NOTE: (i) B[a, b] =the set of all bounded real-valued functions on [a, b]. (ii) R[a, b] =the set of all Riemann integrable functions on [a, b]. (iii) C[a, b] =the set of all continuous functions on [a, b]. (iv) C[a, b] =the set of all partitions on [a, b].

- (1) Let $f \in B[a, b]$. Prove that f is a constant function if and only if there exists $P \in P[a, b]$ such that L(f, P) = U(f, P).
- (2) Give an example of a function $f \in B[0,1]$ such that $f \notin R[0,1]$ but $f^2 \in R[0,1]$.
- (3) Let $f, g \in B[a, b]$, and let $f(x) \leq g(x)$ for all $x \in [a, b]$. Prove that

$$\int_a^b f \le \int_a^b g \quad \text{and} \quad \overline{\int_a^b} f \le \overline{\int_a^b} g.$$

- (4) True/False (with explanation)? "If $f(x) \leq g(x) \leq h(x)$ for all $x \in [a, b]$, and $f, h \in R[a, b]$, then $g \in R[a, b]$."
- (5) Consider the characteristic function $\chi_{[1,3]}$ on [0,5] (that is, $\chi_{[1,3]}:[0,5] \to \mathbb{R}$ where $\chi_{[1,3]}(x) = 1$ if $1 \le x \le 3$ and $\chi_{[1,3]}(x) = 0$ if $3 < x \le 5$). Prove that $f \in R[0,5]$ and compute $\int_0^5 \chi_{[1,3]}$.
- (6) Define $f:[0,1]\to\mathbb{R}$ by

$$f(x) = \begin{cases} x & \text{if } x \neq 0 \text{ and } \frac{1}{x} \in \mathbb{N} \\ 0 & \text{otherwise.} \end{cases}$$

Prove that f is not continuous at $n, n \in \mathbb{N}$. Is $f \in R[0, 1]$?

- (7) Let $f \in R[a, b]$ be a nonnegative function. If f(r) = 0 for all $r \in [a, b] \cap \mathbb{Q}$, then prove that $\int_a^b f = 0$.
- (8) (i) Give an example of two functions $f, g \in B[a, b]$ such that $f, g \notin R[0, 1]$, but $fg \in R[a, b]$. (ii) Give an example of two functions $f, g \in B[a, b]$ such that $f \in R[a, b]$, $g \notin R[a, b]$, but $fg \in R[a, b]$.
- (9) (a) (Cauchy-Schwarz inequality) Let $f, g \in R[a, b]$. Prove that

$$\Big(\int_a^b fg\Big)^2 \le \Big(\int_a^b f^2\Big)\Big(\int_a^b g^2\Big).$$

[Hint: Expand $\int_a^b (tf+g)^2$ into a quadratic in t. Clearly $\int_a^b (tf+g)^2 \ge 0$ for all $t \in \mathbb{R}$. Now look at the non-positive discriminant.]

- (b) Given that f and g are continuous, prove that equality holds if and only if one of the functions is a constant times the other.
 - (c) Use the Cauchy-Schwarz inequality for an upper estimate on the integral

$$\int_0^{\frac{\pi}{2}} \sqrt{x \sin x} \, dx.$$

[By the way, can you compute the value of the integration?]

(10) (Minkowsky's inequality) Let $f, g \in R[a, b]$. Prove that

$$\left(\int_{a}^{b} (f+g)^{2}\right)^{\frac{1}{2}} \leq \left(\int_{a}^{b} f^{2}\right)^{\frac{1}{2}} + \left(\int_{a}^{b} g^{2}\right)^{\frac{1}{2}}.$$

[Hint: Note that $\int (f+g)^2 = \int f^2 + \int g^2 + 2 \int fg$. Now consider the Cauchy-Schwarz inequality.]

(11) Let $f \in R[0,1]$. Prove that

$$\int_0^1 f = \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^n f(\frac{j}{n}).$$

(12) Use (11) to find the limit

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} \sum_{m=1}^{n} \frac{1}{\sqrt{m}}.$$

- (13) Let $f \in B[a, b]$ and let $P \in P[a, b]$. Prove that (i) U(f, P) is the supremum of the set of all Riemann sums of f over P, and (ii) L(f, P) is the infimum of the set of all Riemann sums of f over P.
- (14) Let $f \in C[a, b]$ and let $P \in P[a, b]$. Prove that U(f, P) and L(f, P) are Riemann sums of f over P.