

Laboratório

Codificação RTL - Circuitos Combinacionais

 Implemente, em VHDL, quatro circuitos lógicos combinacionais que possuam, cada um, a característica funcional de um decodificador para displays de 7-segmentos conforme apresentado na Tabela 1:

ABCD	Display
0000	0
0001	1
0010	2
0011	2 7 7 5
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	A
1011	Ь
1100	ב
1101	д
1110	d E F
1111	F

Tabela 1 - Tabela Verdade.

- Utilize TODAS as seguintes estruturas combinacionais para a implementação (uma para cada implementação):
 - a. With / Select
 - b. When / Else
 - c. If / Then / Else
 - d. Case / When
- II. A saída do decodificador deve ser acionada em nível lógico alto;

- III. O bloco decodificador deverá possuir uma estrutura puramente combinacional (sem a presença de latches e/ou flip-flops);
- IV. Nomear o arquivo fonte como: "decoder_display_[nome da estrutura].vhd"
- V. A entidade do bloco deverá ser nomeada como: "decoder"
- VI. A arquitetura do bloco deverá ser nomeada como: "decoder_arch"
- VII. O bloco decodificador deverá possuir a interface apresentada na Tabela 2:

Nome	Tipo	Tamanho
abcd	Entrada	4 bits
display	Saída	7 bits

Tabela 2 - Interfaces.

- VIII. Considerar o bit 3, do barramento de dados de entrada (abcd), como o mais significativo e o bit 0 como o menos significativo;
- IX. Considerar a Tabela 3 para o relacionamento entre os segmentos do display e barramento de dados de saída do decodificador;

Bit	Segmento	Referência
6	Α	A
5	В	$\begin{bmatrix} \mathbf{F} \end{bmatrix} \begin{bmatrix} \mathbf{B} \end{bmatrix}$
4	С	F D
3	D	X G X
2	E	$\begin{bmatrix} \mathbf{E} \end{bmatrix} \begin{bmatrix} \mathbf{C} \end{bmatrix}$
1	F	
0	G	D

Tabela 3 – Relação entre segmentos e barramento.

• Procedimento:

- I. Codifique, em VHDL, o circuito lógico acima especificado;
- II. No Modelsim, compile e simule o Circuito Lógico desenvolvido;

• Transferência de Arquivos:

- Fazer o download do aplicativo MobaXterm
 - o http://mobaxterm.mobatek.net/
- Acesso à Kriti:

Comandos de Referência:

No Terminal, utilizar estes comandos para carregar o simulador ModelSim:

source /soft64/source_gaph
module load modelsim/10.3c
vsim &

b) No Transcript do Modelsim (script.do):

c) Usando script no Modelsim:

vsim -do script.do