

SCHOOL OF MATHEMATICAL AND COMPUTER SCIENCES

Computer Science

F29FA1

Foundations I

Class Test 2016/17

11 October 2016 Duration: 0.5 Hour

Answer ALL questions

- **1.** Let $A \equiv x(\lambda x.x)((\lambda xy.xy)(\lambda z.zz)y)$.
 - (a) Insert as many parenthesis as possible in A without changing its meaning. $((x(\lambda x.x))(((\lambda x.(\lambda y.(xy)))(\lambda z.(zz)))y)). \tag{1}$

(2)

Learning Objectives: Syntax and semantics of the λ -calculus.

(b) Give the subterms of A, each subterm on a separate line.

Learning Objectives: Syntax and semantics of the λ -calculus.

(c) Is A β -normalising? If yes, β -reduce A until there are no β -reduces left, showing all the β -reduction steps. If not, explain why not. (1)

```
\begin{array}{c} x(\lambda x.x)((\lambda xy.xy)(\lambda z.zz)y) \to_{\beta} \\ x(\lambda x.x)((\lambda y.(\lambda z.zz)y)y) \to_{\beta} \\ x(\lambda x.x)((\lambda z.zz)y) \to_{\beta} \\ x(\lambda x.x)(yy). \end{array}
```

Hence A is β -normalising since there are no more β -redexes.

Learning Objectives: Reduction and normalisation in the λ -calculus.

(d) Give the $\beta\eta$ -normal form of A is it exists, otherwise, say why it does not exist. (1) $x(\lambda x.x)(yy)$

Learning Objectives: Reduction and normalisation in the λ -calculus.

(e) Give the term $A[x := (\lambda x.xx)(\lambda x.xx)]$. (1) $(\lambda x.xx)(\lambda x.xx)(\lambda x.x)((\lambda xy.xy)(\lambda z.zz)y).$

Learning Objectives: Substitution in the λ -calculus.

(f) Is $A[x := (\lambda x.xx)(\lambda x.xx)]$ β -normalising? If yes, give the β -normal form showing all the reduction steps you used to reach it. If not, give a detailed proof why it is not. (2)

```
A[x := (\lambda x.xx)(\lambda x.xx)] \equiv \frac{(\lambda x.xx)(\lambda x.xx)(\lambda x.xx)((\lambda x.xy)(\lambda z.zz)y) \rightarrow_{\beta}^{lmo}}{(\lambda x.xx)(\lambda x.xx)(\lambda x.xx)((\lambda x.xx)(\lambda x.xy)(\lambda z.zz)y) \rightarrow_{\beta}^{lmo}}
```

Since the leftmost reduction path does not terminate, by the normalisation theorem $A[x := (\lambda x.xx)(\lambda x.xx)]$ is not β -normalising.

Learning Objectives: normalisation theorem.

(g) Give the term
$$A[x := \lambda x.x]$$
. (1)
$$A[x := \lambda x.x] \equiv (\lambda x.x)(\lambda x.x)((\lambda xy.xy)(\lambda z.zz)y).$$

Learning Objectives: Substitution in the λ -calculus.

(h) Is $A[x := \lambda x.x]$ β -normalising? If yes, give the β -normal form showing all the reduction steps you used to reach it. If not, give a detailed proof why it is not. (2)

$$A[x := \lambda x.x] \equiv \underbrace{\frac{(\lambda x.x)(\lambda x.x)((\lambda xy.xy)(\lambda z.zz)y)}{(\lambda x.x)((\lambda xy.xy)(\lambda z.zz)y)} \rightarrow_{\beta}^{lmo} \underbrace{\frac{(\lambda x.x)((\lambda xy.xy)(\lambda z.zz)y)}{(\lambda xy.xy)(\lambda z.zz)y} \rightarrow_{\beta}^{lmo} \underbrace{\frac{(\lambda y.(\lambda z.zz)y)}{(\lambda z.zz)y} \rightarrow_{\beta}^{lmo} \underbrace{\frac{(\lambda z.zz)y}{yy}}_{yy}}$$

Hence $A[x := \lambda x.x]$ is β -normalising since there are no more β -redexes. The β -normal form is yy.

Learning Objectives: normalisation theorem.

- (i) Give three terms A, B and C such that $B \to_{\beta} C$ and $A[x := B] \to_{\beta}^{3} A[x := C]$ (i.e., B β -reduces to C in one step whereas A[x := B] β -reduces to A[x := C] in three steps. (2) Let $A \equiv xxx$, $B \equiv (\lambda y.y)z$ and $C \equiv z$. Then, $B \to_{\beta} C$ and $A[x := B] \to_{\beta}^{3} A[x := C]$ Learning Objectives: interaction of substitutions and reduction.
- (j) For each of the reduction paths below, state whether it is standard or not and also whether it follows the leftmost β -reduction strategy or not. In each case, justify your answer. (2)

1.
$$(\lambda z.(\lambda x.(\lambda y.xy)z)(\lambda z.z))x \to_{\beta} (\lambda z.(\lambda y.(\lambda z.z)y)z)x \to_{\beta} (\lambda z.(\lambda z.z)z)x \to_{\beta} (\lambda z.z)x$$
.
2. $(\lambda z.(\lambda x.(\lambda y.xy)z)(\lambda z.z))x \to_{\beta} (\lambda z.(\lambda x.xz)(\lambda z.z))x \to_{\beta} (\lambda z.(\lambda z.z)z)x \to_{\beta} (\lambda z.z)x$.

- 1. $(\lambda z.(\lambda x.(\lambda y.xy)z)(\lambda z.z))x \xrightarrow{R_0} (\lambda z.(\lambda y.(\lambda z.z)y)z)x \xrightarrow{R_1} (\lambda z.(\lambda z.z)z)x \xrightarrow{R_2} (\lambda z.z)x$ is standard because for any pair (R_i, R_{i+1}) where $0 \le i \le 1$, the λ of the redex R_{i+1} comes from a λ in A_i which is to the right of the λ of R_i in A_i (here we take $A_0 \equiv (\lambda z.(\lambda x.(\lambda y.xy)z)(\lambda z.z))x$ and $A_1 \equiv (\lambda z.(\lambda y.(\lambda z.z)y)z)x$ and $A_2 \equiv (\lambda z.(\lambda z.z)z)x$. This path however is not leftmost because we are not reducing the leftmost redex (the one starting with the leftmost λz).
- 2. $(\lambda z.(\lambda x.(\lambda y.xy)z)(\lambda z.z))x \rightarrow_{\beta} (\lambda z.(\lambda x.xz)(\lambda z.z))x \rightarrow_{\beta} (\lambda z.(\lambda z.z)z)x \rightarrow_{\beta} (\lambda z.z)x$ is not standard because for $A_0 \equiv (\lambda z.(\lambda x.(\lambda y.xy)z)(\lambda z.z))x$, $R_0 \equiv (\lambda y.xy)z$ and $R_1 \equiv (\lambda x.xz)(\lambda z.z)$, the λ of the redex R_1 does not come from a λ in A_0 which is to the right of the λ of R_0 in A_0 . Moreover, this path is not leftmost because we are not reducing the leftmost redex (the one starting with the leftmost λz).

Learning Objectives: interaction of substitutions and reduction.