| NAME: |  |
|-------|--|
|-------|--|

THIS IS A SAMPLE. **THIS IS NOT EVERYTHING.** ANYTHING IN THE QUIZZES, ANY DIAGRAMS (INCLUDING MEMORY), ANY PROGRAMMING CONCEPT COULD BE COVERED EVEN THOUGHT THERE MIGHT NOT BE A QUESTION BELOW PERTAINING TO IT SPECIFICALLY.

THIS IS ONLY THE NEW STUFF ADDED SINCE THE MIDTERM. USE THE MIDTERM PRACTICE EXAM FOR THOSE QUESTIONS.

- 1. A logic circuit whose output depends only upon the current inputs is a \_\_\_\_\_\_\_
- 2. An 8 bit adder is created from a series of full adders. How many input and output lines will the 8 bit adder
- 3. If a computer has 8-bit addressability and uses 6 bits to access a memory location, what is the size of memory in bytes?
- 4. If a computer has 32-bit addressability and an address space of 1024, how many bytes can be stored?
- 5. What does R=0, S=0 do on an RS-Latch as discussed in class?
- 6. What does R=1, S=0 do on an RS-Latch as discussed in class?

For the next three it could be anything block diagram for a device we have studied such as decoder, multiplexer, encoder, adder, memory, latch, etc...

- 7. What is the name of the circuit block diagram shown in Image 1?
- 8. In Image 1, Given some number of input lines, how many lines are required of the output O?
- 9. In Image 1, Given some number of output lines, how many lines are required for input S?
- 10. Given a transistor level circuit, fill out a truth table.



| A | В | C | D | E |
|---|---|---|---|---|
| 0 | 0 |   |   |   |
| 0 | 1 |   |   |   |
| 1 | 0 |   |   |   |
| 1 | 1 |   |   |   |

11. For the circuit above, what does E represent?

a) and b) nand c) xor d) xnor e) None/All

| NAME: |  |  |  |  |
|-------|--|--|--|--|
|       |  |  |  |  |

12. Draw a two bit state diagram for a circuit that counts up and repeats when the switch is in 1 and flashes both-on / both-off when the switch is in zero. When transitioning from counting to flashing, all unspecified transitions should go to the both-off state.

Fill in the truth table completely and transfer 1s or 0s to your answer sheet for the numbered cells.

| S1 | S2 | sw | D1 | D0 |
|----|----|----|----|----|
| 0  | 0  | 0  |    |    |
| 0  | 0  | 1  |    |    |
| 0  | 1  | 0  |    |    |
| 0  | 1  | 1  |    |    |
| 1  | 0  | 0  |    |    |
| 1  | 0  | 1  |    |    |
| 1  | 1  | 0  |    |    |
| 1  | 1  | 1  |    |    |

13. Build the circuit associated with D1 (or D0).

Build D1 (or D0) using a universal circuit.

Translate the given code into hexadecimal. Assume it has been assembled and loaded into a simulator. (I will give you a program to translate.)

- 14. What is stored in memory location x3000?
- 15. What is stored in memory location x3001?
- 16. What is stored in memory location x3002?

| 17. | In Figure 2, attached at end of test, which instructions uses the data line numbered (1-20) while finding the operand(s) (fetch)?                                       |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18. | In Figure 2, attached at end of test, the instruction uses which of the following numbered data line(s) while finding the operand(s)?                                   |
| 19. | Which of the following instructions use line (1-20) from Figure 2 while executing?                                                                                      |
| 20. | Which of the following instructions needMUX control to be 0 or 1?                                                                                                       |
| 21. | In Figure 2, attached at end of test, which of the following numbered data line(s) are used while reading from memory location (one of the memory mapped instructions)? |
| 22. | An example instruction which would cause the ALU labeled + in Figure 2 to perform a computation is?                                                                     |
| 23. | Which of the following instructions require 2 memory accesses to process (including the fetch)?                                                                         |
| 24. | Addressing mode in which the operand can be foundis                                                                                                                     |
| 25. | Number of bits needed to represent a register in an instruction if the number of registers                                                                              |
|     | on the machine is some power of 2. (the LC3 is 8)                                                                                                                       |
| 26. | Number of bits needed to represent an opcode in an instruction if the number of instructions                                                                            |

implemented by the machine \_\_\_\_\_\_? (some number of instructions)

| CC | 2/150 | <ul><li>Final</li></ul> | l Evam  | Λ |
|----|-------|-------------------------|---------|---|
| () | Z45U  | — FINAI                 | LEXAIII | А |

| NAME: |  |  |  |  |  |
|-------|--|--|--|--|--|
|       |  |  |  |  |  |

- 27. Largest positive value that can be represented in the IMM field of an instruction if the IMM field is x bits and is used to hold a 2's complement number
- 28. When using memory mapping for IO, what happens to the mapped memory location?
- 29. When calling TRAP x22 what is the significance of the x22?
- 30. What would I need to do to make my own Trap for the LC3?
- 31. If R0 = 65 and R1 = MEMORY\_MAPPED and the following is executed STR R0, R1, #0, where does the 65 get stored?
- 32. When does the interrupt status get checked?
- 33. When can an interrupt get executed?
  - a) between instructions b) in the middle of an instruction c) only at the end of the program
  - d) only at the beginning of the program e) None/All
- 34. Why is RTI required instead of RET when returning from an interrupt?
  - a) RTI must restore R7 and RET does notb) RTI must restore the DSR and RET does not
  - c) RTI must restore the PSR and RET does not d) Either RTI or RET would actually work
  - e) None/All

|                                                                               | 15 14 13 12 | 11 10 | 9 8 7 6 5 4 3 2 1 0 |
|-------------------------------------------------------------------------------|-------------|-------|---------------------|
| $ADD^{\dagger}$                                                               | 0001        | DR    |                     |
| $ADD^{+}$                                                                     | 0001        | DR    | SR1 1 imm5          |
| AND <sup>+</sup>                                                              | 0101        | DR    | SR1 0 00 SR2        |
| AND <sup>+</sup>                                                              | 0101        | DR    | SR1 1 imm5          |
| BR                                                                            | 0000        | n z   | p PCoffset9         |
| JMP                                                                           | 1100        | 000   | BaseR 000000        |
| JSR                                                                           | 0100        | 1     | PCoffset11          |
| JSRR                                                                          | 0100        | 0 00  | 0 BaseR 000000      |
| $LD^{+}$                                                                      | 0010        | DR    | PCoffset9           |
| LDI <sup>+</sup>                                                              | 1010        | DR    | ı PCoffset9         |
| $LDR^{^{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | 0110        | DR    | BaseR offset6       |
| LEA <sup>+</sup>                                                              | 1110        | DR    | PCoffset9           |
| NOT <sup>+</sup>                                                              | 1001        | DR    | SR 111111           |
| RET                                                                           | 1100        | 000   |                     |
| RTI                                                                           | 1000        |       | 00000000000         |
| ST                                                                            | 0011        | SR    | PCoffset9           |
| STI                                                                           | 1011        | SR    | PCoffset9           |
| STR                                                                           | 0111        | SR    | BaseR offset6       |
| TRAP                                                                          | 1111        | 000   | 00 trapvect8        |
| reserved                                                                      | 1101        |       |                     |

Figure 1

## TRAPS GETC x20 OUT x21

PUTS x22 IN x23 PUTSP x24

HALT x25

## **Memory Mapping**

xFE00 KBSR xFE02 KBDR xFE04 DSR

xFE06 DDR



Figure 2