Theorem Let {Am}m=1,2... be a seguence of Countably infinite sets. Let S= U Am. Then S is countably infinite. Proof Each Am is countably impinite () Am NJ V m > 1

We use I'm indices like for the enthis of a matrix. The first

index tells us which An not The element selongs to while The 55 pecond index tells us when that element is in The enumeration (the
Counting) of Am.
Write XII, X12 X13 X14.
X21 X22 X23 X24 X31 X32 X33 X34
731 ×32 ×33 ×34 ·-
[X11, X12, X21, X22, X3, X14, X23, X32, X41,]
= 100 - 9 11 countedby infinite because lun it some my are
the name Am $\subseteq S$ \forall $m \geq 1$ and \forall $m \geq 1$. \forall $m \geq 1$. \forall $m \geq 1$. Corollary 1 Suppose an indexing $m \neq 1$ is countable, and \forall $m \neq 1$.
Corollary 1 Suppose an indexing nt I is countable, and Vie I,
Ai is countable, Then T=UA; is countable.
Proof: The signst set we can obtain here is when I is countryly
infinite and each Ai is countedly infinite. By The previous
theorem, T is countably impirite in Nex case. Therefore, T is
Proof: The signst set we can obtain here is when I is countrily infinite and each Ai is countrily infinite. By The previous theorem, T is countrily impirite in Next case. Therefore, T is at most countrily infinite (may be finite if I is finite and
each Ai is finite), so T is countable.
Corollary 2 Let A be a countably infinite pet, and let A ^m = A × × A = {(a, a ₂ ,, a _n) a, a ₂ ,, a _n ∈ A }.
Then Am is countably infinite.
bose con m=1 A=A~J=2A32
Inductive step Assume A^{m-1} ; countably imfinite. $A^{m} = A^{m-1} \times A = S(b, a) b \in A^{m-1}, a \in A^{s}$
$A^{m} = A^{m-1} \times A = 3(b,a) \mid b \in A \mid a \in A \mid A$
$\forall s \in A^{m-1} S_s = \{(b,a) \in A^m \mid a \in A \} \sim J \sim A \Rightarrow J_s ii$

countably infinite. An = U Sb ~ J by Grollary 1, no An is indeed countribly infinite as claimed. (2.0.d.) Proof MNJ, so The world follows from Corollary 2. Corollary 4 7 is countably infinite 4 m > 1. Prof We showed 7 nJ, so the result follows from Corollary 2. Corollary I @ is countably impirite. Proit Q=[] | 1 + 0, PJ E H, (P, S)=1), but we can no common factors represent P es $\{(1,2)| \leq t \circ P \cdot f \in H \} / N \subseteq H^2$, when $(P \cdot g_1) \sim (P \cdot g_1)$ E) $f_1 = \frac{p_1}{52}$ E) $p_1 g_2 = p_2 g_1$ by was multiplication. We also know & E P (W s=1). Thushe, Q is sondwished between 2 = 7 and 212, 50 R of which are countribly injuste Remark We can give a visual suprementation of the previous enjurent as follows in S. 0 1 2 3 4 5 6 7 8 P The dots are penrs (p.s) my sto p-set, which from a

lettice. We can use the smalle trick from the theorem to show that the positive nationals $Q^{+} = \{\frac{1}{5} \in Q \mid \frac{1}{5} > 0\}$ are

idea. For each element of 6, we have the close to include it in our subsit ("on") or not to include it ("off"). Thurson, we have 2 choices for each dement and #(B)=m, no # P(B)=2".

Proof M NJ, so we can write M= {X1, X2, ... }. When we form a subset of IN, for each i, in can include X; or hove it out. Say we represent including X; by I and leaving X; out by O. Then coch subset of M can be represented uniquely as a sequence of 0's and 1's. In fact, There is a one-to-one correspondence between The subsuts of N and the reguences of O's and I's. Therefore P(N) NA, where A is the set of all sequences of 0's and 1's, but me should in the previous Thorem that A is uncountably infinite =) P(N) is uncounted by infinite. J. e.d.).

We shall also use the one to one correspondence with The set of squeries of 0's and 1's in order to prove R is uncountably infinite. The argument proceeds in two steps:

1) We show RN (0,1) via a devely chosen sijedon.

(2) We set up a correspondence between (0,1) and the set A of all nyuenus of 0's and 1's via a sinary expansion. sty is the following proposition:

Proposition IR is in bijective correspondence with the interval (0,1). Remark (0,1) & IR, but we saw infinite sets can be in on-to-on correspondence with one of This proper insmets.

Proif Recall from trijonometry that tan: (-I, I) -> IR is $X = -\frac{\pi}{2}$ $X = -\frac{\pi}{2}$ X =a vijection. Here is The script:

tan x = Jin X $(91\left(-\frac{7}{11}\right)=(91\left(\frac{7}{11}\right)=0$

