

SUBSPACE INFERENCE FOR BAYESIAN DEEP LEARNING

PAVEL IZMAILOV, WESLEY MADDOX, **POLINA KIRICHENKO**, TIMUR GARIPOV, DMITRY VETROV, ANDREW GORDON WILSON

WHY BAYESIAN INFERENCE?

- Combining models for better predictions III
- Uncertainty representation (crucial for decision making)
- 🕨 Interpretably incorporate prior knowledge and domain expertise 🤶

WHY BAYESIAN INFERENCE?

- Combining models for better predictions in
- Uncertainty representation (crucial for decision making) 🐿
- Interpretably incorporate prior knowledge and domain expertise 🥯

WHY NOT?

Challenging for Deep NNs due to high dimensional weight spaces 😩

SUBSPACE INFERENCE

A modular approach:

- Design subspace
- Approximate posterior over parameters in the subspace
- Sample from approximate posterior for Bayesian model averaging

SUBSPACE INFERENCE

A modular approach:

- Design subspace
- Approximate posterior over parameters in the subspace
- Sample from approximate posterior for Bayesian model averaging

We can approximate posterior of 36 million dimensional WideResNet in 5D subspace and get state-of-the-art results!

SUBSPACE

- Choose shift \hat{w} and basis vectors $\{d_1, \dots, d_K\}$
- Define subspace $S = \{w \mid w = \hat{w} + t_1 d_1 + \dots + t_k d_K\}$ Pt
- Likelihood $p(D \mid t) = p_M(D \mid w = \hat{w} + Pt)$.

INFERENCE

- Approximate inference over parameters t
 - MCMC, Variational Inference, Normalizing Flows, ...
- Bayesian model averaging at test time:

$$p(D^* | D) = \frac{1}{J} \sum_{i=1}^{J} p_M(D^* | \tilde{w} = \hat{w} + P\tilde{t}_i), \quad \tilde{t}_i \sim q(t | D)$$

TEMPERING POSTERIOR

- In the subspace model # parameters << # data points
 - ~5-10 parameters, ~50K data points
- Posterior over t is extremely concentrated
- To address this issue, we utilize the tempered posterior:

$$p_T(t \mid D) \propto p(D \mid t)^{1/T} \underbrace{p(t)}_{\text{likelihood prior}}$$

T can be learned by cross-validation

Heuristic:
$$T = \frac{\text{# data points}}{\text{# parameters}}$$

SUBSPACE CHOICE

We want a subspace that

- Contains diverse models
- Cheap to construct

RANDOM SUBSPACE

- Directions $d_1, ..., d_K \sim N(0, I_p)$
- Use pre-trained solution as shift \hat{w}
- Subspace $S = \{w \mid w = \hat{w} + Pt\}$

PCA OF THE SGD TRAJECTORY

- Run SGD with high constant learning rate from a pre-trained solution
- ightharpoonup Collect snapshots of weights w_i
- Use SWA solution as shift $\hat{w} = \frac{1}{T} \sum_{i} w_{i}$
- ▶ $\{d_1, ..., d_K\}$ first K PCA components of vectors $\hat{w} w_i$

CURVE SUBSPACE

Garipov et al. 2018 proposed a method to find 2D subspaces containing a path of low loss between weights of two independently trained neural networks

SUBSPACE COMPARISON

SUBSPACE COMPARISON ON PRERESNET-164, CIFAR-100

	SGD	Random	PCA	Curve
NLL	0.946 ± 0.001	0.686 ± 0.005	0.665 ± 0.004	0.646
Accuracy (%)	78.50 ± 0.32	80.17 ±0.03	80.54 ± 0.13	81.28

TAKEAWAYS

- We can apply standard approximate inference methods in subspaces of parameter space
- More diverse subspaces => better performance:
 Curve Subspace > PCA Subspace > Random Subspace
- Subspace Inference in the PCA subspace is competitive with SWAG (Maddox et al., 2019), MC-Dropout (Gal & Ghahramani, 2016) and Temperature Scaling (Guo et al., 2017) on image classification and UCI regression