CS 3510: Design & Analysis of Algorithms

(Sections A & B)

Practice Quiz 4 – Section A and B

	Professors Dana Randall and Gerandy Brito	
1.) ((20 points total) For each of the following, select the most appropriate choice.	
(a.)	(4 points) If A is NP-Complete and B is reducible to A then we can conclude that B NP-Hard:	is
	O A. True	
	O B. False	
(b.)	(4 points) If we find a polynomial time algorithm for 3SAT, this gives a poly-time algorith for SAT is a statement that is:	hm
	O A. True	
	O B. False	
(c.)	(4 points) The problem 3-Clique, where you must find a clique of size 3 in G, is NP-Hard	l.:
	O A. True	
	O B. False	
(d.)	(4 points) If a problem is NP-complete then it is necessarily NP-Hard:	
	O A. True	
	○ B. False	
(e.)	(4 points) A CNF-satisfiability problem is best described as belonging to class:	
	O A. Only NP	
	O B. Only P	
	O. NP Complete	
	Only NP Hard	

- **2.)** (40 points)
- (a.) (15 points) Select all answer choices guaranteed to have a valid assignment if there exists such an assignment for $x_1 \lor x_2 \lor x_3 \lor \bar{x_4}$:
 - (A.) $(x_1 \lor x_2 \lor \bar{y}) \land (x_3 \lor y \lor \bar{x_4})$
 - **(B.)** $(x_1 \lor x_2 \lor y) \land (x_3 \lor y \lor \bar{x_4})$
 - (C.) $(x_1 \lor z) \land (\bar{z} \lor x_2 \lor y) \land (\bar{y} \lor x_3 \lor \bar{x_4})$
- **(b.)** (10 points) Draw a graph to represent the following 3CNF so it can be reduced to an Independent-Set problem: $(\bar{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \bar{x_2} \lor x_3) \land (\bar{x_1} \lor x_2 \lor x_4)$
- (c.) (5 points) Convert the following CNF to a 3CNF: $(x_1 \lor \bar{x_2} \lor x_3 \lor x_5) \land (\bar{x_1} \lor \bar{x_3} \lor x_4 \lor x_6 \lor x_7)$
- (d.) (10 points) What is the minimal number of variables needed to transform clauses of length k: $(x_1 \lor x_2 \lor x_3 \lor ... \lor x_k)$ to 3-SAT ?:
- **3.)** (40 points) In the HITTING SET problem, we are given a family of sets S1, S2, . . . , Sn and a budget b, and we wish to find a set H of size b which intersects every S_i if such an H exists. In other words, we want H intersection S_i ! = empty for all i. Show that HITTING SET is NP-complete.