

1. Properties of Nuclei Solutions

Practice Set-1

1. The radius of a $^{64}_{29}$ Cu nucleus is measured to be 4.8×10^{-13} cm. The radius of a $^{27}_{12}$ Mg nucleus can be estimated to be

a.
$$2.86 \times 10^{-13}$$
 cm

b.
$$5.2 \times 10^{-13}$$
 cm

c.
$$3.6 \times 10^{-13}$$
 cm

d.
$$8.6 \times 10^{-13}$$
 cm

Solution:
Since
$$R = R_0(A)^{1/3} \Rightarrow \frac{R_{Mg}}{R_{Cu}} = \left(\frac{A_{Mg}}{A_{Cu}}\right)^{1/3} = \left(\frac{27}{64}\right)^{1/3}$$

 $\Rightarrow \frac{R_{Mg}}{R_{Cu}} = \frac{3}{4} \Rightarrow R_{Mg} = \frac{3}{4} \times 4.8 \times 10^{-13} = 3.6 \times 10^{-13} \text{ cm.}$

So the correct answer is **Option** (c)

- 2. The intrinsic electric dipole moment of a nucleus ${}_{Z}^{A}X$
 - **a.** Increases with Z, but independent of A
 - **b.** Decreases with Z, but independent of A
 - c. Is always zero
 - **d.** Increases with Z and A

Solution: So the correct answer is **Option** (c)

3. In deep inelastic scattering electrons are scattered off protons to determine if a proton has any internal structure. The energy of the electron for this must be at least

a.
$$1.25 \times 10^9 \text{ eV}$$

b.
$$1.25 \times 10^{12} \text{eV}$$

c.
$$1.25 \times 10^6 \text{ eV}$$

d.
$$1.25 \times 10^8 \text{ eV}$$

Solution:

The internal structure of proton can only be determined if the wavelength of the incoming electron is nearly equal to the size of the proton

i.e.
$$\lambda = R = 1.2A^{1/3} (\text{fm}) = 1.2 \text{fm} = 1.2 \times 10^{-15} \text{ m}$$

According to de-Broglie relation, $\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mE}}$

This can be also written as $E^2 = h^2 \lambda^2 / c^2 + m_0^2 c^4$

So the correct answer is **Option** (b)

4. The difference in the Coulomb energy between the mirror nuclei $^{49}_{24}\mathrm{Cr}$ and $^{49}_{25}\mathrm{Mn}$ is 6.0MeV. Assuming that the nuclei have a spherically symmetric charge distribution and that $\frac{e^2}{4\pi\epsilon_0}$ is approximately 1.0MeV -fm, the radius of the $^{49}_{25}\mathrm{Mn}$ nucleus is (a) 4.9×10^{-13} m (b) 4.9×10^{-15} m (c) 5.1×10^{-13} m (d) 5.1×10^{-15} m

Solution:

$$R = \frac{3e^2}{5 \cdot \Delta W} (Z_1^2 - Z_2^2) = \frac{3 \times 1 \times 10^{-15}}{5 \times 6} (25^2 - 24^2)$$
$$= 4.9 \times 10^{-15} \text{ m}$$

So the correct answer is **Option** (b)

Practice Set-2

1. Inside a large nucleus, a nucleon with mass 939MeVc⁻² has Fermi momentum 1.40fm⁻¹ at absolute zero temperature. Its velocity is Xc, where the value of X is ———(up to two decimal places). ($\hbar c = 197$ MeV – fm)

Solution:

Here, Fermi-momentum or fermi radius, $k_F = 1.40 \text{fm}^{-1}$ and $\hbar c = 197 \text{Mev} - \text{fm}$ Now, Fermi velocity -

$$V_F = \frac{P}{m} = \frac{\hbar k_F}{m} = \frac{(\hbar c)k_F \cdot c}{mc^2} = \frac{(197) \times 1 \cdot 40 \times c}{939} = \frac{275 \cdot 8c}{939} = 0.29c$$

So the correct answer is **0.29**

2. The mean kinetic energy of a nucleon in a nucleus of atomic weight A varies as A^n , where n is ———(upto two decimal places)

Solution:

$$\langle T \rangle = \frac{\int_0^R -\frac{\hbar^2}{2m} \left(\frac{d^2}{dr^2} + \frac{1}{r} \frac{d}{dr}\right) 4\pi r^2 dr}{\int_0^R 4\pi r^2 dr} = \frac{-\frac{\hbar^2}{2m} 4\pi \int_0^R (2+2) dr}{\int_0^R 4\pi r^2 dr} = \frac{-\frac{\hbar^2}{2m} 4\pi \times 4R}{4\pi R^3/3}$$

$$\Rightarrow \langle T \rangle \propto \frac{1}{R^2} = \frac{1}{\left(R_0 A^{\frac{1}{3}}\right)^2} = \frac{1}{A^{\frac{2}{3}}} = A^{-\frac{2}{3}} \Rightarrow n = -\frac{2}{3} = -0.667 = -0.67$$

So the correct answer is **-0.67**

- 3. According to the Fermi gas model of nucleus, the nucleons move in a spherical volume of radius $R\left(=R_0A^{\frac{1}{3}}\right)$, where A is the mass number and R_0 is an empirical constant with the dimensions of length). The Fermi energy of the nucleus E_F is proportional to
 - **a.** R_0^2

b. $\frac{1}{R_0}$

c. $\frac{1}{R_0^2}$

d. $\frac{1}{R_0^3}$

Solution:

Fermi energy
$$E_F = \frac{\hbar^2}{2m} \left(3\pi^2 \frac{N}{V} \right)^{2/3}$$

$$V = \frac{4\pi}{3} R^3 = \frac{4\pi}{3} \left(R_0 A^{1/3} \right)^3 = \frac{4\pi}{3} R_0^3 A$$

$$\therefore E_F = \frac{\hbar^2}{2m} \left(\frac{3\pi^2 N}{\frac{4\pi}{3} R_0^3 A} \right)^{2/3} = \frac{\hbar^2}{2m} \left(\frac{9\pi N}{4A} \cdot \frac{1}{R_0^3} \right)^{2/3} \quad \Rightarrow E_F \propto \frac{1}{R_0^2}$$

So the correct answer is **Option** (c)

- 4. The stable nucleus that has $\frac{1}{3}$ the radius of ^{189}Os nucleus is,
 - **a.** ⁷Li
- **b.** ¹⁶O
- **c.** ⁴He
- **d.** ^{14}N

Solution:

$$R = \frac{1}{3}R_{Os} \Rightarrow R_0(A)^{1/3} = \frac{1}{3}R_0(189)^{1/3} \Rightarrow A = 7$$

So the correct answer is **Option** (a)

- 5. The binding energy of the k-shell electron in a Uranium atom (Z = 92, A = 238) will be modified due to (i) screening caused by other electrons and (ii) the finite extent of the nucleus as follows:
 - a. Increases due to (i), remains unchanged due to (ii)
 - **b.** Decreases due to (i), decreases due to (ii)
 - c. Increases due to (i), increases due to (ii)
 - d. Decreases due to (i), remains unchanged due to (ii)

Solution: So the correct answer is **Option** (b)

