What I cannot create, I do not understand. – Richard Feynman

Software Engineering for **Economists**

Advanced Applications

- ► Modeling Career Choice
 - ▶ On-the-Job Search

Modeling Career Choice

Resources

- ▶ Derek Neal. The Complexity of Job Mobility among Young Men. *Journal of Labor Economics*, 17(2):237-261, 1999.
- Quantitative Economics Website

Model Features

▶ Individuals choose their career and job within a career to maximize the expected discounted value of lifetime wages. They solve an infinite horizon dynamic programming problem with two state variables

Objective

$$\mathbb{E}\sum_{t=0}^{\infty}\beta^t\omega_t$$

Payoffs

$$w_t = \theta_t + \epsilon_t$$

- \triangleright θ_t contribution of current occupation at time t
- $ightharpoonup \epsilon_t$ contribution of current job at time t

Decision Problem

At the start of time t, a worker has the following options:

- ▶ Stay Put, retain a current (career, job) pair (θ_t, ϵ_t)
- **New Job**, retain a current career θ_t but redraw a job ϵ_t
- ▶ New Life, redraw both a career θ_t and a job ϵ_t

Draws of θ and ϵ are independent of each other and past values, with $\theta_t \sim F$ and $\epsilon_t \sim G$.

Value Functions

$$egin{aligned} V_{SP} &= heta + eta V(heta, \epsilon) \ V_{NJ} &= heta + \int \epsilon' G(d\epsilon') + eta \int V(heta, \epsilon') G(d\epsilon') \ V_{NL} &= \int heta' F(d heta') + \int \epsilon' G(d\epsilon') + eta \int \int V(heta', \epsilon') G(d\epsilon') F(d heta') \end{aligned}$$

Course Registration

▶ Please register for our class **ECON41904** by sending an eMail to Brett Baker at:

bbaker@uchicago.edu