

Suggested Teaching Guidelines for

Microcontrollers Programming

PG-DIOT- Sept 2022

Duration: 30 hours of theory + 34 hours of lab/hands-on

Objective: Firmware Design for ARM based microcontrollers and sensor interfacing for IoT based end devices.

Prerequisites: C/C++ programming

Evaluation method: Theory exam - 40% weightage

Lab exam/case study - 40% weightage Internal exam - 20% weightage

List of Text Books / Other training material

The Definitive Guide to the ARM Cortex-M3, Joseph Yiu

Reference Book:

ARM Cortex M4 Cookbook Paperback by Dr. Mark Fisher/ Packet Publishing Limited

Session 1:

- Introduction to MCU Families
- Overview of ARM Cortex-M architecture
- CMSIS standard

Session 2, 3:

- ° Registers
- Operation Modes
- Instruction Set
- ° Thumb-2 Instructions

Session 4:

- Startup code
- ^o Memory Model
- Linker map
- ^o Bus Interface

Suggested Teaching Guidelines for

Microcontrollers Programming

PG-DIOT- Sept 2022

Session 5:

- Introduction to Booting Process
- 9 Bootloaders and Vector Table
- Booting from Various Sources

Session 6, 7:

- ° Clock, Timer Management
- Watchdog timers
- ° RTC

Session 8:

- o Interrupt Handling
- Exception handling
- ^o Mode Switching

Session 9:

- ° Development environment –arm-gcc, eclipse, Keil MDK etc
- Building phases
- Blinking LED example

Session 10, 11:

- Peripheral management in MCUs
 - GPIO
 - PWM
 - UART

Session 12:

- ° Peripheral management in MCUs
 - SPI
 - I 12C

Session 13:

- ° Peripheral management in MCUs
 - ADC

Suggested Teaching Guidelines for

Microcontrollers Programming PG-DIOT- Sept 2022

г	1	D	٨	_
- 1		11	/\	
L		ப	_	•

- Analog sensor interfacing techniques for low power designs
- MPU6050 and MPU9250 sensor modules (Gyroscope + Accelerometer + Temperature)

Session 14:

- CAN Basics
- Designing CAN Nodes

Session 15:

- Bus Standards USB, PCI (overview)
- Debugging Support, Techniques
 - JTAG
 - CMSIS DAP
 - Open OCD