CAAM 336 · DIFFERENTIAL EQUATIONS

Homework 17

Posted Wednesday 25 September 2013. Due 5pm Wednesday 2 October 2013.

17. [25 points] Consider the polynomials $\phi_1(x) = 1$, $\phi_2(x) = x$, and $\phi_3(x) = 3x^2 - 1$, which form a basis for the set of all quadratic polynomials. These polynomials are orthogonal with respect to the inner product (\cdot, \cdot) : $C[-1, 1] \times C[-1, 1] \to \mathbb{R}$ defined by

$$(u,v) = \int_{-1}^{1} u(x)v(x) dx.$$

Let the norm $\|\cdot\|: C[-1,1] \to \mathbb{R}$ be defined by

$$||u|| = \sqrt{(u, u)}.$$

Let $f(x) = e^x$.

- (a) By hand, construct the best approximation f_1 to f from span $\{\phi_1\}$ with respect to the norm $\|\cdot\|$.
- (b) By hand, construct the best approximation f_2 to f from span $\{\phi_1, \phi_2\}$ with respect to the norm $\|\cdot\|$.
- (c) By hand, construct the best approximation f_3 to f from span $\{\phi_1, \phi_2, \phi_3\}$ with respect to the norm $\|\cdot\|$.
- (d) Produce a plot that superimposes your best approximations from parts (a), (b), and (c) on top of a plot of f(x).