LysimeterGEO

D'Amato C., Tubini N., Bottazzi M. & Rigon R.

December 18, 2020

In order to apply the numerical model it is necessary to define a **grid** on which to calculate the solution.

For the column of soil:

- Identify homogeneous **layers** and define their depth
- Determine / hypothesize the parameters of the
 SWRC
- Assume an initial condition for water suction, soil temperature and root distribution (use field measurements, if it is possible).

All this information must be placed in **files .csv**

The grid consists of:

Layer → Soil layer

Control volumes

Control volume centroids

Interface between control volumes


```
grid_input_file_name = project_path + "/data/Grid_input/grid3layer_root.csv"
ic_input_file_name = project_path + "/data/Grid_input/ic_sat.csv"
icRoot_input_file_name = project_path + "/data/Grid_input/icRoot.csv"
parameter_input_file_name = project_path + "/data/Grid_input/TEST14_RichardsLysimeter_VG.csv"
dictionary_input_file_name = project_path + "/data/Grid_input/dictionary.csv"
grid_type = 'classical' #'classical' 'exponential' 'mixed'
dz_min = 0.005
dz max = 0.1
b = 0.1
```

```
psi_interp_model = "linear"
T_interp_model = "linear"
root_interp_model = "linear"

etaR = -2

water_ponding_0 = 0
T_water_ponding_0 = 293.15

output_file_name = project_path + "/data/Grid_NetCDF/GridPRIN.nc"
output_title = '''
output_summary = '''
```


⊞ grid3la	⊞ grid3layer_root.csv ×								
Delimiter:	Delimiter: , v								
	Туре	eta	к	equationStateID	parameterID				
1	L	0	100	1	1				
2	L	-1	100	1	3				
3	L	-2	100	1	2				
4	L	-3	nan	nan	nan				

Type

L: identifies a layer. The first and last row must always be layers (L).

M: identifies a suction measurement point. This point must belong to the computation domain both because it is to be used to reconstruct the initial suction profile and to validate the calculated solution.

eta: is the upward positive vertical coordinate with origin fixed to the surface [m]

☐ grid3layer_root.cs	sv ×		
Delimiter: , Y			•
	Туре	к	•
1	L	100	•
2	L	100	
3	L	100	Ī
4	L	nan	•

K: number of control volumes in which the layer is to be discretized

⊞ grid3la	yer_root.csv	×	
Delimiter	, 🗸		
		Туре	parameterID
1		L	1
2		L	3
3		L	2
4		L	nan

parameterID: number refers to the set of parameter chosen

ic_input_file_name.csv

Psi0: In this column you must enter the value of the initial condition for the suction.

T0: In this column you must enter the value of the initial condition for the soil temperature.

icRoot_input_file_name.csv

⊞ icRoot	.csv X	
Delimiter:	, 💙	
	eta	Root0
1	-0.0	0
2	-0.3	0.0623
3	-0.55	0.0745
4	-0.65	0.0597
5	-0.75	0.0509
6	-0.85	0.0475
7	-0.95	0.0560
8	-1.25	0.0660
9	-1.5	0.0855
10	-1.8	0.0555
11	-1.9	0
12		

Root0: In this column you must enter the value of the initial condition for the root distribution.

Delimiter: , V										
	thetaS	thetaR	thetaWP	thetaFC	n	alpha	alphaSpecificStorage	betaSpecificStorage	К	
1	#sand									
2	0.36689	0.05385	0.08385	0.33689	2.54723	2.991	0.0	0.0	5.40583E-0	
3	#clay									
4	0.46291	0.06707	0.09707	0.43291	1.65275	0.445	0.0	0.0	5.18521E-0	
5	#silt									
6	0.48664	0.13335	0.16335	0.45664	1.34174	0.846	0.0	0.0	9. 7 3284E-	

thetaS: water content at saturation[-].

thetaR: water content residual[-].

thetaWp: water content at wilting point [-].

thetaFc: water content at field capacity [-].

RichardsLysimeter_VG.csv Delimiter:									
1	#sand								
2	0.36689	2.54723	2.991	0.0	0.0	5.40583E-05			
3	#clay								
4	0.46291	1.65275	0.445	0.0	0.0	5.18521E-06			
5	#silt								
6	0.48664	1.34174	0.846	0.0	0.0	9.73284E-07			

alphaSpecificStorage: It is the compressibility of the aquifer expressed in $[Pa^{-1}]$ betaSpecificStorage: It is the compressibility of water expressed in $[Pa^{-1}]$ (it can be assumed constant and equal to 4.4 $10^{-10} Pa^{-1}$)

Ks: hydraulic conductivity [m/s].


```
// Available SWRC models:
// - "Van Genuchten"
// - "Kosugi"
// - "Brooks Corey"
// - "Romano"
// - "Van Genuchten Bachmann"
// - "Brooks Corey Bachmann"
// - "Brooks Corey Bachmann"
```

Create all the input.csv files

Run the **notebook** *1_Grid1D_RichardsLysimeter.ipynb*

Thank you very much for your attention