ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ»

Факультет информационных технологий и анализа больших данных Департамент анализа данных и машинного обучения

Дисциплина: «Теория вероятностей и математическая статистика» Направление подготовки: 01.03.02 «Прикладная математика и информатика» Профиль: «Анализ данных и принятие решений в экономике и финансах» Форма обучения очная, учебный 2020/2021 год, 4 семестр

Билет 104

- 1. Дайте определение случайной величины, которая имеет гамма-распределение $\Gamma(\alpha,\lambda)$, и выведите основные свойства гамма-расределения. Запишите формулы для математичсекого ожидания $\mathbb{E}(X)$ и дисперсии $\mathbb{V}ar(X)$ гамма-распределения Здесь написанно много всего интересного и полезного о гамма-распределении
- 2. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;5] и [0;10] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(0,1\leqslant Z\leqslant 3,714)$.
 - 1) Функция распределения $F_Z(x)$ имеет вид: $F_Z(x) = \begin{cases} 0, x \leqslant 0; \\ \frac{x}{4}, 0 \leqslant x \leqslant 2 \approx 2,0; \\ 1 \frac{1}{x}, x \geqslant 2; \end{cases}$ Плотность распределения $f_Z(x)$ имеет вид: $f_Z(x) = \begin{cases} 0, x < 0; \\ 1 \frac{1}{x}, x \geqslant 2; \\ \frac{1}{4}, 0 \leqslant x \leqslant 2 \approx 2,0; \\ \frac{1}{x^2}, x \geqslant 2; \end{cases}$

3) вероятность равна: $\P(0,1 \le Z \le 3,714) = 0,70575$.

3. (10) Известно, что доля возвратов по кредитам в банке имеет распределение $F(x)=x^{\beta}, 0\leqslant x\leqslant 1$. Наблюдения показали, что в среднем она составляет 91,6667%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 59%

Найдём плотность рапределения как интеграл от ΦP , а дальше всё и вовсе простою Ответ: 30155888444737842659

4. Создайте эмперические совокупности log и соѕ вида log(1), log(2), ..., log(61) и соѕ(1), соѕ(Найдите эмпирическое среднее и эмпирическое стандартное отклонение совокупности log, её четвёртый эмпирический центральный момент и эмпирический эксцесс.

Кроме того, найдите эмпирический коэффициент корреляции признаков log и сов на совокупности натуральных чисел от 1 до 61.

Используя

$$E(X) = sum(X)/n$$

$$Var(X) = E(X^{2}) - [E(X)]^{2}$$

$$\mu_{4}(X) = E((X - E(X))^{4})$$

$$Ex = \frac{\mu_{4}(X)}{[\sigma(X)]^{4}} - 3$$

$$r_{xy} = \frac{E(XY) - E(X) * E(Y)}{\sigma(X) * \sigma(Y)}$$

рассчитаем искомые значения.

Ответы: $3.15966, 0.89438, 3.08587, 1.82265, -1.0 \cdot 10^{-5}$.

5. (10) Эмпирическое распределение признаков X и Y на генеральной совокупности Ω задано таблицей частот

	Y=2	Y=4	Y = 5
X = 200	25	26	10
X = 300	10	10	19

Из Ω случайным образом без возвращения извлекаются 12 элементов. Пусть \bar{X} и \bar{Y} – средние значения признаков на выбранных элементах. Требуется найти: 1) математическое ожидание $\mathbb{E}(\bar{Y})$; 2) стандартное отклонение $\sigma(\bar{X})$; 3) ковариацию $Cov(\bar{X},\bar{Y})$

- 1) математическое ожидание $\mathbb{E}(\bar{Y})$: 3.59 2) стандартное отклонение $\sigma(\bar{X})$: 228.8693
- 3) ковариацию $Cov(\bar{X}, \bar{Y})$: 1.3324
- 6. Юный аналитик Дарья использовала метод Монте-Карло для исследования Дискретного случайного вектора, описанного ниже.

	X = -6	X=-5	X=-4
Y = 5	0.039	0.207	0.054
Y = 6	0.035	0.255	0.41

Дарья получила, что E(Y|X+Y=1)=5.82286. Проверьте, можно ли доверять результату Дарьи аналитически. Сформулируйте определение метода Монте-Карло.

$$E(Y|X + Y = 1) = \frac{\sum (P(X=1-y_i, y=y_i)*y_i)}{\sum (P(X=1-y_i, y=y_i)}.$$

Ответ: 5.82286

Подготовил

Рабов П.Е. Рябов

Утверждаю:

Первый заместитель

руководителя департамента

Дата 01.06.2021

Рекши Феклин В.Г.