrow}} 0,\ f_p \Subset R$ и

$$\overline{\lim_{n\to\infty}}\Big|\sum_{k=0}^{n-1}U^k(f-f_p)\Big|_2\Big/\sqrt[n]{n}<\varepsilon_p.$$

Рассмотрим депочку равенств

$$\begin{split} f &= f_{p} + f - f_{p} = \sum_{l = -\infty}^{\infty} P_{S_{l}} f_{p} + f - f_{p} = \sum_{l = -\infty}^{\infty} U^{-l} P_{S_{l}} f_{p} + \\ &+ \sum_{l = -\infty}^{\infty} \sum_{m = 0}^{-l - 1} U^{m} P_{S_{l}} f_{p} - U \sum_{l = 0}^{\infty} \sum_{m = 0}^{-l - 1} U^{m} P_{S_{l}} f_{p} + f - f_{p} = h_{p} + g_{p} - U g_{p} + f - f_{p}. \end{split}$$

Далее,

$$\frac{\overline{\lim}}{\lim_{n\to\infty}} \Big| \sum_{k=0}^{n-1} U^k (f - h_p) \Big|_2 \Big/ \sqrt[p]{n} \leqslant$$

$$\leqslant \overline{\lim}_{n\to\infty} \Big\{ |g_p - U^n g_p|_2 + \Big| \sum_{k=0}^{n-1} U^k (f - f_p) \Big|_2 \Big\} \Big/ \sqrt[p]{n} \leqslant \varepsilon_p. \tag{3}$$

Заметим теперь, что $h_p = \sum_{l=-\infty}^{\infty} U^{-l} P_{S_l} f_p \in S_0$, $U^k h_p \in S_k$. Отсюда следует, что $U^k h_p$ измерима относительно M_k и ортогональна $H_{k+1} = H(M_{k+1})$, т. е., что последовательность $U^{-k} h_p$ есть эргодическая последовательность

мартингал-разностей. Поэтому (см. (1, 2)) величины $\sum_{k=0}^{p} U^k h_p / \sqrt{n}$ распределены асимптотически нормально с дисперсией $\sigma_p^2 = |h_p|_2^2$.

Последовательность σ_p сходится к некоторому пределу σ_p так как

$$\begin{aligned} &|\sigma_{\boldsymbol{p}} - \sigma_{\boldsymbol{p}'}| \leqslant |h_{\boldsymbol{p}} - h_{\boldsymbol{p}'}|_2 = \Big| \sum_{k=0}^{n-1} U^k (h_{\boldsymbol{p}} - h_{\boldsymbol{p}'}) \Big|_2 \Big/ \sqrt[n]{\bar{n}} \leqslant \\ &\leqslant \overline{\lim_{n \to \infty}} \Big\{ \Big| \sum_{k=0}^{n-1} U^k (f - h_{\boldsymbol{p}}) \Big|_2 + \Big| \sum_{k=0}^{n-1} U^k (f - h_{\boldsymbol{p}'}) \Big|_2 \Big/ \sqrt[n]{\bar{n}} \Big\} \leqslant \varepsilon_{\boldsymbol{p}} + \varepsilon_{\boldsymbol{p}'}. \end{aligned}$$

Соотношение (2) следует теперь из леммы 5.3 работы (4), равенство (1) вытекает из (3) и того факта, что $\sigma_p \longrightarrow \sigma$.

T е о р е м а $\ 2$. Пусть T — эргодический автоморфизм, M_0 — такая же σ -алгебра, как u в теореме 1; $f \in \mathbf{L}_{2+\delta}$ при некотором $0 \leqslant \delta \leqslant \infty$ u

$$\sum_{A>0} (|P_{H_A} f|_{(2-\delta)/(1+\delta)} + |f - P_{H_A} f|_{(2-\delta)/(1-\delta)}) < \infty.$$

Tог ∂a выполнено условие теоремы 1.

Поясним, как доказывается теорема 2. Вместо $\int_X g(x) h(x) \mathbf{P}(dx)$ будемнисать (g,h). Положим

$$f_1^{(A)} = P_{H_A} f, \quad f_2^{(A)} = f - P_{H_A} f, \quad r_i^{(A)}(k) = (f_i^{(A)}, U^k f_i^{(A)}) \quad (i = 1, 2).$$

Из неравенства Гёльдера и известного свойства условных математических ожиданий (см., например, (3), стр. 508) следует, что

$$|r_i^{(A)}(k)| = |(f_i^{(A)}, U^{|k|}f_i^{(A)})| = |(f_i^{(A)}, U^{\pm |k|}f_i^{(A+|k|)})| \leqslant |f_i^{(A)}|_{2+\delta} |f_i^{(A+|k|)}|_{(2+\delta)/(1+\delta)} \leqslant 2|f|_{[2+\delta]} |f_i^{(A+|k|)}|_{(2+\delta)/(1+\delta)}.$$

Используя эту оценку, находим, что

$$\frac{\overline{\lim}}{n \to \infty} \Big| \sum_{k=0}^{n-1} U^k \left(f_1^{(A)} + f_2^{(A)} \right) \Big|_2 / \sqrt{n} \leqslant \sum_{i=1}^2 \overline{\lim}_{n \to \infty} \Big| \sum_{k=1}^{n-1} U^k f_i^{(A)} \Big|_2 / \sqrt{n} = \\
= \sum_{i=1}^2 \lim_{n \to \infty} \Big(\sum_{|k| < n} \left(1 - \frac{|k|}{n} \right) r_i^{(A)} (k) \Big)^{1/2} \leqslant 2 |f|_{2+\delta}^{1/2} \sum_{i=1}^2 \Big(\sum_{k=A}^{\infty} |f_i^{(k)}|_{(2+\delta)/(1+\delta)} \Big)^{1/2} \xrightarrow{A \to \infty} 0.$$

Остается заметить, что

$$f - f_1^{(A)} - f_2^{(A)} \in R.$$

Замечание 1. Теоремы 1 и 2 можно переформулировать для случая, когда \mathbf{T} — эндоморфизм. В этом случае пространства S_k образуют бесконечную в одну сторону последовательность.

Замечание 2. В условиях теоремы 2 имеет место равенство f=g+Uh-h, где $g,h\in \mathbf{L}_{(2+\delta)/(1+\delta)},$ g измерима относительно M_0 и имеет равные нулю интегралы по всем множествам из M_1 . Такое представление при $\delta=0$ полезно при доказательстве более тонких предельных теорем, например, при доказательстве слабой сходимости распределений в пространстве непрерывных функций, соответствующих построенной по суммам n-1

 $\sum_{k=0}^{\infty}U^{k}f$ последовательности случайных ломаных, к мере, соответствующей

броуновскому движению.

Замечание З. Из теоремы 2 нетрудно получить ряд теорем, касающихся процессов с сильным и равномерным сильным перемешиванием и

функционалов от таких процессов.

В частности, теоремы 18.6.1, 18.6.2 и 18.6.3 из книги (3) являются следствиями теоремы 2. Кроме того, в условиях теоремы 18.6.1 и при некотором усилении условий теорем 18.6.2 и 18.6.3 из (3) можно получить представление f = g + Uh - h, $g \in S_0$, $h \in L_2$.

Автор выражает благодарность И. А. Ибрагимову за внимание к работе,

Ленинградский государственный университет им. А. А. Жданова

Поступило 23 I 1969

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ R. Billingsley, Proc. Am. Math. Soc., 12, 5, 788 (1961). ² И. А. Ибрагимов, Теория вероятностей и ее применения, 8, 1, 89 (1963). ³ И. А. Ибрагимов, Ю. В. Линник, Независимые и стационарно связанные величины, М., 1965. ⁴ В. П. Леонов, Некоторые применения старших семиинвариантов к теории стационарных случайных процессов, М., 1964.