Assignment 7

Pradeep Mundlik (Al21BTECH11022)

May 24, 2022

Outline

Question

- Answer
 - Part-1
 - Part-2

Question

Papoulis 3.8

A pair of dice is rolled n times. (a) Find the probability that "seven" will not show at all. (b) (Pascal) Fmd the probability of obtaining double six at least once.

Answer

The space of single roll of two dice consists of the 36 elements $f_i f_j$, i, j = 1, 2, ..., 6.

Part-1

Let A be the event

A: Sum is seven

The event A consist of six elements

$$f_1 f_6, f_2 f_5, f_3 f_4, f_4 f_3, f_5 f_2, f_6 f_1$$
 (1)

Therefore, probability of A is

$$P(A) = \frac{6}{36} = \frac{1}{6} \tag{2}$$

(3)

and

$$P(\bar{A}) = 1 - P(A)$$

$$= 1 - \frac{1}{6} = \frac{5}{6}$$
(5)

$$=1-\frac{1}{6}=\frac{5}{6}\tag{5}$$

Therefore, for n trials

$$P_n(0) = \left(\frac{5}{6}\right)^n \tag{6}$$

Part-2

Let B be the event

B: Double six

The event B consist of only one element

$$f_6 f_6 \tag{7}$$

Therefore, probability of B is

$$P(B) = \frac{1}{36} \tag{8}$$

(9)

and probability of \bar{B} is

$$P(\bar{B}) = 1 - P(B) \tag{10}$$

$$=1-\frac{1}{36}=\frac{35}{36}\tag{11}$$

Let

X = There will be atleast one double six in n rolls $\bar{X} =$ There will be no any double six in n rolls

$$\bar{X} = \bar{B} \times \bar{B} \times ... \times \bar{B} \tag{13}$$

$$\Longrightarrow P(\bar{X}) = \left(P(\bar{B})\right)^n \tag{14}$$

$$\Longrightarrow P(\bar{X}) = \left(\frac{35}{36}\right)^n \tag{15}$$

$$\Longrightarrow P(X) = 1 - P(\bar{X}) \tag{16}$$

$$\Longrightarrow P(X) = 1 - \left(\frac{35}{36}\right)^n \tag{17}$$

