BUFR Dateiformat des Precipitation- und Volumen-Scans der Reflektivität am Radarstandort

Ergebnis der Messung

Michael Mott

Version 1.0 10. Juli 2015

Forschung und Entwicklung, Zentrale Entwicklung Radarmeteorologie

Änderungsdokumentation

Rev.	Änderungen, Seiten, Ände- rungsgrund	Datum	Bearbeiter	Dienststelle
0.9	Initiale Version	29. Juni 2015	Michael Mott	Radarmeteorologie
1.0	Abstimmung mit dem Sach- gebiet	10. Juli 2015	Michael Mott	Radarmeteorologie

Inhaltsverzeichnis

1	Scanstrategie	4
2	Dateinamenskonvention	5
3	BUFR Nachrichtaufbau 3.1 Liste der Deskriptoren in BUFR Sektion 3	
4	Beispieldaten	14

1 Scanstrategie

Zum besseren Verständnis der Formatbeschreibung zeigt Abbildung 1.1 die seit Dezember 2012 gültige Scanstrategie im Radarverbund des DWD. Die durch die Scanstrategie vorgegebenen Parameter sind in Tabelle 3.1 als "Scanparameter" markiert.

Abbildung 1.1: Scan-Strategie für die Wetterradarsysteme im Radarverbund des DWD

Der obere Teil der Abbildung zeigt einen Vertikalschnitt durch die vom Radarsystem abgetastete Atmosphäre für eine beliebige Azimut-Richtung. Es sind die einzelnen definierten Elevationen (für die jeweils eine vollständige Azimut-Drehung der Antenne durchgeführt wird) farblich kodiert aufgetragen. Bei dieser Abbildung ist die Antenne des Radarsystems im Koordinatenursprung, die x-Achse repräsentiert die Entfernung vom Radarsystem (die eingestellte Reichweite) und die y-Achse repräsentiert die Höhe über dem Radarsystem. Die Aufweitung der "Radarstrahlen" für die einzelnen Elevationen ist durch den Antennen-Öffnungswinkel von circa 1° bestimmt. Im unteren Teil ist die zeitliche Abfolge der einzelnen Elevationen (identische Farbkodierung) dargestellt. Für die Scanstrategie ist ein fünf minütiger Abtastzyklus definiert, womit die Informationen aus allen Raumsegmenten alle 5 Minuten neu gewonnen werden. Die zeitliche Abfolge gibt vor, dass jeder Abtastzyklus mit einem bodennahen, orografiefolgenden Antennenumlauf, dem Niederschlags-Scan (DWD eigene Bezeichnung), beginnt (In der Abbildung 1.1 hellblau, Reichweite 150km). Im Anschluss an diesen Niederschlags-Scan wird die Abtastung mit dem Volumen-Scan (DWD eigene Bezeichnung) fortgefahren. Für den Volumen-Scan werden zuerst 6 Antennenumläufe mit den festen Elevationen 5.5°, 4.5°, 3.5°, 2.5°, 1.5° und 0.5° durchgeführt ("von oben nach unten", in der Abbildung 1.1 blau bis grün, Reichweite 180km). Im Weiteren werden 4 Antennenumläufe mit den festen Elevationen 8.0°, 12.0°, 17.0° und 25.0° durchgeführt ("von unten nach oben", in der Abbildung 1.1 gelb bis rot, Reichweite 120km bis 60km).

2 Dateinamenskonvention

Die Dateinamen sind wie folgt aufgebaut

 $sweep_{Scan-Typ}_z_{Elevation-Index}_{Zeitstempel}_{WMO-Nummer}--buf$

Die Platzhalter (markiert als $\{\ \}$) sind in Tabelle 2.1 beschrieben.

Tabelle 2.1: Beschreibung der Platzhalter in Dateinamen

Platzhalter	Ausprägung/ Beispiel	Beschreibung
{Scan-Typ}	vol pcp	vol=Volumen-Scan, pcp=Precipitation-Scan
{Elevation-Index}	0 i	Index des Scans im Volumen, bei Precipitation-Scans immer 0
{Zeitstempel}	20150619110033	Datum und Uhrzeit unter Verwendung des YYYYMMDDhhmmss Schemas
{WMO-Nummer}	10488	Messung aufgenommen am Standort Dresden

3 BUFR Nachrichtaufbau

Der Precipitation- und Volumenscan der Radarreflektivität sind kodiert in BUFR¹ Edition 3 mit der Master-Tabellen-Version 14. Zusätzlich wird zur Dekodierung die Lokale-Tabellen-Version 1 benötigt.

Der Aufbau der Nachricht gliedert sich in zwei Teile. Der erste Teil beinhaltet die Sweep globalen Metainformationen wie z.B. Angaben zur geographischen Position, Zeitstempel oder Auflösung. Der zweite Teil ist eine Matrix, die über zwei ineinander verschachtelte Schleifen aufgebaut ist. Die äußere Schleife läuft über alle Radarstrahlen (Rays) und enthält neben deren Metainformationen die innere Schleife, die über alle Strahlsegmente (Range-Bins) läuft. Jedes Range-Bin enthält die gemessene Reflektivität. Hinsichtlich des Aufbaus der Nachricht gibt es keinen Unterschied zwischen Precipitation- und Volumen-Scans.

3.1 Liste der Deskriptoren in BUFR Sektion 3

In Tabelle 3.1 ist beispielhaft für einen Precipitation-Scan des Radarsystems Dresden die Liste der Deskriptoren der BUFR Sektion 3 mit ihren aktuell 67 Einträgen dargestellt. Zu einigen Deskriptoren wurden Anmerkungen gemacht. Zum besseren Verständnis wurden die Sequenzdeskriptoren (3-X-Y) entfaltet um die darin enthaltenen Elementdeskriptoren aufzuzeigen und zu erklären.

(URLs geprüft: 29. Juni 2015)

¹BUFR ist ein tabellengesteuertes Format, das von der WMO gepflegt wird. Weitere Informationen über das Format können über die Webseiten http://www.wmo.int/pages/prog/www/WMOCodes.html und http://www.wmo.int/pages/prog/www/WMOCodes/WMO306_vI2/PrevEDITIONS/BUFR3CREX1/BUFR3CREX1.html bezogen werden.

Tabelle 3.1: Anmerkungen zur BUFR Sektion 3 Deskriptorenliste

Nr.	F-X-Y	Name in BUFR Tabelle	Beispiel	Bemerkung
1	0-01-230	UNIQUE PRODUCT DESCRIPTION	LR256_ VSCAN_ DBZ_23	
2	0-30-196	TYPE OF PRO- DUCT	7	
3	0-01-018	SHORT STATION OR SITE NAME	DRS	WMO- Stationskurzname in Großbuchstaben
4	0-01-001	WMO BLOCK NUM- BER	10	
5	0-01-002	WMO STATION NUMBER	488	
6	0-08-021	TIME SIGNIFICAN- CE	28	28=Start des Scans
7	3-01-011	Sequence: DATE		Zeitstempel Referenz (Datumsanteil)
7-a	0-04-001	YEAR	2015	
7-b	0-04-002	MONTH	6	
7-с	0-04-003	DAY	19	
8	3-01-012	Sequence: HOUR/MINUTE		Zeitstempel Referenz (Zeitanteil)
8-a	0-04-004	HOUR	11	
8-b	0-04-005	MINUTE	0	
9	2-02-125	Operation: Change scale		Änderung der Skalie- rung auf 3 Nachkom- mastellen
10	0-04-007	SECOND WITHIN A MINUTE (MICRO- SEC ACCUR.)	3.238	
11	2-02-000	Operation: Finish change scale		Änderung der Skalie- rung abgeschlossen

Tabelle 3.1: Anmerkungen zur BUFR Sektion 3 Deskriptorenliste (Fortsetzung)

Nr.	F-X-Y	Name in BUFR Tabelle	Beispiel	Bemerkung
12	0-08-021	TIME SIGNIFICAN- CE	-1e+09	Start des Sweeps
13	3-01-022	Sequence: LATITU- $DE/LONGITUDE$		Geographischer Referenzpunkt (hier: Radarstandort)
13-a	0-05-001	LATITUDE (HIGH ACCURACY)	51.1246	
13-b	0-06-001	LONGITUDE (HIGH ACCURACY)	13.7686	
13-с	0-07-001	HEIGHT OF STATI- ON	262	Höhe des Standorts (Meter MSL)
14	0-01-032	GENERATING APP- LICATION	0	
15	0-05-230	MAXIMUM SIZE OF X DIMENSION IN A VOLUME	600	Scanparameter: Maximale Anzahl an Range-Bins
16	0-06-230	MAXIMUM SIZE OF Y DIMENSION IN A VOLUME	360	Maximal Anzahl an Rays
17	0-07-230	MAXIMUM SIZE OF Z DIMENSION IN A VOLUME	1	Scanparameter: Maximale Anzahl an Sweeps
18	0-21-203	RANGE-BIN OFF- SET	0	
19	0-21-204	AZIMUTH OFFSET	0	
20	3-01-011	Sequence: DATE		Zeitstempel Sweep (Datumsanteil)
20-a	0-04-001	YEAR	2015	
20-b	0-04-002	MONTH	6	
20-с	0-04-003	DAY	19	
21	3-01-012	Sequence: HOUR/MINUTE		Zeitstempel Sweep (Zeitanteil)
21-a	0-04-004	HOUR	11	

Tabelle 3.1: Anmerkungen zur BUFR Sektion 3 Deskriptorenliste (Fortsetzung)

Nr.	F-X-Y	Name in BUFR Tabelle	Beispiel	Bemerkung
21-b	0-04-005	MINUTE	0	
22	2-02-125	Operation: Change scale		Änderung der Skalie- rung auf 3 Nachkom- mastellen
23	0-04-007	SECOND WITHIN A MINUTE (MICRO- SEC ACCUR.)	3.238	
24	2-02-000	Operation: Finish change scale		Änderung der Skalie- rung abgeschlossen
25	0-02-135	ANTENNA ELEVA- TION	0.8	Scanparameter: Standard Elevation des Sweeps
26	0-07-231	LEVEL INDEX OF Z	0	Scanparameter: Index der Elevation
27	0-02-134	ANTENNA BEAM AZIMUTH	157.02	Startazimuth des Sweeps
28	0-21-236	extended NYQUIST Velocity	8	Scanparameter
29	0-21-237	high Nyquist Velocity	8	Scanparameter
30	0-02-194	DualPRF ratio	0	Scanparameter
31	2-02-129	Operation: Change scale		Änderung der Skalie- rung auf 0 Nachkom- mastellen
32	2-01-132	Operation: Change data width		Änderung der Daten- breite auf 10 Bits
33	0-25-001	RANGE-GATE LENGTH	25	Länge eines Range- Gates im Signalpro- zessor
34	2-02-000	Operation: Finish change scale		Änderung der Skalie- rung abgeschlossen
35	2-01-000	Operation: Finish change data width		Änderung der Daten- breite abgeschlossen

Tabelle 3.1: Anmerkungen zur BUFR Sektion 3 Deskriptorenliste (Fortsetzung)

Nr.	F-X-Y	Name in BUFR Tabelle	Beispiel	Bemerkung
36	2-01-130	Operation: Change data width		Änderung der Daten- breite auf 6 Bits
37	0-25-002	NUMBER OF GA- TES AVERAGED	10	Scanparameter: Anzahl Range-Gates, die gemittelt ein Range-Bin bilden
38	2-01-000	Operation: Finish change data width		Änderung der Datenbreite abgeschlossen
39	0-25-003	NUMBER OF INTE- GRATED PULSES	10	
40	0-25-004	ECHO PROCES- SING	1	1=Coherent (Doppler)
41	0-21-201	RANGE-BIN SIZE	250	Scanparameter: Länge eines Range-Bins
42	0-21-202	AZIMUTHAL RESO- LUTION	1	Azimutale Winkelauf- lösung je Ray
43	0-02-193	ANTENNA ROTATI- ON DIRECTION	1	1=Drehrichtung im Uhrzeigersinn
44	0-29-001	PROJECTION TY- PE	-1e+09	-1e+09=Nicht proji- ziert
45	0-29-002	CO-ORDINATE GRID TYPE	1	1=Polar
46	0-30-194	NUMBER OF BINS ALONG THE RADI- AL	600	Scanparameter: Anzahl Range-Bins in einem Ray
47	0-30-195	NUMBER OF AZI- MUTHS	360	Anzahl Rays
48	1-18-000	Start of Loop - 118000		Äußere Schleife über alle Rays
49	0-31-002	EXTENDED DELAYED DES- CRIPT.REPLIC.FACTOF	360 R	

Tabelle 3.1: Anmerkungen zur BUFR Sektion 3 Deskriptorenliste (Fortsetzung)

Nr.	F-X-Y	Name in BUFR Tabelle	Beispiel	Bemerkung
50	2-01-131	Operation: Change data width		Änderung der Daten- breite auf 16 Bits
51	2-02-131	Operation: Change scale		Änderung der Skalie- rung auf 3 Nachkom- mastellen
52	0-04-026	TIME PERIOD OR DISPLACEMENT	0.238	Zeitdifferenz auf den Sweep Zeitstempel
53	2-02-000	Operation: Finish change scale		Änderung der Skalie- rung abgeschlossen
54	2-01-000	Operation: Finish change data width		Änderung der Datenbreite abgeschlossen
55	0-02-134	ANTENNA BEAM AZIMUTH	157.02	Startazimuth des Rays
56	0-02-135	ANTENNA ELEVA- TION	1.2	Elevation des Rays
57	2-01-132	Operation: Change data width		Änderung der Daten- breite auf 11 Bits
58	2-02-129	Operation: Change scale		Änderung der Skalie- rung auf 1 Nachkom- mastelle
59	2-03-010	Operation: Subsequent element descriptor represent new reference value		Redeklaration der Referenzwerte mit jeweils 10 Bit
60	0-21-001	HORIZONTAL RE- FLECTIVITY	-32	
61	2-03-255	Definition of new reference values is concluded		Redeklaration der Referenzwerte abge- schlossen
62	1-01-000	Start of Loop - 101000		Innere Schleife über alle Range-Bins
63	0-31-002	EXTENDED DELAYED DES- CRIPT.REPLIC.FACTO	600 OR	

Tabelle 3.1: Anmerkungen zur BUFR Sektion 3 Deskriptorenliste (Fortsetzung)

Nr.	F-X-Y	Name in BUFR Tabelle	Beispiel	Bemerkung
64	0-21-001	HORIZONTAL RE- FLECTIVITY	-32	vgl. Tabelle 3.2
65	2-01-000	Operation: Finish change data width		Änderung der Daten- breite abgeschlossen
66	2-02-000	Operation: Finish change scale		Änderung der Skalie- rung abgeschlossen
67	2-03-000	Operation: Subsequent element descriptor represent new reference value		Zurücksetzen der Referenzwerte

3.2 Deskriptor "HORIZONTAL REFLECTIVITY"

Jedes Range-Bin enthält als Deskriptor die Reflektivität, die als (0-21-001) HORIZON-TAL REFLECTIVITY kodiert ist. Im Wertebreich des Deskriptors kommt dem Wert -1E+09 und -32.0 eine spezielle Bedeutung zu. Wurde die Reflektivität eines Range-Bins mit dem Wert -1E+09 belegt, so signalisiert dies, dass der Bereich nicht gemessen wurde (keine Daten). Dagegen bedeutet ein Range-Bin, dessen Reflektivität mit -32.0 belegt ist, dass der Bereich als schwellwertgefiltert (kein Echo) markiert wurde.

Tabelle 3.2: Werte des Deskriptors 0-21-001 (HORIZONTAL REFLECTIVITY)

Wert (dBZ)	Bedeutung
-1000000000	Keine Daten
-32.0	Kein Echo
-31.9 bis 172.6	gültige Reflektivität

4 Beispieldaten

Das nachfolgende Bild zeigt das in Tabelle 3.1 beschriebene Beispiel des Precipitation-Scans am Standort Dresden, wie er in der Visualisierungssoftware NinJo¹ dargestellt wird.

Abbildung 4.1: Precipitation-Scan 19. Juni 2015 11:00 UTC

¹NinJo ist ein meteorologisches Datenverarbeitungs- und Visualisierungssystem. Weitere Informationen können über die Webseite http://www.ninjo-workstation.com bezogen werden. (URL geprüft: 29. Juni 2015)