	Algorianms and Data Structures.	
	Homework 1	
	AsymptoticAnalysis	
	Problem 1	
a)_	$f(\pi) = 3\pi g(\pi) = \chi^3,$	
	$\lim_{x\to\infty} \frac{f(x)}{g(x)} = \lim_{x\to\infty} \frac{3x}{xx^2}$	
	$= \lim_{\chi \to \infty} \frac{3}{\chi^2} \to 0$	
	€ since limit as >1 approaches @ ∞ is 0	
	f(x) = O(g(x)) non-tigintup perbound.	
	Conversely, $\lim_{n\to\infty} \frac{g(n)}{f(n)} \to \lim_{n\to\infty} \frac{n^3}{3n} \to \lim_{n\to\infty} \frac{n^2}{3} = \infty$	
	honce	
	g(x) = w(f(x)) non-tigit lower bound.	
·	with $n_0 = \sqrt{3}$	
Ь	$f(n) = 7n^{0.7} + 2n^{0.2} + 13 \log n$ $g(n) = \sqrt{n}$	1.
	$\lim_{N\to\infty} \frac{7n^{0.7}+2n^{0.2}+13\log n}{\sqrt{n}} = \infty$	
	$\therefore f(n) = w(g(n)) \text{non tight}$	
	and conversely.	
	g(n) = O(f(n)) wontight	
	with no = 0.5	

(c)	$f(n) = \frac{n^2}{\ln n}$ g(n) = n logn	-
\ \	logn	
	$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{n^2}{\log n} = \infty$	
	$n \rightarrow \infty$ g(n) $n \rightarrow \infty$ $\frac{10911}{n \log n}$	-
	111-911	
	$f(n) = \Omega(g(n))$	
	and conversely;	
		•
	g(n) = O(f(n))	
	uth no = 1.5	
a)	$f(n) = (\log(3n))^3$ $g(n) = 9\log n$	
	$\lim_{n\to\infty} \frac{f(n)}{f(n)} \to \lim_{n\to\infty} \left(\frac{\log(3n)}{n}\right)^3 = \infty$	
	$n \rightarrow \infty$ $g(n)$ $n \rightarrow \infty$ $q \log n$	•
}	Timb.	
1		
	$f(n) = \mathcal{M}(g(n))$ and conversely,	
	g(n) = O(f(n)).	
	vall no = 4.	
-		