Auto-évaluation

Note : ce test est facultatif et anonyme. Il est destiné à vous aider à apprécier votre niveau. Toutes les questions sont simples et doivent être aisées si les connaissances préliminaires sont acquises. Si vous avez des difficultés quelconques, nous vous invitons à venir assister aux cours de rattrapage.

Important : dans le cours Signaux et Systèmes nous utiliserons les notations suivantes :

$$j = \sqrt{-1}$$
 (= i pour les mathématiciens)
 $z^* = \bar{z}$ (conjugué de z)

Pour un nombre complexe sous forme polaire $z=Ae^{j\phi}$ avec $A\in\mathbb{R}^+$ et $\phi\in\mathbb{R}$, on appelle A le module de z, et ϕ sa phase.

Exercice 0.1: NOMBRES COMPLEXES

Montrer que la valeur de $(\frac{j}{2+z} - \frac{j}{2+z^*})$ est réelle.					
☐ Je ne sais pas faire	☐ Je sais faire si vous me donnez le temps	□ Je fais			
Solution:					

Exercice 0.2: MODULE ET PHASE D'UN NOMBRE COMPLEXE

Soit un nombre complexe $z = j e^{-j at }$ avec $a > 0, t \in \mathbb{R}$. Donner le module et la phase de			
☐ Je ne sais pas faire	☐ Je sais faire si vous me donnez le temps	□ Je fais	
Solution:			

Exercice 0.3: CALCUL

Simplifier l'expression $1 + e^{j2\theta} + e^{j4\theta} + e^{j6\theta} + \cdots + e^{j16\theta}$ avec $\theta \neq 2k\pi, k \in \mathbb{Z}$.				
□ Je ne sais pas faire	☐ Je sais faire si vous me donnez le temps	☐ Je fais		
Solution:				

Exercice 0.4: CHANGEMENT DE VARIABLE

Soit $f(t) = e^{\pi t + \frac{1}{2}}$. Donner f(-t/2). \square Je ne sais pas faire \square Je sais faire si vous me donnez le temps \square Je fais Solution:

Exercice 0.5 : CHANGEMENT DE VARIABLE INVERSE

Soit $f\left(\frac{t+1}{2}\right) = g(t)$. Donner f(t).

☐ Je ne sais pas faire ☐ Je sais faire si vous me donnez le temps ☐ ☐ Je fais Solution:

Exercice 0.6: GRAPHE D'UNE FONCTION RÉELLE

Soit la fonction f(t) donnée sur le graphe ci-dessous. On demande de tracer $\frac{1}{3}f(2t-1)$. \Box Je ne sais pas faire \Box Je sais faire si vous me donnez le temps \Box Je fais Solution:

(b) Graphe de $\frac{1}{3}f(2t-1)$.

Exercice 0.7: INTÉGRATION

Vrai ou faux?

$$\int_0^1 \frac{1}{3} (t - x)^2 \, \mathrm{d}x = (t - x)^3.$$

□Vrai □ Faux □ Je sais faire si vous me donnez le temps

Exercice 0.8: LOGIQUE

On appelle système BIBO un système pour lequel à nimporte quelle entrée bornée correspond une sortie bornée. L'affirmation suivante est-elle vraie?

Soit un système BIBO dont la sortie n'est pas bornée, alors son entrée n'est pas bornée.

☐ Je ne sais pas faire	☐ Je sais faire si vous me donnez le temps	□ Je fais
Solution:		

Exercice 0.9: GRAPHE D'UNE FONCTION COMPLEXE

Soit la fonction complexe $x(t) = e^{j\pi t}/e^{-j\frac{\pi}{2}}$. Tracer sur les graphes ci-dessous les allures du module, de la phase, de la partie réelle, et de la partie imaginaire.

☐ Je ne sais pas faire ☐ Je sais faire si vous me donnez le temps ☐ ☐ Je fais Solution:

Exercice 0.10: POLYNÔMES

Vrai ou faux?

$$(t - j)(t - 5)(t + 1 + 2j)(t + 1 - 2j)(t + j) = t5 + 3t4 + \frac{6}{\sqrt{2}}t3 + 2\sqrt{2}t2 + 5t + 5.$$

☐ Je ne sais pas faire	\Box Je sais faire si vous me donnez le temps	\square Je fais
Solution:		