

Concours Nationaux d'Entrée aux Cycles de Formation d'Ingénieurs

Session:

2012

Concours: Mathématiques & Physique

Epreuve de :

Chimie

Durée :

2 Heures

Me hen echle hy

Nombre de cahiers remis République Tunisienne ministere de l'enseignement superieur et de la recherche scientifique

Signature	des	enseignants

Concours Nationaux d'Entrée aux Cycles de Formation d'Ingénieurs 2012 Session: Concours: Mathématiques & Physique Durée : 2 Heures Chimie Epreuve de : Prénom:.... Date & lieu de naissance : Etablissement d'origine :.... . N° C.I.N ou N° du passeport pour les étrangers : Série: Identifiant:

> Nombre de cahiers remis

BARÈME

Problème I	5,75 pts
Problème II	6,25 pts
Problème III	3,50 pts
Problème IV	4,50 pts

INSTRUCTIONS

- Cette épreuve comporte 11 pages.
- Tout résultat devra être écrit dans les cadres adéquats.
- L'usage des calculatrices électroniques de poche non programmables est autorisé.
- Aucun échange entre les candidats n'est autorisé.
- Les résultats numériques sans unité ou avec unité fausse ne seront pas comptabilisés.

DONNÉES RELATIVES À L'ENSEMBLE DU SUJET

On supposera que:

- Les enthalpies et les entropies de la réaction sont indépendantes de la température dans le domaine considéré.
- Les gaz sont parfaits et les solides sont purs.

DONNÉES NUMÉRIQUES:

Constante des gaz parfaits : $R = 8,314 \text{ J.K}^{-1}.\text{mol}^{-1}$.

Rayons ioniques (pm): Ion sodium = 97; ion fluorure = 136.

Masses molaires atomiques (g.mol⁻¹): Na = 23,0; F = 19,0 et Zn = 65,4.

Enthalpie standard de fusion à la température de fusion standard de ZnF₂ pur : $\Delta_{fus}H_{ZnF_2}^0 = 40 \text{ kJ.mol}^{-1}$.

À 298 K:

$$HF_{(aq)} = F_{(aq)}^{-} + H_{(aq)}^{+} pK_{1}^{0} = 3,18.$$

$$HF_{(aq)} + F_{(aq)}^{-} = HF_{2(aq)}^{-} pK_{2}^{0} = -0,67.$$

$$HF_{2(ag)}^{-} = 2F_{(ag)}^{-} + H_{(ag)}^{+} pK_{3}^{0} = 3,85.$$

Les potentiels redox normaux (standard):

$$E_a^0(O_{2(g)}/H_2O) = 1,23 \, Volt$$

$$E_b^0 (H_{(aq)}^+ / H_{2(g)}) = 0 \text{ Volt}$$

Conversions:

$$\frac{R \times T}{F} \times Ln(x) = 0.06 \times log_{10}(x) \quad Volt \quad (a 298 \text{ K})$$

$$\theta(^{\circ}C) + 273 = T(K)$$

PROBLÈME I : ÉTUDE DU FLUORURE DE SODIUM

Préliminaire:
1) Donner la structure électronique de F $(Z = 9)$.
2) Comment appelle-t-on les éléments qui, dans la classification périodique, appartiennent à la même colonne (ou famille) que le fluor ?
3) Citer un autre élément de la colonne du fluor.
4) Quel est le nombre d'oxydation (non nul) usuel des éléments de cette colonne ? Justifier la réponse.
5) Quel est le symbole du sodium ?
□ K □ S □ Na
6) Rappeler les positions et les nombres des sites octaédriques (O) et tétraédriques (T) dans une maille cubique à faces centrées.
7) Établir les expressions permettant le calcul des rayons de ces sites en fonction du rayon « r » de l'atome.
STRUCTURE DU FLUORURE DE SODIUM :
Le fluorure de sodium est un cristal ionique cristallisant dans une structure de type chlorure de sodium. 8) Quels sont les sites occupés par l'ion sodium?
8) Queis sont les sites occupes par 1 ion societi.
9) Préciser la coordinence de l'ion sodium par rapport à F.
10) Donner les coordonnées réduites des ions sodium dans cette structure.
11) En se limitant à une seule maille, représenter la trace des ions sur un plan contenant deux axes A ₃ sécants.

12)	Donner 1	expression	puis	calculer
- S.	10 - 11		do	la maill

-a) ie paramei	ire « a » de la maine el	n oupposant que les m	nions et les cations sont tan	
-b) la compac	eité de ce cristal.			1,012

PROBLÈME II : DIAGRAMME BINAIRE

Le diagramme binaire liquide-solide du mélange ZnF_2 -NaF, sous la pression p=1 bar, est représenté sur la figure ci-dessous.

1) Déterminer la formule du composé inte comportement à la fusion.	ermédiaire apparaissant dans ce diagramme et préciser son
2) Donner la nature des phases dans les d	omaines numérotés de (1) à (4) sur le diagramme.
Domaine (1): Domaine (2): Domaine (3): Domaine (4):	le de ma en 11
3) Il apparaît sur le diagramme un point I	Ξ_1 .
3-a) Quel est le nom de ce point ?	
3-b) Donner l'allure de la courbe mélange liquide représenté tronçon.	d'analyse thermique lors du refroidissement de 820°C à 620°C, du par le point M. Préciser les phénomènes observés sur chaque
र्वे कर्म केन्द्रियासीय नहीं, अने प्रेन	was also a first the survey of the first special administration
	The second of th
puis refroidi à $\theta = 720$ °C.	7,39 g de ZnF ₂ et 2,00 g de NaF. Ce mélange est porté à la fusion s en équilibre à cette température.
8	
	za ditana na na namaio na asiana na asia

) La branche du liquidus relative à l'équilibre entre un mélangest décrite par la relation : $\ln(x_{ZnF_2}) = \frac{\Delta_{fus}H_{ZnF_2}^0}{R} \left(\frac{1}{T_{us(ZnF_2)}^0}\right)$ à x_{ZnF_2} désigne la fraction molaire de ZnF_2 dans le mélangusion de ZnF_2 à la température de fusion standard de ZnF_2 pur	
décrite par la relation : $ln(x_{ZnF_2}) = \frac{\Delta_{fus}H^0_{ZnF_2}}{R} \Biggl(\frac{1}{T^0_{fus(Z)}}$ x_{ZnF2} désigne la fraction molaire de ZnF_2 dans le mélang	
décrite par la relation : $ln(x_{ZnF_2}) = \frac{\Delta_{fus}H^0_{ZnF_2}}{R} \Biggl(\frac{1}{T^0_{fus(Z)}}$ x_{ZnF2} désigne la fraction molaire de ZnF_2 dans le mélang	
décrite par la relation : $ln(x_{ZnF_2}) = \frac{\Delta_{fus}H^0_{ZnF_2}}{R} \Biggl(\frac{1}{T^0_{fus(Z)}}$ x_{ZnF2} désigne la fraction molaire de ZnF_2 dans le mélang	
décrite par la relation : $ln(x_{ZnF_2}) = \frac{\Delta_{fus}H^0_{ZnF_2}}{R} \Biggl(\frac{1}{T^0_{fus(Z)}}$ x_{ZnF2} désigne la fraction molaire de ZnF_2 dans le mélang	
décrite par la relation : $ln(x_{ZnF_2}) = \frac{\Delta_{fus}H_{ZnF_2}^0}{R} \Biggl(\frac{1}{T_{fus(Z)}^0} \Biggr)$ x_{ZnF2} désigne la fraction molaire de ZnF_2 dans le mélang	
décrite par la relation : $ln(x_{ZnF_2}) = \frac{\Delta_{fus}H^0_{ZnF_2}}{R} \Biggl(\frac{1}{T^0_{fus(Z)}}$ x_{ZnF2} désigne la fraction molaire de ZnF_2 dans le mélang	
décrite par la relation : $ln(x_{ZnF_2}) = \frac{\Delta_{fus}H^0_{ZnF_2}}{R} \Biggl(\frac{1}{T^0_{fus(Z)}}$ x_{ZnF2} désigne la fraction molaire de ZnF_2 dans le mélang	
décrite par la relation : $ln(x_{ZnF_2}) = \frac{\Delta_{fus}H^0_{ZnF_2}}{R} \Biggl(\frac{1}{T^0_{fus(Z)}} \Biggr)$ x_{ZnF2} désigne la fraction molaire de ZnF_2 dans le mélang	
décrite par la relation : $ln(x_{ZnF_2}) = \frac{\Delta_{fus}H^0_{ZnF_2}}{R} \Biggl(\frac{1}{T^0_{fus(Z)}}$ x_{ZnF2} désigne la fraction molaire de ZnF_2 dans le mélang	
décrite par la relation : $ln(x_{ZnF_2}) = \frac{\Delta_{fus}H^0_{ZnF_2}}{R} \Biggl(\frac{1}{T^0_{fus(Z)}}$ x_{ZnF2} désigne la fraction molaire de ZnF_2 dans le mélang	
décrite par la relation : $ln(x_{ZnF_2}) = \frac{\Delta_{fus}H_{ZnF_2}^0}{R} \Biggl(\frac{1}{T_{fus(Z)}^0} \Biggr)$ x_{ZnF2} désigne la fraction molaire de ZnF_2 dans le mélang	
décrite par la relation : $ln(x_{ZnF_2}) = \frac{\Delta_{fus}H^0_{ZnF_2}}{R} \Biggl(\frac{1}{T^0_{fus(Z)}}$ x_{ZnF2} désigne la fraction molaire de ZnF_2 dans le mélang	
décrite par la relation : $ln(x_{ZnF_2}) = \frac{\Delta_{fus}H^0_{ZnF_2}}{R} \Biggl(\frac{1}{T^0_{fus(Z)}}$ x_{ZnF2} désigne la fraction molaire de ZnF_2 dans le mélang	
décrite par la relation : $ln(x_{ZnF_2}) = \frac{\Delta_{fus}H^0_{ZnF_2}}{R} \Biggl(\frac{1}{T^0_{fus(Z)}}$ x_{ZnF2} désigne la fraction molaire de ZnF_2 dans le mélang	
décrite par la relation : $ln(x_{ZnF_2}) = \frac{\Delta_{fus}H^0_{ZnF_2}}{R} \Biggl(\frac{1}{T^0_{fus(Z)}}$ x_{ZnF2} désigne la fraction molaire de ZnF_2 dans le mélang	
décrite par la relation : $ln(x_{ZnF_2}) = \frac{\Delta_{fus}H_{ZnF_2}^0}{R} \Biggl(\frac{1}{T_{fus(Z)}^0} \Biggr)$ x_{ZnF2} désigne la fraction molaire de ZnF_2 dans le mélang	
$\label{eq:expression} \ln(x_{ZnF_2}) = \frac{\Delta_{fus} H^0_{ZnF_2}}{R} \Biggl(\frac{1}{T^0_{fus(Z)}} \Biggr)$ x_{ZnF2} désigne la fraction molaire de ZnF_2 dans le mélang	1)
x _{ZnF2} désigne la fraction molaire de ZnF ₂ dans le mélang	
	$\frac{1}{\operatorname{ZnF}_2}$ $\frac{1}{T}$
5-a) Montrer que pour des solutions très diluées de NaF	
$x_{\text{NaF}} = \frac{\Delta_{\text{fus}} H_{\text{ZnF}_2}^0}{R} \times \frac{\Delta T}{\left(T_{\text{fus},\text{ZnF}_2}^0\right)^2} \text{ avec } \Delta T = T_{\text{fus},\text{ZnF}_2}^0 - T \text{ où } T_{\text{fus},\text{ZnF}_2}^0$	T est la température d'apparition des cristau
de ZnF ₂ pur lors du refroidissement du mélange (ZnF ₂ -	

5-b) Montrer que, lorsqu'il s'agit d'une solution diluée de NaF dans ZnF_2 , la molalité de NaF (m_{NaF}) s'écrit en fonction de la fraction molaire x_{NaF} .

$$m_{NaF} = \frac{x_{NaF} \times 1000}{M_{ZnF_2}}$$

5-c) Donner l'expression puis calculer la valeur de la constante cryoscopique K_{cr} du solvant ZnF_2 définie par $\Delta T = K_{cr} \times m_{NaF}$.

PROBLÈME III:

On considère la réaction d'équation bilan :

 $ZnF_{2(sd)} + H_2O_{(g)} \xrightarrow{(1)} 2 HF_{(g)} + ZnO_{(sd)}$ endothermique dans le sens (1).

1) Dans quel sens évolue le système initialement à l'équilibre lors :

1-a) d'une augmentation de température à pression constante ?

1-b) d'une compression à température constante ?

1-c) d'une faible addition de ZnF_{2(sd)} à température et volume constants ?

2) En précisant la signification de chaque terme, donner l'expression puis calculer la variance d'un système contenant seulement les substances écrites dans l'équation chimique ci-dessus ?

3) Peut-on choisir arbitrairement pour ce système :

3-a) le volume, la température et la pression partielle de HF? Justifier.

3-b) la pression partielle de HF (pHF) et la fraction molaire d'eau en phase vapeur (yH2O)? Justifier.

4) Donner l'expression de la loi d'action de masse pour cet équilibre.

5-a) Montrer que l'expression donnant la constante d'équilibre en fonction de la température s'écrit sous la forme :

$$Ln(K_T^0) = A - \frac{B}{T}$$

5-b) Déterminer les valeurs de A et B, sachant que $K_{842K}^0=0,61$ et $\Delta_r H^\circ=109,1$ kJ.mol⁻¹.

Dnony	N'N WWY	TXT	· TOTACIO	ABABATT	T nII
PROBL	BIVIE	IV	: DIAGR	AVIVIE	F-PI

Les conventions adoptées pour le tracé du diagramme de prédominance sont :

• La concentration totale en élément fluor dissous est égale à $C_{tra}=1\ mol.\ L^{-1}$.

• À la frontière qui sépare les domaines de deux espèces dissoutes, les concentrations en élément fluor dans chacune des espèces sont les mêmes.

Dans l'eau, le fluor existe sous les trois espèces suivantes : $\mathrm{HF}_{(aq)}$, $\mathrm{F}^{\text{-}}_{(aq)}$ et $\mathrm{HF}^{\text{-}}_{2(aq)}$.

1) Ecrire l'équation de rédu fonction du pH, pour $p_{O2} = 1$		déduire le potentiel E _a du	couple correspondant en
		-	
2) Écrire l'équation de rédification du pH, pour p _{H2} =		déduire le potentiel E _b du	couple correspondant en
			2
		e	
The state of the s	ninance concentration C _{tra} , l'expressi nes de prédominance de HF ₂₍		

		727
4-c) Indexer le diagramme dar	ns chacun des cas et conclure.	
adexation: à effectuer directem	ent sur le diagramme.	
onclusion:		