MAP 531: Homework

Paul-Antoine GIRARD & Adrien TOULOUSE

Problem 1: Estimating parameters of a Poisson distribution to model the number of goals scored in football

We recall that the Poisson distribution with parameter $\theta > 0$ has a pdf given by $(p(\theta, k), k \in \mathbb{N})$ w.r.t the counting measure on \mathbb{N} :

$$p(\theta, k) = e^{-\theta} \frac{\theta^k}{k!}$$

Question 1

The poisson distribution is a discrete distribution since it has a countable number of possible values (N).

In statistics, we use this distribution to compute the probability of a given number of (rare) events in a time period or the probability of a discrete waiting time until the next event (eg. number of minutes).

For example a poisson distribution can model:

- The number of patients arriving in an emergency room between 9 and 10am.
- The number of minutes we wait a bus at the bus stop.
- In quality control, the number of manufacturing defect.

Question 2

We assume that X follows a Poisson distribution with parameter $\theta > 0$.

$$\begin{split} \mathbb{E}[\mathbb{X}] &= \sum_{i=0}^{\infty} (i*p(\theta,i)) = \sum_{i=0}^{\infty} (i*e^{-\theta} \frac{\theta^i}{i!}) = \theta*e^{-\theta} \sum_{i=1}^{\infty} (\frac{\theta^{i-1}}{(i-1)!}) = \theta*e^{-\theta} \sum_{i=0}^{\infty} (\frac{\theta^i}{i!}) = \theta*e^{-\theta} *e^{\theta} = \theta \\ \mathbb{E}[\mathbb{X}^2] &= \sum_{i=0}^{\infty} (i^2*p(\theta,i)) = \sum_{i=0}^{\infty} (i^2*e^{-\theta} \frac{\theta^i}{i!}) = \theta*e^{-\theta} \sum_{i=1}^{\infty} (i\frac{\theta^{i-1}}{(i-1)!}) = \theta*e^{-\theta} \sum_{i=0}^{\infty} ((i+1)\frac{\theta^i}{i!}) \\ &= \theta*e^{-\theta} [\sum_{i=0}^{\infty} (i\frac{\theta^i}{i!}) + \sum_{i=0}^{\infty} (\frac{\theta^i}{i!})] = \theta*e^{-\theta} [\theta*e^{\theta} + e^{\theta}] = \theta(\theta+1) \\ \mathbb{V}(\mathbb{X}) &= \mathbb{E}[\mathbb{X}^2] - \mathbb{E}[\mathbb{X}]^2 = \theta(\theta+1) - \theta^2 = \theta \end{split}$$

Question 3

We are provided with n independent observations of a Poisson random variable of parameter $\theta \in \Theta = \mathbb{R}_+^*$. Our observations are $X_k \sim Pois(\theta), \forall k \in 1, ..., n$.

The corresponding statistical model is

$$\mathbb{M} = \{ p(. \mid \theta), \ \theta \in \Theta \}$$

We are trying to estimate the parameter θ .

Question 4

The likelihood function is the function on θ that makes our n observations most likely.

$$l(\theta) = \prod_{k=1}^{n} p(\theta, x_k) = \prod_{k=1}^{n} e^{-\theta} \frac{\theta^{x_k}}{x_k!}, with \ x_k \in \mathbb{N}, \forall k \in 1, ..., n$$

$$L(\theta) = log(l(\theta)) = \sum_{k=1}^{n} (-\theta + x_k log(\theta) - log(x_k!)) = -n\theta + log(\theta) \sum_{k=1}^{n} x_k - \sum_{k=1}^{n} log(x_k!)$$

By derivating with respect to θ , we have:

$$L'(\theta) = -n + \frac{\sum_{k=1}^{n} x_k}{\theta}$$

Then, we set this derivative equal to zero to obtain a critical point:

$$L'(\theta) = 0 \Leftrightarrow -n + \frac{\sum_{k=1}^{n} x_k}{\theta} = 0 \Leftrightarrow \hat{\theta} = \overline{x}$$

and this critical point is a local maximum, and we will assume that it is also a global maximum of the likelihood function:

$$L''(\theta) = -\frac{\sum_{k=1}^{n} x_k}{\theta^2} < 0$$

So, the maximum likelihood estimator is:

$$\hat{\theta}_{MLE} = \overline{x}$$

Question 5

We have that:

$$\mathbb{E}[\overline{x}] = \frac{1}{n} \sum_{k=1}^{n} \mathbb{E}[x_k] = \mathbb{E}[x_1] = \theta$$

$$\mathbb{V}(\overline{x}) = \frac{1}{n^2} \sum_{k=1}^{n} \mathbb{V}(x_k) = \frac{1}{n} \mathbb{V}[x_1] = \frac{\theta}{n}$$

Applying the central limit theorem, we have that $\sqrt{n}(\hat{\theta}_{MLE} - \theta)$ converges towards a Gaussian $\mathcal{N}(0,\theta)$.

Question 6

By continuous mapping, $\sqrt{\hat{\theta}_{MLE}}$ converges in probability towards $\sqrt{\theta}$. Then, by Slutsky's theorem, we have that $\sqrt{n} \frac{(\hat{\theta}_{MLE} - \theta)}{\sqrt{\hat{\theta}_{MLE}}}$ converges in law towards a gaussian $\mathcal{N}(0, 1)$.

Let's check this result in R by simulating 1000 times our random variable $\sqrt{n} \frac{(\hat{\theta}_{MLE} - \theta)}{\sqrt{\hat{\theta}_{MLE}}}$ with a sample size of 100:

```
Nattempts = 1000
nsample = 100
theta = 3
sample = rep(0, 1000)
for (i in 1:Nattempts) # can be written without the for loop (nicer) !
{poisson_sample = rpois(nsample, theta)
    sample[i] = sqrt(nsample) * (mean(poisson_sample) - theta) / sqrt(mean(poisson_sample))
```

```
hist(sample)
```

Histogram of sample

qqnorm(sample)
qqline(sample)

Normal Q-Q Plot

Question 7

Let Z_n be our random variable, so that $Z_n = \sqrt{n} \frac{(\hat{\theta}_{MLE} - \theta)}{\sqrt{\hat{\theta}_{MLE}}}$

$$\mathbb{P}(-z_{1-\alpha/2} \le Z_n \le z_{1-\alpha/2}) = 1 - \alpha \Leftrightarrow \mathbb{P}(-z_{1-\alpha/2}\sqrt{\frac{\hat{\theta}_{MLE}}{n}} \le \hat{\theta}_{MLE} - \theta \le z_{1-\alpha/2}\sqrt{\frac{\hat{\theta}_{MLE}}{n}}) = 1 - \alpha$$

For $\alpha \in (0,1)$, an asymptotic confidence interval for θ of level α is therefore :

$$[\hat{\theta}_{MLE} - z_{1-\alpha/2} \frac{\sqrt{\hat{\theta}_{MLE}}}{\sqrt{n}}; \ \hat{\theta}_{MLE} + z_{1-\alpha/2} \frac{\sqrt{\hat{\theta}_{MLE}}}{\sqrt{n}}]$$

Question 8

We apply the δ -method with $g(x) = 2 \times \sqrt{x}$ We have: $g'(x) = \frac{1}{\sqrt{x}}$ So,

$$\sqrt{n}(g(\hat{\theta}_{MLE}) - g(\theta)) \stackrel{d}{\to} \mathcal{N}(0, \ g'(\theta)^2 \times \theta) \Leftrightarrow \sqrt{n}(g(\hat{\theta}_{MLE}) - g(\theta)) \stackrel{d}{\to} \mathcal{N}(0, 1)$$

Question 9

Let Z_n be our random variable, so that $Z_n = \sqrt{n}(2\sqrt{\hat{\theta}_{MLE}} - 2\sqrt{\theta})$

We know that $Z_n \stackrel{d}{\to} \mathcal{N}(0,1)$

$$\mathbb{P}(-z_{1-\alpha/2} \le Z_n \le z_{1-\alpha/2}) = 1 - \alpha \Leftrightarrow \mathbb{P}(-\frac{z_{1-\alpha/2}}{2\sqrt{n}} \le \sqrt{\hat{\theta}_{MLE}} - \sqrt{\theta} \le \frac{z_{1-\alpha/2}}{2\sqrt{n}}) = 1 - \alpha$$

4

$$\Leftrightarrow \mathbb{P}(\sqrt{\hat{\theta}_{MLE}} - \frac{z_{1-\alpha/2}}{2\sqrt{n}} \leq \sqrt{\theta} \leq \sqrt{\hat{\theta}_{MLE}} + \frac{z_{1-\alpha/2}}{2\sqrt{n}}) = 1 - \alpha$$

For $\alpha \in (0,1)$, an asymptotic confidence interval for θ of level α is therefore:

$$[\hat{\theta}_{MLE} - z_{1-\alpha/2} \frac{\sqrt{\hat{\theta}_{MLE}}}{\sqrt{n}}; \ \hat{\theta}_{MLE} + z_{1-\alpha/2} \frac{\sqrt{\hat{\theta}_{MLE}}}{\sqrt{n}}]$$

For $\alpha \in (0,1)$, an asymptotic confidence interval for θ of level α is therefore:

[**]

Question 10

Based on the first moment of a poisson distribution, we easily have that:

$$\hat{\theta}_{MME} = \overline{x}$$

We then remark that $\hat{\theta}_{MME} = \hat{\theta}_{MLE}$

Based on the second moment of a poisson distribution, we have:

$$n^{-1} \sum_{k=1}^{n} X_k^2 = \hat{\theta}_2(\hat{\theta}_2 + 1)$$

Let's define the function h(x)=x(x+1)Its inverse on \mathbb{R}_+^* is $h^{-1}=\frac12-1+\sqrt{4x+1})$ and then we have that:

$$\hat{\theta}_2 = \frac{1}{2} \left[-1 + \sqrt{(4n^{-1} \sum_{k=1}^n X_k^2) + 1} \right]$$

Question 11

 $\mathbb{E}(\hat{\theta}_{MLE}) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}(X_i) \text{ by linearity of the expectation } \mathbb{E}(\hat{\theta}_{MLE}) = \frac{1}{n} * n\theta = \theta$ Therefore, $\hat{\theta}_{MLE}$ is an unbiased estimator of θ , ie. $b_{\theta}^*(\hat{\theta}_{MLE}) = 0$ $\mathbb{V}(\hat{\theta}_{MLE}) = \frac{1}{n^2} \sum_{i=1}^{n} \mathbb{V}(X_i) \text{ by independance of the } X_i \mathbb{V}(\hat{\theta}_{MLE}) = \frac{1}{n^2} * n\theta = \frac{\theta}{n}$ The quadratic risk Q is given by : $Q = b_{\theta}^*(\hat{\theta}_{MLE}) + \mathbb{V}^*(\hat{\theta}_{MLE}) = 0 + \frac{\theta}{n} = \frac{\theta}{n}$

Question 12

 $\hat{\theta}_{MLE}$ is an unbiased estimator so the Cramer-Rao bound is given by:

$$\frac{1}{I_n(\theta^*)} = \frac{1}{\mathbb{E}(-L''(\theta^*))}$$
$$L'(\theta^*) = -n + \frac{\sum_{i=1}^n x_k}{\theta}$$
$$-L''(\theta^*) = \frac{\sum_{i=1}^n x_k}{\theta^2}$$

Therefore,

$$\mathbb{E}(-L''(\theta^*)) = \frac{\sum_{i=1}^n \mathbb{E}(x_k)}{\theta^2} = \frac{n}{\theta}$$

Finally,

$$\frac{1}{I_n(\theta^*)} = \frac{\theta}{n} = \mathbb{V}(\hat{\theta}_{MLE})$$

We can conclude that our estimator $\hat{\theta}_{MLE}$ is efficient.

Question 13

$$\hat{\theta}_2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X_n})^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \theta + \theta - \overline{X_n})^2 = \frac{1}{n} \sum_{i=1}^n [(X_i - \theta)^2 + (\theta - \overline{X_n})^2 + 2(X_i - \theta)(\theta - \overline{X_n})]$$

$$= \frac{1}{n} \sum_{i=1}^n (X_i - \theta)^2 + (\theta - \overline{X_n})^2 + \frac{2}{n} (\theta - \overline{X_n}) \sum_{i=1}^n (X_i - \theta) = \frac{1}{n} \sum_{i=1}^n (X_i - \theta)^2 + (\theta - \overline{X_n})^2 + 2(\theta - \overline{X_n})(\overline{X_n} - \theta)$$

$$= \frac{1}{n} \sum_{i=1}^n (X_i - \theta)^2 - (\theta - \overline{X_n})^2$$

Question 14

$$\mathbb{E}(\theta - \overline{X_n})^2 = \mathbb{E}(\theta^2 - 2\theta \overline{X_n} + \overline{X_n}^2) = \theta^2 - 2\theta \mathbb{E}(\overline{X_n}) + \mathbb{E}(\overline{X_n})^2$$

$$= -\theta^2 + \mathbb{V}(\overline{X_n}) + \mathbb{E}(\overline{X_n})^2 = -\theta^2 + \frac{\theta}{n} + \theta^2 = \frac{\theta}{n}$$

$$\mathbb{E}(\hat{\theta}_2) = \mathbb{E}(\frac{1}{n} \sum_{i=1}^n (X_i - \theta)^2 - (\theta - \overline{X_n})^2)$$

$$= \frac{1}{n} \sum_{i=1}^n \mathbb{E}(X_i - \theta)^2 - \mathbb{E}(\theta - \overline{X_n})^2 = \frac{1}{n} \sum_{i=1}^n \mathbb{V}(X_i) - \frac{\theta}{n} = \theta(1 - \frac{1}{n})$$

Therefore the bias is,

$$b_{\hat{\theta}_2} = \frac{\theta}{n}$$

We can get an unbiased estimator $\hat{\theta}_3$ by defining $\hat{\theta}_3 = \hat{\theta}_2 * (1 - \frac{1}{n})^{-1}$

Question 15

Using the previous questions, whe know that:

$$\hat{\theta}_2 = \frac{1}{n} \sum_{i=1}^n (X_i - \theta)^2 - (\theta - \overline{X}_n)^2$$

therefore, we have:

$$\sqrt{n}(\hat{\theta}_2 - \theta) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i - \theta)^2 - \sqrt{n}(\theta - \overline{X_n})^2 - \sqrt{n}\theta = 0$$

Question 16

Let $s \in \mathbb{R}$. The probability generating function of the Poisson distribution is given by:

$$G_{\mathbb{X}}(s) = \mathbb{E}[exp(s\mathbb{X})] = \sum_{k=0}^{\infty} e^{ks} e^{-\theta} \frac{\theta^k}{k!} = e^{-\theta} \sum_{k=0}^{\infty} \frac{(\theta e^s)^k}{k!} = e^{-\theta} e^{\theta e^s} = e^{\theta(e^s - 1)}$$

In order to compute the first and second moment of the Poisson distribution, we can now use the moment generating function. Let's compute its first and second order derivatives.

$$G'_{\mathbb{X}}(s) = \theta e^s e^{\theta(e^s - 1)}$$

$$G'''_{\mathbb{X}}(s) = \theta[e^s e^{\theta(e^s-1)} + \theta e^{2s} e^{\theta(e^s-1)}] = \theta e^s [e^{\theta(e^s-1)} + \theta e^s e^{\theta(e^s-1)}]$$

Then, we have:

$$\begin{split} \mathbb{E}[\mathbb{X}] &= G'_{\mathbb{X}}(0) = \theta \\ \mathbb{E}[\mathbb{X}^2] &= G''_{\mathbb{X}}(0) = \theta(1+\theta) \\ \mathbb{V}(\mathbb{X}) &= \mathbb{E}[\mathbb{X}^2] - \mathbb{E}[\mathbb{X}]^2 = \theta(1+\theta) - \theta^2 = \theta \end{split}$$

We will now show that: $\mathbb{V}[(\mathbb{X}_i - \theta)^2] = 2\theta^2 + \theta$

$$G_{\mathbb{X}}^{(3)}(s) = (1 + 3\theta e^{s} + \theta^{2} e^{2s})\theta e^{s+\theta(e^{s}-1)}$$

$$G_{\mathbb{X}}^{(4)}(s) = (1 + \theta^{3} e^{3s} + 6\theta^{2} e^{2s} + 7\theta e^{s})\theta e^{s+\theta(e^{s}-1)}$$

$$\mathbb{V}[(\mathbb{X}_{i} - \theta)^{2}] = \mathbb{E}[(\mathbb{X} - \theta)^{4}] - \mathbb{E}[(\mathbb{X} - \theta)^{2}]^{2} = \dots = 2\theta^{2} + \theta$$