Genetic Algorithms

Jose M Sallan

7/3/2019

- Introducing genetic algorithms
- The standard genetic algorithm
- Solving a standard GA
- 4 Real-valued encoding

Introducing genetic algorithms

Genetic algorithms

Genetic algorithms are inspired by **evolution**:

Figure 1: Evolution

Evolution

Evolution is the change of heritable conditions of biological populations over successive generations:

- Heritable conditions are encoded in the genotype, and are displayed in the phenotype.
- Heritable conditions change by variation mechanisms: crossover of parent's genes and gene mutation.
- Only the individuals who fit to the environment are selected in the next generation.

Can we use the mechanism of evolution (variation and selection) to solve optimization problems?

Genetic algorithms and evolution

Genetic algorithm is a **metaheuristic** inspired in the process of natural selection and evolution

- Metaheuristic: a template to create an algorithm to solve a specific problem.
- Other metaheuristics: particle swarm optimization, simulated annealing, tabu search. . .

First introduced by John Holland (1975) to simulate evolutionary processes, later used for optimization.

The genetic algorithm flow

- Define a starting population of candidate solutions
- 2 While there is no **convergence**, create a new generation:
 - Create a new generation member by crossover of members of previous generation.
 - Mutate generation members with a probability.
 - ▶ **Select** the members of the new generation, according to its **fitness**.

Frequently the selection process is embedded in crossover: only individuals fit to the environment are allowed to mate.

The elements of a genetic algorithm

What do we need to build a genetic algorithm?

- A way to encode a candidate solution: how to obtain the genotype from the phenotype.
- Definition of crossover, mutation and selection operators. These operators work with the genotype of solutions.
- A fitness function that help us assess how does a population member fit to the environment.
- A **convergence** criterion to know when the algorithm stops.

The standard genetic algorithm

Binary encoding

A standard implementation of the genetic algorithm metaheuristic:

- A continuous fitness function to optimize (maximize or minimize) of p variables, sometimes with constraints.
- A region to explore with the genetic algorithm, defined by an upper and lower bound of variables (additional constraints).
- A bit string representation of each variable:
 - ▶ Phenotype: a real number $x \in \mathcal{R}$.
 - ▶ Genotype: a binary string $\mathbf{b} \in \mathcal{B}^n$.
- Creation of new population with a crossover operator:
 - Uniform, one-point, two-point crossover
- Proportional selection of crossover elements:
 - The probability of selection is higher for elements of good value of fitness function.

Standard encoding mapping $\mathcal{B}^n \to [L,U] \subset \mathcal{R}$ of n bits slices a continuous interval into 2^n-1 bins:

$$x = L + \frac{U - L}{2^{n} - 1} \sum_{i=0}^{n-i} b_{n-1} 2^{i}$$

For n = 3 bits we have eight marks of the [-10, 10] interval:

Jose M Sallan Genetic Algorithms 7/3/2019 11 / 44

The bit string has a precision equal to interval width:

$$\Delta x = \frac{U - L}{2^n - 1}$$

A high precision requires high number of bits, increasing computational cost.

Hamming distance of two bit strings: number of different bits.

The Hamming distance of 001100 and 100110 is 3: bits 1, 3 and 5 are different.

Problem: contiguous bit string can have high Hamming distance (change of one bit can alter the value of x):

Alternative: reflected binary code or Gray code (after Frank Gray). Can be obtained from standard binary:

$$g_1=b_1$$

$$g_n = b_n \oplus b_{n-1}, i = 2, \ldots, n$$

Gray encoding for n = 3

Two consecutive strings encoded in Gray coding have Hamming distance equal to one.

about Gray encoding

A crossover operator obtains one offspring from two or more elements of the population. Crossovers for binary strings:

Element 1: 001011101001 Element 2: 110000111000

Uniform crossover with mask (at random): 011000110110, son 010011111001

One-point crossover with cut at i = 5: 001010111000

Two-point crossover with cut at i = 3 and i = 10: 001000111001

Crossover and selection

Usually we give a higher chance to mate to elements with good values of fitness function.

In **proportional selection** probability of mating is proportional to fitness function (in MAX problems)

In **tournament selection** we pick the best-fitting individual from a subset of elements selected at random.

Mutation operators

The offspring obtained from crossover can be mutated with a probability p_m . Objective: increasing variation and avoid convergence in a local optimum.

In binary encodings consists in negating some elements of the bit string.

Element to mutate: 001010111000

Inorder mutation (e.g., three elements from i = 3):

00**101**0111000

00**010**0111000

Random mutation (e.g., three positions):

00**1**010**1**110**0**0

000010011010

Elitism

We want to keep the best result obtained in all previous generations, as it is the output of the algorithm.

Adopting an **elitist strategy** means including this element in the next generation.

Jose M Sallan Genetic Algorithms 7/3/2019 18 / 44

Convergence

Some criteria for convergence (stopping):

- The algorithm reaches a specified number of generations.
- There is no improvement of the fitness function in a number of iterations.
- There is no variation in the last generation (all elements are equal).

Solving a standard GA

A simple example

We want to obtain the maximum in $-10 \le x \le 10$ of $(x^2 - x)\cos(x)$:

Let's use a binary encoding implementation.

The GA R package

We will use the GA package of R, written by Luca Scrucca Installing R and RStudio on Windows Installing R and RStudio on mac

Defining the fitness function (binary encoding)

As the genetic algorithm works with binary encoding, we need to provide a fitness function with binary input:

```
bin2real <- function(b, l, u){
  n <- length(b)
  s <- 0
  for(i in 0:(n-1)) s <- s + b[n-i]*2^i
  s < -1 + (u-1)*s/(2^n - 1)
  return(s)
}
f.stdbin <- function(b, lbound=-10, ubound=10){
  x <- bin2real(b, lbound, ubound)
  return((x^2+x)*cos(x))
```

Applying genetic algorithm (binary encoding)

First time you use this you need to install GA package:

```
install.packages("GA")
```

Perform GA and store results in g01.stdbinary variable:

```
library(GA)
g01.stdbinary <- ga(type = "binary", fitness = f.stdbin,
maxiter=50, lbound=-10, ubound=10, nBits=32, seed=1313)</pre>
```

 Jose M Sallan
 Genetic Algorithms
 7/3/2019
 24 / 44

Results (binary encodign)

```
summary(g01.stdbinary)
```

```
## -- Genetic Algorithm -----
##
## GA settings:
## Type
                           binary
## Population size
                           50
## Number of generations =
                           50
## Elitism
                           2
## Crossover probability =
                           0.8
## Mutation probability =
                           0.1
##
## GA results:
## Iterations
                         = 50
## Fitness function value = 47.70562
## Solution =
                                        ... x31 x32
##
       x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
```

Jose M Sallan 7/3/2019 25 / 44

Performance (binary encoding)

plot(g01.stdbinary)

Define fitness function (Gray encoding)

We need an additional function to convert from Grey to binary:

```
Gray2bin <- function(g){</pre>
  n <- length(g)
  b <- logical(n)
  b[1] \leftarrow g[1]
  for(i in 2:n) b[i] \leftarrow ifelse(g[i]==0, b[i-1], !b[i-1])
  return(b)
f.gray <- function(g, lbound=-10, ubound=10){
  b <- Gray2bin(g)
  x <- bin2real(b, lbound, ubound)
  return((x^2+x)*cos(x))
```

Genetic algorithm (Gray encoding)

```
g01.gray <- ga(type = "binary", fitness = f.gray,
maxiter=50, lbound=10, ubound=10, nBits=32, seed=1313)</pre>
```

Jose M Sallan Genetic Algorithms 7/3/2019 28 / 44

Results (Gray encoding)

summary(g01.gray)

```
## -- Genetic Algorithm -----
##
## GA settings:
## Type
                           binary
## Population size
                           50
## Number of generations =
                          50
## Elitism
                           2
## Crossover probability =
                           0.8
## Mutation probability = 0.1
##
## GA results:
## Iterations
                         = 50
## Fitness function value = 47.70562
## Solution =
                                       ... x31 x32
##
       x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
```

Jose M Sallan 7/3/2019 29 / 44

Performance (Gray encoding)

plot(g01.gray)

Jose M Sallan

Conclusions of binary vs Gray comparison

Both algorithms reach optimum...

Conclusions of binary vs Gray comparison

... but Gray (right) is faster than standard binary (left)

Real-valued encoding

Real-valued encoding

For problems having decision variables $\mathbf{x} \in \mathcal{R}^n$, the most natural encoding is the floating-point or real-valued encoding.

In this encoding, the genotype is simply the phenotype (that is, the vector itself).

The most used crossover operators are:

- Vector-level:
 - ▶ Whole arithmetic crossover
- Variable-level:
 - Local arithmetic crossover
 - Blend crossover
 - Uniform crossover

Whole arithmetic crossover: from two parents \mathbf{x}^1 and \mathbf{x}^1 we can obtain two offspring:

$$\alpha \mathbf{x}^1 + (1 - \alpha)\mathbf{x}^2$$

$$(1 - \alpha)\mathbf{x}^1 + \alpha\mathbf{x}^2$$
with $\alpha \in [0, 1]$

Local arithmetic crossover: we perform a similar crossover at the variable level.

$$\alpha x_i^1 + (1 - \alpha)x_i^2$$
$$(1 - \alpha)x_i^1 + \alpha x_i^2$$

again with $\alpha \in [0,1]$

Blend crossover: we construct the offspring selecting each variable randomly from the interval:

$$[x_i^1 - \alpha(x_i^2 - x_i^1), x_2^1 + \alpha(x_i^2 - x_i^1)]$$

with $x_i^2 > x_i^1$.

Usually $\alpha=0.5$ yields good results. If necessary, variables of offspring should be adjusted to upper or lower bounds.

If $\alpha = 0$ we have uniform crossover.

Mutation operators

The most usual mutation operator is to pick a value within a given radius of the population member.

It is frequent to reduce the radius as generations go (nonuniform mutation), similarly to genetic algorithm.

Genetic algorithm (real-valued encoding)

```
f <- function(x) (x^2+x)*cos(x)
lbound <- -10; ubound <- 10
g01.real <- ga(type = "real-valued", fitness = f, lower = lbound</pre>
```

This implementation also finds the optimum.

Jose M Sallan Genetic Algorithms 7/3/2019 39 / 44

Performance (real-valued encoding)

plot(g01.real)

The Rastrigin function

The Rastrigin function is a performance test for optimization algorithms, as it has a large search space and many local minima. For two variables:

$$f = 20 + x_1^2 + x_2^2 - 10(\cos 2\pi x_1 + \cos 2\pi x_2)$$

with
$$x_i \in [-5.12, 5.12]$$

Note that this is a minimization problem, so we must use -f as fitness function.

The Rastrigin function

Solving the Rastrigin problem

Set two convergence criteria: maximum number of generations (1000) and maximum number of runs without improvement (100).

The GA finds the optimum (0,0).

Performance (Rastrigin problem)

