# Chapter 2: High-Level Languages and Their Syntactic Description

Instructor: Gao Zhen

Email: gaozhen@tongji.edu.cn

#### **Outline**

- 1. Programming language definition
- 2. General features of high-level languages
  - Program structure
  - Data types & operations
  - Statements & control structures
- 3. Syntax description methods



### Formal Languages

- To understand/define high-level programming languages is crucial for compiler construction.
- This section will introduce the **formal description** of syntactic structures.

Compiler = Formal language theory + Compiler techniques



### Formal Languages

#### Formal languages

- Described using universally recognized symbols and expressions, formal languages are general and nationalityneutral.
- □ A formal language is a set of strings over some alphabet and has a well-defined descriptive scope.
- ☐ The original idea came from linguist **Noam Chomsky**, who aimed to use formal methods to describe languages.
- □ Started in natural language research, but found wide application in computer science, especially in theoretical computer science.

### ■ 1936 — Alan Turing

#### **Timeline**

- □ Proposed the Turing Machine, formalizing the concept of "computability."
- 1951–1956 Stephen Kleene
  - □ Developed the concept of regular sets / regular expressions.
     Proved the equivalence regular expressions ↔ finite automata.



- 1956 Noam Chomsky
  - □ Published *Three Models for the Description of Language*. Proposed the Chomsky hierarchy (regular, context-free, context-sensitive, unrestricted grammars).
- 1959 Michael O. Rabin & Dana Stewart Scott
  - □ Introduced Nondeterministic Finite Automata (NFA), deepening automata theory. Received the Turing Award in 1976.
- 1960–1961 John Backus, Peter Naur, et al.
  - □ Used BNF (Backus–Naur Form) in programming language design, directly applying Chomsky's context-free grammar ideas.
- 1961–1963 John E. Hopcroft, Jeffrey D. Ullman etc.
  - □ Systematically proved the equivalence between formal languages and automata.
- 1969 Hopcroft & Ullman
  - □ Published *Formal Languages and Their Relation to Automata*, a classic textbook that unified the equivalence of grammars, automata, and languages.

#### **Formal Definition of Grammar**

■ A grammar G is a 4-tuple G=(V<sub>N</sub>, V<sub>T</sub>, S, £)

**V**<sub>N</sub>: a finite set of non-terminal symbols

 $V_T$ : a finite set of terminal symbols,  $V_N \cap V_T = \Phi$ 

S: the start symbol, and  $S \in V_N$ 

 $\maltese$  : a finite set of production rules of the form  $P{\to}\alpha$ 

$$P \in (V_N \cup V_T)^* V_N (V_N \cup V_T)^*$$
,  $\alpha \in (V_N \cup V_T)^*$ 

### **Example of Grammar**

```
■ Let G_1 = (\{N\}, \{0, 1\}, N, \{N\rightarrow 0N, N\rightarrow 1N, N\rightarrow 0, N\rightarrow 1\})
V_N = \{N\}, \text{ [non-terminal symbols]}
V_T = \{0, 1\}, \text{ [terminal symbols / alphabet]}
S = N, \text{ [start symbol]}
\mathfrak{L} = \{N\rightarrow 0N, N\rightarrow 1N, N\rightarrow 0, N\rightarrow 1\} \text{ [productions]}
```

#### **Explanation of Grammar**

- Terminal symbols (V<sub>T</sub>)
  - □ basic symbols in the alphabet, individual tokens
- Non-terminal symbols (V<sub>N</sub>)
  - need further definition, represent grammatical concept such as "arithmetic expression", "boolean expression", "procedure", etc.
    - → Non-terminals represent sets (not individual tokens)
- Start symbol S
  - represents the starting point of the language, and all strings derived from it form the language
  - a non-terminal that appears on the left side of at least one production rule

### **Explanation of Grammar**

■ Production rules : define the syntax structure; written as

### **Notation Conventions**

- V<sub>N</sub>:uppercase letters A, B, C, S, etc.
- V<sub>T</sub>: lowercase letters, digits 0–9, operators +, –, etc.
- $\alpha$ ,  $\beta$ ,  $\gamma$ :strings of grammar symbols,  $\in (V_T \cup V_N)^*$
- S:start symbol, appears in the first production
- lacksquare ightarrow :definition symbol ("is defined as")
- | : "or"



#### **Notation Conventions**

■ To simplify, only the production part is written

Assume the left-hand side of the first production is
the start symbol, or prefix the productions with "G[A]"
where G is the grammar name, and A is the start
symbol

Grammar G[N]:  $N\rightarrow 0N$ ,  $N\rightarrow 1N$ ,  $N\rightarrow 0$ ,  $N\rightarrow 1$ Grammar G[E]:  $E\rightarrow E+E\mid E*E\mid (E)\mid i$ 

#### M

#### Direct Derivation and Reduction

#### Direct derivation

- □ If A → γ is a production, and α, β ∈  $(V_T \cup V_N)^*$ , then applying the rule A → γ to string αAβ yields αγβ
- □ Written as:  $\alpha A\beta \Rightarrow \alpha \gamma \beta$ , called a **direct derivation**

#### Direct reduction

- ☐ Reduction is the reverse of derivation
- □ If αAβ  $\Rightarrow$  αγβ, then αγβ can be **directly reduced** to αAβ



#### **Derivation**

■ Let  $\alpha_1, \alpha_2, ..., \alpha_n$  (n>0)∈( $V_T \cup V_N$ )\*, And

$$\alpha_1 \Rightarrow \alpha_2 \Rightarrow \dots \Rightarrow \alpha_n$$

This sequence is a derivation from  $\alpha_1$  to  $\alpha_n$ 

- If such a derivation exists,  $\alpha_1$  can derive  $\alpha_n$ 

  - $\Box$   $\alpha_1 \stackrel{*}{\Rightarrow} \alpha_n$  (via zero or more steps)

#### ĸ.

#### Multiple Derivations

■ Given Grammer G[N₁]:

$$N_1 \rightarrow N$$
  $N \rightarrow ND|D$   $D \rightarrow 0|1|2$ 

Then sentence "12" can be derived in multiple ways:

$$(1) N_1 \Rightarrow N \Rightarrow ND \Rightarrow N2 \Rightarrow D2 \Rightarrow 12$$

(2) 
$$N_1 \Rightarrow N \Rightarrow ND \Rightarrow DD \Rightarrow 1D \Rightarrow 12$$

■ Thus, the same sentence can have different derivation sequences.



#### **Leftmost derivation:**

$$S \Rightarrow AB$$

**⇒ 1BB** 

⇒ 10B

**⇒ 10S1** 

**⇒ 10AB1** 

⇒ 101BB1

⇒ 1010B1

⇒ 1010**0**1

#### **Rightmost derivation:**

 $S \Rightarrow AB$ 

⇒ **AS1** 

 $\Rightarrow$  AAB1

 $\Rightarrow$  AA01

⇒ A1B01

⇒ A1001

⇒ 1B1001

 $\Rightarrow$  101001

#### м

#### Sentential Forms, Sentences, and Language G[E]: E→E+E|E\*E|(E)|i

Sentential Form: Suppose G is a grammar and E is its starting symbol. If E ⇒ α, then α is a sentential form of grammar G Example: (E + E), (i + E), (i + i), E

 Sentence: Sentential form consisting only of terminal characters are called sentences

Example:  $(i \times i + i)$ , (i + i)

■ Language: The whole of the sentence produced by grammar G  $L(G) = \{\alpha | S \stackrel{+}{\Rightarrow} \alpha, \alpha \in V_T^*\}$  1

**Example.** With grammar G1 [S]:  $S \rightarrow bA$ ,  $A \rightarrow aA \mid a$  Try to find the language described by this grammar.

**Solution**: Because the following sentences can be deduced from the start symbol S:

$$S \Rightarrow bA \Rightarrow ba$$
 $S \Rightarrow bA \Rightarrow baA \Rightarrow baa$ 
 $S \Rightarrow bA \Rightarrow baA \Rightarrow baaA \Rightarrow baaa$ 
...
 $S \Rightarrow bA \Rightarrow baA \Rightarrow ... \Rightarrow baa...a$ 

So L(G1)={ 
$$ba^n | n>=1$$
}

## **Example.** Construct a grammar $G_3$ for the language: $L(G3) = \{b^n a^n | n > = 1\}$

This language consists of strings like:

#### Features of $L(G_3)$ :

- 1. Symmetric strings (a's and b's in pairs)
- 2. Infinite set with recursive pattern
- 3. Alphabet: {a, b}

G3= 
$$(\{S\}, \{a,b\}, S, \{S\rightarrow bSa|ba\})$$

#### Exercise

- P36
  - □ 第6题
    - □ 令文法G<sub>6</sub>为
      - $N \rightarrow D | ND$
      - $D \to 0|1|2|3|4|5|6|7|8|9$
      - (1) G<sub>6</sub>的语言L(G<sub>6</sub>)是什么?
      - (2) 给出句子0127, 34和568的最左推导和最右推导
  - □ 第8题
    - □ 令文法为
      - E→T|E+T|E-T
      - $T \rightarrow F|T*F|T/F$
      - $F \rightarrow (E)/i$
      - (1) 给出i+i\*i, i\*(i+i)的最左推导和最右推导
      - (2) 给出i+i+i, i+i\*i和i-i-i的语法树

#### w

#### Chomsky Grammar System (Review)

- In the Chomsky hierarchy, any grammar must include:
  - ☐ Two distinct finite sets of symbols:
    - Non-terminal set V<sub>N</sub>
    - Terminal set V<sub>T</sub>
  - □ A start symbol S
  - □ A finite set of formal rules £ (productions)
- Grammar **G=(V<sub>N</sub>, V<sub>T</sub>, S, £)**, £ :  $P \rightarrow \alpha$ , where  $P \in (V_N \cup V_T)^* V_N (V_N \cup V_T)^*$ ,  $\alpha \in (V_N \cup V_T)^*$
- Restrictions are imposed on the form of productions, and grammars are classified into four types: **Type 0**, **Type 1**, **Type 2**, **and Type 3**

### Type 0 Grammer

- Type 0 Grammar: Unrestricted grammar, phrase structure grammar
  - □ Corresponding Language: Recursively Enumerable Language
     Equivalent to Turing machines
- Example: The following grammar is Type 0:

```
S \rightarrow aBC|aSBC
CB \rightarrow BC
aB \rightarrow ab
bB \rightarrow bb
bB \rightarrow b
bC \rightarrow bc
cC \rightarrow cc
cC \rightarrow c
```

#### ĸ.

### Type 1 Grammer

- Also called Context-Sensitive Grammar (CSG)
- Production format:  $P\rightarrow\alpha$ , where

```
|P| \le \alpha, \alpha \in (V_N \cup V_T)^*, P \in (V_N \cup V_T)^* \setminus V_N (V_N \cup V_T)^*
```

- □ Corresponding language: CSL (Context-sensitive Language)
- If ε is not considered, it is equivalent to a Linear Bounded Automata (LBA)
- $\square$  Example :  $\alpha A\beta \rightarrow \alpha \gamma \beta$

### Type 1 Grammer

Example: The following grammar is Type 1:

$$aB \rightarrow ab$$

#### ĸ.

### Type 2 Grammer

- Also called Context-free Grammar (CFG)
- Production form:  $P\rightarrow\alpha$ , where

$$P \in V_N$$
,  $\alpha \in (V_N \cup V_T)^*$ 

- □ Corresponding language: Context-free Language (CFL)
- □ Corresponding automaton: Pushdown Automata (PDA)

#### м

### Type 2 Grammer

Example. Context-free Grammar

```
S \rightarrow 01
```

$$S \rightarrow 0S1$$

Generated language L =  $\{0^n1^n \mid n \ge 1\}$ ,

e.g. 0011, 000111, 01  $\in$  L, but 10, 1001,  $\epsilon$ , 010  $\notin$  L.

No finite automata can accept L.

### Type 3 Grammer

- Also called Regular Grammar
  - □ Right-linear Grammar : Productions of the form  $A \rightarrow \omega B$  or  $A \rightarrow \omega$ , where A,  $B \in V_N$ ,  $\omega \in V_T^*$ .
  - □ Left-linear Grammar: Productions of the form  $A \rightarrow Bω$  or  $A \rightarrow ω$ , where  $A \in V_N$ ,  $ω \in V_T^*$ .
  - □ Equivalent to Regular Expressions
  - □ Corresponding language: Regular Language
  - Corresponding automaton: Finite Automaton (FA)
- **Example S**  $\rightarrow$  aS, S  $\rightarrow$  a

Equivalent regular expression: a+, or a\*a

 $\boldsymbol{a}$ 



### Chomsky Grammar Hierarchy



#### M

## Correspondence Between Grammars, Formal Languages, and Automata





#### Exercise: how to draw the Finite Automata

**Example. Given grammar** 

G1[S]:  $S \rightarrow bA$ ,  $A \rightarrow aA \mid a$ 

**Task:** Draw the equivalent Finite Automata

#### Conclusion (1)

- Restrictions on context-free grammars for programming languages
  - (1) Productions that form "self-loops" are NOT allowed: P→ P
  - (2) Every non-terminal P is useful,  $P \in V_N$ :
    - Appears in some derivation from start symbol:  $S \Rightarrow \alpha P\beta$
    - Can derive a terminal string: P ⇒ γ, γ∈V<sub>T</sub>\*
- Lexical analysis: based on regular grammars

**Regular Grammar** 

$$A \to IB \hspace{1cm} B \to IB|dB|\epsilon$$

Syntax analysis: based on context-free grammars



#### Conclusion (2)

- Context-free grammars are powerful enough to describe the syntax of most modern programming languages
  - □ Arithmetic Expression
  - □ Assignment Statement
  - □ Conditional Statement
  - .....

#### **Arithmetic Expression**

Grammer G=({E}, {+, \*, i, (, )}, E, P}  $E \rightarrow i \qquad E \rightarrow E+E$   $E \rightarrow E*E \qquad E \rightarrow (E)$ 

#### **Conditional Statement**

S→if E then S

S→if E then S else S



- Parse Tree (Syntax Tree)
- Ambiguity





#### What is a Parse Tree?

- A parse tree represents the derivation of a sentence (string) in a grammar
- It is an inverted tree (root at the top, leaves at the

bottom)

- □ Node
- □ Edge
- □ Root Node
- □ Leaf Node
- □ Leaf Branches : A(a,b), B(c,d)
- □ Sibling Nodes



## Constructing a Parse Tree from a Derivation

 $S \Rightarrow AB$ 

(s)

- ⇒AcBd
- ⇒Accdd
- ⇒abccdd









#### м

#### **■**Example. Grammer G[E]:

$$E \rightarrow E + T \mid T$$
 $T \rightarrow T^*F \mid F$ 
 $F \rightarrow (E) \mid i$ 

#### **Derivation of expression E+F\*i:**



The syntax tree



#### More about parse tree

- A parse tree shows which rules are applied and on which nonterminal symbols, but it does NOT indicate the order of rule applications
- Does a sentence have a unique leftmost (or rightmost) derivation?
  - Not always
- Does a sentence correspond to a unique parse tree?
  - □ Not always



### **Ambiguity**

- A sentence is ambiguous if it has two parse trees
- A grammar is ambiguous if it generates any ambiguous sentence; otherwise, it is unambiguous

#### Grammer G[E] : E→E+E | E\*E | (E) | i



Similarly, the sentence's rightmost derivation and its parse tree are also different.

#### 100

## Transforming an ambiguous grammar into an unambiguous grammar

■ Grammer G[E]: E→E+E | E×E | (E) | i is ambiguous. By defining precedence (×> +) and left associativity, it can be transformed into an unambiguous grammar.

Grammer G[E]: 
$$E \rightarrow T \mid E+T$$
  
 $T \rightarrow F \mid T \times F$   
 $F \rightarrow (E) \mid i$ 

The sentence has a unique derivation :  $(i \times i + i)$ 

### **QUIZ-CANVAS**



Dank u

Dutch

Merci French Спасибо

Russian

**Gracias** 

Spanish

شكراً

Arabic

धन्यवाद

Hindi

감사합니다

תודה רבה Hebrew

Tack så mycket

**Swedish** 

**Obrigado** 

Brazilian Portuguese

Dankon

**Esperanto** 

ありがとうございます Japanese Thank You!

谢谢

Chinese

Trugarez

Breton

Danke German Tak

Danish

Grazie

Italian

நன்றி

Tamil

děkuji Czech ขอบคุณ

Thai

go raibh maith agat