THE BOUNDED SPHERICAL FUNCTIONS ON THE CARTAN MOTION GROUP

SIGURDUR HELGASON

ABSTRACT. The bounded spherical functions are determined for a complex Cartan motion group.

1. Introduction

Consider a symmetric space X = G/K of noncompact type, G being a connected noncompact semisimple Lie group with finite center and K a maximal compact subgroup. Let $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ be the corresponding Cartan decomposition, \mathfrak{p} being the orthocomplement of \mathfrak{k} relative to the Killing form $B(=\langle \ , \ \rangle)$ of \mathfrak{g} . Let $\mathfrak{a} \subset \mathfrak{p}$ be a maximal abelian subspace, Σ the set of root of \mathfrak{g} relative to \mathfrak{a} , \mathfrak{a}^+ a fixed Weyl chamber and Σ^+ the set of roots α positive on \mathfrak{a}^+ . Let ρ denote the half sum of the $\alpha \in \Sigma^+$ with multiplicity. The spherical functions on X (and G) are by definition the K-invariant joint eigenfunctions of the elements in $\mathbb{D}(X)$, the algebra of G-invariant differential operators on X. By Harish-Chandra's result [HC58] the spherical functions on X are given by

(1.1)
$$\phi_{\lambda}(gK) = \int_{K} e^{(i\lambda - \rho)(H(gK))} dk, \quad \phi(eK) = 1,$$

where $\exp H(g)$ is the A factor in the Iwasawa decomposition G = KAN (N nilpotent) and λ ranges over the space \mathfrak{a}_c^* of complex-valued linear functions on \mathfrak{a} . Also, $\phi_{\lambda} \equiv \phi_{\mu}$ if and only if the elements $\lambda, \mu \in \mathfrak{a}_c^*$ are conjugate under W.

Let $L^{\natural}(G)$ denote the (commutative) Banach algebra of K-bi-invariant integrable functions on G. The maximal ideal space of $L^{\natural}(G)$ is known to consist of the kernels of the spherical transforms

$$f \to \int_G f(g)\phi_{-\lambda}(g) dg$$

for which $\phi_{-\lambda}$ is bounded. These bounded spherical functions were in [HJ69] found to be those ϕ_{λ} for which λ belongs to the tube $a^* + iC(\rho)$ where $C(\rho)$ is the convex hull of the points $s\rho(s \in W)$.

This result is crucial in proving that the horocycle Radon transform is injective on $L^1(X)$ ([H70], Ch. II).

2. The boundedness criterion.

In this note we deal with the analogous question for the Cartan motion group G_0 . This group is defined as the semidirect product of K and \mathfrak{p} with respect to the adjoint action of K on \mathfrak{p} . The $K_0 = G_0/K$ is naturally identified with the Euclidean space \mathfrak{p} . The element $g_0 = (k, Y)$ actions on \mathfrak{p} by

$$g_0(Y') = Ad(k)Y' + Y \quad k \in K, \ Y, Y' \in \mathfrak{p},$$

so the algebra $\mathbb{D}(X_0)$ of G_0 —invariant differential operators on X_0 is identified with the algebra of Ad(K)—invariant constant coefficient differential operators on \mathfrak{p} . The corresponding spherical functions on X_0 are given by

(2.1)
$$\psi_{\lambda}(Y) = \int_{K} e^{i\lambda(Ad(k)Y)} dk \quad \lambda \in \mathfrak{a}_{c}^{*},$$

and $\psi_{\lambda} \equiv \psi_{\mu}$ if and only if λ and μ are W-conjugate. See e.g. [H84], IV §4. Again, the maximal ideal space of $L^{\natural}(G_0)$ is up to W-invariance identified with the set of λ in \mathfrak{a}_c^* for which ψ_{λ} is bounded. Since ρ is related to the curvature of G/K it is natural to expect the bounded ψ_{λ} to come from replacing $C(\rho)$ by the origin, in other words ψ_{λ} is would be expected to be bounded if and only if λ is real, that is $\lambda \in \mathfrak{a}^*$.

The bounded criterion in [HJ69] for X relies on Harish-Chandra's expansion for ϕ_{λ} , combined with the reduction to the boundary components of X. These are certain subsymmetric spaces of X. These tools are not available for X_0 so the "tangent space analysis" in [H80] relies on approximating ψ_{λ} by ϕ_{λ} suitably modified. Although several papers ([BC86], [R88], [SØ05]) are directed to asymptotic properties of the function ψ_{λ} the boundedness question does not seem to be addressed there. In this note we only give a partial solution through the following result.

Theorem 2.1. Assume the group G complex. The spherical function ψ_{λ} on G_0 is bounded if and only if λ is real, i.e. $\lambda \in \mathfrak{a}^*$.

For $\lambda \in \mathfrak{a}_c^*$ let $\lambda = \xi + i\eta$ with $\xi, \eta \in \mathfrak{a}^*$. It remains to prove that if $\lambda_0 = \xi_0 + i\eta_0$ with $\eta_0 \neq 0$ then ψ_{λ_0} is unbounded. For $\lambda \in \mathfrak{a}_c^*$ let $A_\lambda \in \mathfrak{a}_c$ be determined by $\langle A_\lambda, H \rangle = \lambda(H)$ $(H \in \mathfrak{a})$. With $i\lambda_0 = i\xi_0 - \eta_0$ we may by the W-invariance of ψ_λ in λ assume that $-A_{\eta_0} \in \overline{\mathfrak{a}^+}$ (the closure of \mathfrak{a}^+ .)

Let $U \subset W$ be the subgroup fixing λ_0 and $V \subset W$ the subgroup fixing η_0 . Then $U \subset V$ and

$$(2.2) \psi_{s\xi_0+i\eta_0} = \psi_{\xi_0+i\eta_0} \text{for } s \in V.$$

In addition we assume that for the lexicographic ordering of \mathfrak{a}^* defined by the simple roots $\alpha_1, \ldots, \alpha_\ell$ we have $\xi_0 \geq s\xi_0$ for $s \in V$.

In particular,

(2.3)
$$\alpha(A_{\varepsilon_0}) \ge 0$$
 for $\alpha \in \Sigma^+$ satisfying $\alpha(A_{n_0}) = 0$.

Lemma 2.2. The subgroup U of W fixing λ_0 is generated by the reflections s_{α_i} where α_i is a simple root vanishing at A_{λ_0} .

Proof. We first prove that some of the α_i vanishes at A_{λ_0} . The group U is generated by the s_{α} for which $\alpha > 0$ vanishes on λ_0 ([H78], VII, Theorem 2.15). If α is such then $\alpha(-A_{\eta_0}) = 0$ and since $\alpha = \sum_j n_j \alpha_j$ ($n_j \neq 0$ in \mathbb{Z}^+) and $\alpha_j(-A_{\eta_0}) \geq 0$ we see that each of these α_j vanishes on $A_{-\eta_0}$. Since $\alpha(A_{\xi_0}) = 0$ and $\alpha_j(A_{\xi_0}) \geq 0$ by (2.3) for each j we deduce $\alpha_j(A_{\xi_0}) = 0$.

Let U' denote the subgroup U generated by those s_{α_i} with α_i vanishing at λ_0 . For each $\alpha > 0$ mentioned above we shall prove $\alpha = s\alpha_p$ where $s \in U'$ and α_p is simple and vanishes at A_{λ_0} . We shall prove this by induction on $\sum_i m_i$ if $\alpha = \sum_i m_i \alpha_i$ ($m_i \neq 0$ in \mathbb{Z}^+). The statement is clear if $\sum_i m_i = 1$ so assume $\sum_i m_i > 1$. Since $\langle \alpha, \alpha \rangle > 0$ we have $\langle \alpha, \alpha_k \rangle > 0$ for some k among the indices i above. Then $\alpha \neq \alpha_k$ (by $\sum_i m_i > 1$). Since s_{α_k} permutes the positive roots $\neq \alpha_k$ we have $s_{\alpha_k} \alpha \in \sum_i^+$ and $s_{\alpha_k} \alpha = \sum_j m_j' \alpha_j (m_j' \in \mathbb{Z}^+)$ and by the choice of $k, \sum_i m_j' < \sum_i m_i$. Now $\alpha(A_{i\lambda_0}) = 0$ and $\alpha_i(A_{-\eta_0}) \geq 0$ so for each i in the sum for α above, $\alpha_i(A_{\eta_0}) = 0$. Hence by (2.3) $\alpha_i(A_{\xi_0}) = 0$. In particular $s_{\alpha_k} \in U$. Thus the induction assumption applies to $s_{\alpha_k} \alpha$ giving a $s' \in U'$ for which $s_{\alpha_k} \alpha = s' \alpha_p$. Hence $\alpha = s\alpha_p$ with $s \in U'$. But then $s_{\alpha} = ss_{\alpha_k} s^{-1}$ proving the lemma.

Using Harish-Chandra's integral formula [HC57] Theorem 2 we have

(2.4)
$$\psi_{\lambda}(\exp H) = c_0 \frac{\sum_{s \in W} \epsilon(s) e^{i\langle s A_{\lambda}, H \rangle}}{\pi(H) \pi(A_{\lambda})} \qquad \langle H \in \mathfrak{a} \rangle,$$

where c_0 is a constant, $\langle \ , \ \rangle$ the Killing form, $\epsilon(s) = \det s$ and π the product of the positive roots. If η_0 is regular so $-A_{\eta_0} \in \mathfrak{a}^+$ then $V = U = \{e\}$ and $\pi(A_{\lambda_0}) \neq 0$. Fix $H_0 \in \mathfrak{a}^+$ and $\lambda = \lambda_0$ in the sum (2.4). With $H = tH_0(t > 0)$ the term in (2.4) with s = e will outweigh all the others as $t \to +\infty$ so ψ_{λ} is unbounded.

We now consider the case $\pi(A_{\lambda_0}) = 0$.

Let π' denote the product of the positive roots β_1, \ldots, β_r vanishing at λ_0 and π'' the product of the remaining positive roots. For $\lambda = \lambda_0$ we want to divide the factor $\pi'(\lambda_0)$ into the numerator of (2.4). We do this by multiplying (2.4) by $\pi'(\lambda)$, then applying the differential operator $\partial(\pi')$ in the variable λ and finally setting $\lambda = \lambda_0$. The theorem then follows from the following lemma.

Lemma 2.3. Let $\eta_0 \neq 0$. Then the function

$$\zeta_{\lambda}(H) = \frac{\sum_{s \in W} \epsilon(s) e^{i\langle s A_{\lambda}, H \rangle}}{\pi(A_{\lambda})}$$

is for the case $\lambda = \lambda_0$ unbounded on \mathfrak{a}^+ .

Proof. We have

$$\pi'(\lambda)\zeta_{\lambda}(H) = \frac{1}{\pi''(\lambda)} \sum_{s \in W} \epsilon(s)e^{i\langle sA_{\lambda}, H \rangle}.$$

Applying $\partial(\pi') = \partial(\beta_1) \dots \partial(\beta_r)$ in λ and putting $\lambda = \lambda_0$ we see that

(2.5)
$$c \zeta_{\lambda_0}(H) = \sum_{s \in W} P_s(H) e^{i\langle s A_{\lambda_0}, H \rangle}.$$

Here c is a constant and P_s the polynomial

$$P_s(H) = \left[\partial(\pi')_{\lambda} \left(\epsilon(s) \frac{1}{\pi''(\lambda)} e^{is\lambda(H)} \right) \right]_{\lambda = \lambda_0} e^{-is\lambda_0(H)}$$

whose highest degree term is a constant times

(2.6)
$$\epsilon(s) \frac{1}{\pi''(\lambda_0)} (s\pi')(H).$$

We do not need the exact value of c but for r = 2, 3, respectively, it equals (with $x_{ij} = \langle \alpha_i, \alpha_j \rangle$)

$$x_{12}^2 + x_{11}x_{22}$$
, $x_{11}x_{23}^2 + x_{22}x_{13}^2 + x_{33}x_{12}^2 + x_{11}x_{22}x_{33} + 2x_{12}x_{13}x_{23}$.

We break the sum (2.5) into two parts, sum over V and sum over $W \setminus V$. For the first we consider Σ_V as $\Sigma_{V/U} \Sigma_U$. Then (2.5) can be written

(2.7)
$$c \zeta_{\lambda_0}(H) = e^{-\eta_0(H)} \left[\sum_{V/U} e^{is\xi_0(H)} \sum_{\sigma \in U} P_{s\sigma}(H) \right] + \sum_{W \setminus V} P_s(H) e^{is\lambda_0(H)}.$$

We put here $H' = -A_{\eta_0}$, let $H_0 \in \mathfrak{a}^+$ be arbitrary and set $H = tH_0(t > 0)$. Then the second term in (2.7) equals

(2.8)
$$\sum_{s \notin V} P_s(tH_0) e^{is\xi_0(tH_0)} e^{\langle sH', tH_0 \rangle}.$$

By a standard property of \mathfrak{a}^+ we have

$$\langle H_1, H_2 \rangle \ge \langle sH_1, H_2 \rangle$$
 if $H_1, H_2 \in \mathfrak{a}^+$

so taking limit,

$$\langle sH' - H', H \rangle \le 0, \quad H \in \mathfrak{a}^+.$$

If $s \notin V$ then $sH' - H' \neq 0$. Thus the map $H \to \langle sH' - H', H \rangle$ is open from \mathfrak{a} to \mathbb{R} mapping \mathfrak{a}^+ into $\{t \leq 0\}$, not taking there the boundary value 0. Hence we get

(2.9)
$$\langle H', H_0 \rangle > \langle H', sH_0 \rangle$$
 for $s \notin V$.

Equivalently, dist $(H_0, H') < \text{dist}(H_0, sH')$ for $s \notin V$.

Consider (2.7) with $H = tH_0$. Assume the expression in the bracket has absolute value with $\limsup_{t\to+\infty} \neq 0$. Considering (2.9) the first term in (2.7) would have exponential growth larger than that of each term in (2.8).

Thus $c \neq 0$ and

$$\lim_{t \to +\infty} \zeta_{\lambda_0}(tH_0) = \infty$$

implying Lemma 2.3 in this case.

We shall now exclude the possibility that the quantity in the bracket in (2.7) (with $H = tH_0$) has absolute value with $\limsup_{t\to\infty} = 0$. For this we use the following elementary result of Harish–Chandra [HC58], Corollary of Lemma 56: Let $a_1, \ldots a_n$ be nonzero complex numbers and $p_0, \ldots p_n$ polynomials with complex coefficients.

Suppose

(2.10)
$$\limsup_{t \to \infty} \left| p_0(t) + \sum_{j=1}^n p_j(t) e^{a_j t} \right| \le a$$

for some $a \in \mathbb{R}$. Then p_0 is a constant and $|p_0| \leq a$. This implies the following result.

Let $k_1 \dots k_n \in \mathbb{R}$ be different and p_1, \dots, p_n polynomials. If

(2.11)
$$\lim \sup_{t \to +\infty} \left| \sum_{1}^{n} e^{ik_r t} p_r(t) \right| = a < \infty$$

then each p_r is constant. If a = 0 then each $p_r = 0$. This follows from (2.10) by writing the above sum as

$$e^{ik_rt}\left(p_r(t)+\sum_{j\neq r}e^{i(k_j-k_r)t}p_j(t)\right).$$

Note that in the sum

(2.12)
$$\sum_{V/U} e^{is\xi_0(tH_0)} \sum_{\sigma \in U} P_{s\sigma}(tH_0)$$

all the terms $s\xi_0$ are different $(s_1, s_2 \in V \text{ with } s_1\xi_0 = s_2\xi_0 \text{ implies } s_2^{-1}s_1 \in U)$. Thus we can choose $H_0 \in \mathfrak{a}^+$ such that all $s\xi_0(H_0)$ are different.

We shall now show that one of the polynomial in (2.12), namely the one for s = e,

(2.13)
$$\sum_{\sigma \in U} P_{\sigma}(tH_0)$$

is not identically 0. For this note that the highest degree term in P_{σ} is a constant (independent of σ) times

(2.14)
$$\epsilon(\sigma) \frac{1}{\pi''(\lambda_0)} (\sigma \pi'') (tH_0).$$

Now each σ permutes the roots vanishing at A_{λ_0} . Hence $\sigma \pi' = \epsilon'(\sigma)\pi'$ where $\sigma \to \epsilon'(\sigma)$ is a homomorphism of U into \mathbb{R} . We now use Lemma 2.2. Since each $s_{\alpha_i} \in U$ maps α_i into $-\alpha_i$ and permutes the other positive roots vanishing at λ_0 we see that $\epsilon'(s_{\alpha_i}) = -1 = \epsilon(s_{\alpha_i})$. Thus by Lemma 2.2 $\epsilon'(\sigma) = \epsilon(\sigma)$ for each $\sigma \in U$. Thus (2.14) reduces to

$$\frac{1}{\pi''}\pi'(tH_0).$$

This shows that the polynomial in (2.13) is not identically 0. In view of (2.11) this shows that the lim sup discussed is $\neq 0$ and Lemma 2.3 established.

I thank Mogens Flensted-Jensen and Angela Pasquale for useful discussions.

References

[BC86] D. Bartlet and J.L. Clerc, Le comportement á l'infini des fonctions de Bessel géneralisées I Advan. Math. 61 (1986), 165–183.

[HC57] Harish-Chandra, Differential operators on a semisimple Lie algebra Amer. J. Math. 79 (1957), 241–310.

[HC58] Harish-Chandra, Spherical functions on a semisimple Lie group I. Amer. J. Math 80 (1958), 241–310.

[H70] S. Helgason, A duality for symmetric spaces with applications to group representations. Adv. Math. 5 (1970), 1–154.

[H78] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces. Acad. Press 1978.

[H80] S. Helgason, A duality for symmetric spaces with applications to group representations. Tangent space analysis. Advan. Math. 30 (1980), 297–323.

[H84] S. Helgason, Groups and Geometric Analysis Acad. Press, 1984.

[HJ69] S. Helgason and K. Johnson, The bounded spherical functions on symmetric spaces Adv. Math. 3 (1969), 586–593.

[NPP13] E.K. Narayanan, A. Pasquale and S. Pusti, Asymptotics of Harish-Chandra expansions, bounded hypergeometric functions associated with root systems and applications. arXiv: 101.3891v2, Aug. 2013.

[R88] C. Rader, Spherical functions on Cartan motion groups Trans. Amer. Math. Soc. 310 (1988), 1–45.

[SØ05] S.B. Said and B. Ørsted, Analysis on flat symmetric spaces J. Math. Pure Appl. 84 (2005), 1393–1426.