SCHEMA

Nella topologia sopra, RIP viene utilizzato per connettere R1-R2 e OSPF viene utilizzato per connettere R2-R3. In questo scenario abbiamo un problema in cui R1 non può comunicare con R3 e viceversa, nonostante il router intermedio (in questo caso è R2) sappia esattamente come raggiungere entrambe le reti.

Sommario

SCHEMA	1
FASE 0: Topologia	2
FASE 2: Routing	2
Routing RIP	2
Routing OSPF process 1 area 0	3
FASE 3: Testing routing AS RIP e AS OSPF	3
OSPF →RIP: R3 → Lo1	3
RIP → OSPF: R1 → Lo2	3
Le tabelle di routing prima e dopo la redistribuzione	3
FASE 4: Redistribuzione	4
OSPF → RIP	4
RIP→OSPF	4
FASE 5: Testing routing finale	4
OSPF → RIP R3→Lo1	4
RIP→OSPF R1→Lo3	4

FASE 0: Topologia

Selezionare PT-Router, Cablaggio in fibra. Le interfacce di loopback sono tutte di classe A (/8)

FASE 1: Configurazione ROUTER

R1	ASBR2	R3
Interfaccia di loopback	Interfaccia di loopback	Interfaccia di loopback
R1(config)#int loopback 1	ASBR2(config)#int loopback 2	R3(config)#int loopback 3
R1(config-if)#ip address	ASBR2(config-if)#ip address	R3(config-if)#ip address
1.1.1.1 255.0.0.0	2.2.2.2 255.0.0.0	3.3.3.3 255.0.0.0
R1(config-if)#no	ASBR2(config-if)#no	R3(config-if)#no shutdown
shutdown	shutdown	R3(config-if)#ex
R1(config-if)#ex	ASBR2(config-if)#ex	
, ,	, ,	R3(config)#interface
R1(config)#interface	ASBR2(config)#interface	FastEthernet5/0
FastEthernet4/0	FastEthernet4/0	R3(config-if)#ip address
R1(config-if)#ip address	ASBR2(config-if)#ip address	192.168.23.3 255.255.255.0
10.12.12.1 255.255.255.0	10.12.12.2 255.255.255.0	R3(config-if)#exit
R1(config-if)#exit	ASBR2(config-if)#exit	
	ASBR2(config)#interface	
	FastEthernet5/0	
	ASBR2(config-if)#ip address	
	192.168.23.2 255.255.255.0	
	ASBR2(config-if)#exit	

FASE 2: Routing

Routing RIP

R1	ASBR2
R1(config)#router rip	ASBR2(config)#router rip
R1(config-router)#version 2	ASBR2(config-router)#version 2
R1(config-router)#network 10.12.12.0	ASBR2(config-router)#network 10.12.12.0
R1(config-router)#network 1.1.1.1	ASBR2(config-router)#network 2.2.2.2

Routing OSPF process 1 area 0

R3	ASBR2
R3(config)#route ospf 1	ASBR2(config)#route ospf 1
R3(config-router)#router-id 3.3.3.3	ASBR2(config-router)#router-id 2.2.2.2
R3(config-router)#network 192.168.23.0	ASBR2(config-router)#network
0.255.255.255 area 0	192.168.23.0 0.0.0.255 area 0
R3(config-router)#network 3.3.3.3	ASBR2(config-router)#network 2.2.2.2
0.255.255.255 area 0	0.255.255.255 area 0
	ASBR2(config-router)#exit
	ASBR2(config)#
	00:43:25: %OSPF-5-ADJCHG: Process 1,
	Nbr 3.3.3.3 on FastEthernet5/0 from
	LOADING to FULL, Loading Done

FASE 3: Testing routing AS RIP e AS OSPF

OSPF \rightarrow RIP: R3 \rightarrow Lo1

R3#ping 1.1.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 1.1.1.1, timeout is 2 seconds:

••••

Success rate is 0 percent (0/5)

 $RIP \rightarrow OSPF: R1 \rightarrow Lo2$

Le tabelle di routing prima e dopo la redistribuzione

FASE 4: Redistribuzione

Nel router di confine tra i due sistemi autonomi, in questo caso ASBR2 (ASBR)

Per risolvere questo tipo di problema, è necessario eseguire una ridistribuzione a 2 vie sul router intermedio, o in questo caso è R2.

OSPF → RIP

I comandi utilizzato per ridistribuire il percorso RIP in OSPF è

ASBR2(config)#router ospf 1 ASBR2(config-router)#redistribute rip subnets ASBR2(config-router)#ex

RIP→OSPF

Poichè RIP è un protocollo che funziona in base al conteggio degli hop.

Quindi quando ridistribuiamo qualsiasi rotta esterna (Lo1) instradata con RIP, dobbiamo specificare il conteggio degli hop per raggiungere quella rete esterna

Il conteggio degli hop non deve corrispondere esattamente alle condizioni reali, ma potrebbe essere regolato in base alle nostre esigenze. In questo esempio, impostiamo il conteggio di hop su 12 per una facile identificazione

ASBR2(config)#router rip ASBR2(config-router)#redistribute ospf 1 metric 12 ASBR2(config-router)#ex

FASE 5: Testing routing finale

OSPF \rightarrow RIP R3 \rightarrow Lo1

R3>en

R3#ping 1.1.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 1.1.1.1, timeout is 2 seconds:

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/0 ms

$RIP \rightarrow OSPF R1 \rightarrow Lo3$

R1>en

R1#ping 3.3.3.3

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 3.3.3.3, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/0 ms