Critéries de divisibilidale

de ao, as, ..., an e do, 1, 2, 3, ..., 8, 9 de a méto, o winero

a = an x 20 + an-1 x 20 + ... + az x 70 + az x 10 + ao

e um inteiro positivo com n+2 algazimos (representação de a na base 20)

Representamos este número anan-1 -- azarao. Não havendo

ambiguidade, não se coloca a boeza.

 $rac{1}{2}$ $rac{1}$ $rac{1}$ $rac{1}{2}$ $rac{1}$ $rac{1}$ $rac{1}$ $rac{1}$ $rac{1}$ $rac{1}$ $rac{$

<u>leazerna</u> Seja me IN. Se 21,22, --, 2n-1, Rn são os rostos ela divisão de 10,10, --, 20, 10, rospect., por on, então

anan-1 --- az 0100 = an 2n + an-1 2n-1 + -- + az ez + a1 21 + a0 (mod m)

```
Demonst: Ternos 10 = RK (mod m)
            Logo an 20 = an 24 (mod m), somando ao longo de
        b \in \{0, 2, --, n\} vem a_{n} = 20 + -- + a_{1} = 20 + a_{0} = a_{1} = a_{1}
       Exemplo Daterminar o resto da divisão de 1492 par 3

\begin{array}{cccc}
\text{Como} & 10 \equiv 1 \pmod{3} \\
10^2 = 1 \pmod{3}
\end{array}

                                                10^{3} = 1 \quad (\text{mod}3)
\log 0 \quad 1 \times 10^{3} + 4 \times 10^{2} + 9 \times 10 + 2 = 1 + 4 + 9 + 2 \quad (\text{mod}3)
     00 seja, I492 = 16 (mod3) mas 16 = 1 (mod3)
      Logo 1492 = 1 (mod 3).
```

Criérios de divisibilidade para: 2,5,3,9,4 e 21

$$10 \equiv 0 \pmod{2}$$
 $1 \Rightarrow \frac{1}{2} = \frac{1}{2$

Critério da divisibilidade par 2: O resto de divisão de um interior positivo a par z é o resto que se obtem divindo o algorismo das estidades par z.

Como
$$10 = 0 \text{ (mods)}$$
 $= 0 \text{ (mods)}$ $= 0 \text{ (mods)}$

Critério da divisibilidade par 5: O resto da divisão de um interior positivo a para 5 é o resto que se obtem divindo o algorismo das eenidades par 5.

• n = 3

 $10 \equiv 1 \pmod{3}$] $\Rightarrow \overline{anan-1-.a2a1a_0} \equiv antan-1+.-+c2+a1+ao \pmod{3}$ $10 \equiv 1 \pmod{3}$

Critério da divisibilidade par 3: O resto da divisão de um inteiro positivo a par 3 é o resto que se obtem divindo por 3 a soma de hodos os algonismo de a.

• n = 9

 $10 \equiv 1 \pmod{9}$ $\sqrt{20} = 2 \pmod{9}$ $\sqrt{20} = 2 \pmod{9}$ $\sqrt{20} = 2 \pmod{9}$

Critério da divisibilidade par 9: O resto da devisão de um interior positivo a par 9 é o resto que se obtem divindo por 9 a soma de hodes os alganismo de a.

$$20 \equiv 2 \pmod{4}$$

$$20^{2} \equiv 4 \pmod{4}$$

$$10^{2} \equiv 0 \pmod{4}$$

$$20^{K} \equiv 0 \pmod{4}, K \geqslant 2$$

=> anan-1 -- azanao = a1 x2 + ao (mod 4)

Critario da divisibilidade por 4: O rosto da divisão de um interno positivo a por 4 é o rosto da divisão por 4 da soma do alganismo das emidades com o dobro do alganismo das de zenas de a.

=> $a_n a_{n-1} - a_2 a_1 a_0 = (a_0 + a_2 + a_4 + - -) - (a_1 + a_3 + - -) \pmod{21}$

Critério da divisibilidade por 11: O 20870 de divisão de um interior positivo a par 11 é o rosto de divisão por 11 da digerença da Soma dos alganismos de cardem por coma soma dos alganismos de cardem por coma soma dos alganismos de cardem (mpor.

Congruein cias l'necres

Det vição: Chame-se congrueducia livear a toda a expressão da decema ax = 5 (mod n) em que a,5 € 16, a to e x é oma incignita. Chama-se solução da congruência livear a qualquer intero xo que verifique axo = 6 (mod n)

Exemplo A congruencia luear 4x = 5 (mod 6) não tem soluções

Se existisse solução xo então 6 4xo-5 mas 4xo-5 e

um número imper lugo 6 x 4xo-5 e 4x = 5 (mod 6) não

tem solução

Exemplo A Congruencia $3x \equiv 9 \pmod{12}$ admite for exemplo $x_0 = 3$, $x_0 = -1$, $x_1 = -9$, $x_2 = 7$. Note-se que $3 \equiv -9 \pmod{12}$ mas $3 \not\equiv -1 \pmod{12}$. Algebras solvespes saw congruents entre si a outres not.

Notamos que:

ax = b (modn) (=> n | ax - b

(=) ax-b=ny (para algum $y \in \mathbb{Z}$)

(=) ax-ng = b

Asson resolver a conquiéncie linear ax = 5 (mod n) et

Teorema: Sejam a, beth, a to, ne M. A congruencia huer tem solução see m.d.c (a, o) b.

Corolério de m.d. c (april = 2 entre a conjunière a linear ax = 6 (mod n) tem una e ma só solução modulo n. Exemplo: Consideramos a conjunire luce 4x = 5 (mod 6) Não tem solveção jois on. d. c (4,6) = 2 e 2/5. Exemplo: Consideremos a confresència luear 18x = 30 (mod 42). Temos m.d.c (18,42) = 2x3 = 6 e 6/30. Então a congresionera tem soluções, 13 2 42 2 9 3 21 3 3 3 7 7 1 1 na vendade tem 6 soluções modulo 42 Usono solução possível e 70 = 4. Logo as 6 soluções

Nota: Não é necessário "alinghar" a solução. Poderoros sempre resar o algoritoro de euclides

Tearema: Leja ax = b (modn) vona confruência linear

que admiti soluções, Entao existem (ETL e mEIN tais que

xo é solução de ax = b (modn) see xo é solução

de x = c (mod m).

Demonst: Sejom 26 una solução de az = 5 (mod n) e d= = m. d. c (a, n). Entar d/b.e, par un trorema antiniar, $\frac{a}{d} \times a = \frac{b}{d} \pmod{\frac{n}{d}} \tag{*}$ (terneme de lei du conte). Sabamos também que, como m.d.c. $\left(\frac{a}{d}, \frac{n}{d}\right) = 2$ enter existe not tal que $\frac{a}{d} n o^* \equiv 2 \pmod{\frac{n}{d}}$ Meelfiglicando a conjeniència (x) por suit ternos $\left(\frac{a}{d} n \right) n = n + \frac{b}{d} \left(n - \frac{d}{d}\right)$, obtemos

No = $\frac{b}{d}$ xw* (mod Nd)

ou seja, No et solução de $2e = c \pmod{m}$ oncle $m = \frac{n}{d} e = c = \frac{b}{d}$ xw*

Recipoucament se xo é solução de $x = \frac{b}{d}$ xw* (mod n)

então os célculos antinieros mestrom que 20 é solução

do $ax = b \pmod{m}$

Sistemas de conqueducias l'uneares

Definição (larone-se sistema de conqueducias l'uneares a

em sistema de tipo (S): $\frac{1}{2}$ $\frac{1}{2$

Una solugão de (S) é quelque interno 26 € 1/2 que venifique to des as congruencies que constam de (S). Exemplo: O sistème de conquiência lineares que = 2 (moda) admite como solvegoes x = 3 e $x_1 = 9$. Exemplo: O sistema le conquièncias Queans) $x = 2 \pmod{4}$ não admite soluções inteines. Serfondamos, jar redução ao absendo, que xo et solução. Entro 4/20-1 e 6/26-4. Logo existim 92 e 72 ETG tais que 26 = 491+1 e 26 = 692+4

enteo 491+1 = 692+4ou seja 492-672=3 ie, (71,92) et solução ela eperação dio fambre 42-69=3. Ora m.d.c (4,6)=2 mas 2/3 logo a operação 42-6 j=3 não tem colução. Tecnema (Tecnema Chinès dos Restos) Seja & EIN1726, as, az, --, ah E 1 e ns, nz, --, nh E N tais que $\forall i,j \in \{1,\ldots,k\}$ $(i \neq j) \Rightarrow md.c(ni,nj) = 2$ Entée o sisteme de congruêncies Invares

Domonst: Ver sebenta