

1

Lecture 6: Uncertainty principle

- The Uncertainty Principle
- · Analysis in terms of waves
- · Thought-experiments
- microscope
- single slit and 2-slit diffraction
- "Practical" applications
- propagation of wave group
- - minimum energy of confinement
- Alternative *E-t* form

The Uncertainty Principle

Suppose we have a wavegroup. Where is this particle?: somewhere within the length of the wave group? *Most probably* in the middle, where $|\psi|^2$ is greatest. To be more precise, need *narrower* wave group!

Problem:

the wavelength of a narrow wave group is poorly defined! "not enough oscillations to measure λ accurately".

Therefore, using $p = h/\lambda$, momentum is poorly defined..... ...need a wider wave group!

Problem:

Now *p* is better defined but the <u>position</u> of the particle is not!

3

The Uncertainty Principle

Heisenberg (1927): "It is impossible to know the exact position and exact momentum of an object at the same time".

99+?% of physicists now: "It is impossible for an object to have an exact position and exact momentum at the same time".

In general, there is an uncertainty in position (Δx)

and in momentum (Δp) ;

 Δx and Δp are "inversely" related:

reduce Δx (shorten the wave group), find Δp increases

reduce Δp (lengthen the wave group), then Δx increase

Is this quantifiable? Yes: their <u>product</u> cannot be less than a certain minimum!

Uncertainty Principle analysed

- Think about the wavefunction $\,\psi(x)$ as a sum of harmonic waves $\,\psi(x) = \sum g_k e^{ikx}$
- Or, as the wavevector is continuous, as an integral of harmonic waves $\psi(x) = \int_{-\infty}^{\infty} g(k)e^{ikx}dk$

[&]quot;wave train" has a single value of k

the characteristic half-widths Δx (top) and Δk (bottom) inversely related;

minimum value of the product Δx . Δk is the "Gaussian" case!

5

Uncertainty Principle analysed

 $\underline{minimum}$ value of the product $\Delta x \Delta k$ is the "Gaussian" case!

Gaussian :
$$\Delta x \cdot \Delta k = \frac{1}{2}$$
 \Rightarrow in general : $\Delta x \cdot \Delta k \ge \frac{1}{2}$

Now
$$p = \frac{h}{\lambda} = \hbar k$$
 so $\Delta p = \hbar \Delta k$

$$\Delta x \Delta k \ge \frac{1}{2} \Rightarrow \Delta x \Delta p \ge \frac{\hbar}{2} = \frac{h}{4\pi}$$

"Heisenberg's uncertainty principle"

[&]quot;wave group" has a $\underline{\mathsf{narrow}}$ range of k

[&]quot;pulse" has a \underline{broad} range of k

Uncertainty Principle in practice

- What does this mean in practice?
- It is a statement about the possible forms of wavefunction and hence the sort of spread we get if we measure x in a particular wavefunction, or measure p in that same wavefunction.
- How can we determine Δx ? If we measure we just get one x, with some probability. "Spread??"
- Can we go ahead and measure position again? No! Wavefunction collapse so we'd get $\Delta x = 0$
- We need many copies of the wavefunction, and to measure position in them. E.g. we might measure the position of the electron in the ground state of hydrogen - on different atoms. Each time we'll get some value, and the spread of these values is Δx . If we do the measurements of p instead (on more atoms), we get a spread Δp .
- The H-U principle is that, in this 'measurements on an ensemble', $\Delta x \Delta p \geq \frac{\hbar}{2} = \frac{h}{4\pi}$
- Alternative: collect data on one atom, but wait between measurements so it returns to the ground state.
- Normally uncertainties are defined as standard deviations: Δx is the standard deviation of the data you would get by measuring the position of the particle, starting in the same wavefunction every time.

7

Uncertainty and Error?

Uncertainty looks like some sort of "experimental error" - It is not!

Experimental error can be arbitrarily reduced by better experiment.

But ultimately experiments measure quantities which, in quantum physics, are themselves random ∴no matter how good your experiment, you will always get a spread of values when you repeat it.

This fundamental limit is quantified by the uncertainty principle $\Delta x \Delta p \geq \hbar/2$

which is a property of the wave nature of matter.

Note central role of Planck's constant h or $\hbar = h/(2\pi)$ (later) will see that † is basic unit of angular momentum

Uncertainty and Wavefunction Collapse

"A measurement of one of x or p alters the value of the other"

This statement combines two principles: wavefunction collapse and the uncertainty principle.

Uncertainty in 'wave' experiments? - Microscope and Diffraction

Thought-Experiment (microscope)

Use optical microscope to find particle (e.g. electron) position. "see" the electron by scattering a photon into the lens.

uncertainty principle to the wavefunction created by the 'collapse'

NB we are now applying

After we see it, wavefunction is 'electron is under lens' with some $\Delta x'$ (=resolution).

.....anywhere within the lens angle 2α .

Photon momentum $(p=h/\lambda)$ change causes recoil of electron!

Along <u>horizontal</u>, change ranges from $-p\sin\alpha$ to $+p\sin\alpha$ i.e. range in photon momentum $\Delta p = 2p\sin\alpha = 2(h/\lambda)\sin\alpha$ which becomes the uncertainty in particle momentum

10

Thought-Experiment (microscope)

Uncertainty in particle <u>position</u> associated with "diffraction limit": minimum separation of points is

$$\Delta x = \lambda / \sin \alpha$$

$$\Delta x$$
. $\Delta p = (\lambda / \sin \alpha)(2(h/\lambda)\sin \alpha) = 2h$

$$\Delta x.\Delta p \ge \frac{h}{2}$$

How could we "improve" microscope?

by decreasing Δ : decreasing Δ x but increasing Δ p? by decreasing α : decreasing Δ p but increasing Δ x?

Quantum concept of photon is *intrinsic*:

Classically, could decrease Δx without increasing Δp (lower intensity and wait?)

Thought-Experiment (single-slit)

Remove "complication" of photon and electron by

single-slit diffraction (of either) (a)

Slit width (s) is the uncertainty in position: $\Delta x = s$

 $s \theta \lambda$

At 1st diffraction minimum: $s \sin \theta = \lambda$

Therefore, $\Delta x = s = \lambda / \sin \theta = h/p \sin \theta$

12

Thought-Experiment (single-slit)

Electron (or photon) arriving within central maximum must be deflected through angle range 0 to θ : this means uncertainty in tranverse momentum:

If momentum is p, then, $\Delta p = p \sin \theta$

$$\Delta x$$
. $\Delta p = (h/p\sin\theta)(p\sin\theta) = h$

Again, this wave/particle physics is consistent with u.p.
$$\Delta x.\Delta p \ge \frac{h}{2}$$

Equivalent analysis of **Young's (Two) Slits** using 1st maximum, Where slit <u>separation</u> is the uncertainty in position <u>(exercise)</u>

Q: "which slit does the particle (or photon) go through?" !!

Two-slit experiment *Observe:*

- Close one slit (i.e. the particle must go through the other) ⇒lose the 2-slit diffraction pattern!
- Single particle causes single point of scintillation

 ⇒ pattern results from addition of many particles!
- Pattern gives *probability* of any single particle location

Two slit experiment - summary

- (1) Both slits required to give pattern, even for single particle
- (2) Single particle arrives at single point. i.e. "explores" all regions available (*see 1*), but occupies only one point when actually "measured"
- (3) Arrival of individual particle conforms to statistical pattern of diffraction (complementarity).
- (4) Average over many particles gives standard diffraction pattern. (complementarity)

Key features of quantum mechanics!

"Practical" applications of UP: propagation of a wave group?

Establish particle position to an uncertainty Δx_o at time zero: what is uncertainty Δx_t at <u>later</u> time t?

UP implies $\Delta p \ge h/2 \Delta x_0$ and p = mv

So $\Delta v = \Delta p / m \ge h / 2 m \Delta x_0$

uncertainty in velocity implies uncertainty in position at time t

$$\Delta x_{t} = \Delta v.t \ge \frac{h_{t}}{2m\Delta x_{o}}$$

 $\Delta x_t \alpha t$: uncertainty in position increases with time (dispersion) $\Delta x_t \alpha 1/\Delta x_o$: "more you know now, less you know later"

Application of UP: minimum energy of confinement

Rough estimate KE of electron in hydrogen atom

(in full, later lecture)

$$\Delta x \sim \text{radius of H atom} = 5.3 \times 10^{-11} \text{ m}$$

 $\Delta p \ge h/4\pi \Delta x = 1 \times 10^{-24} \text{ kg m s}^{-1}$

Treat electron as non-relativistic, $KE = p^2/2m_o$ where $p \sim \Delta p$ at least:

$$KE \ge \left(\frac{\Delta p^2}{2m_o}\right) = \frac{\left(1x10^{-24}\right)^2}{\left(2\right)\left(9.1x10^{-31}\right)} = 5.4x10^{-19} J = 3.4 \ eV$$

(see later lecture: KE=13.6 eV so correct order of magnitude)

An energy-time 'uncertainty':

 Δx . $\Delta p \ge h/4 \pi$ related to <u>spatial</u> extent needed to measure λ What about the <u>temporal</u> extent needed to measure λ (or f)?

--~~//~-

Estimate: Δf . $\Delta t \ge 1$ E = hf

$$\Delta E = h \Delta f$$
 So $\Delta E \Delta t \ge h$

(correct maths gives) $\Delta E \Delta t \ge h/2$

Eg. ΔE is the spectral "width" of optical emission lines, where Δt is "lifetime" of transition (see atomic transitions, later)

Lecture 6: Uncertainty principle

- The Uncertainty Principle
- Analysis in terms of waves
- Thought-experiments
- microscope
- single slit and 2-slit diffraction
- "Practical" applications
- - propagation of wave group
- - minimum energy of confinement
- Alternative *E-t* form