2022-2023 MP2I

DM 4, corrigé

Exercice 1. Modèle de Verhulst.

- 1) La fonction nulle et la fonction constante égale à K sont solutions de (E).
- 2) Supposons par l'absurde qu'il existe $t \in \mathbb{R}$ tel que $y(t) \leq 0$. Alors, puisque y est continue et que $y(0) = y_0 > 0$, on en déduit d'après le théorème des valeurs intermédiaires qu'il existe $\alpha \in \mathbb{R}$ tel que $y(\alpha) = 0$. Or, la fonction nulle est solution de (E) pour la condition initiale $y(\alpha) = 0$. Ceci entraîne par unicité des solutions dans le théorème de Cauchy-Lipschitz que y est la fonction nulle : c'est absurde car y(0) > 0! On en déduit que y est toujours strictement positive sur \mathbb{R} .
- 3) z est bien définie sur \mathbb{R} car y ne s'annule pas et est dérivable comme quotient de fonction dérivable. On a pour $t \in \mathbb{R}$:

$$z'(t) = \frac{-y'(t)}{y^2(t)}$$

$$= -\frac{a}{y(t)} \left(1 - \frac{y(t)}{K}\right)$$

$$= -\frac{a}{y(t)} + \frac{a}{K}$$

$$= -az(t) + \frac{a}{K}.$$

z vérifie donc l'équation différentielle $z' + az = \frac{a}{K}$.

4) On a $z_p(t) = \frac{1}{K}$ qui est solution particulière de cette équation. On en déduit qu'il existe $\lambda \in \mathbb{R}$ tel que $\forall t \in \mathbb{R}, \ z(t) = \lambda e^{-at} + \frac{1}{K}$. On a de plus que $z(0) = \frac{1}{y_0}$. On en déduit que $\lambda = \frac{1}{y_0} - \frac{1}{K}$. On a donc finalement que :

$$\forall t \in \mathbb{R}, \ y(t) = \frac{1}{\left(\frac{1}{y_0} - \frac{1}{K}\right)e^{-at} + \frac{1}{K}} = \frac{K}{\left(\frac{K}{y_0} - 1\right)e^{-at} + 1}.$$

Puisque a > 0, on en déduit par quotient de limite que $\lim_{t \to +\infty} y(t) = \frac{K}{0+1} = K$.

On remarque que la population finale ne dépend donc pas de y_0 . Le paramètre K est appelé la capacité d'accueil dans ce modèle (la taille de la population finit donc par tendre vers la capacité d'accueil).

PROBLÈME PROLONGEMENT DE LA FONCTION FACTORIELLE

Partie I.

1) a) Pour a=0, on a pour tout x>0, $g_0(x)=x^0=e^{0\times \ln(x)}=1$. On en déduit que $\lim_{x\to 0^+}g_0(x)=1$. Ceci entraine que g_0 peut se prolonger par continuité en 0 en posant $g_0(0)=1$.

Pour a > 0, on a pour x > 0, $g_a(x) = e^{a \ln(x)}$. Puisque a > 0, on en déduit par composition de limites que $\lim_{x\to 0^+} g_a(x) = 0$. La fonction g_a peut donc se prolonger par continuité en 0 en posant $g_a(0) = 0$ si a > 0.

- b) Soit $a \geq 0$. D'après la question précédente, la fonction g_a est continue en 0. De plus, pour x > 0, on a $g_a(x) = e^{a \ln(x)}$. On en déduit que g_a est continue sur \mathbb{R}_+^* comme composée de fonctions continues. La fonction g_a est donc bien continue sur \mathbb{R}_+ .
- c) Soit $a \geq 1$. Remarquons déjà que, par composée de fonctions de classe \mathcal{C}^1 sur \mathbb{R}_+^* , la fonction g_a est bien de classe \mathcal{C}^1 sur \mathbb{R}_+^* . On a de plus :

$$\forall x > 0, \ g'_a(x) = \frac{a}{x} \times e^{a \ln(x)} = \frac{ax^a}{x} = ax^{a-1} = ag_{a-1}(x).$$

Il reste à étudier ce qu'il se passe en 0. Puisque $a \ge 1$, la fonction g_a est continue en 0 d'après la question précédente. De plus, on a $g_a(0) = 0$ (d'après la question 1.a). On a alors pour x > 0:

$$\frac{g_a(x) - g_a(0)}{x - 0} = \frac{x^a}{x} = x^{a-1}.$$

De la même manière qu'à la question 1.a, on en déduit que g_a est bien dérivable en 0 (puisque $a-1\geq 0$) avec $g_a'(0)=0$ si a>1 et $g_a'(0)=1$ si a=1. Enfin, il ne reste plus qu'à vérifier la continuité de g_a' en 0. Puisque pour tout x>0, on a $g_a'(x)=ax^{a-1}$, on en déduit que $\lim_{x\to 0^+}g_a'(x)=0$ si a>1 et que $\lim_{x\to 0^+}g_a'(x)=1$ si a=1. Dans les deux cas, ces valeurs sont les mêmes que les valeurs de $g_a'(0)$, ce qui entraine la continuité de g_a' en 0.

On en déduit que la fonction g_a est bien de classe \mathcal{C}^1 sur \mathbb{R}_+ pour tout $a \geq 1$. On a vu que pour tout x > 0, $g'_a(x) = g_{a-1}(x)$. Cette relation est également vraie en x = 0 d'après les calculs précédents (en séparant les cas a = 1 et a > 1).

2) Pour tout $(a,b) \in (\mathbb{R}_+)^2$, on pose

$$I(a,b) = \int_0^1 g_a(t)g_b(1-t)dt.$$

- a) On a $a \ge 0$ et $b \ge 0$ donc les fonctions g_a et g_b sont continues sur \mathbb{R}_+ (et donc sur [0,1]). La fonction $f: t \mapsto 1-t$ est continue sur [0,1] à valeurs dans [0,1]. On en déduit par composée de fonctions continues que $g_b \circ f$ est continue sur [0,1]. Par produit de fonctions continues, on en déduit que $t \mapsto g_a(t)g_b(1-t)$ est continue sur [0,1], ce qui assure l'existence de l'intégrale.
- b) Posons x = 1 t comme changement de variable. La fonction $t \mapsto 1 t$ est bien de classe \mathcal{C}^1 sur [0, 1]. On a alors dx = -dt et pour les bornes, quand t = 0, x = 1 et quand t = 1, x = 0. Par théorème de changement de variable, on en déduit que :

$$I(a,b) = \int_0^1 g_a(t)g_b(1-t)dt$$

$$= \int_1^0 g_a(1-x)g_b(1-(1-x))(-dx)$$

$$= -\int_0^1 g_a(1-x)g_b(x)(-dx)$$

$$= \int_0^1 g_b(x)g_a(1-x)dx$$

$$= I(b,a).$$

c) D'après la question précédente, I(0,b) = I(b,0). On a de plus pour tout $x \in [0,1]$, $g_0(x) = 1$ (toujours d'après l'étude réalisée en 1.a). On en déduit que :

$$I(b,0) = \int_0^1 x^b \times 1 dx$$
$$= \left[\frac{x^{b+1}}{b+1}\right]_0^1$$
$$= \frac{1}{b+1}.$$

On a donc $I(0,b) = \frac{1}{b+1}$.

Pour la deuxième relation, on va raisonner par intégration par parties. Les fonctions g_{a+1} et $t \mapsto g_{b+1}(1-t)$ sont de classe \mathcal{C}^1 sur [0,1] d'après la question 1.c (on a $a+1 \geq 1$ et $b+1 \geq 1$) et par composée de fonctions \mathcal{C}^1 pour la seconde. On peut donc poser $u(t) = g_{a+1}(t)$, ce qui entraine $u'(t) = (a+1)g_a(t)$ et on pose $v(t) = \frac{-g_{b+1}(1-t)}{b+1}$ (attention à ne pas oublier le signe – qui va se simplifier en dérivant cette fonction comme une composée de fonctions dérivables) ce qui entraine $v'(t) = g_b(1-t)$. On a alors par intégration par parties :

$$I(a+1,b) = \int_0^1 g_{a+1}(t)g_b(1-t)dt$$

$$= \left[g_{a+1}(t)\frac{-g_{b+1}(1-t)}{b+1}\right]_0^1 + \int_0^1 (a+1)g_a(t)\frac{g_{b+1}(1-t)}{b+1}dt$$

$$= -\frac{g_{a+1}(1)g_{b+1}(0)}{b+1} + \frac{g_{a+1}(0)g_{b+1}(1)}{b+1} + \frac{a+1}{b+1}I(a,b+1).$$

Puisque $g_c(0) = 0$ pour c > 0 (d'après la question 1.a), on en déduit que $I(a+1,b) = \frac{a+1}{b+1}I(a,b+1)$.

- d) On va procéder par récurrence sur $a \in \mathbb{N}$. On pose $\mathcal{P}(a)$: « $\forall b \in \mathbb{R}_+$, $I(a,b) = \frac{a!}{a+1}$ ». $\prod_{k=1}^{n} (b+k)$
- Au rang 0, la propriété est $\forall b \in \mathbb{R}_+$, $I(0,b) = \frac{1}{b+1}$, ce qui a été démontré à la question précédente (on rappelle que 0! = 1).
- Soit $a \in \mathbb{N}$. Supposons $\mathcal{P}(a)$. On a alors, en utilisant la question précédente et l'hypothèse de récurrence, que pour tout $b \in \mathbb{R}_+$:

$$I(a+1,b) = \frac{a+1}{b+1}I(a,b+1) = \frac{a+1}{b+1} \times \frac{a!}{\prod_{b=1}^{a+1}(b+1+k)}.$$

On effectue alors le changement d'indice j = k + 1

$$I(a+1,b) = \frac{(a+1)!}{b+1} \times \frac{1}{\prod_{j=2}^{a+2} (b+j)}$$
$$= \frac{(a+1)!}{\prod_{j=1}^{a+2} (b+j)}.$$

La propriété est donc vraie au rang a + 1.

• La propriété est initialisée et héréditaire. Elle est donc vraie pour toutes les valeurs de $a \in \mathbb{N}$.

e) On utilise le résultat de la question précédente pour calculer I(a,b):

```
def I(a,b):
    result=1/(b+1) # si a=0, on a la valeur de I(a,b) voulue
    if a!=0: # si a!=0, on effectue une boucle pour calculer I(a,b)
        for k in range(1,a):
            result=result*k/(b+1+k)
    return(result)
```

f) Si $(a,b) \in \mathbb{N}^2$, on a en posant le changement d'indice j = b + k:

$$I(a,b) = \frac{a!}{\prod_{a+1}^{a+1}(b+k)}$$

$$= \frac{a!}{\prod_{a+b+1}^{a+b+1}} j$$

$$= \frac{a! \cdot b!}{\prod_{j=1}^{a+b+1}} j$$

$$= \frac{a! \cdot b!}{(a+b+1)!}$$

g) L'intégrale existe bien car les fonctions considérées sont continues sur $\left[0,\frac{\pi}{2}\right]$. Posons le changement de variable $t=\sin^2(x)$ pour essayer de retomber sur l'intégrale I(a,b). La fonction $x\mapsto\sin^2(x)$ est \mathcal{C}^1 sur $\left[0,\frac{\pi}{2}\right]$ donc on peut faire le changement de variable. On a $\sin^2(0)=0$ et $\sin^2\left(\frac{\pi}{2}\right)=1$. On a également $dt=2\cos(x)\sin(x)dx$. On en déduit que :

$$\int_{0}^{\frac{\pi}{2}} (\sin(x))^{2a+1} (\cos(x))^{2b+1}) dx = \int_{0}^{\frac{\pi}{2}} (\sin^{2}(x))^{a} (\cos^{2}(x))^{b} \sin(x) \cos(x) dx
= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} (\sin^{2}(x))^{a} (1 - \sin^{2}(x))^{b} (2 \sin(x) \cos(x)) dx
= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} g_{a}(t) g_{b}(1 - t) dt
= \frac{a! \cdot b!}{2(a+b+1)!}.$$

Partie II.

- 3) On doit avoir $x \neq 0$ pour ne pas diviser par 0. On a également besoin d'avoir $1 \frac{a}{x} > 0 \Leftrightarrow \frac{x-a}{x} > 0$. On doit donc avoir x > a ou x < 0 (puisque a > 0 donc pour x < 0, x a < 0 et pour x > a, $\frac{x-a}{x} > 0$). On en déduit que le domaine de définition de f_a est $]-\infty, 0[\bigcup]a, +\infty[$. Préciser le domaine de définition de f_a .
- 4) On pose $f: x \mapsto x \ln(1+x)$. Cette fonction est définie et dérivable sur $]-1, +\infty[$. Pour x > -1, on a $f'(x) = 1 \frac{1}{1+x} = \frac{x}{1+x}$. On a donc le dénominateur strictement positive et f'(x) est donc du même signe que x. On en déduit que f est décroissante sur]-1,0] et croissante sur $[0, +\infty[$. Puisque f(0) = 0, on en déduit que pour tout x > -1, $f(x) \ge 0$, ce qui entraine l'inégalité voulue.

5) Soit $x \in]a, +\infty[$. Remarquons que toutes les quantités existent car x > a. On a alors 0 < a < x donc $\frac{a}{x} \in]0, 1[$, d'où $-\frac{a}{x} \in]-1, 0[$. D'après la question précédente appliquée en $-\frac{a}{x}$, on en déduit que :

$$\ln\left(1 - \frac{a}{x}\right) \le -\frac{a}{x}.$$

Pour l'autre inégalité, on remarque que :

$$-\frac{a}{x-a} \le \ln\left(1 - \frac{a}{x}\right)$$

$$\Leftrightarrow -\ln\left(\frac{x-a}{x}\right) \le \frac{a}{x-a}$$

$$\Leftrightarrow \ln\left(\frac{x}{x-a}\right) \le \frac{a}{x-a}$$

$$\Leftrightarrow \ln\left(1 + \frac{a}{x-a}\right) \le \frac{a}{x-a}.$$

Puisque $\frac{a}{x-a} > 0$, on peut utiliser la question précédente en cette valeur, ce qui démontre l'autre inégalité demandée.

6) f_a est dérivable sur $]a, +\infty[$ comme produit/composée de fonctions dérivables. On a alors pour x > a:

$$f'_a(x) = \ln\left(1 - \frac{a}{x}\right) + x \times \frac{a}{x^2} \frac{1}{1 - \frac{a}{x}}$$
$$= \ln\left(1 - \frac{a}{x}\right) + \frac{a}{x - a}.$$

D'après l'inégalité de gauche de la question précédente, cette quantité est positive. On en déduit que f_a est croissante sur $]a, +\infty[$.

7) En multipliant l'encadrement de la question 3 par x (avec x>0 donc on préserve les inégalités), on a alors :

$$-\frac{ax}{x-a} \le f_a(x) \le -a$$

$$\Leftrightarrow -\frac{1-\frac{a}{x}}{1-\frac{a}{x}} \le f_a(x) \le -a.$$

On peut alors faire tendre x vers l'infini et utiliser le théorème des gendarmes, ce qui assure que $\lim_{x\to +\infty} f_a(x) = -a.$

8) Pour n = a (si a est entier), on a $u_a = 0$. Supposons à présent n > a. On a alors $u_n > 0$ et on peut donc calculer $\ln(u_n)$. On a :

$$\ln(u_n) = n \ln\left(1 - \frac{a}{n}\right)$$
$$= f_a(n).$$

On a donc pour n > a, $u_n = e^{f_a(n)}$. Par composition de fonctions croissantes, on en déduit que $(u_n)_{n>a}$ est croissante. Puisque l'on a de plus pour n>a, u_n qui s'écrit comme une exponentielle, et qui est donc strictement positive, que pour n>a, $u_n>u_a=0$. On en déduit que la suite $(u_n)_{n\geq a}$ est croissante.

Par composition de limites (ou par continuité de l'exponentielle) et d'après la question 5 que $\lim_{n\to+\infty} u_n = e^{-a}$.

Partie III.

9) Soit $x \in \mathbb{R}_+$ et $n \in \mathbb{N}^*$. On a alors :

$$\frac{F_n(x)}{n^{x+1}} = \int_0^n \left(1 - \frac{y}{n}\right)^n \left(\frac{y}{n}\right)^x \frac{dy}{n}.$$

On peut alors poser comme changement de variable $t=\frac{y}{n}$. La fonction $y\mapsto \frac{y}{n}$ est \mathcal{C}^1 sur [0,n]. Les nouvelles bornes sont 0 et 1 (quand y vaut 0 ou n). On a $dt=\frac{dy}{n}$. On en déduit par théorème de changement de variable :

$$\frac{F_n(x)}{n^{x+1}} = \int_0^1 (1-t)^n t^x dt = I(x,n).$$

On a donc bien l'égalité voulue.

10) Fixons toujours $x \in \mathbb{R}_+$. En utilisant les notations du II, on a pour $n \in \mathbb{N}^*$:

$$F_n(x) = \int_0^n u_n(y) y^x dy.$$

On a ici y qui varie entre 0 et n. On a donc le droit de considérer la suite $(u_n(y))_{n\geq y}$. Cette suite étant croissante (à y fixé), on en déduit que pour tout $y\in [0,n]$, $u_n(y)\leq u_{n+1}(y)$. On a $y^x\geq 0$ donc par produit :

$$u_n(y)y^x \leq u_{n+1}(y)y^x$$
.

Par croissance de l'intégrale (et puisque $0 \le x$ donc les bornes sont dans le bon sens), on a :

$$F_n(x) \le \int_0^n u_{n+1}(y) y^x dy.$$

Enfin, puisque $u_{n+1}(y)y^x$ est positif sur [n, n+1], on en déduit toujours par croissance de l'intégrale que :

$$\int_0^n u_{n+1}(y)y^x dy \le \int_0^n u_{n+1}(y)y^x dy + \int_n^{n+1} u_{n+1}(y)y^x dy = F_{n+1}(x).$$

On en déduit que la suite $(F_n(x))_{n\in\mathbb{N}^*}$ est croissante.

11)

- a) On a toujours ici $x \ge 0$ fixé. D'après les croissances comparées, on a $\lim_{y \to +\infty} y^{x+2} e^{-y} = 0$.
- b) Soit $n \in \mathbb{N}^*$ tel que $n \ge \alpha$. La suite $(u_n(a))_{n \ge a}$ est croissante et converge vers e^{-a} (d'après le II.6). On en déduit que pour $n \ge a$, $u_n(a) \le e^{-a}$. Ceci entraine que :

$$F_n(x) \leq \int_0^n e^{-y} y^x dy.$$

On peut alors découper l'intégrale à l'aide de la relation de Chasles. Puisque pour $y \geq \alpha$, on a d'après le résultat admis $e^{-y}y^x \leq \frac{1}{y^2}$. On en déduit donc que :

$$F_{n}(x) = \int_{0}^{\alpha} e^{-y} y^{x} dy + \int_{\alpha}^{n} e^{-y} y^{x} dy$$

$$\leq \int_{0}^{\alpha} e^{-y} y^{x} dy + \int_{\alpha}^{n} \frac{1}{y^{2}} dy$$

$$\leq \int_{0}^{\alpha} e^{-y} y^{x} dy + \left[-\frac{1}{y} \right]_{\alpha}^{n}$$

$$\leq \int_{0}^{\alpha} e^{-y} y^{x} dy - \frac{1}{n} + \frac{1}{\alpha}$$

$$\leq \int_{0}^{\alpha} e^{-y} y^{x} dy + \frac{1}{\alpha}.$$

c) On travaille toujours avec le même $x \geq 0$ fixé. D'après la question III.2, la suite $(F_n(x))_{n \in \mathbb{N}^*}$ est croissante et d'après la question précédente, elle est majorée. En effet, ici le α est fixé et ne dépend pas de n. La suite $(F_n(x))_{n \geq \alpha}$ est donc majorée par un réel M_1 . Si on note M_2 le maximum de tous les termes de la suite compris entre 1 et α (il y en a un nombre fini donc ce maximum existe), on en déduit que la suite $(F_n(x))_{n \in \mathbb{N}^*}$ est majorée par $\max(M_1, M_2)$.

La suite $(F_n(x))_{n\in\mathbb{N}^*}$ converge donc car elle est croissante majorée.

12) Soit $n \in \mathbb{N}^*$. D'après la question III.1, on a $F_n(0) = nI(0,n) = \frac{n}{n+1} = \frac{1}{1+\frac{1}{n}}$. On en déduit que $F(0) = \lim_{n \to +\infty} F_n(0) = 1$.

Fixons à présent $x \in [1, +\infty[$. D'après le III.1, on a $F_n(x) = n^{x+1}I(x, n)$. D'après le I.2.c, puisque $x \ge 1$ (et donc $x - 1 \ge 0$), on a :

$$I(x,n) = I(x-1+1,n)$$

= $\frac{x}{n+1}I(x-1,n+1)$.

On a donc finalement :

$$F_n(x) = \frac{xn^{x+1}}{n+1}I(x-1,n+1)$$

$$= \frac{xn^{x+1}}{(n+1)^{x+1}}(n+1)^xI(x-1,n+1)$$

$$= \left(\frac{n}{n+1}\right)^{x+1}xF_{n+1}(x-1).$$

On a $\left(\frac{n}{n+1}\right)^{x+1} = e^{(x+1)\ln\left(1-\frac{1}{n+1}\right)}$. On en déduit par composition de limite que :

$$\lim_{n \to +\infty} \left(\frac{n}{n+1} \right)^{x+1} = 1.$$

Ceci entraine donc, par passage à la limite dans l'égalité précédente que F(x) = xF(x-1). Puisque nous avons pris $x \ge 1$, quelconque, on a bien montré la propriété voulue.