Atomic and Fair Data Exchange via Blockchain

Ertem Nusret Tas

Stanford University

The Science of Blockchain Conference 2024 (SBC'24)

István András Seres Fötvös Loránd U.

Yinuo Zhang **UC** Berkeley

Márk Melczer Eötvös Loránd U.

Mahimna Kelkar Cornell Tech

Joseph Bonneau a16z crypto research a16 crypto research & NYU

Valeria Nikolaenko

The Fair Data Exchange (FDE) Problem

Server Fairness:

An adversarial client cannot learn anything about the data without paying the server.

Correctness:

If the client and the server are honest, the client obtains the data, and the server obtains the payment.

Client Fairness:

An adversarial server cannot receive any payment if the client does not obtain the data.

Applications of FDE over Blockchains

ProtoDanksharding (EIP-4844)

Other Applications:

- Other archival blockchain data
- Data marketplaces (e.g., streaming movies, ...)

The Fair Data Exchange (FDE) Problem

Server Fairness:

An adversarial client cannot learn anything about the data without paying the server.

Correctness:

If the client and the server are honest, the client obtains the data, and the server obtains the payment.

Client Fairness:

An adversarial server cannot receive any payment if the client does not obtain the data.

Strawman Solution

The FDE Protocol

- Server encrypts the data.
- Transfers the encrypted data off-chain (large off-chain bandwidth)
- Sells the key on-chain (small on-chain bandwidth)

Server must prove that the key sold on-chain decrypts the ciphertext to the data committed by C!

Verifiable Encryption under Committed Key (VECK)

• $Gen(crs) \rightarrow pp$

- $\operatorname{Enc}(C, w) \to (vk, sk, ct, \pi)$
- $Verify_{key}(vk, sk) \rightarrow 1/0$
- Verify_{ct} $(C, vk, ct, \pi) \rightarrow 1/0$
- Decrypt(sk, ct) $\rightarrow w/\bot$

Correctness:

Verifications for honestly generated

Proof π : ct is the encryption of the encryption succeed. committed by C under the secret key correctness of FDE committed by the verification key vk. Soundness:

No PPT adversary can generate sk, vk, ct, π such that verification succeeds, yet decryption does not output w.

⇒ client-fairness of FDE

Computational Zero-Knowledge:

The ciphertext and the proof leak no additional information about the witness.

No client can help the others recover w.

⇒ server-fairness of FDE

VECK for KZG Commitments: $w = \phi$, data = $(\phi(0), ..., \phi(l))$, $C = \text{Commit}_{KZG}(\phi)$

The FDE Protocol for KZG Commitments

ElGamal-based VECK for KZG Commitments

$$pp = (h, h_0, \dots, h_l)$$

vk, ct, π

Prover (Server): $\operatorname{Enc}(C, \phi(X)) \to (sk, vk, ct, \pi)$ Sample $s \leftarrow_R \mathbb{F}_p$ Set sk = s (ElGamal secret key) $vk := h^s$ (ElGamal verification key) Data points: assume small $ct \coloneqq \left\{h_i^s g_1^{\phi(i)}\right\}_{i=0}^l$ (ElGamal ciphertexts) Generate $\pi := \text{SNARK. Prove}(crs, \text{ instance} = (C, vk, ct),$ witness = $(s, \phi(X))$

Verifier (Client): $Verify_{ct}(C, vk, ct, \pi) \rightarrow 0/1$ Output 1 if π verifies against C, vk, ct $Decrypt(pp, sk, ct) \rightarrow w/\bot$ Decryption algorithm for ElGamal

Blockchain Contract: $Verify_{key}(pp, vk, sk) \rightarrow 1/0$ Check if $h^{sk} == vk$

More on VECK for KZG Commitments

Requires inclusion of the 'encryption' as part of the SNARK relation \rightarrow Potential effects on efficiency!

An efficient VECK protocol that exploits the (shared) structure of the ElGamal ciphertexts and KZG commitments! Can support large messages by splitting the messages into $k \in [8,16]$ chunks with <u>range proofs</u>.

But, blows up ciphertext size by k!

Paillier-based VECK for KZG commitments to avoid the ciphertext blow-up!

Thm: Assuming Decisional Diffie-Hellman (DDH) assumption, ElGamal-based VECK protocol satisfies security (correctness, soundness and computational zero-knowledge) in the random oracle and algebraic group models.

Thm: Assuming Decisional Composite Residuosity (DCR) assumption, Paillier-based VECK protocol satisfies security in the random oracle and algebraic group models.

Multi-client Model

Can the server save work by amortizing proof generation across many clients?

Strawman

Reuse the same sk, vk, ct across all clients.

Can share o(|Data|) bits \Rightarrow Must rerandomize sk across clients!

Multi-client VECK (MC-VECK) protocol:

Prover saves work by moving parts of the proof generation to a preprocessing step.

No need to generate **new ciphertexts** and **range proofs** per client!

Implementation: Prover Time

- PoC implementation in Rust v1.74.0 on consumer PC with AMD Ryzen 5 3600 (6-core) CPU and 8GB RAM.
- Criterion benchmarking crate8.

Prover time for 4096 BLS12-381 field elements ($\approx 128 \text{ kB}$):

Exponential ElGamal encryption (k = 8):

- Range proofs + ciphertexts: ≈ 89 s
- Overhead for proving the consistency of ciphertexts w.r.t. C and vk: < 40 ms

Paillier encryption: $\approx 5.09 \text{ s}.$

Implementation: Proof Size, Verification & Decryption

Proof size for 4096 BLS12-381 field elements ($\approx 128 \text{ kB}$):

Exponential ElGamal encryption (k = 8):

- Ciphertexts & proofs total size: 1, 56 MB
- \approx 12 \times bandwidth overhead
- Proof has constant size (6|G|).

Paillier encryption:

- Ciphertexts & proofs total size: **6**, **55 MB** (λ = 128, $\log_2 N = 3072$)
- $\approx 50 \times$ bandwidth overhead
- Proof has linear size in the data.

Verification & decryption time for 4096 BLS12-381 field elements (≈ 128 kB):

Exponential ElGamal encryption (k = 8):

- Verification time: 34. 15 s
- <u>Decryption time</u>: Quick with lookup tables.

Paillier encryption:

- Verification time: 19.45 s
- Decryption time: 9.54 s

Implementation: On-chain Costs

• Constant in the size of the exchanged data: 3 signatures, 1 vk, 1 sk!

Ethereum (L1) costs:

Registers server's
verification key with
the one chief contract,
selection server's
the one chief contract,
selection server's
the serv

Transaction	Gas	cost	USD cost	
	ElGamal	Paillier	ElG.	Pail.
serverSendsPubKey	158, 449	176, 296	5.11\$	5.68\$
clientLocksPayment	30, 521	30, 521	0.98\$	0.98\$
serverSendsSecKey	73, 692	82, 475	2.37 \$	2.65\$
withdrawPayment	43, 836	43, 836	1.41\$	1.41\$

On L2, can be made $200 \times less!$

Conclusion and Future Directions

FDE and VECK protocols for KZG commitments with application to Danksharding.

More in the Paper:

- Using Bitcoin as the TTP via adaptor sigs.
- Supporting VECK for subset openings.
- Framework to design alternative FDE & VECK protocols for different commitment schemes.

Future Directions:

- Paillier-encryption with constant-size proofs.
- Other commitment and encryption schemes?
- Server griefing?
- Pricing the data?

Blog post

Paper

Open-source implementation

Practical and Flexible Data Exchange', CCS 2021

Appendix: Related Work

	#rounds	Data struct.	$ \pi_{ m disp} $	StoC	C to B	S to B	Online?
FairSwap	5	Merkle tree	$3\log(k) \mathbb{H} $	$(k+1) \mathbb{H} $	$2 \mathbb{H} + \sigma $	$2 \sigma + \mathbb{G} $	~
FileBounty	k	MerkDam.	3 G	$k(\lambda + \mathbb{H})$	$k \sigma $	$2 \sigma $	×
FairDownload	k	Merkle tree	$\log(k) \mathbb{H} $	k ct	$k \sigma $	$2 \sigma + O(\log k) \mathbb{H} $	×
FDE-ElGamal	3	KZG	N/A	$k \mathbb{G} + 6 \mathbb{G} $	$ \sigma $	$2 \sigma + \mathbb{G} + \mathbb{F}_p $	~
FDE-Paillier	3	KZG	N/A	$k(2 ct + \mathbb{F}_p)$	$ \sigma $	$2 \sigma + \mathbb{G} + \mathbb{F}_p $	~

 $|\mathbb{H}|$, $|\mathbb{G}|$ and $|\mathbb{F}_p|$ refer to the size of a single hash function output, (an elliptic curve or) group element, and field element, respectively, whereas $|\sigma|$ refers to the signature size. If there is a dispute protocol involved, $|\pi_{\mathrm{disp}}|$ is the size of the submitted proof.

ZKCPlus: MiMC-p/p block cipher in CTR mode + commit-and-prove NIZKs (CP-NIZKs)

Appendix: ElGamal-based VECK for KZG Commitments

Consistency

of vk and C_{α}

Prover (Server):

 $\operatorname{Enc}(\mathcal{C}, \phi(X)) \to (sk, vk, ct, \pi)$

1. Sample
$$s \leftarrow_R \mathbb{F}_p$$
, set $sk \coloneqq s, vk \coloneqq h^s$, $ct \coloneqq \left\{h_i^s g_1^{\phi(i)}\right\}_{i=0}^l$

To ensure zero-knowledge

- 2. Compute $C_{\alpha} \coloneqq g_1^{\phi(\alpha)} + s(\tau \alpha)$
- 3. Compute KZG proo (π_{α}) for $\phi(X) s(X \alpha)$ at α . of C and C_{α}
- 4. Compute a proo (π_{LIN}) that $C_{\alpha} = g_1^u(g_1^{\tau-\alpha})^v$ and $vk = 1^u h^v$ for the same v and known u.
- 5. Compute $Q \coloneqq g_1^{-(\tau-\alpha)} \prod_{i=0}^l h_i^{L_{i,l}(\alpha)}$
- 6. Compute DLOG eq. proof π_{DLeq} for (Q, Q^s, h, vk) . Consistency of ct and C_{α}

Verifier (Client): $Verify_{ct}(\textit{C},\textit{vk},\textit{ct},\pi) \rightarrow 0/1$

Can be made non-interactive $\alpha \leftarrow_R \mathbb{F}_p$ with Fiat-Shamir

$$\boldsymbol{\pi} = (\mathcal{C}_{\alpha}, \pi_{\alpha}\pi_{LIN}, \pi_{DLeq})$$

- 1. Verify π_{LIN} against g_1 , $g_1^{\tau-\alpha}$, h, C_{α} , vk.
- 2. Verify π_{α} : $e(C/C_{\alpha}, g_2) = e(\pi_{\alpha}, g_2^{\tau-\alpha})$
- 3. Compute Q, $Q^* := C_{\alpha}^{-1} \prod_{i=0}^{l} ct_i^{L_{i,l}(\alpha)}$
- 4. Verify π_{DLeq} against (Q, Q^*, h, vk) .
- 5. Output 1 iff all checks succeed.

Appendix: ElGamal-based VECK for KZG Commitments

Why is it secure?

•
$$sk = s, vk := h^s, ct := \left\{h_i^s g_1^{\phi(i)}\right\}_{i=0}^l$$

- $\boldsymbol{C}_{\boldsymbol{\alpha}} \coloneqq g_1^{\phi(\alpha) + s(\tau \alpha)}$
- π_{α} : KZG proof for $\phi(X) s(X \alpha)$ at α .
- π_{LIN} : proof that $C_{\alpha}=g_1^u(g_1^{\tau-\alpha})^v$ and $vk=1^uh^v$ for the same v and known u.
- $\mathbf{Q} \coloneqq g_1^{-(\tau-\alpha)} \prod_{i=0}^l h_i^{L_{i,l}(\alpha)}$
- π_{DLeq} : DLOG eq. proof for (Q, Q^s, h, vk) .

- 1. π_{LIN} proves that $C_{\alpha}=g_{1}^{u+s(\tau-\alpha)}$ given $vk=h^{s}$.
- 2. Given (1), π_{α} proves that $C_{\alpha} = g_1^{\phi(\alpha) + s(\tau \alpha)}$.
- 3. Given (1) and 2, π_{DLeq} proves that ct are ElGamal encryptions of $\phi(i)$, i=0,...,l; since then

$$\begin{split} &Q^* = C_{\alpha}^{-1} \prod_{i=0}^{l} ct_i^{L_{i,l}(\alpha)} \\ &= g_1^{-\phi(\alpha) - s(\tau - \alpha)} \prod_{i=0}^{l} h_i^{sL_{i,l}(\alpha)} g_1^{\phi(i)L_{i,l}(\alpha)} \\ &= g_1^{-\phi(\alpha) - s(\tau - \alpha)} g_1^{\phi(\alpha)} \prod_{i=0}^{l} h_i^{sL_{i,l}(\alpha)} \left(g_1^{-(\tau - \alpha)} \prod_{i=0}^{l} h_i^{L_{i,l}(\alpha)} \right)^s = Q^s \end{split}$$

Appendix: Multi-client VECK Protocol

Prover saves work by moving parts of the proof generation to a preprocessing step.

Prover (Server) Preprocessing: $Prep(C, \phi(X)) \rightarrow (aux, msk)$

- 1. Run Enc(C, $\phi(X)$) \rightarrow (sk, vk, ct, π)
- 2. Output aux = (vk, ct, π) and msk = sk

Prover (Server) per client c: Enc(aux, msk) $\rightarrow (sk_c, vk_c, ct, \pi_c)$

- 1. Sample δ_c $\vdash_R \mathbb{F}_p$ To rerandomize sk
- 2. Calculate $Q = \prod_{\{i \in [n]\}} h_i^{e_i}$, where $e_i \coloneqq H(h^{\delta_c}, i)$.
- 3. Compute DLOG eq. proof π_{DLeg} for $(Q, Q^{\delta_c}, h, h^{\delta_c})$. Consistency of $h_{c,i}$ and D_c

4.
$$sk_c \coloneqq sk + \delta_c$$
, $vk_c \coloneqq vk \cdot h^{\delta_c}$,
$$\pi_c = \left(\pi, D_c \coloneqq h^{\delta_c}, \pi_{DLeq}, \left(h_{c,i} \coloneqq h_i^{\delta_c}\right)_{i=0}^l\right)$$

Verifier (Client): $Verify_{ct}(\textit{C},\textit{vk}_\textit{c},\textit{ct},\pi_\textit{c}) o 0/1$

- 1. Parse $(\pi, D_c, \pi_{DLeq}) \leftarrow \pi_c$
- 2. Compute Q, $Q^* := \prod_{i=0}^l h_{c,i}^{e_i}$
- 3. Verify π_{DLeq} against (Q, Q^*, h, D_c) .
- 4. Output 1 if all checks succeed & Verify_{ct} $(C, vk_c/D_c, ct, \pi) = 1$