Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu i ćwiczenia laboratoryjnego nr 3, zadanie nr 4

Piotr Chachuła, Cezary Dudkiewicz, Piotr Roszkowski

Spis treści

I. Projekt

II.	Laboratoria
II.	Laboratoria

1.	Pom	niar w punkcie pracy	4
	1.1.	Komunikacja z obiektem	4
	1.2.	Punkt pracy	4
2.	Cha	rakterystyka obiektu	
	2.1.	Inne punkty pracy	,
	2.2.	Charakterystyka statyczna obiektu	Ć
	2.3.	Wzmocnienie statyczne	(
3.	Zast	osowanie tradycyjnych regulatorów PID i DMC	(
	3.1.	Regulator PID	(
		3.1.1. Postępowanie	(
		3.1.2. Wyniki symulacji	(
		5.1.2. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	3.2.	Regulator DMC	
	3.2. 3.3.		(
	3.3.	Regulator DMC	(

Część I

Projekt

Część II

Laboratoria

1. Pomiar w punkcie pracy

1.1. Komunikacja z obiektem

Komunikacja z obiektem odobywa się za pomocą funkcji napisanych w środowisku MatLab. Najprostszy program użyty w tym projekcie, który posłużył także do późniejszego pobierania odpowiedzi skokowych znajduje się poniżej (jest to fragment skryptu L3_1.m).

W tym zadaniu używamy funkcji sendNonlinearControls, który wysyła sterowanie w sposób symulujący nieliniowość obiektu. Napisany skrypt działał poprawnie, pozwala na sterowanie sygnałami G1, W1 oraz pomiar T1.

1.2. Punkt pracy

Doprowadzono obiekt do punktu pracy, tj. ustawiono wartości sygnałów W1 na 50, G1 na 29 i poczekano na ustabilizowanie obiektu (ponieważ obiekt jest rzeczywisty wahania temperatury są nieuniknione, zwłaszcza biorąc pod uwagę fakt lokalizacji stanowiska nr 4 w miejscu obok którego przechodzi dużo osób - wszelkie pomiary teraźniejsze oraz późniejsze mogą być zaburzone właśnie przez to). Wartość temperatury w punkcie pracy wynosi T1=35,43°C.

2. Charakterystyka obiektu

2.1. Inne punkty pracy

W celu pobrania wartości wyjścia dla innych punktów sterowania postępowano następująco: najpierw pobudzono układ sterowaniem równym G1=20 i poczekano na jego stabilizację. Następnie dokonywano skoków tej wartości sterowania o 10, aż do wartości G1=80. Przebieg eksperymentu ilustrują poniższe wykresy (skoki sterowania następowały w chwilii t=0:

Rys. 2.1. Skok wartości sterowania z 20 do 30 $\,$

Rys. 2.2. Skok wartości sterowania z 30 do 40 $\,$

Rys. 2.3. Skok wartości sterowania z 40 do 50 $\,$

Rys. 2.4. Skok wartości sterowania z 50 do 60 $\,$

Rys. 2.5. Skok wartości sterowania z 60 do 70

Rys. 2.6. Skok wartości sterowania z 70 do 80 $\,$

Wyniki przedstawiono w tabeli:

G1[%]	T[°C]
20	32,43
30	36,62
40	40,75
50	44,31
60	46,5
70	48,68
80	50,56

2.2. Charakterystyka statyczna obiektu

Charakterystykę statyczną obiektu w przedziale sterowań G1 od 20 do 80% przedstawiono na wykresie $2.7\colon$

Rys. 2.7. Charakterystyka statyczna obiektu

2.3. Wzmocnienie statyczne

Z wykresu charakterystyki liniowej można stwierdzić, że obiekt nie jest całkowicie liniowy, występuje załamanie charakterystyki w punkcie U=50%. Jednak obiekt jest kawałkami liniowy, przejawia właściwości liniowe w przedziałe 20-50% oraz inne właściwości liniowe w przedziałe 50-80% - na tych odcinkach obiekt zachowuje się praktycznie w sposób liniowy. Dlatego też możemy policzyć wzmocnienie statyczne obiektu w tych przedziałach sterowania:

$$K_{20-50\%} = \frac{Y(50) - Y(20)}{50 - 20} = \frac{44,31 - 32,43}{50 - 20} = 0,396$$
 (2.1)

$$K_{50-80\%} = \frac{Y(80) - Y(50)}{80 - 50} = \frac{50, 56 - 44, 31}{80 - 50} \approx 0,208$$
 (2.2)

3. Zastosowanie tradycyjnych regulatorów PID i DMC

3.1. Regulator PID

3.1.1. Postępowanie

Zarówno w przypadku regulatora PID oraz DMC zostaną użyte skrypty z projektu nr 1 (doLabPID.m doLabDMC.m). Jedyna zmiana nastąpi w wysyłaniu sterowania do obiektu, gdzie funkcję sendControls zastępujemy funkcją sendNonlinearControls, która ma na celu symulację braku liniowości obiektu na całym obszarze wartości sterowań.

3.1.2. Wyniki symulacji

Wyniki symulacji przestawiono na wykresie 3.1:

Rys. 3.1. Symulacja dla pojedynczego regulatora PID o parametrach $K=9,65, T_i=60, T_d=0,17$

Błąd (suma kwadratów odchyłek) wyniósł E= 6077.

3.2. Regulator DMC

Wyniki symulacji przedstawiono na wykresie 3.2:

Błąd (suma kwadratów odchyłek) wyniósł E= 3795 (wyniki można ze sobą porównywać mimo krótszego czasu trawnia symulacji, liczba skoków pozostała ta sama - tam są generowane głównie uchyby).

Rys. 3.2. Symulacja dla pojedynczego regulatora DMC o parametrach $D=360, N=120, N_u=20, \lambda=1$

3.3. Wnioski

Pomimo że regulatory działają, temperatura zadana jest mniej więcej osiągana, jednak ich regulacja jest dosyć wolna, a wyjscie oscyluje. W celu poprawy regulacji dokonano rozmycia tych regulatorów.

3.4. Rozmywanie regulatorów

3.4.1. Funkcje aktywacji

Dla obu regulatorów dobrano identyczne funkcje aktywacjii dla trzech regulatorów lokalnych. Rozmywane one są względem wartości sterowana w poprzednim momencie. Zdecydowano się na to z dwóch powodów: po pierwsze układ może zmieniać swoje punkty pracy w zależności od warunków atmosferycznych otoczenia, rozmywanie po wyjściu naraża nas na wpływ takich odchyleń i spadek jakości regulacji; po drugie nieliniowość na obiekcie jest wprowadzana sterowaniem, tzn. obiekt (według tego co ustalono na projektach 1 oraz 2) jest w miarę liniowy, a jego właściwości nie mogły się zmienić, nieliniowość narzucana jest przez funkcję sendNonlinearControls, która jakoby przerabia sterowanie tak, aby układ zachowywał się jak nieliniowy.

Pierwszy regulator lokalny będzie aktywny głównie w przedziale 0-50% (na tym przedziale obiekt zachowuje się jak liniowy), drugi w przedziale 45-55%, a trzeci głównie w przedziale 50-100%, patrz rysunek 3.3:

Rys. 3.3. Funkcje aktywacji regulatorów lokalnych