Universidad Tecnológica Metropolitana.

Departamento de Computación e Informática.

Computación Paralela.

Docente: Sebastián Salazar Molina. Ayudante: Fernando Rubilar.

Tarea 03

25 de enero de 2019

RESUMEN

Se solicita desarrollar una aplicación en C/C++, que permita determinar cuáles matrices de un archivo (dado) son cuadrados mágicos, las observaciones son:

- Si al programa se le pasa el argumento -f ruta -o ruta debe usar al archivo especificado después del argumento -f como datos de entrada, y almacenar en el archivo especificado después del argumento -o las matrices que cumplen con el criterio de ser cuadrados mágicos, como dato de salida.
- La estructura de las matrices en los archivos tienen la siguiente forma [a1,a2,a3;b1,b2,b3;c1,c2,c3]:
 - Las letras corresponden a las filas.
 - Los números corresponden a las columnas
- La implementación debe ser en paralelo usando OpenMP.
- La fecha de entrega tope es el **25/01/2018** hasta las 23:59:59.999 horas de forma presencial en la sala de clases.
- El proyecto deberá construirse usando make.

Asumiendo que tienen un ejecutable llamado "programa", la ejecución debería ser:

Ejecución

./programa -f /tmp/matrices.txt -o /tmp/salida.txt

Entrada

Los datos de entrada, para prueba, se pueden obtener desde:

https://sebastian.cl/matrices.txt.xz

Implementación Sugerida

Se han creado dos respositorios sugeridos:

Matriz Mágica

Es es el código base sobre el que partir.

https://github.com/sebasalazar/matrizMagica

Integración OpenMP

Un proyecto de ejemplo en el uso de OpenMP

https://github.com/sebasalazar/integracionOpenMP

Salida

El archivo con las matrices que cumplen el criterio de ser cuadrados mágicos.

Nota: Definiremos un cuadrado mágico como aquella matriz que se obtiene colocando una serie de números en una matriz cuadrada de 3x3 de tal forma que todas las **filas**, todas las **columnas** y las **diagonales** sumen el mismo número.

Ejemplo: Una salida válida sería la siguiente matriz.

[5,0,1;-2,2,6;3,4,-1]

	5	0	1	6
	-2	2	6	6
	3	4	-1	6
6	6	6	6	6

Dado que la suma de sus columnas y diagonales da 6.

ESPECIFICACIONES

Equipo.

El proyecto deberá ser realizado de forma individual.

Código.

El código debe ser entregado en el horario del examen, entre las 10 y 12 horas del día Sábado 06 de Octubre de 2018, en los laboratorios de la Universidad. Aunque, debe estar respaldado en un repositorio personal github o bitbucket.

Lenguaje de programación.

El proyecto se debe realizar en **C/C++** y será compilado en una máquina Linux de 64 bits, específicamente:

- Kubuntu 18.04.1 LTS de 64 bits.
- GCC 7.3.0
- Make 4.1
- Cmake 3.10.2.

EVALUACIÓN

Documentación.

Parte de la evaluación consiste en la documentación de las funciones. Que debe ser clara, concisa y descriptiva de lo que el código realiza.

Código

El código debe ser claro, fácil de leer, ordenado y cumplir con buenas prácticas de programación.

Resultados.

Un criterio de evaluación, el el tiempo de ejecución de la tarea. Menos es mejor. La evaluación es porcentual. Parte de la evaluación es usar todos los cpus disponibles.

Estrategia Sugerida.

La estrategia sugerida, es usar un nodo para determinar la cantidad de procesadores disponibles, en el nodo principal se puede enviar una fila del archivo a cada nodo, los nodos que reciben los datos, transforman esta línea en una matriz de 3x3 y evaluar si cumplen con la condición, de cumplirla retornan la fila y si no cumple retorna un string vacío.

El nodo principal recibe los datos y cuando obtiene un string no vacío, lo guarda en el archivo de salida.