| Name :                    |       |  |
|---------------------------|-------|--|
| Roll No. :                |       |  |
| Inviailator's Sianature : | Maria |  |

CS/B.Tech(ECE,EEE,IC,BME,PWE,CSE,IT)/SEM-3/EE-301/2009-10 2009

## **CIRCUIT THEORY & NETWORKS**

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

# GROUP - A ( Multiple Choice Type Questions )

1. Choose the correct alternatives for any ten of the following:

 $10 \times 1 = 10$ 

- i) Laplace transform analysis gives
  - a) time domain response only
  - b) frequency domain response only
  - c) both (a) & (b)
  - d) real response only.
- ii) If a function is shifted by T, then it is correctly represented as
  - a) f(t-T)u(t)
  - b) f(t-T)u(t-T)
  - c) f(t)u(t-T)
  - d) (t-T) f(t-T).

33301

Turn over

## CS/B.Tech(ECE, EE, EEE, IC, BME, PWE, CSE, IT)/SEM-3/EE-301/2009-10

iii) The equivalent resistance between x & y of the figure shown below is



a) 30Ω

b) 50Ω

c) 60<sub>\Omega</sub>

- d) 10Ω.
- iv) If f(t) is an even function, then its Fourier transform F(jw) is given by
  - a)  $2\int_{0}^{\infty} f(t) \cos wt dt$
  - b)  $\int_{0}^{\infty} f(t) \cos wt dt$
  - c)  $2\int_{0}^{\infty} f(t) \sin wt dt$
  - d)  $\int_{0}^{\infty} f(t) \sin wt dt.$

v) The Thevenin's equivalent resistance of the given circuit with respect to the terminals A & B is equal to



a) 2.66Ω

b) 3.2Ω

c) 8\O

d)  $12\Omega$ .

33301

## CS/B.Tech(ECE,EE,EEE,IC,BME,PWE,CSE,IT)/SEM-3/EE-301/2009-10

- vi) The value of the unity impulse function  $\delta(t)$  at t = 0 is
  - a) 0

b) ~

c) 1

- d) indeterminate.
- vii) The number of links for a graph having 'n' nodes & 'b' branches are
  - a) b n + 1
- b) n b + 1
- c) b + n 1
- d) b+n
- viii) The h parameters  $h_{11}$  &  $h_{12}$  are obtained by
  - a) shorting output terminals
  - b) opening input terminals
  - c) shorting input terminals
  - d) opening output terminals.
- ix) The convolution of f(t) \* g(t) is

a) 
$$\int_{0}^{\infty} f(t) g(t-\tau) d\tau$$

b) 
$$\int_{0}^{t} f(\tau) g(t-\tau) d\tau$$

c) 
$$\int_{0}^{t} f(t-\tau)g(t) dt$$

d) 
$$\int_{0}^{t} f(t) g(t-\tau) dt.$$

33301

3

| Turn over

## CS/B.Tech(ECE,EE,EEE,IC,BME,PWE,CSE,IT)/SEM-3/EE-301/2009-10

- x) A ramp voltage V(t) = 100 V is applied to an RC series circuit with  $R = 5 \text{ k}\Omega$  &  $C = 4 \mu\text{F}$ . The maximum output voltage across capacitor is
  - a) 0.2 volt
- b) 2.0 volt
- c) 10.0 volt
- d) 50.0 volt.
- xi) The voltage across the dependent source of the circuit shown is



a) 8 \ 0°

b) 4∠0°

c) 4 \( 90°

- d) 8∠-90°.
- xii) Relative to a given fixed tree of a network
  - a) link currents form an independent set
  - b) branch currents form an independent set
  - c) branch voltages form an independent set
  - d) both (a) & (c).

#### GROUP - B

# (Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$ 

2. In the circuit shown, determine the current i(t) when the switch is changed from position 1 to 2. The switch is moved from position 1 to 2 at time t = 0.



33301

## CS/B.Tech(ECE, EEE, IC, BME, PWE, CSE, IT)/SEM-3/EE-301/2009-10

3. For the circuit shown is the figure, find the current in the  $2\Omega$  resistor by using Thevenin's theorem.



4. Draw the graph corresponding to the given incidence matrix:

$$A = \begin{bmatrix} -1 & 0 & 0 & 0 & +1 & 0 & +1 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & -1 & +1 \\ 0 & 0 & -1 & -1 & 0 & -1 & 0 & -1 \\ 0 & 0 & 0 & 0 & -1 & +1 & 0 & 0 \\ -1 & +1 & +1 & +1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

5. Determine the cut off frequency for the high pass filter shown below.



6. Find the Z-parameters of the network given below:



33301

5

[ Turn over

#### CS/B.Tech(ECE, EE, EEE, IC, BME, PWE, CSE, IT)/SEM-3/EE-301/2009-10

#### GROUP - C

#### (Long Answer Type Questions)

Answer any three of the following.  $3 \times 15 = 45$ 

- a) Explain with example, odd symmetry & even symmetry of periodic waveforms.
  - b) Determine the Fourier series for the saw tooth waveform shown below



c) Applying Fourier transforms determine the output voltage across the capacitor if the excitation is a current source of  $i(t) = e^{-t}u(t)$ .



8. a) The hybrid parameters of a two-port network shown in figure are  $h_{11} = 1 \text{ k}\Omega$ ,  $h_{12} = 0.003$ ,  $h_{21} = 100$ ,  $h_{22} = 50 \,\mu\text{G}$ . Find  $V_2$  & Z parameters of the network.



b) What are ABCD parameters ? Prove that AD - BC = 1. 10 + 5

# CS/B.Tech(ECE,EE,EEE,IC,BME,PWE,CSE,IT)/SEM-3/EE-301/2009-10

9. a) For the circuit shown, determine the load current  $I_2$  using Norton's theorem.



b) Convert the active network shown in figure to a single voltage source in series with impedance.



7 + 8

- 10. a) Draw the circuit diagram of a first order high pass filterand find out the expression of the cut-off frequency. 5
  - b) Draw and explain the characteristics of ideal band-pass
     & band-stop filter.

33301

7

[ Turn over

## CS/B.Tech(ECE,EEE,EEE,IC,BME,PWE,CSE,IT)/SEM-3/EE-301/2009-10

c) The circuit shown in figure is a second order low-pass filter. Analyze the circuit and find out the cut-off frequency.
5



11. a) Find the Laplace transform of the periodic waveform shown in figure.



- b) Define convolution theorem.
- c) Find  $h^{-1} \{ F_1(s) F_2(s) \}$  by using the convolution of the following functions:

$$F_1(s) = \frac{1}{s+1} & F_2(s) = \frac{1}{s+2}$$
 .  $8+2+5$ 

33301