Data Mining & Machine Learning

CS37300 Purdue University

October 30, 2017

Kaggle competition: added extra credits

Welcome to the **extra-credit competition** of CS37300. Your goal is to predict whether or not the lender will or will not payoff their loan.

Instructions and Policy: Each student should write up their own solutions independently. You need to indicate the names of the people you discussed a problem with; ideally you should discuss with no more than four other people.

Winning entries will be asked to submit their approach in a PDF via Blackboard. Winners are required to submit their Python code [any excessive copying from online resources will make the entry ineligible for extra credits]. Please write clearly and concisely - clarity and brevity will be rewarded. Refer to known facts as necessary.

To participate you **MUST** choose a screen name from the following list: https://www.cs.purdue.edu/homes/ribeirob/courses/Fall2017/data/star_wars_characters.txt

Extra credit assignment is as follows:

- ALL PARTICIPANTS WITH PRIVATE LEADERBOARD SCORES > 0.6 WILL GET 3% EXTRA CREDIT
- +5% extra credit to the top 1%
- +4% extra credit to the 2%-10%
- +3% extra credit to the 11%-20%
- +2% extra credit to the 21%-30%
- +1% extra credit to the 41%-50%
- 0% extra to bottom <50%

Kaggle competition update

Public L	_eaderboa	rd Private Leaderbo	ard				
This leaderboard is calculated with approximately 30% of the test data. The final results will be based on the other 70%, so the final standings may be different.					♣ Raw Data		
			,				
#	∆1w	Team Name	Kernel	Team Members	Score 2	Entries	Las
1	4 3	Revan		.	0.83407	12	1
2	▼ 1	Luke Skywalker			0.83286	8	16
3	▼ 1	Cad Bane			0.81991	18	6
4	▼ 1	Yoda			0.80979	13	2
5	_	Ki-Adi-Mundi			0.76811	2	-
6	_	Kyp Durron			0.73613	4	20
7	_	Shaak Ti		•	0.70133	2	19
8	_	Bossk		9	0.67826	2	24
9	_	Admiral Thrawn			0.65520	2	7
10	_	General Grievous			0.58599	3	19
11	_	Boba Fett		· W	0.52407	12	7
12	_	Count Dooku		•	0.51071	1	16
13	_	Darth Maul			0.49129	2	24
9		Bank_Sample_Submis	sion.csv		0.49008		
14	_	Zuckuss		9	0.49008	1	9

Model Search (Practical Deep Learning)

Outline

- Review: Feedfoward networks
 - Input examples, their hidden values, and output
- Review: Backpropagation with Forward and Backward Passes
 - Emphasis on what happens to each training example
- Stochastic Gradient Descent

Feedforward Neural Network Example (is person rich?)

General Prediction Procedure (Forward Pass)

predictions of every training example i: $\{\hat{\mathbf{h}}^{(K)}(i)\}_{i=1}^{N}$

Variables:

• $\{\mathbf{x}\}_{i=1}^{N}$ are the inputs (attribute **vectors**) of example i = 1, ..., N of training data

- $\hat{\mathbf{h}}^{(L)}(i)$ is the **vector** of hidden layer Lneuron activations of example i = 1, ..., N
- The final (softmax) prediction of training example i is the **vector** $\hat{\mathbf{h}}^{(K)}(i)$
- $\mathbf{L} = \{L(\hat{\mathbf{h}}^{(K)}(i))\}_{i=1}^{N}$ is a **matrix** with the score of all output neurons of all training examples $i = 1, \dots, N$
- Row $L(\hat{\mathbf{h}}^{(K)}(i))$ of **L** is the score of the *i*-th training example.

prediction $\hat{\mathbf{y}}(i) = \hat{\mathbf{h}}^{(K)}(i)$ Layer K $\{\hat{\mathbf{h}}^{(K-1)}(i)\}_{i=1}^{N}$ Layer K-1 $\{\hat{\mathbf{h}}^{(K-2)}(i)\}_{i=1}^{N}$

Layer 2

 $\{\hat{\mathbf{h}}^{(1)}(i)\}_{i=1}^{N}$

Layer 1

Forward + Backward Updates (following the training data)

Approximate Model Search (Stochastic Gradient Descent)

- Rather than using all training examples in the gradient descent, we will use just a subset of the data at each time
 - At every gradient descent step we will just use a subset of the examples $\{\mathbf{x}\}_{i=1}^n$ where n < N.
- At every gradient update we randomly choose another set of n training examples
 - In practice, we do sampling without replacement;
 If training data is exhausted, restart sampling
- The "new" training data $\{x\}_{i=1}^n$ is known as a mini-batch
 - The of training via gradient descent with mini-batches is called mini-batch stochastic gradient ascent (or mini-batch stochastic gradient descent if we are trying to minimize the score)

Model Search for Deep Neural Network

Q: Is it better to search for the best model (highest likelihood score) using all the training data?

A: Depends (Zhang et al. 2017)

- Deep neural network scores are nonconvex, many local minima
- Pros of using all training data: Searching using all the training data, we will surely find a model that better fits the training data
- Cons: Using all training examples often works terribly in practice
 - Model found by gradient descent performs poorly even on the training data itself (due to local minima)
 - Small mini-batches are often better than larger batches...
 - ...but not too small...
 - ...and depends on the infinitesimal gradient ε increments (learning rate)

Weird Learning Characteristics of Deep Neural Networks

Model
searching in
digit
classification
task using
convolutional
neural networks

In this example:

- Increasing mini-batch sizes reduces model accuracy on the **test data** (model generalizes less)
- But increasing learning rate improves things (i.e., making a worse approximation of gradient ascent, improves things?!?)
- We do not yet know why... but we have some hypotheses

