

ESCUELA COLOMBIANA DE INGENIERÍA JULIO **GARAVITO**

ANTEPROYECTO DE GRADO

Blockchain aplicado a procesos notariales

Autor: Ing. Fabio Enrique QUINTERO Ing. Luis Daniel BENAVIDES DiazGranados

Supervisor: Navarro

Trabajo de grado para optar por el título de Master en Gestión de Información

en

CTG-informática Maestría en Gestión de Información

DeclaraciÃșn de AutorÃ∎a

Yo, Ing. Fabio Enrique QUINTERO DiazGranados, declaro que este trabajo de grado titulado como, «Blockchain aplicado a procesos notariales» y el trabajo por completo presentado es de mi autoria. Yo confirmo que:

- Declaro ser consciente que cualquier tipo de fraude en este Trabajo de Investigación es considerado como una falta al reglamento de la Escuela Colombiana de Ingeniería Julio Garavito.
- Firmar, entregar y presentar esta propuesta de Trabajo de Investigación implica expreso testimonio de que esta propuesta fue desarrollada de acuerdo con las normas establecidas por la Escuela Colombiana de Ingeniería Julio Garavito
- Me comprometo a seguir estrictamente las normas de derechos de autor.
- No haré publicaciones, informes, artículos o presentaciones en congresos, seminarios o conferencias sin la revisión o autorización expresa del Director, quien representará en este caso a la Escuela Colombiana de Ingeniería Julio Garavito.

Estudiante:		
Fecha:		
Director:		
Fecha:		

«Thanks to my solid academic training, today I can write hundreds of words on virtually any topic without possessing a shred of information, which is how I got a good job in journalism.»

Dave Barry

ESCUELA COLOMBIANA DE INGENIERÍA JULIO GARAVITO

Resumen

Ingeniería de Sistemas Maestría en Gestión de Información

Master en Gestión de Información

Blockchain aplicado a procesos notariales

por Ing. Fabio Enrique QUINTERO DiazGranados

This work is deep research about how Blockchain should help and improve a daily process, those process related to transactions would be taken with enhanced security, anonymity and decentralized; particulary tradition and freedom process in which all the movements of an immovable property are written down. The project goes through the state of blockchain art, the business architecture necessary for its implementation, the approach of a model that satisfies the needs of the process and a validation of it that determines if blockchain is a viable technology to be used in the process by that offers the guarantees and covers the problems and needs raised

Agradecimientos

Agradezco profundamente a mi esposa y mi hijo por ser diariamente mi fuerza y mi motivación para ser cada día mejor, también por permitirme tomar de nuestro tiempo familiar para poder lograr este documento.

A mis padres que me forjaron a ser quien soy, mi mamá en especial por su apoyo constante en cada locura que se me ocurre.

Al Ing. Luis Daniel BENAVIDES Navarro por la dedicación, paciencia y esfuerzo durante la consecución de este documento.

Índice general

	eciara			III
				/ 11
Αę	grade	cimien	tos	IX
1.	Des	cripció	n del proyecto	1
	1.1.	Resun	nen del proyecto	1
	1.2.	Plante	amiento del problema	1
		1.2.1.	Planteamiento	1
		1.2.2.	Formulación	2
	1.3.	Estado	del arte	2
		1.3.1.	Contratos inteligentes	3
		1.3.2.	Propiedades Inteligentes	3
		1.3.3.	Monedas colereadas	3
		1.3.4.	Aplicaciones	3
			Valores privados	3
			Notariado público	3
			Propiedad intelectual	4
			Intenet de las cosas	4
			Cuidado de la salud	4
		1.3.5.	Retos de blockchain	5
			Regulación	5
			Escalabilidad	5
			Resistencia al cambio	5
			Integración con el pasado	6
			Fraude	6
			Súper computadoras	6
	1.4.	Objeti	vos del proyecto	7
		1.4.1.	Objetivo general	7
		1.4.2.	Objetivos específicos	7
	1.5.	Justific	c <mark>ación</mark>	7
	1.6.	Alcand	ces y limitaciones	7
		1.6.1.		7
		1.6.2.	Limitaciones	8
Bi	bliog	rafía		9

Dedicado a mi hijo Fabio Andrés

Capítulo 1

Descripción del proyecto

1.1. Resumen del proyecto

Este proyecto consiste en una investigación de la tecnología blockchain y su viabilidad para ser aplicado en los procesos de notariado público, específicamente en el proceso de tradición y libertad, debido sus latencias durante el proceso de validación y además posibles fallos en la revisión de las anotaciones donde para bien o para mal los interesados en un bien pueden ser afectados, esto se puede traducir esto en fallos de seguridad e integridad en el proceso.

El método para determinar esta viabilidad es planteando:

- 1. Una arquitectura empresarial que nos permita determinar el estado actual del proceso y que se debe implementar tecnológicamente (subprocesos, proyectos, software, hardware) basados en blockchain como la posible solución al problema.
- 2. Plantear un modelo de blockchain el cual cubras las necesidades del proceso y que también el proceso haga uso en extensión de la tecnología y no sea subutilizada.
- 3. Evaluar el modelo planteado para determinar que el proceso en mención sea más eficiente y reduzca los tiempos sin que se vea afectada la calidad del resultado, es decir que todas las anotaciones de un bien inmueble sean validadas certeramente y fiablemente.

1.2. Planteamiento del problema

1.2.1. Planteamiento

El proceso de compra de un bien inmueble se inicia con un contrato de compraventa presentado ante una notaría pero que a su vez debe ser presentado ante la oficina de instrumentos públicos y solo será válido una vez que un conjunto de abogados valide que la operación se puede efectuar revisando las anotaciones existentes sobre el bien en cuestión, este periodo puede ser de hasta 7 días, esto sin contar el tiempo que costaría generar la escritura pública del bien, pero centremonos solo en el proceso de tradición y libertad. Este tiempo además de ser extremadamente alto, no garantiza que por alguna omisión voluntaria o involuntaria se omita alguna anotación que este en contra de la anotación entrante, entonces se infiere que el proceso carece de seguridad y esta solo depende del grupo de revisores, que a estas alturas en un país donde los índices de corrupción son tan elevados no es garantía de nada.

La superintendencia de notariado y registro desde el 2016 ¹ ha reforzado su seguridad implementando sistema biométrico en sus operaciones. Para el 2015 más de 3000² personas presentaron denuncias por estafas en compra y venta de inmuebles, pero implementar los servicios biométricos no ha evitado que se sigan presentado los fraudes durante los procesos de compra - venta de inmuebles todo porque durante este proceso no se puede garantizar que el vendedor sea en efecto el que aparece registrado como tal.

Basado en la ley antitrámites del 2012 es un compendio de buenas prácticas entre entes gubernamentales, es de destacar el artículo 15 de esta ley donde se establece que las entidades públicas o privados que ejerzan funciones pueden tener acceso a los registros públicos esto con el fin de obviar estos certificados.

1.2.2. Formulación

La arquitectura empresarial planteada muestra que es posible mejorar los tiempos de operación en el proceso de tradición y libertad garantizando la seguridad e integridad del mismo?

1.3. Estado del arte

A continuación se describe como Blockchain ha incursionado en el mundo y dejó de ser una tecnología de papel, para darse paso como una tecnología de punta y protagonista de los próximos años, a través de la búsqueda de varios documentos como: artículos, libros y trabajos de grado; se rescata la importancia de esta tecnología y como apoya otras tecnologías que antes de blockchain no parecian tener algun rumbo implementable y además cómo diferentes sectores industriales y/o comerciales han obtenido grandes beneficios de su implementación en sus procesos para obtener beneficios.

Blockchain es una tecnología reciente y revolucionaria donde se establece una nueva arquitectura(Iansiti y Lakhani, 2017), esto es que, se basa en la confianza de los nodos de la red, plantea eliminar a los terceros o intermediarios que hacen las validaciones y generan la confianza necesaria entre los dos participantes de la transacción, por lo tanto existe una aprobación general en la red frente a una transacción que puede ser verificada en cualquier momento en el pasado o el presente (Crosby y col., 2016)

Blockchain se comporta como un libro de transacciones, basado en cifrado lo cual garantiza la transparencia y seguridad en cada transacción, sin ahondar técnicamente en su funcionamiento podemos indicar que cada transaccion es inalterable, aunque de fondo lo es, podría ser dectectado el fraude con facilidad y descartando la cadena en cuestión, por lo tanto en un símil un bloque, con un conjunto de transacciones, puede ser alterado pero del mismo modo podrá ser dectectado y descartado por los nodos honestos de la red (Nakamoto, 2009)

Y si bien durante este proceso hemos mencionado que es una conjunto de registros distribuido y que gracias al cifrado podemos garantizar la transparencia en las transacciones, también, se pueden anonimizar las transacciones ya que no es necesario saber quien la realiza sino solo su identificador público (clave pública) (Crosby y col., 2016),

¹https://colombiadigital.net/opinion/columnistas/certicamara/item/9423-compra-de-inmuebles-biometria-para-no-convertirse-en-victima-de-fraude.html

²https://www.las2orillas.co/el-cartel-de-escrituradores-las-estafas-de-compra-venta-de-predios

1.3. Estado del arte 3

basado en la tecnologia de cifrado publico/privado garantizamos que los registros son irrefutables (Banafa, 2018) y que de por si garantiza la comunicación entre las partes (Iansiti y Lakhani, 2017)

1.3.1. Contratos inteligentes

Son basicamente un conjunto de reglas programadas que ejecutan los terminos de un contrato de forma automatica al cumplirse o no estas condiciones (Crosby y col., 2016) Basados en que Blockchain tiene control de algunas variables como tiempo (Kosba y col., 2016) y los participantes de una transacción es practicamente un trabajo adicional que se apalanquen los contratos a una tecnología implementada con Blockchain que permitirá verificar controlar y ejecutar con mayor facilidad.

1.3.2. Propiedades Inteligentes

"Es otro concepto relacionado al control de un activo/bien/propiedad mediante los contratos inteligentes "(Crosby y col., 2016)

1.3.3. Monedas colereadas

Si respresentamos los objetos existentes en una transacción con una etiqueta (colorear el objeto) para marcar a ese objeto como si fuera en realidad un representación del mundo real (activo/bien/propiedad), eje. unas acciones. De esta forma se puede almacenar los movimientos de estos en las transacciones pero idetificando claramente a cada una de estas etiquetas.

Se podría poner la propiedad de un auto o una casa en una transacción y moverla de un propietario a otro. (Crosby y col., 2016)

1.3.4. Aplicaciones

Valores privados

Las bolsas de valores listan acciones de la compañía en un mercado secundario para funcionar de forma segura con operaciones de liquidación y compensación de manera oportuna, ahora es posible para las empresas que emitan directamente las acciones a través de Blockchain. Estas acciones puede ser compradas y vendidas en un mercado que se encuentra en la cadena de bloques. (Crosby y col., 2016)

Notariado público

Gracias a las características de Blockchain las cuales garantizan que las transacciones son firmadas por el creador y receptor, que cada transaccción se registre con una marca de tiempo y se mantenga la transparencia e integridad son garantias que un documento tendrá un creador y que este documento fue creado en un momento de tiempo y que el registro de ese documento se mantendrá en el tiempo inmutable. (Zheng y col., 2016) Podemos adicionar que esto elimina la necesidad de que un tercero valide alguna de las caracterisitcas previas sino que de la misma forma este documento estará distribuido a lo largo de la red lo cual generará que los costos del proceso disminuyan (Crosby y col.,

2016)

Para el 2018 en Colombia el gobierno está apalancando en esta tecnología para su proyecto de restitución de tierras ³ a personas victimas del conflicto armado.

Propiedad intelectual

Si bien cualquier recurso digital se le puede aplicar el modelo de blockchain, a medio electronicos como películas, canciones y demás que involucren propiedad intelectual les impacta de buena forma está tecnología ya que con esta tecnología será garante de que no se puedan generar duplicaciones no autorizadas. (Huckle y col., 2016)

"Aquí es donde el blockchain puede jugar un papel. La tecnología puede ayudar a mantener una gran base de datos distribuida precisa de la propiedad de los derechos musicales información en un libro público. Adicionalmente a la información de propiedad de derechos, la división de regalías para cada trabajo, según lo determinado por Smart Contracts, podría ser agregado a la base de datos. Esta Los contratos inteligentes a su vez definirían las relaciones de relación entre diferentes partes interesadas y automatizar sus interacciones" (Crosby y col., 2016)

Intenet de las cosas

Internet de las cosas (IoT por sus siglas en ingles) es una tencnología emergente y que con seguridad no ha logrado su máximo de madurez, al igual que Blockchain, IoT tiene como finalidad integrar los elemento de nuestro diario vivir con nosotros de formas autonomas y transparentes.

En el comercio electrónico se esta proponiendo un nuevo modelo basado en Blockchain y contratos inteligentes de propiedades inteligentes, la idea es que las personas reciban transacciones al cumplirse una condición a partir de señales de sensores emitidas por los objetos inteligentes. (Zheng y col., 2016)

Para añadir otro elemento Blockchain puede proveer una descentralizada red que habilita a los objetos inteligentes a interactuar con criptomonedas y garantizar que todas sus interacciones estan completamente validadas por la red(Crosby y col., 2016), de esta forma los usuarios podrán tener tranquilidad que ningun dispositivo podrá ser vulnerado o manipulado en beneficio o en contra de un usuario.

Un ejemplo con una tecnología emergente hace un par de años y que ahora parece consolidarse un poco es Uber, está podría implementar un modelo de IoT y Blockchain; para cuando un pasajero llega a su destino el cobro se implemente de inmediato mediante contratos inteligentes, pero de la misma forma cuando el conductor de Uber no garantiza el servicio el pasajero se puede ver beneficiado cobrando una multa por un mal servicio o daño en la reputación por alguna circustancia.(Huckle y col., 2016)

Cuidado de la salud

Uno de los campos de acción de Blockchain es permitir garantizar la identidad de los pacientes, un paciente debidamente carnetizado y enrolado permite que toda su información sea el unico que puede acceder a ella y permitir a quienes les da acceso para

³https://www.elespectador.com/economia/asi-se-utiliza-blockchain-para-garantizar-la-restitucion-de-tierras-articulo-809025

1.3. Estado del arte 5

que sea consultada. (Angraal, Krumholz y Schulz, 2017) Pero sin lugar a dudas lo más beneficioso para un paciente es que puede aprovechar la ventaja de que su historia está distribuida y como se beneficia de esto, supongamos un paciente crónico alérgico a una gran cantidad de medicamentos y/o compuestos químicos tantos como para no poder mencionarlos todos o un paciente con una gran cantidad de cirugias a lo largo de su vida, como hacen ahora para poder cambiar de ubicación? pues deben llevar su historia médica en papeles, Blockchain llega al rescate todo estará disponible para ser consultado cualquier médico autorizado podrá revisarlo con los conceptos de sus colegas no solo lo que recuerda el paciente.

Esto nos lleva a otro uso y es que entre aplicaciones que usan la tecnología se podría compartir información de un paciente, podrían compartir autorizaciones, permisos y acuerdos firmados, esto sería de gran ayuda para reducir los tiempos de procesos entre organizaciones que prestan servicios de salud. (Angraal, Krumholz y Schulz, 2017)

1.3.5. Retos de blockchain

Regulación

El tema regulatorio es bastante discutible, la tecnología siempre avanza mucho mas rápido que los gobiernos, en especial latino americano, como es de esperarse Blockchain se está asentando y el gobierno aun no ve la necesidad de hacerlo, lo difícil de esta postura es que cuando se vea en la necesidad puede que sea muy restrictivo impactando de forma negativa e impidiendo todo su potencial(Banafa, 2018), permitiendo que solo algunos se benficien de este mismo como menciona (Arias, 2018) deberá ser equilibrado y regular lo suficiente para impedir que se use de forma fraudulenta y también proteger al más debil.

Escalabilidad

El constante crecimiento de la base de datos, con un tamaño 100,18 GB ⁴, todas las transacciones deben ser almacenadas para poder validar cada transacción, además que por definición el tiempo entre bloques de transacciones tiene un retraso de tiempo lo que lleva a que se procesen solo 7 transacciones por segundo lo que lleva a que en un mundo donde se implemente esta tencnología impediría que se use en tiempo real (Zheng y col., 2016)

Además si un usuario es nuevo en el ecosistema y pretende hacer una transacción debera primero sincornizar su base de datos descargando toda la cadena de bloques y validar las transacciones antes de poder realizar su transacción lo cual le tomará un tiempo en ejecutar (Crosby y col., 2016)

Resistencia al cambio

Como en todo proyecto de tecnología, por lo general innovadores, se debe hacer la gestión del cambio para no impedir que los actores generen resitencia y el proyecto fracase en una organización, en este caso puede que no sea una organización pero si el público en general puede ser renuente al uso, debido a que se pueden generar mitos sobre el uso de la tecnología como problemas de seguridad, ineficiencia, lentidtud, etc. En

⁴cifras 2016

la actualidad los intermediarios (eje. Visa, masteercard, Uber)(Crosby y col., 2016) brindan la seguridad que ningun problema se pueda presentar (aun cuando se presentan) y son garantes de que las transacciones se cumplan con satisfacción de las partes.

Integración con el pasado

Uno de los grandes problemas que se pueden presentar en la aplicación de la tenoclogía es la historia existente, primero el problema que conlleva la migración de esta historia implicaría tiempo y costos altos(Crosby y col., 2016) y ademas ya que de alguna forma se debe integrar pero toda esta historia se registrarían como nuevas transacciones en la cadena y se generaría confusiones y si no se tiene cuidado el orden de documentos, por ejemplo podría alterarse cronologicamente si no se hace un uso adecuado, aunque este reto propiamente afecta a la organización que quiera aplicar está tecnología deberá tener en cuenta un proyecto alterno de gestión del conocimiento por ejemplo, para mitigar este riesgo.

Fraude

Debido a la naturaleza de Blockchain se pueden presentar intentos de fraude, pero como se indica en el artículo originar de Blockchain se espera que el esfuerzo tan alto de hacer fraude se vea mejor recompensado por el hecho de hacer el esfuerzo por mantener un cadena de bloques honesta(Nakamoto, 2009), pero en algún punto el camino tenderá a torcerse y deberá mantenerse controles y regulaciones para controlar estos intentos de una forma certera, encaminados con regulaciones de ley para que la comunidad se sienta protegida

Súper computadoras

La capacidad de computo es una de las piedras angulares de Blockchain y la prueba de trabajo es un control de varios elementos del protocolo Blockchain, por lo tanto si llegará a existir alguna super computadora que siempre estuviera en la capacidad de generar primero la prueba de esfuerzo implicaría que la dificultad (Nakamoto, 2009) deberá aunmentar hasta que los mineros puedan generarlo aleatoriamente, pero por obvias razones los demas mineros continuaran en desventaja ya que su capacidad de computo es menor.

Pero ahora si, como es de esperarse, la capacidad de computo de la comunidad minera comienza a mejorar la difcultad, como se mencionó antes, debe aumentar pero existe una limitante en esa dificultad y es que la cantidad de ceros no puede crecer infinitamente por que si no no quedará espacio para la información lo que obligaría al protocolo a migrar de algoritmo de seguridad con implicaciones e impactos para la red elevados(Crosby y col., 2016)

1.4. Objetivos del proyecto

1.4.1. Objetivo general

Proponer una arquitectura empresarial para el proceso de tradición y libertad con el fin de mejorar la comunicación en procesos notariales mediante la implementación de la tecnología de Blockchain.

1.4.2. Objetivos específicos

- Definir un modelo de Arquitectura empresarial para el proceso de tradición y libertad de notariado público detectando las necesidades para la adopción de blockchain
- Elaborar un prototipo basado en la tecnología Blockchain donde se represente el proceso y se demuestre que se puede controlar la distribución de documentos y sus validaciones
- Evaluar la viabilidad de la arquitectura propuesta para el proceso de tradición y libertad de notariado público

1.5. Justificación

La tecnología de Blockchain permite garantizar que cada anotación o movimiento que se registre para un inmueble sea accesible para todos los interesados y que cada transacción que se presente sea validada por los interesados, esta validación por ejemplo nos permite identificar si un inmueble se está intentando vender por una persona que no es el propietario, si un propeitario intenta vender o hacer un negocio de venta dos o más veces (doble gasto), identificar si un inmueble tiene una anotación de afectación sobre el inmueble como hipótecas o vivienda familiar entre otros. Por si fuera poco esta validaciones casi en tiempo real reducirán los tiempos de análisis y el recurso humano que actualmente toma lo que al final del ejercicio reduce algunos costos del proceso pero lo más importante es que para los interesados en la compra del inmueble implique un menor gasto de tiempo en su negociación.

1.6. Alcances y limitaciones

1.6.1. Alcances

- 1. Elaborar un artículo sobre el estado del arte de Blockchain
- 2. Diseñar una arquitectura empresarial para el proceso de tradición y libertad
- 3. Elaborar un modelo usando la tecnología Blockchain usando como base la arquitectura previamente diseñada
- 4. Evaluar el modelo y corroborar que se mantiene el proceso con las mejoras propuestas

1.6.2. Limitaciones

- Durante la elaboración del proyecto se pueden presentar regulaciones por parte del gobierno los cuales impliquen elaborar cambios en la arquitectura empresarial o el modelo los cuales no puedan ser contemplados para el trabajo actual.
- No se cuenta con una base inicial ni datos sobre la arquitectura empresarial inicial que permita contrastar el modelo a desarrollar, por lo tanto nos basaremos en que se cumpla el proceso en condiciones generales.
- El modelo a plantear se probara con datos ficticios ya que no se dispone de acceso a datos reales.

Bibliografía

- Angraal, Suveen, Harlan M Krumholz y Wade L Schulz (2017). «Blockchain technology: applications in health care». En: *Circulation: Cardiovascular Quality and Outcomes* 10.9, e003800.
- Arias, Jordi Cabral (2018). «Estado del arte de la tecnología Blockchain ¿Burbuja o consolidación?» Tesis doct. Universidad oberta de Catalunya.
- Banafa, Ahmed (2018). *IC y Blockchain: retos y riesgos*. Vorlesungsskript, Institut für Mathematik und Wissenschaftliches Rechnen, Karl-Franzens-Universität Graz. URL: https://www.bbvaopenmind.com/ic-y-blockchain-retos-y-riesgos/.
- Crosby, Michael y col. (2016). «Blockchain technology: Beyond bitcoin». En: *Applied Innovation* 2, págs. 6-10.
- Huckle, Steve y col. (2016). «Internet of things, blockchain and shared economy applications». En: *Procedia computer science* 98, págs. 461-466.
- Iansiti, Marco y Karim R Lakhani (2017). «The truth about blockchain». En: *Harvard Business Review*.
- Kosba, Ahmed y col. (2016). «Hawk: The blockchain model of cryptography and privacy-preserving smart contracts». En: 2016 IEEE symposium on security and privacy (SP). IEEE, págs. 839-858.
- Nakamoto, Satoshi (2009). «Bitcoin: A Peer-to-Peer Electronic Cash System». En: URL: http://www.bitcoin.org/bitcoin.pdf.
- Zheng, Zibin y col. (2016). «Blockchain challenges and opportunities: A survey». En: *Work Pap.*–2016.