Introduction to Moduli Problems

Let \mathcal{C} be a smooth projective curve of genus g over an algebraically closed field \mathbb{k} of characteristic 0. We are interested in the moduli space of vector bundles on \mathcal{C} .

1 Moduli functors

Let S be a noetherian scheme and T is a scheme of finite type over S. Recall the Yoneda lemma: there is a full and faithful functor

$$h: (\mathbf{Sch}_S)^{\mathrm{op}} \to \mathrm{Fun}((\mathbf{Sch}_S)^{\mathrm{op}}, \mathbf{Set}), \quad T \mapsto h_T(S) \coloneqq \mathrm{Hom}_{\mathbf{Sch}_S}(T, S).$$

A functor $F: (\mathbf{Sch}_S)^{\mathrm{op}} \to \mathbf{Set}$ is representable if there exists a scheme M over S such that $F \cong h_M$. We say that M is the fine moduli space of F.

Remark 1. If F is representable by M, then there is a universal object $\mathcal{U} \in F(M)$ given by $\mathrm{id}_M \in h_M(M)$ satisfying the following universal property: for any $T \in \mathbf{Sch}_S$ and any $\xi \in F(T)$, there exists a unique morphism $f: T \to M$ such that $F(f)(\mathcal{U}) = \xi$.

The most famous example of representable functor is the Quot functor. Let S be a noetherian scheme, $\pi: X \to S$ a projective morphism, \mathcal{L} a relatively ample line bundle on X, \mathcal{F} a coherent sheaf on X, and $P \in \mathbb{Q}[t]$ a polynomial. We define a functor

$$\begin{split} \mathcal{Q}uot_{\mathcal{F}/X/S}^{P,\mathcal{L}}: & (\mathbf{Sch}_S)^{\mathrm{op}} \to \mathbf{Set} \\ & T \mapsto \{\pi_T^*\mathcal{F} \twoheadrightarrow \mathcal{Q} \mid \mathcal{Q} \text{ is flat over } T, \forall t \in T, \mathcal{Q}_t \text{ has Hilbert polynomial } P\} / \sim, \end{split}$$

where $\pi_T^*\mathcal{F} \twoheadrightarrow \mathcal{Q}$ and $\pi_T^*\mathcal{F} \twoheadrightarrow \mathcal{Q}'$ are equivalent if $\operatorname{Ker}(\pi_T^*\mathcal{F} \twoheadrightarrow \mathcal{Q}) = \operatorname{Ker}(\pi_T^*\mathcal{F} \twoheadrightarrow \mathcal{Q}')$.

By Grothendieck, $Quot_{\mathcal{F}/X/S}^{P,\mathcal{L}}$ is representable by a projective S-scheme $Quot_{\mathcal{F}/X/S}^{P,\mathcal{L}}$. Yang: Reference... If we take $S = \operatorname{Spec} \mathbb{k}$, X a projective variety and $\mathcal{F} = \mathcal{O}_X$. Then the Quot functor $Quot_{\mathcal{O}_X/X/\mathbb{k}}^{P,\mathcal{L}}$ becomes the Hilbert functor $\mathcal{H}ilb_{X/\mathbb{k}}^{P,\mathcal{L}}$, which is representable by a projective \mathbb{k} -scheme called the Hilbert scheme $Hilb_X^{P,\mathcal{L}}$.

2 Moduli functor of vector bundles

Consider the functor

$$\tilde{\mathcal{M}}_{r,d}: (\mathbf{Sch}_S)^{\mathrm{op}} \to \mathbf{Set}$$

$$T \mapsto \{\mathcal{E} \mid \mathcal{E} \text{ is a vector bundle on } X \times T \text{ of rank } r, \forall t \in T, \deg(\mathcal{E}_t) = d\} / \sim,$$

where $\mathcal{E} \sim \mathcal{E}'$ if there exists a line bundle \mathcal{L} on T such that $\mathcal{E}' \cong \mathcal{E} \otimes \pi_T^* \mathcal{L}$, where $\pi_T : X \times T \to T$ is the projection.

Unfortunately, $\tilde{\mathcal{M}}_{r,d}$ is not representable. There are two main reasons:

- unboundedness and
- jumping phenomenon.

Date: October 3, 2025, Author: Tianle Yang, My Homepage

Definition 2. A family of vector bundles on a variety X is *bounded* if there exists a scheme S of finite type over \mathbbm{k} and a vector bundle \mathcal{E} on $X \times S$ such that every vector bundle in the family is isomorphic to \mathcal{E}_S for some $S \in S$.

If $\tilde{\mathcal{M}}_{r,d}$ is representable by a scheme M of finite type over \mathbb{k} , then the family of vector bundles parametrized by M is bounded. This is impossible since if so, $\{h^0(X,\mathcal{E})\mid \mathcal{E}\in \tilde{\mathcal{M}}_{r,d}(\mathbb{k})\}$ is bounded by semicontinuity theorem, which is not true. For example, consider the family $\mathcal{E}_n=\mathcal{O}_X(nP)\oplus \mathcal{O}_X(-nP)\in \tilde{\mathcal{M}}_{2,0}(\mathbb{k})$ for $n\geq 0$, where $P\in X(\mathbb{k})$ is a fixed point. By Riemann-Roch theorem, we have $h^0(X,\mathcal{E}_n)=n+1-g$ for n sufficiently large.

Let us see a jumping phenomenon example due to Rees. Let $\mathcal E$ be a vector bundle on X of rank r and degree d with a filtration

$$F\,:\,0=\mathcal{E}_0\subset\mathcal{E}_1\subset\cdots\subset\mathcal{E}_r=\mathcal{E}.$$

On $X \times \mathbb{A}^1$, we can construct a vector bundle \mathcal{F} by "deforming" \mathcal{E} to $\bigoplus_{i=1}^r \mathcal{E}_i/\mathcal{E}_{i-1}$ as follows: let t be the coordinate of \mathbb{A}^1 , and define \mathcal{F} to be

$$\bigoplus_{i=1}^r \pi_X^* \mathcal{E}_i \cdot e_i / \mathcal{K},$$

where \mathcal{K} is the subsheaf generated by $\{s(e_{i-1} - te_i) \mid s \in \pi_X^* \mathcal{E}_{i-1} \subset \pi_X^* \mathcal{E}_i, 1 \leq i \leq r\}$ and e_1, \dots, e_r are formal symbols. Suppose that $\mathcal{E}_i/\mathcal{E}_{i-1}$ are vector bundles for all $1 \leq i \leq r$. Then by computing locally, we can see that \mathcal{F} is a vector bundle of rank r on $X \times \mathbb{A}^1$. We have

$$\mathcal{F}_t \cong \begin{cases} \mathcal{E}, & t \neq 0, \\ \bigoplus_{i=1}^r \mathcal{E}_i / \mathcal{E}_{i-1}, & t = 0. \end{cases}$$

We see that all \mathcal{F}_t is of rank r and degree d, but it jumps from \mathcal{E} to $\bigoplus_{i=1}^r \mathcal{E}_i/\mathcal{E}_{i-1}$ at t=0. This is called the *jumping phenomenon*.

Example 3. For a concrete example, let $X = \mathbb{P}^1$, we have an exact sequence

$$0 \to \mathcal{O}(-2) \to \mathcal{O}(-1) \oplus \mathcal{O}(-1) \to \mathcal{O} \to 0$$

by Proposition 17. Fix the standard coordinate $\mathbb{P}^1 = \operatorname{Proj} \mathbb{k}[X_0, X_1]$ and let $e_0 = (1, 0), \ e_1 = (0, 1)$ be the standard basis of $\mathcal{E} = \mathcal{O}(-1) \oplus \mathcal{O}(-1)$. On the open subset $U_i = \{X_i \neq 0\}$, fix a trivialization $\mathcal{O}(-1) \cong \mathcal{O}_{U_i} \cdot \frac{1}{X_i}$. Recall that $\mathcal{O}(-2) \subset \mathcal{E}$ is generated by $(X_1 e_0 - X_0 e_1)/X_i^2$ on U_i for i = 0, 1 and $\mathcal{E} \to \mathcal{O}$ is given by $e_0 \mapsto X_0, \ e_1 \mapsto X_1$.

Consider the filtration $0 \subset \mathcal{O}(-2) \subset \mathcal{E}$. Then on $U_i \times \mathbb{A}^1$, \mathcal{F} is given by the quotient

$$\left(\mathcal{O}\cdot\frac{e_0X_1-X_0e_1}{X_i^2}f_1\oplus\mathcal{O}\cdot\frac{e_1}{X_i}f_2\oplus\mathcal{O}\cdot\frac{e_2}{X_i}f_2\right)\middle/\mathcal{O}\cdot\frac{X_1e_0-X_0e_1}{X_i^2}(tf_1-f_2),$$

where f_1, f_2 are formal symbols. When $t \neq 0$, the quotient makes f_1 and f_2 identified up to a scalar, thus $\mathcal{F}_t \cong \mathcal{E}$. When t = 0, the quotient kills $\frac{X_1e_0-X_0e_1}{X_i^2}f_2$, thus $\mathcal{F}_0 \cong \mathcal{O}(-2)f_1 \oplus \mathcal{E}f_2/\mathcal{O}(-2)f_2 \cong \mathcal{O}(-2) \oplus \mathcal{O}$.

If $\widetilde{\mathcal{M}}_{r,d}$ is representable by a scheme M, then the family of vector bundles parametrized by M does not have jumping phenomenon. Indeed, if \mathcal{F} is an vector bundle on $X \times \mathbb{A}^1$ such that $\mathcal{F}_t \cong \mathcal{E}$ for

 $t \neq 0$, then by the universal property of M, there exists a unique morphism $f : \mathbb{A}^1 \to M$ such that $\mathcal{F} \cong (\mathrm{id}_X \times f)^* \mathcal{U}$, where \mathcal{U} is the universal vector bundle on $X \times M$. Since f is constant on the open subset $\mathbb{A}^1 \setminus \{0\}$, it is constant on \mathbb{A}^1 . Thus, $\mathcal{F}_0 \cong \mathcal{E}$.

To fix the above problems, we need to

- restrict to a smaller family of vector bundles,
- kill jumping phenomenon, and
- weaken the notion of representability.

Definition 4. Let $F: (\mathbf{Sch}_S)^{\mathrm{op}} \to \mathbf{Set}$ be a functor, M a scheme over S, and $\eta: F \to h_M$ a natural transformation. We say that (M, η) corepresents F if for any scheme N over S and any natural transformation $\eta': F \to h_N$, there exists a unique morphism $f: M \to N$ such that the following diagram commutes:

$$F \xrightarrow{\eta} h_{M}$$

$$\downarrow^{h_{f}}$$

$$h_{N}.$$

Definition 5. A scheme M over S is called the *coarse moduli space* of F if

- (a) there exists a natural transformation $\eta: F \to h_M$ such that (M, η) corepresents F;
- (b) $\eta_{\mathbb{k}}: F(\mathbb{k}) \to M(\mathbb{k})$ is a bijection.

Yang: To be continued...

3 Semistable vector bundles

Definition 6. Let \mathcal{C} be a smooth projective curve over \mathbb{k} . For a vector bundle \mathcal{E} of rank r and degree d on \mathcal{C} , we define its slope to be $\mu(\mathcal{E}) := d/r$.

Proposition 7. Let $0 \to \mathcal{E}_1 \to \mathcal{E}_2 \to \mathcal{E}_3 \to 0$ be an exact sequence of non-zero vector bundles on \mathcal{C} . Then $\mu(\mathcal{E}_2) \ge \mu(\mathcal{E}_1)$ (resp. $\mu(\mathcal{E}_2) > \mu(\mathcal{E}_1)$) if and only if $\mu(\mathcal{E}_2) \le \mu(\mathcal{E}_3)$ (resp. $\mu(\mathcal{E}_2) < \mu(\mathcal{E}_3)$).

Proof. We have

$$\mu(\mathcal{E}_2) = \frac{\deg \mathcal{E}_2}{\operatorname{rank} \mathcal{E}_2} = \frac{\deg \mathcal{E}_1 + \deg \mathcal{E}_3}{\operatorname{rank} \mathcal{E}_1 + \operatorname{rank} \mathcal{E}_3}.$$

Note that for any $a, b, c, d \in \mathbb{R}_{>0}$, we have

$$\frac{a+c}{b+d} \ge \frac{a}{b} \iff bc \ge ad \iff \frac{a+c}{b+d} \le \frac{c}{d}.$$

The strict inequality case is similar. Then the proposition follows.

Definition 8. Let \mathcal{C} be a smooth projective curve over \mathbb{k} and \mathcal{E} a vector bundle on \mathcal{C} . We say that \mathcal{E} is *stable* (resp. *semistable*) if for any proper sub-bundle $\mathcal{F} \subset \mathcal{E}$, we have $\mu(\mathcal{F}) < \mu(\mathcal{E})$ (resp. $\mu(\mathcal{F}) \leq \mu(\mathcal{E})$).

Proposition 9. Let \mathcal{E} and \mathcal{F} be vector bundles on \mathcal{C} . Suppose that they are semistable and $\mu(\mathcal{E}) > \mu(\mathcal{F})$. Then any homomorphism $\varphi : \mathcal{E} \to \mathcal{F}$ is zero.

Suppose that they are stable and $\mu(\mathcal{E}) = \mu(\mathcal{F})$. Then any non-zero homomorphism $\varphi : \mathcal{E} \to \mathcal{F}$ is an isomorphism.

Proof. Let $\varphi: \mathcal{E} \to \mathcal{F}$ be a non-zero homomorphism of vector bundles on \mathcal{C} . We have an exact sequence

$$0 \to \operatorname{Ker} \varphi \to \mathcal{E} \to \operatorname{Im} \varphi \to 0.$$

Since \mathcal{F} is vector bundle, hence torsion-free, $\operatorname{Im} \varphi$ is also torsion-free, thus a vector bundle.

If \mathcal{E} and \mathcal{F} are semistable with $\mu(\mathcal{E}) > \mu(\mathcal{F})$, clearly $\operatorname{Ker} \varphi \neq 0$, then by Proposition 7, we have

$$\mu(\mathcal{E}) \le \mu(\operatorname{Im} \varphi) \le \mu(\mathcal{F}).$$

This is a contradiction, thus $\varphi = 0$.

Suppose that \mathcal{E} and \mathcal{F} are stable with $\mu(\mathcal{E}) = \mu(\mathcal{F})$. If $\operatorname{Ker} \varphi \neq 0$, then by Proposition 7, we have

$$\mu(\mathcal{E}) < \mu(\operatorname{Im} \varphi) \le \mu(\mathcal{F}).$$

This is a contradiction, thus φ is injective. Since \mathcal{F} is stable and $\operatorname{Im} \varphi \subset \mathcal{F}$ has the same slope as \mathcal{F} , we have $\operatorname{Im} \varphi = \mathcal{F}$.

Corollary 10. A stable vector bundle is simple as a coherent sheaf, i.e., $\operatorname{End}(\mathcal{E}) \cong \mathbb{k}$.

Proof. Let $\varphi \in \operatorname{End}(\mathcal{E})$ be a non-zero endomorphism. Then there exists $P \in \mathcal{C}(\mathbb{k})$ such that $\varphi_P : \mathcal{E}_P \to \mathcal{E}_P$ is non-zero. Let $a \in \mathbb{k}$ be an eigenvalue of φ_P and consider the endomorphism $\varphi - a \cdot \operatorname{id}_{\mathcal{E}}$. Then $(\varphi - a \cdot \operatorname{id}_{\mathcal{E}})_P : \mathcal{E}_P \to \mathcal{E}_P$ is not an isomorphism, so is $\varphi - a \cdot \operatorname{id}_{\mathcal{E}}$. By Proposition 9, $\varphi - a \cdot \operatorname{id}_{\mathcal{E}} = 0$, thus $\varphi = a \cdot \operatorname{id}_{\mathcal{E}}$.

Lemma 11. Let \mathcal{E} be a semistable vector bundle on X.

- (a) if $\mu(\mathcal{E}) > 2g 2$, then $H^1(X, \mathcal{E}) = 0$;
- (b) if $\mu(\mathcal{E}) > 2g 1$, then \mathcal{E} is globally generated.

Proof. Yang: To be continued...

Let $S_{r,d}$ be set of isomorphism classes of semistable vector bundles on X of rank r and degree d.

Proposition 12. The family $S_{r,d}$ is bounded.

Proof. Yang: To be continued...

Definition 13 (Jordan-Hölder filtration). Let \mathcal{E} be a semistable vector bundle on \mathcal{C} . A Jordan-Hölder filtration of \mathcal{E} is a filtration

$$F: 0 = \mathcal{E}_0 \subset \mathcal{E}_1 \subset \cdots \subset \mathcal{E}_n = \mathcal{E}$$

such that $\mathcal{E}_i/\mathcal{E}_{i-1}$ are stable with $\mu(\mathcal{E}_i/\mathcal{E}_{i-1}) = \mu(\mathcal{E})$ for all $1 \leq i \leq n$.

Proposition 14. Any semistable vector bundle on C admits a Jordan-Hölder filtration. Moreover, the associated graded object

$$\operatorname{gr}(\mathcal{E}) := \bigoplus_{i=1}^n \mathcal{E}_i / \mathcal{E}_{i-1}$$

is independent of the choice of Jordan-Hölder filtration up to isomorphism.

Proof. Yang: To be continued...

Definition 15 (S-equivalence). Two semistable vector bundles \mathcal{E} and \mathcal{F} of the same rank and degree on \mathcal{C} are called *S-equivalent* if their associated graded objects $gr(\mathcal{E})$ and $gr(\mathcal{F})$ (from their Jordan-Hölder filtrations) are isomorphic.

Definition 16. We define a functor

$$\mathcal{M}_{r,d}^{ss}: (\mathbf{Sch}_{\Bbbk})^{\mathrm{op}} \to \mathbf{Set}$$

 $T \mapsto \{\mathcal{E} \mid \mathcal{E} \text{ is a family of semistable vector bundles on } X \text{ of rank } r, \forall t \in T, \deg(\mathcal{E}_t) = d\} / \sim,$

where $\mathcal{E} \sim \mathcal{E}'$ if for any $t \in T$, the vector bundles \mathcal{E}_t and \mathcal{E}_t' are S-equivalent or Yang: Yang: To be continued...

Requirements

Proposition 17. Let \mathbb{P}_R^n be the projective space of dimension n over a ring R. Then we have the following exact sequence of vector bundles on \mathbb{P}_R^n :

$$0 \to \Omega_{\mathbb{P}^n_R/R} \to \mathcal{O}_{\mathbb{P}^n_R}(-1)^{\oplus (n+1)} \to \mathcal{O}_{\mathbb{P}^n_R} \to 0.$$

Proof. Fixing a non-zero element in $H^0(\mathbb{P}^n_R, \mathcal{O}_{\mathbb{P}^n_R}(1))$, this gives a homomorphism $\mathcal{O}_{\mathbb{P}^n_R} \to \mathcal{O}_{\mathbb{P}^n_R}(1)$. Twisting by $\mathcal{O}_{\mathbb{P}^n_R}(-1)$, we get a homomorphism $\mathcal{O}_{\mathbb{P}^n_R}(-1) \to \mathcal{O}_{\mathbb{P}^n_R}$. Yang: To be continued...