第三十章 核物理简介

- § 30.1 核的一般性质
- § 30.2 核自旋和核磁共振
- §30.3 核力(强相互作用)
- § 30.4 核的结合能
- § 30.5 放射性和衰变定律
- § 30.6 穆斯堡尔效应
- § 30.7 α 衰变
- § 30.8 β 衰变
- *§30.9 核反应

♦ 前 言

1897年 J.J.Thomson 发现电子

1911年 卢瑟福 (Ernest Rutherford),

Hans Geiger, Ernest Marsden

-原子的核式结构(太阳系模型)

1932年 J.Chadwick 发现中子

氢核就是质子

质子和中子称为核子(nucleon)

原子核 (nucleus) 是由核子组成

§ 30.1 核的一般性质

表 5.1 质子、中子和电子的内禀性质比较

201 201 1 3 1 2 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3			
内察性质	质子	中 子	电子
质量 /u	1.007 276 466 0	1.008 664 923 5	5. 485 799 03 × 10 ⁻⁴
质量 /kg	$1.6726231 \times 10^{-27}$	1. 674 928 6 \times 10 ⁻²⁷	9. 109 389 7 × 10 ⁻³¹
质量 /MeV・c ⁻²	938- 272 31	939-565 63	0.511 0
电荷 /e	+ 1	0	- 1
自能量子数	1/2	1/2	1/2
磁矩①/J・T-1	1. 410 607 61 × 10 ⁻²⁶	- 0. 966 236 69 × 10 ⁻²⁶	9. 284 770 1 × 10-8

原子质量单位 $1u = {}^{12}C$ 质量的1/12

A = Z + N — 中子数

质量数

质子数或原子序数

AX 或 AX

同位素, 如: ⁸C,.....,¹²C, ¹³C, ¹⁴C,....., ²⁰C

98.90% 1.10% 1.3×10⁻¹⁰%

天然丰度: 天然存在的各元素中各种同位素所占比例

有些同位素不稳定,或长或短的时间内, 衰变成其它核,所以这些核只能在实验室制 造出来.

- •多数核基态是球形,少部分是椭球形, 极个别的有其它形状
- •球形核的半径通常是 $R = r_0 A^{1/3}$,
- 其中 r_0 =1.2fm = 1.2×10⁻¹⁵m
- •核密度 $\rho = m/V = (m_{核} A) / (4\pi/3 r_0^3 A)$ = $3m_{\xi - \gamma} / (4\pi r_0^3)$

与具体的核无关

- •原子核有自旋,它是质子和中子的轨道 角动量,以及它们的自旋角动量的和
- •对应于核自旋,有核磁矩

$$\vec{\mu} = g \, \frac{e}{2m_p} \, \vec{I}$$

§ 30.2 核自旋和核磁共振 (NMIR)

$$ar{\mu} = g \frac{e}{2m_p} \vec{I} \implies \mu_z = g \frac{e}{2m_p} I_z$$

质子 中子 $\mu_z = g \frac{e\hbar}{2m_p} s_z$ $s_z = \pm \frac{1}{2}$
 $g_{s,p} = 5.5857 \ g_{s,n} = -3.8261 \ \mu_N = \frac{e\hbar}{2m_p}$ 核磁子自旋只取向上或向下两个值,磁矩也只有两个值

磁矩在磁场中能量 $E = -\vec{\mu} \cdot \vec{B}$

质子磁矩在磁场中有两个能级, 如下图

通常这个磁场除了外场,还包含小的、内部分子或原子磁矩等产生的局域磁场

$$hv = 2\mu_z(B_{ext} + B_{local})$$

通常固定电磁波频率,改变外磁场,磁共 振发生时,观察吸收峰,叫核磁共振谱

9

不同物体中, 氢核(质子)所处 环境不同,内磁场 也就不同,对于外 磁场的不同,对非峰的 位置也不介质,的的 位置中各个质,的磁 共振构之 群中峰成之醇独有 起来构成

核磁共振成像

人体内到处是水,其中质子(氢核)在不同部位所处内磁场环境不同,所以不同部位有不同的磁共振谱,把这些特性与X射线拍摄的像合在一起,就构成核磁共振图像

病变部位磁共振谱与原来正常情况下的不同, 我们根据临床经验(数据库),可以判断哪 些部位可能发生病变。

11

§ 30.3 核力 (强相互作用)

- •核力是属于强相互作用(四种基本相互作用之一,其中电磁力和弱相互作用已经统一),相距 2 fm 两个质子其库仑力~60N,而相互吸引的核力~2000N
- •核力没有简单表达式,表现形式也是非常复杂, 这暗示核子内部有结构。

§ 30.4 核的结合能

核的结合能 ZX

$$E_{bd} = (Zm_p + Nm_n - M_N)c^2 = \Delta mc^2$$
$$= (Zm_H + Nm_n - M_a)c^2$$

∆m 质量亏损

平均结合能 E_{bd}/A 结合能越大越稳定

活度A

单位时间(1秒)内发生衰变的放射性原子核数目称为该物质的放射性活度,以 *A*表示。

$$A(t) = \frac{-dN}{dt} \qquad N = N_0 e^{-\lambda t}$$

$$A(t) = \lambda N_0 e^{-\lambda t} = \lambda N$$

初始时刻的活度 A_0 最大。 初始活度 $A_0 = \lambda N_0$

$$A(t) = A_0 e^{-\lambda t}$$

19

活度的国际单位是贝可 Bq。

活度的常用单位是居里。

1居里(Ci)=3.7×10¹⁰次核衰变/秒

$$1Ci = 3.7 \times 10^{10} Bq$$

常用的还有 毫居 (mCi) 微居 (μ Ci)

20

年代测定

例如,¹²C 稳定核素, ¹⁴C 放射性核素,<mark>放射性¹⁴C</mark>的比例是很小的,约为1.3×10⁻¹²。大气中自然丰度恒定,生物活着时,两种核素的含量与大气相同,死后新陈代谢停止, ¹²C 含量不变,但 ¹⁴C 由于衰变含量减少。

设大气含量
$$\frac{N_{14}}{N_{12}} = C$$
 化石中含量 $\frac{N'_{14}}{N'_{12}} = C' = \frac{N_{14}e^{-\lambda t}}{N_{12}} = Ce^{-\lambda t}$ 化石年代 $t = \frac{\ln(C/C')}{\lambda} = \frac{\ln(C/C')}{\ln 2} t_{1/2}$

例. 河北省发现有古时的栗子。样品中,1克碳的 活度测定为2.8×10⁻¹²Ci。求这些栗子的年龄。

【解】 1克新鲜碳中的放射性 14 C原子核数目为 $N_0 = 6.023 \times 10^{23} \times \frac{1}{12} \times 1.3 \times 10^{-12}$ $= 6.5 \times 10^{10}$

这些栗子样品活着的时候, 初始活度是

$$\begin{split} A_0 &= \lambda \, N_0 = \frac{0.693}{t_{1/2}} \, N_0 \\ &= 0.693 \times \frac{1}{5730 \times 365 \times 24 \times 3600} \times 6.5 \times 10^{10} \\ &= 0.25 \, \text{K} / \text{PV} = 6.8 \times 10^{-12} \, \text{Ci} \end{split}$$

22

$$\therefore A(t) = A_0 e^{-\lambda t}$$

$$\therefore t = -\frac{1}{\lambda} \ln \frac{A(t)}{A_0}$$

$$= \frac{t_{1/2}}{0.693} \ln \frac{A_0}{A(t)}$$

$$= \frac{5730}{0.693} \ln \frac{6.8 \times 10^{-12}}{2.8 \times 10^{-12}} = 7300 \ a$$

原子核放射性应用的其他例子:

- 利用α,β射线对空气的电离作用来消除 有害的静电积累。(造纸、纺织、胶片等)
- ◆ 对植物种子辐照可以 改良品种

重有团成经穿力跑这变核时簇 α过这学到就。内结,粒势个效核是核合如子垒量应外 α 24

§ 30.7 穆斯堡尔效应

光子能量 $hv = E_h - E_l$ 相同原子发生共振吸收?

发射和吸收都有原子反冲

26

穆斯堡尔效应

穆斯堡尔(1958研究生): γ共振吸收方法

把源和吸收体(放射性核)嵌在晶体中,由于核反冲由整个晶体承受,基本可以忽略,这种无反冲的共振吸收就叫**穆斯堡尔效应** (低温下效果更好)。

