复分析期末试卷

2023年6月29日

注 1: 本试卷共八个大题, 满分 100 分.

注 2: $B(0,1) = \{z \in \mathbb{C} \mid |z| < 1\}.$

一(10分)考虑复平面上的亚纯函数

$$f(z) = \frac{1}{(z - 2023)(z - 2024)}.$$

分别给出 f(z) 在 $\{z \in \mathbb{C} \mid |z| < 2023\}$ 和 $\{z \in \mathbb{C} \mid 2023 < |z| < 2024\}$ 上的 Laurent 展开.

- 二 (7 分) 计算方程 $z^7 5z^4 + z^2 2 = 0$ 在 B(0,1) 上的根的个数.
- Ξ (8 分) 证明: $\forall \theta \in (0, 2\pi)$,

$$\sum_{n=1}^{\infty} \frac{\cos(n\theta)}{n} = -\log\Bigl(2\sin\Bigl(\frac{\theta}{2}\Bigr)\Bigr).$$

四 (20 分) 计算积分:

1. (5分)

$$\int_{|z|=1} \frac{dz}{(z+2)(2z-1)}.$$

2. (7分)

$$\int_0^{+\infty} \frac{\cos(t)}{t^2 + a^2} dt, \quad a > 0.$$

3. (8分)

$$\int_{-\infty}^{+\infty} \frac{(\sin(x))^2}{x^2} \, dx.$$

五 (15 分) 考虑函数 $f(z) = 1/\cos z$ 在 z = 0 处的 Taylor 展开:

$$f(z) = \sum_{n=0}^{\infty} \frac{a_n}{n!} z^n.$$

1. (5 分) 求幂级数

$$\sum_{n=0}^{\infty} \frac{a_n}{n!} z^n$$

的收敛半径.

- 2. (5 分) 计算 a_0, a_1, a_2, a_3, a_4 .
- 3. (5 分) 证明: 对任意 $n \geq 0$, $a_n \in \mathbb{Z}$.

六 (15 分) 设 f 为 B(0,1) 上的全纯函数, f(0) = 0. 已知 $Ref(z) \le 1/2$, $\forall z \in B(0,1)$. 证明:

$$|f(z)| \leq \frac{|z|}{1-|z|}, \quad \forall z \in B(0,1).$$

七 (15 分)

- 1. (10 分) 求一个将区域 $\{z \in \mathbb{C} \mid |z| < 2, |z-1| > 1\}$ 共形地映为 B(0,1) 的共形映射.
- 2. (5 分) 是否存在从 $\{z \in \mathbb{C} \mid |z| > 1\}$ 到 $\mathbb{C} \setminus \{0\}$ 的双全纯映射? 若存在请给出具体构造,若不存在请说明理由.

八 (10 分)

- 1. (2 分) 叙述最大模原理.
- 2. (8 分) 设 $D\subset\mathbb{C}$ 为有界区域, $f:D\to\mathbb{C}$ 全纯. 如果对任意收敛于 ∂D 的点列 $z_n\in D$, 都有 $\varlimsup_{n\to\infty}|f(z_n)|\leq M.$

证明: 对任意 $z \in D$,

 $|f(z)| \leq M$.