MAE3145: Homework 5

Due date: $2\,458\,064.197\,916\,\mathrm{JD}$

Problem 1. Observations at a certain instant indicate the following data for an Earth satellite:

$$r_c = 4R_{\oplus}$$
 $v_c = 4.54 \,\mathrm{km \, s^{-1}}$ $\gamma_c = -40^{\circ}$

(a) Determine the following orbital characteristics of the original orbit:

$$a e \mathbb{P} \mathcal{E} r_p r_a \nu_c E_c (t_c - T)$$

- (b) In exactly 8.5 h, a manuever will be implemented. What are the orbital characteristics in 8.5 h at the manuever point. In other words, find the orbital properties, r_m, v_m^-, γ_m^- immediately before applying the maneuver.
- (c) The manuever is defined as $\|\Delta v\| = 1200\,\mathrm{m\,s^{-1}}$ (a very large manuever) directed such that $\alpha = 30^\circ$ with respect to the original velocity vector at the maneuver point. Determine the following properties immediately after the impulsive maneuver:

$$a^{+}$$
 e^{+} \mathbb{P}^{+} \mathcal{E}^{+} r_{p}^{+} r_{a}^{+} ν_{c}^{+} E_{c}^{+} $(t_{c}-T)^{+}$ $\Delta\omega$

Ensure you draw a proper vector diagram!

(d) Create a plot with both the old and new orbit. Mark the appropriate quantities on the plot.

Problem 2. A vehicle has been successfully launched into an orbit such that e = 0.5 and $a = 6.0R_{\oplus}$. Currently at $t = t_0$ the vehicle is located at perigee. A single in-plane maneuver is employed to circularize the orbit at geosynchronous altitude $r = 6.6R_{\oplus}$.

- (a) Determine \vec{r}_1 , \vec{v}_1 , γ_1^- at the maneuver point. These are the conditions on the orbit prior to the manuever. The manuever occurs at what value of ν_1^- ? What is the "wait time" until the manuever, i.e. how long to go from perigee to the required manuever point?
- (b) Compute the required maneuver ($\|\Delta \vec{v}\|$, α . Ensure you include a proper vector diagram. What are the conditions on the orbit immediately following the maneuver, i.e. find $\vec{r}_1^+, \vec{v}_1^+, \gamma_1^+$?
- (c) Plot the old and new orbits (together). On the plot, mark the following:

$$\vec{r}_0 \quad \vec{r}_1 \quad \vec{v}_1^- \quad \nu_1^- \quad \text{local horizon} \quad \gamma_1^1 \quad \vec{v}_1^+ \quad \gamma_1^+ \quad \Delta \vec{v} \quad \alpha$$

Problem 3. A vehicle is currently in Earth orbit such that e=0.75 and $a=4.5R_{\oplus}$. A single in-plane maneuver will be used to raise perigee and lower apogee. New values are specified as $r_p=2.0R_{\oplus}$ and $r_a=6.0R_{\oplus}$. It is also required that perigee advance by 35°, i.e. $\Delta\omega=+35^{\circ}$.

- (a) At what location ν in the original orbit should the maneuver be implemented? Determine $\vec{r}_1, \vec{v}_1, \gamma_1^-$ at the manuever point.
- (b) Determine the manuever ($\|\Delta \vec{v}\|$, α , β) to accomplish the objective. If there are two possibilities, **ALWAYS** choose the one with lowest cost. Do not forget the vector diagrams! Can you deduce the lowest cost option from the vector diagrams? What are the values of \vec{v}_1^+ , γ^+ ?

(c) Define the manuever in the VNC reference frame, i.e. write down the vector $\Delta \vec{v} = a\hat{v} + b\hat{n} + c\hat{c}$. Create a plot with the old and new orbit as well as the properties:

$$\vec{r}_0$$
 \vec{r}_1 $\vec{v}_1^ \nu_1^-$ local horizon γ_1^1 \vec{v}_1^+ γ_1^+ $\Delta \vec{v}$ α

(d) Determine the position and velocity at $\nu = 250^{\circ}$ in the new orbit and mark this location on the plot. Determine the amount of time to go from the maneuver to $\nu = 250^{\circ}$ in the new orbit.

Problem 4. As part of of an interplanetary mission, a spacecraft is in the following orbit around Mars (relative to a Mars-centered inertial coordinate frame):

$$a=5R_{\text{cl}}$$
 $e=0.5$ $i=30^{\circ}$ $\Omega=45^{\circ}$ $\omega=-60^{\circ}$

At $\nu = 120^{\circ}$, the following maneuver is implemented

$$\Delta \vec{v} = 0.1\hat{x} - 0.25\hat{y} + 0.2\hat{z}$$
km s⁻¹.

- (a) Transform the $\Delta \vec{v}$ into the $\hat{r}, \hat{\theta}, \hat{h}$ components corresponding to the original orbit. How much of the $\Delta \vec{v}$ is out of the plane? Define this out of plane component as Δv_h and find the percentage as compared to the total $\Delta \vec{v}$.
- (b) Define $\Delta \vec{v}_{r\theta}$ as the projection of $\Delta \vec{v}$ in the orbital plane. Determine $\|\Delta \vec{v}_{r\theta}\|$, β , ϕ . Determine α between the velocity vector in the original orbit and $\Delta \vec{v}_{r\theta}$. Sketch this in-plane projection of components of the vector diagram. Add the unit vectors \hat{r} , $\hat{\theta}$ and \hat{v} , \hat{c} to the sketch.
- (c) To apply the maneuver, all position and velocities must be written in the same set of unit vectors, such as the inertial unit vectors $\hat{x}, \hat{y}, \hat{z}$. Determine the new \vec{r}^+, \vec{v}^+ immediately after the manuever.
- (d) Determine the orbital elements of the new orbit. Compare $\hat{r}^-, \hat{\theta}^-, \hat{h}^-$ (pre-maneuver in the original orbit) and $\hat{r}^+, \hat{\theta}^+, \hat{h}^+$ (post-maneuver in the new orbit).