AFP 2023/24

Algoritmos e Fundamentos de Programação

Projeto de Época Normal

GeoCaching

O Geocaching é uma atividade ao ar livre que consiste numa espécie de caça ao tesouro com uso de equipamento GPS. Envolve a procura de tesouros físicos chamados de geocaches (ou simplesmente caches) que são escondidos em localizações idealmente interessantes. Uma cache típica consiste num contentor à prova de água contendo um livro de registo e alguns pequenos bonecos para troca.

O mais relevante da modalidade consiste no seguinte: a atividade física necessária para conseguir chegar às caches; ficar a conhecer os locais visitados; assinar o logbook para provar que se esteve lá e registar a visita num site específico.

A atividade do Geocaching tem noções e vocabulário próprios, e.g., tipos de caches, cache sizes, difficulty/terrain, etc.

Informação adicional, incluindo significados de termos, pode ser obtida em:

- http://www.geocaching.com/about/glossary.aspx
- https://en.wikipedia.org/wiki/Geocaching

O. Regras de Elaboração

- 1. O projeto de época normal é **elaborado em grupos de, no máximo, dois estudantes**:
- 2. Qualquer situação de **plágio** (parcial ou integral) levará à imediata anulação dos projetos envolvidos.
 - a. Todos os projetos (de todas as turmas) serão alvo de deteção automática de plágio, utilizando a plataforma MOSS.
- 3. As **entregas** serão feitas exclusivamente via Moodle, nas datas indicadas na secção 3.
 - a. Aplicam-se descontos de 0,5 valores por cada hora de atraso na entrega (é considerado 1h a partir de 10min volvidos da hora agendada), até a um limite de 3h; após este limite ser ultrapassado o projeto não é considerado.

1. Requisitos do Projeto

Pretende-se desenvolver um programa em C para extrair informação útil de um ficheiro de caches localizadas em Portugal. O programa desejado consiste num interpretador de comandos que o utilizador usa para obter diversos tipos de informação, principalmente informação estatística.

1.1 Informação de caches

As caches encontram-se descritas num ficheiro CSV. Cada cache é descrita pela seguinte informação (nomes das colunas):

- code código da cache;
- name nome da cache;
- state distrito onde a cache está localizada;
- owner utilizador que escondeu a cache;
- latitude latitude aproximada da cache (localização);
- longitude longitude aproximada da cache (localização);
- kind tipo de cache. Pode ser um dos seguintes valores:
 - o EARTHCACHE
 - LETTERBOX
 - MULTI
 - PUZZLE
 - TRADITIONAL
 - o VIRTUAL
 - WEBCAM
- size tamanho da cache. Pode ser um dos seguintes valores:
 - o MICRO
 - o SMALL
 - o REGULAR
 - o LARGE
 - o OTHER SIZE
 - o VIRTUAL
 - o NOT_CHOSEN
- difficulty dificuldade prevista de localizar a cache. Um valor em [1, 5];
- terrain caracterização do terreno onde se encontra a cache. Um valor em [1, 5];
- **status** estado da cache. Pode ser um dos seguintes valores:
 - AVAILABLE
 - DISABLED
- hidden_date data em que a cache foi escondida. No formato "aaaa/mm/dd";
- **founds** avantos cacadores encontraram a cache:
- not_founds quantos caçadores não encontraram a cache;
- favourites quantos caçadores marcaram a cache como favorita;
- altitude altitude em que se encontra a cache;

Desconhece-se a altitude de algumas caches e utiliza-se o valor especial -9999999 (7 noves) para representar esta situação.

Pode assumir que não existem ficheiros "mal-formados", i.e., todas as linhas contêm 16 valores separados por ponto-e-vírgula. Contudo, pode haver linhas em branco.

1.1.1 Ficheiros Disponibilizados

Juntamente com este enunciado são disponibilizados 2 ficheiros de entrada:

- caches_small.csv
- caches_all.csv

Cada ficheiro possui um número arbitrário de caches, <u>contendo caches duplicadas</u>; pode assumir que nunca existirão mais de 2000 caches num ficheiro.

Cada cache tem um código respetivo (campo **code**). Pode detetar caches duplicadas quando um código de cache ocorrer mais que uma vez. Caches duplicadas deverão ser ignoradas durante o processo de importação.

O programa deverá funcionar corretamente para um qualquer ficheiro de entrada.

Adicionalmente, é fornecido o ficheiro *caches_all.xlsx* que contém a informação do ficheiro *caches_all.csv* em formato Excel. Pode utilizar este ficheiro para inspecionar a informação de antemão e para validar o resultado de alguns comandos posteriormente.

1.2 Representação da informação em memória

Deverão ser definidos tipos compostos apropriados para representar caches e conjuntos de caches. É obrigatório representar uma data através de um tipo composto apropriado.

<u>Sugere-se a reprodução das estratégias apresentadas nos Labs 9 e 10.</u>

Pode definir outros tipos auxiliares que julgue necessitar para a implementação de certos comandos.

É obrigatória a utilização correta de modularidade para estes tipos de dados.

1.3 Interpretador de Comandos

Deverá existir um interpretador de comandos que apresenta ao utilizador os comandos existentes (ver secção 1.4) e que permita ao utilizador executar um dado comando.

Cada comando é representado por uma palavra que pode ser escrita pelo utilizador em maiúsculas ou em minúsculas (case-insensitive).

1.4 Comandos

Há exatamente <u>13 comandos</u> que o programa deve implementar, que serão apresentados de seguida.

Quando a memória de caches estiver vazia (ainda não houve carregamento de dados), a maioria dos comandos limitam-se a escrever a mensagem "<no cache data>".

O formato de output de cada comando fica ao critério do aluno. Os resultados obtidos deverão ser validados autonomamente, e.g., através de EXCEL.

Os comandos são os seguintes:

✓ LOAD

- Solicita o nome dum ficheiro, abre o ficheiro e carrega-o em memória.
- No final da importação deve ser mostrado ao utilizador quantas caches "únicas" foram importadas, e.g., "<X unique caches loaded>".

Os restantes comandos passarão a atuar sobre este conjunto de dados.

- Se o ficheiro não puder ser aberto, escreve "<File not found>".
- Se já existirem dados carregados em memória, deverá apresentar a mensagem "<Cache data exists. Please clear it first.">

✓ CLEAR

• Limpa os dados importados da memória; isto irá permitir carregar outro ficheiro. Apresenta uma mensagem de confirmação.

✓ QUIT

• Sai do programa.

✓ LIST

• Apresenta uma listagem de todas as caches importadas (preferencialmente numa forma tabular). Deve ser visível toda a informação de cada cache em cada linha.

√ FOUNDP

• Semelhante ao comando LIST, mas no início de cada linha mostra a percentagem de vezes que essa cache foi encontrada.

✓ SEARCH

• Pede um código de cache e mostra a informação da cache correspondente. Se não existir, deve mostrar a mensagem "<Cache not found>".

✓ EDIT

- Pede um código de cache e permite editar informação dessa cache. Se não existir, deve mostrar a mensagem "<Cache not found>".
- Deve ser possível editar os seguintes dados (só poderão ser aceites dados válidos!):
 - owner
 - status
 - hidden_date
 - altitude

A informação editada, por enquanto, é mantida apenas em memória.

✓ CENTER

- Mostra as seguintes estatísticas, pela ordem indicada:
 - média das latitudes, seguida do desvio padrão;
 - média das longitudes, seguida do desvio padrão;
- Caches com altitudes desconhecidas devem ser ignoradas nestes cálculos.

✓ AGE

 Mostra a cache mais antiga e a mais recente, por esta ordem, juntamente com a diferença em meses entre ambas (ignore os dias).

✓ SORT

- Mostra uma listagem ordenada das caches, requerendo ao utilizador a forma de ordenação:
 - 1 Por altitude (decrescentemente);
 - 2 Por state (de A-Z, desempate por founds de forma decrescente);
 - 3 Por hidden_date (mais recente para mais antiga).

✓ STATEC

• Mostra a contagem de caches para cada distrito (campo **state**). Deve mostrar separadamente as contagens de caches disponíveis e inativas (campo **status**).

✓ M81

 Calcula a "matriz 81". A matriz 81 trata-se de uma matriz 9x9 com o número de caches para cada uma das 81 combinações de terreno/dificuldade. A Figura 1 mostra um exemplo (ignore as cores e os valores atuais).

✓ SAVE

 Solicita ao utilizador o nome de um ficheiro e exporta a informação de caches atualmente em memória para ficheiro, em formato CSV. Não deve permitir a exportação se já existir um ficheiro com esse nome.

2. Relatório

No relatório deverão constar as seguintes secções:

- a) Capa com identificação dos estudantes;
- b) Módulos e Tipos de Dados;
 - Descrição dos módulos e tipos compostos desenvolvidos.
- c) Algoritmos;
 - Para os comandos (exceto LOAD, CLEAR, QUIT, SAVE e LIST) fornecer a descrição dos algoritmos implementados:
 - 2 algoritmos em pseudo-código (escolha ao critério dos estudantes)
 - Restantes em "linguagem natural", i.e., passos gerais, não se pretende uma "transcrição" do código para português.
- d) Limitações:
 - Quais os comandos que apresentam problemas ou não foram implementados;
- e) Conclusões:
 - Análise crítica do trabalho desenvolvido.

3. Datas de Entrega e Deliverables

1ª FASE (5 janeiro)

- Projeto C com programa funcional que:
 - Define tipos de dados compostos para representação de caches e conjuntos de caches;
 - Interpretador de comandos;
 - Comandos LOAD, CLEAR, QUIT, LIST e FOUNDP.

2ª FASE (26 janeiro)

- Projeto C com programa funcional que:
 - o Implementa a totalidade dos comandos;
- Relatório, descrito na secção 2.

4. Tabela de Cotações e Penalizações

A avaliação do trabalho será feita de acordo com os seguintes princípios:

- Estruturação: o programa está estruturado de uma forma modular e procedimental;
- Eficiência: o programa utiliza adequadamente a passagem de parâmetros por valor e por referência.
- Correção: o programa executa as funcionalidades, tal como pedido.
- Legibilidade e documentação: o código está escrito, formatado e comentado de acordo com o standard de programação definido para a disciplina.

A nota final obtida, cuja tabela de cotações se apresenta a seguir, será ponderada de acordo com os princípios acima descritos.

Descrição	Cotação (valores)	Fase
Definição de estruturas de dados	2	
Implementação de interpretador de comandos	1,5	
Importação de informação (LOAD)	2	
Comandos CLEAR e QUIT	0,5	1
Comando LIST	1	
Comando FOUNDP	1	
Comando SEARCH	1	
Comando EDIT	2	
Comando CENTER	1	
Comando AGE	1	
Comando SORT	2	2
Comando STATEC	1	
Comando M81	1	
Comando SAVE	1	
Relatório	2	
TOTAL	20	

A seguinte tabela contém penalizações a aplicar:

Descrição	Penalização (valores)
Uso de variáveis globais	até 3
Não utilização de módulos/procedimentos adequados	até 3

4 Instruções e Regras Finais

O não cumprimento das regras a seguir descritas implica uma penalização na nota do trabalho prático. Se ocorrer alguma situação não prevista nas regras a seguir expostas, essa ocorrência deverá ser comunicada ao respetivo docente de AFP.

Regras:

- a) O projeto é elaborado em grupos de, no máximo, dois alunos.
- b) A nota do Projeto será atribuída após a discussão. As discussões poderão ser orais e/ou com perguntas escritas. A não comparência na discussão atribuirá ao projeto a nota zero.
- c) A apresentação de relatórios ou implementações plagiadas leva à imediata atribuição de nota zero a todos os trabalhos com semelhanças, quer tenham sido o original ou a cópia.
- d) No rosto do relatório e nos ficheiros de implementação deverá constar o número e nome do autor.
- e) Os projetos são submetidos no Moodle, dentro de um arquivo (formato ZIP), contendo todos os deliverables. Apenas será permitido submeter um ficheiro.
- f) As datas das discussões serão publicadas após a entrega dos trabalhos.

(fim de enunciado)