ECE 45 WI25 Professor Heath January 10, 2025 3:00PM Andrew Onozuka A16760043 Homework #1

1) Mathematics Review

a)
$$\int_{0}^{\infty} e^{-t} dt = 1$$

b)
$$\int_{1}^{\infty} e^{-t} dt = \frac{1}{e}$$

c)
$$\int_{-1}^{\infty} e^{-t} dt = e$$

$$d) \int_{-\infty}^{\infty} e^{-2|t|} dt = 1$$

e)
$$\int_{0}^{\infty} t e^{-t} dt = 1$$

f)
$$\int_{0}^{\infty} e^{-\beta t} dt = \{ \frac{1}{\beta}, if \beta > 0, DNE, if \beta \le 0 \}$$

For this integral to converge, the exponential term $e^{-\beta t}$ must decay to 0 as $t \to \infty$. This happens when $\beta > 0$. If $\beta \le 0$, the exponential term either remains constant ($\beta = 0$) or grows unbounded ($\beta < 0$), causing the integral to diverge.

g)
$$4 + 4j = 4\sqrt{2}(\cos\frac{\pi}{4} + j\sin\frac{\pi}{4}) = (4\sqrt{2}, \frac{\pi}{4})$$

h)
$$(4 + 3j) - (2 - 6j) = 2 + 9j$$

 $r = \sqrt{x^2 + y^2} = \sqrt{2^2 + 9^2} = \sqrt{85}$
 $\Theta = tan^{-1} \frac{y}{x} = tan^{-1} (\frac{9}{2}) \approx 1.35 \ radians$

$$\sqrt{85}(\cos 1.35 + j\sin 1.35)$$

i)
$$e^{jt} = \cos t + j\sin t$$
 $e^{-jt} = \cos t - j\sin t$
 $e^{jt} - e^{-jt} = (\cos t + j\sin t) - (\cos t - j\sin t) = 2j\sin t$
 $2e^{3jt} = 2\cos(3t) + 2j\sin(3t)$
 $f(t) = 2\cos(3t) + 2j\sin t + 2j\sin(3t)$

j)
$$g(t) = 1 + \cos(t) + \sin(2t)$$

 $g(t) = 1 + \frac{e^{it} + e^{-jt}}{2} + \frac{e^{j2t} - e^{-j2t}}{2i}$

$$g(t) = 1 + \frac{1}{2}e^{jt} + \frac{1}{2}e^{-jt} + \frac{1}{2j}e^{j2t} - \frac{1}{2j}e^{-j2t}$$

k)
$$A = 4$$
, $Phase = -\frac{\pi}{4}$
 $V = 4e^{-j\frac{\pi}{4}}$

ECE 45 WI25 Professor Heath January 10, 2025 3:00PM Andrew Onozuka A16760043 Homework #1

2) MATLAB Onramp

3) AI Prompt Sequence

ECE 45 WI25 Professor Heath January 10, 2025 3:00PM Andrew Onozuka A16760043

Homework #1

- Convolution properties and physical interpretation.
- Relation between convolution and phasors.

Week 6-7: Fourier Series

1. Fourier Series:

- · Basic formulation.
- Trigonometric and exponential forms.
- Convergence properties and practical applications.

2. Properties:

• Linearity, symmetry, time-shifting, frequency-shifting.

Week 8-10: LTI Systems in Frequency

1. Frequency Response:

- Deriving and interpreting the frequency response.
- Filters (low-pass, high-pass, band-pass).
- Bode plots: Gain and phase plots.

Week 11-14: Fourier Transform

1. Fourier Transform Basics:

- Transforming signals from time to frequency domain.
- Sinc functions, rectangular functions, and their transforms.
- Convolution in the Fourier domain.

2. Properties:

- · Linearity, scaling, duality.
- · Multiplication and convolution properties

4) Acknowledgments

I acknowledge that I have read through and reviewed all of the course policies from the syllabus including but not limited to the requirement of marking problems on GradeScope and no late submissions.