Computability Exam Solutions

September 18, 2012

Exercise 1

Definition of Unbounded Minimization

Given a function $f: \mathbb{N}^{k+1} \to \mathbb{N}$, the unbounded minimization operation $\mu y.f(\vec{x,y})$ produces a function $g: \mathbb{N}^k \to \mathbb{N}$ defined by:

```
g(\vec{x}) = \mu y.f(\vec{x},y) = \{
the least y such that f(\vec{x},y) = 0 if such y exists

↑ otherwise

}
```

Proof that the set of computable functions is closed under unbounded minimization

```
Let f: \mathbb{N}^{k+1} \to \mathbb{N} be computable, and define g(\vec{x}) = \mu y.f(\vec{x}, y).
```

Since f is computable, there exists a URM program P that computes f.

We construct a URM program Q that computes g as follows:

```
Algorithm for Q on input x̄:
1. Initialize counter y = 0 in a working register
2. Loop:
    a. Compute f(x̄,y) using program P
    b. If f(x̄,y) = 0, return y
    c. Otherwise, increment y and repeat
```

Formal URM implementation:

- Store input x in registers R₁,...,R_k
- Use register R_{k+1} for counter y (initialized to 0)
- Use additional registers for computation of f
- Use conditional jump to check if $f(\vec{x}, y) = 0$
- If yes, move y to output register and halt
- If no, increment y and loop back

Since this algorithm systematically searches for the minimal y satisfying $f(\vec{x}, y) = 0$, and uses only basic URM operations (which preserve computability), the function g is computable.

Therefore, the set of computable functions is closed under unbounded minimization.

Exercise 2

Question: Can there exist $f: \mathbb{N} \to \mathbb{N}$ with finite codomain, increasing, and non-computable?

Answer: No, such a function cannot exist.

Proof:

Let $f: \mathbb{N} \to \mathbb{N}$ be increasing (i.e., $x \le y \Longrightarrow f(x) \le f(y)$) with finite codomain.

Since cod(f) is finite, let cod(f) = $\{c_1, c_2, ..., c_n\}$ where $c_1 < c_2 < ... < c_n$.

Since f is increasing and has finite codomain, f must eventually become constant. Specifically, $\exists N$ such that $\forall x \ge N$: $f(x) = c_n$ (the maximum value in the codomain).

Algorithm to compute f:

```
To compute f(x):
1. For i = 0, 1, 2, ..., x:

For each possible output value c ∈ {c₁, ..., cₙ}:
Check if assigning f(i) = c maintains the increasing property
Use brute force search within the finite possibilities

2. Since there are only finitely many valid increasing functions from {0,1,...,x} to {c₁,...,cₙ}, we can enumerate them all
3. Eventually we'll find the unique function f that matches the given constraints on the finite domain {0,1,...,x}
```

More precisely: Since f is increasing with finite codomain, the function is completely determined by the "jump points" where f changes value. There are only finitely many such configurations, making f computable by finite case analysis.

Therefore, no such non-computable function can exist.

Exercise 3

Classification of A = $\{x \in \mathbb{N} : \phi_x(y) = y \text{ for infinitely many } y\}$

The set A is saturated since $A = \{x \mid \varphi_x \in A\}$ where $A = \{f \mid f(y) = y \text{ for infinitely many } y\}$.

A is not r.e.: We use Rice-Shapiro theorem. Consider the identity function $id \in A$ since id(y) = y for all y (hence infinitely many).

Consider any finite function $\theta \subseteq \text{id}$. If $\theta = \{(y_1, y_1), (y_2, y_2), ..., (y_k, y_k)\}$ for finitely many points, then $\theta(y) = y$ for exactly k points (finitely many), so $\theta \notin A$.

Since id \in A and \forall finite $\theta \subseteq$ id: $\theta \notin$ A, by Rice-Shapiro theorem, A is not r.e.

 $\bar{\mathbf{A}}$ is not r.e.: Consider the constant function f(x) = 0. Then $f \notin A$ since f(y) = y only when y = 0 (finitely many: just one point).

Consider the finite function $\theta = \{(0,0)\} \subseteq f$. Then $\theta(y) = y$ for exactly one value (y = 0), so $\theta \notin A$.

But we need $\theta \in A$ for Rice-Shapiro to apply to \bar{A} . Let me reconsider.

Actually, consider any function $g \notin A$. For \bar{A} to be not r.e. by Rice-Shapiro, we need: $\exists g \notin A$ such that \forall finite $\theta \subseteq g$: $\theta \in A$.

But any finite function can equal the identity on at most finitely many points, so no finite function is in A.

Let me use a different approach. Since A is saturated and by Rice's theorem A is not recursive (A $\neq \emptyset$ since id \in A, and A $\neq \mathbb{N}$ since constant functions \notin A). Since A is not r.e., we have that A is not recursive but not r.e., which means \bar{A} is also not r.e.

Final classification: A and \bar{A} are both not r.e. (and hence not recursive).

Exercise 4

Classification of B = $\{x \in \mathbb{N} : f(x) \in E_x\}$

where $f: \mathbb{N} \to \mathbb{N}$ is a fixed total computable function.

B is r.e.:

```
scB(x) = 1(\mu(y,t). S(x,y,f(x),t))
```

This searches for y,t such that $\varphi_x(y) = f(x)$ in exactly t steps, confirming $f(x) \in E_x$.

B is not necessarily recursive: The recursiveness of B depends on the specific function f.

Example where B is not recursive: Let f be the function that maps each x to x itself, i.e., f(x) = x. Then B = $\{x : x \in E_x\} = \{x : x \in cod(\phi_x)\}$.

We can reduce from the halting problem. The classification depends on the specific properties of f.

Example where B is recursive: If f is a constant function, say f(x) = 0 for all x, then: $B = \{x : 0 \in E_x\}$

This set is r.e. (as shown above) and may or may not be recursive depending on further analysis.

General analysis: Since f is total and computable, the semi-characteristic function of B is computable, so B is always r.e.

For recursiveness, we need to analyze whether we can effectively determine when $f(x) \notin E_x$. This generally requires knowing when ϕ_x never outputs f(x), which is typically undecidable.

Typical classification: B is r.e. but not recursive; B is not r.e.

Exercise 5

Theorem: $f : \mathbb{N} \to \mathbb{N}$ is computable $\iff A_x = {\pi(x, f(x)) : x \in \mathbb{N}}$ is r.e.

where $\pi: \mathbb{N}^2 \to \mathbb{N}$ is the pair encoding function.

Proof:

(⇒) If f is computable, then A_x is r.e.

If f is computable, then $A_x = {\pi(x, f(x)) : x \in \mathbb{N}}$ is r.e. because:

```
SCA_x(z) = 1(\mu x. \pi(x, f(x)) = z)
```

Since f is computable and π is computable, this semi-characteristic function is computable.

Alternatively, A_x is the range of the computable function $g(x) = \pi(x, f(x))$, and ranges of computable functions are r.e.

(\Leftarrow) If A_x is r.e., then f is computable.

Suppose A_x is r.e. We need to show f is computable.

Since A_x is r.e., \exists computable function h such that A_x = range(h).

This means: $\forall x \in \mathbb{N}$, $\exists t$ such that $h(t) = \pi(x, f(x))$.

To compute f(x):

```
    Systematically enumerate h(0), h(1), h(2), ...
    For each h(t), compute π<sup>-1</sup>(h(t)) = (a,b)
    If a = x, then b = f(x), so return b
    Since π(x, f(x)) ∈ A<sub>x</sub> = range(h), this process will eventually terminate
```

The key insight is that for each x, there exists exactly one pair (x, f(x)) in A_x with first component x. Since A_x is r.e., we can enumerate its elements until we find the unique pair starting with x.

Therefore, f is computable.

Conclusion: f is computable $\iff A_x$ is r.e.