Trabajo 1 - Análisis de Regresión

Fabián Ramírez

```
# Incluyo la libreria de los datos
library('carData')
library('alr3')
# Una función útil
library('model')
# Se instala con el siguiente codigo
# if (!require('devtools')) install.packages('devtools')
# devtools::install_github('fhernanb/model', force=TRUE)

# Adjunto los datos con los nombres de sus variables.
attach(UN1)
#Cantidad de datos
```

```
#Cantidad de datos
n = length(Fertility)
n
# Un grafico de los datos
plot(Fertility, PPgdp)
```


Problema 2.6

2.6.1

Realizaremos una regresión del modelo:

$$\log_{10}(\text{Fertility}_i) = \beta_0 + \beta_1 \cdot \log_{10}(\text{PPgdp}_i) + u_i$$

Donde $u_i \sim \mathcal{N}(0, \sigma^2)$ e i = 1, ..., 193.

```
y = log(Fertility,10)
x = log(PPgdp,10)
reg1<-lm(y~x)
summary(reg1)</pre>
```

Call:

 $lm(formula = y \sim x)$

Residuals:

```
Min 1Q Median 3Q Max -0.48587 -0.08148 0.03058 0.11327 0.39130
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.17399 0.05879 19.97 <2e-16 ***

x -0.22116 0.01737 -12.73 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1721 on 191 degrees of freedom

Multiple R-squared: 0.4591, Adjusted R-squared: 0.4563

F-statistic: 162.1 on 1 and 191 DF, p-value: < 2.2e-16
```

Por tanto el modelo queda de la forma:

$$\log_{10}(\widehat{\mathtt{Fertility}}_i) = 1{,}17399 - 0{,}22116 \cdot \log_{10}(\mathtt{PPgdp}_i)$$

con i = 1, ..., 193

2.6.2

Realizar un gráfico de la regresión

```
plot(x,y)
abline(lm(y~x))
```


2.6.3

Queremos realizar la prueba:

$$\begin{cases} H_0: \beta_1 = 0 \\ H_1: \beta_1 < 0 \end{cases}$$

```
t_test=beta_test(reg1, 'less', 'x', 0) [3]
```

```
Estimate Std.Err t value Pr(>t)
x -0.221160 0.017368 -12.734 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Notemos que el t^* visto en clases es -12,734 y el valor p es del orden de -16, prácticamente 0, por lo tanto la significancia mínima para rechazar H_0 es prácticamente 0, por tanto por ejemplo con un nivel de significancia de 0.05 se debe rechazar H_0 .

2.6.4

Notemos que el coeficiente de determinación es:

```
summary(reg1)
```

```
Call:
```

```
lm(formula = y \sim x)
```

Residuals:

```
Min 1Q Median 3Q Max -0.48587 -0.08148 0.03058 0.11327 0.39130
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.17399 0.05879 19.97 <2e-16 ***

x -0.22116 0.01737 -12.73 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1721 on 191 degrees of freedom

Multiple R-squared: 0.4591, Adjusted R-squared: 0.4563

F-statistic: 162.1 on 1 and 191 DF, p-value: < 2.2e-16
```

Eso significa que un 45,91% de la variabilidad (varianza) del logaritmo de Fertility puede ser explicada por el logaritmo de PPgdp

2.6.5

Donde el intervalo de confianza para β_1 viene dado por [-0,255418;-0,186902] lo cual se interpreta con la frase 'al variar en una unidad el log(PPgdp), se espera que varié log(Fertility) en un número en el intervalo.

Mientras que para la variable original:

Entonces para β_1 el intervalo de confianza viene dado por [0,5553694;0,6502764] lo que significa que la tasa de fertilidad se multiplicará por un número entre aproximadamente 0,55 y 0,65, lo que equivale a una disminución de entre 45% y 55%

2.6.6

Realizaremos predicciones de \log_{10} Fertility cuando PPgdp = 1000, junto con los intervalos de confianza con un 95% de confiabilidad.

fit lwr upr
1 0.5105127 0.1700834 0.8509421

Por tanto el intervalo de confianza para la predicción es [0,1700834;0,8509421].

Mientras que en las variables originales.

```
10^predict(reg1,valor_a_predecir,interval='prediction')
```

```
fit lwr upr
1 3.239759 1.479392 7.094831
```

Por tanto el intervalo de confianza para la predicción es [1,479392;7,094831].

2.6.7

Notemos que:

```
# La localidad con mayor valor de Fertility es:
rownames(UN1)[Fertility == max(Fertility)]
```

'Niger'

```
# La localidad con menor valor de Fertility es:
rownames(UN1)[Fertility == min(Fertility)]
```

'Hong.Kong'

```
# Las dos localidades con mayores residuos positivos de la regresión son:
rownames(UN1)[order(resid(reg1),decreasing=TRUE)[c(1,2)]]
```

- 1. 'Equatorial.Guinea'
- 2. 'Oman'

```
# Las dos localidades con mayores residuos negativos de la regresión son:
rownames(UN1)[order(resid(reg1),decreasing=FALSE)[c(1,2)]]
```

- 1. 'Armenia'
- 2. 'Ukraine'

Problema 2.7

2.7.1

Notemos que:

$$\mathbb{E}\left[y|x\right] = y_i = \beta_1 x_i + u_i$$

con i = 1, ..., n y $u_i \sim \mathcal{N}(0, \sigma^2)$ con $cov(u_i, u_j) = 0$ para $i \neq j$. Si escribimos:

$$Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$U = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$$

Tenemos que el modelo es:

$$Y = X\beta_1 + U$$

Entonces buscamos un β_1 tal que los espacios generados sean ortogonales; es decir:

$$\langle U, X\beta_1 \rangle = 0 \Longrightarrow \langle Y - X\beta_1, X\beta_1 \rangle = 0$$

$$\Longrightarrow \langle Y, X\beta_1 \rangle - \langle X\beta_1, X\beta_1 \rangle = 0$$

$$\Longrightarrow \beta_1^T X^T Y - \beta_1 X^T X\beta_1 = 0$$

$$\Longrightarrow \beta_1 \left(X^T Y - X^T X\beta_1 \right) = 0$$

$$\Longrightarrow X^T Y - X^T X\beta_1 = 0$$

$$\Longrightarrow \beta_1 = (X^T X)^{-1} X^T Y$$

Por lo tanto el estimador de β_1 es:

$$\widehat{\beta_1} = (X^T X)^{-1} X^T Y$$

$$= \left(\sum_{i=1}^n x_i^2\right)^{-1} \sum_{i=1}^n x_i y_i$$

$$= \frac{\sum_{i=1}^n x_i y_i}{\sum_{i=1}^n x_i^2}$$

Por otro lado notemos que:

$$\mathbb{E}\left[\widehat{\beta_{1}}\right] = \mathbb{E}\left[(X^{T}X)^{-1}X^{T}Y\right]$$

$$= (X^{T}X)^{-1}X^{T}\mathbb{E}[Y]$$

$$= (X^{T}X)^{-1}X^{T}\left(\mathbb{E}\left[X\beta_{1} + U\right]\right)$$

$$= (X^{T}X)^{-1}X^{T}\left(X\beta_{1} + \mathbb{E}\left\{U\right\}\right)^{\mathbf{0}}$$

$$= \underbrace{\left[(X^{T}X)^{-1}X^{T}X\right]}_{\beta_{1}}^{1}$$

$$= \beta_{1}$$

Por tanto es insesgado. Además:

$$\begin{split} \mathbb{V}\left[\widehat{\beta_{1}}\right] &= \mathbb{V}\left[(X^{T}X)^{-1}X^{T}Y\right] \\ &= \mathbb{V}\left[(X^{T}X)^{-1}X^{T}(X\beta_{1} + U)\right] \\ &= \mathbb{V}\left[(X^{T}X)^{-1}X^{T}X\beta_{1} + (X^{T}X)^{-1}X^{T}U\right] \\ &= \mathbb{V}\left[(X^{T}X)^{-1}X^{T}U\right] \\ &= (X^{T}X)^{-1}X^{T}\mathbb{V}\left[U\right]\left[(X^{T}X)^{-1}X^{T}\right]^{T} \\ &= (X^{T}X)^{-1}X^{T}\sigma^{2}Id \cdot X(X^{T}X)^{-1} \\ &= \sigma^{2}(X^{T}X)^{-1} \\ &= \sigma^{2}\left(\sum_{i=1}^{n}x_{i}^{2}\right) \\ &= \frac{\sigma^{2}}{\sum_{i=1}^{n}x_{i}^{2}} \end{split}$$

Por ultimo buscamos un estimador para σ^2 , entonces procedemos a utilizar el estimador de suma de cuadrados del error; es decir:

$$\begin{split} SCE &= \|e_i\|^2 \\ &= \left\| Y - X\widehat{\beta_1} \right\|^2 \\ &= \left\langle Y - X\widehat{\beta_1}, Y - \widehat{\beta_1} \right\rangle \\ &= \left\langle Y, Y \right\rangle - 2 \left\langle Y, X\widehat{\beta_1} \right\rangle + \left\langle X\widehat{\beta_1}, X\widehat{\beta_1} \right\rangle \\ &= \sum_{i=1}^n y_i^2 - 2\widehat{\beta_1} \left\langle Y, X \right\rangle + \left\{ \widehat{\beta_1} \right\}^2 \left\langle X, X \right\rangle \\ &= \sum_{i=1}^n y_i^2 - 2 \frac{\sum_{i=1}^n x_i y_i}{\sum_{i=1}^n x_i^2} + \frac{\left\{ \sum_{i=1}^n x_i y_i \right\}^2}{\sum_{i=1}^n x_i^2} \\ &= \sum_{i=1}^n y_i^2 - \frac{\left(\sum_{i=1}^n x_i y_i \right)^2}{\sum_{i=1}^n x_i^2} \end{split}$$

Por otro lado notemos que:

$$X^{T}(\widehat{Y} - Y) = \sum_{i=1}^{n} x_{i}(\widehat{y}_{i} - y_{i})$$

$$= \sum_{i=1}^{n} \widehat{\beta}_{1} x_{i}^{2} - x_{i} y_{i}$$

$$= \widehat{\beta}_{1} S_{xx} - S_{xy}$$

$$= \frac{S_{xy}}{S_{xx}} S_{xx} - S_{xy}$$

$$= 0$$

Por tanto se obtiene solo una restricción:

$$\sum_{i=1}^{n} x_i e_i = 0$$

Por tanto el estimador de varianza tiene sólo n-1 grados de libertad. Por tanto tendremos que:

$$\widehat{\sigma^2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} y_i^2 - \frac{\left(\sum_{i=1}^{n} x_i y_i\right)^2}{\sum_{i=1}^{n} x_i^2} \right]$$

2.7.2

Notemos que para un modelo de regresión simple estándar se tiene que:

$$SCE_1 = SCT - \frac{S_{xy}^2}{S_{xx}}$$

Mientras que para nuestro modelo sabemos que:

$$SCE = \sum_{i=1}^{n} y_i^2 - \frac{\left(\sum_{i=1}^{n} x_i y_i\right)^2}{\sum_{i=1}^{n} x_i^2}$$

Por tanto:

$$SCR = \sum_{i=1}^{n} \widehat{y}_{i}^{2} - n\overline{\widehat{y}}^{2}$$

$$= \frac{S_{xy}^{2}}{S_{xx}} - n\overline{\widehat{y}}^{2} + S_{yy} - S_{yy}$$

$$= S_{yy} - n\overline{\widehat{y}}^{2} - SCE$$

$$\implies SCR + SCE = S_{yy} - n\overline{\widehat{y}}^{2}$$

Además:

$$SCT = S_{yy} - n\overline{y}^2$$

Por tanto:

$$SCR + SCE = SCT + \underbrace{n\overline{y}^2 - n\overline{\hat{y}}^2}_{\neq 0}$$

Luego con tal de mantener la igualdad deseada se tiene que:

$$SCT^* = S_{yy}$$
$$SCR^* = \sum_{i=1}^{n} \hat{y_i}^2$$

Luego SCT^* tiene n grados de libertad y SCR por construcción tiene 1 grado de libertad puesto que SCE tiene n-1 grados de libertad. Entonces la ANOVA viene dada por:

Fuente	grados de libertad	Suma de Cuadrados	Suma de Cuadrados Media	F
Regresion	1	SCR	MCR	
Error	n-1	SCE	σ^2	$\frac{MCR}{\sigma^2}$
Total	n	$\sum y_i^2$	MCT	

Para chequear que son numéricamente equivalente utilizaremos la información del problema siguiente 2.7.4

Notemos que:

```
reg_x = lm( snake$Y ~ snake$X )
```

```
(summary (reg_o) $ coefficients[ 3 ])^2
anova (reg_o ) $ 'F value' [ 1]
```

Imprime

1558.66110339189

1558.66110339189

Concluyendo lo solicitado.

2.7.3

La regresión por el origen viene dada por:

```
reg_o = lm( snake$Y ~ 0+snake$X )
summary(reg_o)
```

Call:

```
lm(formula = snake$Y ~ 0 + snake$X)
```

Residuals:

```
Min 1Q Median 3Q Max -2.4207 -1.4924 -0.1935 1.6515 3.0771
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
snake$X 0.52039 0.01318 39.48 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.7 on 16 degrees of freedom
```

Residual standard error: 1.7 on 16 degrees of freedom Multiple R-squared: 0.9898, Adjusted R-squared: 0.9892 F-statistic: 1559 on 1 and 16 DF, p-value: < 2.2e-16

Y el intervalo de confianza viene dado por:

Ahora hacemos una regresión lineal simple para hacer el test:

$$\begin{cases} H_0: \beta_0 = 0 \\ H_1: \beta_0 \neq 0 \end{cases}$$

```
reg_x = lm( snake$Y ~ snake$X )
beta_test(reg_x,"two.sided",'(Intercept)',0)
```

```
Estimate Std.Err t value Pr(>t)
(Intercept) 0.72538 1.54882 0.4683 0.6463
```

Por tanto la significancia mínima para rechazar H_0 es de un 64.63 %. Por tanto por ejemplo para una significancia de 0.05 entonces no rechazo H_0 , por ende podría pensar que el intercepto es 0.

2.7.4

Realizamos los plots que nos solicitan.

Problema 2.13

```
head(wm1)
attach(wm1)
```

	Date	CSpd	RSpd
	<fct></fct>	<dbl></dbl>	<dbl></dbl>
1	2002/1/1/0	6.9	5.9666
2	2002/1/1/6	7.1	7.2176
3	2002/1/1/12	7.8	7.9405
4	2002/1/1/18	6.9	6.0174
5	2002/1/2/0	5.5	6.1646
6	2002/1/2/6	3.1	1.7687

2.13.1

```
y = CSpd
x = RSpd
reg2<-lm(y~x)
plot(x,y)
abline(lm(y~x))</pre>
```


Dada la estructura monótona de los datos y de crecimiento mas menos constante, es posible ajustar un modelo lineal para los datos.

2.13.2

```
summary(reg2)
Call:
lm(formula = y \sim x)
Residuals:
   Min
            10 Median
                             3Q
                                    Max
-7.7877 -1.5864 -0.1994 1.4403 9.1738
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.14123
                        0.16958
                                  18.52
                                          <2e-16 ***
             0.75573
                        0.01963
                                  38.50
                                          <2e-16 ***
x
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 2.466 on 1114 degrees of freedom
Multiple R-squared: 0.5709, Adjusted R-squared: 0.5705
F-statistic: 1482 on 1 and 1114 DF, p-value: < 2.2e-16
```

El valor del R^2 es 0.57, por tanto sólo la mitad de la variación en CSpd es explicada por RSpd. Por tanto podríamos decir que este modelo es de calidad mediana.

2.13.3

Por tanto el intervalo de confianza para la predicción para un 95% de confiabilidad es:

[3,914023;13,59637]

2.13.4

En primer lugar notemos que:

$$\frac{1}{m}\sum_{i=1}^{m}\tilde{y}_{*i} = \frac{1}{m}\sum_{i=1}^{m}\left(\hat{\beta}_{0} + \hat{\beta}_{1}x_{*i}\right) = \hat{\beta}_{0} + \hat{\beta}_{1}\frac{1}{m}\sum_{i=1}^{m}x_{*i} = \hat{\beta}_{0} + \hat{\beta}_{1}\bar{x}_{*}$$

Por tanto el promedio de las predicciones es el mismo que la predicción del promedio.

En segundo lugar notemos que:

$$\mathbb{V}\left[\overline{\tilde{y}}_*\right] = \sigma^2 \left[\frac{1}{n} + \frac{(\overline{x} - \overline{x}_*)^2}{S_{xx}}\right]$$

y

$$\mathbb{V}\left[\overline{\tilde{y}}_* - \overline{y_*}\right] = \sigma^2 \left[\frac{1}{n} + \frac{(\overline{x} - \overline{x}_*)^2}{S_{xx}}\right] + \mathbb{V}\left[\overline{y_*}\right] - 2\underline{\cot}(\overline{\tilde{y}}_*, \overline{y_*})^{-0}$$

$$= \sigma^2 \left[\frac{1}{n} + \frac{(\overline{x} - \overline{x}_*)^2}{S_{xx}}\right] + \frac{1}{m^2} m \sigma^2$$

$$= \sigma^2 \left[\frac{1}{n} + \frac{(\overline{x} - \overline{x}_*)^2}{S_{xx}}\right] + \frac{1}{m} \sigma^2$$

Luego si el estimador de σ^2 es $\widehat{\sigma^2}$ se tiene que la desviación estándar estimada del error viene dada por:

$$\widehat{\sigma^2} \left[\frac{1}{n} + \frac{(\overline{x} - \overline{x}_*)^2}{S_{xx}} \right] + \frac{1}{m} \widehat{\sigma^2}$$

Observación 1: Este error estándar no es el promedio de los errores estándar para las predicciones individuales, ya que todas las predicciones están correlacionadas.

Observación 2: La covarianza es 0 pues $y_* = \beta_0 + \beta_1 x_* + u_*$ y u_* es normal de media 0 y varianza σ^2 e independiente.

2.13.5

Notemos que nos estan diciendo que:

$$\bar{x}_* = 7,4285$$

y que:

$$m = 62039$$

Sabemos que el S_e = 2,466 es el estimador de σ , reemplazando tenemos que:

```
S_e2 = 2.466^2
n = length(x)
Sxx = sum(x^2)
x_ast = 7.4285
y_ast = 3.14123 + 0.75573*x_ast
m = 62039
```

$$\label{eq:Varianza_del_error} $$ Varianza_del_error=(S_e2*(1/n + (mean(x)-x_ast)^2/Sxx) + (1/m)*S_e2) $$$$

```
gamma = 0.95
valor_t= qt((1+gamma)/2,n-2)
limite_inferior = y_ast - sqrt(Varianza_del_error)*valor_t
limite_superior = y_ast + sqrt(Varianza_del_error)*valor_t
print(limite_inferior)
print(limite_superior)
```

[1] 8.608919[1] 8.901422

Por tanto el intervalo de confianza para la predicción es:

[8,608919;8,901422]

Bibliografía

- $[1\]$. ^pplied Linear Regression", Sanford Weisberg, Wiley Interscience.
- [2] "The Elements of Statistical Learning", Hastie-Tibshirani-Friedman.