## **SBML Model Report**

# Model name: "Bindschadler2001\_coupled\_Ca\_oscillators"



May 6, 2016

## 1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by Harish Dharuri<sup>1</sup> at May 31<sup>st</sup> 2006 at 8:28 a.m. and last time modified at May 24<sup>th</sup> 2014 at 4:17 p.m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

| Element           | Quantity | Element              | Quantity |
|-------------------|----------|----------------------|----------|
| compartment types | 0        | compartments         | 1        |
| species types     | 0        | species              | 4        |
| events            | 0        | constraints          | 0        |
| reactions         | 11       | function definitions | 0        |
| global parameters | 16       | unit definitions     | 1        |
| rules             | 8        | initial assignments  | 0        |

#### **Model Notes**

The model reproduces the same amplitude antiphase calcium oscillations of coupled cells depicted in Figure 5B of the publication. This model was successfully tested on Jarnac and MathS-BML. The values of "h1, and "h2, are not given in the publication, but the antiphase oscillations are reproduced over a narrow range of values of h1, h2,c1,c2,D and p. The values of D and p are given, while the other values were plugged in, in order to simulate the time profiles shown in the

 $<sup>{}^{1}</sup>California\ Institute\ of\ Technology,\ {\tt hdharuri@cds.caltech.edu}$ 

Figure. The time t=0 in the figure may have been fixed after the system was allowed to settle, and hence does not correspond to the t=0 of the simulation.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CC0 Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

## 2 Unit Definitions

This is an overview of five unit definitions of which four are predefined by SBML and not mentioned in the model.

#### 2.1 Unit substance

Name micromole

Definition µmol

#### 2.2 Unit volume

**Notes** Litre is the predefined SBML unit for volume.

**Definition** 1

## 2.3 Unit area

**Notes** Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

**Definition** m<sup>2</sup>

#### 2.4 Unit length

**Notes** Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

**Definition** m

## 2.5 Unit time

 $\mbox{\bf Notes}\,$  Second is the predefined SBML unit for time.

**Definition** s

# 3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

| Id          | Name | SBO | Spatial Dimensions | Size | Unit  | Constant | Outside |
|-------------|------|-----|--------------------|------|-------|----------|---------|
| compartment |      |     | 3                  | 1    | litre | Ø        |         |

## 3.1 Compartment compartment

This is a three dimensional compartment with a constant size of one litre.

# 4 Species

This model contains four species. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

| Id | Name                    | Compartment | Derived Unit           | Constant | Boundary<br>Condi- |
|----|-------------------------|-------------|------------------------|----------|--------------------|
|    |                         |             |                        |          | tion               |
| c1 | Calcium ion Cell1       | compartment | $\mu mol \cdot l^{-1}$ |          | $\Box$             |
| h1 | Receptor fraction Cell1 | compartment | $\mu mol \cdot l^{-1}$ | $\Box$   | $\Box$             |
| c2 | Calcium ion Cell2       | compartment | $\mu mol \cdot l^{-1}$ | $\Box$   | $\Box$             |
| h2 | Receptor fraction Cell2 | compartment | $\mu mol \cdot l^{-1}$ | $\Box$   |                    |

## **5 Parameters**

This model contains 16 global parameters.

Table 4: Properties of each parameter.

| Id          | Name | SBO Value | e Unit | Constant     |
|-------------|------|-----------|--------|--------------|
| Phi1_c1     |      | 0.0       | )      |              |
| r2          |      | 100.0     | )      |              |
| R1          |      | 6.0       | )      | $\square$    |
| Phi_minus1- |      | 0.0       | )      |              |
| _c1         |      |           |        |              |
| k1          |      | 44.0      | )      | $\square$    |
| R3          |      | 50.0      | )      | $\mathbf{Z}$ |
| Phi2_c1     |      | 0.0       | )      |              |
| k2          |      | 26.5      | 5      | $\mathbf{Z}$ |
| r4          |      | 20.0      | )      | $\mathbf{Z}$ |
| Phi3_c1     |      | 0.0       | )      |              |
| k3          |      | 1.0       | 5      | $\square$    |
| R5          |      | 1.0       | 5      | $\mathbf{Z}$ |
| Phi1_c2     |      | 0.0       | )      |              |
| Phi_minus1- |      | 0.0       | )      |              |
| _c2         |      |           |        |              |
| $Phi2_c2$   |      | 0.0       | )      |              |
| Phi3_c2     |      | 0.0       | )      |              |

## 6 Rules

This is an overview of eight rules.

## 6.1 Rule Phi1\_c1

Rule Phi1\_c1 is an assignment rule for parameter Phi1\_c1:

Phi1\_c1 = 
$$\frac{r2 \cdot [c1]}{R1 + [c1]}$$
 (1)

## 6.2 Rule Phi\_minus1\_c1

Rule Phi\_minus1\_c1 is an assignment rule for parameter Phi\_minus1\_c1:

$$Phi\_minus1\_c1 = \frac{k1}{R3 + [c1]}$$
 (2)

## 6.3 Rule Phi2\_c1

Rule Phi2\_c1 is an assignment rule for parameter Phi2\_c1:

Phi2\_c1 = 
$$\frac{k2 + r4 \cdot [c1]}{R3 + [c1]}$$
 (3)

#### 6.4 Rule Phi3\_c1

Rule Phi3\_c1 is an assignment rule for parameter Phi3\_c1:

Phi3\_c1 = 
$$\frac{k3}{R5 + [c1]}$$
 (4)

#### **6.5 Rule Phi1**\_c2

Rule Phi1\_c2 is an assignment rule for parameter Phi1\_c2:

Phi1\_c2 = 
$$\frac{r2 \cdot [c2]}{R1 + [c2]}$$
 (5)

## **6.6 Rule Phi\_minus1\_c2**

Rule Phi\_minus1\_c2 is an assignment rule for parameter Phi\_minus1\_c2:

Phi\_minus1\_c2 = 
$$\frac{k1}{R3 + [c2]}$$
 (6)

#### **6.7 Rule Phi2\_c2**

Rule Phi2\_c2 is an assignment rule for parameter Phi2\_c2:

Phi2\_c2 = 
$$\frac{k2 + r4 \cdot [c2]}{R3 + [c2]}$$
 (7)

#### 6.8 Rule Phi3\_c2

Rule Phi3\_c2 is an assignment rule for parameter Phi3\_c2:

Phi3\_c2 = 
$$\frac{k3}{R5 + [c2]}$$
 (8)

# 7 Reactions

This model contains eleven reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

| N⁰ | Id                          | Name                                       | Reaction Equation                                   | SBO |
|----|-----------------------------|--------------------------------------------|-----------------------------------------------------|-----|
| 1  | Jreceptor_Cell1             | IP3R mediated Ca release Cell1             | $\emptyset \xrightarrow{\mathbf{h} 1} \mathbf{c} 1$ |     |
| 2  | Jpump_Cell1                 | ATPase pump mediated Ca efflux Cell1       | $c1 \longrightarrow \emptyset$                      |     |
| 3  | Jleak_Cell1                 | IP3R independent Ca release Cell1          | $\emptyset \longrightarrow c1$                      |     |
| 4  | ${\tt Inactivated\_to-}$    | Inactivated to Shut state transition Cell1 | $\emptyset \longrightarrow h1$                      |     |
|    | _S_Cell1                    |                                            |                                                     |     |
| 5  | Open_to-                    | Open to Inactivated state transition Cell1 | $h1 \longrightarrow \emptyset$                      |     |
|    | $_{	extsf{L}}$ Inactivated- |                                            |                                                     |     |
|    | _Cell1                      |                                            |                                                     |     |
| 6  | Jreceptor_Cell2             | IP3R mediated Ca release Cell2             | $\emptyset \xrightarrow{\mathbf{h2}} \mathbf{c2}$   |     |
| 7  | ${\tt Jpump\_Cell2}$        | ATPase pump mediated Ca efflux Cell2       | $c2 \longrightarrow \emptyset$                      |     |
| 8  | Jleak_Cell2                 | IP3R independent Ca release Cell2          | $\emptyset \longrightarrow c2$                      |     |
| 9  | ${\tt Inactivated\_to-}$    | Inactivated to Shut state transition Cell2 | $\emptyset \longrightarrow h2$                      |     |
|    | $_{\tt S\_Cell2}$           |                                            |                                                     |     |
| 10 | Open_to-                    | Open to Inactivated state transition Cell2 | $h2 \longrightarrow \emptyset$                      |     |
|    | $_{	extsf{L}}$ Inactivated- |                                            |                                                     |     |
|    | _Cell2                      |                                            |                                                     |     |
| 11 | diffusion                   | Diffusion of Ca between cells              | $c2 \longrightarrow c1$                             |     |

## 7.1 Reaction Jreceptor\_Cell1

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name IP3R mediated Ca release Cell1

## **Reaction equation**

$$\emptyset \xrightarrow{h1} c1 \tag{9}$$

#### **Modifier**

Table 6: Properties of each modifier.

|    | to or respondence of cuton inc |     |
|----|--------------------------------|-----|
| Id | Name                           | SBO |
| h1 | Receptor fraction Cell1        |     |

#### **Product**

Table 7: Properties of each product.

|    | 1                 |     |
|----|-------------------|-----|
| Id | Name              | SBO |
| c1 | Calcium ion Cell1 |     |

#### **Kinetic Law**

Derived unit contains undeclared units

$$v_{1} = \text{vol}\left(\text{compartment}\right) \cdot \text{kf} \cdot \left(\frac{p \cdot [\text{h1}] \cdot \text{Phi1\_c1}}{\text{Phi1\_c1} \cdot p + \text{Phi\_minus1\_c1}}\right)^{4}$$
 (10)

Table 8: Properties of each parameter.

| Id | Name | SBO Value Unit | Constant                  |
|----|------|----------------|---------------------------|
| kf |      | 28.000         | $ \overline{\checkmark} $ |
| p  |      | 0.278          |                           |

## 7.2 Reaction Jpump\_Cell1

This is an irreversible reaction of one reactant forming no product.

Name ATPase pump mediated Ca efflux Cell1

## **Reaction equation**

$$c1 \longrightarrow \emptyset$$
 (11)

#### Reactant

Table 9: Properties of each reactant.

| Id | Name              | SBO |
|----|-------------------|-----|
| c1 | Calcium ion Cell1 |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_2 = \text{vol}\left(\text{compartment}\right) \cdot \frac{\text{Vp} \cdot [\text{c1}]^2}{\text{Kp}^2 + [\text{c1}]^2} \tag{12}$$

Table 10: Properties of each parameter.

| Id | Name | SBO Value Unit | Constant |
|----|------|----------------|----------|
| ۷p |      | 1.20           |          |
| Кр |      | 0.18           |          |

## 7.3 Reaction Jleak\_Cell1

This is an irreversible reaction of no reactant forming one product.

Name IP3R independent Ca release Cell1

## **Reaction equation**

$$\emptyset \longrightarrow c1$$
 (13)

#### **Product**

Table 11: Properties of each product.

| Id | Name              | SBO |
|----|-------------------|-----|
|    | Calcium ion Cell1 |     |

| Id Name SBO |
|-------------|
|-------------|

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_3 = \text{vol}(\text{compartment}) \cdot \text{Jleak}$$
 (14)

Table 12: Properties of each parameter.

| Id    | Name | SBO Value Unit | Constant |
|-------|------|----------------|----------|
| Jleak |      | 0.2            |          |

## 7.4 Reaction Inactivated\_to\_S\_Cell1

This is an irreversible reaction of no reactant forming one product.

Name Inactivated to Shut state transition Cell1

## **Reaction equation**

$$\emptyset \longrightarrow h1$$
 (15)

## **Product**

Table 13: Properties of each product.

| Id | Name                    | SBO |
|----|-------------------------|-----|
| h1 | Receptor fraction Cell1 |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_4 = \text{vol}(\text{compartment}) \cdot \text{Phi3\_c1} \cdot (1 - [\text{h1}])$$
 (16)

## 7.5 Reaction Open\_to\_Inactivated\_Cell1

This is an irreversible reaction of one reactant forming no product.

Name Open to Inactivated state transition Cell1

## **Reaction equation**

$$h1 \longrightarrow \emptyset$$
 (17)

#### Reactant

Table 14: Properties of each reactant.

| Id | Name                    | SBO |
|----|-------------------------|-----|
| h1 | Receptor fraction Cell1 |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{5} = \frac{\text{vol}(\text{compartment}) \cdot \text{Phi1\_c1} \cdot \text{Phi2\_c1} \cdot [\text{h1}] \cdot \text{p}}{\text{Phi1\_c1} \cdot \text{p} + \text{Phi\_minus1\_c1}}$$
(18)

Table 15: Properties of each parameter.

| Id | Name | SBO Value Unit | Constant |
|----|------|----------------|----------|
| р  |      | 0.278          |          |

## 7.6 Reaction Jreceptor\_Cell2

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name IP3R mediated Ca release Cell2

## **Reaction equation**

$$\emptyset \xrightarrow{h2} c2 \tag{19}$$

## **Modifier**

Table 16: Properties of each modifier.

| Id | Name                    | SBO |
|----|-------------------------|-----|
| h2 | Receptor fraction Cell2 |     |

## **Product**

Table 17: Properties of each product.

| Id | Name              | SBO |
|----|-------------------|-----|
| c2 | Calcium ion Cell2 |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_6 = \text{vol (compartment)} \cdot \text{kf} \cdot \left( \frac{p \cdot [\text{h2}] \cdot \text{Phi1\_c2}}{\text{Phi1\_c2} \cdot p + \text{Phi\_minus1\_c2}} \right)^4$$
 (20)

Table 18: Properties of each parameter.

| Id | Name | SBO | Value  | Unit | Constant |
|----|------|-----|--------|------|----------|
| kf |      |     | 28.000 |      |          |
| p  |      |     | 0.278  |      |          |

## 7.7 Reaction Jpump\_Cell2

This is an irreversible reaction of one reactant forming no product.

Name ATPase pump mediated Ca efflux Cell2

## **Reaction equation**

$$c2 \longrightarrow \emptyset$$
 (21)

#### Reactant

Table 19: Properties of each reactant.

| Id | Name              | SBO |
|----|-------------------|-----|
| c2 | Calcium ion Cell2 |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_7 = \frac{\text{vol (compartment)} \cdot \text{Vp} \cdot [\text{c2}]^2}{\text{Kp}^2 + [\text{c2}]^2}$$
 (22)

Table 20: Properties of each parameter.

| Id | Name | SBO Value Unit | Constant       |
|----|------|----------------|----------------|
| ۷p |      | 1.20           | $\overline{Z}$ |
| Кр |      | 0.18           |                |

## 7.8 Reaction Jleak\_Cell2

This is an irreversible reaction of no reactant forming one product.

Name IP3R independent Ca release Cell2

## **Reaction equation**

$$\emptyset \longrightarrow c2$$
 (23)

#### **Product**

Table 21: Properties of each product.

| Id | Name              | SBO |
|----|-------------------|-----|
| c2 | Calcium ion Cell2 |     |

### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_8 = \text{vol}\left(\text{compartment}\right) \cdot \text{Jleak}$$
 (24)

Table 22: Properties of each parameter.

| Id    | Name | SBO Value Unit | Constant |
|-------|------|----------------|----------|
| Jleak |      | 0.2            |          |

## 7.9 Reaction Inactivated\_to\_S\_Cell2

This is an irreversible reaction of no reactant forming one product.

Name Inactivated to Shut state transition Cell2

## **Reaction equation**

$$\emptyset \longrightarrow h2$$
 (25)

#### **Product**

Table 23: Properties of each product.

| Id | Name                    | SBO |
|----|-------------------------|-----|
| h2 | Receptor fraction Cell2 |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_9 = \text{vol} \left( \text{compartment} \right) \cdot \text{Phi3\_c2} \cdot \left( 1 - [\text{h2}] \right)$$
 (26)

## 7.10 Reaction Open\_to\_Inactivated\_Cell2

This is an irreversible reaction of one reactant forming no product.

Name Open to Inactivated state transition Cell2

## **Reaction equation**

$$h2 \longrightarrow \emptyset$$
 (27)

### Reactant

Table 24: Properties of each reactant.

| Tueste 2 :: Treperines er euem reuemini |                         |     |  |
|-----------------------------------------|-------------------------|-----|--|
| Id                                      | Name                    | SBO |  |
| h2                                      | Receptor fraction Cell2 |     |  |

#### **Kinetic Law**

Derived unit contains undeclared units

$$v_{10} = \frac{\text{vol}(\text{compartment}) \cdot \text{Phi1\_c2} \cdot \text{Phi2\_c2} \cdot [\text{h2}] \cdot \text{p}}{\text{Phi1\_c2} \cdot \text{p} + \text{Phi\_minus1\_c2}}$$
(28)

Table 25: Properties of each parameter.

| Id | Name | SBO Value Unit | Constant |
|----|------|----------------|----------|
| р  |      | 0.278          |          |

## 7.11 Reaction diffusion

This is an irreversible reaction of one reactant forming one product.

Name Diffusion of Ca between cells

## **Reaction equation**

$$c2 \longrightarrow c1$$
 (29)

#### Reactant

Table 26: Properties of each reactant.

| Id | Name              | SBO |
|----|-------------------|-----|
| c2 | Calcium ion Cell2 | _   |

## **Product**

Table 27: Properties of each product.

| Id | Name              | SBO |
|----|-------------------|-----|
| c1 | Calcium ion Cell1 | _   |

#### **Kinetic Law**

Derived unit contains undeclared units

$$v_{11} = \text{vol}\left(\text{compartment}\right) \cdot D \cdot \left(\left[\text{c2}\right] - \left[\text{c1}\right]\right) \tag{30}$$

Table 28: Properties of each parameter.

| Id | Name | SBO Value Unit | Constant |
|----|------|----------------|----------|
| D  |      | 0.01           |          |

## 8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

## 8.1 Species c1

Name Calcium ion Cell1

Initial concentration  $0.3 \ \mu mol \cdot l^{-1}$ 

This species takes part in four reactions (as a reactant in Jpump\_Cell1 and as a product in Jreceptor\_Cell1, Jleak\_Cell1, diffusion).

$$\frac{\mathrm{d}}{\mathrm{d}t}c1 = |v_1| + |v_3| + |v_{11}| - |v_2| \tag{31}$$

#### 8.2 Species h1

Name Receptor fraction Cell1

Initial concentration  $0.8 \, \mu \text{mol} \cdot l^{-1}$ 

This species takes part in three reactions (as a reactant in Open\_to\_Inactivated\_Cell1 and as a product in Inactivated\_to\_S\_Cell1 and as a modifier in Jreceptor\_Cell1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{h}1 = v_4 - v_5 \tag{32}$$

#### 8.3 Species c2

Name Calcium ion Cell2

Initial concentration  $0.1 \ \mu mol \cdot l^{-1}$ 

This species takes part in four reactions (as a reactant in Jpump\_Cell2, diffusion and as a product in Jreceptor\_Cell2, Jleak\_Cell2).

$$\frac{\mathrm{d}}{\mathrm{d}t}c2 = |v_6| + |v_8| - |v_7| - |v_{11}| \tag{33}$$

## 8.4 Species h2

Name Receptor fraction Cell2

Initial concentration  $0.1~\mu mol \cdot l^{-1}$ 

This species takes part in three reactions (as a reactant in Open\_to\_Inactivated\_Cell2 and as a product in Inactivated\_to\_S\_Cell2 and as a modifier in Jreceptor\_Cell2).

$$\frac{d}{dt}h2 = v_9 - v_{10} \tag{34}$$

 $\mathfrak{BML2}^{lA}$  was developed by Andreas Dräger<sup>a</sup>, Hannes Planatscher<sup>a</sup>, Dieudonné M Wouamba<sup>a</sup>, Adrian Schröder<sup>a</sup>, Michael Hucka<sup>b</sup>, Lukas Endler<sup>c</sup>, Martin Golebiewski<sup>d</sup> and Andreas Zell<sup>a</sup>. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

<sup>&</sup>lt;sup>a</sup>Center for Bioinformatics Tübingen (ZBIT), Germany

<sup>&</sup>lt;sup>b</sup>California Institute of Technology, Beckman Institute BNMC, Pasadena, United States

<sup>&</sup>lt;sup>c</sup>European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

<sup>&</sup>lt;sup>d</sup>EML Research gGmbH, Heidelberg, Germany