KAJIAN SEJUMLAH METODE UNTUK MENCARI SOLUSI NUMERIK PERSAMAAN DIFERENSIAL

Mulyono¹⁾

¹⁾Program StudiSistemKomputer FMIPA UNJ mulyono_unj_2006@yahoo.co.id

Abstrak

Penelitian ini bertujuan untuk membandingkan sejumlah metode untuk mencari penyelesaian numerik dari persamaan diferensial, khususnya persamaan diferensial biasa. Pada penelitian ini dibandingkan 3 metode untuk mencari penyelesaian numerik persamaan diferensial biasa, yaitu : metode Euler, metode Heun dan metode Runge-Kutta Orde ke-4. Dua faktor utama yang paling penting untuk dipertimbangkan dalam membandingkan metode-metode tersebut adalah akurasi penyelesaian numerik dan waktu komputasinya. Dalam penelitian ini digunakan software MATLAB sebagai bahasa pemrogramannya.

Hasil dari penelitian ini adalah bahwa hasil dari metode Runge Kutta orde 4 paling mendekati solusi analitiknya, sehingga metode Runge Kutta orde 4 adalah paling bagus, dibanding metode Euler dan metode Heun.

Kata Kunci: Euler, Heun, Runge-Kutta, Solusinumerik.

1. PENDAHULUAN

Banyak permasalahan dalam bidang ilmu pengetahuan alam dan teknik yang dapat dirumuskan ke dalam bentuk persamaan diferensial, seperti profil muka air di sungai, teori getaran dan lain sebagainya. Persamaan diferensial adalah suatu persamaan yang mengandung turunan fungsi. Penyelesaian persamaan diferensial adalah suatu fungsi yang memenuhi persamaan diferensial dan kondisi awal yang diberikan pada persamaan diferensial tersebut. Didalam penyelesaian persamaan diferensial secara analitis, terlebih dahulu dicari penyelesaian umum yang mengandung konstanta sembarang, dan selanjutnya mengevaluasi konstanta tersebut sedemikian sehingga hasilnya sesuai dengan kondisi awal (Sianipar, 2013). Metode penyelesaian persamaan diferensial secara analitis terbatas pada persamaan-persamaan dengan bentuk tertentu, dan biasanya hanya bisa menyelesaikan persamaan diferensial linier dengan koefisien konstan.

Metode penyelesaian persamaan diferensial secara numerik tidak ada batasan mengenai bentuk persaman diferensial (Klusalas, 2005). Penyelesaian secara numerik berupa tabel nilai-nilai numerik dari fungsi untuk berbagai variabel bebas, dan penyelesaiannya dilakukan pada titik-titik yang ditentukan secara berurutan.

Dengan adanya sejumlah metode untuk mencari penyelesaian persamaan diferensial secara numerik khususnya pada persamaan diferensial biasa, maka perlu dilakukan evaluasi dan kajian terhadap sejumlah metode untuk mencari penyelesaian persamaan diferensial secara numerik.

Pada penelitian ini, ada dua faktor utama yang paling penting untuk dipertimbangkan dalam membandingkan metode-metode tersebut yaitu akurasi penyelesaian numerik dan waktu komputasinya.

Adapun tujuan dari penelitian ini adalah melakukan kajian terhadap tiga metode untuk mencari penyelesaian persamaan diferensial secara numerik yaitu metode Euler, metode Heun, metode Runge-Kutta dengan melihat akurasi penyelesaian numerik dan waktu komputasinya, sehingga bisa mengetahui metode mana yang paling baik. Bahasa pemrograman yang digunakan untuk membuat implementasi dari setiap metode adalah MATLAB (Yang, 2005).

Pada penelitian ini diberikan beberapa batasan sebagai berikut:

- a. Persamaan diferensial yang dicari penyelesaian numeriknya adalah persamaan diferensial biasa.
- b. Perangkat keras yang digunakan adalah Laptop merk Acer, Intel Core i3, 2 GB DDR 3 Memory.

c. Bahasa pemrograman yang digunakan adalah Matlab versi 7.7 (R2008b)

Persamaan diferensial adalah suatu deskripsi matematika tentang bagaimana variabel-variabel dan derivatifnya terhadap satu atau lebih variabel independen, saling mempengaruhi satu dengan yang lain secara dinamis. Penyelesaian persamaan diferensial menunjukkan bahwa variabel-variabel dependen akan berubah manakala variabel-variabel independen juga berubah. Banyak permasalahan dalam bidang ilmu pengetahuan alam dan teknik yang dapat dirumuskan ke dalam bentuk persamaan diferensial, seperti profil muka air di sungai, teori getaran dan lain sebagainya (Klusalas, 2005).

Penyelesaian persamaan diferensial adalah suatu fungsi yang memenuhi persamaan diferensial dan kondisi awal yang diberikan pada persamaan diferensial tersebut. Didalam penyelesaian persamaan diferensial secara analitis, terlebih dahulu dicari penyelesaian umum yang mengandung konstanta sembarang, dan selanjutnya mengevaluasi konstanta tersebut sedemikian sehingga hasilnya sesuai dengan kondisi awal (Klusalas, 2005).

Pada penelitian ini akan dibahas beberapa metode untuk mencari solusi numerik dari persamaan-persamaan diferensial biasa dimana semua variabel dependen (x) bergantung hanya pada satu variabel independen (t). Metode-metode yang akan dibahas dan dibandingkan adalah :metode Euler, metode Heun, metode Runge-Kutta (Klusalas, 2005).

a. Metode Euler

Metode Euler adalah metode untuk mencari solusi persamaan diferensial biasa yang paling mudah untuk dipahami dan paling mudah untuk dibuat programnya, sehingga memberikan pengetahuan dasar tentang solusi numerik dari persamaan diferensial biasa secara jelas.

Misalkan diberikan persamaan diferensial orde-pertama sebagai berikut : y'(t) + a y(t) = r dengan $y(0) = y_0$. Untuk mencari solusi analitik persamaan diferensial tersebut kadang-kadang tidak mudah, sehingga perlu dipelajari metode-metode solusi numerik dari persamaan diferensial.

Langkah pertama $y'(t) = \frac{dy}{dt}$ pada persamaan diferensial diganti dengan suatu derivatif numerik, dimana besarnya partisi atau ukuran langkah (h) ditentukan berdasarkan akurasi yang diinginkan dan waktu komputasi.

Metode Euler mendekati persamaan diferensial y'(t) + a y(t) = r dengan $\frac{y(t+h)-y(t)}{h} + a y(t) = r$, sehingga:

$$y(t+h) = (1-ah) y(t) + hr dengan y(0) = y_0.$$
 (1.1)

Persamaan (1.1) diselesaikan langkah demi langkah dengan menambah t sebesar h dimulai dari t = 0 sebagai berikut:

 $y(h) = (1-ah) y(0) + hr = (1-ah) y_0 + hr$

 $y(2h) = (1-ah) y(h) + hr = (1-ah)[(1-ah) y_0 + hr] + hr = (1-ah)^2 y_0 + (1-ah)hr + hr$

y(3h) = (1-ah) y(2h) + hr

= $(1-ah)[(1-ah)^2 y_0 + (1-ah)hr + hr] + hr$

 $= (1-ah)^3 y_0 + (1-ah)^2 hr + (1-ah)hr + hr$

 $=(1-ah)^3y_0 + \sum_{n=0}^2 (1-ah)^n hr$, dan seterusnya.

{y(kh)} adalah solusi numerik dari persamaan diferensial orde-pertama.

Metode Euler dapat diterapkan untuk menyelesaikan suatu persamaan diferensial vektor orde pertama : y'(t) = f(t, y) dengan $y(t_0) = y_0$, ekuivalen dengan persamaan diferensial orde-tinggi. Algoritma untuk mencari solusi persamaan diferensial tersebut dideskripsikan sebagai : $y_{k+1} = y_k + hf(t_k, y_k)$ dengan $y(t_0) = y_0$ (Klusalas, 2005).

b. Metode Heun

Untuk menyelesaikan persamaan diferensial orde pertama : y'(t) = f(t, y) dengan $y(t_0) = y_0$ dengan metode Heun adalah dengan cara mengintegralkan kedua sisi persamaan diferensial tersebut, sebagai berikut (Klusalas, 2005):

$$\int_{t_{k}}^{t_{k+1}} \frac{y'(t)dt}{y'(t)dt} = \int_{t_{k}}^{t_{k+1}} \frac{f(t,y)}{f(t,y)} dt dengan \ y(t_{0}) = y_{0}$$

$$y(t) \Big|_{t_{k}}^{t_{k+1}} = \int_{t_{k}}^{t_{k+1}} f(t,y) dt$$

$$y(t_{k+1})=y(t_k)+\int_{t_k}^{t_{k+1}}f(t,y)\;\mathrm{d}t\;\;\mathrm{dengan}\;\;y(t_0)=y_0$$
 Jika digunakan metode trapesoidal, maka didapat :

$$y(t_{k+1}) = y(t_k) + \frac{h}{2} \{ f(t_k, y_k) + f(t_{k+1}, y_{k+1}) \}, \text{ dengan } h = t_{k+1} - t_k.$$
 (1.2)

 $y(t_{k+1}) = y(t_k) + \frac{h}{2} \{ f(t_k, y_k) + f(t_{k+1}, y_{k+1}) \}, \text{ dengan } h = t_{k+1} - t_k.$ Ruas kanan persamaan (1.2) memuat y_{k+1} , yang tidak diketahui pada saat t_k , sehingga y_{k+1} diganti dengan pendekatan berikut:

$$y_{k+1} \cong y_k + hf(t_k, y_k)$$
 (1.3)

Sehingga persamaan (1.2) menjadi :

$$y(t_{k+1}) = y(t_k) + \frac{h}{2} \{ f(t_k, y_k) + f(t_{k+1}, y_k + hf(t_k, y_k)) \}$$
(1.4)

 $y(t_{k+1}) = y(t_k) + \frac{h}{2} \{ f(t_k, y_k) + f(t_{k+1}, y_k + hf(t_k, y_k)) \}$ (1.4) Persamaan (1.4) adalah persamaan untuk mencari solusi dengan metode Heun. Kesalahan pemotongan metode Heun adalah $O(h^2)$ (yaitu proporsional dengan h^2)[4].

c. Metode Runge-Kutta

Metode Runge-Kutta orde-keempat, algoritmanya dideskripsikan sebagai berikut (Klusalas,

$$y_{k+1} = y_k + \frac{h}{6} (f_{k_1} + 2f_{k_2} + 2f_{k_3} + f_{k_4}), \text{ dengan}:$$

$$f_{k_1} = hf(t_k, y_k)$$

$$f_{k_2} = f \left(t_k + \frac{h}{2}, y_k + \frac{h}{2} f_{k_1} \right)$$

$$f_{k_3} = f \left(t_k + \frac{h}{2}, y_k + \frac{h}{2} f_{k_2} \right) (1.5)$$

$$f_{k_4} = f \left(t_k + h, y_k + h f_{k_3} \right)$$

2. METODE PENELITIAN

Pelaksanaanpenelitianinidilakukandengantahapan-tahapansebagaiberikut:

- Menyiapkan sejumlah persamaan diferensial biasa yang akan digunakan pada penelitian ini, yaitu yang akan dicari solusi numeriknya dengan menggunakan 3 metode yang akan diteliti yaitu :metode Euler, metode Heun, metode Runge-Kutta.
- b. Mengimplementasi 3 metode yang akan dikaji, yaitu metode Euler, metode Heun, metode Runge-Kutta(Yang, 2005).
- c. Melakukan eksperimen terhadap 3 metode yang sudah dibuat programnya dengan menggunakan persamaan diferensial yang sama.
- d. Melakukan evaluasi terhadap hasil-hasil uji coba yang dilakukan. Parameter yang digunakan untuk melakukan evaluasi kinerja dari ketiga metode tersebut adalah akurasi penyelesaian numerik dan waktu komputasinya.

3. HASIL PENELITIAN DAN PEMBAHASAN

Adapunyang dipakai untuk penelitian adalah 2 persamaan diferensial seperti berikut ini:

- a. y' = y + 14t 13 yang merupakan persamaan diferensial linier (orde pertama) yang mudah
- dicari penyelesaiannya secara analitik.

 b. $y' = \frac{t}{e^{2y+1}} + 50e^{-yt} + 2t + 5$ adalah persamaan diferensial yang sangat susah dicari penyelesaiannya secara analitik.

Untuk mencari penyelesaian analitik dari persamaan diferensial y' = y + 14t - 13, yaitu mencari penyelesaian khususnya pada titik (0,0), maka uraiannya adalah sebagai berikut ini: a. Penyelesaian diferensial tersebut mempunyai bentuk umum : $\frac{dy}{dt} + y P(t) = Q(t)$.

- b. Dengan metode Lagrange, maka penyelesaian umum dari persamaan diferensial dalam bentuk $\frac{dy}{dt} + y P(t) = Q(t) \text{ adalah} : ye^{\int P(t)dt} = \int Q(t) e^{\int P(t)dt} dt + C$
- c. Persamaan diferensial: y' = y + 14t 13 atau $\frac{dy}{dt} + y(-1) = 14t 13$, jadi P(t) = -1 dan O(t) = 14t-13.
- d. $e^{\int P(t)dt} = e^{\int -1dt} = e^{-t}$
- $\int Q(t) e^{\int P(t)dt} dt = \int (14t 13) e^{-t} dt = 14 \int t e^{-t} dt 13 \int e^{-t} dt$

$$= 14 \int t \, d(-e^{-t}) + 13e^{-t}$$

$$= 14 \left[(-te^{-t}) - \int -e^{-t} \, dt \right] + 13e^{-t}$$

$$= -14te^{-t} - 14e^{-t} + 13e^{-t}$$

$$= -14te^{-t} - e^{-t}$$

Jadi penyelesaian umumnya adalah:

$$ye^{\int P(t)dt} = \int Q(t) e^{\int P(t)dt} dt + C$$

$$ye^{-t} = -14te^{-t} - e^{-t} + C$$

$$y = \frac{-14te^{-t} - e^{-t} + C}{e^{-t}} = Ce^{t} - 14t - 1$$

Mencari C pada titik (t, y) = (0, 0), yaitu :

$$y = Ce^{t} - 14t - 1$$

0 = C(1) - 0 - 1, maka C = 1.

Jadi penyelesaian khusus persamaan diferensial y' = y + 14t - 13 pada titik (t, y) = (0,0) adalah : $y = e^t - 14t - 1$.

Untuk persamaan diferensial yang kedua : $y' = \frac{t}{e^{2y}+1} + 50e^{-yt} + 2t + 5$, tidak dicari penyelesaian analitiknya.

Dengan menggunakan persamaan diferensial y' = y + 14t - 13 yang pada titik (t, y) = (0,0) penyelesaian khususnya (yang dicari secara analitik) adalah : $y = e^t - 14t - 1$, didapat sejumlah tabel dan grafiknya sebagai berikut :

Tabel 1. Tabel dengan $y_0=0$; h=0,1; batas bawah t=5 dan batas atas t=7.

t	y_eksak	y Euler	y Heun	y_RK 4
5 0000000	•	7 —	~ —	•
5,0000000	77,4131591	46,3908529	76,2698692	77,4125901
5,1000000	91,6219073	56,7299382	90,3332055	91,6212659
5,2000000	107,4722419	68,2429320	106,0201920	107,4715191
5,3000000	125,1368100	81,0472252	123,5013122	125,1359958
5,4000000	144,8064162	95,2719477	142,9649500	144,8054994
5,5000000	166,6919323	111,0591425	164,6192697	166,6909003
5,6000000	191,0264074	128,5650567	188,6942930	191,0252462
5,7000000	218,0674010	147,9615624	215,4441938	218,0660947
5,8000000	248,0995599	169,4377186	245,1498342	248,0980910
5,9000000	281,4374679	193,2014905	278,1215667	281,4358164
6,0000000	318,4287935	219,4816395	314,7023312	318,4269374
6,1000000	359,4577701	248,5298035	355,2710760	359,4556847
6,2000000	404,9490411	280,6227838	400,2465390	404,9466986
6,3000000	455,3719101	316,0650622	450,0914256	455,3692795
6,4000000	511,2450379	355,1915685	505,3170253	511,2420844
6,5000000	573,1416330	398,3707253	566,4883129	573,1383179
6,6000000	641,6951892	446,0077978	634,2295858	641,6914691
6,7000000	717,6058252	498,5485776	709,2306923	717,6016515
6,8000000	801,6472917	556,4834354	792,2539150	801,6426102
6,9000000	894,6747156	620,3517789	884,1415761	894,6694657
7,0000000	997,6331584	690,7469568	985,8244416	997,6272723

Gambar 1. Grafik dari tabel 1., dengan $y_0=0$; h=0,1; batas bawah t = 5 dan batas atas t = 7

Tabel 2. Tabel dengan $y_0=0$; h=0,2; batas bawah t=10 dan batas atas t=14.

t	y_eksak	y_Euler	y_Heun	y_RK 4
10,0000000	21885,4657948	8959,438150	20655,561453	21882,978935
10,2000000	26759,3860743	10776,725780	25228,004973	26756,287871
10,4000000	32713,0256744	12958,030936	30807,002067	32709,167325
10,6000000	39985,4374309	15576,157123	37613,994521	39980,634211
10,8000000	48868,6011364	18718,468548	45919,141316	48862,623785
11,0000000	59719,1417152	22489,802257	56052,036405	59711,705711
11,2000000	72972,6418334	27015,962709	68414,784414	72963,394429
11,4000000	89161,1233608	32447,915251	83497,952986	89149,626876
11,6000000	108934,399277	38966,818301	101900,034642	108920,111106
11,8000000	133086,152946	46790,061961	124351,190264	133068,400465
12,0000000	162585,791419	56178,514353	151742,216121	162563,741008
12,2000000	198617,351143	67445,217224	185159,883668	198589,969867
12,4000000	242627,017498	80965,820669	225950,054075	242593,025716
12,6000000	296381,165298	97191,104802	275670,277972	296338,978049
12,8000000	362037,249611	116662,005763	336353,967126	361984,904149
13,0000000	442230,392009	140027,646915	410388,683894	442165,458208
13,2000000	540179,137247	168066,976298	500711,654350	540098,606855
13,4000000	659814,624766	201714,731558	610906,294307	659714,774533
13,6000000	805938,359124	242092,597870	745344,371055	805814,581655
13,8000000	984414,911229	290546,597444	909359,440687	984261,505993
14,0000000	1202407,284165	348691,956932	1109458,441638	1202217,19930

Gambar 2. Grafik dari tabel 2., dengan y_0 =0; h=0,2; batas bawah t = 10 dan batas atas t = 14

Tabel 3. Tabel dengan y_0 =0; h=0,1; batas bawah t = 20 dan batas atas t = 22.

t	y_eksak	y_Euler	y_Heun	y_RK 4
20,0000000	485164914,4098	189904995,4605	470387036,9022	485157474,1656
20,1000000	536190182,0294	208895521,7065	519777703,8819	536181918,1744
20,2000000	592581824,0368	229785100,7172	574354391,0415	592572645,6274
20,3000000	654904226,9532	252763637,7689	634661630,4998	654894033,0260
20,4000000	723781134,3483	278040028,6658	701301130,2483	723769812,8191
20,5000000	799901889,4755	305844058,7923	774937777,6174	799889315,9168
20,6000000	884028334,4513	336428492,0716	856306273,1072	884014370,7353
20,7000000	977002435,0269	370071368,8187	946218460,7705	976986927,8207
20,8000000	1079754707,2645	407078533,3806	1045571428,2854	1079737486,3590
20,9000000	1193313530,4550	447786414,5387	1155356457,5363	1193294406,9116
21,0000000	1318815439,4832	492565083,9525	1276668915,0056	1318794203,5766
21,1000000	1457516499,6514	541821620,4478	1410719180,6562	1457492918,5873
21,2000000	1610804877,8028	596003810,7326	1558844724,3471	1610778693,1852
21,3000000	1780214735,5620	655604220,1858	1722523450,2726	1780185660,5830
21,4000000	1967441583,7400	721164670,7244	1903388442,5672	1967409300,0616
21,5000000	2174359251,5765	793281166,4568	2103244259,1998	2174323405,8712
21,6000000	2403038640,6527	872609311,9025	2324084936,7257	2402998840,7644
21,7000000	2655768451,1702	959870272,0328	2568113885,5389	2655724261,8555
21,8000000	2935078088,0323	1055857328,3161	2837765874,1245	2935029026,2345
21,9000000	3243762975,9777	1161443090,3677	3135731321,6586	3243708505,5844
22,0000000	3584912537,1316	1277587428,7644	3464983141,3308	3584852063,1577

Gambar 3. Grafik dari tabel 3., dengan $y_0=0$; h=0,1; batas bawah t = 20 dan batas atas t = 22

Dengan mengamati tabel 1 sampai dengan 3 terlihat bahwa data pada kolom 2 (y_eksak) dan kolom 5 (RK_4) mempunyai nilai yang hampir sama artinya bahwa metode Runge-Kutta orde 4 adalah metode yang paling baik dibanding metode Euler dan Heun, karena selalu mendekati solusi analitiknya.

Dari Persamaan diferensial yang ke-2: $y' = \frac{t}{e^{2y}+1} + 50e^{-yt} + 2t + 5$, yang tidak dicari penyelesaian analitiknya, didapat sejumlah tabel penyelesaian numerik dan grafik yang bersesuaian sebagai berikut:

Tabel 4. Tabel dengan $y_0=0$; h=0,05; batas bawah t=2 dan batas atas t=3.

t	y_Euler	y_Heun	y_RK 4
2,0000000	22,0365373	21,2677551	21,2989844
2,0500000	22,4865373	21,7202551	21,7514844
2,1000000	22,9415373	22,1777551	22,2089844
2,1500000	23,4015373	22,6402551	22,6714844
2,2000000	23,8665373	23,1077551	23,1389844
2,2500000	24,3365373	23,5802551	23,6114844
2,3000000	24,8115373	24,0477551	24,0899844
2,3500000	25,2915373	24,5402551	24,5714844
2,4000000	25,7765373	25,0277551	25,0589844
2,4500000	26,2665373	25,5202551	25,5514844
2,5000000	26,7615373	26,0177551	26,0489844
2,5500000	27,2615373	26,5202551	26,5514844
2,6000000	27,7665373	27,0277551	27,0589844
2,6500000	28,2765373	27,5402551	27,5714844
2,7000000	28,7915373	28,0577551	28,0889844
2,7500000	29,3115373	28,5802551	28,6114844
2,8000000	29,8365373	29,1077551	29,1389844
2,8500000	30,3665373	29,6402551	29,6714844
2,9000000	30,9015373	30,1777551	30,2089844
2,9500000	31,4415373	30,7202551	30,7514844
3,0000000	31,9865373	31,2677551	31,2989844

Gambar 4. Grafik dari tabel 4., dengan y_0 =0; h=0,05; batas bawah t = 2 dan batas atas t = 3

Tabel 5. Tabel dengan y_0 =0; h=0,05; batas bawah t = 1 dan batas atas t = 2.

t	y_Euler	y_Heun	y_RK 4
1,0000000	14,0865344	13,2677506	13,2989804
1,0500000	14,4365363	13,6202535	13,6514830
1,1000000	14,7915370	13,9777545	14,0089839
1,1500000	15,1515372	14,3402549	14,3714842
1,2000000	15,5165373	14,7077550	14,7389843
1,2500000	15,8865373	15,0802550	15,1114844
1,3000000	16,2615373	15,4577551	15,4889844
1,3500000	16,6415373	15,8502551	15,8714844
1,4000000	17,0265373	16,2277551	16,2589844
1,4500000	17,4165373	16,6202551	16,6514844
1,5000000	17,8115373	17,0177551	17,0489844
1,5500000	18,2115373	17,4202551	17,4514844
1,6000000	18,6165373	17,8277551	17,8589844
1,6500000	19,0265373	18,2402551	18,2714844
1,7000000	19,4415373	18,6577551	18,6889844
1,7500000	19,8615373	19,0802551	19,1114844
1,8000000	20,2865373	19,5077551	19,5389844
1,8500000	20,7165373	19,9402551	19,9714844
1,9000000	21,1515373	20,3777551	20,4089844
1,9500000	21,5915373	20,8202551	20,8514844
2,0000000	22,0365373	21,2677551	21,2989844

Gambar 5. Grafik dari tabel 5., dengan y_0 =0; h=0,05; batas bawah t = 1 dan batas atas t = 2

Tabel 6. Tabel dengan y_0 =0; h=0,05; batas bawah t = 0 dan batas atas t = 1.

t	y_Euler	y_Heun	y_RK 4
0,0000000	0,0000000	0,0000000	0,0000000
0,0500000	2,7500000	2,5919230	2,6449782
0,1000000	5,1838461	4,7023983	4,7799564
0,1500000	6,9325505	6,2157228	6,2900053
0,2000000	8,0812910	7,2561373	7,3184882
0,2500000	8,8478924	7,9859949	8,0374868
0,3000000	9,3966035	8,5279601	8,5717142
0,3500000	9,8257702	8,9607833	8,9995013
0,4000000	10,1910106	9,3322293	9,3678129
0,4500000	10,5234315	9,6706560	9,7043482
0,5000000	10,8403757	9,9926920	10,0252743
0,5500000	11,1514415	10,3079539	10,3399037
0,6000000	11,4618650	10,6219004	10,6535009
0,6500000	11,7744428	10,9375565	10,9689706
0,7000000	12,0906289	11,2565518	11,2878700
0,7500000	12,4111565	11,5797366	11,6110070
0,8000000	12,7363832	11,9075394	11,9387870
0,8500000	13,0664771	12,2401685	12,2714057
0,9000000	13,4015146	12,5777216	12,6089541
0,9500000	13,7415291	12,9202426	12,9514732
1,0000000	14,0865344	13,2677506	13,2989804

Gambar 6. Grafik dari tabel 6., dengan $y_0=0$; h=0,05; batas bawah t=0 dan batas atas t=1

Dengan mengamati tabel 4 sampai dengan 6terlihat bahwa data pada kolom 3 (y_Heun) yang paling mendekati data pada kolom 4 (y_RK 4) artinya bahwa metode Heun adalah metode yang paling mendekati metode Runge-Kutta orde 4 tingkat akurasinya.

4. SIMPULAN

Dengan mengamati tabel 1 sampai dengan tabel 6 di atas serta grafik yang bersesuaian, maka dapat diambil kesimpulan sebagai berikut:

- a. Dengan mengamati data-data pada tabel 1 sampai dengan 3, maka dapat disimpulkan bahwa hasil dari metode Runge Kutta orde 4 paling mendekati solusi analitiknya, sehingga metode Runge Kutta orde 4 adalah paling bagus, dibanding metode Euler dan metode Heun.
- b. Metode Euler kelihatan paling kasar (paling jelek akurasinya).
- c. Kalau melihat tabel 4 sampai dengan tabel 6, maka solusi numerik dari metode Heun selalu mendekati solusi dari metode Runge Kutta orde ke-4

5. DAFTAR PUSTAKA

A.A. Guanidi. (2010). MATLAB Programming, Bandung: Penerbit INFORMATIKA.

Aris Sugiharto.(2006). *Pemrograman GUI dengan MATLAB*, Yogyakarta: Penerbit ANDI OFFSET.

Jaan Klusalaas.(2005). Numerical methods in engineering with MATLAB, Cambridge Univ. Press.

- R.H. Sianipar.(2013). Pemrograman MATLAB dalam contoh dan penerapan, Bandung: Penerbit INFORMATIKA.
- S.R. Otto dan J.P. Denier. (2005). *An introduction to programming and numerical methods in MATLAB*, Verlag: Springer .
- Steven T.Karris. (2007). *Numerical analysis using MATLAB and Excel*, California: Orchard Publications..
- Wahana Komputer.(2013). *Ragam aplikasi pengolahan image dengan MATLAB*, Elex Media Komputindo.
- Won Y.Yang, dkk. (2005). Applied numerical methods using MATLAB, Canada: Wiley-Interscience.