COMPUTER VISION - FINAL EXAM REVIEW OUTLINE

1. Recognition with local characteristics

- SIFT (theory)
 - o **Parameters**: low-constrast extrema, edge-like extrema. Try to understand and explain these parameters. You can find the explanation.
 - o **Descriptor**: try to understand and explain SIFT descriptor for each keypoint. For example: HOG for each block; How many blocks, etc.

- Homography (theory):

- o How to determine homography matrix.
- O Something relates to cv2.findHomography. Please focus on 2 parameters: RANSAC and ransacReprojThreshold.

2. Classification

- HOG (theory)
 - o Steps to calculate HOG: 5 steps.
 - o Try to understand and compute gradient, magnitude.
 - Ouá trình tao vector HOG trên ảnh 64x128
- SVM (theory)
 - o Parameter C (trade-off between emperical and theory error in SVM)
- **Implementation**: code to detect pedestrians in an image/video.

3. Motion & Optical Flow

- Lucas-Kanade (theory)
 - o Optical flow equation (Brightness Constancy Equation)
 - Motrion Vector
 - Windowed Intensity Values → n linear equations (local window with n pixels) →
 Over-determined issue → Least squares fitting to obtain the two-equation-two-unknown problem.
- Lucas-Kanade (implementation)
 - Speed estimation.
 - Object Tracking