

λ-Calculus-Boolean

Professor: Suman Saha

Bound vs. Free Variables

In $(\lambda x. t)$, the variable x in t is **bound** to λx

A variable is *free* if it is not bound to any λ

A variable is bound to the closest λ

Examples

 $(\lambda x. x)$ x applies the identity function to x (i.e., the x after dot is bound to λ)

 $\lambda x. \lambda x. x$ is a function that takes a parameter, and returns the identity function (i.e., the inner-most x is bound to the second λ)

Free Variables (Examples)

 $\bullet ((\lambda (x) x) y)$

 $\bullet ((\lambda (x) (x x)) (\lambda (x) (x x)))$

 $\bullet ((\lambda (x) (z y)) x)$

Useful Rule

We say a term *t* is *closed* if it contains no free variable

Examples: $(\lambda x. x)$ $(\lambda x. \lambda y. x y)$

Rule: for a capture avoiding substitution $t_1\{t_2/x\}$

the subtle captured-variable check is vacuously true when t_2 is closed

Another Useful Rule

 $(\lambda x_1 \ x_2 \ ... x_n.t) \ t_1 \ t_2 \ ... \ t_n = \ t\{t_1/x_1\} \ ... \{t_n/x_n\}$ when $t_1 \ t_2 \ ... \ t_n$ are all closed terms

Evaluation

An *evaluation* of a λ term is a sequence

$$t_1 = t_2 = t_3 = \dots$$

where each step is either an α -reduction or a β -reduction

Evaluation Order

No reduction order is specified in classical λ -Calculus

If evaluation terminates, any order gives same result

$$(\lambda x. (\lambda y. x) z) u \qquad (\lambda x. (\lambda y. x) z) u$$

$$= (\lambda y. u) z \qquad = (\lambda x. x) u$$

$$= u \qquad = u$$

β -Reduction Example


```
• ((λ (y)

((λ (z) (λ (y) (z y))

)y))

(λ (x) x))
```

β -Reduction Example

• $(\lambda (y) ((\lambda (z)(\lambda (y) z)) (\lambda (x) y)))$

Encoding: Boolean

Booleans $TRUE \triangleq \lambda x \ y. \ x$ $Shorthand for \\ \lambda x. (\lambda y. x)$ $FALSE \triangleq \lambda x \ y. y$

Encoding of "if"?

Goal: IF b t $f = \begin{cases} t$ when b is TRUE f when b is FALSE

Definition IF $\triangleq \lambda b t f$. (b t f)

Encoding: Boolean

Booleans

TRUE
$$\triangleq \lambda x \ y. x$$
 FALSE $\triangleq \lambda x \ y. y$

Encoding of "and"?

Goal: AND
$$b_1$$
 $b_2 = \begin{cases} \text{TRUE when } b_1, b_2 \text{ are both TRUE} \\ \text{FALSE otherwise} \end{cases}$

Definition AND $\triangleq \lambda b_1 b_2$. (b_1 (b_2 TRUE FALSE) FALSE)

Check that AND TRUE FALSE = FALSE (Note 2)

Encoding: Boolean

Definition

AND $\triangleq \lambda b_1 b_2$. $(b_1 (b_2 \text{ TRUE FALSE}) \text{ FALSE})$

Check:

AND TRUE FALSE = FALSE