

סט	c. Number :
	Tentative Specification
	Preliminary Specification
	Approval Specification

MODEL NO.: M215HJJ SUFFIX: P02

Customer: Common Model							
APPROVED BY SIGNATURE							
Name / Title Note Product version C1							
Please return 1 copy for you signature and comments.	our confirmation with your						

Approved By	Checked By	Prepared By

Version 2.0 6 November 2014 1 / 25

- CONTENTS -

	Version 2.0	6 November 2014	2 / 25
Αŗ	pendix. OUTLINE DRAWING		
	9.6 OTHER		
	9.5 SAFETY STANDARDS		24
	9.4 SAFETY PRECAUTIONS		
	9.3 OPERATION PRECAUTIONS		24
	9.2 STORAGE PRECAUTIONS		24
	9.1 ASSEMBLY AND HANDLING PRECA	AUTIONS	23
9.	PRECAUTION		23
	8.3 UN-PACKAGING METHOD		23
	8.2 PACKING METHOD		
	8.1 PACKING SPECIFICATIONS		21
8.	PACKING		21
	7.1 INX OPEN CELL LABEL		20
7.	LABEL		20
6.	RELIABILITY TEST ITEM		19
	5.2 OPTICAL SPECIFICATIONS		16
	5.1 TEST CONDITIONS		
5.	OPTICAL CHARACTERISTICS		
	4.6 POWER ON/OFF SEQUENCE		
	4.5 DISPLAY TIMING SPECIFICATIONS		
	4.4.2 COLOR DATA INPUT ASSIGNM		
	4.4.1 LVDS DATA MAPPING TABLE		
	4.4 LVDS INPUT SIGNAL SPECIFICATION		
	4.3.1 LCD ELETRONICS SPECIFICA	TION	8
	4.3 ELECTRICAL CHARACTERISTICS		8
	4.2 INTERFACE CONNECTIONS		7
	4.1 FUNCTION BLOCK DIAGRAM		
4.	ELECTRICAL SPECIFICATIONS	,	
	3.3 ABSOLUTE RATINGS OF ENVIRON		
	3.2.1 TFT LCD OPEN CELL		
	3.2 ELECTRICAL ABSOLUTE RATINGS		
	3.1 ABSOLUTE RATINGS OF ENVIRON		
	ABSOLUTE MAXIMUM RATINGS		
2.	MECHANICAL SPECIFICATIONS		
	1.2 GENERAL SPECIFICATIONS		
=	1.1 OVERVIEW		
1.	GENERAL DESCRIPTION		

REVISION HISTORY

Version	Date	Page	Description
2.0	2014.10.24	All	Approval Spec Ver.2.0.

Version 2.0 6 November 2014 3 / 25

1. GENERAL DESCRIPTION

1.1 OVERVIEW

The M215HJJ-P02 is a 21.5" TFT Liquid Crystal Display cell with driver ICs and a 30-pins-2ch-LVDS circuit board. The product supports 1920 x 1080 Full HD mode and can display up to 16.7M colors. The backlight unit is not built in.

1.2 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Screen Size	21.5 inch Diagonal	mm	
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1920 x R.G.B. x 1080	pixel	-
Pixel Pitch	0.24795(H) x 0.24795(V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.7M	color	-
Transmissive Mode	Normally Black	-	-
Surface Treatment	High resolution adaptable AG, 3H hard coating, Haze: 24%	-	-
Power Consumption	Total cell: 5.6 W		(1)

2. MECHANICAL SPECIFICATIONS

Item	Min.	Тур.	Max.	Unit	Note
Weight	-	395	415	g	
I/F connector mounting position	makes the scre	inclination of the een center withir the horizontal.			(2)

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

- (2) Connector mounting position
- (3) Please refer to sec.3.1 for more information of power consumption.

3. ABSOLUTE MAXIMUM RATINGS

3.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Offic		
Storage Temperature	TST	-20	60	°C	(1)	
Operating Ambient Temperature	TOP	0	50	°C	(1), (2)	

Note (1)

- (a) 90 %RH Max.
- (b) Wet-bulb temperature should be 39 °C Max.
- (c) No condensation.

Note (2) The temperature of panel surface should be 0 °C min. and 60 °C max.

Panel surface temperature should be 0° C min. and 60° C max under Vcc=5.0V, Input fr =60Hz, typical LED string current, 25° C ambient temperature, and no humidity control. Any condition of ambient operating temperature, the surface of active area should be keeping not higher than 60° C.

Relative Humidity (%RH)

3.2 ELECTRICAL ABSOLUTE RATINGS

3.2.1 TFT LCD OPEN CELL

Item	Symbol	Va	lue	Unit	Note	
itom	Cymbol	Min.	Max.	Oille	11010	
Power Supply Voltage	VCCS	-0.3	6.0	V	(1)	
Logic Input Voltage	V _{IN}	-0.3	3.6	V	(1)	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Version 2.0 6 November 2014 5 / 25

3.3 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL)

High temperature or humidity may reduce the performance of panel. Please store LCD panel within the specified storage conditions.

Storage Condition: With packing.

Storage temperature range: 25±5 °C.

Storage humidity range: 50±10%RH.

Shelf life: 30days

4. ELECTRICAL SPECIFICATIONS

4.1 FUNCTION BLOCK DIAGRAM

Version 2.0 6 November 2014 6 / 25

4.2 INTERFACE CONNECTIONS

PIN ASSIGNMENT

	Name	Description
1	RXO0-	Negative LVDS differential data input. Channel O0 (odd)
2	RXO0+	Positive LVDS differential data input. Channel O0 (odd)
3	RXO1-	Negative LVDS differential data input. Channel O1 (odd)
4	RXO1+	Positive LVDS differential data input. Channel O1 (odd)
5	RXO2-	Negative LVDS differential data input. Channel O2 (odd)
6	RXO2+	Positive LVDS differential data input. Channel O2 (odd)
7	GND	Ground
8	RXOC-	Negative LVDS differential clock input. (odd)
9	RXOC+	Positive LVDS differential clock input. (odd)
10	RXO3-	Negative LVDS differential data input. Channel O3(odd)
11	RXO3+	Positive LVDS differential data input. Channel O3 (odd)
12	RXE0-	Negative LVDS differential data input. Channel E0 (even)
13	RXE0+	Positive LVDS differential data input. Channel E0 (even)
14	GND	Ground
15	RXE1-	Negative LVDS differential data input. Channel E1 (even)
16	RXE1+	Positive LVDS differential data input. Channel E1 (even)
17	GND	Ground
18	RXE2-	Negative LVDS differential data input. Channel E2 (even)
19	RXE2+	Positive LVDS differential data input. Channel E2 (even)
20	RXEC-	Negative LVDS differential clock input. (even)
21	RXEC+	Positive LVDS differential clock input. (even)
22	RXE3-	Negative LVDS differential data input. Channel E3 (even)
23	RXE3+	Positive LVDS differential data input. Channel E3 (even)
24	GND	Ground
25	NC	For LCD internal use only, Do not connect
26	SCL	I2C clock (for auto Vcom)
27	SDA	I2C data (for auto Vcom)
28	VCC	+5.0V power supply
29	VCC	+5.0V power supply
30	VCC	+5.0V power supply

Connector Information

Item	Description		
Manufacturer	P-TWO/FCN		
Type part number	P-TWO:187098-30091		
	FCN: WF13-422-3033		
User's Mating housing part number	FI-X30HL(JAE)		
	FI-X30H(JAE)		

*Notice: There would be compatible issues if not using the indicated connectors in the matching list.

Note (1) The first pixel is odd.

Note (2) Input signal of even and odd clock should be the same timing.

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD ELETRONICS SPECIFICATION

	Parameter		Symbol		Value			Note
i aiailictei		Syllibol	Min.	Тур.	Max.	Unit	Note	
	Power Supply	/ Voltage	Vcc	4.5	5.0	5.5	V	-
	Ripple Vo	Itage	V_{RP}			300	mV	-
	Rush Cu	rrent	I _{RUSH}			3	Α	(2)
		White			768	910	mA	(3)a
Power Su	pply Current	Black			720	845	mA	(3)b
		Vertical Stripe			948	1105	mA	(3)c
	Power Cons	umption	PLCD		4.8	5.6	Watt	(4)
	Differenti	al Input Voltage	V_{ID}	100	-	600	mV	
	Commo	n Input Voltage	V_{CM}	1.0	1.2	1.4	V	
LVDS		Differential Input High			_	100	mV	
interface	Threshold Voltage		V_{TH}		_	100	IIIV	
		ntial Input Low	V _{TL}	-100	_		mV	
	Thres	hold Voltage	V TL	-100	_		1117	

Note (1) The ambient temperature is $Ta = 25 \pm 2$ °C.

Note (2) Measurement Conditions:

Version 2.0 6 November 2014 8 / 25

Vcc rising time is 470µs

Version 2.0 6 November 2014 9 / 25

Note (3) The specified power supply current is under the conditions at Vcc = 5.0 V, $Ta = 25 \pm 2 \,^{\circ}\text{C}$, Fr = 60 Hz, whereas a power dissipation check pattern below is displayed.

Note (4) The power consumption is specified at the pattern with the maximum current.

Note (5) The LVDS input characteristics are as follows:

Single-end Signals

Version 2.0 6 November 2014 10 / 25

4.4 LVDS INPUT SIGNAL SPECIFICATIONS

4.4.1 LVDS DATA MAPPING TABLE

LVDS Channel O0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVD3 Ghanner 00	Data order	OG0	OR5	OR4	OR3	OR2	OR1	OR0
LVDS Channel O1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVD3 Channel O1	Data order	OB1	OB0	OG5	OG4	OG3	OG2	OG1
LVDS Channel O2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVD3 Chamilei 02	Data order	DE	NA	NA	OB5	OB4	OB3	OB2
LVDS Channel O3	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVD3 Channel O3	Data order	NA	OB7	OB6	OG7	OG6	OR7	OR6
LVDS Channel E0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVD3 Channel E0	Data order	EG0	ER5	ER4	ER3	ER2	ER1	ER0
LVDS Channel E1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVD3 Channel E1	Data order	EB1	EB0	EG5	EG4	EG3	EG2	EG1
LVDS Channel E2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVD3 CHAIIITEI EZ	Data order	DE	NA	NA	EB5	EB4	EB3	EB2
LVDS Channel E3	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVD3 Chaille E3	Data order	NA	EB7	EB6	EG7	EG6	ER7	ER6

4.4.2 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

												Da		Sigr											
	Color				Re	ed								reer	1						Blı	ue			
	00101	R7	R6	R5	R4	R3	R2	R1	R0	G 7	G 6	G 5	G 4	G3	G2	G1	G0	B 7	В6	В5	В4	ВЗ	В2	B 1	B 0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
l	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:		:	:	:		:		:		:		:	:	:			:		:	:	:	:	
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	:0	0	0	0	0	0	0	0	0	0	0	0	:0
1 100	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
]	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

4.5 DISPLAY TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	58.54	74.25	97.98	MHz	-
	Period	Tc		13.47		ns	
	Input cycle to cycle jitter	T_{rcl}	-0.02*Tc	-	0.02*Tc	ns	(1)
	Input Clock to data skew	TLVCCS	-0.02*Tc	-	0.02*Tc	ps	(2)
LVDS Clock	Spread spectrum modulation range	Fclkin_ mod	0.97*Fc	-	1.03*Fc	MHz	(2)
	Spread spectrum modulation frequency	F _{SSM}	-	-	100	KHz	(3)
	Frame Rate	Fr	50	60	75	Hz	Tv=Tvd+Tvb
	Total	Τv	1115	1125	1136	Th	-
Vertical Display Term	Active Display	Tvd	1080	1080	1080	Th	-
	Blank	Tvb	Tv-Tvd	Tv-Tvd	Tv-Tvd	Th	-
	Total	Th	1050	1100	1150	Tc	Th=Thd+Thb
Horizontal Display Term	Active Display	Thd	960	960	960	Tc	-
	Blank	Thb	Th-Thd	Th-Thd	Th-Thd	Tc	-

Note: Because this module is operated by DE only mode, Hsync and Vsync input signals are ignored.

INPUT SIGNAL TIMING DIAGRAM

Note (1) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = IT1 - TI

Note (2) Input Clock to data skew is defined as below figures.

Note (3) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (4) The DCLK range at last line of V-blank should be set in 0 to Hdisplay/2

Version 2.0 6 November 2014 14 / 25

4.6 POWER ON/OFF SEQUENCE

The power sequence specifications are shown as the following table and diagram.

Timing Specifications:

Parameters		Values	Units	
1 diameters	Min	Office		
T1	0.5	=	10	ms
T2	0	30	50	ms
T3	450	-	-	ms
T4	100	250	-	ms
T5	0	20	50	ms
T6	0.1	-	100	ms
T7	1000	=	=	ms

- Note (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- Note (2) When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen.
- Note (3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.
- Note (4) T7should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.
- Note (6) INX won't take any responsibility for the products which are damaged by the customers not following the Power Sequence.
- Note (7) There might be slight electronic noise when LCD is turned off (even backlight unit is also off). To avoid this symptom, we suggest "Vcc falling timing" to follow "t6 spec".

5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Ta	25±2	оС
Ambient Humidity	На	50±10	%RH
Supply Voltage	VCC	5	V
Input Signal	According to typical va	alue in "3. ELECTRICAL (CHARACTERISTICS"
LED Light Bar Input Current Per Input Pin	IPIN	80 ± 1.5	mA
PWM Duty Ratio	D	100	%
LED Light Bar Test Converter		INX R373B0000U000	

5.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 5.2. The following items should be measured under the test conditions described in 5.1 and stable environment shown in Note (7).

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Red	Rx			0.635			
	Red	Ry			0.340			
	Green	Gx			0.315			
Color Chromaticity	Oreen	Gy	0 -00 0 -00	Тур –	0.635	Typ +		(1) (5)
(CIE 1931)	Blue	Bx	θ_{x} =0°, θ_{Y} =0° CS-2000	0.03	0.155	0.03	-	(1), (5)
(====,	Blue	Ву	R=G=B=255		0.050			
) A / I= : 4 =	Wx	Gray scale		0.313			
	White	Wy			0.329			
Center Trans	Center Transmittance				4.46		%	(1), (6)
Contrast I	Ratio	CR		2000	3000	-	-	(1), (3)
		TR			20	25	ms	(3)
Response	Response Time				5	10	ms	(3)
·		T _{GtG_AVE_}	$\theta_X=0^\circ$, $\theta_Y=0^\circ$	-	30	35	ms	(3)
Viewing Angle	Horizontal	χ+		80	89	-		
Viewing Angle	Tionzontal	X -	CR ≧ 10	80	89	-	Deg.	(1), (2)
Viewing Angle	Vertical	y + y -	_	80 80	89 89			. ,, . ,

Note (1) Definition of Viewing Angle (_x, _y):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time:

- -The TR is the rising-time means the transition time from "Full-Black (gray 0)" to "Full-White (gray 255)" and the TF is the falling-time means the transition time from "Full-White (gray 255)" to "Full-White (gray 0)" as the following figure. (Measured by TEKTRONIX TDS3054B).
- -The TGtG is the response time means the transition time from "Gray N" to "Gray M" (N,M=0~255).

- TGtG_AVE is the total average of the TGtG data (Measured by INX GTG instrument)
- The gray (N,M) stands for the (0,31,63,~255) as the following table.
- If system use ODC (Over Driving Circuit) function, TGtG_AVE may be 5ms~10ms.
- * It depends on Overshoot rate

Gray to	Cray		•			Rising tim	е			
Gray to	Glay	0	31	63	95	127	159	191	223	255
	0									
	31									
	63									
	95									
Falling time	127									
	159									
	191									
	223									
	255									

Version 2.0 6 November 2014 17 / 25

Note (4) Definition of Luminance of White (Lc):

Measure the luminance of gray level 255 at center point

Lc = L(5)

L (x) is corresponding to the luminance of the point X at Figure in Note (6).

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 40 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 40 minutes in a windless room.

Note (6) Definition of White Variation (W):

Measure the luminance of gray level 255 at 9 points

 $_{W} = (Minimum [L (1) \sim L (9)] / Maximum [L (1) \sim L (9)]) *100%$

6. RELIABILITY TEST ITEM

Items	Required Condition	Note
Temperature Humidity Bias (THB)	Ta= 50℃, 80%RH, 240hours	
High Temperature Operation (HTO)	Ta= 50℃, 240hours	
Low Temperature Operation (LTO)	Ta= 0°C, 240hours	(1)
High Temperature Storage (HTS)	Ta= 60℃, 240hours	
Low Temperature Storage (LTS)	Ta= -20°ℂ, 240hours	
	ISTA STANDARD 1.14Grms	
Package Vibration Test	Random, Frequency Range: 1 ~ 200 Hz Top & Bottom: 30 minutes (+Z), 10 min (-Z), Right & Left: 10 minutes (X) Back & Forth 10 minutes (Y)	(2)
Thermal Shock Test (TST)	-20°C/30min, 60°C / 30min, 100 cycles	
On/Off Test	25°C, On/10sec, Off /10sec, 30000 cycles	(1)
Altitude Test	Operation: 10000 ft / 24hours Non-Operation: 30000 ft / 24hours	(.)

Note (1) The tests are done with LCD modules (M215HJJ-L30).

Note (2) The test is done with a package shown in Section 8

7. LABEL

7.1 INX OPEN CELL LABEL

Barcode definition:

Serial ID: <u>CM-S0J02-X-X-X-X-X-L-XX-L-YMD-NNNN</u>

Code	Meaning	Description
CM	Supplier code	INX =CM
L5J02	Model number	M215HJJ-P02=L5J02
Х	Revision code	C1:1, C2:2,
Х	Source driver IC code	Century=1, CLL=2, Demos=3, Epson=4, Fujitsu=5, Himax=6, Hitachi=7, Hynix=8, LDI=9, Matsushita=A, NEC=B, Novatek=C,
Х	Gate driver IC code	OKI=D, Philips=E, Renasas=F, Samsung=G, Sanyo=H, Sharp=I, TI=J, Topro=K, Toshiba=L, Windbond=M ILITEK=Q, Fiti=Y, None IC =Z
XX	Cell location	Tainan, Taiwan=TN Ningbo China=CN, Hsinchu Taiwan=SC
L	Cell line #	1,2,~,9,A,B,~,Y,Z
XX	Module location	Tainan, Taiwan=TN; Ningbo China=NP, Shenzhen China=SH
L	Module line #	1,2,~,9,A,B,~,Y,Z
YMD	Year, month, day	Year: 2001=1, 2002=2, 2003=3, 2004=4 Month: 1~12=1, 2, 3, ~, 9, A, B, C Day: 1~31= 1, 2, 3, ~, 9, A, B, C, ~, T, U, V
NNNN	Serial number	Manufacturing sequence of product

8. PACKING

8.1 PACKING SPECIFICATIONS

(1) 25 PCS LCD TV Panels / 1 Box

(2) Box dimensions: 630 (L) X 465 (W) X144 (H)mm

(3) Weight: approximately 14 Kg

(4) 700 PCS LCD TV Panels / 1 Group

8.2 PACKING METHOD

Packing method (EPP Box) is shown in following figures.

- (1) Group Dimensions: 1000(L)x1300(W)x1150(H)mm
- (2) 25 Panel / Box
- (3) 28 Box / Pallet

Figure.8-1 packing method

Sea / Land Transportation (40ft HQ Container) Corner Protector (50°50°700 mm) (50°50°7115 mm) (50°50°7115 mm) (50°50°7115 mm) (50°50°7115 mm) (50°50°710 mm) (50°50°7115 mm) (50°50°7115 mm) (50°50°7115 mm) (50°50°710 mm) (50°50°71

Figure.8-2 packing method

8.3 UN-PACKAGING METHOD

Un-packaging method (EPP Box) is shown in following figures.

Figure.8-3 unpacking method

9. PRECAUTION

9.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.

Version 2.0 6 November 2014 23 / 25

- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10)When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.
- (11)While touching the panel surface under the patterns with higher grey levels, a shadow or mura phenomenon would be seen. This phenomenon is totally recoverable by switching the patterns to lower grey levels. It is a product feature.

9.2 STORAGE PRECAUTIONS

- (1) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0° C to 35° C and relative humidity of less than 70%
- (2) Do not store the TFT LCD module in direct sunlight
- (3) The module should be stored in dark place. It is prohibited to apply sunlight or fluorescent light in storing

9.3 OPERATION PRECAUTIONS

(1) The LCD product should be operated under normal condition.

Normal condition is defined as below:

Temperature : $20\pm15^{\circ}$ C

Humidity: 65±20%

Display pattern: continually changing pattern(Not stationary)

(2) If the product will be used in extreme conditions such as high temperature, high humidity, high altitude ,display pattern or operation time etc...It is strongly recommended to contact INX for application engineering advice. Otherwise, its reliability and function may not be guaranteed.

9.4 SAFETY PRECAUTIONS

- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the module's end of life, it is not harmful in case of normal operation and storage.

9.5 SAFETY STANDARDS

The LCD module should be certified with safety regulations as follows:

- (1) UL60950-1 or updated standard.
- (2) IEC60950-1 or updated standard.

9.6 OTHER

When fixed patterns are displayed for a long time, remnant image is likely to occur.

Appendix. OUTLINE DRAWING

