R6

Xuanxi Zhang

1

Suppose random variable $X \sim \mathcal{U}[0, \theta]$, where $\theta > 0$ is an unknown parameter. $\{X_1, X_2, \dots, X_n\}$ are i.i.d. samples drawn from the distribution of X. Consider two estimators of θ :

$$\hat{\theta}_1 = 2\bar{X}, \quad \hat{\theta}_2 = \max_i X_i,$$

where $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is the sample mean.

- 1. Find the bias and variance of $\hat{\theta}_1$ and $\hat{\theta}_2$.
- 2. Find the mean squared error (MSE) of $\hat{\theta}_1$ and $\hat{\theta}_2$.
- 3. Which estimator would you prefer? Explain your answer.
- 4. Can we apply the cramer-rao lower bound to this problem? Why or why not?

2 Maximum a Posteriori

 $\{X_1, X_2, \dots, X_n\}$ are i.i.d. samples drawn from $\mathcal{N}(\theta, 1)$.

- 1. what is the maximum likelihood estimator (MLE) of θ ?
- 2. If we have a prior distribution $\theta \sim \mathcal{N}(\theta_0, \sigma^2)$, what is the maximum a posteriori (MAP) estimator of θ ?

3 likelihood ratio test

X = x is a single observation with PDF $f_{\theta}(x) = \theta x^{\theta-1}$, 0 < x < 1Find the most powerful level- α (level 5%) test for

$$H_0: \theta = 3$$

$$H_1:\theta=2$$