北京邮电大学 2019——2020 学年第一学期 《操作系统》期中考试试题

1. FILL IN BLANKS (10 points, 须用英文应答,中文答对得一半分)
(1) The device is responsible for moving the data between the peripheral devices
that it controls and its local buffer storage.
(2) Modern operating system is driven by
(3) If an attempt is made to execute a privileged instruction in user mode, the hardware does
not execute the instruction but rather treats it as illegal and traps it to the
(4) Considering OS interfaces, an application program can utilize to acquire
services provided by the OS.
(5) Programs loaded into and executing in memory refers to It needs certain
resources, including CPU, memory, files, and I/O devices to accomplish its task.
(6) Three general methods used to pass parameters to the operating system are,
memory block, and stack.
(7) In When CPU executes the instructions of operating systems, it is said that CPU is inmode.
(8) Two communication methods between processes areand message passing .
(9) Operations on semaphores are initialization, wait(), and
(10) 3 conditions that a good solution for critical section problems should satisfy are
Progress, and bounded waiting.
2. CHOICE (10 points)
(1) <u>is not inc</u> luded in the context of process?
A.PCB B. code C. kernel stack D. interrupt vector (2) Among the following migrations, is impossible?
A. running→ready B. running→waiting
C. ready→running D. waiting→running (3) When does a process migrate from waiting state to ready state?
A. the process is waiting for an event B. process is selected by scheduler
C. event that the process is waiting for occurs D. time slice is used up
(4)is the interval from the time of submission of a process to the time of completion.
A. Waiting time B. Turnaround time C. Response time D. Throughput
(5) A starvation-free scheduling policy guarantees that no process waits indefinitely for service. Which of the following scheduling policies is starvation free?
A. Round Robin B. Priority
C. Shortest Job First D. None of the above

(6) In m	ultiprogramming	g syste	m, in ord	der to g	uarantee the	inte	egrality of shared	variable,	
proce	sses should ente	r their	critical s	ection	mutual exclu	sive	ly. Critical section	refers to	
•									
A. a b	ouffer		B. a data	a segmen	t				
	ode segment adlock situation		•		nechanism ecessary condi	ition	ns hold simultaneo	ously in a	
` '	m. Which one of				•			•	
•	itual exclusion		old and w		•		D. circular wait		
(8) Whic	h handling proc						switch into monito	or mode?	
()	91			8					
(9) In ope	erating systems,	the sen	-	tands fo	r instances of	reso	ource, it is a intege		
	_			-			ion wait() and sign	-	
_	_		5, now it	's value	is 2, how man	y p	rocesses is or are v	waiting in	
-	ueue relevant to								
A. 3		C. 1	D. 0						
	e following com		-		_	lb o z	are correct		
_		-			witches from t	ine v	waiting state to the	ready	
	the CPU sched	_			onting konnol	love	el threads, the proc	oss is the	
_	•	-	•		0		for CPU schedulin		
							ek and registers car	_	
_	y the others.	is ci cat	ca by one	process	one thread s	stac	K and registers car	ı be	
	he round robin a	loorith	m will ne	ver resul	t in process st	arvs	ation		
_		_			-		egisters, and user d	ata	
_	D 2 3 B		2) (4)		3 5 1				
120			9 🕓	٠. ي		· (
				_					
	-		-		are 10 concur	rent	processes sharing	a type of	
	based on a sema	-							
. , .	one process is pe						· · · · · · · · · · · · · · · · · · ·		
	_			er their c	ritical section	s to	use the resource,		
then ansv	ver the following	g questi	ons.						
				_				_	
		at are t	he initial,	maximu	m, and minin	ıum	values for the sem	aphore	
S respect	-]	
	Case	initia	al value	maxi	mum value]	minimum value		
	(a)								
	(b)								
(2) what are the maximum, and minimum numbers of processes in ready, running, and waiting state?									
	number of pro	cesses	rea	ıdy	running		waiting		
	maximun	1							
	minimum								

- 4. (10 points) In a computer system with only one processor, one input device and one printer. Processes A and B enter the system sequentially at time 0, and A is scheduled by the CPU scheduler at first. The execution tracks of A and B are as follows:
- A: CPU burst lasting 20ms, then I/O burst of 100ms on the input device, and then CPU burst lasting 50ms, exiting.
- B: CPU burst lasting 40ms, then I/O burst of 70ms on the printer, and then CPU burst lasting 30ms, exiting.
- (a) Suppose that preemptive SJF scheduling algorithm (SRTF) is employed, draw the Gantt chart to describe the resource usage of A and B on the CPU, the input device and the printer.
- (b) Calculate the waiting time and turnaround time for process A and B respectively.
- 5. (20 points) Consider the following set of processes, their arrival time, CPU burst time, and priority numbers are as following.

The length of the CPU burst given in millisenconds, and larger priority numbers imply higher priority.

Process	<u>Arrival Time</u>	Burst Time	Priority number
P1	0	5	1
P2	1	3	3
Р3	2	3	7
P4	4	6	5

- (1). Suppose that priority-based preemptive scheduling is employed,
- (a) Draw a Gantt chart illustrating the execution of these processes;
- (b) Calculate the average waiting time.
- (c) Calculate the average turnaround time.
- (2). Suppose that priority-based non-preemptive scheduling is employed,
- (a) Draw a Gantt chart illustrating the execution of these processes;
- (b) Calculate the average waiting time.
- (c) Calculate the average turnaround time.

6. (20 points) There is a plate that can hold only one apple or can hold three oranges. Father put an apple once a time into the plate; mother put an orange once a time into the plate. If there is already one or two oranges on the plate, the mother can put another orange into the plate.

Son takes an apple from the plate and eats. Daughter takes an orange from the plate once a time and eats.

The processes for the father, mother, son, and daughter are shown as followings. In order to synchronize these processes, please design semaphores and complete these processes by using wait() and signal() operations on semaphores.

- (1) Define semaphores needed and initialize them.
- (2) Write appropriate code segmentation for each place marked by number from (1) to (8).

Father: while(true){ Put an apple into the plate;	Son: while(true){ Take the apple from the plate; eats the apple; }
Mother: while(true){ Put an orange into the plate;	Daughter: while(true){ Take an orange from the plate; eats the orange;
}	eats the orange; }

7. (18 points) For the system described in the table below

process	Current allocation			Maximum needs			outstanding requests			Available		
	\mathbf{R}_1	R ₂	\mathbf{R}_3	\mathbf{R}_{1}	R ₂	R ₃	$\mathbf{R_1}$	R ₂	R ₃	\mathbf{R}_{1}	R ₂	\mathbb{R}_3
P ₁	2	0	0	2	0	1	0	0	1	0	2	0
P ₂	1	2	0	2	5	2	0	0	1			
P ₃	0	1	1	1	4	2	0	0	0			
P ₄	0	0	1	2	0	1	1	0	0			

- (1) How many instances are there for each type of resources?
- (2) Draw the resource-allocation graph
- (3) Is the system in a safe or unsafe state? Specify your judging procedure.
- (4) Is the system deadlocked? Specify your judging procedure.