Linear Regression Machine Learning Project for House Price Prediction

Import Libraries

In [36]:

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline

Importing Data and Checking out.

In [37]:

 $HouseDF = pd.read_csv(r"D:\Softwares\MS \ Office \ 2013\admin\Anuj\D_S\Linear\Project\USA_Housing.csv" \ and \ another \ ano$

In [38]:

HouseDF.head()

Out[38]:

Ade	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
208 Michael Ferr 674\nLaurabur 3	1.059034e+06	23086.800503	4.09	7.009188	5.682861	79545.458574	0
188 Johnson Views 079∖nLake Kath	1.505891e+06	40173.072174	3.09	6.730821	6.002900	79248.642455	1
9127 Eliz Stravenue∖nDaniel WI 06	1.058988e+06	36882.159400	5.13	8.512727	5.865890	61287.067179	2
USS Barnett\nFP	1.260617e+06	34310.242831	3.26	5.586729	7.188236	63345.240046	3
USNS Raymond\i AE (6.309435e+05	26354.109472	4.23	7.839388	5.040555	59982.197226	4

In [39]:

```
HouseDF.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Avg. Area Income	5000 non-null	float64
1	Avg. Area House Age	5000 non-null	float64
2	Avg. Area Number of Rooms	5000 non-null	float64
3	Avg. Area Number of Bedrooms	5000 non-null	float64
4	Area Population	5000 non-null	float64
5	Price	5000 non-null	float64
6	Address	5000 non-null	object

dtypes: float64(6), object(1)
memory usage: 273.6+ KB

In [40]:

HouseDF.describe()

Out[40]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

In [41]:

HouseDF.columns

Out[41]:

Exploratory Data Analysis for House Price Prediction

In [42]:

In [43]:

```
sns.distplot(HouseDF['Price'])
```

C:\Users\baps\AppData\Local\Temp\ipykernel_15644\4158129596.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(HouseDF['Price'])

Out[43]:

<Axes: xlabel='Price', ylabel='Density'>

In [44]:

```
sns.heatmap(HouseDF.corr(), annot=True)
```

C:\Users\baps\AppData\Local\Temp\ipykernel_15644\3588014427.py:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

sns.heatmap(HouseDF.corr(), annot=True)

Out[44]:

<Axes: >

Training a Linear Regression Model

X and y List

In [45]:

Split Data into Train, Test

```
In [46]:
from sklearn.model_selection import train_test_split

In [47]:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=101)
```

Creating and Training the LinearRegression Model

```
In [48]:
from sklearn.linear_model import LinearRegression

In [49]:
lm = LinearRegression()

In [58]:
lm.fit(X_train,y_train)
Out[58]:
| LinearRegression
```

LinearRegression Model Evaluation

```
In [60]:
print(lm.intercept_)
-2640159.7968525267

In [61]:

coeff_df = pd.DataFrame(lm.coef_,X.columns, columns = ['Coefficient'])
coeff_df
Out[61]:
```

	Coefficient
Avg. Area Income	21.528276
Avg. Area House Age	164883.282027
Avg. Area Number of Rooms	122368.678027
Avg. Area Number of Bedrooms	2233.801864
Area Population	15.150420

Predictions from our Linear Regression Model

In [62]:

predictions = lm.predict(X_test)

In [63]:

plt.scatter(y_test,predictions)

Out[63]:

<matplotlib.collections.PathCollection at 0x2c4e982b910>

In the above scatter plot, we see data is in line shape, which means our model has done good predictions.

```
In [65]:
```

```
sns.distplot((y_test-predictions),bins=50);
```

C:\Users\baps\AppData\Local\Temp\ipykernel_15644\1326397652.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot((y_test-predictions),bins=50);

In the above histogram plot, we see data is in bell shape (Normally Distributed), which means our model has done good predictions.

Regression Evaluation Metrics

```
In [66]:
```

from sklearn import metrics

In [69]:

```
print('MAE',metrics.mean_absolute_error(y_test,predictions))
print('MSE',metrics.mean_squared_error(y_test,predictions))
print('RSME',np.sqrt(metrics.mean_squared_error(y_test,predictions)))
```

MAE 82288.22251914947 MSE 10460958907.209059 RSME 102278.82922290936

In []:			
In []:			
In []:			