# Radar Signal Detection

Radar systems (Radarové systémy)

## Radar signal processing

- Primary processing
  - Processing of signal within one antenna revolution one PRI or several adjacent PRIs
    - Pulse compression
    - Doppler filtration
    - Target detection
- Secondary processing
  - Processsing of several revolutions
    - Target tracking
    - Clutter mapping for adaptive processing
- Tertial processing
  - Data fusion signal processing from several radar sites

## Radar signal processing

- Primary processing
  - Signal detection
  - Extraction



## Range-Azimuth-Doppler Cells to Be Thresholded



### Target Detection in Noise



- Received background noise and target echo fluctuate randomly → Both are random variables
- To decide if a target is present, at a given range, we need to set a threshold (constant or variable)
- Detection performance (**Probability of Detection**,  $P_D$ ) depends of the strength of the target relative to that of the noise and the threshold setting (**Signal-To Noise Ratio** and **Probability of False Alarm**,  $P_{fa}$ )

## Signal Detection

- Decision about traget presence for each evaluated cell from measurement x
- Two hypotheses H<sub>0</sub>, H<sub>1</sub>
- Neyman-Paerson theorem/detector
- – Maximize  $P_D$  for chosen  $P_{fa}$
- Based on information about characteristics of noise, clutter, signal

| <b>Statistics Theory</b>                        | Radar Theory                                              |
|-------------------------------------------------|-----------------------------------------------------------|
| Tested statistics $U(x)$ and threshold $y$      | Detector                                                  |
| Zero hypothesis $H_0$                           | Target absent, Noise only $(x=n)$ , PDF: $p(x H_0)$       |
| Alternative hypothesis $H_1$                    | Target present, Signal+noise ( $x=s+n$ ), PDF: $p(x H_1)$ |
| 1st case error (decision $H_1$ for real $H_0$ ) | False alarm, $(P_{fa})$                                   |
| 2nd case error (decision $H_0$ for real $H_1$ ) | Missed detection, $(1-P_D)$                               |

### Optimum Threshold Test

|         |                       | Decision         |                       |
|---------|-----------------------|------------------|-----------------------|
|         |                       | $H_{0}$          | <b>H</b> <sub>1</sub> |
| Reality | $H_{0}$               | Do not report    | False<br>alarm        |
|         | <b>H</b> <sub>1</sub> | Missed detection | Detection             |

Probability of Detection:

 $P_D$  Probability we choose  $H_1$  for reality  $H_1$ 

Probability of False alarm:

 $P_{fa}$  Probability we choose  $H_1$  for reality  $H_0$ 

Neyman-Pearson criterion:

Maximize  $P_D$  for  $P_{fa}$  not greater than specified value

Likelihood function (ratio)

$$L(x) = \frac{p(x|H_1)}{p(x|H_0)}: \quad \stackrel{\geq T \to H_1}{< T \to H_0}$$
Threshold

### Statistic description

- Rayleigh distribution noise probability density function (e.g. voltages)
- Rice distribution signal+noise probability density function
- AWGN envelope and impacts of environment, non-fluctuating target



#### Detection statistics



#### Detection statistics



## Impact of SNR



 $P_{D}$  increases with SNR for given  $P_{fa}$  (threshold)

#### Non-fluctuating target detection

$$L(x) = \frac{P(x|\mathcal{H}_1)}{P(x|\mathcal{H}_0)}^{\mathcal{H}_1} > T$$

$$P_{fa} = Pr\{L(x) > T; \mathcal{H}_0\} = \int_{T}^{\infty} p(\xi|\mathcal{H}_0) d\xi$$

$$P_d = Pr\{L(x) > T; \mathcal{H}_1\} = \int_{T}^{\infty} p(\xi|\mathcal{H}_1) d\xi$$

$$P_{fa} = \int_{T}^{\infty} \frac{\xi}{\sigma^2} e^{\frac{-\xi^2}{2\sigma^2}} d\xi = e^{\frac{-T^2}{2\sigma^2}}$$

$$T = \sigma \sqrt{-2 \ln \left( P_{fa} \right)}$$

$$S/N = \frac{s^2}{\sigma^2}$$

$$P_{d} = \int_{T}^{\infty} \frac{\xi}{\sigma^{2}} e^{\frac{-\xi^{2} + s^{2}}{2\sigma^{2}}} I_{0}(\frac{\xi s}{\sigma^{2}}) d\xi$$

### Detection quality

- System parameters for required detection parameters
- Detection coeficient (D<sub>0</sub>(1) for pro SW0 non-fluctuating target, single pulse detection)
  - Necessary SNR to reach  $P_d$  for given  $P_{fa}$
  - Usual conditions
    - Non-fluctuating
    - $P_d = 0.9$ ;  $P_{fa} = 10^{-6}$
    - Fluctuating
    - $P_d = 0.8$ ;  $P_{fa} = 10^{-6}$



e.g. 
$$P_d = 0.9$$
,  $P_{fa} = 10^{-6}$ ,  $D_0$ : SNR=13.2 dB

## Improvement by integration

- Use multiple pulses from same target
- Impact of statistical dependence of samples
- Motivation
  - Increase Pd
  - Decrease Pfa
  - Decrease of necessary SNR
- Detection
  - Single pulse
  - Multiple pulses
    - Coherent integration
    - Non-coherent (envelope, video) integration
    - Binary Integration (M of N)
    - Cumulative detection (1 of N)

## Coherent integration

- Doppler compensation prior to integration (MTD)
- Integration (sum) od N pulses – samples of complex envelope
- Amplitude increase N-times
- Noise power (uncorrelated) increase by N-times
- SNR increase N-times
- Integration gain  $G_i = N$



$$D_0(n) = \frac{D_0(1)}{G_i} = \frac{D_0(1)}{n}$$

## Non-coherent Integration of envelope (video signal)

- Sum of amplitudes (powers)
- Ignores phase simplification
- Envelope detector
- Higher SNR compared to coherent case
- Integration loses w.r.t. ideal (coherent) integrator



#### Coherent vs. Non-coherent Integration



Steady Target

 $P_{FA} = 10^{-6}$ 

#### Integration of binary output (M of N)

- Simplification of Detector realization
- Integration behind detector, count threshold binary outputs
- Secondary threshold for binary counts (M of N filter)
- First Detector can be set for higher  $P_{fa}$

$$\begin{split} P_{d} &= \sum_{k=m}^{n} \frac{n!}{k!(n-k)!} P_{d1}^{k} (1 - P_{d1})^{n-k} \\ P_{fa} &= \sum_{k=m}^{n} \frac{n!}{k!(n-k)!} P_{fa1}^{k} (1 - P_{fa1})^{n-k} \\ P_{fa} &\approx \frac{n!}{m!(n-m)!} P_{fa1}^{m}; P_{fa1} \ll 1 \end{split}$$

Can be found optimal M for given N

$$m_{opt} \approx 1.5 \sqrt{n}$$

## M of N integration



Individual pulse detectors:

$$\left| \mathbf{x}_{\mathbf{n}} \right|^{2} \ge \mathbf{T}, \quad \mathbf{i}_{\mathbf{n}} = \mathbf{1}$$
 $\left| \mathbf{x}_{\mathbf{n}} \right|^{2} < \mathbf{T}, \quad \mathbf{i}_{\mathbf{n}} = \mathbf{0}$ 

2nd thresholding:

 $m \geq M$  , target present m < M , target absent

Target present if at least M detections in N pulses

**Binary Integration** 

**Cumulative Detection** 

$$\begin{array}{ll} \text{At Least} & \\ \text{M of N} & P_{M \, / \, N} = \sum_{k=M}^{N} \frac{N!}{k! \big(N\!-\!k\big)!} p^k \big(1\!-\!p\big)^{N-k} \end{array}$$
 Detections

At Least 
$$P_C = 1 - (1-p)^N$$

## 1 of N Detection – cummulative detection

- N independent decisions for N pulses
- Detection positive if at least one of N decisions positive
- Higher requirements to  $P_{fa}$  setup in comparison to coherent and non-coherent integrations
- Little improvement of  $P_d$  compared to single pulse
  - → low integration gain

$$P_D = 1 - (1 - P_{d1})^N$$

## Loss by integration



### Detection comparison





## Fluctuation of target (Fluctuation of RCS)

- Swerling models
- SW0 non-fluctuating (steady) target
- SW1 slow fluctuating target (scan to scan)
  - Rayleigh distribution of amplitudes, Exponential distribution of powers (RCS)
  - Mono-frequency radar observations example: Target consists from many comparable scatterers, no dominance
- SW2 fast fluctuating target (pulse to pulse)
  - SW1 target observed by agile radar
- SW3 slow fluctuating target (scan to scan)
  - Power distribution (RCS) χ2 with 4 degrees of freedom (DOF)
  - Mono-frequency radar observations example: Target consists from one dominant scatterer and many secondary scatterers
- SW4 fast fluctuating target (pulse to pulse)
  - SW3 target observed by agile radar

## Swerling Target Models

| Natura of                             | RCS                                                                                                                         | Fluctuation Rate                   |                                      |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------|
| Nature of<br>Scattering               | Model                                                                                                                       | Slow Fluctuation<br>"Scan-to-Scan" | Fast Fluctuation<br>"Pulse-to-Pulse" |
| Similar amplitudes                    | Exponential (Chi-Squared DOF=2) $p(\sigma) = \frac{1}{\overline{\sigma}} exp\left(-\frac{\sigma}{\overline{\sigma}}\right)$ | Swerling I                         | Swerling II                          |
| One scatterer much Larger than others | (Chi-Squared DOF=4) $p(\sigma) = \frac{4 \sigma}{\overline{\sigma}^2} exp\left(-\frac{2 \sigma}{\overline{\sigma}}\right)$  | Swerling III                       | Swerling IV                          |

 $\overline{\sigma}$  = Average RCS (m<sup>2</sup>)

## Swerling Target Models

| Noture of                             | Amplitude                                                                                                                 | Fluctuation Rate                   |                                      |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------|
| Nature of<br>Scattering               | Model                                                                                                                     | Slow Fluctuation<br>"Scan-to-Scan" | Fast Fluctuation<br>"Pulse-to-Pulse" |
| Similar amplitudes                    | Rayleigh                                                                                                                  |                                    |                                      |
| 837                                   | $p(a) = \frac{2a}{\overline{\sigma}} exp\left(-\frac{a^2}{\overline{\sigma}}\right)$                                      | Swerling I                         | Swerling II                          |
| One scatterer much Larger than others | Central Rayleigh, DOF=4 $p(a) = \frac{8 a^{3}}{\overline{\sigma}^{2}} exp\left(-\frac{2 a^{2}}{\overline{\sigma}}\right)$ | Swerling III                       | Swerling IV                          |
|                                       | $\left[\frac{\mathbf{p}(\mathbf{a}) - \overline{\mathbf{\sigma}^2}}{\overline{\mathbf{\sigma}^2}}\right]$                 |                                    |                                      |

 $\overline{\sigma}$  = Average RCS (m<sup>2</sup>)

## Impact of fluctuations to Probability of detection

 PSD of fluctuating target echo – Rayleigh (non-fluctuating - Rice)

$$f_{s}(\xi|\mathcal{H}_{1}) = \frac{\xi}{\sigma^{2} + \alpha^{2}} e^{\frac{-\xi^{2}}{2(\sigma^{2} + \alpha^{2})}}$$
$$P_{d} = e^{\frac{-T^{2}}{2(S+N)}} = e^{\frac{\ln(P_{fa})}{1+S/N}}$$

Detection cefficient

$$D_1 = \frac{\ln P_{fa}}{P_d} - 1$$



#### Fluctuation loss

• SNR difference necessary to achieve same  $P_d$  for SW0 and (e.g.) SW1

$$L_f = \frac{D_1(1)}{D_0(1)}$$

- Integration of echoes from fluctuating targets
  - Dependent on mutual correlation of samples
- Diversity gain
  - time observation time is longer than correlation length of samples
  - frequency (detection on more frequencies)



#### Fluctuation Loss



The fluctuation loss depends on the target fluctuations, probability of detection, and probability of false alarm.

#### Fluctuation Loss - Integration impact



For some targets (fast fluctuating), the non-coherent integration is better

## Non-coherent integration for fluctuating targets



#### Other Fluctuation Models

- Detection Statistics Calculations
  - Steady and Swerling 1,2,3,4 Targets in Gaussian Noise
  - Chi- Square Targets in Gaussian Noise
  - Log Normal Targets in Gaussian Noise
  - Steady Targets in Log Normal Noise
  - Log Normal Targets in Log Normal Noise
  - Weibel Targets in Gaussian Noise
- Chi Square, Log Normal and Weibel Distributions have long tails
  - One more parameter to specify distribution
  - Mean to median ratio for log normal distribution
- When used
  - Ground clutter Weibel
  - Sea Clutter Log Normal
  - HF noise Log Normal
  - Birds Log Normal

### Adaptive detection - CFAR

#### Constant False Alarm Rate, CFAR

- Adaptive estimation of the threshold to keep consistent (constant)  $P_{fa}$
- Problems
  - Clutter borders
  - Clutter residuals
  - More targets
  - Interference, jamming
  - High sensitivity to model accuracy (statistics)





#### Adaptive detection - CFAR

- Realization
  - Parametric e.g. CA (Cell Averaging) CFAR for Rayleigh
  - Non-parametric ad hoc structures logCACFAR, time averaging, median-based detector
- Rayleigh model suitable for
  - Amplitude based AWGN detection
  - Water reflections (vertical polarization)
  - Terrain reflections

#### CFAR Window

CFAR Window – Range cells



Estimate background mean from Range data only or Range/Doppler space data

Set threshold as background mean multiplied by a constant (to adjust  $P_{fa}$ )

CFAR Window - Range and Doppler cells



Blue cells for estimation of background and threshold

#### Adaptive detection - CA CFAR





$$E[\xi] = \sigma \frac{\sqrt{\pi}}{2} \qquad P_{fa} = \int_{T}^{\infty} \frac{\xi}{\sigma^{2}} e^{\frac{-\xi^{2}}{2\sigma^{2}}} d\xi = e^{\frac{-T^{2}}{2\sigma^{2}}}$$

$$T = \sigma \sqrt{-2\ln(P_{fa})} = E[\xi] \sqrt{\frac{-4\ln(P_{fa})}{\pi}}$$

## CA CFAR – impact of number of samples (cells)





#### Mean Level Threshold CFAR



#### Greatest of Means CFAR

Compare mean value of N/2 cells before and after test cell and use larger value to determine threshold



- Helps reduce false alarms near sharp clutter or interference boundaries
- Nearby targets still raise threshold and suppress detection

#### Censored Greatest of Means CFAR

Compute and use noise estimates as in Greatest-of, but remove the largest M samples before computing each average



- Up to M nearby targets can be in each window without affecting threshold – dependent on target statistics
- Ordering the samples from each window is more computationally expensive than plain averaging

#### Adaptive detection - OS CFAR

- Ordered statistics (OS)
- Better in case of multiple targets or at clutter border
- Lower gain





#### References

- P. Šedivý Rádiové systémy, lectures, CTU FEE Prague 2011-2016
- M. O'Donnell Introduction to Radar Systems, MIT Lincoln Laboratory, set of lectures, 2002
- M. Skolnik Radar Handbook, McGraw-Hill 2008
- M. Richards Fundamentals of Radar Signal Processing, McGraw-Hill, New York, 2005

#### **Thank You!**