Edge / Boundary Detection

Computer Vision

Szeliski 4.2

Edge detection

 Goal: Identify sudden changes (discontinuities) in an image

- Intuitively, most semantic and shape information from the image can be encoded in the edges
- More compact than pixels

Why do we care about edges?

Extract information, recognize objects

 Recover geometry and viewpoint

Origin of Edges

Edges are caused by a variety of factors

Source: Steve Seitz

Characterizing edges

 An edge is a place of rapid change in the image intensity function

Derivatives with convolution

For 2D function f(x,y), the partial derivative is:

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon,y) - f(x,y)}{\varepsilon}$$

For discrete data, we can approximate using finite differences:

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x+1,y) - f(x,y)}{1}$$

To implement above as convolution, what would be the associated filter?

Partial derivatives of an image

Which shows changes with respect to x?

Finite difference filters

Other approximations of derivative filters exist:

Sobel:
$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
; $M_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

Roberts:
$$M_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
 ; $M_y = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

Image gradient

• The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

The gradient points in the direction of most rapid increase in intensity

How does this direction relate to the direction of the edge?

The gradient direction is given by

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Source: Steve Seitz

Intensity profile

With a little Gaussian noise

Source: D. Hoiem

Effects of noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

Where is the edge?

Effects of noise

- Difference filters respond strongly to noise
 - Image noise results in pixels that look very different from their neighbors
 - Generally, the larger the noise the stronger the response
- What can we do about it?

Solution: smooth first

• To find edges, look for peaks in $\frac{d}{dx}(f*g)$

Source: S. Seitz

Derivative theorem of convolution

- Differentiation is convolution, and convolution is associative: $\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$
- This saves us one operation:

Source: S. Seitz

Derivative of Gaussian filter

Tradeoff between smoothing and localization

 Smoothed derivative removes noise, but blurs edge. Also finds edges at different "scales".

Designing an edge detector

- Criteria for a good edge detector:
 - Good detection: the optimal detector should find all real edges, ignoring noise or other artifacts
 - Good localization
 - the edges detected must be as close as possible to the true edges
 - the detector must return one point only for each true edge point
- Cues of edge detection
 - Differences in color, intensity, or texture across the boundary
 - Continuity and closure
 - High-level knowledge

Canny edge detector

- This is probably the most widely used edge detector in computer vision
- Theoretical model: step-edges corrupted by additive Gaussian noise
- Canny has shown that the first derivative of the Gaussian closely approximates the operator that optimizes the product of signal-to-noise ratio and localization

J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Example

original image (Lena)

Derivative of Gaussian filter

Compute Gradients

X-Derivative of Gaussian

Y-Derivative of Gaussian

Gradient Magnitude

Get Orientation at Each Pixel

- Threshold at minimum level
- Get orientation

theta = atan2(gy, gx)

Non-maximum suppression for each orientation

At q, we have a maximum if the value is larger than those at both p and at r. Interpolate to get these values.

Source: D. Forsyth

Sidebar: Interpolation options

- 'nearest'
 - Copy value from nearest known
 - Very fast but creates blocky edges
- 'bilinear'
 - Weighted average from four nearest known pixels
 - Fast and reasonable results
- 'bicubic' (default)
 - Non-linear smoothing over larger area (4x4)
 - Slower, visually appealing, may create negative pixel values

Before Non-max Suppression

After non-max suppression

Hysteresis thresholding

Threshold at low/high levels to get weak/strong edge pixels

Do connected components, starting from strong edge pixels

Hysteresis thresholding

- Check that maximum value of gradient value is sufficiently large
 - drop-outs? use hysteresis
 - use a high threshold to start edge curves and a low threshold to continue them.

Final Canny Edges

Canny edge detector

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" down to single pixel width
- 4. Thresholding and linking (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

Effect of σ (Gaussian kernel spread/size)

The choice of σ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features

Source: S. Seitz

Where do humans see boundaries?

image

gradient magnitude

Berkeley segmentation database:

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

pB boundary detector

pB Boundary Detector

Results

Results

45 years of boundary detection

