Lógica Proposicional

Prof^a. Maely Moraes

Livro base: Souza, João Nunes, Lógica para Ciência da Computação, Editora Campus, 9ª tiragem.

Lógica Proposicional

Tableaux semânticos e resolução na Lógica Proposicional

Introdução

 Definição 7.1 (elementos básicos de um sistema de tableaux semânticos)

Os elementos básicos do sistema de tableaux semânticos Tb_a, na Lógica Proposicional, são definidos pelos conjuntos:

- o alfabeto da Lógica Proposicional, Definição 1.1, sem os símbolos de verdade false e true;
- o conjunto das fórmulas da Lógica Proposicional;
- um conjunto de regras de dedução.

• Definição 7.2 (regras de inferência do tableau semântico)

Sejam A e B duas fórmulas da Lógica Proposicional.

As regras de inferência do sistema de tableaux semânticos Tb_a, na Lógica Proposicional, são R₁,...,R₉ indicadas a segu<u>i</u>r.

$$R_{1} = A \wedge B$$

$$A$$

$$B$$

$$R_{2} = A \vee B$$

$$A \quad B$$

$$R_{3} = A \rightarrow B$$

$$A \quad B$$

$$R_{4} = A \leftrightarrow B$$

$$A \quad A \wedge B \quad A \wedge B$$

$$R_{5} = \neg \neg A$$

$$A \quad A \wedge B \quad A \wedge B$$

$$R_{8} = \neg (A \rightarrow B)$$

$$R_{9} = \neg (A \leftrightarrow B)$$

$$R_{9} = \neg (A \leftrightarrow B)$$

$$R_{1} = \neg (A \leftrightarrow B)$$

$$R_{2} = A \vee B$$

$$A \quad A \cap B$$

$$A \quad A \cap B$$

Heurística (aplicação de regras).

Aplique preferencialmente as regras

 $R_{1}, R_{5}, R_{7} \in R_{8}$

que não bifurcam o tableau.

• Definição 7.3 (construção de um tableau semântico)

Um *tableau* semântico no sistema Tb_a, na Lógica Proposicional, é construído como se segue.

Seja {A₁,...,A_n} um conjunto de fórmulas.

• A árvore tab, a seguir, com apenas um ramo, é um *tableau* iniciado com {A₁,...,A_n}.

2. A₂

. .

n. A

Nesse *tableau*, as fórmulas {A₁,...,A_n} podem ser escritas em qualquer ordem.

• Definição 7.3 (construção de um tableau semântico)

- Se tab₂ é a árvore resultante da aplicação de uma das regras
 (R₁,...,R₉) à árvore tab₁, então tab₂ é também um *tableau* iniciado com {A₁,...,A_n}.
- Seguindo esse procedimento, expandimos o tableau iniciado com {A₁,...,A_n}.
- Seja tab_i, $i \ge 2$, um tableau iniciado com $\{A_1, ..., A_n\}$. Se tab_{i+1} é a árvore resultante da aplicação de uma das regras $(R_1, ..., R_9)$ à árvore tab_i, então tab_{i+1} é também um tableau iniciado com $\{A_1, ..., A_n\}$

Definição 7.4 (ramo)

No sistema Tb_a , um ramo em um tableau é uma seqüência de fórmulas $H_1,...,H_n$, onde H_1 é a primeira fórmula do *tableau* e, nessa seqüência, H_{i+1} é derivada de H_i , $1 \le i < n$, utilizando alguma regra de Tb_a .

Definição 7.5 (ramo fechado)

No sistema Tb_a, um ramo em um *tableau* é fechado se ele contém uma fórmula A e sua negação ¬A.

Definição 7.6 (ramo saturado)

No sistema Tb_a, um ramo em um *tableau* é saturado se para toda fórmula A, do ramo:

- já foi aplicada alguma regra do sistema Tb_a à fórmula A,
 ou seja: A já foi expandida por alguma regra; ou
- não é possível aplicar nenhuma regra do sistema Tb_a à fórmula A, isto é, A é igual a um literal e não é possível expandi-la por alguma regra.

- Definição 7.7 (ramo aberto) No sistema Tb_a, um ramo em um tableau é aberto se ele é saturado e não é fechado.
- Definição 7.8 (tableau fechado) No sistema Tb_a, um tableau
 é fechado quando todos os seus ramos são fechados.

 Definição 7.9 (tableau aberto) No sistema Tb_a, um tableau é aberto se ele possui algum ramo aberto.

Definição 7.10 (prova e teorema em tableaux semânticos)

Seja H uma fórmula.

Uma prova de H, no sistema Tb_a, é um *tableau* fechado iniciado com a fórmula ¬H.

Nesse caso, H é um teorema do sistema de *tableaux* semânticos Tb_a.

Teorema 7.1 (completude)

Seja H uma fórmula da Lógica Proposicional.

Se H é uma tautologia, então existe uma prova de H no sistema Tb₃.

Teorema 7.2 (correção)

Seja H uma fórmulada Lógica Proposicional.

No sistema Tb_a, se H, então H.

 Notação. Dada uma fórmula H, se H é consequência lógica de um conjunto de hipóteses

$$\beta = \{A_1, ..., A_n\},$$

• no sistema Tb_a, então esse fato é indicado pela notação

$$\vdash$$
 H ou $\{A_1,...,A_{\vdash} \vdash$ H.

 Observe que essa notação é análoga àquela utilizada para conseqüência sintática no sistema P_a. O sistema que estiver sendo considerado, P_a ou Tb_a, deve ficar claro no contexto.

O Sistema de Resolução Rs_a

Definição 7.11 (cláusula)

Uma cláusula, na Lógica Proposicional, é uma disjunção de literais.

No caso de uma disjunção de zero literal, temos a cláusula vazia.

Notação.

A disjunção de zero literal é a cláusula vazia.

Tal cláusula é representada, na notação de conjunto, por {}.

- Definição 7.12 (literais complementares)
 Dois literais são complementares se um é a negação do outro.
 Isto é, P e ¬P são literais complementares.
- Definição 7.13 (resolvente de duas cláusulas) Considere duas cláusulas C₁ = {A₁,...,A_n}, e C₂ = {B₁,...,B_n}, que possuem literais complementares.
 - Suponha λ um literal em C_1 tal que seu complementar, $\neg \lambda$, pertence a C_2 .
 - O resolvente de C_1 e C_2 , denominado por $Res(C_1, C_2)$, é definido por: $Res(C_1, C_2) = (C_1 \{\lambda\}) \cup (C_2 \{-\lambda\})$. Se $Res(C_1, C_2) = \{\}$, temos um resolvente vazio.

- Definição 7.14 (elementos básicos da resolução) Os elementos básicos do sistema de resolução Rs_a, na Lógica Proposicional, são definidos pelos conjuntos:
 - o alfabeto da Lógica Proposicional, Definição 1.1, sem os símbolos de verdade false e true;
 - o conjunto das cláusulas da Lógica Proposicional;
 - a regra de resolução.

Definição 7.15 (regra de resolução)

No sistema de resolução Rs_a, dadas duas cláusulas

$$C_1 = \{A_1, ..., A_n\}, C_2 = \{B_1, ..., B_n\},$$

 a regra de resolução aplicada a C₁ e C₂ é definida pelo procedimento a seguir:

tendo $C_1 e C_2$, deduza $Res(C_1, C_2)$.

- Definição 7.16 (construção de uma expansão por resolução)
 No sistema de resolução Rs_a, uma expansão por resolução é construída como se segue.
- Seja {A₁,...,A_n} um conjunto de cláusulas.
- A estrutura a seguir é uma expansão por resolução sobre {A₁,...,A_n}.
 - 1. A₁
 - 2. A₂

. .

n. A

Nessa expansão, as fórmulas $\{A_1,...,A_n\}$ podem ser escritas em qualquer ordem.

Definição 7.16 (construção de uma expansão por resolução)

• Seja Exp, uma expansão por resolução sobre

$$\{A_1,...,A_n\},$$

obtida pela adição de

Res(
$$A_i$$
, A_i), i, j \leq n, i \neq j,

à expansão Exp₁.

A expansão Exp₂ é também uma expansão por resolução sobre

$$\{A_1,...,A_n\}.$$

Seguindo esse procedimento, a expansão por resolução sobre

$$\{A_{1},...,A_{n}\}$$

é incrementada.

Definição 7.16 (construção de uma expansão por resolução)

Seja Exp, k > 1, uma expansão por resolução sobre

$$\{A_1,...,A_n\}.$$

Considere Exp_{k+1} a expansão por resolução obtida pela adição de

$$Res(H_i, H_i)$$
 tal que $H_i, H_i \subseteq Exp_k$ e $i, j \le k$, $i \ne j$,

à expansão Exp_k.

A expansão Exp_{k+1} é também uma expansão por resolução sobre

$$\{A_1,...,A_n\}.$$

Conseqüência Lógica na Resolução

Definição 7.17 (forma clausal)

Dada uma fórmula H, uma forma clausal associada a H é uma fórmula H_c tal que H_c é uma conjunção de cláusulas e H_c equivale a H.

Definição 7.18 (prova por resolução)

Seja H uma fórmula e ¬H a forma clausal associada a ¬H.

No sistema de resolução Rs_a, uma prova de H é uma expansão por resolução fechada sobre o conjunto de cláusulas de ¬H_c.

Nesse caso, H é um teorema do sistema de resolução.

• Teorema 7.3 (completude)

Seja H uma fórmula da Lógica Proposicional.

No sistema de resolução Rs_a, se H é uma tautologia, então existe uma prova de H.

Teorema 7.4 (correção)

Seja H uma fórmula da Lógica Proposicional.

No sistema de resolução Rs_a, se existe uma prova de H, então H é uma tautologia.

Definição 7.19 (conseqüência lógica por resolução)

Dada uma fórmula H e um conjunto de hipóteses

$$\beta = \{A1,...,An\},$$

então H é uma conseqüência lógica de β, no sistema de resolução Rs_a, se existe uma prova de

 $(A1 \land ... \land An) \rightarrow H.$

Notação.

Dada uma fórmula H, se H é conseqüência lógica de um conjunto de hipóteses

$$\beta = \{A_1, ..., A_n\},$$

no sistema de resolução Rs_a, então esse fato é indicado pela notação
 β⊢H ou {A1,...,An} ⊢ H.