18. Eigenschaften stetiger Funktionen

Satz 18.1 (Zwischenwertsatz)

Sei a < b und $f \in C[a,b] := C([a,b])$, weiter sei $y_0 \in \mathbb{R}$ und $f(a) \leq y_0 \leq f(b)$ oder $f(b) \leq y_0 \leq f(a)$. Dann existiert ein $x_0 \in [a,b]$ mit $f(x_0) = y_0$

Beweis

O.B.d.A: $f(a) < y_0 < f(b)$, $M := \{x \in [a,b] : f(x) \le y_0\}$. $M \ne \emptyset$, denn $a \in M$. $M \subseteq [a,b] \implies M$ ist beschränkt. $x_0 := \sup M$. $\forall n \in \mathbb{N}$ ist $x_0 - \frac{1}{n}$ keine obere Schranke von $M \implies \forall n \in \mathbb{N} \exists x_n \in M : x_0 - \frac{1}{n} < x_n \le x_0 \implies x_n \to x_0$. $x_n \in [a,b] \implies x_0 \in [a,b]$, f stetig in $x_0 \implies \underbrace{f(x_n)}_{\le y_0} \to f(x_0) \implies f(x_0) \le y_0$. Es ist $x_0 < b$ (anderenfalls: $f(x_0) \le y_0 < f(b) = f(x_0)$

Widerspruch!) $z_n := x_0 + \frac{1}{n}; z_n \in [a, b]$ ffa $n \in \mathbb{N}; z_n \to x_0;$ f stetig in $x_0 \implies f(z_n) \to f(x_0).$ $z_n \notin M \implies f(z_n) > y_0 \forall n \in \mathbb{N} \implies \lim f(z_n) \ge y_0 \implies f(x_0) \ge y_0$

Satz 18.2 (Nullstellensatz von Bolzano)

Sei $f \in C[a, b]$ und $f(a) \cdot f(b) < 0$, dann existiert ein $x_0 \in [a, b] : f(x_0) = 0$. Beweis folgt aus 18.1 und $y_0 = 0$

Anwendung 18.3

Sei $E(x) := e^x (x \in \mathbb{R})$. Behauptung: $E(\mathbb{R}) = (0, \infty)$

Beweis

13.3 $\implies e^x > 0 \forall x \in \mathbb{R} \implies E(\mathbb{R}) \subseteq (0, \infty)$. Sei $y_0 \in (0, \infty)$ z.z: $\exists x_0 \in \mathbb{R} : e^{x_0} = y_0$. 16.3 $\implies e^x \to \infty (x \to \infty) \implies \exists b \in \mathbb{R} : y_0 < e^b$. 16.3 $\implies e^x \to 0 (x \to -\infty) \implies \exists a \in \mathbb{R} : e^a < y_0 \implies e^a < y_0 < e^b \xrightarrow{\text{e streng wachsend}} a < b$. 18.1 $\implies \exists x_0 \in [a, b] : e^{x_0} = y_0$.

Definition

 $A \subseteq \mathbb{R}$ heißt **abgeschlossen** : \iff für jede konvergente Folge (x_n) in A gilt: $\lim x_n \in A$ $B \subseteq \mathbb{R}$ heißt **offen** : $\iff \forall x \in B \ \exists \delta = \delta(x) > 0 : U_{\delta}(x) \subseteq B$.

Beispiele:

- (1) [a,b] ist abgeschlossen, aber nicht offen. (a,b) ist offen, aber nicht abgeschlossen.
- (2) (a, b] und [a, b) sind weder abgeschlossen, noch offen
- (3) \mathbb{R} ist offen, abgeschlossen. \emptyset ist offen, abgeschlossen

Hilfssatz

(1) $A \subseteq \mathbb{R}$ ist abgeschlossen \iff jeder Häufungspunkt von A gehört zu A

- (2) $B \subseteq \mathbb{R}$ ist offen $\iff \mathbb{R} \setminus B$ ist abgeschlossen
- (3) $D \subseteq \mathbb{R}$ ist abgeschlossesn u. beschränkt \iff jede Folge (x_n) in D enthält eine konvergente Teilfolge (x_{n_k}) mit $\lim x_{n_k} \in D$. In diesem Fall existiert $\max D$ und $\min D$.

Beweis

- (1) Übung
- (2) " \Longrightarrow ": Sei (x_n) eine konvergente Folge in $\mathbb{R} \setminus B$ und $x_0 := \lim x_n$. Annahme: $x_0 \in B$. B offen $\Longrightarrow \exists \delta > 0 : U_{\delta}(x_0) \subseteq B$. $x_n \to x_0 \Longrightarrow x_n \in U_{\delta}(x_0) \subseteq B$ ffa $n \in \mathbb{N}$, Widerspruch! " \Leftarrow ": Sei $x \in B$. Annahme: $U_{\delta}(x) \nsubseteq B \forall \delta > 0$. $\Longrightarrow U_{\frac{1}{n}}(x) \nsubseteq B \forall n \in \mathbb{N} \Longrightarrow \forall n \in \mathbb{N} \exists x_n \in U_{\frac{1}{n}}$ mit: $x_n \in \mathbb{R} \setminus B \Longrightarrow (x_n)$ ist eine Folge in $\mathbb{R} \setminus B : x_n \to x$. $\mathbb{R} \setminus B$ abgeschlossen $\Longrightarrow x \in \mathbb{R} \setminus B$, Widerspruch!
- (3) " \Longrightarrow ": Sei (x_n) Folge in D. D beschränkt \Longrightarrow (x_n) beschränkt. 8.2 \Longrightarrow (x_n) enthält eine konvergente Teilfolge (x_{n_k}) . D abgeschlossen \Longrightarrow $\lim x_{n_k} \in D$. " \Leftarrow ": Übung. Sei D beschränkt und abgeschlossen. Sei $s := \sup D$. z.z.: $s \in D$ (analog zeigt man inf $D \in D$). $\forall n \in \mathbb{N}$ ist $s \frac{1}{n}$ keine obere Schranke von s. $\Longrightarrow \forall n \in \mathbb{N} \exists \ x_n \in D$ mit $s \frac{1}{n} < x_n \le s \Longrightarrow x_n \to s$. D abgeschlossen $\Longrightarrow s \in D$

Definition

Sei $\emptyset \neq D \subseteq \mathbb{R}$. Eine Funktion $f: D \to \mathbb{R}$ heißt **beschränkt** : $\iff f(D)$ ist beschränkt $(\iff \exists c \geq 0 : |f(x)| \leq c \ \forall x \in D)$.

Satz 18.4 (Eigenschaften von Bildmengen stetiger Funktionen)

Sei $\emptyset \neq D \subseteq \mathbb{R}$, sei D beschränkt, abgeschlossen und $f \in C(D)$. Dann ist f(D) beschränkt und abgeschlossen. Insbesondere ist f beschränkt und $\exists x_1, x_2 \in D : f(x_1) \leq f(x_2) \ \forall x \in D$.

Beweis

Annahme: f ist nicht beschränkt. Dann: $\forall n \in \mathbb{N} \exists x_n \in D : |f(x_n)| > n$. $\mathrm{HS}(3) \Longrightarrow (x_n)$ enthält eine konvergente Teilfolge (x_{n_k}) mit $x_0 := \lim x_{n_k} \in D$. f stetig $\Longrightarrow f(x_{n_k}) \to f(x_0) \Longrightarrow (f(x_{n_k}))$ ist beschränkt, aber: $|f(x_{n_k})| > n_k \ \forall \ k \in \mathbb{N}$, Widerspruch! Sei (y_n) eine konvergente Folge in f(D) und $y_0 := \lim y_n$. z.z.: $y_0 \in f(D)$. \exists Folge (x_n) mit $f(x_n) = y_n \ \forall n \in \mathbb{N}$. \exists HS(e) $\Longrightarrow (x_n)$ enthält eine konvergente Teilfolge (x_{n_k}) mit $x_0 := \lim x_{n_k} \in D$. f stetig $\Longrightarrow \underbrace{f(x_{n_k})}_{=y_{n_k}} \to f(x_0)$. Aber auch: $y_{n_k} \to y_0 = f(x_0) \in f(D)$

Sei $I \subseteq \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ streng monoton wachsend (fallend) $\Longrightarrow f$ ist auf I injektiv. $\Longrightarrow \exists f^{-1}: f(I) \to \mathbb{R}$. f^{-1} ist streng monoton wachsend (fallend). Es gilt: $f^{-1}(f(x)) = x \ \forall x \in I$, $f(f^{-1}(y)) = y \ \forall y \in f(I)$ Übung: Sei $M \subseteq \mathbb{R}$. M ist ein Intervall: \iff aus $a, b \in M$ und $a \leq b$ folgt stets $[a, b] \subseteq M$.

Satz 18.5 (Bildintervalle und Umkehrbarkeit stetiger, montoner Funktionen) Sei $I \subseteq \mathbb{R}$ ein Intervall und $f \in C(I)$.

- (1) f(I) ist ein Intervall
- (2) Ist f streng monoton wachsend (fallend) $\Longrightarrow f^{-1} \in C(f(I))$

Beweis

- (1) Übung (mit obiger Übung und 18.1)
- (2) O.B.d.A: I = [a, b]. $\alpha := f(a), \beta := f(b) \xrightarrow{f \text{ wachsend}} f(I) = [a, b]$. Sei $x_0 \in [\alpha, \beta]$. Sei (y_n) eine Folge in f(I) und $y_n \to y_0$. z.z.: $f^{-1}(y_n) \to f^{-1}(y_0)$. $x_n := f^{-1}(y_n), x_0 := f^{-1}(y_0) \implies x_0 \in I$, $x_n \in I \forall n \in \mathbb{N}$. d.h. (x_n) ist beschränkt. z.z. $x_n \to x_0$. 8.2 $\implies \mathscr{H}(x_n) \neq \emptyset$. Sei $\alpha \in \mathscr{H}(x_n)$. \exists eine Teilfolge (x_{n_k}) von (x_n) mit $x_{n_k} \to \alpha$. I ist abgeschlossen $\implies \alpha \in I$. f stetig $\implies \underbrace{f(x_{n_k})}_{=y_{n_k}} \to f(\alpha)$. Aber auch: $y_{n_k} \to y_0 = x_0$

$$f(x_0) \implies f(\alpha) = f(x_0) \xrightarrow{\text{finjektiv}} \alpha = x_0. \text{ d.h. } \mathscr{H}(x_n) = \{x_0\}. \text{ Aus } 9.3 \text{ folgt: } x_n \to x_0 \blacksquare$$

Satz 18.6 (Der Logarithmus)

Sei $I = \mathbb{R}$ und $f(x) = e^x$. Bekannt: $f \in C(\mathbb{R})$, f ist streng monoton wachsend und $f(I) = f(\mathbb{R}) = (0, \infty)$. Also existiert $f^{-1} : (0, \infty) \to \mathbb{R}$.

$$\log x := \ln x := f^{-1}(x) \ (x \in (0, \infty)) \ Logarithmus$$

Eigenschaften

- (1) $\log 1 = 0, \log e = 1$
- (2) $\log e^x = x \ \forall x \in \mathbb{R}, e^{\log x} = x \ \forall x \in (0, \infty)$
- (3) $x \mapsto \log x$ ist stetig auf $(0, \infty)$ und streng monoton wachsend
- (4) $\log(xy) = \log x + \log y$; $\log(\frac{x}{y}) = \log x \log y \ \forall x, y > 0$
- (5) $\log x \to \infty \ (x \to \infty); \log x \to -\infty \ (x \to 0^+)$
- (6) $\log(a^r) = r \log a \ \forall a > 0 \ \forall r \in \mathbb{Q} \ d.h.$ $a^r = e^{r \log a} \ \forall a > 0 \ \forall r \in \mathbb{Q}$

Beweis

- (1) klar (2) klar (3) 18.5
- (4) $e^{\log xy} = xy = e^{\log x}e^{\log y} = e^{\log x + \log y} \implies \log(xy) = \log(x) + \log(y)$
- (5) folgt aus 16.3
- (6) Sei a > 0. $n, m \in \mathbb{N}$. $\log(a^n) \stackrel{4}{=} n \log a$. $\log(a^{-n}) = \log(\frac{1}{a^n}) \stackrel{4}{=} \log 1 \log a^n = -n \log a$ $\log a = \log((a^{\frac{1}{n}})^n) = n \log a^{\frac{1}{n}} \implies \log a^{\frac{1}{n}} = \frac{1}{n} \log a$ $\log(a^{\frac{m}{n}}) = \log((a^{\frac{1}{n}})^m) = m \log(a^{\frac{1}{n}}) = \frac{m}{n} \log a$

18. Eigenschaften stetiger Funktionen

Definition (Die allgemeine Potenz)

Sei a > 0. Motiviert durch 18.6(6): $a^x = e^{x \log a}$ $(x \in \mathbb{R})$

Eigenschaften

- (1) $x \to a^x$ ist auf \mathbb{R} stetig
- (2) $a^{x+y} = a^x a^y$; $(a^x)^y = a^{x \cdot y}$, $a^{-x} = \frac{1}{a^x} \ \forall x, y \in \mathbb{R}$.
- (3) $\log(a^x) = x \cdot \log a$

Beweis

- (1) Klar
- (2) $a^{x+y} = e^{(x+y)\log a} = e^{x\log a} \cdot e^{y\log a} = a^x a^y$
- (3) $\log(a^x) = \log(e^{x \cdot \log a}) = x \cdot \log a$

In der Übung: $\lim_{x\to x_0}(1+\frac{1}{x})^x=\lim_{t\to 0}(1+t)^{\frac{1}{t}}=e$