

Agenda

- Part 1: An Introduction to Deep Learning
- Part 2: How a Neural Network Trains
- Part 3: Convolutional Neural Networks
- Part 4: Data Augmentation and Deployment
- Part 5: Pre-Trained Models
- Part 6: Advanced Architectures

$$y = mx + b$$

X	y
1	3
2	5

$$y = mx + b$$

X	y
1	3
2	5

$$y = mx + b$$

X	y	$\widehat{\mathbf{y}}$
1	3	4
2	5	3

$$y = mx + b$$

X	y	ŷ	err ²
1	3	4	1
2	5	3	4
MSE =		2.5	
	RMSE =		1.6

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

$$y = mx + b$$

X	y	ŷ	err ²
1	3	4	1
2	5	3	4
MSE =			2.5
RMSE =			1.6


```
data = [(1, 3), (2, 5)]
    \mathbf{m} = -\mathbf{1}
    b = 5
 6 def get_rmse(data, m, b):
         """Calculates Mean Square Error"""
        n = len(data)
         squared_error = 0
         for x, y in data:
10 -
            # Find predicted y
11
             y_hat = m*x+b
12
             # Square difference between
13
             # prediction and true value
14
             squared_error += (
15
                 y - y_hat)**2
16
        # Get average squared difference
        mse = squared_error / n
18
        # Square root for original units
        return mse ** .5
20
```


Definitions (I)

Parameters: weights of the Neural Network. Their values are derived via training

Hyper-parameters: are values set before the learning process begins.

Ex: number of epochs mini-batch size learning rate

Definitions (II)

- 1 Iteration: 1 Forward pass + 1 Backward pass
- 1 Epoch: 1 Forward pass + 1 Backward pass for ALL training samples.
- Batch Size: Number of training samples
- Mini-batch (often called Batch Size!): Number of training samples used in 1 iteration
- Learning rate: determines to what extent newly acquired information overrides old information
- Loss: difference between prediction and correct output
- Accuracy: <u>number of correct predictions</u>
 total number of predictions

Non convex Cost functions

Stochastic Gradient Descent (SGD) method

Mini-batch = 1 images/sample

N iterations per epochs = n samples in the batch

Batch Gradient Descent (BGD) method

Mini-batch Stochastic Gradient Descent (mSGD) method

The mini-batch is equal to a subset of the batch size (usually 32/64/128...)

N iterations per epochs = N samples in the batch / mini-batch size

Effect of different mini-batch size

Which curve has the largest batch size?

Which curve has the largest batch size?

Which curve has the smallest learning rate?

$$w_t = w_{t-1} + \frac{dE}{dw_t}$$

Which curve has the smallest learning rate?

$$w_t = w_{t-1} + \frac{dE}{dw_t}$$

Optimizers

- Adam
- Adagrad
- RMSprop
- SGD

Building a Network

• Scales to more inputs

Building a Network

- Scales to more inputs
- Can chain neurons

Building a Network

- Scales to more inputs
- Can chain neurons
- If all regressions are linear, then output will also be a linear regression

Activation Functions

Linear

$$\hat{y} = wx + b$$

- 1 # Multiply each input
 2 # with a weight (w) and
- 3 # add intercept (b)
- $4 y_hat = wx+b$

10 5 0 -5 -10 -10 -5 0 5 10

ReLU

$$\hat{y} = \begin{cases} wx + b & if wx + b > 0 \\ 0 & otherwise \end{cases}$$

1 # Only return result
2 # if total is positive
3 linear = wx+b
4 y_hat = linear * (linear > 0)

Sigmoid

$$\hat{y} = \frac{1}{1 + e^{-(wx+b)}}$$

```
1  # Start with line
2  linear = wx + b
3  # Warp to - inf to 0
4  inf_to_zero = np.exp(-1 * linear)
5  # Squish to -1 to 1
6  y_hat = 1 / (1 + inf_to_zero)
```


Activation Functions

Activation Functions

Learning Principle (x_2) Error: w_2 **Output Prediction** Dataset Target Output Outputs Inputs Each of these lines is a weight! So, if I say a dense layer with N inputs and M outputs (neurons) the number of weights is: NxM + M. For example: nn.Linear(7,10) = 7x10+10 = 80 learning parameters!

Learning Principle: adjust weigths

Learning Principle: adjust weights

Overfitting

Why not have a super large neural network?

Overfitting

Which Trendline is Better?

Overfitting

Which Trendline is Better?

Why interpolation is better than extrapolation?

Why interpolation is better than extrapolation?

Why interpolation is better than extrapolation?

Definitions (III)

Full Data Set

Training (80%)

Validation (20%)

Definitions (IV)

Training vs Validation Data

Avoid memorization

Training data

Core dataset for the model to learn on

Validation data

New data for model to see if it truly understands (can generalize)

Overfitting

- •When model performs well on the training data, but not the validation data (evidence of memorization)
- Ideally the accuracy and loss should be similar between both datasets

An MNIST Model

BATCH_SIZEx1x28x28 = BATCH_SIZEx784

10 possible numbers

An MNIST Model

During Prediction

BATCH_SIZEx1x28x28 = BATCH_SIZEx784

An MNIST Model

During Training

BATCH_SIZEx1x28x28 = BATCH_SIZEx784

RMSE For Probabilities?

RMSE For Probabilities?

Cross Entropy

Cross Entropy

t(x) = target (0 if False, 1 if True)

p(x) = probability prediction of point x

Cross Entropy


```
def cross_entropy(y_hat, y_actual):
    """Infinite error for misplaced confidence."""
    loss = log(y_hat) if y_actual else log(1-y_hat)
    return -1*loss
```


Structure of the Course

Platform of the Course

Software of This Course

- Major deep learning platforms:
 - TensorFlow + Keras (Google)
 - PyTorch (Meta)
 - MXNet (Apache)
- We'll be using PyTorch
- Good idea to gain exposure to others moving forward

Hands on Exercises

- Get comfortable with the process of deep learning
- Exposure to different models and datatypes
- Get a jump-start to tackle your own projects
- Have fun!!

Hands on: work through Introduction Section

- 1. WIFI Info: eduroam
- 2. Browser Recommendation: Chrome
- 3. websocketstest.courses.nvidia.com
- 4. https://learn.nvidia.com/dli-event
- 5. create an Account (if you have not done yet!)
- 6. event code: STFC_FDL_AMBASSADOR_NO24
- work through the Introduction Section and 'Start' launching your first GPU task

First exercise: MNSIT dataset classification (Hello Neural Networks)

Train a network to correctly classify handwritten digits

Historically important and difficult task for computers

Try learning like a Neural Network

Get exposed to the example, and try to figure out the rules to how it works

Second Exercise

The American Sign Language Alphabet

Appendix: Gradient Descent

Helping the Computer Cheat Calculus

Learning from Error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y - \hat{y})^2 = \frac{1}{n} \sum_{i=1}^{n} (y - (mx + b))^2$$

$$MSE = \frac{1}{2}((3 - (m(1) + b))^2 + (5 - (m(2) + b))^2)$$

$$\frac{\partial MSE}{\partial m} = 5m + 3b - 13 \qquad \qquad \frac{\partial MSE}{\partial b} = 3m + 2b - 8$$

$$\frac{\partial MSE}{\partial m} = -3 \qquad \qquad \frac{\partial MSE}{\partial b} = -1$$

$$b = 5$$

$$\frac{\partial MSE}{\partial m} = -3 \qquad \frac{\partial MSE}{\partial b} = -1$$

$$\frac{\partial MSE}{\partial m} = -3 \qquad \frac{\partial MSE}{\partial b} = -1$$

$$\mathbf{m} := \mathbf{m} - \lambda \frac{\partial MSE}{\partial m}$$

$$b := b - \lambda \frac{\partial MSE}{\partial b}$$

$$\frac{\partial MSE}{\partial m} = -3 \qquad \frac{\partial MSE}{\partial b} = -1$$

$$\mathbf{m} := \mathbf{m} - \lambda \frac{\partial MSE}{\partial m}$$

$$b := b - \lambda \frac{\partial MSE}{\partial b}$$

$$\frac{\partial MSE}{\partial m} = -3 \qquad \frac{\partial MSE}{\partial b} = -1$$

$$\mathbf{m} := \mathbf{m} - \lambda \frac{\partial MSE}{\partial m}$$

$$b := b - \lambda \frac{\partial MSE}{\partial b}$$

$$\lambda = .1$$

$$m := -1 + 3 \lambda = -0.7$$

$$b := 5 + \lambda = 5.1$$

Recap of the Exercise

What just happened?

Data Preparation

Input as an Array

An Untrained Model

