PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-251889

(43)Date of publication of application: 14.09.2001

(51)Int.CI.

H02P 6/18 H02P 21/00 H02P 7/63

(21)Application number: 2000-065714

(71)Applicant:

HITACHI LTD

(22)Date of filing:

06.03.2000

(72)Inventor:

SAKAMOTO KIYOSHI

ENDO TSUNEHIRO

TAKAHASHI NAOHIKO

MIURA HARUO FUJII HIROSHI

(54) CONJECTURING METHOD FOR POSITION OF ROTOR IN SYNCHRONOUS MOTOR, AND METHOD AND APPARATUS FOR SENSORLESS CONTROL OF POSITION

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a conjecturing method in which the position of a rotor in a synchronous motor, having a salient-pole property is estimated precisely on the basis of an observable amount. SOLUTION: An induced-voltage estimation and shaft-deviation computing part 61 is installed at a control system, which adjusts the output frequency ù 1 of an inverter 13, on the basis of the value of the shaft deviation Äè of a synchronous motor 2, and which operates the motor 2 in synchronization with the output frequency. Currents Idc, Iqc which convert detection currents iu, iw into a control shaft, voltage commands Vdc*, Vqc* which are to be outputted to an opposite converter 44 and a speed command ù r* are input. The induced voltage of the motor 2 is estimated, and the shaft deviation Äè is found on the basis of its phase. When the voltage of an inductance is to be dropped, an electrical constant Lq of the inductance is used, the Lq is set as the product of a motor-speed command by the magnitude of a motor current, and the Lq is set as a virtual amount which does not depend on the position of a rotor in the motor. The vector of the virtual amount is derived, in such a way that the phase of an intrinsic induced voltage will not change.

LEGAL STATUS

[Date of request for examination]

24.05.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3411878

[Date of registration]

20.03.2003

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(12)公開特許公報 (A)

(11)特許出願公開番号

特開 2 0 0 1 - 2 5 1 8 8 9 (P2 0 0 1 - 2 5 1 8 8 9 A)

(43)公開日 平成13年9月14日(2001.9.14)

最終頁に続く

			•		•
(51) Int. Cl. 7	識別記号。		FΙ		テーマコード(参考)
H 0 2 P	6/18		H 0 2 P	7/63 3 0 3	V 5H560
•	21/00	of the second		6/02 3 7 1	S 5H576
	7/63 3 0 3			5/408	С
		•	•		
		,t .;			
	審査請求 有 請求項の数18		OL	(全19頁)	
(21)出願番号	特願2000-65714(P2000-65714)		(71)出願人		
				000005108	•
				株式会社日立製	
(22)出願日	平成12年3月6日(2000.3.6)			東京都千代田区	神田駿河台四丁目6番地
		, V	(72)発明者	坂本 潔	
				茨城県日立市大	みか町七丁目1番1号 株式
				会社日立製作所	日立研究所内
			(72)発明者	遠藤 常博	
				茨城県日立市大	みか町七丁目1番1号 株式
	.*			会社日立製作所	日立研究所内
			(74)代理人	100068504	
				弁理士 小川	勝男 (外1名)

(54) 【発明の名称】同期モータの回転子位置推定方法、位置センサレス制御方法及び制御装置

(57)【要約】

【課題】突極性を有する同期モータの回転子位置を観測 可能な量から正確に推定する。

【特許請求の範囲】

【請求項1】 突極性を持つ同期モータの誘起電圧を、 モータ印加電圧からモータ巻線の抵抗による電圧降下及 びインダクタンスによる電圧降下のベクトル差により推 定するときに、前記インダクタンスによる電圧降下は、 前記インダクタンスに所定値を用い、かつモータ電流に 対して所定位相ずれた量として求め、推定した誘起電圧 からその位相を算出して回転子位置を推定することを特 徴とする同期モータの回転子位置推定方法。

【請求項2】 請求項1において、

前記インダクタンスによる電圧降下は、前記モータ電流 に対して90度位相が進んだベクトルとして、前記所定 値に突極機のモータ電気定数であるインダクタンスL a を用い、このLqと、観測可能な前記モータ電流の大き さと、観測可能なモータ印加電圧の周波数またはモータ 速度指令値との積により求めることを特徴とする同期モ ータの回転子位置推定方法。

【請求項3】 請求項1または2において、

前記モータ電流は回転座標系の制御軸(dc-ac)を 基準とする2つの軸成分の観測値で取得し、

前記誘起電圧の位相は、前記モータ印加電圧の観測値 と、前記電流の観測値と前記抵抗の積による電圧降下及 び前記電流の観測値と前記インダクタンスの積による電 圧降下を前記制御軸の軸成分毎に演算して前記ベクトル 差を軸成分毎に算出し、算出した両成分のベクトル差の 比によって求めることを特徴とする同期モータの回転子 位置推定方法。

【請求項4】 請求項1または2において、

前記モータ電流は観測可能なモータ電流の大きさとして 取得し、前記誘起電圧の位相は、前記モータ印加電圧、 前記抵抗による電圧降下及び前記インダクタンスによる 電圧降下を電流軸の成分と前記電流軸から90度進みの 成分として演算して前記ベクトル差を成分毎に算出し、 算出した両成分のベクトル差の比によって求めることを 特徴とする同期モータの回転子位置推定方法。

【請求項5】 突極性を持つ同期モータの誘起電圧を、 モータ印加電圧からモータ巻線の抵抗による電圧降下及 びインダクタンスによる電圧降下を差し引いたベクトル 関係となることに基づいて推定するときに、前記インダ クタンスによる電圧降下は、前記インダクタンスに所定 40 値を用い、かつモータ電流に対して90度位相が進む量 となる仮想電圧降下により求め、

前記仮想電圧降下を用いて推定した誘起電圧からその位 相を算出して回転子位置を推定することを特徴とする同 期モータの回転子位置推定方法。

【請求項6】 請求項5において、

前記仮想電圧降下を用いて推定した誘起電圧は、前記仮 想電圧降下を用いない場合に比べて位相が同じで、大き さが前記ベクトル関係を維持するように変化する仮想誘 起電圧であり、この仮想誘起電圧の前記位相を算出して 50 前記回転子位置を推定することを特徴とする同期モータ の回転子位置推定方法。

突極性を持つ同期モータの誘起電圧を、 【請求項7】 モータ印加電圧からモータ巻線の抵抗による電圧降下及 びインダクタンスによる電圧降下のベクトル差により推 定するときに、前記インダクタンスによる電圧降下は、 前記インダクタンスに所定値を用い、かつモータ電流に 対して所定位相ずれた量と、モータ電流の大きさと位相 の変動により生じる量の和として求め、推定した誘起電 圧からその位相を算出して回転子位置を推定することを 特徴とする同期モータの回転子位置推定方法。

【請求項8】 請求項7において、

前記インダクタンスによる電圧降下は、前記モータ電流 に対して90度位相が進んだベクトルとして、前記所定 値に突極機のモータ電気定数であるインダクタンスし q、Ldを用い、このLqと、観測可能な前記モータ電 流の大きさと、観測可能なモータ印加電圧の周波数また はモータ速度指令値との積と、前記Ldと、観測可能な モータ電流の大きさ及び位相の変動により生じる量との 20 積と、それら積の和により求めることを特徴とする同期 モータの回転子位置推定方法。

突極性を持つ同期モータの回転子位置を 【請求項9】 推定し、位置センサレスで同期モータを制御する方法に おいて、

前記同期モータの誘起電圧を、モータ印加電圧からモー 夕巻線の抵抗による電圧降下及びインダクタンスによる 電圧降下のベクトル差により推定するときに、前記イン ダクタンスによる電圧降下は、前記インダクタンスに所 定値を用い、かつモータ電流に対して所定位相だけ進む 量として求め、

推定した誘起電圧の位相を求め、この位相が制御上の仮 想の回転子位置と観測不可能な実際の回転子位置との軸 ずれ角を表すことに基づいて、前記誘起電圧の位相から 推定した軸ずれ角が実際の回転子位置より仮想の回転子 位置が回転子の回転方向に進んでいることを示す値の場 合は、仮想の回転子位置の回転速度を下げるようにモー 夕印加電圧の周波数を下げ、推定した軸ずれ角が遅れて いることを示す値の場合は仮想の回転子位置の回転速度 を上げるようにモータ印加電圧の周波数を上げるように することを特徴とする同期モータの位置センサレス制御 方法。

【請求項10】 突極性を持つ同期モータの回転子位置 を推定し、位置センサレスで同期モータを制御する方法 において、

前記同期モータの誘起電圧を、モータ印加電圧からモー 夕巻線の抵抗による電圧降下及びインダクタンスによる 電圧降下のベクトル差により推定するときに、前記イン ダクタンスによる電圧降下は、前記インダクタンスに所 定値を用い、かつモータ電流に対して所定位相だけ進む 量として求め、

30

推定した誘起電圧の位相を求め、この位相が制御上の仮 想の回転子位置と観測不可能な実際の回転子位置との軸 ずれ角を表すことに基づいて、前記誘起電圧の位相から 推定した軸ずれ角が実際の回転子位置より仮想の回転子 位置が回転子の回転方向に進んでいることを示す値の場 合は、実際の回転子位置の回転速度を上げるようにモー 夕のトルク指令値を上げ、推定した軸ずれ角が遅れてい ることを示す値の場合は実際の回転子位置の回転速度を 下げるようにモータのトルク指令値を下げるようにする ことを特徴とする同期モータの位置センサレス制御方 法。

【請求項11】 請求項9または10において、 前記誘起電圧の位相は、請求項2乃至8に記載の同期モ 一夕の回転子位置推定方法によって推定することを特徴 とする同期モータの位置センサレス制御方法。

【請求項12】 請求項9、10または11において、 前記誘起電圧の位相で表される軸ずれ角の誤差補償値を 設定し、前記軸ずれ角と前記誤差補償値の差が最小化す るように前記モータ印加電圧の周波数またはトルク指令 値を制御することを特徴とする同期モータの位置センサ レス制御方法。

【請求項13】 請求項12において、

前記誤差補償値の設定は、前記モータの回転数や負荷が 一定の状態で前記モータ電流が最小化するように調整す ることを特徴とする同期モータの位置センサレス制御方 法。

【請求項14】 直流電圧を可変電圧、可変周波数の三 相交流電圧に変換して突極性を持つ同期モータに印加す るインパータと、モータ電流を検出する電流検出器と、 検出された三相のモータ電流の大きさと位相をそれぞれ 30 モータ電流の大きさの指令値と位相の指令値に追従する ように仮想回転子位置θdcを用いて電圧指令値を作成す る電圧指令演算部と、モータ速度指令値が与えられ、こ のモータ速度指令値とモータ速度推定値に基づいて前記 モータ電流の大きさの指令値と位相の指令値を作成する 電流指令作成部と、検出されたモータ電流、前記電圧指 令値及び前記モータ速度指令値と、モータパラメータの 抵抗値及びインダクタンス値を用いて前記モータの誘起 電圧を推定し、推定した誘起電圧の位相から制御上の仮 想回転子位置と実位置とのずれを表す軸ずれ角△θを推 40 定して出力する誘起電圧推定部と、軸ずれ角△θから前 記モータ速度推定値及び前記仮想回転子位置θdcを求め て出力する速度位相推定部を備えていることを特徴とす る同期モータの位置センサレス制御装置。

【請求項15】 直流電圧を可変電圧、可変周波数の三 相交流電圧に変換して突極性を持つ同期モータに印加す るインパータと、モータ電流を検出する電流検出器と、 検出された三相のモータ電流の大きさと位相をそれぞれ モータ電流の大きさの指令値と位相の指令値に追従する ように仮想回転子位置θdcを用いて電圧指令値を作成す 50

る電圧指令演算部と、モータ速度指令値が与えられ、こ のモータ速度指令値とモータ速度推定値に基づいて前記 モータ電流の大きさの指令値と位相の指令値を作成する 電流指令作成部と、検出されたモータ電流、前記電圧指 令値及びモータ印加電圧の周波数と、モータパラメータ の抵抗値及びインダクタンス値を用いて前記モータの誘 起電圧を推定し、推定した誘起電圧の位相から制御上の 仮想回転子位置と実位置とのずれを表す軸ずれ角△∂を 推定して出力する誘起電圧推定部と、軸ずれ角△θから 前記モータ印加電圧周波数を演算して出力し、また、演 算した前記モータ印加電圧の周波数から前記モータ速度 推定値及び前記仮想回転子位置 θ dc を求めて出力する速 度位相推定部を備えていることを特徴とする同期モータ の位置センサレス制御装置。

【請求項16】 請求項14または15において、 前記誘起電圧推定部は、前記誘起電圧を制御上の回転座 標系(dc-ac軸)のdc軸成分とac軸成分に分け て算出する演算手段と、dc軸成分とgc軸成分の誘起 電圧の比から軸ずれ角 $\Delta heta$ を算出する演算手段を有し、 前記dc軸成分の誘起電圧はd軸電圧指令値から前記抵 抗値にIdcを乗じた値及び前記インダクタンス値にIqc と前記速度指令値を乗じた値を差引き、前記ac軸成分 の誘起電圧はq軸電圧指令値から前記抵抗に I qcを乗じ た値及び前記インダクタンスの所定値に I dcと前記速度 指令値を乗じた値を差し引いて求めることを特徴とする 同期モータの位置センサレス制御装置。

【請求項17】 請求項14、15または16におい て、

軸ずれ角 $\Delta heta$ の推定値に対し前記モータパラメータの誤 差補償値を与えるための誤差補償部を設け、前記速度位 相推定部は入力された軸ずれ角Δθを前記誤差補償値に 追随させるように演算して前記モータ速度推定値を出力 することを特徴とする同期モータの位置センサレス制御 装置。

【請求項18】 突極性を持つ同期モータの位置センサ レス制御装置において、

仮想磁束軸(dc軸)と、dc軸から電気角で90度進 んだ方向のac軸とからなる仮想回転座標系(制御上の 回転座標系)でモータの誘起電圧ベクトルを推定し、そ のQc軸との位相角を求める誘起電圧推定手段と、推定 された前記位相角をd c 軸とモータの実磁束軸のずれ量 として、そのずれ量を少なくするように前記モータ印加 電圧の周波数またはトルク指令値を制御する速度制御手 段を備えることを特徴とする同期モータの位置センサレ ス制御装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は同期モータの制御方 式に関し、特に突極性を持つ同期モータの回転子位置の 推定方法と、位置センサレス制御方法及び装置に関す

る。

[0002]

【従来の技術】永久磁石を界磁とする同期モータを駆動 する方法として、誘導モータのインパータ制御と同様に 回転位置を検出しないでオープンループで駆動する同期 運転方法と、何らかの回転位置検出手段を用いて閉ルー プで運転するブラシレスDCモータ運転方法がある。

【0003】後者のプラシレスDCモータ運転の場合、 何らかの回転子位置センサを設けると、誘導モータのイ ンパータ駆動と比較してインパータとモータ間の配線本 10 数が増加する。このため、保守性、信頼性が低下して適 用範囲に制約を受け、特に圧縮機などのように特殊雰囲 気中の使用が妨げられてしまう。この欠点をなくすため に、センサを用いずに回転位置を推定する位置センサレ ス技術が提案されている。

【0004】従来の位置センサレス技術は、巻線インダ クタンスが回転位置により相違する突極性を利用する方 式と、モータ巻線に誘起される速度起電力の電圧を利用 する方式に大別できる。後者は、停止時および低速時は 速度起電力が発生しないため位置推定が困難になるが、 中・高速時には突極型ならびに非突極型の両方に適用可 能な特徴をもつ。

【0005】速度起電力に基づく位置センサレス技術と して、例えば電気学会技術報告第719号17頁(従来例 1) に記載された技術がある。この技術は、非突極型の 同期モータに対して、モータの電圧電流測定値から電圧 電流方程式に基づいて速度起電力を求め、固定子から見 た回転子位置を推定する。

【0006】また、特開平8-308286号公報(従 来例2) に開示された技術がある。この技術は、永久磁 30 石回転子の磁束方向の位置である仕軸と、仕軸から回転 方向に90度進んだq軸からなるd-q実回転座標系に 対して、制御上の仮想回転位置dc軸と、dc軸から回 転方向に90度進んだQc軸からなる制御上のdc-Q c回転座標系を定義する。実回転位置の推定は、d-q 回転座標上での電圧電流方程式から導出したモータモデ ルに基づいて予測した d 軸電流と、制御軸上の d c 軸電 流の差を取り、その差が仮想回転位置の軸ずれ $\Delta\theta$ に比 例することを利用する。

【0007】さらに、平成11年電気学会全国大会講演 40 論文集4-480頁、論文番号1026(従来例3)に 記載された技術がある。この技術は、固定子座標 ($\alpha\beta$ 軸)での突極性を持つ同期モータの回路方程式におい て、電流と位置両方に依存する突極機特有の項を、電流 ベクトル方向と誘起電圧(速度起電力)方向の成分に分 解し、永久磁石磁束とリラクタンス磁束などにより誘起 される電圧を表す項をまとめ、これを拡張誘起電圧と定 義している。次に、公知の最小次元オブザーバ手法によ り、拡張誘起電圧のベクトル成分を推定する式を導出 し、推定された拡張誘起電圧からモータの回転子位置を 50 ければならないため構成が複雑になる。

求めている。なお、導出された拡張誘起電圧の推定式 は、モータ定数として巻線抵抗r、インダクタンスL d、Lqを用い、固定子座標における電圧及び電流の値 と、モータの推定速度を用いて演算を行っている。ま た、演算に電流微分値が必要になるのを避けるため、拡 張誘起電圧と電流に関係する成分の和から構成される中 間変数を導入し、中間変数を推定するように式を変形し て電流微分値を使わないようにしている。

6

[0008]

【発明が解決しようとする課題】従来例1の技術は突極 機に適用できない。その理由は、突極機は回転位置によ り巻線インダクタンスが変化するため、回転子位置がわ からないとインダクタンスが決まらず、インダクタンス による電圧降下の大きさが求められないためである。

【0009】従来例2の技術は、d-q回転座標上のモ ータモデルを用いて仮想の回転軸であるdcーqc制御回転 座標系の電流値を推定している。このため、仮想回転軸 が実回転位置と大きくずれる場合には位置を正しく推定 できない。また、軸 \dagger れ Δ θ の演算式を導出するときに $\sin \Delta \theta = \Delta \theta$ の近似を行っている。このため、実際の 軸ずれが大きい場合に軸ずれ $\Delta \theta$ が正しく演算できな い。よって、モータ負荷の急変化、急な加減速運転の用 途には適さないという欠点がある。

【0010】従来例3の技術は、前述のように固定子座 標(αβ軸)に基づいているので、推定しようとしてい る拡張誘起電圧は交流量となる。このため、モータの高 速回転時には最小次元オブザーバの推定式による推定の 早さに比べて拡張誘起電圧の変化の方が大きくなり、回 転子位置推定が正しく推定できなくなるという問題があ る。

【0011】また、観測電流の微分を使わない推定式を 用いている。固定子座標上における観測電流の微分が関 係するのは主にインダクタンスにおける電圧降下分であ るから、従来例3の技術はインダクタンスの電圧降下成 分を用いずに位置を求めていることになる。このため、 最小次元オブザーバによる推定式は拡張誘起電圧とイン ダクタンスの電圧降下成分を合わせて推定していること になる。電圧降下成分は電流に比例して大きくなるか ら、比較的大きな電流が流れる場合には、拡張誘起電圧 に対して電圧降下成分の方が大きくなり、オブザーバに よる位置推定の精度が低下するという問題がある。

【0012】さらに、近年のモータの小形化によって、 電流増加時の磁束飽和によってインダクタンス値が非常 に変動しやすくなっている。従来例2、3の技術では位 置推定の際に、モータ巻線のインダクタンスのパラメー タとして、LdとLaの2つが必要になる。このため、 2つのインダクタンスパラメータし d、Lqの変動に影 響されず、回転子位置推定を正しく推定できるようにす る必要があるが、2つのパラメータに対して補正をしな

30

【0013】本発明の目的は、上記した従来技術の問題 点に鑑み、突極性を持つ同期モータの回転子位置を誘起 電圧の位相から正確に推定できる回転子位置推定方法 と、この推定方法を適用して高速運転、あるいは負荷急 変や急加減速運転を安定に行うことができる同期モータ の位置センサレス制御方法及び制御装置を提供すること にある。

[0014]

【課題を解決するための手段】本発明では、突極性を持 つ同期モータ(突極機と略称する)の回転子位置をモー 10 夕誘起電圧の位相から推定する精度を向上するために、 従来例2、3のような観測不能量や近似値を用いないこ とに留意した。突極機の電圧方程式に基づいて誘起電圧 を求める場合に、モータ巻線のインダクタンスによる電 圧降下は回転子位置に依存するため、位置センサレスで は観測できない。

【0015】本発明は、誘起電圧の大きさはともかく、 位相が正しく推定できれば所期の目的を達成できること に着目し、インダクタンスによる電圧降下が回転子位置 に依存しない仮想電圧降下の概念を導入し、これによっ て求めても、本来の誘起電圧の位相を損なうことがない ように、前記電圧方程式における前記仮想電圧降下のペ クトル関係を見出してなし得たものである。

【0016】上記目的を達成する本発明は、突極性を持 つ同期モータの誘起電圧を、モータ印加電圧からモータ 巻線の抵抗による電圧降下及びインダクタンスによる電 圧降下のベクトル差により推定するときに、前記インダ クタンスによる電圧降下を、前記インダクタンスに所定 値を用い、かつモータ電流 (Im) に対して所定位相だ けずれた量である仮想電圧降下により求める。そして、 推定した誘起電圧からその位相を算出して前記回転子位 置を推定することを特徴とする。前記仮想電圧降下のベ クトルは、前記誘起電圧の位相を変化させないように導 かれている。または、変化分が演算できるように導かれ ている。

【0017】突極性を持つ同期モータのインダクタンス 定数にはLdとLaがある。インダクタンス定数Ld は、回転座標系(d-a軸)のd軸電流と磁束φdの関 係を表すパラメータで、永久磁石型の場合は磁石が作る 磁束とd軸電流による磁束φdの方向は同じになる。イ ンダクタンス定数L q は、 q 軸電流と磁束φ q の関係を 表すパラメータで、永久磁石型の場合は磁石が作る磁束 とq軸電流による磁束φqは直交する。

【0018】本発明の一態様では、前記インダクタンス 電圧降下は、モータ電流(Im)に対して90度進むべ クトルとし、前記所定値に突極機のモータ電気定数であ るインダクタンスLaを用い、このLaと、観測可能な 前記モータ電流の大きさと、観測可能なモータ印加電圧 の周波数 $(\omega 1)$ またはモータ速度指令値 $(\omega r *)$ と の積により求める。これにより、誘起電圧の位相に変化 50

を与えないインダクタンス電圧降下を、観測可能な量に 基づいて算出できるので、誘起電圧の位相の推定が簡単 に行える。

8 .

【0019】また、前記所定値にインダクタンス定数L q、Ldを用い、インダクタンス電圧降下をモータ電流 の微分成分も考慮して求めてもよい。後述するように、 微分項の関係する演算には定数Ldが用いられる。

【0020】さらに、仮想電圧降下の算出に定数して、 Laによらない他の定数を用いたり、仮想電圧降下のモ ータ電流に対する進み角を90度以外の所定角として も、後述のように、本来の誘起電圧の位相の推定が可能 になる。

【0021】このように、本発明は仮想電圧降下の概念 を導入したことで、誘起電圧の位相、従って、回転子位 置を、観測可能な量に基づいて精度よく推定できる。前 記仮想電圧降下はインダクタンスに定数を用いる演算モ デルであるが、定数を用いた影響が誘起電圧の位相に表 われないようにベクトル関係を導いているので、本発明 で求める誘起電圧の位相は従来例のような近似(sin $\Delta \theta = \Delta \theta$) ではなく、広い範囲に亘って正確な値を得 ることができる。

【0022】また、本発明の同期モータのセンサレス制 御方法は、上記のように観測可能量から推定した誘起電 圧の位相が、制御回転座標上の仮想の回転子位置と観測 不可能な実際の回転子位置との軸ずれ角を表すことに基 づいて、この軸ずれ角が実際の回転子位置より仮想の回 転子位置が回転子の回転方向に進んでいることを示す値 の場合は仮想の回転子位置の回転速度を下げるように、 また、遅れていることを示す値の場合は仮想の回転子位 置の回転速度を上げるように、モータ印加電圧の周波数 を制御することを特徴とする。

【0023】あるいは、前記誘起電圧の位相から推定し た軸ずれ角が実際の回転子位置より仮想の回転子位置が 回転子の回転方向に進んでいる値の場合は、実際の回転 子位置の回転速度を上げるように、また、遅れている値 の場合は実際の回転子位置の回転速度を下げるように、 モータのトルク指令値を制御する。

【0024】これによれば、モータ誘起電圧の位相から 制御軸と実軸の軸ずれ Δ θ を直接に求めるので、負荷急 変などで軸ずれが大きくなる場合でも、安定で精度の高 い制御が可能になる。

【0025】また、本発明の制御方式では、前記軸ずれ 角の誤差補償値を設定し、軸ずれ角と誤差補償値の差が 零となるように前記モータ印加電圧の周波数またはトル ク指令値を制御することを特徴とする。さらに、前記誤 差補償値の設定は、前記モータの回転数や負荷が一定の 状態で前記モータ電流が最小化するように調整する。こ れにより、設定パラメータ誤差の影響を回避し、より高 精度の制御が実現できる。

【0026】次に、本発明の動作原理について、突極機

40

の電圧方程式から軸ずれ $\Delta \theta$ を導出する過程を含めて説 明する。

【0027】図2は永久磁石同期モータの解析モデル図 で、U相、V相、W相の固定子巻線と永久磁石回転子を 示している。図示の回転角度は、モータを駆動する交流 電圧の電気角で表している。d軸を永久磁石回転子の磁 東方向の位置にとり、制御上の仮想回転子位置として d c軸をとる。図示していないが、d軸から90度進んだ 位相に q 軸をとり、 d c 軸から 9 0 度進んだ位相に a c 軸をとる。回転子座標は、 d軸と q軸を座標軸に選んだ 10 座標系である。これ以後、d-q座標軸を単に実軸と呼 ぶ。また、仮想回転子座標(制御上の回転子座標)は、 d c 軸と q c 軸を座標軸に選んだ座標系である。これ以 後、dc-qc座標軸を単に制御軸と呼ぶ。

【0028】実軸は回転しており、回転速度をωrとす る。制御軸も回転しており、回転速度を ω 1とする。 ω 1は制御軸の回転速度であるが、モータが外部から駆動 されている場合には、モータ印加電圧の周波数に相当す る。また、ある瞬間の回転している実軸において、d軸 の位相を固定子のU相巻線軸を基準として θ d により表 す。同様に、制御軸ではdc軸の位相を θdc で表す。 なお、位相の極性は、図2の回転座標軸の回転方向が反 時計回りの場合を正と定める。ここで、実軸と制御軸と の軸ずれ角 $\Delta \theta$ を、数1によって定義する。

[0029]

【数1】

$$\Delta \theta = \theta_{dc} - \theta_{d}$$

$$\begin{bmatrix} V_{d} \\ V_{q} \end{bmatrix} = \begin{bmatrix} \cos \Delta \theta & -\sin \Delta \theta \\ \sin \Delta \theta & \cos \Delta \theta \end{bmatrix} \begin{bmatrix} V_{dc} \\ V_{qc} \end{bmatrix}$$

【0035】数3を数2へ代入して整理すると、仮想回 転子座標の電圧方程式は数4により表される。

$$\begin{split} \begin{bmatrix} V_{\text{dc}} \\ V_{\text{qc}} \end{bmatrix} &= r \begin{bmatrix} I_{\text{dc}} \\ I_{\text{qc}} \end{bmatrix} + \omega_{l} \begin{bmatrix} L_{\text{dqc}} & -L_{\text{qc}} \\ L_{\text{dc}} & -L_{\text{dqc}} \end{bmatrix} \begin{bmatrix} I_{\text{dc}} \\ I_{\text{qc}} \end{bmatrix} + \frac{d\Delta\theta}{dt} \begin{bmatrix} -L_{\text{dqc}} & -L_{\text{dc}} \\ L_{\text{qc}} & L_{\text{dqc}} \end{bmatrix} \begin{bmatrix} I_{\text{dc}} \\ I_{\text{qc}} \end{bmatrix} \\ &+ \begin{bmatrix} L_{\text{dc}} & -L_{\text{dqc}} \\ -L_{\text{dqc}} & L_{\text{qc}} \end{bmatrix} \begin{bmatrix} pI_{\text{dc}} \\ pI_{\text{qc}} \end{bmatrix} + k_{\text{E}} \, \omega_{r} \cdot \begin{bmatrix} \sin\Delta\theta \\ \cos\Delta\theta \end{bmatrix} \end{split}$$

[0037] CCT、インダクタンスLdc、Lqc、 Ldgcは数5により表される。

[0038]

【数5】

$$\begin{cases} L_{dc} = \frac{L_{d} + L_{q}}{2} + \frac{L_{d} - L_{q}}{2} \cos(2 \cdot \Delta \theta) \\ L_{qc} = \frac{L_{d} + L_{q}}{2} - \frac{L_{d} - L_{q}}{2} \cos(2 \cdot \Delta \theta) \\ L_{dqc} = \frac{L_{d} - L_{q}}{2} \sin(2 \cdot \Delta \theta) \end{cases}$$

【0039】数5からわかるように、Ldc、Lac、

【0030】突極性を持つ永久磁石同期モータの回転子 座標で、数2の電圧方程式が成り立つことが知られてい る。ただし、r、LdおよびLqはモータ巻線の抵抗、 インダクタンスを表す電気定数パラメータ、pは微分演 算子である。

10

[0031]

【数2】

$$\begin{bmatrix} V_{d} \\ V_{q} \end{bmatrix} = \mathbf{r} \begin{bmatrix} I_{d} \\ I_{q} \end{bmatrix} + \begin{bmatrix} -\omega_{1} L_{q} \cdot I_{q} \\ \omega_{1} L_{d} \cdot I_{d} \end{bmatrix} + \begin{bmatrix} L_{d} \cdot \mathbf{p} I_{d} \\ L_{q} \cdot \mathbf{p} I_{q} \end{bmatrix} + \begin{bmatrix} 0 \\ k_{E} \omega_{1} \end{bmatrix}$$

【0032】ここで、VdとVqはモータ印加電圧V1 のは軸成分とな軸成分であり、IdとIaはモータ電流 Imのd軸成分とg軸成分である。なお、Vd、Va、 Id、Iqは実軸上の電圧、電流値であるから、実軸の 位置がわからない位置センサレス制御の場合は観測不能 な量である。また、数2の右辺第4項のkE・ωrはモ ータの回転により生じる速度起電力、つまり、誘起電圧 の大きさを表している。

【0033】位置センサレス制御の場合、印加電圧V1 の周波数ω1は観測可能だが、回転子の回転速度ωrは 観測不能である。そこで、数2を仮想回転子座標の式に 変形する。実軸と制御軸の軸ずれは $\Delta \theta$ であるから、実 軸の電圧、電流ベクトルは、観測可能な制御軸の電圧V dc及びVqc、電流値IdcおよびIqcから、数3 により表される。

[0034]

$$\begin{bmatrix} \mathbf{I}_{d} \\ \mathbf{I}_{q} \end{bmatrix} = \begin{bmatrix} \cos \Delta \theta & -\sin \Delta \theta \\ \sin \Delta \theta & \cos \Delta \theta \end{bmatrix} \begin{bmatrix} \mathbf{I}_{dc} \\ \mathbf{I}_{qc} \end{bmatrix}$$

* [0036]

Ldqcは軸ずれ $\Delta\theta$ に依存して値が変化する。

【0040】図3は突極性を持つ永久磁石モータにおい て、各部の電圧の関係を表したベクトル図である。モー 夕印加電圧V1は、速度起電力である誘起電圧と、抵抗 での電圧降下ベクトルVr、インダクタンスでの電圧降 下ベクトルVLの和で表される。ここでは、簡単のため にモータ電流Id、Iqの変化がなく、一定値と見なせ る場合のベクトル図を示している。これは、数2の右辺 第3項、あるいは数4の右辺第3、4項の微分項を無視 したことになる。

【0041】一般に、速度起電力に基づく磁極位置の推 50 定は、モータ誘起電圧の位相が磁束軸から90度進んだ

q軸方向に現れることを利用している。そこで、制御軸 であるdc-ac座標上において、誘起電圧ベクトルの 成分を推定し、そのベクトルが q c 軸となす角を図3に 示すように求めれば、制御軸と実軸との軸ずれ $\Delta \theta$ を求 めることができる。誘起電圧項は外部から観測できない ので、通常は観測可能な量から誘起電圧項を推定する。 推定には各種方法が提案されているが、基本的にはモー 夕印加電圧V1から、抵抗及びインダクタンスにおける 電圧降下ベクトルVェ、VLを差し引いて推定誘起電圧 を求める。

【0042】誘起電圧項の推定に必要な電圧降下ベクト ルのなかで、抵抗の電圧降下Vrは観測可能な量から演 算可能である。Vrは、位相がモータ電流Imと同位相 であり、大きさがモータ電流のr倍になる。この関係は 座標系によらず成り立ち、ベクトル図上ではVrとIm が同じ方向で表される。このため、観測可能なdc-a c座標における電流検出値Idc、Iqcから、抵抗の 電圧降下Vrは演算できる。

【0043】一方、インダクタンスでの電圧降下VLは 実軸の位置がわからないと演算することができない。V 20 Lは、実軸上でd軸方向が-ω1・Lq·Iqで、q軸 方向がωI・L d・ I dで表されるベクトルであり、VLを求めるには実軸での電流値 I d、 I q が必要にな る。しかし、実軸での電流値Id、Iqは観測不能であ るため、インダクタンスの電圧降下VLを演算すること ができない。

【0044】これを電圧方程式で説明する。数4におい て右辺第2、3、4項が電圧降下VLを表しているが、 これらはインダクタンスパラメータLdc、Lac、L dqcを含んでいるので、軸ずれ Δ θ の値が求まらなけ 30 れば演算できない。位置センサレス制御では $\Delta \theta$ は求め られないから、VLを演算することができない。例え ば、引用例 2 の技術では、軸ずれ Δ θ が零の場合のイン ダクタンス値を用いてVLの近似値を演算している。し かし、軸ずれ $\Delta \theta$ が零近傍から外れると近似誤差が大き くなるため、誘起電圧位相を正しく推定できなくなる。 【0045】そこで、本発明では、インダクタンスの電 圧降下に仮想電圧降下の概念を導入した。仮想電圧降下 は一種の演算モデルであるが、これを用いて演算して も、目的の誘起電圧の位相の精度を損なわないように、 (1) 仮想電圧降下VL' は観測可能な電流量から演算 できること、(2)上記(1)を満たすため、VL'は 電流位相から所定の位相だけずれた成分で、電流微分値 の位相から所定の位相だけずれた成分で、または、前記 2つの位相の成分の和により構成されること、(3) モ ータ印加電圧V1から、抵抗の電圧降下Vr および仮想 電圧降下VL'を差し引いて求めたベクトル(仮に、仮 想誘起電圧と呼ぶ)の位相は、本来のモータ誘起電圧の 位相と同一になるようにベクトル関係を保持すること を、条件として導出した。なお、差し引いて求めた仮想

誘起電圧の位相と誘起電圧の位相が同一となるために は、VL'の大きさを適切に定めなければならない。

【0046】本発明では演算を簡単にするために、条件 (2) において、仮想電圧降下VL'を電流位相から 9. 0 度進んだ位相の成分と、電流微分の位相と同位相の成 分の和によって構成する。これにより、モータ印加電圧 V1から、抵抗の電圧降下Vr および仮想電圧降下V L'を差し引いて求めたベクトルの位相は、本来の誘起 電圧の位相と同じになる。なお、仮想電圧降下VL'の 算出式の導出結果として、後述のように、電流位相から 10 90度進んだ位相の成分のみにより構成されてもよい。 【0047】次に、これらの条件を満たす仮想電圧降下 を説明する。図4は、図3と同様の電圧方程式の関係 を、仮想電圧降下VL'を用いて描いたベクトル図であ る。図3の電圧降下VLではd軸、q軸で違っていたイ ンダクタンス値を、図4の仮想電圧降下VL'では、条 件(2)を満たすため、どちらも同じインダクタンス値 とする。また、条件(3)を満たすために、VL'では 誘起電圧と同じ位相のq軸成分のインダクタンス値を変 更する。

【0048】これにより、VL'ではIdとIaに乗じ る係数が両者とも同じ ω 1・Lqとなるから、VL'の 位相は観測電流 I mから90度進んだ位相となる。従っ て、制御軸の電流観測値Idc、Iqcが求まれば、VL'の 位相は電流 I mから90度進んだ位相として求めること ができる。また、VLとVL'で異なるのはq軸方向成 分であるから、白抜き矢印で示した誘起電圧 (仮想誘起 電圧)は、図3の誘起電圧と比べると変化するのは大き さだけであって、位相は変化していない。即ち、定数L q を用いてインダクタンスによる電圧降下を算出するこ とで、誘起電圧の位相の情報が損なわれることはない。 なお、図3と図4で、誘起電圧及びそれと同相のインダ クタンス電圧降下の大きさの和は同じになる。

【0049】図4の仮想電圧降下VL'の2つの成分 は、図3との比較を容易にするために、観測不可能な実 軸上の値で示している。図5は、図4の仮想電圧降下V L'を観測可能な制御軸上の値で示したものである。す なわち、図5において観測できる電流値Idc、Iqcを用 い、それぞれにLq・ ω 1を乗じた成分によって、仮想 電圧降下VL'を表している。

【0050】次に、仮想電圧降下VL'を用いた図5の 電圧関係を、突極機のdg座標上の電圧方程式として導 出する過程を説明する。数2は実軸上の電圧方程式で、 右辺第2、第3項がインダクタンスの電圧降下VLを表 している。これを数6、数7のように分けて表す。

[0051]

【数6】

$$\begin{bmatrix} -\omega_{1} L_{q} I_{q} \\ \omega_{1} L_{d} I_{d} \end{bmatrix} = L_{q} \omega_{1} \begin{bmatrix} -I_{q} \\ I_{d} \end{bmatrix} + \begin{bmatrix} 0 \\ \omega_{1} L_{d} I_{d} - \omega_{1} L_{q} I_{d} \end{bmatrix}$$

【0052】 【数7】

$$\begin{bmatrix} L_{d} \times pI_{d} \\ L_{q} \times pI_{q} \end{bmatrix} = L_{d} \begin{bmatrix} pI_{d} \\ pI_{q} \end{bmatrix} + \begin{bmatrix} 0 \\ L_{q} \times pI_{q} - L_{d} \times pI_{q} \end{bmatrix}$$

【0053】数6では、数2右辺第2項を、電流位相から90度進んだ成分と、調整成分に分けて表している。数7では、数2右辺第3項を、電流の微分量と同じ位相の成分と、調整成分に分けて表している。

【0054】数6および数7の右辺第1項は、突極性によってdq軸で異なるインダクタンスの値を一定と仮定して求めた電圧降下といえる。ただし、一定にするインダクタンス値は、数6、数7の左辺のベクトルにおいて、d軸成分に使われているインダクタンス値とする。これは、数6、数7の右辺第2項の調整成分が、誘起電圧の成分と同じq軸に値を持つようにするためである。

【0055】数6、数7の各々の右辺第1項をまとめた ものを仮想電圧降下VL'として、VL'は数8により

$$\begin{bmatrix} V_d \\ V_q \end{bmatrix} = r \begin{bmatrix} I_d \\ I_q \end{bmatrix} + \omega_l L_q \begin{bmatrix} -I_q \\ I_d \end{bmatrix} + L_d \begin{bmatrix} pI_d \\ pI_q \end{bmatrix} + \begin{bmatrix} k_E \omega_c + \omega_l (L_d - L_q) \cdot I_d + (L_q - L_d) \cdot pI_q \end{bmatrix}$$

【0060】数9の右辺第1~第3項は、抵抗での電圧降下とインダクタンスでの仮想電圧降下である。

【0061】数9の右辺第4項は、仮想電圧降下を用いたときの誘起電圧分と考えられる。この誘起電圧は、数2の誘起電圧と大きさは異なるが、成分はq軸に含まれ、d軸成分は零であることから、位相は全く同じになる。第4項の中の各項は、kE・ωrが永久磁石界磁によって生じる速度起電力、ω1・(Ld-Lq) I dが*

表される。 【0056】 【数8】

$$V_{L}' = L_{q} \omega_{l} \begin{bmatrix} -I_{q} \\ I_{d} \end{bmatrix} + L_{d} \begin{bmatrix} pI_{d} \\ pI_{q} \end{bmatrix}$$

14

【0057】以上をまとめると、インダクタンスの仮想電圧降下は以下により演算される電圧降下である。即ち、回転速度 ω 1に比例する項は、インダクタンスLqを使って計算する。電流変化d1d/dt、d1q/dt に比例する項は、インダクタンスLdを使って計算す

【0058】次に、数6、数7を数2へ代入すると、仮 想電圧降下を用いた場合の実軸における突極機の電圧方 程式は数9により表される。

[数 9]

*リラクタンストルクと関係する誘起電圧分、(Lq-Ld)pIqがq軸電流の変化による誘起電圧を表している。

【0062】数9を制御軸における電圧方程式に変形する。まず、数3を数9へ代入して、数10を得る。

[0063]

[0059]

【数10】

$$\begin{split} &\begin{bmatrix} \cos\Delta\theta & -\sin\Delta\theta \\ \sin\Delta\theta & \cos\Delta\theta \end{bmatrix} \begin{bmatrix} V_{dc} \\ V_{qc} \end{bmatrix} = I \begin{bmatrix} \cos\Delta\theta & -\sin\Delta\theta \\ \sin\Delta\theta & \cos\Delta\theta \end{bmatrix} \begin{bmatrix} I_{dc} \\ I_{qc} \end{bmatrix} + L_{d}P \begin{bmatrix} \cos\Delta\theta & -\sin\Delta\theta \\ \sin\Delta\theta & \cos\Delta\theta \end{bmatrix} \begin{bmatrix} I_{dc} \\ I_{qc} \end{bmatrix} \\ &+\omega_{l} L_{q} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \cos\Delta\theta & -\sin\Delta\theta \\ \sin\Delta\theta & \cos\Delta\theta \end{bmatrix} \begin{bmatrix} I_{dc} \\ I_{qc} \end{bmatrix} + \begin{bmatrix} 0 \\ k_{E} \omega_{r} + \omega_{l} (L_{d} - L_{q}) I_{d} + (L_{q} - L_{d}) \times pI_{q} \end{bmatrix} \end{split}$$

【0064】数10を変形していくと、最終的に仮想電 圧降下を用いたときの制御軸における突極機の電圧方程 式は、数11として表される。

※【0065】 【数11】

$$\begin{split} & \begin{bmatrix} V_{dc} \\ V_{qc} \end{bmatrix} = I \begin{bmatrix} I_{dc} \\ I_{qc} \end{bmatrix} + L_{d} \begin{bmatrix} \frac{dI_{dc}}{dt} \\ \frac{dI_{qc}}{dt} \end{bmatrix} + \left(\omega_{l} L_{q} + L_{d} \frac{d \Delta \theta}{dt} \right) \cdot \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} I_{dc} \\ I_{qc} \end{bmatrix} \\ & + \left\{ k_{E} \omega_{r} + \omega_{l} \left(L_{d} - L_{q} \right) \cdot I_{d} + \left(L_{q} - L_{d} \right) \cdot pI_{q} \right\} \cdot \begin{bmatrix} \sin \Delta \theta \\ \cos \Delta \theta \end{bmatrix} \end{split}$$

【 $0\,0\,6\,6$ 】数 $1\,1$ から $\Delta\,\theta$ を導く式を導出する。まず、数 $1\,1$ の誘起電圧項をまとめて、数 $1\,2$ を得、数 $1\,2$ から、制御軸と実軸の軸ずれ $\Delta\,\theta$ を表す数 $1\,3$ が得ら

れる。

[0067]

【数12】

$$\begin{cases} k_{z} \, \omega_{t} + \omega_{t} \left(L_{d} - L_{q} \right) \cdot I_{d} \\ + \left(L_{q} - L_{d} \right) \cdot p I_{q} \end{cases} \cdot \begin{bmatrix} \sin \Delta \theta \\ \cos \Delta \theta \end{bmatrix}$$

$$= \begin{bmatrix} v_{dc} \\ v_{qc} \end{bmatrix} - r \begin{bmatrix} I_{dc} \\ I_{qc} \end{bmatrix} - L_{d} \begin{bmatrix} \frac{dI_{dc}}{dt} \\ \frac{dI_{qc}}{dt} \end{bmatrix} - \left(\omega_{t} L_{q} + L_{d} \frac{d \Delta \theta}{dt} \right) \cdot \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} I_{dc} \\ I_{qc} \end{bmatrix}$$

[0068]

$$\Delta\theta = \tan^{-1} \left[\frac{V_{dc} - r \cdot I_{dc} - L_d \frac{dI_{dc}}{dt} + \left(\omega_l L_q + L_d \frac{d\Delta\theta}{dt}\right) \cdot I_{qc}}{V_{qc} - r \cdot I_{qc} - L_d \frac{dI_{qc}}{dt} - \left(\omega_l L_q + L_d \frac{d\Delta\theta}{dt}\right) \cdot I_{dc}} \right]$$

【0069】以上のように、突極機の電圧方程式である数2を変形した結果、仮想電圧降下を用いた電圧方程式を経て、制御軸と実軸の軸ずれ $\Delta\theta$ を表す数13が得られる。この導出の過程では、 $\sin\Delta\theta = \Delta\theta$ の近似を行ったり、インダクタンスの値を近似したりしていない。従って、数13はどのような運転状態においても成立する。例えば、制御軸と実軸が同期せずに回転している場合でも成り立つ。

【0070】数13の右辺において、唯一観測できない量が $\Delta\theta$ の微分である。そこで、位置センサレス制御で回転子位置推定に使用できる軸ずれ $\Delta\theta$ の推定式を次のように導出する。

【0071】 $\Delta\theta$ の微分は数1から、実軸速度と制御軸速度の差によって、数14のように表される。

[0072]

【数14】

$$\frac{d \Delta \theta}{dt} = \frac{d}{dt} (\theta_{dc} - \theta_{d}) = \omega_{1} - \omega_{r}$$

【0073】永久磁石同期モータが脱調しないで駆動されている場合は、実軸速度ωrと制御軸速度ω1が近い値をとる。このため、数13のIdc、Iqcの係数部は数15のように近似でき、軸ずれ推定式は数16で表される。なお、通常のモータ運転では脱調しないように制御するものであり、数15の近似が実用上の精度を低下させることにはならない。

[0074]

【数15】

$$\omega_1 L_q + L_d \frac{d\Delta\theta}{dt} = \omega_1 L_q + (\omega_1 - \omega_1) L_d \approx \omega_1 L_q$$

[0075]

【数16】

$$\Delta\theta \approx \tan^{-1} \left[\frac{V_{dc} - r \cdot I_{dc} - L_d \frac{dI_{dc}}{dt} + \omega_l L_q \cdot I_{qc}}{V_{qc} - r \cdot I_{qc} - L_d \frac{dI_{qc}}{dt} - \omega_l L_q \cdot I_{dc}} \right]$$

【0077】さらに、永久磁石同期モータが脱調しないで駆動されている場合、回転座標系に変換された電流 I d c、 I q c の微分はモータ電流の大きさ I m (波高値)の変化及びモータ電流の位相の変化を表している。これは、後述する数 2 4 において、検出電流である相電流 i u, i wに、i u= I m·cos (θ dc+ π /2+ ϕ c)、i w= I m·cos (θ dc- 4π /3+ π /2+ ϕ 30 c)を代入し、Idcと I qcの微分を計算すれば示される(ただし、 ϕ c は電流の位相)。

【0078】ところで、モータ速度や負荷が一定の状態では、モータ電流の大きさ及び位相の変化は微小であるから、電流Idc、Iqcの微分項は零とみなせる。そこで、電流Idc、Iqcの微分項を無視できると仮定すれば、さらに簡略化された軸ずれ推定式として数17が得られる。

[0079]

【数17】

40

$$\Delta\theta \approx \tan^{-1} \left[\frac{\mathbf{V}_{dc} - \mathbf{r} \cdot \mathbf{I}_{dc} + \omega_1 \, \mathbf{L}_{q} \cdot \mathbf{I}_{qc}}{\mathbf{V}_{qc} - \mathbf{r} \cdot \mathbf{I}_{qc} - \omega_1 \, \mathbf{L}_{q} \cdot \mathbf{I}_{dc}} \right]$$

【0080】数17では、インダクタンスのパラメータで必要なのはLqのみとなり、図5のベクトル図と同じ電圧関係になっている。パラメータ誤差が軸ずれ推定値に与える影響を考慮すると、推定式に用いるパラメータは少ないほど好ましい。従って、数17を用いて軸ずれ $\Delta\theta$ を推定する方法は、従来例2、3に比べてロバスト性の面でも優れている。

50 【0081】数17は、インダクタンスの仮想電圧降下

18 立つ かお めこ みょけ

VL'の計算に定数Lqを用い、VL'の位相がモータ電流Imより90度進むベクトル関係から導かれたもので、簡単な計算によって誘起電圧の位相を推定することができる。しかし、定数Lqと異なる定数や、90度以外の位相として求めた仮想電圧降下VL'によっても、計算は多少複雑になるが本来の誘起電圧の位相推定は可能になる。

【0082】仮想電圧降下VL'の算出にLqと値の異なるLq'を用いた場合、VL'のベクトルが図4または図5の関係にならないので、推定した誘起電圧の位相 10 は本来の位相とずれてしまう。しかし、LqとLq'の差 Δ Lqが分かれば、推定した誘起電圧の d 軸成分の大きさは" ω 1・ Δ Lq・Iq"、q 軸成分の大きさは" κ E・ ω r+ ω 1(Ld-Lq')Id"となるので、推定した誘起電圧の位相ずれは演算により求められる。従って、インダクタンス電圧降下の演算に任意のパラメータ値Lq'を用いても、本来の誘起電圧の位相の推定ができる。

【0083】また、VL'の位相を90度以外の位相に選んだ場合は、推定した誘起電圧の位相は本来の位相と 20 ずれる。しかし、選んだ位相とモータ電流の位相が分かっていれば、推定した誘起電圧の位相ずれは演算により求められる。従って、インダクタンスの仮想電圧降下のベクトルをモータ電流から90度進み以外に選んだ場合でも、位相ずれを考慮すれば本来の誘起電圧の位相の推定ができる。

【0084】次に、軸ずれ推定式の他の導出を説明する。上記では、数13に表す制御軸での電圧、電流量から軸ずれ $\Delta\theta$ の推定式を導出したが、軸ずれは観測座標系が変わっても同様に求めることができる。以下では、モータの電流軸を基準とした座標系において、軸ずれ $\Delta\theta$ の推定式の導出を説明する。

【0085】図6は、図3および図4と同条件でのベクトル図を、電流軸を基準として示している。なお、qc軸からみた電流軸の位相をφc、電流軸からみたモータ印加電圧V1の位相をφvとする。また、q軸からみた電流軸の位相をφmとする。φmとφcの間にはφm=

 ϕ c + Δ θ の関係が成り立つ。なお、 ϕ c 、 ϕ v は観測可能な量であるが、 ϕ m は観測不能な量である。

【0086】電流軸を観測座標の基準として選ぶと、モータ印加電圧ベクトルとモータ電流ベクトルは、数18により表される。

【0087】 【数18】

モータ印加電圧ベクトル
$$V1 = \begin{bmatrix} -V_1 \sin \phi_v \\ V_1 \cos \phi_v \end{bmatrix}$$
モータ電流ベクトル $Im = \begin{bmatrix} 0 \\ Im \end{bmatrix}$

【0088】数180ベクトル量は、電流の方向に対して直交する成分と同方向の成分を表している。即ち、電圧V1は、電流と直交する電圧成分が $V1 \cdot sin \phi$ Vであり、電流と同方向の電圧成分が $V1 \cdot cos \phi V$ である。同様に、電流は、直交方向の成分が零であり、同方向の成分が電流の大きさ Imである。

【0089】一方、抵抗の電圧降下Vr は電流と同位相になるから、電流と直交する成分が零であり、電流と同方向の電圧成分が $r\cdot Im$ になる。また、インダクタンスでの仮想電圧降下VL は電流から90 度位相が進んだ成分だから、電流と直交する成分が" $-Lq\cdot \omega1\cdot Im$ "であり、電流と同方向の電圧成分が零になる。

【0090】以上より、電流軸を基準とした誘起電圧は、電流と直交する成分が " $-V1\cdot sin\phi v-Lq\cdot \omega 1\cdot Im$ "、電流と同方向の成分が " $V1\cdot cos\phi v-r\cdot Im$ " としてそれぞれ求められる。従って、これらの値を用いれば、観測不可能な ϕm を求めることができる。

【0091】次に、電流軸を基準としたときの電圧方程式を導き、そこから軸ずれ $\Delta\theta$ を表す式を導出する。実軸の電圧、電流ベクトルは数180電流軸を基準とした量から、数19により演算できる。

[0092] 【数19】

$$\begin{bmatrix} V_{d} \\ V_{q} \end{bmatrix} = \begin{bmatrix} \cos(\Delta\theta + \phi_{c}) & -\sin(\Delta\theta + \phi_{c}) \\ \sin(\Delta\theta + \phi_{c}) & \cos(\Delta\theta + \phi_{c}) \end{bmatrix} \begin{bmatrix} -V_{1}\sin\phi_{v} \\ V_{1}\cos\phi_{v} \end{bmatrix}$$

$$\begin{bmatrix} I_{d} \\ I_{q} \end{bmatrix} = \begin{bmatrix} \cos(\Delta\theta + \phi_{c}) & -\sin(\Delta\theta + \phi_{c}) \\ \sin(\Delta\theta + \phi_{c}) & \cos(\Delta\theta + \phi_{c}) \end{bmatrix} \begin{bmatrix} 0 \\ Im \end{bmatrix}$$

【0093】数19を、仮想電圧降下を用いた場合の実軸における突極機の電圧方程式である数9に代入して整理すると、数20が得られる。

【0094】 【数20】

$$\begin{bmatrix} -V_{1}\sin\phi_{v} \\ V_{1}\cos\phi_{v} \end{bmatrix} = r \begin{bmatrix} 0 \\ I_{m} \end{bmatrix} + L_{d} \begin{bmatrix} 0 \\ dI_{m} \\ dt \end{bmatrix} + \begin{bmatrix} -\omega_{1}L_{q} - L_{d}\frac{d\phi_{e}}{dt} - L_{d}\frac{d\Delta\theta}{dt} \end{bmatrix} \cdot I_{m}$$

$$+ \left\{ k_{E}\omega_{r} + \omega_{r} \left(L_{d} - L_{q} \right) \cdot I_{d} + \left(L_{q} - L_{d} \right) \cdot pI_{q} \right\} \cdot \begin{bmatrix} \sin\phi_{m} \\ \cos\phi_{m} \end{bmatrix}$$

【0095】数20の右辺第4項には、電流軸で観測し たときの誘起電圧の位相情報 φ m が含まれる。右辺第4 項についてまとめ、φωについて解くと数21が得られ* [00.96] 【数21】

$$\phi_{m} = \tan^{-1} \left[-\frac{V_{1} \sin \phi_{v} - \left\{ \omega_{l} L_{q} + L_{d} \frac{d\phi_{c}}{dt} + L_{d} \frac{d\Delta\theta}{dt} \right\} \cdot I_{m}}{V_{1} \cos \phi_{v} - r \cdot I_{m} - L_{d} \frac{dI_{m}}{dt}} \right]$$

【0097】ここで、 $\Delta\theta = \phi \mathbf{n} - \phi \mathbf{c}$ であるから、軸ず **%**[0098]

$$\Delta\theta = \tan^{-1} \left[-\frac{V_1 \sin \phi_v - \left\{ \omega_1 L_q + L_d \frac{d\phi_c}{dt} + L_d \frac{d\Delta\theta}{dt} \right\} \cdot I_m}{V_1 \cos \phi_v - r \cdot I_m - L_d \frac{dI_m}{dt}} \right] - \phi_c$$

【0099】数9の右辺において、モータ電圧の大きさ V1と位相φν、電流の大きさImと位相φα、制御座 標軸の回転速度ω1は観測可能な量である。また、数1 6、数17を求めたときと同様の近似を行うと、電流軸 を観測系としたときの軸ずれ $\Delta \theta$ の推定式は数23で表 される。

[0100] 【数23】

$$\Delta\theta = \tan^{-1} \left[-\frac{V_1 \sin \phi_v - \omega_l L_q \cdot I_m}{V_1 \cos \phi_v - I \cdot I_m} \right] - \phi_c$$

【0101】数23によれば、制御軸の位置に依存する ことなく観測可能な値から突極機の軸ずれ角 $\Delta \theta$ を正確 に推定できるので、本発明の位置センサレスによる回転 子位置の推定が可能になる。数17と同様に、数23は インダクタンスのパラメータで必要なのはLqのみにな るので、ロバスト性も優れている。

【0102】なお、数13、数16、数17、数21、 数22及び数23のそれぞれにおいて用いたtanの逆関 数は、関数の入力となる分母、分子の符号を考慮して出 力範囲を $-\pi \sim \pi$ (rad) にひろげた拡張関数を用い る。特に断らない限り、本発明において用いるtanの 逆関数は、上述のように拡張された関数とする。

【0103】また、本説明ではモータ回転子の回転方向 が正の場合について説明したが、回転方向が逆の場合で は、速度起電力の方向が正転時と変わるのを考慮して、 軸ずれ Δ θ を求めるtan逆関数の分母と分子の符号を考 慮することにより、同様に軸ずれ $\Delta \theta$ を求めることがで 50 きる。

【0104】以上述べたように、本発明では制御系から 観測可能な量を用いて軸ずれ $\Delta \theta$ を推定することができ る。これら得られた軸ずれ $\Delta \theta$ の推定値を用い、永久磁 石同期モータの位置センサレス制御を以下の方法によっ て行う。

【0105】第1の方法として、得られた軸ずれ $\Delta\theta$ の 30 推定値に基づいて、 $\Delta \theta$ が零になるようにモータに加え る交流電圧の周波数ω1を修正する方法がある。このよ うに周波数を制御することによって、仮想回転軸をモー タの回転子軸に追従するように制御できる。また、第2 の方法として、得られた軸ずれ $\Delta \theta$ の推定値に基づい T、 $\Delta \theta$ が零になるようにモータのトルク指令値を修正 する方法がある。これにより、モータの回転子軸は制御 軸の回転に追従するように制御される。

【0106】ところで、前述した数16、数17あるい は数23で表される軸ずれ $\Delta\theta$ の推定式は、用いるパラ メータが実際の値と一致する場合は $\Delta \theta$ を正しく推定で きる。しかし、パラメータ設定値には誤差分が含まれ、 実際の値からずれているのが普通である。このため、パ ラメータ誤差によって軸ずれ $\Delta \theta$ の推定値には誤差が生 じる。

【0107】例えば、数17において、軸ずれ $\Delta\theta$ を推 定するときに必要なパラメータ値は、抵抗r、インダク タンスLqである。ここで、Lqの設定値が実値よりも 大きいときには、図4において仮想電圧降下VL)が大 きくなるから、推定した誘起電圧の位相は、白抜き矢印 で示した誘起電圧の真値よりも遅れてしまう。同様に、

抵抗 r が大きい場合には図4において電圧降下 V r が大きくなるから、推定した誘起電圧の位相は、白抜き矢印で示した誘起電圧の真値よりも進んでしまう。

【0108】以上のように、パラメータ誤差による影響は、軸ずれ $\Delta\theta$ の推定値に定常的な誤差として現れる。 実際には、複数のパラメータ誤差の影響が複合して、最終的な軸ずれ $\Delta\theta$ の誤差が決まる。

【0109】この誤差のため、制御軸の位相は実軸に一致させることができず、定常的な軸ずれ $\Delta\theta$ e が残る。この状態では指令値通りの電流が実軸に流れず、トルク 10 発生に関係する電流成分が減少する。これにより発生トルクが減少し、回転子の速度低下を招く。この時、位置センサレス制御系は速度が低下しないように、モータ電流を増加するように動作する。結果的に、定常的な軸ずれ $\Delta\theta$ e が生じるとモータ電流は大きくなる。

【0110】これを逆に考えると、実軸と制御軸の位相が一致すれば、モータ電流の大きさは最小になることを示している。この現象を利用して、本発明では推定誤差 $\Delta \theta$ e を以下のように補正する。

【0111】推定誤差 $\Delta\theta$ e 補正のため、軸ずれ誤差補 20 償値 $\Delta\theta$ *を導入し、 $\Delta\theta$ * $-\Delta\theta$ が零になるように、モータに加える交流電圧の周波数 ω 1を修正する。または、 $\Delta\theta$ * $-\Delta\theta$ が零になるようにモータのトルク指令値を修正する。軸ずれ誤差補償値 $\Delta\theta$ *には初期値として零を代入し、モータの回転数や負荷が一定で変化しない状態で、モータ電流を最小化するように $\Delta\theta$ *を微小量に変化させる。その結果、誤差補償値 $\Delta\theta$ *は、最終的に軸ずれ推定での定常誤差 $\Delta\theta$ e に限りなく近くすることができ、推定誤差 $\Delta\theta$ e の影響を軽減できる。

[0112]

【発明の実施の形態】本発明の実施形態について、図1から図12参照して説明する。図1は本発明の一実施例で、同期モータの位置センサレス制御を実現する制御装置の全体構成を示す。電源11は直流電圧Edcを作成し、平滑コンデンサ12を充電する。直流電圧Edcはインパータ13によって可変電圧、可変周波数の3相交流に変換され、同期モータ2に印加される。電圧検出部31はモータに加える電圧を制御するために必要な直流電圧Edcを検出する。モータ電流検出部32は位置センサレス制御に必要なモータ電流を検出する。

【0113】座標変換部41は、モータ電流検出部32で検出されたモータ電流iu、iwより、仮想回転子位置dc軸の位相θdcに基づいて座標変換を行い、制御上の仮想回転座標dc-qc座標系におけるdc軸電流Idc、qc軸電流Iqcを出力する。電流Idc、Iqcは検出したモータ電流iu、iwから変換された観測可能な値(観測値)で、以下では観測電流と呼ぶ。

【0114】観測電流Idcは、電流指令作成部52から出力されたd軸電流指令値Idc*と比較され電流誤差が演算される。d軸電流制御部42dは前記電流誤差50

に基づいて I d c が指令値に追従するように制御する。 同様に、観測電流 I q c は、電流指令作成部 5 2 から出力された電流指令値 I q c * と比較され電流誤差が演算される。 q 軸電流制御部 4 2 q は前記電流誤差に基づいて I q c が指令値に追従するように制御する。

【0115】電流フィードフォワード補償部43は電流 応答向上、及びd 軸とq 軸電流制御系間の非干渉化のために用いるフィードフォワード補償要素である。d 軸電流制御部42d、q 軸電流制御部42q、および電流フィードフォワード補償部43により出力された信号により、d 軸電圧指令V d c * 、q 軸電圧指令V q c * が演算される。

【0116】逆変換部44は、電圧指令Vdc*、Vqc* より、仮想回転子位置dc 軸の位相 θdc に基づいて逆変換を行い、3相電圧指令Vu*、Vv*、Vw* を作成する。作成された3相電圧指令に基づいて、パルス幅変調部45により周知のパルス幅変調(PWM)されたドライブ信号が作られ、駆動回路を介してインバータ13の半導体スイッチ素子が制御される。

【0117】速度制御部51では、速度指令 ω r*と推定速度 ω r_detよりトルク指令 τ *を作成する。電流指令作成部52はトルク指令 τ *の値から、d軸電流指令Idc*、q軸電流指令Iqc*を作成する。推定速度 ω r_detは制御軸の回転速度であるインパータ出力周波数 ω 1から高周波変動成分を取り除いたもので、センサを持つ制御系での検出速度に相当する。インパータ出力周波数 ω 1はモータ印加電圧の周波数であり、 ω 1を積分すると制御軸上の回転子位置(仮想回転子位置) θ dcが得られる。

30 【0118】なお、本明細書の特許請求の範囲においては、上記の50~52の各部をまとめて電流指令作成部と呼び、また、42d, q~44及び53~55の各部をまとめて電圧指令演算部と呼んでいる。

【0119】本実施例の特徴部となる誘起電圧・軸ずれ推定演算部61は、後述するように電圧指令Vdc*、Vqc*、検出電流Idc、Iqc、および回転速度情報として速度指令wr*の値から同期モータ2の誘起電圧を推定する。そして、推定した誘起電圧の位相から軸ずれ推定値 $\Delta\theta$ を演算し出力する。また、誘起電圧の大40 きさ |E0|を出力する。

【0120】軸ずれ誤差補償部7は推定された軸ずれ Δ θ について、上述のパラメータ誤差の影響を補償する補償量 Δ θ *を作成する。速度位相推定部62は軸ずれ Δ θ 、軸ずれ誤差補償部7が出力する軸ずれ誤差補償値 Δ θ *からモータ印加電圧の周波数 ω 1を決定し、 ω 1より検出速度 ω r _ detと仮想軸位相(仮想回転子位置) θ dcを演算し出力する。 ω r _ detは速度制御部51の速度制御部でモータ2の検出速度として用いられる。一方、 θ dcは座標変換部41及び逆変換部44において変換を行う際に用いられる。

【0121】次に各部の動作を詳細に説明する。図7は 座標変換部41の演算内容を説明するブロック図であ る。モータ電流検出部32より出力された検出電流 in a u、iw、及び速度位相推定部62より出力された位相 θ d c は座標変換演算部 4 1 1 に入力される。演算部 4 *

$$\begin{split} I_{dc} &= i_{\alpha} \cdot \cos \theta_{dc} + i_{\beta} \cdot \sin \theta_{dc} \\ I_{qc} &= -i_{\alpha} \cdot \sin \theta_{dc} + i_{\beta} \cdot \cos \theta_{dc} \\ t &= t_{\alpha} \cdot \sin \theta_{dc} + i_{\beta} \cdot \cos \theta_{dc} \end{split}$$

【0123】モータ2の検出電流iu, iwにはスイッ チングリプルやノイズ成分が含まれる。そこで、座標変 換部41では数24により演算した結果に対して、フィ ルター412、413を作用させ、d c - q c 座標軸上 の観測電流から上述の成分を除く。このため、フィルタ 412、413の時定数は、インパータのスイッチング 周波数やモータ電流検出部32の回路仕様に合わせて所 定の値に設定される。

【0124】次に速度制御部について説明する。速度指 令ωr*と、速度位相推定部62から出力された推定速 度ωr_detは、その差 (ωr*) -ωr detが 加算器50で演算され、速度制御部51に入力される。 速度制御部 5 1 ではω r __d e t がω r * に追従するよ うにトルク指令 $\tau*$ が演算され、出力される。電流指令 作成部52ではトルク指令 τ *を入力として、dc軸電 流指令値 I dc * と q c 軸電流指令値 I q c * を求め出 力する。これらの電流指令値は、運転状態に応じて所定 の評価関数が最小になるように決める。

【0125】電流指令作成部52より出力されたは軸電 流指令値 I d c * と、座標変換部 4 1 から出力された d 軸電流 I d c は加算器 5 3 に入力され、両者の差が演算 される。 d 軸電流制御部 4 2 d では、 (I d c *) - I d c の値を零にするような補償電圧が演算され、 d 軸補 償電圧VIdが出力される。また、電流指令作成部52 より出力されたの軸電流指令値Iac*と、座標変換部 41から出力された q 軸電流 I q c は加算器に入力さ れ、両者の差が演算される。 q 軸電流制御部42 q は、

(Iqc*)-Iqcの値を零にするような補償電圧が 演算され、q軸補償電圧VIqが出力される。また、d. 40 軸電流指令値 I d c *、 q 軸電流指令値 I q c *、およ び速度指令ωr*は電流フィードフォワード補償部43 に入力され、d軸モデル電圧Vdm*、およびg軸モデ ル電圧Vqm*が出力される。このモータ電圧モデルは Ι d *、 I q *、ω r *を用い、数 2 5 により表現され る。

[0126] 【数25】

*11では数24に従って、dc-ac座標軸上の観測電 流Idc、Iqcが演算される。

$$\begin{aligned} &V_{dm} = r_c I_d - \omega, L_{qc} I_q \\ &V_{qm} = \omega, L_{dc} I_d + r_c I_q + k_{Ec} \omega, \end{aligned}$$

【0127】数25のモータ電圧モデルは数2より導出 されるもので、数2の電流変化項を省略し、電圧、電流 をすべて指令値に、またモータ定数をすべて設定値に置 き換えたものである。また、モータ2が脱調しないで駆 動されている場合、制御軸の回転速度ω1は速度指令値 ω r*とほぼ等しいと見なせるため、 ω 1を ω r*に置 き換えている。

【0128】 d軸補償電圧VIdとd軸モデル電圧Vd m*の和が加算器55で演算され、dc軸電圧指令Vd c*が逆変換部44に出力される。また、q軸補償電圧 VIqとq軸モデル電圧Vqm*の和が加算器56で演 算され、 q c 軸電圧指令 V q c *が逆変換部 4 4 に出力 される。

【0129】逆変換部44は制御軸上での電圧指令Vd c*、Vqc*を受けて3相電圧指令を生成する。即 ち、dc軸電圧指令Vdc*およびQc軸電圧指令VQ c *を入力とし、数26に従って3相電圧指令Vu*、 Vv*、Vw*が演算される。

[0130]

【数26】

$$\begin{aligned} & \mathbf{v_u}^* = \mathbf{v_\alpha}^* \\ & \mathbf{v_v}^* = \mathbf{v_\alpha}^* \left(-\cos\frac{\pi}{3} \right) + \mathbf{v_\beta}^* \cdot \left(\cos\frac{\pi}{6} \right) \\ & \mathbf{v_w}^* = \mathbf{v_\alpha}^* \cdot \left(-\cos\frac{\pi}{3} \right) + \mathbf{v_\beta}^* \cdot \left(-\cos\frac{\pi}{6} \right) \\ & t = t^* = \mathbf{V_c}^* \cdot \cos\theta_{dc} - \mathbf{V_{qc}}^* \cdot \sin\theta_{dc} \\ & \cdot \mathbf{v_\beta}^* = \mathbf{V_{dc}}^* \cdot \sin\theta_{dc} + \mathbf{V_{qc}}^* \cdot \cos\theta_{dc} \end{aligned}$$

【0131】パルス幅変調部45は既知のパルス幅変調 を行う変調手段である。ここで、必要に応じて電圧検出 部31によって直流電圧部の電圧Edcを検出する。

【0132】次に誘起電圧・軸ずれ推定演算部61につ いて説明する。図8は、誘起電圧推定・軸ずれ演算部の 一実施例を示すブロック図である。誘起電圧・軸ずれ推 定演算部61は制御軸であるdc-gc座標系において 50 軸ずれ $\Delta\theta$ を演算し、推定値を出力する。

【0133】誘起電圧・軸ずれ推定演算部611では、 観測電流Idc及びIqc、電圧指令Vdc*、Vqc *、速度指令ω r * の値から、d c - q c 座標軸におけ る誘起電圧のdc軸成分E0dc及びqc軸成分E0qcを 数27に基づいて演算する。

[0134] 【数27】

$$\begin{split} E_{\text{Odc}} &= V_{\text{dc}} \cdot - r_{\text{c}} \cdot I_{\text{dc}} + \omega_{\text{r}} \cdot L_{\text{qc}} \cdot I_{\text{qc}} \\ E_{\text{Oqc}} &= V_{\text{qc}} \cdot - r_{\text{c}} \cdot I_{\text{qc}} - \omega_{\text{r}} \cdot L_{\text{qc}} \cdot I_{\text{dc}} \end{split}$$

【0135】数27は数17より導出されるもので、数 17の電圧を指令値に、またモータ定数 (r、Lqな ど)をすべて設定値に置き換えたものである。また、モ ータ2が脱調しないで駆動されている場合、制御軸の回 転速度(モータ印加電圧の周波数)ω1は速度指令値ω r*とほぼ等しいと見なして、 ω 1を ω r*に置き換え ている。なお、速度位相推定部62により軸ずれ $\Delta\theta$ か ら決定したω1を用いてもよい。

【0136】演算部611で推定された誘起電圧は演算 部612pによって、qc軸からみた誘起電圧ペクトル 20 の位相を演算し、軸ずれ $\Delta \theta$ の推定値が演算される。さ らに、求めた誘起電圧ベクトルの大きさ | E0 | を演算 部612nによって演算し出力する。

【0137】図9は、誘起電圧・軸ずれ推定演算部の別 の実施例を示す。誘起電圧・軸ずれ推定演算部61' は、電流軸を基準として軸ずれ Δ θ を演算する。電圧指 令Vdc*およびVqc*は、演算部613n、613 pによって電圧指令の大きさV1*と、qc軸からみた 電圧ベクトルの位相 δ c が演算される。同様に、検出電 流 I d c および I q c は、演算部 6 1 4 n、 6 1 4 p に よって電流の大きさImと、ac軸からみた電流ベクト ルの位相 ϕ cが演算される。求めたV1、 δ c、Im、 φcの値から、演算部615が誘起電圧を数28に基づ いて演算する。

[0138]

【数28】

$$E_{0x} = -V_1 \cdot \sin(\delta_c - \phi_c) - \omega_r \cdot L_{qc} \cdot I_m$$

$$E_{0y} = V_1 \cdot \cos(\delta_c - \phi_c) - r_c \cdot I_m$$

【0139】数28は数23より導出されるもので、E 40 0 x が電流軸の直交方向成分、E 0 y が電流軸方向成分 を表している。推定された誘起電圧E0は、演算部61 6 pによって誘起電圧ベクトルの位相からみた電流軸の 位相φmを演算する。演算部617は、誘起電圧ベクト ルからみた電流軸の位相φmと、q c 軸からみた電流ベ クトルの位相 ϕ c の差から、軸ずれ Δ θ を求める。さら に、求めた誘起電圧ベクトルE0の大きさ | E0 | を演 算部612nから出力する。

【0140】本実施例では、上述のように誘起電圧・軸 ずれ推定演算部61(61)が推定した軸ずれ $\Delta\theta$ を 50

もとに、インバータ出力周波数ω1を調整する。モータ 正転時に軸ずれ $\Delta \theta$ が正の時は、制御軸位相 $\theta d c$ が実 軸位相θdよりも進んでいるから、インバー夕周波数ω 1を下げ、制御軸の回転を減速させる。逆に、モータ正 転時に軸ずれ $\Delta \theta$ が負の時は、制御軸位相 $\theta d c$ が実軸 位相 θ dより遅れているから、インバータ周波数 ω 1を 上げ、制御軸の回転を加速させる。

26

【0141】以上のようにして決めたインバータ周波数 ω 1を積分し、制御軸位相 θ dcとする。また、インバ 10 一夕周波数ω1から高周波の変動成分を取り除いて、速 度制御系で用いるモータ速度推定値とする。これによ り、速度センサを用いない同期モータの速度制御系を提 供することができる。

【0142】図10に速度位相推定部62の実施例を示 す。誘起電圧・軸ずれ推定演算部61によって推定され た軸ずれ $\Delta \theta$ と、軸ずれ誤差補償部7より出力された軸 ずれ誤差補償値 $\Delta \theta$ *は、加算器621において偏差が 計算される。加算器621の出力はPI補償器622に 入力される。PI補償器622では、 $\Delta\theta$ を $\Delta\theta$ *に追 従させるようにインバータ出力周波数ω1を演算する。 なお、同じ機能を有するPI補償以外の手段を用いても よい。

[0143] これによれば、軸ずれ $\Delta\theta$ の演算結果に含 まれるパラメータ誤差の影響が補償されるため、パラメ ータ誤差が大きくても脱調しない良好な同期モータの位 置センサレス制御系を提供することができる。

【0144】PI補償器622の出力は、軸ずれΔθを 調整するために常に変動しており、高い周波数成分を含 んでいる。このため、PI補償器622の出力をモータ の検出速度としてモータ速度の制御を行うと、速度制御 特性が悪化する。本実施例では、低域通過フィルター6 23によってω1から高周波成分を取り除き、モータ速 度推定値 ω r detとして出力している。さらに、積 分器624ではインバータ出力周波数ω1を積分して、 位相 θ dcを出力している。

【0145】図11は速度位相推定部62の別の実施例 を示している。インバータ出力周波数ω1の応答性を向 上させるために、図10に示した実施例に対して、誘起 電圧の大きさ | E0 | から速度を推定する手段を追加し たものである。誘起電圧・軸ずれ推定演算部61におい て求めた誘起電圧の大きさ | E0 | は、数9より数29 のように表される。

[0146]

【数29】

$$|E_o| = k_E \omega_r + \omega_r (L_d - L_g) \cdot I_d + (L_g - L_d) \cdot pI_g$$

【0147】数29で電流変化項を無視すると、誘起電 圧の大きさはモータ速度ωΓに比例するから、数30に 示す誘起電圧係数 k で割ればモータ速度を推定すること ができる。

[0148]【数30】

$$k = k_{EC} + (L_{dc} - L_{qc}) \cdot l_d$$

【0149】ここで、kECはモータの誘起電圧定数の設 定値、LdcおよびLacはインダクタンスの設定値で ある。また、Idは制御軸での観測電流Idc、Iqc および軸ずれ $\Delta\theta$ から、数3により求まる。

【0150】図11において、誘起電圧の大きさ | E0 |と、数30の誘起電圧係数kは、積算器635に入力 される。積算器635では | E0 | /kが演算され、誘 起電圧からの推定速度ω r __e s t が出力される。加算 器626では、PI補償器622の出力とωr_est の和が演算され、インバータ出力周波数ω1が出力され る。この構成によれば、 ω r $_e$ s tが実速度からずれ た分をPI補償器622が補償するようになるため、制 御ゲインを調整することで応答性が向上する。

【0151】また、加算器637において、ωr_es tとPI補償器622の出力から高周波成分を取り除い た量の和が演算され、モータ推定速度ωr_detを出 力する。なお、図11の実施例では、PI補償器622 の出力から高周波成分を取り除いた量として、積分器出 力を取り出す。これは、制御器のパラメータ設定値に誤 差が有り、ω r _ e s t に含まれる誤差を補償するため である。

【0152】ところで、誘起電圧・軸ずれ推定演算部6 1における軸ずれ $\Delta \theta$ の演算結果には、パラメータ誤差 に起因する定常軸ずれΔθ e が残る。一方、電流指令作 成部52において指令値どおりのトルクを出すために、 τ*の値に応じて電流指令値 Idc*、Iqc*が演算 される。しかし、定常軸ずれ $\Delta \theta$ e がある場合には、指 令値通りの電流が実軸に流れず、発生するトルクが減少 する。この結果、速度の低下を招き、速度制御部51が トルク指令τ*を増加させることになり、結局、電流指 令値の大きさは増加する。逆に言えば、実軸と制御軸の 位相が一致し、指令値どおりに電流が流れると、トルク 指令値 τ *の値が最小となり、モータ電流の大きさImも最小になる。

【0153】本実施例の軸ずれ誤差補償部7は、制御器 のパラメータ設定値に誤差がある場合に、誤差の影響を 40 補償する手段である。通常は零が設定される $\Delta \theta$ *に値 を代入することにより、実軸と制御軸の軸ずれは、パラ メータ誤差に起因する軸ずれ $\Delta \theta$ e と軸ずれ誤差補償値 $\Delta \theta *$ の和となる。そこで、軸ずれ誤差補償値 $\Delta \theta *$ を モータ電流 I mが最小になるように調整し、 $\Delta \theta * + \Delta$ θ e を零にすることにより、実軸と制御軸を一致させる ことができる。

【0154】図12に軸ずれ誤差補償値Δθ*の調整方 法を示す。制御周期i番目において、軸ずれ誤差補償値 $\Delta \theta$ *に値が設定され、モータ電流の大きさが Im

(i) であるとする。次に、制御周期i+1番目におい て、ランダムに選んだ値をΔθ*に代入し、モータ電流 の大きさが I m (i+1) に変化したとする。 I m (i + 1)がⅠm(i)よりも小さければ、Ⅰd*或いはΔ θ*の値として制御周期 i + 1番目で用いた設定値を選 ぶ。以上を繰り返すことにより、モータ電流Imを最小 にする設定値を決定することができる。

【0155】以上、本実施例によれば、突極機の誘起電 圧の位相から回転子位置を推定する場合に、突極機の誘 起電圧がモータ印加電圧から抵抗の電圧降下、インダク タンスの電圧降下を差し引いて得られることに基づき、 回転子位置に依存するインダクタンスの電圧降下に代え て、回転子位置に依存しない仮想電圧降下の概念を導入 し、インダクタンスにモータ定数Lqを用いることで誘 起電圧の位相を変化させることのないベクトル関係を導 いて、観測可能な値に基づいて誘起電圧の位相を正確に 推定できるようにした。

【0156】なお、仮想電圧降下の概念を導入した突極 機の電圧関係のベクトルは、制御軸を基準にしても、電 流軸を基準にしても成立するので、誘起電圧の位相を制 御軸あるいは電流軸により観測可能な値によって推定す ることができる。

【0157】本実施例では、数17または数23に基づ いて軸ずれ角 $\Delta\theta$ を推定する方式を説明したが、数16を用いても同様に軸ずれΔθを推定できる。この場合、 仮想電圧降下として、観測電流 Idc, Iqcの微分成 分も考慮することになる。観測電流の微分項の演算に は、インダクタンス定数Ldを用いることで、誘起電圧 の位相を変化させることがないようにベクトル関係を導 いて、観測可能な値に基づいた誘起電圧の位相を正確に 推定できる。

【0158】このように、仮想電圧降下の概念を用いる ことで、突極機の誘起電圧の位相が観測可能な量から位 置センサレスに推定でき、推定した位相から直接、軸ず 100 10減速運転など、大きな軸ずれが発生する場合でも安定で あり、脱調しない良好な同期モータの位置センサレス制 御系を提供することができる。

【0159】また、本実施例によれば、軸ずれ推定式 (数16、数17、数23) において、パラメータ設定 値の誤差による $\Delta \theta$ の推定誤差を少なくするために、軸 ずれ誤差補償値 $\Delta \theta$ *の概念を導入し、 $\Delta \theta$ * $-\Delta \theta$ が 零になるようにモータ印加電圧の周波数ω1またはトル ク指令値 τ *を修正している。この場合、 $\Delta \theta$ *の設定 値は、実軸と制御軸の位相が一致すればモータ電流が最 小になることに着目し、モータが安定な状態でモータ電 流を最小化するようにチューニングされる。

【0160】上記した実施例では、永久磁石を用いる突 極型同期モータを対象としている。磁石を使わない突極 50 型同期モータに、シンクロナスリラクタンスモータがあ

る。シンクロナスリラクタンスモータの電圧方程式は、 永久磁石同期モータの電圧方程式(数 2)のK E 項を零 とした形式になることが知られている。一方、本発明で 導出した数 17、数 23の軸ずれ推定式は、誘起電圧定 数 K E を演算に用いていない。また、これらの式の導出 にあたってもK E に依存した変形は行っていない。従っ て、シンクロナスリラクタンスモータに対しても、本発 明の軸ずれ Δ θ の推定方法及びこれを用いた位置センサ レス制御法は適用可能である。

[0161]

【発明の効果】本発明によれば、突極同期モータの誘起電圧の位相を回転子位置に依存することなく観測可能な値から推定できるので、回転子位置が位置センサレス、かつ高精度に取得できる効果がある。

【0162】これにより、高速運転あるいは負荷の急変化や急加減速運転など、大きな軸ずれが発生する場合でも、安定で脱調しない良好な同期モータの位置センサレス制御系を提供することができる。

【0163】また本発明によれば、軸ずれΔθの演算結果に含まれるパラメータ誤差の影響が補償されるため、20パラメータ誤差が大きくても脱調しない良好な同期モータの位置センサレス制御系を提供することができる。

【図面の簡単な説明】

【図1】本発明の一実施例で、同期モータの位置センサレス制御方法を実現する制御系の全体構成図。

【図2】永久磁石型同期モータのdーq軸回転座標、dcーqc制御回転座標の関係を示した解析モデル図。

【図3】回転している突極型同期モータの電圧関係を制 御軸基準で示すベクトル図。

【図4】図3のベクトル図に対し、仮想電圧降下の概念 30 を導入したベクトル図。

【図5】図4の電圧関係で、仮想電圧降下を制御軸基準で示すベクトル図。

【図6】図4と同様の電圧関係を、電流軸基準で示すベクトル図。

【図7】座標変換部41の演算内容を示すプロック図。

【図8】誘起電圧・軸ずれ推定演算部の演算内容を示す

[図2]

図 2

ブロック図。

【図9】誘起電圧・軸ずれ推定演算部の他の実施例による演算内容を示すブロック図。

【図10】速度位相推定部の演算内容を示すプロック図、

【図11】速度位相推定部の他の実施例による演算内容 を示すプロック図。

【図12】軸ずれ誤差補償部により、電流位相を最適状態に調整する方法を示す説明図。

0 【符号の説明】

11…電源、12…平滑コンデンサ、13…インバー タ、2…同期モータ、31…電圧検出部、32…モータ 電流検出部、41…座標変換部、42d…d軸電流制御 部、42a…a軸電流制御部、43…電流フィードフォ ワード補償部、44…逆変換部、45…パルス幅変調 部、51…速度制御部、52…電流指令作成部、61… 誘起電圧推定・軸ずれ演算部、62…速度位相推定部、 $7 \cdots$ 軸ずれ $\Delta \theta$ 誤差補償部、 $E d c \cdots$ 直流電圧、 $i u \cdots$ U相モータ電流、iw…W相モータ電流、d軸…永久磁 石回転子磁束方向の位置の軸、q軸…d軸に対し回転方 向に90度進んだ位置の軸、dc軸…制御上の仮想回転 子位置の軸、ac軸…dc軸に対し回転方向に90度進 んだ位置の軸、Idc…仮想dc-ac座標系における 電流のdc軸成分、Iac…仮想dc-ac座標系にお ける電流のqc軸電流、Im…モータ電流の大きさ、o c…qc軸とモータ電流ベクトルとの位相差、V1…モ ータ印加電圧の大きさ、δc…qc軸とモータ電圧ベク トルとの位相差、 $\Delta \theta$ ··· d-q 実座標系とdc-qc 仮 想座標系との軸ずれ位相角、ω r …モータ推定速度、ω r *…モータ速度指令(周波数指令)、ω1…制御軸の 回転速度(インバー夕出力周波数)、ωr_det…モ ータ推定速度、ωr_est…誘起電圧からの推定速 度、τ*…トルク指令値、Idc*…dc軸電流指令、 Iqc*…qc軸電流指令、Vdc*…dc軸電圧指 令、Vqc*…qc軸電圧指令、Δθ*…軸ずれ誤差補 償量。

[図10]

[図1]

[図3]

図 3

[図7]

図 7

[図4]

【図11】

図 11

[図8]

【図12】

図 12

【図9】

図 9

フロントページの続き

(72)発明者 高橋 直彦

茨城県土浦市神立町603番地 株式会社日

立製作所土浦事業所内

(72)発明者 三浦 治雄

茨城県土浦市神立町603番地 株式会社日

立製作所土浦事業所内

(72)発明者 藤井 洋

千葉県習志野市東習志野七丁目1番1号 株式会社日立製作所産業機器グループ内

Fターム(参考) 5H560 BB04 BB12 DA13 DB12 EB01

SS01 UA02 XA02 XA04 XA12

XA13

5H576 BB06 DD07 EE01 EE11 GG04

HB02 JJ04 JJ22 JJ24 JJ25

JJ26 LL14 LL15 LL22 LL24

LL25 LL38 LL39 LL41