

A.Y. 2019/20 « Intelligent systems for pattern recognition » Master Degree in Computer Science Artificial Intelligence Curriculum

Image processing with SIFT

Midterm 1 Assignment 5

1. Sift detector and descriptor

Detecting some relevant points by using SIFT detector and placing a SIFT descriptor on each of those point, in order to obtain a bag of SIFT descriptors (i.e. intensity gradient histograms) to represent each image (for a total of 8 images, belonging to different thematic subset).

2. Histogram comparison

A. Visual comparison:

plotting the two SIFT descriptors closeby as barplots

B. Quantitative comparison:

three different histograms comparison metrics

```
1 import cv2
2 import glob #module that finds all the pathnames matching
3 from matplotlib import pyplot as plt # importing library for plotting
5 #Load images
6 collection = []
7 for im in glob.glob('selected_images/*.bmp'):
      img = cv2.imread(im)
      collection.append(img)
10 #convert them into gray scale
11 image list=[]
12 for i in collection:
      gray = cv2.cvtColor(i, cv2.COLOR_BGR2GRAY)
      image list.append(gray)
15
16 #create feature extraction object
17 sift = cv2.xfeatures2d.SIFT create() #load algorythm
18 # optional: passing parameters like numbers of features and threshold
19 # install opency-contrib-python to make the attribute works
21 # Detect: find relevant keypoints
22 kp = [] #list of keypoints
23 for img in image list:
      k = sift.detect(img, None) # passing no mask
      kp.append(k)
27 des = [] #list of descriptors
28 for n in range(len(image list)):
      des.append(n)
      #Compute a descriptor for each keypoint detected
      kp[n], des[n] = sift.compute(image_list[n], kp[n])
32
      #output: keypoint and responding descriptor --> MATRIX(rows=kp, col=128)
      # Draw keypoints detected on the image
      image list[n] = cv2.drawKeypoints(image list[n], kp[n],
36
                None, flags=cv2.DRAW MATCHES FLAGS DRAW RICH KEYPOINTS)
      #the flag draw a rele with size of keypoint and show its orientation
39 #for each image, I go
                         a number of descriptors equal to the number of keypoint.
```

```
63 images = []
64 for im in glob.glob('result/*.bmp'):
       image = cv2.imread(im)
       images.append(image)
68 #creating multiple plots
69 fig = plt.figure(figsize=(20, 20)) # create a figure object
71 ax1 = plt.subplot(321) # face
72 ax2 = plt.subplot(322) # horse
74 . . .
76 #pick random descriptors (keypoints) from each histogram
77 v1 = randint(\emptyset, len(kp[5])-1)
78 face_hist = des[5][v1] # face histogram
79 \text{ v2} = \text{randint}(0, \text{len}(\text{kp}[6])-1)
80 car hist = des[6][v2] # car histogram
81 \text{ v3} = \text{randint}(0, \text{len}(\text{kp}[0])-1)
82 horse_hist = des[0][v3] # horse histogram
83 \text{ v4} = \text{randint}(0, \text{len}(\text{kp}[4]) - 1)
84 cow_hist = des[4][v4] # cow histogram
86 #plot descriptor for each keypoint
87 ax1.plot(face hist, 'g-')
88 ax3.plot(car hist, 'b-')
90 ...
92 #composison (without overlapping bars)
93 ax5.hist((face hist, car hist), bins=10, color=('b', 'g'), alpha=0.5)
94 ax6.hist((horse_hist, cow_hist), bins=10, color=('r', 'y'), alpha=0.5)
96 #save plot
97 plt.savefig("plot.png")
```

```
118 #Correlation and Chi
119 for method in range(3):
       comparison1 = cv2.compareHist(horse hist, horse hist, method)
121
       comp1.append(comparison1)
122
       comparison2 = cv2.compareHist(horse_hist, car_hist, method)
123
       comp2.append(comparison2)
124
       comparison3 = cv2.compareHist(horse hist, cow hist, method)
125
       comp3.append(comparison3)
126
127
128 methods = ["Correlation ", "Chi-Square ", "Intersection"]
130 print '\n Method: ' + '\t\t' + 'Horse - Horse ' + '\t' + 'Horse - Car '
      + '\t' + 'Horse - Cow' + '\n')
133 for c1, c2, c3, m in zip(comp1, comp2, comp3, methods):
       print(m + '\t' + str(c1) + '\t' + str(c2) + '\t' + str(c3) + '\n')
122 #to perform Intersection method, histograms have to be normalized
123 cv2.normalize(horse hist, horse hist, alpha=1, norm type=cv2.NORM L1)
124 cv2.normalize(car_hist, car_hist, alpha=1, norm_type=cv2.NORM_L1)
125 cv2.normalize(cow hist, cow hist, alpha=1, norm type=cv2.NORM L1)
```

Results

1. Sift detector and descriptor

Results

2. Histogram comparison

A. Visual comparison

Comparison between two random SIFT descriptors showing completely different informations.

Histograms are compared in pairs (vertically).

The spectral domain reveals interesting information about data:

- Barplots show how many times a frequency is represented in the signal (it's a visual framework of the power of each frequency)
- Each random descriptor show the same trend in the barplot: lower frequencies are always the most represented in the signal
- However we lose the information about which gradient had that specific frequency

2. Histogram comparison

B. Quantitative comparison

The function **compareHist** returns a numeric parameter that express how well two histograms match with each other.

Three different metrics are used:

• Correlation

$$d(H_1,H_2) = \frac{\sum_I (H_1(I) - \bar{H_1}) (H_2(I) - \bar{H_2})}{\sqrt{\sum_I (H_1(I) - \bar{H_1})^2 \sum_I (H_2(I) - \bar{H_2})^2}}$$

Chi-Square

$$d(H_1,H_2) = \sum_{I} \frac{(H_1(I) - H_2(I))^2}{H_1(I)}$$

• Intersection

$$d(H_1,H_2) = \sum_I \min(H_1(I),H_2(I))$$

Results

Method	Horse - Horse	Horse - Car	Horse - Cow
Correlation	1.0	-0.05	0.28
Chi-square	0.0	46875.43	34101.63
Intersection	1.0	0.32	0.49

A descriptor from a horse image is chosen randomly and is compared with two others random-chosen descriptors, one from a car image and one from a cow image.

For *correlation*, a high score represents a better match than a low score. A perfect match is 1.0 and a maximal mismatch is -1. A value of 0 indicates no correlation (random association).

For *chi-square*, a low score represents a better match than a high score. A perfect match is 0 and a total mismatch is unbounded (depending on the size of the histogram)

For *intersection*, a high score represents a better match than a low score. If both histograms are normalized to 1, then a perfect match is 1 and a total mismatch is 0.

Final observations

Visual comparison

Interesting results

Lower frequencies are the most represented for each signal

Weak aspects

• In the spectral domain we loose some useful informations (which gradient had that specific frequency?)

Quantitative comparison

Interesting results

- Resulting values proves that images are actually different, but...
- Descriptors (chosen randomly in the respective images) seem to show a representative behaviour of the overall image: (a horse seems to be more similar to a cow than a car).

Weak aspects

 How reliable is this evidence? Is an histogram randomly selected into a bag of descriptors really a representative sample?

Università di Pisa

A.Y. 2019/20 « Intelligent systems for pattern recognition » Master Degree in Computer Science Artificial Intelligence Curriculum

Thanks for your attention