

CS 412 Intro. to Data Mining

Chapter 2. Getting to Know Your Data

Jiawei Han, Computer Science, Univ. Illinois at Urbana-Champaign, 2017

3 W NOS Dafa

Data

1
2
1
0
-1
1
1D

1	12	2	5				
2	11	7	2				
1	15	9	3				
0	10	1	-3				
-1	20	12	-2				
1	19	6	-5				
2D							

		1	12	2	5
1	1	2	11	7	2
. 2	2	1	15	9	3
: 1	1	0	10	1	-3
: 0	0	-1	20	12	-2
(.	-:	1	19	6	-5
	1	1	9 0		-o
1		12	0	, -3	

		1	12	2	5
1	1	2	11	7	2
: 2	2	1	15	9	3
1	1	0	10	1	-3
: 0	0	-1	20	12	-2
(.	-:	1	19	6	-5
. 1	1	13	0 0	-:	
1		17	U	,	

Data

	Attribute 1	Attribute 2	Attribute 3	Attribute 4
Record 1	1	12	2	5
Record 2	2	11	7	2 I
Record 3	1	15	9	3
Record 4	0	10	1	-3
Record 5	-1	20	12	-2
Record 6	1	19	6	-5

Chapter 2. Getting to Know Your Data

Data Objects and Attribute Types

Basic Statistical Descriptions of Data

Data Visualization

Measuring Data Similarity and Dissimilarity

Summary

Types of Data Sets: (1) Record Data

☐ Relational records (3) Shift

Data matrix, e.g., numerical matrix, crosstabs

	China	England	France	Japan	USA	Total
Active Outdoors Crochet Glove		12.00	4.00	1.00	240.00	257.00
Active Outdoors Lycra Glove		10.00	6.00		323.00	339.00
InFlux Crochet Glove	3.00	6.00	8.00		132.00	149.00
InFlux Lycra Glove		2.00			143.00	145.00
Triumph Pro Helmet	3.00	1.00	7.00		333.00	344.00
Triumph Vertigo Helmet		3.00	22.00		474.00	499.00
Xtreme Adult Helmet	8.00	8.00	7.00	2.00	251.00	276.00
Xtreme Youth Helmet		1.00			76.00	77.00
Total	14.00	43.00	54.00	3.00	1,972.00	2,086.00

erson:		•			
Pers_ID	Surname	First_Name	City	1	
0	Miller	Paul	London	<u> </u>	
1	Ortega	Alvaro	Valencia	— no relation	
2	Huber	Urs	Zurich		
3	Blanc	Gaston	Paris		
4	Bertolini	Fabrizio	Rom	<u> </u>	
Car_ID	Model	Year	Value	Pers_ID	
101	Bentley	1973	100000	0	
102	Rolls Royce	1965	330000	0	+
103	Peugeot	1993	500	3	_
104	Ferrari	2005	150000	4	
105	Renault	1998	2000	3	_
106	Renault	2001	7000	3	
107	Smart	1999	2000	2 —	

Transaction data ข้องสูกกา

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

	team	coach	pla y	ball	score	game	n wi	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Document data: Term-frequency vector (matrix) of text documents

いいからくいいのかっちずいかっか

Ble Dumin

Types of Data Sets: (2) Graphs and Networks

- ☐ Transportation network
- World Wide Web

The Control of Control

- □ Molecular Structures אָרְבְּעֵלְ בֹּהְאַ אַרְהַ בּּרְאַבְּיִלְ

Types of Data Sets: (3) Ordered Data

Uideo data: sequence of images

□ Temporal data: time-series

Sequential Data: transaction sequences

Genetic sequence data

 ¹
 ¹

ATGTTC AAC AAATGCTCCTTTCATTCCTCTATTTACAGACCTGCCGC ATGITC AAT AAATGC TGC TTTC ACTCC TCTATTTAC AGACC TGCCGC Chimpanzee Macaque Human G AC A A T T C T G C T A G C C T T T G T G C T A T T A T C T G T T T T C T A A A C T T A G T A A T T G A G T G ATTCTGC TAGCAGCCTTTGTGC TATTATCTGTTTTCTAAACTTAGTAATTGAGTG Chimpanzee Macague Human Chimpanzee Macaque Human AGAATACGATTTAGCAAATTACTTCTTAAGATACTATTTTACATTTCTATATTCTCCT Chimpanzee AGAATATGATTTAGCAAATTACCTCTTAAGATATTATTTTGCACTTCTATATTCTCCTA Macaque CCTGAGTTGATGTGTGAGCAATATGTCACTTTCATAAAGCCAGGTATAC Human CCTGAGTTGATGTGTGAGCCGTATGTCACTTTCATAAAGCCAGGTATACA----Chimpanzee Macaque GACAGGTAAGTAAAAACATATTATTTATTCTACGTTTTTGTCCAAAAATTTTAAATTTC Human Chimpanzee Macaque Human AACTGTTGCGCGTGTGTTGGTAA---TGTAAAACAAACTCAGTACA Chimpanzee Macaque

Types of Data Sets: (4) Spatial, image and multimedia Data

□ Spatial data: maps แมนที่ ผู พูการะากกับ มิหาักโร

■ Image data:

□ Video data: spatio-temporal

त्रहार्ग लाजरा

Important Characteristics of Structured Data

- Dimensionality
- Data WIST Dimension illegistions
- Curse of dimensionality
- □ Sparsity สนใจเท็พกรีส์มันแล
 - Only presence counts
- Resolution
 - Patterns depend on the scale
- Distribution
 - Centrality and dispersion

	China	England	France	Japan	USA	Total
Active Outdoors Crochet Glove		12.00	4.00	1.00	240.00	257.00
Active Outdoors Lycra Glove		10.00	6.00		323.00	339.00
InFlux Crochet Glove	3.00	6.00	8.00		132.00	149.00
InFlux Lycra Glove		2.00			143.00	145.00
Triumph Pro Helmet	3.00	1.00	7.00		333.00	344.00
Triumph Vertigo Helmet		3.00	22.00		474.00	499.00
Xtreme Adult Helmet	8.00	8.00	7.00	2.00	251.00	276.00
Xtreme Youth Helmet		1.00	·		76.00	77.00
Total	14.00	43.00	54.00	3.00	1,972.00	2,086.00

Data Objects

ハムシリングひょん

- Data sets are made up of data objects
- A data object represents an entity
- Examples:
 - □ sales database: customers, store items, sales מארילות מיינים sales מארילות מיינים ביינים ביינים
 - medical database: patients, treatments
 - university database: students, professors, courses

Also called samples, examples, instances, data points, objects, tuples in Data 196 (1965)

- □ Database rows \rightarrow data objects; columns \rightarrow attributes

Attributes

757

- คือกุณสมชุด สาร อริเทษของแต่งง สา
- Attribute (or dimensions, features, variables)
 - A data field, representing a characteristic or feature of a data object.
 - E.g., customer_ID, name, address
- ☐ Types:
 - Nominal (e.g., red, blue) ข้อมูล ที่เป็นหามบัญญัติ
 - Binary (e.g., {true, false})

 - Numeric: quantitative
 - □ Interval-scaled: 100°C is interval scales עני ס ענין ס ענין
 - □ Ratio-scaled: 100°K is ratio scaled since it is twice as high as 50°K 📝 🕖 📫
- Q1: Is student ID a nominal, ordinal, or interval-scaled data? Nominal
- Q2: What about eye color? Or color in the color spectrum of physics?

Attribute Types

- 20 MIZIMI
- □ Nominal: categories, states, or "names of things"
 - ☐ Hair_color = {auburn, black, blond, brown, grey, red, white}
 - marital status, occupation, ID numbers, zip codes
- Binary
 - Nominal attribute with only 2 states (0 and 1)
 - Symmetric binary: both outcomes equally important
 - e.g., glenndlen
 - Asymmetric binary: outcomes not equally important.
 - e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)

Ordinal

- □ Values have a meaningful order (ranking) but magnitude between successive values is not known
- □ Size = {small, medium, large}, grades, army rankings

Numeric Attribute Types

- Quantity (integer or real-valued)
- Interval

- 2 0 m
- Measured on a scale of equal-sized units
- Values have order
 - E.g., temperature in C°or F°, calendar dates
- No true zero-point
- Ratio

- Inherent zero-point
- We can speak of values as being an order of magnitude larger than the unit of measurement (10 K° is twice as high as 5 K°).
 - e.g., temperature in Kelvin, length, counts, monetary quantities

Discrete vs. Continuous Attributes

- Discrete Attribute ไม่มีค่างหาง 2 ค่า เป็น 1,2 มาให้มีค่างสาก เก็บ 2
 - Has only a finite or countably infinite set of values
 - E.g., zip codes, profession, or the set of words in a collection of documents
 - Sometimes, represented as integer variables
 - Note: Binary attributes are a special case of discrete attributes
- - Has real numbers as attribute values
 - E.g., temperature, height, or weight
 - Practically, real values can only be measured and represented using a finite number of digits
 - Continuous attributes are typically represented as floating-point variables