1 Computational Mechanics Meets Artificial Intelligence

Leon Herrmann

Stefan Kollmannsberger

Chair of Data Engineering in Construction

Bauhaus-Universität Weimar

Paris, February 2025

Deep Learning in Computational Mechanics – an introductory course,

Herrmann et al. 2025

Contents

- 1 Computational Mechanics Meets Artificial Intelligence (& Introduction to PyTorch):
 - What is Artificial Intelligence?
 - History of Artificial Intelligence
 - Recent Achievements of Artificial Intelligence
 - Artificial Intelligence in Science
 - Challenges
 - Computational Mechanics Meets Artificial Intelligence
- 2 Fundamental Concepts of Machine Learning
- 3 Neural Networks
- 4 Introduction to Physics-Informed Neural Networks
- 5 Advanced Physics-Informed Neural Networks
- 6 Machine Learning in Computational Mechanics
- 7 Material Modeling with Neural Networks
- 8 Generative Artificial Intelligence
- 9 Inverse Problems & Deep Learning
- 10 Methodological Overview of Deep Learning in Computational Mechanics

What is Artificial Intelligence?

Artificial Intelligence: A Modern Approach, Norvig et al. 2020

Artificial Intelligence

- "Intelligence exhibited by machines/computers"
- (Total) Turing test requires: natural language processing, knowledge representation, automated reasoning, machine learning, (computer vision, robotics)

Intelligence

- Human or rational?
- Intelligent thoughts or intelligent behavior?

Machine Learning

 "Learn from data & generalize to unseen data (without explicit instructions)"

Deep Learning

"Training (deep) neural networks"

Inspired by Rebekka Woldseth, author of "On the use of artificial neural networks in topology optimisation"

History of Artificial Intelligence

Artificial Intelligence: A Modern Approach, Norvig et al. 2020

- The inception of artificial intelligence (1943-1956)
 - Basic physiology of the brain → artificial neurons (on/off); updating rule as Hebbian Learning; SNARC
- Early enthusiasm, great expectations (1952-1969)
 - Turing "a machine can never do X"; models were based on logic and symbolic reasoning; (GPS, Lisp, perceptron)
- A dose of reality (1966-1973)
 - Overconfidence: models based on "informed introspection" & "intractability of attempted problems"; Lighthill
- Expert systems (1969-1986)
 - Instead of general-purpose tools; domain-specific knowledge; (DENDRAL, Mycin, R1); Fifth Generation Project
- The return of neural networks (1986-)
 - Reinvention of backpropagation
- Probabilistic reasoning and machine learning (1987-)
 - Reaction to failure of expert systems; learn from experience → adaptable & incorporation of uncertainty
 - Hidden Markov Models (Reinforcement Learning); Bayesian Networks; TD-Gammon
- Big data (2001-)
 - World Wide Web: large datasets (billions-trillions of samples); ImageNet (challenge), IBM's Watson
- Deep learning (2011-)
 - Hardware improvements (GPU: $10^{14} 10^{17}$ vs CPU: $10^9 10^{10}$ Flops); (Deep CNNs in AlexNet); AlphaGo

Recent Achievements in Artificial Intelligence

https://media.freemalaysiatoday.com/wp-content/uploads/ 2022/05/lifestyle-garry-emel-pic-110522.jpg

Cats versus dogs

https://media.freemalaysiatoday.com/wp-content/uploads/2016/03/AlphaGo.jpg

 $https://commons.wikimedia.org/wiki/File: C12 or f29_Alpha Fold.png$

Artificial Intelligence in Science

Check www.aitracker.org for other trends

Leon Herrmann & Stefan Kollmannsberger || Deep Learning in Computational Mechanics || Bauhaus-Universität Weimar

Challenges

- "Generate an image of Isaac Newton in front of a blackboard on which his three laws are written in mathematical notation and chalk."
- Follow-up: "The laws on the blackboard are incorrect. Please add the correct formulations. If you are unable to do so, simply focus on the second law, which is F=m*a."

Generated with DALL-E-3

Challenges

Bauhaus-Universität Weimar

Limitations in deep learning in general "panda"

- Neural networks break in unpredictable ways → can be consistently fooled
- Deep learning is not robust due to sensitivity to hyperparameters → requires extensive tuning
- Neural networks are uninterpretable, i.e., limited explainability → limits reliability

See chapter 11 for details

Problems in deep learning in computational mechanics

- Reproducibility crisis (bias towards positive results, sensitivity, transparency)
- Fair evaluation metrics are disregarded (breakeven threshold, meaningful metrics, statistical assessments)
- State-of-the-art is not considered

$$\tau = \frac{T_{\rm data} + T_{\rm train}}{T_{\rm simulation} - T_{\rm surrogate}}$$

Good scientific practice for deep learning in computational mechanics

- Honest assessments & explanations (consider the state-of-the-art & proper metrics)
- Proposed methods should be robust towards hyperparameters (no extensive tuning for a novel problem)
- Careful & narrower selection of problem types (not general-purpose solution)
 - → domain-specific improvements

Towards a meaningful integration of neural networks in computational solid mechanics, Herrmann 2025

Example from topology optimization

The mean squared error

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (x_{\text{left}_i} - x_{\text{right}_i})^2$$

between the two structures is very small $(2.5 \cdot 10^{-3})$, due to one pixel difference.

Structural compliance (inverse of stiffness)

$$c = \mathbf{F}^T \mathbf{u}$$

Is different by one order of magnitude

For more details, see Chapter 9

Computational Mechanics Meets Artificial Intelligence

Computational Mechanics

Abstraction of physical systems (reality) through simplified mathematical models (often differential equations), which are discretized and solved numerically for insight into real-world behavior

Exemplary tasks

- Efficient solutions techniques for forward problems, e.g., finite element, difference, and volume
- Identification tasks (inverse problems), e.g., inferring material distribution/properties from measurements
- Optimization, e.g., finding the optimal material distribution that maximizes stiffness

Machine Learning

Machine Learning, Mitchell 1997

"a computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks T, as measured by P, improves with experience E"

Where can machine learning be applied in computational mechanics?

- Identification of mathematical models from data (instead of relying on hand-crafted models)
- Acceleration of forward solvers and optimizers
- Streamlining of pipelines to avoid human experts within the processes

Computational Mechanics Meets Artificial Intelligence

Deep learning in computational mechanics: a review, Herrmann et al. 2024

- Simulation substitution
 - Data-driven modelling
 - Physics-informed learning
- Simulation enhancement

- Discretizations as neural networks
- Generative approaches

• Deep reinforcement learning

- Simulation with graph neural networks; DMD; Transfer learning
- Hamiltonian/Lagrangian neural networks; SINDy; (PINNs)
- Input-convex neural networks for material modeling; EUCLID; Neural networks as ansatz function of inverse quantities; Super resolution; Differentiable physics
- Hardware acceleration with GPUs; (HiDeNN)
- Generative design; Realistic data generation; Anomaly detection; Transformers for natural language processing
- Control engineering tasks: autonomous flight; robots; Alternative gradient-free optimizer

2 Fundamental Concepts of Machine Learning

Leon Herrmann

Stefan Kollmannsberger

Chair of Data Engineering in Construction

Bauhaus-Universität Weimar

Paris, February 2025

Deep Learning in Computational Mechanics – an introductory course,

Herrmann et al. 2025

Contents

- 1 Computational Mechanics Meets Artificial Intelligence (& Introduction to PyTorch)
- 2.1 Definition
- 2.2 Data Structure
- 2.3 Types of Learning
- 2.4 Machine Learning Tasks
- 2.5 Linear Regression
- 2.8.1 Gradient Descent
- 3 Neural Networks

2.1 Definition

"a computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks T, as measured by P, improves with experience E"

Machine Learning, Mitchell 1997

Most machine learning algorithms are composed of

- Dataset
- Parametrized model
- Cost function
- Optimization procedure

2.2 Data Structure

Specific dataset (sometimes called design matrix)

Examples

- Can be different images, where its features are its pixel values, n = channels \times pixels
- Can be different houses, where its features are ist properties such as area, number of rooms, age Notation

Design matrix X

• Design vector of a single example i (1 sample/example) $x_i = [x_{i1}, x_{i2}, ..., x_{in}]^T$

2.3 Types of Learning

$$X =$$

example 1 example 2 : example
$$m$$

Supervised learning

- Algorithm learns from a labeled dataset. Each sample X_i has an accompanying target y_i
- Example: A model learns to distinguish between dogs and cats via annotated images

Unsupervised learning

- Algorithm finds a structure or pattern in the data. This is typically in the form of a probability distribution
- Example: Anomaly detection, i.e., the identification of irregularities in otherwise regular patterns. For example in the detection of tumors in medical imaging

Semi-supervised learning

- Combination of supervised and unsupervised learning, i.e., the data is partly labeled to improve the unsupervised learning.
- Example: The learning of the tumor identification is improved by using some labeled data.

Reinforcement learning

- Interaction between an algorithm and an environment, improving the algorithm to maximize an expected average reward. Common in game-like environments
- Example: The stock market, where more actions with higher rewards are learned

2.4 Machine Learning Tasks

Regression

- Prediction of a numerical value via a (<u>real-valued</u>) mapping between input and output
- Example: Prediction of house prices from criteria like area, number of rooms, age

Classification

- Prediction of a discrete category via a mapping between input and a (discrete) category
- Example: Classification of images in cats and dogs

Regression

Classification can be regarded as discrete regression.

2.4 Machine Learning Tasks

Clustering

- Discovers similarities between data and creates discrete clusters (unsupervised)
- Example: Identification of similar customer groups

Generative modeling

- Generate new data points that resemble a given dataset (without simply reproducing given data points)
- Example: Generate new rim designs given a set of rims

Clustering

Machine Learning Algorithms

Machine Learning in Additive Manufacturing: State-of-the-Art and Perspectives, Wang et al. 2020

Classifications	Algorithms		Tasks
Supervised	Decision trees		Classification
	Random forest		Classficiation, regression
covered in Chapter 7	Support vector machines		Classification, regression
	K-nearest neighbours		Classification
	Bayesian network		Classification
	Gaussian process		Regression
	Multi-gene genetic programming	g	Regression
	Hidden semi-Markov model		Classification
	Multi-layer perceptron		Classification, regression
covered in Chapter 3	Convolutional neural network		Classification
	Recurrent neural network		Time series prediction (regression)
	Adaptive network-based fuzzy ir	ference system	Regression
covered in Chapter 8	Transformers		Regression, classification, generative modeling
Unsupervised	Self-organizing map		Clustering
	Deep belief network		Classification
covered in Chapter 7	K-means clustering		Clustering
	Reduced order modeling (POD)		Dimensionality reduction
	Autoencoder		Generative modeling, dimensionality reduction
covered in Chapter 8	Generative adversarial networks		Generative modeling, (classification)
	Diffusion model		Generative modeling
Semi-supervised	Gaussian mixture model		Clustering

2.5 Linear Regression – Prediction

$$\hat{y} = \mathbf{w} \cdot \mathbf{x} + b = \sum_{j=1}^{n} w_j x_j + b$$

- Target: \hat{y}
- Ground truth: \tilde{y} (associated with \tilde{x})
- Example vector: *x*
- Weight vector: w
- Bias: *b*

parametrization

 w_{21}

 \overline{w}_{22}

2.5 Linear Regression – Performance Measurement

Prediction in *n*d for sample *i*:

$$\hat{\mathbf{y}}_i = \mathbf{w} \cdot \mathbf{x}_i + b = \sum_{j=1}^n w_j x_{ij} + b$$

i is an example/sample and j is a feature

each feature has an associated weight, which is shared across all samples

Remember the design matrix

$$X = \begin{cases} \text{example 1} & \text{feature 2} & \cdots & \text{feature } n \\ \text{example 1} & x_{11} & x_{12} & \cdots & x_{1n} \\ \text{example 2} & x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \text{example } m & x_{m1} & x_{m2} & \cdots & x_{mn} \end{cases}$$

Where each example vector is defined as $x_i = (x_{i1}, x_{i2}, ..., x_{in})^T$

2.5 Linear Regression – Performance Measurement

Prediction in semi-vector notation for sample *i*

$$\hat{y}_i = \boldsymbol{w} \cdot \widetilde{\boldsymbol{x}}_i + b$$

Squared error for a single sample i (with **ground truth** \tilde{y}_i)

$$(\tilde{y}_i - \hat{y}_i)^2$$

Mean squared error (MSE) for a dataset X with m samples (including the design vectors x_i of each sample i)

$$\mathcal{L} = \frac{1}{m} \sum_{i=1}^{m} (\tilde{y}_i - \hat{y}_i)^2 = \frac{1}{m} \sum_{i=1}^{m} (\tilde{y}_i - \boldsymbol{w} \cdot \tilde{\boldsymbol{x}}_i + b)^2$$

Cost function

$$C(\mathbf{w}, b) = \mathcal{L} + \cdots$$

Optimization problem

$$\min_{\boldsymbol{w},b} \mathcal{C}(\boldsymbol{w},b) = \min_{\boldsymbol{w},b} \frac{1}{m} \sum_{i=1}^{m} \left(\widetilde{y}_i - (\boldsymbol{w} \cdot \widetilde{\boldsymbol{x}}_i + b) \right)^2$$
In machine learning optimization is referred to as **learning**

In machine learning optimization is referred to as **learning** when the model is applied to previously unseen problems (i.e., datapoints). This stands in contrast to structural optimization in which one specific design is obtained through optimization.

2.5 Linear Regression – Data Split

Data is split into

- Training set ($\sim 80\%$)
 - to train the model (i.e., find the correct weights and bias)
- Validation set (~10%)
 - to validate the training (i.e., evaluate if training is successful, e.g., to detect/avoid overfitting)
 - to find the correct (machine learning algorithm) hyperparameters
- Testing set ($\sim 10\%$)
 - to test/assess the validity of the final model (i.e., weights, bias, and hyperparameters)
 - At this point nothing is allowed to be changed (otherwise testing set becomes validation set)
 - In AI double-blinded challenges are common (test set is released only after handing model to jury)

2.5 Linear Regression – Data Split

Example

• Fitting of datapoints with a polynomial where the hyperparameter is the polynomial degree p

- The validation set shows that p = 8 leads to the lowest validation error for the trained model
- The test set shows that some overfitting happened during hyperparameter tuning (this information is not available during/for model development)
- The best model would rely on p = 3

2.5 Linear Regression – Optimization

$$\min_{\mathbf{w},b} C(\mathbf{w},b) = \min_{\mathbf{w},b} \frac{1}{m} \sum_{i=1}^{m} (\tilde{y}_i - (\mathbf{w} \cdot \tilde{\mathbf{x}}_i + b))^2$$

Note that X requires a column of ones for the bias b

For a more concise notation let us denote all learnable parameters in a vector $\mathbf{\Theta} = (\mathbf{w}, b)^T$

All predictions \hat{y}_i are collected in

This allows to write the model function $\hat{y}_i = \mathbf{w}^T \tilde{\mathbf{x}}_i + b$ as $\hat{\mathbf{y}} = \mathbf{X}\mathbf{\Theta}$ yielding the minimization the vector $\hat{\mathbf{y}}$.

$$\min_{\mathbf{\Theta}} C(\mathbf{\Theta}) = \min_{\mathbf{\Theta}} (\widetilde{\mathbf{y}} - \mathbf{X}\mathbf{\Theta}) (\widetilde{\mathbf{y}} - \mathbf{X}\mathbf{\Theta}) = \min_{\mathbf{\Theta}} (\widetilde{\mathbf{y}}^T \widetilde{\mathbf{y}} - 2\widetilde{\mathbf{y}}^T \mathbf{X}\mathbf{\Theta} + (\mathbf{X}\mathbf{\Theta})^T \mathbf{X}\mathbf{\Theta})$$

The minimization is solved by setting the first derivative of C with respect to Θ to zero (using $r = \widetilde{y} - X\Theta$)

$$\frac{1}{2} \frac{\partial \mathbf{r}(\mathbf{\Theta})^2}{\partial \mathbf{\Theta}} = \frac{1}{2} (-2\mathbf{X}^T \widetilde{\mathbf{y}} + 2\mathbf{X}^T \mathbf{X} \mathbf{\Theta}) = -\mathbf{X}^T \widetilde{\mathbf{y}} + \mathbf{X}^T \mathbf{X} \mathbf{\Theta} = 0$$

$$\mathbf{X}^T \mathbf{X} \mathbf{\Theta} = \mathbf{X}^T \widetilde{\mathbf{y}}$$

$$\mathbf{\Theta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \widetilde{\mathbf{y}}$$

Such a closed form solution is only possible if \hat{y} (or rather $\partial C/\partial \Theta$) is **linear** with respect to Θ

2.8.1 Gradient Descent

Improve prediction $\hat{y}_i = w \cdot x_i + b$ via (iterative) cost function minimization

$$\min_{\mathbf{w},b} C(\mathbf{w},b) = \min_{\mathbf{w},b} \frac{1}{m} \sum_{i=1}^{m} (\widetilde{\mathbf{y}}_i - (\mathbf{w} \cdot \mathbf{x}_i + b))^2$$

Partial derivatives of cost function with respect to each parameter

$$\frac{\partial C}{\partial \mathbf{w}} = \frac{1}{m} \sum_{i=1}^{m} -2x_i (\widetilde{\mathbf{y}}_i - (\mathbf{w} \cdot \mathbf{x}_i + b))$$

$$\frac{\partial C}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} -2(\widetilde{y}_i - (\mathbf{w} \cdot \mathbf{x}_i + b))$$

Each gradient descent iteration updates the parameters, such that the cost function decreases

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \frac{\partial C}{\partial \mathbf{w}}$$

$$\partial C$$

 α (the **learning rate**) controls the step size

2.8.1 Gradient Descent

- Generalized gradient descent algorithm
- In machine learning:
 - Number of iterations is called number of epochs
 - Step size is called **learning rate**

Algorithm 1 Gradient descent

Require: dataset \tilde{x}, \tilde{y} , number of epochs n, step size α , model f initialize the model $f(x; \Theta)$

for all n do

Compute the cost function $C(f(\tilde{x}; \Theta), \tilde{y})$

Compute the gradient $\nabla_{\Theta}C$

Update the model parameters $\Theta \leftarrow \Theta - \alpha \nabla_{\Theta} C$

end for

Exercises

- E.4 Linear Regression (P & C)
 - Perform a linear regression once by computing the weights directly and once using gradient descent. Do this by hand calculation and with a Python implementation.

Contents

- 1 Computational Mechanics Meets Artificial Intelligence (& Introduction to PyTorch):
 - What is Artificial Intelligence?
 - History of Artificial Intelligence
 - Recent Achievements of Artificial Intelligence
 - Artificial Intelligence in Science
 - Challenges
 - Computational Mechanics Meets Artificial Intelligence
- 2 Fundamental Concepts of Machine Learning
 - 2.1 Definition
 - 2.2 Data Structure
 - 2.3 Types of Learning
 - 2.4 Machine Learning Tasks
 - 2.5 Linear Regression
 - 2.8.1 Gradient Descent
- 3 Neural Networks

1 Computational Mechanics Meets Artificial Intelligence &2 Fundamental Concepts of Machine Learning

Leon Herrmann

Stefan Kollmannsberger

Chair of Data Engineering in Construction

Bauhaus-Universität Weimar

Paris, February 2025

Deep Learning in Computational Mechanics – an introductory course,

Herrmann et al. 2025

