Métricas

Métricas para la regresión

- MSE, RMSE, R-Squared
- MAE
- (R)MSPE, MAPE
- (R)MSLE

MSE

Error cuadrático medio:

$$MSE = rac{1}{N} \sum_{i=1}^{N} \left(y_i - \hat{y_i}
ight)^2$$

Se utiliza cuando no hay una preferencia hacia el método de solución o no se conoce otra métrica.

RMSE

Raíz del error cuadrático medio:

$$RSE = \sqrt{MSE} = \sqrt{rac{1}{N}\sum_{i=1}^{N}\left(y_i - \hat{y_i}
ight)^2}$$

Similar al MSE, la ventaja es que permite analizar el error en la misma escala de las etiquetas. Es más fácil de comprender el error.

A pesar de que son similares, no son directamente intercambiables si se fuera a aplicar gradiente descendiente.

$$\frac{\delta RSE}{\delta \hat{y_i}} = \frac{1}{2\sqrt{MSE}} \frac{\delta MSE}{\delta \hat{y_i}}$$

R-squared

Métrica que califica la calidad de la regresión entre 0 y 1.

$$R^2 = 1 - rac{rac{1}{N} \sum_{i=1}^{N} \left(y_i - \hat{y_i}
ight)^2}{rac{1}{N} \sum_{i=1}^{N} \left(y_i - ar{y}
ight)^2} = 1 - rac{MSE}{rac{1}{N} \sum_{i=1}^{N} \left(y_i - ar{y}
ight)^2} \qquad \qquad ar{y} = rac{1}{N} \sum_{i=1}^{N} y_i$$

o significa que la predicción es tan mala como predecir para todo valor una constante igual a y, 1 significa que el término entre paréntesis es siempre cero por lo que la predicción es perfecta.

MAE

Promedio de las diferencias absolutas entre las predicciones y las etiquetas:

Fácil de justificar.

$$MAE = rac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y_i}|$$

Es usado en finanzas. Permite decir cuántas veces es mejor un modelo que el otro. Un error de 10 dólares es dos veces peor que un error de 5 dólares.

Más robusto que el MSE, no es influenciado por los outliers, muestras atípicas.

Supongamos que tenemos un modelo para dos tiendas:

Para la tienda 1:

Se predice para una muestra el valor de 9, pero se vendió a 10, el MSE es 1.

Para la tienda 2:

Se predice para una muestra el valor de 999, pero se vendió a 1000, el MSE es 1.

Cuál error es más crítico? El primero!

Los errores relativos pueden ser más informativos:

$$MSPE = rac{100\%}{N} \sum_{i=1}^{N} \left(rac{y_i - \hat{y_i}}{y_i}
ight)^2$$

$$MAPE = rac{100\%}{N} \sum_{i=1}^{N} \left| rac{y_i - \hat{y_i}}{y_i}
ight|$$

El costo que se paga por arreglar un error depende del tamaño de la etiqueta. Mientras más pequeña la etiqueta más costoso. MAPE pierde su capacidad para ignorar las muestras atípicas.

RMSLE

$$RMSLE = \sqrt{rac{1}{N}\sum_{i=1}^{N}\left(log(y_i+1)-log(\hat{y_i}+1)
ight)^2}$$

Se preocupa más por los valores relativos que por los absolutos. Según esta métrica es mejor siempre predecir más que el valor de la etiqueta, que un valor inferior.

Métricas para la clasificación

- Accuracy score.
- LogLoss

Accuracy score

$$Accuracy = rac{1}{N} \sum_{i=1}^{N} [\hat{y_i} - y_i]$$

Esta métrica habla de cuan frecuente es la predicción correcta. Un valor de 0.9 dice que de cada 10 predicciones, 9 son buenas.

Tiene un problema. Cuando se tienen clases desbalanceadas:

Datos:

10 Gatos y 90 Perros

Si siempre se predice Perro, el clasificador tiene un accuracy de 0.9!! Error!

LogLoss

Para un problema binario:

$$LogLoss = -rac{1}{N}\sum_{i=1}^{N}y_ilog(\hat{y_i}) + (1-y_i)log(1-\hat{y_i})$$

Se preocupa por maximizar las predicciones soft.

Para problemas multiclase:

$$LogLoss = -rac{1}{N}\sum_{i=1}^{N}\sum_{i=1}^{L}y_{il}log(\hat{y_{il}})$$

Probabilidad de pertenecer a la clase l: $\hat{y_{il}}$

AUC Area Under Curve ROC

Para problemas de clasificación binaria podemos cambiar el valor del umbral de la salida soft para obtener una mejor o peor clasificación.

Para construir la curva ROC, se deben primero definir dos conceptos:

Verdaderos positivos (TP): Elementos que eran de la clase i y fueron clasificados como clase i.

Falsos positivos (FP): Elementos que no eran de la clase i pero fueron clasificados como de la clase i.

AUC Area Under Curve ROC

Para un umbral de 0.5, se tiene:

Se organizan las predicciones para la clase positiva y luego las de la clase negativa. Se va de izquierda a derecha contando el número de verdaderos positivos, y de falsos positivos, el primer rojo es un verdadero positivo, TP=1, el verde es un falso positivo (Se predijo como verde), FP= 1, el siguiente rojo es un verdadero positivo, TP=2, y así sucesivamente.

AUC Area Under Curve ROC

Para un umbral de 0.7, se tiene:

Para un clasificador real:

La línea punteada representa un clasificador random. AUC=0.5

Matriz de confusión

True positive (TP): Se predice la clase positiva y en realidad era de la clase positiva.

True negative (TN): Se predice la clase negativa y en realidad era de la clase negativa.

False positive (FP): Se predice la clase positiva y en realidad era de la clase negativa.

False negative (FN): Se predice la clase negativa y en realidad era de la clase positiva.

La clase positiva en realidad es figurativa, es mi clase de interés. Por ejemplo en un problema multiclase de 3 clases, si quiero analizar que tan bien reconoce mi clasificador la clase perro, la clase perro sería la clase positiva, y las demás las clase negativa.

Para cada clase se calcula el F-Score

Una medida análoga al error es el F-Score. Este se calcula para cada clase. Es un ponderado de la precisión y la sensibilidad. Donde la precisión es cuantas muestras de las que predije como clase positiva son en realidad de la clase positiva. Y la sensibilidad es de las muestras que eran positivas, cuantas se predijeron como positivas.

$$P = \frac{TP}{TP + FP}$$

Precisión

$$R = \frac{TP}{TP + FN}$$

Sensibilidad

$$F_1=2rac{P imes R}{P+R}$$