

Дипломная работа:

Применение методов машинного обучения для анализа эффективности органического цикла Ренкина.

Студента 4 курса Нилова Ильи Витальевича

Научный руководитель: ст. пр. кафедры энергофизики Ларькин Андрей Викторович

Цель работы

Разработать методику применения методов машинного обучения для анализа эффективности органического цикла Ренкина.

Актуальность работы

Данная работа является актуальной и перспективной, поскольку ситуация загрязнения окружающей среды остаточным теплом все больше влияет на экологию, а исследований по данной теме недостаточно, из-за дороговизны и трудоемкости процессов, а также тематика работы соответствует основным принципам Государственной программы «Энергосбережение» на 2016 — 2020 годы (Раздел II, подпрограмма 1 «повышение энергоэффективности»).

Органический цикл Ренкина

Главное отличие органического цикла Ренкина (ОЦР) от традиционного цикла Ренкина заключается в рабочей жидкости: вместо воды используются органические компоненты. Типичные органические соединения это: хладагенты, углеродные соединения (бутан, пентан, гексан, и т.д.), кремниевое масло и др. Более низкая температура кипения этих веществ позволяет использовать их для работы с источниками намного меньшей температуры, чем в традиционных паровых циклах. А теплофизические свойства этих соединений, отличающиеся от свойств воды по ряду пунктов, имеют прямое практическое применение при проектировке устройств, работающих на ОЦР.

Рис.1 Схема ОЦР без регенератора (слева), схема ОЦР с регенератором (справа).

Органический цикл Ренкина

ОЦР состоит из следующих процессов:

- 1-2 насос передает рабочему телу энергию сжатия при неизмененной (адиабатическое сжатие);
- 2-3 жидкое рабочее тело после сжатия сначала подогревается в реген затем в парогенераторе, пока не достигнет состояния насыщенной жид 3-4 рабочее тело находится в состоянии насыщенной жидкости. В испадобавляется тепло тело начинает испаряться в виде влажного пара, подостигая состояния насыщенного пара. Этот процесс происходит при потемпературе и давлении;
- 4-5 при добавлении дополнительного тепла в подогреватель при постидавлении достигается состояние перегретого пара;
- 5-6 рабочее тело поступает в экспандер (турбину), где путем

Адиабатического расширения приводит в действие генератор, который преобразует механическую работу в электрическую энергию;

- 6-7 после экспандера рабочее тело проходит через регенератор теплообменник, где тепловая энергия используется в виде пара для подогрева охлажденного рабочего тела в жидком состоянии. Этот процесс происходит при постоянном давлении;
- 7-1 рабочее тело поступает в конденсатор, где проходит изобарический и изотермический отвод тепла. Влажность повышается, тело переходит из состояния влажного пара в насыщенную жидкость.

Рис.2 Температурно-энтальпийная диаграмма цикла ОЦР

Применение органического цикла Ренкина

Применение органического цикла ренкина:

- 1. Биомасса и комбинированная теплоэнергетика
- 2. Геотермальная энергия
- 3. Солнечная энергетическая установка
- 4. Утилизация тепла на механическом оборудовании и промышленных
- 5. процессах
- 6. Утилизация тепла в двигателях внутреннего сгорания

Рис. 3 Схема ОЦР для геотермальной установки

Сравнение с классическим циклом Ренкина

На диаграмме T-s на рис. 4 показаны кривые насыщения воды и нескольких типичных органических жидкостей в системах ОЦР.

Преимущества ОЦР	Преимущества парового цикла
Нет перегрева	Характеристики рабочих тел
Более низкая входная температура турбины	Высокая эффективность
Компактность (более высокая плотность жидкости)	Сохранение ресурса насоса
Более низкое давление испарения	
Более высокое давление конденсации	
Отсутствие системы очистки воды	
Низкотемпературная рекуперация тепла	

Таблица. 1 Сравнение парового и органического циклов Ренкина

Рис. 4 Некоторые кривые насыщения

Методы моделирования органического цикла Ренкина

+	процесса:	+	·+	+			
Proc	State	Ex.In(kJ/kg)	Ex.Out(kJ/kg)	delt.ef(kJ/kg)	Ex.D(kJ/kg)	Ex.Eff.	Ex.Bal
Turb	1->outfl	0.0	74.6	-91.4	16.9	81.6%	0.0
Cond	outfl->outfl	0.0	22.7	-22.7	0.0	100.0%	0.0
Pump	outfl->outfl	7.6	0.0	5.8	1.8	76.3%	0.0
Boil	outfl->1	108.3	0.0	108.3	0.0	100.0%	0.0
Net		115.9	97.2	0.0	18.7	61.9%	n/a
Состоя	ние Р(kПа)	Т(град. Ц.) +-	h(kДж/kг) s(kД	ж/kг.K) ef(kДж/l	+		
Br.I	n 500	120.15	491.60	1.49200 64	.36 None		
	n 500		491.60		.36 None		
Br.I Br.D	n 500	120.15	491.60	1.49200 64	.36 None		
Вг.I Вг.D 	n 500 lea 101 +	120.15 15	491.60 61.05	1.49200 64	.36 None		
Br.I Br.D Результа Rankine	+	120.15 15 +	491.60 61.05	1.49200 64	.36 None		
Br.I Br.D Эсзульта Rankine Geo. Bri	in 500 lea 101 + ITW pacчeTa Cycle mass flow ne mass flow r	120.15 15 w rate = 3.1 ate = 13.	491.60 61.05 4 kg/s 29 kg/s	1.49200 64	.36 None		
Br.I Br.D Эсзульта Sankine Geo. Bri	in 500 lea 101 + THE PACHETA Cycle mass flow rate rate (energet)	120.15 15 	491.60 61.05 4 kg/s 29 kg/s 7%	1.49200 64	.36 None		
Br.I Br.D Чезульта Jankine Geo. Bri Plant th	in 500 lea 101 lea 101 lea Cycle mass flow recorder the control of	120.15 15 w rate = 3.1 ate = 13. ic) eff = 3. ency = 24.	491.60 61.05 4 kg/s 29 kg/s 7%	1.49200 64	.36 None		
Br.I Br.D езульта ankine eo. Bri lant th	in 500 lea 101	120.15 15 w rate = 3.1 ate = 13. ic) eff = 3. ency = 24. er specified) =	491.60 61.05 4 kg/s 29 kg/s 7% 6%	1.49200 64	.36 None		
Br.D Br.D Результа Rankine Geo. Bri Plant th Plant ex Plant co	in 500 lea 101 THE PACHETA Cycle mass flow remal (energet: lergetic efficion	120.15 15 w rate = 3.1 ate = 13. ic) eff = 3. ency = 24.	491.60 61.05 .4 kg/s 29 kg/s 7% 6% = 25.0%	1.49200 64	.36 None		

Рис. 5 Пример работы программы

Большинство исследований последних десятилетий базируются на традиционных методах конкретного эксперимента и термодинамического моделирования, трудоемкость и стоимость которых относительно велики при решении крупномасштабных задач, хотя результаты исследований обладают высокой точностью. Мы пытаемся найти экономичный и эффективный метод, который мог бы быстро решить задачу расчета различных показателей эффективности системы ОЦР. С появлением и развитием искусственного интеллекта в последние годы появился новый способ решения этой проблемы. Поэтому в данной работе предложен метод прогноза производительности, анализа параметров и оптимизации на основе машинного обучения.

Рис. 6 Принципиальная схема простой нейронной сети обратного распространения

Рис. 7 Принципиальная схема подходов к различным видам исследований

T_eva / kPa	T_h / K	T_pp / k	T_sh / k	T_sc / k	T_con / K	E_th	E_ex
50	0 400	5	0	0	308,15	0,101617	0,380412
50	0 410	5	0	0	308,15	0,101617	0,356552
50	0 420	5	0	0	308,15	0,101617	0,336455
50	0 430	5	0	0	308,15	0,101617	0,319295
50	0 440	5	0	0	308,15	0,101617	0,304472
50	0 450	5	0	0	308,15	0,101617	0,291539
50	0 460) 5	0	0	308,15	0,101617	0,280156
50	0 470) 5	0	0	308,15	0,101617	0,270061
50	0 480) 5	0	0	308,15	0,101617	0,261046
50	0 400) 7	0	0	308,15	0,101617	0,380412
50	0 410	7	0	0	308,15	0,101617	0,356552

Таблица 2. Исходный датасет

В целях уменьшения времени вычислений и меньшей загрузки вычислительных мощностей можно выполнить преобразование задачи регрессии к задаче классификации.

E_th		E_ex	E_th eff	E_ex eff
	0,135006	0,505404	1	1
	0,135006	0,473705	1	0
	0,135006	0,447004	1	0
	0,135006	0,424206	1	0

Таблица 3. Преобразованные данные


```
TERMINAL
          PROBLEMS
                    OUTPUT
                             DEBUG CONSOLE
Creating a 2-10-2 neural network
Loading training and test data
Test data:
  0] 0.1 0.5 1.0 1.0
 1] 0.1 0.5 1.0 0.0
  2] 0.1 0.4 1.0 0.0
  3] 0.1
            0.4 1.0 0.0
[200] 0.1 0.3 0.0 0.0
Setting maxEpochs = 50
Setting learning rate = 0.050
Starting training
epoch = 10 \text{ ms error} = 0.3976
epoch = 20 \text{ ms error} = 0.4002
epoch = 30 ms error = 0.3994
epoch = 40 ms error = 0.4008
epoch = 50 \text{ ms error} = 0.3975
Training complete
Accuracy on 120-item train data = 0.4975
Accuracy on 30-item test data = 1.0000
End demo
```

Рис. 8 Результат тестового обучения нейронной сети обратного распространения

Заключение

- В результате работы проведено прогнозирование эффективности органического цикла Ренкина для рабочего тела R141b на основе разработанной нейронной сети обратного распространения и соответствующей модели. При этом
- 1) показано, что тепловая эффективность ОЦР для разных рабочих тел лежит в диапазоне 14,7 (изобутан) – 17,4% (этан), что подчеркивает эффективность применения данной технологии для использовании остаточного низкопотенциального тепла;
- 2) выполнена визуализация ОЦР в координатах Тѕ и создан интерфейс программы, позволяющей произвести варьирование параметров энергетической установки с целью определения её оптимальных режимов работы, что делает возможным использование разработанной программы в качестве модельной среды для анализа данных установок.
- 3) создан интерфейс программы, позволяющей произвести варьирование параметров нейронной сети для достижения оптимальных значений весовых коэффициентов и более эффективного ее обучения, что позволяет достичь точности обучения порядка 93%

Спасибо за внимание