Astronomy from 4 perspectives: the Dark Universe

prepared by: Florence participants and BMS

High-School exercises: Supernova-cosmology and dark energy

1. Classical potentials including a cosmological constant

The field equation of classical gravity including a cosmological dark energy density λ is given by

$$\Delta\Phi = 4\pi G \left(\rho + \lambda\right) \tag{I}$$

(a) Solve the field equation for 3 dimensions outside a spherically symmetric and static matter distribution ρ .

The expression for the Laplace-operator in spherical coordinates for 3 dimensions is:

$$\Delta\Phi = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \Phi}{\partial r} \right) \tag{II}$$

Also, please set as the total baryon mass M

$$M = 4\pi \int_0^r \mathrm{d}r' (r')^2 \rho(r') \tag{III}$$

- (b) Show, that both source terms individually give rise to power-law solutions for $\Phi(r)$.
- (c) Is there a distance where the baryon part from the ρ -terms is equal to dark energy part the λ -term?
- (d) Assuming a typical galaxy is formed by 10^{11} stars like the Sun each with a mass of 10^{30} kg, and a dark energy density of $\lambda = 10^{-27}$ kg/m³, find at which distance from a galaxy the dark energy dominates. How does it compare with the typical size of a Galaxy ($\sim 10^4$ pc)?

2. Light-propagation in FLRW-spacetimes

Photons travel along null geodesics, $ds^2 = 0$, in any spacetime.

(a) Please show that by introducing *conformal time* τ in a suitable definition, one recovers Minkowskian light propagation $c\tau = \pm \chi$ in comoving distance χ and conformal time τ for FLRW-space times,

$$ds^{2} = c^{2}dt^{2} - a^{2}(t) d\chi^{2},$$
 (IV)

which we have assumed to be spatially flat for simplicity.

- (b) What's the relationship between conformal time τ and cosmic time t? What would the watch of a cosmological observer display?
- (c) Please compute the conformal age of the Universe given a Hubble function H(a),

$$H(a) = H_0 a^{-\gamma}$$
 with: $\gamma > 0$ (V)

- (d) In applying $ds^2 = 0$ to the FLRW-metric we have assumed a radial geodesic is this a restriction?
- (e) Draw a diagram of a photon propagating from a distant galaxy to us in conformal coordinates for a cosmology of your choice, with markings on the light-cone corresponding to equidistant Δa .

3. Measure cosmic acceleration

The luminosity distance $d_{lum}(z)$ in a spatially flat FLRW-universe is given by

$$d_{\text{lum}}(z) = (1+z) \int_0^z dz' \, \frac{1}{H(z')}$$
 (VI)

with the Hubble function H(z). We can prove this relation between the scale factor a and the cosmological red-shift z:

$$a = \frac{1}{1+z} \tag{VII}$$

So we can write the Hubble function H(z):

$$H(z) = H_0 (1+z)^{\gamma} \tag{VIII}$$

(a) Find the limit value of γ for an accelerating (and non-accelerating) universe. Use the deceleration parameter given by

$$q = -\frac{\ddot{a} a}{\dot{a}^2}$$

from the Hubble-function

$$H = \frac{\dot{a}}{a}$$

to prove it.

(b) Please show that in accelerated universes supernovae appear systematically dimmer, because d_{lum} is always larger than in a non-accelerating universe.