Preparado para:

REFORM/SC2022/126 **DELIVERABLE 4 MÓDULO 4 REGRESSÃO LINEAR**

DESIGNING A NEW VALUATION MODEL FOR RURAL PROPERTIES IN PORTUGAL

Parte I

Formador: Luís Teles Morais | Nova SBE Lisboa, 27 junho 2023

Quiz 3

Programa

Módulos	Duração				
 Módulo 1 – Introdução ao R: O que é o R? Como instalar e configurar o R. Sintaxe básica e comandos. Tipos de dados, objetos e classes. 	4 Horas				
 Módulo 2 - Gestão e tratamento de dados em R: Carregar dados no R. Perceber as estruturas de dados e subsetting. Limpeza de dados: missing values, outliers e transformações Juntar bases de dados 	8 Horas				
 Módulo 3 - Estatística básica em R: Estatísticas descritivas: medidas de dispersão central e variação. Distribuições probabilísticas: variáveis discretas e contínuas. Testes de hipóteses. 	8 Horas				

	Módulos	Duração					
- - -	ódulo 4 – Regressão Linear: O modelo classico linear. Estimação de parametros segundo o MMQ. Testes de hipóteses: significância estatística e ajuste do modelo.	12 Horas					
-	Modelo de regressão múltipla. Testar as premissas: multicolinearidade, heteroscedasticidade e normalidade dos resíduos. Critérios de seleção dos modelos.	12110103					
- - - -	ódulo 5 – O modelo: Estrutura do modelo e premissas – Perceber o modelo (4 Hours). Uso e tratamento dos dados (4 Hours). Descrição do modelo (4 Hours). Aplicação do modelo a cada piloto (12 Hours). Aplicação autónoma do modelo a uma região (8 Hours).	32 Horas					

Ciência de dados

Alguns conceitos

Visualizar

Modelizar

Estatística descritiva

 Analisar um conjunto de dados, reduzindo-o a medidas sumárias simples

Inferência estatística

 Calcular ou <u>estimar</u> algo que não podemos observar diretamente, a partir dos dados existentes

O que é um modelo?

O que é um modelo?

Modelos lineares

- Usamos modelos para analisar a relação entre diversas variáveis (aleatórias).
 Objetivo:
 - realizar previsões (através de inferência estatística)...
 - sobre aspetos da realidade desconhecidos (parâmetros)...
 - a partir de informação conhecida (amostras).

Modelos lineares

- Usamos modelos para analisar a relação entre diversas variáveis (aleatórias).
 Objetivo:
 - realizar previsões (através de inferência estatística)...
 - sobre aspetos da realidade desconhecidos (parâmetros)...
 - a partir de informação conhecida (amostras).
- Aqui vamos ater-nos aos modelos lineares, ou de regressão linear
- Ter presente que a realidade muitas vezes não é linear...
 - Linearidade: hipótese simplificadora

Modelos lineares

Dados: quadros de Paris

Leilões em Paris no séc. XVIII

Pierre-Antoine de Machy, Public Sale at the Hôtel Bullion, Musée Carnavalet, Paris (séc. XVIII)

paris-paintings.xlsx

- Fonte: Catálogos impressos de 28 leilões de arte em Paris, 1764 1780
- Créditos: Sandra van Ginhoven and Hilary Coe Cronheim (U. Duke)

Départ pour la chasse

Fonte primária dos dados

89 Deux tableaux très riches de com- 10660 position, d'une belle exécution, & dont le mérite est très remarquable. chacun de 17 pouces 3 lignes de haut, fur 23 pouces de large; le premier, peint fur bois, vient du Cabinet de Madame la Comtesse de Verrue; il représente un départ pour la chasse : on y voit sur le devant un enfant fur un cheval blane, un homme qui donne de la trompe pour rassembler les chiens, un Fauconnier & d'autres figures distribuées agréablement dans toute la largeur du tableau; deux chevaux qui boivent à une fontaine; à droite dans le coin une jolie maison de campagne surmontée d'une tetrasse, & fur laquelle sont des gens à table , d'autres qui jouent des inftru-

Duas pinturas de composição muito rica, de bela execução, e cujo mérito é notável, cada uma com 17 polegadas e 3 linhas de altura, 23 polegadas de largura; o primeiro, pintado em madeira, provém do acervo de Madame la Comtesse de Verrue; representa uma partida para a caça: mostra à frente uma criança num cavalo branco, um homem que toca a corneta para reunir os cães, um falcoeiro e outras figuras bem distribuídas pela largura da pintura; dois cavalos bebendo de uma fonte; à direita, ao canto, uma bela casa de campo encimada por um terraço, onde estão pessoas à mesa, outras que tocam instrumentos; árvores e tecidos enriquecem agradavelmente o fundo.

	A	- 2	В	C	D	E	F	G	H	1	J	1 1		L			M		N		0		Р		
1	name		ale	lot	dealer	vear	origin_ author		school_ pntg	diff origin	price	ce		subjec	ubject		authorst	andard	artistlivir		author	style	yle author		winni
	R1777-8		1777	86	R		D/FL	D/FL	D/FL	din_origin	0	620.0	count	2 femmes, enfants, paysage vu à travers				ar.		0 n/a		Cornelle	Bega	Lebru	
2518	R1777-8	7 R	1777	87	R	1777		D/FL	D/FL		0 12	.000.0		1 Course du haren		eng	Wouwerman, Philips		1	0 n/a			Philippe Wouwerman		n: Donji
2519	R1777-8	18 R	1777	88	R	1777	D/FL	D/FL	D/FL		0 8	0.000.0		1 Paysage sablonneux		Wouwern	3		0 n/a		Philippe Wouwerma		n Lamb		
2520	R1777-8	9a R	1777	89	R	1777	D/FL	D/FL	D/FL		0 5	i,30 0 .0		Départ 1 chasse			Wouwern	nan, Philips			0 n/a	,	Philippe	Wouwerma	n: Langl
2521	R1777-8		11777	89	R	1777	D/FL	D/FL	D/FL V		0 5	,300.0						Wouwerman, Philips			O n/a		Philippe Wouwerman		
1	winningbid		winnin	gbiddertyp	e end	buyer	Interm	typ	e_Interm ed	W Height_in	Width_in	Surfac	e Reet	Diam_in	Surfac	e_Rn d Sh	A8	AC	met	AD erial	AE	quar	AF	and the same	AH
2516			D		D			0		16	20		320			-	ju_rect	-	320 tole		t		1	0	0
2517	Lebrun, Jean-Baptis Pierre		D D		D	D		0		13.25	11		145.75			aq	qu_rect	14	145.75 bois		ь		1	0	
2518	Donjeux, Vi	ncent	D		D			0		23	29.25		672.75			sq	qu_rect 672.7		2.75 tole		t		1	60	0
2519	Lambert, John (Chevalier Lambert)		c		c			0		23	23 30		690		aq	qu_mat 60		690 tolle	10 tolie t			1 0		- 1	
2520	Langlier, Jar Poullain, An	oques for toine	DC		c			1	В	17.25	23		395.75			sq	tu_rect	39	6.75 bols		b		1	0	÷o
2521	Langlier, Jacques 1. Poullain, Antoine		Jacques for Antoine DC		c		1		D	17.25	23 396.75		396.75			qu_rect 396.71		6.75 tole		,		1 0		0	
2522	Choiseul-Prasiin, Comte de AG AH		C			C AK AL		o AN	AO	6.5 AP AQ	9.25 AR	AS AT		AU			u_rect AX	60 125 culvre AY AZ		ne BA	c BB	80	1 BD	0 BE	0 BF
1	nfigures c	ingraved	original	preveoli	othartist	paire	figures	finished	irgfont	relig L	L lands_i	ands_ igs	lands_me	int arch	mytho	peasant	othgonre	singlefig p	portrait	still_life	discauth	history	allegory	pastorale	other
2516	0	0) () (0	0)	0 1	0,	0 0	0		0 0	0		1 0	0	0	0	0	(0 0	0
2517	0	0) () (0	0	,	0 0	0	1 0	0		1 0	0		0 1		0	0	0	(0 0	0
2518	50	c	, (, ,		0	0	1	1 1	0	0 0	0		0 0	0		0 1	0	0	0	0		,	0 0	0
2519	0	,				0	0	,	0 1	0,	1 1	0		0 0	0		0 0	0	p	0	0		,	0 0	C
2520	0	c)	,		0	1	,	0 0	0,	1 0	.1		0 0	0		0 0	0	0	0	0		,	0 0	0
2521	0	c) () 1	i j	0	1		0 0	0	1 0	1		0 0			0 0		ā	c	0	ť)	0 0	o
2522	0	0		, ,		0	1	,	0 0	0	1 0	1		0 0	0		0 0	0	a	c	0	ı	,	0 0	c

lacksquare > 3000 quadros, preços, e detalhes digitalizados ightarrow > 60 variáveis

readxl::read_excel()

Importar dados a partir de Excel

Importar os dados

- Importe os dados na folha data do livro Excel paris-paintings.xlsx:
 - Para um objeto com o nome pp
 - Garantindo que quaisquer destes: "n/a", "", "NA" é interpretado corretamente como valor NA
- Experimente usar os menus do R primeiro...
- ... e depois usando a função **read_excel**. Qual é a forma mais rápida?

Importe os dados

```
pp <- readxl::read excel("data/paris-paintings.xlsx", sheet = "data",</pre>
              na = c("n/a", "", "NA"))
pp
## # A tibble: 3,393 × 61
##
    name sale lot position dealer year origin_author
## <chr> <chr> <chr> <dbl> <chr> <dbl> <chr>
## 1 L1764-2 L1764 2 0.0328 L
                                       1764 F
## 2 L1764-3 L1764 3 0.0492 L 1764 I
## 3 L1764-4 L1764 4 0.0656 L
                                       1764 X
## 4 L1764-5a L1764 5 0.0820 L
                                       1764 F
## 5 L1764-5b L1764 5 0.0820 L
                                       1764 F
## 6 L1764-6 L1764 6
                   0.0984 L
                                       1764 X
## # i 3,387 more rows
## # i 54 more variables: origin_cat <chr>, school_pntg <chr>,
      diff_origin <dbl>, logprice <dbl>, price <chr>, count <dbl>,
## #
## #
      subject <chr>, authorstandard <chr>, artistliving <dbl>,
      authorstyle <chr>, author <chr>, winningbidder <chr>,
## #
      winningbiddertype <chr>, endbuyer <chr>, Interm <dbl>,
## #
## #
      type_intermed <chr>, Height_in <dbl>, Width_in <dbl>, ...
```

Modelo: largura x altura?

Distribuições (univariadas)

Altura

```
ggplot(data = pp, aes(x = Height_in)) +
  geom_histogram(binwidth = 5) +
  labs(x = "Polegadas", y = NULL)
```


Distribuições marginais (univariadas)

Largura

```
ggplot(data = pp, aes(x = Width_in)) +
  geom_histogram(binwidth = 5) +
  labs(x = "Polegadas", y = NULL)
```


Altura vs largura (multivariada)

Plot Code

Altura vs. largura dos quadros Leilões de Paris, 1764 - 1780

... com uma medida de incerteza

Plot Code

Altura vs. largura dos quadros Leilões de Paris, 1764 - 1780

 Variável dependente ou resposta Variável cujo comportamento queremos entender / variabilidade queremos explicar a partir de outra(s) -- eixo yy

- Variável dependente ou resposta Variável cujo comportamento queremos entender / variabilidade queremos explicar a partir de outra(s) -- eixo yy
- Variáveis independentes ou explicativas Outras váriaveis que utilizamos para explicar o comportamento da variável dependente -- eixo xx

- Variável dependente ou resposta Variável cujo comportamento queremos entender / variabilidade queremos explicar a partir de outra(s) -- eixo yy
- Variáveis independentes ou explicativas Outras váriaveis que utilizamos para explicar o comportamento da variável dependente -- eixo xx
- Valor estimado ou previsto ou ajustado (\$\hat{y}\$): o output do modelo
 - O modelo dá o valor médio (ou esperado) da váriavel dependente,
 condicional, i.e. para um determinado valor, da variável independente

- Variável dependente ou resposta Variável cujo comportamento queremos entender / variabilidade queremos explicar a partir de outra(s) -- eixo yy
- Variáveis independentes ou explicativas Outras váriaveis que utilizamos para explicar o comportamento da variável dependente -- eixo xx
- Valor estimado ou previsto ou ajustado (\$\hat{y}\$): o output do modelo
 - O modelo dá o valor médio (ou esperado) da váriavel dependente,
 condicional, i.e. para um determinado valor, da variável independente
 - **Resíduo**: Mede a distância entre um valor observado (numa amostra) e o valor estimado (com base num determinado modelo)
 - Resíduo = Valor observado Valor estimado
 - Indica quão próximo está o modelo de "acertar" num determinado ponto dos dados, ou por outra, por quanto é que o modelo "falha"

Estimação em R

Dados

Model Function

Qual é o modelo que parece melhor descrever os dados?

Dados Model Function

Qual é a incerteza associada ao modelo estimado?

Dados Model Function

Que parte da variação é que o modelo consegue ou *não* explicar => quais os **resíduos** do modelo?

Dados

Model Function

Que parte da variação é que o modelo consegue ou *não* explicar => quais os valores estimados?

Dados

Model Function

Exemplo visual

Existem infinitas *funções* possíveis para modelos estatísticos com estes dados

O modelo mais ajustado aos dados

Os resíduos

Resíduos

Plot Code

Height vs. width of paintings Paris auctions, 1764 - 1780

- O que mudou no gráfico?
- Que padrão nos dados se tornou agora aparente?
- O que pode significar, em termos estatísticos? E na realidade?

Paisagens vs. retratos

- A pintura de paisagem é a representação de paisagens cenários naturais como montanhas, vales, árvores, rios e florestas composição
 - Habitualmente, largura > altura
- Na pintura de retratos a intenção é retratar um sujeito humano:
 - Habitualmente, largura < altura

Modelos, oportunidades e riscos

- Oportunidade: os modelos estatísticos podem revelar padrões que não se conseguem desvelar num gráfico
 - sobretudo em modelos de regressão múltipla, i.e. com diversas variáveis explicativas em simultâneo (próxima aula)

Modelos, oportunidades e riscos

■ **Risco**: um modelo pode indicar que os dados têm uma determinada estrutura (uma distribuição) que não corresponde à realidade -- regressão espúria

Modelos, oportunidades e riscos

■ **Risco**: um modelo pode indicar que os dados têm uma determinada estrutura (uma distribuição) que não corresponde à realidade -- regressão espúria

OLS (MMQ)

Definição de um modelo linear

$$Y = \alpha + \beta X + \varepsilon$$

- Ex.: Y altura, X largura
- α constante (ordenada na origem
- β coeficiente de regressão / declive
- ε-<u>erro</u> do modelo

Definição de um modelo linear

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$

não observados 🧸

- Ex.: Y altura, X largura
- α constante (ordenada na origem)
- β coeficiente de regressão / declive
- ε erro do modelo

Estimar $\hat{\alpha} \hat{\beta}$

- Hip.: linearidade
- Parâmetros
 e estimativas
 a partir dos dados
 i = 1, 2, ..., N

Método dos mínimos quadrados (OLS)

Ordinary Least Squares: minimizar os resíduos

$$\min_{\hat{\alpha},\hat{\beta}} \sum_{i=1}^{n} \varepsilon_i^2 = \min_{\hat{\alpha},\hat{\beta}} \sum_{i=1}^{n} \left[Y_i - \left(\hat{\alpha} + \hat{\beta} X_i \right) \right]^2$$

Mostra-se que:

$$\hat{\alpha} = \bar{Y} - \hat{\beta}\bar{X}$$

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (X_i - \bar{X}) (Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$$

parece familiar?

"Bondade do ajustamento"

R2: medida de ajustamento do modelo aos dados

Fonte da variação	Soma dos quadrados
Variação explicada	$ESS = \sum_{i=1}^{n} (\widehat{Y}_i - \overline{Y})^2$
Variação residual	$SSR = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$
Variação total	$TSS = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$

$$R^2 = \frac{ESS}{TSS} = 1 - \frac{SSR}{TSS},$$
$$0 \le R^2 \le 1$$

- R2 = 1: toda a variação dos dados pode ser explicada pelo modelo
- R2 = 0: vice-versa

ggpmisc::stat_poly_eq()

Estimativas de regressão no gráfico

```
ggplot(data, aes(...)) + geom ... +
```

```
stat_poly_eq(use_label("R", "P", "n", "eq", ...), method = 'lm')
```

Resultados a mostrar (e.g. <u>R</u>2, <u>P</u>-value, <u>n</u>.º observações, <u>eq</u>uação da regressão) Método de estimação (e.g. linear model, lm) tem de bater certo com linha

Experimente

- Vamos utilizar um pacote novo: ggpmisc extensões ao ggplot
- Construa um gráfico com os dados dos quadros de Paris com:
 - a nuvem de pontos de largura (eixo xx) e altura (eixo yy)
 - linha de regressão linear SEM intervalo de confiança
 - a equação da regressão, o R2 e o n.º obs.

Modelos em R

Funções em R para estimar diferentes modelos

function	package	fits
lm()	stats	linear models
glm()	stats	generalized linear models
gam()	mgcv	generalized additive models
glmnet()	glmnet	penalized linear models
rlm()	MASS	robust linear models
rpart()	rpart	trees
randomForest()	randomForest	random forests
xgboost()	xgboost	gradient boosting machines

modelr

Funções <u>tidy</u> para trabalhar com modelos no *tidyverse*

```
library(tidyverse)
library(modelr)
```


lm() <u>l</u>inear <u>m</u>odel

<u>fórmulas</u> no R

A equação de um modelo define-se no R em <u>fórmulas</u>, onde apenas é necessário indicar as variáveis dependente e independentes

lm()

Função base de modelos lineares:

modelo <- $lm(y \sim x, data = babynames)$

Fórmula (equação da regressão a estimar) Tabela de dados (tibble ou data.frame) onde as variáveis do modelo se localizam

Utiliza-se o ponto final quando queremos passar uma tabela a uma função, noutro local que não o 1.º argumento

```
mod_e <- wages %>%
  lm(log(income) ~ education, data = .)
```

wages will be passed to here

Experimente

Corra 2 modelos lineares:

 $mass = \alpha + \beta \times height$, com os dados <u>starwars</u>

price = $\alpha + \beta \times Width_in$

e examine os outputs, atribuindo-os aos objetos *modelo_star* e *modelo_quadros*, respetivamente

Obrigado e até à próxima!

luis.morais@novasbe.pt