Taller

1 Pregunta 36: Determinar si la siguiente afirmación es verdadera o falsa:

Si v_1, \ldots, v_4 son vectores en \mathbb{R}^4 y v_3 no es una combinación lineal de v_1, v_2, v_4 . Entonces $\{v_1, v_2, v_3, v_4\}$ es linearmente independiente.

Eso es falso. Como contraejemplo, tome:

$$v_{1} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad v_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \quad v_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 4 \end{bmatrix} \quad v_{4} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Es fácil comprobar que v_3 no es una combinación lineal de los otros tres vectores, pues al hacer la matriz aumentada correspondiente a la ecuación matricial $x_1v_1 + x_2v_2 + x_3v_4 = v_3$ se tendrá:

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 4
\end{pmatrix}$$

Es evidente que la matriz representa un sistema inconsistente. Por tanto, v_3 no es una combinación lineal de los otros vectores. Pero por el *Teorema 9* se puede deducir que el sistema es linealmente dependiente puesto que v_1 es el vector cero.

2 Pregunta 36: Sea $T : \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal que proyecta cada vector $x = (x_1, x_2, x_3)$ el plano $x_2 = 0$, de forma que $T(x) = (x_1, 0, x_3)$. Demostrar que T es una transformación lineal.

Demostración. Para empezar, demostraremos que la suma de vectores se mantiene por la función.

Esto será que para $x = (x_1, x_2, x_3)$ y $y = (y_1, y_2, y_3)$ tendremos:

$$T(x + y) = T((x_1, x_2, x_3) + (y_1, y_2, y_3))$$

$$= T((x_1 + y_1, x_2 + y_2, x_3 + y_3))$$

$$= (x_1 + y_1, 0, x_3 + y_3)$$

$$= (x_1, 0, x_3) + (y_1, 0, y_3)$$

$$= T(x) + T(y)$$

Luego, para demostrar que se preserva la multiplicación de escalares, sea $c \in \mathbb{R}$, entonces:

$$T(c \cdot x) = T(c \cdot (x_1, x_2, x_3))$$

$$= T((c \cdot x_1, c \cdot x_2, c \cdot x_3))$$

$$= (c \cdot x_1, 0, c \cdot x_3)$$

$$= c \cdot (x_1, 0, x_3)$$

$$= c \cdot T(x)$$

Por lo que se demuestra que T es una transformación lineal.

(3) Pregunta 8: Asuma que T es una transformación lineal. Encuentre la matriz estandar de T.

 $T: \mathbb{R}^2 \to \mathbb{R}^2$ primero refleja los puntos através del eje horizontal x_1 y luego refleja los puntos através de la recta $x_2 = x_1$.

Para ello, analizaremos lo que pasa con los vectores $e_1=\left[\begin{smallmatrix}1\\0\end{smallmatrix}\right]$ y $e_2=\left[\begin{smallmatrix}0\\1\end{smallmatrix}\right]$. Por pasos será:

• Los vectores originalmente se encuentran en la siguiente posición:

ullet Al reflejar los puntos con respecto al eje x_1 se tendrá que quedan en las siguientes posiciones:

$$e_1' = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \qquad e_2' = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

• Por último, al reflejar con respecto a la recta $x_2 = x_1$, se tendrán las siguientes transformaciones:

$$e_1'' = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad \qquad e_2'' = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Si se tiene en cuenta que reflejar sobre $x_2 = x_1$ es igual a intercambiar las coordenadas de las componentes, pues es similar al proceso de gráficar una función inversa.

Luego, podremos concluir que los vectores e_1'' y e_2'' corresponden a las imagenes de e_1 y e_2 bajo f respectivamente. Por tanto, la matriz estandar para la transformación T será:

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

3