VOLTAGE AND CURRENT DIVIDER THEOREM. CIRCUIT ANALYSIS METHOD.

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Voltage Divider Theorem (VDT)

Current Divider Theorem (IDT)

VOLTAGE DIVIDER THEOREM

VOLTAGE DIVIDER THEOREM

A <u>voltage divider</u> is consists of two or more <u>resistors connected in series with a voltage</u> <u>source</u>. The voltage across each resistor is a fraction of the total applied voltage, determined by the ratio of that resistor's value to the total resistance in the series.

Series Network:

VOLTAGE DIVIDER THEOREM

$$v_1 = v_o \frac{R_1}{R_o}$$

$$v_2 = v_o \frac{R_2}{R_o}$$

$$v_3 = v_o \frac{R_3}{R_o}$$

$$v_n = v_o \frac{R_n}{R_o}$$

Series Network:

EXERCISE

Determine the <u>voltage</u> drop across each resistor of the given circuit.

Solution:

CURRENT DIVIDER THEOREM

CURRENT DIVIDER THEOREM

A <u>current divider</u> is consists of two or more <u>resistors connected in parallel with a current</u> <u>source</u>. The current through each resistor is a fraction of the total current, determined by the ratio of the other resistor's value to the total resistance in the parallel combination.

Parallel Network:

CURRENT DIVIDER THEOREM

Parallel Network:

$$i_1 = i_o \frac{R_o}{R_1}$$

$$i_2 = i_o \frac{R_o}{R_2}$$

$$i_3 = i_o \frac{R_o}{R_3}$$

$$i_n = i_o \frac{R_o}{R_n}$$

EXERCISE

Determine the <u>current</u> flowing through each resistor of the given circuit.

Solution:

EXERCISE

Determine the <u>current</u> flowing through each resistor and the <u>voltage</u> drop across each resistor of the given circuit.

Solution:

LABORATORY

