

General information

Designation

Betula alleghaniensis

Typical uses

Furniture; boxes; baskets; crates; woodenware; cooperage; interior finish; doors. As veneer in plywood: flush doors; furniture; paneling; radio & television cabinets; aircraft.

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O							
Material family	Natural						
Base material	Wood (ha	Wood (hardwood)					
Renewable content	100		%				
Composition detail (polymers and natural n	naterials)						
Wood	100			%			
Price							
Price	* 0.304	-	0.608	USD/lb			
Physical properties							
Density	0.0224	-	0.0275	lb/in^3			
Mechanical properties							
Young's modulus	* 0.292	-	0.325	10^6 psi			
Yield strength (elastic limit)	* 0.496	-	0.609	ksi			
Tensile strength	0.827	-	1.02	ksi			
Elongation	* 0.84	-	1.03	% strain			
Compressive strength	0.873	-	1.07	ksi			
Flexural modulus	0.265	-	0.296	10^6 psi			
Flexural strength (modulus of rupture)	* 0.827	-	1.02	ksi			
Shear modulus	* 0.0302	-	0.0413	10^6 psi			
Shear strength	* 5.09	-	6.22	ksi			
Rolling shear strength	* 0.189	-	0.566	ksi			
Bulk modulus	* 0.149	-	0.167	10^6 psi			
Poisson's ratio	* 0.02	-	0.04				
Shape factor	5.6						
Hardness - Vickers	5.04	-	6.17	HV			
Hardness - Brinell	* 3.96	-	4.83	ksi			
Hardness - Janka	1.13e3	-	1.39e3	lbf			

Birch (betula alleghaniensis) (t)

Fatigue strength at 10^7 cycles	*	0.248	-	0.305	ksi
Mechanical loss coefficient (tan delta)	*	0.017	-	0.021	
Differential shrinkage (radial)		0.18	-	0.24	%
Differential shrinkage (tangential)		0.26	-	0.31	%
Radial shrinkage (green to oven-dry)		6.6	-	8	%
Tangential shrinkage (green to oven-dry)		8.6	-	10.5	%
Volumetric shrinkage (green to oven-dry)		15.1	-	18.5	%
Work to maximum strength	*	0.156	-	0.191	ft.lbf/in^3
Impact & fracture properties					
Fracture toughness	*	0.474	-	0.58	ksi.in^0.5
Thermal properties					
Glass temperature		171	-	216	°F
Maximum service temperature		248	-	284	°F
Minimum service temperature	*	-99.4	-	-9.4	°F
Thermal conductivity		0.0693	-	0.0809	BTU.ft/hr.ft^2.°F
Specific heat capacity		0.396	-	0.408	BTU/lb.°F
Thermal expansion coefficient	*	17.3	-	23.2	μstrain/°F
Electrical properties	*	0.72014		1 2015	uahm am
Electrical resistivity		8.73e14	-	1.3e15	µohm.cm
Dielectric constant (relative permittivity)		3.87 0.054	-	4.74	
Dissipation factor (dielectric loss tangent)		25.4	-	0.065	V/mil
Dielectric strength (dielectric breakdown)		25.4	-	50.8	V/mil
Magnetic properties					
		Non-magr	netic	;	
Magnetic properties Magnetic type Optical properties		Non-magr	netic	;	
Magnetic type Optical properties		Non-magr	netic	;	
Magnetic type Optical properties Transparency			netic	:	
Magnetic type Optical properties Transparency Durability				;	
Magnetic type Optical properties Transparency Durability Water (fresh)		Opaque	se		
Optical properties Fransparency Durability Water (fresh) Water (salt)		Opaque Limited us	se se		
Magnetic type Optical properties Fransparency Durability Water (fresh) Water (salt) Weak acids		Opaque Limited us	se se		
Magnetic type Optical properties Transparency Durability Water (fresh) Water (salt) Weak acids Strong acids		Opaque Limited us Limited us	se se se able		
Optical properties Transparency Durability Water (fresh) Water (salt) Weak acids Strong acids Weak alkalis		Opaque Limited us Limited us Limited us Unaccept	se se se able		
Magnetic type		Opaque Limited us Limited us Limited us Unaccept Acceptab	se se able le		

Birch (betula alleghaniensis) (t)

	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	4.99e3	-	5.5e3	BTU/lb	
Courses					

0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

CO2 footprint, primary production	0.574	-	0.633	lb/lb	
Sources					

0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammond and Jones, 2008); 0.909 kg/kg (Hubbard and Bowe,

Water usage *	1.84e4	-	2.03e4	in^3/lb	
---------------	--------	---	--------	---------	--

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 244	-	269	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.0425	-	0.047	lb/lb
Fine machining energy (per unit wt removed)	* 600	-	663	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.105	-	0.116	lb/lb
Grinding energy (per unit wt removed)	* 996	-	1.1e3	BTU/lb
Grinding CO2 (per unit wt removed)	* 0.174	-	0.192	lb/lb

Recycling and end of life

Recycle	×			
Recycle fraction in current supply	8.55	- 9	9.45	%
Downcycle	✓			
Combust for energy recovery	✓			
Heat of combustion (net)	* 8.49e3	- 9	9.16e3	BTU/lb
Combustion CO2	* 1.69	- 1	1.78	lb/lb
Landfill	✓			
Biodegrade	✓			

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture content.

Links

ProcessUniverse	
Reference	
Shape	