Задачи по оптике.

Летняя Физическая Школа, июль-август 2015.

1	Докажите, что если n_{12} показатель для преломления из сред показатель преломления из среды 1 в среду 3, то показатель 2 в среду 3 равен $n_{23} = n_{13}/n_{12}$.	_ ·
2	Пусть свет отражается от вогнутого сферического зеркала, выполненного в виде полусферы радиуса R . Выведите закон отражения света для этого случая при распространении света от точки A к точке B .	A B
3	Рассмотрим преломление луча на сферической стеклянной поверхности. Для простоты будем рассматривать только те лучи, которые пересекают ось линзы под маленьким углом. Докажите, что $\frac{1}{a} + \frac{n}{b} = \frac{n-1}{R},$ где $n-$ показатель преломления стекла, $a-$ расстояние от точечного источника до поверхности, $b-$ расстояние от изображения точечного источника до поверхности, $R-$ радиус сферической поверхности.	
4	От точечного монохроматического источника $\bf A$ отодвигают точечный монохроматический источник $\bf B$ (источники когерентны) до тех пор, пока в точке $\bf O$, где наблюдается интерференция, не наступает потемнение. Расстояние $\bf AB$ при этом равно $\bf d=2$ мм. Расстояние между источником $\bf A$ и экраном равно $\bf L=9$ м. На сколько надо передвинуть экран к источнику $\bf A$, чтобы в точке $\bf O_1$ возникло потемнение?	$egin{array}{cccccccccccccccccccccccccccccccccccc$

Примечание. Источник называются **монохроматическим**, если напряжённость создаваемого им поля выражается в виде $E = E_0 \cos \omega t$.

От двух когерентных источников света S_1 и S_2 получена система интерференционных полос на экране \mathbf{AB} , удалённом от источников на a=2 м. Расстояние между источниками $d \ll a$. Во сколько раз изменится ширина интерференционных полос, если между источниками и экраном поместить собирающую линзу с фокусным расстоянием F=25 см? Рассмотрите два случая: а) Расстояние линзы от источников равно 2F (1 балл); б) источники находятся в фокальной плоскости линзы (1 балл).

5

Примечание. Источники называются **когерентными**, если разность фаз их колебаний не зависит от времени.

Используя волновое уравнение, докажите принцип суперпозиции: если $y_1(x,t)$ и $y_2(x,t)$ являются решениями волнового уравнения, то и $y_1(x,t)+y_2(x,t)$ — тоже решение.

Примечение. Волновым уравнением называется уравнение для колебаний, полученное на занятии:

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2}.$$

7	Пусть линия, соединяющая два источника S_1 и S_2 перпендикулярна плоскости экрана. Расстояние между источниками d , расстояние от источников до экрана L , при этом $d \ll L$. Какую интерференционную картину наблюдатель увидит на экране? (0.5 балла) Найдите расстояние между соседними максимумами освещённости (1 балл).	
	На стеклянный стол с показателем преломления n кладут плосковыпуклую линзу из такого же материала. Сверху линзу освещают параллельным пучком света,	
8	падающим перпендикулярно плоскости. Почему будет наблюдаться интерференционная картина в этом случае? (0.5 балла) Определите её структуру (0.5 балла).	
	т ционнал картина в этом случас: (0.0 балла) определите се структуру (0.0 балла) .	

 $У \kappa a з a н u e$. Вспомните про то, что свет на границе раздела сред может как отражаться, так и преломляться.

Радиус кривизны выпуклой поверхности равен R, длина волны света λ .

Определите расстояние между соседними максимумами освещённости (1 балл).

Две тонкие линзы находятся на расстоянии $L=25\,\mathrm{cm}$ друг от друга так, что их главные оптические оси совпадают. Эта система линз создаёт прямое действительное изображение предмета в натуральную величину. Если линзы поменять местами, не изменяя положение предмета, то снова получается прямое действительное изображение предмета, но с увеличением $\Gamma=4$. На сколько отличаются оптические силы линз?

9

10

Примечание. Оптической силой линзы D называется величина, обратная её фокусному расстоянию F: D = 1/F.

Сложный объектив состоит из двух тонких линз: положительной с фокусным расстоянием $F_1=20$ см и отрицательной с фокусным расстоянием $F_2=10$ см. Линзы расположены на расстоянии l=15 см друг от друга. С помощью объектива получают на экране изображение Солнца. Какое фокусное расстояние должна иметь тонкая линза, чтобы изображение Солнца, полученное с её помощью, имело такой же размер?

Рассеивающая линза Π_1 и собирающая линза Π_2 расположены на одной главной оптической оси. Такая оптическая система создаёт изображение A_1B_1 предмета AB. С помощью построения найдите положение главных фокусов обеих линз.

