

m₁≕m2

Rette perpendicolari

quazione della retta

Bisettrici dei quadranti

Rette per l'origine

 $y-y_0=m(x-x_0)$

Equazione della retta in forma esplicita y=mx+q

ax+by+c=0

m=- a

Equazione della circonferenza

Retta passante per un punto

Retta passante per due punti

y=m2x+q2

 $m_2 = -\frac{1}{m_1}$

ossia

 $m_1 m_2 = -1$

Equazione della parabola

Parabola avente per asse l'asse y e vertice nell'origine

$$a > 0$$
. \longrightarrow concavità verso l'alto $a < 0$ \longrightarrow concavità verso il basso vertice $\longrightarrow O(0; 0)$ asse di simmetria $\longrightarrow x = 0$ (asse y)

hoco

direttrice

Liceo "GOBETTI" - Omera prof. DANIELI Marcello

a < 0---- concavità verso il basso → concavità verso l'alto

y = ax + bx + c ($\triangle - b = -4uc$)

vertice

asse di simmetria

fuoco

Parabola con asse di simmetria parallelo all'asse x

$$x = ay^2 + by + c \qquad (\Delta = b^2 - 4ac)$$

→ concavità verso destra → concavità verso sinistra

asse di vertice

simmetria

direttrice

asse di simmetria

fuoco

direttrice

Ľ

0

con a < b

 $\overline{F_1F_2} = 2c \quad (c < b)$

 $A_1 A_2 = 2a$ (asse minore)

 $b^2 - c^2 = a^2 \longrightarrow c^2 = b^2 - a^2$ $\overline{B_1B_2} = 2b$ (asse maggiore)

 $F(0; \pm \sqrt{b^2 - a^2})$

 $A_1(a;0), A_2(-a;0)$

 $B_1(0; b), B_2(0; -b)$

Ellisse riferita a rette parallele ai propri assi con centro nel punto $O'(x_0; y_0)$

$$\frac{-x_0)^2}{a^2} + \frac{(y - y_0)^2}{b^2} =$$

L'equazione $mx^2 + ny^2 + px + qy + r = 0$, con m, n concordi e $\frac{p^2}{4m} + \frac{q^2}{4n} - r > 0$ rappresenta un'ellisse rife-

rita a rette parallele ai propri assi con centro nel punto $O'\left(-\frac{p}{2m};\frac{q}{2n}\right)$

Equazione dell'iperbole: formula di solo frismento: xx0 - 1/2 = ±1

Iperbole riferita al centro e agli assi con i fuochi sull'asse x

 $\overline{F_1F_2} = 2c \quad (c < a)$

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

con a > b

$$|\overline{PF_2} - \overline{PF_1}| = 2a$$

$$\overline{F_2F_1} = 2c \quad (c > a)$$

$$c^2 - a^2 = b^2 \longrightarrow c^2 = a^2 + b^2$$

$$\frac{x^2}{x^2} - \frac{y^2}{4x^2} = 1$$

 $F(\pm \sqrt{a^2 + b^2}; 0)$

asintoti: $y = \pm \frac{b}{a}x$

a → semiasse trasverso b → semiasse non trasverso → semidistanza focale

	Trasformazione	Equazione della trasformazione	Sostituzione associata	Curva trasformata di $F(x:y) = 0$	$\cot g \ \alpha = \frac{\cos \alpha}{\sin \alpha} \alpha \neq k \ 180^{\circ}$	$\cot g \alpha = \frac{1}{4\pi} \alpha \neq k 90^{\circ}$
-(a; b)	Traslazione di vet- rore $\overrightarrow{v} = (a; b)$	$\begin{cases} x' = x + a \\ y' = y + b \end{cases}$	$\begin{bmatrix} x \to x - a \\ y \to y - b \end{bmatrix}$	F(x-a;y-b) = 0	$\cos^2 \alpha = \frac{1}{1 + tg^2 \alpha} \text{e} \sin^2 \alpha = \frac{tg^2 \alpha}{1 + tg^2 \alpha} ($	$\frac{g^2 \alpha}{tg^2 \alpha} \text{con } \alpha \neq 90^\circ + k 180^\circ$
γ,ο,α	Rotazione di un angolo α con centro nell'origine	$\begin{cases} x' = x \cos \alpha - y \sin \alpha \\ y' = x \sin \alpha + y \cos \alpha \end{cases}$	$\begin{bmatrix} x \to x \cos \alpha + y \sin \alpha \\ y \to -x \sin \alpha + y \cos \alpha \end{bmatrix}$	$F(x\cos\alpha + y\sin\alpha; -x\sin\alpha + y\cos\alpha) = 0$	Variazioni del seno e del coseno di un angolo $-1 \le sen \ \alpha \le 1;$	$-1 \le \cos \alpha \le 1$
$\omega_{o,k}$	Omotetia di rap- porto k con centro nell'origine	$\begin{cases} x' = kx \\ y' = ky \end{cases}$	$\begin{bmatrix} x \to x/k \\ y \to y/k \end{bmatrix}$	F(x/k; y/k) = 0	Periodicità delle funzioni goniometriche $\begin{cases} sen(\alpha + k 360^\circ) = sen \ \alpha \end{cases}$	$\begin{cases} tg(\alpha + k \ 180^{\circ}) = tg \ \alpha \end{cases}$
$\delta_{b,k}$	Dilatazione di rapporti <i>h</i> e <i>k</i> con centro nell'origine	$\begin{cases} x' = bx \\ y' = ky \end{cases}$	$\begin{bmatrix} x \to x/b \\ y \to y/k \end{bmatrix}$	F(x/b; y/k) = 0	Funzioni goniometriche inverse	$\cos(\alpha + k \cdot 180^{\circ}) = \cot g \alpha$
Affinità ∫ x	tà $x' = a_1 x + b_1 y + c_1$	0 / 1 / 1 / 2 / 200	$a_1b_2 - a_2b_1 > 0 \longrightarrow$	affinità diretta	$-\frac{n}{2} \le arc sen y \le \frac{\pi}{2} \qquad 0 \le arc cos y \le \pi$ Formule di addizione e sottrazione	$-\frac{\pi}{2} < arc tg y < \frac{\pi}{2} \qquad 0 < arc \cot g y <$
()	$y' = a_2x + b_2y + c_2$	$con a_1b_2 - a_2b_1 \neq 0 \qquad a_1b_2 - a_2b_1 < 0$	$a_1b_2 - a_2b_1 < 0 \longrightarrow$	affinità contraria	$sen(\alpha + \beta) = sen \alpha \cos \beta + \cos \alpha sen \beta$	$sen(\alpha - \beta) = sen \alpha \cos \beta - \cos \alpha se$

imilitudini

$$\begin{cases} x' = a_1x + b_1y + c_1 & \text{con} \quad a_1b_2 - a_2b_1 \neq 0, \\ y' = a_2x + b_2y + c_2 & a_1^2 + a_2^2 = b_1^2 + b_2^2 = |a_1b_2 - a_2b_1| = r^2. \end{cases}$$

r = rapporto di similitudine (r > 0)

Isometrie

$$\begin{cases} x' = a_1x + b_1y + c_1 \\ y' = a_2x + b_2y + c_2 \end{cases} \quad \text{con} \quad a_1^2 + a_2^2 = b_1^2 + b_2^2 = |a_1b_2 - a_2b_1| = 1$$

Goniometria e frigonometria

Relazioni e proprietà fondamentali

$$sen^{2}\alpha + cos^{2}\alpha = 1$$

$$sen^{2}\alpha + cos^{2}\alpha = 1$$

$$sen^{2}\alpha + cos^{2}\alpha$$

$$tg$$

Relazioni tra le funzioni goniometriche di uno stesso angolo

$$tg \alpha = \frac{sen \alpha}{\cos \alpha} \quad \alpha \neq 90^{\circ} + k \, 180^{\circ}$$

arc sen
$$y \le \frac{\pi}{2}$$
 $0 \le arc \cos y \le addizione$ e sottrazione

$$-\frac{2}{2} < arc \, tg \, y < \frac{2}{2} \qquad 0 < a$$

$$sen(\alpha + \beta) = sen \alpha \cos \beta + \cos \alpha sen \beta$$

$$sen(\alpha + \beta) = sen \alpha \cos \beta + \cos \alpha sen \beta \qquad sen(\alpha - \beta) = sen \alpha \cos \beta - \cos \alpha se,$$

$$cos(\alpha + \beta) = cos \alpha \cos \beta - sen \alpha sen \beta \qquad cos(\alpha - \beta) = cos \alpha \cos \beta + sen \alpha se,$$

$$tg(\alpha + \beta) = tg(\alpha + \beta)$$

$$tg(\alpha + \beta) = \frac{tg \ \alpha + tg \ \beta}{1 - tg \ \alpha \ tg \ \beta}$$
 con c

con
$$\alpha$$
, β , $\alpha + \beta \neq 90^{\circ} + k$ 180°
con α , β , $\alpha - \beta \neq 90^{\circ} + k$ 180°.

Formule di duplicazione

 $tg(\alpha - \beta) = \frac{tg \ \alpha - tg \ \beta}{1 + tg \ \alpha \ tg \ \beta}$

$$sen \ 2\alpha = 2 \ sen \ \alpha \ cos \ \alpha$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = \begin{cases} 1 - 2 \sin^2 \alpha \\ 2 \cos^2 \alpha - 1 \end{cases}$$

$$tg 2\alpha = \frac{2 tg \alpha}{1 - tg^2 \alpha} con \alpha \neq 45^{\circ} + k 90^{\circ} \wedge \alpha \neq 90^{\circ} + k 180^{\circ}$$

Formule parametriche

$$sen \ \alpha = \frac{2t}{1+t^2} \quad cos \ \alpha = \frac{1-t^2}{1+t^2} \quad con \ t = tg\frac{\alpha}{2} \quad e \quad \alpha \neq 180^\circ + k360^\circ$$

$$sen \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}} \qquad cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}}$$

$$tg \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} \quad \cos \alpha \neq 180^\circ + k360^\circ$$

$$\frac{\alpha}{2} = \frac{\sin \alpha}{1 + \cos \alpha} \quad \cos \alpha \neq 180^{\circ} + k \, 360^{\circ} \quad tg \, \frac{\alpha}{2} = \frac{1 - \cos \alpha}{\sin \alpha} \quad \cos \alpha \neq k \, 180^{\circ}$$

mule di prostaferesi

$$sen p + sen q = 2 sen \frac{p+q}{2} cos \frac{p-q}{2}; cos p + cos q = 2 cos \frac{p+q}{2} cos \frac{p-q}{2}$$

$$sen \ p - sen \ q = 2 \cos \frac{p+q}{2} \ sen \ \frac{p-q}{2}; \quad \cos p - \cos q = -2 \ sen \ \frac{p+q}{2} \ sen \ \frac{p-q}{2}$$

mule di Werner

sen
$$\alpha$$
 sen $\beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$

$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$$

sen
$$\alpha \cos \beta = \frac{1}{2} [sen(\alpha + \beta) + sen(\alpha - \beta)].$$

riangoli rettangol

$$b = a \operatorname{sen} \beta = a \cos \gamma \qquad b = c \operatorname{tg} \beta = c \cot \zeta$$

$$c = a \operatorname{sen} \gamma = a \cos \beta \qquad c = b \operatorname{tg} \gamma = b \cot \zeta$$

$$a = \frac{b}{\operatorname{sen} \beta} = \frac{b}{\cos \gamma} = \frac{c}{\cos \beta} = \frac{c}{\operatorname{sen} \gamma}$$

$$S = \frac{1}{2}ab \operatorname{sen} \gamma = \frac{1}{2}bc \operatorname{sen} \alpha = \frac{1}{2}ac \operatorname{sen} \beta.$$

$$S = \frac{1}{2}ab \operatorname{sen} \gamma = \frac{1}{2}bc \operatorname{sen} \alpha = \frac{1}{2}ac \operatorname{sen} \beta.$$

$$S = \sqrt{p(p-a)(p-b)(p-c)} \quad (formula \ di \ Erone)$$

con p = semiperimetro

Triangolo qualsiasi

Teorema del coseno

$$a^2 = b^2 + c^2 - 2bc \cos \alpha$$

$$b^2 = c^2 + a^2 - 2ca \cos \beta$$
$$c^2 = a^2 + b^2 - 2ab \cos \gamma$$

Teorema dei seni

$$\frac{a}{sen \ \alpha} = \frac{b}{sen \ \beta} = \frac{c}{sen \ \gamma} (= 2R) \ con \ 2R \ diametro \ della$$

Feorema della corda

$$\overline{AB} = 2r sen \alpha$$

daniel K.

Funzione esponenziale $y = a^x \cos a > 1$

Definizione e proprietà fondamentali

dominio
$$D = (-\infty; +\infty) = R$$

codominio $C = (0; +\infty) = R^+$

La funzione è crescente:

$$x_1 < x_2 \iff a^{x_1} < a^{x_2}$$

$$\lim_{x \to +\infty} a^x = +\infty$$
; $\lim_{x \to +\infty} a^x = 0$

$$a^{bgb} = b$$
 zioni

$$\log_a \frac{m}{n} = \log_a m - \log_a n$$

$$log_a a = 1$$

(0)

$$log_a 1 = 0$$

 $log_a a^c = c$

 $y = a^x$ (a>1)

$$log_a(m \cdot n) = log_a m + log_a n$$

$$\log_a - \log_a m = \log_a m - \frac{1}{n} - \frac{1}{n} = \frac{1}{n}$$

$$\frac{m}{n} = \log_a m - \log_a n$$

 $log_a \frac{1}{n} = -log$

$$g_a = \log_a m - \log_a n$$

$$g_a = \log_a m - \log_a t$$

$$f_c = 1$$

 $\frac{1}{x}$ $\log_a b^n = n \cdot \log_a b$

Ō

Funzione esponenziale $y = a^x \text{ con } 0 < a < 1$

$$\log_a \sqrt{b} = \frac{1}{n} \log_a b$$

$$\int_{a} \sqrt{b} = \frac{1}{n} \log_{a} b$$

$$= \frac{1}{n} log_a b$$

$$log_ab = \frac{log_cb}{log_ca}$$

$$log_a b = \frac{1}{log_b a}$$

$$log_a cb^c = log_a b$$

 $gol - = q_i gol$

Misure delle superfici e dei volum

Circonferenza e cerchio

 $\lim_{x \to +\infty} a^x = 0 \; ; \; \lim_{x \to -\infty} a^x = +\infty$

Ō

La funzione è decrescente; $x_1 < x_2 \iff a^{x_1} > a^{x_2}$

codominio $C = R^+$

(0<a<1) NB 出入

dominio D = R

 $\alpha = \text{ampiezza}$ in radianti dell'arco \widehat{AB} lunghezza della circonferenza = $2\pi r$ r = lunghezza del raggio l = lunghezza dell'arco \widehat{AB} area del cerchio = πr^2

area del settore circolare di ampiezza α radianti : $s = \frac{1}{2}\alpha r^2$ unghezza dell'arco di ampiezza α radianti : $l=\alpha \cdot r$

Funzioni logaritmiche $y = log_x$

$$D = \mathbb{R}^+ = (0; +\infty)$$

$$C = \mathbb{R} = (0; +\infty)$$

$$U = K^{+} = (0; +\infty)$$

$$C = R = (-\infty; +\infty)$$

$$x_{1} = x_{2} \iff log_{a}x_{1} = log_{a}x_{2} \text{ (funzione biunivoca)}$$

 $y = \log_4 x$

$$a > 1 \begin{cases} x_1 < x_2 \iff \log_a x_1 < \log_a x_2 \text{ (funzione cresces } \gamma = \lambda) \\ \lim_{x \to +\infty} \log_a x = +\infty \text{ ; } \lim_{x \to 0^+} \log_a x = -\infty \end{cases}$$

0

$$0 < a < 1 \begin{cases} x_1 < x_2 \iff \log_a x_1 > \log_a x_2 \text{ (funzio)} \\ \lim_{x \to +\infty} \log_a x = -\infty \text{ ; } \lim_{x \to 0^+} \log_a x = +c \end{cases}$$

0<a<1

formare con k elementi, presi fra gli n, tali che ogni gruppo è diverso dagli altri per gli elementi contenuti o per il Disposizioni semplici di n elementi distinti di classe k (con $k \le n$): sono tutti i possibili gruppi che si possono

$$(1+\lambda-n)\cdot\ldots\cdot(2-n)\cdot(1-n)\cdot n=\lambda_n Q$$

3. LE DISPOSIZIONI CON RIPETIZIONE

menti contenuti o per il loro ordine. sono formare con k elementi, anche ripetuti, presi fra gli n, tali che ogni gruppo è diverso dagli altri per gli ele-Bisposizioni con ripetizione di n elementi distinti di classe k (con k ≥ n): sono tutti i possibili gruppi che si pos-

$$D_i^{u,k} = u_k$$

4. LE PERMUTAZIONI SEMPLICI

 \mathbf{Perm} utazioni semplici di n elementi distinti: sono tutti i gruppi formati dagli n elementi che differiscono per il

$$!! n = 1 \cdot 2 \cdot \ldots \cdot (1 - n) \cdot n = {}_{n}^{A}$$

5. LE PERMUTAZIONI CON RIPETIZIONE

Pordine degli elementi distinti e il posto occupato dagli elementi ripetuti. Permutazioni di n elementi di cui h, k, ... ripetuti: sono i gruppi formati dagli n elementi che differiscono per

$$\sum_{p_n^{(h,k,\dots)}} = \frac{n!}{h! \cdot k!}$$
 \tag{Y: LE COMBINAZIONI SEMPLICI

formare con k elementi, presi fra gli n, e tali che ogni gruppo è diverso dagli altri per almeno un elemento conte \mathbf{m} Combinazioni semplici di n elementi distinti di classe k (con $k \le n$): sono tutti i possibili gruppi che si possoni

$$C_{n,k} = {n \choose k} = \frac{P_k}{D_{n,k}} = \frac{n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-k+1)}{k!}$$

 $C_{n,k}$ è chiamato numero combinatorio e può essere indicato con il simbolo $\binom{n}{k}$, che si legge «enne su kappa»

I Legge dei tre fattoriali

$$\frac{1}{u} = \frac{1}{u} \frac{1}{u} \frac{1}{u}$$

Legge delle classi complementari

$$\binom{\gamma-u}{u}=\binom{\gamma}{u}$$

8. LE COMBINAZIONI CON RIPETIZIONE

non interessa l'ordine in cui gli elementi si presentano e in ciascun gruppo è diverso il numero delle volte in cui possono formare con k elementi, presi fra gli n; ogni elemento di un gruppo può essere ripetuto fino a k volte, Combinazioni con ripetizione di n elementi distinti di classe k (con k≥n): sono tutti i possibili gruppi che si

$$C_{n,k} = C_{n+k-1,k} = \binom{n+k-1}{k} = \frac{(n+k-1)\cdot(n+k-2)\cdot\dots(n+1)\cdot n}{k!}$$

Formula di Stifel

$$\binom{1}{1} - u + \binom{1}{1} - \frac{1}{1} = \binom{1}{1}$$

$$\binom{k}{n} = \binom{k-1}{n-1} + \binom{k-1}{n}$$

$$AA^{\lambda-n}A\binom{n}{\lambda}\sum_{i=\lambda}^{n}=n(A+A)$$

9. I COEFFICIENTI BINOMIALI

 $\binom{n}{k}$ è chiamato coefficiente binomiale.

I =
$$\binom{0}{0}$$
, I = $\binom{n}{0}$, I = $\binom{n}{n}$: onned is

Formula di ricorrenza

$$\binom{\gamma+1}{u} = \binom{\gamma}{u} = \binom{1+\gamma}{u}.$$

6. LA PROBABILITÀ DELLA SOMMA LOGICA DI EVENTI

- Somma logica di due eventi: evento che si verifica quando almeno uno dei due eventi si verifica.
 - Due eventi. E₁ ed E₂ sono:
- incompatibili se $E_1 \cap E_2 = \emptyset$;
 - compatibili se $E_1 \cap E_2 \neq \emptyset$.
- $p(E_1 \cup E_2) = p(E_1) + p(E_2) p(E_1 \cap E_2)$

7. LA PROBABILITA CONDIZIONATA

- La probabilità condizionata di un evento E₁ rispetto a un evento E₂, non impossibile, è la probabilità di verificarsi di E_1 nell'ipotesi che E_2 si sia già verificato e si indica con $p(E_1 | E_2)$. Gli eventi si diconò:
 - stocasticamente indipendenti se $p(E_1 | E_2) = p(E_1)$:
 - correlati positivamente se $p(E_1 | E_2) > p(E_1)$;
- correlati negativamente se $p(E_1|E_2) < p(E_1)$
- con $p(E_2) \neq 0$. We vale il teorema: $p(E_1|E_2) = \frac{p(E_1 \cap E_2)}{p(E_1)}$, p(E2)

8. LA PROBABILITÀ DEL PRODOTTO LOGICO DI EVENTI

- $^{ t k}$ Prodotto logico o evento composto di due eventi $E_1 \cap E_2$: evento che si verifica quando si verificano entrambi gli
- Teorema della probabilità composta
- $p(E_1 \cap E_2) = p(E_1) \cdot p(E_2 \mid E_1)$, se E_1 ed E_2 sono eventi dipendenti;
 - $p(E_1 \cap E_2) = p(E_1)$, $p(E_2)$, se E_1 ed E_2 sono eventi indipendenti.

9. IL PROBLEMA DELLE PROVE RIPETUTE

p la probabilità che non si verifichi, ripetuti n esperimen-Se p è la probabilità che un evento si verifichi e q = ti la probabilità che l'evento si verifichi k volte è Schema delle prove ripetute (o di Bernoulli)

$$p_{(k,n)} = \binom{n}{k} p^k q^{n-k}.$$

10. IL TEOREMA DI BAYES

- Un evento E si può scrivere come unione di n'eventi incompatibili, ognuno dei quali è il prodotto di due eventi $E = (E \cap E_1) \cup (E \cap E_2) \cup \dots \cup (E \cap E_n)$
- dove $E_1,\,E_2,\,\ldots,\,E_s$ costituiscono una partizione dello spazio dei campioni U, cioè sono eventi non impossibi due a due incompatibili e la cui unione coincide con

Applicando la probabilità dell'evento prodotto logico si ottiene la formula di disintegrazione

- Il teorema di Bayes permette di calcolare la probabilità che un determinato evento (o causa) E, abbia prece $p(E) = p(E_1) \cdot p(E \mid E_1) + p(E_2) \cdot p(E \mid E_2) + \dots + p(E_n) \cdot p(E \mid E_n)$
- levento E che si è verificato. La probabilità che l'evento Esna stato la memorco ol meditorio dell'oriento mass

TE AREE E I VOLUMI DEI SOLIDI NOTEVOLI

 $V = \frac{4}{3} \pi r^3$

 $A = 4\pi r^2$

SFERA

 $A_t = \pi r (a + r)$ $V = \frac{1}{3} \pi r^2 \cdot h$

 $A_b = \pi r^2$ A_c = πra

 $A_b = S^2$ $A_t = 6 S^2$

 $d = s\sqrt{3}$

V = 5³

 $A_t = A_t + 2A_b$ $V = A_b \cdot h$

A_e= 2p • h

PIRAMIDE RETTA

CILINDRO

 $A_{\rm c} = 2\pi r \cdot h$

 $A_t = A_t + A_b$ $V = \frac{1}{3} A_b \cdot h$

A_r≖p•a

 $A_b = \pi r^2$

LE COORDINATE CARTESIANE NELLO SPAZIO

- La distanza fra due punti A e B è: $\overline{AB} = \sqrt{(x_A x_B)^2 + (y_A y_B)^2 + (z_A z_B)^2}$
- Le coordinate del punto medio M di un segmento AB sono

$$x_M = \frac{x_A + x_B}{2}, y_M = \frac{y_A + y_B}{2}, z_M = \frac{z_A + z_B}{2}.$$

PIANO

azione di un generico piano è:
$$by + cz + d = 0$$
 forma implicita;

ellittico paraboloid a una falda

paraboloide iperbolico

67

iperboloide a due falde

iperboloid.

ellissoide

IL PIANO

L'equazione di un generico piano è:

$$ax + by + cz + d = 0$$

- z = mx + nyforma esplicita.
- Condizioni di parallelismo e di perpendicolarità tra piani
- Due piani di equazioni ax + by + cz + d = 0 e a'x + b'y + c'z +
- sono paralleli se e solo se: a = ka', b = kb', c = kc', con $k \in \mathbb{R}$;
- sono perpendicolari se e solo se: aa' + bb' + cc' = 0.
- La distanza h del punto $A(x_A; y_A; z_A)$ dal piano di equazione ax + by + cz + d = 0 è:

$$\frac{\left|ax_{A}+by_{A}+cz_{A}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}$$

LA RETTA

Equazioni generali

$$ax + by + cz + d = 0$$
$$ax + by + cz + d' = 0$$

Equazioni ridotte:

$$\begin{cases} x = gz + p \\ y = hz + q \end{cases}$$
retta non parallela al piano Oxy

retta non parallela al piano Oxz

z = ly + sx = ky +

Equazione della retta passante per due punti $A(x_i, y_i, z_i)$ e $B(x_2, y_2, z_2)$

4. ALCUNE SUPERFICI NOTEVOL

La superficie sferica di centro $C(x_0, y_0, z_0)$ e raggio r ha equazione:

 $(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = r^2$

La sua equazione si può scrivere anche nella forma

 $x^{2} + y^{2} + z^{2} + ax + by + cz + d = 0,$

72

7.7

con

 $d \ge 0$

- |x + xu| = |z|y = mx +
- retta non parallela al piano Oyz
- $V = \frac{2}{3} \alpha_{rad} R^3 = \frac{270^{\circ}}{10^{\circ}} \pi R^3$

- SPICCHIO SFERICO
- ANELLO SFERICO

 $q_2 = \frac{9}{1} = \sqrt{2}$

 $V = \frac{4}{3}\pi \left(\frac{h}{\lambda}\right)^3 + \pi r^2 \frac{h}{\lambda} = \frac{1}{\lambda} \pi h^2 \left(\frac{3}{\lambda}\right) \pi \frac{4}{\delta} = V$

SEGMENTO SFERICO A UNA: BAS

- - SEGMENTO SFERICO A DUE BASI
- $\nabla = \frac{4}{3}\pi \left(\frac{\lambda}{\lambda}\right)^3 + \pi \left(\frac{\lambda}{\lambda} + \pi \left(\frac{\lambda}{\lambda}\right) + \frac{\lambda}{\lambda} = V$
- 4 × 118 = S S=211Rh

 $S_f = 2R^2 \alpha_{rad} = \frac{90^{\circ}}{90^{\circ}} \pi R^2$

FUSO SFERICO

CALOTTA E ZONA SFERICA

 $\frac{1}{\pi}$ (cos $n\alpha - i \operatorname{sen} n\alpha$)

te cartesiane (a, b) e viceversa

LE COORDINATE POLARI E LE EQUAZIONI DELLE CURVE

In coordinate polari la distanza fra due punti è

 $AB = \sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos(\alpha_2 - \alpha_1)}$

Equazione di una retta passante per l'origine

 $tg\alpha = m$, con $\alpha \neq \frac{\pi}{2} + k\pi$.

Date le coordinate polari diun punto P[r, a], si possono ricavare le sue coordina

ate le coordinate pola cartesiane
$$(a, b)$$
 e vic $[a = r \cos \alpha]$

LE RADICI n-ESIME DELL'UNITA

Radice *n*-esima dell'unità: ogni numero complesso u tale che $u^n = 1$.

$$\sqrt[n]{1} = \cos \frac{2k\pi}{n} + i \operatorname{sen} \frac{2k\pi}{n}, \text{ con } k \in \mathbb{Z} \text{ e } k = 0, 1, 2, ..., n - 1.$$

Radice n-esima del numero complesso z: ogni numero complesso w tale che $w^n = z$.

$$\sqrt[n]{r(\cos\alpha+i\sin\alpha)} = \sqrt[n]{r} \cdot \left(\cos\frac{\alpha+2k\pi}{n}+i\sin\frac{\alpha+2k\pi}{n}\right), \quad \text{con } k \in \mathbb{Z} \text{ e } k = 0, 1, 2, ..., n-1.$$

È possibile scrivere tali radici determinandone una e moltiplicandola per le radici n-esime dell'unità.

II. LA FORMA ESPONENZIALE DI UN NUMERO COMPLESSO

- forma esponenziale del numero complesso $r(\cos \alpha + i \sin \alpha)$ è $re^{i\alpha}$.
- Formule di Eulero:

$$e^{i\alpha} = \cos \alpha + i \sin \alpha, e^{-i\alpha} = \cos \alpha - i \sin \alpha,$$

Equazione della circonferenza di centro G[16 del e ra

Equazione della spirale di Archimede: $r^2 - 2rt_C\cos(\alpha - \alpha_C) + r_C^2 + R^2 =$

 $r = m\alpha + q$, con $r \ge 0$ e $m \ne 0$.

Equazione della cardioide $r = R(1 + \cos \alpha)$

Equazione di una retta non passante per l'origine

 $d = r\cos(\theta - \alpha)$

$$\cos \alpha = \frac{e^{i\alpha} + e^{-i\alpha}}{2}, \operatorname{sen} \alpha = \frac{e^{i\alpha} - e^{-i\alpha}}{2i}$$

LA FORMA TRIGONOMETRICA DI UN NUMERO COMPLESSO

Date il vettore \overrightarrow{OP} di componenti $a \in b$ quindi: Forma trigonometrica del numeto com

 $a + bi = r\cos \alpha + (r\sin \alpha)i = r(\cos \alpha + i\sin \alpha)$

OPERAZIONI FRA NUMERI COMPLESSI IN FORMA TRIGONOMETRICA

 $(\cos \alpha + i \sec \alpha) = z_2 = s(\cos \beta + i \sec \beta)$ Dati due numeri complessi in forma trigonometrica prodotto:

$$z_1, z_2 = r \cdot s [\cos(\alpha + \beta) + i sen(\alpha + \beta)]$$

quoziente:

$$-\frac{1}{2} = \frac{1}{2} \cdot [\cos(\alpha - \alpha)]$$

$$\frac{\sqrt{z_1}}{z_2} = \frac{L}{s} \cdot [\cos(\alpha - \beta) + isc$$

10. LE RADICI n-ESIME DI UN NUMERO COMPLESSO

14. LE DERIVATE FONDAMENTALIES	
Le derivate	
Potenze di x	Funzioni goniometriche
Dk = 0	$D \operatorname{sen} x = \cos x$
Dx = 1	$D\cos x = -\sin x$
$D x^{\alpha} = \alpha x^{\alpha - 1} $ se $\alpha \in \mathbb{N} - \{0\}, x \in \mathbb{R}$ se $\alpha \in \mathbb{R}, x > 0$	$D \operatorname{tg} x = \frac{1}{\cos^2 x} = 1 + \operatorname{tg}^2 x$
$D\sqrt{x} = \frac{1}{2\sqrt{x}}, x > 0$	$D\cot g x = -\frac{1}{\sin^2 x} = -(1 + \cot g^2 x)$
Funzioni logaritmiche ed esponenziali	Inverse delle funzioni goniometriche
$D a^x = a^x \ln a, a > 0$	$D \arctan x = \frac{1}{1+x^2}$
$D e^x = e^x$	$D \operatorname{arccotg} x = -\frac{1}{1+x^2}$
$D\log_a x = \frac{1}{x}\log_a e, x > 0, a > 0 \land a \neq 1$	$D \arcsin x = \frac{1}{\sqrt{1 - x^2}}$
$D\ln x = \frac{1}{x}, x > 0$	$D \arccos x = -\frac{1}{\sqrt{1 - x^2}}$

5: 6: 7: 8: LEIREGOLE DI DERIVAZIONE

Le regole di derivazione $D[k \cdot f(x)] = k \cdot f'(x)$ D[f(x) + g(x)] = f'(x) + g'(x) $D[f(x) \cdot g(x)] = f'(x) \cdot g(x) + f(x) \cdot g'(x)$ $D\frac{1}{f(x)} = -\frac{f'(x)}{f^2(x)}$ $D\frac{f(x)}{g(x)} = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}$

$$D[f(g(x))] = f'(z) \cdot g'(x), \quad \operatorname{con} z = g(x)$$

$$D[g(x)] = f(x) \cdot g(x) - f(x) \cdot g(x) + g(x) \cdot f'(x)$$

$$D[f(x)]^{g(x)} = [f(x)]^{g(x)} \left[g'(x) \ln f(x) + \frac{g(x) \cdot f'(x)}{f(x)} \right]$$

$$D[f^{-1}(y)] = \frac{1}{f'(x)}, \quad \cos x = f^{-1}(y)$$

10. IL DIFFERENZIALE DI UNA FUNZIONE

■ Il differenziale di una funzione f(x), relativo al punto x e all productio della derivata dell funzione, calcolata in x, per l'incremento Δx . Lo indichiamo con df(x) origine dy

■ Il differenziale della variabile indipendente x è tiguale all'incremente della variabile siessa:

$$dx = \Delta x$$

$$f'(x) = \frac{dy}{dx},$$

III. LE APPLICAZIONI DELLE DERIVATE ALLA FISIGA

- lacksquare Data la legge oraria s $\equiv f(t)$, ossia la funzione che lega la posizione s'altempo
 - $\mathbf{v}_{jic} = f'(t)$ è la velocità istantanea all'istante t;
- ψ_{i} $a_{ij} = \psi'(t) = f'(t)$ è l'accelerazione istantanea all'istante t
- lacksquare Se q(t) è la funzione che lega la quantità di carica, che passa inzuna sezione disun conduttore, al tempo t

$$\beta_{ii} = q^i(t)$$

2. GUUNTEGRAUMNDEFINITMMEDIAT

Integ	rali immediati delle funzioni fondamentali	
$\int x^{\alpha} dx$	$c = \frac{x^{\alpha+1}}{\alpha+1} + c, \cos \alpha \neq -1$	$\int \cos x dx = \sin x + c$
$\int \frac{1}{x} dx$	$c = \ln x + c$	$\int \frac{1}{\cos^2 x} dx = \operatorname{tg} x + c$
$\int e^x dx$	$=e^{x}+c$	$\int \frac{1}{\sin^2 x} dx = -\cot g \ x + c$
$\int a^x dx$	$=\frac{a^x}{\ln a}+c$	$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + c$
(4)	$dx = -\cos x + c$	$\int \frac{1}{1+x^2} dx = \arctan x + c$

Integrali la cui primitiva è una funzione com	posta
$\int [f(x)]^{\alpha} f'(x) dx = \frac{[f(x)]^{\alpha+1}}{\alpha+1} + c, \cos \alpha \neq -1$	$\int \frac{f'(x)}{\cos^2 f(x)} dx = \operatorname{tg} f(x) + c$
$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + c$	$\int \frac{f'(x)}{\sin^2 f(x)} dx = -\cot g f(x) + c$
$\int f'(x) e^{f(x)} dx = e^{f(x)} + c$	$\int \frac{f'(x)}{\sqrt{1-[f(x)]^2}} dx = \arcsin f(x) + c$
$\int f'(x) a^{f(x)} dx = \frac{a^{f(x)}}{\ln a} + c$	$\int \frac{f'(x)}{1 + [f(x)]^2} dx = \operatorname{arctg} f(x) + c$
$\int f'(x) \operatorname{sen} f(x) dx = -\cos f(x) + c$	$\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}} dx = \arcsin \frac{f(x)}{ a } + c, \cos a \neq 0$
$\int f'(x)\cos f(x) dx = \sin f(x) + c$	$\int \frac{f'(x)}{a^2 + [f(x)]^2} dx = \frac{1}{a} \arctan \frac{f(x)}{a} + c, \cos a \neq 0$

4. L'INTEGRAZIONE PER PARTI

■ Formula di integrazione per parti: $\int f(x)g'(x)dx = f(x), g(x) + \int f'(x)g'(x)dx$

4. LE DISTRIBUZIONI DI PROBABILITÀ DI USO FREQUENTE

La distribuzione binomiale (o di Bernoulli);

• Una variabile casuale discreta X con valori x = 0, 1, 2, ..., n ha una distribuzione di probabilità binomiale di parametri n e p se i valori della variabile sono dati dal numero di successi di un evento di probabilità costante p in n prove indipendenti e le corrispondenti probabilità si ricavano dal teorema delle prove ripetute, cioè:

$$P(X=x) = \binom{n}{x} p^x (1-p)^{n-x}.$$

••• $M(X) = n \cdot p$; $var(X) = n \cdot p(1-p)$, $\sigma(X) = \sqrt{n \cdot p(1-p)}$

■ La distribuzione di Poisson

Una variabile casuale discreta X con valori x = 0, 1, 2, ..., n ha una distribuzione di Poisson se tali valori sono
relativi al numero di volte in cui un evento può verificarsi in un intervallo di tempo o in un contesto fissato e
le prove si realizzano in modo indipendente (legge degli eventi rari).
La sua distribuzione di probabilità è

$$P(X = x) = \frac{\lambda^x}{x!} e^{-\lambda},$$

dove λ è un parametro che coincide con il valore medio e con la varianza di X

$$M(X) = \lambda \cdot e \cdot var(X) = \lambda$$
.

• Questa distribuzione approssima quella binomiale quando il numero delle prove n è elevato e il valore della probabilità p è piccolo, essendo $\lambda = np$