Omega Theorem

This theorem shows how to find the time derivative of any vector of constant magnitude whose direction changes as a result of rotation with a body in which it is fixed.

This leads to the development of a method for taking the derivative of a UNIT VECTOR

Configuration Description: 3D Body Rotating About a Point

A body is rotating about a fixed point O with an absolute angular velocity $\boldsymbol{\omega}$ coinciding with the axis or rotation.

- The axis of rotation will move or precess
- Any point P located by \vec{r} describes a circular path perpendicular to the axis of rotation.
- With only one point fixed in space as in a top
 - the axis of rotation will move or precess
 - the path of P will be circular only for dt
 - during this time the radius of the path is

$$r \cdot \sin \phi$$

the angle of sweep is

$$\omega \cdot dt$$

the displacement of P is (arc length)

$$d\vec{r} = (\omega \cdot dt) \cdot (r \cdot \sin \phi) \cdot \hat{e}_t$$

Velocity: 3D Body Rotating About a Point

The velocity is found by dividing the displacement $d\vec{r}$ by the time interval dt.

$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{(\omega \cdot dt) \cdot (r \cdot \sin \phi) \cdot \hat{e}_t}{dt} = \omega \cdot r \cdot \sin \phi \cdot \hat{e}_t$$

 \vec{v} is perpendicular to the plane formed by the vectors $\vec{\omega}$ and \vec{r} .

 The right hand side of Equation 1 represents the definition of the crossproduct.

$$\vec{v} = \dot{\vec{r}} = \vec{\omega} \times \vec{r}$$

Velocity Gerneralization: 3D Body Rotating About a Point

The velocity

 $\vec{v} = \vec{r} = \vec{\omega} \times \vec{r}$

• If the \hat{e}_{ω} axis has constant spatial orientation (fixed), $\vec{\omega}$ can change only in magnitude.

 $\vec{\alpha} = \dot{\vec{\omega}}$ (will be collinear with $\vec{\omega}$)

- For a moving \hat{e}_{ω} axis
 - \circ $\vec{\omega}$ will always change direction
 - $\vec{\omega}$ will possibly be changing magnitude.
 - \circ $\vec{\alpha}$ will have different direction from $\vec{\omega}$

Significance of Equation 2

Equation 2 ($\vec{v} = \dot{\vec{r}} = \vec{\omega} \times \vec{r}$) represents the rate at which a constant length vector fixed in a rotating body changes its direction

• $\vec{\rho}$ is fixed in the rotating body joining particles A and B

$$\vec{\rho} = \vec{r}_{B} - \vec{r}_{A}$$

Taking the time derivative of Equation 3

$$\frac{d}{dt}(\vec{\rho}) = \frac{d}{dt}(\vec{r}_B - \vec{r}_A)$$
$$\dot{\vec{\rho}} = \dot{\vec{r}}_B - \dot{\vec{r}}_A$$

• Substituting in Equation 2

$$\dot{\vec{\rho}} = (\vec{\omega} \times \vec{r}_B) - (\vec{\omega} \times \vec{r}_A)
= \vec{\omega} \times (\vec{r}_B - \vec{r}_A)
= \vec{\omega} \times \vec{\rho}$$

THE OMEGA THEOREM

The time derivative of a constant length vector fixed in a rotating body is simply the cross product of the angular velocity with the vector

$$\dot{\vec{\rho}} = \vec{\omega} \times \vec{\rho}$$

For a generic UNIT VECTOR, The omega theorem gives it's time derivative as

$$\dot{\hat{e}} = \vec{\omega} \times \hat{e}$$

Derivatives of a Particle Traveling in Planar Circular Motion

$$\vec{v} = \frac{d}{dt}(\vec{r}) = \dot{\vec{r}} = \vec{\omega} \times \vec{r}$$

$$\vec{a} = \frac{d}{dt}(\vec{v}) = \dot{\vec{v}}$$

$$= \frac{d}{dt}(\vec{\omega} \times \vec{r})$$

$$= \dot{\vec{\omega}} \times \vec{r} + \dot{\vec{\omega}} \times \dot{\vec{r}}$$

$$= \vec{\alpha} \times \vec{r} + \dot{\vec{\omega}} \times (\vec{\omega} \times \vec{r})$$

$$= \vec{\alpha} + \vec{\alpha}$$