Foundation of Machine Learning

(CSE4032)

Lecture 09: Model Assessment and Selection

Dr. Kundan Kumar

Associate Professor Department of ECE

Faculty of Engineering (ITER)
S'O'A Deemed to be University, Bhubaneswar, India-751030
© 2021 Kundan Kumar, All Rights Reserved

Topics to be covered

- Bias, Variance and Model Complexity (covered in previous lectures)
- Model Selection
 - Estimating the performance of different models in order to choose the best one.
 Eg. AIC, BIC
- Model assessment (covered in previous lectures)
 - □ having chosen a final model, estimating its prediction error (generalization error) on new data. e.g. Confusion matrix, Accuracy, TPR, FPR, etc
- Training Error Rate (covered in previous lectures)
- Prediction Error (covered in previous lectures)
- Vapnik-Chervonenkis Dimension (way of measuring the complexity)

Vapnik-Chervonenkis Dimension

- We've seen many versions of underfit/overfit trade-off
 - $\ \square$ Complexity of the learner
 - Representational Power
- Different learners have different power

- We've seen many versions of underfit/overfit trade-off
 - □ Complexity of the learner
 - Representational Power
- Different learners have different power

- We've seen many versions of underfit/overfit trade-off
 - □ Complexity of the learner
 - Representational Power
- Different learners have different power

- We've seen many versions of underfit/overfittrade-off
 - Complexity of the learner
 - Representational Power
- Different learners have different power
- Usual trade-off:
 - □ More power = represent more complex systems, might overfit
 - □ Less power = won't overfit, but may not find "best" learner
- How can we quantify representational power?
 - □ Not easily...
 - □ One solution is Vapnik-Chervonenkis (VC) dimension

Some notation

- Assume training data are iid from some distribution p(X,Y)
- Define "risk" and "empirical risk"
 - □ These are just "long term" test and observed training error

$$\begin{array}{ccc} R(\theta) = & \text{Test Error } = \mathbb{E}[\mathbf{1}[c \neq \hat{c}(x;\theta)]] \\ R^{\text{emp}}(\theta) = & \text{Train Error } = \frac{1}{m}\sum_{i}\mathbf{1}\left[c^{(i)} \neq \hat{c}\left(x^{(i)};\theta\right)\right] \end{array}$$

- How are these related? Depends on overfitting...
 - □ Underfitting domain: pretty similar...
 - Overfitting domain: test error might be lots worse!

VC Dimension and Risk

lacktriangle Given some classifier, let H be its VC dimension represents "representational power" of classifier

$$\begin{array}{ccc} R(\theta) = & \text{Test Error} & = \mathbb{E}[\mathbf{1}[c \neq \hat{c}(x;\theta)]] \\ R^{\text{emp}}(\theta) = & \text{Train Error} & = \frac{1}{n}\sum_{i}\mathbf{1}\left[c^{(i)} \neq \hat{c}\left(x^{(i)};\theta\right)\right] \end{array}$$

■ With "high probability", Vapnik showed

Test Error
$$\leq$$
 Train Error $+\sqrt{\frac{H\log(2m/H)+H-\log(\eta/4)}{n}}$

The bounds suggest that the optimism increases with h and decreases with n in qualitative agreement.

- We say a classifier f(x) can shatter points $x^{(1)} \dots x^{(h)}$ iff for all $y^{(1)} \dots y^{(h)}$, f(x) can achieve zero error on training data $\left(x^{(1)}, y^{(1)}\right), \left(x^{(2)}, y^{(2)}\right), \dots, \left(x^{(h)}, y^{(h)}\right)$ (i.e., there exists some θ that gets zero error)
- Can $f(x;\theta) = \text{sign}(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$ shatter these points?

- We say a classifier f(x) can shatter points $x^{(1)} \dots x^{(h)}$ iff for all $y^{(1)} \dots y^{(h)}$, f(x) can achieve zero error on training data $\left(x^{(1)}, y^{(1)}\right), \left(x^{(2)}, y^{(2)}\right), \dots, \left(x^{(h)}, y^{(h)}\right)$ (i.e., there exists some θ that gets zero error)
- Can $f(x;\theta) = \text{sign}(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$ shatter these points?
- Yes: there are 4 possible training sets. . .

- We say a classifier f(x) can shatter points $x^{(1)} \dots x^{(h)}$ iff for all $y^{(1)} \dots y^{(h)}$, f(x) can achieve zero error on training data $\left(x^{(1)}, y^{(1)}\right), \left(x^{(2)}, y^{(2)}\right), \dots, \left(x^{(h)}, y^{(h)}\right)$ (i.e., there exists some θ that gets zero error)
- Can $f(x;\theta) = \text{sign}(x_1^2 + x_2^2 \theta)$ shatter these points?

- We say a classifier f(x) can shatter points $x^{(1)} \dots x^{(h)}$ iff for all $y^{(1)} \dots y^{(h)}$, f(x) can achieve zero error on training data $\left(x^{(1)}, y^{(1)}\right), \left(x^{(2)}, y^{(2)}\right), \dots, \left(x^{(h)}, y^{(h)}\right)$ (i.e., there exists some θ that gets zero error)
- Can $f(x;\theta) = \text{sign}(x_1^2 + x_2^2 \theta)$ shatter these points?
- Nope!

- The VC dimension H is defined as "the maximum number of points h that can be arranged so that f(x) can shatter them."
- The VC dimension of the class $\{f(x,\alpha)\}$ is defined to be the largest number of points (in some configuration) that can be shattered by members of $\{f(x,\alpha)\}$.
- A game:
 - \Box Fix the definition of $f(x;\theta)$
 - □ Player 1: choose locations $x^{(1)} \dots x^{(h)}$
 - $\ \square$ Player 2: choose target labels $y^{(1)}\dots y^{(h)}$
 - $\ \square$ Player 1 : choose value of heta
 - \Box If $f(x;\theta)$ can reproduce the target labels, P1 wins

- **Example:** what's the VC dimension of the (zero-centered) circle, $f(x;\theta) = \text{sign}(x_1^2 + x_2^2 \theta)$?
- VC dim = 1: can arrange one point, cannot arrange two (previous example was general)

- Example: what's the VC dimension of the two-dimensional line, $f(x;\theta) = \operatorname{sign} (\theta_1 x_1 + \theta_2 x_2 + \theta_0)?$
- VC dim = 3? Yes

■ VC dim = 4? No...

■ Turns out: For a general, linear classifier (perceptron) in ddimensions with a constant term.

$$VC \dim = d + 1$$

- VC dimension measures the "power" of the learner
- Does not necessarily equal the # of parameters!
- Number of parameters does not necessarily equal complexity
 - □ Can define a classifier with a lot of parameters but not much power (how?)
 - □ Can define a classifier with one parameter but lots of power (how?)
- Lots of work to determine what the VC dimension of various learners is...
- Vapnik's structural risk minimization (SRM) approach fits a nested sequence of models of increasing VC dimensions $h_1 < h_2 < \cdots$, and then chooses the model with the smallest value of the upper bound.

Using VC dimension

- Validation / cross-validation to select complexity
- VC dimension based bound on test error similarly
- Other Alternatives
 - □ Probabilistic models: likelihood under model (rather than classification error)
 - AIC (Akaike Information Criterion)
 - Log-likelihoood of training data # of parameters

$$AIC = -\frac{2}{N} \cdot \log lik + 2 \cdot \frac{d}{N}$$

- □ BIC (Bayesian Information Criterion)
 - Log-likelihood of training data (# of parameters)* $\log(N)$

$$BIC = -2 \cdot \log \operatorname{lik} + (\log N) \cdot d$$

References

The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition, Hastie, Tibshirani, and Friedman, Springer.

In Introduction to Statistical Learning with Application in R, Second Edition, James, Witten, Hastie, and Tibshirani, Springer.

