Soil carbon sequestration in building life cycle assessment: Offsetting measure or site impact

Matt Roberts

Center for the Built Environment
University of California
California, USA

Patrick Thibaudeau

JLG Architects

Minneapolis, MN, USA

Project overview

Objective

 Assess how soil carbon sequestration (SCS) should be incorporated into building-scale life cycle assessments (LCAs)

Research Questions

- Does soil carbon sequestration meet requirements to be considered a carbon offset?
- How does SCS align with the life cycle stages of a built asset?
- What LCA methodology should be used to quantify SCS?

Presentation structure

- Introduction to soil carbon sequestration
- Potential soil carbon benefits case study
- Review of carbon offset principles
- Soil carbon as an offset or site impact?
- Future work and next steps

Photo by <u>elizabeth lies</u> on <u>Unsplash</u> Center for the Built Environment | June 2024

Soil carbon sequestration

What is it?

 Rate that carbon is exchanged between soil and the atmosphere

How does it work?

 Abiotic and biotic process influence rate carbon is sequestered and emitted from soil

Why should we care?

- Soil carbon is the second largest global carbon pool
- Excavation can have a large impact on soil carbon

Adapted based on Bai & Cotrufo (2022) Center for the Built Environment | June 2024

Factors influencing soil organic carbon

Natural Processes	Interventions
Weather patterns	Grazing patterns
Extreme weather events	Fertilizer use
Soil erosion	Crop / vegetation rotation
Microbial organisms	Drainage
Fire	Tillage
	Land use change
	Biochar application

Soil carbon principles

Case study project

Project Specifications

- Location: Midwest, United States
- Site area: 12 hectares (30 acres) grazing area

Project Goals

- Restore historic grazing land
- Improve soil carbon through improved land management

Sustainability Ambitions

- Living Building Challenge full certification
- LEED Platinum
- SITES Platinum

Site soil carbon potential

Initial conditions

- Measured via 21 boreholes
- Soil organic carbon (SOC): 5.3 kgC/m²
- Total organic carbon = 53% of total organic matter

Potential change from grazing management

- 10% increase in SOC on grazing based on 50 studies¹
- 28% increase in SOC²

¹ Conant et al. 2017. DOI:10.1002/eap.1473

² Bai & Cortufo. 2022. DOI: 10.1126/science.abo2380

Site soil carbon potential

Carbon Offset Principles

Governance

- Effective governance
 Transparent
- Tracked

- Verified

Emissions Impact

- Additional
- Permanent

- Robust quantification
- No double-counting

Sustainable Development

- Sustainable development benefits
- Contribution to net-zero transition

Soil carbon as a carbon offset?

Additionality

 Reduction of emissions would NOT have occurred without the offset program

Challenges for soil carbon

- Soil carbon fluctuates naturally
- Susceptible to rapid lose of carbon
- Multiple influencing factors
- Need to isolate change in soil carbon from specific intervention

Soil carbon as a site impact

Current system boundary

- Building footprint and envelope
- Normalized by building area

Proposed system boundary

- Project boundary
- Site impacts normalized by area and year
- Change in soil carbon reported in B1
- Should not report benefit of soil carbon sequestration without other site impacts

Current outlook

Soil carbon as site impact?

- Can be monitored throughout project
- Site is included in assessment definition from EN 15978:2011 & ISO 21931-1:2022

Soil carbon as carbon offset?

- Requires isolation of change due to intervention
- Requires robust baseline of soil carbon levels without intervention
- Additionality and permanence remain challenging to verify

Next steps

Site impact requirements

- Alignment of site activities with life cycle stages
- Quantification, and reporting guidelines for site impacts

Prospects as an offsetting measure

- Robust baseline development
- Isolation of change from other influencing factors
- Guidelines to ensure permanence

Thank you

