Mechanical Comparison of Arrangement Strategies for Topological Interlocking Assemblies

Lukas Schnelle

Dec 2023

Topological Interlocking

Definition (Topological Interlocking)

A topological interlocking assembly can be defined as an arrangement of blocks that are in contact with each other together with a frame such that, if the frame is fixed, any non-empty finite subset of blocks of the arrangement is prevented from moving.

Outlook

Topological Interlocking

Definition (Topological Interlocking)

A topological interlocking assembly can be defined as an arrangement of blocks that are in contact with each other together with a frame such that, if the frame is fixed, any non-empty finite subset of blocks of the arrangement is prevented from moving.

Here:

 planar topological interlocking assemblies, i.e. between two parallel planes in 3D-space,

Outlook

Topological Interlocking

Definition (Topological Interlocking)

A topological interlocking assembly can be defined as an arrangement of blocks that are in contact with each other together with a frame such that, if the frame is fixed, any non-empty finite subset of blocks of the arrangement is prevented from moving.

Here:

- planar topological interlocking assemblies, i.e. between two parallel planes in 3D-space,
- use perimeter as the frame,

Outlook

Topological Interlocking

Definition (Topological Interlocking)

A topological interlocking assembly can be defined as an arrangement of blocks that are in contact with each other together with a frame such that, if the frame is fixed, any non-empty finite subset of blocks of the arrangement is prevented from moving.

Here:

- planar topological interlocking assemblies, i.e. between two parallel planes in 3D-space,
- use perimeter as the frame,
- only copies of the same block differently arranged.

The Versatile Block is a polyhedron embedded in $\ensuremath{\mathbb{R}}^3$, given by

Mathematics

0000000

The Versatile Block is a polyhedron embedded in \mathbb{R}^3 , given by vertices

$$\textit{B}_0 \coloneqq \{\textit{v}_1, \ldots, \textit{v}_9\,\},$$

The Versatile Block is a polyhedron embedded in \mathbb{R}^3 , given by vertices

$$B_0 \coloneqq \{v_1,\ldots,v_9\},$$

edges

Mathematics

0000000

$$B_1 := \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_1, v_4\}, \{v_1, v_5\}, \{v_1, v_9\}, \{v_2, v_3\}, \{v_2, v_5\},$$

$$\{v_2, v_6\}, \{v_2, v_7\}, \{v_3, v_4\}, \{v_3, v_7\}, \{v_4, v_7\}, \{v_4, v_8\}, \{v_4, v_9\},$$

$$\{v_5, v_6\}, \{v_5, v_7\}, \{v_5, v_9\}, \{v_6, v_7\}, \{v_7, v_8\}, \{v_7, v_9\}, \{v_8, v_9\}\},$$

The Versatile Block is a polyhedron embedded in \mathbb{R}^3 , given by vertices

$$B_0 := \{v_1, \ldots, v_9\},\$$

edges

$$\begin{split} B_1 &:= \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_1, v_4\}, \{v_1, v_5\}, \{v_1, v_9\}, \{v_2, v_3\}, \{v_2, v_5\}, \\ & \{v_2, v_6\}, \{v_2, v_7\}, \{v_3, v_4\}, \{v_3, v_7\}, \{v_4, v_7\}, \{v_4, v_8\}, \{v_4, v_9\}, \\ & \{v_5, v_6\}, \{v_5, v_7\}, \{v_5, v_9\}, \{v_6, v_7\}, \{v_7, v_8\}, \{v_7, v_9\}, \{v_8, v_9\}\}, \end{split}$$

and triangular faces

$$\begin{split} B_2 &\coloneqq \{\{v_1, v_2, v_3\}, \{v_1, v_2, v_5\}, \{v_1, v_3, v_4\}, \{v_1, v_4, v_9\}, \{v_1, v_5, v_9\}, \\ & \{v_2, v_3, v_7\}, \{v_2, v_5, v_6\}, \{v_2, v_6, v_7\}, \{v_3, v_4, v_7\}, \{v_4, v_7, v_8\}, \\ & \{v_4, v_8, v_9\}, \{v_5, v_6, v_7\}, \{v_5, v_7, v_9\}, \{v_7, v_8, v_9\}\}. \end{split}$$

Mathematics

00000000

$$v_1 = (0,0,0), v_2 = (1,1,0), v_3 = (2,0,0),$$

 $v_4 = (1,-1,0), v_5 = (0,1,1), v_6 = (1,1,1),$
 $v_7 = (1,0,1), v_8 = (1,-1,1), v_9 = (0,-1,1).$

Mathematics

00000000

$$v_1 = (0,0,0), v_2 = (1,1,0), v_3 = (2,0,0),$$

 $v_4 = (1,-1,0), v_5 = (0,1,1), v_6 = (1,1,1),$
 $v_7 = (1,0,1), v_8 = (1,-1,1), v_9 = (0,-1,1).$

Mathematics

00000000

$$v_1 = (0,0,0), v_2 = (1,1,0), v_3 = (2,0,0),$$

 $v_4 = (1,-1,0), v_5 = (0,1,1), v_6 = (1,1,1),$
 $v_7 = (1,0,1), v_8 = (1,-1,1), v_9 = (0,-1,1).$

Mathematics 00000000

$$v_1 = (0,0,0), v_2 = (1,1,0), v_3 = (2,0,0),$$

 $v_4 = (1,-1,0), v_5 = (0,1,1), v_6 = (1,1,1),$
 $v_7 = (1,0,1), v_8 = (1,-1,1), v_9 = (0,-1,1).$

Mathematics 00000000

Definition

Let $n \in \mathbb{N}$, V an euclidean K vectorspace (with metric $d: V \times V \to K$). Then $\varphi: V \to V$ is called an *isometry* if

Mathematics

00000000

Definition

Let $n \in \mathbb{N}$, V an euclidean K vectorspace (with metric $d: V \times V \to K$). Then $\varphi: V \to V$ is called an *isometry* if

$$\forall x, y \in V : d(x, y) = d(\varphi(x), \varphi(y)).$$

Mathematics

Definition

Let $n \in \mathbb{N}$, V an euclidean K vectorspace (with metric $d: V \times V \to K$). Then $\varphi: V \to V$ is called an *isometry* if

$$\forall x, y \in V : d(x, y) = d(\varphi(x), \varphi(y)).$$

Note: An isometry is always a combination of an affine transformation and an orthogonal matrix. Such an isometry $\varphi = (A, a)$ operates as

$$(A, a)(x) := A \cdot x + a$$
.

Mathematics

Definition

Let $n \in \mathbb{N}$, V an euclidean K vectorspace (with metric $d: V \times V \to K$). Then $\varphi: V \to V$ is called an *isometry* if

$$\forall x, y \in V : d(x, y) = d(\varphi(x), \varphi(y)).$$

Note: An isometry is always a combination of an affine transformation and an orthogonal matrix. Such an isometry $\varphi = (A, a)$ operates as

$$(A, a)(x) := A \cdot x + a$$
.

The isometries of a given euclidean vectorspace are a group with the operation

$$((A,a)\circ(B,b))(x):=(A\cdot B,A\cdot a+b)$$

denoted by E(n)

Mathematics

Definition

Let $n \in \mathbb{N}$, V an euclidean K vectorspace (with metric $d: V \times V \to K$). Then $\varphi: V \to V$ is called an *isometry* if

$$\forall x, y \in V : d(x, y) = d(\varphi(x), \varphi(y)).$$

Note: An isometry is always a combination of an affine transformation and an orthogonal matrix. Such an isometry $\varphi = (A, a)$ operates as

$$(A, a)(x) := A \cdot x + a$$
.

The isometries of a given euclidean vectorspace are a group with the operation

$$((A,a)\circ(B,b))(x):=(A\cdot B,A\cdot a+b)$$

denoted by E(n) ($\Longrightarrow E(n) = O(n) \ltimes \mathbb{R}^n$).

Wallpaper Groups

Definition

Mathematics

00000000

Crystallograhpic/Wallpaper Groups Let $\Gamma \leq E(n)$ a subgroup of the group of isometries of dimension n.

Then Γ is called *crystallographic group* if Γ is cocompact and discrete, it is called *wallpaper group* if n = 2.

Definition

Mathematics

00000000

Crystallograhpic/Wallpaper Groups Let $\Gamma \leq E(n)$ a subgroup of the group of isometries of dimension n.

Then Γ is called *crystallographic group* if Γ is cocompact and discrete, it is called *wallpaper group* if n = 2.

Definition

Let $\Gamma \leq E(n)$.

Then Γ is cocompact if the space $E(n)/\Gamma$ is compact.

Definition

Mathematics

00000000

Crystallograhpic/Wallpaper Groups Let $\Gamma \leq E(n)$ a subgroup of the group of isometries of dimension n.

Then Γ is called *crystallographic group* if Γ is cocompact and discrete, it is called *wallpaper group* if n = 2.

Definition

Let $\Gamma \leq E(n)$.

Then Γ is cocompact if the space $E(n)/\Gamma$ is compact.

Proposition ([1, Prop. 1.9])

Let $\Gamma < E(n)$.

Then $E(n)/\Gamma$ is compact iff the orbit space \mathbb{R}^n/Γ is compact.

Examples of wallpaper groups

$$p1 :=$$

Mathematics 00000000

$$\left\langle \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right), \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right) \right\rangle$$

Examples of wallpaper groups

$$\begin{aligned}
&\rho 1 := \\
&\left\langle \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right), \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right) \right\rangle \\
&\rho g := \\
&\left\langle \left(\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \end{pmatrix} \right), \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right) \right\rangle
\end{aligned}$$

Examples of wallpaper groups

$$\begin{split} &\rho 1 \coloneqq \\ &\left\langle \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right), \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right) \right\rangle \\ &\rho g \coloneqq \\ &\left\langle \left(\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \end{pmatrix} \right), \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right) \right\rangle \\ &\rho 4 \coloneqq \\ &\left\langle \left(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \end{pmatrix} \right), \left(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -2 \end{pmatrix} \right), \left(\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right) \right\rangle \end{split}$$

Mathematics 0000000

crystallographic groups on the Versatile Block

Mathematics

crystallographic groups on the Versatile Block

Notice: Versatile Block has only vertices with z=0 and z=1. Now consider the an isometry φ from before lifted to \mathbb{R}^3 by

$$\hat{\varphi}: \mathbb{R}^3 \to \mathbb{R}^3, \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} \varphi \begin{pmatrix} x \\ y \end{pmatrix} \end{pmatrix}$$

Applied to all coordinates of the vertices of the Versatile Block we get a Versatile Block between the same planes.

With the groups p1, pg and p4 from before we get three interlocking assemblies consisting only of copies of the Versatile Block:

Mathematics

00000000

With the groups p1, pg and p4 from before we get three interlocking assemblies consisting only of copies of the Versatile Block:

With the groups p1, pg and p4 from before we get three interlocking assemblies consisting only of copies of the Versatile Block:

With the groups p1, pg and p4 from before we get three interlocking assemblies consisting only of copies of the Versatile Block:

Mathematics

00000000

With the groups p1, pg and p4 from before we get three interlocking assemblies consisting only of copies of the Versatile Block:

Mathematics

00000000

Planar Assemblies of the Versatile Block

With the groups p1, pg and p4 from before we get three interlocking assemblies consisting only of copies of the Versatile Block:

Problem statement

Problem

Mathematics

Do the p1, pg and p4 assemblies perform differently when pressure is applied from one side?

Problem statement

Problem

Do the p1, pg and p4 assemblies perform differently when pressure is applied from one side?

Setup like this:

How to answer such a question?

How to answer such a question? \rightarrow Finite Element Method For now, let us switch to the \mathbb{R}^2 case.

Mathematics

How to answer such a question? \rightarrow Finite Element Method For now, let us switch to the \mathbb{R}^2 case.

Note: in \mathbb{R}^2 there are two (linearly independent) directions of movement and one rotation that classify all movements.

How to answer such a question? \rightarrow Finite Element Method For now, let us switch to the \mathbb{R}^2 case.

Note: in \mathbb{R}^2 there are two (linearly independent) directions of movement and one rotation that classify all movements.

Definition (Beam)

A beam is a body in the shape of a cuboid in \mathbb{R}^2 that has one dimension much larger than the other two.

Mathematics

How to answer such a question? \rightarrow Finite Element Method For now, let us switch to the \mathbb{R}^2 case.

Note: in \mathbb{R}^2 there are two (linearly independent) directions of movement and one rotation that classify all movements.

Definition (Beam)

A beam is a body in the shape of a cuboid in \mathbb{R}^2 that has one dimension much larger than the other two.

Definition (Supports)

No rotation or translation.

How to answer such a question? \rightarrow Finite Element Method For now, let us switch to the \mathbb{R}^2 case.

Note: in \mathbb{R}^2 there are two (linearly independent) directions of movement and one rotation that classify all movements.

Definition (Beam)

A beam is a body in the shape of a cuboid in \mathbb{R}^2 that has one dimension much larger than the other two.

Definition (Supports)

No rotation or translation.

Only movement in direction of line below triangle and rotation.

Problem formulation

Simulation Setup

Stresses

Combinatorial Method

Combinatorial Results

[1] A. Szczepanski and W. Scientific. *Geometry of Crystallographic Groups*. Algebra and discrete mathematics. World Scientific, 2012. URL:

https://books.google.de/books?id=wX26CgAAQBAJ.