Ejemplo Naive Bayes

JAFH

JFLORES CONTROL OF THE PROPERTY OF THE PROPERT

Datos:

Tenemos un conjunto de observaciones sobre:

• Ambiente: Iluvioso, nublado, soleado

• Temperatura: baja, media, alta

• Viento: si, no

Donde se decide si jugar o no sobre el

Atributo de decisión

• Jugar: si, no

Ambiente	Temperatura	Viento	Jugar
L	В	N	S
L	M	N	S
L	M	N	S
L	В	S	N
L	M	S	N
N	Α	N	S
N	Α	N	S
N	В	S	S
N	M	S	S
S	Α	N	N
S	В	N	S
S	M	N	N
S	Α	S	N
S	M	S	S

Formula Naive Bayes

$$P(c_j|x_1,...x_n) = P(c_j) * \prod_{i=1}^n P(x_i|c_j)$$

xi=[Ambiente, Temperatura, Viento] Cj=[jugar, nojugar]=[JS,JN]

Ambiente	Temperatura	Viento	Jugar
L	В	N	S
L	M	N	S
L	M	N	S
L	В	S	N
L	M	S	N
N	Α	N	S
N	Α	N	S
N	В	S	S
N	M	S	S
S	Α	N	N
S	В	N	S
S	M	N	N
S	Α	S	Ν
S	M	S	S

Calcular $P(x_i|c_j)$ para P(xi=Ambiente|Cj=JN)

$$P(x_{ambiente}|c_{jn})$$

P(Ambiente | JN): Renglones de JN=5

P(Ambiente=S|Jugar=N)=3/5=0.6 P(Ambiente=N|Jugar=N)=0/5=0 P(Ambiente=L|Jugar=N)=2/5=0.4

Ambiente	Temperatura	Viento	Jugar
S	Α	N	N
S	В	N	S
S	M	N	N
S	Α	S	N
S	M	S	S
N	А	N	S
N	Α	N	S
N	В	S	S
N	M	S	S
L	В	N	S
L	M	N	S
L	M	N	S
L	В	S	N
L	M	S	N

Calcular $P(x_j|c_j)$ para P(xi=Ambiente|cj=JS)

$$P(x_{ambiente}|c_{js})$$

P(Ambiente | JS): Renglones de JS=9

P(Ambiente=S|Jugar=S)=2/9=0.22 P(Ambiente=N|Jugar=S)=4/9=0.44 P(Ambiente=L|Jugar=S)=3/9=0.33

Ambiente	Temperatura	Viento	Jugar
S	Α	N	N
S	В	N	S
S	M	N	N
S	Α	S	N
S	M	S	S
N	А	N	S
N	А	N	S
N	В	S	S
N	M	S	S
L	В	N	S
L	M	N	S
L	M	N	S
L	В	S	N
L	M	S	N

Si tabulamos estos datos

	Ambiente	S	N	L
lugar	N	0.6	0	0.4
Jugar	S	0.222	0.444	0.333

P(Ambiente | JN):

Renglones de JN=5

P(Ambiente=S|Jugar=N)=3/5=0.6

P(Ambiente=N|Jugar=N)=0/5=0

P(Ambiente=L|Jugar=N)=2/5=0.4

P(Ambiente | JS):

Renglones de JS=9

P(Ambiente=S|Jugar=S)=2/9=0.22

P(Ambiente=N|Jugar=S)=4/9=0.44

P(Ambiente=L|Jugar=S)=3/9=0.33

Calcular $P(x_j|c_j)$ para P(xi=viento|cj=JN)

$$P(x_{viento}|c_{jn})$$

P(viento | JN): Renglones de JN=5

P(viento=N|Jugar=N)=2/5=0.4 P(viento=S|Jugar=N)=3/5=0.6

Ambiente *	Temperatura T	Viento → ↑	Jugar 🔻
S	А	Ν	Ν
S	В	N	S
S	М	Ν	Ν
N	А	Ν	S
N	А	Ν	S
L	В	B N	
L	М	N	S
L	М	N	S
S	А	S	N
S	М	S	S
N	В	S	S
N	M	S	S
L	В	S	N
L	M	S	N

Calcular $P(x_j|c_j)$ para P(xi=viento|cj=JS)

$$P(x_{viento}|c_{js})$$

P(viento | JS): Renglones de JS=9

P(viento=N|Jugar=S)=6/9=0.667 P(viento=S|Jugar=S)=3/9=0.333

Ambiente *	Temperatura 🔻	Viento → ↑	Jugar 🔻
S	А	Ν	Ζ
S	В	Ν	S
S	М	Ν	Ν
N	А	Ν	S
N	А	Ν	S
L	В	Ν	S
L	М	Ν	S
L	М	Ν	S
S	А	S	N
S	M	S	S
N	В	S	S
N	M	S	S
L	В	S	N
L	M	S	N ,

Tabulando viento

	Viento	S	N
lugor	N	0.6	0.4
Jugar	S	0.333	0.667

P(viento | JN): Renglones de JN=5

P(viento=N|Jugar=N)=2/5=0.4 P(viento=S|Jugar=N)=3/5=0.6 P(viento | JS):

Renglones de JS=9

P(viento=N|Jugar=S)=6/9=0.667

P(viento=S|Jugar=S)=3/9=0.333

De la misma forma calculamos los demás datos...

Datos tabulados

	Ambiente	S	N	L
lugar	N	0.6	0	0.4
Jugar	S	0.222	0.444	0.333
	Temperatura	Α	M	В
lugar	N	0.4	0.4	0.2
Jugar	S	0.222	0.444	0.333
	Viento	S	N	
lugar	N	0.6	0.4	
Jugar	S	0.333	0.667	

Calculamos:
$$P(c_j|x1,...xn) = P(c_j) * \prod_{i=1}^n P(xi|c_j)$$

Clasificador bayesiano simple

		P(A J)	P(T J)	P(V J)	
	a priori	Ambiente	Temperatura	Viento	P(J=S)*P(A J
P(J=S A=S,T=A,V=N) ~	0.64	0.22	0.22	0.67	0.021
P(J=S A=S,T=M,V=N) ~	0.64	0.22	0.44	0.67	0.042
P(J=S A=S,T=B,V=N) ~	0.64	0.22	0.33	0.67	0.032
P(J=S A=S,T=A,V=S) ~	0.64	0.22	0.22	0.33	0.011
P(J=S A=S,T=M,V=S) ~	0.64	0.22	0.44	0.33	0.021
P(J=S A=S,T=B,V=S) ~	0.64	0.22	0.33	0.33	0.016
P(J=S A=N,T=A,V=N) ~	0.64	0.44	0.22	0.67	0.042
P(J=S A=N,T=M,V=N) ~	0.64	0.44	0.44	0.67	0.085
P(J=S A=N,T=B,V=N) ~	0.64	0.44	0.33	0.67	0.063
P(J=S A=N,T=A,V=S) ~	0.64	0.44	0.22	0.33	0.021
P(J=S A=N,T=M,V=S) ~	0.64	0.44	0.44	0.33	0.042
P(J=S A=N,T=B,V=S) ~	0.64	0.44	0.33	0.33	0.032
P(J=S A=L,T=A,V=N) ~	0.64	0.33	0.22	0.67	0.032
P(J=S A=L,T=M,V=N) ~	0.64	0.33	0.44	0.67	0.063
P(J=S A=L,T=B,V=N) ~	0.64	0.33	0.33	0.67	0.048
P(J=S A=L,T=A,V=S) ~	0.64	0.33	0.22	0.33	0.016
P(J=S A=L,T=M,V=S) ~	0.64	0.33	0.44	0.33	0.032
P(J=S A=L,T=B,V=S) ~	0.64	0.33	0.33	0.33	0.024

Calculamos:
$$P(c_j|x1,...xn) = P(c_j) * \prod_{i=1}^{n} P(xi|c_j)$$

		P(A NJ)	P(T NJ)	P(V NJ)	P(J=N)*P(A N
P(J=N A=S,T=A,V=N) ~	0.36	0.60	0.40	0.40	0.034
P(J=N A=S,T=M,V=N) ~	0.36	0.60	0.40	0.40	0.034
P(J=N A=S,T=B,V=N) ~	0.36	0.60	0.20	0.40	0.017
P(J=N A=S,T=A,V=S) ~	0.36	0.60	0.40	0.60	0.051
P(J=N A=S,T=M,V=S) ~	0.36	0.60	0.40	0.60	0.051
P(J=N A=S,T=B,V=S) ~	0.36	0.60	0.20	0.60	0.026
P(J=N A=N,T=A,V=N) ~	0.36	0.00	0.40	0.40	0.000
P(J=N A=N,T=M,V=N) ~	0.36	0.00	0.40	0.40	0.000
P(J=N A=N,T=B,V=N) ~	0.36	0.00	0.20	0.40	0.000
P(J=N A=N,T=A,V=S) ~	0.36	0.00	0.40	0.60	0.000
P(J=N A=N,T=M,V=S) ~	0.36	0.00	0.40	0.60	0.000
P(J=N A=N,T=B,V=S) ~	0.36	0.00	0.20	0.60	0.000
P(J=N A=L,T=A,V=N) ~	0.36	0.40	0.40	0.40	0.023
P(J=N A=L,T=M,V=N) ~	0.36	0.40	0.40	0.40	0.023
P(J=N A=L,T=B,V=N) ~	0.36	0.40	0.20	0.40	0.011
P(J=N A=L,T=A,V=S) ~	0.36	0.40	0.40	0.60	0.034
P(J=N A=L,T=M,V=S) ~	0.36	0.40	0.40	0.60	0.034
P(J=N A=L,T=B,V=S) ~	0.36	0.40	0.20	0.60	0.017

Recordemos el algoritmo para calcular predicciones

Paso 1: Para cada clase c_i, calcular la probabilidad dados los atributos xi:

$$P(c_j|x_1,...x_n) = P(c_j) * \prod_{i=1}^n P(x_i|c_j)$$

Pass 2: seleccionar la clase con mayor probabilidad

Predicción: aplicando el algoritmo

Paso 1: Para cada clase

- c=[js, jn],
- calcular la probabilidad dados los atributos
- xi=[Ambiente=nublado, Temperatura= Media, Viento=No]
- $\circ = P(C_i \mid A=N,T=M,V=N)$

Verificamos los cálculos para las clases JS y JN y tenemos los valores: 0.085 y 0.00

Paso 2: La clase con mayor probabilidade es J=S

P(J=S A=N,T=M,V=N) ~	0.64	0.44	0.44	0.67	0.085
P(J=N A=N,T=M,V=N) ~	0.36	0.00	0.40	0.40	0.000

Resultado

Dada la ocurrencia de los atributos xi=[Ambiente=nublado, Temperatura= Media, Viento=No]

Nos da la predicción de:

Jugar igual a si.