Link: https://colab.research.google.com/drive/1BOyZUnmNjbDYcILb4h5hxXNilCfWAWgy?usp=sharing

```
import pandas as pd
import numpy as np
# Where all do you think Data Voz. is helpful or needed?
# Exploratory - see some difficult patterns, EDA
# Explanatory - I want to create a stort out of it and I want to stake holders
# Art and Science Data Visualisation
# Science
# Understanding the anatomy of a plot
# How to choose which plot is right to answer my question?'
# Art
# Choosing thje right scale, axis, ticks and labels
# Identify and removing clutters
# Ways to highlight the information
# Intro to Matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
# (0,3) (1,5) (2,9)
x_val = [0,1,2]
y_val = [3,5,9]
plt.plot(x_val, y_val)
     [<matplotlib.lines.Line2D at 0x7f5a550bf400>]
```



```
# how to choose the plot
# Data
# Rows - Records, Samples, Volume, Data-points
# Columns - Features, Attributes, Characteristics
# Columns - Continous, Categorical
# Categorical
# Oridinal - inherant ordering
# Nominal - no ordering
# Thumb for deciding the right plot?
# Question
# 1. How many variables/features are involved in answering my question?
 # Univatiate
 # Bivariate
 # Multi-variate
# 2. What are data-types of different variables involved?
 # Numerical
 # Categorical
# Univariate Data Visualisation
 \# N - histogram, boxplot, swarm plot, density plot, violin
 # C - pie-chart, donut, bar chart
# Bivariate Data Visualisation
 # N, N - scatter, ...
 # N, C -
 # C, C -
# Multi-variate Data Visualisatiob (3 variables)
 # N, N, N -
 # N, N, C -
 # C, C, N -
 # C, C, C -
```

!wget https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/021/299/original/final_vg1_-

import pandas as pd
import numpy as np
data = pd.read_csv('final_vg.csv')
data.head()

	Rank	Name	Platform	Year	Genre	Publisher	NA_Sales
0	2061	1942	NES	1985.0	Shooter	Capcom	4.569217
1	9137	¡Shin Chan Flipa en colores!	DS	2007.0	Platform	505 Games	2.076955
2	14279	.hack: Sekai no Mukou ni + Versus	PS3	2012.0	Action	Namco Bandai Games	1.145709
3	8359	.hack//G.U. Vol.1//Rebirth	PS2	2006.0	Role-Playing	Namco Bandai Games	2.031986
4	7109	.hack//G.U. Vol.2//Reminisce	PS2	2006.0	Role-Playing	Namco Bandai Games	2.792725

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 16652 entries, 0 to 16651
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype			
0	Rank	16652 non-null	int64			
1	Name	16652 non-null	object			
2	Platform	16652 non-null	object			
3	Year	16381 non-null	float64			
4	Genre	16652 non-null	object			
5	Publisher	16594 non-null	object			
6	NA_Sales	16652 non-null	float64			
7	EU_Sales	16652 non-null	float64			
8	JP_Sales	16652 non-null	float64			
9	Other_Sales	16652 non-null	float64			
10	Global_Sales	16652 non-null	float64			
<pre>dtypes: float64(6), int64(1), object(4)</pre>						
memory usage: 1.4+ MB						

data["Genre"].unique()

cat_counts = data["Genre"].value_counts()
cat counts

Action	3316	
Sports	2400	
Misc	1739	
Role-Playing	1488	
Shooter	1310	
Adventure	1286	
Racing	1249	
Platform	886	
Simulation	867	
Fighting	848	
Strategy	681	
Puzzle	582	
Name: Genre,	dtype: int64	

x_bar = cat_counts.index
y_bar = cat_counts
plt.bar(x bar, y bar)

<BarContainer object of 12 artists>

plt.figure(figsize=(12,8))
plt.bar(x_bar, y_bar)

<BarContainer object of 12 artists>

plt.bar(x_bar, y_bar)
plt.xticks(rotation=90)

([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], <a list of 12 Text major ticklabel objects>)

plt.bar(x_bar, y_bar)
plt.xticks(fontsize=6)

([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], <a list of 12 Text major ticklabel objects>)

plt.bar(x_bar, y_bar, width=0.5)

plt.bar(x_bar, y_bar, color="orange", width=0.5)
plt.xticks(rotation=90)

plt.title("Games distribution based on Genre",fontsize=12)

plt.xlabel("Genre", fontsize=10)

plt.ylabel("Count", fontsize=10)

plt.show()

Total Sales across various regions

Univariate, Numerical (Cont.)

Popularity of video games (no. of games in market) year by year?

plt.hist(data["Year"],bins=10)
plt.show()

sns.histplot(data["Year"],bins=10)
plt.title("Popularity of games")
plt.show()

sns.kdeplot(data["Year"])
plt.show()

Typical earnings from a video game

```
plt.figure(figsize=(5,5))
sns.boxplot(y = data["Global_Sales"])
plt.yticks(fontsize=12)
plt.ylabel('Global Sales', fontsize=12)
plt.title('Global Sales of video games', fontsize=12)
```


Bivariate Data Visualisation, N N

```
# Relationship between year and sales of ice hockey
ih = data.loc[data['Name']=='Ice Hockey']
baseball = data.loc[data['Name']=='Baseball']
sns.lineplot(x='Year', y='NA_Sales', data=baseball)
sns.lineplot(data = ih, x="Year", y="NA_Sales")
plt.legend(["Baseball", "Ice Hockey"])
plt.xlim(left=2000, right=2020)
plt.show()
```

```
0.9 - Baseball
```

```
# Relationship between year and sales of ice hockey
ih = data.loc[data['Name']=='Ice Hockey']
baseball = data.loc[data['Name']=='Baseball']
sns.lineplot(x='Year', y='NA_Sales', data=baseball)
sns.lineplot(data = ih, x="Year", y="NA_Sales")
plt.legend(["Baseball", "Ice Hockey"])
plt.xlim(left=2000, right=2020)
plt.grid()
plt.show()
```



```
# Relationship between year and sales of ice hockey
ih = data.loc[data['Name']=='Ice Hockey']
baseball = data.loc[data['Name']=='Baseball']
sns.lineplot(x='Year', y='NA_Sales', data=baseball)
sns.lineplot(data = ih, x="Year", y="NA_Sales")
plt.legend(["Baseball", "Ice Hockey"], loc="lower left")
plt.xlim(left=2000, right=2020)
plt.grid()
plt.show()
```



```
# Relationship between year and sales of ice hockey
ih = data.loc[data['Name']=='Ice Hockey']
baseball = data.loc[data['Name']=='Baseball']
sns.lineplot(x='Year', y='NA_Sales', data=baseball)
sns.lineplot(data = ih, x="Year", y="NA_Sales")
plt.legend(["Baseball", "Ice Hockey"], loc=(1.1, 0.5))
plt.xlim(left=2000, right=2020)
plt.grid()
plt.show()
```


Relationship between year and sales of ice hockey
ih = data.loc[data['Name']=='Ice Hockey']
baseball = data.loc[data['Name']=='Baseball']
sns.lineplot(x='Year', y='NA_Sales', data=baseball)
sns.lineplot(data = ih, x="Year", y="NA_Sales")
plt.legend(["Baseball", "Ice Hockey"], loc="lower left")
plt.text(2004, max(ih["NA_Sales"]), "Maxmium Sales")
plt.grid()
plt.show()

Rank of the video games is associated with sales?
sns.lineplot(data=data, x="Rank", y="Global Sales")

<matplotlib.axes. subplots.AxesSubplot at 0x7f5a5226eeb0>

sns.scatterplot(data=data, x="Rank", y="Global_Sales")

<matplotlib.axes. subplots.AxesSubplot at 0x7f5a52385790>

Bivariate, Categorical Categorical

```
top3_pub = data['Publisher'].value_counts().index[:3]
top3_gen = data['Genre'].value_counts().index[:3]
top3_plat = data['Platform'].value_counts().index[:3]
top3_data = data.loc[(data["Publisher"].isin(top3_pub)) & (data["Platform"].isin(top3_plat)) & (data[info())
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 617 entries, 2 to 16640
Data columns (total 11 columns):
```

Ducu	COTAMILE (COCAL		oolumno,.			
#	Column	Non-	-Null Count	Dtype		
0	Rank	617	non-null	int64		
1	Name	617	non-null	object		
2	Platform	617	non-null	object		
3	Year	611	non-null	float64		
4	Genre	617	non-null	object		
5	Publisher	617	non-null	object		
6	NA_Sales	617	non-null	float64		
7	EU_Sales	617	non-null	float64		
8	JP_Sales	617	non-null	float64		
9	Other_Sales	617	non-null	float64		
10	Global_Sales	617	non-null	float64		
<pre>dtypes: float64(6), int64(1), object(4)</pre>						
memory usage: 57.8+ KB						

sns.countplot(data = top3_data, x="Genre", hue="Platform")

Bivariate - Cont Cat

Typical sales of top3 publishers seperately?

sns.boxplot(data = top3_data, x="Publisher", y="Global_Sales", color="orange")

Mean earnings of top3 publishers seperately?
sns.barplot(data = top3_data, x="Publisher", y="Global_Sales", color="orange", estimator=np.mean)
plt.ylabel("Mean Global Sales")

Text(0, 0.5, 'Mean Global Sales')

Distribution of sales of top3 publishers seperately?
sns.kdeplot(data = top3 data, hue="Publisher", x="Global Sales")

<matplotlib.axes._subplots.AxesSubplot at 0x7f5a51230b20>

fig = plt.figure(figsize=(15,10))

plt.subplot(2, 3, 1)
sns.scatterplot(x='NA_Sales', y='EU_Sales', data=top3_data)
plt.title("Title for first subplot")

plt.subplot(2, 3, 3)
sns.scatterplot(x='NA_Sales', y='JP_Sales', data=top3_data, color='red')
plt.title("Title for third subplot")

plt.subplot(2, 3, 5)
sns.scatterplot(x='NA_Sales', y='Other_Sales', data=top3_data, color='red')
plt.title("Title for fifth subplot")

fig.suptitle("This is the overall title of this figure")

plt.show()

plt.show()

This is the overall title of this figure

```
Title for first subplot
plt.figure(figsize=(20,12)).suptitle("NA Sales vs regions",fontsize=20)
# Using a 2x3 subplot
plt.subplot(2, 3, 1)
sns.scatterplot(x='NA Sales', y='EU Sales', data=top3 data)
plt.title('NA vs EU Sales', fontsize=12)
plt.xlabel('NA', fontsize=12)
plt.ylabel('EU', fontsize=12)
plt.subplot(2, 3, 3)
sns.scatterplot(x='NA Sales', y='JP Sales', data=top3 data, color='red')
plt.title('NA vs JP Sales', fontsize=12)
plt.xlabel('NA', fontsize=12)
plt.ylabel('JP', fontsize=12)
plt.subplot(2, 3, 4)
sns.scatterplot(x='NA_Sales', y='Other_Sales', data=top3_data, color='green')
plt.title('NA vs Other Region Sales', fontsize=12)
plt.xlabel('NA', fontsize=12)
plt.ylabel('Other', fontsize=12)
plt.subplot(2, 3, 6)
sns.scatterplot(x='NA_Sales', y='Global_Sales', data=top3_data, color='orange')
plt.title('NA vs Global Sales', fontsize=12)
plt.xlabel('NA', fontsize=12)
plt.ylabel('Global', fontsize=12)
plt.subplot(1,3,2)
sns.countplot(x='Publisher', data=top3_data)
plt.title('Count of games by each Publisher', fontsize=12)
plt.xlabel('Publisher', fontsize=12)
plt.ylabel('Count of games', fontsize=12)
```

NA Sales vs regions

```
plt.figure(figsize=(7,7))
sns.scatterplot(x='NA_Sales', y='EU_Sales',hue='Publisher',data=top3_data)
plt.xticks(fontsize=15)
plt.yticks(fontsize=15)
plt.ytlabel('NA_Sales',fontsize=15)
plt.ytlabel('EU_Sales',fontsize=15)
plt.title('NA_vs_EU, per_Genre', fontsize=15)
plt.show()
```



```
plt.figure(figsize=(15,10))
sns.boxplot(x='Publisher',y='Global_Sales',hue='Genre',data=top3_data)
plt.xlabel('Genre', fontsize=12)
plt.ylabel('Global Sales', fontsize=12)
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
plt.title('Global Sales for each Publisher, Genre wise', fontsize=15)
plt.show()
```

Global Sales for each Publisher, Genre wise

plt.figure(figsize=(15,10))
sns.scatterplot(x=data['NA_Sales'], y=data['JP_Sales'],data=top3_data, size=data['Rank'], sizes:
sns.scatterplot(x='NA_Sales', y='JP_Sales', size='Rank', sizes=(1, 200), data=top3_data)

plt.xlabel('NA_Sales', fontsize=10)
plt.ylabel('JP Sales', fontsize=10)
plt.title('NA vs JP Sales, based on ranking of games', fontsize=15)
plt.show()

sns.jointplot(x='NA_Sales', y='EU_Sales', data=top3_data, hue='Genre')

<seaborn.axisgrid.JointGrid at 0x7f5a4ee3ddf0>

Pairwise relation between every two possible numerical variable
sns.pairplot(data=top3_data, hue="Genre")

top3 data.corr() # -1 to 1

	Rank	Year	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Globa
Rank	1.000000	0.328705	-0.873726	-0.735711	0.115459	-0.857567	
Year	0.328705	1.000000	-0.354256	-0.178026	0.055864	-0.239876	
NA_Sales	-0.873726	-0.354256	1.000000	0.617483	-0.233315	0.794353	
EU_Sales	-0.735711	-0.178026	0.617483	1.000000	-0.208249	0.771105	
JP_Sales	0.115459	0.055864	-0.233315	-0.208249	1.000000	-0.355825	
Other_Sales	-0.857567	-0.239876	0.794353	0.771105	-0.355825	1.000000	
Global_Sales	-0.911721	-0.280351	0.856300	0.864147	-0.014193	0.878816	
<u>s</u> 4 - *		. 432		5 848 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	+ //		

sns.heatmap(top3_data.corr(), cmap= "Blues", annot=True)
plt.show()

sns.heatmap(top3_data.corr(), cmap= "coolwarm", annot=True)
plt.show()

✓ 0s completed at 22:57

• >