Souphs A E 6 L 1 2 1 K 1 1 1 1 1 1 1 1 1 1 1 1 work with directed graphs, see. (v, w) & E => (w,v) &E Def: (for détails, see Sec. 6-1) . pal4: D-OFB-J->K . collider on a path · div. pell: B -> D -> 7 v-structure: D-) F = D and D and J hor dir. connected => "v-structure" - dir. cycle X->Y->Z-> w and W->X · div. acyclic graph (DA6): 40 div. cycles · PA · CH . DE . ND: non-desc. disjoint union - BN · V = DED UND USDS

· Sigh	t abus	e of	uəraho	4: dei	iok se	ts & u	ectors
	the sar						
· d -s	eparah	rìon					
Let	×, .	7,2	be d	is joint.			
(ú)	X, >	' d-	connel	kd si	ven/by	2 ;	X
							× 60 Y
				cked			
(i)	A pa	H ×	= 1,	L.	n = Y	is Sh	aked by
	Z i.						
	1 40	80 do :	c t				and in 62
OR							_ 11
OR							-11-
OR	3 col	lides o	n the	pull,	i.e.,	a rod	e in s.t.
	ik-n	→ in	Likta	s.t.			
		in \$ 3	an	d D	Einn	<u></u> =	Ø.
(:)		1			٨	20.000	a tect
(uc)	i	40 5 (X- COHI	ne creed	: 4	250-4	7 1000
We	2 Some	himes	wnk				
•	X d-se	p Y	(Z	01	X -	ILG Y	12,
		0 -					

(ú) lu joueral: A" = # dir. paths of ley H 2m. (iv) Think about using sporse matrices. Thu: (Mckay 2004, not difficult) There is a dijection between DHUs over of nodes and dxd d-1 matrices w/ eigenvalues >0: A adj. mehrix of DAG (=> A + id O-1 mehrix w/ eigevalues >0.

Structural Comsal Hodels counterfactuals

Counterfactuals

Counterfactuals

Counsel

Something Sol: Def: An SCH ((sometimes SEA) over al RYS $X = (X_1, X_d)$ consists of a assignments (*) $X_{j} = \{j \in \{1,...,d\}\}$ and a noise dish. IPN = PN 0 -- 0 PNd. Here Pl. = {X,..., Xd}. We define a corresponding graph over X_{n-1} , X_{ol} by drawing edges from vor's on the rhs to vor's on the lhs. This part is assumed to be acyclic.

Random vector (X, N) is a solution to the SUM if I'm is the distribution of the SUM. are jointly indep.) and (*) Gold a.s. for us: "SCM" = SCM + solution.

 $\frac{E_X}{E_X} := X := X_X \qquad \text{altitude}$ $Y := X_S - 6_X + M_Y \quad \text{temp.}$ $N_{X_1} N_Y \stackrel{\text{iid}}{\sim} U(0,1)$ x -> y The SCM entails a unique dish. P_{X} (or P_{X}) over $X_{ii...}, X_{il}$. (n other words: all solin have the same marginal over X. Applying the assign. iteratively Yields (X) = (In (N) k: T(K) < T(A) i Na) |

[X] = (X) = (X) |

[X] = (i) Formal treatment Bonjers et al av Xiv: 1611.06221 v6 (ii) He do not distinguish between Y: = 0. x + 2 + Ny and Y: = 2 + Ny We can define an equir. velations hip and choose the latter as representative. (vii) cycles: \$2.

Consider our SCM Cover X w/ 1Py. We	Con
adhain a new SCM É by replacing some	d
Ha assignments. E.s., replace	
X5:= 4 X 2 + Sin (Kg) + NE by X5:= 4 X 2 - X + NG	
To Do not introduce cycles & the new now	e dûh.
(here: N,, Ny, N5, N6,) need to be inch	ep-
We write: $\hat{C} = C$; do $(X_5:=4X_7^2-X_1+\hat{N_5})$	
and $ P_{X_g} = P_{X_g} $	
\sim \sim	
inkruentional distribution.	
$Ex: \qquad \qquad X:= \mathcal{U}_{x} \qquad \qquad \mathcal{U}_{x}, \mathcal{U}_{y} \stackrel{\text{iid}}{\sim} \mathcal{N}(0)$ $C; do(X:=3) \qquad \qquad \qquad \longrightarrow (X) \sim \mathcal{N}(0)$	0,1)
$\mathbb{P}_{\gamma}^{\mathbb{C};do(X:=3)} = \mathcal{U}(-3,1) + \mathbb{P}_{\gamma}^{\mathbb{C}}$	15), (-637)
Y = U(-3,1) + Y $ Y = U(-9,1)$	
$ y = \mathcal{N}(-7, \Lambda) $ $ a \in \mathcal{A}(Y; z - \Lambda D) $	1/
$ P \cap A \cap $	flect".