# Data-Driven Discovery of Partial Differential Equations



# Partial Differential Equations - Governing a System

Partial differential equations (PDEs) are used to describe an physical or biological system. Knowledge of PDEs provide a basis for obtaining analytical solutions or conducting numerical simulation for the system.

Examples:

• The Navier-Stokes equations in fluid dynamics:

$$\rho(\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u}) = -\nabla \rho + \rho \mathbf{F} + \mu \nabla^2 \mathbf{u}, \tag{1}$$

$$\nabla \cdot \mathbf{u} = 0. \tag{2}$$

• The wave equation, can be adapted to describe seismic wave propagation

$$u_{tt} = c^2(u_{xx} + u_{yy}) \tag{3}$$



Figure: Left: the 3D Navier-Stokes Equation. Right: the 2D wave equation

# Obtaining the PDE - Mathematical Deduction vs Data-Driven Discovery

### How are PDEs obtained?

- Traditionally, PDEs are deducted using physical principles: mass/momentum balance, Newton's law, ... etc.
- The novel data-driven method: using machine learning to discover PDEs directly from experiment or simulation data. Proposed in the paper "Data-Driven Identification of Parametric Partial Differential Equations" (Rudy et al. 2019).

# Data-driven PDE discovery

 Suppose we have a dataset for a system regarding a certain quantity u, but the governing equation for u is unknown. Assume its governing equation is of the generic form

$$u_t = F(u, u_x, u_{xx}, \dots, x, \mu), \tag{4}$$

where  $F(\cdot)$  is an unknown, usually nonlinear function of u(x,t) and its derivatives, parameterized by  $\mu$ . Goal: to discover F from the data.

• Input data  $U \in \mathbb{C}^{mn}$  is a matrix of values of u collected at m time points with time interval  $\Delta t$  and n spatial locations with space interval  $\Delta x$  given by

$$\mathbf{U} = \begin{bmatrix} u(0,0) & \dots & u(n\Delta x,0) \\ \vdots & & \vdots \\ u(0,m\Delta t) & \dots & u(n\Delta x,m\Delta t) \end{bmatrix}.$$
 (5)

**U** is flattened as a vector  $[u(0,0)\dots u(n\Delta x,0)\dots u(0,m\Delta t)\dots u(n\Delta x,m\Delta t)]$  of length mn to serve as the input to our the machine learning algorithm.

# Discretizing Target PDE and Learning Coefficients

Applying numerical methods (finite difference methods, or polynomial interpolation) to input data  $\mathbf{U}$  yields a discrete dataset  $\mathbf{U}_t$  of time derivative  $u_t$ . The discrete form of the target PDE  $u_t = F(u, u_x, u_{xx}, \dots, x, \mu)$  can thus be written as

$$\mathbf{U}_t = [u_t(0,0) \dots u_t(n\Delta x, m\Delta t)]^T = \mathbf{\Theta}(\mathbf{U}, \mathbf{Q})\xi.$$
 (6)

Here  $\mathbf{Q} \in \mathbb{C}^{mn}$  denotes additional input, and  $\mathbf{\Theta}(\mathbf{U},\mathbf{Q}) \in \mathbb{C}^{mn \times D}$  is a library of D candidate terms and takes the form

$$\Theta(\mathbf{U}, \mathbf{Q}) = [1 \quad \mathbf{U} \quad \mathbf{U}^2 \dots \quad \mathbf{Q} \quad \dots \quad \mathbf{U}_{\mathbf{v}} \quad \mathbf{U}\mathbf{U}_{\mathbf{v}} \quad \dots]. \tag{7}$$

 $\xi \in \mathbb{C}^D$  is the coefficient vector containing coefficients of each of the candidate terms. We apply machine learning methods to obtain the correct coefficient vector  $\xi$ .

### Example (Diffusion Equation)

Suppose the data  ${\bf U}$  is governed by the 1D heat equation  $u_t=du_{xx}$ , then we may build a library of D=6 candidate terms

$$\Theta(U,Q) = \begin{bmatrix} 1 & U & U^2 & U_x & U_{xx} & UU_x \end{bmatrix},$$

and if our method is successful, we will get a coefficient vector  $\xi \in \mathbb{C}^{D=6}$  that takes the value

$$\xi = [0\ 0\ 0\ 0\ 1\ 0]^T$$
.

# Sparse Regression: Ridge, LASSO, and Elastic Net

Our goal is to find the optimal coefficient vector  $\xi \in \mathbb{C}^D$  satisfying

- $\mathbf{U}_t \approx \mathbf{\Theta}(\mathbf{U}, \mathbf{Q}) \xi$ ,
- $\bullet$   $\xi$  is sparse, so that only the most relevant terms are included.

To achieve this, it is natural to consider applying the sparse regression models

### Three Types of Sparse Regression

ullet Ridge Regression: aims to find  $\hat{\xi}$  that minimizes the loss function

$$\hat{\xi} = \operatorname{argmin}_{\xi} L(\xi), \text{ where } L(\xi) = \|\mathbf{\Theta}\xi - \mathbf{U}_t\|_2^2 + \lambda \|\xi\|_2, \tag{8}$$

where  $\|\xi\|_2 = \sqrt{\xi_1^2 + \dots + \xi_D^2}$  is the  $L_2$  norm and  $\lambda$  a constant coefficient

• LASSO Regression: similar structure, but uses  $L_1$  norm instead of the  $L_2$  norm

$$L(\xi) = \|\mathbf{\Theta}\xi - \mathbf{U}_t\|_2^2 + \alpha \|\xi\|_1, \tag{9}$$

where  $\|\xi\|_1 = |\xi_1|_+ \cdots + |\xi_D|$  is the  $L_1$  norm.

• Elastic Net Regression simply combines the two regularization terms above:

$$L(\xi) = \|\mathbf{\Theta}\xi - \mathbf{U}_t\|_2^2 + \lambda \|\xi\|_2 + \alpha \|\xi\|_1. \tag{10}$$

Minimizing  $\|\Theta\xi - \mathbf{U}_t\|_2^2$  fits  $\xi$  to the data  $\mathbf{U}_t$ , and minimizing  $\|\xi\|_1$  and/or  $\|\xi\|_2$  helps ensuring that coefficients of irrelevant candidate terms are small.

# Sequential Threshold Ridge Regression

However, for PDE discovery, coefficients of irrelevant candidate terms should not just be small but needs to be zero. The optimal  $\hat{\xi}$  should minimize the loss function

$$\hat{\xi} = \operatorname{argmin}_{\xi} L(\xi), \text{ where } L(\xi) = \|\Theta(\mathbf{U}, \mathbf{Q})\xi - \mathbf{U}_t\|_2^2 + \epsilon \kappa(\Theta(\mathbf{U}, \mathbf{Q}))\|\xi\|_0. \tag{11}$$

 $\|\cdot\|_0$  is the  $L_0$  norm that counts the number of nonzero elements in  $\xi$ ,  $\kappa(\Theta(\mathbf{U},\mathbf{Q}))$  is the **condition number** of the matrix  $\Theta$ . To get the above  $\hat{\xi}$ , sparse regression is applied with sequential thresholding.

```
Algorithm 1: Sequential Threshold Ridge Regression: STRidge (\Theta, U_t, \lambda, tol, iters, num_big)
```

$$\begin{split} \hat{\xi} \leftarrow & \operatorname{argmin}_{\xi}(\|\mathbf{\Theta}\xi - \mathbf{U}_t\|_2^2 + \lambda \|\xi\|_2) \\ & \text{biginds} \leftarrow \{j: |\hat{\xi}_j| \geq tol\} \end{split} \qquad \text{#standard ridge regression}$$

#Check if number of big coefficients changed from last time

if num\_big != len(biginds) then

$$\begin{array}{ll} \operatorname{num\_big} \leftarrow \operatorname{len}(\operatorname{biginds}) & \text{\#Updates number of big coefficients} \\ \hat{\xi}[\sim \operatorname{biginds}] \leftarrow 0 & \text{\#set small coefficients to 0} \\ \hat{\xi}[\operatorname{biginds}] \leftarrow \operatorname{STRidge}(\boldsymbol{\Theta}[:,\operatorname{biginds}], \boldsymbol{U}_t, \lambda, tol, \operatorname{iters} - 1, \operatorname{num\_big}) \end{array}$$

#recursive call with fewer coefficients

else

 $\mid \ \, \text{return} \,\, \hat{\xi} \\ \text{end} \\$ 

# Generating Simulation Data with Finite Difference Method

It remains to obtain the input data  $\mathbf{U}=(u(j\Delta x,k\Delta t))_{j=1,k=1}^{n,m}=(U_j^k)_{j=1,k=1}^{n,m}$ , which can be generated using **finite difference methods (FDM)**.

#### Finite Difference Methods: FTCS and Crank-Nicholson

Forward difference in time, central difference for space (FTCS):

$$U_{t} \approx \frac{U_{j}^{k+1} - U_{j}^{k}}{\Delta t}, \ U_{x} = \frac{U_{j+1}^{k} - U_{j-1}^{k}}{2\Delta x}, \ U_{xx} = \frac{U_{j+1}^{k} - 2U_{j}^{k} + U_{j+1}^{k}}{2(\Delta x)^{2}}$$
(12)

ullet Crank-Nicholson method, which uses the same formulation of  $U_t$  and  $U_x$  but

$$UU_{x} = \frac{1}{2} \left( U_{j}^{k} \frac{U_{j+1}^{k+1} - U_{j-1}^{k}}{2\Delta x} + U_{j}^{k+1} \frac{U_{j+1}^{k} - U_{j-1}^{k}}{2\Delta x} \right)$$
(13)

$$U_{xx} \approx \frac{1}{2} \left( \frac{U_{j+1}^{k+1} - 2U_j^{k+1} + U_{j-1}^{k+1}}{2\Delta x} + U_j^{k+1} \frac{U_{j+1}^{k} - U_{j-1}^{k}}{2\Delta x} \right)$$
(14)

Schematics for the two methods are shown on the right Since initial conditions  $(U_j^0)_{j=1}^n$  and boundary conditions  $(U_0^k)_{k=1}^m, (U_n^k)_{k=1}^m$  are given, the rest can be calculated.



# Testing results: Linear Advection Equation

We now generate data set with FDM and test the accuracy of the regression algorithm.

#### The advection equation

The **advection equation** is a hyperbolic equation that represents how a scalar quantity u (such as temperature, concentration, etc.) is transported by a fluid moving with a constant velocity c in a single spatial dimension. For our example we set c=1 and use **Gaussian initial condition** and **periodic boundary condition**.

$$u_t(x,t) = -cu_x(x,t), \quad x \in [-L/2, L/2], t \in [0,T]$$
 (15)

$$u(x,0) = \exp(-x^2)$$
 , (16)

$$u(-L/2,t) = u(L/2,t)$$
 (17)

The simulation results of  $u_t = -u_x$  from Crank-Nicholson is given by the figure below.



The PDE discovered by STRidge from this dataset is  $u_t = 0999448u_x$ .

# Testing results: Diffusion Equation

### The Diffusion Equation

The diffusion equation, also known as the 1D heat equation, describes how heat u (or similar diffusive scalar quantity) is distributed over time in a one dimensional system. The heat equation deals with the spreading or dissipation of heat due to diffusion.

$$u_t = Du_{xx}, \quad x \in [-L/2, L/2], t \in [0, T].$$
 (18)

For our example we set D=0.1 and apply the same Gaussian initial condition and periodic boundary condition.

The simulation results of  $u_t = 0.1u_{xx}$  from Crank-Nicholson is given by below.



The PDE discovered by STRidge from this dataset is  $u_t = 0.100003 u_{xx}$ .

# Testing Results: Burger's Equation

### Burger's Equation

**Burgers' equation** is a fundamental PDE from the field of fluid mechanics and can be used for studying shock waves. The equation is given by

$$u_t = -uu_x + \nu u_{xx}, \quad x \in [-L/2, L/2], t \in [0, T],$$
 (19)

where u represents speed in a fluid flow context, and  $\nu$  is viscosity.

The analytical solution to viscous equation is complicated, and Crank-Nicholson simulation is preferred. Wani and Thakar (2013) provides the formulation

$$\frac{U_j^{k+1} - U_j^k}{\Delta t} + \frac{1}{4\Delta x} \left[ U_j^k \left( U_{j+1}^{k+1} - U_j^{k+1} \right) + U_j^{k+1} \left( U_j^{k+1} \left( U_{j+1}^k - U_j^k \right) \right] \\
= \frac{\nu}{2(\Delta x)^2} \left( U_{j+1}^{k+1} - 2U_j^{k+1} + U_{j-1}^{k+1} + U_{j+1}^k - 2U_j^k + U_{j-1}^K \right) \quad (20)$$

| $\nu$ | Discovered PDE                                           |
|-------|----------------------------------------------------------|
| 0.02  | $u_t = -1.06uu_x + 0.29u^2u_x - 0.26u^3u_x + 0.02u_{xx}$ |
| 0.20  | $u_t = -uu_x + 0.20u_x x$                                |
| 2.00  | $u_t = 0.04u - 0.30u^2 - 0.46u^3 + \dots$                |



### Effect of Smoothness

Previous results show that sparse regression appears to only work for a certain range of viscosity  $\nu$ . We tested the method on  $\nu=0.01,0.02,\ldots,2.00$  to investigate the cut-off points.

|      | PDE                                                                                                | Mean parameter error | Std. of parameter error |  |  |  |  |
|------|----------------------------------------------------------------------------------------------------|----------------------|-------------------------|--|--|--|--|
| 0.01 | u_t = (0.050140 +0.000000i)u + (-0.163713 +0.000000i)u^2 + (0.100025 +0.000000i)u^3 +              | 16.009310%           | 14.174193%              |  |  |  |  |
| 0.02 | u_t = (-1.057625 +0.000000i)uu_{x} + (0.283156 +0.000000i)u^2u_{x} +                               | 3.319493%            | 2.442960%               |  |  |  |  |
| 0.03 | u_t = (-0.995775 +0.000000i)uu_{x} + (0.029581 +0.000000i)u_{xx}                                   | 0.420690%            | 0.001847%               |  |  |  |  |
| 0.04 | u_t = (-0.997450 +0.000000i)uu_{x} + (0.039687 +0.000000i)u_{xx}                                   | 0.283914%            | 0.028941%               |  |  |  |  |
|      |                                                                                                    |                      |                         |  |  |  |  |
| 1.41 | u_t = (-0.995066 +0.000000i)uu_{x} + (1.409464 +0.000000i)u_{xx}                                   | 0.514596%            | 0.021155%               |  |  |  |  |
| 1.42 | u_t = (-0.994757 +0.000000i)uu_{x} + (1.419375 +0.000000i)u_{xx}                                   | 0.574683%            | 0.050394%               |  |  |  |  |
| 1.43 | u_t = (-0.998046 +0.000000i)uu_{x} + (1.447058 +0.000000i)u_{xx} + (-0.312211 +0.000000i)uu_{xx} + | 8.626920%            | 8.431511%               |  |  |  |  |
| 1.44 | u_t = (-0.997805 +0.000000i)uu_{x} + (1.457516 +0.000000i)u_{xx} + (-0.320027 +0.000000i)uu_{xx} + | 8.867872%            | 8.648358%               |  |  |  |  |
|      |                                                                                                    |                      |                         |  |  |  |  |
| 1.99 | u_t = (-0.034076 +0.000000i)u + (0.260786 +0.000000i)u^2 + (-0.391764 +0.000000i)u^3 +             | 29.460429%           | 16.816766%              |  |  |  |  |
| 2.00 | $u_t = (0.000286 + 0.000000i) + (-0.039955 + 0.000000i)u + (0.296344 + 0.000000i)u^2 +$            | 67.171925%           | 20.811909%              |  |  |  |  |



- $\bullet$   $\nu <$  0.02: a shock is formed, does not identify the correct terms.
- $0.02 < \nu < 1.42$ : retrieves the original PDE.
- $\nu \ge 1.43$ : smoothing too strong, picks up unrelated terms.

# Effect of Regression Type

The original paper does not test the model with LASSO and Elastic Net. To fill the blank, I modified the STRidge code to develop the algorithms STLasso and STElasticNet for further exploration.

| ν    | Regression<br>Type | Discovered PDE                                                               | Runtime<br>(s) | Mean<br>Error<br>(%) | Std<br>Er-<br>ror(%) |
|------|--------------------|------------------------------------------------------------------------------|----------------|----------------------|----------------------|
| 2.00 | Ridge              | $u_t = 2.221u^2u_{xx} - 1.751u^3u_{xx} - 0.009u_{xxx} + 0.060uu_{xxx} \dots$ | 1.90           | 67.2                 | 20.8                 |
| 2.00 | LASSO              | $u_t = 2.047u_{xx} - 0.750uu_{xx} + 2.284u^2u_{xx} - 1.792u^3u_{xx} \dots$   | 37.88          | 29.9                 | 17.1                 |
| 2.00 | Elastic<br>Net     | $u_t = 2.047u_{xx} - 0.750uu_{xx} + 2.284u^2u_{xx} - 1.792u^3u_{xx} \dots$   | 8.61           | 29.9                 | 17.1                 |
| 0.20 | Ridge              | $u_t = -1.00uu_x + 0.200u_{xx}$                                              | 1.2            | 0.1                  | 0.1                  |
| 0.20 | LASSO              | $u_t = -1.00uu_x + 0.200u_{xx}$                                              | 7.0            | 0.1                  | 0.1                  |
| 0.20 | Elastic<br>Net     | $u_t = -1.00uu_x + 0.200u_{xx}$                                              | 8.9            | 0.1                  | 0.1                  |
| 0.02 | Ridge              | $u_t = -0.040u + 0.296u^2 - 0.457u^3 + 0.057u_x - 1.880uu_x + \dots$         | 3.0            | 742.9                | 2429.8               |
| 0.02 | LASSO              | $u_t = -0.035u + 0.266u^2 - 0.402u^3 - 1.128uu_x + 1.411u^2u_x \dots$        | 18.8           | 701.4                | 2437.6               |
| 0.02 | Elastic<br>Net     | $u_t = -0.035u + 0.266u^2 - 0.402u^3 - 1.128uu_x + 1.411u^2u_x \dots$        | 18.7           | 701.4                | 2437.6               |

### Conclusion and Related Works

### Conclusion

- For Burger's equation, the data-driven method works well until a shock is formed.
- Ridge regression is the most efficient compared to the other two sparse regressions, and accuracy does not seem to differ.
- (Not included in this presentation) Accuracy suffers when a certain level of noise is introduced.

### Related Works

- More on machine learning for PDE-discovery:
  - Brunton et al., "Discovering governing equations from data by sparse identification of nonlinear dynamical systems" (2016)
  - Baddoo et al., "Physics-informed dynamic mode decomposition" (2023)
- Physics-Informed Neural Networks (PINN) for PDE-discovery:
  - Raissi et al., "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations" (2019)
  - Chen et al., "Physics-informed learning of governing equations from scarce data" (2021)
- PDE-discovery for climate science and geophysics:
  - Lai et al., "Machine learning for climate physics and simulations" (2024)
  - Cheng and Alkhalifah, "Robust data driven discovery of a seismic wave equation" (2024)
  - Zanna and Bolton, "Data-driven equation discovery of ocean mesoscale closures", (2020)

## Reference I

- Baddoo, Peter J et al. (2023). "Physics-informed dynamic mode decomposition". In: *Proceedings of the Royal Society A* 479.2271, p. 20220576.
  - Brunton, Steven L, Joshua L Proctor, and J Nathan Kutz (2016). "Discovering governing equations from data by sparse identification of nonlinear dynamical systems". In: *Proceedings of the national academy of sciences* 113.15, pp. 3932–3937.
- Chen, Zhao, Yang Liu, and Hao Sun (2021). "Physics-informed learning of governing equations from scarce data". In: *Nature communications* 12.1, p. 6136.
- Cheng, Shijun and Tariq Alkhalifah (2024). "Robust data driven discovery of a seismic wave equation". In: Geophysical Journal International 236.1, pp. 537–546.
- Lai, Ching-Yao et al. (2024). "Machine learning for climate physics and simulations". In: Annual Review of Condensed Matter Physics 16.
- Raissi, M., P. Perdikaris, and G.E. Karniadakis (2019). "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations". In: *Journal of Computational Physics* 378, pp. 686–707. ISSN: 0021-9991. DOI: https://doi.org/10.1016/j.jcp.2018.10.045. URL:

https://www.sciencedirect.com/science/article/pii/S0021999118307125

### Reference II



Rudy, Samuel et al. (Jan. 2019). "Data-Driven Identification of Parametric Partial Differential Equations". In: SIAM Journal on Applied Dynamical Systems 18, pp. 643–660. DOI: 10.1137/18M1191944.



Wani, Sachin S and Sarita H Thakar (2013). "Crank-Nicolson type method for Burgers' equation". In: International Journal of Applied Physics and Mathematics 3.5, pp. 324–328.



Zanna, Laure and Thomas Bolton (2020). "Data-driven equation discovery of ocean mesoscale closures". In: *Geophysical Research Letters* 47.17, e2020GL088376.