Lecture 3: Model Selection

Can I trust you?

Joaquin Vanschoren, Eindhoven University of Technology

Evaluation

- To know whether we can *trust* our method or system, we need to evaluate it.
- If you cannot measure it, you cannot improve it.
- Model selection: choose between different models in a data-driven way.
- Convince others that your work is meaningful
 - Peers, leadership, clients, yourself(!)
- Keep evaluating relentlessly, adapt to changes

Designing Machine Learning systems

- Just running your favourite algorithm is usually not a great way to start
- Consider the problem at large
 - Do you want to understand phenomena or do black box modelling?
 - How to define and measure success? Are there costs involved?
 - Do you have the right data? How can you make it better?
- Build prototypes early-on to evaluate the above.

- Analyze your model's mistakes
 - Should you collect more, or additional data?
 - Should the task be reformulated?
 - Often a higher payoff than endless finetuning
- Technical debt: creation-maintenance trade-off
 - Very complex machine learning systems are hard/impossible to put into practice
 - See 'Machine Learning: The High Interest Credit Card of Technical Debt'

Only a small fraction of real-world ML systems is composed of the ML code

Real world evaluations

- Evaluate predictions, but also how outcomes improve *because of them*
- Feedback loops: predictions are fed into the inputs, e.g. as new data, invalidating models
 - Example: a medical recommendation model may change future measurements
- The signal your model found may just be an artifact of your biased data
 - When possible, try to *interpret* what your model has learned
 - See 'Why Should I Trust You?' by Marco Ribeiro et al.

(a) Husky classified as wolf

(b) Explanation

- Adversarial situations (e.g. spam filtering) can subvert your predictions
- Do A/B testing (or bandit testing) to evaluate algorithms in the wild

A/B and bandit testing

- Test a single innovation (or choose between two models)
- Have most users use the old system, divert small group to new system
- Evaluate and compare performance
- Bandit testing: smaller time intervals, direct more users to currently winning system

Performance estimation techniques

- We do not have access to future observations
- Always evaluate models as if they are predicting the future
- Set aside data for objective evaluation
 - How?

The holdout (simple train-test split)

- *Randomly* split data (and corresponding labels) into training and test set (e.g. 75%-25%)
- Train (fit) a model on the training data, score on the test data

K-fold Cross-validation

- Each random split can yield very different models (and scores)
 - e.g. all easy (of hard) examples could end up in the test set
- Split data (randomly) into *k* equal-sized parts, called *folds*
 - Create *k* splits, each time using a different fold as the test set
- Compute *k* evaluation scores, aggregate afterwards (e.g. take the mean)
- Examine the score variance to see how *sensitive* (unstable) models are
- Reduces sampling bias by testing on every point exactly once
- Large *k* gives better estimates (more training data), but is expensive

Stratified K-Fold cross-validation

- If the data is *unbalanced*, some classes have many fewer samples
- Likely that some classes are not present in the test set
- Stratification: *proportions* between classes are conserved in each fold
 - Order examples per class
 - Separate the samples of each class in *k* sets (strata)
 - Combine corresponding strate into folds

Can you explain this result?

Leave-One-Out cross-validation

- *k* fold cross-validation with *k* equal to the number of samples
- Completely unbiased (in terms of data splits), but computationally expensive
- But: generalizes *less* well towards unseen data
 - The training sets are correlated (overlap heavily)
 - Overfits on the data used for (the entire) evaluation
 - A different sample of the data can yield different results
- Recommended only for small datasets

Shuffle-Split cross-validation

- Additionally shuffles the data (only do this when the data is not ordered)
- Samples a number of samples (train_size) randomly as the training set
- Can also use a smaller (test_size), handy when using very large datasets

Note: this is related to *bootstrapping*:

- Sample *n* (total number of samples) data points, with replacement, as training set (the bootstrap)
- Use the unsampled (out-of-bootstrap) samples as the test set
- Repeat n_iter times, obtaining n_iter scores
- Not supported in scikit-learn, only approximated
 - Use Shuffle-Split with train_size=0.66, test_size=0.34
 - You can prove that bootstraps include 66% of all data points on average

Repeated cross-validation

- Cross-validation is still biased in that the initial split can be made in many ways
- Repeated, or n-times-k-fold cross-validation:
 - Shuffle data randomly, do k-fold cross-validation
 - Repeat n times, yields n times k scores
- Unbiased, very robust, but n times more expensive

Cross-validation with groups

- Sometimes the data contains inherent groups:
 - Multiple samples from same patient, images from same person,...
- With normal cross-validation, data from the same person may end up in the training *and* test set
- We want to measure how well the model generalizes to *other* people
- Make sure that data from one person are in *either* the train or test set
 - This is called *grouping* or *blocking*
 - Leave-one-subject-out cross-validation: test set for each subject

Time series

When the data is ordered, random test sets are not a good idea

Time series

- Test-then-train (prequential evaluation)
 - Every new sample is evaluated on once, then added to the training set
 - Can also be done in batches (of *n* samples at a time)
- TimeSeriesSplit
 - In the kth split, the first k folds are used as the train set and the (k+1)th fold as the test set
 - Can also be done with a maximum training set size: more robust against concept drift

Choosing a performance estimation procedure

No strict rules, only guidelines:

- Always use stratification for classification (sklearn does this by default)
- Use holdout for very large datasets (e.g. >1.000.000 examples)
 - Or when learners don't always converge (e.g. deep learning)
- Choose *k* depending on dataset size and resources
 - Use leave-one-out for small datasets (e.g. <500 examples)
 - Use cross-validation otherwise
 - o Most popular (and theoretically sound): 10-fold CV
 - Literature suggests 5x2-fold CV is better
- Use grouping or leave-one-subject-out for grouped data
- Use train-then-test for time series

Evaluation Metrics and scoring

Keep the end-goal in mind

Evaluation vs Optimization

- Each algorithm optimizes a given objective function (on the training data)
 - E.g. remember L2 loss in Ridge regression

$$\mathcal{L}_{ridge} = \sum_{i} (y_i - \sum_{j} x_{i,j} w_j)^2 + \alpha \sum_{i} w_i^2$$

- The choice of function is limited by what can be efficiently optimized
 - E.g. gradient descent requires a differentiable loss function
- However, we *evaluate* the resulting model with a score that makes sense in the real world
 - E.g. percentage of correct predictions (on a test set)
- We also tune the algorithm's hyperparameters to maximize that score

Binary classification

- We have a positive and a negative class
- 2 different kind of errors:
 - False Positive (type I error): model predicts positive while the true label is negative
 - False Negative (type II error): model predicts negative while the true label is positive
- They are not always equally important
 - Which side do you want to err on for a medical test?

Confusion matrices

- We can represent all predictions (correct and incorrect) in a confusion matrix
 - n by n array (n is the number of classes)
 - Rows correspond to true classes, columns to predicted classes
 - Each entry counts how often a sample that belongs to the class corresponding to the row was classified as the class corresponding to the column.
 - For binary classification, we label these true negative (TN), true positive (TP), false negative (FN), false positive (FP)

Predictive accuracy

• Accuracy is one of the measures we can compute based on the confusion matrix:

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

- In sklearn: use confusion_matrix and accuracy_score from sklearn.metrics.
- Accuracy is also the default evaluation measure for classification

```
confusion_matrix(y_test, y_pred):
  [[48 5]
  [ 5 85]]
accuracy_score(y_test, y_pred): 0.9300699300699301
model.score(X_test, y_test): 0.9300699300699301
```

The problem with accuracy: imbalanced datasets

- The type of error plays an even larger role if the dataset is imbalanced
 - One class is much more frequent than the other, e.g. credit fraud
 - Is a 99.99% accuracy good enough?
- Are these three models really equally good?

Precision is used when the goal is to limit FPs

- Clinical trails: you only want to test drugs that really work
- Search engines: you want to avoid bad search results

$$Precision = \frac{TP}{TP + FP}$$

Recall is used when the goal is to limit FNs

- Cancer diagnosis: you don't want to miss a serious disease
- Search engines: You don't want to omit important hits
- Also know as sensitivity, hit rate, true positive rate (TPR)

Recall =
$$\frac{TP}{TP + FN}$$

Comparison

F1-score or F1-measure trades off precision and recall:

$$F1 = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

Classification measure Zoo

		True con	dition			
	Total population	Condition positive	Condition negative	$\frac{\sum Condition\ positive}{\sum Total\ population}$	Accuracy (ACC) = $\frac{\Sigma \text{ True positive} + \Sigma \text{ True negative}}{\Sigma \text{ Total population}}$	
Predicted condition	Predicted condition positive	True positive, Power	False positive, Type I error	Positive predictive value (PPV), Precision $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Predicted condition positive}}$	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Predicted condition negative}}$	
		True positive rate (TPR), Recall, Sensitivity, probability of detection = $\frac{\Sigma}{\Sigma}$ True positive	False positive rate (FPR), Fall-out, probability of false alarm = $\frac{\Sigma}{\Sigma}$ Condition negative	Positive likelihood ratio (LR+) = $\frac{TPR}{FPR}$	Diagnostic odds F ₁ score =	
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	$\begin{aligned} \text{Specificity (SPC), Selectivity, True negative rate} \\ \text{(TNR)} &= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}} \end{aligned}$	Negative likelihood ratio (LR-) = $\frac{FNR}{TNR}$	ratio (DOR) = $\frac{LR+}{LR-}$ $\frac{2}{\frac{1}{Recall} + \frac{1}{Precision}}$	

https://en.wikipedia.org/wiki/Precision and recall (https://en.wikipedia.org/wiki/Precision and recall)

Averaging scores per class

- Study the scores *by class* (in scikit-learn: classification_report)
 - One class viewed as positive, other(s) als negative
 - Support: number of samples in each class
 - Last line: weighted average over the classes (weighted by number of samples in each class)
- Averaging for scoring measure R across C classes (also for multiclass):
 - micro: count total number of TP, FP, TN, FN
 - macro

$$\frac{1}{C} \sum_{c \in C} R(y_c, \hat{y_c})$$

• weighted (w_c : ratio of examples of class c)

$$\sum_{c \in C} w_c R(y_c, \hat{y_c})$$

	precision	recall	f1-score	support
0	0.90	1.00	0.95	90
1	0.00	0.00	0.00	10
accuracy			0.90	100
macro avg	0.45	0.50	0.47	100
weighted avg	0.81	0.90	0.85	100

	precision	recall	f1-score	support
0	1.00	0.89	0.94	90
1	0.50	1.00	0.67	10
accuracy			0.90	100
macro avg	0.75	0.94	0.80	100
weighted avg	0.95	0.90	0.91	100

	precision	recall	f1-score	support
0	0.94	0.94	0.94	90
1	0.50	0.50	0.50	10
accuracy			0.90	100
macro avg	0.72	0.72	0.72	100
weighted avg	0.90	0.90	0.90	100

Uncertainty estimates from classifiers

- Classifiers can often provide uncertainty estimates of predictions.
- Remember that linear models actually return a numeric value.
 - When $\hat{y} < 0$, predict class -1, otherwise predict class +1 $\hat{y} = w_0 * x_0 + w_1 * x_1 + ... + w_p * x_p + b$
- In practice, you are often interested in how certain a classifier is about each class prediction (e.g. cancer treatments).

Scikit-learn offers 2 functions. Often, both are available for every learner, but not always.

- decision_function: returns floating point value for each sample
- predict_proba: return probability for each class

The Decision Function

In the binary classification case, the return value of decision_function encodes how strongly the model believes a data point to belong to the "positive" class.

- Positive values indicate a preference for the "positive" class
- Negative values indicate a preference for the "negative" (other) class

- The range of decision_function can be arbitrary, and depends on the data and the model parameters. This makes it sometimes hard to interpret.
- We can visualize the decision function as follows, with the actual decision boundary left and the values of the decision boundaries color-coded on the right.
- Note how the test examples are labeled depending on the decision function.

Predicting probabilities

The output of predict_proba is a *probability* for each class, with one column per class. They sum up to 1.

```
Shape of probabilities: (25, 2)
Predicted probabilities:
[[0.232 0.768]
[0.002 0.998]
[0. 1. ]
[0.003 0.997]
[0.001 0.999]
[1. 0. ]]
```

We can visualize them again. Note that the gradient looks different now.

Interpreting probabilities

- The class with the highest probability is predicted.
- How well the uncertainty actually reflects uncertainty in the data depends on the model and the parameters.
 - An overfitted model tends to make more certain predictions, even if they might be wrong.
 - A model with less complexity usually has more uncertainty in its predictions.
- A model is called *calibrated* if the reported uncertainty actually matches how correct it is A prediction made with 70% certainty would be correct 70% of the time.
 - LogisticRegression returns well calibrated predictions by default as it directly optimizes log-loss
 - Linear SVM are not well calibrated. They are *biased* towards points close to the decision boundary.
- <u>Calibration techniques (http://scikit-learn.org/stable/modules/calibration.html)</u> can calibrate models in post-processing.

Model calibration

Model calibration

- Build another model, mapping classifier probabilities to better probabilities!
- 1d model! (or more for multi-class)

$$f_{calib}(s(x)) \approx p(y)$$

- s(x) is score given by model, usually
- Can also work with models that don't even provide probabilities! Need model for f_{calib}, need to decide what data to train it on.
- Can train on training set, causes overfit
- Can train using cross-validation, slower

Platt Scaling

• Use a logistic sigmoid for
$$f_{calib}$$

$$f_{platt} = \frac{1}{1 + \exp(-ws(x) - b)}$$

- Basically learning a 1d logistic regression (+ some tricks)
- Works well for SVMs

Isotonic regression

- Very flexible way to specify \$f_{calib}
- Learns arbitrary monotonically increasing step-functions in 1d.
- Groups data into constant parts, steps in between.
- Optimum monotone function on training data (wrt MSE)

Threshold calibration

- Remember that many classifiers actually return a probability per class
 - We can retrieve it with decision_function and predict proba
- For binary classification, we threshold at 0 for decision_function and 0.5 for predict_proba by default
- However, depending on the evaluation measure, you may want to threshold differently to fit your goals
 - For instance, when a FP is much worse than a FN
 - This is called *threshold calibration*

- Imagine that we want to avoid misclassifying a positive (red) point
- Points within decision boundary (black line) are classified positive
- Lowering the decision treshold (bottom figure): fewer FN, more FP

- Studying the classification report, we see that lowering the threshold yields:
 - higher recall for class 1 (we risk more FPs in exchange for more TP)
 - lower precision for class 1
- We can often trade off precision for recall

Threshold 0				
	precision	recall	f1-score	support
0	0.91	0.96	0.93	96
1	0.67	0.47	0.55	17
accuracy			0.88	113
macro avg	0.79	0.71	0.74	113
weighted avg	0.87	0.88	0.88	113
Threshold -0.	8			
	precision	recall	f1-score	support
0	0.98	0.92	0.95	96
1	0.65	0.88	0.75	17
accuracy			0.91	113
macro avg	0.81	0.90	0.85	113
weighted avg	0.93	0.91	0.92	113

Precision-Recall curves

- As we've seen, you can trade off precision for recall by changing the decision threshold
- The best trade-off depends on your application, driven by real-world goals.
 - You can have arbitrary high recall, but you often want reasonable precision, too.
- Plotting precision against recall for all possible thresholds yields a **precision-recall curve**
- It helps answer multiple questions:
 - Threshold calibration: what's the best achievable precision-recall tradeoff?
 - How much more precision can I gain without losing too much recall?
 - Which models offer the best trade-offs?

- The default threshold (threshold zero) gives a certain precision and recall
 - Lower the threshold to gain higher recall (move right)
 - Increase the threshold to gain higher precision (move left)
- The curve is often jagged: increasing the threshold leaves fewer and fewer positive predictions, so precision $(\frac{TP}{TP+FP})$ can change dramatically
- The closer the curve stays to the upper-right corner, the better
- Here, it is possible to still get a precision of 0.55 with recall 0.9

Model selection

- Different classifiers offer different trade-offs
- RandomForest (in red) performs better at the extremes, SVM better in center
- In applications we may only care about a specific region (e.g. very high recall)

AUPRC

- The area under the precision-recall curve (AUPRC) is often used as a general evaluation measure
- This is a good general measure, but also hides the subtleties we saw in the curve

Average precision of random forest: 0.660 Average precision of svc: 0.666

Receiver Operating Characteristics (ROC)

- We can also trade off recall (or true positive rate) $TPR = \frac{TP}{TP+FN}$ with false positive rate $FPR = \frac{FP}{FP+TN}$
- Varying the decision threshold yields the ROC curve
 - Lower the threshold to gain more recall (move right)
 - Increase the threshold to reduce FPs (move left)

Visualization

- Horizontal axis represents the decision function. Every predicted point is on it.
- The blue probability density shows the actual negative points. The red one is for the positive points.
- Vertical line is the decision threshold: every point to the left is predicted negative (TN or FN) and vice versa (TP or FP).
- Increase threshold: fewer FP and TP: point on ROC curve moves leftward

TP	FP	
FN	TN	
1	1	

Model selection

- Again, we can compare multiple models by looking at the ROC curves
- We can calibrate the threshold depending on whether we need high recall or low FPR
- We can select between algorithms (or hyperparameters) depending on the involved *costs*

Calculating costs

- A certain amount of FP and FN can be translated to a *cost*: total cost = FPR * $cost_{FP}$ + (1 TPR) * $cost_{FN}$
- This yields different *isometrics* (lines of equal cost) in ROC space
- The optimal threshold is the point on the ROC curve where the cost is minimal

Area under the ROC curve

- A useful summary measure is the area under the ROC curve (AUROC or AUC)
- Key benefit: 'sensitive' to class imbalance
 - Random guessing always yields TPR=FPR
 - All points are on the diagonal line, hence an AUC of 0.5

```
AUC for Random Forest: 0.937
AUC for SVC: 0.916
AUC for dummy classifier: 0.498
```

Example: unbalanced dataset (10% positive, 90% negative):

- 3 models: overfitting ($\gamma = 1.0$), good ($\gamma = 0.01$), underfitting (γ =1e-5)
- ACC is the *same* (we might be random guessing), AUC is more informative

```
gamma = 1.0e+00 ACC = 0.90 AUC = 0.5000 gamma = 1.0e-02 ACC = 0.90 AUC = 0.9995 gamma = 1.0e-05 ACC = 0.90 AUC = 0.9882
```


Multiclass classification

Common technique: one-vs-rest approach:

- A binary model is learned for each class vs. all other classes
- Creates as many binary models as there are classes

Every binary classifiers makes a prediction

- The confidence (decision score) of that prediction is the confidence in that class
- The class with the highest decision score (>0) wins
- Decision boundaries visualized below

Uncertainty in multi-class classification

- decision_function and predict_proba also work in the multiclass setting
- always have shape (n_samples, n_classes)
- Example on the Iris dataset, which has 3 classes:

Multi-class metrics

- Multiclass metrics are derived from binary metrics, averaged over all classes
- Example: handwritten digit recognition (MNIST)

Precision, recall, F1-score now yield 10 per-class scores

	precision	recall	f1-score	support
0	1.00	1.00	1.00	37
1	0.89	0.93	0.91	43
2	0.98	0.91	0.94	44
3	0.91	0.96	0.93	45
4	0.97	0.97	0.97	38
5	0.98	0.96	0.97	48
6	1.00	0.98	0.99	52
7	0.98	0.96	0.97	48
8	0.91	0.90	0.91	48
9	0.90	0.96	0.93	47
accuracy			0.95	450
macro avg	0.95	0.95	0.95	450
weighted avg	0.95	0.95	0.95	450

Different ways to compute average

- macro-averaging: computes unweighted per-class scores: $\frac{\sum_{i=0}^{n} score_{i}}{n}$
 - Use when you care about each class equally much
- weighted averaging: scores are weighted by the relative size of the classes (support): $\frac{\sum_{i=0}^{n} score_{i}weight_{i}}{n}$
 - Use when data is imbalanced
- micro-averaging: computes total number of FP, FN, TP over all classes, then computes scores using these counts: $recall = \frac{\sum_{i=0}^{n} TP_i}{\sum_{i=0}^{n} TP_i + \sum_{i=0}^{n} FN_i}$
 - Use when you care about each sample equally much

Micro average f1 score: 0.951 Weighted average f1 score: 0.951 Macro average f1 score: 0.952

Multi-class ROC

- To use AUC in a multi-class setting, you need to choose whether you use a micro- or macro average TPR and FPR.
- Depends on the application: is every class equally important?
 - SKlearn currently doesn't have a default option

Regression metrics

Most commonly used are

- (root) mean squared error: $\frac{\sum_{i} (y_{pred_i} y_{actual_i})^2}{n}$ mean absolute error: $\frac{\sum_{i} |y_{pred_i} y_{actual_i}|}{n}$
- - Less sensitive to outliers and large errors

• R squared (r2):
$$1 - \frac{\sum_{i} (y_{pred_i} - y_{actual_i})^2}{\sum_{i} (y_{mean} - y_{actual_i})^2}$$

- Ratio of variation explained by the model / total variation
- Between 0 and 1, but *negative* if the model is worse than just predicting the mean
- Easier to interpret (higher is better).

Visualizing errors

- Prediction plot (left): predicted vs actual target values
- Residual plot (right): residuals vs actual target values
 - Over- and underpredictions can be given different costs

Other considerations

- There exist techniques to correct label imbalance (see next lecture)
 - Undersample the majority class, or oversample the minority class
 - SMOTE (Synthetic Minority Oversampling Technique) adds articifial *training* points by interpolating existing minority class points
 - Think twice before creating 'artificial' training data
- Cost-sensitive classification (not in sklearn)
 - Cost matrix: a confusion matrix with a costs associated to every possible type of error
 - Some algorithms allow optimizing on these costs instead of their usual loss function
 - Meta-cost: builds ensemble of models by relabeling training sets to match a given cost matrix
 - Black-box: can make any algorithm cost sensitive (but slower and less accurate)

- There are many more metrics to choose from
 - Balanced accuracy: accuracy where each sample is weighted according to the inverse prevalence of its true class
 - o Identical to macro-averaged recall
 - Cohen's Kappa: accuracy, taking into account the possibility of predicting the right class by chance
 - 1: perfect prediction, 0: random prediction, negative: worse than random
 - With p_0 = accuracy, and p_e = accuracy of random classifier:

$$\kappa = \frac{p_o - p_e}{1 - p_e}$$

- Matthews correlation coefficient: another measure that can be used on imbalanced data
 - 1: perfect prediction, 0: random prediction, -1: inverse prediction

$$MCC = \frac{tp \times tn - fp \times fn}{\sqrt{(tp + fp)(tp + fn)(tn + fp)(tn + fn)}}$$

Bias-Variance decomposition

- When we repeat evaluation procedures multiple times, we can distinguish two sources of errors:
 - Bias: systematic error (independent of the training sample). The classifier always gets certain points wrong
 - Variance: error due to variability of the model with respect to the training sample. The classifier predicts some points accurately on some training sets, but inaccurately on others.
- There is also an intrinsic (noise) error, but there's nothing we can do against that.
- Bias is associated with underfitting, and variance with overfitting
- Bias-variance trade-off: you can often exchange variance for bias through regularization (and vice versa)
 - The challenge is to find the right trade-off (minimizing total error)
- Useful to understand how to tune or adapt learning algorithm

Fig. 1 Graphical illustration of bias and variance.

Computing bias-variance

- Take 100 or more bootstraps (or shuffle-splits)
- Regression: for each data point x:

•
$$bias(x)^2 = (x_{true} - mean(x_{predicted}))^2$$

- $variance(x) = var(x_{predicted})$
- Classification: for each data point x:
 - bias(x) = misclassification ratio
 - \blacksquare variance(x)

$$= (1 - (P(class_1)^2 + P(class_2)^2))/2$$

- \circ $P(class_i)$ is ratio of class i predictions
- Total bias: $\sum_{x} bias(x)^2 * w_x$, with w_x the ratio of x occurring in the test sets
- Total variance: $\sum_{x} variance(x) * w_x$

Bias and variance reduction

- Bagging (RandomForests) is a variance-reduction technique
- Boosting is a bias-reduction technique

Bias-variance and overfitting

- High bias means that you are likely underfitting
 - Do less regularization
 - Use a more flexible/complex model (another algorithm)
 - Use a bias-reduction technique (e.g. boosting)
- High variance means that you are likely overfitting
 - Use more regularization
 - Get more data
 - Use a simpler model (another algorithm)
 - Use a variance-reduction techniques (e.g. bagging)

Bias-Variance Flowchart (Andrew Ng, Coursera)

Hyperparameter tuning

We can basically use any optimization technique to optimize hyperparameters:

- Grid search
- Random search

More advanced techniques (see lecture 7):

- Local search
- Racing algorithms
- Model-based optimization (see later)
- Multi-armed bandits
- Genetic algorithms

Overfitting on the test set

- Simply taking the best performing hyperparameters yields optimistic results
- We've already used the test data to evaluate each hyperparameter setting!
 - Information 'leaks' from test set into the final model
- Set aside part of the training data to evaluate the hyperparameter settings
 - Select best hyperparameters on validation set
 - Rebuild the model on the training+validation set
 - Evaluate optimal model on the test set

Grid-search with cross-validation

- The way that we split the data into training, validation, and test set may have a large influence on estimated performance
- We need to use cross-validation again (e.g. 3-fold CV), instead of a single split

Nested cross-validation

- Note that we are still using a single split to create the outer test set
- We can also use cross-validation here
- Nested cross-validation:
 - Outer loop: split data in training and test sets
 - Inner loop: run grid search, splitting the training data into train and validation sets
- Result is a just a list of scores
 - There will be multiple optimized models and hyperparameter settings (not returned)
- To apply on future data, we need to train GridSearchCV on all data again