Naming in Networking

COS 316: Principles of Computer System Design Lecture 6

Amit Levy & Wyatt Lloyd

Network Naming Preview

Type of Name	Example		
Uniform Resource Locator	http://www.cs.princeton.edu/~wlloyd/x.html		

Internet Protocol Layers

Internet Protocol Stack – Whirlwind Tour

What are we naming?

Network interfaces

• Ethernet interface

Optical interface

•

Names:

Values:

Allocation:

Who will use the names?

Values: Network Interfaces

- Network adaptors
 - This packet is for you.
 - Is this packet for me?

Ethernet interface

Names:

- Goals for name?
 - Fast and easy for adaptors to check
 - Globally unique
- MAC addresses are 48-bit addresses
 - 00:15:C5:49:04:A9

Allocation:

Globally unique names?

Values: Network Interfaces

Ask central authority for every name? X

Names: 48-bit address

Random allocation? X

Allocation:

Two-level allocation? √

• Central authority allocates blocks to venders

• Vendors assigns address for its blocks

• **00:15:C5:**49:04:A9

• Lookup: Broadcast packet

Values: Network Interfaces

Names: 48-bit address

Allocation: Vendor from their assigned blocks

Lookup: Broadcast locally

• What are we naming? Values:

• Hosts Names:

My laptop

Zoom server

Your laptop

•

Allocation:

- Who will use the names?
- Routers
 - Where is this packet headed?
- router

 IP

 Ethernet interface interface

- Goals for name?
 - Fast and easy for routers to process
 - Globally unique
 - Location-based: enable routing packets to destination
- IP addresses are 32 or 128 bit addresses
 - 128.112.7.156

Values: Hosts

Names:

Allocation:

Globally unique and location-based names?
 Values: Hosts

Multi-level allocation? √

- ICANN assigns large blocks to
- Regional Internet registries assign sub-blocks to
- Internet Service Providers assign addresses to
- Hosts
- ISPs serve a group of nearby hosts
- ISPs can route to hosts in their sub-blocks

Names: 32 bit address

Allocation:

How to map 128.112.7.156 to host?

- Network Routing!
 - Can't get all the way there right away, so figure out next hop: use routing table
 - Routing protocols map destination to next-hop IP address (fill in routing table)
 - BGP, OSPF, RIP, ...
 - ARP maps next-hop IP address to MAC address

Names: 32 bit address

Values: Hosts

Allocation: Multi-level, location-based

ARP: Address Resolution Protocol briefly

Broadcast Request: Who has 128.112.7.156?

 Broadcast Response: 00:15:C5:49:04:A9 has 128.112.7.156

• Hosts cache responses, lookup in local table

Values: Hosts

Names: 32 bit address

Allocation: Multi-level, location-based

Lookup: Routing table for next-hop IP; ARP next-hop IP -> MAC address

• What are we naming? Values:

• Hosts Names:

• CS department webserver

• COS316 webserver

Allocation:

Who will use the names?

Values: Hosts

People

Names:

- Goals for name?
 - Memorable
 - Reflect organizational hierarchical
 - e.g., educational?, princeton?
- Hostnames are variable length, hierarchical strings
 - www.cs.princeton.edu vs cos316.princeton.edu

Allocation:

- Globally unique and organizationalhierarchy-based names?
- Multi-level allocation? √
 - IANA assigns top-level domains
 - .com, .edu, ...
 - Registries assigns second-level domains
 - princeton.edu
 - Organizations assign subdomains
 - cs.princeton.edu OR cos316.princeton.edu
 - And so on...
 - www.cs.princeton.edu

Values: Hosts

Names: hierarchical variable-length strings

Allocation:

How to map cos316.princeton.edu to host? Values: Hosts

Map to IP address, give to networking layer

 Domain Name System (DNS) maps a hostname to an IP address Names: hierarchical variable-length strings

Allocation: Multi-level, organization based

Lookup: DNS maps hostname to IP

Different Layers, Different Names

- Host name (e.g., www.cs.princeton.edu)
 - Mnemonic, variable-length, appreciated by humans
 - Hierarchical, based on organizations
- **IP address** (e.g., 128.112.7.156)
 - Numerical 32-bit address appreciated by routers
 - Hierarchical, based on organizations and location
- MAC address (e.g., 00:15:C5:49:04:A9)
 - Numerical 48-bit address appreciated by adapters
 - Hierarchical, based on vendors, unrelated to location

Hierarchical Allocation Processes

- Host name: www.cs.princeton.edu
 - Domain: registries for each top-level domain (e.g., .edu)
 - Host name: local administrator assigns to each host
- IP addresses: 128.112.7.156
 - Prefixes: ICANN, regional Internet registries, and ISPs
 - Hosts: static configuration, or dynamic using DHCP
- MAC addresses: 00:15:C5:49:04:A9
 - Blocks: assigned to equipment vendors by the IEEE
 - Adapters: assigned by the vendor from its block

Different Layers, Different Lookup Protocols

- Host name -> IP address via DNS
- Destination IP address to next-hop address via routing table (populated by network routing protocols)
- Next-hop IP address to MAC address via ARP
- MAC address to network interface via local broadcast

Network Naming Conclusion

- Network names identify remote endpoints
- Different layers, different names
 - Who will use the name?
- Multi-level hierarchical allocation
 - Goals: Unique √, reflect organizations √, location-based?
- Different layers, different lookup protocols
 - We covered ARP, COS 461 covers them all ©
- More on network layers in a few weeks