۵.1	Introduction, Inequalities
	Inequality Laws:
	- Addition: You can only add inequalities in the same direction
	- Subtraction
	- Multiplication: This is legal provided that the inequalifies are in the same direction and the numbers are positive
	- Sign-Change Law: Changing signs reverses an inequality
	- Reciprocal Law: The inequality reverses, if both numbers are positive or negative
2.2	Estimations
	- If c is a number we are estimating, and K <c<m, a="" an<="" bound="" c;="" estimate="" for="" is="" k="" lower="" m="" or="" say="" th="" we=""></c<m,>
	upper estimate or upper estimate for C
	- If two sets of upper and lower cotimates satisfy the inequalities $K < K' < c < M' < M$, we say K' , M' are otronger or sharper
	estimates for c , while K,M are neaker estimates
2.3	Proving Boundedness
	- To show {and is bounded above, get one upper estimate: an < B for all n
	- To show $\{a_n\}$ is not bounded above, get a lower estimate for each term: $a_n \geq B_n$, such that B_n tends
	to ∞ as n > ∞
2.4	Absolute Values, Estimating Size.
	Absolute Value: $ \begin{cases} a, & \text{if } a \ge 0 \\ - & \text{befine } a = \begin{cases} -a, & \text{if } a < 0 \end{cases} $
	absolute value measures magnitude
	- a is guaranteed to be non-negative
	- The absolute value is also an efficient way to give symmetric bounds: $ a \le M \implies -M \le a \le M$
	$K \leq a \leq L \Rightarrow a \leq M$, where $M = \max(k , L)$
	Absolute Value Laws
	i) Multiplication law:
	$- ab = a b ; \left \frac{a}{b}\right = \frac{ a }{ b }, \text{ if } b \neq 0$
	ii) Triangle Inequality:
	$- a+b \leq a + b $
	iii) Extended Triangle Inequality
	$-\left a_1+\cdots+a_n\right \leq a_1 +\cdots+ a_n $

	Difference Forms of the Triangle Inequality: a-b = a - b , a+b = a - b
	=> In either case, a should be larger than b
	- To estimate size, you have to use 11, and the estimations have to be in the right direction:
	· fo show a is small in size, show lalk a small number
	. to show a is large in size, show a > a large number
	- You can't use the trlangle inequality mechanically.
	- If a and b are close, you won't see the triangle inequality,
2.5	Approximations
	- The standard way of writing the distance between a and b is less than $e: a-b < e$ or $a \underset{\epsilon}{pprox} b$
	Theorem :
	- For any two real numbers a < b , there is
	i) a rational number $r \in Q$ between $a < r < b$
	ii) an irrational number $S \not\in Q$ between a < r < b
	Transifive Law:
	$A \underset{\epsilon}{\approx} b$ and $b \underset{\epsilon'}{\approx} C \Rightarrow A \underset{\ell+e'}{\approx} C$
	Additive Law:
	$a \underset{e}{\approx} a'$ and $b \underset{e'}{\approx} b' \Rightarrow a' + b'$
2,6	The Terminology "for 1 large"
	- In estimating or approximating the terms of a sequence {an}, sometimes the estimate is not valid for all terms
	of the sequence; for example, it might fail for the first few terms, but be valid for the later terms.
	In such a case, one has to specify the values of n for which the estimate holds.
	- Sometimes a property of a sequence an is not true for the first few terms, but only starts to hold
	after a certain place in the sequence
	- The sequence {an} has property P for n large if there is a number N such that an has property P
	for all $n \ge N$ $(n \gg 1)$
	A N need not be an integer

- We have to make the N explicit whenever we have to prove that some property holds for large n. We, in
general, don't want to have to specify exactly what N is
More General Form of the Completeness Property
- A sequence which is bounded and monotone for $n \gg 1$ has a limit
·