INOVAÇÃO ABERTA COMO FATOR RELEVANTE PARA INOVAÇÃO REVERSA: UMA INVESTIGAÇÃO DO SETOR DE O&G NO BRASIL

PEDRO PAULO CORTONESI

Centro Universitário da FEI pedrocortonesi@gmail.com

FERNANDA RIBEIRO CAHEN

Centro Universitário da FEI fribeiro@fei.edu.br

INOVAÇÃO ABERTA COMO FATOR RELEVANTE PARA INOVAÇÃO REVERSA: UMA INVESTIGAÇÃO DO SETOR DE O&G NO BRASIL

Resumo

Estudos sobre os fluxos de conhecimento nas empresas multinacionais abordam a relevância do papel da subsidiária nos processos de inovação. Em sua recente tipologia, Zedtwitz et al. (2015) estabelecem uma estrutura teórica para explicar processos de inovação reversa entre as unidades das multinacionais distribuídas em países de economia avançada e emergentes. Zedtwitz et al. (2015) no entanto tem uma perspectiva interna à multinacional, e analisa o processo de forma fechada não contemplando a influência das redes locais na criação de inovação. Esse trabalho responde às perguntas de como se estabelecem as relações de colaboração e inovação entre as subsidiárias de multinacionais e os membros do cluster industrial, de como a inovação aberta afeta a inovação reversa e como essa inovação é repatriada para a matriz. Escolhemos um estudo de caso exploratório como metodologia de pesquisa e estudamos a indústria de O&G, analisando-se os processos de inovação da subsidiaria da FMC Technologies, com os seus diversos *stakeholders*. Nossas análises permitiram validar a existência da inovação aberta de forma inerente e antecessora à inovação reversa no segmento industrial estudado.

Palavras-chave: Inovação, Multinacionais, Subsidiárias.

Abstract

Studies on knowledge flows in multinational companies address the relevance of the role of the subsidiary in innovation processes. In its recent typology Zedtwitz et al. (2015) establish a theoretical framework to explain reverse innovation processes between units of multinationals distributed in advanced and emerging economies. Zedtwitz et al. (2015) however has an internal perspective to the multinational, and analyzes the process under a closed perspective and does not include the influence of local networks for innovation. This work answered the questions in how the relations of collaboration and innovation among subsidiaries of multinationals and members of the industrial cluster are established. How open innovation affects the reverse innovation and how this innovation is repatriated to the Head Quarter. We chose an exploratory case study as research methodology and investigated the O & G industry, analyzing the innovation processes of the subsidiary of FMC Technologies, with its various stakeholders. Our analyzes allowed us to validate the existence of open innovation inherently and predecessor to reverse innovation in the industrial segment studied.

Keywords: Innovation, Multinationals, Subsidiary.

1 Introdução

Estudos sobre os fluxos de conhecimento nas empresas multinacionais (EMN) (Mudambi, Piscitello e Rabbiosi, 2014); (Phene e Almeida, 2008) têm abordado a relevância do papel da subsidiária nos processos de inovação. A contribuição estratégica, na repatriação para a matriz das EMN, do conhecimento adquirido ou absorvido nas subsidiárias, tem sido uma importante linha de pesquisa na área de negócios e inovação, principalmente quando essas subsidiárias estão localizadas em países de economias emergentes (Meyer, Mudambi e Narula, 2011); (Awate, Larsen e Mudambi, 2014). O gerenciamento do conhecimento nas EMN passou a ser visto como um elemento de vantagem competitiva. Isso tem servido tanto para o aprimoramento de produtos existentes como para ampliação dos portfólios de produtos dessas empresas (Mudambi, 2002). No entanto, estudos sobre os fluxos de conhecimento nas EMN abordam esse fenômeno, em sua grande maioria, somente do ponto de vista da transferência de tecnologia da matriz para a subsidiária (Michailova e Mustaffa, 2012).

Em sua recente tipologia, Zedtwitz et al. (2015) estabelecem uma estrutura teórica para explicar processos de inovação reversa entre unidades das EMN distribuídas em países de economia avançada e emergentes, expandindo e sofisticando o conceito de inovação reversa originalmente desenvolvido por Govindarajan e Trimble (2012). Esses autores conceituaram como inovação reversa, o fenômeno da introdução de um novo produto, primeiramente em um mercado de economia emergente para atender às necessidades locais, para só depois então, introduzir esse mesmo produto em um país de economia desenvolvida, onde o modelo pressupõe que estariam localizadas as matrizes das EMN.

Zedtwitz et. al. (2015) adiciona ao modelo de Govindarajan e Trimble (2012) o conceito do funil de desenvolvimento de produto, que compreende quatro fases: conceito e desenvolvimento; planejamento do produto; engenharia de processos e do produto; produção piloto e produção seriada. Zedtwitz et.al (2015) acrescenta esse conceito, porém de forma simplificada para observar o fenômeno de fluxos reversos nas EMN. Acrescenta as fases de conceito do produto e o seu desenvolvimento antecedendo ao lançamento do produto no mercado, constrói sua tipologia de inovação reversa considerando a possibilidade de que cada uma das fases possa ocorrer tanto em economias avançadas quanto em economias emergentes (Zedtwitz et al., 2015).

A tipologia da inovação reversa proposta por Zedtwitz et al. (2015) tem uma perspectiva interna à EMN, analisando o processo de forma fechada em uma relação onde só estão inseridas a matriz e a subsidiária, e não contempla a influência e importância das redes locais como forma de co-criação de tecnologia e inovação. Essa é a principal limitação do modelo de Zedtwitz et al. (2015), pois há evidências de que algumas subsidiárias desenvolvem redes locais de colaboração que podem ser simplesmente transacionais, mas muitas vezes também são de caráter colaborativo em um processo de inovação aberta (Phene e Almeida, 2008). Subsidiárias das EMN quando localizadas em clusters industriais, tendem também a ser mais imersas e atuantes nas redes locais e possuírem um escopo também voltado para o mercado internacional (visando a exportação). Características específicas desses clusters industriais impactam diretamente o papel daquela subsidiária ali instalada (Birkinshaw, Julian e Hood, 2000).

Dada a limitação no modelo de Zedtwitz et al. (2015), estabelecemos como objetivos para esse trabalho, responder as seguintes perguntas:

a) como se estabelecem as relações de co-criação e inovação entre as subsidiárias de EMN e os membros do cluster industrial?

- b) como a inovação aberta afeta a inovação reversa?
- c) como essa inovação é repatriada para a matriz?

Zedtwitz et al. (2015) coloca como oportunidade para futuras pesquisas investigar-se os processos anteriores à inovação reversa, e entender os gatilhos que a disparam. Esse trabalho procura explorar a inovação aberta como sendo um desses possíveis gatilhos. Nossa proposição é que processos intensos de colaboração e inovação aberta ocorrendo entre as subsidiárias e a sua rede, afetariam o interesse das matrizes das EMN para que essa inovação fosse repatriada.

O trabalho é baseado em um estudo de caso de uma subsidiária de uma EMN americana do segmento de equipamentos submarinos para o mercado de Óleo e Gás operando no Brasil. Empiricamente mostraremos o relacionamento da subsidiária da EMN com o cluster de Óleo & Gás do Rio de Janeiro e a realização de inovação aberta em um país emergente. O estudo de caso abrangeu também as relações da EMN com outros atores no cluster. O principal objetivo conceitual desse trabalho é propor que a interação da subsidiária com o cluster nos países emergentes, tem um papel significativo nos fluxos de inovação reversa.

A importância da indústria de O&G não se dá somente por sua condição estratégica em termos de matriz energética, mas também por sua capacidade de envolver outros setores industriais nos países onde possui atividade intensa. A indústria do petróleo está em geral associada a altos níveis de investimentos e também inovações tecnológicas, contribuindo ainda de forma significativa para o *catch-up* tecnológico do país e fortalecimento do sistema nacional de inovação (Gielfi et al., 2013).

A contribuição teórica deste trabalho é o de expandir o modelo originalmente proposto por Zedtwitz et al. (2015), que analisa o processo de inovação reversa (Govindarajan e Trimble, 2012), (Phene e Almeida, 2008) e sua força acontecendo de maneira "inter-firma" (subsidiária-matriz-subsidiária) ou seja, de maneira "fechada". Para tanto, conciliaremos a tipologia de Zedtwitz et al. (2015) com os conceitos de inovação aberta (Chesbrough e Bogers, 2014), (Bogers, 2014), (Gould, 2012), (Paasi et al., 2014) em subsidiárias de EMN, explorando-se os processos colaborativos com o cluster industrial, para também analisarmos a importância da inovação aberta para os fluxos reversos de conhecimento nas EMN (Mudambi, Piscitello e Rabbiosi, 2014).

2 Referencial Teórico

2.1 Fluxos de Inovação em Multinacionais e o Conceito de Inovação Reversa

A habilidade das multinacionais usarem as suas capacidades de inovação geograficamente distribuídas através de suas várias subsidiárias torna-se cada vez mais uma vantagem competitiva (Awate, Larsen e Mudambi, 2014). A capacidade de inovação das subsidiárias tem sido relacionada com o grau de enraizamento (*embeddedness*) com a rede local (clientes, fornecedores, laboratórios e universidades). No entanto, essa relação também pode ser afetada pela forma de entrada da subsidiária no país hospedeiro (Anand e Delios, 2002). Subsidiárias *greenfield* ou as que se estabelecem no país através de aquisições, diferem na sua evolução em relação à criação de conhecimento. Enquanto, as subsidiárias *greenfield* estariam mais engajadas com a rede interna da EMN, utilizando-se de tecnologia desenvolvida nas matrizes, as subsidiárias provenientes de aquisições estariam mais engajadas com as redes locais externas por conta de seu relacionamento histórico (sendo esse um dos prováveis motivos de sua aquisição). Os departamentos de P&D geograficamente dispersos em economias emergentes permitem acesso a mercados e/ou tecnologias através do

estabelecimento de parcerias com as redes locais, formadas por universidades, laboratórios e outras empresas quer sejam elas fornecedoras ou clientes e que possam colaborar no aprimoramento dos produtos e processos assim como desenvolvimento de novos produtos (Awate, Larsen e Mudambi, 2014).

A inovação reversa é toda aquela que primeiramente é adotada em uma economia emergente para só então ser adotada em um país desenvolvido (Govindarajan e Trimble, 2012). No entanto, a lógica dominante da inovação de produtos pressupõe que essa ocorra naturalmente num país desenvolvido (em geral onde está localizada a matriz e o departamento de P&D das EMN), e posteriormente seja introduzida nos países em desenvolvimento. O conceito de inovação reversa, portanto, é contra intuitivo (Gonvidarajan e Trimble, 2012).

2.2 A Inovação Aberta

Chesbrough (2003) descreve o fenômeno da inovação aberta como sendo aquele onde as empresas fazem uso de ideias e tecnologias concebidas externamente ao seu próprio negócio, da mesma forma que deixa fluir para o mercado, tecnologias com as quais não consegue se beneficiar, mas que podem ser úteis para outras indústrias. Esses fluxos de entrada e saída de conhecimento, tecnologia e inovação que permeiam as fronteiras da empresa devem ser intencionais de acordo com Chesbrough (2006) para que possam ser conceitualmente definidos como inovação aberta. O aumento da mobilidade de trabalhadores; universidades com maior capacidade de pesquisa; conhecimento globalmente distribuído; crescimento da internet e acesso a capital de risco são fatores de erosão do antigo modelo de inovação fechado desenvolvido nos P&D das próprias empresas (Chesbrough e Bogers, 2014). É cada vez mais difícil para as empresas terem uma posição competitiva, com produtos inovadores, investindo somente no seu próprio P&D, primeiro porque consome recursos financeiros e humanos e principalmente porque levaria um tempo demasiado longo, que é incompatível com a realidade atual do mercado. Portanto, os ciclos abertos de inovação são considerados inevitáveis, uma vez que o conhecimento se encontra cada vez mais disperso, as mudanças tecnológicas demandam das empresas uma quantidade cada vez maior de conhecimento e em tempos cada vez menores o que impossibilita que a empresa utilize somente recursos internos para inovar (Chesbrough, 2010). Porém, a inovação aberta não apresenta somente pontos positivos. Um dos aspectos de maior resistência por parte de algumas empresas refere-se à proteção de sua propriedade intelectual (PI) o que pode estar diretamente ligado à sua vantagem competitiva. A inovação aberta pressupõe um modelo muito mais complexo quando comparado com a inovação fechada. Os processos de inovação aberta necessitam de interação e comunicação com outros pares externos à empresa, em uma espécie de rede de especialistas (Gould, 2012). O grande paradoxo da inovação aberta reside no conflito entre o potencial benefício da colaboração e o potencial vazamento de conhecimento para outras empresas que impliquem em uma perda de vantagem competitiva. (Gould, 2012).

2.3 O Conceito de Clusters Industriais e Inovação

Segundo Mudambi (2002) um *cluster* industrial pode ser definido como uma concentração geográfica de empresas concorrentes e complementares que atendem ao mesmo segmento industrial em uma relação de compra e venda de produtos e serviços entre si, usando tecnologias comuns e o mesmo tipo de mão de obra especializada. Essa definição é coerente com o conceito de cluster trazido por Porter (1989). Essa configuração confere

vantagens competitivas sobre outras empresas operando em outras regiões geográficas. As universidades e institutos de pesquisa têm baixa relevância para segmentos considerados "tradicionais", porém aumenta de forma significativa no caso de *clusters* que envolvem maior intensidade de conhecimento e tecnologias mais complexas como no caso do segmento de petróleo e gás. A proximidade geográfica das empresas desenvolvendo e usando produtos e tecnologias similares, provoca um ganho significativo tanto para os negócios quanto para a inovação (Dodgson, Gann e Salter, 2008). Porter (1989) argumenta que a *clusterização* geográfica das indústrias em sistemas conectados por relacionamentos tanto horizontais quanto verticais, em combinação com condições de demanda e estratégias das empresas, estimula a inovação e a competitividade internacional. Além disso, a proximidade das empresas organizadas em distritos industriais traria benefícios adicionais como por exemplo a redução dos custos de transação (Storper, 1997).

2.4 Tipologia da Inovação Reversa

Zedtwitz et al. (2015), propõe uma tipologia expandida da inovação reversa, que permita analisar os possíveis fluxos reversos de conhecimento em fases anteriores à introdução do produto no mercado. Ao adicionar os conceitos do funil de desenvolvimento de produto de forma simplificada, ou seja, com foco nas fases de ideação e desenvolvimento do produto ao modelo de Gonvidarajan e Trimble (2012), Zedtwitz et. al. (2015) analisam o fenômeno de fluxos reversos de inovação nas EMN, acontecendo anteriormente à fase de lançamento do produto, tanto no primeiro, quanto no segundo mercado alvo. Constrói sua tipologia de inovação reversa considerando a possibilidade de que cada uma das fases possa ocorrer tanto em economias avançadas quanto em economias emergentes. O modelo de Zedtwitzet al. (2015) como observado na figura 1 não leva em consideração, no entanto, a possibilidade de que outros fenômenos ocorram nas subsidiárias e que sejam inclusive determinantes para que a inovação reversa ocorra nas fases de ideação ou conceito e desenvolvimento de produto. O modelo originalmente apresentado pressupõe que os fluxos de inovação ocorram exclusivamente dentro de um ambiente matriz-subsidiária (inovação fechada). Esse trabalho investigou e propôs uma tipologia que leva em consideração também os processos colaborativos com clusters industriais locais nos países onde as subsidiárias das EMN estão localizadas.

Figura 1 – Tipologia da Inovação Reversa pela perspectiva da sua força

Nota: A typology of reverse innovation. Journal of Product Innovation Management, s.l., v. 32, n. 1, p. 12–28, 2015.

2.5 Expandindo a Tipologia da Inovação Reversa

Embora o escopo do modelo proposto por Zedtwitz et al. (2015) não tivesse a intenção de agregar outros tipos de inovação na mesma tipologia, a inovação aberta em particular nos setores industriais de tecnologia mais intensa como no caso do segmento de O&G, parece ser determinante para que a inovação reversa aconteça mesmo em economias emergentes, sendo fundamental entender como ela desencadeia esse processo. Como salientado por Chesbrough (2010), a ocorrência da inovação aberta nas empresas é quase inevitável dada à dispersão de conhecimento e a sua rápida evolução de forma que nenhuma empresa pode mais deter e dominar por completo todas essas tecnologias. As relações que se estabelecem através do engajamento das subsidiárias das EMN nas redes locais dos países hospedeiros podem ser fonte de processos de colaboração e inovação. Inovação que potencialmente pode ser repatriada para as matrizes das EMN, dependendo também do envolvimento dessas matrizes nesse processo (Dellestrand, 2011).

2.6 Uma Nova proposta de Tipologia para Inovação Reversa

Se no modelo de inovação expandido de quatro fases proposto por Zedtwitz et al. (2015) considerarmos que durante algumas dessas fases possam ocorrer fenômenos tais como a inovação aberta, assim como proposto por Chesbrough e Bogers (2014), uma nova tipologia de inovação reversa que contemple também esse fenômeno deve ser considerado. A proposição desse trabalho é confirmar que a inovação aberta ocorre em subsidiárias de economias emergentes, pela necessidade de obter-se aprofundamento sobre características desses mercados, suas limitações, seus desafios, inclusive tecnológicos, ou particularidades de toda ordem. Se propõe ainda, a discutir que diferentes graus de intensidade e metodologia nesses processos de inovação aberta podem ocorrer em função de estratégias (internacionalização dos departamentos de P&D, localização geográfica no país hospedeiro), de modos de entrada distintos (aquisição ou greenfield) adotado pelas empresas EMN (Mudambi, Piscitello e Rabbiosi, 2014), ou das próprias interações entre os elementos do cluster onde a EMN está inserida. Assim sendo, a força dos processos de inovação reversa como proposto por Zedtwitz et al. (2015) seria condicionado também à intensidade do processo de inovação aberta e da absorção de conhecimento produzido no país hospedeiro. Portanto, ao expandirmos o modelo proposto por Zedtwitz et al. (2015), para integrarmos a inovação aberta (Chesbrough e Bogers, 2014) como um processo antecessor e inerente à inovação reversa só o faremos do ponto de vista das subsidiárias localizadas em países emergentes, usando o Brasil como contexto. Expandindo a tipologia atual e com foco nas três notações que nos interessam teríamos um mapa conforme a figura 2. A força ou robustez da inovação aberta, é determinada pelo número de vezes que acontece desde o conceito do produto até o lançamento no mercado, seguindo a mesma lógica proposta por Zedtwitz et al. (2015) para a inovação reversa.

Figura 2 - Tipologia expandida da inovação reversaNota: A typology of reverse innovation. **Journal of Product Innovation Management**, s.l., v. 32, n. 1, p. 12–28, 2015, adaptado pelo autor

3 Metodologia

Para explorar "como" e "porquê" as subsidiárias das EMN, estabelecem relações de colaboração com suas redes locais ou *clusters* industriais, quais são os fatores determinantes para essas relações, e finalmente, como essa inovação aberta se insere na tipologia existente da inovação reversa, escolhemos um estudo de caso exploratório como metodologia de pesquisa (Yin, 2010). Tendo em vista propor uma nova tipologia para a inovação reversa em países de economia emergentes, uma pesquisa qualitativa mostrou-se mais apropriada (Yin, 2010). Optou-se por contextualizar essa investigação na indústria do petróleo no Brasil, analisando-se os processos de inovação da subsidiaria da FMC Technologies, EMN líder de mercado no setor de equipamentos submarinos destinados à produção offshore. De forma a entender as conexões e processos de inovação da FMC Technologies com os seus diversos stakeholders, esses também foram objeto de estudo e investigação. A escolha pelo estudo de uma subsidiária localizada no Brasil deu-se em função, do Brasil ser uma economia emergente com sólido parque industrial instalado o que garante a existência de uma rede local pujante e da existência de uma grande quantidade de subsidiárias de outras EMN (Schutte, 2013). Além disso, as resoluções da Agência Nacional de Petróleo (ANP), nº 33/2005 e respectivo Regulamento Técnico nº 5/2005, referentes à obrigatoriedade de investimento em P&D por parte das operadoras de petróleo, nas universidades brasileiras, e nos seus respectivos centros de pesquisa, foram fortes indícios de que inovação aberta e colaborativa poderia estar ocorrendo nesse segmento. A existência de um cluster de petróleo no Brasil, foi também determinante para a escolha desse segmento industrial. Além do que, a FMC Technologies possui subsidiárias tanto em países desenvolvidos quanto em economias emergentes e em particular no Brasil, onde além de sua fábrica na zona norte da cidade do Rio de Janeiro (Pavuna), também possui um centro de P&D localizado no Parque Tecnológico do Fundão. Essa EMN também está inserida em outros clusters de petróleo, a saber: Houston (EUA), Aberdeen (Reino Unido) e Oslo/Stavanger (Noruega) (Mudambi, 2002). A FMC Technologies utiliza o estado da arte em tecnologia de equipamentos submarinos para a produção de petróleo de forma segura e em condições tecnológica e ambientais desafiadoras.

A investigação do setor de petróleo que enfrenta desafios tecnológicos significativos em uma economia emergente, pelo ponto de vista de uma EMN serve também como contraponto à teoria da inovação de custo, e às premissas da inovação reversa proposta por Gonvidarajan e Trimble (2012). Assim sendo, pareceu-nos adequado investigar esse mercado para identificarmos as conexões da subsidiária de uma EMN com o *cluster* de petróleo no Brasil e a sua influência para a inovação aberta e reversa, quer seja ela fluindo para a matriz, quanto para outra subsidiária localizada em uma economia desenvolvida. Ao revisitarmos os principais arcabouços teóricos, nos foi possível a elaboração de um questionário que serviu como guia durante as entrevistas de campo(Yin, 2010). Pequenas alterações no questionário foram introduzidas afim de ajustar-se com o interesse sobre cada um dos *stakeholders* que estavam sendo entrevistados.

3.1 Coleta de Dados

A coleta de dados deu-se através da investigação dos vários atores: a subsidiária no Brasil da FMC Technologies; o Centro de Pós-Graduação em Engenharia da UFRJ, representada pela unidade "COPPE-UFRJ" da EMBRAPII (Empresa Brasileira de Pesquisa e Inovação Industrial) e pelo Parque Tecnológico do Fundão; o Centro de Pesquisas da Petrobras (CENPES); e a Eaton representando a cadeia de fornecedores da FMC que doravante serão chamados de stakeholders. Assim sendo, foram selecionadas profissionais com o pleno domínio sobre os fluxos de conhecimento interno e externo de cada uma das instituições para que fossem conduzidas entrevistas semiestruturadas, as quais foram realizadas durante os meses de fevereiro e março de 2016 no Rio de Janeiro e São Paulo. Nove entrevistas presenciais foram realizadas, sendo que cinco delas com representantes da FMC Technologies; uma delas com o CENPES, porém com dois representantes; uma com a representante da EMBRAPII-COPPE/UFRJ; uma com a representante do Parque Tecnológico; e uma com um representante da Eaton. No total foram aproximadamente 6 horas de entrevistas. Foram utilizadas várias fontes de evidencias durante a coleta de dados (YIN, 2010). Além das entrevistas semiestruturadas realizadas com os funcionários das empresas e instituições, foram utilizados também dados secundários tais como documentos e relatórios anuais, informativos e revistas internas, websites das empresas e universidades, apresentações institucionais e notícias veiculadas em órgãos de imprensa especializada, além de observações diretas durante as visitas que corroboraram com os relatos dos entrevistados.

Empresa	Motivação	Número	Entrevistados	Duração	Local
		de			
		entrevistas			
			Vice-Presidente de Engenharia	18 min	Tech Center
			e Tecnologia		(P&D da
FMC Technologies	Identificar como se dão os processos de inovação aberta e reversa para produtos da	5			FMC no
					Parque
					Tecnológico
			Gerente de Linha de Produto -	42 min	
			Well Completion Systems –		
			Subsea Systems		Fábrica da
	subsidiária brasileira		Gerente de Linha de Produto –	32 min	FMC no RJ
	da FMC Technologies		Control and Data Management		
			- Subsea Systems		
			Gerente de Supply Chain	33 min	
			Gerente de Manufatura de	63 min	Escritório
			Árvores de Natal		São Paulo

Simpósio Internacional de Gestão de Projetos, Inovação e Sustentabilidade International Symposium on Project Management, Innovation and Sustainability

ISSN: 2317 - 8302

2 1 1	ISSN: 2517 - 6302				
Entrevistas com stakeholders					
UFRJ - COPPE	Entender as relações de cooperação entre a FMC e a UFRJ	1	Coordenadora Geral – Unidade Embrapii-Coppe de Engenharia Submarina	43 min	Parque Tecnológico
Petrobras / CENPES	Entender as relações e as barreiras entre o CENPES e a Indústria com relação à proteção da Propriedade Intelectual	1	Gerente de Estratégia Tecnológica Engenheira de Processamento – atuando no CENPES	54 min	CENPES
Parque Tecnológico	Entender a motivação e benefícios para as empresas se estabelecerem no PT	1	Acessoria de Comunicação e Imprensa	36 min	Parque Tecnológico
Eaton Hydraulics	Entender como se dão os processos de co-criação ou de aprendizado entre a FMC e seus fornecedores	1	Gerente de Manufatura	18 min	São Paulo

Quadro 1: Entrevistas Fonte: O autor

3.2 Descrição do Caso: FMC Technologies

A FMC Technologies chegou ao Brasil há 60 anos, através da aquisição da CBV (empresa brasileira fabricante de equipamentos para o setor de petróleo), o que lhe permitiu beneficiar-se do enraizamento e engajamento que já havia sido desenvolvido por essa empresa com a rede local e principalmente com a Petrobras, e atingir sua posição de liderança no mercado, mas não necessariamente afetando positivamente a inovação reversa nos primeiros anos após a aquisição (MUDAMBI; PISCITELLO; RABBIOSI, 2014). Em dezembro de 2015, a subsidiária brasileira da FMC Technologies possuía 43% de penetração na Petrobras, ou seja, de um universo de 1000 árvores de natal submarinas instaladas, 430 haviam sido produzidas pela empresa. Os outros 57%, estavam distribuídos entre outros 3 fabricantes. Além disso, a FMC Technologies, bateu sete recordes mundiais de profundidade no Brasil, principalmente pelo desenvolvimento de novas tecnologias.

O CENPES é o Centro de Pesquisas e Desenvolvimento da Petrobras que está localizado no campus da Universidade Federal do Rio de Janeiro (UFRJ). É um dos centros de pesquisa aplicada mais importantes do mundo. Uma das atribuições do CENPES é coordenar a articulação da Petrobras com a rede de Ciência & Tecnologia (C&T), identificando oportunidades para parcerias de desenvolvimento tecnológico o que inclui as universidades brasileiras e estrangeiras e também com os fornecedores de equipamentos, como a FMC Technologies.

A COPPE – Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia, da UFRJ, possui o maior complexo de laboratórios de engenharia do Brasil e da América Latina. A subsidiária da FMC Technologies desenvolve atualmente em parceria com a COPPE dois projetos. O primeiro é o desenvolvimento de metodologia e execução de testes submarinos para validação de braço robótico para manifold (novo produto ainda em desenvolvimento) tendo o Laboratório Oceânico (LabOceano) como parceiro. O segundo

projeto engloba a realização de ensaios com juntas dissimilares, que são aquelas feitas com materiais diferentes e nesse caso o projeto será realizado pelo Laboratório de Ensaios Não Destrutivos, Corrosão e Soldagem (LNDC) (EMBRAPII, 2015).

A EMBRAPII (Empresa Brasileira de Pesquisa e Inovação Industrial) é qualificada como uma Organização Social pelo Poder Público Federal e é ligada ao Ministério da Ciência, Tecnologia e Inovação – MCTI e ao Ministério da Educação – MEC. Atua por meio da cooperação com instituições de pesquisa científica e tecnológica, públicas ou privadas, tendo como foco as demandas empresariais e como alvo o compartilhamento de risco na fase précompetitiva da inovação. Na área de equipamentos submarinos a EMBRAPII atua em conjunto com a COPPE-UFRJ. Os atuais projetos da FMC com a COPEE, tem a intermediação da EMBRAPII.

A FMC Technologies possui seu P&D no Parque Tecnológico da UFRJ, tendo sido uma das primeiras empresas a se instalar nesse local. O Parque Tecnológico foi inaugurado em 2003 com o objetivo de criar um ambiente de cooperação entre a academia e as empresas na busca por inovação em produtos e serviços. A presença no Parque Tecnológico de empresas como a FMC se dá pela busca da proximidade com o centro de pesquisa da Petrobras (CENPES) e da infraestrutura de pesquisa e dos laboratórios da UFRJ através da EMBRAPII/COPPE, como por exemplo o laboratório oceânico.

Além desses *stakeholders*, do ponto de vista desse trabalho, nos interessou em particular analisar a relevância das Cláusulas de Pesquisa, Desenvolvimento e Inovação (PD&I), referente às resoluções da ANP (Agência Nacional de Petróleo) constantes dos contratos para exploração, desenvolvimento e produção de petróleo e gás natural, e que têm por objetivo estimular a pesquisa e a adoção de novas tecnologias para o setor. O valor das obrigações estabelecida nessas resoluções e dependendo do tipo de contrato gira em torno de 0,5% a 1% da receita bruta do campo de petróleo.

4 Análise dos Resultados

Durante as nossas entrevistas com os representantes da FMC Technologies, foi possível confirmar a dispersão dos seus centros de P&D. A FMC Technologies conta hoje com três centros de P&D no mundo, de tamanhos parecidos, sendo um localizado nos EUA (Houston) um na Noruega (Kristiansund), com um pequeno apêndice na Escócia (Aberdeen), chamado internamente de Eastern Region e Brasil (Rio de Janeiro). As várias unidades da FMC e dos seus centros de P&D estão localizadas próximas das grandes regiões produtoras de petróleo (Awate, Larsen e Mudambi, 2014); (Zedtwitz et al., 2015). Eastern Region, cobre principalmente a exploração de O&G no Mar do Norte, mas também com responsabilidade pelas atividades na Costa Oeste da África; Houston, está mais próxima da exploração no Golfo do México e finalmente Brasil cobrindo a Bacia de Campos na costa do Rio de Janeiro e Espírito Santo e mais recentemente em função da Bacia de Santos onde está localizada as grandes reservas do pré-sal. Oficialmente a matriz da FMC Technologies está localizada em Houston, no entanto, de acordo com o VP de Engenharia e Tecnologia da empresa, esses conceitos de matriz e subsidiária estão longe de refletir a realidade atual da empresa e até mesmo do setor de O&G (Awate, Larsen e Mudambi, 2014), (Birkinshaw, Julian e Hood, 2000). Embora do ponto de vista jurídico e institucional, a matriz continue em Houston, os processos decisórios estão dispersos pelas várias unidades da empresa ao redor do mundo. A partir de 2016, uma mudança significativa foi implementada do ponto de vista da gestão desses centros de P&D. Brasil e Eastern Region passam a ser responsáveis por todos os produtos e soluções Subsea, sob o comando do VP de Engenharia & Tecnologia que até 2015 era responsável somente pelo P&D no Brasil. Da mesma forma em Houston, um outro VP de

V SINGEP

Simpósio Internacional de Gestão de Projetos, Inovação e Sustentabilidade International Symposium on Project Management, Innovation and Sustainability

ISSN: 2317 - 8302

Engenharia & Tecnologia, passa a ser responsável pelas soluções chamadas de Surfaceⁱ, muito em função das oportunidades de produção de petróleo usando tecnologias de fracionamento hidráulico (exploração do shale gasii) onshore nos Estados Unidos. Foi consenso por parte de todos entrevistados, que os processos de transferência de conhecimento entre as várias unidades da empresa, ainda é pouco formal e seguem necessidades específicas de interação entre as engenharias e centros de P&D. No caso das subsidiárias e em especial no caso do Brasil, muito do desenvolvimento do produto feito localmente, para atendimento de requerimentos específicos do cliente, não pode ser aproveitado em outros locais e por outras operadoras. No entanto cabe ressaltar que em contrapartida, partes do produto que por sua complexidade tecnológica, a operadora pouco ou nada pode interferir, acabam sendo padronizadas e utilizadas globalmente. Quando perguntado diretamente sobre o compartilhamento das melhores práticas e lições aprendidas, ficou evidenciado que embora desejado e estimulado pela alta direção da empresa, os processos não estão devidamente maduros para que ocorram de forma consistente e habitual. Uma das tentativas para mitigar esse problema, é o estabelecimento de responsáveis globais por determinados produtos. Essa iniciativa da FMC em estabelecer uma função como a de Gerente Global de Produtos, tem a finalidade, portanto, de capturar o conhecimento produzido nas diversas operações da empresa. Mudambi, Piscitello e Rabbiosi, (2014) já sugeriam por parte das EMN alguma estratégia para se evitar um possível desalinhamento nos fluxos de conhecimento entre as várias unidades da multinacional. O intenso relacionamento com os clientes, acaba direcionando e regionalizando as atividades de P&D da FMC, segundo alguns dos entrevistados. Ou seja, a FMC acaba tendo uma posição "customer driven" para suas iniciativas de desenvolvimento, principalmente quando esses clientes são Companhias Nacionais de Petróleo (CNP). Quando os clientes são Companhias Internacionais de Petróleo (CIP), como por exemplo a Shell, existe uma maior interação entre os diversos centros de P&D ao redor do mundo, mas mesmo assim, esses desenvolvimentos não deixam de ser também orientados pelas necessidades dos clientes. Quando se olha por uma perspectiva mais abrangente, conforme destacado por Mudambi (2002), é importante ressaltar o papel fundamental que a Petrobrás exerce como principal cliente do mercado de O&G e como condição de demanda conforme apresentado por Porter (1989) para justificar a existência de um cluster de petróleo no Brasil. Ou seja, diferentemente de algumas outras regiões do mundo, não existem no Brasil, outras operadoras, trabalhando com volumes de produção próximos aos da Petrobras. A localização da Petrobrás na cidade do Rio de Janeiro, do CENPES na Cidade Universitária da Ilha do Fundão e da grande produção de petróleo proveniente da Bacia de Campos, tendo a cidade de Macaé como base operacional, fez com que as empresas que também se estabeleceram nessa região como é o caso da FMC adquirissem vantagem competitiva em relação aos demais players de mercado. Do ponto de vista da tecnologia foi salientado pelos entrevistados, a forte orientação da Petrobrás por novas tecnologias, o que a coloca como sendo uma das Top 5 ou Top 3 empresas de petróleo do mundo nesse critério. Esse viés tecnológico da Petrobrás, fez com que a subsidiária da FMC também precisasse acompanhar essa demanda por inovação imposta pelo cliente, com benefícios mútuos. Já as relações com a Universidade Federal do Rio de Janeiro, se intensificaram somente depois da construção do centro de P&D da FMC, conhecido como Tech Center no Parque Tecnológico do Rio de Janeiro, e principalmente com a criação da EMBRAPII/COPPE-UFRJ em 2015. Anteriormente à criação da EMBRAPII/COPPE-UFRJ, a experiência da FMC com a UFRJ era praticamente nula, de acordo com a visão do VP de Engenharia & Tecnologia da FMC, mas em desacordo com a visão da representante da UFRJ. A FMC participa de alguns desenvolvimentos com a EMBRAPII/COPPE junto ao Laboratório Oceânico e ao Laboratório de Ensaios Não Destrutivos, Corrosão e Soldagem.

V SINGEP Simpósio Internacional de Gestão de Projetos, Inovação e Sustentabilidade International Symposium on Project Management, Innovation and Sustainability

ISSN: 2317 - 8302

Uma das principais constatações durante a visita à FMC e as entrevistas que foram realizadas, foi o fato de não haver processos muito estruturados ou formais para o gerenciamento dos fluxos de conhecimento, embora como colocado por Mudambi (2002): "O bom gerenciamento do conhecimento é visto hoje em dia, como parte crucial do sucesso de uma empresa" (Mudambi, 2002, p.2). Mudambi, Piscitello e Rabbiosi (2014) citam a complexidade em gerenciar-se esses fluxos de conhecimento de cada uma das unidades das EMN e do papel fundamental da matriz em conduzir esses processos para repatriação das inovações tecnológicas que ocorrem nas subsidiárias. A reestruturação que contempla a unificação gerencial dos centros de P&D da FMC, por tipo de aplicações, Subsea e Surface introduzida no início de 2016, independentemente de onde estão localizados os recursos humanos e laboratórios, vem provavelmente para fechar essa lacuna tão importante no gerenciamento do conhecimento, opinião que também é compartilhada com alguns dos entrevistados. Durante as entrevistas com a FMC foram apresentados alguns exemplos da atuação da subsidiária nos processos de inovação. O primeiro é referente ao separador submarino água-óleo (SSAO), que basicamente separa o óleo da água e da areia que vêm misturados durante a extração do petróleo. Tradicionalmente esse processo é realizado na plataforma de petróleo, porém fazê-lo em ambiente subsea proporciona uma redução significativa dos custos da própria plataforma. O primeiro SSAO foi instalado no campo de Marlim, na Bacia de Campos em 2012, tendo sido o seu desenvolvimento realizado em três frentes, uma delas na Holanda, onde há uma unidade da empresa voltada para separação compacta, outra na Noruega, onde foi desenvolvido o conceito, e a terceira, e principal, no Brasil, onde foi feito todo o resto do estudo, do desenvolvimento e da fabricação. De acordo com a tipologia de Zedtwitz et al. (2015), nesse exemplo a notação poderia ser tanto (ADDA) e classificado como "spillover de economia emergente", quanto (ADDD) ainda sem classificação (figura 3). Um segundo projeto, que acabou sendo cancelado pela Petrobrás, quando já se encontrava com 40% do seu estágio de desenvolvimento, foi para o campo de Congro, também na Bacia de Campos. Nesse caso o conceito era da Petrobrás (CENPES), mas estava sendo desenvolvido pela subsidiária da FMC no Brasil. Quando se pensa esses dois processos pelo grau de envolvimento do cliente, temos que no caso de Marlim a patente do produto é da FMC, ou seja, produto desenvolvido no conceito "design for". Já no caso de Congro, a tecnologia e patente são da Petrobrás, um misto de "design by" e "design with" de acordo com Paasi et al. (2014). O desenvolvimento de Congro foi compartilhado entre Petrobrás e FMC, baseado numa especificação originada no CENPES.

A partir de meados de 2014, principalmente pela baixa dos preços internacionais do petróleo, e por conseguinte, pela reprogramação da Petrobrás com relação à sua carteira de encomendas, redirecionou-se os esforços da FMC por inovações de produto com foco na redução de custos, não só pelo ponto de vista do CAPEX, ou seja, do investimento inicial da operadora para a aquisição do ativo,mas também pelo ponto de vista do OPEX, ou seja, dos custos de operação e manutenção do equipamento ao longo da sua vida útil, que no caso desses equipamentos submarinos é estimado entre 20 a 25 anos.

Figura 3 - Tipologia de Inovação Reversa do SSAO para o campo de Marlim e Congro Nota: A typology of reverse innovation. **Journal of Product Innovation Management**, s.l., v. 32, n. 1, p. 12–28, 2015, adaptado pelo autor

4.1 Contribuição Teórica

A contribuição teórica desse trabalho é o de expandir a tipologia de inovação reversa proposta por Zedtwitz et al.(2015), trazendo à luz das discussões a possibilidade de ocorrer inovação aberta nas fases de conceito (ideação) e/ou de desenvolvimento de produto, mesmo quando a subsidiária da EMN está localizada em uma economia emergente. As análises de dados secundários, as entrevistas realizadas, os exemplos que nos foram apresentados por cada um dos *stackholders*, bem como nossas observações em campo permitiram validar a existência da inovação aberta de forma inerente e antecessora à inovação reversa no segmento industrial estudado. Embora Zedtwitz et al. (2015), não tivesse a intenção de incluir e analisar todas as possíveis formas de inovação que poderiam ocorrer de forma simultânea à inovação reversa na sua proposta de tipologia reversa, entendemos que a inovação aberta, no segmento de O&G, é extremamente relevante, para ser desconsiderada. Portanto, a proposição de uma tipologia somente pela perspectiva interna à EMN adotada por Zedtwitz et al.(2015), pode ser uma lacuna que esse trabalho vem a preencher.

Figura 4 – Tipologia expandida da inovação reversa, considerando a inovação aberta

Nota: A typology of reverse innovation. **Journal of Product Innovation Management**, s.l., v. 32, n. 1, p. 12–28, 2015, adaptado pelo autor

TIPOS DE FLUXOS	TIPO DE INOVAÇÃO ABERTA	Robustez /Força	EXEMPLO
ADOXX	Ocorre somente na fase de desenvolvimento de produto no país de economia emergente, sendo que a conceito ocorreu em uma economia desenvolvida	Fraca	Separador SSAO do Campo de Merlim
DOAXX	Ocorre somente na fase de conceito do produto em uma economia emergente, mas o desenvolvimento ocorre em uma economia desenvolvida	Fraca	Sem exemplo identificado
DODOXX	Inovação aberta ocorre tanto na fase de conceito quanto de desenvolvimento de produto em países de economia emergente	Forte	Separador SSAO para o Campo de Congro Manifold Robótico
DODCXX	Inovação aberta ocorre somente na fase de conceito do produto em uma economia emergente, mas o desenvolvimento ocorre em uma economia emergente, mas de forma fechada	Fraco	Sem exemplo identificado
DCDOXX	A conceito do produto ocorre em uma economia emergente, mas de forma fechada, o desenvolvimento de produto ocorre também em uma economia emergente, porém de forma aberta	Fraco	Sem exemplo identificado

Quadro 2:

Tipos de Inovação aberta e reversa conforme modelo proposto identificadas na FMC

Nota. Fonte: Autor

5 Conclusão

Concluímos que as relações e os processos de co-criação entre os diversos stakeholders da subsidiária de uma EMN, bem como entre os diversos membros do cluster industrial, ainda se encontram em fase de desenvolvimento. Persistem restrições e desconfianças entre os membros, principalmente com respeito a proteção da propriedade intelectual em maior nível por parte das EMN. Fica evidente que no caso do cluster de petróleo, as resoluções da ANP, foram fundamentais e um fator chave no sentido de fomentar os projetos de PD&I, colocando enormes quantidades de recursos à disposição das universidades, gerando mais de 800 projetos de P&D capitaneados pelo CENPES. A recente alteração da resolução da ANP, incluindo também as áreas de P&D da indústria, vem de encontro a necessidade de se inserir esse elemento tão importante da cadeia de valor, em um modelo que já se provou ser eficiente, como no caso das universidades. Portanto entendemos que as resoluções da ANP, são fatores determinantes para que processos de inovação aberta ocorram nesse segmento industrial. Concluímos ainda, que o volume de investimentos direcionado as áreas de P&D, associados a mão de obra especializada da universidade, e da existência de laboratórios equivalentes aos encontrados em economias mais avançadas, afeta positivamente as subsidiárias das EMN localizadas no Brasil a participarem de processos de co-criação, para absorverem esse conhecimento com o intuito de utilizá-lo em outras partes do mundo. Finalmente pudemos observar que se os processos de repatriação do conhecimento e da inovação produzidos no Brasil ainda não são totalmente maduros, porem ações tem sido tomadas no sentido de equacionar esse problema.

6 Referências

ANAND, J.; DELIOS, A. Absolute and relative resources as determinants of international acquisitions. **Strategic Management Journal**, Michigan-EUA, v. 23, n. 2, p. 119–134, 2002. AWATE, S.; LARSEN, M. M.; MUDAMBI, R. Accessing vs sourcing knowledge: a comparative study of R&D internationalization between emerging and advanced economy firms. **Journal of International Business Studies**, Philadelphia-USA, v. 46, n. 1, p. 63–86, 2014.

BIRKINSHAW, J., HOOD, N. Characteristics of Foreign Subsidiaries in Industry Clusters. **Journal of International Business Studies**, Philadelphia-USA, v.31, n.1, p.141–154, 2000. CHESBROUGH, H. Business model innovation: opportunities and barriers. **Long Range Planning**, Berkeley-USA, v. 43, n. 2-3, p. 354–363, 2010.

______; BOGERS, M. **Explicating Open Innovation**: clarifying an emerging paradigm for understanding innovation keywords. Londres: Oxford University Press, 2014.

COSTA, S.; BORINI, F.; AMATTUCCI, M. Inovação global de subsidiárias estrangeiras localizadas em mercados emergentes. **Rev. Adm. Contemp.**, Rio de Janeiro, v.17, n.4, p. 459–478, 2013.

DELLESTRAND, H. Subsidiary embeddedness as a determinant of divisional headquarters involvement in innovation transfer processes. **Journal of International Management**, Philadelphia-EUA, v. 17, n. 3, p. 229–242, set. 2011.

DODGSON, M.; GANN, D.; SALTER, A. **The Management of Technological Innovation:** strategy and practice. 2.ed. New York: Oxford University Press, 2008.

GIELFI, G. et al. User-producer interaction in the Brazilian oil industry: the relationship between Petrobras and its suppliers of wet Christmas tree. **Journal of Technology Management and Innovation**, Campinas, v. 8, n. 1, p. 117–127, 2013.

GOULD, R. W. Open Innovation and Stakeholder Engagement. **Journal of Technology Management & Innovation**, Campinas, v. 7, n. 3, p. 1–12, 2012.

GOVINDARAJAN, V.; TRIMBLE, C. **Inovação reversa:** descubra as oportunidades ocultas nos mercados emergentes. Rio de Janeiro: Elsevier, 2012.

MEYER, K. E.; MUDAMBI, R.; NARULA, R. Multinational Enterprises and Local Contexts: The Opportunities and Challenges of Multiple Embeddedness. **Journal of Management Studies**, s.l., v. 48, n. 2, p. 235–252, 2011.

MICHAILOVA, S.; MUSTAFFA, Z. Subsidiary knowledge flows in multinational corporations: Research accomplishments, gaps, and opportunities. **Journal of World Business**, s.l., v. 47, n. 3, p. 383–396, jul. 2012.

MUDAMBI, R. Knowledge management in multinational firms. **Journal of International Management**, Philadelphia-USA, v. 8, s.n., p. 1–9, 2002.

MUDAMBI, R.; PISCITELLO, L.; RABBIOSI, L. Reverse Knowledge Transfer in MNEs: Subsidiary Innovativeness and Entry Modes. **Long Range Planning**, s.l., v. 47, n. 1-2, p. 49–63, fev. 2014.

PAASI, J. et al. Challenges for Product and Service Providers in Open Innovation With Customers in Business-To-Business Markets. **International Journal of Innovation Management**, v. 18, n. 02, p. 1450012, Philadelphia-USA, 2014.

PHENE, A.; ALMEIDA, P. Innovation in multinational subsidiaries: The role of knowledge assimilation and subsidiary capabilities. **Journal of International Business Studies**, Salt Lake City-EUA, v.39, s.n., p. 901-919, 2008.

PORTER, E. M. A Vantagem Competitiva das Nações. 7a Edição ed. Rio de Janeiro:

Campus, 1989.

RABBIOSI, L. Subsidiary roles and reverse knowledge transfer: an investigation of the effects of coordination mechanisms. **Journal of International Management**, v.17, n.2, p.97-113, Philadelphia-EUA, 2011.

SCHUTTE, G. R. Brazil: New Developmentalism and the Management of Offshore Oil Wealth.pdf. **European Review of latin American and Caribbean Studies**, São Bernardo do Campo, s.v., n.95, p. 49–70, out. 2013.

STORPER, M. **The Regional World**: Territorial Development in a Global Economy Perspectives on Economic Change. New Jersey: Princeton University Press, 1997.

YIN, R. K. Estudo de Caso: Planejamento e Métodos. 4 . ed. ed. Porto Alegre: Sage Publication Inc, 2010.

ZEDTWITZ, M. et al. A typology of reverse innovation. **Journal of Product Innovation Management**, s.l., v. 32, n. 1, p. 12–28, 2015.

¹ Surface – equipamentos similares aos utilizados em aplicações *subsea*, porém destinados à produção em território continental (*onshore*)

ii Shale gas – No Brasil conhecido como gás de xisto, ou gás não convencional