Laboratorio No 1

Marco David Suárez Berdugo

Elías Buitrago Bolivar

Seminario Big data y gestión de la información

Universidad ECCI Julio 2024

Desarrollo

```
[ ] 1 import pandas as pd
2 import numpy as np
3 import matplotlib. pyplot as plt
```

Importd de las librerías: Pandas, Numpy y matplotlib

Se crea un conjunto de datos y este se envía para un dataframe

0 2010 FCBarcelona 30 6 2 1 2011 FCBarcelona 28 7 3 2 2012 FCBarcelona 32 4 2 3 2010 RMadrid 29 5 4 4 2011 RMadrid 32 4 2 5 2012 RMadrid 26 7 5 6 2010 ValenciaCF 21 8 9 7 2011 ValenciaCF 17 10 11 8 2012 ValenciaCF 19 8 11	[†]		year	team	wins	draws	losses
2 2012 FCBarcelona 32 4 2 3 2010 RMadrid 29 5 4 4 2011 RMadrid 32 4 2 5 2012 RMadrid 26 7 5 6 2010 ValenciaCF 21 8 9 7 2011 ValenciaCF 17 10 11		0	2010	FCBarcelona	30	6	2
3 2010 RMadrid 29 5 4 4 2011 RMadrid 32 4 2 5 2012 RMadrid 26 7 5 6 2010 ValenciaCF 21 8 9 7 2011 ValenciaCF 17 10 11		1	2011	FCBarcelona	28	7	3
4 2011 RMadrid 32 4 2 5 2012 RMadrid 26 7 5 6 2010 ValenciaCF 21 8 9 7 2011 ValenciaCF 17 10 11		2	2012	FCBarcelona	32	4	2
5 2012 RMadrid 26 7 5 6 2010 ValenciaCF 21 8 9 7 2011 ValenciaCF 17 10 11		3	2010	RMadrid	29	5	4
6 2010 ValenciaCF 21 8 9 7 2011 ValenciaCF 17 10 11		4	2011	RMadrid	32	4	2
7 2011 ValenciaCF 17 10 11		5	2012	RMadrid	26	7	5
		6	2010	ValenciaCF	21	8	9
8 2012 ValenciaCF 19 8 11		7	2011	ValenciaCF	17	10	11
		8	2012	ValenciaCF	19	8	11

Resultado del dataframe

```
[ ] 1 from google.colab import drive 2 drive.mount('/content/drive')
```

Función para trabajar sobre el repositorio de drive

```
1 edu = pd.read_csv("/content/drive/MyDrive/data/Lab_1/educ_figdp_1_Data.csv",
2
3 na_values = ':',
4 usecols = ["TIME","GEO","Value"])
5
6 edu
```

Se localiza el archivo y se establece los nombres de columnas

		TIME	GEO	Value
	0	2000	European Union (28 countries)	NaN
	1	2001	European Union (28 countries)	NaN
	2	2002	European Union (28 countries)	5.00
	3	2003	European Union (28 countries)	5.03
	4	2004	European Union (28 countries)	4.95
	379	2007	Finland	5.90
	380	2008	Finland	6.10
	381	2009	Finland	6.81
	382	2010	Finland	6.85
	383	2011	Finland	6.76
,	384 rc	ws × 3	columns	

Resultado de consulta de archivo

```
1 edu[edu['Value'] > 6.5].tail()
```

Se filtra por la columna value para traer aquellos con valor mayor a 6.5

Resultado del filtro

```
1 edu[edu["Value"].isnull()].head()
```

Se filtra por la columna value para aquellos con valor nulo

Resultado de filtro

```
1 edu. max(axis = 0)
```

Se filtra por los máximos de cada columna

Resultado del filtro

```
[ ] 1 print("Pandas max function:", edu['Value'].max())
2 print("Python max function:", max(edu['Value']))
```

Filtrando los máximos por columnas especificas

```
Pandas max function: 8.81
Python max function: nan
```

Resultado de filtro

```
1 s = edu["Value"]. apply (np.sqrt)
2
3 s.head()
```

Aplicando la raíz cuadrada a cada valor de la columna Value

```
0 NaN

1 NaN

2 25.0000

3 25.3009

4 24.5025

Name: Value, dtype: float64
```

Resultado

```
1 s = edu["Value"]. apply ( lambda d: d**2)
2
3 s.head()
```

Aplicando lambda a cada valor de la columna Value

```
0 NaN

1 NaN

2 25.0000

3 25.3009

4 24.5025

Name: Value, dtype: float64
```

Resultado

```
1 edu['ValueNorm'] = edu['Value']/edu['Value']. max ()
2
3 edu.tail()
```

Creando una nueva columna en el dataframe a partir de un algoritmo matemático

	TIME	GEO	Value	ValueNorm
379	2007	Finland	5.90	0.669694
380	2008	Finland	6.10	0.692395
381	2009	Finland	6.81	0.772985
382	2010	Finland	6.85	0.777526
383	2011	Finland	6.76	0.767310

Resultado

```
1 edu.drop('ValueNorm', axis = 1, inplace = True)
2
3 edu.head()
```

Borrando columnas del dataframe

```
TIME GEO Value

0 2000 European Union (28 countries) NaN

1 2001 European Union (28 countries) NaN

2 2002 European Union (28 countries) 5.00

3 2003 European Union (28 countries) 5.03

4 2004 European Union (28 countries) 4.95
```

Resultado del borrado de columna

```
1 edu.sort_values(by = 'Value', ascending = False,
2
3 inplace = True)
4
5 edu.head()
```

Realizando ordenamiento de los datos

1302010Denmark8.811312011Denmark8.751292009Denmark8.741212001Denmark8.441222002Denmark8.44	₹		TIME	GEO	Value
129 2009 Denmark 8.74 121 2001 Denmark 8.44		130	2010	Denmark	8.81
121 2001 Denmark 8.44		131	2011	Denmark	8.75
		129	2009	Denmark	8.74
122 2002 Denmark 8.44		121	2001	Denmark	8.44
		122	2002	Denmark	8.44

Resultado del ordenamiento

```
1 group = edu[["GEO", "Value"]].groupby('GEO').mean()
2 group.head()
```

Se realiza agrupamiento por la columna GEO

Resultado de agrupamiento

```
filtered_data = edu[edu["TIME"] > 2005]

pivedu = pd. pivot_table( filtered_data , values = 'Value',

index = ['GEO'] ,

columns = ['TIME'])

pivedu.head()
```

Filtrando la tabla para los años mayores a 2005 y pivoteando las columnas por TIME y GEO

₹	TIME	2006	2007	2008	2009	2010	2011
	Austria	5.40	5.33	5.47	5.98	5.91	5.80
	Belgium	5.98	6.00	6.43	6.57	6.58	6.55
	Bulgaria	4.04	3.88	4.44	4.58	4.10	3.82
	Cyprus	7.02	6.95	7.45	7.98	7.92	7.87
	Czech Republic	4.42	4.05	3.92	4.36	4.25	4.51

Resultado de filtro y pivoteo

```
1 totalSum = pivedu. sum(axis = 1).sort_values(ascending = False)
2 totalSum. plot(kind = 'bar', style = 'b', alpha = 0.4,
3 title = "Total Values for Country")
```

Dando valor a las propiedades de graficas

Grafica

```
1 my_colors = ['b', 'r', 'g', 'y', 'm', 'c']
2 ax = pivedu. plot(kind = 'barh',
3 stacked = True ,
4 color = my_colors)
5
6 ax.legend(loc = 'center left', bbox_to_anchor = (1, .5))
```


Grafica

Conclusiones

Usar las librerías Pandas, NumPy y Matplotlib.pyplot en la analítica de datos proporciona una poderosa combinación de herramientas que facilita la manipulación, análisis y visualización de grandes conjuntos de datos de manera eficiente y efectiva. En conjunto, estas librerías permiten a los analistas de datos llevar a cabo análisis exploratorios, preparar datos para modelos de machine learning, y comunicar sus hallazgos de manera clara y efectiva mediante visualizaciones comprensibles.