# УПРАЖНЕНИЯ<sup>і</sup>

по дисциплината

# "Компютърни мрежи и комуникации"

Лектор: доц. д-р И. Ганчев ФМИ, ПУ "П. Хилендарски"

# 3. ІР подмрежи

| Име на студента: | Фак. № |
|------------------|--------|
|------------------|--------|

# Цели

- · Разграничаване между мрежова маска по подразбиране (default mask) и подмрежова маска (subnet mask);
- · Определяне на наличните подмрежи за конкретен IP мрежов адрес и подмрежова маска;
- · Определяне на подмрежова маска, която трябва да се използва за даден мрежов адрес и изисквания за брой подмрежи и хостове;
- · Определяне броя на подмрежите и броя на хостове във всяка подмрежа за дадени мрежов адрес и подмрежова маска;
- · Използване на операцията 'логическо И' / AND за определяне IP адресът на получателя дали е локален или отдалечен;
- · Идентифициране на валидни и невалидни IP адреси на хостове въз основа на мрежов адрес и подмрежова маска.

#### Обща информация

Подмрежовата маска се използва за разделяне на дадена IP мрежа на отделни "подмрежи". Това се прави със следните цели: 1) намаляване размера на broadcast домейна (т.е. създаване на по-малки мрежи с по-малко трафик); 2) позволяване на локални компютърни мрежи (LANs) разположени в различни географски местоположения да комуникират; 3) за отделяне на една LAN от друга, от съображения за сигурност. Подмрежите се разделят от маршрутизатори; всеки маршрутизатор сам решава дали един пакет може да премине от една подмрежа в друга. За пакет, преминал през един маршрутизатор, се казва че е направил един скок (hop). Подмрежовата маска помага на хостовете и маршрутизаторите да определят дали получателят, към който искат да изпратят даден IP пакет, се намира в собствената им подмрежа или в друга такава. Когато една IP мрежа е разделена на подмрежи, всеки неин адрес се състои от три части: NetID, SubnetID и HostID.

\_

<sup>&</sup>lt;sup>і</sup> По материали на Cisco и Forouzan

### Стъпка 1: Подмрежова маска (subnet mask)

Целта на подмрежовата маска е да помогне на хостовете и маршрутизаторите да определят местоположението на хоста-получател.

# Стъпка 2: Използване на операцията 'логическо И' / AND

Хостовете и маршрутизаторите използват тази операция за определяне на това дали хостът-получател е в същата (под)мрежа или не. В началото хостът-подател сравнява (чрез AND) собствения си IP адрес с (под)мрежовата маска (с която е конфигуриран) за да определи/идентифицира (под)мрежата, в която се намира. След това прави същото с адреса на хоста-получател за да определи дали той е в същата или в друга (под)мрежа. Ако (под)мрежата е една и съща, двамата ще комуникират директно. Ако (под)мрежите са различни, те ще трябва да комуникират индиректно чрез маршрутизатор/и, ако той/те им позволят.

# Стъпка 3: Използване на мрежова маска по подразбиране за две мрежи от клас С

**Забележка:** Ако се използва мрежова маска по подразбиране, това означава, че съответната мрежа не е разделена на подмрежи.



а. Хост X сравнява собствения си IP адрес с мрежовата маска, използвайки операцията AND:

# Host X IP address

**200.1.1.5** 11001000.00000001.00000001.00000101

Mask

**255.255.255.0** 111111111111111111111111111000000000

**ANDing Result** 

**(200.1.1.0)** 11001000.00000001.00000001.00000000

Резултатът представлява адреса на мрежата на хост X, който е 200.1.1.0

б. След това хост X сравнява IP адреса на хоста-получател Z със собствената си мрежова маска, използвайки пак операцията AND.

# Host Z IP address

**200.1.2.8** 11001000.00000001.00000010.00001000

Mask

**255.255.255.0** 111111111.1111111.11111111.00000000

**ANDing Result** 

**(200.1.2.0)** 11001000.00000001.00000010.00000000

Резултатът представлява адреса на мрежата на хост Z, който е 200.1.2.0

Чрез сравняване на двата резултата хост X установява, че се намира в различна мрежа от тази на хост Z. Затова той трябва да насочи всеки пакет, предназначен за хост Z, първоначално към своя маршрутизатор по подразбиране (default gateway<sup>ii</sup>), по-точно към неговия мрежов интерфейс с адрес 200.1.1.1, който му е зададен при конфигуриране. След това този маршрутизатор ще повтори операцията AND за да определи към кой свой мрежов интерфейс (порт) да комутира пакета.

### Стъпка 4: Примерно разделяне на мрежа от клас С на подмрежи

**Примерна задача:** Мрежа, използваща IPv4 адресен блок от клас C, трябва да се раздели на 6 подмрежи с <u>еднакъв размер</u>. Да се намери *подмрежовата маска* и *адресният диапазон* на всяка подмрежа.

**Решение:** Тъй като  $2^2 < 6 < 2^3$ , ще са необходими **3** бита за адресиране на подмрежите. Тези битове се заемат от лявата страна (т.е. по старшинство) от HostID частта на IP адреса. Така подмрежовата маска ще бъде следната:



Диапазонът на използваемите адреси (т.е. тези, които могат да се задават на мрежови възли) е ограден с червен правоъгълник на следната фигура. Две от подмрежите остават като резерв при това разделяне.



Стъпка 5: Задача за разделяне на мрежа от клас С на подмрежи

Корпорация разполага с клас C мрежа с мрежов адрес **197.15.22.0**, която иска да раздели на 4 подмрежи.

\_

<sup>&</sup>lt;sup>іі</sup> В TCP/IP терминологията 'gateway' означава маршрутизатор.

1. Попълнете следната таблица и отговорете на въпросите след нея.

| Subnet bits<br>borrowed<br>Binary<br>value | Decimal &          | possible binary               | Subnet /<br>Host<br>Decimal<br>range                                   |
|--------------------------------------------|--------------------|-------------------------------|------------------------------------------------------------------------|
|                                            |                    |                               |                                                                        |
|                                            |                    |                               |                                                                        |
|                                            |                    |                               |                                                                        |
|                                            |                    |                               |                                                                        |
|                                            | borrowed<br>Binary | borrowed Decimal & Subnet No. | borrowed Decimal & possible binary Binary Subnet No. values (range) (6 |

| 2.         | Кой/и байт/ове представлява/т NetID частта на IP адрес от клас C?                                                            |
|------------|------------------------------------------------------------------------------------------------------------------------------|
| 3.         | Кой/и байт/ове представлява/т HostD частта на IP адрес от клас C?                                                            |
| 4.         | Какъв е бинарният еквивалент на клас С мрежов адрес <b>197.15.22.0</b> ?  Decimal Network address:                           |
| 5.         | Колко (старши) бита са заимствани от HostD частта?                                                                           |
| <b>5</b> . | Каква подмрежова маска е използвана (запишете маската в десетичен и бинарен вид)?  Decimal Subnet mask:  Binary Subnet mask: |
| 7.         | Какъв е максималният брой подмрежи, които могат да бъдат създадени с тази маска?                                             |
| 3.         | Колко бита остават за идентифициране на хостове в HostD частта след разделянето на подмрежи?                                 |
| 9.         | Какъв е максималният брой на мрежовите възли във всяка подмрежа?                                                             |
| 10.        | Определете дали <b>197.15.22.63</b> е валиден адрес на хост след разделянето на подмрежи? А преди разделянето?               |
| 11.        | Защо да или защо не?                                                                                                         |
|            |                                                                                                                              |
| 12.        | Определете дали <b>197.15.22.160</b> е валиден адрес на хост след разделянето на подмрежи? А преди разделянето?              |
| 13.        | Защо да или защо не?                                                                                                         |
|            |                                                                                                                              |

| 14. | Хост А има IP адрес <b>197.15.22.126</b> , а хост В има IP адрес <b>197.15.22.129</b> . Определете дали тези хостове са в една и съща подмрежа? |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 15  | Защо?                                                                                                                                           |
| 13. |                                                                                                                                                 |
|     |                                                                                                                                                 |