Axioms of Quantum Mechanics

Paul

March 29, 2022

1 States

Axiom 1 With every quantum system there is associated a complex separable Hilbert space $(\mathfrak{H}, +, \cdot, \langle \rangle)$. The states of the system are all positive trace-class linear maps $\varrho : \mathfrak{H} \to \mathfrak{H}$ for which $\operatorname{Tr} \varrho = 1$

Remark 1 Almost everywhere it is stated: The normalized elements $\psi \in \mathfrak{H}$ are the states of the quantum system - it is false.

Definition 1 A state is called a pure state (not pure = mixed) if there exists $\psi \in \mathfrak{H}$ such that

$$\varrho:\mathfrak{H}\to\mathfrak{H}, \qquad \qquad \alpha\mapsto\varrho(\alpha)=\frac{\langle\psi,\alpha\rangle}{\langle\psi,\psi\rangle}\,\psi$$

Remark 2 Thus for pure states it is true that state ϱ is associated with the element of the Hilbert space ψ .

Complex Hilbert space $(\mathfrak{H}, +, \cdot, \langle ... \rangle)$

- \bullet \mathfrak{H} is a set that satisfies the axioms of complex vector space
 - $+: \mathfrak{H} \times \mathfrak{H} \to \mathfrak{H}$
- Sesquilinear map $\langle .,. \rangle : \mathfrak{H} \times \mathfrak{H} \to \mathbb{C}$ satisfying
 - $-\langle \phi, \psi \rangle = \overline{\langle \psi, \phi \rangle}$ (complex conjugate)
 - $-\langle \phi, \psi_1 + \alpha \psi_2 \rangle = \langle \phi, \psi_1 \rangle + \alpha \langle \phi, \psi_2 \rangle, \forall \alpha \in \mathbb{C}$
 - $-\langle \psi, \psi \rangle \geq 0, \forall \psi \in \mathfrak{H} \text{ and } \langle \psi, \psi \rangle = 0 \Leftrightarrow \psi = 0$
- \mathfrak{H} is complete

If one has a sequence in \mathfrak{H} , $\phi: \mathbb{N} \to \mathfrak{H}$, which satisfies the Cauchy property $\forall \epsilon > 0 \,\exists N \in \mathbb{N}$ such that $\forall n, m \geq N \colon \|\phi_n - \phi_m\| < \epsilon$, where $\|\phi\| = \sqrt{\langle \phi, \phi \rangle}$, one may already conclude that the sequence ϕ converges in \mathfrak{H} i.e. $\exists \phi \in \mathfrak{H}$ such that $\forall \epsilon > 0 \,\exists N \in \mathbb{N}$ such that $\forall n \geq N \colon \|\phi - phi_n\| < \epsilon$.

Remark 3 For linear map $A: \mathfrak{H} \supset \mathcal{D}_A \to \mathfrak{H}$ we will only look at densely defined linear maps

$$\forall \psi \in \mathfrak{H}, \ \forall \epsilon > 0 \ \exists \chi \in \mathcal{D}_A : \qquad ||\chi - \psi|| < \epsilon$$
$$A(\phi + \alpha \psi) = A\phi + \alpha A\psi, \qquad \forall \alpha \in \mathbb{C}$$

Definition 2 Positive linear map is a map A such that $\forall \psi \in \mathcal{D}_A$: $\langle \psi, A\psi \rangle \geq 0$

Definition 3 Trace-class linear map is a map $A: \mathfrak{H} \to \mathfrak{H}$ (defined on the entire Hilbert space) such that \forall orthonormal basis $\{e_n\}$ of \mathfrak{H} the sum/series $\sum_n \langle e_n, Ae_n \rangle < \infty$, $\operatorname{Tr} A = \sum_n \langle e_n, Ae_n \rangle$

Remark 4 Hilbert space 5 has to be separable.

2 Observables

Axiom 2 The observables of a quantum system are the self-adjoint linear maps $A: \mathcal{D}_A \longrightarrow \mathfrak{H}$

Definition 4 A linear map $A: \mathcal{D}_A \longrightarrow \mathfrak{H}$ densely defined on its domain is called self-adjoint if it coincides with its adjoint map $A^*: \mathcal{D}_{A^*} \longrightarrow \mathfrak{H}$

$$\mathcal{D}_{A^*} = \mathcal{D}_A \qquad \qquad A^* \psi = A \psi$$

Definition 5 The adjoint $A^*: \mathcal{D}_{A^*} \longrightarrow \mathfrak{H}$ of a linear map $A: \mathcal{D}_A \longrightarrow \mathfrak{H}$ is defined by

$$\mathcal{D}_{A^*} = \left\{ \psi \in \mathfrak{H} \mid \forall \alpha \in \mathcal{D}_A \,\exists \eta \in \mathfrak{H} : \langle \psi, A\alpha \rangle = \langle \eta, \alpha \rangle \right\}$$
$$A^* \psi = \eta$$

 A^* is well defined if there is unique η

3 Measurements

Axiom 3 The probability that a measurement of an observable A on a system that is in the state ϱ yields a result in the Borel set $E \subseteq \mathbb{R}$ is given by

$$\mu_{\varrho}^{A}(E) = \operatorname{Tr}\left(P_{A}(E) \circ \varrho\right)$$

 $P_A(E)$ is a bounded operator. The composition of trace-class operator with the bounded operator is again trace-class operator.

 $P_A: \operatorname{Borel}(\mathbb{R}) \longrightarrow \mathcal{L}(\mathfrak{H}):$ Banach space of bounded linear maps on \mathfrak{H}

is the unique projection-valued measure that is associated with a self-adjoint map A accordingly to the spectral theorem

$$A = \int_{-\infty}^{\infty} \lambda \, \mathrm{d}P_A(\lambda)$$

4 Unitary dynamics

Time intervals (t_1, t_2) during which no measurement occurs

Axiom 4 State $\varrho(t_1)$ and state $\varrho(t_2)$ are related through

$$\varrho(t_2) = \mathcal{U}(t_2 - t_1) \, \varrho(t_1) \, \mathcal{U}^{-1}(t_2 - t_1)$$

where

$$\mathcal{U}(t) = \exp\left(-\frac{i}{\hbar}\mathcal{H}t\right)$$

 \mathcal{H} is the energy observable

$$f(A) = \int_{-\infty}^{\infty} f(\lambda) \, \mathrm{d}P_A(\lambda)$$

5 Projective dynamics

Step in when a measurement is made at time t_m

Axiom 5 The state ϱ_{after} immediately after the measurement of an observable A is

$$\varrho_{after} = \frac{P_A(E) \circ \varrho_{before} \circ P_A(E)}{\text{Tr} \left(P_A(E) \circ \varrho_{before} \circ P_A(E)\right)}$$

where E is the smallest Borel set in which the actual outcome of the measurement happened to lie.