4T_L01 Four T

单片机原理及接口技术开发板 用户手册

四梯科技有限公司

目录

-,	总体概述	1
	1.1 产品特点	. 1
	1.2 资源配置	. 1
	1.3 开发环境	. 1
	1.3 订购信息	. 2
	1.4 获取支持	. 2
	1.5 版本信息	. 2
Ξ,	硬件规格详情	. 3
	2.1 供电方式	. 3
	2.2 主控单元	. 3
	2.3 时钟与复位系统	. 3
	2.4 存储电路	. 3
	2.5 通信接口	. 4
	2.6 人机交互接口	. 4
	2.7 传感器	. 4
	2.8 物理特性	. 4
Ξ、	接线详情	5
四、	硬件资源布局	. 7
五、	教材贴合实验实施指导	. 8

一、总体概述

单片机原理及接口技术开发板由四梯科技有限公司为《单片机原理及接口技术》(主编:李全利)配套开发。

本教学开发板的设计,紧密围绕李全利老师主编的《单片机原理及接口技术》 核心知识体系,旨在打破传统理论教学中"纸上谈兵"的隔阂,构建一个"学中做,做中学"的一体化实践平台。

但在此之外该开发板不仅是一款优秀的教学工具,同样也是一个实用的开发平台。它能够伴随学习者从入门阶段的验证性实验,平滑过渡到进阶阶段的创新性开发,从而全面培养其在嵌入式系统领域的综合设计与工程实现能力。

更多信息可参考《单片机原理及接口技术开发板原理图》、以及教材《单片机原理及接口技术--李全利》。

1.1 产品特点

- 1).全面贴合教材,与教材知识体系紧密结合
- 2).集成 USB-ISP 下载,无需外置的下载器,降低设备门槛
- 3).丰富的外设与接口,支持 RS232 接口,以及扩展 IO 接口
- 4).详尽的配套教学资源,包含全套的用户例程以及教学指导

1.2 资源配置

- 1).MCU: STC12C5A60S2
- 2).4*4 矩阵键盘(可切换为四路独立键盘)
- 3).2*4 位数码管
- 4).EEPROM 存储模块
- 5).USB 转串口模块
- 6).蜂鸣器模块
- 7).RTC 时钟模块
- 8).温度传感器模块
- 9).LCM1602 接口
- 10).SRAM 存储模块
- 11).DAC 模块
- 12).ADC 模块

1.3 开发环境

1).IDE: Keil / VIsual Sudio

2).下载工具: STC-ISP

1.3 订购信息

1).官方淘宝: https://gxct.taobao.com/

2).四梯商城: https://4t.wiki/mall

1.4 获取支持

请通过以下方式联系我们,获取更多硬件学习资源和技术支持。

1).技术支持: tech@4t.wiki

2).交流社区: https://www.4t.wiki/community

3).学习资源: https://www.4t.wiki/curriculum

打开 4t.wiki 网站,获取更多资讯。

1.5 版本信息

版本编号	日期	修改内容	页码
V1.0	2025-9	新修订	1-9

二、硬件规格详情

直接使用 USB1 进行供电,通过电源控制按键来实现冷启动,配合 USB 转 TTL 串口芯片进行程序的下载。搭配大量的外设来实现不同的功能。简洁的操作 切换设计,更好的使用的片上资源,优化设计空间,方便操作以及携带。

单片机原理及接口技术开发板的系统框图如下所示:

图 2.1 单片机原理及接口技术开发板 系统框图

2.1 供电方式

● 供电接口 1: Type-C USB 接口----USB1

输入电压: 5V DC ±5% 额定电流: ≥ 500mA

● 电源按键:下载按键

实现设备冷启动

2.2 主控单元

● 型号: STC12C5A60S2

● 架构:增强型8051内核,单时钟指令周期

● 存储器:

Flash ROM:60KB RAM:1280Bytes

● 工作电压: 5V

2.3 时钟与复位系统

● 时钟源: 配备单独的 11.0592MHZ/12MHZ 晶振

● 复位电路: 配备单独的复位电路与按键

2.4 存储电路

• EEPROM: AT24C02

I2C接口 EEPROM 存储器

2.5 通信接口

● USB-to-USART: CH340C, 实现 USB 串口下载与调试

● I2C: 实现与 EEPROM 等设备的 I2C 通讯

● 串行、并行:通过串行数据处理扩展 IO 的数据

● 单总线:实现与 DS18B20 等外设通讯

● 三线:实现与 DS1302 实时时钟模块进行通信

● RS232: 扩展接口可实现 RS232 通讯

2.6 人机交互接口

● 输入:

按键矩阵(可切换为独立按键)4*4

拨动开关*2

滑动变阻器*2

复位按键*1

冷启动电源按键*1

● 输出:

蜂鸣器*1

LED 矩阵 (1*8)

● 显示:

4 位数码管*2

LCD1602接口*1

2.7 传感器

● 传感器:

温度传感器 DS18B20*1

2.8 物理特性

● PCB 尺寸: 112mm*85mm*1.6mm

● 产品尺寸: 117mm*88mm*21mm

● 底壳颜色:白色

● RS232接口: PIN2--TX, PIN3--RX

三、接线详情

	MCU			
PIN	名称	接线	备注	
1	P1.5	LCD1602_D5		
2	P1.6	LCD1602_D6		
3	P1.7	LCD1602_D7		
4	P4.7	复位信号	接复位按键	
5	P3.0	矩阵键盘第一行/USART RX		
6	P4.3	ADC_RTCDATA_OUT		
7	P3.1	矩阵键盘第二行/USART TX		
8	P3.2	矩阵键盘第三行		
9	P3.3	矩阵键盘第四行		
10	P3.4	矩阵键盘第一列		
11	P3.5	矩阵键盘第二列		
12	P3.6	矩阵键盘第三列	SRAM 以及扩展 IO(WR	
13	P3.7	矩阵键盘第四列	SRAM 以及扩展 IO(RD	
14	XTAL2	外部晶振		
15	XTAL1	外部晶振		
16	GND	MCU 电源地		
17	P4.0	BUZZ		
18	P2.0	LCD1602_RS		
19	P2.1	LCD1602_RW		
20	P2.2	LCD1602_E		
21	P2.3	LED_CHOICE		
22	P2.4	SEG_CHOICE		
23	P2.5	I2C_SDA		
24	P2.6	I2C_SCL		
25	P2.7	DS18B20		
26	P4.4	RTC_CE		
27	P4.5	XL5615_CE		
28	P4.1	ADC/RTC/DACSCLK		
29	P4.6	XL595_CE		

30	P0.7	LED8/SEG_DP
31	P0.6	LED7/SEG_G
32	P0.5	LED6/SEG_F
33	P0.4	LED5/SEG_E
34	P0.3	LED4/SEG_D
35	P0.2	LED3/SEG_C
36	P0.1	LED2/SEG_B
37	P0.0	LED1/SEG_A
38	VCC	MCU 电源供电
39	P4.2	DAC_DIN
40	P1.0	LCD1602_D0
41	P1.1	LCD1602_D1
42	P1.2	LCD1602_D2
43	P1.3	LCD1602_D3
44	P1.4	LCD1602_D4

注: P0.0-P.07 以及 P1.0-7 之中,在实验 SRAM 以及扩展 IO 的实验中,有较为复杂的应用,请在实验例程,用户手册以及教材中获取更多支持

四、硬件资源布局

图 4.1 单片机原理及接口技术开发板 硬件资源布局正面图

图 4.2 单片机原理及接口技术开发板 硬件资源布局背面图

五、教材贴合实验实施指导

下表中给出如何在单片机原理及接口技术开发板中进行配置,从而实现《单片机原理及接口技术--李全利》中的各种实验例程以及应用案例。具体的实验内容以及实验的具体实现代码请参考《单片机原理及接口技术--李全利》,部分代码实现方式可参考综合实验程序。

实验名称	实验描述	硬件连接	页码
应用案例-交通 信号灯模拟控 制	拨动开关调至 LED LD1、LD6 为红灯 LD2、LD7 为黄灯 LD3、LD8 为绿灯,模拟交通灯现象	P0.1-P0.7 控制 LD1-LD8	126
例 5-1	以频率 800Hz 发声,发声时间 250ms	P4.0BUZZ	133
例 5-2	拨动开关调至 SEG 利用 rand ()函数产生 0-999 之间的随机数,并以 16 进制在数码管上显示	P0 控制数码管数据 P2.4 控制锁存	138
例 5-3	拨动开关调至 SEG、独立键盘 上电后数码管显示 "P", 当按键 K0、K1、 K2 按下时, 在数码管上显示相应的按键号 0-2 并计数按键次数; 当按键 K3 按下时, 在数码管上显示按键次数 0-F, 当按键次数 超过 16 次后, 计数回 0	P3.0-P3.3 控制按键 K1-K3 P0 控制数码管数据 P2.4 控制锁存	144
例 5-4	拨动开关调至 SEG、矩阵键盘 在数码管显示 "P",在数码管上显示按键 对应的十六进制键号	P3.0-P3.3 控制矩阵键盘行 P3.4-P3.7 控制矩阵键盘列 P0 控制数码管数据 P2.4 控制锁存	147
例 5-5	拨动开关调至 SEG、矩阵键盘 在数码管显示 "P", 在数码管上显示按键 对应的十六进制键号	P3.0-P3.3 控制矩阵键盘 1-4 行 P3.4-P3.7 控制矩阵键盘 1-4 列 P0 控制数码管数据 P2.4 控制锁存	150
例 5-6	在 LCD1602 上显示指定字符串	P2.0LCD1602_RS P2.1LCD1602_RW P2.2LCD1602_E P1.0-P1.7LCD1602_D1-D7	155

实验名称	实验描述	硬件连接	页码
	拨动开关调至 SEG、矩阵键盘	P3.0-P3.3 控制矩阵键盘行	
应用案例-简易	基于 4x4 矩阵键盘和 6 位共阳数码管的	P3.4-P3.7 控制矩阵键盘列	159
电子密码锁	电子密码锁系统, 具有 密码验证、错误次	P0 控制数码管数据	139
	数限制、密码修改 等功能	P2.4 控制锁存	
例 6-7	利用定时器输出周期为 20ms 的方波	使用 MCU 内部定时器	188
例 6-8	利用定时器输出周期为 2s 的方波	使用 MCU 内部定时器	190
应用案例-简易 秒表计时器	拨动开关调至 SEG、独立键盘 使用 4 位共阳数码管显示"分:秒" (MM:SS),并通过 K4 按键实现"启动/ 停止/清零"三态控制	P3.3K4 P0 控制数码管数据 P2.4 控制锁存	197
例 7-3	两台单片机串行通信, A 单片机发送数据 B 单片机接收数据	P3.0USART RX P3.1USART TX	219
	两台单片机串行通信, A 单片机发送数据 B	P3.0USART RX	
例 7-4	单片机接收数据,并点亮 LED,每次接收数	P3.1USART TX	221
	据都要奇偶校验。	P0 控制 LD1-LD8	
	两个单片机上电默认数码管显示"8",两机比较校验和,如果正确可以通讯数码管显示"P"。	P3.0USART RX	
应用案例-单片		P3.1USART TX	232
机双机通讯		P0 控制数码管数据	
		P2.4 控制锁存	
单片机扩展多	利用单片机扩展 16 个 10 口, 其中 8 个输	P1.7SRAM_CE	
并行 IO 口及	入口,8个输出口。另外系统用还有32	P3.6SRAM_WR	269
sram	KB 的 SRAM 数据储存器	P3.7SRAM_RD	
01 应用案例-简	利用 D/A 转换器构成建议信号发生器,按	P4.1CLK	
易信号发生器	下 K1 产生方波,按下 K2 产生正弦波,按	P4.2DIN	330
勿旧与及工品	下 K3 产生三角波。	P4.65615CS	
		P4.5549CS	
02 应用案例-简	利用 TLC549 设计一个建议数字电压表,测	P4.1CLK	334
易数字电压表	得电压在四位 LED 上显示。	P4.3DOUT	334
		P0 控制数码管数, P2.4 控制锁存	
03 应用案例-温		P2.7DS18B20	
03 应用条例	利用 DS18B20 测量温度,显示在 LED 上。	P0 控制数码管数据	337
区/53 里尔沙		P2.4 控制锁存	