DISCIPLINA: Tecnologias Alternativas de Tratamento de Água e Efluentes					
Prof. Rodrigo de Freitas Bueno e-mail: <u>rodrigo.bueno@ufabc.edu.br</u>					
DATA: _//2017 UFABC					
NOME:					
EXERCÍCIO 2: FILTRO ANAERÓBIO					
 ✓ Filtro anaeróbio para pós-tratamento de efluente de fossa séptica. ✓ População atendida: conjunto de habitações rurais com total de 10 + XY/2 moradores de nível sócio-econômico baixo, em que XY são os dois antepenúltimos dígitos de seu número UFABC. Arredondar para cima, caso a divisão não seja exata. ✓ Consultar tabelas no material de aula (disponíveis no TIDIA) para definição de TDH, 					
 Consultar taberas no materiar de auta (disponíveis no TIDIA) para definição de TDA, contribuições per capita de esgoto, contribuições de lodo fresco etc., segundo a NBR7229. ✓ Profundidade útil do filtro: H = 1,30 m. ✓ Temperatura média do mês mais frio: 22 °C. 					
a) Calcule a vazão de esgotos afluente à fossa séptica e o volume do filtro anaeróbio.					
$V = 1,60 \times N \times C \times t$					
V = 1,00 X IV X C X t					
b) Considerando dois filtros de seção quadrada, determine as suas dimensões em planta e faça um esquema em corte de cada filtro dimensionado. Considere 0,60 m de altura da camada de meio suporte.					

DISCIPLINA: Tecnologias Alternativas de 7 Prof. Rodrigo de Freitas Bueno e-m	Tratamento de Água e Efluentes uail: rodrigo.bueno@ufabc.edu.br			
DATA: _//2017	UFABC			
NOME:				
EXERCÍCIO 3: REATOR UASB				
✓ Reatores UASB retangulares para tratame	nto de esgoto sanitário			
	= 100+XY L/s, em que XY são os dois antepenúltimos			
dígitos de seu número UFABC ✓ Considerar Qmax = 1,8.Qmed				
✓ Considerar Qmax = 1,8.Qmed ✓ Temperatura média do mês mais frio: 20 °	OC.			
✓ Concentração de DQO no esgoto: 600 mg				
✓ Eficiência de remoção de DQO dos reator				
✓ Número de reatores: n = 2 para XY entre				
n = 3 para XY entre				
 a) Calcule o volume total de reatores, adotando média, e garantindo que o TDH para a vazão má 	o TDH apropriado para a temperatura baseado na vazão ixima seja maior que 4 horas.			
b) Fixando a altura dos reatores em $H = 4,5$ considerando $L/B = 2$.	5 m, calcule a área de cada reator e suas dimensões			
c) Verifique as velocidades ascensionais para Q	med e Q _{max}			

d) Determine o número de tubos de distribuição de esgoto afluente. Adote uma área de influência de 2,0 m² por tubo. Arredondar para múltiplos de 10 (100, 150, 170 etc.). Proponha a distribuição espacial dos tubos com um esquema da base de um reator em planta.

e) Calcule a produção teórica de CH4 e de biogás, em m3/d, produzida nos reatores em conjunto. Adote:

Coeficiente de produção de sólidos, em termos de DQO: Yobs = 0,21 kgDQOlodo/kgDQOapl

Pressão atmosférica: P = 1 atm

DQO de um mol de CH4: KDQO = 64 gDQO/mol Constante dos gases:R = 0,08206 atm.L/mol.K

Concentração de CH4 no biogás: C = 75%

$$DQO_{CH4} = Q_{med} \times (S_0 - S) - Y_{obs} \times Q_{med} \times S_0$$

$$Q_{\text{CH4}} = \frac{DQO_{\text{CH4}}}{f(T)} \qquad f(T) = \frac{P \times K_{DQO}}{R \times (273 + T)} \label{eq:QCH4}$$

$$Q_{\text{biogás}} = \frac{Q_{\text{CH4}}}{C_{\text{CH4}}}$$

f) Adotando o esquema da figura abaixo para disposição dos separadores trifásicos, calcule o número de separadores necessários por reator, colocando-os transversalmente ao comprimento da unidade. Faça os ajustes necessários nas aberturas de passagem para alocar o número exato de separadores (o valor adotado inicialmente é de 0,35 m, mas pode sofrer pequenos ajustes). Faça um esquema em planta de um dos reatores UASB dimensionados, com os separadores posicionados.

g) Determine a área total de aberturas (A _{ab}) para os compartimentos de decantação e verifique as
velocidades (v_{ab}) através das aberturas, para Q_{med} e Q_{max} .
velocidades (Vab) attaves das abetturas, para Qmed e Qmax.
h) Determine a área superficial total de compartimentos de decantação (A _{dec}) e verifique as taxas de
aplicação superficial $(q_{s,dec})$ par Q_{med} e Q_{max} .
aproduja superinerai (4,5,000) par Qinda Qinda.
i) Determine a valume total dos comportimentos de decentação (VIII) - maifirmo es TDII.
i) Determine o volume total dos compartimentos de decantação (V _{dec}) e verifique os TDHs nos
decantadores, para Q _{med} e Q _{max} .
•

Coeficiente de produção de sólidos: Y = 0,18 kgSST/kgDQOapl Teor de sólidos do lodo retirado dos reatores UASB: TS = 4% Densidade do lodo: $\gamma = 1020 \text{ kg/m}^3$

$$\begin{aligned} P_{lodo} &= Y \times Q_{med} \ \times S_0 \\ Q_{lodo} &= \frac{P_{lodo}}{\gamma \times TS} \end{aligned}$$

GABARITO - Completar as lacunas com as respostas finais dos exercícios

b	Auasb	m^2
	V _{asc.med}	m/h
С	V _{asc.max}	m/h
d	n _{tubos}	-
e	Qbiogás	m ³ /d
i	Olodo	m ³ /d