INTRO TO DATA SCIENCE LECTURE 2: EXPLORATORY DATA ANALYSIS

NOVEMBER 24, 2014

DAT11-SF

I. EXPLORATORY ANALYSIS II. VALUE OF VISUALIZATION

LAB:

III. DATA ANALYSIS WITH PANDAS

L EXPLORATORY DATA ANALYSIS

EXPLORATORY DATA ANALYSIS (EDA)

Exploratory Data Analysis (EDA) is an approach for data analysis without statistical model or formulated prior hypothesis:

- Maximize insight into a data set
- Uncover underlying structure
- Detect outliers and anomalies
- Detect missing data
- Rank important factors
- Perform "sanity check"

DATA TYPES

- Categorical data (nominal)
- > Quantitative data (numerical, real values)
- > Ordinal (ordered)

TABLE ROWS = instances, examples, data points, observations
TABLE COLUMNS = attributes, features, variables

TITANIC DATASET 7

```
VARIABLE DESCRIPTIONS:
survival
                Survival
                (0 = No; 1 = Yes)
                Passenger Class
pclass
                (1 = 1st; 2 = 2nd; 3 = 3rd)
                Name
name
                Sex
sex
age
                Age
sibsp
                Number of Siblings/Spouses Aboard
parch
                Number of Parents/Children Aboard
ticket
                Ticket Number
fare
                Passenger Fare
cabin
                Cabin
embarked
                Port of Embarkation
                (C = Cherbourg; Q = Queenstown; S = Southampton)
```

British Board of Trade (1990), Report on the Loss of the 'Titanic' (S.S.)

Α	В	С	D	E	F	G	Н		J	K	L
assengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
1		0	3 Braund, Mr. Owen Harris	male	22	1		0 A/5 21171	7.25		S
2		1	1 Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38			0 PC 17599	71.2833	C85	С
3		1	3 Heikkinen, Miss. Laina	female	26	0		0 STON/O2. 3:	7.925		S
4		1	1 Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	1		0 113803	53.1	C123	S
5		0	3 Allen, Mr. William Henry	male	35	0		0 373450	8.05		S
6		0	3 Moran, Mr. James	male		0		0 330877	8.4583		Q
7		0	1 McCarthy, Mr. Timothy J	male	54	0		0 17463	51.8625	E46	S
8		0	3 Palsson, Master. Gosta Leonard	male	2	3		1 349909	21.075		S
9		1	3 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27	0		2 347742	11.1333		S
10		1	2 Nasser, Mrs. Nicholas (Adele Achem)	female	14	1		0 237736	30.0708		С
11		1	3 Sandstrom, Miss. Marguerite Rut	female	4	1		1 PP 9549	16.7	G6	S
12		1	1 Bonnell, Miss. Elizabeth	female	58	0		0 113783	26.55	C103	S
13		0	3 Saundercock, Mr. William Henry	male	20	0		0 A/5. 2151	8.05		S
14		0	3 Andersson, Mr. Anders Johan	male	39	1		5 347082	31.275		S
15		0	3 Vestrom, Miss. Hulda Amanda Adolfina	female	14	0		0 350406	7.8542		S
16		1	2 Hewlett, Mrs. (Mary D Kingcome)	female	55	0		0 248706	16		S
17		0	3 Rice, Master. Eugene	male	2	4		1 382652	29.125		Q
18		1	2 Williams, Mr. Charles Eugene	male		0		0 244373	13		S
19		0	3 Vander Planke, Mrs. Julius (Emelia Maria Vandemoo	rte female	31	. 1		0 345763	18		S
20		1	3 Masselmani, Mrs. Fatima	female		0		0 2649	7.225		С
21		0	2 Fynney, Mr. Joseph J	male	35	0		0 239865	26		S
22		1	2 Beesley, Mr. Lawrence	male	34	0		0 248698	13	D56	S
23		1	3 McGowan, Miss. Anna "Annie"	female	15	0		0 330923	8.0292		Q
24		1	1 Sloper, Mr. William Thompson	male	28	0		0 113788	35.5	A6	S
25		0	3 Palsson, Miss. Torborg Danira	female	8	3		1 349909	21.075		S
26		1	3 Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Joha	ns female	38	1		5 347077	31.3875		S
27		0	3 Emir, Mr. Farred Chehab	male		0		0 2631	7.225		С
28		0	1 Fortune, Mr. Charles Alexander	male	19	3		2 19950	263	C23 C25 C27	S
29		1	3 O'Dwyer, Miss. Ellen "Nellie"	female		0		0 330959	7.8792		Q
30		0	3 Todoroff, Mr. Lalio	male		0		0 349216	7.8958		S
31		0	1 Uruchurtu, Don. Manuel E	male	40	0		0 PC 17601	27.7208		С
32		1	1 Spencer, Mrs. William Augustus (Marie Eugenie)	female		1		0 PC 17569	146.5208	B78	С
33		1	3 Glynn, Miss. Mary Agatha	female		0		0 335677	7.75		Q
34		0	2 Wheadon, Mr. Edward H	male	66	0		0 C.A. 24579	10.5		S
35		0	1 Meyer, Mr. Edgar Joseph	male	28	1		0 PC 17604	82.1708		С
36		0	1 Holverson, Mr. Alexander Oskar	male	42	1		0 113789	52		S
37		1	3 Mamee, Mr. Hanna	male		0		0 2677			С
38		0	3 Cann, Mr. Ernest Charles	male	21	. 0		0 A./5. 2152	8.05		S
39		0	3 Vander Planke, Miss. Augusta Maria	female	18			0 345764			S
40		1	3 Nicola-Yarred, Miss. Jamila	female	14			0 2651			С

EXPLORATORY DATA ANALYSIS

Some techniques for EDA:

- **♦** Summary statistics:
 - min, max, mean, median, standard deviation, quartiles
- Histograms
- **♦** Scatter plots
- ◆ Simple pairwise relationships between variables, correlation analysis

age 22.0 38.0 26.0 35.0 35.0 54.0 2.0 27.0 14.0 4.0 58.0 20.0 39.0 14.0 55.0 2.0

31.0

35.0 34.0 15.0

BIVARIATE DATA 11

age	fare
22.0	7.25
38.0	71.2833
26.0	7.925
35.0	53.1
35.0	8.05
	8.4583
54.0	51.8625
2.0	21.075
27.0	11.1333
14.0	30.0708
4.0	16.7
58.0	26.55
20.0	8.05
39.0	31.275
14.0	7.8542
55.0	16.0
2.0	29.125
	13.0
31.0	18.0
	7.225
35.0	26.0
34.0	13.0
15.0	8.0292

TRIVARIATE DATA (2 REAL + 1 CATEGORICAL)

age	fare	class
22.0	7.25	Third
38.0	71.2833	First
26.0	7.925	Third
35.0	53.1	First
35.0	8.05	Third
	8.4583	Third
54.0	51.8625	First
2.0	21.075	Third
27.0	11.1333	Third
14.0	30.0708	Second
4.0	16.7	Third
58.0	26.55	First
20.0	8.05	Third
39.0	31.275	Third
14.0	7.8542	Third
55.0	16.0	Second
2.0	29.125	Third
	13.0	Second
31.0	18.0	Third
	7.225	Third
35.0	26.0	Second
34.0	13.0	Second
15.0	8.0292	Third
	22.0 38.0 26.0 35.0 54.0 27.0 14.0 4.0 58.0 20.0 39.0 14.0 55.0 2.0 31.0	22.0 7.25 38.0 71.2833 26.0 7.925 35.0 53.1 35.0 8.05 8.4583 54.0 51.8625 2.0 21.075 27.0 11.1333 14.0 30.0708 4.0 16.7 58.0 26.55 20.0 8.05 39.0 31.275 14.0 7.8542 55.0 16.0 2.0 29.125 13.0 31.0 18.0 7.225 35.0 26.0 34.0 13.0

Sample mean, average:

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} \qquad \bar{x} = \left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}} \qquad \bar{x} = n \cdot \left(\sum_{i=1}^n \frac{1}{x_i}\right)^{-1}$$

Sample standard deviation – amount of variation from the average

$$s_N = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})^2}, \qquad \qquad s_N^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})^2,$$
 std variance

SUMMARY STATISTICS

Quartile of a ranked data set are the three points that divide the data set into four equal groups, each group comprising a quarter of the data.

Q1 = 25% (splits off lowest 25% of the data)

Q2 = median (half of the data)

Q3 = 75% (splits off highest 25% of the data)

Lower fence = Q1 - 1.5 IQR

Upper fence = Q3 + 1.5 IQR

IQR = interquartile range

SUMMARY STATISTICS

i	x[i]	Quartile
1	102	
2	104	
3	105	Q ₁
4	107	
5	108	
6	109	Q ₂ (median)
7	110	
8	112	
9	115	Q ₃
10	116	
11	118	

$$IQR = 115-105 = 10$$

SUMMARY STATISTICS

Sample skewness – measure of the asymmetry of distribution

Moment coefficient

$$b_1 = \frac{m_3}{s^3} = \frac{\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^3}{\left[\frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2\right]^{3/2}},$$

DATA DEPENDENCE

Correlation coefficient (Pearson's correlation coefficient) – measure of dependency between two variables (how much they change together)

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{(n-1)s_x s_y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}},$$

MISSING DATA

Types of missing data points:

- Missing completely at random (MCAR)
- Missing at random (MAR)
- Missing not at random (MNAR)

Treatment of missing data points:

- Deletion:
 - listwise delete data point (table row)
 - pairwise only for analysis when required
- Single imputation mean, regression, random, last values
- Multiple imputation average over multiple randomly imputed datasets
- Extra indictor variable

- 1. What is a <u>typical value?</u>
- 2. What is the <u>uncertainty for a typical value?</u>
- 3. What is a good distributional fit for a set of numbers?
- 4. What is a <u>percentile?</u>
- 5. Does a factor have an effect?
- 6. What are the <u>most important factors?</u>
- 7. What is the best function for relating a response variable to a set of factor variables?
- 8. Can we separate <u>signal from noise in time dependent data?</u>
- 9. Can we extract any <u>structure from multivariate data?</u>
- 10. Does the data have outliers?

II. VALUE OF VISULAIZATION

"The greatest value of a picture is when it forces us to notice what we never expected to see."

-John Tukey (1915 - 2000)

eleven (x, y) points

- eleven (x, y) points
- mean of x = 9, mean of y = 7.5

- eleven (x, y) points
- mean of x = 9, mean of y = 7.5
- variance of x = 11, variance of y = 4.1

- eleven (x, y) points
- mean of x = 9, mean of y = 7.5
- variance of x = 11, variance of y = 4.1
- correlation of x and y = 0.8

- eleven (x, y) points
- mean of x = 9, mean of y = 7.5
- variance of x = 11, variance of y = 4.1
- correlation of x, y = 0.8
- line of best fit: y = 3.00 + 0.500x

Anscombe's	Quartet:	Raw	Data
------------	----------	-----	------

	I		II		I	II	IV	
	x	\mathbf{y}	x	\mathbf{y}	x	\mathbf{y}	x	\mathbf{y}
	10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
	8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
	13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
	9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
	11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
	14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
	6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
	4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
	12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
	7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
	5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89
mean	9.0	7.5	9.0	7.5	9.0	7.5	9.0	7.5
var.	10.0	3.75	10.0	3.75	10.0	3.75	10.0	3.75
corr.		0.816	(0.816	0.816		0.816	

EXERCISE — WHY VISUALIZE DATA?

Now, suppose I give you three more datasets with exactly the same characteristics...

Q: how similar are these datasets?

Now, suppose I give you three more datasets with exactly the same characteristics.

Q: how similar are these datasets?

A: not very!

INTRO TO DATA SCIENCE

