4 Визначення опорних реакцій просторової системи сил.

(тема 1.1.3)

План

1. Розв'язування задач.

На горизонтальний вал (рис. 7.7), що лежить у підшипниках A і B, діє вантаж вагою Q=25 H, прив'язаний тросом до шківа C радіусом r=0,2 м. Вантаж вагою P=100 H, насаджений на стрижень ED, незмінно зв'язаний з валом AB. Дано розміри: AC=0,2 м, CD=0,7 м, BD=0,1 м. У стані рівноваги стрижень ED відхилений від вертикалі на кут α =30°. Визначити відстань I центра тяжіння вантажу вагою P від осі вала AB, а також реакції підшипників A і B.

Дано: Q = 25 H, P = 100 H, r = 0.2 M, AC = 0.2 M, CD = 0.7 M, BD = 0.1 M, $\alpha = 30^{\circ}$

$$\frac{\alpha = 30^{\circ}}{l, \overrightarrow{R_A}, \overrightarrow{R_B} - ?}$$

Розв'язання:

Розглянемо рівновагу вала, на який діють активні сили \overrightarrow{P} і \overrightarrow{Q} . В'язями для нього є підшипники A і B. Згідно з $A\kappa ciomo VI$, звільняємо вал від в'язей та замінюємо їх реакціями $\overrightarrow{R_A}$ і $\overrightarrow{R_B}$, що лежать у площинах, перпендикулярних до осі підшипників A і B.

Візьмемо систему координат, як показано на рис. 7.7. Невідомі реакції $\overrightarrow{R_A}$ і $\overrightarrow{R_B}$ подамо складовими $\overrightarrow{X_A}$ і $\overrightarrow{Z_A}$ та $\overrightarrow{X_B}$ і $\overrightarrow{Z_B}$, які треба визначити.

Складемо таблицю, в яку занесемо проекції всіх сил на осі координат та моменти цих сил відносно осей координат:

	\overrightarrow{P}	\vec{Q}	$\overrightarrow{R_{\scriptscriptstyle A}}$	$\overrightarrow{R_{\scriptscriptstyle B}}$
X	$P_x = 0$	$Q_x = 0$	$R_{Ax} = X_A$	$R_{Bx} = X_B$
Y	$P_y = 0$	$Q_y = 0$	$R_{Ay} = 0$	$R_{By} = 0$
Z	$P_z = -P$	$Q_z = -Q$	$R_{Az} = Z_A$	$R_{Bz} = Z_B$
M_{x}	$M_x(\vec{P}) =$	$M_x(\overrightarrow{Q}) = -Q \cdot AC$	$M_x(\overrightarrow{R_A}) = 0$	$M_x(\overrightarrow{R_B}) = Z_B \cdot AB$
	$=-P\cdot (AC+CD)$			
M_y	$M_{y}(\overrightarrow{P})=$	$M_y(\overrightarrow{Q}) = Q \cdot r$	$M_y(\overrightarrow{R_A}) = 0$	$M_{y}(\overrightarrow{R_{B}})=0$
	$= -P \cdot l \cdot \sin \alpha$			
M_z	$M_z(\vec{P}) = 0$	$M_z(\overrightarrow{Q}) = 0$	$M_z(\overrightarrow{R_A}) = 0$	$M_z(\overrightarrow{R_B}) = -X_B \cdot AB$

Додаючи елементи кожного рядка даної таблиці та прирівнюючи суму відповідного рядка до нуля, одержимо умови рівноваги просторової системи сил $(\overrightarrow{P}, \overrightarrow{Q}, \overrightarrow{R_A}, \overrightarrow{R_B})$ в аналітичній формі

1.
$$\sum_{i=1}^{4} F_{ix} = P_{x} + Q_{x} + R_{Ax} + R_{Bx} = 0 + 0 + X_{A} + X_{B} = 0 \Rightarrow X_{A} + X_{B} = 0;$$
2.
$$\sum_{i=1}^{4} F_{iy} = P_{y} + Q_{y} + R_{Ay} + R_{By} = 0 + 0 + 0 + 0 = 0 \Rightarrow 0 = 0;$$
3.
$$\sum_{i=1}^{4} F_{iz} = P_{z} + Q_{z} + R_{Az} + R_{Bz} = -P - Q + Z_{A} + Z_{B} = 0 \Rightarrow Z_{A} + Z_{B} - P - Q = 0;$$
4.
$$\sum_{i=1}^{4} M_{x}(\overrightarrow{F}_{i}) = M_{x}(\overrightarrow{P}) + M_{x}(\overrightarrow{Q}) + M_{x}(\overrightarrow{R}_{A}) + M_{x}(\overrightarrow{R}_{B}) =$$

$$= -P \cdot (AC + CD) - Q \cdot AC + 0 + Z_{B} \cdot AB = 0;$$
5.
$$\sum_{i=1}^{4} M_{y}(\overrightarrow{F}_{i}) = M_{y}(\overrightarrow{P}) + M_{y}(\overrightarrow{Q}) + M_{y}(\overrightarrow{R}_{A}) + M_{y}(\overrightarrow{R}_{B}) =$$

$$= -P \cdot l \cdot \sin \alpha + Q \cdot r + 0 + 0 = 0, \Rightarrow -P \cdot l \cdot \sin \alpha + Q \cdot r + 0 + 0 = 0;$$

$$\begin{aligned} 6. \sum_{i=1}^{4} M_z \left(\overrightarrow{F}_i \right) &= M_z \left(\overrightarrow{P} \right) + M_z \left(\overrightarrow{Q} \right) + M_z \left(\overrightarrow{R}_A \right) + M_z \left(\overrightarrow{R}_B \right) = 0 + 0 + 0 - X_B \cdot AB = 0, \\ \Rightarrow &- X_B \cdot AB = 0. \end{aligned}$$

В даному випадку друга умова рівноваги є тотожністю, оскільки проекції всіх сил, у тому числі й реакцій в'язей, на вісь Ау дорівнюють нулю. З п'яти умов рівноваги, що залишилися, слід визначити п'ять невідомих величин: $\overrightarrow{X_{A}}$, $\overrightarrow{Z_{A}}$, $\overrightarrow{X_{B}}$, $\overrightarrow{Z_{B}}$ та l — задача статично визначена.

Розв'язуючи рівняння рівноваги, одержимо:

а) з шостого і першого рівняння $X_B = X_A = 0$;

б) з п'ятого рівняння
$$l = \frac{Q \cdot r}{P \cdot \sin \alpha} = \frac{Q \cdot r}{P \cdot \sin 30^{\circ}} = \frac{25 \cdot 0.2}{100 \cdot 0.5} = 0.1 (м);$$

в) з четвертого рівняння

$$Z_{B} = \frac{Q \cdot AC + P \cdot (AC + CD)}{AB} = \frac{Q \cdot AC + P \cdot (AC + CD)}{AC + CD + DB} =$$

$$= \frac{25 \cdot 0.2 + 100 \cdot (0.2 + 0.7)}{0.2 + 0.7 + 0.1} = \frac{5 + 90}{1} = 95 (H);$$
г) з третього рівняння $Z_{A} = P + Q - Z_{B} = 100 + 25 - 95 = 30 (H).$

Bidnosids:
$$X_B = X_A = 0$$
, $Z_B = \frac{Q \cdot AC + P \cdot (AC + CD)}{AC + CD + DB} = 95 H$, $Z_A = P + Q - Z_B = 30 H$, $l = \frac{Q \cdot r}{P \cdot \sin \alpha} = 0.1 M$.

Завдання для самоконтролю

1. Розв'язати задачу, змінивши дані умови.