(11) EP 1 310 567 A3

(12)

EUROPÄISCHE PATENTANMELDUNG

(88) Veröffentlichungstag A3: 25.02.2004 Patentblatt 2004/09

(51) Int Cl.7: C12Q 1/68

(43) Veröffentlichungstag A2: 14.05.2003 Patentblatt 2003/20

(21) Anmeldenummer: 02090348.0

(22) Anmeldetag: 02.10.2002

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR Benannte Erstreckungsstaaten: AL LT LV MK RO SI

(30) Prioritat: 09.11.2001 DE 10155600

(71) Anmelder: oligene GmbH 10117 Berlin (DE) (72) Erfinder:

 Stuhlmüller, Bruno, Dr. 12514 Berlin (DE)

 Häupi, Thomas, Dr. 15537 Erkner (DE)

(74) Vertreter: Wablat, Wolfgang, Dr.Dr.
 Patentanwalt,
 Potsdamer Chaussee 48
 14129 Berlin (DE)

(54) Nukleinsäure-Array

(57) Um Werkzeuge zur diagnostischen, prognostischen und therapieüberwachenden Analyse sowie zur Durchführung von Screeningverfahren für pharmakologisch wirksame Substanzen und Substanzklassen chronisch entzündlicher Erkrankungen, bakteriell induzierter chronisch entzündlicher Erkrankungen, der Arte-

riosklerose, der Tumorérkrankungen, der Organ- und Gewebstransplantationen, -und der Sepsis zur Untersuchung von Blut, Gewebe, aufgereinigten oder kultivierten Zellen zu schaffen, wird vorgeschlagen, selektionierte Monozyten-Makrophagen Gene zu verwenden.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 02 09 0348

	EINSCHLÄGIGE	DOKUMENTE		
Kategorie	Kennzeichnung des Dokum der maßgeblicher	nents mit Angabe, soweit erforderlich, n Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (InLCI.7)
X	WO 01 74860 A (GREE (US); BIOGEN INC (U 11. Oktober 2001 (2 * Seite 2, Zeile 14 * Seite 4; Tabelle * Seite 11; Tabelle * Seite 66; Anspruc	- Zeile 29 * 2 * :3 *	1-29	C12Q1/68
X .	of inflammatory dis using cDNA microarr PROCEEDINGS OF THE SCIENCES OF USA, NA SCIENCE. WASHINGTON	ays" NATIONAL ACADEMY OF TIONAL ACADEMY OF US, 0-2155, XP002076789	1-29	
x	system gene express arthritis biopsies subtractive hybridi cDNA arrays" JOURNAL OF IMMUNOLO SCIENCE PUBLISHERS			RECHERCHIERTE SACHGEBIETE (Int.Cl.7)
		-/		
	·			
			1	
Der vo		rde für alle Patentansprüche erstellt	<u> </u>	
	Recherchenort	Abschlußdatum der Recherche	2	Proter T
X : von Y : von and: A : teat O : nict	MÜNCHEN ATEGORIE DER GENANNTEN DOKU besonderer Bedeutung allein betracht besonderer Bedeutung in Verbindung aren Veröffentlichung derselben Kateg mologischer Hintergrund htschriftliche Offenbarung schenliteratur	tet E: åtteres Patentidol nach dem Anmel mit einer D: in der Anmeldun porie L: aus anderen Grü	grunde liegende kument, das jedo dedatum veröffen g angeführtes Do nden angeführtes	tticht worden ist kument

2

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 02 09 0348

	EINSCHLÄGIGE	DOKUMENT	<u>re</u>			
Kategorie	Kennzeichnung des Dokum der maßgebticher		oweit erforderlich,	Betrift Anspr		KLASSIFIKATION DER ANMELDUNG (Int.C1.7)
X	STUHLMÜLLER B ET AL known and novel gen monocytes fom patie arthritis" ARTHRITIS AND RHEUM PHILADELPHIA, US, Bd. 43, Nr. 4, Apri Seiten 775-790, XPO ISSN: 0004-3591 * das ganze Dokumen	es in activents with rhad activents with rhad action actio	rated neumatoid PINCOTT,	1-29		
X	ROSENBERGER C M ET typhimurium infecti lipopolysaccharide similar changes in expression." JOURNAL OF IMMUNOLO 1950) UNITED STATES Bd. 164, Nr. 11, 1. Juni 2000 (2000-5894-5904, XP002265 ISSN: 0022-1767 * das ganze Dokumen	AL: "Salmo on and stimulation macrophage GY (BALTIMO 1 JUN 2000 06-01), Sei	induce gene DRE, MD.:	1-29		RECHERCHIERTE SACHGEBIETE (Int.Cl.7)
Der vo	orliegende Recherchenbericht wu			1		
	Recherchenort		Sdatum der Recherche		.	Pr@er
MÜNCHEN 15. Dezembe		Dezember 200	3	Grö	tzinger, T	
KATEGORIE DER GENANNTEN DOKUMENTE T: der Erfindung zugrunde liegende Theorien oder Grundsätze E: ätteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument L: aus anderen Gründen angeführtes Dokument L: aus anderen Gründen angeführtes Dokument E: ätteres Patentdokument, das jedoch erst am oder nach dem Anmeldung angeführtes Dokument L: aus anderen Gründen angeführtes Dokument E: ätteres Patentdokument, das jedoch erst am oder nach dem Anmeldung angeführtes Dokument E: ätteres Patentdokument, das jedoch erst am oder nach dem Anmeldung angeführtes Dokument E: ätteres Patentdokument, das jedoch erst am oder nach dem Anmeldung angeführtes Dokument E: ätteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument E: ätteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument E: ätteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument E: ätteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument E: ätteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument E: ätteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument E: ätteres Patentdokument, das jedoch erst am oder			h erst am oder licht worden ist ament Dokument			

PO FORM 1503 03.82

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 02 09 0348

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

15-12-2003

Im Recherchenbe angeführtes Patentdo	richt kument	Datum der Veröffentlichung		Mitglied(er) Palentiami	der lie	Datum der Veröffentlichung
WO 0174860	A	11-10-2001	AU WO US	5759101 0174860 2002068287	A2	15-10-2001 11-10-2001 06-06-2002
					,	

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

(11) EP 1 310 567 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

14.05.2003 Patentblatt 2003/20

(51) Int Cl.7: C12Q 1/68

(21) Anmeldenummer: 02090348.0

(22) Anmeldetag: 02.10.2002

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
IE IT LI LU MC NL PT SE SK TR
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 09.11.2001 DE 10155600

(71) Anmelder: oligene GmbH 10117 Berlin (DE) (72) Erfinder:

- Stuhimüller, Bruno, Dr.
 12514 Berlin (DE)
- Häupl, Thomas, Dr. 15537 Erkner (DE)
- (74) Vertreter: Wablat, Wolfgang, Dr.Dr.
 Patentanwalt,
 Potsdamer Chaussee 48
 14129 Berlin (DE)

(54) Nukleinsäure-Array

(57) Um Werkzeuge zur diagnostischen, prognostischen und therapieüberwachenden Analyse sowie zur Durchführung von Screeningverfahren für pharmakologisch wirksame Substanzen und Substanzklassen chronisch entzündlicher Erkrankungen, bakteriell induzierter chronisch entzündlicher Erkrankungen, der Arte-

riosklerose, der Tumorerkrankungen, der Organ- und Gewebstransplantationen, -und der Sepsis zur Untersuchung von Blut, Gewebe, aufgereinigten oder kultivierten Zellen zu schaffen, wird vorgeschlagen, selektionierte Monozyten-Makrophagen Gene zu verwenden.

Beschreibung

5

10

15

20

25

30

35

40

[0001] Die Erfindung betrifft Werkzeuge zur diagnostischen, prognostischen und therapieüberwachenden Analyse chronisch entzündlicher Erkrankungen, bakteriell induzierter chronisch entzündlicher Erkrankungen, der Arteriosklerose, der Tumorerkrankungen, der Organ- und Gewebstransplantationen, und der Sepsis zur Untersuchung von Blut, Gewebe, aufgereinigten oder kultivierten Zellen.

[0002] Akute und chronische Entzündungsvorgänge im Blut und Gefäßsystem, sowie im Gewebe können zu pathologischen Ablagerungen, fibrotischen Umbauvorgängen und auch zur direkten Zerstörung von Geweben und Organen führen.

[0003] Die Zellen des Monozyten / Makrophagen-Systems sind an der Aktivierung und Aufrechterhaltung von Entzündungskaskaden im Blut und im Gewebe z.B. im Rahmen entzündlichrheumatischer Erkrankungen, bakteriell induzierter entzündlicher Erkrankungen, der Tumorerkrankungen, der Organ- und Gewebstransplantationen, der Arteriosklerose und der Sepsis wesentlich beteiligt. Bei diesen Erkrankungen sind Monozyten und Makrophagen hoch aktiviert, zeigen Veränderungen im Besatz ihrer Oberflächenmoleküle, treten mit anderen Zellen in Kontakt und sezernieren bestimmte Botenstoffe, die dafür sorgen, den Entzündungsvorgang zu unterhalten. Dabei kommt es neben unspezifischen Entzündungsreaktionen auch zur spezifischen Stimulation des Immunsystems.

[0004] Es können dabei sowohl durch den Krankheitserreger vermittelte als auch auf dem Boden anderer Ursachen (z.B. äußere, umweltbedingte Faktoren wie Strahlung, Toxine oder Allergene) oder zum Teil auch genetischer Veranlagungen autoaggressive Reaktionen auftreten. Diese können sich sowohl im Rahmen der unspezifischen, als auch der spezifischen Entzündungs- und Abwehrreaktion als überschießende Reaktionen entwickeln und zur Schädigung oder gar Zerstörung von Organsystemen führen. Den Monozyten und Makrophagen wird auch bei diesen autoagressiven Reaktionen eine wesentliche Rolle zugeteilt.

[0005] Die molekularen Abläufe in den Monozyten und Makrophagen, die zu einer solchen chronischen Entzündung und / oder Autoaggression beitragen, sind noch weitgehend ungeklärt. Ihre Untersuchung ist dringend erforderlich 1. aus diagnostischen Gründen zur Einteilung und pathophysiologischen Beurteilung der Erkrankung, 2. aus prognostischen Gründen zur optimalen Ausnutzung der therapeutischen Möglichkeiten und 3. aus therapeutischen Gründen, einerselts zur Überwachung einer bestehenden Therapie, andererseits zur Entwicklung neuer therapeutischer Ansätze.

[0006] Derzeitige entzündungshemmende Therapien für chronisch entzündliche Erkrankungen aus dem rheumatischen Formenkreis sind unspezifisch und können den Entzündungsprozeß meist nur begrenzt hinsichtlich Intensität und zeitlichem Verlauf aufhalten. In vielen Fällen schreiten diese Erkrankungen dennoch fort mit zunehmender Organschädigung, zum Teil bis hin zur völligen Organzerstörung.

[0007] Autoimmunerkrankungen und / oder entzündliche Erkrankungen können prinzipiell jedes Organsystem betreffen. Beispielhaft sind hier aufgeführt Erkrankungen des Skelettund Stützapparates (Rheumatoide Arthritis, reaktive Arthritis, Morbus Bechterew, Osteoarthritis und Abriebsynovitis), des Darms (Colitis Ulcerosa und Morbus Crohn), der Leber (Autoimmunhepatitis, chronische Virushepatitis, primär biliäre Zirrhose), endokriner Organe (Pankreas: Juveniler Typ-I Diabetes; Schilddrüse: Hashimoto Thyreoditis, Morbus Basedow), der Skelettmuskulatur (Polymyositis, bei Hautbeteiligung Dermatomyositis), des Herzmuskel (rheumatisches Fieber, dilatative Kardiomyopathie, virale Myokarditiden), der Haut (Sklerodermie, Psoriasis, Neurodermitis), der Lunge (Lungenfibrose, Goodpasture Syndrom, chronisch obstruktive Lungenerkrankung, Sarkoidose), des Gehirns bzw. des Zentralen Nervensystems (Multiple Sklerose) und des Herz-Kreislauf Systems (Vaskulitis, Arteriosklerose) sowie chronische Multiorganerkrankungen (Systemischer Lupus Erythematosus, Sjögren Syndrom, systemische Sklerose, Sepsis) und Tumoren.

[0008] Die rheumatoide Arthritis ist eine inflammatorische, chronisch entzündliche Gelenkerkrankung, welche zur fortschreitenden Zerstörung der befallenen Gelenke führt. Es weisen sowohl die im peripheren Blut zirkulierenden Monozyten eine Zellaktivierung auf als auch die weiterdifferenzierten Zellen des Monozyten / Makrophagensystems, die im Gelenk als synoviale Makrophagen und dentritische Zellen vorliegen. Dies spiegelt sich in vergleichbaren Transkriptions-Mustern für entzündungscharakteristische Proteine (Botenstoffe, Proteasen u.a.) wieder. Bislang konnte die rheumatoide Arthritis nur anhand der klinischen ACR-Kriterien und durch pathohistologische Untersuchungen des betroffenenen Gewebes diagnostiziert werden. Häufig ist die Erkrankung dabei schon relativ weit fortgeschritten und bereits eine irreversible Schädigung des Gelenks eingetreten. Therapeutische Maßnahmen kommen somit nicht selten zu einem zu späten Zeitpunkt zum Einsatz bei dem die autoagressiven Schädigungen bereits stattgefunden haben und irreversibel sind.

[0009] Durch Untersuchung der Genexpressionsprofile ist zu erwarten, dass eine neue molekulare Charakterisierung der Erkrankung möglich wird und damit eine Einteilung in Subgruppen nach pathophysiologischen Besonderheiten erfolgt. Ferner steht eine prognostische Vorhersage in Aussicht über die Agressivität im welteren Verlauf. Dies würde bereits frühzeltig Einfluß auf die Wahl und Intensität der medikamentösen Therapie ausüben.

[0010] Hinsichtlich der therapeutischen Maßnahmen, die heute noch weitgehend unspezifisch sind, stellt sich in Aussicht, dass über die Kenntnis der molekularen Mechanismen der chronischen Entzündungen auch spezifische

Kandidaten erkannt werden, auf deren Basis neue Therapiekonzepte entwickelt werden können. Dies kann einerseits durch biologische spezifische Substanzen, relevante Antagonisten, oder durch pharmakologische naturstoffbezogene oder auch chemisch wirksame spezifische Substanzen geschehen und, die direkt in den Entzündungskreislauf des Monozyten / Makrophagen Systems eingreifen.

[0011] Bei Tumorerkrankungen des blutbildenden Systems oder aber Tumorerkrankungen mit neoplastischen Veränderungen finden sich zahlreiche Areale mit infiltrierten Zellen des Monozyten/Makrophagen-Systems die charakteristische Genexpressionsmuster beinhalten. Diese Genexpressionsmuster beinhalten sowohl entzündungsspezifische Genexpresionen, zum anderen aber auch tumorspezifische Genregulationen.

[0012] Bei der Sepsis und der bakteriell induzierten Abriebsynovitis werden Zellen des Monozyten/Makrophagen-Systems durch bakterielle Infektionen vorwiegend über Lipopolysaccharide aktiviert und weisen wieder ein weitgehend gleichartiges entzündungsspezifisches Genexpressionsmuster wie nicht bakterielle entzündliche Erkrankungen, andererseits aber ein spezifiziertes bakteriell induziertes Genmuster auf. Somit sind auch die beiden Verlaufsformen der Abriebsynovitis ohne bakteriellen Auslöser von der rein bakteriell induzierten Abriebsynovitis in ihrem Genmuster zu unterscheiden.

[0013] Bei der Arteriosklerose werden Monozyten bereits im peripheren Blut aktiviert und dazu angeregt, an zerstörte, entzündungsspezifische Regionen der Arterien zu binden. Die Kommunikation durch Zell-Zellkontakt mit Endothelzellen trägt dazu bei die Aktivierung und Rekrutierung des Monozyten/Makrophagen-Systems zu unterhalten.

[0014] Von führenden Mikroarrayherstellern (Affymetrix, Clontech, Nanogene) werden derzeit kommerzielle Mikroarrays angeboten, die im Einzelset zwischen 4.000 bis 12.000 zufällige Gene beinhalten. Zur Transkriptionsgesamtanalyse aller Geneinheiten sind mehrere Sets, die insgesamt ca. 48.000 Genen abdecken, zur Untersuchung notwendig. Bei der Gesamtanzahl von ca. 40.000 Genen (= ca. 120.000 Einzelgenvarianten) des menschlichen Genoms zeigt sich hierbei eine verschwindend geringe Abdeckung hinsichtlich der Gesamtanzahl verschiedener Transkripte. Es ist offensichtlich, dass es sich hier um ein aufwendiges und teures Verfahren handelt, das mit einem sehr großen biometrischen Analyseaufwand verbunden ist und für den Nachweis krankheitspezifischer, zellspezifischer Gene eine geringe Trefferquote aufweist.

[0015] Es ist die Aufgabe der Erfindung, Werkzeuge zu schaffen, die zur diagnostischen, prognostischen und therapieüberwachenden Analyse sowie zur Durchführung von Screeningverfahren für pharmakologisch wirksame Substanzen und Substanzklassen der rheumatoiden Arthritis, anderer chronisch entzündlicher Erkrankungen, infektiös bedingter Entzündungen, Tumorerkrankungen, Arteriosklerose, Organund Gewebstransplantationen und der Sepsis geeignet sind.

[0016] Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst.

5

10

15

20

25

30

35

40

45

50

55

[0017] Dazu sind erfindungsgemäß Werkzeuge vorgesehen, die unter Verwendung der Sequenzen einer Auswahl von nachfolgend genannten Genen oder unter Verwendung der Sequenzen aller nachfolgend genannten Genen ausgebildet sind, auch unter Verwendung weiterer Gene, oder mit genannten Genen komplementärer RNA:

Tabelle 1

Tabelle 1			
Zytokine und Faktoren und Liganden:			
Interleukin-1α	(Acc.# NM_000575)		
Interleukin-1β	(Acc.# NM_000576)		
Interleukin-6	(Acc.# AF372214)		
Interleukin-8	(Acc.# L19591)		
Interleukin-10	(Acc.# XM_001409)		
Interleukin-13	(Acc.# HSU62858)		
Interleukin-15	(Acc.# XM_003529)		
Interleukin-16	(Acc.# AF053412)		
Interleukin-18	(Acc.# E17135)		
Angiopoietin-like factor (CTD6)	(Acc.#XM_001529,XM_042319)		
Inhibin β-B (INHBB)	(Acc.# NM_002193)		
Tumor-Nekrosefaktor-α	(Acc.# NM_000595)		
Tumor-Nekrosefaktor-β	(Acc.# D12614)		
Transforming Growth Factor-β (TGF-β)	(Acc.# XM_008912,NM_00660)		
Latent TGF-β binding prot. LTBP4	(Acc.# NM_003573,XM_008868)		
Melanoma stimulating activity (MGSA)	(Acc.# X54489)		
Chemokine Gro-a/MGSA	(Acc.# X12510,XM_003504)		
Chemokine (C-X-C motif) ligand 16	(Acc.# NM_022059)		

	Zytokine und Faktoren und Liganden:	
	Chemokine alpha-3 (CKA3)	(Acc.# NM_002993)
5	CC-Chemokine (SLC)	(Acc.# AB002409)
	EBI-1-Ligand Chemokine	(Acc.# AB000887)
	Small inducible cytokine subfamily A(SCYA21)	(Acc.# XM_048450)
	Small inducible cytokine(SCYA21)	(Acc.# NM_002989)
	Megakaryocyte stimulating factor	(Acc.# U70136)
10	Monocyte colony stimulating factor (M-CSF)	(Acc.# NM_000757)
	Granulo-/Monocyte colony stimu. factor (GM-CSF)	(Acc.#: E01817)
••	Macrophage inflammatory Protein (MIP-1)	(Acc.# HUMMIP1A)
	Makrophage inflammatory Protein (MIP-2	(Acc.# AF106911)
15	Monocyte migration inhibitory factor (MIF)	(Acc.# L19686)
.0	Monocyte Tissue factor	(Acc.# M16553)
	Monocyte Chemoattractant Protein-1 (MCP-1)	(Acc.# S71513)
	Monocyte Chemoattractant Protein-2 (MCP-2)	(Acc.# NM_005623)
	Monocyte Chemoattractant Protein-3 (MCP-3)	(Acc.# X72308;S57464)
20	Fraktalin small inducible cytokine	(Acc.# NM_002996)
	Stromal derived factor-1 (SDF-1)	(Acc.# HSU16752)
	Insulin-like growth factor-5 bind. Protein	(Acc.# NM_000599)
	missim like growth factor-5 billia. I fotelin	(ACC.# 14141_000399)
25	Rezeptoren, lonenkanäle und assozilerte Proteine:	
		(4 #1 40044)
	Angiotensin Rezeptor-II Homolog (ATR-IIh)	(Acc.# L48211)
	Toll-like Rezeptor-2	(Acc.# XM_003304)
	Toll-like Rezeptor-4	(Acc.# XM_005336)
30	Opoid-Rezeptor Kappa	(Acc.# XM_011716)
	Interleukin-1 receptor	(Acc.# XM_002686)
	Interleukin-2 receptor α-Untereinheit	(Acc.# XM_043149)
	Interleukin-2 Receptor β-Untereinheit	(Acc.# XM_009962,M26062)
35	Interleukin-2 Receptor γ-Untereinheit	(Acc.# XM_047675)
	Interleukin-7 Receptor	(Acc.# AH007043,NM_008372)
	Interleukin-8 receptor α (IL8RA)	(Acc.# XM_058007)
:	Interleukin 8 receptor β (IL8RB)	(Acc.# NM_001557
	Fc-Rezeptor-I	(Acc.# J03619,AF200220)
40 ·	Fc-Rezeptor-II	(Acc.# M28696,M28697)
	Fc-Rezeptor-III	(Acc.# Z46223,Z46223)
	Tumor-Nekrosefaktor-α Rezeptor	(Acc.# S63368)
	C-Chemokine (C-C motif) Rezeptor-5 (CCR5)	(Acc.# NM_000579,XM_030397)
45	C-Chemokine (C-C motif) Receptor-7 (CCR7)	(Acc.# XM_049959)
	Chemokin-X-C-Rezeptor-4(CXCR-4)	(Acc.# NM_003467)
	Progesterone Receptassoc. Immunophilin(FKBP54)	(Acc.# U42031)
	Partial p58 gene for NK receptor	(Acc.# AJ000542)
	Vascular endothial growth factor	(Acc.# AY047581)
50	Vascular endothial growth factor-β	(Acc.# BC008818)
	Calcium activated potassium channel (KCNN3)	(Acc.# AF031815,AY049734)
	G protein-coupled cytokine receptor EBI1	(Acc.# L31581)
	G protein-coupled cytokine receptor EBI3	(Acc.# XM_012857,L08187)
EE	EBI3-associated protein	(Acc.# U41806)
55		

	Membranproteine und assozilerte Proteine:	
ŀ	CD14	(Acc.# XM_003822)
5 .	CD68	(Acc.# XM_008237)
	CD69	(Acc.# BC007037)
	CD11b	(Acc.# J03925)
	Adhesion receptor CD44	(Acc.# M31165)
	Actin binding coronin like protein (HCORO1)	(Acc.# U34690)
10	Integral membrane protein	(Acc.# L32185)
İ	Epithelial membrane prot3 (EMP-3) / HMPMP-1	(Acc.# X94771,U87947)
	Mac-2 binding protein	(Acc.# L13210)
	Integral membrane protein E16	(Acc.# M80244)
15	HLA-D II beta chain	(Acc.# X03066)
	Desmin	(Acc.# HSU59167,XM_002601)
	Fibronectin precursor	(Acc.# X02761)
	Adducin 1α	(Acc.# X58141,NM_014190)
	HLA DRB1	(Acc.# X88971)
20	Integrin-α 5 subunit	(Acc.# X06256)
·	Integrin cytopl. domain assoc. protein (lcap-1α)	(Acc.# AF012023)
	Integrin cytopi. domain assoc. protein (lcap-1β)	(Acc.# AF012024)
	Titin	(Acc.# X69490,NM_003319)
25	Thrombospondin-1 (TSP-1)	(Acc.# XM_007606)
23	Semaphorin-3	(Acc.# AB000220)
	Semaphorin-F Homolog	(Acc.# U52840)
	TSP-2	(Acc.# NM_003247)
	TSP-1 / Semaphorin-5a Homolog	(Acc.# NM_003966)
30	VCAM-1	(Acc.# X53051)
	Periplakin (PPL)	(Acc.# XM_032727,NM_002705)
	Envoplakin (EVPL)	(Acc.# XM 008135)
	Peripheral myelin protein 22 (PMP-22)	(Acc.# XM_052499)
3 5	,	<u>-</u>
33	(Proto)-Onoko-, Tumor-Suppressor-, Differenzierung	regane & assoz Proteine:
	(Proto)-Onoko-, lumor-suppressor-, bilierenzierung	
	H19 RNA	(Acc.# M32053)
į	Tumor suppressor Brush-1	(Acc.# \$69790)
40	Pim-2 Protoonkogen	(Acc.# U77735,XM_010208)
	HOX-B3	(Acc.# N70814)
	MEL-18	(Acc.# D13969)
•	c-fos	(Acc.# V01512)
45	c-jun	(Acc.# NM_002229)
,,,	c-myc	(Acc.# AH001511)
	c-myc related oncogen (pHL-1)	(Acc.# X54629)
	c-Ret tyrosine kinase receptor ligand 2 (RETL2)	(Acc.# U97145)
	c-Ret tyrosine kinase receptor ligand 1 (RETL1)	(Acc.# U97144)
50	jun-B	(Acc.# XM_009064)
	c-Jun activation domain binding protein	(Acc.# U65928)
	Desmoyokin/AHNAK	(Acc.# X74818,M80899)
	Rad mRNA	(Acc.# L24564)
<i>55</i>	PTEN	(Acc.# AH005966,XM_005867)
	c-ras homolog gene family, member B (ARHB)	(Acc.# XM_002689,NM_004040)
	Transforming activity encogene (TRE-2)	(Acc.# X63596)
	Transforming activity oncogene (TRE-17	(Acc.# HSTRE213)

	(Proto)-Onoko-, Tumor-Suppressor-, Differenzierungsgene & assoz.Proteine:		
	Kruppel-like fetal globin gene activator (FKLF)	(Acc.# AF272830)	
5	c-fos related antigen (fra-1)	(Acc.# X16707)	
	c-fos related antigen (fra-2)	(Acc.# X16706)	
:		(1.65.11 7.7.67.65)	
	Akut Phase Protein:		
10	Large-Ferritin Untereinheit	(Acc.# M11146)	
	Small-Ferritin Untereinheit	(Acc.# NM_000146)	
	Enzyme, Enzym-assoziierte Proteine und Inhibitore	n·	
15	Activation-induced cytidine deaminase		
15	· · · · · · · · · · · · · · · · · · ·	(Acc.# AB040431,NM_020661)	
	Phospholipase-C	(Acc.# XM_041310)	
	Prostaglandin G/H Synthase	(Acc.# S36271)	
	Prostaglandin-Endoperoxide Synthase-1	(Acc.# NM_000962)	
20	Cyclooxygenase-1	(Acc.# HSU63846)	
	Cyclooxygenase-2	(Acc.# M90100)	
	Endothelin-1 (EDN1)	(Acc.# NM_001955)	
	Endothelin-1 (EDN2)	(Acc.# NM_001956)	
	Clustrin (complement lysis inhibitor, SP-40,40)	(Acc.# XM_027447,X14723)	
25	Fettsäure Desaturase 1 (FADS1)	(Acc.# AF084558)	
	Cysteine dioxygenase 1 (CDO-1)	(Acc.# U80055)	
	Histidine biosynthesis protein	(Acc.# NM_007016)	
	Chitinase 1	(Acc.# NM_003465)	
30	Chitinase precursor	(Acc.# AF290004)	
	L-glycerol-3-phosphat: NAD oxidoreductase	(Acc.# L34041)	
	Alcohol dehydrogenase class I gamma subunit	(Acc.# M12272)	
	Procarboxypeptidase B1	(Acc.# NM_001871)	
	Phosphoenolpyruvate carboxykinase (PCK1)	(Acc.# XM_009672,L05144)	
3 5	Lysozym	(Acc.# BC004147)	
	Transaldolase	(Acc.# NM_006755)	
	Thymosin-β4	(Acc.# M17733)	
	Metallothionein 1L (MT1L)	(Acc.# NM_002450)	
40	Manganese-superoxide dismutase (Mn-SOD)	(Acc.# S77127)	
	Superoxide Dismutase 1	(Acc.# K00065)	
	Superoxide Dismutase 2	(Acc.# NM_000636)	
	Superoxide Dismutase 3	(Acc.# NM_003102)	
	Copper/zinc-superoxide dismutase (Cu/Zn-SOD)	(Acc.# M13267)	
45	Catalane	(Acc.#)	
	Monoamine oxidase-A (MAOA)	(Acc.# M68840,XM_055485)	
•	Fatty acid synthetase	(Acc.# U29344)	
	Glutathion peroxidase	(Acc.# X13710)	
50	Glutathion peroxidase 3	(Acc.# NM_002084)	
30	Glucocerebrosidase	(Acc.# M16328)	
	Induzierbare Nitric oxide Synthase	(Acc.# AB022318)	
	Transglutaminase 1 (K polypeptide)	(Acc.# XM_007310)	
	Transglutaminase (TGase)	(Acc.# M55153,SEG_HUMETG)*	
55	α-1-Antitrypsin	(Acc.# HSATPR1)	
	Protein Tyrosin-Phosphatase	(Acc.# U27193)	
	Carbonic anhydrase precursor(CA 12)	(Acc.# AF037335)	
,			

Tabelle 1 (fortgesetzt)

Enzyme, Enzym-assozlierte Proteine und Inhibito Metallothionein-iG gene (MT1G)	(Acc.# J03910)
Lymphocyte phosphatase assoc. Protein (LPAP)	(Acc.# X97267,AA011257)
Flap Endonuclease 1 DNA repair gene (FEN1)	(Acc.# AC004770)
Flap structure-specific endonuclease 1 (FEN1)	(Acc.# L37374, XM_043386
Kinasen, Protein Kinasen (PKN) und PKN-inhibito	oren:
Protein Kinase C-alpha Untereinheit	(Acc.# X52479)
Protein Kinase C-beta-1 Untereinheit	(Acc.# XM_047187)
Protein Kinase C-beta-2 Untereinheit	(Acc.# M13975)
Protein Kinase C-gamma Untereinheit	(Acc.# M34182)
Protein Kinase C-delta Untereinheit	(Acc.# D10495)
Protein Kinase-C Inhibitor	(Acc.# U51004
lk-Kinase-κ	(Acc.# AF029684
PI3-Kinase	(Acc.# Y13892)
MAP Kinase-11	(Acc.# XM_035889)
p38 MAP Kinase interaction protein	(Acc.# AF031135)
p38 MAP Kinase interacting protein	(Acc.# XM_035930)
Serin/Threonin Kinase	(Acc.# AB015982)
Thyrosin Kinase-1	(Acc.# XM_002037)
Thyrosin Kinase-2	(Acc.# XM_005480)
Non-receptor protein tyrosine kinase tyk2	(Acc.# X54637)
Mitogen- and stress-activated protein kinase-1	(Acc.# AF074393)
Mitogen- and stress-activated Protein Kinase-2	(Acc.# AF074715)
Casein Kinase 1, alpha 1 (CSNK1A1)	(Acc.# NM_001892,L37042)
Thyrosine kinase 1 (TIE-1)	(Acc.# XM_002037)
Thyrosine kinase 2 (TIE-2)	(Acc.# XM_005480)
Differenzierungsgene:	
WNT-6	(Acc.# AY009401,AB059570
WNT-13	(Acc.# Z71621)
BMP-4	(Acc.# M22490)
Proteinasen, Matrixmetalloproteinasen (MMP) un	d MMP-Inhibitoren:
Cathepsin-B	(Acc.# XM_035662)
Cathepsin-G	(Acc.# M16117)
Cathepsin-K	(Acc.# NM000396)
Cathepsin-L	(Acc.# NM_001912)
Cathepsin-S	(Acc.# M86553)
Matricx metalloproteinase-1 (MMP-1)	(Acc.# NM_002421)
MMP-3	(Acc.# X05232)
MMP-9	(Acc.# XM_009491)
	(Acc.# Y13323)
Disintrigin Protease	(Acc.# NM_003254)
Disintrigin Protease Tissue inhibtor of MMP type 1 (TIMP-1)	(· · · · · · · · · · · · · · · · · · ·
	(Acc.# NM_003255)
Tissue inhibtor of MMP type 1 (TIMP-1)	
Tissue inhibtor of MMP type 1 (TIMP-1) TIMP-2	(Acc.# NM_003255)

Tabelle 1 (fortgesetzt)

Tabelle 1 (fortgesetz	··/ · · · · · · · · · · · · · · · · · ·
Apoptose- und Zellzyklus Regulatoren:	
Annexin A-2II	(Acc.# BC001388)
Growth arrest DNA-damage-induc. prot. (GADD45)	(Acc.# M60974)
Growth arrest DNA-damage-induc, prot.α(GADD45A)	(Acc.# XM_056975,XM_04059
Growth arrest DNA-damage-induc. prot.β(GADD45B)	(Acc.# NM_015675,AF087853
Growth arrest DNA-damage-indcu. prot.g(GADD45G)	(Acc.# NM_006705)
Lymphocyte G0/G1 switch gene (GOS-3)	(Acc.# L49169)
Signaltransduktions-Regulatoren:	· · · · · · · · · · · · · · · · · · ·
STAT-1	(Acc.# NM_007315)
STAT-4	(Acc.# XM_002711)
Adenylate kinase 1 (AK1)	(Acc.# NM_000476)
Inositol 1,4,5-trisphosphate 3-kinase (ITPKC)	(Acc.# XM_047369,XM_04736
Phosphatidylinositol-3'-kinase (PI3K)	(Acc.# Y11312)
Transkriptionsfaktoren, Translationsfaktoren und a	ssozilerte Proteine:
Transcription factor AREB6	(Acc.# D15050)
Transcription factor 8 (TCF8)	(Acc.# XM_030006)
Nuklear factor kappa-B	(Acc.# M58603)
AP-1	(Acc.# AB015319,AB015320)
PU.1	(Acc.# X66079)
SPI-B	(Acc.# X66079)
v-maf musculoaponeurotic fibrosarcoma (MAFF)	(Acc.# XM_039249,XM_03925
Zinc finger transcription factor (GKLF)	(Acc.# AF105036,AK026253)
Zinc finger Protein	(Acc.# M80583)
CCAATA enhancer binding Protein-beta	(Acc.# NM_005194)
RNA-polymerase II elongationsfactor	(Acc.# L47345)
Translation elongation factor-1 α-1 (EEF1A1)	(Acc.# BC009733)
Translation elongation factor-1 α-2 (EEF1A2)	(Acc.# XM_028863)
Translation elongation factor 2 (EEF2)	(Acc.# NM_001961)
L1-Element (L1.20)	(Acc.# U93569)
Leukemia Zink Finger PLZF	(Acc.# AF060568)
Activating transcription factor 3 (ATF3)	(Acc.# XM_016795,XM_03421
Zinc finger transcriptional regulator (GOS-24)	. (Acc.# M92843)
TGF-β-inducing early growth response 2	(Acc.# AA427597)
SP1-like zinc finger transcript, factor(TIEG2)	(Acc.# AF028008)
snRNA activating protein complex	(Acc.# AF032387)
oct-binding factor-1 (OBF-1)	(Acc.# Z49194)
Early Growth Response protein 1 (EGR-1)	(Acc.# R75775)
Ribosomale- / Ribonukeäre Regulatorgene und ass	ozlierte Proteine:
Ribosomale- / Ribonukeäre Regulatorgene und assehnRNP pseudogen(gp43) (Position: 97.026-98.073)	I
hnRNP pseudogen(gp43) (Position: 97.026-98.073)	(Acc.# AL034397)
hnRNP pseudogen(gp43) (Position: 97.026-98.073) Ribosomal protein L19	(Acc.# AL034397) (Acc.# XM_002758)
hnRNP pseudogen(gp43) (Position: 97.026-98.073) Ribosomal protein L19 Ribosomal protein S13	(Acc.# AL034397) (Acc.# XM_002758) (Acc.# XM_039215)
hnRNP pseudogen(gp43) (Position: 97.026-98.073) Ribosomal protein L19	(Acc.# AL034397) (Acc.# XM_002758)

ſ	Andere:	
ľ	IER-3	(Acc.# NM_003897)
5	Endoplasmatic glykoprotein Gp36	(Acc:# U10362)
	Natural resistassoc. Macroph.protein (Nramp1)	(Acc.# D50402)
	Calgranulin - S100A12 protein	(Acc.# XM_001682,NM_005621)
	14-3-3 gamma Protein	(Acc.# AF142498)
	Serum amyloid-A	(Acc.# M81349,M81451)
10	GDF-1	(Acc.# NM_001492)
	Solute carrier family 7 mRNA (SLC7A5)	(Acc.# NM_003486)
	PLAB/MIC-1	(Acc.# NM_004864)
	EAP-(HBp15/L22)	(Acc.# NM_006755)
15	Small Proline-rich protein-1	(Acc.# L05187)
	NAG-1	(Acc.# AF173860)
	BST-1	(Acc.# D21878)
	II56KD	(Acc.# M24594)
	Fibulin-1 D	(Acc.# NM_006486)
20	Nebulin	(Acc.# XM_040435)
·	VDUP1 upregulated by 1,25-dihydroxyvitamin D-3	(Acc.# XM_002093,XP_002093)
	Tumor nekrosis factor stimulated gene (TSG-6)	(Acc.# NM_007115)
	Tumor nekrosis factor stimulated gene (TSG-37)	(Acc.# M31164)
25	Osteopontin	(Acc.# AF052124)
	Tristetraproline (TTP)	(Acc.# M63625)
	Nephropontin	(Acc.# M83248)
	Tonsillar lymphocyte LD78 mRNA	(Acc.# X03754)
20	MB-1 gene (CD79a-B cell)	(Acc.# U05259)
30	Human Glykoprotein (gp39)	(Acc.# M80927,Y08374)
	Glia derived nexin precursor	(Acc.# Al743134)
	Heat shock protein 70B (HSP-70B)	(Acc.# X51757)
	Apolipoprotein D	(Acc.# XM_049984,XM_003067)
35	Dead box, Y isoform (DBY), altern.transcr. 2	(Acc.# AF000984)
i	Myocilin (GLC1A)	(Acc.# AH006047)
	DR1-associated corepressor (DRAP1)	(Acc.# U41843)
	DR1-associated protein 1 (neg. cofactor 2 α)	(Acc.# XM_055156)
40	FK506 bind 12-rapamycin assoc.prot.1 (FRAP1)	(Acc.# XM_001528,XM_042283)
	Microfibril-associated glycoprotein-2 (MAGP-2)	(Acc.# AH007047,NM_003480)
	Adrenomedullin (ADM) precursor	(Acc.# NM_001124,XM_051743)
	DNA-damage-inducible transcript 3,clone MGC:4154	(Acc.# BC003637)
	Calretinin - calcium binding protein	(Acc.# X56667) (Acc.# XM 017097)
45	Breakpoint cluster region (BCR) mRNA	(Acc.# NM_004797,XM_003191)
	Adipose most abundant gene transcript 1 (APM1)	(Acc.# D45371)
	Novel adipose specific collagen-like factor	(ACC.# D45371)
	Funktionell unbekannte Gene und EST's:	
50		(2
	IMAGE 745750	(Acc.# AA420624)
	KIAA0935	(Acc.# AB023152)
	KIAA0618	(Acc.# AB014518)
55	Homolog zu FLJ23382 fis Klon HEP16349	(Acc.# AK027035)
	Hypothetical gene mRNA	(Acc.# XM_005331)
	HDCMB07P/PCM-1	(Acc.# AF068293)
	cDNA clone DKFZp762M2311	(Acc.# AL512760)

Tabelle 1 (fortgesetzt)

	Funktionell unbekannte Gene und EST's:		
	cDNA clone PP2684	(Acc.# AF218004)	
5	cDNA clone MGC:1811 (IMAGE:3506276)	(Acc.# BC015961)	
•	cDNA clone IMAGE:979127	(Acc.# AA522530)	
	cDNA clone IMAGE:4279495 5', mRNA sequence	(Acc.# Bf667722)	
	cDNA clone 137308 mRNA, partial cds	(Acc.# U60873)	
	cDNA clone IMAGE:159541	(Acc.# H15814)	
10	cDNA clone MAMMA1001272	(Acc.# AU147646)	
	cDNA clone IMAGE:2419382	(Acc.# Al826771)	
	cDNA clone IMAGE: 3941411	(Acc.# BE797145	
	cDNA clone IMAGE:3834583	(Acc.# BE743390)	
15	cDNA clone IMAGE:4565371	(Acc.# BG397372)	
	cDNA clone MGC:2460 IMAGE:2964524	(Acc.# BC009504)	
	cDNA clone RC3-HT0585-010400-013-all HT0585	(Acc.# BE176664)	
	cDNA clone similar to CG8974 gene product	(Acc.# XM_018516)	
	cDNA clone BSK-65	(Acc.# W99251)	
20	cDNA clone IMAGE:3844696	(Acc.# BE730665)	
	FLJ23382 fis, clone HEP16349	(Acc.# AK027035)	
	FLJ20500 fis, clone KAT09159	(Acc.# AK000507,BC015236)	
	GABBR1 Region von AL031983	(Acc.# 12329558)	
25	cDNA clone CS0DE006YI10 5' prime end	(Acc.# AL541302)	
	cDNA clone CS0DE006YI10 3' prime end	(Acc.# AL541301)	
	EST371586 IMAGE resequences	(Acc.# Aw959516)	
	MEN1 region clone epsilon/beta	(Acc.# Af001892)	
30	Kontrollen zum Quantifizierungsabgleich:		
	alpha-Aktin	(Acc.# M20543)	
	beta-Aktin	(Acc.# XM_037239)	
	gamma-Aktin	(Acc.# NM_001614)	
35	Glyceraldehyd-3-phosphat-Dehydrogenase	(Acc.# XM_033258)	
	Glucose-6-phosphat-Dehydrogenase	(Acc.# XM_013149)	
	28S rRNA	(Acc.# M27830)	
	18S rRNA	(Acc.# M10098)	

Tabelle 2

BSK-66 oder Accession Nr. AA393029

CGGTTGGGGCTCTTGGATTTGATGTGTGGCGAAGGCTGCAATTGTTTAATAA CCCTTCATGATTCAACAGCTCTTCAAGAACTTTCCTCTGTTCTTGTGTGGAGCTCGT GACAGCCAGTGGTGGTGGAGCTCCAGCCCTCTCTTCCCACAGGCACAAGCCGGGTTC

55

40

45

5

BSK-89 oder Accession Nr. AA574456 - forward

ATTTTAGGGAGGTAGTAGATGATTTTTAGGGAATTTGATGGCCCAGAAGAACATACA
ATGGATTGGGACAAAGTCTGTTGGGCAGACAATGGTTTGTGACAAAATTCTGTCCAG
GTGTGTTGACCGAATTCAGGCTTTCTTTATGCGATATGAGTTCAGTTAATGAAAACA
CAGGGGAGTGACCAGAAGTGATTGTTTCCTTCTTTGGCGTTTCTGTCTTCCTCTTT
TTTGTTCTATTCCCTTATTTTGCAACCTTTTGGATGTTACCCTTTGGAAGTTACCCT
CTTGTAACTTCCACATTAAAAGTTTGGGGGCTGGCTGATANAAGGAACTCCAGAGAA
CAACTTGATTCTGTGCTTTGGGAGAGACAGANAAATGAGGGGTGTGGAGGAAGGTCA
GANAGACCCTGAGGCCTCTGCCTNCTTCAGCATGTCANAGCACCCTATTTTGGGGCT
TGCTTTCTGAGCCCNAACATCTCCAGCCTTCCANGANTCTGTGGCTTATCCTTCCCA
ANGATAGGATCACTTGNCACTCTACTGANCCTAAGTTGTATTCANTTTCTTTTGATC
CGCCTNGACTCTNTAGCNANTGANAANCACAACNTGGNAACNAACCCTCATAAANCT
GCTNTANCTTCTGGTTTTAAGNNCAAAACA

BSK-89 oder Accession Nr. AA574456 - revers

BSK-67 oder Accession Nr. AA574454

CGGTCAACCCAACACAGGCATGCTCATAAGGAAAGGTTAAAAAAAGCAAAAGGAACT
CGGCAAATCTTACCCCGCCTGTTTACCAAAATCATCACCTCTAGCATCACCAGCATT
AGAGGCACCGCCTGCCCAGTGACACATGTTTAACGGCCGCGGTACCCTAACCGTGCA
AAGGTAGCATAATCACTTGTTCCTTAAGTAGGGATCGCCTTGAATGGCTCCACGAGG
GTTCAGCTGTCTCTTACTTTTAACCAGTGAAATTGACCTGCCCGTGAAGAGGCGGGC
ATAACACAGCAAGACGAGAAGACCCTATGGAGCTTTAATTTATTAATGCAAACAGTA
CCTAACAAACCCACAGGTCCTAAACTACCAAACCTGCATTAAAAATTTCGGTTGGGG
CGACCTCGGGGCAGAACCCAACCTCCGAGCAGTACATGCTAAGACTTCACCAGTCAA
AGCGAACTACTATACTCAATAGATCCAATAACTTGACCAACGGAACAAGTTACCCTA
GGGATAACAGCGCAATCCTATTCTAGAGTCCATATCAACAATAGGGTTTACGACCTC
GATGTTGGATCAGGACATCCCAATGGTGCAGCCGCTACTAAAGGTTCGTTTGTTCAA
CGATTAAAGTCCTACGTGATCTGAGTTCAGACCGGAGTAATCCAGGTCGGTTTCTAT
CTACTTCAAATTCCCG

BSK-80 oder Accession Nr. AA574455

CCCCCCATCTCCCTTCCCATGAAGTCCTTAACTTCTGTTCAACCCAAACGCCCAGCGC GTCCCTTCCACTGCGCTGCCCGATGCACCTCTGCCCGCCACGCCTTCAGTGTTGTGG TCATTTGTGCCTGCGCACCCAGGGCTGCAGGTACCTTCCTCCAGTGTGCTTCCAGGA CGGGTTATTCAGGATGCTGAGACGAGCCGCCAGCTTCACACAGAACTGGGGTGAGAC CTCAGCACCTGCTGCCTGTTTCCTGAGGCTGTCTGCCAAGGCGCTCAGGAAACGCA CATGCCTCCTGAGCCTCATATGCACACCTCGTGGACGGCAGCCTGCAGGACCACTGG CAAGTTTTGTTGCCGAAATCCCTCTTCGAGGAAAAAAGTCAATTGTTGGCAATTAGA CTGAGTCTCAAGGAAGCAGCCACAGGGGCTTCTGCTGAGGGGGCAGGCGGAGCTTGA GGAAACCGCAGATAAGTTTTTTTCTCTTTGAAAGATAGAGATTAATACAACTACTTA AAAAATATAGTCAATAGGTTACTAAGATATTGCTTAGCGTTAAGTTTTAACGTAATT TTAATAGCTTAAAATTTTAAGAGAAAATATGAAGACTTAGAAGAGTAGCATGAGGAA GGAAAAGATAAAAGGTTTCTAAAACATGACGGAGGTTGAGATGAAGCTTCTTCATGG AGTAAAAATGTATTTAAAAGAAAATTGAGAGAAAGCG

BSK-83 oder Accession Nr. AI046025

BSK-83-2 - forward

5

10

15

20

25

30

35

40

45

50

55

GTTCAAACAGCAAACGCCCACAGATGGCCCAGAGGTGGTGGTAGTCAGGGTGTGTGG
GTGTTTTTAGGGTTCTTTAGTGTTTTCTTTCACCCAGGGGTGGTGGTCCCAGCCA
GTTTGGTGCTGACGGTGAGAGGAAATTAGAATCTGTTTGCAAATTGTCCAACCCACC
CCCTCAACATGAGGGGCTTCCATTTTCTGTGTTTTTTTAAGGGAACTGTTTCCTTCAT
GCCGCCATGTTCCTGATATTAGTTCTGATTTCTTTTTAACAAATGTTATCATGATTA

AGAAAATTTCCAGCACTTTAATGGCCAATTAACTGAGAATGTAAGAAAATTGATGCT GTACAAGGCAAATAAAGCTGTTTATTAACCTTG

BSK-78 -3- forward

10

15

20

25

5

30

J-4 oder Accession Nr. AI046024

35

AAAACGACGGCCAGTGAATTGTAATACGACTCACTATAGGGCGAATTGGGCCCTCTA
GATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGGCTTTTGAC
ACCAGACCAACTGGTAATGGTAGCGACTGGCGCTCAGCTGGAATTCCGGCTGGGACT
ACCGGGTCTCACTCCAGAAGAGGCTTCTTCAGAGCATGGTAGTCTTGGGGTTCTAAG
AGAATGAGAGTAGAAGCTGCAAAACCTCTTGAAACTGGGGCTTGGGAGTCACACATG
ACTTTCTCCACATTCTGTTCGTCAAAAGCGAATCATAAGGACAGCACAGACTCAAGG

45

GATAAG

40

M-3 oder Accession Nr. AI048523

50

AAACGACGGCCAGTGAATTGTAATACGACTCACTATAGGGCGAATTGGGCCCTCTAG ATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGGCTTTTKACA CCAGACCAACTGGTAATGGTAGCGACCGGTTCTCAGCTGGAATTCCGGATTGGTCCA

ATTGGGTATGAGGAGTTCAGTTATATGTTTGGGATTTTTAGGTAGTGGGTGTTGAG
. CTTGAACGCTTTCTTAATTGGTGGCTGCTTTTAGGCCTACTATGGGTGTTAAATTTT
TTACTCTCTCTACAAGGTTTTTTCCTAGTGTCCAAAGAGCTGTTCCTCTTTGGACT
AACAGTTAAATTTACAAGGGGATTTAGAGGGTTCTGTGGGGCAAATTTAAAGTTGAA
CTAAGATTCTATCTTGGACAACCAGCTATCACCAGGCTCGGTAGGTTTGTTGCCTCT
NCCTATAAATCTTCCCACTATTTTTGTACATAGACGGGTGTTCTCTTTT

HOX-B3

Thymosin-beta-4

Glucocerebrosidase oder Acc. #: M16328

5

10

15

20

25

30

35

40

45

50

55

CCATTAGGCCTATGAATTATAAGATACAGTCACTTTAAAATCCACTGGAAGGCTGAA GAGTGAGTTAAACCTCTTATAATGAATATACAGTGAAACCAGTAGAGGCATTTTATT TAGGGTTCCTACAAGAAGTGCTTAAATAGCATCGACGCCTACATGCTACATCCTGT TCAGTCTCTGCCTCTGTGATGCAGTTGGCCAGCAAATATCCTCCAAGTCATCATTTG CATAGTGCTAGGGATAAAATGAGGAGCAATACCAAATGCTATACCTGCCCTTATGGG AAAACGCATCCTTGTTTTGTTTAGTGGATCCTCTATCCTTCAGAGACTCTGGAACC CCTGTGGTCTTCTCTTCATCTAATGACCCTGAGGGGATGGAGTTTTCAAGTCCTTCC AAAAGCTTCGGCTACAGCTCGGTGGTGTTGTCTGCAATGCCACATACTGTGACTCCT TTGACCCCCGACCTTTCCTGCCCTTGGTACCTTCAGCCGCTATGAGAGTACACGCA GTGGGCGACGGATGGAGCTGAGTATGGGGCCCATCCAGGCTAATCACACGGGCACAG GCCTGCTACTGACCCTGCAGCCAGAACAGAAGTTCCAGAAAGTGAAGGGATTTGGAG GGGCCATGACAGATGCTGCTGCTCTCAACATCCTTGCCCTGTCACCCCCTGCCCAAA ATTTGCTACTTAAATCGTACTTCTCTGAAGAAGGAATCGGATATAACATCATCCGGG TACCCATGGCCAGCTGTGACTTCTCCATCCGCACCTACACCTATGCAGACACCCCTG ATGATTTCCAGTTGCACAACTTCAGCCTCCCAGAGGAAGATACCAAGCTCAAGATAC CCCTGATTCACCGAGCCCTGCAGTTGGCCCAGCGTCCCGTTTCACTCCTTGCCAGCC CCTGGACATCACCCACTTGGCTCAAGACCAATGGAGCGGTGAATGGGAAGGGGTCAC TCAAGGGACAGCCGGAGACATCTACCACCAGACCTGGGCCAGATACTTTGTGAAGT TCCTGGATGCCTATGCTGAGCACAAGTTACAGTTCTGGGCAGTGACAGCTGAAAATG AGCCTTCTGCTGGGCTGTTGAGTGGATACCCCTTCCAGTGCCTGGGCTTCACCCCTG AACATCAGCGAGACTTCATTGCCCGTGACCTAGGTCCTACCCTCGCCAACAGTACTC ACCACAATGTCCGCCTACTCATGCTGGATGACCAACGCTTGCTGCTGCCCCACTGGG CAAAGGTGGTACTGACAGACCCAGAAGCAGCTAAATATGTTCATGGCATTGCTGTAC ATTGGTACCTGGACTTTCTGGCTCCAGCCAAAGCCACCCTAGGGGAGACACACCGCC TGTTCCCCAACACCATGCTCTTTGCCTCAGAGGCCTGTGTGGGCTCCAAGTTCTGGG AGCAGAGTGTGCGGCTAGGCTCCTGGGATCGAGGGATGCAGTACAGCCACAGCATCA TCACGAACCTCCTGTACCATGTGGTCGGCTGGACCGACTGGAACCTTGCCCTGAACC CCGAAGGAGGACCCAATTGGGTGCGTAACTTTGTCGACAGTCCCATCATTGTAGACA TCACCAAGGACACGTTTTACAAACAGCCCATGTTCTACCACCTTGGCCACTTCAGCA AGTTCATTCCTGAGGGCTCCCAGAGAGTGGGGCTGGTTGCCAGTCAGAAGAACGACC TGGACGCAGTGGCACTGATGCATCCCGATGGCTCTGCTGTTGTGGTCGTGCTAAACC GCTCCTCTAAGGATGTGCCTCTTACCATCAAGGATCCTGCTGTGGGCTTCCTGGAGA

CAATCTCACCTGGCTACTCCATTCACACCTACCTGTGGCATCGCCAGTGATGGAGCA
GATACTCAAGGAGGCACTGGGCTCAGCCTGGGCATTAAAGGGACAGAGTCAGCTCAC
ACGCTGTCTGTGACTAAAGAGGGCACAGCAGGGCCAGTGTGAGCTTACAGCGACGTA
AGCCCAGGGGCAATGGTTTGGGTGACTCACTTTCCCCTCTAGGTGGTGCCCAGGGCT
GGAGGCCCCTAGAAAAAGATCAGTAAGCCCCAGTGTCCCCCCAGCCCCCATGCTTAT
GTGAACATGCGCTGTGTGCTTGCTTTGGAAACTNGCCTGGGTCCAGGCCTAGGG
TGAGCTCACTGTCCGTACAAACACAAGATCAGGGCTGAGGGTAAGGAAAAGAAGAAGA
CTAGGAAAGCTGGGCCCAAAACTGGAGACTGTTTGTCTTTCCTAGAGATGCAGAACT
GGGCCCGTGGAGCAGCAGTGTCAGCATCAGGGCGGAAGCCTTAAAGCAGCAGCGGT
GTGCCCAGGCACCCAGATGATTCCTATGGCACCAGCCAGGAAAAATGGCAGCTCTTA
AAGGAGAAAATGTTTGAGCCC

PU.1 (Spi-1) bzw. Accession # X66079

Mel-18 bzw. Accession # : D13969

GAGAGCCCGAACAGGAAGAGGGTACAGCTTTGTGCAGGTCACATGCCCACTGCAGCCCT CCAGCCTCTGGTCCCCAGAGCGGACTTTGGAAGCTGAACTGCTTTTGTTGCTGGAAGACT TATGTTATAATTTACCCTGGGTGGACCAGGGTCGTACAAAAGGGCAACGCTCCCAGTCC CCCCACTCCCGACCCCGGAATCATGCATCGGACTACACGGATCAAAATCACAGAGCTGA ACCCCACCTCATGTGTGCCCTCTGCGGGGGGTACTTCATCGACGCCACCACTATCGTGG AGTGCCTGCATTCCTTCTGCAAAACCTGCATCGTGCGCTACCTGGAGACCAACAAATACT GCCCCATGTGTGACGTGCAGGTCCATAAAACCCGGCCGCTGCTGAGCATCAGGTCTGACA AAACACTTCAAGACATTGTCTACAAATTGGTCCCTGGGCTTTTTAAAGATGAGATGAAAC GGCGGCGGATTTCTATGCAGCGTACCCCCTGACGGAGGTCCCCAACGGCTCCAATGAG GACCGCGGCGAGGTCTTGGAGCAGGAGAAGGGGGCTCTGAGTGATGATGAGATTGTCAG CCTCTCCATCGAATTCTACGAAGGTGCCAGGGACCGGGATGAGAAGAAGGGCCCCCTGG AGAATGGGGATGGGACAAAGAGAAAACAGGGGTGCGCTTCCTGCGATGCCCAGCAGC CAAGGTGGAGGTTCTGTACGAGGACGAGCCACTGAAGGAATACTACACCCTCATGGACA TCGCCTACATCTACCCCTGGCGGCGGAACGGGCCTCTCCCCCTCAAGTACCGTGTCCAGC CAGCCTGCAAGCGGCTCACCCTAGCCACGGTGCCCACCCCTCCGAGGGCACCAACACC AGCGGGGCGTCCGAGTGTGAGTCAGTCAGCGACAGGCTCCCAGCCTGCCACCCTGCC AGCCACCTCCTCCCTGCCCAGCCCAGCCACCCCATCCCATGGCTCTCCCAGTTCCCAT GGGCCTCCAGCCACCCTACCTCCCCACTCCCCCTTCGACAGCCA ACCAGCAGGGGGCGCAAGATGACTGTCAACGGCGCTCCCGTGCCCCCCTTAACTTGAGG CCAGGGACCCTCTCCCTTCTTCCAGCCAAGCCTCTCCACTCCTTCCACTTTTTCTGGGCCC TGGAAAATGGTGTTCATTTTTTTGGGGGGGGTCTTGTGTAATTTGCTGTTTTTTGGGGGTG CCTGGAGATGAACTGGATGGCCACTGGAGTCTCAATAAAGCTCTGCACCATCCTCGCTG TTTCCCAAGGCAGGTGTGTTGGGGGCCCCTTCAGACCCAAAGCTTTAGGCATGATTC CATCTTGGCTGCTGTCCTGACCAGTGGCCGCCCCCGCGTTGTTGAATGTCCAGA AATTGCTAAGAACAGTGCCTTTTACAAATGCAGTTTATCCCTGGTTCTGAGGAGCAAGTG CAGGGTGGAGGTGGCACCTGCATCACCTCCTCTTGCAGTGGAAACTTTGTGCAAAGA GTGGAAAAGAAGATTCAGGCCCTGAGAGGTCTCAGCTCTTGGAGGAGGGCTAAGGCTTT AGCATTGTGAAGCGCTGCACCCCACCAACCTTACCCTCACCGGGGAACCCTCACTAGCA GGACTGGTGGAGTCTCACCTGGGGCCTAGAGTGG AAGTGGGGGTGGGTTAACCTCACACAAGCACAGATCCCAGACTTTGCCAGAGGCAAACA GGGAATTCCGCCGATACTGACGGGCTCCAGGAGTCGTCGCCACACTCG

BSK-87-5 - revers

5

10

15

20

25

30

35

40

45

50

55

GGTAATACTTAGAGCATTACAAAGCACTTTCACATTTAAATTTGATTTTGGAAAGTA TTTTCTTTTTGAGACAGAGTCTCTGTCACCCCAGGCTGGAGTGCATGGAGTGCAGTGG TGCAAACACAGCTCGCTGCACCCTCAACCTCCTGGGCTCAAGCAGTCTTTCCACCTC GGCCTCCCAAGTTGCTAGGACTATAGGACTACAG

BSK-88-1 forward

TGAGCTTGAACGCTTTCTTAATTGGTGGCTGCTTTTAGGCCTACTATGGGTGTTAAATTTT
TTACTCTCTCTACAAGGTTTTTTCCTAGTGTCCAAAGAGCTGTTCCTCTTTGGACTAACAG
TTAAATTTACAAGGGGATTTAGAGGGTTCTGTGGGCAAATTTAAAGTTGAACTAAGATTC
TATCTTGGACAACCAGCTATCACCAGGCTCGGTAGGTTTGTCGCCTCTACCTATAAATCTT
CCCACTATTTTGCTACATAGACGGGTGTGCTCTTTTAGCTGTTCTTAGGTAGCTCGTCTGG
TTTCGGGGGTCTTAGCTTTGGCTCTCCTTGCAAAGTTATTTCTAGTTAAT

BSK-88-1- revers

10

15

20

25

30

35

40

45

50

55

BSK-88-1-2 - forward

BSK-88-1-2- revers

GCAAAACCTCCTTGAAGATACAATTTTGTGAGGAAATATGTCAGTGATTCCACTGGG CAAAGCATTCAACCTATAACCCCTTGTCAAATTTCACATCACAAGAGCGCTGTAAAA TCAAATTCATCTCCAATAGTCCTGAACAAATACTGTATCATGACTTGTGGTCAACTA TGGAGTCTCATGGACAAATGAAAATCTANTAGTTATGTGGNCANAGTATGTGTGNGN GANCGCATTCATTNGNNCTANNATATAANCNTG

BSK-88-2 - forward

TGAGCTTGAACGCTTTCTTAATTGGTGGCTGCTTTTAGGCCTACTATGGGTGTTAAA
TTTTTTACTCTCTCTACAAGGTTTTTTCCTAGTGTCCAAAGAGCTGTTCCTCTTTGG
ACTAACAGTTAAATTTACAAGGGGATTTAGAGGGTTCTGTGGGCAAATTTAAAGTTG
AACTAAGATTCTATCTTGGACAACCAGCTATCACCAGGCTCGGTAGGTTTGTCGCCT
CTACCTATAAATCTTCCCACTATTTTGCTACATAGACGGGTGTGCTCTTTTAGCTGT
TCTTAGGTAGCTCGTCTGGTTTCGGGGGTCTTAGCTTTTGCCAAAGTTA

BSK-88-2 - revers

ATTAACTAGAAATAACTTTGCAAGGAGAGCCAAAGCTAAGACCCCGAAACCAGACG
AGCTACCTAAGAACAGCTAAAAGAGCACACCCGTCTATGTAGCAAAATAGTGGGAAG
ATTTATAGGTAGAGGCGACAAACCTACCGAGCCTGGTGATAGCTGGTTGTCCAAGAT
AGAATCTTAGTTCAACTTTAAATTTGCCCACAGAACCCTCTAAATCCCCTTGTACAA
TTTAACTGTTAGTCCAAAGAGGAACAGCTCTTTGGACACTAGGAAAAAACCTTGTAG
AGAGAGTAAAAAATTTAACACCCATAGTAGGCCTAAAAGCAGCCACCAATTAAGAAA
GCGTTCAAGCTCA

BSK-88-3 - forward

AAGTTTCCCTAGCTTTTTTGTTCANCACTTTCCATTTGTTTTNTTGATGATGTTGCC GCACATTCACCAATAACTTGTTTTTGGCC

BSK-88-3 - revers

10

15

20

25

30

35

40

45 BSK-1E10-9

55

50

GGCCCAGAGAGCAAGTTTATTTGGTGAATGCTGACGGCAAACATCATCCAAGAGAGA
CAAGATGGGAAAGTTGCTGAGACAAGAAAGCCTAGGGAAACTTTAGGCTAGATACAA
AATTCACACAGGGAAAGGCACGGACTCTGGGGAGACTGGGGAAGGTCCTCAGCCATTC
AGCACCATGCGGACGACTCTTCATAGTTGATACAACCATTGCTGTCCTCATGCCCT
GCCACCAGCATCTCTACTTCTTCCTCTGTCATCTTCTCACCCAGTGTGACAAGAACA
TGCCGGATTTCAGCACCCATGACGGTGCCATTTCCTTGTCAAACACCCGAAGT
CCTTCGACATAATCCTCATAGGTGCCCTGGTCCTTGTTCTTGGCCACTGTCTGCAGC
ATGGGCAGAAAGTGCTCAAAGTCCAGCACCTTCACATTCATCTCATCACTCTTGGGG
TTCCCCAGGACCTTGAGCACCTNGGCGTTGGTAGGGTTCTGGCCCAAGGCCCTCATC
ACATCCCCACACTGGCTGNCAGGATCTTGCAT

BSK-1D1 - forward

TTCAGTTTCCTCCTAGTAGTACACGAGTCTCCATTGTTTCACATCCTCACCAGTG
CTTTGTATTGTCTGACTTTTAAGATTCTGCTCATCAGACATATGTAAATGACACATA
ACACAGTTTGTTTTCACAGAACAAATGGTTATTTAAATTCTAAACCCAAAGTAATGT
ACAATTACAATAAAAAGGCCAGAAGAAAGAGGGAAGGAAAAAAGATGTGAGAAATAA
AATTGTTATAGTAATTCTTGTTTTCGCTTCCAAGCATAAAATAGTAATTGGAATGT
TAGTGTGCATGTGTGTATACAATGCAATATGATACAATATAAAAGCAATGCCTCTCT
TTGTTCCATTGGTTGNTTTTTAAATCTATTTTTATAAGTAATAAA

CTGGAATCTAGATAGTTTTCAGGATGGGGAAGATAGATTCAAAACCACCTAAGGGCA TTCTGGGTACAAAGCATTGTGCAAGGCTTTGGTGATACAGAGAATAAGGTCTTTTTT CCCATACTTCCTCATCTGCCAAGGTTATCTCCAATTGTACCTTTCTCTCCAGTTCCA AGCTTGC

BSK-1L2-1 - forward

CGGTAAATTTTTACTCTCTCTACAAGGTTTTTCCTAGTGTCCAAAGAGCTGTTCC
TCTTTGGACTAACAGTTAAATTTACAAGGGGATTTAGAGGGTTCTGTGGGCAAATTT
AAAGTTGAACTAAGATTCTATCTTGGACAACCAGCTATCACCAGGCTCGGTAGGTTT
GTCGCCTCTACCTATAAATCTTCCCACTATTTTGCTACATAGACGGGTGTGCTCTTT
TAGCTGTTCTTAGGTAGCTCGTCTGGTTTCGGGGGTCTTAGCTTTGGCTCCTTGC
AAAGTTATTTCTAGTTAATTCATTATGCAGAAGGTATAGGGGTTAGTCCTTGCTATA

BSK-1K9-B1 - forward

BSK-1K9-B1 - revers

CAAGGAAATTGCACTGTGCAGTCAGTAGTTCCTTTTTAGAACTGGGTGCAGCAGGGG
ATTCCTGTTTAGTCACATGGGTTCTCTTGTGTGGAATGTGAGATGTGGCTAGATGC
ACTCATGTTTTGTTCTCTCTATCTGACCACTGGAGCCTTCCTGATTTGTTCT
GGGGAGACAGCCTTGGTTGGTGGGGCTTGGGACCCTACACTGAGCTCAGGAGTGCTAT
CTAATGGGGTGAGATTCTTTTTCATAACTGATTGAGCCCTGAAGAAGCTGCTTTGCT
TCTCCATGTGGGAAAATGGNCATTATGAGTTCCTTTCTGCACCCTCCCCACTCTACC
CTGTCTTTTANTAAGGATGGGTTTTNCTGTGCAAACCAAAGAAACCNTTCTCTCT
GGG

BSK-2A15-A1 - forward

TGCAGCTCGCCTTGCACAACAGGAAAAACAANAACAAGTTAAAATTGAGTCTNTNGC CAANAGCTTAAAAAATGCTNTGAGGCAAACTGCAAGTGTCACTNTGCAGGCTATTGC AGCTCAAAATGCTGCGGTCCAGGCTGTCAAT

BSK-2A15-A1 - revers

5

10

15

20

25

30

35

40

45

50

55

GCATTGACAGCCTGGACCGCAGCATTCTGAGCTGCAATAGCCTGCAGAGTGACACTT GCAGTTTGCCTCAGAGCATCTTCTAAGCTCTTGGCTAGAGACTCAATTTTAACTTGT TCTTGTTTTTCCTGTTGTGCAAGGCGAGCTGCAT

BSK-2A15-D3 - forward

GCTGGAACAGAATAGCCTGGAACAGGATCTTTCGTTCCATAATATTTTTTAATTAGA
GCAAGTCCTGCTACTGTATCTGTTCCTTTGAAGTTAACCAAGTGAGCAGATGCTCCT
ATGCCAGCAGTCTCTTGGGAAGAGACTCCTCTGTAGCCAAAATCATGTAACTTGTAT
TCCAGACCATCTAAGTTACCAGAAGTTTCTAACAAATATTTGGCCAATATTTTCTTC
TGCTCTCTAGAATTTGTGGCCACTGTGATTGGATACCAGGACTGAACAAGAATAGTC
TCAATCCAATTTGTAAGCCAGTAACACTCTGGATCTGTGTTTTCCACCGTGAAGAAA
CATTTCCTCTGGGAATGACAAANCCCTCANGAACAGCTTTTATTTCTATTGGAAGAT
GCCCATCATACTTCTCAAGAATGGAGTTCCTCCCTTTTCATTAAAGACATCATCTTG
GAAATGTTCTTTTGTAGACATCTTTGGCTTCCTGGATTTCTCTTTTGGGTACTACTTTA
CCTTTTAAGNACTTATTAANAAAGNACTGNACCCATAAAAACTGGNNCTCATATTTA
NCTTCCTTAATTGGAGGNTNTGNTTNTTTTACGGNTTCAAAGANGAAAAAATTTCTT
GNGTGGGGGGGANTTG

BSK-2A15-D3 - revers

GCCGCGCCAGGAGCTCGCGGCGCGCGCCCCTGTCCTCCGGCCCGAGATGAATCCT
GCGGCAGAAGCCGAGTTCAACATCCTCCTGGCCACCGACTCCTACAAGGTTACTCAC
TATAAACAATATCCACCCAACACAAGCAAAGTTTATTCCTACTTTGAATGCCGTGAA
AAGAAGACAGAAAACTCCAAATTAAGGAAGGTGAAATATGAGGAAACAGTATTTTAT
GGGTTGCAGTACATTCTTAATAAGTACTTAAAAGGTAAAGTAGTAACCAAAGAGAAA
ATCCAGGAAGCCAAAGATGTCTACAAAGAACATTTCCAAGATGATGTCTTTAATGAA
AAGGGATGGAACTACATTCTTGAGAAGTATGATGGCCATCTTCCAATAAAAATAAAA

ACTGTTCCTGAGGGCTTTGTCATTTCCANAGGAAATGTTTCTTNNCGGGGGAAAACA CAGATCCNAAGGGGNACTGGNTTACAAATTGGATTGAGANTATTCTTGGTNANNCCT GGGATCCAATCCAAGGGGGCCCAAATT

BSK-2A3-A2 - forward

5

10

15

20

25

30

35

40

45

50

55

CACGAGCGCACGTGTTAGGACCCGAAAGATGGTGAACTATGCCTGGGCAGGGCGAAG
CCAGAGGAAACTCTGGTGGAGGTCCGTAGCGGTCCTGACGTGCAAATCGGTCGTCCG
ACCTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAA
GTTTCCCTCAGGATAGCTGGCGCTCTCGCAGACCCGACGCACCCCCGCCACGCAGTT
TTATCCGGTAAAGCGAATGATTAGAGGTCTTGGGGCCGAAACGATCTCAACCTATTC
TCAAACTTTAAATGGTAANAAGCCCGGCTCGCTTGGCGTGGAGCCGGGCGTGGAATG
CNAGTGCCTAATGGGCCACTTTTGGTAANCAAAACTGGCGCTGCGGGATGAACCCAA
CGCCCGGTTAANGGGCCCNATGCCGACCTCATNANACCCCANAAAANGNGTTGGNTG
ATAC

BSK-2A3-A2 - revers

TATCAACCAACACCTTTTCTGGGGTCTGATGAGCGTCGGCATCGGGCGCCTTAACCC
GGCGTTCGGTTCATCCCGCAGCGCCAGTTCTGCTTACCAAAAGTGGCCCACTAGGCA
CTCGCATTCCACGCCGGCTCCACGCCAGCGAGCCGGGCTTCTTACCCATTTAAAGT
TTGAGAATAGGTTGAGATCGTTTCGGCCCCAAGACCTCTAATCATTCGCTTTACCGG
ATAAAACTGCGTGGCGGGGGTGCGTCGGGTCTGCGAGAGCGCCAGCTATCCTGAGGG
AAACTTCGGAGGGAACCAGCTACTANATGGTTCGATTAAGTCTTTCGCCCCTATACC
CAGGTCGGACGACCGATTTGCACGTNAGGACCGCTACGGACCTCCCCANAGTTCCTN
TGGNTTNGCCCTGCCAGGCTANTNACCATNTTTGGGNCTAAACGNGCGCTCGGCCGG
AATTCNCCGANCTGANGGGTCCNGAATNNNNCCCCCATCCCAGC

BSK-2A3-B3 - forward

BSK-2A3-B3 - revers

5

10

15

20

25

30

35

40

45

50

55

BSK-2E14-D4 - forward

BSK-2E14-D4 - revers

BSK-2F6-D3 - forward

CAACAACACATCATCAGTAGGGTAAAACTAACCTGTCTCACGACGGTCTAAACCCAG CTCACGTTCCCTATTAGTGGGTGAACAATCCAACGCTTGGTGAATTCTGCTTCACAA TGATAGGAAGAGCCGACATCGAAGGATCAAAAAGCCGACGTCGCTATGAACGCTTGG CCGCCACAAGCCAGTTATCCCTTGTGGTAACTTTTCTGACACCTCCTGCTTAAAACC CAAAAGGTCAGAAGGATCGTGAGGCCCCGCTTTCATGGGCAGTAGGCAGATTCGTCC

BSK-2F6-D3 - revers

5

10

15

20

25

30

35

40

45

50

55

GGACGAATCTGCCTACTGCCCATGAAAGCGGGGCCTCACGATCCTTCTGACCTTTTG
GGTTTTAAGCAGGAGGTGTCAGAAAAGTTACCACAGGGATAACTGGCTTGTGGCGGC
CAAGCGTTCATAGCGACGTCGCTTTTTGATCCTTCGATGTCGGCTCTTCCTATCATT
GTGAAGCAGAATTCACCAAGCGTTGGATTGTTCACCCACTAATAGGGAACGTGAGCT
GGGTTTAGACCGTCGTGAGACAGGTTAGTTTTACCCTACTGATGATGTTTTTTG

BSK-2G3-A3 - forward

BSK-2G3-A3 - revers

CGGCTTTGTGGAAGACAGTTTTTCCGTGAACAGGGGTTGGAGGTGGTGGGAGGG
ATGGTTTTGGGATGAAACTGTTCCACCTCAGATCATTAGGTATTAGATTCTCATAAA
GAGCACACAGCCTANATCCCTCACATGTGCAGTTCCTATGAGAATCTAATGCCACAG
TTCACCCGCCACTCACCGCTGTGAGTGGCCTTGTTCCTAACAGACCATGGACCANTA
CTGGCCCGTGGCCCANGGGTTAGGGACCCCTGATCTAACACATANATCTAATGAAGA
AACAGGTTCCATGTGTTAAAAATCTGTGGTTGAAACTGACATTATATTCCTCCTGAT
TTGATACCATGGGGAATACANAACATGACCTATGTGGTACTCCTACCAAAAACGTTT
NACTTGAATCTAACCATGANCAAACATCCANACAANTACAGCTTGTGAGAGCCTCNC
ANGCTGNTACTTGGATTTTTTAAAANNGNNNTGNNTNAAAGGAAAAAAGGNNGGGNT
ANTNTNNATTAANGAACTTNCNNTNAANGCNNGNGNGGNCTTGNTGAANNTNGATGG
GAAAAAANCNCCCC

BSK-2G3-C5 - forward

AGCACACTGGCGCCGTTACTAGTGGATCCGAGCTCGGTACCAAGCTTGATGCATAG CTTGAGTATTCTATAGTGTCACCTAAATAGCTTGGCGTAATCATGGTCATAGCTGTT TCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACATACGAGCCGGAAGCAT

AAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCG CTCACTGCCCGCTTTCCANTCGGGAAACCTGTCNTGCCANCTGCATTAATNAATCNG NCAACNCNCGGGGAGAGGCGGTTTNCNTATTNGGCGCTCTTNCNCTTCTCNNTCACT GACTCNTGNCTCNGNCNNTNNNNTNNNGNNANCGGATANNTNACTTCAAANGCGGNA TACGNTATCCANAATNANGGGATAACNCNNNAAAAAACAT

BSK-2G3-C5- revers

5

10

15

20

25

30

35

40

45

50

55

AGCACACTGGCGGCCGTTACTAGTGGATCCGAGCTCGGTACCAAGCTTGATGCATAG CTTGAGTATTCTATAGTGTCACCTAAATAGCTTGGCGTAATCATGGTCATAGCTGTT TCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCAT AAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCG CTCACTGCCCGCTTTCCANTCGGGAAACCTGTCNTGCCANCTGCATTAATNAATCNG NCAACNCNCGGGGAGAGGCGGTTTNCNTATTNGGCGCTCTTNCNCTTCTC

BSK-2K15-A1 - forward

CTAAACTTAGGGCAACCCCAAGCGCTTGAACCTATACCACCCCACTTTCCTGAGCTC
TGTAAAGAGCATGAAGTTTTCCCACTGACCCCATACACTGAGGTGCCATCACACTGC
ACATTTCCTTCCGGAGAACAAGCACGTACTCAGGTGGAGATAGAACTGTCTTTTTAC
TTAATAGAAAATGATGTGGCAGCTTTAAGAGGAGCGCGTCGGTCTGGGGCTGGTGGC
TTGGGTCACGTGACACCGGTGGTCTCGTTTGCGCCTCTTGATGTCGCGGCGGCGCCC
TGAGGACGGATTGGGCAAGGCTGGTCCCTGTGTGATGAGACATCACCCTCCCAGGAG
CAAGGCGGAAGTCTGGAGGACCTTANGGGCGGANGCGGGAGAAGCNAACTCCGATGA
ATGGTCTCGGCAGGCTCTTCGGGAAAGGGTGAGCCANGGTGGGACTGGCCAGCCAGG
AAGCCTGCTGGTGCAGGGGAAANAAGANANCCCGCGAGATTNGGCCGGACCCTTCCC
GGCNGGGGAAGAAAATCAGGAGAACAGGCTGACTGGAAAANCCCGCGGNCCATGGNG
GACAAGGGTATTNCCGGGGCCAAAAGGNCACCATGTNGGNGGAATTCCNCTGACNCC
GGCGTTACATTAACANTNGGNTGGGGGNAAAANAAAATAACCGGNNGGCCTGTNAGC
CAAATTCACNNCTGGNGGGCGTNTTTGGNTCCACNNGNCCNACTTGANNNNANTTNN
GNTTTTTTNGGNNCCNAAAANTGGGGA

BSK-2K15-A1 - revers

CCGACATGGTGTCCCTTTTGGCACCGGCGATGAGCCTTGCTCCGCCATCGGCCGCCGGGGTTTTCCAGTCAGCCTGTCTCCTGATTCTCTTCCCCTGCCCGGCGCAGCGGTCCGGGGTTTTCCAGTCAGCCTGCTCCTGATTCTCTTCCCCTGCCCGGCGCAGCGGTCCGGCCGCGCAATCTCGCCGGGGTCTCCTCCCGAAGAGCCTGCCGAGACCACTCATCGCGAGCTCGCCTCTCCCGCCCTCAGCGTCCTCCAGACTTCCGCCTTGCTCCTGGGAGGGTGATGTCTCATCACACAGGGACCAGCCTTGCCCAATCCGTCCTCAGGGCGCCGCCGCAATCAAGAGGCGCAAACNANACACCGGTGTCACGTGAACCAAGCCACCANCCCANAACGANCGCTTCTCTTTAAAGCTGGCCCATTATTTTTATTAANTAAAAANACAGNTNTATTTTCACTGANTACNTGCTTGTTNTCCGAAGGAAAGGGC

BSK-2K15-C1 - forward

5

10

15

20

25

30

35

40

45

50

55

GATGGCTTATATAACCAGAAGCCAAATATTTGTGTTCCAAAAATTATTTTACTTAGA ACAATTCATTTAGATTCACTTCAATGTGAAGTATGTGAAAAGCTTAATTGCTGACCA GAGTGAATTTTCCAACAATAAGAAATGCATGGCTGATTGGCTCAAATGATTCTATTC TTCAGCCCTTACTGAAGTACTTAGTGCATACCACCTATGTAATTTTATTCCCCCCTT ATAGAGATGGGGTTTCACCATGCTGCCCAGGCGGGTCTCAAACTCCTAGGTACAAGT GATCCACCCACTTCGGCCCGCCAAAGGGCCGGGATTACTGGCATGAGCCACCAAGCC CAGCCTGGTTATGTATTTATTCGGTATCATAGGGGCTACAGCACAAATCAAAACCAT AGTATCAGTGACCTCCAATCTAATTCCCG

BSK-2K15-C1 - revers

BSK-2K15-D1- forward

BSK-2L13-A2 - forward

TACCTTGGTTTTTAGGGCTGGCATAATAATGCCNGNCTATTCANTTTTAAGACAGAT ATATTTTACNNATAAACCCTGGNGGGGCANAAAANCCCCCTGGNTTCTAACTCTAAC CTGGGCTCTTNCCTTACTGGGCCCTGGGGGGNTGNTCCTATTCNATNAAAAANCCNC CANCNGACGGCTCNAGAATNNNNCNCCATCCAANCNAATTCA

BSK-2L13-A2 - revers

5

10

15

20

25

30

35

40

45

50

55

TTCATAGGAATAGGGAACAAACACCACAGTGGCACANTNATGGGAAGGAGCCCAGGC
TAGGAGTTAGGAGACAGTGGGGGCTTCTCTGACACCACCAGGGCTCTCATCTGTAAA
ATGATATCTGTCTTAAAACTGAATGAGACCTGGCATTATTATGGCCAGCCCTGAAAA
CCAAGGTAGATGGGATGCACAACATCATTGTGAGGGATTTCTGCAAGGCCACTGCCT
GCCTTCCTTGGTGAATGGACGTGGACTCAGTCAGGAAACTCTTTCCACGGAGTCTGG
GCCCTTGAAATTATGCCGGACTACTTCAATTATACACTGCAATCGTTACTGTAATAG
TCACTCAGCACATACAAAATTCTTGGGATCATGTTACTTCCAAGGGTAGTGACCTCN
ATGTGGCCATGATATCATTAAAATTCCTTTGCNTTCCCCCTNCCAACATTAACATTA
AATGCTTTAAGGACCCCCTGCNTTTGGCATGCANCACCCAANANGCCGCCGCTGGNT
TCCATTTCCCCCANAAGGACCTGAANGGAAATACTTCTTTCCTCCCATGGGGACCCT
GNANGGGGGCCCANTTNAANTTGAANTTNCAAAAAAACATTGGCNCGGAATCCNCTGA
CCCCGGGNGTTNCTTACAANTGGGNNGGGGGNAAAANAAANAACCGGCNGGCCTGN
NANNCCAATTTNNAAAANCTNNACTGGGGGGCGTTG

BSK-2L13-B5 - forward

BSK-2L13-B5 - revers

GGTTGGGTTCTGCTCCGAGGTCGCCCCAACCGAAATTTTTAATGCAGGTTTGGTAGT
TTAGGACCTGTGGGTTTGTTAGGTACTGTTTTGCATTAATAAATTAAAGCCCCATAGG
GTCTTCTCGTCTTGCTGTGTCATGCCCGCCTCTTCACGGGCAGGTCAATTTCACTGG
TTAAAAGTAAGAGACAGCTGAACCCTCGTGGAGCCATTCATACAGGTCCCTAATTAA
GGAACAAGTGATTATGCTACCTTTGCACGGTTAGGGTACCGCGGCCGTTAAACATGT

GTCACTGGGCAGGCGGNGCCTCTAATACTGGNGATGCTAGAGGNGATGTTTTTGGTA
AACAGGCGGGNAANATTGCCGAGNTCCTTTTACTTTTTTAACCTTTNCTTATNAA
CATGCCTGTGTTGGGTTGACAGNGAGGGNAATAATGACTNGTGGNTGATGNAAAAAT
TGGGCTGTNATTG

BSK-1B6-A3 - forward

BSK-1B6-A3 - revers

BSK-1C1-2 - forward

GGCTAACAATCTCCAGAAGGTTCATTCAGGCCCATGCAAATCAGTGCCGGAGCCTAG
AGACACCACAGCCTAGAGCTAGAGGTCAGGCAGGCTGAGCTGAGTCACCCACTATT
CAGACCTCCCTCTTAGAGCCTCAGCTACTGGATGGTGGTCATTAAGTTATCATTTAA
ACTACAGACGCAGGCTGGGTACGGTGACTCAACCCTATAGCCCCAGCACTTTGGGAG
GCCAAGATGGGAGGATCACTTGAGGTCGGGAGTTCAACACCAGCCTGGCCAACATGA
TGAAACCCCGTCTCTACTAAAAATACAAAAACTAGCTGGGTGTGGGGGGNGCACATC
TTTAATCCCAGCTTCTCANGANGCTGANGCAGGAGGATCACTTAAACCCANNAAGTG
GANGCTGCANGGAGCCCANATCGCACACTTNACTCCACCTGGGTGACAGAATGAGAC

TCATNTTCNAANGAAACCANCNNCCNNTNNCTCNNTGCCNNNNGTANCTNTTACCNA TCCTTNCCAAGGACCCCACCTTACCATACTTGNTACTAGGNGGCNCCTGAATTTCCN AAANCNNTCTTAAGGGGGCCTCAAGTTTANNGGCCNTTNCTT

BSK-1C1-2 - revers

5

10

15

20

25

30

35

40

45

50

55

GTGATCTCGGCTCACTGCAACCTCTGCCTCCTGGGTTCAAGCGATTCTTGTGCCTCA
ACCTCCCGAGTAGCTGGCATTACAGGAGCCCGCCCACCATGCCTAGCTAATTTTTGT
ATTTTTAGTAGAGACAGGGTTTCACCATGTTGGCCAGGTTGGTCTGGAACTCCTGAC
CTTGTGATCTGCCTTGGCCTCCCAAAGTGCTGGAATTACAGGTGTGAGTCACC
GCGCCCAAGTATAGGCCACTTTTAAGAATTACTCANAGTTAGCTTATAAGAGCGAA
TCAGTGGAGTCCTCCAGTTTGGTTCACACATAATTATTAGGTTGAACCATATAAAGT
TACTGTTTTTGGTCCTGTGAATATTAATATTTATATATGGGTCCAATCTGATATGTT
CCANAAAATACACACTTAANTAAAGNTTGGAAAACCAAATCATANACTTACATACTG
NAAGGCGGGGTATTTGAAACTGGGATGGAAAATCAATTTAATGAGNTATGANCTGCN
TTAAAAAAATGGGANAANATCANANTTGGTGGNANNATTGNAAAAAACCAAATTGCT
GGGGAAGATTGGCATTTNANTNTTNTNNCNCCCNGNGGGGGGNNGGGGGNACNAA
ANGNNANAAAGAA

BSK-1D8-2A - forward

BSK-1D8-2A - revers

BSK-1D9-1B - forward

5

10

15

20

25

30

35

40

45

50

55

CAGTTCCACCCGGGCAGGCAGTCGGGGGATGAGGGCCGTCTAGCGTCCGCACGCGT TCACTCCCAAGGAAGGTGTGTGGGCACGGTGAGGAGGAGAAACANAATANGAA AGTGGCCTGACACGGGGATTCTAAGCANGTCANANNTATGNNGCTNG

BSK-1D9-1B - revers

BSK-1K9-A4 - forward

CTGCGTCAGATTAAAACACTGAACTGACAATTAACAGCCCAATATCTACAATCAACC
AACAAGTCATTATTACCCTCACTGTCAACCCCAACACAGGCATGCTCATAAGGAAAGG
TTAAAAAAAGTAAAAGGAACTCGGCAAATCTTACCCCGCCTGTTTACCAAAAACATC
ACCTCTAGCATCACCAGTATTAGAGGCACCGCCTGCCCAGTGACACATGTTTAACGG
CCGCGGTACCCTAACCGTGCAAAGGTAGCATAATC

BSK-1K9-A4 - revers

BSK-1L3-B5 - forward

TTNTTNCTNNNNNTNTTTANAACANCCCCNANATNAAATNAACCNAATNNCCNTNN NNGNGGATTNCNCCNNNCTNNCGGCTCAAAAA

BSK-1L3-B5 - revers

5

10

15

20

25

30

35

40

45

50

55

CACTGATGGGCATTTGGGTTGATTTCATGTCGTGGCTGTTGTGAATAGTGCTGCAGT GAACATACATGTGCATGTCTTTATGATAGAGTGATTTATAATCCTTCAGGTGTAT ACCCAGTAATGGGATTGCTGGGTCAAATGTTATTTCTGCCTCTAGGTCTTTGAGGAC TTGCAAACTGTCCGAGAACTGAAAGCACAAAAGGCAGACAAGAACGAGGTTGCTGCG GAGGTGGCGAAACTCTTGGATCTAAAGAAACAGTTGGCTGAGCTGAGGGGAAACCC CCTGAAGCCCCTAAAGGCAAGAAAAAAGTAAAAAGACCTTGGCTCATAGAAAGTCA CTTTAATAGATAGGGACAGTAATAAATAAATGTACAATCTCTATATTAAAAAAA

BSK-1L3-C1 - forward

BSK-1L3-C1 - revers

CGGATTCCGCTAATCCCAGTTTGGGTCTTAGCTATTGTGTGTTCAGATATGTTAAAG
CCACTTTCGTAGTCTATTTTGTGTCAACTGGAGTTTTTTACAACTCAGGTGAGTTTT
AGCTTTATTGGGGAGGGGGTGATCTAAAACACTCTTTACGCCGGTTTCTATTGACTT
GGGTTAATCGTGTGACCGCGGTGGCTGGCACGAAATTGACCAACCCTGGGGTTAGTA
TAGCTTANTTAAACTTTCGTTTATTGCTAAAGGGGTAATCACTGCTGTTTCCCNTGG
GGGTGTGGCTANGCTAAACGTTTTGAGCTGCATTGCTGCGNGCTTGATGCTTGTCCC
TTTTTATCATGGNGATTTATAAGGGGAACTCCCTGNAATGGGGATGCTCCNTGTGTN
ATCTTACTANNANCTNTANAAAGGGGGGNTTNNNCTNANCGCCGGNNGTCCATAACA
ANAGGNNNGGNGGNNAAAAAATAATAANCGNCNGGNCATNTTAGCCNAATATTCNGA
NATC

BSK-1L3-A3 - forward

CAAAAAGATAATTAACCTTTATTATTCATTAAAAATGAGCTTTCTAAAATATTAGTA
AATTTCATTTTAAGCTCTGTCTTGAAGTGCTGATACCACTGAAGTAACATTTTTCTT
CTTTCAATTTTTTCTTGTAAAATTATAGTTTTCTCTTTTTTCTAAAACAGCAGGGAGT
TCCTTCCAGTTCTTGATAAAGATAAAGGGAGCACCCATGGACTTGAGTAACTGCAGA
GGAGCACCCGTGGTGCACAGATGTATTCCCACAGTTGCCAGCTGTCATCACGTCTTC

CACCACAGGAATGGAGCCATANGAGCAAGCCTCATANATTCNATAGCATTCTGTGNT
TACTCCGACCAGGCACAATGTGAGATCACTCTGAANCAAGGCATCTTGGTAATTCTT
AAACTTTCATTTGTTTCTGAGGCTGCCANNGNTNTNTTNCTGAACCCACAAACTTAT
NNNTCCATCTTTTTTAAAANGTTCATTATGCCNGCTGGATNAANTTTNNAAATNNNT
CCTAANAANNACNTAATATGGCTT

BSK-1L3-A3 - revers

GCCCCGCGGGGAGAGACGCGGCCGAGAACAGTCCACTTTGGAAAGTGAAGAATGG
AATCCTTGGGAAGGAGATGAAAAAAATGAGCAACAACACAGATTTAAAACTAGCCTT
CAAATATTAGATAAATCCACGAAAGGAAAAACAGATCTCAGTGTACAAATCTGGGGC
AAAGCTGCCATTGGCTTGTATCTCTGGGAGCATATTTTTGAAGGCTTACTTGATCCC
AGCGATGTGACTGCTCAATGGAGAGAAGGAAAGTCAATCGTAGGAAGAACACAGTAC
AGCTTCATCACTGGTCCAGCTGTAATACCAGGGTACTTCTCCGTTGATGTGAATAAT
GTGGTACTCATTTTAAATGGAAGAGAAAAAGCAAAGATCTTTTATGCCACCCANTGG
TTACTTTATGCCAAAATTTAATGCAAATTCAAAAACTNCACATCTTGCTTGTTGTT
TGCTCGGAAATGAACATTGTGATAATGAGTGGATAAACCCATTCTTAAAAGAAATGG
AGGCTTCGTGGACCTGNTTTTCATAATATATACACCCCTGGATAATGACTGGATGTT
TTTANTGGCCTTAGGAGTAGCACATCCGGAATTTCTTGGGNGAAGCAANTGGCAATG
TTCTNATAAAGGCCTTTTATTAATTTTTAGAACNATTTTAAAATTNTCCNACGGCCT
ATAACTTTTAAAAAAAAGGGACCAAACTTTTGGGTTACANAAAACTGCNCTNGGAAAA

1M13-A4 - forward

GAAAGTTTAGAAACTTTAAAACAATAATAATGACGGTGATAGTGATAATAATTGCTA
ATGCTTTCAGATCACATATGTGTTAGGCGCTGTTTTTTTGTTGTTGTTGTTATTGTTG
AGGCAGTCTCACTCTGTTGGCCAGGCTGGAGTGCAGTGGTGCTTTTTTGCCTCCTGGGTT
CAAGGGATTCTCCTGCCTCANCCTCCTGAGTAGCTGGGATTACAGGCATGCGCCACC
ACGTCGGGCTAATTTTTTGCATTTTTAGTGGAGACGGGGTTTCATCATGTTGGCCAGG
CTGGTCTCGAACTCACGACGTCNAGTGATCCACCTGCCTCGGCCTCCCAAAGTGTTG
GGATTACAAGGCGGTGAGCCACCATGCCCACCCGCACTGNNTTAAATGCTTTACATA
TATTATCTCATTTAATCCTCNNAAACCTTACAATATANANACTACNATTATTTCCCT
TTATATTTATNGNNCTCTTAGGCTCANAAAAGGGAACTAACTTCTTGGTNCATGGNN
GGGGNNGGAATNAAANCCANGNNANCCGCTCCCNAAANTNCNTTCNNTGCCNNNCTN
ACTGGGCCNTCTTTNAAGGGGGGCC

1M13-A4 - revers

BSK-2A11-A2 - revers

5

10

15

20

25

30

35

40

45

50

55

BSK-2C5-A1 - forward

BSK-2C5-A1- revers

CGCTCCCCGCCCCGGAGCCCCGCGGACGCTACGCCGCGACGAGTAGGAGGGCCGCT GCGGTGAGCCTTGAAGCCTAGGGCGCGGGCCCGGGTGGAGCCGCCGCAGGTGCAGAT CTTGGTGGTAGTAGCAAATATTCAAACGAGAACTTTGAAGGCCGAAGTGGAGAAGGG TTCCATGTGAACAGCAGTTGAACATGGGTCAGTCGGTCCTGAGAGATGGGCGAGCGC CGTTCCGAAGGGACGGCGATGGCCTCCGTTGCCCTCGGCCCGATCGAAAGGGAGTC GGGTTCAGATCCCCGAATCCGGAGTGGCGGANATGGGCGCCCCGCGAGGCGTCCAGTG

CGGTAACGCGACCGATCCCGGANAACCCGGCGGGAGCCCCGGGGAGAAGTTCTCTTT
TCTTTGTGAAGGGCANGGCGCCCTGGAATGGGTTCGCCCGAGAGANGGGCCCGTGTC
TTGGAAGCGTNNNGGNTNCGGCGGGGTCCGGNGAGCTNTTNNTGGNCCCTGAAAATC
CGGGGAAANGGGGNAAATTTNNGCCGGGCCNACCCNTNTCCNANNAGGTTTCCAGGG
GAANANC

BSK-1E15-3 - forward

10

15

20

25

30

35

40

45

50

55

ANNAAAGTTGGANCCNTTNNTNCGACTACTATAGGGCGAATTGGGCCCTCTAGATGC ATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCCCTTGGGATTGGT GGCGACGACTCTGGAGCCCGTCAGTATCGGCGGAATTCCGGCTTGTGCGTCAGGGA GCAGACCAGGCAAGAACCCCAGGTGGTGATGGCTCCAGAGGTTCTGAGAAGGAACAG GCACAGGGCACACTGGGACGGCACAGGAAGTGAGGCTGGGGTGGCCGGCTGGGCTG CAGGGCTGCGGTGGGAAGCCCAGAACAGGGGCGCACCTTGCTCAGCAGGAAAAGCCC ATGGGGAGGGGTGAGCAGGGAGCCAGGGCTCTCTGAAGTGTCCAGGTGCAGGCCAA GGTGCCCACAGACCATAAGGCACTTAAATGGCCACAAAGTCATCTCAGAAGAGTAAT ATGACAAGTGCCTGGTCTCTAAAAAGCACAAGGGTGACCTCTGCATAGAAACAGTCC CCCACCCATCAGGCTGCCAGGGCAGGCTCACCTGGCGTCAAAACGATAGGATCAGG CTCCCCTCGGTTCCCATAGTAGCAAATGACGTCTCCCTTTGCTGTGCTGCAGGCCAA GGGGAGAGAATGTCAGACTACAGCCATAGGGCGTCCTCCCCGACACTGCCCGGTGAT CTCACAGCCCTGTTTCTGGAGGCTAGCGATGTGCGCAGTAACCCGCTGCGGCCAGGT CANGACTTGCAGGACCCANCCCTNANGTGCCTGCAGCCGGGTCATGGAGGCCCCAAC TNTTGTCCACATTACNGGTATGTTCCCAACTNACTTNGGGGCCCACCAGCCCAGAGGC NCAGGATCTAAAAGGCCTCTTGCATCCCAATCCCATGGNATGGACCCACAAAGNTTG CCTTGGGACANTTNAGGGCTGANCCCCTTNCCNCATTACCAACTTTTCATTAGGCCC TTACCAAAGTTANTTNTAAGGTTTTTGGANAGNGGCCCNTTNGCCCANGNGATTAGG TTCAAAAAAGGCCAAAACCATTTTNTTACTTNAANGTAAGGGCNNTTAAAAATTNGG GNCTTAANTGGCTTNNGNNNTCCTTTTCCCTTNTNNGGAANANGGGGGGGCNCTTTTT **GCCCNNTTTAAACC**

BSK-1E15-3 - revers

NNGGGTGGGGNCGTTTTNTCCAAGNNACCTTGCTTTTTAAAACCNGNCTTTGNAAAN ACNTTT

BSK-1H5-4 - forward

BSK-1H5-4 - revers

BSK-36-8 - revers

BSK-83-1

10

5

BSK-2G12-A5 - forward

15

20

25

30

35

40

45

50

55

GCACACTGGCGGCCGTTACTAGTGGATCCGAGCTCGGTACCAAGCTTGATGCATAGC TTGAGTATTCTATAGTGTCACCTAAATAGCTTGGCGTAATCATGGTCATAGCTGTTT CCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATA AAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGC TCACTGCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGC CAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACT GGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAA AGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCATANG CTCCGCCCCTGACAGCATTACAAAAATCGACGCTTCAAGTCAGANGTGGCGAACCC GACAGGACTATAAAGATCCANGCGTTTCCCCTGGAACTTCCTCGGCGCTNTCTGTTC GACCCTGNCGTTACCGGAACCTGTCCGCNTTNTCCTTCGGAAGCGNGGGCTTTNTAT ACTTACGCTGAAGTATCTNATTCGGGGAGNCGTCGNTCAACTGGCTGGGNGCACAAC CCCCGTTAGCCGACGTGNGCTTACCGGAATNTNGNTGGTCAACCGGNANACCANTAT CGCNTGNNNANCNTGNACAGATACCANCAGGTTTAGGGGGTTCAAATTTAAGGGGCC **ATCCGTANTAAAAACAATGGTTTCCNG**

BSK-2G12-A5 - revers

CAGATATCCATCACACTGGCGGCCGCTCGAGCATGCATCTAGAGGGCCCAATTCGCC CTATAGTGAGTCGTATTACAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGA AAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTG GCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAA TGGCGAATGGACGCCCCTGTAGCGGCGCATTAAGCGCGGGGGGTGTGGTTGCTACG CGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTC CCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTC CCTTTAGGGTTCCGATTTAATGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAA GGGTGATGGTTACGTAGTGGGCCATCGCCCTGATAGACGGGTTTTCGCCCTTTGACG TTGGAGTCCACGTTCTTTAATAGTGGACTCTTGGTNCAACTGGGACAACACTTAANC CTATCTCGGCTATTCTTTTGATTATAAGGGATTTGGCGATTCGGGCTATTGGTTAAA AAAGACTGATTAACAAAATTTAACGCGAATTTACAAATTCAGGCCCAAGGCTGTAAG GAANCGACACTAAAAGCCATCCGAAAACGGGTTANCCCGATAAAGGAACTATGGGTT TTGGGAAAGGAAACCAACCCAAAAAAGCGNACTTNAAGGGCTACTGNAAAGTAAANG GNGTTATGAAGAACAACGATGCANNGGCCCTTGAAGTGGAACCCGAAAAATGAGGTT TTG

BSK-2G14-A2 - forward

5

10

15

25

30

35

40

45

50

55

BSK-2G14-A2 - revers

GCCCCTGGTAAAAGTCAGAACCTGGGATGACCAGAAAGTAACAGGACAGATTTCTCC CAGCAAATCAGTCTCCACAACCAAATGAATATTGTTCTCCAAGGAGTCAAGCTATAG ACTCACAATGACAACGTGGCCATGGCTCAAAACACTCTCTGAAATTACAAAATTGCT TTCTGAGCCAATTTAAGAGTCACATGATTGAATCCAAGCTATTTTACTTTAAATGGT CCTTTTGCTTTGCACCTGAGACCTCGCTTGGCCACAGACGTCATTCGCTGGACTCCC TGGGCACTAAATGAGTGTCTAGCATCCTTAAGGCTGCTCAACACACAGCCCCAGACT CTGAATATGATTCCAAGAAATATTCTGAAAAAAGTCACATCGCTGGAATAAACAGTT TCCCAAGATAACTGCTTTGAAAACCAGTCCCGTTAGTTTCTAAAAGCCCACCTACGG CACCTTCCTTCCATCANAGTCTGCTGCCCGGGTGGGCTGGGAAGGAGGAGATACAA AGAAGAAGTAGGCATGATCACTGGGTCGGTTCCCAAGCCCCCTCACCCTTCAAGAA GGNATGAATGGACAACCCCGAGAACAGAGCCGTGTGAAGACCACCNACNGCNCGGAT GGCACACGGTGGAAGGAGGCAGGAGGCCNCNGTGCCANGANGANAGGGCNCAACCCA GCCGGAAGNGGCCCAAACCTATAGAACAAGCAAACCCCGGATTCNGTGACGCGGCNT ACCTACCATNGGNGGGNNAAANATATACCGGCGGCTGCAGCCAATTGAAATCATAAC TGNGGCGTCACTGCTTNAGGCCATTNCCTANGGGGATAAATNTGCGGGTTNACGGGC G

BSK-2H11-B3 - forward

BSK-2H11-B3 - revers

5

10

15

20

25

30

35

40

45

50

55

BSK-2H11-A5 - forward

AAGAAATATGGGACTATGTGAAAAGACCAAATCTACGTCTGATTGGTGTACCTGAAA GTGATGTGGAGAATGGAACCAAGTTGGAAAACACTCTGCAGGATATTATCCAGGAGA ACTTCCCCAATCTAGCAAGGCAGGCCAACGTTCAGATTCAGGAAATACAGAGAACGC CACAAAGATACTCCTCGAGAAGAGCAATTCCAAGACACATAATTGTCAGATTCACCA AAGTTGAAATGAAGGAAAAAATGTTAAGGGCAGCCAGAGAAAAGGTCAGGTTACCC TCAAAGGAAAGCCCATCAGACTAACAGCGGATCTCTCGGCAGAAACCCTACAAGCCA GAAGAGAGTGGGGGCCAATATTCAACATTCTTAAAGAAAAGAATTTTCAACCCAGAA TTTCATATCCAGCCAAACTAAGCTTCATAAGTGAAGGAGAAATAAAATACTTTATAG ACAAGCAAATGCTGAGAGATTTTGTCAACACCAGGCCTGCCCTAAAAGAGCTNCTGA AGGAAGCGCTAAACATGGAAAGGAACACCGGTACCANCGNTGCAAAATCATGCCAAA TGTAAAGACCTCGAGACTAGGAAGAACTGCTCACTAACGAGCAAATCCCAGCTTACA TCTTATGACGGGTCAATTCCCCNTACATATACTTTAATNTAATGGCTAANTCTGCAN TAAAAGACNNGACTGNAGTTGGTAAGAGCAGACCTNATGNGTTGNTCNGAACCATTA CTGNNAACCCNNGGTCAATAAGGTGNAAGATTNCNGCCTGGAACAAAAGNGGGTGGA TCTACTTGTAACCGCTTTACCNCAAACAAAACAAAGGCTTCTTTGNANGGTCATCC CAAGNNTCNTN

BSK-2H11-A5 - revers

GTTCTGTAGATGTCTATTAGGTCCGCTTGGTGCAGAGCTGAGTTCAATTCCTGGGTA TCCTTGTTGACTTCTGTCTCGTTGATCTGTCTAATGTTGACAGTGGGGTGTTAAAG TCTCCCATTATTAATGTGTGGGAGTCTAAGTCTCTTTGTAGGTCACTCAGGACTTGC

BSK-2H12-A4 - forward

BSK-2H12-A4 - revers

GAGAAAATCTAGAAGAAATGGATAAATTCCTCGACACATACACTCTCCCAACACTAA
ACCAGGAAGAAGTTGAATCTCTGAATAGACCAATAACAGGATCTGAAATTGTGGCAA
CAATCAATAGCTTACTAACCAAAAAGAGTCCAGGACCAGATGGATTCACAGCCGAAT
TCTACCAGAGGTATAAGGAGGAGCTGGTACCACTCCTTCTGAAACTATTCCAATCAA
TAGAAAAAGAGAGAATCCTTCCTAACTCATTTTATGGGGCCAGCATCATTCTGATAA
CAAAGCCGGGCAGAGACACCAAAAAAAGAGAATTTTAGACCAATATCCTTGATGA
ACATTGATGCAAAAATCCTCAATAAAATACTGGCAAACCGAATCCAGCAGCACATCA
AAAAGCTTATCCACCATGATCAAGTGGGCTTCATCCCTGGGATGCAAGACCGAAAAAACCA
CATGATTATCTCAATAAATGTAATCCAGCATATAAACAGAGCCCAAGACAAAAACCA
CATGATTATCTCAATAGATGCAGAAAAAGCCTTTTGACAAAATTCAACACCCTTCATG
CTAAAAACTCTCAATAATTANGTATGATGGACGTATTTCAAATAATAAGAGCTATTG
NGACAACCCCAGCCATTCTACTGATGGCAAACTGGGAGCATTCCTTGAAACTGGACA
GACNGGTGCTTNTACACTCTATCACTAGGGTGAAGTTGGCAGGCATAGCGGNANGAT

ANGGNTCATNGGAAAAGGAGCAATNCTGTTGNACAATGTGTTTAAAACCCTGGTACC AATTCTACGTACATNGAACTNGTCAATANNCAATCAGNTT

BSK-2H9-A3 - forward

TGTAATCCCAGCACGTTGGAAGGTTGAGGCGGGTAGATCATGAGGTCAGGAATTCAA
GATCAGCCTGGCCGGGATGGTGAAACCCCATCTCTACTAAAAATACAAAAATTAGCC
AGGTGTAGTGGTGGGCGCCTGTGGTCCCAGCTACTATGGTGGCTGAGGTGCGAGAGT
CGCTTGAACCTGGGAGATGGAGGTTGCAGTGAGCCAAGATCGTACCACTGCACTCCA
GCCTGGGCAACAGAACAAGACTCCATTTCAAAAAAAAGAAAATTCTTATTTGCCATGA
GCCGAGGAATGCACAGGTACTAACTAGATGGTGTGGACAGCTGACGCAAACTGGGCA
TATACAATGGGACACACCTGTACTAGGATGAAAGGCACAGCCTANAGGGCTGGCAGG
TGTTGGGTAATGCTCAAGTTTCAGAGTGATGGCAGAAGAGTAGGTTGGTAGGCCCTC
ATGGCTCTGCTTGGCAGCACNGAGTTCCGCGGAATTCCGCCATCTGACGGCTCCANG
AGTCGTCGCCCAATCCAAGCCGAATTNCACACACTGGCGGCCGTACTAGTGGATCCG
ACTCGGACCAACTTGATGCATAACTTGAGTATTCTATATGNCACCTAAATAGCTTGG
CGTAATCATGGCATACTTGTTTCTGNGNGAAATTGTATCCGNTACAATTCNCACACA
TACANCCGAAGCATAAGTGNAAGCNGGGGNGCCTAATGAGTGACTACTACTTATTGG
GTGGCTACTGCCGTTTCANCGGAAACTGCTGCNANTCTTATNATCGCCACCNCGGGA
AGNGGTGNGNTGGCNTTTCCTCTGTATTATCTGCTGCTTGGTGGGAACGGTA

BSK-2H9-A3 - revers

CGGAACTCCGTGCTGCCAAGCAGAGCCATGAGGGCCTACCAACCTACTCTTCTGCCA
TCACTCTGAAACTTGAGCATTACCCAACACCTGCCAGCCCTCTAGGCTGTGCCTTTC
ATCCTAGTACAGGTGTGCCCATTGTATATGCCCAGTTTGCGTCAGCTGTCCACACC
ATCTAGTTAGTACCTGTGCATTCCTCGGCTCATGGCAAATAAGAATTTTCTTTTTT
GAAATGGAGTCTTGTTCTGTTGCCCAGGCTGGAGTGCAGTGGTACGATCTTGGCTCA
CTGCAACCTCCATCTCCCAGGTTCAAGCGACTCTCGCACCTCAGCCACCATAGTAGC
TGGGACCACAGGCGCCCACCACTACACCTGGCTAATTTTTGTATTTTTAGTAGAGAT
GGGGTTTCACCATCCCGGCCAGGCTGATCTTGAATTCCTGACCTCATGATCTACCCG
CTCACCTTCCAACGTGCTGGGATTACA

BSK-2I5-4B - forward

BSK-2I5-B4 - revers

BSK-2I5-A5 - forward

10

15

20

25

30

35

40

45

50

BSK-2I5-A5 - revers

BSK-2K2-A1 - forward

CTGGGCTCTGGGCTAGTACTGGGGAGTATCTGCAGAATCCCGTGATATGATCCGTCT
TCAGCTAAAGATATTATTTCACAAGTGGAATGACAGCTGACTTCTCAACAACAACGA
AAGCAAGGAGACAGTTGAAAGACATCTTGAAAATGGAATTAGCAGTTCACAAAGCAC
ATTCGCATATAAGGGCTTGTTTTGAATTGATCTTGGCAGCAATTCTATGAAACAAGT
AAAAGCACAAGAGGAATAGGAACTGCACCTCTTCCTTCAGTTTCAGCTTGAATAATA
TCAGGAAGATTCGTATCGGTCTGAGTTGGGTCACGTACCCGACGTGCTATAGCTGAG

GATGGGGTAAGCTGATTGGAGTTTGCAACACTGTTCACAGAGCCAAGATATGGAAAG
AACCTAAATGTCAACTGGTGGATGAATGGATAAAGAAATTGTGGTATATACATCAC
TGGAATATTATTCAACCTTAAAAAGAAGGAAATCCTAACATTTGTGACAACATGGAT
GGACCTGGAGGGAATTATGCTGAGTGAAATAAGACAGACNCAAAAGACNTTTCTTGC
AGGAGCTCCTTATATGTGGAATCTAAATAGTCAGCTTAAAGAAGANAGTAAACTACT
GGTGTCAGGAGCAGGANAAAATGGAAATGAANAGGNGATAGTAAAGGGACAAAGTTC
AGTATCAANATAATAAGTTCTGGNGGTTACTATTAATANTCCATAGACCTATAATAC
CATACTGGTTGGTACTAAAATGCTAAAGGGTTTCTAATGTCTACCANANAAAANANA
NGGAAAATAAGGGCGGAGGCCCTNAAAGGGATGTATGCCTGNGGGGAAGGTCTG
AAATCTNCCCACTATGNG

BSK-2K2-A1 - revers

5

10

15

20

25

30

35

40

45

50

55

BSK-1A2-5 - forward

BSK-1C7-1 - forward

GTGGCTTGGAGGGGTTAAGAGACTTATCAAAGATCTTGGGGCTAGGTAGTAGAAAAA CAGAAAAAAATCAGGTTTTTCAACTGCAGTCAGTACTTTTTTAACAAATTAAAATA TATCAAATCTGTTTCTCCTAGGTACCTAAAAGGCCTAAAAATCCATCAACACAGGGAT

BSK-1E2-A2 - forward

BSK-1E2-B - forward

BSK-1G13-A5 - forward

TAAATTTTTTTACTCTCTACAAGGTTTTTTCCTAGTGTCCAAAGAGCTGTTCCTC
TTTGGACTAACAGTTAAATTTACAAGGGGATTTAGAGGGTTCTGTGGGCAAATTTAA
AGTTGAACTAAGATTCTATCTTGGACAACCAGCTATCACCAGGCTCGGTAGGTTTGT
CGCCTCTACCTATAAATCTTCCCACTATTTTGCTACATAGACGGGTGTGCTCTTTTA
GCTGTTCTTAGGTAGCTCGTCTGGTTTCGGGGGGTCTTAGCTTTTGCCACA

AGTTATTTCTAGTTAATTCATTATGCAGAAGGTATAGGGGGTTAGTCCTTGCTATATT ATGCTTGGTTATAATTTTTCATCTTTC

BSK-1G13-B3 - forward

BSK-1G11-A5 - forward

BSK-1G11-B5 - forward

BSK-1H13 - forward

10

15

20

25

30

35

40

45

50

55

CGGGATTCCGGTGCCAACGTTGCTGGTGACAGCAAAAATGACCCACCAATGGAAGCA GCTGGCTTCACTGCTCAGGTGATTATCCTGAACCATCCAGGCCAAATAAGCGCCGGC AAGGAAAAGATTGATCGCCGTTCTGGTAAAAAGCTGGAAGATGGCCCTAAATTCTTG AAGTCTGGTGATGCCCATTGTTGATATGGTTCCTGGCAAGCCCATGTGTGTTGAG GTTGCGGTGGGTGTCATCAAAGCAGTGGACAAGAAGGCTGCTGGAGCTGGCAAGGTC ACCAAGTCTGCCCAGAAAGCTCAGAAGGCTAAATGAATATTATCCCTAATACCTGGC ACCCACTCTTAATCAGTGGTGGAAGAACGTCTCAGAACTGTTGGTTCAATTGGNCAT TAAGTTTAATAGTAAAAGACTGGGTAATGATACAATGCATCGTAAAACCTTCAGAAG GAAAGGAGAATGTTTGTGGACCACTTTGGGTTTCCTTTTTGCGTGNGCANTTTTAAG TATTAGNTTTTAAAACAGNCTTTTAATGGNACACTTGNCCNAAAATTTGCCCAAATT TTGGAACCCTTTAAAAAGTTAATGGGAAAAAAAAACGGATTCCGGGGGTACCTTCCA AAACTTTTAAAAANCNGGCCCGCATTTTTTCTGAGGGGTAACNNGTTCCCCATAATT CCCCCNGGGANAAGCNTNTNNCTTTNGGGACCNTTTTGNANCCCCNTTTTAAGGCCC CCCNTTTTAACAACCCCCCCCTTGCNTGGACNNANAAANNNCGGNTTTTTATTTTTA NGAACAAACCNTTNGGTTCNAANCCCTTGGTCNCCCCGGGGGGTNNCNAAAATTTTT TTCCCCNTTTTTNNGGGGNAAATTNGGGAAATT

BSK-1I2-A2 - forward

CTCCACGAGGGTTCAGCTGTCTCTTACTTTTAACCAGTGAAATTGACCTGCCCGTGA
AGAGGCGGGCATGACACAGCAAGACGAGAAGACCCTATGGAGCTTTAATTTATTAAT
GCAAACAGTACCTAACAAACCCACAGGTCCTAAACTACCAAACCTGCATTAAAAATT
TCGGTTGGGGCGACCTCGGAGCAGAACCCAACCTCCGAGCAGTACATGCTAAGACTT
CACCAGTCAAAGCGAACTACTATACTCAATTGATCCAATAACTTGACCAACGGAACA
AGTTACCCTAGGGATAACAGCGCAATCCTATTCTAGAGTCCATATCAACAATAGGGT
TTACGACCTCGATGTTGGATCAGGACATCCCAATGGTGCAGCCGCTATTAAAGGTTC
GTTTGTTCAACGATTAAAGTCCTACGTGATCTGAGTTCAGACCGGAGT

BSK-1I2-B5 - forward

TTTCACTGTACCGGNCGTGCNANTTAAACATGCATTGGNTTAATCTTTGAGACAAGC ATATGCTANTGGCANGGTTTTTTTATGGNAAAGATGNTTTATTGGNGGCAGTACTAC AAGGCATTAATATTGGTNCCCAAAAAAAAACTCGGTNTTATTAAATANTGGGCNTTA ANACNTAATGAACTTGACCAACNNTTGCTGGATNNCTGANTCCTCCTGGTTTTTTGGG AAAGNAACCCACCACTATTTTTTGGCANTCTTTTCNCCACTTGAAAANAAGGGGGTTT NTNGGNGGCTTANTTCCNNCTTTAANCNGGAATTTTANCCCTNGAANNTTGTTTTCC GAACTTTTTAAAA

BSK-1L2-2 - forward

AAGGGAAAGATGAAAAATTATAACCAAGCATAATATAGCAAGGACTAACCCCTATAC
CTTCTGCATAATGAATTAACTAGAAATAACTTTGCAAGGAGAGCCAAAGCTAAGACC
CCCGAAACCAGACGAGCTACCTAAGAACAGCTAAAAGAGCACACCCGTCTATGTAGC
AAAATAGTGGGAAGATTTATAGGTAGAGGCGACAAACCTACCGAGCCTGGTGATAGC
TGGTTGTCCAAGATAGAATCTTAGTTCAACTTTAAATTTGCCCACAGAACCCTCTAA
ATCCCCTTGTAAATTTAACTGTTAGTCCAAAGAGGAACAGCTCTTTGGACACTAGGA
AAAAACCTTGTAGAGAGAGTAAAAAATTTACCGCCGATACTGACGGGCTCCAGGAGT
CGTCGCCACCAATCCCAAGGGCGAATTCCAGCACACTGGCGGNCGTTACTAGTGGAT
CCGACTCGGTACCAAGCTTGATGCATAGCTTGAGTATTCTATAGTGCACCTAAATAG
CTTGGCGTAATCATGGNCATACTGTTCTGNGTGAAAATGGTATCCGTNACAATTTCA
CACACATACGAGCCGGAGC

BSK-1A2-5 - revers

BSK-1C7-1 - revers

CTAATATTTAGCATTCAAAATTGTGAAAAGGGGAGAAAGATTCTGAGAAATACAGAAT
CTAAAATGGGATTGNCTAAGTAATCTTTCATATTCATAAGTTGTAGNCTTAAATAAA
AAGGTTCATGTGGTANTACCAGGACATCANCCTCTGGTCATTCTGGCTGGATAATAT
AGATCTCAAATATATTAATTATTAGNCGGGCTTTACTCTGGTGATAANACTCNNAAN
GCTAATACTTTAAGNTGGNATTCCTTTCTGGTAATGGNACAGTCCCCAANTAAACCN
TTTTGNGCCANGGNCCACATTCNTACAGGGAAGGGAAAAANCCTTTTNTTAGNTCAA
TCCTAATCACTTTTCCCCAAATGGGGANNCTGCNTCCAAGGNNTAANNTTTTTTTNG
CCTTNNTTTNATNGGNGGNTTAAAAAANCCCCGGNNNGGTTTNGCCCTTNGCCCGNAA
AANTTTTTTTTTNNAAAAANNCNNGTNTAAACCNTTTTTTTTTAAAAGGGANC

BSK-1E2-A2 - revers

BSK-1E2-B2 - revers

BSK-1G13-A5 - revers

GAAAGATGAAAAATTATAACCAAGCATAATATAGCAAGGACTAACCCCTATACCTTC
TGCATAATGAATTAACTAGAAATAACTTTGCAAGGAGAGCCAAAGCTAAGACCCCCG
AAACCAGACGAGCTACCTAAGAACAGCTAAAAGAGCACACCCGTCTATGTAGCAAAA
TAGTGGGAAGATTTATAGGTAGAGGCGACAAACCTACCGAGCCTGGTGATAGCTGGT
TGTCCAAGATAGAATCTTAGTTCAACTTTAAATTTGCCCACAGAACCCTCTAAATCC
CCTTGTAAATTTAACTGTTAGTCCAAAGAGGAACAGCTCTTTGGACACTAGGAAAAA
ACCTTGTAGAGAGAGAGTAAAAAAATTTA

BSK-1G11-A5 - revers

5

10

15

20

25

30

35

40

45

50

55

BSK-1G11-B5 - revers

CACAGGAGGAGAAGCAGGAGCTGTCGGGAAGATCAGAAGCCAGTCATGGATGACCAG CCGGAGAGCAAGTGCAGCCGCGGAGCCCTGTACACAGGCTTTTCCATCCTGGTGACT CTGCTCCTCGCTGGCCAGGCCACCACCGCCTACTTCCTGTACCAGCAGCAGGGCCGG CTGGACAACTGACAGTCACCTCCCAGAACCTGCAGCTGGAGAACCTGCGCATGAAG CTTCCCAAGCCTCCCAAGCCTGTGAGCAAGATGCGCATGGCCACCCCGCTGCTGATG CAGGCGCTGCCATGGGAGCCCTGCCCAGGGGCCCATGCAGAATGCCACCAAGTATGG CAACATGACAGAGGACCATGTGATGCACCTGCTCCAGAATGCTGACCCCCTGAAGGT GTACCCGCCACTGAAGGGGAGCTTCCCGGAGAACCTGAGACACCTTAAGAACACCAT GGAGACCATAGACTGGAAGGTCTTTGANAGCTGGATGCACCATTTGGCTTCTGTTGA AATGAGCANGCACTTCTTTGGACAAAAGCCCACTTGACGCTTCANCGAAGAGTCACT TGGAACTGGAGGACCGTCTTTNGGCTGGTGTGACCAACAGGATCTGGGCCAATNCCC ATTGAAACAACANAAGCGGCTTTAAAATCTTGCGGGCCCANAAAGTTCAANTTTNTT GGTTCCTTAGGCCCAANCCTTCCCAATTTTCNACTTGGNCCTAATCCATGAAAACTG GNGCNNGGTNTTTNTNANCCTTGGNAAGAAAAACAATTGGAACANCGATAACATGCN NAAGGCCTNGTGGCCAAATTCTTTTTAANANGGGCTAGGGCCCNAAANGGCAAAATT NAAAAACCCTNNTGAATAAAANATTTAANAAAGGTNANGGTTNGTNTTGNCAAATGG AANGCCCNGNAAGGGAACCTCCCCNACCNANNGGANNTGNANGNTTCCNCAANTGGC TT

BSK-1H13 - revers

TCTTTCTTNTAAGGTTACANGCNTGGTNTATTAACCACTTTTCTCTAACTTAANGCC
ATTGAACAACATTTTAAACGTTTCNCCNGTTAAAANGGGGGGNGGTTNGGGNAAATN
NTTACCTTTGACTTTTGGNNAANTTGGGACTTCNNTTCNAACTTTTTCCNGGTTTNA
CCCCCCAANGNGGTTTTC

BSK-1I2-A2 - revers

5

10

15

20

25

30

35

40

45

50

55

ACTCCGGTCTGAACTCAGATCACGTAGGACTTTAATCGTTGAACAAACGAACCTTTA
ATAGCGGCTGCACCATTGGGATGTCCTGATCCAACATCGAGGTCGTAAACCCTATTG
TTGATATGGACTCTAGAATAGGATTGCGCTGTTATCCCTAGGGTAACTTGTTCCGTT
GGTCAAGTTATTGGATCAATTGAGTATAGTAGTTCGCTTTGACTGGTGAAGTCTTAG
CATGTACTGCTCGGAGGTTGGGTTCTGCTCCGAGGTCGCCCCAACCGAAATTTTTAA
TGCAGGTTTGGTAGTTTAGGACCTGTGGGTTTGTTAGGTACTGTTTGCATTAATAAA
TTAAAGCTCCATAGGGTCTTCTCGTCTTGCTGTGTCATGCCCGCTCTTCACGGCAGG
TCAATTTCACTGGTTAAAAGTAAGAGACAGGTGAACCCTGTGGA

BSK-112-B5 - revers

BSK-1L2-2 - revers

TTTTTACTCTCTCTACAAGGTTTTTTCCTAGTGTCCAAAGAGCTGTTCCTCTTTGGA CTAACAGTTAAATTTACAAGGGGATTTAGAGGGTTCTGTGGGCAAATTTAAAGTTGA ACTAAGATTCTATCTTGGACAACCAGCTATCACCAGGCTCGGTAGGTTTGTCGCCTC TACCTATAAATCTTCCCACTATTTTGCTACATAGACGGGTGTGCTCTTTTAGCTGTT CTTAGGTAGCTCGTCTGGTTTCGGGGGTCTTAGCTTTGGCTCTCCTTGCAAAGTTAT TTCTAGTTAATTCATTATGCAGAAGGTATAGGGGTTAGTCCTTGCTATATTATGCTT GGTTATAATTTTTCATCTTTCCCTTGCCGAAATTCC

BSK-1K9-A3 - forward

15

5

10

BSK-1K9-A3 - revers

BSK-2C5-C3 - forward

35

40

45

AGAATCTGGTGACTTCAGTTGAGCCCCCAGCAGAGGTGACTCCATCAGAGAGCAGTG AGAGCATCTCCCTCGTGACACAGATCGCCAACCCGGCCACTGCACCTGAGGCACGAG TGCTACCCAAGGACCTGTCCCAAAAGCTGCTAGAGGCATCCTTGGAGGAACAGGGCC TGGCTGTGGATGTGGGTGAGACTGGACCCTCACCCCCTATTCACTCCAAGCCCCTAA TGAGGGAGGAGCCCCACAGACTTACGGGTGTTTGAGCTGAACTCGGATAGTGGGA AGTCTACACCCTTCAACAATGGAAAGAAAGGCTCAAGCACGGACATTAATGAGGACT GGGAAAAAGACTTTGACTTGGACATGACTGAANAGGAAGTGCANATGGCACTTTCCA AGTGGATGCCTNCNGGGAGCTNGAAAATTAAAATGGGAAGACTGGGAATGAGGGACC NNAAGGAGCANTTCCCCCCCATGGGATNTTTTGCTTCCTNCTNGNTTAANCCANCCT GGATGAATGAAAATGTTCCCCAAATTCTTTGCAACCAAACTTTGGCACAAATTTGGG GGTNCTTGTTGGCCTTTTGGNCTTTGTTNACCNGGAAGGGTTTTANTCCGGCCAAAA TTTTATTTGCCNCATTGGNGACCCNGGGGAGGAACTNTCTCTNCCNAAAACGGTTTT TNTNAACCNTGTTCTTANGATNTTTTGAACCNAGGAATTTNCCTTTCTGTNAAAAAA AAAAG

50

BSK-2C5-C3 - revers

10

15

20

25

30

35

40

45

50

55

AAAGGAAGGAGGTGGGTCAGGGTTTGGTCTCTGGATTCTGAACCCCAAAGGAGCCTT AGATAAGTGCCTCTTACCCACTGGGATAGGAACCAAAATGTGTTCACTGTCCCTGTT TGTCTCAGCTTCCTCCGAGAGAGACTGGTGGTTTAGCTTCTGTCTACACAGGCAGAA GGGCTAGAACTATCCCTTGGGACTTTCCAGCAGGAGTCCTCANGAACAGTGGGTGTT CANCAGAAAAACACANGCTCTTCTGGTGAGGAGGATAGGTTTCCTCTTCCTTGGGTC ATCCTATTGTTGGCACAAGTCAAAGTTTTTTGGCCGGGATTTANAAAGCCCCTTCCAG GTGTGAGCANAAGCCCAAAANGGCCANCAGGGAACCCCAAATTGTCCCAAACTTTTG TTGCAAAAGANATTTGGGGGAACATTNTCANTCATTCAGGCTGGCTTANACAACCAN GGANGCAAAAATGCCTTGGTGGGGGAGNTGTTCCTTTGGNTTCCTTATTCCANNNCT TCCATTTTAATTTTNAACTTCCCGGAGNATCCCTTTTGNAAGNCCNTTTCNCCTCTT TTNATCATTTNCAANNAAANNTTTTTCCANCCTACTNTNTCCGGCTTAACCTTTTTT NTTNTTGGNGGGGGNNATTCCCTTTCNNTTANTTAAAAACCCNANTTNNGGCCCNCN CCTCAANTTTTTTTTTTAACCTNNNTTTGNCCCCNTGNCCNANCNTNGGCTNGATAA ATNGGGNGGGNNATTTNCCCATNCNACANNCTNTTTTANNATTT

BSK-2G9-D3 - forward

ATCCCAGGAAAATTTGGAGGAACAGCTGCTCTCCACTGGCCTGCTCCTGCAAGAATG
CCCTGGAGCTTCTGAAGAAGGATCTATATTTACCTTATAGGGCCTTAAGTCCTGGGA
TGGAACTATATACTTTGGCCGCGATGATGTGGCTTTGAAGAACTTTGCCAAATACTT
TCTTCACCAATCTCATGAGGAGAGGGAACATGCTGAGAAACTGATGAAGCTGCAGAA
CCAACGAGGTGGCCGAATCTTCCTTCAGGATATCAAGAAACCAGACTGTGATTGACT
GNGAGAGCCGGGCTGAATGCAATGGAGTGTGCATTACCATTTNGGAAAAAAAATGTG
AATCANTCACTTACTGGGACCTGNACAACTNGCCAACTGACAAAAATGACNCCCATT
TGTGTGACTTTATTNGANANCATTACCTGGAATGANCCGGTGAAAAAACCCTTNAAAG
AANTTTGNGTGACCACATTTCNCAAAATTNCACANNAATNGNANGCCCCCCGNATAT
GGCTTGNATAGGAATANTCNTTTNTGACAAGCACACCCT

BSK-2G9-D3 - revers

BSK-2K13-A4 - forward

AGAAATTGAAACCTGGCGCAATAGATATAGTACCGCAAGGGAAAGATGAAAAATTAT AACCAAGCATAATTATAGCAAGGACTAACCCCTATACCTTCTGCATAATGAATTAACT AGAAATAACTTTGCAAGGAGAGCCAAAGCTAAGACCGCGGAAACCAGAGGAGGTACC TAAGAACAGCTAAGAGCCCACACCCGTCTATGTAGCAAAATAGTGGGAAGATTTATA GGTAGAGGCGACAAACCTACCGAGCCTGGTGATAGCTGGTTGTCCAAGATAGAATCT TAGTTCAACTTTAAATTTGCCCACAGAACCCTCTAAATCCCCTTGTAAATTTAACTG TTAAGTCCAAAGAGGAACAGCTCTTTGGACACTAGGAAAAAACCTTGTAGAGAAGAA GT

BSK-2K13-A4 - revers

GTTAAATTTTTACTCTCTCTACAAGGTTTTTTCCTAGTGTCCAAAGAGCTGTTCCT
CTTTGGACTAACAGTTAAATTTACAAGGGGATTTAGAGGGTTCTGTGGGCAAATTTA
AAGTTGAACTAAGATTCTATCTTGGACAACCAGCTATCACCAGGCTCGGTAGGTTTG
TCGCCTCTACCTATAAATCTTCCCACTATTTTGCTACATAGACGGGTGTGCTCTCTT
AGCTGTTCTTAGGTAGCTCGTCTGGTTTCGGGGGTCTTAGCTTTGGCTCTCCTTGCA
AAGTTATTTCTAGTTAATTCATTATGCAGAAGGTATAGGGGTTAAGTCCTTGCTATA
TTATGCTTGGGNTATAATTTTTCATCTTTCCCTTGCGNACTATATCTATTGCGCCA
GGTTTCAATTTCT

BSK-2K13-C2 - forward

CAAACCCACTCCACCTTACTACCAGACAACCTTAGCCAAACCATTTACCCAAATAAA GTATAGGCGATAGAAATTGAAACCTGGCGCAATAGATATAGTACCGCAAGGGAAAGA TGAAAAATTATAGCCAAGCATAATATAGCAAGGACTAACCCCTATACCTTCTGCATA ATGAATTAACTAGAAATAACTTTGCAAGGAGGCCAAAGCTAAGACCCCGGAAACCA GACGAGCTACCTAAGAACAGCTAAAAGAGCACACCCGTCTATGTAGCAAAATAGTGG GAAGATTTATAGGTAGAGGCGACAAACCTACCGAGCCTGGTGATAGCTGGTTGTCCA AGATAGAATCTTAGTTCAACTTTAAATTTGCCCACAGAACCCTCTAAATCCCCTTGT AAATTTAACTGTTAGTCCAAAGAGGAACAGCTCTTTGGACACTAGGAAAAAAACCTTG TAGAGAGAGTAAAAAAATTAACACCCATAGTAGGCCTAAAAG

BSK-2K13-C2 - revers

BSK-1E15 - forward

10

15

20

25

30

35

40

45

50

55

AGATCGTTATGCCCGAGTTCCGGTACAGGAACGTCGGTCATCCAGATGCCCTCTTCC
GCTTTCAGTTTGGATAACGCTTTCATCTCACATCCTCAGGCGATAACGCCCAGTTGT
TTACCAATACGCGTAAATGCTTCTACTGCACGCGTAATTTGCTCAGGGGTATGCGCC
GCAGACATCTGGGTACGAATACGCGCCTGACCTTTCGGAACGACCGGATAGAAGAAA
CCGGTAACGTAAATGCCCTCTTTTTTGCAGCTCACGGGCAAATTTCTGCGCCACTACC
GCATCACCAAGCATGACCGGAATAATGGCGTGATCGGTTCCGCAGGGTAAAGCCCGC
CGNCGACATTTGCTCACGGAACTGACGCGCGTTCGCCACAGACGGTCACGCAGTTCG
CTGCCCGCTTCGACCATCTTCAGTACTTTGATGGACGCCGNAACAATGGNCGGTGCC
AGCGAATTTGGAGAACANGTACNGACCAANAACCTTGGCGCAAGCCACTCAANCACT
TTTTTTTGCGCGCCCCGCGGNATAACCCCCCAGAAGCCCCCGGNCCAANGCTTTTACCAA
GCGTACCCGGNGATAATATTTGAACCCCCCAGAAGCCCCGGNCCAANNTTTATTGGGA
ACCNCGAACATTTTTAACCGNCAAAAACCCACCCNTNGGAAATNTTNGCCNCCAAT
TCCCANGGGGGAAATTTTNGNAAATTCNTTNAAACTGGGGGCCGTTTAACATGCCT
TTTAANGGGCCCCAATTNNCCCNTTANGGGGCGNTTACAAATNACTNGGCCGGNNTTT
TNAAACNNNNGAATNGGGNAAACCCGGGGGTTCCCAACTTAAA

BSK-1H13 - revers

BSK-1F14 - revers

CCAGNTGACCNCCGGNCGTTACCNTTACCAGTNGGTNTGGNGTNAAAAATAATANTA ACCGGNCAGGCCNTNTNANGGGCAAATTNTGNAAATNTCCNTNANANTGGCGGCCGT TCNANCNTGCNTTTAAAGGGCCNANTTCNCCNTATAGGGAGTCGTNTTANANTTNAN TGGCCGTNGTTTNANAACGTCGNNANTGGNAAAACCNTGGNGTTACCCAA

BSK-1H13 - forward

CGGTATTCCGAAAAAATGTTTCCAACTCCGCTGAAATGTTGCTGAAAAGCATGGTGC TGGTAACAGTTCAACAATCCGTGGCTGCTCATTCTTGCCTACTTTACTCTCCCACTG AAGCAGGTTAGCGTTGAAGGTGGTATGGAAAAGCCTGCATGCCTGTTCAATTCTTTT TCGCTCAACCTCTTTTGTTCAGTATGTGTAACTTGAAGCTAATTTGTACTACTGGAT ATCTGACTGGAGCCACAGATACAGAATCTGTATTGTTCTTACTGAAACACAGCATGG AATTAACATTAAACTTAAATAAAACAAACCTAAATTAAAAATGCCCAACAAATTATA TTTTAAATGTTTCATATTTACTTTTATATTTCCATACAATCAGAAACAGTAAAAAAA ATTTGGAGAGCACATAAAAACATCTTAAAGTTAAAAATATAAAGCCTTGTATTTAAA AATGCAGTCATTTAAATAATATTATAAGAATCTATTTGNACATAATAAACAAGTTTC AACCAGCAAGAAATTACTAATATTGACTGTGGAGTTTTTGGCTGGTTAATAGTTCTAA CTCANTATTCCGTAATCAACACAAGCACTACCAACACAAGNTGGCAATGACAAGAAT GGGAAGTNTCAAACTAGGATGGTAAGTCAATTAAAANTTCAGATAACCATAATGNAC TTATACTAAAAATTATTTTGGGGGTTATTTGAAAANGAAAATTAACTGGGGGNCCC AATTGGTTGGTTAAAATTTAAAACCCNGGTTGGAAATTATCTAATAAACNTTCN TTNAATACTNAAAAAAATAAATTNCCTTACCACTTTTTACCNTTTCATNAAGGGGG

BSK-1E3 - forward

5

10

15

20

25

30

35

40

45

50

55

GAGGCNCAGGTGGGGGTNNTTACANNGTNATGATGATTAATNACCATTCTGNCCAAC ATGGTNAANCCCNGTNTCTACTAAAATCCAAAAANNNNAAAATTAGCCGGNCAAGGT GGNGCATGCCTGTAGTCCCAGCTACTGGACTACAGGCTGANTNAGGGAATCCCTTGA ACCCGGNAGGTGGCGGTTGCAGNGANCTGAGATCACTGCACTCNATCCAGNCTGCTG ACANATCNAGACTATGCCTCAAAAAANGGGGTTTAACCATNTTGNCCNAAAAGGNNT TNANANCCTAANCTTGNNAAAACCCCCNTGATGGCCGTTC

BSK-1F14 - forward

CCNANNCTGACGGGNTCNANNANTNGNCCCCNCCAATCCCANGGGCAAATTCCANCN NNCTGGNGGCCGTTACTAGGGGANCCNANCTNGGNNCCAANNTTGANNCANANNTNG NGTNTTNNANAGGGGCNCCNAAANANNTNGGNGNAANCANGGNCANANCTGTTNCCT GGGGAAAATTGTNNTCCNNTNANAATTCCNCNCAANNTACNACCCGGAANCNTAAAG GGTAAA

BSK- 1E15 - forward

GGTTCCCATGAATACTGCGATGTGATGGGCCGGGTCGATATTATCACCGGTACGCTT
GGTAAAGCGCTGGGCGGGGCTTCTGGTGGTTATACCGCGGCGCGCAAAGAAGTGGTT
GAGTGGCTGCGCCAGCGTTCTCGTCCGTACCTGTTCTCCAACTCGCTGGCACCGGCC
ATTGTTGCCGCGTCCATCAAAGTACTGGAGATGGTCGAAGCGGGCAGCGAACTGCGT
GACCGTCTGTGGGCGAACGCGCGTCAGTTCCGTGAGCAAATGTCGGCGGCGGCTTT
ACCCTGGCGGAGCCGATCACGCCATTATTCCGGTCATGCTTACCGTTACCGTTCTTC
TATCCGGTCGTTCCGAAAAGGTCAGGCGCGTATTCGTACCCAGATGTCTGCGGCGCAT

ACCCCTGACAATTACGCGTGCAGTAGAAGCATTTACGCGTATTGGTAAACAACTGG GCCGTTATCGCCTGAGGATGTGAGATGAAAGCGTTATCCAAACTGAAAAGCGGAAGA GGCATTTTGGATGACCGACGTTCTGTACCGGAACTCGGCATAACGAATCTGGTTGAT -TAAAAGTCCGTAAACAGCCATTNTGCGGGAATGACGTTCACATTTATAACTGGGGAT AAGTCTNGCNCCAATNCCAAGG

BSK-1A11-A3 - revers

5

10

15

20

25

30

35

40

45

50

55

CCGGCCCGTCTCGCCCGCCGCGCGGGGAGGTGGAGCACGAGCGCACGTGTTAGGAC
CCGAAAGATGGTGAACTATGCCTGGGCAGGCGAAGCCAGAGGAAACTCTGGTGGAG
GTCCGTAGCGGTCCTGACGTGCAAATCGGTCGTCCGACCTGGGTATAGGGGCGAAAG
ACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGC
GCTCTCGCAGACCCGACGCACCCCCGCCACGCAGTTTTATCCGGTAAAGCGAATGAT
TAGAGGTCTTGGGGCCGAAACGATCTCAACCTATTCTCAAACTTTAAATGGGTAAAG
AAGCCCGGCTCGCTGGCGTGGAGCCGGCGTGAATGCNANTGCCTAATGGGCCACTT
TTGGTAAGCANAACTGGCGCTTGGGGATGAACCGAACGCCGGGTTAAGGGGCCCGAT
GCCGACCTCAT

BSK-1D8-B3 - forward

AAGGAATCGTATCGTATGTCCGCTATCCAGAACCTCCACTCTTTCGACCCCTTTGCT
GATGCAAGTAAGGGTGATGACCTGCTTCCTGCTGGCACTGAGGATTATATCCATATA
AGAATTCAACAGAGAAACGGCAGGAAGACCCTTACTACTGTCCAAGGGATCGCTGAT
GATTACGATAAAAAGAAACTAGTGAAGGCGTTTAAGAAAAAGTTTGCCTGCAATGGT
ACTGTAATTGAGCATCCGGAATATGGAGAAGTAATTCAGCTACAGGGTGACCAACGC
AAGAACATATGCCAGTTCCTCGTAGAGATTGGACTGAAGCTTAAGTGAGGATCAGCTGAAG
GTTCATGGGTTTTAAGTGCTTGTGGCTCACTGAAGCTTAAGTGAGGATTTCCTTGCA
ATGAGTAGAATTTCCCTTCTCTCCCTTGTCACAGGTTTAAAAACCTCCAGCTTGTAT
AATGTAACCATTTGGGGTCCCGCTTTTACTTGGACTANTGTAACTCCTTCGTGCCAT
AAACTGAAACAGCCATGCTGCTATCTT

BSK-1D8-B3 - revers

CTGAAAACAAGTTTTATTTAAATAAGGGTTTAAATACATTACACATAACATTAAAAC
TGAAGGGGAAAAAAACCAAAAACCAGTTTGTTACTTCACATGGCATTGGGCAGCT
GCTGCTATTAAGTTGCAAGCTCTACAGCTAGCTACATGACTGATGGATCAGTTTGAG
ATTTGTTCCCTTGTCAAAAGTTTAACTCTGATAGAAGGTTGGCCTCACATTCTGATG
TTTGGACATCCCTTAGCTAGGATATGTCTGGTCGAACAGACCTTTGTGGCAAGCCAG
ATGTCCTATCACCTCGCTAGCGGTAAGAGGGCCTCTTTGAGCTCTGTCCACCTAGTC
AGGTTGGAGACACCAGGGGATCTACCACCAAAAGCTCCCTTNTAGTAGTACAGCTGG
GCTTCTGCCTTACCCCATCCTCTCTTTTAAAATTCACCGANGACTGTTCANGTGGT
AACATTCTTTANGGTANGGAACTCTTGNAAANGGAGAGCTGAGGAGGTTCCCGCCAG

BSK-1D9-A11 - forward

BSK-1D9-B1 - forward

5

10

15

20

25

30

35

40

45

50

BSK-1E2-C24 - forward

GCCGAGGATGGCCGTCATGGCGCCCCGAACCCTCGTCCTGCTACTCTCGGGGGCCCTGGCCCTGACCCAGACCTGGGCAGCTCCCACTCCATGAGGTATTTCTCCACATCCGTGTCCCGGCCCGGGCCGCGGGGAGCCCGCTTCATCGCCGTGGGCTACGTGGACGACACGCAGTTCGTGGTTCGACAGCGACGCCGCGAGCCAGAGGATGGAGCCGCGGGCGCCGTGGATAGAGCAGGAGGGCCGGAGTATTGGGACGAGGAGACAGGGAAAGTGAAGGCCCACTCACAGACTGACCGAGAGAACCTGCGGATCGCGCTCCGCTACTACAACCAGAGCGAGGCCGGTTCTCACACCCTCCAGATGACGTTTGGCTGCGACGTGGGGTCGGACGGCGCTTCCTCCGCGGGTACCACCACTACCACAGAAGACCTGCCTCTTGGACCGGGGGGCGCTTCCTCTCGCGGGACCGGGGGGACGGGCGCTTCCTTTGGACCGGGGGGCGCTTAAAAAACACCAAGTGGGANGCGGGCCATGNGGG

BSK-1E2-C24 - revers

GATGATTGGGGAGGAGCACAGGTCAGCGTGGGAAGAGGGTCATGGTGGACATGGGGG TGGGGTGCTAANACAAGGTANAGTANGANATACTTTTCTTACCTNTTTATGCTGA

BSK-1H5-A1 - forward

BSK-1H5-A1 - revers

BSK-1L2-B15 - forward

BSK-1L2-B15 - revers

BSK-1M13-B2 - forward

CCCAAAAATTACCCAAAGAAGAAGATGGAAAAGCGATTTGTCTTCAACAAGATAGAAAT CAATAACAAGCTGGAATTTGAGTCTGCCCAGTTCCCCAACTGGTACATCAGCACCTCTCA AGCAGAAAACATGCCCGTCTTCCTGGGAGGGACCAAAGGCGGCCAGGATATAACTGACT TCACCATGCAATTTGTGTCTTCCTAAAGAGAGCTGTACCCAGAGAGTCCTGTGCTGAATG TGGACTCAATCCCTAGGGCTGCAGAAAGGGAACAGAAAGGTTTTTTGAGTACGGCTATA

BSK-1M13-B2 - revers

5

BSK-2C5-B3 - forward

BSK-2C5-B3 - revers

GATTCCAACCTTCACAGATAACTGAGTCTTGATTTGACTTCAAGACTTCAGTGGAGGAAG
TAACTACAAATGTGGTAGAAATAGCTAGATAACTAGAAGTGGTGGAGCCTGAAGATCTG
ACTGAATTGCTGCAGTCTCATGATTAAACTTGAACAGATGAGGATTTGCTTCATATGGGT
GGATACAGAAAGTGGTTTCTTGAGATGAAAATCTACTGCTGGCAGAGATGCTGTGAACATC
GTTGAAATGACAACAAAGGACTTCGAATATCAGTAAAATCAGTTGATAAAACCAAAGCA
GGGTTTGAGAGGATGCACTCCCAATTTTGAAAGAAGTTCTTGTGTGGGTGAACGCTATCA
TACCAAACAGCATCGCAAGCTACAGATAAATCTTTCGTGATAGAGTCAATTGACGTGACA
AACTTCATTGGTGGCATTTTAAGGCATTGCCACAGTCACCCCAAAACCCGCAGCAGCCAT
CAACAACNGGCAAGACCCTNCACAACAAAAAGATGA

BSK-2D9-A10 - forward

BSK-2D9-A10 - revers

5

10

15

20

25

30

35

40

45

55

BSK-1G13-C15 - forward

BSK-1G13-C15 - revers

CGGAGGAGCACCCAGTGCTGACCGAGGCCCCCTGAACCCCAAGGCCAACAGAGAG
AAGATGACTCAGATTATGTTTGAGACCTTCAACACCCCGGCCATGTACGTGGCCATCCAG
GCCGTGCTGTCCCTCTACGCCTCTGGGCGCACCACTGGCATTGTCATGGACTCTGGAGAC
GGGGTCACCCACACGGTGCCCATCTACGAGGGCTACGCCCTCCCCCACGCCATCCTGCGT
CTGACCTGGCTGGCCGGGACCTGACCGACTACCTCATGAAGATCCTCACTGAGCGAGG
CTACAGCTTCACCACCACGGCCGAGCGGGAAATCGTGCGCGACATCAAGGAGAAGCTGT
GCTACGTCGCCCTGGACTTCGAGCAGGAGATGGCCACCGCCGCATCTCCTCTTCTCTGGA
GAAAACTACGACTGCCGATGGCANGTCATACCATTGGCATGAGCGGTTCCCGGGTCCGG
AGGCGCTGTNCANCCTTCTTCTGGGNATGG

BSK-2G14-B4 - forward

BSK-2G14-B4 – revers

BSK-2G9-A1 - forward

BSK-2G9-A1 - revers

CCCATCATCATATTTATTGAGCATTTACAGTGTACTAGGCACAATAGAACATACAGAAA
ACATTGTCCCTGCTCTTGAGGAGCTTACATTCTAAAAGAAAAAAATACACCTTTTTTAAAA
TGGCATTTTTGTTTGGTGTTTTCTGCAAAGTACTGAGGAAATATTTTGTAAAGTGAGCTTT
GGCCTTGGGCCTCAAGGAAAAGAATCTGTACCTGTCCTGCGTGTTGAAAGATGATAAGCC
CACTCTACAGTTGGAGAGTGTAGATCCCAAAAATTACCCAAAGAAGAAGAAGATGGAAAAGC
GATTTGTCTTCAACAAGATAGAAATCAATAACAAGCTGGAATTTGAGTCTGCCCAGTTCC
CCAACTGGTACATCAGCACCTCTCAAGCANAAAACATGCCCGTCTCCCTGGGAGGGACC
AAAGGCGGCCAGGATATAACTGACTTCACCATGCAATTTGNGTCTTCTAAAGAAGAGCT
GACCCAAAAAGTCCTGNGCTGAATGNGGACTCAATCCCTAGGCTGGGCANAAAGGG

BSK-2G9-B1 - forward

BSK-2G9-B1 - revers

BSK-2G9-C3 - forward

5

10

15

20

25

30

35

40

45

50

55

BSK-2G9-C3 - revers

BSK-2H10-A4 - forward

TTGAACGCTTTCTTAATTGGTGGCTGCTTTTAGGCCTACTATGGGTGTTAAATTTTTTACT CTCTCTACAAGGTTTTTTCCTAGTGTCCAAAGAGCTGTTCCTCTTTGGACTAACAGTTAAA TTTACAAGGGGATTTAGAGGGTTCTGTGGGCAAATTTAAAGTTGAACTAAGATTCTATCT TGGACAACCAGCTATCACCAGGCTCGGTAGGTTTGTCGCCTCTACCTATAAATCTTCCCA CTATTTTGCTACATAGACGGGGTGTGCTCTTTTAGCTGTTCTTAGGTAGCTCGTCTGGTTT CGGGGGTCTTAGCTTTGGCTCTCCTTGCAAAGTTATTTCTAGTTAATTCATTATGCAGAAG GATAGGGGTTAAGTCCTTGCTATATTATGCTTGGGTATAATTTTTCATCTTTCCCTTGCGG TACTATATCTATTGCGCCAGGTTTCAATTTCTATCGCCTATACTTTATTTGGGTAAATGGN TTGCTAAAGGTGNCTGGTAATAAGGTGGAATGGGTTTGCGGA

BSK-2H10-A4 - revers

BSK-4-4 - forward

BSK-17 - forward

5

10

15

20

25

35

40

45

50

55

CTGTGTTAGAAAAATCATAAAACATAACAGAATCTACACATCATGGTCCACCAGAGGA TTCACAGATGGAAATGAATTTTAATATTGTTACTTTTGAAGTCCCAAATACTTTAAGATTT ACAATAAAAACATTCTGACAGAGTCCATGATGAATTATTTCCAGTCTTTCACCAGACTG ACAAAGTGTCTAACCTATATTCCACAGGTGCATACCATGGCTACGAATAAACTATCCAAT CTAACCACAGAAGCTGAGCATTTGGTTTGGGGTTAATCCACATCACATGACTCACCATTG GCTAATCATTCCCTCTGAGAGGTTTCCTCAGTAAAGAGATTAGAACTACCTCTTGCATTTC CAACTTTTAAAAAATTGCCTTTTTGGAAATCTACCACCACCAACTAATTCTTGACAGACTT GTAGAGAATGACCCTCAAAGAAATATCATTCGAGACACATATTCAAGCAGACTGGNCAT GGTGGCTCATGCCTGCAGTCCCAGCAGTTTGGGAAGCTGAAGTGAACTGATGCTTGAATN CAGGAGTCTTGAGAACAGCCTGGGTAACATGGNAAAACCGGGTCCTACAAAAAATTCC NAAAATTACCCNGGTNTGTTGGNGCACAATGNGGGCCCAACTTTNCCNAAAGAAAAAG TTTGGCTTCAGGAAGGCAAGGGTCNCNNANCCCTGAATGGCCCCTTCCTTCAACCGGGGN AAAAANGGGNAACCTTTTTGGNAAGGGAAGGGAAAGGGAAAGGGAGGCCTTTTNNNT TTAAAAAAGGGANNTTAAAAGGNGGCCCNAAAACNTTTTTAAAGGGCAACCTTTTTTNC TTTTTTGGGAAAATTGGGGNAAAT

BSK-23 - forward

[0018] Diese Gene bzw. Werkzeuge, die von diesen Genen Gebrauch machen werden vorzugsweise zur Charakterisierung der molekularen Abläufe insbesondere im Monozyten/Makrophagen-System bei genannten Erkrankungen verwendet

[0019] Die Gene in Tabelle 1 lassen sich, wie ersichtlich in verschiedene funktionelle Gruppen einteilen:

- Zytokine, lösliche Faktoren, Botenstoffe und Liganden, die einen steuernden Einfluß auf das Entzündungsgeschehen haben:
- Rezeptoren, Ionenkanäle und assoziierte Proteine, die eine Signalkette aktivieren, sobald sie selbst aktiviert werden:
- Kinasen, Proteinkinasen und deren Gegenspieler, die für die Aktivierung und Weiterleitung bzw. die Blokkierung der intrazellulären Signalübertragung Schaltstellen sind;
- Signaltransduktionsmoleküle, die Teil der intrazellulären Signalkette sind und zur Steuerung der Genexpression bzw. anderer Folgemechanismen beitragen (Aktivierung präformierter Moleküle);
- Transkriptions- und Translationsfaktoren sowie assoziierte Moleküle, die an der Regulation der spezifischen Genexpression und Proteinsynthese beteiligt sind;
- Ribosomale und ribonukleäre Regulatorproteine, die an der Proteinbiosynthese beteiligt sind;
- Enzyme und Enzym-assoziierte Proteine, die eine regulatorische Funktion für weitere Signalmoleküle besitzen;
- Proteinasen, Matrixmetalloproteinasen, Enzyme und deren Inhibitoren, die den Abbau der Gewebematrix beeinflussen und damit die Organschädigung;
- Onkogene, Protoonkogene, Differenzierungsfaktoren und Gene aus der embryonalen Entwicklung, die Einfluß auf die Zellentwicklung nehmen; (Proliferation, Differenzierung, Dedifferenzierung);
 - Apoptosegene und Regulatoren des Zellzyklus und Zelltods;

5

10

15

20

25

30

35

40

50

- akute Phase Proteine; die Ausruck von Zellaktivierung und Entzündung sind;
- Oberflächenmembranmoleküle, die einen spezifischen Zelltyp bzw. eine Zellpopulation charakterisieren;
- andere Moleküle, die bei den genannten entzündlichen Erkrankung erhöht sind, aber keiner der oben genannten Gruppen zugeordnet werden können;
- bislang nicht näher charakterisierte Gensequenzen, die sich in den eigenen differentiellen Genexpressionsanalysen unterschiedlich exprimiert zeigen;
- Kontrollgene, die keine differentielle Genexpression zwischen chronischer Entzündung und Kontrollen zeigen und zur Standardisierung, Vergleichbarkeit und Quantifizierung einer Array-Analyse erforderlich sind.

[0020] Bei den Genen oder Gensequenzen kann es sich erfindungsgemäß auch um Allele, Derivate oder Splicingvarianten handeln.

[0021] Diese Gene wurden aus differentiellen Genexpressionsanalysen mittels Gensubstraktionsverfahren aus Blut und Gewebeproben chronisch entzündlicher Erkrankungen und geeigneter Kontrollen (Proben von Normalspendern oder Patienten mit degenerativen Erkrankungen) abgeleitet.

[0022] Durch diese Art der Selektionierung wurde vorteilhafterweise ein Genpool geschaffen, der sowohl eine Spezifität für die Entzündung, als auch eine Spezifität für Zellen des Monozyten/Makrophagen-Systems aufweist. Subtraktive Genverfahren erlauben es eine Vorauswahl an differentiell exprimierten Genen zu treffen. Dabei sind Methoden wie die Differentielle Hybridisierung oder aber Polymerasen-Ketten Reaktion basierte Verfahren wie Represential Differential Analysis (RDA) und Differential Display (DD) zu nennen. Subtraktive Methoden erlauben somit die Anzahl der auf einen Chip aufzubringenden Gene oder deren Teilsequenzen deutlich zu minimieren, zu spezifizieren, und haben für das Chipverfahren deshalb einen höheren Bedeutungswert mit Entzündungs- und Zellspezifitätscharakter. [0023] Die Analyse der Genexpression in den entzündlichen Erkankungen soll auf die genannten Gene und benannten Gruppen konzentriert werden unter Verwendung der genetischen Information (cDNA, deren Teilsequenzen oder korrespondierenden Oligonukleotide, RNA) in einer Array- oder fluoreszenzzytometrischen Technologie oder durch Verwendung spezifischer Oligonucleotid-Paare in einer quantitativen PCR-Technologie. Es sollen dabei vorzugsweise ausschließlich die Gene in den genannten Gengruppen oder eine Teilgruppe davon für die quantitative DNA-/RNA-High-Throughput Genexpressionsanalyse angewandt werden. Alternativ kann eine umfangreicherer Array (z.B. Unigene Array) verwendet werden und erst im Schritt der bloinformatischen Analyse auf die genannten Gene fokussiert werden.

[0024] Insgesamt liefert das erfindungsgemäße molekulare Werkzeug die Möglichkelt, eine Krankhelt molekular zu charakterisieren und daraus abzuleiten 1.) eine molekulare Klassifikation und Stadieneintellung einer klinisch definierten entzündlichen Erkrankung, 2.) die Etablierung eines individuellen Prognoseprofils, 3.) Vorschläge für die molekulare Pathogenese, 4.) Therapieeffekte und Möglichkeiten der Therapieüberwachung und 5.) die Entwicklung neuer Therapiestrategien und pharmakologischer Konzepte zu erlauben.

[0025] So sollen DNA-/RNA-Mikroarrays, und das fluoreszenzcytometrische Verfahren, zur Diagnostik, Prognostik und Therapleüberwachung verwendet werden. DNA-/RNA-Mikroarrays sind Anordnungen von molekularen Spezies

10

15

20

25

30

35

40

45

50

55

EP 1 310 567 A2

auf einem Träger, die dem Auffinden von wechselwirkenden Spezies (z.B. komplementäre Nukleinsäuren) dienen. [0026] Bei den anzumeldenden Verfahren als Werkzeuge entzündlicher Erkrankungen aus Anspruch 1 werden deshalb nicht zufällige Gensequenzen, sondern zell-, gewebs- und krankheitsrelevante Genprodukte die einer bereits vorgegangenen Selektionierung unterzogen wurden verwendet.

[0027] Für die Array- und Mikroarray-Technologie werden geeignete Trägermaterialien (Glas, Kunststoff) verwendet und chemisch aktiviert oder modifiziert, mit Aminolinkern bindenden reaktiven Gruppen, Metallverbindungen oder Legierungen reaktiv beschichtet, um eine dauerhafte Bindung von der cDNA, cDNA Teilsequenzen, Oligonukleotide und RNA aus den selektiven Genabschnitten der zu untersuchenden Gene zu erreichen. Die individuellen cDNAs, RNAs oder Oligonukleotide werden durch geeignete Druckverfahren ortsspezifisch aufgetragen. Alternativ können auch lithographische Syntheseverfahren zum Einsatz kommen, um entsprechende Oligonukleotidsequenzen direkt und ortsspezifisch auf dem Träger zu synthetisieren.

[0028] Bei den DNA-Mikroarrays werden bevorzugt über Aminolinker gekoppelte cDNA's, wie auch DNA-Oligomere auf modifizierte und chemisch aktivierte Glasoberflächen der Biochips aufgebracht.

[0029] Dazu ist erfindungsgemäß ein DNA-Mikroarray zur diagnostischen, prognostischen und therapieüberwachenden Analyse von chronisch entzündlicher Erkrankungen, bakteriell induzierten Entzündungen, Tumorerkrankungen, Arteriosklerose und der Sepsis vorgesehen, auf dessen Oberfläche eine Vielzahl selektiver Monozyten/Makrophagen Gene, deren Genabschnitte oder Oligomersequenzen zum Nachweis gebunden sind.

[0030] — Hierbei-kann-die-Verwendung der selektiven Monozyten/Makrophagen Gene, deren Genabschnitte oder Oli- and gomersequenzen in einem RNA-Mikroarray zum Ansatz kommen.

[0031] Bei den selektiven Genen oder deren Genabschnitten handelt es sich vorzugsweise um eine festphasengebundene Genbibliothek, die vorzugsweise als cDNA-Bibliothek kloniert in Phagen oder Plasmiden vorliegt.

[0032] Die cDNA-Bibliothek weist mindestens folgende genannte Gene oder Genabschnitte auf, die für die genannten Erkrankungen repräsentativ sind.

[0033] Bei den auf den Chip aufzubringenden cDNA Molekülen, deren Teilsequenzen oder aber deren beinhaltenden Oligomersequenzen handelt es sich einerseits um funktionell bekannte Monozyten/Makrophagen Gene zum anderen aber auch um funktionell unbekannte oder bis dato gänzlich unbekannte Gene.

[0034] Die benannten, funktionell bekannten Gene sind für die Analytik der Anmeldung notwendig und deshalb neben den in Anlage 1 funktionell unbekannten bzw. vollständig unbekannten Gene zusätzlich zu berücksichtigen.

[0035] Für die Array- und Mikroarray-Technologie werden geeignete Trägermaterialien (Glas, Kunststoff) verwendet und chemisch aktiviert oder modifiziert, mit Aminolinkern bindenden reaktiven Gruppen, Metallverbindungen oder Legierungen reaktiv beschichtet, um eine dauerhafte Bindung von der cDNA, RNA oder Oligonukleotide aus den selektiven Genabschnitten der zu untersuchenden Gene zu erreichen. Alternativ werden Trägermaterialien (Nyolonmembranen) zur Aufbringung verwendet. Die individuellen cDNAs, RNAs oder Oligonukleotide werden durch geeignete Druckverfahren (Piezo- oder Nadeltechnologie) ortsspezifisch aufgetragen. Alternativ können in sltu Oligonukleotidsyntheseverfahren zum Einsatz kommen, um entsprechende Oligonukleotide direkt und ortsspezifisch auf dem Träger zu synthetisieren.

[0036] Für ein fluoreszenzzytometrisches Verfahren werden individuelle cDNAs, RNAs oder Oligonukleotide aus selektiven Genabschnitten der zu untersuchenden Gene gebunden an Träger-Perlen (Beads) aus Kunststoff oder Glas mit definierter, für jede spezifische Nukleotidsequenz individuell zuordenbarer Größe. Dabei können die Perlen (Beads) chemisch aktiviert oder modifiziert, mit Aminolinker bindenden reaktiven Gruppen, oder anderen reaktiven Gruppen in Form von Metallverbindungen oder Legierungen beschichtet sein, um eine dauerhafte Bindung der cDNAs, RNAs oder Oligonukleotide zu gewährleisten. Die Bindung der cDNAs, RNAs oder Oligonukleotide erfolgt durch Inkubation der jeweiligen Perlen (Beads) einer Größe in geeigneten Lösungen, die die jewellige cDNA, RNA oder das Oligonukleotid enthalten und eine feste Bindung an die Perlen (Beads) vermitteln. Die verschiedenen Populationen an Nukleotidsequenz tragenden Perlen (Beads) werden, wobei jede individuelle Nukleotidsequenz einer definierten Perlen-Größe oder aber Fluoreszenzfarbstoffen zugeordnet ist, zu gleichen Perlenanteilen so gemischt, dass eine definierte Auswahl an Genen gleichzeitig in einem Ansatz untersucht werden kann.

[0037] Für die Array- und auch fluoreszenzzytometrische Technologie wird die zu untersuchende Probe markiert z. B. direkt mit einem Fluoreszenzfarbstoff oder mit einem Brükkenmolekül wie z.B. Biotin oder Digoxigenin für eine spätere Bindung des Fluoreszenzfarbstoffs mit oder ohne Signalverstärkung bevorzugt über Streptavidin oder Anti-Digoxigenin-Antikörper gekoppelt an Streptavidin. Bei der Fluoreszenzzytometrie kann entsprechend dazu der Nachweis auch über fluoreszenzspezifische Antikörper die auf der Oberfläche der Beads ein definiertes Zielantigen erkennen, mit oder ohne Verstärkungen mit dem Biotin-Streptavidin System durchgeführt werden. Alternativ dazu bieten sich in den Arrayverfahren und der Fluoreszenzzytometrie Verstärkersysteme über Metall-/Edelmetallkomplexe an. Weiterhin kann auch auf filtermembranbasierter Technologie mit Radioaktivität im Nachweisverfahren gearbeitet werden.

[0038] Die Hybridisierung der markierten Probe mit dem Array oder den Nukleotidsequenz tragenden Perlen (Beads) erfolgt quantitativ und kann nach abschließender Markierung mit einem Fluoreszenzfarbstoff mittels entsprechender

10

15

20

35

40

45

EP 1 310 567 A2

Laserscanner auf dem Array oder in einem FACS-Analysegerät quantitativ ausgelesen werden.

[0039] Bei den Arrayverfahren und der Fluoreszenzzytometrie erfolt die Analyse der Rohdaten (Signalintensität) und biometrische Auswertung über verschiedene auf dem Markt erhältliche Software, oder mit den Programmen wie z.B Mikroarray Suite (Affymetrix) bei der Array-Technologie oder z.B. BD CBA Analysis Software (BD Biosciences).

[0040] Für die Interpretation hinsichtlich einer diagnostischen Zuordnung einer Krankheit zu einer molekular definierten Klassifizierung, einer Prognoseabschätzung, einer Therapieüberwachung oder -empfehlung, einer molekularen Pathogenese und der Entwicklung neuer Therapiekonzepte sind mehrere Vorgehensweisen möglich und erforderlich. Es kann eine rein quantitativ vergleichende Untersuchung der Genexpression individueller Gene zwischen den Proben einer erkrankten Person und einer Kontrollperson oder den Proben der erkrankten Person vor und während und zu verschiedenen Zeitpunkten einer Therapie oder des Krankheitsverlauf erfolgen z.B. für die Interpretation der molekularen Pathogenese und die Entwicklung neuer Therapiekonzepte. Für die diagnostische Interpretation (Gruppenund Stadieneinteilung, Prognoseabschätzung, Therapieüberwachung und -erfolgskontrolle) ist die Anwendung von Algorithmen z.B. durch die Verknüpfung der Expressionswerte zweier oder mehrerer Gene aussagekräftiger. Diese kann erfolgen durch Addition, Subtraktion, Multiplikation, Division, Exponential- oder Logarithmusfunktion als jeweils alleinige Rechenoperation des Algorithmus oder durch eine komplexe Kombination der verschiedenen Rechenoperationen in einen Algorithmus. Es können dabei 1.) die Expressionsdaten von allen oder einzelnen Genen einer Gruppe, als auch 2.) die Expressionsdaten von allen oder einzelnen Genen aus verschiedenen Gruppen durch einen Algorithmus miteinander verbunden werden.

[0041] Die erfindungsgemäßen Werkzeuge werden nach nachstehendem Verfahren hergestellt:

[0042] Die in den Verfahren genutzten selektiven molekularen zell- / gewebs- und entzündungsspezifischen Werkzeuge wurden durch Gensubstraktion erzeugt.

[0043] Die Herstellung von cDNA erfolgt durch Umschreibung der mRNA durch reverse Transkription. Die mRNA enstammt entzündlichem humanen Blutmonozyten oder dem entzündlichen Gewebsarealen mit hoher Makrophageninfiltration von Patienten mit entzündlichen Erkrankungen, die konventionell oder aber alternativ über Positiv- bzw. Negativselektion gereinigt werden.

Insbesondere die Negativselektion wird benutzt, um Aktivierungsartefakte, die während der Reinigung entstehen können, zu vermeiden.

[0044] Die revers transkribierten cDNA-Einzelstränge werden mit DNA-Polymerase in cDNA-Doppelstränge umgeschrieben.

Für die Differentielle Hybridisierung erfolgt die Klonierung in Plasmid- und/oder Phagen-Vektoren, uni- oder bidirektional gerichtet über Adapter- oder Linkermoleküle. Nach Transformation der Plasmide oder Verpackung der Phagenvektoren erfolgt die Differentielle Hybridisierung mit markierten cDNA Sonden(Radioaktivität, Digoxigenin, Biotin oder andere).

[0045] Ausgehend von der umgeschriebenen cDNA erfolgt alternativ die differentielle Expressionsanalyse über DD oder RDA oder über klassische Gensubtraktionsverfahren durch Hybridisierung der mRNA des einen mit der komplementären cDNA des zweiten Zellpools.

Für die Nutzung der selektiven differentiellen cDNAs werden entweder die klonierten Einheiten vorzugsweise mit NH₂-markierten Standardprimern für Lambda, T3 / T7 / SP6 / M13 und anderen vektorspezifischen Sequenzen über PCR amplifiziert, und dann über Säulenauschlußverfahren gereinigt. Danach erfolgt die Konzentrierung der NH2-markierten DNA durch Präzipitation mit anschließender Zentrifugation.

[0046] Nach der Kopplung der DNA auf der modifizierten kopplungsfähigen Oberfläche erfolgt die Sondenhybridisierung direkt mit Farbstoff markierter cRNA oder farbstoffmarkierten revers transkribierten cDNA Sonden, die dem Patientenmaterial (Blut oder Gewebe) entstammen.

[0047] Prinzipiell existieren neben dem o.g. Immobilisierungsverfahren mit NH2-cDNAs auch Verfahren Oligonukleotide zu spotten oder zu drucken (Nadel- / Piezotechnologie) oder aber auch *in situ* synthetisierte DNA Arrays herzustellen. So können qualitäts- und sequenzidentische DNA-Arrays hochparallel im Waferformat für diese Produktionstechniken hergestellt werden. Bei der *in situ* Synthese werden die einzelnen DNA-Arrays und Spots auf denselben dabei auf dem Wafer durch eine hochintegrierte, mikrosystemtechnisch hergestellte Druckmaske angesteuert. Die Anzahl der Druckporen pro DNA-Arrays und deren Geometrie zueinander ermöglichen dabei sehr hohe Integrationsdichten mit einer Einzelgröße von < 3 μm pro DNA-Chip. Bei diesem Mikrosiebdruckverfahren kommt es dabei in einem ersten Schritt zum Aufbringen der Maske auf den Substratwafer der mit Hilfe von Justiermarken positioniert wird. Im eigentlichen Druckprozeß werden die einzelnen Druckporen mikrofluidisch über einen Kanal angesteuert. Die entsprechende Proben-Substanz (z.B. Oligomernukleotide mit einer Länge von 20-50 Nukleotiden) kann danach mit der chemisch reaktiven und modifizierten Oberfläche des Wafers reagieren und geht eine kovalente Bindung mit der Array-Oberfläche ein. Nach dem Druckvorgang wird die Maske entfernt und gespült. Nach erneuter Positionierung (Versetzen um eine entsprechende Spot-Einheit) kann der Zyklus erneut durchlaufen werden. Im in situ Verfahren können so reproduzierend niedrig integrierte DNA-Arrays mit 400 Spots pro Einhelt oder aber hochintegrative Arrays mit einer Größenordnung von bis zu 20.000 Spots hergestellt werden.

[0048] Der Erfindung liegt die Überlegung zugrunde, dass ein selektives differentielles Genspotmuster, dessen zugrundeliegenden Sequenzen durch ein stark selektionierendes Verfahren erzeugt wurden, auf einem Mikroarray genutzt werden kann, wobei gegenüber bisher verwendeten DNA-Mikoarrays der Vorteil in einer kostenreduzierten Herstellung-und einer Aufwand- und kostenreduzierten Analytik besteht.

[0049] Auf den RNA-Mikroarrays werden Blut- oder aber gewebsspezifische RNA-Moleküle die aus Patientenmaterialien chronisch entzündlicher Erkrankungen, bakteriell induzierten entzündlichen Erkrankungen, Tumorerkrankungen, Artheriosklerose, der Organ- und Gewebstransplantationen und Sepsis gebunden. Der qualitative / quantitative Nachweis der Transkriptmenge relevanter Gene erfolgt dann mit den Spezies der im Abschnitt DNA-Mikroarray beschriebenen selektionierten Gene, Genabschnitte oder Oligomere. Die RNA-Proben werden auf Kopplungsträger gespottet und setzen sich aus Total-RNA oder messenger-RNA zusammen. Die RNA dient dabei als Target für die aus DNA-Mikroarray abgeleiteten hoch signifikant exprimierten Genen die als markierte Sonden zur Hybridisierung eingesetzt werden. Vorgeschlagen wird das Koppeln biotinylierter RNA oder messenger-RNA auf Streptavidin beschichteten Glasträgern (Slides). Nach Markierung der RNA mit Biotinderivaten, wird die RNA auf Poly-L-Lysin behandelten vorzugsweise aber auf mit Streptavidin beschichteten Glas- oder Plastikslides durch Spotting aufgebracht und getrocknet. Eine Degradation der RNA wird so verhindert. Alternativ bietet sich eine kovalente Kopplung der RNA durch Bindung an reaktive Trägermaterialien an die vorzugsweise durch UV-Bestrahlung katalysiert wird.

[0050] Zusätzlich ist eine multiple, gleichzeitige Markierung verschiedener Gene, Geneinheiten oder Oligomere mit -verschiedenen Markierungs-Spezies, z.B. Radioaktivität, Fluoreszein, Digoxigenin und enzymatischen Markierungen. [0051] Parallel unterschiedliche Markierungen der Sonden mit unterschiedlichen Fluoreszenzfarbstoffen sind möglich. Alternativ sind enzymatische oder aber radioaktive Sondenmarkierungen zu nennen.

Zur Quantifizierung und Qualitātskontrolle werden markierte Haushaltsgene (alpha-, beta, gamma-Aktin, GAPDH usw.) eingesetzt. Bevorzugt wird der Nachweis hier parallel und gleichzeitig mit maximal 50 Gensonden pro Ansatz gleichzeitig durchgeführt.

Neben der Vereinfachung der biometrischen Analyse durch Kopplung von RNA Spezies an Trägermaterialien erlaubt dieses System eine schnelle Diagnostik und bietet eine komplexe für den Patienten individuell schnelle Diagnostik, Prognostik und Therapiesteuerung. Insbesondere bei pharmakologischen Entwicklungsstrategien erlaubt das System eine schnelle Durchführung mit hohem Durchsatz.

[0052] Da in dieser Anmeldung phänotypische Zellzuordnung, hier, Bezug auf das Monozyten/Makrophagen System genommen wird, zum anderen auch eine bereits vorangegangene Selektionierung der Gene, Geneinheiten oder aber Oligomere vorherrrscht können so vielfältige Verfahrensweisen, die sich sowohl in gleichzeitigen oder aber getrennten Anwendungen von DNA-/RNA-Mikroarrays für die genannten Erkrankungen wieder finden. Kombinatorisch beinhalten dieses Verfahren sowohl einen kommerziellen Nutzen mit gleichzeitigem Nutzen für wissenschaftlichen Fragestellung. [0053] Die Markerfunktionen der molekularen Werkzeuge in DNA-Mikroarray / DNA-fluoreszenzytometrischem Mikroarray, RNA-Mikroarray oder aber reverser Transkriptions-Polymerasen Kettenreaktion (RT-PCR) ermöglicht es, ein krankheitsspezifisches Genexpressionsmuster jedes einzelnen Entzündungspozesses zu generieren und die Relevanz bestimmter biologisch wirksamer Substanzen und deren Derivate abzuschätzen und neue Therapiemöglichkeiten über konventionelle chemische Pharmazeutika, naturstoffbezogene Pharmazeutika, antisense-RNA, Aptamere, Ribozyme, oder monoklonale Antikörper zu entwickeln. Zusätzlich können speziesspezifische Krankheitsverläufe sämtlicher genannter Erkrankungen entzündungsrelevant und krankheitsspezifisch genotypisch erfasst bzw. analysiert werden und die krankheitsspezifische Behandlung in Abhängigkeit von der Entzündungsaktivität entsprechend individueli abgestimmt werden.

68

55

5

10

15

20

25

30

35

40

45

```
<110> Pathoarray GmbH
         <112>
                Jägerstr. 51
         <113>
                Berlin
         <115>
                Deutschland
5
         <116>
                10117----
         <120> Nukleinsäure-Array
         <130> 171
10
         <151> Diskette
               IBM PC-kompatibel
         <152>
                Microsoft Windows 98
         <153>
         <154>
                Patentin 3.1, Version 3.1.16
         <160>
               102 19 052.6
         <210>
               1
         <211> 929
         <2.12>--- DNA-
         <261> Homo Sapiens
20
         <400> 1
         cggttggggc tctggtcttg gatttgatgt gtggcgaagg ctgcaattgt ttaataaccc
         ttcatgattc aacagctctt caagaacttt cctctgttct tgtgtggagc tcgtgacagc
                                                                              120
         cagtggtggt ggagctccag ccctctcttc ccacaggcac aagccgggtt cctgagtccc
                                                                              180
         agggettete gggaggtgte tgeeeteete ttteagacae cetetgeeet gtgteecagg
                                                                              240
         gccctgggcc tgtgctgcac tgagcagaga ctgtagggga ccggctctcc cactcctccc
                                                                              300
25
         360
         tagtttttgc gggttcttac gcatgtgagg tgtggacttg catggtgggg agctcaaatg
                                                                              420
         gtacatgaag gggaggagcc ctctgagtgc tgtgatttgt tccatcatta ccgcttcctg
                                                                              480
         atcacggtga cctgcactgc tggagtggtc agtggagcca ggcctcccca caacagtgtt
                                                                              540
                                                                              600
         cccategect tettactatt gatttetatt ettaaaatat tgtattaett ageactettt
         tgaagacgtt ccagtatata tcaaatgatc aaaagtccat aaccttgtcc tacgtagaag
                                                                              660
30
         ccaaaggtgt catgcagttt caggtgttcg agtttccaga attcttgtga tgacatttgt
                                                                              720
         aggattette ttttagaett ggaccaaatt etgtaaceta atatttgtee tteagattga
                                                                              7BO
         cagagaaccg caggcaggtg ttttctctgt cacacgtgtg gtgggtggca tcctggtgac
                                                                              840
                                                                              900
         ataaagaatt gcctttggta acttgcccag aaggetgtag ggttattttc tgcttagact
                                                                              929
         ttcccctatt tctttcttt cttttctcg
35
         <210> 2
         <211> 657
         <212> DNA
         <213> Homo Sapiens
40
                                                                               60
         attttaggga ggtagtagat gatttttagg gaatttgatg ggccagaaga acatacaatg
         gattgggaca aagtctgttg ggcagacaat ggtttgtgac aaaattctgt ccaggtgtgt
                                                                              120
         tgaccgaatt caggetttet ttatgegata tgagtteagt taatgaaaac acaggggagt
                                                                              180
                                                                              240
         gaccagaagt gattgtttcc ttctttggcg tttctgtctt cctccttttt tgttctattc
45
                                                                              300
         cettattttg caacettttg gatgttaccc tttggaagtt accetcttgt aacttecaca
                                                                              360
         ttaaaagttt gggggctggc tgatanaagg aactccagag aacaacttga ttctgtgctt
                                                                              420
         tgggagagac aganaaatga ggggtgtgga ggaaggtcag anagaccctg aggcctctgc
                                                                              480
         ctncttcage atgtcanage accetattt ggggettget ttetgagece naacatetee
                                                                              540
         agecttccan gantetgtgg cttatectte ecaangatag gateacttgn eactetactg
         ancetaagtt gtatteantt tettttgate egeetngaet etntagenan tganaancae
                                                                              600
         aacntggnaa cnaaccctca taaanctgct ntancttctg gttttaagnn caaaaca
                                                                              657
         <210>
               3
         <211> 657
         <212> DNA
         <213> Homo Sapiens
```

	<400> 3			
5	gattgggaca aagtctgtt tgaccgaatt caggctttc gaccagaagt gattgtttc ccttattttg caacctttt ttaaaagttt gggggctgg	g ggcagacaat ggtttg t ttatgcgata tgagtt c ttctttggcg tttctg g gatgttaccc tttgga c tgatanaagg aactcc	gatg ggccagaaga acatacaatg tgac aaaattctgt ccaggtgtg cagt taatgaaaac acaggggagt tett ceteettttt tgttetatte agtt accetettgt aacttecaca agag aacaacttga ttetgtgett	120 180 2 240 3 300 3 360
10	ctncttcagc atgtcanag agccttccan gantctgtg ancctaagtt gtattcant	c accetatttt gggget g cttateette ceaang t tettttgate egeetn	tcag anagaccetg aggeetetge tget tretgageee naacatetee atag gateacttgn cactetacte gact etntagenan tganaaneae tetg gttttaagnn caaaaca	480 540
15	<210> 4 <211> 700 <212> DNA <213> Homo Sapiens			
	<400> 4			240
20			ggct ccacgagggt tcagctgtct gagg cgggcataac acagcaagac	
			acag tacctaacaa acccacaggt	
			gggc gacctcgggg cagaacccaa	
			agog aactactata otcaatagat ataa cagogoaato otattotaga	
25			ggat caggacatcc caatggtgca	
20	gccgctacta aaggttcgt ggagtaatcc aggtcggtt		teet aegtgatetg agtteagaee eeeg	660 700
	<210> 5			
20	<211> 893 <212> DNA			
30	<213> Homo Sapiens			
	<400> 5		•	
-			catc tcaaaacaaa caaacaaaca	
35			ette ctetgeetge aagaeeeeee eeaa aegeeeageg egteeettee	
55	actgcgctgc ccgatgcac	e tetgecegee aegeett	cag tgttgtggtc atttgtgcct	
			ttc caggacgggt tattcaggat	300
			igag acctcagcac ctgctgcctg gcac atgcctcctg agcctcatat	360 42 0
	_		caag ttttgttgcc gaaatccctc	480
40	ttcgaggaaa aaagtcaat	gttggcaatt agatatt	aag atcacataac tcacttcaat	540
			tca aggaagcagc cacaggggct agat aagttttttt ctctttgaaa	600 660
			ata ggttactaag atattgctta	
	gcgttaagtt ttaacgtaa	tttaatagct taaaatt	tta agagaaaata tgaagactta	780
45	gaagagtagc atgaggaagg gaagcttctt catggagta		taa aacatgacgg aggttgagat	840 893
				
	<210> 6 <211> 316			
	<212> DNA			
50	<213> Homo Sapiens			
30	<400> 6			
	gtttttaggg ttctttagt	ttgtttcttt cacccag	gggg tggtggtccc agccagtt t g	60
	gtgctgacgg tgagaggaa	a ttagaatctg tttgcaa	att gtccaaccca cccctcaac	120
			tgt ttccttcatg ccgccatgtt	180 240
<i>55</i>			gat getgtacaag geaaataaag	300
	ctgtttatta accttg			316

```
<210>
         <211>
                375
5
         <212> DNA
         <213> Homo Sapiens
         gttcaaacag caaacgccca cagatggccc agaggtggtg gtagtcaggg tgtgtgggtg
                                                                                  60
         tttttagggt tctttagtgt tgtttctttc acccaggggt ggtggtccca gccagtttgg
                                                                                 120
10
         tgctqacggt gagaggaaat tagaatctgt ttgcaaattg tccaacccac cccctcaaca
                                                                                 1.80
         tgaggggctt ccattttctg tgttttgtaa gggaactgtt tccttcatgc cgccatgttc
                                                                                 240
         ctgatattag ttctgatttc tttttaacaa atgttatcat gattaagaaa atttccagca
                                                                                 300
         ctttaatggc caattaactg agaatgtaag aaaattgatg ctgtacaagg caaataaagc
                                                                                 360
                                                                                 375
         tgtttattaa ccttg
15
         <210> 8
         <211> 560
         <212> DNA
         <213> Homo Sapiens
20
         <400> 8
         atcaactttc gatggtagtc gccgtgccta ccatggtgac cacgggtgac ggggaatcag
                                                                                 60
                                                                                120
         ggttcgattc cggagaggga gcctgagaaa cggctaccac atccaaggaa ggcagcaggc
                                                                                180
         gcgcaaatta cccactcccg acccggggag gtagtgacga aaaataacaa tacaggactc
                                                                                240
         tttcgaggcc ctgtaattgg aatgagtcca ctttaaatcc tttaacgagg atccattgga
         gggcaagtct ggtgccagca gccgcggtaa ttccagctcc aatagcgtat attaaagttg
                                                                                300
25
         ctgcagttaa aaagctcgta gttggatctt gggagcgggc gggccggtcc gccgcgaggc
                                                                                360
         gagecacege egtnenegee ettgeetete ggegeeeeet ngatgetett agetgantgt
                                                                                420
         cccgcggggc ccganccgtt tactttgaaa aaatttnagt gttaaagcan gcccgaaccg
                                                                                480
         ctggataccc gnnntaggaa taatggatta ngaccnnggn nctntttgnn ggtttcngac
                                                                                540
         tgageentat taananggae
                                                                                560
30
         <210>
                9
         <211>
                348
         <212>
               DNA
         <213> Homo Sapiens
         <400> 9
35
                                                                                 60
         aaaacgacgg ccagtgaatt gtaatacgac tcactatagg gcgaattggg ccctctagat
                                                                                120
         gcatgctcga gcggccgcca gtgtgatgga tatctgcaga attcggcttt tgacaccaga
         ccaactggta atggtagcga ctggcgctca gctggaattc cggctgggac taccgggtct
                                                                                180
         cactccagaa gaggcttctt cagagcatgg tagtcttggg gttctaagag aatgagagta
                                                                                240
                                                                                300
         gaagetgeaa aacetettga aactgggget tgggagteac acatgacttt etceacatte
40
         tgttcgtcaa aagcgaatca taaggacagc acagactcaa gggataag
                                                                                348
         <210> 10
         <211>
                505
         <212>
                DNA
45
         <213> Homo Sapiens
         <400> 10
         aaacgacggc cagtgaattg taatacgact cactataggg cgaattgggc cetctagatg
                                                                                120
         catgotogag oggeogocag tgtgatggat atotgoagaa ttoggottitt kacaccagac
                                                                                180
         caactggtaa tggtagcgac cggttctcag ctggaattcc ggattggtcc aattgggtat
50
         gaggagttca gttatatgtt tgggattttt taggtagtgg gtgttgagct tgaacgcttt
                                                                                240
         cttaattggt ggctgctttt aggcctacta tgggtgttaa atttttact ctctctacaa
                                                                                300
                                                                                360
         ggttttttcc tagtgtccaa agagctgttc ctctcttgga ctaacagtta aatttacaag
                                                                                420
         gggatttaga gggttctgtg gggcaaattt aaagttgaac taagattcta tcttggacaa
         ccagctatca ccaggetcgg taggtttgtt geetetneet ataaatette ccaetatttt
                                                                                480
                                                                                505
         tgtacataga cgggtgttct ctttt
55
```

```
<210>
                11
         <211>
                430
         <212>
               DNA
         <213> Homo Sapiens .
         <400> 11
         gttcagtaat tatcttttat ttcattttct ccccttccca cccctccccc tcggatccag
                                                                                 60
         cagagggctg tggtggcggc ggcgtccaag cggcgcgga cggcgtacac gagcgcgcan
                                                                                120
                                                                                180
         tggtggaget ggagaaggag ttccatttta accgctacct gtgccggcct cgcgttgtag
         agatggccaa cctgctgaac ctcagcgagc ggcagatcaa gatctctcct ctcaccacgc
10
                                                                                240
         geotectect cagggtagaa tecaagaage geecaaatta acacacetta catettigta
                                                                                300
         ggtaatteec eccaaatett gattttttt tteetcaant ateggtttet tecaegaaac
                                                                                360
        ctaaactttc acaatcctct tccggngcca caaagaaggt gtcacgtgac ccgaaagcca
                                                                                420
                                                                                430
         aacaccattg
15
         <210>
                12
         <211>
                556
         <212> DNA
         <213> Homo Sapiens
20
        <400> 12
        acaacteggt ggtggccact gcgcagacca gacttcgctc gtactcgtgc gcctcgcttc
                                                                                 60
        gcttttcctc cgcaaccatg tctgacaaac ccgatatggc tgagatcgag aaattcgata
                                                                                120
        agtegaaact gaagaagaca gagaegeaag agaaaaatee actgeettee aaagaaacga
                                                                                180
        ttgaacagga gaagcaagca ggcgaatcgt aatgaggcgt gcgccgccaa tatgcactgt
                                                                                240
25
        acattccaca agcattgcct tcttatttta cttcttttag ctgtttaact ttgtaagatg
                                                                                300
        caaagaggtt ggatcaagtt taaatgactg tgctgcccct ttcacatcaa agaactactg
                                                                                360
        acaacgaagg ccgcccccc tttcccatct gtctatctat ctggctggca gggaaggaaa
                                                                                420
        gaacttgcat gttggtgaag gaagaagtgg ggtggaagaa gtggggtggg acgacagtga
                                                                                480
        aatctagagt aaaaccaagc tggcccaagt gtcctgcagg ctgtaatgca gtttaatcag
                                                                                540
        agtgccattt ttttt
                                                                                556
30
        <210>
                13
                2586
        <211>
        <212>
               DNA
35
        <213> Homo Sapiens
        <400> 13
        ccattaggcc tatgaattat aagatacagt cactttaaaa tccactggaa ggctgaagag
                                                                                 60
        tgagttaaac ctcttataat gaatatacag tgaaaccagt agaggcattt tatttagggt
                                                                                120
                                                                                180
40
        tcctacaaga aagtgcttaa atagcatcga cgcctacatg ctacatcctg ttcagtctct
        gcctctgtga tgcagttggc cagcaaatat cctccaagtc atcatttgca tagtgctagg
                                                                                240
                                                                                300
        gataaaatga ggagcaatac caaatgctat acctgccctt atgggtctta tagtccaacg
        ggagaaaaag atattataca aataatcacg gaaaataaat agaaaacgca tccttgtttt
                                                                                360
                                                                                420
        tgtttagtgg atcctctatc cttcagagac tctggaaccc ctgtggtctt ctcttcatct
                                                                                480
        aatgaccctg aggggatgga gttttcaagt ccttccagag aggaatgtcc caagcctttg
45
        agtagggtaa gcatcatggc tggcagcctc acaggtttgc ttctacttca ggcagtgtcg
                                                                                540
                                                                                600
        tgggcatcag gtgcccgccc ctgcatccct aaaagcttcg gctacagctc ggtggtgttg
        totgcaatgc cacatactgt gactcotttg accocccgac otttoctgcc ottggtacct
                                                                                660
                                                                                720
        tcagccgcta tgagagtaca cgcagtgggc gacggatgga gctgagtatg gggcccatcc
        aggetaatea caegggeaca ggeetgetae tgaeeetgea geeagaacag aagtteeaga
                                                                                780
                                                                                840
        aagtgaaggg atttggaggg gccatgacag atgctgctgc tctcaacatc cttgccctgt
50
                                                                                900
        caccccctgc ccaaaatttg ctacttaaat cgtacttctc tgaagaagga atcggatata
        acatcatccg ggtacccatg gccagctgtg acttctccat ccgcacctac acctatgcag
                                                                                960
                                                                               1020
        acaccectga tgatttecag ttgcacaact teagectece agaggaagat accaagetea
                                                                               1080
        agatacccct gatteaccga geectgeagt tggcccagcg tecegtttea ctecttgcca
        gcccctggae atcacccact tggctcaaga ccaatggagc ggtgaatggg aaggggtcac
                                                                               1140
        tcaagggaca gcccggagac atctaccacc agacctgggc cagatacttt gtgaagttcc
                                                                               1200
55
                                                                               1260
        tggatgccta tgctgagcac aagttacagt tctgggcagt gacagctgaa aatgagcctt
                                                                               1320
        ctgctgggct gttgagtgga taccccttcc agtgcctggg cttcacccct gaacatcagc
```

```
gagacticat tgcccgtgac ctaggiccta ccctcgccaa cagiactcac cacaatgicc
                                                                                1380
                                                                                1440
          gcctactcat gctggatgac caacgcttgc tgctgcccca ctgggcaaag gtggtactga
          cagacccaga agcagctaaa tatgttcatg gcattgctgt acattggtac ctggactttc
                                                                                1500
          tggctccage caaagecace ctaggggaga cacacegeet gttccccaac accatgetet
                                                                                1560
5
         ttgcctcaga ggcctgtgtg ggctccaagt tctgggagca gagtgtgcgg ctaggctcct
                                                                                1620
         gggatcgagg gatgcagtac agccacagca tcatcacgaa cctcctgtac catgtggtcg
                                                                                1680
         gctggaccga ctggaacctt gccctgaacc ccgaaggagg acccaattgg gtgcgtaact
                                                                                1740
         ttgtcgacag tcccatcatt gtagacatca ccaaggacac gttttacaaa cagcccatgt
                                                                                1800
         tctaccacct tggccacttc agcaagttca ttcctgaggg ctcccagaga gtggggctgg
                                                                                1860
          ttgccagtca gaagaacgac ctggacgcag tggcactgat gcatcccgat ggctctgctg
                                                                                1920
10
         ttgtggtcgt gctaaaccgc tcctctaagg atgtgcctct taccatcaag gatcctgctg
                                                                                1980
         tgggcttcct ggagacaatc tcacctggct actccattca cacctacctg tggcatcgcc
                                                                                2040
         agtgatggag cagatactca aggaggcact gggctcagcc tgggcattaa agggacagag
                                                                                2100
         teageteaca egetgtetgt gactaaagag ggcacagcag ggccagtgtg agettacage
                                                                                2160
         gacgtaagec caggggcaat ggtttgggtg actcactttc ccctctaggt ggtgcccagg
                                                                                2220
         gctggaggcc cctagaaaaa gatcagtaag ccccagtgtc cccccagccc ccatgcttat
                                                                                2280
15
         gtgaacatgc gctgtgtgct gcttgctttg gaaactngcc tgggtccagg cctagggtga
                                                                                2340
         gctcactgtc cgtacaaaca caagatcagg gctgagggta aggaaaagaa gagactagga
                                                                                2400
         aagctgggcc caaaactgga gactgtttgt ctttcctaga gatgcagaac tgggcccgtg
                                                                                2460
                                                                                2520-
         gagcagcagt-gtcagcatca-gggcggaagc-cttaaagcag-cagcgggtgt-gcccaggcac
         ccagatgatt cctatggcac cagccaggaa aaatggcagc tcttaaagga gaaaatgttt
                                                                                2580
                                                                                2586
         gagccc
20
         <210>
                14
         <211>
                1448
         <212>
                DNA
         <213> Homo Sapiens
25
         <400>
                14
         ccaccatgct cgccctggag gctgcacagc tcgacgggcc acacttcagc tgtctgtacc
                                                                                 60
         cagatggcgt cttctatgac ctggacagct gcaagcattc cagctaccct gattcagagg
                                                                                120
         gggctcctga ctccctgtgg gactggactg tggccccacc tgtcccagcc accccctatg
                                                                                180
         aageettega eeeggeagea geegetttta geeacceeca ggetgeeeag eletgetaeg
                                                                                240
         aacccccac ctacagccct gcagggaacc tcgaactggc ccccagcctg gaggccccgg
                                                                                300
30
         ggcctggcct ccccgcatac cccacggaga acttcgctag ccagaccctg gttcccccgg
                                                                                360
         catatgcccc gtaccccagc cctgtgctat cagaggagga agacttaccg ttggacagcc
                                                                                420
         ctgccctgga ggtctcggac agcgagtcgg atgaggccct cgtggctggc cccgagggga
                                                                                480
         agggatccga ggcagggact cgcaagaagc tgcgcctgta ccagttcctg ctggggctac
                                                                                540
         tgacgcgcgg ggacatgcgt gagtgcgtgt ggtgggtgga gccaggcgcc ggcgtcttcc
                                                                                600
         agtteteete caageacaag gaacteetgg egegeegetg gggeeageag aaggggaace
                                                                                660
35
         gcaagcgcat gacctaccag aagctggcgc gcgccctccg aaactacgcc aagaccggcg
                                                                                720
         agateegeaa ggteaagege aageteacet accagttega cagegegetg etgeetgeag
                                                                                780
                                                                                840
         tecgeeggge etgageacae eegaggetee eacetgegga geegetgggg gaceteacgt
                                                                                900
         cccagccagg atcccctgg aagaaaaagg gcgtccccac actctaggtg ataggactta
                                                                                960
         cgcatccca ccttttgggg taaggggagt gctgccctgc cataatcccc aagcccagcc
40
         egggeetgte tgggattee cactigtgee tggggteeet etgggattte tttgteatgt
                                                                               1020
         acagactece tgggatecte atgttttggg tgacaggace tatggaccac tatacteggg
                                                                               1080
         gaggcagggt agcagtgctt ccagagtccc aagagcttct ctgggatttt cttgtgatat
                                                                               1140
                                                                               1200
         ctgattcccc agtgaggcct gggacctttt taagatcgct gtgtgtctgt aaaccctgaa
         teteatetgg ggtgggggee etgetggeaa eeetgageee tgteeaaggt teeetettgt
                                                                               1260
         cagatetgag atttectagt tatgtetggg geeetetggg agetgttate ateteagate
                                                                               1320
45
         tettegecca tetatggetg tgttgtcaca tetgteccet catttttgag atcccccaat
                                                                               1380
         tetetggaac tattetgetg eccettttta tgtgtetgga gtteeccaat cacatetagg
                                                                               1440
         getectee
                                                                               1448
         <210>
                15
         <211>
                2227
50
         <212>
                DNA
         <213> Homo Sapiens
         <400> 15
         gagageeega acaggaagag ggtacagett tgtgcaggte acatgeeeac tgcageeete
                                                                                 60
         cagectetgg tecceagage ggaetttgga agetgaactg ettttgttge tggaagaett
                                                                                120
55
         atgttataat ttaccctggg tggaccaggg tcgtacaaaa gggcaacgct ccccagtccc
                                                                                180
         cccactcccg accccggaat catgcatcgg actacacgga tcaaaatcac agagctgaac
                                                                                240
```

```
coccacctca tgtgtgccct ctgcgggggg tacttcatcg acgccaccac tatcgtggag
                                                                                 300
          tgcctgcatt ccttctgcaa aacctgcatc gtgcgctacc tggagaccaa caaatactgc
                                                                                 360
          cccatgtgtg acgtgcaggt ccataaaacc cggccgctgc tgagcatcag gtctgacaaa
                                                                                 420
          acacttcaag acattgtcta caaattggtc cctgggcttt ttaaagatga gatgaaacgg
                                                                                 480
          cggcgggatt tctatgcagc gtacccctg acggaggtcc ccaacggctc caatgaggac
                                                                                 540
5
          cgcggcgagg tcttggagca ggagaagggg gctctgagtg atgatgagat tgtcagcctc
                                                                                 600
          tccatcgaat tctacgaagg tgccagggac cgggatgaga agaagggccc cctggagaat
                                                                                 660
          ggggatgggg acaaagagaa aacaggggtg cgcttcctgc gatgcccagc agccatgacc
                                                                                 720
          gtcatgcatc ttgccaagtt tctccgcaac aagatggatg tgcccagcaa gtacaaggtg
                                                                                 780
          gaggttctgt acgaggacga gccactgaag gaatactaca ccctcatgga catcgcctac
                                                                                 840
          atctaccct ggcggcggaa cgggcctctc cccctcaagt accgtgtcca gccagcctgc
                                                                                 900
10
          aageggetea eestageeac ggtgeeeace eesteegagg geaceaacae eageggggeg
                                                                                 960
          tecgagtgtg agteagteag egacaagget eccageeetg ceaceetgee agecacetee
                                                                                1020
          tectecetge ccageccage caecccatee catggetete ccagttecca tgggeeteca
                                                                                1080
         gccacccacc ctacctcccc cactccccct tcgacagcca gtggggccac cacagctgcc
                                                                                1140
         aacgggggta gcttgaactg cctgcagaca ccatcctcca ccagcagggg gcgcaagatg
                                                                                1200
15
         actgtcaacg gcgctcccgt gcccccctta acttgaggcc agggaccctc tcccttcttc
                                                                                1260
         cagocaagec tetecaetec ttecaetttt tetgggeeet tttttecaet tettetaett
                                                                                1320
         tccccagctc ttcccacctt gggggtgggg ggcgggtttt ataaataaat atatatat
                                                                                1380
         atgtacatag gaaaaaccaa atatacatac ttattttcta tggaccaacc agattaattt
                                                                                1440
         aaatgccaca ggaaacaaac tttatgtgtg tgtgtatgtg tggaaaatgg tgttcatttt
                                                                                1500
         ttttgggggg ggtcttgtgt aatttgctgt ttttgggggt gcctggagat gaactggatg
                                                                                1560
20
         ggccactgga gtctcaataa agctctgcac catcctcgct gtttcccaag gcaggtggtg
                                                                                1620
         tgttgggggc cccttcagac ccaaagcttt aggcatgatt ccaactggct gcatatagga
                                                                                1680
         gtcagttaga attgtttctt tctctccccg tttctctccc catcttggct gctgtcctgc
                                                                                1740
         ctctgaccag tggccgcccc ccgcgttgtt gaatgtccag aaattgctaa gaacagtgcc
                                                                                1800
         ttttacaaat gcagtttatc cctggttctg aggagcaagt gcagggtgga ggtggcacct
                                                                               1860
         gcatcacete etectetge agtggaaact ttgtgcaaag aatagatagt tetgeetett
                                                                               1920
25
         tttttttttt ttcctgtgtg tgtggccttt gcatcattta tcttgtggaa aagaagattc
                                                                               1980
         aggccctgag aggtctcagc tcttggagga gggctaaggc tttagcattg tgaagcgctg
                                                                               2040
         caccccacc aaccttaccc tcaccgggga accctcacta gcaggactgg tggtggagtc
                                                                               2100
         tcacctgggg cctagagtgg aagtgggggt gggttaacct cacacaagca cagatcccag
                                                                               2160
         actitigccag aggcaaacag ggaattccgc cgatactgac gggctccagg agtcgtcgcc
                                                                               2220
         acactco
                                                                               2227
30
         <210>
                16
         <211>
                205
         <212>
                DNA
         <213> Homo Sapiens
35
         <400> 16
         ggtaatactt agagcattac aaagcacttt cacatttaaa tttgattttg gaaagtattt
                                                                                 60
         totttttgag acagagtoto tgtcacccag gotggagtgc atggagtgca gtggtgcaaa
                                                                                120
         cacagctege tgcaccetca accteetggg ctcaagcagt etttecacct eggeeteeca
                                                                                180
40
         agttgctagg actataggac tacag
                                                                                205
         <210>
                1.7
         <211>
                354
         <212>
               DNA
         <213> Homo Sapiens
45
         <400> 17
         tgagcttgaa cgctttctta attggtggct gcttttaggc ctactatggg tgttaaattt
                                                                                120
         tttactctct ctacaaggtt ttttcctagt gtccaaagag ctgttcctct ttggactaac
         agttaaattt acaaggggat ttagagggtt ctgtgggcaa atttaaagtt gaactaagat
                                                                                180
         totatottgg acaaccaget atcaccagge teggtaggtt tgtegeetet acctataaat
                                                                                240
50
         cttcccacta ttttgctaca tagacgggtg tgctctttta gctgttctta ggtagctcgt
                                                                                300
         ctggtttcgg gggtcttagc tttggctctc cttgcaaagt tatttctagt taat
                                                                                354
         <210>
                18
         <211>
                354
55
         <212> DNA
         <213> Homo Sapiens
```

		<400> 18						
5		tacctaagaa- aggtagaggc gttcaacttt ccaaagagga	gacaaaccta	agcacacccg ccgagcctgg acagaaccct ggacactagg	tctatgtage tgatagetgg etaaateeee aaaaaacett	_aaaatagtgg ttgtccaaga ttgtaaattt gtagagagag	-gaagatttat tagaatetta aaetgttagt taaaaaattt	60 120 180 240 300 354
10)							
	,	<210> 19 <211> 713 <212> DNA <213> Homo	Sapiens					
1:	5	<400> 19						
		tccccttgtt	tcctccgaaa gtggaaagta ctgggagcct	aaggagcctc tttccttcgg	actaccacct agcagcagcc	ttttttcttt ctgtccggca	gegttttett tetgtettga	60 120 180 240
		gctcccagca acccccaaca	aggaaagtee					300
2	0	gaggctttgt	caagacttgg	catactcgct	ggtttgtgct	caagggggat	cagctctatt	360
			tgaagatgaa	-		_		420
			tccctgcaat					480 540
			nttcattctt					600
2	5	~	aaataatgat atataaattt			-		660 713
		<210> 20	·	accegnedeg	daoceacano	guodamine		,10
2	o	<211> 261			•			
J	•	<212> DNA <213> Homo	Sapiens					
		<400> 20	attennameta			taaataatta	as at agains	60
9	5	gcaaaacctc agcattcaac						120
Ū		tcatctccaa						180
		atggacaaat tngnnctann	gaaaatctan atataancnt		gncanagtat	gtgtgngnga	negeatteat	240 261
4	0							
•	•	<210> 21						
		<211> 354 <212> DNA						
		<213> Homo	Sapiens					
4	15	<400> 21					•	
		tgagcttgaa	cgctttctta	attggtggct	gcttttaggc	ctactatggg	tgttaaattt	60
			ctacaaggtt			_		120
		_	acaaggggat acaaccagct			-	-	180 240
		cttcccacta						300
5	50	ctggtttcgg	gggtcttagc	tttggctctc	cttgcaaagt	tatttctagt	taat	354
		<210> 22						
		<211> 355 <212> DNA		٠				
ε	55	<213> Homo	Sapiens					

	<400> 22 attaactaga aataactttg caaggagagc caaagctaag acccccgaaa ccagacgagc tacctaagaa cagctaaaag agcacacccg tctatgtagc aaaatagtgg gaagatttat	60 120
5	aggtagagge gacaaaceta eegageetgg tgatagetgg ttgteeaaga tagaatetta gtteaacttt aaatttgeee acagaaceet etaaateeee ttgtacaatt taactgttag teeaaagagg aacagetett tggacactag gaaaaaacet tgtagagaga gtaaaaaatt taacaceeat agtaggeeta aaageageea eeaattaaga aagegtteaa getea	180 240 300 355
10	<210> 23 <211> 599 <212> DNA <213> Homo Sapiens	
15	<400> 23 gtgtgacttc accgaagacc agaccgcaga gttcaaggag gccttccagc tgtttgaccg aacaggtgat ggcaagatcc tgtacagcca gtgtggggat gtgatgaggg ccctgggcca gaaccctacc aacgccgagg tgctcaaggt cctggggaac cccaagagtg atgagatgaa tgtgaaggtg ctggactttg agcactttct gcccatgctg cagacagtgg ccaagaacaa ggaccagggc acctatgagg attatgtcga aggacttcgg gtgtttgaca aggaaggaaa tggcaccgtc atggtgctg aaatccggca tgttcttgtc acactgggtg agaagatgac	60 120 180 240 300 360
20	agaggaagaa gtanagatgo tggtggcagg gcatgaggac agcaatggtt gtatcaacta tgaagagctc gtccgcatgg tgctgaatgg ctgaggacct tcccagtctc ccaaatccgt gcctttccct gtgtgaattt tgtatctacc taaaagtttc cctagctttt ttgttcanca ctttccattt gttttnttga tgatgttgcc gcacattcac caataacttg tttttggcc	420 480 540 599
25	<210> 24 <211> 545 <212> DNA <213> Homo Sapiens	
30	<400> 24 ggcccagaga gcaagtttat ttggtgaatg ctgacggcaa acatcatcca agagagacaa gatgggaaag ttgctgagac aagaaagcct agggaaactt taggctagat acaaaattca cacagggaaa ggcacggact ctggggagac tgggaaggtc ctcagccatt cagcaccatg cggacgagct cttcatagtt gatacaacca ttgctgtcct catgccctgc caccagcatc tctacttctt cctctgtcat cttctaccc agtgtgacaa gaacatgccg gatttcagca cccatgacgg tgccatttcc ttccttgtca aacacccgaa gtccttcgac ataatcctca	60 120 180 240 300 360
<i>35</i>	taggtgcct ggtccttgtt cttggccact gtctgcagca tgggcagaaa gtgctcaaag tccagcacct tcacattcat ctcatcactc ttggggttcc ccaggacctt gagcacctng gcgttggtag ggttctggcc caaggccctc atcacatccc cacactggct gncaggatct tgcat	420 480 540 545
40	<210> 25 <211> 387 <212> DNA <213> Homo Sapiens	
45	<400> 25 ttcagtttcc tctcctagta gtacacgagt ctccattgtt tcacatcctc accagtgctt tgtattgtct gacttttaag attctgctca tcagacatat gtaaatgaca cataacacag tttgtttca cagaacaaat ggttatttaa attctaaacc caaagtaatg tacaattaca ataaaaggcc agaagaaaga ggaggaagga aaaagatgtg agaaataaaa ttgttatagt aattcttgtt ttcgcttcca agcataaaat agtaattgga atgtttagtg tgcatgtgtg tatacaatgc aatatgatac aatataaaag caatgcctct ctttgttcca ttggttgntt	60 120 180 240 300 360
50	tttaaatcta tttttataag taataag <210> 26 <211> 178 <212> DNA <213> Homo Sapiens	387
55	<400> 26 ctggaatcta gatagttttc aggatgggga agatagattc aaaaccacct aagggcattc	60

	tgggtacaaa cttcctcatc	gcattgtgca tgccaaggtt	aggctttggt atctccaatt	gatacagaga gtacctttct	ataaggtett ctccagttcc	ttttcccata aagcttgc	120 178
5	<210> 27 <211> 387 <212> DNA <213> Homo	Sapiens				**	
10	ttggactaac gaactaagat acctataaat ggtagctcgt taattcatta	tttactctct agttaaattt tctatcttgg cttcccacta ctggtttcgg tgcagaaggt cccttgccga	acaaggggat acaaccagct ttttgctaca gggtcttagc ataggggtta	ttagagggtt atcaccaggc tagacgggtg tttggctctc	ctgtgggcaa tcggtaggtt tgctcttta cttgcaaagt	atttaaagtt tgtcgcctct gctgttctta tatttctagt	60 120 180 240 300 360 387
	<210> 28 <211> 420						
20	<212> DNA <213> Homo <400> 28	Sapiens					
25	gtcagaaaac aaccatcctt ccattttccc aatctcaccc aggctgtctc aaacatgagt	cacacatgca actaaaagac acatggagaa cattagatag cccagaacaa gcatctagcc ctgctgcccc	agggtagagt gcaaagcagc cactcctgag atcaggaagg acatcctcac	ggggaggtg ttcttcaggg ctcagtgtag ctccagtggt attccacaca	caggaaggaa ctcaatcagt ggtcccaagc cagatagaaa agagaaccca	ctcataatga tatgaaaaag ccaccaacca gtgacaaaca tgtgactaaa	60 120 180 240 300 360 420
30	<210> 29 <211> 402 <212> DNA <213> Homo	Sapiens					
<i>35</i>	<400> 29				a a taga taga	aceaaaatt	60
40	cctgtttagt gttttgtttg gccttggttg gattctttt atggncatta	gcactgtgca cacatgggtt tcactttcta gtgggcttgg cataactgat tgagttcctt gtgcaaacca	ctcttgtgtg tctgaccact gaccctacac tgagccctga tctgcaccct	gaatgtgagg ggagcettee tgageteagg agaagetget ceccaeteta	atgtggctag tgatttgttc agtgctatct ttgcttctcc ccctgtcttt	atgcactcat tggggagaca aatggggtga atgtgggaaa	120 180 240 300 360 402
45	<210> 30 <211> 145 <212> DNA <213> Homo	Sapiens					
50	nagcttaaaa	cttgcacaac aatgctntga gtccaggctg	ggcaaactgc	anaacaagtt aagtgtcact	aaaattgagt ntgcaggcta	ctntngccaa ttgcagctca	60 120 145
<i>55</i>	<210> 31 <211> <212> DNA <213> Homo	Sapiens					

```
<400> 31
           gcattgacag cctggaccgc agcattctga gctgcaatag cctgcagagt gacacttgca
                                                                                    60
           gtttgcctca gagcatcttc taagctcttg gctagagact caattttaac ttgttcttgt
                                                                                   120
           ttttcctgtt gtgcaaggcg agctgcat
                                                                                  148
5
           <210> 32
           <211>
                  642
           <212> DNA
           <213> Homo Sapiens
10
           <400> 32
           gctggaacag aatagcctgg aacaggatet ttegtteeat aatattttt aattagagea
                                                                                   60
           agtectgeta ctgtatetgt teetttgaag ttaaccaagt gageagatge teetatgeea
                                                                                  120
           gcagtctctt gggaagagac tcctctgtag ccaaaatcat gtaacttgta ttccagacca
                                                                                  180
           totaagttac cagaagtttc taacaaatat ttggccaata ttttcttctg ctctctagaa
                                                                                  240
           tttgtggcca ctgtgattgg ataccaggac tgaacaagaa tagtctcaat ccaatttgta
                                                                                  300
15
           agccagtaac actotggato tgtgttttoc accgtgaaga aacatttoot otgggaatga
                                                                                  360
           caaanceete angaacaget tttattteta ttggaagatg cecatcatae tteteaagaa
                                                                                  420
           tggagttect cectttteat taaagacate atettggaaa tgttetttgt agacatettt
                                                                                  480
          ggcttcctgg atttctcttt gggtactact ttacctttta agnacttatt aanaaagnac
                                                                                  540_
           tgnacccata aaaactggnn ctcatattta ncttccttaa ttggaggntn tgnttntttt
                                                                                  600
          acggnttcaa agangaaaaa atttcttgng tggggggant tg
                                                                                  642
20
          <210>
                 33
          <211>
                 540
          <212> DNA
          <213> Homo Sapiens
25
          <400> 33
          gccgcgccag ggagctcgcg gcgcgcggcc cctgtcctcc ggcccgagat gaatcctgcg
                                                                                   60
          gcagaageeg agtteaacat ceteetggee acegaeteet acaaggttae teactataaa
                                                                                  120
          caatatccac ccaacacaag caaagtttat tectaetttg aatgeegtga aaagaagaca
                                                                                  180
          gaaaactcca aattaaggaa ggtgaaatat gaggaaacag tattttatgg gttgcagtac
                                                                                  240
          attettaata agtaettaaa aggtaaagta gtaaccaaag agaaaateca ggaagecaaa
                                                                                  300
30
          gatgtctaca aagaacattt ccaagatgat gtctttaatg aaaagggatg gaactacatt
                                                                                  360
          cttgagaagt atgatgggca tcttccaata aaaataaaaa ctgttcctga gggctttgtc
                                                                                  420
          atttccanag gaaatgtttc ttnncggggg aaaacacaga tccnaagggg nactggntta
                                                                                  480
          caaattggat tgagantatt cttggtnann cctgggatcc aatccaaggg ggcccaaatt
                                                                                  540
35
          <210>
                 34
          <211>
                 460
          <212> DNA
          <213> Homo Sapiens
40
          <400>
          cacgagegea egtgttagga ecegaaagat ggtgaactat geetgggeag ggegaageea
                                                                                   60
          gaggaaactc tggtggaggt ccgtagcggt cctgacgtgc aaatcggtcg tccgacctgg
                                                                                 120
          gtataggggc gaaagactaa tcgaaccatc tagtagctgg ttccctccga agtttccctc
                                                                                 180
          aggatagety gegetetege agacecgaeg caceceege acgeagtttt ateeggtaaa
                                                                                 240
45
          gcgaatgatt agaggtcttg gggccgaaac gatctcaacc tattctcaaa ctttaaatgg
                                                                                 300
          taanaagccc ggctcgcttg gcgtggagcc gggcgtggaa tgcnagtgcc taatgggcca
                                                                                 360
          cttttggtaa ncaaaactgg cgctgcggga tgaacccaac gcccggttaa ngggcccnat
                                                                                 420
          gccgacctca tnanacccca naaaangngt tggntgatac
                                                                                 460
50
          <210>
                 35
          <211>
                 500
          <212>
                 DNA
          <213> Homo Sapiens
55
          <400>
                35
```

5	gttcggttca ttccacgccc ggttgagatc ggcgggggtg ccagctacta tgcacgtnag	tecegeageg ggetecaege gttteggece egtegggtet natggttega gacegetaeg ttgggnetaa	ccagttctgc cagcgagccg caagacctct gcgagagcgc ttaagtcttt gacctccca	ggcttcttac aatcattcgc cagctatcct cgcccctata nagttcctnt	tggcccacta ccatttaaag tttaccggat gagggaaact cccaggtcgg ggnttngccc	ggcactcgca tttgagaata	60 120 180 240 300 360 420 480 500
10							
15	<210> 36 <211> <212> DNA <213> Homo <400> 36 ggggggggta	_	tocccaaaco	ggccattatc	gaagaattca	caaaaaacaa	60
	tagcctcatc	atccccacat	catagccacc	atcaccctcc	ttaacctcta	cttctaccta	120
	cgcctaatct	actccacctc	aatcacacta	ctccccatat	ctaacaacgt	aaaaataaaa	180
20		aacatacaaa ctatctcccc		ttectcecca	cactcatcgc	ccttaccacg	240 266
25	<210> 37 <211> 268 <212> DNA <213> Homo	Sapiens					
30	gtgggttttg gtgattgagg gctatgatgt	tatgttcaaa tggagtagat	ctgtcatttt taggcgtagg aggctattgn	gtaagggcga atttttacgt tagaagtaga tttttgtgaa	tgttagatat ggttaaggag	ggggagtagt ggtgatggtg	60 120 180 240 268
35	<210> 38 <211> 427 <212> DNA <213> Homo	Sapiens	·				
40	aaactcanaa tcacaaaacc gtgtgctcat ttcctttctc gggatctaaa	tcatcctaac ctcttacttc tctcatttga aggaaagtgg actactcagg	tggatgtaaa attttctcca aatttgaatt cgacagttct cctgggttcc	gtatcaatat aactttttcc tataatgact ccaatcttgt caggtctgcc accttcagcc agttttaatg	cagaaaatgt ctatgggggg tagaatgtag tccacattac aacgaaatct	tggggtgcac agggggccag cccaactcct catcacctgg gaatctttan	60 120 180 240 300 360 420
45	<pre><tgcata <210=""> 39 <211> 757 <212> DNA <213> Homo</tgcata></pre>	Sapiens					427
50	<400> 39	-					60
55	agccaccct tagatcccca gaaaggaaag gagcacacct	aaagattcag ggtgatggta gagttgggct ggccccctcc	atttcgttgg atgtggaggc acattctaac ccccatagag	ttaaaacttc ctgaaggtgg agacctgaga aagattggaa tcattatatg aaaaaggttt	aacccaggcc actgtcggcc ttcaaatttc gagaaaatga	tgagtagttt actttcctga aaatgagaat agtaagaggg	60 120 180 240 300 360

							400	
					ggtctgcnaa		420	
					caantggntn		480	
					aattcttnca		540	
					ntanaantnc		600	
<i>5</i>					tttnnnnnan		660_	
*	ctgggnanan	naaaaaggcc	nnnccantnc	cnttcnanan	tnncnnctan	ngggaanggn	720	
	nccccntnnn	gnncntaanc	ngggggggg	ggtnccc			757	
							*	
	<210> 40							
40	<211> 285							
10	<211> 283							
	<213> Homo	Sapiens						•
	.400							
	<400> 40							
	caacaacaca	tcatcagtag	ggtaaaacta	acctgtctca	cgacggtcta	aacccagctc	60	
15	acgttcccta	ttagtgggtg	aacaatccaa	cgcttggtga	attctgcttc	acaatgatag	120	
	gaagagccga	catcgaagga	tcaaaaagcc	gacgtcgcta	tgaacgcttg	gccgccacaa	180	
	gccagttatc	ccttgtggta	acttttctga	cacctcctgc	ttaaaaccca	aaaggtcaga	240	
		ggccccgctt	-			•••	285	
	<210> 41							
20	<211> 283							
	<212> DNA					•		
•	<213> Homo	Capiona						
	\213/ HOIIO	Saprens						
	-400- 40							
	<400> 42							
25		_			atccttctga		60	
25	tttaagcagg	aggtgtcaga	aaagttacca	cagggataac	tggcttgtgg	cggccaagcg	120	
	ttcatagcga	cgtcgctttt	tgatccttcg	atgtcggctc	ttcctatcat	tgtgaagcag	180	
	aattcaccaa	gcgttggatt	gttcacccac	taatagggaa	cgtgagctgg	gtttagaccg	240	
	tcgtgagaca	ggttagtttt	accctactga	tgatgtgttg	ttg		283	
	12.1							
	<210> 43							
30	<211> 765							
	<212> DNA							
	<213> Homo	Saniens						
	<400> 43							
		+++++	anaartatan	atabata.			60	
3 5						tgcaatggca	60	
					cgattctcct		120	
					gctaattttt	-	180	
					actcctgacc		240	
					gagccaccat		300	
					tacctgtgaa		360	
40	atatttacca	attgttaata	ttttaccatg	tttgcttcat	ctctctacat	atgtattcat	420	
	atgtaatttt	ttttatttt	gccaaaacat	ttgaaaatta	aacatctgga	tactttgcca	480	
					cttntatccc		540	
					tncngcccta		600	
	tgatatccaa	actttctttg	gggggntttt	ttcccnnccc	naatcantca	ngnccnccat	660	
	tgnntttaat	gggnagntnc	tnnannnaaa	atatccncct	tttttttt	tganttqnct	720	
45		cantnananc				_ •	765	
			0000				-	
	<210> 44							
	<211> 584							
	<211> 504 <212> DNA							
	<213> Homo	Caniena						
50	APTON UOTIO	Pahrang						
50	-400× 44							
	<400> 44		L L L					
					aggtggtggt		60	
	gttttgggat	gaaactgttc	cacctcagat	cattaggtat	tagattctca	taaagagcac	120	•
					taatgccaca		180	
					gaccantact		240	
<i>55</i>					gaagaaacag		300	
					atttgatacc		360	•
		-	_	J				

5	aaacatccan anngnnntgn	acaantacag ntnaaaggaa gncttgntga	cttgtgagag aaaaggnngg	cctcncangc gntantntnn	tgntacttgg attaangaac	aaccatganc attttttaaa ttncnntnaa	420 480 540 584	-
10	gagtattcta gtgaaattgt agcctggggt	tagtgtcacc tatccgctca gcctaatgag	taaatagctt caattccaca tgagctaact	ggcgtaatca caacatacga cacattaatt	tggtcatagc gccggaagca gcgttgcgct	tgcatagett tgttteetgt taaagtgtaa caetgeeege neneggggag	60 120 180 240 300	
15		nnancggata				nctcngncnn naatnanggg	360 420 439	· <u>.</u> .
20	<210> 46 <211> 335 <212> DNA <213> Homo <400> 46							
25	gagtattcta gtgaaattgt agcctggggt	cggccgttac tagtgtcacc tatccgctca gcctaatgag ggaaacctgt	taaatagett caatteeaca tgagetaact	ggcgtaatca caacatacga cacattaatt	tggtcatagc gccggaagca gcgttgcgct	tgttteetgt taaagtgtaa cactgeeege	60 120 180 240 300	
30	<210> 47 <211> 768 <212> DNA	cntattnggc	getettnene	ttete			335	
35	aaagagcatg ccttccggag	ggcaacccca aagttttccc aacaagcacg	actgaccca tactcaggtg	tacactgagg gagatagaac	tgccatcaca tgtcttttta	ctgcacattt cttaatagaa	60 120 180	
40	acaccggtgg caaggctggt gaccttangg ggaaagggtg	cagctttaag tctcgtttgc ccctgtgtga gcggangcgg agccanggtg cgagattngg	gcctcttgat tgagacatca gagaagcnaa ggactggcca	gtcgcggcgg ccctcccagg ctccgatgaa gccaggaagc	cgccctgagg agcaaggcgg tggtctcggc ctgctggtgc	acggattggg aagtctggag aggctcttcg aggggaaana	240 300 360 420 480 540	
45	gctgactgga ccatgtnggn aaaataaccg gnccnacttg	aaancccgcg ggaattccnc gnnggcctgt annnnanttn	gnccatggng tgacnccggc nagccaaatt	gacaagggta gttacattaa cacnnetggn	ttnccggggc cantnggntg gggcgtnttt	caaaaggnca ggggnaaaan	600 660 720 768	
50	<210> 48 <211> 498 <212> DNA <213> Homo <400> 48	Sapiens	·					
55	ccgacatggt ttttccagtc	gtgccttttg agcctgtctc gtctcctctt	ctgattctct	tcccctgccc	ggcgcagcgg	tccggccgaa	60 120 180	

5	cctggeteac ccttcccgaa gagcetgccg agaccactca tcgcgagcte gcctctcccg cctccgccc tcagcgtcct ccagacttcc gccttgctcc tgggagggtg atgtctcatc acacagggac cagccttgcc caatccgtcc tcagggcgcc gccggacatc aagaggcgca aacnanacac cggtgtcacg tgaaccaagc caccanccca naacgancgc ttctcttaaa gctggcccat tatttttatt aantaaaaan acagntntat tttcactgan tacntgcttg ttntccgaag gaaagggc	240 300 360 420 480 498
10	<210> 49 <211> 428 <212> DNA <213> Homo Sapiens	
15	<pre><400> 49 gatggcttat ataaccagaa gccaaatatt tgtgttccaa aaattatttt acttagaaca attcatttag attcacttca atgtgaagta tgtgaaaagc ttaattgctg accagagtga attttccaac aataagaaat gcatggctga ttggctcaaa tgattctatt cttcagccct tactgaagta cttagtgcat accacctatg taattttatt ccccccttat agagatgggg tttcaccatg ctgcccaggc gggtctcaaa ctcctaggta caagtgatcc acccacttcg gcccgccaaa gggccgggat tactggcatg agccaccaag cccagcctgg ttatgtattt attcggtatc ataggggcta cagcacaaat caaaaccata gtatcagtga cctccaatct aattcccg</pre>	60 120 180 240 300 360 420
20	<210> 50 <211> 426 <212> DNA <213> Homo Sapiens	
25	gcgggccgaa gtgggtggat cacttgtacc taggagtttg agacccgcct gggcagcatg	60 120 180 240
30	gaaaattcac tctggtcagc aattaagctt ttcacatact tcacattgaa gtgaatctaa atgaattgtt ctaagtaaaa taatttttgg aacacaaata tttggcttct ggntatataa	300 360 420 426
35	<210> 51 <211> 570 <212> DNA <213> Homo Sapiens	
40	aaaggacttc ttgacctctg gttgaaagag tagcgcatgg ggggtgtttc tggcaaacaa accttcccaa caacgtcaga actgtgttca caaatgctaa cctgtcggcc tggttataga acatcctctt ccctcagggg tatctggcag aggcaggtac ccgtggaatg gtgcaggtgg	60 120 180 240 300 360
45	atgttggtac tggccaacat tcctttcatg cacccaggag ggcagcaggt acctgggatc caaggatgga tggccaggc aggtggctga aaaatggggg tgggtcaaga aggatgtanc tcctggggtg gcgcccaaca aaaaaaatta ngggtagggn gggngctatg gntggaatgn	420 480 540 570
50	<210> 52 <211> <212> DNA <213> Homo Sapiens	
<i>55</i>	agccggcggc atcttggtgt gactgcatgc acaatgcatg cgtgtcctta aagcatttaa	60 120 180 2 4 0

5	agtaacgatt tggaaagagt gcanaaatcc aataatgccr canaaaancc	tgggaagtaa gcagtgtata ttcctgactg ctcacaatga gnctattcan ccctggnttc ttcnatnaaa	attgaagtag agtccacgtc tgntgggcat ttttaagaca taactctaac	tccggcataa cattcaccaa cccatctacc gatatatttt ctgggctctt	tttcaagggc ggaaggcagg ttggttttta acnnataaac nccttactgg	ccagactccg cagtggcctt gggctggcat _cctggngggg gccctggggg	300 360 420 480 - 540 600 660 669
10	<210> 53 <211> 719 <212> DNA <213> Home		•				
15	gagttaggag tetgtettae atgggatgee gaatggaegt	tagggaacaa acagtgggg aactgaatga caacatcatt ggactcagtc	cttctctgac gacctggcat gtgagggatt aggaaactct	accaccaggg tattatggcc tctgcaaggc ttccacggag	ctctcatctg agccctgaaa cactgcctgc tctgggccct	taaaatgata accaaggtag cttccttggt tgaaattatg	60 120 180 240 300
20	attettggga aatteetttg tggeatgear gaaataette aaaaaacatt	tcaattatac tcatgttact cnttccccet cacccaanan tttcctccca ggcncggaat accggcnggc	tccaagggta nccaacatta gccgccgctg tggggaccct ccnctgaccc	gtgacctcna acattaaatg gnttccattt gnangggggc cgggngttnc	tgtggccatg ctttaaggac ccccanaag ccanttnaan ttacaantgg	atatcattaa cccctgcntt gacctgaang ttgaanttnc gnngggggna	360 420 480 540 600 660 719
25							
	<210> 54 <211> 786 <212> DNA <213> Homo						
30	tetatgtage tgatagetgg etaaateeee	acccccgaaa aaaatagtgg ttgtccaaga ttgtaaattt	gaagatttat tagaatctta aactgttagt	aggtagaggc gttcaacttt ccaaagagga	gacaaaccta aaatttgccc acagctcttt	ccgagcctgg acagaaccct ggacactagg	60 120 180 240
35	caattaagaa aactcctcac agtaacatga attaacagcc angcatgctc	gtagagagag agcgttcaag acccaattgg aaacattctt caatatctac ntaaggaaag	ctcaacaccc accaatctat ctncgcataa aatcaaccac gttaaaaaag	actacctaaa caccctatag gcctgcgtca aagtcattat taaaaggact	aaatcccaaa aaaaactaat gattaaaacc taccctactg cggnaatntt	catataactg ggtagtataa ttgaactgac nnnanccacc acccgctgtt	300 360 420 480 540
40	cgnggnccct canggtnant aaacnt	taccttacnt accggcaaag tttttatttt	gggganaata	cttttcttan	tagggcccnt	taangntccc	660 720 780 786
45	<210> 55 <211> 469 <212> DNA <213> Homo				·		
50	ggacetgtgg tegtettget agagacaget tatgetacet gngeetetaa	tgctccgagg gtttgttagg gtgtcatgcc gaaccctcgt ttgcacggtt tactggngat	tactgtttgc cgcctcttca ggagccattc agggtaccgc gctagaggng	attaataaat cgggcaggtc atacaggtcc ggccgttaaa atgtttttgg	taaagccca aatttcactg ctaattaagg catgtgtcac taaacaggcg	tagggtette gttaaaagta aacaagtgat tgggcaggeg gggnaanatt	60 120 180 240 300 360 420
55		taatgactng				-3335	469

```
<210>
                 56
          <211>
                 716
          <212>
                 DNA
          <213> Homo Sapiens
5
          <400> 56
          gggtaccaaa tttctttatt tgaaggaatg gtacaaatca aagaacttaa gtggatgttt
          tggtacaact tatagaaaag gtaaaggaaa ccccaacatg catgcactgc cttggtgacc
                                                                                  120
          agggaagtca ccccacggct atggggaaat tagcccgagg cttanctttc attaccactg
                                                                                  180
10
          teteccaggg tgtgettgte aaagagatat teegeeaage cagatteggg egeteceate
                                                                                  240
          ttgcgcaagt tggtcacgtg gtcacccaat tctttgatgg ctttcacctg ctcattcagg
                                                                                  300
          taatgtgtct caatgaagtc acacaaatgg gggtcatttt tgtcaagtgg ccagtttgtg
                                                                                  360
          cagttccagt agtgactgat tcacattttt ttccaaatgt aatgcacact ccattgcatt
                                                                                  420
          caccegntct cccantcatn acaanctggn ttttgatate ctgaangaaa aatcggccc
                                                                                  480
          tentiggiet iganeticai cantiintaa catgiteeti teetaigaaa tiggggaaaa
                                                                                  540
15
          aagtatttgc aaattntnaa ancccattat nncggncaaa nantaanaaa tggncaggna
                                                                                  600
          acctaggngg aatccactta ncccggcntc cataccantg ggcngnngca aaaaaaaata
                                                                                  660
          accggcnggc cttnaaccaa ttcnccctgg ngccntctnn ggatccaccg gccaac
                                                                                  716
          <210> 57
20
          <211>
                 602
          <212> DNA
          <213> Homo Sapiens
          <400> 57
          cctacgttta cctgtccatg tcttactact ttgaccgcga tgatgtggct ttgaagaact
                                                                                   60
25
          ttgccaaata ctttcttcac caatctcatg aggagaggga acatgctgag aaactgatga
                                                                                 120
          agctgcagaa ccaacgaggt ggccgaatct tccttcagga tatcaagaaa ccagactgtg
                                                                                 180
          atgactggga gagcgggctg aatgcaatgg agtgtgcatt acatttggaa aaaaatgtga
                                                                                 240
          atcagtcact actggaactg cacaaactgg ccactgacaa aaatgacccc catttgtgtg
                                                                                 300
          acttcattga gacacattac ctgaatgage aggtgaaage catcaaagaa ttgggtgace
                                                                                 360
          acgtgaccaa cttgcgcaag atgggagcgc ccgaatctgg cttggcggaa tatctctttg
                                                                                 420.
30
          acaagcacac cctgggagac agtgataatg aaagctaagc ctcggctaat ttcccatacc
                                                                                 480
          gtggggtgac ttccttggcc caaggcagtg catgcatgtt ggggttcctt acctttctat
                                                                                 540
          aattggacca aaacatccct taagtctttg attgnccatt cttnaataaa aaatttggac
                                                                                 600
                                                                                 602
35
          <210>
                 58
          <211>
                 612
          <212> DNA
          <213> Homo Sapiens
40
          ggctaacaat ctccagaagg ttcattcagg cccatgcaaa tcagtgccgg agcctagaga
                                                                                  60
          cagcacagcc tagagctaga ggtcaggcag ggctgagctg agtcacccac tattcagacc
                                                                                 120
          tecetettag ageeteaget aetggatggt ggteattaag ttateattta aactacagae
                                                                                 180
          gcaggctggg tacggtgact caaccctata gccccagcac tttgggaggc caagatggga
                                                                                 240
          ggatcacttg aggtcgggag ttcaacacca gcctggccaa catgatgaaa ccccqtctct
                                                                                 300
          actasaaata caaaaactag ctgggtgtgg ggggngcaca tctttaatcc cagcttctca
45
                                                                                 360
          ngangctgan gcaggaggat cacttaaacc cannaagtgg angctgcang gagcccanat
                                                                                 420
          cgcacacttn actccacctg ggtgacagaa tgagactcat nttcnaanga aaccancnnc
                                                                                 480
          enntnneten ntgeennnng tanetnttae enateettne caaggaceee acettaceat
                                                                                 540
          acttgntact aggnggcmcc tgaatttccn aaancnntct taagggggcc tcaagtttan
                                                                                 600
          nggcenttne tt
                                                                                 612
50
          <210>
                 59
          <211>
                 640
          <212>
                DNA
          <213> Homo Sapiens
55
          <400>
                59
```

		gtgatgtggg	ctcactgcaa	cetetacete	ctaaattcaa	gcgattcttg	tgcctcaacc	60
								120
							ttgtattttt	
							ccttgtgatc	180
		tgcctgcctt	ggcctcccaa	agtgctggaa	ttacaggtgt	gagtcaccgc	gcccaagtat	240
5							_ggagtcctcc_	300
9							ttggtcctgt	360
		_			_		acacttaant	420
		aaagnttgga	aaaccaaatc	atanacttac	atactgnaag	gcggggtatt	tgaaactggg	480
		atggaaaatc	aatttaatga	gntatganct	gcnttaaaaa	aatggganaa	natcanantt	540
							tnttntnncn	600
				gnacnaaang				640
10	,	cccngngggg	9999	gnacmaaang	munuagua			040
		<210> 60						
		<211> 469						
		<212> DNA			•			
		<213> Homo						
15	=	\213 \ 1101110	Daprem					
7.5	,							
		<400> 60	•					
		cagttccacc	cgggcaggca	gtcgggggat	gaggggccgt	ctagcgtccg	cacgcgttca	60
		ctcccaagga	aggtgtgtgg	gcacggtgag	gagtgggaag	aaacagaata	ggaaagtggc	120
						ttgtaggatg		180
-	n					gggatatttt		240
20	•					aacggagtct		300
		ccctgggtgg	agtgcanngg	nachatctng	gntnantgna	acctncactt	tctgggntca	360
		agngantett	ctagctnanc	ctccnaanan	tnggaataca	ggccctgcnc	cangectggn	420
				ncggaattcc				469
		caaccccggn	cccaanaaa	neggaaceee	mommic cima.	ngccimiaga		400
25	5							
	-	<210> 61						
		<211> 667						
		<212> DNA						
		<213> Homo	Sapiens					
			D					
		<100× 61			•			
30	9	<400> 61						
		ctttactaaa	aatacaaaaa	ttagccaggc	atggtggcag	gtgcctgtaa	tcccagctat	60
		tcgggaggct	gaggcaggag	aatcacttga	acccaggaag	tggaggttgc	agtgagccga	120
		gatcgtacca	ctocactcca	cccagggtga	cagagtgaga	ctccgttgaa	aaaaagagaa	180
						atatccccag		240
						cnacaaggca		300
35	5					tgtttcttnc		360
	-	cgngcccaca	cacctttctt	gggagtgaac	gcgtgcggac	ctanacggcc	ctcatccccg	420
		actggctgcc	cgggtggaac	tggggaattc	cacttaacgc	cggcgntcca	ttaccaantg	480
						gcccaantnt		540
						ctatnngggn		600
								660
			cccaaammin	ngangggaaa	conggimenc	cantaannct	cgimaaaccc	
4	0	cttttcc						667
	-	<210> 62						
		<211> 161						
		<212> DNA		•				
	_		Co					
4:	5	<213> Homo	paprens					
	*							
		<400> 62						
		cagttccacc	cgggcaggca	gtcgggggat	gaggggccgt	ctagcgtccg	cacgcgttca	60
		ctcccaagga	aggtgtgtgg	gcacggtgag	gagtgggaag	aaacanaata	ngaaagtggc	120
				angteanann			·	161
5	0	-3		- <u> </u>		_		
٠,		<210> 63						
		<211> 443						
		<212> DNA						
		<213> Homo	Sapiens		•			
5	5	<400> 63						
			aatacaaaaa	ttagggagg	atootoooo	gtgcctgtaa	taggaggetat	60
		Jecuaetaad	uututaaaaa	ccagccagge	acggrageag	gryctrytad	cccayclat	00

5	tegggagget gaggeaggag aateaettga acceaggaag tggaggttge agtgageega gategtacea etgeaeteea eccagggtga cagagtgaga etecgttgaa aaaaagagaa aaaaaaatta atacaaagat attaaaatta aaaaggaaaa atateeeeag aaceeeatea ettaaaeaae aaateaaatt tttatttte tetteeeate etacaaggea acataaetet gaeetgetta gaateeeegt gteaggeeae ttteetatte tgtttettee caeteeteae egtgeeeaca caeettettg ggagtgaaeg egtgeggaeg etagaeggne eeteateeee egaetgeetg eeegggtgga aet	120 180 240 300 360 420 443
10	<210> 64 <211> 263 <212> DNA <213> Homo Sapiens	
15	<400> 64 tgcgtcaga ttaaaacact gaactgacaa ttaacagccc aatatctaca atcaaccaac aagtcattat taccctcact gtcaacccaa cacaggcatg ctcataagga aaggttaaaa aaagtaaaag gaactcggca aatcttaccc cgcctgttta ccaaaaacat cacctctagc atcaccagta ttagaggcac cgcctgccca gtgacacatg tttaacggcc gcggtaccct aaccgtgcaa aggtagcata atc	60 120 180 240 263
20	<210> 65 <211> 262 <212> DNA <213> Homo Sapiens	
25	<400> 65 gattatgcta cetttgcacg gttagggtac egeggeegtt aaacatgtgt cactgggeag geggtgeete taatactggt gatgetagag gtgatgtttt tggtaaacag geggggtaag atttgcegag tteetttac ttttttaac ettteettat gagcatgeet gtgttgggtt gacagtgagg gtaataatga ettgttggtt gattgtagat attgggetgt taattgteag tteantgtt taatetgacg ca	60 120 180 240 262
30	<210> 66 <211> 431 <212> DNA <213> Homo Sapiens	
35	<400> 66 gggggnnggg ttttttttaa aaaaanantg nacatttatt tattactgnc cctatttatt aaanngactt tttntnaacc aagggctttt acttttntt cttgccttta ngggcttcag ggggttttcc cttaantaca accaantntt tttttnaanc naaaantttn nccacctncn nancaacctc nttnttgnct gccttttgtg ctttnaantn tcggacagtt tgnaagtcct caaanacctn naggnngaaa taanatttnn cccancnanc ccattnntgg gtatacancn	60 120 180 240 300
40	gaaggaatat aaatnactnt tttanaaaaa cacnncccat ntttnttnct nnnnnntntt tanaacancc ccnanatnaa atnaaccnaa tnnccntnnn ngnggattnc nccnnnctnn cggctcaaaa a	360 420 431
4 5	<210> 67 <211> 396 <212> DNA <213> Homo Sapiens	
50	<400> 67 cactgatggg catttgggtt gatttcatgt cgtggctgtt gtgaatagtg ctgcagtgaa catacatgtg catgtgtctt tatgatagag tgatttataa tccttcaggt gtatacccag taatgggatt gctgggtcaa atgttatttc tgcctctagg tctttgagga cttgcaaact gtccgagaac tgaaagcaca aaaggcagac aagaacgagg ttgctgcgga ggtggcgaaa ctcttggatc taaagaaaca gttggctgta gctgagggga aaccccctga agcccctaaa ggcaagaaga aaaagtaaaa gaccttggct catagaaagt cactttaata gatagggaca gtaataaata aatgtacaat ctctatatta aaaaaa	60 120 180 240 300 360 396
55	<210> 68 <211> 426	

	<212> DNA						
	<213> Homo	Sapiens					
	10.00	Dapaone					
	.400						
	<400> 68						60
5 ·	cctttctatt	agctcttagt	aagattacac	atgcaagcat	ccccattcca	gtgagttcac	6.0
	cctctaaatc	accacgatca	aaagggacaa	gcatcaagca	cgcagcaatg	cagctcaaaa	120
	cgcttagcct	agccacaccc	ccacgggaaa	cagcagtgat	taacctttag	caataaacga	180
	aagtttaact	aagctatact	aaccccaggg	ttggtcaatt	tcgtgccagc	caccgcggtc	240
	acaccattaa	cccaagtcaa	tagaaaccgg	cotaaagagt	gttttagatc	acccctccc	300
	acacyaccaa	aaaactcacc	tagatacteg	asaactccan	ttracacaaa	atagactach	360
•	caacaaaget	aaaactcacc	tgagttgtaa	tanatana	cegacacaaa	attagaccach	420
10		taacatatct	taacacacaa	tagetaanae	ccaaactggg	accageggaa	_
	tccccg						426
	<210> 69						
	<211> 517					•	
	<212> DNA						
4=		Comions					
15	<213> Homo	Sabreus					
	<400> 69						
	cggattccgc	taatcccagt	ttgggtctta	gctattgtgt	gttcagatat	gttaaagcca	60
	ctttcgtagt	ctattttgtg	tcaactggag	ttttttacaa	ctcaggtgag	ttttagcttt	120
	attggggagg	gggtgatcta	aaacactctt	tacgccggtt	tctattgact	tgggttaatc	180
20	gtgtgaccgc	ggtggctggc	acqaaattqa	ccaaccctqq	ggttagtata	gcttanttaa	240
· · ·	actttccttt	attgctaaag	gggtaatcac	tactatttcc	cntagagata	tggctangct	300
	account	agetgeattg	staamastt	gatgattata	cctttttatc	atgangattt	360
	adacycicity	agetgeateg	cogognacec	gatgetegee	tattaatana	angingance	420
	ataaggggaa	ctccctgnaa	tggggatget	eentgtgtna	CCCCaccaiiii	ancincanaa	
		nnnctnancg			gnnnggnggn	naaaaaataa	480
	taancgncng	gncatnttag	ccnaatattc	nganatc			517
25							
	<210> 70						
	<211> 537						
	<212> DNA						
	<213> Homo	Canions	•				
	<213> HOLLO	Saprens					
30							
	<400> 70						<i>c</i> o
	caaaaagata	attaaccttt	attattcatt	aaaaatgagc	tttctaaaat	attagtaaat	60
	ttcattttaa	gctctgtctt	gaagtgctga	taccactgaa	gtaacatttt	tcttcttca	120
	attttttctt	gtaaaattat	agttttctct	ttttctaaaa	cagcagggag	ttccttccag	180
	ttcttgataa	agataaaggg	agcacccatg	gacttgagta	actgcagagg	agcacccgtg	240
		gtattcccac					300
<i>35</i>		caagcctcat					360
	totoagatca	ctctgaanca	aggeatettg	gtaattetta	aactttcatt	tatttctaaa	420
	actaccanna	ntntnttnct	dascecada	acttatnont	ccatcttttt	tagaangttc	480
	attatagana	ctggatnaan	tttnnaantn	netoctanne	annachtaat	atgactt	537
	accargeeing	Ctggathaan	CCCInidaacii	IIIICCCCaaila	dimacircuat	acggeee	337
					1,		
40							
	<210> 71						
	<211> 759						
	<212> DNA						
	<213> Homo	Sapiens					
		-					
45	<400> 71						
40		gggagagacg	саассавава	cagtccactt	tggaaagtga	agaatggaat	60
	cattagge	gagatgaaaa	eestroaree	cagacacacat	ttassactac	ccttcaaata	120
							180
		ccacgaaagg					240
		atctctggga					
	gctcaatgga	gagaaggaaa	gtcaatcgta	ggaagaacac	agtacagctt	catcactggt	300
50	ccagctgtaa	taccagggta	cttctccgtt	gatgtgaata	atgtggtact	cattttaaat	360
		aagcaaagat					420
		aaaactncac					480
		aaacccattc					540
		ctggataatg					600
		ngaagcaant					660
<i>55</i>						_	720
JJ		ttntccnacg	_		gggaccaaac	cercyyyrta	759
	canaaaactg	cnctnggaaa	aanaagttaa	dattccaaa			, 25

5	<210> 72 <211> 595 <212> DNA <213> Homo	Sapiens		• ••			
10 	ctcctgcctc tttttgcatt cgacgtcnag	ancetectga tttagtggag tgatecacet cacecgcact aatatanana aactaactte	gtagctggga acggggtttc gcctcggcct gnnttaaatg ctacnattat ttggtncatg	ttacaggcat atcatgttgg cccaaagtgt ctttacatat ttccctttat gnnggggnng	gcgccaccac ccaggctggt tgggattaca attatctcat atttatngnn gaatnaaanc	cangnnancc	180 240 300 360 420 480 540 595
15	•						
ngan annak sakan akan kapan kananda dan dan dan	<210> 73 <211> 734 <212> DNA <213> Homo	Sapiens					
		-					
20	<400> 73 ttcatgggga cgcctgccgg ggacatctaa gtccctctaa	cgtagggtag gggcatcaca	gcacacgctg gacctgttat	agccagtcag tgctcaatct	tgtagcgcgc cgggtggctg	gtgcagcccc aacgccactt	60 120 180 240
25	atgcaccacc ggcccgggtg gagaccccat aaaactactt ggntttggtt	acccacggaa aggcagtgag ctcaaaaaaa gttgatggtg	tcgagaaaga ctgagattgc aaggggggg gggaaaaaa	gctatcaatc gccactgcac tggacagggg aatgggtgtc	tgtcaatcct tccaacctgg gcaagtggag tcctcccttg	gtccgtgtcc gcgacagaac tctggctgcc tcactgggaa	300 360 420 480 540 600
30	tatttcgngn (ttccgggttg gaaccentttt (gttttacttn gacccnggnt	cccacatcct	tcaaaaatat	ttgaggttga	taaaantaac	660 720 734
35	<211> 592 <212> DNA <213> Homo \$ <400> 74	Sapiens					
40	actggcagaa actggattcaa actacctaga agatgaagta ataaccacc	aacaacctga tgaggagact gtacctccag caaaagtcct ctgacccaac	accttccaaa tgcctggtga aacagatttg gatccagttc cacaaatgcc	gatggctgaa aaatcatcac agagtagtga ctgcagaaaa agcctgctga	aaaagatgga tggtcttttg ggaacaagcc aggcaaagaa cgaanctnca	tgcttccaat gagtttgagg agagctgtgc tctagatgca ggccagaacc	60 120 180 240 300 360
45	agtggctgca g cacctgaggg g tntttggcan a taacgttnga g	ctttcggcaa aaacctgtcc	atgtacatgg cttggcacaa	gccctcaaat acttatntgg	ggtggtggta tntttttgga	atggcattct aactaaaatn	420 480 540 592
50	<210> 75 <211> <212> DNA <213> Homo 8	Sapiens			·		
55	<400> 75 gccagaggct g tacaccctct g gcgacgcttt g ccttcacaaa g	cccccggatt ccaagacacg	ttcaggggcc ggcccctctc	agcgagagct tcggggcgaa	caccggacgc cccattccag	cgccggaacc ggcgccctgc	60 120 180 240

5	accegacted gegetegeea tetneactte ttgeggnggt nggngtaegt	ctttcgatcg tctctnanga gccttcaaag -tcncccggcc ccnggggttc	gccgagggca ccgactgacc ttctcgtttg -cgcgcctagc ggggcgggag	atctccgcca acggaggcca catgttcaac aatatttgct tttaaggtna cgcggaatca cnggcctgnn	tegecegtee tgetgtteae actaceaeca negaaeggee ntnacgeegg	cttcggaacg atggaaccct anatctgacc ttctatctnn- cgcnccttac	300 360 420 480 540 600 650
10	<210> 76 <211> 577 <212> DNA <213> Homo						
15	gtgagccttg ggtagtagca aacagcagtt	aagcctaggg aatattcaaa gaacatgggt	cgcgggcccg cgagaacttt cagtcggtcc	tacgccgcga ggtggagccg gaaggccgaa tgagagatgg gatcgaaagg	ccgcaggtgc gtggagaagg gcgagcgccg	agatettggt gttecatgtg tteegaaggg	60 120 180 240 300
20	cgganaaccc cctggaatgg ggtccggnga	ggcgggagcc gttcgcccga	ccggggagaa gagangggcc gnccctgaaa	aggegteeag gttetetttt egtgtettgg ateeggggaa gaanane	ctttgtgaag aagcgtnnng	ggcanggcgc gntneggegg	360 420 480 540 577
25	<210> 77 <211> 1154 <212> DNA <213> Homo						
30	ctcgagcggc gactcctgga gcaagaaccc ctgggacggc aagcccagaa	cgccagtgtg gcccgtcagt caggtggtga acaggaagtg caggggcgca	atggatatct atcggcggaa tggctccaga aggctggggg ccttgctcag	atagggcgaa gcagaattcg ttccggcttg ggttctgaga tggccggctg caggaaaagc	cccttgggat tgcgtcaggg aggaacaggc ggctgcaggg ccatggggag	tggtggcgac agcagaccag acagggcaca ctgcggtggg ggggtgagca	60 120 180 240 300 360
35	acttaaatgg agcacaaggg ctcacctggc gtctcccttt	ccacaaagtc tgacctetgc gtcaaaacga gctgtgctgc	atctcagaag atagaaacag taggatcagg aggccaaggg	gcagggcaag agtaatatga tcccccaccc ctcccctcgg gagagaatgt gccctgtttc	caagtgcctg catcaggctg ttcccatagt cagactacag	gtctctaaaa ccagggcagg agcaaatgac ccatagggcg	420 480 540 600 660 720
40	ggtcatggag caccagccca ccacaaagnt attaggccct attaggttca	gccccaactn gaggcncagg tgccttggga taccaaagtt aaaaaggcca	ttgtccacat atctaaaagg canttnaggg anttntaagg aaaccatttt	caggaccan tacnggtatg cctcttgcat ctgancccct tttttggana nttacttnaa cccttntnng	ttcccaactn cccaatccca tnccncatta gnggcccntt ngtaagggcn	acttnggggc tggnatggac ccaacttttc ngcccangng nttaaaaatt	780 840 900 960 1020 1080 1140
45	gcccnnttta	aacc					1154
50	<210> 78 <211> 861 <212> DNA <213> Homo	Sapiens					. •
55	<400> 78 tgtgtgatgt ctttttaaaa ggtttcaaac ataggcatga	ggtattgagg aatgatttat tcctggcctc gtcactatgc	ttattttgta aagcagtcct ccagctctac	tttcagctgg gagatggggt ccctccttag tgtcccttaa ggcgctttct	cttgctatgt tctccagatt ctattttaaa	tgcccagtct agctgggact gtgtacactt	60 120 180 240 300

```
ggggccacac tggggccacc tgtccagaaa ccctcataga tgagctgtgg taaggggcct
                                                                                  360
          gatggagagg ttggtgatgt ggggatgggg ctcagccctg cagttgtccc catgggcagc
                                                                                  420
          ctctgtgtgt ccatgccatg gggcattcgg catggcagga gggcatttta gatcctgtgc
                                                                                  480
          ctcctgggct ggtgggcccc gaggtgaact gggaacatac ccgtgatgct ggacaaganc
                                                                                  540
          tggggcctnc atgacccgct gccagcacct gangggctgg gtcctgcaag ctcctgactg
                                                                                  .600_
5
          gccgaaccgg ctactgngca catcggtagc ctccanaaca aggctgtgan ncacccggca
                                                                                  660
          tgtcngggag gacnccctnt ggtggaanct nacattnttt ccctggcctg aagncancaa
                                                                                  720
          agggagacge atttgctcta tgggaaccnn gggggacctg nncctatnnt ttacccngon
                                                                                  780
          gaacctcctt gnaaccnnnn gggtggggnc gttttntcca agnnaccttg ctttttaaaa
                                                                                  840
          cengnetttg naaanaentt t
                                                                                  861
10
          <210>
                 79
          <211>
                 442
          <212>
                 DNA
          <213> Homo Sapiens
15
          <400> 79
          cgcgggattc cggtgagaag tatccgcgac gagctatccg ggaaagggcc gaatgcgatc
                                                                                   60
          aaacctaatc cgcgagactt gctaaaattc tccaagtccc ggctgcttat gtacctatcg
                                                                                  120
          agccagattc accaccgtca ttatcaactc attttatgaa aaaatgtaat ctaaagtata
                                                                                  180
          teettgttga aaaaaacaa attaatgtat tetttatgae eagtaggagt tggacatage
                                                                                  240
          aaaacccaaa aaggagttgg gcgcagcaaa accttgcttc ctatcccatg attttgatga
                                                                                  300
20
          tggtgtaagt gttcttcctt catttaacac aggaacgatc aaaatttaaa tcttttcatg
                                                                                  360
          aaacattatt gaactatgat acatttacag tggaacataa tgacctagtg ctcttcagac
                                                                                  420
          ttcactggta aaatactgag gt
                                                                                  442
          <210>
                 80
          <211>
                 529
25
          <212>
                DNA
          <213> Homo Sapiens
          <400> 80
          attatttttg acaccagacc aactggtaat ggtagcgacc ggcgctcagc tggttcatat
                                                                                  60
          ttctcttttc catcatttag catcaagttc acctcagtat tttaccagtg aagtctgaag
                                                                                 120
30
          agcactaggt cattatgttc cactgtaaat gtatcatagt tcaataatgt ttcatgaaaa
                                                                                 180
          gatttaaatt ttgatcgttc ctgtgttaaa tgaaggaaga acacttacac catcatcaaa
                                                                                 240
          atcatgggat aggaagcaag gttttgctgc gcccaactcc tttttgggtt ttgctatgtc
                                                                                 300
          caactcctac tggtcataaa gaatacatta atttgttttt tttcaacaag gatatacttt
                                                                                 360
          agattacatt ttttcataaa atgagttgat aatgacggtg gtgaatctgg ctcgataggt
                                                                                 420
          acataagcag cegggacttg gagaatttta geaagteteg eggattaggt ttgategeat
                                                                                 480
35
          teggeeettt eeeggatage tegtegegga taetteteae eggaateee
                                                                                 529
          <210>
                 81
          <211>
                 701
          <212>
                 DNA
          <213> Homo Sapiens
40
          <400>
          cggaatccgg tggacgccgt gccgttactc gtagtcaggc ggcggcgcag gcggcggcgg
                                                                                  60
          cggcatagcg cacagcgcgc cttagcagca gcagcagcag cagcagcate ggaggtaccc
                                                                                 120
          ccgccgtcgc agcccccgcg ctggtgcagc caccctcgct ccctctgctc ttcctccctt
                                                                                 180
          cgctcgcacc atggctgatc agctgaccga agaacagatt gctgaattca aggaagcctt
45
                                                                                 240
          ctccctattt gataaagatg gcgatggcac catcacaaca aaggaacttg gaactgtcat
                                                                                 300
         gaggtcactg ggtcagaacc caacagaagc tgaattgcag gatatgatca atgaagtgga
                                                                                 360
          tgctgatggt aatggcacca ttgacttccc cgaatttttg actatgatgg ctagaaaaat
                                                                                 420
         gaaagataca gatagtgaag aagaaatccg tgaggcattc cgagtctttg acaaggatgg
                                                                                 480
          caatgggtat atcagtgcag cagaactacg tcacgtcatg acaacttagg agaaaaacta
                                                                                 540
50
         acagatgaag aagtagatga aatgatcaga gaagcagata ttgatggaga cggacaagtc
                                                                                 600
         aactatgaag aattcgtaca gatgatgact ggcaaatgaa gactacttta actccttttc
                                                                                 660
         ccctntagaa gaatcaaatt gaatctttac ttacctcttg c
                                                                                 701
         <210>
                 82
          <211>
                 375
55
          <212>
                DNA
          <213> Homo Sapiens
```

	<400> 82			•			
	gttcaaacag	caaacgccca	cagatggccc	agaggtggtg	gtagtcaggg	tgtgtgggtg	60
						gccagtttgg	120
_						-cccctcaaca	
5							
						cgccatgttc	240
	-	_				atttccagca	300
	ctttaatggc	caattaactg	agaatgtaag	aaaattgatg	ctgtacaagg	caaataaagc	360
	tgtttattaa					-	375
	- 3						
	~210× 02						
10	<210> 83			•			
	<211> 882						
	<212> DNA			•			
	<213> Homo	Sapiens					
		<u></u> -					
	-400- 00						
	<400> 83						
15	gcacactggc	ggccgttact	agtggatccg	agctcggtac	caagcttgat	gcatagcttg	60
	agtattctat	agtgtcacct	aaatagcttg	gcgtaatcat	ggtcatagct	gtttcctgtg	120
			aattccacac				180
			gagctaactc				240
			gtgccagctg				300
	ggcggtttgc	gtattgggcg	ctcttccgct	tectegetea	ctgactcgct	gcgctcggtc	360
20	gttcggctgc	ggcgagcggt	atcaagctca	ctcaaaggcg	gtaatacggt	tatccacaga	420
	atcaggggat	aacgcaggaa	agaacatgtg	agcaaaaggc	cagcaaaagg	ccaggaaccg	480
			cgtttttcat				540
	. –		-				600
			tggcgaaccc				
	ctggaacttc	ctcggcgctn	tctgttcgac	cctgncgtta	ccggaacctg	teegenttnt	660
	ccttcggaag	cgngggcttt	ntatacttac	gctgaagtat	ctnattcggg	gagnegtegn	720
<i>25</i>	tcaactggct	gggngcacaa	ccccgttag	ccgacgtgng	cttaccggaa	tntngntggt	780
			cntgnnnanc				840
		_	tantaaaaac	-			882
	Caaacccaag	gggccacccg	Cancadaac	aatggtttcc	119		002
	<210> 84						
	<21 1 > 858						
30	<212> DNA						
	<213> Homo	Saniane					
	VZID> NOMO	Saprens					
	<400> 84						
	cagatatcca	tcacactggc	ggccgctcga	gcatgcatct	agagggccca	attegeeeta	60
0.5			cactggccgt				120
3 5	tggcgttacc						180
							240
	cgaagaggcc						
	gcgccctgta						300
	acacttgcca	gcgccctagc	gcccgctcct	ttcgctttct	tcccttcctt	tctcgccacg	360
	ttcgccggct	ttccccgtca	agctctaaat	cgggggctcc	ctttagggtt	ccgatttaat	420
40	gctttacggc						480
70	tegeeetgat						540
							600
			acacttaanc				
	atttggcgat						660
	caaattcagg						720
•	ccgataaagg	aactatgggt	tttgggaaaa	gaaaccaacc	caaaaaagcq	nacttnaagg	780
45	gctactgnaa						840
***	_		5000030030			53-55	858
	ccgaaaaatg	uggerery					330
	•						
	<210> 85						
50	<211> 836					•	
	-	a					
	<213> Homo	sapiens					
			•				
	<400> 85						
		tttgttctta	ctaggtttta	gtgccacctt	ccctgcctgc	gcttgtgccc	60
<i>55</i>	gtggttttgc						
55		ttggcactgg	cggcctcctt	geeteeette	cacccgtgct	gccatcccgt	60 120 180

							
	ccggagggcg	, agggtggctt	gggaaccgac	c ccagtgatca	tgcctacttt	cttctttgta	240
	teteeeteet	teccageeca	cccgggcagc	: agactctgat	ggaaggaagg	f tgccgtaggt	300
	gggcttttag	, aaactaacgg	gactggtttt	: caaagcagtt	atcttgggae	actgtttatt	360
						tggggctgtg	420
· 5						- cagcgaatga-	
. 5						tacttggatc	540
	aatctgtgag	tattaaataa	agingcaage	taaaggaccac	. ccaaagtaaa	cacttygate	
						accctggcac	600
				-		gaactgattg	660
						aaaaaaaaa	720
	acgcgantga	. nggtcagatn	nnncccatca	nccattcacc	atngggcnnn	tanggtccnc	780
10	cngncaactn	agcaantgna	ttnatnggco	caaaactggg	aacnggcnat	ttcnng	836
	<210> 86						
	<211> 856						
	<212> DNA						
15	<213> Homo						
	(213) HOMO	Saprens					
	-400- 06						
	<400> 86						
·····						tttctcccag	60_
						atagactcac	120
	aatgacaacg	tggccatggc	tcaaaacact	ctctgaaatt	acaaaattgc	tttctgagcc	180
20	aatttaagag	tcacatgatt	gaatccaagc	tattttactt	taaatggtcc	ttttgctttg	240
	cacctgagac	ctcacttaac	cacagacgte	attcgctgga	ctccctgggc	actaaatgag	300
						gattccaaga	360
	aatattetea	aaaaantcac	atcactacae	tasacactt	ccceacetee	ctgctttgaa	420
	aacceatccc	atteatttat	accyctygaa	ctacacageee	ttaattaast	cogettegaa	
	taccageeee	gccagccccc	aaaagcccac	clacygcacc	LUCCULCCAL	canagtctgc	480
25				caaagaagaa			540
	eggtteecaa	gececeteae	ccttcaagaa	ggnatgaatg	gacaaccccg	agaacagagc	600
	cgtgtgaaga	ccaccnacng	cncggatggc	acacggtgga	aggaggcagg	aggccncngt	660
	gccanganga	nagggcncaa	cccagccgga	agnggcccaa	acctatagaa	caagcaaacc	720
	ccggattcng	tgacgcggcn	tacctaccat	nggngggnna	aanatatacc	ggcggctgca	780
	gccaattgaa	atcataactg	nggcgtcact	gcttnaggcc	attncctang	gggataaatn	840
20	tgcgggttna		•		•		856
30							
	<210> 87						
	<211> 828						
	<212> DNA						
	<213> Homo	Saniens					
	THE TOMO	Captelle					
<i>35</i>	<400> 87						
	agadatett	taatgtttat	ccaaaggaca	aaataaagac	tatgaaccaa	tgagacacat	60
	agtaaaaaag	Lacaacttta	acacagegaa	tgtaatatat	atgtaattac	tcataacaaa	120
	atggtcaaaa	cctttaaaag	atacacaata	ggcatctaaa	aagctcagca	atgctaaata	180
	tataatatat	attatatata	aatatataat	atataaatac	atacgttttt	accaagaaat	240
40	gttttatttt	tcttgcagta	gctttgttaa	ttgcacaaaa	ttatgttttg	tttttgccat	300
	ttaaatatta	tcacagaatc	ctattctgaa	agacaaatgt	tcattaaaaa	caaagcaaaa	360
	atagaaattc	acaaccatta	attacctagg	tttgtcattt	aaaggtttaa	agaaaaaaag	420
	ggaggagctt	tcctacaagc	cttttccaag	tgtcacattt	tctctttaaa	agggaaggat	480
	ttncaaacaa	aggtgaaata	gcttaaacag	aaatatttgt	aaaaataaac	tttangcatt	540
	atcaaggata	ttaagacaca	ctgactaacc	cggttcatta	cccmatctt	CCCCDCCCC	600
45	ccccagtaga	treaceagga	chagaacagn	tttacnttan	acacasatac	ttannetaa	660
	adddaaaaaa	ctccctagga	necagaaaant	tttnctgcct	acaguaacgc	nottttenet	
	ctttaccaca	tttattaaaa	gggggggggggggggggggggggggggggggggggggg	mant managed	ceegegeege	ngttttgaat	720
	trategateat	cccccggaa	gggccaactg	gagtgggagg	accgccaegg	gecettttta	780
	Lacygatene	gggeegegee	ecceageggt	ggggaaaaaa	aacggggc	•	828
	471A						
50	<210> 88						
30	<211> 424						
	<212> DNA						
	<213> Homo	Sapiens					
	<400> 88						
	ataattatat	ataaggtggc	cacgctgggg	caagttccct	ccccactcac	agctttgacc	60
<i>55</i>	cctttcacag	agtagaacct	gggttagagg	attgcagaag	acgagcagca	acadaagaaa	120
	cagggaagat	geetateaaa	tttttagcac	agttcatttc	actoggattt	tgaaggattt	180
		_ 5.222		5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -		-3~~8~~	200

5	ctgtctgaat gtaaagcctg ttctagtcct ggtgggacac actggggttg ggggtggggg aagatgcggn aatgaaaccg gntagnnagn gntgncttaa tatncttgat aatgctgnan agnttattnt tacaaatatt tntgtntaag ctatttcacc tttnnttgga aatccttccc ttttaaagan aanatgngac actttgtgaa naggcttgtn ngaaagntcn tccc	300
10	<210> 89 <211> 866 <212> DNA <213> Homo Sapiens	
15	<400> 89 aagaaatatg ggactatgtg aaaagaccaa atctacgtct gattggtgta cctgaaagtg atgtggagaa tggaaccaag ttggaaaaca ctctgcagga tattatccag gagaacttccccaatctagc aaggcaggcc aacgttcaga ttcaggaaat acagagaacg ccacaaagat actcctcgag aagagcaatt ccaagacaca taattgtcag attcaccaaa gttgaaatga aggaaaaaat gttaagggca gccagagaga aaggtcaggt taccctcaaa ggaaagccca tcagactaac agcggatctc tcggcagaaa ccctacaagc cagaagagag tgggggccaa	120 180 240 300 360
20	tattcaacat tettaaagaa aagaatttte aacccagaat tteatateca gecaaactaa getteataag tgaaggagaa ataaaataet ttatagacaa geaaatgetg agagattttg teaacaccag geetgeecta aaagagetne tgaaggaage getaaacatg gaaaggaaca eeggtaccan egntgeaaaa teatgeeaaa tgtaaagaee tegagaetag gaagaactge teactaacga geaaatecca gettacatet tatgaegggt eaatteecen tacatataet taatntaat ggetaantet geantaaaag aenngaetgn agttggtaag ageagaeetn atgngttgnt engaaccatt aetgnnaace ennggteaat aaggtgnaag attnengeet ggaacaaaag ngggtggate taettgtaae egetttaeen eaaacaaaa eaaaggette tetgnanggt eateccaagn ntentn	480 540 600 660 720 780
25	<210> 90 <211> 829 <212> DNA <213> Homo Sapiens	
30	<400> 90 gttctgtaga tgtctattag gtccgcttgg tgcagagctg agttcaattc ctgggtatcc ttgttgactt tctgtctcgt tgatctgtct aatgttgaca gtggggtgtt aaagtctccc attattaatg tgtgggagtc taagtctctt tgtaggtcac tcaggacttg ctttatgaat ctgggtgctc ctgtattggg tgcataaata tttaggataa gttagctcct cttgttgaat	180 240
35	tgatecettt accattatgt aatggeette titgtetett titgatetitg titggittaaa gtetgitta teagagaeta ggatigeaae ecetgeetti tittgillie eatiggelig gtagatetti etecateett tiattitgag ectatgigt tetetgeaeg tgagatgggt titetgaata eageaeactg atgggiettg actetitate eaactigeea gietgngiet titaatigea gaatitagie eatitatati taaaggiaat aniggiatgn gigaatigat eigneattat gatgiagetg gngatitgei egtagitgat geagitette tageteatgg	300 360 420 480 540 600
40	cttacatttg gcatgatttg cacggtggac cggtggtcct ttcatgttaa ccttcttcag agcntttagg caggctggng tgacaaaact taacatttgc tggcataaga ttattctctt acttataact tattggtgga atnaatctgg tgaaatnitt ttaaaantga aatggcccen ttttnggttg aggttttcca aancnttaac nnngnttctt aggaccccg	660 720 780 829
45	<210> 91 <211> 840 <212> DNA <213> Homo Sapiens	
50	<400> 91 ctttaaagta gttttttcca attcagtgaa gaaagtcatt ggtagcttga tggggatggc attgaatcta taaattacct tgggcagtat ggccattttc atgatattga ttcttcctac ccatgagcat ggaatgttct tccatttgtt tgtatcctct tttatttcct tgagcagtgg tttgtagttc tccttgaaga ggtccttcac atcccttgta agttggattc ctaggtattt tattctcttt gaagcaattg tgaatgggag ttcactcatg atttggctct ctgtttgtct gtcgttggtg tataagaatg cttgtgattt ttgtacattg atttgtatc ctgagacttt	60 120 180 240 300 360
55	gctgaagttg cttatcagct tatggagatt ttgggctgag acaatggggt tttctagata tacaatcatg tcgtctgcaa acagggacaa tttgacttcc tcttttccta attgaatacc ctttattct tctcctgcct aattgccctg gccagaactt tcaacactat gttgaatang	420 480 540

5	attcatatga ccaattatga catgggtttg	tatggctggg aagtttaact cttgcctnta	ggttggcaca gaaggtggtg atccgataca	aaactcttat aatttgcaaa tatgatggaa	atttgaaaac gctttttgca ttgacnactg	cagttttgnc cgtccacata caatgaaaaa ctccaggata naagcccagg	600 660 720 780 840
10	<210> 92 <211> 838 <212> DNA <213> Homo	Sapiens					
15	aggaagaagt atagcttact ggtataagga gaatccttcc acacaaccaa	tgaatctctg aaccaaaaag ggagctggta taactcattt aaaagagaat	aatagaccaa agtccaggac ccactccttc tatggggcca tttagaccaa	taacaggatc cagatggatt tgaaactatt gcatcattct tatccttgat	tgaaattgtg cacagccgaa ccaatcaata gataacaaag gaacattgat	acactaaacc gcaacaatca ttctaccaga gaaaaagaga ccgggcagag gcaaaaatcc caccatgatc	60 120 180 240 300 360 420
20	aagtgggett ecageatata ageetttgae	catccctggg aacagagccc aaaattcaac aataataaga cttgaaactg agcggnanga	atgcaagact aagacaaaaa accettcatg gctattgnga gacagacngg tanggntcat	ggtcaatata ccacatgatt ctaaaaactc caaccccagc tgcttntaca nggaaaagga	tgcaaatcaa atctcaatag tcaataatta cattctactg ctctatcact gcaatnctgt	taaatgtaat atgcagaaaa ngtatgatgg atggcaaact agggtgaagt tgnacaatgt	480 540 600 660 720 780 838
25	<210> 93 <211> 850 <212> DNA <213> Homo	Sapiens			•		
30	<400> 93 tgtaatccca cagcctggcc agtggtgggc ctgggagatg	gggatggtga gcctgtggtc	aaccccatct ccagctacta	ctactaaaaa tggtggctga	tacaaaaatt ggtgcgagag	agccaggtgt tcgcttgaac	60 120 180 240
35	gaacaagact ggtactaact tgtactagga cagagtgatg ttccgcggaa cacacactgg	ccatttcaaa agatggtgtg tgaaaggcac gcagaagagt ttccgccatc	aaaagaaaat gacagctgac agcctanagg aggttggtag tgacggctcc	tcttatttgc gcaaactggg gctggcaggt gccctcatgg angagtcgtc	catgagccga catatacaat gttgggtaat ctctgcttgg gcccaatcca	ggaatgcaca gggacacacc gctcaagttt cagcacngag agccgaattn	300 360 420 480 540 600
40	attctatatg: tgtatccgnt tgagtgacta atnatcgcca gggaacggta	ncacctaaat acaattcnca ctacttattg	agettggegt cacatacane ggtggetact	aatcatggca cgaagcataa gccgtttcan	tacttgtttc gtgnaagcng cggaaactgc	tgngngaaat gggngcctaa tgcnantctt	660 720 780 840 850
45	<210> 94 <211> 483 <212> DNA <213> Homo	Sapiens					
50	<400> 94 cggaactccg ctctgaaact gtacaggtgt gtacctgtgc	tgagcattac gtcccattgt attcctcggc	ccaacacctg atatgcccag tcatggcaaa	ccagecetet tttgegteag taagaatttt	aggctgtgcc ctgtccacac ctttttttga	tttcatccta catctagtta aatggagtct	60 120 180 240
55	tgttctgttg cccaggttca ccactacacc	agcgactctc	gcacctcagc	caccatagta	gctgggacca	caggegeeca	300 360 420

	ggctgatctt aca	gaattcctga	cctcatgatc	taccegetea	ccttccaacg	tgctgggatt	480 483
5	<210> 95 <211> 449 <212> DNA <213> Homo						-
10	ctgcccagtg	aaaacaaagc ctctgaatgt	caaagtgaag	aaattcaatg	aagcgcgggt	aaacggcggg	60 120
15	aatggatgaa aacgggcttg acggtgaaga ccccgcgagg	actetettaa egagatteee geggaateag gacatgagag ggeeeggeeg tttteaetga	actgtcccta cggggaaaga gtgtagaata gggtccgccg	cctactatcc agaccctgtt agtgggaggc	agcgaaacca gagcttgact ccccggcgcc	ctagtctggc ccccggtgt	180 240 300 360 420 449
	<210> 96 <211> 450 <212> DNA						
20	<213> Homo	Sapiens					
25	cggcggaccc ttattctaca ttctttcccc	cagtgaaaaa cgccccgggc cctctcatgt gctgattccg tgggaatctc	ccctcgcggg ctcttcaccg ccaagcccgt	gacaccgggg tgccagacta tcccttggct	gggcgccggg gagtcaagct gtggtttcgc	ggecteceae caacagggte tggatagtag	60 120 180 240 300
	atttggctac tcttcacttt	cttaagagag gacattcaga tgctttgttt	tcatagttac gcactgggca	tecegeegtt	tacccgcgct	tcattgaatt	360 420 450
30	<211> 517 <212> DNA <213> Homo	Sapiens				e.	
35	ccattaaaaa aaccaaagtg tcattaacca	ttttttaatg gtactgattt gtccacaaaa gtcttttact accactgatt	taaaaactaa cattctcctt actaaactta	taacttaaaa teettetgaa aatggecaat	ctgccacacn gggtttacna tgaaacaaac	caaaaaagaa tgcattggta agttctgaga	60 120 180 240 300
40	ccttctgagc ctgctttgat aaggtggata	tttctgggca gacacccacc gtctgaaaag ccagacttca	gacttggtga gcaactgtct ctctcaacac	ccttgccagc gtctcatatc acatgggctt	tccagcagcc acgaacagca	ttcttgtcca aagcgaccca	360 420 480 517
4 5	<210> 98 <211> 519 <212> DNA <213> Homo	Sapiens					
50	gcccatgtgt tatgagacag tggcaaggtc acctgccacc tggccattta tcagaaggaa	aaattottga gttgagagot acagttgogg accaagtotg ccactottaa agtttaagta aggagaatgt	tctcagacta tgggtgtcat cccagaaagc tcagtggtgg gtaaaagact tttgtggacc	tccacctttg caaagcagtg tcagaaggct aagaacggtc ggttaatgat actttggttt	ggtcgctttg gacaagaagg aaatgaatat tcagaactgt aacaatgcat tcttttttgc	ctgttcgtga ctgctggagc tatccctaat ttgtttcaat cgtaaaacct gtgtggcagt	60 120 180 240 300 360 420
55		tagtttttaa tttgagaccc			aacaacttga	ccaaaaattt	480 519

```
<210>
                 99
          <211>
                 873
          <212>
                DNA
          <213> Homo Sapiens
5
         <400>
                 100
         ctgggctctg ggctagtact ggggagtatc tgcagaatcc cgtgatatga tccgtcttca
                                                                                  60
         gctaaagata ttatttcaca agtggaatga cagctgactt ctcaacaaca acgaaagcaa
                                                                                 120
         ggagacagtt gaaagacatc ttgaaaatgg aattagcagt tcacaaagca cattcgcata
                                                                                 180
         taagggettg ttttgaattg atettggeag caattetatg aaacaagtaa aagcacaaga
                                                                                 240
         ggaataggaa ctgcacctct tccttcagtt tcagcttgaa taatatcagg aagattcgta
10
                                                                                 300
         teggtetgag ttgggteacg taccegacgt getatagetg aggatggggt aagetgattg
                                                                                 360
         gagtttgcaa cactgttcac agagccaaga tatggaaaga acctaaatgt caactggtgg
                                                                                 420
         atgaatggat aaagaaattg tggtatatac atacactgga atattattca accttaaaaa
                                                                                 480
         gaaggaaatc ctaacatttg tgacaacatg gatggacctg gagggaatta tgctgagtga
                                                                                 540
         aataagacag acncaaaaga cntttcttgc aggagctcct tatatgtgga atctaaatag
                                                                                 600
15
         tcagcttaaa gaaganagta aactactggt gtcaggagca gganaaaatg gaaatgaana
                                                                                 660
         ggngatagta aagggacaaa gttcagtatc aanataataa gttctggngg ttactattaa
                                                                                 720
         tantccatag acctataata ccatactggt tggtactaaa atgctaaagg gtttctaatg
                                                                                 780
         tctaccanan aaaananang gaaaataagg gcggaggccc tnaaagggag gatgtatgcc
                                                                                 840
         tgnggggaag gtctgaaate tncccactat gng
                                                                                 873
20
         <210>
                101
         <211>
                832
         <21.2> DNA
         <213> Homo Sapiens
         <400> 101
25
         gacatacaaa aagctgtaca tatttaatat ttacatctca attagtttgg ggataagtat
                                                                                  60
         actictication aaccatcacc accatcaagg coataaacat atcoatcacc tittigaagtg
                                                                                 120
         tcctcctgcc ccttaattat taccattatt attattatta ttggtaagaa catataagat
                                                                                 180
         ataccctctt agcaatttta agtatacaat acagtattgn tacttatagg tactatgtga
                                                                                 240
         tatattaata gtaaacctcc agaacttatt tatcttgtat aactgaaact ttgtaccctt
                                                                                 300
         taactateac ctcttcattt ccacttttct cctgctcctg acaaccagta gtctactctc
                                                                                 360
30
         ttetttaage ttgactattt tagatteeae atataagtga geteetgeaa gaaagnettt
                                                                                 420
         ttgngtctgc ttatttcact cagcataatt ccctccangt ccatccatgt tgtccaaatg
                                                                                 480
         gtaggattte ettetttta aggtgaataa tatteeagtg tatgnatata ecacaattte
                                                                                540
         ttatncattc ttcaccagtg acattaaggt ctttctatct tggctntggg aacagggtgc
                                                                                 600
         aaactccaat caacttaccc atcctaacta tagacgtngg tacggaccca ctaaacgaac
                                                                                660
         gaanttctgn ntattaactg aactgangan aggggagtcc atncttggct ttactggtca
                                                                                720
35
         aaaatgnggc anacaataaa aaccttttgc aagggttggg acgtatcatt nanagnttac
                                                                                780
         nggtctgttc tgggtgnanc attntcntgg aaattttgcg aanggcantc gg
                                                                                832
         <210>
               102
         <211>
                436
40
         <212>
               DNA
         <213> Homo Sapiens
         cttttatttg ctgagatatt gttctaatcc actgagtcag atttggttgg tctgaaaaat
                                                                                 60
         ttaacctgtt gttaaaaata tttcttggag gaagcagcag aggaataaca gtattactca
                                                                                120
45
         agcattcaca aagggggcaa aggaattctc cgttttctac atcatagctc gtatgtaagc
                                                                                180
         gtaatctctg ttgccttcgc tgttctttag cttgaacgga atcaaaatac ctttgccaac
                                                                                240
         aatgggcatg cataatgtgc ccacagctac tagtgtgtt tccacaagac agatcagggt
                                                                                300
         gcatgaataa tggatcatat ttttctggat cttgaataaa tttacttctg ttttttgata
                                                                                360
         atacagttga tototgaaca aatgotgoca agaccattgo cotgotttoo actttaactt
                                                                                420
50
         cttgctcctc ttgaca
```

55

<210> 103 <211> 944

		•					
	<212> DNA						
	<213> Homo	Sapiens					
		•					
	<400> 103						
_		aggattaaga	gacttatcaa	agatettagg	gctaggtagt	agaaaaacag	60
5						aatatatcaa	120
	atctatttat	cotacataca	taaaggggta	assatcatc	aacacaccaa	tatatattag	180
						actecttttg	240
						actggatact	300
						tgggccacaa	360
						acagacttaa	420
10							
			cttatcaaca				480
						ctggnaataa	540
			naaggactac				600
			nattetnaac				660
	attagaagca	ttntaaagta	atttnggccg	gcccatggct	taccctggaa	ctcggacttt	720
15	ggaggccagt	gggaggactg	ttgaggcnaa	ntttaaaacc	ncnnggcana	ttnngaaanc	780
	tgggcatttt	taaaanngat	nggaactttt	tnececeena	ntanaacaat	nttcennece	840
			gggttttncc			aaacccaaaa	900
	ggtnentttg	ggttncangn	atttnaaatt	nttttngncc	cnaa		944
	<210> 104						
20	<211> 568						
	<212> DNA						
	<213> Homo	Saniens					
	\225- 1101110	Daprens					
	<400> 104						
				~~t~~t~	ttnattann	togataataa	60
25			cagggtgaaa				
			gaagaacata				120
			agacaattct				180
,			ggttgtaagc				240
			tggttcacaa				300
	tggaataaat	accacatgtt	ctcacccata	tatggaagct	gaaaaaaaaa	tgagctcata	360
30	gaagtacaga	gtagaatcta	gaatcatggt	cattagaggt	tgggaagggt	agtgaggaga	420
30			agatacanag				480
	gcttttgnac	catgcncccc	tgantntgnn	caaataattn	agngttnttt	cnaccgctan	540
	aaaaaggatt	ttgaatttcc	cncccnaa				568
•							
3 5	<210> 105						
33	<211> 256						
	<212> DNA						
	<213> Homo	Sapiens					
	<400> 105						
40		cantitatna	ncaggctgga	tanaatacaa	ngathtnann	tnactonaac	60
40			cnattecetg				120
			cggntaattt				180
							240
	_		atggnettga	teteetgaee	regggarrae	ececaceting	256
	gcctcccaaa	gggntg					250
4 5	.010. 107						
	<210> 106						
	<211>						
	<212> DNA				,		
	<213> Homo	Sapiens					
50	<400> 106						
•	taaattttt	tactctctct	acaaggtttt	ttcctagtgt	ccaaagagct	gttcctcttt	60
			aaggggattt			-	120
			aaccagctat				180
	_		ttgctacata				240
<i>55</i>			gtcttagctt				300
			aggggttagt				360
		2~~38-46	-ossscual c	Julia			-

	tcatctttc	369
5	<210> 107 <211>	· ·
10	<400> 107 aatctatcac cctatagaag aactaatgtt agtataagta acatgaaaac attctcctcc gcataagcct gcgtcagatt aaaacactga actgacaatt aacagcccaa tatctacaat caaccaacaa gtcattatta ccctcactgt caacccaaca caggcatgct cataaggaaa	60 120 180
15	ggttaaaaaa agtaaaagga actcggcaaa tcttaccccg cctgtttacc aaaaacatca cctctagcat caccagtatt agaggcaccg cctgcccagt gacacatgtt taacggccgc ggtaccctaa ccgtgcaaag gtagcataat cacttgttcc ttaattaggg acctgtatga atggctccac gagggttcag ctgtctctta cttttaacca gtgaaattga cctgcccgcg aagaggggc ataacacagc aagacgagaa gaccctatgg agctttaatt tattaatgca aacagtacct acaaacccac aggtcctaaa ctaccaaacc tgattaaaaa tttcngttgg ggcgacctcg gagcagaccc accttcgagc agtacatgct aagacttcac cagtcaaagc	240 300 360 420 480 540 600
20	gactactata etcaattgat ccaataactt ggncaacegg aacaagttac cettanggat aacaagegcaa tectatteta gagteetttt aaceataggg gttaccaace tnaatgttgg atcaaggact tnecatggng caaceegntn ttaagggteg ttggttaacg ataaaggeet eeggaactgn gttaaacegg ngtaatecaa	6.60_ 720 780 810
25	<210> 108 <211> <212> DNA <213> Homo Sapiens	010
<i>30</i>	<pre><400> 108 gcattgggt gggggtaagg tgcatctgtt tgaaaagtaa acgataaaat gtggattaaa gtgcccagca cagagcagat cctcaataaa catttcattt</pre>	60 120 180 240
<i>35</i>	<pre><210> 109 <211> 735 <212> DNA <213> Homo Sapiens</pre>	288
40	<pre><400> 109 ctaattacta ccttttattc taatgtgaac catggccctg aaagctgata acaagcttgg ctgagcagag ggaactaggg gtcggcagaa aggattatgg gtggaaaaca ttggctcttc cttggggagt gatgctgggg aaagggaaga gagtggctca gcctgcaggt aaataggcta gaaaagccaa ggccaaaggc tggagggag aggacagtca gcatgtccag cctggggtct gggtgtaggg ttatcccttc tccctgtgcc ttcccatctc gtccatgagc ctaggccttg gagccttgtg ttggaggctg ctgtgatgtc aggaacgggg atctgctagc ttttggccac</pre>	60 120 180 240 300 360
45	ttcctgggac ctcacgccc tgttgacaga tggagattgg gcagcagggc cttgctgcat tggtatctgc tgttccactt ggttgcttg ccaaggtgac gaaagaccag gcaccanggt ctcatgggat gaaggacagg gtgggaagat gggggaaggg ctggggctta agggagcaag aaagcttgta cctgtgtngg gccggcagga tgttaaaaac cgctttgntg ttttaaaatg gggactgggc ccaaatcctg ttgggcacc anncccaaaa nacgggtcct ccanttccaa ggganntttn gggggaaccn naangggctt ttttccagga angccngttt tttnaaacng ganccntggg cattc	420 480 540 600 660 720 735
50	<210> 110 <211> 1002 <212> DNA <213> Homo Sapiens	
55	<400> 110 cgggattccg gtggcaacgt tgctggtgac agcaaaaatg acccaccaat ggaagcagct ggcttcactg ctcaggtgat tatcctgaac catccaggcc aaataagcgc cggctatgcc cctgtattgg attgccacac ggctcacatt gcatgcaagt ttgctgagct gaaggaaaag	60 120 180

```
attgatcgcc gttctggtaa aaagctggaa gatggcccta aattcttgaa gtctggtgat
                                                                                 240
                                                                                 300
          gctgccattg ttgatatggt tcctggcaag cccatgtgtg ttgagagctt ctcagactat
          ccacctttgg gtcgctttgc tgttcgtgat atgagacaga cagttgcggt gggtgtcatc
                                                                                 360
          aaagcaqtgg acaagaaggc tgctggagct ggcaaggtca ccaagtctgc ccagaaagct
                                                                                 420
                                                                                 480
          cagaaggeta aatgaatatt ateeetaata eetggeacee actettaate agtggtggaa
5
          gaacgtctca gaactgttgg ttcaattggn cattaagttt aatagtaaaa gactgggtaa
                                                                                 540
                                                                                 600
          tgatacaatg catcgtaaaa ccttcagaag gaaaggagaa tgtttgtgga ccactttggg
                                                                                 660
          tttccttttt gcgtgngcan ttttaagtat tagnttttaa aacagncttt taatggnaca
          cttgnccnaa aatttgccca aattttggaa ccctttaaaa agttaatggg aaaaaaaaac
                                                                                 720
                                                                                 780
          ggattccggg ggtaccttcc aaaactttta aaaancnggc ccgcattttt tctgaggggt
          aacnngttcc ccataattcc cccngggana agcntntnnc tttngggacc nttttgnanc
                                                                                 840
10
          ccenttttaa ggcccccent tttaacaacc cccccttgc ntggacnnan aaannneggn
                                                                                 900
          tttttatttt tangaacaaa continggit chaancoott ggioncooog ggggginnen
                                                                                 960
          aaaatttttt tccccntttt tnnggggnaa attngggaaa tt
                                                                                1002
          <210>
                 111
          <211>
                 1002
          <212>
                DNA
          <213> Homo Sapiens
          <400>
                 111
          cgggattccg gtggcaacgt tgctggtgac agcaaaaatg acccaccaat ggaagcagct
                                                                                  60
20
         ggcttcactg ctcaggtgat tatcctgaac catccaggcc aaataagcgc cggctatgcc
                                                                                 120
         cctgtattgg attgccacac ggctcacatt gcatgcaagt ttgctgagct gaaggaaaag
                                                                                 180
         attgatcgcc gttctggtaa aaagctggaa gatggcccta aattcttgaa gtctggtgat
                                                                                 240
         gctgccattg ttgatatggt tcctggcaag cccatgtgtg ttgagagctt ctcagactat
                                                                                 300
                                                                                 360
          ccacctttgg gtcgctttgc tgttcgtgat atgagacaga cagttgcggt gggtgtcatc
         aaagcagtgg acaagaaggc tgctggagct ggcaaggtca ccaagtctgc ccagaaagct
                                                                                 420
25
         cagaaggcta aatgaatatt atccctaata cctggcaccc actcttaatc agtggtggaa
                                                                                 480
         gaacgtctca gaactgttgg ttcaattggn cattaagttt aatagtaaaa gactgggtaa
                                                                                 540
         tgatacaatg catcgtaaaa ccttcagaag gaaaggagaa tgtttgtgga ccactttggg
                                                                                 600
                                                                                 660
         tttccttttt gcgtgngcan ttttaagtat tagnttttaa aacagncttt taatggnaca
         cttgnccnaa aatttgccca aattttggaa ccctttaaaa agttaatggg aaaaaaaaac
                                                                                 720
         ggattccggg ggtaccttcc aaaactttta aaaancnggc ccgcattttt tctgaggggt
                                                                                 780
30
         aacnngttcc ccataattcc cccngggana agcntntnnc tttngggacc nttttgnanc
                                                                                 840
         cccnttttaa ggccccccnt tttaacaacc cccccttgc ntggacnnan aaannncggn
                                                                                 900
         tttttatttt tangaacaaa centtnggtt enaaneeett ggteneeeg gggggtnnen
                                                                                 960
         aaaatttttt tccccntttt tnnggggnaa attngggaaa tt
                                                                                1002
         <210>
                 112
35
         <211>
                 925
         <212>
                DNA
         <213> Homo Sapiens
                                                                                  60
40
         getttaatat acgetattgg agetggaatt accgeggetg etggeaceag aettgeeete
         caatggatcc tcgttaaagg atttaaagtg gactcattcc aattacaggg cctcgaaaga
                                                                                 120
                                                                                 180
         gtcctgtatt gttatttttc gtcactacct ccccgggtcg ggagtgggta atttgcgcgc
         ctgctgcctt ccttggatgt ggtagccgtt tctcaggctc cctctccgga atcgaaccct
                                                                                 240
                                                                                 300
         gattecccgt caccegtggt caccatggta ggcacggcga ctaccatcga aagttgatag
                                                                                 360
         ggcagacgtt cgaatgggtc gtcgccgcac ggggggcgtg cgatcggccc gaggttatct
45
         agagtcacca aagccgccgg cgcccgcccc cggccggggc cggagagggg ctgaccggggt
                                                                                 420
                                                                                 480
         tggttttgat ctgataaatg cacgcatccc ccccgcgaag ggggtcaagc gcccgtcggc
         atgtattaac tctagaatta ccacagttat ncaagtagga nangagcgag cgaccaaagg
                                                                                 540
                                                                                 600
         aaccntactg gattaatgag contttocag tttcactgta coggnegtgo nanttaaaca
         tgcattggnt taatctttga gacaagcata tgctantggc anggtttttt tatggnaaag
                                                                                 6.60
                                                                                 720
         atgntttatt ggnggcagta ctacaaggca ttaatattgg tncccaaaaa aaaactcggt
50
                                                                                 780
         nttattaaat antgggentt aanachtaat gaacttgace aacnnttget ggatnnetga
         ntcctcctgg tttttgggaa agnaacccac cactattttt ggcantcttt tcnccacttg
                                                                                 840
                                                                                 900
         aaaanaaggg ggtttntngg nggcttantt cennctttaa nenggaattt tanccetnga
                                                                                 925
         annttgtttt ccgaactttt taaaa
         <210>
                 113
          <211>
                 589
         <212>
                DNA
```

	<213> Homo Sapiens	
5··	<400> 4 aagggaaaga tgaaaaatta taaccaagca taatatagca aggactaacc cctatacctt ctgcataatg_aattaactag_aaataacttt_gcaaggagag_ccaaagctaa_gaccccgaa_accagacgag ctacctaaga acagctaaaa gagcacaccc gtctatgtag caaaatagtg ggaagattta taggtagagg cgacaaacct accgagcctg gtgatagctg gttgtccaag atagaatctt agttcaactt taaatttgcc cacagaaccc tctaaatccc cttgtaaatt taactgttag tccaaagagg aacagctctt tggacactag gaaaaaacct tgtagagaga	60 120 180 240 300 360
10	gtaaaaaatt taccgccgat actgacgggc tccaggagtc gtcgccacca atcccaaggg cgaattccag cacactggcg gncgttacta gtggatccga ctcggtacca agcttgatgc atagcttgag tattctatag tgcacctaaa tagcttggcg taatcatggn catactgttc tgngtgaaaa tggtatccgt nacaatttca cacacatacg agccggagc	420 480 540 589
15	<210> 114 <211> 516 <212> DNA <213> Homo Sapiens	
20	<400> 114 tcaagaggag caagaagtta aagtggaaag cagggcaatg gtcttggcag catttgttca gagatcaact gtattatcaa aaaacagaag taaatttatt caagatccag aaaaatatga tccattattc atgcaccctg atctgtcttg tggaacacac actagtagct gtgggcacat tatgcatgcc cattgttggc aaaggtattt tgattccgtt caagctaaag aacagcgaag gcaacagaga ttacgcttac atacgagcta tgatgtagaa aacggagaat tcctttgccc	60 120 180 240 300
<i>25</i>	cctttgtgaa tgcttgagta atactgntat teetetgetg ettetecaag aaatattttt aacaacaggt taaattttte agaccaacca aatetgaete agtggattag aacaatatet cagcaaataa aageggaatt ceagetgage geeggegeta ceattaceag ttggtetggg geaaaaataa taattacegg geaggeeatg teaagg	360 420 480 516
<i>30</i>	<210> 115 <211> 965 <212> DNA <213> Homo Sapiens	
35	quantification of the state of	60 120 180 240 300 360 420 480
40	gaaaggggag aaagattetg agaaatacag aatetaaaat gggattgnet aagtaatett teatatteat aagttgtagn ettaaataa aaggtteatg tggtantaee aggacatean eetetggtea ttetggetgg ataatataga teteaaatat attaattatt agnegggett taetetggtg ataanaeten naangetaat aetttaagnt ggnatteett tetggtaatg gnacagteee caantaaace nttttgngee anggneeaca ttentaeagg gaagggaaaa aneettttnt tagnteaate etaateaett teeeccaaat ggggannetg enteeaaggn	540 600 660 720 780 840
4 5	ntaanntttt tttngccttn ntttnatngg nggnttaaaa aanccccggn nnggtttngc cttngcccgn aaaanttttt ttttnaaaa anncnngtnt aaaccntttt tttttaaaag gganc	900 960 965
50	<210> 116 <211> 974 <212> DNA <213> Homo Sapiens	
<i>55</i>	<pre><400> 116 gtgttgtgaa tattcaaaat cetetettet agetgtttga aaatatacae taaattattg tgagcaatat teaggetace atgetacaga geaetgaaet tetteetee taacagetgt aaetttgtat etgttacete tgeetattet eeteteetea etaceettee caacetetaa tgaccatgat tetagattet aetetgtaet tetatgaget eattttttt teagetteea</pre>	60 120 180 240

5	atttgtgaac ggcttacaac agaattgctc gttcttccca ccctggagcc gtcaggagat aaaaaaaaa aggctgagtc tgcactccat aananaaaan	cactgcctga ctaaaatttt taggtacctt aatttactct agtcagaaac caagaccatc aattagccgg agggaatcgc ccagcctgct aaacnnaaa tctggggtca	gcaateteee ateteeaaet cacetgtate tetetetgga ctgcageaet ctggceaaea gcaaggtgge ttgaaeeegg gacagagega aaanaaaaaa	tcatteteac etgectetet tacaggeacg taactatte ttgggaggec tggtgaaacc gcatgeetgt gaggtggegg gactatgeet naaaaaccag	cattttaact cctaaacttc aactcacata aactaatagt gaggtggggg ccgtctntac agtcccagct ttgcagtgag caaaaaaaa ttgancgccg	aaaactcaaa atttatgata agacttctac aacaaaatat ctatctttca taatcacaag taaaatccaa actggactac ctgagatcac anamaaaaan gncgntacca agggcgaatt	300 360 420 480 540 600 660 720 780 840 900 960 974
15	<210> 117 <211> 411 <212> DNA <213> Homo <400> 117	_					
20	cagcactttg gccaacatgg aggtggcgca aacccgggag agagcgagac naaaaaanaa	ggaggccgag	tctntactaa cccagctact cagtgagctg aaaaaaaana ancgccggnc	aatccaaaaa ggactacagg agatcactgc naaaaanaan gntaccattc	aaaaaaaat ctgagtcagg actccatcca anaaaanaaa cagggggtct	tageeggea gaategettg geetgetgae acnnaaaaaa ggggteaaaa	60 120 180 240 300 360 411
25	<210> 118 <211> <212> DNA						
30	<213> Homo <400> 118 gaaagatgaa	Sapiens	caagcataat	atagcaagga	ctaaccccta	taccttctgc	60
35	gacgagctac gatttatagg aatcttagtt	aactagaaat ctaagaacag tagaggcgac caactttaaa aagaggaaca	ctaaaagagc aaacctaccg tttgcccaca	acacccgtct agcctggtga gaaccctcta	atgtagcaaa tagctggttg aatccccttg	atagtgggaa tccaagatag taaatttaac	120 180 240 300 360 369
40	<210> 119 <211> 288 <212> DNA <213> Homo	Sapiens					
45	gcaatgtcac taggataaaa tgggtgggaa	gtcttttatt catcagcaag aaaaaaggag atgaaatgtt acttttcaaa	gtcagcttga ggcaccaagg tattgaggat	cactcaagtg gaaagggatg ctgctctgtg	gaagattagg atggggtgag ctgggcactt	gaagaatgac ctggcgagtg	60 120 180 240 288
50	<210> 120 <211> 1028 <212> DNA <213> Homo						
55	gaccttatct	gaagcaggag ccaacaatga gccgcggagc	gcaactgccc	atgctgggcc	ggcgccctgg	ggccccggag	60 120 180

10	gctggccagg ccaccaccge ctacttcctg taccagcage agggccgget ggacaaactg acagtcacct cccagaacct gcagctggag aacctgcga tgaagettee caagceteee aagectgtga gcaagatgeg catggccace ccgctgctga tgeagggget gccatgggag ccctgccag gggcccatge agaatgccae caagtatgge aacatgacag aggaccatgt gatgcacctg_ctccagaatg_ctgacccet_gaaggtgtac_ccgccactga_aggggggctt_cccggagaac ctgagacace ttaagaacae catggagace atagactgga aggtctttga nagctggatg caccatttgg cttctgttga aatgagcang cacttetttg gacaaaaagce cacttgacge ttcancgaag agtcacttgg aacatggaga ccgtctttng gctggtgtga ccaacaggat ctgggccaat neccattgaa acaacanaag cggctttaaa atcttgcggg ccanaaagt ctaantttnt tggttcctta ggcccaanac ttcccaattt tcnacttggn cancgataac atgcnnaagg cctngtggec aaattettt taananggge tagggcccna aanggcaaaa ttnaaaaacc ctnntgaata aaanatttaa naaaggtnan ggttngtntt ggcaaatggat	240 300 360 420
		1020
	<210> 121 <211> 930 <212> DNA <213> Homo Sapiens	-
20		·.
20	<400> 121 cggagttccg ggtatctggg ctccaggcag aagcacagcc tccccgacct gccctacgac tacggcgccc tggaacctca catcaacgcg cagatcatgc agctgcacca cagcaagcac cacgcggcct acgtgaacaa cctgaacgtc accgaggaga agtaccagga ggcgttggcc aagggagatg ttacagccca gatagctctt cagcctgcac tgaagttcaa tggtggtggt catatcaatc atagcatttt ctggacaaac ctcagcccta acggtggtgg agaacccaaa	60 120 180 240 300
<i>25</i>	ggggagttgc tggaagccat caaacgtgac tttggttcct ttgacaagtt taaggagaag ctgacggctg catctgttgg tgtccaaggc tcaggttggg gttggcttgg tttcaataag gaacggggac acttacaaat tgctgcttgt ccaaatcagg atccactgca aggaacaaca ggccttattc cactgctggg gattgatgtg tgggagcacg cttactacct tcagtataaa aatgtcaggc ctgattatct aaaagctatt tggaatgtaa tcaaccggaa ttccgttttt	360 420 480 540 600
30	ttttttetea tttaactttt ttaatggget caaaattetg ngacaaantt ttggcaagtg tttecattaa aaagtntgat ttaaaactaa tacttaaaat tgcncaccon aaaanggaaa accaagtggt cecaaacatt etettettn taaggttaca ngentggtnt attaaceaet ttteetetaac ttaangecat tgaacaacat tttaaacgtt teneengtta aaangggggg nggttngggn aaatnnttac etttgaettt tggnnaantt gggaettenn ttenaaettt tteenggttt naceeeccaa ngnggttte	660 720 780 840 900 930
35	<210> 122 <211> 444 <212> DNA <213> Homo Sapiens	
40	<400> 122 actccggtct gaactcagat cacgtaggac tttaatcgtt gaacaaacga acctttaata gcggctgcac cattgggatg tcctgatcca acatcgaggt cgtaaaccct attgttgata tggactctag aataggattg cgctgttatc cctagggtaa cttgttccgt tggtcaagtt	60 120 180
45	attggatcaa ttgagtatag tagttcgctt tgactggtga agtcttagca tgtactgctc ggaggttggg ttctgctccg aggtcgccc aaccgaaatt tttaatgcag gtttggtagt ttaggacctg tgggtttgtt aggtactgtt tgcattaata aattaaagct ccatagggtc ttctcgtctt gctgtgtcat gcccgctctt cacggcaggt caatttcact ggttaaaagt aagagacagc tgaacctcg tgga	240 300 360 420 444
50	<210> 123 <211> 767 <212> DNA <213> Homo Sapiens	
55	<400> 123 cattttcgtt ggtggtgttc agttgtggcg gttgctggtc agtaacagcc aagatgctgc ggaatctgct ggctcttcgt cagattgggc agaggacgat aagcactgct tcccgcaggc attttaaaaa taaagttccg gagaagcaaa aactgttcca ggaggatgat gaaattccac tgtatctaaa gggtggggta gctgatgcc tcctgtatag agccaccatg attcttacag	60 120 180 240

```
ttggtggaac agcatatgcc atatatgagc tggctgtggc ttcatttccc aagaagcagg
                                                                                  300
          agtgacttca gtcatcccag caatcgcttg gttcagtttc attcagctct ctatggacca
                                                                                  360
          gtaatctgat aaataaccga gctcttcttt ggggatcaat atttattgac ttgtagtaac
                                                                                  420
          tgccaccaat aaagcagtct ttaccataaa aaaaaacctg ccagtagcat atgcttgnct
                                                                                  480
          caaagattaa gccatgcatg tctaagtacg cacggccggt acagtgaaac tgcgaatggc
                                                                                  540
5
          tcattaaatc agntattggg tcctttggtc gctngctcct ctcctacttg gatactgngg
                                                                                  600
          taattctaaa ctaatacatg ccgacgggcg cttacccctt ngcggggggg atcctgcatt
                                                                                  660
                                                                                  720
          tatanatcaa accaaccegg naagcetttt eggeeeggee gggggeggee neeggngntt
          ttggngactt taanaacctt nggcccaang accccccnn gggggga
                                                                                  767
10
          <210>
                 124
                 378
          <211>
          <212>
                 DNA
          <213> Homo Sapiens
15
          <400> 124
                                                                                   60
          tttttactct ctctacaagg ttttttccta gtgtccaaag agetgttcct ctttggacta
                                                                                  120
          acagttaaat ttacaagggg atttagaggg ttctgtgggc aaatttaaag ttgaactaag
          attctatctt ggacaaccag_ctatcaccag_gctcggtagg_tttgtcgcct_ctacctataa-
                                                                                  180.
                                                                                  240
          atcttcccac tattttgcta catagacggg tgtgctcttt tagctgttct taggtagctc
          gtctggtttc gggggtctta gctttggctc tccttgcaaa gttatttcta gttaattcat
                                                                                  300
          tatgcagaag gtataggggt tagtccttgc tatattatgc ttggttataa tttttcatct
20
                                                                                  360
                                                                                  378
          ttcccttgcc gaaattcc
          <210> 125
          <211>
                 604
          <212> DNA
25
          <213> Homo Sapiens
          <400> 125
          atgtaagtaa gtgtattatg gccagttaag gtaggcacta taaaaatagg ccgaaaagtt
                                                                                   60
          tagaatatte etttttaet gtagtetgtt tettaaaatt tgaaacttgt tagagagttt
                                                                                  120
                                                                                  180
          ggaaaacagt cttcttcctc ccactccact tcctgccaaa aaagagggga agcacaatgg
30
          tetteaaaaa aggtgataaa gtaaatgeat attataaaat attttaaaet tttgtgtgtg
                                                                                  240
                                                                                  300
          tggtttcacg tacaggaaat gaacatgcaa attcttagaa actgttgtca ctgtgtttct
          gaaatgctaa aaaaaattat gctttgagct acctgctgct tataattcct ttccctgaat
                                                                                  360
          aggtaggttt ttatagttaa caaattttaa atgtaagttg attttgatag tagtatttca
                                                                                  420
          ttatgcaatc tggagaggag agaagtgttt ttcataaagt ggatattaat tacaactttn
                                                                                  480
          aaaagccaat cagtaaacat tcattgatct tgnaataact gngaccctaa ttaaaagggt
                                                                                  540
35
                                                                                  591
          gctaggcttg tatgcttgga aatatttgaa atttttattn ttaaaactgg g
          <210> 126
          <211>
          <212> DNA
40
          <213> Homo Sapiens
          <400> 126
          cagattttaa agaataaaaa aatttcaaat attttccaga cataacagcc tagcaaccat
                                                                                  60
          tttaattagg tgtcacagtt aattacaaga tcaatgaatg tttactgatt ggcnttttaa
                                                                                  120
          agttgtaatt aatatccact ttatgaaaaa cactctctcc tctccagatt gcataatgaa
                                                                                  180
45
          atactactat caaaatcaac tacatttaaa atttgttaac tataaaaacc tacctattca
                                                                                  240
          gggaaaggaa ttataagcag caggtagctc aaagcataat tttttttagc atttcagaaa
                                                                                  300
                                                                                  360
          Cacagtgaca acagtticta agaattigca tgttcattic cigtacgiga aaccacacac
          acaaaagttt aaaatatttt ataatatgca tttactttat cacctttttt gaagaccatt
                                                                                  420
          gngcttnccc tcttttttgg ccaggaagtg ggagtgggag gaagaanact gttttccaac
                                                                                  480
          tcttaacagg ttcaaatttt aaaaaacaga ctacngtaaa aanggatatt ctaaactttc
                                                                                  540
50
          ggnctatttt ataggcctac ctaactggcc taatccttac tacatnggat tccnctganc
                                                                                  600
                                                                                  604
          gccg
          <210>
                 127
55
          <211>
                 860
          <212>
                 DNA
```

```
<213> Homo Sapiens
          <400> 127
          agaatctggt gacttcagtt gagcccccag cagaggtgac tccatcagag agcagtgaga
                                                                                  60
          gcatetecet_egtgacacag_ategeeaace-eggeeactge-acetgaggea-egagtgetae--
                                                                                 120-
          ccaaggacct gtcccaaaag ctgctagagg catccttgga ggaacagggc ctggctgtgg
                                                                                 180
          atgtgggtga gactggaccc tcacccccta ttcactccaa gcccctaacg cctgctggcc
                                                                                 240
          acaceggegg cecagageee aggeeteeag eeagagtaga gaetetgagg gaggaggege
                                                                                 300
          ccacagactt acgggtgttt gagctgaact cggatagtgg gaagtctaca cccttcaaca
                                                                                 360
          atggaaagaa aggctcaagc acggacatta atgaggactg ggaaaaagac tttgacttgg
                                                                                 420
10
          acatgactga anaggaagtg canatggcac tttccaagtg gatgcctncn gggagctnga
                                                                                 480
          aaattaaaat gggaagactg ggaatgaggg accnnaagga gcanttcccc cccatgggat
                                                                                 540
          nttttgcttc ctnctngntt aanccancct ggatgaatga aaatgttccc caaattcttt
                                                                                 600
          gcaaccaaac tttggcacaa atttgggggt ncttgttggc cttttggnct ttgttnaccn
                                                                                 660
          ggaagggttt tantccggcc aaaattttat ttgccncatt ggngacccng gggaggaact
                                                                                 720
          ntetetneen aaaaeggttt tininaacen tittettang atnittitgaa eenaggaatt
                                                                                 780
          tneetttetg tnaaaaaana accenntttt nngaanngna antnttnntt ttnnnggggg
                                                                                 840
          gggnnccctc cttgtaaaag
                                                                                 860
          <210>
                127
          <211>
                899
          <212>
                DNA
20
          <213> Homo Sapiens
         <400> 127
         aaaggaagga ggtgggtcag ggtttggtct ctggattctg aaccccaaag gagcctttcc
                                                                                  60
         aggaatggaa aatgcctggg agggggagag tcccaagaga ggcaaatttc ccagagataa
                                                                                 120
         gtgcctctta cccactggga taggaaccaa aatgtgttca ctgtccctgt ttagccaagg
                                                                                 180
25
         gtaggtggca tggccctccc tgcctgctta tgtatggaca gagtatgttg tctcagcttc
                                                                                 240
         ctccgagaga gactggtggt ttagcttctg tctacacagg cagaagggct agaactatcc
                                                                                 300
         cttgggactt tccagcagga gtcctcanga acagtgggtg ttcancagaa aaacacangc
                                                                                 360
         tettetggtg aggaggatag gttteetett eettgggtea teetattgtt ggeacaagte
                                                                                 420
         aaagtttttg geegggattt anaaageeee tteeaggtgt gageanaage eeaaaangge
                                                                                 480
         cancagggaa ccccaaattg tcccaaactt ttgttgcaaa aganatttgg gggaacattn
                                                                                 540
30
         tcantcattc aggctggctt anacaaccan ggangcaaaa atgccttggt gggggagntg
                                                                                 600
         ttcctttggn ttccttattc cannncttcc attttaattt tnaacttccc ggagnatccc
                                                                                 660
         ttttgnaagn centttenee tettttnate atttneaann aaannttttt ceancetact
                                                                                 720
         ntntccggct taaccttttt tnttnttggn gggggnnatt ccctttcnnt tanttaaaaa
                                                                                 780
         ecenanttnn ggecenenee teaanttttt ttnttaacet nnntttgnee centgneena
                                                                                 840
         nentnggetn gataaatngg gngggnnatt tneceatnen acannetntt ttannattt
35
         <210>
                128
         <211>
                552
         <212> DNA
         <213> Homo Sapiens
40
         <400> 128
         atcccaggaa aatttggagg aacagctgct ctccactggc ctgctcctgc aagaatgccc
                                                                                 60
         tggagcttct gaagaaggat ctatatttac cttatagggc cttaagtcct gggatggaac
                                                                                120
         tatatacttt ggccgcgatg atgtggcttt gaagaacttt gccaaatact ttcttcacca
                                                                                180
45
         atctcatgag gagagggaac atgctgagaa actgatgaag ctgcagaacc aacgaggtgg
                                                                                240
         ccgaatcttc cttcaggata tcaagaaacc agactgtgat tgactgngag agccgggctg
                                                                                300
         aatgcaatgg agtgtgcatt accatttngg aaaaaaaatg tgaatcantc acttactggg
                                                                                360
         acctgnacaa ctngccaact gacaaaaatg acncccattt gtgtgacttt attngananc
                                                                                420
         attacctgga atganccggt gaaaaaccct tnaaagaant ttgngtgacc acatttcnca
                                                                                480
         aaattncaca nnaatngnan gccccccgna tatggcttgn ataggaatan tcntttntga
                                                                                540
50
         caagcacacc ct
                                                                                552
         <210>
                129
         <211>
                401
         <212> DNA
         <213> Homo Sapiens
         <400> 129
```

```
agaaattgaa acctggcgca atagatatag taccgcaagg gaaagatgaa aaattataac
                                                                                  60
         caagcataat atagcaagga ctaaccccta taccttctgc ataatgaatt aactagaaat
                                                                                 120
         aactttgcaa ggagagccaa agctaagacc cccgaaacca gacgagctac ctaagaacag
                                                                                 180
         ctaagagagc acacccgtct atgtagcaaa atagtgggaa gatttatagg tagaggcgac
                                                                                 240
         aaacctaccg-agcctggtga tagctggttg-tccaagatag aatcttagtt caactttaaa-
                                                                                 3.00-
5
         tttgcccaca gaaccctcta aatccccttg taaatttaac tgttaagtcc aaagaggaac
                                                                                 360
                                                                                 401
         agetetttgg acactaggaa aaaacettgt agagaagaag t
         <210>
                130
         <211>
                412
         <212>
                DNA
10
         <213> Homo Sapiens
         <400>
                130
         gttaaatttt ttactctctc tacaaggttt tttcctagtg tccaaagagc tgttcctctt
                                                                                  60
         tggactaaca gttaaattta caaggggatt tagagggttc tgtgggcaaa tttaaagttg
                                                                                 120
         aactaagatt ctatcttgga caaccagcta tcaccaggct cggtaggttt gtcgcctcta
                                                                                 1.80
15
         cctataaatc ttcccactat tttgctacat agacgggtgt gctctcttag ctgttcttag
                                                                                 240
         gtagetegte tggttteggg ggtettaget ttggetetee ttgcaaagtt atttctagtt
                                                                                 300
         aattcattat gcagaaggta taggggttaa gtccttgcta tattatgctt gggntataat
                                                                                 360
         ttttcatctt tcccttgcgg nactatatct attgcgccag gtttcaattt ct
                                                                                 412
20
         <210>
                131
         <211>
                497
         <212>
                DNA
         <213> Homo Sapiens
25
         <400> 131
         caaacccact ccaccttact accagacaac cttagccaaa ccatttaccc aaataaagta
                                                                                  60
                                                                                 120
         taggcgatag aaattgaaac ctggcgcaat agatatagta ccgcaaggga aagatgaaaa
         attatagcca agcataatat agcaaggact aacccctata cettetgcat aatgaattaa
                                                                                 180
         ctagaaataa ctttgcaagg agagccaaag ctaagacccc cgaaaccaga cgagctacct
                                                                                 240
         aagaacagct aaaagagcac acccgtctat gtagcaaaat agtgggaaga titataggta
                                                                                 300
30
         gaggcgacaa acctaccgag cctggtgata gctggttgtc caagatagaa tcttagttca
                                                                                 360
                                                                                 420
         actttaaatt tgcccacaga accctctaaa tccccttgta aatttaactg ttagtccaaa
         gaggaacagc tctttggaca ctaggaaaaa accttgtaga gagagtaaaa aattaacacc
                                                                                 480
                                                                                 497
         catagtaggc ctaaaag
         <210>
                132
35
         <211>
                841
         <212>
               DNA
         <213> Homo Sapiens
         <400> 132
         agatcgttat gcccgagttc cggtacagga acgtcggtca tccagatgcc ctcttccgct
                                                                                  60
40
         ttcagtttgg ataacgcttt catctcacat cctcaggcga taacgcccag ttgtttacca
                                                                                 120
                                                                                 180
         atacgcgtaa atgcttctac tgcacgcgta atttgctcag gggtatgcgc cgcagacatc
         tgggtacgaa tacgcgcctg acctttcgga acgaccggat agaagaaacc ggtaacgtaa
                                                                                 240
                                                                                 300
         atgecetett tttgcagete aegggeaaat ttetgegeea etaeegeate accaageatg
                                                                                 360
         accggaataa tggcgtgatc ggttccgcag ggtaaagccc gccgncgaca tttgctcacg
                                                                                 420
         gaactgacgc gcgttcgcca cagacggtca cgcagttcgc tgcccgcttc gaccatcttc
45
                                                                                 480
         agtactttga tggacgccgn aacaatggnc ggtgccagcg aatttggaga acangtacng
         accaanaacc ttggcgcaag ccactcaanc actttttttg cgcgcccgcg gnataacccc
                                                                                 540.
                                                                                 600
         ccagaagccc cggnccaang cttttaccaa gcgtacccgg ngataatatt tgaacccggg
         ccattaanat tgcaannttt attgggaacc ncgaacattt ttaaccgnca aaaaccaacc
                                                                                 660
                                                                                 720
         continggaaa thitingcone caatteecan gggggaaatt tingnaaatt entinaaact
         ggggggccgt ttaacatgcc ttttaanggg cccaattnnc ccnttanggg gcgnttacaa
                                                                                 780
50
                                                                                 840
         atnactnggc cggnnttttn aaacnnnnga atngggnaaa cccgggggtt cccaacttaa
                                                                                 841
         <210>
                 133
         <211>
                 700
55
         <212>
                DNA
         <213> Homo Sapiens
```

	<400> 133						
		oto#ttotoo		~++	+++a++++*	5t5tt555tq	60
		atagttataa		-	_		120
						caattgggta	18.0
5						gtacattatt	240
		aattttaatt	-			_	
		ttggtagtgc					300
	-	ccacagtcaa	_			_	360
	_	cttataatat	_	_			420
•		agatgtttt					480
10	_	agtaaatatg		_			540
		ttaagnttaa					600
		ntccagcaga			cttcaagtcc	ccttctggac	660
	caaaaaggtn	accaccaang	angggaggaa	tnaaggggaa			700
			•				
	<210> 134			•			
15	<211> 221						
	<212> DNA						
	<213> Homo	Sapiens					
	<400> 134						
00		neeggnegtt					60
20		tntnangggc	_			-	120
		agggccnant				ntggccgtng	180
	tttnanaacg	tegnnantgg	naaaaccntg	gngttaccca	а		221
			4				
	<210> 135						
25	<211> 956					•	
23	<212> DNA	<u> </u>					
	<213> Homo	Sapiens					
	-400> 135						
	<400> 135						60
		aaaaaatgtt	_			-,	60
30	_	acaatccgtg		•		-,	120
		aaggtggtat				_	180
		cccctacct					240 300
		tatgtgtaac					360
	-	atctgtattg	_	-			420
		cctaaattaa	_		_		480
35			-				540
	_	aaatataaag gnacataata	-				600
	-	ctggttaata	_				660
		gcaatgacaa					720
		ccataatgna					780
	_	ggggncccaa				-	840
40	-	nttcnttnaa					900
		ggaattcnat					956
	ccacnaaggg	ggaaccatac	caacccgng	gooncaccan	caacggggcg	39999-	,,,,
	<210> 136						
45	<211> 325						
	<212> DNA						
	<213> Homo	Sapiens					
		-					
	<400> 136						
		tgggggtnnt	tacanngtna	tgatgattaa	tnaccattct	gnccaacatq	60
50		gtntctacta	-			_	120
		cccagctact					180
	gtggcggttg	cagnganctg	agatcactgc	actenateca	gnctgctgac	anatchagac	240
		aaaanggggt					300
	gnnaaaaccc	ccntgatggc	cgttc				325
<i>55</i>	<210> 137						
	<211> 234						

```
<212> DNA
         <213> Homo Sapiens
         ccnannctga_cgggntcnan_nantngnccc_cnccaatccc_angggcaaat_tccancnnnc_____60__
5
         tggnggccgt tactagggga ncenanctng gnnccaannt tganncanan ntngngtntt
         nnanaggggc nccnaaanan ntnggngnaa ncanggncan anctgttncc tggggaaaat
                                                                                   180
         tgtnntccnn tnanaattcc ncncaannta cnacceggaa ncntaaaggg taaa
                                                                                   234
         <210>
                 138
         <211>
10
          <212>
                DNA
          <213> Homo Sapiens
         ggttcccatg aatactgcga tgtgatgggc cgggtcgata ttatcaccgg tacgcttggt
         aaagcgctgg geggggcttc tggtggttat accgcggcgc gcaaagaagt ggttgagtgg
                                                                                   120
                                                                                   180
         ctgcgccagc gttctcgtcc gtacctgttc tccaactcgc tggcaccggc cattgttgcc
                                                                                   240
         gegtecatea aagtactgga gatggtegaa gegggeageg aactgegtga eegtetgtgg
         gcgaacgcgc gtcagttccg tgagcaaatg tcggcggcgg gctttaccct ggcgggagcc gatcacgcca ttattccggt catgcttggt gatgcggtag tggcgcagaa atttgcccgt
                                                                                   300
                                                                                   360
         gagctgcaaa aagagggcat ttacgttacc ggtttcttct atccggtcgt tccgaaaggt
                                                                                   420
                                                                                   480
20
         caggoggta ttogtacca gatgtotgcg gogcatacco otgacaaatt acgogtgcag
         tagaagcatt tacgcgtatt ggtaaacaac tgggccgtta tcgcctgagg atgtgagatg
                                                                                   540
         aaagcgttat ccaaactgaa aagcggaaga ggcattttgg atgaccgacg ttctgtaccg
                                                                                   600
         gaactcggca taacgaatct ggttgattaa aagtccgtaa acagccattn tgcgggaatg
                                                                                   660
         acgttcacat ttataactgg ggataagtct ngcnccaatn ccaagg
                                                                                   706
25
         <210> 139
         <211>
         <212>
                DNA
         <213> Homo Sapiens
         <400>
                139
30
                                                                                    60
         coggoodto togoodgoog ogooggggag gtggagcacg agogoacgtg ttaggaccog
                                                                                   120
         aaagatggtg aactatgcct gggcagggcg aagccagagg aaactctggt ggaggtccgt
         ageggtectg acgtgcaaat eggtegteeg acetgggtat aggggcgaaa gactaatega
                                                                                   180
         accatctagt agetggttcc ctccgaagtt tccctcagga tagctggcgc tctcgcagac
                                                                                   240
         ccgacgcacc cccgccacgc agttttatcc ggtaaagcga atgattagag gtcttggggc
                                                                                   300
                                                                                   360
         cgaaacgatc tcaacctatt ctcaaacttt aaatgggtaa agaagcccgg ctcgctggcg
35
         tggagccggc gtggaatgcn antgcctaat gggccacttt tggtaagcan aactggcgct
                                                                                   420
         tggggatgaa ccgaacgccg ggttaagggg cccgatgccg acctcat
                                                                                   467
         <210>
                 140
         <211>
                 540
         <212>
                DNA
40
         <213> Homo Sapiens
         <400> 140
                                                                                    60
         aaggaatcgt atcgtatgtc cgctatccag aacctccact ctttcgaccc ctttgctgat
                                                                                   120
         gcaagtaagg gtgatgacct gcttcctgct ggcactgagg attatatcca tataagaatt
                                                                                   180
         caacagagaa acggcaggaa gaccettact actgtccaag ggatcgctga tgattacgat
45
         aaaaagaaac tagtgaaggc gtttaagaaa aagtttgcct gcaatggtac tgtaattgag
                                                                                   240
         catccggaat atggagaagt aattcagcta cagggtgacc aacgcaagaa catatgccag
                                                                                   300
                                                                                   360
         ttcctcgtag agattggact ggctaaggac gatcagctga aggttcatgg gttttaagtg
         cttgtggctc actgaagett aagtgaggat ttccttgcaa tgagtagaat ttcccttctc
                                                                                   420
                                                                                   480
         tecettgtea caggittaaa aacetecage tigtataatg taaccattig gggteceget
         tttacttgga ctantgtaac tccttcgtgc cataaactga aacagccatg ctgctatctt
                                                                                   540
50
          <210>
                 141
          <211>
                 513
          <212> DNA
          <213> Homo Sapiens
55
```

	<400> 141						
	ctgaaaacaa g	ottttattta	aataagggtt	taaatacatt	acacataaca	ttasaactcs	60
	aggggaaaaa						120
	attaagttgc a						180
_	cttgtcaaaa g						240
.5	ttagctagga t						300
	gctagcggta a						360
	gatctaccac (420
	ctccttttaa a						480
	ttgnaaangg a				occocungg	canggaaccc	513
10		3555	-325-	5			243
10							
	<210> 142						
	<211> 533						
	<212> DNA						
	<213> Homo 9	Sapiens	•				
15		-					
	<400> 142						
	gtggagtctg a	acttagcaag	cctcgggtgg	gtttgagggt	caaatttcta	ccaggcttat	60
	atccctggtg a						120
	ttacttatcc c						180
	gatcagtggt c						240
20	cagatttaga g						300
	catatactaa a						360
	aanatagtga t						420
	ctaaggngan a	actccttga	actcctaagg	ccnggaattc	aagaccacct	ggataacata	480
	ncaagacccc t	tctntccna	aaaccaaacc	caaccaanca	nnantgaaan	ggg	533
05		·					
25							
	<210> 143					*	
	<211> 885						
	<212> DNA						
	<213> Homo S	apiens		•			
30	<400> 143						
	cttgggattg g	taacaacaa	ataataasaa	anat anat at	aaaaaaaabt	~~~~~	50
	gctgttcacc t	togacyacya	actacagate	tagatagaa	cggcggaatt	ecggecagag	60 120
	teteceegg a	ttttcagg	accaacaaca	actracras	caccaccaa	acctacaccc	180
	tttccaagac a	cagacccct	ctctcaaaac	gaacccattc	caccaccaga	taccettese	240
	aaagaaaaga g	aactctccc	caaaactccc	accaacttet	ccaagatcaa	tcacattacc	300
<i>3</i> 5	geactggacg c	ctegeggeg	cccatctccg	ccactccooa	ttcggggatc	tgaacccgac	360
	tecetttega te	cggccgagg	gcaacggagg	ccatcaccca	tecettegga	acagcactca	420
	cccatctctt a	ggaccgact	gacccatgtt	caactgctgg	ttcacatgga	accettette	480
	acttcggcct to	caaaagttt '	tcgtttgaat	atttgctact	accaccaaga	tctgnacctg	540
	cgggggttcc a	cccgggccc (gcgccctang	ctttaaaggt	tnaccgnaac	gggccttcta	600
40	cttntcgcgg n	gtaacgtcc (cengggette	cggggcgggg	agcgcggaat	ttcaactgac	660
	gccggtcgca c	cattaccaa 1	ntggtctggn	ggcaaaaata	anataaccgg	gcaggcctgt	720
	naacccaatt c	aacaaatgg (gggccgtnct	atggatccca	actcggncca	acttgancat	780
•	anttgngntt t					cttgnggaat	840
	ggtntcgttc a	atncccaan	aacaaccgaa	ctaaagngaa	accgg		885
4-	Z210> 144						
45	<210> 144 <211>						
	<211>						
	<213> Homo Sa	enione					
	-513> HOMO S	abrens					
	<400> 144						
50	gccgaggatg g	ccatcataa 4	caccacasa	cctcatccta	ctactctccc	aaaaaataaa	60
30	cctgacccag a	cctagacea (reteceacte	catgaggtat	tteteeset	gggudettgge	120
	accedacede di	dddgacccc (acttcatege	catacactec	atagacaaca	cacaattcat	180
	gtggttcgac ag	dcdacacca (cdadccadad	gatggagggg	Sagacaccat -	agatagace	240
	ggaggggccg g	agtattaga a	acgaggagac	agggaaagtg	aaggcccact	cacagactos	300
	ccgagagaac c	tgcggatca	cgctccgcta	ctacaaccao	adcasaacca	atteteacae	360
<i>55</i>	cctccagatg a	cgtttggct o	gcgacgtgga	gteggaegga	cgcttcctcc	gegggtacca	420
	ccagtaccct a						480

	ggnggacatg	gcggttaana	taacaaacgc	aagtgggang	cgggccatgn	ggg	533
	.040 445						
5	<210> 145 <211> 116-						
	<212> DNA <213> Homo					•	
	<400> 145						
	gatgattggg	gagggagcac	aggtcagcgt	gggaagaggg	tcatggtgga	catgggggtg	60
. 10		aanacaaygt	anagcangan	atacttttct	caccinitica	cgctga	116
	<210> 146 <211> 567						
	<212> DNA <213> Homo	Sapiens					
15	<400> 146	•					
	cttcaacaag			ggaatttgag			60
				gcccgtcttc tgtgtcttcc			120 180
				tagggctggc			240
20		-		gttgtctaca			300
				atcagccagg			360
				aggcctctct tggttctaag			420 480
				ttaattaatt			540
		atttattcaa				333	567
25							
	<210> 147						
	<211> <212> DNA						
	<213> Homo	Sapiens					
30	.400- 147	-					
	<400> 147	tatttcasaa	ccattgaaca	gtatgatatt	tactcattta	taaatattcc	60
			_	agtcttaatt	-		120
				tagctattaa			180
	_			ttagaccaat	-		240
35				tcanaatgtg			300
				gtcaggcggc gattggccct			360 420
				ccctaaggca			480
	cacaggaaga						492
40	<210> 148					,	
	<211> 567		•				
	<212> DNA <213> Homo	Comiona					
	<213> HOMO	Sapiens					
	<400> 148						
45				ccccatcacg			60 120
				tattgctcaa			180
				accgctcggg			240
				ccagacaaat			300
50		_		agagctatca	-		360
50				ttgcgccact			420 480
				gggggtggac aaaaaaaatg			540
	7.	tttggttctt			23-2		567
<i>55</i>	<210> 149						
	<211> 512						

```
<212> DNA
          <213> Homo Sapiens
          <400> 149
         gaaagtttag aaactttaaa acaataataa tgacggtgat agtgataata attgctaatg ctttcagatc acatatgtgt taggcgctgt tttttgttgt tgttgttatt gttgagacag
                                                                                    60 ___
5
                                                                                   120
          tctcactctg ttggccaggc tggagtgcag tggtgctttg cctcctgggt tcaagggatt
                                                                                   180
         ctcctgcctc agcctcctga gtagctggga ttacaggcat gcgccaccac gtcgggctaa
                                                                                   240
         tttttgcatt tttagtggag acggggtttc atcatgttgg ccaggctggt ctcgaactca
                                                                                   300
         cgacgtcaag tgatecacct gcctcggcct cccaaagtgt tgggattaca ggcgtgagcc
                                                                                   360
         accatgocca gocagoactg tottaaatgo tttacatata ttatotoatt taatootcaa
                                                                                   420
10
         aataccttac aatatagata ctactattat ttccatttat attaatggca nctctgaggc
                                                                                   480
         tcaaacgatg aactacttgc tgggttacat ga
                                                                                   512
         <210>
                 150
         <211>
                 572
         <212>
                 DNA
15
         <213> Homo Sapiens
         <400> 150
         cccaaaaatt acccaaagaa gaagatggaa aagcgatttg tcttcaacaa gatagaaatc 60 60
         aataacaage tygaatttga gtetgeecag tteeccaact ggtacateag caceteteaa
                                                                                   120
20
         gcagaaaaca tgcccgtctt cctgggaggg accaaaggcg gccaggatat aactgacttc
                                                                                   180
         accatgcaat ttgtgtcttc ctaaagagag ctgtacccag agagtcctgt gctgaatgtg
                                                                                  240
         gactcaatcc ctagggctgg cagaaaggga acagaaaggt ttttgagtac ggctatagcc
                                                                                   300
         tggactttcc tgttgtccac accaatgccc aactgcctgc cttaggggta gtgctaagag
                                                                                  360
         gatctcctgt ccatcagcca ggacagtcag ctctctctt tcagggccaa tccccagccc
                                                                                   420
         ttttgttgag ccaggcctct ctcacctctc ctactcactt aaagcccgct gacagaaacc
                                                                                   480
25
         acggccacat ttggttctaa gaaaccctct gtcattcgct cccacattct gatgagcaac
                                                                                  540
         cgttccctat ttaattattt attggtngtt gg
                                                                                  572
         <210>
                151
         <211>
         <212>
                DNA
30
         <213> Homo Sapiens
         <400> 151
         gagngaagtt tatttcaaaa ccattgaaca gtatgatatt tgctcattta taaatattcc
                                                                                   60
         catttaaata atctgagctt atatattttc agtcttaatt aaaggacttg atttaaagag
                                                                                  120
         agcacaccag tccaaattga attgattcca tagctattaa aaactaggct cttttacaga
                                                                                  180
35
         cactgctact tettgccccc tttgaataaa ttagaccaat gaataaaaca aacaaacaaa
                                                                                  240
         taaataaata aatagggaag cggttgctca tcanaatgtg ggagcgaatg acanagggtt
                                                                                  300
         tottanaacc aaatgtggcc cgtggtttct gtcaggcggc tttaagtgan taggaaaggt
                                                                                  360
         gaaagaggcc tgctcaacaa aagggctggg gattgccctg aaagganana gctgactgqc
                                                                                  420
         ctgctgatgg acaggaaacc tttacactac cctaagcngc antggccatt ggtgnggaca
                                                                                  480
         caggaaag
                                                                                 488
40
         <210>
                152
                488
         <211>
         <212>
                DNA
         <213> Homo Sapiens
45
         <400> 152
         gagngaagtt tatttcaaaa ccattgaaca gtatgatatt tgctcattta taaatattcc
         catttaaata atctgagctt atatattttc agtcttaatt aaaggacttg atttaaagag
                                                                                  120
         agcacaccag tccaaattga attgattcca tagctattaa aaactaggct cttttacaga
                                                                                  180
         cactgctact tettgcccc tttgaataaa ttagaccaat gaataaaaca aacaaacaaa
                                                                                  240
50
         taaataaata aatagggaag cggttgctca tcanaatgtg ggagcgaatg acanagggtt
                                                                                  300
         tcttanaacc aaatgtggcc cgtggtttct gtcaggcggc tttaagtgan taggaaaggt
                                                                                  360
         gaaagaggee tgetcaacaa aagggetggg gattgeeetg aaagganana getgaetgge
                                                                                  420
         ctgctgatgg acaggaaacc tttacactac cctaagcngc antggccatt ggtgnggaca
                                                                                  480
         caggaaag
                                                                                  488
55
         <210>
                153
```

<211>

	<212> DNA <213> Homo Sapiens	
5	<400> 153 gattccaacc -ttcacagata actgagtctt gatttgactt -caagacttca gtggaggaag taactacaaa tgtggtagaa atagctagat aactagaagt ggtggagcct gaagatctga ctgaattgct gcagtctcat gattaaactt gaacagatga ggatttgctt catatgggtg gatacagaaa gtggtttctt gagatgaaat ctactgctgg cagagatgct gtgaacatcg	60 120 180 240
10	ttgaaatgac aacaaaggac ttcgaatatc agtaaaatca gttgataaaa ccaaagcagg gtttgagagg atgcactccc aattttgaaa gaagttcttg tgtgggtgaa cgctatcata ccaaacagca tcgcaagcta cagataaatc tttcgtgata gagtcaattg acgtgacaaa cttcattggt ggcattttaa ggcattgcca cagtcacccc aaaacecgca gcagccatca acaacnggca agaccctnca caacaaaaag atga	300 360 420 480 514
15	<210> 154 <211> 531 <212> DNA <213> Homo Sapiens	
20	gtcgttttcc agtttttctt tattacttat ttcattcacc ataattccaa attttaatga ccatatcttt cctaaaatat ctacataaaa atcttgatta tttaagagta aaaagttggt ttctcctta gctacttctg acctcttcaa taaattgtgc ctgatgctgc ctcctttcct tccaaccact cacattagaa tccttttagt caaagtagtc ttaaggctgca gttgtttgca ggatgtgatc atcctcaata ccatattatt tcagagtagc ttaaggtcacc attcctaggc aatttcatag taaaaaaatt atctaggaa ttcctggacc tatagatatt tccaagatca ttatttaaaa actcttttt aaataaaaaa aaattgctaa tgnaccatgc tgggaaattt ttatttaaaa aatagaacta aactcttgag cttcaataat gctggcagat agattctcan ggccttctac tggcctcaag gaaatgatgg cncccctcag tttgggaaag g	60 120 180 240 300 360 420 480 531
30	<210> 155 <211> 539 <212> DNA <213> Homo Sapiens	
35	<400> 155 tttgtattat aggaacctat tttgaagctc ttagagctga gagttaagtg gtctttaat ggaactgcta agacaaggta gagtaggaga tacttttctt ccctcttat gctgaagtgt tttagtgtt ctgtctgtga ctaggcagta actttgaaag ggataagata gggttaataa catactact aaaacttgga aaatatacta tattttctga gataaaaatc tttggattga aaattacttt ctggtggaat atggcaaact gacattcatt caatgtaaga cttttttcc ctcactttt gtgtttcat ctgtagttt tttttttctt ttttacctgt ggtaccattt ttaaggtgaa tcaggccagt ttcancaaaa aatggntgta ctggtcata cttcagtaga aggtaggatg acttcgatga nggtgngctc agtaacttct ctggtgctga attagggcct gggacaaana aggatccat cttacaaata atgacaangg agactacnga accegggag	60 120 180 240 300 360 420 480 539
45	<210> 156 <211> 562 <212> DNA <213> Homo Sapiens	
<i>50</i>	<pre><400> 156 cggaatccgt tttaagatgg agtgtcattc tgtcacccag gttggagtgc agtggcgtga tcatggctca cagcaacctc tgcctcccag gttcaagcaa ttctcctgcc tcagcctcct gagtagctgg gattacaggt gcccgccagc acgcccagct aatttttgta tttttagtag agacagggtt tcaccatgtt ggccaggctg gtctcgaact tttgacctca ggcgatccac ctgtctccgg aattcgggtt acggcagcac ttttattttt ccttacacaa tgacgtgttg ctggggccta atgttctcac ataacagtag aaaaccaaaa tttgttgtca tctcttcaaa gaatcgagaa ttgcgtacaa aaaaacctt acataaatta agaatgaata catttacagg cgtaaatgca aaccgcttcc aactcaaagc aagtaacagc ccacggtgtt ctggccaaag acatcactaa gaaaggaaac tgggtcctac ggttggactt tncaccctga cagacccgca</pre>	60 120 180 240 300 360 420 480 540
55	agacaaaaca actggttctt gc	562

```
<210> 157
         <211>
                506
         <212> DNA
         <213> Homo Sapiens
5
         <400> 158
         cggaggagca cccagtgctg ctgaccgagg cccccctgaa ccccaaggcc aacagagaga
                                                                                    60
         agatgactca gattatgttt gagaccttca acacccggc catgtacgtg gccatccagg
                                                                                   120
         ccgtgctgtc cctctacgcc tctgggcgca ccactggcat tgtcatggac tctggagacg
                                                                                   180
         gggtcaccca cacggtgccc atctacgagg gctacgccct cccccacgcc atcctgcgtc
                                                                                   240
10
         tggacctggc tggccgggac ctgaccgact acctcatgaa gatcctcact gagcgaggct
                                                                                   300
         acagetteae caecaeggee gagegggaaa tegtgegega cateaaggag aagetgtget
                                                                                   360
         acgtcgccct ggacttcgag caggagatgg ccaccgccgc atctcctctt ctctggagaa
                                                                                   420
         aactacgact gecgatggca ngtcatacca ttggcatgag cggttcccgg gtccggaggc
                                                                                   480
         gctgtncanc cttcttctgg gnatgg
                                                                                   506
15
         <210> 159
         <211> 445
         <212>-- DNA-
         <213> Homo Sapiens
20
         ctttactaaa aatacaaaaa ttagccaggc atggtggcag gtgcctgtaa tcccagctat
                                                                                   60
         tcgggaggct gaggcaggag aatcacttga acccaggaag tggaggttgc agtgagccga
                                                                                  120
         gategtacca etgeacteca eccagggtga cagagtgaga etcegttgaa aaaaagagaa
                                                                                  180
         aaaaaaatta atacaaagat attaaaatta aaaaggaaaa atatccccag aaccccatca
                                                                                  240
         cttaaacaac aaatcaaatt tttatttttc tcttcccatc ctacaaggca acataactct
                                                                                  300
25
         gacctgctta gaatccccgt gtcaggccac tttcctattc tgtttcttcc cactcctcac
                                                                                  360
         cgtgcccaca caccttcctt gggggtgaac gcgtgcggac gctagacggc ccctcatccc
                                                                                  420
         ccgactgcct gcccgggtgg aactg
                                                                                  445
         <210> 160
         <211>
               445
30
         <212> DNA
         <213> Homo Sapiens
         <400> 160
         cagttccacc cgggcaggca gtcgggggat gaggggccgt ctagcgtccg cacgcgttca
                                                                                   60
35
         cccccaagga aggtgtgtgg gcacggtgag gagtgggaag aaacagaata ggaaagtggc
                                                                                  120
         ctgacacggg gattctaagc aggtcagagt tatgttgcct tgtaggatgg gaagagaaaa
                                                                                  180
         ataaaaattt gatttgttgt ttaagtgatg gggttctggg gatatttttc ctttttaatt ttaatatctt tgtattaatt ttttttccc ttttttcaa cggagtctca ctctgtcacc
                                                                                  240
                                                                                  300
         ctgggtggag tgcaagtggt acgatctcgg ntcactgnaa cctncacttc ctgggttcaa
                                                                                  360
         gtgattctcc tgcctcacct cccgaatagc tgggattaca ggcacctgcc accatqcctq
                                                                                  420
40
         gctaattttt gnatttttag taaag
                                                                                  445
         <210> 161
         <211>
                511
         <212> DNA
         <213> Homo Sapiens
45
         <400> 161
         cttcagcgaa gtttatttca aaaccattga acagtatgat atttgctcat ttataaatat
                                                                                   60
         tcccatttaa ataatctgag cttatatatt ttcagtctta attaaaggac ttgatttaaa
                                                                                  120
         gagagcacac cagtccaaat tgaattgatt ccatagctat taaaaactag gctcttttac
                                                                                  180
         agacactgct acttcttgcc ccctttgaat aaattagacc aatgaataaa acaaacaanc
                                                                                  240
50
         aaataaataa ataaataggg aagcggttgc tcatcanaat gtgggagcga atgacagagg
                                                                                  300
         gtttcttana accaaatgtg gccgtggttt ctgtcaggcg gctttaagtg ataggaaagg
                                                                                 360
         tgaaaaaggc ctggctcaac aaaagggctg gggattggcc ctgaaaggan aaactgactg
                                                                                  420
         cctgctgatg gacaggaaac ctnttaccct cctangcngc nnttgggctt gggggnaaca
                                                                                  480
         cngganagcc nggntttacc cgacccnaaa g
55
         <210> 162
         <211> 534
```

	2010 - F070			•				
	<212> DNA							
	<213> Homo	Sapiens						
	-400 100							
	<400> 162				_			
5	cccatcatca	atatttattg	agcatttaca	gtgtactagg	cacaatagaa	catacagaaa	60	
	acattotoco	tactettaaa	gagcttacat	tctaaaagaa	aaaatacacc	ttttttaaaa	120	
				_				
			ttctgcaaag				180	
	tggccttggg	cctcaaggaa	aagaatctgt	acctgtcctg	cgtgttgaaa	gatgataagc	240	
			gtagatccca				300	
	gatttgtctt	caacaagata	gaaatcaata	acaagctgga	atttgagtet	gcccagttcc	360	
10	ccaactggta	catcagcacc	tctcaagcan	aaaacatgcc	cgtctccctg	ggagggacca	420	
			gacttcacca	_			480	
				-				
	cccaaaaagt	cctgngctga	atgnggactc	aatccctagg	etgggcanaa	aggg	534	
	<210> 163							
4.5								
15	<211> 416							
	<212> DNA					•		
	<213> Homo	Coniona						
	ZIS> HOMO	aghtens						
	<400> 163							
	cccttagage	caatcottat	cccgaagtta	cagateeaac	ttaccaactt	cccttaccta	60	
20							120	
			ggctgttcac					
	cccggcgcga	gatttacacc	ctctcccccg	gattttcaag	ggccagcgag	agetcacegg	180	
			ctttccaagg				240	
							300	
			caaagaaaag	-				
	tccgggatcg	gtcgcgttac	cgcactggac	gcctcgcggc	gcccatctcc	gccactccgg	360	
	atteggggat	ctgaacccga	ctccctttca	tcaaccaaaa	gcaacggagg	ccatcq	416	
<i>25</i>		55-		23:-23	3 33 33	. 2		
	<210> 164							
	<211> 369							
	<212> DNA							
30	<213> Homo	Sapiens						
	•							
	<400> 164			•	• "			
					~~~ttaa~at	aaaaaaataa	60	
			cggccgatcg					
	ggagtggcgg	agatgggcgc	cgcgaggcgt	ccagtgcggt	aacgcgaccg	atcccggaga	120	
	agccggcggg	agccccaaga	agagttctct	tttctttqtq	aagggcaggg	cgccctggaa	180	
~-			ggcccgtgcc				240	
<i>35</i>								
	cggtgagctc	tegetggeee	ttgaaaatcc	gggggagagg	gtgtaaatet	egegeeggge	300	
	cgtacccata	tccgcacagg	tctcaaggtg	aacagccttg	gcatgttgga	acaatgtang	360	
	taagggaag						369	
40	<210> 165							
	<211> 566							
	<212> DNA							
	<213> Homo	Sapiens						
		-						
	<400> 165							
45							60	
49	caaacccact	ccaccttact	accagacaac	cttagccaaa	ccatttaccc	aaataaagta	60	
	taggcgatag	aaattgaaac	ctggcgcaat	agatatagta	ccgcaaggga	aagatgaaaa	120	
	attatacce	accatestat	agcaaggact	aacccctata	ccttctccat	aatgaattaa	180	
	-banaba				000000000	agenteast	240	
	ctagaaataa	ctttgcaagg	agagccaaag	ccaagacccc	cgaaaccaga	cyayeracer		
	aagaacagct	aaaagagcac	accegtetat	gtagcaaaat	agtgggaaga	tttataggta	300	
	gaggggagaa	acctaccoso	cctggtgata	actaattatc	caagatagaa	tcttagttca	360	
50					natttacete	ttartroppe	420	
	actttaaatt	rgcccacaga	accctctaaa	teceettgta	aatttaactg	ctagiccaaa		
	gaggaacagc	cctttggaca	ctaggaaaaa	accttgtaga	gagagtaaaa	aatttaacac	480	
	ccatagtagg	cctaaaagcc	ggaattncag	cttgagcgcc	ggtcgttcca	ttaccagncg	540	
		caaaaatata					566	
	20009999	Juduudtata	acaacy					
cc	<210> 166							
<i>55</i>	<211> 492							
	<212> DNA							
	~ZIZ> DNA							

	<213> Homo	Sapiens					
5	gtccaaaggg	ctgttcctct	ttggactaac	agttaaattt		ttttcctagt ttagagggtt atcaccaggc	60 120 180
10	tgctcttta cttgcaaagt tattatgctt	gctgttctta tatttctagt ggctataatt tatcgctata	ggtagctcgt taattcatta tttcatcttt	ctggtttcgg tgcagaaggt cccttgcggn	gggtcttagc ataggggtta	tagacgggtg tttggctctc gtccttgcta ttgcgccagg gctggtataa	240 300 360 420 480 492
15	<210> 167 <211> 528 <212> DNA <213> Homo	-				·	
20	tctctctaca aatttacaag cttggacaac	tcttaattgg aggttttttc gggatttaga cagctatcac	ctagtgtcca gggttctgtg caggctcggt	aagagctgtt ggcaaattta aggtttgtcg	atgggtgtta cctctttgga aagttgaact cctctaccta ttcttaggta	ctaacagtta aagattctat taaatcttcc	60 120 180 240 300
25	tttcgggggt gaaggatagg tgcggtacta	cttagctttg ggttaagtcc	gctctccttg ttgctatatt gccaggtttc	caaagttatt atgcttgggt aatttctatc	tctagttaat ataatttttc gcctatactt	tcattatgca atctttccct	360 420 480 528
30	<210> 168 <211> 547 <212> DNA <213> Homo	Sapiens					
35 40	taggcgatag attataacca ctagaaataa aagaacagct gaggcgacaa actttaaatt gaggaacagc	aaattgaaac agcataatat ctttgcaagg aaaagagcac acctaccgag tgcccacaga tctttggaca	ctggcgcaat agcaaggact agagccaaag acccgtctat cctggtgata accctctaaa ctaggaaaaa	agatatanta aacccctata ctaagacccc gtagcaaaat gctggttgtc tccccttgta accttgtaga	ccatttaccc ccgcaagga ccttctgcat cgaaaccaga agtgggaaga caagatagaa aatttaactg gagagtaaaa aacggaattn	aagatgaaaa aatgaattaa cgagctacct tttataggta tcttagttca ttagtccaaa aatttaacac	60 120 180 240 300 360 420 480 540
45	<210> 169 <211> 718 <212> DNA <213> Homo	Sapiens			·		
<b>4</b> 5 50	aaaagtataa tttgctgcca agaaagtcaa gacgtagagt tgaagatagg atctaagttt cttcgcttaa	atagttacca gtaacatgga ataccatagg gtgaaataat accccaatcc ccctttatag ctttggctaa	tttttattg tggaactgga ttctcactta agatatcgga cttctagctt gttacctggt cctggtgaca	tcttcttaat agtcactatt taagtgggag gactcagaga gtagggtttc gcttttgctc atatgcctan	acatcaaatg aaattgaata ttaagtggaa ctaaataatg attgttttgt tgctgagaaa acagctctta gcgatgatcn	aaataatgtc ttaaagaaaa tatacacata ttgaggaggc tctgtggtta agattctttn ttttgngata	60 120 180 240 300 360 420 480
<i>5</i> 5	aatttttcaa atttccccaa cttaaggttg	gtggtctttg atatggtttt nccttgagct	tgcctaagnc caagctttan natcccaant	tctagcagac aatctcttct tttttgaggt	ttggggaagt ttctcaggaa ttgtnaaatg gnttttaanc	tttccttgat ccccgatatt ggctaaaant	540 600 660 718

```
<210>
             170
      <211>
             979
      <212> DNA
5
      <213> Homo Sapiens
      <400>
             170
      ctgtgttaga aaaaatcata aaacataaca gaatctacac atcatggtcc accagaggat
                                                                               60
      tcacagatgg aaatgaattt taatattgtt acttttgaag tcccaaatac tttaagattt
                                                                              120
10
      acaataaaaa acattetgae agagteeatg atgaattatt teeagtettt caccagaetg
                                                                              180
      cttaagctca cctataaact acgaaatgta taaataaata attacagcca aagcaggtaa
                                                                             240
      caaagtgtct aacctatatt ccacaggtgc ataccatggc tacgaataaa ctatccaatc
                                                                             300
      taaccacaga agetgageat ttggtttggg gttaatceac atcacatgae teaccattga
                                                                             360
     gaaagegget eteaceatge ttaatgggea eageacetet geaaacaaat eetteeetgg
                                                                              420
     ctaatcattc cctctgagag gtttcctcag taaagagatt agaactacct cttgcatttc
                                                                             480
      caacttttaa aaaattgcct ttttggaaat ctaccaccac caactaattc ttgacagact
                                                                             540
      tgtagagaat gaccctcaaa gaaatatcat tcgagacaca tattcaagca gactggncat
                                                                             600
                                                                             660
     ggtggctcat gcctgcagtc ccagcagttt gggaagctga agtgaactga tgcttgaatn
      caggagtett gagaacagee tgggtaacat ggnaaaaceg ggteetacaa aaaaatteen
                                                                             720
     aaaattaccc nggtntgttg gngcacaatg ngggcccaac tttnccnaaa gaaaaaagtt
                                                                             780
20
     tggcttcagg aaggcaaggg tcncnnancc ctgaatggcc ccttccttca accggggnaa
                                                                             840
                                                                             900
     aaangggnaa cctttttggn aagggaaggg aaagggaaag ggagggcctt ttnnntttaa
     aaaagggann ttaaaaggng gcccnaaaac ntttttaaag ggcaaccttt tttncttttt
                                                                             960
                                                                             979
     tgggaaaatt ggggnaaat
     <210>
             171
25
     <211>
             718
     <212>
            DNA
     <213> Homo Sapiens
     <400>
            171
30
     aggggatgct ctcggtgtct gagctgttgt tgacagtggc tgggccactg cattcccctc
                                                                              60
     tgggcacctc attcccagag gcatgtaagg cttcagcctc ctccaccatc tcctcctcat
                                                                             120
     ttccgctcac gcccgacgcc tccatctcct catcctccac cacgggcggg aatgcagcct
                                                                             180
     cctcgctggc cgccgccggc gctttcttct tcttcctccg cgcgttcctc tccttctcca
                                                                             240
     tetteagett gtgetgetge aagateteat egaggttetg cetettettg tagttgaagt
                                                                             300
     agaagttett acactgegae acagtettgg ageceaceat eegggegatg geegaecaag
                                                                             360
35
     ttgcggccgt gttccaggag acctttcttg gctgnttcca tttcttcttc tgtccagcga
                                                                             420
     gaactctcat tcacttcang gaggccagct cggcgctctg ctggggggtg atggcctcct
                                                                             480
     cgttgtggcc tcattagccc ttgaaccggg tgatgcgggc ctttggnctt ccctggcttg
                                                                             540
     tngcaanttt geggeetttg gaggeeaeag etteettttg gnggttggne eteecetgag
                                                                             600
     gggncgctgg cttntccttg agganggctt ccttggggtn ttcacctcgg gttttccctc
                                                                             660
40
     ttttcgggtt cnttttccgg aatccccnaa ttgacggttc agaatttngc ccaatcca
                                                                             718
```

### Patentansprüche

- Werkzeuge zur diagnostischen, prognostischen und therapieüberwachenden Analyse sowie zur Durchführung von Screeningverfahren für pharmakologisch wirksame Substanzen und Substanzklassen der rheumatoiden Arthritis, chronisch entzündlicher Erkrankungen, bakteriell induzierter chronisch entzündlicher Erkrankungen, Arteriosklerose, Tumorerkrankungen, Organ- und Gewebstransplantationen, und der Sepsis, dadurch gekennzelchnet, dass auf der Oberfläche des Werkzeuges Sequenzen einer Auswahl nachfolgend genannter selektiver Monozyten-Makrophagen Gene oder Sequenzen aller nachfolgend genannter Gene, auch unter Verwendung weiterer Gene, gebunden sind oder dass mit genannten Genen komplementäre RNA auf der Oberfläche des Werkzeuges gebunden ist.
  - 2. Werkzeuge nach Anspruch 1, dadurch gekennzeichnet, dass es sich bei den Genen, deren Teilsequenzen und

Oligomersequenzen um selektionierte / subtrahierte Gene handelt.

5

10

20

30

40

- Werkzeuge nach Anspruch 1 oder 2 dadurch gekennzelchnet, dass auf der Oberfläche des Werkzeugs alternativ auch Allele, Derivate und/oder Splicingvarianten der Gen bzw. Genteilsequenzen und Oligomersequenzen vorliegen k\u00f6nnen.
- 4. Werkzeuge nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Werkzeuge Gensequenzen einbeziehen, die mindestens eine Teil-Sequenzidentität in den Protein-kodierenden Abschnitten der mRNA besitzen.
- Werkzeuge nach Anspruch 4, dadurch gekennzeichnet, dass die Werkzeuge Gensequenzen einbeziehen, die mindestens 80% Sequenzidentität in den Protein-kodierenden Abschnitten der korrespondierenden Nukleinsäure besitzen.
- - High Throughput Verfahrens der RNA-Array-Hybri disierung, oder High-Throughput Verfahrens mit Techniken der Polymerase-Ketten-Reaktion zur (Semi-) Quantifizierung beruhen.
  - 7. Werkzeuge nach einem der Ansprüche 1 bis 6, dadurch gekennzelchnet, dass die Gene kovalent auf der Oberfläche gebunden sind.
- 8. Werkzeuge nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Oberfläche aus Glas oder Kunststoff besteht, die chemisch aktiviert oder modifiziert ist.
  - Werkzeuge nach Anspruch 8, dadurch gekennzeichnet, dass die Oberfläche mit Aminolinkern bindenden reaktiven Gruppen, Metallverbindungen oder Legierungen reaktiv beschichtet ist.
  - 10. Werkzeuge nach Anspruch 8 oder 9, dadurch gekennzelchnet, dass das Trägermaterial bzw. die Oberfläche aus einer Nylonmembran besteht.
- 11. Werkzeuge nach einem der Ansprüche 1 bis 10, dadurch gekennzelchnet, dass die cDNA durch reverse Transkription aus Total-RNA oder messenger-RNA menschlicher Zellen des Monozyten / Makrophagen Systems hergestellt ist
  - 12. Werkzeuge nach einem der Ansprüche 1 bis 11, dadurch gekennzelchnet, dass die Gene durch Spottingverfahren von cDNA, Immobilisierungsverfahren und Syntheseverfahren von Oligomeren oder spiegelbildlich in Form von RNA aufgebracht sind.
  - **13.** Werkzeuge nach einem der Ansprüche 1 bis 12, **dadurch gekennzeichnet, dass** der Nachweis über cDNA-, deren Sequenzanteile oder über Oligosonden erfolgt.
- 45 14. Werkzeuge nach Anspruch 10, dadurch gekennzelchnet, dass die Sequenzen Abweichungen enthält.
  - **15.** Werkzeuge nach Anspruch 11, **dadurch gekennzelchnet**, **dass** die Abweichung von cDNA- und Oligosonden zum Nachweis bis zu 20% beträgt.
- 50 16. Werkzeuge nach einem der Ansprüche 1 bis 15, dadurch gekennzelchnet, dass die Sonden zum Nachweis fluoreszenzfarbstoff-, Enzym-, Protein- oder radioaktiv markiert sind und Verstärkung zulassen.
  - 17. Werkzeuge nach Anspruch 1 bis 16, dadurch gekennzelchnet, dass Verstärkung über gekoppelte Biotin-, Digo-xigenin-, (Edel-)Metallchelat- und Protein (Moleküle) erfolgt.
  - 18. Werkzeuge nach Anspruch 17, dadurch gekennzelchnet, dass zur Verstärkung Streptavidin, (Edel-) Metallchellat oder Antikörper eingesetzt werden.

5

15

30

35

40

45

50

55

#### EP 1 310 567 A2

- 19. Werkzeuge nach Anspruch 18, dadurch gekennzeichnet, dass der Nachweis über Fluoreszenzfarbstoff, Radioaktivität oder enzymatisch erfolgt.
- 20. Werkzeuge nach einem der Ansprüche 1 bis 19, dadurch gekennzelchnet, dass die Werkzeuge durch ein DNA-Array ausgebildet sind.
- 21. Werkzeuge nach einem der Ansprüche 1 bis 19, dadurch gekennzelchnet, dass die Werkzeuge durch ein Zytofluoreszenz-DNA-Array (Beads) ausgebildet sind.
- 22. Werkzeuge nach einem der Ansprüche 1 bis 19, dadurch gekennzelchnet, dass die Werkzeuge durch einen DNA-Array spiegelbildlichen RNA-Array ausgebildet sind.
  - 23. Werkzeuge nach Anspruch 1 bis 22, dadurch gekennzelchnet, dass die selektiven Gene, deren Teilsequenzen oder Oligomere zum Nachweis festphasengebundener Total-RNA oder messenger-RNA benutzt werden.
  - 24. Werkzeuge nach Anspruch 1 bis 23, dadurch gekennzelchnet, dass die Sonden durch reverse Transkription aus messenger-RNA menschlicher Zellen des Monozyten / Makrophagen-Systems hergestellt wird
- 25. Werkzeuge nach einem der Ansprüche 1 bis 24, **dadurch gekennzeichnet**, **dass** RNA von bis zu 500 Gewebsund/ 20 oder Blutproben auf dem Array aufgebracht sind.
  - 26. Werkzeug nach einem der Ansprüche 1 bis 25, dadurch gekennzelchnet, dass die Sondenmarkierung mit Fluoreszenzfarbstoffen, Biotin, Digoxigenin, Peroxidase, alkalischer Phosphatase und Radioaktivität durchgeführt ist.
- 27. Werkzeug nach einem der Ansprüche 1 bis 26, dadurch gekennzelchnet, dass Nachweisverfahren der genannten Sequenzen über reverse Transkriptions PCR (RT-PCR) durchzuführen sind.
  - 28. Werkzeuge nach einem der Ansprüche 1 bis 27, dadurch gekennzelchnet, daß die Gene oder Gensequenzen mit einer Markierung oder einer Reporterfunktion ausgestattet sind, so dass diese für andere Nachweisverfahren nutzbar sind.
  - 29. Verwendung der Werkzeuge nach einem der Ansprüche 1 bis 27, dadurch gekennzeichnet, dass die Werkzeuge zur Messung der Monozyten/Makrophagen Aktivierung resp. der Entzündungsaktivität im Blut oder aber im Zellgewebe verwendet werden.

Tabelle 1

Tabelle 1				
Zytokine und Faktoren und Liganden:				
Interleukin-1α	(Acc.# NM_000575)			
Interleukin-1β	(Acc.# NM_000576)			
Interleukin-6	(Acc.# AF372214)			
Interleukin-8	(Acc.# L19591)			
Interleukin-10	(Acc.# XM_001409)			
Interleukin-13	(Acc.# HSU62858)			
Interleukin-15	(Acc.# XM_003529)			
Interleukin-16	(Acc.# AF053412)			
Interleukin-18	(Acc.# E17135)			
Angiopoletin-like factor (CTD6)	(Acc.# XM_001529,XM_042319)			
Inhibin β-B (INHBB)	(Acc.# NM_002193)			
Tumor-Nekrosefaktor-α	(Acc.# NM_000595)			
Tumor-Nekrosefaktor-β	(Acc.# D12614)			
Transforming Growth Factor-β (TGF-β)	(Acc.# XM_008912,NM_00660)			
Latent TGF-β binding prot. LTBP4	(Acc.# NM_003573,XM_008868)			
Melanoma stimulating activity (MGSA)	(Acc.# X54489)			
Chemokine Gro-α/MGSA	(Acc.# X12510,XM_003504)			
Chemokine (C-X-C motif) ligand 16	(Acc.# NM_022059)			

	Zytokine und Faktoren und Liganden:	·
	Chemokine alpha-3 (CKA3)	(Acc.# NM_002993)
5	CC-Chemokine (SLC)	(Acc.# AB002409)
	EBI-1-Ligand Chemokine	(Acc.# AB000887)
	Small inducible cytokine subfamily A(SCYA21)	(Acc.# XM_048450)
	Small inducible cytokine(SCYA21)	(Acc.# NM_002989)
	Megakaryocyte stimulating factor	(Acc.# U70136)
10	Monocyte colony stimulating factor (M-CSF)	(Acc.# NM_000757)
	Granulo-/Monocyte colony stimu. factor (GM-CSF)	(Acc.#: E01817)
	Macrophage Inflammatory Protein (MIP-1)	(Acc.# HUMMIP1A)
	Makrophage inflammatory Protein (MIP-2	(Acc.# AF106911)
15	Monocyte migration inhibitory factor (MIF)	(Acc.# L19686)
15	Monocyte Tissue factor	(Acc.# M16553)
	Monocyte Chemoattractant Protein-1 (MCP-1)	(Acc.# \$71513)
	-Monocyte Chemoattractant Protein-2 (MCP-2)	(Acc.#-NM_005623)
	Monocyte Chemoattractant Protein-2 (MCP-3)	
20	· · · · · · · · · · · · · · · · · · ·	(Acc.# X72308; S57464)
	Fraktalin small inducible cytokine	(Acc.# NM_002996)
	Stromal derived factor-1 (SDF-1)	(Acc.# HSU16752)
	Insulin-like growth factor-5 bind. Protein	(Acc.# NM_000599)
25	Rezeptoren, Ionenkanäle und assozilerte Proteine:	
	Angiotensin Rezeptor-II Homolog (ATR-IIh)	(Acc.# L48211)
	Toll-like Rezeptor-2	(Acc.# XM_003304)
	Toll-like Rezeptor-4	(Acc.# XM_005336)
<i>30</i>	Opoid-Rezeptor Kappa	(Acc.# XM_011716)
	Interleukin-1 receptor	(Acc.# XM_002686)
	Interleukin-2 receptor α-Untereinheit	(Acc.# XM_043149)
	Interleukin-2 Receptor β-Untereinheit	(Acc.# XM_009962,M26062)
	Interleukin-2 Receptor γ-Untereinheit	(Acc.# XM_047675)
<b>35</b>	Interleukin-7 Receptor	(Acc.# AH007043, NM_008372)
	Interleukin-8 receptor α (IL8RA)	(Acc.# XM_058007)
	Interleukin 8 receptor β (IL8RB)	(Acc.# NM_001557
	Fc-Rezeptor-I	(Acc.# J03619, AF200220)
40	Fc-Rezeptor-II	(Acc.# M28696,M28697)
70	Fc-Rezeptor-III	(Acc.# Z46223,Z46223)
	Tumor-Nekrosefaktor-α Rezeptor	(Acc.# S63368)
	C-Chemokine (C-C motif) Rezeptor-5 (CCR5)	(Acc.# NM_000579,XM_030397)
	C-Chemokine (C-C motif) Receptor-7 (CCR7)	(Acc.# XM_049959)
45	Chemokin-X-C-Rezeptor-4(CXCR-4)	(Acc.# NM 003467)
	Progesterone Receptassoc. Immunophilin(FKBP54)	(Acc.# U42031)
	Partial p58 gene for NK receptor	(Acc.# AJ000542)
	Vascular endothial growth factor	(Acc.# AY047581)
	Vascular endothial growth factor-β	(Acc.# BC008818)
50	Calcium activated potassium channel (KCNN3)	(Acc.# AF031815, AY049734)
	G protein-coupled cytokine receptor EBI1	(Acc.# L31581)
	G protein-coupled cytokine receptor EBI3	(Acc.# XM_012857,L08187)
	EBI3-associated protein	(Acc.# AM_012657,E08187)
55	LDIO 2000CIQUEO PIOUEIII	(1.00.11 041000)
= =		

	Membranproteine und assoziierte Proteine:	
	CD14	(Acc.# XM_003822)
5	CD68	(Acc.# XM_008237)
	CD69	(Acc.# BC007037)
	CD11b	(Acc.# J03925)
	Adhesion receptor CD44	(Acc.# M31165)
10	Actin binding coronin like protein (HCORO1)	(Acc.# U34690)
10	Integral membrane protein	(Acc.# L32185)
	Epithelial membrane prot3 (EMP-3) / HMPMP-1	(Acc.# X94771,U87947)
	Mac-2 binding protein	(Acc.# L13210)
	Integral membrane protein E16	(Acc.# M80244)
15	HLA-D II beta chain	(Acc.# X03066)
	Desmin	(Acc.# HSU59167, XM_002601)
	Fibronectin precursor	(Acc.# X02761)
	Adducin 1α	(Acc.# X58141, NM_014190)
	HLA DRB1	(Acc.# X88971)
20	Integrin-a 5 subunit	(Acc.# X06256)
	Integrin cytopl. domain assoc. protein (lcap-1a)	(Acc.# AF012023)
	Integrin cytopl. domain assoc. protein (Icap-1β)	(Acc.# AF012024)
	Titin	(Acc.# X69490, NM_003319)
25	Thrombospondin-1 (TSP-1)	(Acc.# XM_007606)
	Semaphorin-3	(Acc.# AB000220)
	Semaphorin-F Homolog	(Acc.# U52840)
	TSP-2	(Acc.# NM_003247)
	TSP-1 / Semaphorin-5a Homolog	(Acc.# NM_003966)
30	VCAM-1	(Acc.# x53051)
	Periplakin (PPL)	(Acc.# XM_032727, NM_002705)
	Envoplakin (EVPL)	(Acc.# XM_008135)
	Peripheral myelin protein 22 (PMP-22)	(Acc.# XM_052499)
35	,	_ /
	(Proto)-Onoko-, Tumor-Suppressor-, Differenzier	unacaone & essoz Proteine:
	(Proto)-Orioko-, furifor-Suppressor-, Differenzier	
	H19 RNA	(Acc.# M32053)
•	Tumor suppressor Brush-1	(Acc.# S69790)
40	Pim-2 Protoonkogen	(Acc.# U77735,XM_010208)
	HOX-B3	(Acc.# N70814)
	MEL-18	(Acc.# D13969)
	c-fos	(Acc.# V01512)
45	c-jun	(Acc.# NM_002229)
40	c-myc	(Acc.# AH001511)
	c-myc related oncogen (pHL-1)	(Acc.# X54629)
	c-Ret tyrosine kinase receptor ligand 2 (RETL2)	(Acc.# U97145)
	c-Ret tyrosine kinase receptor ligand 1 (RETL1)	(Acc.# U97144)
50	jun-B	(Acc.# XM_009064)
	c-Jun activation domain binding protein	(Acc.# U65928)
	Desmoyokin/AHNAK	(Acc.# X74818,M80899)
	Rad mRNA	(Acc.# L24564)
	PTEN	(Acc.# AH005966,XM_005867)
	1	(Acc.# XM_002689,NM_004040)
<i>55</i>	c-ras homolog gene family, member B (ARHB)	(ACC.# ANI_002009,14NI_004040)
55	c-ras homolog gene family, member B (ARHB) Transforming activity oncogene (TRE-2) Transforming activity oncogene (TRE-17	(Acc.# XM_002669,RM_004040) (Acc.# X63596) (Acc.# HSTRE213)

(Proto)-Onoko-, Tumor-Suppressor-, Differenzierungsgene & assoz.Proteine:					
AF272830)					
# X16707)-					
‡ X16706)					
# M11146)					
FNM_000146)					
<u></u>					
# AB040431,NM_0	20661)				
XM_041310)					
# S36271)					
NM 000962)					
# HSU63846) # M90100)					
•					
* NM_001955)					
FNM_001956)	700				
XM_027447, X14	723)				
# AF084558)					
# U80055)					
# NM_007016)					
* NM_003465)					
# AF290004)					
‡ L34041)					
f M12272)					
NM_001871)					
XM_009672, L05	144)				
# BC004147)					
NM_006755)					
f M17733)					
NM_002450)					
\$ S77127)					
( K00065)					
+ NM_000636)					
NM_003102)					
M13267)					
t)					
· / ⊧ M68840,XM_055₄	185)				
t U29344)	. 50,				
X13710)					
NM_002084)					
M16328)					
AB022318)					
•					
XM_007310)	IN ACTO				
# M55153, SEG_HU	JIVIE I G				
HSATPR1)					
t U27193)					
# AF037	•				

	Enzyme, Enzym-assozilerte Proteine und Inhibito	oren:
	Metallothionein-IG gene (MT1G)	(Acc.# J03910)
<del>.</del>	Lymphocyte phosphatase assoc. Protein (LPAP)	(Acc.# X97267,AA011257)
	Flap Endonuclease 1 DNA repair gene (FEN1)	(Acc.# AC004770)
	Flap structure-specific endonuclease 1 (FEN1)	(Acc.# L37374, XM_043386)
0	Kinasen, Protein Kinasen (PKN) und PKN-inhibite	oren:
	Protein Kinase C-alpha Untereinheit	(Acc.# X52479)
	Protein Kinase C-beta-1 Untereinheit	(Acc.# XM_047187)
	Protein Kinase C-beta-2 Untereinheit	(Acc.# M13975)
	Protein Kinase C-gamma Untereinheit	(Acc.# M34182)
5	Protein Kinase C-delta Untereinheit	(Acc.# D10495)
	Protein Kinase-C Inhibitor	(Acc.# U51004
		(Acc.#-AF029684
	PI3-Kinase	(Acc.# Y13892)
	MAP Kinase-11	(Acc.# XM 035889)
20		(Acc.# AF031135)
	p38 MAP Kinase interacting protein	(Acc.# XM_035930)
	p38 MAP Kinase interacting protein	(Acc.# AB015982)
	Serin/Threonin Kinase	i `
25	Thyrosin Kinase-1	(Acc.# XM_002037)
	Thyrosin Kinase-2	(Acc.# XM_005480)
	Non-receptor protein tyrosine kinase tyk2	(Acc.# X54637)
	Mitogen- and stress-activated protein kinase-1	(Acc.# AF074393)
	Mitogen- and stress-activated Protein Kinase-2	(Acc.# AF074715)
30	Casein Kinase 1, alpha 1 (CSNK1A1)	(Acc.# NM_001892, L37042)
	Thyrosine kinase 1 (TIE-1)	(Acc.# XM_002037)
	Thyrosine kinase 2 (TIE-2)	(Acc.# XM_005480)
35	Differenzierungsgene:	
	WNT-6	(Acc.# AY009401,AB059570)
	WNT-13	(Acc.# Z71621)
	BMP-4	(Acc.# M22490)
40	Proteinasen, Matrixmetalloproteinasen (MMP) ur	nd MMP-Inhibitoren:
	Cathepsin-B	(Acc.# XM_035662)
	Cathepsin-G	(Acc.# M16117)
	Cathepsin-K	(Acc.# NM000396)
<b>4</b> 5	Cathepsin-L	(Acc.# NM_001912)
	Cathepsin-S	(Acc.# M86553)
	Matricx metalloproteinase-1 (MMP-1)	(Acc.# NM_002421)
	MMP-3	(Acc.# X05232)
<b>50</b>	MMP-9	(Acc.# XM_009491)
50	Disintrigin Protease	(Acc.# Y13323)
	Tissue inhibtor of MMP type 1 (TIMP-1)	(Acc.# NM 003254)
		(Acc.# NM_003254)
	TIMP-2	(Acc.# NM_000362)
55	TIMP-3	· · · · · · · · · · · · · · · · · · ·
	TIMP-4	(Acc.# NM_003256) (Acc.# M17016)
	Serin Protease like mRNA	

	Apoptose- und Zellzyklus Regulatoren:	
	Annexin A-2II	(Acc.# BC001388)
5	Growth arrest DNA-damage-induc, prot. (GADD45)	(Acc.# M60974)
	Growth arrest DNA-damage-induc. prot.α(GADD45A)	(Acc.# XM_056975, XM_040594)
	Growth arrest DNA-damage-induc. prot.β(GADD45B)	(Acc.# NM_015675, AF087853)
	Growth arrest DNA-damage-indcu. prot.g(GADD45G)	(Acc.# NM_006705)
10	Lymphocyte G0/G1 switch gene (GOS-3)	(Acc.# L49169)
	Signattransduktions-Regulatoren:	
	STAT-1	(Acc.# NM_007315)
	STAT-4	(Acc.# XM_002711)
15	Adenylate kinase 1 (AK1)	(Acc:# NM_000476)
	Inositol 1,4,5-trisphosphate 3-kinase (ITPKC)	(Acc.# XM_047369, XM_047368)
	-Phosphatidylinositol-3'-kinase-(PI3K)	-(Acc:#-Y-11312)
	The spirate of the sp	(AGC.#-111312)
20	Transkriptionsfaktoren, Translationsfaktoren und as	ssozilerte Proteine:
	Transcription factor AREB6	
	Transcription factor 8 (TCF8)	(Acc.# D15050) (Acc.# XM_030006)
	Nuklear factor kappa-B	(Acc.# M58603)
25	AP-1	(Acc.# M38603) (Acc.# AB015319, AB015320)
	PU.1	(Acc.# X66079)
	SPI-B	(Acc.# X66079)
	v-maf musculoaponeurotic fibrosarcoma (MAFF)	(Acc.# XM_039249,XM_039250)
30	Zinc finger transcription factor (GKLF)	(Acc.# AF105036, AK026253)
, <b>3</b> 0	Zinc finger Protein	(Acc.# M80583)
	CCAATA enhancer binding Protein-beta	(Acc.# NM_005194)
	RNA-polymerase II elongationsfactor	(Acc.# L47345)
	Translation elongation factor-1 α-1 (EEF1A1)	(Acc.# BC009733)
<i>35</i>	Translation elongation factor-1 α-2 (EEF1A2)	(Acc.# XM_028863)
	Translation elongation factor 2 (EEF2)	(Acc.# NM_001961)
	L1-Element (L1.20)	(Acc.# U93569)
	Leukemia Zink Finger PLZF	(Acc.# AF060568)
40	Activating transcription factor 3 (ATF3)	(Acc.# XM_016795, XM_034219)
	Zinc finger transcriptional regulator (GOS-24)	(Acc.# M92843)
	TGF-β-inducing early growth response 2	(Acc.# AA427597)
	SP1-like zinc finger transcript. factor (TIEG2)	(Acc.# AF028008)
	snRNA activating protein complex	(Acc.# AF032387)
45	oct-binding factor-1 (OBF-1)	(Acc.# Z49194)
	Early Growth Response protein 1 (EGR-1)	(Acc.# R75775)
	Ribosomale- / Ribonukeäre Regulatorgene und asse	ozilerte Proteine:
50	hnRNP pseudogen(gp43) (Position: 97.026-98.073)	(Acc.# AL034397)
	Ribosomal protein L19	(Acc.# XM_002758)
	Ribosomal protein S13	(Acc.# XM_039215)
	Histon-H1 (0) family mRNA	(Acc.# X03473)
55	H4-histone family, member H (H4FH), mRNA	(Acc.# NM_003543)

Tabelle 1 (fortgesetzt)

Endoplasmatic glykoprotein Gp36  Natural resistassoc. Macroph.protein (Nrampl)	(Acc.# NM_003897) (Acc.# U10362) (Acc.# D50402)
Endoplasmatic glykoprotein Gp36 Natural resistassoc. Macroph.protein (Nrampl)	(Acc.# U10362)
Natural resistassoc. Macroph.protein (Nrampl)	'
· · · · · · · · · · · · · · · · · · ·	(Acc # DE0402)
Calgranulin - S100A12 protein	(ACC.# D30402)
	(Acc.# XM_001682, NM_005621)
· · · · · · · · · · · · · · · · · · ·	(Acc.# AF142498)
Serum amyloid-A	(Acc.# M81349,M81451)
10	(Acc.# NM_001492)
<u> </u>	(Acc.# NM_003486)
, , , , , , , , , , , , , , , , , , , ,	(Acc.# NM_004864)
1	(Acc.# NM_006755)
	(Acc.# L05187)
· ·	(Acc.# AF173860)
· · · · · · · · · · · · · · · · · · ·	(Acc.# D21878)
	(Acc.# M24594)
	(Acc.# NM 006486)
20	(Acc.# XM_040435)
	(Acc.# XM_002093, XP_002093)
	(Acc.# NM_007115)
	(Acc.# M31164)
	(Acc.# AF052124)
· ·	(Acc.# M63625)
	(Acc.# M83248)
i · · ·	(Acc.# X03754)
	(Acc.# U05259)
Human Glykoprotein (gp39)	(Acc.# M80927,Y08374)
Glia derived nexin precursor	(Acc.# Al743134)
Heat shock protein 70B (HSP-70B)	(Acc.# X51757)
Apolipoprotein D	(Acc.# XM_049984,XM_003067)
Dead box, Y isoform (DBY), altern.transcr. 2	(Acc.# AF000984)
Myocilin (GLC1A)	(Acc.# AH006047)
DR1-associated corepressor (DRAP1)	(Acc.# U41843)
DR1-associated protein 1 (neg. cofactor 2 α)	(Acc.# XM_055156)
FK506 bind 12-rapamycin assoc.prot.1 (FRAP1)	(Acc.# XM_001528, XM_042283)
Microfibril-associated glycoprotein-2 (MAGP-2)	(Acc.# AH007047, NM_003480)
Adrenomedullin (ADM) precursor	(Acc.# NM_001124,XM_051743)
DNA-damage-inducible transcript 3,clone MGC:4154	(Acc.# BC003637)
Calretinin - calcium binding protein	(Acc.# X56667)
Breakpoint cluster region (BCR) mRNA	(Acc.# XM_017097)
Adipose most abundant gene transcript 1 (APM1)	(Acc.# NM_004797,XM_003191)
Novel adipose specific collagen-like factor	(Acc.# D45371)
Funktionell unbekannte Gene und ESTs:	
IMAGE 745750	(Acc.# AA420624)
KIAA0935	(Acc.# AB023152)
KIAA0618	(Acc.# AB014518)
Homolog zu FLJ23382 fis Klon HEP16349	(Acc.# AK027035)
55 Hypothetical gene mRNA	(Acc.# XM_005331)
HDCMB07P/PCM-1	(Acc.# AF068293)
cDNA clone DKFZp762M2311	(Acc.# AL512760)

Tabelle 1 (fortgesetzt)

		•
	Funktionell unbekannte Gene und EST's:	
•	cDNA clone PP2684	(Acc.# AF218004)
5	cDNA clone MGC:1811 (IMAGE:3506276)	-(Acc.#-BC015961)
	cDNA clone IMAGE:979127	(Acc.# AA522530)
	cDNA clone IMAGE:4279495 5', mRNA sequence	(Acc.# Bf667722)
	cDNA clone 137308 mRNA, partial cds	(Acc.# U60873)
10	cDNA clone IMAGE:159541	(Acc.# H15814)
	cDNA clone MAMMA1001272	(Acc.# AU147646)
	cDNA clone IMAGE:2419382	(Acc.# Al826771)
	cDNA clone IMAGE: 3941411	(Acc.# BE797145
	cDNA clone IMAGE:3834583	(Acc.# BE743390)
15	cDNA clone IMAGE:4565371	(Acc.# BG397372)
	cDNA clone MGC:2460 IMAGE:2964524	(Acc.# BC009504)
	cDNA clone RC3-HT0585-010400-013-all HT0585	(Acc.# BE176664)
	-cDNA-clone-similar-to-CG8974-gene-product	(Acc.#-XM_018516)
	cDNA clone BSK-65	(Acc.# W99251)
<i>ro</i>	cDNA clone IMAGE:3844696	(Acc.# BE730665)
	FLJ23382 fis, clone HEP16349	(Acc.# AK027035)
	FLJ20500 fis, clone KAT09159	(Acc.# AK000507, BC015236)
	GABBR1 Region von AL031983	(Acc.# 12329558)
25	cDNA clone CS0DE006YI10 5' prime end	(Acc.# AL541302)
	cDNA clone CS0DE006YI10 3' prime end	(Acc.# AL541301)
	EST371586 IMAGE resequences	(Acc.# Aw959516)
	MEN1 region clone epsilon/beta	(Acc.# Af001892)
30	Kontrollen zum Quantifizierungsabgleich:	1
	alpha-Aktin	(Acc.# M20543)
	beta-Aktin	(Acc.# XM_037239)
	gamma-Aktin	(Acc.# NM_001614)
35	Glyceraldehyd-3-phosphat-Dehydrogenase	(Acc.# XM_033258)
	Glucose-6-phosphat-Dehydrogenase	(Acc.# XM_013149)
	28S rRNA	(Acc.# M27830)
	18S rRNA	(Acc.# M10098)

45

50

**5**5

#### Tabelle 2

10

15

20

25

30

35

40

45

50

55

BSK-66 oder Accession Nr. AA393029

CGGTTGGGGCTCTGGTCTTGGATTTGATGTGTGGCGAAGGCTGCAATTGTTTAATAA CCCTTCATGATTCAACAGCTCTTCAAGAACTTTCCTCTGTTCTTGTGTGGAGCTCGT GACAGCCAGTGGTGGAGCTCCAGCCCTCTCTTCCCACAGGCACAAGCCGGGTTC CTGAGTCCCAGGGCTTCTCGGGAGGTGTCTGCCCTCTCTTTCAGACACCCTCTGCC CTGTGTCCCAGGGCCTGGGCCTGTGCTGCACTGAGCAGAGACTGTAGGGGACCGGC TCTCCCACTCCTCCCAGATGGGCAGCGTCTTCCGTGTCGGGAGCATGCTGTGCTGCT TTTCTCTCTCAGTCTCTTAGTTTTTGCGGGTTCTTACGCATGTGAGGTGTGGACTT GCATGGTGGGGAGCTCAAATGGTACATGAAGGGGAGGAGCCCTCTGAGTGCTGAT TTGTTCCATCATTACCGCTTCCTGATCACGGTGACCTGCACTGCTGGAGTGGTCAGT GGAGCCAGGCCTCCCCACAACAGTGTTCCCATCGCCTTCTTACTATTGATTTCTATT CTTAAAATATTGTATTACTTAGCACTCTTTTGAAGACGTTCCAGTATATATCAAATG ATCAAAAGTCCATAACCTTGTCCTACGTAGAAGCCAAAGGTGTCATGCAGTTTCAGG TGTTCGAGTTTCCAGAATTCTTGTGATGACATTTGTAGGATTCTTCTTTTAGACTTG TGTTTTCTCTGTCACACGTGTGGTGGGTGGCATCCTGGTGACATAAAGAATTGCCTT TGGTAACTTGCCCAGAAGGCTGTAGGGTTATTTTCTGCTTAGACTTTCCCCTATTTC TTTCTTTTCTTTTCTCG

BSK-89 oder Accession Nr. AA574456 - forward

ATTTTAGGGAGGTAGTAGATGATTTTTAGGGAATTTGATGGCCCAGAAGAACATACA
ATGGATTGGGACAAAGTCTGTTGGGCAGACAATGGTTTGTGACAAAATTCTGTCCAG
GTGTGTTGACCGAATTCAGGCTTTCTTTATGCGATATGAGTTCAGTTAATGAAAACA
CAGGGGAGTGACCAGAAGTGATTGTTTCCTTCTTTGGCGTTTCTGTCTTCCTCTTT
TTTGTTCTATTCCCTTATTTTGCAACCTTTTGGATGTTACCCTTTGGAAGTTACCCT
CTTGTAACTTCCACATTAAAAGTTTGGGGGCTGGCTGATANAAGGAACTCCAGAGAA
CAACTTGATTCTGTGCTTTGGGAGAGACAGANAAATGAGGGGTGTGGAGGAAGGTCA
GANAGACCCTGAGGCCTCTGCCTNCTTCAGCATGTCANAGCACCCTATTTTGGGGCT
TGCTTTCTGAGCCCNAACATCTCCAGCCTTCCANGANTCTGTGGCTTATCCTTCCCA
ANGATAGGATCACTTGNCACTCTACTGANCCTAAGTTGTATTCANTTTCTTTTGATC

CGCCTNGACTCTNTAGCNANTGANAANCACAACNTGGNAACNAACCCTCATAAANCT GCTNTANCTTCTGGTTTTAAGNNCAAAACA

BSK-89 oder Accession Nr. AA574456 - revers

10

15

20 1

25

30

35

BSK-67 oder Accession Nr. AA574454

TACTACCTCCCTAAAAT

45

40

CGGCAAATCTTACCCCGCCTGTTTACCAAAATCATCACCTCTAGCATCACCAGCATT
AGAGGCACCGCCTGCCCAGTGACACATGTTTAACGGCCGCGGTACCCTAACCGTGCA
AAGGTAGCATAATCACTTGTTCCTTAAGTAGGGATCGGCTTGAATGGCTCCACGAGG
GTTCAGCTGTCTCTTACTTTTAACCAGTGAAATTGACCTGCCCGTGAAGAGGCGGGC
ATAACACAGCAAGACGAGAAGACCCTATGGAGCTTTAATTTATTAATGCAAACAGTA
CCTAACAAACCCACAGGTCCTAAACTACCAAACCTGCATTAAAAATTTCGGTTGGGG
CGACCTCGGGGCAGAACCCAACCTCCGAGCAGTACATGCTAAGACTTCACCAGTCAA
AGCGAACTACTATACTCAATAGATCCAATAACTTGACCAACAGTACCCTA
GGGATAACAGCGCAATCCTATTCTAGAGTCCATATCAACAATAGGGTTTACGACCTC
GATGTTGGATCAGGACATCCCAATGGTGCAGCCGCTACTAAAGGTTCGTTTGTTCAA

55

CGATTAAAGTCCTACGTGATCTGAGTTCAGACCGGAGTAATCCAGGTCGGTTTCTAT
CTACTTCAAATTCCCG

BSK-80 oder Accession Nr. AA574455

10

15

20

5

CTGAGTCTCAAGGAAGCAGCCACAGGGGCTTCTGCTGAGGGGGCAGGCGGAGCTTGA GGAAACCGCAGATAAGTTTTTTTCTCTTTGAAAGATAGAGATTAATACAACTACTTA AAAAATATAGTCAATAGGTTACTAAGATATTGCTTAGCGTTAAGTTTTAACGTAATT

TTAATAGCTTAAAATTTTAAGAGAAAATATGAAGACTTAGAAGAGTAGCATGAGGAA GGAAAAGATAAAAGGTTTCTAAAACATGACGGAGGTTGAGATGAAGCTTCTTCATGG

25

30

35

40

BSK-83 oder Accession Nr. AI046025

AGTAAAAAATGTATTTAAAAGAAAATTGAGAGAAAGCG

45

50

55

BSK-83-2 - forward

## Best Available Copy

#### EP 1 310 567 A2

GTTCAAACAGCAAACGCCCACAGATGGCCCAGAGGTGGTGGTAGTCAGGGTGTGTGG
GTGTTTTTAGGGTTCTTTAGTGTTTTCTTTCACCCAGGGGTGGTGGTCCCAGCCA
GTTTGGTGCTGACGGTGAGAGGAAATTAGAATCTGTTTGCAAATTGTCCAACCCACC
CCCTCAACATGAGGGGCTTCCATTTTCTGTGTTTTGTAAGGGAACTGTTTCCTTCAT
GCCGCCATGTTCCTGATATTAGTTCTGATTTCTTTTTAACAAATGTTATCATGATTA
AGAAAATTTCCAGCACTTTAATGGCCAATTAACTGAGAATGTAAGAAAATTGATGCT
GTACAAGGCAAATAAAGCTGTTTATTAACCTTG

BSK-78 -3- forward

J-4 oder Accession Nr. AI046024

AAAACGACGCCAGTGAATTGTAATACGACTCACTATAGGGCGAATTGGGCCCTCTA
GATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGGCTTTTGAC
ACCAGACCAACTGGTAATGGTAGCGACTGGCGCTCAGCTGGAATTCCGGCTGGGACT
ACCGGGTCTCACTCCAGAAGAGGCTTCTTCAGAGCATGGTAGTCTTGGGGTTCTAAG
AGAATGAGAGTAGAAGCTGCAAAACCTCTTGAAACTGGGGCTTGGGAGTCACACATG
ACTTTCTCCACATTCTGTTCGTCAAAAGCGAATCATAAGGACAGCACAGACTCAAGG
GATAAG

M-3 oder Accession Nr. AI048523

#### HOX-B3

Thymosin-beta-4

Glucocerebrosidase oder Acc. #: M16328

5

10

15

20

25

30.

35

40

45

50

55

CCATTAGGCCTATGAATTATAAGATACAGTCACTTTAAAATCCACTGGAAGGCTGAA GAGTGAGTTAAACCTCTTATAATGAATATACAGTGAAACCAGTAGAGGCATTTTATT TAGGGTTCCTACAAGAAAGTGCTTAAATAGCATCGACGCCTACATGCTACATCCTGT TCAGTCTCTGCCTCTGTGATGCAGTTGGCCAGCAAATATCCTCCAAGTCATCTTG CATAGTGCTAGGGATAAAATGAGGAGCAATACCAAATGCTATACCTGCCCTTATGGG AAAACGCATCCTTGTTTTTGTTTAGTGGATCCTCTATCCTTCAGAGACTCTGGAACC CCTGTGGTCTTCTTCATCTAATGACCCTGAGGGGGATGGAGTTTTCAAGTCCTTCC AAAAGCTTCGGCTACAGCTCGGTGGTGTTGTCTGCAATGCCACATACTGTGACTCCT TTGACCCCCGACCTTTCCTGCCCTTGGTACCTTCAGCCGCTATGAGAGTACACGCA GTGGGCGACGGATGGAGTATGGGGCCCATCCAGGCTAATCACACGGGCACAG GCCTGCTACTGACCCTGCAGCCAGAACAGAAGTTCCAGAAAGTGAAGGGATTTGGAG GGGCCATGACAGATGCTGCTCTCAACATCCTTGCCCTGTCACCCCCTGCCCAAA ATTTGCTACTTAAATCGTACTTCTCTGAAGAAGGAATCGGATATAACATCATCCGGG TACCCATGGCCAGCTGTGACTTCTCCATCCGCACCTACACCTATGCAGACACCCCTG ATGATTTCCAGTTGCÁCAACTTCAGCCTCCCAGAGGAAGATACCAAGCTCAAGATAC CCCTGATTCACCGAGCCCTGCAGTTGGCCAGCGTCCCGTTTCACTCCTTGCCAGCC CCTGGACATCACCCACTTGGCTCAAGACCAATGGAGCGGTGAATGGGAAGGGGTCAC TCAAGGGACAGCCGGAGACATCTACCACCAGACCTGGGCCAGATACTTTGTGAAGT TCCTGGATGCCTATGCTGAGCACAAGTTACAGTTCTGGGCAGTGACAGCTGAAAATG AGCCTTCTGCTGGGCTGTTGAGTGGATACCCCTTCCAGTGCCTGGGCTTCACCCCTG AACATCAGCGAGACTTCATTGCCCGTGACCTAGGTCCTACCCTCGCCAACAGTACTC ACCACAATGTCCGCCTACTCATGCTGGATGACCAACGCTTGCTGCTGCCCCACTGGG CAAAGGTGGTACTGACAGACCCAGAAGCAGCTAAATATGTTCATGGCATTGCTGTAC ATTGGTACCTGGACTTTCTGGCTCCAGCCAAAGCCACCCTAGGGGAGACACCCGCC TGTTCCCCAACACCATGCTCTTTGCCTCAGAGGCCTGTGTGGGGCTCCAAGTTCTGGG AGCAGAGTGTGCGGCTAGGCTCCTGGGATCGAGGGATGCAGTACAGCCACAGCATCA

-5

10

15

20

25

30

35

40

45

50

55

#### EP 1 310 567 A2

TCACGAACCTCCTGTACCATGTGGTCGGCTGGACCGACTGGAACCTTGCCCTGAACC CCGAAGGAGGACCCAATTGGGTGCGTAACTTTGTCGACAGTCCCATCATTGTAGACA TCACCAAGGACACGTTTTACAAACAGCCCATGTTCTACCACCTTGGCCACTTCAGCA AGTTCATTCCTGAGGGCTCCCAGAGAGTGGGGCTGGTTGCCAGTCAGAAGAACGACC TGGACGCAGTGGCACTGATGCATCCCGATGGCTCTGCTGTTGTGGTCGTGCTAAACC GCTCCTCTAAGGATGTGCCTCTTACCATCAAGGATCCTGCTGTGGGCTTCCTGGAGA CAATCTCACCTGGCTACTCCATTCACACCTACCTGTGGCATCGCCAGTGATGGAGCA GATACTCAAGGAGGCACTGGGCTCAGCCTGGGCATTAAAGGGACAGAGTCAGCTCAC ACGCTGTCTGTGACTAAAGAGGGCCAGCAGGGCCAGTGTGAGCTTACAGCGACGTA AGCCCAGGGGCAATGGTTTGGGTGACTCACTTTCCCCTCTAGGTGGTGCCCAGGGCT GGAGGCCCCTAGAAAAAGATCAGTAAGCCCCAGTGTCCCCCCAGCCCCCATGCTTAT GTGAACATGCGCTGTGTGCTTGCTTTGGAAACTNGCCTGGGTCCAGGCCTAGGG TGAGCTCACTGTCCGTACAAACACAAGATCAGGGCTGAGGGTAAGGAAAAGAAGAGA CTAGGAAAGCTGGGCCCAAAACTGGAGACTGTTTGTCTTTCCTAGAGATGCAGAACT GGGCCCGTGGAGCAGCAGTGTCAGCATCAGGGCGGAAGCCTTAAAGCAGCAGCGGGT GTGCCCAGGCACCCAGATGATTCCTATGGCACCAGCCAGGAAAAATGGCAGCTCTTA AAGGAGAAAATGTTTGAGCCC

### PU.1 (Spi-1) bzw. Accession # X66079

ACCCAGATGGCGTCTTCTATGACCTGGACAGCTGCAAGCATTCCAGCTACCCTGATT CAGAGGGGGCTCCTGACTCCCTGTGGGACTGGACTGTGCCCACCTGTCCCAGCCA CCCCTATGAAGCCTTCGACCCGGCAGCAGCCGCTTTTAGCCACCCCCAGGCTGCCC AGCTCTGCTACGAACCCCCACCTACAGCCCTGCAGGGAACCTCGAACTGGCCCCCA GCCTGGAGGCCCCGGGGCCTGCCCCCCCATACCCCACGGAGAACTTCGCTAGCC AGACCCTGGTTCCCCCGGCATATGCCCCGTACCCCAGCCCTGTGCTATCAGAGGAGG **AAGACTTACCGTTGGACAGCCCTGCCCTGGAGGTCTCGGACAGCGAGTCGGATGAGG** CCCT CGTGGCTGGCCCGAGGGGAAGGGATCCGAGGCAGGACTCGCAAGAAGCTGCGCCT GTACCAGTTCCTGCTGGGGCTACTGACGCGCGGGGACATGCGTGAGTGCGTGTGGTG GGTGGAGCCA'GGCGCC GGCGTCTTCCAGTTCTCCTCCAAGCACAAGGAACTCCTGGCGCGCCGCTGGGGCCAG TACGCCAAGACCGGCGAGATCCGCAAGGTCAAGCGCAAGCTCACCTACCAGTTCGAC AGCGCGCTGCTGCAGTCCGCCGGGC CTGAGCACAC CCGAGGCTCC CACCTGCGGA GCCGCTGGGG GACCTCACGTCCCAGCCAGG ATCCCCTGGAAGAAAAGGGCGTCCCCACACTCTAGGTGATAGGACTTACGCATCC CCACCTTTTGGGGTAAGGGGAGTGCTGCCCTGCCATAATCCCCAAGCCCAGCCCGGG CCTGTCTGGGATTCCCCACTTGTGCCTGGGGTCCCTCTGGGATTTCTTTGTCATGTA

CAGACTCCCTGGGATCCTCATGTTTTGGGTGACAGGACCTATGGACCACTATACTCG
GGGAGGCAGGGTAGCAGTGCTTCCAGAGTCCCAAGAGCTTCTCTGGGATTTTCTTGT
GATATCTGATTCCCCAGTGAGGCCTGGGACCTTTTTAAGATCGCTGTGTGTCTGTAA
-ACCCTGAATCTCATCTGGGGTGGGGGGCCCTGCTGCCAAGG
TTCCCTCTTGTCAGATCTGAGATTTCCTAGTTATGTCTGGGGCCCCTCTGGGAGCTGT
TATCATCTCAGATCTCTCGCCCATCTATGGCTGTTGTCACATCTGTCCCCTCAT
TTTTGAGATCCCCCAATTCTCTGGAACTATTCTGCCCCCTTTTTATGTGTCTGGA
GTTCCCCAATCACATCTAGGGCTCCTCC

Mel-18 bzw. Accession # : D13969

5

10

15

20

25

30

35

40

45

50

55

GAGAGCCCGAACAGGAAGAGGGTACAGCTTTGTGCAGGTCACATGCCCACTGCAGCC  ${ t CTCCAGCCTCTGGTCCCCAGAGCGGACTTTGGAAGCTGAACTGCTTTTGTTGCTGGA}$ AGACTTATGTTATAATTTACCCTGGGTGGACCAGGGTCGTACAAAAGGGCAACGCTC CCCAGTCCCCCACTCCCGACCCCGGAATCATGCATCGGACTACACGGATCAAAATC ACAGAGCTGAACCCCCACCTCATGTGTGCCCTCTGCGGGGGGTACTTCATCGACGCC ACCACTATCGTGGAGTGCCTGCATTCCTTCTGCAAAACCTGCATCGTGCGCTACCTG GAGACCAACAATACTGCCCCATGTGTGACGTGCAGGTCCATAAAACCCGGCCGCTG CTGAGCATCAGGTCTGACAAAACACTTCAAGACATTGTCTACAAATTGGTCCCTGGG CTTTTTAAAGATGAGATGAAACGGCGGCGGGATTTCTATGCAGCGTACCCCCTGACG GAGGTCCCCAACGGCTCCAATGAGGACCGCGGCGAGGTCTTGGAGCAGGAGAAGGGG GCTCTGAGTGATGATGAGATTGTCAGCCTCTCCATCGAATTCTACGAAGGTGCCAGG GACCGGGATGAGAAGAAGGGCCCCCTGGAGAATGGGGATGGGGACAAAGAGAAAACA GGGGTGCGCTTCCTGCGATGCCCAGCAGCCATGACCGTCATGCATCTTGCCAAGTTT CTCCGCAACAAGATGGATGTGCCCAGCAAGTACAAGGTGGAGGTTCTGTACGAGGAC GAGCCACTGAAGGAATACTACACCCTCATGGACATCGCCTACATCTACCCCTGGCGG CTAGCCACGGTGCCCACCCCTCCGAGGGCACCAACACCAGCGGGGCGTCCGAGTGT CTGCCCAGCCCAGCCCATCCCATGGCTCTCCCAGTTCCCATGGGCCTCCAGCC ACCCACCTACCTCCCCCACTCCCCCTTCGACAGCCA CCACCAGCAGGGGGCGCAAGATGACTGTCAACGGCGCTCCCGTGCCCCCTTAACTT GAGGCCAGGGACCCTCTCCTTCTTCCAGCCAAGCCTCTCCACTCCTTCCACTTTTT CTGGGCCCTTTTTTCCACTTCTACTTTCCCCAGCTCTTCCCACCTTGGGGGTGG GGGGCGGTTTTATAAATAAATATATATATATATATGTACATAGGAAAAACCAAATATA TAATTTGCTGTTTTTGGGGGTGCCTGGAGATGAACTGGATGGGCCACTGGAGTCTCA ATAAAGCTCTGCACCATCCTCGCTGTTTCCCAAGGCAGGTGGTGTTTGGGGGCCCC TTCAGACCCAAAGCTTTAGGCATGATTCCAACTGGCTGCATATAGGAGTCAGTTAGA ATTGTTTCTTTCTCTCCCCGTTTCTCTCCC CATCTTGGCTGCTGTCCTGCCTCTGACCAGTGGCCGCCCCCGCGTTGTTGAATGTC CAGAAATTGCTAAGAACAGTGCCTTTTACAAATGCAGTTTATCCCTGGTTCTGAGGA GCAAGTGCAGGGTGGAGGTGGCACCTGCATCACCTCCTCTTTGCAGTGGAAACTT

TTGCATCATTTATCTTGTGGAAAAGAAGATTCAGGCCCTGAGAGGTCTCAGCTCTTG
GAGGAGGGCTAAGGCTTTAGCATTGTGAAGCGCTGCACCCCACCAACCTTACCCTC
ACCGGGGAACCCTCACTAGCAGGACTGGTGGTGGAGTCTCACCTGGGGCCTAGAGTG

AAGTGGGGGTGGGTTAACCTCACACAAGCACAGATCCCAGACTTTGCCAGAGGCAAA CAGGGAATTCCGCCGATACTGACGGGCTCCAGGAGTCGTCGCCACACTCG

BSK-87-5 - revers

5

10.

15

20

25

30

35

40

45

50

55

GGTAATACTTAGAGCATTACAAAGCACTTTCACATTTAAATTTGATTTTGGAAAGTA
TTTTCTTTTTGAGACAGAGTCTCTGTCACCCAGGCTGGAGTGCATGGAGTGCAGTGG
TGCAAACACAGGCTCGCTGCACCCTCAACCTCCTGGGCTCAAGCAGTCTTTCCACCTC
GGCCTCCCAAGTTGCTAGGACTATAGGACTACAG

BSK-88-1 forward

TGAGCTTGAACGCTTTCTTAATTGGTGGCTGCTTTTAGGCCTACTATGGGTGTTAAA
TTTTTTACTCTCTCTACAAGGTTTTTTCCTAGTGTCCAAAGAGCTGTTCCTCTTTGG
ACTAACAGTTAAATTTACAAGGGGATTTAGAGGGTTCTGTGGGCAAATTTAAAGTTG
AACTAAGATTCTATCTTGGACAACCAGCTATCACCAGGCTCGGTAGGTTTGTCGCCT
CTACCTATAAATCTTCCCACTATTTTGCTACATAGACGGGTGTGCTCTTTTAGCTGT
TCTTAGGTAGCTCGTCTGGTTTCGGGGGTCTTAGCTTTTGGCTCTCTTTTAGCTTA

BSK-88-1- revers

ATTAACTAGAAATAACTTTGCAAGGAGAGCCAAAGCTAAGACCCCCGAAACCAGACG
AGCTACCTAAGAACAGCTAAAAGAGCACACCCGTCTATGTAGCAAAATAGTGGGAAG
ATTTATAGGTAGAGGCGACAAACCTACCGAGCCTGGTGATAGCTGGTTGTCCAAGAT
AGAATCTTAGTTCAACTTTAAATTTGCCCACAGAACCCTCTAAATCCCCTTGTAAAT
TTAACTGTTAGTCCAAAGAGGAACAGCTCTTTGGACACTAGGAAAAAACCTTGTAGA
GAGAGTAAAAAATTTAACACCCATAGTAGGCCTAAAAGCAGCCACCAATTAAGAAAG
CGTTCAAGCTCA

BSK-88-1-2 - forward

TTTCTTACTGCTGGTCCTGGGAGCCTTTTCCTTCGGAGCAGCCCTGTCCGGCAT
CTGTCTTGAGCTCCCAGCAAGGAAAGTCCATCAGCTTGATAATGGAGGAGAACAATG
ACTCCACGGAGAACCCCCAACAAGGCCAAGGGCGGCAGAATGCCATCAAGTGTGGGT
GGCTGAGGAAGCAAGGAGGCTTTGTCAAGACTTGGCATACTCGCTGGTTTGTGCTCA
AGGGGGATCAGCTCTATTATTTCAAAGATGAAGATGAAACCAAGCCCTTGGGTACTA
TTTTTCTGCCTGGAAATAAAGTTTCTGAGCATCCCTGCAATGAAGAGAACCCAGGGA
AGTTCCTTTTTGAAGTAGTTCCAGGTAAGATATTTTCCTAGTCTGATTAAATTATTG
CATCCTGGGTGGTAAAGGTGAANATGGGTCAAACAGGNTTCATTCTTTTTTGAATCA
TGACTGAGACCTTAATTTGAGGCTTGGNTAATGGTGACCCAAATAATGATGCAGGGT
TATTTCTAATCAAATGAATGCCTCCCCACTACTNTGACACATAATATAAATTTATTT
GNCATGAACTCATANTGACCCANNNTGAG

20

5

10

15

BSK-88-1-2- revers

25

GCAAAACCTCCTTGAAGATACAATTTTGTGAGGAAATATGTCAGTGATTCCACTGGG CAAAGCATTCAACCTATAACCCCTTGTCAAATTTCACATCACAAGAGCGCTGTAAAA TCAAATTCATCTCCAATAGTCCTGAACAAATACTGTATCATGACTTGTGGTCAACTA TGGAGTCTCATGGACAAATGAAAATCTANTAGTTATGTGGNCANAGTATGTGTGNGN GANCGCATTCATTNGNNCTANNATATAANCNTG

35

30

BSK-88-2 - forward

40

45

TGAGCTTGAACGCTTTCTTAATTGGTGGCTGCTTTTAGGCCTACTATGGGTGTTAAA
TTTTTTACTCTCTCTACAAGGTTTTTTCCTAGTGTCCAAAGAGCTGTTCCTCTTTGG
ACTAACAGTTAAATTTACAAGGGGATTTAGAGGGTTCTGTGGGCAAATTTAAAGTTG
AACTAAGATTCTATCTTGGACAACCAGCTATCACCAGGCTCGGTAGGTTTGTCGCCT
CTACCTATAAATCTTCCCACTATTTTGCTACATAGACGGGTGTGCTCTTTTAGCTGT
TCTTAGGTAGCTCGTCTGGTTTCGGGGGTCTTAGCTTTTGCCAAAGTTA

50

BSK-88-2 - revers

ATTAACTAGAAATAACTTTGCAAGGAGAGCCAAAGCTAAGACCCCCGAAACCAGACG
AGCTACCTAAGAACAGCTAAAAGAGCACACCCGTCTATGTAGCAAAATAGTGGGAAG
ATTTATAGGTAGAGGCGACAAACCTACCGAGCCTGGTGATAGCTGGTTGTCCAAGAT
AGAATCTTAGTTCAACTTTAAATTTGCCCACAGAACCCTCTAAATCCCCTTGTACAA
TTTAACTGTTAGTCCAAAGAGGAACAGCTCTTTGGACACTAGGAAAAAACCTTGTAG
AGAGGTAAAAAATTTAACACCCATAGTAGGCCTAAAAGCAGCCACCAATTAAGAAA
GCGTTCAAGCTCA

BSK-88-3 - forward

BSK-88-3 - revers

GGCCCAGAGAGCAAGTTTATTTGGTGAATGCTGACGGCAAACATCATCCAAGAGAGA
CAAGATGGGAAAGTTGCTGAGACAAGAAAGCCTAGGGAAACTTTAGGCTAGATACAA
AATTCACACAGGGAAAGGCACGGACTCTGGGGAGACTGGGAAGGTCCTCAGCCATTC
AGCACCATGCGGACGACTCTTCATAGTTGATACAACCATTGCTGTCCTCATGCCCT
GCCACCAGCATCTCTACTTCTTCCTCTGTCATCTTCTCACCCAGTGTGACAAGAACA
TGCCGGATTTCAGCACCCATGACGGTGCCATTTCCTTCTTGTCAAACACCCGAAGT
CCTTCGACATAATCCTCATAGGTGCCCTGGTCCTTGTTCTTGGCCACTGTCTGCAGC
ATGGGCAGAAAGTGCTCAAAGTCCAGCACCTTCACATTCATCTCATCACTCTTGGGG
TTCCCCAGGACCTTGAGCACCTNGGCGTTGGTAGGGTTCTGGCCCAAGGCCCTCATC
ACATCCCCACACTGGCTGNCAGGATCTTGCAT

### BSK-1D1 - forward

5

10

15

20

BSK-1E10-9

25

CTGGAATCTAGATAGTTTTCAGGATGGGGAAGATAGATTCAAAACCACCTAAGGGCA TTCTGGGTACAAAGCATTGTGCAAGGCTTTGGTGATACAGAGAATAAGGTCTTTTTT CCCATACTTCCTCATCTGCCAAGGTTATCTCCAATTGTACCTTTCTCTCCAGTTCCA AGCTTGC

30

BSK-1L2-1 - forward

35

40

CGGTAAATTTTTACTCTCTCTACAAGGTTTTTTCCTAGTGTCCAAAGAGCTGTTCC
TCTTTGGACTAACAGTTAAATTTACAAGGGGATTTAGAGGGTTCTGTGGGCAAATTT
AAAGTTGAACTAAGATTCTATCTTGGACAACCAGCTATCACCAGGCTCGGTAGGTTT
GTCGCCTCTACCTATAAATCTTCCCACTATTTTGCTACATAGACGGGTGTGCTCTTT
TAGCTGTTCTTAGGTAGCTCGTCTGGTTTCGGGGGTCTTAGCTTTTGCTACATAGTCCTTTCC
AAAGTTATTTCTAGTTAATTCATTATGCAGAAGGTATAGGGGTTAGTCCTTGCTATA

45

BSK-1K9-B1 - forward

50

55

### Best Available Copy

#### EP 1 310 567 A2

ATGAAAAGAATCTCACCCCATTAGATAGCACTCCTGAGCTCAGTGTAGGGTCCCAA GCCCACCAACCAAGGCTGTCTCCCCAGAACAATCAGGAAGGCTCCAGTGGTCAGAT 5 AGAAAGTGACAAACAAACATGAGTGCATCTAGCCACATCCTCACATTCCACACAAG AGAACCCATGTGACTAAACAGGAATCCCCTGCTGCCCCCAGTTCTAAAAAGGAACTAC TGACTGCCAGTGCAATTTCTT 10 BSK-1K9-B1 - revers 15 CAAGGAAATTGCACTGTGCAGTCAGTAGTTCCTTTTTAGAACTGGGTGCAGCAGGGG ATTCCTGTTTAGTCACATGGGTTCTCTTGTGTGGGAATGTGAGGATGTGGCTAGATGC ACTCATGTTTTGTTCACTTTCTATCTGACCACTGGAGCCTTCCTGATTTGTTCT 20 GGGGAGACAGCCTTGGTTGGTGGGCTTGGGACCCTACACTGAGCTCAGGAGTGCTAT CTAATGGGGTGAGATTCTTTTCATAACTGATTGAGCCCTGAAGAAGCTGCTTTGCT TCTCCATGTGGGAAAATGGNCATTATGAGTTCCTTTCTGCACCCTCCCCACTCTACC CTGTCTTTANTAAGGATGGGTTTTNCTGTGCAAACCACAAAGAAACCNTTCTCTCT 25 GGG 30 BSK-2A15-A1 - forward TGCAGCTCGCCTTGCACAACAGGAAAAACAANAACAAGTTAAAATTGAGTCTNTNGC CAANAGCTTAAAAAATGCTNTGAGGCAAACTGCAAGTGTCACTNTGCAGGCTATTGC 35 AGCTCAAAATGCTGCGGTCCAGGCTGTCAAT 40 BSK-2A15-A1 - revers GCATTGACAGCCTGGACCGCAGCATTCTGAGCTGCAATAGCCTGCAGAGTGACACTT 45 GCAGTTTGCCTCAGAGCATCTTCTAAGCTCTTGGCTAGAGACTCAATTTTAACTTGT TCTTGTTTTTCCTGTTGTGCAAGGCGAGCTGCAT BSK-2A15-D3 - forward 50 GCTGGAACAGAATAGCCTGGAACAGGATCTTTCGTTCCATAATATTTTTTAATTAGA GCAAGTCCTGCTACTGTATCTGTTCCTTTGAAGTTAACCAAGTGAGCAGATGCTCCT

ATGCCAGCAGTCTCTTGGGAAGAGACTCCTCTGTAGCCAAAATCATGTAACTTGTAT

TCCAGACCATCTAAGTTACCAGAAGTTTCTAACAAATATTTTGGCCAATATTTTCTTC
TGCTCTCTAGAATTTGTGGCCACTGTGATTGGATACCAGGACTGAACAAGAATAGTC
-TCAATCCAATTTGTAAGCCAGTAACACTCTGGATCTGTGTTTTCCACCGTGAAGAAA
CATTTCCTCTGGGAATGACAAANCCCTCANGAACAGCTTTTATTTCTATTGGAAGAT
GCCCATCATACTTCTCAAGAATGGAGTTCCTCCCTTTTCATTAAAGACATCATCTTG
GAAATGTTCTTTGTAGACATCTTTGGCTTCCTGGATTTCTCTTTGGGTACTATTAACCTTTTAACGAAATGTACTTTAACCTTTTAACCCTTTAAGNACTTATTAANAAAGNACTGNACCCATAAAAACTGGNNCTCATATTTA
NCTTCCTTAATTGGAGGNTNTGNTTNTTTTACGGNTTCAAAGANGAAAAAATTTCTT
GNGTGGGGGGANTTG

BSK-2A15-D3 - revers

GCCGCGCCAGGAGCTCGCGGCGCGCGCGCCCCTGTCCTCCGGCCCGAGATGAATCCT
GCGGCAGAAGCCGAGTTCAACATCCTCCTGGCCACCGACTCCTACAAGGTTACTCAC
TATAAACAATATCCACCCAACACAAGCAAAGTTTATTCCTACTTTGAATGCCGTGAA
AAGAAGACAGAAAACTCCAAATTAAGGAAGGTGAAATATGAGGAAACAGTATTTTAT
GGGTTGCAGTACATTCTTAATAAGTACTTAAAAAGGTAAAGTAGTAACCAAAGAGAAA
ATCCAGGAAGCCAAAGATGTCTACAAAGAACATTTCCAAGATGATGTCTTTAATGAA
AAGGGATGGAACTACATTCTTGAGAAGTATGATGGCATCTTCCAATAAAAATAAAA
ACTGTTCCTGAGGGCTTTGTCATTTCCANAGGAAATGTTTCTTNNCGGGGGAAAACA
CAGATCCNAAGGGGNACTGGNTTACAAATTGGATTGAGANTATTCTTGGTNANNCCT
GGGATCCAATCCAAGGGGGCCCCAAATT

BSK-2A3-A2 - forward

CACGAGCGCACGTGTTAGGACCCGAAAGATGGTGAACTATGCCTGGGCAGGCGAAG
CCAGAGGAAACTCTGGTGGAGGTCCGTAGCGGTCCTGACGTGCAAATCGGTCGTCCG
ACCTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAA
GTTTCCCTCAGGATAGCTGGCGCTCTCGCAGACCCGACGCACCCCCGCCACGCAGTT
TTATCCGGTAAAGCGAATGATTAGAGGTCTTGGGGCCGAAACGATCTCAACCTATTC
TCAAACTTTAAATGGTAANAAGCCCGGCTCGCTTGGCGTGGAGCCGGGCGTGGAATG
CNAGTGCCTAATGGGCCACTTTTGGTAANCAAAACTGGCGCTGCGGGATGAACCCAA
CGCCCGGTTAANGGGCCCNATGCCGACCTCATNANACCCCANAAAANGNGTTGGNTG
ATAC

BSK-2A3-A2 - revers

TATCAACCAACACCTTTTCTGGGGTCTGATGAGCGTCGGCATCGGGCGCCTTAACCC
GGCGTTCGGTTCATCCCGCAGCGCCAGTTCTGCTTACCAAAAGTGGCCCACTAGGCA
CTCGCATTCCACGCCGGCTCCACGCCAGCGAGCCGGGCTTCTTACCCATTTAAAGT
TTGAGAATAGGTTGAGATCGTTTCGGCCCCAAGACCTCTAATCATTCGCTTTACCGG
ATAAAACTGCGTGGCGGGGGTGCGTCGGGTCTGCGAGAGCGCCAGCTATCCTGAGGG
AAACTTCGGAGGGAACCAGCTACTANATGGTTCGATTAAGTCTTTCGCCCCTATACC
CAGGTCGGACGACCGATTTGCACGTNAGGACCGCTACGGACCTCCCCANAGTTCCTN
TGGNTTNGCCCTGCCAGGCTANTNACCATNTTTGGGNCTAAACGNGCGCTCGGCCGG
AATTCNCCGANCTGANGGGTCCNGAATNNNNCCCCCATCCCAGC

BSK-2A3-B3 - forward

BSK-2A3-B3 - revers

BSK-2E14-D4 - forward

BSK-2E14-D4 - revers

5

10

15

20

25

30

35

40

45

50

BSK-2F6-D3 - forward

CAACAACACATCATCAGTAGGGTAAAACTAACCTGTCTCACGACGGTCTAAACCCAG CTCACGTTCCCTATTAGTGGGTGAACAATCCAACGCTTGGTGAATTCTGCTTCACAA TGATAGGAAGAGCCGACATCGAAGGATCAAAAAAGCCGACGTCGCTATGAACGCTTGG CCGCCACAAGCCAGTTATCCCTTGTGGTAACTTTTCTGACACCTCCTGCTTAAAACC CAAAAGGTCAGAAGGATCGTGAGGCCCCGCTTTCATGGGCAGTAGGCAGATTCGTCC

BSK-2F6-D3 - revers

GGACGAATCTGCCTACTGCCCATGAAAGCGGGGCCTCACGATCCTTCTGACCTTTTG
GGTTTTAAGCAGGAGGTGTCAGAAAAGTTACCACAGGGATAACTGGCTTGTGGCGGC
CAAGCGTTCATAGCGACGTCGCTTTTTGATCCTTCGATGTCGGCTCTTCCTATCATT
GTGAAGCAGAATTCACCAAGCGTTGGATTGTTCACCCACTAATAGGGAACGTGAGCT
GGGTTTAGACCGTCGTGAGACAGGTTAGTTTTACCCTACTGATGATGTTTTTG

BSK-2G3-A3 - forward

ANAACAGCTTNTATCCCCATACCNTTATCACATCCCAGAAAATTACCCCCNTACATT NAATGACTACTNCNGCCCTATCAAATTNTTTGATATCCAAACTTTCTTTGGGGGGNT TTTTTCCCNNCCCNAATCANTCANGNCCNCCATTGNNTTTAATGGGNAGNTNCTNNA-NNNAAAATATCCNCCTTTTTTCTTTNTGANTTGNCTTTTAAAAAACCANTNANANCC TGGGNGNTNCCAACNGNNTTNTGG

BSK-2G3-A3 - revers

5

10

15

20

25

30

35

40

45

50

55

CGGCTTTGTGGAAGACAGTTTTTCCGTGAACAGGGGTTGGAGGTGGTGGGAGGG
ATGGTTTTGGGATGAAACTGTTCCACCTCAGATCATTAGGTATTAGATTCTCATAAA
GAGCACACAGCCTANATCCCTCACATGTGCAGTTCCTATGAGAATCTAATGCCACAG
TTCACCCGCCACTCACCGCTGTGAGTGGCCTTGTTCCTAACAGACCATGGACCANTA
CTGGCCCGTGGCCCANGGGTTAGGGACCCCTGATCTAACACATANATCTAATGAAGA
AACAGGTTCCATGTGTTAAAAATCTGTGGTTGAAACTGACATTATATTCCTCCTGAT
TTGATACCATGGGGAATACANAACATGACCTATGTGGTACTCCTACCAAAAACGTTT
NACTTGAATCTAACCATGANCAAACATCCANACAANTACAGCTTGTGAGAGCCTCNC
ANGCTGNTACTTGGATTTTTTAAAANNGNNNTGNNTNAAAGGAAAAAAAGGNNGGGNT
ANTNTNNATTAANGAACTTNCNNTNAANGCNNGNGGGNCTTGNTGAANNTNGATGG
GAAAAAANCNCCCC

BSK-2G3-C5 - forward

AGCACACTGGCGGCCGTTACTAGTGGATCCGAGCTCGGTACCAAGCTTGATGCATAG
CTTGAGTATTCTATAGTGTCACCTAAATAGCTTGGCGTAATCATGGTCATAGCTGTT
TCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCAT
AAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCG
CTCACTGCCCGCTTTCCANTCGGGAAACCTGTCNTGCCANCTGCATTAATNAATCNG
NCAACNCNCGGGGAGAGGCGGTTTNCNTATTNGGCGCTCTTNCNCTTCTCNNTCACT
GACTCNTGNCTCNGNCNNTNNNTNNNGNNANCGGATANNTNACTTCAAANGCGGNA
TACGNTATCCANAATNANGGGATAACNCNNNAAAAAACAT

BSK-2G3-C5- revers

BSK-2K15-A1 - forward

CTAAACTTAGGGCAACCCCAAGCGCTTGAACCTATACCACCCCACTTTCCTGAGCTC
TGTAAAGAGCATGAAGTTTTCCCACTGACCCCATACACTGAGGTGCCATCACACTGC

ACATTTCCTTCCGGAGAACAAGCACGTACTCAGGTGGAGATAGAACTGTCTTTTTAC
TTAATAGAAAATGATGTGGCAGCTTTAAGAGGAGCGCGTCGGTCTGGGGCTGGTGGC
TTGGGTCACGTGACACCGGTGGTCTCGTTTGCGCCTCTTGATGTCGCGGCGCCCC
TGAGGACGGATTGGGCAAGGCTGGTCCCTGTGTGATGAGACATCACCCTCCCAGGAG
CAAGGCGGAAGTCTGGAGGACCTTANGGGCGGANGCGGGAGAAGCNAACTCCGATGA
ATGGTCTCGGCAGGCTCTTCGGGAAAGGGTGAGCCANGGTGGGACTGGCCAGCCAGG
AAGCCTGCTGGTGCAGGGGAAANAAGANANCCCGCGAGATTNGGCCGGACCCTTCCC
GGCNGGGGAAGAAAATCAGGAGAACAGGCTGACTGGAAAANCCCGCGGNCCATGGNG
GACAAGGGTATTNCCGGGGCCAAAAAGGNCACCATGTNGGNGGAATTCCNCTGACNCC
GGCGTTACATTAACANTNGGNTGGGGGNAAAANAAAATAACCGGNNGGCCTGTNAGC
CAAATTCACNNCTGGNGGGCGTNTTTGGNTCCACNNGNCCNACTTGANNNNANTTNN
GNTTTTTTNGGNNCCNAAAANTGGGGA

#### BSK-2K15-A1 - revers

#### BSK-2K15-C1 - forward

GATGGCTTATATAACCAGAAGCCAAATATTTGTGTTCCAAAAATTATTTTACTTAGA
ACAATTCATTTAGATTCACTTCAATGTGAAGTATGTGAAAAGCTTAATTGCTGACCA
GAGTGAATTTTCCAACAATAAGAAATGCATGGCTGATTGGCTCAAATGATTCTATTC
TTCAGCCCTTACTGAAGTACTTAGTGCATACCACCTATGTAATTTTATTCCCCCCTT
ATAGAGATGGGGTTTCACCATGCTGCCCAGGCGGGTCTCAAACTCCTAGGTACAAGT
GATCCACCCACTTCGGCCCGCCAAAGGGCCGGGATTACTGGCATGAGCCACCAAGCC
CAGCCTGGTTATGTATTTATTCGGTATCATAGGGGCTACAGCACAAATCAAAACCAT
AGTATCAGTGACCTCCAATCTAATTCCCG

#### BSK-2K15-C1 - revers

ACATTGAAGTGAATCTAAATGAATTGTTCTAAGTAAAATAATTTTTTGGAACACAAAT ATTTGGCTTCTGGNTATATAANCCATC

BSK-2K15-D1- forward

10

15

20

25

30

35

40

45

50

55

BSK-2L13-A2 - forward

BSK-2L13-A2 - revers

TTCATAGGAATAGGAACAAACACCACAGTGGCACANTNATGGGAAGGAGCCCAGGC
TAGGAGTTAGGAGCACAGTGGGGGCTTCTCTGACACCACCAGGGCTCTCATCTGTAAA
ATGATATCTGTCTTAAAACTGAATGAGACCTGGCATTATTATGGCCAGCCCTGAAAA
CCAAGGTAGATGGGATGCACAACATCATTGTGAGGGATTTCTGCAAGGCCACTGCCT
GCCTTCCTTGGTGAATGGACGTGGACTCAGTCAGGAAACTCTTTCCACGGAGTCTGG
GCCCTTGAAATTATGCCGGACTACTTCAATTATACACTGCAATCGTTACTGTAATAG
TCACTCAGCACATACAAAATTCTTGGGATCATGTTACTTCCAAGGGTAGTGACCTCN
ATGTGGCCATGATATCATTAAAATTCCTTTGCNTTCCCCCTNCCAACATTAACATTA
AATGCTTTAAGGACCCCCTGCNTTTGGCATGCANCACCCAANANGCCGCCGCTGGNT
TCCATTTCCCCCCANAAGGACCTGAANGGAAATACTTCTTTCCTCCCATGGGGACCCT
GNANGGGGGCCCCANTTNAANTTGAANTTNCAAAAAACATTGGCNCGGAATCCNCTGA

BSK-2L13-B5 - forward

BSK-2L13-B5 - revers

GGTTGGGTTCTCCGAGGTCGCCCCAACCGAAATTTTTAATGCAGGTTTGGTAGT
TTAGGACCTGTGGGTTTGTTAGGTACTGTTTGCATTAATAAATTAAAGCCCCATAGG
GTCTTCTCGTCTTGCTGTGTCATGCCCGCCTCTTCACGGGCAGGTCAATTTCACTGG
TTAAAAGTAAGAGACAGCTGAACCCTCGTGGAGCCATTCATACAGGTCCCTAATTAA
GGAACAAGTGATTATGCTACCTTTGCACGGTTAGGGTACCGCGGCCGTTAAACATGT
GTCACTGGGCAGGCGGNGCCTCTAATACTGGNGATGCTAGAGGNGATGTTTTTGGTA
AACAGGCGGGGNAANATTGCCGAGNTCCTTTTACTTTTTTAACCTTTNCTTATNAA
CATGCCTGTGTTGGGTTGACAGNGAGGGNAATAATGACTNGTGGNTGATGNAAAAAT
TGGGCTGTNATTG

BSK-1B6-A3 - forward

NTCCATACCANTGGGCNGNNGCAAAAAAAAAAAAAACCGGCNGGCCTTNAACCAATTCNCCCTGGNGCCNTCTNNGGATCCACCGGCCAAC

#### BSK-1B6-A3 - revers

5. -

10

15

20

25

30

35

40

45

50

55

#### BSK-1C1-2 - forward

#### BSK-1C1-2 - revers

GTGATCTCGGCTCACTGCAACCTCTGCCTCCTGGGTTCAAGCGATTCTTGTGCCTCA
ACCTCCCGAGTAGCTGGCATTACAGGAGCCCGCCCACCATGCCTAGCTAATTTTTGT
ATTTTTAGTAGAGACAGGGTTTCACCATGTTGGCCAGGTTGGTCTGGAACTCCTGAC
CTTGTGATCTGCCTGCCTTGGCCTCCCAAAGTGCTGGAATTACAGGTGTGAGTCACC
GCGCCCAAGTATAGGCCACTTTTAAGAATTACTCANAGTTAGCTTATAAGAGGCGAA
TCAGTGGAGTCCTCCAGTTTGGTTCACACATAATTATTAGGTTGAACCATATAAAGT
TACTGTTTTTTGGTCCTGTGAATATTAATATTTATATATGGGTCCAATCTGATATGTT
CCANAAAATACACACTTAANTAAAGNTTGGAAAACCAAATCATANACTTACATACTG
NAAGGCGGGGTATTTGAAACTGGGATGGAAAATCAATTTAATGAGNTATGANCTGCN
TTAAAAAAATGGGANAANATCANANTTGGTGGNANNATTGNAAAAAACCAAATTGCT
GGGGAAGATTGGCATTTNANTNTTNTNNCNCCCNGNGGGGGGGNNGGGGGNACNAA
ANGNNANAAAGAA

BSK-1D8-2A - forward

5

10

15

20

25

30

35

40

45

50

55

BSK-1D8-2A - revers

BSK-1D9-1B - forward

CAGTTCCACCCGGGCAGGCAGTCGGGGGATGAGGGGCCGTCTAGCGTCCGCACGCGT TCACTCCCAAGGAAGGTGTGGGGCACGGTGAGGAGGAAACANAATANGAA AGTGGCCTGACACGGGGATTCTAAGCANGTCANANNTATGNNGCTNG

BSK-1D9-1B - revers

#### BSK-1K9-A4 - forward

5 -

10

15

20

25

30

35

50

55

CTGCGTCAGATTAAAACACTGAACTGACAATTAACAGCCCAATATCTACAATCAACC AACAAGTCATTATTACCCTCACTGTCAACCCAACACAGGCATGCTCATAAGGAAAGG TTAAAAAAAGTAAAAGGAACTCGGCAAATCTTACCCCGCCTGTTTACCAAAAACATC ACCTCTAGCATCACCAGTATTAGAGGCACCGCCTGCCCAGTGACACATGTTTAACGG CCGCGGTACCCTAACCGTGCAAAGGTAGCATAATC

#### BSK-1K9-A4 - revers

#### BSK-1L3-B5 - forward

#### BSK-1L3-B5 - revers

CACTGATGGGCATTTGGGTTGATTTCATGTCGTGGCTGTTGTGAATAGTGCTGCAGT
GAACATACATGTGCATGTGTCTTTATGATAGAGTGATTTATAATCCTTCAGGTGTAT
ACCCAGTAATGGGATTGCTGGGTCAAATGTTATTTCTGCCTCTAGGTCTTTGAGGAC
TTGCAAACTGTCCGAGAACTGAAAGCACAAAAGGCAGACAAGAACGAGGTTGCTGCG
GAGGTGGCGAAACTCTTGGATCTAAAGAAACAGTTGGCTGTAGCTGAGGGGAAACCC
CCTGAAGCCCCTAAAGGCAAGAAGAAAAAGTAAAAGACCTTGGCTCATAGAAAGTCA
CTTTAATAGATAGGGACAGTAATAAATAAATGTACAATCTCTATATTAAAAAAA

#### BSK-1L3-C1 - forward

BSK-36-8 - revers

5

10

15

20

25

30

35

40

45

50

55

BSK-83-1

GTTCAAACAGCAAACGCCCACAGATGGCCCAGAGGTGGTGGTAGTCAGGGTGTGTGG GTGTTTTTAGGGTTCTTTAGTGTTGTTTCTTTCACCCAGGGGTGGTCCCAGCCA GTTTGGTGCTGACGGTGAGAGGAAATTAGAATCTGTTTGCAAATTGTCCAACCCACC CCCTCAACATGAGGGGCTTCCATTTTCTGTGTTTTGTAAGGGAACTGTTTCCTTCAT GCCGCCATGTTCCTGATATTAGTTCTGATTTCTTTTTAACAAATGTTATCATGATTA AGAAAATTTCCAGCACTTTAATGGCCAATTAACTGAGAATGTAAGAAAATTGATGCT GTACAAGGCAAATAAAGCTGTTTATTAACCTTG

BSK-2G12-A5 - forward

GCACACTGGCGGCCGTTACTAGTGGATCCGAGCTCGGTACCAAGCTTGATGCATAGC
TTGAGTATTCTATAGTGTCACCTAAATAGCTTGGCGTAATCATGGTCATAGCTGTTT
CCTGTGTGAAATTGTTATCCGCTCACAATTCCACACACATACGAGCCGGAAGCATA
AAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGC
TCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGC
CAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCTCGCTCACT
GACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAAAGCACATCAAAGGC
GGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAA
AGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCATANG

CTCCGCCCCTGACAGCATTACAAAAATCGACGCTTCAAGTCAGANGTGGCGAACCC GACAGGACTATAAAGATCCANGCGTTTCCCCTGGAACTTCCTCGGCGCTNTCTGTTC GACCCTGNCGTTACCGGAACCTGTCCGCNTTNTCCTTCGGAAGCGNGGGCTTTNTAT ACTTACGCTGAAGTATCTNATTCGGGGAGNCGTCGNTCAACTGGCTGGGNGCACAAC CCCCGTTAGCCGACGTGNGCTTACCGGAATNTNGNTGGTCAACCGGNANACCANTAT CGCNTGNNNANCNTGNACAGATACCANCAGGTTTAGGGGGTTCAAATTTAAGGGGCC ATCCGTANTAAAAACAATGGTTTCCNG

CAGATATCCATCACACTGGCGGCCGCTCGAGCATGCATCTAGAGGGCCCAATTCGCC

CTATAGTGAGTCGTATTACAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGA

10

5

#### BSK-2G12-A5 - revers

15

AAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTG GCGTAATAGCGAAGAGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAA TGGCGAATGGACGCCCTGTAGCGGCGCATTAAGCGCGGGGGTGTGGTTACG CGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTC 20 CCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTC CCTTTAGGGTTCCGATTTAATGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAA GGGTGATGGTTACGTAGTGGGCCATCGCCCTGATAGACGGGTTTTCGCCCTTTGACG TTGGAGTCCACGTTCTTTAATAGTGGACTCTTGGTNCAACTGGGACAACACTTAANC CTATCTCGGCTATTCTTTTGATTATAAGGGATTTGGCGATTCGGGCTATTGGTTAAA AAAGACTGATTAACAAAATTTAACGCGAATTTACAAATTCAGGCCCAAGGCTGTAAG

25

30

35

GAANCGACACTAAAAGCCATCCGAAAACGGGTTANCCCGATAAAGGAACTATGGGTT TTGGGAAAGGAAACCAACCCAAAAAAGCGNACTTNAAGGGCTACTGNAAAGTAAANG GNGTTATGAAGAACAACGATGCANNGGCCCTTGAAGTGGAACCCGAAAAATGAGGTT

TTG

#### BSK-2G14-A2 - forward

40

45

CCCCCTCTCCTTGGCACTGGCGGCCTCCTTGCCTCCCTTCCACCCGTGCTGCCA TCCCGTGCCTGTCGTTGGTTCTTCACACGTGCTCTGTTCTCGGGGTTGTTCCATT CATGCCTTCTTGGAGGGTGAGGGTGGCTTGGGAACCGACCCAGTGATCATGCCTACT TTCTTCTTTGTATCTCCCTCCTTCCCAGCCCACCCGGGCAGCAGACTCTGATGGAAG GAAGGTGCCGTAGGTGGGCTTTTAGAAACTAACGGGACTGGTTTTCAAAGCAGTTAT CTTGGGAAACTGTTTATTCCAGCGATGTGACTTTTTTCAGAATATTTCTTGGAATCA TATTCANAGTCTGGGGCTGTGTTGTGAGCAGCCTTAAGGATGCTAGACACTCATTTA GTGCCCAAGGAGTCCAGCGAATGACGTCTGNGGCAACGAGGCTCAGNGCAAGCAAAA GGACCATTTAAAGTAAATACTTGGATCAATCTGTGACTCTTAAATGGCTNAAAAGAA TTTGNATTCAAAAGGGTTGAACCCTGGCACGTTGGCNTGGGAGCTATANCTTGATCC TTGGANAAAATTCATTGGTGGGGAACTGATTGGTNGGANAAANTGGCTGGTACTTN TGGNATCCAGGTNTGACTTACAGGGAAAAAAAAAAAACGCGANTGANGGTCAGATNN NNCCCATCANCCATTCACCATNGGGCNNNTANGGTCCNCCNGNCAACTNAGCAANTG

NATTNATNGGCCCAAAACTGGGAACNGGCNATTTCNNG

55

BSK-2G14-A2 - revers

5

10

15

20

25

30

35

40

45

50

55

GCCCCTGGTAAAAGTCAGAACCTGGGATGACCAGAAAGTAACAGGACAGATTTCTCC CAGCAAATCAGTCTCCACAACCAAATGAATATTGTTCTCCAAGGAGTCAAGCTATAG ACTCACAATGACAACGTGGCCATGGCTCAAAACACTCTCTGAAATTACAAAATTGCT TTCTGAGCCAATTTAAGAGTCACATGATTGAATCCAAGCTATTTTACTTTAAATGGT CCTTTTGCTTTGCACCTGAGACCTCGCTTGGCCACAGACGTCATTCGCTGGACTCCC TGGGCACTAAATGAGTGTCTAGCATCCTTAAGGCTGCTCAACACACAGCCCCAGACT CTGAATATGATTCCAAGAAATATTCTGAAAAAAGTCACATCGCTGGAATAAACAGTT TCCCAAGATAACTGCTTTGAAAACCAGTCCCGTTAGTTTCTAAAAGCCCACCTACGG CACCTTCCTTCCATCANAGTCTGCTGCCCGGGTGGGCTGGGAAGGAGGAGATACAA AGAAGAAAGTAGGCATGATCACTGGGTCGGTTCCCAAGCCCCCTCACCCTTCAAGAA GGNATGAATGGACAACCCCGAGAACAGAGCCGTGTGAAGACCACCNACNGCNCGGAT GGCACACGGTGGAAGGAGGCAGGAGGCCNCNGTGCCANGANGANAGGGCNCAACCCA GCCGGAAGNGGCCCAAACCTATAGAACAAGCAAACCCCGGATTCNGTGACGCGGCNT ACCTACCATNGGNGGGNNAAANATATACCGGCGGCTGCAGCCAATTGAAATCATAAC TGNGGCGTCACTGCTTNAGGCCATTNCCTANGGGGATAAATNTGCGGGTTNACGGGC G

#### BSK-2H11-B3 - forward

#### BSK-2H11-B3 - revers

TNNTTGGAAATCCTTCCCTTTTAAAGANAANATGNGACACTTTGTGAANAGGCTTGT NNGAAAGNTCNTCCC

BSK-2H11-A5 - forward

5

10

15

20

30

35

40

45

50

55

AAGAAATATGGGACTATGTGAAAAGACCAAATCTACGTCTGATTGGTGTACCTGAAA GTGATGTGGAGAATGGAACCAAGTTGGAAAACACTCTGCAGGATATTATCCAGGAGA ACTTCCCCAATCTAGCAAGGCAGGCCAACGTTCAGATTCAGGAAATACAGAGAACGC CACAAAGATACTCCTCGAGAAGAGCAATTCCAAGACACATAATTGTCAGATTCACCA AAGTTGAAATGAAGGAAAAAATGTTAAGGGCAGCCAGAGAGAAAAGGTCAGGTTACCC TCAAAGGAAAGCCCATCAGACTAACAGCGGATCTCTCGGCAGAAACCCTACAAGCCA GAAGAGAGTGGGGCCAATATTCAACATTCTTAAAGAAAAGAATTTTCAACCCAGAA TTTCATATCCAGCCAAACTAAGCTTCATAAGTGAAGGAGAAATAAAATACTTTATAG ACAAGCAAATGCTGAGAGATTTTGTCAACACCAGGCCTGCCCTAAAAGAGCTNCTGA AGGAAGCGCTAAACATGGAAAGGAACACCGGTACCANCGNTGCAAAATCATGCCAAA TGTAAAGACCTCGAGACTAGGAAGAACTGCTCACTAACGAGCAAATCCCAGCTTACA TCTTATGACGGGTCAATTCCCCNTACATATACTTTAATNTAATGGCTAANTCTGCAN TAAAAGACNNGACTGNAGTTGGTAAGAGCAGACCTNATGNGTTGNTCNGAACCATTA CTGNNAACCCNNGGTCAATAAGGTGNAAGATTNCNGCCTGGAACAAAAGNGGGTGGA TCTACTTGTAACCGCTTTACCNCAAACAAAAACAAAGGCTTCTTTGNANGGTCATCC CAAGNNTCNTN

BSK-2H11-A5 - revers

BSK-2H12-A4 - forward

CTTTAAAGTAGTTTTTTCCAATTCAGTGAAGAAAGTCATTGGTAGCTTGATGGGGAT GGCATTGAATCTATAAATTACCTTGGGCAGTATGGCCATTTTCATGATATTGATTCT TCCTACCCATGAGCATGGAATGTTCTTCCATTTGTTTGTATCCTCTTTTATTTCCTT

#### BSK-2H12-A4 - revers

GAGAAAATCTAGAAGAAATGGATAAATTCCTCGACACATACACTCTCCCAACACTAA
ACCAGGAAGAAGTTGAATCTCTGAATAGACCAATAACAGGATCTGAAATTGTGGCAA
CAATCAATAGCTTACTAACCAAAAAGAGTCCAGGACCAGATGGATTCACAGCCGAAT
TCTACCAGAGGTATAAGGAGGAGCTGGTACCACTCCTTCTGAAACTATTCCAATCAA
TAGAAAAAGAGAGAATCCTTCCTAACTCATTTTATGGGGCCAGCATCATTCTGATAA
CAAAGCCGGGCAGAGACACCAAAAAAAAGAGAATTTTAGACCAATATCCTTGATGA
ACATTGATGCAAAAATCCTCAATAAAATACTGGCAAACCGAATCCAGCAGCACATCA
AAAAGCTTATCCACCATGATCAAGTGGGCTTCATCCCTGGGATGCAAGACTGGTCAA
TATATGCAAATCAATAAATGTAATCCAGCATATAAACAGAGCCCAAGACAAAAACCA
CATGATTATCTCAATAGATGCAGAAAAAGCCTTTGACAAAATTCAACACCCTTCATG
CTAAAAACTCTCAATAATTANGTATGATGGACGTATTTCAAATAATAAGAGCTATTG
NGACAACCCCAGCCATTCTACTGATGGCAAACTGGGAGCATTCCTTGAAACTGGACA
GACNGGTGCTTNTACACTCTATCACTAGGGTGAAGTTGGCAGGCATAGCGGNANGAT
ANGGNTCATNGGAAAAGGACCAATANNCAATCAGNTT

#### BSK-2H9-A3 - forward

TGTAATCCCAGCACGTTGGAAGGTTGAGGCGGGTAGATCATGAGGTCAGGAATTCAA
GATCAGCCTGGCCGGGATGGTGAAACCCCATCTCTACTAAAAAATACAAAAATTAGCC
AGGTGTAGTGGTGGCGCCTGTGGTCCCAGCTACTATGGTGGCTGAGGTGCGAGAGT
CGCTTGAACCTGGGAGATGGAGGTTGCAGTGAGCCAAGATCGTACCACTGCACTCCA
GCCTGGGCAACAGAACAAGACTCCATTTCAAAAAAAAGAAAATTCTTATTTGCCATGA
GCCGAGGAATGCACAGGTACTAACTAGATGGTGTGGACAGCTGACGCAAACTGGGCA
TATACAATGGGACACACCTGTACTAGGATGAAAGGCACAGCCTANAGGGCTGGCAGG
TGTTGGGTAATGCTCAAGTTTCAGAGTGATGGCAGAAGAGTAGGTTGGTAGGCCCTC
ATGGCTCTGCTTGGCAGCACNGAGTTCCGCGGAATTCCGCCATCTGACGGCTCCANG
AGTCGTCGCCCAATCCAAGCCGAATTNCACACACTGGCGGCCGTACTAGTGGATCCG
ACTCGGACCAACTTGATGCATAACTTGAGTATTCTATATGNCACCTAAATAGCTTGG
CGTAATCATGGCATACTTGTTTCTGNGNGAAATTGTATCCGNTACAATTCNCACACA
TACANCCGAAGCATAAGTGNAAGCNGGGGNGCCTAATGAGTGACTACTACTTATTGG

GTGGCTACTGCCGTTTCANCGGAAACTGCTGCNANTCTTATNATCGCCACCNCGGGA AGNGGTGNGNTGGCNTTTCCTCTGTATTATCTGCTGCTTGGTGGGAACGGTA

BSK-2H9-A3 - revers

-5

10

15

20

25

30

35

40

45

50

BSK-2I5-4B - forward

BSK-2I5-B4 - revers

BSK-2I5-A5 - forward

CCCATTTAACTTTTTAATGGGTCTCAAAATTCTGTGACAAATTTTTGGTCAAGTTG TTTCCATTAAAAAGTACTGATTTTAAAAACTAATAACTTAAAACTGCCACACNCAAA AAAGAAAACCAAAGTGGTCCACAAAACATTCTCCTTTCCTTCTGAAGGGTTTACNAT GCATTGGTATCATTAACCAGTCTTTTACTACTAAACTTAAATGGCCAATTGAAACAA ACAGTTCTGAGACCGTTCTTCCACCACTGATTAAGANTGGGGTGGCAGGTATTAGGG

#### BSK-2I5-A5 - revers

5

10

15

20

25

30

35

40

45

50

55

#### BSK-2K2-A1 - forward

CTGGGCTCTGGGCTAGTACTGGGGGAGTATCTGCAGAATCCCGTGATATGATCCGTCT TCAGCTAAAGATATTATTTCACAAGTGGAATGACAGCTGACTTCTCAACAACAACGA AAGCAAGGAGACAGTTGAAAGACATCTTGAAAATGGAATTAGCAGTTCACAAAGCAC ATTCGCATATAAGGGCTTGTTTTGAATTGATCTTGGCAGCAATTCTATGAAACAAGT AAAAGCACAAGAGGAATAGGAACTGCACCTCTTCCTTCAGTTTCAGCTTGAATAATA TCAGGAAGATTCGTATCGGTCTGAGTTGGGTCACGTACCCGACGTGCTATAGCTGAG GATGGGGTAAGCTGATTGGAGTTTGCAACACTGTTCACAGAGCCAAGATATGGAAAG TGGAATATTATTCAACCTTAAAAAGAAGGAAATCCTAACATTTGTGACAACATGGAT GGACCTGGAGGGAATTATGCTGAGTGAAATAAGACAGACNCAAAAGACNTTTCTTGC AGGAGCTCCTTATATGTGGAATCTAAATAGTCAGCTTAAAGAAGANAGTAAACTACT GGTGTCAGGAGCAGGANAAAATGGAAATGAANAGGNGATAGTAAAGGGACAAAGTTC AGTATCAANATAAGTTCTGGNGGTTACTATTAATANTCCATAGACCTATAATAC CATACTGGTTGGTACTAAAATGCTAAAGGGTTTCTAATGTCTACCANANAAAANANA NGGAAAATAAGGGCGGAGGCCCTNAAAGGGAGGATGTATGCCTGNGGGGAAGGTCTG **AAATCTNCCCACTATGNG** 

#### BSK-2K2-A1 - revers

AAACTTTGTACCCTTTAACTATCACCTCTTCATTTCCACTTTTCTCCTGCTCCTGAC
AACCAGTAGTCTACTCTCTTCTTTAAGCTTGACTATTTTAGATTCCACATATAAGTG
AGCTCCTGCAAGAAAGNCTTTTTGNGTCTGCTTATTTCACTCAGCATAATTCCCTCC
ANGTCCATCCATGTTGTCCAAATGGTAGGATTTCCTTCTTTTTAAGGTGAATAATAT
TCCAGTGTATGNATATACCACAATTTCTTATNCATTCTTCACCAGTGACATTAAGGT
CTTTCTATCTTGGCTNTGGGAACAGGGTGCAAACTCCAATCAACTTACCCATCCTAA
CTATAGACGTNGGTACGGACCCACTAAACGAACGAANTTCTGNNTATTAACTGAACT
GANGANAGGGGAGTCCATNCTTGGCTTTACTGGTCAAAAATGNGGCANACAATAAAA
ACCTTTTGCAAGGGTTGGGACGTATCATTNANAGNTTACNGGTCTGTTCTGGGTGNA
NCATTNTCNTGGAAATTTTGCGAANGGCANTCGG

#### BSK-1A2-5 - forward

5

10

15

20

25

30

35

40

50

#### BSK-1C7-1 - forward

GTGGCTTGGAGGGGTTAAGAGACTTATCAAAGATCTTGGGGCTAGGTAGTAGAAAAA CAGAAAAAAATCAGGTTTTTCAACTGCAGTCAGTACTTTTTTAACAAATTAAAATA TATCAAATCTGTTTCTCCTAGGTACCTAAAGGCCTAAAAATCCATCAACACAGGGAT ATATATTAGAAAACCATACCAAGATAAAATGCAAAGGTCAAGAAAATAGAAATGTTA AAACTCCTTTTGTATGTCATGTATTTCCACAGTTTTGTGGTGAAGAAGTATGAATTT AGGGAACTGGATACTAGAGAGAAAGGAATCATCTCCCTTCACTTGCTAAGGAATTGC TGGTGCCCTGGGCCACAAGAAGGGTGTGATTTGGGGGGGACTGTGTGCAATTAAACAG GAAAGGAAATAACAGACTTAAAGTATTAAGTCATTCTGATGCTTATCAACAAGAGTA CCAAGAGGCTTGATGTCCTGGNAATAACCACATGAAACCTTTTTATTNAAGGACTAC CACTTATGAAATATGAAAGAATTCCTTANACAAATCCAATCTTANATCTGNATTCTN AACATTTTCTCCCTTTCCATTTTGAATGCTAATATTAGAAGCATTNTAAAGTAATTT NGGCCGCCCATGCTTACCCTGGAACTCGGACTTTGGAGGCCAGTGGGAGGACTGT TGAGGCNAANTTTAAAACCNCNNGGCANATTNNGAAANCTGGGCATTTTTAAAANNG ATNGGAACTTTTTNCCCCCCNANTANAACAATNTTCCNNCCCTTAAACCCNAACCTT TCCCNGGGTTTTNCCCTAAGGGNCCCTTTTNTTTGAAACCCAAAAGGTNCNTTTGGG TTNCANGNATTTNAAATTNTTTTNGNCCCNAA

#### BSK-1E2-A2 - forward

BSK-1I2-A2 - forward

5

10

15

20

25

30

35

40

45

50

55

CTCCACGAGGGTTCAGCTGTCTCTTACTTTTAACCAGTGAAATTGACCTGCCCGTGA
AGAGGCGGGCATGACACAGCAAGACGAGAAGACCCTATGGAGCTTTAATTTATTAAT
GCAAACAGTACCTAACAAACCCACAGGTCCTAAACTACCAAACCTGCATTAAAAATT
TCGGTTGGGGCGACCTCGGAGCAGAACCCAACCTCCGAGCAGTACATGCTAAGACTT
CACCAGTCAAAGCGAACTACTATACTCAATTGATCCAATAACTTGACCAACAGAACA
AGTTACCCTAGGGATAACAGCGCAATCCTATTCTAGAGTCCATATCAACAATAGGGT
TTACGACCTCGATGTTGGATCAGGACATCCCAATGGTGCAGCCGCTATTAAAGGTTC
GTTTGTTCAACGATTAAAGTCCTACGTGATCTGAGTTCAGACCGGAGT

BSK-1I2-B5 - forward

GCTTTAATATACGCTATTGGAGCTGGAATTACCGCGGCTGCTGGCACCAGACTTGCC CTCCAATGGATCCTCGTTAAAGGATTTAAAGTGGACTCATTCCAATTACAGGGCCTC GAAAGAGTCCTGTATTGTTATTTTTCGTCACTACCTCCCCGGGTCGGGAGTGGGTAA TTTGCGCGCCTGCTGCCTTCCTTGGATGTGGTAGCCGTTTCTCAGGCTCCCTCTCCG GAATCGAACCCTGATTCCCCGTCACCCGTGGTCACCATGGTAGGCACGGCGACTACC ATCGAAAGTTGATAGGGCAGACGTTCGAATGGGTCGTCGCCGCACGGGGGGCGTGCG CCGGAGAGGGGCTGACCGGGTTGGTTTTGATCTGATAAATGCACGCATCCCCCCGC GAAGGGGTCAAGCGCCCGTCGGCATGTATTAACTCTAGAATTACCACAGTTATNCA AGTAGGANANGAGCGAGCGACCAAAGGAACCNTACTGGATTAATGAGCCNTTTCCAG TTTCACTGTACCGGNCGTGCNANTTAAACATGCATTGGNTTAATCTTTGAGACAAGC ATATGCTANTGGCANGGTTTTTTTATGGNAAAGATGNTTTATTGGNGGCAGTACTAC AAGGCATTAATATTGGTNCCCAAAAAAAACTCGGTNTTATTAAATANTGGGCNTTA ANACNTAATGAACTTGACCAACNNTTGCTGGATNNCTGANTCCTCCTGGTTTTTGGG AAAGNAACCCACCACTATTTTTGGCANTCTTTTCNCCACTTGAAAANAAGGGGGTTT NTNGGNGGCTTANTTCCNNCTTTAANCNGGAATTTTANCCCTNGAANNTTGTTTTCC GAACTTTTTAAAA

BSK-1L2-2 - forward

AAGGGAAAGATGAAAAATTATAACCAAGCATAATATAGCAAGGACTAACCCCTATAC
CTTCTGCATAATGAATTAACTAGAAATAACTTTGCAAGGAGAGCCAAAGCTAAGACC
CCCGAAACCAGACGAGCTACCTAAGAACAGCTAAAAGAGCACACCCGTCTATGTAGC
AAAATAGTGGGAAGATTTATAGGTAGAGGCGACAAACCTACCGAGCCTGGTGATAGC
TGGTTGTCCAAGATAGAATCTTAGTTCAACTTTAAATTTGCCCACAGAACCCTCTAA
ATCCCCTTGTAAATTTAACTGTTAGTCCAAAGAGGAACAGCTCTTTGGACACTAGGA
AAAAACCTTGTAGAGAGAGAGTAAAAAATTTACCGCCGATACTGACGGGCTCCAGGAGT
CGTCGCCACCAATCCCAAGGGCGAATTCCAGCACACTGGCGGNCGTTACTAGTGGAT

CCGACTCGGTACCAAGCTTGATGCATAGCTTGAGTATTCTATAGTGCACCTAAATAG CTTGGCGTAATCATGGNCATACTGTTCTGNGTGAAAATGGTATCCGTNACAATTTCA CACACATACGAGCCGGAGC

BSK-1A2-5 - revers

5

10

20

25

30

35

40

45

50

55

BSK-1C7-1 - revers

GCCCCAAACTAGGTCAATCAAATCTTCAAAAAAAGTAAAATAGTTAATTCATGGTCA CAAAACATACATATTTCATAATTTCATTTGTATAAACCTCAAAAGCAAAACCAATCT ATGGTATTTCAAGTCAAGATTGTGGTTACCTTTAAGGGAGAAAATAGCAACTGGGAA AAGGTATGAGGGGGGATTCTAGGGTGCTGGTAACGATCTGTTTCTTGATTTGGGTGC TGGCTATATATGTTCACTATTCATTTTTTAAAAATAGACACAGGGTCTCACTATGTT GCCCAGGCTGGCTTAAACTCTTGGCTCAAGCAGTCCTCCCACCTCGGCCTCCCAAAG TGCCGAGATTACAGGTGTGAGCCACTGCCCCGGCCGAGATTTACTTTTATAATGACT CTAATATTTAGCATTCAAAATTGTGAAAGGGGAGAAAGATTCTGAGAAATACAGAAT CTAAAATGGGATTGNCTAAGTAATCTTTCATATTCATAAGTTGTAGNCTTAAATAAA AAGGTTCATGTGGTANTACCAGGACATCANCCTCTGGTCATTCTGGCTGGATAATAT AGATCTCAAATATATTAATTATTAGNCGGGCTTTACTCTGGTGATAANACTCNNAAN GCTAATACTTTAAGNTGGNATTCCTTTCTGGTAATGGNACAGTCCCCAANTAAACCN TTTTGNGCCANGGNCCACATTCNTACAGGGAAGGGAAAAANCCTTTTNTTAGNTCAA TCCTAATCACTTTTCCCCAAATGGGGANNCTGCNTCCAAGGNNTAANNTTTTTTTNG CCTTNNTTTNATNGGNGGNTTAAAAAANCCCCGGNNNGGTTTNGCCTTNGCCCGNAA AANTTTTTTTTTNNAAAAANNCNNGTNTAAACCNTTTTTTTTAAAAGGGANC

BSK-1E2-A2 - revers

TTTTAACTATTATGATAGGCTTACAACCTAAAATTTTATCTCCAACTCTGCCTCTC
TCCTAAACTTCAGACTTCTACAGAATTGCTCTAGGTACCTTCACCTGTATCTACAGG
CACGAACTCACATAAACAAAATATGTTCTTCCCAAATTTACTCTTCTCTCTGGATAA
CTATTTCAACTAATAGTCTATCTTTCACCCTGGAGCCAGTCAGAAACCTG

BSK-1E2-B2 - revers

10

15

5

20

BSK-1G13-A5 - revers

25

GAAAGATGAAAAATTATAACCAAGCATAATATAGCAAGGACTAACCCCTATACCTTC
TGCATAATGAATTAACTAGAAATAACTTTGCAAGGAGAGCCAAAGCTAAGACCCCCG
AAACCAGACGAGCTACCTAAGAACAGCTAAAAGAGCACACCCGTCTATGTAGCAAAA
TAGTGGGAAGATTTATAGGTAGAGGCGACAAACCTACCGAGCCTGGTGATAGCTGGT
TGTCCAAGATAGAATCTTAGTTCAACTTTAAATTTGCCCACAGAACCCTCTAAATCC
CCTTGTAAATTTAACTGTTAGTCCAAAGAGGAACAGCTCTTTGGACACTAGGAAAAA
ACCTTGTAGAGAGAGAGAAAAAAATTTA

35

30

BSK-1G11-A5 - revers

40

45

BSK-1G11-B5 - revers

50

55

CAACATGACAGAGGACCATGTGATGCACCTGCTCCAGAATGCTGACCCCCTGAAGGT
GTACCCGCCACTGAAGGGGAGCTTCCCGGAGAACCTGAGACACCTTAAGAACACCAT
GGAGACCATAGACTGGAAGGTCTTTGANAGCTGGATGCACCATTTGGCTTCTGTTGA
AATGAGCANGCACTTCTTTGGACAAAAGCCCACTTGACGCTTCANCGAAGAGTCACT
TGGAACTGGAGGACCGTCTTTNGGCTGGTGTGACCAACAGGATCTGGGCCAATNCCC
ATTGAAACAACANAAGCGGCTTTAAAATCTTGCGGGCCCANAAAGTTCAANTTTNTT
GGTTCCTTAGGCCCAANCCTTCCCAATTTTCNACTTGGNCCTAATCCATGAAAACTG
GNGCNNGGTNTTTNTNANCCTTGGNAAGAAAAACAATTGGAACANCGATAACATGCN
NAAGGCCTNGTGGCCAAATTCTTTTTAANANGGGCTAGGGCCCNAAANGGCAAAATT
NAAAAACCCTNNTGAATAAAANATTTAANAAAGGTNANGGTTNGTNTTGNCAAATGG
AANGCCCNGNAAGGGAACCTCCCCNACCNANNGGANNTGNANGNTTCCNCAANTGGC
TT

BSK-1H13--revers

5

10

15

20

25

30

35

40

45

50

55

CGGAGTTCCGGGTATCTGGGCTCCAGGCAGAGCACAGCCTCCCCGACCTGCCCTAC GACTACGCCCCTGGAACCTCACATCAACGCGCAGATCATGCAGCTGCACCACAGC AAGCACCACGCGGCCTACGTGAACAACCTGAACGTCACCGAGGAGAAGTACCAGGAG GCGTTGGCCAAGGGAGATGTTACAGCCCAGATAGCTCTTCAGCCTGCACTGAAGTTC AATGGTGGTGGTCATATCAATCATAGCATTTTCTGGACAAACCTCAGCCCTAACGGT GGTGGAGAACCCAAAGGGGAGTTGCTGGAAGCCATCAAACGTGACTTTGGTTCCTTT GACAAGTTTAAGGAGAAGCTGACGGCTGCATCTGTTGGTGTCCAAGGCTCAGGTTGG GGTTGGCTTGGTTTCAATAAGGAACGGGGACACTTACAAATTGCTGCTTGTCCAAAT CAGGATCCACTGCAAGGAACAACAGGCCTTATTCCACTGCTGGGGATTGATGTGG GAGCACGCTTACTACCTTCAGTATAAAAATGTCAGGCCTGATTATCTAAAAGCTATT TGGAATGTAATCAACCGGAATTCCGTTTTTTTTTTTTCTCATTTAACTTTTTAATGG GCTCAAAATTCTGNGACAAANTTTTGGCAAGTGTTTCCATTAAAAAGTNTGATTTAA AACTAATACTTAAAATTGCNCACCCNAAAANGGAAAACCAAGTGGTCCCAAACATTC TCTTTCTTNTAAGGTTACANGCNTGGTNTATTAACCACTTTTCTCTAACTTAANGCC ATTGAACAACATTTTAAACGTTTCNCCNGTTAAAANGGGGGGNGGTTNGGGNAAATN NTTACCTTTGACTTTTGGNNAANTTGGGACTTCNNTTCNAACTTTTTCCNGGTTTNA CCCCCAANGNGGTTTTC

BSK-1I2-A2 - revers

ACTCCGGTCTGAACTCAGATCACGTAGGACTTTAATCGTTGAACAAACGAACCTTTA
ATAGCGGCTGCACCATTGGGATGTCCTGATCCAACATCGAGGTCGTAAACCCTATTG
TTGATATGGACTCTAGAATAGGATTGCGCTGTTATCCCTAGGGTAACTTGTTCCGTT
GGTCAAGTTATTGGATCAATTGAGTATAGTAGTTCGCTTTGACTGGTGAAGTCTTAG
CATGTACTGCTCGGAGGTTGGGTTCTGCTCCGAGGTCGCCCCAACCGAAATTTTTAA
TGCAGGTTTGGTAGTTTAGGACCTGTGGGTTTGTTAGGTACTGTTTGCATTAATAAA
TTAAAGCTCCATAGGGTCTTCTCGTCTTGCTGTGTCATGCCCGCTCTTCACGGCAGG
TCAATTTCACTGGTTAAAAGTAAAAGTAAGAACACCTTGAACCCTCGTGGA

BSK-1I2-B5 - revers

#### BSK-1L2-2 - revers

5

10

15

20

25

30

35

40

50

55

TTTTTACTCTCTCTACAAGGTTTTTTCCTAGTGTCCAAAGAGCTGTTCCTCTTTGGA CTAACAGTTAAATTTACAAGGGGATTTAGAGGGTTCTGTGGGCAAATTTAAAGTTGA ACTAAGATTCTATCTTGGACAACCAGCTATCACCAGGCTCGGTAGGTTTGTCGCCTC TACCTATAAATCTTCCCACTATTTTGCTACATAGACGGGTGTGCTCTTTTAGCTGTT CTTAGGTAGCTCGTCTGGTTTCGGGGGTCTTAGCTTTGGCTCTCCTTGCAAAGTTAT TTCTAGTTAATTCATTATGCAGAAGGTATAGGGGTTAGTCCTTGCTATATTATGCTT GGTTATAATTTTTCATCTTTCCCTTGCCGAAATTCC

#### BSK-1K9-A3 - forward

#### BSK-1K9-A3 - revers

CCTACCTATTCAGGGAAAGGAATTATAAGCAGCAGGTAGCTCAAAGCATAATTTTTT
TTAGCATTTCAGAAACACAGTGACAACAGTTTCTAAGAATTTGCATGTTCATTTCCT
GTACGTGAAACCACACACACAAAAGTTTAAAATATTTTATAATATGCATTTACTTTA
TCACCTTTTTTGAAGACCATTGNGCTTNCCCTCTTTTTTTGGCCAGGAAGTGGGAGTG
GGAGGAAGAANACTGTTTTCCAACTCTTAACAGGTTCAAATTTTAAAAAAACAGACTA
CNGTAAAAANGGATATTCTAAACTTTCGGNCTATTTTATAGGCCTACCTAACTGGCC
TAATCCTTACTACATNGGATTCCNCTGANCGCCG

#### BSK-2C5-C3 - forward

5

10

15

20

25

30

35

40

45

50

55

AGAATCTGGTGACTTCAGTTGAGCCCCCAGCAGAGGTGACTCCATCAGAGAGCAGTG AGAGCATCTCCCTCGTGACACAGATCGCCAACCCGGCCACTGCACCTGAGGCACGAG TGCTACCCAAGGACCTGTCCCAAAAGCTGCTAGAGGCATCCTTGGAGGAACAGGGCC TGGCTGTGGATGTGGGTGAGACTGGACCCTCACCCCTATTCACTCCAAGCCCCTAA TGAGGGAGGAGCCCCACAGACTTACGGGTGTTTGAGCTGAACTCGGATAGTGGGA AGTCTACACCCTTCAACAATGGAAAGAAAGGCTCAAGCACGGACATTAATGAGGACT GGGAAAAAGACTTTGACTTGGACATGACTGAANAGGAAGTGCANATGGCACTTTCCA AGTGGATGCCTNCNGGGAGCTNGAAAATTAAAATGGGAAGACTGGGAATGAGGGACC NNAAGGAGCANTTCCCCCCCATGGGATNTTTTGCTTCCTNCTNGNTTAANCCANCCT GGATGAATGAAAATGTTCCCCAAATTCTTTGCAACCAAACTTTGGCACAAATTTGGG GGTNCTTGTTGGCCTTTTGGNCTTTGTTNACCNGGAAGGGTTTTANTCCGGCCAAAA TTTTATTTGCCNCATTGGNGACCCNGGGGAGGAACTNTCTCTNCCNAAAACGGTTTT TNTNAACCNTGTTCTTANGATNTTTTGAACCNAGGAATTTNCCTTTCTGTNAAAAA NAACCCNNTTTTNNGAANNGNAANTNTTNNTTTTNNNGGGGGGGGNNCCCTCCTTGT **AAAAG** 

#### BSK-2C5-C3 - revers

AAAGGAAGGAGGTGGGTCAGGGTTTGGTCTCTGGATTCTGAACCCCAAAGGAGCCTT TCCAGGAATGGAAAATGCCTGGGAGGGGGAGAGTCCCAAGAGAGGCAAATTTCCCAG AGATAAGTGCCTCTTACCCACTGGGATAGGAACCAAAATGTGTTCACTGTCCCTGTT TAGCCAAGGGTAGGTGGCATGGCCCTCCCTGCCTGATGTATGGACAGAGTATGT TGTCTCAGCTTCCTCCGAGAGAGACTGGTGGTTTAGCTTCTGTCTACACAGGCAGAA GGGCTAGAACTATCCCTTGGGACTTTCCAGCAGGAGTCCTCANGAACAGTGGGTGTT CANCAGAAAAACACANGCTCTTCTGGTGAGGAGGATAGGTTTCCTCTTCCTTGGGTC ATCCTATTGTTGGCACAAGTCAAAGTTTTTGGCCGGGATTTANAAAGCCCCTTCCAG GTGTGAGCANAAGCCCAAAANGGCCANCAGGGAACCCCAAATTGTCCCAAACTTTTG TTGCAAAAGANATTTGGGGGAACATTNTCANTCATTCAGGCTGGCTTANACAACCAN GGANGCAAAAATGCCTTGGTGGGGGGGGTGTTCCTTTGGNTTCCTTATTCCANNNCT TCCATTTTAATTTTNAACTTCCCGGAGNATCCCTTTTGNAAGNCCNTTTCNCCTCTT TTNATCATTTNCAANNAAANNTTTTTCCANCCTACTNTNTCCGGCTTAACCTTTTTT NTTNTTGGNGGGGGNNATTCCCTTTCNNTTANTTAAAAACCCNANTTNNGGCCCNCN CCTCAANTTTTTTTTTTAACCTNNNTTTGNCCCCNTGNCCNANCNTNGGCTNGATAA ATNGGGNGGGNNATTTNCCCATNCNACANNCTNTTTTANNATTT

BSK-2G9-D3 - forward

ATCCCAGGAAAATTTGGAGGAACAGCTGCTCTCCACTGGCCTGCTCCTGCAAGAATG
CCCTGGAGCTTCTGAAGAAGGATCTATATTTACCTTATAGGGCCTTAAGTCCTGGGA
TGGAACTATATACTTTGGCCGCGATGATGTGGCTTTGAAGAACTTTGCCAAATACTT
TCTTCACCAATCTCATGAGGAGGGAACATGCTGAGAAACTGATGAAGCTGCAGAA
CCAACGAGGTGGCCGAATCTTCCTTCAGGATATCAAGAAACCAGACTGTGATTGACT
GNGAGAGCCGGGCTGAATGCAATGGAGTGTGCATTACCATTTNGGAAAAAAAATGTG
AATCANTCACTTACTGGGACCTGNACAACTNGCCAACTGACAAAAATGACNCCCATT
TGTGTGACTTTATTNGANANCATTACCTGGAATGANCCGGTGAAAAAACCCTTNAAAG
AANTTTGNGTGACCACATTTCNCAAAATTNCACANNAATNGNANGCCCCCCGNATAT
GGCTTGNATAGGAATANTCNTTTNTGACAAGCACACCCT

BSK-2G9-D3 - revers

20

25

30

35

40

45

50

55

BSK-2K13-A4 - forward

AGAAATTGAAACCTGGCGCAATAGATATAGTACCGCAAGGGAAAGATGAAAAATTAT AACCAAGCATAATTATAGCAAGGACTAACCCCTATACCTTCTGCATAATGAATTAACT AGAAATAACTTTGCAAGGAGAGCCAAAGCTAAGACCCCGAAACCAGACGAGCTACC TAAGAACAGCTAAGAGCACACCCGTCTATGTAGCAAAATAGTGGGAAGATTTATA GGTAGAGGCGACAAACCTACCGAGCCTGGTGATAGCTGGTTGTCCAAGATAGAATCT TAGTTCAACTTTAAATTTGCCCACAGAACCCTCTAAATCCCCTTGTAAATTTAACTG TTAAGTCCAAAGAGGAACACCTCTTGGACACTAGGAAAAAACCTTGTAGAGAAGAA GT

BSK-2K13-A4 - revers

GTTAAATTTTTTACTCTCTACAAGGTTTTTTCCTAGTGTCCAAAGAGCTGTTCCT CTTTGGACTAACAGTTAAATTTACAAGGGGATTTAGAGGGTTCTGTGGGCAAATTTA AAGTTGAACTAAGATTCTATCTTGGACAACCAGCTATCACCAGGCTCGGTAGGTTTG TCGCCTCTACCTATAAATCTTCCCACTATTTTGCTACATAGACGGGTGTGCTCTCTT AGCTGTTCTTAGGTAGCTCGTCTGGTTTCGGGGGTCTTAGCTTTTGCCA AAGTTATTTCTAGTTAATTCATTATGCAGAAGGTATAGGGGTTAAGTCCTTGCTATA

TTATGCTTGGGNTATAATTTTTCATCTTTCCCTTGCGGNACTATATCTATTGCGCCA GGTTTCAATTTCT

BSK-2K13-C2 - forward

5

10

15

20

25

30

35

40

45

50

55

CAAACCCACTCCACCTTACTACCAGACAACCTTAGCCAAACCATTTACCCAAATAAA
GTATAGGCGATAGAAATTGAAACCTGGCGCAATAGATATAGTACCGCAAAGGGAAAGA
TGAAAAATTATAGCCAAGCATAATATAGCAAGGACTAACCCCTATACCTTCTGCATA
ATGAATTAACTAGAAATAACTTTGCAAGGAGAGCCAAAGCTAAGACCCCCGAAACCA
GACGAGCTACCTAAGAACAGCTAAAAGAGCACACCCGTCTATGTAGCAAAATAGTGG
GAAGATTTATAGGTAGAGGCGACAAACCTACCGAGCCTGGTGATAGCTGGTTGTCCA
AGATAGAATCTTAGTTCAACTTTAAATTTGCCCACAGAACCCTCTAAATCCCCTTGT
AAATTTAACTGTTAGTCCAAAGAGGAACAGCTCTTTGGACACTAGGAAAAAACCTTG
TAGAGAGAGTAAAAAATTAACACCCATAGTAGGCCTAAAAG

BSK-2K13-C2 - revers

BSK-1E15 - forward

AGATCGTTATGCCCGAGTTCCGGTACAGGAACGTCGGTCATCCAGATGCCCTCTTCC
GCTTTCAGTTTGGATAACGCTTTCATCTCACATCCTCAGGCGATAACGCCCAGTTGT
TTACCAATACGCGTAAATGCTTCTACTGCACGCGTAATTTGCTCAGGGGTATGCGCC
GCAGACATCTGGGTACGAATACGCGCCTGACCTTTCGGAACGACCGGATAGAAGAAA
CCGGTAACGTAAATGCCCTCTTTTTGCAGCTCACGGGCAAATTTCTGCGCCACTACC
GCATCACCAAGCATGACCGGAATAATGGCGTGATCGGTTCCGCAGGGTAAAGCCCGC
CGNCGACATTTGCTCACGGAACTGACGCGCGTTCGCCACAGACGGTCACGCAGTTCG
CTGCCCGCTTCGACCATCTTCAGTACTTTGATGGACGCCGNAACAATGGNCGGTGCC
AGCGAATTTGGAGAACANGTACNGACCAANAACCTTGGCGCAAGCCACTCAANCACT
TTTTTTGCGCGCCCCGCGGNATAACCCCCCAGAAGCCCCCGGNCCAANGCTTTTACCAA
GCGTACCCGGNGATAATATTTGAACCCCGGGCCATTAANATTGCAANNTTTATTGGGA
ACCNCGAACATTTTTAACCGNCAAAAACCAACCCCNTNGGAAATNTTNGCCNCCAAT
TCCCANGGGGGAAATTTTNGNAAATTCNTTNAAACTGGGGGGCCGTTTAACATGCCT
TTTAANGGGCCCAATTNNCCCNTTANGGGGCGNTTACAAATNACTNGGCCGGNNTTT
TNAAACNNNNGAATNGGGNAAACCCGGGGGTTCCCAACTTAAA

BSK-1H13 - revers

5

10

15

20

25

30

35

40

45

50

55

BSK-1F14 - revers

CCAGNTGACCNCCGGNCGTTACCNTTACCAGTNGGTNTGGNGTNAAAAATAATANTA ACCGGNCAGGCCNTNTNANGGGCAAATTNTGNAAATNTCCNTNANANTGGCGGCCGT TCNANCNTGCNTTTAAAGGGCCNANTTCNCCNTATAGGGAGTCGTNTTANANTTNAN TGGCCGTNGTTTNANAACGTCGNNANTGGNAAAACCNTGGNGTTACCCAA

BSK-1H13 - forward

CGGTATTCCGAAAAAATGTTTCCAACTCCGCTGAAATGTTGCTGAAAAGCATGGTGC TGGTAACAGTTCAACAATCCGTGGCTGCTCATTCTTGCCTACTTTACTCTCCCACTG AAGCAGGTTAGCGTTGAAGGTGGTATGGAAAAGCCTGCATGCCTGTTCAATTCTTTT TCGCTCAACCTCTTTTGTTCAGTATGTGTAACTTGAAGCTAATTTGTACTACTGGAT ATCTGACTGGAGCCACAGATACAGAATCTGTATTGTTCTTACTGAAACACAGCATGG AATTAACATTAAACTTAAATAAAACAAACCTAAATTAAAAATGCCCAACAAATTATA TTTTAAATGTTTCATATTTACTTTTATATTTCCATACAATCAGAAACAGTAAAAAA ATTTGGAGAGCACATAAAAACATCTTAAAGTTAAAAATATAAAGCCTTGTATTTAAA AATGCAGTCATTTAAATATTATAAGAATCTATTTGNACATAATAAACAAGTTTC AACCAGCAAGAAATTACTAATATTGACTGTGGAGTTTTGGCTGGTTAATAGTTCTAA CTCANTATTCCGTAATCAACACAAGCACTACCAACACAAGNTGGCAATGACAAGAAT GGGAAGTNTCAAACTAGGATGGTAAGTCAATTAAAANTTCAGATAACCATAATGNAC TTATACTAAAAATTATTTTGGGGGTTATTTGAAAANGAAAATTAACTGGGGGNCCC AATTGGTTGGGTAAATTTAAAACCCNGGTTGGAAATTATCTAATAAACNTTCN TTNAATACTNAAAAAAAAATAAATTNCCTTACCACTTTTTACCNTTTCATNAAGGGGG 

BSK-1E3 - forward

GAGGCNCAGGTGGGGGTNNTTACANNGTNATGATGATTAATNACCATTCTGNCCAAC
ATGGTNAANCCCNGTNTCTACTAAAATCCAAAAANNNNAAAATTAGCCGGNCAAGGT
GGNGCATGCCTGTAGTCCCAGCTACTGGACTACAGGCTGANTNAGGGAATCCCTTGA
ACCCGGNAGGTGGCGGTTGCAGNGANCTGAGATCACTGCACTCNATCCAGNCTGCTG
ACANATCNAGACTATGCCTCAAAAAANGGGGTTTAACCATNTTGNCCNAAAAGGNNT
TNANANCCTAANCTTGNNAAAACCCCCNTGATGGCCGTTC

#### BSK-1F14 - forward

5.-

10

15

20

25

30

35

40

45

50

55

CCNANNCTGACGGGNTCNANNANTNGNCCCCNCCAATCCCANGGGCAAATTCCANCN NNCTGGNGGCCGTTACTAGGGGANCCNANCTNGGNNCCAANNTTGANNCANANNTNG NGTNTTNNANAGGGGCNCCNAAANANNTNGGNGNAANCANGGNCANANCTGTTNCCT-GGGGAAAATTGTNNTECNNTNANAATTCCNCNCAANNTACNACCCGGAANCNTAAAGGGTAAA

#### BSK- 1E15 - forward

GGTTCCCATGAATACTGCGATGTGATGGGCCGGGTCGATATTATCACCGGTACGCTT
GGTAAAGCGCTGGGCGGGGCTTCTGGTGGTTATACCGCGGCGCGCAAAGAAGTGGTT
GAGTGGCTGCGCCAGCGTTCTCGTCCGTACCTGTTCTCCAACTCGCTGCACCGGCC
ATTGTTGCCGCGTCCATCAAAGTACTGGAGATGGTCGAAGCGGGCAACTGCGT
GACCGTCTGTGGGCGAACGCGCGTCAGTTCCGTGAGCAAATGTCGGCGGCGGCTTT
ACCCTGGCGGGAGCCGATCACGCCATTATTCCGGTCATGCTTGGTGATGCGGTAGTG
GCGCAGAAATTTGCCCGTGAGCTGCAAAAAAGAGGGCATTTACGTTACCGGTTTCTTC
TATCCGGTCGTTCCGAAAGGTCAGGCGCGTATTCGTACCCAGATGTCTGCGGCGCAT
ACCCCTGACAAATTACGCGTGCAGTAGAAGCATTTACGCGTATTGGTAAACAACTGG
GCCGTTATCGCCTGAGGATGTGAGATGAAAGCGTTATCCAAACTGAAAAGCGGAAGA
GGCATTTTGGATGACCGACGTTCTGTACCGGAACTCGGCATAACGAATCTGGTTGAT
TAAAAGTCCGTAAACAGCCATTNTGCGGGAATGACGTTCACATTTATAACTGGGGAT
AAGTCTNGCNCCAATNCCAAGG

#### BSK-1A11-A3 - revers

CCGGCCCGTCTCGCCCGCCGCGCGGGGAGGTGAGCACGAGCGCACGTGTTAGGAC
CCGAAAGATGGTGAACTATGCCTGGGCAGGCCAAGCCAGAGGAAACTCTGGTGGAG
GTCCGTAGCGGTCCTGACGTGCAAATCGGTCGTCCGACCTGGGTATAGGGGCGAAAG
ACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGC
GCTCTCGCAGACCCGACGCACCCCCGCCACGCAGTTTTATCCGGTAAAGCGAATGAT
TAGAGGTCTTGGGGCCGAAACGATCTCAACCTATTCTCAAACTTTAAATGGGTAAAG
AAGCCCGGCTCGCTGGCGTGGAGCCGGCGTGGAATGCCAATTTTGGTAAGCANAACTGGCCACTT
TTGGTAAGCANAACTGGCGCTTGGGGATGAACCGAACGCCGGGTTAAGGGGCCCGAT
GCCGACCTCAT

BSK-1D8-B3 - forward

5

10

15

20

25

30

35

40

45

50

55

AAGGAATCGTATCGTATGTCCGCTATCCAGAACCTCCACTCTTTCGACCCCTTTGCT
GATGCAAGTAAGGGTGATGACCTGCTTCCTGCTGCACTGAGGATTATATATCCATATA
AGAATTCAACAGAGAAACGGCAGGAAGACCCTTACTACTGTCCAAGGGATCGCTGAT
GATTACGATAAAAAGAAACTAGTGAAGGCGTTTAAGAAAAAGTTTGCCTGCAATGGT
ACTGTAATTGAGCATCCGGAATATGGAGAAGTAATTCAGCTACAGGGTGACCAACGC
AAGAACATATGCCAGTTCCTCGTAGAGATTGGACTGAAGTCATGAGGATTAAGTGAGTTTCCTTGCA
ATGAGTAGAATTTCCCTTCTCTCTCCCTTGTCACAGGTTTAAAAACCTCCAGCTTGTAT
AATGTAACCATTTGGGGTCCCGCTTTTACTTGGACTANTGTAACTCCTTCGTGCCAT
AAACTGAAACAGCCATGCTGCTATCTT

BSK-1D8-B3---revers

CTGAAAACAAGTTTTATTTAAATAAGGGTTTAAATACATTACACATAACATTAAAAC
TGAAGGGGAAAAAAACCAAAAACCAGTTTGTTACTTCACATGGCATTGGGCAGCT
GCTGCTATTAAGTTGCAAGCTCTACAGCTAGCTACATGACTGATGGATCAGTTTGAG
ATTTGTTCCCTTGTCAAAAGTTTAACTCTGATAGAAGGTTGGCCTCACATTCTGATG
TTTGGACATCCCTTAGCTAGGATATGTCTGGTCGAACAGACCTTTGTGGCAAGCCAG
ATGTCCTATCACCTCGCTAGCGGTAAGAGGGCCTCTTTGAGCTCTGTCCACCTAGTC
AGGTTGGAGACACCAGGGGATCTACCACCAAAAGCTCCCTTNTAGTAGTACAGCTGG
GCTTCTGCCTTACCCCCATCCTCTCTTTTAAAATTCACCGANGACTGTTCANGTGGT
AACATTCTTTANGGTANGGAACTCTTGNAAANGGAGGGCTGAGGAGGTTCCCGCCAG

#### BSK-1D9-A11 - forward

#### BSK-1D9-B1 - forward

ATCGGTCGCGTTACCGCACTGGACGCCTCGCGGCGCCCATCTCCGCACTCCGGATT
CGGGGATCTGAACCCGACTCCCTTTCGATCGGCCGAGGGCAACGGAGGCCATCGCCC
GTCCCTTCGGAACGGCGCTCGCCCATCTCTTAGGACCGACTGACCCATGTTCAACTG
CTGGTTCACATGGAACCCTTCTTCACTTCGGCCTTCAAAAGTTTTCGTTTGAATATT
TGCTACTACCACCAAGATCTGNACCTGCGGGGGTTCCACCCGGGCCCGCGCCCTANG
CTTTAAAGGTTNACCGNAACGGGCCTTCTACTTNTCGCGGNGTAACGTCCCCNGGGC
TTCCGGGGGGGGGGGGGGGGAATTTCAACTGACGCCGGTCGCACCATTACCAANTGG
TCTGGNGGCAAAAATAANATAACCGGGCAGGCCTGTNAACCCAATTCAACAAATGGG
GGCCGTNCTATGGATCCCAACTCGGNCCAACTTGANCATANTTGNGNTTTTTANGGA
NCNAAAANCTTGGNGAANNANGGNAAACTTTTCTTGNGGAATGGTNTCGTTCAATNC
CCAANAACAACCGAACTAAAGNGAAACCGG

#### BSK-1E2-C24 - forward

5

10

15

35

40

45

50

55

GCCGAGGATGGCCGTCATGGCGCCCCGAACCCTCGTCCTGCTACTCTCGGGGGCCCT
GGCCCTGACCCAGACCTGGGCAGGCTCCCACTCCATGAGGTATTTCTCCACATCCGT
GTCCCGGCCCGCGCGGGGAGCCCCGCTTCATCGCCGTGGGCTACGTGGACGACAC
GCAGTTCGTGTGTTCGACAGCGACGCCGCGAGCCAGAGGATGGAGCCGCGGGCGC
GTGGATAGAGCAGGAGGGCCGGAGTATTGGGACGAGGACAGGGAAAGTGAAGGC
CCACTCACAGACTGACCGAGAGAACCTGCGGATCGCGCTCCGCTACTACAACCAGAG
CGAGGCCGGTTCTCACACCCTCCAGATGACGTTTGGCTGCGACGTGGGGTCGGACGG
GCGCTTCCTCCGCGGGTACCACCAGTACCCTACGACGGCAAGGATTACATCGCCTGA
AAGAAGACCTGCCTCTTGGACCGGGGNGGACATGGCGGTTAANATAACAAACGCAAG
TGGGANGCGGGCCATGNGGG

#### BSK-1E2-C24 - revers

GATGATTGGGGAGGAGCACAGGTCAGCGTGGGAAGAGGGTCATGGTGGACATGGGG GTGGGGTGGTGCTAANACAAGGTANAGTANGANATACTTTTCTTACCTNTTTATGCT GA

#### BSK-1H5-A1 - forward

AGTGAGCTTTGGCCTTGGGCCTCAAGGAAAAGAATCTGTACCTGTCCTGCGTGTTGA
AAGATGATAAGCCCACTCTACAGTTGGAGAGTGTAGATCCCAAAAATTACCCAAAGA
AGAAGATGGAAAAGCGATTTGTCTTCAACAAGATAGAAATCAATAACAAGCTGGAAT
TTGAGTCTGCCCAGTTCCCCAACTGGTACATCAGGACGTCTCAAGCANAAAACATGC
CCGTCTCCCTGGGAGGACCAAAGGCGGCCAGGATATAACTGACTTCACCATGCAAT
TTGNGTCTTCTAAAGAAGAGCTGACCCAAAAAGTCCTGNGCTGAATGNGGACTCAAT
CCCTAGGCTGGGCANAAAGGG

10

5

BSK-2G9-B1 - forward

15

25

20

BSK-2G9-B1 - revers

30

GCGATGGCCTCCGTTGCCCTCGGCCGATCGAAAGGGAGTCGGGTTCAGATCCCCGAA TCCGGAGTGGCGGAGATGGGCGCCGCGAGGCGTCCAGTGCGGTAACGCGACCGATCC CGGAGAAGCCGGCGGAGCCCCCGGGGAGAGTTCTCTTTTCTTTGTGAAGGGCAGGGC GCCCTGGAATGGGTTCGCCCCGAGAGAGGGGCCCGTGCCTTGGAAAGCGTNCGCGGT TCCGGCGGCGTCCGGTGAGCTCTCGCTGGCCCTTGAAAATCCGGGGGAGAGGGTGTA AATCTCGCGCCGGGCCGTACCCATATCCGCACAGGTCTCAAGGTGAACAGCCTTGGC ATGTTGGAACAATGTANGTAAGGGAAG

**3**5

BSK-2G9-C3 - forward

0

CAAACCCACTCCACCTTACTACCAGACAACCTTAGCCAAACCATTTACCCAAATAAA GTATAGGCGATAGAAATTGAAACCTGGCGCAATAGATATAGTACCGCAAGGGAAAGA TGAAAAATTATAGCCAAGCATAATATAGCAAGGACTAACCCCTATACCTTCTGCATA ATGAATTAACTAGAAATAACTTTGCAAGGAGAGCCAAAGCTAAGACCCCGGAAACCA GACGAGCTACCTAAGAACAGCTAAAAAGAGCACACCCGTCTATGTAGCAAAATAGTGG GAAGATTTATAGGTAGAGGCGACAAACCTACCGAGCCTGGTGATAGCTGGTTGTCCA AGATAGAATCTTAGTTCAACTTTAAATTTGCCCACAGAACCCTCTAAATCCCCTTGT AAATTTAACTGTTAGTCCAAAGAGGAACACCCTTTGGACACTAGGAAAAAACCTTG TAGAGAGAGTAAAAAATTTAACACCCATAGTAGGCCTAAAAGCCGGAATTNCAGCTT GAGCGCCCGGTCGTTCCATTACCAGNCGGTCTGGGGGTCAAAAATATAATAACG

50

55

45

BSK-2G9-C3 - revers

#### BSK-2H10-A4 - forward

5

10

15

20

25

30

35

40

45

50

TTGAACGCTTTCTTAATTGGTGGCTGCTTTTAGGCCTACTATGGGTGTTAAATTTTT
TACTCTCTCTACAAGGTTTTTTCCTAGTGTCCAAAGAGCTGTTCCTCTTTGGACTAA
CAGTTAAATTTACAAGGGGATTTAGAGGGTTCTGTGGGCAAATTTAAAGTTGAACTA
AGATTCTATCTTGGACAACCAGCTATCACCAGGCTCGGTAGGTTTGTCGCCTCTACC
TATAAATCTTCCCACTATTTTGCTACATAGACGGGGTGTGCTCTTTTAGCTGTTCTT
AGGTAGCTCGTCTGGTTTCGGGGGTCTTAGCTTTTGGCTCTCCTTGCAAAGTTATTTC
TAGTTAATTCATTATGCAGAAGGATAGGGGTTAAGTCCTTGCTATATTATGCTTGGG
TATAATTTTCATCTTTCCCTTGCGGTACTATATCTATTTGCGCCAGGTTTCAATTTC
TATCGCCTATACTTTATTTGGGTAAATGGNTTGCTAAAGGTGNCTGGTAATAAGGTG
GAATGGGTTTGCGGA

#### BSK-2H10-A4 - revers

CANNCCCACTNCANCTTACTACCNGACATCCTTANCCAAACCATTTACCCAAATANA
GTATAGGCGATAGAAATTGAAACCTGGCGCAATAGATATANTACCGCAAGGGAAAGA
TGAAAAATTATAACCAAGCATAATATAGCAAGGACTAACCCCTATACCTTCTGCATA
ATGAATTAACTAGAAATAACTTTGCAAGGAGGAGCCAAAGCTAAGACCCCCGAAACCA
GACGAGCTACCTAAGAACAGCTAAAAGAGCACACCCGTCTATGTAGCAAAATAGTGG
GAAGATTTATAGGTAGAGGCGACAAACCTACCGAGCCTGGTGATAGCTGGTTGTCCA
AGATAGAATCTTAGTTCAACTTTAAATTTGCCCACAGAACCCTCTAAATCCCCTTGT
AAATTTAACTGTTAGTCCAAAGAGGAACAGCTCTTTGGACACTAGGAAAAAACCTTG
TAGAGAGAGTAAAAAATTTAACACCCATAGTAGGCCTAAAAGCAGCCCCAATTAAGA
AAGCGTCAACGGAATTNCAGCTGAGCGCCCGGTCG

#### BSK-4-4 - forward

GCTGGAAATACAGCAATGAATAGGTCTCTAGTCTCCTGGAACATCAAATGATGTTTA
TCCAAAAGTATAAATAGTTACCATTTTTTATTGTCTTCTTAATAAATTGAATAAAAT
AATGTCTTTGCTGCCAGTAACATGGATGGAACTGGAAGTCACTATTTTAAGTGGAAT
TAAAGAAAAAGAAAGTCAAATACCATAGGTTCTCACTTATAAGTGGAGCTAAATAA
TGTATACACATAGACGTAGAGTGTGAAATAATAGATATCGGAGACTCAGAGAATTGT
TTTGTTTGAGGAGGCTGAAGATAGGACCCCAATCCCTTCTAGCTTGTAGGGTTTCTG
CTGAGAAATCTGTGGTTAATCTAAGTTTCCCTTTATAGGTTACCTGGTGCTTTTGCT

CACAGCTCTTAAGATTCTTTNCTTCGCTTAACTTTGGCTAACCTGGTGACAATATGC
CTANGCGATGATCNTTTTGNGATAAATTTTTCAAGTGGTCTTTGTGCCTAAGNCTCT
AGCAGACTTGGGGAAGTTTTCCTTGATATTTCCCCAAATATGGTTTTCAAGCTTTAN
AATCTCTTCTTCTCAGGAACCCCGATATTCTTAAGGTTGNCCTTGAGCTNATCCCA
ANTTTTTTGAGGTTTGTNAAATGGGCTAAAANTNTTCTTTGCNTTTNANGNATGGGN
TCANTTTNAAAACCTTGNTTTTAANCCNCGAAAT

#### BSK-17 - forward

5

10

15

20

25

30

35

40

45

50

55

CTGTGTTAGAAAAATCATAAAACATAACAGAATCTACACATCATGGTCCACCAGAG GATTCACAGATGGAAATGAATTTTAATATTGTTACTTTTGAAGTCCCAAATACTTTA AGATTTACAATAAAAAACATTCTGACAGAGTCCATGATGAATTATTTCCAGTCTTTC CAAAGCAGGTAACAAAGTGTCTAACCTATATTCCACAGGTGCATACCATGGCTACGA ATAAACTATCCAATCTAACCACAGAAGCTGAGCATTTGGTTTTGGGGTTAATCCACAT CACATGACTCACCATTGAGAAAGCGGCTCTCACCATGCTTAATGGGCACAGCACCTC TGCAAACAATCCTTCCCTGGCTAATCATTCCCTCTGAGAGGTTTCCTCAGTAAAGA GATTAGAACTACCTCTTGCATTTCCAACTTTTAAAAAATTGCCTTTTTGGAAATCTA CCACCACCAACTAATTCTTGACAGACTTGTAGAGAATGACCCTCAAAGAATATCAT TCGAGACACATATTCAAGCAGACTGGNCATGGTGGCTCATGCCTGCAGTCCCAGCAG TTTGGGAAGCTGAAGTGAACTGATGCTTGAATNCAGGAGTCTTGAGAACAGCCTGGG TAACATGGNAAAACCGGGTCCTACAAAAAATTCCNAAAATTACCCNGGTNTGTTGG NGCACAATGNGGGCCCAACTTTNCCNAAAGAAAAAGTTTGGCTTCAGGAAGGCAAG GGTCNCNNANCCCTGAATGGCCCCTTCCTTCAACCGGGGNAAAAANGGGNAACCTTT TTGGNAAGGGAAGGGAAAGGGAAGGGCCTTTTNNNTTTAAAAAAGGGANNTT AAAAGGNGGCCCNAAAACNTTTTTAAAGGGCAACCTTTTTTNCTTTTTTGGGAAAAT **TGGGGNAAAT** 

#### BSK-23 - forward

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

## IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.