Lecture 15

Rajiv Kumar rajiv.kumar@iitjammu.ac.in

October 12, 2021

Rank and Nullity

Basis of the column space of A

row-echelon matrix, then the first non-zero column of \mathbf{A} is $e_1 = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \end{bmatrix}^t$ which is a pivotal column, say, at j_1 position. Now if e_1, e_2, \ldots, e_r are first r pivotal columns of \mathbf{A} occurring at j_1, j_2, \ldots, j_r positions, then the next column of \mathbf{A} at $(j_r+1)^{th}$ position is either the pivotal column e_{r+1} or is a linear combination of the preceding pivotal columns e_1, e_2, \ldots, e_r . Clearly, pivotal columns forms a basis of $\mathcal{C}(\mathbf{A}_E)$. The columns of \mathbf{A} corresponding to the pivotal columns of \mathbf{A}_E are called the basic columns. The basic columns of \mathbf{A} form a basis for $\mathcal{C}(\mathbf{A})$.

Finding basis of a span of a set in \mathbb{R}^m

Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be a set of vectors in \mathbb{R}^m . To find a basis of $\mathrm{span}(S)$, consider a $m \times n$ matrix $\mathbf{A} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix}$. To find a basis of $\mathrm{span}(S)$, convert the matrix \mathbf{A} into the reduced row echelon form \mathbf{A}_E . Now, vector corresponding to basic columns of \mathbf{A}_E forms a basis for $\mathrm{span}(S)$ Here $\mathbf{C}(\mathbf{A}) = \mathrm{Span}(S)$..

Definition

Given an $m \times n$ matrix A

- the rank of A is the dimension of the column space of A: rank(A) = dim C(A).
- the nullity of A is the dimension of null space of A: $\frac{\text{nullity}(A) = \dim \mathcal{N}(A)}{\text{nullity}(A)}.$

Example

Find a basis for span
$$\left(\begin{bmatrix}1\\2\\3\end{bmatrix},\begin{bmatrix}2\\4\\6\end{bmatrix},\begin{bmatrix}2\\1\\1\end{bmatrix},\begin{bmatrix}3\\3\\4\end{bmatrix}\right)$$
.

Let
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 2 & 3 \\ 2 & 4 & 1 & 3 \\ 3 & 6 & 1 & 4 \end{bmatrix}$$
. Then $\mathbf{A}_E = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ with first and third

columns as pivotal columns. Thus a basis of column space of A is $\{\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^t, \begin{bmatrix} 2 & 1 & 1 \end{bmatrix}^t \}$. Hence a basis for

$$\operatorname{span}\left(\begin{bmatrix}1\\2\\3\end{bmatrix},\begin{bmatrix}2\\4\\6\end{bmatrix},\begin{bmatrix}2\\1\\1\end{bmatrix},\begin{bmatrix}3\\3\\4\end{bmatrix}\right) \text{ is } \left\{\begin{bmatrix}1\\2\\3\end{bmatrix},\begin{bmatrix}2\\1\\1\end{bmatrix}\right\}. \text{ Now, we can see that } \operatorname{rank}(\mathbf{A})=2 \text{ and } \operatorname{nullity}(\mathbf{A})=2.$$

Basis of the null space of A

To find a basis of the null space of **A**, solve the homogeneous system Ax = 0. Let rank A = r. Then we have the following observations:

- Since elementary row operations are invertible, the solution set of Ax = 0 equals to the solution set of $A_Ex = 0$.
- The unknown variables corresponding the positions of basic columns are called basic variables and other variables are called free variables.
- There are exactly r basic variables and n r free variables.

Let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{n-r}$ denote the solutions obtained by sequentially setting each free variable equal to 1 and other free variables equal to zero.

- The set $\{x_1, x_2, \dots, x_{n-r}\}$ forms a basis of null space of A.
- rank(A)+ nullity(A)= number of columns of (A).

Theorem (rank nullity theorem)

Let **A** be an $m \times n$ matrix. Then $rank(\mathbf{A}) + nullity(\mathbf{A}) = n$.

Example

Let
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 2 & 3 \\ 2 & 4 & 1 & 3 \\ 3 & 6 & 1 & 4 \end{bmatrix}$$
 . Then $\mathbf{A}_E = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. Thus the original

homogeneous system is equivalent to the following reduced homogeneous system: $x_1 + 2x_2 + x_4 = 0$, $x_3 + x_4 = 0$, where x_2 and x_4 are free variables. By taking $x_2 = 1$ and $x_4 = 0$, we get a solution $\mathbf{x}_1 = \begin{bmatrix} -2 & 1 & 0 & 0 \end{bmatrix}^t$. Similarly, by taking $x_2 = 0$ and $x_4 = 1$, we get a solution $\mathbf{x}_2 = \begin{bmatrix} -1 & 0 & -1 & 1 \end{bmatrix}^t$. Thus a basis of null space of \mathbf{A} is $\{\begin{bmatrix} -2 & 1 & 0 & 0 \end{bmatrix}^t, \begin{bmatrix} -1 & 0 & -1 & 1 \end{bmatrix}^t\}$ and a basis of column space of \mathbf{A} is $\{\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^t, \begin{bmatrix} 2 & 1 & 1 \end{bmatrix}^t\}$.